

Loglinear models & mosaic displays

Michael Friendly Psych 6136

http://friendly.github.io/psy6136

Today's topics

- Mosaic displays: basic ideas
- Models for count data
 - Fitting loglinear models
- Two-way tables
- Three-way tables
- Sequential plots & models
- Marginal & partial displays

_

Mosaic displays

- Similar to sieve plot, tile plot, using area ~ frequency
- Mosaic plots generalize more readily to n-way tables (subject to resolution of the display)
- Intimately connected to loglinear & generalized linear models
 - Can fit sequential models as variables are entered
 - Show the pattern of association not accounted for in a given model

Mosaic displays: basic ideas

Mosaic displays theory: Hartigan & Kleiner (1981); Friendly (1994, 1999)

UCB Admissions: Gender frequencies

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

 V_1 : width ~ marginal frequencies, n_{i++} V_2 : height ~ cond freq: $V_2 | V_1 = n_{ij} / n_{i++}$ V_3 : width ~ cond freq: $V_3 | V_1 / V_2 = n_{iki} / n_{i++}$

→ Area ~ cell frequency, n_{iik}

Mosaic displays: basic ideas

UCB Admissions: Gender x Admit

Area proportional display for an n-way

Tiles: recursive splits of a unit square, alternating H, V

 V_3 : width \sim cond freq: $V_3 \mid V_1$, $V_2 = n_{ikj} / n_{ij+1}$ V_2 : height ~ cond freq: $V_2 | V_1 = n_{ij} / n_{i++}$ V_1 : width $^{\sim}$ marginal frequencies, n $_{\rm i++}$

→ Area ~ cell frequency, n_{iik}

Mosaic displays: Independence

independence are products of the row **Expected frequencies under** / col margins

$$\widehat{m}_{ij} = \frac{n_{i+}n_{+j}}{n_{++}} = n_{++} \text{row \%col \%}$$

→ Row and col tiles align when variables are independent

Mosaic displays: basic ideas

Gender x Admit x Dept frequencies

Tiles: recursive splits of a unit square, alternating H, V

Area proportional display for an n-way

 V_2^2 : height ~ cond freq: $V_2 \mid V_1 = n_{ij} / n_{i++}$ V_3 : width ~ cond freq: $V_3 \mid V_2$, $V_2 = n_{ikj} / n_{ij+}$ V_1 : width $^{\sim}$ marginal frequencies, n $_{i++}$

 \rightarrow Area ~ cell frequency, n_{ijk}

Mosaic displays: Residuals & shading

Pearson residuals:

Expected frequencies if Admit \perp Gender

$$d_{ij} = \frac{n_{ij} - \widehat{m}_{ij}}{\sqrt{\widehat{m}_{ij}}}$$

• Pearson $\chi^2 = \sum \sum d_{ij}^2 = \sum \sum \frac{(n_{ij} - \hat{m}_{ij})^2}{\hat{m}_{ii}}$

- Other residuals: deviance (LR), Freeman-Tukey (FT), adjusted (ADJ), ...
- Shading:
- Sign: negative in red; + positive in blue
- Magnitude: intensity of shading: $|d_{ij}| > 0, 2, 4, \dots$
- ⇒ Independence: rows align, or cells are empty!

Loglinear models: Perspectives

Loglinear models grew up and developed from three different ideas and ways of thinking about notions of independence in frequency data

- Loglinear approach: analog of ANOVA; associations are interactions
- glm() approach: analog of general regression model, for log(Freq), with Poisson distn of errors
- **Logit models**: Loglinear simplified for a binary response

glm() approach

Extension of classical linear models recognized loglinear models as a model for log(Freq), with Poisson distⁿ for cell counts

$$\log m = X \beta$$

- Looks like std ANOVA/regression model, but for log(Freq)
- This allows quantitative predictors and special ways to treat ordinal factors
- Fit by maximum likelihood using glm(..., family=poisson)
- Standard diagnostic methods available

```
glm( Freq \sim A + B + C, family = poisson # [A] [B] [C] glm( Freq \sim A * B + C, family = poisson) # [A B] [C]
```

Loglinear approach

First developed as analog of classical ANOVA models, where multiplicative relations are re-expressed in additive form as models for log(Freq)

$$\log m_{ij} = \mu + \lambda_i^{\mathsf{A}} + \lambda_j^{\mathsf{B}} \equiv [\mathsf{A}][\mathsf{B}] \equiv \sim \mathsf{A} + \mathsf{B}$$

- This expresses the independence model for a 2-way table as no A*B association
- Short-hand notations: [A][B] = A \perp B = ~ A + B
- Fit by simple iterative proportional scaling: MASS::logIm()

```
loglm(Freq ~ A + B + C) # [A][B][C]
loglm(Freq ~ A * B + C ) # [A B][C]
loglm(Freq ~ A * B * C) # [A B C]
```

