GRU vs LSTM: Detecção de Notícias Falsas

Diego Machado Cordeiro, Diogo Martins de Assis, Luiz Felipe Vieira,
Marcos Paulo Freitas da Silva, Renato Paganini Thürler Filho
Instituto de Ciências Exatas e Informática
Pontifícia Universidade Católica de Minas Gerais (PUC Minas)
Belo Horizonte, Minas Gerais, Brasil
Rua Cláudio Manoel, 1.162, Funcionários
Belo Horizonte – MG - Brasil
{diego.cordeiro, diogo.assis, marcos.silva.1349199, renato.filho.1094209}@sga.pucminas.br,
@sga.pucminas.br

Abstract—Este estudo tem como objetivo comparar o desempenho de duas arquiteturas de redes neurais recorrentes LSTM (Long Short-Term Memory) e GRU (Gated Recurrent Unit) — na tarefa de classificação binária de notícias como verdadeiras ou falsas. Para isso, foi utilizado o conjunto de dados ISOT Fake News Detection Dataset, composto por textos jornalísticos rotulados. O processo metodológico incluiu etapas de pré-processamento textual, tokenização, vetorização e padronização das sequências, seguidas pela construção e treinamento dos modelos com camadas de embedding, redes recorrentes bidirecionais e funções de ativação apropriadas.avaliação foi conduzida com base em métricas como acurácia, precisão, recall, F1-score e AUC. Os resultados obtidos indicam que ambas as arquiteturas são eficazes na detecção de desinformação textual, com desempenho elevado e consistente, contribuindo para o desenvolvimento de soluções automatizadas no combate à propagação de notícias falsas

Index Terms—Fake news, GRU, LSTM, IOST

I. INTRODUÇÃO

Com o crescimento exponencial do acesso à informação por meio da internet e das redes sociais, a disseminação de notícias falsas tornou-se um fenômeno preocupante, com impactos significativos na sociedade, na política e na saúde pública. A facilidade com que conteúdos enganosos são compartilhados compromete a credibilidade de fontes legítimas e dificulta o acesso a informações confiáveis. Nesse contexto, tornase essencial o desenvolvimento e a avaliação de métodos automáticos capazes de identificar e filtrar conteúdos falsos de forma eficiente. [1]

A detecção automática de notícias falsas é um problema recorrente de classificação de texto, no qual o objetivo é atribuir uma categoria (neste caso, "verdadeira" ou "falsa") a um determinado conteúdo textual. Esse tipo de tarefa pode ser abordado por meio de técnicas de aprendizado de máquina, que consistem em treinar algoritmos para reconhecer padrões nos dados e fazer previsões com base nesses padrões. [2]

Nos últimos anos, os avanços em aprendizado profundo (deep learning) — uma subárea do aprendizado de máquina — têm proporcionado resultados expressivos em tarefas de Processamento de Linguagem Natural (PLN). O aprendizado profundo utiliza redes neurais com múltiplas camadas para extrair representações complexas dos dados, sendo especial-

mente eficaz em tarefas que envolvem linguagem, imagem e som. [2]

Entre os modelos mais promissores para o tratamento de sequências de texto estão as redes neurais recorrentes (Recurrent Neural Networks – RNNs). Diferentemente das redes neurais tradicionais, as RNNs são projetadas para lidar com dados sequenciais, como frases e documentos, pois possuem uma estrutura que permite "memorizar" informações anteriores da sequência.

Duas variantes avançadas das RNNs são as arquiteturas LSTM (Long Short-Term Memory) e GRU (Gated Recurrent Unit). Ambas foram desenvolvidas para resolver limitações das RNNs tradicionais, como o problema do desvanecimento do gradiente, que dificulta o aprendizado de dependências de longo prazo em sequências.

A LSTM introduz mecanismos chamados de portas (gates), que controlam o fluxo de informações dentro da célula da rede. Essas portas decidem o que deve ser armazenado, esquecido ou passado adiante, permitindo que o modelo retenha informações relevantes por períodos mais longos. [3]

A GRU, por sua vez, é uma versão mais simplificada da LSTM. Ela também utiliza portas para controlar o fluxo de informação, mas com uma estrutura mais compacta e menos parâmetros, o que pode resultar em um treinamento mais rápido e eficiente, especialmente em conjuntos de dados menores ou menos complexos.

