Least squares

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Least squares problem

given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$, find vector $x \in \mathbf{R}^n$ that minimizes

$$||Ax - b||^2 = \sum_{i=1}^m \left(\sum_{j=1}^n A_{ij}x_j - b_i\right)^2$$

"least squares" because we minimize a sum of squares of affine functions:

$$||Ax - b||^2 = \sum_{i=1}^m r_i(x)^2, \qquad r_i(x) = \sum_{j=1}^n A_{ij}x_j - b_i$$

 the problem is also called the linear least squares problem

Least squares and linear equations

minimize
$$||Ax - b||^2$$

solution of the least squares problem: any \hat{x} that satisfies

$$||A\hat{x} - b|| \le ||Ax - b||$$
 for all x

Note:

 $\hat{r} = A\hat{x} - b$ is the *residual vector*

if $\hat{r} = 0$, then \hat{x} solves the linear equation Ax = b

if $\hat{r} \neq 0$, then \hat{x} is a *least squares approximate solution* of the equation in most least squares applications, m > n and Ax = b has no solution

Column interpretation

least squares problem in terms of columns a_1, a_2, \ldots, a_n of A:

minimize
$$||Ax - b||^2 = ||\sum_{j=1}^n a_j x_j - b||^2$$

- The solution is closest to b among all linear combinations of columns of A $A\hat{x} = \hat{x}_1 a_1 + \cdots + \hat{x}_n a_n$
- A \hat{x} is the vector in range $(A) = \text{span}(a_1, a_2, \dots, a_n)$ closest to b
- **geometric** intuition suggests that $\hat{r} = A\hat{x} b$ is orthogonal to range(A)

$$b$$

$$r = A\hat{x} - b$$

$$A\hat{x}$$

$$\operatorname{range}(A) = \operatorname{span}(a_1, \dots, a_n)$$

Row interpretation

- suppose $\tilde{a}_1^T, \dots, \tilde{a}_m^T$ are rows of A
- residual components are $r_i = \tilde{a}_i^T x b_i$
- least squares objective is

$$||Ax - b||^2 = (\tilde{a}_1^T x - b_1)^2 + \dots + (\tilde{a}_m^T x - b_m)^2$$

the sum of squares of the residuals

- so least squares minimizes sum of squares of residuals
 - solving Ax = b is making all residuals zero
 - least squares attempts to make them all small

Example

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

- \blacktriangleright Ax = b has no solution
- least squares problem is to choose x to minimize

$$||Ax - b||^2 = (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2$$

- ▶ least squares approximate solution is $\hat{x} = (1/3, -1/3)$ (say, via calculus)
- ► $||A\hat{x} b||^2 = 2/3$ is smallest posible value of $||Ax b||^2$
- $A\hat{x} = (2/3, -2/3, -2/3)$ is linear combination of columns of A closest to b

Solution of a least squares problem

 A has linearly independent columns, then below vector is the unique solution of the least squares problem

minimize
$$||Ax - b||^2$$

$$\hat{x} = (A^T A)^{-1} A^T b$$

$$= A^{\dagger} b$$
pseudo-inverse of a left-invertible matrix

Proof?

Derivation from calculus

$$f(x) = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j - b_i \right)^2$$

partial derivative of f with respect to x_k

$$\frac{\partial f}{\partial x_k}(x) = 2\sum_{i=1}^m A_{ik} \left(\sum_{j=1}^n A_{ij} x_j - b_i \right) = 2(A^T (Ax - b))_k$$

 \blacksquare gradient of f is

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right) = 2A^T(Ax - b)$$

minimizer \hat{x} of f(x) satisfies $\nabla f(\hat{x}) = 2A^T(A\hat{x} - b) = 0 \implies \hat{x} = (A^TA)^{-1}A^Tb$

