Lecture Notes for Neural Networks and Machine Learning

Cross Entropy and Value Iteration

Logistics and Agenda

- Logistics
 - Grading Update
 - Class schedule
- Agenda
 - Finish: Cross Entropy Method
 - Value Iteration (and demo)
 - Tabular Q-Learning
 - Deep Q-Learning (next time?)

Last Time

Edward Thorndike

B.F. Skinner

Bernard Widrow

Ted Hoff

Marvin Minsky

Claude Shannon

Cross Entropy Method

Direct Policy Exploration and Optimization

- Instead of defining what is optimal, just setup a comparison of different actions we might take (policy)
- A **policy** is defined as $\pi(a, s) = P(a_t = a \mid s_t = s)$
 - Given the current state, we have a certain probability of selecting each action
 - Action selection is **probabilistic**, but easy to discover deterministic actions (set one action to 1.0, all others to 0.0)
- Try different policies, select one with best average reward
- First try: Cross Entropy Method

Cross Entropy Method

- Create a random neural network, with output p(a|s)
- Let it interact with the environment (randomly)
 - For some set of episodes (e.g., 20)
 - Use network output to sample from possible actions
 - Run episode to completion
 - Repeat
- Calculate reward for each episode
- Keep best episodes (some percentile, e.g., best five)
- For the given best episodes, develop loss function incentivizing the actions taken based upon the input observations

Repeat until desired performance!

Cross Entropy Method

- Model based or Model Free?
 - Model Free (no assumptions of problem)
- Value or Policy Based?
 - Policy Based (randomly sample actions based on policy)
- On-policy or Off-Policy?
 - On-Policy (need to interact with environment to get better)

Mathematical Motivation

 If we have the optimal policy p(x) and a reward function H(x), then maximize

$$\mathbf{E}_{x \leftarrow p(x)}[H(x)] = \mathbf{E}_{x \leftarrow q(x)}[\frac{p(x)}{q(x)}H(x)]$$

- We can approximate the distribution by: $\frac{1}{N} \sum_{i} \frac{p(x_i)}{q(x_i)} H(x_i)$
- Proven that this is optimized when KL(q(x) || p(x)H(x)) is minimized. But its intractable, so we can only optimize upper bound ... minimizing (neg) cross entropy of samples

$$\pi_{k+1}(a \mid s) = \underset{\pi_k}{\operatorname{arg max}} \mathbf{E}_{z \leftarrow \pi_k} [\mathbf{1}_{R(z) > \psi}^{\text{Performance}} \log \pi_k(a \mid s)]$$

min CrossEntropy(neural_net_actions, best_actions)

33

Review: Basics of Cartpole

```
import gym
if name == " main ":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()
    while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break
```


Action Space: One input, [0, 1] pull left or pull right

Obs Space: Dynamic state variables (continuous and four dimensional)

End: When more than 15 degrees off or too far from center

Reward: +1 for each time step

Another Example: Frozen Lake

- State: Every square in grid
- Action: Move to make (I,r,u,d), with probability
- Reward: Goal, Death
- Policy: Given state, where should we move?
- Optimal Policy:

$$\pi^* = \arg \max_{\pi} \mathbf{E} \left[\sum_{k} \gamma^k R_{t+k+1} | \pi \right]$$

Random Policy

Another Policy

Another Policy

35

Cross Entropy Reinforcement Learning

M. Lapan Implementation for CartPole and Frozen Lake

```
Follow Along: 08a_Basics_Of_Reinforcement_Learning.ipynb
```


Markov Building Blocks

HAVE YOU TRIED SWIFTKEY?
IT'S GOT THE FIRST DECENT
LANGUAGE MODEL I'VE SEEN,
IT LEARNS FROM YOUR SMS/
EMAIL ARCHIVES WHAT WORDS
YOU USE TOGETHER MOST OFTEN.

SPACEBAR INSERTS ITS BEST GUESS.

50 IF I TYPE "THE EMPI" AND
HIT SPACE THREE TIMES, IT TYPES
"THE EMPIRE STRIKES BACK."

WHAT IF YOU MASH SPACE

I GUESS IT FILLS IN YOUR MOST LIKELY FIRST WORD, THEN THE WORD THAT USUALLY FOLLOWS IT... SO IT BUILDS UP YOUR

Markov Processes (MP)

- Definition: Any process that can be explained (or simplified) through a sequential set of states that depend only on the previous state
- Practical Meaning: For N states, there will be the probability of transition to any other state, encoded through an NxN transition matrix of discrete probabilities
- State sequences are not deterministic, they are sampled from these distributions
- Despite simplicity, MP can model a number of real processes with good enough precision

Next State, st+1								
Current State, st	0.1	0.2	0.1	0.6	0.0			
	0.9	0.0	0.1	0.0	0.0			
	0.0	0.4	0.0	0.4	0.2			
	0.0	0.4	0.2	0.0	0.4			
	0.0	0.0	0.6	0.0	0.4			

MP Example from Maxim Lapan

	Sunny'	Rainy'
Sunny	0.8	0.2
Rainy	0.6	0.4

Sun+Summer			•••	
Rainy+Summer				
Sun+Fall		ling One Vari		
Rainy+Fall	Drast	ic Effect on S	State Spa	ace Size
Sun+Else				
Rainy+Else				