

Machine Learning Applications: Generative Modelling

Karl Stelzner

Machine Learning Group, TU Darmstadt

November 15, 2019

Regression is Conditional Density Estimation

- Consider a regression problem with features X and target Y
- We would like to find a predictor f(X) which minimizes an error

$$MSE = \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

Regression is Conditional Density Estimation

- From a probabilistic perspective, this corresponds to estimating a conditional probability distribution p(y | x)
- For instance we can define such as distribution as a Gaussian

$$y \sim \mathcal{N}(\mu = f(x), \sigma^2)$$

Regression is Conditional Density Estimation

 The most common way to estimate a distribution is to maximize its log likelihood, i.e.

$$LL = \log p(Y \mid X) = \log \prod_{i} p(y_i \mid x_i) = \sum_{i} \log p(y_i \mid x_i)$$

For normal distributions, this likelihood is

$$LL = -n \log \sigma - \frac{n}{2} \log(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (\mu_i - y_i)^2 = c_1 - c_2 MSE$$

• Maximizing the LL is equivalent to minimizing the MSE!

Issue: Outlier Detection

- Regression models will give you an answer, even if the input makes no sense
- There is no good way to quantify uncertainty
- Predicting sigma does not help much

Discriminative vs. Generative Models

- Generative models aim to model the representation over the entire data, i.e. p(x, y) instead of p(y | x)
- This allows answering a variety of additional queries
- For instance, we can evaluate the input likelihood to detect outliers

$$p(x) = \int p(y, x) dy$$

Inference Modes

- Given a joint probability $p(X_1, ..., X_n)$, we can, in principle, do the following things:
 - Sample new examples $X \sim p(X_1, ..., X_n)$
 - Compute any marginal probability $p(X_i) = \iint p(X_1, ..., X_n)$
 - Compute any conditional probability $p(X_i|X_j) = \frac{p(X_i,X_j)}{p(X_i)}$
 - Find the most likely configuration given evidence $\max_{X_i} p(X_i|X_j)$
- Another application: unsupervised learning
 - Can we learn the latent factors underlying the data, without expensive labeling?

Inference Modes: Examples

- Sample queries:
 - P(traffic = High | time=4am, location=A5)
 - max_{diagnosis} P(Condition=diagnosis | Age=80, chest_pain=True)
 - P(obstacle_type=car | Image)
- Challenge: how to represent an learn these distributions such that they are
 - expressive enough to model the data
 - allow for the computation of these queries

Latent Variable Models

- Straightforward way for representing complex probability distributions p(x)
- How to learn f though?

Variational Autoencoders

[Kingma & Welling, 2014], [Rezende, Mohamed & Wierstra, 2014]

Generative Adversarial Nets

Setup learning as a two player game:

[Goodfellow et al., 2014]

[Karras et al., 2018]

Image Interpolation with GANs

- Find $z_1, ..., z_n$ corresponding to given images $x_1, ..., x_n$
- Trace curve along the z's
- Draw the corresponding images

[http://theo.io/blog/2018/11/13/biggan-interpolations/]

Autoregressive Models

- Assume order among variables $X_1, ..., X_n$ and apply the chain rule
- $p(X_1, ..., X_n) = p(X_1)p(X_2|X_1)p(X_3|X_2, X_1) ... p(X_n|X_{n-1}, ..., X_1)$
- Represent conditional distributions via neural nets as in regression
- Maximize likelihood directly

Figure 1. Image completions sampled from a PixelRNN.

[Larochelle and Murray, 2011]

Normalizing Flows

- Use bijective function f to transform random variables
- We can compute the likelihood directly via the change of variables formula

$$p(x) = p(Z = f^{-1}(x)) |\det \frac{\partial f(z)}{\partial z}|^{-1}$$

[Rezende et al., 2016]

	GANs	VAEs	NADEs	Flows
Sampling	✓	√	√	√
Density				
Marginals				
Conditionals				
Max (MAP)				

	GANs	VAEs	NADEs	Flows
Sampling	/	✓	✓	✓
Density	×			
		X (√)		
Marginals				
Conditionals				
Max (MAP)				

	GANs	VAEs	NADEs	Flows
Sampling	✓	✓	✓	✓
Density	×		✓	✓
		X ()</td <td></td> <td></td>		
Marginals	X	X	X ()</td <td>X (?)</td>	X (?)
Conditionals				
Max (MAP)				

GANs	VAEs	NADEs	Flows
/	✓	✓	✓
X			✓
	X (√)		
X	X	X (√)	X (?)
X	X	X (√)	(?)
	X	X X (<)	X X X X X X X X X X Y

	GANs	VAEs	NADEs	Flows
Sampling	✓	✓	✓	√
Density	X			
		X ()</td <td></td> <td></td>		
Marginals	X	X	X (√)	X (?)
Conditionals	X	X	X (√)	X (?)
Max (MAP)	×	×	X ()</td <td>X (?)</td>	X (?)

