Problema 1 Ecuația următoare se folosește în inginerie la determinarea vitezelor unghiulare critice pentru axe circulare:

$$f(x) = 0$$
, $f(x) = \tan x + \tanh x$, $x > 0$.

- (a) Arătaţi că are o infinitate de rădăcini pozitive, exact câte una, α_n , în fiecare interval de forma $\left[\left(n-\frac{1}{2}\right)\pi,n\pi\right], n=1,2,3,\ldots$ (1p)
- (b) Determinaţi $\lim_{n\to\infty} (n\pi \alpha_n)$. (1p)
- (c) Discutați convergența metodei lui Newton dacă se pornește cu $x_0 = n\pi$. (2p)

Problema 2 (a) Stabiliți o formulă de cuadratură cu două noduri și cu grad maxim de exactitate

$$\int_0^1 \sqrt{x} f(x) dx = A_1 f(x_1) + A_2 f(x_2) + R(f)$$

reducând cuadratura la o cuadratură de tip Gauss-Jacobi. (3p)

(b) Folosind ideea de la (a), calculați

$$\int_0^1 \sqrt{x} \cos x \, \mathrm{d} x$$

cu 8 zecimale exacte (2p)

Problema 3 Ecuația $f(x) = x^2 - 3x + 2 = 0$ are rădăcinile 1 și 2. Scrisă sub forma de punct fix, $x = \frac{1}{\omega} [x^2 - (3 - \omega)x + 2]$, $\omega \neq 0$, sugerează iterația

$$x_{n+1} = \frac{1}{\omega} [x_n^2 - (3 - \omega) x_n + 2], \quad n = 1, 2, \dots (\omega \neq 0)$$

- (a) Determinați un interval pentru ω astfel ca pentru orice ω din acest interval procesul iterativ să conveargă către 1 (când $x_0 \neq 1$ este ales adecvat). (1p)
- (b) Faceți același lucru ca la (a), dar pentru rădăcina 2 (și $x_0 \neq 2$). (1p)
- (c) Pentru ce valori ale lui ω iterația converge pătratic către 1? (1p)
- (d) Interpretați algoritmul de la (c) ca o aplicare a metodei lui Newton pentru o ecuație F(x) = 0 și determinați F. Pentru ce valori ințiale x_0 metoda este convergentă? (2p)

Problema 4 (a) Stabiliți o formulă de cuadratură cu două noduri și cu grad maxim de exactitate

$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx = A_1 f(x_1) + A_2 f(x_2) + R(f)$$

reducând cuadratura la o cuadratură de tip Gauss-Legendre. (2p)

(b) Folosind ideea de la (a), calculați

$$\int_0^1 \frac{\cos x}{\sqrt{x}} \mathrm{d} \, x$$

cu 8 zecimale exacte (2p).

Problema 5 Fie $\Delta: a = x_1 < x_2 < x_3 < \cdots < x_{n-1} < x_n = b$ o diviziune a intervalului [a,b] cu n-1 subintervale. Presupunem că se dau valorile $f_i = f(x_i)$ ale unei funcții f(x) în punctele $x = x_i$, $i = 1, 2, \ldots, n$. În această problemă $s \in \mathbb{S}^1_2(\Delta)$ este un spline pătratic din $C^1[a,b]$ care interpolează f pe Δ , adică, $s(x_i) = f_i$, $i = 1, 2, \ldots, n$.

- (a) Explicați de ce este necesară o condiție suplimentară pentru a determina pe s unic. (1p)
- (b) Definim $m_i = s'(x_i)$, i = 1, 2, ..., n-1. Determinați $p_i = s|_{[x_i, x_{i+1}]}$, i = 1, 2, ..., n-1, în funcție de f_i , f_{i+1} și m_i . (1p)
- (c) Presupunem că luăm $m_1 = f'(a)$. (Conform lui (a), aceasta determină s în mod unic.) Arătați cum se poate calcula $m_2, m_3, \ldots, m_{n-1}$. (1p)
- (d) Implementați metoda de calcul a spline-ului de la (a), (b), (c) în MAT-LAB. (2p)
- **Problema 6** (a) Fie w(t) o funcție pondere pară pe [a,b], a < b, a+b = 0, adică w(-t) = w(t) pe [a,b]. Arătați că $(-1)^n \pi_n(-t;w) = \pi_n(t,w)$, adică polinomul ortogonal monic de grad <math>n în raport cu ponderea w este par (impar) dacă n este par (impar).
 - (b) Arătați că formula gaussiană

$$\int_{a}^{b} f(t)w(t)dt = \sum_{\nu=1}^{n} A_{\nu}f(t_{\nu}) + R_{n}(f),$$

pentru o pondere w pară este simetrică, i.e.

$$t_{n+1-\nu} = -t_{\nu}, \qquad A_{n+1-\nu} = A_{\nu}, \ \nu = 1, \dots, n.$$

(c) Obțineți o formulă gaussiană de forma

$$\int_{-\infty}^{\infty} e^{-|x|} f(x) dx = A_1 f(x_1) + A_2 f(x_2) + A_3 f(x_3) + R(f).$$

Folosiți (a) și (b) pentru a simplifica calculele.

Problema 7 Presupunem că se dă diviziunea $\Delta : a = t_0 < t_1 < \cdots < t_n = b$; fie nodurile

$$\tau_0 = t_0, \ \tau_{n+1} = t_n$$

$$\tau_i = \frac{1}{2} (t_i + t_{i-1}), \quad i = 1, \dots, n.$$

Determinați un spline pătratic $Q \in S_2^1(\Delta)$ care în nodurile date ia niște valori prescrise:

$$Q(\tau_i) = y_i, \quad i = 0, 1, \dots, n.$$

Implementați metoda de calcul a spline-ului în MATLAB.

- **Problema 8** (a) Fie w(t) o funcție pondere pară pe [a,b], a < b, a+b=0, adică w(-t) = w(t) pe [a,b]. Arătați că $(-1)^n \pi_n(-t;w) = \pi_n(t,w)$, adică polinomul ortogonal monic de grad <math>n în raport cu ponderea w este par (impar) dacă n este par (impar).
 - (b) Arătați că formula gaussiană

$$\int_{a}^{b} f(t)w(t)dt = \sum_{\nu=1}^{n} A_{\nu}f(t_{\nu}) + R_{n}(f),$$

pentru o pondere w pară este simetrică, i.e.

$$t_{n+1-\nu} = -t_{\nu}, \qquad A_{n+1-\nu} = A_{\nu}, \ \nu = 1, \dots, n.$$

(c) Obțineți o formulă gaussiană de forma

$$\int_{-1}^{1} |x| f(x) dx = A_1 f(x_1) + A_2 f(x_2) + A_3 f(x_3) + R(f).$$

Folosiți (a) și (b) pentru a simplifica calculele.