4.1.2.4 - Appendix D, Rev. 1.0 : SPD's for DDR SDRAM

1.0 Introduction

This Appendix D, Rev. 1.0 describes the second release of Serial Presence Detect used on Double Data Rate Synchronous DRAM Modules where the SPD revision byte encoding is 10h compared to revision 0.0 SPDs. All bytes except Byte 22, 31, 41 ~ 45, 47, and 62 are encoded identically with the equivalent bytes in the first original release of Appendix D0.0, SPD Revision 0.0 for DDR SDRAMs. Byte 31 added a code to accomodate 4 GB and Byte 62 is changed to follow new SPD revision method. Byte 41 ~ 45 and 47 are added.

All unused entries will be coded as 00h. All unused bits in defined bytes will be coded as 0 except where noted.

These PD's are those referenced in the SPD standard document for "Specific Features". The following SPD fields will occur in the order presented 1.1. Futher descriptions of Bytes 0 and 1 are found in the SPD standard. Futher description of Byte2 is found in appendix A of the SPD standard

1.1 Address map

The following is the SPD address map for DDR SDRAM. It describes where the individual LUT-entries will be held in the serial EEPROM.

Byte Number	Function Described	Notes
0	Number of Serial PD Bytes written during module production	1
1	Total number of Bytes in Serial PD device	2
2	Fundamental Memory Type (FPM, EDO, SDRAM)	
3	Number of Row Addresses on this assembly	
4	Number of Column Addresses on this assembly	
5	Number of DIMM Banks	
6-7	Data Width of this assembly	
8	Voltage Interface Level of this assembly	
9	SDRAM Cycle time at Maximum Supported CAS Latency (CL), CL=X	3
10	SDRAM Access from Clock	
11	DIMM configuration type (Non-parity, Parity or ECC)	
12	Refresh Rate/Type	3, 4
13	Primary SDRAM Width	
14	Error Checking SDRAM Width	
15	SDRAM Device Attributes: Minimum Clock Delay, Back-to-Back Random Column Access	
16	SDRAM Device Attributes: Burst Lengths Supported	
17	SDRAM Device Attributes: Number of Banks on SDRAM Device	3
18	SDRAM Device Attributes: CAS Latency	3
19	SDRAM Device Attributes: CS Latency	3
20	SDRAM Device Attributes: Write Latency	3
21	SDRAM Module Attributes	
22	SDRAM Device Attributes: General	3, 5
23	Minimum Clock Cycle at CL = X - 0.5	3
24	Maximum Data Access Time (t _{AC}) from Clock at CL = X - 0.5	3
25	Minimum Clock Cycle at CL = X - 1	3
26	Maximum Data Access Time (t _{AC}) from Clock at CL = X - 1	3
27	Minimum Row Precharge Time (t _{RP})	3
28	Minimum Row Active to Row Active delay (t _{RRD})	3
29	Minimum RAS to CAS delay (t _{RCD})	3
30	Minimum Active to Precharge Time (t _{RAS})	3

Byte Number	Function Described	Notes
31	Module Bank Density	5
32	Address and Command Input Setup Time Before Clock	
33	Address and Command Input Hold Time After Clock	
34	Data Input Setup Time Before Clock	
35	Data Input Hold Time After Clock	
36-40	Superset Information (may be used in the future)	
41	SDRAM Device Minimum Active to Active/Auto Refresh Time (tRC)	5
42	SDRAM Device Minimum Auto Refresh to Active/Auto Refresh (tRFC)	5
43	SDRAM Device Maximum device cycle time (tCKmax)	5
44	SDRAM Device Maximum skew between DQS and DQ signals (tDQSQ)	5
45	DDR SDRAM Device Maximum Read Data Hold Skew Factor (tQHS)	5
46	Reserved for future use	
47	SDRAM Device Attributes - DDR SDRAM DIMM Height	5
48 ~ 61	Reserved for future use	
62	SPD Revision	5
63	Checksum for Bytes 0-62	
64-71	Manufacturer's JEDEC ID Code	
72	Module Manufacturing Location	
73-90	Module Part Number	
91-92	Module Revision Code	
93-94	Module Manufacturing Date	
95-98	Module Serial Number	
99-127	Manufacturer's Specific Data	
128-255	Open for customer use	

- This will typically be programmed as 128 Bytes.
 This will typically be programmed as 256 Bytes.
 From Datasheet.
- 4. High order bit is Self Refresh "flag". If set to "1", the assembly supports self refresh.
 5. Changed or added since the first original release of DDR SPD revision 0.0

2.0 Details of each byte

Byte 0: Number of Bytes Utilized by Module Manufacturer

This field describes the total number of bytes used by the module manufacturer for the SPD data and any (optional) specific supplier information. The byte count includes the fields for all required and optional data.

Line #	Number SPD Bytes	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	Undefined	0	0	0	0	0	0	0	0	00
1	1	0	0	0	0	0	0	0	1	01
2	2	0	0	0	0	0	0	1	0	02
3	3	0	0	0	0	0	0	1	1	03
4	4	0	0	0	0	0	1	0	0	04
5	5	0	0	0	0	0	1	0	1	05
6	6	0	0	0	0	0	1	1	0	06
-	-	1	-	-	-	-	-	-	-	1
-	-	-	-	-	-	-	-	-	-	-
128	128	1	0	0	0	0	0	0	0	80
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	1	-	-	-	-	-	-	-	1
254	254	1	1	1	1	1	1	1	0	FE
255	255	1	1	1	1	1	1	1	1	FF

Byte 1: Total Number of Bytes in Serial PD Device

This field describes the total size of the serial memory used to hold the Serial Presence Detect data. The following lookup table describes the possible serial memory densities (in bytes) along with the corresponding descriptor.

Line #	Serial Memory	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	Undefined	0	0	0	0	0	0	0	0	00
1	2 Bytes	0	0	0	0	0	0	0	1	01
2	4 Bytes	0	0	0	0	0	0	1	0	02
3	8 Bytes	0	0	0	0	0	0	1	1	03
4	16 Bytes	0	0	0	0	0	1	0	0	04
5	32 Bytes	0	0	0	0	0	1	0	1	05
6	64 Bytes	0	0	0	0	0	1	1	0	06
7	128 Bytes	0	0	0	0	0	1	1	1	07
8	256 Bytes	0	0	0	0	1	0	0	0	08
9	512 Bytes	0	0	0	0	1	0	0	1	09
10	1024 Bytes	0	0	0	0	1	0	1	0	0A
11	2048 Bytes	0	0	0	0	1	0	1	1	0B
12	4096 Bytes	0	0	0	0	1	1	0	0	0C
13	8192 Bytes	0	0	0	0	1	1	0	1	0D
14	16384 Bytes	0	0	0	0	1	1	1	0	0E
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
254	-	1	1	1	1	1	1	1	0	FE
255	-	1	1	1	1	1	1	1	1	FF

Byte 2: Memory Type

This byte describes the fundamental memory type (or technology) implemented on the module.

Line #	Fundamental Memory Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	Reserved	0	0	0	0	0	0	0	0	00
1	Standard FPM DRAM	0	0	0	0	0	0	0	1	01
2	EDO	0	0	0	0	0	0	1	0	02
3	Pipelined Nibble	0	0	0	0	0	0	1	1	03
4	SDRAM	0	0	0	0	0	1	0	0	04
5	ROM	0	0	0	0	0	1	0	1	05
6	SGRAM DDR	0	0	0	0	0	1	1	0	06
7	SDRAM DDR	0	0	0	0	0	1	1	1	07
8	DDR2 SDRAM	0	0	0	0	1	0	0	0	08
-	-	-	-	-	-	-	-	-	-	-
254	TBD	1	1	1	1	1	1	1	0	FE
255	TBD	1	1	1	1	1	1	1	1	FF

Byte 3: Number of Row Addresses

This field describes the Row addressing on the module. If there is one physical bank on the module **or** if there are two physical banks of the same size and organization, then bits 0-3 are used to represent the number of row addresses for each physical bank. If the module has two physical banks of asymmetric size, then bits 0-3 represent the number of row addresses for physical bank 1 and bits 4-7 represent the number of row addresses for physical bank 2 (bank 2 device is 2x bank 1 device width). Note that these do not include the Bank Address pin since physical bank selection of DIMM modules is asserted on dedicated BA (Bank Address) pins.

