Convolutional Neural Networks

Data Mining

Ester Vidaña Vila

Redes neuronales convolucionales (CNN)

Redes neuronales convolucionales (CNN)

Second Layer Representation

Third Layer Representation

Redes neuronales convolucionales (CNN)

Ampliamente utilizadas en el ámbito de análisis y clasificación de imágenes.

Ejemplo: cada capa se entrena a identificar partes de rostros: Bordes, zonas pequeñas de la cara, zonas más grandes...

First Layer Representation

Second Layer Representation

Third Layer Representation

Análisis de píxeles – imagen en escala de grises

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

_

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

$$(3 \times 1) + (0 \times 0) + (1 \times -1) + (1 \times 1) + (5 \times 0) + (8 \times -1) + (2 \times 1) + (7 \times 0) + (2 \times -1)$$

$$3 + (-1) + 1 + (-8) + 2 + (-2) = -5$$

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16
		·	

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

MBD

Data Mining

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Análisis de píxeles – imagen en escala de grises Se tiene que aplicar el filtro a cada iteración de la imagen Luego se realiza la suma de todas las multiplicaciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

X

1	0	-1
1	0	-1
1	0	-1

=

		_	
-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Imagen: 6x6

Filtro (kernel): 3x3

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

_

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

_

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

_

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1

X

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

_

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

Hay ciertos Kernels que nos permiten hacer funciones específicas.

X

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

 1
 0
 -1

 1
 0
 -1

 1
 0
 -1

Imagen: 6x6

Filtro (kernel): 3x3

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Detección de bordes

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

MBD

Data Mining

Detección de bordes

Hay ciertos Kernels que nos permiten hacer funciones específicas.

Por ejemplo, con el siguiente Kernel podemos encontrar bordes verticales.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Resultado: 4x4

MBD

Detección de bordes

Análisis de píxels – imagen en escala de grises
Píxels de numeración alta = tonalidad baja
Píxels de numeración bajar = tonalidad oscura

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

X

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Imagen: 6x6

Filtro (kernel): 3x3

Padding

• Concepto de padding: obtener el mismo numero de píxels que en la imagen original.

X

#	#	#	#	#	#
#	#	#	#	#	#
#	#	#	#	#	#
#	#	#	#	#	#
#	#	#	#	#	#
#	#	#	#	#	#

(6-3+1)x(6-3+1) 4 x 4

Padding

Consiste en rellenar con ceros el contorno de la imagen original.

De esta forma, obtendremos como salida el mismo tamaño que la imagen inicial.

0	0	0	0	0	0	0	0
0	#	#	#	#	#	#	0
0	#	#	#	#	#	#	0
0	#	#	#	#	#	#	0
0	#	#	#	#	#	#	0
0	#	#	#	#	#	#	0
0	#	#	#	#	#	#	0
0	0	0	0	0	0	0	0

Imagen: 6x6 (p = 1)

Filtro (kernel): 3x3

#	#	#	#	#	#
#	#	#	#	#	#
#	#	#	#	#	#
#	#	#	#	#	#
#	#	#	#	#	#
#	#	#	#	#	#

Strides - Saltos o zancadas

En vez de desplazarse de elemento en elemento a la derecha se dará un salto de un número dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

=

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

S	=	2	

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

=

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

=

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

_

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

=

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

=

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

=

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

=

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

X

1	2	1
1	2	0
0	1	2

=

18	21	24
14	26	14
12	23	17

Imagen: 7x7

Filtro (kernel): 3x3

Strides - Saltos o zancadas

En vez de desplazarse de un elemento a la derecha se dará un salto de un numero dado por el valor del stride.

1	0	1	4	3	2	0
4	4	0	1	1	4	2
4	0	2	1	3	0	4
2	0	3	4	4	1	3
3	2	2	4	2	1	0
0	1	3	0	3	0	1
3	1	0	0	4	2	4

Imagen: 7x7

1	2	1
1	2	0
0	1	2

X

Filtro (kernel): 3x3

18	21	24
14	26	14
12	23	17

Resultado: 3x3

MBD

Imágenes RGB

Análisis de píxels – imagen en RGB (0 a 255)

filas x columnas x canales (planos) – mismo numero de canales entre imagen y filtro

