Untyped λ -Calculus, Informally

Alex Vondrak

 $\verb"ajvondrak@csupomona.edu"$

April 28, 2010

- Introduction
 - Last Time...
 - Background

- ② Using λ -Calculus
 - Extensions
 - Examples

Do-Over!

- ullet Almost a year ago, I did a λ -calculus talk
 - Too long¹
 - Too fast
 - Too much
- λ -calculus isn't that bad
 - In fact, it's supposed to be simple
 - Formalizes function definition and application
 - Last time: formal → fun
 - Full-on formality takes awhile

You Already Know λ -Calculus

Functions

• Remember math?

Examples

$$f(x) = x$$

$$g(x) = x^{2}$$

$$h(x) = f(x) \cdot g(x)$$

- All of these functions are named
- How do we formalize them?

You Already Know λ -Calculus

Programming

Language	Syntax
λ -calculus	$(\lambda x \cdot x)$
Common Lisp/Scheme	(lambda (x) x)
Python	lambda x: x
Ruby	$lambda \{ x x\}$
Haskell	\x -> x
C#	x => x
Javascript	function(x) $\{x;\}$
OCaml	fun x -> x
SML	fn x => x
:	:

First-class functions are supported by even more languages: Perl, PHP, Erlang, Lua, Tcl/Tk, Io, Scala, D, Smalltalk, . . .

λ -Calculus In Theory

Definitions (Syntax & Semantics)

(out)
$$\frac{A}{(\lambda x \cdot A)B} \xrightarrow{\beta} A[x \mapsto B]$$
 (left) $\frac{A}{AB} \xrightarrow{\beta} A'$
(in) $\frac{A}{\lambda x \cdot A} \xrightarrow{\beta} \lambda x \cdot A'$ (right) $\frac{B}{AB} \xrightarrow{\beta} B'$

λ -Calculus In Practice

Before

$$f(x) = x$$

$$g(x) = x^{2}$$

$$h(x) = f(x) \cdot g(x)$$

After

$$f = (\lambda x . x)$$

$$g = (\lambda x . x^{2})$$

$$h = (\lambda x . (f x) \cdot (g x))$$

λ -Calculus In Practice (Basically)

Before

$$f(x) = x$$

$$g(x) = x^{2}$$

$$h(x) = f(x) \cdot g(x)$$

After

$$f = (\lambda x . x)$$

$$g = (\lambda x . x^{2})$$

$$h = (\lambda x . (f x) \cdot (g x))$$

Strictly, in the untyped λ -calculus, we don't have names, datatypes, operators, objects, methods, or *anything*; just functions.

7 / 21

- Introduction
 - Last Time...
 - Background

- $oldsymbol{2}$ Using λ -Calculus
 - Extensions
 - Examples

Just Functions?

- What can you represent with just functions?
- Anything a computer can!
 - Natural numbers
 - Booleans
 - Tuples
 - Linked lists
 - Recursion
 - ...
- ullet λ -calculus is the smallest interesting programming language
- A Correspondence between ALGOL 60 and Church's Lambda-Notation (Landin, 1965)
- System F with Type Equality Coercions (Sulzmann, Chakravarty, Peyton Jones, and Donnelly, 2007)

History

- Early 1930s: Church, Kleene, and Rosser papers
 - 1932: Church formalizes λ -calculus
 - 1933: Church numerals
 - 1935: Kleene-Rosser paradox
- 1936: The Church-Turing thesis
 - Church answers the decision problem
 - Independently and almost immediately afterwards, so does Alan Turing
- 1936-1938: Alan Turing went to Princeton, taking Church as his doctoral advisor. Among other things, this gave us the Turing fixpoint combinator
 ⊕ in 1937.
- 1940: Church publishes a reformulation of type theory based on λ -calculus, which is a foundation for type-theoretic work today.

