Grupo ARCOS

uc3m | Universidad Carlos III de Madrid

Tema 4 (I) El procesador

Estructura de Computadores Grado en Ingeniería Informática

Contenido

- 1. Elementos de un computador
- 2. Organización del procesador
- La unidad de control
- 4. Ejecución de instrucciones
- 5. Diseño de la unidad de control
- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo

Componentes de un computador

recordatorio

Componentes de un procesador

recordatorio

Motivación

- En el tema 3 se estudian las instrucciones máquina
- En el tema 4 se estudia cómo se ejecutan las instrucciones en el computador

• Ejecutar instrucciones máquina

- En cada ciclo de reloj envía la Unidad de Control (U.C.) por los cables del bus de control las señales de control
- Cada elemento del computador tiene entradas, salidas y señales de control que indican qué valor a la salida se ha de tener:
 - Mover de una entrada a salida: S=E_x
 - Transformar una entrada: S=f(E)

- Leer de memoria principal la instrucción apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Ejecución
- ▶ El registro PC (contador de programa) contiene la dirección de la siguiente instrucción a ejecutar.
- El registro RI (registro de instrucción) almacena la instrucción que se está ejecutando

- Leer de memoria principal la instrucción apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Ejecución
- ▶ El registro PC (contador de programa) contiene la dirección de la siguiente instrucción a ejecutar.
- El registro RI (registro de instrucción) almacena la instrucción que se está ejecutando

- Leer de memoria principal la instrucción apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Ejecución

Otras funciones de la U.C.

- Resolver situaciones anómalas
 - Instrucciones ilegales
 - Accesos a memoria ilegales
 - •
- Atender las interrupciones
- Controlar
 la comunicación con los periféricos

Recordatorio

- Sistema digital basado en 0 y I
- Elementos constructivos:

Registro

- Elemento que almacena n bits a la vez
 - Salida: I
 - Durante el nivel la salida es el valor guardado en el registro
 - Entrada: I
 - Posible nuevo valor a guardar
 - Control: I o 2
 - Carga: en el flanco de bajada se guarda el nuevo valor
 - Reset: puede existir una señal para poner el registro a cero

Banco de registros (BR)

- Agrupación de registros.
- Típicamente un número de registros potencia de 2.
 - n registros → log₂n bits para seleccionar cada registro
 - k bits de selección → 2^k registros
 - ► Ej.: con 32 registros, k=5
- Elemento fundamental de almacenamiento.
 - Acceso muy rápido.

¿Qué valor tiene que tener RA para sacar por A el contenido del registro 14?

¿Qué valor tiene que tener RA para sacar por A el contenido del registro 14?

Unidad aritmético lógica (ALU)

Unidad de control (UC)

Conexión de registros a un bus

BUS: elemento que permite transmitir varios bits entre elementos de almacenamiento

Conexión de registros a un bus

Búffer triestado

- Tipo especial de puerta lógica que puede poner su salida en alta impedancia (Z)
- Útil para permitir múltiples conexiones a un mismo punto

E	C	S
0	0	Z
1	0	Z
0	1	0
1	1	1

Acceso a un bus

Acceso a un bus

Acceso a un bus

Ejemplo

¿Qué señales de control hay que activar para cargar el contenido de RA en RB?

Ejemplo

- Camino de datos RB ← RA
- Situación inicial con todas las señales desactivadas

Ejemplo

CLK

CB

- Camino de datos RB ← RA
- La carga en RB se produce en el flanco dé bajada

IMPORTANTE

No se puede activar dos o más triestados al mismo bus al mismo tiempo

tiempo

Lenguaje RT y Operaciones elementales

Lenguaje RT

- Lenguaje de nivel de transferencia de registros.
- Especifica lo que ocurre en el computador mediante operaciones elementales entre registros.

Operaciones elementales:

- Operaciones de transferencia
 - MAR ← PC

- Operaciones de proceso
 - \rightarrow RI \leftarrow R2 + RT2

Ejemplo de operación elemental de transferencia

Operación elemental de transferencia:

- Elemento de almacenamiento origen
- Elemento de almacenamiento destino
- Se establece un camino

xx:
$$A \leftarrow B$$
 [Tb, Ca]

▶ IMPORTANTE

- Establecer el camino entre origen y destino en un mismo ciclo
- ▶ En un mismo ciclo NO se puede:
 - atravesar un registro
 - llevar a un bus dos valores a la vez.

