Give your text representation models some love: the case for Basque

Jon Zorrilla Gamboa

EPS

Madrid, 14 de marzo de 2023

Escuela Politécnica Superior

Jon Zorrilla Gamboa

EP:

1 / 19

- Introducción y objetivos
- 2 Trabajo relacionado
- 3 Creando modelos en euskera
- 4 Evaluación y resultados
- **5** Discusión y conclusiones

Jon Zorrilla Gamboa EPS 2 / 19

ntroducción y objetivos Trabajo relacionado Creando modelos en euskera Evaluación y resultados Discusión y conclusiones Referencias

Índice

- Introducción y objetivos
 - Introducción
 - Objetivos
- Trabajo relacionado
- Creando modelos en euskera
- Evaluación y resultados
- Discusión y conclusiones

◆□▶ ◆□▶ ◆■▶ ◆■ ◆ のへの

Jon Zorrilla Gamboa EPS 3 / 19

Introducción y objetivos Trabajo relacionado Creando modelos en euskera Evaluación y resultados Discusión y conclusiones Referencias

Introducción

- Los word-embeddings y los modelos entrenados nos han ayudado en la mayoría de problemas de procesamiento de lenguaje natural.
- Problemas: son difíciles de entrenar, y las compañías nos permiten hacer uso de modelos preentrenados.
- Surgen los modelos multilingüísticos. Modelos de lenguaje como BERT y Flair y word embeddings de FastText.

◆ロ > ← 個 > ← 置 > ← 置 > 一 型 ・ の へ の

Jon Zorrilla Gamboa EPS 4 / 19

Objetivos

- Recrear modelos de lenguaje haciendo uso de un corpus más limpio y más completo y cambiando la tokenización de palabras debido a la naturaleza del euskera.
- Estudiar los resultados obtenidos mediante nuevos modelos y compararlos con los resultados obtenidos por modelos oficiales en las siguientes tareas: clasificación de temas, clasificación de sentimientos, POS tagging y Named Entity Recognition (NER).

Ion Zorrilla Gamboa EPS 5 / 19

- Introducción y objetivos
- 2 Trabajo relacionado
- Creando modelos en euskera
- 4 Evaluación y resultados
- Discusión y conclusiones

4 D > 4 B > 4 B > B 9 Q @

Jon Zorrilla Gamboa EPS $6 \ / \ 19$

Introducción y objetivos Trabajo relacionado Creando modelos en euskera Evaluación y resultados Discusión y conclusiones Referencias

Trabajo relacionado

- Word embeddings: Glove o Word2Vec. FastText propone una mejora al trabajar de manera más granular.
- Word embeddings contextuales, como Flair y BERT (mBERT).
- CAMEMBERT Y BERTeus modelos preentrenados para francés y euskera.
- Nuevos modelos: FastText BMC, Flair-BMC y BERTeus.

Jon Zorrilla Gamboa EPS 7/19

- Introducción y objetivos
- Trabajo relacionado
- 3 Creando modelos en euskera
- 4 Evaluación y resultados
- Discusión y conclusiones

Jon Zorrilla Gamboa EPS 8 / 19

Creando modelos en euskera

- Hacer uso de un texto limpio y bien estructurado, además de lo más amplio posible. Se hace uso de un corpus en euskera basado en noticias y wikipedia, consistente de 224.6 millones de tokens, llamado BMC (Basque Media Corpus).
- Embeddings estáticos: FastText, entrenados con texto de wikipedia o texto de Common Crawl. En este caso, se usarán vectores de palabras entrenados en BMC.
- Word Embeddings contextuales: Flair distribuye sus propios embeddings preentrenados en euskera. En este caso se entrenarán los embeddings the Flair en BMC.
- Modelos de Lenguaje BERT entrenado en BMC.

Jon Zorrilla Gamboa EPS 9 / 19

- 4 Evaluación y resultados
 - Clasificación de temas
 - Clasificación de sentimientos
 - POS Tagging
 - Named Entity Recognition (NER)

Evaluación

- Modelos oficiales de FastText (Wikipedia o Common-Crawl) vs FastText-BMC.
- Modelos de embeddings oficiales de Flair vs Flair-BMC.
- Modelo multilingual de BERTm vs BERTeus.
- Tareas: clasificación de temas, clasificación de sentimientos, POS Tagging y NER.

Jon Zorrilla Gamboa EPS 11 / 19

Clasificación de temas

 Se hace uso de un dataset con 12.000 titulares del periódico Argia. Las noticias están clasificadas en 12 únicos temas. Agerri et al. (2020).

