Appendix I

Let $C \in \mathcal{C}(N)$ be fixed, and let

$$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x} \in \mathcal{R}(C)} H(\mathbf{x}),$$

be the optimal solution, and let $\hat{\mathbf{x}} = \hat{\mathbf{x}}(C)$ be the output of DD for C. For each $D \in \mathcal{D}$, denote $\hat{\mathbf{x}}_D = \hat{\mathbf{x}}_D(C)$. From the positivity of ϕ_{vw} , for all $D \in \mathcal{D}$,

$$\sum_{v \in V} \phi_v(x_v^*) + \sum_{(v,w) \in E_D} \phi_{vw}(x_v^*, x_w^*) \le H(x^*). \tag{1}$$

From the minimality of $\hat{\mathbf{x}}_D$ in each connected components of D, for all $D \in \mathcal{D}$,

$$\sum_{v \in V} \phi_v((\hat{\mathbf{x}}_D)_v) + \sum_{(v,w) \in E_D} \phi_{vw}((\hat{\mathbf{x}}_D)_v, (\hat{\mathbf{x}}_D)_w)
\leq \sum_{v \in V} \phi_v(x_v^*) + \sum_{(v,w) \in E_D} \phi_{vw}(x_v^*, x_w^*).$$
(2)

From (1), (2) and the definition of $\hat{\mathbf{x}}$,

$$\sum_{D \in \mathcal{D}} \left[\sum_{v \in V} \phi_v(\hat{\mathbf{x}}_v) + \sum_{(v,w) \in E_D} \phi_{vw}(\hat{\mathbf{x}}_v, \hat{\mathbf{x}}_w) \right] \\
\leq \sum_{D \in \mathcal{D}} \left[\sum_{v \in V} \phi_v((\hat{\mathbf{x}}_D)_v) + \sum_{(v,w) \in E_D} \phi_{vw}((\hat{\mathbf{x}}_D)_v, (\hat{\mathbf{x}}_D)_w) \right] \\
\leq \sum_{D \in \mathcal{D}} \left[\sum_{v \in V} \phi_v(x_v^*) + \sum_{(v,w) \in E_D} \phi_{vw}(x_v^*, x_w^*) \right] \\
\leq |\mathcal{D}| H(x^*). \tag{3}$$

By the property (2) of Lemma 2, i.e. from the property that for each edge e of E, the number of decompositions in \mathcal{D} that removes e is at most $\varepsilon |\mathcal{D}|$, we obtain that

$$(1 - \varepsilon)|\mathcal{D}|H(\hat{\mathbf{x}})$$

$$\leq \sum_{D \in \mathcal{D}} \left[\sum_{v \in V} \phi_v(\hat{\mathbf{x}}_v) + \sum_{(v,w) \in E_D} \phi_{vw}(\hat{\mathbf{x}}_v, \hat{\mathbf{x}}_w) \right]$$
(4)

From (3) and (4), we have

$$(1 - \varepsilon)H(\hat{\mathbf{x}}_D) \le H(\mathbf{x}^*).$$

Appendix II

Computing g_i

- Let $V_i = \{(a,b)|a,b \in \{1,2,\ldots,\frac{1}{\varepsilon}\}\}$ be the set of vertices of R_i .
- Order the elements of V_i by dictionary order, i.e., $(a_1, b_1) < (a_2, b_2)$ if $a_1 < a_2$ or, $a_1 = a_2$ and $b_1 < b_2$. Let $v_1, v_2, \dots, v_{\frac{1}{\varepsilon^2}}$ be the vertices in that order.
- For $t=0,1,\ldots,\left(|V_i|-\frac{1}{arepsilon}\right)=t^*,$ let $B_t = \left\{ v_{t+1}, \dots, v_{t+\frac{1}{\varepsilon}} \right\}.$ Let $V_{it} = \left\{ v \in V_i \mid \text{ order of } v \text{ is less than or equal to} \right\}$

some vertex in B_t }. Let E_{it} be the set of edges that connect two vertices of V_{it} .

