RESUMO

Capítulo 1

Biossensores

Os sensores podem ser divididos em:

- Sensor físico
 - o Mede quantidades físicas
 - o Ex: distância, massa, temperatura, pressão, eletricidade, ...
- Sensor químico
 - Dispositivos que respondem a uma ou várias substâncias específicas através de uma reação química
 - o Determinação qualitativa e quantitativa dessa(s) substância(s)

Biossensor

- Subgrupo dos sensores químicos
- Converter processos bioquímicos em sinais mensuráveis
- Recetor é biológico ao contrário dos restantes sensores
- Dispositivo de análise/deteção que combina:
 - o Componente biológico (biorrecetor)
 - o Componente detetor físico/químico (transdutor)

Analito – composto alvo; é detetado sem recurso a reagentes

Mercado potencial

Campo	Aplicações

Clínico/Médico	Bancos de sangue, equipamentos médicos, point-of-care		
Industrial	Fermentação, controlo de qualidade, deteção de contaminações		
Agricultura/Veterinária	Diagnósticos de doenças em plantas/animais, deteção de		
	químicos perigosos, testes à terra/água		
Segurança/Defesa	Deteção/diagnóstico de agentes químicos/biológicos nocivos		
Ambiente	Deteção de químicos tóxicos, deteção de contaminações		
Robótica	Sensores para equipamento automático		
Outros	Aplicações de pesquisa e investigação		

1ºs Biossensores

Tira teste de tornassol

- Indica qualitativamente, por intermédio de uma reação colorimétrica, a presença ou ausência de um ácido (azul ⇒ básico; vermelho ⇒ ácido)
- Sensor: tira azul/vermelha

Medida de pH

- Método mais preciso
- Reações colorimétricas utilizando indicadores especiais ou através de tiras de pH
- Sensor: tira ou mistura mais complexa de um corante químico em soluções indicadoras de pH

Medidor de pH

- Melhor método
- Dispositivo eletroquímico que fornece uma resposta elétrica que pode ser lida digitalmente
- Sensor: membrana de vidro

Conversão da resposta química/elétrica

- Tiras reagente
 - Alteração da absorvência de luz visível pela substância ⇒ alteração da cor ⇒ deteção visual
- Medidor de pH
 - o Resposta elétrica convertida no movimento da agulha

Glicose

- Biossensor fabricado especificamente para a medição da glicose
- Imersão do sensor na amostra
- Enzima glicose oxidase quebra molécula de glicose (oxida a glicose e reduz FAD ⇒
 FADH₂) e o FADH₂ é de seguida oxidado pelo elétrodo
- Corrente resultante é uma medida da concentração de glicose
- A enzima é o componente biológico ativo e o elétrodo é o transdutor.
- Medição caracterizada por:
 - $\circ \quad \text{Simplicidade} \\$
 - o Rapidez
 - o Não requer equipamento ou pessoal personalizado

Biossensores

Compostos por:

- Elemento sensível biológico (biorrecetor)
- Transdutor
- Eletrónica

Pode-se medir:

- Concentração de substratos
- Antígenes
- Hormonas
- Drogas
- Inibidores

Ativadores de enzimas

Sentidos humanos

- Sensores: ouvidos, olhos e dedos
- Biossensores: nariz (cheiros pequenas quantidades de químicos) e língua

Nariz

- Extremamente sensível e seletivo difícil de reproduzir artificialmente
- Distingue qualitativamente e quantitativamente
- Químicos ⇒ membrana do olfato (detetor biológico) ⇒ bolbos olfativos ⇒ recetores biológicos ⇒ nervos olfativos (transdutor) ⇒ sinal elétrico ⇒ cérebro (microprocessador) ⇒ sensação (cheiro)

Língua

• Funciona de forma semelhante ao nariz

Importância dos Biossensores

- Conhecimento dos processos de transferência eletrónica em sistemas biológicos
- Aplicação dos diferentes biossensores em diagnóstico clínico

Elemento de Identificação dos Biossensores

Elemento de identificação/agentes biológicos/biorrecetores

• Permitem ao biossensor responder seletivamente a substâncias especificas

Podem ser:

- Enzimas
 - Substâncias orgânicas, geralmente de natureza proteica, com funções catalisadoras
 - o Diminuição da energia de ativação ⇒ aumento da velocidade da reação química
 - o Urease: $(NH_2)_2CO + H_2O \Rightarrow CO_2 + 2NH_3$; fácil medir a amónia
 - o Glicose oxidase: oxida a βD glicose e quebra-a nos seus metabolitos

- Ácido Nucleico
 - Macromoléculas formadas por nucleotídeos
 - Responsáveis pelo armazenamento, transmissão e tradução da informação genética
 - o DNA e RNA
- Anticorpos, imunoglobulinas ou gamaglobulinas
 - o Glicoproteínas sintetizadas e excretadas por células plasmáticas
 - Atacam proteínas estranhas ao corpo
- Microrganismos ou micróbios
 - Unicelulares ou acelulares (vírus)
 - Agentes patogénicos
- Simbiose com outros organismos ou com o meio ambienteTecido biológico
 - Conjunto de células especializadas (não obrigatoriamente iguais), separadas ou não por líquidos/substâncias intercelulares que realizam determinada função
- Recetores
 - Proteínas ou glicoproteínas que unem especificamente outras substâncias químicas (moléculas sinalizadoras – hormonas e neurotransmissores)
 - A união da molécula sinalizador com o seu recetor específico desencadeia reações no interior das células

Transdutores

Capacidade de converter um evento de biorreconhecimento num sinal mensurável

Oxidação da glicose

Pode utilizar até 3 transdutores diferentes

Exemplos de transdutores:

- Térmicos medidores de temperatura
- Mecânicos transdutores de pressão, entre outros
- Óticos densidade luminosa
- Químicos concentração de gases/iões

Tipos de transdutores mais utilizados nos biossensores:

- Eletroquímico (elétrodos)
 - Medem potencial/corrente elétrica numa célula em função do potencial elétrico aplicado
- Piezoelétrico (microbalança)
- Ótico (fibra ótica)
 - o Medição da variação espetrofotométrica

Desenvolvimento de novos transdutores termométricos com chips bioespecíficos em combinação com detetores de ressonância à superfície

Sistemas de Medição vs Sistemas de Controlo

Figura 1 – Sistema de Medição

Figura 2 – Sistema de Controlo

Métodos de Imobilização

Imobilização

- Ligação e permanência do componente biológico na superfície do biossensor
- Permite o uso repetido da molécula biológica

Métodos de imobilização

- Adsorção
 - o Ligação do componente biológico a uma superfície

- Microencapsulação
 - o Entrelaçamento de membranas (metodo mais fácil)

- Oclusão
 - Elemento seletivo é preso numa matriz de gel, pasta ou polímero (muito utilizado)

- Ligação covalente
 - o Formam-se ligações covalentes entre o elemento seletivo e o transdutor

- Reticulação
 - Agente bifuncional liga quimicamente o transdutor ao elemento seletivo (método utilizado com outros, como a adsorção ou o microencapsulamento)

Pode haver combinação de mais de um método

• Adsorção-Reticulação

Fatores de Desempenho

O biossensor ideal pode ser definido com base em várias propriedades

- Seletividade
 - o Minimizar interferências químicas
 - o Biossensor deve ter elevada afinidade para um único analito
- Sensibilidade
 - o Variação do sinal por unidade de concentração de composto
 - o Razão dos sinais da amostra e ruido (limite de deteção do biossensor)
- Limite de deteção
 - o Concentração mais baixa do analito para a qual existe uma resposta mensurável
- Gama dinâmica
 - o Gama de concentrações na qual a sensibilidade do sensor é boa
 - O sinal deverá ser proporcional à quantidade da variação da propriedade físicoquímica (não deve ser afetado por histerese)
- Tempo de resposta
 - o Tempo necessário para ter 95% da resposta
 - Um tempo de resposta lento pode limitar a monitorização/deteção de um composto em tempo real
- Reprodutibilidade

 \circ Precisão com a qual a resposta do sensor pode ser obtida (na ordem dos $\pm 5\%$)

Estabilidade

- O biossensor deve ter elevada estabilidade, tanto de armazenagem como operacional
- o O tempo de vida corresponde ao período sem deterioração significativa

• Reutilização

- o Deve ser usado inúmeras vezes para minimizar os custos de fabrico
- Utilização repetitiva assegura que amostras semelhantes dão respostas similares
- Fácil manuseamento
- Baixo custo

Etapas no Desenvolvimento de Biossensores

- 1. Seleção de um biorrecetor adequado
- 2. Seleção de um método de imobilização adequado
- 3. Seleção e desenho de um transdutor
- 4. Desenho do biossensor (considerando a gama de medição, linearidade, interferência e sensibilidade)
- 5. Acondicionamento do biossensor num dispositivo completo

Aplicações

A combinação dos conhecimentos de várias áreas (eletroquímica, bioquímica, física, eletrónica e mecânica) tornou possível o desenvolvimento de biossensores e microbiossensores extremamente específicos, sensíveis, seletivos, precisos e fiáveis

