#### **Engineering Statistics**



## Regression Analysis

**Regression Analysis** 

© depositphotos Image ID: 203768648 www.depositphotos.com

#### Dr. Vvn Weian Chao (趙韋安)

https://ce.nctu.edu.tw/member/teachers/23

Department of Civil Engineering, National Yang Ming Chiao Tung University, Taiwan







#### 多變數關係

### 關係強度





#### Outline



- -Scatter plots
- -Correlation
- -Fitting a Line to Bivariate Data
- -Nonlinear Relationships
- -Using More than One Predictor

#### Scatter plots



應變數(Y): Ocular Surface Area, 視覺表面積[cm²]

自變數(X): 眼睛之間的寬度 [cm]

資料個數: 30筆, data.xlsx

| Obs:       | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|------------|------|------|------|------|------|------|------|------|------|------|
| <i>x</i> : | .40  | .42  |      |      |      |      | .70  |      | .75  | .78  |
| <i>y</i> : | 1.02 | 1.21 | .88  | .98  | 1.52 | 1.83 | 1.50 | 1.80 | 1.74 | 1.63 |
| Obs:       | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   |
| <b>x</b> : | .84  | .95  |      |      |      | 1.15 |      | 1.25 | 1.25 | 1.28 |
| <i>y</i> : | 2.00 | 2.80 | 2.48 | 2.47 | 3.05 | 3.18 | 3.76 | 3.68 | 3.82 | 3.21 |
| Obs:       | 21   | 22   | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30   |
| <i>x</i> : | 1.30 | 1.34 | 1.37 |      | 1.43 | 1.46 |      | 1.55 | 1.58 | 1.60 |
| <i>y</i> : | 4.27 | 3.12 | 3.99 | 3.75 | 4.10 | 4.18 | 3.77 | 4.34 | 4.21 | 4.92 |

#### Scatter plots



X增加, Y亦增加

線性關係?

是否通過原點? (符合物理意義)



#### Correlation



#### Pearson's Sample Correlation Coefficient Properties & Interpretation of r **Correlation & Causation**

https://zh.wikipedia.org/wiki/%E5%8D%A1%E 5%B0%94%C2%B7%E7%9A%AE%E5%B0%94% E9%80%8A

卡爾·皮爾森 [編輯]

維基百科,自由的百科全書

卡爾·皮爾森 (Karl Pearson · 1857年3月27日 -1936年4月27日),英國數學家和自由思想家。

#### 目錄 [隱藏]

- 1 生平
- 2 貢獻
- 3 參見
- 4 參考文獻
- 5 外部連結

#### 生平 [編輯]

1857年出生於英國倫敦:1879年畢業於劍橋大學, 獲數學學士學位;[1]後往德國海德堡大學進修德語及 人文學科;後去林肯法學院學習法律獲大律師資格; 數年後於劍橋大學獲數學哲學博士學位;1884年~ 1911年任倫敦大學應用數學和力學的教授,1911年 ~1933年任高爾頓實驗室主任,又任應用統計系教

1896年撰為英國皇家學會會員,他還是愛爾堡皇家



## Pearson Correlation



Coefficient (r)

- ✓ Multiply each x deviation by the corresponding y deviation to obtain products of deviations of the form (x-x\_avg)(y-y\_avg).
- ✓ Fig.a, because almost all points lie in regions I and III, almost all products of deviations are positive. Thus the sum of products will be a large positive number.
- ✓ Fig.b exhibits a strong negative relationship.
- ✓ In Fig.c, positive and negative products of deviations tend to counteract on another, giving a value of the sum that is close to zero.

