Unidad 4.A. Controladores PID avanzados

Dr. Ing. Hernán Garrido

Control y sistemas Universidad Nacional de Cuyo, Facultad de Ingeniería

carloshernangarrido@gmail.com

Contenidos

- Introducción
- 2 Determinación experimental de la función de transferencia
- 3 Reglas de Ziegler-Nichols para el ajuste de controladores PID
- 4 Diseño de controladores PID por asignación de polos
- 5 Control con 2 grados de libertad (2DoF)
 - Controladores PI-D
 - Controladores I-PD
- 6 Ubicación de ceros para mejorar la respuesta del sistema
- Diseño de controlador PID en tiempo discreto

- Introducción
- 2 Determinación experimental de la función de transferencia
- Reglas de Ziegler-Nichols para el ajuste de controladores PID
- 4 Diseño de controladores PID por asignación de polos
- Control con 2 grados de libertad (2DoF)
 - Controladores PI-D
 - Controladores I-PD
- 6 Ubicación de ceros para mejorar la respuesta del sistema
- Diseño de controlador PID en tiempo discreto

Introducción: Lazo abierto y lazo cerrado

Control

La palabra "control" tiene muchos significados y a menudo varía entre las comunidades. Aquí, definimos el control como el uso de algoritmos y retroalimentación en sistemas diseñados. (Astrom y Murray, 2008)

Introducción: Propiedades de los sistemas realimentados

Realimentación

Basar acciones correctivas en las diferencias entre el desempeño observado y el desempeño deseado.

$$H(s) = \frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)} \approx 1$$

- Ventajas
 - Posibilidad de diseñar dinámicas
 - Robustez ante
 - incertidumbres
 - perturbaciones
 - Mayores niveles de automatización
- Desventajas
 - Riesgo de desestabilización por realimentación (+)
 - Inyección de ruido de medición en la actuación
 - Mayor complejidad

- Introducción
- 2 Determinación experimental de la función de transferencia
- Reglas de Ziegler-Nichols para el ajuste de controladores PID
- 4 Diseño de controladores PID por asignación de polos
- Control con 2 grados de libertad (2DoF)
 - Controladores PI-D
 - Controladores I-PD
- 6 Ubicación de ceros para mejorar la respuesta del sistema
- Diseño de controlador PID en tiempo discreto

Determinación experimental de la función de transferencia

En sistemas LTI SISO: Resulta simple

En el dominio de la frecuencia

$$P(s) = \frac{Y(s)}{U(s)} \Rightarrow P(j\Omega) = \frac{Y(j\Omega)}{U(j\Omega)}...$$

- En el dominio del tiempo, mediante la respuesta al escalón unitario:
 - Sistemas dominantemente de primer orden: Determinamos la constante de tiempo $\tau=1/\lambda$ y la ganancia K.

$$G(s) = \frac{K}{\tau s + 1} \Rightarrow y(t) = K (1 - e^{-\lambda t}) u(t)$$

• Sistemas dominantemente de segundo orden (sub-amortiguados): Determinamos la frecuencia natural $\Omega_n = \Omega_d/\sqrt{1-\zeta^2}$, la relación de amortiguamiento $\zeta \approx \lambda/\Omega_n$ y ganancia K:

$$G(s) = K \frac{\Omega_n^2}{s^2 + 2\zeta\Omega_n s + \Omega_n^2} \Rightarrow y(y) = K \left(1 - e^{-\lambda t} \operatorname{sen}(\Omega_d t + \phi)\right) u(t)$$

Sistemas de primer orden

Sistemas de segundo orden sub-amortiguados

Figura: Tomado de https://en.wikipedia.org/wiki/Damping

- Introducción
- 2 Determinación experimental de la función de transferencia
- 3 Reglas de Ziegler-Nichols para el ajuste de controladores PID
- 4 Diseño de controladores PID por asignación de polos
- 5 Control con 2 grados de libertad (2DoF)
 - Controladores PI-D
 - Controladores I-PD
- 6 Ubicación de ceros para mejorar la respuesta del sistema
- Diseño de controlador PID en tiempo discreto

Controladores PID

Reglas de Ziegler-Nichols para el ajuste de controladores PID

Método de la respuesta al escalón

κ_p	T_i	T_d	
1/a			
0.9/a	3τ		
1.2/a	2τ	0.5τ	
	1/a 0.9/a	1/a 0.9/a 3τ	1/a 0.9/a 3τ

Método de la respuesta en frecuencia

Tipo	k_p	T_i	T_d
P	$0.5k_c$		
PI	$0.4k_c$	$0.8T_c$	
PID	$0.6k_c$	$0.5T_c$	$0.125T_{c}$