Examples of Byte 3 implementation include:

Number of Phys Banks	Number of Row Addresses for Physical Bank 1	Number of Row Addresses for Physical Bank 2	Module Organization	Device Used	Byte 3 Contents
1	12, RA0-RA11	N/A	16M x 64	16M x 8	0000 1100
2	12, RA0-RA11	12, RA0-RA11	2 x 16M x 64	16M x 8	0000 1100
2	12, RA0-RA11	12, RA0-RA11	16M x 64 & 8M x 64	16M x 8 & 8M x 16	1100 1100

1	Byte 3, Subfield A: Number of Row Addresses on physical Bank 1, OR Number of Row Addresses on physical Bank 1 and 2 if both physical banks have the same depth (Bits 0-3)											
Line #	Number of Row Addresses	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex		
0A	Undefined					0	0	0	0	_0		
1A	1/16					0	0	0	1	_1		
2A	2/17					0	0	1	0	_2		
:	:	F			=	:	:	:	:	:		
7A	7					0	1	1	1	_7		
8A	8		See Sub	ofield B		1	0	0	0	_8		
9A	9					1	0	0	1	_9		
10A	10				_	1	0	1	0	_A		
11A	11					1	0	1	1	_B		
12A	12					1	1	0	0	_C		
13A	13					1	1	0	1	_D		
14A	14					1	1	1	0	_E		
15A	15					1	1	1	1	_F		

Byte	3, Subfield B: Numb	er of Row	Addresses	on physic	al Bank 2 i	f physical l	banks have	different d	epths (Bits	s 4-7)
Line #	Number of Row Addresses	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	No 2nd Asymmetric Physical Bank	0	0	0	0					0_
1B	1/16	0	0	0	1					1_
2B	2/17	0	0	1	0					2_
:	:	:	:	:	:					:
7B	7	0	1	1	1				1	7_
8B	8	1	0	0	0		0 0	امد: ما ۸		8_
9B	9	1	0	0	1		See Su	bfield A		9_
10B	10	1	0	1	0					Α_
11B	11	1	0	1	1					B_
12B	12	1	1	0	0					C
13B	13	1	1	0	1					D_
14B	14	1	1	1	0					E_
15B	15	1	1	1	1					F_

Byte 4: Number of Column Addresses

This field describes the Column addressing on the module. If there is one physical bank on the module **or** if there are two physical banks of the same size, then bits 0-3 are used to represent the number of column addresses for each physical bank. If the module has two physical banks of asymmetric size, then bits 0-3 represent the number of column addresses for physical bank 1 and bits 4-7 represent the number of column addresses for physical bank 2 (bank 2 device is 2x bank 1 device width). For example:

Number of Phys Banks	Number of Column Addresses for Physical Bank 1	Number of Column Addresses for Physical Bank 2	Module Organization	Device Used	Byte 4 Contents
1	10, CA0-CA9	N/A	16M x 64	16M x 8	0000 1010
2	10, CA0-CA9	10, CA0-CA9	2 x 16M x 64	16M x 8	0000 1010
2	10, CA0-CA9	9, CA0-CA8	16M x 64 & 8M x 64	16M x 8 & 8M x 16	1010 1001

N	Byte 4, Subfield A: Number of Column Addresses on physical Bank 1, OR Number of Column Addresses on physical Bank 1 and 2 if both physical banks have the same depth (Bits 0-3)											
Line Number	Number of Column Addresses	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex		
0A	Undefined					0	0	0	0	_0		
1A	1/16					0	0	0	1	_1		
2A	2/17					0	0	1	0	_2		
:	:					:	:	:	:	:		
7A	7				,	0	1	1	1	_7		
8A	8					1	0	0	0	_8		
9A	9		See Su	bfield B		1	0	0	1	_9		
10A	10					1	0	1	0	_A		
11A	11					1	0	1	1	_B		
12A	12					1	1	0	0	_C		
13A	13					1	1	0	1	_D		
14A	14					1	1	1	0	_E		
15A	15					1	1	1	1	_F		

Byte 4	l, Subfield B: Number	of Colum	n Addresse	es on phys	ical Bank 2	? if physica	l banks ha	ve different	depths (B	its 4-7)
Line Number	Number of Column Addresses	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	No 2nd Asymmetric Physical Bank	0	0	0	0					0_
1B	1/16	0	0	0	1					1_
2B	2/17	0	0	1	0					2_
:	:	:	:	:	:					:
7B	7	0	1	1	1					7_
8B	8	1	0	0	0		See Su	bfield A		8_
9B	9	1	0	0	1					9_
10B	10	1	0	1	0	_			_	A_
11B	11	1	0	1	1					B_
12B	12	1	1	0	0					C_
13B	13	1	1	0	1					D_
14B	14	1	1	1	0					E_
15B	15	1	1	1	1			,		F_

Byte 5: Number of DIMM Banks

This field describes the number of physical banks on the SDRAM module. The number of logical banks for the SDRAM device is defined in Byte 17.

Line #	Number of Banks	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	Undefined	0	0	0	0	0	0	0	0	00
1	1	0	0	0	0	0	0	0	1	01
2	2	0	0	0	0	0	0	1	0	02
3	3	0	0	0	0	0	0	1	1	03
4	4	0	0	0	0	0	1	0	0	04
5	5	0	0	0	0	0	1	0	1	05
6	6	0	0	0	0	0	1	1	0	06
7	7	0	0	0	0	0	1	1	1	07
8	8	0	0	0	0	1	0	0	0	08
9	9	0	0	0	0	1	0	0	1	09
10	10	0	0	0	0	1	0	1	0	0A
11	11	0	0	0	0	1	0	1	1	0B
12	12	0	0	0	0	1	1	0	0	0C
13	13	0	0	0	0	1	1	0	1	0D
14	14	0	0	0	0	1	1	1	0	0E
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
254	254	1	1	1	1	1	1	1	0	FE
255	255	1	1	1	1	1	1	1	1	FF

Bytes 6 and 7: Module Data Width

Bytes 6 and 7 are used to designate the module's data width. The data width is presented as a 16-bit word: bit 0 of byte 6 becomes the LSB of the 16 bit width identifier and bit 7 of byte 7 becomes the MSB. Consequently, if the module has a width of less than 255 bits, byte 7 will be 00h. If the data width is 256 bits or more, byte 7 is used in conjunction with byte 6 to designate the total module width. For example:

If the module's Data Width is:	then Byte 7 is:	and Byte 6 is:
64	0000 0000	0100 0000
72	0000 0000	0100 1000
576	0000 0010	0100 0000

Byte 6: Module Data Width

Line #	Data Width	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	0	0	0	0	0	0	0	0	0	00
-	-	-	-	-	-	-	-	-	-	-
32	32	0	0	1	0	0	0	0	0	20
33	33	0	0	1	0	0	0	0	1	21
-	-	-	-	-	-	-	-	-	-	-
36	36	0	0	1	0	0	1	0	0	24
-	-	-	-	-	-	-	-	-	-	-
64	64	0	1	0	0	0	0	0	0	40
-	-	-	-	-	-	-	-	-	-	-
72	72	0	1	0	0	1	0	0	0	48
-	-	-	-	-	-	-	-	-	-	-
80	80	0	1	0	1	0	0	0	0	50
-	-	-	-	-	-	-	-	-	-	-
128	128	1	0	0	0	0	0	0	0	80
-	-	-	-	-	-	-	-	-	-	-
144	144	1	0	0	1	0	0	0	0	90
-	-	-	-	-	-	-	-	-	-	-
254	254	1	1	1	1	1	1	1	0	FE
255	255	1	1	1	1	1	1	1	1	FF

Byte 7: Module Data Width Continuation

This byte will be left at 00h if the module data width is less than 256 bits wide. If the width is 256 or greater, then this byte will be used in conjunction with byte 6.

Line #	Data Width (cont'd)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Hex
0	0 (+)	0	0	0	0	0	0	0	0	00
1	256 (+)	0	0	0	0	0	0	0	1	01
2	512 (+)	0	0	0	0	0	0	1	Х	02-03
3	1024 (+)	0	0	0	0	0	1	Х	Х	04-07
4	2048 (+)	0	0	0	0	1	Х	Х	Х	08-15
X = 0 or 1.										

Byte 8: Voltage Interface Level of this assembly

This field describes the module's voltage interface.

Line #	Interface Levels	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	TTL/5V tolerant	0	0	0	0	0	0	0	0	00
1	LVTTL (not 5V tolerant)	0	0	0	0	0	0	0	1	01
2	HSTL 1.5V	0	0	0	0	0	0	1	0	02
3	SSTL 3.3V	0	0	0	0	0	0	1	1	03
4	SSTL 2.5V	0	0	0	0	0	1	0	0	04
5	SSTL 1.8V	0	0	0	0	0	1	0	1	05
6	TBD	0	0	0	0	0	1	1	0	06
-	-	-	-	-	-	-	-	-	-	-

Byte 9: DDR SDRAM Cycle Time

This byte defines the minimum cycle time for the SDRAM module at the highest $\overline{\text{CAS}}$ Latency, $\overline{\text{CAS}}$ Latency =X, defined in byte 18. If other $\overline{\text{CAS}}$ latencies are supported, then the associated minimum cycle times are not related in this version of the SPD standard. Byte 9, Cycle time for CAS Latency=X, is split into two nibbles: the higher order nibble (bits 4-7) designates the cycle time to a granularity of 1ns; the value presented by the lower order nibble (bits 0-3) has a granularity of .1ns and is added to the value designated by the higher nibble. For example:

If bits 7:4 are	and bits 3:0 are	then the total time is:
0111	0101	
(7ns)	+ (.5ns)	= 7.5ns

