Unità di apprendimento 1

Architettura di rete e metodologia di sviluppo

Unità di apprendimento 1 Lezione 2

I modelli architetturali

In questa lezione impareremo:

- la classificazione delle architetture distribuite hardware e software
- il concetto di middleware

- Per anni la crescita tecnologica è stata strettamente legata alla potenza di calcolo del singolo processore
- La legge di Moore dice che ogni due anni il numero dei microcircuiti raddoppia ed effettivamente è stato così
- Si è giunti però a dei limiti fisici
- Dove virare?

- Evoluzione: passaggio a macchine/sistemi dotati di più CPU, ovvero ad architetture parallele/distribuite
- Flynn ha categorizzato le architetture hw basandosi su:
 - flusso delle istruzioni
 - flusso dei dati

- Quattro possibili situazioni:
 - macchine SISD (Single Instruction Single Data)
 - macchine SIMD (Single Instruction Multiple Data)
 - macchine MISD (Multiple Instruction Single Data)
 - macchine MIMD (Multiple Instruction Multiple Data)

	DATI SINGOLI	DATI MULTIPLI
Istruzioni singole	SISD	SIMD
Istruzioni multiple	MISD	MIMD

SISD

- Un elaboratore come la macchina di Von Neumann, ossia singola CPU
- Un solo flusso dati e un solo flusso istruzioni
- Quindi viene eseguito un solo programma alla volta
- Le istruzioni sono eseguite in modalità sequenziale.

SIMD

l'elaborazione avviene su più flussi dati in contemporanea ma con un singolo flusso di istruzioni:

MISD

 Gli elaboratori eseguono più istruzioni sullo stesso flusso dati

Possibile campo di applicazione nella crittografia

MIMD

- Più unità centrali di elaborazione indipendenti
- Più flussi di dati indipendenti
- macchine MIMD a memoria condivisa, multiprocessori
- macchine MIMD a memoria privata, multicomputer

- MIMD: multiprocessori
 - Sono architetture a memoria condivisa (shared memory)

la comunicazione tra processi avviene mediante variabili condivise

è necessario implementare gli opportuni meccanismi di sincronizzazione per regolare gli accesi alla memoria in modo da coordinare i diversi processi per gestire la competizione alle risorse comuni.

MIMD: multicomputer

Ogni computer possiede una propria area di memoria

privata

Le LAN di computer ricadono in questa categoria

La comunicazione tra processi avviene mediante scambio di messaggi

procedure send e receive

Cluster computing

- Costituito da un insieme di nodi (montati sullo stesso rack) ad alte prestazioni interconnessi tramite una rete locale ad alta velocità (oltre 1Gbit/s)
- devono essere omogenei, cioè i singoli nodi hanno lo stesso sistema operativo e hardware molto simile

- Abbiamo due tipiche possibili architetture
 - organizzazione gerarchica con singolo nodo principale: ad es. Beo/wulf, tramite librerie di message passing un nodo gestisce la comunicazione tra gli altri nodi nei quali viene distribuito il calcolo parallelo
 - organizzazione Single System Image: ad es. MOSIX, sistema operativo distribuito in cui i processi vengono distribuiti sui singoli nodi per bilanciare il carico
- Un cluster di PC corrisponde a un MIMD a memoria privata

Grid computing

- è un sistema distribuito di calcolo altamente decentralizzato
- è composto da un gran numero di nodi disposti a griglia
- grado elevato di eterogeneità per hardware, software, tecnologia di rete, politiche di sicurezza ecc.

- Sistemi distribuiti pervasivi
 - Nuova generazione di SD
 - Nodi piccoli, mobili, con connessioni di rete wireless e spesso facenti parte di un sistema più grande:
 - sistemi domestici, sistemi elettronici per l'assistenza sanitaria
 - reti di sensori

- Alcuni requisiti dei sistemi pervasivi:
 - cambi di contesto: l'ambiente può cambiare in ogni momento
 - composizione ad hoc: ogni nodo può essere usato in modi molto diversi da utenti differenti
 - facilità di configurazione
 - condivisione come default: i nodi vanno e vengono fornendo informazioni e servizi da condividere

- Sistemi pervasivi: reti domestiche
 - assenza di un amministratore di sistema
 - utenti senza alcuna conoscenza specifica
 - sistemi auto-configuranti e autogestiti
- Sistemi pervasivi: domotica
 - ottimizzazione dei consumi
 - comfort
 - sicurezza
 - risparmio energetico

- Sistemi pervasivi: wearable computing nell'ambito dell'assistenza sanitaria
 - raccolta di parametri biologici
 - memorizzazione locale o trasmissione in remoto
 - problemi di sicurezza
 - generazione e propagazione di allarmi

- Sistemi pervasivi: reti di sensori
 - raccolta e elaborazione centralizzata anche se in alcuni casi avviene localmente in ogni sensore

- Architettura a terminali remoti
 - mainframe + terminali stupidi

Architettura client-server

Architettura WEB-centric

- Spostamento delle applicazioni sul server facendo "in qualche modo" regredire gli host a terminali stupidi
- tutta la computazione avviene sui server, i client forniscono solo un'interfaccia utente
- possono essere architetture web
 - tradizionali (client-server)
 - multilivello

Architettura cooperativa

- Entità autonome che esportano e richiedono servizi secondo il modello di sviluppo a componenti
- principio di incapsulamento tipico della programmazione a oggetti per abbattere le differenze hw, sw, di programmazione e di rete
- Standardizzazione delle modalità con le quali i servizi vengono richiesti/offerti:
 - OdP (OpenDistributed Processes)
 - CORBA (Common Object Request Broker Architecture)

