Личные записи по топологии

@keba4ok

13 октября 2021г.

Некоторые воспомниания с конца второго курса по топологии, которые напрямую связаны с нынешним материалом, а также важные факты с лекций и практик.

Содержание

Алгебраическая топология.	2
Гомотопии.	2
Фундаментальная группа.	2
Оставшаяся хуйня.	
Ретракции.	
Клеточные пространства и накрытия	
Дифгем.	9
«Напоминания»	9
Кривизны	
Многомерие.	
Многомерные формулы Френе	
То, что ЕА рассказывал на доске	
4 семестр	15
Решения задач с практик	15
Поехали блять	

к содержанию к списку объектов

Алгебраическая топология.

Гомотопии.

Будем считать, что X и Y - топологические пространства, $f,g:X\to Y$ - непрерывные отображения.

Определение 1. f и g гомотопны $(f \sim g)$, если существует непрерывное отображение $H: X \times [0,1] \to Y$ такое, что

- $H(x,0) = f(x), \forall x \in X;$
- $H(x,1) = g(x), \forall x \in X$.

Определение 2. Отображение H называется гомотопией между f и g.

Теорема 1. Гомотопность - отношение эквивалентности на множестве всех непрерывных функций из X в Y.

Теорема 2. Пусть X, Y, Z - топологические пространства, отображения $f_0, f_1 : X \to Y$ гомотопны, и отображения $g_0, g_1 : Y \to Z$ также гомотопны. Тогда $g_0 \circ f_0 \sim g_1 \circ f_1$.

Определение 3. Пусть $A \subset X$. Говорят, что гомотопия $H : X \times [0,1] \to Y$ связана на A, если $H(x,t) = H(x,0), \forall x \in A, t \in [0,1]$ (если гомотопия не связана, то она свободна).

Определение 4. Два пути $\alpha, \beta : [0,1] \to X$ гомотопны $(\alpha \sim \beta)$, если существует соединяющая их гомотопия, связанная на $\{0,1\}$.

Определение 5. Пусть $\alpha, \beta: [0,1] \to X$ - пути, и $\alpha(1) = \beta(0)$. Тогда произведение путей определяется как

$$(\alpha\beta)(t) = \begin{cases} \alpha(2t), t \le \frac{1}{2}; \\ \beta(2t-1), t \ge \frac{1}{2}. \end{cases}$$

Свойства произведения:

- произведения соответственно гомотопных путей гомотопны;
- ассоциативность;
- если ε_p и ε_q постоянные пути в начале $\alpha(0)=p$ и $\alpha(1)=q$ пути α . Тогда $\varepsilon_p\alpha\sim\alpha\varepsilon_q\sim\alpha$;
- пусть $\alpha'(t) = \alpha(1-t)$. Тогда $\alpha\alpha' \sim \varepsilon_p$.

Фундаментальная группа.

Определение 6. Петля - путь, у которого конец совпадает с началом. Множество петель в X с началом и концом в *отмеченной точке* x_0 , обозначается как $\Omega(X, x_0)$.

Определение 7. Фундаментальная группа топологического пространства X с отмеченной точкой x_0 ($\pi_1(X,x_0)$) определяется так:

• множество элементов группы - фактор-множество $\Omega(X,x_0)/\sim$, где \sim - гомотопность путей с фиксированным концом в x_0 ;

• групповое произведение определяется форумлой

$$[\alpha][\beta] = [\alpha\beta],$$

где $\alpha, \beta \in \Omega(X, x_0)$.

Определение 8. Если γ - путь из p в q (значение в начале, и значение в конце). Тогда $T_{\gamma}: \pi_1(X,p) \to \pi_1(X,q)$ - отображение групп (изоморфизм).

Теорема 3. Если X, Y - топологические пространства, $x_0 \in X$, $y_0 \in Y$, тогда

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Определение 9. (Гомоморфизм фундаментальных групп, индуцированный отображением). Если X,Y - топологические пространства, $x_0 \in X, y_0 \in Y, f: X \to Y$ - непрерывное отображение, $f(x_0) = y_0$. Тогда определим $f_*: \pi(X,x_0) \to \pi_1(Y,y_0)$ так:

$$f_*([\alpha]) = [f \circ \alpha].$$

Свойства:

- * от композиции композиция * к функциям;
- ullet id : $X \to X \Rightarrow \mathrm{id}_* : \pi_1(X, x_0) \to \pi_1(X, x_0)$. Тогда id $_* = \mathrm{id}_{\pi_1(X, x_0)}$.

Утверждение 1. $f: X \to Y$ - гомеоморфизм, тогда $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ будет изоморфизмом.

Оставшаяся хуйня.

Определение 10. Топологическое пространство X односвязно, если X линейно связно и $\pi_1(X) = \{e\}.$

Теорема 4. S^n односвязно при всех n хотя бы 2.

 $Cnedcmeue. \mathbb{R}^n \setminus \{0\}$ для всех n хотя бы 3, односвязно.

Определение 11. X,B - топологические пространства; $p:X\to B$ - непрерывное отображение называется *накрытием*, если $\forall y\in B$, существует окрестность $U:p^{-1}(U)=\sqcup v_i$, где каждое v_i открыто в X и $p_{|v_i}$ - гомеоморфизм между v_i и U.

Пример (\mathbf{b}) 1.

- гомеоморфизм (v_i всё пространство);
- $p: \mathbb{R} \to S^1$, где $p(x) = (\cos x, \sin x)$.

Теорема 5 (о постоянстве числа лисотв). Пусть $p: X \to B$ - накрытие; B - связно. Тогда $|p^{-1}(B)|$ одинаково у всех $b \in B$.

