Spice Name	Model Parameter	Units	Default	Example
IS	Saturation current	A	1×10^{-14}	1.0×10^{-14}
RS	Ohmic resistance	Ω	0	10
N	Emission coefficient		1	1.0
TT	Transit-time	sec	0	0.1 ns
CJO	Zero-bias junction capacitance	F	0	2 pF
VJ	Junction potential	V	1	0.6
M	Grading coefficient		0.5	0.5
EG	Activation energy	eV	1.11	1.11 Si 0.69 Sbd 0.67 Ge
XTI	Saturation-current temperature coefficient	-	3.0	3.0 pn-junction 2.0 Sbd
KF	Flicker noise coefficient	-	0	
AF	Flicker noise exponent	-	1	
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	
BV	Reverse-bias breakdown voltage	V	∞	40.0
IBV	Reverse-bias breakdown current	A	1×10^{-10}	1.0×10^{-10}

Table A.1 Semiconductor diode model parameters.

modeled by a transit time TT and a nonlinear depletion-layer capacitance. The parameters that effect the depletion layer capacitance are CJO, VJ, M and FC. The temperature dependence of the saturation current is defined by the parameters EG and XTI. The flicker noise behavior of the diode is defined by the parameters KF and AF. Reverse breakdown is modeled by an exponential increase in the reverse diode current and is determined by the parameters BV and IBV.

The parameters used to model a semiconductor diode in Spice are listed in Table A.1.

A.2 BJT Model

The bipolar junction transistor model in Spice is an adaptation of the integral charge control model of Gummel and Poon. The model will automatically simplify to the Ebers-Moll model when certain parameters are not specified.

The forward static current gain characteristic of the BJT is defined by the parameters IS, BF, NF, ISE, IKF and NE. Correspondingly, the reverse current gain characteristic of the BJT is defined by the parameters IS, BR, NR, ISC, IKR and NC. The output conductance of the forward and reverse regions of the transistor is determined by VAF and VAR, respectively. Resistors RB, RC and RE represent an ohmic resistance in series with each terminal of the

