MSP projekt

Jakub Kryštůfek - xkryst02

Prosinec 2022

Úvod

Veškeré výpočty byly provedeny v jazyce python s využitím Jupyter Notebook. Zdrojové kódy pro první úkol jsou v souboru task1.ipynb a pro druhý úkol v souboru task2.ipynb. Data pro druhý úkol byly vyexportovány do csv souboru data.csv.

Úkol 1

	Data pro první úkol							
	Praha	Brno	Znojmo	Tišnov	Rokytn.	Jabl.	Dolní	Mé
							Věsto-	okolí
							nice	
Zimní	510	324	302	257	147	66	87	3
Letní	352	284	185	178	87	58	65	24
Střídání	257	178	124	78	44	33	31	18
Nemá	208	129	70	74	6	19	32	15
názor								

Tabulka 1: Data pro první úkol

Pro podúkoly ${\bf a}$) - ${\bf e}$) bylo využito testu dobré shody, pouze se počítalo s jinými daty a pro ${\bf d}$) - ${\bf e}$) byly sjednoceny některé sloupce. Z toho důvodu proces výpočtu popíšu detailněji pouze pro ${\bf a}$) a u ostatních pouze ukážu odlišnosti, mezivýsledky a závěry.

Úkol 1 a)

Budeme pracovat s řádkem zimní čas z tabulky 1. Nejprve bylo nutné bodově odhadnout pravděpodobnosti a následně teoretické četnosti (tabulka 2).

	Praha	Brno	Znojmo	Tišnov	Rokytn.	Jabl.	Dolní	Mé
							Věsto-	okolí
							nice	
Zimní	530.17	365.56	272.07	234.52	113.46	70.31	85.89	23.97

Tabulka 2: Teoretická četnost pro a)

Následně se vypočítalo testovací kritérium, které vyšlo **39.476**. Jelikož jsme museli bodově odhadnout pravděpodobnosti, pak je stupeň volnosti pro rozdělení chi kvadrát **8-1-1** = **6**. Doplněk kritického oboru nám tedy vyjde **(0; 12.591)**. Jelikož testovací kritérium nepatří do doplňku kritického oboru, pak hypotézu, že je ve městech, obcích a okolí studenta stejné procentuální zastoupení obyvatel, co preferují zimní čas **zamítáme**.

Úkol 1 b)

Budeme pracovat s řádkem zimní čas z tabulky 1. Odhadnuté teoretické četnosti lze vidět v tabulce 3.

	Praha	Brno	Znojmo	Tišnov	Rokytn.	Jabl.	Dolní	Mé
							Věsto-	okolí
							nice	
Letní	385.43	265.77	197.80	170.49	82.49	51.12	62.44	17.42

Tabulka 3: Teoretická četnost pro b)

Testovací kritérium vyšlo **9.065**. Stupeň volnosti opět 8-1-1=6 a doplněk kritického oboru je tedy (**0**; **12.591**). Testovací kritérium tedy spadá do doplňku kritického oboru a tím pádem hypotézu, že je ve městech, obcích a okolí studenta je stejné procentuální zastoupení obyvatel, co preferují letní čas **nezamítáme**.

Úkol 1 c)

Budeme pracovat s řádkem nemá názor z tabulky 1. Odhadnuté teoretické četnosti lze vidět v tabulce 4.

	Praha	Brno	Znojmo	Tišnov	Rokytn.	Jabl.	Dolní	Mé
							Věsto-	okolí
							nice	
Nemá	238.51	164.46	122.40	105.50	51.04	31.63	38.64	10.78
názor								

Tabulka 4: Teoretická četnost pro c)

Testovací kritérium vyšlo 17.110. Stupeň volnosti opět 8-1-1=6 a doplněk kritického oboru je tedy (0; 12.591). Testovací kritérium tedy nespadá

do doplňku kritického oboru a tím pádem hypotézu, že je ve městech, obcích a okolí studenta je stejné procentuální zastoupení obyvatel, co preferují letní čas zamítáme.

Úkol 1 d)

Pro tento podúkol a také pro podúkol e) jsem sjednotil sumou sloupce které patřily do stejných kategorií (Větší města, Menší města a Obce). Tato data jsou zobrazena v tabulce 5.

	Větší města	Menší města	Obce
Zimní	834	559	300
Letní	636	363	210
Střídání	435	202	108
Nemá názor	337	144	57

Tabulka 5: Data pro první úkol

Budeme pracovat s řádkem Zimní z tabulky 5. Zbytek postupu je stejný jako v předcházejících příkladech. Odhadnuté teoretické četnosti lze vidět v tabulce 6.

	Větší města	Menší města	Obce
Zimní	906.97	512.95	273.06

Tabulka 6: Teoretická četnost pro d)

Testovací kritérium vyšlo **12.661**. Stupeň volnosti je 3-1-1=1 a doplněk kritického oboru je tedy **(0; 3.841)**. Testovací kritérium tedy nespadá do doplňku kritického oboru a tím pádem hypotézu, že je ve větších městech, menších městech a obcích je stejné procentuální zastoupení obyvatel, co preferují zimní čas **zamítáme**.

Úkol 1 e)

Budeme pracovat s řádkem Nemá názor z tabulky 5. Zbytek postupu je stejný jako v předcházejících příkladech. Odhadnuté teoretické četnosti lze vidět v tabulce 7.