Ejemplo de operación elemental de procesamiento

Operación elemental de procesamiento:

- Elemento(s) de origen
- Elemento destino
- Operación de transformación en el camino

yy:
$$A \leftarrow B+D$$
 [SCI=b,SC2=d, Ca]

▶ IMPORTANTE

- Establecer el camino entre origen y destino en un mismo ciclo
- ▶ En un mismo ciclo NO se puede:
 - > atravesar un registro
 - llevar a un bus dos valores a la vez.

Estructura de un computador elemental y simulador WepSIM https://wepsim.github.io/wepsim/

Principales características

- Características del computador elemental (EP)
 - Computador de 32 bits
 - La memoria principal:
 - Se direcciona a nivel de byte
 - Un ciclo para las operaciones de lectura y escritura
 - Diversos tipos de registros disponibles:
 - ▶ Banco de 32 <u>registros visibles al programador</u> (R0...R31)
 - □ Asumir como en el MIPS: R0 = 0 y SP = R29
 - Registros no visibles al programador (RT1, RT2 y RT3)
 - □ Posible uso para cálculos intermedios dentro de una instrucción
 - Registros de control (PC, IR, MAR, MBR) y registro de estado (SR)
 - ☐ MAR, MBR, PC, SR, IR
- Simulador WepSIM implementa el EP:
 - https://wepsim.github.io/wepsim/

Estructura de un computador elemental

Señales de control

Señales de control

- Señales de acceso a memoria
- Señales de carga en registros
- Señales de control de las puertas triestado
- Señales de selección de los MUX
- Señales de control del banco de registros
- Otras señales de selección

Nomenclatura general:

- Mx: Selección en multiplexor
- Tx: Señal de activación triestado
- Cx: Señal de carga de registro
- Ry: Selección de registros del banco de registros

Registros

Registros visibles al programador

Registros del banco de registros (Ej. MIPS: \$t0, \$t1, etc.)

Registros de control y estado:

- PC: contador de programa o program counter
- IR: registro de instrucción o instruction register
- > SP: puntero de pila (en el banco de registros)
- MAR: registro de direcciones de memoria o memory address register
- MBR: registro de datos de memoria o memory buffer register
- > SR: registro de estado o status register

Registros no visibles al usuario:

RTI, RT2 y RT3: registros temporales internos de la CPU

Estructura de un computador elemental

Nomenclatura:

- Ry -> Identificador de registro para el punto y
- Mx -> Selección en multiplexor
- Tx -> Señal de activación triestado
- Cx -> Señal de carga de registro

Banco de registros y registros RT1 y RT2

- ▶ RA salida de registro RA por A
- ▶ RB salida de registro RB por B
- ▶ RC entrada por C al registro RC
- ▶ LC activa la escritura para RC
- ▶ T9 copia de A al bus interno
- ▶ TIO copia de B al bus interno
- C4 del bus interno al RTI
- ▶ T4 salida de RTI al bus interno
- C5 − del bus interno al RT2
- → T5 salida de RT2 al bus interno

Ejemplo operaciones elementales en registros

SWAP RI R2

Ejemplo operaciones elementales en registros

SWAP RI R2

O. Elemental	Señales

operaciones elementales en registros

SWAP RI R2

O. Elemental	Señales
RT1← R1	RA=00001, T9, C4

La carga del dato se realiza en RT1 en el flanco de bajada. Estará disponible en RT1 durante el siguiente ciclo.

Ejemplo operaciones elementales en registros

SWAP RI R2

O. Elemental	Señales
RT1← R1	RA=00001, T9, C4
R1 ← R2	RA=2 (00010), T9, RC=1, LC

operaciones elementales en registros

SWAP RI R2

O. Elemental	Señales
RT1← R1	RA=00001, T9, C4
R1 ← R2	RA=2 (00010), T9, RC=1, LC
R2 ← RT1	T4, RC=2 (00010), LC

La carga del dato se realiza en R2 en el flanco de bajada. Estará disponible en R2 durante el siguiente ciclo.

