Let $W_N \in \mathcal{N}_N \subset X^e$, we have $a(u-u_N, w_N; \mu) = a(u, w_N; \mu) - a(u_N, w_N; \mu)$ $= l(w_N) - l(w_N)$ = 0

So, we have a (u-un wn; µ) = 0 of wn c mn.

Who is a closed subspace of Xe=H¹ (Hilbert space thanks
to the scalar product a (·,·,µ)). It sing the orthogonal projection heaven, we can conclude that

11 w (m) - un (m) 11 = 11 u(m) - wn 111,

Y.WN E WN

6) Proove that

Troot (M) - Troot N (M) = 111 M (M) - MN (M) 11112

Exploiting the symmetric nature of $a(\cdot,\cdot,\mu)$, we write $a(u-u_{\mu}) = a(u,u) - a(u,u_{\mu}) - a(u_{\mu},u) + a(u_{\mu},u_{\mu})$ $= a(u,u) - a(u,u) + a(u_{\mu},u_{\mu}) + a(u_{\mu},u_{\mu})$ $= a(u,u) - a(u,u) + a(u_{\mu},u_{\mu})$ $= a(u,u) + a(u_{\mu},u_{\mu})$ $= a(u,u) - a(u,u) + a(u,u) + a(u,u_{\mu},u_{\mu})$ $= a(u,u) - a(u,u) + a(u,u) + a(u,u_{\mu},u_{\mu})$ = a(u,u) - a(u,u) + a(u,u) + a(u,u) = a(u,u) - a(u,u) = a(u,u) - a(u,u) = a(u,u) - a(u,u) = a(u,u) -

c) Show that up (p) as defined satisfies a set of NXN linear equations,

AN(M) MN(M) = EN

and that Trustin (u) = Lin Min (y1)

Let's gime expressions for AN (N) & IRNXN in terms of ANTINI and Z, EN & IRN in terms of Err and Z, and LM & IRN in terms of Err and Z, and

We have $\alpha(u_{\mathbb{N}}(\mu), \nu; \mu) = l(\nu) \quad \forall \nu \in \mathbb{N}_{\mathbb{N}}$ and WM = span { \$, 5, ..., EN }. Therefore, for any 5' $a(u_N(\mu), \xi^i, \mu) = l(\xi^i), i = 1, ..., N$ Now, MN(M) & WN >> MN(M) = \(\sum_{=1}^{2} 4 \subseteq \varepsilon^{3} \) Therefore, $a\left(\sum_{i=1}^{N}u_{i}^{i}\xi^{i},\xi^{i};\mu\right)=l\left(\xi^{i}\right)$ i=1,N $\Rightarrow \sum_{i=1}^{n} a(\xi^{i}, \xi^{i}; \mu) \psi = \ell(\xi^{i})$ 1=1,..., N $\Rightarrow \sum_{i=1}^{N} (A_{N}(\mu))_{ij} (\mu_{N}(\mu))_{j} = (F_{N})_{i}$ AN(M) MN(M) / = EN with $\left(\underline{A}_{N}(\mu)\right)_{ij} = a\left(\xi^{\dagger}, \xi^{i}\right), i, j = 1, ..., N$ $(NNM)_{i} = NN \qquad (**)$ $(\dot{\mathbf{E}}_{N})_{j} = \ell(\xi_{j})$ j=1,...N $(\mathbf{x} * \mathbf{x})$

$$Z = \left(u_{N}(\mu^{0}) \left(\mu_{N}(\mu^{2}) \right) \right)$$

$$= \left(\xi^{\circ}, \xi^{1}, \dots, \xi^{N} \right)$$

This means $\xi^{i} = \sum_{k=1}^{2} Z_{ki} \phi_{k}$ where ϕ_{k} , k=1,..., w

are the modal basis functions in Xe.

* Let's Consider (*),

Let's consider
$$(*)$$
,
$$(\triangle_{N}(\mu))_{ij} = \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$= \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$= \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$= \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$= \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$= \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$= \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$= \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$= \alpha(\xi^{i}, \xi^{i}; \mu), \quad 1 \le i, j \le N$$

$$=\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}Z_{ki}Z_{lj}a\left(\phi_{k},\phi_{k}\right)$$

$$= \sum_{k=0}^{N} \sum_{l=0}^{r} Z^{T}_{ik} \left(A^{i}(\mu) \right)_{kl} Z_{ij}$$

