Regression Project

Akshay, Rohan, Soumyabrata

Description of the data: First few rows of the dataset are shown below.

Rent per arable acre (dollars)	The number of milk cows per square mile	The difference between pasturage and arable land	Rental price per grassy acre for this variety of grass
15.50	17.25	0.24	18.38
22.29	18.51	0.20	20.00
12.36	11.13	0.12	11.50
31.84	5.54	$0.12 \\ 0.04$	25.00
83.90	5.44		62.50

For the analysis, we consider the first column as the response variable and the other columns as the predictors. The response is denoted as y, and the predictors are denoted as x_1, x_2 and x_3 respectively.

Preliminary Analysis: We consider the plots of all pairs of columns. The plot is given below.

Comment:

- 1. In the 1st graph, there seems to be an polynomial relationship between y and x_1 .
- 2. From the 2^{nd} graph, it seems that there is a linear relationship between y and x_2 with a negative slope.
- 3. From the 3^{rd} graph, it seems that there is a linear relationship between y and x_3 with a positive slope.
- 4. From the 4th we can say that, there is an approximate linear relationship between x_1 and x_2 with a positive slope.
- 5. From the 5^{th} graph it seems that all the points are scattered randomly, resulting in a very low co-linearity between x1 and x3.
- 6. From the 6^{th} graph it seems that, there is a linear relation between x_2 and x_3 with a negative slope.

Correlation: The correlation among the columns are shown below.

```
cor(data)
```

```
## y x1 x2 x3

## y 1.00000000 0.04550419 -0.4978930 0.8850823

## x1 0.04550419 1.00000000 0.5225979 0.3033919

## x2 -0.49789295 0.52259791 1.0000000 -0.3301773

## x3 0.88508229 0.30339186 -0.3301773 1.0000000
```

Model Fitting: First we fit the full model.

```
model.1 \leftarrow lm(y \sim x1 + x2 + x3, data)

summary(model.1)
```

```
##
## Call:
  lm(formula = y \sim x1 + x2 + x3, data = data)
##
  Residuals:
##
       Min
                                3Q
                1Q Median
                                       Max
                   -1.646
                             4.858
##
  -19.593
           -5.765
                                    20.106
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                15.84304
                            3.08776
                                      5.131 2.98e-06 ***
##
  (Intercept)
                                     -2.318
                                              0.0237 *
                -0.23266
                            0.10036
##
  x1
               -16.72418
                           10.75285
                                     -1.555
                                              0.1249
## x2
                 0.83757
                            0.06092
                                     13.749
                                             < 2e-16 ***
## x3
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.597 on 63 degrees of freedom
## Multiple R-squared: 0.8441, Adjusted R-squared: 0.8367
## F-statistic: 113.7 on 3 and 63 DF, p-value: < 2.2e-16
```

The residual plots are given below.

Comment: From the QQ-Plot, it seems that the residuals are almost normal.

<u>Added Variable Plot</u>: From the previous scatterplots of the response(y) vs.the predictors(x_1, x_2, x_3), we see a polynomial relation between y and x_1 and y and x_2 . we can also consider x_1^2 and x_2^2 as predictors in the model.

We construct the Added Variable Plot to better serve the purpose. The plots are given below.

```
suppressMessages(library(car))
avPlots(model.1)
```

Added-Variable Plots

Comment: From the Added Variable Plots, it is clear that the predictor x_3 is almost linearly related to the response y. We can consider x_1^2 and x_2^2 as predictors in the model, but the correlation between x_1 and x_1^2 is very close to 1(exact value is 0.9618495). Similarly, the correlation between x_2 and x_2^2 is also very high(0.936776). So, considering x_1^2 and x_2^2 in the model won't give us any extra info.

<u>Outliers and Influential Points</u>: We calculate the measures for detecting outliers and influential points corresponding to each residuals, viz, DFFITS, Covariance Ratio, Cook's D and hat matrix diagonals.

influence.measures(model.1)

They are tabulated below.

Index	DFFITS	Cov-Ratio	Cook's D	h
1	-0.1658832	1.0444959	0.0068980	0.0321299
2	-0.0564033	1.0942107	0.0008069	0.0317672
3	-0.2520088	1.0580608	0.0158664	0.0574211
4	-0.0359064	1.1002238	0.0003273	0.0333533
5	0.5233315	0.8410725	0.0646514	0.0548422
6	-0.2292185	1.0902964	0.0131915	0.0670139
7	0.0508181	1.1052318	0.0006554	0.0393274
8	0.0334074	1.0997345	0.0002834	0.0326547
9	-0.2040705	1.1805364	0.0105249	0.1153176
10	0.1201390	1.1002074	0.0036499	0.0485060
11	-0.1801219	1.0145887	0.0080860	0.0264466
12	0.1323156	1.0877886	0.0044202	0.0437632
13	-0.1156053	1.0692970	0.0033717	0.0301633
14	0.1264924	1.0540048	0.0040261	0.0262920
15	0.1283210	1.1070660	0.0041638	0.0545413
16	0.1959373	1.1181495	0.0096788	0.0750950
17	0.3829408	0.8851801	0.0352070	0.0391216