	Ву	rte 9, SDRA	M Cycle Ti	me, Subfie	d A: Whole	e Nanosec	onds (Bits	4-7)		
Line #	Cycle Time	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	1ns	0	0	0	1					1_
2A	2ns	0	0	1	0					2_
3A	3ns	0	0	1	1					3_
4A	4ns	0	1	0	0					4_
5A	5ns	0	1	0	1					5_
6A	6ns	0	1	1	0				_	6_
7A	7ns	0	1	1	1		0 0	اما تامان		7_
8A	8ns	1	0	0	0			ubfield ole B		8_
9A	9ns	1	0	0	1		100	,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		9
10A	10ns	1	0	1	0					Α_
11A	11ns	1	0	1	1					B_
12A	12ns	1	1	0	0					c ₋
13A	13ns	1	1	0	1					D_
14A	14ns	1	1	1	0					E_
15A	15ns	1	1	1	1					F.
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 9, SDRAM Cycle Time Subfield B: Tenths of Nanoseconds (Bits 0-3)										
Line #	Cycle Time	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex	
0B	+0ns					0	0	0	0	_0	
1B	+.1ns					0	0	0	1	_1	
2B	+.2ns					0	0	1	0	_2	
3B	+.3ns					0	0	1	1	_3	
4B	+.4ns	1			7	0	1	0	0	_4	
5B	+.5ns		See S	ubfield		0	1	0	1	_5	
6B	+.6ns		Tab	le B		0	1	1	0	_6	
7B	+.7ns				_	0	1	1	1	_7	
8B	+.8ns					1	0	0	0	_8	
9B	+.9ns					1	0	0	1	_9	
10B	RFU					1	0	1	0	_A	
-	-	-	-	-	-	-	-	-	-	-	
-	Undefined	1	1	1	1	1	1	1	1	FF	

Byte 10: SDRAM Access from Clock (t_{AC})

This byte defines the maximum clock to data out for the SDRAM module. This is the Clock to data out specification at the highest given $\overline{\text{CAS}}$ Latency specified in byte 18 of this SPD specification. If other $\overline{\text{CAS}}$ latencies are supported, then the associated Maximum Clock Access times are not related in this version of the SPD standard. The byte is broken into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is:
0111	0101	
(0.7ns)	+ (0.05ns)	= 0.75ns

•	Byte 10: \$	SDRAM Ac	cess from	Clock, Sub	field A: Te	nths of Na	noseconds	(Bits 4-7)	•	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	.1ns	0	0	0	1					1_
2A	.2ns	0	0	1	0					2_
3A	.3ns	0	0	1	1					3_
4A	.4ns	0	1	0	0			4_		
5A	.5ns	0	1	0	1		See Su	bfield B		5_
6A	.6ns	0	1	1	0					6_
7A	.7ns	0	1	1	1					7_
8A	.8ns	1	0	0	0					8_
9A	.9ns	1	0	0	1					9_
10A	RFU	1	0	1	0					A_
11A	-	1	0	1	1					-
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 10: SD	RAM Acce	ess from Cl	ock Subfie	ld B: Hund	redths of N	lanosecon	ds (Bits 0-	3)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	_0
1B	+.01ns					0	0	0	1	1-
2B	+.02ns					0	0	1	0	_2
3B	+.03ns					0	0	1	1	_3
4B	+.04ns				7	0	1	0	0	4
5B	+.05ns		Saa Si	bfield A		0	1	0	1	_5
6B	+.06ns		366.30	ibileiu A		0	1	1	0	6
7B	+.07ns	L				0	1	1	1	_7
8B	+.08ns					1	0	0	0	8
9B	+.09ns					1	0	0	1	တျ
10B	RFU					1	0	1	0	_A
11B	_	-	-	-	-	-	-	-	-	-
-	Undefined	1	1	1	1	1	1	1	1	FF

Byte 11: DIMM Configuration Type

This byte describes the module's error detection and/or correction scheme.

Line #	Error Detection/Correction	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	None	0	0	0	0	0	0	0	0	00
1	Parity	0	0	0	0	0	0	0	1	01
2	ECC	0	0	0	0	0	0	1	0	02
3	TBD	0	0	0	0	0	0	1	1	03
4	TBD	0	0	0	0	0	1	0	0	04
5	TBD	0	0	0	0	0	1	0	1	05
6	TBD	0	0	0	0	0	1	1	0	06
-	-	1	-	-	1	-	1	-	1	-
-	-	-	-	-	-	-	-	-	-	-

Byte 12: Refresh Rate/Type

This byte describes the module's refresh rate and type.

Line #	Refresh Period	Bit 7 (Self Refresh Flag)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	Normal (15.625 us)	0	0	0	0	0	0	0	0	00
1	Reduced (.25x)3.9us	0	0	0	0	0	0	0	1	01
2	Reduced (.5x)7.8us	0	0	0	0	0	0	1	0	02
3	Extended (2x)31.3us	0	0	0	0	0	0	1	1	03
4	Extended (4x)62.5us	0	0	0	0	0	1	0	0	04
5	Extended (8x)125us	0	0	0	0	0	1	0	1	05
6	TBD	0	0	0	0	0	1	1	0	06
7	TBD	0	0	0	0	0	1	1	1	07
-	-	-	-	-	-	-	-	-	-	-
			,	Self Refre	sh Entries					
128	Normal (15.625 us)	1	0	0	0	0	0	0	0	80
129	Reduced (.25x)3.9us	1	0	0	0	0	0	0	1	81
130	Reduced (.5x)7.8us	1	0	0	0	0	0	1	0	82
131	Extended (2x)31.3us	1	0	0	0	0	0	1	1	83
132	Extended (4x)62.5us	1	0	0	0	0	1	0	0	84
133	Extended (8x)125us	1	0	0	0	0	1	0	1	85
134	TBD	1	0	0	0	0	1	1	0	86
135	TBD	1	0	0	0	0	1	1	1	87
-	-	-	-	-	-	-	-	-	-	-

Byte 13: Primary SDRAM Width

Bits 0-6 of this byte indicate the width of the primary data SDRAM. Bit 7 is a flag which is set to "1" when there is a second physical bank on the module which is of different size from the first physical bank (the second physical bank's data RAMs are 2X the width of those on the first physical bank). If there is a second physical bank of the same size and configuration as the first, then bit 7 remains as "0" and primary SDRAM width for both banks is expressed using bits 0-6. The primary SDRAM is that which is used for data; examples of primary (data) SDRAM widths are x4, x8, x16, and x32. Note that if the module is made with SDRAMs which provide for data and error checking, e.g. x9, x18, and x36, then it is also designated in this field.

This table contains examples of SDRAM DIMM using 1 and 2 physical banks of symmetrical and asymmetrical size.

Module Width	Physical Bank 1 Primary SDRAM Width	Physical Bank 2 Primary SDRAM Width	Physical Bank 1 Error Checking SDRAM Width	Physical Bank 2 Error Checking SDRAM Width	Possible (128Mb based) Module Density	Byte 13 Contents
x72	x9	N/A	_	N/A	128MB	0000 1001
x72	x8	N/A	x8	N/A	128MB	0000 1000
x72	x16	N/A	x4	N/A	64MB	0001 0000
x72	x8	x8	x8	x8	256MB	0000 1000
x64	x8	x16	N/A	N/A	192MB	1000 1000

	Byte 13, Sub	field A: Da	ta SDRAM	Width				
SDRAM Data Width	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
N/A		0	0	0	0	0	0	0
1		0	0	0	0	0	0	1
:		:	:	:	:	:	:	:
4		0	0	0	0	1	0	0
:		:	:	:	:	:	:	:
8		0	0	0	1	0	0	0
9		0	0	0	1	0	0	1
:	1	:	:	:	:	:	:	:
15	See Subfield B	0	0	0	1	1	1	1
16	1	0	0	1	0	0	0	0
17		0	0	1	0	0	0	1
:		:	:	:	:	:	:	:
32		0	1	0	0	0	0	0
:		:	:	:	:	:	:	:
36		0	1	0	0	1	0	0
:		:	:	:	:	:	:	:
127		1	1	1	1	1	1	1

Byte 13, Subfield B: Physical Bank 2 SDRAM Data Width Multiplier											
Bank 2 SDRAM Data Width Multiple Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0											
No Physical Bank 2 or Bank 2 uses same width SDRAM as Physical Bank 1	0		See Subfield A								
Bank 2 SDRAM is 2X the width of physical Bank 1 SDRAM	1										

Byte 14: Error Checking SDRAM Width

If the module incorporates error checking and if the primary data SDRAM does not include these bits — i.e. there are separate error checking SDRAMs — then the error checking SDRAM's width is expressed in this byte. Bits 0-6 of this byte relate the error checking SDRAM's width. Bit 7 is a flag set to "1" when the module has a second physical bank that is a different size than the first physical bank. Bit 7 set to "1" indicates that Bank 2's error checking RAMs are 2X the width of those on the first physical bank. If there is a second physical bank of the same size and configuration as the first, then bit 7 remains as "0" and error checking SDRAM width for both physical banks is expressed using bits 0-6.