  NYCU COLLab Copyright









**Pearson's sample correlation** *r* is given by

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}} = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}}$$

Computing formulas for the three summation quantities are

$$S_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$$

$$S_{yy} = \sum y_i^2 - \frac{\left(\sum y_i\right)^2}{n}$$

$$S_{xy} = \sum x_i y_i - \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}$$







## R: Correlation Coefficient COr().

#### R語言使用希臘字母與上下標符號 expression



-Use the expression(): ^上標 [ ]下標 ~空格 \*連接符號 expression( "r" ^2~" = 0.123" )

 $-> r^2 = 0.123$ 

# TRY it

#### R: Correlation Coefficient

## R\_regression\_a.R

#### **Correlation & Causation**



實際上,雖觀察到兩變數具有極高相關係數,並非真正代表兩個變數之間確實存在因果關係

因為,有可能兩個變數同時與第三個變數存在強 烈的關係

小孩牙齒數量與說話能力有正相關。但是,實際上牙齒數量與說話能力皆與年齡有明確關係,當分析時固定年齡,則兩者變數之間關係會變小





Fitting a Straight Line
Assessing the Fit of the Least Squares Line
Standard Deviation about the LS Line
Plotting the Residuals
Resistant Lines



$$\sum [y_i - (a + bx_i)]^2 = [y_1 - (a + bx_1)]^2 + \dots + [y_n - (a + bx_n)]^2$$



$$y = a + bx$$

#### The principle of least squares:

- The line that gives the best fit to the data is the one that minimizes the sum.
- It is called the least squares line or sample regression line.



$$\sum [y_i - (a + bx_i)]^2 = [y_1 - (a + bx_1)]^2 + \dots + [y_n - (a + bx_n)]^2$$

$$\begin{cases} \frac{d}{da} \sum [y_i - (a + bx_i)]^2 \\ \frac{d}{db} \sum [y_i - (a + bx_i)]^2 \end{cases} \Rightarrow \begin{cases} na + (\sum x_i)b = \sum y_i \\ (\sum x_i)a + (\sum x_i^2)b = \sum x_i y_i \end{cases}$$

(1)解二元一次方程組: 
$$\begin{cases} a_1x + b_1y = c_1 \cdots (1) \\ a_2x + b_2y = c_2 \cdots (2) \end{cases}$$
, 其中 $x,y$ 是未知數,

我們使用代入消去法解之

$$(1) \times b_2 - (2) \times b_1 \Rightarrow (a_1b_2 - a_2b_1)x = (c_1b_2 - c_2b_1)$$

$$(1) \times a_2 - (2) \times a_1 \Rightarrow (a_2b_1 - a_1b_2)y = (c_1a_2 - c_2a_1)$$

⇒可得
$$\begin{cases} \Delta \cdot x = \Delta_x \\ \Delta \cdot y = \Delta_y \end{cases}$$
,其中 $\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ , $\Delta_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}$ , $\Delta_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$ 。

當 $\Delta$ ≠0時,方程組恰有一解 $(x,y)=(\Delta_x \atop \Delta$ ,  $\Delta_y \atop \Delta$ )[兩直線交於一點]

當 $\Delta=0$ ,而 $\Delta_x$ 、 $\Delta_y$ 有一不爲 0 時,方程組無解以。[內置聚平行]



The slope b of the least squares line is:

$$b = \frac{\sum x_{i} y_{i} - (\sum x_{i})(\sum y_{i}) / n}{\sum x_{i}^{2} - (\sum x_{i})^{2} / n} = \frac{S_{xy}}{S_{xx}}$$

The vertical intercept a of the least squares line is

$$a = \frac{\sum y_i \sum x_i^2 - \sum x_i \sum x_i y_i}{n \sum x_i^2 - \left(\sum x_i\right)^2}$$

$$a = \overline{y} - b\overline{x}$$



$$b=rac{S_{xy}}{S_{xx}}$$
;  $r=rac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$ 

If r/b, then

$$\frac{r}{b} = \frac{S_{xx}}{\sqrt{S_{xx}}\sqrt{S_{yy}}} = \frac{\sqrt{S_{xx}}}{\sqrt{S_{yy}}}$$

$$\boldsymbol{b} = \boldsymbol{r} \left( \frac{\boldsymbol{s}_{\boldsymbol{y}}}{\boldsymbol{s}_{\boldsymbol{x}}} \right)$$

