SOC 690S: Machine Learning in Causal Inference

Week 2: Machine Learning Basics

Wenhao Jiang
Department of Sociology, Fall 2025

Motivation and High-Dimensional Data

Sample Sandwich Estimator Fails in High Dimension

- Last week, we discussed the problem of *sample* linear regression in the high-dimensional regime $(p/n \not\to 0)$
- Even if the true *data-generating process* (DGP) in the *population* is correctly specified $(E[\hat{\beta}] = \beta)$, high dimensionality causes problems for the sample regression
- In particular, the variance of the OLS (sandwich) estimator is underestimated and inconsistent at rate $\sqrt{p/n}$, because the sample covariance matrix no longer converges to its population counterpart—the Law of Large Numbers fails under high-dimensional regime

$$\left\| \frac{1}{n} \sum_{i=1}^{n} X_i X_i' - E[X_i X_i'] \right\|_{\text{op}} \sim O_p \left(\sqrt{\frac{p}{n}} \right)$$

Sample Sandwich Estimator is Inconsistent

• Indeed, in high-dimensional regimes, $\hat{\beta}$ is no longer \sqrt{n} -consistent

$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} \mathcal{N}(0, E[X_i X_i']^{-1} E[e_i^2 X_i X_i'] E[X_i X_i']^{-1})$$

- The estimation uncertainty does not vanish to 0 even if $n \to \infty$ when $p/n \not\to 0$
 - The number of parameters grows with *n*
 - The overall estimation uncertainty does not vanish
 - $\hat{\beta}$ is unbiased but not consistent

Out-of-Sample Prediction is Poor in High Dimension

• Another perspective: the *out-of-sample* prediction error relative to the true regression does not converge to 0 when $n \to \infty$ in high dimension

Out-of-Sample Prediction is Poor in High Dimension

- Another perspective: the *out-of-sample* prediction error relative to the true regression does not converge to 0 when $n \to \infty$ in high dimension
- Suppose $\hat{\beta}$ is the OLS estimate, $E_X[\cdot]$ denotes averaging over fresh test samples from the population. The *root mean square prediction error* (RMSE) satisfies the high-probability bound

$$\sqrt{E_X[(X_i'\beta - X_i'\hat{\beta})^2]} \lesssim \operatorname{const}_{\alpha} \sqrt{E[e_i^2]} \sqrt{\frac{p}{n}}$$

• the inequality holds with probability approaching $1 - \alpha$ as $n \to \infty$, where const_{α} is a constant that depends on the distribution (Y, X) and α (see details on page 19 in CML *Theorem 1.2.1*)

Out-of-Sample Prediction is Poor in High Dimension

- Another perspective: the *out-of-sample* prediction error relative to the true regression does not converge to 0 when $n \to \infty$ in high dimension
- Suppose $\hat{\beta}$ is the OLS estimate, $E_X[\cdot]$ denotes averaging over fresh test samples from the population. The *root mean square prediction error* (RMSE) satisfies the high-probability bound

$$\sqrt{E_X[(X_i'\beta - X_i'\hat{\beta})^2]} \lesssim \operatorname{const}_{\alpha} \sqrt{E[e_i^2]} \sqrt{\frac{p}{n}}$$

- the inequality holds with probability approaching 1α as $n \to \infty$, where const_{α} is a constant that depends on the distribution (Y, X) and α (see details on page 19 in CML *Theorem 1.2.1*)
- In the low-dimensional case $(p/n \to 0)$, RMSE $\to 0$
- In the high-dimensional case $(p/n \not\to 0)$, the RMSE plateaus at a positive constant even as $n \to \infty$

Motivation of Dimension Reduction

- This week, we introduce basic *Machine Learning* (ML) methods to improve the prediction of $X_i'\hat{\beta}$ relative to $X_i'\beta$ (and thus Y_i) in high-dimensional data
 - Why do we care about prediction for new unseen data
 - It measures the extent to which the conclusion drawn from the sample is generalizable

