Setiment Analysis with Naive Bayes

- Conditional Probability
- Bayes' rule
- Laplace smoothing
- Ratio of probabilities
- Log likelihood analysis
- Training, testing Naïve Bayes
- Applications, Sources of Errors in In Naïve Bayes

Probability and Bayes' Rule

Corpus of tweets

Tweets containing the word "happy"

- Corpus of tweets
 - Tweets that can be categorized as either positive or negative sentiment
 - The word happy is sometimes being labeled positive and sometimes negative

Probabilities

Corpus of tweets

Tweets containing the word "happy"

 $A \rightarrow Positive tweet$

$$P(A) = P(Positive) = N_{pos} / N$$

 $A \rightarrow Positive tweet$

$$P(A) = N_{pos} / N = 13 / 20 = 0.65$$

$$P(Negative) = 1 - P(Positive) = 0.35$$

 $B \rightarrow tweet contains "happy".$

$$P(B) = P(happy) = N_{happy} / N$$

$$P(B) = 4 / 20 = 0.2$$

Po	sitive		
	"happ	у"	

$$P(A \cap B) = P(A, B) = \frac{3}{20} = 0.15$$

Bayes' Rule

Conditional Probabilities

$$P(A | B) = P(Positive | "happy")$$

$$P(A | B) = 3 / 4 = 0.75$$

Corpus

$$P(B | A) = P(\text{``happy''}| Positive)$$

$$P(B | A) = 3 / 13 = 0.231$$

Conditional probabilities

Probability of B, given A happened

Looking at the elements of set \underline{A} , the chance that one also belongs to set \underline{B}

$$P(\text{Positive}|\text{"happy"}) =$$

$$P(\text{Positive} \cap \text{"happy"})$$

$$P(\text{"happy"})$$

Bayes' rule

$$P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$$

$$P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$$

🎱) deeplearning.a

Positive tweets

I am happy because I am learning NLP I am happy, not sad.

Negative tweets

I am sad, I am not learning NLP I am sad, not happy

am happy because learning NLP sad not **N**_{class}

12

word Pos Neg

Naïve Bayes for Sentiment Analysis

For a document d, out of all classes returns the maximum posterior probability

$$\hat{c} = \operatorname{argmax} P(\operatorname{class}|W) = \operatorname{argmax} \frac{P(W|\operatorname{class})P(\operatorname{class})}{P(W)}$$

• P(W) does not change for each class => drop denominator

$$\hat{c} = \operatorname{argmaxP}(w_1, w_2, ..., w_n | \operatorname{class}) P(\operatorname{class})$$

$$|ikelihood| | \text{prior}$$

• Assumption that the probabilities $P(w_i|class)$ are independent

$$P(w_1, w_2 ..., w_n | class) = P(w_1 | class). P(w_2, | class) P(w_n, | class)$$

$$\hat{c}_{NB} = argmaxP(class) \qquad P(w_i | class)$$

word	Pos	Neg		word	Pos	Neg	
I	3	3		I	0.24	0.25	-
am	3	3		am	0.24	0.25	
happy	2	1		happy	0.15	0.08	
because	1	0	$p(I Reg) = \frac{3}{100}$	because	80.0	0.00	
learning	1	1	$p(\mathbf{r}_{\parallel} \mathbf{r}_{\parallel} \mathbf{r}_{\parallel}$	learning	0.08	0.08	
NLP	1	1		NLP	0.08	0.08	
sad	1	2		sad	0.08	0.08	
not	1	2		not	0.08	0.17	
Nclass	13	12		Sum	1	1	-

word	Pos	Neg
I	0.24	0.25
am	0.24	0.25
happy	0.15	0.08
because	0.08	0
learning	0.08	0.08
NLP	0.08	0.08
sad	0.08	80.0
not	0.08	0.17

🌑 deeplearning.ai

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.14}{0.10} * \frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.10}{0.10}$$

word	Pos	Neg
I	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.10
not	0.10	0.15

② deeplearning.ai

Laplacian Smoothing

$$P(w_i|class) = \frac{freq(w_i, class)}{N_{class}}$$

class ∈ {Positive, Negative}

$$P(w_i|class) = \frac{freq(w_i, class) + 1}{N_{class} + V_{class}}$$

 N_{class} = frequency of all words in class

 V_{class} = number of unique words in class

Introducing $P(w_i | class)$ with smoothing

Introducing $P(w_i | \text{class})$ with smoothing

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
Nclass	13	12

word	Pos	Neg	
- 1	0.19	0.20	_
am	0.19	0.20	
happy	0.14	0.10	
because	0.10	0.05	
learning	0.10	0.10	
NLP	0.10	0.10	
sad	0.10	0.15	
not	0.10	0.15	
Sun	n 1	1	

word	Pos	Neg	ratio
I	0.19	0.20	1
am	0.19	0.20	1
happy	0.14	0.10	1.4
because	0.10	0.05	1
learning	0.10	0.10	1
NLP	0.10	0.10	1
sad	0.10	0.15	0.6
not	0.10	0.15	0.6

$$ratio(w_i) = \frac{P(w_i \mid Pos)}{P(w_i \mid Neg)}$$

$$\frac{freq(w_i, 1) + 1}{freq(w_i, 0) + 1}$$

deeplearning.aii

Naïve Bayes' inference

class ∈ {pos, neg}
w -> Set of m words in a tweet

$$\frac{P(pos)}{P(neg)} \left| \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} \right| > 1$$

