Esercizi d'indirizzamento per reti IP

Es. 1 - Determinazione della netmask ottima per un'unica rete IP	2
Es. 2 - Determinazione delle subnets necessarie a minimizzare il numero d'indirizzi impegnati	3
Es. 3 - Allocazione delle subnets	4
Es. 4 - Assegnazione d'indirizzi a reti contigue	6
Es. 5 - Assegnazione d'indirizzi a reti non contigue	9

Esercizio 1. Determinazione della netmask ottima per un'unica rete IP

Sia data una rete con 10 hosts. Determinare la netmask minima necessaria per la gestione di tale rete, supponendo che debba essere inserita in una stessa network IP.

Soluzione

Ogni rete IP ha due indirizzi riservati: l'indirizzo *network* e quello *broadcast*. Il numero minimo d'indirizzi necessari a coprire l'intera rete è quindi pari a 12 (10 hosts + indirizzo network + indirizzo broadcast). Il partizionamento (subnetting) avviene a blocchi di potenze di 2. Essendo il numero d'indirizzi minimo necessario a coprire la rete in questione pari a 12 e non essendo tale numero una potenza di 2, la rete può essere indirizzata utilizzando un blocco minimo di 16 indirizzi (2⁴).

La netmask corrispondente ad una rete con 16 indirizzi è: 255.255.255.240. Infatti, la traduzione binaria dell'ultimo byte è: 11110000, che avendo quattro "0" finali, corrisponde ad una rete con la dimensione richiesta.

Esercizio 2. Determinazione delle subnets necessarie a minimizzare il numero d'indirizzi impegnati

Sia data una rete con 6 hosts collegati ad un router. Determinare il numero minimo d'indirizzi necessari per la gestione di tale rete, supponendo che:

- non sia necessario che tutti gli hosts risiedano nella stessa rete IP;
- è però necessario che ogni macchina sia in grado di raggiungere tutte le altre.

Determinare inoltre le netmasks necessarie a raggiungere tale scopo.

Soluzione

A differenza dell'esercizio precedente, non è necessario avere un'unica rete. Il numero minimo d'indirizzi richiesto in questo caso è pari a 9 (6 hosts + router + network + broadcast). Se la scelta è quella di creare una sola sottorete, il numero di indirizzi utilizzato è pari a 16 (minima potenza di 2 superiore).

La soluzione che minimizza il numero d'indirizzi prevede invece il partizionamento della rete in una rete A con 5 hosts e una rete B con 1 solo host. In questo caso il numero d'indirizzi richiesto è:

- network A: 8 indirizzi (5 hosts + router + network + broadcast);
- network B: 4 indirizzi (1 host + router + network + broadcast).

Il numero minimo d'indirizzi richiesto è guindi 12.

Le netmask relative alle due reti sono:

- netmask rete A: 255.255.255.248 (ultimo byte = 11111000);
- netmask rete B: 255.255.255.252 (ultimo byte = 11111100).

Esercizio 3. Allocazione delle subnets

Sia data la situazione dell'esercizio precedente, dove esistono 2 reti A e B, con netmask rispettivamente 255.255.255.248 e 255.255.255.252, da allocare in una classe C.

Determinare la forma più compatta per l'allocazione di tali reti all'interno di uno spazio d'indirizzamento di classe C, in modo che le reti siano contigue.

Soluzione

Si assuma che la classe C assegnata sia la rete 193.15.32.0 (netmask 255.255.255.0). La rete A può essere allocata alla base della classe C assegnata, quindi la rete B segue in successione. In altre parole:

- rete A: network 193.15.32.0, netmask 255.255.255.248. La sua estensione comprende quindi gli indirizzi 193.15.32.0 193.15.32.7;
- rete B: network 193.15.32.8, netmask 255.255.255.252. La sua estensione comprende quindi gli indirizzi 193.15.32.8 193.15.32.11.

