









# RTQ9128DH-QA

# 75W, Ultra-Low Noise, High-Efficiency, Digital Input 4-Channel Automotive Audio Amplifier with I<sup>2</sup>C Diagnostics

## 1 General Description

The RTQ9128DH-QA is an ultra-low output noise, highefficiency, four-channel class-D audio power amplifier. It delivers 4x75W into  $4\Omega$  at 10% THD+N from a 25V supply in automotive applications. It can achieve over 87% power efficiency with an output switching frequency of up to 2.1MHz for clarity, which enables a cost-optimized solution in a very small PCB size. Additionally, the RTQ9128DH-QA can be set either above the AM band, which eliminates the AM-band interference and reduces output filter size and cost, or below the AM band to optimize efficiency.

The RTQ9128DH-QA is fully configurable through the  $I^2C$  bus interface and features comprehensive diagnostics array specially designed for automotive applications.

The built-in anti-pop functions can reduce the speaker's pop noise under all kinds of scenarios. Its built-in protection circuits provide thermal fold-back, overtemperature, overcurrent, overvoltage, and undervoltage protections and report error status.

The RTQ9128DH-QA is a 3-wire device that receives all clocks from external sources with standard I<sup>2</sup>S and TDM (Time-Division Multiplexing) formats. It supports a wide range of input sampling rates from 32kHz to 192kHz. The device is offered in a 64-pin RLQFP package with the exposed thermal pad facing up.

The recommended junction temperature range is  $-40^{\circ}$ C to 150°C, and the ambient temperature range is  $-40^{\circ}$ C to 125°C.

### 2 Features

- AEC-Q100 Grade 1 Qualified
- I<sup>2</sup>S and TDM Input
- 4x22W, THD + N = 1%,  $4\Omega$ , 14.4V
- 4x27W, THD + N = 10%,  $4\Omega$ , 14.4V
- 4x45W, THD + N = 10%,  $2\Omega$ , 14.4V
- 4x75W, THD + N = 10%,  $4\Omega$ , 25V
- THD + N is 0.03%
- SNR up to 115dB
- Ultra-Low Quiescent Current Mode
- Ultra-Low Noise = 18μV
- Low R<sub>DS</sub> ON (80mΩ)
- Switching Frequency up to 2.1MHz
- Sampling Frequency from 32kHz to 192kHz
- I<sup>2</sup>C Control with 16 Address Options
- Built-In Anti-Pop Function
- Built-In Thermal Fold-Back and Clip Detection
- Load Diagnostics
  - Output Open Load and Short Load
  - Output Short to Ground or Power
  - DC and AC Coupled Load Detection
- Protection Features
  - Output Short-Circuit
  - Overvoltage and Undervoltage
  - Overcurrent Warning and Protection
  - Over-Temperature
  - DC Offset Detection
  - 40V Load Dump
- Ambient Temperature Range: –40°C to 125°C
- Junction Temperature Range: -40°C to 150°C

# 3 Applications

- Automotive Head Units
- In-Vehicle Infotainment
- Automotive External Amplifier Modules

April

RTQ9128DH-QA DS-01



# **4 Ordering Information**



### Note 1.

Richtek products are Richtek Green Policy compliant and marked with <sup>(1)</sup> indicates compatible with the current requirements of IPC/JEDEC J-STD-020.

# **5 Marking Information**



RTQ9128DHE: Product Code QA: Automotive Product Grade YMDAN: Date Code



# **Table of Contents**

| 1  | Gener  | al Description                             | 1  |    | 15.15  | Dynamic Range Control (DRC)              | 31  |
|----|--------|--------------------------------------------|----|----|--------|------------------------------------------|-----|
| 2  | Featu  | res                                        | 1  |    | 15.16  | Compensation Filter                      | 33  |
| 3  | Applic | cations                                    | 1  |    | 15.17  | Hard Clip Function                       | 34  |
| 4  | Orderi | ing Information                            | 2  |    | 15.18  | SDO Output Configure                     | 35  |
| 5  | Markir | ng Information                             | 2  |    | 15.19  | Hardware Control Pins                    | 36  |
| 6  |        | onfiguration                               |    |    | 15.20  | Operating Modes and Faults               | 37  |
| 7  | Functi | ional Pin Description                      | 4  |    | 15.21  | Ultra Low Quiescent Mode (ULQM)          | 38  |
|    | 7.1    | IO Type Definition                         | 5  |    | 15.22  | Pulse-Width-Modulator (PWM) Frequency    | 38  |
| 8  | Functi | ional Block Diagram                        | 6  |    | 15.23  | AM-Radio Band Avoidance                  | 38  |
| 9  |        | ute Maximum Ratings                        |    |    | 15.24  | EMI Management Features                  |     |
| 10 | Recon  | nmended Operating Conditions               | 7  |    | 15.25  | Channel-to-Channel Output Phase Control. | 39  |
| 11 | Electr | ical Characteristics                       | 8  |    |        | Load Diagnostics                         |     |
| 12 | Typica | al Application Circuit                     | 12 |    |        | DC Load Detection                        |     |
|    | 12.1   | 4-Channel Bridge-Tied Load (BTL)           |    |    |        | AC Load Detection                        |     |
|    |        | Configuration                              | 12 |    |        | Output Voltage                           |     |
|    | 12.2   | 2-Channel Parallel Bridge-Tied Load (PBTL) |    |    |        | Overcurrent Warning (OCW)                |     |
|    |        | Configuration                              | 13 |    |        | Overcurrent Protection (OCP)             |     |
| 13 |        | g Diagram                                  |    |    |        | DC Offset Detection                      |     |
| 14 | Typica | al Operating Characteristics               |    |    | 15.33  | Global Over-Temperature Warning (OTWG    | •   |
|    | 14.1   | Bridge-Tied Load (BTL)                     |    |    |        | and Over-Temperature Protection (OTPG)   |     |
|    | 14.2   | Bridge-Tied Load (BTL)                     |    |    | 15.34  | Channel Over-Temperature Warning (OTW    | •   |
|    | 14.3   | Parallel Bridge-Tied Load (PBTL)           |    |    |        | and Over-Temperature Protection (OTPC)   | )45 |
|    | 14.4   | Parallel Bridge-Tied Load (PBTL)           | 21 |    | 15.35  | Undervoltage (UV) and                    |     |
| 15 | Applic | cation Information                         |    |    |        | Power-On-Reset (POR)                     |     |
|    | 15.1   | Power-On Sequence                          |    |    |        | Overvoltage (OV) and Load Dump           |     |
|    | 15.2   | Power-Off Sequence                         | 24 |    |        | Clip Detection                           |     |
|    | 15.3   | Initial Sequence                           |    |    |        | Thermal Fold-Back (TFB)                  |     |
|    |        | (BTL Mode, PWM = 2.1MHz)                   | 25 |    |        | Parallel BTL Operation (PBTL)            |     |
|    | 15.4   | Initial Sequence                           |    |    | 15.40  | Recommended Operating Conditions         |     |
|    |        | (BTL Mode, PWM = 384kHz)                   | 25 |    | 15.41  | Line Driver                              |     |
|    | 15.5   | Initial Sequence                           |    |    |        | Demodulation Filter Design               |     |
|    |        | (PBTL Mode, PWM = 2.1MHz)                  | 25 |    |        | Thermal Considerations                   |     |
|    | 15.6   | Initial Sequence                           |    |    |        | Layout Considerations                    |     |
|    |        | (PBTL Mode, PWM = 384kHz)                  |    | 16 | Functi | ional Register Description               |     |
|    | 15.7   | I <sup>2</sup> C Serial Communication Bus  |    |    | 16.1   | Register Map                             |     |
|    | 15.8   | I <sup>2</sup> C Bus Protocol              | -  | 17 |        | e Dimension                              |     |
|    | 15.9   | Audio Interface                            |    | 18 | _      | rint Information                         |     |
|    | 15.10  | Time-Division Multiplexing (TDM) Mode      |    | 19 |        | ng Information                           |     |
|    | 15.11  | Digital Signal Processor                   |    |    | 19.1   | Tape and Reel Data                       |     |
|    | 15.12  | 3 ,                                        |    |    | 19.2   | Tape and Reel Packing                    |     |
|    | 15.13  | Mixer                                      |    |    | 19.3   | Packing Material Anti-ESD Property       |     |
|    | 15.14  | Volume                                     | 30 | 20 | Datas  | heet Revision History                    | 87  |



# **6 Pin Configuration**



RLQFP-64L 10x10 (PP)

# 7 Functional Pin Description

| Pin No.                            | Pin Name | 10  | Pin Function                                                    |
|------------------------------------|----------|-----|-----------------------------------------------------------------|
| 1, 64                              | OUTN3    | NO  | Negative PWM output of CH3.                                     |
| 2, 3, 12, 37,<br>46, 47, 56,<br>57 | PVDD     | PWR | Supply voltage for power stage.                                 |
| 4, 5                               | OUTN4    | NO  | Negative PWM output of CH4.                                     |
| 6                                  | BSN4     | PWR | Bootstrap for CH4 negative output.                              |
| 7, 8, 41, 42,<br>51, 52            | PGND     | GND | Ground for power stage.                                         |
| 9                                  | BSP4     | PWR | Bootstrap for CH4 positive output.                              |
| 10, 11                             | OUTP4    | PO  | Positive PWM output of CH4.                                     |
| 13                                 | GVDDCD   | PWR | Gate drive voltage for CH3/CH4.                                 |
| 14, 31                             | AGND     | GND | Ground for analog circuit.                                      |
| 15                                 | DGND     | GND | Ground for digital circuit.                                     |
| 16                                 | DVDD     | PWR | Power supply, 3.3V or 1.8V.                                     |
| 17                                 | VR_DIG   | PWR | Voltage regulator output is 1.8V; tie to DVDD when DVDD = 1.8V. |
| 18                                 | ADDR_1   | DI  | I <sup>2</sup> C address pins_1.                                |
| 19                                 | ADDR_0   | DI  | I <sup>2</sup> C address pins_0.                                |
| 20                                 | SCL      | DI  | I <sup>2</sup> C reference clock.                               |



| Pin No. | Pin Name | Ю     | Pin Function                                                                                            |
|---------|----------|-------|---------------------------------------------------------------------------------------------------------|
| 21      | SDA      | DI/DO | I <sup>2</sup> C data.                                                                                  |
| 22      | BCLK     | DI    | I <sup>2</sup> S bit clock.                                                                             |
| 23      | LRCK     | DI    | I <sup>2</sup> S frame clock.                                                                           |
| 24      | SDI1     | DI    | I <sup>2</sup> S data in for CH1/CH2.                                                                   |
| 25      | SDI2     | DI    | I <sup>2</sup> S data in for CH3/CH4.                                                                   |
| 26      | SDO1/2   | DO    | I <sup>2</sup> S data out.                                                                              |
| 27      | MUTEB    | DI    | Mute control. Pull low for mute; pull high for unmute.                                                  |
| 28      | WARNB    | DO    | Warning flag. When a warning occurs, the level goes low; normal operation is indicated by a high level. |
| 29      | FAULTB   | DO    | Fault flag. When a fault occurs, the level goes low; normal operation is indicated by a high level.     |
| 30      | EN       | DI    | Enable control. Pull low for shutdown; pull high to enable the chip.                                    |
| 32      | VDDA     | PWR   | Voltage regulator output, 5V.                                                                           |
| 33      | GVDDAB   | PWR   | Gate drive voltage for CH1/CH2.                                                                         |
| 34      | VSUP2    | PWR   | Supply voltage2, tie to VBAT.                                                                           |
| 35      | VSUP1    | PWR   | Supply voltage1, tie to VBAT.                                                                           |
| 36      | VBAT     | PWR   | Battery voltage input.                                                                                  |
| 38, 39  | OUTP1    | PO    | Positive PWM output of CH1.                                                                             |
| 40      | BSP1     | PWR   | Bootstrap for CH1 positive output.                                                                      |
| 43      | BSN1     | PWR   | Bootstrap for CH1 negative output.                                                                      |
| 44, 45  | OUTN1    | NO    | Negative PWM output of CH1.                                                                             |
| 48, 49  | OUTN2    | NO    | Negative PWM output of CH2.                                                                             |
| 50      | BSN2     | PWR   | Bootstrap for CH2 negative output.                                                                      |
| 53      | BSP2     | PWR   | Bootstrap for CH2 positive output.                                                                      |
| 54, 55  | OUTP2    | РО    | Positive PWM output of CH2.                                                                             |
| 58, 59  | OUTP3    | РО    | Positive PWM output of CH3.                                                                             |
| 60      | BSP3     | PWR   | Bootstrap for CH3 positive output.                                                                      |
| 61, 62  | PGND     | GND   | Ground.                                                                                                 |
| 63      | BSN3     | PWR   | Bootstrap for CH3 negative output.                                                                      |

#### 7.1 **IO Type Definition**

• GND: Ground • PWR: Power

• PO: Positive Output • NO: Negative Output

• DI: Digital Input • DO: Digital Output

• DI/DO: Digital Input and Output

• AO: Analog Output



# 8 Functional Block Diagram





# 9 Absolute Maximum Ratings

### (Note 2)

| Supply Voltage, PVDD, VBAT, VSUP1, VSUP2                                      | 0.3V to 32V         |
|-------------------------------------------------------------------------------|---------------------|
| <ul> <li>Vpeak, Transient Supply Voltage, PVDD, VBAT, VSUP1, VSUP2</li> </ul> |                     |
| (t ≤ 400ms Exposure)                                                          | 1V to 40V           |
| Supply Voltage, DVDD                                                          | 0.3V to 6V          |
| Speaker Amplifier Output Voltage, OUTXX                                       | 10V to 32V          |
| Vpeak, Speaker Amplifier Output Voltage, OUTXX (Note 3)                       | –10V to 37V         |
| • BSXX to PGND DC                                                             | 0.3V to 36V         |
| • SCL, SDA, FAULTB, EN, WARNB, MUTEB, ADDR_0, ADDR_1                          | –0.3V to 6V         |
| • LRCK, BCLK, SDI1, SDI2, SDO1/2                                              | 0.3V to DVDD + 0.5V |
| • GND to DGND, PGND, AGND                                                     | 0.3V to 0.3V        |
| • VDDA, GVDDAB, GVDDCD                                                        | 0.3V to 6V          |
| • VR_DIG                                                                      | 0.3V to 4V          |
| <ul> <li>Power Dissipation, P<sub>D</sub> @ T<sub>A</sub> = 25°C</li> </ul>   |                     |
| RLQFP-64L 10x10 (PP)                                                          | 2.18W               |
| Package Thermal Resistance (Note 4)                                           |                     |
| RLQFP-64L 10x10 (PP), $\theta_{JA}$                                           | 57.45°C/W           |
| RLQFP-64L 10x10 (PP), θ <sub>JC(Top)</sub>                                    | 0.37°C/W            |
| Junction Temperature                                                          | 150°C               |
| Lead Temperature (Soldering, 10 sec.)                                         | 260°C               |
| Storage Temperature Range                                                     | 65°C to 150°C       |
| • ESD Susceptibility (Note 5)                                                 |                     |
| HBM (Human Body Model)                                                        | ±2kV                |
|                                                                               |                     |

- Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 3. The switching terminal should be used within AC peak limits. Overshoot and undershoot must be less than 100ns.
- Note 4. θ<sub>JA</sub> is simulated under natural convection (still air) at T<sub>A</sub> = 25°C with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.  $\theta_{\text{JC(Top)}}$  is simulated at the case top of the package. Refer to the EVB user guide for thermal information, which includes the heat sink.
- Note 5. Devices are ESD sensitive. Handling precautions are recommended.

# 10 Recommended Operating Conditions

### (Note 6)

| Supply Input Voltage Range, DVDD                     | 1.62V to 3.63V |
|------------------------------------------------------|----------------|
| Supply Input Voltage Range, PVDD, VBAT, VSUP1, VSUP2 | 4.5V to 26.4V  |
| Ambient Temperature Range                            | -40°C to 125°C |
| Junction Temperature Range                           | -40°C to 150°C |

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



Note 6. The device is not guaranteed to function outside its operating conditions.

### 11 Electrical Characteristics

(PVDD = VBAT = 14.4V, DVDD = 3.3V, RL =  $4\Omega$ ,  $f_{SW}$  = 2.1MHz,  $T_A$  =  $25^{\circ}C$ , unless otherwise specified.)

| Pa                                             | arameter                         | Symbol                                       | Test Conditions                                                                                                                                                                                   | Min           | Тур      | Max           | Unit |
|------------------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------------|------|
| ADDR_0, Input voltage  ADDR_1, VII : Low Level |                                  | V <sub>IH</sub>                              |                                                                                                                                                                                                   | DVDD<br>x 0.7 |          |               | V    |
|                                                |                                  | VIL                                          |                                                                                                                                                                                                   |               |          | DVDD<br>x 0.3 | V    |
| FAULTB,<br>WARNB                               | VOL: Low-Level<br>Output Voltage | V <sub>OL</sub>                              | I <sub>PULLUP</sub> = 3mA                                                                                                                                                                         |               |          | 0.4           | V    |
| DVDD Quie                                      | escent Current                   | I <sub>Q_DVDD</sub>                          | EN = 3.3V, 0dB FS input                                                                                                                                                                           |               | 15       | 18            | mA   |
| DVDD Shut                                      | tdown Current                    | I <sub>SD_DVDD</sub>                         | EN = 0V, for DVDD, no load                                                                                                                                                                        |               |          | 0.2           | mA   |
| PVDD Quie<br>(BD Mode)                         | escent Current                   | I <sub>Q_PVDD_</sub><br>BD                   | EN = 3.3V, switch 50% duty for PVDD = 14.4V no load                                                                                                                                               |               | 40       |               | mA   |
| PVDD Quie<br>(ULQM)                            | escent Current                   | I <sub>Q_PVDD_</sub><br>ULQM                 | ULQM, no load                                                                                                                                                                                     |               | 0.3      | 1             | mA   |
| VBAT Quie<br>(BD Mode)                         | scent Current                    | I <sub>Q_VBAT_</sub><br>BD                   | EN = 3.3V, switch 50% duty for VBAT = 14.4V no load                                                                                                                                               |               | 65       |               | mA   |
| VBAT Quie<br>(ULQM)                            | scent Current                    | I <sub>Q_VBAT_</sub><br>ULQM                 | ULQM, no load                                                                                                                                                                                     |               | 2        | 5             | mA   |
| PVDD Shut                                      | down Current                     | I <sub>SD_PVDD</sub>                         | EN = 0V, no load for PVDD                                                                                                                                                                         |               | 5        | 10            | uA   |
| VBAT Shutdown Current                          |                                  | I <sub>SD_VBAT</sub>                         | EN = 0V, no load for VBAT                                                                                                                                                                         |               | 13       | 20            | uA   |
| Drain-Source On-State<br>Resistance            |                                  | R <sub>DS(ON)</sub>                          | $\begin{array}{c} \text{PVDD} = 14.4\text{V},  I_{\text{OUT}} = \\ \text{500mA},  T_{\text{J}} = 25^{\circ}\text{C} \end{array} \begin{array}{c} \text{High-Side} \\ \text{Low-Side} \end{array}$ |               | 80<br>80 |               | mΩ   |
| GVDDAB, GVDDCD                                 |                                  | V <sub>GVDDAB</sub> ,<br>V <sub>GVDDCD</sub> | All channels playing, 0dB input                                                                                                                                                                   | 4.8           | 5.1      | 5.5           | V    |
| VDDA                                           |                                  | V <sub>VDDA</sub>                            | All channels playing, 0dB input                                                                                                                                                                   | 4.8           | 5.1      | 5.5           | V    |
| VR_DIG                                         | VR DIG                           |                                              | All channels playing, 0dB input                                                                                                                                                                   |               | 1.8      |               | V    |
| Speaker Ga                                     | Speaker Gain Variation           |                                              | Channel-to-channel gain variation                                                                                                                                                                 | -0.5          |          | 0.5           | dB   |
| DIA/NA O it                                    | Litera English and a second      |                                              | 384kHz mode                                                                                                                                                                                       |               | 384      |               | 1.11 |
| PVVIVI SWITC                                   | ching Frequency                  | f <sub>SW</sub>                              | 2112kHz mode                                                                                                                                                                                      |               | 2112     |               | kHz  |
| RMS Output Power Per<br>Channel, BTL           |                                  |                                              | 4Ω, PVDD = 14.4V, THD + N = 1%,<br>T <sub>A</sub> = 75°C                                                                                                                                          | 20            | 22       |               |      |
|                                                |                                  |                                              | 4Ω, PVDD = 14.4V, THD + N = 10%, T <sub>A</sub> = 75°C                                                                                                                                            | 25            | 27       |               |      |
|                                                |                                  | Б                                            | 2Ω, PVDD = 14.4V, THD + N = 1%,<br>T <sub>A</sub> = 75°C                                                                                                                                          | 38            | 40       |               | \\\  |
|                                                |                                  | P <sub>O_BTL</sub>                           | 2Ω, PVDD = 14.4V, THD + N = 10%, T <sub>A</sub> = 75°C                                                                                                                                            | 43            | 45       |               | W    |
|                                                |                                  |                                              | 4Ω, PVDD = 25V, THD + N = 1%,<br>T <sub>A</sub> = 75°C                                                                                                                                            | 50            | 55       |               |      |
|                                                |                                  |                                              | 4Ω, PVDD = 25V, THD + N = 10%,<br>T <sub>A</sub> = 75°C                                                                                                                                           | 70            | 75       |               |      |



