[R 数据科学]Tidy data 案例

庄亮亮

目录

1	Tid	y data 介绍	1
2	数据	清洗案例	2
	2.1	不是变量的列汇集在一起	4
	2.2	替换数据	6
	2.3	字符分割	7
	2.4	可视化	9
	2.5	复杂的管道函数	10
3	所用	函数详细解释	11
	3.1	pivot_longer()、poivot_wider()	11
	3.2	separate()	13
	3.3	unite	14
4	缺失	值处理	14

1 Tidy data 介绍

在本章中,你将学习在 R 中组织数据的一种一致的方法,这种组织被称为 tidy data。将数据转换为这种格式需要一些前期工作,但这些工作从长远来看是值得的。一旦你有了整洁的数据和一些包提供的整洁工具,您将花费很少时间将数据从一种表示转换到另一种,从而可以将更多的时间花在分析问题上。

本文将为您提供整理数据的实用介绍以及 tidyr 包中附带的工具。如果你想了解更多的基本理论,你可能会喜欢发表在《统计软件杂志》上的整洁数据论文http://www.jstatsoft.org/v59/i10/paper

2 数据清洗案例

我们主要通过一个案例,来了解如何整洁数据,并将案例中的各个有用函数进行详细解读.该案例数据来自 tidyr::who,其包含按年份,国家,年龄,性别和诊断方法细分的结核病(TB)病例。数据来自 2014 年世界卫生组织《全球结核病报告》,网址为http://www.who.int/tb/country/data/download/en/。

library(tidyverse)

```
## Warning: replacing previous import 'vctrs::data_frame' by 'tibble::data_frame'
## when loading 'dplyr'
## -- Attaching packages ----- tidyverse 1.2.1 --
## v ggplot2 3.3.2
                   v purrr 0.3.3
## v tibble 3.0.3 v dplyr 1.0.0
## v tidyr 1.0.0
                    v stringr 1.4.0
                  v forcats 0.5.0
## v readr 1.3.1
## Warning: package 'ggplot2' was built under R version 3.6.3
## Warning: package 'tibble' was built under R version 3.6.3
## Warning: package 'readr' was built under R version 3.6.3
## Warning: package 'dplyr' was built under R version 3.6.3
## Warning: package 'forcats' was built under R version 3.6.3
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
```

NA

who

```
## # A tibble: 7,240 x 60
##
      country iso2 iso3
                            year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544
              <chr> <chr> <int>
##
      <chr>
                                       <int>
                                                     <int>
                                                                  <int>
                                                                                <int>
##
    1 Afghan~ AF
                    AFG
                            1980
                                          NA
                                                        NA
                                                                     NA
    2 Afghan~ AF
                    AFG
                                          NA
                                                        NA
                                                                     NA
##
                            1981
##
    3 Afghan~ AF
                    AFG
                            1982
                                          NA
                                                        NA
                                                                     NA
    4 Afghan~ AF
                    AFG
                            1983
                                          NA
                                                        NA
                                                                     NA
##
   5 Afghan~ AF
                    AFG
##
                            1984
                                          NA
                                                        NA
                                                                     NA
##
   6 Afghan~ AF
                    AFG
                            1985
                                          NA
                                                        NA
                                                                     NA
##
   7 Afghan~ AF
                    AFG
                            1986
                                          NA
                                                        NA
                                                                     NA
##
   8 Afghan~ AF
                    AFG
                            1987
                                          NA
                                                        NA
                                                                     NA
##
   9 Afghan~ AF
                    AFG
                            1988
                                          NA
                                                        NA
                                                                     NA
## 10 Afghan~ AF
                    AFG
                            1989
                                          NA
                                                        NA
                                                                     NA
     ... with 7,230 more rows, and 52 more variables: new_sp_m4554 <int>,
## #
       new_sp_m5564 <int>, new_sp_m65 <int>, new_sp_f014 <int>,
## #
       new_sp_f1524 <int>, new_sp_f2534 <int>, new_sp_f3544 <int>,
## #
       new_sp_f4554 <int>, new_sp_f5564 <int>, new_sp_f65 <int>,
## #
       new_sn_m014 <int>, new_sn_m1524 <int>, new_sn_m2534 <int>,
       new_sn_m3544 <int>, new_sn_m4554 <int>, new_sn_m5564 <int>,
## #
## #
       new_sn_m65 <int>, new_sn_f014 <int>, new_sn_f1524 <int>,
## #
       new_sn_f2534 <int>, new_sn_f3544 <int>, new_sn_f4554 <int>,
## #
       new_sn_f5564 <int>, new_sn_f65 <int>, new_ep_m014 <int>,
## #
       new_ep_m1524 <int>, new_ep_m2534 <int>, new_ep_m3544 <int>,
## #
       new ep m4554 <int>, new ep m5564 <int>, new ep m65 <int>,
## #
       new_ep_f014 <int>, new_ep_f1524 <int>, new_ep_f2534 <int>,
## #
       new_ep_f3544 <int>, new_ep_f4554 <int>, new_ep_f5564 <int>,
       new_ep_f65 <int>, newrel_m014 <int>, newrel_m1524 <int>,
## #
## #
       newrel_m2534 <int>, newrel_m3544 <int>, newrel_m4554 <int>,
## #
       newrel m5564 <int>, newrel m65 <int>, newrel f014 <int>,
## #
       newrel f1524 <int>, newrel f2534 <int>, newrel f3544 <int>,
## #
       newrel_f4554 <int>, newrel_f5564 <int>, newrel_f65 <int>
```

