Using Mohr's circle, determine for the quarter ellipse of Problem 9.67 the moments of inertia and the product of inertia with respect to new axes obtained by rotating the x and y axes about O(a) through 45° counterclockwise, (b) through 30° clockwise.

SOLUTION

From Problem 9.79:

$$I_x = \frac{\pi}{8}a^4$$

$$I_y = \frac{\pi}{2}a^4$$

Problem 9.67:

$$I_{xy} = \frac{1}{2}a^4$$

The Mohr's circle is defined by the diameter XY, where

$$X\left(\frac{\pi}{8}a^4, \frac{1}{2}a^4\right)$$
 and $Y\left(\frac{\pi}{2}a^4, -\frac{1}{2}a^4\right)$

 $I_{\text{ave}} = \frac{1}{2} (I_x + I_y) = \frac{1}{2} (\frac{\pi}{8} a^4 + \frac{\pi}{2} a^4) = \frac{5}{16} \pi a^4 = 0.98175 a^4$

$$R = \sqrt{\left(\frac{I_x - I_y}{2}\right)^2 + I_{xy}^2} = \sqrt{\left[\frac{1}{2}\left(\frac{\pi}{8}a^4 - \frac{\pi}{2}a^4\right)\right]^2 + \left(\frac{1}{2}a^4\right)^2}$$
$$= 0.77264a^4$$

The Mohr's circle is then drawn as shown.

$$\tan 2\theta_m = -\frac{2I_{xy}}{I_x - I_y}$$

$$= -\frac{2\left(\frac{1}{2}a^4\right)}{\frac{\pi}{8}a^4 - \frac{\pi}{2}a^4}$$

$$= 0.84883$$

 $2\theta_m = 40.326^\circ$

or

PROBLEM 9.91 CONTINUED

Then
$$\alpha = 90^{\circ} - 40.326^{\circ}$$

$$= 49.674^{\circ}$$

$$\beta = 180^{\circ} - (40.326^{\circ} + 60^{\circ})$$

$$= 79.674^{\circ}$$

(a)
$$I_{x'} = I_{\text{ave}} - R\cos\alpha = 0.98175a^4 - 0.77264a^4\cos49.674^\circ$$

or
$$I_{x'} = 0.482a^4 \blacktriangleleft$$

$$I_{y'} = I_{\text{ave}} + R\cos\alpha = 0.98175a^4 + 0.77264a^4\cos49.674^\circ$$

or
$$I_{y'} = 1.482a^4 \blacktriangleleft$$

$$I_{x'y'} = -R\sin\alpha = -0.77264a^4\sin 49.674^\circ$$

or
$$I_{x'y'} = -0.589a^4$$

(b)
$$I_{x'} = I_{\text{ave}} + R\cos\beta = 0.98175a^4 + 0.77264a^4\cos79.674^\circ$$

or
$$I_{x'} = 1.120a^4 \blacktriangleleft$$

$$I_{y'} = I_{\text{ave}} - R\cos\beta = 0.98175a^4 - 0.77264a^4\cos79.674^\circ$$

or
$$I_{y'} = 0.843a^4 \blacktriangleleft$$

$$I_{x'y'} = R\sin\beta = 0.77264a^4\sin79.674^\circ$$

or
$$I_{x'y'} = 0.760a^4 \blacktriangleleft$$

Using Mohr's circle, determine the moments of inertia and the product of inertia of the area of Problem 9.72 with respect to new centroidal axes obtained by rotating the x and y axes 45° clockwise.

