

Completeness (of \mathfrak{MR}_*)

Completeness (of \mathfrak{MR}_*) ___

How to prove completeness?

Completeness (of \mathfrak{MR}_*) _

- How to prove completeness?
- Completeness can be proven rather easily for propositional logic calculi.

Completeness (of \mathfrak{MR}_*)_

- How to prove completeness?
- Completeness can be proven rather easily for propositional logic calculi.
- For first-order and especially higher-order logic completeness proofs become increasingly difficult and technical.

Completeness (of \mathfrak{MR}_*)

- How to prove completeness?
- Completeness can be proven rather easily for propositional logic calculi.
- For first-order and especially higher-order logic completeness proofs become increasingly difficult and technical.
- Here we will introduce a strong proof tool that uniformly supports completeness proofs (and many other things): abstract consistency.

Completeness (of \mathfrak{MR}_*)_

- How to prove completeness?
- Completeness can be proven rather easily for propositional logic calculi.
- For first-order and especially higher-order logic completeness proofs become increasingly difficult and technical.
- Here we will introduce a strong proof tool that uniformly supports completeness proofs (and many other things): abstract consistency.
- This proof tool is based on a strong theorem which connects syntax and semantics: model existence theorem.

Abstract Consistency

Abstract Consistency: History

Technique was developed for first-order logic by Jaakko Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan68]. It is well explained in Fitting's textbook [Fitting96].

Abstract Consistency: History

- Technique was developed for first-order logic by Jaakko Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan68]. It is well explained in Fitting's textbook [Fitting96].
- The technidue has been (partly) extended to higher-order logic by Peter Andrews' in [Andrews71]; Peter Andrews only achieves a generalization for his rather weak semantical v-complexes (corresponding to our $\mathfrak{M}_{\beta}(\Sigma)$) and not, for instance, for Henkin Semantics. This extension is well explained in Peter Andrews's textbook [Andrews02].

Abstract Consistency: History

- Technique was developed for first-order logic by Jaakko Hintikka and Raymond Smullyan [Hintikka55,Smullyan63,Smullyan68]. It is well explained in Fitting's textbook [Fitting96].
- The technidue has been (partly) extended to higher-order logic by Peter Andrews' in [Andrews71]; Peter Andrews only achieves a generalization for his rather weak semantical v-complexes (corresponding to our $\mathfrak{M}_{\beta}(\Sigma)$) and not, for instance, for Henkin Semantics. This extension is well explained in Peter Andrews's textbook [Andrews02].
- The technique has been extended to our landscape of HOL model classes in [Benzmueller-PhD-99,JSL04].

■ A model existence theorem for a logical system (i.e., a logical language L together with a consequence relation |=) is a theorem of the form:

■ A model existence theorem for a logical system (i.e., a logical language L together with a consequence relation |=) is a theorem of the form:

If a set of sentences Φ of L is a member of an (saturated) abstract consistency class Γ , then there exists a model for Φ .

■ Employing the model existence theorem we can prove completeness of a calculus C (i.e., the derivability rel. \vdash_C) by

Employing the model existence theorem we can prove completeness of a calculus C (i.e., the derivability rel. ⊢_C) by proving that the class Γ of sets of sentences Φ that are C-consistent (i.e., cannot be refuted in C) is an (saturated) abstract consistency class.

- Employing the model existence theorem we can prove completeness of a calculus C (i.e., the derivability rel. ⊢_C) by proving that the class Γ of sets of sentences Φ that are C-consistent (i.e., cannot be refuted in C) is an (saturated) abstract consistency class.
- Why does this work?

- Employing the model existence theorem we can prove completeness of a calculus C (i.e., the derivability rel. ⊢_C) by proving that the class Γ of sets of sentences Φ that are C-consistent (i.e., cannot be refuted in C) is an (saturated) abstract consistency class.
- Why does this work?
 - The model existence theorem tells us that C-consistent sets of sentences are satisfiable.

- Employing the model existence theorem we can prove completeness of a calculus C (i.e., the derivability rel. ⊢_C) by proving that the class Γ of sets of sentences Φ that are C-consistent (i.e., cannot be refuted in C) is an (saturated) abstract consistency class.
- Why does this work?
 - The model existence theorem tells us that C-consistent sets of sentences are satisfiable.
 - Now we assume that a sentence A is valid, so ¬A does not have a model and is therefore C-inconsistent.

- Employing the model existence theorem we can prove completeness of a calculus C (i.e., the derivability rel. ⊢_C) by proving that the class Γ of sets of sentences Φ that are C-consistent (i.e., cannot be refuted in C) is an (saturated) abstract consistency class.
- Why does this work?
 - The model existence theorem tells us that C-consistent sets of sentences are satisfiable.
 - Now we assume that a sentence A is valid, so $\neg A$ does not have a model and is therefore C-inconsistent.
 - ightharpoonup Hence, $\neg A$ is refutable in C.

- Employing the model existence theorem we can prove completeness of a calculus C (i.e., the derivability rel. ⊢_C) by proving that the class Γ of sets of sentences Φ that are C-consistent (i.e., cannot be refuted in C) is an (saturated) abstract consistency class.
- Why does this work?
 - The model existence theorem tells us that C-consistent sets of sentences are satisfiable.
 - Now we assume that a sentence A is valid, so $\neg A$ does not have a model and is therefore C-inconsistent.
 - ightharpoonup Hence, $\neg A$ is refutable in C.
 - This shows refutation completeness of C.

- Employing the model existence theorem we can prove completeness of a calculus C (i.e., the derivability rel. ⊢_C) by proving that the class Γ of sets of sentences Φ that are C-consistent (i.e., cannot be refuted in C) is an (saturated) abstract consistency class.
- Why does this work?
 - The model existence theorem tells us that C-consistent sets of sentences are satisfiable.
 - Now we assume that a sentence A is valid, so ¬A does not have a model and is therefore C-inconsistent.
 - ightharpoonup Hence, $\neg A$ is refutable in C.
 - This shows refutation completeness of C.
 - For many calculi C, this also shows A is provable, thus establishing completeness of C.

Let C be a class of sets then C is called closed under subset if for all sets S and T it holds that

Let C be a class of sets then C is called closed under subset if for all sets S and T it holds that

from $S \subseteq T$ and $T \in C$ it follows that $S \in C$.

Let C be a class of sets then C is called closed under subset if for all sets S and T it holds that

from $S \subseteq T$ and $T \in C$ it follows that $S \in C$.

Let C be a class of sets. C is called compact or of finite character if and only if for every set S holds:

Let C be a class of sets then C is called closed under subset if for all sets S and T it holds that

from $S \subseteq T$ and $T \in C$ it follows that $S \in C$.

Let C be a class of sets. C is called compact or of finite character if and only if for every set S holds:

 $S \in C$ if and only if every finite subset of S is a member of C.

• not closed under subsets: $\{\{\neg(A \lor B), \neg A, C\}, \{\neg A\}\}$

- not closed under subsets: $\{\{\neg(A \lor B), \neg A, C\}, \{\neg A\}\}$
- closed under subsets: {{¬(A ∨ B), ¬A, C}, {¬(A ∨ B), ¬A}, {C}, {S}, {A ∨ B}, {A

- not closed under subsets: $\{\{\neg(A \lor B), \neg A, C\}, \{\neg A\}\}$
- closed under subsets: {{¬(A ∨ B), ¬A, C}, {¬(A ∨ B), ¬A}, {C}, {¬(A ∨ B), ¬A}, {¬(A ∨ B), C}, {¬A, C}, {¬(A ∨ B)}, {¬A}, {C}, {}}
- We define two classes of sets

- not closed under subsets: $\{\{\neg(A \lor B), \neg A, C\}, \{\neg A\}\}$
- We define two classes of sets
 - $ightharpoonup C := \{ \varphi \mid \varphi \text{ is finite subset of } \mathbb{N} \}$

- not closed under subsets: $\{\{\neg(A \lor B), \neg A, C\}, \{\neg A\}\}$
- We define two classes of sets
 - $ightharpoonup C := \{ \varphi \mid \varphi \text{ is finite subset of } \mathbb{N} \}$
 - $\mathsf{D} := 2^{\mathbb{N}}$

- not closed under subsets: $\{\{\neg(A \lor B), \neg A, C\}, \{\neg A\}\}$
- closed under subsets: {{¬(A ∨ B), ¬A, C}, {¬(A ∨ B), ¬A}, {C}, {S}, {A ∨ B}, {A
- We define two classes of sets
 - $ightharpoonup C := \{ \varphi \mid \varphi \text{ is finite subset of } \mathbb{N} \}$
 - $\mathsf{D} := 2^{\mathbb{N}}$
 - C is closed under subsets but not compact.

- not closed under subsets: $\{\{\neg(A \lor B), \neg A, C\}, \{\neg A\}\}$
- We define two classes of sets
 - $ightharpoonup C := \{ \varphi \mid \varphi \text{ is finite subset of } \mathbb{N} \}$
 - $\mathsf{D} := 2^{\mathbb{N}}$
 - C is closed under subsets but not compact.
 - D is closed under subsets and compact.

Lemma:

If C is compact then C is closed under subsets.

Lemma:

If C is compact then C is closed under subsets.

Proof:

Lemma:

If C is compact then C is closed under subsets.

Proof:

Let $T \in C$ and $S \subseteq T$.

Lemma:

If C is compact then C is closed under subsets.

Proof:

Let $T \in C$ and $S \subseteq T$.

We have to show that $S \in C$.

Lemma:

If C is compact then C is closed under subsets.

Proof:

Let $T \in C$ and $S \subseteq T$.

We have to show that $S \in C$.

Every finite subset A of S is also a finite subset of T.

Lemma: Closed under Subsets / Compact

Lemma:

If C is compact then C is closed under subsets.

Proof:

Let $T \in C$ and $S \subset T$.

We have to show that $S \in C$.

Every finite subset A of S is also a finite subset of T.

Since C is compact and $T \in C$ we get that all $A \in C$.

Lemma: Closed under Subsets / Compact

Lemma:

If C is compact then C is closed under subsets.

Proof:

Let $T \in C$ and $S \subseteq T$.

We have to show that $S \in C$.

Every finite subset A of S is also a finite subset of T.

Since C is compact and $T \in C$ we get that all $A \in C$.

Thus, $S \in C$ by compactness.

Def.: Sufficiently Σ-Pure _

We introduce a technical side-condition that ensures that we always have enough witness constants.

Def.: Sufficiently Σ-Pure

We introduce a technical side-condition that ensures that we always have enough witness constants.

