INDEX

Page numbers in <i>italics</i> refer to Figures;	Backpropagation neural network (BPNN),
those in bold to Tables.	255–258, 256, 257
10.22	Bandlimited filter function, 177, 177–178
Accuracy, 10, 22	Bandlimited image signal, sampling of, 48,
Acoustic imaging, 4	49
Affine transformation, 316	Barium fluoride (BaF ₂), in SPECT imaging,
Algebraic reconstruction techniques (ART),	145 D 16 + 05
180–182, 181	Barium sulfate, 95
Alpha decay, 149	Bayesian classifier, 293
Alzheimer's disease, 353	Beam hardening, 96
A-mode ultrasound imaging, 166–167	Becquerel, Antonio Henri, 65
Analysis, computer-aided, 2. See also	Becquerel (Bq), 140
Image analysis	Beta decay, 140
Anger camera, 141	Biological tissue medium, optical
Angiography	reflectance in, 358, 359
digital subtraction, 336	Biomedical image processing and analysis
flow imaging of contrast-enhanced,	system
127–128, <i>128</i>	components of, 11, 11
image from subtraction method, 204,	computer for, 12
205	image acquisition system for, 12
MR, 128	image display environment of, 12
Antiscatter grids, 84	special-purpose architectures for, 13
Application domain knowledge, 2	Bismuth germinate (BGO), in SPECT
ART. See algebraic reconstruction	imaging
techniques	Bloch, Felix, 99
Artifacts	Bloch's equation, 106–107
motion, 6	B-mode ultrasound imaging, 168, 168
in MR images, 136	BOLD imaging sequence, 129, 130
Atlases, computerized, 311, 312	Boundary tracking, in image segmentation,
Attenuation	231–233, 233
linear coefficient for, 70, 71	Brain images
SPECT imaging with and without, 147,	axial, sagittal, and coronal MR, 113
147	DTI, 134
Autism, 353	DWI, 133
	elastic deformation based registration of
Backprojection method, 176-179, 179,	3-D MR, 329, <i>330</i>
180	endoscopic, 360
ART methods compared with, 182	with FDG-PET imaging, 149–150–150
of image reconstruction, 173	fMR, 130
<i>5</i>	,

Medical Image Analysis, Second Edition, by Atam P. Dhawan Copyright © 2011 by the Institute of Electrical and Electronics Engineers, Inc.

Brain images (cont'd)	Cesium iodide (CsI(TI), in SPECT imaging,
with Fourier transform, 18, 216, 216	145
fused SPECT-CT, 152, 153	Charge-coupled devices (CCDs), 46–47,
high-pass filtering of MR, 217, 218	363
homomorphic filtering of, 219, 219	Chest cavity, image analysis of, 267-268
hydrogen protons present in, 100, 100	Chest radiographs, 4, 85
with k-means clustering, 241, 242,	Clustering
243	agglomerative method, 241
with Laplacian weight mask, 209, 209,	data, 239–241
210	fuzzy c-means, 242–243, 259, 260
MAS method applied to, 254, 254	k-means, 241–242, 243, 259
with median filter method, 207, 207	partitional, 240, 241
morphological operations applied to, 279, 279	pixel classification through, 239–245, 243
through MR inversion recovery imaging	Coherent scattering, 67-68, 69
pulse sequence, 120	Collimators, 84
PET-reconstructed, 193	Comb function, 28, 29
proton density, 127	Compton scattering, 69
region-growing approach to, 247, 248	causes of, 69
registered using IPAR method, 321, 322,	in SPECT imaging, 147
323	Computed tomography (CT), 65. See also
through SEPI pulse sequence, 120	X-ray computed tomography
SPECT, 147, 147	Computer technology, in medical imaging
⁹⁹ Tc SPECT, 145, 145, 152, 153	modalities, 1–2
T_2 -weighted proton density, 201, 201,	Constrained least square filtering method,
203	214–215
2-D multimodality image visualization	Contrast
of, 336, <i>337</i>	improving, 266
using gray-value threshold, 235, 236,	in MR images, 135
237	in PET imaging, 150
using wavelet transform, 225, 225, 226	in SPECT imaging, 145
with weighted averaging mask, 206,	in ultrasound, 170
206	Contrast agents
X-ray CT, 201, 201, 203	iodine-based contrast agents, 95
Brain ventricles, composite model of, 318,	nanoparticle-conjugated, 357