| Parameter                                       | Symbol                        | Test Conditions                                                                                                         | Min  | Тур  | Max  | Unit |  |
|-------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|------|------|------|------|--|
|                                                 |                               | 2Ω, PVDD = 14.4V, THD + N = 1%,<br>T <sub>A</sub> = 75°C                                                                | 35   | 40   |      |      |  |
| RMS Output Power Per                            | Б                             | 2Ω, PVDD = 14.4V, THD + N = 10%, T <sub>A</sub> = 75°C                                                                  | 45   | 50   |      | \^/  |  |
| Channel, PBTL                                   | P <sub>O_PBTL</sub>           | 2Ω, PVDD = 25V, THD + N = 1%,<br>T <sub>A</sub> = 75°C                                                                  | 98   | 120  |      | W    |  |
|                                                 |                               | 2Ω, PVDD = 25V, THD + N = 10%,<br>T <sub>A</sub> = 75°C                                                                 | 138  | 150  |      |      |  |
| Total Harmonic Distortion + Noise               | THD+N                         | 1kHz, P <sub>O</sub> =1W (BTL)                                                                                          |      | 0.03 | 0.08 | %    |  |
| Output Integrated Noise                         | Vn                            | 20Hz to 20kHz, A-weighted                                                                                               |      | 18   | 25   | μV   |  |
| Output Offset Voltage                           | Vos                           |                                                                                                                         | -6.5 |      | 6.5  | mV   |  |
| Crosstalk                                       | X <sub>TALK</sub>             | 1kHz, P <sub>O</sub> = 1W                                                                                               |      | -90  |      | dB   |  |
| Signal-to-Noise Ratio                           | SNR                           | PVDD = 14.4V, THD + N = 10%                                                                                             |      | 115  |      | dB   |  |
| Power Supply Rejection<br>Ratio                 | PSRR                          | Frequency @1kHz                                                                                                         | -70  | -80  |      | dB   |  |
| Dynamic Range                                   | DR                            | Input level –60dBFS                                                                                                     |      | 115  |      | dB   |  |
| Output Attenuation                              |                               | MUTEB = 0V                                                                                                              |      | 100  |      | dB   |  |
| Efficiency                                      | η                             | 4-channel operating, 25W output/CH $4\Omega$ load, PVDD = 14.4V, including inductor loss (L = $3.3\mu$ H, C = $1\mu$ F) | 87   |      |      | %    |  |
| Click and POP                                   |                               | High-Z/MUTE to Play, Play to MUTE/High-Z                                                                                |      | 7    | 14   | mV   |  |
| Global Junction Over-<br>Temperature Warning    | T <sub>OTW</sub>              |                                                                                                                         |      | 130  |      | °C   |  |
| Global Junction Over-<br>Temperature Protection | T <sub>OTP</sub>              |                                                                                                                         |      | 160  |      | °C   |  |
| Over-Temperature Hysteresis                     | T <sub>OTP</sub> _HYS         |                                                                                                                         |      | 30   |      | °C   |  |
| Overcurrent Warning                             | lagu                          | OCWSEL = 01                                                                                                             |      | 5.8  |      | Α    |  |
| Overcurrent warning                             | I <sub>OCW</sub>              | OCWSEL = 10                                                                                                             |      | 7.3  |      | _ A  |  |
| Overcurrent Protection                          | I <sub>OCP</sub>              | Any short to supply, ground or channels                                                                                 |      | 8    |      | Α    |  |
| PVDD Overvoltage Protection                     | V <sub>OVP</sub> _<br>PVDD    |                                                                                                                         |      | 27.5 |      | V    |  |
| PVDD Overvoltage<br>Hysteresis                  | V <sub>OVP</sub> HYS          |                                                                                                                         |      | 0.6  |      | V    |  |
| VBAT Overvoltage Protection                     | V <sub>OVP</sub> _<br>VBAT    |                                                                                                                         |      | 27.5 |      | V    |  |
| VBAT Overvoltage Hysteresis                     | V <sub>OVP</sub> HYS<br>_VBAT |                                                                                                                         |      | 0.6  |      | V    |  |
| PVDD Undervoltage                               | V <sub>UVP</sub> _<br>PVDD    |                                                                                                                         |      | 4    | 4.5  | V    |  |

Copyright © 2025 Richtek Technology Corporation. All rights reserved.



| PVDD Undervoltage   VUVP_HYS   PVDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit | Max  | Тур | Min | Test Conditions            | Symbol               | Parameter                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----|-----|----------------------------|----------------------|---------------------------------------------|
| VBAT Undervoltage         VUVP_VBAT VDVP_HVS VDVP_H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V    |      | 0.3 |     |                            | _                    |                                             |
| VBAT Undervoltage Hysteresis         VBAT VUVP HX Physteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +    |      |     |     |                            |                      | nysteresis                                  |
| Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V    | 4.5  | 4   | 1   |                            | _                    | VBAT Undervoltage                           |
| Prysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V    |      | 0.3 |     |                            | $V_{UVP\_HYS}$       | •                                           |
| Maximum Resistance to Detect a Short from the OUT Pins to PVDD   RS2P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |     |     |                            | _                    | •                                           |
| Detect a Short from the OUT Pins to PVDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V    |      | 0.9 |     | Output DC fault protection | DC <sub>FAULT</sub>  |                                             |
| Detect a Short from the OUT Pins to Ground   Rs2G   Short Load Detection Tolerance   RsL   Other channels in Hi-Z       ±0.5       DC Diagnostic Time   toC_DIAG   All 4 channels   Hi-Z   40   70       AC Impedance Accuracy   RAC_IMP_ACC   Offset     100     100     AC Diagnostic Time   taC_DIAG   All 4 channels     100     100     AC Diagnostic Time   taC_DIAG   All 4 channels     100       AC Diagnostic Time   taC_DIAG   All 4 channels     100       AC Diagnostic Time   taC_DIAG   All 4 channels     100       Ightharpoonus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω    | 1200 |     | 1   |                            | R <sub>S2P</sub>     | Detect a Short from the OUT                 |
| Tolerance   RSL   Other channels in Hi-Z       ±0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ω    | 400  |     |     |                            | R <sub>S2G</sub>     | Detect a Short from the OUT                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ω    | ±0.5 |     |     | Other channels in Hi-Z     | R <sub>SL</sub>      |                                             |
| $AC \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ω    |      | 70  | 40  | Other channels in Hi-Z     | R <sub>OL</sub>      | Open Load                                   |
| AC Impedance Accuracy   ACC   16Ω   16Ω   1-   1-   10.5     AC Diagnostic Time   t <sub>AC_DIAG</sub>   All 4 channels   1-   100   1-     I <sup>2</sup> C Interface Electrical Characteristics     High-Level Input Voltage   V <sub>IH</sub>   DVDD   x 0.7   1-     Low-Level Input Voltage   V <sub>IL</sub>   DVDD   x 0.3     Digital Output Low (SDA)   V <sub>OL</sub>   I <sub>PULLUP</sub> = 3mA   1-   1-   1-     Clock Operating Frequency   f <sub>SCL</sub>   1-   1-   400     Bus Free Time Between Stop and Start Condition   t <sub>BUF</sub>   1.3   1-   1-     Hold Time After (Repeated)   t <sub>HD,STA</sub>   1-   1-     Repeated Start Condition   t <sub>SU,STA</sub>   0.6   1-   1-     Stop Condition Time   t <sub>SU,STA</sub>   1-     Data Hold Time   t <sub>SU,STD</sub>   1-   1-     Data Hold Time   t <sub>SU,STD</sub>   1-   1-     Data Hold Time   t <sub>SU,STD</sub>   1-   1-     Tupper   t <sub>SU,STA</sub>   1-     Tupper   t <sub>SU,STA</sub>   1-   1-     Tupper   t <sub>SU,STA</sub>   1-     T | ms   | 100  |     |     | All 4 channels             | t <sub>DC DIAG</sub> | DC Diagnostic Time                          |
| ACC         Offset          +-         ±0.5           AC Diagnostic Time         tAC_DIAG         All 4 channels          100            I²C Interface Electrical Characteristics           High-Level Input Voltage         VIH         DVDD x 0.7              Low-Level Input Voltage         VIL         Input Inpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ω    | 0.25 |     |     |                            |                      | AC Impedance Accuracy                       |
| I²C Interface Electrical Characteristics           High-Level Input Voltage         VIH         DVDD x 0.7                      0.4         DVDD x 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | ±0.5 |     |     | Offset                     | ACC                  |                                             |
| High-Level Input Voltage         V <sub>I</sub> H         DVDD x 0.7               DVDD x 0.3           Low-Level Input Voltage         V <sub>I</sub> L           DVDD x 0.3           Digital Output Low (SDA)         V <sub>O</sub> L         Ipullup = 3mA           0.4           Clock Operating Frequency         f <sub>SCL</sub> 400           Bus Free Time Between Stop and Start Condition         t <sub>BUF</sub> 1.3             Hold Time After (Repeated) Start Condition         t <sub>HD;STA</sub> 0.6             Repeated Start Condition Setup Time         t <sub>SU;STA</sub> 0.6             Stop Condition Time         t <sub>SU;STD</sub> 0.6             Data Hold Time         t <sub>HD;DAT</sub> (OUT)         225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ms   |      | 100 |     | All 4 channels             | t <sub>AC_DIAG</sub> | AC Diagnostic Time                          |
| Low-Level Input Voltage   VIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |     |     |                            | cteristics           | I <sup>2</sup> C Interface Electrical Chara |
| Low-Level Input Voltage         VIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |      |     |     |                            | V <sub>IH</sub>      | High-Level Input Voltage                    |
| Clock Operating Frequency fscl 400  Bus Free Time Between Stop and Start Condition this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V    |      |     |     |                            | V <sub>IL</sub>      | Low-Level Input Voltage                     |
| Bus Free Time Between Stop and Start Condition  Hold Time After (Repeated) Start Condition  Repeated Start Condition  Setup Time  Stop Condition Time  tsu;std  thd;std  thd;s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V    | 0.4  |     |     | I <sub>PULLUP</sub> = 3mA  | V <sub>OL</sub>      | Digital Output Low (SDA)                    |
| Bus Free Time Between Stop and Start Condition  Hold Time After (Repeated) Start Condition  Repeated Start Condition Setup Time  Stop Condition Time  tsu;std  thd;bat (Out)  tsu;std  thd;bat (Out)  tsu;std  tsu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kHz  | 400  |     |     |                            | f <sub>SCL</sub>     | Clock Operating Frequency                   |
| Start Condition  Repeated Start Condition Setup Time  Stop Condition Time  tsu;std  tsu;std  thd;sta  tsu;std  thd;sta  tsu;std  thd;sta  tsu;std  thd;sta  tsu;std  thd;sta  thd;sta  tsu;std  thd;sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μЅ   |      |     | 1.3 |                            | t <sub>BUF</sub>     |                                             |
| Setup Time         tsu;sta         0.6             Stop Condition Time         tsu;std         0.6             Data Hold Time         thd;dat<br>(OUT)         225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μS   |      |     | 0.6 |                            | t <sub>HD;STA</sub>  |                                             |
| Data Hold Time   thD;DAT (OUT)  tup:PAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μS   |      |     | 0.6 |                            | t <sub>SU;STA</sub>  |                                             |
| Data Hold Time (OUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μS   |      |     | 0.6 |                            | t <sub>SU;STD</sub>  | Stop Condition Time                         |
| Input Data Hold Time tHD;DAT 0 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns   |      |     | 225 |                            |                      | Data Hold Time                              |
| (IN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns   | 900  |     | 0   |                            | -                    | Input Data Hold Time                        |
| Data Setup Time t <sub>SU;DAT</sub> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns   |      |     | 100 |                            |                      | Data Setup Time                             |
| Clock Low Period t <sub>LOW</sub> 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μS   |      |     | 1.3 |                            | t <sub>LOW</sub>     | Clock Low Period                            |
| Clock High Period t <sub>HIGH</sub> 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μS   |      |     | 0.6 |                            |                      | Clock High Period                           |
| Clock Data Fall Time t <sub>F</sub> 20 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns   | 300  |     | 20  |                            |                      |                                             |
| Clock Data Rise Time t <sub>R</sub> 20 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns   | 300  |     | 20  |                            |                      | Clock Data Rise Time                        |

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

| Р                                        | arameter                              | Symbol                         | Test Conditions | Min           | Тур | Max           | Unit        |
|------------------------------------------|---------------------------------------|--------------------------------|-----------------|---------------|-----|---------------|-------------|
| Spike Supp                               | oression Time                         | t <sub>SP</sub>                |                 |               |     | 20            | ns          |
| Slave Mod                                | le I <sup>2</sup> S Interface Ele     | ctrical Chara                  | acteristics     |               |     |               |             |
| High- Leve                               | I Input Voltage                       | V <sub>IH</sub>                |                 | DVDD<br>x 0.7 |     |               | ٧           |
| Low-Level                                | Input Voltage                         | V <sub>IL</sub>                |                 |               |     | DVDD<br>x 0.3 | V           |
| SDO1/2                                   | VOH: High-Level<br>Output Voltage     | V <sub>OH</sub>                |                 |               |     | 3.3           | <b>&gt;</b> |
| 3001/2                                   | SDO1/2  VOL: Low-Level Output Voltage |                                |                 |               |     | 0.4           | V           |
| Frequency                                | Frequency                             |                                |                 | 1.024         |     | 24.576        | MHz         |
| Setup Time<br>Rising Edg                 | e, LRCK to BCLK<br>e                  | t <sub>SU1</sub>               |                 | 10            |     |               | ns          |
| Hold Time, LRCK from BCLK<br>Rising Edge |                                       | t <sub>H1</sub>                |                 | 10            |     |               | ns          |
| Setup Time, SDIN to BCLK<br>Rising Edge  |                                       | t <sub>SU2</sub>               |                 | 10            |     |               | ns          |
| Hold Time, SDIN from BCLK Rising Edge    |                                       | t <sub>H2</sub>                |                 | 10            |     |               | ns          |
| Rise/Fall Time for BCLK/LRCK             |                                       | t <sub>R</sub> /t <sub>F</sub> |                 |               |     | 8             | ns          |
| I <sup>2</sup> S Duty C                  | ycle for Rising                       | %                              |                 | 40            |     | 60            | %           |



# 12 Typical Application Circuit

### 12.1 4-Channel Bridge-Tied Load (BTL) Configuration



2025



### 12.2 2-Channel Parallel Bridge-Tied Load (PBTL) Configuration



April 2025

RTQ9128DH-QA\_DS-01



# 13 Timing Diagram



Figure 1. Read and Write Function



Figure 2. I<sup>2</sup>C Waveform Information



Figure 3. Timing Diagram of Slave Mode I<sup>2</sup>S Interface



# 14 Typical Operating Characteristics

### 14.1 Bridge-Tied Load (BTL)

 $T_A$  = 25°C, DVDD = 3.3V, VBAT = PVDD = 14.4V,  $R_L$  =  $4\Omega,$  fin = 1kHz,  $f_S$  = 48kHz,  $f_{SW}$  = 2.1MHz, AES17 filter, LC filter:  $3.3\mu F-HCM1A0703V2\text{-}3R3\text{-}R,\ 1\mu F+1\Omega$ 













Copyright © 2025 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.

















### 14.2 Bridge-Tied Load (BTL)

 $T_A = 25^{\circ}\text{C}$ , DVDD = 3.3V, VBAT = PVDD = 14.4V,  $R_L = 4\Omega$ , fin = 1kHz,  $f_S = 48\text{kHz}$ ,  $f_{SW} = 384\text{kHz}$ , AES17 filter, LC filter:  $10\mu\text{H} - \text{HCM1A1307V2-100-R}$ ,  $1\mu\text{F} + 1\Omega$  (Note 7)













Copyright © 2025 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.













**Note 7.** All measurements were conducted using the RTQ9128DH-QA\_EVM evaluation board in conjunction with an audio precision system equipped with an AUX-0025 low-pass filter. The tests were performed with a 1kHz test signal.



### 14.3 Parallel Bridge-Tied Load (PBTL)

 $T_A=25^{\circ}C$ , DVDD = 3.3V, VBAT = PVDD = 14.4V,  $R_L=2\Omega$ , fin = 1kHz,  $f_S=48$ kHz,  $f_{SW}=2.1$ MHz, AES17 filter, LC filter:  $3.3\mu F-HCM1A1104V2-3R3-R$ ,  $1\mu F+1\Omega$ 













Copyright © 2025 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.









www.richtek.com



### 14.4 Parallel Bridge-Tied Load (PBTL)

 $T_A = 25^{\circ}\text{C, DVDD} = 3.3\text{V, VBAT} = \text{PVDD} = 14.4\text{V, R}_L = 2\Omega, \text{ fin = 1kHz, f}_S = 48\text{kHz, f}_{SW} = 384\text{kHz, AES17 filter, LC filter: } 10\mu\text{H} - \text{HCM1A1307V2-100-R, } 1\mu\text{F} + 1\Omega \qquad (\underline{\text{Note 8}})$ 



Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.





**Note 8.** Measurements were made using the RTQ9128DH-QA\_EVM board and Audio Precision with AUX-0025 low-pass filter. All measurements taken with 1kHz.



# 15 Application Information

(Note 9)

### 15.1 Power-On Sequence



Copyright © 2025 Richtek Technology Corporation. All rights reserved.

April 2025

RTQ9128DH-QA DS-01

RICHTEK is a registered trademark of Richtek Technology Corporation.