Определение 12. $|p^{-1}(b)|$ - число листов накрытия

Определение 13. $p: X \to B$ - накрытие; $f: Y \to B$ - непрервное отображение. Поднятием отображения f называется непрерывное отбражение $\tilde{f}: Y \to X$ такое, что $f = p \circ \tilde{f}$.

Теорема 6 (о поднятии пути). Пусть $p: X \to B$ - накрытие; $b_0 \in B$, $x_0 \in X$, причём $p(x_0) = b_0$. Тогда для любого пути $\alpha: [0,1] \to B$ такого, что $\alpha(0) = b_0$, существует и притом единственное поднятие $\tilde{\alpha}$ пути α такое, что $\tilde{\alpha}(0) = x_0$.

Лемма 1 (о непрерывном аргументе). Пусть $\gamma:[0,1]\to\mathbb{C}\setminus\{0\}$. Тогда

- существует непрерывная функция $\varphi:[0,1]\to\mathbb{R}$ такая, что $\gamma(t)=|\gamma(t)|\cdot e^{i\varphi(t)}=|\gamma(t)|\cdot (\cos\varphi(t),\sin\varphi(t));$
- такая φ единственная с точностью до добавления числа, кратного 2π .

Теорема 7 (о поднятии гомотопии). Пусть $p: X \to B$ - накрытие; $b_0 \in B$, $x_0 \in X$, причём $p(x_0) = b_0$. Тогда для любого непрерывного отображения $H: K \to B$ такого, что $H(0,0) = b_0$, существует, и притом единственное, поднятие \tilde{H} , что $\tilde{H}(0,0) = x_0$.

Следствие. Пусть α, β - пути в B такие, что $\alpha(0) = \beta(0)$ и $\alpha(1) = \beta(1)$. Если $\alpha \sim \beta$, то их поднятие в одну и ту же точку $x_0 \in X$ гомотопны, и, что показывается изначально, $\alpha(1) \sim \beta(1)$.

Определение 14. Петля, гомотопная постоянной, называется стягиваемой.

Следствие. Поднятие стягиваемой петли - стягиваемая петля.

Следствие. Пусть $p: X \to B$ - накрытие; $x_0 \in X, b_0 \in B$ такие, что $p(x_0) = b_0$. Тогда индуцированный гомеоморфизм $p_*: \pi_1(X, x_0) \to \pi_1(B, b_0)$ является инъекцией.

Определение 15. Образ группы $\pi_1(X, x_0)$ при p_* называется *группой накрытия*.

Утверждение 2. Петля из группы накрытия при поднятии не размыкается.

Определение 16. Накрытие $p: X \to B$ называется *универсальным*, если X односвязно $(\pi_1(x) = \{e\}, X$ - линейно связно).

Лемма 2. Сопоставим каждой петле $\alpha \in \Omega(B, b_0)$ конец её поднятия с началом в x_0 , то есть, рассматриваем отображение $\Omega(B, b_0) \to p^{-1}(b_0)$ (так как конец поднятия проецируется в b_0). Это соответствие определяет биекцию $\pi_1(B, b_0) \to p^{-1}(b_0)$.

Теорема 8. $\pi_1(\mathbb{R} P^n) = \mathbb{Z}_2$, $npu \ n \geq 2$.

Теорема 9. $\pi_1(S^1) = \mathbb{Z}$.

Cледствие. \mathbb{R}^2 не гомеоморфно \mathbb{R}^3 .

Ретракции.

Определение 17. Ретракция - непрерывное отображение $f: X \to A$, где $A \subset X$, такое, что $f|_A = \mathrm{id}_A$. Если существует ретракция $f: X \to A$, то A называется ретрактом пространства X.

Теорема 10. Подмножество A топологического пространства X является его ретрактом тогда и только тогда, когда всякое непрерывное отображение $g: A \to Y$ в произвольное пространство Y можно продолжить до непрерывного отображения $X \to Y$.

Лемма 3. Если $\rho: X \to A$ - ретракция, in : $A \to X$ - вложение $u \ x_0 \in A$, то

• $\rho: \pi_1(X, x_0) \to \pi_1(A, x_0)$ - сюръекция;

• in : $\pi_1(A, x_0) \to \pi_1(X, x_0)$ - интекция.

Теорема 11 (Теорема Борсука в размерности 2). Не существует ретракции из D^2 на S^1 .

Определение 18. Точка $a \in X$ называется *неподвижной* точкой отображения $f: X \to X$, если f(a) = a. Говорят, что прстранство обладает свойством неподвижной точки, если всякое непрерывное отображение $f: X \to X$ имеет неподвижную точку.

Теорема 12. Любое непрерывное отображение $f: D^2 \to D^2$ имеет неподвижную точку.

Определение 19. X и Y гомотопически эквивалентни $(X \sim Y)$, если существуют непрерывные отображение $f: X \to Y$ и $g: Y \to X$ такие, что $g \circ f \sim \operatorname{id}_x$ и $f \circ g \sim \operatorname{id}_Y$. Такие f и g называются гомотопически обратными отображениями. Каждое из f и g называется гомотопической эквивалентностью.

Определение 20. Ретракция $f: X \to A$ называется *деформационной ретракцией*, если её композиция с включением in $A \to X$ гомотопна тождественносу отображению, то есть

$$\operatorname{in} \circ f \sim \operatorname{id}_X$$
.

Если существуют деформационная ретракция X на A, то A называется деформационным ретрактом пространства X.

Теорема 13. Деформационная ретракция - гомотопическая эквивалентность.

Теорема 14. Гомотопическая эквивалентность - отношение эквивалентности между топологическими пространствами.

Определение 21. Класс пространства, гомотопически эквивалентных данному X называется его *гомотопическим типом*. Свойства (характеристики) топологических пространств, одинаковые у гомотопических эквивалентных, - *гомотопические свойства*.