Index	DFFITS	Cov-Ratio	Cook's D	h
18	-0.3697834	1.0393466	0.0338360	0.0765434
19	-0.2686210	0.8569300	0.0172746	0.0186886
20	0.5051801	0.8535150	0.0604779	0.0540966
21	0.7739525	1.4008313	0.1488578	0.3030098
22	0.0121662	1.0864599	0.0000376	0.0192233
23	-0.0651903	1.1271901	0.0010784	0.0583738
24	0.0888811	1.0814460	0.0019986	0.0301784
25	-0.1624769	1.0833226	0.0066503	0.0482688
26	0.0431807	1.0806157	0.0004729	0.0194111
27	-0.0307114	1.1051217	0.0002395	0.0368483
28	-0.3166694	1.1262638	0.0251251	0.1042600
29	-0.0659954	1.0897705	0.0011039	0.0304346
30	-0.0812175	1.1052021	0.0016718	0.0442098
31	-0.1030839	1.0783179	0.0026854	0.0317434
32	0.4485882	1.1022306	0.0499286	0.1197979
33	-0.5560519	1.1119314	0.0763130	0.1456569
34	0.0738137	1.0827214	0.0013798	0.0275017
35	0.2481568	0.9495735	0.0150954	0.0266163
36	-0.9019691	0.8137972	0.1874469	0.1134502
37	0.1999564	0.9796401	0.0098866	0.0230451
38	-0.1071627	1.0710149	0.0028993	0.0289513
39	0.2781957	0.9074044	0.0187627	0.0254288
40	-0.0696837	1.0956977	0.0012309	0.0353032
41	-0.1618435	1.0870888	0.0066011	0.0501094
42	0.4578417	1.2960421	0.0526063	0.2164835
43	-0.0919973	1.0566419	0.0021350	0.0190021
44	0.0786382	1.1230099	0.0015683	0.0569300
45	-0.0494065	1.0812914	0.0006190	0.0211936
46	-0.0303330	1.1121276	0.0002337	0.0426682
47	0.0464710	1.0987180	0.0005480	0.0335746
48	0.2404022	0.9922949	0.0142978	0.0335801
49	-0.1351269	1.1566904	0.0046246	0.0893123
50	-0.0451217	1.0942424	0.0005166	0.0298696
51	-0.2163883	1.0639636	0.0117322	0.0516749
52	-0.2410526	1.0788864	0.0145617	0.0641229
53	-0.1238732	1.1437482	0.0038867	0.0786294
54	-0.1364769	1.0901320	0.0047023	0.0460311
55	0.2679270	1.0169015	0.0178098	0.0461829
56	-0.0636977	1.3265737	0.0010304	0.1972111
57	-0.6213744	0.9841515	0.0933802	0.1100394
58	-0.1160729	1.0735636	0.0034005	0.0323571
59	0.0547335	1.0889107	0.0007597	0.0275938
60	-0.2730610	1.0472379	0.0185778	0.0579109
61	0.0469327	1.1130817	0.0005591	0.0450912
62	0.2262492	1.0476740	0.0127910	0.0473346
63	-0.1531156	1.0831803	0.0059093	0.0460313
64	-0.3365007	1.1730356	0.0284267	0.1331396
65	0.0634382	1.1134784	0.0010210	0.0475218
66	0.5364725	1.0215956	0.0703456	0.1056051
67	0.5205079	0.7609968	0.0625866	0.0420018

The cutoff values for the measures are given below.

 $\mathrm{DFFITS} > 0.4886778$

Covariance Ratio $\in (-\infty, 0.8208955) \cup (1.179104, \infty)$

Cook's D > 1

 ${\it Hat-Matrix~Diagonals} > 0.119403$

The Cook's Distances are plotted below.

plot(model.1, which = 4, cook.levels = 1)

The plot of standardized residuals and hat-matrix diagonals are given below.

influencePlot(model.1)

StudRes Hat CookD ## 21 1.1738139 0.30300983 0.14885783 ## 36 -2.5213940 0.11345015 0.18744687

```
## 42 0.8710177 0.21648354 0.05260627
## 67 2.4858552 0.04200178 0.06258662
```

The suspicious points are given below.

```
influ.model.1 <- influence.measures(model.1)
summary(influ.model.1)</pre>
```

```
## Potentially influential observations of
##
     lm(formula = y \sim x1 + x2 + x3, data = data) :
##
##
      dfb.1_ dfb.x1 dfb.x2 dfb.x3 dffit
                                            cov.r
                                                    cook.d hat
## 21 -0.31 -0.37
                             0.23
                     0.71
                                    0.77_*
                                            1.40 *
                                                     0.15
                                                            0.30_*
## 36 0.45
              0.31
                    -0.20
                            -0.77
                                   -0.90_*
                                            0.81
                                                     0.19
                                                            0.11
## 42 -0.16 -0.16
                     0.39
                             0.09
                                    0.46
                                             1.30_*
                                                     0.05
                                                            0.22_*
## 56 -0.02 -0.06
                     0.04
                             0.04
                                   -0.06
                                             1.33_*
                                                     0.00
                                                            0.20_*
## 67 0.48 -0.01 -0.24
                           -0.27
                                    0.52
                                            0.76_{-}*
                                                     0.06
                                                            0.04
```

For these points we apply test for outliers using outlier-shift model.

```
outlierTest(model.1)
```

```
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
## rstudent unadjusted p-value Bonferroni p
## 36 -2.521394 0.014274 0.95634</pre>
```

The points with hat-values more than 0.119403 are given by,

```
which(as.vector(hatvalues(model.1)) > 0.119403)
```

```
## [1] 21 32 33 42 56 64
```

Comment: From the test for outliers, we see that there are no outliers. But 21st, 32nd, 33rd, 42nd, 56th, 64th points are leverage points.

