An exploration of data: prediction, modeling and displays

Karsten Maurer

Department of Statistics Miami University Oxford, OH 45056 maurerkt@miamioh.edu

URL: <u>kmaurer.github.io</u>

Department Social Media

Twitter: @STADeprMiamiOH @statsandstories

Podcast: <u>www.statsandstories.net</u>

Statistics and Prediction Example

Background: In the early morning of April 15, 1912, the RMS Titanic sunk after colliding with an iceberg in the North Atlantic during her maiden voyage from the Samhampton, UK to New York, USA. Roughly 2/3 of the passengers and crew did not survive this accident.

Data: In the paper, The "Unusual Episode" Data Revisited published in the *Journal of Statistics Education* vol.3, no.3 (1995), records for 2201 passengers and crew were recorded with their ticket status (the Class variable), Age (categorized as Adult/Child), Gender (Female/Male) and whether they survived the sinking. 15 of the 2201 passengers/crew were randomly removed from the record and summary tables of the remaining 2186 passengers/crew is included below.

Questions:

Class

1st : 324

2nd : 283

- 1. Which variables appear to influence a person's survival?
- 2. On the next page is a list of the 15 people removed from the record. Your goal is to:

Gender

Male

Female: 465

: 1721

A) Predict whether each of the 15 people survived.

<u>Age</u> Adult : 2078

Child: 108

B) Assign a probability/percentage on the likelihood they survived.

3rc	1 : /01									
Crew	7 : 878	}								
Survived			Survived						Surv	ived
Class	No	Yes	Age	No	Yes	Class	Age	Gender	No	Yes
1st	122	202	Adult	1431	647	1st	$\overline{\mathtt{Adu}}\mathtt{lt}$	Female	4	139
2nd	167	116	Child	52	56			Male	118	57
3rd	526	175					Child	Female	0	1
Crew	668	210						Male	0	5
	C	·i d		Co	ndon	2nd	Adult	Female	13	79
Survived			7.00	<u>Gender</u> Female Male				Male	154	14
Gender Female	No 126	Yes	Age	421			Child	Female	0	12
Male	_	339 364	Adult	44	1657 64			Male	0	11
мате	1357	364	Child	44	64	3rd	Adult	Female	89	74
Age				Gender				Male	385	74
Class	Adult	Child	Class	Female	Male		Child	Female	17	14
1st	318	6	1st	144	180			Male	35	13
2nd	260	23	2nd	104	179	Crew	Adult	Female	3	20
3rd	622	79	3rd	194	507			Male	665	190
Crew	878	0	Crew	23	855		Child	Female	0	0
								Male	0	0

1483

703

No

Yes :

219 1st Adult Female
566 2nd Adult Female
602 2nd Child Female
633 3rd Adult Male
815 3rd Adult Male
866 3rd Adult Male
1104 3rd Adult Female
1122 3rd Adult Female
1402 Crew Adult Male
1407 Crew Adult Male
1672 Crew Adult Male
1854 Crew Adult Male
2025 Crew Adult Male
2097 Crew Adult Male
2135 Crew Adult Male

Suppose we built a statistical model ... a classification tree was produced below based on a training set of 2186 passengers. (STA 333, STA 467)

This could be applied to the test set of 15 passengers that were sampled.

Predictions based on classification tree

Person	Class	Age	Gender	P(Not)	P(Survived)	Predict
219	1st	Adult	Female	$0.0\overline{7380074}$	0.9261993	Yes
566	2nd	Adult	Female	0.07380074	0.9261993	Yes
602	2nd	Child	Female	0.07380074	0.9261993	Yes
633	3rd	Adult	Male	0.79782740	0.2021726	No
815	3rd	Adult	Male	0.79782740	0.2021726	No
866	3rd	Adult	Male	0.79782740	0.2021726	No
1104	3rd	Adult	Female	0.54639175	0.4536082	No
1122	3rd	Adult	Female	0.54639175	0.4536082	No
1402	Crew	Adult	Male	0.79782740	0.2021726	No
1407	Crew	Adult	Male	0.79782740	0.2021726	No
1672	Crew	Adult	Male	0.79782740	0.2021726	No
1854	Crew	Adult	Male	0.79782740	0.2021726	No
2025	Crew	Adult	Male	0.79782740	0.2021726	No
2097	Crew	Adult	Male	0.79782740	0.2021726	No
2135	Crew	Adult	Male	0.79782740	0.2021726	No

Person	Class	Age	Gender	P(Not)	P(Survived)	Prediction	Truth
219	1st	Adult	Female	$0.0\overline{7380074}$	0.9261993	Yes	Yes
566	2nd	Adult	Female	0.07380074	0.9261993	Yes	Yes
602	2nd	Child	Female	0.07380074	0.9261993	Yes	Yes
633	3rd	Adult	Male	0.79782740	0.2021726	No	Yes
815	3rd	Adult	Male	0.79782740	0.2021726	No	No
866	3rd	Adult	Male	0.79782740	0.2021726	No	No
1104	3rd	Adult	Female	0.54639175	0.4536082	No	Yes
1122	3rd	Adult	Female	0.54639175	0.4536082	No	Yes
1402	Crew	Adult	Male	0.79782740	0.2021726	No	Yes
1407	Crew	Adult	Male	0.79782740	0.2021726	No	Yes
1672	Crew	Adult	Male	0.79782740	0.2021726	No	No
1854	Crew	Adult	Male	0.79782740	0.2021726	No	No
2025	Crew	Adult	Male	0.79782740	0.2021726	No	No
2097	Crew	Adult	Male	0.79782740	0.2021726	No	No
2135	Crew	Adult	Male	0.79782740	0.2021726	No	No

Our predictions of the 15 passengers that were sampled wasn't perfect (10 of 15 classified correctly).

Tables can be tough to process. Can we visualize this? (STA 404)

Visual cues in this Mosaic Plot?

- Size of boxes
- Color of boxes

Visualizing data ...

The Joy of Statistics – Hans Rosling https://www.youtube.com/watch?v=jbkSRLYSojo

As you watch this video, please record the following information:

What variables were presented?

What graphical characteristic (aesthetic trait) was mapped to each variable?

Rstudio.miamioh.edu -> exploring gapminder data # Data-visualization-exploration-DEMO-04oct17.R

Studying at Miami University

- Math & Stat Degrees (B.S. Math & Stat, B.S. Stat)
 - Foundation in mathematics
 - Statistical modeling
 - Data handling and visualization
- Analytics Co-Major
 - o Complements the B.S. Math & Statistics & B.S. Statistics very well
- Actuarial Science Minor (actuarial science club: Dr. Miljkovic)
 - o Complements B.S. degrees and satisfies related hours & thematic sequences
- <u>Miami University StatHawks</u> (partners with Pi Mu Epsilon for some activities)
 - Student Chapter of the American Statistical Association
 - o Can join on the Hub Events throughout the fall (movie night, trivia, speakers)
- Center for Analytics and Data Science (CADS)
 - DataFest weekend of April 6-8, 2018

THANK YOU!

Questions?