

Iván Plis – 21 de Julio de 2023

Electrónica Analógica I (ELE07)

Prof: Ing. Gabriel Gabian

REQUERIMIENTOS

Tensión de Alimentación: $V_{CC} = 24 V$

Resistencia de fuente: $R_S \approx 200 \, \Omega$

Tensión de entrada: $V_{in} = 1 V$

Potencia de salida: $0.5 W < P_{out} < 1 W$

Carga equivalente: $R_L = 32 \Omega$

Ancho de banda: BW = 20 Hz a 20 kHz

Hasta 2 potenciómetros

PROCESO DE DISEÑO

• Elección de Etapas:

- Etapa de Amplificación: obtener la ganancia deseada. Polarizar el transistor eficientemente
- *Etapa de Potencia:* brindar a la carga la corriente necesaria para tener 1W de potencia de salida con la carga de 32 ohm.
- Fuente de corriente: necesaria para que la señal no salga recortada (distorsión).
- Respuesta en frecuencia: lograr que el circuito sea un filtro pasa banda en el espectro audible (20Hz a 20KHz).
- **Disipación de Potencia y Eficiencia:** ¿Cuánta potencia estoy desperdiciando? ¿Necesito un disipador?

CIRCUITO PROPUESTO

Etapa de Amplificación: Emisor Común Degenerado. Alta Impedancia de Entrada. Corrientes pequeñas en los terminales del transistor. Ganancia AV=9.4

Etapa de Potencia: Emisor Seguidor. Par Darlington para reducir efecto de carga en el colector de Q4. 1W a la carga. Vout=8V

Fuente de corriente: IQ>IL para que la señal de salida no recorte. IQ=250mA.

Capacitores: Acople a la entrada, desacople en ganancia y salida.

Respuesta en frecuencia: C4, C3 Y C1 polo de baja f. C2 polo de alta frecuencia-> filtro pasa bajos.

SIMULACIÓN

$A_V[veces]$	8.2	
$A_V[dB]$	18.3	
$P_{out}[W]$	1.01	
$I_L[mA]$	250	
$I_{Q}[mA]$	252	
BW	19.79 Hz a	
DVV	28.75 KHz	

SIMULACIÓN

$A_{V}[veces]$	8.2	
$A_V[dB]$	18.3	
$P_{out}[W]$	1.01	
$I_L[mA]$	250	
$I_Q[mA]$	252	
BW	19.79 Hz a	
	28.75 KHz	

CONSTRUCCION: MATERIALES

Resistencias	Capacitores	Diodos	Otros
4 x 10R	1 x 4.7nf	1N4007 x2	1 x Potenciómetro log
2 x 220R	1 x 10u	Disipadores	2.5k
1 x 330R	1 x 47u	TO-220 compatible x2	1 x Bornera
2 x 1K (una de 1W)	1 x 470u		1 x Entrada de miniplug 3.5mm
2 x 2K	Transistores	Carga	
2 x 4K	2 x 2N2222	1 x Resistencia 33R 2W	1 x Placa perforada 10x10
2 x 10K	2 x TIP41C	1 x Speaker 32R 2W	1 x Protoboard

CONSTRUCCION: LAYOUT

CONSTRUCCIÓN: MEDICIONES

CONSTRUCCIÓN: MEDICIONES

Mediciones Principales		Consumo Estático	
$A_V[veces]$	6.2	P_{RB1} [mW]	194
$P_{out}[mW]$	860	P_{RB2} [mW]	3
$P_{TOT}[W]$	9.8	P_{RC} [mW]	114
Eficiencia	8%	$P_{RE1}\left[mW ight]$	30
BW	16 <i>Hz a</i> 42 <i>KHz</i>	$P_{Q4}[mW]$	863
$I_L[mA]$	194	$P_{Q2}[mW]$	227
$I_{Q}[mA]$	290	$P_{Q1}[W]$	4.31
		$P_{Q3}[W]$	3.51
		$P_{RB_CS}[mW]$	520
		$P_{D1+D2}[mW]$	28

DIFICULTADES

- Disipación de Potencia: Sobrecalentamiento. IQ mas grande que la esperada.
- Componentes: Se utilizaron los componentes disponibles para aproximar las resistencias calculadas según corresponda.
- Efecto de carga: La corriente en la base de la segunda etapa no era despreciable, solucionado con un Par Darlington
- Soldadura: Primera experiencia soldando, tiempo invertido en la curva de aprendizaje. El circuito no funcionaba en los primeros test porque faltaban soldar pistas.
- Disipadores de los BJT de potencia: Al no entrar en la protoboard debieron ser recortados.
- Fuente de corriente: Resistencia de polarización en la base, elegir una que polarice a los diodos en su rango de operación y soporte la alta potencia.

CONCLUSIONES

- Se logró construir el Amplificador de Audio de 1W
- Ganancia, Potencia y Ancho de Banda muy cercano a las calculadas
- Buena calidad de sonido sin distorsión
- Baja eficiencia y sobrecalentamiento