Adopted Levels, Gammas History Author Literature Cutoff Date M. Shamsuzzoha Basunia, Anagha Chakraborty NDS 186, 2 (2022) 31-Mar-2022 $Q(\beta^{-})=-13884.77 \ 23; \ S(n)=16531.22 \ 3; \ S(p)=11692.69 \ 1; \ Q(\alpha)=-9316.56 \ 1$ S(2n)=29676.23 16, S(2p)=20486.805 22 (2021Wa16). Other reactions: 2004Be18, 2004Be08: 12 C(24 Mg, 12 C), E=130 MeV; measured Eγ, (particle)γ-coin. 2011Fr14: ¹²C(¹³C,n) E=12, 13.5, 20 MeV; measured reaction products ²⁵Mg; deduced ²⁴Mg excited states and reported resonance energies at 13.25 MeV 20 and 14.25 MeV 20. 2001Di12: 11 B(13 N,X), (13 N, 12 C), E=29.5, 45 MeV. Measured particle spectra, fusion σ . Deduced 24 Mg 6- α decay features, isospin purity/mixing in 24 Mg at excitation energy ~47 MeV, GDR γ -emission features. 2006Va20: 28 Si(p,p'X) 24 Mg, E=1 GeV; measured Eγ; deduced σ . ²⁴Mg Levels Cross Reference (XREF) Flags

Α	²⁴ Na β^- decay (14.956 h)	N	20 Ne(α, γ):Resonances	Other	rs:
В	²⁴ Na β^{-} decay (20.18 ms)	0	20 Ne(α,α),(α,α'):Resonances	AA	Coulomb excitation
C	²⁴ Al ε decay (2.053 s)	P	20 Ne(6 Li,d),(7 Li,t)	AB	24 Mg($\alpha,\alpha'\gamma$)
D	²⁴ Al ε decay (130.7 ms)	Q	22 Ne(3 He,n)	AC	24 Mg(6 Li, 6 Li')
E	²⁵ Si εp decay	R	23 Na(p, γ),(p,p'),(p,X),	AD	24 Mg(16 O, 16 O')
F	²⁶ P ε2p decay	S	23 Na(3 He,d),(3 He,d γ)	ΑE	25 Mg(p,d)
G	28 P εα decay	T	24 Mg(γ , γ')	AF	25 Mg(3 He, 4 He)
H	$^{12}C(^{12}C,\gamma)$	U	24 Mg(e,e')	AG	$^{27}\text{Al}(\mu^-, v3n\gamma)$
I	¹² C(¹² C,p):Resonances	V	24 Mg($\pi^+,\pi^{+\prime}$),($\pi^-,\pi^{-\prime}$)	AH	27 Al(p, α)
J	$^{12}C(^{14}N,d)$	W	²⁴ Mg(p,p'),(pol p,p'),	ΑI	28 Si(d, 6 Li)
K	$^{12}\text{C}(^{24}\text{Mg},^{12}\text{C}\gamma)$	X	24 Mg(n,n' γ)	AJ	28 Si(28 Si,X γ)
L	$^{12}\text{C}(^{16}\text{O},\alpha),(^{16}\text{O},\alpha\gamma)$	Y	24 Mg(3 He, 3 He')		
М	$^{12}C(^{24}Mg, 2^{12}C)(^{20}Ne, 2^{12}C)$	7	24 Mg($\alpha \alpha'$)		

		12C(12C, 12C(14N, 12C(24M) 12C(16O,	p):Resonances d) g, 12 C γ) α), $(^{16}$ O, $\alpha\gamma$)	V 24 W 24 X 24 Y 24	⁴ Mg(p, ⁴ Mg(n,	⁺ ,π ⁺ '),(π ⁻ ,π ⁻ ') p'),(pol p,p'),	AG AH AI AJ	27 Al(μ^- , ν^3 n γ) 27 Al(p, α) 28 Si(d, 6 Li) 28 Si(2 Si, 2 X γ)
E(level) [†]	J^{π}	$\frac{12}{12} \text{C}(^{24}\text{M})$ $\frac{\text{T}_{1/2} \text{ or } \Gamma^{j}}{12}$	g,2 ¹² C),(²⁰ Ne,2 ¹² C)		⁴ Mg(α,	α')	(Comments
0 <i>P</i>	0+	stable	ABCDEFGH JKL N	PQRSTUVI	WXYZ	δ < r^2 >(26Mg, 2 4Mg)= (2012Yo01). < r^2 > $^{1/2}$ (2 4Mg)=3.05 evaluation). Other	=+0.140 570 <i>16</i> (rs: 3.057	AE, AF, AG, AH, AI, AJ 0 fm ² 5 (stat) 25 (syst) (charge radius) (2013An02 70 fm 7 (stat) 48 (syst) (1971Li26 – (e,e')).
1368.667 ^p 5	2+	1.36 ps <i>3</i>	A CDEF H JKL N	PQRSTUV	WXYZ	XREF: Others: AA, μ =+1.08 β ; Q=-0.2 g=0.538 $I3$ (2015K T=0 (2015Ku05) J ^π : L=2 in ²⁴ Mg(p, T _{1/2} or Γ: From τ= lifetimes of (α, γ) (¹⁶ O, α),(¹⁶ O, $\alpha\gamma$): (1970Al10), 2.09 (1970Cu02); (e,e' (1969Ti01), 1.9 p (γ, γ'): 1.76 ps 2 I ps $I5$ (1971Sw07 ps $I0$ (1979Fe05) (1970Ha04), 2.02	AB, AC, 19 3 u05) p'). E2 1 1.96 ps 1.96 ps 13 (1.19 ps 2 (1976) (1981C), 1.92 ps 10 (AD, AE, AF, AG, AH, AI, AJ to 0 ⁺ . 5: weighted average of mean

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
				(1989Ke04), 2.00 ps 45 (1973Le15). Others τ: (α,α'γ): 1.44 ps +11-9 (1968Ro05); (γ,γ'): 1.11 ps 13 (1970He01), 1.1 ps 2 (1965Ka15); (p,γ): 1.40 ps 45 (1972Me09) – omitted as outlier. μ: From 2020StZV, 2015Ku05 – Time Dependent Recoil in Vacuum. Other: +1.02 4 from 2014StZZ – Recoil into Vacuum, Differential method (1975Ho15), Perturbed Angular Correlation after Ion Implantation (1974Eb02). Q: From 2021StZZ – Coulomb Excitation Reorientation (1990Gr11). Others: -0.18 2 (1981Sp07), -0.178 13 (13) (1979Fe05), -0.07 3 (1981Ko06) – also listed in 2014StZZ.
4122.853 ^p 12	4+	24.3 fs <i>21</i>	ACE H jKL N P RS U WXYZ	Uncertainty in g-factor includes 0.011 (statistical) and 0.007 (systematic). XREF: Others: AB, AD, AE, AF, AG, AH, AI, AJ
				μ =+1.7 <i>12</i> XREF: AJ(4115.1).
				J^{π} : L=4 in (α,α') and in 24 Mg(p,p'); E2 to 2^+ .
				$T_{1/2}$ or Γ: From mean lifetime τ =35 fs 3: Weighted
				average of τ values from ($^{16}O_{,}\alpha$),($^{16}O_{,}\alpha\gamma$): 53 fs 9 (1975Br10) and 48 fs 9 (1983Sp01); (p, γ),(p,p'): 32 fs 3, 33 fs 2 (both from 1989Ke04), 40 fs 4 (1973Le15), 25 fs
				5 (1972Me09); (³ He,d),(³ He,dγ): 68 fs 25 (1969An08); (n,n'γ): 56 fs 19 (1984El12); (p,p'),(pol p,p'): 65 fs 19 (1972Pe02); (σ,σ'γ): 51 fs + 22 28 (1068Pe02). Other
				(1972Ba93); $(\alpha, \alpha' \gamma)$: 51 fs +33-28 (1968Ro05). Other: mean lifetime τ =169 fs 34 (outlier) (1971Ha32 – $(\alpha, \alpha' \gamma)$).
4238.35 ^q 4	2+	45.7 fs <i>35</i>	A CDE H jKL N P RS UVWXYZ	μ : From 2020StZV, 1983Sp01 – Transient Field. XREF: Others: AB, AD, AE, AF, AG, AH, AI, AJ μ =+1.3 4
				J ^π : L=2 in (α , α') and ²⁴ Mg(p,p'). T _{1/2} or Γ: From τ =66 fs 5: Weighted average of mean lifetimes (¹⁶ O, α),(¹⁶ O, $\alpha\gamma$): τ =85 fs 15 (1975Br10), 110 fs 26 (1970Cu02 – revised value of τ =83 fs 16
				(1968Cu05)); (p, γ),(p, p'): 66 fs 5, 63 fs 5 (1989Ke04), 88 fs II (1973Le15), 53 fs 9 (1972Me09); (3 He,d),(3 He,d γ): τ =86 fs 30 (1969An08); (e,e'): 63 fs
				10 (1974Jo10), 60 fs 6 (1978Za07), 69 fs 12 (1969Ti01); (p,p'),(pol p,p'): 120 fs 30 (1967AlZV), 95 fs 25 (1972Ba93); $(\alpha,\alpha'\gamma)$: 101 fs 25. Others: $(\alpha,\alpha'\gamma)$: 185 fs 22 (1971Ha22); $(\alpha,\alpha'\gamma)$: $(\alpha,\alpha$
				33 (1971Ha32); (n,n'γ): τ=105 fs 5 (1984E112). μ: From 2020StZV, 1983Sp01 – Transient Field.
5235.16 ^q 5	3 ⁺	68 fs 5	A C H JKL N RS W Y	XREF: Others: AB, AE, AF, AG, AH, AI, AJ XREF: AH(5251).
				J^{π} : L(p,d)=0+2, unnatural parity ($^{16}O,\alpha$). Band
				assignment. L=3 in 24 Mg(p,p') gives π =– is inconsistent. $T_{1/2}$ or Γ : From τ =98 fs 7: weighted average of data from
				$(^{16}\text{O},\alpha),(^{16}\text{O},\alpha\gamma): \tau=109 \text{ fs } 15 \text{ (1975Br10)}; (p,\gamma),(p,p'): 105 \text{ fs } 16, 101 \text{ fs } 7 \text{ (1989Ke04)}, 65 \text{ fs } 11 \text{ (1972Me09)},$
				120 fs 16 (1973Le15); (3 He,d),(3 He,dy): 95 fs 25 (1969An08); (p,p'),(pol p,p'): 130 fs 70 (1967AlZV) and 128 fs 32 (1972Ba93); ($\alpha,\alpha'\gamma$): 173 fs 46 (1971Ha32), 79 fs +47-51 (1968Ro05).
6010.34 ^q 5	4+	53 fs 4	C H JKL N P RS UVWXYZ	XREF: Others: AB, AD, AE, AF, AH, AI, AJ μ =+2.1 16
				XREF: V(5.93E3)AD(6.1E3)AJ(6007.3).

E(level) [†]	$_J^\pi$	$T_{1/2}$ or Γ^{j}	XREF	Comments
6432.2 10	0+	69 fs <i>12</i>	JKL N PQR UVW YZ	J ^π : L=4 in (α,α') and ²⁴ Mg(p,p'), natural parity (¹⁶ O,α). T _{1/2} or Γ: From τ =77 fs δ : weighted average of data from (³ He,d),(³ He,dy): τ =50 fs 25 (1969An08); (p,p'),(pol p,p'): 85 fs 22 (1972Ba93); (¹⁶ O,α),(¹⁶ O,αy): 77 fs $I4$ (1975Br10); (p,γ),(p,p'): 63 fs $I0$ and 83 fs δ (1989Ke04); and 83 fs $I0$ (1973Le15), 46 fs $I4$ (1972Me09); (n,n'γ): 115 fs 20 (1984E112); $(\alpha,\alpha'\gamma)$: 71 fs +37–40 (1968Ro05). Others: (p,p'),(pol p,p'): 200 fs I 0 (1967AlZV); I 124 fs I 20 (1971Ha32). μ: From 2020StZV, 1984Sp03 – Transient Field. XREF: Others: AB, AD, AE, AF, AH, AI XREF: AF(6448). J ^π : L=0 in I 0 in I 0 fs I 7: Weighted average of I 1 values from (¹⁶ O,α),(¹⁶ O,αγ): 66 fs I 9 (1976Br34); (p,γ),(p,p'): 105 fs I 5, 140 fs I 70 (1988Ke04), 110 fs I 7 (1973Le15); and (p,p'),(pol p,p'): 77 fs I 3 (1972Ba93). Others: (p,p'),(pol p,p'): 270 fs I 30 (1968Ro05); (p,γ),(p,p'): 66 fs I 3 (1972Me09). Uncertainty of I 7=100 fs I 7 is the
7.0×10 ³ 7348.60 <i>10</i>	2+	6.5 fs 22	C JKL N P RS UVW YZ	lowest input value. XREF: Others: AD XREF: Others: AD, AE, AF, AH, AI, AJ J^{π} : L=2 in (α,α') and 24 Mg(p,p'), natural parity $(^{16}$ O, $\alpha)$. $T_{1/2}$ or Γ : Weighted average of 4.5 fs 14 from
7555.3 10	1-	270 ^l fs 55	JKL N RS W YZ	(p,γ) , 10 fs 2 from (e,e') , and 24 fs 11 from (p,p') . XREF: Others: AD, AE, AF, AH XREF: J(7.58E3).
7616.41 7	3-	1.01 ps <i>15</i>	C H KL N RS UVW YZ	J^{π} : L=1 in 24 Mg(p,p'), natural parity (16 O, α). XREF: Others: AE, AF, AH, AI XREF: V(7.55E3). J^{π} : L=3 in (α,α') and 24 Mg(p,p'), natural parity
7747.7 2	1+	12.5 fs 28	L N RS W Y	(16 O,α). $T_{1/2}$ or Γ: From τ =1.46 ps 22: Weighted average of τ values from (p,γ),(p,p'): 1.19 ps 20 (1989Ke04), 2.00 ps 55 (1973Le15); (p,p'),(pol p,p'): 2.1 ps 4 (1967AlZV) and 1.8 ps 6 (1972Ba93). XREF: Others: AF E(level): Other values: 7750 3 (3 He,d) and 7746 3
7812.4 <i>5</i>	(4 ⁻ ,5 ⁺)	21 fs <i>3</i>	C JKL N RS W Y	(p,p'). J^{π} : L(³ He,d)=0+2 and unnatural parity (¹⁶ O, α). XREF: Others: AF, AH
8113.2 ^p 10	6 ⁺	3.6 fs <i>12</i>	JKL PRS WY	XREF: AH(7797). T _{1/2} or Γ: Weighted average of 24 fs 3 (16 O, α) and 17 fs 4 (p, γ). J ^{π} : γ to 3 ⁺ and 4 ⁺ states; and γ from 5 ⁻ . Unnatural parity (16 O, α). XREF: Others: AD, AF, AH, AI, AJ XREF: Y(8120)AJ(8104.7).

