

OVP Guide to Using Processor Models

Model Specific Information for variant ARM_Cortex-R4F

Imperas Software Limited

Imperas Buildings, North Weston Thame, Oxfordshire, OX9 2HA, UK docs@imperas.com

Author	Imperas Software Limited	
Version	0.4	
Filename	OVP_Model_Specific_Information_arm_Cortex-R4F.pdf	
Created	25 August 2015	

Copyright Notice

Copyright © 2015 Imperas Software Limited. All rights reserved. This software and documentation contain information that is the property of Imperas Software Limited. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Imperas permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

1.0 Overview	4
1.1 Description	4
1.2 Licensing	4
1.3 Limitations	4
1.4 Verification	5
1.5 Features	5
2.0 Configuration	5
2.1 Location	5
2.2 GDB Path	5
2.3 Semi-Host Library	5
2.4 Processor Endian-ness	5
2.5 QuantumLeap Support	5
2.6 Processor ELF Code	5
3.0 Other Variants in this Model	5
4.0 Bus Ports	7
5.0 Net Ports	7
6.0 FIFO Ports	8
7.0 Parameters	8
8.0 Execution Modes	10
9.0 Exceptions	11
10.0 Hierarchy of the model	12
10.1 Level 1: CPU	12
11.0 Model Commands	13
11.1 Level 1: CPU	13
12.0 Registers	13
12.1 Level 1: CPU	13
12.1.1 Core	13
12.1.2 Control	13
12.1.3 User	13
12.1.4 FIQ	14
12.1.5 IRQ	14
12.1.6 Supervisor	14
12.1.7 Undefined	14
12.1.8 Abort	15
12.1.9 SIMD_VFP	15
12.1.10 SIMD_VFP_SYS	15
12.1.11 Coprocessor_32_bit	
12.1.12 Integration_support.	

1.0 Overview

This document provides the details of an OVP Fast Processor Model variant.

OVP Fast Processor Models are written in C and provide a C API for use in C based platforms. The models also provide a native interface for use in SystemC TLM2 platforms. The models are written using the OVP VMI API that provides a Virtual Machine Interface that defines the behavior of the processor. The VMI API makes a clear line between model and simulator allowing very good optimization and world class high speed performance. Most models are provided as a binary shared object and also as source. This allows the download and use of the model binary or the use of the source to explore and modify the model.

The models are run through an extensive QA and regression testing process and most model families are validated using technology provided by the processor IP owners.

There is a companion document (OVP Guide to Using Processor Models) which explains the general concepts of OVP Fast Processor Models and their use. It is downloadable from the OVPworld website documentation pages.

1.1 Description

ARM Processor Model

1.2 Licensing

Usage of binary model under license governing simulator usage.

Note that for models of ARM CPUs the license includes the following terms:

Licensee is granted a non-exclusive, worldwide, non-transferable, revocable licence to:

If no source is being provided to the Licensee: use and copy only (no modifications rights are granted) the model for the sole purpose of designing, developing, analyzing, debugging, testing, verifying, validating and optimizing software which: (a) (i) is for ARM based systems; and (ii) does not incorporate the ARM Models or any part thereof; and (b) such ARM Models may not be used to emulate an ARM based system to run application software in a production or live environment.

If source code is being provided to the Licensee: use, copy and modify the model for the sole purpose of designing, developing, analyzing, debugging, testing, verifying, validating and optimizing software which: (a) (i) is for ARM based systems; and (ii) does not incorporate the ARM Models or any part thereof; and (b) such ARM Models may not be used to emulate an ARM based system to run application software in a production or live environment.

In the case of any Licensee who is either or both an academic or educational institution the purposes shall be limited to internal use.

Except to the extent that such activity is permitted by applicable law, Licensee shall not reverse engineer, decompile, or disassemble this model. If this model was provided to Licensee in Europe, Licensee shall not reverse engineer, decompile or disassemble the Model for the purposes of error correction.

The License agreement does not entitle Licensee to manufacture in silicon any product based on this model.

The License agreement does not entitle Licensee to use this model for evaluating the validity of any ARM patent.

Source of model available under separate Imperas Software License Agreement.

