DERWENT-ACC-NO:

1996-159022

DERWENT-WEEK:

199616

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Photothermoplastic material for holographic

recording -

uses N-epoxy:propyl:carbazole polymer or its

copolymer

with glycidyl ester as polymeric

photoconductor, and

sensitiser

INVENTOR: MYSYK, D D; PEREPICHKA, I F; SOKOLOV, N I

PATENT-ASSIGNEE: AS UKR PHYS ORG CHEM COAL CHEM INST[AUPHR] , DON

POLY[DONE], UNIV KIEV SHEVCHENKO[KISU]

PRIORITY-DATA: 1989SU-4736918 (September 11, 1989)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

PAGES

MAIN-IPC

SU 1743300 A1 August 27, 1995 R

007 G03G 005/09

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO

APPL-DATE

SU 1743300A1 N/A 1989SU-4736918

September 11, 1989

INT-CL (IPC): G03G005/07, G03G005/09

ABSTRACTED-PUB-NO: SU 1743300A

BASIC-ABSTRACT:

A photothermoplastic material for holographic recording uses poly-N-epoxypropyl

carbazole copolymer or N-epoxypropyl carbazole and glycidyl ester of formula

(I) of mol. wt. 800-900 units, where x = 0-0.14, n = 3-5, R is C2H5, C3H7.

iso-C3H7, C4H9, C5H11, C7H15, C10H21, C6H5, p-CH3OC6H4 or C6H5CH2 as photoconductor, and 2,7-di-p-undecyloxycarbonyl-

4,5-dinitro-9-dicyanomethylenefluorene of formula (II) as sensitiser,

added in amounts of 5-12 % w.r.t. (I). USE - In holographic recording. ADVANTAGE - Increased holographic range and sensitivity and low parasitic memory without affecting its max. diffraction efficiency. CHOSEN-DRAWING: Dwg.0/0 TITLE-TERMS: PHOTOTHERMOPLASTIC MATERIAL HOLOGRAM RECORD N EPOXY PROPYL CARBAZOLE POLYMER COPOLYMER GLYCIDYL ESTER POLYMERISE PHOTOCONDUCTOR SENSITIVE DERWENT-CLASS: A21 A89 G08 P84 S06 CPI-CODES: A05-H; A12-L02E; G06-D; G06-E; G06-F03A; G06-F03D; G06-F06; EPI-CODES: S06-A01A1; S06-A01A3; ENHANCED - POLYMER - INDEXING: Polymer Index [1.1] 018 ; H0000 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D25 D34 D07 D73 D79 D41 D42 D50 D93 F08 F07 ; P0055 ; P0975*R P0964 F34 D01 D10 ; H0317 Polymer Index [1.2] 018 ; H0022 H0011 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D25 D34 D07 D73 D79 D41 D42 D50 D93 F08 F07 ; G1558*R D01 F47 D11 D10 D23 D22 D31 D73 D42 D50 D85 D86 D87 D90 ; P0055 ; P0975*R P0964 F34 D01 D10 ; H0317 Polymer Index [1.3] 018 ; H0022 H0011 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D25 D34 D07 D73 D79 D41 D42 D50 D93 F08 F07 ; G1558*R D01 F47 D11 D10 D19 D18 D23 D22 D32 D73 D76 D50 D89 ; P0055 ; P0975*R P0964 F34 D01 D10 ; H0317 Polymer Index [1.4] 018 ; H0022 H0011 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D25 D34 D07 D73 D79 D41 D42 D50 D93 F08 F07 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D73 D42 D50 D90 F34 D19 D18 D32 D76 ; P0055 ; P0975*R P0964 F34 D01 D10 ; H0317 Polymer Index [1.5] 018 ; ND01 ; Q9999 Q8640 Q8606 ; B9999 B5094 B4977 B4740 ; K9847*R K9790 ; Q9999 Q8628 Q8617 Q8606

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1996-050163 Non-CPI Secondary Accession Numbers: N1996-133281

(19) SU (11) 1743300 (13) A1

(51) 6 G03G5/09, G03G5/07

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к авторскому свидетельству СССР

Статус: прекратил действие (по данным на 16.06.2005)