Logit models

When one variable is a binary response, a logit model is a simpler way to specify a loglinear model

$$\log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]$$

- $log(m_{1jk}/m_{2jk})$ is the log odds of response 1 vs 2
- The model only includes terms for the effect of A on B & C
- Equivalent loglinear model: [AB][AC][BC]
- The logit models assumes the [BC] association;

$$[AB] \to \beta_j{}^B \quad [AC] \to \beta_k{}^C$$

Fit using family=binomial

```
glm(outcome=="survived" \sim B + C, family = binomial)
```

Two-way tables: loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total size n over the IJ cells of a two-way $I \times J$ contingency table, with cell frequencies n_{ij} , and cell probabilities $\pi_{ij} = n_{ij}/n$. The table variables are statistically independent when the cell (joint) probability equals the product of the marginal probabilities,

$$Pr(A = i \& B = j) = Pr(A = i) \times Pr(B = j)$$
, or,

$$\pi_{ij} = \pi_{i+}\pi_{+j} .$$

• An equivalent model in terms of expected frequencies, $m_{ij} = n\pi_{ij}$ is

$$m_{ij} = (1/n) m_{i+} m_{+j}$$
.

This multiplicative model can be expressed in additive form as a model

$$\log m_{ij} = -\log n + \log m_{i+} + \log m_{+j}$$
.

 \equiv

13

Two-way tables: loglinear approach

Saturated model

Dependence between the table variables is expressed by adding association parameters, λ_{ij}^{AB} , giving the saturated model,

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^{AB} \equiv [AB] \equiv A * B . \tag{3}$$

- The saturated model fits the table perfectly $(\widehat{m}_{ij} = n_{ij})$: there are as many parameters as cell frequencies. Residual df = 0.
- A global test for association tests $H_0: \lambda_{ii}^{AB} = \mathbf{0}$.
- If reject H_0 , which $\lambda_{ij}^{AB} \neq 0$?
- ullet For ordinal variables, the λ_{ij}^{AB} may be structured more simply, giving tests for ordinal association.

15

Two-way tables: loglinear approach

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

$$\log m_{ij} = \mu + \lambda_i^{\mathsf{A}} + \lambda_j^{\mathsf{B}} \; ,$$

(2)

- \bullet μ is the grand mean of $\log m_{ij}$
- the parameters λ_j^A and λ_j^B express the marginal frequencies of variables A and B "main effects"
 - typically defined so that $\sum_i \lambda_i^A = \sum_j \lambda_j^B = 0$ as in ANOVA

14

Example: Independence

Generate a table of Education by Party preference, strictly independent

```
> table <- outer(educ, party) / sum(party) # cell = row * col / n
> names(dimnames(table)) <- c("Education", "Party")</pre>
  marginal frequencies
                                              # marginal frequencies
                  names(educ) <- c("Low", "Med", "High")
party <- c(20, 50, 30)
names(party) <- c("NDP", "Liberal", "Cons")</pre>
                                                                                                                                                                                Cons
15
30
15
educ <- c(50, 100, 50)
                                                                                                                                                                            Education NDP Liberal Control Low 10 25 Med 20 50 High 10 25
```

Perfect fit:

```
MASS::loglm(formula = ~Education + Party, data = table)
> MASS::loglm(~ Education + Party, table)
                                                                                                                                                       X^2 df P(> X^2)
                                                                                                                                                                                  Likelihood Ratio
                                                                                                                         Statistics:
```

Both sieve diagrams and mosaic plots show what independence "looks like"

> sieve(table, shade=TRUE)

Education Med

ЧвіН

гом

> mosaic(table, shade=TRUE)

18

Example: 2 x 2 table

For a 2×2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

- only the linearly independent parameters are represented. $\lambda_2^A = -\lambda_1^A$, because $\lambda_1^A + \lambda_2^A = 0$, and so forth.
 - ullet association is represented by the parameter λ_{11}^{AB}
 - can show that $\lambda_{11}^{AB} = \frac{1}{4} \log(\theta)$ (log odds ratio)
- ordinal or quantitative variables, special terms, etc. Can also allow for Advantages of the GLM formulation: easier to express models with over-dispersion.

19

Two-way tables: glm approach

In the GLM approach, the vector of cell frequencies, $\mathbf{n} = \{n_{ij}\}$ is specified to have a Poisson distribution with means $m = \{m_{ij}\}$ given by

$$eta m{\chi} = m{m}$$
 bol

- X is a known design (model) matrix, expressing the table factors
- ullet is a column vector containing the unknown λ parameters.
- This is the same as the familiar matrix formulation of ANOVA/regression, except that
- The response, log *m* makes multiplicative relations additive
 The distribution is taken as Poisson rather than Gaussian (normal)

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G^2 ,

$$G^2 = 2 \sum_{i} n_i \log \left(\frac{n_i}{\widehat{m}_i} \right) , \qquad (4)$$

or the Pearson X^2 ,

$$X^{2} = \sum_{i} \frac{(n_{i} - \widehat{m}_{i})^{2}}{\widehat{m}_{i}} , \qquad (5)$$

with degrees of freedom |df = # cells - # estimated parameters.