1.3 Limitations

Instruction pipelines are not modeled in any way. All instructions are assumed to complete immediately. This means that instruction barrier instructions (e.g. ISB, CP15ISB) are treated

as NOPs, with the exception of any undefined instruction behavior, which is modeled. The model does not implement speculative fetch behavior. The branch cache is not modeled. Caches and write buffers are not modeled in any way. All loads, fetches and stores complete immediately and in order, and are fully synchronous (as if the memory was of Strongly Ordered or Device-nGnRnE type). Data barrier instructions (e.g. DSB, CP15DSB) are treated as NOPs, with the exception of any undefined instruction behavior, which is modeled. Cache manipulation instructions are implemented as NOPs, with the exception of any undefined instruction behavior, which is modeled.

Real-world timing effects are not modeled: all instructions are assumed to complete in a single cycle.

Performance Monitors are implemented as a register interface only.

1.4 Verification

Models have been extensively tested by Imperas. ARM Cortex models have been successfully used by customers to simulate SMP Linux, Ubuntu Desktop, VxWorks and ThreadX on Xilinx Zynq virtual platforms.

1.5 Features

Thumb-2 instructions are supported.

Trivial Jazelle extension is implemented.

VFP is implemented.

PMSA address translation is implemented.

1 ATCM is implemented.

1 BTCM is implemented.

Vectored Interrupt Controller Port (VIC port) is implemented.

2.0 Configuration

2.1 Location

The model source and object file is found in the VLNV tree at: arm.ovpworld.org/processor/arm/1.0

2.2 GDB Path

The default GDB for this model is found at:

\$IMPERAS HOME/lib/\$IMPERAS ARCH/gdb/arm-none-eabi-gdb

2.3 Semi-Host Library

The default semi-host library file is found in the VLNV tree at : arm.ovpworld.org/semihosting/armNewlib/1.0

2.4 Processor Endian-ness

This model can be set to either endian-ness (normally by a pin, or the ELF code).

2.5 QuantumLeap Support

This processor is qualified to run in a QuantumLeap enabled simulator.

2.6 Processor ELF Code

The ELF code supported by this model is: 0x28

3.0 Other Variants in this Model

Table 1.

aute 1.
/ariant
ARMv4T
\RMv4xM
ARMv4
\RMv4TxM
\RMv5xM
ARMv5
\RMv5TxM
\RMv5T
\RMv5TExP
\RMv5TE
\RMv5TEJ
\RMv6
RMv6K
NRMv6T2
\RMv6KZ
ARMv7
RM7TDMI
RM7EJ-S
RM720T
RM920T
RM922T
RM926EJ-S
RM940T
RM946E
RM966E
RM968E-S
RM1020E
RM1022E
RM1026EJ-S
RM1136J-S
RM1156T2-S
RM1176JZ-S
Cortex-R4
Cortex-R4F
Cortex-A5UP
Cortex-A5MPx1
Cortex-A5MPx2
Cortex-A5MPx3
Cortex-A5MPx4
Cortex-A8

Cortex-A9UP
Cortex-A9MPx1
Cortex-A9MPx2
Cortex-A9MPx3
Cortex-A9MPx4
Cortex-A7UP
Cortex-A7MPx1
Cortex-A7MPx2
Cortex-A7MPx3
Cortex-A7MPx4
Cortex-A15UP
Cortex-A15MPx1
Cortex-A15MPx2
Cortex-A15MPx3
Cortex-A15MPx4
Cortex-A17MPx1
Cortex-A17MPx2
Cortex-A17MPx3
Cortex-A17MPx4
AArch32
AArch64
Cortex-A53MPx1
Cortex-A53MPx2
Cortex-A53MPx3
Cortex-A53MPx4
Cortex-A57MPx1
Cortex-A57MPx2
Cortex-A57MPx3
Cortex-A57MPx4

4.0 Bus Ports

Table 2.

Туре	Name	Bits	Description
master (initiator)	ATCM0	32	ATCM
master (initiator)	BTCM0	32	ВТСМ
master (initiator)	INSTRUCTION	32	
master (initiator)	DATA	32	

5.0 Net Ports

Table 3.

