Random Variables

Definitions

- [Sub-Gaussian] Let *X* be a random variable. Then *X* is <u>sub-Gaussian</u> if it satisfies any of the following equivalent properties:
 - $\circ \quad [\mathsf{Tails}] \ \mathbb{P}[|X| \ge t] \le 2e^{\frac{-t^2}{\kappa_1^2}} \ \forall t \ge 0$
 - o [Moments] $(\mathbb{E}[|X|^p])^{\frac{1}{p}} \le \kappa_2 \sqrt{p} \ \forall p \ge 1$
 - [MGF Bounded over an Interval] $\mathbb{E}\left[e^{\lambda^2 X^2}\right] \le e^{\lambda^2 \kappa_3^2} \ \forall \lambda : |\lambda| \le \frac{1}{\kappa_3}$
 - [MGF Bounded at a Point] $\exists \kappa_4 > 0 \text{ s.t. } \mathbb{E}\left[e^{\frac{X^2}{\kappa_4^2}}\right] \leq 2$
 - o [Uniform MGF] If $\mathbb{E}[X] = 0$, then $\mathbb{E}[e^{\lambda X}] \le e^{\kappa_5^2 \lambda^2} \ \forall \lambda \in \mathbb{R}$
- $[\|\cdot\|_{\psi_2}]$ Let X be a sub-Gaussian random variable. Define $\|X\|_{\psi_2} \coloneqq \inf_{t\geq 0} \left\{ \mathbb{E}\left[e^{\frac{X^2}{t^2}}\right] \leq 2 \right\}$.
 - $\circ \|\cdot\|_{\psi_2}$ is a norm on the space of sub-Gaussian random variables
 - X is sub-Gaussian $\Leftrightarrow ||X||_{\psi_2} < \infty$
 - o If $X \sim N(0,1)$, then $||X||_{\psi_2} = \frac{2\sqrt{2}}{\sqrt{3}}$
- [Sub-Exponential] A random variable *X* is <u>sub-exponential</u> if it satisfies any of the following equivalent properties:
 - $\circ \quad [\mathsf{Tails}] \ \mathbb{P}[|X| \ge t] \le 2e^{-\frac{t}{\kappa_1}} \ \forall t \ge 0$
 - o [Moments] $||X||_p := (\mathbb{E}[|X|^p])^{\frac{1}{p}} \le \kappa_2 p \ \forall p \ge 1$
 - o [MGF Bounded over an Interval] $\mathbb{E}\left[e^{\lambda|X|}\right] \leq e^{\lambda\kappa_3} \ \forall \lambda : 0 \leq \lambda \leq \frac{1}{\kappa_3}$
 - o [MGF Bounded at a Point] $\exists \kappa_4 > 0 \text{ s.t. } \mathbb{E}\left[e^{\frac{|X|}{\kappa_4}}\right] \leq 2$
 - o [Uniform MGF] If $\mathbb{E}[X] = 0$, then $\mathbb{E}[e^{\lambda X}] \le e^{\kappa_5^2 \lambda^2} \ \forall \lambda : |\lambda| \le \frac{1}{\kappa_5}$
- $[\|\cdot\|_{\psi_1}]$ Let X be a sub-exponential random variable. Define $\|X\|_{\psi_1} \coloneqq \inf_{t\geq 0} \Big\{ \mathbb{E}\Big[e^{\frac{|X|}{t}}\Big] \leq 2\Big\}$.
- [Bernstein Condition] Let X have mean μ and variance σ^2 . Then X satisfies the Bernstein condition with parameter \underline{b} if $|\mathbb{E}[(X-\mu)^k]| \leq \frac{1}{2}(k!)\sigma^2b^{k-2} \ \forall k \geq 2$.

Tools

- [Markov] Let $X \ge 0$ be a nonnegative random variable. Then $\mathbb{P}[X \ge t] \le \frac{\mathbb{E}[X]}{t}$
- [Chebyshev] Let X be a random variable. Then $\mathbb{P}[|X \mathbb{E}[X]| \ge t] \le \frac{\text{Var}[X]}{t^2}$.
- [Generalised Markov] $\mathbb{P}[|X| \ge t] \le \inf_{p \ge 0} \frac{\mathbb{E}[|X|^p]}{t^p}$
- [Chernoff] $\mathbb{P}[X \ge t] \le \inf_{\lambda \ge 0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda t}}$

Normal Distribution Bounds

- [Normal Tail] Let $Z \sim N(0,1)$. Then for $t \ge 1$, $\frac{1}{\sqrt{2\pi}} \left(\frac{1}{t} \frac{1}{t^3} \right) e^{-\frac{t^2}{2}} \le \mathbb{P}[Z \ge t] \le \frac{1}{\sqrt{2\pi}} \frac{1}{t} e^{-\frac{t^2}{2}}$
- [Truncated Normal] Let $Z \sim N(0,1)$. Then $\forall t \geq 1$, $\mathbb{E}\big[Z^2\mathbb{1}_{\{Z \geq t\}}\big] = \frac{1}{\sqrt{2\pi}}te^{-\frac{t^2}{2}} + \mathbb{P}[Z \geq t] \leq \frac{1}{\sqrt{2\pi}}\left(t + \frac{1}{t}\right)e^{-\frac{t^2}{2}}$

Bernoulli and Binomial Random Variables

[2.3.1] Let $S = X_1 + \cdots + X_n$ where $X_i \sim \text{Bernoulli}(\mu_i)$. Let $\mu = \sum_{i=1}^n \mu_i$. Then, for $t > \mu$, $\mathbb{P}[S > t] \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t$ and for $t < \mu$, $\mathbb{P}[S < t] \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t$.

- o Prove by Chernoff, then apply $1 + x \le e^x$
- Let $S \sim \text{Binomial}(n, p)$, then $\mathbb{P}[S > t] \leq e^{-np} \left(\frac{enp}{t}\right)^t$
- [HW1 P4] Let $S \sim \text{Binomial}(n, p)$, then:
 - $\circ \quad \mathbb{P}[S \ge n(p+t)] \le e^{-n\left((p+t)\log\left(\frac{p+t}{p}\right) + (1-p-t)\log\left(\frac{1-p-t}{1-p}\right)\right)}$ $\circ \quad \mathbb{P}[S \ge (1+\delta)np] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{np}$
- [Hoeffding] Let $S \sim \text{Binomial}(n, p)$, then $\mathbb{P}[S \geq np + t] \leq e^{-\frac{2t^2}{n}}$

Bounded Random Variables

• Let X be a zero-mean random variable s.t. $X \in [a,b]$ a.s. Then $\mathbb{E}[e^{\lambda X}] \leq e^{\frac{\lambda^2(b-a)^2}{8}}$.

Hoeffding and Bernstein

- [Hoeffding (Rademacher)] Let $X_1, ..., X_n$ be independent Rademacher random variables and $a \in \mathbb{R}^n$. Then, for t > 0, $\mathbb{P}[\sum_{i=1}^n a_i X_i \ge t] \le e^{-\frac{t}{2||a||_2^2}}$
 - o Prove by Chernoff's inequality
 - $\circ \quad \mathbb{P}[\sum_{i=1}^{n} X_i \ge t] \le e^{-\frac{t^2}{2n}}$
 - $\circ \quad \mathbb{P}[|\sum_{i=1}^{n} a_i X_i| \ge t] \le 2e^{-\frac{t^2}{2\|a\|_2^2}}$
- [Hoeffding (Bounded)] Let $X_1, ..., X_n$ be independent and $X_i \in [a_i, b_i]$ almost surely. Then,

for
$$t > 0$$
, $\mathbb{P}[\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \ge t] \le e^{-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}}$

- [Hoeffding (Sub-Gaussian)] Let $X_1, ..., X_n$ be independent and zero-mean sub-Gaussian random variables. Then:
 - o $\sum_{i=1}^{n} X_i$ is a sub-Gaussian random variable.
 - o For t > 0, $\mathbb{P}[|\sum_{i=1}^{n} X_i| \ge t] \le 2e^{-\frac{ct^2}{\sum_{i=1}^{n} ||X_i||^2_{\psi_2}}}$
- [Khintchine] Let $X_1, ..., X_n$ be independent and zero-mean sub-Gaussian random variables with unit variances and $K = \max_{1 \le i \le n} \|X_i\|_{\psi_2}$. Then, for $p \in [2, \infty)$, $\|a\|_2 \le \|\sum_{i=1}^n a_i X_i\|_p \le$ $CK\sqrt{p}\|a\|_2$.
 - Direct application of Hoeffding
- [Bernstein] Let $X_1, ..., X_n$ be independent, zero-mean sub-exponential random variables

and $a \in \mathbb{R}^n$. Then, for $t \geq 0$, $\mathbb{P}[|\sum_{i=1}^n a_i X_i| \geq t] \leq 2e^{-c\min\left(\frac{t^2}{K^2 \|a\|_2^2 K \|a\|_\infty}\right)}$ where $K = \max_{i=1}^n \|X_i\|_{\infty}$ $\max_{1 \le i \le n} ||X_i||_{\psi_1}$ and c is an absolute constant.

$$-c \min \left(\frac{t^2}{\sum_{i=1}^n |X_i|} \frac{t}{\|\psi_1\|_{\psi_1}^2 \sum_{1 \le i \le n}^n \|X_i\|_{\psi_1}^2}\right)$$

$$Prove by sub-exponential characterisation$$

- [Bernstein (Bounded)] Let $X_1, ..., X_n$ be independent, zero-mean, bounded random

variables. Then, for
$$t \ge 0$$
, $\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^n X_i\right| \ge t\right] \le 2e^{-\frac{t^2}{2\left(\sigma^2 + \frac{Kt}{3}\right)}}$ where $\sigma^2 = \sum_{i=1}^n \mathbb{E}[X_i^2]$.

• [Bernstein (Bernoulli)] Let $X_1, ..., X_n \sim \text{Bernoulli}(p) - p$. Then w.p. $1 - \delta$, $\left| \frac{1}{n} \sum_{i=1}^n X_i \right| \leq \sqrt{\frac{2p(1-p)\log(\frac{2}{\delta})}{n}} + \frac{2\log(\frac{2}{\delta})}{n}$

- [Bernstein (Useful)] Let $X_1, ..., X_n$ be bounded in an interval of length B and having variance σ^2 , then w.p. 1δ , $\left| \frac{1}{n} \sum_{i=1}^n (X_i \mathbb{E}[X_i]) \right| \leq \sqrt{\frac{2\sigma^2 \log(\frac{2}{\delta})}{n}} + \frac{B \log(\frac{2}{\delta})}{3n}$
- [Bounded Difference] Let $X_1, ..., X_n$ be independent random variables and $f: \mathbb{R}^n \to \mathbb{R}$ be measurable. Suppose $|f(x_1, ..., x_i, ..., x_n) f(x_1, ..., x_i', ..., x_n)| \le c_i$, then $\mathbb{P}[f(X) \mathbb{E}[f(X)] \ge t] \le e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}$.
- [HDS 2.10] Let X satisfy Bernstein condition with parameter b. Then X is sub-exponential and $\mathbb{E}\big[e^{\lambda(X-\mu)}\big] \leq e^{\frac{\lambda^2\sigma^2}{2(1-b|\lambda|)}}$ for all $|\lambda| < \frac{1}{b}$. Moreover, $\mathbb{P}[|X-\mu| \geq t] \leq 2e^{\frac{t^2}{2(\sigma^2+bt)}} \ \forall t \geq 0$

Known Results

- [2.3.1 Chernoff's Inequality for Binomial] Let $X_1, ..., X_n$ be independent with $X_i \sim \operatorname{Bernoulli}(p_i)$. Let $S_n = \sum_{i=1}^n X_i$ and $\mu = \mathbb{E}[S_n]$. Then for $t > \mu$, $\mathbb{P}[S_n \geq t] \leq e^{-\mu} \left(\frac{e\mu}{t}\right)^t$ and for $t < \mu$, $\mathbb{P}[S_n \leq t] \leq e^{-\mu} \left(\frac{e\mu}{t}\right)^t$
 - o Prove by Chernoff's inequality

