Eichfeldtheorie 1

Tim Jaschik

May 12, 2025

Abstract. –	
Contents	
1 Faserbündel	2
1.1 Definitionen	2

1 Faserbündel

1.1 Definitionen: Definition 2.1 (Lokale Trivialisierung mit typischen Fasern auf Mfk). Seien E,M und F differenzierbare Mannigfaltikeiten und $\pi:E\to M$ eine differenzierbare Abbildung. Dann heißt (E,π,M) eine lokal triviale Faserung mit typischer Faser F, wenn es zu jedem $x\in M$ eine offene Umgebung U gibt und einen Diffeomorphismus $\varphi:\pi^{-1}(U):=E\mid U\to U\times F$, sodass

$$\begin{array}{ccc}
E \mid U & \xrightarrow{\varphi} & U \times F \\
\pi \searrow & \swarrow pr_1 \\
U
\end{array}$$

kommutiert. Man spricht auch von der lokal trivialen Faserung $E \to M$ oder E.

Definition 2.2 (Vektorraumbündel). Sei (E, π, M) eine lokale triviale Faserung mit typischer Faser E. Ist $F = \mathbb{R}^k$ und ist $\pi^{-1}(x)$ ein k-dimensionaler Vektorraum und

$$pr_2 \circ \varphi|_{\pi^{-1}(x)} : \pi^{-1}(x) \to \mathbb{R}^k$$

ein Isomorphismus, so heißt E ein Vektorraumbündel der Dimension k.

Definition 2.7 (Lokale Triviale Faser als Tripel (Totalraum, Basisraum, Projektion)). Sei (E, π, M) eine lokal triviale Faserung wie in 1.1. Dann heißt ETo talraum, M Basis, π Bündelprojektion und F typische Faser.

Definition 2.8 (Reale Fasern in lokal trivialen Bündeln). Sei (E, π, M) eine lokal triviale Faserung. Für jedes $x \in M$ heißt $E_x = \pi^{-1}(x)$ reale Faser an der Stelle x. Für $U \subset M$ offen heißt $\varphi : E \mid U \to U \times F$ Bündelkarte und

$$\left\{ (U_{\lambda}, \varphi_{\lambda}) \mid (U_{\lambda}, \varphi_{\lambda}) \text{ Bündelkarte }, \bigcup_{\lambda \in \Lambda} U_{\lambda} = M \right\}$$

heißt Bündelatlas. Die Abbildung $\varphi_x: E_x \to F, \varphi_x:= pr_2 \circ \varphi \mid E_x$ heißt Faserkarte. Sind (U,φ) und (V,ψ) Bündelkarten, so heißt die Abbildung

$$\omega: U \cap V \to \text{Diffeo}(F), x \mapsto \psi_x \circ \varphi_x^{-1}$$

der Bündelkartenwechsel zwischen φ und ψ .

Definition 2.9 (Bündelkarten für offene Teilmengen der Basis und Bündelatlas). Sei (E, π, M) eine lokal triviale Faserung. Für $U \subset M$ offen heißt $\varphi : E \mid U \to U \times F$ Bündelkarte und

$$\left\{ (U_{\lambda}, \varphi_{\lambda}) \mid (U_{\lambda}, \varphi_{\lambda}) \ \text{Bündelkarte} \ , \bigcup_{\lambda \in \Lambda} U_{\lambda} = M \right\}$$

heißt Bündelatlas.

Definition 2.11 (Faserkarte am Punkt x im Basisraum). Sind (U, φ) und (V, ψ) Bündelkarten, so heißt die Abbildung

$$\omega: U \cap V \to \text{Diffeo}(F), x \mapsto \psi_x \circ \varphi_x^{-1}$$

der Bündelkartenwechsel zwischen φ und ψ .

Definition 2.12 (Bündelkartenwechsel zwischen Bündelkarten).

Definition 2.13 (G-Faserbündel mit Liegruppen als Strukturgruppen).

Definition 2.14 (Prinzipalbündel).

Definition 2.16 ((Lokale) Schnitte in lokal trivialen Faserungen).

Definition 2.17 (Raum der differenzierbaren lokalen Schnitte).

Definition 2.37 (Bündelmetrik auf Totalraum).

Definition 2.40 (Vektorraumbündel von endlichem Typ).

Definition 2.43 (Bündelisomorphismus).

Definition 2.44 (Trivialisierung von Totalraum).

Definition 2.45 (Vektorraumbündelabbildung über diff. Abbildungen zw. Vektorraumbündeln).

Definition 2.46 (Vektorraumbündelisomorphismus).

Definition 2.48 (Induzierte Bündel durch Abbildungen).

Definition 2.54 (Induzierte Bündel bei Einbettungen von UMfk).

Definition 2.55 (Untervektorraumbündel).

Definition 2.63 (Reduktionen von Faserbündeln mit Strukturgruppe bzgl. abgeschlossener Untergruppe).