Name	Туре	Description
------	------	-------------

	ir .	
VINITHI	input	Configure HIVECS mode (SCTLR.V)
CFGEE	input	Configure exception endianness (SCTLR.EE)
CFGIE	input	Configure instruction endianness (SCTLR.IE)
INITRAMA	input	Configure ATCM enable bit (active high)
INITRAMB	input	Configure BTCM enable bit (active high)
LOCZRAMA	input	Configure ATCM/BTCM zero RAM
TEINIT	input	Configure exception state at reset (SCTLR.TE)
CFGNMFI	input	Configure non-maskable fast interrupts (SCTLR.NMFI)
reset	input	Processor reset, active high
fiq	input	FIQ interrupt, active high (negation of nFIQ)
irq	input	IRQ interrupt, active high (negation of nIRQ)
AXI_SLVERR	input	AXI external abort type (DECERR=0, SLVERR=1)
VICACK	output	VIC Port acknowledge (active high)
VICADDR	input	VIC Port Address (32 bit value)

6.0 FIFO Ports

No FIFO Ports in this model.

7.0 Parameters

Table 4.

Name	Туре	Description
verbose	Boolean	Specify verbosity of output
showHiddenRegs	Boolean	Show hidden registers during register tracing
UAL	Boolean	Disassemble using UAL syntax
enableVFPAtReset	Boolean	Enable vector floating point (SIMD and VFP) instructions at reset. (Enables cp10/11 in CPACR and sets FPEXC.EN)
useInternalTCMs	Boolean	Enable internally-modeled TCM memories (not connected to external ATCM/BTCM ports)
compatibility	Enumeration	Specify compatibility mode ISA=0 gdb=1 nopSVC=2
override_debugMask	Uns32	Specifies debug mask, enabling debug output for model components
override_fcsePresent	Boolean	Specifies that FCSE is present (if true)
override_fpexcDexPresent	Boolean	Specifies that the FPEXC.DEX register field is implemented (if true)
override_advSIMDPresent	Boolean	Specifies that Advanced SIMD extensions are present (if true)
override_vfpPresent	Boolean	Specifies that VFP extensions are present (if true)
override_SCTLR_V	Boolean	Override SCTLR.V with the passed value (enables high vectors)

override_SCTLR_CP15BEN_Present	Boolean	Enable ARMv7 SCTLR.CP15BEN bit (CP15 barrier enable)
override_MIDR	Uns32	Override MIDR register
override_CTR	Uns32	Override CTR register
override_MPUIR	Uns32	Override MPUIR register
override_CLIDR	Uns32	Override CLIDR register
override_AIDR	Uns32	Override AIDR register
override_ATCMRR	Uns32	Override ATCMRR register
override_BTCMRR	Uns32	Override BTCMRR register
override_PFR0	Uns32	Override ID_PFR0 register
override_PFR1	Uns32	Override ID_PFR1 register
override_DFR0	Uns32	Override ID_DFR0 register
override_AFR0	Uns32	Override ID_AFR0 register
override_MMFR0	Uns32	Override ID_MMFR0 register
override_MMFR1	Uns32	Override ID_MMFR1 register
override_MMFR2	Uns32	Override ID_MMFR2 register
override_MMFR3	Uns32	Override ID_MMFR3 register
override_ISAR0	Uns32	Override ID_ISAR0 register
override_ISAR1	Uns32	Override ID_ISAR1 register
override_ISAR2	Uns32	Override ID_ISAR2 register
override_ISAR3	Uns32	Override ID_ISAR3 register
override_ISAR4	Uns32	Override ID_ISAR4 register
override_ISAR5	Uns32	Override ID_ISAR5 register
override_PMCR	Uns32	Override PMCR register (not functionally significant in the model)
override_PMCEID0	Uns32	Override PMCEID0 register (not functionally significant in the model)
override_PMCEID1	Uns32	Override PMCEID1 register (not functionally significant in the model)
override_SACTLR	Uns32	Override Cortex-R5 SACTLR register (not functionally significant in the model)
override_BuildOptions0	Uns32	Override Cortex-R5 BuildOptions0 register (not functionally significant in the model)
override_BuildOptions1	Uns32	Override Cortex-R5 BuildOptions1 register (not functionally significant in the model)
override_FPSID	Uns32	Override SIMD/VFP FPSID register
override_MVFR0	Uns32	Override SIMD/VFP MVFR0 register
override_MVFR1	Uns32	Override SIMD/VFP MVFR1 register
override_FPEXC	Uns32	Override SIMD/VFP FPEXC register
override_ERG	Uns32	Specifies exclusive reservation granule
override_STRoffsetPC12	Boolean	Specifies that STR/STR of PC should do so with 12:byte offset from the current instruction (if true), otherwise an 8:byte offset is used