	Větší města	Menší města	Obce
Nemá názor	288.21	163.00	86.77

Tabulka 7: Teoretická četnost pro e)

Testovací kritérium vyšlo **20.688**. Stupeň volnosti je opět 3-1-1=1 a doplněk kritického oboru je tedy (**0**; **3.841**). Testovací kritérium tedy nespadá do doplňku kritického oboru a tím pádem hypotézu, že je ve větších městech,

menších městech a obcích je stejné procentuální zastoupení obyvatel, co nemají názor **zamítáme**.

Úkol 1 d)

Pro zjištění, zdali byla moje data sbírána z většího města, menšího města nebo obce jsem se rozhodl použít test dobré shody z kategoriální analýzy nad všemi dvojicemi z mých dat a referenčních dat v tabulce 5 a následně vybrat to s nejvyšším testovacím kritériem.

Postup bude u všech následující. Nejprve si vypočítáme tabulku četností pomocí vzorečku:

$$\frac{n_{i,\circ} \cdot n_{\circ,j}}{n}$$

Vtéto tabulce zkontrolujeme, zdali jsou všechno hodnoty >5a následně můžeme vytvořit novou tabulku pomocí vzorečku:

$$\frac{(n_{i,j} - \frac{n_{i,\circ} \cdot n_{\circ,j}}{n})^2}{\frac{n_{i,\circ} \cdot n_{\circ,j}}{n}}$$

Sumou přes všechny prvky této tabulky dostaneme testovací kritérium.

 ${\bf V}$ následujících 3 podsekcích nebudu tento postup již vypisovat, pouze uvedu vypočítané hodnoty.

Větší města x Moje okolí

	Větší města	Moje okolí
Zimní čas	815.184188	21.815812
Letní čas	642.797567	17.202433
Střídání časů	441.192876	11.807124
Nemá názor	342.825369	9.174631

Tabulka 8: Tabulka četností pro Větší města

Všechny hodnoty v tabulce četností jsou > 5.

Testovací kritérium pro Větší města = **26.553**.

Menší města x Moje okolí

	Menší města	Moje okolí
Zimní čas	536.608434	25.391566
Letní čas	369.515060	17.484940
Střídání časů	210.060241	9.939759
Nemá názor	151.816265	7.183735

Tabulka 9: Tabulka četností pro Větší města

Všechny hodnoty v tabulce četností jsou > 5. Testovací kritérium pro Větší města = **38.975**.

Obce x Moje okolí

	Obce	Moje okolí
Zimní čas	278.265306	24.734694
Letní čas	214.897959	19.102041
Střídání časů	115.714286	10.285714
Nemá názor	66.122449	5.877551

Tabulka 10: Tabulka četností pro Větší města

Všechny hodnoty v tabulce četností jsou > 5. Testovací kritérium pro Větší města = **43.881**.

Závěr

Nejvyšší testovací kritérium měla dvojice Obce a Má data, což znamená, že má data nejvíce odpovídají datům z obcí. Toto i odpovídá realitě, jelikož jsem data sbíral v okolí menší obce.

Úkol 2

Má sada dat odpovídá číslu 17. Z důvodu velkého počtu hodnot nebudu uvádět žádné tabulkové výpisy dlouhých mezivýpočtů. Na obrázku 1 jsou referenční data. Jak je vidět, tak data mají na první pohled velice zašuměné hodnoty, což se projeví na výsledcích mých výpočtů. Z experimentálních důvodů jsem svůj pokus vyzkoušel i na datech jiného studenta, který mě již od pohledu data přesně kopírující regresní funkci a pro tento případ mi vycházely mnohem přesnější a hezčí výsledky. O těch se však dále už nebudu zmiňovat.

Obrázek 1: Vstupní data

Úkol 2 a)

Pomocí testu nulovosti regresních parametrů jsem postupným zjednodušováním modelu došel k závěru, že výchozí regresní funkce $Z=\beta_1+\beta_2X+\beta_3Y+\beta_4X^2+\beta_5Y^2+\beta_6XY$ lze zjednodušit na $Z=\beta_1+\beta_5Y^2+\beta_6XY$ bez závažnějšího dopadu na vhodnost. Koeficient determinace původního modelu vychází $R^2=0.556$ a zjednodušený model $R^2=0.541$. Následně jsem iterativním zjednodušováním modelu došel až na $Z=\beta_1$, kde ale s každým zjednodušením koeficient determinace znatelně klesal. Z toho důvodu jsem za nejvhodnější model vybral $Z=\beta_1+\beta_5Y^2+\beta_6XY$.

Obrázek 2: Výsledný model v porovnání s výchozími daty

Úkol 2 b)

Bodové odhady metodou nejmenších čtverců a 95% intervaly spolehlivosti:

	Bodový odhad	95% interval spolehlivosti
β_1	-20.08	(-54.53;14.35)
β_5	-3.71	(-4.56; -2.86)
β_6	1.21	(0.63; 1.79)

Tabulka 11: Bodové a intervalové odhady vybraného modelu.

Úkol 2 c)

Rozptyl nezávislé proměnné vyšel 9215.015.

Úkol 2 d)

Testoval jsem hypotézu, že β_5 a β_6 jsou nulové.

Pro otestování této hypotézy jsem použil F-test. P hodnota testu vyšla $4.807*10^{-12}$ a jelikož je tato hodnota < α , tak hypotézu, že jsou tyto dva parametry nulové zamítáme.

Úkol 2 e)

Testoval jsem hypotézu, že β_5 a β_6 jsou stejné.

Pro otestování této hypotézy jsem použil T-test. P hodnota testu vyšla $1.308*10^{-10}$ a jelikož je tato hodnota $<\alpha$, tak hypotézu, že jsou tyto dva parametry stejné zamítáme.