Проведение дискриминантного анализа в пакете STATISTICA

Для вызова модуля дискриминантного анализа выберете Statistics/Multivariate Exploratory Techniques/Discriminant Analysis (рис. 1).

Рис.1.

На экране появится стартовая панель модуля **Discriminant Function Analysis** (Анализ дискриминантных функций) (рис. 2), в котором:

- Variables позволяет выбрать Grouping (Группируемую переменную) и Independent (Независимые переменные).
- Codes for grouping variable (Коды для групп переменной) указывают количество анализируемых групп объектов.
- Можно указать условия выбора наблюдений из базы данных кнопку **Select Cases** и веса переменных, выбрав их из списка кнопку **W**.

Рис. 2.

При нажатии кнопки **Variables** открывается диалоговое окно выбора переменных (рис. 3). В левой части выбирается группирующие переменные, в правой — независимые переменные. Имена переменных в левой и правой части не должны пересекаться.

Рис. 3.

Затем можно указать коды, которые были использованы при группировке переменных, для идентификации того, к какой совокупности принадлежит каждый образец. Нажмите на кнопку Коды для группирующей переменной и введите нужный интервал, или нажмите на кнопку Все, или используйте звездочку (*), соответствующую отбору всех кодов (рис. 4). Можно нажать кнопку ОК на стартовой панели, и система STATISTICA автоматически просмотрит группирующую переменную, и определит все коды для этих переменных.

Рис. 4.

В ходе вычислений системой получены результаты, которые представлены в окне **Discriminant Function Analisis Results** (Результаты анализа дискриминантных функций) (рис. 5).

Рис. 5.

Информационная часть диалогового окна **Discriminant Function Analisis Results** (Результаты Анализа Дискриминантных Функций) сообщает, что:

- Number of variables in the model (число переменных в модели) -4;
- Wilks' Lambda (значение лямбды Уилкса) 0,0234386;
- **Approx.** *F* (**8**, **288**) (приближенное значение *F* статистики, связанной с лямбдой Уилкса) 199,1454;
 - p < 0.0000 уровень значимости F критерия для значения 199,1454.

Значение статистики Уилкса лежит в интервале [0,1]. Значения статистики Уилкса, лежащие около 0, свидетельствуют о хорошей

дискриминации, а значения, лежащие около 1, свидетельствуют о плохой дискриминации.

По данным показателя *Wilks' Lambda* (значение лямбды Уилкса), равного 0,0234386 и по значению F — критерия равного 199,1454, можно сделать вывод, что данная классификация корректная (надо сравнить с теоретическим).

Нажимаем Summary: Variables in the model. Получаем (рис. 6).

Workbook3* ☐ Discriminant Analys				n Analysis S 4; Grouping				
Discriminant and				44 approx. F			0000	
Discriminant	17 TO 10 TO			F-remove	p-level	Toler.	1-Toler.	
	N=150	Lambda					(R-Sqr.)	
	SEPALLEN							
	SEPALWID							
	PETALLEN			35,59018				
	PETALWID	0,031546	0,743001	24,90433	0,000000	0,649314	0,350686	
	-							
	lisel							

Рис. 6.

Лямбда Уилкса. Каждое значение в первой колонке таблицы (рис. 6) является значением статистики Уилкса лямбда после того, как соответствующая переменная вводится в модель.

Частная лямбда Уилкса. Это - статистика Уилкса лямбда для одиночного вклада соответствующей переменной в дискриминацию между совокупностями. Это значение можно рассматривать как аналог частного коэффициента корреляции. Так как лямбда с величиной 0.0 обозначает полную дискриминацию, то чем ниже ее значение в этом столбце, тем больше одиночный вклад соответствующей переменной в степень дискриминации.

F-включить и р-значение. Статистика Уилкса лямбда может быть преобразована к стандартному F значению. Значение F большее 1 говорит о том, что данную переменную нужно включить в анализ.

Толерантность и R-квадрат. Толерантность определяется как 1 минус R-квадрат для соответствующей переменной со всеми другими переменными в модели. Это значение толерантности дает информацию об избыточности данной переменной.

В качестве проверки корректности обучающих выборок посмотрим результаты классификационной матрицы, нажав кнопку **Classification matrix** (Классификационная матрица) (рис. 7).

Рис. 7.

Получаем следующий результат (рис. 8).

Рис. 8.

Из классификационной матрицы можно сделать вывод, что объекты были правильно или не правильно отнесены экспертным способом к выделенным группам. Если все значения вне главной диагонали равны 0, то все элементы правильно классифицированы.

Если есть объекты, неправильно отнесенные к соответствующим группам, можно посмотреть **Classification of cases** (Классификация случаев) (рис. 7). Получим следующий результат (рис. 9).

Рис. 9.

В таблице классификации случаев некорректно отнесенные объекты помечаются звездочкой (*). Таким образом, задача получения корректных обучающих выборок состоит в том, чтобы исключить из обучающих выборок те объекты, которые по своим показателям не соответствуют большинству объектов, образующих однородную группу. Процедура исключения объекта из обучающих выборок состоит в том, что в таблице исходных данных у объекта, который должен быть исключен из выборки (он помечен "*"), убирается номер принадлежности к этой группе, после чего процесс тестирования повторяется. По предположению, сначала убирается тот объект, который наиболее не подходит к определенной группе, т.е. у которого наибольшее расстояние Махаланобиса и наименьшая апостериорная вероятность.

При удалении очередного объекта из группы нужно помнить, что при этом смещается центр тяжести группы (вектор средних), так как он определяется по оставшимся наблюдениям. После удаления очередного объекта из списка обучающих выборок не исключено, что появятся новые некорректно отнесенные объекты, которые до удаления были учтены как правильно отнесенные. Поэтому данную процедуру нужно проводить, удаляя на каждом шаге лишь по одному объекту и возвращая его обратно в обучающие выборки.

Процедура исключения наблюдений продолжается до тех пор, пока общий коэффициент корректности в классификационной матрице

достигнет 100%, т.е. все наблюдения обучающих выборок будут правильно отнесены к соответствующим группам.

Классификация объектов.

На основе полученных обучающих выборок можно проводить повторную классификацию тех объектов, которые не попали в обучающие выборки, и любых других объектов, подлежащих группировке. Для решения данной задачи, существуют два варианта: первый – провести классификацию на основе дискриминантных функций, второй – на основе классификационных функций.

необходимо, первом случае добавить В таблицу скорректированных данных новые случаи. Для того чтобы понять, к какому этот объект, нажмите кнопку Posterior probabilities относится (Апостериорные вероятности) (рис. 7).

Workbook11*		Posterior Pr	obabilities i	(Irisdat)		
Discriminant Analys				are marked	with *	
🖹 📦 Discriminant and		Observed	SETOSA	VERSICOL	VIRGINIC	
Posterior Prc	Case	Classif.	p=,33333	p=,33333	p=,33333	
	133	VERSICOL	0,000000			
	134	SETOSA	1,000000	0,000000	0,000000	
	135	SETOSA	1,000000	0,000000	0,000000	
	136	SETOSA	1,000000	0,000000	0,000000	
	137	VIRGINIC	0,000000	0,000195	0,999805	
	138	SETOSA	1,000000	0,000000	0,000000	
	139	SETOSA	1,000000	0,000000	0,000000	
	140	VERSICOL	0,000000	0,999642	0,000358	
	141	VERSICOL	0,000000	0,999917	0,000083	
	142	VERSICOL	0,000000	0,998254	0,001746	
	143	SETOSA	1,000000	0,000000	0,000000	
	144	SETOSA	1,000000	0,000000	0,000000	
	145	SETOSA	1,000000	0,000000	0,000000	
	146	VIRGINIC	0,000000	0,000001	0,999999	
	147	VERSICOL	0,000000	0,689213	0,310787	
	148	VIRGINIC	0,000000	0,000000	1,000000	
	149	SETOSA	1,000000	0,000000	0,000000	
	150	VERSICOL	0,000000	1,000000	0,000000	
	151		0,000000	0,999999	0,000001	
	4					COLORD DE S

Рис. 10.

