E1 222 Stochastic Models and Applications Assignment

Submission Deadline: 6 November 11:30 AM. (No extension possible) (You can submit it in the class on 6^{th} or give it to Mr. Chandan in my lab) You need to submit solutions for only two problems

The specific two problems would be communicated to you through e-mail and Teams at 6 PM on 5^{th} November.

- 1. Let X, Y be iid geometric random variables with parameter p. (The geometric pmf is: $f_X(k) = f_Y(k) = (1-p)^{k-1}p$, $k = 1, 2, \cdots$). Let Z = X Y and $W = \min(X, Y)$. Find the joint mass function of Z, W. Show that Z, W are independent.
- 2. Let X_1, \dots, X_n be iid random variables having Gaussian density with mean zero and variance σ^2 . Show that $Y = \frac{X_1^2 + \dots + X_n^2}{\sigma^2}$ has Gamma density with parameters $\frac{n}{2}$ and $\frac{1}{2}$. (This rv, Y, is said to have chisquared distribution with n degrees of freedom).
- 3. Let X be uniform over (0,2) and let Y be a discrete random variable taking non-negative integer values. Suppose X,Y are independent. let Z=X+Y. Show that Z is a continuous random variable.
- 4. Let X and Y be two discrete random variables with

$$P[X = x_1] = p_1, \quad P[X = x_2] = 1 - p_1;$$

 $P[Y = y_1] = p_2, \quad P[Y = y_2] = 1 - p_2.$

Show that X and Y are independent if and only if they are uncorrelated. (Hint: First consider the special case where $x_1 = y_1 = 0$ and $x_2 = y_2 = 1$).

5. Let X be a discrete random variable taking non-negative integer values with mass function, p(i), $i=0,1,\cdots$. Let Y_1,Y_2,\cdots,Y_n be *iid* discrete random variables taking non-negative integer values and with mass function $q(i), i=0,1,\cdots$. (Assume $p(i),q(i)>0,\forall i$). Let $h:\Re\to\Re$ be some function. Define

$$S = \frac{1}{n} \sum_{k=1}^{n} \frac{p(Y_k)h(Y_k)}{q(Y_k)}.$$

Find ES.

6. Let X, Y be continuous random variables with joint density

$$f_{XY}(x,y) = e^{-x}, \ 0 < y < x < \infty$$

Let Z = X - Y. Show that Z has exponential density and that Z & Y are independent.

- 7. Consider repeated independent tosses of a coin whose probability of heads is p, 0 . Let <math>X denote the number of tosses needed to get at least one head and one tail. Let Y denote the number of tosses needed to get a head immediately followed by a tail. Find EX and EY.
- 8. An interval of length 1 is broken at a point uniformly distributed over (0,1). Let c be a fixed point in (0,1). Find the expected length of the subinterval that contains the point c. Show that this is maximized when c=0.5.
- 9. Let X_1, X_2, \cdots be *iid* continuous random variables. We say a record has occurred at $m, m \geq 2$, if $X_m > \max(X_{m-1}, \cdots, X_1)$. Show that the probability that a record occurred at m is $\frac{1}{m}$. Let $N = \min\{n : n > 1 \text{ and a record occurs at time } n\}$. Show that $EN = \infty$.
- 10. Let X_1, \dots, X_n be independent Gaussian random variables with $EX_i = 0$ and $Var(X_i) = \sigma_i^2$. Let $a_1, \dots a_n$ and b_1, \dots, b_n be fixed (non-zero) real numbers which satisfy $\sum_{i=1}^n a_i b_i \sigma_i^2 = 0$. Let $Y_1 = \sum_{i=1}^n a_i X_i$ and $Y_2 = \sum_{i=1}^n b_i X_i$. Show that Y_1 and Y_2 are independent.