Lab 3

Sara Frazer 11/3/23

CDA 3203 Computer Logic Design
Fall 2023
Dr. Maria Petrie
Florida Atlantic University

Hand Work

1.1 D Flip Flop

1.1 [Flip	Flop	
D	Q	Command	Q+
0	0	nake Q=0	0
U	1	0-2	0
1	0	make	1
	1	Q=1	T

1.2 T Flip Flop

$\overline{}$			
T	Q	Command	Q+
0	0	LIALI	0
٥	1	HOLD	0
	0	ما بر ب	١
1	1	Toggle	0

1.3 S-R Flip Flop

1.4 J-K Flip Flop

J	K	Q	Command	Q+
^		0		0
U	U	1	HOLD	1
0 1	,	0	Reset	0
	-	1		0
1 0	_	0		1
	1	264	١	
1 1		0	ela	1
	1	1	Toggle	0

1.5 Excitation Tables

Q→Q*	Command	D
0→0	Q=0	0
0→1	0-1	1
1→0	0-0	0
1->1	Q=1	1

Q→Q°	Command	T
0→0	Hold	0
0->1	SPPPOT	(
1→0	704916	1
1->1	Mald	0

$Q \rightarrow Q^*$	Commands	SR
0→0	H 00	0x
0->1	510	10
1→0	201	01
1->1	100 510	χO

Q→Q°	Commands	JK
0 > 0	HOO!	ſλ
0->1	518	١X
1→0	ל זו וטו	χI
1->1	410	XD

2.0 Design and Simulation of Sequential Components in Altera Quartus Using VHDL

2.1 Data Flip Flop (DFF)

Project Wizard Settings

VHDL Code

```
DFF_SaraFrazer.vhd
1
           ■-- DFF Sara Frazer
             -- Behavioral Structure
44
             Library ieee;
        4
15
             USE ieee.std_logic_1164.ALL;
        5
1)
           ENTITY DFF SaraFrazer IS
        7
賃
                 PORT (D, Clock: IN STD_LOGIC;
        8
Œ
                     Q: OUT STD LOGIC);
        9
       10
            END DFF SaraFrazer;
       11
           MARCHITECTURE Behavior OF DFF SaraFrazer IS
%
       12
       13
           BEGIN
       14
             -- update register output on the clock's rising edge
       15
                 PROCESS (Clock)
           100
       16
0
       17
                 BEGIN
       18
                     IF (rising edge (clock)) THEN
Z
       19
                         -- if cleck event and clock=1 then
--is another optickn of doing same thing
       20
       21
                         Q<=D;
267
268
       22
                     END IF;
                 END PROCESS;
       23
ab/
           END Behavior;
       24
```


2.2-1 1-Bit Register

Project Settings

VHDL Code

```
Register_1bit_SaraFrazer.vhd
             ■-- 1 bit register
              -- Sara Frazer
          2
44 ^,;₃
             Library ieee;
             USE ieee.std logic 1164.ALL;
          4
{}
             ENTITY Register_lbit_SaraFrazer IS
          5
                  PORT (D, clock, load : IN STD_LOGIC;
          6
賃 賃
                    Q : INOUT STD LOGIC);
          7
16 %
             END Register 1bit SaraFrazer;
          8
          9
% %
         10 MARCHITECTURE Behavior OF Register_lbit_SaraFrazer IS
         11 BEGIN
7 0
         12 PROCESS (clock)
13 BEGIN
         14
                IF (rising edge (clock)) THEN
267 ab/
                     IF load='1'
         15
         16 ≡
                         THEN Q<=D;
                      END IF;
         17
18
                      END IF;
                  END PROCESS;
         19
```

I accidentally cut off the "END Behavior;"

