

Effector: Target Ratio

FIG. 1

FIG. 2A

FIG. 2B

Figure 3

Figure 4

Figure 5

Expression of P501S by the Baculovirus Expression System

0.6 million high Silvers in 5-well place were infected with an unrelated control virus BV/ECD_PD [16] [1] without virus (lane 3), or with recombinant baculovirus for P501 at different 5. Its [lane 4 - 8). Cell lysates were run on SDS-PAGE under the reducing some in its and unalyzed by Western blot with a monoclonal andbody against 8 to 5. P5618-10E3-04D36. Lanc 1 is the biodinylated protein molecular weight marks of solabs.

Figure 8. Mapping of the epitope recognized by 10E3-G4-D3

Fig. 8

transmembrane, cytoplasmic, and extracellular regions Figure 1. Schematic of P501S with predicted

ANQRAWSHLI RITRE ACULA PINTETTIPOLE VACIT YVPPLEAUVEREN TRIVICIOPYLOLOGIAN VALUE SASSAN

DHWRGRYGRRRP FIWALSLOILLSLOILISLOIGHRAGINI, AGLI.CPDPRPLE LALLII.GVGLLDFCGQVCFTPL

FALLSDLFRDPDHCRQ AYSYYABABSI GGGGGGGGGGGG DWDTSALAPVLGTQFE

CLICHTERECYAATELY AFFAAFOPTEPAEOESAFSESPIEG PERARRAFRALGALFRE

HOLCORATHER LEVARICSWMALMER FYTER YGEGLYQGYFRAEGTEARRIYDEGYR

MONLOLFLOCAINLYFNLYM DRLYQRFGTRAVYLAS YAAFFYAAGATCLSHSYAYYTA SAA

LTGETESALOILPYTLASLY. HREKQVELPKYRODTGTASSEDSLATSFLPOPKPGAPFPNGHYGAGGSGL

LPPPPALCGASACDVSVRVVVGEPTEARVVPGRG [CLDLAHDSAFLLSQVAP5L] MGSIVQLSQS

YTAYMYSAAGILGILYALYFAT QVVFDKSDIAKYSA

Indic sequence: Predicted intracellular domain. Sequence in bold/underlined: used to generale polyclonal rabbit semm Underlined segmence: Predicted transmembrane domain; Bold sequence: Predicted extracellular domain;

Governing Amino Acid Composition of Integral Membrane Proteins: Applications to topology Prediction.J.Mol Biol. 283, Localization of domains predicted using HMMTOP (G.E. Tusnady and I. Simon (1998) Principles

Genomic Map of (5) Corixa Candidate Genes

Fig. 10

FIGURE 4. Elisa assay of rabbit polyclonal antibody specificity

Fig. 11

•		•						
	10	20	30	40	50	60	70	_
GTCACT	TAGGAAAAG	GIGICCITIC	GGGCAGCCGG	GCTCAGCAT	GAGGAACAGAA	GGAATGACA	CICIGG 70	
ACAGCA		TGTACTCCAG	CGCGTCTCGG	AGCACAGAC	TTGTCTTACAC	TGAAAGCGA	CTTGGT 140	
					TTACCAAAGAT			• .
AATGTG	TOTALGTGT TOTALGTGT	GGCTATGCCC	AGAGECAGEA	CATGGAAGG	CACCCAGATCA	ACCAAAGTG	AGAAAT 280	
GGAACT	TACAAGAAAC	ACACCAAGGA	ATTTECTACE	CACGCCTTT	GGGATATTCA	GTTTGAGAC	ACTGGG 350	
		370	38C	39C	400	410	420	
	360 	1 1				-10	1,,,,1	
CAACAA	ACCCAACTA	TATACCTOTS			AAATCCTTTAC	GAGCTGCIG	ACCCAG 420	
					GGGCGCCAAGA			
					TCCAAAGGTGC			
					GAGATAACACO			
					CTCCAACCGGG			
GAGGAG	_							
	710	720	730	740	750 Lagradian 1	760	77C	
<u></u>		<u> </u>					: 11111 : 1111 770	
A 5 5				·	GACTTCACAAG GTCATGGACAT			
851								
energy.					KOBTTABAKOT 'A'OBEKTELI			
10-10-6	1:13.3131 =========	00.00.00.4A38	200-30AA74	CAGAS 16	:44GCC4TC44 :54GCC4TC64	TACCICCA.	18884 900 18884 1050	
							GAGGTG 1050	
T.	1060	1070	1080	1090	11CC	1110	1120	
-		<u>l</u>				 	<u> </u>	
					COCOATTTTTT			
					ATTCTCGAATG			
· -					CATOTOCTAC			
					BAAGCTTCTGC			
	HAGLUAAIG	Algaga.i:L		. U BU D'BH Y BİBY	aAu - U I aC I GA	CCT: CAAGA	AGTOAT 14CO	
	141C	1420	1430	144C	145C	1460	1470	
لبيب	uulind		!		Luiliui!	uuliuu	<u> </u>	
		•					CTACGG 1470	
							EGAATO 1540	
							TTCCS 1610	
							0881 10010	
ATTACT	FOGGCACCEC	CTGCAAGCTC	TOTTCATOTS	IGGCCATTCT1	CAGAA AAGA	AGGAACTCT(CAAAG 1750	
	1760	1770	1780	1790	1800	1810	1920	
					<u>لىنىلىنىل</u>			
							CTGGC 1820	
							GGGCT 1890	
							CTGTG 1960	
							CAGCC 2030	
TGGGGT	FOCAGAATTT	TCTTTCTAAG	CAATGGIATG	GAGAGAITTO	COGAGACACO.	PAGAACTEGA	AGATT 2100	

