Nom: Prénom: Classe:

EXERCICE N°1 (10 points)

On s'intéresse à la population d'une ville et on étudie plusieurs modèles d'évolution de cette population. En 2018, la population de la ville était de 15 000 habitants.

Modèle 1

On fait l'hypothèse que le nombre d'habitants augmente de 1 000 habitants par an. Pour tout entier naturel n, on note u_n le nombre d'habitants pour l'année (2018+n). On a ainsi $u_0=15\,000$.

- 1) Calculer u_1 et indiquer ce que représente u_1 .
- 2) Donner la nature de la suite (u_n) sans justifier la réponse.
- 3) On considère l'algorithme ci-contre :

À la fin de l'exécution de cet algorithme, la variable N est égale à 15.

Interpréter cette valeur dans le contexte de l'exercice.

Modèle 2

On fait l'hypothèse que le nombre d'habitants augmente de 4,7 % par an. On note v_n le nombre d'habitants pour l'année (2018+n).

Ainsi on a $v_0 = 15000$.

- 4) On admet que la suite (v_n) est géométrique. Déterminer sa raison.
- 5) Calculer, selon ce modèle, le nombre d'habitants de la ville en 2023, arrondi à l'unité.

EXERCICE N°2 (10 points)

L'évolution de la puissance solaire photovoltaïque dans le monde entre fin 2008 et fin 2018 est résumée dans le graphique ci-dessous :

- 1) Montrer qu'entre fin 2008 et fin 2018, la puissance solaire photovoltaïque a augmenté d'environ 3287 %.
- 2) Calculer les taux d'évolution de la puissance solaire, exprimés en pourcentage, entre 2016 et 2017, ainsi qu'entre 2017 et 2018. On arrondira à l'unité.
- 3) On se propose d'estimer la puissance solaire photovoltaïque dans le monde pour les années à venir en faisant l'hypothèse que le taux de croissance annuel restera constant et égal à 30%.

On note P_n la puissance solaire photovolta \ddot{i} que dans le monde, en gigawatt, à la fin de l'année

2018+n . Ainsi, $P_0 = 508$

- **3.a)** Justifier que, pour tout entier naturel n, $P_{n+1} = 1.3 \times P_n$.
- **3.b)** Quelle est la nature de la suite (P_n) ?
- **3.c)** Un chercheur affirme que si le taux de croissance se maintient à 30 %, la production dépassera les 2400 gigawatts avant fin 2024.

A-t-il raison? On justifiera la réponse par un calcul.