Let Σ be a signature and Φ be a set of Σ -sentences. Φ is called sufficiently Σ -pure if for each type α there is a set $\mathcal{P}_{\alpha} \subseteq \Sigma_{\alpha}$ of parameters with equal cardinality to $\mathit{wff}_{\alpha}(\Sigma)$, such that the elements of \mathcal{P}_{α} do not occur in the sentences of Φ .

Def.: Sufficiently Σ-Pure _

We introduce a technical side-condition that ensures that we always have enough witness constants.

Let Σ be a signature and Φ be a set of Σ -sentences. Φ is called sufficiently Σ -pure if for each type α there is a set $\mathcal{P}_{\alpha} \subseteq \Sigma_{\alpha}$ of parameters with equal cardinality to $\mathit{wff}_{\alpha}(\Sigma)$, such that the elements of \mathcal{P}_{α} do not occur in the sentences of Φ .

This can be obtained in practice by enriching the signature with spurious parameters.

Abstract Consistency: Conventions

Remember the conventions for this part of the lecture:

• signature Σ contains only the logical constants \neg, \lor, Π^{α} unless stated otherwise

Abstract Consistency: Conventions

Remember the conventions for this part of the lecture:

- signature Σ contains only the logical constants \neg , \lor , Π^{α} unless stated otherwise
- **as a matter of convenience we will write** $\varphi * A$ for $\varphi \cup \{A\}$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$, $\alpha, \beta \in \mathcal{T}$, $A, B \in \textit{cwff}_{o}(\Sigma)$, $F \in \textit{cwff}_{\alpha \to o}(\Sigma)$ are arbitrary):

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$,

 $\alpha, \beta \in \mathcal{T}$, $\mathbf{A}, \mathbf{B} \in \textit{cwff}_{o}(\Sigma)$, $\mathbf{F} \in \textit{cwff}_{\alpha \to o}(\Sigma)$ are arbitrary):

 $\nabla_{\!c}$ If **A** is atomic, then **A** $\notin \Phi$ or \neg **A** $\notin \Phi$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$,

$$\alpha, \beta \in \mathcal{T}, \mathbf{A}, \mathbf{B} \in \textit{cwff}_{o}(\Sigma), \mathbf{F} \in \textit{cwff}_{\alpha \to o}(\Sigma)$$
 are arbitrary):

 ∇_{c} If **A** is atomic, then **A** $\notin \Phi$ or \neg **A** $\notin \Phi$.

 ∇_{\neg} If $\neg \neg \mathbf{A} \in \Phi$, then $\Phi * \mathbf{A} \in \Gamma_{\Sigma}$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$,

$$\alpha, \beta \in \mathcal{T}, \mathbf{A}, \mathbf{B} \in \textit{cwff}_{o}(\Sigma), \mathbf{F} \in \textit{cwff}_{\alpha \to o}(\Sigma)$$
 are arbitrary):

 ∇_{c} If **A** is atomic, then $\mathbf{A} \notin \Phi$ or $\neg \mathbf{A} \notin \Phi$.

$$\nabla_{\neg}$$
 If $\neg \neg \mathbf{A} \in \Phi$, then $\Phi * \mathbf{A} \in \Gamma_{\Sigma}$.

 $\nabla_{\!\beta}$ If $\mathbf{A} =_{\beta} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then $\Phi * \mathbf{B} \in \Gamma_{\!\Sigma}$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$,

$$\alpha, \beta \in \mathcal{T}, \mathbf{A}, \mathbf{B} \in \textit{cwff}_{o}(\Sigma), \mathbf{F} \in \textit{cwff}_{\alpha \to o}(\Sigma)$$
 are arbitrary):

 ∇_{c} If **A** is atomic, then $\mathbf{A} \notin \Phi$ or $\neg \mathbf{A} \notin \Phi$.

$$\nabla_{\neg}$$
 If $\neg \neg \mathbf{A} \in \Phi$, then $\Phi * \mathbf{A} \in \Gamma_{\Sigma}$.

$$\nabla_{\!\beta}$$
 If $\mathbf{A} =_{\beta} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then $\Phi * \mathbf{B} \in \Gamma_{\!\Sigma}$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$,

$$\alpha, \beta \in \mathcal{T}, \mathbf{A}, \mathbf{B} \in \textit{cwff}_{o}(\Sigma), \mathbf{F} \in \textit{cwff}_{\alpha \to o}(\Sigma)$$
 are arbitrary):

 ∇_{c} If **A** is atomic, then **A** $\notin \Phi$ or \neg **A** $\notin \Phi$.

$$\nabla_{\neg}$$
 If $\neg \neg \mathbf{A} \in \Phi$, then $\Phi * \mathbf{A} \in \Gamma_{\Sigma}$.

$$\nabla_{\!\beta}$$
 If $\mathbf{A} =_{\beta} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then $\Phi * \mathbf{B} \in \Gamma_{\!\Sigma}$.

$$\nabla_{\!\!\!\!\vee}$$
 If $\mathbf{A}\vee\mathbf{B}\in\Phi$, then $\Phi*\mathbf{A}\in\Gamma_{\!\!\!\!\!\Sigma}$ or $\Phi*\mathbf{B}\in\Gamma_{\!\!\!\!\Sigma}$.

$$\nabla_{\!\!\wedge}$$
 If $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, then $\Phi*\neg\mathbf{A}*\neg\mathbf{B}\in\Gamma_{\!\!\Sigma}$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$,

$$\alpha, \beta \in \mathcal{T}, \mathbf{A}, \mathbf{B} \in \textit{cwff}_{o}(\Sigma), \mathbf{F} \in \textit{cwff}_{\alpha \to o}(\Sigma)$$
 are arbitrary):

- ∇_{c} If **A** is atomic, then $\mathbf{A} \notin \Phi$ or $\neg \mathbf{A} \notin \Phi$.
- ∇_{\neg} If $\neg \neg \mathbf{A} \in \Phi$, then $\Phi * \mathbf{A} \in \Gamma_{\Sigma}$.
- $\nabla_{\!\beta}$ If $\mathbf{A} =_{\beta} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then $\Phi * \mathbf{B} \in \Gamma_{\!\Sigma}$.
- $\nabla_{\!\!\wedge}$ If $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, then $\Phi*\neg\mathbf{A}*\neg\mathbf{B}\in\Gamma_{\!\!\Sigma}$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$,

$$\alpha, \beta \in \mathcal{T}, \mathbf{A}, \mathbf{B} \in \textit{cwff}_{o}(\Sigma), \mathbf{F} \in \textit{cwff}_{\alpha \to o}(\Sigma)$$
 are arbitrary):

- ∇_{c} If **A** is atomic, then **A** $\notin \Phi$ or \neg **A** $\notin \Phi$.
- ∇_{\neg} If $\neg \neg \mathbf{A} \in \Phi$, then $\Phi * \mathbf{A} \in \Gamma_{\Sigma}$.
- $\nabla_{\!\beta}$ If $\mathbf{A} =_{\beta} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then $\Phi * \mathbf{B} \in \Gamma_{\!\Sigma}$.
- $\nabla_{\!\!\wedge}$ If $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, then $\Phi*\neg\mathbf{A}*\neg\mathbf{B}\in\Gamma_{\!\!\Sigma}$.
- ∇_{\exists} If $\neg \Pi^{\alpha} \mathbf{F} \in \Phi$, then $\Phi * \neg (\mathbf{F} \mathbf{w}) \in \Gamma_{\Sigma}$ for any parameter $\mathbf{w}_{\alpha} \in \Sigma_{\alpha}$ which does not occur in any sentence of Φ .

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$, $\alpha, \beta \in \mathcal{T}$, $A, B \in \textit{cwff}_{o}(\Sigma)$, $F \in \textit{cwff}_{\alpha \to o}(\Sigma)$ are arbitrary):

- ∇_{c} If **A** is atomic, then $\mathbf{A} \notin \Phi$ or $\neg \mathbf{A} \notin \Phi$.
- ∇_{\neg} If $\neg \neg \mathbf{A} \in \Phi$, then $\Phi * \mathbf{A} \in \Gamma_{\Sigma}$.
- $\nabla_{\!\beta}$ If $\mathbf{A} =_{\beta} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then $\Phi * \mathbf{B} \in \Gamma_{\!\Sigma}$.
- $\nabla_{\!\!\wedge}$ If $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, then $\Phi*\neg\mathbf{A}*\neg\mathbf{B}\in\Gamma_{\!\!\Sigma}$.
- ∇_{\exists} If $\neg \Pi^{\alpha} \mathbf{F} \in \Phi$, then $\Phi * \neg (\mathbf{F} \mathbf{w}) \in \Gamma_{\Sigma}$ for any parameter $\mathbf{w}_{\alpha} \in \Sigma_{\alpha}$ which does not occur in any sentence of Φ .

(These properties are going back to Hintikka, Smullyan, and Andrews)

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$, $\alpha, \beta \in \mathcal{T}$, $A, B \in \textit{cwff}_{o}(\Sigma)$, $G, H, (\lambda X_{\alpha} M), (\lambda X_{\alpha} N) \in \textit{cwff}_{\alpha \to \beta}(\Sigma)$ are arbitrary):

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$, $\alpha, \beta \in \mathcal{T}$, $A, B \in \textit{cwff}_{o}(\Sigma)$, $G, H, (\lambda X_{\alpha} M), (\lambda X_{\alpha} N) \in \textit{cwff}_{\alpha \to \beta}(\Sigma)$ are arbitrary):

 $\nabla_{\mathfrak{b}}$ If $\neg(\mathbf{A} \stackrel{=}{=}^{\circ} \mathbf{B}) \in \Phi$, then $\Phi * \mathbf{A} * \neg \mathbf{B} \in \Gamma_{\Sigma}$ or $\Phi * \neg \mathbf{A} * \mathbf{B} \in \Gamma_{\Sigma}$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$, $\alpha, \beta \in \mathcal{T}$, $A, B \in \textit{cwff}_{o}(\Sigma)$, $G, H, (\lambda X_{\alpha}M), (\lambda X_{\alpha}N) \in \textit{cwff}_{\alpha \to \beta}(\Sigma)$ are arbitrary):

 ∇_{b} If $\neg(\mathbf{A} \stackrel{\cdot}{=}^{\circ} \mathbf{B}) \in \Phi$, then $\Phi * \mathbf{A} * \neg \mathbf{B} \in \Gamma_{\Sigma}$ or $\Phi * \neg \mathbf{A} * \mathbf{B} \in \Gamma_{\Sigma}$.

