

Data Science | 30 Days of Machine Learning | Day - 4

Educator Name: Nishant Dhote

Support Team: **+91-7880-113-112**

#Data Gathering

- 1. Working with CSV Files Day 3
- 2. Working with JSON/SQL Day 3

#Framing a Machine Learning Problem

#Data Gathering

- 3. Fetching data from an API
- 4. Fetching data using web scraping

→ Framing a Machine Learning Problem CUSTICS

Framing an ML problem

After verifying that your problem is best solved using either a predictive ML or a generative Al approach, you're ready to frame your problem in ML terms. You frame a problem in ML terms by completing the following tasks:

- Define the ideal outcome and the model's goal.
- Identify the model's output.
- Define success metrics.

Read Article: https://developers.google.com/machine-learning/problem-framing/ml-framing

- 1. Business problem to ML problem
- 2. Type of problem
- 3. Current solution
- 4. Getting data
- 5. Metrics to measure
- 6. Online Vs Batch
- 7. Check assumptions

Case Study Netflix - https://tinyurl.com/4mscpz2t

Step 1: Transaction Business problem to ML problem: Increases our revenue and decrease the churn rate.

Step 2: Identify the problem: Identify the customers who leave the platform. Subscription Discount | UI Not Navigate | Content Demand | Internet Issue Sentiment score

Step 3: Current solution: Overall churn rate prediction in last year review.

Step 4: Getting Data: We required exact date | Watch Time | Search Result Matching | Show Publish Date | Recommendation Click | Left Show in Middle Combine Discuss With - Data Engineering team & create a warehouse.

Step 5: Metrix to measure: Follow check points and rectify the direction of correct Metrix.

Step 6: Online Vs Batch ML: Focus on training model and retraining model. OLTP system in data warehouse Setup: OLTP, or online transactional processing, enables the real-time execution of large numbers of database transactions by large numbers of people, typically over the internet. A database transaction is a change, insertion, deletion, or query of data in a database.

Step 7: Check assumptions: Check one machine learning model work as all condition region and country.

3. Fetching data from an API

What is the API and how it works?

API stands for "application programming interface." An API is essentially a set of rules that dictate how two machines talk to each other. Some examples of API-based interactions include a cloud application communicating with a server, servers pinging each other, or applications interacting with an operating system.

API receives a request

Similar to how a waiter takes an order from a customer to relay to the chef

API collects and processes a response, then returns with that response

As a waiter would return the completed meal from the chef to the customer

Website we use for fetching API

TMDB: https://www.themoviedb.org/

TMDB API: https://developer.themoviedb.org/reference/movie-top-rated-list

Generate API Key after login and Paste in this link for JSON File

https://api.themoviedb.org/3/movie/top_rated?api_key=<<api_key>>&lang
age=en-US&page=1

Use tool for understand the JSON File: https://jsonviewer.stack.hu/

Our objective: we want to create data set in python where row and column 8974*6

ID | Title | Realised Date | Overview | Popularity | Vote average

Python Code
Day 4 Machine Learning iScale
import pandas as pd
response = Industries
requests.get('https:/ <mark>/api.t</mark> hemoviedb.org/3/movie/top_rated?api_key=5bc643f
664c8c66e7edce11b <mark>77c7</mark> 214e&language=en-US&page=1')
Hands
df =
<pre>pd.DataFrame(response.json()['results'])[['id','title','release_date','overview','po pularity','vote_average']]</pre>
df.head()
response = requests.get('https://api.themoviedb.org/3/movie/top_rated?api_key=5bc643f664c8c66e7edce11b77c7214e&language=en-US&page=2')


```
df1 =
pd.DataFrame(response.json()['results'])[['id','title','release_date','overview','po
pularity','vote_average']]
----
df1
----
df1.shape
----
df1.to_csv('movies.csv')
```

#Data Gathering

4. Fetching data using web scraping

