STAT 500 Homework 5

Vu Thi-Hong-Ha; NetID: 851924086

September 25, 2020

Question 1 1

(a)

(i)

Denote:

Treatment means: $\mu_1, \mu_2, \mu_3, \mu_4$ (r = 4)

Treatment variances: $\sigma_1^2, \sigma_2^2, \sigma_3^2, \sigma_4^2$

Treatment standard deviations: $\sigma_1, \sigma_2, \sigma_3, \sigma_4$

Samples: Y_{ij} , where i = 1, 2, 3, 4 denotes the treatment groups and j = 1, 2, 3 denotes the observations $(n_i = 3)$.

Samples:
$$Y_{ij}$$
, where $i=1,2,3,4$ denotes the treatment growth of the probability of

$$\hat{eta} = (X^TX)^{-1}X^TY$$

$$=\begin{pmatrix}3&0&0&0\\0&3&0&0\\0&0&3&0\\0&0&0&3\end{pmatrix}^{-1}\begin{pmatrix}\sum_{j=1}^{3}Y_{1j}\\\sum_{j=2}^{3}Y_{2j}\\\sum_{j=3}^{3}Y_{3j}\\\sum_{j=3}^{3}Y_{4j}\end{pmatrix}=\begin{pmatrix}\bar{Y_{1}}\\\bar{Y_{2}}\\\bar{Y_{3}}\\\bar{Y_{4}}\end{pmatrix}$$

(b)

(i)

(ii) Constraint $\sum_{i=1}^{r=4} \alpha_i = 0$, so we have $\alpha_4 = -\alpha_1 - \alpha_2 - \alpha_3$. Our model becomes

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y} = \begin{pmatrix} \frac{\bar{Y}_{1.} + \bar{Y}_{2.} + \bar{Y}_{3.} + \bar{Y}_{4.}}{\frac{4}{\bar{Y}_{1.}} - \frac{\bar{Y}_{1.} + \bar{Y}_{2.} + \bar{Y}_{3.} + \bar{Y}_{4.}}{\frac{4}{\bar{Y}_{2.}} - \frac{\bar{Y}_{1.} + \bar{Y}_{2.} + \bar{Y}_{3.} + \bar{Y}_{4.}}{\frac{4}{\bar{Y}_{3.}} - \frac{\bar{Y}_{1.} + \bar{Y}_{2.} + \bar{Y}_{3.} + \bar{Y}_{4.}}{\frac{4}{\bar{Y}_{3.}} - \frac{\bar{Y}_{1.} + \bar{Y}_{2.} + \bar{Y}_{3.} + \bar{Y}_{4.}}{\frac{4}{\bar{Y}_{3.}} - \frac{\bar{Y}_{1.} + \bar{Y}_{2.} + \bar{Y}_{3.} + \bar{Y}_{4.}}{4}} \end{pmatrix} = \begin{pmatrix} \hat{\mu} \\ \hat{\alpha}_{1} \\ \hat{\alpha}_{2} \\ \hat{\alpha}_{3} \end{pmatrix}$$

2 Question 2

(a) Pooled estimate of variance
$$= \frac{\displaystyle\sum_{i=1}^{r=9}(n_i-1)S_i^2}{\displaystyle\sum_{i=1}^{r=9}n_i-r} =$$

 $\frac{126(0.4979^2) + 43(0.4235^2) + 23(0.3955^2) + 40(0.3181^2) + 17(0.3111^2) + 15(0.4649^2) + 10(0.2963^2) + 6(0.3242^2) + 5(0.5842^2)}{127 + 44 + 24 + 41 + 18 + 16 + 11 + 7 + 6 - 9}$