The following table contains examples of error checking SDRAM widths using 1 and 2 physical banks of symmetrical and asymmetrical size.

Module Width	Physical Bank 1 Primary SDRAM Width	Physical Bank 2 Primary SDRAM Width	Physical Bank 1 Error Checking SDRAM Width	Physical Bank 2 Error Checking SDRAM Width	Possible (128Mb based) Module Density	Byte 14 Contents
x72	x9	N/A	_	N/A	128MB	0000 0000
x72	x8	N/A	x8	N/A	128MB	0000 1000
x72	x16	N/A	x4	N/A	64MB	0000 0100
x72	x8	x8	x8	x8	256MB	0000 1000
x72	x8	x16	x8	x16	192MB	1000 1000
x80	x8	x16	x8	x16	192MB	1000 1000

	Byte 14, Subfield A	A: Error Ch	necking SE	RAM Wid	th			
Error Checking SDRAM Width	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
N/A		0	0	0	0	0	0	0
1		0	0	0	0	0	0	1
:		:	:	:	:	:	:	:
4		0	0	0	0	1	0	0
:		:	:	:	:	:	:	:
8		0	0	0	1	0	0	0
9		0	0	0	1	0	0	1
:		:	:	:	:	:	:	:
15	See Subfield B	0	0	0	1	1	1	1
16		0	0	1	0	0	0	0
17		0	0	1	0	0	0	1
:		:	:	:	:	:	:	:
32		0	1	0	0	0	0	0
:		:	:	:	:	:	:	:
36		0	1	0	0	1	0	0
:		:	:	:	:	:	:	:
63		1	1	1	1	1	1	1

Byte 14, Subfield B: Physical Bank 2 Error Checking SDRAM Width Multiplier										
Bank 2 Error Checking SDRAM Width Multiple	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
No physical Bank 2 or Bank 2 uses same width SDRAM as physical Bank 1	0	See Subfield A								
Bank 2 SDRAM is 2X the width of physical Bank 1 SDRAM	1									

Byte 15: SDRAM Device Attributes – Minimum Clock Delay, Back-to-Back Random Column Access

This byte describes the minimum Clock Delay for back-to-back random column accesses. Note that SDRAM architecture can be gained with this parameter. A latency of 1 for random writes denotes Pipelined SDRAM and a latency of 2 for random writes denotes Prefetch DRAMs.

Line #	Number of Clocks	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	Undefined	0	0	0	0	0	0	0	0	00
1	1	0	0	0	0	0	0	0	1	01
2	2	0	0	0	0	0	0	1	0	02
3	3	0	0	0	0	0	0	1	1	03
4	4	0	0	0	0	0	1	0	0	04
5	5	0	0	0	0	0	1	0	1	05
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
254	254	1	1	1	1	1	1	1	0	FE
255	255	1	1	1	1	1	1	1	1	FF

Byte 16: SDRAM Device Attributes – Burst Lengths Supported

This byte describes which various programmable burst lengths are supported by the devices on the module. If the bit is "1", then that Burst Length is supported on the module; if the bit is "0", then that Burst Length is not supported by the module.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Burst Length = Page	TBD	TBD	TBD	Burst Length = 8	Burst Length = 4	Burst Length = 2	Burst Length = 1			
1 or 0 0 0 1 or 0 1 or 0 1 or 0										
1 = Supported on this assembly, 0 = Not supported on this assembly.										

Byte 17: SDRAM Device Attributes - Number of Banks on SDRAM Device

This byte details how many banks are on each SDRAM installed onto the module.

Line #	Number of Banks	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	Undefined	0	0	0	0	0	0	0	0	00
1	1	0	0	0	0	0	0	0	1	01
2	2	0	0	0	0	0	0	1	0	02
3	3	0	0	0	0	0	0	1	1	03
4	4	0	0	0	0	0	1	0	0	04
5	5	0	0	0	0	0	1	0	1	05
-	-	-	-	-	-	-	-	1	-	1
-	-	-	-	-	-	-	-	-	-	-
254	254	1	1	1	1	1	1	1	0	FE
255	255	1	1	1	1	1	1	1	1	FF

Byte 18: SDRAM Device Attributes – CAS Latency

This byte describes which of the programmable \overline{CAS} latencies are acceptable for the module. If the bit is "1", then that \overline{CAS} latency is supported on the module; if the bit is "0", then that \overline{CAS} latency is not supported by the module.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TBD	CAS Latency = 4	CAS Latency = 3.5	CAS Latency = 3	CAS Latency = 2.5	CAS Latency = 2	CAS Latency = 1.5	CAS Latency = 1
0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0

^{1 =} Supported on this assembly; 0 = Not supported on this assembly.

Byte 19: SDRAM Device Attributes – CS Latency

This byte describes which of the programmable \overline{CS} latencies are acceptable for the module. If the bit is "1", then that \overline{CS} latency is supported on the module; if the bit is "0", then that \overline{CS} latency is not supported by the module.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TBD	CS Latency = 6	CS Latency = 5	CS Latency = 4	CS Latency = 3	CS Latency = 2	CS Latency = 1	CS Latency = 0
0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0

^{1 =} Supported on this assembly; 0 = Not supported on this assembly.

Byte 20: SDRAM Device Attributes – WE Latency

This byte describes which of the programmable \overline{WE} latencies are acceptable for the module. If the bit is "1", then that \overline{WE} latency is supported on the module; if the bit is "0", then that \overline{WE} latency is not supported by the module.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TBD	WE Latency = 6	WE Latency = 5	WE Latency = 4	WE Latency = 3	WE Latency = 2	WE Latency = 1	WE Latency = 0
0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0

^{1 =} Supported on this assembly; 0 = Not supported on this assembly.

Byte 21: SDRAM Modules Attributes

This byte depicts various aspects of the module. It details various unrelated but critical elements pertinent to the module. A given module characteristic is detailed in the designated bit; if the aspect is TRUE, then the bit is "1". Conversely, if the aspect is FALSE, the designated bit is "0".

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TBD	TBD	Differential Clock Input	FET Switch External Enable	FET Switch On-Card Enable	On-Card PLL (Clock)	** Registered Address and Control Inputs	** Buffered Address and Control Inputs
0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0	1 or 0

^{1 =} Included on this assembly; 0 = Not included on this assembly.

Byte 22: SDRAM Device Attributes – General

This byte depicts various aspects of the SDRAMs on the module. It details various unrelated but critical elements pertinent to the SDRAMs. A given SDRAM characteristic is detailed in the designated bit; if the aspect is TRUE, then the bit is "1". Conversely, if the aspect is FALSE, the designated bit is "0".

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Supports Fast AP 0 = not supported 1 = supported	Supports Concurrent Auto Preharge 0 = not supported 1 = supported	*Upper V _{CC} tolerance: 0 = 0.2V 1 = TBD	*Lower V _{CC} tolerance: 0 = 0.2V 1 = TBD	TBD	TBD	TBD	Includes Weak Driver
1 or 0	1 or 0	1 or 0	1 or 0	0	0	0	1 or 0

^{1 =} Included on this assembly; 0 = Not included on this assembly.

^{*} Redundant addressing implies the use of SDRAMs having the same address depth (e.g. 4M x 4 mixed with 4M x 16) in the same 8 byte quad word, but having different RAS/CAS addressing and/or different numbers of device banks. Actual implementation is not yet determined.

^{**} Address, RAS, CAS, WE, CKE, CS

^{*} Tolerance refers to the voltage range under which the SDRAMs operate to the timings specified for PC1600 ~ 2700. For PC3200 DIMM modules, a programmed value of "0" in Bit 4 and Bit 5 means that this assembly complies with the voltage tolerance values defined in the JEDEC DDR SDRAM component specification (JESD79).

Byte 23: Minimum Clock Cycle Time at Reduced CAS Latency, X- 0.5

The highest $\overline{\text{CAS}}$ latency identified in byte 18 is X and the timing values associated with $\overline{\text{CAS}}$ latency 'X' are found at byte locations 9 and 10. Byte 23 denotes the minimum cycle time at $\overline{\text{CAS}}$ latency X- 0.5.

For example, if byte 18 denotes \overline{CAS} latencies of 1.5 to 2.5, then X is 2.5 and X-0.5 is 2. Byte 23 then denotes the minimum cycle time at \overline{CAS} latency 2.

