10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

10: Sine waves and phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

For inductors and capacitors $i=C\frac{dv}{dt}$ and $v=L\frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For inductors and capacitors $i=C\frac{dv}{dt}$ and $v=L\frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

For inductors and capacitors $i=C\frac{dv}{dt}$ and $v=L\frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$$v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For inductors and capacitors $i=C\frac{dv}{dt}$ and $v=L\frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$$v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For inductors and capacitors $i=C\frac{dv}{dt}$ and $v=L\frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$ same shape but with a time shift.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For inductors and capacitors $i=C\frac{dv}{dt}$ and $v=L\frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $\sin t$ completes one full period every time t increases by 2π .

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For inductors and capacitors $i=C\frac{dv}{dt}$ and $v=L\frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$ same shape but with a time shift.

 $\sin t$ completes one full period every time t increases by 2π .

 $\sin 2\pi f t$ makes f complete repetitions every time t increases by 1; this gives a *frequency* of f cycles per second, or f Hz.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For inductors and capacitors $i=C\frac{dv}{dt}$ and $v=L\frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$ same shape but with a time shift.

 $\sin t$ completes one full period every time t increases by 2π .

 $\sin 2\pi f t$ makes f complete repetitions every time t increases by 1; this gives a *frequency* of f cycles per second, or f Hz.

We often use the *angular frequency*, $\omega=2\pi f$ instead.

 ω is measured in radians per second. E.g. $50\,\mathrm{Hz} \simeq 314\,\frac{\mathrm{rad}}{\mathrm{s}}$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta=2\pi ft.$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:

$$\theta = 2\pi f t.$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

$$v = \cos 2\pi f t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:

$$\theta = 2\pi f t$$
.

$$v = \cos 2\pi f t$$

$$v = \sin 2\pi f t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:

$$\theta = 2\pi f t.$$

$$v = \cos 2\pi f t$$

$$v = \sin 2\pi f t = \cos \left(2\pi f t - \frac{\pi}{2}\right)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:

$$\theta = 2\pi f t.$$

The only difference between \cos and \sin is the starting position of the rod:

$$v = \cos 2\pi f t$$

$$v = \sin 2\pi f t = \cos \left(2\pi f t - \frac{\pi}{2}\right)$$

 $\sin 2\pi f t$ lags $\cos 2\pi f t$ by 90° (or $\frac{\pi}{2}$ radians) because its peaks occurs $\frac{1}{4}$ of a cycle later (equivalently \cos leads \sin).

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A\cos\left(2\pi ft + \phi\right)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A\cos(2\pi ft + \phi)$$

$$= A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A\cos(2\pi ft + \phi)$$

$$= A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$$

$$= X\cos 2\pi ft - Y\sin 2\pi ft$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A\cos(2\pi ft + \phi)$$

$$= A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$$

$$= X\cos 2\pi ft - Y\sin 2\pi ft$$

At time t=0, the tip of the rod has coordinates (X,Y).

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A\cos(2\pi ft + \phi)$$

$$= A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$$

$$= X\cos 2\pi ft - Y\sin 2\pi ft$$

At time t=0, the tip of the rod has coordinates (X,Y).

If we think of the plane as an Argand Diagram (or complex plane), then the complex number X+jY corresponding to the tip of the rod at t=0 is called a *phasor*.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A\cos(2\pi ft + \phi)$$

$$= A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$$

$$= X\cos 2\pi ft - Y\sin 2\pi ft$$

At time t=0, the tip of the rod has coordinates (X,Y).

If we think of the plane as an Argand Diagram (or complex plane), then the complex number X+jY corresponding to the tip of the rod at t=0 is called a *phasor*.

The *magnitude* of the phasor, $A=\sqrt{X^2+Y^2}$, gives the amplitude (peak value) of the sine wave.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A\cos(2\pi ft + \phi)$$

$$= A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$$

$$= X\cos 2\pi ft - Y\sin 2\pi ft$$

At time t=0, the tip of the rod has coordinates (X,Y).

If we think of the plane as an Argand Diagram (or complex plane), then the complex number X+jY corresponding to the tip of the rod at t=0 is called a *phasor*.