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}	XRE	F	Comments
					J ^{π} : L=6 in (p,p'), natural parity (16 O, α). T _{1/2} or Γ: Weighted average of 3.9 fs 21 (16 O, $\alpha\gamma$) and 3.5 fs 12 (p, γ).
8358.1 [‡] <i>3</i>	3-	63 fs 8	H jKL N	RS UVW YZ	XREF: Others: AD, AF, AH, AI J^{π} : L=3 in (p,p'), natural parity ($^{16}O,\alpha$). $T_{1/2}$ or Γ : Weighted average of 76 fs 38 ($^{16}O,\alpha\gamma$),
8438.4 10	1-	9 fs 2	jK N	RS W YZ	54 fs 8 (p, γ), 76 fs 13 (e,e'), and 82 fs 17 (p,p'). XREF: Others: AB, AD, AH, AI T=0
8439.29 5	4+	3.2 fs <i>14</i>	C H KL N	R	J^{π} : D γ to 0 ⁺ and L=1 in ²⁴ Mg(p,p'). XREF: Others: AF , AH J^{π} : γ to 2 ⁺ . log ft =3.93 from 4 ⁺ . Natural parity.
8654.9 [‡] 4	2+	14 fs <i>3</i>	L N	PRS WY	XREF: Others: AF , AI E(level): Other values: 8655 3 (3 He,d), 8654 3 (p,p'), and 8661 10 (3 He, 4 He). J ^{π} : L=2 in (p,p'), γ to 0 ⁺ , natural parity. T _{1/2} or Γ: From τ =20 fs 5 : Unweighted ave. of data from (16 O, α),(16 O, $\alpha\gamma$): t=28 fs 7 (1976Br34); (p, γ),(p,p'): 10 fs 2 (1989Ke04), 13 fs 5 (1972Me09), and 29 fs 7 (1973Le15).
8864.5 [‡] 2	2-	5.5 fs 21	L N	RS W Y	XREF: Others: AF , AI E(level): Others: 8870 <i>3</i> (3 He,d), 8864 <i>3</i> (p,p'), and 8866 <i>10</i> (3 He, 4 He). J ^{π} : 2 from $\gamma\gamma(\theta)$ in 23 Na(p, γ)) (1969Ba47). Unnatural parity (16 O, α).
9003.5 [‡] 2	2+	8.4 ^m fs 12	L N	RS U W YZ	XREF: Others: AB , AF , AI E(level): Others: 8995 21 from (e,e'), 9002 3 from (p,p'), and 9012 10 from (³ He, ⁴ He). J ^π : L=2 in (p,p'). Natural parity (¹⁶ O,α).
9146.2 [‡] <i>3</i>	1-		L	RS W YZ	XREF: Others: AB, AF, AI XREF: S(9166)AF(9166). J^{π} : L=1 in (p,p'). Natural parity (16 O, α).
9160 <i>15</i> 9284.4 <i>3</i>	[5 ⁻] ^h 2 ⁺ ,4 ⁺	11 fs <i>3</i>	J H KL N	RS u W Y	XREF: Others: AF J^{π} : L=2 in (3 He,d), natural parity (16 O, α), γ from (3) and $^{4+}$.
9299.8 [‡] 3			K n	R	24
9301.07 9	(4^{+})	7 fs 2	C H L n	R VW	J^{π} : γ' s to 2 ⁺ and 4 ⁺ . log ft =4.8 from 4 ⁺ in ²⁴ Al ε decay (2.053 s).
9305.39 24	0+	173 ⁿ fs 35	L	R u Z	J^{π} : From ²⁴ Mg(α,α'), based on comparison of differential cross sections to DWBA calculations.
9450 <i>15</i> 9457.81 <i>4</i>	$[5^-,6^+]^h$ $(3)^+$	4.3 fs 21	C L N	RS W Y	XREF: Others: AI XREF: Others: AF J^{π} : L=2 in (3 He,d), in (3 He, 4 He), and in (3 He, 3 He'); γ' s to 1 ⁺ and 4 ⁺ . Tentative unnatural parity in (16 O, α).
9516.18 <i>5</i>	4+	12 fs 5	C L N	RS W	XREF: Others: AF T=1 J^{π} : γ' s to 2 ⁺ and 4 ⁺ , isobaric analog to ²⁴ Na ground
9527.6 ⁹ 7	(6 ⁺)	8 ⁿ fs 4	KL	WY	state. Natural parity (16 O, α). L(3 He,d)=2. XREF: Others: AF, AI, AJ XREF: W(9521)Y(9520)AJ(9523).

E(level) [†]	$\underline{\hspace{1cm}}^{\pi}$	$T_{1/2}$ or $\Gamma^{\dot{j}}$		XREF	7		Comments
						_	J^{π} : L=(6) in (³ He, ³ He'); band member in (²⁴ Mg, ¹² C γ).
9532.7 [‡] 2	$(2,3)^{+}$	14 fs 7			R	W	XREF: Others: AF, AI T=0
							XREF: AF(9650).
							J^{π} : L(p,p')=2 and γ to 3 ⁻ . T _{1/2} or Γ: Weighted average of 34 fs <i>14</i>
4		***					$(p,p'),(pol\ p,p')$ and 11 fs 5 $(p,\gamma),(p,p')$.
9828.0 [‡] <i>20</i>	1+	0.30 ^m fs 7	D	N	RSTU	JWY	XREF: Others: AF T=0&1
	L						J^{π} : Log ft =4.6 from 1 ⁺ ; γ to 0 ⁺ ; D γ from 0 ⁺ at 13048.
9940 <i>15</i> 9965.3 <i>11</i>	[5 ⁻] ^h	71 ^m as 7	D	J N	RSTU	T W	XREF: Others: AF
9903.3 11	1	/1 as /	D	IN	KSTC) W	T=1
							J^{π} : Log ft =3.5 from 1 ⁺ ; γ to 0 ⁺ . $T_{1/2}$ or Γ : Weighted average of 93 as $I8$ from
							(γ, γ') and 69 as 6 from (e,e').
10027.97 [‡] 9	5-	62 ⁿ fs 18	Н	KL N	RS V	W Y	XREF: Others: AI T=0
							XREF: V(9.97E3).
							J^{π} : L=5 in (p,p') and in (3 He, 3 He'), natural parity (16 O, α).
10059.1‡ 4	$(1,2)^+$	<3 fs	D	L N	RS	W	XREF: Others: AF
							T=1 E(level): Other: Least-squares fit yields 10059 3.
±							J^{π} : log ft =4.5 from 1 ⁺ , L=(0)+2 (³ He,d).
10110.9 [‡] 4	(0^+)	<50 keV		L N	R	WY	T=0 J^{π} : L=0 in (3 He, 3 He'); also in 1968Ol04
							$(^{16}\text{O},\alpha\gamma)$, based on simultaneous fits to the angular correlations of the two cascade gamma rays involved.
10161 <i>3</i>	(0^+)			L N	S	W	XREF: Others: AF
							J^{π} : L=0 in (p,p'). γ to 2 ⁺ . Tentative L(³ He,d)=(1) inconsistent for π =+.
	,						E(level): From (p,p') , $(pol p,p')$.
10250 <i>15</i> 10333.6 [‡] 2	$[4^+,5^-]^h$ 3^{-c}	<70 keV		J	D.C.	7.7	T. 0
10555.0* 2	3		Н	L N	RS	W	T=0 J^{π} : L=3 in (p,p').
10360.7 [‡] 3	2+	1.0 fs <i>3</i>		KL N	RSTU	J W YZ	XREF: Others: AF, AI T=0
							$T_{1/2}$ or Γ : weighted average of 0.8 fs 2 from
							(γ, γ') and 1.3 fs 3 from (e,e'). J^{π} : L=2 in (α, α') , 24 Mg(p,p') and $^{(3}$ He, $^{(3)}$ He');
10575.93 8	(4)+	9 ⁿ fs 2	С	JLN	c		γ 's to 0^+ . XREF: Others: AI
10373.93 6	$(4)^{+}$	9 18 2	C	JLN	S	W	T=0
							XREF: J(10490). J^{π} : L=4 in (p,p') for doublet. log ft =4.5 in from
							4^+ in ²⁴ Al ε decay (2.053 s).
10581.26 [‡] <i>13</i>	$(2^+,3^+,4^+)$	<2 fs			R	W	XREF: Others: AF, AI J^{π} : γ 's to 2 ⁺ and 4 ⁺ . L=4 in (p,p') for doublet.
10659.8‡ 2	$(1,2^+)$			L	Rs		J^{π} : γ' s to 0^+ and 2^+ .

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}		XREF			Comments
10660.17 [‡] 17	(3+,4+)	<2 fs		N	Rs	W	J^{π} : γ' s to 3^+ and 4^+ . L=4 in (p,p') for doublet.
10679.7 [‡] <i>3</i>	0+	2.1 ⁿ eV 8	D	L N	Rs	W YZ	XREF: Others: AF T=0
+		***					J ^π : Spin=0 from $\gamma\gamma(\theta)$ in (α,γ) ; π =+ from L=2 in (³ He, ⁴ He). Also L=0 in (³ He, ³ He').
10712.2 [‡] 2	1+	23 ^m as 2		L	R TI	JW	T=1 J^{π} : M1 excitation in (e,e') and (γ, γ') .
10731.1‡ 2	2+	7 fs <i>3</i>		L N	RS	W	XREF: Others: AF T=0
							J ^π : 6491.8γ D to 2 ⁺ , Δ J=0; π =+ from L(=3He,d)=0+2.
10820.8 4	3+,4+	7.5 ⁿ eV 11	С	L N	RS	WY	XREF: Others: AF XREF: S(10838).
10017.0 2	2+	0.0111 5 1	_		D.C.		J^{π} : γ to 2 ⁺ , L=4 in 24 Mg(p,p'), and RUL.
10917.2 [‡] 3	2+	0.8 ^m fs 1	D	L N	RST	JWY	XREF: Others: AF, AI T=0
							XREF: U(10939). J^{π} : L=2 in (3 He, 4 He), (3 He,d), and
11012 3	3,5 ⁺			L N	s		(3 He, 3 He'); γ' s to 0 $^{+}$ and 4 $^{+}$, and RUL.
11012 5	5,5			LN	3		E(level): Weighted average of 11008 4
11018 3	2+	<30 keV	D	L N	S	vW Y	($^{16}\text{O},\alpha$) and 11014 3 (α,γ). XREF: Others: AF, AI
							T=0 E(level): Weighted average of 11017 3 from
							(p,p'), 11018 4 from (16 O, α), 11020 3 from (α , γ), 11022 10 from (3 He, 4 He), 11016 7 (d, 6 Li).
							J ^{π} : L=2 in (³ He, ³ He'); γ' s to 0 ⁺ and 4 ⁺ ; and RUL; also in (α , γ) based on $\alpha\gamma(\theta)$ for spin 2.
11133 <i>3</i>		26 ⁿ fs 4		L N		vW	E(level): From (α, γ) . Others: 11128 3 $(^{16}\text{O}, \alpha)$, 11128 3 (p, p') .
11150 <i>15</i> 11165 2	$[6^+,7^-]^h$	<30 keV		J		W. W.	T=0
11103 2	3	<5° kev		L N		WY	E(level): Weighted average of 11161 4
							$(^{16}\text{O},\alpha)$, 11167 2 (α,γ) , and 11161 3 (p,p') . J^{π} : L=3 in (p,p') and $(^{3}\text{He},^{3}\text{He}')$; spin=3 from
11181 <i>3</i>				L N		W	$\alpha \gamma(\theta)$ in (α, γ) . E(level): From (p, p') , (pol p, p'). Others: 11182
11101 5				LA			$4 (^{16}\text{O},\alpha)$ and 11185 (α,γ) . J^{π} : L=3 in (p,p') possibly for doublet.
11187.3 [‡] 3		0.002211 77.12		K N	R	W	
11207 3		0.0022 ⁿ eV 12		L N	R	W	T=0&1 XREF: N(11215). E(level): From (p,p').
11216.69 [‡] <i>18</i>	3+,4+	0.78 ⁿ eV 11	С	L N	R	W Y	XREF: Others: AF
							T=0 XREF: N(11226)AF(11228).
11293 <i>3</i>		20 ⁿ fs 3		L N	s	W	J^{π} : L=4 in (p,p') and (3 He, 3 He'); γ to 2 ⁺ . E(level): From (p,p').
11314.4 <i>15</i>	$(3,4)^+$		С	L N	S	WY	XREF: Others: AF

E(level) [†]	J^π	$T_{1/2}$ or Γ^{j}		XREF			Comments
11330 <i>3</i> 11390 <i>20</i>	0+ <i>i</i>			L N	Rs	WZ	J ^π : log ft =5.2 in ²⁴ Al ε decay (2.053 s). γ to 2 ⁺ . E(level): From (p,p').
11390 20	1-	0.5° keV		L NO	Rs I	JWY	XREF: Others: AF T=0
							E(level): Weighted average of 11390 4 (16 O, α), 11395 3 (α , γ), 11390 5 (α , α), 11389 3 (p,p'). J ^{π} : L=1 in (p,p') and (3 He, 3 He'); γ to 0 ⁺ .
11394 [#] 4				L	S		XREF: Others: AF L(³ He, ⁴ He)=1 probably for a doublet.
11452.8 [‡] 4	2+	<20 keV		L N	Rι	ı W Y	T=0 J^{π} : L=2 in (p,p') and (3 He, 3 He').
11457 3	(0 ⁺)&		D	NO	S		XREF: Others: AF T=0
							E(level): Weighted average of 11455 4 (16 O, α), 11461 4 (α , γ), 11460 5 (α , α), 11457 3 (3 He,d), and 11456 3 (p,p').
11522 2	2+	0.5° keV	D	L N	Rs I	JWY	XREF: Others: AF T=0
							XREF: U(11474). E(level): Weighted average of 11523 2 (α , γ), 11519 4 (16 O, α), and 11521 3 (p,p'). J ^{π} : L=2 in (p,p') and spin=2 from $\alpha \gamma(\theta)$ in (α , γ).
11527 4	(2 ⁺)&			J L 0	S		XREF: Others: AF
11560	(2+)						E(level): Weighted average of 11528 4 (16 O, α), 11526 5 (α , α).
11568 11600 2	(2 ⁺) 3 ⁻	15 ⁿ fs 4		L N		Y W	J ^π : L=2 in (³ He, ³ He'). XREF: Others: AF, AI T=0
							E(level): From (α, γ) . J^{π} : spin=3 from $\alpha \gamma(\theta)$ in (α, γ) , natural parity $\binom{16}{0}, \alpha$.
11618 <i>3</i> 11698.2 <i>13</i>	4 ⁺	1.6 ⁿ eV 6	С	L N L N	c	W	E(level): From (p,p') .
11098.2 13	4	1.0 ev 0	C	L N	S	W	XREF: Others: AF, AI T=0 Edward: Weighted according for 11700 2 (cm) 11608 (
							E(level): Weighted average of 11700 2 (α, γ) , 11698.6 13 (³ He,d), 11694 3 (p,p') , 11694 4 (¹⁶ O, α), and 11701 10 (³ He, ⁴ He).
11730 2	0^{+i}	10° keV 2		L NO	S	w z	J ^π : L=4 in (p,p'); spin=4 from $\alpha \gamma(\theta)$ in (α,γ). T=0
							E(level): Weighted average of 11727 4 (16 O, α), 11732 2 (α , γ), 11735 5 (α , α), 11724 5 (3 He,d), and 11727 3 (p,p').
11830 2				JLN	S	W	J^{π} : L=0 in (p,p'). XREF: J(11810).
				<i>y</i>			E(level): Weighted average of 11827 4 ($^{16}\text{O},\alpha$), 11831.7 18 ($^{3}\text{He,d}$), and 11828 3 (p,p').
11860 [‡] 2	(8+)	63 ⁿ fs 24		KL N			XREF: Others: AI XREF: N(11865).
							J ^{π} : From linear polarization measurements (1978We03) (16 O, $\alpha\gamma$); γ to 6 ⁺ ; π =N (16 O, α). The possibility of 6 ⁺ assignment discarded with 85% confidence (1978We03).
							$T_{1/2}$ or Γ: From (16 O, α).
				Continued	on ne	xt page	(footnotes at end of table)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}		XREF			Comments
11862.8 13	1 ⁻ⁱ	7.0° keV 3		NO	RS	W Z	E(level): Weighted average of 11868 5 (α , α'), 11869 3 (α , γ), 11862.7 12 (3 He,d), 11862 3 (p,p'), and 11860 2 (p, γ).
11909 2		5.5° keV 22		N	R		J ^{π} : L=1 in (p,p'); spin=1 from $\alpha\gamma(\theta)$ in (α , γ). T=0 E(level): Weighted average of 11904 4 (α , γ) and 11910 2 (p, γ),(p,p'),(p,x).
11932.9 [‡] 2	(3) ⁺	<0.02 keV		L N	RS	W	XREF: Others: AF J^{π} : L(3He,d)=2,0+2; γ to 2 ⁺ and 2 ⁻ and 4 ⁺ and $(4^{-},5^{+})$.
11966.6 [‡] 5	2+	2.0 keV 4		L NO	RS	W	T=0 J ^π : L=2 in (p,p'); spin=2 from $\alpha\gamma(\theta)$ in (α , γ). T _{1/2} or Γ: Weighted average of 2.4 keV 5 (α , γ) and 1.8 keV 4 (p, γ).
11988.5 [‡] <i>1</i>	2+	<0.02 keV		L	RS	W	XREF: Others: AI T=0
12003 3		<10 keV		N		W	J ^π : L=2 in (p,p'); L=0+2 in (3 He,d); γ to 2 ⁺ ,4 ⁺ . T=0 E(level): Weighted average of 12004 4 (α , γ) and 12002 3 (p,p').
12017.2 [‡] 6	3-	0.7 keV 2		N	RS	U W	T=0 XREF: U(11990). J ^{π} : L=3 in (p,p'); L(³ He,d)=1; populated in (α , γ) implies natural parity. In (e,e') 11990 keV25 overlaps two lower levels; J^{π} =3 ⁻ implies excitation of this level.
12051.3 [‡] 5	4+	<0.02 keV	С	N	RS	VW	XREF: Others: AF T=0&1 J^{π} : L=4 in (p,p'); populated in (α, γ) implies natural parity.
12119.0 [‡] <i>10</i>	4 ⁺ f	1.9° keV 3	С	L N	R	W	T=0 J ^{π} : log ft =5.3 from 4 ⁺ ; γ' s to 2 ⁺ and 4 ⁺ ; populated in (α, γ) implies natural parity.
12128 [‡] 3 12162 3	4+	0.9° keV 3	С	N	R	W W	T=0 E(level): Weighted average of 12163 4 (α , γ) and 12161 3 (p,p'). J^{π} : L=4 in (p,p'); populated in (α , γ): resonance – implies natural parity.
12183.3 [‡] <i>1</i> 12244 <i>3</i>		<0.046 keV			R	W W	γ' s to 0^+ and 4^+ .
12259.3 [‡] 5	2-	<0.06 keV			R	W	J ^{π} : From (p, γ) 1963Gl05, based on γ (θ) and γ - γ correlation measurements. L=3 in (p,p') for doublet.
12259.8 [‡] 4	3-	1.8° keV 3		N	R	W	T=0 J^{π} : From 1956Ba96, based on elastic scattering (p ₀) in 23 Na(p,p). L=3 in (p,p') for doublet.
12273 <i>5</i> 12340 <i>15</i>	$(3^{-})^{\&}$ $[7^{+}]^{h}$			O J			
12340.2‡ 4	3+	<0.07 keV			R	W	J ^{π} : From (p, γ) 1963Gl05, based on γ (θ) and γ - γ correlation measurements.
12342 3		3.5 ⁿ fs 14		L		W	E(level): From (p,p'),(pol p,p').

