Sexta Lista de Matemática Discreta - 2022

- 1. Seja $A = \mathbb{Z}_2$ um anel de Boole.
 - (a) Calcule $1.0 + \overline{(0+1)}$.
 - (b) Calcule $(1.1) + \overline{0}$.
- 2. Calcule a imagem das seguintes funções $f: \mathbb{Z}_2^2 \to \mathbb{Z}_2$, onde \mathbb{Z}_2 é um anel de Boole.
 - (a) $f(x,y) = x\overline{y}$.
 - (b) $f(x,y) = xy + \overline{x}$.
- 3. Calcule a imagem das seguintes funções $f: \mathbb{Z}_2^3 \to \mathbb{Z}_2$, onde \mathbb{Z}_2 é um anel de Boole.
 - (a) $f(x, y, z) = x\overline{y} + z$.
 - (b) $f(x, y, z) = xy + \overline{z}$.
- 4. Seja A um anel.
 - (a) Se a + b = a + c, onde $a, b, c \in A$, mostre que b = c.
 - (b) Se $a^2 = a$, para todo $a \in A$, mostre que A é um anel comutativo.
- 5. Verifique se:
 - (a) $(\mathbb{Z}_2, +, \cdot)$ é um anel de Boole.
 - (b) $(\mathbb{Z}_3, +, \cdot)$ não é um anel de Boole.
- 6. Sejam A um anel de Boole e $A^n = A \times A \times \cdots \times A$ com as operações $(a_1, a_2, \ldots, a_n) \oplus (b_1, b_2, \ldots, b_n) =$ $(a_1+b_1,a_2+b_2,\ldots,a_n+b_n) \in (a_1,a_2,\ldots,a_n) \otimes (b_1,b_2,\ldots,b_n) = (a_1b_1,a_2b_2,\ldots,a_nb_n).$
 - (a) Mostre que A^n é um anel de Boole.
 - (b) Determine os elementos neutros das operações \oplus e \otimes .
 - (c) Determine o oposto de um elemento $a=(a_1,a_2,\ldots,a_n)$ com relação a operação \oplus .

(c) $a = \overline{0}.0$ (d) $a = \overline{1+0}.$

- 7. Determine os seguintes valores em \mathbb{Z}_2 , onde \mathbb{Z}_2 é um anel de Boole.
 - (a) $a = 1.\overline{0}$ (b) $a = 1 + \overline{1}$
- 8. Determine a em \mathbb{Z}_2 (como anel de Boole) nas seguintes expressões:
- (b) a + a = 0 (c) a.1 = a
- 9. Em uma álgebra de Boole, mostre que:
 - (a) $1.1 + (\overline{0.1} + 0) = 1$.
 - (b) $\overline{1}.\overline{0} + 1.\overline{0} = 1$.
- 10. Faça a tabela das seguintes funções $f: A^3 \to A$, onde $A = \{0,1\}$ é uma álgebra de Boole.
 - (a) $f(a, b, c) = \overline{a}b + b$.
 - (b) $f(a,b,c) = a\overline{a} + b$.
 - (c) $f(a,b,c) = a\overline{b} + \overline{abc}$
 - (d) $f(a,b,c) = a(bc + \overline{b}.\overline{c}).$
- 11. Faça a tabela das seguintes funções $f: A \to A$, onde $A = \{0, 1\}$ é uma álgebra de Boole.
 - (a) $f(a,b,c) = \overline{c}$.
 - (b) $f(a, b, c) = \overline{a}b + \overline{b}c$.
 - (c) $f(a,b,c) = a\overline{b}c + \overline{abc}$.
 - (d) $f(a,b,c) = \overline{b}(bc + \overline{a}.\overline{c}).$
- 12. Determine os valores de $a, b \in \mathbb{Z}_2$, como anel de Boole, tal que:

- (a) ab = a + b.
- (b) $\overline{a} + b = a + \overline{b}$.
- 13. Sejam A uma álgebra booleana e $a,b,c\in A$. Mostre que:
 - (a) $a\overline{b} + b\overline{c} + \overline{a}c = \overline{a}b + \overline{b}c + a\overline{c}$.
 - (b) $\overline{a}.\overline{b} = \overline{a+b}.$
- 14. Seja A uma álgebra de Boole com uma ordem \preceq .
 - (a) Mostre que $a \leq (b+c)$, para todo $a, b, c \in A$.
 - (b) Se $a \leq b$ e $c \leq d$, mostre que $ac \leq bd$.
- 15. Seja Auma álgebra de Boole com uma ordem $\preceq.$
 - (a) Mostre que ab é um limite inferior de a e b.
 - (b) Mostre que ab é o ínfimo de $\{a,b\}$.
- 16. Seja A uma álgebra de Boole com uma ordem \preceq .
 - (a) Mostre que quaisquer dois elementos $a, b \in A$ tem um limite superior.
 - (b) Mostre que a+b é o supremo de $\{a,b\}$.
- 17. Sejam A uma álgebra de Boole com uma ordem \preceq e $a,b \in A$.
 - (a) Mostre que $a \leq b$ se, e somente se, ab = a.
 - (b) Mostre que $a \leq b$ se, e somente se, $\overline{a} + b = 1$.
- 18. Sejam Auma álgebra booleana com uma ordem \preceq e $a,b\in A.$
 - (a) Mostre que $ab \leq a$ e $a \leq (a+b)$.
 - (b) Mostre que $a \leq b$ se, e somente se, $a.\overline{b} = 0$.