Measure Theory

Mark Ibrahim

*based on Principles of Real Analysis by Aliprantis and Burkinshaw

Contents

1	1 Preliminaries 1			
2	Alg	Algebras and Measures		
	2.1			
		2.1.1 semirings		
	2.2	Measures on Semirings (section 13)		
		2.2.1 Examples of Measures on S		
	2.3	Outer Measures (section 14)		
	2.4	Outer Measures generated by a meas	ure (section 15)	
		2.4.1 Cantor Set		
	2.5			
		2.5.1 What are the Borel sets in the	e reals? 4	
		2.5.2 Regular Borel Measure		
3	Inte	Integration: functions		
	3.1			
			Measurability 4	
	3.2		5)	
		3.2.1 sigma-finite		
4	Leb	Lebesgue Integral		
	4.1	Upper Functions (section 21)		
5	Questions			
1	\mathbf{P}_{1}	reliminaries	union of countably sets is countable.	
	c		·	
a function $f: A \to B$ is continuous $\iff f^{-1}$ (open set) is an open set. a bounded sequence a_n has a $\limsup \{a_N, a_{N+1}, \dots\}$			2 Algebras and Measures	
			2 Algebras and Measures	
			0.1 Cominings and Cigno	
$N{ ightarrow}\infty$			2.1 Semirings and Sigma-	
, i			algebras of Sets (section	
a_n converges if $\limsup = \liminf$.			12)	
A Hausdorff topological space (T2				
space) is a topological space where any two			2.1.1 semirings	
points can be seperated by open sets. $\max\{a,b\} = \frac{a+b}{2} + \frac{ a-b }{2}.$			a collection S of subsets of a set X is called	
			a semiring if	

- 1. $\emptyset \in S$,
- 2. $A \cap B \in S$, and
- 3. $A-B=C_1\cup\ldots C_n$ for $C_1,\ldots C_n\in S$.

Any countable union in S can be written as a countable **disjoint** union.

e.g., $S=\{[a,b)|a\leq b\in\mathbb{R}\}$ is a semiring, not an algebra.

* note $[a, a) = \emptyset$.

2.1.2 algebras

a nonempty collection S of subsets of a set X is an **algebra** if

- 1. $A \cap B \in S$
- 2. and $A^c \in S$.

Nice properties of algebras are:

- $\emptyset, X \in S$
- S is closed under finite unions and finite intersections as well as subtraction

a σ -algebra is an algebra that is closed under countable unions.

Borel sets of a topological space (X, T) ¹ is a σ -algebra generated by the open sets.

2.2 Measures on Semirings (section 13)

A function μ from a semiring S to $[0, \infty]$ is a **measure on** S if

- 1. $\mu(\emptyset) = 0$
- 2. countably additive: $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

- * $\bigcup_{n=1}^{\infty} A_n$ must be in S and each is disjoint.
- * don't need to check if S is a σ -algebra!
- If $A \subseteq B$, $(A, B \in S)$, then $\mu(A) \le \mu(B)$.

Alternatively, can show μ is a measure if and only if "squeeze"

- 1. $\mu(\emptyset) = 0$
- 2. $\sum_{i=1}^{n} \mu(A_i) \leq \mu(A) \text{ if } \bigcup_{i=1}^{n} A_i \subseteq A$ and A_i are disjoint.
- 3. $\mu(B) \leq \sum_{n=1}^{\infty} \mu(B_n)$, "subadditive" if $B \subseteq \bigcup_{n=1}^{\infty} B_n$.

2.2.1 Examples of Measures on S

- Counting Measure $\mu(A) = |A|$
- Dirac Measure Fix $a \in X$, $\mu_a(A) = 0$ if $a \notin A$, else 1.
- Lebesgue Stieltjes For $f: \mathbb{R} \to \mathbb{R}$, increasing, left continuous and $S = \{[a,b)|a \leq b \in \mathbb{R}\}, \, \mu([a,b)) = f(b) f(a).$
 - **Lebesgue Measure on** S, denoted λ is defined by $\lambda([a,b)) = b a$.

2.3 Outer Measures (section 14)

an **outer measure** is a function $\bar{\mu}$: $P(X) \rightarrow [0, \infty \text{ such that}]$

- 1. $\bar{\mu}(\emptyset) = 0$
- 2. if $A \subseteq B$, $\bar{\mu}(A) \le \mu(B)$
- 3. countably subadditive: $\bar{\mu}(\bigcup_{n=1}^{\infty} A_n)$ $\leq \sum_{n=1}^{\infty} \mu(A_n)$

 $[\]overline{(X, \overline{T})^{1}}$ is a topological space with a set X and subsets T if $\emptyset, X \in \overline{T}$, and T is closed under unions (even uncountable), finite intersections.

*an outer measure is not always a measure!

