IEEE 802.11 be

WI-FI Strikes again

Outline

- Intro, objective, and timeline
- ► Key upgrades from 802.11ax
- Disruptive new features in 802.11be
- Performance evaluation

Who doesn't use WI-FI

Advantage

- Unlicensed spectrum is free.
- 13B WI-FI devices installed.
- Widely adopted for residential, public, enterprise, and industrial use.

Challenge

- New digital app requirements:
- higher capacity
- ✓ lower dealy -new!
- ✓ more reliability -new!

WI-FI evolution

- 802.11n(WI-FI4)
- Single-user MIMO
- Packet aggregation
- 802.11ac(WI-FI5)
- Multi-user MIMO(Downlink)
- Channel bonding
- 802.11ax(WI-FI6)
- OFDMA
- Multi-user MIMO(Uplink)
- 802.11be(WI-FI7)
- Focus of this topic

802.11be objectives

- Extremely high throughput(EHT)
- Up to 30Gbps per AP
- New MAC and PHY operations
- Carriers between 1-7.125GHz
- Improved worst-cast latency and jetter (no specific requirements)
- Backward compatibility and coexistence with legacy 802.11

timeline

802.11be targeted features

- Key upgrades from 11ax:
 - 1. 320MHz
 - 2. Multiple Rus per STA
 - 3. 16 spatial streams
 - 4. 4K-QAM
- Disruptive new features in 11be:
 - 5. HARQ
 - 6. Multi-link operation
 - 7. Low-complexity AP coordination
 - 8. Advanced AP coordination

Key upgrades from 802.11ax: 320MHz

802.11ax/be frequency bands

- 2.4GHz: 11 channels of 20MHz, only 3 non-overlapping
- 5GHz: 25 channels of 20MHz over 555(semi-contiguous)MHz
- 6GHz: up to 60 channels of 20MHz over 1200MHz

Channel bonding in 802.11ax

- Increase transmission rates by using wider channels
- 5GHz: 25 channels of 20MHz over 555 (semi-contiguous) MHz
- > 160MHz channel bonding is an optional feature
- Channel bonding performance depends on the spectrum occupancy

Preamble puncturing in 802.11ax

320MHz per AP in 802.11be

- New unlicensed 6GHz band (5925MHz-7125MHz)
- Adding up to 1.2GHz spectrum and up to 320 MHz channel bonding
- Definition of new channel access rules under discussion.

Multiple RUs per STA

OFDMA in 802.11ax

- Multiple devices can be simultaneously scheduled in different subcarriers
- Reduces latency and better allocates resources to different types of traffic

OFDMA in 802.11ax

- Different RU sizes to accommodate different traffic and rate needs
- AP-controlled transmissions: DL,UL
- STA channel and buffer information is required at the AP

OFDMA in 802.11ax

- Key limitation of 802.11ax OFDMA:
 each STA can only be assigned a single resource unit (RU), leading to
- Unused spectral resourced, and
- Unexploited frequency diversity gains
- Illustrative example: Preamble puncturing in 802.11ax
- In a single-user transmission, no bandwidth aggregation is possible if the secondary channel is busy

Multiple RUs per STA in 802.11be

Example 1 STA: Enhanced preamble puncturing efficiency

Example 2 STAS: Improved OFDMA efficiency

Key upgrades from 802.11ax: 16 spatial streams

Background: Single-user spatial processing

- Single-user techniques (802.11n/ac/ax)
- SU-MIMOUp to min (Nap , Nsta) streamsOnly enabled for
- High SINRs
- Non-line-of-sight propagation
- BeamformingRegulations do not allow to focus energyon a given spatial direction

Background: Spatial multiplexing

- Multi-user techniques(802.11ac)
- Downlink MU-MIMO:
 802.11ac allows APs to transmit
 8 spatial streams simultaneous to 4 devices
- Optional standard feature included in second-wave products
- Known issues:
- Many STAs are single-antenna
- > STA channel sounding responses are serially transmitted
- Downlink TCP/IP traffic with uplink ACKs suffers because no uplink MU-MIMO is allowed

Spatial multiplexing in 802.11ax

- Multi-user techniques
- Downlink and uplink MU-MIMO:802.11ax allows to transmit
 8 spatial streams simultaneously to 8 devices
- UL MU-MIMO requires UL transmit power control, frequency alignment, and time synchronization

AP _	Trigger		ACK frame
STA 1		UL MU PPDU	
STA 2		UL MU PPDU	
STA 3		UL MU PPDU	

16spatial streams in 802.11be

- Support of up to 16 spatial streams
- Enhance channel state information (CSI) acquisition
- Current approach based on explicit feedback does not scale well
- Implicit CSI acqucuisition leveraging channel reciprocity
 Potential overhead reduction for systems with 8 and 16 spatial streams

Key upgrades from 802.11ax: 4K QAM

4K-QAM transmissions in 802.11be

- The typical short ranges of 802.11 favors the use of high MCSs:
- 1024-QAM already supported in WIFI6 as an optional feature
- The use of 4k-QAM seems feasible in configurations with:
- transmit beamforming,
- low number of spatial streams, and
- strict receive EVM requirements and/or multiple receive antennas