- 洗案例

4

这是一个非常典型的现实示例数据集。它包含**冗余列, 奇数变量代码和 许多缺失值**。我们需要采取多个步骤来对其进行整理。

2.1 不是变量的列汇集在一起

首先将不是变量的列聚集在一起。所包含的列包括:

- country, iso2 和 iso3 是三个指定国家/地区的变量。
- year 是一个变量。
- 变量名中给出的结构 (例如 new_sp_m014, new_ep_m014, new_ep_f014) 可能是值,而不是变量。

因此,我们需要将从 new_sp_m014 到 newrel_f65 的所有列汇总在一起。我们用通用名称 "key"来表示他们。我们知道单元格代表案件数,因此我们将变量数存储在 cases 中,并用 na.rm 去除含有缺失值的行。

这里使用 pivot_longer() 将数据变长, 具体见后面函数详情.

```
who1 <- who %>%
    pivot_longer(
        cols = new_sp_m014:newrel_f65,
        names_to = 'key',
        values_to = 'cases',
        values_drop_na = T
)
```

A tibble: 76,046 x 6

##		country	iso2	iso3	year	key	cases
##		<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<int></int>
##	1	Afghanistan	AF	AFG	1997	new_sp_m014	0
##	2	Afghanistan	AF	AFG	1997	${\tt new_sp_m1524}$	10
##	3	Afghanistan	AF	AFG	1997	${\tt new_sp_m2534}$	6
##	4	Afghanistan	AF	AFG	1997	${\tt new_sp_m3544}$	3
##	5	Afghanistan	AF	AFG	1997	new_sp_m4554	5

```
6 Afghanistan AF
                        AFG
                               1997 new_sp_m5564
                                                     2
  7 Afghanistan AF
                               1997 new_sp_m65
##
                        AFG
                                                     0
## 8 Afghanistan AF
                        AFG
                               1997 new_sp_f014
                                                     5
## 9 Afghanistan AF
                        AFG
                               1997 new_sp_f1524
                                                    38
## 10 Afghanistan AF
                        AFG
                               1997 new_sp_f2534
                                                    36
## # ... with 76,036 more rows
```

对 key 进行计数,我们可以得到一些有关值结构的提示:

who1 %>% count(key)

```
## # A tibble: 56 x 2
##
      key
                       n
##
      <chr>
                   <int>
##
   1 new_ep_f014
                    1032
   2 new_ep_f1524
                    1021
##
   3 new_ep_f2534
##
                    1021
   4 new_ep_f3544
##
                    1021
   5 new_ep_f4554
##
                    1017
   6 new_ep_f5564
##
                    1017
   7 new_ep_f65
##
                    1014
   8 new_ep_m014
##
                    1038
  9 new_ep_m1524
##
                    1026
## 10 new_ep_m2534
                    1020
## # ... with 46 more rows
```

其中 key 的具体含义,查阅可得: 每列的前三个字母:新、旧病例。 之后两个字母:结核的类型。

- rel 代表复发病例
- ep 代表肺外结核病例
- sn 代表无法通过肺部涂片诊断(涂片阴性)的肺结核病例
- sp 代表可被诊断为肺部涂片(涂片阳性)的肺结核病例

第六字母: 结核病患者的性别。男性(m)和女性(f) 其余数字给出了年龄段。数据集将案例分为七个年龄组: 6

- $014 = 0 14 \$
- $1524 = 15 24 \$
- $3544 = 35 44 \$
- 4554 = 45 54 岁
- $5564 = 55 64 \$
- 65 = 65 岁或以上

