Notas Variedades

Cristo Daniel Alvarado

8 de enero de 2024

Índice general

4.	Variedades	-
	4.1. Variedades Topológicas	
	4.2. Compatibilidad de Cartas	,
6.	Funciones suaves sobre una variedades	ļ
	6.1. Introducción	
	6.2. Vectores Tangentes	

Capítulo 4

Variedades

4.1. Variedades Topológicas

Para hacer toda la parte de introducción a varidedades, se hará uso del libro de Loring W. Tu 'An introduction to manifolds'. Hablaremos inicialmente de variedades topológicas. Para entender mejor los conceptos usados a lo largo de la sección, consultar al apéndice A del libro mencionado anteriormente.

Recordemos varias cosas, Un espacio topológico M es **segundo numerable** si tiene una base a lo sumo numerable. Una **vecindad** de un punto $p \in M$ es cualquier conjunto abierto que contenga a p. Una **cubierta abierta de** M es una colección $\{U_{\alpha}\}_{{\alpha}\in A}$ de conjuntos abiertos de M tales que $\bigcup_{{\alpha}\in A}U_{\alpha}=M$.

Definición 4.1.1

Un espacio topológico M es localmente euclideano de dimensión \mathbf{n} si todo punto $p \in M$ tiene una vecindad $U \subseteq M$ tal que existe un homeomorfismo $\phi: U \to V$, donde $V \subseteq \mathbb{R}^n$ es abierto. Al par $(U, \phi: U \to V)$ se le conoce como una carta, U es una vecindad coordenada o conjunto abierto coordenado, y ϕ es el mapeo mapeo coordenado o sistema coordenado sobre U.

Decimos que una carta (U, ϕ) está centrada en $p \in U$ si para $\phi(p) = 0$. Una carta (U, ϕ) alrededor de p simplemente significa que (U, ϕ) es una carta y que $p \in U$.

Definición 4.1.2

Una Variedad Topológica de dimensión n es un espacio topológico localmente euclideano de dimensión n, Hausdorff y segundo numerable.

Recordamos que la condición de Hausdorff y la segunda numerabilidad son propiedades hereditarias, esto es, son heredadas a los subespacios de estos espacios topológicos. Un subespacio de un espacio Hausdorff es Hausforff y un subespacio de un espacio segundo numerable es segundo numerable. Así que de forma inmediata, como \mathbb{R}^n es Hausdorff y segundo numerable, cualquier subespacio de él es automáticamente Hausdorff y segundo numerable.

Ejemplo 4.1.1

El espacio euclideano \mathbb{R}^n es una variedad topológica de dimensión n, pues pues es un espacio topológico localmente euclideano, pues para todo $p \in \mathbb{R}^n$ existe $\phi = \mathrm{id}_{\mathbb{R}^n}$ homeomorfismo de \mathbb{R}^n en \mathbb{R}^n , además \mathbb{R}^n es Hausdorff y segundo numerable.

Ejemplo 4.1.2

Considere la gráfica de la función $f\mathbb{R} \to \mathbb{R}$, $x \mapsto x^{2/3}$. Su gráfica tiene la siguiente forma: Su gráfica (denotada por $\Gamma(f)$) es una variedad topológica, esto en virtud de ser un subespacio de \mathbb{R}^2 , el cual es Hausdorff y segundo numerable. Y es localmente euclideano ya que es homeomorfo a \mathbb{R} , usando el mapeo $\pi: \mathbb{R}^2 \to \mathbb{R}$, $(x, x^{2/3}) \mapsto x$.