#### 15.2 **Power-Off Sequence**





#### 15.3 Initial Sequence (BTL Mode, PWM = 2.1MHz)

| Sequence | reg_addr | reg_size | reg_value  | Description                           |                 |
|----------|----------|----------|------------|---------------------------------------|-----------------|
| 1        | 0x03     | 1        | 0x4D       | Internal setting (SPK gain selection) |                 |
| 2        | 0x0F     | 1        | 0x00       | Clear error flag                      | Initial setting |
| 3        | 0x30     | 2        | 0x01, 0x80 | Set the volume 0dB                    | Journa          |
| 4        | 0x04     | 1        | 0x00       | Amp turn on                           | Amp turn<br>on  |

#### Initial Sequence (BTL Mode, PWM = 384kHz) 15.4

| Sequence | reg_addr | reg_size | reg_value  | Description                           |                |  |
|----------|----------|----------|------------|---------------------------------------|----------------|--|
| 1        | 0x03     | 1        | 0x4D       | Internal setting (SPK gain selection) |                |  |
| 2        | 0x05     | 1        | 0x01       | PWM is 384kHz                         | Initial        |  |
| 3        | 0x0F     | 1        | 0x00       | Clear error flag                      | setting        |  |
| 4        | 0x30     | 2        | 0x01, 0x80 | Set the volume 0dB                    |                |  |
| 5        | 0x04     | 1        | 0x00       | Amp turn on                           | Amp turn<br>on |  |

#### 15.5 Initial Sequence (PBTL Mode, PWM = 2.1MHz)

| Sequence | reg_addr | reg_size | reg_value  | Description                           |                 |
|----------|----------|----------|------------|---------------------------------------|-----------------|
| 1        | 0x03     | 1        | 0x7D       | Internal setting (SPK gain selection) |                 |
| 2        | 0x0F     | 1        | 0x00       | Clear error flag                      | Initial setting |
| 3        | 0x30     | 2        | 0x01, 0x80 | Set the volume 0dB                    |                 |
| 4        | 0x04     | 1        | 0x00       | Amp turn on                           | Amp turn<br>on  |

#### 15.6 Initial Sequence (PBTL Mode, PWM = 384kHz)

| Sequence | reg_addr | reg_size | reg_value  | Description                           |                |
|----------|----------|----------|------------|---------------------------------------|----------------|
| 1        | 0x03     | 1        | 0x7D       | Internal setting (SPK gain selection) |                |
| 2        | 0x05     | 1        | 0x01       | PWM is 384kHz                         | Initial        |
| 3        | 0x0F     | 1        | 0x00       | Clear error flag                      | setting        |
| 4        | 0x30     | 2        | 0x01, 0x80 | Set the volume 0dB                    |                |
| 5        | 0x04     | 1        | 0x00       | Amp turn on                           | Amp turn<br>on |



### 15.7 I<sup>2</sup>C Serial Communication Bus

The RTQ9128DH-QA supports 16 sets of slave addresses, configurable through combinations of the ADDR\_0 and ADDR\_1 pins. These pins can be set using different resistors, each with a tolerance of 20%. Refer to the table below for specific address configurations.

| ADDR_1 Pin                            | ADDR_0 Pin                            | Slave Address   | Write | Read |
|---------------------------------------|---------------------------------------|-----------------|-------|------|
| Pull low                              | Pull low                              | 0x10 (0010000x) | 0x20  | 0x21 |
| Pull low                              | Pull high                             | 0x11 (0010001x) | 0x22  | 0x23 |
| Pull low                              | Pull low with 600kΩ                   | 0x12 (0010010x) | 0x24  | 0x25 |
| Pull low                              | Pull high with 600kΩ                  | 0x13 (0010011x) | 0x26  | 0x27 |
| Pull high                             | Pull low                              | 0x14 (0010100x) | 0x28  | 0x29 |
| Pull high                             | Pull high                             | 0x15 (0010101x) | 0x2A  | 0x2B |
| Pull high                             | Pull low with 600kΩ                   | 0x16 (0010110x) | 0x2C  | 0x2D |
| Pull high                             | Pull high with $600 \mathrm{k}\Omega$ | 0x17 (0010111x) | 0x2E  | 0x2F |
| Pull low with 600kΩ                   | Pull low                              | 0x18 (0011000x) | 0x30  | 0x31 |
| Pull low with 600kΩ                   | Pull high                             | 0x19 (0011001x) | 0x32  | 0x33 |
| Pull low with 600kΩ                   | Pull low with 600kΩ                   | 0x1A (0011010x) | 0x34  | 0x35 |
| Pull low with 600kΩ                   | Pull high with 600kΩ                  | 0x1B (0011011x) | 0x36  | 0x37 |
| Pull high with $600 \mathrm{k}\Omega$ | Pull low                              | 0x1C (0011100x) | 0x38  | 0x39 |
| Pull high with 600kΩ                  | Pull high                             | 0x1D (0011101x) | 0x3A  | 0x3B |
| Pull high with 600kΩ                  | Pull low with 600kΩ                   | 0x1E (0011110x) | 0x3C  | 0x3D |
| Pull high with $600 k\Omega$          | Pull high with 600kΩ                  | 0x1F (0011111x) | 0x3E  | 0x3F |

The RTQ9128DH-QA is equipped with  $I^2C$  communication capabilities, utilizing the SCL and SDA input ports. In the  $I^2C$  protocol, devices transmitting data are designated as transmitters, while those reading the data are receivers. The master device initiates and controls the data transfer, supplying the serial clock to ensure synchronization. The RTQ9128DH-QA functions exclusively as a slave device in all communications and is capable of operating at speeds of up to 400 kB/s. Its  $I^2C$  interface is designed to be slave-only.

### 15.8 I<sup>2</sup>C Bus Protocol

Data transitions on the SDA line are only permitted when the SCL clock signal is low. Transitions on the SDA line while the SCL signal is high indicate a START or STOP condition. A START condition is signaled by a high-to-low transition on the SDA line while the SCL line remains high and stable. This condition must be established before any data transfer command is issued. Conversely, a STOP condition is signaled by a low-to-high transition on the SDA line while the SCL line remains high and stable, marking the end of communication between the RTQ9128DH-QA and the bus master. During data reception, the RTQ9128DH-QA samples the SDA line at the rising edge of the SCL signal. To ensure proper operation of the device, the SDA signal must remain stable during the rising edge of the SCL signal, and data changes on the SDA line should only occur when the SCL signal is low.



### 15.9 Audio Interface

The RTQ9128DH-QA supports four types of audio interfaces: I<sup>2</sup>S, Left-Justified, Right-Justified, and TDM. Each interface is capable of handling audio data formats of 32-bit, 24-bit, 20-bit, and 16-bit. The corresponding timing diagrams are provided below.



Figure 7. TDM (Offset = 1)

Copyright © 2025 Richtek Technology Corporation. All rights reserved.



Figure 8. TDM (Offset = 0)

### 15.10 Time-Division Multiplexing (TDM) Mode

The TDM mode supports a maximum of 16 audio channels. The device can be configured via I<sup>2</sup>C to select different stereo pairs within the TDM data stream.



Figure 9. TDM16



### 15.11 Digital Signal Processor



Figure 10. Digital Signal Processor

### 15.12 High-Pass Filter (HPF)

The RTQ9128DH-QA supports an input high-pass filter (HPF) for each channel, designed to act as a DC-cut filter with a cutoff frequency of 1.5Hz.

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name | Description                                            | Default |
|------|----------------|------|-----|----------|--------------------------------------------------------|---------|
| 0x08 | 1              | 7    | RW  | HPF_EN   | High-Pass filter enable 0: Disable 1: Enable (default) | 1       |

### 15.13 Mixer

The RTQ9128DH-QA supports an input channel mixer that can route to any output channel.

| ADDR  | Byte<br>Number | BITS | R/W | Reg Name | Description                                                                    | Default |
|-------|----------------|------|-----|----------|--------------------------------------------------------------------------------|---------|
|       |                | 7:6  | RW  | Ch1_SI   | 00: CH1 to CH1 (default) 01: CH2 to CH1 10: CH3 to CH1 11: CH4 to CH1          | 00      |
| 0,400 | Dx00 1         | 5:4  | RW  | Ch2_SI   | 00: CH1 to CH2<br>01: CH2 to CH2 (default)<br>10: CH3 to CH2<br>11: CH4 to CH2 | 01      |
| 0x00  |                | 3:2  | RW  | Ch3_SI   | 00: CH1 to CH3<br>01: CH2 to CH3<br>10: CH3 to CH3 (default)<br>11: CH4 to CH3 | 10      |
|       |                | 1:0  | RW  | Ch4_SI   | 00: CH1 to CH4<br>01: CH2 to CH4<br>10: CH3 to CH4<br>11: CH4 to CH4 (default) | 11      |

April 2025

RTQ9128DH-QA DS-01



### 15.14 Volume

The RTQ9128DH-QA features a master volume control (MS\_VOL) and individual channel volume controls (CH1\_VOL, CH2\_VOL, CH3\_VOL, and CH4\_VOL). The volume adjustment step size is 0.0625dB, ranging from 24dB to mute. Each channel also includes a mute control (CH1\_MUTE, CH2\_MUTE, CH3\_MUTE, and CH4\_MUTE).

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name | Description                                                                                | Default |
|------|----------------|------|-----|----------|--------------------------------------------------------------------------------------------|---------|
| 0x30 | 2              | 10:0 | RW  | MS_Vol   | Master volume control 11'h000: 24dB 11'h180: 0dB 11'h7FF: Mute (default) 0.0625dB per step | 11'h7FF |

| ADDR | Byte<br>Number | BITS | R/W | Reg Name | Description                                                                             | Default |
|------|----------------|------|-----|----------|-----------------------------------------------------------------------------------------|---------|
| 0x31 | 2              | 10:0 | RW  | CH1_VOL  | CH1 volume control 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: Mute 0.0625dB per step | 11'h180 |

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name | Description                                                                             | Default |
|------|----------------|------|-----|----------|-----------------------------------------------------------------------------------------|---------|
| 0x32 | 2              | 10:0 | RW  | CH2_VOL  | CH2 volume control 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: Mute 0.0625dB per step | 11'h180 |

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name | Description                                                                             | Default |
|------|----------------|------|-----|----------|-----------------------------------------------------------------------------------------|---------|
| 0x33 | 2              | 10:0 | RW  | CH3_VOL  | CH3 volume control 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: Mute 0.0625dB per step | 11'h180 |

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name | Description                                                                             | Default |
|------|----------------|------|-----|----------|-----------------------------------------------------------------------------------------|---------|
| 0x34 | 2              | 10:0 | RW  | CH4_VOL  | CH4 volume control 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: Mute 0.0625dB per step | 11'h180 |



### 15.15 Dynamic Range Control (DRC)

The RTQ9128DH-QA features Dynamic Range Control (DRC), which provides compression capabilities to adjust audio signals, making them sound softer or louder based on the input level.

| DRC Description               | Address | Description               |
|-------------------------------|---------|---------------------------|
| DRC_T: Threshold              | 0x40    | Output Level              |
| DRC_O: Make up gain           | 0x41    | DRC_Ratio                 |
| DRC_Ratio: Compress ratio     | 0x42    | Compressor/Limit  DRC_O   |
| DRC_N_T: Noise gate threshold | 0x43    |                           |
| Noise gate enable             | 0x2A    | DRC_N_T DRC_T Input Level |

### 15.15.1 DRC Threshold

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name | Description                                                                                                                               | Default |
|------|----------------|------|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0x40 | 3              | 10:0 | RW  | DRC_TH   | DRC threshold<br>11'h000: 0dB (default)<br>11'h180: -24dB<br>11'h67E: -103.875dB<br>11'h67F ~ 11'h7FF: Not available<br>0.0625dB per step | 11'h000 |

### 15.15.2 DRC Offset

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name       | Description                                                                                           | Default |
|------|----------------|------|-----|----------------|-------------------------------------------------------------------------------------------------------|---------|
| 0x41 | 3              | 10:0 | RW  | DRC_<br>OFFSET | DRC make up gain (Offset) 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: -103.9375dB 0.0625dB per step | 11'h180 |

### 15.15.3 DRC\_RATIO

RTQ9128DH-QA\_DS-01

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name      | Description                                                                                                | Default |
|------|----------------|------|-----|---------------|------------------------------------------------------------------------------------------------------------|---------|
| 0x42 | 3              | 7:0  | RW  | DRC_<br>RATIO | DRC compress ratio<br>8'h00: No compression<br>8'h80 (default) ~ 8'hFF: Full compression<br>1/128 per step | 8'h80   |

April 2025

# RTQ9128DH-QA



### 15.15.4 Noise Gate Threshold

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name      | Description                                                                                                                                                         | Default |
|------|----------------|------|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0x43 | 3              | 10:0 | RW  | DRC_NG_<br>TH | Noise gate threshold<br>11'h000: 0dB<br>11'h180: -24dB<br>11'h640: -100dB (default)<br>11'h67E: -103.875dB<br>11'h67F ~ 11'h7FF: Not available<br>0.0625dB per step | 11'h640 |

# 15.15.5 DRC\_EN

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name        | Description                                                                             | Default |
|------|----------------|------|-----|-----------------|-----------------------------------------------------------------------------------------|---------|
| 0x2A | 1              | 7:4  | RW  | DRC_EN_<br>CH   | Dynamic range control (DRC) enabled {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable | 0000    |
|      |                | 3:0  | RW  | DRC_N_EN<br>_CH | DRC Noise gate enabled {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable              | 0000    |



### 15.16 Compensation Filter

The compensation filter is used to adjust the internal gain from the DAC. This filter can also correct the frequency response affected by the LC filter. The recommended settings will vary based on different application circuits to achieve the desired response curve.



Figure 11. Compensation Filter

| Table 1. Compensation fabi | Table | 1. | Compensation | Table |
|----------------------------|-------|----|--------------|-------|
|----------------------------|-------|----|--------------|-------|

|            | -1.0  | -0.9  | -0.8  | -0.7  | -0.6  | -0.5  | -0.4  | -0.3  | -0.2  | -0.1  | 0.0  | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   | 1.0   |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| B3<br>0x4B | 1FFE6 | 1FFE8 | 1FFEA | 1FFED | 1FFF0 | 1FFF2 | 1FFF5 | 1FFF8 | 1FFFA | 1FFFE | 0000 | 2     | 6     | 9     | С     | F     | 12    | 16    | 19    | 1D    | 21    |
| B2<br>0x4A | 1FFBD | 1FFC3 | 1FFCA | 1FFD2 | 1FFD7 | 1FFDE | 1FFE5 | 1FFEC | 1FFF2 | 1FFF9 | 0000 | 7     | Е     | 14    | 1B    | 22    | 29    | 30    | 37    | 3B    | 43    |
| B1<br>0x49 | 3D7   | 37A   | 31B   | 2B6   | 255   | 1F4   | 193   | 130   | သ     | 62    | 0000 | 1FF9D | 1FF2F | 1FEC5 | 1FE5A | 1FDED | 1FD7F | 1FD10 | 1FC9F | 1FC2C | 1FBB0 |
| B0<br>0x48 | 790E  | 79B6  | 7A60  | 7B17  | 7BC9  | 7C77  | 7D27  | 7DDA  | 7E8F  | 7F50  | 8000 | 80B3  | 817A  | 823B  | 82FE  | 83C3  | 848B  | 8555  | 8622  | 86F6  | 87D9  |



Figure 12. Compensation Filter Measured Result

ed. RICHTEK

April 2025

RTQ9128DH-QA DS-01



| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name | Description                                                                  | Default        |
|------|----------------|------|-----|----------|------------------------------------------------------------------------------|----------------|
| 0x48 | 3              | 16:0 | RW  | COMP_B0  | Compensation filter coefficient B0, COEF_PAGE_SEL (0x09) select CH12 or CH34 | 17'h0_<br>8000 |
| 0x49 | 3              | 16:0 | RW  | COMP_B1  | Compensation filter coefficient B1, COEF_PAGE_SEL (0x09) select CH12 or CH34 | 17'h0_<br>0000 |
| 0x4A | 3              | 16:0 | RW  | COMP_B2  | Compensation filter coefficient B2, COEF_PAGE_SEL (0x09) select CH12 or CH34 | 17'h0_<br>0000 |
| 0x4B | 3              | 16:0 | RW  | COMP_B3  | Compensation filter coefficient B3, COEF_PAGE_SEL (0x09) select CH12 or CH34 | 17'h0_<br>0000 |

### 15.17 Hard Clip Function

A hard clip can be employed to digitally maintain specified THD levels without resorting to voltage clipping. This feature enables users to consistently achieve the same THD (for example, 10% THD) across various power levels (15W, 10W, and 5W) while using the same PVDD level.



Figure 13. Hard Clip

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name | Description                                                                                                                              | Default |
|------|----------------|------|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0x35 | 2              | 10:0 | RW  | HC_TH    | Hard clip threshold when HARD_CLIP_EN = 1 >0dB is not allowable for hard clip threshold setting 11'h180: 0dB (default) 0.0625db per step | 11'h180 |



### 15.18 SDO Output Configure

The I<sup>2</sup>S/TDM digital input signal path from the input pin to the power stage is illustrated in <u>Figure 14</u>. There are several nodes along the digital signal transmission path where the signal can be measured to verify proper functionality. The settings in register 0x01 Bit[3:0] can be output through the SDO1/2 pin.



Figure 14. SDO Output Configure

| ADDR | Byte<br>Number | BITS | R/W | Reg Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default |
|------|----------------|------|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0x01 | 1              | 3:0  | RW  | SDO_SEL  | I <sup>2</sup> S/LJ/RJ/DSPM 0000: No output (default) 0001: I2S_DATAI_1 0010: I2S_DATAI_2 0100: Interface output CH1, CH2 0101: Interface output CH3, CH4 0110: DSP output CH1, CH2 0111: DSP output CH3, CH4 1000: DF output CH3, CH4 1001: DF output CH3, CH4 Others: No output TDM 0000: No output (default) 0001: I2S_DATAI_1 0010: I2S_DATAI_2 010X: Interface output CH1, CH2, CH3, CH4 100X: DF output CH1, CH2, CH3, CH4 Others: No output | 0000    |

April 2025

RTQ9128DH-QA\_DS-01



Under specific conditions, the Serial Data Output (SDO) supports a maximum frequency of 18.8MHz. Considering the variable stray capacitance of external wiring, the internal drive current of the SDO can be adjusted as needed through register settings. For scenarios where the stray capacitance is 30pF, increasing the drive current to 16mA ensures reliable operation of the application at 18.8MHz.

| 0xF3, D_DRV bit[7:6] | Io at DVDD = 3.3V |
|----------------------|-------------------|
| D_DRV bit[7:6] = 00  | 4mA               |
| D_DRV bit[7:6] = 01  | 8mA               |
| D_DRV bit[7:6] = 10  | 12mA              |
| D_DRV bit[7:6] = 11  | 16mA              |

### 15.19 Hardware Control Pins

The device features four pins for control and status indication: FAULTB, MUTEB, WARNB, and EN. The FAULTB pin reports faults and is active low under any of the following conditions:

- Any channel faults (overcurrent or DC offset detection)
- Over-temperature protection
- Overvoltage or undervoltage conditions on the VBAT or PVDD pins
- Clock errors

For all listed faults, the FAULTB pin remains asserted even after the fault condition is rectified. The register reports for all faults remain asserted until the CLEAR FAULT method is executed by writing to address 0x0F=00. At that point, all fault register reports in ERR INT INDEX will be cleared to their default values, and the FAULTB pin will no longer remain asserted.

Register bits are available to mask fault categories from being reported to the FAULTB pin. These bits only mask the pin's status and do not affect the register reporting or the device's protection mechanisms. By default, all faults are reported to the pin. Refer to the Register Maps section for a description of the mask settings.

The active-low output WARNB pin reports audio clipping, over-temperature warning, and overcurrent warning. Clipping is reported when any channel reaches maximum modulation for 20 consecutive PWM clocks (default value), resulting in a 10 µs delay in reporting the onset of clipping. The Clip Detect Warning bit, which is sticky in latching mode, can be cleared by accessing the ERR\_INT\_INDEX in the register at address 0x0F and writing to address 0x0F = 00. An over-temperature warning (OTW) is triggered if the general temperature or any channel-specific temperature warnings are activated. Register bits are available to selectively mask the reporting of clipping, OTW, or OCW to the pin. These bits solely affect the pin's setting and do not influence the register reporting. By default, clipping, OCW, and OTW are reported at addresses 0x14 and 0x15.

The active-low input MUTEB pin controls the mute and unmute functions for all channels.

When the EN pin is at a low level, the device enters shutdown mode, the I<sup>2</sup>C function is disabled, and the current consumption is minimized. This pin allows for rapid shutdown of the device and resets the registers to their default values. When the EN pin is at a high level, the device enters standby mode and the I<sup>2</sup>C function is enabled. In this mode, the RTQ9128DH-QA can be commanded via I<sup>2</sup>C to enter other modes.



