Lecture 2 Sequence Searching: Pattern Matching and Blast

- Sequence format and notation
- Sequence comparison models
- Sequence searching phases
- BLAST: 3 step heuristic
- · Hit statistics: P-value and E-value
- BLAST result interpretation
- BLAST flavours

Jens Kleinjung, Juelich 05.10, 2. Sequence Searching

Sequence Searching

Sequence

- a string of characters that represents the chain of building blocks in a biopolymer
- building blocks are amino acids (proteins) and nucleotides (DNA, RNA)
- the side chains define the sequence

Sequence Searching

Sequence databank searching is the process of extracting homologues of one or several query sequence(s) from a sequence database.

Sequence Format Conventions

- A sequence is composed of a name (often including an accession number) and the residue string.
- A sequence databank is a formatted (and often sorted) list of sequences (here FASTA format).
- > Tepi epidermal growth factor (Mus musculus)
 NSYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQTRDLRWWELR
 > Tixa EGF-like module coagulation factor (Homo sapiens)
 VDGDQCESNPCLNGGSCKDDINSYECWCPFGFEGKNCEL
- Proteins are written from the N-terminus to the C-terminus.
- Nucleotide sequences are defined within a 'reading frame'.

Sequence Notation - Positions and Chains

Mutations

- Y35G-BPTI (bovine pancreatic trypsin inhibitor) mutation from Tyr to Gly at position 35
- K(B29)P-insulin
 mutation from Lys to Pro at position 29 in chain B
- Des(B27-B30)-insulin-B26-carboxamide residues 27 to 30 deleted in chain B and C-terminus amidated

Chain notation

Chains are denoted A, B, C, D,... in successive order.

Sequence Searching and Sequence Alignment

- Sequence searching and sequence alignment are different techniques.
- Sequence searching uses sequence matching (like alignment), but sequence alignment works on a pre-defined sequence set.
- In sequence searching one tries to extract homologous sequences, whereas in sequence alignment one assumes homology and tries to correctly identify similarities between homologues.

Sequence Searching Problem

given

required

Sequence Searching Problem

given

- Query: sequence to search with (assume 300 aa)
- Database (search space): very many sequences (assume > 100000)
- Goal: find sequences homologous to query

required

- a fast tool
- primarily a filter: most sequences will be unrelated to the query

fine-tune the alignment later

Sequence Databank Searching

Prediction: Contingency Table

Sequence searching is a prediction about the homology relation between query and DB sequence.

reality

		positive	negative
orediction	positive	true positive (TP)	false positive (FP)
pred	negative	false negative (FN)	true negative (TN)

Sequence Databank Searching

Inference / Prediction Statistics

Random and Target Distributions

Contingency Table

TP	FP	
FN	Z	
1	1	

Models Underlying Sequence Comparison

Sequence comparison (searching and alignment) is predominantly based on three models:

I. Scoring Model PAM or BLOSUM matrix + gap penalties Information content of matched amino acid pair is defined as Score(XZ) = log [P(XZ) / P(X)P(Z)]with P(XZ): observed probability of matched XY in trusted alignments and P(X),P(Z): probabilities of X and Z in a random sequence

2. Alignment Model

local or global alignment of homologues => alignment scores of biologically meaningful alignments

3. Random Model

local or global alignment of un-related (=random) sequence pair => alignment scores of random alignments

Scoring Model: Substitution Matrix

```
A 2
R - 2 6
\mathbf{C} -2 -4 -4 -5 12
       1 3 -5 2
  1 -3 0 1 -3 -1 0 5
I -1 -2 -2 -2 -2 -2 -3 -2
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6
\mathbf{M} - 1 \quad 0 - 2 - 3 - 5 - 1 - 2 - 3 - 2
F -4 -4 -4 -6 -4 -5 -5 -5 -2 1 2 -5 0 9
          0 0 -1 0 1 -1 -1 -3 0 -2 -3
  1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10
  0 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4
                   3 -1 2 -2 -3 0 -2 -5 0
```

Scoring Model: PAM Matrices

- Derive permissible mutations from trusted alignments.
- Step 1: Construct phylogenetic tree from protein alignments.
- Step 2: Fill substitution matrix with observed transition probabilities.
- A 'PAM' is an evolutionary distance:
 I PAM = I accepted mutation per 100 amino acids
 250 PAM = 2.5 accepted mutations per amino acid
- There are modern versions of the PAM matrix: Gonnet matrices or Jones-Taylor matrices.