SOLUTION

From the solution to

Problem 9.72: $\overline{I}_{xy} = 501.1875 \text{ in}^4$

Problem 9.80: $\bar{I}_x = 865.6875 \text{ in}^4$

 $\overline{I}_y = 4758.75 \text{ in}^4$

Now $\frac{1}{2}(\overline{I}_x + \overline{I}_y) = 2812.21875 \text{ in}^4$

 $\frac{1}{2}(\overline{I}_x - \overline{I}_y) = -1946.53125 \text{ in}^4$

The Mohr's circle is defined by the points *X* and *Y* where

 $X: (\overline{I}_x, \overline{I}_{xy}) \qquad Y: (\overline{I}_y, -\overline{I}_{xy})$

Now $I_{\text{ave}} = \frac{1}{2} (\overline{I}_x + \overline{I}_y) = 2812.2 \text{ in}^4$

and $R = \sqrt{\left(\frac{\overline{I}_x - \overline{I}_y}{2}\right)^2 + \overline{I}_{xy}^2} = \sqrt{\left(-1946.53125\right)^2 + 501.1875^2} \text{ in}^4$

 $= 2010.0 \text{ in}^4$

Also, $\tan 2\theta_m = \frac{\overline{I}_{xy}}{\left| \overline{I}_x - \overline{I}_y \right|} = \frac{501.1875}{1946.53125} = 0.2575$

or $2\theta_m = 14.4387^{\circ}$

Then $\alpha = 180^{\circ} - (14.4387^{\circ} + 90^{\circ}) = 75.561^{\circ}$

PROBLEM 9.92 CONTINUED

Then
$$\overline{I}_{x'}, \overline{I}_{y'} = I_{\text{ave}} \pm R \cos \alpha = 2812.2 \pm 2010.0 \cos 75.561^{\circ}$$

or
$$\overline{I}_{x'} = 3.31 \times 10^3 \text{ in}^4 \blacktriangleleft$$

and
$$\overline{I}_{y'} = 2.31 \times 10^3 \text{ in}^4 \blacktriangleleft$$

and
$$\bar{I}_{x'y'} = R \sin \alpha = 2010.0 \sin 75.561^{\circ}$$

or
$$\overline{I}_{x'y'} = 1.947 \times 10^3 \text{ in}^4 \blacktriangleleft$$

Using Mohr's circle, determine the moments of inertia and the product of inertia of the area of Problem 9.73 with respect to new centroidal axes obtained by rotating the x and y axes through 30° clockwise.

SOLUTION

From Problems 9.73 and 9.81

$$\overline{I}_{xy} = 138.24 \times 10^6 \text{ mm}^4$$

$$\overline{I}_{x} = 51.84\pi \times 10^{6} \text{ mm}^{4}$$

$$= 162.86 \times 10^6 \text{ mm}^4$$

$$\overline{I}_y = 103.68\pi \times 10^6 \text{ mm}^4$$

$$= 325.72 \times 10^6 \text{ mm}^4$$

Now

$$\overline{I}_{\text{ave}} = \frac{1}{2} (\overline{I}_x + \overline{I}_y)$$

$$= 244.29 \times 10^6 \text{ mm}^4$$

$$R = \sqrt{\left(\frac{\overline{I}_x - \overline{I}_y}{2}\right)^2 + \overline{I}_{xy}^2}$$

$$= 160.4405 \times 10^6 \text{ mm}^4$$

From Problem 9.87

$$2\theta_m = 59.5^{\circ}$$

Then

$$\alpha = 180 - 60^{\circ} - 2\theta_m = 60.5^{\circ}$$

Then

$$\overline{I}_{x'} = \overline{I}_{\text{ave}} + R\cos\alpha = 244.29 + 160.4405\cos60.5^{\circ}$$

= 323.29 × 10⁶ mm⁴

or
$$\bar{I}_{x'} = 323 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

$$\overline{I}_{y'} = \overline{I}_{\text{ave}} - R\cos\alpha = 244.24 - 160.4405\cos60.5^{\circ}$$

$$= 165.29 \times 10^6 \text{ mm}^4$$

or
$$\bar{I}_{v'} = 165.3 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

$$\bar{I}_{x'y'} = R \sin \alpha = 160.44 \sin 60.5^{\circ} = 139.6 \times 10^{6} \text{ mm}^{4} \blacktriangleleft$$

Using Mohr's circle, determine the moments of inertia and the product of inertia of the area of Problem 9.75 with respect to new centroidal axes obtained by rotating the x and y axes through 60° counterclockwise.