### 15.20 Operating Modes and Faults

| STATE_CTRL                                | Power MOSFETS               | OSCILLATOR | I <sup>2</sup> C |
|-------------------------------------------|-----------------------------|------------|------------------|
| Normal                                    | Switching with input signal | Active     | Active           |
| Shutdown                                  | Hi-Z                        | Stopped    | Inactive         |
| Standby<br>(I <sup>2</sup> S – Clock Off) | Hi-Z                        | Stopped    | Active           |
| Hi-Z                                      | Hi-Z                        | Active     | Active           |
| MUTE                                      | 50% (BD) switching          | Active     | Active           |
| ULQM<br>(I <sup>2</sup> S – No Data)      | Hi-Z                        | Stopped    | Active           |

| Fault Event   | Reporting                   | Result            | Monitor State  | Protection Active             | Behavior                |
|---------------|-----------------------------|-------------------|----------------|-------------------------------|-------------------------|
| CLK Error     | I <sup>2</sup> C+FAULTB pin | Hi-Z              | All            | 4 Channel                     | Auto-recovery (default) |
| DVDD UV       | I <sup>2</sup> C+FAULTB pin | Hi-Z              | All            | 4 Channel                     | Auto-recovery (default) |
| VDDA/GVDD UV  | I <sup>2</sup> C+FAULTB pin | Hi-Z              | All            | 4 Channel                     | Auto-recovery (default) |
| VBAT/PVDD UV  | I <sup>2</sup> C+FAULTB pin | Hi-Z              | All            | 4 Channel                     | Auto-recovery (default) |
| VBAT/PVDD OV  | I <sup>2</sup> C+FAULTB pin | Hi-Z              | All            | 4 Channel                     | Auto-recovery (default) |
| OTPG          | I <sup>2</sup> C+FAULTB pin | Hi-Z              | All            | 4 Channel                     | Auto-recovery (default) |
| OTPC          | I <sup>2</sup> C+FAULTB pin | Hi-Z              | All            | 1 Channel (individual)        | Auto-recovery (default) |
| S2P/S2G/OL/SL | I <sup>2</sup> C+FAULTB pin | Hi-Z              | Load detection | 1 Channel (individual)        | Latch (default)         |
| Overcurrent   | I <sup>2</sup> C+FAULTB pin | Hi-Z              | Normal, Mute   | 1 Channel (individual)        | Auto-recovery (default) |
| DC            | I <sup>2</sup> C+FAULTB pin | Hi-Z              | Normal, Mute   | 1 Channel (individual)        | Latch (default)         |
| POR           | I <sup>2</sup> C+WARNB pin  | Shutdown          | All            | N/A                           | N/A                     |
| OTWG          | I <sup>2</sup> C+WARNB pin  | N/A               | All            | N/A                           | N/A                     |
| OTWC          | I <sup>2</sup> C+WARNB pin  | TFB<br>(optional) | Normal, Mute   | 1 Channel<br>(individual TFB) | N/A                     |
| OCW           | I <sup>2</sup> C+WARNB pin  | N/A               | Normal, Mute   | 1 Channel<br>(individual)     | N/A                     |
| Clip          | I <sup>2</sup> C+WARNB pin  | N/A               | Normal, Mute   | 1 Channel<br>(individual)     | N/A                     |



#### 15.21 Ultra Low Quiescent Mode (ULQM)

In ULQM, the RTQ9128DH-QA powers the FETs in Hi-Z status with low standby current, and the transition time from ULQM to normal mode is approximately 5ms. After the initial power-on, it is recommended to use ULQM to save energy.

#### 15.22 Pulse-Width-Modulator (PWM) Frequency

The output switching rate is synchronous to the serial audio clock input and is programmed through I<sup>2</sup>C to match the input sample rate in the register (address 0x05[6:4]). The option to switch at a high frequency allows the use of smaller and lower-cost external filtering components.

| Sample Rate |             | Reg 0x05h, BITS 6:4 Setting |         |         |             |  |  |  |  |  |
|-------------|-------------|-----------------------------|---------|---------|-------------|--|--|--|--|--|
|             | 000         | 001                         | 010     | 011     | 100         |  |  |  |  |  |
| 32kHz       | Not support | Not support                 | 1.28MHz | 1.41MHz | 1.53MHz     |  |  |  |  |  |
| 44.1kHz     | 352kHz      | 441kHz                      | 1.76MHz | 1.94MHz | 2.1MHz      |  |  |  |  |  |
| 48kHz       | 384kHz      | 480kHz                      | 1.92MHz | 2.1MHz  | 2.3MHz      |  |  |  |  |  |
| 88.2kHz     | 352kHz      | 441kHz                      | 1.76MHz | 1.94MHz | Not support |  |  |  |  |  |
| 96kHz       | 384kHz      | 480kHz                      | 1.92MHz | 2.1MHz  | Not support |  |  |  |  |  |
| 192kHz      | 384kHz      | 480kHz                      | 1.92MHz | 2.1MHz  | Not support |  |  |  |  |  |

| ADDR | Byte<br>Number | BITS | R/W | Reg Name     | Description                                                                                              | Default |
|------|----------------|------|-----|--------------|----------------------------------------------------------------------------------------------------------|---------|
| 0x05 | 1              | 6:4  | RW  | PWM_<br>FREQ | PWM frequency selection 000: 8*fs 001: 10*fs 010: 40*fs 011: 44*fs (default) 100: 48*fs Others: Reserved | 011     |

#### 15.23 AM-Radio Band Avoidance

By setting the switching frequency of the device above the AM frequency band, interference with AM radio frequencies can be avoided. The available switching frequency options include 38fs, 44fs, and 48fs. If the switching frequency cannot be set above the AM frequency band, the alternatives of 8fs and 10fs should be used. These settings should be adjusted to avoid active AM channels.

#### 15.24 EMI Management Features

The RTQ9128DH-QA features a spread-spectrum function and output phase control to address EMI issues.

#### 15.24.1 Spread-Spectrum Function

There are two methods: varying the spread-spectrum frequency and adding noise to the triangular modulation.

The spread-spectrum frequency variation amplitude is controlled via the register at address 0x07[1:0], and noise can be added to the triangular modulation through the register at address 0x07[6:2].





Figure 15. Spread-Spectrum Algorithm

### 15.25 Channel-to-Channel Output Phase Control

The RTQ9128DH-QA features a channel-to-channel phase control function. Channel 1 is used as a reference for other channels, and the PWM phase of channels 2, 3, and 4 can be shifted from 0 to 315 degrees in 45-degree increments.

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name        | Description                                                                                                                                                   | Default |
|------|----------------|------|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0x05 | 1              | 2:0  | RW  | OUT_<br>PHASE_2 | CH2 output phase offset 000: 0 degree 001: 45 degree (default) 010: 90 degree 011: 135 degree 100: 180 degree 101: 225 degree 110: 270 degree 111: 315 degree | 001     |
| 0,06 | 1              | 6:4  | RW  | OUT_<br>PHASE_3 | CH3 output phase offset 000: 0 degree 001: 45 degree 010: 90 degree (default) 011: 135 degree 100: 180 degree 101: 225 degree 110: 270 degree 111: 315 degree | 010     |
| 0x06 | 1              | 2:0  | RW  | OUT_<br>PHASE_4 | CH4 output phase offset 000: 0 degree 001: 45 degree 010: 90 degree 011: 135 degree (default) 100: 180 degree 101: 225 degree 110: 270 degree 111: 315 degree | 011     |

RICHTEK is a registered trademark of Richtek Technology Corporation.



#### 15.26 Load Diagnostics

The device features both DC and AC load diagnostics to assess the status of the load. DC diagnostics are enabled by default via the register at address 0x03[6]. However, for a fast start-up that bypasses diagnostics, DC diagnostics can be disabled through I<sup>2</sup>C. DC diagnostics activate when any channel transitions from the Hi-Z state to either the MUTE or PLAY state. Additionally, DC diagnostics can be manually activated for any or all channels. They can commence under any operating condition; however, if a channel is in the PLAY state, the diagnostic process takes longer. This delay occurs because the device must decrease the audio signal of that channel before it can switch to the Hi-Z state. DC diagnostics become available as soon as the device's power supply is within the recommended operating range. These diagnostics do not depend on the availability of audio input clocks. Results from the DC diagnostics are reported individually for each channel via the I<sup>2</sup>C registers.

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name           | Description                                                                       | Default |
|------|----------------|------|-----|--------------------|-----------------------------------------------------------------------------------|---------|
| 0x03 | 1              | 6    | RW  | EN_DC_LO<br>AD_DET | Execute DC load diagnostics before amp on sequence 0: Disable 1: Enable (default) | 1       |

#### 15.27 DC Load Detection

DC load detection assesses the status of the speaker side to prevent speaker damage. During this process, the device remains in a high-impedance state while playing a detection pattern. There are five types of DC load detection results: S2G (short to ground), SL (short load), normal, OL (open load), and S2P (short to power). The DC load detection method involves playing a pattern between the output channels OUTP and OUTN to diagnose the load (RL) status. The diagnostic results are obtained through an internal ADC and stored in registers 0x8C to 0x8F after offset subtraction. Converting these register values to decimal and dividing by 740 provides the diagnostic results. For load resistances below  $5\Omega$ , the tolerance is within  $\pm 0.5\Omega$ . DC load detection can be automatically initiated when the amplifier is powered on, as configured by bit 6 of register 0x03. It can also be manually triggered by setting bits [7:4] of register 0x53. The thresholds for short load detection are controlled by registers at addresses 0x51 and 0x52, while the typical threshold for an open load is  $70\Omega$ . Thus, a normal status falls between the short and open load thresholds.

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name  | Description                                                                                                                                            | Default |
|------|----------------|------|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      | 1              | 7:4  | RW  | SL_TH_CH1 | CH1 SL threshold selection (0.5 $\Omega$ each step) 0000: 0.5 $\Omega$ 0001: 1 $\Omega$ (default) 0010: 1.5 $\Omega$ 1001: 5 $\Omega$ Others: Reserved | 0001    |
| 0x51 | '              | 3:0  | RW  | SL_TH_CH2 | CH2 SL threshold selection $(0.5\Omega$ each step) 0000: $0.5\Omega$ 0001: $1\Omega$ (default) 0010: $1.5\Omega$ 1001: $5\Omega$ Others: Reserved      | 0001    |

www.richtek.com



| ADDR | Byte<br>Number | вітѕ | R/W       | Reg Name                                                                                                                                               | Description                                                                                                                                            | Default |
|------|----------------|------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      | 7:4            | RW   | SL_TH_CH3 | CH3 SL threshold selection (0.5 $\Omega$ each step) 0000: 0.5 $\Omega$ 0001: 1 $\Omega$ (default) 0010: 1.5 $\Omega$ 1001: 5 $\Omega$ Others: Reserved | 0001                                                                                                                                                   |         |
| 0x52 | 1              | 3:0  | RW        | SL_TH_CH4                                                                                                                                              | CH4 SL threshold selection (0.5 $\Omega$ each step) 0000: 0.5 $\Omega$ 0001: 1 $\Omega$ (default) 0010: 1.5 $\Omega$ 1001: 5 $\Omega$ Others: Reserved | 0001    |

When the DC load detection result indicates an abnormal output channel, the device will pull the FAULTB voltage low. Registers 0x16 and 0x17 can be read to confirm the diagnostic result and identify the abnormal output channel.

| ADDR | Byte<br>Number | BITS | R/W | Reg Name | Description                                                                                                      | Default |
|------|----------------|------|-----|----------|------------------------------------------------------------------------------------------------------------------|---------|
| 0x16 | 1              | 7:4  | RWC | S2P      | Output short to power {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear)                       | 0000    |
| OXIO | ı              | 3:0  | RWC | S2G      | Output short to ground {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear)                      | 0000    |
|      |                | 7:4  | RWC | OL       | Output open load {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear)                            | 0000    |
| 0x17 | 1              | 3:0  | RWC | SL       | Positive output shorting to negative output {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear) | 0000    |

#### 15.28 AC Load Detection

AC load detection can help distinguish speaker types such as woofers and tweeters. For AC load detection, the device must be in the Hi-Z state. When detection finishes, users can obtain the magnitude and phase. The method of AC diagnosis involves playing a signal frequency pattern between the output channels OUTP and OUTN to diagnose the speaker status. The diagnostic result is obtained through an internal ADC, and the parameter values can be compensated and converted internally to obtain the magnitude and phase. AC load detection can be manually executed by setting bits [7:4] of register 0x55. The RTQ9128DH-QA GUI provides a load diagnostics function, which allows the load detection results to be displayed through the GUI without the need for manual calculation.



### 15.29 Output Voltage

There are three types of gain in the RTQ9128DH-QA: digital volume gain, analog DAC gain, and speaker gain. The output voltage calculation formula is: Output Voltage (Vp) = 10^ ((D + Volume Gain) / 20) x 3.74 x Output Gain.



Output voltage calculation formula =  $10^{(D+Vol\_Gain)/20}$  x 3.74 x Output\_Gain (Vp)

Figure 16. Output Voltage Calculation

#### 15.30 Overcurrent Warning (OCW)

When the overcurrent warning (OCW) is triggered, a warning flag is raised to alert the system of the overcurrent condition. This warning indicates that the current level has reached the preset threshold. OCW is not reported as a fault condition to registers or the FAULTB pin; instead, it is indicated as a warning condition on the WARNB pin and in the OCW status register (address 0x15). Each channel is monitored independently. Four programmable levels can be configured using two bits in the register at address 0xB4.

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name       | Description                                                                    | Default        |                                                                                |
|------|----------------|------|-----|----------------|--------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------|
|      |                | 3    | RWC | OCW_Flag<br>_4 | Overcurrent warning flag CH4 0: Normal (default) 1: Warning (write 0 to clear) | 0              |                                                                                |
| 0v15 | 0x15 1         | 2    | RWC | OCW_Flag<br>_3 | Overcurrent warning flag CH3 0: Normal (default) 1: Warning (write 0 to clear) | 0              |                                                                                |
| UXIS |                | 1    | RWC | OCW_Flag<br>_2 | Overcurrent warning flag CH2 0: Normal (default) 1: Warning (write 0 to clear) | 0              |                                                                                |
|      |                |      |     | 0              | RWC                                                                            | OCW_Flag<br>_1 | Overcurrent warning flag CH1 0: Normal (default) 1: Warning (write 0 to clear) |



| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name      | Description                                                                               | Default |    |               |                                                                                           |    |
|------|----------------|------|-----|---------------|-------------------------------------------------------------------------------------------|---------|----|---------------|-------------------------------------------------------------------------------------------|----|
|      |                | 7:6  | RW  | OCW_SEL_<br>1 | CH1 overcurrent warning threshold selection 00: 4.8A 01: 5.8A (default) 10: 7.3A 11: 8.5A | 01      |    |               |                                                                                           |    |
| 0xB4 | 1              | 5:4  | RW  | OCW_SEL_<br>4 | CH4 overcurrent warning threshold selection 00: 4.8A 01: 5.8A (default) 10: 7.3A 11: 8.5A | 01      |    |               |                                                                                           |    |
| UXB4 | '              | 3:2  | RW  | OCW_SEL_<br>3 | CH3 overcurrent warning threshold selection 00: 4.8A 01: 5.8A (default) 10: 7.3A 11: 8.5A | 01      |    |               |                                                                                           |    |
|      |                |      |     |               |                                                                                           | 1:0     | RW | OCW_SEL_<br>2 | CH2 overcurrent warning threshold selection 00: 4.8A 01: 5.8A (default) 10: 7.3A 11: 8.5A | 01 |

### 15.31 Overcurrent Protection (OCP)

The RTQ9128DH-QA features an Overcurrent Protection (OCP) function to prevent damage to the device under overload or short-circuit conditions. This function is monitored by an internal sensing circuit. If the output current reaches the OC threshold, such as in case of an output short to GND, a peak current is triggered, which by default shuts down the channel in latch mode. Users can also select an auto-recovery mode for different applications. The RTQ9128DH-QA supports four programmable levels, which can be configured using two bits in the registers at addresses 0xB2 and 0xB3.



| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name        | Description                                                                          | Default |                 |                                                                                      |
|------|----------------|------|-----|-----------------|--------------------------------------------------------------------------------------|---------|-----------------|--------------------------------------------------------------------------------------|
|      |                | 7:6  | RW  | HS_OC_<br>SEL_1 | CH1 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |                 |                                                                                      |
| OvP2 | 4              | 5:4  | RW  | HS_OC_<br>SEL_4 | CH4 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |                 |                                                                                      |
| UXBZ | 0xB2 1         | 3:2  | RW  | HS_OC_<br>SEL_3 | CH3 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |                 |                                                                                      |
|      |                |      |     |                 | 1:0                                                                                  | RW      | HS_OC_<br>SEL_2 | CH2 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved |

| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name        | Description                                                                          | Default |
|------|----------------|------|-----|-----------------|--------------------------------------------------------------------------------------|---------|
|      |                | 7:6  | RW  | LS_OC_SEL<br>_1 | CH1 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |
| 0vB3 | 1              | 5:4  | RW  | LS_OC_SEL<br>_4 | CH4 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |
| OXDS | 0xB3 1         | 3:2  | RW  | LS_OC_SEL<br>_3 | CH3 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |
|      |                | 1:0  | RW  | LS_OC_SEL<br>_2 | CH2 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |



#### 15.32 DC Offset Detection

During normal operation, the amplifier circuit continuously monitors the DC offset. If the DC offset exceeds a specified threshold, the channel is placed in the Hi-Z state, a fault is reported to the I<sup>2</sup>C register, and the FAULTB pin is activated. Optionally, register bits can be configured to mask this fault report to the FAULTB pin. This monitoring is crucial for protecting the loudspeaker from DC at the output. The detection method involves analyzing the DC at the final PWM stage, calculating the difference between the PWM output and a sinc filter to determine the DC level. The IC will automatically shut down upon detecting excessive DC.

#### 15.33 Global Over-Temperature Warning (OTWG) and Over-Temperature Protection (OTPG)

The device offers four over-temperature warning levels (see the Register Map section for threshold values). When the junction temperature surpasses a warning level, the WARNB pin is activated unless the mask bit in the pin control register (address 0x19) is configured to disable this alert. The device operates normally until it reaches the OTSD threshold, at which point it places all channels in Hi-Z state and activates the FAULTB pin. By default, the device remains deactivated until the temperature normalizes. However, this behavior can be modified to automatic recovery by setting bits 2 and 0 in the miscellaneous control register (address 0x0D). Upon normalization of the junction temperature, the device automatically resumes operation and restores the channels to the configurations specified in the state control register. It is important to note that, even with automatic recovery enabled, the FAULTB pin stays active until the CLEAR FAULT bit (bit 1) in the register (address 0x11) is activated.

## 15.34 Channel Over-Temperature Warning (OTWC) and Over-Temperature Protection (OTPC)

In addition to the Global Over-Temperature Warning (OTWG) and Over-Temperature Protection (OTPG), each output channel has individual over-temperature warning and protection functions. If any channel exceeds the OTW threshold, the corresponding bit in the warning register (address 0x14) will be set, and the WARNB pin will be activated unless the mask bit is configured to disable reporting. If the channel temperature exceeds the OTSD threshold, the channel enters Hi-Z state and remains in that state. Alternatively, it can automatically return to the state indicated by the status control register when the temperature drops below the OTW threshold, depending on the setting of bit 0 in the miscellaneous control register (address 0x0D).

#### 15.35 Undervoltage (UV) and Power-On-Reset (POR)

The RTQ9128DH-QA monitors the PVDD voltage threshold. When the voltage at the PVDDL/R pin drops below the programmable undervoltage threshold of 4V, the Undervoltage Protection (UVP) circuit immediately shuts down the output. This device can also be configured to operate in latch mode instead.

When the DVDD voltage is set to 3.3V, the DVDD UVP is configured to 2.3V. If the DVDD operating voltage is 1.8V, then the VR\_DIG pin must also be supplied with 1.8V, and the register must be configured to lower the DVDD UVP to 1.4V.

### 15.36 Overvoltage (OV) and Load Dump

The RTQ9128DH-QA monitors the voltage thresholds of the PVDD and VBAT pins. When the voltage on the PVDDL/R pin or the VBAT pin rises above the overvoltage threshold of 27.5V, the OVP circuit immediately shuts down the output. The device can then operate in auto-recovery mode or be configured to use latch mode.

#### 15.37 Clip Detection

Clip detection is reported on the WARNB pin if a 100% duty-cycle PWM is sustained for a minimum number of PWM cycles as set by the Clip Window Register (address 0x73). The default setting is 20 PWM cycles.

is a registered trademark of Richtek Technology Corporation.

www.richtek.com



| ADDR | Byte<br>Number | вітѕ | R/W | Reg Name         | Description                                                                                                                                                                                            | Default |
|------|----------------|------|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0x73 | 1              | 3:0  | RW  | CLIP_DET_<br>SEL | Clipping detect threshold, release threshold (unit: PWM cycle) 4'b0000: 1, 0 4'b0001: 5, 3 4'b0010: 10, 5 4'b0011: 20, 5 (default) 4'b0100: 50, 30 4'b0101: 100, 80 4'b0110: 150, 130 Others: 250, 230 | 0011    |



Figure 17. Clip Detection

#### 15.38 Thermal Fold-Back (TFB)

The RTQ9128DH-QA features built-in Thermal Fold-Back Protection (TFP), which is activated when the average junction temperature exceeds a specified threshold. TFP decreases the amplifier gain to reduce power dissipation, maintaining the junction temperature around the threshold level. The device will not completely switch off but will remain operational at lower output power levels. If the average junction temperature continues to rise, a second builtin temperature protection threshold will shut down the amplifier completely.

