Data visualization basics

Jae Yeon Kim 05 January, 2019

Motivation

- The following material is adapted from Kieran Healy's wonderful book (2018) on data visualization.
- Why should we care?
- Sometimes, pictures are better tools than words in 1) exploring, 2) understanding, and 3) explaining data.

Anscombe's quartet

Anscombe's quarter comprises four datasets, which are so alike in terms of their descriptive statistics but quite different when presented graphically.

```
# data
anscombe
                                      y4
##
      x1 x2 x3 x4
                     у1
                          у2
                                уЗ
## 1
     10 10 10
               8
                  8.04 9.14
                             7.46
                                    6.58
      8
         8
           8
                8
                  6.95 8.14
                             6.77
                                    5.76
                  7.58 8.74 12.74
                                    7.71
## 3
     13 13 13
               8
## 4
         9
            9
               8
                  8.81 8.77
                             7.11
                                    8.84
## 5
     11 11 11
               8
                  8.33 9.26
                             7.81
                                    8.47
     14 14 14
                  9.96 8.10
                             8.84
               8
                                    7.04
                              6.08
         6
            6
               8
                  7.24 6.13
            4 19
## 8
      4
         4
                  4.26 3.10
                             5.39 12.50
     12 12 12
               8 10.84 9.13
      7
         7
            7
               8 4.82 7.26
                              6.42
                                    7.91
## 11 5 5 5
               8 5.68 4.74 5.73
                                   6.89
# correlation
cor(anscombe)[c(1:4),c(5:8)]
##
              y1
                         y2
                                    yЗ
                                               y4
                 0.8162365
                             0.8162867 -0.3140467
## x1 0.8164205
      0.8164205
                 0.8162365
                             0.8162867 -0.3140467
      0.8164205 0.8162365
                             0.8162867 -0.3140467
## x4 -0.5290927 -0.7184365 -0.3446610 0.8165214
# plot
anscombe %>%
  gather(x_name, x_value, x1:x4) %>%
  gather(y_name, y_value, y1:y4) %>%
  ggplot(aes(x = x_value, y = y_value)) +
          geom_point() +
          facet_grid(x_name ~ y_name) +
  theme_bw() +
  labs(x = "X values",
      y = "Y values",
      title = "Anscombe's quartet")
```

Anscombe's quartet

ggplot2 basics

- Workflow:
 - 1. Tidy data
 - 2. Mapping
 - 3. Geom
 - $4.\ {\rm Cor_ordinates}$ and scales
 - 5. Labels and guides
 - 6. Themes
 - 7. Save files

Tidy data

• We covered tiday data in the previous sessions.

## # A tibble: 1,704 x 6							
##		country	continent	year	lifeExp	pop	gdpPercap
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
##	1	Afghanistan	Asia	1952	28.8	8425333	779.
##	2	Afghanistan	Asia	1957	30.3	9240934	821.
##	3	Afghanistan	Asia	1962	32.0	10267083	853.
##	4	Afghanistan	Asia	1967	34.0	11537966	836.
##	5	Afghanistan	Asia	1972	36.1	13079460	740.

```
## 6 Afghanistan Asia
                            1977
                                    38.4 14880372
                                                       786.
## 7 Afghanistan Asia
                            1982
                                    39.9 12881816
                                                       978.
## 8 Afghanistan Asia
                            1987
                                    40.8 13867957
                                                       852.
## 9 Afghanistan Asia
                            1992
                                    41.7 16317921
                                                       649.
## 10 Afghanistan Asia
                            1997
                                    41.8 22227415
                                                       635.
## # ... with 1,694 more rows
```

What is the difference between typeof and class?

```
typeof(gapminder)

## [1] "list"

class(gapminder)

## [1] "tbl_df" "tbl" "data.frame"
```

Mapping and Geom

- ggplot tells what is your data
- aes (aesthetic mappings or aesthetics) tells what is your variables of interests in the data
- $\bullet\,$ geom_ thles the type of plot you are going to use

Basic aes (x, y)

$geom_smooth()$ using method = gam' and formula $y \sim s(x, bs = "cs")'$

Advanced aes (size, color)

- There's also fill argument (mostly used in geom_bar()).
- The property size/color/fill represents. . .

$geom_smooth()$ using method = gam' and formula $y \sim s(x, bs = cs')'$

$geom_smooth()$ using method = gam' and formula $y \sim s(x, bs = cs')'$

Co-ordinates and scales

```
p + geom_point() +
coord_flip() # coord_type
```


p + geom_point() +
scale_x_log10() # scale_mapping_type

Labels and guides

A Gapminder Plot

Data points are country-years

Source: Gapminder

A Gapminder Plot Data points are country—years


```
Source: Gapminder
```

A Gapminder Plot Data points are country—years

6. Themes

Save files

Saving 6.5×4.5 in image

• I highly recommend to save your file in a subdirectory named output or figures or something like that.

```
ggsave(filename = "figure_example_modified.png", plot = figure_example,
    height = 8,
    width = 10,
    units = "in")
```