COS 340 Fall 2020

Homework 1: Problem 1

William Svoboda (wsvoboda)

Collaborators: None

Problem 1:

We wish to prove

$$P(n): T_n \leq 2^n$$

for any nonnegative integer n.

(Base Case) We first show P(0), P(1), and P(2) are true, i.e. that the formula is valid when n = 0, n = 1, and n = 2. If n = 0, then

 $T_0 < 2^0$

 $T_0 \le 1$

By definition we are given $T_0 = 1$, so

 $1 \leq 1$

And P(0) holds. If n = 1, then

 $T_1 < 2^1$

 $T_1 \leq 2$

By definition we are given $T_1 = 1$, so

 $1 \leq 2$

And P(1) holds. If n = 2, then

 $T_2 \le 2^2$

 $T_2 \le 4$

By definition we are given $T_2 = 1$, so

 $1 \le 4$

And P(2) holds.

(Inductive Step) let $k \geq 3$ and suppose that that P(j) is true for all $0 \leq j \leq k$. Since $k \geq 3$, then $k-3 \geq 0$ and so we are assuming in particular that P(k), P(k-1), and P(k-2) are all true. It now remains to be shown following the inductive hypothesis that P(k+1) is true. From the definition of the sequence we can write

$$T_{k+1} = T_k + T_{k-1} + T_{k-2}$$

Then following from our inductive hypothesis we can write

$$T_{k+1} = T_k + T_{k-1} + T_{k-2} \le 2^k + 2^{k-1} + 2^{k-2}$$

Now the right-hand side of the inequality can be simplified as

$$= \frac{1}{2} \cdot 2^{k+1} + \frac{1}{4} \cdot 2^{k+1} + \frac{1}{8} \cdot 2^{k+1}$$
$$= 2^{k+1} \cdot (\frac{1}{2} + \frac{1}{4} + \frac{1}{8})$$
$$= 2^{k+1} \cdot (\frac{7}{8})$$

We now have the full inequality written as

$$T_{k+1} \le 2^{k+1}$$

Thus P(k+1) is true. By Strong Induction we have proven that the inequality is valid for any nonnegative integer n.