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}		XREF		Comments
12385	0^{-d}	7 keV 2		R		
12400.3 [‡] 5	3+	<0.09 keV		R		T=0
						J ^{π} : From 1963Gl05, based on $\gamma(\theta)$ and γ - γ angular correlation measurements.
12404.9 [‡] 5	2+	<0.1 keV	D	N R	W	T=0&1
12443 <i>3</i>	6+,7-	11 ⁿ fs 3		L N	W	J ^{π} : L=2 in (p,p'); Log ft =5.5 from 1 ⁺ ; γ to 4 ⁺ . T=0
	,					E(level): Weighted average of 12446 4 (α, γ) and 12441 3 (p,p') .
						J ^{π} : From $\alpha\gamma\gamma$ angular correlations ((16 O, $\alpha\gamma$) – 2012Di04).
12450 <i>3</i>	1^{-d}	5.7° keV 4		N R	W	T=0
		Į,				E(level): Weighted average of 12456 4 (α, γ) and 12447 3 (p,p') .
12467 <i>3</i>	2+	5.1 ^k keV <i>1</i>	D	NO	W	T=0 E(lavel): Weighted everage of 12467, 4 (e.g.), 12466
						E(level): Weighted average of 12467 4 (α, γ) , 12466 5 (α, α) , and 12467 3 (p, p') . J ^{π} : L=2 in (p, p') .
12478 <i>3</i>	2^{+} &d	3.8° keV 3		NO R	W	E(level): Weighted average of 12472 4 (α, γ) , 12484
						5 (α,α) , and 12479 3 (p,p') ; populated in (α,γ) , (α,α) resonances – implies natural parity.
12507 <i>3</i>	4+	2.3° keV 3		NO R	W	T=0
						XREF: O(12515). E(level): Weighted average of 12508 4 (α, γ) , 12515
						$5 (\alpha, \alpha)$, and 12504 3 (p,p').
						J ^{π} : L=4 in (p,p'); populated in (α , γ), (α , α) resonances – implies natural parity.
12527.6 [‡] 6	1^{+d}	7.5 keV 10	L	. R	U W	T=0&1
						XREF: L(12.54E3). J^{π} : 2 ⁺ in (e,e') for 12522 30 (larger uncertainty) is
						inconsistent.
12581 <i>3</i>	2^{+d}	5.5 keV 6		NO R	W	T=0
						E(level): Unweighted average of 12580 4 (α, γ) ,
						12587 2 (α,α) , and 12577 3 (p,p') . J^{π} : L=2 in (p,p') .
						$T_{1/2}$ or Γ: Weighted average of 6.2 keV 6 (α , γ),
4-						5.2 keV 9 (α,α) , and 4 keV I (p,γ) .
12638.7 [‡] <i>1</i>	4 ⁺	0.03 keV 2		L N R	W	T=0&1
						J ^{π} : L=4 in (p,p'); populated in (α , γ): resonance – implies natural parity.
12659.1 [‡] <i>1</i>		0.08 keV 8		R	W	• •
12660.8 [‡] 5	3-	0.9° keV 3		NO R	W	T=0 J^{π} : L=3 in (p,p').
12670.0 [‡] 5	2^{-d}	4.0 keV 5		R	U W	T=1
						J^{π} : 8430.1 γ D to 2 ⁺ , ΔJ =0.
12733.3‡ 6		<0.6 keV		o R	U	XREF: U(12706).
12739.0 [‡] 7	2+	8.0° keV 7		No R	W	T=0
						J ^{π} : L=2 in (p,p'); populated in (α , γ): resonance – implies natural parity.
						$T_{1/2}$ or Γ : weighted average of 8.3 keV 5 from
	-1.0	k				(α, γ) and 6.7 keV 10 from (p, γ) .
12744 <i>I</i>	$(2^+)^a$	11 ^k keV 2		0		

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}		XREF			Comments
12747 2	$(4^+)^a$	2 ^k keV 2		0			
12778 [‡] <i>1</i>	2+ <i>e</i>	30 keV 5		O R	2	W	T=0
12784 2	$(1^{-})^{a}$	28 ^k keV 4		0			
12807.8‡ 5	2+	1.8 keV 6		N R	ł	W	T=0 J^{π} : L=2 in (p,p'); populated in (α , γ): resonance
							- implies natural parity. $T_{1/2}$ or Γ : Unweighted average of 2.3 keV 3 (α, γ) and 1.2 keV I (p, γ) .
12818.1‡ 2	1^{+de}	2.3 keV 4		O R	t .		T=0&1
12846.9 [‡] 5	(3-,4+)	0.2 keV <i>1</i>		L R	l	W	$T=0$ J^{π} : L=3 or 4 in (p,p').
12852.3 [‡] 5		0.3 keV 1		N R	ł		T=0
12854 <i>I</i>	$(1^+, 2^+, 3^+)$	0.4 keV <i>I</i>		R	l		J^{π} : γ to 0 ⁺ and 3 ⁺ . Others: (1 ⁺ ,2,3 ⁻) in 1972Me09; (0 ⁻) in 1987Va24 probably erroneous – both in (p, γ),(p,p'),(p,x).
12861 <i>3</i>	2+,3-	<10 keV		N		W	T=0 E(level): From (p,p') , $(pol\ p,p')$. J^{π} : γ' s to 1 ⁻ and 4 ⁺ .
12895.1‡ 5	1^{+de}	0.3 keV 2		R	Ł	W	T=0
12921.6 [‡] 5	$(2^+,3^-,4^+)$	6.5 keV 5		N R	2	W	T=0&1
							J ^π : γ 's to 2 ⁺ and 4 ⁺ ; populated in (α, γ) : resonance – implies natural parity. $T_{1/2}$ or Γ : Weighted average of 6.7 keV 6 (α, γ)
12955.5 [‡] <i>1</i>	1+	1.9 keV <i>1</i>		L R		T-7	and 6.3 keV 5 (p, γ). T=1
12933.31	1	1.9 KeV 1		L R		W	J^{π} : 1 from $\gamma\gamma(\theta)$ measurements in 23 Na(p, γ) (1969Ba47); γ' s to 0 ⁺ and 2 ⁺ . 1 ⁺ in 1987Va24 – 23 Na(p, χ).
12963.9 [‡] <i>5</i>	2- e	3.5 keV 2		R	t .	W	T=0
12967.9 5		<1.5 keV	_	R			
12975 3	4 ⁺	3.3 ⁰ keV 3	С	NO		W	T=0 XREF: O(12983). E(level): Weighted average of 12973 3 (p,p'), 12977 4 (α, γ) , and 12983 10 (α, α) . J ^{π} : L=4 in (p,p').
12997.9 [‡] <i>5</i>		0.3 keV 2		O QR	U	W	XREF: O(13005?).
13029.8 [‡] <i>1</i>	2+,3- e	0.7 keV 1		R	l	W	T=1
13048 2	0+	3.0 keV 7		L NO R)	W	γ' s to 1 ⁻ and 4 ⁺ . 2 ⁺ in $(p,\gamma),(p,p'),(p,x)$. T=1
		3.0 KeV /		LNOR		w	E(level): Weighted average of 13047 4 (α , γ), 13049 2 (p, γ), and 13047 3 (p,p'). J ^π : D γ to 1 ⁺ , based on $\gamma\gamma(\theta)$ in (α , γ); populated in (α , γ), (α , α') resonances – implies natural parity. T _{1/2} or Γ: Unweighted average of 2.3 keV 4 (α , γ) and 3.7 keV 5 (p, γ).
13050.0 [‡] <i>I</i>	4+ <i>d</i>	0.09 keV 3		N R	l	W	T=0&1 J^{π} : L=4 in (p,p'); populated in (α,γ) resonance – implies natural parity.
13057 3	5- <i>f</i>	<10 keV		L N		W	T=0 XREF: L(13070). E(level): Weighted average of 13070 20 (16 O, α), 13061 4 (α , γ), and 13055 3 (p,p').

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	X	REF				Comments
13088.8‡ 5	2+	9 keV 3		N	R	W		T=0&1 J ^π : L=2,3 in (p,p'), γ to 4 ⁺ and 0 ⁺ . T _{1/2} or Γ: Unweighted average of 11.9 keV 6 (α , γ), and 6.4 keV 7 (p, γ).
13095 2	$(2^+)^a$	14 ^k keV 3		0				* **
13133 3	0+ <i>i</i>	7 keV <i>1</i>	J	N	R		Z	T=0 E(level): Weighted average of 13136 4 (α, γ) and 13132 3 (p, γ) . T _{1/2} or Γ : Weighted average of 9 keV 2 (α, γ) and 6 keV $I(p, \gamma)$.
13138 3		5.4° keV 5		N	R	W		T=0 XREF: N(13141). E(level): Weighted average of 13141 4 (α, γ) and 13137 3 (p,p') .
13146		3.2 keV 5			R			The state of the s
13160.5 [‡] 7 13178 <i>3</i>		1.7 keV 7			R	W W	z	T=0
13184.6 [‡] 8		5.6° keV 4		N	R	W	Z	T=0
13196 2	0 ^{+<i>i</i>}	2.7° keV 4	I	NO	R	W	Z	T=0 E(level): Weighted average of 13202 4 (α , γ), 13194 2 (α , α), and 13198 3 (p,p'). J ^π : From $\alpha_0(\theta)$ in ²³ Na(p,X), X= α_0 . T _{1/2} or Γ: Others: 12 keV 3 (α , α),(α , α'); 3 keV I (p, γ).
13206 2	$(4^+)^a$	14 ^k keV 3		0				
13212.8 13260 <i>4</i>	1 ^{-e}	2.3 ⁿ fs 12 36 ^o keV 3	KL	N	R	V		T=0
12269 7 7	(1) ⁺ ^e	≈8 keV			D			E(level): From (α, γ) .
13268.7 <i>7</i> 13275.5 <i>10</i>	(1)	≈8 keV ≈2 keV			R R			T=0
13335 3	1 ^{-e}	33° keV 3		N	R			T=0 E(level): Weighted average of 13338 4 from (α, γ) , 13334 3 from (p, γ) .
13345.7‡ 6	3-	0.6 keV 2		0	R	W		T=0&1 J ^π : L=3 in (p,p'). T _{1/2} or Γ: Other: 42 keV $\beta(\alpha,\alpha),(\alpha,\alpha')$.
13352					R			1)2
13355.0 8	2- e	15.2 keV 2			R			
13366.9 [‡] 8	(2)	1.6 keV 7			R	Ū		T=1 XREF: U(13371). J^{π} : γ to 0 ⁺ and (4 ⁻ ,5 ⁺).
13370 10	0^{+i}						Z	
13390 <i>15</i>	[7 ⁻] ^h		J					
13413 4		2.8° keV 3		No	D			T-0
13419.3 8		3.2 keV 7		no	R			T=0 $T_{1/2}$ or Γ: From (α, γ) for doublet.
13424.7‡ 12	2-	3.2 keV 7		no	R			T=0 $T_{1/2}$ or Γ: From (α, γ) for doublet.
13437 4	3-	15.0° keV 25		No		W		T=0 E(level): Weighted average of 13436 4 (α, γ) and 13440 7 (p,p') . J ^{π} : L(p,p')=3; populated in (α,γ) : resonance – implies natural parity.
13446.8 [‡] 8	(1,2)	<0.4 keV			R			T=0