Byte 23 is broken into two nibbles: the higher order nibble (bits 4-7) designate the cycle time to a granularity of 1ns; the value presented by the lower order nibble (bits 0-3) has a granularity of .1ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is
0111	0101	
(7ns)	+ (.5ns)	= 7.5ns

	Byte 23, SDRAM Minimum Cycle Time @ CL X-0.5, Subfield A: Whole Nanoseconds (Bits 4-7)									
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	1ns/16ns	0	0	0	1					1_
2A	2ns/17ns	0	0	1	0					2_
3A	3ns	0	0	1	1					3_
4A	4ns	0	1	0	0					4_
5A	5ns	0	1	0	1					5_
6A	6ns	0	1	1	0	1			_	6_
7A	7ns	0	1	1	1					7_
8A	8ns	1	0	0	0		See Su	ubfield B		8_
9A	9ns	1	0	0	1					9_
10A	10ns	1	0	1	0					A_
11A	11ns	1	0	1	1					B_
12A	12ns	1	1	0	0					C_
13A	13ns	1	1	0	1					D_
14A	14ns	1	1	1	0					E_
15A	15ns	1	1	1	1					F_

	Byte 23, SDRAM Minim	um Cycle	Time @ CI	L X-0.5, Տւ	ıbfield B:	Tenths of	Nanoseco	onds (Bits	0-3)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	_0
1B	+.1ns					0	0	0	1	_1
2B	+.2ns					0	0	1	0	_2
3B	+.3ns					0	0	1	1	_3
4B	+.4ns					0	1	0	0	_4
5B	+.5ns		C 0 0 C 1	ubfield A		0	1	0	1	_5
6B	+.6ns		See St	ibileia A		0	1	1	0	_6
7B	+.7ns					0	1	1	1	_7
8B	+.8ns					1	0	0	0	_8
9B	+.9ns					1	0	0	1	_9
10B	RFU					1	0	1	0	_A
-	·									-
-	Undefined	1	1	1	1	1	1	1	1	FF

Byte 24: Maximum Data Access Time (t_{AC}) from Clock at CLX- 0.5

The highest $\overline{\text{CAS}}$ latency identified in byte 18 is X. Byte 23 denotes the maximum access time from Clock at $\overline{\text{CAS}}$ latency X- 0.5.

For example, if byte 18 denotes supported \overline{CAS} latencies of 1.5 to 2.5, then X is 2.5 and X-0.5 is 2. Byte 24 then denotes the maximum clock access time from CLK at \overline{CAS} latency 2.

Byte 24 is broken into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is:
0111	0101	
(0.7ns)	+ (0.05ns)	= 0.75ns

	Byte 24: SDR	AM Acces	s from Clo	ck @ X-0.5,	Subfield A	A: Tenths o	f Nanoseco	onds (Bits 4	4-7)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	.1ns	0	0	0	1					1_
2A	.2ns	0	0	1	0					2_
3A	.3ns	0	0	1	1					3_
4A	.4ns	0	1	0	0				7	4_
5A	.5ns	0	1	0	1		See Su	bfield B		5_
6A	.6ns	0	1	1	0					6_
7A	.7ns	0	1	1	1					7_
8A	.8ns	1	0	0	0					8_
9A	.9ns	1	0	0	1					9_
10A	RFU	1	0	1	0					A_
11A	-	1	0	1	1					-
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 24: SDRAM	l Access fi	rom Clock	@ X-0.5, Sı	ubfield B: I	Hundredths	of Nanose	econds (Bi	ts 0-3)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	_0
1B	+.01ns					0	0	0	1	_1
2B	+.02ns					0	0	1	0	_2
3B	+.03ns					0	0	1	1	_3
4B	+.04ns				7	0	1	0	0	_4
5B	+.05ns		Saa Si	ubfield A		0	1	0	1	_5
6B	+.06ns		366.30	ibileia A		0	1	1	0	_6
7B	+.07ns	L			_	0	1	1	1	_7
8B	+.08ns					1	0	0	0	_8
9B	+.09ns					1	0	0	1	_9
10B	RFU					1	0	1	0	_A
11B	_	-	-	-	-	-	-	-	-	-
-	Undefined	1	1	1	1	1	1	1	1	FF

Byte 25: Minimum Clock Cycle Time at CLX-1

The highest $\overline{\text{CAS}}$ latency identified in byte 18 is X. Byte 25 denotes the minimum cycle time at $\overline{\text{CAS}}$ latency X-1.

For example, if byte 18 denotes \overline{CAS} latencies of 1.5 to 2.5, then X is 2.5 and X-1 is 1.5. Byte 25 then denotes the minimum cycle time at \overline{CAS} latency 1.5.

Byte 25 is broken into two nibbles: the higher order nibble (bits 4-7) designates the cycle time to a granularity of 1ns; the value presented by the lower order nibble (bits 0-3) has a granularity of .1ns and is added to the value designated by the higher order nibble. For example:

if bits 7:2 are	and bits 1:0 are	then the total time is
0111	0101	
(7ns)	+ (.5ns)	= 7.5ns

	Byte 25, SDRAM Minimum Cycle Time @ CL X-1, Subfield A: Whole Nanoseconds (Bits 4-7)									
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	1ns/16ns	0	0	0	1					1_
2A	2ns/17ns	0	0	1	0					2_
3A	3ns	0	0	1	1					3_
4A	4ns	0	1	0	0					4_
5A	5ns	0	1	0	1	_			_	5_
6A	6ns	0	1	1	0					6_
7A	7ns	0	1	1	1		See Su	ıbfield B		7_
8A	8ns	1	0	0	0	L			_	8_
9A	9ns	1	0	0	1					9_
10A	10ns	1	0	1	0					A_
11A	11ns	1	0	1	1					B_
12A	12ns	1	1	0	0					C_
13A	13ns	1	1	0	1					D_
14A	14ns	1	1	1	0					E_
15A	15ns	1	1	1	1					F_

	Byte 25, SDRAM Minim	um Cycle	Time @ C	L X-1, Sul	ofield B: T	enths of N	lanoseco	nds (Bits (0-3)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	_0
1B	+.1ns					0	0	0	1	_1
2B	+.2ns					0	0	1	0	_2
3B	+.3ns					0	0	1	1	_3
4B	+.4ns				٦	0	1	0	0	_4
5B	+.5ns		Coo Cu	hfield A		0	1	0	1	_5
6B	+.6ns		See Su	ıbfield A		0	1	1	0	_6
7B	+.7ns	L	_	_	_	0	1	1	1	_7
8B	+.8ns					1	0	0	0	_8
9B	+.9ns					1	0	0	1	_9
10B	RFU					1	0	1	0	_A
-							-			
-	Undefined	1	1	1	1	1	1	1	1	FF

Byte 26: Maximum Data Access Time (t_{AC}) from Clock at CL X-1

The highest CAS latency identified in byte 18 is X. Byte 26 denotes the maximum access time from Clock at CAS latency X-1.

For example, if byte 18 denotes supported \overline{CAS} latencies of 1.5 to 2.5, then X is 2.5 and X-1 is 1.5. Byte 26 then denotes the maximum data access time from CLK at \overline{CAS} latency 1.5.

Byte 26 is broken into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is:
0111	0101	
(0.7ns)	+ (0.05ns)	= 0.75ns

	Byte 26: SDRAI	M Access 1	from Clock	@ CL = X-	1, Subfield	A: Tenths	of Nanose	conds (Bits	s 4-7)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	.1ns	0	0	0	1					1_
2A	.2ns	0	0	1	0					2_
3A	.3ns	0	0	1	1					3_
4A	.4ns	0	1	0	0				7	4_
5A	.5ns	0	1	0	1		See Su	bfield B		5_
6A	.6ns	0	1	1	0					6_
7A	.7ns	0	1	1	1	L			_	7_
8A	.8ns	1	0	0	0					8_
9A	.9ns	1	0	0	1					9_
10A	RFU	1	0	1	0					A_
11A	-	1	0	1	1					-
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 26: SDRAM Access from Clock @ CL = X-1, Subfield B: Hundredths of Nanoseconds (Bits 0-3)											
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex		
0B	+0ns					0	0	0	0	_0		
1B	+.01ns					0	0	0	1	_1		
2B	+.02ns					0	0	1	0	_2		
3B	+.03ns					0	0	1	1	_3		
4B	+.04ns	Ì			7	0	1	0	0	_4		
5B	+.05ns		S00 S1	ıbfield A		0	1	0	1	_5		
6B	+.06ns		366 30	ibileiu A		0	1	1	0	_6		
7B	+.07ns	L			J	0	1	1	1	_7		
8B	+.08ns					1	0	0	0	_8		
9B	+.09ns					1	0	0	1	_9		
10B	RFU					1	0	1	0	_A		
11B	_	-	-	-	-	-	-	-	-	_		
-	Undefined	1	1	1	1	1	1	1	1	FF		

Byte 27: Minimum Row Precharge Time (t_{RP})

Byte 27 is used to designate the module's minimum Row Precharge time.

Byte 27 is broken into two pieces: the higher order bits (bits 2-7) designate the time to a granularity of 1ns; the value presented by the lower order bits (bits 0-1) has a granularity of .25ns and is added to the value designated by the higher bits. For example:

if bits 7:2 are	and bits 1:0 are	then the total time is
011001 (25ns)	00 +(0.0ns)	= 25.0ns
100001 (33ns)	11 +(.75)	= 33.75ns

Nanoseconds	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Undefined	0	0	0	0	0	0		
1ns	0	0	0	0	0	1		
2ns	0	0	0	0	1	0		
3ns	0	0	0	0	1	1		
4ns	0	0	0	1	0	0		
5ns	0	0	0	1	0	1		
6ns	0	0	0	1	1	0		
7ns	0	0	0	1	1	1	See Su	bfield B
8ns	0	0	1	0	0	0	J 366 30	Dileiu D
9ns	0	0	1	0	0	1		
10ns	0	0	1	0	1	0		
:	:	:	:	:	:	:		
:	:	:	:	:	:	:		
61ns	1	1	1	1	0	1		
62ns	1	1	1	1	1	0		
63ns	1	1	1	1	1	1		

Byte 27, SDR	Byte 27, SDRAM Minimum t _{RP} Time, Subfield B: Quarters of Nanoseconds (Bits 0-1)											
Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
+0ns							0	0				
+.25ns							0	1				
+.50ns			See Su	bfield A			1	0				
+.75ns							1	1				

Byte 28: Minimum Row Active to Row Active Delay (t_{RRD})

This field describes the minimum required delay between different row activations.