 $\nabla_{\!\eta}$ If $\mathbf{A}\stackrel{\beta\eta}{=}\mathbf{B}$ and $\mathbf{A}\in\Phi$, then $\Phi*\mathbf{B}\in\Gamma_{\!\Sigma}$.

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$, $\alpha, \beta \in \mathcal{T}$, $A, B \in \textit{cwff}_{o}(\Sigma)$, $G, H, (\lambda X_{\alpha}M), (\lambda X_{\alpha}N) \in \textit{cwff}_{\alpha \to \beta}(\Sigma)$ are arbitrary):

- $\nabla_{\mathfrak{b}}$ If $\neg (\mathbf{A} \stackrel{\cdot}{=}^{\circ} \mathbf{B}) \in \Phi$, then $\Phi * \mathbf{A} * \neg \mathbf{B} \in \Gamma_{\Sigma}$ or $\Phi * \neg \mathbf{A} * \mathbf{B} \in \Gamma_{\Sigma}$.
- $\nabla_{\!\eta}$ If $\mathbf{A}\stackrel{\beta\eta}{=}\mathbf{B}$ and $\mathbf{A}\in\Phi$, then $\Phi*\mathbf{B}\in\mathsf{\Gamma}_{\!\Sigma}$.
- $\nabla_{\xi} \quad \text{If } \neg(\lambda \mathsf{X}_{\alpha^{\blacksquare}}\mathbf{M} \stackrel{:}{=}^{\alpha \to \beta} \lambda \mathsf{X}_{\alpha^{\blacksquare}}\mathbf{N}) \in \Phi, \text{ then} \\ \Phi * \neg([\mathsf{w}/\mathsf{X}]\mathbf{M} \stackrel{:}{=}^{\beta} [\mathsf{w}/\mathsf{X}]\mathbf{N}) \in \mathsf{\Gamma}_{\Sigma} \text{ for any parameter } \mathsf{w}_{\alpha} \in \Sigma_{\alpha} \\ \text{which does not occur in any sentence of } \Phi.$

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$, $\alpha, \beta \in \mathcal{T}$, $A, B \in \textit{cwff}_{o}(\Sigma)$, $G, H, (\lambda X_{\alpha} M), (\lambda X_{\alpha} N) \in \textit{cwff}_{\alpha \to \beta}(\Sigma)$ are arbitrary):

- $\nabla_{\!\mathfrak{b}} \quad \text{ If } \neg (\mathbf{A} \stackrel{=}{=}^{\mathsf{o}} \mathbf{B}) \in \Phi \text{, then } \Phi * \mathbf{A} * \neg \mathbf{B} \in \mathsf{\Gamma}_{\!\!\Sigma} \text{ or } \Phi * \neg \mathbf{A} * \mathbf{B} \in \mathsf{\Gamma}_{\!\!\Sigma}.$
- $\nabla_{\!\eta}$ If $\mathbf{A}\stackrel{\beta\eta}{=}\mathbf{B}$ and $\mathbf{A}\in\Phi$, then $\Phi*\mathbf{B}\in\Gamma_{\!\Sigma}$.
- $\nabla_{\xi} \quad \text{If } \neg(\lambda \mathsf{X}_{\alpha^{\blacksquare}}\mathbf{M} \stackrel{:}{=}^{\alpha \to \beta} \lambda \mathsf{X}_{\alpha^{\blacksquare}}\mathbf{N}) \in \Phi, \text{ then} \\ \Phi * \neg([\mathsf{w}/\mathsf{X}]\mathbf{M} \stackrel{:}{=}^{\beta} [\mathsf{w}/\mathsf{X}]\mathbf{N}) \in \mathsf{\Gamma}_{\Sigma} \text{ for any parameter } \mathsf{w}_{\alpha} \in \Sigma_{\alpha} \\ \text{which does not occur in any sentence of } \Phi.$
- $abla_f ext{If } \neg(\mathbf{G} \doteq^{\alpha \to \beta} \mathbf{H}) \in \Phi, \text{ then } \Phi * \neg(\mathbf{G} \mathsf{w} \doteq^{\beta} \mathbf{H} \mathsf{w}) \in \Gamma_{\Sigma} \text{ for any parameter } \mathsf{w}_{\alpha} \in \Sigma_{\alpha} \text{ which does not occur in any sentence of } \Phi.$

Let Γ_{Σ} be a class of sets of Σ -sentences. We define (where $\Phi \in \Gamma_{\Sigma}$, $\alpha, \beta \in \mathcal{T}$, $A, B \in \textit{cwff}_{o}(\Sigma)$, $G, H, (\lambda X_{\alpha}M), (\lambda X_{\alpha}N) \in \textit{cwff}_{\alpha \to \beta}(\Sigma)$ are arbitrary):

- $\nabla_{\!\mathfrak{b}} \quad \text{If } \neg (\mathbf{A} \stackrel{=}{=}^{\mathsf{o}} \mathbf{B}) \in \Phi \text{, then } \Phi * \mathbf{A} * \neg \mathbf{B} \in \Gamma_{\!\!\!\Sigma} \text{ or } \Phi * \neg \mathbf{A} * \mathbf{B} \in \Gamma_{\!\!\!\Sigma}.$
- $\nabla_{\!\eta}$ If $\mathbf{A}\stackrel{\beta\eta}{=}\mathbf{B}$ and $\mathbf{A}\in\Phi$, then $\Phi*\mathbf{B}\in\Gamma_{\!\Sigma}$.
- $\nabla_{\xi} \quad \text{If } \neg(\lambda \mathsf{X}_{\alpha^{\blacksquare}}\mathbf{M} \stackrel{:}{=}^{\alpha \to \beta} \lambda \mathsf{X}_{\alpha^{\blacksquare}}\mathbf{N}) \in \Phi, \text{ then} \\ \Phi * \neg([\mathsf{w}/\mathsf{X}]\mathbf{M} \stackrel{:}{=}^{\beta} [\mathsf{w}/\mathsf{X}]\mathbf{N}) \in \mathsf{\Gamma}_{\Sigma} \text{ for any parameter } \mathsf{w}_{\alpha} \in \Sigma_{\alpha} \\ \text{which does not occur in any sentence of } \Phi.$
- $\nabla_{\!f} \quad \text{If } \neg (\mathbf{G} \doteq^{\alpha \to \beta} \mathbf{H}) \in \Phi \text{, then } \Phi * \neg (\mathbf{G} \mathsf{w} \doteq^{\beta} \mathbf{H} \mathsf{w}) \in \Gamma_{\!\Sigma} \text{ for any}$ parameter $\mathsf{w}_{\alpha} \in \Sigma_{\alpha}$ which does not occur in any sentence of Φ .

(These properties are new in [Benzmueller-PhD-99,JSL04])

Let Σ be a signature and Γ_{Σ} be a class of sets of Σ -sentences that is closed under subsets.

Let Σ be a signature and Γ_{Σ} be a class of sets of Σ -sentences that is closed under subsets.

If ∇_{c} , ∇_{\neg} , ∇_{β} , ∇_{\lor} , ∇_{\land} , ∇_{\lor} and ∇_{\exists} are valid for Γ_{Σ} , then Γ_{Σ} is called an abstract consistency class for Σ -models.

Let Σ be a signature and Γ_{Σ} be a class of sets of Σ -sentences that is closed under subsets.

If ∇_{c} , ∇_{\neg} , ∇_{β} , ∇_{\lor} , ∇_{\land} , ∇_{\lor} and ∇_{\exists} are valid for Γ_{Σ} , then Γ_{Σ} is called an abstract consistency class for Σ -models.

We will denote the collection of abstract consistency classes by \mathfrak{Acc}_{β} .

Let Σ be a signature and Γ_{Σ} be a class of sets of Σ -sentences that is closed under subsets.

If ∇_{c} , ∇_{\neg} , ∇_{β} , ∇_{\lor} , ∇_{\land} , ∇_{\lor} and ∇_{\exists} are valid for Γ_{Σ} , then Γ_{Σ} is called an abstract consistency class for Σ -models.

We will denote the collection of abstract consistency classes by \mathfrak{Acc}_{β} .

Similarly, we introduce the following collections of specialized abstract consistency classes (with primitive equality): $\mathfrak{Acc}_{\beta\eta}$, $\mathfrak{Acc}_{\beta\xi}$, $\mathfrak{A$

not an abstract consistency class:

$$\{ \{ \neg (A \lor B), \neg A \}, \{ \neg (A \lor B) \}, \{ \neg A \}, \{ \} \}$$

not an abstract consistency class:

$$\{\{\neg(A \lor B), \neg A\}, \{\neg(A \lor B)\}, \{\neg A\}, \{\}\}\}$$

still not:

$$\{\{\neg(A \lor B), \neg A, \neg B\}, \{\neg(A \lor B), \neg A\}, \{\neg(A \lor B)\}, \{\neg A\}, \{\}\}\}$$

not an abstract consistency class:

$$\{\{\neg(A \lor B), \neg A\}, \{\neg(A \lor B)\}, \{\neg A\}, \{\}\}\}$$

still not:

$$\{\{\neg(A \lor B), \neg A, \neg B\}, \{\neg(A \lor B), \neg A\}, \{\neg(A \lor B)\}, \{\neg A\}, \{\}\}\}$$

how about this one:

$$\Gamma := \{ \{ \neg (A \lor B), \neg A, \neg B \}, \{ \neg (A \lor B), \neg A \}, \{ \neg (A \lor B), \neg B \}, \{ \neg A, \neg B \}, \{ \neg (A \lor B) \}, \{ \neg A \}, \{ \neg B \}, \{ \} \}$$

not an abstract consistency class:

$$\{\{\neg(A \lor B), \neg A\}, \{\neg(A \lor B)\}, \{\neg A\}, \{\}\}\}$$

still not:

$$\{\{\neg(A \lor B), \neg A, \neg B\}, \{\neg(A \lor B), \neg A\}, \{\neg(A \lor B)\}, \{\neg A\}, \{\}\}\}$$

how about this one:

$$\Gamma := \{ \{ \neg (A \lor B), \neg A, \neg B \}, \{ \neg (A \lor B), \neg A \}, \{ \neg (A \lor B), \neg B \}, \{ \neg A, \neg B \}, \{ \neg (A \lor B) \}, \{ \neg A \}, \{ \neg B \}, \{ \} \}$$

and how about this:

$$\begin{split} &\Gamma_0 := \Gamma \\ &\Phi \in \Gamma_i \wedge A \in \Phi \wedge B =_{\beta\eta} A \wedge B \neq A \wedge (\Phi * B) \notin \Gamma_i \longrightarrow \\ &\Gamma_{i+1} := \text{close-under-subsets}(\Gamma_i * (\Phi * B)) \\ &\Gamma^* := \Gamma_{\infty} \end{split}$$

The work presented here is based on the choice of the primitive logical connectives \neg , \lor and Π^{α} .