Scoring Model: BLOSUM Matrices

- Mostly used family of amino acid substitution matrices is the BLOSUM series (BLOSUM50, BLOSUM62).
- The BLOSUM matrices are derived from the BLOCKS database of multiple alignments (Henikoff & Henikoff, 1992).
- BLOSUM50 is derived from BLOCKS (core) alignment regions with >=50% sequence identity, Blosum62 from those >= 62%, etc.
- Note that there is NO underlying Markov model of amino acid substitution; BLOSUM is based on observed pairs of aligned residues. Higher numbers mean shorter evolutionary distance (opposite to PAM!).

Alignment Model

- The alignment model is the result of a meaningful sequence alignment, i.e. a correct alignment of two homologous sequences. In the ideal case this is identical to the alignment derived from structure superpositioning.
- Such meaningful alignments are called 'reference alignments' or 'trusted alignments'.
- Alignment models include local, global, probabilistic or other forms matching residue pairs.
- Generally we want to maximise P(XZ).

Random Model

- The random model is the result of an alignment of random sequences.
- The probability of finding a matched pair is just a chance event, which is given by the product of the probability to find the individual amino acids in the sequences (joint probability of independent events): P(X) * P(Z).
- The random model is important, because amino acids have different frequencies of occurrence.

Is that the only random model you can think of?

Evolutionary Distance and Sequence Identity

Distant sequences are difficult to match, because the amount of identical or similar residues is low (signal / noise ratio is low).

Sequence Searching Phases

Matching Phase

The query sequence is matched (partially) with the databank sequence.

Scoring Phase

The matched residues pairs are scored the scores are summed up.

Selection phase

Based on a statistical criterion, database sequences with score above a user-defined cutoff score are returned as hits. Each sequence in the hitlist is a potential homologue.

BLAST: Basic Local Alignment Search Tool

BLAST is a program designed to compare a query sequence with every sequence in a database and to report the most similar sequences.

Basic idea:

- High scoring segments have well conserved (almost identical) parts.
- After well conserved parts have been identified, extend them to the real alignment.

BLAST: History

Smith and Waterman, 1981

Exact Local Dynamic Programming

Lipman and Pearson, 1985

FASTA finds similar words (k-tup) on the same diagonal.

Altschul et al., 1990 BLAST:The most widely cited tool in Biology

BLAST: k-word search

Considers only sequences with at least two k-word matches above a certain score.

BLAST: match extension

Elongate k-word matches in both directions as far as possible.

Extension terminates if score drops below value X (ungapped local alignments).

BLAST: score evaluation

The BLAST search yields a match (alignment) score for each query/hit sequence pair.

Sampling from the extreme end of a normal distribution yields an extreme value distribution. BLAST scores are extreme value distributed.

BLAST: Score Evaluation

P-value:

Probability of finding at least a match score x.

P (S
$$\geq$$
 x) = Kmne^{- λ x}

K is calibrated with the database composition. **Lambda** is calibrated with the substitution matrix. **mn** is the search space, i.e. length 'm' of query sequence and length 'n' of the database sequence.

BLAST: Score Threshold

The likelihood of random sequences to yield a score greater than T increases linearly with the logarithm of the search space mn.

This gives a formula for accepting hits:

$$S > T + log (mn) - \lambda$$

BLAST: E-value

E-value: P-value adjusted by database size.

Number of database hits expected by chance

E-values are easier to compare than P-values, because they represent a sequence count rather than a probability.

P31383 Vs YEAST

```
sp P31383 2AAA YEAST Protein phosphatase PP2A regulatory subunit... 1170
sp P33892 GCN1 YEAST Translational activator GCN1 [GCN1] [Saccha...
                                                                       47 1e-05
sn P53978 EF3B YEAST Elongation factor 3B (EF-3B) [YEF3B] [Sacch..
                                                                       46 2e-05
\square sp P22219 VP15 YEAST Protein kinase VPS15 (EC 2.7.1.-) [VPS15] [...
                                                                       40 0.001
sp P32337 IMB3 YEAST Importin beta-3 subunit (Karvopherin beta-3...
                                                                       39 0.002
sp P49955 S3B1 YEAST U2 snRNP component HSH155 [HSH155] [Sacchar...
                                                                       38 0.005
sp Q06708 YL86 YEAST Hypothetical 99.8 kDa protein in IKI3-RPS29...
                                                                       38 0.006
sp P35194 YBA4 YEAST Hypothetical 287.5 kDa protein in PDR3-HTA2...
                                                                       37 0.010
sp P32917 STE5 YEAST STE5 protein [STE5] [Saccharomyces cerevisi...
                                                                       33 0.15
sp P32074 COPG YEAST Coatomer gamma subunit (Gamma-coat protein)...
                                                                       32 0.25
☐ tr <u>Q12150</u> Chromosome XII COSMID 9449 [CSF1] [Saccharomyces cerev...
```