The *magnitude* of the phasor, $A=\sqrt{X^2+Y^2}$, gives the amplitude (peak value) of the sine wave.

The *argument* of the phasor, $\phi = \arctan \frac{Y}{X}$, gives the phase shift relative to $\cos 2\pi ft$.

If $\phi > 0$, it is *leading* and if $\phi < 0$, it is *lagging* relative to $\cos 2\pi ft$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

$$V = 1, f = 50 \,\mathrm{Hz}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j$$

$$v(t) = -\cos 2\pi f t + 0.5 \sin 2\pi f t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12 \angle -153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5 \sin 2\pi f t$$

0.06

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12\angle - 153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5\sin 2\pi f t$$

$$= 1.12\cos (2\pi f t - 2.68)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12\angle - 153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5\sin 2\pi f t$$

$$= 1.12\cos (2\pi f t - 2.68)$$

$$V = X + jY$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12\angle - 153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5\sin 2\pi f t$$

$$= 1.12\cos (2\pi f t - 2.68)$$

$$V = X + jY$$

$$v(t) = X \cos 2\pi f t - Y \sin 2\pi f t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12\angle - 153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5\sin 2\pi f t$$

$$= 1.12\cos (2\pi f t - 2.68)$$

$$V = X + jY$$

$$v(t) = X \cos 2\pi f t - Y \sin 2\pi f t$$
 Beware minus sign.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12\angle - 153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5\sin 2\pi f t$$

$$= 1.12\cos (2\pi f t - 2.68)$$

$$V=X+jY$$

$$v(t)=X\cos 2\pi ft-Y\sin 2\pi ft$$
 Beware minus sign.

$$V = A \angle \phi$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12 \angle - 153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5 \sin 2\pi f t$$

$$= 1.12 \cos (2\pi f t - 2.68)$$

$$V = X + jY$$

$$v(t) = X \cos 2\pi f t - Y \sin 2\pi f t$$
 Beware minus sign.

$$V = A \angle \phi$$
$$v(t) = A \cos(2\pi f t + \phi)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12 \angle - 153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5 \sin 2\pi f t$$

$$= 1.12 \cos (2\pi f t - 2.68)$$

$$V = X + jY$$

$$v(t) = X \cos 2\pi f t - Y \sin 2\pi f t$$
 Beware minus sign.

$$V = A \angle \phi = Ae^{j\phi}$$
$$v(t) = A\cos(2\pi ft + \phi)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

$$V = 1, f = 50 \,\mathrm{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12 \angle -153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5 \sin 2\pi f t$$

$$= 1.12 \cos (2\pi f t - 2.68)$$

$$V = X + jY$$

$$v(t) = X \cos 2\pi f t - Y \sin 2\pi f t$$
 Beware minus sign.

$$V = A \angle \phi = Ae^{j\phi}$$
$$v(t) = A\cos(2\pi ft + \phi)$$

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

$$V = 1, f = 50 \,\mathrm{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12 \angle -153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5 \sin 2\pi f t$$

$$= 1.12 \cos (2\pi f t - 2.68)$$

$$V = X + jY$$

$$v(t) = X \cos 2\pi f t - Y \sin 2\pi f t$$
 Beware minus sign.

$$V = A \angle \phi = Ae^{j\phi}$$
$$v(t) = A\cos(2\pi ft + \phi)$$

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

A phasor is not time-varying, so we use a capital letter: V. A waveform is time-varying, so we use a small letter: v(t).

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

$$V = 1, f = 50 \,\text{Hz}$$

 $v(t) = \cos 2\pi f t$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

$$V = -1 - 0.5j = 1.12 \angle -153^{\circ}$$

$$v(t) = -\cos 2\pi f t + 0.5 \sin 2\pi f t$$

$$= 1.12 \cos (2\pi f t - 2.68)$$

$$V = X + jY$$

$$v(t) = X \cos 2\pi f t - Y \sin 2\pi f t$$
 Beware minus sign.

$$V = A \angle \phi = Ae^{j\phi}$$
$$v(t) = A\cos(2\pi ft + \phi)$$

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

A phasor is not time-varying, so we use a capital letter: V. A waveform is time-varying, so we use a small letter: v(t).