The work presented here is based on the choice of the primitive logical connectives \neg , \lor and Π^{α} . A means to generalize the framework over the concrete choice of logical primitives is provided by the uniform notation approach as, for instance, given in [Fitting96].

The work presented here is based on the choice of the primitive logical connectives \neg , \lor and Π^{α} . A means to generalize the framework over the concrete choice of logical primitives is provided by the uniform notation approach as, for instance, given in [Fitting96]. This can be done in straightforward manner: ∇_{\land} becomes an α -property, ∇_{\lor} becomes a β -property, ∇_{\lor} becomes a β -property, and ∇_{\exists} becomes a δ -property.

The work presented here is based on the choice of the primitive logical connectives \neg , \lor and Π^{α} . A means to generalize the framework over the concrete choice of logical primitives is provided by the uniform notation approach as, for instance, given in [Fitting96]. This can be done in straightforward manner: ∇_{\land} becomes an α -property, ∇_{\lor} becomes a β -property, ∇_{\lor} becomes a γ -property, and ∇_{\exists} becomes a δ -property. Thus they will have the following form:

The work presented here is based on the choice of the primitive logical connectives \neg , \lor and Π^{α} . A means to generalize the framework over the concrete choice of logical primitives is provided by the uniform notation approach as, for instance, given in [Fitting96]. This can be done in straightforward manner: $\nabla_{\!\!\!\wedge}$ becomes an α -property, $\nabla_{\!\!\!\vee}$ becomes a β -property, $\nabla_{\!\!\!\vee}$ becomes a γ -property, and $\nabla_{\!\!\!\!-}$ becomes a δ -property. Thus they will have the following form:

 α -case If $\alpha \in \Phi$, then $\Phi * \alpha_1 * \alpha_2 \in \Gamma_{\Sigma}$.

Rem.: Possible Generalization

The work presented here is based on the choice of the primitive logical connectives \neg , \lor and Π^{α} . A means to generalize the framework over the concrete choice of logical primitives is provided by the uniform notation approach as, for instance, given in [Fitting96]. This can be done in straightforward manner: ∇_{\land} becomes an α -property, ∇_{\lor} becomes a β -property, ∇_{\lor} becomes a γ -property, and ∇_{\exists} becomes a δ -property. Thus they will have the following form:

 α -case If $\alpha \in \Phi$, then $\Phi * \alpha_1 * \alpha_2 \in \Gamma_{\Sigma}$.

 β -case If $\beta \in \Phi$, then $\Phi * \beta_1 \in \Gamma_{\Sigma}$ or $\Phi * \beta_2 \in \Gamma_{\Sigma}$.

Rem.: Possible Generalization

The work presented here is based on the choice of the primitive logical connectives \neg , \lor and Π^{α} . A means to generalize the framework over the concrete choice of logical primitives is provided by the uniform notation approach as, for instance, given in [Fitting96]. This can be done in straightforward manner: ∇_{\land} becomes an α -property, ∇_{\lor} becomes a β -property, ∇_{\lor} becomes a γ -property, and ∇_{\exists} becomes a δ -property. Thus they will have the following form:

lpha-case If $lpha \in \Phi$, then $\Phi * lpha_1 * lpha_2 \in \Gamma_{\Sigma}$. eta-case If $eta \in \Phi$, then $\Phi * eta_1 \in \Gamma_{\Sigma}$ or $\Phi * eta_2 \in \Gamma_{\Sigma}$. γ -case If $\gamma \in \Phi$, then $\Phi * \gamma \mathbf{W} \in \Gamma_{\Sigma}$ for each $\mathbf{W} \in \mathit{cwff}_{lpha}(\Sigma)$.

Rem.: Possible Generalization

The work presented here is based on the choice of the primitive logical connectives \neg , \lor and Π^{α} . A means to generalize the framework over the concrete choice of logical primitives is provided by the uniform notation approach as, for instance, given in [Fitting96]. This can be done in straightforward manner: ∇_{\land} becomes an α -property, ∇_{\lor} becomes a β -property, ∇_{\lor} becomes a γ -property, and ∇_{\exists} becomes a δ -property. Thus they will have the following form:

 α -case If $\alpha \in \Phi$, then $\Phi * \alpha_1 * \alpha_2 \in \Gamma_{\Sigma}$.

 β -case If $\beta \in \Phi$, then $\Phi * \beta_1 \in \Gamma_{\Sigma}$ or $\Phi * \beta_2 \in \Gamma_{\Sigma}$.

 γ -case If $\gamma \in \Phi$, then $\Phi * \gamma \mathbf{W} \in \Gamma_{\Sigma}$ for each $\mathbf{W} \in cwff_{\alpha}(\Sigma)$.

 δ -case If $\delta \in \Phi$, then $\Phi * \delta w \in \Gamma_{\Sigma}$ for any parameter $w_{\alpha} \in \Sigma$ which does not occur in any sentence of Φ .

Consider the following property (where $\Phi \in \Gamma_{\Sigma}$, $A \in cwff_{o}(\Sigma)$):

Consider the following property (where $\Phi \in \Gamma_{\Sigma}$, $A \in cwff_{o}(\Sigma)$):

 $\nabla_{\!\!\mathsf{sat}}$ Either $\Phi * \mathbf{A} \in \Gamma_{\!\!\Sigma}$ or $\Phi * \neg \mathbf{A} \in \Gamma_{\!\!\Sigma}$.

Consider the following property (where $\Phi \in \Gamma_{\Sigma}$, $A \in cwff_{o}(\Sigma)$):

$$\nabla_{\!\!\mathsf{sat}}$$
 Either $\Phi * \mathbf{A} \in \Gamma_{\!\!\!\Sigma}$ or $\Phi * \neg \mathbf{A} \in \Gamma_{\!\!\!\Sigma}$.

We call an abstract consistency class Γ_{Σ} atomically saturated if ∇_{sat} holds for all atomic A.

Consider the following property (where $\Phi \in \Gamma_{\Sigma}$, $\mathbf{A} \in cwff_{o}(\Sigma)$):

$$\nabla_{sat}$$
 Either $\Phi * A \in \Gamma_{\Sigma}$ or $\Phi * \neg A \in \Gamma_{\Sigma}$.

We call an abstract consistency class Γ_{Σ} atomically saturated if ∇_{sat} holds for all atomic A.

We call an abstract consistency class Γ_{Σ} saturated if ∇_{sat} holds for all A.

consider Γ (and Γ*) from before:

$$\{ \{ \neg (A \lor B), \neg A, \neg B \}, \{ \neg (A \lor B), \neg A \}, \{ \neg (A \lor B), \neg B \}, \{ \neg A, \neg B \}, \{ \neg (A \lor B) \}, \{ \neg A \}, \{ \neg B \}, \{ \} \}$$

consider Γ (and Γ*) from before:

$$\{\{\neg(A \lor B), \neg A, \neg B\}, \{\neg(A \lor B), \neg A\}, \{\neg(A \lor B), \neg B\}, \{\neg A, \neg B\}, \{\neg(A \lor B)\}, \{\neg A\}, \{\neg B\}, \{\}\}$$

 Γ (and Γ*) is atomically saturated in case our signature contains no further constants besides A_o and B_o and the logical connectives.

consider Γ (and Γ*) from before:

```
 \{ \{ \neg (A \lor B), \neg A, \neg B \}, \{ \neg (A \lor B), \neg A \}, \{ \neg (A \lor B), \neg B \}, \{ \neg A, \neg B \}, \{ \neg (A \lor B) \}, \{ \neg A \}, \{ \neg B \}, \{ \} \}
```

- Γ (and Γ*) is atomically saturated in case our signature contains no further constants besides A_o and B_o and the logical connectives.
- if there is another symbol C_o in the signature, then Γ (and Γ^*) is not atomically saturated anymore

consider Γ (and Γ*) from before:

$$\{ \{ \neg (A \lor B), \neg A, \neg B \}, \{ \neg (A \lor B), \neg A \}, \{ \neg (A \lor B), \neg B \}, \{ \neg A, \neg B \}, \{ \neg (A \lor B) \}, \{ \neg A \}, \{ \neg B \}, \{ \} \}$$

- Γ (and Γ^*) is atomically saturated in case our signature contains no further constants besides A_o and B_o and the logical connectives.
- if there is another symbol C_o in the signature, then Γ (and Γ^*) is not atomically saturated anymore
- Γ (and Γ^*) is not saturated: for instance, it does not provide information on the formulas $(\neg A \lor B) \lor A$ and $\Pi^{\circ}(\lambda X_{\circ} X)$

Let Γ_{Σ} be a saturated abstract consistency class and let $\Phi \in \Gamma_{\Sigma}$ be a sufficiently Σ -pure set of sentences.

For all $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$ we have:

Let Γ_{Σ} be a saturated abstract consistency class and let $\Phi \in \Gamma_{\Sigma}$ be a sufficiently Σ -pure set of sentences.

For all $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$ we have:

If Γ_{Σ} is an \mathfrak{Acc}_* , then there exists a model $\mathcal{M} \in \mathfrak{M}_*$ that satisfies Φ .

Let Γ_{Σ} be a saturated abstract consistency class and let $\Phi \in \Gamma_{\Sigma}$ be a sufficiently Σ -pure set of sentences.

For all $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$ we have:

If Γ_{Σ} is an \mathfrak{Acc}_* , then there exists a model $\mathcal{M} \in \mathfrak{M}_*$ that satisfies Φ .

Furthermore, each domain of \mathcal{M} has cardinality at most \aleph_s .

Let Γ_{Σ} be a saturated abstract consistency class and let $\Phi \in \Gamma_{\Sigma}$ be a sufficiently Σ -pure set of sentences.

For all $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$ we have:

If Γ_{Σ} is an \mathfrak{Acc}_* , then there exists a model $\mathcal{M} \in \mathfrak{M}_*$ that satisfies Φ .

Furthermore, each domain of \mathcal{M} has cardinality at most \aleph_s .

Proof: ... we are not yet ready for this ...

Let Γ_{Σ} be a saturated abstract consistency class in $\mathfrak{Acc}_{\beta fb}$ and let $\Phi \in \Gamma_{\Sigma}$ be a sufficiently Σ -pure set of sentences.