Existem várias substâncias (por vezes com concentrações muito pequenas – na ordem dos nanometros) para as quais são necessárias análises frequentes e que beneficiaram do desenvolvimento dos biossensores – analitos

Substância (Analito)	Exemplos
Gases anestésicos	N_2O
Gases respiratórios	CO_2, O_2
Gases inflamáveis	CH_4

Gases tóxicos	CO , H_2S , Cl_2 , NH_3
Metabólicos	Glucose, ureia
lões	H^+ , Li^+ , Na^+ , K^+ , Ca^{2+}
Vapores orgânicos tóxicos	Benzina
Proteínas, ácidos nucleicos	Vários tipos
Microrganismos	Vírus, bactérias, parasitas

Aplicações nos Próximos Anos

Principal área

- Saúde análises ao sangue e à urina
 - Análises implicam laboratórios de análises clínicas o que torno o processo moroso (não há um diagnóstico fidedigno na hora da consulta)
 - Laboratórios médicos especializados e portáteis (lab-on-a-chip) capazes de realizar várias análises
 - O Biossensor para uma monitorização continua do metabolismo point-of-care
 - o Biossensor + microeletrónica com sistema de comunicações sem fios
 - Diabetes: quando o nível de glicose atingisse um determinado valor libertar-seia automaticamente uma dose de insulina para o sangue do paciente

Figura 3 – Setup típico para um biossensor imunológico para monitorização contínua

Outras áreas

- Processo de fermentação
 - Offline num laboratório
 - o Offline perto do local de trabalho
 - o Online em tempo real (medições de temperatura, pH, CO₂ e oxigénio
- Açúcar, álcool, levedura (aplicações industriais de comida e bebidas)
 - o Aumento da qualidade do produto
 - o Aumento da produção
 - o Maior automatismo do processo
- Acidez, salinidade, nitratos, cálcio (ar, água, solo)
 - o Podem necessitar de monitorização contínua ou aleatória '
 - Além da poluição também se aplicam na agricultura, veterinária e exploração mineira

Aplicações mais estudadas

- Deteção individual de moléculas
- Biossensores na ordem dos nanometros para detetar micróbios/vírus
- Arrays para multi-análises (utilização de novos polímeros)
- Point-of-care para monitorização de doenças (utilizando biossensores não evasivos)
- Interface entre o sistema nervoso e inteligência artificial in vivo neural probes
 (biossensores implantáveis)
- Deteção/monitorização de microrganismos no mar

Dificuldades

- O biossensor deve ser parte integral do bioprocesso
- Os biossensores online são submetidos a condições muito rigorosas/severas
 - Os biossensores não podem ser esterilizados
 - o Funcionam dentro de uma gama limitada de concentrações de analito
 - Se utilizada uma enzima no processo de deteção, o seu pH ideal pode ser diferente do pH ideal do processo

Questões Capítulo 1

Elementos de Identificação dos Biossensores

Enzimas

- Elementos biológicos mais utilizados
- Utilizadas na forma purificada ou presentes em microrganismos/tecidos
- Catalisadoras biológicas de reações especificas podem ligar-se a um analito específico

Anticorpos

- Ligam-se especificamente ao antigénio correspondente
- Removem o antigénio do centro ativo, não catalisam nenhuma reação
- Biossensores extremamente sensíveis

Ácidos nucleicos

- Funcionam seletivamente devido ao emparelhamento de bases complementares
- Elevado potencial na identificação de doenças genéticas

Recetores

- Proteínas que atravessam a membrana plasmática
- Têm propriedades de reconhecimento celular
- Difíceis de isolar, mas graus de especificidade semelhantes a anticorpos

Elementos Biológicos

 Por vezes s\u00e3o utilizadas membranas semiperme\u00e1veis para diminuir as esp\u00e9cies sem interesse que chegam ao biorrecetor

Classes de Biossensores

Biossensores catalisadores

- Dispositivos que medem concentrações de uma espécie (em estado estacionário) devido a uma reação biocatalítica
 - o Enzimas
 - Microrganismos
 - o Tecidos
- Catálise alteração da velocidade de uma reação química devido à adição de um catalisador

Biossensores de afinidade

- Dispositivos nos quais os analitos se ligam irreversivelmente a moléculas recetoras, provocando uma alteração físico-química que é detetada pelo transdutor
 - Anticorpos
 - Ácidos nucleicos

Enzimas

- Substâncias orgânicas, geralmente de natureza proteica, com atividade intra ou extracelular cujo objetivo é diminuir a energia de ativação da reação química
- Têm estruturas 3D complexas que se encaixam num analito em particular
- Transformam o substrato em produto, mas no fim da reação encontram-se inalteradas
- Tanto os reagentes consumidos como os produtos formados podem ser detetados através de diferentes transdutores\
- Oxidorredutases classe especialmente fértil que catalisa reações com transferência de eletrões cuja atividade está dependente de uma coenzima ou cofator

Oxidase – enzimas que transferem hidrogénio para o oxigénio

- Desidrogenases enzimas que transferem hidrogénio para um recetor que não o oxigénio molecular (NAD+, substratos)
- o Peroxidases enzimas que transferem hidrogénio para peróxidos

Vantagens da Utilização de Enzimas em Biossensores

- Ligam-se a um substrato
- São extremamente seletivas
- Têm atividade catalítica, melhorando a sensibilidade
- Atuam razoavelmente rápido
- São os componentes biológicos mais utilizados

Uma enzima catalisa um só tipo de reação química, logo o tipo de enzimas encontradas numa célula determina o tipo de metabolismo que a célula efetua

Desvantagens Da Utilização De Enzima Em Biossensores

- São caras (extrair, isolar, purificar, fonte da enzima)
- Perda de atividade quando são imobilizadas num transdutor
- Perda de atividade (desativação) após um período relativamente pequeno

Aplicações de Enzimas em Biossensores

Diagnósticos clínicos in vitro

- Implicam elevado grau pureza processos complexos e dispendiosos
- Controlo de glicose (diabetes)
 - o Biossensor mais intensamente estudado e mais desenvolvido comercialmente
- Controlo de ureia enzima urease $(NH_2)_2CO + H_2O \xrightarrow{urease} 2NH_3 + CO_2$
 - Transdutor deteta amónia, dióxido de carbono ou elevação de pH
- Tiras de teste
 - o Utilização muito simples (pelo próprio paciente) qualitativamente
 - Evita ida ao hospital/centro de saúde
 - o Outros ensaios podem ser quantitativos
 - Resultados com suficiente exatidão deve ser projetado para o mínimo de resultados enganosos (positivos falsos e falsos negativos)

Tecidos

- Conjunto de células especializadas, iguais ou não, separadas ou não por substâncias intercelulares, que realizam determinada função num organismo multicelular
- Geralmente contêm uma multiplicidade de enzimas não são tão seletivos
- Enzimas no seu ambiente natural menos sujeitas a degradação (biossensores com tempo de vida maior), mas resposta pode ser mais lenta (mais componentes)

Vantagens de Utilização de Tecidos em Biossensores

- Os tecidos são mantidos no seu ambiente natural
- A atividade dos tecidos é estável (a alterações de pH e de temperatura)
- Podem funcionar onde as enzimas purificadas falham
- São muito mais baratos que as enzimas purificadas
- Melhores tempo de vida nos biossensores

Desvantagens da Utilização de Tecidos em Biossensores

 Perda de seletividade (pode n\u00e3o ser uma desvantagem caso o objetivo seja estudar v\u00e1rias subst\u00e1ncias)

Aplicações de Tecidos em Biossensores

• Uso de fígado bovino

arginine
$$\xrightarrow{\text{bovine liver}}$$
 urea + ornithine
urea + $2H_2O \xrightarrow{\text{urease}} 2NH_4^+ + HCO_3^-$

Uso de fígado de porco

glutamine +
$$H_2O \xrightarrow{pork liver} NH_3 + glutamate$$

- Pela tabela abaixo percebemos:
 - As enzimas têm a menor sensibilidade (ao contrário das mitocôndrias)
 - As enzimas têm o maior limite de deteção (ao contrário dos tecidos)
 - As enzimas têm a menor gama dinâmica (ao contrário das bactérias)
 - As enzimas têm o tempo de resposta mais rápido (ao contrário das mitocôndrias)
 - o As enzimas têm o menor tempo de vida (ao contrário dos tecidos)

	-	_		
Parameter	Enzyme	Mitochondria	Bacteria	Tissue
Slope/mV per decade	33-41	53	49	50
Detection limit/M	6.0×10^{-5}	2.2×10^{-5}	5.6×10^{-5}	2.0×10^{-5}
Linear range/mM	0.15 - 3.3	0.11-5.5	0.1 - 10	0.064-5.2
Response time/min	4-5	6–7	5	5-7
Lifetime/days	1	10	20	30
,				

- Biossensor para determinação da dopamina
 - Utiliza o tecido da banana misturado com grafite em pó e parafina líquida e essa mistura é colocada num recipiente que contém um elétrodo, sendo assim formado o biossensor
 - Enzima polifenol (banana) + O₂ catalisa a oxidação da dopamina para quinona