A subset E of X is **measurable** if for all $A \subseteq X$,

$$\bar{\mu}(A) = \bar{\mu}(A \cap E) + \bar{\mu}(A \cap E^c)$$

A nicer equivalent way to show E is measurable is by considering all A in S with $\mu^*(A) < \infty$ and showing

$$\mu(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Nice Properites

- every A in S is μ^* -measurable
- if $\bar{\mu}(E) = 0$, E is measurable
- for E_i measurable and any $A \subseteq X$, $\bar{\mu}(\cup_{i=1}^n A \cap E_i) = \sum_{i=1}^n \bar{\mu}(A \cap E_i)$

the collection of measurable subsets is denoted by Λ . This collection is a σ -algebra!

Remarkably, the outer measure $\bar{\mu}$ restricted to Λ is a measure!

2.4 Outer Measures generated by a measure (section 15)

The outer measure μ^* generated by a measure μ is defined for any subset A of X, $\mu^*(A) =$

$$\inf\{\sum_{n=1}^{\infty}\mu(A_n): A\subseteq \cup_{n=1}^{\infty}A_n \text{ for } A_n\in S\}$$

 μ^* is called the Cathéodory extension of μ . By convention $\mu^*(A)=\infty$ if no cover exits in S.

On semiring S, $\mu * = \mu$.

For E_n measurable, if $E_n \uparrow E$, then $\mu^*(E_n) \uparrow \mu^*(E)$ For B_n measurable with $\mu^*(B_n) < \infty$, if $B_n \downarrow B$, then $\mu^*(B_i) \downarrow \mu^*(B)$.

a measure space if **finite** if $\mu^*(X) < \infty$.

For X a **finite measure** space E is measurable, if and only if

$$\mu^*(E) + \mu^*(E^c) = \mu^*(X)$$

For all $A \subseteq X$, there is a measurable set E such that $A \subseteq E$ and $\mu^*(A) = \mu^*(E)$.

2.4.1 Cantor Set

Cantor set
$$C = \bigcap_{n=1}^{\infty} c_n$$
, where $c_1 = [0, 1] - (1/3, 2/3)$
 $c_2 = c_1 - ((1/9, 2/9) \cup (7/9, 8/9))$

each c_n is closed, because it's a closed set minus open sets.

- C has measure 0
- $|C| = |\mathbb{R}|$
- every point of ${\cal C}$ is an accumulation point of ${\cal C}$

Vitali set is an example of a **non-measurable** subset of \mathbb{R} .

2.5 Lebesgue Measure (section 18)

Outer Lebesgue measure λ^* is defined

as
$$\lambda^*(A) = \inf\{\sum_{i=n}^{\infty} \lambda(a_n, b_n) : A \subset \bigcup_{n=1}^{\infty} (a_n, b_n)\}$$
* note $\lambda(a, b) = b - a$.

* often, we say Lebesgue measure instead of outer Lebesgue measure.

By result about $E_n \uparrow E$ from section 15, we can show (a, b), [a, b], and (a, b] are all measurable with same measure.

 $E \subseteq \mathbb{R}$ is **Lebesgue measurable** \iff there is open $O \subseteq \mathbb{R}$ for each ϵ such that $E \subseteq O$ and $\lambda(O - E) < \epsilon$.

Every Borel set in \mathbb{R} is λ -measurable

2.5.1 What are the Borel sets in the reals?

By definition, it's the σ -algebra generated by open sets in \mathbb{R} . (Borel σ -algebra is generated by intervals of the form $(-\infty, a]$, for $a \in \mathbb{Q}$).

Borel sets contain:

- · all closed sets
- union of all open sets or closed sets
- intersection of all open/closed sets

* we can write any open set in \mathbb{R} as disjoint countable union of open intervals!

2.5.2 Regular Borel Measure

For X, a Hausdorff topological space and B the borel sets in X, a measure μ on B is called a **regular borel measure** if

- 1. $\mu(K) < \infty$ if K is compact
- 2. for B a borel set, $\mu(B) = \inf\{\mu(O)|O \text{ is open } B \subseteq O\}$
- 3. for O open, $\mu(O) = \sup\{\mu(K)|K \text{ is compact and } K \subseteq O\}$
- 1. λ is a regular borel measure
- 2. Durac measure is a regular borel measures
- 3. Counting measure is not for example [0, 1] is compact, but has infinite measure
- 4. any **translation invariant** regular borel measure on \mathbb{R} is $c\lambda$ for some $c \in \mathbb{R}^+$

3 Integration: functions

3.1 Measurable Functions (section 16)

a relation holds **almost everywhere** if set where it fails has measure 0.

 $f:X \to \mathbb{R}$ is a measurable function if

- $f^{-1}(O)$ is measurable, for all open sets O
- $f^{-1}(a, \infty)$ is measurable, for all a in \mathbb{R}

If $f, g: X \to \mathbb{R}$, f = g almost everywhere and f is measurable, then g is measurable too!

"= a.e. means measurability carries over"

If $f, g: X \to \mathbb{R}$ are **measurable** then $\{x \in X | f(x) > g(x)\}$ is measurable.

Sum, product, constant multiple, ||, \max , and f^{+} of measurable functions is also measurable!

3.1.1 Sequences of Functions and Measurability

recall (from analysis): $f_n \to f$ uniformly means $|f_x(x) - f(x)| < \epsilon$ for all x if you go out far enough in the sequence.

