Міністерство освіти і науки України Інститут інноваційних технологій і змісту освіти

LIII Всеукраїнська учнівська олімпіада з математики IV етап

Розв'язання та відповіді Другий день

8.5. Коротульки-малюки Незнайко, Знайко та Поспішайко одночасно вирушили в подорож із Квіткового міста до Зеленого міста, відстань між якими становить 1,7 км. Швидкості їхнього руху пішки дорівнюють 4 м/хв, 5 м/хв та 6 м/хв відповідно. У них є один моторолер, швидкість якого — 20 м/хв. Один з коротульок спочатку поїхав на моторолері, а двоє інших вийшли пішки. Проїхавши певну відстань, він залишив моторолер на дорозі й продовжив свій шлях пішки. Коротулька, що першим дістався до моторолера, поїхав на ньому і через деякий час також залишив його на дорозі, продовживши свій шлях пішки. Урештірешт, третій із мандрівників, дійшовши до моторолера, прибув на ньому до Зеленого міста, причому — одночасно з двома іншими коротульками. Скільки часу кожен з малюків їхав на моторолері?

Розв'язання. Нехай кожен з коротульок витратив на всю подорож t хв. Незнайко їхав на моторолері x хв, Знайко — y хв, а Поспішайко — z хв. Тоді маємо таку систему рівнянь:

$$\begin{cases} 20x + 4(t-x) = 1700, \\ 20y + 5(t-y) = 1700, \\ 20z + 6(t-z) = 1700, \\ 20(x+y+z) = 1700. \end{cases}$$

Розв'язавши цю систему, знаходимо: t = 253, x = 43, y = 29, z = 13.

Відповідь: Незнайко, Знайко та Поспішайко їхали на моторолері 43 хв, 29 хв та 13 хв відповідно.

8.6. Усередині гострокутного трикутника ABC позначено таку точку Q, що $\angle QAC = 60^{\circ}$, $\angle QCA = \angle QBA = 30^{\circ}$. Нехай точки M і N — середини сторін AC і BC відповідно. Знайдіть величину кута QNM.

Розв'язання. Маємо, що $\angle AQC = 90^{\circ}$. Нехай K — середина відрізка QC. Тоді $MN \parallel AB$, $NK \parallel BQ$. Отже, $\angle MNK = \angle ABQ = 30^{\circ}$. Звідси

випливає, що $\angle MNK = \angle MQK$, адже $\angle MQK = 30^\circ$. Відтак, навколо чотирикутника QNKM можна описати коло. Оскільки $MK \perp QC$, то $\angle QNM = \angle QKM = 90^\circ$.

Відповідь: $\angle QNM = 90^{\circ}$.

8.7. Знайдіть усі такі цілі n, для яких n+3 та n^2+3n+3 одночасно будуть кубами цілих чисел.

Розв'язання. Якщо числа n+3 і n^2+3n+3 будуть точними кубами, то кубом цілого числа має бути й число $(n+3)(n^2+3n+3)=(n+2)^3+1$. Звідси, з необхідністю, n=-2 або n=-3. Перевірка залишає нам лише n=-2. **Відповідь**: n=-2.

8.8. Яку найбільшу кількість триклітинкових прямокутників (у будь-якій орієнтації) можна зафарбувати на клітчастій дошці розміру 20×13 так, щоб жодні два зафарбовані прямокутники не мали спільних точок?

Розв'язання. Виділимо на дошці розміру 20×13 30 квадратів 2×2 та 5 двоклі-

тинкових прямокутників (далі — виділені фігурки) так, як зображено на малюнку ліворуч. Кожен триклітинковий прямокутник має спільні клітинки рівно з однією із 35 виділених фігурок. З іншого боку, відповідно до вимог умови задачі кожна із 35 виділених фігурок має спільні клітинки не більше, аніж з одним із триклітинкових прямокутників. Отже, триклітинкових прямокутників повинно бути не більше за 35. На малюнку праворуч зображено потрібне розташування 35 триклітинкових прямокутників.

Відповідь: 35 триклітинкових прямокутників.

9.5. Розв'яжіть рівняння $[x\{x[x]\}] = x^2$ (тут [a] — ціла частина числа a, тобто найбільше ціле число, яке не перевищує a; $\{a\} = a - [a]$ — дробова частина числа a).