Casio: $\operatorname{Pol}(X,Y) \to A, \phi, \operatorname{Rec}(A,\phi) \to X, Y.$ Saved $\to X \& Y$ mems.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

Phasors

$$V = X + jY$$

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

Phasors

$$V = X + jY$$

$$v(t) = X \cos \omega t - Y \sin \omega t$$
 where $\omega = 2\pi f$.

$$a \times v(t)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

$$\frac{dv}{dt} = -\omega X \sin \omega t - \omega Y \cos \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

$$\frac{dv}{dt} = -\omega X \sin \omega t - \omega Y \cos \omega t$$
$$= (-\omega Y) \cos \omega t - (\omega X) \sin \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$
 where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

$$\dot{V} = (-\omega Y) + j(\omega X)$$

$$\frac{dv}{dt} = -\omega X \sin \omega t - \omega Y \cos \omega t$$
$$= (-\omega Y) \cos \omega t - (\omega X) \sin \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$
 where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

$$\dot{V} = (-\omega Y) + j(\omega X)$$
$$= j\omega (X + jY)$$

$$\frac{dv}{dt} = -\omega X \sin \omega t - \omega Y \cos \omega t$$
$$= (-\omega Y) \cos \omega t - (\omega X) \sin \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$
 where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

$$\dot{V} = (-\omega Y) + j(\omega X)$$

$$= j\omega (X + jY)$$

$$= j\omega V$$

$$\frac{dv}{dt} = -\omega X \sin \omega t - \omega Y \cos \omega t$$
$$= (-\omega Y) \cos \omega t - (\omega X) \sin \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$
 where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

Adding or scaling is the same for waveforms and phasors.

$$\dot{V} = (-\omega Y) + j(\omega X)$$

$$= j\omega (X + jY)$$

$$= j\omega V$$

$$\frac{dv}{dt} = -\omega X \sin \omega t - \omega Y \cos \omega t$$
$$= (-\omega Y) \cos \omega t - (\omega X) \sin \omega t$$

Differentiating waveforms corresponds to multiplying phasors by $j\omega$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

Adding or scaling is the same for waveforms and phasors.

$$\dot{V} = (-\omega Y) + j(\omega X)$$

$$= j\omega (X + jY)$$

$$= j\omega V$$

$$\frac{dv}{dt} = -\omega X \sin \omega t - \omega Y \cos \omega t$$
$$= (-\omega Y) \cos \omega t - (\omega X) \sin \omega t$$

Differentiating waveforms corresponds to multiplying phasors by $j\omega$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Phasors

$$V = X + jY$$

$$V_1 + V_2$$

Waveforms

$$v(t) = X \cos \omega t - Y \sin \omega t$$

where $\omega = 2\pi f$.

$$a \times v(t) = aX \cos \omega t - aY \sin \omega t$$

$$v_1(t) + v_2(t)$$

Adding or scaling is the same for waveforms and phasors.

$$\dot{V} = (-\omega Y) + j(\omega X)$$

$$= j\omega (X + jY)$$

$$= j\omega V$$

$$\frac{dv}{dt} = -\omega X \sin \omega t - \omega Y \cos \omega t$$
$$= (-\omega Y) \cos \omega t - (\omega X) \sin \omega t$$

Differentiating waveforms corresponds to multiplying phasors by $j\omega$.

Rotate anti-clockwise 90° and scale by $\omega=2\pi f$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch

8)

Resistor:

$$v(t) = Ri(t)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L \frac{di}{dt}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L\frac{di}{dt} \Rightarrow V = j\omega LI$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L\frac{di}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L$$

Capacitor:

$$i(t) = C \frac{dv}{dt}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L$$

Capacitor:

$$i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L\frac{di}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L$$

Capacitor:

$$i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \Rightarrow \frac{V}{I} = \frac{1}{j\omega C}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L$$

Capacitor:

$$i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \Rightarrow \frac{V}{I} = \frac{1}{j\omega C}$$

For all three components, phasors obey Ohm's law if we use the *complex* impedances $j\omega L$ and $\frac{1}{j\omega C}$ as the "resistance" of an inductor or capacitor.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L\frac{di}{dt} \Rightarrow V = j\omega LI \Rightarrow \frac{V}{I} = j\omega L$$

Capacitor:

$$i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \Rightarrow \frac{V}{I} = \frac{1}{j\omega C}$$

For all three components, phasors obey Ohm's law if we use the *complex impedances* $j\omega L$ and $\frac{1}{j\omega C}$ as the "resistance" of an inductor or capacitor.