319, 343, <i>345</i>	in targeted imaging, 357
Breast, microcalcifications of, 303-306,	Contrast enhancement processing,
305	feature-adaptive, 13–14, 14
Breast imaging. See also Mammogram	Contrast-to-noise ratio (CNR), 39
EIT methods of, 357	medical images characterized by, 39
radiological information for, 5	for MRI, 135
X-ray film-screen, 357	Cormack, Allen, 65, 173
Bremsstrahlung radiation spectrum, 81,	Curie, Irene, 140
82	Curie, Jean Frederic, 140
Butterworth filters, 216	Curie (CI), 140
Cardiac cavity, X-ray CT image of, 92, 93.	Data acquisition methods, 7
See also Heart	DataGlove, in VR technology, 347
Central slice theorem, 174–176, 175	Daubechies filter prototypes, 303
Cerebral artery, middle, 133	Daubechies's db4 wavelet, 57, 59

Detectors	exercises, 78
photon detection statistics of, 182	for image formation, 66-67
scintillation, 73–76, 74, 76	interaction with matter of
semiconductor, 72-73	coherent or Rayleigh
Diagnosis	scattering, 67–68, 69
medical imaging modalities in, 1-2	Compton scattering, 69
multimodality image fusion in, 151-152	pair production, 69
Diagnostic radiology	photoelectric absorption, 68, 68, 69
direct display methods, 338	linear attenuation coefficient, 70, 71
medical imaging in, 2	output voltage pulse detector subsystem
Diaphanography, 362	in, 76–77, 77
DICOM, 366	particle nature of, 66
Diffuse reflectance imaging, 362, 363	Electromagnetic (EM) spectrum, 65
Diffusion, 354	Emission computed tomography (ECT)
Diffusion imaging MR, 130–135, <i>131–134</i>	image reconstruction for, 182
Diffusion tensor imaging (DTI), 100,	image reconstruction in, 188–192,
130–135, <i>131–134</i> , 354	191–193
Diffusion weighted images (DWIs),	ML-EM algorithm for, 189–190
130–133, <i>132</i> , <i>133</i>	Emission imaging methods, 139
Diffusion weighted imaging (DWI), 354	Emission imaging principle, 4
Digital image, for MATLAB image	Endoscopy neuroendoscopy, 360
processing toolbox, 14–16, 16	~ *
Digital subtraction angiogram (DSA) data, 336	optical, 360
Dirac delta function, 27, 28	virtual, 335, 349 Enhancement, computer-aided, 2. <i>See also</i>
Doppler ultrasound imaging, 169, 170	Image enhancement
Doppler did asound imaging, 109, 170	Epi-illuminance light microscopy (ELM),
Echo planar imaging (EPI), 119–123,	362
120–124	Estimation-model based adaptive
Edge-based image segmentation, 229–230	segmentation, 249–254, 250,
boundary tracking, 231–233	254
edge detection operations, 230–231	EyePhone, in VR technology, 347
Hough transform, 233–235, 234	,
Edge detection operations, in image	False negative fraction (FNF), 9
segmentation, 230–231	False positive fraction (FPF), 9
Edge enhancement, 208–209	Fast Fourier transform (FFT), 51
Edge-linking procedures, in image	FCM algorithm, adaptive, 244-245
segmentation, 231	Feature classification system, 283–285
Edge map, example, 233, 233	GA-based optimization, 289-292,
Elastic deformation-based registration,	291
325–330, <i>328</i> , <i>330</i>	linear discriminant analysis, 285-288,
Electrical impedance tomography (EIT), 357	286
Electromagnetic (EM) radiation	PCA, 288–289
behavior of, 65–66	FID signal, 125–126
components of, 66	Field of view (FOV), in IPAR, 319–320,
detection of	321
ionized chambers and proportional counters for, 70–72, 71	Field programmable gate arrays (FPGA), 13
scintillation detectors, 73–76, 74, 76	Field programmable gate arrays (FPGA)
semiconductor detectors, 72–73	board, 77

Filtering	Functional MRI (fMRI), 79, 100
frequency domain, 212–213	FCA developed from, 311
high-pass, 217, 218, 224	neural activities examined by, 129-130,
homomorphic, 217-219, 218, 219	130
low-pass, 215–217, 216, 224	
Wiener, 200, 213–214	Gamma decay, 140
Filters	Gamma-ray emission, 67
