Московский государственный технический университет им. Н. Э. Баумана

Курс «Технологии машинного обучения» Отчёт по лабораторной работе №1

Выполнил:	Проверил:
Лупарев С. В.	Гапанюк Ю.Е.
группа ИУ5-63Б	
Дата:	Дата:
Подпись:	Подпись:

Цель лабораторной работы

Цель: изучение различных методов визуализация данных.

Краткое описание

Построение основных графиков, входящих в этап разведочного анализа данных.

Рекомендуемые инструментальные средства можно посмотреть здесь.

Задание

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов <u>здесь.</u>
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из <u>Scikit-learn.</u>
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

```
Number of Instances: 20640
      Number of Attributes: 8 numeric, predictive attributes and the target
      Attribute Information:
          1) MedInc median income in block group
           2) HouseAge median house age in block group
          3) AveRooms average number of rooms per household
          4) AveBedrms average number of bedrooms per household
          5) Population block group population
          6) AveOccup average number of household members
          7) Latitude block group latitude
          8) Longitude block group longitude
      Missing Attribute Values: None
      This dataset was obtained from the StatLib repository. https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
      The target variable is the median house value for California districts, expressed in hundreds of thousands of dollars ($100,000).
[14]: import pandas as pd
      import numpy as np
      import sklearn
      import matplotlib
[15]: import matplotlib.pyplot as plt
      import seaborn as sns
 [9]: from sklearn.datasets import fetch_california_housing
      housing = fetch_california_housing()
      df = pd.DataFrame(data= np.c_[housing['data'], housing['target']],
                          columns= housing['feature_names'] + ['target'])
```

[9]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422
	20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09	0.781
	20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21	0.771
	20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22	0.923
	20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32	0.847
	20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24	0.894

20640 rows × 9 columns

[]: Data Set Characteristics:

```
df = df.rename(columns={'target':'MedHouseVal'})

29]: df.describe().T
```

[29]: df.describe().T

[29]

:		count	mean	std	min	25%	50%	75%	max
	MedInc	20640.0	3.870671	1.899822	0.499900	2.563400	3.534800	4.743250	15.000100
	HouseAge	20640.0	28.639486	12.585558	1.000000	18.000000	29.000000	37.000000	52.000000
	AveRooms	20640.0	5.429000	2.474173	0.846154	4.440716	5.229129	6.052381	141.909091
	AveBedrms	20640.0	1.096675	0.473911	0.333333	1.006079	1.048780	1.099526	34.066667
	Population	20640.0	1425.476744	1132.462122	3.000000	787.000000	1166.000000	1725.000000	35682.000000
	AveOccup	20640.0	3.070655	10.386050	0.692308	2.429741	2.818116	3.282261	1243.333333
	Latitude	20640.0	35.631861	2.135952	32.540000	33.930000	34.260000	37.710000	41.950000
	Longitude	20640.0	-119.569704	2.003532	-124.350000	-121.800000	-118.490000	-118.010000	-114.310000
1	MedHouseVal	20640.0	2.068558	1.153956	0.149990	1.196000	1.797000	2.647250	5.000010

[30]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 20640 entries, 0 to 20639 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	MedInc	20640 non-null	float64
1	HouseAge	20640 non-null	float64
2	AveRooms	20640 non-null	float64
3	AveBedrms	20640 non-null	float64
4	Population	20640 non-null	float64
5	AveOccup	20640 non-null	float64
6	Latitude	20640 non-null	float64
7	Longitude	20640 non-null	float64
8	MedHouseVal	20640 non-null	float64

dtypes: float64(9) memory usage: 1.4 MB

[31]: df.hist(bins=50, figsize=(20, 15))


```
[38]: sns.boxplot(y=df['MedHouseVal'])
[38]: <Axes: ylabel='MedHouseVal'>
```

```
[39]: cm = df.corr()
print(cm)

plt.figure(figsize=(12, 10))
sns.heatmap(cm, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.show()
```

```
        MedInc
        HouseAge
        AveRooms
        AveBedrms
        Population
        AveOccup
        \

        MedInc
        1.000000
        -0.119034
        0.326895
        -0.062040
        0.004834
        0.018766

        HouseAge
        -0.119034
        1.000000
        -0.153277
        -0.077747
        -0.296244
        0.013191

        AveRooms
        0.326895
        -0.153277
        1.000000
        0.847621
        -0.072213
        -0.004852

        AveBedrms
        -0.062040
        -0.077747
        0.847621
        1.000000
        -0.066197
        -0.006181

        Population
        0.004834
        -0.296244
        -0.072213
        -0.066197
        1.000000
        0.069863

        AveOccup
        0.018766
        0.013191
        -0.004852
        -0.006181
        0.069863
        1.000000

        Latitude
        -0.079809
        0.011173
        0.106389
        0.069721
        -0.108785
        0.002366

        Longitude
        -0.015176
        -0.108197
        -0.027540
        0.013344
        0.099773
        0.002476

        MedHouseVal
        0.688075
        0.105623
        0.151948
        -0.046701
        -0.024650
        -0.023737
```