Ejemplo 4.1.3

Considere la cruz como subconjunto de \mathbb{R}^2 . Claramente es Hausdorff y segundo numerable. Probaremos que no es una variedad topológica de dimensión 1 ó 2. Suponga que lo es, entonces para $p \in M$ (la intersección de la cruz) existe un mapeo $\phi: U \to V$, donde $U \subseteq M$ (M es el espacio topológico) con $V \subseteq \mathbb{R}^n$, donde $n \in \mathbb{N}$. Podemos suponer que U es abierto conexo (si no es conexo, basta tomar una bola tal que esté contenida en U). Notemos que $U/\{p\}$ es un conjunto que tiene 4 componentes conexas. Si

- n = 1, como los abiertos conexos en \mathbb{R} son intervalos conexos, al quitarles un punto del interior, se tiene que $V/\{\phi(p)\}$ tiene dos componentes conexas.
- n > 1, como a los conexos abiertos de \mathbb{R}^n con n > 1 al quitarles un punto siguen siendo conexos, se tiene que $V/\{\phi(p)\}$ tiene una componente conexa.

como los homeomorfismos mandan componentes conexas en componentes conexas, no puede suceder que la imagen de $U/\{p\}$ el cual es $V/\{\phi(p)\}$ tenga 2 o una componente conexa. Luego el espacio topológico M no es localmente euclideano y por tanto, no es variedad topológica.

4.2. Compatibilidad de Cartas

Sea M una variedad topológica y considere $(U, \phi : U \to \mathbb{R}^n)$ y $(V, \psi : V \to \mathbb{R}^n)$ dos cartas de la variedad topológica M.

Definición 4.2.1

Dadas dos cartas de una variedad topológica (usando la notación de lo escrito anteriormente), decimos que son C^{∞} -compatibles si los dos mapeos

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V)$$

$$\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$$

$$(4.1)$$

son C^{∞} . Estos dos mapeos son llamados funciones de transición entre las cartas.

Observación 4.2.1

En el contexto de la definición anterior, en caso de que la intersección de las dos cartas sea vacía, las cartas serán en automático C^{∞} -compatibles.

Para simplificar la notación, escribiremos

$$U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$$

У

$$U_{\alpha\beta,\gamma} = U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$$

Como nuestro interés va solo sobre cartas C^{∞} -compatibles, seguidamente vamos a omitir la mención de C^{∞} y hablaremos simplemente de cartas compatibles.

Definición 4.2.2

Un **Atlas** C^{∞} o simplemente un **atlas** en un espacio localmente euclideano, es una colección $\mathbb{U} = \{(U_{\alpha}, \phi_{\alpha})\}\$ de cartas C^{∞} -compatibles a pares que cubren a M, es decir tales que $M = \bigcup_{\alpha} U\alpha$.

Observación 4.2.2

La C^{∞} -compatibilidad de cartas es una relación reflexiva, simétrica, pero no es transitiva. En efecto.

Demostración:

Sea M un espacio localmente euclideano.

Observación 4.2.3

Si M y N son variedades suaves, entonces $M \times N$ con su topología producto es una variedad suave.

Proposición 4.2.1

Si $\{(U_{\alpha}, \phi_{\alpha})\}$ y $\{(V_{\beta}, \psi_{\beta})\}$ son atlas para M y N, respectivamente, entonces

$$\{(U_{\alpha} \times V_{\beta}, \phi_{\alpha} \times \psi_{\beta} : U_{\alpha} \times V_{\beta} \to M \times N)\}$$

es un atlas para $M \times N$.

Ejemplo 4.2.1

 $T^2 = S^1 \times S^1$. Y el *n*-toro $T^n = \underbrace{S^1 \times S^1}_{\text{n-veces}}$ son ejemplos de variedades suaves.

Capítulo 6

Funciones suaves sobre una variedades

6.1. Introducción

Definición 6.1.1

Sea M una variedad de dimensión n. Una función $f: M \to \mathbb{R}$ se dice que **es una función** C^{∞} **en** $p \in M$ si existe una carta (U, ϕ) que contenga a p tal que $f \circ \phi^{-1}$ es C^{∞} en $\phi(p)$. La función f se dice que es C^{∞} **en** M si es C^{∞} en cada punto de M.

