Programming in Python: Exercices

Basic exercises on strings

Exercise 1: Mimics the transcription phase by replacing all T by a U in a DNA sequence entered by the user.

Exercise 2: Write a function that returns the reverse complementary sequence of a DNA sequence provided as a parameter of the function.

Basic exercises on arrays

Exercise 3: A biologist have counted the number of individual of a given bird specie for 40 years. The data is provided by this table:

Année	Nb pas- sages				
I	IO				
2	35				
3	82				
4	60 80				
5					
6	105				
7	100				
8	120				
9	146				
IO	122				

Année	Nb pas- sages				
II	151				
12	133				
13	146				
14	140				
15	II2				
16	87				
17	95				
18	58				
19	41				
20	64				

Année	Nb pas- sages
21	20
22	15
23	41
24	30
25	44
26	84
27	78
28	82
29	94
30	158

Année	Nb pas- sages				
31	140				
32	150				
33	142 171 160				
34					
35					
36	198				
37	159				
38	216				
39	200				
40	196				

- 1) write a program that computes the year where the population is maximal
- 2) write a program that finds the pics of population.

Exercise 4: The correlation coefficient between two series is given by

$$r = \frac{\sum_{i} x_i y_i}{\sqrt{\sum_{i} x_i^2 \cdot \sum_{i} y_i^2}}$$

Write a function that returns the correlation between two series provided as parameters of the function

Application: in a group of 12 patients, we measure (X) the quantity of lipids in their faeces and (Y) the concentration in acetones in their urine.

×	0	0	30	40	80	100	120	120	140	150	170	180
У	0.04	0.02	0.00	0.02	0.12	0.08	0.06	0.15	0.16	O.II	0.17	0.12

Is the correlation between X and Y significant?

Simulations and plots

Exercise 5: The Fibonacci series (also known as « the rabbits » series) is defined is $F_0=F_1=1$ and $F_n=F_{n-1}+F_{n-2}$, n>1. Computes the 20 first terms of the Fibonacci series, store them in an array and plot the result.

Exercise 6: The Lotka-Volterra model permits to reproduce some observed prey-predators phenomenon. More precisely, let X_n denotes the number of preys and Y_n denotes the number of predators. These series evolves as $X_{n+1} = V_x (1+X_n)$ and $Y_{n+1} = V_y (1+Y_n)$, with $V_x = a - b Y_n$ and $V_y = c X_n - d$.

Compute the series X and Y for a long period of time and plot the results. What can we conclude?

Test it with a=0.01, b=0.02, c=0.03 and d=0.04....

Advanced exercises on strings

Exercise 5: The GC-content of a DNA string is given by the percentage of symbols in the string that are 'C' or 'G'. For example, the GC-content of "AGCTATAG" is 37.5%. Write a function that computes the GC content of a given DNA sequence.

Exercise 5: The distance between two DNA sequences can be measured in several way. The *Hamming distance* equals the number of positions for which the characters differs. Write a function DistanceH.

The Levenshtein distance equals the minimal number of insertions, deletions and substitutions that are required to go from one sequence to another. Write a function DistanceL.

Example: DistanceH(ACTAATGA,ACAATGAC) = 5 and DistanceH(ACTAATGA,ACAATGAC) = 2....

Exercise 5: A k-mer is a string of length k. We define Count(Text, Pattern) as the number of times that a k-mer Pattern appears as a substring of Text. For example,

Count(ACAACTATGCATACTATCGGGAACTATCCT,ACTAT)=3.

We note that Count(CGATATATCCATAG, ATA) is equal to 3 (not 2) since we should account for overlapping occurrences of Pattern in Text. We say that Pattern is a most frequent k-mer in Text if it maximizes Count(Text, Pattern) among all k-mers. For example, "ACTAT" is a most frequent 5-mer in "ACAACTATGCATCACTATCGGGAACTATCCT", and "ATA" is a most frequent 3-mer of "CGATATATCCATAG".

Frequent Words Problem

Find the most frequent k-mers in a string.

Given: A DNA string Text and an integer k.

Return: All most frequent k-mers in Text (in any order).

Write the Count function and solve the Frequent Words Problem.

If it is not enough, go to http://rosalind.info and try to solve some problems.....