Electric Field Plots for Various Charge Distributions

Physics 77 Capstone Project Emil Albrychiewicz, Evan Deddo

The University of California, Berkeley

May 4 2018

Theory

The electric field around a point charge Q is given by

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{\mathbf{r}} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^3} \mathbf{r}$$
 (1)

Where \mathbf{r} is the position vector of the test charge.

The electric field for a continuous charge distribution is obtained by a volume integral

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{V} \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} dV(\mathbf{r}')$$
 (2)

where \mathbf{r} and \mathbf{r}' are the position vectors of the test charge and volume element, respectively, and $\rho(\mathbf{r}')$ is the charge density at location \mathbf{r}' .

Charge distributions objects

Figure: Dipole

Figure: Sphere

Figure: Cube

Figure: Torus

Methods

- The fields around the point charge and dipole will be calculated using equation (1).
- II The rest of the fields will be computed using equation (2) and numerical integration.
- III Vpython and the quiver3d function from the matplotlib library will be used to produce the plots.

Vector Field for Point Charge

Vector Field for Dipole

Vector Field for Uniformly Charged Sphere

Vector Field for Charged Slab

Vector Field for Plane

Vector Field for Tiny Cube (Point)

Vector Field for Rod

Vector Field for Ring

Vector Field for Torus

Vector Field for Torus

References

E. M. Purcell and D. J. Morin, *Electricity and Magnetsim*, Third Edition, Cambridge Univ. Press, 2013.