	Name - Ayush Jain SAP JO - GOODY20013 Div - BIBI MAEER'S MIT	2
	Matris - III	
	Tutorial - 6	
1>	Find the complex form of fourier review	
	$f(x) = \begin{cases} x^2 & 0 \leq x < 1 \end{cases}$	
	$f(x) = \begin{cases} x^2 & 0 \le x < 1 \\ 1 & 1 < x < 2 \end{cases}$	
2>	Show that set of function $Q_n(x) = \sin\left(\frac{n\pi x}{L}\right), n = 1,2,3$.	
	is orthogonal set on interval o = > < 1 and find corresponding	B
	ostrogonal set.	
3>	Find the fourier integral representation of the function	
	$f(x) = \begin{cases} 0, & \chi < 0 \end{cases}$ $\begin{cases} \frac{1}{2}, & \chi = 6 \end{cases}$ $e^{-\chi}, & \chi > 0$	
	e^{-x} , x70	
•		
	Page	1

$$f(x) = \sum_{n=-\infty}^{\infty} (n e^{-\frac{n\pi x}{2}}) where (n = 1) f(x) e^{-\frac{n\pi x}{2}} dx$$

$$Cn = \frac{1}{2} \left[\int_{-\infty}^{\infty} x^{2} e^{-in\pi x} dx + \int_{-\infty}^{\infty} e^{-in\pi x} dx \right]$$

$$= \frac{1}{2} \left[\frac{e^{in\Pi X}}{e^{in\Pi X}} \left[\frac{x^2 - 2x}{e^{in\Pi X}} + \frac{2}{2} \right] + \frac{1}{2} \left[\frac{e^{-in\Pi X}}{e^{in\Pi X}} \right]^2$$

$$\frac{2\left[-in\pi \left(\frac{1+5}{5}-\frac{5}{5}\right)-\frac{5}{5}+\frac{5}{5}in\pi -\frac{5}{5}in\pi \right]}{10\pi}$$

$$= \frac{1}{2} \left[\frac{-in\pi}{in\pi} + \frac{-in\pi}{2} + \frac{-in\pi}{in\pi} - \frac{-in\pi}{2} + \frac{-in\pi}{in\pi} \right]$$

$$= \frac{1}{2} \left[\frac{2e^{\pi i} + 2e^{\pi i}}{\sin^3 \pi^3} - \frac{2}{\sin^3 \pi^3} - \frac{-2n\pi i}{\sin \pi} \right]$$

$$e^{-in\pi} = \cos n\pi - i\sin n\pi = (-i)^n$$
 $e^{-2n\pi i} = \cos 2n\pi i - i\sin 2n\pi i = 1$

$$e^{-2n\pi i}$$
 = cosen πi - $i\sin 2n\pi i$ = 1

$$\begin{cases} \sqrt{5} & \sqrt{3} & \sqrt{3} & \sqrt{3} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5} & \sqrt{5}$$

MAEER'S MIT

$$(0 = 1) \int_{0}^{2} f(x) e^{\frac{-i\sigma R A}{2}} dx = 1 \int_{0}^{2} f(x) dx$$

$$\begin{bmatrix} c_0 - 1 & x^2 dx + 2 & dx \end{bmatrix} = \begin{bmatrix} c_1 + 1 & c_2 \\ c_3 & c_4 & c_4 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_4 \\ c_4 & c_4 & c_4 \end{bmatrix}$$

$$f(x) = 2 + 1 \leq \left[2(-1)^{n} - 2i(1-1)^{n} - 1 \right] + i = in\pi$$

$$3 + 2 = -\infty \left[n^{2}\pi^{2} + n^{3}\pi^{3} + n\pi \right]$$

$$\Phi(x) = a(n(\pi nx)) \qquad n = 1,2,3...$$

$$\int_{0}^{\infty} dm(x) \, dn(x) \, dx = \int_{0}^{\infty} \sin(m\pi x) \, dx$$

$$= \frac{1}{2} \left[\cos \left(\frac{\pi \pi x}{L} - n \pi x \right) - \cos \left(\frac{\pi \pi x}{L} + n \pi x \right) \right] dx$$

$$\frac{3\left(\frac{m-\upsilon}{L}\right)}{\sin\left(\frac{\Gamma}{(m-\upsilon)^{\frac{1}{2}}}x\right)} - \frac{\sin\left(\frac{\Gamma}{(m+\upsilon)^{\frac{1}{2}}}x\right)}{\cos\left(\frac{\Gamma}{(m+\upsilon)^{\frac{1}{2}}}x\right)}$$

$$= \frac{1}{2} \left[\frac{\Gamma(m-\nu)}{\Gamma(m+\nu)} - \frac{\Gamma(m+\nu)}{\Gamma(m+\nu)} \right]$$

MAEER'S MIT

[ale 1:
$$m \neq n$$
, then

... m, n are integers $sin(m-n)\pi = 0$ and $sin(m+n)\pi = 0$

... $fom(x) fon(x) dx = 0$

[ale 2: $m = n$, then

[ale 2: $m = n$, then

[ale 3: $fom(x) fon(x) dx = 0$

[ale 3: $fom(x) fon(x) dx = 0$

[ale 4: $fom(x) fon(x) dx = 0$

[ale 5: $fom(x) fon(x) dx = 0$

[ale 6: $fom(x) fon(x) dx = 0$

[ale 7: $fom(x) fon(x) dx = 0$

[ale 8: $fom(x) fon(x) dx = 0$

[ale 9: $fom(x) fon(x) dx = 0$

[ale 1: $fom(x) fon(x) fon(x) dx = 0$

[ale 1: $fom(x) fon(x) fon$

Case 4

Solution ! 0.3

The fourier representation of
$$f(x)$$
 is given by
$$f(x) = \int_{-\pi}^{\infty} \int_{-\pi}^{\infty} f(t) \cos(x(t-x) dt) dx$$

$$-f(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos \left(x(t-x)\delta t\right) dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} e^{t} \cos x (t-x) dt dx + 0$$

$$= \frac{1}{\pi} \int \left\{ \cos x_2 \left[e^{-t} \left\{ -\cos x_1 + \alpha \sin x_1 \right\} \right] \right\} dx$$

As
$$\lim_{x\to\infty} e^{-x}$$
 $|x\to\infty|$ i.e. $e^{-x}\to0$

i.f(x) = $\lim_{x\to\infty} (\cos\alpha x + \alpha \sin\alpha x) d\alpha$... $|e^{-\alpha}=0|$

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} (\cos \alpha x + \alpha \sin \alpha x) dx$$