- ·相關係數r控制斜率正負
- · x,y變數的標準差及r控制斜率大小

## Assessing the Fit of LS Line



- Predicting the y values:  $\hat{y}_i = a + bx_i$
- Residual sum of squares (殘差平方和), SSResid, SSE:

$$SSResid = SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

• Regression of sum of squares (迴歸平方和), SSR:

$$\underline{SSR} = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

• Total sum of squares (總平方和), SSTo:

$$\underline{SSTo} = \sum_{i=1}^{\infty} (y_i - \overline{y})^2$$

#### Assessing the Fit of LS Line



$$SSTo = SSE + SSR$$

• 迴歸關係式無法解釋的資料比例:

$$SSE/_{SSTo}$$

· Coefficient of Determination (決定係數): 可度量迴歸 線對於資料的擬合程度

$$r^2 = 1 - \frac{SSE}{SSTO}$$

## Standard Deviation abouted the LS Line

$$S_e = \frac{|SSE|}{n-2}$$

度量觀測值在迴歸線的分散程度







#### Plotting the Residuals



A **residual plot** is a plot of the (x, residual) pairs—that is, of the pairs  $(x_1, y_1 - \hat{y}_1), (x_2, y_2 - \hat{y}_2), \dots, (x_n, y_n - \hat{y}_n)$ —or of the residuals versus predicted values—the pairs  $(\hat{y}_1, y_1 - \hat{y}_1), \dots, (\hat{y}_n, y_n - \hat{y}_n)$ .

## 理想的迴歸關係式之 Residual plot 並無明顯的殘差值之 分布趨勢

#### Plotting the Residuals



應變數(Y): 美國女性體重[lb]

自變數(X): 身高 [inch]

資料個數: 15筆





NYCU Collab Copyright

#### **Resistant Lines**



迴歸線容易受到單一不好的觀測值影響迴歸結果。此類情況,可以使 用權重法線性迴歸

#### 補充: 檢查偏離值與權重式迴歸分析



透過殘差值定義各別資料點(x,y)的權重,並將所有資料點

乘上對應的權重值

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\begin{bmatrix} w_{1}1 & w_{1}x_{1} \\ w_{2}1 & w_{2}x_{2} \\ \vdots & \vdots & \vdots \\ w_{n}1 & w_{n}x_{n} \end{bmatrix} = \begin{bmatrix} w_{1}y_{1} \\ w_{2}y_{2} \\ \vdots \\ w_{n}y_{n} \end{bmatrix}$$

#### 補充: 檢查偏離值與權重式迴歸分析



透過乘上權重值的資料點再進行回歸分析







lm(y~x+0).
anova().



```
Call:
lm(formula = OSA ~ Width, data = data)
                                             Intercept: -0.3977
                                             Slope: 3.0800
Residuals:
                                             se: 0.308
              1Q Median 3Q
     Min
                                        Max r<sup>2</sup>: 0.9373
-0.60942 -0.19875 -0.01902 0.21727 0.66378
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3977
                        0.1680 -2.367 0.0251 *
Width
             3.0800
                        0.1506 20.453 <2e-16 ***
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (), 1
Residual standard error: 0.308 on 28 degrees of freedom
Multiple R-squared: 0.9373, Adjusted R-squared: 0.935
F-statistic: 418.3 on 1 and 28 DF, p-value: < 2.2e-16
```



```
Analysis of Variance Table

Response: OSA

Df Sum Sq Mean Sq F value Pr(>F)

Width 1 39.686 39.686 418.32 < 2.2e-16 ***

Residuals 28 2.656 0.095

---

Signif. codes: 0 (***, 0.001 (**, 0.05 (., 0.1 ( , 1 ) )
```

$$SSTo = SSE + SSR$$

$$r^{2} = 1 - \frac{SSE}{SSTo} \quad s_{e} = \sqrt{\frac{SSE}{n-2}}$$



Scatter plots example

$$r^2$$
=0.9373,OSA = -0.398 + 3.08 x Width



lines without(red) and with(black) intercept

# TRY it



## R\_regression\_a.R

#### Nonlinear Relationships



Power Transformations

非線性 -> 線性化...

- Fitting a Polynomial Function多項式曲線(非線性)
- Smoothing a Scatterplot 平化化數據 -> 突顯資料趨勢關係

#### **Power Transformations**



- Suppose the general pattern in a scatterplot is curved and monotonic (i.e., strictly increasing/decreasing); it is often possible to find a power transformation for x or y.
- By a power transformation, we mean the use of exponents p and q such that the transformed values are  $x = x^p$  and/or  $y = y^q$
- The relevant scatterplot is of the (x, y) pairs.