Теорема 15. Гомотопическая эквивалентность индуцирует изоморфизм фундаментальных групп.

Лемма 4. Пусть $f, g: X \to Y$ - гомотопные отображения, $H: X \times t \to Y$ - гомотопия между ними, $f(x_0) = y_0$, $g(x_0) = y_1$, $\gamma(t) = H(x_0, t)$ - путь от y_0 к y_1 . Тогда $g_* = T_{\gamma} \circ f_*$.

Определение 22. Топологическое пространство *стягиваемо*, если оно гомотопически эквивалентно точке.

Лемма 5. Пусть $h: S^1 \to X$ - непрерывное отображение. Следующие утверждения эквивалентны:

- h гомотопно постоянному отображению;
- h продолжается до непрерывного отображения $D^2 \to X$;
- h_* тривиальный гомоморфизм фундаментальных групп.

Теорема 16. Для любой непрервыной функции $f: S^n \to \mathbb{R}^n$ существует точка $x \in S^n$ такая, что f(-x) = f(x).

Определение 23. Топологической парой (X, A) называется топологическое пространство X с выделенным подмножеством A, на котором мы рассматриваем топологию, индуцированную с X.

Определение 24. Топологическая пара называется *парой Борсука*, если для любого топологического пространства Y, любого непрерывного отображения $f: X \to Y$ и любой гомотопии $F: A \times I \to Y$ такой, что $F_0 = f|_A$ (напомним, что по определению $F_t(\cdot) = F(\cdot,t)$) существует гомотопия $G: X \times I \to Y$ такая, что $G_t|_A = F_t$ для всех $t \in I$ и $G_0 = f$. Иными словами, любую гомотопию A внутри Y, начинающуюся с f, можно продолжить до гомотопии всего X.

Утверждение 3. Если (X,A) - пара Борсука и A стягиваемо, то X гомотопически эквивалентно X/A.

Клеточные пространства и накрытия.

Определение 25. Клеточное пространство размерности n определяется по индукции следующим образом. Клеточное пространство размерности 0 - дискретное пространство. Клеточное пространство размерности $n \in \mathbb{N}$ - топологическое пространство X, которое может быть получено (с точностью до гомеоморфизма) из клеточного пространства Y с размерностью k < n приклеиванием набора $\{D_i^n\}_{i \in I}$ копий диска D^n по непрерывным отображениям $\varphi_i : \partial D)i^n \to Y$, где ∂D_i^n - краевая сфера диска D_i^n .

Kлеточное разбиение - конкретный способ представить X в таком виде, вместе с аналогичным представлением Y и так далее до размерности 0.

Kлет κu - внутренности приклеиваемых дисков, а также точки исходного 0-мерного пространства.

Определение 26. Клеточный комплекс -

- конечный, если клеток конечное число;
- локально конечный, если клетки образуют локально конечное покрытие;
- *конечномерный*, если размерности клеток ограничены; при этом максимальная размерность клетки называется *размерностью* пространства.

Определение 27. Пусть X - клеточное пространство с зафиксированным клеточным разбиением. Его k-мерный остов - объединение всех клеток размерности не боле k. Обозначение X_k или $\operatorname{sk}_k(X)$.

Теорема 17. Пусть Γ - граф, X - топологическое пространство. Тогда отображение $f:\Gamma \to X$ - непрерывно тогда и только тогда, когда его сужение на каждое ребро (замкнутое) графа непрерывно.

Теорема 18. Фундаментальная группа букета п окружностей - свободная группа с п образующим (обозначение F_n). В качестве образующих можно взять однократные обходы окружностей букета.

Теорема 19. Пусть Γ - локально конечный граф. $T \subset \Gamma$ - стягиваемый подграф. Тогда $\Gamma/T \sim \Gamma$.

Cледствие. Связный граф с n вершинами и m рёбрами гомотопически эквивалентен букету m-n+1 окружностей (или точке, если m-n+1=0).

Cnedcmeue. Фундаментальная группа связного графа с n вершинами и m рёбрами - свободная группа с m-n+1 образующими.

Определение 28. Клеточное подпространство клеточного пространства X - замкнутое множество $Y \subset X$, состоящее из целых клеток.

Теорема 20. Пусть

- X клеточное пространства $Y \subset X$ клеточное подпространство;
- ullet Z топологическое пространство, $f:X\to Z$ непрерывное отображение;
- $H_0: Y \times [0,1] \to Z$ гомотопия, $H_0(\cdot,0) = f|_Y$.

тогда существует гомотопия $H: X \times [0,1] \to Z$, продолжающая H_0 и такая, что $H(\cdot,0)=f$.

Лемма 6. Пусть Γ - локально конечный граф, $T \subset \Gamma$ - стягиваемый подграф. Тогда существует непрерывное $h: \Gamma \to \Gamma$ такое, что

- $h|_T = \text{const};$
- $h \sim \mathrm{id}_{\Gamma}$;
- существует такая гомотопия $\{h_t\}$ между id u h, что $h_t(T) \subset T$ при всех T.

Теорема 21. Пусть Y - топологическое пространство, X получается приклеиванием κ Y диска D^2 по непрерывному отображению $\hat{\alpha}: S^1 \to Y$, $x_0 = \alpha(1,0)$. Тогда

$$\pi_1(X, x_0) \simeq \pi_1(Y, x_0) / N([\alpha]),$$

где $N([\alpha])$ - нормальное замыкание элемента $[\alpha]$ фундаментальной группы $\pi_1(Y,x_0)$.

Теорема 22. При приклеивании клетки размерности $n \ge 3$ фундаментальная группа не меняется.

Лемма 7 (о свободной точке). Существует $H_1: X \to X$, совпадающее с H на краю K и такое, что образ H_1 не покрывает $X \setminus Y$.