К тем группам (классам), которые будут иметь максимальные вероятности, можно отнести новые случаи.

Во втором варианте необходимо в окне диалогового окна Discriminant **Function Analisis** Classification **functions** Results кнопку нажать

(Классификационные функции) (рис. 7). Появится окно (рис. 11), из которого можно выписать классификационные функции для каждого класса.

Рис. 11.

SETOSA=-86,3085+23,5442*SEPALLEN+23,5879*SEPALWID-16,4306*PETALLEN-17,3984*PETALWID; VERSICOL=-72,8526+15,6982*SEPALLEN+7,0725*SEPALWID+5,2115*PETALLEN+6,4342*PETALWID; VIRGINIC=-104,368+12,446*SEPALLEN+3,685*SEPALWID+12,767*PETALLEN+21,079*PETALWID.

С помощью этих функций можно будет в дальнейшем классифицировать новые случаи. Новые случаи будут относиться к тому классу, для которого классифицированное значение будет максимальное.

Дополнительно можно просмотреть результаты канонического анализа, нажав кнопку **Perform canonical analysis** (выполнить канонический анализ) (рис. 12), если для анализа были выбраны, по крайней мере, три группы и есть хотя бы две переменные в модели.

Рис. 12.

В выводном на экран окне Canonical analysis (Канонический анализ) (рис. 13) опция Scatterplot of canonical scores (Диаграмма рассеяния для значений) строит график рассеяния канонических значений для канонических корней (рис. 14). С его помощью можно определить вклад, который вносит каждая дискриминантная функция в разделение между группами.

Analysis: Irisdat	X						
	Summary Cancel						
Canonical scores for each case	Cancel						
of canonical scores y group All groups combined	Options By Group						
Scatterplot of canonical scores							
	y group All groups combined gram for root number:						

Рис. 13.

Рис. 14.

Задание.

Пункт 1. Представлены данные по 65 предприятиям (n=65) и указаны номера групп, к которым они были отнесены экспертным способом. Задача состоит в том, чтобы проверить корректность экспертного отнесения предприятий к группам и получить корректные обучающие выборки (коэффициент корректности в классификационной матрице должен быть равен 100%). Выпишите линейные классификационные функции.

Таблица 1.

	<i>X1</i>	<i>X2</i>	<i>X3</i>	X4	X5	X6	<i>X7</i>	CLASS1
1	c	9658.000	466.000	386.000	<i>35.000</i>	36.400	1756.000	1
2	274.000	10477.000	2321.000	767.000	56.000	35.600	7884.000	1
3	-146.000	6567.000	713.000	581.000	74.000	13.800	1501.000	1
4	-338.000	10282.000	499.000	764.000	51.000	30.200	1466.000	1
5	-716.000	9316.000	677.000	533.000	109.000	20.500	1486.000	1
6	892.800	6425.000	944.000	1390.000	78.000	13.200	1936.000	1
7	191.000	5367.000	786.000	819.000	104.000	13.700	2011.000	1
8	0.000	6342.000	486.000	261.000	52.000	24.100	1841.000	1
9	-107.000	5868.000	531.000	450.000	63.000	22.300	1608.000	1
10	-903.000	6330.000	636.000	401.000	69.000	17.600	1768.000	1
11	-765.000	12573.000	669.000	713.000	47.000	33.900	1806.000	1
12	326.000	4110.000	600.000	373.000	74.000	8.000	1172.000	2
13	150.000	7832.000	288.000	336.000	49.000	20.000	736.000	2
14	-18.000	6793.000	620.000	487.000	104.000	19.400	1775.000	2
15	1.300	4731.000	447.000	405.000	64.000	10.400	979.000	2
16	-380.000	5564.000	565.000	400.000	48.000	14.900	1517.000	2
17	-790.000	5470.000	432.000	509.000	85.000	11.800	935.000	2
18	-666.800	3988.000	364.000	213.000	<i>35.000</i>	10.300	943.000	2
19	-204.500	5121.000	495.000	628.000	<i>77.000</i>	16.700	1616.000	2
20	-094.000	3900.000	420.000	359.000	53.000	9.600	1034.000	2
21	-034.000	5871.000	495.000	353.000	92.000	14.300	1206.000	2
22	<i>-784.000</i>	4352.000	429.000	197.000	62.000	10.900	1070.000	2
23	-403.800	4635.000	<i>378.000</i>	221.000	46.000	10.500	856.000	3
24	-717.000	6056.000	247.700	150.000	24.100	15.600	640.000	3
25	-458.000	5180.000	433.600	429.000	44.400	10.500	880.000	3
26	-908.000	6295.000	206.000	127.000	<i>17.000</i>	22.800	743.000	3
27	-514.000	5340.000	364.000	411.000	17.000	14.400	984.000	3
28	-205.000	5357.000	583.000	716.000	87.000	14.800	1606.600	3
29	403.100	2969.000	382.000	274.000	29.000	5.700	728.000	3
30	-205.000	4924.000	284.000	292.000	35.000	17.500	1010.000	3
31	-256.000	7622.000	342.000	223.000	26.000	14.100	634.000	3
32	-314.000	4394.000	471.000	396.000	68.000	9.900	1065.000	3
33	-027.000	3312.000	284.000	229.000	39.000	11.100	948.000	3
34	1779.000	5001.000	304.400	286.000	37.600	12.000	732.000	3
35	-842.000	4247.000	233.000	189.000	28.000	12.800	757.000	3
<i>36</i>	-542.000	4025.000	199.300	145.000	14.400	12.000	596.000	4

37	-298.000	3429.000	184.000	105.000	18.000	<i>6.700</i>	357.300	4
38	-446.000	3047.000	310.000	244.000	47.000	5.500	560.000	4
39	-236.000	3410.000	181.000	147.000	20.000	10.900	576.000	4
40	-493.000	4551.000	212.000	169.000	22.000	13.800	645.000	4
41	-900.000	4573.000	284.000	254.000	37.000	11.300	698.000	4
42	-586.000	3924.000	212.000	154.000	17.000	13.000	704.000	4
43	-634.000	3751.000	212.000	125.000	17.000	5.400	303.000	4
44	-142.000	4318.000	257.000	151.000	33.000	16.500	985.000	4
45	-394.000	3140.000	218.000	241.000	47.000	8.500	592.000	4
46	-571.000	4617.000	171.000	137.000	13.000	13.100	484.000	4
47	-728.300	5448.000	348.000	215.000	28.000	5.700	367.000	4
48	-796.000	2902.000	161.000	182.000	22.000	11.400	631.000	4
49	-955.200	3634.000	334.000	361.000	59.000	10.100	925.000	4
50	-294.000	3499.000	204.000	129.000	27.000	6.800	398.000	4
51	-500.000	6368.000	288.000	169.000	27.000	13.300	601.000	4
52	-961.000	4194.000	328.000	312.000	44.000	9.500	744.000	4
53	-934.000	6322.000	510.000	548.000	41.000	14.700	1187.000	4
54	-161.600	3196.000	288.000	149.000	55.000	7.600	684.000	5
55	-004.000	3666.000	168.000	131.000	19.000	8.300	382.000	5
56	-879.000	3058.000	169.000	86.000	23.000	5.600	307.000	5
57	-197.000	5110.000	82.000	57.000	11.000	1.100	174.000	5
58	-310.700	4166.000	207.000	183.000	32.000	9.800	487.000	5
59	-437.000	5168.000	151.000	96.000	8.000	10.700	359.000	5
60	-482.000	2061.000	78.000	47.000	4.000	2.900	110.300	5
61	-855.000	3483.000	109.000	90.000	16.000	7.600	237.000	5
62	-892.200	1917.000	98.000	64.000	9.000	4.000	174.000	5
63	-766.000	2001.000	95.000	87.000	18.000	5.000	239.000	5
64	-950.000	1728.000	87.000	75.000	13.000	3.400	172.300	5
65	-369.000	1094.000	38.000	1.200	3.200	3.300	114.000	5
		•						

Пункт 2. На основе корректных обучающих выборок и классификационных функций, полученных в результате выполнения пункта 1, провести группировку предприятий по пяти группам на основе данных, представленных в таблице 2, и соответствующих вариантов в таблице 3.

Таблица 2.

	<i>X1</i>	X2	<i>X3</i>	<i>X4</i>	<i>X</i> 5	<i>X6</i>	<i>X7</i>
1	-790.000	5470.000	432.000	509.000	85.000	11.800	935.000
2	-1205.000	3698.000	187.500	156.000	21.600	10.000	507.000
3	-751.000	3448.000	278.000	206.000	25.000	7.400	596.000
4	-107.000	5868.000	531.000	450.000	63.000	22.300	1608.000
5	-903.000	6330.000	636.000	401.000	69.000	17.600	1768.000
6	-1204.500	5121.000	495.000	628.000	77.000	16.700	1616.000
7	-717.000	6056.000	247.700	150.000	24.100	15.600	640.000
8	-1027.000	3312.000	284.000	229.000	39.000	11.100	948.000

9	-625.000	2806.000	201.000	207.000	29.000	6.000	429.000
10	-1784.000	4352.000	429.000	197.000	62.000	10.900	1070.000
11	-1147.000	1849.000	158.000	45.000	13.000	3.100	266.600
12	-614.000	2168.000	191.000	168.000	22.000	9.100	804.000
13	-1080.000	3130.000	213.000	236.000	33.000	11.800	807.000
14	403.100	2969.000	382.000	274.000	29.000	5.700	728.000
15	139.000	3264.000	340.000	316.000	28.000	6.800	711.000
16	-444.000	3920.000	139.000	120.000	9.000	13.100	464.000
17	-833.000	5563.000	271.000	148.000	15.700	8.700	426.000
18	-380.000	5564.000	565.000	400.000	48.000	14.900	1517.000
19	-634.000	3751.000	212.000	125.000	17.000	5.400	303.000
20	-482.000	2061.000	78.000	47.000	4.000	2.900	110.300
21	-1892.000	4823.000	254.000	269.000	33.000	12.800	673.000
22	-256.000	7622.000	342.000	223.000	26.000	14.100	634.000
23	-987.000	4412.000	249.400	236.000	26.400	10.300	582.000
24	-255.000	2806.000	262.000	147.000	11.000	5.000	468.000
25	-908.000	6295.000	206.000	127.000	17.000	22.800	743.000
26	-1012.000	3912.000	102.000	87.000	9.000	11.200	290.000
27	-1500.000	6368.000	288.000	169.000	27.000	13.300	601.000
28	-321.000	1339.000	71.000	50.000	11.000	3.100	161.600
29	-1872.000	3883.000	262.000	230.000	26.000	8.300	557.000
30	-1161.600	3196.000	288.000	149.000	55.000	7.600	684.000
31	307.700	16355.000	939.000	83.000	25.000	8.700	501.000
32	-1146.000	6567.000	713.000	581.000	74.000	13.800	1501.000
33	-718.000	2027.000	126.000	105.000	12.000	7.700	474.000
34	-1197.000	5300.000	485.000	412.000	51.000	10.000	924.000
35	-497.800	5056.000	445.000	536.000	60.000	15.400	1388.100
36	-314.000	4394.000	471.000	396.000	68.000	9.900	1065.000
37	-373.000	5216.000	321.000	311.000	43.000	11.900	734.000
38	-854.300	5602.000	856.000	999.000	120.000	15.000	2285.000
39	-2004.000	3666.000	168.000	131.000	19.000	8.300	382.000
40	-900.000	4573.000	284.000	254.000	37.000	11.300	698.000
41	-219.800	3619.000	333.000	358.000	31.000	7.400	679.800
42	-523.600	3586.000	383.000	442.000	41.000	11.700	1252.300
43	-1731.300	2785.000	388.000	366.000	48.000	5.500	771.000
44	-205.000	5357.000	583.000	716.000	87.000	14.800	1606.600
45	-867.000	3495.000	150.700	98.000	14.200	9.700	419.000
46	-950.000	1728.000	87.000	75.000	13.000	3.400	172.300
47	-2408.000	3714.000	253.000	229.000	24.000	7.600	518.000
48	-226.200	2863.000	252.000	203.000	31.000	6.600	582.600
49	-1597.000	2721.000	157.000	133.000	19.000	6.700	388.000
50	-1148.000	5126.000	468.000	340.000	50.000	12.200	1116.000
51	-504.600	3624.000	250.000	235.000	28.000	15.500	1071.000
52	-1796.000	2902.000	161.000	182.000	22.000	11.400	631.000
53	-1879.000	3058.000	169.000	86.000	23.000	5.600	307.000
54	-503.000	4634.000	336.000	271.000	31.000	11.100	802.000
55	-1394.000	3140.000	218.000	241.000	47.000	8.500	592.000
56	653.000	4791.000	245.000	202.000	37.000	17.300	881.000
57	-1094.000	3900.000	420.000	359.000	53.000	9.600	1034.000
58	-1949.000	3294.000	322.000	347.000	84.000	10.600	1034.000

59	-1064.000	2610.000	203.000	237.000	43.000	7.400	578.000
60	-1571.000	4617.000	171.000	137.000	13.000	13.100	484.000
61	-447.000	3390.000	282.000	258.000	33.000	7.100	592.000
62	-768.000	2845.000	332.000	241.000	43.000	5.500	637.000
63	-848.000	5197.000	269.200	163.000	14.200	9.900	513.000
64	-205.000	4924.000	284.000	292.000	35.000	17.500	1010.000
65	-1961.000	4194.000	328.000	312.000	44.000	9.500	744.000
66	-767.200	5863.000	622.200	277.000	95.000	13.800	1779.000
67	-1294.000	3499.000	204.000	129.000	27.000	6.800	398.000
68	-375.000	4291.000	187.000	165.000	18.000	11.300	493.000
69	-18.000	6793.000	620.000	487.000	104.000	19.400	1775.000
70	-526.000	3338.000	247.200	216.000	15.700	6.800	501.000
71	-745.000	3262.000	214.000	103.000	29.000	5.600	370.000
72	-113.400	7444.000	506.000	669.000	50.000	16.200	1100.200
73	-1332.000	4455.000	184.000	325.000	54.000	10.500	825.000
74	-1493.000	4551.000	212.000	169.000	22.000	13.800	645.000
75	-446.000	3047.000	310.000	244.000	47.000	5.500	560.000
76	714.600	7655.000	687.000	226.000	36.000	16.400	1474.000
77	179.000	4097.000	474.000	345.000	46.000	8.000	536.000
78	274.000	10477.000	2321.000	767.000	56.000	35.600	7884.000
79	-361.100	2754.000	385.000	499.000	62.000	10.700	1493.000
80	-1765.000	2977.000	281.000	249.000	34.000	6.500	612.000
81	1.300	4731.000	447.000	405.000	64.000	10.400	979.000
82	-3636.000	4129.000	133.000	57.000	14.000	13.900	446.000
83	-1016.000	4028.000	217.000	236.000	23.000	10.600	568.000
84	-2766.000	2001.000	95.000	87.000	18.000	5.000	239.000
85	-1008.000	2954.000	179.000	133.000	17.000	7.600	461.000
86	-452.000	2034.000	251.000	185.000	48.000	3.700	457.000
8 7	-419.500	1982.000	237.000	242.000	66.000	11.100	1327.000
88	-1306.800	2400.000	270.000	212.000	29.000	4.800	538.000
89	-809.000	4590.000	180.000	147.000	23.000	12.500	488.000
90	-1765.000	12573.000	669.000	713.000	47.000	33.900	1806.000
91	24.000	4666.000	268.000	344.000	16.000	8.900	512.000
92	-454.000	4799.000	433.000	421.000	41.000	9.200	831.000
93	-599.300	3535.000	287.000	287.000	40.000	9.000	752.000
94	-2142.000	4318.000	257.000	151.000	33.000	16.500	985.000
95	-1514.000	5340.000	364.000	411.000	17.000	14.400	984.000
96	-1458.000	5180.000	433.600	429.000	44.400	10.500	880.000
9 7	-337.000	3017.000	187.000	191.000	29.000	6.600	411.000
98	-279.000	4211.000	294.000	259.000	41.000	6.400	451.000
99	-1376.000	4961.000	292.000	294.000	25.000	17.000	999.000
100	-403.800	4635.000	378.000	221.000	46.000	10.500	856.000
101	-2716.000	9316.000	677.000	533.000	109.000	20.500	1486.000
102	-298.000	3429.000	184.000	105.000	18.000	6.700	357.300
103	191.000	5367.000	786.000	819.000	104.000	13.700	2011.000
104	-728.300	5448.000	348.000	215.000	28.000	5.700	367.000
105	-404.000	2988.000	161.000	97.000	20.000	7.900	426.200
106	-473.700	5850.000	454.000	644.000	68.000	17.600	1365.500
<i>107</i>	-444.200	2351.000	297.000	183.000	35.000	4.500	564.000
108	-1236.000	3410.000	181.000	147.000	20.000	10.900	576.000

