Логика и алгоритмы Ч. 3: Теория моделей Лекция 2

16 марта 2021

Все сигнатуры с равенством, все модели нормальные.

Определения

- Теория сильно категорична, если все ее модели изоморфны.
- Теория конечно аксиоматизируема, если она эквивалентна конечной теории.

Теорема 1.6

Пусть Ω - конечная сигнатура, M — конечная модель Ω . Тогда

- Th(M) конечно аксиоматизируема.
- Th(M) сильно категорична.

Доказательство теоремы.

Пусть M — конечная модель конечной сигнатуры Ω . Строим формулу A_M , которая полностью описывает M.

Пусть
$$M = \{m_1, \dots, m_n\}$$
. Положим

$$A_M := \exists x_1 \dots \exists x_n B_M(x_1, \dots, x_n),$$

где

$$B_{M}(a_{1},\ldots,a_{n}):=\bigwedge_{1\leq i< j\leq n}(a_{i}\neq a_{j})\wedge\forall y\bigvee_{i=1}(y=a_{i})\wedge\\ \bigwedge\{c=a_{i}\mid c\in Const_{\Omega},\ M\vDash c=m_{i}\}\wedge\\ \bigwedge\{f(a_{i_{1}},\ldots,a_{i_{k}})=a_{j}\mid f\in Fun_{\Omega},\ M\vDash f(m_{i_{1}},\ldots,m_{i_{k}})=m_{j}\}\wedge\\ \bigwedge\{P(a_{i_{1}},\ldots,a_{i_{k}})\mid P\in Pred_{\Omega},\ M\vDash P(m_{i_{1}},\ldots,m_{i_{k}})\}\wedge\\ \bigwedge\{\neg P(a_{i_{1}},\ldots,a_{i_{k}})\mid P\in Pred_{\Omega},\ M\vDash \neg P(m_{i_{1}},\ldots,m_{i_{k}})\}.$$

Лемма 1.7. Для модели M' сигнатуры Ω

$$M' \vDash A_M \Leftrightarrow M' \cong M.$$

Доказательство леммы.

- (\Leftarrow) Проверяем $M \vDash A_M$, это следует из $M \vDash B_M(m_1, \ldots, m_n)$.
- (\Rightarrow) Предположим, что $M' \vDash A_M$ и построим изоморфизм M на M'.

По определению истинности, найдутся $m_1', \dots, m_n' \in M'$, для которых

$$M' \vDash B_M(m'_1, \ldots, m'_n).$$

Докажем, что отображение φ , переводящее каждый m_i в m'_i — искомый изоморфизм.

Окончание доказательства теоремы.

Заметим: $Th(M) \sim \{A_M\}.$

1. По лемме 1.7

 $A_M \in Th(M)$ и значит,

$$M' \vDash Th(M) \Rightarrow M' \vDash A_M$$
.

2. Обратно, если $M' \vDash A_M$, то по лемме 1.7, $M' \cong M$. И тогда $M' \vDash Th(M)$.

Th(M) сильно категорична, т.к. эквивалентная ей теория $\{A_M\}$ сильно категорична по лемме 1.7.

Следствие 2.1.

Если M — конечная модель и $M' \equiv M$, то $M' \cong M$.

Доказательство. Если $M' \equiv M$, то $M' \models Th(M)$. Тогда, по теореме 1.6, $M' \cong M$.

Определимость и автоморфизмы

k-местный предикат на множестве M — это отображение $\gamma:M^k\longrightarrow \{0,1\}.$

k-местное отношение на множестве M — это множество $R \subset M^k$.

Рассмотрим формулу $A(\overrightarrow{b})$, где $\overrightarrow{b}=(b_1,\ldots,b_k)$. k-местный предикат, определимый формулой $A(\overrightarrow{b})$ в модели M, — это $A_M:M^k\longrightarrow\{0,1\}$ такое, что для всех m_1,\ldots,m_k

$$A_M(m_1,\ldots,m_k)=|A(m_1,\ldots,m_k)|_M.$$

Теорема 2.2

Пусть α — автоморфизм модели , $A(b_1,\dots,b_k)$ — формула в ее сигнатуре. Тогда для всех $m_1,\dots,m_k\in M$

$$A_M(\alpha(m_1),\ldots,\alpha(m_k))=A_M(m_1,\ldots,m_k).$$

В сокращенной записи:

$$A_M(\alpha \overrightarrow{m}) = A_M(\overrightarrow{m}).$$

Таким образом, определимый в M предикат инвариантен при всех автоморфизмах M.