Mini-Project 3: Confidence Intervals Simulation Study

Tanner Bessette

2025-03-05

I have followed all rules for collaboration for this project, and I have not used generative AI on this project. Tanner Bessette

Step 1

```
3 different sample sizes: small: n = 5
```

medium: n = 40 large: n = 1000

2 different values for p:

p = 0.5 and p = 0.1

Steps 2,3,4

Large n (n = 1000) and p = 0.5

library(tidyverse)

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
          1.1.4
                    v readr
                               2.1.5
v forcats
          1.0.0
                    v stringr
                               1.5.1
v ggplot2
          3.5.1
                    v tibble
                               3.2.1
v lubridate 1.9.3
                    v tidyr
                               1.3.1
```

```
1.0.2
v purrr
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                  masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
  n <- 1000
  p < -0.5
  generate_samp_prop <- function(n, p) {</pre>
    x \leftarrow rbinom(1,n,p)
    # number of successes divided by sample size
    phat \leftarrow x / n
    # we have to use 1.645 instead of 1.96 bc 90% confidence
    lb <- phat - 1.645 * sqrt(phat * (1 - phat) / n)</pre>
    ub <- phat + 1.645 * sqrt(phat * (1 - phat) / n)
    prop_df <- tibble(phat, lb, ub)</pre>
    return(prop_df)
  # run the function with our assigned n and p values
  generate_samp_prop(n = 1000, p = 0.5)
# A tibble: 1 x 3
   phat
          lb ub
  <dbl> <dbl> <dbl>
1 0.521 0.495 0.547
  # we want 5000 ci's
  n_{sim} = 5000
  prop_ci_df <- map(1:n_sim,</pre>
       (i) generate_samp_prop(n = 1000, p = 0.5)) |>
    bind_rows()
  prop_ci_df
```

```
# A tibble: 5,000 x 3
   phat
            lb
                  ub
   <dbl> <dbl> <dbl>
 1 0.513 0.487 0.539
2 0.492 0.466 0.518
3 0.496 0.470 0.522
4 0.524 0.498 0.550
5 0.524 0.498 0.550
6 0.511 0.485 0.537
7 0.511 0.485 0.537
8 0.488 0.462 0.514
9 0.5
       0.474 0.526
10 0.499 0.473 0.525
# i 4,990 more rows
  prop_ci_df <- prop_ci_df |> mutate(ci_width = ub - lb,
               ci_cover_ind = if_else(p > lb & p < ub,</pre>
                                                 true = 1,
                                                 false = 0))
  # output the average interval widths and the coverage rates
  prop_ci_df |> summarise(avg_width = mean(ci_width),
                           coverage_rate = mean(ci_cover_ind))
# A tibble: 1 x 2
  avg_width coverage_rate
      <dbl>
                    <dbl>
     0.0520
                    0.901
1
```

For n=1000 and p=0.5, we have an average interval width of 0.0520, and a coverage rate of 89.5%.

Large n (n = 1000) and p = 0.1

```
n <- 1000
p <- 0.1

# run the function with our assigned n and p values
generate_samp_prop(n = 1000, p = 0.1)</pre>
```

```
# A tibble: 1 x 3
            lb
  phat
  <dbl> <dbl> <dbl>
1 0.095 0.0797 0.110
  # we want 5000 ci's
  n_{sim} = 5000
  prop_ci_df <- map(1:n_sim,</pre>
      (i) generate_samp_prop(n = 1000, p = 0.1)) |>
    bind_rows()
  prop_ci_df
# A tibble: 5,000 x 3
   phat
             1b
                   ub
   <dbl> <dbl> <dbl>
 1 0.103 0.0872 0.119
 2 0.087 0.0723 0.102
 3 0.111 0.0947 0.127
 4 0.095 0.0797 0.110
 5 0.09 0.0751 0.105
 6 0.101 0.0853 0.117
7 0.107 0.0909 0.123
8 0.101 0.0853 0.117
9 0.095 0.0797 0.110
10 0.111 0.0947 0.127
# i 4,990 more rows
  prop_ci_df <- prop_ci_df |> mutate(ci_width = ub - lb,
                ci_cover_ind = if_else(p > lb & p < ub,</pre>
                                                 true = 1,
                                                 false = 0))
  # output the average interval widths and the coverage rates
  prop_ci_df |> summarise(avg_width = mean(ci_width),
                           coverage_rate = mean(ci_cover_ind))
# A tibble: 1 x 2
  avg_width coverage_rate
```

For n = 1000 and p = 0.1, we have an average interval width of 0.0312, and a coverage rate of exactly 90%.

Medium n (n = 40) and p = 0.5