Ambas as arquiteturas são capazes de capturar dependências temporais e contextuais em sequências de texto, ou seja, conseguem entender como o significado de uma palavra pode depender das palavras anteriores e posteriores. Essa capacidade é essencial para tarefas como a detecção de fake news, onde o contexto e a forma como as informações são apresentadas podem ser determinantes para a classificação correta. [4]

II. MÉTODO

A metodologia adotada neste estudo foi estruturada em quatro etapas principais: pré-processamento dos dados, tokenização e vetorização, divisão dos dados e construção e treinamento dos modelos. Cada uma dessas etapas é descrita a seguir, com a devida contextualização teórica.

3.1 Pré-processamento dos Dados O conjunto de dados utilizado foi o ISOT Fake News Detection Dataset, composto por textos de notícias rotuladas como verdadeiras ou falsas. Inicialmente, os dados foram organizados em um único conjunto, com a atribuição de rótulos binários: 1 para notícias verdadeiras e 0 para falsas. Em seguida, os textos passaram por um processo de limpeza, no qual foram removidos caracteres especiais, números e pontuações, mantendo-se apenas letras e espaços. Além disso, todo o conteúdo textual foi convertido para letras minúsculas, com o objetivo de padronizar o vocabulário e reduzir a dimensionalidade dos dados.

Essa etapa de pré-processamento é essencial em tarefas de Processamento de Linguagem Natural (PLN), pois melhora a qualidade dos dados e facilita o aprendizado dos modelos.

3.2 Tokenização e Vetorização Após a limpeza textual, os dados foram transformados em uma representação numérica por meio da tokenização, processo que consiste em dividir o texto em unidades menores chamadas tokens (geralmente palavras) e mapear cada token para um número inteiro. Utilizou-se o Tokenizer da biblioteca Keras, com um limite de 5.000 palavras mais frequentes e um token especial para palavras fora do vocabulário (Out Of Vocabulary – ¡OOV¡,).

Em seguida, foi aplicada a vetorização, que converte as sequências de tokens em vetores de comprimento fixo. Para isso, utilizou-se a técnica de padding, que preenche as sequências com zeros até que todas tenham o mesmo tamanho (neste caso, 200 tokens). Essa padronização é necessária para que os dados possam ser processados por redes neurais.

- 3.3 Divisão dos Dados O conjunto vetorizado foi dividido em dois subconjuntos: 60% dos dados foram utilizados para treinamento e 40% para teste. Além disso, durante o treinamento, 20% do conjunto de treino foi reservado para validação. Essa divisão permite avaliar o desempenho do modelo em dados não vistos, garantindo uma estimativa mais realista de sua capacidade de generalização.
- 3.4 Construção e Treinamento do Modelo A arquitetura do modelo foi composta pelas seguintes camadas:

Camada de Embedding: transforma cada token em um vetor denso de 64 dimensões. Essa camada aprende representações semânticas das palavras durante o treinamento.

Camada Bidirecional com GRU: a Gated Recurrent Unit (GRU) é um tipo de rede neural recorrente (RNN) eficiente para modelar sequências. A versão bidirecional permite que o modelo processe o texto em ambas as direções, capturando melhor o contexto.

Camada de Dropout: com taxa de 50%, desativa aleatoriamente neurônios durante o treinamento, reduzindo o risco de overfitting.

Camada Densa com ReLU: uma camada totalmente conectada com 32 unidades e função de ativação ReLU (Rectified Linear Unit), que introduz não linearidade ao modelo. A função ReLU retorna zero para valores negativos e o próprio valor para positivos, acelerando o treinamento.

Camada de Saída com Sigmoide: a função de ativação sigmoide transforma a saída do modelo em um valor entre

0 e 1, interpretado como a probabilidade de a notícia ser verdadeira. Essa função é definida como:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Por ser uma função contínua e diferenciável, a sigmoide é amplamente utilizada em problemas de classificação binária.

O modelo foi compilado com a função de perda binary crossentropy, apropriada para tarefas de classificação binária, e o otimizador Adam, que ajusta os pesos da rede de forma adaptativa. As métricas utilizadas para avaliação foram a acurácia e a AUC (Área sob a Curva ROC), que mede a capacidade do modelo de distinguir entre as classes.