<u>Subset Selection</u>: Here we select the best subset of predictors, best in sense of certain criterion such as AIC, BIC, Mallow's C_p , etc., by using all possible regression and stepwise regression.

All Possible Regression: At first we select the best subset of predictors using AIC as the selection criterion.

```
suppressMessages(library(olsrr))
all_subset <- ols_step_all_possible(model.1)</pre>
```

The AIC values for the model subsets are given below.

Index	Number of Predictors	Predictors	AIC
1	1	x_3	502.3522
2	1	x_2	585.7460
3	1	x_1	604.6943
4	2	x_1, x_3	484.8196
5	2	x_2, x_3	487.7797
6	2	x_1, x_2	575.1858
7	3	x_1, x_2, x_3	484.2951

The model with all the 3 predictors is chosen to be the best w.r.t. AIC. The estimates of the parameters for the best model is given below.

term	estimate	std.error	statistic	p.value
(Intercept)	15.8430423	3.0877581	5.130921	0.0000030
x1	-0.2326559	0.1003603	-2.318207	0.0236975
x2	-16.7241770	10.7528479	-1.555325	0.1248782
x3	0.8375671	0.0609186	13.748962	0.0000000

We repeat the same process using BIC as the selection criterion. The BIC values for the model subsets are given below.

Index	Number of Predictors	Predictors	BIC
1	1	x_3	508.9662
2	1	x_2	592.3601
3	1	x_1	611.3084
4	2	x_1, x_3	493.6383
5	2	x_2, x_3	496.5984
6	2	x_1, x_2	584.0046
7	3	x_1, x_2, x_3	495.3186

The model with the predictors x_1 and x_3 is chosen to be the best model w.r.t. *BIC*. The estimates of the parameters for the best model is given below.

term	estimate	std.error	statistic	p.value
(Intercept)	12.8068372	2.4187437	5.294830	1.60e-06
x1	-0.3407358	0.0732089	-4.654292	1.68e-05
x3	0.8945668	0.0491985	18.182804	0.00e+00

We repeat the same process using Mallow's C_p as the selection criterion. The C_p values for the model subsets are given below.

Index	Number of Predictors	Predictors	C_p
1	1	x_3	24.561778
2	1	x_2	241.000550
3	1	x_1	340.363948
4	2	x_1, x_3	4.419037
5	2	x_2, x_3	7.374082
6	2	x_1, x_2	191.033950
7	3	x_1, x_2, x_3	4.000000

The model with all the 3 predictors is chosen to be the best (for which, C_p is close to p) w.r.t. C_p . The estimates of the parameters for the best model is given below.

term	estimate	std.error	statistic	p.value
(Intercept)	15.8430423	3.0877581	5.130921	0.0000030
x1	-0.2326559	0.1003603	-2.318207	0.0236975
x2	-16.7241770	10.7528479	-1.555325	0.1248782
x3	0.8375671	0.0609186	13.748962	0.0000000

Comment: The criterion AIC and C_p prefers the full model and the criterion BIC prefers the model with x_1 and x_3 as predictors. But the decrease of BIC by switching from full model to the model with x_1 and x_3 as predictors, is not very much. Thus we choose the model with all the 3 predictors.

Step-wise Regression: At first we select the best subset by step-wise regression, using the value of \overline{F} -statistic as the selection criterion.

```
ols_step_both_p(model.1, prem = 0.05, pent = 0.05, details = TRUE)
## Stepwise Selection Method
##
## Candidate Terms:
##
## 1. x1
## 2. x2
## 3. x3
##
## We are selecting variables based on p value...
##
##
## Stepwise Selection: Step 1
## - x3 added
##
##
                      Model Summary
## R
                              RMSE
                      0.885
                                                 9.978
                      0.783
## R-Squared
                               Coef. Var
                                                 22.785
## Adj. R-Squared
                      0.780
                                MSE
                                                 99.551
## Pred R-Squared
                      0.769
                                MAE
                                                 7.790
  RMSE: Root Mean Square Error
  MSE: Mean Square Error
##
  MAE: Mean Absolute Error
##
##
##
                             ANOVA
##
##
               Sum of
             Squares DF Mean Square F Sig.
##
                       1 23399.615
                                            235.052
## Regression
              23399.615
                                                        0.0000
## Residual 6470.811
                            65
                                    99.551
              29870.426
##
                              Parameter Estimates
       model Beta Std. Error Std. Beta t Sig
##
               8.750
## (Intercept)
                           2.590
                                              3.378
                                                              3.577 13.923
                                                      0.001
                         0.054 0.885 15.331
    x3 0.825
                                                      0.000 0.718 0.933
##
##
```

##

```
##
## Stepwise Selection: Step 2
## - x1 added
##
                     Model Summary
                      0.916 RMSE
0.838 Coef. Var
                                                8.691
## R-Squared
                                                19.848
                     0.833 MSE
0.820 MAE
## Adj. R-Squared
                                               75.538
## Pred R-Squared
                                                6.884
  RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
##
                           ANOVA
##
               Sum of
##
              Squares
                           DF Mean Square
                                               F
                                                        Sig.
  ______
                          2 12517.981
## Regression 25035.963
                                              165.717 0.0000
## Residual 4834.464
## Total 29870.426
                           64
                                  75.538
##
                              Parameter Estimates
       model Beta Std. Error Std. Beta
## (Intercept) 12.807 2.419
                                              5.295 0.000 7.975
                                                                      17.639

      0.049
      0.960
      18.183
      0.000
      0.796
      0.993

      0.073
      -0.246
      -4.654
      0.000
      -0.487
      -0.194

##
   x3
              0.895
        x1 -0.341
##
##
##
                      Model Summary
  ______
                      0.916 RMSE
## R
                                                 8.691
## R-Squared
                      0.838
                               Coef. Var
                                               19.848
                     0.833 MSE
0.820 MAE
                                               75.538
## Adj. R-Squared
## Pred R-Squared
                                                6.884
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
                            ANOVA
## -----
##
                Sum of
              Squares DF Mean Square F Sig.
                       2 12517.981 165.717 0.0000
## Regression
              25035.963
```

