Interference effects

Cristian Fernando Rodríguez Cruz

Authors: A. Flórez¹, C. Rodriguez¹, J. Reyes-Vega¹, J. Jones-Pérez².

¹Universidad de los Andes

²Pontificia Universidad Católica del Perú

August 16, 2024

Two body scattering

CM-Frame

Consider the process

$$A(\vec{p}_1) + B(\vec{p}_2) \longrightarrow C(\vec{p}_3) + D(\vec{p}_4),$$
 (1)

From the Golden Rule, the cross section is given by

$$\sigma = \frac{S(2\pi)^4}{4\sqrt{(\vec{p}_1 \cdot \vec{p}_2)^2 - (m_1 m_2)^2}} \int |\mathcal{M}|^2 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) \frac{d^3 \vec{p}_3}{(2\pi)^3 2E_3} \frac{d^3 \vec{p}_4}{(2\pi)^3 2E_4}.$$
(2)

But, in the CM frame, $\vec{p}_1 + \vec{p}_2 = 0$, where

$$\sqrt{(\vec{p}_1 \cdot \vec{p}_2)^2 - (m_1 m_2)^2} = E_1 E_2 |\vec{p}_1|,\tag{3}$$

$$\delta^{(4)}(p_1 + p_2 - p_3 - p_4) = \delta(E_1 + E_2 - E_3 - E_4)\delta^{(3)}(\vec{p}_3 + \vec{p}_4). \tag{4}$$

Thus

$$\sigma = \left(\frac{1}{8\pi}\right)^2 \frac{S}{(E_1 E_2)|\vec{p}_1|} \int |\mathcal{M}|^2 \frac{\delta\left(E_1 + E_2 - \sqrt{\vec{p}_3^2 + m_3^2} - \sqrt{\vec{p}_3^2 + m_4^2}\right)}{\sqrt{\vec{p}_3^2 + m_3^2}\sqrt{\vec{p}_3^2 + m_4^2}} d\vec{p}_3 \quad (5)$$

Two body scattering

Integrating over the radial part $|\vec{p}_3|$, we get

$$\sigma = \left(\frac{1}{8\pi}\right)^2 \frac{S|\vec{p}_3|}{(E_1 + E_2)^2|\vec{p}_1|} \int |\mathcal{M}|^2 d\Omega, \tag{6}$$

with

$$|\vec{p}_3| = \frac{1}{2} \frac{\sqrt{((E_1 + E_2)^2 - m_3^2 - m_4^2)^2 - 4m_3^2 m_4^2}}{E_1 + E_2},\tag{7}$$

the outgoing momentum in the CM frame.

We prefer work with differential cross section as

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \frac{S}{(E_1 + E_2)^2} \frac{|\vec{p}_3|}{|\vec{p}_1|} |\mathcal{M}|^2.$$
 (8)

Note that at this point, we don't need to know the explicit form of the matrix element \mathcal{M} , so it is a generic result.

Two body scattering

Defining $\sqrt{s} = E_1 + E_2$, we have

$$|\vec{p}_3| = \frac{1}{2} \frac{\sqrt{(s - m_3^2 - m_4^2)^2 - 4m_3^2 m_4^2}}{s}, \quad |\vec{p}_1| \frac{1}{2} \frac{\sqrt{(s - m_1^2 - m_2^2)^2 - 4m_1^2 m_2^2}}{s}. \tag{9}$$

so the differential cross section is

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{S}{s} \sqrt{\frac{(s - (m_3 + m_4)^2)(s - (m_3 - m_4)^2)}{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}} |\mathcal{M}|^2.$$
(10)

In general, there are three Lorentz-invariant useful kinematical variables to describe the scattering process, known as Mandelstam variables:

$$\hat{s} = (p_1 + p_2)^2 = (p_3 + p_4)^2 = m_1^2 + m_2^2 + 2\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_2 = m_3^2 + m_4^2 + 2\vec{\mathbf{p}}_3 \cdot \vec{\mathbf{p}}_4, \tag{11}$$

$$\hat{t} = (p_1 - p_3)^2 = (p_2 - p_4)^2 = m_1^2 + m_3^2 - 2\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_3 = m_2^2 + m_4^2 - 2\vec{\mathbf{p}}_2 \cdot \vec{\mathbf{p}}_4, \tag{12}$$

$$\hat{u} = (p_1 - p_4)^2 = (p_2 - p_3)^2 = m_1^2 + m_4^2 - 2\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_4 = m_2^2 + m_3^2 - 2\vec{\mathbf{p}}_2 \cdot \vec{\mathbf{p}}_3.$$
 (13)

In the CM-frame, $\hat{s} = s = (E_1 + E_2)^2$.