Motivation of Dimension Reduction

- This week, we introduce basic *Machine Learning* (ML) methods to improve the prediction of $X_i'\hat{\beta}$ relative to $X_i'\beta$ (and thus Y_i) in high-dimensional data
 - Why do we care about *prediction* for new unseen data
 - It measures the extent to which the conclusion drawn from the sample is *generalizable*
- The most straightforward strategy is to reduce dimension, *i.e.*, the number of covariates (*p*) in linear regression, without losing important "information"
- This is *not* about causal inference in the framework of *potential outcome* yet, but using *sample* linear regression to approximate the DGP and the parameters (under strong *ignorability* assumption)

Practical Reason of High Dimension I

- This curse of high dimension is not rare even if **I**. the DGP is correctly specified in the sample
 - In cross-country analysis of economic growth, there are many country-level characteristics that may significantly predict growth (p > n)
 - In hard-to-reach population, researchers may want to collect as much individual-level information as possible (n is limited, while p may be large)

Practical Reason of High Dimension II

- High dimensionality may also arise when **II.** the data have large dimensional features—many covariates are available for use as regressors
 - These features may not appear in DGP, but they may approximate many unobserved characteristics in DGP that we want to model
 - In modeling the relationship between demand and price of a rare product (*n* is not large in reality), we want to use as many information as possible, including using textual or image features in product description, even if some of them are just noises
 - Including many regressors without selection risk high *colinearity*

Practical Reason of High Dimension III

- High dimensionality may also arise when **III.** we want to allow more flexible and interactive relationship between regressors
 - In modeling the relationship between gender and wage, we want to allow years of experience to have "non-linear" effects, years of education to be interacted with geographic indicators, etc.
 - These "non-linear" features are called *constructed* features or *transformations*

$$X = T(W) = (T_1(W), T_2(W), ..., T_p(W))'$$

• *Transformations* risk *overfitting* the sample

Least Absolute Shrinkage and Selection Operator (LASSO) as a Feature Selection Method

LASSO Regression Basic Setup

• We consider a linear regression model

$$Y_i = X_i'\beta + e_i = \sum_{j=1}^p \beta_j X_{ij} + e_i, \quad e_i \perp X_i$$

where p is possibly much larger than n

- Classic OLS fails in these high-dimensional settings
 - Out-of-sample prediction error can be very high
 - Model identification fails when the covariate matrix rank > n, or perfectly fits the sample data when rank = n

LASSO Regression Basic Setup

• For simplicity, we assume regressors are centered and normalized (*standardized*), such that β_j are on the same scale (standard packages typically do this by default)

$$E[X_{ij}^2] = 1$$
, as $V(X_{ij}^2) = 1$, $E[X_{ij}] = 0$

- We assume population-level DGP follows approximate sparsity¹
 - There is a small group of regressors with relatively large coefficients whose use alone suffices to approximate the BLP $X'_i\beta$
 - The rest of the regressors are assumed to have relatively small coefficients and contribute little to the approximation of the BLP

¹Formally, the sorted absolute values of the coefficients decay quickly. The j^{th} largest coefficient (in absolute value) denoted by $|\beta|_j$ obeys $|\beta|_j \le Aj^{-a}$, a > 1/2 for each j = 1/2

LASSO Regression Basic Setup: Approximate Sparsity

• A classic example of *approximate sparsity* is captured by regression coefficients of the form

$$\beta_j \propto 1/j^2, \quad j=1,...,p$$

LASSO Regression

• LASSO constructs $\hat{\beta}$ as the solution of the following *penalized* least squares problem

$$\hat{\beta} = \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \sum_{i}^{n} (Y_i - X_i'b)^2 + \lambda \cdot \sum_{j=1}^{p} |b_j| \hat{\psi}_j$$

- The first term is the *prediction* error
- The the second term is called a *penalty term*, with *penalty level* λ and *penalty loading* $\hat{\psi}_j$
- The *penalty loading* is typically set as

$$\hat{\psi}_j = \sqrt{\mathbb{E}_n[X_{ji}^2]}$$

which is about 1 under *standardization*; we will omit it in the following analysis