```
n <- 40
  p < -0.5
  # run the function with our assigned n and p values
  generate_samp_prop(n = 40, p = 0.5)
# A tibble: 1 x 3
  phat
          lb
 <dbl> <dbl> <dbl>
1 0.525 0.395 0.655
  # we want 5000 ci's
  n_sim = 5000
  prop_ci_df <- map(1:n_sim,</pre>
      \(i) generate_samp_prop(n = 40, p = 0.5)) \mid >
    bind_rows()
  prop_ci_df
# A tibble: 5,000 x 3
   phat
           lb
  <dbl> <dbl> <dbl>
1 0.475 0.345 0.605
2 0.525 0.395 0.655
3 0.45 0.321 0.579
4 0.525 0.395 0.655
5 0.5
       0.370 0.630
6 0.425 0.296 0.554
7 0.475 0.345 0.605
8 0.5 0.370 0.630
```

```
9 0.475 0.345 0.605
10 0.4 0.273 0.527
# i 4,990 more rows
  prop_ci_df <- prop_ci_df |> mutate(ci_width = ub - lb,
               ci_cover_ind = if_else(p > lb & p < ub,</pre>
                                                true = 1,
                                                false = 0))
  # output the average interval widths and the coverage rates
  prop_ci_df |> summarise(avg_width = mean(ci_width),
                           coverage_rate = mean(ci_cover_ind))
# A tibble: 1 x 2
 avg_width coverage_rate
      <dbl>
                    <dbl>
      0.257
                    0.914
1
```

For n = 40 and p = 0.5, we have an average interval width of 0.257, and a coverage rate of 91.7%.

Medium n (n = 40) and p = 0.1

```
(i) generate_samp_prop(n = 40, p = 0.1)) |>
    bind_rows()
  prop_ci_df
# A tibble: 5,000 x 3
   phat
               lb
                     ub
   <dbl>
            <dbl> <dbl>
 1 0.075 0.00649 0.144
2 0.125 0.0390 0.211
3 0.1
         0.0220 0.178
4 0.1
         0.0220 0.178
5 0.15
        0.0571 0.243
6 0.05 -0.00669 0.107
7 0.075 0.00649 0.144
8 0
          0
                  0
9 0.2
          0.0960 0.304
10 0.05 -0.00669 0.107
# i 4,990 more rows
  prop_ci_df <- prop_ci_df |> mutate(ci_width = ub - lb,
               ci_cover_ind = if_else(p > lb & p < ub,</pre>
                                                true = 1,
                                                false = 0))
  # output the average interval widths and the coverage rates
  prop_ci_df |> summarise(avg_width = mean(ci_width),
                          coverage_rate = mean(ci_cover_ind))
# A tibble: 1 x 2
 avg_width coverage_rate
      <dbl>
                    <dbl>
      0.149
                    0.901
1
```

For n = 40 and p = 0.1, we have an average interval width of 0.150, and a coverage rate of 90.6%.

Small n (n = 5) and p = 0.5

```
n < -5
  p < -0.5
  # run the function with our assigned n and p values
  generate_samp_prop(n = 5, p = 0.5)
# A tibble: 1 x 3
  phat
          lb
 <dbl> <dbl> <dbl>
1 0.6 0.240 0.960
  # we want 5000 ci's
  n_{sim} = 5000
  prop_ci_df <- map(1:n_sim,</pre>
      (i) generate_samp_prop(n = 5, p = 0.5)) |>
    bind rows()
  prop_ci_df
# A tibble: 5,000 x 3
   phat
            lb
                  ub
   <dbl> <dbl> <dbl>
 1 0.6 0.240 0.960
2 0.4 0.0396 0.760
 3 0.4 0.0396 0.760
 4 0.4 0.0396 0.760
5
   0.4 0.0396 0.760
6 0.4 0.0396 0.760
7
    0.6 0.240 0.960
    0.6 0.240 0.960
8
9
    0.4 0.0396 0.760
10 0.4 0.0396 0.760
# i 4,990 more rows
  prop_ci_df <- prop_ci_df |> mutate(ci_width = ub - lb,
               ci_cover_ind = if_else(p > lb & p < ub,</pre>
```

For n = 5 and p = 0.5, we have an average interval width of 0.634, and a coverage rate of 62.6%.

Small n (n = 5) and p = 0.1

