MA102: Multivariable Calculus

Arup Chattopadhyay and Subhamay Saha Department of Mathematics IIT Guwahati

Iterated integrals

Let $f : \mathcal{R} \to \mathbb{R}$. Suppose that for each fixed $x \in [a, b]$

$$\phi(x) := \int_{c}^{d} f(x, y) dy$$

exists. If ϕ is Riemann integrable on [a, b] then

$$\int_{a}^{b} \phi(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

is called an iterated integral of f over R.

Similarly $\int_c^d \left(\int_a^b f(x,y) dx \right) dy$, when exists, is another iterated integral of f over \mathcal{R} .

Fubini's Theorem

Theorem: Let $f : \mathcal{R} \to \mathbb{R}$ be continuous. Then both the iterated limits exist and

$$\iint_{\mathcal{R}} f(x, y) dA = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$
$$= \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy.$$

Example: Evaluate $\iint_{\mathcal{R}} xe^{xy} dA$, where $\mathcal{R} = [0, 1] \times [0, 1]$. Since the function is continuous,

$$\iint_{\mathcal{R}} x e^{xy} dA = \int_0^1 (\int_0^1 x e^{xy} dy) dx = \int_0^1 (e^x - 1) dx = e - 2.$$

Double integrals over general domains

Definition: Let $D \subset \mathbb{R}^2$ be bounded and $f: D \to \mathbb{R}$ be a bounded function. Then f is said to be integrable over D if for some rectangle \mathcal{R} containing D the function

$$F(x,y) := \begin{cases} f(x,y) & \text{if } (x,y) \in D \\ 0 & \text{otherwise} \end{cases}$$

is Riemann integrable over \mathcal{R} . The double integral of f over D is then defined by

$$\iint_D f(x,y)dA := \iint_{\mathcal{R}} F(x,y)dA.$$

Remark: Since F is zero outside D the choice of \mathcal{R} is unimportant in defining double integral of f over D.

Special Regions: Type-I Regions

Type-I Region:

$$D = \{(x, y) \in \mathbb{R}^2 : x \in [a, b] \text{ and } g_1(x) \le y \le g_2(x)\}$$

where $g_1(x)$ and $g_2(x)$ are continuous functions on [a, b] and $g_1(x) \le g_2(x)$ for all $x \in [a, b]$.

Type-II Regions

Type-II Region:

$$D = \{(x, y) \in \mathbb{R}^2 : y \in [c, d] \text{ and } h_1(y) \le x \le h_2(y)\}$$

where $h_1(y)$ and $h_2(y)$ are continuous functions on [c, d] and $h_1(y) \le h_2(y)$ for all $y \in [c, d]$.

Type-III Regions (Both Type-I and Type-II)

 ${\cal R}$ is called Type-III region if ${\cal R}$ is simultaneously of Type-I and Type-II.

Double integral over special domains

Theorem: Let $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ be continuous. If D is Type-I and $D = \{(x, y) : x \in [a, b] \text{ and } \phi_1(x) \leq y \leq \phi_2(x)\}$ then f is integrable over D and

$$\iint_D f(x,y)dA = \int_a^b \left(\int_{\phi_1(x)}^{\phi_2(x)} f(x,y)dy \right) dx.$$

If D is Type-II and

 $D = \{(x, y) : \psi_1(y) \le x \le \psi_2(y) \text{ and } y \in [c, d]\}$ then f is integrable over D and

$$\iint_D f(x,y)dA = \int_c^d \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y)dx \right) dy.$$

Area and Volume

Let $D \subset \mathbb{R}^2$ be a special (Type-I or Type-III) domain and $f: D \to \mathbb{R}$ be continuous. Then

$$Area(D) = \iint_D dA.$$

If $f(x, y) \ge 0$ then the volume of the solid S bounded by D and the graph of z = f(x, y) is given by

$$Volume(S) = \iint_D f(x, y) dA.$$

Find the volume of the solid *S* bounded by elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2, y = 2, and the coordinate planes.

Volume(S) =
$$\iint_{\mathcal{R}} (16 - x^2 - 2y^2) dA$$

= $\int_0^2 \int_0^2 (16 - x^2 - 2y^2) dx dy = 48$.

Evaluate $\iint_D (x+2y) dA$, where *D* is the region bounded by the parabolas $y=2x^2$ and $y=1+x^2$.

The region D is Type-I and

$$\iint_{D} (x+2y)dA = \int_{-1}^{1} \left(\int_{2x^{2}}^{1+x^{2}} (x+2y)dy \right) dx$$
$$= \int_{-1}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1) dx = \frac{32}{15}.$$

Riemann sum for Triple integral

Consider the rectangular cube

 $V:=[a_1,b_1]\times [a_2,b_2]\times [a_3,b_3]$ and a bounded function $f:V\to \mathbb{R}$.

Let *P* be a partition of *V* into sub-cubes V_{ijk} and $c_{ijk} \in V_{ijk}$ for i = 1, ..., m; j = 1, ..., n; k = 1, ..., p. Also let

$$\Delta V_{ijk} := \text{Volume}(V_{ijk}) = \Delta x_i \Delta y_j \Delta z_k \text{ and } \mu(P) := \max_{ijk} \Delta V_{ijk}.$$

Consider the Riemann sum

$$S(P, f) := \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} f(c_{ijk}) \Delta V_{ijk}.$$

Triple integral

If $\lim_{\mu(P)\to 0} S(P, f)$ exists then f is said to be Riemann integrable and the (triple) integral of f over V is given by

$$\iiint_V f(x,y,z)dV = \iiint_V f(x,y,z)dxdydz = \lim_{\mu(P)\to 0} S(P,f).$$

Theorem: Let $f: V \to \mathbb{R}$ is continuous. Then

- f is Riemann integrable over V.
- Fubini's theorem holds, i.e, the iterated integrals exist and are equal to $\iiint_V f dV$.

Evaluate
$$\iiint_V xyz^2 dV$$
 where $V = [0, 1] \times [-1, 2] \times [0, 3]$.

By Fubini's theorem,

$$\iiint_V f dV = \int_0^3 \left(\int_{-1}^2 \left(\int_0^1 x dx \right) y dy \right) z^2 dz = \frac{27}{4}.$$

Triple integrals over general domains

Let $D \subset \mathbb{R}^3$ be bounded and $f: D \to \mathbb{R}$ be a bounded function. Then f is said to be integrable over D if for some rectangular cube V containing D the function

$$F(x, y, z) := \left\{ egin{array}{ll} f(x, y, z) & ext{if } (x, y, z) \in D \\ 0 & ext{otherwise} \end{array}
ight.$$

is Riemann integrable over V. Then

$$\iiint_{D} f(x, y, z) dV := \iiint_{V} F(x, y, z) dV$$

and

Volume(
$$D$$
) := $\iiint_D dV$.

Type-I domain:

A domain $V \subset \mathbb{R}^3$ is **Type-I** if

$$V = \{(x, y, z) : (x, y) \in D \text{ and } u_1(x, y) \le z \le u_2(x, y)\}$$

for some $D \subset \mathbb{R}^2$ and continuous functions $u_i : D \to \mathbb{R}$.

If $f: V \to \mathbb{R}$ be continuous and D is a special domain (e.g.,Type-I, Type-II, Type-III) then

$$\iiint_V f(x,y,z)dV = \iint_D \left(\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z)dz \right) dxdy.$$

Similar results hold for Type-II and Type-III domains.

Figure: Type-I domain

Figure: Type-II domain

Figure: Type-III domain

Evaluate $\iiint_V 2xdV$ where V is the region bounded by the planes x = 0, y = 0, z = 0 and 2x + 3y + z = 6.