BF Ideal ma Nf Forward VAF Forward IKF Corner for roll-off ISE B-E leak NE B-E leak BR Ideal ma NR Reverse of the roll-off IKR Corner for roll-off ISC B-C leak NC B-C leak	et saturation current eximum forward beta current emission coefficient Early voltage or forward beta high current age saturation current age emission coefficient eximum reverse beta current emission coefficient Early voltage or reverse beta high current age saturation current age emission coefficient incresistance where base resistance falls to its min value	A - V A A - V A A - Ω A A	1×10^{-16} 100 1 ∞ ∞ 0 1.5 1 0 0 0 0 0 0 0 0 0 0	1.0×10^{-15} 100 1.0 200 0.01 1.0×10^{-13} 2.0 0.1 1.0 200 0.01 1.0×10^{-13} 1.5 100	
Nf Forward VAF Forward IKF Corner for roll-off ISE B-E leak NE B-E leak BR Ideal man NR Reverse of VAR Reverse of IKR Corner for roll-off ISC B-C leak NC B-C leak	Early voltage or forward beta high current age saturation current age emission coefficient ximum reverse beta current emission coefficient Early voltage or reverse beta high current age saturation current age emission coefficient with the current age emission coefficient	V A A - - V A A - Ω	1 ∞ ∞ 0 1.5 1 1 ∞ ∞ 0	100 1.0 200 0.01 1.0×10^{-13} 2.0 0.1 1.0 200 0.01 1.0×10^{-13} 1.5 100	
VAF Forward IKF Corner for roll-off ISE B-E leak NE B-E leak BR Ideal ma NR Reverse of VAR Reverse I IKR Corner for roll-off ISC B-C leak NC B-C leak	Early voltage or forward beta high current age saturation current age emission coefficient aximum reverse beta current emission coefficient Early voltage or reverse beta high current age saturation current age emission coefficient nic resistance where base resistance falls to its min value	V A A - - V A A - Ω	∞ 0 1.5 1 1 ∞ ∞ 0 0 1.5 1 1 0 0 0 0 0 0 0 0 0 0 0	200 0.01 1.0×10^{-13} 2.0 0.1 1.0 200 0.01 1.0×10^{-13} 1.5 100	
IKF Corner for roll-off ISE B-E leaken NE B-E leaken BR Ideal manner NR Reverse of VAR Reverse IKR Corner for roll-off ISC B-C leaken NC B-C leaken NC B-C leaken roll-off	age saturation current age emission coefficient ximum reverse beta current emission coefficient Early voltage or reverse beta high current age saturation current age emission coefficient nic resistance where base resistance falls to its min value	A A V A A - Ω	∞ 0 1.5 1 1 ∞ ∞ 0 0	0.01 1.0×10^{-13} 2.0 0.1 1.0 200 0.01 1.0×10^{-13} 1.5 100	
roll-off ISE B-E leak NE B-E leak BR Ideal ma NR Reverse of VAR Reverse I IKR Corner for roll-off ISC B-C leak NC B-C leak	age saturation current age emission coefficient ximum reverse beta current emission coefficient Early voltage or reverse beta high current age saturation current age emission coefficient nic resistance where base resistance falls to its min value	A V A A - Ω	0 1.5 1 1 ∞ ∞ 0 2	0.01 1.0×10^{-13} 2.0 0.1 1.0 200 0.01 1.0×10^{-13} 1.5 100	
NE B-E leak BR Ideal ma NR Reverse of VAR Reverse I IKR Corner for roll-off ISC B-C leak NC B-C leak	age emission coefficient eximum reverse beta current emission coefficient Early voltage or reverse beta high current age saturation current age emission coefficient nic resistance where base resistance falls to its min value	- - V A A	1.5 1 1 ∞ ∞ 0 2 0	2.0 0.1 1.0 200 0.01 1.0×10^{-13} 1.5 100	
NE B-E leaked BR Ideal manner NR Reverse of VAR Reverse of IKR Corner for roll-off ISC B-C leaked NC B-C leaked	age emission coefficient eximum reverse beta current emission coefficient Early voltage or reverse beta high current age saturation current age emission coefficient nic resistance where base resistance falls to its min value	A A - Ω	1.5 1 1 ∞ ∞ 0 2 0	2.0 0.1 1.0 200 0.01 1.0×10^{-13} 1.5 100	
BR Ideal ma NR Reverse of VAR Reverse l IKR Corner for roll-off ISC B-C leake NC B-C leake	ximum reverse beta current emission coefficient Early voltage or reverse beta high current age saturation current age emission coefficient nic resistance where base resistance falls to its min value	A A - Ω	1 1 ∞ ∞ 0 2 0	0.1 1.0 200 0.01 1.0×10^{-13} 1.5 100	
VAR Reverse I IKR Corner for roll-off ISC B-C leaks NC B-C leaks	Early voltage or reverse beta high current age saturation current age emission coefficient nic resistance where base resistance falls to its min value	A A - Ω	1 ∞ ∞ 0 2 0	1.0 200 0.01 1.0×10^{-13} 1.5 100	
VAR Reverse I IKR Corner for roll-off ISC B-C leaks NC B-C leaks	Early voltage or reverse beta high current age saturation current age emission coefficient nic resistance where base resistance falls to its min value	A A - Ω	∞ ∞ 0 2 0	200 0.01 1.0×10^{-13} 1.5 100	
IKR Corner for roll-off ISC B-C leaks	age saturation current age emission coefficient nic resistance where base resistance falls to its min value	A A - Ω	∞ 0 2 0	0.01 1.0×10^{-13} 1.5 100	
NC B-C leaks	age emission coefficient nic resistance where base resistance falls to its min value	Ω Ω	2	1.5 100	
NC B-C leaks	age emission coefficient nic resistance where base resistance falls to its min value		0	100	
RB Base ohn	where base resistance falls to its min value		-		
2000 01111	o its min value	A	~	0.1	
			~	0.1	
RBM Minimum currents	n base resistance at high	Ω	RB	10	
RE Emitter's	resistance	Ω	0	1	
RC Collector	resistance	Ω	0	10	
CJE B-E zero-	bias depletion capacitance	\mathbf{F}	0	2 pF	
VJE B-E built	-in potential	V	0.75	0.6	
MJE B-E junc	tion exponential factor	-	0.33	0.33	
TF Ideal forv	vard transit time	sec	0	0.1 ns	
XTF Coefficien	at for bias dependence of TF	_	0.75	0.6	
VTF Voltage d	escribing VBC dependence	V	∞		
ITF High-curr on TF	ent parameter for effect	Α	0		
PTF Excess ph	hase at $freq = 1/(2\pi \mathrm{TF})$	degree	0		
	bias depletion capacitance	\mathbf{F}	0	2 pF	
VJC B-C built	-in potential	V	0.75	0.5	
	tion exponential factor	_	0.33	0.5	
XCJC Fraction of connected	of B-C depletion capacitance to internal base node	_	1		
TR Ideal reve	rse transit time	sec	0	10 ns	
CJS Zero-bias capacitan	collector-substrate ce	F	0	2 pF	
	junction built-in potential	V	0.75		
	junction exponential factor	_	0	0.5	
	and reverse beta temperature	-	0		

