Open system Interconnection (OSI)

Digital to Diigital Conversion or Line Coding

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

August 29, 2020

Line Coding

- Line coding is the process of converting digital data to digital signals.
- We assume that data, in the form of text, numbers, graphical images, audio, or video, are stored in computer memory as sequences of bits.
- At the sender, digital data are encoded into a digital signal; at the receiver, the digital data are recreated by decoding the digital signal

Signal Element Versus Data Element

- A data element is the smallest entity that can represent a piece of information (bits).
- Signal element carries data elements (timewise)

 a. One data element per one signal element (r = 1)

 c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

elements $\left(r = \frac{4}{3}\right)$

Data Rate Versus Signal Rate

- The data rate defines the number of data elements (bits) sent in Is (bps).
- The signal rate is the number of signal elements sent in Is (baud rate)
- The data rate is sometimes called the **bit rate**.
- Signal rate is sometimes called the pulse rate, the modulation rate, or the baud rate.
- Increasing the data rate increases the speed of transmission
- Decreasing the signal rate decreases the bandwidth requirement
- We can formulate the relationship between data rate and signal rate as:

$$S=cxNx \frac{1}{r}$$

where N is the data rate (bps);
c is the case factor, which varies for each case;
S is the number of signal elements;
and r is the previously defined factor

Bandwidth Vs Baud rate

- The bandwidth of a nonperiodic signal is continuous with an infinite range
- Most digital signals we encounter in real life have a finite bandwidth.
- The baud rate, not the bit rate, determines the required bandwidth for a digital signal.
- The bandwidth reflects the range of frequencies we need.
- A relationship between the baud rate (signal rate) and the bandwidth.

$$B_{min} = cxNx\frac{1}{r}$$

We can solve for the maximum data rate if the bandwidth of the channel is given.

$$N_{max} = \frac{1}{c} x B x r$$

Baseline Wandering

- In decoding a digital signal, the receiver calculates a running average of the received signal power.
- A long string of 0s or 1s can cause a drift in the baseline (baseline wandering) and make it difficult for the receiver to decode correctly
- A good line coding scheme needs to prevent baseline wandering and also support the following:
 - DC Components
 - Self-synchronization
 - Built-in Error Detection
 - Immunity to Noise and Interference
 - Complexity

Line Coding Schemes

- We can roughly divide line coding schemes into five broad categories:
 - Unipolar: Only one voltage level (+v) other than 0
 - Polar: It uses two voltage level (+v/2,-v/2) other than 0
 - **Bipolar:** It uses three voltage level (+v,-v) other than 0

Unipolar RZ & NRZ format

RZ format:

- Each 0 off pulse with zero amplitude (A) for entire bit period (Tb).
- Each 1 on pulse with positive amplitude (+A) for half bit period (Tb/2).

NRZ format:

- Each 0 off pulse with zero amplitude (A) for entire bit period (Tb).
- Each 1 on pulse with pos amplitude (+A) for entire bit period (Tb).

Polar RZ & NRZ format

RZ format:

- Each 0 off pulse with neg half amplitude (-A/2) for half bit period (Tb/2).
- Each 1 on pulse with pos half amplitude (+A/2) for half bit period (Tb/2).

NRZ format:

- Each 0 off pulse with neg half amplitude (-A/2) for entire bit period (Tb).
- Each 1 on pulse with pos half amplitude (+A/2) for entire bit period (Tb).

BiPolar NRZ format

RZ format:

- Each 0 off pulse with for entire bit period (Tb).
- Successive 1 on pulse are represented with reverse polarity with amplitude (+A,-A) for half bit period (Tb/2)

• NRZ format:

- Each 0 off pulse with for entire bit period (Tb).
- Successive 1 on pulse are represented with reverse polarity with amplitude (+A,-A) for entire bit period (Tb).

Split Phase Manchester Encoding

- Each 1 on pulse with amplitude of (+A/2) for bit period of (Tb/2) and rest amplitude of (-A/2) for bit peiod of (Tb/2)
- Each 0 off pulse is reserves of 1

Assignement

- Find out rest of the other line coding format.
- Map the encoding scheme with transmission media interfaces:
 - Ethernet
 - Fiber optics
 - Wireless media
 - Other medias
- Find out the merits and demerits of each line coding format.
- You all can decided and fix the deadline for submission of this assignment, and let me know the deadline.

Thank You

