Supervised Machine Learning for Hybrid Meter

Alex Estes and Christopher Hench UC Berkeley, Department of German

Motivation

- Scan and learn rhythm of medieval poetry
- Avoid rule-based approach

Previous Work

• Hartman, 1996

 Plamondon, 2006; McAleese, 2007; Greene et al., 2010; Agirrezabal et al., 2013; Navarro, 2015

Hybrid Meter

- Classical meter
- Medieval varieties

Scansion

- the process of determining the metrical value of each syllable in a line of poetry
- in a scanned line of meter, each syllable is marked as stressed/unstressed, or long/short

Scansion

• in qualitative meter, typical of English poetry, stress is the most important feature

Romeo and Juliet 1.1.1:

Two house | holds, both | alike | in dig|nity. |
$$| \times \times \times | \times | \times | \times | \times \times | \times$$

Scansion

 other languages such as Latin rely on syllable length, which is known as quantitative meter

Aeneid line 1:

- the meter of 12th and 13th century Middle High German (MHG) epic verse uses hybrid meter
- both syllable stress and length play a role
- the predominating pattern is a simple alternation between stressed and unstressed syllables

The Song of Hiawatha:

Should you ask me, whence these stories?

$$X'$$
 $X \mid X' \mid X \mid X' \mid X \mid X' \mid X$

- trochaic tetrameter
- 4 units (feet): stressed-unstressed alternation

Der Arme Heinrich:

```
Ein rîter sô gelêret was X | X'X | X' X | X' X | X' ^
```

- each foot has two syllables, stressed-unstressed
- "Ein" in anacrusis, rest after "was"

- a foot can also consist of one syllable
- the syllable must be phonologically long double mora
- a long syllable has a long vowel or ends in a consonant
- English "tree" or "bed"

- a foot can also consist of three syllables
- two of them must be phonologically short half morae; together they function as one syllable
- a short syllable must end in a short vowel
- first syllable of "reduce", second syllable of "China"

der nam im manege schouwe (6) $X \mid X' \mid X \mid \wedge' \mid \wedge X \mid - \mid X \mid \hat{}$

- the second foot consists of 3 syllables
- the third foot consists of 1 syllable

- primary stress: the first or only stressed syllable of a word
- secondary stress: any following stressed syllable
- · all other syllables are unstressed

```
der nam im manege schouwe (6) X \mid X' \mid X \mid \wedge' \mid \wedge X \mid - \mid X \mid \hat{}
```


 an unstressed "e" can be elided if an adjacent word starts or ends with a vowel

daran begunde er suochen (8) X|X' X | X' X | — | X` ^

- alternating rhythm of stressed and unstressed syllables is the guiding principle
- most of the deviations from pure trochaic tetrameter serve to preserve this rhythm
- the conditions for half morae, double morae, and elision are necessary, not sufficient

Metrical Values

- there are 8 possible metrical values for prediction:
- 1. mora primary stress
- 2. mora secondary stress
- 3. mora unstressed
- 4. half mora primary stress
- 5. half mora secondary stress
- 6. half mora unstressed
- 7. double mora (always stressed)
- 8. elision

Syllabification

- Sonority Sequencing Principle (SSP)
- Legality Principle (LP)

Data

	mean	std.	min.	max.
char. per line	21.34	3.39	9	32
syll. per line.	7.62	1.04	5	11
words per line	5.01	1.13	1	8
char. per word	4.26	1.96	1	17
syll. per word	1.52	.71	1	7
char. per syll.	2.80	.81	1	7