Table A.2 BJT model parameters continued next page

Spice Name	Model Parameter	Units	Default	Example
EG	Energy gap for temperature effect	eV	1.11	
XTI	Temperature exponent for effect on IS	-	3	
KF	Flicker-noise coefficient	-	0	
AF	Flicker-noise exponent	-	1	
FC	Coefficient for forward-bias depletion capacitance formula	_	0.5	

Table A.2 BJT model parameters.

Spice Name	Model Parameter	Units	Default	Example	
VTO BETA LAMBDA RD RS CGS CGD PB IS KF AF FC	Threshold voltage Transconductance parameter Channel length modulation parameter Drain ohmic resistance Source ohmic resistance Zero-bias G-S junction capacitance Zero-bias G-D junction capacitance Gate junction potential Gate junction saturation current Flicker noise coefficient Flicker noise exponent Coefficient for forward-bias depletion capacitance formula	V A/V ² 1/V Ω Ω F F V A	$ \begin{array}{c} -2.0 \\ 1 \times 10^{-4} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \times 10^{-14} \\ 0 \\ 0 \\ 1 \\ 0.5 \end{array} $	-2.0 1×10^{-3} 1×10^{-4} 100 100 $5 pF$ $1 pF$ 0.6 1×10^{-14}	

Table A.3 JFET model parameters.

charge storage effects associated with the thin-oxide. The flag/coefficient XQC determines which of the two models will be used; a voltage-dependent or a charge-controlled capacitance model [A. Vladimirescu, 1981]. Other parameters of the MOSFET model that determine the charge storage effects are CBD, CBS, CJ, CJSW, MJ, MJSW, PB and FC. The overlap capacitances are set by the parameters CGSO, CGDO and CGBO. The flicker noise behavior of the diode is defined by the parameters KF and AF.

The MOSFET parameters used for the three different MOSFET models in Spice are listed in Table A.4. There are 42 parameters associated with the three models of the MOSFET.

