VE230 RC slides Week 4

han.fang

June 20, 2021

Overview

Content

- Electric Statistics
- Capacitance and Capacitors
- Boundary Conditions

Electric Displacement

• electric flux density/electric displacement, \vec{D} :

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \quad (C/m^2)$$

$$\nabla \cdot \vec{D} = \rho \quad (C/m^3)$$

, where ρ is the volume density of free charges.

Another form of Gauss's law:

$$\oint_{S} \vec{D} \cdot d\vec{s} = Q \quad (\vec{C})$$

, the total outward flux of the electric displacement (the total outward electric flux) over any closed surface is equal to the total free charge enclosed in the surface.

Electric Displacement

If the dielectric of the medium is linear and isotropic,

$$ec{P} = \epsilon_0 \chi_e ec{E}$$

$$ec{D} = \epsilon_0 (1 + \gamma_e) ec{E} = \epsilon_0 \epsilon_r ec{E} = \epsilon ec{E}$$

- , where χ_e is a dimensionless quantity called electric susceptibility,
- ϵ_r is a dimensionless quantity called as relative permittivity/electric constant of the medium,
- ϵ is the absolute permittivity/permittivity of the medium (F/m).

Boundary Conditions for Electrostatic Fields

 \blacksquare the tangential component of an \vec{E} field is continuous across an interface.

$$E_{1t} = E_{2t} \quad (V/m)$$

, or

$$\frac{D_{1t}}{\epsilon_1} = \frac{D_{2t}}{\epsilon_2}$$

■ The normal component of \vec{D} field is discontinous across an interface where a surface charge exists - the amount of discontinuity being equal to the surface charge density.

$$\vec{a_{n2}} \cdot (\vec{D_1} - \vec{D_2}) = \rho_s$$

, or

$$D_{1n} - D_{2n} = \rho_s \quad (C/m^2)$$

Capacitance and Capacitors

Definition

$$C = \frac{Q}{V}.$$

Capacitance and Capacitors

Definition

$$C = \frac{Q}{V}.$$

Series and Parallel

Series:

$$C = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

Parallel:

$$C = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$$

Calculating the Capacitance

You can calculate the capacitance by the following steps:

- Choose a proper coordinate system.
- 2 Assume +Q, -Q on the conductors.
- 3 From **E** from Q.
- $Ind V_{12} = \int_2^1 \mathbf{E} \cdot d\mathbf{I}$
- $C = Q/V_{12}$

Capacitor System

Isolated Conductor System:

$$Q_0 + Q_1 + \dots + Q_N = 0.$$

Self energy:

$$W = Q_2 V_2 = Q_2 \frac{Q_1}{4\pi\epsilon_0 R_{12}}.$$

Mutual energy:

$$W_e = \frac{1}{2} \sum_{k=1}^{N} Q_k V_k.$$

Boundary Conditions

Poisson's Equation:

$$\nabla^2 V = -\frac{\rho}{\epsilon}.$$

In Cartesian System:

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

Laplace Equation:

$$\nabla^2 V = 0.$$

Uniqueness Theorem: A solution of Poisson's Equation or Laplace's Equation that satisfies the given boundary conditions is a unique solution.

Solution of Laplace Equations

There are three kinds of solutions for the equations: (discuss only about 2D situation) (The method to get the solution form can be learned in Vv557, taught by Horst)

- $X = Ae^{-k_1x} + Be^{k_1x}, \quad Y = Ce^{-k_2x} + De^{k_2x}$
- $X = A\sin(k_1x) + B\cos(k_1x), \quad Y = C\sin(k_2x) + D\cos(k_2x)$
- $X = a + bx, \quad Y = c + dx$

Method of Images: The method of images is just a method that try to satisfy the boundary conditions. If you are interested in it, you can ask me for 557 slides. :)