	Residual Total	4834.464 29870.426			75.538				
##									
##					arameter Estima				
##	model	Beta	Std.	Error	Std. Beta	t	Sig	lower	upper
##	(Intercept)	12.807		2.419		5.295	0.000	7.975	17.639
## ##	x3 x1	0.895 -0.341		0.049	0.960 -0.246	18.183 -4.654	0.000	0.796 -0.487	-0.194
## ##									
##				,	_				
## ##	No more varia	ables to be	added	/remove	ed.				
##									
	Final Model (
##									
##				Summa	ry 				
## ##						8.69			
	R-Squared		0.838		Coef. Var	19.848	3		
##	Adj. R-Square Pred R-Square	ed ed	0.833		MSE MAE	75.538 6.884			
## ##	RMSE: Root N	 Mean Square							
## ##	MSE: Mean So	_	or						
##									
## ##				ONA.	/A 				
##		Sum of							
## ##		Squares		DF	Mean Square	F	Sig. 		
##	Regression	25035.963		2	12517.981	165.717	0.0000		
##	Residual	4834.464 29870.426		64 66	75.538				
##									
##									
## ##				P:	arameter Estima 	.tes 			
##		Beta			Std. Beta	t	Sig	lower	upper
## ##	(Intercept)			2.419		5.295	0.000	7.975	17.639
##	x3	0.895		0.049	0.960	18.183	0.000	0.796	0.993
## ##	x1			0.073	-0.246 	-4.654 	U.000 	-0.487 	-0.194
##									
##				Stepwi	se Selection Su	mmary			
##									

## ## Step		Variable	Added/ Removed	R-Square	Adj. R-Square	C(p)	AIC	RMSE
## ##	1	 x3	addition	0.783	0.780	24.5620	502.3522	9.9775
##	2	x1	addition	0.838	0.833	4.4190	484.8196	8.6913
##								

Comment: The model with predictors x_1 and x_3 is the final chosen model using F-statistic as the selection criterion.

We repeat the same process using AIC as the selection criterion.

```
ols_step_both_aic(model.1, details = TRUE)
```

```
## Stepwise Selection Method
## -----
##
## Candidate Terms:
##
## 1 . x1
## 2 . x2
## 3 . x3
##
## Step 0: AIC = 602.8332
##
 y ~ 1
##
##
## Variables Entered/Removed:
##
                 Enter New Variables
## -----
## Variable DF AIC Sum Sq
                             RSS R-Sq
                                         Adj. R-Sq
 ______
        1 502.352 23399.615
                            6470.811 0.783
                                            0.780
         1 585.746 7404.801
                          22465.625
## x2
                                    0.248
                                            0.236
         1 604.694 61.851 29808.576
                                    0.002
                                           -0.013
## - x3 added
##
##
 Step 1 : AIC = 502.3522
##
##
 y ~ x3
##
                 Enter New Variables
## -----
## Variable DF AIC Sum Sq
                            RSS
                                   R-Sq
 ______
                                   0.838
         1 484.820
                    25035.963 4834.464
                                           0.833
## x1
                   24817.585 5052.841 0.831
      1 487.780
                                         0.826
## - x1 added
##
##
 Step 2 : AIC = 484.8196
```

```
## y \sim x3 + x1
##
##
               Remove Existing Variables
## Variable DF AIC
                           RSS
                   Sum Sq
                                  R-Sq Adj. R-Sq
## -----
                   23399.615 6470.811 0.783
         1 502.352
                   61.851 29808.576 0.002
        1
           604.694
  ##
                  Enter New Variables
## Variable DF AIC Sum Sq
                        RSS R-Sq Adj. R-Sq
## -----
                   25214.729 4655.697 0.844 0.837
       1 484.295
## - x2 added
##
##
## Step 3 : AIC = 484.2951
## y \sim x3 + x1 + x2
##
               Remove Existing Variables
 _____
                                  R-Sq
## Variable DF
             AIC
                   Sum Sq
                             RSS
                                        Adj. R-Sq
                   25035.963 4834.464 0.838
        1
           484.820
## x2
                                          0.833
         1 487.780 24817.585 5052.841 0.831
                                          0.826
      1 575.186 11245.130 18625.296 0.376
##
##
## Final Model Output
##
               Model Summary
## -----
               0.919 RMSE
## R
                                  8.597
## R-Squared
               0.844
                     Coef. Var
                                 19.632
              0.837 MSE
0.820 MAE
## Adj. R-Squared
                                 73.900
## Pred R-Squared
                                  6.833
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
                   ANOVA
## -----
##
           Sum of
          Squares DF Mean Square F Sig.
                3 8404.910 113.734 0.0000
## Regression
         25214.729
```

	Residual Total	4655.697 29870.426	63 66 	73.900	tes			
## ## ##	model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
##	(Intercept)	15.843	3.088		5.131	0.000	9.673	22.013
##	x3	0.838	0.061	0.898	13.749	0.000	0.716	0.959
##	x1	-0.233	0.100	-0.168	-2.318	0.024	-0.433	-0.032
##	x2	-16.724	10.753	-0.114	-1.555	0.125	-38.212	4.764

##

##

##

Stepwise Summary

##							
##	Variable	Method	AIC	RSS	Sum Sq	R-Sq	Adj. R-Sq
##							
##	x3	addition	502.352	6470.811	23399.615	0.78337	0.78004
##	x1	addition	484.820	4834.464	25035.963	0.83815	0.83309
##	x2	addition	484.295	4655.697	25214.729	0.84414	0.83671
##							

Comment: The model with all 3 predictors is the final chosen model using AIC as the selection criterion.