If all sources in a circuit are sine waves having the same frequency, we can do circuit analysis exactly as before by using complex impedances.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28j\times10^{-4}} = -1592j$$

$$V_C = V \times \frac{Z}{R+Z}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28j\times10^{-4}} = -1592j$$

$$V_C = V \times \frac{Z}{R+Z}$$

= $-10j \times \frac{-1592j}{1000-1592j}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$$

$$V_C = V \times \frac{Z}{R+Z}$$
= $-10j \times \frac{-1592j}{1000-1592j}$
= $-4.5 - 7.2j = 8.47 \angle - 122^{\circ}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$$

$$V_C = V \times \frac{Z}{R+Z}$$
= $-10j \times \frac{-1592j}{1000-1592j}$
= $-4.5 - 7.2j = 8.47 \angle - 122^\circ$

$$v_C = 8.47 \cos(\omega t - 122^\circ)$$

Phasor Analysis

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$$

(2) Solve circuit with phasors

$$V_C = V \times \frac{Z}{R+Z}$$
= -10j \times \frac{-1592j}{1000-1592j}
= -4.5 - 7.2j = 8.47 \textsq - 122^\circ
$$v_C = 8.47 \cos(\omega t - 122^\circ)$$

(3) Draw a phasor diagram:

$$V = -10j$$

 $V_C = -4.5 - 7.2j$
 $V_R = V - V_C = 4.5 - 2.8j = 5.3 \angle -32^{\circ}$

Phasor Analysis

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28j\times10^{-4}} = -1592j$$

(2) Solve circuit with phasors

$$V_C = V \times \frac{Z}{R+Z}$$
= -10j \times \frac{-1592j}{1000-1592j}
= -4.5 - 7.2j = 8.47 \textsq - 122^\circ
$$v_C = 8.47 \cos(\omega t - 122^\circ)$$

(3) Draw a phasor diagram:

$$V = -10j$$

 $V_C = -4.5 - 7.2j$
 $V_R = V - V_C = 4.5 - 2.8j = 5.3 \angle -32^{\circ}$

Phasor Analysis

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Given $v=10\sin\omega t$ where $\omega=2\pi\times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance

$$Z = \frac{1}{j\omega C} = \frac{1}{6.28j\times10^{-4}} = -1592j$$

(2) Solve circuit with phasors

$$V_C = V \times \frac{Z}{R+Z}$$
= $-10j \times \frac{-1592j}{1000-1592j}$
= $-4.5 - 7.2j = 8.47 \angle - 122^\circ$

$$v_C = 8.47 \cos(\omega t - 122^\circ)$$

(3) Draw a phasor diagram:

$$V = -10j$$

 $V_C = -4.5 - 7.2j$
 $V_R = V - V_C = 4.5 - 2.8j = 5.3 \angle -32^{\circ}$

Phasors add like vectors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

8)

Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$ Inductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch

8)

Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$

Inductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$

Inductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$

Inductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

$$(1) j \times j = -j \times -j = -1$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary (Irwin/Nelms Ch
- 8)

Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$

Inductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

(1)
$$j \times j = -j \times -j = -1$$

(2)
$$\frac{1}{j} = -j$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary (Irwin/Nelms Ch
- 8)

Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$

Inductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

(1)
$$j \times j = -j \times -j = -1$$

(2)
$$\frac{1}{i} = -j$$

(3)
$$a+jb=r\angle\theta=re^{j\theta}$$
 where $r=\sqrt{a^2+b^2}$ and $\theta=\arctan\frac{b}{a}$ ($\pm180^\circ$ if $a<0$)

