

Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities

Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, Bryan Catanzaro

{zkong, wping, rafaelvalle}@nvidia.com

Summary

- We propose Audio Flamingo: a Flamingo-based audio language model for audio understanding.
- Audio Flamingo achieves SOTA results on several close-ended and open-ended audio understanding tasks.
- We design a series of methodologies for efficient use of in-context learning and retrieval, which lead to SOTA few-shot learning results.
- Audio Flamingo has strong multi-turn dialogue ability.
- Code and checkpoints at https://github.com/NVIDIA/audio-flamingo
- Sound demos at https://audioflamingo.github.io/

Motivation

We aim to build an audio language model that can understand sound beyond speech transcriptions.

Tasks

- ✓ Audio Captioning
- ✓ Audio Question Answering
- ✓ Audio Classification
- ✓ Retrieval-augmented fewshot learning
- ✓ Multi-turn dialogues

Architecture

Training

Our training objective combines non-interleaved and interleaved samples.

$$\mathcal{L}(z) = \sum_{t=1}^{|y_{\text{out}}|} \log p_{\theta} \left((y_{\text{out}})_t | x, y_{\text{ins}}, (y_{\text{out}})_{< t} \right)$$

$$\mathcal{L}_{\text{int}}(z_{\text{int}} = \{ z^1, \cdots, z^J \}) =$$

$$\sum_{t=1}^{J} \sum_{t=1}^{|y_{\text{out}}'|} \log p_{\theta} \left((y_{\text{out}}')_t | z^{< j}, x^j, y_{\text{ins}}^j, (y_{\text{out}}')_{< t} \right)$$

$$L = -\sum_{i \in \mathcal{I}} \lambda_i \mathbb{E}_{z \sim \mathcal{D}^i} \mathcal{L}(z) - \sum_{i' \in \mathcal{I}_{\text{int}}} \lambda_{i'} \mathbb{E}_{z_{\text{int}} \sim \mathcal{D}_{\text{int}}^{i'}} \mathcal{L}_{\text{int}}(z_{\text{int}})$$

Retrieval Augmented Generation and In-Context Learning

We use a block-triangular cross-attention mask for interleaved data (**left**), and a retrieval method to construct interleaved training samples (**right**).

Templates

<pre><s>{task description}<audio>{instruction} Options:\n- option:\n- option <sep>{output}<eoc></eoc></sep></audio></s></pre>	<pre><s>{task description}Here are similar samples. <audio>{instruction_ <sep>{output_1}<eoc> <audio>{instruction_ <sep>{output_a}<eoc></eoc></sep></audio></eoc></sep></audio></s></pre>
<pre><s>The task is dialogue.<audio> user: {instruction;} assistant: <sep>{output;}<cdc> user: {instructions} assistant: <sep>{output;}<cdc></cdc></sep></cdc></sep></audio></s></pre>	<pre> <audio>{instruction} Options:\n- option;\n option_a</audio></pre>

Results

Dataset	Task	Metric	Previous SOTA ↑	Ours
Clotho-v2	CAP	CIDEr	0.441 (Chu et al., 2023)	0.465
ClothoAQA _{unanimous}	AQA	ACC	74.9% (Chu et al., 2023)	86.9%
ClothoAQA _{non-binary}	AQA	ACC	29.1% (Deshmukh et al., 2023)	49.5%
ClothoAQA _{numerical}	AQA	ACC	26.2% (Deshmukh et al., 2023)	36.4%
MusicAVQA _{audio-only}	AQA	ACC	72.1% (Chu et al., 2023)	71.6%
CochlScene	CLS	ACC	91.6% (Deshmukh et al., 2023)	83.0%
NonSpeech7k	CLS	ACC	79.0% (Rashid et al., 2023)	85.1%
FSD50k	CLS	$F1_{approx}$	65.6% (Deshmukh et al., 2023)	69.7%
NS _{instrument}	CLS	ACC	78.8% (Chu et al., 2023)	77.1%
NS _{quality}	CLS	F1	46.3% (Deshmukh et al., 2023)	66.7%
NS _{source}	CLS	ACC	60.1% (Deshmukh et al., 2023)	78.7%

Dataset	Task	Metric	Previous SOTA (0-shot) ↑	Ours (0-shot)
AudioCaps (Kim et al., 2019)	CAP	CIDEr	0.281 (Salewski et al., 2023)	0.502
CREMA-D (Cao et al., 2014)	CLS	ACC	18.5% (Deshmukh et al., 2023)	26.5%
Ravdess (Livingstone & Russo, 2018)	CLS	ACC	21.7% (Elizalde et al., 2023b)	20.9%
US8K (Salamon et al., 2014)	CLS	ACC	71.9% (Deshmukh et al., 2023)	75.0%
GTZAN (Sturm, 2013)	CLS	ACC	71.0% (Han et al., 2023)	67.9%
Medley-solos-DB (Lostanlen et al., 2019)	CLS	ACC	61.3% (Deshmukh et al., 2023)	92.7%

Audio Flamingo achieves SOTA generation quality on several audio understanding tasks. **Left**: overview of results, where 100% means the best of all baseline and our models. **Upper right**: in-domain tasks (evaluated on test splits). **Lower right**: 0-shot evaluation results.

Testset	Method	CIDEr \uparrow	Bleu4 ↑	R-L↑
A	Qwen-Audio	0.507	0.060	0.292
Α	LTU^{\dagger}	0.823	0.153	0.403
Α	Ours^\dagger	1.622	0.237	0.473
M	MU-LLaMA	0.585	0.083	0.348
M	LTU^{\dagger}	0.419	0.108	0.336
M	Ours^\dagger	1.143	0.142	0.417

Dialogue evaluation results on our Audio-Dialogues dataset. † indicates the model is finetuned on Audio-Dialogues. A is the audio subset and M is the music subset.

Effects of data scaling

Retrieval augmented in-context learning improves Audio Flamingo's generation quality. **Upper**: relative improvements with respect to **#few-shot** samples. **Lower**: retrieval-augmented audio captioning results.

References

[1] Alayrac, Jean-Baptiste, et al. Flamingo: a visual language model for few-shot learning. NeurIPS 2022.

[2] Iyer, Srinivasan, et al. OPT-IML: Scaling language model instruction meta learning through the lens of generalization. arXiv 2022.

[3] Elizalde, Benjamin, Soham Deshmukh, and Huaming Wang. Natural language supervision for general-purpose audio representations. ICASSP 2024.

[4] Wu, Yusong, et al. Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption augmentation. ICASSP 2020. [5] Deshmukh, Soham, et al. Pengi: An audio language model for audio tasks. NeurIPS 2023

[5] Deshmukh, Soham, et al. Pengi: An audio language model for audio tasks. NeurIPS 202 [6] Chu, Yunfel, et al. Qwen-audio: Advancing universal audio understanding via unified large-scale audio-language models. arXiv 2023.

[7] Tang, Changli, et al. SALMONN: Towards Generic Hearing Abilities for Large Language Models. ICLR 2024.

Moders. ICLR 2024.
[8] Gong, Yuan, et al. Listen, Think, and Understand. ICLR 2024.
[9] Liu, Shansong, et al. Music understanding LLaMA: Advancing text-to-music generation

with question answering and captioning. ICASSP 2024.
[10] Ghosh, Sreyan, et al. RECAP: retrieval-augmented audio captioning. ICASSP 2024.