Considering the 2 selection criterion, we select the model with all the predictors as the final model.

Test for Normality: We apply Shapiro-Wilks test, for this purpose. Some other tests are also applied.

```
final_model <- lm(y ~ ., data)</pre>
ols_test_normality(final_model)
```

The results are tabulated below.

Test	Statistic	pvalue
Shapiro-Wilk	0.9777	0.2714
Kolmogorov-Smirnov	0.0995	0.4897
Anderson-Darling	0.6312	0.0959

Comment: From the tests, we can say that the normality assumption is satisfied.

Autocorrelation: We first plot the ACF and PACF of the residuals. The plots are given below.

```
final_model.resi <- residuals(final_model)</pre>
acf(final_model.resi, main = "ACF plot of OLS residuals")
```

ACF plot of OLS residuals

pacf(final_model.resi, main = "PACF plot of OLS residuals")

PACF plot of OLS residuals

Comment: From the diagrams it seems that the residual series has no autocorrelation.

Runs Test: We can apply Runs Test to see if the residual series has auto correlation.

library(randtests)
runs.test(final_model.resi, plot = TRUE)


```
##
## Runs Test
##
## data: final_model.resi
## statistic = 0.9924, runs = 38, n1 = 33, n2 = 33, n = 66, p-value =
## 0.321
## alternative hypothesis: nonrandomness
```

Comment: From the Runs Test, we can say that the residuals are not auto-correlated.

<u>Durbin-Watson Test</u>: We also apply *Durbin-Watson* test to see if the $errors(\epsilon_i)$ follow a first-order autoregressive (AR(1)) model.

```
suppressMessages(library(lmtest))
dwtest(final_model, alternative = "two.sided")
```

```
##
## Durbin-Watson test
##
## data: final_model
## DW = 2.2344, p-value = 0.3357
## alternative hypothesis: true autocorrelation is not 0
```

Comment: From the *Durbin-Watson* test, we can say the error(ϵ_i) doesn't follow an AR(1) model.

<u>Heteroscedasticity</u>: For this purpose, we first apply *F-test*, considering the square OLS residuals($\hat{\epsilon}_i^2$) as the response and the other variables as the predictors.

```
summary(lm(I(final_model.resi^2) ~ x1 + x2 + x3, data))
##
## Call:
## lm(formula = I(final_model.resi^2) ~ x1 + x2 + x3, data = data)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
  -102.38 -50.08 -34.55
                             26.59
                                    357.68
##
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 12.7738
                           32.9293
                                     0.388
                                             0.6994
                -0.5868
                            1.0703
                                    -0.548
                                             0.5855
## x1
                69.0908
                                     0.603
## x2
                          114.6735
                                             0.5490
## x3
                 1.3435
                            0.6497
                                     2.068
                                             0.0427 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 91.68 on 63 degrees of freedom
## Multiple R-squared: 0.07572,
                                    Adjusted R-squared:
## F-statistic: 1.72 on 3 and 63 DF, p-value: 0.1718
```

Comment: From the test, we can see that the regression is not significant. So, the error variance is not related to linear combination of independent variables.

Breusch-Pagan Test: We also apply BP test to conclude on the linear dependence of error variance on the independent variables.

statistic	p.value	parameter	method	alternative
4.491971	0.2130076	3	Breusch-Pagan (non-studentised)	greater

Comment: From the above test, it is confirmed that the error variance is not related to linear combination of independent variables.

<u>White's Test</u>: Here we try find the relationship of the error variance, with all independent variables, the squares of independent variables and all the cross products.

statistic	p.value	parameter	method	alternative
8.268502	0.5073307	9	White's Test	greater

Comment: From the above test, it is confirmed that the that the error variance doesn't depend on 2nd degree polynomials of the independent variables.

Glejser Test: Here we use Glejser test to test for heteroscedasticity in the model.

statistic	p.value	parameter	alternative
5.54939	0.1357142	3	greater

Comment: From the above test, we can say that heteroscedasticity is not present in the model.

Goldfeld-Quandt Test: Here we apply GQ test to test for heteroscedasticity in the model.

statistic	p.value	parameter	method	alternative
0.9106025	0.5770228	18	Goldfeld-Quandt F Test	greater

Comment: From the above test, we confirm that heteroscedasticity is not present in the model.

<u>Collinearity</u>: For this, we calculate the *Variance Inflation Factor* corresponding to each estimator of coefficient of the predictors. They are given below.

vif(final_model)

Predictors	VIF
x1	2.115710
x2	2.156007
x3	1.726061

Comment: None of the *VIF*'s are more than 10.

Now, we calculate the condition number corresponding to the selected model.

```
kappa(final_model)
```

```
## [1] 618.4017
```

The condition number of the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$ is given below.

```
kappa(lm(y \sim x1 + x3, data))
```

```
## [1] 97.11836
```

Comment: The condition number of the regression matrix is very high, compared to the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$. We should obtain *Ridge Estimates* in this case. Otherwise, we can also work with the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$.

