

Discrete Mathematics

Jidong Yuan yuanjd@bjtu.edu.cn SD 404

Algebraic Structure

- Outline:
- Introduction to Algebraic Structure
- Semigroup and Monoid
- Group and Subgroup
- Abelian Group, Cyclic Group and Permutation Group
- Ring and Field
- Lattice
- Boolean algebra

Review

- Algebraic system <A, °>
 - ✓ 3 properties
 - Closure
 - Commutativity
 - Associativity
 - √ 3 constants
 - Identity
 - Zero
 - □Inverse

- ✓ 3 special algebraic systems
 - ■Semigroup
 - Monoid
 - □Group
- √ 2 relations
 - Homomorphism
 - □ Isomorphism

Abelian Group

Definition:

- •An algebraic system $\langle G, * \rangle$ is said to be an **Abelian group** if the following conditions are satisfied.
- 1) * is a closed operation.
- 2) * is an associative operation.
- 3) There is an identity in *G*.
- 4) Every element in G has inverse in G.
- 5) * is a commutative operation.

Example:

- < Z, +> is an Abelian group.
- <Z+, +> is not a Abelian group.

X = identity

Exercise 1

• Let a * b = ab/2. Show that $\langle \mathbf{R}^+, * \rangle$ is an Abelian group.

$$0 + b = 2 \in \mathbb{R}^+$$

$$(2)(a*b)*(c=\frac{ab}{2}*c=\frac{ab}{2}*(\frac{bc}{2})=a*(\frac{bc}{2})=a*(b*c)$$

$$3 > xq = \frac{zq}{2} = a, ax = \frac{az}{2} = a, z \Rightarrow identity$$

$$\Theta = \alpha \times \alpha^{-1} - 4\alpha^{-1} - 2 \qquad \alpha^{-1} - \frac{1}{\alpha} \in \mathbb{R}^{+}$$

Modulo Systems

Let m be a positive integer. For any two positive integers a and b operation $+_m$ is defined as follows:

 $a +_m b = r$, where r is the remainder obtained by dividing (a+b) with m.

i.e.
$$a + b \equiv r \pmod{m}$$

Let $Z_4 = \{0, 1, 2, 3\}$, show that $\langle Z_4, +_4 \rangle$ is an Abelian group. $\frac{+_m}{0} = \frac{1}{2} + \frac{2}{3}$ an Abelian group. $\frac{+_m}{0} = \frac{1}{2} + \frac{2}{3} + \frac{3}{3} + \frac{3}{3}$

Cont.

• Let $\mathbf{Z}_4 = \{0, 1, 2, 3\}$, show that $\langle \mathbf{Z}_4, +_4 \rangle$ is an Abelian group.

+_m	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Theorem 1

•A necessary and sufficient condition for a group $\langle G, * \rangle$ to be an Abelian group is that for $\forall a, b \in G$, (a * b) * (a * b) = (a * a) * (b * b).

Proof:

(1) If $\langle G, * \rangle$ is an Abelian group, then

$$(a * b) * (a * b) = a * (b * a) * b = a * (a * b) * b = (a * a) * (b * b)$$

(2) If
$$\forall a, b \in G$$
, $(a * b) * (a * b) = (a * a) * (b * b)$

$$(a * b) * (a * b) = a * (b * a) * b$$

$$(a * a) * (b * b) = a * (a * b) * b$$

$$b * a = a * b$$

Cyclic Group

Suppose that $\langle G, * \rangle$ is a group, and let $a \in G$. For $n \in \mathbb{Z}^+$, we define the powers of a recursively as follows:

$$a^0 = e$$
, $a^1 = a$, $a^n = a^{n-1} * a$, $n \ge 2$.

• A group is called a **cyclic group** if all of its elements are the **powers** of one of its elements. The element is called a **generator**.

Example 1

Let $A=\{0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}\}$, representing different angles that one geometric figure on the plane rotates clockwise around its center. * is a binary operation on A. a*b is defined as the angle after the figure rotates a and b continuously. Determine whether A, *> is a cyclic group or not.

*	0°	60°	120°	180°	240°	300°
0°	0°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	0°
120°	120°	180°	240°	300°	0°	60°
180°	180°	240°	300°	0°	60°	120°
240°	240°	300°	0°	60°	120°	180°
300°	300°	0°	60°	120°	180°	240°

Cont.

*	0°	60°	120°	180°	240°	300°
0°	O°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	0°
120°	120°	180°	240°	300°	0°	60°
180°	180°	240°	300°	0°	60°	120°
240°	240°	300°	0°	60°	120°	180°
300°	300°	0°	60°	120°	180°	240°

Theorem 1

Every cyclic group must be an abelian group.

proof:

Let $\langle G, * \rangle$ be a cyclic group, and α be the generator.