Следствие. Фундаментальная група конечного клеточного пространства изоморфна фундаментальной группе 2-мерного остова.

Следствие. Пусть X - конечномерное связное пространство, T - максимальное дерево в X и $x_0 \in T$. Для каждой одномерной клетки $e \subset X \setminus T$ выберем петлю s_e , начинающуюся в x_0 , проходязую по T до e и возвращающуюся (вновь по T) в исходную точку x_0 . Тогда гомотопические классы петель s_e являются свободными образующими группы $\pi_1(X, x_0)$.

Следствие. Если $\pi_1(Y, x_0)$ задана образующими и соотножениями, то $\pi_1(X, x_0)$ получается добавлением $[\alpha]$ в список соотношений.

Определение 29. Группа называется *конечно представленной*, если её можно задать образующими и соотношениями так, что образующих и соотношений конечное множество.

Следствие. Фундаментальная группа конечного клеточного пространства - конечно представленнаая группа.

Следствие. Любая конечно представленная группа изоморфна фундаментальной группе некоторого конечного клеточного пространства размерности 2.

 $Утверждение\ 4.\ Пусть\ p:X\to Y$ и $q:Y\to Z$ - накрытия. Тогда если q - конечнолистно, то $q\circ p:X\to Z$ - накрытие.

Утверждение 5. Следующие условия эквивалентны:

- накрытие регулярно;
- все группы $p_*(\pi_1(X,x))$ с $x \in p^{-1}(b_0)$ совпадают;
- ullet группа автоморфизмов накрытия действует в слое $p^{-1}(b_0)$ транзитивно.

Определение 30. *Морфизмом накрытий* $p_X:(X,x_0)\to(B,b_0)$ и $p_Y:(Y,y_0)\to(B,b_0)$ - это непрерывное отображение $f:(X,x_0)\to(Y,y_0)$, такое что

$$p_Y \circ f = p_X$$
.

Определение 31. Группой накрытия $p:(X,x_0)\to(B,b_0)$ называется $p_*(\pi_1(X,x_0))\subset \pi_1(B,b_0).$

Дифгем.

«Напоминания».

Основные понятия мы определяем для натурально параметризованных кривых. Так, пусть $\gamma:[a,b]\to\mathbb{R}^2$ - натурально параметризованная кривая, то есть, $|\gamma'(t)|=1$ в каждой точке $t\in[a,b]$.

Определение 32. *Базис Френе* кривой γ в точке $t \in [a,b]$ - пара векторов $v,n \in \mathbb{R}^2,$ определяемая условиями:

- $v = \gamma'(t)$;
- \bullet (v,n) положительно ориентированный ортонормированный базис плоскости.

Обозначается как v, n или v(t), n(t) или $v_{\gamma}(t)$, $n_{\gamma}(t)$, а занывается c коростью и нормалью соответственно.

Кривизны.

Определение 33. *Кривизна* натурально параметризованной кривой γ в точке t - такое число $\kappa = \kappa(t) \in \mathbb{R}$, что

$$\gamma''(t) = v'(t) = \kappa(t) \cdot n(t).$$

Эквивалентное определение: $\kappa = \langle v', n \rangle$. Из этой формулы следует, что κ гладко зависит от t.

Определение 34. Пусть γ - произвольная (не натурально пааметризованная) регулярная кривая. Кривизна γ в точке t - кривизна её натуральной параметризвции в соответствующей точке.

Теорема 23. Для произвольной регулярной кривой γ

$$\kappa = \frac{[\gamma', \gamma'']}{|\gamma'|^3},$$

где [,] - внешнее произведение векторов (определитель матрицы).

Теорема 24. Для натурально параметризованной кривой γ

$$\begin{cases} v' = \kappa n; \\ n' = -\kappa v. \end{cases}$$

Определение 35. $\Pi osopom$ натурально параметризованной кривой $\gamma:[a,b] \to \mathbb{R}^2$ - это

$$\int_{a}^{b} \kappa(t)dt,$$

где κ - кривизна этой кривой.

Примечание. Для не натурально параметризованной кривой $\gamma:[a,b]\to\mathbb{R}^2$ поворот можно найти по формуле

$$\int_{a}^{b} \kappa(t) |\gamma'(t)| dt.$$

Краткая запись (интеграл по длине): $\int_a^b \kappa dt$.

Примечание. Непрерывный аргумент функции $v:[a,b]\to S^1$ - такая непрерывная функция $\alpha:[a,b]\to\mathbb{R},$ Что

$$v(t) = (\cos \alpha(t), \sin \alpha(t))$$

для всех $t \in [a, b]$. Непрерывный аргумент существует у любой такой непрерывной функции. Он единственен с точностью до константы, кратной 2π .

Лемма 8. Непрерывный аргумент $\alpha(t)$ - гладкая функция от t.

Теорема 25. Пусть v(t) - скорость натурально параметризованной кривой γ , $\alpha(t)$ - непрерывный аргумент для v(t). Тогда $\alpha'(t) = \kappa(t)$, где κ - кривизна γ .

Cледствие. Поворот кривой $\gamma:[a,b]\to\mathbb{R}^2$ равен изменению аргументы вектора $\gamma'(t)$ от t=a до t=b.

Следствие. Вектор $\gamma'(a)$ и $\gamma'(b)$ определяют поворот привой γ с точностью до прибавления $2\pi k$, где $k \in \mathbb{Z}$.

Теорема 26. Для любой гладкой функции $\kappa: I \to \mathbb{R}$ существует регулярная натурально параметризованная кривая $\gamma: I \to \mathbb{R}^2$, у которой кривизна равна этой функции. Такая кривая единственная с точностью до движения, сохраняющего ориентацию.