#### 15.39 Parallel BTL Operation (PBTL)

The RTQ9128DH-QA can drive more current to the load side of the LC output filter by paralleling the BTL channels. For parallel operation, the Parallel BTL (PBTL) mode must be used, and both parallel channels must have the same status in the status control register. If the statuses are inconsistent, the device will report a fault condition. To set a channel to PBTL mode, the device must be in standby mode for the command to take effect. PBTL channels support load diagnosis but cannot be paralleled on the load side of the LC output filter.



### 15.40 Recommended Operating Conditions

The RTQ9128DH-QA is designed for specific application conditions. It supports speakers with a typical impedance of  $4\Omega$  and a minimum impedance of  $2\Omega$ .

| Minimum Speaker Load Impedance |             |  |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|--|
| Min                            | Min Typ Max |  |  |  |  |  |  |
| 2Ω                             | 4Ω          |  |  |  |  |  |  |

Based on the internal settings of the RTQ9128DH-QA and the LDMOS parameters, recommended application ranges are provided for the corresponding loaded speaker impedance and PVDD voltage.

| Speaker Load             | PVDD Range |     |       |  |  |  |  |
|--------------------------|------------|-----|-------|--|--|--|--|
| $R_L\left(\Omega\right)$ | Min        | Тур | Max   |  |  |  |  |
| 2                        | 4.5V       |     | 14.5V |  |  |  |  |
| 3                        | 4.5V       |     | 21.2V |  |  |  |  |
| ≥4                       | 4.5V       |     | 26.4V |  |  |  |  |

It is recommended that the inductance value of the loaded speaker not exceed 10mH.

| Minimum Speaker Load Impedance |  |      |  |  |  |  |  |
|--------------------------------|--|------|--|--|--|--|--|
| Min Typ Max                    |  |      |  |  |  |  |  |
|                                |  | 10mH |  |  |  |  |  |

#### 15.41 Line Driver

The RTQ9128DH-QA output supports a wide range of impedances, from a few ohms for speakers to several kiloohms, making it ideal for external amplifier inputs. The external amplifier input configuration must have a differential impedance ranging from  $600\Omega$  to  $4.7k\Omega$ .



Figure 18. Output Filter

### 15.42 Demodulation Filter Design

RTQ9128DH-QA DS-01

The amplifier output is driven by high-current LDMOS transistors in an H-bridge configuration. These transistors are either fully cut off or fully conducting. As a result, the output signal is a square wave with a duty cycle proportional to the amplitude of the audio signal. An LC demodulation filter is used to recover the audio signal, attenuating the high-

RICHTEK is a registered trademark of Richtek Technology Corporation.



frequency components of the output signal outside the audio band. The design of the demodulation filter significantly affects the audio performance of the power amplifier. Therefore, the choice of inductors used in the output filter should be carefully considered to meet the system's THD+N requirements. The RTQ9128DH-QA requires an additional damping filter to avoid LC filter resonance and ensure low idle current consumption. The schematic for the typical recommended LC output filters is shown in Figure 19.



Figure 19. Output Filter

Additional EMI improvements can be achieved by adding snubber networks from each of the Class-D outputs to ground. Suggested values for a simple RC series snubber network are  $5.1\Omega$  in series with a 390pF capacitor. However, the design of the snubber network is specific to each application and must consider the parasitic reactance of the printed circuit board and the audio amplifier. Be cautious to evaluate the stress on the components in the snubber network, especially if the amplifier is operating at high PVDD. Additionally, ensure the layout of the snubber network is tight and returns directly to the GND pins on the IC.

#### 15.43 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature  $T_{J(MAX)}$ , listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$ 

where  $T_{J(MAX)}$  is the maximum junction temperature,  $T_A$  is the ambient temperature, and  $\theta_{JA}$  is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 150°C. The junction-to-ambient thermal resistance,  $\theta_{JA}$ , is highly package dependent. For a RLQFP-64L 10x10 (PP) package, the thermal resistance,  $\theta_{JA}$ , is 57.45°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at  $T_A = 25$ °C can be calculated as follows:

P<sub>D(MAX)</sub> = (150°C - 25°C) / (57.45°C/W) = 2.18W for a RLQFP-64L 10x10 (PP) package.

The maximum power dissipation depends on the operating ambient temperature for the fixed  $T_{J(MAX)}$  and the thermal resistance,  $\theta_{JA}$ . The derating curve in <u>Figure 20</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.



Figure 20. Derating Curve of Maximum Power Dissipation

#### 15.44 Layout Considerations

For the best performance of the RTQ9128DH-QA, the following PCB layout guidelines must be strictly followed.

1. The application of RTQ9128DH-QA will require the heat sink. Therefore, the height limit of the mechanism must be considered. For example, the height of MLCC, electrolytic capacitors, and filter inductors may prevent the heat sink from fitting the IC package. It is recommended that these components be placed on the bottom layer of the EVB.



is a registered trademark of Richtek Technology Corporation.

April

2025



In the RTQ9128DH-QA pin configuration, the digital signal pin and the power pin have been separated. Digital signal traces and power traces must be separated, and layout traces should not cross. The trace from VSYS or battery to the PVDD pin must be wide enough to meet the current demand.



3. Pins 2, 3, 12, 37, 46, 47, 56, and 57 are PVDD power pins for the 4-CH Class-D structure application. Place the filter capacitors as close as possible to the PVDD pins and use the shortest possible traces to connect these capacitors. Capacitors with smaller capacitance should be placed near the PVDD pins. To reduce parasitic inductance and resistance, use multiple vias to connect to the main ground. The optimal approach is to use vias that are directly connected to the Main GND. Before making this connection, ensure that the vias are isolated to prevent unintended connections with other grounds.



The decoupling capacitor must be placed as close to the IC as possible.



4. To ensure the upper MOSFET turns on normally, place a bootstrap capacitor between the OUT and BSP pins. Position this capacitor as close as possible to the pins for optimal performance. The application circuit requires a total of eight capacitors. Refer to the placement diagram below for details.



The bootstrap capacitor must be placed as close to the IC as possible.

5. The ground defined by the GVDDCD pin is AGND, and the placement of the capacitor is shown in the figure below. The AGND pin trace should first connect to the ground terminal of the capacitor, and then use a via (a conductive hole that connects different layers of the PCB) to connect to the Main GND. To achieve good audio quality, the ground connection of decoupling capacitors (VDDD caps) should be linked to DGND first before connecting to the main ground. Similarly, the VR\_DIG decoupling capacitor ground connection should be linked to DGND, and then use a via to connect to the Main GND.



6. The ground defined by the VBAT, GVDDAB, and VDDA pins is AGND, and the placement of the capacitor is shown in the figure below. The AGND pin trace should first connect to the ground terminal of the capacitor, and then use a via to connect to the Main GND. The VBAT pin must be separated from PVDD using a star connection and routed separately from the electrolytic capacitor on the battery path to CVBAT.

RICHTEK is a registered tra





7. The traces for OUTP and OUTN should have equal widths and lengths to ensure balanced performance. When using a ferrite bead filter, place it close to the chip for optimal EMI performance. It is recommended to position ground vias around the output traces to enhance grounding effectiveness.



8. Due to the many external traces, the ground of the RTQ9128DH-QA is connected to the Main GND using vias. Copper can be placed under the IC, and additional GND vias can be used to better connect the PGND pin on the top layer to the Main GND. This approach can also increase the heat dissipation area.



Note 9. The information provided in this section is for reference only. The customer is solely responsible for designing, validating, and testing any applications incorporating Richtek's product(s). The customer is also responsible for applicable standards and any safety, security, or other requirements.

Copyright © 2025 Richtek Technology Corporation. All rights reserved.



## 16 Functional Register Description

#### Register Map 16.1

| ADDR | Byte<br>Number | BITS | R/W | Reg Name | Description                                                                    | Default |
|------|----------------|------|-----|----------|--------------------------------------------------------------------------------|---------|
|      |                | 7:6  | RW  | CH1_SI   | 00: CH1 to CH1 (default) 01: CH2 to CH1 10: Ch3 to CH1 11: CH4 to CH1          | 00      |
| 0x00 | 1              | 5:4  | RW  | CH2_SI   | 00: CH1 to CH2<br>01: CH2 to CH2 (default)<br>10: Ch3 to CH2<br>11: CH4 to CH2 | 01      |
| 0000 | 1              | 3:2  | RW  | CH3_SI   | 00: CH1 to CH3<br>01: CH2 to CH3<br>10: Ch3 to CH3 (default)<br>11: CH4 to CH3 | 10      |
|      |                | 1:0  | RW  | CH4_SI   | 00: CH1 to CH4<br>01: CH2 to CH4<br>10: Ch3 to CH4<br>11: CH4 to CH4 (default) | 11      |



| ADDR | Byte<br>Number | BITS | R/W | Reg Name           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default |
|------|----------------|------|-----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:6  | RW  | I2S_DO_LEN         | I <sup>2</sup> S data out length 00: 16bits 01: 24bits 10: 32bits (default) 11: Reserved                                                                                                                                                                                                                                                                                                                                                           | 10      |
|      |                | 5    | RW  | TDM_CH12_<br>SEL   | TDM CH12 receive data select 0: Receive from I <sup>2</sup> S data 1 (default) 1: Receive from I <sup>2</sup> S data 2                                                                                                                                                                                                                                                                                                                             | 0       |
|      |                | 4    | RW  | TDM_CH34_<br>SEL   | TDM CH34 receive data select 0: Receive from I <sup>2</sup> S data 1 1: Receive from I <sup>2</sup> S data 2 (default)                                                                                                                                                                                                                                                                                                                             | 1       |
| 0x01 | 1              | 3:0  | RW  | SDO_SEL            | I <sup>2</sup> S/LJ/RJ/DSPM 0000: No output (default) 0001: I2S_DATAI_1 0010: I2S_DATAI_2 0100: Interface output CH1, CH2 0101: Interface output CH3, CH4 0110: DSP output CH1, CH2 0111: DSP output CH3, CH4 1000: DF output CH3, CH4 1001: DF output CH3, CH4 Others: No output TDM 0000: No output (default) 0001: I2S_DATAI_1 0010: I2S_DATAI_2 010X: Interface output CH1, CH2, CH3, CH4 100X: DF output CH1, CH2, CH3, CH4 Others: No output | 0000    |
|      |                | 7    | RW  | BCLK_EDGE<br>_SEL  | O: LRCK transition align with BCLK falling (default)     1: LRCK transition align with BCLK rising                                                                                                                                                                                                                                                                                                                                                 | 0       |
|      |                | 6    | RW  | SDO_EDGE_<br>SEL   | I <sup>2</sup> S data out launch edge selection 0: BCLK_EDGE_SEL = 0, launch with falling edge (default) 1: BCLK EDGE_SEL = 0, launch with rising edge                                                                                                                                                                                                                                                                                             | 0       |
| 0x02 | 1              | 5:4  | RW  | AUD_BITS           | 00: 16 bits<br>01: 18 bits<br>10: 20 bits<br>11: 24 bits (default)                                                                                                                                                                                                                                                                                                                                                                                 | 11      |
|      |                | 3    | RW  | TDM_DSP_<br>OFFSET | TDM or DSPM offset selection 0: Without offset (DSPMB) 1: 1 bit clock offset (DSPMA) (default)                                                                                                                                                                                                                                                                                                                                                     | 1       |
|      |                | 2:0  | RW  | AUD_FMT            | 000: I <sup>2</sup> S (default)<br>001: Left-Justified<br>010: Right-Justified<br>011: DSP mode<br>1xx: TDM mode                                                                                                                                                                                                                                                                                                                                   | 000     |

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



| ADDR | Byte<br>Number | BITS | R/W | Reg Name           | Description                                                                                                                                                        | Default |
|------|----------------|------|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7    | RW  | Reserved           | Reserved                                                                                                                                                           | 0       |
|      |                | 6    | RW  | EN_DC_LOA<br>D_DET | Execute DC load diagnostics before amp on sequence 0: Disable 1: Enable (default)                                                                                  | 1       |
|      |                | 5    | RW  | PBTL12             | CH1, CH2 operation mode 0: BTL (default) 1: PBTL                                                                                                                   | 0       |
| 0x03 | 1              | 4    | RW  | PBTL34             | CH3, CH4 operation mode 0: BTL (default) 1: PBTL                                                                                                                   | 0       |
|      |                | 3    | RW  | I2S_DEG_EN         | <ul> <li>I<sup>2</sup>S data deglitch time selection</li> <li>0: No deglitch</li> <li>1: 2T deglitch (default)</li> </ul>                                          | 1       |
|      |                | 2:0  | RW  | SPK_GAIN_<br>SEL   | Speaker gain selection<br>000: -6dB (0.5x)<br>001: 0dB (1x)<br>010: 6dB (2x)<br>011: 12dB (4x) (default)<br>100: 15dB (5.5x)<br>101: 18dB (8x)<br>Others: Reserved | 011     |
|      |                | 7:6  | RW  | CH1_STATE          | CH1 mode 00: Normal 01: Hi-Z (default) 10: MUTE 11: ULQM mode                                                                                                      | 01      |
| 0.04 | 1              | 5:4  | RW  | CH2_STATE          | CH2 mode 00: Normal 01: Hi-Z (default) 10: MUTE 11: ULQM mode                                                                                                      | 01      |
| 0x04 |                | 3:2  | RW  | CH3_STATE          | CH3 mode 00: Normal 01: Hi-Z (default) 10: MUTE 11: ULQM mode                                                                                                      | 01      |
|      |                | 1:0  | RW  | CH4_STATE          | CH4 mode 00: Normal 01: Hi-Z (default) 10: MUTE 11: ULQM mode                                                                                                      | 01      |



| ADDR | Byte<br>Number | BITS | R/W | Reg Name        | Description                                                                                                                                                   | Default |
|------|----------------|------|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7    | RW  | Reserved        | Reserved                                                                                                                                                      | 0       |
|      |                | 6:4  | RW  | PWM_FREQ        | PWM frequency selection 000: 8*fs 001: 10*fs 010: 40*fs 011: 44*fs (default) 100: 48*fs Others: Reserved                                                      | 011     |
| 0x05 | 1              | 3    | RW  | Reserved        | Reserved                                                                                                                                                      | 0       |
|      |                | 2:0  | RW  | OUT_PHASE<br>_2 | CH2 output phase offset 000: 0 degree 001: 45 degree (default) 010: 90 degree 011: 135 degree 100: 180 degree 101: 225 degree 110: 270 degree 111: 315 degree | 001     |
|      |                | 7    | RW  | Reserved        | Reserved                                                                                                                                                      | 0       |
|      | 1              | 6:4  | RW  | OUT_PHASE<br>_3 | CH3 output phase offset 000: 0 degree 001: 45 degree 010: 90 degree (default) 011: 135 degree 100: 180 degree 101: 225 degree 110: 270 degree 111: 315 degree | 010     |
| 0x06 | '              | 3    | RW  | Reserved        | Reserved                                                                                                                                                      | 0       |
|      |                | 2:0  | RW  | OUT_PHASE<br>_4 | CH4 output phase offset 000: 0 degree 001: 45 degree 010: 90 degree 011: 135 degree (default) 100: 180 degree 101: 225 degree 110: 270 degree 111: 315 degree | 011     |



| ADDR | Byte<br>Number | BITS | R/W | Reg Name          | Description                                                                                                                                         | Default                                    |   |
|------|----------------|------|-----|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---|
|      |                | 7    | R/W | FSS_EN            | Spread spectrum enable 0: Disable (default) 1: Enable                                                                                               | 0                                          |   |
|      |                | 6    | R/W | PWM_<br>MODEWHITE | Noise select 0: Pink noise (default) 1: White noise                                                                                                 | 0                                          |   |
|      |                | 5    | R/W | PWM_<br>SELCOEF   | Pink noise coefficient This will affect the noise amplitude for spread spectrum signal. It is not recommended to modify it. 0: 1/2 (default) 1: 1/4 | 0                                          |   |
| 0x07 | 1              | 4    | R/W | PWM_NOISE<br>_EN  | Add noise to TRI_GEN 0: Disable (default) 1: Enable                                                                                                 | 0                                          |   |
|      |                | 3:2  | R/W | NOISE_AMP         | Nosie amplitude for SSC<br>00: 6.3% (default)<br>01: 11.7%<br>10: 17.1%<br>11: 35.1%                                                                | 00                                         |   |
|      |                | 1:0  | R/W | FSS_AMP           | Spread spectrum frequency variation amplitude 00: 14.73% 01: 22.5% (default) 10: 22.5% 11: 30.35%                                                   | 01                                         |   |
|      |                | 7    | RW  | HPF_EN            | High-Pass filter enabled 0: Disable 1: Enable (default)                                                                                             | 1                                          |   |
|      |                | 6    | RW  | COMP_EN           | Compensation filter enable 0: Disable (default) 1: Enable (not available at 192kHz sampling rate)                                                   | 0                                          |   |
|      |                |      | 5   | RW                | DRC_EN                                                                                                                                              | DRC enabled 0: Disable (default) 1: Enable | 0 |
| 0x08 | 1              | 4    | RW  | DRC_N_EN          | DRC Noise Gate enabled 0: Disable (default) 1: Enable                                                                                               | 0                                          |   |
|      |                | 3    | RW  | HARD_CLIP_<br>EN  | Hard clip enabled 0: Disable (default) 1: Enable                                                                                                    | 0                                          |   |
|      |                | 2    | RW  | DRE_EN            | DRE enabled 0: Disable 1: Enable (default)                                                                                                          | 1                                          |   |
|      |                | 1    | RW  | DRC_PEAK          | DRC mode selection 0: RMS mode 1: Peak mode (default)                                                                                               | 1                                          |   |
|      |                | 0    | RW  | MS_MUTE           | 1: Master soft mute                                                                                                                                 | 0                                          |   |



| ADDR | Byte<br>Number | BITS | R/W | Reg Name            | Description                                                                                                                                                                                                                                                                                                                                                                  | Default |
|------|----------------|------|-----|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:3  | RW  | Reserved            | Reserved                                                                                                                                                                                                                                                                                                                                                                     | 0000    |
|      |                | 2    | RW  | DRC_GAIN_<br>HYS_EN | <ul><li>0: DRC gain hysteresis disable</li><li>1: DRC gain hysteresis enable (default)</li><li>Gain release condition is gain difference ≥</li><li>0.125dB</li></ul>                                                                                                                                                                                                         | 1       |
| 0x09 | 1              | 1    | RW  | COMP_<br>SHARE      | Compensation filter common coefficients selection 0: CH1/CH2 share CH1 coefficients, CH3/CH4 share CH3 coefficients 1: All channel share CH1 coefficients (default)                                                                                                                                                                                                          | 1       |
|      |                | 0    | RW  | COEF_PAGE<br>_SEL   | DSP Coefficient page selection for mixer (0x40 to 0x43)/compensation (0x4C to 0x4F) 0: Setting for CH1/CH2 (default) 1: Setting for CH3/CH4                                                                                                                                                                                                                                  | 0       |
|      |                | 7    | RW  | SKIP_RAMP           | Skip volume ramp 0: Disable (default) 1: Enable                                                                                                                                                                                                                                                                                                                              | 0       |
|      | 1              | 6    | RW  | FAST_RAMP<br>_MUTE  | Mute pin fast mute, mute time < 1ms 0: Normal ramp time (default) 1: Fast mute time                                                                                                                                                                                                                                                                                          | 0       |
|      |                | 5    | RW  | MUTE_MODE           | Mute pin behavior 0: Mute only (default) 1: Enter ULQM                                                                                                                                                                                                                                                                                                                       | 0       |
| 0x0A |                | 4:2  | RW  | Reserved            | Reserved                                                                                                                                                                                                                                                                                                                                                                     | 000     |
|      |                | 1:0  | RW  | VOL_RAMP_<br>MODE   | Volume Slew step control 00: 1 step in every sample 01: mute $\rightarrow$ -40dB, every sample with1 step40dB $\rightarrow$ 24dB, 2 samples with 1 step. (default) 10: mute $\rightarrow$ -40dB, 2 samples with 1 step40dB $\rightarrow$ 24dB, 4 samples with 1 step. Others: Mute $\rightarrow$ -40dB, 4 samples with 1 step40dB $\rightarrow$ 24dB, 8 samples with 1 step. | 01      |
|      |                | 7:5  | RW  | Reserved            | Reserved                                                                                                                                                                                                                                                                                                                                                                     | 000     |
|      |                | 4    | RW  | FAULT_B_<br>TYPE    | 0: Recovery type 1: Latch type (default)                                                                                                                                                                                                                                                                                                                                     | 1       |
| 0x0B | 1              | 3:0  | RW  | RCVRY_TIME          | Power stage auto-recovery time<br>0000: 100ms<br>0001: 150ms<br>0010: 300ms (default)<br>0011: 450ms<br>0100: 600ms<br>0101: 750ms<br>0110: 900ms<br>0111: 1050ms<br>1000: 1200ms<br>1001: 1350ms<br>Others: 1500ms                                                                                                                                                          | 0010    |