Розв'язання. Помітимо, що x=0 є коренем рівняння. Далі вважаємо, що $x\neq 0$. Запишемо наше рівняння у вигляді $\left[x\left\{x\left(x-\left\{x\right\}\right)\right\}\right]=x^2$, $\left[x\left\{x^2-x\left\{x\right\}\right\}\right]=x^2$.

Оскільки x^2 — ціле число, то маємо: $\left\lceil x \left\{ -x \left\{ x \right\} \right\} \right\rceil = x^2$. Звідки

$$0 < x^2 \le x \{-x\{x\}\} < x^2 + 1. \ (*)$$

Позаяк ми розглядаємо $x \neq 0$, то, зрозуміло, $\left\{-x\{x\}\right\} > 0$ (якщо $\left\{-x\{x\}\right\} = 0$, то $x^2 = \left\lceil x\left\{-x\{x\}\right\}\right\rceil = 0$, x = 0). З нерівностей (*) маємо, що x > 0. Далі,

 $0 < x < \{-x\{x\}\}\$ < 1, і тому $x = \{x\}$. Але тоді $\{-x\{x\}\}\$ = $\{-x^2\}\$ = 0, адже x^2 — ціле число.

Відповідь: x = 0.

9.6. Нехай a, b і c — дійсні числа з проміжку (0;1]. Доведіть, що має місце нерівність $a+b+c+|a-b|+|b-c|+|c-a| \le \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.

Розв'язання. Не порушуючи загальності, будемо вважати, що $0 < a \le b \le c \le 1$. Тоді маємо для доведення нерівність

$$\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}-b\right)+\left(\frac{1}{c}-3c\right)\geq 0.$$

Для a>0 $\frac{1}{a}+a\geq 2$. Якщо $0< b\leq 1$, то $\frac{1}{b}-b=\frac{1-b^2}{b}=\frac{(1-b)(1+b)}{b}\geq 0$, тобто $\frac{1}{b}-b\geq 0$. Для $0< c\leq 1$ $\frac{1}{c}-3c=-2+\frac{(1-c)(1+3c)}{c}\geq -2$, тобто $\frac{1}{c}-3c\geq -2$. Додавши ці три доведені нерівності, одержимо потрібну нерівність.

9.7. Див. задачу 8.8.

9.8. Навколо гострокутного трикутника ABC, у якому AB < BC < AC, описано коло ω з центром O. Позначимо через I центр вписаного кола даного трикутника, а через M — середину сторони BC. Нехай точка Q симетрична точці I відносно M, півпряма OM перетинає коло ω в точці D, а півпряма QD вдруге перетинає коло ω в точці T. Доведіть, що $\angle ACT = \angle DOI$.

Розв'язання. Нехай DL — діаметр кола ω , точка K симетрична D відносно прямої BC. Чотирикутник QDIK ε паралелограмом.

У прямокутному трикутнику DBL $DB^2 = DM \cdot DL$. Як відомо, DB = DI (лема про «тризуб»). Отже, $DI^2 = DM \cdot DL = 2DM \cdot DO = DK \cdot DO$, $\frac{DI}{DK} = \frac{DO}{DI}$. Тому трикутники DOI і DIK подібні, і $\angle IOD = \angle KID$. Відтак, одержуємо:

$$\angle DOI = \angle KID = \angle KIQ + \angle QID = \angle DQI + \angle QID = 180^{\circ} - \angle IDQ =$$

= $\angle IDT = \angle ADT = \angle ACT$.

10.5. Знайдіть усі такі дійсні значення x, для яких виконується нерівність $\min(\sin x, \cos x) < \min(1 - \sin x, 1 - \cos x)$.

 $(Для a \le b \min(a, b) = \min(b, a) = a.)$

Розв'язання.

Умова задачі рівносильна сукупності систем нерівностей

$$\begin{cases} \sin x < 1 - \sin x, \\ \sin x < 1 - \cos x; \\ \cos x < 1 - \sin x, \\ \cos x < 1 - \cos x. \end{cases}$$

Маємо:

$$\begin{cases} \sin x < \frac{1}{2}, \\ \cos x < \frac{1}{2}; \\ \sin x + \cos x < 1. \end{cases}$$

Відповідь: $\left(-\frac{3\pi}{2} + 2\pi n; \, 2\pi n\right), \, n \in \mathbb{Z}$.

10.6. Знайдіть усі такі пари простих чисел p і q, які задовольняють рівність $3p^q - 2q^{p-1} = 19$.