#### **Power Transformations**



Power transformation ladder: Transformed value = (original value)<sup>POWER</sup>

| Power         | Transformed value             | Name<br>Cube          |  |
|---------------|-------------------------------|-----------------------|--|
| 3             | (Original value)3             |                       |  |
| 2             | (Original value) <sup>2</sup> | Square                |  |
| 1             | Original value                | No transformation     |  |
| $\frac{1}{2}$ | √Original value               | Square root           |  |
| 1/3           | √Original value               | Cube root             |  |
| 0             | Log(original value)           | Logarithm             |  |
| -l            | 1/(original value)            | nal value) Reciprocal |  |



#### **Power Transformations**



應變數(Y): 玉米脆片的溼度[%]

自變數(X): 油炸時間 [sec]

資料個數: 8筆, data\_power.xlsx

Moisture =  $a \times time^b$  $ln(Moi) = ln(a) + b \times ln(time)$ 



### R: Power Transformation



#### Scatter plots example

 $r^2$ =0.9755, Moisture = 103.38 x frytime<sup>-1.049</sup>



# TRY

#### R: Power Transformation



# R\_regression\_b.R

# Fitting a Polynomial Function



應變數(Y): 葡萄糖濃度[%]

自變數(X): 發酵時間[day]

資料個數: 8筆, data\_conc.xlsx

Scatter plots example



$$y = a + b_1 x + b_2 x^2$$

$$g(\widetilde{a}, \widetilde{b_1}, \widetilde{b_2}) = \sum_{i=1}^{n} [y_i - (\widetilde{a} + \widetilde{b_1}x + \widetilde{b_2}x^2)]^2$$







```
Residuals:
             2
 3.6250 -5.8036 -0.7679 1.7321 2.6964 0.1250
-1.9821 0.3750
Coefficients:
           Estimate Std. Error t value
(Intercept) 84.4821
                       4.9036 17.229
                    2.5001 -6.350
time
           -15.8750
I(time^2) 1.7679
                       0.2712 6.519
           Pr(>|t|)
(Intercept) 1.21e-05 ***
time
      0.00143
I(time^2) 0.00127 **
Signif. codes:
0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 ( , 1
Residual standard error: 3.515 on 5 degrees of freedom
Multiple R-squared: 0.8948, Adjusted R-squared: 0.8527
```





#### Scatter plots example

 $r^2$ =0.8948, Concentration = 84.48 + -15.875 x time +1.768 x time<sup>2</sup>



NYCU CoLLab Copyright

Polynomia function

# TRY it in





R\_regression\_c.R

## Smoothing a Scatterplot



#### **Locally Weighted Scatterplot Smoother**

#### LOWESS (or LOESS) method:

- Let  $(x^*, y^*)$  denote a particular one of the n(x, y) pairs in the sample.
- The value corresponding to  $(x^*, y^*)$  is obtained by fitting a straight line using only a specified percentage of the data (e.g., 25%) whose x values are closest to  $x^*$ .
- Those with x values closer to x\* are more heavily weighted than those whose x values are farther away.
- The height of the resulting line above  $x^*$  is the fitted value .
- This process is repeated for each of the *n* points, so *n* different lines are fit.
- The fitted points are connected to produce a LOWESS curve.

#### R語言使用Lowess Smoothing



-Use the lowess(x, y, f):

x, y: the input numeric data

f: the smooth span. Larger values give smoothness

#### **Body Temperature of Beavers Over Time**









- Fitting a Linear Function
- Creating New Predictors from Existing Ones

## Fitting a Linear Function



Consider fitting a relation of the form:

$$y \approx a + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

• The least squares coefficients a,  $b_1$ ,  $b_2$ ,...,  $b_k$  are the values that minimize g:

$$g(a,b_1,\ldots,b_k) = \sum_{j=1}^n \left[ y_j - \left( a + b_1 x_{1j} + b_2 x_{2j} + \cdots + b_k x_{kj} \right) \right]^2$$