Note that V is Type-I:

$$0 \le z \le 6 - 2x - 3y \text{ and } (x, y) \in D$$

where D is special domain given by

$$0 \le x \le 3 \text{ and } 0 \le y \le -\frac{2}{3}x + 2.$$

Thus

$$\iiint_{V} 2xdV = \iint_{D} \left(\int_{0}^{6-2x-3y} 2x \ dz \right) dA$$
$$= \int_{0}^{3} \int_{0}^{-\frac{2}{3}x+2} (6-2x-3y) 2x dy dx = 9.$$

Find the volume of the region bounded by the surfaces $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.

The volume is $V = \iiint_{\Omega} dz dy dx$, where Ω is bounded above by the surface $z = 8 - x^2 - y^2$ and below by the surface $z = x^2 + 3y^2$. Therefore, the limits of z are from $z = x^2 + 3y^2$ to $z = 8 - x^2 - y^2$.

The projection of Ω on xy-plane is the solution of

$$8 - x^2 - y^2 = x^2 + 3y^2 \implies x^2 + 2y^2 = 4.$$

Therefore the limits of x and y are to be determined by $D: x^2 + 2y^2 = 4$.

Example (cont.):

$$V = \iint_{\mathcal{R}} \int_{z=x^2+3y^2}^{8-x^2-y^2} dz dA$$

$$= \int_{-2}^{2} \int_{-\sqrt{(4-x^2)/2}}^{\sqrt{(4-x^2)/2}} (8-2x^2-4y^2) dy dx$$

$$= \int_{-2}^{2} \left((8-x^2)y - \frac{4}{3}y^3 \right)_{y=-\sqrt{(4-x^2)/2}}^{\sqrt{(4-x^2)/2}}$$

$$= \frac{4\sqrt{2}}{3} \int_{-2}^{2} (4-x^2)^{3/2} dx = 8\pi\sqrt{2}.$$

Example: Change of order of integration

Consider the evaluation of integral $\iint_D \frac{\sin x}{x} dA$ over the triangle formed by y = 0, x = 1 and y = x.

If we write $D = \{(x, y) : 0 \le y \le 1, y \le x \le 1\}$, then

$$\iint_{D} \frac{\sin x}{x} dA = \int_{0}^{1} \left(\int_{x=y}^{1} \frac{\sin x}{x} dx \right) dy.$$

The innermost integral is difficult to evaluate.

If we change the order of integration, by taking $D = \{(x, y) : 0 \le x \le 1, 0 \le y \le x\}$, then

$$\iint_D \frac{\sin x}{x} dA = \int_0^1 \int_{\gamma=0}^x \frac{\sin x}{x} dy dx = \int_0^1 \sin x dx = 1 - \cos 1.$$

Example: Change of order of integration

Find the volume of the region bounded by x + z = 1, y + 2z = 2 in the first quadrant.

Figure: Region bounded by x + z = 1 and y + 2z = 2, $x, y, z \ge 0$

Example: Change of order of integration

Draw line parallel to z-axis and note that the upper surfaces are: 2z + y = 2 over triangle bounded by x = 0, y = 2, y = 2x and z = 1 - x over the triangle bounded by y = 0, x = 1, y = 2x. Therefore,

$$V = \int_{y=0}^{2} \int_{x=0}^{y/2} \int_{z=0}^{\frac{2-y}{2}} dz \, dx \, dy + \int_{x=0}^{1} \int_{y=0}^{2x} \int_{z=0}^{1-x} dz \, dy \, dx = \frac{2}{3}$$

On the other hand, by first drawing the line parallel to x-axis, we get

$$V = \int_{z=0}^{1} \int_{v=0}^{2-2z} \int_{x=0}^{1-z} dx \ dy \ dz = \frac{2}{3}$$

MA102: Multivariable Calculus

Arup Chattopadhyay and Subhamay Saha
Department of Mathematics
IIT Guwahati

Example (cont.):

Example: Evaluate
$$I = \int_{z=0}^{4} \int_{y=0}^{1} \int_{x=2y}^{2} \frac{2\cos(x^2)}{\sqrt{z}} dx \ dy \ dz$$
.

The integral is difficult to evaluate in the given order of integration. We change the order of integration and evaluate the integral:

$$I = \int_{z=0}^{4} \int_{x=0}^{2} \int_{y=0}^{x/2} \frac{2\cos(x^{2})}{\sqrt{z}} dy \ dx \ dz.$$
$$= \int_{z=0}^{4} \int_{x=0}^{2} \frac{x\cos(x^{2})}{\sqrt{z}} dx \ dz = 2\sin 4.$$

Change of variable

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be C^1 given by T(u,v) = (x(u,v),y(u,v)). Then the Jacobian matrix J(u,v) of T is given by

$$J(u,v):=\left[\begin{array}{cc}x_u&x_v\\y_u&y_v\end{array}\right].$$

Define the Jacobian of T by

$$\frac{\partial(x,y)}{\partial(u,v)}:=x_uy_v-x_vy_u=\det J(u,v).$$

Polar coordinates: Define $T(r, \theta) := (r \cos \theta, r \sin \theta)$. Then

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r.$$

Change of variable for double integrals

Suppose T is injective and J(u, v) is nonsingular. Let $D \subset \mathbb{R}^2$ and G := T(D). Suppose that f is integrable on G. Then

$$dA = dxdy = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| dudv$$

and

$$\iint_{G} f(x,y) dx dy = \iint_{D} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv.$$

Polar coordinates:

$$\iint_{G} f(x,y) dxdy = \iint_{D} f(r\cos\theta, r\sin\theta) r dr d\theta.$$

Evaluate the integral $I = \int_0^1 \int_0^{1-x} \sqrt{x+y} (y-2x)^2 dA$.

The given domain is the triangle bounded by x = 0, y = 0 and x + y = 1. We take the transformation u = x + y and v = y - 2x. Under this transformation, the given triangle will be transformed into triangle bounded by

$$v = u, v = -2u$$
 and $u = 1$.

The inverse of this transformation is $x = \frac{u-v}{3}$ and $y = \frac{2u+v}{3}$. Hence the Jacobian

$$J = \left| \begin{array}{cc} 1/3 & -1/3 \\ 2/3 & 1/3 \end{array} \right| = 1/3.$$

Hence

$$I = \frac{1}{3} \int_{0}^{1} \int_{v=-2u}^{u} \sqrt{u} v^{2} dv \ du$$

Using the transformation u = 2x + 3y and v = x - 3y, find the value of the integral $I = \iint_{\mathcal{R}} e^{2x+3y} \cos(x-3y) \, dx \, dy$ where \mathcal{R} is the region bounded by the parallelogram with vertices (0, 0), (1, 1/3), (4/3, 1/9), (1/3, -2/9).

Under the given transformations, \mathcal{R} will be transformed into the rectangle with vertices (0,0),(3,0),(3,1) and (0,1). Also, $|J|=\frac{1}{9}$. Thus,

$$I = \frac{1}{9} \int_{v=0}^{1} \int_{u=0}^{3} e^{u} \cos v \ du \ dv = \frac{1}{9} (e^{3} - 1) \sin 1.$$

Evaluate $\iiint_G \sqrt{x^2 + z^2} dV$ where G is the region bounded by the paraboloid $y = x^2 + z^2$ and y = 4.

We have

$$\iiint_G f(x,y,z)dV = \iint_D \left(\int_{x^2+z^2}^4 \sqrt{x^2+z^2} dy \right) dxdz,$$

where $D = \{(x, z) : x^2 + z^2 \le 4\}.$

Setting $x = r \cos \theta$ and $z = r \sin \theta$ for $(r, \theta) \in [0, 2] \times [0, 2\pi]$,

$$\iiint_G f(x,y,z)dV = \int_0^{2\pi} \int_0^2 r(4-r^2) r dr d\theta = \frac{128\pi}{5}.$$

Change of variable for multiple integrals

Let $D \subset \mathbb{R}^n$ be open and bounded. Let $T: D \to \mathbb{R}^n$ be such that T is C^1 , injective and the Jacobian J(U) is nonsingular for $U \in D$.