Microrganismos

- Organismos unicelulares (ou acelulares vírus)
- Grande parte são patogénicos, mas muitos são benéficos para outras espécies (simbiontes) ou para o meio ambiente
- Biossensores para monitorizar processos biotecnológicos industriais

Vantagens da Utilização de Microrganismos em Biossensores

- Fonte barata em comparação com as enzimas isoladas
- Menos sensíveis a inibições de solutos e mais tolerantes a alterações de pH e temperatura
- Tempos de vida longos

Desvantagens da Utilização de Microrganismos em Biossensores

- Por vezes têm longos tempos de resposta
- Têm tempos de recuperação longos
- Menor seletividade (contêm muitas enzimas)

Aplicações dos Microrganismos em Biossensores

- Fermentação do melaço de cana determinar os açúcares no caldo
- Biossensor de glucose

- (a) ânodo
- (b) cátodo de platina
- (c) e (d) anéis de borracha
- (e) gel eletrólito
- (f) membrana
- (g) micro-organismos retidos na rede de nylon
- (h) membrana de celofane

Anticorpo

- Glicoproteínas sintetizadas e excretadas por células plasmáticas que atacam proteínas estranhas ao corpo – antígenos – realizando defesa do organismo
- Agentes biológicos mais versáteis
- Extremamente seletivo e muito usados em exames imunológicos

Anticorpos como Elementos Seletivos nos Biossensores

- Vantagens
 - São muito seletivos (podem mesmo ser seletivos entre diferentes estirpes do mesmo material)
 - o São ultrassensíveis
 - o Ligam-se intensamente
- Desvantagens
 - o Não existe efeito catalítico

Ácidos Nucleicos (DNA e RNA)

- Composto químico, de elevada massa molecular, que contem ácido fosfórico, açúcares e bases (purínicas/pirimidínicas) – macromoléculas formadas por nucleótidos
- Funcionamento semelhante ao dos anticorpos emparelhamento de bases especificas entre cadeias de ácido nucleico
- Probes de DNA podem ser utilizadas para detetar doenças genéticas, cancro, etc
- Envolve a adição de *labelled* DNA ao sistema (como com os anticorpos)
- A classificação pode ser radioativa, enzimática, etc. larga gama de biossensores
- Outras utilizações
 - Melhoria da produção de enzimas algumas estão presentes em quantidades muito pequenas, ou seja, difíceis de isolar (Ex: glucose dehidrogenase); solução: técnicas de clonagem – duplicam-se os genes, logo as enzimas
 - Melhoria das propriedades de enzimas: quantidade de enzimas; alterar a dependência de pH, alargar ou reduzir a especificidade ao substrato, ...
- Agentes biosseletivos rápida expansão do conhecimento sobre os NA/avanços da tecnologia – aumento do nº de aplicações em biossensores

Recetores

- Proteínas ou glicoproteínas que se unem especificamente a moléculas sinalizadoras (hormonas/neurotransmissores)
- Quando ligado a determinado ligante, efetua uma resposta biológica, tais como:
 - Abertura do canal iónico
 - Sistemas de segundo mensageiro
 - Ativação de enzimas
- Tendência a ter afinidade para uma gama de compostos relacionados estruturalmente
- Usados como materiais labelled, originalmente com ligandos marcados radioactivamente e mais tarde com fluorescente ou enzimas

Questões Capítulo 2

Um anticorpo é quase sempre totalmente específico para um antigénio. Porque é que esta característica pode tornar-se uma desvantagem?

• Podem ser demasiado seletivos entre diferentes estirpes do mesmo material

Porque é que a resposta de uma enzima se torna não-linear para concentrações analíticas elevadas?

- As velocidades de reação dependem das condições em que as enzimas se encontram e
 da concentração de substrato. Condições de temperatura elevada, pH extremos ou
 elevadas concentrações salinas desestabilizam a estrutura da proteína, desnaturandoa. Por outro lado, em geral, um aumento na concentração de substrato tende a
 aumentar a atividade enzimática.
- A saturação acontece porque, à medida que é aumentada a concentração de substrato, aumenta também a quantidade de enzima presente sob a forma de complexo enzimasubstrato (ES). À velocidade máxima, todos os centros ativos estão ocupados (saturados) com substrato, ou seja, não existe enzima livre para ligar mais substrato e a concentração de complexo ES é igual à concentração de enzima

Como é que os recetores diferem dos anticorpos no seu modo de ação?

- Um anticorpo liga-se rigorosamente com o seu antigénio complementar. De facto, um antigénio pode ser induzido a criar o anticorpo correspondente.
- Recetores são como mensageiros que transmitem sinais entre diferentes partes de um sistema biológico. Pode ser um sinal químico e neste caso o recetor pode responder a uma determinada substância química (ou um grupo de químicos).

Capítulo 3

Métodos de Imobilização Dos Elementos Biológicos

É necessário conhecerem-se:

- As interações físico-químicas envolvidas na ligação biorrecetor moléculas biológicas
- A razão pela sua especificidade
- Como os controlar
- O melhor proveito a retirar

Imobilização Dos Elementos Biológicos

Para anexar o elemento sensorial ao transdutor são utilizados determinados métodos (isolados

ou conjuntamente)

- Adsorção (método mais simples)
- Micro-encapsulamento (mais popular)
- Cilada ou oclusão (numa matriz polimérica)
- Ligação covalente (ligação direta ao transdutor)
- Ligação cruzada ou reticulação (entre moléculas individuais de um determinado material)

O tempo de vida do biossensor aumenta com uma adequada imobilização

Adsorção

Adsorção-Reticulação

Microencapsulação

Ligação covalente

Tempos de vida típicos:

Adsorção: 1 dia

"Cilada" ou oclusão com membrana: 1 semana

Microencapsulamento: 1-4 semanas

Ligação cruzada: 3-4 semanas

Ligação covalente: 4-14 meses

Adsorção

Mais simples e envolve uma preparação mínima

- Ligação é fraca adequado para trabalhos exploratórios num curto período
- Muitas substâncias adsorvem enzimas nas suas superfícies
- Não há uso de reagentes, não há etapa de limpeza e há menos interrupções nas enzimas

Pode ser

- o Adsorção direta numa membrana ou transdutor
- Adsorção em proteínas pré-adsorvidas (adsorção usada em conjunto com outro método) – p.e. Uma enzima é adsorvida na superfície de um elétrodo e depois aí imobilizada com uma membrana ou outra forma de encapsulamento

Pode ser ainda

- Física fraca (formação de ligações Van der Waals polarização elétrica induzida pela presença de outras partículas)
- O Química mais forte e envolve a formação de ligações covalente
- Modelo de Langmuir: descreve a adsorção reversível derivada de considerações cinéticas, relaciona a fração da superfície com adsorvente e vários parâmetros cinéticos
 - \circ Concentração da superfície θ em ng/cm2 ou μ g/cm2
- O biomaterial adsorvente é muito suscetível a alterações de pH, temperatura, força iónica e ao substrato

Microencapsulamento

- O biomaterial liga-se ao transdutor através de uma membrana inerte
- Não interfere com a ação da enzima e limita a contaminação e biodegradação
- É estável em relação a mudanças de temperatura, pH, força iônica e composição química
- Pode ser permeável a alguns materiais
- Glucose oxidase
 - Existe uma membrana, permeável ao oxigénio e em contacto com um elétrodo de platina (cathode)
 - A glucose oxidase é então colocada entre essa membrana e uma outra (membrane retainer) como se fosse uma sandwish. O conjunto é permeável tanto ao oxigénio como à glucose
 - Clarck cell 1º biossensor usou esta técnica

Vantagens

- Existe uma ligação forte entre o biomaterial e o transdutor
- É muito adaptável e também muito fiável
- A fiabilidade do biomaterial (enzima) é conseguida devido:
 - o Elevado grau de especificidade
 - o Existe boa estabilidade a alterações de temperatura, pH, forças iónicas, etc.
 - Limitar contaminações e biodegradações evita infeções nos pacientes
- Existe sempre a opção de ligar o elemento biológico ao sensor através de moléculas que conduzem eletrões, tais como polypyrrole

Oclusão ou "Cilada"

- Biomaterial + solução de monómero polimerizados num gel, aprisionando o biomaterial (enzima liga-se à matriz)
- Polímero mais comum: polyacrylamida (polimerização por radiação UV na presença de vitamina B1); outros materiais – nylon, polímeros condutores, géis silásticos

- Problemas deste método:
 - São criadas grandes barreiras, inibindo assim a difusão no substrato, o que abranda a reação e de igual modo o tempo de resposta do sensor.
 - Existe perda da atividade enzimática através dos poros no gel, contudo isto pode ser ultrapassado pela ligação cruzada

Ligação Cruzada

- Biomaterial é ligado quimicamente a suportes sólidos ou a outros materiais (gel)
- Usa reagentes bifuncionais glutaraldeído.
- Desvantagens:
 - o Limitação de difusão do substrato e eventuais danos ao biomaterial
 - Resistência mecânica fraca
- Vantagem:
 - Estabiliza biomateriais adsorvidos

