Algoritmos de Ordenação

ACH2002 - Introdução à Ciência da Computação II

Delano M. Beder

Escola de Artes, Ciências e Humanidades (EACH) Universidade de São Paulo

dbeder@usp.br

10/2008

Material baseado em slides dos professores Cid de Souza e Cândida da Silva

Problema

Ordenar um conjunto de n > 1 inteiros.

O problema da Ordenação

- Podemos projetar por indução diversos algoritmos para o problema da ordenação.
- Na verdade, todos os algoritmos básicos de ordenação surgem de projetos por indução sutilmente diferentes.

Delano M. Beder (EACH - USP)

Algoritmos de Ordenação

ACH2002

Delano M. Beder (EACH - USP)

Algoritmos de Ordenação

ACH2002

Ordenação por indução: paradigma incremental

Ordenação por indução: Divisão e conquista

OrdenaçãoIncremental(A, n)

Entrada: Vetor A de n números inteiros.

Saída: Vetor A ordenado.

- 1. **se** n == 1 **então**
- retorne
- se não
- <comandos iniciais>
- OrdenacãoIncremental(A, n 1)
- <comandos finais>
- 7. fim se
- 8. retorne

OrdenaçãoD&C(A, ini, fim)

Entrada: Vetor A de n números inteiros.

Saída: Vetor A ordenado.

01. n = fim - ini + 1

02. **se** n == 1 **então**

03. retorne

04. **se não**

<comandos iniciais: a divisão> (cálculo de q!) 05.

06. OrdenaçãoD&C(A, ini, q)

07. OrdenaçãoD&C(A, q + 1, fim)

08. <comandos finais: a conquista>

09. fim se

10. retorne

Delano M. Beder (EACH - USP) Algoritmos de Ordenação ACH2002 Delano M. Beder (EACH - USP)

Projeto por Indução Simples

Insertion Sort - Pseudo-código - Versão Recursiva

Hipótese de indução simples

Sabemos ordenar um conjunto de n-1 > 1 inteiros.

- Caso base: n = 1. Um conjunto de um unico elemento está ordenado.
- Passo da Indução (Primeira Alternativa): Seja S um conjunto de n > 2 inteiros e x um elemento qualquer de S. Por hipótese de indução, sabemos ordenar o conjunto S - x, basta então inserir x na posição correta para obtermos S ordenado.
- Esta indução dá origem ao algoritmo incremental *Insertion Sort* (Inserção Direta).

OrdenaçãoInserção(A, n)

Entrada: Vetor A de n números inteiros.

Saída: Vetor A ordenado.

- 1. se n > 2 então
- OrdenaçãoInserção(A, n 1)
- v = A[n-1]3.
- j = n 1
- enquanto (i > 0) e (A[i-1] > v) faça
- A[i] = A[j-1]6.
- i = i 1
- 8. A[i] = v

Delano M. Beder (EACH - USP)

Algoritmos de Ordenação

ACH2002

Delano M. Beder (EACH - USP)

Algoritmos de Ordenação

ACH2002

Insertion Sort - Pseudo-código - Iterativa

Insertion Sort - Análise de Complexidade

OrdenaçãoInserção(A, n)

Entrada: Vetor A de n números inteiros.

Saída: Vetor A ordenado.

- 1. para i = 1 até n 1 faça
- V = A[i]2.
- i = i 13.
- enquanto (i > 0) e (A[i-1] > v) faça
- A[i] = A[i-1]
- i = i 1
- A[i] = v

- Quantas comparações e quantas trocas o algoritmo Insertion Sort executa no pior caso?
- Tanto o número de comparações quanto o de trocas é dado pela recorrência:

$$T(n) = \left\{ egin{array}{ll} 0 & ext{se} & n=1 \ T(n-1) + n & ext{caso contrário} \end{array}
ight.$$

• Portanto, $\Theta(n^2)$ comparações e trocas são executadas no pior caso.

Projeto por Indução Simples

Selection Sort - Pseudo-código - Versão Recursiva

Hipótese de Indução Simples:

Sabemos ordenar um conjunto de $n-1 \ge 1$ inteiros.