Extending λ -Calculus

- Though theoretically we can make everything a function, in practice we "cheat"
- To make our lives easier, assume we have
 - Natural numbers ($\lambda_{\mathbb{N}}$ -calculus)
 - Booleans ($\lambda_{\mathbb{NB}}$ -calculus)
- We use these as shorthand it's still untyped
- Even more extensions are possible
 - Annotate each program variable with a type variable $(\lambda x : T \cdot etc)$
 - · Give semantic rules that handle types soundly
 - This is the foundation of type theory

- Linked lists are ordered sequences of cons cells
- End each list with nil

Definitions

$$\begin{aligned} &\cos = (\lambda h \cdot (\lambda t \cdot (\lambda f \cdot ((f \ h) \ t)))) \\ &\operatorname{head} = (\lambda c \cdot (c \ (\lambda h \cdot (\lambda t \cdot h)))) \\ &\operatorname{tail} = (\lambda c \cdot (c \ (\lambda h \cdot (\lambda t \cdot t)))) \\ &\operatorname{nil} = (\lambda f \cdot T) \\ &\operatorname{null} = (\lambda c \cdot (c \ (\lambda h \cdot (\lambda t \cdot F)))) \end{aligned}$$

Variable Length

Examples

Accessing Elements

 Since linked lists are just nested pairs, we can access elements by individually accessing the head or tail of each sublist

Example

```
\begin{array}{l} \text{(head (cons 2 (cons 1 nil)))} \\ \equiv & \underline{((\lambda c . c (\lambda h \ t . h)) \ (cons 2 \ (cons 1 nil)))} \\ \longrightarrow_{\beta} & \underline{((cons 2 (cons 1 nil)) \ (\lambda h \ t . h))} \\ \equiv & \underline{((\lambda f . f \ 2 \ (\lambda f . f \ 1 nil)) \ (\lambda h \ t . h))} \\ \longrightarrow_{\beta} & \underline{(\lambda h \ t . h) \ 2 \ (\lambda f . f \ 1 nil)} \\ \longrightarrow_{\beta} & 2 \end{array}
```

The Empty List

Example

$$\begin{array}{l} \text{(null nil)} \\ \equiv & \underline{((\lambda c \cdot c \ (\lambda h \ t \cdot F)) \ (\lambda f \cdot T))} \\ \longrightarrow_{\beta} & \underline{((\lambda f \cdot T) \ (\lambda h \ t \cdot F))} \\ \longrightarrow_{\beta} & T \end{array}$$

The Empty List

Example

$$\begin{array}{l} \text{(null (cons 1 nil))} \\ \equiv & \underline{((\lambda c \cdot c \ (\lambda h \ t \cdot F)) \ (\lambda f \cdot f \ 1 \ nil))} \\ \longrightarrow_{\beta} & \underline{((\lambda f \cdot f \ 1 \ nil) \ (\lambda h \ t \cdot F))} \\ \longrightarrow_{\beta} & \underline{(((\lambda h \ t \cdot F) \ 1) \ nil)} \\ \longrightarrow_{\beta} & \underline{((\lambda t \cdot F) \ nil)} \\ \longrightarrow_{\beta} & F \end{array}$$

Recursion is a natural way to iterate through a linked list

Example

$$ext{sum} = \lambda I \cdot ext{if (null } I)$$

$$0 \qquad \qquad \left(I \ \left(\lambda h \cdot \left(\lambda t \cdot h + (ext{sum } t) \right) \right) \right)$$

• But without naming, how can we make functions recursive?

Fixpoints

Definition

A *fixpoint* of a function f is a value fix_f such that

$$f(\operatorname{fix}_f) = \operatorname{fix}_f$$

Example

Consider the algebraic function $f(x) = x^2$. f has the fixpoints 0 and 1:

$$f(0) = 0^2 = 0$$
 $f(1) = 1^2 = 1$

But -1 is not a fixpoint, because

$$f(-1) = (-1)^2 = 1 \neq -1$$

Fixpoint Combinators

- ullet In the untyped λ -calculus, every term has a fixpoint
- Fixpoints can be calculated with fixpoint combinators
 - Y Combinator
 - Alan Turing's fixpoint combinator, Θ
 - Others
- Therefore, given a λ -calculus function f, we have

$$(f (Y f)) =_{\beta} (Y f)$$
$$(f (\Theta f)) =_{\beta} (\Theta f)$$

Y Combinator

Using Fixpoints

- How do fixpoints help us with recursion?
- Let f take a parameter in order to refer to itself, then use a fixpoint combinator

Example

Let

$$f = (\lambda rec . \lambda l . if (null l)$$
 0
$$(l (\lambda h . (\lambda t . h + (rec t)))))$$

Then sum =
$$(Y f) =_{\beta} (f (Y f)) = (f sum)$$

Summary

- λ -calculus is a tiny, axiomatic tool used in
 - computability
 - compilers
 - formal semantics
 - programming language theory
 - type theory
 - logic
 - math
 - ...
- ullet Extensions to the untyped λ -calculus make it much richer
- Simple Yet EffectiveTM