Propositions

- [Sub-Gaussianity in $\|\cdot\|_{\psi_2}$]
 - $\quad \text{o} \quad \text{[Tails] } \mathbb{P}[|X| \geq t] \leq 2e^{-\frac{ct^2}{\|X\|_{\Psi_2}^2}} \ \forall t \geq 0$
 - $\circ \quad [\text{Moments}] \ \|X\|_p \coloneqq \left(\mathbb{E}[|X|^p]\right)^{\frac{1}{p}} \le C\|X\|_{\psi_2} \sqrt{p} \ \forall p \ge 1$
 - $\circ \quad [\mathsf{MGF} \ (\mathsf{Bounded})] \ \exists \kappa_4 \ \mathsf{s.t.} \ M_{X^2} \left(\frac{1}{\|X\|_{\psi_2}^2}\right) \coloneqq \mathbb{E}\left[e^{\frac{X^2}{\|X\|_{\psi_2}^2}}\right] \le 2$
 - $\quad \text{o} \quad \text{If } \mathbb{E}[X] = 0 \text{, then } \mathbb{E}\left[e^{\lambda X}\right] \leq e^{C\lambda^2 \|X\|_{\Psi_2}^2} \ \forall \lambda \in \mathbb{R}^2$
- [Properties of $\|\cdot\|_{\psi_2}$]
 - $\circ \|\cdot\|_{\psi_2}$ is a norm
 - $\circ \|X\|_{\psi_2} \leq C\|X\|_{\infty}$ where $C = \frac{1}{\sqrt{\ln 2}}$
 - o Let $Z \sim N(0, \sigma^2)$, then $||Z||_{\psi_2} \leq C\sigma$
 - o [2.6.1] Let $X_1, ..., X_n$ be independent, zero-mean sub-Gaussians. Then $\sum_{i=1}^n X_i$ is also sub-Gaussian. Furthermore, $\|\sum_{i=1}^n X_i\|_{\psi_2}^2 \le C \sum_{i=1}^n \|X_i\|_{\psi_2}^2$
- [Sub-Exponentiality in $\|\cdot\|_{\psi_1}$]
 - $\circ \quad \mathbb{P}[|X| \ge t] \ge 2e^{-\frac{ct}{\|X\|}\psi_1}$
 - $\circ \quad \left(\mathbb{E}[|X|^p] \right)^{\frac{1}{p}} \le cp \|X\|_{\psi_1}$
 - $\circ \quad \text{If } \mathbb{E}[X] = 0 \text{, then } \mathbb{E}\left[e^{\lambda X}\right] \leq e^{c_1 \lambda^2 \|X\|_{\psi_1}^2} \text{ for } |\lambda| \leq \frac{c_2}{\|X\|_{\psi_1}}$
 - $\circ \quad \mathbb{E}\left[e^{\frac{|X|}{\|X\|}\psi_1}\right] \leq 2$
- [Properties of $\|\cdot\|_{\psi_1}$]
 - $\circ \|\cdot\|_{\psi_1}$ is a norm
 - \circ [2.7.6] A random variable *X* is sub-Gaussian if and only if X^2 is sub-exponential.
 - o [2.7.7] Let X, Y be sub-Gaussian random variables. Then XY is sub-exponential with $||XY||_{\psi_1} \le ||X||_{\psi_2} ||Y||_{\psi_2}$.

- [Centering Lemmas]
 - $||X \mathbb{E}[X]||_2 \le ||X||_2$
 - Let X be a sub-Gaussian random variable. Then $X \mathbb{E}[X]$ is sub-Gaussian with $\|X \mathbb{E}[X]\|_{\psi_2} \le C\|X\|_{\psi_2}$ where C is an absolute constant.
 - Apply norm then Jensen
 - Let X be a sub-exponential random variable. Then $X \mathbb{E}[X]$ is sub-exponential with $\|X \mathbb{E}[X]\|_{\psi_1} \le C\|X\|_{\psi_1}$ where C is an absolute constant.
- [Sub-Gaussian Maxima Inequality] Let $X_1, ..., X_n$ be sub-Gaussian random variables, not necessarily independent, s.t. $\mathbb{E}[e^{\lambda X_i}] \leq e^{\frac{\lambda^2 \sigma_i^2}{2}} \ \forall \lambda \in \mathbb{R}$. Then $\mathbb{E}\left[\max_{1 \leq i \leq n} X_i\right] \leq \sqrt{2\log n} \max_{1 \leq i \leq n} \sigma_i$ o Add in optimisation parameter λ , then apply softmax technique

Orlicz Space

- [Orlicz Function] A function $\psi: [0, \infty) \to [0, \infty)$ is an Orlicz function if ψ is convex, increasing and satisfies $\psi(0) = 0$ and $\lim_{x \to \infty} \psi(x) = \infty$.
- [Orlicz Norm] Let X be a random variable. Then, the <u>Orlicz norm</u> of an Orlicz function ψ is $\|X\|_{\psi} \coloneqq \inf_{t>0} \left\{t : \mathbb{E}\left[\psi\left(\frac{|X|}{t}\right)\right] \le 1\right\}$.
- [Orlicz Space] Let ψ be an Orlicz function. Then, the <u>Orlicz space</u> $L_{\psi} := \{X: ||X||_{\psi} < \infty\}.$
 - o L_{ψ} is complete i.e. a Banach space.
 - $\circ \quad L^{\infty} \subset L_{\psi_2} \subset L^p \ \forall p \in [1, \infty)$
- [Examples]
 - o If $\psi(x) = x^p$, then $L_{\psi} = L_p$
 - $\circ \|\cdot\|_{\psi_2}$ corresponds to $\psi(x) = e^{x^2} 1$
 - $\circ \|\cdot\|_{\psi_1}$ corresponds to $\psi(x) = e^x 1$

Random Vectors

Definitions

- [Second Moment Matrix] Let $X \in \mathbb{R}^n$ be a random vector. Then the <u>second moment matrix</u> is: $\Sigma[X] = \mathbb{E}[XX^T] = \sum_{i=1}^n s_i u_i u_i^T$
- [Isotropic] A random vector $X \in \mathbb{R}^d$ is isotropic if $\Sigma[X] = \mathbb{E}[XX^T] = \mathbb{I}_d$.
 - o $X \in \mathbb{R}^n$ is isotropic if and only if $\mathbb{E}[\langle X, v \rangle^2] = ||v||_2^2 \ \forall v \in \mathbb{R}^n$
 - $X \in \mathbb{R}^n$ is isotropic if and only all one-dimensional marginals of X has unit variance i.e. $\mathbb{E}[\langle X, v \rangle^2] = 1$ for $\forall v : ||v||_2 = 1$
 - o If $X \in \mathbb{R}^n$ is isotropic, then $\mathbb{E}[\|X\|_2^2] = n$
 - o If $X, Y \in \mathbb{R}^n$ are isotropic, then $\mathbb{E}[\langle X, Y \rangle^2] = n$
- [Spherical Distribution] $X \sim \text{Uniform}(\sqrt{n}\mathbb{S}^{n-1})$
 - o Isotropic, but coordinates of *X* are not independent
- [Rotation Invariance] Let U be an orthogonal matrix and $v \sim N(0, \mathbb{I}_d)$. Then $Uv \sim N(0, \mathbb{I}_d)$.
- [Sub-Gaussian] Let $X \in \mathbb{R}^d$ be a random vector. Then X is <u>sub-Gaussian</u> if $\langle X, v \rangle$ is a sub-Gaussian random variable $\forall v \in \mathbb{R}^d$.
 - o i.e. projection of X onto any direction yields a sub-Gaussian random variable
- [Sub-Gaussian Norm] Denote $\|X\|_{\psi_2} = \sup_{v \in \mathbb{S}^{d-1}} \|\langle X, v \rangle\|_{\psi_2}$
- [Sub-Exponential Vector] Let $X \in \mathbb{R}^d$ be a random vector, with not necessarily independent coordinates. Then X is <u>sub-exponential</u> if $\|\langle X,v\rangle\|_{\psi_1} \leq C \|\langle X,v\rangle\|_2 \ \forall v \in S^{d-1}$ for some absolute constant C.

Tools (Donsker-Varadhan)

- [Donsker-Varadhan Variational Formula] Let $f: \mathcal{X}, \Theta \to \mathbb{R}$ and π be a fixed distribution on $\Theta \subset \mathbb{R}^d$. Then, with probability 1δ , simultaneously for all measures ρ on Θ with $\mathrm{KL}(\rho \| \pi) < \infty$, $\mathbb{E}_{\theta \sim \rho}[f(X, \theta)] \leq \mathbb{E}_{\theta \sim \rho}[\log(\mathbb{E}_X[e^{f(X, \theta)}])] + \mathrm{KL}(\rho \| \pi) + \log(\frac{1}{\delta})$.
 - $\circ \mathbb{E}_{\theta \sim \rho}[\log \mathbb{E}_X[e^{f(X,\theta)}]]$ is some constant (no randomness)
 - \circ $KL(\rho,\pi)$ is the price for uniformity (i.e. depends on the specific distribution ρ)
 - $\circ~$ In essence, choose some nice measure π s.t. all relevant ρ are s.t. $\rho \ll \pi$
 - $\blacksquare \quad \pi \sim N\left(0, \frac{1}{\beta} \mathbb{I}_d\right)$
 - $\bullet \quad \rho_{\nu} \sim N\left(\nu, \frac{1}{\beta} \mathbb{I}_{d}\right)$
 - $KL(\rho_{\nu}||\pi) = \frac{\beta}{2}$
- [Donsker-Varadhan Variational Formula] Let $\Theta \subset \mathbb{R}^d$ be a parameter space and π be a measure supported on Θ . Let $h: \Theta \to \mathbb{R}$ be a fixed function. Then:

$$\mathbb{E}_{\theta \sim \pi} [e^{h(\theta)}] = \sup_{\rho: \mathit{KL}(\rho \parallel \pi) < \infty} \{ e^{\mathbb{E}_{\theta \sim \rho} [h(\theta)] - \mathit{KL}(\rho \parallel \pi)} \}$$

- o i.e. allows the change of measure from π to ρ , incurring a $KL(\rho || \pi)$ penalty.
- $\circ \log(\mathbb{E}_{\theta \sim \pi}[e^{h(\theta)}]) = \sup_{\rho} \{\mathbb{E}_{\theta \sim \rho}[h(\theta)] KL(\rho \| \pi)\}$

Tools (Gaussian Concentrations)

• Let ϕ be a convex function. Then:

$$\mathbb{E}_{X \sim N(0, \mathbb{I}_d)} [\phi(f(X) - \mathbb{E}[f(X)])] \leq \mathbb{E}_{X, Y \sim N(0, \mathbb{I}_d), X \perp Y} \left[\phi\left(\frac{\pi}{2} \langle \nabla f(X), Y \rangle\right)\right]$$

- Prove by interpolation $Z_k(\theta) = X_k \sin \theta + Y_k \cos \theta$ for $\theta \in \left[0, \frac{\pi}{2}\right]$ and Jensen's
- [Gaussian Concentration] Let $f: \mathbb{R}^n \to \mathbb{R}$ be a L-Lipschitz function and $X \sim N(0, \mathbb{I}_d)$. Then:
 - o f(X) is $\frac{\pi L}{2}$ -sub-Gaussian

- $\circ \quad \mathbb{P}[|f(X) \mathbb{E}[f(X)]| \ge t] \le 2e^{-\frac{t^2}{2L^2}}$
- $\circ \|\cdot\|_2$ is 1-Lipschitz.
- [3.1.1 Corollary] Let $G \sim N(0, \mathbb{I}_d)$. Then $\|\|G\|_2 \sqrt{d}\|_{\psi_0} \le C$.
 - o i.e. $||G||_2 \approx \sqrt{d}$ with high probability, as expected

Propositions

• [Sub-Gaussian Concentration of Norm] Let X be a sub-Gaussian random vector s.t.

$$\mathbb{E}[X] = 0, \ \mathbb{E}[XX^T] = \Sigma, \ \mathbb{E}\left[e^{\lambda\langle X, v\rangle}\right] \leq e^{\frac{\lambda^2 v^T \Sigma v}{2}}.$$
 Then, with probability $1 - \delta$, $\|X\|_2 \leq \sqrt{\operatorname{tr}(\Sigma)} + \sqrt{2\lambda_{\max}(\Sigma)\log\left(\frac{1}{\delta}\right)}$

o Prove by Donsker-Varadhan and lemmas

$$\hspace{0.5cm} \circ \hspace{0.5cm} \text{Let} \hspace{0.1cm} X_{1}, \ldots, X_{n} \sim N_{d}(\mu, \Sigma). \hspace{0.1cm} \text{Then} \hspace{0.1cm} \left\| \frac{1}{n} \sum_{i=1}^{n} X_{i} - \mu \right\|_{2} \leq \sqrt{\text{tr} \left(\frac{\Sigma}{n} \right)} + \sqrt{\frac{2 \hspace{0.1cm} \lambda_{\max}(\Sigma) \log \left(\frac{1}{\delta} \right)}{n}}$$

• [Sub-Exponential Concentration of Norm] Let X be a sub-exponential random vector s.t.

$$\mathbb{E}[X] = 0$$
, $\mathbb{E}[XX^T] = \Sigma$. Then with probability $1 - \delta$, $||X||_2 \le C\left(\sqrt{\operatorname{tr}(\Sigma)\log\left(\frac{1}{\delta}\right)} + \frac{1}{2}\right)$

 $\log\left(\frac{1}{\delta}\right)\sqrt{\lambda_{\max}(\Sigma)}$ where C is some absolute constant.