	Micro F1	Macro F1
Static Embeddings		
FastText-Wikipedia	65.00	54.98
FastText-Common-Crawl	28.82	3.73
FastText-BMC	69.45	60.14
Flair Embeddings		
Flair-official	65.25	55.83
Flair-BMC	68.61	59.38
BERT Language Models		
mBERT-official	68.42	48.38
BERTeus	76.77	63.46
Baseline		
TF-IDF Logistic Regression	63.00	49.00

17.70.61

Clasificación de sentimientos

• Se hace uso de un corpus de tweets conteniendo mensajes relacionados con temas culturales. El corpus contiene 3 clases (positivo, neutro y negativo) a partir de 2936 ejemplos. Agerri et al. (2020).

	micro F1	Macro F1
Static Embeddings		
FastText-Wikipedia	71.10	66.72
FastText-Common-Crawl	66.16	58.89
FastText-BMC	72.19	68.14
FlairEmbeddings		
Flair-official	72.74	67.73
Flair-BMC	72.95	69.05
BERT Language Models		
mBERT-official	71.02	66.02
BERTeus	78.10	76.14
Baseline		
SVM (San Vicente, 2019)	74.02	69.87

Jon Zorrilla Gamboa EPS 13 / 19

POS Tagging

• A partir del Basque UD Treebank, formado de 5274 frases de temas literarios y periodísticos. La tarea consiste en asignar a cada una de las palabras del texto su categoría gramatical. Agerri et al. (2020).

	Word Accuracy
Static Embeddings	
FastText-Wikipedia	94.09
FastText-Common-Crawl	91.95
FastText-BMC	96.14
FlairEmbeddings	
Flair-official	97.50
Flair-BMC	97.58
BERT Language Models	
mBERT-official	96.37
BERTeus	97.76
Baseline	
(Heinzerling and Strube, 2019)	96.10

Named Entity Recognition (NER)

Se hace uso del corpus EIEC, consistente de 44.000 tokens para entrenamiento y 15.000 para test, formado por 4 tipos de entidades. La tarea consiste en identificar y categorizar información clave en el texto, tales como ubicación, persona, organización y miscelánea. Agerri et al. (2020).

	Precision	Recall	F1
Static Embeddings			
FastText-Wikipedia	72.42	50.28	59.23
FastText-Common-Crawl	72.09	45.31	55.53
FastText-BMC	74.12	67.33	70.56
Flair embeddings			
Flair-official	81.86	79.89	80.82
Flair-BMC	84.32	82.66	83.48
BERT Language Models			
mBERT-official	81.24	81.80	81.52
BERTeus	87.95	86.11	87.06
Baseline			
(Agerri and Rigau, 2016)	80.66	73.14	76.72

- Introducción y objetivos
- Trabajo relacionado
- Creando modelos en euskera
- 4 Evaluación y resultados
- 5 Discusión y conclusiones

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Jon Zorrilla Gamboa EPS 16 / 19

Discusión y conclusiones

 Los modelos BMC han mejorado todos los modelos previos en las 4 tareas. Agerri et al. (2020).

	Task			
	Topic Classification	Sentiment	POS	NER
Static Embeddings				
FastText-Wikipedia	65.00	71.10	94.09	59.23
FastText-Common-Crawl	28.82	66.16	91.95	55.53
FastText-BMC	69.45	72.19	96.14	70.56
Flair Embeddings				
Flair-official	65.25	72.74	97.50	80.82
Flair-BMC	68.61	72.95	97.58	83.48
BERT Language Models				
mBERT-official	68.42	71.02	96.37	81.52
BERTeus	76.77	78.10	97.76	87.06
Baselines	63.00	74.02	96.10	76.72

In Zouille Courbon

Discusión y conclusiones

- En general, los modelos formados por word embeddings monolinguales usando FastText y modelos de lenguaje como BERT y Flair entrenados en BMC obtienen unos resultados mucho mejores a los obtenidos por modelos públicos de PLN.
- A la hora de crear BERTeus, se han usado la misma estructura e hiperparámetros que para BERT oficial.
- Todo esto muestra la importancia de elegir un corpus bueno cuidadosamente para preentrenar los modelos en el mismo y hacer uso de una tokenización de palabras específica debido a la naturaleza del idioma.
- Como los modelos han usado los mismos hiperparámetros que los oficiales, aún tienen margen de mejora.
- Aplicable a todos los lenguajes minoritarios.

4ロト 4部 ト 4 差 ト 4 差 ト き り Q C

Jon Zorrilla Gamboa EPS 18 / 19

Bibliografía I

Rodrigo Agerri, Iñaki San Vicente, Jon Ander Campos, Ander Barrena, Xabier Saralegi, Aitor Soroa, and Eneko Agirre. Give your text representation models some love: the case for basque. *CoRR*, abs/2004.00033, 2020. URL https://arxiv.org/abs/2004.00033.

Jon Zorrilla Gamboa EPS $19 \ / \ 19$