Let G := T(D) and $f : G \to \mathbb{R}$ be integrable over G. Then

$$dx_1 \cdots dx_n = \left| \frac{\partial (x_1, \cdots, x_n)}{\partial (u_1, \cdots, u_n)} \right| du_1 \cdots du_n$$

and

$$\int_{G} f(X) dx_{1} \cdots dx_{n} = \int_{D} f(X(U)) \left| \frac{\partial (x_{1}, \cdots, x_{n})}{\partial (u_{1}, \cdots, u_{n})} \right| du_{1} \cdots du_{n}$$
$$= \int_{D} f(X(U)) \left| \frac{dX}{dU} \right| dU.$$

Cylindrical coordinates

Consider $T(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$. Then

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \begin{vmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = r.$$

Thus $dV = rdrd\theta dz$ and

$$\iiint_G f(x,y,z)dV = \iiint_D f(r\cos\theta,r\sin\theta,z)rdrd\theta dz.$$

Evaluate $\iiint_G \sqrt{x^2 + y^2} dV$, where *G* is the region bounded by $x^2 + y^2 = 1$, z = 4 and $z = 1 - x^2 - y^2$.

Consider cylindrical coordinates

$$D:=\{(r,\theta,z):(r,\theta)\in[0,1]\times[0,2\pi],\ 1-r^2\leq z\leq 4\}.$$

Then

$$\iiint_G f(x,y,z)dV = \int_0^1 \int_0^{2\pi} \left(\int_{1-r^2}^4 dz \right) r \, r dr d\theta = \frac{12\pi}{5}.$$

Spherical coordinates

Consider $T(\rho, \phi, \theta) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$. Then

$$\frac{\partial(x,y,z)}{\partial(\rho,\phi,\theta)} = \begin{vmatrix} \sin\phi\cos\theta & \rho\cos\phi\cos\theta & -\rho\sin\phi\sin\theta \\ \sin\phi\sin\theta & \rho\cos\phi\sin\theta & \rho\sin\phi\cos\theta \\ \cos\phi & -\rho\sin\phi & 0 \end{vmatrix}$$

$$= \rho^2\sin\phi.$$

Thus $dV = \rho^2 \sin \phi d\rho d\phi d\theta$ and

$$\iiint_{G} f(x, y, z) dV =$$

$$\iiint_{D} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\phi d\theta.$$

Example

Evaluate
$$\iiint_G e^{(x^2+y^2+z^2)^{3/2}} dV$$
, where $G := \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}$.

Using spherical coordinates we have

$$\iiint_D f(x, y, z) dV = \int_0^{2\pi} \int_0^{\pi} \int_0^1 e^{\rho^3} \rho^2 \sin \phi d\rho d\phi d\theta$$
$$= \frac{4}{3} \pi (e - 1).$$

Line Integral: Partition of curves

Let Γ be a curve in \mathbb{R}^n paramatrized by $r:[a,b] \to \mathbb{R}^n$. Then a partition $\mathcal{P}:=(a=t_0<\ldots< t_m=b)$ of [a,b] induces a partition of Γ into m subarcs with arclengths $\Delta s_1,\ldots,\Delta s_m$.

Define
$$\mu(\mathcal{P}) := \max_{1 \leq j \leq m} \Delta s_j$$
.

Riemann sum w.r.t. arclength

Let $f : \Gamma \to \mathbb{R}$. Then for any P_j in the j-th subarc, consider the Riemann sum of f w.r.t. to the partition \mathcal{P}

$$S(\mathcal{P}, f) := \sum_{j=1}^m f(P_j) \Delta s_j.$$

Definition: Suppose that Γ is a piecewise smooth curve in \mathbb{R}^n paramatrized by $r:[a,b]\to\mathbb{R}^n$ and $f:\Gamma\to\mathbb{R}$. Then the line integral of f along Γ is defined by

$$\int_{\Gamma} f \ ds := \lim_{\mu(\mathcal{P}) \to 0} S(\mathcal{P}, f) = \lim_{\mu(\mathcal{P}) \to 0} \sum_{j=1}^{m} f(P_j) \Delta s_j$$

if the limit exists (independent of the partitions \mathcal{P} and the chosen points P_j).

Definition: Suppose that Γ is a piecewise smooth curve in \mathbb{R}^n paramatrized by $r:[a,b]\to\mathbb{R}^n$ and $f:\Gamma\to\mathbb{R}$. Then the line integral of f along Γ is defined by

$$\int_{\Gamma} f \ ds := \lim_{\mu(\mathcal{P}) o 0} S(\mathcal{P}, f) = \lim_{\mu(\mathcal{P}) o 0} \sum_{j=1}^m f(P_j) \Delta s_j$$

if the limit exists (independent of the partitions \mathcal{P} and the chosen points P_i).

Fact: If f is continuous and r(t) is piecewise smooth then we have

$$\int_{\Gamma} f \, ds = \int_{a}^{b} f(r(t)) \|r'(t)\| dt.$$

For the plane curve Γ : $r(t) = (x(t), y(t)), t \in [a, b]$ we have

$$\int_{\Gamma} f(x,y) ds = \int_{a}^{b} f(x(t),y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt.$$

For the plane curve Γ : $r(t) = (x(t), y(t)), t \in [a, b]$ we have

$$\int_{\Gamma} f(x,y) ds = \int_{a}^{b} f(x(t),y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt.$$

Example: Evaluate $\int_{\Gamma} (2 + x^2 y) ds$, where Γ is the upper half of the circle $x^2 + y^2 = 1$.

Considering $x(t) = \cos t$, $y(t) = \sin t$, $0 \le t \le \pi$, we have

$$\int_{\Gamma} (2+x^2y)ds = \int_{0}^{\pi} (2+\cos^2 t \sin t)dt = 2\pi + 2/3.$$

Properties of line integrals

Fact: Let Γ be parametrized by a piecewise smooth curve $r:[a,b]\to\mathbb{R}^n$ and $f,g:\Gamma\to\mathbb{R}$ be continuous. Then the following hold:

•
$$\int_{\Gamma} (f + \alpha g) ds = \int_{\Gamma} f ds + \alpha \int_{\Gamma} g ds$$
 for $\alpha \in \mathbb{R}$.