Butterworth, 216	Gaussian high-pass filter function, 217, 219
constrained least square, 214-215	Genetic algorithms (GAs)
Gaussian, 217, 219	best sets of features selected, 305, 305
FLASH pulse sequence, for fast MR	optimization based on, 289-292, 291
imaging, 124–125, 125	sample generational cycle of, 291
Flow imaging, 125–128, 126–128	Global registration, rigid-body
of contrast-enhanced angiography,	transformation-based, 313
127–128, <i>128</i>	Golay-type coils, 111
perfusion image, 127, 127	Gradient echo imaging, 123-125, 125
spin-echo sequence for, 126, 127	Gray-level co-occurrence matrix (GLCM),
Fluorescence imaging, 79	280–281
energy source for, 5	
fluorophores in, 359	Heart, beating
Fluorodeoxyglucose (FDG), in PET	B-mode image of, 168, 168
imaging, 79, 149–150, 150	cine images of, 356, 356, 365
Fluorophores, 359	Doppler image of, 169, 170
FMR, 354	M-mode display of mitral valve leaflet
Forward mapping method, for volume data,	of, 167, 167
344	Hemoglobin
Fourier descriptor, 273	deoxygenated (Hb), 129
Fourier reconstruction methods, 186	oxygenated (HbO ₂), 129
Fourier transform, 18, 18	High-pass filtering, 217, 218, 224
discrete, 50–51	Histogram, in image enhancement
fast (FFT), 51	histogram modification, 203-204
inverse, 192–193	transformation and equalization, 201,
in medical imaging, 40	201–202, 203
properties of, 41–42, 42, 43	Holography, 336, 337–338
of radon transform, 174, 174–176	Homomorphic filtering, 217–219, 218, 219
short-time (STFT), 52	Hough transform, 233–235, 234, 266
wavelet transform compared with, 52	Hounsfield, Godfrey, 65, 173
Frequency domain filtering methods,	
212–213	Identification, computer-aided, 2
constrained least square filtering,	Image analysis. See also Image
214–215	representation
high-pass filtering, 217, 218, 224	computerized, 265
homomorphic filtering, 217–219, 218, 219	hierarchical structure of medical, 266, 267
low-pass filtering, 215–217, 216, 224	multimodality multiparameter, 364
Wiener filtering, 213–214	multiparameter, 354, 355
Full width at half maximum (FWHM)	Image coordinate system, 24–25, 25
measurement, 74	2-D image rotation in, 25–26
Functional compterized atlas (FCA), 312,	3-D image rotation and translation
312	transformation in, 26–27

Image display, in biomedical image	Image processing
processing and analysis, 12	exercises, 226–227
Image enhancement, 199	wavelet transform for, 220-226,
categories of, 200	221–223, 224, 225, 226
exercises, 226-227	Image Processing Interface, in MATLAB
with frequency domain filtering,	environment, 19
212–213	Image processing software packages, 20-21
constrained least square filtering,	Image reconstruction and analysis,
214–215	model-based methods for, 364,
high-pass filtering, 217, 218, 224	364–366, 365. See also
homomorphic filtering, 217-219, 218,	Reconstruction, image
219	Image registration. See Registration, image
low-pass filtering, 215-217, 216, 224	Image representation
Wiener filtering, 213–214	classification of features for
spatial domain methods, 200	neural network classifiers, 296,
histogram modification, 203-204	296–302, 297, 300–302
histogram transformation and	rule-based systems, 294, 294-296
equalization, 201, 201-202, 203	statistical methods, 292-293
image averaging, 204	support vector machine for, 302-303
image subtraction, 204, 205	exercises, 306-308
neighborhood operations, 205-212,	feature extraction
205–212	categories of, 268
using wavelet transform, 223-226	relational features, 282-283, 284, 285
Image formation	shape features, 270-279, 271, 272,
basic principles of, 23	275–277, 279
conditional and joint probability density	statistical pixel-level features, 268-270
functions in, 30–31	texture features, 280, 280-282, 283
contrast-to-noise ratio in, 39	feature selection