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

## RTQ9128DH-QA



| ADDR | Byte<br>Number                       | BITS              | R/W                                                             | Reg Name           | Description                                                     | Default |
|------|--------------------------------------|-------------------|-----------------------------------------------------------------|--------------------|-----------------------------------------------------------------|---------|
|      |                                      | 7:3               | RW                                                              | Reserved           | Reserved                                                        | 00000   |
|      |                                      | 2                 | RW                                                              | I2S_FAULT_<br>TYPE | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |
| 0x0C | 1                                    | 1                 | RW                                                              | UVP_DVDD_<br>TYPE  | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |
|      |                                      | 0                 | RW                                                              | UVP_VBAT_<br>TYPE  | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |
|      | 6 RW UVP_VDD TYPE  5 RW UVP_PVD TYPE | 7                 | RW                                                              | OVP_VBAT_<br>TYPE  | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |
|      |                                      | 6                 | RW                                                              | UVP_VDDA_<br>TYPE  | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |
|      |                                      | UVP_PVDD_<br>TYPE | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0                  |                                                                 |         |
| 0x0D |                                      | 4                 | RW                                                              | OVP_PVDD_<br>TYPE  | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |
| UXUD | '                                    | 3                 | RW                                                              | UVP_GVDD_<br>TYPE  | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |
|      |                                      | 2                 | RW                                                              | OTPG_TYPE          | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |
|      |                                      | 1                 | RW                                                              | OCPC_TYPE          | Fault behavior type select. 0: Auto-recovery 1: Latch (default) | 1       |
|      |                                      | 0                 | RW                                                              | OTPC_TYPE          | Fault behavior type select. 0: Auto-recovery (default) 1: Latch | 0       |



| ADDR | Byte<br>Number | BITS | R/W | Reg Name                 | Description                                                                                                                                                                                                                                                                                            | Default  |
|------|----------------|------|-----|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      |                | 7:4  | RW  | Reserved                 | Reserved                                                                                                                                                                                                                                                                                               | 0000     |
|      |                | 3    | RW  | I2C_TIMEOU<br>T_TIME_SEL | I <sup>2</sup> C timeout timing selection 0: 100ms (default) 1: 150ms                                                                                                                                                                                                                                  | 0        |
|      |                | 2    | RW  | I2C_TIMEOU<br>T_TYPE_SEL | I <sup>2</sup> C timeout check pin type 0: SCL & SDAO both keep low start timeout counting 1: SDAO keep low start timeout counting (default)                                                                                                                                                           | 1        |
| 0x0E | 1              | 1    | RW  | I2C_TIME_<br>OUT_SEL     | I <sup>2</sup> C timeout reset selection 0: Reset I <sup>2</sup> C IP only (default) 1: Reset whole chip                                                                                                                                                                                               | 0        |
|      |                | 0    | RW  | I2C_TIME_<br>OUT_EN      | I <sup>2</sup> C timeout function: If SDA & SCL remain low for 100ms, an I <sup>2</sup> C timeout reset will occur. Bit 0 of register 0x05 is a reset option to select the reset block. Bit 1 of register 0x05 is used to enable the I <sup>2</sup> C timeout function. 0: Disable 1: Enable (default) | 1        |
| 0x0F | 1              | 7:0  | R   | ERR_INT_<br>INDEX        | Report ERR_INT summary from ERR_INT0 (0x10) to ERR_INT7 (0x17)                                                                                                                                                                                                                                         | 00000001 |
|      |                | 7:6  | RW  | Reserved                 | Reserved                                                                                                                                                                                                                                                                                               | 00       |
|      |                | 5    | RWC | PWM_ERR                  | PWM frequency setting error under sampling rate (0x06, 0x20) 0: PWM is supported (default) 1: PWM is not supported (write 0 to clear)                                                                                                                                                                  | 0        |
| 0x10 | 1              | 4:3  | RWC | ADS_ERR                  | Address R detection error {ADDR_1, ADDR_0} 0: R detect correct (default) 1: R detect error (write 0 to clear flag)                                                                                                                                                                                     | 00       |
|      |                | 2    | RWC | POR                      | Power-on reset 0: Normal 1: Warning (write 0 to clear) (default)                                                                                                                                                                                                                                       | 1        |
|      |                | 1    | RWC | BCLK_ERR                 | 0: No BCLK error (default) 1: BCLK error, write 0 to clear flag                                                                                                                                                                                                                                        | 0        |
|      |                | 0    | RWC | LRCK_ERR                 | No LRCK clock error (default)     LRCK clock error, write0 to clear flag                                                                                                                                                                                                                               | 0        |



| ADDR  | Byte<br>Number | BITS | R/W | Reg Name  | Description                                                                                  | Default |
|-------|----------------|------|-----|-----------|----------------------------------------------------------------------------------------------|---------|
|       |                | 7    | RWC | VDDA_UV   | VDDA UVP 0: Normal (default) 1: Fault (write 0 to clear)                                     | 0       |
|       |                | 6    | RWC | GVDDAB_UV | GVDDAB UVP 0: Normal (default) 1: Fault (write 0 to clear)                                   | 0       |
|       |                | 5    | RWC | GVDDCD_UV | GVDDCD UVP 0: Normal (default) 1: Fault (write 0 to clear)                                   | 0       |
| 0x11  | 1              | 4    | RWC | DVDD_UV   | DVDD UVP 0: Normal (default) 1: Fault (write 0 to clear)                                     | 0       |
| OXII  | '              | 3    | RWC | VBAT_UV   | VBAT UVP 0: Normal (default) 1: Fault (write 0 to clear)                                     | 0       |
|       |                | 2    | RWC | VBAT_OV   | VBAT OVP 0: Normal (default) 1: Fault (write 0 to clear)                                     | 0       |
|       |                | 1    | RWC | OTPG      | Global OTP 0: Normal (default) 1: Fault (write 0 to clear)                                   | 0       |
|       |                | 0    | RWC | OTWG      | Global OT warning 0: Normal (default) 1: Warning (write 0 to clear)                          | 0       |
|       |                | 7:6  | RWC | PVDD_UV   | PVDD UVP {AB, CD} 0: Normal (default) 1: Fault (write 0 to clear)                            | 00      |
| 0x12  | 1              | 5:4  | RWC | PVDD_OV   | PVDD OVP {AB, CD} 0: Normal (default) 1: Fault (write 0 to clear)                            | 00      |
|       |                | 3:0  | RWC | DCP       | Output DC detected flag {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear) | 0000    |
| 0.40  | 4              | 7:4  | RWC | OTPC      | Channel OTP {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear)             | 0000    |
| 0x13  | 1              | 3:0  | RWC | OCPC      | Channel OCP {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear)             | 0000    |
| 0x14  | 1              | 7:4  | RWC | OTWC      | Channel OT Warning {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Warning (write 0 to clear)    | 0000    |
| 0.714 |                | 3:0  | RWC | BS_LOW    | Channel boost low {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Warning (write 0 to clear)     | 0000    |



| ADDR | Byte<br>Number | BITS | R/W | Reg Name           | Description                                                                                                      | Default |
|------|----------------|------|-----|--------------------|------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:4  | RWC | CLIP               | Clip detection {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Warning (write 0 to clear)                            | 0000    |
|      |                | 3    | RWC | OCW_Flag_4         | Overcurrent warning flag CH4 0: Normal (default) 1: Warning (write 0 to clear)                                   | 0       |
| 0x15 | 1              | 2    | RWC | OCW_Flag_3         | Overcurrent warning flag CH3 0: Normal (default) 1: Warning (write 0 to clear)                                   | 0       |
|      |                | 1    | RWC | OCW_Flag_2         | Overcurrent warning flag CH2 0: Normal (default) 1: Warning (write 0 to clear)                                   | 0       |
|      |                | 0    | RWC | OCW_Flag_1         | Overcurrent warning flag CH1 0: Normal (default) 1: Warning (write 0 to clear)                                   | 0       |
| 0.40 | 4              | 7:4  | RWC | S2P                | Output short to power {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear)                       | 0000    |
| 0x16 | 1              | 3:0  | RWC | S2G                | Output short to ground {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear)                      | 0000    |
|      |                | 7:4  | RWC | OL                 | Output open load {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear)                            | 0000    |
| 0x17 | 1              | 3:0  | RWC | SL                 | Positive output shorting to negative output {CH4, CH3, CH2, CH1} 0: Normal (default) 1: Fault (write 0 to clear) | 0000    |
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                         | 00      |
| 0v40 |                | 5    | RW  | MASK_PWM_<br>ERR   | Fault mask for PWM setting error 0: Not mask (default) 1: Mask                                                   | 0       |
| 0x18 | 1              | 4:1  | R   | Reserved           |                                                                                                                  | 0000    |
|      |                | 0    | RW  | MASK_I2S_<br>FAULT | Fault mask for BCLK and LRCK error 0: Not mask (default) 1: Mask                                                 | 0       |



| ADDR  | Byte<br>Number | BITS | R/W | Reg Name         | Description                                                               | Default |
|-------|----------------|------|-----|------------------|---------------------------------------------------------------------------|---------|
|       |                | 7    | RW  | MASK_UV_<br>VDDA | Fault mask for VDDA UV 0: Not mask (default) 1: Mask                      | 0       |
|       |                | 6    | RW  | MASK_UV_<br>GVAB | Fault mask for GVAB UV 0: Not mask (default) 1: Mask                      | 0       |
|       |                | 5    | RW  | MASK_UV_<br>GVCD | Fault mask for GVCD UV 0: Not mask (default) 1: Mask                      | 0       |
| 0x19  | 1              | 4    | RW  | MASK_UV_<br>DVDD | Fault mask for DVDD UV<br>0: Not mask (default)<br>1: Mask                | 0       |
| OX 10 | ·              | 3    | RW  | MASK_UV_<br>VBAT | Fault mask for VBAT UV 0: Not mask (default) 1: Mask                      | 0       |
|       |                | 2    | RW  | MASK_OV_<br>VBAT | Fault mask for VBAT OV 0: Not mask (default) 1: Mask                      | 0       |
|       |                | 1    | RW  | MASK_OTPG        | Fault mask for OTPG 0: Not mask (default) 1: Mask                         | 0       |
|       |                | 0    | RW  | MASK_OTWG        | Fault mask for OTWG 0: Not mask (default) 1: Mask                         | 0       |
|       |                | 7:6  | RW  | MASK_UV_<br>PVDD | Fault mask for PVDD UV {AB, CD} 0: Not mask (default) 1: Mask             | 00      |
| 0x1A  | 1              | 5:4  | RW  | MASK_OV_<br>PVDD | Fault mask for PVDD OV {AB, CD} 0: Not mask (default) 1: Mask             | 00      |
|       |                | 3:0  | RW  | MASK_DCP         | Fault mask for DCP {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask     | 0000    |
| 0.40  | 4              | 7:4  | RW  | MASK_OTPC        | Fault mask for OTPC {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask    | 0000    |
| 0x1B  | 1              | 3:0  | RW  | MASK_OCPC        | Fault mask for OCPC {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask    | 0000    |
|       |                | 7:4  | RW  | MASK_OTWC        | Fault mask for OTWC {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask    | 0000    |
| 0x1C  | 1              | 3:0  | RW  | MASK_BS_<br>LOW  | Fault mask for BST_LOW {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask | 0000    |

www.richtek.com



| ADDR | Byte<br>Number | BITS | R/W  | Reg Name       | Description                                                                                                                                                                                                                                                                                                                                                                                                                            | Default |
|------|----------------|------|------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0.45 | 4              | 7:4  | RW   | MASK_CLIP      | Fault mask for chip detection {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask                                                                                                                                                                                                                                                                                                                                                       | 0000    |
| 0x1D | 1              | 3:0  | RW   | MASK_OCW       | Fault mask for overcurrent warning {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask                                                                                                                                                                                                                                                                                                                                                  | 0000    |
| 0x1E | 1              | 7:4  | RW   | MASK_S2P       | Fault mask for S2P {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask                                                                                                                                                                                                                                                                                                                                                                  | 0000    |
| UXIE | 1              | 3:0  | RW   | MASK_S2G       | Fault mask for S2G {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask                                                                                                                                                                                                                                                                                                                                                                  | 0000    |
| 0x1F | 1              | 7:4  | RW   | MASK_OL        | Fault mask for OL {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask                                                                                                                                                                                                                                                                                                                                                                   | 0000    |
| OXTF | 1              | 3:0  | RW   | MASK_SL        | Fault mask for SL {CH4, CH3, CH2, CH1} 0: Not mask (default) 1: Mask                                                                                                                                                                                                                                                                                                                                                                   | 0000    |
|      |                | 7    | R    | PWM_<br>STATUS | PWM status 0: Sampling rate vs. PWM frequency is supported (default) 1: Sampling rate vs. PWM frequency is not supported                                                                                                                                                                                                                                                                                                               | 0       |
|      |                | 6:4  | R/RW | SR_MODE        | Sampling rate: manual or auto-detected. SR_AUTO_DET enabled: SR_MODE reports result. SR_AUTO_DET disabled: Set SR_MODE manually. 100: 32kHz 101: 44.1/48kHz (default) 110: 88.2/96kHz 111: 192kHz Others: Reserved                                                                                                                                                                                                                     | 101     |
| 0x20 | 1              | 3:0  | R/RW | BCLK_MODE      | BCLK mode: manual or auto-detected. SR_AUTO_DET enabled: BCLK_MODE reports result. SR_AUTO_DET disabled: Set BCLK_MODE manually. 0000: BCLK = 32fs 0001: BCLK = 48fs 0010: BCLK = 64fs (default) 0011: BCLK = 96fs 0100: BCLK = 128fs 0101: BCK = 192fs (not support 192K-SR) 0110: BCK = 256fs (not support 192K-SR) 0111: BCK = 384fs (not support 96K-SR, 192K-SR) 1000: BCK = 512fs (not support 96K-SR, 192K-SR) Others: Reserved | 0010    |

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



| ADDR | Byte<br>Number | BITS | R/W | Reg Name           | Description                                                                                                                                                                                                                                           | Default |
|------|----------------|------|-----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                                                                                                                                                              | 00      |
| 0x21 | 1              | 5:0  | RW  | TDM_TX_<br>LOC_CH1 | TDM start transmitting location select for CH1 000000: Start from 0+offset (default) 000001: Start from 8+offset 111100: Start from 480+offest 111101: Start from 488+offset 111111: Not available 111111: Not available                              | 000000  |
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                                                                                                                                                              | 00      |
| 0x22 | 1              | 5:0  | RW  | TDM_TX_<br>LOC_CH2 | TDM start transmitting location select for CH2 000000: Start from 0+offset 000001: Start from 8+offset 000011: Start from 24+offset (default) 111100: Start from 480+offest 111101: Start from 488+offset 111110: Not available 111111: Not available | 000011  |
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                                                                                                                                                              | 00      |
| 0x23 | 1              | 5:0  | RW  | TDM_TX_<br>LOC_CH3 | TDM start transmitting location select for CH3 000000: Start from 0+offset 000001: Start from 8+offset 000110: Start from 48+offset (default) 111100: Start from 480+offest 111101: Start from 488+offset 111111: Not available 111111: Not available | 000110  |
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                                                                                                                                                              | 00      |
| 0x24 | 1              | 5:0  | RW  | TDM_TX_<br>LOC_CH4 | TDM start transmitting location select for CH4 000000: Start from 0+offset 000001: Start from 8+offset 001001: Start from 72+offset (default) 111100: Start from 480+offest 111101: Start from 488+offset 111111: Not available 111111: Not available | 001001  |
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                                                                                                                                                              | 00      |
| 0x25 | 1              | 5:0  | RW  | TDM_RX_<br>LOC_CH1 | TDM start receiving location select for CH1 000000: Start from 0+offset (default) 000001: Start from 8+offset 111100: Start from 480+offest 111101: Start from 488+offset 111111: Not available 111111: Not available                                 | 000000  |

Copyright © 2025 Richtek Technology Corporation. All rights reserved.



| ADDR | Byte<br>Number | BITS | R/W | Reg Name           | Description                                                                                                                                                                                                                                        | Default |
|------|----------------|------|-----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                                                                                                                                                           | 00      |
| 0x26 | 1              | 5:0  | RW  | TDM_RX_<br>LOC_CH2 | TDM start receiving location select for CH2 000000: Start from 0+offset 000001: Start from 8+offset 000011: Start from 24+offset (default) 111100: Start from 480+offest 111101: Start from 488+offset 111110: Not available 111111: Not available | 000011  |
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                                                                                                                                                           | 00      |
| 0x27 | 1              | 5:0  | RW  | TDM_RX_<br>LOC_CH3 | TDM start receiving location select for CH3 000000: Start from 0+offset 000001: Start from 8+offset 000110: Start from 48+offset (default) 111100: Start from 480+offest 111101: Start from 488+offset 111110: Not available 111111: Not available | 000110  |
|      |                | 7:6  | RW  | Reserved           | Reserved                                                                                                                                                                                                                                           | 00      |
| 0x28 | 1              | 5:0  | RW  | TDM_RX_<br>LOC_CH4 | TDM start receiving location select for CH4 000000: Start from 0+offset 000001: Start from 8+offset 001001: Start from 72+offset (default) 111100: Start from 480+offest 111101: Start from 488+offset 111110: Not available 111111: Not available | 001001  |
|      |                | 7:4  | RW  | HPF_EN_CH          | High-pass filter enabled {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable                                                                                                                                                                       | 0000    |
| 0x29 | 1              | 3:0  | RW  | COMP_EN_<br>CH     | Compensation filter enabled {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable (not available at 192kHz sampling rate)                                                                                                                            | 0000    |
| 0x2A | 1              | 7:4  | RW  | DRC_EN_CH          | Dynamic range control (DRC) enabled {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable                                                                                                                                                            | 0000    |
| UNZA |                | 3:0  | RW  | DRC_N_EN_<br>CH    | DRC Noise Gate enabled {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable                                                                                                                                                                         | 0000    |