Geometric interpretation

residual vector $\hat{r} = A\hat{x} - b$ satisfies $A^T\hat{r} = A^T(A\hat{x} - b) = 0$

$$range(A) = span(a_1, \dots, a_n)$$

residual vector \hat{r} is orthogonal to every column of A; hence, to range(A) projection on range(A) is a matrix-vector multiplication with the matrix

$$A(A^T A)^{-1} A^T = A A^{\dagger}$$

Conclusion

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m
- b. The columns of A are linearly independent.
- c. The matrix $A^{T}A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

When a least-squares solution $\hat{\mathbf{x}}$ is used to produce $A\hat{\mathbf{x}}$ as an approximation to \mathbf{b} , the distance from \mathbf{b} to $A\hat{\mathbf{x}}$ is called the **least-squares error** of this approximation.

Solving least squares problems (Method 1)

- Normal equations of the least squares problem $A^TAx = A^Tb$
 - Coefficient matrix $A^T A$ is the
 - Equivalent to $\nabla f(x) = 0$ where f(x) =
 - All solutions of the least squares problem satisfy the normal equations

$$\hat{x} = (A^T A)^{-1} A^T b$$

Normal equation

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.

The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other **x**.

The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^n .

Solving least squares problems (Method 2): QR factorization

Rewrite least squares solution using QR factorization A = QR

• Complexity: $2mn^2$

```
Algorithm: Least squares via QR factorization

Input: A: m \times n left-invertible

Input: b: m \times 1

Output: x_{LS}: n \times 1

Find QR factorization A = QR

Compute Q^Tb

Solve Rx_{LS} = Q^Tb using back substitution
```

 Identical to algorithm for solving Ax = b for square invertible A, but when A is tall, gives least squares approximate solution

Solving least squares problems

Example

a 3×2 matrix with "almost linearly dependent" columns

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \\ 0 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 10^{-5} \\ 1 \end{bmatrix},$$

round intermediate results to 8 significant decimal digits

- Solve using both methods
 - Which one is more stable? Why?

Review: Linear-in-parameters model

• we choose the model $\hat{f}(x)$ from a family of models

$$\hat{f}(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x)$$
 model parameters scalar valued basis functions (chosen by us)

Least squares regression

Remember the regression model (affine function):

$$\hat{f}(x) = x^T \beta + v$$

the prediction error for example i is:

$$r^{(i)} = y^{(i)} - \hat{f}(x^{(i)})$$

= $y^{(i)} - (x^{(i)})^T \beta - v$

the MSE is:

$$\frac{1}{N} \sum_{i=1}^{N} (r^{(i)})^2 = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - (x^{(i)})^T \beta - v \right)^2$$

Least squares regression

choose the model parameters v, β that minimize the MSE

$$\frac{1}{N} \sum_{i=1}^{N} \left(v + (x^{(i)})^{T} \beta - y^{(i)} \right)^{2}$$

this is a least squares problem: minimize $||A\theta - y^{d}||^2$ with

$$A = \begin{bmatrix} 1 & (x^{(1)})^T \\ 1 & (x^{(2)})^T \\ \vdots & \vdots \\ 1 & (x^{(N)})^T \end{bmatrix}, \qquad \theta = \begin{bmatrix} v \\ \beta \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

we write the solution as $\hat{\theta} = (\hat{v}, \hat{\beta})$

Least squares regression

Example

$$\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 x^2 + \dots + \theta_p x^{p-1}$$

- a linear-in-parameters model with basis functions
- least squares model fitting in matrix notation?