Ligação Covalente

- Ligação covalente entre um grupo funcional do biomaterial (não essencial para a ação catalítica) e a matriz de suporte
- Utiliza grupos nucleofílicos para acoplamento NH₂, COOH, OH, etc
- Condições para bom funcionamento:
 - o Baixa temperatura
 - o Baixa força iónica
 - o pH neutro
- Objetivo:
 - Ligação covalente → transferência direta e rápida de eletrões → biossensor com bom contacto elétrico (p.e. para elétrodos)

Elétrodos Modificados

Modificar a superfície do elétrodo

- Alterar a sua estrutura
- Cobrir a superfície com um novo material altamente seletivo

Se o novo material for biológico → biossensor

Modificar superfície antes de adicionar biomaterial \rightarrow facilita imobilização do elemento biológico

Exemplo de Elétrodo Modificado

Elétrodos de pasta de carbono modificados

- Consiste numa mistura simples de grafite em pó com Nujol para formar uma pasta rígida
- Simples
- Componente biológico misturado com a pasta pode ser:
 - Eletroativo (p.e. ferroceno biossensor glicose)
 - Agente complexo pode extrair analito na superfície da pasta

Exemplos

Modificação da superfície dos elétrodos com diferentes polímeros:

- Condutores
 - o Polyacetylene, polipyrrole, polyaniline, polithiophene
 - Oxidação eletroquímica do substrato na superfície do elétrodo
 - o Solvente → afeta propriedades do polímero/seletividade do biossensor

Com troca de iões

- Elétrodos modificados por filme de ionómero polímero de cadeia linear ou ramificada contendo grupos ionizáveis ligados covalentemente
- o Invulgar seletividade de troca iónica com grandes catiões hidrofóbicos
- Polímeros perfluotossulfonato
- o Determinação in vivo de substâncias neurotransmissoras dopamina

Redox

- Usada 4-vinilpiridina para polimerizar a superfície coordenar seletivamente com iões metálicos de transição
- lões de ruténio e ósmio polímeros redox são catalisadores eficazes para outros analitos
- Polipirrol, poli-N-metilenopirrol e politiofenos → quinonas covalentemente ligadas ao grupo redox

Grupos químicos ligados a estes revestimentos → introduz efeitos eletroquímicos

Screen Priting Electrodes

Processo miniaturizado, versátil, barato e bom para produção em massa → descartável

Screen printing

- Tecnologia baseada em empurrar tinta espessa em suspensão por um padrão num suporte sólido
 – substrato
- A tinta é baseada em metal/carbono; os substratos podem ser cerâmico ou poliméricos

Questões Capítulo 3

Qual o melhor método de imobilização para ser utilizado num biossensor comercial?

• Uma estabilidade robusta é essencial para um biossensor comercial, combinada com a reprodutibilidade para servir o desempenho requerido pela aplicação. O custo é talvez o menos importante na imobilização de um componente biológico em comparação com outros aspetos tais como: o desempenho do transdutor e a leitura. A ligação covalente parece ser o mais robusto seguido pelo micro encapsulamento (dependendo do biomaterial utilizado). Contudo, se se pretende um sensor descartável o método de oclusão numa matriz polimérica talvez seja o mais adequado (adsorção!!!!).

Porque é que o método de imobilização por adsorção é um método comum mas com utilização limitada?

 Na adsorção as forças que ligam o adsorvente ao adsorvido são muito fracas, consistindo principalmente nas forças de van der Waals e também possivelmente algumas ligações de hidrogénio. Estas ligações não são muito estáveis ou permanentes, e assim os tempos de vida dos biossensores feitos deste modo serão limitados.

Qual dos métodos de imobilização estudados é o mais apropriado para a imobilização de anticorpos?

 Os anticorpos são frequentemente fortemente adsorvidos numa superfície, particularmente quando associados com o antigénio correspondente. A modificação da superfície pode melhorar a força desta ligação

E se for para bactérias?

 As bactérias são normalmente imobilizadas em membranas, utilizando a técnica de mico encapsulamento

Capítulo 4

Fatores de Desempenho

Desenvolvimento de novas técnicas → estabelecer critérios de desempenho

Omissão de informação relevante/expressão diferente dos fatores de desempenho → patentes

Critérios para fixar o desempenho de um biossensor:

Seletividade

- o Interferências químicas devem ser minimizadas
- ⊙ Elevada afinidade por um único analito → relacionar sinal com a concentração de composto a analisar com total confiança

Sensibilidade

- Variação do sinal por unidade de concentração de composto
- Razão dos sinais da amostra e ruído –
 limite de deteção do biossensor (p.e. biossensor eletroquímico não mede concentrações baixas de hormonas)

Limite de deteção

- Concentração mais baixa do analito para a qual existe uma resposta mensurável
- Ponto em que a linha de base cruza a porção linear extrapolada do gráfico

• Gama dinâmica

- o Gama de concentrações na qual a sensibilidade do sensor é boa
- O sinal medido deverá ser proporcional à variação da propriedade físicoquímica resultante da reação enzimática e não deve ser afetado por histerese
- o Ponto de vista da calibração intervalo de concentrações com resposta linear

Tempo de resposta

- o Tempo necessário para termos 95% de resposta sistema em equilíbrio
- Tempo de resposta lento → afeta intervalo/gama de resposta → limita monitorização/deteção em tempo real; varia entre segundos a minutos

Reprodutibilidade

o Precisão com a qual a resposta do sensor pode ser obtida (na ordem dos $\pm 5\%$)

• Estabilidade

- o Os biossensores devem ter elevada estabilidade (operacional/armazenagem)
- o Tempo de vida momento até haver deterioração significativa do desempenho
- o Estudar resposta a amostra padrão ao longo do tempo
- Enzimas puras → menor estabilidade; preparações teciduais → ↑ tempo de vida
- Três aspetos do tempo de vida do biossensor: vida útil em uso; vida útil em armazenamento; vida útil do material biológico armazenado separadamente

Reutilização

- o A reutilização minimiza os custos de fabrico
- Utilização do mesmo agente biológico → respostas semelhantes

• Fácil manuseamento

Permitir medições in situ e sem formação

Custo

Custo por teste – torna um biossensor competitivo com as técnicas tradicionais

Tempo de recuperação

- Tempo necessário para que o biossensor esteja apto a ser utilizado noutra medição
- o Tempo de recuperação + tempo de resposta = nº amostras analisadas por hora

Fatores que afetam os fatores de desempenho dos biossensores

Quantidade de enzima

 O A taxa de reação é diretamente proporcional à concentração de enzima (eq. De Michaelis-Menten); demasiadas enzimas para a quantidade de substrato → excesso pode afetar a taxa de transporte (difusão)

• Método de imobilização

- Métodos químicos (covalentes) → tempos de vida + longos → podem limitar resposta
- o Métodos químicos (covalentes) → danificar enzima → diminuição da resposta
- o Método físico → fracamente ligado → perda mais rápida da enzima

pH ou buffer

- o O pH ótimo depende do mediador de transferência de eletrões utilizado
- Pode ser usado um buffer de fosfato a pH 7,4 (pH sangue ótimo para enzimas)

Biossensores

Principais fatores a considerar quando se projeta um novo biossensor:

- Critérios especiais para a aplicação
- Tomar decisões sobre o elemento seletivo
- Selecionar o transdutor
- Decidir o método de imobilização
- Fatores de desempenho necessários
- Fabrico do dispositivo
- Operação do biossensor
- Testar o biossensor

Capítulo 5

Biossensores Eletroquímicos

Sensores mais relevantes comercialmente:

- 1. Tiras de teste
- 2. Detetores eletroquímicos

Vantagens:

- Elevada especificidade, sensibilidade e seletividade
- Tempo de resposta curto
- Preço acessível
- Instrumentação relativamente simples

Áreas:

- Análises clínicas
- Controlo de processos em tempo real (indústria e ambiente)
- Estudos in vivo

Biossensor eletroquímico

 Dispositivo integrado autónomo, capaz de fornecer informações analíticas quantitativas utilizando recetores bioquímicos em contato direto com o elemento de transdução eletroquímica

Eletroquímica

- Fenómenos químicos associados à separação de cargas
- Transferência de carga:
 - o Homogeneamente em solução
 - o Heterogeneamente na superfície do elétrodo
- O elétrodo pode atuar como um dador (para a redução) ou como um recetor (para a oxidação) de eletrões transferidos para ou de espécies em solução

Biossensores Eletroquímicos

 Medição da corrente associada aos eletrões envolvidos num processo de oxidaçãoredução O sinal elétrico é proporcional à concentração de analito; pode relacionar-se com a taxa de produção/consumo do substrato/produto e com o processo de reconhecimento

Existem 3 biossensores eletroquímicos muito utilizados:

- Potenciométricos
 - o Medição do potencial da célula utilizando elétrodos não polarizados
- Amperométricos/voltamétricos
 - o Medição da curva de corrente-tensão com elétrodos indicadores polarizados
- Condutimétricos
 - Medição da condutância entre 2 elétrodos inertes imersos na solução da amostra

Tipo de Medição	Trandutor	Analitos	
1. Potenciométrica	Elétrodo ião-seletivo (ISE)	K ⁺ , Cl ⁻ , Ca ²⁺ , F ⁻	
	Elétrodo de vidro	H ⁺ , Na ⁺	
	Elétrodo gasoso	CO ₂ , NH ₃	
	Elétrodo metálico	Espécies redox	
2. Amperométrica	Elétrodo metálico ou de carbono	O ₂ , açúcares, álcoois	
	Elétrodos modificados	Açúcares, álcoois, fenóis,	
	quimicamente	oligonucleotídos	
3. Condutimétrica,	Elétrodos interdigitais, elétrodo	Ureia, espécies carregadas,	
impedimétrica	metálico	oligonucleotídos	
4. Carga iónica ou	Ion-sensitive field effect transístor	K ⁺ , H ⁺	
efeito do campo	(ISFET), FET enzima (ENFET)		

Outros: piezoelétrico (pressão de ondas acústicas); calorimétrico (termístor), ótico (fibra ótica)

Biossensores Potenciométricos

 Medidas com condições de equilíbrio → corrente nula → soma das correntes parciais anódica e catódica, devido as várias reações no elétrodo, nula

Células e Elétrodos

Potencial

- Separação de cargas ao longo da interface entre o metal (elétrodo) e a solução
- Não pode ser medido diretamente → 2
 setups formam a célula eletroquímica

• Célula Eletroquímica

- As duas metades devem estar ligadas internamente através de uma membrana eletricamente condutora
- Os 2 elétrodos estão conectados externamente através de um aparelho que mede a diferença de potencial
- O voltímetro deve ter elevada impedância de entrada para minimizar o consumo de corrente

• O valor medido depende de vários fatores:

- Natureza dos elétrodos (M₁ e M₂)
- Natureza e concentrações das soluções em cada metade da célula (S₁ e S₂)
- o Ponte salina (potencial de junção liquida através da membrana)

Potencial da célula eletroquímica

• Calculado a partir dos potenciais de elétrodos das meias células

$$E_{\it c\'elula} = E_{\it direita} - E_{\it esquerda}$$

Célula de Daniell – Exemplo Real

A reação pode ser realizada diretamente num tubo de teste, adicionando sulfato de cobre a bocados de zinco

Direita: Cu²⁺ + 2e⁻ → Cu

$$Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$$

Esquerda : $Zn^{2+} + 2e^{-} \rightarrow Zn$

Potencial da Célula Eletroquímica

 Potencial da célula → trabalho máximo (energia máxima – energia livre de Gibbs) que a célula pode fornecer

$$\Delta G = -nFE$$
 (J mol⁻¹)

- o *n* é o número de eletrões transferidos
- F é a constante de Faraday (96487 C mol⁻¹)
- E é a força eletromotriz (f.e.m) da célula
- ∆G < 0
 - o E positivo e reação ocorre espontaneamente na direção assumida
- ΔG > 0
 - o E negativo e reação não ocorre espontaneamente na direção assumida
- Determinar E_{Cu} e E_{Zn} com recurso ao hidrogénio:

$$H^+ + e^- \to \frac{1}{2}H_2$$

○ $\Delta G = 0$ para estado standard ([H⁺] = 1 M; pressão = 1 atm; T = 298 K)

$$E_{\text{H}^+/\text{H}_2} = 0$$

Definindo uma meia célula com um elétrodo de hidrogénio

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$
 E_1
 $2H^+ + 2e^{-} \rightarrow H_2$ $E_H(=0)$ $Cu^{2+} + H_2 \rightarrow Cu + 2H^+$

o Então

$$E_{\text{célula}} = E_1 - E_H = +0.34 \text{ V}$$
 $E_{C_H} = +0.34 \text{ V}$

- Definem-se assim 2 tipos de elétrodos:
 - o Elétrodo de trabalho seletivo a determinada molécula iónica
 - Elétrodo de referência imerso numa solução eletrolítica estável

Elétrodo de Referência

- Utilizados para medir o potencial de outros elétrodos
- Um bom elétrodo apresenta as seguintes características
 - o Potencial estável com o tempo e temperatura
 - Não alterado por pequenas perturbações do sistema (p.e. passagem de pequena corrente)
- Elétrodo de hidrogénio → muito reprodutível
- Folha de platina → catalisa a reação de oxidação do hidrogénio
- Deposição da platina → ácido cloroplatínico + acetato de chumbo (para prolongar vida do elétrodo)
- O hidrogénio é imerso na solução de eletrólito que irá ser utilizada antes de ser introduzido dentro da célula
- Desvantagens do elétrodo de hidrogénio
 - Gás de hidrogénio a fluir → potencialmente explosivo
- Solução
 - Elétrodos de referência + facilmente instalados, não-polarizados, com resultados reprodutíveis e baixos coeficientes de variação com a temperatura
 - Elétrodo prata-cloreto de prata e elétrodo saturado de calomelano (SCE)

Elétrodo de Referência - Ag/AgCl

Fabrico

- Fio de prata (ânodo)
- o Platina (cátodo)
- Cloreto de potássio (eletrólito)
- Eletrólise ≈ 30 minutos
- Aplicar potencial positivo de 0,5V à prata
- A superfície do metal prata é oxidada obtendo-se iões prata, o que atrai iões de cloreto e formam uma camada na superfície – cloreto de prata

- $Ag_{(s)} \rightleftharpoons Ag^+ + e^-$
- $Ag^+ + Cl^- \rightleftharpoons AgCl_{(s)}$
 - 1. Membrana sensitiva (vidro)
 - 2. Elétrodo de trabalho (Ag/AgCI)
 - 3. Solução *buffer* (KCl)
 - 4. Precipitado de AgCl
 - 5. Elétrodo de referência (igual ao elétrodo de trabalho)
 - 6. Solução buffer (KCI)
 - 7. Junção/diagrama
 - 8. Corpo estrutural (vidro não condutivo)

Elétrodo de Referência - SCE

- Calomelo → antigo nome de cloreto de mercúrio → moderadamente solúvel em água
- Reação de meia célula

$$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$$

 $E = +0.24 \text{ V}$

 Solução saturada de cloreto de potássio → dissolver cloreto de potássio em água até saturação → concentração constante e reprodutível (sem necessidade de estar sempre a pesar/medir)

Elétrodo de Referência

- Desenvolvidos para soluções aquosas (podem ser utilizados em soluções não aquosas por pequenos períodos pois existe transporte iónico através da placa porosa
- Têm pequeno orifício, coberto com minúscula placa porosa → liga o elétrodo à solução
- Elétrodos desenvolvidos para solventes não aquosos Li⁺ | Li

Equação de Nernst

- Para aplicações analíticas de potenciometria deve-se considerar o efeito de concentrações diferentes de 1M (ou saturação)
- Cálculo da diferença de potencial um determinado instante

$$\Delta G = \Delta G^0 + RT lnQ$$

- \circ R: constante dos gases (R = 8,31451 J K⁻¹mol⁻¹)
- o T: temperatura em kelvin (25 ºC = 298,2 K)
- o Q: expressão da lei de ação de massas da reação
- Para uma reação redox

$$\Delta G = -nFE$$
 e $\Delta G^0 = -nFE^0$

$$-nFE = -NFE^{0} + RT lnQ$$
 \rightarrow $E = E^{0} - \frac{RT}{nF} lnQ$

- o n: nº de eletrões transferidos (n = 1, 2, ...)
- o F: constante de Faraday (96487 C mol⁻¹)
- o Q: quociente termodinâmico da reação
- o E⁰: potencial da célula em condições standard
- o E: potencial da célula
- Substituindo R, T e F

$$E = E^{0} - \frac{0.0257}{n} lnQ$$
 ou $E = E^{0} - \frac{0.0592}{n} logQ$

• Q: quociente das espécies ativas da reação redox

$$aA + bB \Leftrightarrow cC + dD$$
 $reactants$
 $products$
 $Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$

Exemplo

 Durante o funcionamento de uma pilha um metal sofre oxidação e um catião sofre redução

$$Me_{(s)} \rightarrow Me^{+}_{(aq)} + e$$

$$X^{+}_{(aq)} + e \rightarrow X_{(s)}$$

 $Me_{(s)} + bX_{(aq)}^+ \rightarrow cMe_{(aq)}^+ + X_{(s)}$

 Como os componentes sólidos não participam nos cálculos por não sofrerem alteração (consideração concentração de 1 M)

$$E = E^{0} - \frac{0.059}{n} log \frac{[Me^{+}]^{c}}{[X^{+}]^{b}}$$

Conclusões

- Quanto maior a razão de concentrações maior será a d.d.p. da célula (e vice-versa)
- Quando maior a temperatura maior será a d.d.p. da célula (e vice-versa)