Imagen: 6x6x3

Filtro (kernel): 3x3x3

Imágenes RGB

Análisis de píxels – imagen en RGB (0 a 255) imagen resultante con un solo canal

Imagen: 6x6x3 Filtro (kernel): 3x3x3 Resultado: 4x4

Imágenes RGB

Análisis de píxels – imagen en RGB (0 a 255)

imagen resultante con un solo canal – primero resultado: suma de las 27 multiplicaciones

Imagen: 6x6x3

Filtro (kernel): 3x3x3

Análisis de píxels – imagen en escala de grises – Filtro Max pooling

5	3	4	1
2	7	9	2
8	1	5	3
9	7	2	1

Imagen: 4x4

Análisis de píxels – imagen en escala de grises – Filtro Max pooling

5	3	4	1
2	7	9	2
8	1	5	3
9	7	2	1

hiperparámetros

Filtro = 2x2Stride : 2

Imagen: 4x4

Análisis de píxels – imagen en escala de grises – Filtro Max pooling.

De los valores que están dentro del filtro, se escoge el valor más grande (7).

5	3	4	1
2	7	9	2
8	1	5	3
9	7	2	1

Filtro = 2x2Stride : 2

7	9
9	5

Análisis de píxels – imagen en escala de grises – Filtro Max pooling.

De los valores que están dentro del filtro, se escoge el valor más grande (9).

5	3	4	1
2	7	9	2
8	1	5	3
9	7	2	1

Filtro = 2x2Stride : 2

7	9
9	5

Análisis de píxels – imagen en escala de grises – Filtro Max pooling.

De los valores que están dentro del filtro, se escoge el valor más grande (9).

5	3	4	1
2	7	9	2
8	1	5	3
9	7	2	1

Filtro = 2x2Stride : 2

7	9
9	5

Análisis de píxels – imagen en escala de grises – Filtro Max pooling De los valores que están dentro del filtro, se escoge el valor más grande (5).

5	3	4	1
2	7	9	2
8	1	5	3
9	7	2	1

Filtro = 2x2Stride : 2

7	9
9	5

Análisis de pixeles - imagen en escala de grises - Filtro Max pooling

Dentro de una imagen, hablando en términos de píxels, los valores altos son los que tienen más relevancia.

El max pooling preserva estos valores.

5	3	4	1
2	7	9	2
8	1	5	3
9	7	2	1

hyperparámetros

Filtro = 2x2Stride : 2

7	9
9	5

Otras técnicas de pooling

También existent los términos de:

- Min pooling: nos quedamos con el valor más bajo. Así, nos quedamos con los píxels más oscuros. Por contra, con Max Pool nos quedaríamos con los más brillantes.
- Average pooling: nos quedamos con el valor promedio. Efecto smooth.

https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9

MBD

Regularización: dropout

El término **regularización** se refiere a la aplicación de técnicas para calibrar los modelos de machine learning y prevenir el overfitting o underfitting.

Un método para regularizar redes neuronales es la aplicación de capas de dropout.

Dropout: se refiere a eliminar nodos de la red de forma temporal, creando así una nueva

arquitectura.

Paper explicativo: https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Dropout

Los nodos van a cortarse temporalmente utilizando una probabilidad p.

Así pues, si en una capa interna tenemos 100 neuronas y definimos una probabilidad del 0.2, habría 20 neuronas que quedarían desactivadas (sacarían un resultado de 0).

GIF para ejemplificar:

https://mohcinemadkour.github.io/posts/2020/04/Deep%20Learning%20Regularization/

MBD Data Mining Page 64

Dropout y overfitting

Recordatorio:

El *overfitting* ocurre cuando el modelo aprende del ruido estadístico que hay en los datos de entrada, dado que las neuronas intentan minimizar la función de pérdida global. Esto hace que haya neuronas que intenten compensar los errores de otras neuronas.

Con dropout, la red tiene que aprender a distinguir las *features* más importantes sin confiar en el resto de neuronas, ya que con los cortes aleatorios de neuronas, habrá una red nueva a entrenar en cada paso del entrenamiento.

Podemos verlo como un *ensemble*: un grupo de redes con arquitecturas distintas.

• **Importante**: dropout se utiliza únicamente para entrenar la red, pero no se utiliza para inferencia.

MBD Data Mining Page 65

Ejemplo de CNNs

https://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-network-architecture/

Ejemplo de CNNs

AlexNet:

VGG16:

Page 67