- (14) Дата публикации: 1995.08.27
- (21) Регистрационный номер заявки: 4736918/04
- (22) Дата подачи заявки: 1989.09.11
- (46) Дата публикации формулы изобретения: 1995.08.27
- (56) Аналоги изобретения: Авторское свидетельство СССР N 1228672, кл. G 03G 5/022, 1986.
 Авторское свидетельство СССР N 1441964, кл. G 03G 5/022, 1988. Sulzberg T., Cotter R.J. Electron Acceptors Perived from Fluorenecar boxylic Acids and Their Charge Transfer Complexei. J.Org. Chem., 1970, 35, N 8, p.2762-2769.
- (71) Имя заявителя: Институт физикоорганической химии и углехимии АН УССР; Киевский государственный университет; Донецкий политехнический институт
- (72) Имя изобретателя: Перепичка И.Ф.; Мысык Д.Д.; Соколов Н.И.; Костенко Л.И.; Перельман Л.А.; Гребенюк С.А.; Попов А.Ф.; Баженов М.Ю.; Барабаш Ю.М.

(54) ФОТОТЕРМОПЛАСТИЧЕСКИЙ НОСИТЕЛЬ ИНФОРМАЦИИ

Использование: оптическая голография. Сущность изобретения: фототермопластический носитель состоит из подложки, электропроводящего покрытия и светочувствительного слоя, содержащего в качестве полимерного фотопроводника поли-N-эпоксипропилкарбазол или сополимер N-эпоксипропилкарбазола с глицидиловым эфиром общей формулы (см.ниже) мол. м. 800 900 а. е. м. где х 0 0,14, n 3 5, R = C_2H_5 , C_3H_7 , i- C_3H_7 , C_4H_9 , C_5H_{11} , C_7H_{15} , $C_{10}C_{21}$, C_6H_5 , n-CH $_3OC_6H_4$, $C_6H_5CH_2$ а в качестве сенсибилизатора 2,7-ди-н-ундецилоксикарбонил-4,5-динитро-9-дицианометиленфлуорен формулы (см.ниже) в количестве 5 12% от массы полимерного фотопроводника. Материал имеет голографическую чувствительность S_n = 1% = 15-27 м²/Дж при λ 750 нм, дифракционную эффективность h_{max} 20 25% и

значение "паразитной памяти" 0,8 1,5% 2 ил. 1 табл.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к химико-фотографической промышленности, в частности к записи информации на бессеребряных носителях, и касается создания фотопроводниковых термопластических сред, которые могут быть использованы для регистрации оптических голограмм.

Целью изобретения является создание однослойного фототермопластического носителя (ФТПН) с высокими значениями голографической чувствительности в видимой области спектра, расширенной областью фоточувствительности в длинноволновую часть спектра при сохранении высоких значений максимальной дифракционной эффективности и низких значений "паразитной памяти". На чертеже показано спектральное распределение электрофотографической чувствительности

фототермопластических носителей: 1 ПЭПК- 5% UdДДФК (прототип);

2 ПЭПК 10% Ud,ДДФДК.

В качестве сенсибилизатора используют 2,7-ди-н-ундецилксикарбонил-4,5-динитро-9-дицианометиленфлуорен (IV) синтезированный по схеме

Пример 1. Синтез 2,7-ди-н-ундецилоксикарбонил-4,5- динитрофлуоренона (СН).

0,72 г 4,5-динитрофлуоренон-2,7-дикарбоновой кислоты (I), 10 мл хлористого тионила и 2 капли диметилформамида нагревают до кипения (полное растворение через 3-4 мин) и кипятят с обратным холодильником 1 ч. В вакууме водоструйного насоса на масляной бане отгоняют досуха хлористый тионил, к остатку хлорангидрида (II) добавляют 5 мл свежеперегнанного н-ундецилового спирта и нагревают массу 1,5 ч при 110-120°C. Реакционную массу охлаждают до 90°C, добавляют 10 мл этилового спирта и оставляют на кристаллизацию. Осадок отфильтровывают, промывают на фильтре 2 раза этиловым спиртом (по 3 мл) и сущат в вакууме (1 мм рт.ст. 100°C) 1 ч.

Выход соединения (II) 1,18 г (88,0% от теоретического), т.пл. 117,5-119°С.