override_mpuV5ExtAP	Boolean	Specifies that ARMv5 MPU extended access permissions implemented (cp15/5/2 and cp15/5/2)
override_ignoreBadCp15	Boolean	Specifies whether invalid coprocessor 15 access should be ignored (if true) or cause Invalid Instruction exceptions (if false)
override_SGIDisable	Boolean	Override whether GIC SGIs may be disabled (if true) or are permanently enabled (if false)
override_condUndefined	Boolean	Force undefined instructions to take Undefined Instruction exception even if they are conditional
override_deviceStrongAligned	Boolean	Force accesses to Device and Strongly Ordered regions to be aligned
override_Control_V	Boolean	Override SCTLR.V with the passed value (deprecated, use override_SCTLR_V)
override_MainId	Uns32	Override MIDR register (deprecated, use override_MIDR)
override_CacheType	Uns32	Override CTR register (deprecated, use override_CTR)
override_MPUType	Uns32	Override MPUIR register (deprecated, use override_MPUIR)
override_InstructionAttributes0	Uns32	Override ID_ISAR0 register (deprecated, use override_ISAR0)
override_InstructionAttributes1	Uns32	Override ID_ISAR1 register (deprecated, use override_ISAR1)
override_InstructionAttributes2	Uns32	Override ID_ISAR2 register (deprecated, use override_ISAR2)
override_InstructionAttributes3	Uns32	Override ID_ISAR3 register (deprecated, use override_ISAR3)
override_InstructionAttributes4	Uns32	Override ID_ISAR4 register (deprecated, use override_ISAR4)
override_InstructionAttributes5	Uns32	Override ID_ISAR5 register (deprecated, use override_ISAR5)

8.0 Execution Modes

Table 5.

Name	Code
User	16
FIQ	17
IRQ	18
Supervisor	19
Abort	23
Undefined	27
System	31

9.0 Exceptions

Table 6.

Name	Code
Reset	0
Undefined	1
SupervisorCall	2
PrefetchAbort	5
DataAbort	6
IRQ	8
FIQ	9

10.0 Hierarchy of the model

A CPU core may allow the user to configure it to instance many processors of a Symmetrical Multi Processor (SMP). A CPU core may also have sub elements within a processor, for example hardware threading blocks.

OVP processor models can be written to include SMP blocks and to have many levels of hierarchy.

Some OVP CPU models may have a fixed hierarchy, and some may be configured by settings in a configuration register. Please see the register definitions of this model.

This model documentation shows the settings and hierarchy of the default settings for this model variant.

10.1 Level 1: CPU

This level in the model hierarchy has 4 commands.

This level in the model hierarchy has 12 register groups:

Table 7.

Group name	Registers
Core	16
Control	3
User	7
FIQ	8
IRQ	3
Supervisor	3
Undefined	3
Abort	3
SIMD_VFP	16
SIMD_VFP_SYS	5
Coprocessor_32_bit	88
Integration_support	2

This level in the model hierarchy has no children.

11.0 Model Commands

11.1 Level 1: CPU

Table 8.

Name	Arguments
debugflags	
dumpTLB	
isync	specify instruction address range for synchronous execution
itrace	enable or disable instruction tracing

12.0 Registers

12.1 Level 1: CPU

12.1.1 Core

Table 9.

Name	Bits	Initial		Description
		value (Hex)		
r0	32	0	rw	
r1	32	0	rw	
r2	32	0	rw	
r3	32	0	rw	
r4	32	0	rw	
r5	32	0	rw	
r6	32	0	rw	
r7	32	0	rw	
r8	32	0	rw	
r9	32	0	rw	
r10	32	0	rw	
r11	32	0	rw	frame pointer
r12	32	0	rw	
sp	32	0	rw	stack pointer
lr	32	0	rw	
рс	32	0	rw	program counter

12.1.2 Control

Table 10.

Name		Initial value (Hex)		Description
fps	32	0	rw	archaic FPSCR view (for gdb)
cpsr	32	1d3	rw	
spsr	32	0	rw	

12.1.3 User

Table 11.

