# CPSC 121: Models of Computation

Unit 11: Sets

Based on slides by Patrice Belleville and Steve Wolfman

# PART 1 REVIEW OF TEXT READING

These pages correspond to text reading and are not covered in the lectures.

Unit 10: Sets

#### Sets

A set is a collection of elements:

- > the set of students in this class
- > the set of lowercase letters in English
- ➤ the set of natural numbers (N)
- > the set of all left-handed students in this class

An element is either in the set  $(x \in S)$  or not  $(x \notin S)$ .

Is there a set of everything?

Unit 10: Sets

# **Quantifier Example**

Someone in this class is left-handed (where C is the set of people in this class and L(p) means p is left-handed):

 $\exists x \in C, L(x)$ 

Unit 10: Sets

### What is a Set?

A set is an *unordered* collection of objects.

The objects in a set are called members.

(a ∈ S indicates a is a member of S;
a ∉ S indicates a is not a member of S)

A set contains its members.

Unit 10: Sets

5

# Describing Sets (2/4)

Some sets...

$$A = \{1, 5, 25, 125, ...\}$$
 $B = \{..., -2, -1, 0, 1, 2, ...\}$ 
 $C = \{1, 2, 3, ..., 98, 99, 100\}$ 

(The set of powers of 5, the set of integers, and the set of integers between 1 and 100.)

Unit 10: Sets

"..." is an ellipsis

# Describing Sets (1/4)

Some sets...

Unit 10: Sets

## Describing Sets (3/4)

Some sets, using set builder notation:

```
A = \{x \in N \mid \exists y \in N, x = 5^y\}
B = \{2^i - 1 \mid i \text{ is a prime}\}
C = \{n \in Z \mid 0 < n \le 100\}
```

To read, start with "the set of all". Read "I" as "such that".

- A: "the set of all natural numbers x such that x is a power of 5"
- B: "the set of all numbers of the form 2<sup>i</sup>-1 such that i is a prime"
- C: "the set of all integers n such that  $0 < n \le 100$ "

Unit 10: Sets

### Describing Sets (4/4) Graphical depiction of sets: Venn diagrams. Draw the set of all five-letter things. All red things? All red, five-letter things? % is the Texas **A**snows universal seven set of happiness everything books 30 fire truck heart 9



## Containment

A set A is a subset of a set B iff  $\forall x \in \mathcal{U}, x \in A \rightarrow x \in B$ .

We write A is a subset of B as  $A \subseteq B$ .

If  $A \subseteq B$ , can B have elements that are not elements of A?

11

Unit 10: Sets

## Containment

A set A is a subset of a set B iff  $\forall x \in \mathcal{U}, x \in A \rightarrow x \in B$ .

We write A is a subset of B as  $A \subseteq B$ .

If A ⊆ B, can B have elements that are not elements of A? Yes, but A can't have elements that are not elements of B.

Unit 10: Sets

# Membership and Containment

$$A = \{1, \{2\}\}$$

Is 
$$1 \in A$$
? Is  $2 \in A$ ?

Is 
$$\{1\} \subseteq A$$
?

Is 
$$1 \subseteq A$$
? Is  $2 \subseteq A$ ?

$$ls \{1\} \in A?$$

Unit 10: Sets

13

# Membership and Containment

$$A = \{1, \{2\}\}$$

Is 
$$1 \in A$$
? Yes Is  $2 \in A$ ? No

Is 
$$\{1\} \subseteq A$$
? Yes Is  $\{2\} \subseteq A$ ? No

Is 
$$1 \subseteq A$$
?

Is 
$$2 \subset A$$
?

Not meaningful since Not meaningful since 1 is not a set.

2 is not a set.

Is  $\{1\} \in A? No$  Is  $\{2\} \in A? Yes$ 

Unit 10: Sets

# **Thought Question**

What if  $A \subseteq B$  and  $B \subseteq A$ ?

Unit 10: Sets

15

# **Set Equality**

Sets A and B are equal (denoted A = B) if and only if  $\forall x \in \mathcal{U}, x \in A \leftrightarrow x \in B.$ 

Can we prove that that's equivalent to  $A \subset B$  and  $B \subset A$ ?

Unit 10: Sets

# **Set Equality**

Sets A and B are equal — denoted A = B — if and only if  $\forall x \in \mathcal{U}$ ,  $x \in A \leftrightarrow x \in B$ .

Can we prove that that's equivalent to  $\mathbf{A} \subseteq \mathbf{B}$  and  $\mathbf{B} \subseteq \mathbf{A}$ ? Yes, using a standard predicate logic proof in which we note that  $\mathbf{p} \leftrightarrow \mathbf{q}$  is logically equivalent to  $\mathbf{p} \to \mathbf{q} \land \mathbf{p} \to \mathbf{q}$ .

