C M S

SECTION SC.EXPERIMENTALE

CORRIGES DES EXERCICES DU MANUEL SCOLAIRE

TOME 2

ABROUG FETHI
Professeur principal

BOUSSETTA JALLOUL
Professeur principal

MATHEMATIQUES

SOMMAIRE

INTEGRALES	.5
FONCTION LOGARITHME	.27
FONCTION EXPONENTIELLE	.75
EQUATIONS DIFFERENTIELLES	119
PROBABILITES	135
VARIABLES ALEATOIRES	144
STATISTIQUES	151
SUJET BAC 2008 SESSION PRINCIPALE	158
SUJET BAC 2008 SESSION DE CONTROLE	161
SUJET BAC 2009 SESSION PRINCIPALE	163
SUJET BAC 2009 SESSION DE CONTROLE	166
BAREMES DETAILLES	168
CORRIGE BAC 2008 S.P ET S.C	176
CORRIGE BAC 2009 S.P ET S.C	181

QCM:

- 1) encadré par 7 et 13
- 2) $I+J=\frac{1}{2}$
- 3) I≤J

VRAI - FAUX:

1) (vrai)

$$\int_{4\pi}^{9\frac{\pi}{2}} \sin x dx = \int_{4\pi}^{\frac{\pi}{2} + 4\pi} \sin x dx = \int_{0}^{\frac{\pi}{2}} \sin x dx$$

car 4π est une période de la fonction $x \mapsto \sin x$ (on pourra aussi vérifier le résultat en calculant chacune des deux intégrales)

2) (vrai)

la fonction : $x \mapsto |x|$ est paire

d'où
$$\int_{-1}^{1} |x| dx = 2 \cdot \int_{0}^{1} |x| dx = \int_{0}^{1} 2x dx = \left[x^{2} \right]_{0}^{1} = 1$$

3) (vrai)

Formule d'intégration par parties :

$$U'(x)=1 \xrightarrow{p} U(x)=x$$

$$V(x)=f(x) \xrightarrow{d} V'(x)=f'(x)$$

4) (vrai)

$$f(x) \le 1 \quad \forall x \in [0,1]$$

d'où
$$\int_{0}^{1} f(x) dx \le \int_{0}^{1} dx$$

$$\Rightarrow \int_{0}^{1} f(x) dx \le [x]_{0}^{1} \Rightarrow \int_{0}^{1} f(x) dx \le 1$$

5) (vrai)

soit:

* A_1 : l'aire de la partie du plan limitée par (ζ_r); l'axe des abscisses et les droites d'équation :

$$x=-2$$
 et $x=\frac{1}{2}$

* A_2 : l'aire de la partie du plan limitée par (ζ_f). l'axe des abscisses et les droite d'équation :

$$x = \frac{1}{2} \text{ et } x = 2$$

$$\int_{-2}^{2} f(x) dx = \int_{-2}^{\frac{1}{2}} f(x) dx + \int_{\frac{1}{2}}^{2} f(x) dx = A_1 - A_2 \ge 0$$

6) (faux)

contre exemple : f(x)=x, [a,b]=[-1,2]

$$\int_{-1}^{2} f(x)dx = \left[\frac{1}{2}x^{2}\right]_{-1}^{2} = \frac{3}{2} \ge 0$$

mais f n'est pas positive sur [-1,2]

7) (vrai)

la fonction : f: $t \mapsto \frac{1}{1+t^2}$ est continue sur IR et $0 \in IR$

d'où $F: x \mapsto \int_0^x f(t)dt$ est définie, continue et dérivable sur IR et F'(x)=f(x) (th cours)

Ex1:

1)
$$\int_{-1}^{3} \left(\frac{x^2}{2} - x \right) dx = \left[\frac{x^3}{6} - \frac{x^2}{2} \right]_{-1}^{3} = \frac{2}{3}$$

2)
$$\int_{1}^{2} t (t+1)^{3} dt = \int_{1}^{2} ((t+1)^{4} - (t+1)^{3}) dt$$
$$= \left[\frac{(t+1)^{5}}{5} - \frac{(t+1)^{4}}{4} \right]_{1}^{2} = \frac{519}{20}$$

3)
$$\int_{-1}^{1} (2x+1)(x^2+x-5)^3 dx = \left[\frac{(x^2+x-5)^4}{4} \right]_{-1}^{1} = -136$$

4)
$$\int_{1}^{2} \sqrt{2x+1} dx = \left[\frac{1}{3} (2x+1)\sqrt{2x+1} \right]_{1}^{2} = \frac{1}{3} (5\sqrt{5} - 3\sqrt{3})$$

5)
$$\int_{1}^{2} \frac{dx}{(1+x)^{2}} = \left[\frac{-1}{x+1} \right]_{1}^{2} = \frac{1}{6}$$

6)
$$\int_{1}^{2} \frac{2}{(3x-1)^{2}} dx = \left[\frac{-2}{3(3x-1)^{2}} \right]^{2} = \frac{7}{50}$$

7)
$$\int_{0}^{1} \frac{dx}{\sqrt{2x+1}} = \left[\sqrt{2x+1}\right]_{0}^{4} = 2$$

8)
$$\int_{1}^{2} \frac{x+1}{\sqrt{x^2+2x}} dx = \left[\sqrt{x^2+2x} \right]_{1}^{2} = 2\sqrt{2} - \sqrt{3}$$

9)
$$\int_{-2}^{1} |x(x+1)| dx = I$$

$$\frac{x}{|x(x+1)|} = \frac{1}{|x|} = \frac{1}{|x|} |x(x+1)| dx = I$$

$$K = \int_{-2}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{0} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{-3}^{0} |x^2 - x - 2| dx + \int_{-3}^{0} |x^2 - x - 2| dx$$

$$K = \int_{$$

10)
$$J = \int_{-3}^{3} |x^3 + x| dx$$

soit $f(x) = |x^3 + x|$, f est paire
d'où $J = 2\int_{0}^{3} f(x) dx = 2\int_{0}^{3} (x^3 + x) dx$
 $J = \left[\frac{x^4}{2} + x^2\right]_{0}^{3} = \frac{99}{2}$

11)

$$\int_{0}^{3} |2t - 1| dt = \int_{0}^{\frac{1}{2}} |2t - 1| dt + \int_{\frac{1}{2}}^{3} |2t - 1| dt$$

$$= \int_{\frac{1}{2}}^{3} (2t-1)dt + \int_{0}^{\frac{1}{2}} (-2t+1)dt = \left[t^{2} - t\right]_{\frac{1}{2}}^{3} \dot{\uparrow} \left[t^{2} - t\right]_{0}^{\frac{1}{2}}$$

$$J = \frac{13}{2}$$

12)

$$K = \int_{-3}^{0} \left| x^2 - x - 2 \right| dx$$

$$\begin{array}{c|ccccc} x & -3 & -1 & 0 \\ \hline x^2 - x - 2 & + & 0 & - \\ K = \int_{-3}^{-1} |x^2 - x - 2| dx + \int_{-1}^{0} |x^2 - x - 2| dx \end{array}$$

$$K = \int_{-3}^{-1} (x^2 - x - 2) dx - \int_{-1}^{0} (x^2 - x - 2) dx$$

$$= \left[\frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x\right]_{-3}^{-1} - \left[\frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x\right]_{-1}^{0} = \frac{59}{6}$$

CMS

13) $\cos^3 x = \cos x (1 - \sin^2 x)$

$$\int_{0}^{\pi} \cos^{3} x.dx = \int_{0}^{\pi} (\cos x - \cos x \sin^{2} x).dx$$
$$= \left[\sin x - \frac{1}{3} \sin^{3} x \right]_{0}^{\pi} = 0$$

14)
$$\int_{0}^{\frac{\pi}{4}} \tan^{2} x. dx = \int_{0}^{\frac{\pi}{4}} \left[(1 + \tan^{2} x) + 1 \right] dx = \left[\tan x - x \right]_{0}^{\frac{\pi}{4}}$$

$$=1-\frac{\pi}{4}$$

15)
$$\int_{0}^{\frac{\pi}{6}} \frac{\sin 2x}{\cos^{3} 2x} dx = \frac{-1}{2} \int_{0}^{\frac{\pi}{6}} \frac{-2\sin 2x}{\cos^{3} 2x} dx = \frac{-1}{2} \left[\frac{-1}{2\cos^{2} 2x} \right]_{0}^{\frac{\pi}{6}}$$
$$= \frac{3}{4}$$

16)
$$\int_{0}^{\frac{\pi}{6}} \frac{\sin x}{\cos^{2} x} dx = \left[\frac{1}{\cos x} \right]_{0}^{\frac{\pi}{6}} = \frac{2}{\sqrt{3}} - 1$$

17)
$$\int_{0}^{\frac{\pi}{4}} \sin t \cdot \cos^{4} t \cdot dt = \left[\frac{-\cos^{5} t}{5} \right]_{0}^{\frac{\pi}{4}} = \frac{1}{5} \left[1 - \frac{1}{4\sqrt{2}} \right]$$

18)
$$\int_{0}^{2\pi} |\sin x| dx = \int_{0}^{\pi} |\sin x| dx + \int_{\pi}^{2\pi} |\sin x| dx$$
$$= \int_{0}^{\pi} \sin x dx - \int_{\pi}^{2\pi} \sin x dx = [-\cos x]_{0}^{\pi} + [\cos x]_{\pi}^{2\pi} = 4$$

Ex2:

$$f(x) = \frac{6x^2 - 12x + 42}{(x-1)^2} = \frac{6(x^2 - 2x + 1) + 36}{(x-1)^2}$$

$$f(x) = 6 + \frac{36}{(x-1)^2}$$

1)
$$\int_{-1}^{0} f(x)dx = \int_{-1}^{0} (6 + \frac{36}{(x-1)^{2}})dx = \left[6x - \frac{36}{x-1}\right]_{-1}^{0} = 24$$

Ex3:

1)
$$f(x) = \frac{x}{(x-1)^4} = \frac{(x-1)+1}{(x-1)^4} = \frac{1}{(x-1)^3} + \frac{1}{(x-1)^4}$$

2)
$$\int_{2}^{3} \frac{x+1}{(x-1)^{4}} dx = \int_{2}^{3} \left(\frac{x}{(x-1)^{4}} + \frac{1}{(x-1)^{4}} \right) dx$$

$$= \int_{2}^{3} \left(\frac{x}{(x-1)^{3}} + \frac{2}{(x-1)^{4}} \right) dx = \left[\frac{-1}{2(x-1)^{2}} - \frac{2}{3(x-1)^{3}} \right]$$
$$= \frac{23}{24}$$

Ex4:

1)
$$A = \int_0^1 \frac{x}{(1+x^2)^3} dx = \frac{1}{2} \int_0^1 \frac{2x}{(1+x^2)^3} dx$$

= $\left[\frac{-1}{4(1+x^2)^2} \right]_0^1 = \frac{3}{16}$

2)
$$A+B=\int_{0}^{1}\frac{x}{(1+x^{2})^{2}}dx=\left[\frac{-1}{2(1+x^{2})}\right]_{0}^{1}=\frac{1}{4}$$

3)
$$\begin{cases} A = \frac{3}{16} \\ A + B = \frac{1}{4} \end{cases} \Rightarrow B = \frac{1}{16}$$

Ex5:

$$aire(D_1 \cup D_2) = 2\int_0^2 (4 - x^2) dx$$

$$= 2\left[4x - \frac{x^3}{3}\right]_0^2 = \frac{32}{3}$$

$$aire(D_1) = 2\int_0^{\sqrt{a}} (a - x^2) dx = 2\left[ax - \frac{x^3}{3}\right]_0^{\sqrt{a}}$$

$$= 2(a\sqrt{a} - \frac{a\sqrt{a}}{3}) = \frac{4a\sqrt{a}}{3}$$

CMS

$$aire(D_1) = aire(D_2)$$

$$\Leftrightarrow aire(D_1) = \frac{1}{2}aire(D_1 \cup D_2)$$

$$\Leftrightarrow \frac{4a\sqrt{a}}{3} = \frac{32}{6} \Leftrightarrow a\sqrt{a} = 4 \Leftrightarrow (\sqrt{a})^3 = 4$$

$$\Leftrightarrow \sqrt{a} = \sqrt[3]{4} \Leftrightarrow a = (\sqrt[3]{4})^2 \Leftrightarrow a = \sqrt[3]{16} = 2\sqrt[3]{2}$$

Ex6:

1)
$$f(x) = \frac{x^2 - 4x - 2}{(x - 2)^2} = 1 - \frac{6}{(x - 2)^2}$$

2)
$$f'(x) = \frac{12}{(x-2)^3}$$

x	-∞		2	+∞
f'(x)		-	+	
f(x)	1_			1
		^	/	
		-00	-∞	

$$3) \qquad a = \int_{3}^{5} \left| f(x) \right| dx$$

$$a = \int_{3}^{2+\sqrt{6}} |f(x)| dx + \int_{2+\sqrt{6}}^{5} |f(x)| dx$$

$$a = \int_{2+\sqrt{6}}^{5} |f(x)| dx - \int_{3}^{2+\sqrt{6}} |f(x)| dx$$

$$a = \left[x + \frac{6}{x - 1}\right]_{2 + \sqrt{6}}^{5} - \left[x + \frac{6}{x - 1}\right]_{3}^{2 + \sqrt{6}} = \frac{109 - 44\sqrt{6}}{10}u.a$$

EX7:

$$f(x) = \frac{2x-1}{(x-1)^3}$$
; $D_f = IR/\{1\}$

1)
$$f'(x) = \frac{-4x+1}{(x-1)^4}$$

x .			1/4		1	+∞
f '(x)		+	þ	_		-
f(x)	0		₹ 32/27			+∞ 0

les droites Δ : y = 0 et Δ : x=1 sont des asymptotes à (ζ_f)

2)
$$f(x) = \frac{2x-1}{(x-1)^3} = \frac{2(x-1)+1}{(x-1)^3}$$

= $\frac{2}{(x-1)^2} + \frac{1}{(x-1)^3} \quad (a=2), \ b=1$

c)

3)
$$\lambda < \frac{1}{2}$$

a)
$$A(\lambda) = \int_{\lambda}^{\frac{1}{2}} f(x) dx = \int_{\lambda}^{\frac{1}{2}} (\frac{2}{(x-1)^2} + \frac{1}{(x-1)^3}) dx$$

$$= \left[\frac{-2}{x-1} - \frac{1}{2(x-1)^2} \right]_{\lambda}^{\frac{1}{2}} = 2 + (\frac{2}{\lambda-1} + \frac{1}{2(\lambda-1)^2})$$

$$A(\lambda) = 2 + (\frac{2}{\lambda-1} + \frac{1}{2(\lambda-1)^2}) = 2 + \frac{4\lambda - 3}{2(\lambda-1)^2} u.a$$

b)
$$\lim_{\lambda \to -\infty} A(\lambda) = \lim_{\lambda \to -\infty} 2 + \frac{4\lambda - 3}{2(\lambda - 1)^2} = 2$$

EX8:

1)
$$h(x) = x^2 - 4x + 6 - 3\sqrt{x}$$

a)
$$h'(x) = 2x - 4 - \frac{3}{2\sqrt{x}}$$

$$h''(x) = 2 + \frac{3}{4x\sqrt{x}}$$

b) h"(x)>0 ;
$$\forall x \in]0,+\infty[$$

×	0	+∞
h''(x)		+
h'(x)	-∞	+∞

h' est continue et strictement croissante sur $]0,+\infty[$ elle réalise donc une bijection de $]0,+\infty[$ sur IR comme $0 \in IR$ alors il existe un unique réel α de $]0,+\infty[$ tel que : $h'(\alpha)=0$ $h'(2)\times h'(3)=...<0 \Rightarrow 2<\alpha<3$

x 0 α +∞ h'(x) - 0 +

х	0	α	<u> </u>	+∞
h'(x)	-	þ	+	
h(x)	6	h(α)		+∞

- d) h(1)=0h(4)=0
- * h est strictement croissante sur $[\alpha,+\infty[$
- $4 \in [\alpha, +\infty]$ et h(4)=0

d'où l'équation h(x)=0 admet 4 comme unique solution sur $\left[\alpha,+\infty\right[$

* de meme : h(1)=0

hest strictement décroissante sur $]0,\alpha[$ d'où 1 est la seule solution de l'équation h(x)=0 dans $]0,\alpha[$

conclusion : l'équation h(x)=0 admet 1 et 4 comme solutions dans $]0,+\infty[$

2) a)
$$f(x) = x^2 - 4x + 6$$
 $f'(x) = 2(x - 2)$

$$\lim_{x \to \infty} \frac{f(x)}{x} = 0$$
 branche infinie parabolique de direction $(0, \vec{j})$

CMS

CH 7 TOME I

$$* g(x) = 3\sqrt{x}$$

*
$$g(x) = 3\sqrt{x}$$
 $g'(x) = \frac{3}{2\sqrt{x}}$

 $\lim_{+\infty} \frac{g(x)}{x} = \lim_{+\infty} \frac{3}{\sqrt{x}} = 0$ branche infinie parabolique de direction (O,i)

×	0	+∞
g'(x)	+	
g(x)	0	→ +∞

b)
$$A = \int_{1}^{4} (g(x) - f(x))dx = \int_{1}^{4} (3\sqrt{x} - x^2 + 4x - 6)dx$$

 $A = \left[2x\sqrt{x} - \frac{x^3}{3} + 2x^2 - 6x\right]_{1}^{4} = 5 \text{ u.a}$

EX 9:

$$f(x) = \cos x$$

$$g(x) = \cos^2 x \qquad x \in [0, \pi]$$

1) f est continue et dérivable sur $[0,\pi]$ $f'(x) = -\sin x$

X	0		π
f'(x)	0	-	0
f'(x) f(x)	1	•	_1

g est continue et dérivable sur $[0,\pi]$ $g'(x)=-2\sin x.\cos x$

• •	. *				
X	0		$\frac{\pi}{2}$		π
g'(x)	0	-	b_	+	0
g'(x) g(x)	1		\ 0 /		v 1

2) f(x)-g(x)=cosx(1-cosx)

Cg

4)
$$A = \int_{0}^{\frac{\pi}{2}} (f(x) - g(x)) dx = \int_{0}^{\frac{\pi}{2}} (\cos x - \cos^{2} x) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \left(\cos x - \frac{1}{2} (1 + \cos 2x)\right) dx$$

$$= \left[\sin x - \frac{1}{2} (x + \frac{1}{2} \sin 2x)\right]_{0}^{\frac{\pi}{2}} = (1 - \frac{\pi}{4})$$

EX 10:

$$f(x) = 5 - x^2$$
 $g(x) = \frac{4}{x^2}$ $x \in]0, +\infty[$

1)
$$g(x) - f(x) = \frac{x^4 - 5x^2 + 4}{x^2} = \frac{(x^2 - 1)(x^2 - 4)}{x^2}$$

$$=\frac{(x+1)(x+2)(x-1)(x-2)}{x^2}$$

signe de (x-1).(x-2)

х	0	1	:	2 π
g(x)-f(x)	+	φ -		D +
P.R	(C')/(C)	(0	(C')	(C')/ (C)
	/	$\langle \rangle$		
	A	(1,4)	В	(2,1)

2) f'(x) = -2x

(C) admet une branche parabolique de direction celle de (O, \vec{j})

$$A = \int_{\frac{1}{2}}^{1} (g(x) - f(x)) dx + \int_{1}^{2} (f(x) - g(x)) dx + \int_{2}^{5} (g(x) - f(x)) dx$$

$$= \left[\frac{-4}{x} - 5x + \frac{x^{3}}{3} \right]_{\frac{1}{2}}^{1} + \left[\frac{4}{x} + 5x - \frac{x^{3}}{3} \right]_{1}^{2} + \left[\frac{-4}{x} - 5x + \frac{x^{3}}{3} \right]_{2}^{5}$$

$$A = \frac{3319}{120}$$

Ex11:

1)
$$x \in]2,+\infty[$$

$$f(x) = x+1+\frac{4}{(x-2)^2}$$

$$g(x) = x + 1$$

• (ζ_g) est la droite d'équation : y=x+1

•
$$f'(x) = 1 - \frac{8}{(x-2)^3} = \frac{(x-2)^3 - 2^3}{(x-2)^3}$$

$$f'(x) = \frac{(x-4)\left[(x-2)^2 + 2(x-2) + 4\right]}{(x-2)^3}$$

$$\lim_{x \to +\infty} [f(x) - (x+1)] = \lim_{x \to +\infty} \frac{4}{(x-2)^2} = 0$$

$$(\zeta_g): \text{ y=x+1 est une asymptote à } (\zeta_f)$$
au voisinage de $(+\infty)$

2)
$$f(x) \ge g(x)$$
, $\forall x \in]2,+\infty[$
a) •si $\lambda \ge 3$

$$A(\lambda) = \int_{3}^{\lambda} (f(x) - g(x)) dx = \int_{3}^{\lambda} \frac{4}{(x - 2)^{2}} dx$$
• si 2<\ld>\lambda<3

$$A(\lambda) = \int_{\lambda}^{3} \frac{4}{(x-2)^{2}} dx = -\int_{3}^{\lambda} \frac{4}{(x-2)^{2}} dx$$

$$A(\lambda) \ge 0$$

d'où
$$A(\lambda) = \left| \int_{3}^{\lambda} \frac{4}{(x-2)^2} dx \right|$$

b)
$$A(\lambda) = \left[\left[\frac{-4}{x-2} \right]_{3}^{\lambda} \right] = \left[4 - \frac{4}{\lambda - 2} \right]$$

c) soit
$$h(\lambda)=4-\frac{4}{\lambda-2}$$

$$\begin{cases} A(\lambda) = h(\lambda) & \text{si } \lambda \ge 3 \\ A(\lambda) = -h(\lambda) & \text{si } 2 < \lambda < 3 \end{cases}$$

$$A(\lambda) = -h(\lambda)$$
 si $2 < \lambda < 3$

$$h'(\lambda) = \frac{4}{(\lambda - 2)^2} > 0$$

λ	2	+∞
h'(λ)	+	
h(λ)		4

x = 2 et y=4 sont les asymptotes à (ζ_h)

Ch

 $d) \cdot m < 0$

l'équation $A(\lambda)=m$ n'a pas de solution

l'équation $A(\lambda)=m$ admet deux solutions

•
$$m \in \{0\} \cup [4,+\infty[$$

l'équation admet une seule solution

Ex12:

$$1) \quad A = \int_{0}^{\pi} x \cdot \cos x \cdot dx$$

on pose:

$$\begin{cases} U'(x) = \cos x \xrightarrow{P} U(x) = \sin x \\ V(x) = x \xrightarrow{d} V'(x) = 1 \end{cases}$$

$$A = \left[x.\sin x\right]_0^{\pi} - \int_0^{\pi} \sin x. dx = \left[x.\sin x\right]_0^{\pi} + \left[\cos x\right]_0^{\pi}$$

$$A = -2$$

CMS

$$B = \int_{0}^{\pi} x \cdot \sin x \cdot dx$$

soit:

$$\begin{cases} U'(x) = \sin x \longrightarrow U(x) = -\cos s x \\ V(x) = x \longrightarrow V'(x) = 1 \end{cases}$$

$$B = \left[-x.\cos x \right]_0^{\pi} - \int_0^{\pi} \cos x. dx = \left[-x.\cos x \right]_0^{\pi} + \left[\sin x \right]_0^{\pi}$$

CH 7 TOME I

$$B = \pi$$

2)
$$I = \int_{0}^{\pi} x^{2} .\cos x. dx$$

on pose:

$$\begin{cases} U'(x) = \cos x \xrightarrow{P} U(x) = \sin x \\ V(x) = x^2 \xrightarrow{d} V'(x) = 2x \end{cases}$$

$$I = \left[x^2 . \sin x \right]_0^{\pi} - 2 \int_0^{\pi} x \sin x. dx$$
$$= \left[x^2 . \sin x \right]_0^{\pi} - 2B = 0 - 2B = -2\pi$$

$$J = \int_{0}^{\pi} x^{2} \cdot \sin x \cdot dx$$

$$J = \int_{0}^{\pi} x^{2} \cdot \sin x \cdot dx$$

on pose:

$$\begin{cases} U'(x) = \sin x \longrightarrow U(x) = -\cos x \\ V(x) = x^2 \longrightarrow V'(x) = 2x \end{cases}$$

$$J = \left[-x^2 . \cos x \right]_0^{\pi} + 2 \int_0^{\pi} x \cos x . dx$$
$$= \left[-x^2 . \cos x \right]_0^{\pi} + 2A = \pi^2 - 4$$

Ex13:

$$f(x) = \frac{1}{\sqrt{1+x^4}}$$
 ; $x \in \mathbb{R}_+$
 $I = \int_{100}^{1000} f(t).dt$

