Step-1

If matrix A is invertible and the matrix factorization for A is as follows

$$A = U \sum V^T$$

Consider $U^TU = I$, so we can write

$$A = U \sum U^{T} U V^{T}$$
$$= (U \sum U^{T})(U V^{T})$$

Step-2

Consider $Q = UV^T$, since

$$Q^{T}Q = (VU^{T})(UV^{T})$$
$$= VU^{T}UV^{T}$$
$$= I$$

The factor $Q = UV^T$ is orthogonal.

Consider $S' = U \sum U^T$, since

$$S' = QSQ^{T}$$
$$= \sqrt{AA^{T}}$$
$$= U\Sigma U^{T}$$

The factor $S' = U \sum U^T$ is the symmetric and positive semidefinite.

Step-3

Therefore, we can split $A = U \sum V^T$ in the reverse polar decomposition as A = QS', here

Q is orthogonal and $\hat{Sa} \in \mathbb{T}^{M}$ is symmetric positive semidefinite.