1. (a) Determinar para que valores de p y q existen las siguientes integrale de Lebesgue:

$$\int_0^1 x^p (1-x)^q$$

Como $x \in [0,1], 0 \le x, 1-x \le 1$, si $p,q \ge 1$ tenemos $0 \le x^p, (1-x)q \le 1$

$$0 \le \int_0^1 x^p (1-x)^q \le \int_0^1 1 = 1$$

Si p + q = 1 con p, q > 0

$$0 \le \int_0^1 x^p (1-x)^p \le ||x^p||_{1/p} ||(1-x)^q||_{1/q} = (\int_0^1 x)^p (\int_0^1 1-x)^q = \frac{1}{2^{p+q}}$$

(b)

- 2. Demostrar que $||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$ Sabemos que para $x \in \mathbb{R}^n$ $|f(x)+g(x)| \leq |f(x)|+|g(x)| \leq ||f||_{\infty} + ||g||_{\infty}$ Así $||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$
- 3. Si $f \in L^1$ y $g \in L^{\infty}$, entonces

$$\int |fg| \le ||f||_1 \cdot ||g||_{\infty}$$

Por monotonía, tenemos:

$$|fg| = |f||g| \le |f| \cdot ||g||_{\infty}$$

$$\int |fg| \le \int |f| \cdot ||g||_{\infty} = ||f||_1 \cdot ||g||_{\infty}$$

4. (a) Demostrar la designaldad de Minkowski para 0 .

Lema: Sea 0 y <math>q = 1 - p, entonces

$$\int |fg| \ge ||f||_p \cdot ||g||_q$$

Sean
$$\frac{1}{q} = 1 - \frac{1}{p} \Rightarrow q = \frac{p}{p-1} < 0$$

$$p' = \frac{1}{p} \text{ y } q' = 1 - q = -\frac{1}{p-1}$$
Además $\frac{1}{p'} + \frac{1}{q'} = p + \frac{1}{1-q} = p + \frac{1}{1-\frac{p}{p-1}} = p - p + 1 = 1$
Así tenemos:

$$\int |f|^{p} = \int |fg|^{p} \cdot |g|^{-p} \le (\text{H\"{o}lder}) ||(|fg|^{p})||_{p'} \cdot ||(|g|^{-p})||_{q'}$$

$$= \left(\int (|fg|^{p})^{p'}\right)^{1/p'} \cdot \left(\int |g|^{-pq'}\right)^{1/q'}$$

$$= \left(\int |fg|\right)^{p} \cdot \left(\int |g|^{\frac{p}{p-1}}\right)^{1-p}$$

Así tenemos:

$$\Big(\int |f|^p\Big)\Big(\int |g|^q\Big)^{p-1} \leq \Big(\int |fg|\Big)^p$$

Sacando raíz p

$$\int |fg| \ge ||f||_p ||g||_q$$

Supongamos que si $f, g \in L^p$, entonces $(f+g) \in L^p$ Sea $q = \frac{p}{p-1}$, entonces $|f+g|^{p-1} \in L^p$ y

$$\left| \left| |f+g|^{p-1} \right| \right|_q = \left(\left. \int (|f+g|^{p-1})^q \right)^{1/q} = \left(\left. \int |f+g|^p \right)^{(p-1)/p} = ||f+g||_p^{p-1} \right| + \left| \int |f+g|^p \right|^{p-1} = \left| |f+g||_p^{p-1} \right| + \left| \int |f+g|^p \right|^{p-1} = \left| |f+g||_p^{p-1} \right| + \left| \int |f+g|^p \right|^{p-1} = \left| |f+g||_p^{p-1} + \left| \int |f+g|^p \right|^{p-1} ds \right| + \left| \int |f+g|^p \right|^{p-1} ds = \left| \int |f+g|^p \right|^{p-1} ds = \left| \int |f+g|^p \right|^{p-1} ds = \left| \int |f+g|^p ds \right|^{p-1} ds =$$