<u>Ridge Regression</u>: As, we saw earlier, our regression matrix has collinearity, so the usual LS estimates won't be efficient. Thus we opt for $Ridge\ Regression$.

```
library(ridge)
ridge_model <- linearRidge(y ~ ., data)
summary(ridge_model)</pre>
```

```
##
## Call:
## linearRidge(formula = y ~ ., data = data)
##
##
## Coefficients:
                Estimate Scaled estimate Std. Error (scaled) t value (scaled)
##
## (Intercept) 23.24493
                                                           NA
## x1
                -0.06094
                                -7.59288
                                                      8.01409
                                                                         0.947
## x2
               -30.17868
                               -35.42614
                                                      8.03180
                                                                         4.411
## x3
                 0.63388
                               117.51969
                                                      7.84075
                                                                        14.988
##
               Pr(>|t|)
                     NA
## (Intercept)
                  0.343
## x1
               1.03e-05 ***
## x2
## x3
                < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Ridge parameter: 0.221719, chosen automatically, computed using 1 PCs
##
## Degrees of freedom: model 2.221, variance 1.733, residual 2.709
```

Comment: In the above section we see the final model, with the ridge estimates. We can also work with the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$ as the condition number for this model is 97.11836, which is very small with respect to that of the full model. Also, the decrease in AIC by including x_2 in the set of predictors, is not very significant. In the next section, we plot the fitted values from the two models, along with the response values.

<u>Plots of Predicted Values</u>: The plot of the predicted values from the full model along with the response values is given below.

```
library(lattice)
library(latex2exp)
model.1.pred <- predict(final_model)</pre>
model.1.ridge.pred <- predict(ridge_model)</pre>
model.2.pred <- predict(lm(y ~ x1 + x3, data))</pre>
xyplot(y + model.1.pred ~ 1:67,
       data = data,
       type = c("1"),
       ylab = "Response & Predicted Values",
       xlab = "Index",
       main = list(
         "Plot of Predicted Values from full model using OLS",
         cex = 1.2
       ),
       auto.key = list(
         space = "top",
         columns = 2,
         text = c(
           "Response Values",
            "Predicted Values"
         )
       ))
```

Plot of Predicted Values from full model using OLS

The plot of the predicted values from the full model using Ridge estimation, along with the response values is given below.

```
xyplot(y + model.1.ridge.pred ~ 1:67,
       data = data,
       type = c("1"),
       ylab = "Response & Predicted Values",
       xlab = "Index",
       main = list(
         "Plot of Predicted Values from full model using RR",
         cex = 1.2
       ),
       auto.key = list(
         space = "top",
         columns = 2,
         text = c(
           "Response Values",
           "Predicted Values"
         )
       ))
```

Plot of Predicted Values from full model using RR

The plot of the predicted values from the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$, along with the response values is given below.

```
xyplot(y + model.2.pred ~ 1:67,
       data = data,
       type = c("l"),
       ylab = "Response & Predicted Values",
       xlab = "Index",
       main = list(
         TeX(
           "Plot of Predicted Values from model (with x_1 and x_3)"
         ),
         cex = 1.2
       ),
       auto.key = list(
         space = "top",
         columns = 2,
         text = c(
           "Response Values",
           "Predicted Values"
         )
       ))
```

Plot of Predicted Values from model (with x_1 and x_3)

Comment: We can't see any significant difference between 1st graph and 3rd graph.

The estimates of the model parameters for the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$ is given below.

term	estimate	std.error	statistic	p.value
(Intercept)	12.8068372	2.4187437	5.294830	1.60e-06
x1	-0.3407358	0.0732089	-4.654292	1.68e-05
x3	0.8945668	0.0491985	18.182804	0.00e+00

The value of \mathbb{R}^2 and $\mathbb{A}dj$. \mathbb{R}^2 , for the 2 models is tabulated below.

Predictors	R^2	$Adj. R^2$
$x_1, x_2, x_3 \ x_1, x_3$	$\begin{array}{c} 0.8441369 \\ 0.8381522 \end{array}$	0.8367149 0.8330944

Comment: From the above table we can see that nothing has been gained by switching from the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$ to the full model. In the next section we analyze the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$ for outliers, normality, heteroscedasticity and autocorrelation and collinearity.

Analysis of the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$

Outliers and Influential Observations: We calculate the measures for detecting outliers and influential

points corresponding to each residuals, viz, DFFITS, Covariance Ratio, Cook's D and hat matrix diagonals.

```
model.2 <- lm(y ~ x1 + x3, data)
influence.measures(model.2)</pre>
```

They are tabulated below.