²⁴Mg Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}	XREF			Comments
						J^{π} : γ to 0^+ and 1^- and 2^+ .
13450 [#] 20	6^{+f}	<15 ⁿ keV	J L			,
13452.4 8	$2^+,(1^+)^e$	3.2 keV 7	J L	R		T=0
13474.9 [‡] 8	2+,3,4+	<1 keV		R		J^{π} : γ' s to 2^+ and 4^+ .
13482.9 [‡] 8	2 ,5,4	1.2° keV 3	M			
13482.91 8		6.9 keV 10	N	R R		T=0 T=0
and the second s	(1)=0					
13585 [‡]	(1) ^{-e}	21 keV 2	n	R		T=0
10505 1 7 10	1-0	0.01.17.10		_		$T_{1/2}$ or Γ: From (α, γ) .
13587.1‡ 10	1-a	8.0 keV <i>10</i>	n0	R		T=0 J^{π} : Also from $\alpha_0(\theta)$ in 23 Na(p,X), X= α_0 T Other: and 33 keV 5 (α , α) is comparable with 21 keV 2 of 13585 level, however, the level energy 13589 2 matches with this level.
13632.6 11		2.1 keV 12		R		T=0
13677.4 [‡] 9		6.5 ^k keV <i>17</i>	N	R		T=0
						$T_{1/2}$ or Γ : Unweighted average of 4.8 keV 8 (α, γ) and 8.2 keV 5 (p, γ) .
13686 [‡] <i>1</i>	2 ^{-e}	23 keV 3	C 0	R		
13708	$(3^{-})^{b}$	≈130 ^k keV	0			
13722 4	2+	4.3° keV 3	N	R		T=0
						E(level): From (α, γ) .
						J^{π} : From $\alpha_0(\theta)$ in ²³ Na(p,X), $X=\alpha_0$.
13738 <i>1</i>	$(2^+)^a$	13 ^k keV 3	0			
13771 3	5- <i>é</i>	5.5 keV 23	N	R		T=0 E(level): Weighted average of 13768 4 (α , γ) and 13772 3 (p , γ). J ^{π} : From L(p , α ₀)=5 (1987Va24); T _{1/2} or Γ: Unweighted average of 3.2 keV 4 (α , γ) and 7.8 keV 10 (p , γ).
13788 10	(4 ⁺) ^b	≈21 ^k keV	0			E(level): Weighted average of 13786 10 from (α,α) , and 13790 10 from 24 Mg (α,α') . Uncertainty is the input value.
13800 3	0+ <i>i</i>	4.5° keV 7	N	R	Z	T=0 XREF: Z(13790). $T_{1/2}$ or Γ : Weighted average of 4.4 keV 4
12012 2	1-6	241 77 4		_		(α, γ) and 8 keV 2 (p, γ) .
13813 3	1^{-e} 2^{-e}	24 keV 4		R		T=0
13819 2 13841 <i>3</i>	2	39 keV <i>9</i> 2.5 keV <i>5</i>	1	R R		1=0
13850 4		<1° keV	1 N	K		T=0
13882 [‡] 2	1 ⁺ e			ъ		
		2.0 keV 2		R		T=0 XREF: O(13868).
13886 [‡] 3	2 ^{+e}	38 keV 8	0	R		T=0 XREF: O(13890). Γ : Weighted average of 32 keV 8 (α , α) and 48 keV 10 (p , γ).
13893 [‡] <i>3</i>	0+ <i>i</i>	13 keV 2	N	R	Z	T=0 XREF: N(13885)Z(13890). Γ: weighted average of 12.0 keV 18 (α , γ) and 15 keV 3 (p, γ).
13910 <i>1</i>	4 ^{+a}	18 ^k keV 3	0			***
13933 2	$(1,2,3)^{+e}$	3.0 keV 6	ŭ	R		T=0
13948 <i>3</i>	1+e	4.0 keV 8		R		T=0
						1.6.113

Continued on next page (footnotes at end of table)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
13984 <i>3</i> 14019 <i>4</i>	$(1,2,3)^{+e}$ 3^{-e}	4.9 keV 5	O R V	T=0 T=0 XREF: V(13.96E3). E(level): Weighted average of 14007 10 (α,α) and 14020 3 (p,γ) .
14026 [‡] 3	2 ⁺ e	5.1 keV 8	N R	T=0 T _{1/2} or Γ: Weighted average of 6.2 keV 7 (α , γ) and 4.5 keV 5 (ρ , γ).
14037 2	$(1^{-})^{a}$	21 ^k keV 4	0	(27)
14060 10		<4 ^k keV	0	
14079 4		24° keV 5	NO	E(level): Unweighted average of 14080 4 (α, γ) and 14077 (α, α) . Uncertainty from (α, γ) .
14081 <i>3</i>	1 ⁺ e	6.0 keV <i>6</i>	NO R	T=0 XREF: O(14091). E(level): Weighted average of 14084 4 (α, γ) and 14080 3 (p, γ) .
14101 <i>4</i>		1.4° keV 4	j NO	T=0 XREF: O(14097). E(level): From (α, γ) .
14150 4	8+ <i>f</i>	1.8° keV 4	j L N	T=0 E(level): From (α, γ) .
14152 4		6.2° keV 7	N W	$T=0$ E(level): From (α, γ) .
14157 <i>4</i>			N	T=0
14165 <i>1</i>	$(4^+)^a$	11.1 ^k keV <i>19</i>	0	
14245 <i>4</i>		11.3° keV 14	N	T=0
14264 <i>1</i>	$(4^{+})^{a}$	16 ^k keV 2	0	
14329 4	4 ⁺ f	<10 keV	L N	T=0 E(level): From (α, γ) .
14355 12	$(3^{-})^{a}$	112 ^k keV 29	0	
14397 2	4+ <i>af</i>	12 ^k keV 3	L 0	T=0 XREF: L(14410).
14461 [@] <i>10</i>		46 ^k keV	OP	
14500		•	W	
14568 <i>10</i>	$(3^-,5^-)^a$	<13 ^k keV	L O	XREF: L(14560).
14582 10		61 ^k keV	0	
14648 [@] 6		11 ^k keV 9	L O	J^{π} : (4 ⁺) in (1 ⁶ O, α),(1 ⁶ O, $\alpha\gamma$). 6 ⁺ in ²⁰ Ne(α , α),(α , α').
14696 [@] 1	$(5^{-})^{\&}$	9 ^k keV 1	OP	J^{π} : L=3 in (α,α) , (α,α') .
14745 [@] 10 ≈14793	$(4^+)^{b}$	13 ^k keV	L O I	XREF: L(14740).
14928 [@] 10	$(0^+,1^-)^{b}$	≈10 ^k keV	L O	XREF: L(14920).
14995 <i>10</i>	$(4^+,5^-)^{b}$	≈20 ^k keV	0	
15045 35	(6-)		UVW	T=1 XREF: V(15.1E3)W(15137). E(level),J ^π : From (e,e') 1977Za02. Spin parity assignment based on form factor calculations.
≈15093	.	k	I	
15117 [@] 10	$h^{(4^+)^{D}}$	15^k keV	0 w	
15141 [@] 10	п	15 ^{<i>k</i>} keV	J L O w	T=0 XREF: L(15150).

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ or Γ^{j}	XF	REF		Comments
						J ^{π} : 4 ⁺ in (α,α) , (α,α') , assigned in 1991Ab05, based on excitation function trend (visual); 6 ⁻ in 24 Mg(p,p') probably for a doublet at 15137 22; 7 ⁻ in $(^{16}$ O, α), $(^{16}$ O, $\alpha\gamma$) 15150 20; 9 ⁺ in $(^{14}$ N,d) at 15150 15. Appears to be more than one level.
15179 3	$(4^+)^a$	57 ^k keV 7		0		
15214 [@] 1	$(5^{-})^{a}$	36 ^k keV 3	L	0p	W	XREF: L(15210)W(15200).
15233 [@] 3	$(4^+)^a$	27 ^k keV 6		0p		
15266 <i>10</i>	$(1^-,3^-)^a$	≈8 ^k keV		0		
15330 <i>30</i>	0^{+i}	1			2	Z
15354 3	$(4^+)^a$	21 ^k keV 4		0		
15385 [@] 3	$(4^+)^a$	31 ^k keV 7		0	VW	XREF: W(15370).
15437.5 [‡] 6	0+	0.7 keV <i>3</i>		QR	W	T=2 J ^π : In 1978Mc07, (p,p ₀) and (p,α ₀) via l=2 in ²³ Na(p,p) and l=0 in ²³ Na(p,α). T _{1/2} or Γ: unweighted average of 1.02 keV 34 from (p,γ) and 0.345 keV 50 from (p,p').
15443 10	$(2^+)^{b}$	13 ^k keV		0		
15484 [@] 10	$(2^+)^{b}$	15 ^k keV	I	0		XREF: I(15473).
15533 [@] 1	$(6^+)^a$	18 ^k keV 2	L	OP	W	XREF: L(15540)W(15540). $T_{1/2}$ or Γ: Other: < 15 keV ((16 O, α) – 1984Le21).
15570 <i>15</i>			J			170 (EC21).
15611 <i>3</i>	$(2^+)^a$	31 ^k keV 8		0		
15640 20	$(6^+)^{f}$		L			
15691 <i>10</i>	$(0^+)^{b}$	≤15 ^k keV		0		
15716 <i>10</i>	$(4^+)^{b}$			0		
15750 <i>15</i>	[7 ⁻ ,8 ⁺] ^h		J			
15790 <i>30</i>	0^{+i}				2	Z
15793 10	$(4^+)^{b}$	13 ^k keV	L	0		XREF: L(15800). J^{π} : L=2 in (α,α) , (α,α') .
15828 <i>10</i>		87 ^k keV		0		
15853 <i>10</i>		$<13^k$ keV		0		
15886 <i>10</i>	$(4^+)^{b}$	42 ^k keV		0		
15978	$(1^-,3^-)^{b}$	≈35 ^k keV		0		J^{π} : L=1 in (α,α) , (α,α') .
16070 [#] <i>20</i>	6^{+f}		L	P		T=0
16136 <i>10</i>	$(3^{-})^{b}$	19 keV <i>6</i>	L	0		XREF: L(16.15E3). $T_{1/2}$ or Γ: From 16 O, α) 1984Le21. Other: 29 keV (α,α) , (α,α') .
16170 <i>10</i>	$(4^+,6^+)^{b}$	<8 ^k keV		0		J^{π} : L=4 in $(\alpha,\alpha),(\alpha,\alpha')$.
16203 [@] 10	$(6^+)^a$	8 ^k keV	L	OP		
16278 10	$(4^+)^a$	30 ^k keV		0		
16309 <i>10</i>		10 ^k keV	L	0		T=0 E(level): From $(\alpha,\alpha),(\alpha,\alpha')$.
16333	$(4^+,6^+)^{b}$			0		J^{π} : L=4 in $(\alpha,\alpha),(\alpha,\alpha')$.
16343 10	$(4^+)^{b}$	13 ^k keV		0		
16395 4	$(2^+)^a$	37 ^k keV 10		0		

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
16440 10	$(7^{-})^{b}$	10 ^k keV	1 0	
16477 [@] 1	$(6^+)^{b}$	8 ^k keV 2	1 OP	J^{π} : L=4 in $(\alpha,\alpha),(\alpha,\alpha')$.
16529 [@] 2	$(6^+)^{b}$	31 ^k keV	Ор	J^{π} : L=4 in $(\alpha,\alpha),(\alpha,\alpha')$.
16564 10	8+fh		J L Op	T=0 E(level): From $(\alpha,\alpha),(\alpha,\alpha')$.
				J ^{π} : Other: [10 ⁺] in (¹⁴ N,d).
16602 <i>10</i>	6+ <i>f</i>	30 ^k keV	L 0	T=0 XREF: L(16590). E(level): Weighted average of 16605 10 $(\alpha,\alpha),(\alpha,\alpha')$ and 16590 20 $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$. Uncertainty is the lowest input value.
16611 <i>10</i>	$(5^{-})^{b}$	$\leq 8^{k}$ keV	0	
16674 <i>10</i>	6^{+f}	30 ^k keV	L O	E(level): From $(\alpha, \alpha), (\alpha, \alpha')$.
16782 <i>10</i>	$(4^+,6^+)^{b}$	30 ^k keV	L O	XREF: L(16.80E3).
	1	1		$T_{1/2}$ or Γ: < 15 keV (16 O, α) (1984Le21).
16844 10	$(6^+)^{b}$	22^{k} keV	L O	E(level): From $(\alpha, \alpha), (\alpha, \alpha')$.
16874 [@] 6	$(5^{-})^{a}$	73 ^k keV 17	J OP	
16904 3		<7 ⁿ fs	L	T=0
16929 [@] 3	$(6^+)^a$	44 ^k keV 6	L 0	
17017 [@] 3	$(7^{-})^{a}$	15 ^k keV 10	L OP	XREF: P(16.98E3).
17088 [@] 3	$(6^+)^a$	44 ^k keV 6	OP	XREF: P(17.06E3).
17140 2	$(5^{-})^{a}$	26 ^k keV 6	L O	XREF: L(17.12E3).
17190 <i>15</i>	8+ <i>f</i>		J L	
17227 2	$(4^+)^a$	17 ^k keV 3	0	
17.29×10^{3} 4		$\approx 46^{k}$ keV	L O	
17407 10	$(6^+)^{b}$	20 ^k keV	0	
17444 <i>10</i>	$(6^+)^{b}$	20 ^k keV	L O	E(level): From $(\alpha,\alpha),(\alpha,\alpha')$. J^{π} : Other: $(6^+,7^-)$ in $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$.
17465 10			0	
17520 <i>15</i>			J L	E(level): From $(^{14}N,d)$.
17623 <i>3</i>	$(5^{-})^{a}$	23 ^k keV 8	L O	XREF: L(17.59E3).
17740 <i>10</i>	$(4^+)^{b}$	$\approx 25^{k}$ keV	0	
17748 10		$\approx 20^{k}$ keV	0	
17782 10		$\approx 42^{k}$ keV	0	
17840 <i>10</i>		≈42 ^k keV	0	
17.90×10^3	(8 ⁺)		L	
17948 <i>3</i>	$(4^+)^{b}$	56 ^k keV 8	0	
17990 <i>10</i>	$(6^+)^{b}$	$\approx 17^{k}$ keV	0	
18038 <i>3</i> 18075 <i>10</i>	$(5^{-})^{a}$	50 ^k keV 8	0 0	
18097 <i>10</i>		20 ^k keV	0	
18157 <i>10</i>	$(5^{-})^{b}$	20 ^k keV	0	
18.16×10 ^{3#}	$(5^{-})^{b}$ $8^{+}f$		L	
18169 <i>10</i>	$(7^{-})^{b}$	<8 ^k keV	0	E(level): From $(\alpha, \alpha), (\alpha, \alpha')$.
18203 <i>10</i>		≈25 ^k keV	0	
18273 10	(7 ⁻) ^{b}	≈21 ^{<i>k</i>} keV	0	