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



| ADDR | Byte<br>Number | BITS  | R/W      | Reg Name            | Description                                                                                                                               | Default |
|------|----------------|-------|----------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0x2B | 4              | 7:4   | RW       | HARD_CLIP_<br>EN_CH | Hard clip enabled {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable                                                                     | 0000    |
| UXZB | 1              | 3:0   | RW       | DRE_EN_CH           | DRE enabled {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable                                                                           | 0000    |
|      |                | 15:11 | RW       | Reserved            | Reserved                                                                                                                                  | 00000   |
| 0x30 | 2              | 10:0  | RW       | MS_VOL              | Master Volume control 11'h000: 24dB 11'h180: 0dB 11'h7FF: Mute (default) 0.0625dB per step                                                | 11'h7FF |
|      | 15:11          | RW    | Reserved | Reserved            | 00000                                                                                                                                     |         |
| 0x31 | 2              | 10:0  | RW       | CH1_VOL             | CH1 Volume control 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: Mute 0.0625dB per step                                                   | 11'h180 |
|      |                | 15:11 | RW       | Reserved            | Reserved                                                                                                                                  | 00000   |
| 0x32 | 2              | 10:0  | RW       | CH2_VOL             | CH2 Volume control 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: Mute 0.0625dB per step                                                   | 11'h180 |
|      |                | 15:11 | RW       | Reserved            | Reserved                                                                                                                                  | 00000   |
| 0x33 | 2              | 10:0  | RW       | CH3_VOL             | CH3 Volume control 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: Mute 0.0625dB per step                                                   | 11'h180 |
|      |                | 15:11 | RW       | Reserved            | Reserved                                                                                                                                  | 00000   |
| 0x34 | 2              | 10:0  | RW       | CH4_VOL             | CH4 Volume control 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: Mute 0.0625dB per step                                                   | 11'h180 |
|      |                | 15:11 | RW       | Reserved            | Reserved                                                                                                                                  | 00000   |
| 0x35 | 2              | 10:0  | RW       | HC_TH               | Hard clip threshold when HARD_CLIP_EN = 1 > 0dB is not allowable for hard clip threshold setting 11'h180: 0dB (default) 0.0625db per step | 11'h180 |



| ADDR  | Byte<br>Number | BITS  | R/W | Reg Name       | Description                                                                                                                                                          | Default    |
|-------|----------------|-------|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|       |                | 23:11 | RW  | Reserved       | Reserved                                                                                                                                                             | 13'h0000   |
| 0x40  | 3              | 10:0  | RW  | DRC_TH         | DRC threshold<br>11'h000: 0dB (default)<br>11'h180: -24dB<br>11'h67E: -103.875dB<br>11'h67F to 11'h7FF: not available<br>0.0625dB per step                           | 11'h000    |
|       |                | 23:11 | RW  | Reserved       | Reserved                                                                                                                                                             | 13'h0000   |
| 0x41  | 3              | 10:0  | RW  | DRC_<br>OFFSET | DRC make up gain (Offset) 11'h000: 24dB 11'h180: 0dB (default) 11'h7FF: -103.9375dB 0.0625dB per step                                                                | 11'h180    |
|       |                | 23:8  | RW  | Reserved       | Reserved                                                                                                                                                             | 16'h0000   |
| 0x42  | 3              | 7:0   | RW  | DRC_RATIO      | DRC compress ratio<br>8'h00: No compression<br>8'h80 (default) ~ 8'hFF: Full compression<br>1/128 per step                                                           | 8'h80      |
|       |                | 23:11 | RW  | Reserved       | Reserved                                                                                                                                                             | 13'h0000   |
| 0x43  | 3              | 10:0  | RW  | DRC_NG_TH      | Noise gate threshold<br>11'h000: 0dB<br>11'h180: -24dB<br>11'h640: -100dB (default)<br>11'h67E: -103.875dB<br>11'h67F to 11'h7FF: Not available<br>0.0625dB per step | 11'h640    |
| 0.444 | 2              | 23:17 | RW  | Reserved       | Reserved                                                                                                                                                             | 0000000    |
| 0x44  | 3              | 16:0  | RW  | DRC_AE         | DRC_AE                                                                                                                                                               | 17'h0_8000 |
| 0x45  | 3              | 23:17 | RW  | Reserved       | Reserved                                                                                                                                                             | 0000000    |
| 0.00  | 3              | 16:0  | RW  | DRC_1_AE       | DRC_1_AE                                                                                                                                                             | 17'h0_0000 |
| 0x46  | 3              | 23:17 | RW  | Reserved       | Reserved                                                                                                                                                             | 0000000    |
| 0.00  | 3              | 16:0  | RW  | DRC_AD         | DRC_AD                                                                                                                                                               | 17'h0_8000 |
| 0x47  | 3              | 23:17 | RW  | Reserved       | Reserved                                                                                                                                                             | 0000000    |
| 0.47  | 3              | 16:0  | RW  | DRC_AA         | DRC_AA                                                                                                                                                               | 17'h0_8000 |
|       |                | 23:17 | RW  | Reserved       | Reserved                                                                                                                                                             | 0000000    |
| 0x48  | 3              | 16:0  | RW  | COMP_B0        | Compensation filter coefficient B0,<br>COEF_PAGE_SEL (0x09) select CH12 or<br>CH34                                                                                   | 17'h0_8000 |
|       |                | 23:17 | RW  | Reserved       | Reserved                                                                                                                                                             | 0000000    |
| 0x49  | 3              | 16:0  | RW  | COMP_B1        | Compensation filter coefficient B1,<br>COEF_PAGE_SEL (0x09) select CH12 or<br>CH34                                                                                   | 17'h0_0000 |



| ADDR | Byte<br>Number | BITS  | R/W | Reg Name   | Description                                                                                                                                            | Default    |
|------|----------------|-------|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|      |                | 23:17 | RW  | Reserved   | Reserved                                                                                                                                               | 0000000    |
| 0x4A | 3              | 16:0  | RW  | COMP_B2    | Compensation filter coefficient B2,<br>COEF_PAGE_SEL (0x09) select CH12 or<br>CH34                                                                     | 17'h0_0000 |
|      |                | 23:17 | RW  | Reserved   | Reserved                                                                                                                                               | 0000000    |
| 0x4B | 3              | 16:0  | RW  | COMP_B3    | Compensation filter coefficient B3,<br>COEF_PAGE_SEL (0x09) select CH12 or<br>CH34                                                                     | 17'h0_0000 |
|      |                | 23:17 | RW  | Reserved   | Reserved                                                                                                                                               | 0000000    |
| 0x4C | 3              | 16:0  | RW  | CH13_MIX_0 | Channel input mixer coefficient 0,<br>COEF_PAGE_SEL (0x09) select CH1 or CH3                                                                           | 17'h0_8000 |
|      |                | 23:17 | RW  | Reserved   | Reserved                                                                                                                                               | 0000000    |
| 0x4D | 3              | 16:0  | RW  | CH13_MIX_1 | Channel input mixer coefficient 1, COEF_PAGE_SEL (0x09) select CH1 or CH3                                                                              | 17'h0_0000 |
|      |                | 23:17 | RW  | Reserved   | Reserved                                                                                                                                               | 0000000    |
| 0x4E | 3              | 16:0  | RW  | CH24_MIX_0 | Channel input mixer coefficient 0, COEF_PAGE_SEL (0x09) select CH2 or CH4                                                                              | 17'h0_0000 |
|      |                | 23:17 | RW  | Reserved   | Reserved                                                                                                                                               | 0000000    |
| 0x4F | 3              | 16:0  | RW  | CH24_MIX_1 | Channel input mixer coefficient 1, COEF_PAGE_SEL (0x09) select CH2 or CH4                                                                              | 17'h0_8000 |
| 0.54 |                | 7:4   | RW  | SL_TH_CH1  | CH1 SL threshold selection $(0.5\Omega$ each step) 0000: $0.5\Omega$ 0001: $1\Omega$ (default) 0010: $1.5\Omega$ 1001: $5\Omega$ Others: Reserved      | 0001       |
| 0x51 | 1              | 3:0   | RW  | SL_TH_CH2  | CH2 SL threshold selection (0.5 $\Omega$ each step) 0000: 0.5 $\Omega$ 0001: 1 $\Omega$ (default) 0010: 1.5 $\Omega$ 1001: 5 $\Omega$ Others: Reserved | 0001       |
| 0x52 |                | 7:4   | RW  | SL_TH_CH3  | CH3 SL threshold selection (0.5 $\Omega$ each step) 0000: 0.5 $\Omega$ 0001: 1 $\Omega$ (default) 0010: 1.5 $\Omega$ 1001: 5 $\Omega$ Others: Reserved | 0001       |
|      | 1              | 3:0   | RW  | SL_TH_CH4  | CH4 SL threshold selection (0.5 $\Omega$ each step) 0000: 0.5 $\Omega$ 0001: 1 $\Omega$ (default) 0010: 1.5 $\Omega$ 1001: 5 $\Omega$ Others: Reserved | 0001       |



| ADDR | Byte<br>Number | BITS  | R/W | Reg Name        | Description                                                                                                                                                                                               | Default |
|------|----------------|-------|-----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 0x53 | 1              | 7:4   | RW  | EN_DC_DET       | DC load detection enable {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable After the command is executed, the value is returned to 0, and the command is set to 1 to enable DC load detection.          | 0000    |
|      |                | 3:0   | R   | DC_DET_<br>DONE | DC load detection done flag after enabling DC load detection {CH4, CH3, CH2, CH1} 0: DC load detection do not executed or do not finished 1: DC load detection finishes (default)                         | 1111    |
|      |                | 7:5   | RW  | Reserved        | Reserved                                                                                                                                                                                                  | 000     |
| 0x54 | 1              | 4:0   | RW  | AC_PHI          | Generated signal frequency: 00: No signal 01: Set 1 = 1kHz, 02: set 2 = 2kHz,, set 17 = 23kHz 13: Set 19kHz (default) 18~1F: Reserved                                                                     | 5'h13   |
|      | 1              | 7:4   | RW  | EN_AC_DET       | AC load detection enable {CH4, CH3, CH2, CH1} 0: Disable (default) 1: Enable                                                                                                                              | 0000    |
| 0x55 |                | 3:0   | R   | AC_DET_<br>DONE | AC detection done flag after enabling AC load detection {CH4, CH3, CH2, CH1} 0: AC_PHASE_R and AC_PHASE_I keep the last result if ever enabling detection 1: AC_PHASE_R and AC_PHASE_I is valid (default) | 1111    |
| 0.50 |                | 31:16 | R   | AC_MAG_1        | Report CH1 magnitude                                                                                                                                                                                      | 16'd0   |
| 0x5C | 4              | 15:0  | R   | AC_PHA_1        | Report CH1 phase                                                                                                                                                                                          | 16'd0   |
| 05D  | 4              | 31:16 | R   | AC_MAG_2        | Report CH2 magnitude                                                                                                                                                                                      | 16'd0   |
| 0x5D | 4              | 15:0  | R   | AC_PHA_2        | Report CH2 phase                                                                                                                                                                                          | 16'd0   |
| 055  | 4              | 31:16 | R   | AC_MAG_3        | Report CH3 magnitude                                                                                                                                                                                      | 16'd0   |
| 0x5E | 4              | 15:0  | R   | AC_PHA_3        | Report CH3 phase                                                                                                                                                                                          | 16'd0   |
| OvEC | 4              | 31:16 | R   | AC_MAG_4        | Report CH4 magnitude                                                                                                                                                                                      | 16'd0   |
| 0x5F | 4              | 15:0  | R   | AC_PHA_4        | Report CH4 phase                                                                                                                                                                                          | 16'd0   |
| 0x60 | 4              | 31:0  | R   | AC_INT_R_1      | Report the real part of CH1 internal phase                                                                                                                                                                | 32'd0   |
| 0x61 | 4              | 31:0  | R   | AC_INT_I_1      | Report the imaginary part of CH1 internal phase                                                                                                                                                           | 32'd0   |
| 0x62 | 4              | 31:0  | R   | AC_SPK_R_1      | Report the real part of CH1 speaker phase                                                                                                                                                                 | 32'd0   |
| 0x63 | 4              | 31:0  | R   | AC_SPK_I_1      | Report the imaginary part of CH1 speaker phase                                                                                                                                                            | 32'd0   |
| 0x64 | 4              | 31:0  | R   | AC_INT_R_2      | Report the real part of CH2 internal phase                                                                                                                                                                | 32'd0   |
| 0x65 | 4              | 31:0  | R   | AC_INT_I_2      | Report the imaginary part of CH2 internal phase                                                                                                                                                           | 32'd0   |

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

# RTQ9128DH-QA



| ADDR | Byte<br>Number | BITS | R/W | Reg Name        | Description                                                        | Default |
|------|----------------|------|-----|-----------------|--------------------------------------------------------------------|---------|
| 0x66 | 4              | 31:0 | R   | AC_SPK_R_2      | Report the real part of CH2 speaker phase                          | 32'd0   |
| 0x67 | 4              | 31:0 | R   | AC_SPK_I_2      | Report the imaginary part of CH2 speaker phase                     | 32'd0   |
| 0x68 | 4              | 31:0 | R   | AC_INT_R_3      | Report the real part of CH3 internal phase                         | 32'd0   |
| 0x69 | 4              | 31:0 | R   | AC_INT_I_3      | Report the imaginary part of CH3 internal phase                    | 32'd0   |
| 0x6A | 4              | 31:0 | R   | AC_SPK_R_3      | Report the real part of CH3 speaker phase                          | 32'd0   |
| 0x6B | 4              | 31:0 | R   | AC_SPK_I_3      | Report the imaginary part of CH3 speaker phase                     | 32'd0   |
| 0x6C | 4              | 31:0 | R   | AC_INT_R_4      | Report the real part of CH4 internal phase                         | 32'd0   |
| 0x6D | 4              | 31:0 | R   | AC_INT_I_4      | Report the imaginary part of CH4 internal phase                    | 32'd0   |
| 0x6E | 4              | 31:0 | R   | AC_SPK_R_4      | Report the real part of CH4 speaker phase                          | 32'd0   |
| 0x6F | 4              | 31:0 | R   | AC_SPK_I_4      | Report the imaginary part of CH4 speaker phase                     | 32'd0   |
|      |                | 7    | RW  | Reserved        | Reserved                                                           | 0       |
|      |                | 6    | RW  | EN_OTPC         | Channel OT protection enabled 0: Disable 1: Enable (default)       | 1       |
|      |                | 5    | RW  | EN_OTWC         | Channel OT warning enabled 0: Disable 1: Enable (default)          | 1       |
|      |                | 4    | RW  | EN_UVOVOT       | Enable UV/OV/OT 0: Disable 1: Enable (default)                     | 1       |
| 0x70 | 1              | 3    | RW  | EN_OCW          | Enable overcurrent warning function 0: Disable 1: Enable (default) | 1       |
|      |                | 2    | RW  | EN_DC_<br>PROT  | DC protection enabled 0: Disable 1: Enable (default)               | 1       |
|      |                | 1    | RW  | EN_CLIP_<br>DET | Clip detection enabled 0: Disable 1: Enable (default)              | 1       |
|      |                | 0    | RW  | EN_BS_<br>PROT  | Boot low protection enabled 0: Disable 1: Enable (default)         | 1       |



| ADDR | Byte<br>Number | BITS | R/W                      | Reg Name          | Description                                                                                                                                              | Default |
|------|----------------|------|--------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:6  | RW                       | UV_DV_SEL         | DVDD UV threshold selection 00: 1.4V 01: 1.5V 10: 2.1V 11: 2.3V (default)                                                                                | 11      |
|      |                |      | RW                       | DC_UVP_<br>CAL_EN | PVDD UVP re-calibration dc offset enabled 0: Disable (default) 1: Enable                                                                                 | 0       |
| 0x71 | 1              | 1 4  |                          | UV_RAMP_<br>DOWN  | PVDD UV protection behavior 0: HZ_PROT directly (default) 1: Power-off sequence                                                                          | 0       |
|      |                | 3    | RW                       | Reserved          | Reserved                                                                                                                                                 | 1       |
|      |                | 2    | 2   RW   EN_OTW_   0: Di |                   | Enable thermal fold-back 0: Disable (default) 1: Enable                                                                                                  | 0       |
|      |                | 1    | RW                       | Reserved          | Reserved                                                                                                                                                 | 1       |
|      |                | 0    | RW                       | Reserved          | Reserved                                                                                                                                                 | 0       |
|      | 0x72 1         |      | RW                       | BS_LOW_<br>SEL    | Boot low protection threshold selection 0: 3V (default) 1: 3.5V                                                                                          | 0       |
| 0x72 |                |      | RW                       | UV_VBAT_<br>SEL   | Battery UV threshold selection<br>000: 4V (default)<br>001: 6.12V<br>010: 8.88V<br>011: 11.1V<br>100: 12.67V<br>101: 15.26V<br>110: 19.71V<br>111: 21.5V | 000     |
|      |                | 3    | RW                       | Reserved          | Reserved                                                                                                                                                 | 0       |
|      |                |      | RW                       | UV_PVDD_<br>SEL   | PVDD UV threshold selection<br>000: 4V (default)<br>001: 6.12V<br>010: 8.88V<br>011: 11.1V<br>100: 12.67V<br>101: 15.26V<br>110: 19.71V<br>111: 21.5V    | 000     |



| ADDR | Byte<br>Number | BITS | R/W | Reg Name                 | Description                                                                                                                                                                   | Default |
|------|----------------|------|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:6  | RW  | OTPG_SEL                 | Global OTP threshold selection 00: 160°C (default) 01: 170°C 10: Reserved 11: Reserved                                                                                        | 00      |
| 072  | 5:4            |      | RW  | OTPC_SEL                 | Channel OTP threshold selection 00: 160°C 01: 170°C (default) 10: Reserved 11: Reserved                                                                                       | 01      |
| 0x73 | 1              | 3:0  | RW  | CLIP_DET_<br>SEL         | Clip detect threshold, release threshold (unit: PWM cycle) 0000: 1, 0 0001: 5, 3 0010: 10, 5 0011: 20, 5 (default) 0100: 50, 30 0101: 100, 80 0110: 150, 130 Others: 250, 230 | 0011    |
|      |                | 7:6  | RW  | TFC_ATTACK<br>_RATE      | Thermal Fold-Back attack rate 00: 0.0625dB/25ms (default) 01: 0.0625dB/50ms 10: 0.0625dB/100ms 11: 0.0625dB/200ms                                                             | 00      |
| 0x74 | 1              | 5:4  | RW  | TFC_<br>RELEASE_<br>RATE | Thermal Fold-Back release rate 00: 0.0625dB/50ms (default) 01: 0.0625dB/100ms 10: 0.0625dB/200ms 11: 0.0625dB/400ms                                                           | 00      |
|      |                | 3:2  | RW  | Reserved                 | Reserved                                                                                                                                                                      | 01      |
|      |                | 1:0  | RW  | Reserved                 | Reserved                                                                                                                                                                      | 01      |
|      |                | 7:6  | RW  | Reserved                 | Reserved                                                                                                                                                                      | 00      |
| 0x75 | 1              | 5:4  | RW  | OC_HZ_<br>DELAY_SEL      | HZ delay time after OCP is triggered. 00: 1.5ms 01: 3.4ms (default) 10: 8.8ms 11: 21.5ms                                                                                      | 01      |
|      |                | 3:0  | RO  | Reserved                 | Reserved                                                                                                                                                                      | 1111    |



| ADDR   | Byte<br>Number | BITS | R/W          | Reg Name            | Description                                                                                                                                                                                                      | Default |
|--------|----------------|------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|        |                | 7:5  | RW           | Reserved            | Reserved                                                                                                                                                                                                         | 000     |
|        |                | 4    | RW           | DC_DET_<br>REF_TIME | DC offset detection reference time strobe 0: Follow sampling rate (default) 1: PLL divide down to 16kHz                                                                                                          | 0       |
|        |                | 3 RW |              | DC_DET_<br>MODE     | DC offset detection mode 0: Detect DC every (detection time) 1: Consecutively 8 times of (detection time/8) (default)                                                                                            | 1       |
| 0x76   | 0x76 1         | 2    | RW           | DC_TIME_<br>SEL     | DC offset detection time 0: 342ms (default) 1: 684ms                                                                                                                                                             | 0       |
|        |                | 1:0  | 1:0 RW DC_TH |                     | DC offset detection threshold at PWM frequency = 384kHz 00: No available 01: 12.5% (default) 10: 18.75% 11: 25% For example, DC offset = PVDD x DC offset detection threshold → DC offset = 14.4V x 12.5% = 1.8V | 01      |
|        |                | 7:6  | RW           | Reserved            | Reserved                                                                                                                                                                                                         | 00      |
|        |                | 5    | RW           | ADC_CKSEL           | ADC clock selection when VT sense & DC load detection 0: 192kHz 1: 384kHz (default)                                                                                                                              | 1       |
|        |                | 4    | RW           | ADC_AVG_<br>SEL     |                                                                                                                                                                                                                  |         |
| 0x80   | 1              | 3:2  | RW           | ADC_CHP_<br>FREQ    | ADC chopper frequency selection 00: div 64 01: div 32 10: div 16 11: div 8 (default)                                                                                                                             | 11      |
|        |                | 1    | RW           | ADC_DITH_<br>EN     | ADC dither enabled 0: Disable (default) 1: Enable                                                                                                                                                                | 0       |
|        |                | 0    | RW           | ADC_CHP_<br>EN      | ADC chopper enable 0: Disable (default) 1: Enable                                                                                                                                                                | 0       |
| 0x81   | 1              | 7:4  | RW           | ADC_G_<br>PVDD      | The median value offset of ADC gain at PVDD sense                                                                                                                                                                | 1101    |
| - 0x01 | <u>'</u>       | 3:0  | RW           | ADC_G_<br>TEMP      | The median value offset of ADC gain at temperature sense                                                                                                                                                         | 0000    |
|        |                | 7    | RW           | Reserved            | Reserved                                                                                                                                                                                                         | 0       |
| 0x82   | 1              | 6:0  | RW           | ADC_G_DC            | The median value offset of ADC gain at DC load detection                                                                                                                                                         | 0000000 |

