Lecture 0 - Introduction

Al in Genetics ZOO6927 / BOT6935 / ZOO4926

- Al in Genetics Fall 2024
- ZOO6927 / BOT6935 / ZOO4926
- Class Number 29890 / 29408 / 29411
- Tuesday | (3:00 PM 4:55 PM)
- Thursday | (3:00 PM 3:50 PM)
- Room: FAC127

- Zoom link for remote students: https://ufl.zoom.us/j/6424255698
- Please attend in person if you are on the main campus

- Juannan Zhou, Assistant Professor
- Department of Biology
- E-mail: juannanzhou@ufl.edu
- Office: Bartram 122
- Office Hours: Thursday 4:00-5:00 PM

Communication

- Course Slack channel:
- Please send me your email with title "Slack AI in Genetics"
- Course site: https://github.com/juannanzhou/Al-in-genetics

Course objective

- Comprehensive overview of applications of modern machine learning techniques in various areas of genetics.
- Provide opportunities for students to
 - integrate machine learning into their own research
 - learn critical computational and statistical skills that will hopefully broaden the student's career path.

Deliberables

- Objectives of the course will be achieved if, by its conclusion, students can:
- Understand the basic concepts and mathematical/statistical theory behind modern machine learning methods
- Understand 80% of most research papers in fields relevant to the student's own research,
- Grasp the basic ideas of technical machine learning papers

Deliberables

- Develop new research questions well-suited for applying machine learning methods to improve their current studies; or identify existing questions where machine learning offers a potentially superior alternative to the current approaches.
- Identify the right machine learning frameworks and tools for answering these questions
- Build machine learning models to solve specific questions using coding languages such as Python
- Get the model to work by using different model architectures and training methods

Topics

 The course will cover applications of Al to genomics, gene expression and regulation, protein design and evolution, molecular evolution, disease/cancer genetics, population, and quantitative genetics.

Course format

- Unit 1: Concise introduction to the mathematical and statistical foundations of modern machine learning.
- Unit 2: Student-led paper discussions on different areas of AI in genetics.

Textbook (recommended)

- Probabilistic Machine Learning: An Introduction by Kevin Murphy. MIT Press, March 2022.
- Free pdf: https://github.com/probml/pmlbook/releases/latest/download/book1.pdf

Exam

- One mid-term exam. The grade of the mid-term exam will account for 40% of the student's final grade.
- Format of the exam will be take-home and consists of of conceptual and practical questions the student needs to solve using their preferred coding language.

Student-led paper discussion

- Each student will be responsible for leading an in-class discussion on one of the assigned readings.
- This will account for 10% of final grade.
- Sign up for a paper from a curated list
- Or nominate a paper!
- Sign up for/nominate a paper here
- https://docs.google.com/spreadsheets/d/1Auv1KecDHTh7p3GDAcKO bnJc-mv3aDeWkuo2J2ONzec/edit?usp=sharing

Final project

- •Each student is expected to complete a final project, which will make up **50%** of the student's final grade.
- •Students should apply machine learning techniques to solve a biological problem, preferably directly relevant to their thesis work.
- •The student will present their results in class and turn in a term paper. The paper should be similar in format to a conference publication (e.g. https://proceedings.mlr.press/v240/).

Final project

- •Student's prior fluency in coding/ML and stage in their training will be taken into account
- •The most important goal is to get you started working on a project that will lead to a publication

Date	Week	Subject	Topics
8/22/24	0	Course introduction; Mathematical foundation	Linear algebra
8/27/24	1	Mathematical foundation	Linear algebra
8/29/24	1	Mathematical foundation	Probability
9/3/24	2	Mathematical foundation	Probability
9/5/24	2	Machine learning basics	Multi linear perceptron; Backprop; Autodiff; Gradient descent
9/10/24	3	Machine learning basics	Training neural networks; Regularization
9/12/24	3	Machine learning basics	Convolutional neural networks
9/17/24	4	Machine learning basics	Language models; RNNs; Transformers
9/19/24	4	Machine learning basics	Graphical neural networks; Generative models
9/24/24	5	Machine learning basics	Generative models
9/26/24	5	Machine learning basics	Non-parametric methods; Gaussian processes
10/1/24	6	Paper discussion	Bioinformatics
10/3/24	6	Paper discussion	Proteins
10/8/24	7	Paper discussion	Proteins
10/10/24	7	Paper discussion	Gene expression and regulation
10/15/24	8	Paper discussion	Gene expression and regulation
10/17/24	8	Paper discussion	Genomics
10/22/24	9	Paper discussion	Genomics
10/24/24	9	Paper discussion	Molecular Evolution
10/29/24	10	Paper discussion	Molecular Evolution
10/31/24	10	Paper discussion	Population Genetics
11/5/24	11	Paper discussion	Population Genetics
11/7/24	11	Paper discussion	Quantitative Genetics; Plant/Animal Breeding
11/12/24	12	Paper discussion	Quantitative Genetics; Human diseases
11/14/24	12	Paper discussion	Generative models in genetics
11/19/24	13	Student presentations	
11/21/24	13	Student presentations	
11/26/24	14	Thanksgiving break	
11/28/24	14	Thanksgiving break	
12/3/24	15	Student presentations	

Al is Expansive

ML / DL Comparison

Machine Learning

- 1990's Present
- Statistics & Math
- Sci-Kit Learn / RAPIDS

Deep Learning

- 2010 Present
- Artificial Neuron
- Tensorflow / Pytorch

Deep Learning Improved Image Classification 10% in 1year

Al Has a Long History of Being "The Next Big Thing"...

Timeline of Al Development

- 1950s-1960s: First Al boom the age of reasoning, prototype Al developed
- 1970s: Al winter I
- 1980s-1990s: Second Al boom: the age of Knowledge representation (appearance of expert systems capable of reproducing human decision-making)
- 1990s: Al winter II
- 1997: Deep Blue beats Gary Kasparov
- 2006: University of Toronto develops Deep Learning
- 2011: IBM's Watson won Jeopardy
- 2016: Go software based on Deep Learning beats world's champions

Three major paradigm shifts: Data, Genomes, Al

Hypothesis-driven research:

Formulate hypothesis → gather data

Lots of thinking before → target study

Problem: Highly biased, little novelty

Data-driven research:

Gather data → Ask questions later Systematic datasets, build resources, massive data sharing, comprehensive

Correlation-based analysis:

More Coffee ⇔ Better Health More Chocolate ⇔ More Nobel Prizes 'Epidemiology' all about correlations

Genetics provides causality:

Genetic variants → Disease outcome
Polygenic risk score → Causal factors
Perturbation experiments → Confirm

Classical Data Analysis:

New methodology for each problem Human scientist does all the 'thinking' Few parameters, targeted models

Generative Al+Deep Learning

Foundation models, Multi-Modality
Representation learning, hierarchical
Truly 'understand' concepts → insights

•https://doi.org/10.10 38/s41588-023-01465-0

Fig. 1: An illustrative diagram of PRS-Net. **a** The proposed framework is based on summary statistics, including variants, risk alleles, P-values, and effect sizes derived from GWAS. **b** A gene-gene interaction network is constructed based on the protein-protein interaction network. Gene-level PRSs are calculated with the C+T method to serve as the node features for the nodes within the network. **c** A graph neural network is employed to update node features via message passing and subsequently an attentive readout module is applied to provide interpretable PRS predictions. **d** The PRS-Net can be applied for disease prediction and disease-related gene/GGI identification.