- A simple, fast, and powerful baseline
- A probabilistic model used for classification

$$\frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

- Products bring risk of underflow
- log(a * b) = log(a) + log(b)

•
$$log(\frac{P(pos)}{P(neg)}\prod_{i=1}^{n}\frac{P(w_i|pos)}{P(w_i|neg)}) \Rightarrow log\frac{P(pos)}{P(neg)} + \sum_{i=1}^{n}log\frac{P(w_i|pos)}{P(w_i|neg)}$$

log prior + log likelihood

② deeplearning.ai

tweet: I am happy because I am learning.

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(a\lambda(b)) = llog \frac{0.04}{0.04} = log(1) = 0$$

word	Pos	Neg	λ
I	0.05	0.05	0
am	0.04	0.04	0
⊭appy	9.09	0.01	2.2
because	0.01	0.01	0
learning	0.03	0.01	0
NLP	0.02	0.02	1.1
sad	0.01	0.09	-
not	0.02	0.03	2.2
			-
			0.4

Summing the Lambdas

doc: I am happy because I am learning.

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(\text{happy}) = log \frac{0.09}{0.01} \approx 2.2$$

$$\begin{cases} ratio(w) = \frac{P(w|pos)}{P(w|neg)} & - \\ \\ \lambda(w) = log \frac{P(w|pos)}{P(w|neg)} \end{cases}$$

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

word	Pos	Neg	λ
I	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	→ 2.2
because	0.01	0.01	0
learning	0.03	0.01	1.1
NLP	0.02	0.02	0
sad	0.01	0.09	-
not	0.02	0.03	2.2
			-
			0.4

Log Likelihood Part 2

FPT UNIVERSITY

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} = \sum_{i=1}^{m} \lambda(w_i)$$

word	Pos	Neg	λ	
I	0.05	0.05	0	
am	0.04	0.04	0	
happy	0.09	0.01	2.2	
because	0.01	0.01	0	
learning	0.03	0.01	1.1	
NLP	0.02	0.02	0	
sad	0.01	0.09	-2.2	
not	0.02	0.03	-0.4	
	I am happy because learning NLP sad	I 0.05 am 0.04 happy 0.09 because 0.01 learning 0.03 NLP 0.02 sad 0.01	I 0.05 0.05 am 0.04 0.04 happy 0.09 0.01 because 0.01 0.01 learning 0.03 0.01 NLP 0.02 0.02 sad 0.01 0.09	I 0.05 0.05 0 am 0.04 0.04 0 happy 0.09 0.01 2.2 because 0.01 0.01 0 learning 0.03 0.01 1.1 NLP 0.02 0.02 0 sad 0.01 0.09 -2.2

log likelihood =
$$0 + 0 + 2.2 + 0 + 0 + 1.1 = 3.3$$
 not 0.01 0.03 -0.4

🔘 deeplearning.ai

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} > 0$$

Tweet sentiment:

$$log \prod_{i=1}^{m} ratio(w_i) = \sum_{i=1}^{m} \lambda(w_i) > 0$$

Training Naïve Bayes

Step 0: Collect and annotate corpus

Lowercase

• Remove punctuation, urls, names

[happi, because, learn, NLP]

Remove stop words

Stemming

• Tokenize sentences

Positive tweets

I am happy because I am learning Narh happy, not sad.

@NLP

Negative tweets

I am sad, I am not learning NLP
I am sad, not happy!!

Step 1: Preprocess Positive tweets

[happi, not, sad]

Negative tweets

[sad, not, learn, NLP] [sad, not, happi]

Positive tweets

[happi, because, learn, NLP] [happi, not, sad]

Negative tweets

[sad, not, learn, NLP] [sad, not, happi] Step 2: Word count

word	Pos	Neg
happi	2	1
because	1	0
learn	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	7	7

freq(w, class)

freq(w, class)	freq(w,	clas	s)
----------------	-------	----	------	----

word	Pos	Neg
happi	2	1
because	1	0
learn	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	7	7

Step 3:
$$P(w|class)$$

$$V_{class} = 6$$

$$\frac{freq(w, class) + 1}{N_{class} + V_{class}}$$

word	Pos	Neg	λ
happy	0.23	0.15	0.43
because	0.15	0.07	0.6
learning	0.08	0.08	0
NLP	0.08	0.08	0
sad	0.08	0.17	-0.75
not	0.08	0.17	-0.75

 $\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$

Step 4:

Get

lambda

Step 5: Get the log prior D_{pos} = Number of positive tweets D_{neq} = Number of negative tweets

$$logprior = log \frac{D_{pos}}{D_{neg}}$$

If dataset is balanced, $D_{pos} = D_{neq}$ and logprior = 0.