2170 160 2150 13C 2140 2120 2110 TCCTGTGTCTGTTTATTATACCCTTGGTGGGCTGTGGCTTTGTATCATTTAGGAAGAACCTGTCGACA 2170 AGCACAAGAAGCTGCTTTGGTACTATGTGGCGTTCTTCACCTCCCCCTTCGTGGTCTTCTCCTGGAATGT 2240 GGTCTTCTACATCGCCTTCCTCCTGCTGTTTGCCTACGTGCTGCTCATGGATTTCCATTCGGTGCCACAC 2310 CCCCCGAGCTGCTCCTGTACTCCCTGGTCTTTGTCCTCTTCTGTGATGAAGTCAGACAGTGGTACGTAA 2380 ATGGGGTGAATTATTTTACTGACCTGTGGAATGTGATGGACACGCTGGGGCTTTTTTACTTCATAGCAGG 2450 2510 2500 2490 248C and and make the colors of the 2470 TACATTATTTTCACTCTAAGATTGATCCACATTTTTACTGTAAGCAGAAACTTAGGACCCAAGATTATAA 2590 TGCTGCAGAGGAIGCTGATCGATGTGTTCTTCCTGTTCCTCTTTGCGGTGTGGATGGTGGCCTTTGG 2660 CGTGGCCAGGCAAGGGATCCTTAGGCAGAATGAGCAGCGCTGGAGGTGGATATTCCGTTCGGTCATCTAC 2730 GAGOCOTACOTGGCCATGTTCGGCCAGGTGCCCAGTGACGTGGATGGTACCACGTATGACTFTTGCCCACT 2800 2860 2850 2840 2830 j 2810 2820 البريانية المتعالية GCACCTTCACTGGGAATGAGTCCAAGCCACTGTGTGTGGAGCTGGATGAGCACAACCTGCCCGGTTCCC 2870 CGAGTGGATCACCATCCCCTGGTGTGCATCTACATGTTATCCACCAACATCCTGCTGGTCAACCTGCTG 2940 GTCGCCATGTTTGGCTACACGGTGGGCACGGTCCAGGAGAACAATGACCAGGTCTGGAAGTTCCAGAGGT 3010 ACTICOTOGICAGRAGIACIGCAGOOGOOTOAATAFOCOCITOCOCITOATCGICITOGCTIACITOTA 3080 32!0 3200 3:90 3:30 3170 J 間 AAAAATGAAGACAATGAGACTCTGGGATGGGAGGGTGTGATGAAGGAAACTACCTTGTCAAGATCAACA 322C ₱ CAAAAGCCAACGACACCTCAGAGGAAATGAGGCATCGATTTAGACAACTGGATACAAAGCTTAATGATCT 329C 型 CAAGGGTCTTCTGAAAGAGATTGCT4AT44AATC4AATA4AACTGTATGAAACTCTAATGGAGAAAAACC L TAATTATAGCAAGATCATATTAAGGAATGCTGATGAACAATTTTGCTATCGACTACTAAATGAGAGATTT 3430 🗊 TOAGACCOCTGGGTAC4TGGTGGATG4TTTTAA4TCACCOTAGTGTGGTGAGACCTTGAGAATAAAGTGT 3500 357C 3550, 3540 3530 3520 3510 . . 1 . . . GTGATTGGTTTCATACTTGAAGACGGATATAAAGGAAGAATATTTCCTTTATGTGTTTCTCCAGAATGGT 3570 GCCTGTTTCTCTCTGTGTGTGAATGCCTGGGGGCTGGAGGTTGATAGTTTAAGTGTGTTCTTACCGCCTCC 3640 TTTTTCCTTTAATCTTATTTTTGATGAACACATATATAGGAGAACATCTATCCTATGAATAAGAACCTGG 3710 TCATGCTTTACTCCTGTATTGTTATTTTGTTCATTTCCAATTGATTCTCTACTTTTCCCCTTTTTTGTATT 3780 ATGTGACTAATTAGTTGGCATATTGTTAAAAGTCTCTCAAATTAGGCCAGATTCTAAAACATGCTGCAGC 3850 3920 3900 3910 3890 3880 387C 3860 and an alternative design of the second second AAGAGGACCCCGCTCTCTCAGGAAAAGTGTTTTCATTTCTCAGGATGCTTCTTACCTGTCAGAGGAGGT 3920 GACAAGGCAGTETCTTGCTCTCTTGGAETSACCAGGCTCCTATTGAAGGAACCACCCCCATTCCTAAATA 3990 TGTGAAAAGTCGCCCAAAATGCAACGTTGAAAGGCACTAGTGACTTTGTTCTTATTGGATACTCCTGTTA 4060 TTTATTATTTTTCCATTAAA44 AATAGGTGGCTATTATAGAAAATTTAGAGCATACAGAGATGTAGAAA 413C GAACATAAATTGTCCCCATTACCTTAAGGTAATCACTGCTAACAATTTCTGGATGGTTTTTCAAGTCTAT 4200 4270 4260 4240 4250 423C 4220 <u> باختوار برای برای برای</u> TTATGTAAGCTTTTTCACTTAGTATTTTATCAAATATGTTTTTATTATTATTCATAGCCTTCTTAAACATT 4340 ATATCAATAATTGCATAATAGGCAACCTCT4GCGATTACCATAATTTTGCTCATTGAAGGCTATCTCCAG 4410 TTGATCATTGGGATGAGCATUN FTGTGCATGAATCCTATTGCTGTATTTGGGAAAATTTTCCAAGGTTAG 4480 ATTOCAATAAATATOTATTATTAATTAAATATTAAAATATOGATTTATTATTAAAACCATTTATAAAACCATTTATAAAACCA

