

Relational Design Theory

Boyce-Codd Normal Form

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information
- Functional dependencies \Rightarrow Boyce-Codd Normal Form
 - Multivalued dependences ⇒ Fourth Normal Form

Decomposition of a relational schema

$$R(A_{1},...,A_{n}) \overline{A}$$

$$() R_{1}(B_{1},...,B_{k}) \overline{B} \overline{B} \cup \overline{C} = \overline{A} \times \mathbb{R}$$

$$R_{2}(C_{1},...,C_{m}) \overline{C} \overline{R_{1}} \times \mathbb{R} = \mathbb{R} \times \mathbb{R}$$

$$R_{1} = \Pi_{\overline{G}}(R)$$

$$R_{2} = \Pi_{\overline{C}}(R)$$

Decomposition Example #1

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

Decomposition Example #2

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Good" decompositions only "reassembly"

 Into "good" relations

 BCNF

 Cossless join property

Boyce-Codd Normal Form

BCNF? |Example #1

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

```
SSN → sname, address, GPA Keys:

GPA → priority

HScode → HSname, HScity

EVERY FD have a Key on LHS?

No! No
```

```
BCNF? Example #2
```

Apply(SSN, cName, state, date, major)

```
SSN, cName, state → date, major

Key

In BCNF.
```

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- ❖ "Good" decompositions only algorithm.
- ❖ Into "good" relations BCNF

BCNF decomposition algorithm

Input: relation R + FDs for R

Output: decomposition of R into BCNF relations with "lossless join"

Compute keys for R using FDs

Repeat until all relations are in BCNF:

Pick any R' with $\overline{A} \rightarrow \overline{B}$ that violates BCNF

Decompose R' into $R_1(A, B)$ and $R_2(A, rest)$ Compute FDs for R_1 and R_2 Compute keys for R_1 and R_2

BCNF Decomposition Example

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority) \sim SSN \rightarrow sName, address, GPA \sim GPA \rightarrow priority HScode → HSname, HScity Key: { sin, H scoke} (SIX Hscode, Hsname, Hscity) -~52 (SSN, SName, alle, House, GPA, priority) 53)(GPA, priority) Sy (SSN, SName, addr, Haude, GPA) 55 (SSN, SName, addr, GPA) (56) (SSN, HScode)

BCNF decomposition algorithm

Input: relation R + FDs for R

Output: decomposition of R into BCNF relations with "lossless join"

Compute keys for R

) DONE

Repeat until all relations are in BCNF:

Pick any R' with A \rightarrow B that violates BCNF

Decompose R' into $R_1(A, B)$ and $R_2(A, rest)$

Compute FDs for R₁ and R₂ Implied FDs Closure.

Compute keys for R₁ and R₂

MEXTERA"

A -> B

(A -> BA+

Does BCNF guarantee a good decomposition?

- Removes anomalies? ✓
- Can logically reconstruct original relation?

BCNF

Does BCNF guarantee a good decomposition?

- Removes anomalies?
- Can logically reconstruct original relation? Too few or too many tuples?
- Some shortcomings discussed in later video