QED $e^+e^- \longrightarrow e^+e^-$ scattering

At tree level, there are two Feynman diagrams that contribute to the process

$$e^{-}(p_1)$$
 $e^{-}(p'_1)$
 $A(k_b)$
 $e^{+}(-p_2)$ $e^{+}(-p'_2)$

$$\begin{split} \left[\bar{u}_1'(ie\gamma^{\mu})u_1 \right] iD_{\mu\nu}(k_a) \left[\bar{v}_2(ie\gamma^{\nu})v_2' \right] \\ = -ie^2 \frac{\left[\bar{u}_1'\gamma^{\mu}u_1 \right] \left[\bar{v}_2\gamma_{\mu}v_2' \right]}{k_a^2} \end{split}$$

$$\begin{split} \left[\bar{v}_2 (ie\gamma^\mu) u_1 \right] iD_{\mu\nu} (k_b) \left[\bar{u}_1' (ie\gamma^\nu) v_2' \right] \\ = -ie^2 \frac{\left[\bar{v}_2 \gamma^\mu u_1 \right] \left[\bar{u}_1' \gamma_\mu v_2' \right]}{k_b^2} \end{split}$$

$$k_a = p_1 - p_1' = p_2' - p_2$$

$$k_b = p_1 + p_2 = p_2' + p_1'$$

The fermionic exchange between the initial positron and the final electron is the same in both diagrams, so we have a relative minus sign between the two contributions.

$$i\mathcal{M} = ie^{2} \left(\frac{\left[\bar{u}_{1} \gamma^{\mu} u_{1}' \right] \left[\bar{v}_{2} \gamma_{\mu} v_{2}' \right]}{(p_{1} - p_{1}')^{2}} - \frac{\left[\bar{v}_{2} \gamma^{\mu} u_{1} \right] \left[\bar{u}_{1}' \gamma_{\mu} v_{2}' \right]}{(p_{1} + p_{2})^{2}} \right), \tag{14}$$

QED $e^+e^- \longrightarrow e^+e^-$ scattering

In terms of the Mandelstam variables, we have

$$i\mathcal{M} = ie^2 \left(\frac{\left[\bar{u}_1 \gamma^{\mu} u_1' \right] \left[\bar{v}_2 \gamma_{\mu} v_2' \right]}{\hat{t}} - \frac{\left[\bar{v}_2 \gamma^{\mu} u_1 \right] \left[\bar{u}_1' \gamma_{\mu} v_2' \right]}{\hat{s}} \right). \tag{15}$$

So, the mean square of the matrix element is

$$\overline{|\mathcal{M}|^2} = \frac{1}{4} \sum_{\text{spins}} |\mathcal{M}|^2 = \frac{e^2}{4} \left(\frac{T_{11}}{\hat{t}^2} + \frac{T_{22}}{\hat{s}^2} - \frac{T_{12} + T_{21}}{\hat{s}\hat{t}} \right)$$
(16)

with

$$T_{11} = 32 \left[(\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_2)^2 + (\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_2')^2 + 2m^2(m^2 - \vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_1') \right], \tag{17}$$

$$T_{22} = 32 \left[(\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_1')^2 + (\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_2')^2 + 2m^2(m^2 + \vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_2) \right], \tag{18}$$

$$-T_{12} = -T_{21} = 32 \left[(\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_2') + m^2 \left(\vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_2' + \vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_2 - \vec{\mathbf{p}}_1 \cdot \vec{\mathbf{p}}_1' \right) + m^4 . \right]$$
(19)

Photon and Z-boson interference, $q\bar{q} \longrightarrow \tau^+\tau^-$

The squared matrix element can be written as

$$\begin{split} |\mathcal{M}|^2 &= \left|\mathcal{M}_{\gamma^*} + \mathcal{M}_Z\right| \\ &= \left|\mathcal{M}_{\gamma^*}\right|^2 + \left|\mathcal{M}_Z\right|^2 + 2\operatorname{Re}\left(\mathcal{M}_{\gamma^*}^*\mathcal{M}_Z\right). \end{split}$$

In madgraph, with the sm model, we have

- \blacksquare q q \sim \rightarrow Z \rightarrow ta+ ta- for $|\mathcal{M}_Z|^2$.
- \blacksquare q q \sim \rightarrow a \rightarrow ta+ ta- for $\left|\mathcal{M}_{\gamma^*}\right|^2$.
- $\qquad \text{q q$\sim$} \to \text{ta+ ta-} \ / \ \text{h QED=2} \ \text{for} \ |\mathcal{M}|^2.$

Photon and Z-boson interference, $q\bar{q} \longrightarrow \tau^+\tau^-$

The squared matrix element can be written as

$$\begin{split} |\mathcal{M}|^2 &= \left|\mathcal{M}_{\gamma^*} + \mathcal{M}_Z\right| \\ &= \left|\mathcal{M}_{\gamma^*}\right|^2 + \left|\mathcal{M}_Z\right|^2 + 2\operatorname{Re}\left(\mathcal{M}_{\gamma^*}^*\mathcal{M}_Z\right). \end{split}$$

In madgraph, with the sm model, we have

$$\blacksquare$$
 q q \sim \rightarrow Z \rightarrow ta+ ta- for $|\mathcal{M}_Z|^2$.