- E.g., for the model of independence, [A][B], df =
- The terms summed in (4) and (5) are the squared cell residuals (I-1)+(J-1)]=(I-1)(J-1)
- Other measures of balance goodness of fit against parsimony, e.g., Akaike's Information Criterion (smaller is better)

$$AIC = G^2 - 2df$$
 or $AIC = G^2 + 2$ # parameters

R functions for loglinear models

- vcd::assocstats() only \(\chi \) tests for two-way tables; not a
 model (no parameters; no residuals)
- MASS::1oglm() general loglinear models for n-way tables

```
loglm(formula, data, subset, na.action, ...)
```

glm() - all generalized linear models; loglinear with family = poisson

```
glm(formula, data, weights, subset,
```

- Formulas have the form:
- table form: ~ A + B + ... (independence);
- ~ A * B + C (allow A*B association)
- frequency data frame: Freq ~ A * B + C

1

Model-based methods: Fitting & graphing

R functions

loglm() and glm() return an R object with named
components and with a class()

- They have methods: print(), summary, coef(), residuals(), plot() and other methods
- Methods are specific to the class of the object
- E.g., residuals(arth.mod) → residuals.log1m(arth.mod)

7

Example: Arthritis treatment

Data on effects of treatment for rheumatoid arthritis (in case form)

For now, ignore Age; consider the 2×3 table of Treatment x Improved

```
> arth.tab <- with(Arthritis, table(Treatment, Improved))
> arth.tab
Improved
Treatment None Some Marked
Placebo 29 7 7
Treated 13 7 21
```

Arthritis treatment

Fit the independence model, ~ Treatment + Improved

Some methods:

```
> round(residuals (arth.mod), 3) $ coef (arth.mod) $ (Intercept) $ (Inte
```

25

Arthritis treatment: glm()

glm() for loglinear models easiest with the data as a data.frame in frequency form

```
> arth.df <- as.data.frame(xtabs(~ Treatment + Improved,
           data=Arthritis))
                              Treatment Improved Freq
                                                          Some
                                                                     Some
                                       None
                                                 None
                                                                              Marked
                                                                                        Marked
                                        Placebo
                                                Treated
                                                          Placebo
                                                                     Treated
                                                                              Placebo
                                                                                        Treated
                    arth.df
                                       128459
```

More on glm() models later

27

28

Arthritis treatment: Plots

Visualization: mosaic() or plot() the model or table

Improved


```
Splits by the response,

Treatment first

Custom scheme for shading levels; normally (2, 4) for |residual|

Cells can be labeled by freq, residual, ...
```

26

Example: Hair color & Eye color

Mosaic displays: Seeing patterns

- In two-way models, residuals contain the info on lack of independence
- Equivalently: help to understand the pattern of association
- Effect ordering: permuting the rows / cols often makes the pattern more apparent
- Correspondence analysis: → reorder by scores on Dim 1

•

seriation::permute(order="CA") does this for two-way tables

		ne	5	29	1.4	16
		Green				
		Hazel	15		14	10
		Blue	20	84	17	94
Ze.	ЕУе	Brown	99	119	26	
> haireye	Ш	Hair	Black	Brown	Red	Blond

			Blue	20	84	17	94
	"CA")		Green	Ŋ	29	14	16
.ation)	'eye,		Hazel	15	54	14	10
:y(seri	permute (haireye,	Еуе	Brown	9	119	26	7
> library(seriation)	> permut	щ	Hair	Black	Brown	Red	Blond

29

Bee abundance data

examined the abundance of bee species in Ontario over three A study by Taylor Kerekes periods of time.

Q: Does relative abundance of species differ over years?

A: Do a chi-square test

data: bees[, -1] X-squared = 1981, df = 26, p-value <2e-16 chisq.test(bees[,-1])
Pearson's Chi-squared test

#	A tibble: 14 x	4		
	species	`2002`	`2005`	2021
	<chr></chr>	<db)></db)>	<db1></db1>	<db1< td=""></db1<>
1	Affinis	508	0	
N	Bimaculatus	362	345	13
m	Borealis	30	9	П
4	Fervidus	634	19	1
5	Griseocollis	35	21	2
9	Impatiens	638	564	61
7	Pensylvanicus	112	0	
00	Perplexus	160	57	
0	Rufocinctus	51	46	1
10	Ternarius	0	16	
11	Terricola	119	⊣	
12	Vagans	713	82	m
13	Ashtoni (M)	27	0	
14	Citrinus (M)	234	ď	

V O L H O H O O O C O A O O O

How to understand the pattern of association?

year 2002 Vagans itoni (M) inus (M)

mosaic(bees.mat, shade=TRUE, ...)