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
18332 10		$\approx 17^{k} \text{ keV}$	L O	XREF: Others: AC E(level): From $(\alpha,\alpha),(\alpha,\alpha')$.
18423 10	$(6^+)^{b}$	≈17 ^k keV	0	
18465 <i>10</i>	. ,	≈13 ^k keV	0	
18740 <i>15</i>			J L	XREF: L(18.70E3).
2				E(level): From $(^{14}N,d)$.
18.97×10^3	$(8^+)^f$		L	
19.0×10 ³ 3 19110 <i>15</i>	(10^+)		L J L	XREF: L(19.07E3).
	(10)		J L	E(level): From $(^{14}N,d)$. Other: $(19.2\ I) \times 10^3$ (2001Wi18 – $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$). From measured $E\alpha$, 2001Wi18 report the excited level energy of 19139 keV 5 and note that for particle channel an uncertainty of 100 keV was expected with a possibility of doublet. J ^{π} : From 2012Di04, based on $\alpha\gamma\gamma$ angular correlations in $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$. γ - α branching ratio 0.0007 3 (2001Wi18).
$19.2 \times 10^3 \ 3$			L	
$19.21 \times 10^3 4$	$(9^{-})^{f}$		L	
19400 <i>15</i> 19.69×10 ³ <i>3</i>			J	
19.69×10° 3 19890 <i>15</i>			L J L	XREF: L(19.92E3).
19990 <i>15</i>	$(7^{-})^{f}$	59 ⁿ keV 5	J L	XREF: L(19.98E3).
$20.03 \times 10^3 \ 3$	(,)	28 ⁿ keV 5	L	7 (19.7023).
20.09×10^3	$(9^{-})^{f}$	35 ⁿ keV 13	L	
20210 15	[10 ⁺] ^h	35 ⁿ keV 13	J L	XREF: L(20.17E3).
20260 15	$(8^+)^{f}$	64 ⁿ keV 8	J L	XREF: L(20.24E3).
20.28×10^{3} # 2	$(2^+)^{g}$		LM	
20.42×10^3	$(9^{-})^{f}$		L	
$20.46 \times 10^3 I$	c	<15 ⁿ keV	L	
$20.53 \times 10^3 3$	$(6^+)^f$	43 ⁿ keV 13	L	
20.68×10 ^{3#} 5		1571 1 37	LM	
$20.83 \times 10^3 \ 3$ $20.91 \times 10^3 \ 3$		<15 ⁿ keV <15 ⁿ keV	L L	
$20.94 \times 10^3 \ 3$		<15 KC V	L	
21.20×10^{3} 2	$(4^+)^{8}$		LM	
$21.29 \times 10^3 \ 3$,	<15 ⁿ keV	L	
$21.39 \times 10^3 2$	$(6^+)^{f}$		L	
$21.46 \times 10^3 2$			L	
21.66×10 ^{3#} 5			Lm	
21.80×10^{3} <i>I</i>		<15 ⁿ keV	Lm	
$22.3 \times 10^3 2$ $22.4 \times 10^3 2$	$(4^+)^g (8)^g$		M	
$22.4 \times 10^{3} 2$ $22.79 \times 10^{3} 2$	(0)0		M L	
$22.87 \times 10^{3} I$		<15 ⁿ keV	L	
$22.93 \times 10^3 \ 3$		73 ⁿ keV 13	L	
$23.00 \times 10^3 2$			L	
$23.10 \times 10^3 \ 3$			L	

E(level) [†]	J^{π}	$T_{1/2}$ or Γ^{j}	XREF	Comments
23.19×10 ³ 3		<15 ⁿ keV	L	
$23.26 \times 10^3 I$		<15 ⁿ keV	L	
23.77×10 ^{3#} 1	$(6^+,(8^+))^g$		LM	
$24.37 \times 10^3 \ 3$	$(9)^{g}$	27 ⁿ keV 3	LM	
24.53×10^{3} 5			L	
24.60×10 ^{3#} 3	$(8^+)^{g}$		LM	
24.98×10 ^{3#} 14	$(9)^{g}$		LM	
$25.18 \times 10^3 \ 3$	$(6^+)^{g}$	163 ⁿ keV 6	LM	XREF: M(25.1E3).
$25.40 \times 10^3 \ 3$			L	
$25.8 \times 10^3 2$	$(9,10)^{8}$		1M	
$26.2 \times 10^3 \ 2$	$(10)^{g}$		1M	
$26.28 \times 10^3 2$	$(12^{+})^{f}$		L	
$26.45 \times 10^3 \ 3$	$(8^+)^g$	115 ⁿ keV 20	LM	XREF: M(26.4E3).
$26.67 \times 10^3 \ 3$	$(12^{+})^{f}$		L	
$26.8 \times 10^3 2$	$(10)^{8}$		M	
27.4×10 ^{3#} 1			LM	
28.0×10^{3} <i>l</i>	$(10)^{g}$		LM	XREF: M(27.8E3).
28.5×10^{3} <i>l</i>			L	
29.3×10^{3} 1	$(10,12)^{g}$		LM	XREF: M(29.1E3).
29.7×10^{3} <i>l</i>			L	
30.1×10^{3} <i>I</i>	(12) <mark>8</mark>		LM	XREF: M(30.3E3).
31.2×10 ^{3#} 1	$(12)^{g}$		LM	
31.8×10 ^{3#} 1			L	
32.6×10 ^{3#} 1	(10) <mark>8</mark>		LM	XREF: M(32.7E3).
33.1×10 ^{3#} <i>1</i>			L	
37.5×10^3			M	
43.0×10^3			M	
46.4×10^3	$(14^+, 16^+)^g$		M	

[†] From a least squares fit to the measured γ -ray energies for levels with depopulating γ , assuming $\Delta E=1$ keV where not given, unless where otherwise noted. Calculated $E\gamma$ were not considered in the least squares fit.

[‡] From (p,γ) .

[#] From $(^{16}O,\alpha),(^{16}O,\alpha\gamma)$.

[@] From $(\alpha,\alpha),(\alpha,\alpha')$:Resonance.

[&]amp; From $(\alpha, \alpha), (\alpha, \alpha')$, based on measured $\sigma(\theta)$ and Legendre polynomial fits (1954Go70).

^a From $(\alpha,\alpha),(\alpha,\alpha')$, based on fit of measured $\sigma(\theta)$ data (1991Ab05 or 1992Da10).

^b From $(\alpha,\alpha),(\alpha,\alpha')$, assigned in 1991Ab05, based on excitation function trend (visual).

^c From $\alpha \gamma$ angular correlations (1983Sc17,1965Sm03) (α,γ).

^d From 1956Ba96 – ²³Na(p,p), based on either of the elastic scattering (p₀) or capture $\gamma(\theta)$ measurements.

^e From 1987Va24 – ²³Na(p,p), based on the elastic and inelastic scattering through allowed channels for resonances in ²⁴Mg or capture $\gamma(\theta)$ measurements.

^f From 2012Di04 – (16 O,α),(16 O,αγ), based on αγγ angular correlations, the γ cascade is 2614γ – 1633γ in 20 Ne, or based on αα angular correlations.

^g From ¹²C(²⁴Mg,2¹²C),(²⁰Ne,2¹²C) based on measured and projected angular correlation measurement data of the decaying state in 2001Sh08 or 2001Fr03. The periodicity of the ridges is is described by a Legendre polynomial of order of the spin of the

²⁴Mg Levels (continued)

decaying state. Parity $(-1)^{J}$ for the decaying state of natural parity, if the recoiling particle has spin-zero.

- ^h Used for Hauser-feshbach calculations to fit the measured differential cross section data in (¹⁴N,d).
- ⁱ From 2021Ad09 (24 Mg(α,α')) based on comparison of differential cross sections to DWBA calculations.
- ^j From $(p,\gamma),(p,p'),(p,X)$ mainly by DSA method, except where otherwise noted.
- ^k From $(\alpha,\alpha),(\alpha,\alpha')$, from resonance fits.
- ^l From (p,p'), $(pol\ p,p')$, $(pol\ p,p'\gamma)$, by DSA method.
- ^m From (e,e'), from Γ_0 and adopted γ-ray branching.
- ⁿ From ($^{16}O,\alpha$),($^{16}O,\alpha\gamma$), by DSA method.
- ^o From (α, γ) , by DSA method.
- ^p Band(A): Prolate $K^{\pi}=0^{+}$ band.
- ^q Band(B): Prolate $K^{\pi}=2^{+}$ band.

Adopted	Levels,	Gammas	(continued)
---------	---------	---------------	-------------

γ (²⁴Mg)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}{}^{b}$	E_f	\mathbf{J}_f^{π}	Mult.d	δ	$\alpha^{m{e}}$	Comments
1368.667	2+	1368.625 5	100	0	0+	E2		5.62×10 ⁻⁵ 8	B(E2)(W.u.)=21.07 +48-46 α =5.62×10 ⁻⁵ 8; α (K)=9.29×10 ⁻⁶ 13; α (L)=5.97×10 ⁻⁷ 9; α (M)=2.21×10 ⁻⁸ 3 α (IPF)=4.63×10 ⁻⁵ 7
4122.853	4+	2754.016 <i>11</i>	100	1368.667	2+	E2		6.78×10 ⁻⁴	E _γ : From ²⁴ Na β^- decay (14.956 h). B(E2)(W.u.)=35.7 +34-29 α (K)=2.54×10 ⁻⁶ 4; α (L)=1.632×10 ⁻⁷ 23; α (M)=6.05×10 ⁻⁹ 9 α (IPF)=0.000675 10
4238.35	2+	2869.50 <i>6</i>	27.8 8	1368.667	2+	M1+E2	-23 9	7.30×10 ⁻⁴	E _γ : Weighted average of 2754.007 <i>11</i> from ²⁴ Na β^- decay (14.956 h), 2754.030 <i>14</i> from ²⁴ Al ε decay (2.053 s). Other: 2751.8 <i>15</i> (³ He,dγ). B(M1)(W.u.)=8×10 ⁻⁶ + <i>15</i> -4; B(E2)(W.u.)=3.36 27
1230.33	2		27.0 0	1300.007	_	WI 152	23 7	7.50×10	$\alpha(K)=2.38\times10^{-6}~4;~\alpha(L)=1.528\times10^{-7}~22;~\alpha(M)=5.67\times10^{-9}~8$ $\alpha(IPF)=0.000727~11$ E _{γ} : From 24 Al ε decay (2.053 s). Others: 2871.0 $10~(^{24}$ Na β^- decay (14.956 h)) and 2869.3 $4~(^{24}$ Al ε decay (130.7 ms)). I _{γ} : weighted average of 30 5 from 24 Na β^- decay (14.956 h), 30.5 $11~$ from 24 Al ε decay (2.053 s), 3E1 3 from 24 Al ε decay (130.7 ms), 33 3 from 25 Si β^+ p decay, 24 6 from (12 C, γ), 30 3 from (α , γ), and 26.7 6 from (p, γ). Mult., δ : From 1960Ba19 (pol p,p' γ) and RUL – see (p,p'),(pol p,p').
		4237.96 [†] 6	100.0 6	0	0+	[E2]		1.25×10 ⁻³	B(E2)(W.u.)=1.72 +14-12 α (K)=1.330×10 ⁻⁶ 19; α (L)=8.53×10 ⁻⁸ 12; α (M)=3.16×10 ⁻⁹ 5 α (IPF)=0.001253 18 E _{γ} : From ²⁴ Al ε decay (2.053 s). I _{γ} : From (p, γ).
5235.16	3+	996.83 [†] <i>10</i>	2.63 [†] 14	4238.35	2+	D+Q			Mult., δ : +5.1 +12-8 and +0.47 4 (1973Le15 – (p, γ)).
		3866.15 10	100.0 [†] 5	1368.667	2+	E2(+M1)	-17 4	1.12×10 ⁻³	B(M1)(W.u.)= 1.7×10^{-5} +12-6; B(E2)(W.u.)= 2.08 16 α (K)= 1.516×10^{-6} 22; α (L)= 9.73×10^{-8} 14; α (M)= 3.61×10^{-9} 5 α (IPF)= 0.001122 16 E _γ : Weighted average of 3866.14 10 from ²⁴ Al ε decay (2.053 s), and 3867.2 14 from (3 He,dγ). Mult., δ : From (pol p,p' γ) in 1973Gl01 and RUL.
		5235 ^a	10 3	0	0+	[M3]			I_{γ} : From (28 Si, X_{γ}). B(M3)(W.u.)=1.16×10 ⁴ 33 exceeds RUL=10.
6010.34	4+	775.4 [†] 2	1.6 [†] 2	5235.16	3+				
		1771.92 [†] 7	11.4 4	4238.35	2+	[E2]		2.11×10^{-4}	B(E2)(W.u.)=14.9 <i>12</i> α (K)=5.50×10 ⁻⁶ 8; α (L)=3.53×10 ⁻⁷ 5; α (M)=1.310×10 ⁻⁸ <i>19</i>

γ (²⁴Mg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^d	α^{e}	Comments
	_							$\alpha(IPF)=0.000205 \ 3$
								I_{γ} : weighted average of 11.70 29 from ²⁴ Al ε decay (2.053 s), 7.5 32 from
								(α, γ) , and 10.5 5 from (p, γ) . Other: 15 4 (28 Si, $X\gamma$).
6010.34	4+	1887.52 [†] 20	1.64 [†] <i>18</i>	4122.853	4+			
		4641.19 [†] 9	100.0 5	1368.667	2+	[E2]	1.38×10^{-3}	B(E2)(W.u.)=1.06 8
								$\alpha(K)=1.172\times10^{-6}\ 17;\ \alpha(L)=7.52\times10^{-8}\ 11;\ \alpha(M)=2.79\times10^{-9}\ 4$ $\alpha(IPF)=0.001381\ 20$
								E_{γ} : Other: 4636.4 16 (3 He,d γ).
								Iy: Weighted average of 100.0 32 from (α, γ) and 100.0 5 from (p, γ) . Other: 100 7 from 24 Al ε decay (2.053 s).
								Branching to g.s. could, in principle, be deduced from B(E4) ((e,e'), 1978Za07) and level lifetime.
6432.2	0_{+}	2194 ^a	21.0 9	4238.35	2+	[E2]	4.13×10^{-4}	B(E2)(W.u.)=6.8 +15-11
								$\alpha(K)=3.72\times10^{-6} 6$; $\alpha(L)=2.39\times10^{-7} 4$; $\alpha(M)=8.86\times10^{-9} 13$ $\alpha(IPF)=0.000409 6$
								I _y : Weighted average of 25 <i>I3</i> from (α, γ) , 21.1 9 from (p, γ) , and 20 3 24 Mg(pol p,p' γ).
		5063.2 ^{‡‡}	100.0 9	1368.667	2+	[E2]	1.51×10^{-3}	B(E2)(W.u.)=0.50 +10-7
								$\alpha(K)=1.040\times10^{-6}\ 15;\ \alpha(L)=6.68\times10^{-8}\ 10;\ \alpha(M)=2.48\times10^{-9}\ 4$
							2	$\alpha(IPF) = 0.001505 \ 21$
		6432		0	0_{+}	E0	8.76×10^{-3}	E_{γ} : From level energy difference.
								Mult., α : From pair-conversion electron intensity measurements (2020Do10 – (p,p' γ)). α – estimated by the evaluators using $q_{\pi}^2(E0/E2)=5.8~8$ (2020Do10) and α (5063 γ – E2)=0.00151.
								$q_{\pi}^{2}(E0/E2)=5.8 \ 8$ – the ratio of the pair-conversion electron intensity
								$q_{\pi}(2020\text{Do}10 - (p,p'\gamma)).$
								$X(E0/E2)=27$ 4 – absolute transition rate $B(E0)/B(E2)$ (2020Do10 – $(p,p'\gamma)$).
								ρ^2 (E0)=0.380 70 – E0 transition strength (2020Do10 – (p,p' γ)).
7348.60	2+	5979.5 [†] 8	61 3	1368.667	2+			
		7347.2 [†] 9	100 <i>3</i>	0	0_{+}	[E2]		B(E2)(W.u.)=0.61 +31-15
7555.3	1-	3316.7 ^a	49 4	4238.35	2+	[E1]	1.39×10^{-3}	$B(E1)(W.u.)=1.9\times10^{-5} +5-4$
								$\alpha(K)=1.369\times10^{-6}\ 20;\ \alpha(L)=8.79\times10^{-8}\ 13;\ \alpha(M)=3.26\times10^{-9}\ 5$
		6107.00	64.4	1260 665	2+	DE 13		α(IPF)=0.001393 20
		6185.8 ^a	64 4	1368.667		[E1]		$B(E1)(W.u.)=3.8\times10^{-6}+10-7$
		7554.0 [‡]	100 6	0	0+	[E1]		$B(E1)(W.u.)=3.3\times10^{-6}+9-6$
7616.41	3-	2381.0 [†] 3	7 [†] 2	5235.16	3+	[E1]		B(E1)(W.u.)= $2.6 \times 10^{-6} + 9 - 8$
		3378.3 [†] 8	8.0 [†] 13	4238.35	2+	[E1]	1.42×10^{-3}	B(E1)(W.u.)= $1.04 \times 10^{-6} + 25 - 21$
								$\alpha(K)$ =1.339×10 ⁻⁶ 19; $\alpha(L)$ =8.59×10 ⁻⁸ 12; $\alpha(M)$ =3.18×10 ⁻⁹ 5 $\alpha(IPF)$ =0.001420 20
		3493.3 <i>a</i>	7.2 14	4122.853	4+	[E1]	1.47×10^{-3}	B(E1)(W.u.)= $8.5 \times 10^{-7} + 22 - 19$

