Diastereoselective Asymmetric Allylation of Chiral α -Keto-amides with Allyltrimethylsilane. Preparation of Protected Homoallylic Alcohols

Kenso Soai* and Miyuki Ishizaki

Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

In the presence of Lewis acids, protected homoallylic alcohols of high diastereoisomeric excesses (up to 89%) were obtained by the addition of allyltrimethylsilane to chiral α -keto-amides derived from (S)-proline esters.

Lewis acid-promoted allylation of carbonyl compounds with allyltrimethylsilane (Sakurai reaction) has served as a versatile tool for the preparation of homoallylic alcohols. Asymmetric reactions for carbon—carbon bond formation are of current interest, but only moderate asymmetric induction [23—56% diastereoisomeric excess (d.e.)] is reported in such a reaction

using a chiral α -keto-ester derived from (-)-menthol.³ We recently reported the use of the chiral α -keto-amide (1a,b) derived from methyl (S)-prolinate in the diastereoselective reduction with sodium borohydride.⁴

When (1a) was treated with allyltrimethylsilane in the presence of tin tetrabromide in CH₂Cl₂ at 0 °C, (2a) in 87%

Table 1. Asymmetric addition of allyltrimethylsilane to (1) in the presence of a Lewis acid.^a

				(2a—c)	
	Lewis	Temp.	Time	Yield ^b	
(1)	acid	(°C)	(h)	(%)	(% d.e.) ^c
a	SnCl ₄	-40	3	40	80
a	SnCl ₄	-78	4	32	87
a	$SnBr_4$	-40→Room temp.	44	53	81
a	$SnBr_4$	0	24	50	87
a	$SnBr_4^d$	0→Room temp.	46	17	84
a	TiCl ₄	0	1	80	7
a	TiCl ₄	-40	3	65	18
a	TiCl4d	-40	3	65	75
a	TiCl ₄	-78	6	52	47
a	TiCl4d	-78	6	17	70
a	AlCl ₃	-40	3	66	41
b	TiCl ₄	-78	3	47	56
b	SnCl ₄	-78	3	67	45
c	TiCl ₄	-78	5	58	75
c	SnCl ₄	-78	4.5	46	89

^a Unless otherwise noted, CH₂Cl₂ was used as solvent. ^b Isolated yield. ^c D.e. = diastereoisomeric excess, determined by g.l.c. analysis. (2a); Silicone SE-30, 25 m capillary column, column temp. 170 °C, flame ionisation detector; retention time 37.6 min for the major diastereoisomer and 45.6 min for the minor isomer. (2b); Poly(ethylene glycol) (PEG)-20M, 25 m capillary column, column temp. 180 °C, flame ionisation detector; retention time 14.1 min for the minor isomer and 15.1 min for the major isomer. Compound (2c) was converted into (2a) by titanate-mediated transesterification (D. Seebach, E. Hungerbuhler, R. Naef, P. Schnurrenberger, B. Weidmann, and M. Zuger, *Synthesis*, 1982, 138), and then characterized as described for (2a). ^d Mixed solvent was used [CH₂Cl₂: n-hexane 2:1 (v/v)].

d.e. (g.l.c.) was obtained, see Table 1. It should be noted that the enhancement of % d.e. of (2a) by recrystallisation was promising. One recrystallisation of (2a) in 81% d.e. from n-hexane afforded (2a) in 98% d.e. When titanium tetra-

$$R^{1}-C-C-N$$

$$Q = CH_{2}=CHCH_{2}SiMe_{3}$$

$$CH_{2}=CHCH_{2}-C+C-N$$

$$Q = CHCH_{2}-C+C+N$$

$$Q = CHCH_{2}-C+N$$

$$Q = CHC$$

chloride was used as the Lewis acid, a heterogeneous reaction mixture (mixed solvent of n-hexane and CH₂Cl₂) was found to achieve higher stereoselectivity than a homogeneous reaction mixture (solvent, CH₂Cl₂ only). Compounds (1b) and (1c) were also converted into (2b) and (2c) respectively in good to high diastereoisomeric excesses (56—89% d.e.). Chelation of the Lewis acid with oxygen atom(s) of the ester group of (1), which does not occur in the conventional method,³ may reduce the number of possible conformations of (1), and hence be one of the reasons for the high diastereoselectivity.

As noted previously,⁵ (2) is the synthetic equivalent of the product from a crossed-aldol reaction. The present observations compete with the recently reported diastereoselective ene reaction of chiral α -keto-esters.⁵

Received, 26th March 1984; Com. 406

References

- 1 A. Hosomi and H. Sakurai, Tetrahedron Lett., 1976, 1295.
- 2 For a review, see J. W. ApSimon and R. P. Seguin, *Tetrahedron*, 1979, 35, 2797.
- 3 I. Ojima, Y. Miyazawa, and M. Kumagai, J. Chem. Soc., Chem. Commun., 1976, 927.
- 4 K. Soai, K. Komiya, Y. Shigemetsu, H. Hasegawa, and A. Ookawa, J. Chem. Soc., Chem. Commun., 1982, 1282.
- 5 J. K. Whitesell, D. Deyo, and A. Bhattacharya, J. Chem. Soc., Chem. Commun., 1983, 802.