SOLUTION

From Problems 9.75 and 9.82

$$\overline{I}_r = 0.70134 \times 10^6 \text{ mm}^4$$

$$\overline{I}_v = 7.728 \times 10^6 \text{ mm}^4$$

$$\overline{I}_{xy} = 1.5732 \times 10^6 \text{ mm}^4$$

$$\overline{I}_{\text{ave}} = \frac{1}{2} (\overline{I}_x + \overline{I}_y) = 4.2147 \times 10^6 \text{ mm}^4$$

$$R = \sqrt{\left(\frac{\overline{I}_x - \overline{I}_y}{2}\right)^2 + \overline{I}_{xy}^2} = 3.8494 \times 10^6 \text{ mm}^4$$

Then
$$2\theta_m = \tan^{-1} \left[\frac{-2(1.5732)}{0.70134 - 7.728} \right] = 24.12^{\circ}$$

and
$$\alpha = 120^{\circ} - 24.12^{\circ} - 90 = 5.88^{\circ}$$

Then
$$\overline{I}_{x'} = \overline{I}_{ave} + R \sin \alpha = (4.2147 + 3.8494 \sin 5.88^{\circ}) \times 10^{6} \text{ mm}^{4}$$

= $4.6091 \times 10^{6} \text{ mm}^{4}$

or
$$\overline{I}_{x'} = 4.61 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

$$\overline{I}_{y'} = \overline{I}_{ave} - R \sin \alpha = (4.2147 - 3.8494 \sin 5.88^{\circ}) \times 10^{6} \text{ mm}^{4}$$

$$= 3.8203 \times 10^{6} \text{ mm}^{4}$$

or
$$\overline{I}_{v'} = 3.82 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

$$\overline{I}_{x'y'} = -R\cos\alpha = -3.8494\cos 5.88^{\circ} = -3.8291 \times 10^{6} \text{ mm}^{4}$$

or
$$\overline{I}_{x'y'} = -3.83 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

Using Mohr's circle, determine the moments of inertia and the product of inertia of the L76 \times 51 \times 6.4-mm angle cross section of Problem 9.74 with respect to new centroidal axes obtained by rotating the *x* and *y* axes through 45° clockwise.

SOLUTION

From Problems 9.74 and 9.83

$$\overline{I}_{r} = 0.166 \times 10^{6} \text{ mm}^{4}$$

$$\overline{I}_{v} = 0.453 \times 10^{6} \text{ mm}^{4}$$

$$\overline{I}_{xy} = -0.1596 \times 10^6 \text{ mm}^4$$

$$I_{\text{ave}} = \frac{1}{2} (\overline{I}_x + \overline{I}_y) = 0.3095 \times 10^6 \text{ mm}^4$$

and

$$R = \sqrt{\left(\frac{\overline{I}_x - \overline{I}_y}{2}\right)^2 + \overline{I}_{xy}^2}$$

$$= 0.21463 \times 10^6 \text{ mm}^4$$

$$2\theta_m = \tan^{-1} \left[\frac{-2(-0.1596)}{0.166 - 0.453} \right] = -48.04^{\circ}$$

$$\alpha + 90^{\circ} - 2\theta = 90^{\circ}; \ \alpha = 2\theta_m$$

Then

$$\overline{I}_{x'} = \overline{I}_{ave} - R \sin \alpha = (0.3095 - 0.21463 \sin 48.04^{\circ}) \times 10^{6} \text{ mm}^{4}$$

$$= 0.14989 \times 10^{6} \text{ mm}^{4}$$

or
$$\overline{I}_{x'} = 0.1499 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

and

$$\overline{I}_{y'} = \overline{I}_{ave} + R \sin \alpha = (0.3095 + 0.21463 \sin 48.04^{\circ}) \times 10^6 \text{ mm}^4$$

= 0.46910 × 10⁶ mm⁴

or
$$\overline{I}_{y'} = 0.4690 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

$$\overline{I}_{x'y'} = R\cos\alpha = 0.21463\cos48.04^\circ = 0.1435 \times 10^6 \text{ mm}^4$$

or
$$\overline{I}_{x'y'} = 0.1435 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

Using Mohr's circle, determine the moments of inertia and the product of inertia of the L5 \times 3 \times $\frac{1}{2}$ -in. angle cross section of Problem 9.78 with respect to new centroidal axes obtained by rotating the x and y axes through 30° counterclockwise.