* Let's consider (* **)

$$(E_N)_j = l(S^j) = l(Z_k Z_{kj} \phi_k)$$

Troot N (U) =
$$l^{\circ}(u_{N}(\mu))$$

= $l(u_{N}(\mu))$
= $l(\sum_{i}u_{i}^{\dagger}\xi_{i}^{\dagger})$
= $\sum_{i}(E_{N})_{i}u_{i}^{\dagger}$
= $(\sum_{i}E_{N})_{i}^{\dagger}u_{i}^{\dagger}$
= $(\sum_{i}E_{N})_{i}^{\dagger}u_{i}^{\dagger}$
= $(\sum_{i}E_{N})_{i}^{\dagger}u_{i}^{\dagger}$
= $(\sum_{i}E_{N})_{i}^{\dagger}u_{i}^{\dagger}$

d) Let's show that the Library form $a(w, v; \mu)$ can be decomposed as $a(w, v, \mu) = \sum_{q=1}^{\infty} \theta^{q}(\mu) a^{q}(w, v)$, $\forall w, v \in X, \forall \mu \in S$ for Q = G and give expressions for f: $\theta^{q}(\mu)$ and the $a^{q}(w, v)$.

Whe have
$$a(w, w, \mu) = \sum_{i=0}^{4} k^{i} \int_{\Omega_{i}} \nabla w \nabla v + Bi \int_{\omega} w v$$

$$= \int_{\Omega_{i}} \nabla w \cdot \nabla v + \sum_{i=1}^{4} \int_{\Omega_{i}} \nabla w \nabla v + \mu_{i} \int_{\omega} w v$$

$$= \int_{\Omega_{i}} \nabla w \cdot \nabla v + \sum_{i=1}^{4} \int_{\Omega_{i}} \nabla w \nabla v + \mu_{i} \int_{\omega} w v$$

$$= \int_{\Omega_{i}} \nabla u \cdot \nabla v + \mu_{i} \int_{\Omega_{i}} w v + \mu_{i} \int_{\omega} w v \int_{\omega} v$$

with

$$\theta^{4}(\mu) = 1 \qquad , \quad \alpha^{4}(w,v) = \int \nabla w \cdot \nabla v$$

$$\theta^{9}(\mu) = \mu_{9}, \qquad , \quad \alpha^{9}(w,v) = \int \nabla w \cdot \nabla v ,$$

$$q = 2, -... 5$$

$$\theta^{6}(\mu) = \mu_{5} \qquad , \quad \alpha^{6}(w,v) = \int w \cdot v$$

$$w \cdot v$$

Further, let's show that
$$A^{N}(\mu) = \sum_{q=1}^{Q} \theta^{q}(\mu) A^{Nq}$$

$$A^{N}(\mu) = \sum_{q=1}^{Q} \theta^{q}(\mu) A^{q}$$
giving an expression for the A^{Nq} in terms of the nodal basis function, and developping a formula for the A^{N} in terms of the A^{N} in terms of the A^{N} and Z .

 e) Let's show that the condition number of

An (µ) is bounded from above by $\frac{\mathbf{N}^e(\mu)}{\alpha^e(\mu)}$

An (M) is symmetric and positive defined thanks to its coercivity. There fore Cond An (M) = \frac{\lambda_N(An(M))}{\lambda_L(An(M))} \rightarrow \lambda_L(An(M)) \rightarrow \lambda_L(An(M)) \rightarrow \right

Let NEWNCXe.

int a (N, N; M) > rnt a (N, J, M) > Xexe ||V||Xe > Xexe ||V||Xe

* a is continues, there fore.

Sup Sup
NEWN DEWN

NEWN

A (NIVIM)

NEWN

NEWN

A (NIVIM)

NEWN

A (NIVIM)

NEWN

A (NIVIM)

NEWN

A (NIVIM)

A (NIVIM)

NEWN

NEWN

A (NIVIM)

NEWN

Since the bases (5) spanning WN is orthonormalized, ||v||WN = N.T.V.

can be recognized as the Royleigh Guotient R(ANNI).

The Kayleigh Guotient

$$R(A_{N}(\mu), v) = \frac{v^{T}A_{N}(\mu)v}{v^{T}v^{T}} = \frac{\alpha(v, v, \mu)}{||v^{T}||^{2}w_{N}}$$
is careaterized by
$$\inf_{v \in W_{N}} R(A_{N}(\mu), v) = \lambda_{A}(A_{N}(\mu))$$

$$\sup_{v \in W_{N}} R(A_{N}(\mu), v) = \lambda_{N}(A(\mu))$$
The inequalities (*) and (****) become
$$\lambda_{A}(A_{N}(\mu)) \geq \gamma^{e}(\mu)$$

$$\lambda_{N}(A(\mu)) \leq \gamma^{e}(\mu)$$
there fore, the condition number
$$(\text{ond } A_{N}(\mu)) = \frac{\lambda_{N}(A_{N}(\mu))}{\lambda_{A}(A_{N}(\mu))}$$

$$\lambda_{M}(A_{N}(\mu)) = \frac{\lambda_{N}(A_{N}(\mu))}{\lambda_{M}(A_{N}(\mu))}$$