L'allocazione degli indirizzi può essere schematizzata dalla seguente tabella:

Indiriz	ZO	Netmask			Indirizzi asse	Note		
	Ultimo		Ultimo	Ultimo		Ultimo	Ultimo	
(decimale)	byte	(decimale)	byte	byte	(decimale)	byte	byte	
	(binario)		(rete)	(host)		(rete)	(host)	
193.15.31.255	11111111							
193.15.32.0	00000000	255.255.255.248	11111	000	193.15.32.0	00000	000	
193.15.32.1	0000001	255.255.255.248	11111	000	193.15.32.1	00000	001	
193.15.32.2	00000010	255.255.255.248	11111	000	193.15.32.2	00000	010	
193.15.32.3	00000011	255.255.255.248	11111	000	193.15.32.3	00000	011	Rete A
193.15.32.4	00000100	255.255.255.248	11111	000	193.15.32.4	00000	100	Rele A
193.15.32.5	00000101	255.255.255.248	11111	000	193.15.32.5	00000	101	
193.15.32.6	00000110	255.255.255.248	11111	000	193.15.32.6	00000	110	
193.15.32.7	00000111	255.255.255.248	11111	000	193.15.32.7	00000	111	
193.15.32.8	00001000	255.255.255.252	111111	00	193.15.32.8	000010	00	
193.15.32.9	00001001	255.255.255.252	111111	00	193.15.32.9	000010	01	Rete B
193.15.32.10	00001010	255.255.255.252	111111	00	193.15.32.10	000010	10	Rete b
193.15.32.11	00001011	255.255.255.252	111111	00	193.15.32.11	000010	11	
193.15.32.12	00001100							
193.15.32.13	00001101							
193.15.32.14	00001110							
193.15.32.15	00001111							
193.15.32.16	00010000							

È da notare che l'assegnamento della rete B alla base della classe C avrebbe portato ad una situazione dove le due reti A e B non sarebbero più state contigue. Infatti:

- rete B: network 193.15.32.0, netmask 255.255.255.252. La sua estensione comprende quindi gli indirizzi 193.15.32.0 193.15.32.3;
- rete A: network 193.15.32.8, netmask 255.255.255.248. La sue estensione comprende quindi gli indirizzi 193.15.32.8 193.15.32.15.

L'allocazione degli indirizzi può essere schematizzata dalla seguente tabella:

Indiriza	ZO	Netmask			Indirizzi assegnati alle sottoreti			Note		
(decimale)	Ultimo byte (binario)	(decimale)	Ultimo byte (rete)	Ultimo byte (host)	(decimale)	Ultimo byte (rete)	Ultimo byte (host)			
193.15.31.255	11111111									
193.15.32.0	00000000	255.255.255.252	111111	00	193.15.32.0	000000	00			
193.15.32.1	00000001	255.255.255.252	111111	00	193.15.32.1	000000	01	Rete		
193.15.32.2	00000010	255.255.255.252	111111	00	193.15.32.2	000000	10	В		
193.15.32.3	00000011	255.255.255.252	111111	00	193.15.32.3	000000	11			
193.15.32.4	00000100									
193.15.32.5	00000101									
193.15.32.6	00000110									
193.15.32.7	00000111									
193.15.32.8	00001000	255.255.255.248	11111	000	193.15.32.8	00001	000			
193.15.32.9	00001001	255.255.255.248	11111	000	193.15.32.9	00001	001			
193.15.32.10	00001010	255.255.255.248	11111	000	193.15.32.10	00001	010			
193.15.32.11	00001011	255.255.255.248	11111	000	193.15.32.11	00001	011	Rete		
193.15.32.12	00001100	255.255.255.248	11111	000	193.15.32.12	00001	100	Α		
193.15.32.13	00001101	255.255.255.248	11111	000	193.15.32.13	00001	101			
193.15.32.14	00001110	255.255.255.248	11111	000	193.15.32.14	00001	110			
193.15.32.15	00001111	255.255.255.248	11111	000	193.15.32.15	00001	111			
193.15.32.16										

La rete A non può essere allocata consecutivamente alla rete B giacché, in questo caso, i bits 3-7 dell'ultimo byte dell'indirizzo non sono costanti. Ad esempio, l'indirizzo 193.15.32.7 ha, nell'ultimo byte, la codifica binaria *00000*111, mentre l'indirizzo 193.15.32.8 ha *00001*000. Differendo nella parte di rete (vedere bits in corsivo), questi 2 indirizzi non possono far parte della stessa subnet di 8 elementi.