Лемма 9. Пусть $\kappa: I \to \mathbb{R}$ - гладкая функция, $t_0 \in I$, $p_0 \in \mathbb{R}^2$, $v_0 \in S^1$. Тогда существует единственная натурально параметризованная кривая $\gamma: I \to \mathbb{R}^2$ таая, что $\gamma(t_0) = p_0$, $\gamma'(t_0) = v_0$, $\kappa_{\gamma}(t) = \kappa(t)$ для всех $t \in I$.

Многомерие.

Определение 36. Пусть $\gamma:I\to\mathbb{R}^n$ - натурально параметризованная регулярная кривая, $t\in I$. Вектор $\gamma''(t)$ - вектор кривизны γ в точке t. Его длина $\kappa(t):=|\gamma''(t)|$ - кривизна. Его направление $n_{\gamma}(t):=\frac{\gamma''(t)}{|\gamma''(t)|}$ (далее - просто нормаль).

Определение 37. *Бинормаль* γ в точке t - вектор $b(t) = v(t) \times n(t)$. *Кручение* γ в точке t - число $\tau(t) = \langle n'(t), b(t) \rangle$.

Теорема 27. Для натурально параметризованной кривой в \mathbb{R}^3 , кривизна которой не обращается в нуль, верны формулы

$$\begin{cases} v' = \kappa n; \\ n' = -\kappa v + \tau b; \\ b' = -\tau n. \end{cases}$$

 $\Gamma \partial e \ v, n, b$ -базис Френе, κ - кривизна, τ - кручение.

Теорема 28. Для не натурально параметризованной кривой γ в \mathbb{R}^3 ,

$$\kappa = \frac{|\gamma' \times \gamma''|}{|\gamma'|^3},$$

$$\tau = \frac{[\gamma', \gamma'', \gamma''']}{|\gamma' \times \gamma''|^2}.$$

Определение 38.

• плоскость (v, n) - соприкасающаяся плоскость;

- плоскость (n, b) нормальная плоскость;
- плоскость (v,b) спрямляющая плоскость.

Примечание. Направляющая идея: из формула $b' = -\tau n$ следует, что соприкасающаяся плоскость кривой поворачивается со скоростью $|\tau|$.

Следствие. Кривая γ (с ненулевой кривизной) лежит в отной плоскости тогда и только тогда, когда $\tau \equiv 0$.

Многомерные формулы Френе.

Определение 39. Будем называть гладкую кривую $\gamma: I \to \mathbb{R}^n$ невырожденной, если для любого $t \in I$ векторы $\gamma'(t), \gamma''(t), \ldots, \gamma^{(n-1)}(t)$ линейно независимы.

Теорема 29. Пусть $\gamma: I \to \mathbb{R}^n$ - невырожденная натурально параметризованная кривая. Тогда существует единственный набор гладких функций $v_1, \ldots, v_n: I \to \mathbb{R} \ u \ \kappa_1, \ldots, \kappa_{n-1}: I \to \mathbb{R} \ (кривизны) такой, что для всех <math>t \in I$

- $v_1(t), \ldots, v_n(t)$ положительно ориентированный ортонормированный безис в \mathbb{R}^n (базис Френе);
- $\kappa_1(t), \dots, \kappa_{n-2}(t) > 0$ (κ_{n-1} может менять знак);
- $v_1 = \gamma'$;
- верны формулы Френе:

$$v'_1 = \kappa_1 v_2;$$

 $v'_i = -\kappa_{i-1} v_{i-1} + \kappa_i v_{i+1};$
 $v'_n = -\kappa_{n-1} v_{n-1}.$

Теорема 30. Пусть $\kappa_1, \ldots, \kappa_{n-1}: I \to \mathbb{R}$ - глажкие функции, причём $\kappa_1, \ldots, \kappa_{n-2} > 0$. Тогда

- Существует невырожденная натурально параметризованная кривая $\gamma: I \to \mathbb{R}^n, \ y$ которой кривизны равны $\kappa_1, \dots, \kappa_{n-1};$
- Такая кривая единственна с точностью до движения, сохраняющего ориентацию.

Определение 40. Кривая $\gamma:[a,b]\to\mathbb{R}^2$ - *замкнута*, если её можно продолжить до гладкой (b-a)-периодической функции $\gamma:\mathbb{R}\to\mathbb{R}^2$.

Cnedcmeue. Поворот замкнутой привой равен $2\pi k$, где $k \in \mathbb{Z}$.

Определение 41. k - число вращения.

Определение 42. *Простая замкнутая кривая* - замкнутая кривая, у которой нет самопересечений.

Утверждение 6. Поворот простой замкнутой кривой равнен $\pm 2\pi$.

То, что ЕА рассказывал на доске.

Теорема 31. Пусть γ - простая, регулярная, замкнутая кривая в \mathbb{R}^2 . Тогда следующие условия эквивалентны:

- γ выпуклая (здесь по одну сторону от \forall касательной);
- κ_{γ} везде не меньше или не больше нуля;
- \forall прямой l существует ровно две касательных $\kappa \gamma$, параллельных l.

Определение 43. Пусть γ - натурально параметризованная кривая в \mathbb{R}^n , кривизна γ есть $\kappa_{\gamma} = |\gamma''(t)|$. Тогда *поворот* есть

$$\int_{a}^{b} \kappa_{\gamma}(t)dt.$$

Теорема 32 (*Теорема Фенхеля*). Поворот регулярной замкнутой кривой в \mathbb{R}^n не меньше 2π .

Далее, $\mathbb{R}^m \subset U$ - область (открытая связная), $m \leq N, r: U \to \mathbb{R}^n$.

Определение 44. Гладкое отображение r называется гладкой поверхностью.