Name	1	Initial		Description
		value (Hex)		
r8_usr	32	0	rw	
r9_usr	32	0	rw	
r10_usr	32	0	rw	
r11_usr	32	0	rw	
r12_usr	32	0	rw	
sp_usr	32	0	rw	
Ir_usr	32	0	rw	

12.1.4 FIQ

Table 12.

Name		Initial value (Hex)		Description
		value (Hex)		
r8_fiq	32	0	rw	
r9_fiq	32	0	rw	
r10_fiq	32	0	rw	
r11_fiq	32	0	rw	
r12_fiq	32	0	rw	
sp_fiq	32	0	rw	
Ir_fiq	32	0	rw	
spsr_fiq	32	0	rw	

12.1.5 IRQ

Table 13.

Name		Initial value (Hex)		Description
sp_irq	32	0	rw	
Ir_irq	32	0	rw	
spsr_irq	32	0	rw	

12.1.6 Supervisor

Table 14.

Name		Initial value (Hex)		Description
sp_svc	32	0	rw	
Ir_svc	32	0	rw	
spsr_svc	32	0	rw	

12.1.7 Undefined

Table 15.

Name		Initial value (Hex)		Description
sp_undef	32	0	rw	
Ir_undef	32	0	rw	
spsr_undef	32	0	rw	

12.1.8 Abort

Table 16.

Name		Initial value (Hex)		Description
sp_abt	32	0	rw	
Ir_abt	32	0	rw	
spsr_abt	32	0	rw	

12.1.9 SIMD_VFP

Table 17.

Name	Bits	Initial value (Hex)		Description
d0	64	0	rw	
d1	64	0	rw	
d2	64	0	rw	
d3	64	0	rw	
d4	64	0	rw	
d5	64	0	rw	
d6	64	0	rw	
d7	64	0	rw	
d8	64	0	rw	
d9	64	0	rw	
d10	64	0	rw	
d11	64	0	rw	
d12	64	0	rw	
d13	64	0	rw	
d14	64	0	rw	
d15	64	0	rw	

12.1.10 SIMD_VFP_SYS

Table 18.

Name		Initial value (Hex)		Description
FPSID	32	41023148	r-	floating-point system ID
FPSCR	32	0	rw	floating-point status/control
FPEXC	32	0	rw	floating-point exception

MVFR0	32	10110221	r-	Media/VFP feature 0
MVFR1	32	11	r-	Media/VFP feature 1

12.1.11 Coprocessor_32_bit

Table 19.

Name	Bits	Initial value (Hex)		Description
ACTLR	32	20	rw	Auxiliary Control
ADFSR	32	0	rw	Auxilary Data Fault Status
AIFSR	32	0	rw	Auxilary Instruction Fault Status
ATCMRR	32	10	rw	ATCM Region
BPIALL	32	-	-w	Branch Predictor Invalidate All
BPIMVA	32	-	-w	Branch Predictor Invalidate by VA
BTCMRR	32	10	rw	BTCM Region
BuildOptions0	32	0	r-	Build Options 0
BuildOptions1	32	810	r-	Build Options 1
CCSIDR	32	f03fe019	r-	Cache Size ID
CFLR	32	0	rw	Correctable Fault Location
CLIDR	32	9000003	r-	Cache Level ID
CONTEXTIDR	32	0	rw	Context ID
CP15DMB	32	-	-w	CP15 Data Memory Barrier
CP15DSB	32	-	-w	CP15 Data Synchronization Barrier
CP15ISB	32	-	-w	CP15 Instruction Synchronization Barrier
CP15NOP	32	-	-w	CP15 NOP
CPACR	32	c0000000	rw	Coprocessor Access Control
CSOR	32	-	-w	Cache Size Override
CSSELR	32	0	rw	Cache Size Selection
CTR	32	8003c003	r-	Cache Type
DBGDIDR	32	0	r-	Debug ID
DCCIMVAC	32	-	-w	Data Cache Line Clean and Invalidate by VA to PoC
DCCISW	32	-	-w	Data Cache Line Clean and Invalidate by Set/Way
DCCMVAC	32	-	-w	Data Cache Line Clean by VA to PoC
DCCMVAU	32	-	-w	Data Cache Line Clean by VA to PoU
DCCSW	32	-	-w	Data Cache Line Clean by Set/Way
DCIALL	32	-	-w	Data Cache Invalidate All
DCIMVAC	32	-	-w	Data Cache Line Invalidate by VA to PoC
DCISW	32	-	-w	Data Cache Line Invalidate by Set/Way
DFAR	32	0	rw	Data Fault Address
DFSR	32	0	rw	Data Fault Status
DRACR	32	0	rw	Data Region Access Control
DRBAR	32	0	rw	Data Region Base Address
DRSR	32	0	rw	Data Region Size/Enable