- o Prove by Donsker-Varadhan (similar to sub-Gaussian covariance)
- [Concentration of Norm] Let $X \in \mathbb{R}^d$ be a random vector with independent, sub-Gaussian coordinates X_i satisfying $\mathbb{E}[X_i^2] = 1$. Let $K = \max_{1 \le i \le d} \|X_i\|_{\psi_2}$. Then $\|\|X\|_2 \sqrt{d}\|_{\psi_2} \le CK^2$, where C is an absolute constant.

- o Prove by Bernstein on X_i^2
- [3.2.3] Let $X \in \mathbb{R}^n$ be a random vector. Then X is isotropic if and only if $\mathbb{E}[\langle X, x \rangle^2] = \|x\|_2^2 \ \forall x \in \mathbb{R}^n$.
 - X is isotropic if and only if all one-dimensional marginal distribution of X have unit variance.
- [3.2.4] Let $X, Y \in \mathbb{R}^n$ be two independent isotropic random vectors. Then $\mathbb{E}[\langle X, Y \rangle^2] = n$
- [3.4.2] Let $X \in \mathbb{R}^n$ with independent, zero-mean, sub-Gaussian coordinates. Then X is sub-Gaussian with $\|X\|_{\psi_2} \leq C \max_{1 < i < n} \|X_i\|_{\psi_2}$
- [3.4.6] Let $X \sim \operatorname{Uniform}(\sqrt{n}\mathbb{S}^{n-1})$. Then X is sub-Gaussian and $\|X\|_{\psi_2} \leq C$, where C is an absolute constant (independent of n).

Random Matrices

Definitions

- [Operator Norm] Let $A \in \mathbb{R}^{m \times n}$, then $||A|| \coloneqq \max_{v \in \mathbb{R}^n \setminus \{0\}} \frac{||Av||}{||v||} = \max_{v \in S^{n-1}} ||Av||$
 - o Equivalently, $||A|| = \max_{u \in \mathbb{R}^m, v \in \mathbb{R}^n : ||u|| = ||v|| = 1} u^T A v = \max_{u \in S^{m-1}, v \in S^{n-1}} u^T A v$
 - \circ Equivalently, $||A|| = \sigma_1(A)$
- [Frobenius Norm] $||A||_F = \left(\sum_{i,j}^{m,n} A_{ij}^2\right)^{\frac{1}{2}}$
- [ϵ -Cover] Let $K \subset \mathbb{R}^d$, then an $\underline{\epsilon$ -cover w.r.t. distance ρ is a subset $N_{\epsilon} \subset K$ s.t. $\forall x \in K$, $\exists x_0 \in N_{\epsilon}$ s.t. $\rho(x, x_0) \leq \epsilon$
- [ϵ -Separated] Let $K \subset \mathbb{R}^d$ equipped with distance ρ , then an $\underline{\epsilon}$ -separated set P_{ϵ} is s.t. $\forall x_1 \neq x_2 \in P_{\epsilon}$, $\rho(x_1, x_2) > \epsilon$.
- [Covering Number] The <u>covering number</u> $\mathcal{N}(K, \rho, \epsilon)$ of a set K equipped with a distance function ρ is the smallest cardinality of an ϵ -cover.
- [Packing Number] The <u>packing number</u> $\mathcal{P}(K, \rho, \epsilon)$ of a set K equipped with a distance function ρ is the largest cardinality of an ϵ -separated set.
- [Effective Rank] Let Σ be a covariance matrix. Then the <u>effective rank</u> of Σ is $r(\Sigma) = \frac{\operatorname{tr}(\Sigma)}{\|\Sigma\|}$.
- [Spectral Mapping Theorem] Let $f: I \to \mathbb{R}$ be a function on $I \subset \mathbb{R}$ and A be a Hermitian matrix whose eigenvalues are contained in I. If λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of f(A).
- Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Then:
 - [Operator Monotone] $f(A) \leq f(B)$ whenever $A \leq B$
 - [Operator Concave] $\lambda f(A) + (1 \lambda)f(B) \leq f(\lambda A + (1 \lambda)B) \ \forall \lambda \in [0,1] \ \forall A, B$
- Let *X* be a symmetric random matrix. Then:
 - o [Moment Generating Function] $M_X(\lambda) := \mathbb{E}[e^{\lambda X}]$
 - o [Cumulant Generating Function] $\Xi_X(\theta) := \log \mathbb{E}[e^{\theta X}]$

Covering and Packing Numbers

- $\bullet \quad \mathcal{P}(K,\rho,2\epsilon) \leq \mathcal{N}(K,\rho,\epsilon) \leq \mathcal{P}(K,\rho,\epsilon)$
- $\left(\frac{1}{\epsilon}\right)^d \le \mathcal{N}\left(B_2^d, \|\cdot\|_2, \epsilon\right) \le \left(1 + \frac{2}{\epsilon}\right)^d$
- Let $A \in \mathbb{R}^{m \times n}$ and \mathcal{M}, \mathcal{N} be nets of S^{m-1} and S^{n-1} respectively. Then $\sup_{u \in \mathcal{M}, v \in \mathcal{N}} u^T A v \le \|A\| \le \frac{1}{1-2\epsilon} \sup_{u \in \mathcal{M}, v \in \mathcal{N}} u^T A v$.

$\frac{1-2\epsilon_{u\in\mathcal{M}}}{\text{Matrix Calculus}}$

• [Properties (Deterministic)]

- Let $f, g: \mathbb{R} \to \mathbb{R}$ satisfy $f(x) \le g(x) \ \forall x \in [l, u]$. Suppose A is symmetric and eigenvalues of A all lie in [l, u]. Then $f(A) \le g(A)$.
- $||A||_{\text{op}} \le ||A||_2 \le \sqrt{r} ||A||_{\text{op}}$
- Let $C \ge B \ge 0$ and $A \ge 0$, then $tr(AB) \le tr(AC)$
- o Let f be a monotone function. Then $\operatorname{tr} \circ f$ is also monotone.
 - $A \ge B$ implies $\operatorname{tr}(f(A)) \ge \operatorname{tr}(f(B))$
- $||X||_{\text{op}} \le t \Leftrightarrow -t\mathbb{I} \le X \le t\mathbb{I}$
- Let $f: \mathbb{R} \to \mathbb{R}$ be increasing and X, Y be commuting matrices. Then $X \leq Y \Rightarrow f(X) \leq f(Y)$.
 - Commuting symmetric matrices are simultaneously diagonalisable by an orthogonal matrix.
- Let $f, g: \mathbb{R} \to \mathbb{R}$ be two functions and $f(x) \le g(x) \ \forall x \in \mathbb{R}$ satisfying $|x| \le K$. Then, $f(X) \le g(X)$ for $||X||_{\text{op}} \le K$.
- Let $X \leq Y$, then $tr(X) \leq tr(Y)$.

- [Weyl Monotonicity] Let A, B be symmetric matrices. Let $\lambda_i(A)$ denote the ith largest eigenvalue of A.
 - $0 \quad \lambda_{i+j-1}(A+B) \le \lambda_i(A) + \lambda_j(B) \le \lambda_{i+j-n}(A+B)$
 - If $A \leq B$, then $\lambda_i(A) \leq \lambda_i(B) \ \forall i$
- [Properties (Random)]
 - Let A, B be random matrices with $A \ge B$. Then $\mathbb{E}[A] \ge \mathbb{E}[B]$.
- [Exponentiation] $e^A := \mathbb{I} + \sum_{i=1}^{\infty} \frac{1}{i!} A^i$
 - o [Golden-Thompson] $\operatorname{tr}(e^{iA+B}) \leq \operatorname{tr}(e^A e^B)$
 - o If $A \leq B$, then $\operatorname{tr}(e^A) \leq \operatorname{tr}(e^B)$
 - o [Warning!] $e^{X_1+X_2} \neq e^{X_1}e^{X_2}$ unless $X_1X_2 = X_2X_1$
- [Logarithm] The function $f(x) = \log x$ is operator concave

 - $\circ \log(e^A) = A$
- [Lieb] Let $H \in \mathbb{R}^{d \times d}$ be a fixed symmetric matrix. Then, $f: A \to \operatorname{tr}(e^{H + \log A})$ is concave on the space of symmetric, positive definite matrices.
 - $\circ \quad \mathbb{E}\big[\mathrm{tr}\big(e^{\lambda \sum_{i=1}^{n} X_i}\big)\big] \leq \mathrm{tr}\left(e^{\sum_{i=1}^{n} \log \mathbb{E}[e^{\lambda X_i}]}\right)$
 - $\circ \quad \mathbb{E}[\operatorname{tr}(e^{H+X})] \le \operatorname{tr}(e^{H+\log \mathbb{E}[e^X]})$
- Let X be a $d \times d$ symmetric, zero-mean matrix s.t. $\|X\|_{\text{op}} \leq K$ a.s. Then $\mathbb{E}\left[e^{\lambda X}\right] \leqslant e^{g(\lambda)\mathbb{E}\left[X^2\right]}$ where $g(\lambda) = \frac{\frac{\lambda^2}{2}}{1-|\lambda|K}$ provided $|\lambda| \leq \frac{3}{K}$.

Matrix Toolkits

- [Matrix Laplace Transform] Let X be a symmetric random matrix. Then $\forall t \in \mathbb{R}$, $\mathbb{P}[\lambda_{\max}(X) \ge t] \le \inf_{\lambda > 0} \frac{\mathbb{E}[\operatorname{tr}(e^{\lambda X})]}{e^{\lambda t}}$
 - o i.e. can control extreme eigenvalues of X via the trace of MGF
 - o Prove by scalar Chernoff's method
- [Matrix Chernoff] Let X be a symmetric random matrix. Then $\forall t \in \mathbb{R}$, $\mathbb{P}[\lambda_{\max}(\sum_{i=1}^n X_i) \ge t] \le \inf_{\lambda > 0} e^{-\lambda t} \operatorname{tr}\left(e^{\sum_{i=1}^n \log \mathbb{E}[e^{\lambda X_i}]}\right)$
 - o Prove by Matrix Laplace + Lieb on the conditional expectation
 - $\circ \quad \mathbb{E}[\|X\|_{\text{op}}] \leq \inf_{\lambda > 0} \left\{ \frac{1}{\lambda} \log \left(\mathbb{E}[\lambda_{\max}(e^{\lambda X}) + \lambda_{\max}(e^{-\lambda X})] \right) \right\}$
 - Prove by Jenson and that $e^{\lambda \|X\|_{op}} \leq \lambda_{max}(e^{\lambda X}) + \lambda_{max}(e^{-\lambda X})$
- [Matrix Bernstein] Let $(X_n)_n$ be a sequence of independent, random, zero-mean, symmetric matrices with $X_i \in \mathbb{R}^{d \times d}$ and $\mathbb{E}[X_i] = 0$, $||X_i||_{op} \leq K$ a. s. $\forall i$ and $\sigma^2 = 0$

 $\|\sum_{i=1}^n \mathbb{E}[X_i^2]\|_{\text{op}}$. Then, for $t \ge 0$, $\mathbb{P}[\|\sum_{i=1}^n X_i\|_{\text{op}} \ge t] \le 2de^{\left(-\frac{t^2}{2}\right)}$.

- $0 \quad \mathbb{E}[\|\sum_{i=1}^{n} X_i\|_{\text{op}}] \le \sqrt{2\log(2d)\,\sigma^2} + \frac{2}{3}\log(2d)\,K$
- Prove by applying algebraic result $e^x \le 1 + x + \frac{1}{1 \frac{|x|}{3}} \frac{x^2}{2}$
- [Matrix Hoeffding] Let $\epsilon_1, \dots, \epsilon_n$ be independent Rademacher random variables and A_1, \dots, A_n be symmetric $d \times d$ deterministic matrices. Then for $t \geq 0$ and $\sigma^2 = \left\|\sum_{i=1}^n A_i^2\right\|_{\text{on}}$

$$\mathbb{P}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} A_{i}\right\|_{\text{op}} \geq t\right] \leq 2de^{-\frac{t^{2}}{2\sigma^{2}}}$$

8

• [Matrix Khintchine] Let $\epsilon_1, ..., \epsilon_n$ be independent Rademacher random variables and $A_1, ..., A_n$ be symmetric $d \times d$ deterministic matrices. Then, with $\sigma^2 = \left\|\sum_{i=1}^n A_i^2\right\|_{\text{op}}$:

$$\circ \quad \mathbb{E}\big[\|\sum_{i=1}^n \epsilon_i A_i\|_{\text{op}}\big] \le C\sqrt{\sigma^2 \log d}$$

Results

• Let $X \in \mathbb{R}^{m \times n}$ with X_{ij} being independent sub-Gaussian elements s.t. $\mathbb{E}[X_{ij}] = 0$ and $K = \max_{i,j} \|X_{ij}\|_{\psi_2} < \infty$. Then $\|X\|_{\mathrm{op}} \leq CK \left(\sqrt{n} + \sqrt{m} + \sqrt{\log\left(\frac{1}{\delta}\right)}\right)$ where C is an absolute constant.