Estructura de un computador elemental

ALU

- MA selección de operando A
- MB selección de operando B
- Cop código de operación

Cop (Cop ₃ -Cop ₀)	Operación
0000	NOP
0001	A and B
0010	A or B
0011	not (A)
0100	A xor B
0101	Shift Right Logical (A) B= number of bits to shift
0110	Shift Right Arithmetic(A) B= number of bits to shift
0111	Shift left (A) B= number of bits to shift
1000	Rotate Right (A) B= number of bits to rotate
1001	Rotate Left (A) B= number of bits to rotate
1010	A + B
1011	A - B
1100	A * B (with overflow)
1101	A / B (integer division)
1110	A % B (integer division)
1111	LUI (A)

Cop (Cop ₃ -Cop ₀)	Operación
0000	NOP
0001	A and B
0010	A or B
0011	not (A)
0100	A xor B
0101	Shift Right Logical (A) B= number of bits to shift
0110	Shift Right Arithmetic(A) B= number of bits to shift
0111	Shift left (A) B= number of bits to shift
1000	Rotate Right (A) B= number of bits to rotate
1001	Rotate Left (A) B= number of bits to rotate
1010	A + B
1011	A - B
1100	A * B (with overflow)
1101	A / B (integer division)
1110	A % B (integer division)
1111	LUI (A)

Resultado	С	٧	N	Z
Resultado positivo (0 se considera +)	0	0	0	0
Resultado == 0	0	0	0	1
Resultado negativo	0	0	1	0
Desbordamiento de la operación	0	1	0	0
División por cero	0	1	0	1
Acarreo en el bit 32	1	0	0	0

Cop (Cop ₃ -Cop ₀)	Operación
0000	NOP
0001	A and B
0010	A or B
0011	not (A)
0100	A xor B
0101	Shift Right Logical (A) B= number of bits to shift
0110	Shift Right Arithmetic(A) B= number of bits to shift
0111	Shift left (A) B= number of bits to shift
1000	Rotate Right (A) B= number of bits to rotate
1001	Rotate Left (A) B= number of bits to rotate
1010	A + B
1011	A - B
1100	A * B (with overflow)
1101	A / B (integer division)
1110	A % B (integer division)
1111	LUI (A)

operaciones elementales en ALU

▶ ADD R3 RI R2

Señales
RA=R1, RB=R2, Cop=+, T6, RC=R3, LC=1

La carga se realiza en R3 en el flanco de bajada.

El dato está disponible en el registro R3 durante el siguiente ciclo

operaciones elementales en ALU

SWAP RI R2

O. Elemental Señales RT1←R1 RA=1, T9, C4 R1←R2 RA=2, T9, RC=1, LC R2←RT1 T4, RC=2, LC

operaciones elementales en ALU

SWAP RI R2

O. Elemental	Señales
RT1← R1	RA=1, T9, C4
R1 ← R2	RA=2, T9, RC=1, LC
R2 ← RT1	T4, RC=2, LC

O. Elemental	
R1←R1 ^ R2	R1 ← (R1 ^ R2)
R2←R1 ^ R2	R2 ← (R1 ^ R2) ^ R2
R1←R1 ^ R2	R1 ← (R1 ^ R2) ^ R1

operaciones elementales en ALU

SWAP RI R2

O. Elemental	Señales
RT1← R1	RA=1, T9, C4
R1 ← R2	RA=2, T9, RC=1, LC
R2 ← RT1	T4, RC=2, LC

O. Elemental	Señales
R1←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=1, LC
R2←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=2, LC
R1←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=1, LC

operaciones elementales en ALU

SWAP RI R2

O. Elemental	Señales
RT1← R1	RA=1, T9, C4
R1 ← R2	RA=2, T9, RC=1, LC
R2 ← RT1	T4, RC=2, LC

O. Elemental	Señales
R1←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=1, LC
R2←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=2, LC
R1←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=1, LC

operaciones elementales en ALU

SWAP RI R2

O. Elemental	Señales
RT1← R1	RA=1, T9, C4
R1 ← R2	RA=2, T9, RC=1, LC
R2 ← RT1	T4, RC=2, LC

O. Elemental	Señales
R1←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=1, LC
R2←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=2, LC
R1←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=1,LC

operaciones elementales en ALU

SWAP RI R2

O. Elemental	Señales
RT1← R1	RA=1, T9, C4
R1 ← R2	RA=2, T9, RC=1, LC
R2 ← RT1	T4, RC=2, LC

O. Elemental	Señales
R1←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=1, LC
R2←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=2, LC
R1←R1 ^ R2	RA=1, RB=2, Cop=^, T6, RC=1, LC