Unit 10: Sets

Unit 10: Sets

17

# Set Union

The union of  $\mathbf{A}$  and  $\mathbf{B}$  — denoted  $\mathbf{A} \cup \mathbf{B}$  — is  $\{\mathbf{x} \in \mathcal{U} \mid \mathbf{x} \in \mathbf{A} \vee \mathbf{x} \in \mathbf{B}\}.$ 

**A** ∪ **B** is the blue region...



18

20

# Set Intersection

The intersection of A and B — denoted A  $\cap$  B — is  $\{x \in \mathcal{U} \mid x \in A \land x \in B\}.$ 

 ${\tt A} \, \cap \, {\tt B}$  is the dark blue region...



19

# **Set Difference**

Unit 10: Sets

Unit 10: Sets

The difference of A and B — denoted A - B — is  $\{x \in \mathcal{U} \mid x \in A \land x \notin B\}.$ 

**A** - **B** is the pure blue region.





# Set Operation Equivalencies

Many logical equivalences have analogous set operation identities. Here are a few... read more in the text!

 $A \cap B = B \cap A$ 

Commutative Law

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$  Distributive Law

 $(\overline{A \cup B}) = \overline{A} \cap \overline{B}$ 

DeMorgan's Law

 $A \cap \mathcal{U} = A$ 

% as identity for ∩

. . .

Unit 10: Sets

22

# PART 2 IN CLASS PAGES

Unit 10: Sets

23

# **Pre-Class Learning Goals**

- By the start of class, you should be able to:
  - Define the set operations union, intersection, complement and difference, and the logical operations subset and set equality in terms of predicate logic and set membership.
  - ➤ Translate between sets represented explicitly (possibly using ellipses, e.g., { 4, 6, 8, ... }) and using "set builder" notation (e.g., { x in Z+ | x² > 10 and x is even }).
  - Execute set operations on sets expressed explicitly, using set builder notation, or a combination of these.
  - ▶ Interpret the empty set symbol Ø, including the fact that the empty set has no members and that it is a subset of any set.

Unit 10: Sets 24

## Quiz 10 Feedback

- Generally:
- Issues:

Unit 10: Sets

25

# In-Class Learning Goals

- By the end of this unit, you should be able to:
  - Define the power set and cartesian product operations in terms of predicate logic and set membership/subset relations.
  - ➤ Execute the power set, cartesian product, and cardinality operations on sets expressed through any of the notations discussed so far.
  - > Apply your proof skills to proofs involving sets.
  - > Relate DFAs to sets.

Unit 10: Sets

## Outline

- What's the Use of Sets (history & DFAs)
- Cardinality (size)
- Power set (and an induction proof)
- Cartesian products
- Set proofs.

Unit 10: Sets

27

### Historical Notes on Sets

- Mathematicians formalized set theory to create a foundation for all of mathematics. Essentially all mathematical constructs can be defined in terms of sets.
- Hence sets are a powerful means of formalizing new ideas.
- But we have to be careful how we use them!

Unit 10: Sets

## Russell's Paradox

- At the beginning of the 20<sup>th</sup> century Bertrand Russell discovered inconsistencies with the "naïve" set theory.
  - > Russell focused on some special type of sets.
- Let S be the set of all sets that contain themselves:

$$S = \{ x \mid x \in x \}.$$

Does S contain itself?

- A. Yes, definitely.
- B. No, certainly not.
- C. Maybe (either way is fine).
- D. Cannot prove or disprove it.
- E. None of the above.
- So, no problem here.

Unit 10: Sets

29

# Russell's Paradox (cont')

Let R be the set of all sets that do not contain themselves. That is

$$R = \{ x \mid \sim x \in x \}.$$

- Does R contain itself?
  - A. Yes, definitely.
  - B. No, certainly not.
  - C. Maybe (either way is fine).
  - D. Cannot prove or disprove it.
  - E. None of the above.

Same question, different form:

"Imagine a barber that shaves every man in town who does not shave himself. Does the barber shave himself?"

 Set theory has been restricted in a way that disallow this kind of sets.

Unit 10: Sets

20

# Sets and Functions are Very Useful

- Despite this, sets (and functions) are incredibly useful.
- E.g. We can definite valid DFAs formally: a DFA is a 5-tuple (I, S, s0, F, N) where
  - I is a finite set of characters (input alphabet).
  - > S is a finite set of states.
  - $\gt$  s0  $\in$  S is the initial state.
  - ightharpoonup F  $\subseteq$  S is the set of accepting states.
  - ightharpoonup N: S x I  $\rightarrow$  S is the transition function.



Unit 10: Sets

**Set Cardinality** 

- Cardinality: the number of elements of a set S, denoted by |S|.
- What is the cardinality of the following set:

- A. 3
- B. 6
- C. 8
- D. Some other integer
- E. The cardinality of the set is undefined.

Unit 10: Sets

# Cardinality Exercises

#### Given the definitions:

$$A = \{1, 2, 3\}$$
  
 $B = \{2, 4, 6, 8\}$ 

#### What are:

# Outline

■ What's the Use of Sets (history & DFAs)

Unit 10: Seg. 0 b. 1 c. 2 d. 3 e. None of these

- Cardinality (size)
- Power set (and an induction proof)
- Cartesian products
- Set proofs.