Розв'язання. Зрозуміло, що слід розглядати тільки $p \ge 3$. Якщо p = q, то маємо рівність $\left(3p^{p-2} - 2p^{p-3}\right)p^2 = 19$, яка для простого $p \ge 3$ є неможливою.

Розглядаємо далі $p \neq q$. За Малою теоремою Ферма $q^{p-1}-1 \equiv 0 \pmod p$, $p^{q-1}-1 \equiv 0 \pmod q$. Подаємо задану рівність у вигляді $3p^q-2 \left(q^{p-1}-1\right)=21$, і оскільки ліва частина цієї рівності ділиться без остачі на p, робимо висновок, що p=3 або p=7. Далі, записавши вихідну рівність у вигляді $3p\left(p^{q-1}-1\right)-2q^{p-1}=19-3p$, одержуємо, що 19-3p ділиться без остачі на q.

Подальшим нескладним перебором дістанемо відповідь.

Відповідь: p = 3, q = 2; p = 7, q = 2.

10.7. Чи можна в просторі відмітити 24 точки, жодні три з яких не лежать на одній прямій, та провести рівно 2013 різних площин так, щоб кожна містила не менше трьох відмічених точок, і будь-яка трійка відмічених точок належала хоча б одній з цих площин?

Розв'язання. Припустимо, що це можливо. Позначимо через π_1 , π_2 , ..., π_{2013} ці площини, а через n_1 , n_2 , ..., n_{2013} — кількості відмічених точок, що, відповідно, їм належать. Тоді, за умовою задачі, $n_i \ge 3$ для кожного i, $1 \le i \le 2013$. Зрозуміло, що

$$C_{n_1}^3 + C_{n_2}^3 + \dots + C_{n_{2013}}^3 = C_{24}^3 = 2024.$$

До того ж, $n_i \le 5$ для всіх i, $1 \le i \le 2013$, бо якщо серед n_1 , n_2 , ..., n_{2013} знайдеться хоча б одне число, яке більше 5, то матимемо:

$$2024 = C_{n_1}^3 + C_{n_2}^3 + \ldots + C_{n_{2013}}^3 \ge \underbrace{1 + 1 + \ldots + 1}_{2012 \text{ доланків}} + C_6^3 = 2012 + 20 = 2032$$
,

що є хибним.

Нехай серед чисел n_1 , n_2 , ..., n_{2013} рівно a чисел дорівнюють 3, рівно b чисел дорівнюють 4 і рівно c чисел дорівнюють 5. Тоді a+b+c=2013, і $C_3^3 \cdot a + C_4^3 \cdot b + C_5^3 \cdot c = 2024$. Звідки одержуємо рівність 3b+9c=11, яка не може виконуватись для цілих невід'ємних b і c. Одержана суперечність завершує розв'язання.

Відповідь: ні, неможливо.

10.8. Нехай точка M — середина бісектриси AD гострокутного трикутника ABC. Коло з діаметром AC перетинає відрізок BM у точці E, а коло з діаметром AB перетинає відрізок CM у точці F. Доведіть, що точки B, E, F і C лежать на одному колі.

Розв'язання. Якщо AB = AC, то твердження задачі є очевидним. Без обмеження загальності вважатимемо, що AB < AC. Нехай AH — висота трикутника ABC. Тоді точка H лежить між точками B і D. Відрізок AH — спільна хорда кіл ω_1 та ω_2 , побудованих як на діаметрах на відрізках AB і AC

відповідно. Через вершину A проведемо пряму, перпендикулярну до AD, яка перетинає кола ω_1 і ω_2 у відмінних від A точках K і L відповідно.

Доведемо, що пряма BL проходить через точку M. Позначимо через X точку перетину прямих BL і AD. Оскільки $KB \parallel AD \parallel LC$, то отримуємо такі пропорції:

$$\frac{AX}{KB} = \frac{LA}{LK}, \ \frac{DX}{CL} = \frac{BD}{BC}, \ \frac{BD}{BC} = \frac{KA}{KL}.$$

Отже, $AX = \frac{KB \cdot LA}{LK}$, $DX = \frac{CL \cdot KA}{KL}$. Далі, $\angle KAB = \angle LAC$, і трикутники AKB і

ALC подібні. Звідси $\frac{KA}{LA} = \frac{KB}{LC}$, $LC \cdot KA = KB \cdot AL$. Відтак, AX = DX, тобто точ-

ка X збігається з точкою M . Аналогічно доводиться, що пряма CK також проходить через точку M .

