Advanced Business Analytics Final Project

Forecasting Customer Returns

Section 3 Team 9

Abhishek Nambiar Aditya Uppuluri Lavanya Karthikeyan Madhulika Chilla Mandeep Singh Rahi Tanveer Singh Sapra

Steps followed

Defining the business problem

- Steady increase in sales and profits for the business
- But, returned value crossing more than 10% of sales value in 2017
- Puts future sales planning at risk
- Expected to increase in the future with eCommerce

Other than losing almost 10% of revenue, additional costs are incurred on customer returns

Dataset description and aggregation

Calculate % return rate and returned value

Exploratory data analysis

Business overview

55%+ discount

Average sales were highest when discount offered was greater than 55%

531 cities

These cities were the main hubs of customers ordering products

28% profit

About 700 customers contribute to over 28% profit in sales through purchases

Returns overview

Delivery duration

Number of Products Returned by Segment

Number of Products Returned by Region

Returns rate varying by region and category

Region

West has more than 3x the average returns rate of other regions.

Category

Technology, responsible for 51% of total profits, has the highest returns rate among categories.

No significant correlation found

(>= 0.5 or <= -0.5)

0.8

0.6

0.4

0.2

0.0

-0.2

Non-stationary time series observed

No significant ACF observed

Augmented Dickey-Fuller Test

data: return.ts

Dickey-Fuller = -3.2748, Lag order = 3, p-value =

0.08608

alternative hypothesis: stationary

Auto Arima

Training set error measures:

MF RMSE MAE MPE

Training set 3.601599e-12 0.04156151 0.03359206 -Inf

MAPE MASE ACF1

Training set Inf 0.6409524 0.04702396

Moving on to smoothing models

Models not giving best results

Finalized on Holt-Winters' method

	ME	RMSE MAE	
Training set	: 0.003076962 (0.041	L35453 O. 0 3306079	9 -Inf
Test set	0.012088221 0.020	014200 0.01678227	7 10.48281
		SE ACF1 Th	neil's U
Training set	Inf 0.630815	55 -0.04376335	NA
Test set	16.95784 0 320213	37 -0.32595043 0.	.6369183

Month-Year	Forecasted values	
Jan-2018	0.1172	
Feb-2018	0.0777	
Mar-2018	0.0879	
Apr-2018	0.0871	
May-2018	0.0820	
June-2018	0.0703	

Particularly forecasting for West region

Year

	ME	RMSE	MAE	MPE
Training set				
Test set	-0.003215744	0.04448113	8 .03675545	-7.4059
	MAF			Theil's U
Training set			0.1042406	
Test set	20.4825	7 6.2893429	9 -0.6066518	0.3664636

Month-Year	Forecasted values		
Jan-2018	0.2930		
Feb-2018	0.1980		
Mar-2018	0.1727		
Apr-2018	0.2567		
May-2018	0.1797		
June-2018	0.1223		

Recommendations

Focus on West region to forecast and reduce return rate

Monitor category-wise and city-wise return rates

Collect additional returns data to improve forecasting

Adopt multivariate time series forecasting in the future

Thank you!