4k-QAM constellation

Disruptive new features in 802.11be:HARQ

Automatic repeat request (ARQ) in 11n/ac/ax

Lack of acknowledgement (ACK) triggers frame retransmissions

Block ACKs used to acknowledge multiple frames simultaneously

Hybrid ARQ (HARQ) in 11be

- Boosting link adaptation via more efficient re-tx
- Theoretical SNR gains in the order of 4 to 6 dB
- Already discussed in 11ac and11ax standardization
- Main concern: HARQ might not be robust against collisions caused by the unpredictable interference conditions in 802.11

Disruptive new features in 802.11be: Multi-link operation

- What does "multi-link" actually mean?
 Think of it as multi-band or multi-channel
- This feature has attracted great interest, since:
- many APs already operate in three bands(e.g., 2.4, low-5, and high-5GHz)
- many STAs are dual-band
- > 6GHz band will be available for unlicensed use
- Main target: make a more efficient use of multiple bands/channels

Protocol stack and channel allocation of an illustrative multi-link device

- Simultaneous use of 2.4GHz, 5GHz, and 6GHz bands:
- Load balancing according to traffic needs
- Data aggregation in different bands
- Data tx/rx separated in different bands
- E.g., low bands for uplink and high bands for downlink
- Control and data plane separated in different bands
- ♦ E.g., low bands for control info and high bands for data tx/rx

Multi-link operation: Example

Disruptive new features in 802.11be: Low-complexity AP coordination

Uncoordinated spatial reuse in 802.11ax

OBSSs/PD

TX power function of RX power

Parameterized Spatial Reuse (PSR)

AP activates SR via trigger frame SR opportunities identified, TX power adjusted

max TX duration shorter than that of the SR-enabling AP

AP coordination in 802.11be

Trigger AP 2

Data from STA 2,1

Data from STA 2,2

Nearby Aps coordinate their TX:

Info exchange between APs in a group

- Avoid channel contention, improve resource sharing
- Time/frequency or power coordination (over the air)
- Challenges:

AP 1

AP 2

STA 2.1

STA 2,2

- Overhead, creation/management of multi-AP groups
- Master AP requires channel/buffer/node state for all STAs

MS-ACK

ACK

STA 1.1

AP 1 / Master

Coordinated OFDMA in 802.11be

- Time/frequency coordination: OFDMA
- > Aps jointly allocate time/freq. resources
- Minimize inter-BSS collisions
- More efficient use of spectrum resources
- Channel allocation to the different BSSs
- To overlap or not to overlap?

Coordinated spatial reuse in 802.11be

- Power coordination: Spatial reuse (SR)
- 802.11ax facilitates a more aggressive channel access channel access decisions solely based on measured power
- 802.11be may allow Aps to jointly schedule their transmissions
 Objective: Enhance spatial reuse preventing "uncontrolled" collisions

Non-coordinated TX: generates a collision

Coordinated TX:
AP1 reduces its TX power to prevent the collision

Disruptive new features in 802.11be: Advanced AP coordination

Joint transmissions (D-MIMO)

Reuses time/freq. resources via joint spatial mux Solution with the most demanding synchronization and backhauling requirements

Coordinated beamforming (CBF)

Reuses time/freq. resources via spatial radiation nulls Solution with simplified requirements

Performance evaluation: Coordinated beamforming

System models: scenarios

- 1. Baseline system without PSR
- Spectrum shared according to CSMA/CA

- 1. Baseline system without PSR
- Spectrum shared according to CSMA/CA
- 2. System with PSR
- When triggering uplink TX, APs may grant SROs to inter-BSS STAs

- 1. Baseline system without PSR
- Spectrum shared according to CSMA/CA
- 2. System with PSR
- When triggering uplink TX, APs may grant SROs to inter-BSS STAs
- 3. System with PSR and coordinated beamforming/null steering
- When triggering uplink Tx, APs may steer radiation nulls and grant SROs to inter-BSS STAs

System model: traffic and scheduling

- Traffic:
- Uplink broadband FTP traffic
- Uplink latency-sensitive AR traffic
- Scheduling:
- When triggering uplink, APs spatially multiplex as many STAs as possible of a class per TXOP
- Remaining spatial DoF suppress strongest interference from neighboring low-latency STAs

System model: setup

Carrier / bandwidth	5.18GHz / 80MHz (1 channel)	
AP deployment	$\underline{2~ceiling\text{-}mounted~APs}$ Inter-AP distance = 15 m AP height = 3 m	
STA deployment	$\underline{16 \text{ broadband STAs}}$ uniformly distributed at height = 1 m $\underline{8 \text{ low-latency STAs}}$ uniformly distributed at height = 1 m	
AP RF	$4x2$ antenna array (0.5 λ separation) AP max. Tx power = 24 dBm omni antenna elements NF = 7 dB	
STA RF	STA max. Tx power = 15 dBm 1 omni antenna NF = 9 dB	
Channel model	3D spatial channel model (3GPP TR38.901 – InH)	
MAC configuration	Max. # radiation nulls = 4 IP/MAC header overhead considered No EDCA No RTS/CTS Max. TXOP = 4 ms SNR-driven MCS selection	
PHY configuration	PHY header overhead considered Spatial filter = ZF (w/ and w/o nulls) Omni PLCP header 11ax MCSs	

Latency performance

- 11axw/ or w/o SR capabilities:
- latency<3 ms half the time, but</pre>
- in some cases, latency>200 ms
- 11be w/ CBF reduces worst-case
 latency by an order of magnitude:
- more aggressive spectrum access
- inter-BSS interference mitigation
- 11be W/ CDF also ~preserves the throughput* of broadband STA