Для очистки продукт растворяют в 5 мл горячего ацетона, фильтруют, добавляют 10 мл горячего этилового спирта и оставляют на кристаллизацию. Осадок отфильтровывают, дважды промывают на фильтре этиловым спиртом (по 5 мл), сушат.

Выход соединения (III) 1,12 г (95% на стадии очистки; 83,6% на соединение I), бледно-желтые мелкие кристаллы, т.пл. 119,0-119,5°С.

Найдено, С 66,78; 66,86; Н 7,70, 7,83; N 4,17; 4,34.

C₃₇H₅₀N₂O₉.

Вычислено, С 66,65; Н 7,56; N 4,20.

ИК-спектр (вазелиновое масло, $_{V}$ (см $^{-1}$): 3090 (С-H), 1740 (С 0), 1635, 1560 (NO $_{2}$), 1460, 1420, 1350 (NO $_{2}$), 1305, 1290, 1245, 1190, 1110, 1095, 1045, 970, 940, 930, 835, 790, 770, 750, 730, 710,

Пример 2. Синтез 2,7-ди-н-ундецилоксикарбонил-4,5-динитро-9-дицианоме-тиленфлуорена (IV).

http://www.fips.ru/cdfi/fips.dll?ty=29&cp=1&cp=2&cp=3&cp=4&cp=5&cp=6... 6/27/05

1,0 г (0,0015 моль) 2,7-ди-н-ундецилоксикарбонил-4,5-динитрофлуоренона (III) растворяют в 7 мл диметилформамида при небольшом подогреве. Добавляют 0,3 г (0,0045 моль) малонодинитрила и перемешивают при комнатной температуре 2 ч. К реакционной массе приливают 20 мл этилового спирта и оставляют на кристаллизацию. Отфильтровывают выпавший осадок, промывают этиловым спиртом и сушат.

Выход соединения (IV) 0,98 г (91,6% от теоретического), т.пл. 118-121°C.

Продукт растворяют в 4 мл кипящего ацетона, приливают 20 мл горячего этилового спирта и оставляют на кристаллизацию. Выход соединения IV 0,93 г (94,9% на стадии очистки; 86,9% в расчете на соединение III), т.пл. 119-122,3°C.

После перекристаллизации из 170 мл н-гексана получают 0,81 г (87,1% на стадии кристаллизации; 75,7% в расчете на соединение III) ярко-желтых мелких кристаллов 2,7-ди-н-ундецилоксикарбонил-4,5-динит-ро-9-дицианометиленфлуорена (IV), т.пл. 122-123,4°C.

Найдено, С 67,09; 67,28; Н 7,04; 7,15; N 7,61; 7,77.

C40H50N4O8

Вычислено, С 67,21; H 7,05; N 7,84.

ИК-спектр (вазелиновое масло), $_{V}$ (см⁻¹): 3105 (C-H), 2240 (C N), 1740 (C= O), 1630, 1555 (NO₂), 1545 (NO₂), 1460, 1355 (NO₂)- 1315, 1290, 1265, 1185, 1125, 920, 840, 830, 790, 780, 770, 760, 745, 695.

Пример 3. Фототермопластический носитель ПЭПК + 3% Ud-ДДФДК.

0,5 н поли-N-эпоксипропилкарбазола (ПЭПК) и 0,015 г 2,7-ди-н-ундецилоксикарбонил-4,5-динитро-9-дицианометиленфлу-орена (Ud₂ДДФДК) растворяют каждый в отдельности, в 5 мл толуола. Растворы сливают и фильтруют. Полученный раствор наносят на стеклянные подложки с электропроводящим покрытием SnO₂, сушат (после сушки толщина слоя составляет 1,2_±1 мкм) и проводят испытания полученного фототермопластического носителя. Результаты испытаний представлены в таблице.

Примеры 4-8. ПЭПК + 5, 8, 11, 15, 20% Ud₂ДДФДК.

Отличаются от примера 3 тем, что при приготовлении раствора сенсибилизатора берут соответственно 0,025: 0,04; 0,055; 0,075; 0,1 г Ud₂ ДДФДК. Результаты испытаний представлены в таблице.

