

SEQUENCE SPACES

Why

We can view the set of sequences as vector spaces and give them norms.

Bounded Sequences

Let \mathbf{C}^{N} denote the set of complex-valued sequences. Define $\ell^{\infty} \subset \mathbf{C}^{\mathsf{N}}$ to be the set of all *bounded sequences*. That is,

$$\ell^{\infty} = \{ x \in \mathbf{C}^{\mathbf{N}} \mid \exists M \in \mathbf{R} \text{ with } |x_i| < M \text{ for all } i \}.$$

Then ℓ^{∞} with componentwise addition and scalar multiplication is a vector space.

Exercise 1. Define $|\cdot|_{\infty}: \ell^{\infty} \to \mathsf{R}$ by

$$|x|_{\infty} = \sup_{n \in \mathbf{N}} |x_n|.$$

Then $|\cdot|_{\infty}$ is a norm on ℓ^{∞} .

Absolutely Summable Sequences

Let $\ell^1 \subset \mathbf{C^N}$ denote the set of all absolutely summable sequences. In other words, for $x \in \mathbf{C^N}$, $x \in \ell^1$ if

$$\sum_{n=1}^{\infty} |x_n| < \infty.$$

Then ℓ^1 is a vector space with componentwise addition and scalar multiplication.

Exercise 2. Define $|\cdot|_1:\ell^1\to\mathsf{R}$ by

$$|x|_1 = \sum_{n=1}^{\infty} |x_n|$$

Then $|\cdot|_1$ is a norm on ℓ^1 .

