PRODUCTO 2

EQUIPO 1: DE ALBA GARCÍA JESUS EDUARDO GARCIA MARTINEZ LUIS DANIEL SAINOS BONILLA CHRISTIAN ALEXIS VAZQUEZ ROJAS FRANCISCO JAVIER

INDICE DEL DOCUMENTO

ESCENARIO
Introduccion

POLITICAS IMPLEMENTADAS

• IMPLEMENTACION DE AAA

MEDIDAS DE SEGURIDAD

Identificación de puertos y DMZ

FIREWALLFILTRADO DE PAQUETES

PS

Basado en red

ALGORITMOS CRIPTOGRAFICOS

VPN Acceso remoto

- ESCENARIO NUESTRA METODOLOGÍA

ESCENARIO

INTRODUCCIÓN

NUESTRO ESCENARIO

El escenario cuenta con routers, switches (capa 2 y 3), firewall, servidores y dispositivos finales.

ANÁLISIS

El escenario cuenta con redundancia y comunicación de toda la red, asi como también un router que simula la función de isp

PLANEACIÓN

Con base al escenario se busca mantener la confidencialidad, proporcionar seguridad y buena comunicación dentro de la red

EJECUCIÓN

Se implementaron diversos métodos de seguridad dentro de la red, asi como también estrategias tanto en routers como en switches

7 POLITICAS IMPLEMENTADAS

POLITICAS DE SEGURIDAD

SE IMPLEMENTAN ACL

Esto para gantizar una mejor seguridad dentro de la red y mantener restricciones a ciertas acciones

Política 1

RED EPIC-GAMES:

Se configuró una ACL extendida en el router correspondiente que bloquea el tráfico HTTP y HTTPS hacia los servidores web alojados en el área 500.

Política 2

RED UBISOFT:

se implementó una ACL estándar en el router Steam que restringe el tráfico SSH proveniente de la red de Ubisoft.

Política 3

RED BLIZZARD:

Se estableció una ACL específica en el router Blizzard para evitar conexiones no autorizadas al servidor FTP ubicado en el área 500.

Política 4

ACL EN CISCO ASA

- access-list 100 permit icmp any any:
- access-list 100 deny icmp any any:
- access-group 100 in interface outside:.

POLITICAS DE SEGURIDAD

IDENTIFICACION DE LUGARES

Aqui se puede ver donde se implementaron las acls anteriores

Política 1

RED EPIC-GAMES:

Política 2

RED UBISOFT:

Política 3

RED BLIZZARD:

Política 4

ACL EN CISCO ASA

3 IMPLEMENTACION AAA

AAA ¿QUÉ SE LLEVO A CABO?

PASO 1

AUTENTICACION

Se crearon diversos usuarios con los nombres de:

- Employed
- Supervisor
- JR
- cisco

PASO 2

AUTENTICACION

Se realizo una configuración dentro de los router para que cada usuario pueda acceder a sus respectivos perfiles, al mismo tiempo se agregaron servidores para dicho servicio.

) #aaa new-model
) #aaa authentication login Acceso_Ssh group
) #radius-server host 83.3.128.1 key psws
) #line vty 0 4
-line) #login authentication Acceso_Ssh
-line) #

PASO 3

AUTORIZACION

Para que cada usuario pueda accede a su perfil se les dio una contraseña única del perfil y un nivel privilegio, posteriormente se encriptó para mayor seguridad

Employed privilege 5 secret 5 \$1\$mE! JR privilege 11 secret 5 \$1\$mERr\$84% Supervisor privilege 10 secret 5 \$1: cisco privilege 15 secret 5 \$1\$mERr:

PASO 4

AUTORIZACION

Dentro de los routers se configuro una verificación para alertar al usuario si hay un intento de inicio de sesión.

'Mar 01, 00:25:58.2525: SEC_LOGIN-1-QUIET_MODE_ON: Still timeleft for watching failures is 0 secs, [user: Employed] [Source: 83.3.0.3] [localport: 22] [Reason: Login Authentication Failed] [ACL: sl_def_acl] at 00:25:58 UTC Mon Mar 1 1993

*Mar 01, 00:26:28.2626: SEC_LOGIN-5-QUIET_MODE_OFF: Quiet Mode is OFF, because block period timed out at 00:26:28 UTC Mon Mar 1 1993

*Mar 01, 00:28:04.2828: SEC_LOGIN-1-QUIET_MODE_ON: Still timeleft for watching failures is 23 secs, [user: Employed] [Source: 83.3.0.3] [localport: 22] [Reason: Login Authentication Failed] [ACL: sl_def_acl] at 00:28:04 UTC Mon Mar 1 1993

'Mar 01, 00:28:34.2828: SEC_LOGIN-5-QUIET_MODE_OFF: Quiet Mode is OFF, because block period timed out at 00:28:34 UTC Mon Mar 1 1993

MEDIDAS DE SEGURIDAD IDENTIFICACION DE PUERTOS Y DMZ

NUESTRA DMZ

Ubicación

¿DONDE SE UBICO?