Esercizio 4. Assegnazione d'indirizzi a reti contigue

Sia data una topologia come quella nella figura sottostante.

Si scelga la serie d'indirizzi da acquistare per coprire la necessità di questa rete, assegnandoli alle varie reti in maniera opportuna.

Soluzione

Il numero minimo d'indirizzi necessari a coprire l'intera rete è dato ricordando i seguenti fatti:

- ogni rete deve avere generalmente almeno un indirizzo riservato all'interfaccia del router;
- ogni rete IP ha due indirizzi riservati, rispettivamente l'indirizzo *network* e quello *broadcast*.

Il numero minimo d'indirizzi necessari è quindi:

- 4 per la rete A (2 routers + network + broadcast);
- 65 per la rete B (62 hosts + router + network + broadcast);
- 30 per la rete C (27 hosts + router + network + broadcast);
- ⇒ 99 indirizzi.

Gli indirizzi possono essere allocati solamente a blocchi di potenze di 2. Ad esempio, essendo il numero d'indirizzi minimo necessario a coprire la rete A pari a 4 ed essendo tale numero una potenza di 2, la rete A può essere indirizzata utilizzando un blocco minimo di 4 indirizzi.

Supponendo che ogni rete debba essere gestita da una unica sottorete IP, il numero di indirizzi necessari diventa:

- 4 per la rete A (4 indirizzi allocati);
- 128 per la rete B (65 indirizzi allocati);
- 32 per la rete C (30 indirizzi allocati).

L'acquisto di lotti d'indirizzi IP avviene rispettando il vecchio modello a classi, quindi il lotto minimo da acquistare è una classe C.

Le netmask da impiegare sono:

- rete A: 255.255.255.252;
- rete B: 255.255.255.128;
- rete C: 255.255.255.224.

Supponendo ora che la classe C acquistata sia la rete 193.15.32.0 (netmask 255.255.255.0), il passo successivo consiste nell'assegnazione di questa rete alle varie utenze mediante un opportuno subnetting.

L'assegnazione può essere:

Indiriz	ZO	Netmask			Indirizzi assegnati alle sottoreti			NOTE
	Ultimo		Ultimo	Ultimo		Ultimo	Ultimo	
(decimale)	byte	(decimale)	byte	byte	(decimale)	byte	byte	
	(binario)		(rete)	(hosts)		(rete)	(hosts)	
193.15.31.255	11111111							
193.15.32.0	00000000	255.255.255.128	1	0000000	193.15.32.0	0	0000000	
								Rete B
193.15.32.127	01111111	255.255.255.128	1	0000000	193.15.32.127	0	1111111	
193.15.32.128	10000000	255.255.255.224	111	00000	193.15.32.128	100	00000	
								Rete C
193.15.32.159	10011111	255.255.255.224	111	00000	193.15.32.159	100	11111	
193.15.32.160	10100000	255.255.255.252	111111	00	193.15.32.160	101000	00	
								Rete A
193.15.32.163	10100011	255.255.255.252	111111	00	193.15.32.163	101000	11	
193.15.32.164	10100100							·

Si noti che l'ordine dell'assegnamento può non essere indifferente. Se si fosse partiti con l'assegnazione della rete A alla base della classe C, quindi la rete B, quindi la rete C, e supponendo che l'assegnazione degli indirizzi fosse fatto in rigoroso ordine crescente, la classe C comprata non sarebbe bastata. Infatti, l'assegnazione sarebbe stata:

- rete A: 193.15.32.0 193.15.32.3;
- rete B: 193.15.32.128 193.15.32.255;

esaurendo l'intera classe C.