Properties of line integrals

Fact: Let Γ be parametrized by a piecewise smooth curve $r:[a,b]\to\mathbb{R}^n$ and $f,g:\Gamma\to\mathbb{R}$ be continuous. Then the following hold:

- $\int_{\Gamma} (f + \alpha g) ds = \int_{\Gamma} f ds + \alpha \int_{\Gamma} g ds$ for $\alpha \in \mathbb{R}$.
- Let $\Gamma = \Gamma_1 + \cdots + \Gamma_m$, where Γ_i is parametrized by smooth curve $r_i : [a_i, b_i] \to \mathbb{R}^n$. Then

$$\int_{\Gamma} f ds = \int_{\Gamma_1} f ds + \cdots + \int_{\Gamma_m} f ds.$$

Example

Evaluate $\int_{\Gamma} 2xds$, where Γ consists of the arc C_1 of the parabola $y=x^2$ from (0,0) to (1,1) followed by the line segment C_2 from (1,1) to (1,2). Then

$$\int_{\Gamma} 2x ds = \int_{C_1} 2x ds + \int_{C_2} 2x ds = \frac{1}{6} (5\sqrt{5} + 11).$$

Application

Suppose a thin wire in the shape of a curve Γ parametrized by a smooth path $r:[a,b]\to\mathbb{R}^2$ has density $\rho(x,y)$. Then the total mass of the wire is given by

$$m = \int_{\Gamma} \rho(x, y) ds$$

The center of mass $(\overline{x}, \overline{y})$ is given by

$$\overline{x} = \frac{1}{m} \int_{\Gamma} x \rho(x, y) ds$$
 and $\overline{y} = \frac{1}{m} \int_{\Gamma} y \rho(x, y) ds$

Application: Example

The wire W has the shape $\Gamma = \Gamma_1 + \Gamma_2$, where Γ_1 is parametrized by $\gamma_1(t) := (\cos t, \sin t), t \in [0, \pi]$ and Γ_2 is parametrized by $\gamma_2(t) := (t, 0), t \in [-1, 1]$. Let the density function be given by $\rho(x, y) = \sqrt{x^2 + y^2}$. We have $\|\gamma_i'(t)\| = 1, \rho(\gamma_1(t)) = 1$ and $\rho(\gamma_2(t)) = |t|$.

$$m = \int_{\Gamma} \rho(x, y) ds = \int_{0}^{\pi} dt - \int_{-1}^{0} t dt + \int_{0}^{1} t dt = \pi + 1.$$

The center of mass $(\overline{x}, \overline{y})$ is given by

$$\overline{x} = 0$$
 and $\overline{y} = \frac{2}{1+\pi}$.

MA102: Multivariable Calculus

Arup Chattopadhyay and Subhamay Saha Department of Mathematics IIT Guwahati

Vector line integral

Definition: Let Γ be a curve in \mathbb{R}^n parametrized by a piecewise smooth path $r:[a,b]\to\mathbb{R}^n$ and let F be a continuous function on an open set containing Γ to \mathbb{R}^n . Then the line integral of F over Γ is defined by

$$\int_{\Gamma} F \bullet dr := \int_{a}^{b} F(r(t)) \bullet r'(t) dt = \int_{a}^{b} \langle F(r(t)), r'(t) \rangle dt.$$

Vector line integral

Definition: Let Γ be a curve in \mathbb{R}^n parametrized by a piecewise smooth path $r:[a,b]\to\mathbb{R}^n$ and let F be a continuous function on an open set containing Γ to \mathbb{R}^n . Then the line integral of F over Γ is defined by

$$\int_{\Gamma} F \bullet dr := \int_{a}^{b} F(r(t)) \bullet r'(t) dt = \int_{a}^{b} \langle F(r(t)), r'(t) \rangle dt.$$

Note that $[a,b] \longrightarrow \mathbb{R}$, $t \longmapsto F(r(t)) \bullet r'(t)$ is piecewise continuous and hence Riemann integrable.

Vector line integrals and scalar line integrals

Suppose that Γ is (piecewise) smooth parametrized by r. Then $||r'(t)|| \neq 0$. Define the tangent vector $T(r(t)) := \frac{r'(t)}{||r'(t)||}$ to Γ at r(t).

Vector line integrals and scalar line integrals

Suppose that Γ is (piecewise) smooth parametrized by r. Then $||r'(t)|| \neq 0$. Define the tangent vector $T(r(t)) := \frac{r'(t)}{||r'(t)||}$ to Γ at r(t).

Then $F \bullet T$ is the tangential component of F and

$$\int_{\Gamma} F \bullet dr = \int_{a}^{b} F(r(t)) \bullet r'(t) dt$$

$$= \int_{a}^{b} F(r(t)) \bullet T(r(t)) ||r'(t)|| dt$$

$$= \int_{\Gamma} F \bullet T ds = \int_{\Gamma} \langle F, T \rangle ds.$$

Vector line integrals and scalar line integrals

Suppose that Γ is (piecewise) smooth parametrized by r. Then $||r'(t)|| \neq 0$. Define the tangent vector $T(r(t)) := \frac{r'(t)}{||r'(t)||}$ to Γ at r(t).

Then $F \bullet T$ is the tangential component of F and

$$\int_{\Gamma} F \bullet dr = \int_{a}^{b} F(r(t)) \bullet r'(t) dt$$

$$= \int_{a}^{b} F(r(t)) \bullet T(r(t)) ||r'(t)|| dt$$

$$= \int_{\Gamma} F \bullet T ds = \int_{\Gamma} \langle F, T \rangle ds.$$

Vector line integral of F = line integral of $F \bullet T$.

Notations for vector line integrals

• When Γ is closed, that is, r(a) = r(b), the line integral

$$\int_{\Gamma} F \bullet dr \text{ is denoted by } \oint_{\Gamma} F \bullet dr.$$

Notations for vector line integrals

• When Γ is closed, that is, r(a) = r(b), the line integral

$$\int_{\Gamma} F \bullet dr \text{ is denoted by } \oint_{\Gamma} F \bullet dr.$$

• When n = 2 and F = (P, Q) the line integral is written as

$$\int_{\Gamma} F \bullet dr = \int_{\Gamma} (P(x,y)dx + Q(x,y)dy).$$

Notations for vector line integrals

• When Γ is closed, that is, r(a) = r(b), the line integral

$$\int_{\Gamma} F \bullet dr \text{ is denoted by } \oint_{\Gamma} F \bullet dr.$$

• When n = 2 and F = (P, Q) the line integral is written as

$$\int_{\Gamma} F \bullet dr = \int_{\Gamma} (P(x,y)dx + Q(x,y)dy).$$

• For n = 3 and F = (P, Q, R) the line integral is written as

$$\int_{\Gamma} F \bullet dr = \int_{\Gamma} (P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz).$$

Examples

• Evaluate $\int_{\Gamma} F \bullet dr$, where F(x, y, z) := (xy, yz, zx) and $r(t) := (t, t^2, t^2), t \in [0, 1]$. We have

$$\int_{\Gamma} F \bullet dr = \int_{0}^{1} F(r(t)) \bullet r'(t) dt = \int_{0}^{1} (t^{3} + 2t^{5} + 2t^{4}) dt = \frac{59}{60}.$$

Examples

• Evaluate $\int_{\Gamma} F \bullet dr$, where F(x,y,z) := (xy,yz,zx) and $r(t) := (t,t^2,t^2), t \in [0,1]$. We have

$$\int_{\Gamma} F \bullet dr = \int_{0}^{1} F(r(t)) \bullet r'(t) dt = \int_{0}^{1} (t^{3} + 2t^{5} + 2t^{4}) dt = \frac{59}{60}.$$

• Evaluate $\int_{\Gamma} (yx^2 dx + \sin(\pi y) dy)$, where Γ is the line segment from (0,2) to (1,4).

We have
$$r(t) = (t, 2+2t), t \in [0, 1]$$
. Thus

$$\int_{\Gamma} (yx^2 dx + \sin(\pi y) dy) =$$

$$= \int_{0}^{1} 2\sin(\pi (2+2t)) dt + \int_{0}^{1} (2+2t)t^2 dt = \frac{7}{6}$$

Oriented path

• A parametrization $r:[a,b] \to \mathbb{R}^n$ determines an orientation or a direction of the curve $\Gamma = r([a,b])$. Indeed, as t varies from a to b, r(t) traverses the path from r(a) to r(b).

Oriented path

- A parametrization $r:[a,b] \to \mathbb{R}^n$ determines an orientation or a direction of the curve $\Gamma = r([a,b])$. Indeed, as t varies from a to b, r(t) traverses the path from r(a) to r(b).
- Let Γ be an oriented path. Denote the reverse orientation of Γ by $-\Gamma$. If $r:[a,b]\to\mathbb{R}^n$ is a parametrization of the oriented path Γ then $\rho:[a,b]\to\mathbb{R}^n$ given by $\rho(t):=r(a+b-t)$ is a parametrization of $-\Gamma$.