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVII
- Impedance and

Admittance

- Summary (Irwin/Nelms Ch
- 8)

Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$

Inductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

(1)
$$j \times j = -j \times -j = -1$$

(2)
$$\frac{1}{i} = -j$$

(3)
$$a+jb=r\angle\theta=re^{j\theta}$$
 where $r=\sqrt{a^2+b^2}$ and $\theta=\arctan\frac{b}{a}$

$$(\pm 180^{\circ} \text{ if } a < 0)$$

(4)
$$r\angle\theta = re^{j\theta} = (r\cos\theta) + j(r\sin\theta)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVII
- Impedance and

Admittance

Summary (Irwin/Nelms Ch

Capacitors: $i = C \frac{dv}{dt} \implies I$ leads V

Inductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1)
$$j \times j = -j \times -j = -1$$

(2)
$$\frac{1}{i} = -j$$

(3)
$$a+jb=r\angle\theta=re^{j\theta}$$
 where $r=\sqrt{a^2+b^2}$ and $\theta=\arctan\frac{b}{a}$ ($\pm180^\circ$ if $a<0$)

(4)
$$r \angle \theta = re^{j\theta} = (r\cos\theta) + j(r\sin\theta)$$

(5)
$$a\angle\theta \times b\angle\phi = ab\angle\left(\theta + \phi\right)$$
 and $\frac{a\angle\theta}{b\angle\phi} = \frac{a}{b}\angle\left(\theta - \phi\right)$.

Multiplication and division are much easier in polar form.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

- Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$
- Inductors: $v = L \frac{di}{dt} \implies V$ leads I
- Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

- (1) $j \times j = -j \times -j = -1$
- (2) $\frac{1}{i} = -j$
- (3) $a+jb=r\angle\theta=re^{j\theta}$ where $r=\sqrt{a^2+b^2}$ and $\theta=\arctan\frac{b}{a}$ ($\pm180^\circ$ if a<0)
- (4) $r\angle\theta = re^{j\theta} = (r\cos\theta) + j(r\sin\theta)$
- (5) $a\angle\theta \times b\angle\phi = ab\angle\left(\theta + \phi\right)$ and $\frac{a\angle\theta}{b\angle\phi} = \frac{a}{b}\angle\left(\theta \phi\right)$.

Multiplication and division are much easier in polar form.

(6) All scientific calculators will convert rectangular to/from polar form.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

8)

Capacitors: $i = C \frac{dv}{dt} \implies I \text{ leads } V$

Inductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1)
$$j \times j = -j \times -j = -1$$

(2)
$$\frac{1}{i} = -j$$

(3) $a+jb=r\angle\theta=re^{j\theta}$ where $r=\sqrt{a^2+b^2}$ and $\theta=\arctan\frac{b}{a}$ ($\pm180^\circ$ if a<0)

(4)
$$r \angle \theta = re^{j\theta} = (r\cos\theta) + j(r\sin\theta)$$

(5)
$$a\angle\theta \times b\angle\phi = ab\angle\left(\theta + \phi\right)$$
 and $\frac{a\angle\theta}{b\angle\phi} = \frac{a}{b}\angle\left(\theta - \phi\right)$.

Multiplication and division are much easier in polar form.

(6) All scientific calculators will convert rectangular to/from polar form.

Casio fx-991 (available in all exams except Maths) will do complex arithmetic $(+,-,\times,\div,x^2,\frac{1}{x},|x|,x^*)$ in CMPLX mode.