LASSO Regression Heuristics

• The loss function can be viewed as a *trade-off* between *in-sample fit* with the measure of *complexity*

$$\mathcal{L} = \sum_{i}^{n} (Y_i - X_i'b)^2 + \lambda \cdot \sum_{j=1}^{p} |b_j|$$

- When $\lambda > 0$ (the typical setup), LASSO includes a regressor X_{ji} only if its marginal predictive ability is higher than the marginal cost $\lambda \cdot |\hat{\beta}_j|$ (ℓ_1 kink)
- Setting a larger (smaller) λ will exclude more (fewer) regressors

LASSO Regression and Penalty Choice

• Taking the derivative of the loss function with respect to $\hat{\beta}_i$

$$\mathcal{L} = \sum_{i}^{n} (Y_i - X_i'b)^2 + \lambda \cdot \sum_{j=1}^{p} |b_j|$$

$$\frac{\partial \mathcal{L}}{\partial \hat{\beta}_j} = -\hat{S}_j + \lambda \cdot \partial |\hat{\beta}_j| \text{ where } \hat{S}_j = 2 \sum_{i=1}^{n} (Y_i - X_i'\beta) X_{ji}$$

• $\partial |\hat{\beta}_i|$ has a kink at $\hat{\beta}_i = 0$; instead of ordinary derivatives, we use subgradients defined in convex optimization²

$$\left. \partial |\hat{\beta}_j| \right|_{\hat{\beta}_j = 0} \in [-1, 1]$$

²In convex optimization, local optimal is also the global optimal.

LASSO Regression and Penalty Choice

• The subgradient condition is satisfied at $\hat{\beta}_i = 0$ if

$$|\hat{S}_j| \le \lambda \text{ where } \hat{S}_j = 2 \sum_{i=1}^n (Y_i - X_i' \beta) X_{ji}$$

• Otherwise, the solution lies at $\hat{\beta}_i \neq 0$, found by solving the FOC

$$\hat{\beta}_{j} = \begin{cases} \frac{\hat{S}_{j} - \lambda}{2 D_{j}}, & \text{if } \hat{S}_{j} > \lambda \\ \frac{\hat{S}_{j} + \lambda}{2 D_{j}} & \text{if } \hat{S}_{j} < -\lambda \end{cases}$$

under standardization

$$D_j = \sum_{i=1}^n X_{ji}^2 \approx n$$

LASSO Regression Coefficients³

→ LASSO penalized → unpenalized

LASSO Regression Caveats

- The estimates shrink towards zero relative to the unpenalized regression; this is referred as *shrinkage bias* or *regularization bias*
- LASSO estimates are therefore (slightly) biased, by design, under approximate sparsity

LASSO Regression Caveats

- The estimates shrink towards zero relative to the unpenalized regression; this is referred as *shrinkage bias* or *regularization bias*
- LASSO estimates are therefore (slightly) biased, by design, under approximate sparsity
- LASSO will not generally select the "right" set of variables
- Instead, LASSO will tend to exclude variables with small, but non-zero population coefficients
- LASSO will tend to fail to select the right variables in settings where the *X*^{*i*} variables are corrected

LASSO Regression Caveats

- For example, consider a scenario where variable X_1 has coefficient $\beta_1 = 0$ but is highly correlated to variables $X_2, ..., X_k$ that have non-zero coefficients
- It is plausible that the marginal predictive benefits of including X_1 in the model is very high when $X_2, ..., X_k$ are not in the model, while the marginal predictive benefits of any one of $X_2, ..., X_k$ is relatively low
- In this case, X_1 may enter the LASSO solution with a non-zero coefficient, while all of $X_2, ..., X_k$ are excluded
- This inability to select *exactly* the right regressors is not special to LASSO but shared by all variable selection procedures