Oriented path

- A parametrization $r:[a,b] \to \mathbb{R}^n$ determines an orientation or a direction of the curve $\Gamma = r([a,b])$. Indeed, as t varies from a to b, r(t) traverses the path from r(a) to r(b).
- Let Γ be an oriented path. Denote the reverse orientation of Γ by $-\Gamma$. If $r:[a,b]\to\mathbb{R}^n$ is a parametrization of the oriented path Γ then $\rho:[a,b]\to\mathbb{R}^n$ given by $\rho(t):=r(a+b-t)$ is a parametrization of $-\Gamma$.
- Let Γ be an oriented path. Then

$$\int_{-\Gamma} F \bullet dr = -\int_{\Gamma} F \bullet dr.$$

Work done

Definition: The work done by a force F on a particle traversing an oriented path Γ is the line integral

Work
$$=\int_{\Gamma} F \bullet dr$$
.

Work done

Definition: The work done by a force F on a particle traversing an oriented path Γ is the line integral

Work
$$=\int_{\Gamma} F \bullet dr$$
.

Remark: The total work done by F on a particle traversing the path Γ and then reversing back to the initial point is

$$W = \int_{\Gamma} F \bullet dr + \int_{-\Gamma} F \bullet dr = \int_{\Gamma} F \bullet dr - \int_{\Gamma} F \bullet dr = 0.$$

Green's Theorem

Let $D \subset \mathbb{R}^2$ be a simply connected (no holes) region with positively oriented (counter clockwise direction) boundary ∂D . Let F = (P, Q) be C^1 on D. Then

$$\iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA = \oint_{\partial D} (P(x, y) dx + Q(x, y) dy)$$
$$= \oint_{\partial D} F \bullet dr.$$

Let *C* be a circle of radius *a* centered at the origin. Find $\oint_C F \bullet dr$ for F = (-y, x) using Green's theorem.

$$\oint_C F \bullet dr = \iint_D 2dA = 2 \iint_D dA = 2\pi a^2.$$

Applications of Green's Theorem

Evaluation of area

Area(D) =
$$\iint_D dA = \frac{1}{2} \oint_{\partial D} (xdy - ydx).$$

Taking F = (0, x) and G = (y, 0), we have

$$\iint_{D} dA = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \oint_{\partial D} x dy$$
$$-\iint_{D} dA = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \oint_{\partial D} y dx$$

Vector fields

A vector field in \mathbb{R}^n is a function $F : \mathbb{R}^n \to \mathbb{R}^n$ that assigns to each $X \in \mathbb{R}^n$ a vector F(X). A vector field in \mathbb{R}^n with domain $U \subset \mathbb{R}^n$ is called a vector field on U.

Vector fields

A vector field in \mathbb{R}^n is a function $F: \mathbb{R}^n \to \mathbb{R}^n$ that assigns to each $X \in \mathbb{R}^n$ a vector F(X). A vector field in \mathbb{R}^n with domain $U \subset \mathbb{R}^n$ is called a vector field on U.

Geometrically, a vector field F on U is interpreted as attaching a vector to each point of U. Thus, there is a subtle difference between a vector field in \mathbb{R}^n and a function from \mathbb{R}^n to \mathbb{R}^n .

Vector fields

A vector field in \mathbb{R}^n is a function $F: \mathbb{R}^n \to \mathbb{R}^n$ that assigns to each $X \in \mathbb{R}^n$ a vector F(X). A vector field in \mathbb{R}^n with domain $U \subset \mathbb{R}^n$ is called a vector field on U.

Geometrically, a vector field F on U is interpreted as attaching a vector to each point of U. Thus, there is a subtle difference between a vector field in \mathbb{R}^n and a function from \mathbb{R}^n to \mathbb{R}^n .

When a function $F : \mathbb{R}^n \to \mathbb{R}^n$ is viewed as a vector field, for each X the vector F(X) is identified with the vector that starts at the point X with the magnitude and direction of F(X).

Thus every vector field on $U \subset \mathbb{R}^n$ is uniquely determined by a function from $U \to \mathbb{R}^n$.

Examples of vector fields

 The gravitational force field describes the force of attraction of the earth on a mass m and is given by

$$F(X) = -\frac{mMG}{r^3}X,$$

where X = (x, y, z), r := ||X||. The vector field F points to the centre of the earth.

- The vector field $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by F(x,y) := (-y,x) is a rotational vector field in \mathbb{R}^2 which rotates a vector in the anti-clockwise direction by an angle $\pi/2$.
- Let $r:[0,1] \to \mathbb{R}^n$ be C^1 and $\Gamma:=r([0,1])$. Then $F:\Gamma\subset\mathbb{R}^n\to\mathbb{R}^n$ given by F(r(t))=r'(t) is a tangent vector field on Γ .

Figure: Examples of vector fields

Path Independence

Let $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a continuous vector field on D. We say that the vector field F has independence of path on D if for every pair of piecewise smooth, oriented curves C_1 and C_2 in D with a common initial point and a common final point, we have $\int_{C_1} F \bullet dr = \int_{C_2} F \bullet dr$.

Fact: Let $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a continuous vector field on D. The vector field F has independence of path on D if and only if the vector line integral $\int_C F \bullet dr = 0$ for every piecewise smooth, oriented, closed curve C in D.

Important Example

Let
$$F(x,y) = \frac{-y\,\hat{\imath} + x\,\hat{\jmath}}{x^2 + y^2}$$
 for $(x,y) \in D^* = \mathbb{R}^2 \setminus \{(0,0)\}$.
 Let $C: r(t) = (\cos t, \sin t)$ for $t \in [0, 2\pi]$.
 Then $r'(t) = (-\sin t, \cos t)$ for $t \in [0, 2\pi]$.

$$\int_C F \bullet dr = \int_{t=0}^{2\pi} F(r(t)) \bullet r'(t) dt$$

$$= \int_{t=0}^{2\pi} (\sin^2 t + \cos^2 t) dt$$

$$= \int_{t=0}^{2\pi} dt = 2\pi \neq 0$$

So, F is NOT independent of path in D^* .

MA102: Multivariable Calculus

Arup Chattopadhyay and Subhamay Saha Department of Mathematics IIT Guwahati

Gradient vector fields

If $f: \mathbb{R}^n \to \mathbb{R}$ is a C^1 scalar field then $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is a vector field in \mathbb{R}^n .

Gradient vector fields

If $f : \mathbb{R}^n \to \mathbb{R}$ is a C^1 scalar field then $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is a vector field in \mathbb{R}^n .

• A vector field F in \mathbb{R}^n is said to be a gradient vector field or a conservative vector field if there is a scalar field $f: \mathbb{R}^n \to \mathbb{R}$ such that $F = \nabla f$. In such a case, f is called a scalar potential of the vector field F.

Path independence and gradient vector field

Let F be a continuous vector field on an open set $U \subset \mathbb{R}^n$. Consider the following statements:

- 1. *F* is a gradient vector field on *U*.
- 2. $\int_{\Gamma} F \bullet dr$ is path independent in U.
- 3. $\int_{\Gamma} F \bullet dr = 0$ for any closed path in U.

Path independence and gradient vector field

Let F be a continuous vector field on an open set $U \subset \mathbb{R}^n$. Consider the following statements:

- 1. *F* is a gradient vector field on *U*.
- 2. $\int_{\Gamma} F \bullet dr$ is path independent in U.
- 3. $\int_{\Gamma} F \bullet dr = 0$ for any closed path in U.

We also know that $(2) \Leftrightarrow (3)$. The implication $(3) \Rightarrow (1)$ holds under a suitable assumption on U. This is called the first fundamental theorem for line integrals.

Path independence implies gradient field

Definition: A subset $U \subset \mathbb{R}^n$ is said to be path connected if for any two points X and Y in U there is a path $\gamma : [a,b] \to \mathbb{R}^n$ such that $\gamma(a) = X, \gamma(b) = Y$ and $\gamma([a,b]) \subset U$.

Path independence implies gradient field

Definition: A subset $U \subset \mathbb{R}^n$ is said to be path connected if for any two points X and Y in U there is a path $\gamma : [a,b] \to \mathbb{R}^n$ such that $\gamma(a) = X, \gamma(b) = Y$ and $\gamma([a,b]) \subset U$.

Theorem (1st Fundamental Thm for line integral):

Let $U \subset \mathbb{R}^n$ be open and path connected and F be a continuous vector field on U. Suppose $\int_{\Gamma} F \bullet dr$ is independent of Γ for any PC^1 path Γ in U. Then there exists a C^1 function $f: U \to \mathbb{R}$ such that $F = \nabla f$.

Path independence implies gradient field

Definition: A subset $U \subset \mathbb{R}^n$ is said to be path connected if for any two points X and Y in U there is a path $\gamma : [a,b] \to \mathbb{R}^n$ such that $\gamma(a) = X, \gamma(b) = Y$ and $\gamma([a,b]) \subset U$.

Theorem (1st Fundamental Thm for line integral):

Let $U \subset \mathbb{R}^n$ be open and path connected and F be a continuous vector field on U. Suppose $\int_{\Gamma} F \bullet dr$ is independent of Γ for any PC^1 path Γ in U. Then there exists a C^1 function $f: U \to \mathbb{R}$ such that $F = \nabla f$.

Further, for $X_0 \in U$, define $f: U \to \mathbb{R}$ by

$$f(X) := \int_{X_0}^X F \bullet dr$$

where the integral is taken over any PC^1 path joining X_0 to X. Then f is well defined, f is C^1 and $F = \nabla f$.

2nd Fundamental Theorem for line integrals

If $f:[a,b]\to\mathbb{R}$ is C^1 then by FTI $\int_a^b f'(x)dx=f(b)-f(a)$.

Theorem: Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$ be C^1 . Let $r: [a,b] \to \mathbb{R}^n$ be PC^1 such that $r([a,b]) \subset U$. Then

$$\int_{\Gamma} \nabla f \bullet dr = f(r(b)) - f(r(a)).$$

2nd Fundamental Theorem for line integrals

If $f:[a,b]\to\mathbb{R}$ is C^1 then by FTI $\int_a^b f'(x)dx=f(b)-f(a)$.

Theorem: Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$ be C^1 . Let $r: [a,b] \to \mathbb{R}^n$ be PC^1 such that $r([a,b]) \subset U$. Then

$$\int_{\Gamma} \nabla f \bullet dr = f(r(b)) - f(r(a)).$$

Proof: We have

$$\int_{\Gamma} \nabla f \bullet dr = \int_{a}^{b} \nabla f(r(t)) \bullet r'(t) dt$$
$$= \int_{a}^{b} \frac{d}{dt} f(r(t)) dt = f(r(b)) - f(r(a)).$$

Thus, gradient field implies path independence.

Gradient vector fields and path independence

In summary, we have the following necessary and sufficient condition for a continuous vector field to be gradient vector field.

Let $U \subset \mathbb{R}^n$ be open and path connected and F be a continuous vector field on U. Then, F is a gradient vector field if and only if F has the path independence property in U.

We now find a necessary and sufficient condition for continuously differentiable vector field to be gradient vector field.

Necessary condition

Let F be a vector field on U with a scalar potential f, that is, $F = \nabla f$. Suppose $F = (F_1, \dots, F_n)$.

Fact: If a C^1 vector field $F = (F_1, \dots, F_n)$ on U is conservative then for all i and j

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}.$$

Necessary condition

Let F be a vector field on U with a scalar potential f, that is, $F = \nabla f$. Suppose $F = (F_1, \dots, F_n)$.

Fact: If a C^1 vector field $F = (F_1, \dots, F_n)$ on U is conservative then for all i and j

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}.$$

Proof: We have $F_i = \partial_i f \Rightarrow \partial_j F_i = \partial_j \partial_i f = \partial_i \partial_j f = \partial_i F_j$.

Consider $F(x, y) := (3 + 2xy, x^2 - 3y^2) =: (P, Q)$. Then $Q_x = 2x = P_y$ so the necessary condition is satisfied.

We wish to find f such that $F = \nabla f$. If f exists then $f_x(x, y) = 3 + 2xy \Rightarrow f(x, y) = 3x + x^2y + h(y)$.

Thus $f_y(x, y) = x^2 + h'(y) = x^2 - 3y^2 \Rightarrow h'(y) = -3y^2$. Hence $h(y) = -y^3 + c$ for some constant c. Consequently,

$$f(x, y) = 3x + x^2y - y^3 + c$$
 and $F = \nabla f$.

Consider $F(x,y) := (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}) = (P,Q)$ for $(x,y) \neq (0,0)$. Then we have $Q_x = P_y$ so the necessary condition is satisfied.

Consider $F(x,y) := (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}) = (P,Q)$ for $(x,y) \neq (0,0)$. Then we have $Q_x = P_y$ so the necessary condition is satisfied.

For the path Γ : $r(t) = (\cos t, \sin t)$, $t \in [0, 2\pi]$, we have

$$\int_{\Gamma} F \bullet dr = \int_{0}^{2\pi} dt = 2\pi.$$

This shows that *F* is not conservative.

Consider $F(x,y) := (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}) = (P,Q)$ for $(x,y) \neq (0,0)$. Then we have $Q_x = P_y$ so the necessary condition is satisfied.

For the path Γ : $r(t) = (\cos t, \sin t)$, $t \in [0, 2\pi]$, we have

$$\int_{\Gamma} F \bullet dr = \int_{0}^{2\pi} dt = 2\pi.$$

This shows that *F* is not conservative.

Remark: The necessary condition $\partial_i F_j = \partial_j F_i$ is also sufficient for conservativeness of F when the domain of F is simply connected. This is a consequence of Green's theorem.

Necessary and sufficient condition for C^1 vector field

Let F(x, y) := (P, Q) be C^1 defined in a simply connected domain U. Then F is a gradient field (conservative field) if and only if

$$Q_x = P_y$$
.

Proof: We have alrady proved that $Q_x = P_y$ is a necessary condition. To prove that this condition is sufficient, we apply Green's theorem. Let C be a closed path (positively oriented) in U. Let D be the region bounded by C. Since U is simply connected, so $D \subseteq U$. By Green's theorem,

$$\oint_C \mathbf{F} \bullet d\mathbf{r} = \iint_D (\frac{\partial \mathbf{Q}}{\partial \mathbf{x}} - \frac{\partial \mathbf{P}}{\partial \mathbf{y}}) d\mathbf{A} = 0.$$

Thus, *F* is conservative.

Surfaces

- Locus of a point moving in space with 2 degrees of freedom.
- 2 Level curve of a scalar field $F: D \subseteq \mathbb{R}^3 \to \mathbb{R}$. For example, $x^2 + y^2 + z^2 = c$, $z = x^2 + y^2$, etc.
- Sometimes surfaces can be described by

$$\{(x,y,z): z=f(x,y), (x,y)\in D\}.$$

This is called explicit representation.

The unit sphere is a union of two such explicit representations:

$$\{(x, y, z = \sqrt{1 - x^2 - y^2}) : x^2 + y^2 \le 1\}$$

$$\cup \{(x, y, z = -\sqrt{1 - x^2 - y^2}) : x^2 + y^2 \le 1\}$$

Parametric representation of a surface

A surface may also be described by

$$x = X(u, v), y = Y(u, v), z = Z(u, v),$$

where $u, v \in D$ and D is a connected subset of the uv-plane, for example, plane region like circle, rectangle, etc.

Definition: A continuous function $R: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ is called a parametric surface in \mathbb{R}^3 . The image S:=R(D) is called a geometric surface in \mathbb{R}^3 .

If the surface has an explicit representation given by a continuous function $z = f(x, y), (x, y) \in D$, then

$$R(x,y) = x \hat{i} + y \hat{j} + f(x,y) \hat{k}$$

is a parametric representation.

Parametric representation of a sphere of radius a

If we take spherical coordinates, then

$$x = X(\theta, \phi) = a \sin \phi \cos \theta,$$

 $y = Y(\theta, \phi) = a \sin \phi \sin \theta,$
 $z = Z(\theta, \phi) = a \cos \phi,$

where $0 \le \phi \le \pi, 0 \le \theta \le 2\pi$. This gives a parametric representation of the sphere:

$$R(\phi,\theta) = a\sin\phi\cos\theta \; \hat{i} + a\sin\phi\sin\theta \; \hat{j} + a\cos\phi \; \hat{k},$$
 where $0 < \phi < \pi, 0 < \theta < 2\pi$.

Parametric representation of a cone

We find a parametrization of the cone

$$z = \sqrt{x^2 + y^2}, \quad 0 \le z \le 1$$

Here cylindrical coordinates provide everything we need.

$$x(r,\theta) = r\cos\theta, \ y(r,\theta) = r\sin\theta, \ z = \sqrt{x^2 + y^2} = r.$$

Also $0 \le r \le 1$ and $0 \le \theta \le 2\pi$. So the required parametrization is

$$R(r,\theta) = r\cos\theta \ \hat{i} + r\sin\theta \ \hat{j} + r \ \hat{k}, \ 0 \le r \le 1, 0 \le \theta \le 2\pi.$$

Smooth parametric surface

Let $R: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ be a parametric surface and let R(u, v) = (x(u, v), y(u, v), z(u, v)). Then the partial derivatives of R, when exist, are given by

$$R_u = (x_u, y_u, z_u)$$
 and $R_v = (x_v, y_v, z_v)$.

The surface S = R(D) is said to be smooth if R is C^1 and $R_u \times R_v \neq 0$ for $(u, v) \in D$.

Assumptions:

- D is connected
- R is injective except possibly on the boundary of D
- R is C^1 and $R_u \times R_v \neq 0$ for $(u, v) \in D$.

MA102: Multivariable Calculus

Subhamay Saha and Arup Chattopadhyay Department of Mathematics IIT Guwahati

Surface Integration: Scalar surface integrals

Let S be a surface parametrized by $R:D\to\mathbb{R}^3$ such that R is C^1 . Let $f:S\to\mathbb{R}$ be bounded on S. Then the surface integral of f over S is given by

$$\iint_{S} f(x,y,z)d\sigma := \iint_{D} f(R(u,v)) \|R_{u} \times R_{v}\| dudv$$

whenever the double integral on the right exists.

Example: Evaluate the surface integral $\iint_S (x+y+z)d\sigma$ over the surface of the cylinder $x^2+y^2=9, 0 \le z \le 4$. Solution: Using the cylindrical coordinates, the surface can be represented as

$$R(\theta, z) = 3\cos\theta \,\,\hat{i} + 3\sin\theta \,\,\hat{j} + z \,\,\hat{k}$$

over the parameter domain $\{(\theta, z) : 0 \le \theta \le 2\pi, 0 \le z \le 4\}$.

Surface Integration: Scalar surface integrals

Then $||R_{\theta} \times R_z|| = \sqrt{9 \cos^2 \theta + 9 \sin^2 \theta} = 3$. The given integral is equal to

$$\iint_{S} (x + y + z) d\sigma$$

$$= \iint_{S} (3\cos\theta + 3\sin\theta + z) ||R_{\theta} \times R_{z}|| d\theta dz$$

$$= 3 \int_{z=0}^{4} \int_{\theta=0}^{2\pi} (3\cos\theta + 3\sin\theta + z) d\theta dz$$

$$= 6\pi \int_{0}^{4} z dz$$

$$= 48\pi.$$

Oriented surface

Let S be a surface parametrized by a C^1 function $R:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$. Let \hat{n} denote the unit normal to S. Then,

$$\hat{n} = \frac{R_u \times R_v}{\|R_u \times R_v\|}.$$

If \hat{n} is a continuous function on D, then S together with \hat{n} is called an oriented surface, that is, the pair (S, \hat{n}) is called an oriented surface.

Example: $R_1(\phi, \theta) = a \sin \phi \cos \theta \ \hat{i} + a \sin \phi \sin \theta \ \hat{j} + a \cos \phi \ \hat{k}$, where $0 \le \phi \le \pi/2, 0 \le \theta \le 2\pi$.

Then
$$\hat{n_1} = \frac{\frac{\partial R_1}{\partial \phi} \times \frac{\partial R_1}{\partial \theta}}{\|\frac{\partial R_1}{\partial \phi} \times \frac{\partial R_1}{\partial \theta}\|} = \frac{1}{a} R_1(\phi, \theta)$$
 is the normal.

Figure : Orientation induced by $R_1(\phi,\theta)$

Surface integrals of vector fields

Let (S, \hat{n}) be an oriented surface in R^3 and let $F: S \to \mathbb{R}^3$ be a continuous vector field. Then $F \bullet \hat{n}$ is the normal component of F.

The surface integral of F (also called the flux integral) over the oriented surface (S, \hat{n}) is defined as

$$\iint_{S} F \bullet \hat{n} d\sigma.$$

If S = R(D), where R is a smooth parametrization of S over the parameter domain D, then

$$\iint_{S} F \bullet \hat{n} d\sigma = \iint_{D} F(R(u, v)) \bullet \frac{R_{u} \times R_{v}}{\|R_{u} \times R_{v}\|} \|R_{u} \times R_{v}\| du dv$$
$$= \iint_{D} F(R(u, v)) \bullet (R_{u} \times R_{v}) du dv.$$

Let
$$F(x, y, z) := (z, y, x)$$
. Evaluate the flux integral $\iint_S F \bullet \hat{n} d\sigma$ over the unit sphere $S : x^2 + y^2 + z^2 = 1$.

We have

$$R(u,v) = (\sin u \cos v, \sin u \sin v, \cos u), (u,v) \in [0,\pi] \times [0,2\pi],$$

$$R_u \times R_v = (\sin^2 u \cos v, \sin^2 u \sin v, \sin u \cos u).$$

Thus

$$\iint_{S} F \bullet \hat{n} d\sigma = \int_{0}^{2\pi} \int_{0}^{\pi} (2\sin^{2}u \cos u \cos v + \sin^{3}u \sin^{2}v) du dv$$
$$= \frac{4\pi}{3}.$$

One more example: Surface over the xz-plane

Find the outward flux of $F = yz\,\hat{\imath} + x\,\hat{\jmath} - z^2\,\hat{k}$ through the parabolic cylinder $y = x^2$, $0 \le x \le 1$, $0 \le z \le 4$.

Step 1: Writing the Parametric Equation of S

We parameterize S by the equation

$$\phi(x, z) = (x, x^2, z)$$
 for $(x, z) \in D$

where $D = \{(x, z) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le z \le 4\}$ in the xz-plane. Step 2: Computing $\phi_x \times \phi_z$

$$\phi_x = (1, 2x, 0)$$
 and $\phi_z = (0, 0, 1)$.
 $\phi_x \times \phi_z = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2x & 0 \\ 0 & 0 & 1 \end{vmatrix} = 2x \hat{\imath} - \hat{\jmath}$

Example (cont.)

Step 3: Evaluation of the Vector Surface Integral

$$\iint_{S} F \bullet \hat{n} d\sigma$$

$$= \iint_{D} F(\phi(x, z)) \bullet (\phi_{x} \times \phi_{z}) dx dz$$

$$= \int_{x=0}^{1} \int_{z=0}^{4} (2xyz - x) dz dx$$

$$= \int_{x=0}^{1} \int_{z=0}^{4} (2x^{3}z - x) dz dx \qquad \text{(By putting } y = x^{2} \text{)}$$

$$= \int_{x=0}^{1} (16x^{3} - 4x) dx$$

$$= 2.$$

Curl of a vector field

$$F(x, y, z) = M(x, y, z) \hat{i} + N(x, y, z) \hat{j} + P(x, y, z) \hat{k}$$
 for $(x, y, z) \in D \subset \mathbb{R}^3$.

The curl of F is denoted by curl(F) and is defined by

$$\operatorname{curl} F = \nabla \times F = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M(x, y, z) & N(x, y, z) & P(x, y, z) \end{vmatrix} \\
= \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \hat{\imath} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \hat{\jmath} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \hat{k}$$

Stoke's Theorem (3-D version of Green's Theorem)

Stoke's Theorem: Assume that S is a smooth parametric surface, say S = R(D), where D is a region in the uv-plane bounded by a closed, simple, piecewise smooth curve Γ . Assume that R is C^2 and one-to-one on some open set containing $D \cup \Gamma$. Let C denote the image of Γ , that is, $C = R(\Gamma)$. Let $F(x,y,z) = M(x,y,z) \hat{\imath} + N(x,y,z) \hat{\jmath} + P(x,y,z) \hat{k}$ be a continuously differentiable vector field on S. Then

$$\oint_C F \bullet dr = \oint_C M dx + N dy + P dz = \iint_S (\operatorname{curl}(F) \bullet \hat{n}) d\sigma,$$

where $\hat{n} = (R_u \times R_v)/\|R_u \times R_v\|$. The curve Γ is traversed in the positive (counterclockwise) direction and the curve C is traversed in the direction inherited from Γ through R.

Verify Stoke's Theorem for the vector field $F(x,y,z) = 2z\,\hat{\imath} + 3x\,\hat{\jmath} + 5y\,\hat{k}$ taking S to be the portion of the paraboloid $z = 4 - x^2 - y^2$ for which $z \ge 0$.

The boundary curve of S is the circle $C: x^2 + y^2 = 4$ in the xy-plane with counterclockwise direction.

$$C: r(t) = 2\cos t \,\hat{\imath} + 2\sin t \,\hat{\jmath} + 0\,\hat{k} \text{ for } t \in [0, 2\pi].$$

$$\oint_C F \bullet dr = \int_C 2z \, dx + 3x \, dy + 5y \, dz$$

$$= \int_{t=0}^{2\pi} (0 + (6\cos t)(2\cos t) + 0) \, dt = \int_{t=0}^{2\pi} 12\cos^2 t \, dt$$

$$= 12 \left[\frac{t}{2} + \frac{\sin(2t)}{4} \right]_{t=0}^{2\pi} = 12\pi .$$

Example (cont.)

$$\operatorname{curl}(F) = 5\,\hat{\imath} + 2\,\hat{\jmath} + 3\,\hat{k} .$$

$$\hat{n} = \frac{2x\,\hat{\imath} + 2y\,\hat{\jmath} + \hat{k}}{\sqrt{1 + 4x^2 + 4y^2}}.$$

$$\iint_{S} (\operatorname{curl}(F) \bullet \hat{n}) \ d\sigma = \iint_{S} \frac{(5 \,\hat{\imath} + 2 \,\hat{\jmath} + 3 \,\hat{k}) \bullet (2x \,\hat{\imath} + 2y \,\hat{\jmath} + \hat{k})}{\sqrt{1 + 4x^{2} + 4y^{2}}} \ d\sigma$$

$$= \iint_{S} \frac{10x + 4y + 3}{\sqrt{1 + 4x^{2} + 4y^{2}}} \ d\sigma$$

$$= \int_{\theta=0}^{2\pi} \int_{r=0}^{2} (10r \cos \theta + 4r \sin \theta + 3) \ r \ dr \ d\theta$$

$$= \int_{\theta=0}^{2\pi} \left(\frac{80}{3} \cos \theta + \frac{32}{3} \sin \theta + 6 \right) \ d\theta = 12\pi \ .$$

Thus,

$$\oint_C F \bullet dr = 12\pi = \iint_S (\operatorname{curl}(F) \bullet \hat{n}) \ d\sigma.$$

Find $\iint_S \operatorname{curl}(F) \bullet \hat{n} d\sigma$, where $F(x, y, x) = (y^2, xy, xz)$ and S is the upper hemisphere of the unit sphere $x^2 + y^2 + z^2 = 1$.

Solution: Using Stoke's theorem, we have

$$\iint_{S} (\operatorname{curl}(F) \bullet \hat{n}) d\sigma$$

$$= \oint_{C} [y^{2} dx + xy dy + xz dz] (C := \{(x, y, 0) : x^{2} + y^{2} = 1\})$$

$$= \int_{\theta=0}^{2\pi} [\sin^{2} \theta(-\sin \theta) + \cos^{2} \theta \sin \theta] d\theta$$

$$= 0.$$

Gauss's Divergence Theorem

Divergence Theorem: Let $V \subset \mathbb{R}^3$ be a solid region bounded by an oriented closed surface S, and let \hat{n} be the unit outward normal to S. Let F = (P, Q, R) be a C^1 vector field on any open subset of \mathbb{R}^3 containing $V \cup S$. Then

$$\iint_{S} F \bullet \hat{n} d\sigma = \iiint_{V} \operatorname{div}(F) \ dV,$$

where
$$\operatorname{div}(F) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
.

Gauss's Divergence Theorem

Example: Evaluate $\iint_S F \bullet \hat{n} d\sigma$ using Divergence Thm, where $F(x,y,z) = (x+y)\hat{i} + z^2\hat{j} + x^2\hat{k}$ and S is the surface of $x^2 + y^2 + z^2 = 1$, $z \ge 0$, \hat{n} being the outer normal.

Solution: By Divergence Theorem,

$$\iiint_{D} \operatorname{div} F \ dV = \iint_{S} F \bullet \hat{n} d\sigma + \iint_{S_{1}} F \bullet \hat{n}_{1} d\sigma,$$

where \hat{n} is the outer normal to S and $\hat{n_1}$ is the outer normal to $S_1 = \{(x, y, 0) : x^2 + y^2 \le 1\}$ and

$$D = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, z \ge 0\}.$$

We have $\operatorname{div} F = 1$ and hence $\iiint_D \operatorname{div} F \ dV = \frac{2}{3}\pi$. Now,

$$\iint_{S_1} F \bullet \hat{n_1} d\sigma = \iint_{S_1} [(x+y)\hat{\imath} + z^2\hat{\jmath} + x^2\hat{k}] \bullet (-\hat{k}) d\sigma = -\iint_{S_1} x^2 d\sigma = -\pi/4.$$

Hence,

$$\iint_S F \bullet \hat{n} d\sigma = \iiint_D \operatorname{div} F \ dV - \iint_{S_1} F \bullet \hat{n_1} d\sigma = \frac{2\pi}{3} + \frac{\pi}{4} = \frac{11}{12}\pi.$$