SOLUTION

Have

$$\overline{I}_x = 9.45 \text{ in}^4$$

$$\overline{I}_{v} = 2.58 \text{ in}^{4}$$

From Problem 9.78

$$\overline{I}_{xy} = 2.8125 \text{ in}^4$$

Now

$$\overline{I}_{\text{ave}} = \frac{\overline{I}_x + \overline{I}_y}{2} = 6.015 \text{ in}^4$$

and

$$R = \sqrt{\left(\frac{\overline{I}_x - \overline{I}_y}{2}\right)^2 + \left(\overline{I}_{xy}\right)^2}$$

$$= 4.43952 \text{ in}^4$$

Then

$$2\theta_m = \tan^{-1} \left[\frac{-2(2.8125)}{9.45 - 2.58} \right] = -39.31^{\circ}$$

$$2\theta_m + 60 + \alpha = 180^{\circ}, \quad \alpha = 80.69^{\circ}$$

Then

$$\overline{I}_{x'} = \overline{I}_{ave} - R\cos\alpha = 6.015 \text{ in}^4 - (4.43952 \text{ in}^4)\cos 80.69^\circ$$

= 5.29679 in⁴

or $\bar{I}_{x'} = 5.30 \text{ in}^4 \blacktriangleleft$

$$\overline{I}_{y'} = \overline{I}_{ave} + R\cos\alpha = 6.015 \text{ in}^4 + (4.43952 \text{ in}^4)\cos 80.69^\circ$$

= 6.73321 in⁴

or
$$\bar{I}_{v'} = 6.73 \text{ in}^4 \blacktriangleleft$$

$$\overline{I}_{x'y'} = R \sin \alpha = (4.43952 \text{ in}^4) \sin 80.69^\circ = 4.38104 \text{ in}^4$$

or
$$\bar{I}_{x'y'} = 4.38 \text{ in}^4 \blacktriangleleft$$

For the quarter ellipse of Problem 9.67, use Mohr's circle to determine the orientation of the principal axes at the origin and the corresponding values of the moments of inertia.

SOLUTION

From Problem 9.79:

$$I_x = \frac{\pi}{8}a^4 \qquad I_y = \frac{\pi}{2}a^4$$

$$I_{xy} = \frac{1}{2}a^4$$

The Mohr's circle is defined by the diameter XY, where

$$X\left(\frac{\pi}{8}a^4, \frac{1}{2}a^4\right)$$
 and $Y\left(\frac{\pi}{2}a^4, -\frac{1}{2}a^4\right)$

$$I_{\text{ave}} = \frac{1}{2} (I_x + I_y) = \frac{1}{2} (\frac{\pi}{8} a^4 + \frac{\pi}{2} a^4) = 0.98175 a^4$$

and

or

$$R = \sqrt{\left[\frac{1}{2}(I_x - I_y)\right]^2 + I_{xy}^2} = \sqrt{\left[\frac{1}{2}\left(\frac{\pi}{8}a^4 - \frac{\pi}{2}a^4\right)\right]^2 + \left(\frac{1}{2}a^4\right)^2}$$

$$= 0.77264a^4$$

The Mohr's circle is then drawn as shown.

$$\tan 2\theta_m = -\frac{2I_{xy}}{I_x - I_y}$$

$$= -\frac{2\left(\frac{1}{2}a^4\right)}{\frac{\pi}{8}a^4 - \frac{\pi}{2}a^4}$$

$$= 0.84883$$

$$2\theta_m = 40.326^{\circ}$$

and
$$\theta_m = 20.2^{\circ}$$

PROBLEM 9.97 CONTINUED

 \therefore The principal axes are obtained by rotating the xy axes through

20.2° counterclockwise ◀

About O.