Aspectos prácticos de los controladores PID

- Problema: Amplificación del ruido de alta frecuencia por k_d.
 - Filtrado del error antes de derivar

$$\frac{\mathcal{L}\{k_d \dot{e}(t)\}}{\mathcal{L}\{e(t)\}} = k_d s \approx k_d s \frac{\Omega_f}{s + \Omega_f} = k_d \frac{s\Omega_f}{s + \Omega_f}$$

- Filtrar la salida antes de ingresar al controlador
- ..
- Problema: Devanado (windup) del integrador por saturación del actuador.
 - Anti-windup por cálculo hacia atrás
 - Anti-windup por clamping

- Introducción
- 2 Determinación experimental de la función de transferencia
- 3 Reglas de Ziegler-Nichols para el ajuste de controladores PID
- 4 Diseño de controladores PID por asignación de polos
- Control con 2 grados de libertad (2DoF)
 - Controladores PI-D
 - Controladores I-PD
- 6 Ubicación de ceros para mejorar la respuesta del sistema
- Diseño de controlador PID en tiempo discreto

Diseño de controladores PID por asignación de polos

Se pueden ajustar los parámetros de un controlador PID para obtener un dinámica deseada.

- 1 Especificar desempeño en el dominio del tiempo.
- 2 Traducir a especificaciones en el dominio de la frecuencia de un sistema de 2do orden equivalente, considerando desigualdades.

Property	Value	$\zeta = 0.5$	$\zeta = 1/\sqrt{2}$	$\zeta = 1$
Steady-state value	k	k	k	k
Rise time	$T_r = 1/\omega_0 \cdot e^{\varphi/\tan\varphi}$	$1.8/\omega_0$	$2.2/\omega_0$	$2.7/\omega_0$
Overshoot	$M_p = e^{-\pi \zeta/\sqrt{1-\zeta^2}}$	16%	4%	0%
Settling time (2%)	$T_s pprox 4/\zeta \omega_0$	$8.0/\omega_0$	$5.9/\omega_0$	$5.8/\omega_0$

Figura: Tomado de Astrom y Murray (2008).

Omparar polinomios característicos de lazo cerrado y del sistema de segundo orden deseado.

$$H(s) = \frac{C(s)P(s)}{1 + C(s)P(s)} \Rightarrow 1 + \left(k_p + sk_d + \frac{k_i}{s}\right)P(s) = 0 \Leftrightarrow s^2 + 2\zeta\omega_0s + \omega_0^2 = 0$$

- **9** Determinar k_p, k_i, k_d igualando coeficientes correspondientes.
- Verificar desempeño en contraste con el polinomio característico deseado

Ejemplo de diseño de PID por asignación de polos 1/3

Planta: Sistema térmico

$$P(s) = \frac{K}{s + s_0}$$

Especificación en el tiempo

$$M_p = 16\% \Rightarrow \zeta = 0.5$$

 $T_{s2\,\%}=4~{\rm s}\approx 8/\omega_0 \Rightarrow \omega_0=2~{\rm rad/s}$ Polinomio característico deseado

$$s^2 + 2s + 4 = 0$$

Controlador PID

$$C(s) = k_p + k_i/s + k_d s$$

Polinomio característico a lazo cerrado

$$1 + P(s)C(s) = \frac{K(k_i + s(k_d s + k_p)) + s(s + s_0)}{s(s + s_0)} = 0$$

$$K(k_i + s(k_d s + k_p)) + s(s + s_0) = 0$$

$$(Kk_d + 1)s^2 + (Kk_p + s_0)s + Kk_i = 0$$

Ejemplo de diseño de PID por asignación de polos 2/3

Comparación de polinomios característicos

$$s^{2} + 2s + 4 = (Kk_{d} + 1) s^{2} + (Kk_{p} + s_{0}) s + Kk_{i}$$

$$1 = Kk_{d} + 1 \Rightarrow k_{d} = 0$$

$$2 = Kk_{p} + s_{0} \Rightarrow k_{p} = \frac{2 - s_{0}}{K}$$

$$4 = Kki \Rightarrow k_{i} = 4/K$$

Construcción de la función de transferencia del sistema a lazo cerrado

$$H(s) = \frac{K\left(k_d s + \frac{k_i}{s} + k_p\right)}{\left(s + s_0\right)\left(\frac{K\left(k_d s + \frac{k_i}{s} + k_p\right)}{s + s_0} + 1\right)} = \frac{2.0 \cdot \left(0.9 + \frac{2.0}{s}\right)}{\left(s + 0.2\right)\left(\frac{2.0 \cdot \left(0.9 + \frac{2.0}{s}\right)}{s + 0.2} + 1\right)} = \frac{1.0 \cdot \left(0.45s + 1.0\right)}{0.25s^2 + 0.5s + 1.0}$$

