The Finite Element Method for Problems in Physics

Coding Assignment 3

Consider the 3D elastostatics problem. Find u such that

PDE $\sigma_{ij,j} + f_i = 0 \text{ in } \Omega$ Constitutive relation $\sigma_{ij} = \mathbb{C}_{ijkl} \epsilon_{kl}$ Kinematic relation $\epsilon_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right)$ Neumann b.c. $\sigma_{ij} n_j = h_i \text{ on } \partial \Omega_{h_i}$ Dirichlet b.c. $u_i = u_i^g \text{ on } \partial \Omega_{u_i}$

Consider a three-dimensional domain defined by $x_1 = [0,1]$ m; $x_2 = [0,1]$ m; $x_3 = [0,1]$ m (i.e. the unit cube). Use E = 2.0e11 Pa and $\nu = 0.3$. Assume traction $h_i = 0$ N.m⁻² on all surfaces where no other conditions are specified. Use linear basis functions and a 10 x 10 x 10 element mesh for submission.

Apply the following boundary conditions:

 $h_1=h_2=0, h_3=1.0e9*x_1$ Pa on the face $x_3=1$ m and $u_1=u_2=u_3=0$ m on the face $x_3=0$ m.