A Visualizations of the Optimization Landscape of 2DHPO problems

In Figure 1, we visualize the optimization landscape of the 2D HPO problems. We use the same LHS initial design that has been used for the calculation of ELA features and train a Gaussian process with a Matérn 5/2 kernel to be able to interpolate between points and plot the predictions of the Gaussian process. Colors are based on performance quantiles with a dark green representing the 0.1% quantile of best points with respect to the logloss, yellow representing the 7% quantile and white representing the 100% quantile. The red point depicts the empirical minimum.

Fig. 1: Optimization landscapes of 2D HPO problems.

B Optimizer Details

All optimizers are implemented within the mlr3 ecosystem [3], either in bbotk [1], or mlr3mbo [5]. CMAES relies on adagio::pureCMAES() from the adagio package [2]. GENSA relies on GenSA::GenSA() from the GenSA package [6]. Grid and Random are directly provided by bbotk. MBO is used as implemented in the coco branch of mlr3mbo (following the configuration presented in [4]) and uses a Gaussian process (Matérn 5/2 kernel) as surrogate model and expected improvement as acquisition function which is optimized by a global local search (a procedure starting with a random search followed by L-BFGS-B with the current best point as the starting point, which is repeated multiple times). We use an initial design of size 4D constructed by sampling uniformly at random.

C Nearest BBOB Neighbors

In Table 1, we list the nearest BBOB neighbors of our HPO problems obtained by minimizing the Euclidean distance over the first two principal component scores in ELA feature space.

Table 1: Nearest BBOB neighbors to HPO problems in ELA feature space (two principle components).

<u> </u>			
НРО	Nearest BBOB	НРО	Nearest BBOB
wilt_2	2_1_2	adult_2	4_4_2
$wilt_3$	7_3_3	$adult_3$	5_5_3
$wilt_5$	3_3_5	$adult_5$	3_3_5
$analcatdata_dmft_2$	11_4_2	bank-marketing_2	15_1_2
$analcatdata_dmft_3$	7_5_5	bank-marketing_3	13_4_3
$analcatdata_dmft_5$	2_1_5	bank-marketing_5	5_3_5
ada_2	17_4_3	car_2	14_2_2
ada_3	17_5_5	car_3	13_5_3
$ada_{-}5$	10_5_5	$car_{-}5$	17_1_5
cylinder-bands $_{-}2$	$7_{-}1_{-}2$	$sylvine_2$	2_{-1}_{-2}
cylinder-bands_3		sylvine_3	7_2_3
$cylinder-bands_5$	14_1_5	$sylvine_5$	7_3_5
$dresses-sales_2$	19_4_3	$shuttle_2$	6_5_2
$dresses-sales_3$	7_5_5	$shuttle_3$	8_2_3
dresses-sales-5	2_4_3	$shuttle_{-}5$	2_3_5

References

- 1. Becker, M., Richter, J., Lang, M., Bischl, B., Binder, M.: bbotk: Black-Box Optimization Toolkit, https://bbotk.mlr-org.com, https://github.com/mlr-org/bbotk
- 2. Borchers, H.W.: adagio: Discrete and Global Optimization Routines (2021), https://CRAN.R-project.org/package=adagio, r package version 0.8.4
- 3. Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., Au, Q., Casalicchio, G., Kotthoff, L., Bischl, B.: mlr3: A modern object-oriented machine learning framework in R. Journal of Open Source Software 4(44), 1903 (2019)
- 4. Le Riche, R., Picheny, V.: Revisiting Bayesian optimization in the light of the COCO benchmark. Structural and Multidisciplinary Optimization **64**(5), 3063–3087 (2021)
- 5. Schneider, L., Richter, J., Becker, M., Lang, M., Bischl, B., Binder, M., Moosbauer, J.: mlr3mbo: Flexible Bayesian Optimization in R (2022), https://mlr3mbo.mlr-org.com, https://github.com/mlr-org/mlr3mbo
- Xiang, Y., Gubian, S., Suomela, B., Hoeng, J.: Generalized simulated annealing for global optimization: The GenSA package. The R Journal 5(1), 13–28 (2013)