Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	30 October 2022		
Team ID	PNT2022TMID46718		
Project Name	AI-Powered Nutrition Analyzer For Fitness		
	Enthusiasts		
Maximum Marks	8 Marks		

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional	User	User Story / Task	Story Points	Priority	Team Members
	Requirement	Story				
	(Epic)	Number				
Sprint-1	Registration	USN-1	As an biogeography, I can register for the application by entering my email, password, and confirming my password.	2	High	Varun K Vignesh K
Sprint-1	User Confirmation	USN-2	As an biogeography, I will receive confirmation email once I have registered for the application	1	Medium	Gopinath P Akash K

Sprint-1	Login	USN-3	As an biogeography, I can log into the application by entering email & password	2	High	Varun K Vignesh K Gopinath P
Sprint-2	Data Collection	USN-1	Download the dataset used in Digital Naturalist – AI Enabled tools for Biodiversity Researchers	2	High	Varun K Vignesh K Gopinath P
Sprint-2	Image Preprocessing	USN-1	Improving the image data that suppresses unwilling distortions or enhances some image featuresimportant for further processing, although performing some geometric transformations of images like rotation, scaling, etc.	1	High	Vignesh K Gopinath P
Sprint-3	Getting started with Convolutional Neural Network	USN-1	Neural network are integral for teaching computers to think and learn by classifying information, similar to how we as humans learn. With neural networks, the software can learnto recognize images, for example. Machine scan also make predictions and decisions with a high level of accuracy based on data inputs.	2	High	Akash K Vignesh K Gopinath P

Sprint-2	Image	USN-1	Improving the image data that	1	High	
	Preprocessing		suppresses unwilling distortions			Vignesh K
			or enhances some image			Gopinath P
			featuresimportant for further			
			processing, although performing			
			some geometric			
			transformations of images like			
			rotation, scaling, etc.			
Sprint-3	Getting started	USN-1	Neural network are integral for	2	High	
	withConvolutional		teaching computers to think			
	Neural Network		and learn by classifying			Varun K
			information, similar to how			Vignesh K
			we as humans learn. With			Gopinath P
			neural networks, the software			Akash K
			can learnto recognize images,			
			for example. Machines can also			
			make predictions an decisions			
			with a high level of accuracy			
			based on data inputs.			
Sprint-3	Evaluation and	USN-1	well a model behaves after	1	Medium	
	model saving		each iteration of optimization.			
			An accuracy metric is used to			Vignesh K
			measure the algorithm's			Gopinath P
			performance in an			
			interpretableway. The			
			accuracy of a model is usually			
			determined after the model			
			parameters and is calculated			

			in the form of a percentage. Saving The Model get weights, set weights.			
Sprint-4	Application Building	USN-2	After the model is built, we will be integrating it to a web application so that normal userscan also use it. The users need to give the images of species	1	High	Varun K Vignesh K
Sprint-4	Train the Model on IBM	USN-3	Build Deep learning model and computer vision Using the IBM cloud.	2	High	Varun K Vignesh K Gopinath P Akash K

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Story Points Completed (as on Planned End Date)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	5 Days	30 Oct 2022	2 Nov 2022	20	31 Oct 2022
Sprint-2	20	5 Days	3 Nov 2022	7 Nov 2022	20	8 Nov 2022
Sprint-3	20	5 Days	8 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	13 Nov 2022	18 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV)per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$