Nuestra DMZ se ubico en un switch de capa 3 el cual esta conectado a el router de la red de UBISOFT y este cuenta con seguridad en los puertos y negociacion para identificar el puerto

¿Porque?

SE DECIDIO HACER UNA DM7

 Aqui se asegura la zona mas importante de nuestra infraestructura ya que esta cuenta con distintos servidores que cumplen con diversas funciones tales como: WEB, TFTP, FTP y DHCP.
 Ademas por seguridad esta solo cuenta con el acceso de un solo router

```
interface FastEthernet0/5
 switchport mode access
 switchport nonegotiate
 switchport port-security
interface FastEthernet0/6
switchport mode access
 switchport nonegotiate
 switchport port-security
interface FastEthernet0/7
 switchport mode access
 switchport nonegotiate
 switchport port-security
interface FastEthernet0/8
 switchport mode access
 switchport nonegotiate
 switchport port-security
interface FastEthernet0/9
 switchport mode access
 switchport nonegotiate
 switchport port-security
interface FastEthernet0/10
 switchport mode access
 switchport nonegotiate
 switchport port-security
interface FastEthernet0/11
 switchport mode access
```

5 FIREWALL FILTRADO DE PAQUETES

FIREWALL

FIREWALL ASA

Se opto por utilizar este firewall conectado a los router del ISP y Microsoft esto gracias a que conectan la red LAN con la red WAN y proporcionan una mayor seguridad

FUNCIONALIDAD

CONFIGURACION

El firewall cumple con

la función de NAT.

para traducir object network LAN

direcciones IP subnet 83.0.0.0 255.0.0.0
nat (inside,outside) dynamic interface

privadas a publicas, se configuró una ruta

estática para

mantener conexión

con la red y ACLS

access-list outbound extended permit ip any any access-list 100 extended permit icmp any any access-list 100 extended deny icmp any any

G IPS BASADO EN RED

IPS BASADO EN RED

IPS

- El router tiene como función detectar y prevenir amenazas mediante la inspección del tráfico en tiempo real, utilizando firmas predefinidas.
- Además, se configuraron acciones para generar alertas y bloquear los paquetes maliciosos en el momento en que se detecta una amenaza.
- La firma de seguridad configurada (ID 2004) se activó correctamente y está lista para prevenir ataques específicos en la red.

```
%IPS-4-SIGNATURE: Sig:2004 Subsig:0 Sev:25 [215.192.168.8 -> 83.4.64.29:0] RiskRating:25 %IPS-4-SIGNATURE: Sig:2004 Subsig:0 Sev:25 [215.192.168.9 -> 83.4.64.29:0] RiskRating:25 %IPS-4-SIGNATURE: Sig:2004 Subsig:0 Sev:25 [215.192.168.8 -> 83.4.64.29:0] RiskRating:25 %IPS-4-SIGNATURE: Sig:2004 Subsig:0 Sev:25 [215.192.168.8 -> 83.4.64.29:0] RiskRating:25 %IPS-4-SIGNATURE: Sig:2004 Subsig:0 Sev:25 [215.192.168.9 -> 83.4.64.29:0] RiskRating:25 %IPS-4-SIGNATURE: Sig:2004 Subsig:0 Sev:25 [83.4.64.29 -> 83.4.64.10:0] RiskRating:25
```

7 ALGORITMOS - CRIPTOGRAFICOS

CRIPTOGRFIA

Se utilizo una enryptacion de hash cuando se creo la VPN de aaceso remoto

Se utilizo una encryptacion de AES con 256 Bits para la configuracion de la VPN

```
crypto isakmp policy 5
encr aes 256
authentication pre-share
group 5
```

CRIPTOGRFIA

3 RSA

Se utiliza un encryptamiento para llaves de 1024 cuando se configura el servicio de SSH

router(config)# ip domain-name CCNA-lab.com router(config)# crypto key generate rsa router(config)# ip ssh version 2

PASSWORD

Cuando se configura la contraseña uno de los pasos posteriores es aplicar el comando service password-encrption para mantener a contraseña encryptada

service password-encryption security passwords min-length 10

S - VPN ACCESO REMOTO

VPN DE ACGESO REMOTO

IMPLEMENTACION DE VPN

Brinda mas seguridad y confidencialidad dentro de os pquetes enviadoe en la red

Se coloco un router conectado a MICROSOFT que cumple con la función de una VPN de acceso remoto la cual permita los usuarios de la red que accedan a el y rinde un túnel seguro.

 Cada usuario tiene acceso a un canal privado remotamente, esto proporciona mayor seguridad para garantizar que las conexiones remotas sean seguras, confiables y eficientes.

GRACIAS POR SU ATENCIÓN