discrete Fourier transform, 50-51	for classification, 283–285
electromagnetic radiation for, 66-67	GA-based optimization, 289–292,
emission-based system, 32, 33	291
exercises, 60–62	linear discriminant analysis, 285–288,
Fourier transform in, 40-42, 42, 43	286
general 3-D system, 32, 33	PCA, 288–289
image coordinate system in, 24–27, 25	hierarchical, 266
independent and orthogonal random	for mammographic microcalcifications,
variables in, 31–32	303–306, 305
linear systems, 27	nature of, 265
pin-hole imaging, 39–40, 40	Images
point source and impulse functions in,	analog, 23
27–28, 28, 29	black and white, 23, 24
probability and random variable functions	color with, 23, 24
in, 29–30	digital representation of, 24
process, 32–35, 33	two-dimensional (2-D), 23
PSF and spatial resolution, 35–37, 36, 37	Image scaling, in MATLAB image
radon transform, 44–46, 45, 46	processing toolbox, 16
sampling, 46–50, 47, 49, 50	Image segmentation. See Segmentation,
signal-to-noise ratio in, 37–38	image
Sinc function in, 43–44, 44	Image smoothing, using wavelet transform,
wavelet transform, 52–57, 54, 56, 58, 59	223–226

Image visualization. See Visualization	data produced by, 99-100, 100
Imaging methods, planar, 1	diffusion, 354
Imaging modalities, radiological, 139. See	diffusion imaging, 130-135, 131-134
also Medical imaging modalities	energy source for, 5
Imaging technology, 3-D, 360	general schematic of, 111
Impulse function, 27, 28, 28	image reconstruction for, 192-193
Information fusion, 366	instrumentation for, 110-111, 111
Information processing, archiving, and	principles of, 100-110, 101-105, 107,
retrieval systems, 366	108, 110
Instrumentation	pulse sequences in, 112, 113, 114, 114
for medical imaging, 7, 35	echo planar imaging, 119–123,
for MRI, 110–111, 111	120–124
Inversion recovery imaging, 116, 118–119,	gradient echo imaging, 123-125, 125
119, 120	inversion recovery imaging, 116,
Iodine-based contrast agents, 95. See also	118–119, 119, 120
Contrast agents	spin-echo imaging, 114–118, 115,
Ionization chambers, 70–72, 71	116
Ionized radiation, 3	and relaxation process, 106-110, 107,
ISH (intensity saturation hue) color	108, 110
representation, 23–24	and spin density, 110, 110
Iso-parametric contour lines, 342	Magnetization transfer, MRI with, 356
Iterative principal axes registration (IPAR),	Mammograms
319–323, <i>321</i> , 322	digitalized X-ray, 283, 283
, ,	gray-level scaled image, 16, 16
Laplacian, computation of, 230	microcalcifications on, 212, 303–306,
Laplacian mask, 229, 230	305
Laplacian of Gaussian (LOG) function,	specific image processing operations for,
230–231, 260	13–14, 14
Laplacian weight mask, 208-209, 209, 210	and wavelet operations, 57, 59, 60
Larmor frequency, 104, 104, 105, 105	Mammographic scanners, digital X-ray,
Lasers, NIR, 363	87–88, 88
Lauterbur, Paul, 99	Mammography. See also Breast imaging
Light radiance, 358	imaging microcalcifications in, 5–6
Linear attenuation coefficient, for EM	X-ray film-screen, 86–88, 87–89
radiation, 70, 71	Mansfield, Peter, 99
Linear discriminant analysis, 285–288, 286	MATLAB exercises, Image Processing
Line integral projection, of Radon	Interface in, 19
transform, 45, 45	MATLAB image processing toolbox
Line spread function (LSF), 37	basic commands, 16–18, 18, 19
Log-transformation operations, in MATLAB	digital image representation, 14-16, 16
image processing toolbox, 16	images supported by, 18
Look-up tables (LUTs), implementing, 12	Medical image analysis, hierarchical
Low-pass filter, 215–217, 216, 224	structure of, 266, 267
· · · · · · · · · · · · · · · · · · ·	Medical imaging
Magnetic resonance imaging (MRI), 1, 2,	analysis and applications, 8
65, 99, 139. <i>See also</i> functional	collaborative paradigm for, 2, 3
