Course Overview

COS 316: Principles of Computer System Design
Lecture 2

Amit Levy & Jennifer Rexford

1

Course Staff: Intros

Prof. Jen Rexford Instructor

- Joined Princeton faculty in 2005
- Often teach COS 217 and COS 561
- Research in computer networking
- Research goals
 - An Internet worthy of society's trust
 - Greater innovation inside the network
 - Emerging 5G/NextG access networks

Course Staff: Intros

Prof. Amit Levy Instructor

- Joined Princeton faculty in 2018
- Often teaches COS 316
- Research in secure computer systems, operating systems, embedded systems

3

Course Staff: Intros

Qingchen Dang
TA

MSE student who has TAed for COS 226 and COS 318.

Mary Hogan
TA
PhD student interested in networked systems, including software-defined networking. TAed for COS 316 and COS 561.

Julian Knodt TA

MSE student interested in graphics, such as physically-based rendering. Interest in systems is in open-source contributions to a compiler and high-performance graphics systems.

Course Staff: Intros

Natalie Popescu TA

PhD student interested in building safer and more extensible systems. TAed COS 316 in fall 2020.

John Yang TA

MSE student interested in program synthesis and programming languages. Has TAed for COS 126.

5

Learning Objectives & Course Components

- System Design Principles
 - Lectures
 - Problem Sets
 - Final Project
- Skills
 - Precepts
 - Programming Assignments
 - Final Project

Learning Objectives: System Design Principles

- What is the field of systems?
 - Learn to appreciate trade-offs in designing and building the systems you use.
 - Get better at understanding how systems work.
 - Learn to *use* systems better---write more efficient/secure/robust/etc. applications.

7

Lectures

- Attend synchronously (if possible)
 - Active thinking through concepts (you)
 - Active calibration of teaching (us)
- Explore fundamental concepts, ways of thinking, cutting-edge research

Lectures

- 6 Major Themes:
 - Naming
 - Caching
 - Layering
 - Concurrency
 - Access Control
 - Scheduling

9

Problem Sets

- Focus on reinforcing and generalizing lecture content
- Done individually

Learning Objectives: Skills

- Go programming language, and "Systems" programming
- Version control with git
- Working in groups
- "Systems programming": sockets programming, concurrency, modular design, unit testing, performance measurement, ...

11

Precepts

- Attend synchronously
- Hands on, active learning in small groups
- Coupled primarily with the programming assignments

Programming Assignments

- You're Building a Web Framework!
- Set of libraries and tools for building complex web applications
 - · Abstracts connection and protocol handling
 - Routes requests to controllers/handlers
 - Caching for common queries and computations
 - Multiplexes concurrent access to databases
 - Translates database objects into programming language constructs
 - User authentication and authorization
- Examples: Rails, Django, Express, Apache Struts, Laravel

13

WARNING

Systems Building is *not just* Programming

- COS126 & 217 told you how to design & structure your programs.
 - This class doesn't.
- If your system is designed poorly it can be much harder to get right!
- Conversely, assignments won't require algorithms or data structures you're not already familiar with.
 - 4xx systems classes require both!
- Your friends:
 - Working in teams (don't worry, you're required to)
 - Discussing potential solutions before implementing
 - Test-driven development

Assignments: Collaboration & Resources This slide is really important

- You can, and should any resources available on the Internet to complete assignments:
 - · Go documentation, Stackoverflow, open source projects
 - Mailing lists, chat rooms, etc...
 - Cite sources in your comments or README!
- You must collaborate (in groups of 2)
- You may not ask instructors for help debugging your code.
- Gilligan's Island Game of Thrones Take-a-walk rule:
 - If you discuss the assignment with other teams, do something else for an hour before returning to your code

15

Assignments: Collaboration & Resources

https://cos316.princeton.edu/assignments

activity	your group*	course staff	COS 316 grads	classmates	other
discuss concepts with	•	•	V	•	•
acknowledge collaboration with	•	•	•	•	~
expose solutions to	•	•	×	×	×
view solutions from	•	×	×	×	×
plagiarize code from	×	×	×	×	×

Assignments: Submitting and Grading

- Submitting happens whenever you "push" to your "master" branch on GitHub
 - You can push as many times as you like (we encourage you to do so often)
- Grading is automatic and immediate
 - There is no penalty for multiple submissions. We will use your highest graded submission (push)
 - Each automatic grading is posted as a comment to the last commit of each push. It includes a break down of tests cases, including which failed.

17

Programming Assignment Late Days

- 7 late days total for the semester
 - Granularity of 1 day
 - 1102pm on Wednesday is 1 day late
 - 1050pm on Thursday is 1 day late
- Assigned retroactively to give you the best possible overall grade
 - We do this for you!

Late Days Example

- 1. Parker submits assignment #1 on time, but can't figure out how to pass the last test case. Their grade so far for the assignment is 95%.
- 2. 7 days after the deadline, Parker figures out how to pass the last test and submits late, getting 100%.
- 3. Months later... Parker underestimates their workload and isn't able to submit assignment 4 until 7 days after the deadline, but passes all tests to get 100%.
- 4. We assign the late days to assignment 4, so that Parker's grade is 95% + 100%, as opposed to 100% + 0%.

19

Final Project

- Open ended systems building project
- Later precepts will help you refine topic
- You design and build something you're interested in!
- Small written component (< 2 pages)

What is Due When?

- Alternating Problem Sets and Assignments each week
 - Each is due on Wednesday at 11pm Princeton Time
- Final project is due on Dean's Date at 5pm Princeton Time

21

Grading

- 60% Programming Assignments
 - 6 Assignment, each worth 10%
- 20% Problem Sets
- 20% Final Project
- No curve anticipated
 - Will **not** curve down (i.e., a 93% is an A no matter what)

Learning Objectives & Course Components

- System Design Principles
 - Lectures Attend Synchronously
 - Problem Sets Due every other week
 - Final Project You build something new
- Skills
 - Precepts Attend Synchronously
 - Programming Assignments Due every other week
 - Final Project Due on Dean's Date