Index	DFFITS	Cov-Ratio	Cook's D	h
1	-0.1671197	1.0405716	0.0093322	0.0319851
2	-0.0428975	1.0778233	0.0006225	0.0300631
3	-0.1737361	1.0621607	0.0101146	0.0435141
4	-0.0310206	1.0828445	0.0003257	0.0331226
5	0.4873836	0.9094046	0.0753396	0.0527792
6	-0.2353748	1.0824913	0.0185315	0.0665075
7	0.0602740	1.0851620	0.0012284	0.0381033
8	0.0347187	1.0818870	0.0004079	0.0326196
9	-0.2064142	1.0501199	0.0142198	0.0442042
10	0.1068603	1.0888542	0.0038528	0.0475774
11	-0.1607919	1.0240902	0.0086148	0.0246246
12	0.1441860	1.0579649	0.0069770	0.0353535
13	-0.0901804	1.0613052	0.0027407	0.0262405
14	0.1253613	1.0473877	0.0052729	0.0262910
15	0.1123692	1.0957141	0.0042606	0.0533386
16	0.2178052	1.0698267	0.0158637	0.0562621
17	0.3006959	0.9437274	0.0292636	0.0300822
18	-0.2271754	1.0537836	0.0172086	0.0500905
19	-0.2636764	0.8897108	0.0221599	0.0173743
20	0.4617496	0.9203043	0.0679317	0.0511213
21	0.0446799	1.1011306	0.0006756	0.0496376
22	0.0009418	1.0660898	0.0000003	0.0166154
23	-0.0374338	1.1071194	0.0004743	0.0541597
24	0.0930899	1.0660499	0.0029213	0.0297109
25	-0.1688101	1.0713550	0.0095631	0.0475623
26	0.0421665	1.0645639	0.0006012	0.0194049
27	-0.0495609	1.0770982	0.0008307	0.0302982
28	-0.2097404	1.1210206	0.0147859	0.0854560
29	-0.0733722	1.0707404	0.0018178	0.0291860
30	-0.0663897	1.0901018	0.0014902	0.0427771
31	-0.1104837	1.0515326	0.0041026	0.0251389
32	0.4534087	1.1087692	0.0679799	0.1195098
33	-0.3816324	0.9459429	0.0469502	0.0438232
34	0.0819824	1.0617211	0.0022664	0.0248600
35	0.2070834	0.9814593	0.0140995	0.0222419
36	-0.9113099	0.8614560	0.2535719	0.1078507
37	0.2005964	0.9890897	0.0132619	0.0227441
38	-0.1051864	1.0607644	0.0037247	0.0289427
39	0.2780118	0.9338905	0.0249721	0.0248879
40	-0.0517877	1.0798106	0.0009070	0.0327603
41	-0.0984508	1.0746104	0.0032688	0.0362757
42	0.0391064	1.1125006	0.0005177	0.0587363
43	-0.0951902	1.0426360	0.0030443	0.0179110
44	0.1052788	1.0764496	0.0037369	0.0387259
45	-0.0380009	1.0655988	0.0004884	0.0195457
46	-0.0009355	1.0863297	0.0000003	0.0349360

Index	DFFITS	Cov-Ratio	Cook's D	h
47	0.0507447	1.0806099	0.0008709	0.0332747
48	0.2418233	0.9913361	0.0192362	0.0305800
49	-0.1509596	1.1366092	0.0076880	0.0879308
50	-0.0539200	1.0737688	0.0009829	0.0282762
51	-0.1394311	1.0620976	0.0065302	0.0365907
52	-0.1850171	1.0802735	0.0114860	0.0558053
53	-0.0930952	1.1279790	0.0029298	0.0752656
54	-0.1415334	1.0472896	0.0067133	0.0296113
55	0.2457068	0.9859060	0.0198272	0.0299140
56	0.1183553	1.1962256	0.0047362	0.1275798
57	-0.5942371	1.0292887	0.1143483	0.1092460
58	-0.1169643	1.0624884	0.0046027	0.0322938
59	0.0578488	1.0717915	0.0011311	0.0273640
60	-0.2795539	1.0460651	0.0259317	0.0570208
61	0.0689302	1.0827208	0.0016058	0.0373437
62	0.2330236	1.0421404	0.0180647	0.0460409
63	-0.1563684	1.0427656	0.0081795	0.0306950
64	-0.3832022	1.1252095	0.0488583	0.1161501
65	0.0863508	1.0767058	0.0025169	0.0356117
66	0.5392811	0.9907092	0.0938197	0.0850280
67	0.4851187	0.7973222	0.0719225	0.0334247

The cutoff values for the measures are given below.

 $\mathrm{DFFITS} > 0.4232074$

Covariance Ratio $\in (-\infty, 0.8656716) \cup (1.134328, \infty)$

Cook's D > 1

 ${\rm Hat\text{-}Matrix\ Diagonals} > 0.08955224$

Cooks distances are plotted below.

The plot of standardized residuals and hat-matrix diagonals are given below.

```
influencePlot(model.2)
```



```
## StudRes Hat CookD

## 32 1.2306950 0.11950976 0.06797987

## 36 -2.6210384 0.10785069 0.25357190

## 56 0.3094992 0.12757982 0.00473624

## 57 -1.6968205 0.10924599 0.11434835

## 67 2.6087497 0.03342465 0.07192248
```

The suspicious points are given below.

```
influ.model.2 <- influence.measures(model.1)
summary(influ.model.2)</pre>
```

```
## Potentially influential observations of
##
     lm(formula = y \sim x1 + x2 + x3, data = data) :
##
##
      dfb.1_ dfb.x1 dfb.x2 dfb.x3 dffit
                                            cov.r
                                                    cook.d hat
## 21 -0.31 -0.37
                      0.71
                             0.23
                                    0.77_*
                                             1.40_*
                                                     0.15
                                                             0.30_*
## 36
       0.45
              0.31
                     -0.20
                            -0.77
                                   -0.90_*
                                             0.81
                                                     0.19
                                                             0.11
## 42 -0.16
                      0.39
                             0.09
             -0.16
                                    0.46
                                             1.30 *
                                                     0.05
                                                             0.22 *
             -0.06
                                             1.33_*
                                                             0.20_*
## 56 -0.02
                      0.04
                             0.04
                                   -0.06
                                                     0.00
## 67 0.48 -0.01
                    -0.24
                            -0.27
                                    0.52
                                             0.76_*
                                                     0.06
                                                             0.04
```