- o Prove by ϵ -net argument.
- Let X_1, \ldots, X_n be sub-Gaussian, zero-mean, independent samples with covariance matrix Σ . Then $\left\|\frac{1}{n}\sum_{i=1}^n X_i X_i^T \Sigma\right\|_{\operatorname{op}} \leq C \|\Sigma\|_{\operatorname{op}} \left(\sqrt{\frac{r(\Sigma)}{n}} + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{n}}\right)$ with probability 1δ whenever $n \geq C_1\left(r(\Sigma) + \log\left(\frac{1}{\delta}\right)\right)$, where C is an absolute constant.

Applications

- [Unconstrained OLS]
- [Constrained OLS] $\mathbb{E}\left[\frac{1}{n}\left\|X\hat{\beta} X\beta^*\right\|_2^2\right] \leq \min_{\beta \in K} \frac{1}{n}\left\|X\beta X\beta^*\right\|_2^2 + \frac{4\sigma^2d}{n}$

Vapnik-Chervonenkis Dimension

Definitions

• [Shatter Function] Let \mathcal{A} be a collection of subsets of \mathcal{X} . Then:

$$S_{\mathcal{A}}(n) = \max_{x_1,\dots,x_n \in \mathcal{X}} |\{(\mathbb{1}\{x_1 \in A\},\dots,\mathbb{1}\{x_n \in A\}) \colon A \in \mathcal{A}\}|$$

- [VC Dimension of \mathcal{A}] The <u>VC dimension of \mathcal{A} </u> is the largest d s.t. $S_{\mathcal{A}}(d)=2^d$
- [Shatter Function] Let \mathcal{F} be a family of boolean functions i.e. $\mathcal{F} = \{f: \mathcal{X} \to \{0,1\}\}$. Then:

$$S_{\mathcal{F}}(n) = \max_{x_1, \dots, x_n \in \mathcal{X}} \left| \left\{ \left(f(x_1), \dots, f(x_n) \right) : f \in \mathcal{F} \right\} \right|$$

- [Shattered] Let \mathcal{F} be a class of boolean functions from \mathcal{X} to $\{0,1\}$. A subset $\Lambda \subset \mathcal{X}$ is shattered by \mathcal{F} if $\forall g : \Lambda \to \{0,1\}$, $\exists f \in \mathcal{F}$ s.t. $f|_{\Lambda} = g$.
- [Shatter Number] $N_{\mathcal{F}}(x_1, \dots, x_n) = |\{(f(x_1), \dots, f(x_n)): f \in \mathcal{F}\}|$
- [VC Dimension of \mathcal{F}] The <u>VC dimension of \mathcal{F} </u> is the largest cardinality of a subset $\Lambda \subset \Omega$ shattered by \mathcal{F} .

 - $\circ \quad VC(\mathcal{F}) = \max\{n: \exists x_1, \dots, x_n \text{ s.t. } N_{\mathcal{F}}(x_1, \dots, x_n) = 2^n\}$
 - $\circ \quad VC(\mathcal{F}) = \max\{n: S_{\mathcal{F}}(n) = 2^n\}$
 - \circ i.e. VC dimension of \mathcal{F} is the size of the largest shattered set

Theorems

- [Properties of Shatter Functions]
 - \circ $S_{\mathcal{A}}(n) \leq 2^n$
 - If $|\mathcal{A}| < \infty$, then $S_{\mathcal{A}}(n) \leq |\mathcal{A}|$
- [Radon] Let there be p+2 points in \mathbb{R}^p . Then, exists a grouping of these points into two groups A, B disjoint s.t. their convex hulls intersect.
- [Lemma] Let \mathcal{F} be a class of functions s.t. $\forall f \in \mathcal{F}, |f(x)| \leq b$ a.s., then:

$$\mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right\} \right] \leq b \sqrt{\frac{2 \log(2S_{\mathcal{F}}(n))}{n}}$$

- o Prove by maximum of sub-Gaussians applied to ϵ
- [VC Bound] Let \mathcal{F} be a class of boolean functions with VC dimension d. Then, with

probability
$$1 - \delta$$
, $\left| R(\hat{f}) - R(f^*) \right| \le C \left(\sqrt{\frac{d \log(\frac{en}{d})}{n}} + \sqrt{\frac{\log(\frac{2}{\delta})}{n}} \right)$

• [Pajor] Let \mathcal{F} be a class of Boolean functions on a finite set Ω . Then:

$$|\mathcal{F}| \leq |\{\Lambda \subset \Omega : \Lambda \text{ is shattered by } \mathcal{F}\}|$$

- [Sauer-Shelah] Let $\mathcal A$ have VC dimension $d<\infty$. Then $\mathcal S_{\mathcal A}(n)\leq \sum_{i=1}^d \binom{n}{i}\leq \left(\frac{en}{d}\right)^d$
 - o Intuitively, a collection \mathcal{A} with finite VC dimension has a shatter function that grows at most polynomially, instead of exponentially
 - \circ Sets \mathcal{A} with finite VC dimension satisfy uniform law of large numbers
 - Prove by combinatorics
 - o [Corollary] Let \mathcal{A} have VC dimension d. Then, with probability 1δ ,

$$\sup_{A \in \mathcal{A}} |\mathbb{P}_n[A] - \mathbb{P}[A]| \leq 4 \sqrt{\frac{d \log\left(\frac{en}{d}\right)}{n}} + \sqrt{\frac{2 \log\left(\frac{1}{\delta}\right)}{n}}$$

- Prove by lemmas.
- [Dvoretzky-Kiefer-Wolfowitz] Let F(x) be the true CDF and $F_n(x)$ be the empirical CDF.

Then, with probability
$$1-\delta$$
, $\sup_{t\in\mathbb{R}}|F_n(t)-F(t)|\leq C\left(\frac{1}{\sqrt{n}}+\sqrt{\frac{\log\left(\frac{2}{\delta}\right)}{n}}\right)\leq C'\sqrt{\frac{\log\left(\frac{2}{\delta}\right)}{n}}$, where C and C' are absolute constants.

 Prove by symmetrisation, bounded difference, bound for Rademacher complexity with VC

• [Warren] The VC dimension of a binary class induced by polynomials of d variables and power at most p is $\leq 2d \log(12p)$.

○ Let \mathcal{F} be a function class where elements are of the form $f(x) = \mathbb{1}{P(x) \ge 0}$ where P(x) is a polynomial of max degree p and of d variables.

Common VC Dimension Examples

- [Intervals] Let $\mathcal{F} = \{\mathbb{1}_{[a,b]} : a, b \in \mathbb{R}, a \leq b\}$. Then $VC(\mathcal{F}) = 2$.
- [Half-Intervals] Let $\mathcal{F} = \{\mathbb{1}_{(-\infty,t]} : t \in \mathbb{R}\}$. Then $VC(\mathcal{F}) = 1$.
- [Half-Spaces] The VC dimension of half-spaces in \mathbb{R}^n is n+1.

Metric Entropy

Key Idea

- Bound terms like: $\mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{T}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right\} \right]$
- [Dudley] The process $(\sum_{i=1}^n \epsilon_i f(x_i))_{f \in \mathcal{F}}$ is a sub-Gaussian process indexed by f with metric $d(f,g)^2 = \sum_{i=1}^n (f(x_i) - g(x_i))^2 = n \|f - g\|_{L_2(\hat{\mathcal{P}}_n)}^2$
 - O Any bound on $\mathcal{N}(\mathcal{F}, \mathcal{P}_n, \epsilon)$ implies a bound on $\mathbb{E}\left|\sup_{f \in \mathcal{F}} \left\{\frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i)\right\}\right|$

$$\circ \quad \mathbb{E}\left[\sup_{f\in\mathcal{F}}\left\{\sum_{i=1}^{n}\epsilon_{i}f(x_{i})\right\}\right] \leq 2\mathbb{E}\left[\sup_{\substack{f,g\in\mathcal{F}\\d(f,g)\leq\delta}}d(f,g)\right] + 16\int_{\frac{\delta}{4}}^{\frac{\operatorname{diam}_{d}(\mathcal{F})}{2}}\sqrt{\log\mathcal{N}(\mathcal{F},d,\epsilon)}\,\mathrm{d}\epsilon$$

$$\circ \quad \mathbb{E}\left[\sup_{f\in\mathcal{F}}\left\{\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f(x_{i})\right\}\right] \leq 2\delta + \frac{16}{\sqrt{n}}\int_{\frac{\delta}{4}}^{\frac{\operatorname{diam}_{L_{2}(\mathcal{F}_{n})}(\mathcal{F})}{2}}\sqrt{\log\mathcal{N}(\mathcal{F},L_{2}(\mathcal{F}_{n}),\epsilon)}\,\mathrm{d}\epsilon$$

$$\circ \quad \mathbb{E}\left[\sup_{f\in\mathcal{T}}\left\{\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f(x_{i})\right\}\right] \leq 2\delta + \frac{16}{\sqrt{n}}\int_{\frac{\delta}{4}}^{\frac{\operatorname{diam}_{L_{2}(\mathcal{P}_{n})}(\mathcal{F})}{2}}\sqrt{\log\mathcal{N}(\mathcal{F},L_{2}(\mathcal{P}_{n}),\epsilon)}\,\mathrm{d}\epsilon \right]$$

Definitions

- [Gaussian Process] A stochastic process $(X_t)_{t \in T}$, where T is an index set, is a Gaussian process if for every finite set of indices $t_1, ..., t_k \in T$, the distribution of $(X_{t_1}, ..., X_{t_k})$ is multivariate Gaussian.
- [Sub-Gaussian Process A] The process $(X_t)_{t\in\mathcal{T}}$ w.r.t. the metric d(t,s) on \mathcal{T} is sub-Gaussian if:
 - \circ $(X_t)_{t \in T}$ is zero-mean i.e. $\mathbb{E}[X_t] = 0$
 - $\quad \circ \quad \forall s,t \in \mathcal{T}, \, \mathbb{E} \big[e^{\lambda (X_S X_t)} \big] \leq e^{\frac{\lambda^2 d(t,s)^2}{2}}$
- [Sub-Gaussian Process B] The process $(X_t)_{t\in\mathcal{T}}$ w.r.t. the metric d(t,s) on \mathcal{T} is sub-Gaussian if $\exists c > 0$ absolute constant s.t. $||X_t - X_s||_{\psi_2} \le c \ d(t, s)$
- Let $\mathcal{T} \subset \mathbb{R}^d$.
 - $\qquad \qquad \bigcirc \quad \text{[Gaussian Width]} \ \mathcal{W}(\mathcal{T}) = \mathbb{E} \left[\sup_{t \in \mathcal{T}} \langle g, t \rangle \right] = \mathbb{E} \left[\sup_{t \in \mathcal{T}} \sum_{i=1}^n g_i t_i \right]$
 - $\bigcirc \quad [\mathsf{Rademacher\ Average}] \ \mathbb{E} \left[\sup_{t \in T} \langle \epsilon, t \rangle \right] = \mathbb{E} \left[\sup_{t \in T} \sum_{i=1}^{n} \epsilon_i t_i \right]$
 - o [Gaussian Complexity] $\mathbb{E}\left[\sup_{t\in T}|\langle g,t\rangle|\right] = \mathbb{E}\left[\sup_{t\in T}|\sum_{i=1}^n g_i t_i|\right]$
 - $\circ \quad [\mathsf{Rademacher\ Complexity}] \ \mathbb{E} \Big[\sup_{t \in \mathcal{T}} |\langle \epsilon, t \rangle| \Big] = \mathbb{E} \Big[\sup_{t \in \mathcal{T}} |\sum_{i=1}^n \epsilon_i t_i| \Big]$
- [Empirical Rademacher Complexity] The empirical Rademacher complexity of a class of functions $\mathcal{F} = \{f : \mathcal{X} \to \mathbb{R}\} \text{ is } R_n(\mathcal{F}) = \mathbb{E} \left| \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i) \right| \right|$
- [Full Rademacher Complexity] The full Rademacher complexity of a class of functions

$$\mathcal{F} = \{ f \colon \mathcal{X} \to \mathbb{R} \} \text{ is } R(\mathcal{F}) = \mathbb{E}_X \left[\mathbb{E} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i) \right| \right] \right] = \mathbb{E}_X [R_n(\mathcal{F}; X)]$$

- [Function Norms] Let $\mathcal P$ be a distribution and $\mathcal P_n$ be the empirical distribution (by sampling $X_1, ..., X_n \sim \mathcal{P}$). Then the following two are norms:
 - $\circ \|f\|_{L^2(\mathcal{P})}^2 \coloneqq \mathbb{E}_{X \sim \mathcal{P}}[f^2(X)]$
 - $\circ \|f\|_{L^2(\mathcal{P}_n)}^2 \coloneqq \frac{1}{n} \sum_{i=1}^n (f(x_i))^2$
- [Parametric Class of Functions] A family of functions \mathcal{F} is a parametric class of functions if $\sup \mathcal{N}(\mathcal{F}, \|\cdot\|_{L_2(\mathcal{P}_n)}, \epsilon) \leq \left(\frac{c}{\epsilon}\right)^p$ where C is an absolute constant.
 - o p can be thought of as dimension ($\uparrow p \Rightarrow$ more complex the class \mathcal{F} is)

• [Nonparametric Class] A family of functions \mathcal{F} is nonparametric if $\sup_{\mathcal{P}} \log \left(\mathcal{N} \left(\mathcal{F}, \| \cdot \| \right) \right)$

$$\|_{L_{2}(\mathcal{P}_{n})}, \epsilon)) \lessapprox \left(\frac{c}{\epsilon}\right)^{p} \text{ for some } p$$

$$\circ \log \mathcal{N}\left(\mathcal{F}, \|\cdot\|_{L_{2}(\mathcal{P}_{n})}, \epsilon\right) \le C' \epsilon^{-p} \ \forall \mathcal{P}_{n}$$

- Let $(X,Y) \sim \mathcal{P}$ and $f: \mathcal{X} \to \mathbb{R}$. Let l(f(X),Y) be a loss function. Then:
 - [Population Risk] The population risk is $R(f) = \mathbb{E}[l(f(X), Y)]$
 - [Empirical Risk] The empirical risk is $R_n(f) = \frac{1}{n} \sum_{i=1}^n l(f(X_i), Y_i)$
 - o [Excess Risk] The excess risk is $\hat{\xi} = R(\hat{f}) \inf_{f \in \mathcal{F}} R(f)$ where $\hat{f} = \arg\min_{f \in \mathcal{F}} R_n(f)$
 - o [Generalisation Error] The generalisation error is $|R_n(\hat{f}) R(\hat{f})|$.
- [Bracket] Let \mathcal{F} be a function class, \mathcal{P} be a fixed distribution over \mathcal{X} and $L_q(\mathcal{P})$ be a norm. A <u>bracket</u> is a pair of functions $l, u: \mathcal{X} \to \mathbb{R}$, not necessarily in \mathcal{F} , s.t. $[l, u] = \{f \in \mathcal{F}: l(x) \le f(x) \le u(x) \ \forall x \in \mathcal{X}\}$
- $[\epsilon$ -Bracket] Let $\mathcal P$ be a distribution over $\mathcal X$. Then [l,u] is an $\underline{\epsilon$ -bracket if $\|u-l\|_{L_q(\mathcal P)} \leq \epsilon$
 - $\circ \|u l\|_{L_q(\mathcal{P})} = \left(\mathbb{E}_{X \sim \mathcal{P}}\left[\left(u(X) l(X)\right)^q\right]\right)^{\frac{1}{q}}$
- [Bracketing Entropy] $\mathcal{N}_{[\]}\left(\mathcal{F},\|\cdot\|_{L_q(\mathcal{P})},\epsilon\right)$ is the minimum number of ϵ -brackets to cover \mathcal{F}

Gaussian Processes

- [Stein's Lemma]
 - Let $X \sim N(\mu, \sigma^2)$ and $f: \mathbb{R} \to \mathbb{R}$ differentiable and $\mathbb{E}[|f'(X)|] < \infty$, then $\mathbb{E}[(X \mu)f(X)] = \sigma^2 \mathbb{E}[f'(X)]$
 - o Let $X \sim N_d(\mu, \sigma^2 \mathbb{I}_d)$ and $f: \mathbb{R}^d \to \mathbb{R}^d$ differentiable and $\mathbb{E}[\|Df(X)\|_F] < \infty$, then $\mathbb{E}[(X \mu)^T f(X)] = \sigma^2 \mathbb{E}[\operatorname{tr}(Df(X))] = \sigma^2 \sum_{i=1}^d \mathbb{E}\left[\frac{\partial f_i}{\partial x_i}(X)\right]$
- [Slepian Gaussian Comparison] Let $(X_t)_t$ and $(Y_t)_t$ be two zero-mean Gaussian processes s.t. $\mathbb{E}[X_t^2] = \mathbb{E}[Y_t^2]$ and $\forall t, s \in T$, $\mathbb{E}[(X_t X_s)^2] \leq \mathbb{E}[(Y_t Y_s)^2]$. Then:
- [Sudakov-Fernique] Let $(X_t)_t$ and $(Y_t)_t$ be two Gaussian processes with zero means s.t. $\forall t, s \in T$, $\mathbb{E}[(X_t X_s)^2] \leq \mathbb{E}[(Y_t Y_s)^2]$. Then $\mathbb{E}\left[\sup_{t \in T} X_t\right] \leq \mathbb{E}\left[\sup_{t \in T} Y_t\right]$.
 - o It is the same as Slepian Gaussian Comparison with one assumption dropped
 - Approximate supremum with softmax
- [Sudakov Minoration] Let $(X_t)_t$ be a zero-mean Gaussian process. Define $d(t,s) \coloneqq \sqrt{\mathbb{E}[(X_t X_s)^2]}$. Then, $\mathbb{E}\left[\sup_{t \in T} X_t\right] \ge C\epsilon \sqrt{\log \mathcal{N}(T,d,\epsilon)}$.
- [Gaussian Contraction] Let $\phi_1, ..., \phi_d : \mathbb{R} \to \mathbb{R}$ be L-Lipschitz functions. Then: $\mathbb{E}\left[\sup_{t \in \mathcal{T}} \sum_{i=1}^d g_i \phi_i(t_i)\right] \leq L \mathbb{E}\left[\sup_{t \in \mathcal{T}} \sum_{i=1}^d g_i t_i\right] = L \mathcal{W}(\mathcal{T})$

Symmetrisation Lemmas

• Let $\epsilon_1, ..., \epsilon_n$ be independent Rademacher random variables with $x_1, ..., x_n \sim \mathcal{P}$. Then:

$$\circ \quad \mathbb{E}_{X} \left[\sup_{f \in \mathcal{F}} \left\{ \mathbb{E}[f(x)] - \frac{1}{n} \sum_{i=1}^{n} f(x_{i}) \right\} \right] \leq 2\mathbb{E}_{X} \left[\mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right\} \right] \right]$$

$$\circ \quad \mathbb{E}_{X} \left[\sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} f(x_{i}) - \mathbb{E}[f(x)] \right\} \right] \leq 2\mathbb{E}_{X} \left[\mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right\} \right] \right]$$

$$\circ \quad \mathbb{E}_{X} \left[\sup_{f \in \mathcal{F}} \left| \mathbb{E}[f(x)] - \frac{1}{n} \sum_{i=1}^{n} f(x_{i}) \right| \right] \leq 2\mathbb{E}_{X} \left[\mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right| \right] \right]$$

Theorems

• [Dudley Integral] Let $(X_t)_{t \in T}$ be a sub-Gaussian process w.r.t. metric d(t,s). Define $diam(T) = \sup_{t,s \in T} d(t,s)$. Fix $\delta > 0$. Denote $diam(T) = \sup_{t,s \in T} d(t,s)$. Then:

$$\mathbb{E}\left[\sup_{t\in\mathcal{T}}X_{t}\right] \leq 2\mathbb{E}\left[\sup_{\substack{t,s\in\mathcal{T}\\d(t,s)\leq\delta}}d(t,s)\right] + 16\int_{\frac{\delta}{4}}^{\frac{t,s\in\mathcal{T}}{2}}\sqrt{\log\mathcal{N}(\mathcal{T},d,\epsilon)}\,\mathrm{d}\epsilon$$

- [Chaining] Let N be a net of \mathcal{T} . Define $N_j \subset \mathcal{T}$ at scale $\frac{1}{2^j} \operatorname{diam}(\mathcal{T})$. Let m be the smallest integer s.t. $\frac{1}{2^m} \leq \delta$. Then: $\sup_{t,s \in N} \{X_t X_s\} \leq 16 \int_{\frac{\delta}{4}}^{\frac{\operatorname{diam}(\mathcal{T})}{2}} \sqrt{2 \log \mathcal{N}(\mathcal{T},d,\epsilon)}$
- [Nonparametric Classes Result] Let \mathcal{F} be a nonparametric class with parameter p. Then:

$$\text{o} \quad \text{If } p < 2, \ \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left\{\frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}[f(X)]\right\}\right] \leq \frac{c}{\sqrt{n}}$$

$$\text{o} \quad \text{If } p > 2, \ \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left\{\frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}[f(X)]\right\}\right] \leq cn^{-\frac{1}{p}}$$

• [Ledoux-Talagrand] Let $\phi_1, ..., \phi_n$ be L-Lipschitz functions with $\phi_i : \mathbb{R} \to \mathbb{R}$ and $\phi_i(0) = 0$. Then, for any $\mathcal{T} \subset \mathbb{R}^n$:

$$\mathbb{E}\left[\sup_{t\in\mathcal{T}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}\phi_{i}(t_{i})\right|\right] \leq 2L\mathbb{E}\left[\sup_{t\in\mathcal{T}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}t_{i}\right|\right]$$

- o i.e. Lipschitz functions can be "erased" in place of their Lipschitz constants
- [Contraction] Let $\phi_1, ..., \phi_n$ be *L*-Lipschitz functions with $\phi_i : \mathbb{R} \to \mathbb{R}$. Then, for any $\mathcal{T} \subset \mathbb{R}^n$:

$$\mathbb{E}\left[\sup_{t\in\mathcal{T}}\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}\phi_{i}(t_{i})\right]\leq L\mathbb{E}\left[\sup_{t\in\mathcal{T}}\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}t_{i}\right]$$

• [Dudley Bound for Empirical Processes] Let \mathcal{F} be a class of functions s.t. $\forall f \in \mathcal{F}$, $|f(x)| \leq b$ a.s. Then, with probability $1 - \delta$, $\sup_{f \in \mathcal{F}} \left| \mathbb{E}[f(x)] - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \right| \leq$

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\mathbb{E}[f(x)] - \frac{1}{n}\sum_{i=1}^{n}f(x_i)\right|\right] + b\sqrt{\frac{2\log(\frac{1}{\delta})}{n}}$$

- o Prove by bounded difference inequality
- $\bullet \quad \mathcal{N}\left(\mathcal{F}, \|\cdot\|_{L_{q}(\mathcal{P})}, \epsilon\right) \leq \mathcal{N}_{[\,]}\left(\mathcal{F}, \|\cdot\|_{L_{q}(\mathcal{P})}, \epsilon\right)$
 - ο The set of $\left\{ f_{l,u}(x) = \frac{u(x) + l(x)}{2} \right\}_{l,u}$ is an ε-cover of \mathcal{F} .
- [Bracketing Theorem] Let $\mathcal F$ be a class of functions s.t. $\|f\|_{L^\infty(\mathcal P)} \leq m$. Let X_1, \dots, X_n be i.i.d. sample of X, then $\mathbb E\left[\sup_{f\in\mathcal F}\left|\frac{1}{n}\sum_{i=1}^n f(x_i) \mathbb E[f(x)]\right|\right] \leq \frac{c}{\sqrt{n}}\int_0^m \sqrt{\log\mathcal N_{[\,]}\big(\mathcal F,\|\cdot\|_{L_2(\mathcal P)},\epsilon\big)}\;\mathrm{d}\epsilon$
 - No Rademacher terms as compared to symmetrisation + Dudley
 - o No need to find $\sup_{\mathcal{P}_n} \mathcal{N} (\mathcal{F}, \|\cdot\|_{L_2(\mathcal{P}_n)}, \epsilon)$ i.e. over all empirical distributions
 - \circ Rates of convergence may be bad for some function classes ${\cal F}$

Applications

• [Excess Risk] Let $R(f) = \mathbb{E}[l(f(X), Y)]$ where $l(\cdot, Y)$ is L-Lipschitz. Then:

$$\mathbb{E}\left[\hat{\xi}\right] \leq \mathbb{E}\left[\sup_{f \in \mathcal{F}} \{R(f) - R_n(f)\}\right] + \mathbb{E}\left[\sup_{f \in \mathcal{F}} \{R_n(f) - R(f)\}\right] \leq 4\mathbb{E}\left[\sup_{f \in \mathcal{F}} \left\{\frac{1}{n} \sum_{i=1}^n \epsilon_i l(f(X_i), Y_i)\right\}\right] \\ \leq 4L\mathbb{E}\left[\sup_{f \in \mathcal{F}} \left\{\frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i)\right\}\right]$$

Prove by symmetrisation and contraction

• [Bounded, Parametric \mathcal{F}] Let \mathcal{F} be a bounded, parametric class of functions with $\|f\|_{\infty} \le 1$ and dimension p. Then $\mathbb{E}\left[\sup_{f \in \mathcal{F}}\left\{\frac{1}{n}\sum_{i=1}^n \epsilon_i f(x_i)\right\}\right] \le C\sqrt{\frac{p}{n}}$