2.2 替换数据

我们需要对列名称的格式进行较小的修正:将 new_rel 替换为 newrel (很难在这里找到它,但是如果您不修正它,我们将在后续步骤中出错)。这里使用了 stringr 包中的 str_replace(),将 newrel 替换 new_rel.

```
who2 <- who1 %>%
    mutate( names_from = stringr::str_replace(key,'newrel','new_rel')
    )
who2
```

```
## # A tibble: 76,046 x 7
```

##		country	iso2	iso3	year	key	cases	names_from
##		<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<int></int>	<chr></chr>
##	1	Afghanistan	AF	AFG	1997	new_sp_m014	0	new_sp_m014
##	2	Afghanistan	AF	AFG	1997	${\tt new_sp_m1524}$	10	${\tt new_sp_m1524}$
##	3	${\tt Afghanistan}$	AF	AFG	1997	${\tt new_sp_m2534}$	6	${\tt new_sp_m2534}$
##	4	Afghanistan	AF	AFG	1997	${\tt new_sp_m3544}$	3	${\tt new_sp_m3544}$
##	5	Afghanistan	AF	AFG	1997	${\tt new_sp_m4554}$	5	${\tt new_sp_m4554}$
##	6	${\tt Afghanistan}$	AF	AFG	1997	${\tt new_sp_m5564}$	2	${\tt new_sp_m5564}$
##	7	Afghanistan	AF	AFG	1997	new_sp_m65	0	new_sp_m65

```
## 8 Afghanistan AF AFG 1997 new_sp_f014 5 new_sp_f014

## 9 Afghanistan AF AFG 1997 new_sp_f1524 38 new_sp_f1524

## 10 Afghanistan AF AFG 1997 new_sp_f2534 36 new_sp_f2534

## # ... with 76,036 more rows
```

2.3 字符分割

接下来就是将 key 中的字符进行分割, 我们使用 separate() 对字符进行两次分割.

1. 将在每个下划线处拆分代码。

```
who3 <- who2 %>%
separate(key,c('new','type','sexage'),sep = '_')
```

```
## Warning: Expected 3 pieces. Missing pieces filled with `NA` in 2580 rows [243, ## 244, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 903, ## 904, 905, 906, ...].
```

who3

```
## # A tibble: 76,046 x 9
##
      country
                   iso2 iso3
                                year new
                                            type sexage cases names_from
##
                   <chr> <chr> <chr> <chr> <chr> <chr>
                                                          <int> <chr>
##
    1 Afghanistan AF
                         AFG
                                 1997 new
                                                   m014
                                                              0 new_sp_m014
                                            sp
    2 Afghanistan AF
                         AFG
                                1997 new
                                                             10 new_sp_m1524
##
                                                   m1524
                                            sp
    3 Afghanistan AF
                         AFG
                                1997 new
                                                   m2534
                                                              6 new_sp_m2534
##
                                            sp
    4 Afghanistan AF
                                                              3 new_sp_m3544
##
                         AFG
                                1997 new
                                                   m3544
                                            sp
##
    5 Afghanistan AF
                         AFG
                                1997 new
                                                   m4554
                                                              5 new_sp_m4554
                                            sp
    6 Afghanistan AF
##
                         AFG
                                1997 new
                                                  m5564
                                                              2 new_sp_m5564
                                            sp
   7 Afghanistan AF
                         AFG
##
                                1997 new
                                                  m65
                                                              0 new_sp_m65
                                            sp
##
    8 Afghanistan AF
                         AFG
                                1997 new
                                                   f014
                                                              5 new_sp_f014
                                            sp
   9 Afghanistan AF
                                                             38 new_sp_f1524
                         AFG
                                 1997 new
                                                   f1524
                                            sp
## 10 Afghanistan AF
                         AFG
                                1997 new
                                                   f2534
                                                             36 new_sp_f2534
                                            sp
## # ... with 76,036 more rows
```