For these points we apply test for outliers using outlier-shift model.

```
outlierTest(model.2)
```

```
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
## rstudent unadjusted p-value Bonferroni p</pre>
```

```
## 36 -2.621038 0.010975 0.73532
```

The points with hat-values more than 0.08955224 are given by,

```
which(as.vector(hatvalues(model.1)) > 0.08955224)
```

```
## [1] 9 21 28 32 33 36 42 56 57 64 66
```

Comment: From the test for outliers, we see that there are no outliers. We also see there are many leverage points. So, we can try with *Robust Regression*, which results in residuals that better identify the outlier.

<u>Test for Normality</u>: The QQ-Plot of the residuals from the model $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$ is given below. plot(model.2, which = 2)

Comment: From the QQ-Plot, it seems that the residuals are almost normal. We apply *Shapiro-Wilks* test, for testing normality of the error distribution. Some other tests are also applied.

```
ols_test_normality(model.2)
```

The results are tabulated below.

Test	Statistic	pvalue
Shapiro-Wilk	0.9792	0.3227
Kolmogorov-Smirnov	0.0895	0.6240
Anderson-Darling	0.6105	0.1080

Comment: From the tests, we can say that the normality assumption is satisfied.

<u>Autocorrelation</u>: We first plot the ACF and PACF of the residuals. The plots are given below.

```
model.2.resi <- residuals(model.2)
acf(model.2.resi, main = "ACF plot of OLS residuals")</pre>
```

ACF plot of OLS residuals

pacf(model.2.resi, main = "PACF plot of OLS residuals")

PACF plot of OLS residuals

Comment: From the diagrams it seems that the residual series has no autocorrelation.

Runs Test: We can apply Runs Test to see if the residual series has auto correlation.

runs.test(model.2.resi, plot = TRUE)


```
##
## Runs Test
##
## data: model.2.resi
## statistic = 0.4962, runs = 36, n1 = 33, n2 = 33, n = 66, p-value =
## 0.6198
## alternative hypothesis: nonrandomness
```

Comment: From the Runs Test, we can say that the residuals are not auto-correlated.

<u>Durbin-Watson Test</u>: We also apply *Durbin-Watson* test to see if the errors follow a first-order autoregressive (AR(1)) model.

```
dwtest(model.2, alternative = "two.sided")
```

```
##
## Durbin-Watson test
##
## data: model.2
## DW = 2.2813, p-value = 0.2451
## alternative hypothesis: true autocorrelation is not 0
```

Comment: From the *Durbin-Watson* test, we can say the error doesn't follow an AR(1) model.

<u>Heteroscedasticity</u>: For this purpose, we first apply F-test, considering the square OLS residuals as the response and the other variables as the predictors.

```
summary(lm(I(model.2.resi^2) ~ x1 + x3, data))
```

##

```
## Call:
## lm(formula = I(model.2.resi^2) ~ x1 + x3, data = data)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -108.72 -54.54
                   -36.63
                             29.19
                                   405.79
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.156488 26.781007
                                     0.715
                                              0.4770
              -0.008448
                           0.810590
                                    -0.010
                                              0.9917
               1.252133
                           0.544740
                                     2.299
                                              0.0248 *
## x3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 96.23 on 64 degrees of freedom
## Multiple R-squared: 0.08314,
                                   Adjusted R-squared:
                                                        0.05449
## F-statistic: 2.902 on 2 and 64 DF, p-value: 0.06219
```

Comment: From the test, we can see that the regression is not significant. So, the error variance is not related to linear combination of independent variables.

Breusch-Pagan Test: We also apply BP test to conclude on the linear dependence of error variance on the independent variables.

statistic	p.value	parameter	method	alternative
5.16104	0.0757346	2	Breusch-Pagan (non-studentised)	greater

Comment: From the above test, it is confirmed that the error variance is not related to linear combination of independent variables.

<u>White's Test</u>: Here we try find the relationship of the error variance, with the independent variables, the squares of independent variables and the cross products.

statistic	p.value	parameter	method	alternative
6.989448	0.2214263	5	White's Test	greater

Comment: From the above test, it is confirmed that the that the error variance doesn't depend on 2^{nd} degree polynomials of the independent variables.

Goldfeld-Quandt Test: Here we apply GQ test to test for heteroscedasticity in the model.

statistic	p.value	parameter	method	alternative
1.205794	0.3402705	19	Goldfeld-Quandt F Test	greater

Comment: From the above test, we confirm that heteroscedasticity is not present in the model.

<u>Collinearity</u>: For this, we calculate the *Variance Inflation Factor* corresponding to each estimator of coefficient of the predictors. They are given below.

vif(model.2)

Predictors	VIF
x1	1.101378
x3	1.101378

Comment: None of the *VIF*'s are more than 10.

The condition number for the model is 97.11836(already calculated above).

Comment: From the *VIF* values and the *Condition Number*, it seems that collinearity is not present in the model.

<u>Conclusion</u>: The final model is $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \epsilon$. The estimates of the model parameters are given below.

term	estimate	std.error	statistic	p.value
(Intercept) x1	12.8068372 -0.3407358	2.4187437 0.0732089	5.294830 -4.654292	1.60e-06 1.68e-05
x3	0.8945668	0.0491985	18.182804	0.00e+00