P31383 Vs YEAST

	sp	P31383	2AAA_YEAST	Protein phosphatase PP2A regulatory subunit	<u>1170</u> 0.0
	sp	P33892	GCN1_YEAST	Translational activator GCN1 [GCN1] [Saccha	<u>47</u> 1e-05
П	sn	P53978	EF3B YEAST	Elongation factor 3B (EF-3B) [YEF3B] [Sacch	46 2e-05
	sp	P22219	VP15_YEAST	Protein kinase VPS15 (EC 2.7.1) [VPS15] [40 0.001
	sp	P32337	IMB3 YEAST	Importin beta-3 subunit (Karvopherin beta-3	39 0.002
	sp	P49955	S3B1_YEAST	U2 snRNP component HSH155 [HSH155] [Sacchar	<u>38</u> 0.005
	sp	Q06708	YL86_YEAST	Hypothetical 99.8 kDa protein in IKI3-RPS29	<u>38</u> 0.006
	sp	<u>P35194</u>	YBA4_YEAST	Hypothetical 287.5 kDa protein in PDR3-HTA2	<u>37</u> 0.010
	sp	P32917	STE5_YEAST	STE5 protein [STE5] [Saccharomyces cerevisi	<u>33</u> 0.15
	sp	<u>P32074</u>	COPG_YEAST	Coatomer gamma subunit (Gamma-coat protein)	<u>32</u> 0.25
	tr	Q12150	Chromosome	XII COSMID 9449 [CSF1] [Saccharomyces cerev	<u>32</u> 0.32

P31383 Vs UniProt

	sp	<u>Q10178</u>	S3B1_SCHPO U2 snRNP component prp10 [PRP10] [Schizosac	50 2e-04
	tr	Q9FMF9	Nuclear protein-like [Arabidopsis thaliana (Mouse-ear	49 2e-04
	tr	017873	Hypothetical protein F46C5.6 [F46C5.6] [Caenorhabditis	49 3e-04
	tr	Q7PLL6	CG17514-PA.3 [CG17514] [Drosophila melanogaster (Fruit	49 3e-04
	tr	<u>Q86JC5</u>	Hypothetical protein [Dictyostelium discoideum (Slime	49 3e-04
	tr	<u>Q7RM47</u>	Hypothetical protein [PY02341] [Plasmodium yoelii yoelii]	48 4e-04
Z	tr	042900	Protein kinase with calcium binding domain [SPBC119.07	48 6e-04
	\sp	P33892	GCN1_YEAST Translational activator GCN1 [GCN1] [Saccha	47 0.001
	эp	P53978	EF3B_YEAST Elongation factor 3B (EF-3B) [YEF3B] [Sacch	46 0.002
	tr	<u>Q8C0Y0</u>	Hypothetical heat repeat containing protein [8430415E0	46 0.002
	tr	Q9CRRO	8430415E04Rik protein (Fragment) [8430415E04RIK] [Mus	46 0.002
	tr	Q7SDG6	Hypothetical protein [NCU03042.1] [Neurospora crassa]	45 0.003
	tr	QQEW2	AgCP13260 (Fragment) [AGCG49048] [Anopheles gambiae st	45 0.004
	tr	Q9ACFO	Hypothetical protein KIAA1622 (Fragment) [KIAA1622] [H	45 0.004
	tr	<u>Q8VD 65</u>	Hypothetical protein [PIK3R4] [Mus musculus (Mouse)]	45 0.005
	tr	<u>Q8C948</u>	Phosphatidylinositol 3 kinase [C730038E05RIK] [Mus mus	45 0.005
	tr	Q99570	Adaptor protein [P150] [Homo sapiens (Human)]	45 0.005
	sp	Q10105	VAQ5_SCHPO Putative translational activator C18G6.05c	44 0.006
	tr	Q7XJN7	At2g40730 protein [AT2G40730] [Arabidopsis thaliana (M	44 0.006
	tr	Q8LQE7	Kinase-like protein [OJ1529_G03.14] [Oryza sativa (jap	44 0.006
	tr	<u>Q21909</u>	TO8A1.2 protein [TO8A11.2] [Caenorhabditis elegans]	44 0.006
	tr	Q9CXV4	13 days embryo head cDNA, RIKEN full-length enriched l	44 0.008
	tr	Q7QFZ0	AgCP13790 (Fragment) [AGCG51792] [Anopheles gambiae st	44 0.008
	sp	057683	S3B1_XENL% Splicing factor 3B subunit 1 (Spliceosome a	44 0.011
	sp	<u>Q99NB9</u>	S3B1_MOUSE Splicing factor 3B subunit 1 (Spliceosome a	44 0.011
	sp	075533	S3B1_HUMAN Splicing factor 3B subunit 1 (Spliceosome a	44 0.011
	tr	Q9VPR5	CG2807 protein [CG2807] [Drosophila melanogaster (Frui	44 0.011
	tr	Q8SQL2	Protein phosphadase PP2-A regulatory subunit A [ECU09	43 0.014
	tr	059191	Hypothetical protein PH1522 [PH1522] [Pyrococcus horik	43 0.014
	tr	<u>Q8II56</u>	PF16 protein, putative [PF11_0318] [Plasmodium falcipa	42 0.031
	tr	<u>Q9V0Z1</u>	Hypothetical protein PYRABO6470 [PYRABO6470] [Pyrococc	42 0.031
	tr	<u>Q7T160</u>	SI:dZ146N9.1 (Novel protein similar to human general c	42 0.041
	tr	<u>Q7PY15</u>	EbiP8519 (Fragment) [EBIG8519] [Anopheles gambiae str	42 0.041
П	tr	086756	Hypothetical protein FLJ20397 [Homo sapiens (Human)]	42 0.041
	sp	P22219	<pre>VP15_YEAST Protein kinase VPS15 (EC 2.7.1) [VPS15] [</pre>	40 0.091