1) a) pour
$$x > 0$$
: $1+x^4 \ge x^4$

$$\Rightarrow \sqrt{1+x^4} \ge x^2 \Rightarrow \frac{1}{\sqrt{1+x^4}} \le \frac{1}{x^2}$$

$$\Rightarrow f(x) \le \frac{1}{x^2}$$
 pour x>0

b)
$$x > 0$$

soit
$$g(t) = \frac{1}{\sqrt{1+t}}$$
; $t \ge 0$

$$g'(t) = \frac{-1}{2(\sqrt{1+t})^3}$$

$$t \ge 0 \implies 1+t \ge 1 \implies \sqrt{1+t} \ge 1 \implies (\sqrt{1+t})^3 \ge 1$$

$$\Rightarrow 2(\sqrt{1+t})^3 \ge 2 \Rightarrow \frac{1}{2(\sqrt{1+t})^3} \le \frac{1}{2}$$

$$\Rightarrow$$
 g'(t) $\geq -\frac{1}{2}$

$$g'(t) \ge -\frac{1}{2}$$
 ; $\forall t \in [0,x]$

d'aprés le théorème des inégalités des accroissements finis:

$$g(x)-g(0) \ge -\frac{1}{2}(x-0)$$

$$\Rightarrow \frac{1}{\sqrt{1+x}} - 1 \ge -\frac{1}{2}x \Rightarrow \frac{1}{\sqrt{1+t}} \ge 1 - \frac{1}{2}x$$

c) t>0 pour
$$x = \frac{1}{t^2} > 0$$

$$\frac{1}{\sqrt{1+\frac{1}{t^2}}} \ge 1 - \frac{1}{2t^2} \implies \frac{t}{\sqrt{1+t^2}} \ge 1 - \frac{1}{2t^2}$$

$$\Rightarrow \frac{1}{\sqrt{1+t^2}} \ge \frac{1}{t} - \frac{1}{2t^3}$$

pour $t=x^2$

on aura:
$$\frac{1}{\sqrt{1+x^4}} \ge \frac{1}{x^2} - \frac{1}{2x^6}$$

 $\Rightarrow f(x) \ge \frac{1}{x^2} - \frac{1}{2x^6}$

2) pour
$$t \in [100, 1000]$$

$$\frac{1}{t^{2}} - \frac{1}{2t^{6}} \le f(t) \le \frac{1}{t^{2}}$$

$$\Rightarrow \int_{100}^{1000} (\frac{1}{t^{2}} - \frac{1}{2t^{6}}) dt \le \int_{100}^{1000} f(t) dt \le \int_{100}^{1000} \frac{1}{t^{2}} dt$$

$$\Rightarrow \left[\frac{-1}{t} + \frac{1}{10t^{5}} \right]_{100}^{1000} \le I \le \left[\frac{-1}{t} \right]_{100}^{1000}$$

$$10^{-2} - 10^{-3} + 10^{-16} - 10^{-11} \le I \le 10^{-2} - 10^{-3}$$

Fv14

1)
$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^{2} x} = [tgx]_{0}^{\frac{\pi}{4}} = 1$$

$$2) f(x) = \frac{\sin x}{\cos^3 x} \quad ; \ x \in \left[0, \frac{\pi}{4}\right]$$

$$f'(x) = \frac{\cos x \cdot \cos^3 x - \sin x (-3\sin x \cos^2 x)}{\cos^6 x}$$

$$= \frac{\cos^4 x + 3\sin^2 x \cdot \cos^2 x}{\cos^6 x} = \frac{1}{\cos^2 x} + \frac{3\sin^2 x}{\cos^4 x}$$

$$= \frac{1}{\cos^2 x} + \frac{3(1 - \cos^2 x)}{\cos^4 x} = \frac{1}{\cos^2 x} + \frac{3}{\cos^4 x} - \frac{3}{\cos^2 x}$$

$$f'(x) = \frac{3}{\cos^4 x} - \frac{2}{\cos^2 x}$$

3)
$$\frac{1}{\cos^4 x} = \frac{1}{3} \left[f'(x) + \frac{2}{\cos^2 x} \right]$$

d'où
$$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^4 x} dx = \frac{1}{3} \left(\int_{0}^{\frac{\pi}{4}} f'(x) dx + 2 \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} dx \right)$$

$$= \frac{1}{3} \left(\left[f(x) \right]_0^{\frac{\pi}{4}} + 2 \times 1 \right) = \frac{1}{3} \left(f(\frac{\pi}{4}) - f(0) + 2 \right) = \frac{4}{3}$$

Ex 15:

$$f(x) = \frac{1}{\sin^2 x}$$

1)
$$\frac{1+\tan^{2x}}{\tan^{2}x} = \frac{\frac{1}{\cos^{2}x}}{\tan^{2}x} = \frac{\frac{1}{\cos^{2}x}}{\frac{\sin^{2}x}{\cos^{2}x}} = \frac{1}{\sin^{2}x} = f(x)$$

2)
$$f'(x) = \frac{-2\cos x \cdot \sin x}{\sin^4 x} = \frac{-2\cos x}{\sin^3 x} < 0 \text{ pour } x \in \left]0, \frac{\pi}{2}\right[$$

f est continue et strictement

décroissante sur $0, \frac{\pi}{2}$, elle réalise

donc une bijection de $0, \frac{\pi}{2}$ sur

$$f\left(\left]0,\frac{\pi}{2}\right[\right) = \left|\lim_{\left(\frac{\pi}{2}\right)^{-}} f, \lim_{0^{+}} f\right| = \left]1, +\infty\right[= I$$

3) fest dérivable sur $0, \frac{\pi}{2}$ et $f'(x) = \frac{-2\cos x}{\sin^3 x} \neq 0$

d'où f^{-1} est dérivable sur $]1,+\infty[$ et

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(y)}$$
 avec $f^{-1}(x)$

$$=\frac{-1}{2}\frac{\sin^3 y}{\cos y}$$

$$(f^{-1})'(x) = \frac{-1}{2}\sin^2 y \cdot \tan y$$

$$y = f^{-1}(x) \Leftrightarrow f(y) = x$$

$$\Rightarrow \frac{1}{\sin^2 y} \Rightarrow \sin^2 y = \frac{1}{x}$$

$$f(y) = x \Rightarrow \frac{1 + \tan^2 y}{\tan^2 y} = x \Rightarrow \tan^2 y = \frac{1}{x - 1}$$

$$\Rightarrow \tan y = \frac{1}{\sqrt{x-1}} \quad \text{car } y \in \left] 0, \frac{\pi}{2} \right[$$

d'où
$$(f^{-1})'(x) = \frac{-1}{2} \frac{1}{x} \frac{1}{\sqrt{x-1}}$$

$$(f^{-1})'(x) = \frac{-1}{2\sqrt{x^3 - x^2}}$$

4)
$$I = \int_{\frac{4}{3}}^{2} \frac{dt}{2\sqrt{t^3 - t^2}} = -\int_{\frac{4}{3}}^{2} (f^{-1})'(t)dt = -\left[f^{-1}(x)\right]_{\frac{4}{3}}^{2}$$

$$I = f^{-1}(\frac{4}{3}) - f^{-1}(2) = \frac{\pi}{3} - \frac{\pi}{4}$$

d'où
$$I = \frac{\pi}{12}$$

Ex 16:

1)
$$f(x) = \frac{x^2}{1+x^2}$$
; $D_f = IR$

•
$$f'(x) = \frac{2x}{(1+x^2)^2}$$

• f est paire

Х	0		+∞
f'(x)	0	+	0
f(x)	0 —		1

2) a)
$$A = \int_{1}^{2} f(x) dx$$

 $1 \le x \le 2 \implies f(1) \le f(2)$

(car f est croissante sur [1,2])

$$\Rightarrow \frac{1}{2} \le f(x) \le \frac{4}{5} \le 1 \Rightarrow \frac{1}{2} \le f(x) \le 1$$

$$d'où \int_{1}^{2} \frac{1}{2} dx \le \int_{1}^{2} f(x) dx \le \int_{1}^{2} dx \Rightarrow \frac{1}{2} \le A \le 1$$

b) a_i: l'aire du rectangle r_i A::l'aire du rectangle R:

$$\begin{split} &\sum_{k=1}^{3} a_{i} \leq A \leq \sum_{k=1}^{3} A_{i} \\ &\sum_{k=1}^{5} a_{i} = (0,2) \times f(1) + (0,2) \cdot f(1,2) + (0,2) \cdot f(1,4) \\ &+ (0,2) \cdot f(1,6) + (0,2) \cdot f(1,8) \\ &= (0,2) \cdot \left[f(1) + f(1,2) + f(1,4) + f(1,6) + f(1,8) \right] \end{split}$$

 $\sum_{i=1}^{3} A_{i} = (0,2) \cdot [f(1,2) + f(1,4) + f(1,6) + f(1,8) + f(2)]$

(calculatrice)

Ex17:

$$U_n = \int_0^1 \frac{x^n}{(x^2+1)^2} dx \ ; (n \ge 1)$$

1)
$$0 \le x \le 1 \Rightarrow 0 \le x^2 \le 1 \Rightarrow 1 \le 1 + x^2 \le 2$$

$$\Rightarrow 1 \le (1 + x^2) \le 4 \Rightarrow \frac{1}{4} \le \frac{1}{(1 + x^2)^2} \le 1$$

$$\Rightarrow 0 \le \frac{1}{(1 + x^2)^2} \le 1 \Rightarrow 0 \le \frac{x^{2n+1}}{(1 + x^2)^2} \le x^{2n+1}$$

2) pour
$$x \in [0,1]$$

$$0 \le \frac{x^n}{(1+x^2)^2} \le x^n$$

$$\Rightarrow 0 \le U_n \le \int_0^1 x^4 dx \Rightarrow 0 \le U_n \le \left[\frac{1}{n+1}x^{n+1}\right]_0^1$$

$$\Rightarrow 0 \le U_n \le \frac{1}{n+1}$$

$\lim_{x \to +\infty} \frac{1}{n+1} = 0 \qquad \Rightarrow \quad \lim_{x \to +\infty} U_n = 0$

$$J_n = \int_0^1 x^n . \sqrt{1 + x} . dx \quad n \in \mathbb{N}^*$$
1.a)
$$0 \le x \le 1 \Rightarrow 1 \le 1 + x \le 2 \Rightarrow 1 \le \sqrt{1 + x} \le \sqrt{2}$$

$$\Rightarrow x^n \le x^n . \sqrt{1 + x} \le \sqrt{2} x^n . d(0)$$

$$\int_{0}^{1} x^{n} dx \le \int_{0}^{1} x^{n} \sqrt{1 + x} dx \le \sqrt{2} \cdot \int_{0}^{1} x^{n} dx$$

$$\Rightarrow \left[\frac{x^{n+1}}{n+1} \right]_{0}^{1} \le J_{n} \le \sqrt{2} \left[\frac{x^{n+1}}{n+1} \right]_{0}^{1}$$

$$\Rightarrow \frac{1}{n+1} \le J_{n} \le \frac{\sqrt{2}}{n+1}$$

$$\text{b) } \frac{1}{n+1} \le J_{n} \le \frac{\sqrt{2}}{n+1}$$

$$\lim_{n \to +\infty} \frac{1}{n+1} = 0 \text{ et } \lim_{n \to +\infty} \frac{\sqrt{2}}{n+1} = 0$$

$$\text{d'où } \lim_{n \to +\infty} J_{n} = 0$$

1) a) la fonction
$$f: t \mapsto \sqrt{1+t}$$
 est dérivable sur $\begin{bmatrix} 0,1 \end{bmatrix}$ et
$$0 \le f'(t) = \frac{1}{2\sqrt{1+t}} \le \frac{1}{2}$$

D'après le Th.Ing Acc.finis pour $x \in [0,1]$

$$0 \le f(1) - f(x) \le \frac{1}{2}(1 - x)$$

d'où
$$0 \le \sqrt{2} - \sqrt{1+x} \le \frac{1}{2}(1-x)$$

b) pour $x \in [0,1]$ on a:

$$\begin{split} &\sqrt{2} - \frac{1}{2} (1 - x) \le \sqrt{1 + x} \le \sqrt{2} \\ \Rightarrow &\sqrt{2} x^n - \frac{1}{2} (x^n - x^{n+1}) \le x^n \sqrt{1 + x} \le \sqrt{2} x^n \\ \Rightarrow & \int_0^1 \sqrt{2} x^n . dx - \frac{1}{2} \int_0^1 (x^n - x^{n+1}) dx \le \int_0^1 x^n \sqrt{1 + x} dx \le \int_0^1 \sqrt{2} x^n dx \\ \Rightarrow &\sqrt{2} \left[\frac{x^{n+1}}{n+1} \right]_0^1 - \frac{1}{2} \left[\frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2} \right]_0^1 \le J_n \le \sqrt{2} \left[\frac{x^{n+1}}{n+1} \right]_0^1 \\ \Rightarrow & \frac{\sqrt{2}}{n+1} - \frac{1}{2} \frac{1}{(n+1)(n+2)} \le J_n \le \frac{\sqrt{2}}{n+1} \end{split}$$

ďoù

$$\frac{\sqrt{2}}{n+1} - \frac{1}{2n^2} \le J_n \le \frac{\sqrt{2}}{n+1}$$

$$\operatorname{car} \quad \frac{1}{(n+1)(n+2)} \le \frac{1}{n^2}$$

c) on a:

$$\frac{n.\sqrt{2}}{n+1} - \frac{1}{2n} \le n.J_n \le \frac{n.\sqrt{2}}{n+1}$$

$$\lim_{n \to +\infty} \left(\frac{n \cdot \sqrt{2}}{n+1} - \frac{1}{2n} \right) = \lim_{n \to +\infty} \left(\frac{n \cdot \sqrt{2}}{n+1} \right) = \sqrt{2}$$

d'où $\lim_{n\to+\infty} n.J_n = \sqrt{2}$

EX 19:

$$U_0 = \int_0^{\frac{\pi}{4}} \cos 2x dx$$

$$U_n = \int_0^{\frac{\pi}{4}} x^n \cdot \cos 2x dx$$

1) $U_{n+1} = \int_{0}^{\frac{\pi}{4}} x^{n+1} \cdot \cos 2x \, dx$ $0 \le x \le \frac{\pi}{4} \implies 0 \le x \le 1 \implies x^{n+1} \le x^{n}$ $\implies x^{n+1} \cdot \cos 2x \le x^{n} \cdot \cos 2x \quad (\cos 2x \ge 0)$

d'où $\int_{0}^{\frac{\pi}{4}} x^{n+1} \cdot \cos 2x \, dx \le \int_{0}^{\frac{\pi}{4}} x^{n} \cdot \cos 2x \, dx$ $\Rightarrow U_{n+1} \le U_{n}$

(U_n) est décroissante

2) pour $x \in \left[0, \frac{\pi}{4}\right]$: $\cos 2x \le 1$ $x^n \cdot \cos 2x \le x^n$

$$\Rightarrow \int_{0}^{\frac{\pi}{4}} x^{n} \cdot \cos 2x \ dx \le \int_{0}^{\frac{\pi}{4}} x^{n} \ dx$$

$$\Rightarrow \mathbf{U}_{\mathbf{n}} \leq \int_{0}^{\frac{\pi}{4}} x^{n} \ dx$$

3)
$$x^n \cdot \cos 2x \ge 0$$
 pour $x \in \left[0, \frac{\pi}{4}\right]$

$$\Rightarrow \int_{0}^{\frac{\pi}{4}} x^{n} \cdot \cos 2x \, dx \ge 0 \quad \Rightarrow \ U_{n} \ge 0$$

*
$$0 \le U_n \le \int_0^{\frac{\pi}{4}} x^n dx$$

$$\Rightarrow 0 \le U_n \le \left\lceil \frac{x^{n+1}}{n+1} \right\rceil_0^{\frac{\pi}{4}} \Rightarrow 0 \le U_n \le \frac{1}{n+1} \left(\frac{\pi}{4}\right)^{n+1}$$

$$\lim_{n \to +\infty} \frac{1}{n+1} \left(\frac{\pi}{4}\right)^{n+1} = 0$$
d'où
$$\lim_{n \to +\infty} U_n = 0$$

CH 7 TOME I

4) a) *
$$U_0 = \int_0^{\frac{\pi}{4}} \cos 2x \ dx = \left[\frac{1}{2} \sin 2x\right]_0^{\frac{\pi}{4}} = \frac{1}{2}$$

$$* U_1 = \int_0^{\frac{\pi}{4}} x \cdot \cos 2x \ dx$$

intégrant par parties, on pose :

$$\begin{cases} U'(x) = \cos 2x \xrightarrow{P} U(x) = \frac{1}{2} \sin 2x \\ V(x) = x \xrightarrow{d} V'(x) = 1 \end{cases}$$

$$U_{1} = \left[\frac{1}{2}x\sin 2x\right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{2}\sin 2x dx$$

$$U_1 = \frac{\pi}{8} + \left[\frac{1}{4}\cos 2x\right]_0^{\frac{\pi}{4}} = \frac{\pi}{8} - \frac{1}{4}$$

b)
$$U_{n+2} = \int_{0}^{\frac{\pi}{4}} x^{n+2} \cdot \cos 2x dx$$

intégration par parties, on pose :

$$\begin{cases} U'(x) = \cos 2x \xrightarrow{p} U(x) = \frac{1}{2} \sin 2x \\ V(x) = x^{n+2} \xrightarrow{d} V'(x) = (n+2)x^{n+1} \end{cases}$$

$$U_{n+2} = \left[\frac{1}{2}x^{n+2} \cdot \sin 2x\right]_0^{\frac{\pi}{4}} - \frac{(n+2)}{2} \cdot \int_0^{\frac{\pi}{4}} x^{n+1} \cdot \sin 2x dx$$

$$U_{n+2} = \frac{1}{2} \left(\frac{\pi}{4}\right)^{n+2} - \frac{(n+2)}{2} \int_{0}^{\frac{\pi}{4}} x^{n+1} \cdot \sin 2x dx \tag{1}$$

faisons une 2éme intégration par parties :

$$\begin{cases} U'(x) = \sin 2x \xrightarrow{p} U(x) = -\frac{1}{2}\cos 2x \\ V(x) = x^{n+1} \xrightarrow{d} V'(x) = (n+1)x^n \end{cases}$$

$$\int_{0}^{\frac{\pi}{4}} x^{n+1} \cdot \sin 2x dx = \left[\frac{-x^{n+1}}{2} \cos 2x \right]_{0}^{\frac{\pi}{4}} + \frac{(n+1)}{2} \int_{0}^{\frac{\pi}{4}} x^{n} \cdot \cos 2x dx$$

$$\Rightarrow \int_{0}^{\frac{\pi}{4}} x^{n+1} \cdot \sin 2x dx = \frac{(n+1)}{2} \cdot U_{n}$$
 (2)
(1) + (2) \Rightarrow
$$U_{n+2} = \frac{1}{2} \left(\frac{\pi}{4}\right)^{n+2} - \frac{(n+1)(n+2)}{4} \cdot U_{n}$$

c)
*
$$U_2 = \frac{1}{2} (\frac{\pi}{4})^2 - \frac{1}{2} U_0 = \frac{\pi^2}{32} - \frac{1}{4}$$

* $U_3 = \frac{1}{2} (\frac{\pi}{4})^3 - \frac{3}{2} U_1 = \frac{1}{2} (\frac{\pi}{4})^3 - \frac{3}{2} (\frac{\pi}{8} - \frac{1}{4})$
 $U_3 = \frac{1}{2} (\frac{\pi}{4})^3 - \frac{3\pi}{16} + \frac{3}{8}$

Ex 20:

CMS

$$U_{n} = \int_{0}^{1} \frac{dx}{1+x^{n}} \quad ; n \ge 1$$

$$1) \int_{0}^{1} \frac{dx}{1+x^{n}} = \int_{0}^{1} \left(\frac{(1+x^{n})}{1+x^{n}} - \frac{1}{1+x^{n}} \right) dx = \int_{0}^{1} dx - \int_{0}^{1} \frac{dx}{1+x^{n}}$$

$$= [x]_{0}^{1} - U_{n} = 1 - U_{n}$$

$$2) \quad \text{on a:}$$

$$0 \le \frac{x^{n}}{1+x^{n}} \le x^{n} \quad \text{pour } x \in [0,1]$$

$$d'où$$

$$0 \le \int_{0}^{1} \frac{x^{n}}{1+x^{n}} dx \le \int_{0}^{1} x^{n} . dx$$

$$\Rightarrow 0 \le 1 - U_{n} \le \left[\frac{x^{n+1}}{n+1} \right]_{0}^{1}$$

$$\Rightarrow 0 \le 1 - U_{n} \le \frac{1}{n+1}$$
et $\lim_{n \to +\infty} \frac{1}{n+1} = 0$ d'où $\lim_{n \to +\infty} (1 - U_{n}) = 0$

 $\Rightarrow \lim_{n \to \infty} U_n = 1$

Ex 21:

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x.dx$$

$$1) \quad \text{a)} \quad I_{0} = \int_{0}^{\frac{\pi}{2}} dx = \left[x\right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}$$

$$I_{1} = \int_{0}^{\frac{\pi}{2}} \sin x.dx = \left[-\cos x.x\right]_{0}^{\frac{\pi}{2}} = 1$$

b)
$$I_{n+2} = \int_{0}^{\frac{\pi}{2}} \sin^{n+2} x dx$$

on pose:

$$\begin{cases} U'(x) = \sin x \to U(x) = -\cos x \\ V(x) = \sin^{n+1} x \to V'(x) = (n+1)\cos x \cdot \sin^n x \end{cases}$$

$$I_{n+2} = \left[-\cos x \cdot \sin^{n+1} x\right]_0^{\frac{\pi}{2}} + (n+1) \cdot \int_0^{\frac{\pi}{2}} \cos^2 x \cdot \sin^n x \cdot dx$$

$$I_{n+2} = (n+1) \cdot \int_{0}^{\frac{\pi}{2}} (1 - \sin^2 x) \cdot \sin^n . dx$$

$$= (n+1) \cdot \left(\int_{0}^{\frac{\pi}{2}} \sin^{n} x . dx - \int_{0}^{\frac{\pi}{2}} \sin^{n+2} x \right)$$

d'où
$$I_{n+2} = (n+1)[I_n - I_{n+2}]$$

par suite : $(n+2).I_{n+2} = (n+1).I_n$

c) •
$$2I_2 = I_0$$

$$\Rightarrow I_2 = \frac{1}{2}I_0 = \frac{\pi}{4}$$

•
$$3I_3 = 2I_1$$

$$\Rightarrow I_3 = \frac{2}{3}I_1 = \frac{2}{3}$$

2)
$$U_n = (n+1)I_n.I_{n+1}$$

a)
$$U_{n+1} = (n+2)I_{n+1}.I_{n+2} = (n+2)I_{n+1}.\left(\frac{n+1}{n+2}I_n\right)$$

$$=(n+1)I_n.I_{n+1}=U_n$$

 $U_{n+1} - U_n = 0$ pour tout $n \in \mathbb{N}$

d'où $\left(U_{\scriptscriptstyle n}\right)$ est une suite constante

b)
$$U_0 = I_0 I_1 = \frac{\pi}{2}$$

d'où $U_n = \frac{\pi}{2}$ pour tout $n \in \mathbb{N}$

3) pour
$$x \in \left[0, \frac{\pi}{2}\right]$$

on a : $0 \le \sin x \le 1$

$$\Rightarrow \sin^{n+1} x \leq \sin^n x$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{n+1} x. dx \le \int_{0}^{\frac{\pi}{2}} \sin^{n} x. dx$$
$$\Rightarrow I_{n+1} \le I_{n}$$

d'où (I_n) est décroissante

4) a) (I_n) est décroissante et positive

$$\Rightarrow I_{n+1} \le I_n \le I_{n-1} \quad \text{pour } n \ge 1$$

$$\Rightarrow I_n.I_{n+1} \le I_n^2 \le I_n.I_{n-1}$$

$$\Rightarrow \frac{U_n}{n+1} \le I_n^2 \le \frac{U_{n-1}}{n}$$

d'où
$$\frac{\pi}{2(n+1)} \le I_n^2 \le \frac{\pi}{2n}$$

b)
$$\frac{\pi}{2002} \le I_{1000}^2 \le \frac{\pi}{2000}$$

d'où
$$\sqrt{\frac{\pi}{2002}} \le I_{1000} \le \sqrt{\frac{\pi}{2000}}$$

EX 22:

$$x \in \left[0, \frac{\pi}{4}\right]$$

$$f(x) = tg^3 x + tgx$$

1)
$$f'(x) = 3(1 + tg^2x).tg^2x + (1 + tg^2x)$$

$$f'(x) = (1 + tg^2x)(1 + 3tg^2x) > 0$$

x	0		$\frac{\pi}{4}$
f'(x)	0	+	
f(x)	0 —		→ ²

2) f est continue et stictement croissante sur $\left[0, \frac{\pi}{4}\right]$ elle réalise donc une bijection de $\left[0, \frac{\pi}{4}\right]$ sur $f(\left[0, \frac{\pi}{4}\right]) = \left[f(0), f(\frac{\pi}{4})\right] = \left[0, 2\right]$

3) a)
$$f'_{d}(0) = 1$$
 ; $f'_{g}(\frac{\pi}{4}) = 8$

b) *
$$\int_{0}^{\frac{\pi}{4}} f(x) . dx = \int_{0}^{\frac{\pi}{4}} (1 + tg^{2}x) . tgx . dx = \left[\frac{1}{2} tg^{2}x\right]_{0}^{\frac{\pi}{4}} = \frac{1}{2}$$

* $\int_{0}^{2} f^{-1}(x)dx$ représente l'aire de la partie du plan

limitée par ($\zeta_{\rm f}$) et les droites d'équations : y=0 , x=0 et x=2

$$\int_{0}^{2} f^{-1}(x)dx = aire(D_1) = aire(D_2)$$
 (voir figure)

d'où :
$$\int_{0}^{2} f^{-1}(x) dx = 2 \times \frac{\pi}{4} - \int_{0}^{\frac{\pi}{4}} f(x) dx = \frac{\pi}{2} - \frac{1}{2}$$

EX 23:

CMS

 $x \in [0,3]$

$$f(x) = \begin{cases} x & \text{si } x \in [0,1] \\ \frac{1}{x^2} & \text{si } x \in [1,3] \end{cases}$$

1) f est continue sur chacun des intervalles [0,1[et]1,3]* f(1) = 1

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x) = 1 = f(1)$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x^2} = 1 = f(1)$$

d'où f est continue en 1

par suite f est continue sur [0,3]

$$2) F(x) = \int_{0}^{x} f(t)dt$$

a) • pour $x \in [0,1]$

$$F(x) = \int_{0}^{x} t.dt = \left[\frac{t^{2}}{2}\right]_{0}^{x} = \frac{x^{2}}{2} \text{ pour } x \in [0,1]$$

• pour $x \in [1,3]$

$$F(x) = \int_{0}^{1} f(t)dt + \int_{1}^{x} f(t)dt = \int_{0}^{1} t \cdot dt + \int_{1}^{x} \frac{1}{t^{2}} dt$$

$$= \left[\frac{t^2}{2} \right]_0^1 + \left[\frac{-1}{t} \right]_1^x = \frac{1}{2} + 1 - \frac{1}{x} = \frac{3}{2} - \frac{1}{x}$$

$$F(x) = \begin{cases} \frac{x^2}{2} & \text{si } x \in [0,1] \\ \frac{3}{2} - \frac{1}{x} & \text{si } x \in [1,3] \end{cases}$$

b)
$$F'(x) = f(x) \ge 0$$

$$F'(1)=f(1)=1$$
 ; $F'(0)=0$; $F'(3)=\frac{1}{0}$

EX 24:

$$I_n = \int_0^{\frac{\pi}{4}} tg^{n+2} x. dx$$

1) a)
$$I_0 = \int_0^{\frac{\pi}{4}} tg^2 x. dx = \int_0^{\frac{\pi}{4}} ((1+tg^2 x) - 1) dx$$

= $\left[tg(x) - x \right]_0^{\frac{\pi}{4}} = 1 - \frac{\pi}{4}$

b)
$$I_{n+1} = \int_{0}^{\frac{\pi}{4}} tg^{n+3}x.dx$$

pour : $0 \le x \le \frac{\pi}{4}$ on a : $0 \le tgx \le 1$

$$\Rightarrow 0 \le tg^{n+3}x \le tg^{n+2}x \Rightarrow 0 \le \int_{0}^{\frac{\pi}{4}} tg^{n+3}x.dx \le \int_{0}^{\frac{\pi}{4}} tg^{n+2}x.dx$$
$$\Rightarrow 0 \le I_{n+1} \le I_{n} \quad \forall n \in \mathbb{N}$$

c) (I_n) est décroissante et minorée par 0 elle est donc convergente.