Bees Abundance Data

Alphabetic order of No clear pattern species:

Correspondence analysis finds scores for the row & col categories to account for maximum χ^2

Three-way tables

Saturated model

For a 3-way table, of size $I \times J \times K$ for variables A,B,C, the saturated loglinear model includes associations between all pairs of variables, as well as a 3-way association term, λ_{ijk}^{MBC}

$$\log m_{ijk} = \mu + \frac{\lambda_i^A + \lambda_j^B + \lambda_k^C}{\lambda_{ij}^A + \lambda_{ik}^A + \lambda_{jk}^A} + \frac{\lambda_i^{ABC}}{\lambda_{ij}^{ABC}}.$$
 (6)

- One-way terms $(\lambda_i^A, \lambda_j^B, \lambda_k^C)$: differences in the *marginal frequencies* of the table variables.
- Two-way terms $(\lambda_{ij}^{AB}, \lambda_{ik}^{AC}, \lambda_{jk}^{BC})$ pertain to the partial association for each pair of variables, controlling for the remaining variable.
- The three-way term, λ_{ijk}^{ABC} allows the partial association between any pair of variables to vary over the categories of the third variable.
 - Fits perfectly, but doesn't explain anything, so we hope for a simpler model!

'n

36

mosaic(permute(bees.mat, "CA"), shade=TRUE, ...)

Bees Abundance Data

Reduced models

- Goal: fit the smallest model sufficient to explain/describe the observed frequencies
- Similar to Anova models, ~(A + B + C)³ with all interactions
- Hierarchical models
- A high-order term, like $\lambda_{iik}{}^{ABC} \rightarrow$ all lower order terms included
- E.g. [ABC] → A + B + C + AB + AC + BC
- $[AB][AC] \rightarrow A + B + C + AB + AC$
- Thus, a shorthand notation for a loglinear model lists only the high-order terms

Reduced models

- For a three-way table there is a range of models between mutual independence, [A][B][C], and the saturated model, [ABC]
- Each model has an independence interpretation:

$$[A][B] \equiv A \perp B \equiv A \text{ independent of B}$$

Special names for various submodels

Table: Log-linear Models for Three-Way Tables

Model	Model symbol	Model symbol Interpretation
Mutual independence	[A][B][C]	$A \perp B \perp C$
Joint independence	[AB][C]	$(AB) \perp C$
Conditional independence	ACILBCI	$(A \perp B) \mid C$
All two-way associations	ABIJACIJBCI	homogeneous assoc.
Saturated model	[ABC]	ABC interaction

7

Model types: loglm()

Each of these have simple translations into the model formulae for logIm()

```
loglm(~ A + B + C)  # mutual independence [A][B][C]
loglm(~ A * B + C)  # joint independence
loglm(~ A*C + B*C)  # conditional independence [AC][BC]
loglm(~ (A + B + C)^2)  # homogeneous, all 2-way [AB][AC][BC]
loglm(~ A * B * C)  # saturated model
```

Model types

• Joint independence: $(AB) \perp C$, allows A*B association, but asserts no A*C and B*C associations

$$[AB][C] \equiv \log m_{ik} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB}$$

• Conditional independence: $A \perp B$, controlling for C

$$[AC][BC] \equiv \log m_{jk} = \mu + \lambda_j^A + \lambda_j^B + \lambda_k^C + \lambda_{jk}^{AC} + \lambda_{jk}^{BC}$$

 Homogeneous association: All two-way, but each two-way is the same over the other factor

$$[AB][AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{jk}^{BC}$$

300

Collapsibility: Marginal & conditional associations

- Q: When can we legitimately collapse a table, ABC over some variable (C)?
- A: When the marginal association of AB is the same as the conditional association, AB | C
- Recall the Berkeley data
- Margin of Admit, Gender ignoring Dept showed strong association
- The partial assoc. within Dept were mostly NS
- This is an example of Simpson's paradox
- Three-way tables: The AB marginal and AB | C conditional associations are the same, if either:
- A & C are conditionally independent, $A \perp C \mid B = [AB][CB]$
- B & C are conditionally independent, $B \perp C \mid A = [AB][AC]$
- → no three-way association