SPNs Compose Primitive Distributions...

[Poon, Domingos. Sum-Product Networks: A New Deep Architecture. *UAI*, 2011] [Adnan Darwiche. A Differential Approach to Inference in Bayesian Networks. *JACM*, 2003]

...Using Sums...

[Poon, Domingos. Sum-Product Networks: A New Deep Architecture. *UAI*, 2011] [Adnan Darwiche. A Differential Approach to Inference in Bayesian Networks. *JACM*, 2003]

... And Products

[Poon, Domingos. Sum-Product Networks: A New Deep Architecture. *UAI*, 2011] [Adnan Darwiche. A Differential Approach to Inference in Bayesian Networks. *JACM*, 2003]

Validity

- Each node represents a distribution
- Two conditions ensure validity:

6 -

[Poon & Domingos, 2011]

Marginal Inference

$$p(3 < X_{2} < 4) = \int_{3}^{4} \int p(X_{1}, X_{2}) dX_{1} dX_{2}$$

$$= 0.6 \cdot 1 \cdot \int_{3}^{4} N(2, 3) + 0.4 \cdot 1 \cdot \int_{3}^{4} N(1, 1)$$

$$+ \underbrace{0.6}_{0.6}$$

$$\times \underbrace{\times}_{0.6}$$

$$\times \underbrace{\times}_{0.6}$$

$$\times \underbrace{\times}_{0.4}$$

[Poon & Domingos, 2011]

SPNs vs. Mixture Models

Consider the parity distribution

$$P_n(X_1, ..., X_n) = \begin{cases} 1/Z, & X \text{ has even parity} \\ 0 & \text{else} \end{cases}$$

- A shallow model will need an exponential number of mixture components
- Compact linear representation available at linear depth

[Poon & Domingos, 2011]

Inference.

	GANs	VAEs	NADEs	Flows	SPNs
Sampling	✓	√	√	✓	✓
Density	×		✓		
		X (√)			
Marginals	X	X	X (√)	X (?)	
Conditionals	X	X	X (√)	X (?)	✓
Max (MAP)	X	X	X ()</td <td>X (?)</td> <td>X (<!--)</td--></td>	X (?)	X ()</td

Expressivity vs. Tractability

- Goal: Scale up SPNs to the size of deep learning models
- Enable tradeoffs and hybrid approaches

Random Sum-Product Networks [UAI'19]

Results: Classification (Test Accuracies)

dataset	GMM	RAT-SPN	MLP	MLP+
mnist	97.37	∘98.29	98.05	∘98.52
f-mnist	88.08	89.43	89.89	90.63
imdb	∘75.65	∘75.90	∘75.72	∘75.83
theorem	∘55.64	∘55.47	∘57.76	∘56.21
20ng	47.61	048.49	048.49	∘48.97
higgs	74.14	73.82	76.36	76.45
wine	∘77.21	∘77.14	○77.83	∘79.45

Image Completion

- Bottom half and label given
- Estimate top half using approximate MAP inference

Detecting Anomalies

Results for Random SPNs

Inliers / Outliers

Correctly classified

Incorrectly classified

4757454693

Outliers Inliers

Conditional Density Estimation: Mean Field

- Estimate $P(Y_1, ..., Y_n \mid X)$
- Common approach: $P(Y \mid X) = P(Y; \theta), \theta = f(X)$
- Often, mean field assumption is made: $P(Y; \theta) = \prod P(Y_i | \theta)$

Conditional Mixture Models

Classic idea for more complex distributions: Output mixtures!

[Michael Jordan, Robert Jacobs. Hierarchical Mixtures of Experts and the EM Algorithm, *Neural Computation*, 1994] [Christopher Bishop. Mixture Density Networks, *Technical Report*, 1995]

Conditional SPNs

- Predict leaf and sum weights using neural network
- Optimize conditional LL

[Shao et al., Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures. arXiv preprint 1905.08550, 2019]

CSPN Results

- Multilabel image classification
- Same NN architecture, different conditional distributions

	CLL			ACCURACY		
	MF	MDN	CSPN	MF	MDN	CSPN
MNIST	-0.70	-0.61	-0.54	74.1%	76.4%	78.4%
FASHION	-0.95	-0.73	-0.70	73.4%	73.7%	75.5%
CELEBA	-12.1	-11.6	-10.8	86.6%	85.3%	87.8 %

Thank you!