CMS

3) a)
$$I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \left(tg^{n+2}x + tg^{n+4}x \right) dx$$

$$= \int_0^{\frac{\pi}{4}} \left(1 + tg^2x \right) tg^{n+2}x \cdot dx = \left[\frac{1}{n+3} tg^{n+3}x \right]_0^{\frac{\pi}{4}} = \frac{1}{n+3}$$

b)
$$I_{n+2} \ge 0 \implies I_n + I_{n+2} \ge I_n$$

$$\implies \frac{1}{n+3} \ge I_n \qquad \text{or } I_n \ge 0$$
d'où $0 \le I_n \le \frac{1}{n+3}$; $\forall n \in \mathbb{N}$

$$\lim_{n \to +\infty} \frac{1}{n+3} = 0 \implies \lim_{n \to +\infty} I_n = 0$$

$$I_2 = \frac{1}{3} - I_0 = \frac{\pi}{4} - \frac{2}{3}$$
; $I_4 = \frac{1}{5} - I_2 = \frac{13}{5} - \frac{\pi}{4}$

EX 25:

1)
$$f(x) = x^4 - x^3 + 1$$
; $I = [-1, 3]$
 $\overline{f} = \frac{1}{4} \int_{-1}^{3} f(x) dx = \frac{1}{4} \times \left[\frac{x^5}{5} - \frac{x^4}{4} + x \right]_{1}^{3} = \frac{41}{5}$

2)
$$f(x) = \frac{1}{x^3} - 1$$
; $I = [2, 4]$
 $\overline{f} = \frac{1}{2} \int_{2}^{4} f(x) dx = \frac{1}{2} \left[\frac{-1}{2x^2} - x \right]_{2}^{4} = \frac{-61}{64}$

3)
$$f(x) = \sin(2x)$$
 $I = [0, \pi]$
 $\overline{f} = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx = \frac{1}{\pi} \left[-\frac{1}{2} \cos 2x \right]_{0}^{\pi} = 0$

Ex 26:

soit
$$f(x) = \frac{1}{x^2 - x + 1}$$
; $x \in [2,4]$
 $f'(x) = \frac{1 - 2x}{(x^2 - x + 1)} < 0$; $\forall x \in [2,4]$

f est décroissante

$$2 \le x \le 4 \implies f(4) \le f(x) \le f(2)$$

$$\Rightarrow \frac{1}{13} \le f(x) \le \frac{1}{3}$$

f est continue sur [2,4] et $\frac{1}{13} \le f(x) \le \frac{1}{3}$

d'où
$$\frac{1}{13} \le \overline{f} \le \frac{1}{3}$$

$$\Rightarrow \frac{1}{13} \le \frac{1}{2} \int_{2}^{4} f(x) dx \le \frac{1}{3}$$

$$\Rightarrow \frac{2}{13} \le \int_{1}^{4} \frac{dx}{x^{2} - x + 1} \le \frac{2}{3}$$

Ex 27 :

soit
$$f(x) = \frac{1}{3 + tg^2 x}$$

$$\frac{\pi}{6} \le x \le \frac{\pi}{3} \implies \frac{1}{\sqrt{3}} \le tgx \le \sqrt{3}$$

$$\Rightarrow \frac{1}{3} \le tg^2x \le 3 \implies \frac{10}{3} \le 3 + tg^2x \le 6$$

$$\Rightarrow \frac{1}{6} \le f(x) \le \frac{3}{10}$$

f est continue sur $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ et $\frac{1}{6} \le f(x) \le \frac{3}{10}$

d'après le théorème de la moyenne :

$$\frac{1}{6} \le \overline{f}(x) \le \frac{3}{10} \implies \frac{1}{6} \le \frac{6}{\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} f(x) dx \le \frac{3}{10}$$
$$\implies \frac{\pi}{36} \le \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{3 + tg^2 x} \le \frac{\pi}{20}$$

Ex 28:
$$V = \pi . \int_{0}^{2} x^{4} dx = \pi . \left[\frac{x^{5}}{5} \right]_{0}^{2} = \frac{32\pi}{5}$$

Ex 29:
$$V = \pi . \int_{1}^{3} \frac{1}{x^2} dx = \pi . \left[\frac{-1}{x} \right]_{1}^{3} = \frac{2\pi}{3}$$

Ex 30:

$$V = \pi . \int_{0}^{\frac{\pi}{4}} tg^{2}x dx = \pi . \left[tgx - x \right]_{0}^{\frac{\pi}{4}} = (1 - \frac{\pi}{4}) . \pi$$

Ex 31:

$$V = \pi \cdot \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x)^{2} dx = \pi \cdot \int_{0}^{\frac{\pi}{2}} (1 + 2\cos x \sin x) dx$$
$$= \pi \cdot \left[x + \sin^{2} x \right]_{0}^{\frac{\pi}{2}} = \pi \cdot (1 + \frac{\pi}{2}) u \cdot v$$

Ex 32:

$$V = \pi . \int_{0}^{\frac{\pi}{2}} x^{2} . dx - \pi . \int_{0}^{\frac{\pi}{2}} \sin^{2} x dx$$

$$= \pi . \int_{0}^{\frac{\pi}{2}} x^{2} . dx - \pi . \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos 2x) dx$$

$$= \pi . \left[\frac{x^{3}}{3} \right]_{0}^{2} - \pi . \left[\frac{1}{2} (x - \frac{1}{2} \sin x) \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{\pi}{3} (\frac{\pi}{2})^{3} - \frac{\pi}{2} (\frac{\pi}{2}) = \frac{\pi^{4}}{24} - \frac{\pi^{2}}{4} u.v$$

Ex 33:

1.
$$F(x) = \int_{0}^{tgx} \frac{dt}{1+t^2}$$
 ; $x \in \left[0, \frac{\pi}{4}\right]$

1) la fonction : $t \mapsto \frac{1}{1+t^2}$ est continue sur IR

la fonction : $x \mapsto tgx$ est dérivable sur $\left[0, \frac{\pi}{4}\right]$

$$\operatorname{tg}(\left[0, \frac{\pi}{4}\right]) = \left[0, 1\right] \subset \operatorname{IR} \quad \text{et } 0 \in \operatorname{IR}$$

d'où f est dérivable sur $\left[0, \frac{\pi}{4}\right]$ et

$$F'(x) = (tgx)' \cdot \frac{1}{1 + tg^2 x} = \frac{1 + tg^2 x}{1 + tg^2 x} = 1$$

2) F est dérivable sur $\left[0, \frac{\pi}{4}\right]$ et F'(x)=1

d'où F(x)=x+k ; $k \in \mathbb{R}$

•
$$F(0) = \int_{0}^{0} \frac{dt}{1+t^2} = 0 \implies 0+k=0 \implies k=0$$

d'où
$$F(x)=x$$
; $\forall x \in \left[0, \frac{\pi}{4}\right]$

3)
$$\int_{0}^{1} \frac{dt}{1+t^{2}} = \int_{0}^{tg^{\frac{\pi}{4}}} \frac{dt}{1+t^{2}} = F(\frac{\pi}{4}) = \frac{\pi}{4}$$

III /
$$J_0 = \int_0^1 \frac{dt}{1+t^2}$$

 $J_n = \int_0^1 \frac{t^{2n}}{1+t^2} dt ; n \ge 1$

1) a) pour n=0 :
$$J_0 = \frac{\pi}{4}$$

$$0 \le J_0 \le \frac{1}{1+2\times 0} = 1$$

* pour $n \ge 1$

$$0 \le t \le 1 \implies 0 \le t^2 \le 1 \implies 1 \le 1 + t^2 \le 2$$

$$\Rightarrow \frac{1}{2} \le \frac{1}{1+t^2} \le 1 \Rightarrow 0 \le \frac{1}{1+t^2} \le 1$$

$$\Rightarrow 0 \le \frac{t^{2n}}{1+t^2} \le t^{2n} \Rightarrow 0 \le \int_0^1 \frac{t^{2n}}{1+t^2} dt \le \int_0^1 t^{2n} dt$$

$$\Rightarrow 0 \le J_n \le \left[\frac{t^{2n+1}}{2n+1}\right]_0^1 \Rightarrow 0 \le J_n \le \frac{1}{2n+1}$$

b)
$$0 \le J_n \le \frac{1}{2n+1}$$
; $\forall n \in \mathbb{N}$

$$\lim_{n \to +\infty} \frac{1}{2n+1} = 0 \quad \text{d'où } \lim_{n \to +\infty} J_n = 0$$

2) a)
$$J_{n+1} + J_n = \int_0^1 \frac{t^{2n+2} + t^{2n}}{1 + t^2} dt$$

$$= \int_{0}^{1} \frac{t^{2n} (1+t^{2})}{1+t^{2}} dt = \int_{0}^{1} t^{2n} dt = \frac{1}{2n+1}$$

b) *
$$J_0 = \frac{\pi}{4}$$

*
$$J_1 + J_0 = 1 \implies J_1 = 1 - \frac{\pi}{4}$$

*
$$J_2 + J_1 = \frac{1}{3} \implies J_2 = \frac{1}{3} - (1 - \frac{\pi}{4}) = \frac{\pi}{4} - \frac{2}{3}$$

$$J_3 = \frac{13}{5} - \frac{\pi}{4}$$
 ; $J_4 = \frac{\pi}{4} - \frac{156}{35}$; $J_5 = \frac{1439}{315} - \frac{\pi}{4}$

3)
$$U_n = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^n}{1 + 2n}$$

a)
$$1=J_1+J_0$$

$$\frac{1}{3} = J_2 + J_1$$

$$\frac{1}{5} = \mathbf{J}_3 + \mathbf{J}_2$$

$$\frac{1}{7} = J_4 + J_3$$

$$\frac{1}{2n+1} = J_{n+1} + J_n$$

•
$$U_n = \sum_{k=0}^{n} (-1)^k \cdot (J_k + J_{k+1}) = \sum_{k=0}^{n} (-1)^k J_k + \sum_{k=0}^{n} (-1)^k J_{k+1}$$

$$= \sum_{k=0}^{n} (-1)^{k} J_{k} - \sum_{k=0}^{n} (-1)^{k+1} J_{k+1} = \sum_{k=0}^{n} (-1)^{k} J_{k} - \sum_{k=1}^{n+1} (-1)^{k} J_{k}$$

$$U_n = J_0 + \sum_{k=1}^{n} (-1)^k J_k - \left(\sum_{k=1}^{n} (-1)^k J_k + (-1)^{n+1} J_{n+1} \right)$$

 $U_n = J_0 - (-1)^{n+1} J_{n+1} = J_0 + (-1)^n J_{n+1}$

$$\Rightarrow (-1)^n J_{n+1} = U_n - J_0 \Rightarrow J_{n+1} = (-1)^n (U_n - J_0)$$

b)
$$|\mathbf{U}_{n} - J_{0}| = |\mathbf{J}_{n+1}|$$

$$\lim_{n \to \infty} J_n = 0 \implies \lim_{n \to \infty} |J_{n+1}| = 0$$

$$\Rightarrow \lim_{n \to +\infty} (\mathbf{U}_{\mathbf{n}} - \mathbf{J}_{\mathbf{0}}) = 0 \Rightarrow \lim_{n \to +\infty} \mathbf{U}_{\mathbf{n}} = \mathbf{J}_{\mathbf{0}} = \frac{\pi}{4}$$

Ex 34:

$$x \in \left[0, \frac{\pi}{2}\right]$$

$$F(x) = \int_{0}^{\sin x} \sqrt{1 - t^2} . dt$$

- 1) •la fonction : f: $t \mapsto \sqrt{1-t^2}$ est continue sur [-1,1]
- la fonction : $x \mapsto \sin x$ est dérivable sur $\left[0, \frac{\pi}{2}\right]$

$$\sin(\left[0, \frac{\pi}{2}\right]) = \left[0, 1\right] \subset \left[-1, 1\right], \text{ et } 0 \in \left[-1, 1\right]$$

d'où F est dérivable sur $\left| 0, \frac{\pi}{2} \right|$ et

 $F'(x) = \cos x \cdot f(\sin x) = \cos x \cdot \sqrt{1 - \sin^2 x} = \cos x \cdot |\cos x|$

$$F'(x) = \cos^2 x$$
 $\operatorname{car} x \in \left[0, \frac{\pi}{2}\right]$

2) F est continue sur $\left[0, \frac{\pi}{2}\right]$

$$F'(x) = \cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

d'où
$$F(x) = \frac{1}{2}(x + \frac{1}{2}\sin 2x) + k \quad (k \in \mathbb{R})$$

$$F(0) = \int_{0}^{0} \sqrt{1 - t^2} dt = 0 \implies 0 + k = 0 \implies k = 0$$

d'où
$$F(x) = \frac{1}{2}x + \frac{1}{4}\sin 2x$$

3)
$$\int_{0}^{1} \sqrt{1-t^2} dt = \int_{0}^{\sin{\frac{\pi}{2}}} \sqrt{1-t^2} dt = F(\frac{\pi}{2}) = \frac{\pi}{4}$$

$$F'(0) = 1$$

X	0		$\frac{\pi}{2}$
F'(x)	0	+	0
F(x)	0		$\frac{\pi}{4}$

Ex 35:

$$f(x) = x + \sqrt{4 - x^2}$$
 $x \in [-2,2]$

1)
$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{(x - 2) + \sqrt{4 - x^2}}{x - 2}$$
$$= \lim_{x \to 2^{-}} 1 + \frac{\sqrt{4 - x^2}}{x - 2} = \lim_{x \to 2^{-}} 1 + \frac{4 - x^2}{(x - 2)\sqrt{4 - x^2}}$$
$$= \lim_{x \to 2^{-}} 1 - \frac{2 + x}{\sqrt{4 - x^2}} = -\infty$$

f non dérivable à gauche en 2

CMS

• de meme f non dérivable à droite en (-2)

• f est dérivable sur]-2,2[

$$f'(x) = 1 - \frac{x}{\sqrt{4 - x^2}}$$

* pour $x \in \left]-2,0\right] \rightarrow f'(x)>0$

$$f'(x) = \frac{4 - 2x^2}{\sqrt{4 - x^2}(\sqrt{4 - x^2} + x)}$$

$$= \frac{2(\sqrt{2} - x)(\sqrt{2} + x)}{\sqrt{4 - x^2}(\sqrt{4 - x^2} + x)}$$
 signe de $(\sqrt{2} - x)$

-2		$\sqrt{2}$		2
	+	ρ	-	
1		$\sqrt{2}\sqrt{2}$		
-2				2
		+	+ P	+ 0 -

2)
$$F(x) = \int_{0}^{2\cos x} \sqrt{4-t^2} dt \quad x \in [0,\pi]$$

a) • la fonction g: $t \mapsto \sqrt{4-t^2}$ est continue sur [-2,2]

• la fonction U: $x \mapsto 2\cos x$ est dérivables ur $[0,\pi]$

$$U([0,\pi])=[-2,2]$$
 et $0 \in [-2,2]$

d'où F est dérivable sur $[0,\pi]$ et

 $F'(x)=U'(x).g(U(x))=-2\sin x \sqrt{4-4\cos^2 x}$

 $F'(x) = -2\sin x \sqrt{4\sin^2 x} = -4\sin x \left| \sin x \right| = -4\sin^2 x$

 $(car \ x \in [0,\pi] \rightarrow sinx \ge 0)$

b)
$$F(\frac{\pi}{2}) = \int_{0}^{0} \sqrt{4 - t^2} dt = 0$$

c) F est continue sur $[0,\pi]$

$$F'(x) = -4\sin^2 x = -2(1-\cos 2x)$$

$$F(\frac{\pi}{2})=0$$

d'où
$$F(x) = \int_{\frac{\pi}{2}}^{x} F'(t).dt = \int_{\frac{\pi}{2}}^{x} -2(1-\cos 2t)dt$$

$$F(x) = \int_{\frac{\pi}{2}}^{x} (-2 + 2\cos 2t) dt = \left[-2t + \sin(2t) \right]_{\frac{\pi}{2}}^{x}$$

$$F(x)=-2x+\sin 2x+\pi$$

3) a)
$$A = \int_{2}^{2} (f(t) - t) dt = \int_{2}^{2} \sqrt{4 - t^2} dt$$

$$A = \int_{0}^{0} \sqrt{4 - t^{2}} dt + \int_{0}^{2} \sqrt{4 - t^{2}} dt$$

$$A = \int_{0}^{2} \sqrt{4 - t^{2}} dt - \int_{0}^{-2} \sqrt{4 - t^{2}} dt$$

$$A = \int_{0}^{2\cos 0} \sqrt{4 - t^2} dt - \int_{0}^{2\cos \pi} \sqrt{4 - t^2} dt$$

$$A = F(0) - F(\pi)$$

b) $A = F(0) - F(\pi) = \pi - (-2\pi + \pi)$

$$A = 2\pi \text{ u.a}$$

CH8

FONCTION LOGARITHME NEPERIEN

QCM

1)
$$Ln(x+x^2) = Lnx + Ln(x+1)$$

$$2) Ln\left(\frac{1}{\sqrt{e}}\right) = -\frac{1}{2}$$

3)
$$f'(x) = \frac{1}{x}$$

4)
$$f'(x) = 2(1 + Ln|x|)$$

$$5) \lim_{x \to 0^+} \frac{Lnx}{x} = -\infty$$

6)
$$\lim_{x \to 0^+} (Lnx + \frac{1}{x}) = +\infty$$

Vrai - Faux

1) Vrai Soit F(x) = xLnx - x + 1 On a : F(1) = 0 et F'(x) = Lnx

2) Faux En effet : $Ln(IR_+^*) = \lim_{x \to 0^+} Ln(x), \lim_{x \to +\infty} \left[= \right] -\infty, +\infty \left[= IR \right]$

3) Faux Ln(x) existe pour x>0

4) Faux En effet : $\lim_{x\to 0^+} \frac{1}{\underbrace{xLnx-x}_{0^-}} = -\infty$

EXERCICE№1

* Ln (e^2) = 2.Lne = 2×1 = 2

* Ln $(\frac{1}{2})$ = -Lne = -1

* $Ln(25) - 2.Ln5 = Ln[(5)^2] - 2.Ln5 = 2.Ln5 - 2.Ln5 = 0$

* $Ln100000 = Ln10^5 = 5Ln10$,...

EXERCICE№2

1) (E): Lnx + Ln(x+1) = 0

 $\operatorname{Ln} x$ et $\operatorname{Ln}(x+1)$ ont un sens ssi x > 0 et $x+1 > 0 \Leftrightarrow x > 0$

dans $]0, +\infty[$ l'équation $(E) \Leftrightarrow \text{Ln}[x (x+1)] = 0 \Leftrightarrow x (x+1) = 1$

 $\Leftrightarrow x^2 + x - 1 = 0$; $\Delta = 5$: $x' = \frac{-1 - \sqrt{5}}{2}$ à rejeter; $x'' = \frac{-1 + \sqrt{5}}{2}$

$$S_{IR} = \{\frac{-1+\sqrt{5}}{2}\}$$

2)
$$\operatorname{Ln}(Lnx) = 0 \Leftrightarrow \operatorname{Ln}x = 1 \text{ et } x > 0 \Leftrightarrow x = e \; ; \; S_{IR} = \{e\}$$

3) (E):
$$\text{Ln}(x^3) + \text{Ln}(\frac{1}{x}) = \text{Ln}3$$

dans $]0, +\infty[$ l'équation (E) \iff $3\text{Ln}x - \text{Ln}x = \text{Ln}3 \iff$ 2Lnx = Ln3

$$\Leftrightarrow$$
 Ln $x = \frac{1}{2}$ Ln3 = Ln $\sqrt{3} \Leftrightarrow x = \sqrt{3}$; S_{IR} = { $\sqrt{3}$ }

4) (E):
$$(Lnx)^2 - 2Lnx - 3 = 0$$

On pose t = Lnx, x > 0

1'équation devient : $t^2 - 2t - 3 = 0$; t = -1 ou t = 3

* t = -1
$$\Leftrightarrow$$
 Ln $x = -1 \Leftrightarrow x = \frac{1}{e}$

*
$$t = 3 \iff \operatorname{Ln} x = 3 \iff x = e^3$$
 ; $S_{IR} = \{\frac{1}{e}, e^3\}$

EXERCICEN93

1)
$$\text{Ln}(2x+3) < 5 \Leftrightarrow 0 < 2x + 3 < e^5 \iff -3 < 2x < e^5 - 3 \Leftrightarrow \frac{-3}{2} < x < \frac{e^5 - 3}{2}$$

$$S_{IR} = \frac{1}{2} \cdot \frac{e^5 - 3}{2}$$

2)
$$\text{Ln}(3x+1) \le 0 \iff 0 < 3x+1 \le 1 \iff -\frac{1}{3} < x \le 0$$
 $S_{IR} = \left[\frac{-1}{3}, 0\right]$

3)
$$\operatorname{Ln}(5x) > 1 - \operatorname{Ln}5 \iff \operatorname{Ln}(5x) > \operatorname{Ln}e - \operatorname{Ln}5 \iff \operatorname{Ln}(5x) > \operatorname{Ln}\left(\frac{e}{5}\right)$$

$$\Leftrightarrow 5x > \frac{e}{5} \iff x > \frac{e}{25} \qquad S_{IR} = \left[\frac{e}{25}, +\infty\right]$$

4)
$$\operatorname{Ln}(\frac{x+1}{x+2}) \ge 0 \Leftrightarrow \frac{x+1}{x+2} \ge 1$$
 et $x \ne -2 \Leftrightarrow \Leftrightarrow \frac{x+1}{x+2} - 1 \ge 0$ et $x \ne -2$

$$\Leftrightarrow \frac{-1}{x+2} \ge 0 \text{ et } x \ne -2 \iff x+2 < 0 \iff x < -2 \qquad S_{IR} =]-\infty, -2[$$

5)
$$(\operatorname{Ln} x)^2 - 2\operatorname{Ln} x < 0 \iff \operatorname{Ln} x[\operatorname{Ln} x - 2] < 0$$

X	0	1		e^2	+∞
Lnx	-	•	+		+
Lnx-2	-		_	ф	+
P	+	þ	_		+

$$S_{IR} =]1, e^2[$$

EXERCICENº4

1)
$$f(x) = \frac{\text{Ln}(x^4)}{x}$$
 pour $x > 0$ $f(x) = 4$. $(\frac{\text{Ln}x}{x})$ et $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 4$. $(\frac{\text{Ln}x}{x}) = 0$

2)
$$f(x) = \frac{x^2 + 1}{x \ln x}$$
 pour $x > 1$ $f(x) = \frac{\left(1 + \frac{1}{x^2}\right)}{\left(\frac{\ln x}{x}\right)}$ et $\lim_{x \to +\infty} f(x) = +\infty$ (de la forme $\frac{1}{0^+}$)

3)
$$f(x) = \frac{2 - Lnx}{1 + Lnx}$$
 pour $x > 1$ $f(x) = \frac{\frac{2}{Lnx} - 1}{\frac{1}{Lnx} + 1}$ et $\lim_{x \to +\infty} f(x) = -1$ car $\lim_{x \to +\infty} \frac{1}{Lnx} = 0$

4)
$$\lim_{x \to +\infty} \frac{x+1}{x+2} = \lim_{x \to +\infty} \frac{x}{x} = 1$$
, d'où: $\lim_{x \to +\infty} Ln\left(\frac{x+1}{x+2}\right) = Ln1 = 0$

5)
$$f(x) = \frac{\text{Ln}(x+1)}{x+2} = \frac{\text{Ln}(x+1)}{(x+1)+1}$$
; on pose $X = x + 1$

$$\lim_{x \to +\infty} f(x) = \lim_{X \to +\infty} \frac{\ln x}{x+1} = \lim_{X \to +\infty} \left(\frac{x}{x+1} \right) \left(\frac{\ln x}{x} \right) = 0$$

6)
$$f(x) = 1 + x - \operatorname{Ln} x$$
; $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 1 + x \left[1 - \frac{\operatorname{Ln} x}{x}\right] = +\infty$

7)
$$f(x) = x - Ln^2 x$$
; $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left[1 - \frac{Ln^2 x}{x}\right] = +\infty$

8)
$$f(x) = x + Ln x - Ln (x + 1)$$
 pour $x > 0$ $f(x) = x + Ln \left(\frac{x}{x+1}\right)$

$$\lim_{x \to +\infty} \frac{x}{x+1} = 1 , \text{ d'où : } \lim_{x \to +\infty} Ln\left(\frac{x}{x+1}\right) = 0 \implies \lim_{x \to +\infty} f(x) = +\infty$$

EXERCICE№5

1)
$$\lim_{x \to 3} \frac{\text{Ln}x - \text{Ln}3}{x - 3} = (\text{Ln})'(3) = \frac{1}{3}$$

car la fonction $x \mapsto \operatorname{Ln} x$ est dérivable sur IR_+^* et $(\operatorname{Ln})'(x) = \frac{1}{x}$

2)
$$\lim_{x \to e} \frac{\operatorname{Ln} x - \operatorname{Ln} e}{x - e} = (\operatorname{Ln})'(e) = \frac{1}{e}$$

3)
$$\lim_{x \to \frac{1}{2}} \frac{\text{Ln}x - \text{Ln}\frac{1}{2}}{x - \frac{1}{2}} = (\text{Ln})'(\frac{1}{2}) = 2$$

4) soit
$$f(x) = Ln(1+3x)$$
; $f'(x) = \frac{3}{1+3x}$

$$\lim_{x\to 0} \frac{\ln(1+3x)}{x} = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = f'(0) = 3$$

5)
$$f(x) = Ln(\cos x)$$
, $f \text{ est dérivable sur }]\frac{-\pi}{2}$, $\frac{\pi}{2}[$ et $f'(x) = \frac{-\sin x}{\cos x} = -\tan x$

$$\lim_{x \to 0} \frac{Ln(\cos x)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = 0$$

6)
$$f(x) = Ln (1 + sinx)$$
, $f'(x) = \frac{cosx}{1 + sinx}$ $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = 1$

7)
$$\lim_{x \to 1} \frac{Lnx}{(x-2)(x-1)} = \lim_{x \to 1} \left(\frac{1}{(x-2)}\right) \left(\frac{Lnx}{(x-1)}\right) = -1$$

EXERCICENº6

1)
$$\lim_{x \to 0^+} x^2 L n x = 0$$

2)
$$\lim_{x \to 0^+} \sqrt{x} \cdot Lnx$$
 on pose $X = \sqrt{x}$

$$\lim_{X \to 0^+} X L n(X^2) = \lim_{X \to 0^+} 2X L nX = 0$$

3)
$$\lim_{x \to 0^+} \left(\frac{1}{x^2} + Lnx \right) = \lim_{x \to 0^+} \frac{1}{x^2} \left[1 + \underbrace{x^2 Lnx}_{0} \right] - +\infty$$

4)
$$\lim_{x \to +\infty} \left(\frac{x^3}{Lnx} \right) = \lim_{x \to +\infty} \frac{1}{\left(\frac{Lnx}{x^3} \right)} = +\infty$$

5)
$$\lim_{x \to +\infty} \left(\frac{Ln^3x}{x} \right) = 0$$

6)
$$\lim_{x \to 0^+} x^3 \left[Ln(\frac{1}{x}) \right]^2 = \lim_{x \to 0^+} x^3 [-Lnx]^2 = \lim_{x \to 0^+} x^3 (lnx)^2 = 0$$

EXERCICE№7

1)
$$f(x) = Ln\left(\frac{1}{x}\right) = -Ln x$$

$$D_{\rm f} = D_{\rm f'} =] \ 0 \ , + \infty [\ , \qquad {\rm f'}(x) = - \ \frac{1}{x} < 0$$

x	0	/4∞
f'(x)	-	
f(x)	+∞-	
		-∞/
		1 (

*
$$\lim_{x \to 0^+} f(x) = +\infty$$
, $\lim_{x \to +\infty} f(x) = -\infty$

 (C_f) admet la droite d'équation : x = 0 comme asymptote verticale.