Post-LASSO Regression

- One way to adjust for the shrinkage bias of LASSO is to refit the OLS model using the regressors whose LASSO coefficient estimates are non-zero
- This method is called "least squares post LASSO", or simply Post-LASSO
- Correcting for the *shrinkage* towards zero from the non-zero coefficients sometimes delivers improvements in predictive performance

$$\hat{\beta}_{post} = \underset{b \in \mathbb{R}^p}{\operatorname{arg \, min}} \sum_i (Y_i - X_i'b)^2 \text{ such that } b_j = 0 \text{ if } \hat{\beta}_j = 0$$

where $\hat{\beta}$ is the LASSO coefficient estimator

Post-LASSO Regression

- -- LASSO penalized -- post-LASSO regression
- unpenalized

Predictive Performance of LASSO and Post-LASSO

• Recall that, *without* feature selection, *out-of-sample* prediction from OLS estimates are poor in high-dimensional regime

$$\sqrt{E_X[(X_i'\beta - X_i'\hat{\beta})^2]} \lesssim \operatorname{const}_{\alpha} \sqrt{E[e_i^2]} \sqrt{\frac{p}{n}}$$

• Intuitively, by reducing dimension *p* to *s* (*effective dimension*) using LASSO, *out-of-sample* prediction improves

$$\sqrt{E_X\big[(X_i'\beta-X_i'\hat{\beta})^2\big]}\lesssim \mathrm{const}_\alpha\,\sqrt{E[e_i^2]}\,\sqrt{\tfrac{s}{n}\log(\max\{p,n\})}$$

Other Penalized Regression Methods beyond LASSO

Other Penalized Regression Methods beyond LASSO

- LASSO performs well in *out-of-sample* prediction when *population-*level DGP follows *approximate sparsity*
- Other DGPs exist; for example, a dense coefficient vector may have the vast majority or all coefficients non-zero and of comparable magnitude
- A sparse and dense structure has the vast majority of coefficients being non-zero and of similar magnitude along with a small number of relatively large coefficients

Other Penalized Regression Methods beyond LASSO

Ridge Regression for Dense Coefficients

- While LASSO performs best in an approximately sparse setting
- Ridge method performs best in the *dense* setting

$$\hat{\beta} = \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \sum_{i}^{n} (Y_i - X_i'b)^2 + \lambda \cdot \sum_{j=1}^{p} b_j^2$$

- The latter penalty term is called ℓ_2 sphere
- In contrast to LASSO, Ridge penalizes the large values of coefficients much more aggressively and small values much less aggressively (to approximate the *dense* DGP)

Ridge Regression for Dense Coefficients

- Ridge does not set estimated coefficients to zero and does not do variable selection
- In matrix form

$$\hat{\beta}_{Ridge} = (X'X + \lambda I_p)^{-1}X'y$$

- Even if X'X is singular (when p > n), adding λI_p makes it strictly positive definite and thus invertible
- The ridge solution is unique and numerically stable even in high dimension

Elastic Net for Sparse or Dense Coefficients

- Ridge and LASSO can be combined and perform well in either *sparse* or *dense* settings
- One popular hybrid is the Elastic Net with appropriate *tuning* of λ

$$\hat{\beta}_{Elastic} = \underset{b \in \mathbb{R}^p}{\operatorname{arg \, min}} \sum_{i}^{n} (Y_i - X_i'b)^2 + \lambda_1 \cdot \sum_{j=1}^{p} b_j^2 + \lambda_2 \cdot \sum_{j=1}^{p} |b_j|$$

- By selecting different values of penalty levels λ_1 and λ_2 , we have more flexibility with Elastic Net for building a good prediction rule than with just Ridge or LASSO
- The Elastic Net performs variable selection unless we completely shut down the LASSO penalty by setting $\lambda_2=0$