γ (²⁴Mg) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.d	α^{e}	Comments
								α (IPF)=0.001473 21 I _{γ} : weighted average of 7.4 19 from ²⁴ Al ε decay (2.053 s), 9 4 from (α , γ), and 6.9 14 from (ρ , γ).
7616.41	3-	6246.89 [†] 11	100 3	1368.667	2+	[E1]		B(E1)(W.u.)= $2.06 \times 10^{-6} + 37 - 28$
, 0101		7615.2 [†] 9	38 3	0	0+	[E3]		B(E3)(W.u.)=5.6 +11-8
		,010.2				[20]		I _γ : Unweighted average of 41.5 28 from ²⁴ Al ε decay (2.053 s), 41.4 86 from (α , γ), and 31.9 28 from (ρ , γ).
7747.7	1+	3509.1 ^a	12.9 9	4238.35	2+			***
		6378.1 ^a	100 3	1368.667				
		7746.4 ^a	39 <i>3</i>	0	0_{+}			
7812.4	$(4^-,5^+)$	1800 [#] .	12 3	6010.34	4+			
		2577.4 [†] 8	100 ^c 5	5235.16	3+			E_{γ} : Other: 2580 ($^{16}O_{\gamma}$),($^{16}O_{\gamma}$).
		3690 [#]	51 7	4122.853	4+			I _{γ} : Weighted average of 59 9 from (^{16}O , α), 32 9 from (α , γ), and 55 5 from (p , γ).
8113.2	6+	3990.0 [‡]	100	4122.853	4+	[E2]	1.17×10^{-3}	B(E2)(W.u.)=38 + 18-10
								$\alpha(K)=1.449\times10^{-6}\ 21;\ \alpha(L)=9.30\times10^{-8}\ 13;\ \alpha(M)=3.45\times10^{-9}\ 5$ $\alpha(IPF)=0.001166\ 17$
8358.1	3-	2347.7 <mark>a</mark>	22 4	6010.34	4+	[E1]	8.77×10^{-4}	$B(E1)(W.u.)=1.34\times10^{-4}+30-27$
								$\alpha(K)=2.14\times10^{-6}$ 3; $\alpha(L)=1.375\times10^{-7}$ 20; $\alpha(M)=5.10\times10^{-9}$ 8 $\alpha(IPF)=0.000875$ 13
								I_{γ} : From (p,γ) . Others: 13 11 (α,γ) , 52 10 from $(^{12}C,\gamma)$.
		3122.7 ^a	33 4	5235.16	3+	[E1]		$B(E1)(W.u.)=8.6\times10^{-5} +16-13$
								I_{γ} : From (p,γ) . Others: 35 11 (α,γ) , 75 17 from $(^{12}C,\gamma)$.
		6988.3 [‡]	100 7	1368.667	2+	[E1]		B(E1)(W.u.)= $2.31 \times 10^{-5} + 35 - 28$
								I _{γ} : weighted average of 100 7 from (12 C, γ), 100 <i>11</i> from (α , γ), and 100 8 from (p, γ).
		8356.5 ^a	8.6 10	0	0_{+}	[E3]		B(E3)(W.u.)=10.4 +20-17
8438.4	1-	7068.6 <mark>a</mark>	25 13	1368.667	2+	[E1]		I_{γ} : deduced from B(E3) in (e,e') (1974Jo10) and adopted level half-life. B(E1)(W.u.)=5.1×10 ⁻⁵ +28-22
0430.4	1	8436.8 [‡]						B(E1)(W.u.)= $5.1 \times 10^{-5} + 28 - 22$ B(E1)(W.u.)= $1.20 \times 10^{-4} + 37 - 24$
			100 13	0	0+	(E1)		Mult.: D from $\gamma(\theta)$ (1969Ca18 – $(\alpha, \alpha'\gamma)$ and $\Delta\pi$ =yes from levels scheme.
8439.29	4+	822.0 † 6	0.05 † 2	7616.41	3-	[E1]		B(E1)(W.u.)=0.00015 +13-7
		1090.67 [†] 10	0.32 [†] 2	7348.60	2+	[E2]		B(E2)(W.u.)=59 +43-19 B(E2)(W.u.)=59 +43-19 upper bound exceeds RUL=100.
		2428.97 [†] <i>15</i>	1.79 [†] 4	6010.34	4+			
		3203.88 [†] 8	7.21 16	5235.16	3+			I_{γ} : Weighted average of 7.13 <i>16</i> from ²⁴ Al ε decay (2.053 s) and 7.49 <i>31</i> from (p, γ).
		4200.54 [†] <i>13</i>	9.5 5	4238.35	2+	[E2]	1.24×10^{-3}	B(E2)(W.u.)=2.1 + 15-6
								$\alpha(K)=1.347\times10^{-6}$ 19; $\alpha(L)=8.64\times10^{-8}$ 12; $\alpha(M)=3.20\times10^{-9}$ 5

-									
	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	\mathbf{J}_f^π	Mult.d	$\alpha^{m{e}}$	Comments
									α (IPF)=0.001239 18
									I_{γ} : Weighted average of 9.3 5 from ²⁴ Al ε decay (2.053 s) and 9.7 5 from
									(p,γ) .
	8439.29	4+	4316.00 [†] <i>12</i>	33 3	4122.853	4+			I_{γ} : Weighted average of 30.8 <i>14</i> from ²⁴ Al ε decay (2.053 s) and 36.7 <i>16</i> from (p, γ).
			7069.50 [†] <i>12</i>	100.0 17	1368.667	2+	[E2]		B(E2)(W.u.)=1.6 +12-5
	8654.9	2+	2222.3 ^a	6.1 12	6432.2	0_{+}	[E2]	4.27×10^{-4}	B(E2)(W.u.)=9.0 +32-22
									$\alpha(K)=3.64\times10^{-6} 5$; $\alpha(L)=2.34\times10^{-7} 4$; $\alpha(M)=8.66\times10^{-9} 13$ $\alpha(IPF)=0.000423 6$
ı			4416.1 <mark>a</mark>	17 <i>3</i>	4238.35				I_{γ} : weighted average of 26 7 from (α, γ) and 15.9 25 from (p, γ) .
	004:-	_	7285.0 ^a	100.0 25	1368.667				D (TA) (TA) A (A) 5 A (A) 5
	8864.5	2-	3629.0 ^a	2.17 16	5235.16	3+	[E1]	1.53×10^{-3}	B(E1)(W.u.)= $6.0 \times 10^{-5} + 36 - 17$
١									$\alpha(K)=1.226\times10^{-6}\ 18;\ \alpha(L)=7.87\times10^{-8}\ 11;\ \alpha(M)=2.92\times10^{-9}\ 4$ $\alpha(IPF)=0.001533\ 22$
			4625.7 <mark>a</mark>	8.9 <i>3</i>	4238.35	2+	[E1]		$\alpha(\text{IPF}) = 0.001333 22$ B(E1)(W.u.)=1.2×10 ⁻⁴ +7-3
ı			7494.6 ^a	100.0 3	1368.667		[E1]		B(E1)(W.u.)=0.00031 + 19-9
ı			8862.7 ^a	1.03 16	0	0^{+}	[M2]		B(M2)(W.u.)=0.11 +7-4
ı	9003.5	2+	1654.4 <mark>a</mark>	12 4	7348.60	2+	. ,		
l			2570.9 ^a	14 6	6432.2	0_{+}	[E2]	5.94×10^{-4}	B(E2)(W.u.)=13 +6-5
ı									$\alpha(K)=2.84\times10^{-6} 4$; $\alpha(L)=1.83\times10^{-7} 3$; $\alpha(M)=6.77\times10^{-9} 10$
ı								2	$\alpha(IPF) = 0.000591 9$
ı			4880.1 ^a	35 10	4122.853	4+	[E2]	1.46×10^{-3}	B(E2)(W.u.)=1.29 +39-34
ı									$\alpha(K)=1.094\times10^{-6}\ 16;\ \alpha(L)=7.02\times10^{-8}\ 10;\ \alpha(M)=2.60\times10^{-9}\ 4$ $\alpha(IPF)=0.001454\ 21$
			9001.7 ^a	100 12	0	0^{+}	[E2]		$\alpha(\text{IFF}) = 0.001434 \ 21$ B(E2)(W.u.)=0.172 +34-26
ı	9146.2	1-	4907.3 ^a	53 4	4238.35	2+	[L2]		D(L2)(W.d.)=0.172 +34 20
ı			7776.2 ^a	60 4	1368.667	2+			
١			9144.3 ^a	100 6	0	0_{+}			
I	9284.4	$2^{+},4^{+}$	5161	27 4	4122.853	4+			E_{γ} : From ($^{12}C_{\gamma}$).
									I _{γ} : Weighted average of 18 6 from (α, γ) , and 28.2 26 from (p, γ) . Other: 60 10 from $(^{12}C, \gamma)$.
l			7914.3 [‡]	100 3	1368.667	2+			
l	9299.8		1683.3 [‡]	100	7616.41	3-			
۱	9301.07	(4^{+})	1952.38 [†] 20	7.3 [†] 5	7348.60	2+			
l			5060.7 [†] 8	2.8 [†] 10	4238.35	2+			
I			5177.51 [†] 20	76 [†] 8	4122.853	4+			
1			7930.87 [†] <i>15</i>	100 [†] 8	1368.667				
	9305.39	0^{+}	7935.3 ^a	100	1368.667				
1	9457.81	$(3)^{+}$	1710.0 <mark>a</mark>	2.1 9	7747.7	1+			
			2108.65 ^a	1.5 5	7348.60	2+			
۱			3447.21 ^a	2.1 3	6010.34	4+			
1									

								=
E_i (level)	\mathtt{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	J_f^π	Mult.d	α^e	Comments
9457.81	$(3)^{+}$	4222.20 ^a	12.0 8	5235.16	3+			
		5218.81 ^a	5.6 <i>6</i>	4238.35				
		5334.29 ^a	28.4 9	4122.853				
		8087.66 ^a	100.0 17	1368.667				
9516.18	4+	1076.86 [†] 4	85.8 [†] <i>17</i>	8439.29	4 ⁺			
		1704.8 [†] 8	$0.09^{\dagger} 2$	7812.4	$(4^-,5^+)$			
		1899.70 [†] 6	4.74 [†] <i>12</i>	7616.41	3-	[E1]	5.75×10 ⁻⁴	B(E1)(W.u.)=0.00023 +15-7 α (K)=2.89×10 ⁻⁶ 4; α (L)=1.85×10 ⁻⁷ 3; α (M)=6.87×10 ⁻⁹ 10 α (IPF)=0.000572 8
		3505.61 [†] 9	11.5 [†] 4	6010.34	4+			
		4280.62 [†] <i>13</i>	3.82 [†] 23	5235.16	3+			I_{γ} : Other: 7.6 8 in (p,γ) .
		5277.2 ^a	2.0 10	4238.35				7
		5392.68 [†] 9	100 6	4122.853	4+			
		8146.0 ^a	0.16 [†] 4	1368.667		[E2]		B(E2)(W.u.)=0.00025 +18-9
9527.6	(6^+)	3517.0 [‡]	100# 6	6010.34		[E2]	1.00×10^{-3}	B(E2)(W.u.)=25 +22-9
9321.0	(0)	3317.0	100 0	0010.54	7	[E2]	1.00×10	$\alpha(K)=1.742\times10^{-6} 25$; $\alpha(L)=1.118\times10^{-7} 16$; $\alpha(M)=4.15\times10^{-9} 6$ $\alpha(IPF)=0.000999 14$
		5404.0 [‡]	28 [#] 6	4122.853	4+	[E2]	1.60×10^{-3}	B(E2)(W.u.)=0.8 +7-3 α (K)=9.53×10 ⁻⁷ 14; α (L)=6.12×10 ⁻⁸ 9; α (M)=2.27×10 ⁻⁹ 4 α (IPF)=0.001601 23
9532.7	$(2,3)^+$	1916.0 <mark>a</mark>	7.4 10	7616.41	3-			u(H1) 0.001001 25
	()-)	4297.1 <mark>a</mark>	39 6	5235.16				
		5293.7 ^a	84 6	4238.35				
		8162.5 ^a	100 26	1368.667	2+			
9828.0	1+	3395.2 ^a	2.1 5	6432.2	0+			
		8457.7 ^a	30.3 20	1368.667	2+			
		9825.9 <mark>&</mark> 20	100.0 19	0	0_{+}			
9965.3	1+	8595.1 ^{&} <i>15</i>	38 <mark>&</mark> 6	1368.667	2+			
		9963.0 <mark>&</mark> <i>15</i>	100 <mark>&</mark> 12	0	0^{+}			
10027.97	5-	1670 [@]	45.4 22	8358.1	3-	[E2]	1.66×10^{-4}	B(E2)(W.u.)=32+14-8
						. ,		$\alpha(K)=6.17\times10^{-6} 9$; $\alpha(L)=3.96\times10^{-7} 6$; $\alpha(M)=1.469\times10^{-8} 21$ $\alpha(IPF)=0.0001595 23$
		2215.6 ^a	7.3 12	7812.4	$(4^-,5^+)$			
		2411.2 ^a	8.8 24	7616.41	3-	[E2]	5.19×10^{-4}	B(E2)(W.u.)=1.0 +5-3 α (K)=3.17×10 ⁻⁶ 5; α (L)=2.03×10 ⁻⁷ 3; α (M)=7.53×10 ⁻⁹ 11 α (IPF)=0.000515 8
		4017.2 ^a	23 3	6010.34	4 ⁺	[E1]	1.69×10 ⁻³	B(E1)(W.u.)= $1.9 \times 10^{-5} + 9 - 5$ α (K)= 1.085×10^{-6} 16; α (L)= 6.96×10^{-8} 10; α (M)= 2.58×10^{-9} 4 α (IPF)= 0.001687 24