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} - \frac{\ln x}{x} = 0$$

 (\mathcal{C}_f) admet une branche parabolique de direction $(0,\vec{t})$ au voisinage de $(+\infty)$

2)
$$f(x) = Ln(x^2 - x + 1)$$

* f(x) existe si et seulement si : $x^2 - x + 1 > 0$, $\Delta = -3 < 0$

$$D_{\rm f} = D_{\rm f'} = {\rm IR}$$

$$f'(x) = \frac{2x-1}{x^2-x+1}$$

x	-∞		1 2		+∞
f'(x)		-	ф	+	
f(x)	+∞				_+∞
		<u></u>	$- \operatorname{Ln}\left(\frac{3}{4}\right)$		

$$\lim_{|x| \to +\infty} (x^2 - x + 1) = +\infty \text{ d'où } \lim_{|x| \to +\infty} f(x) = +\infty$$

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\ln[x^2(1-\frac{1}{x}+\frac{1}{x^2})]}{x} = \lim_{x \to +\infty} \frac{2\ln x}{x} + \frac{\ln(1-\frac{1}{x}+\frac{1}{x^2})}{x} = 0$$

 (\mathcal{C}_f) admet une branche parabolique de direction $(0,\vec{t})$ au voisinage de $(+\infty)$

* de même (\mathcal{C}_f) admet une branche parabolique de direction $(0,\vec{\iota})$ au voisinage de $(-\infty)$

3)
$$f(x) = xLnx - x$$

3)
$$f(x) = xLnx - x$$

 $D_f = D_{f'} =]0, +\infty[, f'(x) = Lnx ; * \lim_{x \to 0^+} f(x) = 0$

$$f'(x) = Lnx$$

$$* \lim_{x \to 0^+} f(x) = 0$$

x	0	1		+∞
f'(x)		- ф	+	
f(x)	0 _		_	+∞
		<u> -1 </u>		

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x[Lnx - 1] = +\infty$$

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} (Lnx - 1) = +\infty$$

 (\mathcal{C}_f) admet une branche parabolique de direction celle de $(0,\vec{j})$

4)
$$f(x) = x^2 Lnx$$

$$D_{\rm f} = D_{\rm f'} =] \ 0 \ , + \infty [\ , \qquad {\rm f'}(x) = 2x[Lnx + \frac{1}{2}] \ ;$$

x	0			$\frac{1}{\sqrt{e}}$		+∞
f'(x)		-	0)	+	
f(x)	0	_			-	+∞
			$\rightarrow \frac{-1}{}$			
	Ц		2 <i>e</i>			

*
$$\lim_{x \to 0^+} f(x) = 0$$
; $\lim_{x \to +\infty} f(x) = +\infty$

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} x Lnx = +\infty$$

 $(\mathcal{C}_{\rm f})$ admet une branche parabolique de direction celle de $(0,\vec{j})$

5)
$$f(x) = Ln(x + \sqrt{x^2 + 1})$$
, pour tout $x \in IR$

$$x^{2} + 1 > x^{2} \implies \sqrt{x^{2} + 1} > |x| \ge -x \implies x + \sqrt{x^{2} + 1} > 0$$

$$D_{\mathbf{f}} = D_{\mathbf{f}'} = \mathbf{IR}$$

* f est impaire $(f(-x)+f(x)=0) \Rightarrow O(0,0)$ est centre de symétrie

* f'(x) = $\frac{1}{\sqrt{x^2+1}}$ (f'(0)=1 \Rightarrow une tg de coeft directeur 1 au point o)

x	0	+∞
f'(x)	+	
f(x)		→ +∞
	0 —	

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\ln x}{x} + \frac{\ln(1 + \sqrt{1 + \frac{1}{x^2}})}{x} = 0$$

 (\mathcal{C}_f) admet une branche parabolique de direction celle de $(0, \vec{\iota})$

6)
$$f(x) = \operatorname{Ln}(\frac{x+1}{x-1})$$

x	-∞	-1		1	+∞
x + 1	_	Ф	+		+
x-1	_		_	0	+
Q	+	þ			+

$$D_{f} = D_{f'} =]-\infty, -1 \text{ [U]}1, +\infty \text{ } f'(x) = \frac{-2}{(x-1)(x+1)} < 0$$

$$f'(x) = \frac{-2}{(x-1)(x+1)} < 0$$

x	-∞	-1	1	+∞
f'(x)	-	. ///		-
f(x)	0 _		/ +∞	<u> </u>
	_	-∞ //		~ 0

(remarque: f est impaire)

EXERCICE№8

1)
$$f(x) = \frac{1}{x^4} + \frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{x}$$
; $I = IR_+^*$

$$F(x) = -\frac{1}{3x^3} - \frac{1}{2x^2} - \frac{1}{x} + \ln|x| = \ln x - \frac{1}{x} - \frac{1}{2x^2} - \frac{1}{3x^3}$$

2)
$$f(x) = \frac{2x-3}{x+1}$$
; $I =]-1,+\infty[$

$$f(x) = \frac{2(x+1)-5}{x+1} = 2 - \frac{5}{x+1}, \ F(x) = 2x - 5Ln|x+1| = 2x - 5Ln(x+1)$$

3)
$$f(x) = \frac{(x+2)-1}{x+2}$$
; $I =]-2,+\infty[$; $f(x) = 1 - \frac{1}{x+2}$

$$F(x) = x - Ln(x + 2) = x - Ln(x + 2)$$

4)
$$f(x) = \frac{x}{x^2 + 1} - x(x^2 + 1)$$
; $F(x) = \frac{1}{2} \text{Ln}|x^2 + 1| - \frac{1}{4}(x^2 + 1)^2$

5)
$$f(x) = \frac{1}{x \ln x} = \frac{\frac{1}{x}}{\ln x}$$
; $I =]1, +\infty[$ $F(x) = \ln|\ln x| = \ln(\ln x)$

6)
$$f(x) = \frac{1}{x}Ln^3x$$
; $I =]0,+\infty[$; $F(x) = = \frac{1}{4}Ln^4x$

7)
$$f(x) = \frac{\sin x}{\cos x}$$
 ; $I =]0, \frac{\pi}{2}[$; $F(x) = -\text{Ln}|\cos x| = -\text{Ln}(\cos x)$

7)
$$f(x) = \frac{\sin x}{\cos x}$$
 ; $I =]0, \frac{\pi}{2}[$; $F(x) = -\text{Ln}|\cos x| = -\text{Ln}(\cos x)$
8) $f(x) = \frac{\cos x}{\sin x}$; $I =]0, \frac{\pi}{2}[$; $F(x) = \text{Ln}|\sin x| = \text{Ln}(\sin x)$

EXERCICEN99

1)
$$\int_{1}^{e} \frac{Ln^{2}}{x} dx = \left[\frac{1}{3}Ln^{3}x\right]_{1}^{e} = \frac{1}{3}$$

2)
$$\int_{1}^{2} \frac{2}{x+1} dx = [2 \ln|x+1|]_{1}^{2} = 2 \ln(\frac{3}{2})$$

3)
$$\int_0^1 \frac{x+1}{x^2+2x+3} dx = \left[\frac{1}{2} \ln|x^2+2x+3|\right]_0^1 = \frac{1}{2} \ln 2$$

4)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \tan x \ dx = \left[-\text{Ln} \left| \cos x \right| \right]_{\frac{\pi}{6}}^{\frac{\pi}{4}} = \frac{1}{2} \text{Ln} \left(\frac{3}{2} \right)$$

5)
$$\int_{1}^{2} \frac{Lnx}{x} dx = \left[\frac{1}{2} Ln^{2}x\right]_{1}^{2} = \frac{1}{2} (Ln^{2})^{2}$$

6)
$$\int_{2}^{4} \frac{dx}{x \ln x} = [\text{Ln} | \text{Ln} x |]_{2}^{4} = \text{Ln} 2$$

EXERCICE№10

1)
$$I = \int_1^e x \operatorname{Ln} x \, dx$$
; soit
$$\begin{cases} u'(x) = x & \to u(x) = \frac{x^2}{2} \\ v(x) = Lnx & \to v'(x) = \frac{1}{x} \end{cases}$$

$$I = \left[\frac{x^2}{2} \operatorname{Ln} x\right]_1^e - \int_1^e \frac{x}{2} dx = \left[\frac{x^2}{2} \operatorname{Ln} x\right]_1^e - \left[\frac{x^2}{4}\right]_1^e = \frac{e^2 + 1}{4}$$

2)
$$J = \int_{e}^{e^{2}} x^{2} \operatorname{Ln} x \, dx$$
; soit
$$\begin{cases} u'(x) = x^{2} & \to u(x) = \frac{x^{3}}{3} \\ v(x) = Lnx & \to v'(x) = \frac{1}{x} \end{cases}$$

$$J = \left[\frac{x^3}{3} \operatorname{Ln} x\right]_e^{e^2} - \frac{1}{3} \int_e^{e^2} x^2 \, dx = \left[\frac{x^3}{3} \operatorname{Ln} x\right]_e^{e^2} - \frac{1}{3} \left[\frac{x^3}{3}\right]_e^{e^2} = \frac{5 \cdot e^6 - 2 \cdot e^3}{9}$$

3)
$$K = \int_1^e \frac{\ln x}{\sqrt{x}} dx$$
; soit
$$\begin{cases} u'(x) = \frac{1}{\sqrt{x}} \longrightarrow u(x) = 2\sqrt{x} \\ v(x) = Lnx \longrightarrow v'(x) = \frac{1}{x} \end{cases}$$

$$K = \left[2\sqrt{x} \cdot Lnx\right]_{1}^{e} - \int_{1}^{e} \frac{2}{\sqrt{x}} dx = \left[2\sqrt{x} \cdot Lnx\right]_{1}^{e} - \left[4\sqrt{x}\right]_{1}^{e} = 2(2 - \sqrt{e})$$

4)
$$L = \int_{1}^{e} Ln^{2}x \, dx$$
; soit
$$\begin{cases} u'(x) = 1 & \to u(x) = x \\ v(x) = Ln^{2}x & \to v'(x) = \frac{2}{x}Lnx \end{cases}$$

$$L = [x. Ln^{2}x]_{1}^{e} - 2 \int_{1}^{e} Lnx \ dx = [x. Ln^{2}x]_{1}^{e} - 2 [xLnx - x]_{1}^{e} = e - 2$$

EXERCICE№11

$$f(x) = \frac{1}{x^2(x-2)}$$
 ; $x \in IR^* \setminus \{2\}$

1)
$$f(x) = \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x-2}$$
;

a) d'une part : *
$$\lim_{x \to 2} f(x)(x-2) = \lim_{x \to 2} \frac{1}{x^2} = \frac{1}{4}$$

d'autre part : *
$$\lim_{x \to 2} f(x)(x-2) = \lim_{x \to 2} \frac{a(x-2)}{x} + \frac{b(x-2)}{x^2} + c = c$$
; d'où : $c = \frac{1}{4}$

b)
$$\lim_{x \to 0} f(x)x^2 = \lim_{x \to 0} \frac{1}{x-2} = -\frac{1}{2}$$

et
$$\lim_{x \to 0} f(x)x^2 = \lim_{x \to 0} ax + b + \frac{cx^2}{x-2} = b$$
 d'où : $b = -\frac{1}{2}$

c)
$$\lim_{x \to +\infty} f(x) \cdot x = \lim_{x \to +\infty} \frac{1}{x(x-2)} = 0$$

et
$$\lim_{x \to +\infty} f(x) \cdot x = \lim_{x \to +\infty} a + \frac{b}{x} + \frac{cx}{x-2} = a + c$$

d'où:
$$a + c = 0 \Longrightarrow a = -c = -\frac{1}{4}$$

2)
$$f(x) = \frac{-1}{4x} - \frac{1}{2x^2} + \frac{1}{4(x-2)}$$
;

$$\int_{3}^{4} f(x) dx = \left[-\frac{1}{4} Ln|x| + \frac{1}{2x} + \frac{1}{4} Ln|x - 2| \right]_{3}^{4}$$
$$= \left[\frac{1}{2x} + \frac{1}{4} Ln \left| \frac{x - 2}{x} \right| \right]_{3}^{4} = \frac{1}{4} \left(Ln \left(\frac{3}{2} \right) - \frac{1}{6} \right)$$

3) On pose:
$$\begin{cases} u'(x) = \frac{1}{x^3} \to u(x) = \frac{1}{-2x^2} \\ v(x) = Ln(x-2) \to v'(x) = \frac{1}{x-2} \end{cases}$$

$$\int_{3}^{4} \frac{\operatorname{Ln}(x-2)}{x^{3}} dx = \left[\frac{-1}{2x^{2}} \operatorname{Ln}(x-2) \right]_{3}^{4} + \frac{1}{2} \int_{3}^{4} \frac{1}{x^{2}(x-2)} dx$$
$$= -\frac{1}{32} \operatorname{Ln}2 + \frac{1}{8} \left[\operatorname{Ln}(\frac{3}{2}) - \frac{1}{6} \right] = \frac{1}{8} \left[\operatorname{Ln}3 - \frac{5}{4} \operatorname{Ln}2 - \frac{1}{6} \right]$$

$$1) f(x) = (Lnx)^2$$

* f est définie et dérivable sur]0, $+\infty$ [; f'(x) = $\frac{2}{x} Lnx$

x	0	1		+∞
f'(x)	-	ф	+	
f(x)	+8 /		_	, +⊗
	_	• 0 -		

$$\lim_{x \to +\infty} f(x) = \lim_{x \to 0^+} f(x) = +\infty$$

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{(Lnx)^2}{x} = 0$$

 $(\mathcal{C}_{\mathrm{f}})$ admet une branche parabolique de direction celle de $(0,\vec{t})$

2)
$$f(x) = \frac{1}{Lnx}$$
 ; $D_f =]0,+\infty[\setminus\{1\}]$

$$f'(x) = \frac{-1}{x(Lnx)^2} < 0$$

x	0	1	+∞
f'(x)	-	-	
f(x)	0 /	+∞_	
	∞		• 0

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to 0^+} f(x) = 0$$

*
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{1}{\ln x} = -\infty$$
 ; $\lim_{x \to 1^{+}} f(x) = +\infty$

* les droites d'équations respectives : x = 0 ; x = 1 et y = 0 sont des asymptotes à (C_f)

3)
$$f(x) = \operatorname{Ln}(\sqrt{x}) = \frac{1}{2}\operatorname{Ln}x$$
 ; $D_f =]0,+\infty[$

$$f'(x) = \frac{1}{2x} > 0$$

x	0	+∞
f'(x)	+	
f(x)		→ +∞

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{2} \frac{Lnx}{x} = 0$$

 $(\mathcal{C}_{\mathrm{f}})$ admet une branche parabolique de direction celle de $(0,\vec{t})$

4)
$$f(x) = Ln|x^2 - 1|$$
; $D_f = IR \setminus \{-1,1\}$; f est paire,

$$f'(x) = \frac{2x}{x^2 - 1}$$

X	0	1 +∞
f'(x)	0 -	+
f(x)	0	→ +∞
	-∞	-∞

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{Ln(x^2 - 1)}{x} = \lim_{x \to +\infty} \frac{Ln[x^2(1 - \frac{1}{x^2})]}{x}$$

$$= \lim_{x \to +\infty} \frac{2Ln(x)}{x} + \frac{Ln[(1 - \frac{1}{x^2})]}{x} = 0$$

 (C_f) admet une branche parabolique de direction celle de $(0,\vec{t})$ au voisinage de $+\infty$

EXERCICE№13

$$f(x) = \frac{Lnx-2}{Lnx-1}$$
 ; $x \in]0,e[$

$$f'(x) = \frac{1}{x(Lnx-1)^2} > 0$$

x	0		e
f'(x)		+	
f(x)			+8
	1		

*
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 - \frac{2}{\sqrt{nx}}}{1 - \frac{1}{\sqrt{nx}}} = 1$$

*
$$\lim_{x \to e^{-}} f(x) = \lim_{x \to e^{-}} \frac{\ln x - 2}{\ln x - 1} = +\infty$$
 (de la forme $\frac{-1}{0}$)

La droite d'équation x=e est une asymptote à (c).

2) f est continue et strictement croissante sur]0,e[elle réalise donc une bijection de]0,e[sur f(]0,e[) =] $\lim_{x \to 0^+} f$, $\lim_{x \to e^-} f$ [=]1,+ ∞ [

Ch 8 Tome I

3) – a)
$$(\mathcal{C}_{f^{-1}}) = S_{\Delta}(\mathcal{C}_f)$$
 avec $\Delta : y = x$

b)
$$f(1) = 2 \text{ d'où } f^{-1}(2) = 1$$
; $(f^{-1})'(2) = \frac{1}{f'(1)} = 1$

EXERCICE№14

1)
$$D_f = IR^* \setminus \{1\}$$

2)
$$f'(x) = -\frac{1}{2} + \frac{\left(\frac{x-1}{x}\right)'}{\frac{x-1}{x}} = -\frac{1}{2} + \frac{1}{x(x-1)} = \frac{-x^2 + x + 2}{2x(x-1)} = -\frac{(x+1)(x-2)}{2x(x-1)}$$

3)
$$\lim_{x \to \frac{1}{2}\infty} \left(f(x) + \frac{x}{2} \right) = \lim_{x \to \frac{1}{2}\infty} Ln \left| \frac{x-1}{x} \right| = 0$$
 D'où $\Delta : y = -\frac{x}{2}$ est une asymptote à (C)

*
$$f(x) + \frac{x}{2} = Ln \left| \frac{x-1}{x} \right| = Ln \left| 1 - \frac{1}{x} \right|$$

• pour
$$x < 0 \rightarrow \left| 1 - \frac{1}{x} \right| > 1 \Rightarrow Ln(\left| 1 - \frac{1}{x} \right|) > 0 \Rightarrow f(x) + \frac{x}{2} > 0$$

• pour
$$0 < x < \frac{1}{2} \rightarrow \left| 1 - \frac{1}{x} \right| > 1 \Rightarrow Ln(\left| 1 - \frac{1}{x} \right|) > 0 \Rightarrow f(x) + \frac{x}{2} > 0$$

• pour
$$x \in \left[\frac{1}{2}; +\infty \right] \setminus \left[1 \right] \rightarrow \left[1 - \frac{1}{x} \right] < 1 \Rightarrow Ln \left[1 - \frac{1}{x} \right] < 0 \Rightarrow f(x) + \frac{x}{2} < 0$$

X	∞		0	1/2	2	1	+∞
 $f(x) + \frac{x}{2}$		+		+	-		<u>.</u>
P.R		$\frac{(C)}{\Delta}$		C Δ	$\frac{\Delta}{(C)}$		$\frac{\Delta}{(C)}$

4) pour $x \in D_f = \operatorname{IR}^* \setminus \{1\}$ On a : $x \neq 0$ et $x \neq 1$

$$\Rightarrow -x \neq 0 \ et - x \neq -1 \Rightarrow 1 - x \neq 1 \ et \ 1 - x \neq 0 \Rightarrow (1 - x) \in D_f$$

$$* f(1-x) + f(x) = \frac{x-1}{2} + Ln \left| \frac{-x}{1-x} \right| - \frac{x}{2} + Ln \left| \frac{x-1}{x} \right| = -\frac{1}{2} + Ln \left| \frac{x}{x-1} \right| + Ln \left| \frac{x-1}{x} \right|$$

$$= -\frac{1}{2} + Ln \left| \left(\frac{x}{x-1} \right) \left(\frac{x-1}{x} \right) \right| = -\frac{1}{2} + Ln1 = -\frac{1}{2} = 2\left(-\frac{1}{4} \right)$$

$$\Rightarrow f(1-x) = 2\left(-\frac{1}{4} \right) - f(x)$$

D'où $I\left(\frac{1}{2},-\frac{1}{4}\right)$ est un centre de symétrie pour (C)

5) * x = 0 et x = 1 sont des asymptotes à (C)

*
$$\Delta$$
: $y = -\frac{x}{2}$ asymptote à (C)

6) * Sur $]-\infty,0[$ f admet $\left(\frac{1}{2}+Ln2\right)$ comme minimum absolue $\Rightarrow f(x) \geq \frac{1}{2}+Ln2; \forall x \in]-\infty,0[$ D'où l'équation : f(x)=0 n'a pas de solution dans $]-\infty,0[$

* de même l'équation : f(x) = 0 n'a pas de solution dans $]1,+\infty[$

* f est continue est strictement décroissante sur $]0,1[\Rightarrow f$ réalise une bijection de]0,1[sur IR

Comme $0 \in IR$ alors il existe un unique réel $x_0 \in \left]0,1\right[tq:f(x_0)=0$

$$f\left(\frac{2}{5}\right).f\left(\frac{9}{2}\right) = \dots < 0 \qquad \Rightarrow \frac{2}{5} < x_0 < \frac{9}{2}$$

 $\underline{\text{Conclusion:}} \ \text{L'équation} \ f(x) = 0 \ \text{admet} \ x_0 \ \text{comme unique solution dans} \ IR^* \setminus \big\{1\big\}.$

EXERCICE№15

$$f(x) = (Lnx)^2 - 3Lnx + 2$$

1)
$$D_f =]0, +\infty[$$

$$f'(x) = \frac{2}{x} Lnx - \frac{3}{x} = \frac{1}{x} [2Lnx - 3]$$

$$\bullet \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\underbrace{Lnx}_{-\infty} \left[\underbrace{Lnx - 3}_{-\infty} \right] + 2 \right) = +\infty$$

$$\bullet \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\underbrace{Lnx}_{+\infty} \left[\underbrace{Lnx - 3}_{+\infty} \right] + 2 \right) = +\infty$$

2)
$$*f(x) = 0 \Leftrightarrow (Lnx)^2 - 3Lnx + 2 = 0$$

On pose
$$X = Lnx$$

On pose X = Lnx L'équation devient : $X^2 - 3X + 2 = 0$

$$X'=1$$
 et $X''=2 \Rightarrow x'=e$ et $x''=e^2 \Rightarrow (Cf) \cap (o,i) = \{A(e,0); B(e^2,0)\}$

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{(Lnx)^2}{\underbrace{x}_{0}} - \frac{3Lnx}{\underbrace{x}_{0}} + \frac{2}{\underbrace{x}_{0}} = 0$$
 B,P de direction celle de (o, \vec{i})

3) F est dérivable sur $]0,+\infty[$ et $F'(x) = (Lnx)^2 + 2Lnx - 5(Lnx+1) + 7 = f(x)$

D'où F est une primitive de f sur $]0,+\infty[$.