Así tenemos que:

$$\begin{split} ||f+g||_p^p &= \int |f+g|^p = \int |f+g| \cdot |f+g|^{p-1} \\ &= \int (f+g) \cdot |f+g|^{p-1} \\ &= \int f|f+g|^{p-1} + \int g|f+g|^{p-1} \\ \text{Lema } &\geq ||f||_p ||f+g||_p^{p-1} + ||g||_p ||f+g||_p^{p-1} \end{split}$$

Así tenemos:

$$||f + g||_p \ge ||f||_p + ||g||_q$$

Cumpliendose la igualdad si $||f+g||_p=0$

(b) Demostrar que si $f \in L^p$, $g \in L^p$ entonces $f + g \in L^p$ para 0 . Tenemos que:

$$|f(x) + g(x)|^p \le (|f(x)| + |g(x)|)^p \le (2\max\{|f(x)|, |g(x)|\})^p = 2^p \max\{|f(x)|^p, |g(x)|^p\} \le 2^p (|f(x)|^p + |g(x)|^p) \quad \Box$$

5. Sea E medible con medida finita y $1 \le p_1 \le p_2 \le \infty$. Entonces $L^{p_2} \subset L^{p_1}$. Más aún

$$||f||_{p_1} \le c||f||_{p_2}$$

para toda $f \in L^{p_2}$ con $c = (m(E))^{\frac{p_2 - p_1}{p_1 p_2}}$ si $p_2 < \infty$ y $c = (m(E))^{\frac{1}{p_1}}$ si $p_2 = \infty$. Caso 1: $p_2 < \infty$

Si $f \in L^{p_2}$, entonces $|f|^{p_1} \in L^{p_2/p_1}$ y

$$\left| \left| |f|^{p_1} \right| \right|_{p_2/p_1} = \left(\int |f|^{p_2} \right)^{p_1/p_2} = ||f||_{p_2}^{p_1}$$

Por Hölder tenemos

$$||f||_{p_1}^{p_1} = \int_E |1 \cdot f|^{p_1} \le ||1_E||_{p_2/(p_2 - p_1)} ||f|^{p_1}||_{p_2/p_1} = (m(E))^{\frac{p_2 - p_1}{p_2}} ||f||_{p_2}^{p_1}$$

Así tenemos

$$||f||_{p_1} \le (m(E))^{\frac{p_2-p_1}{p_1p_2}} ||f||_{p_2}$$

Caso 2: $p_2 = \infty$

$$||f||_{p_1} = \left(\int_E |f|^{p_1}\right)^{1/p_1}$$
 monotonia $\leq \left(\int_E 1 \cdot ||f||_{\infty}^{p_1}\right)^{1/p_1} = (m(E))^{\frac{1}{p_1}} ||f||_{\infty}$

6. Sea $f_n \to f$ en L^p , $1 \le p < \infty$ y sea g_n una sucesión de funciones medibles tales que $|g_n| \le M$, para toda n, y $g_n \to g$ casi donde sea. Entonces $g_n f_n \to g f$ en L^p . Por hipótesis tenemos:

$$||f_n - f||_p < \frac{\epsilon}{2M}$$
 $n \ge N_f$
 $|g_n(x) - g(x)| < \frac{\epsilon}{2||f||_p}$ $n \ge N_g \text{ c.d.s}$

Sea $n \ge \max\{N_f, N_q\}$, así tenemos:

$$||g_n(x)f_n - g(x)f||_p = ||g_n(x)f_n - g_n(x)f + g_n(x)f - g(x)f||_p$$

$$\leq ||g_n(x)f_n - g_n(x)f||_p + ||g_n(x)f - g(x)f||_p$$

$$= |g_n(x)|||f_n - f||_p + |g_n(x) - g(x)|||f||_p$$

$$= M(\frac{\epsilon}{2M}) + \frac{\epsilon}{2||f||_p}||f||_p = \epsilon$$

7. **Definición**. Si un espacio X equipado con una medida μ tiene un sistema numerable A de subconjuntos medibles $A_1, A_2, ...$, tales que dada cualquier $\epsilon > 0$ y cualquier subconjunto medible $M \subset X$, existe un $A_k \in A$ que satisface la designaldad

$$\mu(M\triangle A_k)<\epsilon.$$

Entonces se dice que μ tiene una base numerable, que consiste de todos los subconjuntos A1, A2, ...,

Demostrar que la medida de Lebesgue en \mathbb{R} tiene una base numerable.