Il problema è in ogni modo facilmente ovviabile procedendo ad un'assegnazione del tipo:

• rete A: 193.15.32.0 – 193.15.32.3;

• rete C: 193.15.32.32 – 193.15.32.63;

• rete B: 193.15.32.128 – 193.15.32.255.

Esercizio 5. Assegnazione d'indirizzi a reti non contigue

Sia data una topologia come quella nella figura sottostante.

Si scelga la serie d'indirizzi da acquistare per coprire le necessità di questa rete, assegnando quindi gli indirizzi in maniera opportuna. Si assuma che il numero di reti da acquistare debba essere mantenuto il più basso possibile.

Soluzione

In base agli esercizi precedenti, il numero minimo di indirizzi necessari è pari a:

- 4 per la rete A (2 routers + network + broadcast);
- 65 per la rete B (62 hosts + router + network + broadcast);
- 73 per la rete C (70 hosts + router + network + broadcast);
- ⇒ 142 indirizzi.

Supponendo ora che ogni rete debba essere gestita da una unica sottorete IP, il numero di indirizzi necessari diventa:

- 4 per la rete A (4 indirizzi minimo);
- 128 per la rete B (65 indirizzi minimo);
- 128 per la rete C (73 indirizzi minimo);
- \Rightarrow 260 indirizzi.

Questo valore supera quello disponibile in una sola classe C. Essendo un vincolo dell'esercizio quello di minimizzare il numero di classi acquistate, è

possibile procedere ad un partizionamento delle reti in modo da risparmiare indirizzi. Ad esempio è possibile partizionare la rete B (che è quella nella quale lo spreco di indirizzi è più evidente) in due sottoreti da 4 e 64 indirizzi. Le due sottoreti verranno quindi messe in comunicazione attraverso il router, il quale dovrà avere 2 interfacce nella rete B oppure una sola interfaccia fisica con 2 indirizzi IP.

Una delle possibilità diventa quindi:

- 4 indirizzi per la rete A (2 routers + network + broadcast);
- 64 indirizzi per la rete B-1 (61 hosts + router + network + broadcast);
- 4 indirizzi per la rete B-2 (1 host + router + network + broadcast);
- 128 indirizzi per la rete C (70 hosts + router + network + broadcast);
- \Rightarrow 200 indirizzi.

Chiaramente questa soluzione preclude aggiunte di nuovi hosts sulla rete B. Essendoci quindi ancora una disponibilità di indirizzi all'interno della classe C, può convenire partizionare la rete B in due parti più "conservative", ad esempio in 32 e 64 indirizzi, garantendo quindi la possibilità di future aggiunte di macchine sulla rete in questione.

Se la rete di classe C acquistata è la 192.15.32.0, l'assegnazione degli indirizzi potrebbe essere la seguente:

Indirizzo		Netmask			Indirizzi asse	NOTE		
	Ultimo		Ultimo	Ultimo		Ultimo	Ultimo	
(decimale)	byte	(decimale)	byte	byte	(decimale)	byte	byte	
	(binario)		(rete)	(host)		(rete)	(host)	
193.15.31.255	11111111							
193.15.32.0	00000000	255.255.255.128	1	0000000	193.15.32.0	0	0000000	
								Rete C
193.15.32.127	01111111	255.255.255.128	1	0000000	193.15.32.127	0	1111111	1
193.15.32.128	10000000	255.255.255.192	11	000000	193.15.32.128	10	000000	Rete
							B-1	
193.15.32.191	10111111	255.255.255.192	11	000000	193.15.32.191	10	111111	Б- I
193.15.32.192	11000000	255.255.255.224	111	00000	193.15.32.192	110	00000	Rete
								B-2
193.15.32.223	11011111	255.255.255.224	111	00000	193.15.32.223	110	11111	B-2
193.15.32.224	11100000	255.255.255.252	111111	00	193.15.32.224	111000	00	
								Rete A
193.15.32.227	11100011	255.255.255.252	111111	00	193.15.32.227	111000	11	
193.15.32.228	11100100							