Design and Analysis of Algorithms: Lecture 8

Ben Chaplin

Contents

1	Problem	1
	1.1 Dictionary problem	
2	Universal Hashing	2
3	Dot product hash family	2

1 Problem

1.1 Dictionary problem

The dictionary problem asks for a data structure with the following requirements:

- Maintain a dynamic set of items (where each item has a distinct key)
- Support:
 - INSERT(item)
 - DELETE(item)
 - SEARCH(key)

1.2 Hashing

"Hashing" the items' keys in a hash table gives O(1) time per operation. We will use the following variables with regards to a hash table:

- u: number of possible keys
- ullet n: number of items currently in the table
- m: size of the table
- $h:\{0,1,\ldots,u-1\} \to \{0,1,\ldots,m-1\}$ the hash function

With chaining, hashing takes $\Theta(1+\frac{n}{m})$ time. The proof of this fact assumes **simple uniform hashing**.

Definition. A function provides **simple uniform hashing** when, for two random distinct keys k_1, k_2 , the probability the function outputs the same hash is $\frac{1}{m}$.

But what kind of hash functions guarantee this, no matter the universe of keys?

2 Universal Hashing

Definition. Let \mathcal{H} be a set of hash functions. \mathcal{H} is **universal** if for any two distinct keys k_1, k_2 , the probability a random hash function $h \in \mathcal{H}$ outputs the same hash is at most $\frac{1}{m}$.

Note that contrary to the definition of simple uniform hashing, this definition includes a probability over all hash functions. Simple uniform hashing was defined by a probability over all pairs of distinct keys.

Theorem 1. Let \mathcal{H} be universal. For n arbitrary distinct keys and a random $h \in \mathcal{H}$, the expected number of colliding keys is at most $1 + \frac{n}{n}$.

Proof. Take keys k_1, \ldots, k_n . Define an "indicator" random variable:

$$I_{i,j} = \begin{cases} 1 & \text{if } h(k_i) = h(k_j) \\ 0 & \text{else} \end{cases}$$

$$\begin{split} E[\text{number of keys with the same hash as } k_i] &= E\left[\sum_{i\neq j} I_{i,j}\right] + I_{i,i} \\ &= E\left[\sum_{i\neq j} I_{i,j}\right] + 1 \\ &= \left(\sum_{i\neq j} E[I_{i,j}]\right) + 1 \\ &= \left(\sum_{i\neq j} Pr(I_{i,j} = 1)\right) + 1 \\ &\leq \left(\sum_{i\neq j} \frac{1}{m}\right) + 1 \qquad \text{by universality} \\ &= \frac{n-1}{m} + 1 \end{split}$$

3 Dot product hash family

Definition. Assume m is prime and $u = m^r$ for some $r \in \mathbb{Z}^+$. For each key k, define a vector $\bar{k} = \langle k_0, k_1, \ldots, k_{r-1} \rangle$ to be the digits of k in base m. The **dot product hash family** is defined:

$$\mathcal{H} = \left\{ h_a(k) = (\bar{a} \cdot \bar{k}) \mod m \mid a \in \{0, \dots, u - 1\} \right\}$$

Note here that the hash functions in \mathcal{H} are completely determined by the choice of a.

Theorem 2. The dot product hash family is universal.

Proof. Let $k \neq k'$ be keys. Then, some digit of \bar{k} and \bar{k}' differs, say $k_d \neq k'_d$.