Let Γ_{Σ} be a saturated abstract consistency class in $\mathfrak{Acc}_{\beta fb}$ and let $\Phi \in \Gamma_{\Sigma}$ be a sufficiently Σ -pure set of sentences.

Then there is a Henkin Model that satisfies Φ .

Let Γ_{Σ} be a saturated abstract consistency class in $\mathfrak{Acc}_{\beta fb}$ and let $\Phi \in \Gamma_{\Sigma}$ be a sufficiently Σ -pure set of sentences.

Then there is a Henkin Model that satisfies Φ .

Furthermore, each domain of the model has cardinality at most \aleph_s .

Let Γ_{Σ} be a saturated abstract consistency class in $\mathfrak{Acc}_{\beta fb}$ and let $\Phi \in \Gamma_{\Sigma}$ be a sufficiently Σ -pure set of sentences.

Then there is a Henkin Model that satisfies Φ .

Furthermore, each domain of the model has cardinality at most \aleph_s .

Proof: ... we are not yet ready for this ...

Completeness of MR* via Abstract Consistency

Def.: MR*-Consistent/Inconsistent_

A set of sentences Φ is \mathfrak{MR}_* -inconsistent if $\Phi \vdash_{\mathfrak{MR}_*} \mathbf{F}_o$, and \mathfrak{MR}_* -consistent otherwise.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{NR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

Proof: Obviously Γ_{Σ}^* is closed under subsets, since any subset of an \mathfrak{MR}_* -consistent set is \mathfrak{MR}_* -consistent.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MK}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MK}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

The class $\Gamma_{\Sigma}^* := \{ \Phi \subseteq \textit{cwff}_{o}(\Sigma) \mid \Phi \text{ is } \mathfrak{MR}_*\text{-consistent} \}$ is a saturated \mathfrak{Acc}_* .

Proof: Obviously Γ_{Σ}^* is closed under subsets, since any subset of an \mathfrak{MR}_* -consistent set is \mathfrak{MR}_* -consistent. We now check the remaining conditions. We prove all the properties by proving their contrapositive.

 $\nabla_{\!c}$ Suppose $A, \neg A \in \Phi$.

The class $\Gamma_{\Sigma}^* := \{ \Phi \subseteq \textit{cwff}_o(\Sigma) \mid \Phi \text{ is } \mathfrak{MR}_*\text{-consistent} \}$ is a saturated \mathfrak{Acc}_* .

Proof: Obviously Γ_{Σ}^* is closed under subsets, since any subset of an \mathfrak{MR}_* -consistent set is \mathfrak{MR}_* -consistent. We now check the remaining conditions. We prove all the properties by proving their contrapositive.

 $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \Vdash \mathbf{F}_{\!o}$ by $\mathfrak{MR}(Hyp)$ and $\mathfrak{MR}(\neg E)$.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

Proof: Obviously Γ_{Σ}^* is closed under subsets, since any subset of an \mathfrak{MR}_* -consistent set is \mathfrak{MR}_* -consistent. We now check the remaining conditions. We prove all the properties by proving their contrapositive.

 $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\neg E)$. Hence Φ is \mathfrak{NR}_* -inconsistent.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

Proof: Obviously Γ_{Σ}^* is closed under subsets, since any subset of an \mathfrak{MR}_* -consistent set is \mathfrak{MR}_* -consistent. We now check the remaining conditions. We prove all the properties by proving their contrapositive.

 $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\neg E)$. Hence Φ is \mathfrak{NR}_* -inconsistent.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

Proof: Obviously Γ_{Σ}^* is closed under subsets, since any subset of an \mathfrak{MR}_* -consistent set is \mathfrak{MR}_* -consistent. We now check the remaining conditions. We prove all the properties by proving their contrapositive.

 $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{MR}(Hyp)$ and $\mathfrak{MR}(\neg E)$. Hence Φ is \mathfrak{MR}_* -inconsistent.

 $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be \mathfrak{MR}_* -inconsistent.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

- $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\neg E)$. Hence Φ is \mathfrak{NR}_* -inconsistent.
- $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be \mathfrak{MR}_* -inconsistent. That is, $\Phi * \mathbf{B} \Vdash \mathbf{F}_0$.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

- $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\neg E)$. Hence Φ is \mathfrak{NR}_* -inconsistent.
- $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be \mathfrak{MR}_* -inconsistent. That is, $\Phi * \mathbf{B} \Vdash \mathbf{F}_{o}$. By $\mathfrak{MR}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{B}$.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

- $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\neg E)$. Hence Φ is \mathfrak{NR}_* -inconsistent.
- $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be \mathfrak{MR}_* -inconsistent. That is, $\Phi * \mathbf{B} \Vdash \mathbf{F}_o$. By $\mathfrak{MR}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{B}$. Since $\mathbf{A} \in \Phi$, we know $\Phi \Vdash \mathbf{B}$ by $\mathfrak{MR}(Hyp)$ and $\mathfrak{MR}(\beta)$.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

- $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\neg E)$. Hence Φ is \mathfrak{NR}_* -inconsistent.
- $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be $\mathfrak{M}_{\mathbb{R}}$ -inconsistent. That is, $\Phi * \mathbf{B} \Vdash \mathbf{F}_{o}$. By $\mathfrak{M}_{\mathbb{R}}(\neg I)$, we know $\Phi \vdash \neg \mathbf{B}$. Since $\mathbf{A} \in \Phi$, we know $\Phi \vdash \mathbf{B}$ by $\mathfrak{M}_{\mathbb{R}}(Hyp)$ and $\mathfrak{M}_{\mathbb{R}}(\beta)$. Using $\mathfrak{M}_{\mathbb{R}}(\neg E)$, we know $\Phi \vdash \mathbf{F}_{o}$.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

- $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{MR}(Hyp)$ and $\mathfrak{MR}(\neg E)$. Hence Φ is \mathfrak{MR}_* -inconsistent.
- $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be $\mathfrak{M}_{\$}$ -inconsistent. That is, $\Phi * \mathbf{B} \Vdash \mathbf{F}_{o}$. By $\mathfrak{M}_{\$}(\neg I)$, we know $\Phi \vdash \neg \mathbf{B}$. Since $\mathbf{A} \in \Phi$, we know $\Phi \vdash \mathbf{B}$ by $\mathfrak{M}_{\$}(Hyp)$ and $\mathfrak{M}_{\$}(\beta)$. Using $\mathfrak{M}_{\$}(\neg E)$, we know $\Phi \vdash \mathbf{F}_{o}$.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

- $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{MR}(Hyp)$ and $\mathfrak{MR}(\neg E)$. Hence Φ is \mathfrak{MR}_* -inconsistent.
- $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. That is, $\Phi * \mathbf{B} \Vdash \mathbf{F}_{o}$. By $\mathfrak{M}\mathfrak{K}(\neg I)$, we know $\Phi \vdash \neg \mathbf{B}$. Since $\mathbf{A} \in \Phi$, we know $\Phi \vdash \mathbf{B}$ by $\mathfrak{M}\mathfrak{K}(Hyp)$ and $\mathfrak{M}\mathfrak{K}(\beta)$. Using $\mathfrak{M}\mathfrak{K}(\neg E)$, we know $\Phi \vdash \mathbf{F}_{o}$.
- ∇_{\neg} Suppose $\neg \neg A \in \Phi$ and $\Phi * A$ is \mathfrak{MR}_* -inconsistent.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

Proof: Obviously Γ_{Σ}^* is closed under subsets, since any subset of an \mathfrak{MR}_* -consistent set is \mathfrak{MR}_* -consistent. We now check the remaining conditions. We prove all the properties by proving their contrapositive.

- $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{MR}(Hyp)$ and $\mathfrak{MR}(\neg E)$. Hence Φ is \mathfrak{MR}_* -inconsistent.
- $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be $\mathfrak{M}_{\mathbb{R}_*}$ -inconsistent. That is, $\Phi * \mathbf{B} \Vdash \mathbf{F}_{\circ}$. By $\mathfrak{M}_{\mathbb{R}}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{B}$. Since $\mathbf{A} \in \Phi$, we know $\Phi \Vdash \mathbf{B}$ by $\mathfrak{M}_{\mathbb{R}}(Hyp)$ and $\mathfrak{M}_{\mathbb{R}}(\beta)$. Using $\mathfrak{M}_{\mathbb{R}}(\neg E)$, we know $\Phi \Vdash \mathbf{F}_{\circ}$.
- ∇_{\neg} Suppose $\neg \neg \mathbf{A} \in \Phi$ and $\Phi * \mathbf{A}$ is \mathfrak{MR}_* -inconsistent. From $\Phi * \mathbf{A} \vdash \mathbf{F}_{\circ}$ and $\mathfrak{MR}(\neg I)$, we have $\Phi \vdash \neg \mathbf{A}$.

The class $\Gamma_{\!\!\!\Sigma}^*:=\{\Phi\subseteq \mathit{cwff}_o(\Sigma)\mid \Phi \text{ is }\mathfrak{MR}_*\text{-consistent}\}$ is a saturated \mathfrak{Acc}_* .

Proof: Obviously Γ_{Σ}^* is closed under subsets, since any subset of an \mathfrak{MR}_* -consistent set is \mathfrak{MR}_* -consistent. We now check the remaining conditions. We prove all the properties by proving their contrapositive.

- $\nabla_{\!c}$ Suppose $\mathbf{A}, \neg \mathbf{A} \in \Phi$. We have $\Phi \vdash \mathbf{F}_{\!o}$ by $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\neg E)$. Hence Φ is \mathfrak{NR}_* -inconsistent.
- $\nabla_{\!\beta}$ Let $\mathbf{A} \in \Phi$, $\mathbf{A} =_{\beta} \mathbf{B}$ and $\Phi * \mathbf{B}$ be $\mathfrak{M}_{\mathbb{R}_*}$ -inconsistent. That is, $\Phi * \mathbf{B} \Vdash \mathbf{F}_{\circ}$. By $\mathfrak{M}_{\mathbb{R}}(\neg I)$, we know $\Phi \vdash \neg \mathbf{B}$. Since $\mathbf{A} \in \Phi$, we know $\Phi \vdash \mathbf{B}$ by $\mathfrak{M}_{\mathbb{R}}(Hyp)$ and $\mathfrak{M}_{\mathbb{R}}(\beta)$. Using $\mathfrak{M}_{\mathbb{R}}(\neg E)$, we know $\Phi \vdash \mathbf{F}_{\circ}$.
- Suppose $\neg \neg \mathbf{A} \in \Phi$ and $\Phi * \mathbf{A}$ is \mathfrak{MR}_* -inconsistent. From $\Phi * \mathbf{A} \Vdash \mathbf{F}_o$ and $\mathfrak{MR}(\neg I)$, we have $\Phi \vdash \neg \mathbf{A}$. Since $\neg \neg \mathbf{A} \in \Phi$, we can apply $\mathfrak{MR}(Hyp)$ and $\mathfrak{MR}(\neg E)$ to obtain $\Phi \vdash \mathbf{F}_o$.

Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.

Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.
- $\nabla_{\!\!\!\wedge}$ Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{NR}_* -inconsistent.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.
- Suppose $\neg (\mathbf{A} \vee \mathbf{B}) \in \Phi$ and $\Phi * \neg \mathbf{A} * \neg \mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg \mathbf{A} \Vdash \mathbf{A} \vee \mathbf{B}$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.
- Suppose $\neg(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and $\Phi * \neg \mathbf{A} * \neg \mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg \mathbf{A} \vdash \mathbf{A} \vee \mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A} \vee \mathbf{B}) \in \Phi$, we have $\Phi, \neg \mathbf{A} \vdash \mathbf{F}_o$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F_o}$.
- Suppose $\neg(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and $\Phi * \neg \mathbf{A} * \neg \mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg \mathbf{A} \Vdash \mathbf{A} \vee \mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A} \vee \mathbf{B}) \in \Phi$, we have $\Phi, \neg \mathbf{A} \Vdash \mathbf{F_o}$. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_L)$, we have $\Phi \Vdash \mathbf{A} \vee \mathbf{B}$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{F}_o$. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_L)$, we have $\Phi \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{MR}_* -inconsistent.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F_o}$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{F}_o$. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_L)$, we have $\Phi \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{MR}_* -inconsistent.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{F}_o$. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_L)$, we have $\Phi \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{MR}_* -inconsistent.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{F}_o$. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_L)$, we have $\Phi \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{MR}_* -inconsistent.
- Suppose $(\Pi^{\alpha}\mathbf{G}) \in \Phi$ and $\Phi * (\mathbf{G}\mathbf{A})$ is \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(\neg I)$, $\Phi \Vdash \neg (\mathbf{G}\mathbf{A})$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F_o}$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Contr)$ and $\mathfrak{NR}(\vee I_R)$, we have $\Phi,\neg\mathbf{A}\vdash\mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{NR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi,\neg\mathbf{A}\vdash\mathbf{F}_o$. By $\mathfrak{NR}(Contr)$ and $\mathfrak{NR}(\vee I_L)$, we have $\Phi\vdash\mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{NR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{NR}_* -inconsistent.
- Suppose $(\Pi^{\alpha}\mathbf{G}) \in \Phi$ and $\Phi * (\mathbf{G}\mathbf{A})$ is \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(\neg I)$, $\Phi \Vdash \neg(\mathbf{G}\mathbf{A})$. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\Pi E)$, $\Phi \Vdash \mathbf{G}\mathbf{A}$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{F}_o$. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_L)$, we have $\Phi \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{MR}_* -inconsistent.
- Suppose $(\Pi^{\alpha}\mathbf{G}) \in \Phi$ and $\Phi * (\mathbf{G}\mathbf{A})$ is \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(\neg I)$, $\Phi \Vdash \neg(\mathbf{G}\mathbf{A})$. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\Pi E)$, $\Phi \Vdash \mathbf{G}\mathbf{A}$. Finally, $\mathfrak{NR}(\neg E)$ implies $\Phi \Vdash \mathbf{F}_{o}$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F_o}$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{F}_o$. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_L)$, we have $\Phi \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{MR}_* -inconsistent.
- Suppose $(\Pi^{\alpha}\mathbf{G}) \in \Phi$ and $\Phi * (\mathbf{G}\mathbf{A})$ is \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(\neg I)$, $\Phi \Vdash \neg(\mathbf{G}\mathbf{A})$. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\Pi E)$, $\Phi \Vdash \mathbf{G}\mathbf{A}$. Finally, $\mathfrak{NR}(\neg E)$ implies $\Phi \Vdash \mathbf{F}_{\mathbf{o}}$.
- Suppose $\neg(\Pi^{\alpha}\mathbf{G}) \in \Phi$, \mathbf{w}_{α} is a parameter which does not occur in Φ , and $\Phi * \neg(\mathbf{G}\mathbf{w})$ is \mathfrak{MR}_* -inconsistent.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F}_o$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_R)$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi, \neg\mathbf{A} \vdash \mathbf{F}_o$. By $\mathfrak{MR}(Contr)$ and $\mathfrak{MR}(\vee I_L)$, we have $\Phi \vdash \mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{MR}_* -inconsistent.
- Suppose $(\Pi^{\alpha}\mathbf{G}) \in \Phi$ and $\Phi * (\mathbf{G}\mathbf{A})$ is \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(\neg I)$, $\Phi \Vdash \neg(\mathbf{G}\mathbf{A})$. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\Pi E)$, $\Phi \Vdash \mathbf{G}\mathbf{A}$. Finally, $\mathfrak{NR}(\neg E)$ implies $\Phi \Vdash \mathbf{F}_{\mathbf{o}}$.
- Suppose $\neg(\Pi^{\alpha}\mathbf{G}) \in \Phi$, \mathbf{w}_{α} is a parameter which does not occur in Φ , and $\Phi * \neg(\mathbf{G}\mathbf{w})$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(Contr)$, $\Phi \vdash \mathbf{G}\mathbf{w}$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F_o}$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Contr)$ and $\mathfrak{NR}(\vee I_R)$, we have $\Phi,\neg\mathbf{A}\vdash\mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{NR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi,\neg\mathbf{A}\vdash\mathbf{F}_o$. By $\mathfrak{NR}(Contr)$ and $\mathfrak{NR}(\vee I_L)$, we have $\Phi\vdash\mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{NR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{NR}_* -inconsistent.
- Suppose $(\Pi^{\alpha}\mathbf{G}) \in \Phi$ and $\Phi * (\mathbf{G}\mathbf{A})$ is \mathfrak{NK}_* -inconsistent. By $\mathfrak{NK}(\neg I)$, $\Phi \Vdash \neg(\mathbf{G}\mathbf{A})$. By $\mathfrak{NK}(Hyp)$ and $\mathfrak{NK}(\Pi E)$, $\Phi \Vdash \mathbf{G}\mathbf{A}$. Finally, $\mathfrak{NK}(\neg E)$ implies $\Phi \Vdash \mathbf{F}_{o}$.
- Suppose $\neg(\Pi^{\alpha}\mathbf{G}) \in \Phi$, w_{α} is a parameter which does not occur in Φ , and $\Phi * \neg(\mathbf{G}w)$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(\mathit{Contr})$, $\Phi \Vdash \mathbf{G}w$. By $\mathfrak{MR}(\mathit{\Pi}I)^w$, $\Phi \Vdash (\Pi^{\alpha}\mathbf{G})$.

- Suppose $(\mathbf{A} \vee \mathbf{B}) \in \Phi$ and both $\Phi * \mathbf{A}$ and $\Phi * \mathbf{B}$ are \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Hyp)$ and $\mathfrak{NR}(\vee E)$, we have $\Phi \Vdash \mathbf{F_o}$.
- Suppose $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$ and $\Phi*\neg\mathbf{A}*\neg\mathbf{B}$ is \mathfrak{NR}_* -inconsistent. By $\mathfrak{NR}(Contr)$ and $\mathfrak{NR}(\vee I_R)$, we have $\Phi,\neg\mathbf{A}\vdash\mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{NR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, we have $\Phi,\neg\mathbf{A}\vdash\mathbf{F}_o$. By $\mathfrak{NR}(Contr)$ and $\mathfrak{NR}(\vee I_L)$, we have $\Phi\vdash\mathbf{A}\vee\mathbf{B}$. Using $\mathfrak{NR}(\neg E)$ with $\neg(\mathbf{A}\vee\mathbf{B})\in\Phi$, Φ is \mathfrak{NR}_* -inconsistent.
- Suppose $(\Pi^{\alpha}\mathbf{G}) \in \Phi$ and $\Phi * (\mathbf{G}\mathbf{A})$ is \mathfrak{M}_* -inconsistent. By $\mathfrak{M}(\neg I)$, $\Phi \Vdash \neg(\mathbf{G}\mathbf{A})$. By $\mathfrak{M}(Hyp)$ and $\mathfrak{M}(\Pi E)$, $\Phi \Vdash \mathbf{G}\mathbf{A}$. Finally, $\mathfrak{M}(\neg E)$ implies $\Phi \Vdash \mathbf{F}_{o}$.
- Suppose $\neg(\Pi^{\alpha}\mathbf{G}) \in \Phi$, w_{α} is a parameter which does not occur in Φ , and $\Phi * \neg(\mathbf{G}w)$ is \mathfrak{MR}_* -inconsistent. By $\mathfrak{MR}(\mathit{Contr})$, $\Phi \models \mathbf{G}w$. By $\mathfrak{MR}(\mathit{\Pi}I)^w$, $\Phi \models (\Pi^{\alpha}\mathbf{G})$. Using $\mathfrak{MR}(\neg E)$ with $\neg(\Pi^{\alpha}\mathbf{G}) \in \Phi$, Φ is \mathfrak{MR}_* -inconsistent.

 ∇_{sat} Let $\Phi * A$ and $\Phi * \neg A$ be \mathfrak{MR}_* -inconsistent.

 ∇_{sat} Let $\Phi * A$ and $\Phi * \neg A$ be \mathfrak{MR}_* -inconsistent. We show that Φ is \mathfrak{MR}_* -inconsistent.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be \mathfrak{MR}_* -inconsistent. We show that Φ is \mathfrak{MR}_* -inconsistent. Using $\mathfrak{MR}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be \mathfrak{MR}_* -inconsistent. We show that Φ is \mathfrak{MR}_* -inconsistent. Using $\mathfrak{MR}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{MR}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{\circ}$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be \mathfrak{MR}_* -inconsistent. We show that Φ is \mathfrak{MR}_* -inconsistent. Using $\mathfrak{MR}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{MR}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{\circ}$.

Thus we have shown that Γ_{Σ}^{β} is saturated and in \mathfrak{Acc}_{β} .