Estructura de un computador elemental

Memoria principal,

registro de direcciones y de datos

Nomenclatura:

- MAR -> registro de direcciones
- MBR -> registro de datos

Memoria principal

- ▶ R lectura
- ▶ W escritura
- \rightarrow BE3-BE0 = AIA0 + BW
 - Tamaño acceso (byte, palabra, media palabra)
- C0 del bus interno al MAR
- ► CI del bus de datos al MBR
- Ta salida de MAR al bus de direcciones
- ▶ Td salida de MBR al bus de datos
- ► TI salida de MBR al bus interno
- MI selección para MBR:
 de memoria o bus interno

Acceso a Memoria

- Síncrono: la memoria requiere un número determinado de ciclos
- Asíncrono: la memoria indica cuándo finaliza la operación

Señales BE (Byte-Enable) para lectura

	Bytes en memoria					Selección de bytes			Salida al	BUS	
D31-D24	D23-D16	D15-D8	D7-D0	BE3	BE2	BEI	BE0	D31-D24	D23-D16	D15-D8	D7-D0
Byte 3	Byte 2	Byte I	Byte 0	0	0	0	0				Byte 0
Byte 3	Byte 2	Byte I	Byte 0	0	0	0	1			Byte I	
Byte 3	Byte 2	Byte I	Byte 0	0	0	1	0		Byte 2		
Byte 3	Byte 2	Byte I	Byte 0	0	0	I	I	Byte 3			
Byte 3	Byte 2	Byte I	Byte 0	0	- 1	0	X			Byte I	Byte 0
Byte 3	Byte 2	Byte I	Byte 0	0	1	1	X	Byte 3	Byte 2		
Byte 3	Byte 2	Byte I	Byte 0	1	1	X	X	Byte 3	Byte 2	Byte I	Byte 0

Señales BE (Byte-Enable) para escritura

	Dato en el bus Selección de bytes Bytes escritos					Selección de bytes			s escritos (en memo	ria
D31-D24	D23-D16	D15-D8	D7-D0	BE3	BE2	BEI	BE0	D31-D24	D23-D16	D15-D8	D7-D0
Byte 3	Byte 2	Byte I	Byte 0	0	0	0	0				Byte 0
Byte 3	Byte 2	Byte I	Byte 0	0	0	0	1			Byte I	
Byte 3	Byte 2	Byte I	Byte 0	0	0	I	0		Byte 2		
Byte 3	Byte 2	Byte I	Byte 0	0	0	1	1	Byte 3			
Byte 3	Byte 2	Byte I	Byte 0	0	- 1	0	X			Byte I	Byte 0
Byte 3	Byte 2	Byte I	Byte 0	0	1	I	X	Byte 3	Byte 2		
Byte 3	Byte 2	Byte I	Byte 0	1	1	X	X	Byte 3	Byte 2	Byte I	Byte 0

Tamaño de acceso a memoria

- Nomenclatura:
- MAR -> registro de direcciones
- MBR -> registro de datos

- Bytes Selector: selecciona qué bytes se almacenan en MBR en lectura y se vuelcan al bus en escritura
- Acceso a bytes: BW=0
- Acceso a media palabra: BW=01
- Acceso a palabra: BW = I I
- SE: extensión de signo
 - 0: no extiende el signo en accesos más pequeños de una palabra
 - I: extiende el signo en accesos más pequeños de una palabra

operaciones elementales para usar la memoria

Lectura

Acceso a memoria síncrona de 1 ciclo

Lectura

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0

Acceso a memoria síncrona de 1 ciclo

Lectura de una palabra

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← MP[MAR]	Ta, R, M1, C1, BW=11

Acceso a memoria síncrona de 1 ciclo

Lectura de una palabra

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← MP[MAR]	Ta, R, M1, C1, BW=11

Escritura de una palabra

Acceso a memoria síncrona de 1 ciclo

Lectura

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← MP[MAR]	Ta, R, M1, C1

Escritura de una palabra

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0

Acceso a memoria síncrona de 1 ciclo

Lectura

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← MP[MAR]	Ta, R, M1, C1

Escritura

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← <dato></dato>	, C1

Acceso a memoria síncrona de 1 ciclo

Lectura

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← MP[MAR]	Ta, R, M1, C1

Escritura

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← <dato></dato>	, C1
Ciclo de escritura	Ta, Td, W, BW=11

