

Business Analytics

Week 10 Advanced regression

11 October 2016

Advanced regression

Outline

•				
Week	Topic	Chapter	Lecturer	
1	Introduction to business analytics & R	1	Souhaib	
2	Statistical learning	2	Souhaib	
3	Regression for prediction	3	Souhaib	
4	Resampling	5	Souhaib	
5	Dimension reduction	6,10	Souhaib	
6	Visualization		Di	
7	Visualization		Di	
8	Classification	4,8	Di	
9	Classification	4,9	Di	
	-			
10	Classification	8	Souhaib	
11	Advanced regression	6	Souhaib	
12	Clustering	10	Souhaib	

Best subset selection

$$\begin{aligned} & \underset{\beta}{\text{minimize}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \\ & \text{subject to} \sum_{i=1}^{p} \textbf{\textit{I}}(\beta_j \neq 0) \leq s \end{aligned}$$

Need to consider $\binom{p}{s}$ models containing s predictors \rightarrow Computationally infeasible when p is large

Ridge regression

$$\begin{aligned} & \underset{\beta}{\text{minimize}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \\ & \text{subject to} \sum_{i=1}^{p} \beta_j^2 \leq s \end{aligned}$$

$$s = 0?$$

$$s=\infty$$
?

$$s \in (0, \infty)$$

$$\rightarrow \hat{\beta}^{R} = (0, \ldots, 0)$$

$$ightarrow \, \hat{oldsymbol{eta}}^{\mathsf{R}} = \hat{oldsymbol{eta}}^{\mathsf{Is}}$$
 (least squares)

Ridge regression: example

Another shrinkage method

Lasso regression

$$\begin{aligned} & \underset{\beta}{\text{minimize}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \\ & \text{subject to} \sum_{j=1}^{p} |\beta_j| \leq s \end{aligned}$$

$$s = 0$$
?

$$s=\infty$$
?

$$s \in (0, \infty)$$

$$\rightarrow \hat{\beta}^{R} = (0, \ldots, 0)$$

$$\rightarrow \hat{eta}^{\mathsf{R}} = \hat{eta}^{\mathsf{ls}}$$
 (least squares)

Lasso regression

$$\begin{aligned} & \underset{\beta}{\text{minimize}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \\ & \text{subject to} \sum_{i=1}^{p} |\beta_i| \leq s \end{aligned}$$

$$s = 0?$$

$$s=\infty$$
?

$$s \in (0, \infty)$$

$$\rightarrow \hat{\beta}^{R} = (0, \ldots, 0)$$

$$ightarrow \, \hat{oldsymbol{eta}}^{\mathsf{R}} = \hat{oldsymbol{eta}}^{\mathsf{Is}}$$
 (least squares)

Lasso regression: another formulation

$$\underset{\beta}{\mathsf{minimize}} \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p |\beta_j|$$

where $\lambda \geq 0$ is a **tuning parameter**.

$$\lambda = 0$$
?

$$\lambda = \infty$$
?

$$\lambda \in (0, \infty)$$

$$ightarrow \, \hat{oldsymbol{eta}}^{\mathsf{R}} = \hat{oldsymbol{eta}}^{\mathsf{Is}}$$
 (least squares)

$$\rightarrow \hat{\beta}^{R} = (0, \ldots, 0)$$

Lasso regression: geometry

q-norm

Let $q \ge 1$ be a real number. The q-norm of $\mathbf{x} = (x_1, \dots, x_p)$ is given by

$$\|oldsymbol{x}\|_q = \left(\sum_{j=1}^p |x_j|^q\right)^{1/q}$$

- $\blacksquare q = 1$: L_1 norm
- $\blacksquare q = 2$: L_2 norm, Euclidean norm
- $q = \infty$: L_{∞} norm, uniform norm: $||x||_{\infty} = \max\{|x_1|, \ldots, |x_p|\}.$

q-norm

Sparsity

We shall say that a signal $x \in R^n$ is **sparse**, when most of the entries of x **vanish**. Formally, we shall say that a signal is s-sparse if it has **at most** s **nonzero entries**. One can think of an s-sparse signal as having only s degrees of freedom.

- L_q regularization with q > 1 does not provide sparse estimate
 - \rightarrow e.g. ridge regression
- For *q* < 1, the solutions are sparse but the problem is **not convex** and this makes the optimisation very challenging computationally.
- The value q = 1 is the smallest value that yields a **convex problem**.
- \rightarrow q=1: LASSO (least absolute shrinkage and selection operator)

The bet on sparsity principle

If p >> N and the true model **is sparse**, so that only k < N parameters are actually nonzero in the true underlying model, then it turns out that we can estimate the parameters effectively, using the lasso and related methods.

if p >> N, and the true model **is not sparse**, then the number of samples N is too small to allow for accurate estimation of the parameters (The amount of information per parameter is N/p)

Use a procedure that does well in sparse problems, since no procedure does well in dense problems

Lasso vs ridge regression

Lasso vs ridge regression

A simulated data set containing p = 45 predictors and n = 50 observations where **all 45 predictors are related to the response**.

Left: Lasso. Right: Lasso (solid) and ridge (dashed).

Lasso vs ridge regression

Now the response is a function of **only 2 out of 45 predictors**.

Left: Lasso. **Right**: Lasso (solid) and ridge (dashed).

A Simple special case: least

Suppose n = p and $\boldsymbol{X} = \boldsymbol{I}_p = \boldsymbol{I}_p$, then

minimize
$$\sum_{j=1}^{p} (y_j - \beta_j)^2 \rightarrow \hat{\beta}_j = y_j$$

A Simple special case: ridge

minimize
$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
 $\hat{\beta}_j^R = \frac{y_j}{(1+\lambda)}$

In ridge regression, each least squares coefficient estimate is shrunken by the **same proportion**.

A Simple special case: lasso

$$\begin{aligned} & \underset{\beta}{\text{minimize}} \sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \\ & \hat{\beta}_j^L = \begin{cases} y_j - \frac{\lambda}{2} & \text{if } y_j > \frac{\lambda}{2}; \\ y_j + \frac{\lambda}{2} & \text{if } y_j < -\frac{\lambda}{2}; \\ 0 & \text{if } |y_j| \leq \frac{\lambda}{2}. \end{cases} \end{aligned}$$

The lasso shrinks each least squares coefficient towards zero by a **constant amount**, $\lambda/2$. The least squares coefficients that are less than $\lambda/2$ in absolute value are **shrunken entirely to zero**.

A Simple special case

$$\lambda = 1$$

A Simple special case

 \hat{eta}_{j} (OLS estimate) and $\hat{eta}_{(M)}$ (Mth largest coefficient)

Estimator	Formula	
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$	
Ridge	$\hat{\beta}_j/(1+\lambda)$	
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$	