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be \mathfrak{MR}_* -inconsistent. We show that Φ is \mathfrak{MR}_* -inconsistent. Using $\mathfrak{MR}(\neg I)$, we know $\Phi \vdash \neg \mathbf{A}$ and $\Phi \vdash \neg \neg \mathbf{A}$. By $\mathfrak{MR}(\neg E)$, we have $\Phi \vdash \mathbf{F}_{o}$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be \mathfrak{MR}_* -inconsistent. We show that Φ is \mathfrak{MR}_* -inconsistent. Using $\mathfrak{MR}(\neg I)$, we know $\Phi \vdash \neg \mathbf{A}$ and $\Phi \vdash \neg \neg \mathbf{A}$. By $\mathfrak{MR}(\neg E)$, we have $\Phi \vdash \mathbf{F}_{o}$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. We show that Φ is $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. Using $\mathfrak{M}\mathfrak{K}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{M}\mathfrak{K}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{o}$.

Thus we have shown that Γ_{Σ}^{β} is saturated and in \mathfrak{Acc}_{β} . Now let us check the conditions for the additional properties η , ξ , \mathfrak{f} , and \mathfrak{b} .

 ∇_{η} If * includes η , then the proof proceeds as in ∇_{β} above, but with the rule $\mathfrak{NR}(\eta)$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. We show that Φ is $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. Using $\mathfrak{M}\mathfrak{K}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{M}\mathfrak{K}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{o}$.

Thus we have shown that Γ_{Σ}^{β} is saturated and in \mathfrak{Acc}_{β} . Now let us check the conditions for the additional properties η , ξ , \mathfrak{f} , and \mathfrak{b} .

 ∇_{η} If * includes η , then the proof proceeds as in ∇_{β} above, but with the rule $\mathfrak{NR}(\eta)$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. We show that Φ is $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. Using $\mathfrak{M}\mathfrak{K}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{M}\mathfrak{K}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{o}$.

- ∇_{η} If * includes η , then the proof proceeds as in ∇_{β} above, but with the rule $\mathfrak{NR}(\eta)$.
- ∇_ξ Suppose * includes ξ , $\neg(\lambda X_* \mathbf{M} \stackrel{\cdot}{=}^{\alpha \to \beta} \lambda X_* \mathbf{N}) \in \Phi$, and $\Phi * \neg([\mathbf{w}/\mathbf{X}]\mathbf{M} \stackrel{\cdot}{=}^{\beta} [\mathbf{w}/\mathbf{X}]\mathbf{N})$ is \mathfrak{M}_* -inconsistent for some parameter \mathbf{w}_{α} which does not occur in any sentence of Φ .

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. We show that Φ is $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. Using $\mathfrak{M}\mathfrak{K}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{M}\mathfrak{K}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{o}$.

- ∇_{η} If * includes η , then the proof proceeds as in ∇_{β} above, but with the rule $\mathfrak{NR}(\eta)$.
- ∇_ξ Suppose * includes ξ , $\neg(\lambda X_* \mathbf{M} \stackrel{:}{=}^{\alpha \to \beta} \lambda X_* \mathbf{N}) \in \Phi$, and $\Phi * \neg([\mathbf{w}/\mathbf{X}]\mathbf{M} \stackrel{:}{=}^{\beta} [\mathbf{w}/\mathbf{X}]\mathbf{N})$ is $\mathfrak{M}\mathfrak{K}_*$ -inconsistent for some parameter \mathbf{w}_α which does not occur in any sentence of Φ . By $\mathfrak{M}\mathfrak{K}(Contr)$, we have $\Phi \Vdash ([\mathbf{w}/\mathbf{X}]\mathbf{M} \stackrel{:}{=}^{\beta} [\mathbf{w}/\mathbf{X}]\mathbf{N})$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. We show that Φ is $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. Using $\mathfrak{M}\mathfrak{K}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{M}\mathfrak{K}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{o}$.

- ∇_{η} If * includes η , then the proof proceeds as in ∇_{β} above, but with the rule $\mathfrak{NR}(\eta)$.
- Suppose * includes ξ , $\neg(\lambda X.M \stackrel{\cdot}{=}^{\alpha \to \beta} \lambda X.N) \in \Phi$, and $\Phi * \neg([w/X]M \stackrel{\cdot}{=}^{\beta} [w/X]N)$ is \mathfrak{MR}_* -inconsistent for some parameter w_{α} which does not occur in any sentence of Φ . By $\mathfrak{MR}(Contr)$, we have $\Phi \Vdash ([w/X]M \stackrel{\cdot}{=}^{\beta} [w/X]N)$. By $\mathfrak{MR}(\beta)$, we have $\Phi \Vdash ((\lambda X.M \stackrel{\cdot}{=}^{\beta} N)w)$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. We show that Φ is $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. Using $\mathfrak{M}\mathfrak{K}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{M}\mathfrak{K}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{o}$.

- ∇_{η} If * includes η , then the proof proceeds as in ∇_{β} above, but with the rule $\mathfrak{NR}(\eta)$.
- Suppose * includes ξ , $\neg(\lambda X_{\bullet}M \stackrel{:}{=}^{\alpha \to \beta} \lambda X_{\bullet}N) \in \Phi$, and $\Phi * \neg([w/X]M \stackrel{:}{=}^{\beta} [w/X]N)$ is \mathfrak{NR}_{*} -inconsistent for some parameter w_{α} which does not occur in any sentence of Φ . By $\mathfrak{NR}(Contr)$, we have $\Phi \Vdash ([w/X]M \stackrel{:}{=}^{\beta} [w/X]N)$. By $\mathfrak{NR}(\beta)$, we have $\Phi \Vdash ((\lambda X_{\bullet}M \stackrel{:}{=}^{\beta} N)w)$. By $\mathfrak{NR}(\Pi I)$, $\Phi \Vdash (\forall X_{\bullet}M \stackrel{:}{=}^{\beta} N)$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. We show that Φ is $\mathfrak{M}\mathfrak{K}_*$ -inconsistent. Using $\mathfrak{M}\mathfrak{K}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{M}\mathfrak{K}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{o}$.

- ∇_{η} If * includes η , then the proof proceeds as in ∇_{β} above, but with the rule $\mathfrak{NR}(\eta)$.
- ∇_{ξ} Suppose * includes ξ , $\neg(\lambda X_{\bullet}M \stackrel{:}{=}^{\alpha \to \beta} \lambda X_{\bullet}N) \in \Phi$, and $\Phi * \neg([w/X]M \stackrel{:}{=}^{\beta} [w/X]N)$ is $\mathfrak{N}\mathfrak{K}_{*}$ -inconsistent for some parameter w_{α} which does not occur in any sentence of Φ . By $\mathfrak{N}\mathfrak{K}(Contr)$, we have $\Phi \Vdash ([w/X]M \stackrel{:}{=}^{\beta} [w/X]N)$. By $\mathfrak{N}\mathfrak{K}(\beta)$, we have $\Phi \Vdash ((\lambda X_{\bullet}M \stackrel{:}{=}^{\beta} N)w)$. By $\mathfrak{N}\mathfrak{K}(\Pi I)$, $\Phi \Vdash (\forall X_{\bullet}M \stackrel{:}{=}^{\beta} N)$. By $\mathfrak{N}\mathfrak{K}(\xi)$, $\Phi \Vdash (\lambda X_{\bullet}M \stackrel{:}{=}^{\alpha \to \beta} \lambda X_{\bullet}N)$.

 ∇_{sat} Let $\Phi * \mathbf{A}$ and $\Phi * \neg \mathbf{A}$ be \mathfrak{MR}_* -inconsistent. We show that Φ is \mathfrak{MR}_* -inconsistent. Using $\mathfrak{MR}(\neg I)$, we know $\Phi \Vdash \neg \mathbf{A}$ and $\Phi \Vdash \neg \neg \mathbf{A}$. By $\mathfrak{MR}(\neg E)$, we have $\Phi \Vdash \mathbf{F}_{\circ}$.

- ∇_{η} If * includes η , then the proof proceeds as in ∇_{β} above, but with the rule $\mathfrak{NR}(\eta)$.
- Suppose * includes ξ , $\neg(\lambda X_{\bullet}M \stackrel{\cdot}{=}^{\alpha \to \beta} \lambda X_{\bullet}N) \in \Phi$, and $\Phi * \neg([w/X]M \stackrel{\cdot}{=}^{\beta} [w/X]N)$ is \mathfrak{NR}_{*} -inconsistent for some parameter w_{α} which does not occur in any sentence of Φ . By $\mathfrak{NR}(Contr)$, we have $\Phi \Vdash ([w/X]M \stackrel{\cdot}{=}^{\beta} [w/X]N)$. By $\mathfrak{NR}(\beta)$, we have $\Phi \Vdash ((\lambda X_{\bullet}M \stackrel{\cdot}{=}^{\beta} N)w)$. By $\mathfrak{NR}(\Pi I)$, $\Phi \Vdash (\forall X_{\bullet}M \stackrel{\cdot}{=}^{\beta} N)$. By $\mathfrak{NR}(\xi)$, $\Phi \Vdash (\lambda X_{\bullet}M \stackrel{\cdot}{=}^{\alpha \to \beta} \lambda X_{\bullet}N)$. By $\mathfrak{NR}(\neg E)$, Φ is \mathfrak{NR}_{*} -inconsistent.

This case is analogous to the previous one, generalizing $\lambda X.M \doteq \lambda X.N$ to arbitrary $G \doteq H$ and using the extensionality rule $\mathfrak{NR}(\mathfrak{f})$ instead of $\mathfrak{NR}(\xi)$.

This case is analogous to the previous one, generalizing $\lambda X.M \doteq \lambda X.N$ to arbitrary $G \doteq H$ and using the extensionality rule $\mathfrak{NR}(\mathfrak{f})$ instead of $\mathfrak{NR}(\xi)$.

- This case is analogous to the previous one, generalizing $\lambda X.M \doteq \lambda X.N$ to arbitrary $G \doteq H$ and using the extensionality rule $\mathfrak{NR}(\mathfrak{f})$ instead of $\mathfrak{NR}(\xi)$.
- $\nabla_{\!b}$ Suppose * includes **b**.

- This case is analogous to the previous one, generalizing $\lambda X.M \doteq \lambda X.N$ to arbitrary $G \doteq H$ and using the extensionality rule $\mathfrak{MR}(\mathfrak{f})$ instead of $\mathfrak{MR}(\xi)$.
- $∇_b$ Suppose * includes b. Assume that ¬(A = B) ∈ Φ but both $Φ*¬A*B ∉ Γ_Σ*$ and $Φ*A*¬B ∉ Γ_Σ*$.