# RTQ9128DH-QA



| ADDR   | Byte<br>Number | BITS | R/W | Reg Name                      | Description                                                                                                                                         | Default |
|--------|----------------|------|-----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|        |                | 7:5  | RW  | Reserved                      | Reserved                                                                                                                                            | 000     |
| 0x83   | 0x83 1 4:      |      |     | ADC_G_AC                      | The median value offset of ADC gain at AC load detection                                                                                            | 00000   |
|        |                | 7:6  | RW  | Reserved                      | Reserved                                                                                                                                            | 00      |
|        |                | 5:4  | RW  | R_SPSG_<br>GAIN_ADC_<br>SEL   | ADC PGA gain for DC load short to power/ground 00: 1x (default) 01: 4x 1x: 8x                                                                       | 00      |
| 0x84   | 0x84 1         |      | RW  | R_OLSLAC_<br>GAIN_ADC_<br>SEL | ADC PGA gain for DC load open/short load and AC load 00: 1x (default) 01: 4x 1x: 8x                                                                 | 00      |
|        |                |      | RW  | IDAC_IMAX_<br>SEL             | 0: 1.5mA (-6dB) (default)<br>1: 3mA (0dB)                                                                                                           | 0       |
|        |                | 0 RW |     | LDET_GAIN_<br>MANUAL          | Load detection manual mode 0: Gain select from IDAC_IMAX_SEL (default) 1: AC gain select from MS_VOL; DC gain select from IDAC_VEC_MSB/IDAC_VEC_SSB | 0       |
|        |                | 7:1  | RW  | Reserved                      | Reserved                                                                                                                                            | 0000000 |
| 0x85 1 |                | 0    | RW  | DC_RAMP_<br>TIME              | DC load detection ramp time 0: 1.28ms (default) 1: 2.56ms (ramp from 0.9V to 1.2V)                                                                  | 0       |



| ADDR | Byte<br>Number | BITS | R/W                                                                                                         | Reg Name           | Description                                                                                                                                                                                                                                                                      | Default |
|------|----------------|------|-------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7    | RW                                                                                                          | AC_BIT             | Phase resolution within computation stage 0: 16-bit 1: 32-bit (default)                                                                                                                                                                                                          | 1       |
|      |                | 6    | RW                                                                                                          | AC_SETTLE_<br>TIME | AC load detection settle time 0: 1ms (default) 1: 2ms                                                                                                                                                                                                                            | 0       |
|      |                | 5:4  | 5:4 RW AC_DFT_ DELAY 00: Delay 1ms (48*1 samples) 01: Delay 2ms (48*2 samples) 10: Delay 5ms (48*5 samples) |                    | · · ·                                                                                                                                                                                                                                                                            | 00      |
| 0x86 | 1              | 3:2  | RW                                                                                                          | AC_LOOP_<br>MODE   | AC load detection loop-back mode 00: ADC output: analog loop-back and then speaker detection (default) 01: ADC output: analog loop-back and then still analog loop-back 10: Generated sine (0x51), ignore analog path 11: Down-sampled digital filter output, ignore analog path | 00      |
|      |                | 1    | RW                                                                                                          | AC_INT_<br>PHASE   | Digital internal built-in phase enabled 0: Disable, phase 90 (generated sine) (default) 1: Enable, phase 0 (generated cosine)                                                                                                                                                    | 0       |
|      |                | 0    | RW                                                                                                          | AC_OFS_<br>GAIN_EN | AC load detection ADC offset-gain function 0: Disable 1: Enable (default)                                                                                                                                                                                                        | 1       |
|      |                | 7    | RW                                                                                                          | EN_VDDA5           | _VDDA5                                                                                                                                                                                                                                                                           |         |
|      |                | 6    | RW                                                                                                          | EN_GVAB            | Enable GVDDAB 0: Disable 1: Enable (default)                                                                                                                                                                                                                                     | 1       |
| 0x87 | 1              | 5    | RW                                                                                                          | EN_GVCD            | Enable GVDDCD 0: Disable 1: Enable (default)                                                                                                                                                                                                                                     | 1       |
|      |                | 4    | RW                                                                                                          | EN_UV_DV           | Enable DVDD UV detection 0: Disable 1: Enable (default)                                                                                                                                                                                                                          | 1       |
|      |                | 3:0  | RW                                                                                                          | EN_PWR             | Enable power stage {CH4, CH3, CH2, CH1} 0: Disable 1: Enable (default)                                                                                                                                                                                                           | 1111    |
| U^88 | 1              | 7:4  | RW                                                                                                          | EN_SCDAC           | Enable DAC for Channel {CH4, CH3, CH2, CH1} 0: Disable 1: Enable (default)                                                                                                                                                                                                       | 1111    |
| 0,00 | 0x88 1         |      | RW                                                                                                          | EN_TRI             | Enable triangle generator {CH4, CH3, CH2, CH1} 0: Disable 1: Enable (default)                                                                                                                                                                                                    | 1111    |



| ADDR | Byte<br>Number | BITS  | R/W | Reg Name                     | Description                                                                                                                                                           | Default |
|------|----------------|-------|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:4   | RW  | EN_SPK                       | Enable SPK for Channel {CH4, CH3, CH2, CH1} 0: Disable 1: Enable (default)                                                                                            | 1111    |
|      | 0x89 1         |       | RW  | Reserved                     | Reserved                                                                                                                                                              | 0       |
| 0x89 |                |       | RW  | VDDA5_SEL                    | VDDA5 voltage selection 0: 5V (default) 1: 5.5V                                                                                                                       | 0       |
|      |                | 1     | RW  | GVDD_SEL                     | GVDD_AB/CD voltage selection 0: 5V (default) 1: 5.5V                                                                                                                  | 0       |
|      |                | 0     | RW  | SEQ_TIME_<br>SEL             | Power down to Disable LDO time select 0: 10ms (default) 1: 20ms                                                                                                       | 0       |
|      |                | 7:6   | RW  | D_KDC_QC_<br>TIME            | KDC unity-gain time option<br>00: 25μs<br>01: 50μs (default)<br>10: 200μs<br>11: 1ms                                                                                  | 01      |
|      | 5              |       | RW  | Reserved                     | Reserved                                                                                                                                                              | 0       |
|      |                | 4     | RW  | PVDD_SET_<br>TIME            | 0: 2ms<br>1: 16ms (default)                                                                                                                                           | 1       |
| 0x8A | 1              | 3:2   | RW  | SPK_SST                      | SPK start-up time 00: 2.5ms 01: 5ms (default) 10: 10ms 11: 20ms                                                                                                       | 01      |
|      |                | 1:0   | RW  | D_KDC_CMP<br>_TIME           | KDC compare time option<br>00: 25μs<br>01: 50μs (default)<br>10: 200μs<br>11: 1ms                                                                                     | 01      |
|      |                | 7:3   | RW  | Reserved                     | Reserved                                                                                                                                                              | 00000   |
| 0x8B | 1              | 2:0   | RW  | R_DC_LOAD<br>_ADC_SEL        | DC load ADC report selection 000: 0 (default) 001: S2PG channel P 010: S2PG channel N 011: OLSL channel offset 100: OLSL channel data 101: OLSL channel data - offset | 000     |
| 0x8C | 2              | 15:00 | R   | RDC_LOAD_<br>ADC_RPT_<br>CH1 | DC load ADC report data                                                                                                                                               | 16'd0   |
| 0x8D | 2              | 15:00 | R   | RDC_LOAD_<br>ADC_RPT_<br>CH2 | DC load ADC report data                                                                                                                                               | 16'd0   |
| 0x8E | 2              | 15:00 | R   | RDC_LOAD_<br>ADC_RPT_<br>CH3 | DC load ADC report data                                                                                                                                               | 16'd0   |



| ADDR   | Byte<br>Number | BITS  | R/W | Reg Name                     | Description                   | Default |
|--------|----------------|-------|-----|------------------------------|-------------------------------|---------|
| 0x8F   | 2              | 15:00 | R   | RDC_LOAD_<br>ADC_RPT_<br>CH4 | DC load ADC report data       | 16'd0   |
| 0x90   | 2              | 16    | R   | SENSE_<br>PVDDAB             | PVDDAB sense code             | 16'd0   |
| 0x91   | 2              | 15:0  | R   | SENSE_<br>PVDDCD             | PVDDCD sense code             | 16'd0   |
| 0x92   | 2              | 15:0  | R   | SENSE_<br>VBAT               | VBAT sense code               | 16'd0   |
| 0x93   | 2              | 15:0  | R   | SENSE_<br>TEMP_G             | Global temperature sense code | 16'd0   |
| 0x94   | 2              | 15:0  | R   | SENSE_<br>TEMP_1             | CH1 Temperature sense code    | 16'd0   |
| 0x95   | 2              | 15:0  | R   | SENSE_<br>TEMP_2             | CH2 Temperature sense code    | 16'd0   |
| 0x96   | 2              | 15:0  | R   | SENSE_<br>TEMP_3             | CH3 Temperature sense code    | 16'd0   |
| 0x97   | 2              | 15:0  | R   | SENSE_<br>TEMP_4             | CH4 Temperature sense code    | 16'd0   |
| 0x98   | 4              | 31:16 | R   | AC_INT_<br>MAG_1             | Report CH1 internal magnitude | 16'd0   |
| UX96   | 4              | 15:0  | R   | AC_INT_<br>PHA_1             | Report CH1 internal phase     | 16'd0   |
| 0x99   | 4              | 31:16 | R   | AC_SPK_<br>MAG_1             | Report CH1 speaker magnitude  | 16'd0   |
| UX99   | 4              | 15:0  | R   | AC_SPK_<br>PHA_1             | Report CH1 speaker phase      | 16'd0   |
| 0.40 A | 4              | 31:16 | R   | AC_INT_MAG<br>_2             | Report CH2 internal magnitude | 16'd0   |
| 0x9A   | 4              | 15:0  | R   | AC_INT_PHA<br>_2             | Report CH2 internal phase     | 16'd0   |
| OvOD   | 4              | 31:16 | R   | AC_SPK_<br>MAG_2             | Report CH2 speaker magnitude  | 16'd0   |
| 0x9B   | 4              | 15:0  | R   | AC_SPK_<br>PHA_2             | Report CH2 speaker phase      | 16'd0   |
| 0,00   | 4              | 31:16 | R   | AC_INT_MAG<br>_3             | Report CH3 internal magnitude | 16'd0   |
| 0x9C   | 4              | 15:0  | R   | AC_INT_PHA<br>_3             | Report CH3 internal phase     | 16'd0   |
| OvOD   | 4              | 31:16 | R   | AC_SPK_<br>MAG_3             | Report CH3 speaker magnitude  | 16'd0   |
| 0x9D   | 4              | 15:0  | R   | AC_SPK_<br>PHA_3             | Report CH3 speaker phase      | 16'd0   |

# RTQ9128DH-QA



| ADDR  | Byte<br>Number | BITS  | R/W             | Reg Name                                                                             | Description                                                                          | Default |
|-------|----------------|-------|-----------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|
| 0x9E  | 4              | 31:16 | R               | AC_INT_MAG<br>_4                                                                     | Report CH4 internal magnitude                                                        | 16'd0   |
| OX9E  | 4              | 15:0  | R               | AC_INT_PHA<br>_4                                                                     | Report CH4 internal phase                                                            | 16'd0   |
| 0x9F  | 4              | 31:16 | R               | AC_SPK_<br>MAG_4                                                                     | Report CH4 speaker magnitude                                                         | 16'd0   |
| OX9F  | 4              | 15:0  | R               | AC_SPK_<br>PHA_4                                                                     | Report CH4 speaker phase                                                             | 16'd0   |
|       | 7:6            | RW    | HS_OC_<br>SEL_1 | CH1 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01                                                                                   |         |
| 0.482 | 0xB2 1 3:2     |       | RW              | HS_OC_<br>SEL_4                                                                      | CH4 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |
| UXB2  |                |       | RW              | HS_OC_<br>SEL_3                                                                      | CH3 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |
|       |                |       | RW              | HS_OC_<br>SEL_2                                                                      | CH2 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved | 01      |



| ADDR | Byte<br>Number | BITS | R/W | Reg Name        | Description                                                                                                                                 | Default |
|------|----------------|------|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      |                | 7:6  | RW  | LS_OC_SEL_<br>1 | CH1 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved                                                        | 01      |
| 0.00 | 4              | 5:4  | RW  | LS_OC_SEL_<br>4 | CH4 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved                                                        | 01      |
| 0xB3 | 1              | 3:2  | RW  | LS_OC_SEL_<br>3 | CH3 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved                                                        | 01      |
|      |                | 1:0  | RW  | LS_OC_SEL_<br>2 | CH2 OC protection threshold selection 00: 6.5A 01: 8A (default) 10: 10A 11: Reserved                                                        | 01      |
|      |                | 7:6  | RW  | OCW_SEL_1       | CH1 overcurrent warning threshold selection 00: 4.8A 01: 5.8A (default) 10: 7.3A 11: 8.5A                                                   | 01      |
| 0    | 4              | 5:4  | RW  | OCW_SEL_4       | CH4 overcurrent warning threshold selection 00: 4.8A 01: 5.8A (default) 10: 7.3A 11: 8.5A                                                   | 01      |
| UXB4 | 3:2            | 3:2  | RW  | OCW_SEL_3       | CH3 overcurrent warning threshold selection 00: 4.8A 01: 5.8A (default) 10: 7.3A 11: 8.5A                                                   | 01      |
|      |                | 1:0  | RW  | OCW_SEL_2       | CH2 overcurrent warning threshold selection 00: 4.8A 01: 5.8A (default) 10: 7.3A 11: 8.5A                                                   | 01      |
| 0xF7 | 1              | 7    | RW  | SR_AUTO_<br>DET | Sampling rate detection enable bit detect sampling rate and BCLK mode 0: Disable, manual set 0x01 SR mode and BCLK mode 1: Enable (default) | 1       |



#### 17 Outline Dimension







| Comple el | Dimen  | sions In Milli | meters | Dim   | ensions In Ir | nches |  |
|-----------|--------|----------------|--------|-------|---------------|-------|--|
| Symbol    | Min    | normal         | Max    | Min   | normal        | Max   |  |
| Α         | 1.400  | 1.500          | 1.600  | 0.055 | 0.059         | 0.063 |  |
| A1        | 0.050  | 0.100          | 0.150  | 0.002 | 0.004         | 0.006 |  |
| A2        | 1.350  | 1.400          | 1.450  | 0.053 | 0.055         | 0.057 |  |
| b         | 0.170  | 0.220          | 0.270  | 0.007 | 0.009         | 0.011 |  |
| С         | 0.090  | 0.150          | 0.200  | 0.004 | 0.006         | 0.008 |  |
| D         | 11.800 | 12.000         | 12.200 | 0.465 | 0.472         | 0.480 |  |
| Е         | 11.800 | 12.000         | 12.200 | 0.465 | 0.472         | 0.480 |  |
| D1        | 9.900  | 10.000         | 10.100 | 0.390 | 0.394         | 0.398 |  |
| E1        | 9.900  | 10.000         | 10.100 | 0.390 | 0.394         | 0.398 |  |
| Х         | 4.675  | 5.334          | 5.434  | 0.184 | 0.210         | 0.214 |  |
| Υ         | 4.675  | 5.334          | 5.434  | 0.184 | 0.210         | 0.214 |  |
| е         |        | 0.500          |        | 0.020 |               |       |  |
| L         | 0.450  | 0.600          | 0.750  | 0.018 | 0.024         | 0.030 |  |
| L1        | 0.800  | 1.000          | 1.200  | 0.031 | 0.039         | 0.047 |  |

RLQFP-64L 10x10 (Exposed Pad) Plastic Package



## **18 Footprint Information**



| Dankana           | Number of | Footprint Dimension (mm) |       |       |      |      |      |      | Toloropoo |  |
|-------------------|-----------|--------------------------|-------|-------|------|------|------|------|-----------|--|
| Package           | Pin       | Р                        | Ax    | Ay    | Вх   | Ву   | С    | D    | Tolerance |  |
| RLQFP10x10-64(PP) | 64        | 0.50                     | 12.80 | 12.80 | 9.60 | 9.60 | 1.60 | 0.30 | ±0.05     |  |



### 19 Packing Information

#### **Tape and Reel Data** 19.1







| Daalaana Tura | Tape Size | Pocket Pitch | Reel Siz | ze (A) | Units    | Trailer | Leader | Reel Width (W2) |  |
|---------------|-----------|--------------|----------|--------|----------|---------|--------|-----------------|--|
| Package Type  | (W1) (mm) | (P) (mm)     | (mm)     | (in)   | per Reel | (mm)    | (mm)   | Min/Max (mm)    |  |
| LQFP10x10     | 24        | 16           | 330      | 13     | 1,500    | 160     | 600    | 24.4/26.4       |  |



C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 24mm carrier tape: 1.0mm max.

| Tape Size | W1     | Р      |        | В      |        | F     |       | Ø١    |       | K     |       | Н     |
|-----------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
|           | Max    | Min    | Max    | Min    | Max    | Min   | Max   | Min   | Max   | Min   | Max   | Max   |
| 24mm      | 24.3mm | 15.9mm | 16.1mm | 1.65mm | 1.85mm | 3.9mm | 4.1mm | 1.5mm | 1.6mm | 2.1mm | 2.3mm | 0.6mm |



#### 19.2 Tape and Reel Packing

| Step | Photo/Description                                                       | Step | Photo/Description                 |
|------|-------------------------------------------------------------------------|------|-----------------------------------|
| 1    | Reel 13"                                                                | 4    | 1 reel per inner box <b>Box G</b> |
| 2    |                                                                         | 5    |                                   |
| 3    | HIC & Desiccant (2 Unit) inside  Caution label is on backside of Al bag | 6    | Outer box Carton A                |

| Container | Reel |       |       | Box   |       | Carton   |       |       |
|-----------|------|-------|-------|-------|-------|----------|-------|-------|
| Package   | Size | Units | Item  | Reels | Units | Item     | Boxes | Units |
| LQFP10x10 | 13"  | 1,500 | Box G | 1     | 1,500 | Carton A | 6     | 9,000 |



#### 19.3 **Packing Material Anti-ESD Property**

| Surface<br>Resistance     | Aluminum Bag                        | Reel                                | Cover tape                          | Carrier tape                        | Tube                                | Protection Band                     |
|---------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| $\Omega$ /cm <sup>2</sup> | 10 <sup>4</sup> to 10 <sup>11</sup> |

### **Richtek Technology Corporation**

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.



20 Datasheet Revision History

| Version | Date      | Description | Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00      | 2025/1/21 | Final       | Marking Information on page 2 - Updated marking information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 01      | 2025/4/10 | Modify      | Features on page 1 - Modified the Output Current Limit and Protection description Ordering Information on page 2 - Changed graphics Functional Block Diagram on page 6 - Changed the graphic Electrical Characteristics on page 9 - Removed the minimum values of Overcurrent Limit and Overcurrent Protection - Modified Overcurrent Limit, ILIM, OCLIM = 01, OCLIM = 10 description Application Information on page 34, 35, 36, 37, 42, 43, 46 - Updated the graphics of Figure 13 - Removed section 15.18 - Modified the description of section 15.19 - Added the characterization on Standby and ULQM in section 15.20 - Modified the characterization in section 15.20 - Modified the title and description of 0x15 and 0xB4 in section 15. 30 - Modified Figure 18 Functional Register Description on page 63, 65, 72, 73, 74, 81 - Modified the characterization on 0x15 - Modified the characterization on 0x70 - Modified the characterization on 0x71 - Modified the characterization on 0x74 - Modified the characterization on 0x84 |