Grafos

Algoritmo de Prim

Prof. Edson Alves

Faculdade UnB Gama

Proponentes

Vojtěch Jarník (1930)

Robert Clay Prim (1957)

Edsger Wybe Dijkstra (1959)

 \star O algoritmo de Prim encontra uma MST usando uma abordagem gulosa

* O algoritmo de Prim encontra uma MST usando uma abordagem gulosa

 \star Um vértice u é escolhido para iniciar um componente conectado C

- * O algoritmo de Prim encontra uma MST usando uma abordagem gulosa
- \star Um vértice u é escolhido para iniciar um componente conectado C
- \star Enquanto C
 eq V, é identificado o vértice $u
 ot \in C$ mais pŕoximo de C

- \star O algoritmo de Prim encontra uma MST usando uma abordagem gulosa
- \star Um vértice u é escolhido para iniciar um componente conectado C
- \star Enquanto $C \neq V$, é identificado o vértice $u \not\in C$ mais proximo de C
- \star Então u é inserido em C e a aresta que uniu u a C faz parte de uma MST

- * O algoritmo de Prim encontra uma MST usando uma abordagem gulosa
- \star Um vértice u é escolhido para iniciar um componente conectado C
- \star Enquanto $C \neq V$, é identificado o vértice $u \not\in C$ mais proximo de C
- \star Então u é inserido em C e a aresta que uniu u a C faz parte de uma MST
- \star Complexidade: $O(E \log V)$

Entrada: um grafo ponderado G(V,E)

Saída: uma MST de ${\it G}$

Entrada: um grafo ponderado G(V,E)

Saída: uma MST de G

1. Escolha um vértice $u \in V$ e faça $C = \{u\}, M = \emptyset$

Entrada: um grafo ponderado G(V, E)

Saída: uma MST de G

- 1. Escolha um vértice $u \in V$ e faça $C = \{u\}, M = \emptyset$
- 2. Enquanto $C \neq V$:
 - (a) Escolha o vértice $v \not\in C$ mais próximo de C
 - (b) Inclua v em C e a aresta que une v a C em M

Entrada: um grafo ponderado G(V, E)

Saída: uma MST de G

- 1. Escolha um vértice $u \in V$ e faça $C = \{u\}, M = \emptyset$
- 2. Enquanto $C \neq V$:
 - (a) Escolha o vértice $v \not\in C$ mais próximo de C
 - (b) Inclua v em C e a aresta que une v a C em M
- 3. Retorne M

Identificação eficiente do vértice mais próximo de C

Identificação eficiente do vértice mais próximo de C

 \star A complexidade do algoritmo de Prim depende da identificação eficiente do vértice v mais próximo de C

Identificação eficiente do vértice mais próximo de $\it C$

 \star A complexidade do algoritmo de Prim depende da identificação eficiente do vértice v mais próximo de C

 \star O vértice $v \not\in C$ é o mais próximo de C se v minimiza a distância

$$\operatorname{dist}(v,C) = \min_{u \in C} \left\{ \operatorname{dist}(v,u) \right\}$$

Identificação eficiente do vértice mais próximo de $\it C$

- \star A complexidade do algoritmo de Prim depende da identificação eficiente do vértice v mais próximo de C
 - \star O vértice $v \not\in C$ é o mais próximo de C se v minimiza a distância

$$\operatorname{dist}(v,C) = \min_{u \in C} \; \{ \; \operatorname{dist}(v,u) \; \}$$

 \star Uma forma de se identificar v é manter uma fila com prioridades q

Identificação eficiente do vértice mais próximo de C

 \star Inicialmente, q estará vazia

Identificação eficiente do vértice mais próximo de C

 \star Inicialmente, q estará vazia

 \star Esta fila será ordenada, de forma ascendente, pelas distâncias até C

Identificação eficiente do vértice mais próximo de $\it C$

- \star Inicialmente, q estará vazia
- \star Esta fila será ordenada, de forma ascendente, pelas distâncias até C
- \star A cada vértice adicionado a C (inclusive o u inicial), insira em q pares (w,v), onde w o peso da aresta que une o vértice $v\not\in C$ a u

Identificação eficiente do vértice mais próximo de $\it C$

- \star Inicialmente, q estará vazia
- \star Esta fila será ordenada, de forma ascendente, pelas distâncias até C
- \star A cada vértice adicionado a C (inclusive o u inicial), insira em q pares (w,v), onde w o peso da aresta que une o vértice $v \not\in C$ a u
- \star O vértice mais proximo v será dado pelo par mais proximo do início da fila tal que $v\not\in C$

```
int prim(int u, int N)
    set<int> C;
    C.insert(u);
    priority_queue<ii, vector<ii>, greater<ii>>> pq;
    for (auto [v, w] : adj[u])
        pq.push(ii(w, v));
    int mst = 0;
    while ((int) C.size() < N)
        int v, w;
```

```
do {
        w = pq.top().first, v = pq.top().second;
        pq.pop();
    } while (C.count(v));
    mst += w;
    C.insert(v);
   for (auto [s, p] : adj[v])
       pq.push(ii(p, s));
return mst;
```