Durante o treinamento, foram utilizados dois callbacks:

EarlyStopping: interrompe o treinamento caso a métrica de validação pare de melhorar, evitando o sobreajuste. ReduceL-ROnPlateau: reduz automaticamente a taxa de aprendizado quando o desempenho do modelo se estabiliza, facilitando a convergência.

III. RESULTADOS

A. Conjunto de Dados

O conjunto de dados utilizado neste estudo foi o *ISOT Fake News Detection Dataset*, amplamente empregado em pesquisas sobre detecção de desinformação. Ele é composto por dois subconjuntos: um contendo notícias verdadeiras, extraídas de fontes confiáveis como a Reuters, e outro com notícias falsas, provenientes de websites conhecidos por disseminar conteúdo enganoso. Para este trabalho, foi considerada apenas a coluna text, que contém o corpo da notícia.

Após a junção dos subconjuntos e a rotulagem binária (1 para notícias verdadeiras e 0 para falsas), o corpus totalizou 44.898 amostras. Os dados foram embaralhados e divididos em cinco subconjuntos para validação cruzada (*cross-validation*), garantindo uma avaliação mais robusta e generalizável dos modelos.

B. Resultados com a Arquitetura GRU

O modelo baseado na arquitetura GRU (*Gated Recurrent Unit*) foi treinado utilizando validação cruzada com cinco dobras (*folds*), cada uma com cinco épocas de treinamento. A Tabela I resume os principais resultados obtidos em cada dobra:

TABLE I RESULTADOS POR DOBRA PARA O MODELO GRU

Dobra	Acurácia	Precisão	Recall	F1-score
Fold 1	98,85%	0,99	0,99	0,99
Fold 2	98,00%	0,99	0,97	0,98
Fold 3	98,00%	0,99	0,98	0,98
Fold 4	98,00%	0,98	0,98	0,98
Fold 5	98,00%	0,99	0,98	0,98

A matriz de confusão revelou uma taxa de erro extremamente baixa, com equilíbrio entre falsos positivos e falsos negativos. As curvas de perda e AUC ao longo das épocas indicaram uma boa convergência do modelo, sem sinais de sobreajuste, mesmo com o aumento da acurácia nas últimas épocas.

Esses resultados demonstram que a arquitetura GRU é altamente eficaz na tarefa de classificação de notícias falsas, apresentando desempenho consistente e robusto em diferentes partições dos dados.

C. Resultados com a Arquitetura LSTM

O modelo baseado na arquitetura *LSTM* (Long Short-Term Memory) foi treinado com os mesmos parâmetros utilizados no modelo GRU, incluindo divisão dos dados, número de épocas, tamanho do lote e uso de *callbacks* para parada antecipada e ajuste da taxa de aprendizado. O treinamento foi realizado por cinco épocas, com validação em 20% do conjunto de treino.

Durante o treinamento, o modelo apresentou melhora progressiva nas métricas de desempenho. A acurácia no conjunto de validação atingiu até 98,50%, com valores de perda decrescentes e estáveis. A Tabela II apresenta os principais resultados obtidos em duas execuções representativas.

TABLE II RESULTADOS POR DOBRA PARA O MODELO LSTM

Dobra	Acurácia	Precisão	Recall	F1-score
Fold 1	98,69%	0,98	0,99	0,99
Fold 2	98,00%	0,99	0,98	0,98

No conjunto de teste final, com 17.960 amostras, o modelo LSTM apresentou os seguintes resultados:

Acurácia: 98,56%AUC: 0,9974

Precisão (Fake): 0,98
Recall (Fake): 0,99
F1-score (Fake): 0,99
Precisão (True): 0,99
Recall (True): 0,98
F1-score (True): 0,98

A matriz de confusão revelou um desempenho equilibrado entre as classes, com baixas taxas de falsos positivos e falsos negativos. As curvas de perda e AUC ao longo das épocas indicaram uma boa convergência do modelo, com estabilidade nas últimas iterações.

Esses resultados demonstram que a arquitetura LSTM também é altamente eficaz na tarefa de classificação de notícias falsas, com desempenho comparável ao modelo GRU.

D. Comparação entre os Modelos GRU e LSTM

Ambas as arquiteturas, GRU e LSTM, apresentaram desempenho elevado na tarefa de classificação binária de notícias falsas e verdadeiras. No entanto, algumas diferenças sutis foram observadas em termos de desempenho e comportamento durante o treinamento.