MRI	complementary modalities, 365 (see also
advantages of, 354	medical imaging modalities)
basic form of, 109	data acquisition and image reconstruction
characteristics of, 136	in. 7–8

defined, 6	ultrasound imaging
energy sources for, 3	A-mode, 166–167
example of performance measures,	attenuation in, 162–163, 163
10–11	B-mode, 168, 168
exercises, 21–22	contrast, spatial resolution, and SNR,
instrumentation for, 7, 35	170–171
model-based, 354, 355	Doppler, 169, 170
multimodality multiparameter, 364	instrumentation, 164-166, 164-166
multiparameter, 353-356, 355, 356	M-mode, 167, 167
optical, 357–358	in multilayered medium, 160-162,
diffuse reflectance images, 362, 363	162
optical coherence tomography,	propagation of sound in medium for,
360–361, <i>361</i> , <i>362</i>	157–159
optical endoscopy, 360	reflection and refraction in, 159-160
optical microscopy, 358-359	reflection imaging, 163-134
photoacoustic imaging, 363-364	X-ray CT, 88–92, 89–93
transillumination, 362-363, 363	X-ray generation, 81-84, 82, 83
performance measures, 8, 8-11, 10	X-ray imaging, 80
physics of, 7	X-ray mammography, 86-88, 87-89
physiology and imaging medium, 6	Mexican hat operator, 230-231
process, 199–200	Microcalcifications, breast, 5-6, 303-306,
research and applications, 6, 6	305
targeted, 357	Microscopy
visualization in, 335 (see also	multiphoton, 359
Visualization, image)	optical, 358-359
Medical imaging modalities, 3-6, 4. See	ML-EM algorithms, 189-190
also nuclear medicine imaging	M-mode ultrasound imaging, 167, 167
modalities	Modulation transfer function (MTF),
classification of, 79	37
contrast agents for, 95–96	Monte Carlo simulations, in SPECT
exercises, 96–97	imaging, 147
image reconstruction in, 186–194, 187,	Moore-Penrose inverse, 259
191–193	Motion artifacts, 6
magnetic resonance imaging, 99–100	Motion parallax display method, 336-337
contrast, spatial resolution, and SNR,	MR spectroscopy, 100
135–136	M-script code
diffusion imaging, 130–135,	for example mammogram, 16
131–134	for example of MR brain image, 19
exercises in, 137	Multigrid expectation maximization
flow imaging, 125–128, 126–128	(MGEM) algorithm, 190, 191, 192,
fMRI, 129–130, <i>130</i>	192
instrumentation for, 110–111, 111	Multilevel adaptive segmentation (MAS)
principles of, 100–110, 101–105, 107,	model, 249–250, 250
108, 110	Multiple sclerosis, 353
pulse sequences, 112–125, 113–116,	
119–125	Nearest neighbor classifier, 293
for specific information, 311	Neighborhood operations, 205–212,
spiral X-ray CT, 92–95, 94	205–212
two-dimensional projection radiography,	Neural network classifiers, 296, 296–301,
84–86, 85	297, 300–302

Neural networks	Phantom images
arterial structure in digital subtraction,	arterial segmentation of angiogram of
259–261, <i>261</i>	pig, 260, 261
backpropagation network for, 255-258,	reconstructed, 190, 192
256, 257	Phase contrast encoding methods, MRI
image segmentation using, 254-255	with, 356
RBF, 258–259, 259	Philips GEMINI TF Big Bore PET-CT
Neuroendoscopy, 360	imaging system, 153, <i>153</i>
Neuro-fuzzy pattern classification, 296,	Philips Gyroscan S15 scanner, 323
296–301, 297, 300–302	Philips Precedence SPECT-Xray CT
Neuron cell structure, 131, <i>131</i>	scanner, 152, 152
NIR lasers, 363	
*	Photoacoustic imaging, 363–364
Nuclear magnetic resonance (NMR), 99	Photoelectric absorption, 68, 68, 69
Nuclear medicine, 4	Photomultiplier tubes (PMTs)
Nuclear medicine imaging modalities	and detector subsystem output voltage
dual-modality SPECT-CT and PET-CT	pulse, 76–77, 77
scanners, 151–154, 152, 153	with scintillation detectors, 73–76, 76
exercises, 154–155	Photon, in EM radiation, 66
PET, 148, 148–150, <i>149, 150</i>	Picture Archiving and Communication
contrast, spatial resolution, and SNR	Systems (PACS), 366