#### R語言使用多元線性迴歸模型



-Use the  $lm(y \sim x_1 + x_2, data)$ :

data: the input numeric data frame

$$y = a + b_1 x_1 + b_2 x_2$$





以迴歸分析的觀點出發,若是 提供越多的Predictor應可以 達到更加的擬合結果(R<sup>2</sup>越大)<sup>-1</sup> 但是,實際上應要使用最少的 Predictor去達到最佳結果。





應變數(Y): deflection

自變數(X<sub>1</sub>): shear span ratio

自變數(X2): splitting tensile strength

資料個數:15筆

| $x_1$ | $x_2$ | $x_1x_2$ | y     |
|-------|-------|----------|-------|
| 2.04  | 3.55  | 7.2420   | 3.11  |
| 2.04  | 6.07  | 12.3828  | 3.26  |
| 3.06  | 3.55  | 10.8630  | 3.89  |
| 3.06  | 6.07  | 18.5742  | 10.25 |
| 4.08  | 3.55  | 14.4840  | 3.11  |
| 4.08  | 6.16  | 25.1328  | 13.48 |
| 2.06  | 3.62  | 7.4572   | 3.94  |
| 2.06  | 6.16  | 12.6896  | 3.53  |
| 3.08  | 3.62  | 11.1496  | 3.36  |
| 3.08  | 5.89  | 18.1412  | 6.49  |
| 4.11  | 3.62  | 14.8782  | 2.72  |
| 4.11  | 5.89  | 24.2079  | 12.48 |
| 2.01  | 6.18  | 12.4218  | 2.82  |
| 3.02  | 6.18  | 18.6636  | 5.19  |
| 4.03  | 6.18  | 24.9054  | 8.04  |





Fitting 
$$y = a + b_1x_1 + b_2x_2$$

$$y = a + b_1 x_1 + b_2 x_2$$

$$a = -9.2744$$

$$b_1 = 2.3263$$

$$b_2 = 1.5459$$





Including an interaction  $y = a + b_1x_1 + b_2x_2 + b_3x_1x_2$ 

$$y = a + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2$$

$$a = 17.296$$

$$b_1 = -6.373$$

$$b_2 = -3.661$$

$$b_3 = 1.708$$





Adding quadratic  $y = a + b_1x_1 + b_2x_2 + b_3x_1x_2 + b_4x_1^2 + b_5x_2^2$ 

$$y = a + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2 + b_4 x_1^2 + b_5 x_2^2$$

$$a = -34.29104$$

$$b_1 = -6.58875$$

$$b_2 = 19.34743$$

$$b_3 = 0.06098$$

$$b_4 = -2.35896$$

$$b_5 = 1.65575$$





Fitting  $a + b_1x_1 + b_2x_2$  results in

$$\hat{y} = -9.251 + 2.322x_1 + 1.544x_2$$
,  $R^2 = .576$ 

Including an interaction predictor yields

$$\hat{y} = 17.279 - 6.368x_1 - 3.658x_2 + 1.707x_1x_2, \qquad R^2 = .825$$

Adding in the two quadratic predictors gives

$$\hat{y} = -34.323 - 6.568x_1 + 19.347x_2 + 1.655x_1x_2 + .058x_1^2 - 2.359x_2^2$$
,  $R^2 = .845$ 

#### 課堂練習: 學號-姓名-ch9-Regression.R

The data give the speed of cars and distances taken to stop.

#### data(cars)

- (1)請繪製散佈圖(scatter plot),並計算其Pearson線性相關係數(r),請試著說明速度(speed, x)與距離(distance, y)之間的關係
- (2)請完成線性(y = a+bx)及非線性(y = axb)回歸分析,並試著說明何者較為適合描述速度(speed)與距離(distance)的關係(比較決定係數r²) [label plot: 請參考R\_sampling\_c1.R]

#### 課堂練習: 學號-姓名-ch9-Regression.R

#### Scatter Plot: Speed v.s. Distance

r^2: 0.65 se: 15.38 (line) r^2: 0.66 se: 15.22 (curve)