- Architettura completamente distribuita
 - Opposto della architettura web-centric
 - Entità paritetiche
 - Servizi spesso duplicati
 - Tecnologie più importanti:
 - OMG (Object Management Group)
 - RMI (Remote Method Invocation)
 - DCOM (Distributed Component Object Model)

Architettura a microservizi

- L'applicazione viene suddivisa in componenti autonomi (microservizi)
- Ogni microservizio svolte una funzione specifica
- Comunicazione tramite interfacce e API
- Ogni servizio ha il proprio database
- Adatto per applicazioni complesse e che devono garantire un certo grado di scalabilità

Architettura a livelli

- Per alleggerire il carico elaborativo dei serventi sono state introdotte le applicazioni multilivello
- Separazione delle funzionalità logiche del sw in più livelli
- Si introduce il middleware
 - Software che si interpone tra le applicazioni e il sistema operativo creando un'architettura a tre livelli

Architettura a livelli

- Il suo scopo è di permettere e garantire l'interoperabilità delle applicazioni sui diversi sistemi operativi
- Basato su RPC (Remote Procedure Call) o message passing

SCELTA MULTIPLA 🔯

- 1 La classificazione di Flynn si basa sui due flussi normalmente presenti nei calcolatori:
 - a flusso delle istruzioni
 - b flusso di controllo
 - c flusso dei dati
- 2 Alla categoria SISD appartengono i seguenti calcolatori:
 - a personal computer
 - **b** video terminali
 - c workstation
 - d mainframe
- 3 Quali delle seguenti affermazioni sono false riferite all'architettura MISD?
 - a Utilizza elaboratori con più istruzioni sullo stesso flusso dati
 - b Esistono più processori
 - c Ogni processore ha una sua memoria
 - d Vengono utilizzati principalmente per l'intelligenza artificiale
- 4 Nella macchine MIMD viene effettuata una ulteriore classificazione:
 - a macchine a memoria fisica condivisa
 - b macchine ad accesso parallelo
 - c macchine a memoria privata
 - d macchine a controllo numerico
 - e macchine a canale condiviso
 - f macchine a mezzo diretto
- 5 Un cluster di PC differisce da una rete di PC principalmente perché:
 - a ha una potenza di calcolo pari alla somma di quelle dei singoli computer che lo costituiscono
 - b ha una velocità del trasferimento dati di oltre 1 Gbit/s
 - c ha una centralizzazione fisica delle macchine
 - d esiste una applicazione di management, residente su un singolo PC

- 6 Nei sistemi wearable computing possiamo avere:
 - a sensori di movimento
 - **b** PDA
 - c connessioni cablate
 - d ECG sensor
 - e architetture MISD
- 7 Quali delle seguenti affermazioni sono false riferite alla domotica?
 - a Neologismo nato da casa e automatica
 - b Consente di avere risparmio energetico
 - c Ammette accesso remoto
 - d Rientra nelle specifiche dell'industria 4.0
- 8 Le architetture WEB-centric possono essere:
 - a web tradizionali
 - b web avanzate
 - c web remote
 - d web multilivello.
- 9 Le tecnologie con architettura completamente distribuita più importanti sono:
 - a OMG d RMI b OdP e DCOM
 - c CORBA
- 10 L'acronimo CORBA significa:
 - a Comunication Object Request Basic Architecture
 - b Common Object Request Basic Architecture
 - c Common Object Request Broker Architecture
 - d Comunication Object Request Broker Architecture
- 11 Tra le funzionalità del middleware ricordiamo (indica quella non presente):
 - a i servizi di astrazione e cooperazione
 - b i servizi per le applicazioni
 - c i meccanismi di sincronizzazione
 - d i servizi di amministrazione del sistema
 - e il servizio di comunicazione
 - f l'ambiente di sviluppo applicativo

VERO/FALSO

	0	G
1 Il limite inferiore ottenibile con l'ottimizzazione dell'hardware è legato alla velocità delle luce.	V	9
2 La velocità della luce nel rame è di circa 200.000 km/s.	V	0
3 Con frequenze di lavoro dell'ordine dei Megahertz non possiamo superare la distanza di 20 cm senza introdurre ritardi.	V	•
4 Nelle macchine a singola CPU il flusso di istruzioni è unico.	V	0
5 Un elaboratore SIMD non ha trovato a oggi applicazioni commerciali.	V	•
6 Un elaboratore MISD è particolarmente adatto per realizzare calcoli vettoriali e matriciali.	V	G
7 Le macchine MIMD sono anche chiamate multicomputer.	V	0
8 Le macchine MIMD sono anche chiamate multiprocessor.	V	0
9 I sistemi multicomputer sono architetture MIMD a memoria condivisa (shared memory).		•
10 Lo scambio di messaggi espliciti viene effettuato mediante apposite procedure (send e receive).	V	•
11 Nei multiprocessori ogni computer possiede una propria area di memoria privata, non indirizzabile da parte dei processori remoti.	O	G
12 Le LAN di PC sono da considerarsi sistemi MIMD.	V	0
13 Con i cluster di PC è possibile affrontare calcoli particolarmente onerosi che sarebbero molto lunghi o impossibili con un solo computer.	O	•
14 Nelle architetture client-server due client possono collaborare tra loro unicamente attraverso uno o più server che permettono la coordinazione e la condivisione dei dati.	V	•
15 La casa domotica deve avere una connessione Internet.	V	0
16 La rete domestica può essere considerata un elemento della casa domotica.	V	•
17 Tra le aree di interesse della domotica troviamo la climatizzazione e il riscaldamento.	V	•
18 Tra le aree di interesse della domotica troviamo la gestione degli spazi esterni (irrigazione, piscina ecc.).	V	•