Lava for Sparse and Dense Coefficients

- Ridge and LASSO can also be combined and perform well in *sparse and dense* settings
- One such hybrid is the Lava method with appropriate *tuning* of λ

$$\hat{\beta}_{Lava} = \underset{b:b=\delta+\xi\in\mathbb{R}^p}{\arg\min} \sum_{i}^{n} (Y_i - X_i'b)^2 + \lambda_1 \cdot \sum_{j=1}^{p} \delta_j^2 + \lambda_2 \cdot \sum_{j=1}^{p} |\xi_j|$$

- Here components of the parameter vector are split into a "dense part" δ_j and "sparse part" ξ_j
- The minimization program automatically determines the best split into the dense and sparse parts

High-Dimensional Linear Model Simulation

- I simulate three high-dimensional (n = 100, p = 400) scenarios, where the coefficients in *population* DGP is *dense*, *sparse*, and *dense and sparse*
- I sample from the population, and evaluate the out-of-sample prediction by \mathbb{R}^2

Table: Out-of-Sample R^2 in Simulation Experiment

Model	Sparse	Dense	Dense and Sparse
Lasso (Cross-Validation)	0.773	0.004	0.318
Lasso (Plug-in)	0.775	-0.028	0.329
Post-Lasso (Plug-in)	0.800	0.000	0.285
Ridge (Cross-Validation)	0.097	0.170	0.116
Elastic Net	0.741	0.005	0.319
Lava	0.770	0.159	0.399

How to Tune λ : Cross-Validation

- We want a valid choice of *penalty level* λ in these penalized models
- Closed-form solution is not always possible
- A convenient and theoretically valid choice can be derived from Cross-Validation (CV)

How to Tune λ : Cross-Validation

- We want a valid choice of *penalty level* λ in these penalized models
- Closed-form solution is not always possible
- A convenient and theoretically valid choice can be derived from Cross-Validation (CV)
- Remember our final goal is to find a better *prediction* model after penalizing or selecting regressors under λ
- Intuitively, we can simulate such *prediction within* the existing "training" sample *without* any test sample

Cross-Validation in Words

- We partition the *sample* data into K blocks called "folds." For example, with K = 5, we randomly split the data into 5 non-overlapping blocks.
- Leave one block out. Fit a prediction rule on all the other blocks. Predict the outcome observations in the left out block, and record the empirical *Mean Squared Prediction Error* (MSE). Repeat this for each block.
- Average the empirical MSEs over blocks.
- We do these steps for several or many values of the tuning parameters and choose the value of the tuning parameter that minimized the average MSEs.

Cross-Validation Formal Description

- Randomly partition the observation indices 1, ..., n into K folds $B_1, ..., B_K$
- For each k = 1, ..., K, fit a prediction rule denoted by $\hat{f}^{-k}(\cdot; \theta)$, where θ denotes the tuning parameters (*penalty level* λ in our case) and $\hat{f}^{-k}(\cdot; \theta)$ depends only on observations with indices not in the fold B_k
- For each k = 1, ..., K, the empirical *out-of-sample* MSE for the block B_k is

$$MSE_k(\theta) = \frac{1}{m_k} \sum_{i \in B_k} \left(Y_i - \hat{f}^{-k}(X_i; \theta) \right)^2$$
 where m_k is the size of the block B_k

• Compute the cross-validated MSE as

$$CV - MSE(\theta) = \frac{1}{K} \sum_{k=1}^{K} MSE_k(\theta)$$

• Choose the tuning parameter θ as a minimizer of $CV - MSE(\theta)$

How to Tune λ : Plug-in Method for LASSO

• Remember in LASSO, The subgradient condition is satisfied at $\hat{\beta}_i = 0$ if

$$|\hat{S}_j| \le \lambda \text{ where } \hat{S}_j = 2\sum_{i=1}^n X_{ji} \Big(Y_i - X_i' \beta \Big) = 2\sum_{i=1}^n X_{ji} e_i$$

$$\mathbb{E}_n[\hat{S}_j] = 0, \quad \hat{V}(\hat{S}_j) \approx 4n\sigma^2$$

By high-dimensional CLT

$$\frac{\hat{S}_j}{2\sqrt{n}\,\sigma} \xrightarrow{d} \mathcal{N}(0,1)$$

• We want a λ that can check each $j \in \{1, ..., p\}$; a theoretically valid λ is

$$\lambda = 2c\sigma\sqrt{n}z_{1-a/2p}$$

where 1 - a is a confidence level (with 2p adjustments), c = 1.1 that practically works