Response vs. Association models

- In association models, the interest is just on which variabels are associated, and how
- Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye Sex]
- — fit the homogeneous association model (or the saturated model)
 - Test the individual terms, delete those which are NS
- In response models, the interest is on which predictors are associated with the response
- \bullet The minimal (null or baseline) model is the model of joint independence of the response (say, A) from all predictors, [A] [B C D \ldots]
 - Associations among the predictors are fitted exactly (not analyzed)
 - Similar to regression, where predictors can be arbitrarily correlated
 - e.g., Berkeley data: fit the baseline model [Admit] [Gender Dept]
 lack-of-fit

 associations [Admit Gender] and/or [Admit Dept]

7

Nested models & ANOVA-type tests

Two models, M_1 and M_2 are nested when one (say, M_2) is a special case of the other

- Model M_2 (w/ v_2 df) fits a subset of the parameters of M1 (w/ v_1 df)
- M_2 is more restrictive cannot fit better than M_1 : $G^2(M_2) \ge G^2(M_1)$
- The least restrictive model is the saturated model [ABC ...], w/ $G^2 = 0$

Therefore, we can test the difference in ${\bf G}^2$ as a specific test of the added restrictions in ${\bf M}_2$ compared to ${\bf M}_1$.

• This test has a χ^2 distribution with df = $v_2 - v_1$

$$\Delta G^{2} \equiv G^{2}(M_{2} | M_{1}) = G^{2}(M_{2}) - G^{2}(M_{1})$$

$$= 2 \sum_{i} n_{i} \log(\widehat{m}_{i1} / \widehat{m}_{i2})$$
(7)

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the likelihood ratio G^2 , or the Pearson X^2 ,

$$G^2 = 2\sum_i n_i \log\left(\frac{n_i}{\widehat{m}_i}\right)$$
 $X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i}$

with residual degrees of freedom ν = # cells – # estimated parameters.

- These measure the lack of fit of a given model— a large value poor model
 - Both are distributed as $\chi^2(\nu)$ (in large samples: all $\widehat{m}_i > 5$)
- $\mathcal{E}(\chi^2(\nu)) = \nu$, so G^2/ν (or χ^2/ν) measures lack of fit per degree of freedom (overdispersion)
- But: how to compare or test competing models?

42

Example: Berkeley admissions

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender the following models form a nested chain

$$[A][D][G] \subset [A][DG] \subset [AD][AG][DG] \subset [ADG]$$

Table: Hierarchical G^2 tests for loglinear models fit to the UC Berkeley data

Type	LLM terms	G_{5}	df	$\Delta(G^2)$	$\Delta(dt)$	$\Pr(>\Delta(G^2))$	
Mutual ind	[A][D][G]	2097.67	16				
Joint	[A][DG]	877.06	Ξ	1220.62	2	0.0000	
All 2-way	[AD][AG][DG]	20.20	2	1128.70	2	0.0000	
Saturated	[ADG]	0.0	0	20.20	2	0.0011	

- Only testing the decrease in G2 from one model to the next
- Here, each model is significantly better than the previous
- Joint vs. all two-way: Does Admit depend on Dept and/or Gender?
- Absolut fit of all 2-way model is not terrible. Investigate this further!

Fitting these in R

Log1m() - data in contingency table form (MASS package)

```
data(UCBAdmissions)
## conditional independence (AD, DG) in Berkeley data
## conditional independence (AD, DG) in Berkeley data
mod.1 <- logIm(~ (Admit + Gender) * Dept, data-UCBAdmissions)
## all two-way model (AD, DG, AG)
mod.2 <- logIm(~ (Admit + Gender + Dept) .2, data-UCBAdmissions)</pre>
```

glm() - data in frequency form

```
berkeley <- as.data.frame(UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
    family='poisson')</pre>
```

- Log1m() simpler for nominal variables
- glm() allows a wider class of models and quantitative predictors (covariates)
- gnm () fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all

0

Conditional independence, [AD] [AG]

All two-way model, [AD] [AG] [DG]

Example: Berkeley admissions

Fit the model of mutual independence, using loglm()

Conditional independence [AD] [AG]

46

ANOVA tests

These are nested. Compare with anova ()

These are tests of relative fit, $\Delta G^2 = \ G^2 \left(M_i \ \middle| \ M_{i \cdot 1} \ \right)$

47

LRstats

vcdExtra::IRstats() gives one-line summaries of a collection of models
These are tests of absolute goodness of fit

- AIC and BIC are GOF measures adjusted for model parsimony
 - Not not significance tests, but smaller is better
- Also apply to non-nested models

$$AIC = G^2 + 2 \times \#$$
 parameters
 $BIC = G^2 + 2 \log(n) \times \#$ parameters

Mosaic displays: Visual fitting

- Each mosaic shows:
- The DATA size of tiles
- (some) marginal frequencies initial splits (visual grouping)
- RESIDUALS (shading) what associations have been omitted?
- Visual fitting
- Start with a simple model: mutual independence or joint independence for response models
- Pattern of residuals: suggest a better model → smaller residuals
- Add terms: → smaller residuals, less shading: "cleaning the mosaic"
- Good fitting model will have mostly unshaded tiles

Mosaic displays: Predictor variables

Berkeley data: Departments \times Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?