• q q
$$\sim$$
 \rightarrow a \rightarrow ta+ ta- for $|\mathcal{M}_{\gamma^*}|^2$.

$$\blacksquare$$
 q q \sim \rightarrow ta+ ta- / h QED=2 for $|\mathcal{M}|^2$.

For the case $q_R \bar{q}_L \longrightarrow \tau_L^+ \tau_R^-$, the amplitudes are

$$\begin{split} \left| \mathcal{M}_{\gamma^*} \right|^2 &= e^4 \left[Q^{(f)} Q^{(q)} \right]^2 [1 + \cos \theta]^2 \\ \left| \mathcal{M}_Z \right|^2 &= \frac{s^2 g_Z^4 \left[g_R^{(f)} g_R^{(q)} \right]^2}{\left(s - m_Z^2 \right)^2 + \left(m_Z \Gamma_Z \right)^2} \left[1 + \cos \theta \right]^2 \\ \mathcal{M}_{\gamma^*}^* \mathcal{M}_Z &= \frac{g_Z^2 e^2 Q^{(f)} Q^{(q)} g_R^{(f)} g_R^{(q)}}{\left(s - m_Z^2 + i \Gamma_Z \right)} s \left(1 + \cos \theta \right)^2 \end{split}$$

$gg(\rightarrow \Phi) \longrightarrow t\bar{t}$ BSM scalar interference

The amplitude for the $gg(\to \Phi) \longrightarrow t\bar{t}$ process is

$$\mathcal{M}_{gg \to t\bar{t}}^{\Phi} = -\sum_{\Phi} \frac{\mathcal{M}_{gg\Phi} \hat{s} \mathcal{M}_{\Phi t\bar{t}}}{\hat{s} - m_{\Phi}^2 + i m_{\Phi} \Gamma_{\Phi}} + \mathcal{M}_{gg \to t\bar{t}}^{QCD}, \qquad (20)$$

And the BSM contributions $\frac{d\hat{\sigma}_S}{dz}$, $\frac{d\hat{\sigma}_I}{dz}$ to the QCD XS $\frac{d\hat{\sigma}_B}{dz}$ are

$$\begin{split} \frac{\mathrm{d}\hat{\sigma}_{S}}{\mathrm{d}z} &= \frac{3\alpha_{s}^{2}G_{F}^{2}m_{t}^{2}}{8192\pi^{3}}\hat{s}^{2}\sum_{\Phi} \frac{\hat{\beta}_{t}^{p_{\Phi}} \left|\hat{g}_{\Phi tt}^{2}A_{1/2}^{\Phi}\left(\tau_{t}\right)\right|^{2}}{\left(s-M_{\Phi}^{2}\right)^{2}+\Gamma_{\Phi}^{2}M_{\Phi}^{2}} \\ \frac{\mathrm{d}\hat{\sigma}_{I}}{\mathrm{d}z} &= -\frac{\alpha_{s}^{2}G_{F}m_{t}^{2}}{64\sqrt{2}\pi} \frac{1}{1-\hat{\beta}_{t}^{2}z^{2}}\operatorname{Re}\left[\sum_{\Phi} \frac{\hat{\beta}_{t}^{p_{\Phi}}\hat{g}_{\Phi tt}^{2}A_{1/2}^{\Phi}\left(\tau_{t}\right)}{s-M_{\Phi}^{2}+i\Gamma_{\Phi}M_{\Phi}}\right] \end{split}$$

where $\hat{\beta}_t = \sqrt{1 - 4m_t^2/\hat{s}}$, $\tau_t = 4m_t^2/\hat{s}$, $z = \cos \theta$, and $p_{\Phi} \in \{3, 1\}$.

Figure 1: Feynman diagrams for the signal process $gg \to \Phi \to t\bar{t}$ and the QCD process $gg \to t\bar{t}$ that is the dominant background at the LHC. The state Φ may represent either a

$gg(\to \Phi) \longrightarrow t\bar{t}$ BSM scalar interference

Interferences between the Z' and the Vector Leptoquark

$$RKI = \frac{1}{\sigma_{LQ+Z'}} \frac{d}{dm} \left[\sigma_{LQ+Z'} - \left(\sigma_{LQ} + \sigma_{Z'} \right) \right]$$