Plan.It

Alexis Mills
Justin Pothoof
Laura Jacoby
Maddie Breshears

Motivations - WWAGD?

We want to help users interpret the plethora of data out there to determine whether or not solar or wind renewable technology is right for them.

Users are:

- Residents
- Government

Location

User inputs (City, State)

in us_cities.csv

Returns (latitude, longitude)

Find nearest latitude/longitude coords of a location in the WTK database

Returns (latitude, longitude)

Solar Energy

Global horizontal incidence (GHI) at ~5 million locations across the US each hour of the year for 7 years

Inputs:

- WTK Database
- Location index

Outputs:

 Solar energy generated by a single solar panel per year

$E = \varepsilon \cdot A \cdot G$

- ε = solar panel efficiency (20%)
- A = solar panel area $(65 \times 39 \text{ in}^2)$
- G = GHI

Wind Energy

$$p(v) = \left(\frac{k}{c}\right) \left(\frac{v}{c}\right)^{k-1} e^{-\left(\frac{v}{c}\right)^k}$$

Wind speed at 100 m at ~5 million locations across the US each hour of the year for 7 years

- Yearly wind speeds fit with a Weibull distribution
- PDF dependent wind speed calculated
- Average annual energy output (per wind turbine)

Calculate the energy that could be generated based on the amount of land available for wind turbines.

Application

Residential

Government

Future Directions

On the application side ...

- -Dynos timeout if the calculation takes longer than 30 seconds, we must find a way to send at least one byte to the client to keep the dyno alive OR speed up/split up calculations
- Integrate unit tests from previous pull instead of remote server so they run with Travis

On the calculation side ...

- -Consider user inputted budgets
- -Predict energy saved over time
- -Take into account Climate Change

Lessons Learned

- Organize repository from the start
- Break functions down as much as possible
 - Facilitates writing unit tests
 - Easier to troubleshoot and/or debug
- Interfacing our code with apps can be difficult:
 - Choosing the right web server gateway interface (WSGI) for specific needs
 - Understanding server errors (H12 timeout error in this case)

Resources & Packages

Links:

- https://www.sciencedirect.com/science/article/pii/S097308 2616308699
- https://www.energy.gov/sites/prod/files/2019/08/f65/2018 | %20Wind%20Technologies%20Market%20Report%20FINAL.p
 df
- https://www.nrel.gov/grid/wind-toolkit.html
- https://aws.amazon.com/blogs/big-data/power-from-win d-open-data-on-aws/
- https://github.com/NREL/hsds-examples

Besides Pandas and Numpy ...

dateutil: for interpreting date logged data

Pyproj: for quickly calculating nearest neighbors while taking into account the curvature of the earth

Reliability: for fitting wind data

Altair: for declarative, interactive visualizations

Flask: for app building in Python

Heroku: for app hosting

Check us out at our <u>repository</u> or try the <u>app</u> yourself!