O modelo GRU obteve uma acurácia média ligeiramente superior nas dobras de validação cruzada, com destaque para

a Dobra 1, que alcançou 98,85% de acurácia e F1-score de 0,99. Já o modelo LSTM apresentou acurácia de até 98,69% em uma das execuções, com desempenho muito próximo ao do GRU.

No conjunto de teste final, os dois modelos apresentaram resultados praticamente equivalentes. O GRU obteve uma acurácia de 98,92% e AUC de 0,9988, enquanto o LSTM alcançou 98,56% de acurácia e AUC de 0,9974. Em termos de métricas por classe, ambos os modelos demonstraram equilíbrio entre precisão e recall para as classes *Fake* e *True*, com F1-scores de 0,98 ou 0,99 em todos os casos.

Do ponto de vista computacional, o GRU tende a ser mais leve e rápido para treinar, devido à sua estrutura mais simples em comparação com o LSTM. Isso pode representar uma vantagem em cenários com restrições de tempo ou recursos computacionais.

Em resumo, os dois modelos mostraram-se altamente eficazes na detecção de desinformação textual. A escolha entre GRU e LSTM pode depender de fatores como tempo de treinamento, disponibilidade de recursos e preferência por simplicidade ou capacidade de modelagem de dependências mais longas.

A análise realizada neste trabalho evidenciou a viabilidade do uso de redes neurais recorrentes na tarefa de classificação de notícias quanto à sua veracidade. A partir da aplicação de duas arquiteturas distintas, foi possível observar que modelos baseados em sequências textuais são capazes de capturar padrões linguísticos relevantes para a detecção de desinformação.

IV. CONCLUSÕES

Os experimentos realizados demonstraram que tanto as redes GRU quanto LSTM alcançaram resultados expressivos na tarefa de detecção de fake news, com métricas de desempenho elevadas e consistentes ao longo das diferentes dobras de validação e no conjunto de teste. Em particular, o modelo GRU apresentou uma leve vantagem em termos de acurácia geral (98,92% contra 98,56% da LSTM), enquanto ambos os modelos obtiveram F1-scores muito próximos, indicando desempenho equilibrado entre precisão e recall.

Esses achados reforçam a robustez de ambas as abordagens, mas também destacam a importância de considerar o contexto de aplicação. A GRU, por sua arquitetura mais enxuta, é particularmente vantajosa em cenários com restrições de tempo ou infraestrutura computacional limitada. Já a LSTM se mostra mais adequada em aplicações que exigem maior profundidade na modelagem sequencial, como em textos mais longos ou com dependências temporais mais complexas.

Portanto, a escolha entre GRU e LSTM deve ser orientada não apenas pelos resultados quantitativos, mas também por fatores práticos e estratégicos, como os objetivos do sistema, os recursos disponíveis e a natureza dos dados. Essa análise comparativa contribui para uma tomada de decisão mais informada e alinhada às necessidades reais do problema.

REFERENCES

- [1] N. Chaudhuri, G. Gupta, M. Bagherzadeh, T. Daim, and H. Yalcin, "Misinformation on social platforms: A review and research agenda," *Technology in Society*, vol. 78, p. 102654, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0160791X24002021
- [2] S. Khare, P. Singh, and P. Kumar, "An analysis of various classification algorithms for fake news detection," in *Proc. 2025 2nd Int. Conf. Comput. Intell., Commun. Technol. Netw. (CICTN)*, 2025, pp. 268– 272, doi: 10.1109/CICTN64563.2025.10932522
- [3] T. S. Camelia, F. R. Fahim, and M. M. Anwar, "A regularized LSTM method for detecting fake news articles," in *Proc. 2024 IEEE Int. Conf. Signal Process., Inf., Commun. Syst. (SPICSCON)*, 2024, pp. 01–06, doi: 10.1109/SPICSCON64195.2024.10941441.
- [4] S. R. Tanuku, "Novel approach to capture fake news classification using LSTM and GRU networks," in *Proc. 2022 Int. Conf. Futur. Technol. (INCOFT)*, Belgaum, India, 2022, pp. 1–4, doi: 10.1109/IN-COFT55651.2022.10094467