Psi-BLAST

Position Specific Iterated version of BLAST.

Psi-BLAST performs a gapped BLAST database search.

Psi-BLAST program uses the information from any significant alignments returned to construct a position-specific score matrix, which replaces the query sequence for the next round of database searching.

Psi-BLAST may be iterated until no new significant alignments are found.

Psi-BLAST Iteration

BLAST: E-value

S NCBI		BLAST
PubMed	Entrez BLAST	OMIM Taxonomy Structure
Info	12 May 2004 BLAST 2.2.9 h	
5.0	Nucleotide	Protein
FAQsNews	Diagontinuo anno antiquet	Duration was trip DI ACT (No star)
References	Discontiguous megablast Magablast	Protein-protein BLAST (blastp) PULL and BSL BLAST
NCBI	 Megablast Nucleotide-nucleotide BLAST (b) 	PHI- and PSI-BLAST Search for short, nearly exact matches
Contributors	Search for short, nearly exact ma	
	Search trace archives with mega	
Education	discontiguous megablast	Search by domain architecture (cdart)
D		
Program selection	Translated	Genomes
guide		
Tutorial	 Translated query vs. protein data 	
 URL API guide 	 Protein query vs. translated data 	
	Translated query vs. translated of Ablacts	
Download	(tblastx)	Fugu rubripes, zebrafish
5		Insects, nematodes, plants, fungi, malaria
DatabasesDocumentation		Microbial genomes, other eukaryotic genomes
Executables	Special	Meta
 Source code 	opeo.a.	
	 Search for gene expression data 	(GEO BLAST) • Retrieve results by RID
Support	Align two sequences (bl2seq)	Get this page with javascript-free links
	 Screen for vector contamination 	VecScreen)
HelpdeskMailing list	 Immunoglobin BLAST (IgBlast) 	
• Ivialility list		
		Disaloimar

<u>Disclaimer</u>
<u>Privacy statement</u>
<u>Accessibility</u>

Valid <u>XHTML 1.0</u>, <u>CSS</u>.