In response models, the mosaic of the predictors gives a graphic summary of background variables

- $\qquad \qquad \textbf{Model [Dept] [Gender]: } G_{(5)}^2 = 1220.6.$
- Note: Departments ordered A–F by overall rate of admission.
 - Men more likely to apply to departments A,B; women more likely in depts C-F

20

Female

Male

49

For the Berkeley data, start with the model of joint independence, [A][DG] Fits badly: $G^2_{(11)} = 877.1$

This is the null, or baseline model when Admit is the response variable.

Allows assoc. of [Dept Gender], not shown in shading

Remaining shading suggests: [AD] : Admit varies w/ Dept [AG] : Admit varies w/ Gender

Conditional independence, [AD] [DG]: Model: (DeptGender)(DeptAdmit) U O O A4.2 A4.2 Admitted Male Rejected Female

E.g., Add [Admit Dept] association → Conditional independence:

- Fits poorly: (G₍₆₎² = 21.74)
 But, only in Department A!
- GLM approach allows fitting a special term for Dept. A
- Note: These displays use standardized residuals: better statistical properties.

53

Double decker plots

Visualize dependence of one response variable (typically binary) on combinations of predictors Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading

```
doubledecker (Admit ~ Dept + Gender, data = UCBAdmissions[2:1, ,])

Admit An exploratory plot Highlights the M-F diffe in Admit for Rejected Dept A

Admitted Mate | Female Mate | Femal
```

4-way tables: Survival on the *Titanic*

Data on the fate of passengers & crew on the HMS Titanic: a $4\times2\times2\times2$ table

```
> data(Titanic, package="datasets")
> str(Titanic)
'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, "dimnames")=List of 4
    ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
    ..$ Sex : chr [1:2] "Mate" "Female"
    ..$ Age : chr [1:2] "Child" "Adult"
    ..$ Survived: chr [1:2] "No" "Yes"
```

What proportion survived? Ans: 711/2201 = 32.3%

```
> addmargins (margin.table(Titanic, 4))
Survived
No Yes Sum
1490 711 2201
> margin.table(Titanic, 4) / sum(Titanic)
Survived
No Yes
0.677 0.323
```

Zero cells

		Yes		П	140	13	80	14	26	0	20
	Female	No		0	4	0	13	17	8	0	m
		Yes		Ŋ	57	11	14	13	75	0	192
	Male	No		0	118	0	154	35	387	0	670 192
structable (Titanic)	Sex	Survived		ld	lt	ld	lt	ld	lt	٦q	lt
uctab			Age	Child	Adult	Child	Adult	Child	Adult	Child	Adult
> strı			Class	1st		2nd		3rd		Crew	

Two types of zero cells:

- Structural zeros: could not occur (children in crew)
- $^{\circ}$ Sampling zeros: did not happen to occur (children in 1^{st} & 2^{nd} who died)
 - Beware: zeros can cause problems:
 - Loss of df
- $0/0 \rightarrow NaN \text{ in } \chi 2 \text{ tests}$

7

Exploratory plots

Two-way doubledecker plot against survival shows different effects of ${\tt Class}$ for men and women:

Exploratory plots

One-way doubledecker plots against survival show what might be expected:

doubledecker(Survived ~ Sex, data=Titanic)
doubledecker(Survived ~ Class, data=Titanic)

Fitting & visualizing models

 $mod0 <- loglm(^{\sim} 1 + 2 + 3 + 4, data=Titanic)$ mosaic(mod0, main="Titanic: Model [C][G][A][S]")

In the model formulas, I'm using variable numbers 1-4 for Class, Gender, Age and Survived

The independence model serves only as a background for the total

associations in the table

Let's clean this mosaic!!

Note the scale of residuals: +26 ---11 09

Baseline model for Survived

mosaic(mod1, main="Titanic: Model [CGA][S]") $mod1 < -logIm(\sim 1*2*3 + 4, data=Titanic)$

baseline model includes all association s among [CGA] With Sas response, the

survival is independent of But this model asserts all of these

 G^2 (15) = 671.96, a very poor fit 61

Final model

mod3 <- $\log m(^2 1*2*3 + (1*2)*4 + (1*3)*4$, data=Titanic) mosaic(mod3, main="Titanic: Model [CGA][CGS][CAS]")

