Введение в цифровую электронику

Чем мы будем заниматься

- Изучаемый инструмент ПЛИС типа FPGA
- Область исследования цифровая электроника

Цифровая электроника

- Оперирует логическим нулем и единицей
- Реализуется при помощи CMOS транзисторов на физическом уровне
- Описывается логическими функциями:

Конъюнкция	Дизъюнкция	Сложение по модулю
$a b a \wedge b$	$a \mid b \mid a \vee b$	$a \mid b \mid a \oplus b$
0 0 0	0 0 0	0 0 0
0 1 0	0 1 1	0 1 1
1 0 0	1 0 1	1 0 1
1 1 1	1 1 1	1 1 0

Логические элементы AND и OR

Вход Х1	Вход Х2	Выход Ү
0	0	0
1	0	0
0	1	0
1	1	1

Вход Х1	Вход Х2	Выход Ү
0	0	0
1	0	1
0	1	1
1	1	1

3 Input AND Gate

	INPUTS	OUTPUT	
W	×	Υ	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0

TRUTH TABLE

3 Input OR Gate

INPUTS		OUTPUT	
W	X	Y	Z
0	0	0	0
0	O	1	1
o	1	0	1
0	1	1	1
1	O	0	1
1	0	1	1
1	1	0	1
1	1	1	1

TRUTH TABLE

Логические элементы XOR, INV и BUF

Вход Х1	Вход Х2	Выход Ү
0	0	0
1	0	1
0	1	1
1	1	0

Вход Х	Выход Ү
0	1
1	0

Input	Output
0	0
1	1

Типы логический элементов

- Комбинационные: AND, OR, XOR, INV, BUF, NAND, NOR
- Последовательностные (триггеры): FLIP-FLOP, LATCH

SR-LATCH и D-LATCH

S	R	Q	Q	
0	0	latch	latch	
0	1	0	1	
1	0	1	0	
1	1	0	0	- INVALID

Ε	D	Q	Q
0	0	latch	latch
0	1	latch	latch
1	0	0	1
1	1	1	0

D-FLIP-FLOP

Критические пути

• У комбинационной логики есть задержка между изменением значения на входе и на выходе и изменение значения происходит за конечное время

tr = Rise transition time

tf = Fall transition time tphl = Propagation delay high-low

tplh = Propagation delay low-high

Что такое ПЛИС

Этапы разработки ИС

- САПР система автоматизации производства
- HDL hardware description language
- RTL register transfer level
- Синтез этап преобразования RTL в gate-level netlist
- PLACEMENT этап расположения физических примитивов на кристалле
- ROUTING этап соединения физических примитивов

Задержки элементов

Задержки распространения

ПЛИС

- ПЛИС (PLD)программируемая логическая интегральная схема
- FPGA (ППВМ) field programmable gate array, программируемая пользователем вентильная матрица

Зачем

- Используют в конечных продуктах, разработка ИС для которых не оправдана.
 - Быстрее чем МК.
- Прототипирование будущих ИС.