Маємо: $\angle DME = \angle LMA = \angle CLE = 180^{\circ} - \angle DHE$ (ми використали, що чотирикутник ELCH вписаний у коло ω_2). Це означає, що точки E, M, D і H лежать на одному колі. Чотирикутник KBHF вписаний у коло ω_1 , і тому $\angle DMF = \angle KMA = \angle MKB = 180^{\circ} - \angle BHF = \angle DHF$, звідки випливає, що точки M, H, D і F лежать на одному колі.

Ми довели, що точки M, E, H, D і F лежать на одному колі. У прямокутному трикутнику HAD відрізок HM — медіана, проведена до гіпотенузи. Тому

MD=MH. Відтак, $\angle MDH=\angle MHD=\angle MED=\angle MFH$. Розглянемо трикутники MDE і MBD, в яких кут при вершині M спільний, а $\angle MED=\angle MDB$. Отже, $180^{\circ}-\angle CFE=\angle MFE=\angle MDE=\angle MBD$. З цього й одержуємо, що чотирикутник BEFC вписаний.

Зауваження. Для гострокутного трикутника ABC легко довести, що середина бісектриси AD лежить усередині обох кіл ω_1 і ω_2 . Насправді, побудуємо квадрат ABTS так, щоб точки T, C і S лежали по один бік від прямої AB. Нехай G — основа перпендикуляра, проведеного з точки B до прямої AD. Тоді $AG = AB\cos \angle BAD > AB\cos 45^\circ = \frac{AT}{2} > \frac{AD}{2} = AM$, і тому кут AMB тупий.

Аналогічно доводиться, що кут АМС також тупий.

11.5. Знайдіть усі такі дійсні значення x, для яких виконується нерівність

$$\min(\sin x, \cos x) < \min(\operatorname{tg} x, \operatorname{ctg} x).$$

(Для $a \le b \min(a, b) = \min(b, a) = a$.)

Розв'язання. З урахуванням області допустимих значень та періодичності достатньо розв'язувати нерівність на множині $(0; 2\pi) \setminus \left\{ \frac{\pi}{2}, \pi, \frac{3\pi}{2} \right\}$. Розглянемо такі випадки.

- a) Якщо $x \in \left(0; \frac{\pi}{4}\right]$, то $0 < \sin x \le \cos x$ і $0 < \operatorname{tg} x \le \operatorname{ctg} x$. У цьому випадку вихідна нерівність рівносильна нерівності $\sin x < \operatorname{tg} x$, котра, як відомо, виконується для всіх $x \in \left(0; \frac{\pi}{2}\right)$.
- б) Якщо $x \in \left(\frac{\pi}{4}; \frac{\pi}{2}\right)$, то $0 < \cos x < \sin x$ і $0 < \cot x < \tan x$. Наша нерівність матиме вигляд $\cos x < \cot x$, що, зрозуміло, виконується на розглядуваному проміжку.
- e) Якщо $x \in \left(\frac{\pi}{2}; \pi\right)$, то

$$\min(\sin x, \cos x) = \cos x > -1,$$

$$\min(\operatorname{tg} x, \operatorname{ctg} x) \le \frac{\operatorname{tg} x + \operatorname{ctg} x}{2} = \frac{\sin^2 x + \cos^2 x}{2\sin x \cos x} = \frac{1}{\sin 2x} \le -1.$$

Отже, на проміжку $\left(\frac{\pi}{2}; \pi\right)$ вихідна нерівність не виконується.

- ε) Якщо $x \in \left(\pi; \frac{3\pi}{2}\right)$, то $\min(\sin x, \cos x) < 0 < \min(\operatorname{tg} x, \operatorname{ctg} x)$, тобто вихідна нерівність виконується.
- ∂) Якщо $x \in \left(\frac{3\pi}{2}; 2\pi\right)$, то $\min(\sin x, \cos x) = \sin x > -1$, $\min(\operatorname{tg} x, \operatorname{ctg} x) \le -1$, і тому наша нерівність не виконується.

Відповідь: $\left(\pi n; \frac{\pi}{2} + \pi n\right), n \in \mathbb{Z}$.

11.6. Див. задачу 9.6.

11.7. Знайдіть усі натуральні числа n, для кожного з яких існують такі натуральні числа p і q, що $\left(n^2+2\right)^p=\left(2n-1\right)^q$.