Определение 45. Поверхность r регулярна, если ранг dr равен m (инъекция).

Определение 46. *Касательное пространство* к поверхности в точке x есть $\text{Im}(d_x r)$.

Определение 47. Нормаль к поверхности - нормаль к касательной плоскости.

Определение 48. Гладкая кривая на поверхности - образ гладкой кривой на U.

Теорема 33. Касательная плоскость Φ (Im r) есть множество касательных векторов ко всем гладким кривым на поверхности, проходящим через данную точку.

Определение 49. Пусть $r_1:U_1\to\mathbb{R}^n,\ r_2:U_2\to\mathbb{R}^n.$ Они называются *эквивалентными*, если существует диффеоморфизм из U_1 в U_2 с положительным Якобианом.

Определение 50. Пусть $r:U\subset\mathbb{R}^2\to\mathbb{R}^3$. *Первая форма* - это билинейная симметричная форма на \mathbb{R}^2 такая, что для любых $v,w\in\mathbb{R}^2$, для любого $x\in U$ $(x=(x_1,x_2))$, выполнено

$$I(v, w) = \langle d_x r(v), d_x r(w) \rangle.$$

I(v,v) - первая квадратичная форма.

Утверждение 7.

- І положительно определена;
- Матрица I (g_{ij}) выглядит как

$$g_{ij} = \langle r'_{x_i}, r'_{x_j} \rangle,$$

и при m=2 обозначается как

$$(g_{ij}) = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

Благодаря этой вещи можно считать:

• Длину кривой $\gamma(t) = r(x_1(t), x_2(t))$:

$$l = \int_{a}^{b} |\gamma'(t)| dt = \int \sqrt{\mathrm{I}(v,v)},$$

где $v = (x_1', x_2');$

- Угол между кривыми (касательными в точке), посчитав скалярное произведение между двумя соответствующими векторами вида выше;
- Площадь поверхности.

Определение 51. *Второй формой* называется билинейная форма, заданная следующим образом:

$$II(v, w) = \langle d_x^2 r(v, w), n \rangle,$$

где n - вектор нормали

$$\frac{r_{x_1} \times r_{x_2}}{|r_{x_1} \times r_{x_2}|}.$$

Утверждение 8.

• Матрица II формы в стандартном базисе обозначается как

$$(h_{ij}) = \begin{pmatrix} L & M \\ M & N \end{pmatrix},$$

где
$$(h_{ij}) = \langle r_{x_i,x_j}, n \rangle$$
.

Теорема 34.

$$II(v, w) = \langle dr(v), dn(w) \rangle.$$

Пусть $\widetilde{\gamma}(t) = r(\widetilde{x_1(t)}, \widetilde{x_2(t)})$ - гладкая натурально параметризованная кривая. Тогда $\kappa_{\widetilde{\gamma}} = |\widetilde{\gamma}''(t_0)|$, но можно определить два очень полезных типа кривизн следующим образом:

Определение 52. Спроецируем $\tilde{\gamma}''(t_0)$ на соответствующий вектор нормали и получим нормальную кривизну, то есть, $\kappa_n = \langle \tilde{\gamma}''(t_0), n \rangle$. Другая компонента (проекция на касательную плоскость) называется геодезической кривизной, обозначается κ_q .

Утверждение 9.

- $\kappa_{\widetilde{\gamma}} = \sqrt{\kappa_n^2 + \kappa_g^2};$
- Теорема Менье $\kappa_n = \kappa_{\widetilde{\gamma}} \cdot \cos(\varphi)$, где φ угол между $\widetilde{\gamma}''$ и нормалью.

Теорема 35. Пусть $\gamma(t) = r(x_1(t), x_2(t))$ - гладкая кривая на Φ , и пусть также $\xi = (x_1'(t_0), x_2'(t_0))$. Тогда

$$\kappa_n = \frac{\mathrm{II}(\xi, \xi)}{\mathrm{I}(\xi, \xi)}.$$

Следствие. Если две кривые проходят через одну точку и имеют коллинеарные вектора скорости, то их нормальные кривизны совпадают.

Определение 53. Пусть $p \in \Phi$, $v \in T_p\Phi$, тогда *нормальное сечение* - ересечение Φ с плоскостью, порождённой векторами n и v.

Лемма 10. Нормальное сечение можно представить как гладкую кривую на Φ .

Определение 54. Оператор Вейнгартена - $s: T_p\Phi \to T_p\Phi$ такой, что для любых $\widehat{v}, \widehat{w} \in T_p\Phi$, $\widehat{\Pi}(\widehat{v},\widehat{w}) = \langle \widehat{v}, s(\widehat{w}) \rangle$.

Утверждение 10. В базисе r_{x_i} матрицы $\hat{\mathbf{I}}$ и $\hat{\mathbf{I}}$ форм связаны следующим соотношением:

$$[\widehat{\mathbf{II}}] = [\widehat{\mathbf{I}}] \cdot [s].$$

Определение 55. *Главная кривизна* - собственное число оператора Вейнгартена. *Главное направление* - прямая, порождённая собственным векторомоператора Вейнгартена.

Утверждение~11.~ Так как s самомопряжённая, существует m главных кривизн с учётом кратности (вещественных), которым соответствует m попарно ортогональных направлений.

Получается, что в $T_p\Phi$ существует ортонормированный базис b_1 , b_2 из собственных векторов оператора S, в котором $[\widehat{\mathbf{I}}]=E$, а

$$[\widehat{\mathbf{II}}] = \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix},$$

где k_1 и k_2 - главные кривизны.