Spice Name	Model Parameter	Units	Default	Example
LEVEL	Model index (eg. 1,2 or 3)	-	1	
VTO	Zero-bias threshold voltage	V	0	1.0
KP	Transconductance parameter	A/V^2	2.0×10^{-5}	3.1×10^{-5}
GAMMA	Bulk threshold parameter	$V^{1/2}$	0	0.37
PHI	Surface potential	V	0.6	0.65
LAMBDA	Channel-length modulation (LEVEL 1 and 2 only)	1/V	0	0.02
RD	Drain ohmic resistance	Ω	0	1.0
RS	Source ohmic resistance	Ω	0	1.0
CBD	Zero-bias B-D junction capacitance	\mathbf{F}	0	20 fF
CBS	Zero-bias B-S junction capacitance	F	0	20 fF
IS	Bulk junction saturation current	A	1.0×10^{-14}	1.0×10^{-15}
PB	Bulk junction potential	V	0.8	0.87
CGSO	Gate-source overlap capacitance per meter channel width	F/m	0	4.0×10^{-11}
CGDO	Gate-drain overlap capacitance per meter channel width	F/m	0	4.0×10^{-11}
CGBO	Gate-bulk overlap capacitance per meter channel length	F/m	0	2.0×10^{-10}
RSH	Drain and source diffusion sheet resistance	$\Omega/ extsf{sq}$.	0	10.0
CJ	Zero-bias bulk junction bottom cap. per sq-meter of junction area	F/m ²	0	2.0×10^{-4}
MJ	Bulk junction bottom grading coeff.	_	0.5	0.5
CJSW	Zero-bias bulk junction sidewall cap. per meter of junction perimeter	F/m	0	2.0×10^{-9}
MJSW	Bulk junction sidewall coefficient	_	0.33	
JS	Bulk junction saturation current per sq-meter of junction area	A/m^2	1.0×10^{-8}	
TOX	Oxide thickness	meter	1.0×10^{-7}	1.0×10^{-7}
NSUB	Substrate doping	$1/cm^3$	0	4.0×10^{15}
NSS	Surface state density	$1/cm^2$	0	1.0×10^{10}
NFS	Fast surface state density	$1/\mathrm{cm}^2$	2×10^{-5}	1.0×10^{10}
TPG	Type of gate material: +1 op. to substrate -1 same as substrate 0 Al gate		1	
XJ	Metallurigical junction depth	meter	0	$1.0~\mu\mathrm{m}$
LD	Lateral diffusion	meter	0	$0.8~\mu\mathrm{m}$
UO	Surface mobility	$cm^2/(V \cdot$	EK .	700
UCRIT	Critical field for mobility degradation (LEVEL 2 only)	V/cm	1 × 10 ⁴	1.0×10^4
UEXP	Critical field exponent in mobility degradation (LEVEL 2 only)	-	0	0.1

Table A.4 MOSFET model parameters continued next page

Spice Name	Model Parameter	Units	Default	Example
UTRA	Transverse field coefficient (mobility) (deleted for LEVEL 2)	_	0	0.3
VMAX	Maximum drift velocity of carriers	m/s	0	5.0×10^4
NEFF	Total channel charge (fixed and mobile coefficient (LEVEL 2 only)) –	1	5.0
XQC	Thin-oxide capacitance model flag and coefficient of channel charge share attributed to drain (0-0.5)	-	1	0.4
KF	Flicker-noise coefficient		0	1.0×10^{-26}
AF	Flicker-noise exponent	-	1	1.2
FC	Coefficient for forward-bias depletion capacitance formula	-	0.5	
DELTA	Width effect on threshold voltage (LEVEL 2 and LEVEL 3)	"	0	1.0
THETA	Mobility modulation (LEVEL 3 only)	1/V	0	0.1
ETA	Static feedback (LEVEL 3 only)	_	0	1.0
KAPPA		_	0.2	0.5

Table A.4 MOSFET model parameters

A.5 MESFET Model

The MESFET model that we describe here is that provided in the PSpice program by MicroSim Corporation. Spice version 2G6 does not have a device model for the MESFET.

PSpice provides three MESFET device models that have different large-signal i-v characteristics. The variable LEVEL specifics the model that is to be used to represent a particular MESFET:

LEVEL=1 => Curtice LEVEL=2 => Raytheon

LEVEL=3 => TriQuint

The MESFET is modeled as an intrinsic JFET with resistances RD, RS and RG in series with the drain, source and gate, respectively. The DC characteristics are defined by the parameters VTO, BETA, ALPHA, LAMBDA, IS, N and M. Charge storage is modeled by a nonlinear depletion-layer capacitance for both gate junctions using parameters CGS, CGD, PB and FC. A capacitance between drain and source CDS can also be declared. The flicker noise behavior of the diode is defined by the parameters KF and AF. Effects of temperature can also be modeled using parameters EG, XTI, VTOTC, BETATCE, TRG1, TRD1 and TRS1.