Acceso a memoria síncrona de 1 ciclo

Lectura

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← MP[MAR]	Ta, R, M1, C1

Escritura

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
MBR ← <dato></dato>	, C1
Ciclo de escritura	Ta, Td, W, BW=11

Acceso a memoria síncrona de 2 ciclo

Lectura de una palabra

O. Elemental	Señales
MAR ← <dirección></dirección>	, C0
ciclo de lectura	Ta, R,
ciclo de lectura MBR ← MP[MAR]	Ta, R, M1, C1, BW=11

Estructura de un computador elemental

Contador de programa

▶ Contador de programa PC:

- ▶ C2, M2
 - PC ← PC + 4
- ▶ C2 del bus interno al PC
- ▶ T2 de PC a bus interno

Registro de instrucción (IR)

- ▶ C3: carga del bus interno al IR
- SELEC:Transfiere el contenido de IR al bus
 - Size: tamaño
 - Offset: desplazamiento
 - ▶ Bit de inicio (menos significativo)
 - SE: extensión de signo

Selector de registro

Selección **sin** extensión de signo (SE = 0)

Selector de registro

Selección **con** extensión de signo (SE = 1)

Registro de estado

- Almacena información (bits de estado) sobre el estado del programa que se está ejecutando en el procesador:
 - Resultado de la última operación en la ALU: C,V, N, Z
 - Si el procesador ejecuta en modo núcleo o modo usuario (U)
 - Si las interrupciones están habilitadas o no (I)

Señales:

- ► C7 de bus interno al SR
- SelP, M7 − flags de ALU, I, o U a SR
- ▶ T8 del SR al bus interno

Registro de estado

Operación de SELEC:

Estructura de un computador elemental

Unidad de control Fases de ejecución de una instrucción

Funciones básicas

- Lectura de instrucciones de la memoria
- Decodificación
- Ejecución de instrucciones

Fases de ejecución de una instrucción

- Lectura de la instrucción, captación o fetch
 - Leer la instrucción almacenada en la dirección de memoria indicada por PC y llevarla a RI.
 - Incremento del PC
- Decodificación
 - Análisis de la instrucción en RI para determinar:
 - La operación a realizar.
 - Direccionamiento a aplicar.
 - Señales de control a activar
- Ejecución
 - Generación de las señales de control en cada ciclo de reloj.

Reloj

ciclo

- Un computador es un elemento síncrono
- Controla el funcionamiento
- El reloj temporiza las operaciones
 - En un ciclo de reloj se ejecutan una o más operaciones elementales siempre que no haya conflicto
 - Durante el ciclo se mantienen activadas las señales de control necesarias
- En un mismo ciclo se puede realizar
 - MAR ← PC y RT3 ← RT2 + RTI
- ▶ En un mismo ciclo no se puede realizar
 - MAR ← PC y RI ← RT3 ¿por qué?

Descripción de la actividad de la U.C.

detalle Hw.

Ciclo de Lectura

Descripción de la actividad de la U.C.

Secuencia de señales de control por cada operación elemental

Lectura de una instrucción

Ciclo	Op. Elemental
CI	MAR ← PC
C2	PC ← PC + 4
C3	MBR ← MP
C4	IR← MBR

Ciclo	Op. Elemental
CI	MAR ← PC
C2	$PC \leftarrow PC + 4$, $MBR \leftarrow MP$
C3	IR← MBR

Posibilidad de operaciones simultáneas

Señales de control del ciclo de fetch

- Especificación de las señales de control activas en cada ciclo de reloj.
 - Se puede generar a partir del nivel RT.