Generalization and validation

- Generalization ability: ability of model to predict outcomes for new, unseen data
- Model validation: to assess generalization ability,
 - divide data in two sets: training set and test (or validation) set
 - use training set to fit model
 - use test set to get an idea of generalization ability
 - this is also called out-of-sample validation
- Over-fit model
 - model with low prediction error on training set, bad generalization ability
 - prediction error on training set is much smaller than on test set

Over-fitting

polynomial of degree 20 on training and test set

over-fitting is evident at the left end of the interval

Cross-validation

- an extension of out-of-sample validation
 - divide data in K sets (folds); typical values are K = 5, K = 10
 - for i = 1 to K, fit model i using fold i as test set and other data as training set
 - compare parameters and train/test RMS errors for the K models
- Remember the house price problem (data set of N= 774 house sales)

House price model with 5 folds (155 or 154 examples each)

		Model parameters								RMS error	
Fold	v	β_1	β_2	β_3	eta_4	eta_5	eta_6	β_7	Train	Test	
1	122.5	166.9	-39.3	-16.3	-24.0	-100.4	-106.7	-26.0	67.3	72.8	
2	101.0	186.7	-55.8	-18.7	-14.8	-99.1	-109.6	-17.9	67.8	70.8	
3	133.6	167.2	-23.6	-18.7	-14.7	-109.3	-114.4	-28.5	69.7	63.8	
4	108.4	171.2	-41.3	-15.4	-17.7	-94.2	-103.6	-29.8	65.6	78.9	
5	114.5	185.7	-52.7	-20.9	-23.3	-102.8	-110.5	-23.4	70.7	58.3	

Boolean (two-way) classification

Problem:

a data fitting problem where the outcome y can take two values +1, -1 values of y represent two categories (true/false, spam/not spam, ...) model $\hat{y} = \hat{f}(x)$ is called a *Boolean classifier*

Least squares classifier

- use least squares to fit model $\tilde{f}(x)$ to training set $(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})$
- $\tilde{f}(x)$ can be a regression model $\tilde{f}(x) = x^T \beta + v$ or linear in parameters

$$\tilde{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

• take sign of $\tilde{f}(x)$ to get a Boolean classifier

$$\hat{f}(x) = \operatorname{sign}(\tilde{f}(x)) = \begin{cases} +1 & \text{if } \tilde{f}(x) \ge 0\\ -1 & \text{if } \tilde{f}(x) < 0 \end{cases}$$

Multi-class classification

Problem:

- a data fitting problem where the outcome y can takes values $1, \ldots, K$
- values of y represent K labels or categories
- multi-class classifier $\hat{y} = \hat{f}(x)$ maps x to an element of $\{1, 2, \dots, K\}$
- Least squares multi-class classifier
 - for k = 1, ..., K, compute Boolean classifier to distinguish class k from not k

$$\hat{f}_k(x) = \text{sign}(\tilde{f}_k(x))$$

define multi-class classifier as

$$\hat{f}(x) = \underset{k=1,...,K}{\operatorname{argmax}} \tilde{f}_k(x)$$

Multi-objective least squares

we have several objectives

$$J_1 = ||A_1x - b_1||^2, \qquad \dots, \qquad J_k = ||A_kx - b_k||^2$$

- A_i is an $m_i \times n$ matrix, b_i is an m_i -vector
- we seek one x that makes all k objectives small
- usually there is a trade-off: no single *x* minimizes all objectives simultaneously

Weighted least squares formulation: find *x* that minimizes

$$|\lambda_1||A_1x - b_1||^2 + \cdots + |\lambda_k||A_kx - b_k||^2$$

- coefficients $\lambda_1, \ldots, \lambda_k$ are positive weights
- weights λ_i express relative importance of different objectives
- without loss of generality, we can choose $\lambda_1 = 1$

Solution of weighted least squares

weighted least squares is equivalent to a standard least squares problem

- Solution is unique if the stacked matrix has linearly independent columns
- Each matrix A_i may have linearly dependent columns (or be a wide matrix)
- if the stacked matrix has linearly independent columns, the solution is

$$\hat{x} = \left(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k\right)^{-1} \left(\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k\right)$$

