

SCADL: A Side-Channel Attack Tool Based on Deep Learning

Karim M. Abdellatif

DL-based SCAs

Profiling phase

DL-based SCAs

Test phase

Motivation

- Limited DL features in lascar ¹
- A recent DL-based tool for the internal usage in addition to muscat ²
- Open-source a DL-based SCA tool for the community

EM-based SCA setup

¹https://github.com/Ledger-Donjon/lascar

²https://github.com/Ledger-Donjon/muscat

³https://github.com/Ledger-Donjon/scadl

Previous tools and SCADL

	Profiling	Multi-label	Non-profiling	Data augmentation
lascar ⁴		×	×	X
scaaml ⁵		×	×	X
scadl ⁶				

⁴https://github.com/Ledger-Donjon/lascar ⁵https://github.com/google/scaaml

⁶https://github.com/Ledger-Donjon/scadl

AES-128 on ChipWhisperer-Lite 7

SubBytes calculation

⁷https://www.newae.com/products/nae-cwlite-arm

⁸https://github.com/ANSSI-FR/ASCAD


```
def mlp_model(sample_len, range_outer_layer):
    model = Sequential()
    model.add(Dense(20, input_dim=sample_len, activation=tf.nn.relu))
    model.add(Dense(10, activation=tf.nn.relu))
    model.add(Dense(range_outer_layer, activation=tf.nn.softmax))
    model.compile(
        optimizer="adam",
        loss="categorical_crossentropy",
        metrics=["accuracy"],
    )
    return model
```

Example of unprotected design

- AES-128 on STM-32
- MLP architecture
- 50K traces for profiling
- 1K traces for test
- Labels on Sbox output

Example of ASCAD

- ASCAD dataset
- Masked AES
- MLP architecture
- 50K traces for profiling
- 10K traces for test
- Labels on Sbox output

POI selection under countermeasures

- Desynchronization
- Masking
- Power masking

Feeding the model with a window that may contains several labels.

Multi-label classification in SCAs 9

- Targeting more than one operation (multiple keys)
- Reducing evaluation time
- More efficiency against masked designs

⁹Houssem Maghrebi, "Deep learning based side-channel attack: a new profiling methodology based on multi-label classification". ePrint 2020

MLP-based example


```
def mlp_multi_label(node=50, layer_nb=4):
    model = Sequential()
    model.add(Dense(node, activation="relu"))
    for i in range(layer_nb - 2):
        model.add(Dense(node, activation="relu"))
    model.add(Dense(512, activation="sigmoid"))
    optimizer = "adam"
    model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=["accuracy"])
    return model
```

Attacking two keys using one model

Data augmentation

- It's used to boost the DL efficiency
- Add-remove deformation and shift were used to Improve CNN performance against jitter-based designs ¹⁰.
- Mixup also was used against masked designs ¹¹

¹⁰E. Cagli, C. Dumas, and E. Prouff "Convolutional neural networks with data augmentation against jitter-based countermeasures: Profiling attacks without pre-processing", CHES 2017

¹¹K. Abdellatif "Mixup Data Augmentation for Deep Learning Side-Channel Attacks", ePrint 2021.

Non-profiling DL ¹²

- Similar concept to Non-Profiled attacks (CPA and DPA)
- The correct guess gives the best accuracy
- It outperforms Non-Profiled attacks because of the ability to break designs with countermeasures (ex: jitter and masking)
- Sometimes it can be combined with DA techniques

 $^{^{12}\}mbox{Benjamin Timon}$ "Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis ", CHES 2019

Non-profiling DL

- Leakage function:
 - LSB
 - MSB
 - HW

```
accuracy = np.zeros((key_len, epochs))
for guess in range(key_len):
    labels = GenerateLabels(guess)
    accuracy[i] = ModelCompile(labels, leakages)
key = np.argmax(np.max(accuracy, axis=0))
```


Conclusion

- SCADL ¹³ is an open-source tool which has the following features:
 - Single and multi-label profiling attacks
 - Non-profiling attacks
 - Data augmentation
- Features to be added soon:
 - Multi-tasking DL attacks
 - Sensitivity analysis
- Your contribution to SCADL is welcomed!

THANK YOU. QUESTIONS?

Karim M. Abdellatif, PhD e-mail: karim.abdellatif@ledger.fr