Unit 10: Sets

# Worked Cardinality Exercises

#### Given the definitions:

$$A = \{1, 2, 3\}$$
  
 $B = \{2, 4, 6, 8\}$ 

#### What are:

$$|A| = 3$$
  $|A - B| = 2$   
 $|B| = 4$   $|B - A| = 3$   
 $|A \cup B| = 6$   $|\{\{\}\}| = 1$   
 $|A \cap B| = 1$   $|\{\emptyset\}| = 1$ 

Unit 10: Sets

## **Power Sets**

- The power set of a set S, denoted P (S), is the set whose elements are all subsets of S.
- Given the definitions

$$A = \{ a, b, f \}, B = \{ b, c \},\$$

which of the following are correct:

A. 
$$P(B) = \{ \{b\}, \{c\}, \{b, c\} \}$$

B. 
$$P(A - B) = {\emptyset, \{a\}, \{f\}, \{a, f\}\}}$$

C. 
$$|P(A \cap B)| = 1$$

D. 
$$|P(A \cup B)| = 4$$

E. None of the above

Unit 10: Sets

# Cardinality of a *Finite* Power Set

- Theorem :

  If S is a finite set then |P(S)| = 2|S|
- We prove this theorem by induction on the cardinality of the set S
- Base case:
  - $\triangleright$  Base case: |S| = 0. What is S in this case?

Unit 10: Sets

37

# Cardinality of a Finite Power Set

■ Theorem :

If S is a finite set then  $|P(S)| = 2^{|S|}$ 

- Inductive step (continue):
  - ➤ Let x be an arbitrary element of s.
  - > Consider  $S \{x\}$ .  $|S \{x\}| = k-1$ . So,  $|P(S - \{x\})| = 2^{k-1}$  by the inductive hypothesis.
  - Furthermore P(s {x}) is the set of all subsets of s that do not include x.

Unit 10: Sets

39

## Cardinality of a *Finite* Power Set

■ Theorem :

If S is a finite set then  $|P(S)| = 2^{|S|}$ 

- We prove this theorem by induction on the cardinality of the set S
- Base case:
  - $\triangleright$  Base case: |S| = 0. Then  $S = \emptyset$ ,  $P(S) = {\emptyset}$  and |S| = 1
- Inductive step:
  - ➤ Let S be any set with cardinality k > 0.
  - Assume for any set T with |T| < k,  $|P(T)| = 2^{|T|}$ . We'll prove it for S.

Unit 10: Sets

38

## Cardinality of a Finite Power Set

■ Theorem :

If S is a finite set then  $|P(S)| = 2^{|S|}$ 

- Inductive step (continue):
  - ➤ However, there are exactly as many subsets of s that include x as do not include x.
  - (Because each subset of s that does include x can be matched up with exactly one of the subsets that does not include x that is the same but for x.)
  - > So,  $|P(s)| = 2|P(s - \{x\})|$  $= 2 \times 2^{k-1} = 2^k = 2^{|s|}$

Unit 10: Sets

## Outline

- What's the Use of Sets (history & DFAs)
- Cardinality (size)
- Power set (and an induction proof)
- Cartesian products
- Set proofs.

Unit 10: Sets

41

# **Tuples**

- An ordered tuple (or just tuple) is an ordered collection of elements.
  - (An n-tuple is a tuple with n elements.)
- Two tuples are equal when their corresponding elements are equal.
- Example:

$$(a, 1, \emptyset) = (a, 5 - 4, A \cap \overline{A})$$
  
 $(a, b, c) \neq (a, c, b)$ 

Unit 10: Sets

...

## Cartesian Product

- The cartesian product of two sets S and T, denoted S x T, is the set of all tuples whose first element is drawn from S and whose second element is drawn from T
- In other words,

$$S \times T = \{ (s, t) \mid s \in S \wedge t \in T \}.$$

> Each element of S x T is called a 2-tuple or a pair.

Unit 10: Sets

43

# Cartesian Product

■ What is {a,b} × {1,2,3}:



Unit 10: Sets

# Outline

- What's the Use of Sets (history)
- Cardinality (size)
- Power set (and an induction proof)
- Cartesian products
- Examples of Set proofs.

Unit 10: Sets

46

# Example of a proof with Sets

b) Prove that:  $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$ Pick an arbitrary  $x \in \overline{A} \cup \overline{B}$ Then,

 $X \in \overline{A} \lor X \in \overline{B}$ 

 $X \notin A \lor X \notin B$ 

 $\sim (X \in A \land X \in B)$ 

 $x \notin A \cap B$ 

 $X \in \overline{A \cap B}$ 

48

# Example of a proof with Sets

a) Prove that:  $\overline{A \cap B} \subseteq \overline{A \cup B}$ Pick an arbitrary  $x \in \overline{A \cap B}$ ,

Then  $x \notin A \cap B$ . Defin of

 $\sim (X \in A \land X \in B)$  Defin of  $\cap$ 

X ∉ A ∨ X ∉ B

De Morgan's

 $X \in \overline{A} \lor X \in \overline{B}$ 

Def'n of

Def'n of ∪

 $X \in \overline{(A)} \cup \overline{B}$