Примеры 9-26. Фототермопластические носители П(ЭПК + ГЭ) + Ud₂ДДФДК.

Отличаются от примера 3 тем, что в качестве фотопроводника используют сополимеры Nэпоксипропилкарбазола с глицидиловыми эфирами, а для приготовления раствора сенсибилизатора берут соответствующее количество Ud₂ДДФДК (0,01-0,07 г). Результаты испытаний представлены в таблице.

П р и м е р 27. Спектральное распределение электрофоточувствительности фототермопластического носителя ПЭПК + 10% Ud₂ДДФДК.

Спектральное распределение электрофоточувствительности (S_{λ} м²/Дж) получено измерениями $S_{\overline{\lambda}}$ 0,2

при различных длинах волн. Результаты измерений представлены на графике. На этом же графике дано спектральное распределение элфектрофоточувствительности материала-прототипа ПЭПК 5% UdДДФК.

Пример 28-30 (контрольные). Фототермопластические носители ПЭПК UdДДФК.

Отличаются от примера 3 тем, что в качестве сенсибилизатора берут н-ундециловый эфир 2,7-динитро-9-дицианометиленфлуорен-4-карбоновой кислоты (UdДДФК) в количестве 0,015 и 0,04 г соответственно. Результаты испытаний представлены в таблице.

ПЭПК получен анионной полимеризацией N-эпоксипропилкарбазола под действием КОН. Все сополимеры П(ЭПК + ГЭ) получены аналогично ПЭПК совместной полимеризацией N-эпоксипропилкарбазола с соответствующим глицидиловым эфиром в присутствии 2-3% едкого кали от массы мономеров при 125-135°С с последующей нейтрализацией реакционной массы и высаждением продукта в гексан. Среднечисловые значения молекулярной массы как ПЭПК, так и сополимеров мало различаются между собой и составляют 800-900 м.е. остаточные эпоксидные числа не превышают 0,5%

Испытания образцов проведены методом голографической интерферометрии в излучении HE-Ne лазера (λ = 633 нм). Поверхностный потенциал V $_{o}$ измерен динамическим зондовым методом (в таблице

потенциал заряжения слоя фототермопластического материала стандартизован для толщины 1 мкм). Темновой спад поверхностного потенциала (ТСПП) определен как $v_o - v_{\tau}$ 100% где V_{τ} - поверхностный v_{τ}

потенциал слоя через время T= 30 с. Электрофотографическая чувствительность S ♣ 0,2 оценена по спаду поверхностного потенциала (V₀) на 20% под действием света при электрических полях E1,2·10⁸ B/м. Спектральное распределение электрофоточувствительности (Sҳ) получено измерениями S ♣ 0,2 0,2 при различных длинах волн. Голографическая чувствительность (Sη=1% м²/Дж) измерена путем регистрации голограмм плоского волнового фронта на пространственной частоте V= 450 линий/мм. Дифракционная эффективность ηмах найдена как отношение интенсивности света, дифрагированного в первый порядок, к интенсивности падающего на голограмму света. "Паразитная память" (II) определена как отношение дифракционной эффективности "паразитной памяти (ηп), возникшей при новом цикле записи после стирания предыдущей голограммы плоского волнового фронта, записанной с максимальной дифракционной эффективностью

$$\left(\prod \frac{\eta_{n}}{\eta_{\text{max}}} \bullet 100 \right)$$

Таким образом, предлагаемый ФТПН обладает высокими значениями голографической чувствительности (S_{η} = 1% 110-180 м²/Дж при 633 нм, S_{η} = 1% 15-27 м²/Дж при $_{\lambda}$ = 750 нм), расширенной областью

фоточувствительности в длинноволновую часть спектра (на≈25-30 нм) при сохранении высоких значений максимальной дифракционной эффективности (η_{max}20-25%) и низких значений "паразитной памяти" (П 0,8-1,5%).

Предлагаемый ФТПН может быть использован в голографической интерферометрии для многократной регистрации оптических голограмм транспарантов и диффузных объектов в реальном масштабе времени.