Byte 28 is broken into two pieces: the higher order bits (bits 2-7) designate the time to a granularity of 1ns; the value presented by the lower order bits (bits 0-1) has a granularity of .25ns and is added to the value designated by the higher bits. For example:

if bits 7:2 are	and bits 1:0 are	then the total time is
011001 (25ns)	00 +(0.0ns)	= 25.0ns
100001 (33ns)	11 +(.75)	= 33.75ns

Byte 28, SD	RAM Minim	um t _{RRD} Tir	ne, Subfield	A: Whole N	lanosecond	ls (Bits 2-7)		
Nanoseconds	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Undefined	0	0	0	0	0	0		
1ns	0	0	0	0	0	1		
2ns	0	0	0	0	1	0		
3ns	0	0	0	0	1	1		
4ns	0	0	0	1	0	0		
5ns	0	0	0	1	0	1		
6ns	0	0	0	1	1	0		T
7ns	0	0	0	1	1	1	See Sul	ofield B
8ns	0	0	1	0	0	0	000 00.	nicia B
9ns	0	0	1	0	0	1		
10ns	0	0	1	0	1	0		
:	:	:	:	:	:	:		
:	:	:	:	:	:	:		
61ns	1	1	1	1	0	1		
62ns	1	1	1	1	1	0		
63ns	1	1	1	1	1	1		

Byte 28, SDF	Byte 28, SDRAM Minimum t _{RRD} Time, Subfield B: Quarters of Nanoseconds (Bits 0-1)											
Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
+0ns							0	0				
+.25ns							0	1				
+.50ns			See Su	bfield A			1	0				
+.75ns							1	1				

Byte 29: Minimum RAS to CAS Delay (t_{RCD})

This byte describes the minimum delay required between assertions of $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$.

Byte 29 is broken into two pieces: the higher order bits (bits 2-7) designate the time to a granularity of 1ns; the value presented by the lower order bits (bits 0-1) has a granularity of .25ns and is added to the value designated by the higher bits. For example:

if bits 7:2 are	and bits 1:0 are	then the total time is
011001 (25ns)	00 +(0.0ns)	= 25.0ns
100001 (33ns)	11 +(.75)	= 33.75ns

Byte 29,	SDRAM Minim	um t _{RCD} Tir	ne, Subfield	A: Whole N	Nanosecono	ls (Bits 2-7)		
Nanoseconds	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Undefined	0	0	0	0	0	0		
1ns	0	0	0	0	0	1		
2ns	0	0	0	0	1	0		
3ns	0	0	0	0	1	1		
4ns	0	0	0	1	0	0		
5ns	0	0	0	1	0	1		
6ns	0	0	0	1	1	0		T
7ns	0	0	0	1	1	1	See Sut	ofield B
8ns	0	0	1	0	0	0		oncia B
9ns	0	0	1	0	0	1		
10ns	0	0	1	0	1	0		
:	:	:	:	:	:	:		
:	:	:	:	:	:	:		
61ns	1	1	1	1	0	1		
62ns	1	1	1	1	1	0		
63ns	1	1	1	1	1	1		

Byte 29, SDRA	Byte 29, SDRAM Minimum t _{RCD} Time, Subfield B: Quarters of Nanoseconds (Bits 0-1)											
Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
+0ns							0	0				
+.25ns							0	1				
+.50ns			See Su	bfield A			1	0				
+.75ns							1	1				

Byte 30: Minimum Active to Precharge Time (t_{RAS})

This byte identifies the minimum active to precharge time.

Minimum Active to Precharge Time (ns)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
Undefined	0	0	0	0	0	0	0	0	00
1	0	0	0	0	0	0	0	1	01
2	0	0	0	0	0	0	1	0	02
•		-			-	-		-	
		-	-		-	-		-	
25	0	0	0	1	1	0	0	1	19
26	0	0	0	1	1	0	1	0	1A
27	0	0	0	1	1	0	1	1	1B
28	0	0	0	1	1	1	0	0	1C
29	0	0	0	1	1	1	0	1	1D
30	0	0	0	1	1	1	1	0	1E
31	0	0	0	1	1	1	1	1	1F
32	0	0	1	0	0	0	0	0	20
33	0	0	1	0	0	0	0	1	21
34	0	0	1	0	0	0	1	0	22
35	0	0	1	0	0	0	1	1	23
36	0	0	1	0	0	1	0	0	24
		-							
		-							
127	0	1	1	1	1	1	1	1	7F
128	1	0	0	0	0	0	0	0	80
		-	-	-					
		-	-	-					
254	1	1	1	1	1	1	1	0	FE
255	1	1	1	1	1	1	1	1	FF

Byte 31: Module Bank Density

This byte describes the density of each physical bank on the SDRAM DIMM. This byte will have at least one bit set to "1" to represent at least one bank's density. If there are more than one physical bank on the module (as represented in byte 5), and they have the same density, then only one bit is set in this field. If the module has more than one physical bank of different sizes, then more than one bit will be set; each bit set for each density represented. For example:

Number of Physical Banks	Density of Physical Bank 1	Density of Physical Bank 2	Byte 3 Contents
1	32MB	N/A	0000 1000
2	32MB	32MB	0000 1000
2	32MB	16MB	0000 1100

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
512MB	256MB	128MB	64MB	32MB	4GB/16MB	2GB/8MB	1GB/4MB		
0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1		
1 = Supported o	= Supported on this assembly; 0 = Not supported on this assembly.								

Byte 32: Address and Command Setup Time Before Clock

This field describes the input setup time before the rising edge of the clock. The byte is broken into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is:
1011 (1.1ns)	0000 + (0ns)	= 1.1ns
1100 (1.2ns)	0101 + (0.05ns)	= 1.25ns

	Byte 32: SDF	RAM Setup	Time Befo	ore Clock, S	Subfield A:	Tenths of	Nanoseco	nds (Bits 4-	7)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	.1ns	0	0	0	1					1_
2A	.2ns	0	0	1	0					2_
3A	.3ns	0	0	1	1					3_
4A	.4ns	0	1	0	0				7	4_
5A	.5ns	0	1	0	1		See Su	bfield B		5_
6A	.6ns	0	1	1	0					6_
7A	.7ns	0	1	1	1	L			J	7_
8A	.8ns	1	0	0	0					8_
9A	.9ns	1	0	0	1					9_
10A	1.0ns	1	0	1	0					A_
11A	1.1ns	1	0	1	1					В_
12A	1.2ns	1	1	0	0					C_
13A	RFU	1	1	0	1					D_
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 32: SDRAM Setup Time Before Clock, Subfield B: Hundredths of Nanoseconds (Bits 0-3)									
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	_0
1B	+.01ns					0	0	0	1	_1
2B	+.02ns					0	0	1	0	_2
3B	+.03ns					0	0	1	1	_3
4B	+.04ns	Г			1	0	1	0	0	_4
5B	+.05ns		S00 Su	bfield A		0	1	0	1	_5
6B	+.06ns		See Su	ibileiu A		0	1	1	0	_6
7B	+.07ns	L	_		J	0	1	1	1	_7
8B	+.08ns					1	0	0	0	_8
9B	+.09ns					1	0	0	1	_9
10B	RFU					1	0	1	0	_A
11B	_	-	-	-	-	-	-	-	-	-
-	Undefined	1	1	1	1	1	1	1	1	FF

Byte 33: Address and Command Hold Time After Clock

This field describes the input hold time after the rising edge of the clock. The byte is broken into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is:
1011 (1.1ns)	0000 + (0ns)	= 1.1ns
1100 (1.2ns)	0101 + (0.05ns)	= 1.25ns