Now

$$I_{\text{max,min}} = I_{\text{ave}} \pm R = 0.98175a^4 \pm 0.77264a^4$$

or
$$I_{\text{max}} = 1.754a^4 \blacktriangleleft$$

and
$$I_{\min} = 0.209a^4$$

From the Mohr's circle it is seen that the a axis corresponds to I_{\min} and the b axis corresponds to I_{\max} .

Using Mohr's circle, determine for the area indicated the orientation of the principal centroidal axes and the corresponding values of the moments of inertia.

Area of Problem 9.72

SOLUTION

From the solution to Problem 9.72:

$$\overline{I}_{xy} = 501.1875 \text{ in}^4$$

From the solution to Problem 9.80:

$$\overline{I}_x = 865.6875 \text{ in}^4$$

$$\overline{I}_y = 4758.75 \text{ in}^4$$

$$\frac{1}{2}(\overline{I}_x + \overline{I}_y) = 2812.21875 \text{ in}^2$$

$$\frac{1}{2}(\overline{I}_x - \overline{I}_y) = -1946.53125 \text{ in}^4$$

The Mohr's circle is defined by the point

$$X: (\overline{I}_x, \overline{I}_{xy}), \qquad Y: (\overline{I}_y, -\overline{I}_{xy})$$

Now

$$I_{\text{ave}} = \frac{1}{2} (\overline{I}_x + \overline{I}_y) = 2812.2 \text{ in}^4$$

$$R = \sqrt{\left(\frac{\overline{I}_x - \overline{I}_y}{2}\right)^2 + \overline{I}_{xy}} = \sqrt{\left(-1946.53125\right)^2 + 501.1875^2} = 2010.0 \text{ in}^4$$

PROBLEM 9.98 CONTINUED

$$\tan 2\theta_m = -\frac{\overline{I}_{xy}}{\left(\frac{\overline{I}_x - \overline{I}_y}{2}\right)} = -\frac{501.1875}{-1946.53125} = 0.2575, \qquad 2\theta_m = 14.4387^\circ$$

or $\theta_m = 7.22^{\circ}$ counterclockwise

Then

$$\overline{I}_{\text{max, min}} = \overline{I}_{\text{ave}} \pm R = (2812.2 \pm 2010.0) \text{in}^4$$

or
$$\overline{I}_{\text{max}} = 4.82 \times 10^3 \text{ in}^4 \blacktriangleleft$$

and $\overline{I}_{\min} = 802 \text{ in}^4 \blacktriangleleft$

Note: From the Mohr's circle it is seen that the a axis corresponds to \overline{I}_{\min} and the b axis corresponds to \overline{I}_{\max} .

Using Mohr's circle, determine for the area indicated the orientation of the principal centroidal axes and the corresponding values of the moments of inertia.

Area of Problem 9.76

SOLUTION

From the solution to Problem 9.76

$$\overline{I}_{xy} = 576 \text{ in}^4$$

Now

$$\overline{I}_x = (I_x)_1 - (I_x)_2 - (I_x)_3, \text{ where } (I_x)_2 = (I_x)_3$$

$$= \frac{\pi}{4} (15 \text{ in.})^4 - 2 \left[\frac{1}{12} (9 \text{ in.}) (6 \text{ in.})^3 \right] = (39761 - 324) \text{in}^4$$

$$= 39,437 \text{ in}^4$$

and

$$\overline{I}_{y} = (I_{y})_{1} - (I_{y})_{2} - (I_{y})_{3}, \text{ where } (I_{y})_{2} = (I_{y})_{3}$$

$$= \frac{\pi}{4} (15 \text{ in.})^{4} - 2 \left[\frac{1}{36} (6 \text{ in.}) (9 \text{ in.})^{3} + \frac{1}{2} (9 \text{ in.}) (6 \text{ in.}) (6 \text{ in.})^{2} \right]$$

$$= (39,761 - 243 - 1944) \text{in}^{4} = 37,574 \text{ in}^{4}$$

The Mohr's circle is defined by the point (X, Y) where

$$X: (\overline{I}_x, \overline{I}_{xy}) \qquad Y: (\overline{I}_y, -\overline{I}_{xy})$$