Розв'язання. Очевидно, що $n \le 4$ умову задачі не задовольняють. Безпосередньо перевіряємо, що n = 5 задовольняє умову.

Далі вважаємо, що $n \ge 6$. Якщо r є простим дільником числа $n^2 + 2$, то $r \mid 2n-1$, і навпаки: якщо r — простий дільник числа 2n-1, то $r \mid n^2 + 2$.

Отже, візьмемо спільний простий дільник r чисел n^2+2 і 2n-1. Маємо: $n^2+2=rk$, 2n-1=rl, де k і l — натуральні числа. Тоді $\left(2n\right)^2+8=4rk$, $\left(rl+1\right)^2+8=4rk$, $r^2l^2+2rl+9=4rk$, і тому $r\mid 9$. Оскільки число r просте, то r=3. Ми встановили, що $n^2+2=3^m$, $2n-1=3^s$, де m і s — натуральні числа, причому $m>s\geq 3$. Але з останніх двох рівностей випливає, що

$$(3^s + 1)^2 + 8 = 4 \cdot 3^m, \ 3^{2s} + 2 \cdot 3^s + 9 = 4 \cdot 3^m.$$

Отже, 3^{s} | 9, що неможливо для $s \ge 3$.

Відповідь: n = 5.

11.8. Нехай O — центр описаного кола гострокутного трикутника ABC. На відрізках OB і OC вибрали точки E і F відповідно так, що BE = OF. Позначимо через M і N середини дуг AOE і AOF описаних кіл трикутників AOE і AOF відповідно. Доведіть, що $\angle ENO + \angle FMO = 2 \angle BAC$.

Розв'язання. Нехай точка D симетрична точці A відносно прямої BC. Тоді

 $\angle AOC = 2\angle ABC = \angle ABD$. Оскільки OA = OB і BA = BD, то трикутники AOC і ABD подібні. Аналогічно, $\angle AOB = \angle ACD$, і трикутники AOB та ACD подібні. З подібності названих трикутників випливає існування на відрізках BD і CD таких точок P і Q відповідно, що $\angle APB = \angle AFO$ і $\angle AQC = \angle AEO$. Оскільки $\angle ABP = \angle AOF$, то подібними будуть трикутники ABP і

AOF . Маємо: $\frac{BP}{BD} = \frac{BP}{BA} = \frac{OF}{OA} = \frac{BE}{BO}$. Отже, $PE \parallel DO$. Аналогічно доводиться, що $QF \parallel DO$. Трикутник AME є рівнобедреним. До того ж, $\angle AME = \angle AOE = \angle AOB$. Це означає, що трикутники AME і AOB подібні. Звідси одержуємо, що $\angle BAE = \angle OAM$ і $\frac{AB}{AE} = \frac{AO}{AM}$, а тому подібними будуть трикутники BAE і OAM . З подібності цих трикутників випливає, що $\frac{OM}{BE} = \frac{AO}{AB}$ і $\angle AOM = \angle ABE$. Далі, трикутник AOF подібний трикутнику ABP , і $\frac{OA}{BA} = \frac{OF}{BP}$, $\angle AOF = \angle ABP$. Відтак, $\frac{OM}{BE} = \frac{OF}{BP}$ і $\angle MOF = \angle EBP$, адже $\frac{OM}{BE} = \frac{AO}{AB} = \frac{OF}{BP}$ і $\angle MOF = \angle ADF - \angle ADM = \angle ABP - \angle ABE = \angle EBP$. Ми встановили, що трикутники AOF і ADF подібні. Аналогічно доводиться подібність трикутників ADF і ADF результаті маємо:

 $\angle ENO + \angle FMO = \angle QFC + \angle PEB = \angle DOC + \angle DOB = \angle BOC = 2\angle BAC$, що й треба було довести.

Задачі запропонували:

8.5	О. Б. Панасенко	10.5	В. М. Лейфура
8.6	I. П. Нагель	10.6	В. А. Ясінський
8.7	I. М. Мітельман, В. А. Ясінський	10.7	В. М. Радченко, В. А. Ясінський
8.8	I. М. Мітельман, В. А. Ясінський	10.8	В. А. Ясінський
9.5	I. M. Мітельман	11.5	В. М. Лейфура
9.6	В. А. Ясінський	11.6	Див. задачу 9.6
9.7	Див. задачу 8.8	11.7	I. М. Мітельман, В. А. Ясінський
9.8	В. А. Ясінський	11.8	В. А. Ясінський