Ejemplo de diseño de PID por asignación de polos 3/3

Planta a lazo abierto

$$K = 2.0$$

$$s_0 = 1/\tau = \frac{1}{5 \text{ s}} = 0.2 \text{ rad/s}$$

Especificaciones deseadas a lazo cerrado

$$M_p = 16 \%$$

$$M_p = 16 \%$$
 $T_{s2\%} = 4 \text{ s}$

- Introducción
- Determinación experimental de la función de transferencia
- Reglas de Ziegler-Nichols para el ajuste de controladores PID
- 4 Diseño de controladores PID por asignación de polos
- 5 Control con 2 grados de libertad (2DoF)
 - Controladores PI-D
 - Controladores I-PD
- 6 Ubicación de ceros para mejorar la respuesta del sistema
- Diseño de controlador PID en tiempo discreto

Control con 1 grado de libertad

$$G_{yr} = \frac{Y(s)}{R(s)} = \frac{G_c G_p}{1 + G_c G_p}$$

$$G_{yd} = \frac{Y(s)}{D(s)} = \frac{G_p}{1 + G_c G_p}$$

$$G_{yn} = \frac{Y(s)}{N(s)} = -\frac{G_c G_p}{1 + G_c G_p}$$

$$G_{yr} = rac{G_p - G_{yd}}{G_p}$$
 $G_{yn} = rac{G_{yd} - G_p}{G_p}$

Control con 2 grado de libertad

$$G_{yr} = rac{Y(s)}{R(s)} = rac{G_{c1}G_p}{1 + (G_{c1} + G_{c2})G_p}$$
 $G_{yd} = rac{Y(s)}{D(s)} = rac{G_p}{1 + (G_{c1} + G_{c2})G_p}$
 $G_{yn} = rac{Y(s)}{N(s)} = -rac{(G_{c1} + G_{c2})G_p}{1 + (G_{c1} + G_{c2})G_p}$
 $G_{yn} = rac{G_{yd}}{G_p}$

Control con 2 grados de libertad: PI-D

Control con 2 grados de libertad: I-PD

- Introducción
- 2 Determinación experimental de la función de transferencia
- Reglas de Ziegler-Nichols para el ajuste de controladores PID
- 4 Diseño de controladores PID por asignación de polos
- Control con 2 grados de libertad (2DoF)
 - Controladores PI-D
 - Controladores I-PD
- 6 Ubicación de ceros para mejorar la respuesta del sistema
- Diseño de controlador PID en tiempo discreto

Ubicación de ceros para mejorar la respuesta del sistema: Partiendo de un PID de dos grados de libertad

Arreglo algebraico de controladores

$$C_1(s) + C_2(s) = C(s)$$

Funciones de transferencia a lazo cerrado

$$G_{yr}(s) = rac{Y(s)}{R(s)} = rac{C_1(s)P(s)}{1 + C(s)P(s)}$$

$$G_{yd}(s) = rac{Y(s)}{D(s)} = rac{P(s)}{1 + C(s)P(s)}$$

Ubicación de ceros para mejorar la respuesta del sistema: Objetivos

- Diseñar C(s) para tener un polinomio característico deseado.
 - Ante cambios de referencia, o
 - perturbaciones.
- ② Diseñar $C_1(s)$ para ubicar los ceros de manera tal que el error en estado estacionario sea cero para R(s) del tipo:
 - escalón,
 - rampa, y
 - parábola cuadrática.

Ubicación de ceros para mejorar la respuesta del sistema: Rechazo a las perturbaciones $\left(1/2\right)$

¿Cómo debo diseñar C(s) para que la salida rechace a la perturbación cuando esta es un escalón?

$$E(s) = R(s) - Y(s) = R(s) - D(s)G_{vd}(s)$$

Suponiendo R(s) = 0:

$$E(s) = -D(s)G_{yd}(s) = -D(s)\frac{P(s)}{1 + C(s)P(s)}$$

Expresando P(s) como KA(s)/B(s), se pueden proponer controladores tales que:

$$C(s) = C_{PID}(s)C_{fil}(s) = \frac{k_p s + k_i + k_d s^2}{s} \frac{1}{A(s)}$$

con lo cual:

$$E(s) = -D(s) \frac{KA(s)}{B(s) + \frac{B(s)(k_p s + k_i + k_d s^2)KA(s)}{sA(s)B(s)}} = -D(s) \frac{sKA(s)}{sB(s) + (k_p s + k_i + k_d s^2)K}$$

¿y para qué sirve esto?