🕲 deeplearning.ai

Summary

- 1. Get or annotate a dataset with positive and negative tweets
- 2. Preprocess the tweets: process_tweet(tweet) \rightarrow [w₁, w₂, w₃, ...]
- 3. Compute freq(w, class)
- 4. Get P(w | pos), P(w | neg)
- 5. Get $\lambda(w)$
- 6. Compute logprior = log(P(pos) / P(neg))

🕲 deeplearning.ai

Testing NaïveBayes Predict using Naïve Bayes

• log-likelihood dictionary
$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)} - log \frac{D_{pos}}{D_{neg}} = 0$$

• Tweet: [I, pass, the, NLP, interview]

$$score = -0.01 + 0.5 - 0.01 + 0 + logprior = 0.48$$

$$pred = score > 0$$

word	λ	
I	-0.01	
the	-0.01	
happi	0.63	
because	0.01	
pass	0.5	
NLP	0	
sad	-0.75	
not	-0.75	

• $X_{val} Y_{val} \lambda logprior$

 $score = predict(X_{val}, \lambda, log prior)$

$$pred = score > 0$$

$$pred = score > 0$$

$$\begin{bmatrix} 0.5 \\ -1 \\ 1.3 \\ \vdots \\ score_m \end{bmatrix} > 0 = \begin{bmatrix} 0.5 > 0 \\ -1 > 0 \\ 1.3 > 0 \\ \vdots \\ score_m > 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ pred_m \end{bmatrix}$$

Testing Naïve Bayes

•
$$X_{val}$$
 Y_{val} λ logprior

$$score = predict(X_{val}, \lambda, logprior)$$

$$pred = score > 0$$

$$\frac{1}{m}\sum_{i=1}^{m}(pred_{i}==Y_{val_{i}})$$

$$\begin{bmatrix} \underline{0} \\ \underline{1} \\ 1 \\ \vdots \\ pred_m \end{bmatrix} == \begin{bmatrix} \underline{0} \\ \underline{0} \\ 1 \\ \vdots \\ Y_{val_m} \end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{0} \\
1 \\
\vdots \\
pred_m == Y_{val_m}
\end{bmatrix}$$

🎱 deeplearning.ai

Summary

• $X_{val} Y_{val} \longrightarrow$

Performance on unseen data

- ullet Predict using λ and logprior for each new tweet
- Accuracy $\longrightarrow \frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val_i})$
- What about words that do not appear in $\lambda(w)$?

🕲 deeplearning.ai

Applications of Naïve Bayes

Sentiment analysis

$$P(pos|tweet) \approx P(pos)P(tweet|pos)$$

$$P(neg|tweet) \approx P(neg)P(tweet|neg)$$

$$\frac{P(pos|tweet)}{P(neg|tweet)} = \frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

Author identification:

$$\frac{P(\text{book})}{P(\text{book})}$$

Spam filtering:

$$P(\text{spam}|\text{email})$$

P(nonspam|email)

Information retrieval:

$$P(\text{document}_{k}|\text{query}) \propto \prod_{i=0}^{|query|} P(\text{query}_{i}|\text{document}_{k})$$

Retrieve document if $P(document_k|query) > threshold$

Word disambiguation:

$$\frac{P(\text{river}|\text{text})}{P(\text{money}|\text{text})}$$

Bank:

Naïve Bayes Assumptions

- Independence
- Relative frequency in corpus
- Independence

"It is sunny and hot in the Sahara desert."

"It's always cold and snowy in____."

spring?? summer? fall?? winter??

Naïve Bayes Assumptions

Relative frequencies in corpus

 Relative frequency of training classes affect the model and can be not representative of the real world distribution

② deeplearning.ai

Error Analysis

- Outline
 - Removing punctuation and stop words
 - Word order
 - Adversarial attacks

Processing as a Source of Errors: Punctuation

Tweet: My beloved grandmotherX(

processed_tweet: [belov, grandmoth]

Processing as a Source of Errors

Removing Words

Tweet: This is not good, because your attitude is not even close to being nice.

processed_tweet: [good, attitude, close, nice]

Word Order

Tweet: I am happy because I do not go.

Tweet: I am (not) happy because I did go.

Adversarial attacks

Sarcasm, Irony and Euphemisms

Tweet: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]

- Adversarial attacks (Easily detected by humans but algorithms are usually terrible at it)
 - Sarcasm, Irony, Euphemisms, etc
 - Example: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending