

Mobile Communication: Basics

Dominic Duggan
Based on materials by Jochen Schiller

1

WAVES AND FREQUENCIES

Physics Basics

- Wireless signals travel in waves
 - Electromagnetic
 - Infrared
 - Visible light, UV
- · Speed is limited by the speed of light, c
- Signal characteristics:
 - Wavelength, λ
 - Frequency, $f = c/\lambda$
 - Amplitude

.

Wavelength and Frequency

- Wavelength measured in distance, km to μm
- Frequency measured in Hz/kHz/MHz/GHz/THz
- Antenna size proportional to wavelength
- Long waves (low frequency)
 - Easier to penetrate physical objects e.g. submarines
- Short waves (high frequency)
 - Better for mobile devices (antenna)
 - High frequency \Rightarrow high bandwidth
 - Subject to interference (e.g. visible light)

Frequencies for communication

UHF = Ultra High Frequency

SHF = Super High Frequency

EHF = Extra High Frequency UV = Ultraviolet Light

VLF = Very Low Frequency

LF = Low Frequency

MF = Medium Frequency

HF = High Frequency

VHF = Very High Frequency

Frequency and wave length

 $\lambda = c/f$

wave length λ , speed of light c $\approx 3x10^8$ m/s, frequency f

Frequencies for Mobile Communication

- MF/HF ranges for radio stations
 - AM, short wave (SW), FM
- VHF-/UHF-ranges for television, telephone, mobile radio
 - simple, small antenna for cars
 - deterministic propagation characteristics, reliable connections
- SHF and higher for directed radio links, satellites
 - small antenna, beam forming, large bandwidth available
- Wireless LANs use frequencies in UHF to SHF range
 - limitations due to absorption by water and oxygen molecules (resonance frequencies), weather dependent fading, rainfall...

Frequencies and Regulations

ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

Examples	Europe	USA	Japan
Cellular phones	GSM 880-915, 925-960, 1710-1785, 1805-1880 UMTS 1920-1980, 2110-2170	AMPS, TDMA, CDMA, GSM 824-849, 869-894 TDMA, CDMA, GSM, UMTS 1850-1910, 1930-1990	PDC, FOMA 810-888, 893-958 PDC 1429-1453, 1477-1501 FOMA 1920-1980, 2110-2170
Cordless phones	CT1+ 885-887, 930-932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930-1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 245-380
Wireless LANs	802.11b/g 2412-2472	802.11b/g 2412-2462	802.11b 2412-2484 802.11g 2412-2472
Other RF systems	27, 128, 418, 433, 868	315, 915	426, 868

SIGNALS

Signals

- · Physical representation of data
- Function of time and location
- Signal parameters: parameters representing the value of data
- Classification
 - continuous time/discrete time
 - continuous values/discrete values
 - analog signal = continuous time and continuous values
 - digital signal = discrete time and discrete values

9

Periodic Signals

 Periodic signals (esp sine waves) of particular interest for radio transmission

Phase shift used to represent data

• Signal parameters of periodic signals: period T, frequency f=1/T, amplitude A, phase shift ϕ — sine wave as special periodic signal for a carrier:

$$s(t) = A_t \sin(2 \pi f_t t + \phi_t)$$

Parameters may change over time

Fourier representation of periodic signals (sampling)

f is the fundamental frequency

11

Representation of Signals

Representations of Signals: Amplitude domain

Representation of Signals

• Representations of Signals: Frequency domain

13

Representation of Signals

• Representations of Signals: Frequency domain

 Composed signals transferred into frequency domain using Fourier transformation

Representation of Signals

- Representations of Signals: phase state
 - amplitude M and phase ϕ in polar coordinates

15

Representation of Signals

• Recall Fourier representation:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

- Digital signals need
 - infinite frequencies for perfect transmission
 - · But in practice limited bandwidth and frequencies
 - Only need to sample at some finite number of frequencies
 - modulation with a carrier frequency for transmission (analog signal)

SIGNAL PROPAGATION

17

Antennas

- Isotropic radiator: equal radiation in all directions
 - only a theoretical reference antenna

ideal isotropic radiator

- Real antennas always have directive effects (vertically and/or horizontally)
- Radiation pattern: measurement of radiation around an antenna
- Example: Radiation pattern of a simple Hertzian dipole

• Gain: maximum power in the direction of the main lobe compared to the power of an isotropic radiator

Antennas: Directed and Sectorized

 Often used for microwave connections or base stations for mobile phones (e.g., radio coverage of a valley)

1

Signal Propagation Ranges

- Transmission range
 - communication possible
 - low error rate
- Detection range
 - no communication possible
- · Interference range
 - signal may not be detected
 - signal adds to the background noise

Signal Propagation

- Propagation in free space in straight line
- Receiving power proportional to 1/d² in vacuum (d = distance between sender and receiver)
 - Recall: area of sphere = $4\pi d^2$ where d = radius

21

Signal Propagation

- Receiving power additionally influenced by
 - fading (frequency dependent)
 - shadowing
 - reflection at large obstacles
 - refraction (depends on density of medium)

Signal Propagation

- Receiving power additionally influenced by
 - scattering at small obstacles
 - diffraction at edges

2:

Multipath propagation

Multipath propagation

 Signal can take many different paths due to reflection, scattering, diffraction

25

Multipath propagation

• Signal can take many different paths due to reflection, scattering, diffraction

- Signal is dispersed over time
 - Inter Symbol Interference (ISI)
- Signal reaches a receiver directly and phase shifted

Effects of Mobility

- Channel characteristics change over time and location
 - signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts
 - ⇒ quick changes in the power received (short term fading)

short term fading

Effects of Mobility

- · Additional changes in
 - distance to sender
 - obstacles further away
 - \Rightarrow slow changes in the average power received (long term fading)

MULTIPLEXING

Time and Frequency Multiplexing

- Combination of both methods
- A channel gets a certain frequency band for a certain amount of time
- Example: GSM

MODULATION

35

Digital Modulation

- Digital modulation
 - digital data is translated into an analog signal (baseband)
 - E.g. shift 1 Mb/s bit stream to 1 MHz baseband signal
- Techniques
 - Amplitude shift keying (ASK)
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)
 - differences in spectral efficiency, power efficiency, robustness

Analog Modulation

- Analog modulation
 - shifts center frequency of baseband signal up to the radio carrier
 - e.g. shift 1 MHz signal to 1 GHz (otherwise need an antenna hundreds of meters high)
- Motivation
 - smaller antennas (e.g., $\lambda/4$)
 - Frequency Division Multiplexing
 - medium characteristics
- · Basic schemes
 - Amplitude Modulation (AM)
 - Frequency Modulation (FM)
 - Phase Modulation (PM)

37

Modulation and demodulation

Digital modulation

- Modulation of digital signals known as Shift Keying
- Amplitude Shift Keying (ASK):
 - very simple
 - low bandwidth requirements
 - very susceptible to interference

39

Digital modulation

- Modulation of digital signals known as Shift Keying
- Amplitude Shift Keying (ASK):
 - very simple
 - low bandwidth requirements
 - very susceptible to interference
- Frequency Shift Keying (FSK):
 - needs larger bandwidth

Digital modulation

- Modulation of digital signals known as Shift Keying
- Amplitude Shift Keying (ASK):
 - very simple
 - low bandwidth requirements
 - very susceptible to interference
- Frequency Shift Keying (FSK):
 - needs larger bandwidth

- more complex
- robust against interference

41

Advanced Frequency Shift Keying

- Bandwidth needed for FSK depends on distance between carrier frequencies
- Special pre-computation avoids sudden phase shifts
 - ⇒ MSK (Minimum Shift Keying)
 - Bit separated into even and odd bits, the duration of each bit is doubled
 - Two frequencies f_1 and $f_2 = 2f_1$
 - Both bits 1 ⇒ send on f_2 , both bits 0 ⇒ send on f_2 inverted
 - Odd bit 1, even bit 0 \Rightarrow send on f₁
 - Odd bit 0, even bit 1 \Rightarrow send on f_1 inverted
 - Key point: no abrupt phase changes
- Even higher bandwidth efficiency using a Gaussian low-pass filter ⇒ GMSK (Gaussian MSK), used in GSM

Advanced Phase Shift Keying

- BPSK (Binary Phase Shift Keying):
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - low spectral efficiency
 - robust, used e.g. in satellites

Advanced Phase Shift Keying

- BPSK (Binary Phase Shift Keying):
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - low spectral efficiency
 - robust, used e.g. in satellites