γ (24Mg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}{}^{b}$	E_f	\mathbf{J}_f^{π}	Mult. ^d	α^{e}	Comments
10027.97	5-	5904.2 [‡]	100 10	4122.853	4+	[E1]	0.00227	B(E1)(W.u.)= 2.6×10^{-5} +11-6 α (K)= 6.95×10^{-7} 10; α (L)= 4.46×10^{-8} 7; α (M)= 1.652×10^{-9} 24 α (IPF)= 0.00227 4
		8657.5 <mark>a</mark>	61 12	1368.667	2+	[E3]		B(E3)(W.u.)=39+18-11
10059.1	$(1,2)^+$	5820.0 ^a	16 <i>4</i>	4238.35	2+	L - J		
	() /	8688.6 <mark>&</mark> 25	100 4	1368.667	2+			
10110.9	(0^+)	8740.5 ^a	100 7	1368.667				
10333.6	3-	6094.4 ^a	61 11	4238.35	2 ⁺			
10000.0		8963 [@]	100 11	1368.667				
10360.7	2+	3927.9 <mark>a</mark>	1.2 4	6432.2	0^{+}	[E2]	1.15×10^{-3}	B(E2)(W.u.)=1.0 +6-4
10300.7	2	3921.9	1.2 4	0432.2	U	[E2]	1.13×10	$\alpha(K)=1.482\times10^{-6} \ 2I; \ \alpha(L)=9.51\times10^{-8} \ 14; \ \alpha(M)=3.53\times10^{-9} \ 5$ $\alpha(IPF)=0.001144 \ 16$
		5124.9 ^a	3.0 7	5235.16	3+			
		8990.2 [‡]	100 4	1368.667	2+			
		10358.3 ^a	72 4	0	0^{+}	[E2]		B(E2)(W.u.)=0.47 +20-11
10575.93	$(4)^{+}$	1059.78 [†] 8	100 [†] 6	9516.18	4+			
100,000	(.)	1274.71 [†] 10	37.2 [†] 21	9301.07	(4 ⁺)			
		2136.58 15	59 [†] 3		(+) 4 ⁺			
				8439.29				
10501.06	(2+ 2+ 4+)	5340.3 † 4	40 [†] 5	5235.16	3+			
10581.26	$(2^+,3^+,4^+)$	4570.4 ^a	20.6 8	6010.34	4 ⁺			
		5345.4 ^a	53.4 15	5235.16	3 ⁺			
		6342.0 ^a 6457.4 ^a	100 <i>3</i> 37.6 <i>13</i>	4238.35 4122.853	2+			
		9210.6 ^a	46.1 <i>15</i>	1368.667				
10659.8	$(1,2^+)$	9289.2 ^a	40.1 13	1368.667				
10037.0	(1,2)	10657.3 ^a	100 11	0	0+			
10660.17	$(3^+,4^+)$	5424.2 ^a	12 3	5235.16	3 ⁺			
10000.17	(3 ,7)	6536.3 ^a	35 13	4122.853				
		9289.5 ^a	100 13	1368.667				
10679.7	0+	3124 ^a	0.6 ^c 4	7555.3	1-			
		3331 ^a	2.4 ^c 4	7348.60	2+			
		6440 ^a	14.7 ^c 12	4238.35	2+			
		9309 ^a	100° 3	1368.667	2+			
10712.2	1+	10709.6 ^a	100	0	0_{+}			
10731.1	2+	5495.2 ^a	10 3	5235.16	3+			
		6491.8 ^a	27 3	4238.35	2+	(M1)		B(M1)(W.u.)=0.0023 +16-7 Mult.: D from (γ,θ) in (α,γ) ; $\Delta\pi$ =yes from level scheme.
		9360.5 ^a	100 4	1368.667	2+			
10820.8	3+,4+	9450.1 [†] 4	100	1368.667				
10917.2	2+	4485 ^a	0.85 ^c 21	6432.2	0^{+}	[E2]	1.34×10^{-3}	B(E2)(W.u.)=0.38 +11-10

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^d	α^{e}	Comments
								$\alpha(K)$ =1.229×10 ⁻⁶ 18; $\alpha(L)$ =7.88×10 ⁻⁸ 11; $\alpha(M)$ =2.92×10 ⁻⁹ 4 $\alpha(IPF)$ =0.001337 19
0917.2	2+	4906.3 ^a	1.70 ^c 21	6010.34	4 +	EE:01	1.46×10^{-3}	
0917.2	2.	4906.3	1.70° 21	0010.34	4	[E2]	1.46×10	B(E2)(W.u.)=0.48 +10-8
								$\alpha(K)=1.086\times10^{-6}$ 16; $\alpha(L)=6.97\times10^{-8}$ 10; $\alpha(M)=2.58\times10^{-9}$ 4 $\alpha(IPF)=0.001462$ 21
		5681.3 ^a	2.77 ^c 21	5235.16	3 ⁺			u(H1)=0.001102 21
		6677.8 ^a	1.06° 21	4238.35				
		6793.3 ^a	34.0° 21	4122.853		[E2]		B(E2)(W.u.)=1.90 +29-24
		9546.5 ^a	100° 4	1368.667		[22]		5(22)(\\\\\\\\)
		10914.5 ^a	72 ^c 4	0	0^{+}	[E2]		B(E2)(W.u.)=0.38 +6-5
1012	3,5+	2573 ^a	100 11	8439.29	4 ⁺	[22]		D(DD)(\(\text{1.4.1}\) 0.30 \(\text{10}\) 3
1012	3,5	5001 ^a	47 9	6010.34	4 ⁺			
1018	2+	1048 <mark>a</mark>	2.5° 6	9965.3	1+			
1010	-	3270 ^a	0.62 ^c 12	7747.7	1+			
		3462 ^a	0.37 ^c 12	7555.3	1-			
		5007 ^a	0.86° 12	6010.34	4 ⁺			
		5782 ^a	1.5° 3	5235.16	3+			
		6779 <mark>a</mark>	2.4 ^c 4	4238.35	2+			
		6894 <mark>a</mark>	1.0° 3	4122.853				
		9647 <mark>a</mark>	$100^{\circ} 3$	1368.667				
		11015 ^a	14.2° 12	0	0^{+}			
1133		3518	100	7616.41	3-			E_{γ} : From (α, γ) .
1165	3-	2726 ^a	5.8° 3	8438.4	1-			L_{γ} . From (u, y) .
1103	3	3609 ^a	6.2 ^c 3	7555.3	1-			
		5154 <mark>a</mark>	13.1 ^c 3	6010.34	4 ⁺			
		5929 ^a	11.3 ^c 3		3 ⁺			
		7041 <mark>a</mark>	1.81 ^c 14	4122.853				
		9794 ^a	$100^{\circ} 3$	1368.667				
1107.2		9816.5 [‡]						
1187.3			100	1368.667				
1207	2+ 4+	9836 ^a	100	1368.667				
1216.69	3+,4+	1700 ^a	1.40° 12	9516.18	4 ⁺			
		2562 ^a	0.81 ^c 12	8654.9	2+			
		3868 ^a	0.35 ^c 12	7348.60	2+			
		5981 ^a	0.93° 12	5235.16				
		7093 ^a	12.8° 12	4122.853				
		9846 ^a	100.0° 23	1368.667				
1314.4	$(3,4)^{+}$	9943.5 [†] <i>15</i>	100	1368.667				
1330		9959 ^a	100	1368.667				
1391	1-	1332 ^a	1.9 ^c 3	10059.1	$(1,2)^{+}$			
		1426 <mark>a</mark>	1.01 ^c 14	9965.3	1+			

E_i (level)	J_i^π	E_{γ}	$I_{\gamma}{}^{b}$	E_f	\mathbf{J}^π_f	Mult.d	$\alpha^{m{e}}$	Comments
11391	1-	2953 ^a	1.01 ^c 14	8438.4	1-			
11371	1	3643 ^a	1.45 ^c 14	7747.7	1+			
		4958 ^a	1.45° 14	6432.2	0+			
		7152 ^a	2.2° 3	4238.35	2+			
		10020 ^a	100° 3	1368.667				
		11388 ^a	36.2 ^c 14	0	0+			
11452.8	2+	721.7 ^a	3.4° 5	10731.1	2 ⁺			
11432.0	2	1393.7 <mark>a</mark>	1.14 ^c 23	10751.1	$(1,2)^{+}$			
		1393.7 ^a	1.14 23 12.7 ^c 7	9965.3	1+			
		3704.8 ^a	3.2° 5	9903.3 7747.7	1 1 ⁺			
		3836.0 ^a	0.9° 5	7616.41	3-			
		4103.4 ^a	1.36 ^c 23	7348.60	3 2 ⁺			
		6216.7 ^a	4.1 ^c 5	5235.16	3 ⁺			
		7213.3^a	4.1° 3 47.7° 23					
		7213.3^{a} 7328.7^{a}	1.82° 23	4238.35	2+			
				4122.853				
		10081.8 ^a	$100.0^{\circ} 23$	1368.667				
11500	2+	11449.8 ^a	50.0° 23	0	0+			
11522	2+	791 ^a	1.59 16	10731.1	2+			
		1463 ^a	2.1 3	10059.1	$(1,2)^+$			
		1557 ^a	1.11 16	9965.3	1+			
		3164 ^a	0.32 16	8358.1	3-			
		3774 ^a	1.11 16	7747.7	1+			
		3905 ^a	1.43 16	7616.41	3-			
		5089 ^a	12.2 5	6432.2	0+			
		7282 ^a	8.1 3	4238.35	2+			
		7398 ^a	7.0 3	4122.853				
		10151 ^a	23.8 16	1368.667				
		11519 ^a	100 3	0	0+			
11600	3-	2084 ^a	21.8 ^c 14	9516.18	4+	[E1]	7.05×10^{-4}	B(E1)(W.u.)=0.00057 +21-13
								$\alpha(K)=2.53\times10^{-6} \ 4; \ \alpha(L)=1.622\times10^{-7} \ 23; \ \alpha(M)=6.01\times10^{-9} \ 9$
								$\alpha(IPF) = 0.000702 \ 10$
		2299 ^a	75 ^c 5	9301.07	(4^{+})	[E1]		B(E1)(W.u.)=0.0015 +5-3
		2300 ^a	5.9 ^c 14	9299.8				
		2315 ^a	12.5 ^c 11	9284.4	$2^{+},4^{+}$	[E1]		$B(E1)(W.u.)=2.4\times10^{-4}+9-6$
		3242 ^a	8.2 ^c 7	8358.1	3-			
		3983 ^a	100 ^c 5	7616.41	3-			
		7476 <mark>a</mark>	3.9 ^c 5	4122.853	4+	[E1]		$B(E1)(W.u.)=2.2\times10^{-6}+9-6$
11698.2	4+	686 <mark>a</mark>	1.82 ^c 23	11012	$3,5^{+}$			
		2397 <mark>a</mark>	100° 5	9301.07	(4^{+})			
		2398 ^a	1.1 ^c 5	9299.8	` ′			

γ (24Mg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbf{E}_f	J_f^π
11698.2	4+	3043 ^a	2.5° 5	8654.9	2+	11988.5	2+	2703.9 ^a	2.0 11	9284.4	2+,4+
		3259 ^a	3.6° 5	8439.29	4+			2984.8 ^a	1.3 7	9003.5	2+
		3885 ^a	1.4° 5	7812.4	$(4^-,5^+)$			3122.8 ^a	11 5	8864.5	2-
		4349 ^a	5.9° 5	7348.60	2+			3549.8 ^a	6.3 4	8438.4	1-
		5687 ^a	5.0° 5	6010.34	4 ⁺			4240.4 ^a	11 5	7747.7	1+
		6462 ^a	6.8° 5	5235.16	3 ⁺			4432.8 ^a	3.3 17	7555.3	1-
		7459 ^a	19.8° 9	4238.35	2+			6752.3 ^a	17 9	5235.16	3 ⁺
		7574 ^a	15.7° 9	4122.853				7748.8 ^a	100 5	4238.35	2 ⁺
11720	0+	10327 ^a	64 ^c 5	1368.667				10617.3 ^a	61 2	1368.667	2+
11730	0_{+}	1765 ^a 4174 ^a	3.48 ^c 22 1.63 ^c 11	9965.3 7555.3	1 ⁺ 1 ⁻	12002		11985.3 ^a 991 ^a	1.7 9 19 ^c 3	0	0+
			3.59° 22			12003			9.5° 16	11012	3,5 ⁺
		7490 ^a 10359 ^a	3.39° 22 100.0° 22	4238.35 1368.667	2 ⁺ 2 ⁺			3563 ^a 5992 ^a	9.5° 10 30° 3	8439.29	4 ⁺ 4 ⁺
										6010.34	
11860	(8+)	3747.0 [‡]	100	8113.2	6+		. 1	7879 ^a	100° 3	4122.853	4+
11862.8	1-	4306 ^a	4.4 ^c 4	7555.3	1-	12051.3	4+	6040 ^a	6.9° 7	6010.34	4+
		4513 ^a	1.75 ^c 18	7348.60	2+			6815 ^a	30.6° 14	5235.16	3 ⁺
		7622 ^a	4.4 ^C 4	4238.35	2+			7927 ^a	100° 3	4122.853	4 ⁺
		10491 ^a	65° 4	1368.667		12110.0	4.4	10680 ^a	1.4° 3	1368.667	2 ⁺ 4 ⁺
11022 0	(2) ±	11859 ^a	100 ^c 4	0	0+	12119.0	4+	2603 ^a	100° 8 27° 5	9516.18	•
11932.9	$(3)^{+}$	2631.9 ^a	0.19 7	9301.07	(4 ⁺)			6108 ^a	92° 5	6010.34	4 ⁺
		3068.4 ^a	0.34 7	8864.5	2-			7879 ^a	38 ^c 5	4238.35	2 ⁺ 4 ⁺
		4120.5 ^a	1.41 16	7812.4	$(4^-,5^+)$			7995 ^a		4122.853	
		4583.6 ^a	1.62 19	7348.60	2+	10100		10748 ^a	14° 3	1368.667	2+
		5922.0 ^a	4.3 5	6010.34	4 ⁺ 3 ⁺	12128	4+	4315 ^a	100 17.6 ^c 20	7812.4	$(4^-,5^+)$ 4^+
		6696.9 ^a	1.27 <i>21</i> 0.51 <i>19</i>	5235.16	2+	12162	4	2646 ^a 3158 ^a	3.9° 10	9516.18	2 ⁺
		7693.4 ^a 7808.9 ^a	0.51 <i>19</i> 24.4 <i>24</i>	4238.35 4122.853	_			6926 ^a	5.9° 10 5.9° 20	9003.5 5235.16	3 ⁺
		10561.9 ^a	100 10	1368.667				7922 ^a	11.8° 20	4238.35	2 ⁺
11966.6	2+	760 ^a	0.9 ^C 3	11207	2			8038 ^a	11.8° 20' 100° 6	4238.33	4 ⁺
11900.0	2	1236 ^a	3.7° 6	10731.1	2+			10791 ^a	57° 6	1368.667	2 ⁺
		1230 1908 ^a	12.0° 6	10751.1	$(1,2)^{+}$	12183.3		966.6 ^a	2.1 11	11216.69	3 ⁺ ,4 ⁺
		2001 ^a	4.9 ^c 6	9965.3	1+	12165.5		1452.2 ^a	2.0 10	10731.1	2 ⁺
		5534 ^a	9.4 ^c 6	6432.2	0+			1822.5 ^a	5.0 25	10751.1	2 ⁺
		6731 ^a	60 ^c 3	5235.16	3 ⁺			2217.9 ^a	1.4 7	9965.3	1 ⁺
		7727 <mark>a</mark>	46 ^c 3	4238.35	2 ⁺			3528.1 ^a	4.8 24	8654.9	2 ⁺
		7842 ^a	3.4 ^c 3	4122.853	4 ⁺			4435.2 ^a	3.7 18	7747.7	1 ⁺
		10596 ^a	100° 6	1368.667	-			5750.4 ^a	1.8 10	6432.2	0+
		11964 ^a	46 ^c 3	0	0+			7943.5 <mark>a</mark>	12.8 7	4238.35	2 ⁺
11988.5	2+	1257.4 ^a	0.9 4	10731.1	2+			10812.0 ^a	100 6	1368.667	2 ⁺
11,00.0	-	1929.3 ^a	1.5 9	10059.1	$(1,2)^+$			12180.0 ^a	7 4	0	0^{+}