Célula: Medições Potenciométricas

- Para fazer medições potenciométricas (medições no eq.) é necessário
 - o Um elétrodo de trabalho
 - o Um elétrodo de referência
- d.d.p. medida sem polarizar a célula →
 corrente muito pequena → potencial do
 elétrodo ref constante → variações de potencial têm origem no elétrodo de trabalho
 - elétrodo ref constante \rightarrow variações de potencial têm origem no elétrodo de trabalho que responde às espécies em solução à qual é sensível \rightarrow é este que é monitorizado
- Ao criar condições para que as reações secundárias possam ser desprezadas → permite interpretação quantitativa

Elétrodo Potenciométrico

- Elétrodo Ag/AgCl membrana sensitiva
 - A acumulação de cargas na interface da membrana sensitiva causa uma transferência de potencial iónico ao longo da membrana

Elétrodo seletivo a iões (ISE)

- No eq. não há passagem de corrente
- Quanto maior a distância entre os elétrodos → maior ruido elétrico (particularmente em sistemas de fluxo)

Aspetos práticos (ISE)

Precauções para obter resultados consistentes e reprodutíveis (com limite de deteção baixo)

- A resistência iónica tem que ser mantida constante de uma amostra para a outra (adicionando a concentração constante um eletrólito que não interfira na reação)
- Controlo do pH e temperatura
- Adição de componentes que minimizem/eliminem iões que interfiram

Solução

- ISA/TISABS
 - Misturas apropriadas para fornecer as propriedades necessárias às amostras

Gráfico de Calibração: Leitura Direta

- Método mais simples
 - 1. São preparadas uma série de soluções *standard* com *buffers* (ISA)
 - 2. São medidos os potenciais das soluções
 - 3. É feito um gráfico de calibração da tensão vs log(concentração)

Adição de Standard

- Depois de ser feito o gráfico de calibração da solução com concentração desconhecida
 - Adiciona-se um standard de elevada concentração (10x maior que os valores esperados) e lê-se as tensões
 - Os dados são ajustados a uma eq. que deve incluir a correção para a diluição do padrão adicionado

Exemplo

 Se Cu = concentração desconhecida em Vu cm3 de solução e Cs = concentração padrão adicionada em Vs cm3 de solução, então

$$E_1 = K + S \log Cu$$
 e $E_2 = K + S \log(CuVu + CsVs)/(Vu + Vs)$

• Subtraindo E2 – E1 temos:

$$E = S \log \{Cu/[(CuVu + CsVs)/(Vu + Vs)]\}$$

$$Cu = \frac{Cs}{10^{E/S} [1 + (Vu/Vs)] - Vu/Vs}$$

- $S(slope)=2,303RT/zF \rightarrow a constante 2,303 vem da passagem de ln para log$
- K=E⁰

Adição Múltipla de Standards (Gran Plot)

 São feitas várias adições de standard (5 ou mais)

$$E = K + S \log(Cu + Cs)$$

$$\frac{E}{S} = \frac{K}{S} + \log(Cu + Cs)$$

$$10^{E/S} = K'(Cu + Cs)$$

- o Cs representa a concentração de standard em cada adição
- \circ K' = $10^{K/S}$
- Quando $10^{E/S} = 0 \rightarrow Cu = Cs$

Curvas de Calibração

Elétrodo Seletivo a lões

- $\begin{tabular}{lll} \bullet & Elétrodo & seletivo & a & iões & \rightarrow & reações & secundárias \\ & desprezadas & \rightarrow & E_{eq} & pode & ser & interpretado \\ & & quantitativamente \\ \end{tabular}$
- Geralmente são potenciométricos (corrente $\cong 0$ A)

- A solução referência contém 2 iões diferentes:
 - o lão ao qual o elétrodo interno é reversível (I_e)
 - o lão medido (I_m)
- Seletividade na passagem de espécies da solução externa para a de ref → induz ddp →
 depende da razão das atividades dos → eq. Nernst
- A diferença de potencial (E) através da membrana para um ião, i, de carga z é

$$E = \frac{RT}{z_i F} \ln \frac{a_2}{a_1}$$

Se a atividade do analito é constante na fase 1, na fase 2

$$E = constante + \frac{RT}{z_2 F} \ln a_2$$

- O potencial da membrana é ditado pela atividade do ião alvo, mas também pela atividade de outros iões secundários (porque membrana não é totalmente seletiva)
- A influência da presença de espécies interferentes (eq. Nikolski-Eisenman)

$$E = constante + S \times \log(a_x) + \frac{z_x}{z_y} \times \log(k_{xy}a_y)$$

- a_y → atividade ião interferente
- z_v→ carga ião interferente
- K_{xy}→ coeficiente de seletividade (determinado empiricamente)

Elétrodos de Vidro

Vidro

- Sólido amorfo cuja presença/ausência de iões na constituição afeta propriedades físicas
- Permeável a H⁺(numa larga gama de concentrações), Na⁺ e K⁺
- Alterando composição do vidro → sensível ao pH, Na⁺ ou K⁺ (haverá sempre a interferência dos restantes)
- Mais conhecido → elétrodo de pH
 - 1. Membrana sensitiva (vidro)
 - Elétrodo de trabalho (AgCl ou calomelo)
 - 3. Solução buffer (pH=7)
 - 4. Precipitado de AgCl

- 5. Elétrodo de referência
- 6. Solução buffer (KCI)
- 7. Junção com a solução em estudo
- 8. Corpo estrutural (vidro não condutivo)

- Elétrodo de referência num tubo concêntrico à volta do elétrodo de trabalho
- Orifício permeável -> interface elétrodo de referência e amostra
- Calibrado em termos de pH (e não atividade iónico do H⁺

rência e amostra elétrodo de ref. externa brado em termos de pH (e não atividade iónico
$$^{H^+}$$
 $pH = -\log a_{H^+}$ $E = K + 0.059 \log a_{H^+} = K - 0.059 pH$ $pH = (K - E)/0.059$

- Elétrodo de referência exterior na mesma embalagem que elétrodo de pH ightarrow elétrodo combinado
 - Melhor para análise de rotina de amostras de pequeno volume

Elétrodos com Membranas de Estado Sólido

- Membrana é um sólido iónico → deve ter um produto de baixa solubilidade → evita dissolução da membrana → assegura resposta estável ao longo do tempo
- Defeitos pontuais na rede cristalina da membrana → condução principalmente iónica
 - Defeitos naturais/intrínsecos → carga total do sólido permanece inalterada
 - Defeitos introduzidos externamente por dopagem/substituição de iões na rede por outros com carga != → aumenta condutividade; pode criar defeitos por radiação eletromagnética
- Estrutura geral
 - A membrana de estado sólido pode ser um cristal sólido (como LaF₃) no elétrodo de fluor, p.e.
 - Utilizado para medir níveis de fluor no tratamento de águas

- Sais de prata + sulfuretos metálicos → melhora condutividade
- Eléctrodo de referência interior Solução electrolítica interna

Elétrodo

interno

Solução

Membrana

de vidro

interna

Elétrodo ref.

Solução para

externa

- Prensagem dos sais num disco com uma scaffold (borracha, silicone, PVC, ...)
- Membranas de sais pouco solúveis → adsorção/desorção pode ser do catião ou do anião → elétrodo sensível a ambas as espécies

Elétrodos com Membranas de Troca Iónica

- Membranas hidrofóbicas porosas → espécies atravessam a membrana de um lado para o outro (não acontece nas membranas permeáveis a iões por adsorção)
- Exemplos deste tipo de elétrodo

 Solvente orgânico → hidrofóbico → manter nível de concentração na membrana/excluir iões de carga oposta/atuar na seletividade

Elétrodos Seletivos a Gases Dissolvidos

- Medição do pH da solução de eletrólito entre a membrana e um elétrodo de vidro
- Membranas: microporosas ou homogéneas
- Elétrodo de Clark \rightarrow sensor sensível ao $O_2 \rightarrow$ amperométrico
- Eletrólito interno → buffer com gás → condiciona o
 pH da solução
- Elétrodos típicos: SO₂, NO₂, H₂S
- Elétrodos mais comuns: H⁺, NH₄⁺, NH₃
- Outros: CO₂, I⁻, S₂⁻

Elétrodos Seletivos com Enzimas

- ullet Imobilização da enzima numa membrana o produtos de reação o deteção pelo elétrodo
- Exemplo: elétrodo seletivo de iões (a NH₄⁺)

$$CO(NH_2)_2 + H_2O \xrightarrow{\text{urease}} CO_3^{2^{-}} + 2NH_4^{+}$$

Noutros casos a reação da enzima altera o pH (elemento sensorial → elétrodo de vidro)

Transístor de Efeito de Campo Seletivo a Iões (ISFET)

- Medições in vivo → requerem elétrodos pequenos → micropipetas/microagulhas
- Outras aplicações → boa reprodutibilidade a baixo custo
- Objetivo ISFET

 ○ Conversão in situ da elevada impedância do elétrodo para uma baixa impedância → sinal de baixa impedância à saída do ISFET → reduz ruido (este afeta o limite de deteção e a sensibilidade)

	ISFET	MOSFET
Amplificação	Diretamente na membrana em contacto com a solução	Instrumento de medida (suscetível a campos elétricos/magnéticos locais)
Gate	Filme fino de material sensível a um ião (ISM – <i>Ion Selective Membrana</i>)	Gate metálica
Referência	Elétrodo de referência	Ground
Camada isoladora	Sensível ao pH	

- ddp entre ISM e solução (depende da atividade do ião) → altera a concentração de portadores no canal → altera características IV entre a source e o drain
- Corrente → sinal de baixa impedância → pode ser relacionado diretamente com atividade dos iões em solução
- A seletividade e a sensibilidade química do ISFET são totalmente controladas pelas propriedades da interface eletrólito/óxido
- Outros materiais inorgânicos (Al₂O₃, Si₃N₄ e Ta₂O₅ sputtering) → depositados por CVD sobre o SiO₂ → melhores propriedades que SiO₂ na resposta ao pH e na histerese

Porquê ISFET?