 \star Uma MST minimiza o maior peso entre as arestas presentes em qualquer árvore geradora

 \star Uma MST minimiza o maior peso entre as arestas presentes em qualquer árvore geradora

* O problema de se minimizar tal peso é denominado minimax

- \star Uma MST minimiza o maior peso entre as arestas presentes em qualquer árvore geradora
 - * O problema de se minimizar tal peso é denominado minimax
- \star Uma variante deste problema é o *maximin*, que maximiza o menor peso entre as arestas presentes em qualquer árvore geradora

- \star Uma MST minimiza o maior peso entre as arestas presentes em qualquer árvore geradora
 - * O problema de se minimizar tal peso é denominado *minimax*
- \star Uma variante deste problema é o *maximin*, que maximiza o menor peso entre as arestas presentes em qualquer árvore geradora
 - * Uma variante simples do algoritmo de Prim resolve o minimax


```
int minimax(int u, int N)
{
    set<int> C;
    C.insert(u);
    priority_queue<ii, vector<ii>, greater<ii>> pq;
    for (auto [v, w] : adj[u])
       pq.push(ii(w, v));
    int minmax = -oo;
    while ((int) C.size() < N)
        int v, w;
```

```
do {
        w = pq.top().first, v = pq.top().second;
        pq.pop();
    } while (C.count(v)):
    minmax = max(minmax, w);
    C.insert(v);
    for (auto [s, p] : adj[v])
       pq.push(ii(p, s));
return minmax;
```

 \star Seja G(V,E) um grafo conectado e ponderado e $E'\subset E$

 \star Seja G(V,E) um grafo conectado e ponderado e $E'\subset E$

 \star O menor subgrafo gerador $S_{E'}$ de G é um subgrafo conectado que contém todas as arestas E' e que tem custo mínimo

- \star Seja G(V,E) um grafo conectado e ponderado e $E'\subset E$
- \star O menor subgrafo gerador $S_{E'}$ de G é um subgrafo conectado que contém todas as arestas E' e que tem custo mínimo
 - \star Por conta da restrição E', $S_{E'}$ não é, necessariamente, uma MST

- \star Seja G(V,E) um grafo conectado e ponderado e $E'\subset E$
- \star O menor subgrafo gerador $S_{E'}$ de G é um subgrafo conectado que contém todas as arestas E' e que tem custo mínimo
 - \star Por conta da restrição E', $S_{E'}$ não é, necessariamente, uma MST
- \star 0 menor subgrafo gerador pode ser encontrado atribuíndo a C todos os vértices ligados por alguma aresta em E' no passo inicial do algoritmo de Prim

- \star Seja G(V,E) um grafo conectado e ponderado e $E'\subset E$
- \star O menor subgrafo gerador $S_{E'}$ de G é um subgrafo conectado que contém todas as arestas E' e que tem custo mínimo
 - \star Por conta da restrição E', $S_{E'}$ não é, necessariamente, uma MST
- \star O menor subgrafo gerador pode ser encontrado atribuíndo a C todos os vértices ligados por alguma aresta em E' no passo inicial do algoritmo de Prim
 - * A complexidade é a mesma do algoritmo original


```
int msg(int N, const vector<edge>& es)
{
    set<int> C;
    priority_queue<ii, vector<ii>, greater<ii>> pq;
    int cost = 0;
    for (auto [u, v, w] : es)
        cost += w;
        C.insert(u);
        C.insert(v);
        for (auto [r, s] : adj[u])
            pq.push(ii(s, r));
        for (auto [r, s] : adj[v])
            pq.push(ii(s, r));
```

```
while ((int) C.size() < N)</pre>
    int v, w;
    do {
        w = pq.top().first, v = pq.top().second;
        pq.pop();
    } while (C.count(v));
    cost += w;
    C.insert(v);
    for (auto [s, p] : adj[v])
        pq.push(ii(p, s));
return cost;
```

Problemas sugeridos

- 1. CSES 1675 Road Reparation
- 2. **OJ 10048 Audiophobia**
- 3. OJ 10099 Tourist Guide
- 4. SPOJ IITKWPCG Help the old King

Referências

- 1. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 2. IT History Society. Dr. Robert Clay Prim, acesso em 28/08/2021.
- 3. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 4. Wikipédia. Edsger Wybe Dijkstra, acesso em 28/08/2021.
- 5. Wikipédia. Prim's algorithm, acesso em 28/08/2021.
- 6. Wikipédia. Vojtěch Jarník, acesso em 28/08/2021.