```
n <- 5
  p < -0.1
  # run the function with our assigned n and p values
  generate_samp_prop(n = 5, p = 0.1)
# A tibble: 1 x 3
  phat
           lb
  <dbl> <dbl> <dbl>
1 0
            0
  # we want 5000 ci's
  n_{sim} = 5000
  prop_ci_df <- map(1:n_sim,</pre>
      (i) generate_samp_prop(n = 5, p = 0.1)) |>
    bind_rows()
  prop_ci_df
```

```
1b
    phat
                    ub
   <dbl>
           <dbl> <dbl>
     0.2 -0.0943 0.494
2
     0.2 -0.0943 0.494
3
          0
                 0
          0
                 0
 5
     0
6
     0.2 -0.0943 0.494
7
     0.2 -0.0943 0.494
8
          0
                 0
     0
9
     0
          0
                 0
10
                 0
     0
          0
# i 4,990 more rows
  prop_ci_df <- prop_ci_df |> mutate(ci_width = ub - lb,
                ci_cover_ind = if_else(p > lb & p < ub,</pre>
                                                  true = 1,
                                                  false = 0))
  # output the average interval widths and the coverage rates
  prop_ci_df |> summarise(avg_width = mean(ci_width),
                           coverage_rate = mean(ci_cover_ind))
# A tibble: 1 x 2
  avg_width coverage_rate
      <dbl>
                    <dbl>
1
      0.249
                     0.398
```

For n=5 and p=0.1, we have an average interval width of 0.253, and a coverage rate of 40.1%.

Table

A tibble: 5,000 x 3

Table 1: Table of Results

		n = 5	n = 40	n = 1000
p = 0.5	Coverage Rate	62.6%	91.7%	89.5%
p = 0.1	Coverage Rate	40.1%	90.6%	90%

		n=5	n = 40	n = 1000
•	Average Width Average Width			0.052 0.0312

Large Sample Assumption Calculations

Check that:

$$n\, *\, \hat{p} > 10$$
 and $n\, *\, (1-\hat{p}) > 10$

are both satisfied for the large sample assumption to hold.

Setting 1: Large n (
$$n = 1000$$
) and $p = 0.5$

$$1000 * 0.5 > 10$$
 and $1000 * (1 - 0.5) > 10$ both true

So, the large sample assumption holds.

Setting 2: Large n (
$$n = 1000$$
) and $p = 0.1$

$$1000$$
 * $0.1 > 10$ and 1000 * $(1$ - $0.1) > 10$ both true

So, the large sample assumption holds.

Setting 3: Medium n (n = 40) and p = 0.5

$$40$$
 * $0.5 = 20 > 10$ and 40 * $(1$ - $0.5) = 20 > 10$ both true

So, the large sample assumption holds.

Setting 4: Medium n (n = 40) and p = 0.1

$$40 * 0.1 = 4 < 10$$

So, the large sample assumption does not hold.

Setting 5: Small n
$$(n = 5)$$
 and $p = 0.5$

$$5*0.5 = 2.5 < 10$$

So, the large sample assumption does not hold.

Setting 6: Small n
$$(n = 5)$$
 and $p = 0.1$

$$5 * 0.1 = 0.5 < 10$$

So, the large sample assumption does not hold.

Mini-Project Summary

Generally, the bigger the sample size n, the smaller the average width. The smaller the sample size, the larger the average width, especially with our extremely low sample size (n = 5), where we had average widths of 0.634 (p = 0.5) and 0.253 (p = 0.1)! For all of the different n's, the simulations yielded a larger average width for p = 0.5 than for p = 0.1 (about twice as large of a width for p = 0.5 than p = 0.1).

From our large sample assumption calculations, the settings that have sufficiently large n are n = 1000 and p = 0.5, n = 1000 and p = 0.1, and n = 40 and p = 0.5. For these settings, we are able to interpret: "We are 90% confident that the true population proportion p is contained within our confidence intervals." The settings that do not have sufficiently large n are n = 40 and p = 0.1, n = 5 and p = 0.5, and n = 5 and p = 0.1. In these settings, we do not have a large enough n to trust the confidence interval to be reliable.

With n=1000 and n=40 the coverage rates are extremely close to 90%, which is our confidence interval. For n=1000 and p=0.5, the coverage rate is likely only 89.5% (and not 90%) due to random variation. When the n is too small, i.e. n=5, the coverage rate also goes way down (far below 90% coverage). This is likely in part due to the fact that these two settings weren't even close to satisfying the large sample assumption.

The overall takeaway is that if we get a large enough n, we can have a coverage rate very close, if not exactly equal to, our confidence level, and the average width will be smaller with higher n. With a smaller n, we lose some of the accuracy in coverage rate, and the interval widths grow larger.