Teoria e concetti rilevanti

Heap Overflow

Un heap overflow si verifica quando viene scritto più del dovuto nella memoria allocata dinamicamente (heap), andando a sovrascrivere dati adiacenti o strutture di gestione della memoria. In questo caso, la vulnerabilità deriva dall'uso della funzione gets(), che non limita la lunghezza dell'input e consente un overflow.

Struttura dei Dati su Heap e Booleani

In questa applicazione, la struttura utente è allocata dinamicamente su heap. La funzione gets() scrive i dati degli utenti nome_utente, password ed email senza alcun controllo, consentendo la scrittura continua fino alla sovrascrittura di is_admin. Essendo un bool, is_admin assume valori true o false e quindi, con un overflow appropriato, si può impostare is_admin a un valore true (qualsiasi valore non nullo).

CWE Coinvolti

- **CWE-122** Heap-based Buffer Overflow: la vulnerabilità principale dovuta alla possibilità di eccedere i limiti di un buffer allocato su heap.
- **CWE-242** Use of Inherently Dangerous Function (gets): gets() è usata senza controllare la lunghezza dell'input, permettendo l'overflow.
- **CWE-787** Out-of-bounds Write: si verifica quando il buffer viene riempito oltre i limiti previsti, scrivendo in aree di memoria non destinate.

Soluzione dettagliata e passaggi

- Analisi del binario: Dopo aver lanciato il binario, osserviamo il menù principale che
 consente di registrare utenti e di effettuare il login. Analizzando i permessi, notiamo che
 is_admin è settato solo per l'utente admin, mentre ogni altro utente viene registrato
 come non amministratore.
- 2. Esplorazione del codice con pwndbg:
 - Esaminando le funzioni con info functions, troviamo registrazione_utente.
 - Settando breakpoint su registrazione_utente e osservando malloc, si vede che alloca 71 byte, sufficienti per memorizzare nome_utente, password, email e is_admin.

3. Comprendere la disposizione della memoria:

- La struttura dell'utente è composta da:
 - nome_utente di 20 byte.
 - password di 20 byte, che inizia a 20 byte dall'inizio.
 - email di 30 byte, iniziando a 40 byte dall'inizio.
 - is_admin è posizionato dopo email, quindi al byte 70.
- Obiettivo: sovrascrivere is_admin utilizzando un overflow di email, impostandolo a un valore diverso da zero (true).

4. Sovrascrivere is_admin con overflow:

- Inserendo un nome_utente e una password di 20 byte ciascuno, email inizierà a byte 40 e, utilizzando 31 byte, potrà sovrascrivere is_admin.
- Questo significa che un input di 31 byte sovrascriverà is_admin con un valore non nullo, abilitando l'accesso da amministratore.

5. Effettuare il login come amministratore:

- Dopo aver registrato l'utente con un overflow nell'email, inseriamo il nome_utente e password usati in fase di registrazione.
- Verifichiamo che is_admin è true e riceviamo la flag HHC {4dm1n_f14g_1534}.

Codice d'esempio per overflow di email

Di seguito, un esempio di input:

```
yaml
Copy code
Nome utente: Utente20Caratteri
```

Con questi input, is_admin viene impostato a un valore diverso da zero e consente l'accesso amministrativo.