微分積分続論(ベクトル解析)

鈴木 咲衣

平成27年度前期

演習問題9

- 1. [?, 章末問題 2.9] 曲面 $(3\sin\theta\cos\varphi,2\sin\theta\sin\varphi,\cos\theta),\,0\leq\theta\leq\pi,0\leq\varphi\leq2\pi,$ を考える.
 - (a) この曲線の概形を描け.
 - (b) $\theta = \frac{\pi}{3}, \varphi = \frac{\pi}{4}$ における点での単位法線ベクトルを求めよ.
- 2. [?, 問題 2.48] 曲面 $m{r}(s,t)=(s,t,e^{s-t})$ の上の点 $m{r}(1,0)$ においての接平面の式を求めよ.
- 3. [?, 問題 7.12] 次のベクトル場 V の回転を求め,さらに原点において, $\underline{\Psi}$ 位ベクトル u の方向を軸とする回転を求めよ.
 - (a) $V = (y + z, xz, x^{2y}), \quad u = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0),$
 - (b) $V = (\sin x + \sin z, \cos y + z \cos x, x \sin z), \quad u = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0),$
 - (c) $\mathbf{V} = (e^{-y}, e^{-z}, e^{-x}), \quad \mathbf{u} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}).$
- 4. [?, 問題 8.16] 球面 $x^2+y^2+z^2=1$ の $z\geq 0$ の部分を Σ とし, $m{V}=(y,0,x^2+z^2)$ とする.このとき $\int_\Sigma {
 m rot} m{V}\cdot dm{S}$ を求めよ.ただし Σ の表は $x^2+y^2+z^2>1$ の側とする.
- 5. [?, 章末問題 8.9] 回転放物面 $z=x^2+y^2$ の $z\leq 1$ の部分を Σ とし,領域 $\{(x,y,z)\mid z< x^2+y^2\}$ の方を表とする.このときベクトル場 ${m V}=(-y+z,xz,e^x)$ に対して $\int_\Sigma {
 m rot} {m V}\cdot d{m S}$ を求めよ.

演習問題 9 解答

- 1. (a)
- (b)
- 2.
- 3. (a)
 - (b)
 - (c)
- 4.
- 5.