109	-715.000	2980.000	199.000	182.000	42.000	8.900	606.000
110	-1166.000	3798.000	273.000	267.000	42.000	8.600	619.000
111	-1141.000	3395.000	123.000	105.000	18.000	12.400	449.000
112	-486.000	1304.000	167.000	109.000	20.000	2.300	289.000
113	-667.000	2935.000	154.000	136.000	20.000	5.800	302.000
114	1365.000	5833.000	272.000	145.000	17.000	9.300	434.000
115	1553.000	2922.000	214.000	190.000	47.000	7.900	582.000
116	-706.000	3878.000	230.300	121.000	31.800	7.000	417.000
117	-1615.100	3779.000	216.000	264.000	18.000	13.300	763.000
118	-916.000	2362.000	173.000	144.000	18.000	6.900	505.000
119	-854.000	4532.000	278.000	233.000	26.000	11.600	714.000
120	-314.000	2788.000	191.000	105.000	21.000	5.900	406.000
121	-2128.000	3904.000	203.000	152.000	13.000	8.500	440.000
122	1779.000	5001.000	304.400	286.000	37.600	12.000	732.000
123	360.000	5490.000	315.000	214.000	30.000	14.900	854.000
124	2174.000	9658.000	466.000	386.000	35.000	36.400	1756.000
125	-662.000	3257.000	180.000	94.000	12.000	5.500	303.000
126	-288.300	3678.000	399.000	485.000	43.000	9.900	1074.000
127	1173.000	3426.000	202.000	214.000	32.000	8.500	502.000
128	-374.200	2823.000	216.000	62.000	13.000	4.400	337.000
129	-1527.000	3273.000	164.000	136.000	16.000	14.300	719.000
130	326.000	4110.000	600.000	373.000	74.000	8.000	1172.000
131	-542.000	4025.000	199.300	145.000	14.400	12.000	596.000
132	-745.000	2529.000	151.400	117.000	12.000	7.100	427.000
133	-409.600	2442.000	191.000	113.000	19.000	5.300	413.000
134	-892.200	1917.000	98.000	64.000	9.000	4.000	174.000
135	-2253.000	6344.000	359.000	321.000	62.000	22.800	1292.000
136	-563.700	4248.000	343.000	260.000	42.000	10.800	868.900
137	-101.000	4962.000	523.000	537.000	66.000	11.300	1190.000
138	37.000	4725.000	148.000	115.000	17.000	11.900	371.200
139	-393.300	5373.000	325.000	135.000	22.000	7.600	462.000
140	-1050.000	4004.000	189.000	187.000	43.000	11.600	544.000
141	-478.000	1709.000	165.000	132.000	21.000	4.800	465.000
142	-1279.100	3469.000	337.000	375.000	74.000	9.000	871.300
143	-2034.000	5871.000	495.000	353.000	92.000	14.300	1206.000
144	-453.000	5507.000	296.000	281.000	36.000	17.200	925.000
145	0.000	6342.000	486.000	261.000	52.000	24.100	1841.000
146	-2033.000	2908.000	289.000	254.000	28.000	9.500	941.000
147	-1738.000	4906.000	169.200	149.000	27.900	13.400	464.000
148	-1900.000	5603.000	246.600	181.000	16.300	14.700	648.000
149	-1437.000	5168.000	151.000	96.000	8.000	10.700	359.000
150	-1978.000	3354.000	442.000	400.000	59.000	7.500	1098.000
151	-3161.000	3641.000	260.400	201.000	37.300	9.900	711.000
152	-1369.000	1094.000	38.000	1.200	3.200	3.300	114.000
153	-531.000	3714.000	211.600	189.000	20.800	10.900	622.000
154	-884.300	2866.000	237.000	146.000	30.000	6.800	566.000
155	-1955.200	3634.000	334.000	361.000	59.000	10.100	925.000
156	-1004.000	4948.000	230.000	144.000	32.000	11.800	548.000
157	-1855.000	3483.000	109.000	90.000	16.000	7.600	237.000
158	-1338.000	10282.000	499.000	764.000	51.000	30.200	1466.000

159	-878.000	4395.000	275.000	208.000	20.000	7.200	447.000
160	-1078.000	4367.000	216.000	176.000	25.000	11.500	567.000
161	-666.800	3988.000	364.000	213.000	35.000	10.300	943.000
162	-277.600	1744.000	202.000	222.000	31.000	5.700	665.000
163	-350.200	2549.000	246.000	161.000	34.000	6.300	610.000
164	-412.000	4331.000	416.000	253.000	64.000	10.900	1045.000
165	-573.000	5163.000	407.000	285.000	43.000	12.900	1017.000
166	-197.000	5110.000	82.000	57.000	11.000	1.100	174.000
<i>167</i>	-1842.000	4247.000	233.000	189.000	28.000	12.800	757.000
168	-666.000	4222.000	284.700	198.000	44.300	14.000	944.000
169	892.800	6425.000	944.000	1390.000	78.000	13.200	1936.000
<i>170</i>	-1597.000	3396.000	162.000	146.000	23.000	10.600	506.000

Таблица 3.

Вариант	1	2	3	4	5	6	7	8	9	10
Номера	1-	21-	41-	61-	81-	101-	121-	11-	51-	71-
предприятий	50	70	90	110	130	150	170	60	100	120

- X1 прибыль (тыс. р.);
- Х2 валовая продукция на 1 работника, занятого в сельском хозяйстве (тыс. р.);
- ХЗ валовая продукция на 1 га сельхозугодий (тыс. р.);
- Х4 производство молока на 1 га сельхозугодий (кг);
- Х5 производство мяса на 1 га сельхозугодий (кг);
- Х6 выручка от реализации продукции на 1 работника (тыс. р.);
- Х7 выручка на 1 га сельхозугодий (тыс. р.).