4

Advanced Phase Shift Keying

- BPSK (Binary Phase Shift Keying):
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - low spectral efficiency
 - robust, used e.g. in satellite s
- QPSK (Quadrature Phase Shift Keying):
 - 2 bits coded as one symbol
 - symbol determines shift of sine wave
 - needs less bandwidth compared to BPSK
 - more complex

Advanced Phase Shift Keying

- BPSK (Binary Phase Shift Keying):
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - low spectral efficiency
 - robust, used e.g. in satellite s
- QPSK (Quadrature Phase Shift Keying):
 - 2 bits coded as one symbol
 - symbol determines shift of sine wave
 - needs less bandwidth compared to BPSK
 - more complex
- Often also transmission of relative, not absolute phase shift: DQPSK -Differential QPSK (IS-136, PHS)

Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM)
 - combines amplitude and phase modulation
 - it is possible to code n bits using one symbol
 - 2ⁿ discrete levels, n=2 identical to QPSK
- Bit error rate increases with n, but less errors compared to comparable PSK schemes

– Example: 16-QAM (4 bits = 1 symbol)

Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM)
 - combines amplitude and phase modulation
 - it is possible to code n bits using one symbol
 - 2ⁿ discrete levels, n=2 identical to QPSK
- Bit error rate increases with n, but less errors compared to comparable PSK schemes
 - Example: 16-QAM (4 bits = 1 symbol)
 - Symbols 0011 and 0001 have the same phase φ, but different amplitude a.

0000

0001

Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM)
 - combines amplitude and phase modulation
 - it is possible to code n bits using one symbol
 - 2ⁿ discrete levels, n=2 identical to QPSK
- Bit error rate increases with n, but less errors compared to comparable PSK schemes
 - Example: 16-QAM (4 bits = 1 symbol)
 - Symbols 0000 and 1000 have different phase, but same amplitude,

Hierarchical Modulation

- DVB-T modulates two separate data streams onto a single DVB-T stream
- High Priority (HP) embedded within a Low Priority (LP) stream
- Multi carrier system, about 2000 or 8000 carriers
- QPSK, 16 QAM, 64QAM
- Example: 64QAM
 - good reception: resolve the entire 64QAM constellation
 - poor reception, mobile reception: resolve only QPSK portion
 - 6 bit per QAM symbol, 2 most significant determine QPSK
 - HP service coded in QPSK (2 bit), LP uses remaining 4 bit

53

SPREAD SPECTRUM

55

Spread Spectrum

- Problem: frequency dependent fading
 - Can wipe out narrow band signals
- Solution: spread the narrow band signal into a broad band signal using a code

Spread Spectrum

- · Problem: frequency dependent fading
 - Can wipe out narrow band signals
- Solution: spread the narrow band signal into a broad band signal using a code

- Side effects:
 - coexistence of several signals without dynamic coordination
 - tap-proof
- Alternatives: Direct Sequence, Frequency Hopping

DSSS (Direct Sequence Spread Spectrum)

- XOR of the signal with pseudo-random number (chipping sequence)
 - many chips per bit (e.g., 128) result in higher bandwidth of the signal

t_b: bit period

DSSS (Direct Sequence Spread Spectrum)

- XOR of the signal with pseudo-random number (chipping sequence)
 - many chips per bit (e.g., 128) result in higher bandwidth of the signal

t_b: bit period t_c: chip period

65

DSSS (Direct Sequence Spread Spectrum)

- XOR of the signal with pseudo-random number (chipping sequence)
 - many chips per bit (e.g., 128) result in higher bandwidth of the signal

DSSS (Direct Sequence Spread Spectrum)

- XOR of the signal with pseudo-random number (chipping sequence)
 - many chips per bit (e.g., 128) result in higher bandwidth of the signal
- Advantages
 - reduces frequency selective fading
 - in cellular networks
 - base stations can use the same frequency range
 - several base stations can detect and recover the signal
 - · soft handover
- Disadvantages
 - precise power control necessary

FHSS (Frequency Hopping Spread Spectrum)

