

SEM 1 - 1 (RC 07-08)

F.E. (Semester – I) (RC 2007-08) Examination, Nov./Dec. 2016 APPLIED MATHEMATICS – I

Duration: 3 Hours

Total Marks: 100

Instructions: 1) Attempt any five questions, atleast one from each Module.

2) Assume suitable data, if necessary.

MODULE-I

1. a) Evaluate $\int_0^1 x^6 (1-x^2)^{\frac{1}{2}} dx$.

5

b) Evaluate $\int_0^1 (x \log x)^3 . dx$.

5

c) Show that B(m, n) = $\int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}}$

5

d) Prove that $\frac{d}{dx} [erf(ax)] = \frac{2a}{\sqrt{\pi}} e^{-a^2x^2}$

5

2. a) Test the convergence of the following series.

i) $\sum_{n=1}^{\infty} \left(\frac{n!}{n^n}\right)^n$.

4

ii) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}.$

4

iii) $2 - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \dots \text{ to } \infty$.

4

b) Define interval of convergence of power series and hence find it for the series.

$$x - \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} - \frac{x^4}{\sqrt{4}} + \dots$$

8

MODULE-II

3. a) Use De Moivre's theorem and solve $x^9 - x^5 + x^4 - 1 = 0$.

6

b) If $\sin(\alpha + i\beta) = x + iy$ prove that :

$$i) \frac{x^2}{\cosh^2 \beta} + \frac{y^2}{\sinh^2 \beta} = 1$$

ii)
$$\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1.$$

8

c) Separate into real and imaginary part $\sqrt{i}^{\sqrt{i}}$.

a) Determine the analytic function whose real part is cos xcosh y.

6

b) Show that the function $u = e^{-2xy} \sin(x^2 - y^2)$ is harmonic. Find the conjugate harmonic function.

6

c) Show that $i^{i} = \cos \theta + i \sin \theta$; $\theta = \left(2n + \frac{1}{2}\right)\pi e^{-\left(2n + \frac{1}{2}\right)\pi}$

8

MODULE-III

5. a) If $y = \log \left(x + \sqrt{x^2 + p^2}\right)^2$, prove that,

$$(x^2 + p^2)y_{n+2} + (2n + 1) \times y_{n+1} + n^2y_n = 0.$$

b) Expand $\log (1 + e^x)$ in powers of x. Find the first 5 terms.

c) Use Taylor's theorem to show that $\sqrt{1 + x + 2x^2} = 1 + \frac{x}{2} + \frac{7}{8}x^2 - \frac{7}{16}x^3 + ...$

7

6. a) Evaluate:

12

- i) $\lim_{x\to a} \frac{\log(x-a)}{\log(e^x-e^a)}$ ii) $\lim_{x\to a} \left(2-\frac{x}{a}\right)^{\tan\left(\frac{\pi x}{2a}\right)}$ iii) $\lim_{x\to 0} \frac{e^x-e^{\sin x}}{x-\sin x}$

b) If $x = p \cos \theta - q \sin \theta$, $y = p \sin \theta + q \cos \theta$ and u is function of x and y, then show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial p^2} + \frac{\partial^2 u}{\partial q^2}.$$

8

6

MODULE-IV

- 7. a) Form the partial differential equations by eliminating constants
 - i) z = (x a) (y b).

ii)
$$(x-h)^2 + (y-k)^2 + z^2 = a^2$$
.

b) Form the partial differential equations by eliminating functions $z = f(z^2 - xy, x/z)$.

c) Solve $x^2p^2 + y^2q^2 = z^2$.

- 8. a) If $u = \sec^{-1}\left[\frac{\sqrt{x} 2\sqrt{y}}{y^3\sqrt{x}}\right]$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
 - b) Obtain the maxima and minima of the function $x^3 + y^3 63(x + y)$.
 - c) Use the method of Lagrange's multipliers to find the greatest and smallest values that the function f(x, y) = xy takes on the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$.