4)
$$A = \int_{e}^{e^{2}} -f(x)dx$$
 $A = \int_{e^{2}}^{e} f(x)dx = [F(x)]_{e^{2}}^{e} \implies A = e(3-e)$

EXERCICE№16

$$f(x) = 2 - x + \frac{Lnx}{x}; x \in \left]0, +\infty\right[$$

1) *
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(2 - x + \frac{Lnx}{\underbrace{x}_{0}} \right) = -\infty$$
 * $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(2 - x + \frac{Lnx}{\underbrace{x}_{-\infty}} \right) = -\infty$

2)
$$g(x) = 1 - x^2 - Lnx$$

a)
$$g'(x) = -\left(2x + \frac{1}{x}\right) < 0; \ \forall x \in IR_+^* \ \text{g est strictement décroissent sur } \ \left]0, +\infty\right[$$

i	х	0		1		+∞
	g(x)		+	0	-	

3)
$$f'(x) = -1 + \frac{1 - Lnx}{x^2} = \frac{g(x)}{x^2}$$

4) a) $\lim_{x \to +\infty} \left[f(x) - (-x+2) \right] = \lim_{x \to +\infty} \frac{Lnx}{x} = 0$ $\Delta : y = -x+2$ est une asymptote à (C) au voisinage de $+\infty$

b)
$$f(x) - (-x+2) = \frac{Lnx}{x}$$

X	0		1		+∞
f(x)-(-x+2)		-	0	+	
P.R		$\frac{\Delta}{(C)}$	(1,1)	$\frac{(C)}{\Delta}$	

c) le signe de f'(x) est celui de g(x)

EXERCICE№17

Partie A

$$g(x) = x^2 - 2 + 2Lnx$$

1)
$$g'(x) = 2x + \frac{2}{x} > 0$$
 pour tout $x \in]0,+\infty[$

x	0	+∞
g'(x)	+	
$\frac{g'(x)}{g(x)}$		+∞
	-∞	

*
$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x^2 - 2 + 2Lnx) = -\infty$$

*
$$\lim_{x \to +\infty} g(x) = +\infty$$

2) g est continue et strictement croissante sur]0,+ ∞ [elle réalise donc une bijection de]0,+ ∞ [sur IR ,

Comme $0 \in IR$ alors il existe un unique réel $x_0 \in]0,+\infty[$ tel que $g(x_0) = 0$ g(1).g(2) < 0 d'où : $x_0 \in]1,2[$;

(calculatrice g(1,2).g(1,3) < 0 \Longrightarrow 1,2< x_0 <1,3; x_0 = 1,2)

x	0	x_0	+∞
g(x)	-	ф	+

3) - a)
$$A_1 = \int_2^3 |g(x)| dx = \int_2^3 g(x) dx$$
 car $g(x) \ge 0$ pour $x \in]2,3[$;
 $A_1 = \left[\frac{x^3}{3} - 2x + 2(xLnx - x)\right]_2^3 = \left(\frac{7}{3} + 6Ln3 - 4Ln2\right)$ u.a

b)
$$A_2 = \int_{\frac{1}{3}}^{\frac{1}{2}} |g(x)| dx = -\int_{\frac{1}{3}}^{\frac{1}{2}} g(x) dx \text{ car } g(x) \le 0 \text{ pour } x \in \left[\frac{1}{3}, \frac{1}{2}\right]$$
;

$$A_2 = \left[\frac{x^3}{3} - 2x + 2(xLnx - x)\right]_{\frac{1}{3}}^{\frac{1}{3}} = \left(\frac{47}{72} + Ln2 - \frac{2}{3}Ln3\right) \text{u.a}$$

Partie B

$$f(x) = x - 2 - 2 \frac{Lnx}{x}$$

1)
$$f'(x) = \frac{g(x)}{x^2}$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - 2 - 2 \frac{Lnx}{x} \right) = +\infty$$

*
$$\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} \left(x - 2 - 2 \frac{\ln x}{x} \right) = +\infty$$

3)-a)
$$f(x) = \lim_{x \to +\infty} [f(x) - (x - 2)] = \lim_{x \to +\infty} -2(\frac{\ln x}{x}) = 0$$

D'où la droite D : y = x - 2 est une asymptote à (C_f) au voisinage de $+\infty$

b) $f(x) - (x - 2) = -2\left(\frac{Lnx}{x}\right)$

х	0	1	+∞
f(x) - (x - 2)	+		-
P.R	$\frac{(\mathcal{C}_{\mathrm{f}})}{D}$	٨	$\frac{D}{(\mathcal{C}_f)}$
		A(1,-1)	

EXERCICE№18

1)
$$g(x) = 2 x\sqrt{x} - 3Lnx + 6$$

a)
$$g'(x) = 3\sqrt{x} - \frac{3}{x} = \frac{3[(\sqrt{x})^3 - 1]}{x}$$

X	0	1	+∞
g'(x)	_	ф	+
g(x)	+∞	,	> +∞
		→ 8 <i>─</i>	

*
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x \left[2\sqrt{x} - 3\frac{\ln x}{x} + \frac{6}{x} \right] = +\infty$$

*
$$\lim_{x \to 0^+} g(x) = +\infty$$

b) g admet 8 comme minimum absolu d'où $g(x) \ge 8$ pour tout $x \in]0,+\infty[$;

 \Rightarrow g(x) > 0 pour tout x \in]0,+ ∞ [;

2)
$$f(x) = \frac{3Lnx}{\sqrt{x}} + x - 1$$

a) *
$$\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} \left(\frac{3Lnx}{\sqrt{x}} + x - 1 \right) = -\infty$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{3Lnx}{\sqrt{x}} + x - 1 \right)$$
; on pose : $X = \sqrt{x}$

$$* \lim_{X \to +\infty} \left(\frac{6LnX}{X^2} + X^2 - 1 \right) = +\infty$$

b)
$$f'(x) = 3\left(\frac{\frac{1}{x}\sqrt{x} - \frac{1}{2\sqrt{x}}Lnx}{x}\right) + 1 = \frac{g(x)}{2x\sqrt{x}} > 0$$

x	0 +∞
f'(x)	+
f(x)	+∞

3)-a)
$$\lim_{x \to +\infty} [f(x) - (x - 1)] = \lim_{x \to +\infty} (\frac{3Lnx}{\sqrt{x}}) = 0$$

D'où la droite D : y = x - 1 est une asymptote à (C_f) au voisinage de $+\infty$

b)
$$f(x) - (x - 1) = \frac{3Lnx}{\sqrt{x}}$$

x	0		1	+∞
f(x) - (x - 1)		-	ф	+
P.R				
		$\frac{D}{(\mathcal{C}_{f})}$	λ	$(\mathcal{C}_{\mathbf{f}})$
		$(\mathcal{C}_{\mathbf{f}})$		D
			A(1,0))

$$f(x) = \frac{1 - Lnx}{x}$$

1)
$$f'(x) = \frac{Lnx-2}{x^2}$$

*
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 - Lnx}{x} = +\infty$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{x} - \frac{Lnx}{x} \right) = 0$$

x	0	e^2	+∞
f'(x)		þ	+
f(x)	+8 /		> 0
	_	<u> </u>	
	ļ	e^2	

2)

3)
$$A = \int_1^e f(x) dx = \int_1^e \frac{1}{x} (1 - Lnx) dx = \left[-\frac{1}{2} (1 - Lnx)^2 \right]_1^e = \frac{1}{2}$$
 (u.a)

4) - a)
$$I = \int_{1}^{e} \frac{Lnx}{r^2} dx$$
;

On pose:
$$\begin{cases} u'(x) = \frac{1}{x^2} \longrightarrow u(x) = \frac{-1}{x} \\ v(x) = Lnx \longrightarrow v'(x) = \frac{1}{x} \end{cases}$$

$$I = \left[-\frac{1}{x} Lnx \right]_{1}^{e} - \int_{1}^{e} \frac{-1}{x^{2}} dx = \left[-\frac{1}{x} Lnx \right]_{1}^{e} - \left[\frac{1}{x} \right]_{1}^{e} = 1 - \frac{2}{e}$$

*
$$J = \int_1^e \frac{Ln^2x}{r^2} dx \quad ;$$

On pose:
$$\begin{cases} u'(x) = \frac{1}{x^2} \longrightarrow u(x) = \frac{-1}{x} \\ v(x) = Ln^2 x \longrightarrow v'(x) = \frac{2}{x} Lnx \end{cases}$$

$$J = \left[-\frac{1}{x} L n^2 x \right]_1^e + 2 \int_1^e \frac{L n x}{x^2} dx = -\frac{1}{e} + 2I = 2 - \frac{5}{e}$$

b)
$$V = \pi$$
. $\int_{1}^{e} f^{2}(x) dx = \pi$. $\int_{1}^{e} \left(\frac{1 - 2 \operatorname{Ln} x + L n^{2} x}{x^{2}} \right) dx$

$$= \pi \left(\int_{1}^{e} \frac{1}{x^{2}} dx - 2 \int_{1}^{e} \frac{\operatorname{Ln} x}{x^{2}} dx + \int_{1}^{e} \frac{\operatorname{Ln}^{2} x}{x^{2}} dx \right)$$

$$= \pi \left(\left[-\frac{1}{x} \right]_{1}^{e} - 2I + J \right) = \pi \left(1 - \frac{2}{e} \right) \text{ u.v}$$

$$f(x) = \left(1 - \frac{1}{x}\right) \cdot (Lnx - 2)$$

1) *
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(1 - \frac{1}{x}\right) \cdot (Lnx - 2) = +\infty$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) \cdot (1 - \frac{1}{x}) = +\infty$$

2) f est dérivable sur]0, +∞[comme étant produit de deux fonctions dérivables;

$$f'(x) = \frac{1}{x^2} \left(Lnx - 2 \right) + \frac{1}{x} \left(1 - \frac{1}{x} \right) = \frac{1}{x^2} \left[Lnx + x - 3 \right]$$

3) u(x) = Lnx + x - 3

a)
$$u'(x) = \frac{1}{x} + 1 > 0$$

х	0	+∞
u'(x)	+	
$\mathbf{u}(\mathbf{x})$	-	+∞
	-∞	

b) u est continue et strictement croissante sur]0,+ ∞ [elle réalise donc une bijection de]0,+ ∞ [sur IR ,

Comme $0 \in IR$ alors il existe un unique réel $\alpha \in]0,+\infty[$ tel que $u(\alpha) = 0$

$$u(2,2).u(2,21) < 0 \implies 2,20 < \alpha < 2,21 \; ; \qquad \qquad \text{à vérifier}$$

x	0	α		+∞
u (x)		- 0	+	-

4) – a)
$$f'(x) = \frac{u(x)}{x^2}$$

x	0	α	+∞
f'(x)	_	. •	+
f(x)	+8/	-	→ +∞
		$f(\alpha)$	

b)
$$u(\alpha) = 0 \Longrightarrow Ln\alpha = 3 - \alpha \text{ d'où } f(\alpha) = \left(1 - \frac{1}{\alpha}\right) \cdot \left(3 - \alpha - 2\right) = \frac{-(\alpha - 1)^2}{\alpha}$$

soit
$$h(x) = \frac{-(x-1)^2}{x}$$
; $h'(x) = -1 + \frac{1}{x^2} < 0$ pour $x \in [2,2;2,21]$

$$2,2 \le \alpha \le 2,21 \implies h(2,21) \le h(\alpha) \le h(2,2) \implies -0,66 \le f(\alpha) \le -0,65$$

5) *
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) \left(\frac{\ln x}{x} - \frac{2}{x}\right) = 0$$

 $(\mathcal{C}_{\mathrm{f}})$ admet une branche parabolique de direction celle de $(0,\vec{t})$

$$\alpha = 2.2$$
; $f(\alpha) = -0.65$

EXERCICE№21

A)
$$g(x) = 1 - x - 2x Lnx$$

1)
$$g'(x) = -1 - 2[Lnx + 1] = -2 Lnx - 3$$

$$g'(x) = 0 \Leftrightarrow Lnx = \frac{-3}{2} \Leftrightarrow x = \frac{1}{\sqrt{e^3}}$$

x	0		$\frac{1}{\sqrt{e^3}}$	+∞
g'(x)		+	0	_
g'(x) $g(x)$	1	-	$1 + \frac{2}{\sqrt{e^3}}$	

$$* \lim_{x \to 0^+} g(x) = 1$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 1 - x[1 + 2\operatorname{Ln}x] = -\infty$$

$$2) g(1) = 0$$

x	0		1	+∞
g(x)		+	_ o	-

B)
$$f(x) = \frac{1 + Lnx}{(1+x)^2}$$

1) a) $f'(x) = \frac{g(x)}{x(1+x)^3}$; le signe de f'(x) sur]0; $+\infty[$ est celui de g(x)

x	0	1	+∞
f'(x)	+	•	-
f(x)		<u>1</u> <u>√</u>	
		4	

*
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 + Lnx}{(1+x)^2} = -\infty$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{(1+x)^2} \left[\frac{1}{x} + \frac{\ln x}{x} \right] = 0$$

- c) * $\lim_{x \to 0^+} f(x) = -\infty$, D'où la droite x = 0 est une asymptote à (C)
 - * $\lim_{x \to +\infty} f(x) = 0$, D'où la droite y = 0 est une asymptote à (C)

3)
$$(\mathcal{C}) \cap (0, \vec{l}) = \{A(\frac{1}{e}, 0)\}$$

T:
$$y = f'(\frac{1}{e})(x - \frac{1}{e}) + f(\frac{1}{e})$$
; $T: y = \frac{e^3}{(1+e)^2}(x - \frac{1}{e})$

4)

C)
$$\lambda > 1$$

1)
$$\frac{1}{x} - \frac{1}{1+x} = \frac{(1+x)-x}{x(1+x)} = \frac{1}{x(1+x)}$$

$$2) \int_{1}^{\lambda} \frac{dx}{x(1+x)} = \int_{1}^{\lambda} \left(\frac{1}{x} - \frac{1}{1+x}\right) dx = [Ln|x| - Ln|x+1|]_{1}^{\lambda} = \left[Ln\left(\frac{x}{1+x}\right)\right]_{1}^{\lambda}$$
$$= Ln\left(\frac{\lambda}{1+\lambda}\right) + Ln2 = Ln\left(\frac{2\lambda}{1+\lambda}\right)$$

3)
$$A(\lambda) = \int_{1}^{\lambda} f(x) dx = \int_{1}^{\lambda} \frac{1 + Lnx}{(1 + x)^{2}} dx$$

a) soit:
$$\begin{cases} u'(x) = \frac{1}{(1+x)^2} \longrightarrow u(x) = \frac{-1}{1+x} \\ v(x) = 1 + Lnx \longrightarrow v'(x) = \frac{1}{x} \end{cases}$$

$$A(\lambda) = \left[-\frac{(1+Lnx)}{1+x} \right]_1^{\lambda} + \int_1^{\lambda} \frac{dx}{x(1+x)} = \frac{1}{2} - \frac{(1+Ln\lambda)}{1+\lambda} + Ln\left(\frac{2\lambda}{1+\lambda}\right)$$

b) *
$$\lim_{x \to +\infty} A(\lambda) = \frac{1}{2} + Ln2$$

$$I) g(x) = x (x-1) + Lnx$$

1)
$$g'(x) = 2x - 1 + \frac{1}{x} = \frac{2x^2 - x + 1}{x}$$

 $2x^2 - x + 1 = 0$; $\Delta = -7 < 0$ d'où $2x^2 - x + 1 > 0$
 $\Rightarrow g'(x) > 0$ pour tout $x \in]0, +\infty[$

g est strictement croissante sur]0,+∞[

2)
$$g(1) = 0$$

x	0		1	+∞
g(x)		~	q	+

II)
$$f(x) = (x - 1)^2 + Ln^2x$$

1) a) *
$$\lim_{x \to 0^+} f(x) = +\infty$$
, * $\lim_{x \to +\infty} f(x) = +\infty$,

b)f est dérivable sur

 $]0,+\infty[comme\ et ant\ somme\ de\ deux\ fonctions\ dérivables, et\ f'(x) =$

$$2(x-1) + \frac{2}{x} \ln x = \frac{2}{x} [x(x-1) + \ln x] = 2 \frac{g(x)}{x}$$

c) le signe de f'(x) est celui de g(x)

x	0	1	+∞
f'(x)	-	þ	+
f(x)	+∞ <		_+∞
		0 -	

2) h(x) = f(x) pour $x \in [0,1]$

h est continue et strictement décroissante sur]0,1]elle réalise donc une bijection de]0,1]sur h(]0,1]) = [h(1), $\lim_{x\to 0^+}$ h][= [0,+ ∞ [

- 3) u(x) = h(x) x
 - a) u'(x) = h'(x) 1 < 0, pour $x \in [0,1]$

x	0 1	
u'(x)	-	
u(x)	+∞	1
	-1	

b) u est continue et strictement décroissante sur]0,1]elle réalise donc une bijection de $]0,1]sur = [-1,+\infty[$

Comme $0 \in [-1, +\infty[$ alors il existe un unique réel $a \in]0,1]$ tel que u(a) = 0Par suite il existe un unique réel $a \in]0,1]$ tel que h(a) = a

$$u(0,5).u(1) < 0 \implies 0,5 < a < 1$$
; à vérifier

2) a)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(x - 2 + \frac{1}{x} + \frac{Ln^2x}{x} \right) = +\infty$$

D'où : (C_f) admet une branche parabolique de direction celle de $(0,\vec{j})$ au voisinage de $+\infty$

III)
$$I = \int_a^1 x. f'(x) dx$$

1)
$$A = \int_a^1 f(x) dx$$
 ; $\begin{cases} f(x) \longrightarrow f'(x) \\ 1 \longrightarrow x \end{cases}$

$$A = [x. f(x)]_a^1 - \int_a^1 x. f'(x) dx = [x. f(x)]_a^1 - I \Longrightarrow A = -a. f(a) - I \Longrightarrow I = -a^2 - A$$

2) a)
$$I = \int_a^1 x \cdot f'(x) dx = \int_a^1 2g(x) dx = 2 \int_a^1 g(x) dx$$

b)
$$I = 2 \int_a^1 g(x) dx = 2 \int_a^1 (x^2 - x + Lnx) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} + xLnx - x \right]_a^1$$

d'où :
$$I = \frac{-2}{3}a^3 + a^2 + 2a - \frac{7}{3} - 2aLna$$

c)
$$A = -a^2 - I = \frac{2}{3}a^3 + -2a^2 - 2a + \frac{7}{3} + 2aLna$$

$$\begin{cases} f(x) = \frac{1}{2}x^2(3 - 2Lnx) & \text{si } x > 0 \\ f(0) = 0 & \end{cases}$$

A) 1) a)
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{3}{2} x^2 - x^2 L n x \right) = 0$$

 $\lim_{x \to 0^+} f(x) = f(0)$ d'où f est continue à droite en 0

b)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{2} x^2 (3 - 2 \ln x) = -\infty$$

2) - a)
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \left(\frac{3}{2}x - xLnx\right) = 0$$

f est dérivable à droite en 0 et $f'_d(0) = 0$

b) f est dérivable sur]0,+∞[comme étant produit de deux fonctions dérivables.

$$f'(x) = x(3 - 2Lnx) + \frac{x^2}{2} \left(\frac{-2}{x}\right) = 2x(1 - Lnx)$$

3)
$$\begin{cases} f'(x) = 0 \\ x \in]0, +\infty[\end{cases} \iff Lnx = 1 \iff x = e$$

x	0		е		+∞
f'(x)	0	+	0	-	
f(x)	0-	*	$\frac{e^2}{2}$	\	* -∞

4) f est continue et strictement croissante sur]0,e[

 $f(]0,e[) =]0,\frac{e^2}{2}[;0 \notin]0,\frac{e^2}{2}[$, d'où l'équation f(x) = 0 n'admet pas de solution sur $]0,\frac{e^2}{2}[$

* f est continue et strictement décroissante sur[e,+ ∞ [, elle réalise donc une bijection de [e,+ ∞ [sur]- ∞ , $\frac{e^2}{2}$]; comme $0 \in]-\infty$, $\frac{e^2}{2}$] alors il existe un unique réel $\alpha \in [e,+\infty[$ tel que $f(\alpha)=0$

CMS

Conclusion:

l'équation (x) = 0 admet α comme solution unique dans $]0,+\infty[$ ou bien

$$\begin{cases} f(x) = 0 \\ x > 0 \end{cases} \iff 3 - 2Lnx = 0 \iff Lnx = \frac{3}{2} \iff x = e\sqrt{e} ; \alpha \approx 4,48$$

B) 1) D:
$$y = f'(1).(x-1) + f(1)$$
; D: $y = 2x - \frac{1}{2}$

2)
$$g(x) = f(x) - 2x + \frac{1}{2}$$

a)
$$g'(x) = f'(x) - 2 = 2 x (1 - Ln x) - 2$$

 $g''(x) = f''(x) = -2Ln x$

x	0	1	+∞
g''(x)	+	ø	-
g'(x)		~ 0 ~	
	-2		-∞

g' admet 0 comme maximum absolu, d'où g' $(x) \le 0$, pour $x \in]0, +\infty[$ b) $g'(x) \le 0$, pour tout $x \in]0, +\infty[$ d'ou g est strictement décroissante sur

]0,+∞[

x	0		1	+∞
g'(x)		-	0	-
g'(x) g(x)			0_	

x	0		1		+∞
g(x)		+	φ	-	
P.R		(C) D	Λ	$\frac{D}{(\mathcal{C})}$	
			$A(1,\frac{3}{2})$		

3)

$$* \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x}{2} (3 - 2\operatorname{Ln} x) = -\infty$$

 $(\mathcal{C}_{\mathrm{f}})$ admet une branche parabolique de direction celle de $(0,\vec{j})$ au voisinage de $+\infty$

C) 1)
$$n \in IN^*$$
; $I_n = \int_{\frac{1}{n}}^{1} x^2 Lnx \, dx$

On pose:
$$\begin{cases} u'(x) = x^2 & \to u(x) = \frac{x^3}{3} \\ v(x) = Lnx & \to v'(x) = \frac{1}{x} \end{cases}$$

$$I_n = \left[\frac{x^3}{3} \operatorname{Ln} x\right]_{\frac{1}{n}}^1 - \int_{\frac{1}{n}}^1 \frac{x^2}{3} dx = \frac{1}{3n^3} \operatorname{Ln}(n) - \left[\frac{x^3}{9}\right]_{\frac{1}{n}}^1 = \frac{\operatorname{Ln}(n)}{3n^3} + \frac{1}{9n^3} - \frac{1}{9}$$

2)
$$A_n = \int_{\frac{1}{n}}^{1} \left(f(x) - (2x - \frac{1}{2}) \right) dx = \int_{\frac{1}{n}}^{1} \left(\frac{3}{2} x^2 - x^2 \operatorname{Ln} x - 2x + \frac{1}{2} \right) dx$$

$$A_n = \int_{\frac{1}{n}}^{1} \left(\frac{3}{2} x^2 - 2x + \frac{1}{2} \right) dx - \int_{\frac{1}{n}}^{1} (x^2 \operatorname{Ln} x) dx = \left[\frac{x^3}{2} - 2x^2 + \frac{1}{2} x \right]_{\frac{1}{n}}^{1} - I_n$$

$$A_n = \frac{-11}{18n^3} + \frac{1}{n^2} - \frac{1}{2n} + \frac{1}{9} - \frac{Lnn}{3n^3}$$

3)
$$\lim_{n \to +\infty} A_n = \lim_{n \to +\infty} \frac{-11}{18n^3} + \frac{1}{n^2} - \frac{1}{2n} + \frac{1}{9} - \frac{\ln n}{3n^3} = \frac{1}{9}$$

$$1) \ f(x) = Lnx$$

$$D_f = IR^2$$

1)
$$f(x) = Lnx$$
 $D_f = IR_+^*$ $f'(x) = \frac{1}{x} > 0$; $\forall x \in IR_+^*$

х	0	+∞
f'(x)	+	
f(x)		+∞

$$\lim_{x \to +\infty} \frac{Lnx}{x} = 0$$

 $\lim_{x \to +\infty} \frac{Lnx}{x} = 0$ B.I .Parabolique de direction celle de (o, \vec{i})

2)
$$S_n = Ln1 + Ln2 + \dots + Ln(n)$$

2)
$$S_n = Ln1 + Ln2 + + Ln(n)$$
 $T_n = Ln1 + Ln2 + ... + Ln(n-1)$

En utilisant la méthode des rectangles $aire(r_k) \le \int_1^{k+1} Lnx dx \le aire(R_k)$ (Voir figure)

$$\Rightarrow Lnk \leq \int\limits_{k}^{k+1} Lnx dx \leq Ln(k+1) \Rightarrow \sum\limits_{k=1}^{n-1} Lnk \leq \sum\limits_{k=1}^{n-1} \int\limits_{k}^{k+1} Lnx dx \leq \sum\limits_{k=1}^{n-1} Ln(k+1) \Rightarrow T_n \leq \int\limits_{1}^{n} Lnx dx \leq S_n$$

3)

$$*S_n = Ln(1 \times 2 \times 3 \times \dots \times n) = Ln(n!)$$
 et $T_n = Ln[(n-1)!]$

$$T_n = Ln \lceil (n-1)! \rceil$$

$$\int_{1}^{n} Ln(x)dx = [xLnx - x]_{1}^{n} = nLn - n + 1$$

D'après 2)
$$Ln[(n-1)!] \le nLn-n+1 \le Ln(n!)$$

$$*nLnn-n+1 = Ln(n^n) - Ln(e^n) + Lne = Ln\left(\frac{n^n}{e^n}\right) + Lne = Ln\left[e\left(\frac{n}{e}\right)^n\right]$$

D'après (I):

$$Ln\left[e\left(\frac{n}{e}\right)^{n}\right] \leq Ln(n!) \Rightarrow e\left(\frac{n}{e}\right)^{n} \leq n! \tag{1}$$

$$*Ln\left[(n-1)!\right] \leq Ln\left[e\left(\frac{n}{e}\right)^{n}\right] \Rightarrow Ln\left[(n-1)!\right] + Lnn \leq Lnn + Ln\left[e\left(\frac{n}{e}\right)^{n}\right]$$

$$\Rightarrow Ln(n!) \leq Ln\left[ne\left(\frac{n}{e}\right)^{n}\right] \Rightarrow \boxed{n! \leq ne\left(\frac{n}{e}\right)^{n}} \tag{2}$$

$$(1) + (2) \Rightarrow e\left(\frac{n}{e}\right)^{n} \leq n! \leq ne\left(\frac{n}{e}\right)^{n}$$

EXERCICENº25

$$f(x) = Ln(Lnx)$$

1)
$$D_f =]1, +\infty[$$

2) la fonction : $x \mapsto Lnx$ est dérivable et strictement positive sur $]1,+\infty[$

D'où
$$f$$
 est dérivable sur $]1,+\infty[$ et $f'(x)=\frac{(Lnx)'}{Lnx}=\frac{1}{x.Lnx}>0$

3)
$$S_n = \sum_{k=2}^n \frac{1}{k \cdot Lnk}$$
 ; $n \ge 2$

$$\begin{array}{c|c} pour & k \ge 2 \\ k \le t \le k+1 \end{array} \Rightarrow 0 \le Lnk \le Lnt \Rightarrow 0 \le kLnk \le t.Lnt$$

$$\Rightarrow \frac{1}{tLnt} \le \frac{1}{k.Lnk} \Rightarrow \int_{k}^{k+1} \frac{1}{tLnt} dt \le \int_{k}^{k+1} \frac{1}{k.Lnk} dt \Rightarrow \int_{k}^{k+1} \frac{1}{t.Lnt} dt \le \frac{1}{k.Lnk}$$

4)*
$$\int_{2}^{n+1} \frac{1}{tLnt} dt = \int_{2}^{n+1} f'(t)dt = [f(t)]_{2}^{n+2} = Ln(Ln(n+2)) - Ln(Ln2)$$

$$*\int\limits_{(k)}^{k+1}\frac{1}{tLnt}\,dt \leq \frac{1}{kLnk} \Rightarrow \sum_{k=2}^{n}\int\limits_{k}^{k+1}\frac{1}{tLnt}\,dt \leq \sum_{k=2}^{n}\frac{1}{kLnk} \Rightarrow \int\limits_{2}^{n+1}\frac{1}{tLnt}\,dt \leq S_{n}$$

$$\Rightarrow S_n \ge Ln\big(Ln(n+2)\big) - Ln(Ln2) \quad or \quad \lim_{n \to +\infty} Ln\big(Ln(n+2)\big) - Ln(Ln2) = +\infty$$

D'où
$$\lim_{n\to+\infty} S_n = +\infty$$

Pour $x \in IR_{\perp}$

1) on pose :
$$U(x) = x - Ln(1+x)$$
 $\Rightarrow U'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \ge 0$

U est croissante sur $IR_{\scriptscriptstyle \perp}$

$$x \ge 0 \Rightarrow U(x) \ge U(0) \Rightarrow U(x) \ge 0 \Rightarrow x - Ln(1+x) \ge 0 \Rightarrow Ln(1+x) \le x$$
 (1)

* soit pour
$$x \ge 0$$
 $V(x) = Ln(1+x) - \left(x - \frac{x^2}{2}\right) \Rightarrow V'(x) = \frac{1}{1+x} - 1 + x = \frac{x^2}{1+x} \ge 0$

V est croissante sur IR_{\perp}

$$x \ge 0 \Rightarrow V(x) \ge V(0) \Rightarrow Ln(1+x) - \left(x - \frac{x^2}{2}\right) \ge 0 \Rightarrow \boxed{x - \frac{x^2}{2} \le Ln(1+x)}$$

$$(1) + (2) \Rightarrow x - \frac{x^2}{2} \le Ln(1+x) \le x$$

2)

a)
$$w_p = p$$
 est une suite arithmétique de raison $r = 1$
$$\sum_{n=1}^{n} p = \sum_{n=1}^{n} w_p = \frac{n}{2} (w_1 + w_n) = \frac{n(n+1)}{2}$$

* démonstration par récurrence

• pour
$$n = 1 \sum_{n=1}^{1} p^2 = 1 = \frac{1 * 2 * 3}{6}$$
 (vrai)

• supposons que
$$\sum_{p=1}^{n} p^2 = \frac{n(n+1)(2n+1)}{6}$$
 et Montrons que $\sum_{p=1}^{n+1} p^2 = \frac{(n+1)(n+2)(2n+3)}{6}$

$$\sum_{p=1}^{n+1} p^2 = \sum_{p=1}^{n} p^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{(n+1)}{6} [n(2n+1) + 6(n+1)]$$
$$= \frac{n+1}{6} (2n^2 + 7n + 6) = \frac{(n+1)(n+2)(2n+3)}{6}$$

Conclusion:
$$\sum_{p=1}^{n} p^2 = \frac{n(n+1)(2n+1)}{6} \quad \forall n \in IN^*$$

b)
$$Ln(P_n) = Ln\left(1 + \frac{1}{n^2}\right) + Ln\left(1 + \frac{2}{n^2}\right) + ... + Ln\left(1 + \frac{n}{n^2}\right) = \sum_{p=1}^n Ln\left(1 + \frac{p}{n^2}\right)$$

d'après 1)

$$\begin{split} \frac{p}{n^2} - \frac{p^2}{2n^4} &\leq Ln \left(1 + \frac{p}{n^2} \right) \leq \frac{p}{n^2} \Rightarrow \sum_{p=1}^n \frac{p}{n^2} - \sum_{p=1}^n \frac{p}{4n^4} \leq Ln(P_n) \leq \sum_{p=1}^n \frac{p}{n^2} \\ \Rightarrow \frac{1}{n^2} \sum_{p=1}^n p - \frac{1}{4n^4} \sum_{p=1}^n p^2 \leq Ln(P_n) \leq \frac{1}{n^2} \sum_{p=1}^n p \\ \Rightarrow \frac{1}{n^2} \left(\frac{n(n+1)}{2} \right) - \frac{1}{4n^4} \cdot \left(\frac{n(n+1)(2n+1)}{6} \right) \leq Ln(P_n) \leq \frac{1}{n^2} \left(\frac{n(n+1)}{2} \right) \\ \Rightarrow \frac{n+1}{2n} - \frac{(n+1)(2n+1)}{24n^3} \leq Ln(P_n) \leq \frac{n+1}{2n} \quad or \quad \lim_{n \to +\infty} \frac{n+1}{2n} = \frac{1}{2} \quad et \lim_{n \to +\infty} \frac{(n+1)(2n+1)}{24n^3} = 0 \\ \Rightarrow \lim_{n \to +\infty} Ln(P_n) = \frac{1}{2} \Rightarrow \lim_{n \to +\infty} P_n = e^{\frac{1}{2}} = \sqrt{e} \end{split}$$

EXERCICENº27

I)
$$x \in]0, +\infty[$$
; $g(x) = Ln(x+2) - Lnx - \frac{2}{x+2} + \frac{1}{4}$

1)-a)
$$g'(x) = \frac{1}{x+2} - \frac{1}{x} + \frac{2}{(x+2)^2} = \frac{-4}{x(x+2)^2} < 0$$
 pour tout $x \in]0, +\infty[$, d'où g

est strictement décroissante sur]0, +∞[

b)
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \ln \left(\frac{x+2}{x} \right) - \frac{2}{x+2} + \frac{1}{4} = \frac{1}{4}$$

g est strictement décroissante sur]0, +∞[

d'où g(]0, + ∞ [) =]_{x \to +\infty} g, $\lim_{x \to 0^+}$ g[=] $\frac{1}{4}$, + ∞ [d'où : g(x) > $\frac{1}{4}$ pour tout

 $x \in]0, +\infty[$ et par suite g(x) > 0 pour tout $x \in]0, +\infty[$

2) $2 \le x \le 3 \implies g(3) \le g(x) \le g(2)$ car g est strictement décroissante $\implies g(x) \le \text{Ln}2 - \frac{1}{4} < \frac{1}{2}$ d'où : $g(x) < \frac{1}{2}$ pour $x \in [2,3]$

II)
$$f(x) = \begin{cases} xLn\left(\frac{x+2}{x}\right) + \frac{x}{4} + \frac{1}{2} & \text{si } x > 0\\ \frac{1}{2} & \text{si } x = 0 \end{cases}$$

1)
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x \ln(x+2) - x \ln x + \frac{x}{4} + \frac{1}{2} \right) = \frac{1}{2} = f(0)$$
 d'où f est

continue à droite en 0.

2)
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \left(Ln\left(\frac{x + 2}{x}\right) + \frac{1}{4} \right) = +\infty$$

- * f n'est pas dérivable à droite en 0;
- (C) admet une demi-tangente verticale au point d'abscisse 0,
- 3) pour $x \in]0, +\infty[$

$$f'(x) = Ln\left(\frac{x+2}{x}\right) + \frac{\frac{-2}{x^2}}{\frac{x+2}{x}} + \frac{1}{4} = g(x) > 0$$

d'où f est strictement croissante sur $[0, +\infty[$

4) a)
$$\lim_{x \to +\infty} x Ln\left(\frac{x+2}{x}\right) = ?$$

On pose $X = \frac{x+2}{x}$, on aura : $x = \frac{2}{x-1}$

$$x \to +\infty \iff X \to 1 \text{ d'où}: \lim_{x \to +\infty} xLn\left(\frac{x+2}{x}\right) = \lim_{X \to 1} \frac{2}{X-1}LnX =$$

$$\lim_{X \to 1} 2 \cdot \frac{\ln X}{X - 1} = 2 \times 1 = 2$$

b)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x Ln\left(\frac{x+2}{x}\right) + \frac{x}{4} + \frac{1}{2} = +\infty$$

c)
$$\lim_{x \to +\infty} \left[f(x) - \left(\frac{x}{4} + \frac{5}{2} \right) \right] = \lim_{x \to +\infty} \left[x Ln \left(\frac{x+2}{x} \right) - 2 \right] = 0$$

d'où : la droite Δ: $y = \frac{x}{4} + \frac{5}{2}$ est une asymptote à (C) au voisinage de +∞

5)

x	0		+∞
f'(x)		+	
f(x)		-	+∞
	1		
	2		

III) 1)
$$h(x) = f(x) - x$$
 ; $x \in [2,3]$
 $h'(x) = f'(x) - 1 = g(x) - 1 < 0 \text{ car } g(x) < \frac{1}{3} \text{ pour } x \in [2,3]$

2) h est strictement décroissante sur [2,3]

h est continue sur [2,3]; h(2).h(3) < 0 (à vérifier)

d'où l'équation h(x) = 0 admet une solution α dans [2,3]

comme h est strictement décroissante sur [2,3] alors α est unique.

3)
$$f'(x) = g(x)$$
 pour $x \in [2,3]$
0 < $g(x) < \frac{1}{2}$ d'après I

4) * f est dérivable sur [2,3] et $|f'(x)| < \frac{1}{2}$

d'après le théorème des inégalités des accroissements finis

$$|f'(x) - f(\alpha)| < \frac{1}{2}|x - \alpha|$$
, pour tout $x \in [2,3]$, car $\alpha \in [2,3]$

D'où:
$$|f(x) - \alpha| < \frac{1}{2} |x - \alpha|$$

5)
$$\begin{cases} U_0 = 2 \\ U_{n+1} = f(U_n) \end{cases}$$

a) * pour n = 0, $U_0 = 2 \in [2,3]$

* supposons que : $U_n \in [2,3]$, montrons que $U_{n+1} \in [2,3]$

 $2 \le U_n \le 3 \implies f(2) \le f(U_n) \le f(3)$ car f est croissante sur [2,3]

D'où:
$$1 + 2 \operatorname{Ln} 2 \le U_{n+1} \le \frac{5}{4} + 3 \operatorname{Ln} \left(\frac{5}{4}\right) \Longrightarrow 2 \le U_{n+1} \le 3$$

Conclusion: $U_n \in [2,3]$ pour tout $n \in IN$

b) d'après 4);
$$|f(U_n) - \alpha| \le \frac{1}{2} |U_n - \alpha| \implies |U_{n+1} - \alpha| \le \frac{1}{2} |U_n - \alpha|$$

c) (récurrence)

*
$$|U_0 - \alpha| \le \left(\frac{1}{2}\right)^0 \text{ car } U_0 \text{ et } \alpha \in [2,3]$$

* supposons que : $|U_n - \alpha| \le \left(\frac{1}{2}\right)^n$ et montrons que : $|U_{n+1} - \alpha| \le \left(\frac{1}{2}\right)^{n+1}$

On a:
$$\begin{cases} |U_{n+1} - \alpha| \leq \frac{1}{2} |U_n - \alpha| \\ et \\ |U_n - \alpha| \leq \left(\frac{1}{2}\right)^n \end{cases} \quad \text{d'où} \quad : |U_{n+1} - \alpha| \leq \left(\frac{1}{2}\right)^{n+1}$$

Conclusion:

$$|U_n - \alpha| \le \left(\frac{1}{2}\right)^n$$
 pour tout $n \in IN$

d)
$$|U_n - \alpha| \le \left(\frac{1}{2}\right)^n \text{ et } \lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$$

d'où:
$$\lim_{n \to +\infty} (U_n - \alpha) = 0 \Longrightarrow \lim_{n \to +\infty} U_n = \alpha$$

EXERCICE№28

$$I) \quad f(x) = 4 - x - \frac{\ln x}{4}$$

1)
$$\lim_{x \to 0^+} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 4 - \left[x + \frac{\ln x}{4} \right] = -\infty$$

2) a)
$$f'(x) = -1 - \frac{1}{4x} = -\left(1 + \frac{1}{4x}\right) < 0$$
 pour $x > 0$

x	0	+∞
f'(x)	_	
f(x)	+∞ -	

b) f est continue et strictement décroissante sur $]0,+\infty[$, elle réalise donc une bijection de $]0,+\infty[$ sur $f(]0,+\infty[)=IR$; comme $0\in IR$ alors il existe un unique réel $a\in]0,+\infty[$ tel que f(a)=0

$$f(3).f(4) = \left(1 - \frac{Ln3}{4}\right)\left(-\frac{Ln4}{4}\right) < 0 \implies a \in [3,4]$$

c)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{4}{x} - 1 - \frac{Lnx}{4x} \right) = -1$$

$$\lim_{x \to +\infty} (f(x) + x) = \lim_{x \to +\infty} \left(4 - \frac{\ln x}{4}\right) = -\infty$$

 (\mathcal{C}_f) admet une branche infinie de direction asymptotique celle de Δ : y = -x

3)
$$A = -\int_{a}^{4} f(x) dx = \int_{4}^{a} f(x) dx = \int_{4}^{a} \left(4 - x - \frac{\ln x}{4}\right) dx$$

$$= \left[4x - \frac{x^{2}}{2} - \frac{1}{4} (x \ln x - x)\right]_{4}^{a} = \left[\frac{17}{4}x - \frac{x^{2}}{2} - \frac{1}{4} x \ln x\right]_{4}^{a}$$

$$= \frac{17}{4}a - \frac{a^{2}}{2} - \frac{1}{4} a \ln a - 9 + 2 \ln 2$$

$$f(a) = 0 \Longrightarrow \frac{Lna}{4} = 4 - a \text{ d'où}$$
:

$$A = \frac{17}{4}a - \frac{a^2}{2} - a(4 - a) - 9 + 2Ln2$$

$$A = \left(\frac{a}{4} + \frac{a^2}{2} - 9 + 2Ln2\right) u.a$$

II) 1)
$$g(x) = 4 - \frac{1}{4} Lnx$$

a)
$$f(a) = 0 \Leftrightarrow 4 - a - \frac{Lna}{4} = 0 \Leftrightarrow 4 - \frac{Lna}{4} = a \Leftrightarrow g(a) = a$$

b)
$$g'(x) = -\frac{1}{4x} < 0$$

g est continue et strictement décroissante sur [3,4]

$$\Rightarrow$$
 g([3,4]) = [g(4),g(3)] = [4 - $\frac{Ln4}{4}$, 4 - $\frac{Ln3}{4}$]

On a:
$$3 \le 4 - \frac{\ln 4}{4} \le 4 - \frac{\ln 3}{4} \le 4$$
 d'où: $g([3,4]) \subset [3,4]$

c)
$$g'(x) = -\frac{1}{4x}$$

$$3 \le x \le 4 \implies 12 \le 4x \le 16 \implies \frac{1}{16} \le \frac{1}{4x} \le \frac{1}{12} \implies -\frac{1}{12} \le \frac{-1}{4x} \le \frac{-1}{16} \implies |g'(x)| \le \frac{1}{12}$$

$$2) \begin{cases} U_0 = 3 \\ et \\ U_{n+1} = g(U_n) \end{cases}$$

a) * pour n = 0; $U_0 = 3 \in [3,4]$

* supposons que : $U_n \in [3,4]$; montrons que : $U_{n+1} \in [3,4]$

$$U_n \in [3,4] \Longrightarrow \mathsf{g}(U_n) \in [3,4] \text{ car } \mathsf{g}([3,4]) \subset [3,4] \text{ , d'où} : U_{n+1} \in [3,4]$$

Conclusion: $U_n \in [3,4]$ pour tout $n \in IN$

b) g est dérivable sur [3,4] et $|g'(x)| \le \frac{1}{12}$

 U_n et a \in [3,4] d'après le théorème des accroissements finis

$$|g(U_n) - g(a)| \le \frac{1}{12} |U_n - a| \Longrightarrow |U_{n+1} - a| \le \frac{1}{12} |U_n - a|$$

c)
$$|U_{1} - a| \leq \frac{1}{12} |U_{0} - a|$$

$$|U_{2} - a| \leq \frac{1}{12} |U_{1} - a|$$

$$(\times)$$

$$|U_{n} - a| \leq \frac{1}{12} |U_{n-1} - a|$$

Multiplions membre à membre et simplifions, on aura:

$$|U_n - \mathbf{a}| \le \left(\frac{1}{12}\right)^n |U_0 - \mathbf{a}|$$

$$\lim_{x \to +\infty} \left(\frac{1}{12}\right)^n |U_0 - a| = 0 \text{ d'où}: \lim_{x \to +\infty} (U_n - a) = 0; \lim_{x \to +\infty} U_n = a$$

EXERCICE№29

A)

1)
$$g(x) = (1-x).Lnx$$
 $x \in IR_{+}^{*}$

1)
$$g(x) = (1-x) \cdot Lnx$$
 $x \in IR^*_+$ $g(x) = 0 \Leftrightarrow 1-x=0$ ou $Lnx = 0 \Leftrightarrow x=1$

x	0		1	+∞
g(x)		-	0	-

$$2) h(x) = Lnx - x$$

a)
$$h'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x}$$

х	0		1	+∞
h'(x)		+	0	-
h(x)	_	_{&}	y -1 \	

$$\lim_{x \to 0^+} h(x) = \lim_{x \to 0^+} (Ln(x) - x) = -\infty \quad et \quad \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} x \left[\frac{Lnx}{\underbrace{x}} - 1 \right] = -\infty$$

b) h admet (-1) comme maximum absolu $\Rightarrow h(x) \le -1$; $\forall x \in IR^*_+ \Rightarrow h(x) < 0$; $\forall x \in IR^*_+$

B)
$$f(x) = Lnx.(Lnx - x)$$

1) f est dérivable sur $IR^*_{\scriptscriptstyle\perp}$ comme étant produit de deux fonctions dérivables

$$f'(x) = \frac{1}{x} (Ln - x) + Lnx \left(\frac{1}{x} - 1\right) = \frac{(Lnx - x) + (1 - x)Lnx}{x} = \frac{g(x) + h(x)}{x}$$

2)
$$f'(x) < 0$$
 car $g(x) \le 0$ et $h(x) < 0$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \underbrace{Lnx}_{-\infty} \left(\underbrace{Lnx - x}_{-\infty} \right) = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \underbrace{x.Lnx}_{+\infty} \left[\frac{Lnx}{\underbrace{x}} - 1 \right] = -\infty$$

3) * $\lim_{x\to 0^+} f(x) = +\infty$ La droite d'équation : x=0 est une asymptote à (Cf)

$$* \lim_{x \to +\infty} f(x) = -\infty \quad et \quad \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \underbrace{Lnx}_{+\infty} \left[\underbrace{Lnx}_{0} - 1 \right] = -\infty$$

- (Cf) admet une branche infinie parabolique de direction celle de (o, \vec{j}) au voisinage de $(+\infty)$.
- 4) a) on a : f(1) = 0 et f est continue et strictement décroissante sur IR_+^* ,

d'où
$$(Cf) \cap (o, \vec{i}) = \{B(1,0)\}$$

b)
$$T: y = f'(1).(x-1) + f(1)$$

$$T: y = -x + 1$$

c)
$$*f(e) = -e + 1 \Rightarrow A(e, -e + 1) \in (Cf)$$
 or on $a \in T \Rightarrow A \in T \cap (Cf)$

5)

6) $\alpha \in]0,1[$

a)
$$A(\alpha) = \int_{\alpha}^{1} f(x)dx = \int_{\alpha}^{1} Lnx(Lnx - x).dx$$
 Soit:
$$\begin{cases} U'(x) = Lnx - x \rightarrow U(x) = xLnx - x - \frac{x^{2}}{2} \\ V(x) = Lnx \rightarrow v'(x) = \frac{1}{x} \end{cases}$$

$$A(\alpha) = \left[xLn^2x - \left(x + \frac{x^2}{2}\right) Lnx \right]_{\alpha}^{1} - \int_{\alpha}^{1} \left(Lnx - 1 - \frac{x}{2}\right) dx$$

$$A(\alpha) = \left(\alpha + \frac{\alpha^2}{2}\right) Ln\alpha - \alpha \cdot \left(Ln\alpha\right)^2 - \left[xLnx - x - x - \frac{x^2}{4}\right]_{\alpha}^1$$

$$A(\alpha) = \left(2\alpha + \frac{\alpha^2}{2}\right) . Ln\alpha - \alpha \left(Ln\alpha\right)^2 - \frac{\alpha^2}{4} - 2\alpha + \frac{9}{4}$$

b)
$$\bullet \lim_{\alpha \to 0^+} \left(2\alpha + \frac{\alpha^2}{2} \right) Ln\alpha = \lim_{\alpha \to 0^+} 2\alpha Ln\alpha + \frac{1}{2}\alpha^2 . Ln\alpha = 0$$
 et $\bullet \lim_{\alpha \to 0^+} \alpha (Ln\alpha)^2 = 0$

D'où
$$\bullet \lim_{\alpha \to 0^+} A(\alpha) = \frac{9}{4}$$

7)a) f est continue et strictement décroissante sur IR_+^* elle réalise donc une bijection de IR_+^* sur $f(IR_+^*) = IR$.

b)
$$(Cf^{-1}) = S_{\Delta}(Cf)$$
 avec $\Delta : y = x$

A/
$$f(x) = \frac{1}{x} + \frac{1}{Lnx}$$
 $D_f =]0, +\infty[\setminus \{1\}$

1) *
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} + \frac{1}{\underbrace{Lnx}} = +\infty$$
 * $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{1}{x} + \frac{1}{\underbrace{Lnx}} = -\infty$

$$* \lim_{x \to 1^{+}} f(x) = +\infty \quad * \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x} + \frac{1}{\underbrace{Lnx}_{0}} = 0$$

Les droites d'équation x = 0; x = 1; et y = 0 sont des asymptotes à (Cf)

2)

a) les fonctions $x \mapsto x \ et \ x \mapsto Lnx$ sont dérivables et ne s'annule pas sur $]0,+\infty[\setminus\{1\}]$ d'où f est dérivable.

$$f'(x) = -\frac{1}{x^2} + \frac{-\frac{1}{x}}{(Lnx)^2} = -\frac{1}{x^2} - \frac{1}{x(Lnx)^2}$$

b)
$$f'(x) < 0$$
; $\forall x \in]0, +\infty[\setminus \{1\}]$

х	0		1	L	+∞
f'(x)		-			-
f(x)	+	∞ _		+∞	
Ì		7		ŀ	→ 0
]]]		

- 3) h(x) = f(x) pour $x \in [0,1[$
 - a) h est continue est strictement décroissante sur]0,1[elle réalise donc une bijective de]0,1[sur J=h(]0,1[)=IR
 - b) h est une bijection de]0,1[sur IR comme $0 \in IR$ alors il existe un unique réel α de]0,1[tel que $h(\alpha)=0$

$$h(0,5).h(0,6) = (+)(-) < 0$$
 D'où $0,5 < \alpha < 0,6$

c)
$$f(]1,+\infty[)=]0,+\infty[$$

 $0 \notin]0, +\infty[$ d'où l'équation f(x) = 0 n'a pas de solution dans $]1, +\infty[$

Conclusion:
$$(Cf) \cap (o, \vec{i}) = \{A(\alpha, 0)\}$$

4)

5) $(C_{h^{-1}}) = S_{\Delta}(C_h)$ avec $\Delta : y = x$

х	-∞	+∞
(h ⁻¹)'(x)		-
	1	
h ⁻¹ (x)		0

6)

a)
$$h'(\alpha) = f'(\alpha) = \frac{-1}{\alpha^2} - \frac{1}{\alpha (Ln\alpha)^2}$$

$$h(\alpha) = 0 \Rightarrow \frac{1}{\alpha} + \frac{1}{Ln\alpha} = 0 \Rightarrow \boxed{Ln\alpha = -\alpha}$$

D'où
$$h'(\alpha) = \frac{-1}{\alpha^2} - \frac{1}{\alpha^3} = -\left(\frac{\alpha+1}{\alpha^3}\right)$$

b)
$$h^{-1}(0) = \alpha \ car \ h(\alpha) = 0$$

h est dérivables en α et $h'(\alpha) = -\left(\frac{\alpha+1}{\alpha^3}\right) \neq 0$ D'où h^{-1} est dérivable en 0 et

$$(h^{-1})'(0) = \frac{1}{h'(\alpha)} = \frac{-\alpha^3}{1+\alpha}$$

B/
$$g(x) = 2.f(x^2)$$
 $x \in]1, +\infty[$

1)

$$f(x) - g(x) = \frac{1}{x} + \frac{1}{Lnx} - 2f(x^2) = \frac{1}{x} + \frac{1}{Lnx} - 2\left[\frac{1}{x^2} + \frac{1}{Ln(x^2)}\right] = \frac{1}{x} + \frac{1}{Lnx} - 2\left[\frac{1}{x^2} + \frac{1}{2Lnx}\right]$$
$$= \frac{1}{x} - \frac{2}{x^2}$$

2) .	f(x) - g(x) =	$=\frac{x-2}{x^2}$
------	---------------	--------------------

x	1		2	+∞
f(x)-g(x)		-	0	+
P.R		$\frac{(Cg)}{(Cf)}$	(2, f(2)) point int	$\frac{(Cf)}{(Cg)}$

3)
$$x \in [2, +\infty[$$

$$MN = f(x) - g(x) = \frac{x - 2}{x^2}$$
 Soit $\zeta(x) = \frac{x - 2}{x^2}$ $x \in [2, +\infty[$ $\zeta'(x) = \frac{4 - x}{x^3}$

х	2		4	+∞
ζ'(x)		+	0	-
$\zeta(x)$	0	/	1/8	•

 $MN = \zeta(x)$ est maximale pour x = 4

$$I - 1$$
) h

$$I - 1$$
 $h(x) = x - Ln x$

a) h'(
$$x$$
) = 1 - $\frac{1}{x} = \frac{x-1}{x}$

$$\lim_{x \to 0^+} h(x) = +\infty$$

$$\lim_{x \to +\infty} h(x) = 0$$

$$\lim_{x \to +\infty} x \left[1 - \frac{\ln x}{x}\right] = +\infty$$

b) h admet 1 comme minimum absolu alors

$$h(x) \ge 1$$
; $\forall x \in [0, +\infty[$

2)
$$\begin{cases} \frac{1}{x - \ln x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

a) # est continue sur] 0, +\ion[

$$\lim_{x \to 0^+} f(x) = 0 =$$

d' ou f est continue sur [0, +∞[

b)
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} =$$

$$\lim_{x \to 0^{+}} \frac{1}{x^{2} - x \ln x} = +\infty$$

f n'est pas dérivable à droite en 0

II)
$$F(x) = \int_{x}^{2x} f(t)dt$$
 $x \in [0, +\infty[$

1) a)

$$F(x) = \int_{1}^{2x} f(t) dt - \int_{1}^{x} f(t) dt$$

f est continue sur $[0, +\infty)$ et $1 \in [0, +\infty)$

D'où la fonction:

 $x \mapsto \int_1^x f(t) dt$ est dérivable sur [0, +∞ et sa dérivée est :

$$x \mapsto f(x)$$

*
$$U: x \mapsto 2x$$
 est dérivable sur

$$[0, +\infty[$$
 et $U([0, +\infty[) = [0, +\infty[)])$

* f est continue sur[0,+∞[

 $x \mapsto \int_{1}^{2\pi} f(t) dt$ est dérivable sur [0, +\infty] et sa dérivée est :

 $x \mapsto 2f(2x)$ et par suite F est dérivable sur [0,+∞[

b) pour x > 0

$$F'(x) = 2f(2x) - f(x)$$

$$=\frac{2}{2x-\operatorname{Ln}2x}-\frac{1}{x-\operatorname{Ln}x}$$

$$= \frac{2h(x) - h(2x)}{h(2x) \cdot h(x)} = \frac{Ln2 - Lnx}{h(2x) \cdot h(x)}$$

*
$$F'_{d}(0) = 2 f(0) - f(0) = 0$$

2)
$$\int_{x}^{2x} \frac{dt}{t} = [Lnt]_{x}^{2x} = Ln2$$

3)
$$F(x) - \text{Ln2} = \int_{x}^{2x} f(t) dt - \int_{x}^{2x} \frac{1}{t} dt$$

= $\int_{x}^{2x} (f(t) - \frac{1}{t}) dt = \int_{x}^{2x} \frac{\text{Lnt}}{t h(t)} dt$

 $x \ge 1$

Pour $t \in [x, 2x]$

 $h(t) \ge h(\mathcal{X})$ car h est croissante sur $[1, +\infty]$ $\Rightarrow 0 \le \frac{1}{h(t)} \le \frac{1}{h(x)}$ et

$$0 \le \frac{1}{t} \le \frac{1}{x}$$
 et $0 \le Lnt \le Ln(2 x)$

D'où
$$0 \le \frac{\operatorname{Lnt}}{\operatorname{th}(t)} \le \frac{\operatorname{Ln}(2x)}{x\operatorname{h}(x)}$$

$$\Rightarrow 0 \le \int_{x}^{2x} \frac{\text{Lnt}}{\text{th(t)}} dt \le \int_{x}^{2x} \frac{\text{Ln(2x)}}{\text{xh(x)}} dt$$

$$\Rightarrow 0 \le F(x) - Ln2 \le \frac{Ln(2x)}{h(x)}$$

$$\Rightarrow * 0 \le F(x) - Ln2 \le \frac{Ln(2x)}{x - Lnx}$$

Pour $x \ge 1$

$$\lim_{x \to +\infty} \frac{\operatorname{Ln}(2x)}{x - \operatorname{Ln} x} =$$

$$\lim_{x \to +\infty} \frac{\operatorname{Ln} 2 + \operatorname{Ln} x}{x - \operatorname{Ln} x} =$$

$$\lim_{x \to +\infty} \frac{\frac{\text{Ln2}}{x} + \frac{\text{Ln } x}{x}}{1 - \frac{\text{Ln } x}{x}} = 0 \text{ d'où}:$$

$$\lim_{x \to +\infty} (F(x) - Ln2) = 0$$

Donc:
$$\lim_{x \to +\infty} F(x) = \text{Ln}2$$

4) a)
$$F(\frac{1}{2}) = \int_{\frac{1}{2}}^{1} \frac{1}{t - Lnt} dt$$

$$\frac{1}{2} \le t \le 1 \implies Lnt \le 0$$

$$\Rightarrow$$
 - Lnt ≥ 0

$$\Rightarrow t - Lnt > t$$

$$\Rightarrow \frac{1}{t-1} \leq \frac{1}{t}$$

$$\Rightarrow \int_{\frac{1}{2}}^{1} \frac{1}{t - Lnt} dt \leq \int_{\frac{1}{2}}^{1} \frac{1}{t} dt$$

$$\Rightarrow F(\frac{1}{2}) \le [Lnt]_{\frac{1}{2}}^{1} \Rightarrow F(\frac{1}{2}) \le Ln2$$

b) on a:

$$F(\frac{1}{2}) \le Ln2 \text{ et } F(1) \ge Ln(2) \text{ d'après } 3)$$

F est continue sur $\left[\frac{1}{2}, 1\right]$

Ln2 est compris entre $F(\frac{1}{2})$ et F(1) D'après le

théorème des valeurs intermédiaires il existe

$$\alpha \in [\frac{1}{2}, 1]$$
 tels que $F(\alpha) = Ln2$

5) a)
$$F'(x) = \frac{Ln2 - Lnx}{h(2x).h(x) > 0}$$

ж	0	2	+ ∞
F'(%)	+	q	-
F (X)		F (2)	`_
	0		Ln2

b)

$$F'_{d}(0) = 0$$

III)
$$n \in IN^*$$

1)
$$V_n = \int_{\frac{1}{n}}^{1} \frac{1}{t - Lnt} dt$$

a) on a:
$$h(t) \ge 1$$
; $\forall t \in [0, +\infty)$

$$\Rightarrow \frac{1}{h(t)} \le 1 \Rightarrow \frac{t}{h(t)} \le t$$

$$\Rightarrow \frac{t}{t-Lnt} \le t ; \forall t \in]0, +\infty[$$

b)
$$v_{n+1} = \int_{\frac{1}{n+1}}^{1} \frac{t}{h(t)} dt$$

$$v_{n+1} = \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{\mathbf{t}}{h(\mathbf{t})} d\mathbf{t} + \int_{\frac{1}{n}}^{1} \frac{\mathbf{t}}{h(\mathbf{t})} d\mathbf{t}$$

$$\nu_{n+1} - \nu_n = \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{t}{h(t)} dt$$

$$v_{n+1} - v_n \ge 0 \operatorname{car} \frac{t}{h(t)} \ge 0$$

$$\forall t \in [\frac{1}{n+1}, \frac{1}{n}]$$

D'où v_n est croissante

c) pour
$$t \in \left[\frac{1}{n}, 1\right]$$

$$0 \le \frac{t}{h(t)} \le t \text{ d'après a}$$

$$\Rightarrow 0 \le \int_{\frac{1}{n}}^{1} \frac{t}{h(t)} dt \le \int_{\frac{1}{n}}^{1} t dt$$

$$\Rightarrow 0 \le v_n \le \left[\frac{t^2}{2}\right]_{\frac{1}{2}}^{1}$$

$$\Rightarrow 0 \leq v_n \leq \frac{1}{2} - \frac{1}{2n^2}$$

$$\begin{cases} * \ \nu_n \le \frac{1}{2} & \forall n \in IN^* \\ (\nu_n) \text{ est croissante} \end{cases}$$

d'où (ν_n) est convergente

$$0 \le \mathcal{V}_n \le \frac{1}{2} \implies 0 \le \lim_{n \to +\infty} \mathcal{V}_n \le \frac{1}{2}$$

2)
$$\omega_n = \int_1^n \frac{t}{h(t)} dt$$
; $n \ge 1$

a)

$$(1 + Lnt) - (\frac{t}{t - l.nt})$$

$$= \frac{t.Lnt - Lnt - (Lnt)^2}{h(t)}$$

$$= \frac{Lnt(t - 1 - Lnt)}{h(t)} = \frac{Lnt(h(t) - 1)}{h(t)} \ge 0$$

Car $t \ge 1$ et $h(t) \ge 1$ d'où

$$\frac{t}{t-Lnt} \le 1 + Lnt$$
; $\forall t \in [1, +\infty[$

b)
$$\int_{1}^{n} (1 + \frac{Lnt}{t}) dt = \left[t + \frac{1}{2} (Lnt)^{2}\right]_{1}^{n}$$

= $n - 1 + \frac{1}{2} (Ln(n))^{2}$

c) pour $t \ge 1$

$$\frac{t}{t-Lnt} = \frac{(t-Lnt) + Lnt}{t-Lnt}$$

$$= 1 + \frac{Lnt}{t-Lnt} \ge 1 + \frac{Lnt}{t} \quad \text{car Lnt} \ge 0$$

D'où

$$\int_{1}^{n} \left(\frac{t}{t-Lnt}\right) dt \ge \int_{1}^{n} \left(1 + \frac{Lnt}{t}\right) dt$$

$$\Rightarrow \omega_{n} \ge n - 1 + \frac{1}{2} (Ln(n))^{2}$$

$$\lim_{n \to +\infty} n - 1 + \frac{1}{2} (Ln(n))^{2} = +\infty$$

D'où
$$\lim_{n \to +\infty} \omega_n = +\infty$$

OCM

1)
$$e^{-3\ln\frac{1}{2}} = 8$$

2)
$$2e^{x+y} = 2e^{x}.e^{y}$$

3)
$$e^x = \frac{1}{e} \iff x = -1$$

4)
$$-2 < e^{x^2 - 1} < 1 \Leftrightarrow -1 < x < 1$$
5) $\lim_{x \to +\infty} f(x) = +\infty$

5)
$$\lim_{x \to +\infty} f(x) = +\infty$$

6)
$$f'(x) = \frac{x-1}{x^2 e^{-x}}$$

7)
$$\int_{0}^{1} xe^{x^{2}} dx = \left[\frac{1}{2}e^{x^{2}}\right]_{0}^{1} = \frac{1}{2} (e-1)$$

<u>Vrai – Faux</u>

- 1) Vrai (théorème du cours)
 - 2) Vrai ,en effet : pour $x \in \mathbb{R}_+^*$ soit $f(x) = x \ln(x)$ $f'(x) = \frac{x-1}{x}$ d'où le tableau des variations de f

f admet le réel 1 comme minimum absolu $\Rightarrow f(x) \ge 1 \Rightarrow f(x) > 0 \Rightarrow x - \ln(x) > 0$

$$\Rightarrow | \overline{\ln(x) < x} , \forall x \in IR^*_{+}$$
 (1)

$$\Rightarrow \boxed{\ln(x) < x} , \forall x \in IR_+^*$$
 (1) Comme $\ln(x) < x \Rightarrow e^{\ln(x)} < e^x \Rightarrow \boxed{x < e^x}$ (2)

$$(1) + (2) \Rightarrow \ln x < x < e^x$$
; $\forall x \in \mathbb{R}^*_+$

3) Faux :
$$(x^{r+1})^r = (r+1)x^r$$

4) Faux:
$$f(-x) = \frac{e^{-x} - 1}{e^{-x} + 1} = \frac{1 - e^x}{1 + e^x} = -f(x)$$
, f est impaire

5) Vrai:
$$\frac{e^{-x} + e^{x}}{2} = 1 \Leftrightarrow e^{x} + e^{-x} = 2 \Leftrightarrow e^{2x} - 2e^{x} + 1 = 0 \Leftrightarrow (e^{x} - 1)^{2} = 0 \Leftrightarrow e^{x} = 1$$

EXERCICENº1

$$*\frac{e^7}{e^2}=e^5$$

$$*\frac{(e^{-1})^4}{e} = \frac{e^{-4}}{e} = e^{-5}$$

$$*(e^2)^{-3} = e^{-6}$$

$$*e^2.e^{-3}=e^{-1}$$

$$\frac{\text{EXERCICEN} 2}{* e^{5Ln3}} = (e^{Ln3})^5 = 3^5$$

*
$$e^{-3Ln2} = (e^{Ln2})^{-3} = 2^{-3} = \frac{1}{8}$$

*
$$\operatorname{Ln}(e^{-\frac{2}{3}}) = -\frac{2}{3}$$

*
$$e^{(Ln3-Ln2)} = e^{Ln(\frac{3}{2})} = \frac{3}{2}$$

*
$$e^{5Ln2} = e^{Ln(2^5)} = 2^5 = 32$$

*
$$e^{3Ln4} = e^{Ln(4^3)} = 4^3 = 64$$
 d'où : $e^{5Ln2} - e^{3Ln4} = -32$

$$*\frac{e^{2Ln3}}{e^{Ln81}} = \frac{e^{Ln9}}{e^{Ln81}} = \frac{9}{81} = \frac{1}{9}$$

$$*\frac{e^3}{e^{4+Ln3}} = \frac{e^3}{e^{4}, e^{Ln3}} = \frac{e^3}{3e^4} = \frac{1}{3e}$$

$$\frac{\mathbf{EXERCICEN} \cdot 3}{1) \quad *e^x \cdot e^{-2x} = e^{-x}$$

*
$$e. e^x = e^{1+x}$$
 ; $(e^{-x})^2 = e^{-2x}$

$$* \frac{e^x}{e^{-x}} = e^{2x}$$

$$*\frac{e^{2x}}{e^{1-x}}=e^{3x-1}$$

$$* \frac{(e^x)^4}{e^{2x}} = \frac{e^{4x}}{e^{2x}} = e^{2x}$$

2) *
$$(e^x + e^{-x})^2 = (e^x)^2 + (e^{-x})^2 + 2e^x e^{-x} = e^{2x} + e^{-2x} + 2e^{-x}$$

$$* \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{x} - \frac{1}{e^{x}}}{e^{x} + \frac{1}{e^{x}}} = \frac{\frac{e^{x} - 1}{e^{x}}}{\frac{e^{x} + 1}{x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

EXERCICENº4

1)
$$e^{2x-3} = 1 \Leftrightarrow 2x - 3 = \text{Ln}1 \Leftrightarrow 2x - 3 = 0 \Leftrightarrow x = \frac{3}{2}$$
; $S_{IR} = \{\frac{3}{2}\}$

2)
$$e^x = 2 \Leftrightarrow x = \text{Ln2}$$
 ; $S_{IR} = \{\text{Ln2}\}$

3)
$$e^{-2x} = -2$$
 impossible car $e^a > 0 \ \forall \ a \in IR$; $S_{IR} = \emptyset$

4)
$$e^{3x+1} = e^{1-5x} \iff 3x + 1 = 1 - 5x \iff x = 0$$
; $S_{IR} = \{0\}$

5)
$$(e^x)^2 - 3e^x + 2 = 0$$
; on pose $t = e^x$; l'équation devient : $t^2 - 3t + 2 = 0$
 $\Leftrightarrow t = 1$ ou $t = 2$

*
$$t = 1 \Leftrightarrow e^x = 1 \Leftrightarrow x = 0$$

*
$$t = 2 \Leftrightarrow e^x = 2 \Leftrightarrow x = Ln2$$
 ; $S_{IR} = \{0, Ln2\}$

6)
$$e^{x^2-16} = e^{x-4} \iff x^2 - 16 = x - 4 \iff x^2 - x - 12 = 0$$

 $\Delta = 49$, $\sqrt{\Delta} = 7$, $x' = 4$ et $x'' = -3$; $S_{IR} = \{-3, 4\}$

7)
$$e^x + e^{-x} = 2 \Leftrightarrow e^x + \frac{1}{e^x} = 2 \Leftrightarrow e^{2x} + 1 = 2e^x \Leftrightarrow e^{2x} - 2e^x + 1 = 0$$

 $\Leftrightarrow (e^x - 1)^2 = 0 \Leftrightarrow e^x = 1 \Leftrightarrow x = 0; S_{IR} = \{0\}$

1)
$$e^{-x} \le 1 \Leftrightarrow -x \le 0 \Leftrightarrow x \ge 0$$
 ; $S_{IR} = [0, +\infty[$

2)
$$e^{-3x} \ge 0$$
 ; $S_{IR} = IR$

3)
$$2 - e^{\frac{1}{x}} > 0 \Leftrightarrow e^{\frac{1}{x}} < 2 \text{ et } x \neq 0 \Leftrightarrow \frac{1}{x} < \text{Ln2 et } x \neq 0$$

$$\Leftrightarrow x < 0$$
 ou $x > \frac{1}{\ln 2}$; $S_{IR} =]-\infty,0[\cup]\frac{1}{\ln 2},+\infty[$

4)
$$e^x + \frac{2}{e^x} - 3 \le 0 \Leftrightarrow \frac{e^{2x} - 3e^x + 2}{e^x} \le 0 \Leftrightarrow e^{2x} - 3e^x + 2 \le 0 \text{ car } e^x > 0$$

 $\Leftrightarrow (e^x - 1)(e^x - 1) \le 0$;

x	-∞	0		Ln2		+∞
$e^x - 1$	_	þ	+		+	
$e^x - 2$	_		_	φ	+	
P	+	0	_	0	+	

$$S_{IR} = [0, Ln2]$$

EXERCICENº6

$$C_1 = C_g$$

$$C_1 = C_g$$
 g (0) = 1

$$C_2 = C_k$$

$$k(0) = 2$$

$$C_3 = C_h$$

$$C_3 = C_h$$
 $h \ge 0$ et $\lim_{n \to -\infty} h = 0$

$$C_4 = C_1$$

$$C_4 = C_f \qquad f(x) < 0$$

*
$$\lim_{x \to +\infty} (x^2 - e^x) = \lim_{x \to +\infty} x^2 (1 - \frac{e^x}{x^2}) = -\infty$$

*
$$\lim_{x \to +\infty} (e^{3x} - 2e^x) = \lim_{x \to +\infty} e^x (e^{2x} - 2) = +\infty$$

*
$$\lim_{x \to -\infty} xe^{-(1-x)} = \lim_{x \to -\infty} \frac{xe^x}{e} = 0$$

*
$$\lim_{x \to -\infty} (x^2 - 2x + 3) e^x = \lim_{x \to -\infty} (x^2 e^x - 2x e^x + 3 e^x) = 0 - 0 + 0 = 0$$

*
$$\lim_{x \to -\infty} (x^2 - x) e^x = \lim_{x \to -\infty} (x^2 e^x - x e^x) = 0$$
 * $\lim_{x \to 0^+} x e^{\frac{1}{x}} = \lim_{t \to +\infty} \frac{e^t}{t} = +\infty$

*
$$\lim_{x \to +\infty} (x^3 - e^{2x}) = \lim_{x \to +\infty} x^3 [1 - \frac{e^{2x}}{x^3}] = -\infty$$

*
$$\lim_{x \to +\infty} \frac{e^x}{\sqrt{x+1}} = \lim_{x \to +\infty} \frac{e^x}{\sqrt{x}\sqrt{1+\frac{1}{x}}} = \lim_{x \to +\infty} \left(\frac{e^x}{\sqrt{x}}\right) \frac{1}{\sqrt{1+\frac{1}{x}}} = +\infty$$

$$*\lim_{x \to +\infty} \frac{2x - e^{x}}{x^{2} + x} = \lim_{x \to +\infty} \frac{\frac{2}{x} - \frac{e^{x}}{x^{2}}}{1 + \frac{1}{x}} = -\infty$$

On pose
$$X = -\frac{1}{x}$$

*
$$\lim_{x \to 0^+} \frac{1}{x} e^{-\frac{1}{x}} = \lim_{x \to -\infty} -x e^{x} = 0$$
 * $\lim_{x \to +\infty} \frac{e^x - 1}{x} = \lim_{x \to +\infty} \frac{e^x}{x} - \frac{1}{x} = +\infty$

*
$$\lim_{x \to +\infty} x^2 (e^{2x} - e^x) = \lim_{x \to +\infty} x^2 e^x (e^x - 1) = +\infty$$

*
$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} = \lim_{x \to 0} \frac{(e^x - 1)}{x} (e^x + 1) = 2$$

*
$$\lim_{x \to 0} \frac{x}{1 - e^{-x}} = \lim_{x \to 0} \frac{xe^{x}}{e^{x} - 1} = \lim_{x \to 0} \frac{e^{x}}{e^{x} - 1} = \frac{1}{1} = 1$$

*
$$\lim_{x \to 0^{+}} \frac{e^{x} - 1}{\sqrt{2x}} = \lim_{x \to 0^{+}} \frac{\sqrt{2x}}{2} (\frac{e^{x} - 1}{x}) = 0.1 = 0$$

*
$$\lim_{x \to +\infty} x \left(e^{\frac{1}{x}} - 1 \right) = \lim_{x \to 0^+} \frac{e^x - 1}{x} = 1$$
 * $\lim_{x \to +\infty} \left(\frac{x(e^{\frac{1}{x}} - 1)}{e^{\frac{1}{x}} + 1} \right) = \frac{1}{2}$

*
$$\lim_{x \to -\infty} x \left(e^{\frac{1}{x^2}} - 1 \right) = \lim_{t \to 0^+} \frac{-1}{\sqrt{t}} \left(e^t - 1 \right) = \lim_{t \to 0^+} -\sqrt{t} \left(\frac{e^t - 1}{t} \right) = 0$$
 (on pose $t = \frac{1}{x^2}$)

*
$$\lim_{x \to \infty} x^2 \left(e^{\frac{1}{x}} - e^{\frac{1}{x+1}} \right) = ?$$

Soit
$$f(x) = x^2 \left(e^{\frac{1}{x}} - e^{\frac{1}{x+1}} \right)$$
 On sait que : $\frac{1}{x} - \frac{1}{x+1} = \frac{1}{x(x+1)}$

On a donc
$$f(x) = x^2 e^{\frac{1}{x}} (1 - e^{-\frac{1}{x(x+1)}}) = \frac{x^2 e^{\frac{1}{x}}}{-x(x+1)} (\frac{(1 - e^{-\frac{1}{(x+1)x}})}{-\frac{1}{x(x+1)}})$$

Or
$$\lim_{x \to +\infty} e^{\frac{1}{x}} = 1$$
 et $\lim_{x \to +\infty} -\frac{x^2}{x(x+1)} = -1$

et en posant
$$X = -\frac{1}{x(x+1)} \Rightarrow \lim_{x \to +\infty} \frac{(1 - e^{-\frac{1}{(x+1)x}})}{-\frac{1}{x(x+1)}} = \lim_{x \to +\infty} -\frac{(e^{-X} - 1)}{X} = -1$$

donc
$$\lim_{x \to +\infty} f(x) = 1$$
 de même $\lim_{x \to -\infty} f(x) = 1$

EXERCICENº8

1.
$$f'(x) = 2 + e^{-x}$$

2.
$$f'(x) = 2x - \frac{1}{x^2}e^{\frac{1}{x}}$$

3.
$$f'(x) = e^{-x} - x e^{-x} = (1-x) e^{-x}$$

4.
$$f'(x) = \frac{e^x - e^x(x-1)}{e^{2x}} = \frac{2-x}{e^x} = (2-x) e^{-x}$$

5.
$$f'(x) = \frac{2e^{2x}(x^2+1)-2x(e^{2x}-1)}{(x^2+1)^2} = = \frac{2[(x^2-x+1)e^{2x}+x]}{(x^2+1)^2}$$

6.
$$f'(x) = 2 - 2\frac{e^x}{e^x + 1} = \frac{2}{e^x + 1}$$

7.
$$f'(x) = e^x \cdot Ln(x) + \frac{e^x}{x} = (\frac{1}{x} + Ln(x)) e^x$$

8.
$$f'(x) = e^x + e^{-x}$$

9.
$$f'(x) = \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2} = \frac{4}{(e^x + e^{-x})^2}$$

EXERCICE№9

1)
$$f(x) = e^{x^2}$$
 * $D_f = D_{f'} = IR$, $f'(x) = 2xe^{x^2}$; f est paire

x	0	+∞
f'(x)	0	+
f(x)		→ +∞
	1	

*
$$\lim_{x \to +\infty} e^{x^2} = +\infty$$

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^{x^2}}{x} = \lim_{x \to +\infty} x \left(\frac{e^{x^2}}{x^2}\right) = +\infty$$

Car:
$$\lim_{x \to +\infty} \frac{e^{x^2}}{x^2}$$
 en posant $X = x^2$; $\lim_{X \to +\infty} \left(\frac{e^X}{X}\right) = +\infty$

 (\mathcal{C}_f) admet une branche parabolique de direction $(0,\vec{j})$ au voisinage de $(+\infty)$

* l'axe des ordonnées est un axe de symétrie par (C_f)

2)
$$f(x) = e^{\frac{-x^2}{2}}$$

*
$$D_{\mathbf{f}} = D_{\mathbf{f}'} = \mathbf{IR}$$

2)
$$f(x) = e^{\frac{-x^2}{2}}$$
 * $D_f = D_{f'} = IR$, f est paire; $f'(x) = -xe^{\frac{-x^2}{2}}$

x	0		+∞
f'(x)	0	-	
f(x)	1		0
		~	U

*
$$\lim_{x \to +\infty} e^{\frac{-x^2}{2}} = 0$$
 , Car: $\lim_{x \to +\infty} \left(\frac{-x^2}{2}\right) = -\infty$

* la droite d'équation : y = 0 est une asymptote à (C_f)

3)
$$f(x) = e^{\frac{1}{x}}$$

*
$$D_f = D_{f'} = IR^*$$
, $f'(x) = -\frac{1}{x^2} e^{\frac{1}{x}} < 0$ pour tout $x \in IR^*$

X	-∞	()	+∞
f'(x)		-	-	
f(x)	1		+∞	
		~ 0		→ 1

*
$$\lim_{|x| \to +\infty} f(x) = \lim_{|x| \to +\infty} e^{\frac{1}{x}} = e^0 = 1$$

*
$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$
 d'où : $\lim_{x \to 0^+} e^{\frac{1}{x}} = +\infty$

*
$$\lim_{x \to 0^{-}} e^{\frac{1}{x}} = 0$$
 car , $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$

4)
$$f(x) = e^{-\frac{1}{x}}$$

*
$$D_{\rm f} = D_{\rm f'} = {\rm IR}^*$$
, $f'(x) = \frac{1}{x^2} e^{-\frac{1}{x}} > 0$ pour tout $x \in {\rm IR}^*$

x	-∞	0	+∞
f'(x)	+	+	
f(x)	+∞		→ 1
	1	0 -	

5)
$$f(x) = e^{\sqrt{x}}$$
; * $D_f = IR_+$,

* la fonction : $x \mapsto \sqrt{x}$ est dérivable sur $]0,+\infty[$ d'où f est dérivable sur $]0,+\infty[$

$$* \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{e^{\sqrt{x}} - 1}{x} = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} \left(\frac{e^{\sqrt{x}} - 1}{\sqrt{x}} \right) = +\infty$$

$$\operatorname{Car} \lim_{x \to 0^+} \left(\frac{e^{\sqrt{x}} - 1}{\sqrt{x}} \right) \text{ (en posant } X = \sqrt{x} \text{)} = \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

f n'est pas dérivable à droite en 0 ; $D_f' =]0,+\infty[$

$$f'(x) = \frac{1}{2\sqrt{x}} e^{\sqrt{x}} > 0$$
 pour tout $x \in]0,+\infty[$

x	0	+∞
f'(x)	+	
f(x)		→ +∞
	1	

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x}$$

= $\lim_{X \to +\infty} \frac{e^X}{x^2} = +\infty$; $(X = \sqrt{x})$

 (C_f) admet une branche parabolique de direction celle de $(0,\vec{l})$

6)
$$f(x) = \frac{x}{1 + e^{-x}}$$
; $*D_f = D_f' = IR$,

$$f'(x) = \frac{1 + (1 + x)e^{-x}}{(1 + e^{-x})^2}$$
, on pose $u(x) = 1 + (1 + x)e^{-x}$; $u'(x) = -xe^{-x}$

x	-∞		0		+∞	
u'(x)		+	ø	_		
u(x)			7 2			
	-∞				* 1	1

* on pourra montrer que l'équation u(x) = 0 admet une solution α

avec :-1,3< α < -1,2

x	-∞		α		+∞
u(x)		-	ф	+	

D'où:

x	-∞		α		+∞
f'(x)		_	φ	+	
f(x)	0 ~				→ +∞
			* f(α)		,

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{1 + e^{-x}} = +\infty$$

* $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x}{1 + e^x} = 0$

*
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x}{1 + e^x} = 0$$

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{1 + e^{-x}} = 1$$

*
$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{-x}{1 + e^x} = \lim_{x \to +\infty} \frac{-1}{\frac{e^x}{x} + \frac{1}{x}} = 0$$

 Δ : y = x est une asymptote à (\mathcal{C}_f)

$$1) f(x) = e^{2x}$$

$$F(x) = \frac{1}{2} e^{2x}$$

2)
$$f(x) = x e^{1+x^2}$$

$$F(x) = \frac{1}{2} e^{1+x^2}$$

3)
$$f(x) = \frac{1}{\cos^2 x} e^{\tan x}$$

$$F(x) = e^{\tan x}$$

4)
$$f(x) = \sin(2x) e^{\cos^2 x} = 2\sin x \cdot \cos x e^{\cos^2 x}$$
 $F(x) = -e^{\cos^2 x}$