in, 150–151	Piezoelectric transducer, ultrasound beam
detectors and data acquisition systems,	from, 165, 165
150	Pin-hole imaging method, 39–40, 40
radioactivity and, 139-140	Pixel-by-pixel transformation, 314
SPECT, 140–142, 141	Pixel classification methods, for image
contrast, spatial resolution and SNR in,	segmentation, 239–245, 243
145–148, <i>146</i> , <i>147</i>	Pixel dimensions, in image formation, 24
detectors and data acquisition system	PMT matrix, in SPECT imaging system,
for, 142–145, <i>143–146</i>	143, <i>144</i>
Nuclei, in MRI, 100–110, 101–105, 107,	Point spread functions (PSFs), 27
108, 110	in image formation, 27
Nyquist criterion, 47, 50	and spatial resolution, 35–37, 36, 37
	Poisson distribution model, 182, 183
Nyquist rate, 48, 49–50	
O-4:1k	Positive predictive value (PPV)
Optical coherence tomography (OCT),	measurement of, 10
357–358, 360–361, <i>361</i> , <i>362</i>	Positron emission tomography (PET), 1, 4,
full-field, 361, 362	65, 79
single-point scanning-based, 361, 361	advantages of, 149–150, 354
Optical endoscopy, 360	coincidence detection, 149, 149 150–151
Optical imaging systems, 357–358, 359	data acquisition systems for, 150
Optical microscopy, 358–359	development of, 148
Optical sectioning, 359	disadvantages of, 151–154, 152, 153
Optimal global thresholding, 237–239	dual-modality scanners, 151–154, 152,
Optoacoustics, 364	153
Output signal, 13	FCA developed from, 311
	with FDG imaging, 149-150, 150
Pair production, 69	image reconstruction in, 188-192,
PAR, iterative (IPAR), 319–323, 321, 322	191–193
Perfusion, 354	main advantage of, 149-150
Phantom, X-ray imaging, 37	neuroreceptor-based fast, 354

Precision, defined, 22	Ray tracing method, 346
Principal axes registration (PAR), 316	RBF network, 258-259, 259
Principal axes registration, iterative (IPAR),	Receiver operating characteristic curve
319–323, <i>321</i> , 322	(ROC) analysis, 8, 8–9, 10
Principal component analysis (PCA),	Reconstruction, image, 13
288–289	estimation methods, 182–185
Probability, in image formation, 29–32	exercises, 194–195
Projections, reconstructing images from,	Fourier methods, 185–186
46, 46	iterative algebraic methods, 180-182,
Proportional counters, 70–72	181
Protons	in medical imaging modalities
in MRI, 100–101, 100–110, 101–105,	magnetic resonance imaging, 192–193
107, 108, 110	nuclear emission computed
symbolic representation of, 102	tomography, 188–192
Pulse-height analyzer (PHA) circuit, in	X-ray CT, 186–188, <i>187</i>
SPECT imaging, 143	radon transform and
Purcell, Edward, 99	backprojection method, 176–179, 179,
Turcon, Edward, 77	180
Quadrature-mirror filter theory, 55	central slice theorem, 174–176, <i>175</i>
Quantum, in EM radiation, 66	inverse radon transform, 176
Quantum, in Livi radiation, 00	from raw data, 173–174
Radiation, defined, 65. See also	in ultrasound imaging, 193–194
electromagnetic radiation	Reconstruction algorithms, 7
Radioactive decay, 139, 140	Region-growing process, in image
Radioactive decay, 139, 140 Radioactivity, defined, 139, 140	segmentation, 245–247, 246, 248
· · · · · · · · · · · · · · · · · · ·	
Radio frequency (RF) energy, with NMR	Region-splitting methods, in image
imaging, 104, 104, 105, 105	segmentation, 247–248, 248, 249
Radiography	Registration, image, 364
digital, 86	elastic deformation-based, 325–330, 328
film-based, 86	330
two-dimensional projection, 84–86, 85	exercises, 330–331
X-ray mammography, 86–88, 87–89	features-based
(see also Mammograms)	image landmarks and, 323–325
Radiological imaging, clinical significance	weighted, 324–325
of, 1. See also Diagnostic radiology	iterative principal axes, 319–323, 321,
Radionuclide imaging methods, 139	322
Radionuclides, positron emitter, 148,	methods and algorithms, 312–313
