incremental processing difficulty as the cost of inference

Jacob Hoover Vigly MIT

7 May 2025, Language Processing Group at UCI

slides: jahoo.github.io/2025-05-07

language comprehension

how do we understand what a sentence means?

- perceive utterance, $\mathbf{u} = u_1, u_2, \dots$ word by word
- infer meaning, z, in context

language comprehension

iterative inference problem

- observe otterance word by word $\mathbf{u} = u_1, u_2, \dots$ in noisy environment
- with each word, **change beliefs** about meaning, z

$$u_i$$
 causes belief update $\underbrace{p(Z \mid u_{1...i-1})}_{\text{prior}} \overset{u_i}{\leadsto} \underbrace{p(Z \mid u_{1...i-1}, u_i)}_{\text{posterior}}$

How? ...with what processing algorithm?

- important clue for humans, unexpected words take more effort.
- intuition bigger update = higher cost

How? ...with what processing algorithm?

$$p_Z \mapsto p_{Z|u}$$

• important clue: for humans, unexpected words take more effort.

has been formalized as

surprisal theory
$$\sup_{\text{(Hale '01, Levy '08)}} \sup_{\text{Cost}(u)} \propto \log \frac{1}{p(u)}$$

precise formalization of hypothesis... but how? what algorithm?

idea: difficult = big update (resource allocation cost)

hypothesis that cost measured as **bits of information gained** about Z

surprisal theory is special case, by two assumptions:

- (a) that $D(p_{Z|u}||p_Z) = surprisal$ (extra term is zero) \longleftarrow will focus on this later
- (b) that f is linear

How? ...with what processing algorithm?

- important clue: for humans, unexpected words take more effort.
- intuition: bigger update = higher cost

many candidate algorithms don't have this property

- parsing algorithms (Z ranges over trees)
 - non-probabilistic algorithms
 - probabilistic enumerative algorithms
 - neural-parametrized parsing algorithms
- language model inference (e.g. n-gram, RNN, Transforme)

... amount of work done during inference doesn't depend on probabilistic properties at all

(so, they don't directly explain this human behavior)

How? ...with what processing algorithm?

$$p_Z \stackrel{u}{\mapsto} p_{Z|u}$$

- important clue: for humans, unexpected words take more effort.
- intuition: bigger update = higher cost

what kind of algorithms do have this property?

those that somehow prioritize more probable hypotheses:

- sampling algorithms
- ⇒ e.g. rejection sampling guess-and-check until success

$$\mathbb{E} \text{ #samples} = 1 / \Pr(\text{success})$$

$$= 1 / \sum_{z} p(z) p(u \mid z) = 1 / p(u)$$

$$= e^{-\log p(u)} = e^{\text{surprisal}(u)}$$

How? ...with what processing algorithm?

- important clue: for humans, unexpected words take more effort.
- intuition: bigger update = higher cost

what kind of algorithms do have this property?

importance weight $w(z) \propto \frac{dp}{dz}(z)$

those that somehow prioritize more probable hypotheses:

- sampling algorithms
- importance sampling complexity scales in divergence:

sampling from q to approx. p: req #samples $\approx e^{D_{KL}(p||q)}$

Chatterjee & Diaconis 2018, ...

 $pprox D_{\chi^2}(p\|q)$ Agapiou et al. 2017, Sanz-Alonso 2018, ...

$$cost(u) = f(D(p_{Z|u}||p_Z))$$

The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing

Jacob Louis Hoover 1,2, Morgan Sonderegger 1, Steven T. Piantadosi 3, and Timothy J. O'Donnell 1,2,4

The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing

Jacob Louis Hoover^{1,2}, Morgan Sonderegger¹, Steven T. Piantadosi³, and Timothy J. O'Donnell^{1,2,4}

What kinds of mechanisms prioritize high-probability hypotheses?

- sampling according to probability
 - simple rejection sampling
 - rejection sampling w/o replacement
 - importance sampling
- ranked search in order of probability

$$\cot(u) = f\left(D(p_{Z|u}||p_Z) \right)$$
 for this paper, we $= f(\operatorname{surprisal}(u))$ assumption (a) \longleftarrow assumed this $\propto \operatorname{surprisal}(u)$ assumption (b) \longleftarrow focused on this

8

linking function: empirical study is the mean superlinear? does variance increase?

fit location-scale Generalized Additive Model (GAMs)

- potential nonlinear effect of surprisal on RT
- likewise on variance in RT

predictor of interest: surprisal

estimate with pretrained
 LLMs

response: processing time

- self-paced reading time
- used Natural Stories data set
 - 10 stories, ~1000 words each
 - RTs from avg 84 participants
 - containing rare constructions (wide range of surprisals helpful to distinguish linking function)

linking function: empirical study is the mean superlinear? does variance increase?

Yes

linking function: empirical study

is the mean superlinear? does variance increase?

Yes

• better LM \Rightarrow more superlinear

linking function: empirical study is the mean superlinear? does variance increase? Yes

- better LM ⇒ more superlinear
- across LMs

```
linear surprisal theory (Hale '01, Levy '08)
\cos t(u) \propto \operatorname{surprisal}(u)
```

```
general surprisal theory (Levy '05, Meister '21, Xu '23)
cost(u) = f(surprisal(u))
```

consistent with sampling algorithms' predictions

motivation: sampling mechanisms for processing

when surprisal ≠ divergence

but, there was another assumption! ...that surprisal = divergence

surprisal theory

$$cost(u) = f(surprisal(u))$$

belief-update theory

$$cost(u) = f(D_{KL}(p_{Z|u}||p_Z))$$

recall motivation: surprisal as measure of size of belief update

$$D_{KL}(p_{Z|u}||p_Z) = surprisal(u) - R(u)$$

$$\mathbb{E}_{p_{Z|u}} \left[\log \frac{p(z \mid u)}{p(z)} \right] = \log \frac{1}{p(u)} - \mathbb{E}_{p_{Z|u}} \left[\log \frac{1}{p(u \mid z)} \right]$$

when surprisal > KL divergence

surprisal = $D_{KL} + R$

For now,

let latent Z (meaning) range over strings, representing intended word

- easy to model prior and likelihood
- narrow application where we might expect LM surprisal of the observed string is intuitively inadequate as measure of human processing cost
- (Note: I'm interested in broader applications to follow!)