	Byte 33: SI	DRAM Hold	d Time Afte	r Clock, Sı	ubfield A: T	enths of N	anosecono	ls (Bits 4-7)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	.1ns	0	0	0	1					1_
2A	.2ns	0	0	1	0					2_
3A	.3ns	0	0	1	1					3_
4A	.4ns	0	1	0	0				7	4_
5A	.5ns	0	1	0	1		See Su	bfield B		5_
6A	.6ns	0	1	1	0					6_
7A	.7ns	0	1	1	1					7_
8A	.8ns	1	0	0	0					8_
9A	.9ns	1	0	0	1					9_
10A	1.0ns	1	0	1	0					A_
11A	1.1ns	1	0	1	1					B_
12A	1.2ns	1	1	0	0					C_
13A	RFU	1	1	0	1					D_
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 33: SDRAM Hold Time After Clock, Subfield B: Hundredths of Nanoseconds (Bits 0-3)									
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	0
1B	+.01ns					0	0	0	1	_1
2B	+.02ns					0	0	1	0	_2
3B	+.03ns					0	0	1	1	_3
4B	+.04ns	ſ			٦	0	1	0	0	_4
5B	+.05ns		S00 S11	bfield A		0	1	0	1	_5
6B	+.06ns		366 30	ibileiu A		0	1	1	0	_6
7B	+.07ns		_	_		0	1	1	1	_7
8B	+.08ns					1	0	0	0	_8
9B	+.09ns					1	0	0	1	9
10B	RFU					1	0	1	0	_A
11B	_	ı	-	-	-	-	-	-	-	-
-	Undefined	1	1	1	1	1	1	1	1	FF

Byte 34: Data Input Setup Time Before Clock

This field describes the input setup time before the rising edge of the clock. The byte is broken into two nibbles: the higher order nibble (bits 4-7) designates the time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is:
0010	0101	
(0.2ns)	+(0.05ns)	= 0.25ns

	Byte 34: SDI	RAM Setup	Time Befo	ore Clock, S	Subfield A:	Tenths of	Nanoseco	nds (Bits 4-	7)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	.1ns	0	0	0	1					1_
2A	.2ns	0	0	1	0					2_
3A	.3ns	0	0	1	1					3_
4A	.4ns	0	1	0	0				7	4_
5A	.5ns	0	1	0	1		See Su	bfield B		5_
6A	.6ns	0	1	1	0					6_
7A	.7ns	0	1	1	1	į l			J	7_
8A	.8ns	1	0	0	0					8_
9A	.9ns	1	0	0	1					9_
10A	RFU	1	0	1	0					A_
11A	-	1	0	1	1					-
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 34: SDRAM Setup Time Before Clock, Subfield B: Hundredths of Nanoseconds (Bits 0-3)									
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	_0
1B	+.01ns					0	0	0	1	_1
2B	+.02ns					0	0	1	0	_2
3B	+.03ns					0	0	1	1	_3
4B	+.04ns	Ī			٦	0	1	0	0	_4
5B	+.05ns		S00 S11	bfield A		0	1	0	1	_5
6B	+.06ns		366 30	ibileiu A		0	1	1	0	_6
7B	+.07ns	L				0	1	1	1	_7
8B	+.08ns					1	0	0	0	_8
9B	+.09ns					1	0	0	1	_9
10B	RFU					1	0	1	0	_A
11B	-	-	-	-	-	-	-	-	-	-
-	Undefined	1	1	1	1	1	1	1	1	FF

Byte 35: Data Input Hold Time After Clock

This field describes the input hold time after the rising edge of the clock. The byte is broken into two nibbles: the higher order nibble (bits 4-7) designate the time to a granularity of 0.1ns; the value presented by the lower order nibble (bits 0-3) has the granularity of .01ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is:
0010	0101	
(0.2ns)	+ (0.05ns)	= 0.25ns

	Byte 35: SI	DRAM Hold	d Time Afte	er Clock, St	ubfield A: T	enths of N	anosecono	ls (Bits 4-7)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	.1ns	0	0	0	1					1_
2A	.2ns	0	0	1	0					2_
3A	.3ns	0	0	1	1					3_
4A	.4ns	0	1	0	0				7	4_
5A	.5ns	0	1	0	1		See Su		5_	
6A	.6ns	0	1	1	0					6_
7A	.7ns	0	1	1	1	L				7_
8A	.8ns	1	0	0	0					8_
9A	.9ns	1	0	0	1					9_
10A	RFU	1	0	1	0					A_
11A	-	1	0	1	1					-
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 35: SDR	AM Hold T	ime After C	Clock, Subf	ield B: Hu	ndredths o	f Nanoseco	nds (Bits (0-3)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	_0
1B	+.01ns					0	0	0	1	_1
2B	+.02ns					0	0	1	0	_2
3B	+.03ns					0	0	1	1	_3
4B	+.04ns	ľ			7	0	1	0	0	_4
5B	+.05ns		S00 Su	bfield A		0	1	0	1	_5
6B	+.06ns		366 3u	ibileia A		0	1	1	0	_6
7B	+.07ns	L			J	0	1	1	1	_7
8B	+.08ns					1	0	0	0	_8
9B	+.09ns					1	0	0	1	_9
10B	RFU					1	0	1	0	_A
11B	_	1	-	-	-	-	-	-	-	-
-	Undefined	1	1	1	1	1	1	1	1	FF

Bytes 41: SDRAM Device Minimum Active to Active/Auto Refresh Time (tRC)

This byte identifies the minimum active to active or auto refresh time.

Minimum Active to Active/Auto Refresh Time (nanoseconds)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
Undefined	0	0	0	0	0	0	0	0	00
1	0	0	0	0	0	0	0	1	01
2	0	0	0	0	0	0	1	0	02
•									
								-	
25	0	0	0	1	1	0	0	1	19
26	0	0	0	1	1	0	1	0	1A
27	0	0	0	1	1	0	1	1	1B
28	0	0	0	1	1	1	0	0	1C
29	0	0	0	1	1	1	0	1	1D
30	0	0	0	1	1	1	1	0	1E
31	0	0	0	1	1	1	1	1	1F
32	0	0	1	0	0	0	0	0	20
33	0	0	1	0	0	0	0	1	21
34	0	0	1	0	0	0	1	0	22
35	0	0	1	0	0	0	1	1	23
36	0	0	1	0	0	1	0	0	24
-		-	-			-	-	-	
-		-	-			-	-	-	
127	0	1	1	1	1	1	1	1	7F
128	1	0	0	0	0	0	0	0	80
						-	-		
						-	-		
254	1	1	1	1	1	1	1	0	FE
Undefined	1	1	1	1	1	1	1	1	FF

Bytes 42: SDRAM Device Minimum Auto-Refresh to Active/Auto-Refresh Command Period(tRFC)

This byte identifies the minimum Auto-refresh to Active/Auto-refresh command period.

Minimum Auto-refresh to Active/Auto-refresh Command Period (ns)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
Undefined	0	0	0	0	0	0	0	0	00
1	0	0	0	0	0	0	0	1	01
2	0	0	0	0	0	0	1	0	02
								-	
								-	
25	0	0	0	1	1	0	0	1	19
26	0	0	0	1	1	0	1	0	1A
27	0	0	0	1	1	0	1	1	1B
28	0	0	0	1	1	1	0	0	1C
29	0	0	0	1	1	1	0	1	1D
30	0	0	0	1	1	1	1	0	1E
31	0	0	0	1	1	1	1	1	1F
32	0	0	1	0	0	0	0	0	20
33	0	0	1	0	0	0	0	1	21
34	0	0	1	0	0	0	1	0	22
35	0	0	1	0	0	0	1	1	23
36	0	0	1	0	0	1	0	0	24
	•		•		•		•	-	٠
	•						-	•	٠
127	0	1	1	1	1	1	1	1	7F
128	1	0	0	0	0	0	0	0	80
-	-	-					-	-	-
	•		•		•		•	-	٠
254	1	1	1	1	1	1	1	0	FE
255	1	1	1	1	1	1	1	1	FF

Bytes 43: SDRAM Device Maximum Cycle Time (tCK max)

This byte identifies the maximum device cycle time at any CAS latency, in nanoseconds. one special reserved value, FF, is used to describe devices which have no maximum cycle time.

Byte 43 is split into two pieces: the higher order bits (bits 2-7) designate the time to a granularity of 1ns; the value presented by the lower order (bits 0-1) has a granularity of .25ns and is added to the value designated by the higher bits. For example:

if bits 7:2 are	and bits 1:0 are	then the total time is
001100 (12ns)	00 +(0.0ns)	= 12.0ns
100001 (33ns)	11 +(.75)	=33.75ns

Byte 43, S	DRAM Maxim	num tCK Tir	ne, Subifie	d A:Whole I	Nanosecon	ds (Bits 2-7))	
if bits 7:2 are	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Undefined	0	0	0	0	0	0		
1ns	0	0	0	0	0	1		
2ns	0	0	0	0	1	0		
3ns	0	0	0	0	1	1	1	
4ns	0	0	0	1	0	0		See Subfield
5ns	0	0	0	1	0	1		
6ns	0	0	0	1	1	0		
7ns	0	0	0	1	1	1		
8ns	0	0	1	0	0	0		
9ns	0	0	1	0	0	1		
10ns	0	0	1	0	1	0		
:	:	:	:	:	:	:		
:	:	:	:	:	:	:		
61ns	1	1	1	1	0	1		
62ns	1	1	1	1	1	0		
63ns	1	1	1	1	1	1		
No minimum frequency	1	1	1	1	1	1	1	1

Byte 43, SDR	Byte 43, SDRAM Maximum tCK Time, Subified B:Quarters of Nanoseconds (Bits 0-1)										
Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
+0ns							0	0			
+0.25ns							0	1			
+0.50ns							1	0			
+0.75ns							1	1			

See Subfield A

Bytes 44: DDR SDRAM Device DQS-DQ Skew for DQS and associated DQ signals (t_{DQSQ} max)

This byte identifies the maximum skew between DQS and all DQ signals for each device, in hundredths of nanoseconds.