Elétrodo de Vidro vs ISFET

- Elétrodo de pH de vidro \to impedância \cong 100 M Ω ; amplificador de tensão \to impedância de entrada > 1 G Ω
- ISFET \rightarrow nível elevado de impedância limitado na gate da solução; impedância drenofonte \cong 1 k Ω

MOSFET

- A corrente do dreno depende da tensão de threshold - V_{th}, de
 C_{ox} (que depende da permitividade e da espessura da camada do SiO₂) e da
 Fonte mobilidade de e⁻ no canal
- V_{th} depende da concentração de dopantes do substrato tipo p, da permitividade do silício, da carga do e⁻ e de C_{ox}

Transístor de Efeito de Campo Seletivo a lões (ISFET)

• De acordo com a eq. de Nernst

$$E = \phi_{sol-mem} = E_0 - \frac{RT}{nF} \ln(a_i)$$

- Substituindo isto na equação da corrente do MOSFET
 - Quando V_D < V_{Dsat}

$$I_{D} = \frac{\mu_{n} W Cox}{L} \left[V_{G} - Vth - E_{nef} - E_{0} + \frac{RT}{nF} \ln(a_{i}) - \frac{V_{D}}{2} \right]$$

○ Quando V_D > V_{Dsat}

ISFET Enzimático

- Camada/gel enzimático sobre a estrutura do ISFET
- Mede alterações de pH (produtos de reação)
 medições feitas diferencialmente
- Desvantagem: difícil modelizar matematicamente
- A camada da enzima é apenas ativa acima da área do ENFET
- A camada sobre o FET de referência (REFET) é fisicamente o mais próximo possível da

Reference electrode

Enzyme layer

IS membrane

camada da enzima (espessura, porosidade, propriedades de difusão)

Transístor de Efeito de Campo Seletivo a Iões (ISFET)

• Para imobilizar a enzima em cima da área da gate do ISFET → impressão a jato de tinta

ISFET – Limitações de Fabrico

Biossensores Potenciométricos em Sistemas de Fluxo

- Métodos de fluxo → posicionamento de sensores em pontos de controlo essenciais
- Ramificação do fluxo principal → adição de reagentes depois da bifurcação/antes do sensor '
- Vantagem: permite resposta contínua para um controlo eficaz
- Biossensores potenciométricos baseados
 em seletividade iónica → especificidade,
 sensibilidade e gama de concentrações
 mensuráveis → aplicação alargada em
 determinações analíticas → sistemas de fluxo
 continuo/sistemas de fluxo com injeção da amostra
 (FIA Flux Injection Analyses)
- Precauções devido ao movimento da solução:
 - O Aumento do caudal → sinal afetado pelos campos elétricos entre elétrodo de trabalho e de referência → reduzir distância entre os elétrodos
 - Tempo de resposta do elétrodo aumenta relativamente à solução estacionária

- o Movimento da solução → deterioração da membrana + rápida que em solução estacionária → diminui tempo de vida do elétrodo → exige calibração periódica
- Frequentemente: filtrar resíduos sólidos e ajustar condições da solução –
 controlo do pH, força iónica e de interferências iónicas (otimizar resposta)

Célula: Medições Fora do Equilíbrio

Medições eletroquímicas para fins analíticos:

- Sensores potenciométricos
 - Condições de equilíbrio → corrente nula
- Sensores voltaméricos/amperométricos
 - o Fora do equilíbrio → passagem de corrente

Voltametria

- Técnica eletroanalítica → mede comportamento IV na superfície do elétrodo
- Tensão no AE ajustada até ter a U_{IN} (tensão na ref) pretendida → elimina ohmic drop
- Potencial variado de forma sistemática → causa oxidaçãoredução das espécies → corrente proporcional à concentração das espécies eletroativas
- Corrente no elétrodo de referência
 → problemas de estabilidade do potencial → atividades das espécies
 na vizinhança do elétrodo alteradas → solução: adicionar 1 elétrodo auxiliar (de maior área que elétrodo de trabalho)

Fonte de tensão constante Amperometric sensor Conversor I-V Reference electrode Working electrode Working electrode

Voltametria

- Medição de corrente que circula pelo WE
 → quantidade de compostos eletroativos transportados por difusão e que reagem na superfície do elétrodo
- WE → superfície pequena → assumir com rapidez e precisão o potencial imposto
- O elétrodo pode ser sólido (Au, Pt, carbono vítreo) ou formado por uma gota de Hg
- Baseada nas leis de Faraday e Fick

- *Ohmic drop* → queda de tensão insignificante
- Sistema de 3 elétrodos (Au Ag Au)
 microfabricado num chip sensível ao ião Hg
 - Vantagens: fácil de usar, baixo consumo de analito, tempo de resposta rápido e adequado para medições in situ

Célula: Medições Fora do Equilíbrio

 AE → folha de Pt → colocada num compartimento separado do resto da solução por uma placa porosa → evitar a contaminação (devido à reação que ocorre no AE)

- Exceções: microeléctrodos (a corrente é muito baixa)
- Controlar potencial do elétrodo → baixa resistência entre WE e RE → posicionamento próximo → capilar de Luggin

Biossensores Voltamétricos vs Amperométricos

- Sensor Voltamétrico
 - Regista vários pontos no perfil (ou numa região escolhida) de corrente-potencial
- Sensor Amperométrico
 - Mede corrente a um potencial fixo → 1 ponto na curva corrente – potencial → sensor voltamétrico para potencial fixo

Voltametria cíclica Reducado Amperometria

Melhora dos Biossensores

- É preciso:
 - Maior seletividade
 - Aumento da sensibilidade (V/mol)
 - Diminuição dos limites de deteção (mol/ml)
- Solução escolher corretamente:
 - Material do WE
 - o Modificação da superfície do elétrodo

o Aplicação de diferentes tipos de potencial (varrimento, ...)

Biossensores Voltamétricos Exemplos

Na presença de glucose →
 oxidação da glucose →
 maiores variações de
 corrente que na ausência
 de glucose

Biossensores Amperométricos - Exemplos

 Biossensor de colesterol com imobilização da colesterol oxidase com recurso à técnica Screen-Printed

• RE – Ag/AgCl; WE – carbono; AE – Ag

Biossensores Amperométricos: as 3 Gerações

- 1ª Geração Biossensores amperométricos de O₂
- 2ª Geração Biossensores amperométricos com mediadores de e
- 3ª Geração Biossensores amperométricos de transferência direta de e

Problemas

- A maior parte dos compostos biológicos relevantes (glucose, ureia, ...) não são eletroativos → combinação adequada de reações para produzir espécie eletroativa
- Seletividade a potencial constante → não é suficiente para distinguir as espécies

Biossensores Amperométricos de O₂

- Se apenas algumas espécies chegam à superfície → elétrodo + seletivo/reduz envenenamento → evita redução da resposta com o tempo (acontece principalmente em soluções com compostos orgânicos). Isto é conseguido por:
 - Modificação da superfície do elétrodo
 - Colocação de uma membrana porosa em contacto com o elétrodo ou separada dele por um filme fino de eletrólito
 - Usando uma membrana metalizada como elétrodo indicador
- Acetato de celulose → impede adsorção irreversível de proteínas
- Elétrodo de Clark → difusão de O₂ para o cátodo através da membrana → corrente de saída diretamente proporcional à concentração (pressão parcial) de O₂ na amostra (pois velocidade da reação depende da [O₂] e a corrente depende da velocidade da reação)

Biossensor Amperométrico de Glucose: Exemplo

- Elétrodo enzimático → enzima próxima da superfície do elétrodo → catalisa uma reação com cosumo de um reagente ativo (como o O₂)
- Primeiro elétrodo enzimático → gel de poliacrilamida + glucose oxidase na superfície do elétrodo de Pt (elétrodo de Clark)
- Enzima consome glucose e O₂ → corrente elétrica reduzida à mesma taxa →
- Outros elétrodos enzimáticos → monitorização do consumo de O₂ ou produção de H₂O₂

Biossensor Amperométrico com Mediadores de e

- Problemas da 1ª Geração
 - o Interferência de substâncias facilmente oxidadas (como ácido úrico)