Теорема 36 (*Теорема Эйлера*). Пусть $\widehat{v} \in T_p\Phi$, $|\widehat{v}| = 1$, $\varphi = \angle(\widehat{v}, b_1)$. Тогда κ_n поверхности Φ по направлению v равна

$$\kappa_n = \widehat{\Pi}(\widehat{v}, \widehat{v}) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi.$$

Cnedcmeue. κ_1 и κ_2 - наибольшее и наименьшее значение κ_n по всем направлениям.

Определение 56. Гауссова Кривизна - $K = \kappa_1 \cdot \kappa_2$, средняя кривизна - $H = \frac{\kappa_1 + \kappa_2}{2}$.

Утверждение 12.

$$(\kappa_n)_{\Phi} = \frac{1}{2\pi} \int_0^{2\pi} \kappa_n(\phi) d\phi = H.$$

Теорема 37. κ_1 и κ_2 - корни уравнения $\det([II] - t[I]) = 0$.

надо будет дописать 3 семестр...

4 семестр

Решения задач с практик

Первые несколько решений нагло украдены из заметок Н. С. Калинина.

Задача (1). Найдите первую форму для $\mathbb{R}^2 \setminus \{0\}$ с полярными координатами (ρ, φ) , и запишите длину кривой $(\rho(t), \varphi(t))$.

Решение. Мы умеем считать длины векторов в (x, y)-координатах, поэтому давайте перейдём к этой системе:

$$x = \rho \cos \varphi,$$
$$y = \rho \sin \varphi.$$

Мы знаем, что

$$\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \rangle = \langle \frac{\partial}{\partial y}, \frac{\partial}{\partial y} \rangle = 0;$$
$$\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \rangle = 1,$$

иначе говоря, пара векторов $\frac{\partial}{\partial x}(x_0, y_0)$, $\frac{\partial}{\partial y}(x_0, y_0)$ - это ортонормированный базис в каждой точке. Так, получим ответ на первый вопрос:

$$dx = \cos \varphi \cdot d\rho - \rho \sin \varphi \cdot d\varphi,$$

$$dy = \sin \varphi \cdot d\rho + \rho \cos \varphi \cdot d\varphi,$$

$$dx^{2} + dy^{2} = d\rho^{2} + \rho^{2} d\varphi^{2}.$$

Что касается длины кривой, если $\gamma:[0,1]\to\mathbb{R}^2,\ t\to(\rho(t),\varphi(t))$, то

$$\int_{0}^{1} \sqrt{d\rho^{2} + \rho^{2} d\varphi^{2}} = \int_{0}^{1} \sqrt{\rho'(t)^{2} + \rho(t)^{2} \varphi'(t)^{2}} dt.$$

Задача (2). Рассмотрим единичную сферу без полюсов, параметризованную широтой и долготой, то есть как (θ, φ) где $\theta \in (0, \pi)$, $\varphi \in R \setminus 2\pi \mathbb{Z}$.

- а) Найдите первую форму в этих координатах.
- б) Используя её, покажите, что площадь круга радиуса r на сфере равна $2\pi(1-\cos r)$.
- в) (теорема Архимеда) Нашу сферу пересекают две плоскости на расстоянии h. Докажите, что площадь участка сферы между плоскостями равна $2\pi h$.

Решение. Перейдём к декартовым координатам:

$$x = \cos \varphi \cdot \sin \theta,$$

$$y = \sin \varphi \cdot \sin \theta,$$

$$z = \cos \theta.$$

Тогда

$$\frac{\partial}{\partial \varphi} = \frac{\partial}{\partial x} (-\sin \varphi \cdot \sin \theta) + \frac{\partial}{\partial y} (\cos \varphi \cdot \sin \theta),$$
$$\frac{\partial}{\partial \theta} = \frac{\partial}{\partial x} (\cos \varphi \cdot \cos \theta) + \frac{\partial}{\partial y} (\sin \varphi \cdot \cos \theta) + \frac{\partial}{\partial z} (-\sin \theta),$$

где $\frac{\partial}{\partial x}, \, \frac{\partial}{\partial y}, \, \frac{\partial}{\partial z}$ - опять-такиортонормированный базис в \mathbb{R}^3 . Тогда посмотрим на скалярные произведения:

$$\langle \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \varphi} \rangle = \sin^2 \theta, \; \langle \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \theta} \rangle = 0, \; \langle \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta} \rangle = 1,$$

а значит, первая форма есть $\sin^2\theta d\varphi^2 + d\theta^2$. Площадь круга ищем по формуле

$$\int_{\varphi \in [0,2\pi]} \int_{\theta \in [0,r]} \sqrt{EG - F^2} d\theta d\varphi = \int_{\varphi,\theta} \sin \theta d\theta d\varphi = 2\pi (1 - \cos r).$$

А теорема Архимеда напрямую получается как разность двух результатов предыдущего пункта.

Задача (3). В плоскости xOz задана регулярная кривая x = f(u), z = g(u), не пересекающая ось Oz. Найдите параметризацию поверхности, полученной при вращении этой линии вокруг оси Oz и её первую форму.

Решение. Параметризация - простая:

$$(x(t) \cdot \cos \varphi, x(t) \cdot \sin \varphi, z(t)).$$

Теперь найдём первую форму:

$$\frac{\partial}{\partial \varphi} = (-\sin \varphi \cdot x(t), \cos \varphi \cdot x(t), 0),$$
$$\frac{\partial}{\partial t} = (\cos \varphi \cdot x'(t), \sin \varphi \cdot x'(t), z'(t)),$$

а тогда скалярные произведения следующие:

$$\langle \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \varphi} \rangle = x(t)^2, \ \langle \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial t} \rangle = 0, \ \langle \frac{\partial}{\partial t}, \frac{\partial}{\partial t} \rangle = x'(t)^2 + z'(t)^2,$$

тогда получим $(x'(t)^2 + z'(t)^2)dt^2 + x^2d\varphi^2$, а если кривая была параметризованна натурально, то первый коэффициент обратится в единицу.

