Phy 206 - Physics Through Computational Thinking: Assignment 1

January 17, 2025

Instructions

Answer the following questions using Mathematica. Provide your code and outputs.

Questions

Question 1: Common Errors

Identify and correct the errors in the following Mathematica code snippets:

- 1. $f[x] = e^x$ (*Code to Plot exponential function*) Plot[f[x], $\{x, 0, 10\}$]
- 2. $g[x] = sin \{x\}$ (*Code to Plot a sine function*) plot[g[x], (x, -2 Pi, 2 Pi)]
- 3. FindRoot[Sin[t] = t^2 , {x, 1}] (*Finding the root of $f(t)=Sin(t)-t^2*$) Plot[Sin[t] t^2 , {x, -10, 10}]]
- 4. Manipulate[Plot[$\{x^n, x + n, Sqrt[x*n/7], \{x, 10, 0\}$], $\{n, 0, 10, 15\}$] (*Varying Parameter n in the functions*)
- 5. Piecewise [$\{x^2, x < 0\}, \{x, x \ge 0\}\}$] Plot[$k[x], \{x, -2, 2\}$] (*Plotting a Piecewise Function*)

Question 2: Order of Growth

Rank the following functions by order of growth.

- $\log(\log x)$ $\sqrt{\log(x)}$
- 4^{log X}
- $x^{1+\log(x)}$ $x^{\log(\log(x))}$
- $\begin{array}{c}
 x^{\log(x)} \\
 2^{\log x}
 \end{array}$
- $\exp x$
- x! .

Question 3: Taylor Expansion Perform a Taylor expansion of the function $f(x) = e^x \sin(x)$ around x = 0 up to the quadratic term. Plot the original function and the Taylor approximation on the same graph for $x \in [-\pi, \pi]$.

Question 4: Explore numerical function N[x]: N calculates numerical value of any expression.

- (a) Find out Pi and E (the Euler number e) to 10 digits by evaluating the commands: N[Pi], N[Pi, 10], N[E, 10]
 - (b) Find Pi to 100 digits.
 - (c) Find $2^{1/2}$ and $2^{1/3}$ up to 16 digits.

Question 5: For the function $e^{-x/4}cos(x)$, find the distance between two consecutive minima, using Mathematica. Then analyze your results.

Question 6: Plot the curves $y = x^4$ and $y = e^{x/4}$. Find the point of intersection of the curves, first by visualization and then by solving it in Mathematica.

Question 7: Plot the following periodic functions with ω equal to the last non-zero digit of your role number. Please show at least 4 periods in the plot. Label the plots.

- $sin^2(\omega t)$
- $cos(\omega^2 t)$
- $sin(\omega t)cos(\omega t)$