4620 4610 4600 4590 4580 4570 4560 <u> بىيلىنىلىنىلىنىلىنى</u> TTTTCATAAATGTATAGCAAATAGGAATTATTAACTTGAGCATAAGATATGAGATALATGAACCTGAACT 4620 ATTAAAATAAAATATTATATTTAACCCTAGTTTAAGAAGAAGTCAATATGCTTATTTAAATATTATGGAT 4690 GGTGGGCAGATCACTTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGCAAAACCACATCTCTACT 4760 AAAAATAAAAAAATTAGCTGGGTGTGGTGCACTCCTGTAATCCCAGCTACTCAGAAGGCTGAGGTAC 4830 AAGAATTGCTGGAACCTGGGAGGCGGAGGTTGCAGTGAACCAAGATTGCACCACTGCACTCCAGCCGGGG 4900 4960 4950 4940 4930 4920 4910 بليبيان بلينيانينانينانينانين ATGGTGAAGGGAATGGTATAGAATTGGAGAGATTATCTTACTGAACACCTGTAGTCCCAGCTTTCTCTGG 5040 AAGTGGTGGTATTTGAGCAGGATGTGCACAAGGCAATTGAAATGCCCATAATTAGTTTCTCAGCTTTGAA 5110 CTACAAAAGCATTAACTAAAAAAGTTTATTTTCCTTTTGTCTGGGCAGTAGTGAAAATAACTACTCACAA 5250 5320 5310-5290 5300 5280 5270 5260 CATTCACTATGTTTGCAAGGAATTAACACAAATAAAAGATGCCTTTTTACTTAAACGCCAAGACAGAAAA 5320 CTTGCCCAATACTGAGAAGCAACTTGCATTAGAGAGGGAACTGTTAAATGTTTTCAACCCAGTTCATCTG 5390 GTGGATGTTTTTGCAGGTTACTCTGAGAATTTTGCTTATGAAAAATCATTATTTTTAGTGTAGTTEACAA 5460 TAATGTATTGAACATACTTCTAATCAAAGGTGCTATGTCCTTGTGTATGGTACTAAATGTGTCCTGTGTA 5530 CTTTTGCACAACTGAGAATCCTGCGGCTTGGTTT4ATGAGTGTGTTCATGAAATAAATAATGGAGGAATT 5600 5660 5640 5650 5620 5610 U

H

Fig. 12A(3)

