

	OPERATIONS.
	$\bar{A} = U - A$ complement
	AUB = Ex 1 REA or REB or both 3
	ANB = Ex I xeA and xeB }
ex	Prove AU(BBC) = (AUB) n (AUC)
	using properties of logics
	let $x \in Au(Bnc)$
	LET LE AUGNE)
	xeA or xeBnc
	REA V REBUC
	REA V (REB A REC)
	using distributivity of logical or and and
	(xEA V XEB) A (XEA V XEC)
	RHS = REAUB A REAUC
	= (xeA v xeB) ~ (xeA v xeC)
	i. AU(Bnc) = (AUB) n (AUC).

	Classmat	e
	Date 15.8.20	19
6	Page 3	

de morgan's lacus equivalent for set

AUB = ANB

ANB = AUB

ex prove Au (B, nB, n...Bn) = (AUB,) n (AUB,) n...

proof by induction

(ase (n=2) Au(B, nB2) = (AUB,) n (AUB2)

assume that the rule is true for K

AU (BINB21... BK) = (AUB,) n (AUB) n... (AUBK).

PATD required to prove this is true for K+1

AU (BINB2 n ... Bk+) .

inductive assumption:

= (AU (B, nB, n... Bk)) n (AUBKH)

= (AUB) & (AUB) 2... (AUB) A (AUBLE)

distributivity

therefore by induction it is true for any natural number no reiterated link between sets & logic.

PRINCIPLE OF INCLUSION EXCLUSION

Countring principle

andinality of set

= no. of elements in the set

= 1A1

1AUB = |A| + |B| - |AnB| Inck.

BUCI = [A] + [B] + [C] - [ANB] - [ANC] - [BNC]
+ [ANBNC]
. general.

how many ways to give back quiz so that no one gets
back their own quiz.

ex 12 people, of which

lo smart people, 5 cs students

how many are both smart and cs students

$$|A| = \begin{bmatrix} 1000 \\ 3 \end{bmatrix} = 333$$

$$|B| = \begin{bmatrix} 1000 \\ 5 \end{bmatrix} = 200$$

$$|675|$$

$$|A \cap B| = \frac{1000}{15} = 66 \qquad |A \cap C| = \frac{1000}{35} = 28$$

Date 15.8.2019
Page &

| An Bnc | = [1000] = 9

· | AUBUC | = | A | + | B | + | C | + - | ANR | - | ANC |

- IBNC + IANBAC

= 333 + 200 + 142 - 66 - 47 - 28 + 9

= 543

FUNCTION

consist of a set A, a set B

definition f: A >B

and a subset G(b) of AXB

graph of Gunction

member of exactly one ordered pair belonging to G(f)

G(4) = set of all ordered pairs

G(1)= {a,b) (a,b) e AxB}

G(6) C AXB

- 11	
	predicate logic problem franslate to english equivalent. relations of items
	teacher of DME Student of DME
	1st order most 2nd order higher order
	PROLOG. Ly uses producate logic Statement about word used as predicate.
dan	a function that is both one-to-one (injection) and onto (surjection) is called a one-to-one correspondence (bijection).
albn	real-valued function den complex-valued function La codomain = R La codomain = C
olfn	integer - valued function (> codomain = Q

$$x = 1 + \sqrt{1 + 4r}$$

pre-image for r, when r>o

$$ex - r = 2$$
 $x = 1 + \sqrt{9} = 2$

given any value from codomain, one can find a pre-image.

it is onto function.

(iii) find f(S) when S= [-1, 0] S = & -1, 1, 03

SER A

6(2-1, 1, 03) = 8-1, 03 - don't repeat

(CR) = PR (since f is onto)

completely exhausts the radomain.