(b)

$$\begin{split} \bar{Y}_{\cdot\cdot\cdot} &= \frac{\sum_{i=1}^{r=9} n_i \bar{Y}_{i\cdot\cdot}}{\sum_{i=1}^{r=9} n_i} = \frac{127(7.347) + 44(7.369) + 24(7.428) + 41(7.487) + 18(7.563) + 16(7.568) + 11(8.214) + 7(8.272) + 6(8.297)}{127 + 44 + 24 + 41 + 18 + 16 + 11 + 7 + 6} \\ &= 7.4755 \\ SS_{model} &= \sum_{i=1}^{r=9} n_i (\bar{Y}_{i\cdot\cdot} - \bar{Y}_{\cdot\cdot\cdot})^2 = 127(7.347 - 7.4755)^2 + 44(7.369 - 7.4755)^2 + 24(7.428 - 7.4755)^2 + 41(7.487 - 7.4755)^2 + 18(7.563 - 7.4755)^2 + 16(7.568 - 7.4755)^2 + 11(8.214 - 7.4755)^2 + 7(8.272 - 7.4755)^2 + 6(8.297 - 7.4755)^2 = 17.4197 \\ SS_{error} &= \sum_{i=1}^{r=9} (n_i - 1)S_i^2 = 126(0.4979^2) + 43(0.4235^2) + 23(0.3955^2) + 40(0.3181^2) + 17(0.3111^2) + 15(0.4649^2) + 10(0.2963^2) + 6(0.3242^2) + 5(0.5842^2) = 54.6956 \\ \Delta NOWALL Matrix \end{split}$$

ANOVA table:

Source of variation	Degrees of freedom	Sums of squares	Mean square	F
Model	r - 1 = 8	$SS_{model} = 17.4197$	r-1	$\frac{MS_{model}}{MS_{error}} = 11.3471$
Error	N - r = 285	$SS_{error} = 54.6956$	$\frac{SS_{error}}{N-r} = 0.1919$	
Total	N-1=293	$SS_{total} = 72.1153$		

(c)

F = 11.3471. The F statistic has a central F-distribution with 8 numerator and 285 denominator degrees of freedom. $P - value = P(F_{8.285} > F) < 0.0001$

(d) At a significance level of 5%, we reject the null that means of the natural logarithm of cavity entrance areas are the same for all nine species.

(e)

Firstly, we have
$$\bar{Y}_{..} = \frac{\displaystyle\sum_{i=1}^{r} n_{i} \bar{Y}_{i.}}{\displaystyle\sum_{i=1}^{r} n_{i}} = \frac{\displaystyle\sum_{i=1}^{r} n_{i} \bar{Y}_{i.}}{N}$$
. Hence, $\sum_{i=1}^{r} n_{i} \bar{Y}_{i.} = N \bar{Y}_{..}$

$$\sum_{i=1}^{r} n_{i} (\bar{Y}_{i.} - \bar{Y}_{..})^{2} = \sum_{i=1}^{r} n_{i} [\bar{Y}_{i.}^{2} - 2 \bar{Y}_{i.} \bar{Y}_{..} + \bar{Y}_{..}^{2}] = \sum_{i=1}^{r} n_{i} \bar{Y}_{i.}^{2} - 2 \bar{Y}_{..} \sum_{i=1}^{r} n_{i} \bar{Y}_{i.} + \bar{Y}_{..}^{2} \sum_{i=1}^{r} n_{i} = \sum_{i=1}^{r} n_{i} \bar{Y}_{i.}^{2} - 2 N \bar{Y}_{..} + N \bar{Y}_{..} = \sum_{i=1}^{r} n_{i} \bar{Y}_{i.}^{2} - N \bar{Y}_{..}$$

Question 3 3

$$N = 12; r = 4; n_i = 3 \text{ for } i = 1, 2, 3, 4$$

$$N = 12; r = 4; n_i = 3 \text{ for } i = 1, 2, 3, 4$$

$$\bar{Y}_{..} = \frac{\sum_{i=1}^{r} n_i \bar{Y}_{i.}}{\sum_{i=1}^{r} n_i} = \frac{\sum_{i=1}^{r} n_i \bar{Y}_{i.}}{N} = \frac{22 * 3 + 25 * 3 + 29 * 3 + 32 * 3}{12} = 27$$

Source of variation	Degrees of freedom	Sums of squares	Mean square
Model	r - 1 = 3	$SS_{model} = 174$	$\frac{SS_{model}}{r-1} = 58$
Error	N-r=8	$SS_{error} = 224$	$\frac{SS_{error}}{N-r} = 28$
Total	N - 1 = 11	$SS_{total} = 398$	

(b)

 H_0 : Four group means are equal.

