中国科学技术大学《代数学基础》期中考试

2022年11月20日, 15:00-17:00

姓名:	学号:	所在院系:
-----	-----	-------

题号	_	11	11	四	五	六	七	八	总分
得分									
复查									

一、(15分) 设 (G,\cdot) 是群,A 是群 G 的子群。在 G 上定义关系 \sim : 对任意 $g,h\in G$, $g\sim h\Leftrightarrow g^{-1}\cdot h\in A$. 则 \sim 是 G 上的等价关系,并求 G 中元素 g 在等价关系 \sim 下的等价类。

二、(15分)

- (1) 求 243 和 198 的最大公因子和最小公倍数;
- (2) 求二元一次不定方程 243x + 198y = 909 的全部整数解。

三、(共10分) 判断一次同余方程组
$$\begin{cases} x\equiv 3\ (\text{mod }8)\\ x\equiv 11\ (\text{mod }20)\\ x\equiv 1\ (\text{mod }15) \end{cases}$$

是否有解?如果有解,那么求解该方程组。

四、(10分) 设 n 为大于 1 的任意正整数,则

- (1) $n \nmid (2^n 1);$
- (2) $n|\varphi(2^n-1)$, 其中 $\varphi(\cdot)$ 为欧拉函数。

五、(10分)

- (1) 解一次同余方程 $3^{2022} \cdot x \equiv 6 \pmod{23}$.
- (2) 分别求出模 23,23² 和 2×23² 的一个原根。

六、群论中的拉格朗日定理(15分)

- (1) 设 (G,\cdot) 是有限群以及 A 是群 G 的子群,则子群 A 的阶整除群 G 的阶。
- (2) 对 $g \in G$, 使得 $g^n = 1$ 成立的最小正整数 n 称为元素 g 的阶,则元素 g 的阶整 除群 G 的阶;
- (3) 利用群论中的拉格朗日定理证明欧拉定理。

七、(15分)

- (1) 利用威尔逊(Wilson)定理证明费马小定理;
- (2) 利用费马小定理证明威尔逊定理;
- (3) 若奇素数 p > 3, 则

$$p^2 | \sum_{i=1}^{p-1} \frac{(p-1)!}{k}.$$

八、(10分)

- (1) 无零因子的含幺交换环称为整环。证明:有限整环是域。
- (2) 若 $k \geq 3$, 则 $\{(-1)^a 5^b | a = 0, 1 \text{ 和 } 0 \leq b < 2^{k-2}\}$ 是模 2^k 的缩系,并且 $(\mathbb{Z}/2^k \mathbb{Z})^* \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{k-2}\mathbb{Z}.$