Sabemos que \mathbb{Q} es numerable, entonces \mathbb{Q}^2 es numerable. Los abiertos (q_1, q_2) son numerables. Sea $f : \{(q_1, q_2)\} \to \mathbb{N}$

Además sabemos que si M es medible, dado $\epsilon > 0$, hay una unión finita de intervalos U, tal que $m(U \triangle M) \le \frac{\epsilon}{2}$. (parcial 2, proposición 3.15 Royden 2da Edición)

Sea $U = \bigcup I_i$, con $I_i = (a_i, b_i)$.

Como \mathbb{Q} es denso en \mathbb{R} existen $q_i^1 \leq a_i \leq b_i \leq q_i^2$ con $a_i - q_i^1 \leq \frac{\epsilon}{2^{i+1}}$ y $q_i^2 - b_i \leq \frac{1}{2^{i+2}}$, así $m((q_i^1, q_i^2) - I_i) < \frac{\epsilon}{2^{i+1}}$.

Sea $Q = \bigcup ((q_i^1, q_i^2))$

Así $m(M \triangle Q) = m(M \triangle \bigcup [(q_i^1, a_i) \cup I_i \cup (b_i, q_i^2)]) \le m((q_i^1, a_i) \cup (b_i, q_i^2)) + m(M \triangle Q) \le \sum_{e^{i+1}} \frac{\epsilon}{e^{i+1}} + \frac{\epsilon}{2} = \epsilon \text{ Sea } A = \bigcup (q_i^1, q_i^2), \text{ definimos } g(A) = \prod p_{f((q_i^1, q_i^2))} \text{ con } p_{f((q_i^1, q_i^2))} \text{ el } f((q_i^1, q_i^2)) - \text{ esimo primo.}$

La medida de Lebesgue tiene una base numerable.

- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15. Probar que L^2 es separable.

Sabemos por 13.b que los polinomios con coeficientes racionales son densos en L^2 . P.D. los polinomios con coeficientes racionales son numerable.

Sea $f: \mathbb{N} \to \mathbb{Q}$ biyectiva.

Sea $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

Sea $g(P) = \prod_{i=1}^{n} p_{i+1}^{f(a_i)}$ donde p_i es el *i*-ésimo primo. Los polinomios con coeficientes racionales son numerables.

16. Demostrar que L^{∞} es completo.

Sea $\{f_n\}$ una sucesión de Cauchy en L^{∞} , para $n \in \mathbb{N}$, existe k_n con $|f_i(x) - f_j(x)| \le$ $||f_i - f_j|| < \frac{1}{n}$ si $i, j \geq k_n$, salvo un conjunto $Z_{i,j}$ de medida cero. Sea $Z_n = \bigcup Z_{i,j}$, unión numerable de conjuntos de medida cero, Z_n es de medida cero. Sea $Z = \bigcup Z_n$ union numerable de conjuntos de medida cero, es de medida cero.

Si $x \in \mathbb{Z}^c$, $\{f_i(x)\}$, converge a un punto f(x), pues los reales son completos. Si $x \in \mathbb{Z}$, f(x) = 0, así construimos una función.

Por otro lado

$$|f(x) - f_k(x)| = \lim_{i \to \infty} |f_i(x) - f_k(x)| \le \frac{1}{n}$$
 si $m \ge k_n$ c.t.p.

$$||f||_{\infty} = ||(f - f_k) + f_k||_{\infty} \le ||f - f_k||_{\infty} + ||f_k||_{\infty} \le \frac{1}{n} + ||f_k||_{\infty}$$