- [] Let \mathcal{F} be a class of $\{0,1\}$ -valued functions with VC dimension d. Then:
 - $\qquad \text{Then } \exists \mathcal{C} > 0 \text{ absolute constant s.t. } \sup_{\mathcal{P}_n} \mathcal{N} \big(\mathcal{F}, \| \cdot \|_{L_2(\mathcal{P}_n)}, \epsilon \big) \leq \left(\frac{c}{\epsilon} \right)^{4d}$
 - $\circ \quad \mathbb{E}\left[\sup_{f\in\mathcal{F}}\left\{\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f(x_{i})\right\}\right] \leq C\sqrt{\frac{d}{n}}$
 - o Prove by bounding packing number using probabilistic method, then apply Dudley
- Let $\mathcal{F} = \{f_w : x \mapsto \langle w, x \rangle | w \in b \cdot B_2^d \}$ and $||x|| \le r$ a.s. Then:
 - $\circ \quad \mathbb{E}\left[\sup_{w \in b \cdot B_2^d} \left\{ \frac{1}{n} \sum_{i=1}^n \epsilon_i \langle w, x_i \rangle \right\} \right] \leq \frac{br}{\sqrt{n}} \text{ (direct optimisation)}$
 - $\bigcirc \quad \mathbb{E}\left[\sup_{w \in b \cdot B_2^d} \left\{ \frac{1}{n} \sum_{i=1}^n \epsilon_i \langle w, x_i \rangle \right\} \right] \leq \frac{dbr}{\sqrt{n}} \text{ (Dudley integral)}$

Few Moments Estimators

Definitions

- [Median-of-Means Estimator]
 - o Let $X_1, ..., X_n$ be n i.i.d. observations with mean μ and variance σ^2 . Split n points into k non-intersection blocks $B_1, ..., B_k$ with $|B_j| = \frac{n}{k} = m$. Let $\bar{X}_j = \frac{1}{m} \sum_{i \in B_j} X_i$. Let $\hat{\mu} = \text{Median}(\bar{X}_1, ..., \bar{X}_k)$.
 - o Let f be a function. Then, $MOM(f) = Median\left(\frac{1}{m}\sum_{i \in B_1} f(x_i), ..., \frac{1}{m}\sum_{i \in B_k} f(x_i)\right)$
- [Hypercontractivity]
 - Let X be a random variable. Then X is (p,q)-hypercontractive if $\exists L_{p,q}$ s.t. for $q \ge p$, $\|X\|_q \le L_{p,q} \|X\|_p$
 - o Let $X \in \mathbb{R}^d$ be a random vector. Then X is (p,q)-hypercontractive if $\exists L_{p,q}$ s.t. $\forall v \in S^{d-1}$, $\|\langle X,v\rangle\|_q \leq L_{p,q} \|\langle X,v\rangle\|_p$

Theorems

• [MOM #1] Let $X_1, ..., X_n$ be i.i.d. copies of a random variable with mean μ and variance σ^2 . Let $\hat{\mu}$ be the median-of-means estimator, with $k = 8 \log \left(\frac{1}{\delta}\right)$. Then, with probability $1 - \delta$,

$$|\hat{\mu} - \mu| \le \sigma \sqrt{\frac{32 \log(\frac{1}{\delta})}{n}}$$

- o First, do intra-block analysis with Chebyshev
- o Then, do inter-block analysis with Hoeffding
- [MOM #2] Let $k = 8 \log \left(\frac{1}{\delta}\right)$ and ϵ_i be Rademacher variables, then with probability 1δ :

$$\circ \sup_{f \in \mathcal{F}} \{|\mathsf{MOM}(f) - \mathbb{E}[f]|\} \le 64\mathbb{E}\left[\sup_{f \in \mathcal{F}} \left\{\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i})\right\}\right] + 2\sqrt{\frac{128 \sup_{f \in \mathcal{F}} \{\mathsf{Var}[f(X)]\} \log\left(\frac{1}{\delta}\right)}{n}}$$

- o Prove by indicator method, bounded difference, symmetrisation, contraction
- [MOM Variant] Let X be a random variable with only two known moments $\mathbb{E}[X] = \mu$ and $\mathrm{Var}[X] = \sigma^2$. Let the mean estimator be $\hat{\mu} \coloneqq \arg\min_{v \in \mathbb{R}^d} \left\{ \sup_{v \in B_2^d} |\langle v, v \rangle \mathrm{MOM}(\langle X, v \rangle)| \right\}$. Then

$$\|\hat{\mu} - \mu\|_2 \le C\left(\sqrt{\frac{\operatorname{tr}(\Sigma)}{n}} + \sqrt{\frac{\|\Sigma\|_{\operatorname{op}}\log(\frac{2}{\delta})}{n}}\right)$$

- \circ Find vector v^* that best approximates the MOM estimator, as measured by the worst difference along any projection
- [One-Sided Tail Bound] Let X_1, \dots, X_n be i.i.d. random variables s.t. $X_i \ge 0 \ \forall i, \ \mathbb{E}[X_i] = \mu$ and $\mathbb{E}[X_i^2] = \sigma^2$. Then, $\forall t > 0$, $\mathbb{P}\left[\mu \frac{1}{n}\sum_{i=1}^n X_i \ge t\right] \le e^{-\frac{t^2n}{2\sigma^2}}$
 - o Prove by Taylor expansion on $\mathbb{E}[e^{-\lambda X}]$
- [Paley Zygmund] Let $Z \ge 0$ be a random variable and $c \in (0,1)$. Then: $\mathbb{P}[Z \ge c\mathbb{E}[Z]] \ge (1-c)^2 \frac{\mathbb{E}[Z]^2}{\mathbb{E}[Z^2]}$
 - o Prove by $\mathbb{E}[Z] = \mathbb{E}[Z\mathbb{1}\{Z \ge c\mathbb{E}[Z]\}] + \mathbb{E}[Z\mathbb{1}\{Z < c\mathbb{E}[Z]\}]$, then Cauchy Schwarz

Applications

- [Estimation of Mean of Random Vector] Take $\mathcal{F} = \{f_v : v \in B_2^d\}$ where $f_v(x) = \langle x, v \rangle$ where $x \in \mathbb{R}^d$. Then $\|\hat{\mu} \mu\|_2 \le c \left(\sqrt{\frac{\operatorname{tr}(\Sigma)}{n}} + \sqrt{\frac{\|\Sigma\|_{\operatorname{op}} \log\left(\frac{1}{\delta}\right)}{n}} \right)$
- [Estimation of Higher Moments] Let p be an even integer. Let X be a zero-mean random vector in \mathbb{R}^d s.t. $\forall v \in S^{d-1}$, $\|\langle X, v \rangle\|_{2p} \leq L \|\langle X, v \rangle\|_p$. Then, with probability 1δ , $\forall v \in S^{d-1}$, $|\mathsf{MOM}(\langle X, v \rangle^p)| \leq c(2L)^p \mathbb{E}[\langle X, v \rangle^p] \sqrt{\frac{d + \log(\frac{1}{\delta})}{n}}$.

• [Least Eigenvalue of Sample Covariance] Let $X \in \mathbb{R}^d$ be a zero-mean random vector with $\Sigma = \mathbb{E}[XX^T]$. Assume that $\exists c \in (0,1), \ \beta \in (0,1) \text{ s.t. } \forall v \in S^d, \ \mathbb{P}\left[|\langle X,v\rangle| > c\sqrt{\mathbb{E}[\langle X,v\rangle^2]}\right] \geq \beta$. Then, $\lambda_{min}\left(\frac{1}{n}\sum_{i=1}^n x_i x_i^T\right) \geq \frac{c\beta^2}{2}\lambda_{min}(\Sigma)$ for $n \geq \frac{c'}{\beta^2}\left(d + \log\left(\frac{1}{\delta}\right)\right)$.

- o The assumption $\forall v \in S^d$, $\mathbb{P}\left[|\langle X, v \rangle| > c\sqrt{\mathbb{E}[\langle X, v \rangle^2]}\right] \geq \beta$ means that in any direction v, $|\langle X, v \rangle|$ is not too small relatively as compared to $\sqrt{\mathbb{E}[\langle X, v \rangle^2]}$
- o Prove using Warren's lemma and VC bound

Nonparametric Least Squares

Definitions (Fixed Design)

- [Set-Up] Observe $y_i = f^*(x_i) + \epsilon_i$ where $(x_i)_{i=1}^n$ are fixed design vectors and $\epsilon \sim N(0,1)$. Know that $f^* \in \mathcal{F}$. The goal is to bound $\|\hat{f} - f^*\|_n^2 = \frac{1}{n} \sum_{i=1}^n (\hat{f}(x_i) - f^*(x_i))^2$.
- $[\|\cdot\|_n]$ Define $\|f-y\|_n^2 := \frac{1}{n} \sum_{i=1}^n (f(x_i) y_i)^2 = \frac{1}{n} \|f(X) Y\|_2^2$
- [Star-Shaped] A class of functions \mathcal{F} is star-shaped around f^* if for any $\alpha \in [0,1]$ and $f \in$ $\mathcal{F}, \alpha(f - f^*) \in \mathcal{F} - f^* = \{f - f^* : f \in \mathcal{F}\}.$
 - Convex ⇒ star-shaped

Propositions (Fixed Design)

[Localisation] Let \mathcal{F} be star-shaped around f^* and $\epsilon \sim N(0, \mathbb{I}_n)$ be the Gaussian noise. Let t^* be the fixed-point solution to $t = \frac{2}{nt} \sup_{f \in \mathcal{F}, \|f - f^*\|_n \le t} \langle \epsilon, f - f^* \rangle$. Then $\forall t \ge t^*$, we have: $\left\| \hat{f} - f^* \right\|_n^2 \le \left(2t + \frac{2u}{t} \right)^2$ with probability at least $1 - e^{-\frac{u^2 n}{2t^2}}$.

$$\|\hat{f} - f^*\|_n^2 \le \left(2t + \frac{2u}{t}\right)^2$$
 with probability at least $1 - e^{-\frac{u^2n}{2t^2}}$.

- o Only care about f close to f^* , rather than the complexity of the whole class \mathcal{F}
- Prove using Gaussian concentration
- Let \mathcal{F} be a nonparametric class with parameter p, then with probability $1 e^{-\frac{n^2}{2}}$, $\|\hat{f} - f^*\|_n^2 \le C n^{-\frac{2}{p+2}}.$
 - o Prove using localisation with $u = t^2$ and Dudley integral.
- Let $\mathcal{F} = \{f_{\beta}: x \to \langle x, \beta \rangle\}_{\beta}$ where $\beta \in \mathbb{R}^p$ be a star-shaped, parametric class. Then, with probability $1 - \delta$, $\|\hat{f} - f^*\|_n^2 \le c \left(\frac{p + \log(\frac{1}{\delta})}{n}\right)$

Definitions (Random Design)

- [Set Up] Let $(x, y) \sim P_{X,Y}$ some unknown distribution and \mathcal{F} be a convex class of functions. Observe $(x_i, y_i)_{i=1}^n$ i.i.d. samples. $|y| \le m$, $|f(x)| \le m \ \forall f \in \mathcal{F}$. $\hat{f} =$ $\arg\min_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n(f(x_i)-y_i)^2. \text{ Let } R(f)=\mathbb{E}_{x,y\sim P_{X,Y}}\Big[\big(y-f(x)\big)^2\Big]. \text{ Want to analyse } R\big(\hat{f}\big)-\frac{1}{n}\sum_{i=1}^n(f(x_i)-y_i)^2.$ $\inf_{f\in\mathcal{F}}R(f).$
- [Notation]

$$P_n((y-f)^2) = \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2$$

$$P((y-f)^2) = \mathbb{E}_{(x,y)\sim P}\left[\left(y-f(x)\right)^2\right]$$

Propositions (Random Design)

- Let \mathcal{F} be convex. Then $\forall f \in \mathcal{F}$, $R_n(f) R_n(\hat{f}) \ge \frac{1}{n} \sum_{i=1}^n \left(f(x_i) \hat{f}(x_i) \right)^2$ where $R_n(f) = \frac{1}{n} \sum_{i=1}^n \left(f(x_i) \hat{f}(x_i) \right)^2$ $\frac{1}{n}\sum_{i=1}^n (y_i - f(x_i))^2.$
- [Process with Quadratic Penalty] Let *G* be a class of functions with covering number $\mathcal{N}(\mathcal{F}, L_2(P_n), \gamma)$ for some $\gamma > 0$ and the function $0 \in \mathcal{N}$. Then, for any $\alpha \geq 0$,

$$\mathbb{E}_{\epsilon} \left[\sup_{g \in \mathcal{G}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (\epsilon_{i} g(x_{i}) - c' g(x_{i})^{2}) \right\} \right] \leq C \left(\alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\gamma} \sqrt{\log \mathcal{N}(\mathcal{G}, L_{2}(P_{n}), \epsilon)} \, \mathrm{d}\epsilon + C \left(\alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\gamma} \sqrt{\log \mathcal{N}(\mathcal{G}, L_{2}(P_{n}), \epsilon)} \, \mathrm{d}\epsilon \right) \right]$$

- $\frac{1}{c'}\frac{\log \mathcal{N}(\mathcal{G}, L_2(P_n), \gamma)}{n}$ where \mathcal{C} is an absolute constant and \mathcal{C}' is a tuneable parameter.
- Let $\gamma > \alpha \ge 0$, then: $\mathbb{E}[R(\hat{f})] \inf_{f \in \mathcal{F}} R(f) \le C \mathbb{E}\left[m\left(\alpha + \frac{1}{\sqrt{n}}\int_{\alpha}^{\gamma} \sqrt{\log \mathcal{N}(\mathcal{F}, L_2(P_n), \epsilon)} d\epsilon + \frac{1}{\sqrt{n}}\int_{\alpha}^{\gamma} \sqrt{\log \mathcal{N}(\mathcal{F}, L_2(P_n), \epsilon)} d\epsilon + \frac{1}{\sqrt{n}}\int_{\alpha}^{\gamma} \sqrt{\log \mathcal{N}(\mathcal{F}, L_2(P_n), \epsilon)} d\epsilon \right]$ $\frac{m}{n}\log \mathcal{N}(\mathcal{F}, L_2(P_n), \gamma)$ where \mathcal{C} is an absolute constant.