Ubicación de ceros para mejorar la respuesta del sistema: Rechazo a las perturbaciones $\left(2/2\right)$

¿y para qué sirve esto?

$$E(s) = -D(s)\frac{sKA(s)}{sB(s) + (k_p s + k_i + k_d s^2)K}$$

Si la perturbación es del tipo escalón: D(s) = 1/s, el error en estado estacionario resulta:

$$e_{t\to\infty} = \lim_{s\to 0} sE(s) = \lim_{s\to 0} -s\frac{1}{s} \frac{sKA(s)}{sB(s) + (k_p s + k_i + k_d s^2)K}$$
$$e_{t\to\infty} = \lim_{s\to 0} -\frac{0}{0 + (0 + k_i + 0)K} = -\frac{0}{k_i K} = 0$$

¡Gracias acción integral y filtro por evitar que se anule el denominador!

Ubicación de ceros para mejorar la respuesta del sistema: Seguimiento de la referencia (1/2)

¿Cómo debo diseñar $C_1(s)$ para ubicar los ceros de la función de transferencia a lazo cerrado de manera que la salida siga a la referencia cuando esta es un escalón, una rampa o una parábola cuadrática?

$$E(s) = R(s) - Y(s) = R(s) (1 - G_{yr}(s))$$

$$G_{yr}(s) = \frac{C_1(s)P(s)}{1 + C(s)P(s)} = \frac{w(s)}{s^{n+1} + a_n s^n + \dots + a_2 s^2 + a_1 s + a_0}$$

$$E(s) = R(s) \frac{s^{n+1} + a_n s^n + \dots + a_2 s^2 + a_1 s + a_0 - w(s)}{s^{n+1} + a_n s^n + \dots + a_2 s^2 + a_1 s + a_0}$$

Eligiendo $w(s) = a_0 + a_1 s + a_2 s^2 + ...$, tenemos:

$$E(s) = R(s) \frac{s^{n+1} + a_n s^n + \dots + a_3 s^3}{s^{n+1} + a_n s^n + \dots + a_2 s^2 + a_1 s + a_0}$$

¿y para qué sirve esto?

Ubicación de ceros para mejorar la respuesta del sistema: Seguimiento de la referencia (2/2)

¿y para qué sirve esto?

$$E(s) = R(s) \frac{s^{n+1} + a_n s^n + \dots + a_3 s^3}{s^{n+1} + a_n s^n + \dots + a_2 s^2 + a_1 s + a_0}$$

El error en estado estacionario se calcula con el Teorema del Valor Final:

$$e_{t\to\infty} = \lim_{t\to\infty} e(t) = \lim_{s\to 0} sE(s)$$

Caso más exigente $r(t) = u(t)t^2$ corresponde a $R(s) = 2/s^3$, entonces:

$$e_{t\to\infty} = \lim_{s\to 0} sE(s) = \lim_{s\to 0} s\frac{2}{s^3} \frac{s^{n+1} + a_n s^n + \dots + a_3 s^3}{s^{n+1} + a_n s^n + \dots + a_2 s^2 + a_1 s + a_0} = \lim_{s\to 0} 2s\frac{a_3}{a_0} = 0$$

Los casos de referencia tipo escalón R(s) = 1/s y rampa $R(s) = 1/s^2$ se dejan como ejercicio.

- Introducción
- 2 Determinación experimental de la función de transferencia
- 3 Reglas de Ziegler-Nichols para el ajuste de controladores PID
- 4 Diseño de controladores PID por asignación de polos
- Control con 2 grados de libertad (2DoF)
 - Controladores PI-D
 - Controladores I-PD
- 6 Ubicación de ceros para mejorar la respuesta del sistema
- Diseño de controlador PID en tiempo discreto

Diseño de controlador PID en tiempo discreto

Matemáticamente

$$u[k] = K_p e[k] + K_i \Delta_t \sum_{i=0}^{k} e[i] + K_d \frac{e[k] - e[k-1]}{\Delta_t}$$

Computacionalmente

```
double pid(double r, double y, double *prevError, double
    *integral) {
    double error = r - y;
    double derivative = (error - *prevError)/Dt;
    *integral += Dt * error;

    *prevError = error;

return Kp * error + Ki * (*integral) + Kd * derivative;
}
```

Diseño de controlador PID en tiempo discreto

```
1 int main() {
      double r = 10.0;
      double y = 0.0;
      double prevError = 0.0;
      double integral = 0.0;
      double u = 0.0;
      while(1) {
          y = get_plantOutput();
10
          u = pid(r, y, &prevError, &integral);
          set_controllerOutput(u)
          . . .
15
      return 0;
<sub>16</sub> }
```

Bibliografía

- Astrom, K. J., and Murray, R. M. (2008). Feedback Systems. Princeton University Press.
- 2 Ogata, K. (2010). Modern control engineering (5th ed.). Prentice Hall.