- Discrete changes of carrier frequency
 - sequence of frequency changes determined via pseudo random number sequence
 - Implements FDM and TDM
- Two versions
 - Fast Hopping: several frequencies per user bit
 - Slow Hopping: several user bits per frequency
- Advantages
 - frequency selective fading and interference limited to short period
 - simple implementation
 - uses only small portion of spectrum at any time
- Disadvantages
 - not as robust as DSSS
 - simpler to detect

CELL DESIGN

Cell Structure

- Implements space division multiplex (SDM)
- Mobile stations communicate only via the base station
- Advantages of cell structures (compared to e.g. radio stations)
 - higher capacity, higher number of users due to frequency reuse
 - less transmission power needed
 - more robust, decentralized
 - base station deals with interference, transmission area etc. locally
- Problems
 - fixed network needed for the base stations
 - handover (changing from one cell to another) necessary
 - interference with other cells
- Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM) - even less for higher frequencies

73

Frequency planning

- Frequency reuse only with a certain distance between the base stations
- Standard model using 7 frequencies:

- Fixed frequency assignment:
 - certain frequencies are assigned to a certain cell
 - problem: different traffic load in different cells
- Dynamic frequency assignment:
 - base station chooses frequencies depending on the frequencies already used in neighbor cells
 - more capacity in cells with more traffic
 - assignment can also be based on interference measurements

Cell Breathing

- CDM systems: cell size depends on current load
- Additional traffic appears as noise to other users
- If the noise level is too high users drop out of cells

75

MEDIUM ACCESS CONTROL

Motivation

- Can we apply media access methods from fixed networks?
- Example from Ethernet: CSMA/CD
 - Carrier Sense Multiple Access with Collision Detection
 - send as soon as the medium is free, listen into the medium if a collision occurs (legacy method in IEEE 802.3)
- · Problems in wireless networks
 - signal strength decreases proportional to the square of the distance
 - collisions happen at the receiver
 - sender cannot "hear" the collision
 - furthermore, CS might not work if, e.g., a terminal is "hidden"

77

Motivation: hidden terminals

- Hidden terminals
 - A sends to B, C cannot receive A
 - C wants to send to B, C senses a "free" medium (CS fails)
 - collision at B, A cannot receive the collision (CD fails)
 - A is "hidden" for C

Motivation: exposed terminals

- Exposed terminals
 - B sends to A, C wants to send to another terminal (not A or B)
 - C has to wait, CS signals a medium in use
 - but A is outside the radio range of C, therefore waiting is not necessary
 - C is "exposed" to B

79

Motivation: Near and far terminals

- Terminals A and B send, C receives
 - signal of terminal B drowns out A's signal (recall signal strength proportional to 1/d²)
 - C cannot receive A

- If C for example was an arbiter for sending rights, terminal B would drown out terminal A already on the physical layer
- Problem for CDM-networks—precise power control needed!

ACCESS METHODS SDMA/FDMA/TDMA

81

Access Methods SDMA/FDMA/TDMA

- SDMA (Space Division Multiple Access)
 - segment space into sectors, use directed antennas
 - cell structure

Access Methods SDMA/FDMA/TDMA

- SDMA (Space Division Multiple Access)
 - segment space into sectors, use directed antennas
 - cell structure
- FDMA (Frequency Division Multiple Access)
 - assign a certain frequency to a transmission channel
 - permanent (e.g., radio broadcast), slow hopping (e.g., GSM), fast hopping (FHSS, Frequency Hopping Spread Spectrum)
 - Frequency division duplex (FDD): different frequencies for uplink and downlink

Access Methods SDMA/FDMA/TDMA

- SDMA (Space Division Multiple Access)
 - segment space into sectors, use directed antennas
 - cell structure
- FDMA (Frequency Division Multiple Access)
 - assign a certain frequency to a transmission channel
 - permanent (e.g., radio broadcast), slow hopping (e.g., GSM), fast hopping (FHSS, Frequency Hopping Spread Spectrum)
 - Frequency division duplex (FDD): different frequencies for uplink and downlink
- TDMA (Time Division Multiple Access)
 - assign the fixed sending frequency to a transmission channel for a certain amount of time
- The multiplexing schemes presented previously are now used to control medium access!

85

TDD/TDMA – General Scheme, example DECT

Back up

• How do these schemes handle hidden terminals?