ФОРМУЛА ИЗОБРЕТЕНИЯ

ФОТОТЕРМОПЛАСТИЧЕСКИЙ НОСИТЕЛЬ ИНФОРМАЦИИ, состоящий из подложки, электропроводящего покрытия и светочувствительного слоя, содержащего полимерный фотопроводник и сенсибилизатор, отличающийся тем, что, с целью повышения голографической чувствительности и расширения области спектральной чувствительности в длинноволновую часть спектра при сохранении высоких значений

максимальной дифракционной эффективности и низких значений "паразитной памяти", светочувствительный слой содержит в качестве полимерного фотопроводника поли-N-эпоксипропилкарбазола с глицидиловым эфиром общей формулы

мол.л. 800 900 а.е.м.

где х 0 0,14;

n 3 5;

 $R C_2H_5, C_3H_7, I-C_3H_7, C_4H_9, C_5H_{11}, C_7H_{15}, C_{10}H_{21}, C_6H_5,$

 $n-CH_3OC_6H_4$, $C_6H_5CH_2$,

а в качестве сенсибилизатора - 2,7-ди-н-ундецилоксикарбонил-4,5-динитро-9-дицианометиленфлуорен формулы

в количестве 5 12% от массы полимерного фотопроводника.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

Ho-	Фотопроводник	К-во	V _o ,	TCIII,	λ=63	λ=633 мм
мер		сенсибилизато-	В/мкм	*	$s \frac{\Delta v}{v} = 0.2$	S
-NQU		pa,			м ² /Дж	м²/Дж
мера		Mac. %			•	
3	упеп	သ	100	7-8	2,8-3,0	9
4	ЯПЄП	വ	165	10	4.0	120
വ	ЯПЄП	80	140	20	5,0	170
9	ЯПЄП	_	120	25	4,5	130
7	. упеп	15	75	30	2,5	09
œ	ЯПЄП	20	20	40	1,0	
6	П(ЭПК+9%ВиГЭ)	2	170	2-6	1,2	40-45
10	П(ЭПК+9%ВuГЭ)	4	170	2-9	2,5-3,0	80-90
1	П(ЭПК+9%ВчГЭ)	9	155	10	4,5-5,0	140-150
12	П(ЭПК+9%ВuГЭ)	&	140	17	5.0	160
13	П(ЭПК+9%ВыГЭ)	10	125	25	4,0-4,5	130
4	П(ЭПК+9%ВчГЭ)	12	80	30	2,5	70-100
15	П(ЭПК+9%ВuГЭ)	14	09	35	-	до 20
16	П(ЭПК+9%ЕtГЭ)	80	150	20	4,0-5,0	140
17	П(ЭПК+9% РгГЭ)	80	140	20	3.0-4.0	110
18	П(ЭПК+9% РгГЭ)	80	150	20	5,0	180
19	П(ЭПК+9% НерГЭ)	∞	140	20	3,0-4,0	120
20	П(ЭПК+9% DecГЭ)	80	140	20	3,5-4,0	130
21	П(ЭПК+9% DzГЭ)	∞	145	20	4,0-5,0	155
22	П(ЭПК+9%РhГЭ)	æ	150	17	5,0-5,5	190
23	П(ЭПК+14% РҺГЭ)	80	130	20	4,0-4,5	135

.

Ho-	Фотопроводник*	К-во	Vo.	тспп,	λ=63	33 мм
мер		сенсибилизато-	В/мкм	%	$s \frac{\Delta v}{v} = 0.2$	$S\eta = 1 \%$
при-		pa,			"	м ² /Дж
мера		мас. %			м ² /Дж	
24	П(ЭПК+17% РҺГЭ)	8	125	20	2,0-3,0	90
25	П(ЭПК+14%МеОРһГЭ)	8	140	20	4,0-5,0	155
26	П(ЭПК+14%АmГЭ)	8	145	20	5,0	165
28	пэпк**	3	160	10	4,0	80
29	(прототип)	5	150	10	6,5	120
30		8	120	25	7,0	100