- $\circ \quad \mathbb{E}[R(\hat{f})] \inf_{f \in \mathcal{F}} R(f) \le C \sup_{P_n} \left\{ m \left(\alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\gamma} \sqrt{\log \mathcal{N}(\mathcal{F}, L_2(P_n), \epsilon)} \, d\epsilon + \frac{m}{n} \log \mathcal{N}(\mathcal{F}, L_2(P_n), \gamma) \right) \right\}$
- $\text{O When } \mathcal{N}(\mathcal{F}, L_2(P_n), \epsilon) \sim \epsilon^{-p} \text{ for } \epsilon \in (0,2) \text{ then } \mathbb{E}\big[R\big(\hat{f}\big)\big] \inf_{f \in \mathcal{F}} R(f) \leq C n^{-\frac{2}{p+2}}.$ (optimise with respect to γ ; balance the powers of n)

Online Learning

Definitions

- [Regret] Let \mathcal{F} be a class of functions and L(f(x), y) be a loss function. Let $(\hat{f}_n)_n$ be a sequence of predictors with $\hat{f}_n \in \mathcal{F}$ s.t. \hat{f}_n is trained on $(x_i, y_i)_{i=1}^{n-1}$. Then, regret is $\sum_{i=1}^{n} L(\hat{f}_i(x_i), y_i) - \inf_{f \in \mathcal{F}} \sum_{i=1}^{n} L(f(x_i), y_i)$
 - Intuition: how much you regret is compared with the best fixed function.
- [Exponential Weights Algorithm] Let $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$ be a family of distributions parametrised by $\Theta \subset \mathbb{R}^d$. Let $\pi(\theta)$ be a prior distribution over Θ . Let $\eta > 0$ be a fixed learning rate.

$$\circ \quad \hat{\rho}_n \coloneqq \frac{e^{-\eta \sum_{i=1}^n L(f_{\theta}(x_i), y_i)} \pi(\theta)}{\mathbb{E}_{\theta \sim \pi} \left[e^{-\eta \sum_{i=1}^n L(f_{\theta}(x_i), y_i)} \right]}$$

- o Denominator is just a normalising constant
- [Mixture] $f(x) = \int_{\alpha} f_{\alpha}(x)g(\alpha)d\alpha$
- [Mix Loss] $-\frac{1}{n}\sum_{i=1}^{n}\log(\mathbb{E}_{\theta\sim\widehat{\rho}_{i-1}}[e^{-\eta L(f_{\theta}(x_i),y_i)}])$
- o Mixing together all the loss from the n steps [Potential] $-\frac{1}{\eta}\log\left(\mathbb{E}_{\theta\sim\pi}\left[e^{-\eta\sum_{i=1}^{n}L(f_{\theta}(x_{i}),y_{i})}\right]\right)$
- [KL Divergence] Let f be the true density and \hat{f} be the predicted density. Then the excess risk is: $KL(f||\hat{f}) := \int \log\left(\frac{f(x)}{\hat{f}(x)}\right) f(x) dx = \mathbb{E}_{X \sim f}\left[-\log\hat{f}(X) + \log f(X)\right]$
- [Covering] Let \mathcal{F} be a collection of densities. Then:
 - $0 \quad \mathcal{N}(\mathcal{F}, KL, \epsilon) = \min\{n \in \mathbb{N}: \exists q_1, \dots, q_n \text{ s.t. } \forall f \in \mathcal{F}, \exists i \in [n] \text{ s.t. } KL(f || q_i) \le \epsilon^2\}$
 - Note the ϵ^2 instead of ϵ .
 - \circ i.e. if f is the true density, then using q_i will incur a KL loss of at most ϵ^2
- [Exponentially Concave] A loss L is exponentially concave with $\eta>0$ if
 - $\mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}} \left[e^{-\eta L(f_{\theta}(x_i), y_i)} \right] \leq e^{-\eta L \left(\mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}} \left[f_{\theta}(x_i) \right], y_i \right)} \text{ holds } \forall i.$
 - \circ $\;$ Intuitively, can bring $\mathbb E$ into the exponent and into the loss function; the predictor is of a nicer form.
 - o If L is exponentially concave, then can upper bound total loss as if the predictors are the expectations of the mixture of predictors at each step.
 - \circ $-\log$ is exponentially concave with $\eta=1$
 - o $L(f_{\theta}(x_i), y_i) = (f_{\theta}(x_i) y_i)^2$ with $|f_{\theta}(x_i)|, |y_i| \le m$ is exponentially concave with
- [Clip] Define $\operatorname{clip}_m(x) = \begin{cases} \min(m, x), & x \ge 0 \\ \max(-m, x), & x < 0 \end{cases}$

Propositions

- [Online To Batch] Let $L(\cdot, y)$ be convex and $(x_i, y_i)_{i=1}^n \sim P_{X,Y}$ be i.i.d. samples. Let $(\hat{f}_i)_{i=1}^n$ be sequential estimators satisfying $\sum_{i=1}^n L(\hat{f}_i(x_i), y_i) - \inf_{f \in \mathcal{T}} \sum_{i=1}^n L(f(x_i), y_i) \le R^{(n)}$ a.s., where $R^{(n)}$ is a constant. Then:
 - $\circ \quad \mathbb{E}_{(x_i,y_i)_{i=1}^n \sim P_{X,Y}} \left[\mathbb{E}_{(X,Y) \sim P_{X,Y}} \left[L\left(\frac{1}{n} \sum_{i=1}^n \hat{f}_i(X), Y\right) \right] \inf_{f \in \mathcal{F}} \mathbb{E}[L(f(X),Y)] \right] \leq \frac{R^{(n)}}{n}$
 - o Using the batch estimator $\frac{1}{n}\sum_{i=1}^n \hat{f}_i(X)$ leads to the convergence of regret to 0
 - Can be thought of as averaging the trajectory density
 - $\circ \quad \mathbb{E}_{(x_i, y_i)_{i=1}^n \sim P_{X,Y}} \left[R\left(\frac{1}{n} \sum_{i=1}^n \hat{f}_i\right) \inf_{f \in \mathcal{F}} R(f) \right] \le \frac{R^{(n)}}{n}$
 - Any bound on regret is a bound on excess risk
- [Unfolding Lemma] Equivalence between potential and mix-loss; deterministic result.

$$\circ \quad -\frac{1}{\eta} \log \left(\mathbb{E}_{\theta \sim \pi} \left[e^{-\eta \sum_{i=1}^{n} L(f_{\theta}(x_i), y_i)} \right] \right) = -\frac{1}{\eta} \sum_{i=1}^{n} \log \left(\mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}} \left[e^{-\eta L(f_{\theta}(x_i), y_i)} \right] \right)$$

- o Property of the exponential weights algorithm
- Let $(\hat{f}_n)_n$ be a sequence such that the predictors satisfy $L(\hat{f}_i(x_i), y_i) \leq -\frac{1}{\eta} \log \left(\mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}} \left[e^{-\eta L(f_{\theta}(x_i), y_i)} \right] \right)$, then $\sum_{i=1}^n L(\hat{f}_i(x_i), y_i) \leq -\frac{1}{\eta} \log \left(\mathbb{E}_{\theta \sim \pi} \left[e^{-\eta \sum_{i=1}^n L(f_{\theta}(x_i), y_i)} \right] \right)$

Total loss is upper bounded by the total loss

Density Estimation

- [Donsker-Varadhan Variational Formula] $\log \left(\mathbb{E}_{\theta \sim \pi} \left[e^{h(\theta)} \right] \right) = \sup_{\rho} \left\{ \mathbb{E}_{\theta \sim \rho} \left[h(\theta) \right] \text{KL}(\rho \| \pi) \right\}$
- Let l be a bounded loss i.e. $l(f_{\theta}(x), y) \leq m \ \forall \theta, x, y$. Then: $\sum_{i=1}^{n} \mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}}[L(f_{\theta}(x_i), y_i)] \leq \frac{n\eta m^2}{8} + \inf_{\gamma} \left\{ \mathbb{E}_{\theta \sim \gamma}[\sum_{i=1}^{n} L(f_{\theta}(x_i), y_i)] + \frac{\mathrm{KL}(\gamma \| \pi)}{\eta} \right\}$
 - O Works for any $\eta > 0$; any distribution γ sets an upper bound
 - \circ π is the prior distribution; typically pick the uniform distribution.
- $\bullet \quad \sum_{i=1}^{n} -\log \left(\mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}}[f_{\theta}(z_{i})]\right) \leq \inf_{\rho} \left\{\mathbb{E}_{\theta \sim \rho}\left[-\sum_{i=1}^{n} \log \left(f_{\theta}(z_{i})\right)\right] + \mathrm{KL}(\rho \| \pi)\right\}$
 - \circ In particular, any density ρ' yields an upper bound.
- [Progressive Mixture] Let $\mathcal{F} = \{f_1, ..., f_M\}$ be a class of densities. Assume that $z_1, ..., z_n$ are sampled from $f^* \in \mathcal{F}$. Then, $\exists \hat{f}$ based on $z_1, ..., z_n$ s.t. $\mathbb{E}_{z_1, ..., z_n} [KL(f^* || \hat{f})] \leq \frac{\log(M)}{n}$.
- [Yang-Barron] Let $\mathcal F$ be a collection of densities with $\{q_1,\dots,q_{|\mathcal N_\epsilon|}\}$ be a cover. Let f be the progressive mixture on $q_1,\dots,q_{|\mathcal N_\epsilon|}$. Then: $\mathbb E_{z_1,\dots,z_n}\big[\mathrm{KL}\big(f^*\|\hat f\big)\big] \leq \inf_{\epsilon>0} \Big\{\epsilon^2 + \frac{\log(\mathcal N(\mathcal F,KL,\epsilon))}{n}\Big\}$
- [Lemma] Let $Q(\theta) = \theta^T A \theta + b^T \theta + c$ and A positive semi-definite. Then $\int_{\mathbb{R}^d} e^{-Q(\theta)} d\theta = \frac{\frac{d}{d^2}}{\sqrt{\det A}} e^{-\inf_{\theta \in \mathbb{R}^d} Q(\theta)}$.