- This case is analogous to the previous one, generalizing $\lambda X.M \doteq \lambda X.N$ to arbitrary $G \doteq H$ and using the extensionality rule $\mathfrak{NR}(\mathfrak{f})$ instead of $\mathfrak{NR}(\xi)$.
- Suppose * includes \mathfrak{b} . Assume that $\neg(\mathbf{A} \stackrel{=}{=}^{\circ} \mathbf{B}) \in \Phi$ but both $\Phi * \neg \mathbf{A} * \mathbf{B} \notin \Gamma_{\Sigma}^*$ and $\Phi * \mathbf{A} * \neg \mathbf{B} \notin \Gamma_{\Sigma}^*$. So both are \mathfrak{MR}_* -inconsistent and we have $\Phi * \mathbf{A} \Vdash \mathbf{B}$ and $\Phi * \mathbf{B} \Vdash \mathbf{A}$ by $\mathfrak{MR}(\mathit{Contr})$.

- This case is analogous to the previous one, generalizing $\lambda X.M \doteq \lambda X.N$ to arbitrary $G \doteq H$ and using the extensionality rule $\mathfrak{MR}(\mathfrak{f})$ instead of $\mathfrak{MR}(\xi)$.
- Suppose * includes \mathfrak{b} . Assume that $\neg(\mathbf{A} \stackrel{\circ}{=}^{\circ} \mathbf{B}) \in \Phi$ but both $\Phi * \neg \mathbf{A} * \mathbf{B} \notin \Gamma_{\Sigma}^{*}$ and $\Phi * \mathbf{A} * \neg \mathbf{B} \notin \Gamma_{\Sigma}^{*}$. So both are \mathfrak{M}_{*} -inconsistent and we have $\Phi * \mathbf{A} \Vdash \mathbf{B}$ and $\Phi * \mathbf{B} \Vdash \mathbf{A}$ by $\mathfrak{M}(Contr)$. By $\mathfrak{M}(\mathfrak{b})$, we have $\Phi \Vdash (\mathbf{A} \stackrel{\circ}{=}^{\circ} \mathbf{B})$.

- This case is analogous to the previous one, generalizing $\lambda X.M \doteq \lambda X.N$ to arbitrary $G \doteq H$ and using the extensionality rule $\mathfrak{NR}(\mathfrak{f})$ instead of $\mathfrak{NR}(\xi)$.
- Suppose * includes \mathfrak{b} . Assume that $\neg(\mathbf{A} \doteq^{\circ} \mathbf{B}) \in \Phi$ but both $\Phi * \neg \mathbf{A} * \mathbf{B} \notin \Gamma_{\Sigma}^{*}$ and $\Phi * \mathbf{A} * \neg \mathbf{B} \notin \Gamma_{\Sigma}^{*}$. So both are \mathfrak{M}_{κ} -inconsistent and we have $\Phi * \mathbf{A} \Vdash \mathbf{B}$ and $\Phi * \mathbf{B} \Vdash \mathbf{A}$ by $\mathfrak{M}_{\kappa}(Contr)$. By $\mathfrak{M}_{\kappa}(\mathfrak{b})$, we have $\Phi \Vdash (\mathbf{A} \doteq^{\circ} \mathbf{B})$. Since $\neg(\mathbf{A} \doteq^{\circ} \mathbf{B}) \in \Phi$, Φ is \mathfrak{M}_{κ} -inconsistent.

Thm.: Henkin's Theorem for \mathfrak{MR}_* -

Let $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. Every sufficiently Σ -pure \mathfrak{MR}_* -consistent set of sentences has an $\mathfrak{M}_*(\Sigma)$ -model.

Proof:

Thm.: Henkin's Theorem for \mathfrak{MR}_*

Let $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. Every sufficiently Σ -pure \mathfrak{M}_* -consistent set of sentences has an $\mathfrak{M}_*(\Sigma)$ -model.

Proof: Let Φ be a sufficiently Σ -pure \mathfrak{NR}_* -consistent set of sentences.

Thm.: Henkin's Theorem for \mathfrak{MR}_* -

Let $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. Every sufficiently Σ -pure \mathfrak{M}_* -consistent set of sentences has an $\mathfrak{M}_*(\Sigma)$ -model.

Proof: Let Φ be a sufficiently Σ -pure \mathfrak{MR}_* -consistent set of sentences. By the previous lemma we know that the class of sets of \mathfrak{MR}_* -consistent sentences constitute a saturated \mathfrak{Acc}_* ,

Thm.: Henkin's Theorem for \mathfrak{MR}_*

Let $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. Every sufficiently Σ -pure \mathfrak{M}_* -consistent set of sentences has an $\mathfrak{M}_*(\Sigma)$ -model.

Proof: Let Φ be a sufficiently Σ -pure \mathfrak{M}_* -consistent set of sentences. By the previous lemma we know that the class of sets of \mathfrak{M}_* -consistent sentences constitute a saturated \mathfrak{Acc}_* , thus the Model Existence Theorem guarantees an $\mathfrak{M}_*(\Sigma)$ model for Φ .

Thm.: Completeness Theorem for \mathfrak{MR}_*

Let Φ be a sufficiently Σ -pure set of sentences, \mathbf{A} be a sentence, and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. If \mathbf{A} is valid in all models $\mathcal{M} \in \mathfrak{M}_*(\Sigma)$ that satisfy Φ , then $\Phi \Vdash_{\mathfrak{MR}} \mathbf{A}$.

Proof:

Thm.: Completeness Theorem for \mathfrak{MR}_* -

Let Φ be a sufficiently Σ -pure set of sentences, \mathbf{A} be a sentence, and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. If \mathbf{A} is valid in all models $\mathcal{M} \in \mathfrak{M}_*(\Sigma)$ that satisfy Φ , then $\Phi \Vdash_{\mathfrak{MR}_*} \mathbf{A}$.

Proof: Let A be given such that A is valid in all $\mathfrak{M}_*(\Sigma)$ models that satisfy Φ .

Thm.: Completeness Theorem for \mathfrak{MR}_* -

Let Φ be a sufficiently Σ -pure set of sentences, \mathbf{A} be a sentence, and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. If \mathbf{A} is valid in all models $\mathcal{M} \in \mathfrak{M}_*(\Sigma)$ that satisfy Φ , then $\Phi \Vdash_{\mathfrak{MR}_*} \mathbf{A}$.

Proof: Let A be given such that A is valid in all $\mathfrak{M}_*(\Sigma)$ models that satisfy Φ . So, $\Phi * \neg A$ is unsatisfiable in $\mathfrak{M}_*(\Sigma)$. Since only finitely many constants occur in $\neg A$, $\Phi * \neg A$ is sufficiently Σ -pure.

Thm.: Completeness Theorem for \mathfrak{MR}_* -

Let Φ be a sufficiently Σ -pure set of sentences, \mathbf{A} be a sentence, and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. If \mathbf{A} is valid in all models $\mathcal{M} \in \mathfrak{M}_*(\Sigma)$ that satisfy Φ , then $\Phi \Vdash_{\mathfrak{MR}_*} \mathbf{A}$.

Proof: Let A be given such that A is valid in all $\mathfrak{M}_*(\Sigma)$ models that satisfy Φ . So, $\Phi * \neg A$ is unsatisfiable in $\mathfrak{M}_*(\Sigma)$. Since only finitely many constants occur in $\neg A$, $\Phi * \neg A$ is sufficiently Σ -pure. So, $\Phi * \neg A$ must be \mathfrak{M}_* -inconsistent by Henkin's theorem above.

Thm.: Completeness Theorem for \mathfrak{NR}_* _

Let Φ be a sufficiently Σ -pure set of sentences, \mathbf{A} be a sentence, and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. If \mathbf{A} is valid in all models $\mathcal{M} \in \mathfrak{M}_*(\Sigma)$ that satisfy Φ , then $\Phi \vdash_{\mathfrak{MR}} \mathbf{A}$.

Proof: Let A be given such that A is valid in all $\mathfrak{M}_*(\Sigma)$ models that satisfy Φ . So, $\Phi * \neg A$ is unsatisfiable in $\mathfrak{M}_*(\Sigma)$. Since only finitely many constants occur in $\neg A$, $\Phi * \neg A$ is sufficiently Σ -pure. So, $\Phi * \neg A$ must be \mathfrak{M}_* -inconsistent by Henkin's theorem above. Thus, $\Phi \Vdash_{\mathfrak{M}\mathfrak{K}_*} A$ by $\mathfrak{M}_*(Contr)$.

We can use the completeness theorems obtained so far to prove a compactness theorem for our semantics:

Let Φ be a sufficiently Σ -pure set of sentences and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. Φ has an $\mathfrak{M}_*(\Sigma)$ -model iff every finite subset of Φ has an $\mathfrak{M}_*(\Sigma)$ -model.

Proof:

We can use the completeness theorems obtained so far to prove a compactness theorem for our semantics:

Let Φ be a sufficiently Σ -pure set of sentences and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. Φ has an $\mathfrak{M}_*(\Sigma)$ -model iff every finite subset of Φ has an $\mathfrak{M}_*(\Sigma)$ -model.

Proof: If Φ has no $\mathfrak{M}_*(\Sigma)$ -model, then by the previous Henkin Theorem Φ is \mathfrak{MR}_* -inconsistent.

We can use the completeness theorems obtained so far to prove a compactness theorem for our semantics:

Let Φ be a sufficiently Σ -pure set of sentences and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. Φ has an $\mathfrak{M}_*(\Sigma)$ -model iff every finite subset of Φ has an $\mathfrak{M}_*(\Sigma)$ -model.

Proof: If Φ has no $\mathfrak{M}_*(\Sigma)$ -model, then by the previous Henkin Theorem Φ is \mathfrak{M}_* -inconsistent. Since every \mathfrak{N}_* -proof is finite, this means some finite subset Ψ of Φ is \mathfrak{N}_* -inconsistent.

We can use the completeness theorems obtained so far to prove a compactness theorem for our semantics:

Let Φ be a sufficiently Σ -pure set of sentences and $* \in \{\beta, \beta\eta, \beta\xi, \beta\mathfrak{f}, \beta\mathfrak{b}, \beta\eta\mathfrak{b}, \beta\xi\mathfrak{b}, \beta\mathfrak{f}\mathfrak{b}\}$. Φ has an $\mathfrak{M}_*(\Sigma)$ -model iff every finite subset of Φ has an $\mathfrak{M}_*(\Sigma)$ -model.

Proof: If Φ has no $\mathfrak{M}_*(\Sigma)$ -model, then by the previous Henkin Theorem Φ is \mathfrak{M}_* -inconsistent. Since every \mathfrak{N}_* -proof is finite, this means some finite subset Ψ of Φ is \mathfrak{N}_* -inconsistent. Hence, Ψ has no $\mathfrak{M}_*(\Sigma)$ -model.

