All Coq Rules in One Place

Xiaohong Chen

March 10, 2020

Abstract

This document summarizes all the proof rules of the Coq proof assistant, as listed in https://coq.inria.fr/distrib/current/refman/language/cic.html.

1 Syntax

Let us fix a countably infinite set V of *variables*, denoted x, y, \ldots Let us fix a countably infinite set C of *constants*, denoted c, d, \ldots

Definition 1.1. We define the set *Term* to be the smallest set that satisfies the following conditions:

- 1. SProp, Prop, Set $\in Term$; Type $(i) \in Term$ for every $i \in \mathbb{N}$.
- 2. $V \subseteq Term$.
- 3. $C \subseteq Term$.
- 4. If $x \in V$ and $T, U \in Term$, then $\forall x : T, U \in Term$.
- 5. If $x \in V$ and $T, u \in Term$, then $\lambda x : T.u \in Term$.
- 6. If $t, u \in Term$, then $(t u) \in Term$, called application.
- 7. If $x \in V$ and $t, T, u \in Term$, then let x := t : T in $u \in Term$.

where $\forall x: T, U$ binds x to U and $\lambda x: T.u$ binds x to u. We use $\mathrm{FV}(T) \subseteq V$ to denote the set of free variables in $T \in \mathit{Term}$. For $T, U \in \mathit{Term}$ and $x \in V$, we use T[U/x] to denote the result of substituting U for x in T, where α -renaming happens implicitly to prevent variable capture.

Definition 1.2. We define the set $Sort = \{SProp, Prop, Set\} \cup \{Type(i) \mid i \in \mathbb{N}\}$. Note that $Sort \subseteq Term$. Elements in Sort are called Sorts and denoted as S, possibly with subscripts.

Definition 1.3. A local assumption is written x:T, where $x \in V$ and $T \in Term$. A local definition is written x := u:T, where $x \in V$ and $u,T \in Term$. In both cases, we call x the declared variable. A local context is an ordered list of local assumptions and local definitions, such that the declared variables are all distinct. We use Γ , possibly with subscripts, to denote local contexts.

Notation 1.4. We use the notation $[x:T;y\coloneqq u:U;z:V]$ to denote the local context that consists of the local assumption x:T, the local definition $y\coloneqq u:U$ and the local assumption z:V, with the implicit requirement that x,y,z are all distinct. The empty local context is written as []. Let Γ be a local context. We write $x\in\Gamma$ to mean that x is declared in Γ . We write $(x:T)\in\Gamma$ to mean that the local assumption x:T is in Γ , or that the local definition $x\coloneqq u:T$ is in Γ for some $u\in Term$. We write $(x\coloneqq u:T)\in\Gamma$ to mean that the local definition $x\coloneqq u:T$ is in Γ . We write $\Gamma::(x:T)$ to denote the local context that enriches Γ with x:T, with the implicit requirement that $x\not\in\Gamma$. Similarly, we write $\Gamma::(x\coloneqq u:T)$ to denote the local context that enriches Γ with $x\coloneqq u:T$, with the implicit requirement that $x\not\in\Gamma$. We write $\Gamma_1:\Gamma_2$ to mean the local context obtained by concatenating Γ_1 and Γ_2 , with the implicit requirement that all variables declared in Γ_2 are not declared in Γ_1 .

2 Coq Typing Rules