Table 1: Summary statistics for annotated dataset

Annotation

ein/MORA WBY/WBY rî/MORA_HAUPT ter/MORA WBY/WBY sô/ MORA_HAUPT WBY/WBY ge/MORA lê/MORA_HAUPT ret/MORA WBY/ WBY was/MORA_HAUPT

daz/MORA_HAUPT WBY/WBY er/MORA WBY/WBY an/MORA_HAUPT WBY/WBY den/MORA WBY/WBY buo/MORA_HAUPT chen/MORA WBY/WBY las/MORA_HAUPT

swaz/MORA WBY/WBY er/MORA_HAUPT WBY/WBY dar/MORA WBY/WBY an/MORA_HAUPT WBY/WBY ge/MORA schri/MORA_HAUPT ben/MORA WBY/WBY vant/MORA_HAUPT

der/MORA_HAUPT WBY/WBY was/MORA WBY/WBY hart/DOPPEL man/MORA_NEBEN WBY/WBY ge/MORA nant/MORA_HAUPT

dienst/MORA_HAUPT man/MORA WBY/WBY was/MORA_HAUPT WBY/WBY er/MORA WBY/WBY zuo/EL ou/DOPPEL we/MORA_NEBEN

Annotation

		Annotator 2							
		X	×	×		\smile	\checkmark	e	`
	×	285	4	0	1	3	0	0	0
	×	0	225	1	0	1	0	0	0
	×	1	2	74	0	2	0	0	0
Or		1	2	0	72	0	0	0	0
Annotator	\smile	1	0	0	0	36	0	0	0
nn	Ć	0	1	0	0	0	17	0	0
A	ė	0	0	0	0	0	0	9	0
	· ·	0	0	0	0	0	0	0	1

Table 2: Inter-annotator agreement confusion matrix

Models

- N-gram
- Brill Tagger
- Conditional Random Fields

CRF Model

- Position within line
- Length of syllable in characters
- Syllable characters
- Elision
- Syllable weight and length
- Word boundaries

Accuracy with Additional Annotated Data

Results

			held-out		
metrical value	F	obs.	F	obs.	
mora - unstr.	.922	2403	.938	253	
mora - prim.	.918	2025	.947	216	
mora - sec.	.856	437	.880	37	
double mora	.842	425	.865	34	
half mora - unstr.	.574	231	.585	41	
half mora - prim.	.771	103	.737	11	
elision	.763	65	.500	2	
half mora - sec.	0	4	0	0	
(macro) average	.894		.904		

Table 3: CRF model F-score for individual metrical values and (macro) average in development and on held-out data

Rules

CRF	Brill
(1) not \times if next syll. is	$(1) \times \rightarrow \times \text{ if at word}$
end of line	boundary and follow-
	ing syll. is \times
(2) — if end of line is	$(2) \times \rightarrow $ — if followed
next syll.	by $\stackrel{>}{\times}$ and word bound-
	ary
(3) e if last char is "e"	$(3) \times \rightarrow \times \text{ if end of }$
and first char. of next	line
syll. is "e"	
(4) not — if syll. is	$(4) \stackrel{>}{\times} \rightarrow \stackrel{\checkmark}{\times} \text{ if monosyl-}$
open and light	labic
$(5) \times \text{if syll in pos. } +7$	$(5) \times \rightarrow \times \text{ if following }$
is not end of line	syll. is "ge"

Table 4: Top five CRF features and Brill rules

Scansion Output

```
502: von a-râ-bîe des gol-des
X / X' X / X X / ---' / X Zweisilbig klingend
503: he-ter ma-ne-gen knol-len brâht
 / X' X / X' \sim \sim / X' X / X' Einsilbig männlich
504: liu-te vin-ster sô diu naht
 / X' X / X' X / X' X / X' Einsilbig männlich
505: wârn al-le die von za-za-manc
X / X' X / X' X / X' X Dreisilbig klingend
506: bî den dûht in diu wî-le lanc
 / X' X / X' \sim \sim / X' X / X' Einsilbig männlich
```


Future Work

Wolfram - *Parzival* and *Willehalm* Hartmann - *Iwein*, *Erec*, *Der arme Heinrich*, *Gregorius*

"wârheit":

- Wolfram = 8/51 (15.7%)
- Hartmann = 28/33 (84.8%)

"minnen":

- Wolfram = 8/73 (11.0%)
- Hartmann = 13/16 (81.3%)

Conclusion

- Supervised learning is well-suited for complicated meter
- Rules generated by supervised models can supplement current pedagogy practices

Source code

https://github.com/henchc/CLFL_2016