surprisal = $D_{KL} + R$

Example:

• After tripping on the rug and falling in front of everyone, I felt deeply _____

condition	target word	surprisal d	ivergence	
1. expected	embarrassed	LOW	LOW 😐	
2. unexpected	innovative	HIGH	HIGH 🥞	
3. expected (typo)	<u>embarrsased</u>	HIGH ≪	LOW 🥹	
4. unexpected (typo)	<u>innovaitve</u>	HIGH	HIGH	
	(with <i>any</i> plausible noise model)			

surprisal = $D_{KL} + R$

Example:

• After tripping on the rug and falling in front of everyone, I felt deeply

1. expected embarrassed
2. unexpected innovative
3. expected (typo) embarrsased
4. unexpected (typo) innovative

Self-paced reading time study:

- 51 sentences x 4 conditions = 204 unique targets of interest.
- 104 participants on Prolific (post exclusions)

Fit mixed-effect regression models:

- predict human RT
- predict LLM surprisal (separately)
 - surprisals from collection of LLMs

PREDICTIONS OF KL VS SURPRISAL

Does surprisal pattern as expected?

Yes. Surprisal is low in expected condition, but high in others.

Does human RT pattern like surprisal or divergence?

RTs zig-zag, as divergence should predict, contra surprisal.

estimating KL and surprisal

in noisy channel

generative model:

O (HIGH)

EXPECTED

UNEXPECTED

EXPECTED_TYPO

JNEXPECTED TYPO

= LLM next-seq distribution constrained to wordlist

 $\propto p_{\rm LM}({\rm context})\odot {\bf 1}_{\rm wordlist}$

likelihood of observed string:
 p(u | z)

= string-edit distance model $p(D_{\text{Lev}} | z) \cdot p(u | D_{\text{Lev}}, z)$

Z intended word

noisy production (via Levenshtein distance)

observed string

estimating KL and surprisal

context

After tripping over the rug in front of everyone at the party, she quickly got up, but her cheeks turned red and she felt deeply

	z	prior
_embarrassed	6.5668e-01	
_ashamed	2.6608e-01	
guilty	1.60 75e-02	
_uncomfortable	1.0753e-02	
_shy	7.0945e-03	
• • •		

observation	$w={ m \ embarras}$	ssed (expected)	
z	prior	likelihood	posterior
_embarrassed	6.5668e-01	8.9583e-01	1.0000e+00
_embraced	3.6091e-06	9.4480e-16	5.7964e-21
_impressed	6.4865e-05	1.6926e-19	1.8663e-23
_arrested	1.8016e-06	1.6229e-19	4.9701e-25

prior over intended words p(z) = LM

likelihood of observed string: $p(u \mid z)$ = noisy string model

estimating KL and surprisal

Estimated KL divergence and surprisal

Does surprisal pattern as expected?

Yes. Surprisal is low in expected condition, but high in others.

Does human RT pattern like surprisal or divergence?

RTs zig-zag, as update-size predicts, contra surprisal.

as estimated in our noisy channel model

surprisal theory (Levy '08) cost(u) = f(surprisal(u))

update-size theory

$$cost(u) = f(D_{KL}(p_{Z|u}||p_Z))$$

divergence (belief-update size) connected to computational complexity of sampling algs.

motivates (sampling-based) rational inference algorithms for processing

next steps - better estimates

- for typos
 - more realistic models of typos (using typing statistics)
 - broad-coverage model of KL (not just our materials)
- use character level LMs for prior and likelihood models
 - Giulianelli et al. 2024, <u>Vieira et al. 2024</u>
- more broadly: researcher must answer "what is Z?"
 - unlike surprisal, requires different models depending on task
 - infer intended words? referent? sentiment? etc. (model task effects)

thanks

- to you!
- to collaborators: Tim O'Donnell, Peng Qian, Morgan Sonderegger, Steve Piantadosi
- to NSF for SBE postdoc fellowship grant (SMA-2404644)

next steps - applications beyond typos

other places where we think surprisal $\gg D_{\rm KL}$ (that is, $R \gg 0$):

any (more interesting) constructions where some target region is processed without difficulty despite being very unpredictable

unexpected ways of communicating expected information (thanks to ideas from Alec Marantz)

- synonyms: *This living-room furniture set consists of a table, chair, and <u>couch</u>. (vs <u>sofa</u>)*
- epithets: Boy do I hate that guy John. From the moment the bastard came in the room

grammatical illusions (see e.g., Zhang et al. 2023, 2024)

- Moses illusions: *In the biblical story of the Ark, how many animals of each kind did Moses take with him?*
- agreement attraction: The key to all the cabinets are on the table.
- NPI illusions: *The bills that no senator voted for will <u>ever</u> become law.*
- depth-charge illusions: No head injury is too trivial to <u>ignore</u>.

malapropisms

• Sure, if I <u>reprehend</u> (apprehend) anything in this world it is the use of my <u>oracular</u> (vernacular) tongue, and a nice <u>derangement</u> (arrangement) of <u>epitaphs</u> (epithets)! (Sheridan, 1775)

multilingual codeswitching

• "Veux-tu rentrer dans ma bubble?"