 H_a : At least one group mean is different from the rest. Test statistic: $F = \frac{MS_{model}}{MS_{error}} = \frac{58}{28} = 2.07$ The test statistic follows central F distribution with 3 numerator and 8 denominator degrees of freedom.

 $p - value = P(F_{3.8} > F) = 0.18268$

At a significance level of 5%, we fail to reject the null that means of the four treatment groups are the same.

$$\mathbf{Y} = \begin{pmatrix} Y_{11} \\ Y_{12} \\ Y_{13} \\ Y_{21} \\ Y_{22} \\ Y_{23} \\ Y_{31} \\ Y_{32} \\ Y_{33} \\ Y_{41} \\ Y_{42} \\ Y_{43} \end{pmatrix} = \begin{pmatrix} \mu + \alpha_1 + \epsilon_{11} \\ \mu + \alpha_1 + \epsilon_{12} \\ \mu + \alpha_1 + \epsilon_{12} \\ \mu + \alpha_2 + \epsilon_{21} \\ \mu + \alpha_2 + \epsilon_{22} \\ \mu + \alpha_2 + \epsilon_{23} \\ \mu + \alpha_3 + \epsilon_{31} \\ \mu + \alpha_3 + \epsilon_{32} \\ \mu + \alpha_3 + \epsilon_{33} \\ \mu + \alpha_4 + \epsilon_{41} \\ \mu + \alpha_4 + \epsilon_{42} \\ \mu + \alpha_4 + \epsilon_{42} \\ \mu + \alpha_4 + \epsilon_{43} \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix}, \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_{11} \\ \epsilon_{12} \\ \epsilon_{13} \\ \epsilon_{21} \\ \epsilon_{22} \\ \epsilon_{23} \\ \epsilon_{31} \\ \epsilon_{32} \\ \epsilon_{33} \\ \epsilon_{41} \\ \epsilon_{42} \\ \epsilon_{43} \end{pmatrix}$$
Using constraint $\alpha_4 = 0$

Using constraint $\alpha_4 = 0$

$$\boldsymbol{\beta} = \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}, \, \boldsymbol{X} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

(d) We set the last group parameter to zero, which means group 4 is considered the baseline group. Now $E(Y_{4j}) =$ $\mu + \alpha_4 = \mu$. Hence, μ represents the mean of group 4 under this constraint. α_2 now is the distance of group 2 from group 4.

Question 4

		The GLM Pro	cedure		
		Dependent Variab	le: velocity		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	94514.0000	23628.5000	4.29	0.0031
Error	95	523510.0000	5510.6316		
Corrected Total	99	618024.0000			

Test statistic F = 4.29, p-value = 0.0031. At a significance level of 5%, we reject the null of equal means for the five trials.

Question 5 5

(a) Functions of contrast are linear combinations of the population means with summation of coefficients equals to 0. Therefore, (i) and (iii) are functions of contrast as both of them are linear functions and sum of the coefficients are 0 (1+3-4=0) and $\frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{2} - \frac{1}{2} = 0$).