How to Tune λ : Plug-in Method for LASSO

• a theoretically valid λ is

$$\lambda = 2c\sigma\sqrt{n}z_{1-a/2p}$$

- σ can be estimated from iterative method
- Let X_i^0 be a small set of regressors (a trivial choice is just the intercept); fit an unadjusted OLS and find $\hat{\beta}^0$; we define

$$\hat{\sigma}^0 := \sqrt{\mathbb{E}_n[Y_i - X_i^0 \hat{\beta}^0]}$$

- Compute λ using plug-in method based on $\hat{\sigma}^0$ and LASSO estimator $\hat{\beta}^1$
- Repeat the process for k times until $\hat{\sigma}^{k+1} \hat{\sigma}^k \leq v$

$$\hat{\sigma}^k := \sqrt{\mathbb{E}_n[Y_i - X_i'\hat{\beta}^k]}$$

Inference in High-Dimensional Linear Regression

FWL Revisited

- How does the predicted value of Y_i change if D_i increases by a unit, while holding W_i unchanged?
 - What is the difference in predicted wages between men and women with the same characteristics of human capital?
- In Week 1, we introduced *Frisch-Waugh-Lovell Theorem* (FWL) as a partialling-out method

$$\tilde{Y}_i = \alpha \tilde{D}_i + \tilde{e}_i$$

where

$$\tilde{D}_i = D_i - \gamma'_{DW} W_i, \quad \tilde{Y}_i = Y_i - \gamma'_{YW} W_i$$

$$\gamma_{DW} = \underset{\gamma}{\operatorname{arg \, min}} E\left[(D_i - \gamma' W_i)^2 \right], \quad \gamma_{YW} = \underset{\gamma}{\operatorname{arg \, min}} E\left[(Y_i - \gamma' W_i)^2 \right]$$

FWL based on Unpenalized OLS Fails in High Dimension

- Not surprisingly, the unpenalized OLS fails in high dimension (p/n is not small) in the *sample* prediction of \tilde{D}_i and \tilde{Y}_i
- LASSO can be naturally integrated to reduce dimensionality

Double LASSO Estimation

- Double LASSO satisfies Neyman Orthogonality
- Run LASSO regressions of Y_i on W_i and D_i on W_i

$$\hat{\gamma}_{YW} = \underset{\gamma \in \mathbb{R}^p}{\operatorname{arg \, min}} \sum_{i}^{n} (Y_i - \gamma' W_i)^2 + \lambda_1 \sum_{j}^{p} |\gamma_j|$$

$$\hat{\gamma}_{DW} = \underset{\gamma \in \mathbb{R}^p}{\operatorname{arg \, min}} \sum_{i}^{n} (D_i - \gamma' W_i)^2 + \lambda_2 \sum_{j}^{p} |\gamma_j|$$

$$\check{Y}_i = Y_i - \hat{\gamma}'_{YW} W_i$$

$$\check{D}_i = D_i - \hat{\gamma}'_{DW} W_i$$

Double LASSO Estimation

- Double LASSO satisfies Neyman Orthogonality
- In place of LASSO, we can use Post-LASSO or other LASSO relatives
- We run the OLS regression of \check{Y}_i on \check{D}_i to obtain the estimator $\hat{\alpha}$

$$\hat{\alpha} = \underset{\alpha \in \mathbb{R}}{\arg \min} \mathbb{E}_n[(\check{Y}_i - \alpha \check{D}_i)]$$
$$= \frac{\mathbb{E}_n[\check{D}\check{Y}]}{\mathbb{E}_n[\check{D}^2]}$$