Program

Tutorial

Download

selection guide

URL API guide

 Databases Documentation Executables

Source code

BLAST

Structure

PubMed Entrez BLAST OMIM Taxonomy 12 May 2004 BLAST 2.2.9 has been released. Read more... Info Nucleotide Protein FAQs News Discontiguous megablast Protein-protein BLAST (blastp) References Megablast PHI- and PSI-BLAST NCBI Nucleotide-nucleotide BLAST (blastn) Search for short, nearly exact matches Contributors Search for short, nearly exact matches Search the conserved domain database (rpsblast) Search trace archives with megablast or Education Search by domain architecture (cdart) discontiquous megablast

Translated

- Translated query vs. protein database (blast/)
- Protein query vs. translated database (tblastn).
- Translated query vs. translated database (tblast()

Genomes

- Chicken cow pig dog sheep cat NEW
- · Environmental samples
- Human mouse rat
- Fugu rubripes, zebrafish

Retrieve results by RID

- Insects, nematodes, plants, fungi, malaria.
- Microbial genomes, other eukaryotic genomes

Special

- Search for gene expression data (GEO BLAST)
- Align two sequences (bl2seq)

Meta

Get this page with javascript-free links

Support Screen for vector contamination (VecScreen) Helpdesk Immunoglobin BLAST (lgBlast) Mailing list Disclaimer Privacy statement Accessibility Valid XHTML 1.0, CSS.

Low Complexity Regions

Some genome sequences contain low-complexity regions. These can give false-positive hits.

Example:

```
HSGDLPERTCPPCPPCPPCPPPCPPPCPPCPPPLWQPSSERTD

- low-complexity region -|
```

Most sequence searching programs use filters to recognise and skip such low-complexity regions. If such regions are by chance included in the hit, the output looks like:

```
HSGDLPERTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXLWQPSSERTD
```

low-complexity region - |

Domain 1

Domain 2

No Overlap

Ε

Score

```
Sequences producing significant alignments:
                                                                    (bits) Value
sp|P09405|NUCL MOUSE|89505EE39C89F832 (NCL..)Nucleolin (Protein ...
                                                                         425
                                                                               e - 119
sp|P13383|NUCL RAT|68774A214E550F90 (NCL..)Nucleolin (Protein C2...
                                                                         407
                                                                               e-113
sp|P08199|NUCL MESAU|79DDCF724CED7DB4 (NCL)Nucleolin (Protein C2...
                                                                         397
                                                                               e - 110
sp|P19338|NUCL HUMAN|85A2F2CA22EA03DB (NCL)Nucleolin (Protein C2...
                                                                         371
                                                                               e - 102
                                                                        285
                                                                               2e-76
sp|P01922|HBA HUMAN|34D13618E62A33C1 (HBA1..)Hemoglobin alpha ch...
                                                                        283
                                                                               4e-76
sp|P01923|HBA GORGO|25D13618E72A3306 (HBA)Hemoglobin alpha chain...
sp|P15771|NUCL CHICK|7996C504BE9459A1 Nucleolin (Protein C23).[G...
                                                                        283
                                                                               5e-76
sp|09TS35|HBA1 HYLLA|25D13618E36A7706 (HBA1)Hemoglobin alpha-1 c...
                                                                        281
                                                                               2e-75
sp|P01924|HBA PREEN|3771361D402A35C7 (HBA)Hemoglobin alpha chain...
                                                                        280
                                                                               5e - 75
sp|P06635|HBA PONPY|37DE74049545CE88 (HBA)Hemoglobin alpha chain...
                                                                        279
                                                                               7e - 75
```

Tricky Problems

- Repeats
- Multi-domain proteins
- Low-complexity regions
- Redundancy
- Very short queries
- Very distant sequences
- Un-annotated sequences

Post Processing of Search Results

- Match identification numbers and key words
- Grep sequences out of the database
- Compare results of different searches (on different databases)
- Filter sequences on specified criteria
- Align results using a multiple alignment

Recognise family patterns or generate a family profile

Typical Method Combinations

- Sequence search -> multiple alignment -> phylogenetic tree
- Sequence search -> sequence alignment -> homology modelling
- Sequence search -> sequence alignment -> mutation analysis
- Sequence search -> multiple alignment -> functional annotation

Learning Outcomes

- Principles of Sequence Searching
- Substitution Matrix and Scoring
- BLAST heuristics: k-word matching and local alignment
- Extreme value distribution
- True/false positive/negative hit
- P-value and E-value
- Interpretation of hit list
- BLAST for nucleotides and proteins

PHI- and PSI-BLAST