(b)
$$\gamma_1 = \mu_1 + 3\mu_2 - 4\mu_3 + 0\mu + 4 + 0\mu_5$$
 and $\gamma_2 = \frac{1}{3}\mu_1 + \frac{1}{3}\mu_2 + \frac{1}{3}\mu_3 - \frac{1}{2}\mu_4 - \frac{1}{2}\mu_5$. We have:
$$\frac{1 * \frac{1}{3}}{n_1} + \frac{3 * \frac{1}{3}}{n_2} + \frac{-4 * \frac{1}{3}}{n_3} + \frac{0 * \frac{-1}{2}}{n_4} + \frac{0 * \frac{-1}{2}}{n_5}.$$
 Then, the two functions of contrast will become orthogonal if $n_2 n_3 + 3n_1 n_3 - 4n_1 n_2 = 0$.

(c)

					1	trial=			
				Analysis Variable : velocity					
				n N	Minimum	Std Dev	Mean	N	
				0	650.0000000	104.9260391	909.0000000	20	
trial=4					2	trial=			
lysis Variable : velo	Ana	Ar			le : velocity	alysis Variab	An		
Std Dev Minim	an	Mean	N	N	Minimum	Std Dev	Mean	N	
60.0416522 720.0000	00	820.5000000	20	960	760.0000000	61.1641450	856.0000000	20	
trial=5					3	trial=			
lysis Variable : velo	Ana	Ar			le : velocity	alysis Variab	An		
Std Dev Minim	an	Mean	N	N	Minimum	Std Dev	Mean	N	
54.2193401 740.0000	00	831.5000000	20	970	620.0000000	79.1068564	845.0000000	20	

For
$$\gamma_1 = \mu_1 + 3\mu_2 - 4\mu_3 + 0\mu + 4 + 0\mu_5$$
:
 $\hat{\gamma} = \sum_{i=1} c_i \bar{Y}_{i.} = 1 * 909 + 3 * 856 - 4 * 845 = 97$

Assuming σ^2 is not known, and we have $MS_{error} = 5510.6316$.

Maximum

Maximum

950.0000000

920.0000000

Then
$$S_{\hat{\gamma}} = \sqrt{5510.6316 * (\frac{1^2}{20} + \frac{3^2}{20} + \frac{(-4)^2}{20})} = 84.6394$$

Also, $N - r = 95$, $1 - \alpha/2 = 0.975$ if we choose $\alpha = 0.05$. Then, $t_{95,0.975} = 1.98525$.

 $100(1-\alpha)\% \text{ confidence intervals: } \hat{\gamma} \pm t_{N-r,1-\alpha/2} S_{\hat{\gamma}} = (97-1.98525*84.6394; 97+1.98525*84.6394) = (-71.03037; 265.0304) + (-71.03037;$

For
$$\gamma_2 = \frac{1}{3}\mu_1 + \frac{1}{3}\mu_2 + \frac{1}{3}\mu_3 - \frac{1}{2}\mu_4 - \frac{1}{2}\mu_5$$
:

$$\hat{\gamma} = \sum_{i=1} c_i \bar{Y}_i = \frac{1}{3} * 909 + \frac{1}{3} * 856 + \frac{1}{3} * 845 - \frac{1}{2} * 820.5 - \frac{1}{2} * 831.5 = 44$$

Assuming σ^2 is not known, and we have $MS_{error} = 5510.6316$.

Then
$$S_{\hat{\gamma}} = \sqrt{5510.6316 * (\frac{\frac{1}{9}}{20} + \frac{\frac{1}{9}}{20} + \frac{\frac{1}{9}}{20} + \frac{\frac{1}{4}}{20} + \frac{\frac{1}{4}}{20})} = 15.1529$$

Also, $N - r = 95$, $1 - \alpha/2 = 0.975$ if we choose $\alpha = 0.05$. Then, $t_{95,0.975} = 1.98525$.

 $100(1-\alpha)\% \text{ confidence intervals: } \hat{\gamma} \pm t_{N-r,1-\alpha/2} S_{\hat{\gamma}} = (44-1.98525*15.1529; 44+1.98525*15.1529) = (13.91771; 74.08229)$