Notemos que la definición de suavidad de una función f en u punto es independiente de de la carta (U, ϕ) , pues si $f \circ \phi^{-1}$ es C^{∞} en $\phi(p)$ y (V, ψ) es otra carta sobre $p \in M$, entonces en $\psi(U \cap V)$:

$$f \circ \psi^{-1} = (f \circ \phi^{-1}) \circ (\phi \circ \psi^{-1})$$

las cual es C^{∞} en $\psi(p)$.

Se denota al conjunto de la funciones suaves sobre una variedad suave M por:

$$C^{\infty}(M) = \{ \text{conjunto de todas las funciones } C^{\infty} \text{ sobre } M \}$$

Sean M^m y N^n variedades suaves, $h \in C^\infty(M)$ y $F: N \to M$ funciones. Se define el **pullback** de h bajo F como la función

$$F^*h = h \circ F$$

Definición 6.1.2

Sean M y N variedades suaves de dimensión n y m, respectivamente. Una función continua $f: N \to M$ es C^{∞} en un punto $p \in N$ si existen cartas (V, ψ) alrededor de F(p) en M y (U, ϕ) alrededor de p en N tales que la composición

$$\psi \circ F \circ \phi^{-1}$$

Figura 6.1: Función C^{∞} .

Figura 6.2: Función $F: N \to M$ entre dos variedades.

el cual es un mapeo del abierto $\phi(F^{-1}(V) \cap U)$ subcojunto de \mathbb{R}^n y va a \mathbb{R}^m , es C^{∞} en $\phi(p)$. Se die que F es C^{∞} si es C^{∞} en todo punto de N. Este es un **difeomorfismo** si este es biyectivo y tanto F como F^{-1} son C^{∞} .

Ejemplo 6.1.1

Si (U, F) es una carta en el atlas de M, entonces F y F^{-1} son C^{∞} .

Demostración:

En efecto, notemos que $U \subseteq \mathbb{R}^n$ abierto es variedad de dimensión n. En particular, podemos interpretar a F como el mapeo entre las variedades U y F(U). de forma inmediata se sigue que F es difeomorfismo.

Proposición 6.1.1

Sea $U \subseteq M$ abierto. Si $F: U \to F(U) \subseteq \mathbb{R}^n$ es un difeomorfismo sobre su imagen, entonces (U, F) es una carta en el atlas de M.

6.2. Vectores Tangentes

Definición 6.2.1 (Coordenadas estándar de \mathbb{R}^n)

Para cada cada i = 1, ..., n, se definen las funciones **coordenadas estándar de** \mathbb{R}^n como

$$p = (p_1, \ldots, p_n) \mapsto r_i(p) = p_i$$

Esto se usará para evitar conflictos más adelante con la notación de coordenadas locales sobre una variedad.

Definición 6.2.2 (Derivada direccional)

Sea M una variedad y $p \in M$. Consideremos $\alpha: I \to M$ función continua (dónde I es un intervalo conexo tal que $0 \in I$) y $f: M \to \mathbb{R}$ función diferenciable sobre la variedad. Entonces $f \circ \alpha$ es una función de I en \mathbb{R} . Se denota por

$$\alpha'(0)[f] = \frac{d}{dt}(f \circ \alpha)(t)\Big|_{t=0}$$

llamada derivada direccional de f en la dirección de $\alpha'(0)$.

Proposición 6.2.1

Teorema 6.2.1 (Nombre) Teorema	
Teorema	
Proposición 6.2.2 (Nombre) Proposición	
Corolario 6.2.1 (Nombre) Corolario	
Lema 6.2.1 (Nombre) Lema	
Definición 6.2.3 (Nombre) Definición	
Observación 6.2.1 (Nombre) Observación	
Ejemplo 6.2.1 (Nombre) Ejemplo	
Ejercicio 6.2.1 (Nombre) Ejercicio	