Задача (4). Найдите параметризацию и площадь тора, как поверхности вращения окружности радиуса r в \mathbb{R}^3 (пусть окружность находится в одной плоскости с осью, вокруг которой мы её вращаем, и расстояние от центра окружности до оси равно R).

Решение. Окружность параметризуется как

$$x = R + r\cos\varphi,$$

$$z = r\sin\varphi,$$

тогда вращение выглядит как

$$((R + r\cos\varphi) \cdot \cos\psi, (R + r\cos\varphi) \cdot \sin\psi, r\sin\varphi).$$

Первая форма (поверхности вращения):

$$\underbrace{((r\sin\varphi)^2 + (r\cos\varphi)^2)}_{r^2} d\varphi^2 + (R + r\cos\varphi)^2 d\psi^2$$

А площадь - $\int_{[0,2\pi]^2} \sqrt{EG - F^2} = \int r(R + r\cos\varphi) d\varphi d\psi = 4\pi^2 rR$.

Поехали блять

Определение 57. Простые поверхности M_1 , M_2 одинаковой размерности *изометричны*, если у них есть такие параметризации $r_i:U_i\to M_i$ и такой диффеоморфизм $\varphi:U_1\to U_2$, что их первые формы поточечно равны, то есть, их первые формы I^{r_1} , I^{r_2} в соответствующих точках $x\in U_1$ и $\varphi(x)\in U_2$ связаны соотношением

$$I_x^{r_1}(v, w) = I_{\varphi(x)}^{r_2}(d_x\varphi(v), d_x\varphi(w)),$$

где $v, w \in \mathbb{R}^m$.

Примечание. То же самое, только *локально изометричны*, если параметризации локальны.

Определение 58. Пусть M - связная поверхность, $p,q \in M$. Внутреннее расстояние между p и q в M - инфимум длин кусочно-гладких кривых на M, содержащих p и q.

Свойство (или характеристика) поверхности относится к *внутренней геометрии*, если оно одинаково у всех изометричных поверхностей. Внутренние свойства - те и только те, которые определяются первой формой. Например, длины углы и площади, но не кривизны (за редкими исключениями).

Определение 59. Пусть M_1 , M_2 - поверхности (одинаковой размерности). *Изометрия* между M_1 и M_2 - диффеоморфизм $f: M_1 \to M_2$ такой, что для любой точки $p \in M_1$, дифференциал $d_p f: T_p M_1 \to T_{(p)} M_2$ сохраняет скалярное произведение. Поверхности *изометричны*, если существует изометрия между ними.

Примечание. Определения эквивалентны.

Определение 60. Многообразие размерности n - хаусдорфово пространство о счётной базой такое, что у любой точки есть крестность, гомеоморфная \mathbb{R}^n .

Определение 61. Пусть M - n-мерное многообразие.

Kapma - гомеоморфизм $\varphi: U \to \varphi(U) \subset \mathbb{R}^n$, где $U \subset M$ и $\varphi(U) \subset \mathbb{R}^n$ - открыты.

Amnac - набор карт, области определения которых покрывают M.

Отображение перехода между картами $\varphi:U\to\mathbb{R}^n$ и $\psi:V\to\mathbb{R}^n$ - отображение

$$\psi \circ \varphi^{-1}|_{\varphi(U \cap V)} : \varphi(U \cap V) \to \psi(U \cap V).$$

Две карты *гладко согласованны*, если отображение перехода между ними гладкое. Атлас *гладкий*, если все его карты гладко согласованны.

Два гладких атласа эквивалентны, если их объединение - тоже гладкий атлас.

Лемма 11. Это - действительно отношение эквивалентности. Также, в каждом классе есть единственный максимальный (по включению) атлас - объединение всех атласов из классов эквивалентности.

Определение 62. Гладкое многообразие - многообразие с заданным на нём максимальным гладким атласом. Максимальный атлас также называют *структурой гладкого многообразия* или дифференциальной структурой.

Предметный указатель

Атлас, 17	односвязное, 3
Базис Френе, 9	стягиваемое, 5
Бинормаль, 10	Расстояние
Гомотопический тип, 5	внутреннее, 17
Гомотопия, 2	Ретракция, 4
связаная, 2	деформационная, 5
	деформационная, 5 Сечение
Группа	
конечно представленная, 7	нормальное, 14
накрытия, 4, 8	Теорема
фундаментальная, 2	Борсука в размерности 2, 5
Изометрия, 17	Менье, 13
Карта, 17	Фенхеля, 12
Кривая	Эйлера, 14
замкнутая, 11	о поднятии пути, 4
невырожденная, 11	о постоянстве числа листов, 3
Кривизна, 9	Топологическая пара, 5
Гауссова, 14	Точка
геодезическая, 13	неподвижная, 5
главная, 14	Форма
нормальная, 13	вторая, 13
средняя, 14	первая, 12
Кручение, 10	Эквивалентны
Лемма	гомотопически, 5
о непрерывном аргументе, 4	Эквивалентные поверхности, 12
о поднятии гомотопии, 4	Эквивалентиве поверхности, 12
Многообразие	
-	
гладкое, 17	
Морфизм накрытий, 8	
Накрытие, 3	
универсальное, 4	
Направление	
главное, 14	
Нормаль, 12	
Оператор Вейнгартена, 14	
Отображения	
гомотопные, 2	
Пара Борсука, 6	
Петля, 2	
стягиваемая, 4	
Поверхность	
гладкая, 12	
Поворот, 9, 12	
Поднятие отображения, 3	
Произведение путей, 2	
Пространство	
касательное, 12	
клеточное, 6	