- Caso base: n = 1. Um conjunto de um unico elemento está ordenado.
- Passo da Indução (Segunda Alternativa): Seja S um conjunto de n ≥ 2 inteiros e x o menor elemento de S. Então x certamente é o primeiro elemento da seqüência ordenada de S e basta ordenarmos os demais elementos de S. Por hipótese de indução, sabemos ordenar o conjunto S − x e assim obtemos S ordenado.
- Esta indução dá origem ao algoritmo incremental Selection Sort (Seleção Direta)

OrdenaçãoSeleção(A, ini, fim)

Entrada: Vetor A de n números inteiros e os índices de início e término da següência a ser ordenada.

Saída: Vetor A ordenado.

- 1. se ini < fim então
- $2. \quad min = ini$
- 3. para j = ini + 1 até fim faça
- 4. se A[j] < A[min] então
- 5. $\min = j$
- 6. t = A[min]
- 7. A[min] = A[ini]
- 8. A[ini] = t
- 9. OrdenaçãoSeleção(A, ini + 1, fim)

Delano M. Beder (EACH - USP)

Algoritmos de Ordenação

ACH2002

Delano M. Beder (EACH - USP)

Algoritmos de Ordenação

ACH2002

0 / 16

Selection Sort - Pseudo-código - Versão Iterativa

Selection Sort - Análise de Complexidade

OrdenaçãoSeleção(A, n)

Entrada: Vetor A de n números inteiros.

Saída: Vetor A ordenado. 1. para i = 0 até n - 2 faça

- 2. min = i
- 3. para j = i + 1 até n 1 faça
- 4. se A[i] < A[min] então
- 5. $\min = j$
- 6. t = A[min]
- 7. A[min] = A[i]
- 8. A[i] = t

- Quantas comparações e quantas trocas o algoritmo *Insertion Sort* executa no pior caso ?
- O número de comparações é dado pela recorrência:

$$T(n) = \left\{ egin{array}{ll} 0 & ext{se} & n = 1 \ T(n-1) + n & ext{caso contrário} \end{array}
ight.$$

• Portanto, $\Theta(n^2)$ comparações são executadas no pior caso.

Selection Sort - Análise de Complexidade

Projeto por Indução Simples

• Já o número de trocas é dado pela recorrência:

$$T(n) = \left\{ egin{array}{ll} 0 & ext{se} & n = 1 \ T(n-1) + 1 & ext{caso contrário} \end{array}
ight.$$

- Portanto, $\Theta(n)$ trocas são executadas no pior caso.
- Apesar dos algoritmos Insertion Sort e Selection Sort terem a mesma complexidade assintótica, em situações onde a operação de troca é muito custosa, é preferível utilizar Selection Sort.

• Ainda há uma terceira alternativa para o passo da indução.

- Passo da Indução (Terceira Alternativa): Seja S um conjunto de n ≥ 2 inteiros e x o maior elemento de S. Então x é certamente o último elemento da seqüência ordenada de S e basta ordenarmos os demais elementos de S. Por hipótese de indução, sabemos ordenar o conjunto S − x e assim obtemos S ordenado.
- Em princípio, esta indução dá origem a uma variação do algoritmo Selection Sort.
- No entanto, se implementamos de uma forma diferente a seleção e o posicionamento do maior elemento, obteremos o algoritmo Bubble Sort.

Delano M. Beder (EACH - USP)

Algoritmos de Ordenação

ACH2002

.

Delano M. Beder (EACH - USP)

Algoritmos de Ordenação

ACH2002

.

Bubble Sort - Pseudo-código - Versão Iterativa

Bubble Sort - Análise de Complexidade

BubbleSort(A, n)

Entrada: Vetor A de n números inteiros.

Saída: Vetor A ordenado.

1. para i = n - 1 decrescendo até 1 faça

2. para j = 1 até i faça

3. se A[i-1] > A[i] então

4. t = A[i-1]

 $5. \qquad A[i-1] = A[i]$

6. A[i] = t

- Quantas comparações e quantas trocas o algoritmo Bubble Sort executa no pior caso ?
- Tanto o número de comparações quanto o de trocas é dado pela recorrência:

$$T(n) = \left\{ egin{array}{ll} 0 & ext{se} & n = 1 \\ T(n-1) + n & ext{caso contrário} \end{array}
ight.$$

- Portanto, Θ(n²) comparações e trocas são executadas no pior caso.
- Ou seja, algoritmo Bubble Sort executa mais trocas que o algoritmo Selection Sort!