Now

$$\overline{I}_{\text{ave}} = \frac{1}{2} (\overline{I}_x + \overline{I}_y) = \frac{1}{2} (39,437 + 37,574) \text{in}^4 = 38,506 \text{ in}^4$$

$$R = \sqrt{\frac{\overline{I}_x - \overline{I}_y}{2} + \overline{I}_{xy}^2} = \sqrt{\left[\frac{1}{2}(39,437 - 37,574)\right]^2 + 567^2} = 1090.5 \text{ in}^4$$

PROBLEM 9.99 CONTINUED

$$\tan 2\theta_m = \frac{-\overline{I}_{xy}}{\overline{I}_x - \overline{I}_y} = \frac{-567}{\frac{1}{2}(39,437 - 37,574)} = -0.6087$$

or $\theta_m = -15.66^{\circ}$ clockwise \blacktriangleleft

Then

$$\overline{I}_{\text{max,min}} = \overline{I}_{\text{ave}} \pm R = (38,506 \pm 1090.50) \text{in}^4$$

and
$$\overline{I}_{\min} = 37.4 \times 10^3 \text{ in}^4 \blacktriangleleft$$

Note: From the Mohr's circle it is seen that the a axis corresponds to the \overline{I}_{\max} and the b axis corresponds to \overline{I}_{\min} .

Using Mohr's circle, determine for the area indicated the orientation of the principal centroidal axes and the corresponding values of the moments of inertia.

Area of Problem 9.73

SOLUTION

From Problems 9.73 and 9.81

$$\overline{I}_r = 162.86 \times 10^6 \text{ mm}^4$$

$$\overline{I}_{v} = 325.72 \times 10^{6} \text{ mm}^{4}$$

$$\overline{I}_{xy} = 138.24 \times 10^6 \text{ mm}^4$$

Define points

$$X(162.86,138.24) \times 10^6 \text{ mm}^4$$
 $Y(325.72,-138.24) \times 10^6 \text{ mm}^4$

$$Y(325.72,-138.24) \times 10^6 \text{ mm}^4$$

Now

$$I_{\text{ave}} = \frac{1}{2} (\overline{I}_x + \overline{I}_y) = \frac{1}{2} (162.86 + 325.72) \times 10^6 \text{ mm}^4$$

$$= 244.29 \times 10^6 \text{ mm}^4$$

and

$$R = \sqrt{\left(\frac{\overline{I}_x - \overline{I}_y}{2}\right)^2 + I_{xy}^2} = \sqrt{\left(\frac{162.86 - 325.72}{2} \times 10^6\right)^2 + \left(138.24 \times 10^6\right)^2}$$

$$= 160.44 \times 10^6 \text{ mm}^4$$

and

$$2\theta_m = \tan^{-1} \left[\frac{-2(138.24) \times 10^6}{(162.86 - 325.72) \times 10^6} \right] = 59.4999^\circ$$

or $\theta_m = 29.7^{\circ}$ counterclockwise

Then

$$\overline{I}_{\text{max, min}} = \overline{I}_{\text{ave}} \pm R = \left(244.29 \times 10^6 \pm 160.44 \times 10^6\right) \text{ mm}^4$$

or
$$\overline{I}_{\text{max}} = 405 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

and
$$\overline{I}_{\min} = 83.9 \times 10^6 \text{ mm}^4 \blacktriangleleft$$

Note: From the Mohr's circle it is seen that the a axis corresponds to \overline{I}_{\min} and the b axis corresponds to $I_{\rm max}$.