63

Comparing models

62

As usual, anova() give compact relative comparisons of a set of nested models

```
0.000
                                                                                                                                            Delta (Dev) Delta (df) P(> Delta (Dev)
          LR tests for hierarchical log-linear models
                                                                                                                     * 3 + (1 * 2) * 4 + (1 * 3) * 4
                                                                                                                                                                    571.70
559.40
110.88
1.69
> anova (mod0, mod1, mod2, mod3)
                                                                                              * 3 + (1 + 2 + 3) * 4
                                                                                                                                           Deviance df D
1243.66 25
671.96 15
112.57 10
1.69 4
0.00 0
                                                                                                                                                                                                         Saturated
                                   Model 1:
                                                                                                                                                         Model 1
Model 2
                                                                                                                                                                                             Model 4
                                                          Model
                                                                                  Model
                                                                                                          Model
                                                                                                                                                                                 Model
```

Adding associations: Main effects

 $mod2 <- loglm(~1*2*3 + (1+2+3)*4, data=Titanic) \\ mosaic(mod2, main="Titanic: Model [CGA][CS][GS]")$

Titanic: Model [CGA][CS][GS][AS]

Comparing models

LRstats() gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

mod3 [CGA] [CGS] [CAS] wins!

- Acceptable G²
- Looks best by AIC & BIC

Sequential plots & models

- Mosaic for an n-way table ightarrow hierarchical decomposition of association
- Joint cell probabilities are decomposed as:

$$p_{ijk\ell...} = \underbrace{p_i \times p_{jij}}_{\{v_1 v_2 v_3\}} \times p_{\ell | ijk} \times \cdots \times p_{n | ijk...}$$

- First 2 terms: \rightarrow mosaic for v_1 , v_2
- First 3 terms: \rightarrow mosaic for v_1 , v_2 , v_3
- -.. and so on
- Roughly analogous to sequential fitting in regression: X_1 ; $X_2 \mid X_1$; $X_3 \mid X_1, X_2$
- Order of variables matters for interpretation
- Mosaics: 1st split: easiest to see the marginal proportions
- Mosaics: 2nd variable seen as conditional proportions, given the 1st

Model interpretation

Recall that the goal of analysis is to tell a story

- Greatest impact: lower class → decreased survival, regardless of Gender & Age
- Differences in survival by Class were moderated by both Gender & Age
- Term [CGS]: Women in 3rd class did not have an advantage, while men in 1st class did vs. other classes
- Term [CAS]: No children in 1st or 2nd class died, but nearly 2/3 in 3rd class did
- Summary:
- Not so much "women & children first", rather
- Women & children, ordered by class, and 1st class men!

99

65

Sequential plots & models

- Sequential models of joint independence
- Give an additive decomposition of total association mutual independence $[\nu_1][\nu_2] \dots [\nu_p]$

$$G^2_{[\nu_1][\nu_2]\dots[\nu_p]} = G^2_{[\nu_1][\nu_2]} + G^2_{[\nu_1\nu_2][\nu_3]} + G^2_{[\nu_1\nu_2\nu_3][\nu_4]} + \dots + G^2_{[\nu_1\dots\nu_{p-1}][\nu_p]}$$

E.g., for Hair Eye color data

G_2	146.44	19.86	166.30
đ	6	15	24
Model symbol	[Hair] [Eye]	[Hair, Eye] [Sex]	[Hair] [Eye] [Sex]
Model	Marginal	Joint	Mutual

Sequential plots & models

Hair color × Eye color marginal table (ignoring Sex)

Sequential plots & models

69

3-way table, Mutual independence [Hair] [Eye][Sex]

Sequential plots & models

3-way table, Joint independence model [Hair Eye][Sex]

Sequential plots & models

Putting these together:

Sequential models: Applications

Response models

- \bullet When one variable, R, is a response and E_1, E_2, \ldots are explantory, the Sequential mosaics then show the associations among the predictors baseline model is the model of joint independence, $[E_1, E_2, \dots][R]$
 - The last mosaic shows all associations with R
- Better-fitting models will need to add associations of the form $[E_i R], [E_i E_j R] \dots$

Causal models

Sometimes there is an assumed causal ordering of variables:

$$A \rightarrow B \rightarrow C \rightarrow D$$

- Each path of arrows: $A \rightarrow B$, $A \rightarrow B \rightarrow C$ is a sequential model of joint independence: [A][B], [AB] [C], [ABC] [D].
 - Testing these decomposes all joint probabilities

73

Example: Marital status, pre- & extra-marital sex

Order the table variables as $G \rightarrow P \rightarrow E \rightarrow M$

> names(dimnames(PreSex)) # table variable names [1] "MaritalStatus" "ExtramaritalSex" "PremaritalSex" "Gender" > PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M			
<pre>Sex)) # table variable names "ExtramaritalSex" "PremaritalSex" ceSex, 4:1) # order variables G, P</pre>		"Gender"	E, M
> nal [1] > Pre		"ExtramaritalSex" "PremaritalSex"	eSex <- aperm(PreSex, 4:1) # order variables G, P,
	^	Ξ	Λ