Learn how to use this: it will save lots of time and errors.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch 8)

For any network (resistors+capacitors+inductors):

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance +
$$j \times$$
 Reactance $Z = R + jX$ (Ω)

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance +
$$j \times$$
 Reactance

$$Z = R + jX$$
 (Ω)
 $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

$$Z = R + jX (\Omega)$$

 $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance

$$Y = \frac{1}{Z} = G + jB$$
 (S)

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

$$Z = R + jX (\Omega)$$

 $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance

$$Y = \frac{1}{Z} = G + jB$$
 (S)
 $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

$$Z = R + jX \,(\Omega)$$

 $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance

$$Y=rac{1}{Z}=G+jB$$
 (S)
$$|Y|^2=rac{1}{|Z|^2}=G^2+B^2 \qquad \qquad \angle Y=-\angle Z=rctanrac{B}{G}$$

$$Y = G + jB = \frac{1}{Z}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

$$Z = R + jX \,(\Omega)$$

 $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance

$$Y = \frac{1}{Z} = G + jB$$
 (S)
 $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R+jX}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

$$Z = R + jX (\Omega)$$

 $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance

$$Y=\frac{1}{Z}=G+jB$$
 (S)
$$\left|Y\right|^{2}=\frac{1}{\left|Z\right|^{2}}=G^{2}+B^{2} \qquad \angle Y=-\angle Z=\arctan\frac{B}{G}$$

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R+jX} = \frac{R}{R^2+X^2} + j\frac{-X}{R^2+X^2}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

$$Z = R + jX (\Omega)$$

 $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance

$$Y = \frac{1}{Z} = G + jB$$
 (S)
 $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

$$Y=G+jB=\tfrac{1}{Z}=\tfrac{1}{R+jX}=\tfrac{R}{R^2+X^2}+j\tfrac{-X}{R^2+X^2}$$
 So $G=\tfrac{R}{R^2+X^2}$ and $B=\tfrac{-X}{R^2+X^2}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

Summary (Irwin/Nelms Ch8)

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

$$Z = R + jX$$
 (Ω)
 $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance

$$Y = \frac{1}{Z} = G + jB$$
 (S)
 $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

Note:

$$Y=G+jB=\tfrac{1}{Z}=\tfrac{1}{R+jX}=\tfrac{R}{R^2+X^2}+j\tfrac{-X}{R^2+X^2}$$
 So $G=\tfrac{R}{R^2+X^2}$ and $B=\tfrac{-X}{R^2+X^2}$

Beware: $G \neq \frac{1}{R}$ unless X = 0.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary (Irwin/Nelms Ch

8)

 Sine waves are the only bounded signals whose shape is unchanged by differentiation.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary (Irwin/Nelms Ch
- 8)

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t=0.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - o If $V=a+jb=r\angle\theta=re^{j\theta}$, then $v(t)=a\cos\omega t-b\sin\omega t=r\cos\left(\omega t+\theta\right)=\Re\left(Ve^{j\omega t}\right)$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - \circ A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - $\text{o If } V = a + jb = r \angle \theta = re^{j\theta}, \text{ then }$ $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
 - The angular frequency $\omega = 2\pi f$ is assumed known.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - $\text{o If } V = a + jb = r \angle \theta = re^{j\theta} \text{, then }$ $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
 - \circ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - $\text{o If } V = a + jb = r \angle \theta = re^{j\theta} \text{, then }$ $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
 - The angular frequency $\omega = 2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - \circ $\;$ Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - $\text{o If } V = a + jb = r \angle \theta = re^{j\theta} \text{, then }$ $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
 - \circ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - \circ Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - \circ Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - $\text{o If } V = a + jb = r \angle \theta = re^{j\theta} \text{, then }$ $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
 - \circ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - \circ Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - \circ Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ©

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - $\text{o} \quad \text{If } V = a + jb = r \angle \theta = re^{j\theta} \text{, then}$ $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
 - \circ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - \circ Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - \circ Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ⊕, converts simultaneous differential equations into simultaneous linear equations ⊕⊕⊕.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - $\text{o If } V = a + jb = r \angle \theta = re^{j\theta} \text{, then }$ $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
 - \circ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - \circ Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - \circ Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ⊕, converts simultaneous differential equations into simultaneous linear equations ⊕⊕⊕.
 - Needs complex numbers © but worth it.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - \circ A *phasor* is a complex number representing the length and position of the rod at time t=0.
 - $\text{o If } V = a + jb = r \angle \theta = re^{j\theta} \text{, then }$ $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
 - \circ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - \circ Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - \circ Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ⊕, converts simultaneous differential equations into simultaneous linear equations ⊕⊕⊕.
 - Needs complex numbers © but worth it.