BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

CHES 2022, Leuven (Belgium)

Marco Casagrande, Eleonora Losiouk, Mauro Conti, Mathias Payer and Daniele Antonioli

Motivations

- Fitness tracking ecosystems are pervasive
- Critical security and privacy concerns
 - Health data
- No prior research on Xiaomi despite being the market leader (19.6% share in 2021)
- Xiaomi ecosystem runs **proprietary** protocols
 - Attacks affect **millions** of devices regardless of hardware

Contributions

- Reversing Xiaomi custom protocols uncovering severe and novel vulnerabilities
- Deploying 6 impactful and low-cost attacks on the most recent trackers
- Open-sourcing <u>BreakMi</u>, an automated toolkit
- Fixing the protocols, and disclosing to Xiaomi
- Comparison with Fitbit ecosystem

System Model

Our main focus

Pairing

Authentication

Communication

Proximity Attacks

- Four proximity over-the-air attacks
 - Eavesdropping
 - Tracker Impersonation
 - App Impersonation
 - Man-in-the-Middle

Proximity Threat Model

Proximity Eavesdropping

Proximity Tracker Impersonation

Proximity App Impersonation

Proximity Man-in-the-Middle

Remote Attacks

- Two remote software-based attacks
 - Eavesdropping
 - App Impersonation

Remote Threat Model

Remote Eavesdropping

- 1) Pairing Key sent in clear
- 2) Pairing Key Seed sent in clear
- 3) No encryption

Remote App Impersonation

Evaluation Setup

Tracker	Release Year	Pairing Version	Bluetooth Version	LE Secure Conn.	Link Layer Security
Mi Band 2	2016	1	4.2	X	✓
Mi Band 3	2018	1	4.2	X	✓
Cor 2	2019	1	4.2	X	✓
Mi Band 4	2019	2	5.0	~	~
Mi Band 5	2020	2	5.0	•	✓
Mi Band 6	2021	2	5.0	•	✓

Evaluation Setup - cont.

Арр	App Version	Year	OS
Zepp Life (formerly Mi Fit)	4.8.1	2020	Android
Zepp (formerly Amazfit)	5.9.2	2021	Android

- Acer Aspire 3 laptop
- CSR8510 A-10 Controller
- BLE sniffer (BBC Micro Bit + btlejack)

Evaluation Results

	Proximity Attacks			Remote Attacks		
	Trac Imp.	App Imp.	MitM	Eavesdr.	App Imp.	Eavesdr.
Zepp Life	n/a	✓	~	•	•	n/a
Zepp	n/a	•	✓	•	✓	n/a
Mi Band 2	•	n/a	•	•	n/a	•
Mi Band 3	•	n/a	•	•	n/a	•
Amazfit Cor 2	•	n/a	•	•	n/a	•
Mi Band 4	~	n/a	•	•	n/a	•
Mi Band 5	•	n/a	•	•	n/a	~
Mi Band 6	~	n/a	~	~	n/a	~

Vulnerable Android Versions (stats)

Smartphone	Android Version	Remote Attacks		
		Eavesdropping	App Impersonation	
Pixel 4A	12 (23.58%)	v *	✓ *	
Pixel 2XL	11 (27.96%)	✓	✓	
Pixel 2XL	10 (20.98%)	•	•	
Galaxy J5	9 (10.58%)	•	~	
Redmi 5 Plus	8 (8.08%)	•	~	
Galaxy S5	6 (2.25%)	•	~	

^{*} Requires dangerous runtime permission BLUET00TH_CONNECT

BreakMi

- BreakMi on <u>Github</u>
- Attack videos on <u>Youtube</u>
 - Xiaomi and Fitbit
- CHES Artifact approval

Proximity Man-in-the-Middle demo

Conclusion

- Reversing Xiaomi custom protocols uncovering severe and novel vulnerabilities
- Deploying 6 impactful and low-cost attacks on the most recent trackers
- Open-sourcing <u>BreakMi</u>, an automated toolkit
- Fixing the protocols, and disclosing to Xiaomi
- Comparison with Fitbit ecosystem

BACKUP SLIDES

Summary

- Cover slide
- Threat model (system + protocols + attacker model)
- Summary of 4 OTA attacks (TI, AI, MitM, Eave)
- Describe OTA attacks, related vulns, remember RE
- Remote attacks (AI, Eave)
- Evaluation (trackers, apps, results)
- Countermeasures (optional)
- Conclusions

Pairing v1

Pairing v2

Pairing v2 - cont.

Authentication

Communication

Speaker Info

Marco Casagrande

Email: marco.casagrande@eurecom.fr

PhD @ **EURECOM** (France) S3 System Security Research Group

Research Topics:

- Bluetooth / Bluetooth Low Energy
- IoT
- Android

Market Share

Vendor	Q2 2021 Shipments	Q2 2021 Market Share	Q2 2020 Shipments	Q2 2020 Market Share
Xiaomi	8.0m	19.6%	7.8m	20.1%
Apple	7.9m	19.3%	6.1m	15.8%
Fitbit	3.0m	7.3%	2.5m	6.4%
Others	22m	53.8%	22.3m	57.7%
Total	40.9m	100%	38.7m	100%

Canalys wearable band analysis August 2021 [source]

Countermeasures

1. (Authenticated) Key Establishment

- o Tracker and app generate a keypair, sharing the public key
- Both perform Diffie-Hellman to generate a SharedSecret

2. Strong Pairing Confirmation

- Both exchange nonces and calculate confirmation value
- User confirmation if values match

Countermeasures

3. Strong Key Authentication

- Need for mutual authentication
- Tracker and app exchange ChalApp and ChalTra
- Resp1, Resp2 = HASH(SharedSecret, ChalApp, ChalTra)
- Responses are checked

Countermeasures

4. Authenticated Encryption

- Need for encrypted Communication session
- Tracker and app exchange nonces
- SessionKey = HKDF(SharedSecret, NonceApp, NonceTra)
- AES-CCM encrypted session using SessionKey

5. BLE Link-Layer Security

- Complementary to Application-Layer Security
- Enable LE Secure Connections feature on Mi Band 4/5/6