- o H_2O_2 pode ser consumido pelas impurezas → aumenta erro em amostras reais
- o H₂O₂, em elevadas concentrações, pode desativar rapidamente o biossensor
- \circ Processo de transferência de e⁻ com O_2 é cineticamente lento e a velocidade do passo limitante é controlada pela difusão do O_2
- [O₂] baixa sangue → pode ser inferior à concentração do composto a analisar
 → limitação estequiométrica para as enzimas que reagem com o O₂

Solução

- Uso de mediadores artificiais de transferência de e⁻, p.e. FADH₂
- o Mediador pode ser solúvel ou imobilizado na superfície do elétrodo
- \circ São geralmente compostos redox de baixo peso molecular \to transportam e $^-$ de um centro ativo para a superfície do elétrodo

Mediadores: Ferroceno

 É fácil de obter e é imune às mudanças de pH

Biossensores Amperométricos com

Mediadores de e

• Mediador (M_{OX}) + enzima reduzida \rightarrow mediador reduzido (M_{red}) \rightarrow difusão para superfície do elétrodo \rightarrow retorna a M_{OX}

Glucose + FAD
$$\longrightarrow$$
 Ácido glucónico + FADH₂
FADH₂ + M_{ox} \longrightarrow FAD + M_{red} + 2H⁺
 M_{red} \longrightarrow M_{ox} + 2e⁻

Biossensores Amperométricos com Mediadores de e-: Exemplo de Biossensor de Glucose

 Elétrodo descartável – não há contaminações nem perda de atividade; screen printed em papel

Biossensores Amperométricos de Transferência Direta de e

- Depende da correta orientação da macromolécula
- Um dos 1ºs biossensores desta geração → transporte de e¹ entre o citocromo C e um elétrodo de Au na presença de 4,4-bipiridinilo

Condutividade

- É o inverso da resistência medida da facilidade da passagem de I numa solução
- Condutância, G, com unidade de medida Siemens, S (Ω^{-1})

$$U = RI$$
 $E = RI$
$$G = \frac{1}{R} \text{ (S)}$$

$$U = \frac{I}{G}$$

$$G = \frac{kA}{l}$$

- o I − comprimento da célula
- o A−área
- K condutividade especifica (S cm⁻¹)
- Fácil de ser medida e é diretamente proporcional à concentração de iões na solução
- Ponte de Wheatstone → resistência R₃ ajustado para balancear a ponte
- A condutividade varia com a carga, mobilidade e grau de dissociação do ião → complicações

- A técnica não tem seletividade
- Medida da condutância →
 corrente alternada → variando
 frequência obtém-se seletividade
 → em vez de condutância temos
 admitância (inverso da
 impedância)
- Espetro de admitância

Biossensores Condutimétricos

- Reação biocatalisada → variação das concentrações de espécies iónicas → detetada pela variação da condutividade elétrica do meio reacional
- Sensor de ureia → utiliza urease imobilizada → diálise de pacientes renais

$$NH_2CONH_2 + 3H_2O \xrightarrow{wease} 2NH_4^+ + HCO_3^- + OH^-$$

- Aplicação de um campo elétrico alternado → permite a medição de variação de condutividade no meio reacional/minimiza processos eletroquímicos indesejáveis
- Exemplos de enzimas: amidases, descarboxilases, esterases, nucleases

- Considerações:
 - Não há imobilização no RE
 - Campo elétrico afeta todas as espécies iónicas em solução
 - Condutividade intrínseca varia de amostra para amostra
 - A condutividade é afetada pela temperatura, força iónica e viscosidade

Microbiossensores Amperométrico Exemplos

- Sensor de glucose de filme fino baseado na deteção de H₂O₂
 - Ânodo largo reação consume parte do material
- Probe tipo agulha com microbiossensor para cirurgia no cérebro
- Sensor de oxigénio tipocâmara

Chamber-type oxygen sensor (top view and cross section):

- Si₃N₄ chamber (130 μm x 80 μm, height 1.5 μm)
- 2) substrate
- 3) Ag electrode
- Ag/AgCl layer
- 5) gold working electrode
- 6) metallization
- holes (20 μm) in the Si₃N₄ cover

Chamber is filled with electrolyte

Microeléctrodos:

Aplicações

- Dificuldades aplicações in vivo
 - o Biocompatibilidade dos materiais
 - Necessidade de condições estéreis na implementação dos elétrodos
 - Risco de reações de imunidade/tromboses
- Estragos nos tecidos devido à implementação dos elétrodos → rapidamente regenerados e cobertos por tecido conjuntivo/anticorpos → não são condutores → decréscimos na resposta do elétrodo implantado → desenvolvimento de biomateriais
- Eletrofisiologia → medições intra e extracelulares (elétrodos de Ag/AgCl) → estudo transporte de iões ao nível molecular → obtenção de medidas de corrente que atravessa 1 único canal iónico → EEG, EMG, ECG
- Opto-isoladores: sinais elétricos do corpo → sinais óticos → sinais elétricos isolar o corpo do instrumento de processamento de sinal
- Microeléctrodos implantáveis, ultrassons, sensor subcutâneo continuo de glucose

Biossensores Eletroquímicos: Eficiência

- Transporte forçado do analito para a superfície do elétrodo → aumenta a eficiência
 - o Soluções reacionais agitadas ou elétrodos com movimento rotativo
 - o Elevadas concentrações de analito
 - O Uso de membrana hidrófilas pouco espessas
- A eficiência aumenta proporcionalmente com o gradiente de concentração de analito
- Constante de difusividade → associada à natureza/espessura da membrana de oclusão

Questões Capítulo 5

Qual é o limite de deteção dos biossensores potenciométricos?

 Dado que a variação de potencial com a atividade não é linear para uma atividade menor que um certo valor, tornando-se eventualmente constante, é importante definir parâmetros para determinar o limite. Outros critérios são baseados na precisão das leituras de tensão e da sua resolução para níveis de confiança especificados

Durante quanto tempo é que a resposta do elétrodo permanece Nernstiana?

Frequentemente mesmo com um novo elétrodo a resposta é sub ou supra Nernstiana,
 i.e., os declives dos gráficos de tensão vs log(a) são menores ou maiores que 2,303RT/zF

Durante quanto tempo é que o elétrodo fornece uma variação do potencial com atividade estável e reprodutível?

 Esta condição está relacionada com o tempo de vida do elétrodo e varia conforme o tipo de utilização (contacto com soluções e período de tempo deste) do elétrodo seletivo.
 No caso de elétrodos de membranas de estado sólido, o potencial e a sua reprodutibilidade dependem do pré-condicionamento do elétrodo (polimento)

Qual é o tempo de resposta do elétrodo, i.e., quanto tempo é necessário para atingir o equilíbrio depois de mergulhar o elétrodo na solução, ou depois de alterar a concentração da solução?

• Este tempo deveria ser o mais curto possível – tempos otimizados na ordem dos 30 s

Qual é a seletividade do elétrodo em relação a outras espécies em solução?

• O coeficiente de seletividade (k_{xy}) foi introduzido na eq. De Nikolski-Eisenman

O que pode evitar a calibração periódica?

A calibração periódica minimiza os efeitos da variação do potencial com a temperatura
e a alteração do declive do perfil de potencial vs atividade. O período depende do tipo
de análise a ser efetuada, mas a calibração não pode ser dispensada

Qual o parâmetro principal de elétrodos de biossensores voltamétricos/amperométricos?

 Potencial aplicado. Idealmente os potenciais de elétrodo dos pares redução deveriam ser suficientemente afastados uns dos outros para não haver interferência de espécies diferentes

Porque não é possível a transferência direta (oxidação) para um elétrodo?

O centro ativo das enzimas está revestido por uma camada de aminoácidos e outros compostos biológicos que dificultam a transferência direta de e⁻ para ou do elétrodo. Além disso, a distância entre o centro e o elétrodo é grande e a velocidade de transferência de e⁻ entre as moléculas e os elétrodos diminui exponencialmente com o aumento dessa distância

Qual é o fator limitativo dos biossensores amperométricos?

 Robustez e estabilidade das camadas biológicas de sensorização – técnicas de imobilização

Qual a vantagem dos ISFET?

 Potencial para produzirem um chip multisensor incorporado em matriz de dispositivos biologicamente sensíveis e completamente integrados com eletrónica de leitura

Quais os problemas dos ISFET?

- Fiabilidade degradação do isolamento da gate resultante da hidrólise e possível contaminação da interface isoladora do eletrólito
- Limitação de operação sensibilidade do material da gate à luz, reprodutibilidade e histerese, pobre seletividade
- Fabrico encapsulamento das funções eletrónicas da região da gate e deposição da membrana de sensorização automaticamente
- Técnica de fabrico das membranas imobilizadas a membrana deve ser depositada precisamente na região mais sensível do elemento eletrónico; a camada depositada não deve desprender-se quando está a ser utilizada; a enzima de cobertura deve ser compatível com o processo do circuito integrado
- Custo elevado em comparação com outros biossensores eletroquímicos