Department of Computer Science University of Bristol

Image Processing and Computer Vision

www.ole.bris.ac.uk/bbcswebdav/courses/COMS30121_2018/content www.ole.bris.ac.uk/bbcswebdav/courses/COMSM0020_2018/content

Lecture 02

Image Acquisition & Representation

Sion Hannuna | Tilo Burghardt | Andrew Calway

Agenda: Basics of Image Acquisition and Representation

Images as Sensory Data

- How are images acquired?
- Which processes influence digital image formation?

Images as Structured Data

- How can digital images be represented?
- How are digital images altered by acquisition and representation?

Manual Perspective: 3D → 2D Projection

Part of the ,Perspective Machine', by Albrecht Dürer (1525)

The Camera Obscura (Pinhole Camera)

First published picture of camera obscura in Gemma Frisius' 1545 book De Radio Astronomica et Geometrica

Images as Accumulations of Scaled Dirac Delta-Functions

The shifting property can be used to express a 2D ,image function' as a linear combination of scaled 2D Dirac pulses located at points (a,b) that cover the whole image plane: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(a,b) \, \delta(a-x,b-y) da \, db = f(x,y)$

5

The Point Spread Function

 Ideally, the optical system should be mapping point information to points again.

However, optical systems are never ideal.

- Superposition Principle:
 An image is the sum of the PSF of all its points.
 - Point spread function of Human Eyes

How to Model a Continuous Image Function f?

localisation

 x_1

Space of Continuous Image Functions f

• Continuous image function f that maps from coordinates x_1, x_2, \ldots to (colour) values c_1, c_2, \ldots

$$f(x_1, x_2, ..., x_m) = (c_1, c_2, ..., c_n)$$

 $f: \mathbb{R}^m \to \mathbb{R}^n$

m ... image dimensionality n ... channels

• Specific Example: image sequences, e.g. video

$$f(x, y, t) = 128$$

(x, y) are image coordinates and t is the frame number.

How to Represent a (Spatially Discrete) Image?

Representation of Colour Spaces

Example: OpenCV(C++) Image Creation

```
#include [...]
                                                                                      draw.cpp
using namespace cv;
int main() {
  //create a red 256x256, 8bit, 3channel BGR image in a matrix container
  Mat image(256, 256, CV 8UC3, Scalar(0, 0, 255));
                                                                                             red
                               8 bits per
                                                       3 channels
    width & height
                                channel
                                                                                  green
                                                                        blue
                                            unsigned
 //put white text HelloOpenCV
 putText(image, "HelloOpenCV", Point(70, 70),
   FONT HERSHEY COMPLEX SMALL, 0.8, cvScalar(255, 255, 255), 1, CV AA);
 //draw blue line under text
 line(image, Point(74, 90), Point(190, 90), cvScalar(255, 0, 0),2);
 //draw a green smile
 ellipse(image, Point(130, 180), Size(25,25), 180, 180, 360,
   cvScalar(0, 255, 0), 2);
 circle(image, Point(130, 180), 50, cvScalar(0, 255, 0), 2);
 circle(image, Point(110, 160), 5, cvScalar(0, 255, 0), 2);
 circle(image, Point(150, 160), 5, cvScalar(0, 255, 0), 2);
 //save image to file
                                                                                      HelloOpenCV
 imwrite("myimage.jpg", image);
 //free memory occupied by image
 image.release();
 return 0;
```

Quantization of the Image Function

Representing a continuously varying single channel image function f(x) with a discrete one using quantization levels:

6 levels

2 levels

Spatial Sampling in Practice

The effect of very sparse sampling ... is often ALIASING

256 x256

64x64

32x32

Anti-aliasing can be achieved by removing all spatial frequencies above a critical limit (so-called Shannon-Nyquist Limit).

Shannon's Sampling Theorem

"An analogue signal containing components up to some maximum frequency **u** may be completely reconstructed by regularly spread samples, provided the sampling rate is above 2**u** samples per second."

Also referred to as the Shannon-Nyquist criterion:
Sampling <u>must</u> be performed <u>above twice</u> the highest (spatial) frequency of the signal to be lossless.

Claude Shannon

Convolution

• ...quantifies the structural similarity of a kernel image h(x) as it is shifted over a target image f(x):

$$f * h = \int_{-\infty}^{+\infty} f(x - t)h(x) \, \partial t$$

$$\int_{-\infty}^{c_{Onvolution}} f(x - t)h(x) \, dt$$

- ... determines the effect of a system, i.e. the kernel h(x), on an input signal, i.e. f(x)
- the result image is known as the `response' of f to the kernel h

2D Discrete Convolution

The discrete version of 2D convolution is defined as:

$$g(x, y) = \sum_{m} \sum_{n} f(x-m, y-n)h(m, n)$$

2D Discrete Correlation

The discrete version of 2D correlation is defined as:

$$g(x, y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m, n)$$

Correlation ≡ Convolution when kernel is symmetric under 180° rotation, e.g.

Spatial Low/High Pass Filtering

Low Pass

High Pass

C *