Продолжение таблицы

Номер	$\lambda = 70$	00 мм	$\lambda = 7$	50 мм	η _{max} , %	П, %
примера	$s \frac{\Delta V}{V} = 0.2$	$S\eta = 1 \%$	$s \frac{\Delta v}{v} = 0.2$	$S\eta = 1 \%$	7,2, 1, 70	,
	м ² /Дж 1.3	м ² /Дж	v м²/Дж	м ² /Дж		
3	1,3	30-35	0,25-0,30	8-10	27	2,0
4	1,7-2,0	60-65	0,5	12-15	25	1,0-1,5
5	2,8-3,0	80-90	0,9	20-25	25	0,8-1,0
6	2,6-2,8	60-70	0,7	15-18	22	0,5
7	1,5	25	0,3	5	7	
8					1,5	,
9	0,6-0,7	20-23	0,15-0,2	4-5	27	1,5-2,0
10	1,3-1,5	45-50	0,3-0,35	10-12	25	1,2-1,5
11	2,2-2,7	70-80	0,6-0,7	20-25	25	1,0-1,2
12	2,6-2,8	80-90	0,8-1,0	22-26	25	0,8-1,0
13	2-2,2	55-60	0,6-0,5	10-15	22	0.5
14	1,2-1,3	30	0,2-0,25	5-7	15	
15						
16			0,7-0,8	19-22	23	8,0
17			0,6-0,7	17-20	18	1,0-1,5
18			0,9-1,0	24-26	25	0,8-1,0
19			0,6-0,7	17-20	20	1,0-1,5
20			0,7	19-22	20	1,5
21			0,8-0,9	20-23	25	1,5
22			0,9-1,0	25-27	25	1,0
23			0,7-0,8	19-22	23	1,0
24			0,4	10-12	20	
25			0,8-0,9	20-23	25	1,0
26			0,8-0,9	22-25	25	0,8

Номер	$\lambda = 70$	λ = 700 MM	$\lambda = 2!$	$\lambda = 250$ mm	$\eta_{\sf max}$, $\%$	٦, %
примера	$S \frac{\Delta V}{V} = 0.2$	$S\eta = 1 \%$	$S \frac{\Delta V}{V} = 0.2$	$S\eta = 1 \%$		
	м ² /Дж	## / E	м ² /Дж			
28	1,2	30-35	0,3	2-9	25	2,0
29	1,8	9-09	0.5	10-12	25	1,0
30	1,8	40-50	0,4	8-10	25	0,7

* ПЭПК – поли-N-эпоксипропилкарбазод, П(ЭПК + 9% Ви ГЭ) – сополимер N-эпоксипро-пилкарбазола с 9 мол. % бутилглицидилового эфира, П(ЭПК+9% Ет ГЭ) – сополимер N-эпоксипропилкарбазола с 9 мол. % этилглицидилового эфира, П(ЭПК+9% Pr ГЭ) — сополимер N-эпоксипропилкарбазола с 9 мол. % пропилглицидилового эфира, П(ЭПК + 9% iPr ГЭ) — Нер ГЭ) – сополимер N-эпоксипропилкарбазола с 9 мол. % гептилглицидилового эфира, П(ЭПК фенилглицидилового эфира, П(ЭПК - 14% Ph ГЭ) – сополимер N-эпоксипропилкарбазола с 14 мол. % фенилглицидилового эфира, П(ЭПК + 17% Рh ГЭ) – сополимер N-эпоксипропилкарбазола с 17 мол. % фенилглицидилового эфира, П(ЭПК + 14% МеОРһ ГЭ) - сополимер N-эпоксополимер N-эпоксипропилкарбазола с 9 мол. % изопропилглицидилового эфира, П(ЭПК+9% - 9% Dec ГЭ) – сополимер N-эпоксипропилкарбазола с 9 мол. % децилглицидилового эфира, П(ЭПК + 9% Вz ГЭ) – сополимер N-эпоксипропилкарбазола с 9 мол. % бензилглицидилового сипропилкарбазола с 14 мол. % п-метоксифенилглицидилового эфира, П(ЭПК + 14% Am ГЭ) – эфира, П)ЭПК + 9% Ph ГЭ) – сополимер N-сополимер N-эпоксипропилкарбазола с 9 мол. % соподимер №-эпоксипропилкарбазола с 14 мол. % амилглицидилового эфира.

Сенсибилизатор – ундециловый эфир 2,7-дйнитро-9-дицианометиленфлуорен-4-карбоновой кислоты (UdДДФК).