• Under *Neyman Orthogonality*, the estimation error in Y_i and D_i has no first-order effect on $\hat{\alpha}$

$$\sqrt{n}(\hat{\alpha} - \alpha) \xrightarrow{d} \mathcal{N}(0, V)$$
where $V = (E[\tilde{D}_i^2])^{-1} E[\tilde{D}_i^2 e_i^2] (E[\tilde{D}_i^2])^{-1}$

• With λ_1 and λ_2 found via plug-in method

Double LASSO Estimation

- Good performance of the Double LASSO procedure relies on approximate sparsity of the population regression coefficients γ_{YW} and γ_{DW}
- With a sufficiently high speed of decrease in the sorted coefficients and on careful choice of the LASSO parameters
- Absent these guarantees, we cannot theoretically ensure that the first step estimation of \check{D}_i and \check{Y}_i does not have first-order impacts on the final estimator $\hat{\alpha}$
- Practically, LASSO with penalty parameter selected via cross-validation can perform poorly in simulations in moderately sized samples

Invalid Single LASSO Estimation (Naive Method)

- Another intuitive but incorrect LASSO estimator only does LASSO once (Neyman Ortholonality not satisfied)
- One applies LASSO regression of Y_i on D_i and W_i to select relevant covariates W_Y , in addition to the covariate of interest, then refits the model using OLS of Y_i on D_i and W_Y

Double LASSO Demonstration in R

• See example of testing the Convergence Hypothesis

Inference on Many Coefficients

Consider the model

$$Y_{i} = \sum_{\ell=1}^{p_{1}} \alpha_{\ell} D_{\ell i} + \sum_{j=1}^{p_{2}} \beta_{j} \bar{W}_{j} + e_{i}$$

• where we use D_{ℓ} for $\ell = 1, ..., p_1$ to denote the predictors of interest and \bar{W}_i for $i = 1, ..., p_2$ to denote other predictors in the model

Inference on Many Coefficients

- There can be at least three motivations for considering many coefficients of interest
 - There can be multiple policies whose effect we would like to infer
 - We can be interested in heterogeneous effects across pre-specified groups
 - We can be interested in nonlinear effects of policies

One-by-One Double LASSO for Many Target Parameters

Consider the model

$$Y_{i} = \sum_{\ell=1}^{p_{1}} \alpha_{\ell} D_{\ell i} + \sum_{j=1}^{p_{2}} \beta_{j} \bar{W}_{j} + e_{i}$$

• For each $\ell = 1, ..., p_1$, apply the LASSO procedure for estimation and inference on the coefficient α_{ℓ} in the model

$$Y_i = \alpha_{\ell} D_{\ell i} + \gamma'_{\ell} W_{\ell} + e_i, \quad W_{\ell} = ((D'_k)_{k \neq \ell}, \bar{W}')'$$

where W_{ℓ} is being partialled out

Other Approaches that Have the Neyman Orthogonality Property

- One way to fix the "single selection" approach is to have *double selection*
- Find controls W_Y that predict Y_i as judged by LASSO
- Find controls W_D that predict D_i as judged by LASSO
- Regress Y_i on D_i and the union of controls $W_Y \cup W_D$
- This procedure is approximately equivalent to the partialling out approach

Other Approaches that Have the Neyman Orthogonality Property

- Another procedure that is approximately equivalent to the partialling out approach is *debiased LASSO*
- Run a LASSO estimator with suitable choice of λ of Y_i on D_i and W_i , and save the coefficient estimate $\hat{\beta}$
- Run a LASSO estimator with suitable choice of λ of D_i on W_i , and save the residualized \check{D}_i

$$\hat{\alpha} = \frac{\mathbb{E}_n[(Y_i - W_i'\hat{\beta})\check{D}_i]}{\mathbb{E}_n[D_i\check{D}_i]}$$

• This is similar to the 2SLS estimator—residualized \check{D}_i is used to instrument for D_i ($\check{D}_i \perp W_i$)