ICIALLU	32	-	l-w	Instruction Cache Invalidate All
ICIMVAU	32	-		Instruction Cache Invalidate by VA
ID_AFR0	32	0	r-	Auxiliary Feature 0
ID_DFR0	32	0	r-	Debug Feature 0
ID ISAR0	32	1101111	r-	Instruction Set Attribute 0
ID ISAR1	32	13112111	r-	Instruction Set Attribute 1
ID_ISAR2	32	21232131	r-	Instruction Set Attribute 2
ID ISAR3	32	1112131	r-	Instruction Set Attribute 3
ID ISAR4	32	10142	r-	Instruction Set Attribute 4
ID_ISAR5	32	0	r-	Instruction Set Attribute 5
ID_MMFR0	32	210030	r-	Memory Model Feature 0
ID MMFR1	32	0	r-	Memory Model Feature 1
ID_MMFR2	32	1200000	r-	Memory Model Feature 2
ID MMFR3	32	211	r-	Memory Model Feature 3
ID PFR0	32	131	r-	Processor Feature 0
ID PFR1	32	1	r-	Processor Feature 1
IFAR	32	0	rw	Instruction Fault Address
IFSR	32	0	rw	Instruction Fault Status
JIDR	32	0	rw	Jazelle ID
JMCR	32	0	rw	Jazelle Main Configuration
JOSCR	32	0	rw	Jazelle OS Control
MIDR	32	411fc144	r-	Main ID
MPIDR	32	0	r-	Multiprocessor Affinity
MPUIR	32	800	r-	MPU Type
PAR	32	0	rw	Physical Address
PMCCNTR	32	0	rw	Performance Monitors Cycle Count
PMCNTENCLR	32	0	rw	Performance Monitors Count Enable Clear
PMCNTENSET	32	0	rw	Performance Monitors Count Enable Set
PMCR	32	41141800	rw	Performance Monitors Control
PMINTENCLR	32	0	rw	Performance Monitors Interrupt Enable Clear
PMINTENSET	32	0	rw	Performance Monitors Interrupt Enable Set
PMOVSR	32	0	rw	Performance Monitors Overflow Flag Status
PMSELR	32	0	rw	Performance Monitors Event Counter Selection
PMSWINC	32	-	-w	Performance Monitors Software Increment
PMUSERENR	32	0	rw	Performance Monitors User Enable
PMXEVCNTR	32	0	rw	Performance Monitors Selected Event Count
PMXEVTYPER	32	0	rw	Performance Monitors Selected Event Type
RGNR	32	0	rw	Region Number
SACTLR	32	400000	rw	Secondary Auxiliary Control
SCTLR	32	e50878	rw	System Control
SPCR	32	0	rw	Slave Port Control
TCMTR	32	10001	r-	ТСМ Туре

TPIDRPRW	32	0	rw	PL0 Read/Write Software Thread ID
TPIDRURO	32	0	rw	PL0 Read-Only Software Thread ID
TPIDRURW	32	0	rw	PL1 Software Thread ID
VALDEBUGENCLR	32	0	rw	VAL Debug Request Enable Clear
VALDEBUGENSET	32	0	rw	VAL Debug Request Enable Set
VALFIQENCLR	32	0	rw	nVAL FIQ Enable Clear
VALFIQENSET	32	0	rw	nVAL FIQ Enable Set
VALIRQENCLR	32	0	rw	nVAL IRQ Enable Clear
VALIRQENSET	32	0	rw	nVAL IRQ Enable Set
VALRESETENCLR	32	0	rw	nVAL Reset Enable Clear
VALRESETENSET	32	0	rw	nVAL Reset Enable Set

12.1.12 Integration_support

Table 20.

Name		Initial value (Hex)		Description	
transactPL	32	1	r-	privilege level of current memory transaction	
transactAT	32	0	r-	current memory transaction type: PA=1, VA=0	

#