Fit each sequential model to the marginal sub-table. vcdExtra::seq_loglm() generates these models of joint independence

PreSex.mods <- seq_loglm(PreSex,

232.142

≥

[G] [P] [E]

Example: Marital status, pre- & extra-marital sex

Thornes and Collard (1979) studied divorce patterns in relation to premarital and extramarital sex, a 2^4 table, ${\tt PzeSex}$ in vcd (${\tt G \times P \times E \times M}$)

```
17 68
4 130
                                                                         ΟN
                                                                         Yes
                                                              8
                                                                         9N
          > structable (Gender + PremaritalSex + ExtramaritalSex
                                                                         Yes
                                                             Yes
                                                                                               36 214
4 322
                                                                        Yes No
                                                             οN
                        MaritalStatus, data = PreSex)
                                                                         No
                                                                       Yes
                                                              Yes
                                                Women
> data("PreSex", package="vcd")
                                                                         ExtramaritalSex
                                                            PremaritalSex
                                                                                    MaritalStatus
                                                                                                              Married
```

Submodels:

- Do men & women differ by pre-marital sex? * [G][P]:
- Given G & P, are there differences in extra-marital sex? * [GP][E]:
- ❖ [GPE][M]: Are there differences in divorce among the G, P, E groups?

74

Mosaic plots

```
mosaic (margin.table (PreSex, 1:2), shade=TRUE, main = "Gender and Premarital Sex")
# (Gender Pre)
```

Gender and Premarital Sex

Twice as many women in this sample

marital sex than women (odds ratio = Men far more likely to report pre-

Mosaic plots

```
mosaic(margin.table(PreSex, 1:3),
expected = ~Gender * PremaritalSex + ExtramaritalSex,
main = "Gender*Pre + ExtramaritalSex")
```


far more likely to report Extra-sex Men & women who reported Pre-

about the same for men & women Odds ratio of Extra-given Pre-(3.61 vs. 3.56)

Mosaic plots

```
+ MaritalStatus,
main = "Gender*Pre*Extra + MaritalStatus")
```

p-value = < 2.22e-16 2.0 0.0 -2.0 -3.7 Gender*Pre*Extra + MaritalStatus Yes No No ExtramaritalSex οN Married **Premarital Sex** Divorced Married Divorced Marital Status ž Yes Momen Gender

status depends in a complex way In the model [GPE][M], marital

Among women, those reporting Premore likely to be divorced Among men, those reporting Preonly more likely to be divorced if

This suggests adding associations of M with P and E: [PEM] term 80

Mosaic plots

```
expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")
                        \label{expected}  \mbox{$=$ \sim Gender * PremaritalSex * ExtramaritalSex + MaritalStatus,} 
                                                                                              main = "Gender*Pre*Extra + MaritalStatus")
mosaic(PreSex,
                                                                                                                                                                 mosaic(PreSex,
```

Gender*Pre*Extra + MaritalStatus

G*P*E + P*E*M

0.00

--0.93

79

78

Mosaic plots

```
expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")
# (GPE) (PEM)
mosaic(PreSex,
```

G*P*E + P*E*M

This model fits well, $G^2(4) = 5.26$, p=0.26

GPE into account, are there simpler Loglinear thinking: once we take models for association with M?

-ooking forward: logit models for MaritalStatus often provide an easier path

Partial association, partial mosaics

Sometimes useful to do a stratified analysis

- How does association between two (or more) variables vary over levels of other variables?
- Mosaic plots for main variables show partial association at each level of others
- E.g., Hair color, Eye color, subset by Sex

Partial association: Summary

- Overall, there is a strong association of hair color and eye color, controlling for sex, $G^2(18) = 156.67$
- For F, $G^2(9) = 112.23$ accounts for 72% of this association
- The pattern of association is similar for M & F
- The largest difference is for blue-eyed blonds, much more prevalent among F than M. Is there a hair dye effect?

Partial association, partial mosaics

Stratified analysis: conditional decomposition of G^2

- Fit models of partial (conditional) independence, $A \perp B \mid C_k$ at each level of (controlling for) C.
 - $\bullet \Rightarrow {\rm partial}~G^2{\rm s}$ add to the overall G^2 for conditional independence, A \perp B \mid C

$$G_{A\perp B\mid C}^2 = \sum_k G_{A\perp B\mid C(k)}^2$$

Table: Partial and Overall conditional tests, Hair ⊥ Eye | Sex

Model		df	Ö	p-value
[Hair][Eye]	Male	6	44.445	0.000
[Hair][Eye]	Female	6	112.233	0.000
[Hair][Eye]	Sex	18	156.668	0.000

83

Summary: What we've learned