Maximum Device DSQ-DQ Skew (1/100 ns)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
Undefined	0	0	0	0	0	0	0	0	00
0.01	0	0	0	0	0	0	0	1	01
0.02	0	0	0	0	0	0	1	0	02
0.03	0	0	0	0	0	0	1	1	03
0.04	0	0	0	0	0	1	0	0	04
	•		-						
0.50	0	0	1	1	0	0	1	0	32
			-						
0.60	0	0	1	1	1	1	0	0	3C
			-						
	•		-						
2.54	1	1	1	1	1	1	1	0	FE
2.55	1	1	1	1	1	1	1	1	FF

Bytes 45: DDR SDRAM Device Read Data Hold Skew Factor (tQHS)

This byte identifies the maximum skew factor used in the calculation of read hold time from edges of DQS, specifically tQH=tHP-tQHS where tQHS is the read data hold skew factor. This SPD byte is split into two nibbles: the higher order nibble (bits 4-7) designate the access time to a granularity of 0.1 ns: the value presented by the lower order nibble (bits 0-3) has the granularity of 0.01 ns and is added to the value designated by the higher nibble. For example:

if bits 7:4 are	and bits 3:0 are	then the total time is
0111 (0.7ns)	+ 0101 (0.05ns)	= ± 0.75ns
1010 (1.0ns)	+ 0000 (0ns)	= ± 1.0ns

	Byte 45:SDRAM R	ead Data	Hold Skev	/ Factor,S	ubfield A :	Tenths of	Nanosec	onds (Bits	4-7)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0A	Undefined	0	0	0	0					0_
1A	.1ns	0	0	0	1					1_
2A	.2ns	0	0	1	0					2_
3A	.3ns	0	0	1	1					3_
4A	.4ns	0	1	0	0					4_
5A	.5ns	0	1	0	1		See S	Subfield I	в	5_
6A	.6ns	0	1	1	0					6_
7A	.7ns	0	1	1	1					7_
8A	.8ns	1	0	0	0					8_
9A	.9ns	1	0	0	1					9_
10A	1.0ns	1	0	1	0					A_
11A	1.1ns	1	0	1	1					В_
12A	1.2ns	1	1	0	0					C_
13A	RFU	1	1	0	1					D_
-	Undefined	1	1	1	1	1	1	1	1	FF

	Byte 45:SDRAM Rea	d Data Ho	ld Skew F	actor,Subf	ield B : Hu	ındredths	of Nanos	econds (B	its 0-3)	
Line #	Access from Clock	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0B	+0ns					0	0	0	0	_0
1B	+.01ns					0	0	0	1	_1
2B	+.02ns					0	0	1	0	_2
3B	+.03ns					0	0	1	1	_3
4B	+.04ns				\neg	0	1	0	0	_4
5B	+.05ns		See S	Subfield A	\	0	1	0	1	_5
6B	+.06ns					0	1	1	0	_6
7B	+.07ns					0	1	1	1	_7
8B	+.08ns					1	0	0	0	_8
9B	+.09ns					1	0	0	1	_9
10B	RFU					1	0	1	0	_A
11B	-	-	-	-	-	-	-	-	-	-
-	Undefined	1	1	1	1	1	1	1	1	FF

Byte 46: Reserved for future use

Byte 47: SDRAM Device Attributes - DDR SDRAM DIMM Height

Bit 0-1 of this byte provides information of the DIMM's height. Bits 2-7 are undefined.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TBD	TBD	TBD	TBD	TBD	TBD	SDRAM DIMM Height	
0	0	0	0	0	0	1 or 0	1 or 0
00 01 10	DIMM Height (nom No DIMM height a 1.125 inch to 1.25 1.7 inch Other	vailable					

Byte 48-61: Reserved for future use

If a superset technology is developed and is completely backward compatible, it may be specified and its SPD may be defined in these bytes.

Byte 62: SPD Revision

This byte describes the compatibility level of the encoding of the bytes contained in the SPD EEROM, and the current collection of valid defined bytes. This byte must be coded as 00h for SPDs with revision level 0.0. Software should examine the upper nibble (Encoding Level) to determine the format of defined bytes in the SPD to see if it can correctly interpret the contents of the module SPD. The lower nibble (Additions Level) can optionally be used to determine which additional bytes or attribute bits have been defined; however, since any undefined additional byte must be encoded as 00h or undefined attribute bit must be defined as 0, software can safely detect additional bytes and use safe defaults if a zero encoding is read for these bytes. As the Additions Level increases, existing byte and attribute bit encodings remain unchanged so that software written to a lower Additions Level can safely decode the subset of additions for which is was written.

SPD Revision						Hex				
SFD Revision	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	1167	
Revision 0.0	0	0	0	0	0	0	0	0	00	
Undefined	0	0	0	0	0	0	0	1	01	
	-			-		-	-			
Revision 1.0	0	0	0	1	0	0	0	0	10	
	-			-	-	-	÷	-		
Undefined	1	1	1	1	1	1	1	1	FF	

Byte 63: Checksum for Bytes 0-62

This field designates the checksum for checking data integrity (similar to parity) for bytes 0 - 62. It is written during module production and can be used by the customer to verify the data integrity for these bytes.

Process for Calculating the Checksum

- 1. Convert binary information, in byte locations 0 62, to decimal.
- 2. Add together (sum) all decimal values for addresses 0 62.
- 3. Divide sum by 256.
- 4. Convert remainder to binary (will be less than 256).
- 5. Store result (single byte) in address 63 as "Checksum."

Note: The same result can be obtained by adding the binary values in addresses 0 - 62 and eliminating all but the low order byte. The low order byte is the "Checksum."

Example of a Checksum Calculation

SPD Byte Address	Seria	al PD		Convert to Decimal				
0	0010	0100	\rightarrow	36				
1	1111	1110	\rightarrow	+254				
2	0000	0000	\rightarrow	+ 0				
3	0000	0000	\rightarrow	+ 0				
		1	\rightarrow	+ 0				
\	`	↓	\rightarrow	+ 0				
60	0000	0000	\rightarrow	+ 0				
61	0000	0000	\rightarrow	+ 0				
62	0000	0000	\rightarrow	+ 0				
Decimal Total		•	1	290				
Divide by 256		-	ı	1				
Remainder	emainder -		-	34				
Convert to binary	0010 0010		←	34				
63 (Checksum)	0010	0010	-	-				

Bytes 64-71: Module Manufacturer's JEDEC ID Code

Manufacturers of a given module include their identifier according to JEDEC spec JEP106. The first byte is utilized, the second byte is filled with zeros. For example, a company whose value is hexadecimal CE would be coded as: "CE000000 00000000."

Byte 72: Module Manufacturing Location

Manufacturers include an identifier that uniquely defines the manufacturing location of the memory module. While the SPD spec will not attempt to present a decode table for manufacturing sites, the individual manufacturer would keep track of manufacturing location and its appropriate decode represented in this byte.

Bytes 73-90: Module Part Number

The manufacturer's part number is written in ASCII format within these bytes. Unused digits are coded as ASCII blanks (20h).

Bytes 91-92: Module Revision Code

This refers to the module revision code. While the SPD spec will not attempt to define the format for this information, the individual manufacturer keeps track of the revision code and its appropriate decode represented in this byte.

Bytes 93-94: Module Manufacturing Date

The module manufacturer includes a date code for the module. The JEDEC definitions of bytes 93 and 94 are year and week, respectively. These bytes must be represented in Binary Coded Decimal (BCD). For example, week 47 in year 2003 would be coded as 03 (0000 0011 binary) in byte 93 and 47 (0100 0111 binary) in byte 94."

Bytes 95-98: Module Serial Number

The supplier includes a serial number for the module. The supplier may use whatever decode method desired to maintain a unique serial number for each module.

Bytes 99-127: Manufacturer's Specific Data

The module manufacturer includes any additional information desired into the module within these locations.

Bytes 128-255: Open for Customer Use

These bytes are unused by the manufacturer and are open for customer use.

ASCII Decode Matrix for SPDs

The following table is a subset of the full ASCII standard which is used for coding bytes in the Serial Presence Detect EEPROM that require ASCII characters:

		Second Hex Digit in Pair														
First Hex Digit in Pair	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
2	Blank Space								()				- Dash		
3	0	1	2	3	4	5	6	7	8	9						
4		Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	V	W	Х	Υ	Z					
6		а	b	С	d	е	f	g	h	i	j	k	I	m	n	0
7	р	q	r	S	t	u	٧	W	Х	у	Z					

Examples:

20h=Blank Space

34h=4

41h=A

SPD Bytes 73-90						
Manufacturer's PN Coded in ASCII						
13M32734BCD-260Y	31334D33323733344243442D323630592020					