Übungsblatt 06 Stochastik 2

Abgabe von: Linus Mußmächer

31. Mai 2023

6.1 Zentralübung

- (i) Es ist $p_{X|X}(x|x) = 1$, also $\mathbb{E}[X|X = x] = x$ und damit $g: X(\Omega) \to \mathbb{R}, x \mapsto x \cdot 1_{X(\Omega)}$. Es folgt $\mathbb{E}[X|X](\omega) = g(X(\omega)) = X(\omega)$ und damit $\mathbb{E}[X|X] = X$.
- (ii) Es ist $p_{X|Y}(x|y) = \mathbb{P}(X = x)$ aufgrund der Unabhängigkeit. Somit ist $\mathbb{E}[X|Y = y] = \mathbb{E}[X]$ sowie $g: Y(\Omega) \to \mathbb{R}, y \mapsto \mathbb{E}[X]$ konstant. Es folgt $\mathbb{E}[X|Y](\omega) = g(Y(\omega)) = \mathbb{E}[X]$ und damit $\mathbb{E}[X|Y] = \mathbb{E}[X]$.
- (iii) Aus (i) folgt $\mathbb{E}[X+Y|X+Y]=X+Y$. Weiterhin ist, da X und Y gleichverteilt sind, $\mathbb{E}[X|X+Y]=\mathbb{E}[Y|X+Y]$. Zusammen mit der Linearität des (bedingten) Erwartungswertes liefert dies

$$\mathbb{E}[X+Y|X+Y] = \mathbb{E}[X|X+Y] + \mathbb{E}[Y|X+Y] = 2 \cdot \mathbb{E}[X|X+Y]$$

$$\Leftrightarrow \mathbb{E}[X|X+Y] = \frac{1}{2}\mathbb{E}[X+Y|X+Y] = \frac{1}{2}(X+Y)$$

6.2

6.3

(i) Wir setzen $\Omega = \{0, 1\}^3$ sowie

$$Z: \Omega \to \mathbb{R}(x, y, z) \mapsto x + y + z$$
 (6.1)

$$G: \Omega \to \mathbb{R}(x, y, z) \mapsto x + \frac{y+z}{2}$$
 (6.2)

d.h. die erste Komponente von $\omega \in \Omega$ beschreibt, ob die 1-Euro-Münze auf Zahl gefallen ist und die zweite und dritte Komponente betrachtet analog die 50-Cent-Münzen. Da alle acht Elementarereignisse in Ω gleich wahrscheinlich sind, gilt für die Verteilungen:

$$P(Z = 0) = \frac{1}{8} \qquad A_0 = \{(0, 0, 0)\}$$

$$P(Z = 1) = \frac{3}{8} \qquad A_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

$$P(Z = 2) = \frac{3}{8} \qquad A_2 = \{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$$

$$P(Z = 3) = \frac{1}{8} \qquad A_3 = \{(1, 1, 1)\}$$

sowie

$$P(G=0) = \frac{1}{8}$$
 $B_0 = \{(0,0,0)\}$

$$P(G = 0.5) = \frac{2}{8} \qquad B_{0.5} = \{(0, 1, 0), (0, 0, 1)\}$$

$$P(G = 1) = \frac{2}{8} \qquad B_{1} = \{(1, 0, 0), (0, 1, 1)\}$$

$$P(G = 1.5) = \frac{2}{8} \qquad B_{1.5} = \{(1, 1, 0), (1, 0, 1)\}$$

$$P(G = 2) = \frac{1}{8} \qquad B_{2} = \{(1, 1, 1)\}$$

und für den Erwartungswert folgt

$$\mathbb{E}[Z] = \frac{1}{8} \cdot 0 + \frac{3}{8} \cdot 1 + \frac{3}{8} \cdot 2 + \frac{1}{8} \cdot 3 = \frac{12}{8} = \frac{3}{2}.$$

(ii) Z=2 wird genau für die Elementarereignisse in der Menge A_2 realisiert. Wir betrachten also jeweils die Schnittmenge der B-Mengen mit A_2 :

$$P(G = 0|Z = 2) = \frac{0}{3} \qquad B_0 \cap A_2 = \{\}$$

$$P(G = 0.5|Z = 2) = \frac{0}{3} \qquad B_{0.5} \cap A_2 = \{\}$$

$$P(G = 1|Z = 2) = \frac{1}{3} \qquad B_1 \cap A_2 = \{(0, 1, 1)\}$$

$$P(G = 1.5|Z = 2) = \frac{2}{3} \qquad B_{1.5} \cap A_2 = \{(1, 1, 0), (1, 0, 1)\}$$

$$P(G = 2|Z = 2) = \frac{0}{3} \qquad B_2 \cap A_2 = \{\}$$

Der zugehörige Erwartungswert ist damit $\mathbb{E}[G|Z=2]=1\cdot\frac{1}{3}+\frac{3}{2}\cdot\frac{2}{3}=\frac{4}{3}.$

- (iii) Es ist $A_0 = \{(0,0,0)\}$. Dieses Ereignis ist nur in B_0 enthalten, womit $\mathbb{E}[G|Z=0]=0$ folgt. Ebenfalls gilt $A_3 = \{(1,1,1)\}$. Auch hier liegt nur ein einziges Ereignis vor, dass nur in B_2 enthalten ist. Somit folgt $\mathbb{E}[G|Z=3]=2$. Analog zur (ii) lässt sich $\mathbb{E}[G|Z=1]=\frac{2}{3}$ nachrechnen. Damit gilt für alle möglichen Realisierungen von Z tatsächlich $\mathbb{E}[G|Z=z]=\frac{2}{3}z$, also $\mathbb{E}[G|Z]=\frac{2}{3}Z$.
- (iv) Die Tower-Rule besagt nun

$$\mathbb{E}[G] = \mathbb{E}[\mathbb{E}|\mathbb{Z}] = \mathbb{E}[\frac{2}{3}Z] = \frac{2}{3}\mathbb{E}[Z] = \frac{2}{3} \cdot \frac{3}{2} = 1.$$

6.4