利用 select() 删除没用的列:new,iso2, iso3.

```
who3 %>% count(new)
## # A tibble: 2 x 2
##
     new
##
     <chr>
            <int>
## 1 new
            73466
## 2 newrel 2580
who4 <- who3 %>% select(-new,-iso2,-iso3)
who4
## # A tibble: 76,046 x 6
##
      country
                   year type sexage cases names_from
      <chr>
                  <int> <chr> <int> <chr> <int> <chr>
##
##
    1 Afghanistan 1997 sp
                              m014
                                         0 new_sp_m014
    2 Afghanistan
                                        10 new_sp_m1524
##
                  1997 sp
                              m1524
   3 Afghanistan 1997 sp
                              m2534
                                         6 new_sp_m2534
##
##
   4 Afghanistan 1997 sp
                              m3544
                                         3 new_sp_m3544
   5 Afghanistan 1997 sp
                              m4554
##
                                         5 new_sp_m4554
   6 Afghanistan
##
                  1997 sp
                              m5564
                                         2 new_sp_m5564
   7 Afghanistan
##
                  1997 sp
                              m65
                                         0 new_sp_m65
##
   8 Afghanistan 1997 sp
                              f014
                                         5 new_sp_f014
   9 Afghanistan 1997 sp
##
                              f1524
                                        38 new_sp_f1524
## 10 Afghanistan 1997 sp
                                        36 new_sp_f2534
                              f2534
## # ... with 76,036 more rows
  2. 将分离 sexage 到 sex 和 age 通过的第一个字符后拆分:
who5 <- who4 %>%
    separate(sexage,c('sex','age'),sep=1)
who5
## # A tibble: 76,046 x 7
##
      country
                   year type sex
                                          cases names_from
                                    age
                  <int> <chr> <chr> <chr> <int> <chr>
##
      <chr>
```

```
1 Afghanistan
                                     014
                                               0 new_sp_m014
##
                  1997 sp
   2 Afghanistan
                                              10 new_sp_m1524
##
                  1997 sp
                                     1524
                               m
   3 Afghanistan 1997 sp
                                               6 new_sp_m2534
##
                                     2534
                               \mathbf{m}
##
   4 Afghanistan 1997 sp
                                     3544
                                               3 new_sp_m3544
                               m
   5 Afghanistan 1997 sp
                                     4554
                                               5 new_sp_m4554
##
   6 Afghanistan 1997 sp
                                     5564
                                               2 new_sp_m5564
                              m
##
   7 Afghanistan 1997 sp
                                     65
                                               0 new_sp_m65
                               m
##
   8 Afghanistan
                  1997 sp
                               f
                                     014
                                               5 new_sp_f014
##
  9 Afghanistan 1997 sp
                                     1524
                                              38 new_sp_f1524
                               f
## 10 Afghanistan 1997 sp
                                              36 new_sp_f2534
                               f
                                     2534
## # ... with 76,036 more rows
```

这时,who 数据集是目前整洁!

2.4 可视化

数据清洗完毕, 就可以做一些初步的可视化, 探索性分析. 这里简单绘制了前几个国家不同年份, 不同性别的结核病病例总数。

```
who5 %>% group_by(country,year,sex) %>% filter(year<2003) %>%
    count() %>%
    head(100) %>%
    ggplot(aes(x=as.factor(year),y=n,fill=country))+geom_col() +facet_wrap(~sex,nrow = scale_fill_brewer(palette = "Paired")
```


2.5 复杂的管道函数

事实上你可以直接只用管道函数构建一个复杂的函数:

```
who %>%

pivot_longer(
    cols = new_sp_m014:newrel_f65,
    names_to = "key",
    values_to = "cases",
    values_drop_na = TRUE
) %>%

mutate(
    key = stringr::str_replace(key, "newrel", "new_rel")
) %>%

separate(key, c("new", "var", "sexage")) %>%

select(-new, -iso2, -iso3) %>%

separate(sexage, c("sex", "age"), sep = 1)
```

country	year	cases	country	1999	2000
Afghanistan	1999	745	Afghanistan	745	2666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	37737	China	212258	213766
Brazil	2000	80488			
China	1999	212258			
China	2000	213766		table4	

Figure 12.2: Pivoting table4 into a longer, tidy form.

图 1: pivot_longer, 从左到右

3 所用函数详细解释

3.1 pivot_longer() poivot_wider()

pivot_longer() 将在列中列名(数值)转换到一列上。具体可见下图, 将列变量转化为数据存在 year 列名中, 相当于把数据变长 (longer).

函数主要参数:

cols 选取的列 names_to 字符串,指定要从数据的列名中存储的数据创建的列的名称。values_to 字符串,指定要从存储在单元格值中的数据创建的列的名称。values_drop_na 如果为真,将删除 value_to 列中只包含 NAs 的行。这有效地将显式缺失值转换为隐式缺失值,通常只在由其结构创建的数据中缺失值时使用.

例子如上面例子: 将 new_sp_m014 到 newrel_f65 之间的列选取, 汇总到 key 列名中, 值存在 cases 列名中, 并将含有缺失值的行进行删除.

```
who1 <- who %>%
  pivot_longer(
    cols = new_sp_m014:newrel_f65,
    names_to = 'key',
    values_to = 'cases',
```


Figure 12.3: Pivoting table2 into a "wider", tidy form.