γ (24Mg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	J_f^π	E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}
12259.3	2-	1042.6 <mark>a</mark>	3.3 18	11216.69	3+,4+	12404.9	2+	7168.6 <mark>a</mark>	1.9 10	5235.16	3+
		2293.9 ^a	1.1 7	9965.3	1+			8165.1 <mark>a</mark>	100 5	4238.35	2+
		2431.0 <mark>a</mark>	2.2 11	9828.0	1+			8280.5 <mark>a</mark>	1.4 8	4122.853	4+
		3255.6 <mark>a</mark>	4.4 22	9003.5	2+			11033.5 <mark>a</mark>	3.3 17	1368.667	2+
		3394.5 <mark>a</mark>	9 4	8864.5	2-			12401.5 <mark>a</mark>	3.0 15	0	0^{+}
		3819.7 <mark>a</mark>	5.6 28	8439.29	4+	12443	$6^+,7^-$	2415 ^a	100	10027.97	5-
		4910.2 ^a	9 4	7348.60	2+	12507	4+	5158 ^a	5.8 ^c 10	7348.60	2+
		7023.0 ^a	24.4 22	5235.16	3 ⁺			7271 ^a	15.4 ^c 19	5235.16	3+
		8019.5 <mark>a</mark>	100 5	4238.35	2+			8267 ^a	46 ^c 4	4238.35	2+
		8135.0 ^a	1.1 7	4122.853				8382 ^a	25 ^c 4	4122.853	
		10888.0 ^a	60 2	1368.667	2+			11136 ^a	100° 6	1368.667	2+
		12255.9 ^a	2.2 11	0	0^{+}	12527.6	1+	1796.4 <mark>a</mark>	1.9 10	10731.1	2+
12340.2	3+	1680.3 ^a	1.1 7	10659.8	$(1,2^+)$			2468.4 <mark>a</mark>	6 3	10059.1	$(1,2)^+$
		3336.5 ^a	5.1 27	9003.5	2+			2699.2 ^a	2.6 13	9828.0	1+
		3685.0 ^a	2.4 13	8654.9	2+			3662.8 ^a	7 3	8864.5	2-
		4723.3 ^a	9 4	7616.41	3-			3872.4 ^a	13 6	8654.9	2+
		4991.0 <mark>a</mark>	29 2	7348.60	2+			4088.8 <mark>a</mark>	7 4	8438.4	1-
		7103.9 ^a	47 2	5235.16	3+			4779.4 <mark>a</mark>	16 8	7747.7	1+
		8100.4 ^a	100 5	4238.35	2+			6094.6 <mark>a</mark>	33 2	6432.2	0^{+}
		8215.8 ^a	4.9 24	4122.853				8287.7 ^a	36 2	4238.35	2+
		10968.8 <mark>a</mark>	24 <i>1</i>	1368.667				11156.2 ^a	15 8	1368.667	2+
12342		4529 ^a	100	7812.4	$(4^-,5^+)$			12524.1 <mark>a</mark>	100 5	0	0_{+}
12400.3	3+	2341.1 ^a	3.9	10059.1	$(1,2)^{+}$	12638.7	4+	3180.7 ^a	0.9 5	9457.81	$(3)^{+}$
		2883.9 ^a	18	9516.18	4+			4825.8 ^a	3.6 18	7812.4	$(4^-,5^+)$
		2942.3 ^a	2.8	9457.81	$(3)^{+}$			6627.4 ^a	15.8 8	6010.34	4+
		3396.5 ^a	4.9	9003.5	2+			7402.3 ^a	8.7 43	5235.16	3+
		4783.4 ^a	10	7616.41	3-			8398.8 ^a	0.7 4	4238.35	2+
		5051.1 ^a	31	7348.60	2+			8514.2 ^a	100 5	4122.853	
		7164.0 ^a	44	5235.16	3+	10000		11267.2 ^a	2.0 11	1368.667	
		8160.5 ^a	100	4238.35	2+	12660.8	3-	1930 ^a	5° 3	10731.1	2+
		8275.9 ^a	6	4122.853				2602 ^a	16 ^c 3	10059.1	$(1,2)^{+}$
121010	2+	11028.9 ^a	36	1368.667	2+			3144 ^a	22° 3	9516.18	4+
12404.9	2+	3103.6 ^a	2.4 12	9299.8	2+			3796 ^a	27° 5	8864.5	2-
		3401.1 ^a	4.4 22	9003.5	2 ⁺			4913 ^a	5° 3	7747.7	1+
		3540.1 ^a	2.5 13	8864.5	2-			5312 ^a	19 ^c 3	7348.60	2 ⁺
		3749.7 ^a	19 <i>I</i>	8654.9	2+			7424 ^a	8 ^c 3 100 ^c 11	5235.16	3 ⁺ 2 ⁺
		3966.1 ^a	4.1 21	8438.4	1 ⁻ 3 ⁻			8421 ^a 8536 ^a	100° 11 16° 3	4238.35	
		4046.4 ^a 4788.0 ^a	1.6 8	8358.1 7616.41	3 3-			8536 ^a 11289 ^a	51 ^c 5	4122.853	2 ⁺
			12 6		3 2 ⁺	12670.0	2-			1368.667	2+ 2+
		5055.7 ^a	3.0 15	7348.60	۷.	12670.0	2-	682.5 ^a	0.36 2	11988.5	7.

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbb{E}_f	\mathbf{J}_f^{π}
12818.1	1+	6385.0 ^a	18 9	6432.2	0+
		7581.6 ^a	2.6 13	5235.16	3 ⁺
		8578.1 <mark>a</mark>	54 <i>3</i>	4238.35	2+
		11446.5 <mark>a</mark>	26 13	1368.667	2+
		12814.4 <mark>a</mark>	100 5	0	0^{+}
12846.9	$(3^-,4^+)$	6835.5 <mark>a</mark>	6.1 31	6010.34	4+
	, ,	7610.4 <mark>a</mark>	4.1 20	5235.16	3 ⁺
		8606.9 <mark>a</mark>	100 5	4238.35	2+
		8722.3 <mark>a</mark>	73 <i>4</i>	4122.853	4+
		11475.3 <mark>a</mark>	20 10	1368.667	2+
12854	$(1^+, 2^+, 3^+)$	7618 ^a	52 <i>3</i>	5235.16	3 ⁺
		8614 <mark>a</mark>	100 5	4238.35	2+
		11482 <mark>a</mark>	18 9	1368.667	2+
		12850 ^a	9 5	0	0^{+}
12861	$2^{+},3^{-}$	3560 ^a	52 ^c 4	9301.07	(4^{+})
		4422 ^a	40 ^c 4	8438.4	1-
		6850 ^a	100° 4	6010.34	4+
		8736 ^a	19 ^c 4	4122.853	4+
12895.1	1+	4239.8 ^a	4.2 21	8654.9	2+
		5146.8 <i>af</i>	6.9 35	7747.7	1+
		7658.6 <mark>a</mark>	16.7 8	5235.16	3 ⁺
		8655.1 <mark>a</mark>	11 6	4238.35	2+
		11523.4 <mark>a</mark>	100 6	1368.667	2+
12921.6	$(2^+,3^-,4^+)$	3636.9 <mark>a</mark>	24 12	9284.4	$2^{+},4^{+}$
		4266.3 ^a	14 7	8654.9	2+
		4563.0 <mark>a</mark>	59 <i>3</i>	8358.1	3-
		7685.1 ^a	100 5	5235.16	3 ⁺
		8681.6 <mark>a</mark>	72 4	4238.35	2+
		8797.0 <mark>a</mark>	52 <i>3</i>	4122.853	4+
		11549.9 ^a	24 12	1368.667	2+
12955.5	1+	1502.6 ^a	0.06 <i>I</i>	11452.8	2+
		2243.2 ^a	0.016 5	10712.2	1+
		2275.7 ^a	0.021 4	10679.7	0^{+}
		2594.6 ^a	1.43 5	10360.7	2+
		2844.4 <mark>a</mark>	0.123 6	10110.9	(0^+)
		2896.2 ^a	0.157 7	10059.1	$(1,2)^+$
		2990.0 <i>a</i>	0.029 4	9965.3	1+
		3127.1 ^a	0.89 2	9828.0	1+
		3649.8 a	0.81 2	9305.39	0_{+}
		3809.0 ^a	0.65 2	9146.2	1-

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	\mathbb{E}_f	$\underline{\hspace{1cm}} \mathbf{J}^{\pi}_f$	Mult.d	Comments
12955.5	1+	3951.6 <mark>a</mark>	0.030 2	9003.5	2+		
		4090.6 ^a	0.31 1	8864.5	2-		
		4300.2 ^a	0.20 1	8654.9	2+		
		4516.6 <mark>a</mark>	0.064 5	8438.4	1-		
		5206.6 ^a	0.014 2	7747.7	1+		
		5605.1 <mark>a</mark>	0.16 6	7348.60	2+		
		6521.4 <mark>a</mark>	1.17 4	6432.2	0^{+}		
		8714.8 <mark>a</mark>	1.12 4	4238.35	2+		
		11583.2 <mark>a</mark>	100.0 5	1368.667			
		12951.1 <mark>a</mark>	9.6 <i>4</i>	0	0^{+}		
12963.9	2-	2904.6 <mark>a</mark>	4.1	10059.1	$(1,2)^+$		
		7727.4 <mark>a</mark>	21	5235.16	3+		
		8723.8 <mark>a</mark>	4.1	4238.35	2+		
		11592.2 ^a	100	1368.667			
		12960.1 ^a	8.2	0	0_{+}		
13029.8	$2^{+},3^{-}$	2668.9 ^a	1.0	10360.7	2+		
		3571.7 ^a	4.1	9457.81	$(3)^{+}$		
		3729.7 ^a	3.1	9299.8			
		4025.9 ^a	8	9003.5	2+		
		4374.5 <mark>a</mark>	4.1	8654.9	2+		
		4590.9 ^a	3.1	8438.4	1-		
		5412.7 <mark>a</mark>	22	7616.41	3-		
		7793.3 <mark>a</mark>	100	5235.16	3+		
		8789.7 ^a	49	4238.35	2+		
		8905.2 ^a	6.1	4122.853			
		11658.1 <mark>a</mark>	3.5	1368.667			
13048	0_{+}	3082 ^a	70° 7	9965.3	1+		
		3220 ^a	100° 7	9828.0	1+	D	Mult.: From $\gamma\gamma(\theta)$ (1978Fi08 – (α,γ)).
		4609 ^a	30° 5	8438.4	1-		
		5300 ^a	23° 5	7747.7	1+		
100500		5492 ^a	14 ^c 5	7555.3	1-		
13050.0	4+	922.0 ^a	0.040 4	12128			
		1719.0 ^a	0.021 7	11330	2+ 4+		
		1833.2 ^a	0.32 1	11216.69	3 ⁺ ,4 ⁺		
		2229.1 ^a	0.052 5	10820.8	3+,4+		
		2389.7 ^a	0.30 1	10660.17	$(3^+,4^+)$		
		2468.6 ^a	2.28 7	10581.26	$(2^+,3^+,4^+)$		
		3021.8 ^a	0.52 2	10027.97	5-		
		3591.9 ^a	2.52 8	9457.81	$(3)^{+}$		
		3748.6 ^a	0.09 3	9301.07	(4^{+})		

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}	I_{γ}^{b}	\mathbb{E}_f	\mathtt{J}_f^π
13050.0	4+	3749.9 ^a	0.35 3	9299.8	
		3765.3 ^a	0.139 6	9284.4	$2^{+},4^{+}$
		5237.0 ^a	0.20 1	7812.4	$(4^{-},5^{+})$
		5432.9 <mark>a</mark>	0.013 4	7616.41	3-
		7038.6 <mark>a</mark>	1.83 6	6010.34	4+
		7813.5 <mark>a</mark>	1.58 6	5235.16	3 ⁺
		8925.4 <mark>a</mark>	100.0 2	4122.853	4+
		11678.3 <mark>a</mark>	0.09 1	1368.667	2+
13057	5-	2723 <mark>a</mark>	16 ^c 3	10333.6	3-
		4698 <mark>a</mark>	15 ^c 3	8358.1	3-
		5440 <mark>a</mark>	16 ^c 3	7616.41	3-
		8932 ^a	100° 5	4122.853	4+
13088.8	2+	3804.1 ^a	27	9284.4	2+,4+
		4433.5 ^a	6	8654.9	2+
		4730.2 ^a	67	8358.1	3-
		7077.3 ^a	10	6010.34	4+
		7852.3 ^a	100	5235.16	3+
		8848.7 <mark>a</mark>	40	4238.35	2+
		8964.2 ^a	63	4122.853	4+
		11717.1 <mark>a</mark>	20	1368.667	2+
		13085.0 ^a	0.7	0	0^+
13212.8		5099.0 [‡]	100	8113.2	6 ⁺
13345.7	3-	1824 <mark>a</mark>	1.9	11522	2+
		2685.7 ^a	19	10659.8	$(1,2^+)$
		3887.6 <mark>a</mark>	19	9457.81	$(3)^{+}$
		4045.5 ^a	28	9299.8	
		4341.8 <mark>a</mark>	2.8	9003.5	2+
		4905.9 ^a	100	8439.29	4+
		5728.6 ^a	33	7616.41	3-
		5996.3 ^a	6	7348.60	2+
		8109.1 <mark>a</mark>	2.8	5235.16	3 ⁺
		9105.5 ^a	25	4238.35	2+
		9220.9 ^a	31	4122.853	4+
		11973.8 <mark>a</mark>	8	1368.667	2+
		13341.7 ^a	0.8	0	0+
13366.9	(2)	2785 ^a	100	10581.26	$(2^+,3^+,4^+)$
		5554 ^a	35	7812.4	$(4^-,5^+)$
		11995 ^a	9	1368.667	2+
		13363 ^a	9	0	0+
13446.8	(1,2)	2056 ^a	65 <i>3</i>	11391	1-

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Comments
13446.8	(1,2)	5008 ^a	21 10	8438.4	1-	
		9323 <mark>a</mark>		4122.853	4+	
		12075 <mark>a</mark>	100 4	1368.667	2+	
		13443 <mark>a</mark>	23 <i>1</i>	0	0_{+}	
13474.9	$2^+,3,4^+$	7463 <mark>a</mark>	60 <i>3</i>	6010.34	4+	
		8238 ^a	100 5	5235.16	3 ⁺	
		9350 ^a	15 7	4122.853	4+	
		12103 ^a	7 4	1368.667	2+	
13771	5-	5412 ^a	100° 10	8358.1	3-	
		9646 <mark>a</mark>	72 ^c 10	4122.853	4+	
14081	1+	3069 ^a	40° 4	11012	$3,5^{+}$	
		4779 ^a	2.2 ^c 9	9301.07	(4^{+})	
		8069 ^a	80°7	6010.34	4+	
		9956 ^a	100°7	4122.853	4+	
14150	8+	4620 [#] 25	100 [#] 4	9527.6	(6^{+})	
		6040 [#] 25	33 [#] 4	8113.2	6+	
16904		5043 ^a	100	11860	(8^{+})	
19110	(10^{+})	5856 ^a f	100	13212.8		E_{γ} : Tentatively placed in 2001Wi18 (($^{16}O_{\gamma}$),($^{16}O_{\gamma}$)) with a measured energy 5927 keV 5.

[†] From 24 Al ε decay (2.053 s). ‡ From (24 Mg, 12 C γ). # From (16 O, α),(16 O, $\alpha\gamma$). @ From (12 C, γ). & From 24 Al ε decay (130.7 ms).

^a From level energy difference, recoil energy subtracted. Not considered in the least-squares fit.

^b From (p,γ) , except where otherwise noted.

^c From (α, γ) .

^d From ²⁴Na β^- decay (14.956 h), except where otherwise noted.

Additional information 1.
 Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

 $^{24}_{12}{\rm Mg}_{12}$