2.3 16-Bit Register

Project Settings

VHDL

```
Bo Register_16bit_SaraFrazer.vhd
                ■-- 16 bit register
                   -- Sara Frazer
M 25
                 Library ieee;
                  USE ieee.std logic 1164.ALL;
7
                ENTITY Register_16bit_SaraFrazer IS
                      PORT (D: IN STD LOGIC VECTOR (15 downto 0);
            6
EF EF
                clock, load: IN STD_LOGIC;
Q: OUT STD_LOGIC_VECTOR (15 downto 0));
END Register_16bit_SaraFrazer;
16 %
            8
            9
% %
           10
                MARCHITECTURE Behavior OF Register_16bit_SaraFrazer IS
7 0
           11
                BEGIN
           12
■ PROCESS (clock)
           13
           14
                 BEGIN
267
268 ab/
                      IF (rising_edge(clock)) THEN
    IF load='1'
           15
                | ---
           16
                               THEN Q<=D;
           17
T 12
                          END IF;
           18
                      END IF:
           19
           20
                      END PROCESS;
                 END Behavior;
           21
```


2.4 Program Counter Register

Project Settings

VHDL Code

```
programCounter_SaraFrazer.vhd
              ≝-- 16 bit program counter
           1
2
               -- Sara Frazer
44 45
           3
           4
               Library ieee;
T
           5
                USE ieee.std logic 1164.all;
               USE ieee.std logic arith.all;
佳佳
           6
               USE ieee.std_logic_unsigned.all;
              Entity programCounter SaraFrazer IS
16%
           8
                   PORT ( D: IN STD_LOGIC_VECTOR ( 15 downto 0);
          9
% %
                       reset, load, inc, clock: IN STD LOGIC;
          10
          11
                       Q: INOUT STD_LOGIC_VECTOR (15 downto 0));
7 0
          12
               END programCounter_SaraFrazer;
2
          13
              ARCHITECTURE Behavior OF programCounter SaraFrazer IS
          14
267 ab
          15
              BEGIN
              # Process (clock)
          16
          17
               BEGIN
I 2
                   IF (rising_edge(clock))THEN
If (reset='1')
          18
              =
         19
                   then Q<=X"00000";
         20
          21
                   elsif(load= '1')
          22
                    then Q<=D;
         23
                   elsif(inc='1')
         24 =
                   then Q<=Q+1;
          25
                    END IF:
          26
              END IF:
          27
               END PROCESS;
          28
              END Behavior;
```


2.5 8 Register RAM

Project Settings

New Project Wizard: Summary [page 5 of 5]

VHDL Code

```
RAM SRegister SaraFrazer which
             ■-- 8 Register RAM Positive Edge Triggered
-- Sara Frazer
di.
              Library ieee;
              USE ieee.std_logic_1164.ALL;
44
            USE ieee.numeric_std.All;

ENTITY RAM SRegister_SaraFrazer IS

PORT( D: IN STD_LOGIC_VECTOR(15 downto 0);
load, clock: IN STD_LOGIC;
{}
Œ
                       address: IN STD LOGIC VECTOR(2 downto 0);
Œ
       10
                       Q: OUT STD_LOGIC_VECTOR (15 downto 0));
             END RAM_SRegister_SaraFrazer;
       12
             ARCHITECTURE Behavior OF RAM SRegister SaraFrazer IS
%
                    TYPE Array8x16 IS ARRAY (7 downto 0) OF STD_LOGIC_VECTOR (15 downto 0);
       13
%
       14
                    SIGNAL RAM: Array8x16;
                    SIGNAL index: INTEGER RANGE 0 to 7;
×
       15
            BEGIN
       16
0
                   PROCESS (clock)
       17
            =
        18
                   BEGIN
Z
       19
            =
                       IF (rising edge (clock)) THEN
=
                            IF (load='1') THEN
       20
            =
                                FOR index in 0 to 7 LOOP
267
268
                            RAM(index) <= D;
       23
              END LOOP:
ab/
       24
              0<=D:
1
            ELSE
       25
                  FOR index in 0 to 7 LOOP
       26
             =
                   Q<=RAM(index);
       27
逦
              END LOOP;
       28
              END IF;
       29
2
              END IF;
        30
              END process;
        32
              END behavior;
```