87

Back up

- · How do these schemes handle hidden terminals?
 - They don't
 - Central base station means that they do not face that problem
 - If terminal is hidden from base station, it cannot communicate

Back up

- How do these schemes handle hidden terminals?
 - They don't
 - Central base station means that they do not face that problem
 - If terminal is hidden from base station, it cannot communicate
- In less centralized cases e.g. ad hoc networks, use MACA...

89

COLLISION AVOIDANCE

MACA - collision avoidance

- MACA (Multiple Access with Collision Avoidance) uses short signaling packets for collision avoidance
 - RTS (request to send): control packet from sender to receiver
 - CTS (clear to send): control packet from receiver to sender
- Signaling packets contain
 - sender address
 - receiver address
 - packet size
- Variants of this method can be found in IEEE802.11 as DFWMAC (Distributed Foundation Wireless MAC)

91

MACA Examples

- MACA avoids the problem of hidden terminals
 - A and C want to send to B
 - A sends RTS first

MACA Examples

- MACA avoids the problem of hidden terminals
 - A and C want to send to B
 - A sends RTS first
 - C waits after receiving CTS from B

93

MACA Examples

- MACA avoids the problem of exposed terminals
 - B wants to send to A
 - C wants to send to another terminal
 - C does not have to wait, since it cannot receive CTS from A

MACA variant: DFWMAC in IEEE802.11

ACK: positive acknowledgement RxBusy: receiver busyRTS; RxBusy NAK: negative acknowledgement

95

LTE: LONG TERM EVOLUTION (AND BEYOND)

Key features of future mobile and wireless networks

- Improved radio technology and antennas
 - smart antennas, beam forming, multiple-input multiple-output (MIMO)
 - space division multiplex to increase capacity, benefit from multipath
 - software defined radios (SDR)
 - use of different air interfaces, download new modulation/coding/...
 - dynamic spectrum allocation
 - · spectrum on demand results in higher overall capacity
- Core network convergence
 - IP-based, quality of service, mobile IP
- Ad-hoc technologies
 - spontaneous communication, power saving, redundancy
- Simple and open service platform
 - intelligence at the edge, not in the network (as with IN)
 - more service providers, not network operators only

Long Term Evolution (LTE)

- Initiated in 2004, focus on enhancing the Universal Terrestrial Radio Access (UTRA) and optimizing 3GPP's radio access architecture.
- Targets: Downlink 100 Mbit/s, uplink 50 Mbit/s
- Downlink: OFDM, QPSK, 16QAM, and 64QAM
- Uplink: SC-FDMA, BPSK, QPSK, 8PSK and 16QAM

- 4 x Increased Spectral Efficiency, 10 x Users Per Cell (MIMO), reduced RTT
- FDD and TDD supported, co-existence with earlier 3GPP standards incl. handover
- Core network: System Architecture Evolution (SAE), optimizing it for packet mode and in particular for the IP-Multimedia Subsystem (IMS)

10

Multi-channel Modulation

- MCM: take a high symbol rate signal on one carrier and turn it into several lower symbol rate signals on multiple subcarriers
- Advantage: Less prone to inter-symbol interference due to multipath propagation

• OFDM with 52 used subcarriers - 48 data + 4 pilot - 312.5 kHz spacing pilot -26 -21 -7 -1 | 7 21 26 subcarrier number 103

LTE advanced

- GSM UMTS LTE
 - LTE advanced as candidate for IMT-advanced
- · Worldwide functionality & roaming
- Compatibility of services
- Interworking with other radio access systems
- Enhanced peak data rates to support advanced services and applications (100 Mbit/s for high and 1 Gbit/s for low mobility)
- 3GPP will be contributing to the ITU-R towards the development of IMT-Advanced via LTE-Advanced.

105

Example IP-based 4G/Next G/... network SS7 signalling server farm, gateways, proxies router Internet P-based GSM P-based Core gateway P-based WPAN TOTAL TOTA

Potential problems

- · Quality of service
 - Today's Internet is best-effort
 - Integrated services did not work out
 - Differentiated services have to prove scalability and manageability
 - What about the simplicity of the Internet? DoS attacks on QoS?
- Security of the network
- Reliability, maintenance
 - Is Internet technology really cheaper as soon as high reliability (99.9999%) is required plus all features are integrated
- Missing charging models
 - Charging by technical parameters (volume, time) is not reasonable
 - Pay-per-application may make much more sense