Ciclo	Op. Elemental	Señales de control activadas
CI	MAR ← PC	T2, C0
C2	$PC \leftarrow PC + 4$, $MBR \leftarrow MP$	C2, M2 Ta, R, C1, M1, BW=11
C3	IR← MBR	TI, C3

Ejecución de la instrucción de MIPS

▶ lw \$reg, dir

	op.	rs	rt	dir
_	6 bits	5 bits	5 bits	I6 bits

Ciclo	Op. Elemental	Señales de control
СІ	MAR ← PC	T2, C0
C2	$PC \leftarrow PC + 4$, $MBR \leftarrow MP$	C2, M2 Ta, R, C1, M1, BW=11
C3	IR← MBR	TI, C3
C4	Decodificación	
C5		
C6		
C7		

op.	rs	rt	dir
6 bits	5 bits	5 bits	I6 bits

Ciclo	Op. Elemental	Señales de control
СІ	MAR ← PC	T2, C0
C2	$PC \leftarrow PC + 4$, $MBR \leftarrow MP$	C2, M2 Ta, R, C1, M1, BW=11
C3	IR← MBR	TI, C3
C4	Decodificación	
C5	MAR ← RI(dir)	C0,T3, Size = 10000 Offset = 00000
C6	MBR ← MP	Ta, R, CI, MI, BW=II
C7		

op.	rs	rt	dir
6 bits	5 bits	5 bits	16 bits

Ciclo	Op. Elemental	Señales de control
СІ	MAR ← PC	T2, C0
C2	$PC \leftarrow PC + 4$, $MBR \leftarrow MP$	C2, M2 Ta, R, C1, M1, BW=11
C3	IR← MBR	TI, C3
C4	Decodificación	
C5	MAR ← RI(dir)	C0,T3, Size = 10000 Offset = 00000
C6	MBR ← MP	Ta, R, CI, MI, BW=11
C7	\$reg ←MBR	TI, RC=id \$reg, LC

Ejecución de j dir

Ejecución de j dir

Ciclo	Op. Elemental	Señales de control
CI	MAR ← PC	T2, C0
C2	$PC \leftarrow PC + 4$, $MBR \leftarrow MP$	C2, M1 Ta, R, C1, M1, BW=11
C3	IR← MBR	TI, C3
C4	Decodificación	
C5	PC← RI(dir)	C2,T3, Size = 11010 (26) Offset = 00000

Ejercicio

Instrucciones que caben en una palabra:

- sw \$reg, dir
- add \$rd, \$ro1, \$ro2
- addi \$rd, \$ro1, inm
- lw \$reg1, desp(\$reg2)
- ▶ j dir
- jr \$reg
- beq \$ro1, \$ro2, desp

beqz \$reg, desplaz

Ciclo	Op. Elemental
CI	MAR ← PC
C2	$PC \leftarrow PC + 4$, $MBR \leftarrow MP$
C3	IR←MBR
C4	Decodificación
C5	\$reg + \$0
C6	Si SR.Z == 0 salto a fetch
C7	RT2 ←PC
C8	RTI ← IR(desplaz)
C9	RTI ← RT1 * 4
CI0	PC ← RT1 + RT2

Si
$$$reg == 0$$

PC \leftarrow PC + desp*4

Instrucciones que ocupan varias palabras

Ejemplo: addm R1, dir R1 \leftarrow R1 + MP[dir]

Formato: addm R1 Dir (dirección)

1ª palabra 2ª palabra

Ciclo	Op. Elemental
CI	MAR ← PC
C2	$PC \leftarrow PC + 4$, $MBR \leftarrow MP$
C3	IR← MBR
C4	Decodificación
C5	MAR← PC

Ciclo	Op. Elemental
C6	MBR← MP, PC ← PC + 4
C7	MAR ← MBR
C8	MBR ← MP
C9	RTI ← MBR
CI0	RI ← RI + RTI

Ejemplo

ADD (R_2) R_3 (R_4)

A. Fetch + Decodif.

I.- MAR ← PC

2.- RI \leftarrow Memoria(MAR)

3.- PC ← PC + "4"

4.- Decodificación de la instrucción

B. Traer operandos

5.- MAR \leftarrow R₄

6.- MBR← Memoria(MAR)

7.- RTI \leftarrow MBR

c. Ejecutar

8.- MBR \leftarrow R₃ + RTI

D. Guardar resultados

9.- MAR \leftarrow R₂

10.- Memoria(MAR) \leftarrow MBR

Atención

Recordatorio de no es posible, cualquier otra cosa si...

- No es posible atravesar un registro en el ciclo de reloj
- No es posible llevar a un bus dos valores a la vez.
- No es posible establecer un camino entre dos elementos si no hay circuitería para ello.