First Year (Semester I) B.Tech.

Basic Electrical and Electronics Engineering

Experiment No.: 01

DC Circuit Analysis

Name: Ayush Jain

SAP No. : 60004200132

Date of performance: 6/3/2021

Signature of teacher-in-charge :

First Year (Semester I) B.Tech.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

First Year (Semester I) B.Tech.

Fig. 1(b) Resistor equivalent across A and B

Theoretical Calculations:

Resistor equivalent across A and B

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

First Year (Semester I) B.Tech.

Fig. 1(c) Current in the circuit

Theoretical Calculations:

Current in the circuit

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai)

NAAC Accredited with "A" Grade (CGPA: 3.18)

First Year (Semester I) B.Tech.

Theoretical Calculations:

Voltage across 60hm

First Year (Semester I) B.Tech.

		Theoretical values	Practical values
Observation Table	Equivalent resistor R _{XY} (Fig 1.a)	8.67 Ω	8.67 Ω
	Equivalent resistor R _{AB} (Fig 1.b)	10 Ω	10 Ω
	Current in the circuit I (Fig 1.c) Voltage $V_{6\Omega}$ (Fig 1.d)	0.233A 3.06V	0.233A 3.06V

Conclusion:

- 1. We used Star-Delta transformation to simplify the circuit.
- 2. The practical values has been attained using an online simulator tool, Tinkercad
- 3. The theoretical values and practical values are equal to each other.