Workflow

- Check exp-concavity: $x \mapsto e^{-\eta(x-y)^2}$ is concave for some $\eta > 0 \ \forall x, y$ in range considered
- Write out the equivalence of mix losses = potential
- Bound potential by Donsker-Varadhan or reduce to pure Gaussian integrals
- When the loss is convex, perform online-to-batch to bound excess risk

Examples

- Let $\Theta = \{1, ..., M\}$ be finite with $|\Theta| = M$. Let $f^* = \underset{f_j: j \in \Theta}{\arg\min} \left\{ -\sum_{i=1}^n \log \left(f_j(z_i) \right) \right\}$. With $\pi \sim \text{Uniform}(\Theta)$ and $\rho = \delta_{f^*}$. Then: $-\sum_{i=1}^n \log \left(\mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}} [f_j(z_i)] \right) \left(-\sum_{i=1}^n \log \left(f^*(z_i) \right) \right) \leq \log M$
- Let $\mathcal{F} = \{f_+ \equiv 1, f_- \equiv -1\}$. Then $\sum_{i=1}^n \mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}} [\mathbb{1}\{f_{\theta}(x_i) \neq y_i\}] \leq \min_{f \in \mathcal{F}} \{\sum_{i=1}^n \mathbb{1}\{f_{\theta}(x_i) \neq y_i\}\} + \sqrt{\frac{n \log 2}{2}}$.
 - Use Donsker-Varadhan with bounded loss
- $\text{ Let } \mathcal{F} = \{f_1, \dots, f_K\} \text{ where } f_i \equiv i. \text{ Then } \sum_{i=1}^n \mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}} [\mathbb{1}\{f_\theta(x_i) \neq y_i\}] \leq \min_{f \in \mathcal{F}} \{\sum_{i=1}^n \mathbb{1}\{f_\theta(x_i) \neq y_i\}\} + \sqrt{\frac{n \log K}{2}}$
 - Use Donsker-Varadhan with bounded loss
- [Logistic Regression] Consider the logistic regression with $-\log \log s$ i.e. the loss at each step is $-\log \hat{p} = -\log (\mathbb{E}_{\theta \sim \hat{p}_{i-1}}[\sigma(y_i \langle x_i, \theta \rangle)])$. Let θ^* be the MLE solution with $\|\theta^*\|_2 \leq b$ and $\|x_i\| \leq r$. Then:
 - $\circ \quad -\sum_{i=1}^{n} \log \left(\mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}} [\sigma(y_i \langle x_i, \theta \rangle)] \right) \leq -\sum_{i=1}^{n} \log \left(\sigma(y_i \langle x_i, \theta \rangle) \right) + d + \frac{d}{2} \log \left(1 + \frac{ab^2r^2}{8d^2} \right)$
 - \circ MLE θ^* helps in simplifying Taylor expansion of total loss about θ^*

• [Squared Loss] Let (x_i, y_i) be i.i.d. samples with $|y|, |f| \le m$, then: $\mathbb{E}_{x, y \sim P_{X,Y}} \left[R\left(\frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\theta \sim \widehat{\rho}_{i-1}}[f_{\theta}(x)]\right) \right] \le \inf_{f \in \mathcal{F}} R(f) + \frac{8m^2 \log(M)}{n}$

• [Vork-Azoury-Warmuth] Let $(x_i, y_i)_{i=1}^n$ be a deterministic sequence with $||x_i||_2 \le r$, $|y_i| \le m$ and $x_i \in \mathbb{R}^d$. Let $\theta^* = \arg\min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n (y_i - \langle \theta, x_i \rangle)^2$. Assume $||\theta^*||_2 \le b$. Let $\hat{\theta}_{i-1} = \arg\min_{\theta \in \mathbb{R}^d} \sum_{j=1}^{i-1} (y_j - \langle \theta, x_j \rangle)^2 + \lambda ||\theta||_2^2$. Then, there is a choice of λ s.t. $\sum_{i=1}^n (y_i - \hat{y}_i)^2 \le \sum_{i=1}^n (y_i - \langle \theta^*, x_i \rangle)^2 + m^2 \left(d + 4d \log \left(1 + \frac{nr^2b^2}{d^2m^2}\right)\right)$

Statistical Models

Classification (Lecture 5)

- Let \mathcal{X} be a set and \mathcal{F} be a finite family of classifiers i.e. $\mathcal{F} = \{f : \mathcal{X} \to \{0,1\}\}$. Let $M = |\mathcal{F}|$. Assume that the true classifier $f^* \in \mathcal{F}$. Observe $\{(X_i, f(X_i))\}_{i=1}^n$. Define $R(f) = \mathbb{P}[f(X) \neq f^*(X)]$ and $R_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{f(X_i) \neq f^*(X_i)\}$. Then, with probability 1δ , $R(\hat{f}) \leq C \frac{\log(M) + \log\left(\frac{1}{\delta}\right)}{n}$
 - o Prove by Bernstein (Bernoulli) or union bound
 - Exploit finite $|\mathcal{F}|$ and $R_n(f) R(f) = R_n(f) \mathbb{E}[R_n(f)]$

Kernel Density Estimation (Lecture 6)

• Observe $X_1, ..., X_n$ i.i.d. from density f over \mathbb{R} . Let $K: \mathbb{R} \to \mathbb{R}$ be a kernel function i.e. $K(x) \geq 0$ and $\int_{-\infty}^{\infty} K(x) \mathrm{d}x = 1$. Let $\hat{f}_n(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x-X_i}{h}\right)$ be the kernel estimator. The loss is $L(\hat{f}, f) = \int_{-\infty}^{\infty} |\hat{f}_n(x) - f(x)| \mathrm{d}x$. Then $\mathbb{P}[L(\hat{f}, f) - \mathbb{E}_{X_1, ..., X_n}[L(\hat{f}, f)] \geq t] \leq 2e^{-\frac{t^2n}{2}}$. \circ Prove by bounded difference inequality

Fixed Design Linear Regression (Lecture 8)

• [Oracle] Let $K \subset \mathbb{R}^d$ be a convex set. Let $y_i = \langle x_i, \beta^* \rangle + \epsilon_i$ be the true model, where ϵ_i is zero-mean, independent and σ -sub-Gaussian. Let $\tilde{\beta} = \underset{\beta \in K}{\operatorname{arg inf}} \|X\beta - X\beta^*\|^2$.

$$\mathbb{E}\left[\frac{1}{n}\left\|X\hat{\beta} - X\beta^*\right\|_{2}^{2}\right] \leq \frac{1}{n}\left\|X\tilde{\beta} - X\beta^*\right\|_{2}^{2} + \frac{4\sigma^2d}{n}$$

- [Lecture 9] $\mathbb{E}\left[\frac{1}{n} \|X\hat{\beta} X\beta^*\|_2^2\right] \le \inf_{\beta \in K} \left\{\frac{1}{n} \|X\tilde{\beta} X\beta^*\|_2^2\right\} + \frac{2\sqrt{2\log(2d)}\max\|X_i\|_2}{n}$
- [HW1 P8] Let $x_1, \dots, x_n \in \mathbb{R}^d$ be fixed design vectors and Y_1, \dots, Y_n independent, sub-Gaussian with parameter σ . Then $\xi(\hat{\beta}) \leq \frac{\sigma^2}{n} \left(\sqrt{d} + \sqrt{2\log\left(\frac{1}{\delta}\right)} \right)^2$.
 - Exploit the sub-Gaussian vector HY

Sparse Linear Regression

- Let $K = \{x : ||x||_0 \le s\}$ with $s \ll d$ and $\beta^* \in K$.
 - $\text{ With probability } 1 \delta, \frac{1}{n} \| X \hat{\beta} X \beta^* \|^2 \leq \frac{C \sigma^2 \left(s \log \left(\frac{ed}{2s} \right) + \log \left(\frac{1}{\delta} \right) \right)}{n}$
- [Binomial Bound] $\sum_{j=0}^{2s} {d \choose j} \le \left(\frac{ed}{2s}\right)^{2s}$

Kolmogorov Smirnov Statistic (Lecture 14)

• Let \mathcal{F} be a uniformly bounded family of functions s.t. $|f| \leq M$. Then, with probability $1 - \delta$,

we have:
$$\sup_{f \in \mathcal{F}} \left| \mathbb{E}[f(X)] - \frac{1}{n} \sum_{i=1}^n f(X_i) \right| \leq \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left| \mathbb{E}[f(X)] - \frac{1}{n} \sum_{i=1}^n f(X_i) \right| \right] + M \sqrt{\frac{2 \log \left(\frac{1}{\delta}\right)}{n}}$$

- o Prove by symmetrisation
- With probability 1δ , $\sup_{t \in \mathbb{R}} |F_n(t) F(t)| \le 2\sqrt{\frac{2\log(2n+2)}{n}} + M\sqrt{\frac{2\log\left(\frac{1}{\delta}\right)}{n}}$
 - o Prove by bounded difference inequality

Classification (Lecture 16)

• Let \mathcal{X} be a set and \mathcal{F} be a family of classifiers i.e. $\mathcal{F} = \{f: \mathcal{X} \to \{0,1\}\}$. Let $P_{X,Y}$ be an unknown distribution and $\{(X_i,Y_i)\}_{i=1}^n$ be the train set. Then, w.p. $1 - \delta$: $R(\hat{f}) - R(f^*) \leq 1$

$$C\left(\sqrt{\frac{d\log(\frac{en}{d})}{n}} + \sqrt{\frac{\log(\frac{2}{\delta})}{n}}\right)$$

。 Exploit Sauer-Shelah lemma

Random Design Regression for Non-Parametric Model

Final Sheet

• Let $\mathcal F$ be a convex class of functions. Let $Y=f^*(X)+\xi$ be the true model and $\max(|\xi|,Y)\leq m$ and $|f(X)|\leq m$ a.s. Let $\log\mathcal N(\mathcal F,L_2(P_n),\epsilon)\leq C\epsilon^{-p}$. Then:

o If p > 2, $\mathbb{E}[R(\hat{f})] - R(f^*)$ converges on the order of $n^{-\frac{1}{p}}$

Problem Solving

Common Ideas

- Dimensional analysis; balancing powers
 - o With an infimum or supremum bound, sometimes substituting in nice values work.
- Brute-force; whack; algebra; direct optimisation (norm, linear class)
 - Taylor expansion (***)
- Jensen; Cauchy-Schwarz (inner-product); Hölder $\mathbb{E}[|XY|] \leq \mathbb{E}[X^p]^{\frac{1}{p}} \mathbb{E}[Y^q]^{\frac{1}{q}}$ for $\frac{1}{p} + \frac{1}{q} = 1$
- · Bounded difference inequality; contraction, Lipschitz-ness; Symmetrisation
- Subtle but important ideas:
 - $\sup\{a+b\} \le \sup a + \sup b$
 - $\sup\{a b\} \le \sup a + \sup b$
 - o $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ (when square roots start to become annoying)
- Directions:
 - Sub-Gaussians → use Hoeffding
 - Sub-exponential → try Bernstein → Self-bounding functions technique
 - Anything Gaussian → use Gaussian concentration
 - Function class has a covering number → Dudley integral
 - Bounded difference property → bounded difference inequality
 - o Prove Lipschitz property \rightarrow Find a function $f(\xi)$ where $\xi \sim N(0, \sigma^2 \mathbb{I}_d)$. (f can be some complicated function involving \sup) Prove $|f(\xi) f(\nu)| \le L \|\xi \nu\|_2$ and you can already apply Gaussian concentration.
- Sometimes, just bound one part of the term in an expression e.g.
 - $\circ \quad \mathbb{E}[X^2\mathbb{I}\{A\}] = \mathbb{E}[X^{1+\epsilon}\mathbb{I}\{A\}X^{1-\epsilon}] \le R\mathbb{E}[X^{1-\epsilon}]$
 - $\circ \mathbb{E}[(XX^T \Sigma)^2] \leq \mathbb{E}[XX^T X X^T] \leq \mathbb{E}[X(r^2) X^T] = r^2 \Sigma$
- Think in high probability form $\mathbb{P}[X \ge t]$
 - Union bound
 - Exploit sub-Gaussianity (anything else sub-Gaussian)
- Think in moment form $\mathbb{E}[X^p]$
- [Workflow] Choose loss function, check exponential concavity, predict with exponential weights for each round
- Exotic:
 - \circ ϵ -Net + Union Bound
 - Donsker-Varadhan

Algebraic Gymnastics

- [Stirling Approximation] $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
- [Gamma] $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$
 - $\circ \quad \Gamma(n) = (n-1)!$
 - $\circ \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
 - $\circ \quad \Gamma(x) \leq x^x$
 - Prove by Stirling's
- $\frac{1}{2}(e^{\lambda} + e^{-\lambda}) \le e^{\frac{\lambda^2}{2}} \text{ for } \lambda \in \mathbb{R}$
 - o Rademacher random variables are sub-Gaussian
- [Miscellaneous]
 - \circ 1 + $x \le e^x$
 - When x is small and you want to facilitate multiplication
 - $\circ \quad 1 x \le e^{-x}$
 - $\circ \quad \frac{1}{1-x} \le e^{2x} \text{ for } x \in \left[0, \frac{1}{2}\right]$

$$\circ \quad \frac{x}{2+x} \le \log(1+x) \text{ for } x \ge 0$$

$$-x + \frac{x^2}{2} \le (1 - x) \log(1 - x) \text{ for } x \in (0,1)$$

$$-x + \frac{1}{2} \le (1 - x) \log(1 - x)$$

$$e^{x} \le 1 + x + \frac{\frac{x^{2}}{1 - \frac{|x|}{3}}}{1 - \frac{|x|}{3}} \text{ if } |x| < 3$$

Used to prove matrix Bernstein

$$\circ \quad e^x \le x + e^{x^2}$$

Proving $\mathbb{E}[X] = 0$ of sub-Gaussian equivalency $2\lambda x \leq \lambda^2 + x^2$

$$0 \quad 2\lambda x < \lambda^2 + x^2$$

• Proving $\mathbb{E}[X] = 0$ of sub-Gaussian equivalency

$$|x|^p \le p^p(e^x + e^{-x})$$

- [Jensen]
 - \circ $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$
 - $\circ \quad \mathbb{E}[\log X] \le \log \mathbb{E}[X]$