- For each assignment $\hat{\mathbf{x}}^{B_t} \in [k]^{|B_t|}$ over B_t , and each $C_{(t)} = (C_{t1}, C_{t2}, \dots, C_{tk}) \in$ $\mathcal{C}(|V_t|)$, let

$$\mathcal{R}(\hat{\mathbf{x}}^{B_t}, C_{(t)}) = \\ \mathcal{R}(C_{(t)}) \cap \left\{ \mathbf{x} \in [k]^{|V_{it}|} \mid \mathbf{x}_v = \hat{\mathbf{x}}_v^{B_t} \, \forall \, v \in B_t \right\}.$$

We will compute the following for $t = 0, 1, ..., t^*$).

$$\begin{aligned} \hat{g}_t(\hat{\mathbf{x}}^{B_t}, C_{(t)}) &= \\ \min_{\mathbf{x} \in \mathcal{R}(\hat{\mathbf{x}}^B, C_{(t)})} \left[\sum_{v \in V_{it}} \phi_v(\mathbf{x}_v) + \sum_{(v, w) \in E_{it}} \phi_{vw}(\mathbf{x}_v, \mathbf{x}_w) \right]. \end{aligned}$$

- For t=0, note that $V_{i0}=B_0$. Hence we directly compute $\hat{g}_0(\hat{\mathbf{x}}^{B_0},C_{(0)})$ for all $\hat{\mathbf{x}}^{B_0} \in [k]^{|B_0|}$ and $C_{(0)} \in \mathcal{C}(|V_{i0}|)$.
- For $t = 1, 2 \dots t^*$,
 - For each t, let $B'_t = B_t \bigcup B_{t-1}$. For each $\hat{\mathbf{x}}^{B'_t} \in [k]^{|B'_t|}$, and $C_{(t)} \in \mathcal{C}(|V_t|)$ let

$$\mathcal{R}(\hat{\mathbf{x}}^{B'_t}, C_{(t)}) = \\ \mathcal{R}(C_{(t)}) \cap \left\{ \mathbf{x} \in [k]^{|V_{it}|} \mid \mathbf{x}_v = \hat{\mathbf{x}}_v^{B'_t} \ \forall \ v \in B'_t \right\},$$

and compute

$$\hat{g}_t'(\hat{\mathbf{x}}^{B_t'}, C_{(t)}) = \min_{\mathbf{x} \in \mathcal{R}(\hat{\mathbf{x}}^{B_t'}, C_{(t)})} \left[\sum_{v \in V_{it}} \phi_v(\mathbf{x}_v) + \sum_{(v, w) \in E_{it}} \phi_{vw}(\mathbf{x}_v, \mathbf{x}_w) \right]$$

by the relation

$$\begin{split} \hat{g}_t'(\hat{\mathbf{x}}^{B_t'}, C_{(t)}) &= \hat{g}_{t-1} \left(\left(\hat{\mathbf{x}}^{B_t'} \right)_{B_{t-1}}, C_{(t)}' \right) \\ &+ \phi_{v_{t+\frac{1}{\varepsilon}}} \left(\left(\hat{\mathbf{x}}^{B_t'} \right)_{v_{t+\frac{1}{\varepsilon}}} \right) \\ &+ \phi_{v_{t+\frac{1}{\varepsilon}}, v_{t+\frac{1}{\varepsilon}-1}} \left(\left(\hat{\mathbf{x}}^{B_t'} \right)_{v_{t+\frac{1}{\varepsilon}}}, \left(\hat{\mathbf{x}}^{B_t'} \right)_{v_{t+\frac{1}{\varepsilon}-1}} \right) \\ &+ \phi_{v_{t+\frac{1}{\varepsilon}}, v_t} \left(\left(\hat{\mathbf{x}}^{B_t'} \right)_{v_{t+\frac{1}{\varepsilon}}}, \left(\hat{\mathbf{x}}^{B_t'} \right)_{v_t} \right), \end{split}$$

where $C'_{tj}=C_{tj}-1$ for $j\in[k]$ such that $\left(\hat{\mathbf{x}}^{B'_t}\right)_{v_{t+\frac{1}{\varepsilon}}}=j$, and $C'_{tj}=C_{tj}$ for other j's. In the above computation, when there is no edge between $v_{t+\frac{1}{\varepsilon}}$ and $v_{t+\frac{1}{\varepsilon}-1}$, the term $\phi_{v_{t+\frac{1}{\varepsilon}},v_{t+\frac{1}{\varepsilon}-1}}$ is not computed.

 $\bullet \ \ \text{For} \ \hat{\mathbf{x}}^{B_t} \in [k]^{|B_t|} \ \text{and} \ C_{(t)} \in \mathcal{C}(|V_t|), \text{compute}$

$$\hat{g}_t(\hat{\mathbf{x}}^{B_t}, C_{(t)}) = \min_{j \in [k]} \hat{g}'_t((j, \hat{\mathbf{x}}^{B_t}), C_{(t)}).$$

– For each $C_{(i)} \in \mathcal{C}(|V_i|)$, output

$$g_i(C_{(i)}) = \min_{\hat{\mathbf{x}}^{B_{t^*}} \in [k]^{|B_{t^*}|}} \hat{g}_{t^*}(\hat{\mathbf{x}}^{B_{t_*}}, C_{(i)}).$$