图 2: pivot_wider, 从右到左

```
values_drop_na = T
)
```

当然还有一个和他相反功能的函数 poivot_wider()。具体见下图, 相当于把 key 中的值变为列名, 对应的 values 数据转化到 population 中. 下面是简单的例子.

```
library(tidyverse)
stocks <- tibble(
  year = c(2015, 2015, 2016, 2016),
  half = c( 1,  2,  1,  2),
  return = c(1.88, 0.59, 0.92, 0.17)
)
stocks
## # A tibble: 4 x 3</pre>
```

year half return

<dbl> <dbl> <dbl>

##

##

```
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2016 1 0.92
## 4 2016 2 0.17
```

我们将数据变宽,将 year 变为列名,对应在 return 中的数据进行填充.

```
stocks %>%
  pivot_wider(names_from = year, values_from = return)
```

```
## # A tibble: 2 x 3
## half `2015` `2016`
## 

## 1 1 1.88 0.92
## 2 2 0.59 0.17
```

3.2 separate()

该函数可将字符进行分割, 具体案例如上.

默认情况下,当 separate() 看到非字母数字字符 (即不是数字或字母的字符) 时,它将分割值。可以用里面的参数 sep。比如: sep='_'。他还有一个功能, 当 sep=2 时, 可通过第二个位置进行分割, 使用在省份市级, 等数据上. 例如以下函数, 其中 into = c("century", "year") 将原始分割后的数据导入两个新列上, 分别叫 century 和 year.

table3 %>%

```
separate(year, into = c("century", "year"), sep = 2)
```

注意: 默认情况下,会转化成字符形式,你可以用参数 convert=T,将数据转化最佳结构.

Figure 12.5: Uniting table5 makes it tidy

图 3: unite

Figure 12.4: Separating table3 makes it tidy

3.3 unite

是 separate()的反函数,这里做个补充 默认情况下,sep='_'如果我们不需要任何分隔符可以使用 sep=''.

4 缺失值处理

两种情况会出现缺失值:

- 1. 显式: 标记为 NA.
- 2. 隐式: 没出在书中的.

以下为例子

```
stocks <- tibble(
  year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
  qtr = c( 1,  2,  3,  4,  2,  3,  4),
  return = c(1.88, 0.59, 0.35,  NA, 0.92, 0.17, 2.66)
)</pre>
```

在这个数据集中有两个缺失的值:

- 1. 2015 年第四季度出现显式丢失,因为它的值应该在的单元格中包含NA。
- 2. 2016 年第一季度的收益是隐式缺失的,因为它根本没有出现在数据集中。

对于隐式缺失值, 我们可以将数据进行变化, 显示隐性缺失.

```
stocks %>%
pivot_wider(names_from = year, values_from = return)
```

这样就可以看到原来隐型的缺失值了.

这些显式缺失的值在数据的其他表示中可能并不重要,你可以在pivot_longer()中设置 values_drop_na = TRUE 来将显式缺失的值变成隐式缺失值:

```
stocks %>%

pivot_wider(names_from = year, values_from = return) %>%

pivot_longer(
   cols = c(^2015^, ^2016^),
   names_to = "year",
   values_to = "return",
   values_drop_na = TRUE
)
```

```
## # A tibble: 6 x 3
##
      qtr year return
##
    <dbl> <chr> <dbl>
        1 2015
## 1
                 1.88
        2 2015
## 2
                0.59
## 3
        2 2016
                0.92
## 4
        3 2015
                0.35
        3 2016
## 5
                0.17
## 6
        4 2016
                  2.66
```

4.0.0.1 complete()

在整洁数据中显式显示缺失值的另一个重要工具是 complete(). complete() 获取一组列,并查找所有唯一的组合。然后,它确保原始数据集包含所有这些值,并在必要时显式填充 NAs。

```
stocks %>%
complete(year,qtr)
```

```
## # A tibble: 8 x 3

## year qtr return

## 1 2015 1 1.88

## 2 2015 2 0.59

## 3 2015 3 0.35

## 4 2015 4 NA
```

```
## 5 2016 1 NA
## 6 2016 2 0.92
## 7 2016 3 0.17
## 8 2016 4 2.66
```

有时,当一个数据源主要用于数据输入时,丢失的值表明以前的值应该 结转:

4.0.0.2 fill()

您可以使用 fill() 填充这些缺失的值。它采用一组列,在这些列中,您 希望用最近的非缺失值 (有时称为最后一次观察结转) 替换缺失值。

```
treatment %>% fill(person)
## # A tibble: 4 x 3
## person treatment response
## <chr>
            <dbl>
                       <dbl>
## 1 A
                          7
                 1
## 2 A
                  2
                          10
## 3 A
                 3
                          9
## 4 B
                  1
                           4
```

直接将缺失值填写为前面的字符 ('A').