predictive plotsmatplotlib tables transformation stocks requests atlabel atlab

Big Data analysis with Python

State of the art and overview of the applications in the area of the diploma thesis

Supervisor: Dr hab. inż. Dariusz Król

Presented by: Oleksii Kyrylchuk 223224

13.10.2017

Wrocław University of Science and Technology

Introduction – My topic

My topic

"Big Data analysis with Python"

"Przetwarzanie dużych zbiorów danych w środowisku Python"

Why did I choose this topic?

Why big data?

- Analyze stock data
 - Predict the future stock price
 - Plot the stock data over time
 - **–** ...
- Analyze facebook data
 - Plot the event location data
 - Analyze the popularity of posts
 - **–** ...
- Analyze YouTube data
 - Make a computer generated song/video

Introduction – What will I do

Why Python?

Quickly achieve good results

Wide variety of tools available

• Very popular language in data science

Brief overview of the DS stack

• Web scraping, API scraping, Data source packages, Flat files, ...

NumPy, pandas, built-in lists, ...

 APIs - sqllite3, psycopg2, hadoop, ORMs -SQLAlchemy, peewee ...

 Tensorflow, matplotlib, scikit-learn, bokeh, pandas, ...

Step 1 Data extraction/gathering

Processing files

CSV reader¹ – A built-in package

 Numpy² – A more advanced package, oriented on on scientific computing

 Pandas³ – A package, that implements R's DataFrame, and has a lot of extra features, including plotting

¹ https://docs.python.org/3/library/csv.html

² http://www.numpy.org/

³ http://pandas.pydata.org/

Data source packages

- There are packages, that allow you to download stock data automatically without having to scrape websites/APIs
- yahoo-finance¹
- googlefinance²
- pandas-datareader³ fetches data from multiple sources
- Example:

```
import pandas_datareader as pdr
pdr.get_data_yahoo('AAPL') # Returns a DataFrame
```


https://pypi.python.org/pypi/yahoo-finance
 https://pypi.python.org/pypi/googlefinance

³ https://pandas-datareader.readthedocs.io

API scraping

 json¹ – a built-in package that allows us to convert json into a python dictionary

- urllib3² a built-in http request package (synchronous)
- requests³ an external request package, that simplifies the code
- aiohttp⁴ a package, that allows you to asynchronously send http requests, which greatly improves the performance (asyncio/await syntax accessible in python 3.5+)

³ http://docs.python-requests.org/en/master/

¹ https://docs.python.org/3/library/json.html

² https://urllib3.readthedocs.io/en/latest/

API/web scraping - asyncio

Web scraping

 We use the same packages from the API scraping to download the data

- re¹ a built-in package that implements regular expressions
- BeautifulSoup² a package that allows us to navigate
 HTML much more easily
- scrapy³ a package for making web spiders, that download webpages recursively

¹ https://docs.python.org/3/library/re.html

² https://www.crummy.com/software/BeautifulSoup/

³ https://scrapy.org/

Step 2 Data transformation, cleaning and storage

Transformation & cleaning

- Built-in lists¹
- numpy² a lower level package that gives you access to array and matrix classes with a lot of useful methods
- pandas³ one of the best packages for dealing with table data. Has an interface to import/export data to/from numpy, csv, zip files, etc.

¹ https://docs.python.org/3.6/tutorial/datastructures.html

² http://www.numpy.org/

³ http://pandas.pydata.org/

Data Storage – APIs vs ORMs

- APIs (drivers)
 - sqlite3¹
 - psycopg2²
- Use the database API to do everything
- Use SQL for querying
- Harder to code & maintain
- Usually faster

- ORMs
 - SQLAlchemy³
 - peewee⁴
- Easier to code & maintain
- They use the API packages to send the SQL to the database
- Sometimes slower

¹ https://docs.python.org/3/library/sqlite3.html

³ <u>https://www.sqlalchemy.org/</u>

² http://initd.org/psycopg/

Step 3 Data analysis

Data analysis – Visualization

¹ <u>https://matplotlib.org/</u>

² https://bokeh.pydata.org/en/latest/

Data analysis – Example visualizations

Matplotlib¹

Bokeh² (Interactive)

¹ https://matplotlib.org/gallery.html

² https://bokeh.pydata.org/en/latest/docs/gallery.html

Data analysis – Machine learning

- Scikit-learn ¹ the easies way to get the results
- Numpy², Scipy³ if we want to do everything from scratch
- Tensorflow ⁴ a more efficient way to do everything from scratch

4 https://www.tensorflow.org

6 https://keras.io/

- Theano 5 a competitor to Tensorflow
- Keras ⁶ A high level package that can use either
 Tensorflow or Theano as its backend

¹ http://scikit-learn.org

² http://www.numpy.org/ ⁵ http://deeplearning.net/software/theano

³ https://www.scipy.org

Similar applications

- There are a lot of apps that implement a similar structure, but most of them are corporate and operate on corporate datasets
- Example projects include
 - Analyzing stock data¹
 - Analyzing medical data
 - Computer-generated art/art style ²³
 - Computer-generated music
 - **—** | ...

My thesis plan – A Roadmap

Task	Status	Month	March April			May					June		J - S	October				November				Dec			
		Week	13 14	4 15	16	17	18	19	20	21	22	23	24	25-27	28-40	41	42	43	44	45	46	47	48	49	50
Organization																									
Paperwork (Registering, etc.)	Completed													Session	Internship										
Specification	Completed																								
Studying available tools	In progress																								
Development	Development																								
Implementing the facebook analyzer	In progress													Session	Internship										
Implementing the stock analyzer	In progress																								
Implementing the youtube analyzer	Not started																								
Writing																									
Introduction	In progress													Session	Internship										
Available technologies	Not started																								
Part 1 - Stock analysis	Not started																								
Part 2 - Facebook analysis	Not started																								
Part 3 - Youtube analysis	Not started																								

References

- Wes McKinney (2012) Python for Data Analysis O'Reilly Media, Inc.
- Joel Grus (2015) Data Science from Scratch O'Reilly Media, Inc.
- Jake VanderPlas (2017) The Python Visualization Landscape PyCon 2017
 - https://www.youtube.com/watch?v=FytuB8nFHPQ
- Nikola Milosevic (2016) Equity forecast: Predicting long term stock price movement using machine learning