Lagrange multiplier

Example

$$f(x) = \min(x_1 x_2)$$

$$g(x) = 1 - x_1 - x_2$$

$$g(x) = 0$$

$$L(x,\lambda) = f(x) + \lambda g(x)$$

$$\nabla f(x)$$

Constrained Least Square

$$\begin{cases} \min_{x} & \|Ax - b\|^{2} & A: m \times n \\ \text{s. t.} & Cx = d & C: p \times n \end{cases}$$

$$L(x,\lambda) = \|Ax - b\|^2 + \lambda^T (Cx - d)$$

$$\begin{cases} \nabla_x L = 2A^T A x - 2A^T b + C^T \lambda = 0 \\ \nabla_\lambda L = C x - d = 0 \end{cases} \Rightarrow \begin{bmatrix} 2A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} 2A^T b \\ d \end{bmatrix}$$

- #equations: n+p #Unkowns: n+p
- KKT equations
- Least Square problem is a KKT problem with A = I, b = 0

Regularized data fitting

consider linear-in-parameters model

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

we assume $f_1(x)$ is the constant function 1

keeping $\theta_2, \ldots, \theta_p$ small helps avoid over-fitting

$$J_1(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2, \qquad J_2(\theta) = \sum_{j=2}^{p} \theta_j^2$$

minimize
$$J_1(\theta) + \lambda J_2(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2 + \lambda \sum_{j=2}^{p} \theta_j^2$$

Solution for Weighted least squares

minimize
$$J_1(\theta) + \lambda J_2(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2 + \lambda \sum_{j=2}^{p} \theta_j^2$$

- λ is positive regularization parameter
- equivalent to least squares problem: minimize

$$\left\| \left[\begin{array}{c} A_1 \\ \sqrt{\lambda} A_2 \end{array} \right] \theta - \left[\begin{array}{c} y^{d} \\ 0 \end{array} \right] \right\|^2$$

with
$$y^d = (y^{(1)}, \dots, y^{(N)}),$$

$$A_{1} = \begin{bmatrix} 1 & f_{2}(x^{(1)}) & \cdots & f_{p}(x^{(1)}) \\ 1 & f_{2}(x^{(2)}) & \cdots & f_{p}(x^{(2)}) \\ \vdots & \vdots & & \vdots \\ 1 & f_{2}(x^{(N)}) & \cdots & f_{p}(x^{(N)}) \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- stacked matrix has linearly independent columns (for positive λ)
- value of λ can be chosen by out-of-sample validation or cross-validation

Nonlinear least squares

• find \hat{x} that minimizes

$$||f(x)||^2 = f_1(x)^2 + \dots + f_m(x)^2$$

optimality condition: $\nabla ||f(\hat{x})||^2 = 0$

any optimal point satisfies this

points can satisfy this and not be optimal

can be expressed as $2Df(\hat{x})^T f(\hat{x}) = 0$

 $Df(\hat{x})$ is the $m \times n$ derivative or Jacobian matrix,

$$Df(\hat{x})_{ij} = \frac{\partial f_i}{\partial x_j}(\hat{x}), \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

optimality condition reduces to normal equations when f is affine

SVD and Least Squares

- Solving Ax=b by least squares
- x=pseudoinverse(A) times b
- Compute pseudoinverse using SVD
 - Lets you see if data is singular
 - Even if not singular, ratio of max to min singular values tells you how stable the solution will be
 - Set $1/\sum_{i}$ to 0 if \sum_{i} is small (even if not exactly 0)

SVD and Least Squares

If \mathbf{A} is a $n \times n$ square matrix and we want to solve $\mathbf{A} \mathbf{x} = \mathbf{b}$, we can use the SVD for \mathbf{A} such that

$$U \Sigma V^T x = b$$
$$\Sigma V^T x = U^T b$$

Solve: $\Sigma y = U^T b$ (diagonal matrix, easy to solve!)

Evaluate: x = V y

Cost of solve: $O(n^2)$

Cost of decomposition $O(n^3)$ (recall that SVD and LU have the same cost asymptotic behavior, however the number of operations - constant factor before n^3 - for the SVD is larger than LU)

References

- Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Stephen Boyd Lieven Vandenberghe
- Linear Algebra and Its Applications, David C. Lay