Problem Set 13 —— Linear Algebra (Spring 2024)

Dr. Y. Chen

- 1. 设 λ_1, λ_2 是矩阵 A 的两个不同特征值, α_1, α_2 分别为 λ_1, λ_2 的特征向量, 证明: $\alpha_1 + \alpha_2$ 不是 A 的特征向量.
- 2. 设向量组 $\alpha_1=(1,2,1)^T, \alpha_2=(1,3,2)^T, \alpha_3=(1,a,3)^T$ 为 R^3 的一组基, $\beta=(1,1,1)^T$ 在 这组基下的坐标为 $(b, c, 1)^T$.
 - (a) 求 a, b, c;
 - (b) 证明 α_2,α_3,β 为 R^3 的一组基. 并求 α_2,α_3,β 到 $\alpha_1,\alpha_2,\alpha_3$ 的过渡矩阵.
- 3. 设 $A \in n$ 阶实对称矩阵, 且 $A^2 = A$, 证明存在正交矩阵 Q, 使得

 $Q^{-1}AQ = {
m diag}(1,1,\cdots,1,0,\cdots,0).$ 4. 证明反对称实矩阵的特征值是 0 或纯虚数.

- 5. 设

$$A = \left[\begin{array}{ccc} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{array} \right],$$

已知 A 有 3 个线性无关的特征向量, 且 $\lambda_1=2$ 是其二重特征值, 求 P, 使 $P^{-1}AP=\Lambda$.