Key Theorem: If $f_n \to f$ uniformly and f_n are continuous, then f is continuous.

We can define \limsup (\liminf) for any **bounded** sequence.

For a sequence of measurable functions $\{f_n\}_{n=1}^{\infty}$

- If $f_n \to f$ a.e., then f is measurable func
- If $\{f_n\}_{n=1}^{\infty}$ is bounded, then \limsup is a measurable function (so is \liminf)

 $[\]frac{1}{2}f^+ = f(x)$ if $f(x) \ge 0$ or 0 otherwise.

A sequence of functions, $\{f_n\}_{n=1}^{\infty}$ $(f_n : X \to \mathbb{R})$ converges **almost uniformly** on X if for any ϵ , there exists a measurable set F where $\mu(F) < \epsilon$ and $\{f_n\} \to f$ **uniformly** on X - F.

If $f_n \to f$ almost uniformly on X and $\mu(X) < \infty$ then, $|f_n(x) - f(x)| < \epsilon$ for all n > some $N \in \mathbb{N}$, and all x in a set J where $\mu(J^c) < \delta$.

3.1.2 Ergov's Theorem (16.7)

If $f_n \to f$ almost uniformly on X, then $f_n \to f$ pointwise almost everywhere on X.

Also, if $\mu(X) < \infty$ and $f_n \to f$ pointwise on X, then $f_n \to f$ uniformly on X.

counter example: if $\mu(X)$ is not finite, consider $X=\mathbb{R},$ $\mu=\lambda$ and $f_n=\chi_{[n,n+1)}.$ Then, $f_n\to 0$, but not almost uniformly

3.2 Simple and step functions (section 17)

nice properties of χ_A

- $A \subseteq B \iff \chi_A \le \chi_B$
- $\chi_{A \cap B} = \chi_A \chi_B$ (equivalently $\min\{\chi_A, \chi_B\}$)
- $\chi_{A \cap B} = \chi_A + \chi_B \chi_{A \cap B} (= \max\{\chi_A, \chi_B\})$

a measurable function $f:X\to\mathbb{R}$ is a **simple function** if it takes on finitely many values.

the standard representation of a simple function is

$$\sum_{i}^{n} a_{i} \chi_{Ai}$$

where a is are distinct nonzero outputs and A inputs

If each A_i has finite measure, then f is called a **step function**.

The **integral** of a step function ϕ is

$$\int \phi du = \sum_{i}^{n} a_{i} \mu^{*}(A_{i})$$

*it turns out any representation, even when A_i are not disjoint (or a_i distinct) yield the same integral value

addition and scalar multiplication can be split over integrals as expected.

If
$$\phi \ge \psi$$
 a.e., then $\int \phi \ge \int \psi$ *holds if $\psi = 0$ or \ge is $=$

If ϕ_n is a **sequence of step functions** with $\phi_n \downarrow 0$ a.e., then $\int \phi_n \downarrow 0$. (similarly if $\phi_n \uparrow \psi$ a.e.)

*careful, $\uparrow \psi$, but $\downarrow 0$

* also $\phi_n \to \phi$ isn't good enough!

If $\phi_n \uparrow f$ a.e. and $\psi_n \uparrow f$ a.e., then

$$\int \phi_n = \int \psi_n \text{ as } n \to \infty$$

We can show A is **measurable** if we can find step functions $\phi_n \uparrow \chi_A$. In this case, $\mu^*(A) = \lim_{n \to \infty} \int \phi_n$

For any measurable $f \ge 0$, there exists ϕ_n (step) such that

$$0 > \phi_n \uparrow f$$

3.2.1 sigma-finite

X is a σ -finite measure space if there exists E_i such that $\bigcup_{i=1}^{\infty} E_i = X$, $\mu(E_i) < \infty$, and $E_1 \subseteq E_2 \subseteq \dots$

Who cares? Well if, X is σ -finite then for a **measurable** $f \geq 0$ a.e., then there exists **step** $\phi_n \uparrow f$ a.e.

4 Lebesgue Integral

4.1 Upper Functions (section 21)

 $f: X \to \mathbb{R}$ is an **upper function** if there exist step ϕ_n such that

•
$$\phi_n \uparrow f$$
 a.e.

•
$$\lim \int \phi_n du < \infty$$

 ϕ_n is called a **generating sequence** for f. *all step functions are upper functions

an step resilents are appearance.

The integral of f an **upper function** is defined as

$$\int f du = \lim \int \phi_n du$$

* the value is independent of our choice of ϕ_n because if any other $\psi_n \uparrow f$ too, then

$$\int \phi_n = \int \psi_n \text{ as } n \to \infty$$

sums, **scalar multiples**, **maxes** of upper functions are upper functions.

If $f \ge g$ a.e. (both upper) then $\int f \ge g$ (same for g = 0)

If a **sequence of upper** functions $f_n \uparrow f$ a.e. and $\lim \int f_n < \infty$ then f is upper and $\int f = \lim \int f_n$ (similarly if $f_n \downarrow 0$)

5 Questions

1.