148–149	MR procedure, 328
Radiophosphorous ³² P, discovery of, 140	multimodality brain, 313-314
Radon transform, 44	point-based, 323–324
and image reconstruction	postprocessing methods, 311, 354
backprojection method, 176–179, 179,	principal axes registration, 316–318,
180	319
central slice theorem, 174–176, 175	rigid-body transformation, 313, 314-316
inverse radon transform, 176	315
implementation of, 173	through transformation, 312–313, 313
inverse, 176	Reproductibility, defined, 22
Ray geometries, 344–345	Resolution
Rayleigh criterion, 36, 36–37	defined, 22
Rayleigh scattering, 67–68, 69	in PET imaging, 150-151

Response function, of image formation	Semiconductor detectors, 72–73
system, 33–34	SenoScan [®] digital mammography systems, 88
RGB (red green blue) intensities, 23	Sensitivity, 10, 22
Rigid-body transformation, 313, 314–316, 315	SEPI. See spiral echo planar imaging Shadowgram optical imaging, 362
Roentgen, Wilhelm Conrad, 65, 80	Shape features, 270–271
Rotating frame, with MRI imaging,	boundary encoding
105–106	chain code, 271, 271-173, 272
Rule-based image classification systems,	Fourier descriptor, 273
294, 294–296	shape description
	moments for, 273-274
Sampling, in image formation, 46–50, 47, 49, 50	morphological processing for, 274–279, 275–277, 279
Scanners, 13	Short-time Fourier Transform (STFT), 52
digital X-ray mammographic, 87-88, 88	Signal-to-noise ratio (SNR), 100, 136
dual-modality, 151–154, 152, 153	computation of, 37–38
first commercial X-ray CT, 173	defined, 37
Philips Gyroscan S15, 323	of MRI image, 136
Philips Precedence SPECT-Xray CT,	in PET imaging, 150–151
152, <i>15</i> 2	signal averaging for enhancing, 204
in SPECT imaging, 151-154, 152, 153	in SPECT imaging, 145-147
Scattering	in ultrasound, 170–171
Compton, 69, 147	of X-ray imaging modalities, 95-96
in projection radiography, 84	Similarity transformation for point-based
Rayleigh, 67-68, 69	registration, 323-324
Scintillation detectors, 73–76, 74 , 76	Sinc function, in image processing, 43-44
Segmentation, image	44
advanced methods, 248-249	Single photon emission computed
estimation-model based adaptive	tomography (SPECT), 1, 4, 79
segmentation, 249-254, 250, 254	with attenuation, 147, 147
image segmentation using neural	contrast in, 145
networks, 254-260, 256, 257, 259,	detectors and data acquisition system for
261	142–145, <i>143–146</i>
categories of, 229	development of, 141
computer-aided, 2	dual-modality scanners, 151–154, 152,
defined, 229	153, <i>153</i>
edge-based, 229	FCA developed from, 311
boundary tracking, 231–233, 233	full-body, 5
edge detection operations, 230-231	image reconstruction in, 188-192,
Hough transform, 233–235, 234	191–193
exercises, 261–262	imaging system for, 143, 144
feature extraction following, 268	radionuclides required for, 141
pixel-based methods, 235-237, 236,	scanner, 141–142, 142
237	signal-to-noise ratio in, 145
optimal global thresholding, 237–239	spatial resolution in, 145–146
pixel classification through clustering,	Snell's law, 160
239–245, 243	Sobel mask, 229, 230
region-based	Sobel weight mask, 208, 208
region-growing, 245–247, 246, 248	Sodium iodide NaI(TI), in SPECT imaging
region-splitting, 247–248, 248, 249	144

Software package, 3D Slicer, 20–21 Sonar technology, 157	Statistical pixel-level (SPL) features, 268–270
Sound waves, propagation of, 157–159 Spatial domain methods, 200	Storage and compression formats, for MATLAB program, 17
histogram modification, 203–204	Structural computerized atlas (SCA), 312,
histogram transformation and	312
equalization, 201, 201–202, 203	312
image averaging, 204	Targeted imaging, 357
image subtraction, 204, 205	Texture features, 280, 280–282, 283