For $\forall x, y \in G$, there must be $r, s \in \mathbf{Z}$, such that $x=a^r$, $y=a^s$.

$$x * y = a^{r} * a^{s} = a^{r+s} = a^{s} * a^{r} = y * x$$

Permutation

Definition:

Let S be a nonempty set, a bijection on S is called a permutation of S.

Example:

•Let *S*={1, 2, 3}

$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 \end{pmatrix}$$

$$p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Definition:

• Composition of two permutations $p_1 \circ p_2$ on a group S is defined as doing p_2 permutation on S first and then doing p_1 permutation.

Example:

•Let *S*={1, 2, 3}

$$p_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$p_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad p_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad p_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$p_{2} \circ p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = p_{5}$$

The set of all permutations of n elements is denoted by S_n , $< S_n$, < > is a group of order n! under the operation of composition.

Proof:

•(1) Closure

For $\forall p_1, p_2 \in S_n$, for $\forall a, b \in S$ and $a \neq b$.

Assume that after p_2 , $p_2(a)=c$, $p_2(b)=d$. The we have c, $d \in S$ and $c \neq d$.

Assume that after p_1 , $p_1(c)=e$, $p_1(d)=f$. The we have e, $f \in S$ and $e \neq f$.

 $p_1 \circ p_2$ maps any two different elements in S to two different elements in S.

Thus $p_1 \circ p_2$ is also a permutation of S, $p_1 \circ p_2 \in S_n$.

The set of all permutations of n elements is denoted by S_n , $< S_n$, < > is a group of order <math>n! under the operation of composition.

Proof:

•(2) Associativity

For
$$\forall p_1, p_2, p_3 \in S_n$$
, for $\forall x \in S$, Assume $p_3(x) = y$, $p_2(y) = z$, $p_1(z) = w$.
 $p_1 \circ (p_2 \circ p_3)(x) = p_1(p_2 \circ p_3(x)) = p_1(p_2(p_3(x))) = w$.
 $(p_1 \circ p_2) \circ p_3(x) = (p_1 \circ p_2)(p_3(x)) = p_1(p_2(p_3(x))) = w$.
 $p_1 \circ (p_2 \circ p_3) = (p_1 \circ p_2) \circ p_3$.

The set of all permutations of n elements is denoted by S_n , $\langle S_n \rangle$ is a group of order n! under the operation of composition.

Proof:

•(3) Identity

There is a permutation p_e in S_n such that for $\forall x \in S$, $p_e(x) = x$.

Then for $\forall p_a \in S_n$, for $\forall x \in S$, $p_a \circ p_e = p_e \circ p_a = p_a$.

Thus p_e is the identity of $\langle S_n, \circ \rangle$.

The set of all permutations of n elements is denoted by S_n , $< S_n$, < > is a group of order n! under the operation of composition.

Proof:

•(4) Inverse

For $\forall p_a \in S_n$, for $\forall x \in S$, assume $p_a(x)=y$.

Then there must be a permutation p_b such that $p_b(y)=x$.

$$p_a \circ p_b = p_b \circ p_a = p_e$$

Permutation Group

Definition:

•Any subgroup of $\langle S_n, \circ \rangle$ is a **permutation group** on S.

Example:

•Let $S=\{1, 2, 3\}$, list all permutation groups on S.

$$p_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$p_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad p_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad p_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Cont.

 p_{5}

Cont.

•Let $S=\{1, 2, 3\}$, list all permutation groups on S.

0	p_1	p_2	p_3	p_4	p_5	p_6
p_1	p_1	p_2	p_3	$p_4 \\ p_6 \\ p_2 \\ p_5 \\ p_1 \\ p_3$	p_5	p_6
p_2	p_2	p_1	p_5	p_6	p_3	p_4
p_3	p_3	p_4	p_1	p_2	p_6	p_5
p_4	p_4	p_3	p_6	p_5	p_1	p_2
p_5	p_5	p_6	p_2	p_1	p_4	p_3
p_6	p_6	p_5	p_4	p_3	p_2	p_1

 \checkmark (a) The identity e of <G, *> belongs to H. \checkmark (b) If a and b belong to H, then a*b ∈ H. \checkmark (c) If a ∈ H, then $a^{-1} ∈ H$.

✓identity: p_1 ✓ $p_1^{-1} = p_1$ ✓ $p_2^{-1} = p_2$ ✓ $p_3^{-1} = p_3$ ✓ $p_4^{-1} = p_5$ ✓ $p_6^{-1} = p_6$

Permutation groups: $<S_n$, >>, $<\{p_1\}$, >>, $<\{p_1, p_2\}$, >>, $<\{p_1, p_3\}$, >>, $<\{p_1, p_6\}$, >>, $<\{p_1, p_4, p_5\}$, >>