using neighborhood operations, 205,	Therapeutic evaluations, multimodality
205–206, <i>206</i>	image fusion in, 151–152
with adaptive arithmetic mean filter,	Thermoacoustics imaging, 364
207–208	Tissue density, 6
adaptive processing, 209–212, 211, 212	Tissue medium, optical reflectance in, 358,
image sharpening and edge	359
enhancement, 208, 208–209, 209	Tissue tagging, MRI with, 356
with median filter, 207, 207	Tomography. See Positron emission
Spatial filtering methods, using	tomography; Single photon emission
neighborhood operations, 205,	computed tomography; X-ray
205–206, 206	computed tomography
adaptive arithmetic mean filter, 207,	Transillumination imaging, 362–363, 363
207–208	Treatment
adaptive processing, 209–212, 211, 212	medical imaging modalities in, 1–2
image sharpening and edge enhancement,	multimodality image fusion in,
208, 208–209, 209	151–152
median filter, 207, 207	True negative fraction (TNF), 9, 10
Spatial resolution	True positive fraction (TPF), 9, 10
characterizing performance of, 37 and collimator length, 372	Tungsten, in X-ray generation, 81, 82
of photoacoustic imaging, 364	Ultrasound, 1
in SPECT imaging, 145-146	Ultrasound, laser-induced, 364
in ultrasound, 170–171	Ultrasound imaging, 4, 65
in X-ray imaging, 95, 96	A-mode, 166–167
Spatial resolution performance,	attenuation in, 162–163, 163
characterizing, 37	B-mode, 168, 168
Specificity, 10, 22	contrast for, 170
SPECT-CT image, fused, 152–153, 153	Doppler, 169, 170
SPECT imaging	exercises in, 171–172
with attenuation, 147, 147	image reconstruction in, 193-194
full-body, 5	instrumentation, 164–166, <i>164–166</i>
Spectroscopy, MR, 100	M-mode, 167, 167
Spin-echo imaging, 114–118, 115, 116	in multilayered medium, 160-162,
Spin-echo sequence, for flow imaging, 126,	162
127	OCT compared with, 360-361
Spin quantum number, 101	propagation of sound in medium,
Spiral echo planar imaging (SEPI),	157–159
122–123, 123, 124, 193	reflection and refraction, 159–160
Spiral X-ray CT	reflection imaging, 163–164
applications of, 92–94	SNR for, 170–171
slice thickness during, 94–95	spatial resolution of, 170–171

380 INDEX

linear series expansion in, 52-53 Varifocal mirror system, 336, 337 Velocity map, 356, 356 multiresolution analysis in, 53-54, 54, Virtual endoscopy, 335, 349 56, 56–57 Virtual reality (VR), 335 multiresolution signal decomposition Visualization, 335 using, 56, 56, 57, 58, 59 multidimensional methods, 335 sampling, 52 stereoscopic, 336 scaling and shifting in, 52, 56–57 Visualization, image, 364 White radiation, 81, 82 3-D display methods, 338–339 Wiener filtering methods, 200, 213-214 WMREM algorithm, 190, 192 surface-based, 338, 339-343, 340-342, 344 volume-based, 344-347, 345, 346 X ray, invention of, 65 exercises, 349-350 X-ray computed tomography (X-ray CT), 1 basic principle of, 89, 89, 90 feature-enhanced 2-D image display methods, 336, 337 image reconstruction, 186-188, 187 semi-3-D display methods, 336-338 modern scanner for, 92, 93 VR-based interactive, 347-349 scanner geometry for, 90, 91, 92, 92 Volume of interest (VOI), 311 spiral, 92-95, 94 X-ray computed tomography (X-ray CT) Wavelengths, in medical imaging scanner, first commercial, 173 applications, 159 X-ray generation Wavelet-based interpolation methods, of basic principle of, 81 image reconstruction, 190, 191, for diagnostic imaging, 82-84, 83 192 X-ray generation tubes, 83 Wavelet processing methods, X-ray imaging, 79 medical applications of, 80 multiresolution-based, 365, 365 signal-to-noise ratio of, 95-96 Wavelet transform spatial resolution in, 95, 96 application of, 57 X-ray intensifying screens, 84, 85, 86 defined, 52 for image processing, 220-226, X rays 221–223, **224,** 225, 226 as external energy source, 3 image reconstruction, 173 soft, 80