5)
$$f(x) = \frac{1}{(x-1)^2} e^{\frac{1}{x-1}}$$

$$\mathsf{F}(x) = -e^{\frac{1}{x-1}}$$

6)
$$f(x) = \sqrt{e^x} = e^{\frac{x}{2}}$$

$$F(x) = 2 e^{\frac{x}{2}} = 2\sqrt{e^x}$$

7)
$$f(x) = \frac{e^{2x}}{1 + e^{2x}}$$

$$F(x) = \frac{1}{2} Ln (1 + e^{2x})$$

$$8)f(x) = x e^{2x^2}$$

$$F(x) = \frac{1}{4} e^{2x^2}$$

1) a)
$$\int_0^1 (1+e^x) . dx = \left[x+e^x\right]_0^1 = e$$
 b) $\int_0^1 xe^{x^2} . dx = \left[\frac{1}{2}e^{x^2}\right]_0^1 = \frac{e-1}{2}$

$$\int_0^1 x e^{x^2} . dx = \left[\frac{1}{2} e^{x^2} \right]_0^1 = \frac{e - 1}{2}$$

c)
$$\int_0^1 \frac{e^x}{1+e^x} dx = \left[Ln(1+e^x) \right]_0^1 = Ln(\frac{1+e}{2})$$

d)
$$\int_{1}^{2} \frac{dx}{1+e^{x}} = \int_{1}^{2} \frac{e^{-x}}{1+e^{-x}} dx = \left[-Ln(1+e^{-x}) \right]_{1}^{2} = Ln\left(\frac{e^{2}+e}{e^{2}+1}\right)$$

e)
$$\int_{1}^{2} \frac{1}{x} e^{Lnx} . dx = \int_{1}^{2} . dx = 1$$

f)
$$\int_{1}^{2} \frac{1}{x^{2}} e^{\frac{1}{x}} dx = \left[-e^{\frac{1}{x}} \right]_{1}^{2} = e - \sqrt{e}$$

2) a)
$$I = \int_{1}^{2} 2xe^{-x}.dx$$

$$\begin{cases} v(x) = 2x & \rightarrow v'(x) = 2 \\ u'(x) = e^{-x} & \rightarrow u(x) = -e^{-x} \end{cases}$$

D'où

$$I = \left[-2xe^{-x} \right]_{1}^{2} - \int_{1}^{2} (-2e^{-x}) . dx = \frac{2}{e} - \frac{4}{e^{2}} - \left[2e^{-x} \right]_{1}^{2} = \frac{2}{e} - \frac{4}{e^{2}} - \frac{2}{e^{2}} + \frac{2}{e}$$

$$\left[= \frac{4}{e} - \frac{6}{e^{2}} \right]$$

b)
$$I = \int_0^1 x^3 e^{-x^2} . dx$$

$$\begin{cases} u'(x) = x e^{-x^2} \to u(x) = -\frac{1}{2} e^{-x^2} \\ v(x) = x^2 \to v'(x) = 2x \end{cases}$$

$$1 = \left[-\frac{x^2}{2} e^{-x^2} \right]_0^1 + \int_0^1 x e^{-x^2} . dx = \left[-\frac{x^2}{2} e^{-x^2} \right]_0^1 - \frac{1}{2} \int_0^1 -2x e^{-x^2} . dx$$

$$= \left[-\frac{x^2}{2} e^{-x^2} \right]_0^1 - \frac{1}{2} \left[e^{-x^2} \right]_0^1 = \frac{1}{2} - \frac{1}{e}$$

$$I = \frac{1}{2} - \frac{1}{e}$$

d)
$$I = \int_0^{-Ln^2} e^{-x} . Ln(1 + e^x) . dx$$

$$\begin{cases} v(x) = Ln(1 + e^x) \implies v'(x) = \frac{e^x}{1 + e^x} \\ u'(x) = e^{-x} \implies u(x) = -e^{-x} \end{cases}$$

$$I = \left[-e^{-x} Ln \left(1 + e^{x} \right) \right]_{0}^{-\ln 2} + \int_{0}^{-Ln^{2}} \frac{1}{1 + e^{x}} . dx$$

$$= \text{Ln2} - 2 \text{ Ln (1 + e}^{-\text{Ln2}}) + \int_0^{-Ln2} \frac{e^{-x}}{1 + e^{-x}} dx = \text{Ln2} - 2 \text{ Ln} \frac{3}{2} + \left[-Ln(1 + e^{-x}) \right]_0^{-\ln 2}$$

$$\boxed{ = 4 \text{ln2} - 3 \text{Ln3} }$$

e)
$$I = \int_{1}^{0} x^{2} e^{x} . dx$$

$$\begin{cases} u'(x) = e^{x} & \rightarrow u(x) = e^{x} \\ v(x) = x^{2} & \rightarrow v'(x) = 2x \end{cases}$$

$$I = [x^2 e^x]_1^0 - \int_1^0 2x e^x . dx = -e - \int_1^0 2x e^x . dx$$

$$\begin{cases} u'(x) = e^x & \to u(x) = e^x \\ v(x) = 2x & \to v'(x) = 2 \end{cases}$$

$$I = -e - ([2xe^x]_1^0 - \int_1^0 2e^x dx) = -e - (-2e - [2e^x]_1^0).$$
 $I = 2 - e$

c)
$$I = \int_0^{\frac{\pi}{2}} (e^{-x} \sin x) dx$$

$$\begin{cases} v(x) = \sin x & \Rightarrow v'(x) = \cos x \\ u'(x) = e^{-x} & \Rightarrow u(x) = -e^{-x} \end{cases}$$

$$| = \left[-\sin x \cdot e^{-x} \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} (e^{-x} \cos x) \, dx = -e^{-\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} (e^{-x} \cos x) \, dx$$

$$\begin{cases} v(x) = \cos x & \Rightarrow v'(x) = -\sin x \\ u'(x) = e^{-x} & \Rightarrow u(x) = -e^{-x} \end{cases}$$

$$| = -e^{-\frac{\pi}{2}} + ([-\cos x \cdot e^{-x}]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} (e^{-x} \sin x) \cdot dx) = -e^{-\frac{\pi}{2}} + (1+1)$$

$$\Rightarrow 2| = 1 - e^{-\frac{\pi}{2}}$$

$$| = \frac{1}{2} (1 - e^{-\frac{\pi}{2}})$$

$$f(x) = x - \frac{1}{1 + e^x} \quad ;$$

1) a)
$$f'(x) = 1 - \frac{-e^x}{(1+e^x)^2} = 1 + \frac{e^x}{(1+e^x)^2} > 0$$
 pour tout $x \in IR$

b) *
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x - \frac{1}{1 + e^x} \right) = -\infty$$

* $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - \frac{1}{1 + e^x} \right) = +\infty$

x	-∞ +∞
f'(x)	+
f(x)	→ +∞
	-∞

2) a) *
$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{-1}{1 + e^x} = 0$$
, d'où:

 Δ_1 : y = x est une asymptote à (C_f) au voisinage de $(+\infty)$

*
$$\lim_{x \to -\infty} [f(x) - (x - 1)] = \lim_{x \to -\infty} (1 - \frac{1}{1 + e^x}) = 0$$
, d'où:

 Δ_2 : y = x - 1 est une asymptote à (\mathcal{C}_f) au voisinage de $(-\infty)$

b) *
$$f(x) - x = \frac{-1}{1+e^x} < 0$$
 d'où : (\mathcal{C}_f) est au dessous de Δ_1 ;
* $f(x)$ - $(x-1) = \frac{e^x}{e^x+1} > 0$ d'où (C_f) est au dessus de Δ_2 .

 $A = \operatorname{Ln}\left(\frac{1+e}{2}\right)$

$$f(x) = \frac{2 + e^x}{1 + e^x}$$

1)
$$f(x) = \frac{2(1+e^x)-e^x}{1+e^x} = 2-\frac{e^x}{1+e^x}$$
 Donc $a = 2$ et $b = -1$

2)
$$\int_{0}^{1} f(x)dx = \left[2x - Ln(1+e^{x})\right]_{0}^{1} = 2 - \ln(1+e) + Ln2 = 2 + Ln(\frac{2}{1+e})$$

1) A =
$$\int_0^1 \frac{e^x}{1+e^x} . dx = \left[Ln(1+e^x) \right]_0^1$$

$$B = \int_0^1 \frac{e^x}{(1+e^x)^2} dx = \left[\frac{-1}{1+e^x} \right]_0^1 = \frac{1}{2} - \frac{1}{e+1} \qquad B = \frac{e-1}{2(e+1)}$$

$$\frac{1}{(1+t)^2} = \frac{(1+2t+t^2)-(t^2+2t)}{(1+t)^2} = 1 - \frac{t^2+2t}{(1+t)^2} = 1 - \frac{(t^2+t)+t}{(1+t)^2}$$

= 1 -
$$\left(\frac{t}{1+t} + \frac{t}{(1+t)^2} = 1 - \frac{t}{1+t} - \frac{t}{(1+t)^2}\right)$$
 (a = 1, b = -1; c = -1)

$$1 = \int_0^1 (1 - \frac{e^x}{1 + e^x} - \frac{e^x}{(1 + e^x)^2}) . dx = \int_0^1 . dx - \int_0^1 \frac{e^x}{1 + e^x} dx - \int_0^1 \frac{e^x}{(1 + e^x)^2} dx$$

$$I = \left[x\right]_0^1 - (A + B) = 1 - \left(\text{Ln}\left(\frac{1+e}{2}\right) + \frac{1}{2} - \frac{1}{e+1}\right) = 1 - \left(\text{Ln}\left(\frac{1+e}{2}\right) + \frac{e-1}{2(e+1)}\right)$$

3)
$$J = \int_0^1 \frac{xe^x}{(1+e^x)^3} dx$$
 $v(x) = x \rightarrow v'(x) = 1$
$$u'(x) = \frac{e^x}{(1+e^x)^3} \rightarrow u(x) = -\frac{1}{2(1+e^x)^2}$$

$$J = \left[\frac{-x}{2(1+e^x)^2} \right]_0^1 + \frac{1}{2} \int_0^1 \frac{1}{(1+e^x)^2} dx = -\frac{1}{2(1+e)^2} + \frac{1}{2} I$$

$$J = -\frac{1}{2(1+e)^2} + \frac{1}{4} + \frac{1}{2(1+e)} - \frac{1}{2} \ln\left(\frac{1+e}{2}\right)$$

$$J = \frac{e^2 + 4e + 1}{2(1+e)^2} - \frac{1}{2} \operatorname{Ln} \left(\frac{1+e}{2} \right)$$

$$f(x) = \frac{e^x}{1 + e^x}$$

1) f est dérivable sur IR et f'(x) = $\frac{e^x}{(1+e^x)^2} > 0$

x	-∞	+∞
f'(x)		+
f(x)		1
	0	

$$* \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{e^x}{1 + e^x} \right) = 0 \qquad * \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{1 + \frac{1}{e^x}} \right) = 1$$

2) $I(0,\frac{1}{2})$

a)
$$f(0) = \frac{1}{2} \implies I \in (\mathcal{C}_f)$$

b) pour $x \in D_f = IR$ on a: $(-x) \in D_f$

*
$$f(-x) + f(x) = \frac{e^{-x}}{1 + e^{-x}} + \frac{e^x}{1 + e^x} = \frac{1}{1 + e^x} + \frac{e^x}{1 + e^x} = \frac{1 + e^x}{1 + e^x} = 1$$
 D'où : $f(-x) = 1 - f(x)$

<u>Conclusion</u>: $I(0,\frac{1}{2})$ est un centre de symétrie pour (C_f)

c) T: y = f'(0) (x - 0) + f(0)

T:
$$y = \frac{1}{4}(x - 0) + \frac{1}{2}$$
; T: $y = \frac{1}{4}x + \frac{1}{2}$

3)
$$f'(x) - \frac{1}{4} = \frac{e^x}{1 + e^x} - \frac{1}{4} = \frac{-(e^x - 1)^2}{4(1 + e^x)^2} \le 0$$
 d'où : $f'(x) \le \frac{1}{4}$ pour tout $x \in IR$

4) a) x > 0

Pour $t \in [0, x]$ on $a : f'(t) \le \frac{1}{4}$ d'où : $\int_0^x f'(t) dt \le \int_0^x \frac{1}{4} dt$

$$\Rightarrow [f(t)]_0^x \le \left[\frac{1}{4} t\right]_0^x \Rightarrow f(x) - f(0) \le \frac{1}{4} x \Rightarrow f(x) \le \frac{1}{4} x + \frac{1}{2}$$

b) pour $x \ge 0$ $f(x) \le \frac{1}{4} x + \frac{1}{2}$ d'où : (C_f) est au dessous de T pour $x \ge 0$

comme I est un centre de symétrie pour (\mathcal{C}_f) et T alors :

 (C_f) est au dessus de T pour $x \le 0$

(ou bien on montre que pour $x \le 0$, $f(x) \ge \frac{1}{4}x + \frac{1}{2}$)

5)

$$f(x) = x - 2 + e^{-\frac{x}{2}}$$
 $Df = IR$

1)
$$f'(x) = 1 - \frac{1}{2}e^{-\frac{x}{2}} = 1 - \frac{1}{2e^{\frac{x}{2}}} = \frac{2e^{\frac{x}{2}} - 1}{2e^{\frac{x}{2}}}$$

$$f'(x) > 0 \iff e^{\frac{x}{2}} > \frac{1}{2} \iff x > -2 \text{Ln} 2$$

х	$-\infty$	-2Ln2	+∞
f '(x)	_	p	+
f(v)	+∞		→ +∞
$f(\mathbf{x})$			

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x - 2 + e^{-\frac{x}{2}}) = +\infty \qquad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (-2X - 2 + e^{X})$$

$$0 \qquad \qquad x \to -\infty$$

$$0 \qquad \qquad \text{on pose } X = -\frac{x}{2}$$

$$= \lim_{X \to +\infty} X(-2 - \frac{2}{X} + \frac{e^{x}}{X}) = +\infty$$

2) a) $\lim_{x \to +\infty} f(x) - (x-2) = \lim_{x \to +\infty} e^{-\frac{x}{2}} = 0$ D'où la droite D d'équation : y = x - 2

est une asymptote à (ξf) au voisinage de $+\infty$

b)
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(1 - \frac{2}{x} + \frac{1}{xe^{\frac{x}{2}}}\right) = -\infty$$

Branche infinie parabolique de direction(O, j) au voisinage de -∞

1)
$$\lambda > 0$$
, $\Delta : x = \lambda$

$$A(\lambda) = \int_{0}^{\lambda} (f(x) - (x-2)) dx = \int_{0}^{\lambda} e^{-\frac{x}{2}} dx = \left[-2e^{-\frac{x}{2}} \right]_{0}^{\lambda} = 2(1 - e^{-\frac{\lambda}{2}}) \text{ u.a } \Rightarrow \lim_{\lambda \to +\infty} A(\lambda) = 2$$

1)
$$\lim_{x \to \infty} (\sqrt{3})^x = +\infty$$
 car $\sqrt{3} > 1$

2)
$$\left(\frac{1}{2}\right)^{-x} = 2^{x-1} = \frac{1}{2} \times 2^x \Rightarrow \lim_{x \to +\infty} \left(\frac{1}{2}\right)^{-x} = \lim_{x \to +\infty} \left(\frac{1}{2} \times 2^x\right) = +\infty$$
 car 2>1

3)
$$\frac{2^{x}}{2^{x^{2}+x}} = \frac{2^{x}}{2^{x} \cdot 2^{x^{2}}} = \frac{1}{2^{x^{2}}} = 2^{-x^{2}} \Rightarrow \lim_{x \to +\infty} \frac{2^{x}}{2^{x^{2}+x}} = \lim_{x \to +\infty} 2^{-x^{2}} = \lim_{x \to -\infty} 2^{x} = 0 \quad (X = -x^{2})$$

4)
$$\left(\frac{1}{4}\right)^x - \left(\frac{1}{4}\right)^{x+1} = \left(\frac{1}{4}\right)^x \cdot \left[1 - \frac{1}{4}\right] = \frac{3}{4} \left(\frac{1}{4}\right)^x \Rightarrow \lim_{x \to -\infty} \left(\frac{3}{4} \left(\frac{1}{4}\right)^x\right) = +\infty \quad \text{car} \quad 0 < \frac{1}{4} < 1$$

5)
$$f(x) = \frac{3^x + 3^{x+1}}{2^x + 2^{x-1}} = \frac{4 \cdot 3^x}{\frac{3}{2} \cdot 2^x} = \frac{8}{3} \left(\frac{3}{2}\right)^x \Rightarrow \lim_{x \to +\infty} f(x) = +\infty \quad \text{car } \frac{3}{2} > 1$$

6)
$$\lim_{x \to +\infty} (x^{\frac{1}{3}} - x^{\frac{2}{3}}) = \lim_{x \to +\infty} x^{\frac{1}{3}} \left[1 - x^{\frac{1}{3}} \right] = -\infty$$

7)
$$g(x) = \frac{\ln x}{2^x} = \frac{\ln x}{e^{x \ln 2}} = (\ln x) \cdot e^{-x \ln 2} = \left(\frac{\ln x}{x}\right) (xe^{-x \ln 2})$$
or
$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$et \ en \ posant \ X = -x \ln 2 \Rightarrow \lim_{x \to +\infty} xe^{-x \ln 2} = \lim_{x \to +\infty} \frac{-Xe^X}{\ln 2} = 0$$

$$d'où \lim_{x \to +\infty} g(x) = 0 \times 0 = 0$$

8)
$$\lim_{x \to +\infty} x^{\frac{1}{3}} e^{-x} = \lim_{x \to +\infty} \left[x \cdot e^{-3x} \right]^{\frac{1}{3}} = \lim_{x \to -\infty} \left[\frac{-1}{3} X e^{x} \right]^{\frac{1}{3}} = 0$$
 (X=-3x)

9)
$$\lim_{x \to +\infty} (x^{\frac{2}{3}} \ln x - x^{\frac{4}{3}} \ln x) = 0.0 = 0$$

10)
$$\lim_{x \to +\infty} 2^x - e^x = \lim_{x \to +\infty} 2^x \cdot \left[1 - \left(\frac{e}{2} \right)^x \right] = -\infty$$

$$f(x) = \ln(2^x) - \ln(x^2)$$
 $x \in]0, +\infty[$

1)
$$f(2) = \ln 4 - \ln 4 = 0$$
 $f(4) = \ln 16 - \ln 16 = 0$

2)
$$f(x) = x \ln 2 - 2 \ln x \Rightarrow f'(x) = \ln 2 - \frac{2}{x} = \frac{x \cdot \ln 2 - 2}{x}$$

x	0	2/ln2		+∞
f'(x)		- þ	+	
f(x)	+∞	f(2/ln2)		≯ +∞

*
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x \ln 2 - 2 \ln x = +\infty$$

$$* \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x \ln 2 - 2 \ln x = +\infty \qquad * \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left[\ln 2 - 2 \frac{\ln x}{x} \right] = +\infty$$

$$f(\frac{2}{\ln 2}) = 2 - 2\ln(\frac{2}{\ln 2}) < 0$$

3) pour
$$x \in [2,4] \rightarrow f(x) \le 0 \Rightarrow 2^x \le x^2$$

pour $x \in [0,2] \cup [4,+\infty[\rightarrow x^2 \le 2^x]$

$$f(x) = \frac{4^x}{4^{2x} - 1}$$
 ; $x \in \mathbb{R}^*$

1)
$$f(x) = \frac{4^x}{4^x (4^x - 4^{-x})} = \frac{1}{4^x - 4^{-x}}$$

• pour
$$x \in D_f = IR^*$$
 on a $(-x) \in D_f$
• $f(-x) = \frac{1}{4^{-x} - 4^x} = \frac{-1}{4^x - 4^{-x}} = -f(x)$ d'où f est impaire

2)
$$f'(x) = \frac{4^x \cdot \ln 4(4^{2x} - 1) - 4^x (2 \ln 4 \times 4^{2x})}{(4^{2x} - 1)^2} = \frac{(\ln 4) \cdot 4^x \cdot [4^{2x} - 1 - 2 \times 4^{2x}]}{(4^{2x} - 1)^2}$$

= $\frac{(\ln 4) \cdot 4^x \cdot (-4^{2x} - 1)}{(4^{2x} - 1)^2}$ $\Rightarrow f'(x) < 0 \; ; \forall x \in]0, +\infty[$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{4^x}{4^{2x} - 1} = +\infty$$

3) a)
$$f(x) = \frac{4}{15} \Leftrightarrow \frac{4^x}{4^{2x} - 1} = \frac{4}{15} \Leftrightarrow 4.(4^{2x} - 1) = 15 \times 4^x \Leftrightarrow 4.(4^{2x}) - 15 \times 4^x - 4 = 0$$

on pose $t=4^x$ l'équation devient : $4t^2 - 15t - 4 = 0$

$$\Delta = 289 \rightarrow \sqrt{\Delta} = 17 \implies t' = \frac{1}{4} ; t'' = 4$$

•
$$t = \frac{1}{4} \Leftrightarrow 4^{x} = \frac{-1}{4} \text{ impossible}$$
 $S_{IR} = \{1\}$
• $t = 4 \Leftrightarrow 4^{x} = 4 \Leftrightarrow x = 1$

b)
$$f(x) = \frac{-4}{15} \Leftrightarrow f(-x) = \frac{4}{15}$$
 car f est impaire $\Leftrightarrow -x=1 \Leftrightarrow x=-1 \Rightarrow S_{\mathbb{R}} = \{-1\}$

1)
$$\int_{0}^{1} 3^{x} dx = \int_{0}^{1} e^{x \ln 3} dx = \left[\frac{1}{\ln 3} e^{x \ln 3} \right]_{0}^{1} = \left[\frac{1}{\ln 3} (3^{x}) \right]_{0}^{1} = \frac{2}{\ln 3}$$

2)
$$\int_{0}^{1} \frac{3^{x}}{1+3^{x}} dx = \int_{0}^{1} \frac{1}{\ln 3} \cdot \frac{(\ln 3) \cdot 3^{x}}{1+3^{x}} dx = \frac{1}{\ln 3} \left[\ln(1+3^{x}) \right]_{0}^{1} = \frac{1}{\ln 3} \left[\ln\left(\frac{4}{3}\right) - \ln(2) \right] = \frac{\ln(\frac{2}{3})}{\ln 3} = \frac{\ln 2}{\ln 3} - 1$$

3)
$$\int_{1}^{2} x^{\frac{4}{3}} dx = \left[\frac{1}{\frac{4}{3} + 1} x^{\frac{4}{3} + 1} \right]^{2} = \left[\frac{3}{7} x^{\frac{7}{3}} \right]_{1}^{2} = \frac{3}{7} (2^{\frac{7}{3}} - 1)$$

4)
$$\int_{\frac{1}{2}}^{1} 4 \cdot x^{-\frac{1}{5}} dx = \left[5x^{\frac{4}{5}} \right]_{\frac{1}{2}}^{1} = 5(1 - 2^{\frac{-4}{5}})$$

5)
$$\int_{0}^{1} \sqrt[4]{x} dx = \int_{0}^{1} x^{\frac{1}{4}} dx = \left[\frac{4}{5} x^{\frac{5}{4}} \right]_{0}^{1} = \frac{4}{5}$$

6)
$$\int_{0}^{\frac{1}{\ln 2}} 2^{x} \cdot (1+2^{x})^{2} dx = \left[\frac{1}{\ln 2} \left(\frac{1}{3} (1+2^{x}) \right)^{3} \right]_{0}^{\frac{1}{\ln 2}} = \frac{1}{3\ln 2} \left[(1+2^{x})^{3} \right]_{0}^{\frac{1}{\ln 2}} = \frac{1}{3\ln 2} \left[(1+e)^{3} - 2^{3} \right] \operatorname{car} 2^{\frac{1}{\ln 2}} = e$$

EXERCICENº21

$$g(t) = \begin{cases} \frac{1 - e^{-t}}{t} & \text{si } t > 0\\ 1 & \text{si } t = 0 \end{cases}$$

1) a)
$$\lim_{t \to 0^+} g(t) = \lim_{t \to 0^+} \frac{1 - e^{-t}}{t}$$

$$\frac{T = -t:}{T \to 0^{-}} \lim_{T \to 0^{-}} \frac{1 - e^{T}}{-T} = \lim_{T \to 0^{-}} \frac{e^{T} - 1}{T} = 1 = g(0)$$
d'où g est continue à droite en 0

b)
$$\lim_{t \to +\infty} g(t) = \lim_{t \to +\infty} \frac{1 - e^{-t}}{t} = 0$$

2) a) pour t > 0

$$g'(t) = \frac{t e^{-t} - (1 - e^{-t})}{t^2} = \frac{(t+1) e^{-t} - 1}{t^2}$$

b) pour $t \ge 0$ on pose : $h(t) = 1 - t - e^{-t}$

 $h'(t) = -1 + e^{-t} = \frac{1 - e^t}{e^t} \le 0$ pour $t \ge 0 \Rightarrow h$ est décroissante sur $[0, +\infty[$

$$t \ge 0 \Longrightarrow h(t) \le h(0) \Longrightarrow 1 - t - e^{-t} \le 0 \Longrightarrow 1 - t \le e^{-t}$$

* $1 - t \le e^{-t}$ pour tout $t \in [0, x]$ d'où : $\int_0^x (1 - t) dt \le \int_0^x e^{-t} dt$

$$\Rightarrow \left[t - \frac{t^2}{2}\right]_0^x \le \left[-e^{-t}\right]_0^x \Rightarrow x - \frac{x^2}{2} \le 1 - e^{-x} \text{ d'où } : e^{-x} \le 1 - x + \frac{x^2}{2}$$

c) pour $x \in [0, u]$ on $a : e^{-x} \le 1 - x + \frac{x^2}{2}$ d'où :

$$\int_0^u e^{-x} dx \le \int_0^u \left(1 - x + \frac{x^2}{2}\right) dx \implies \left[-e^{-x}\right]_0^u \le \left[x - \frac{x^2}{2} + \frac{x^3}{6}\right]_0^u$$

$$\Rightarrow 1 - e^{-u} \le u - \frac{u^2}{2} + \frac{u^3}{6} \text{ d'où} : e^{-u} \ge 1 - u + \frac{u^2}{2} - \frac{u^3}{6}$$

d) pour $t \ge 0$; $\frac{g(t) - g(0)}{t - 0} = \frac{1 - t - e^{-t}}{t^2} = \frac{1 - t - e^{-t}}{t^2}$

on a : pour tout
$$t \ge 0$$
 ; $1 - t + \frac{t^2}{2} - \frac{t^3}{6} \le e^{-t} \le 1 - t + \frac{t^2}{2}$

$$\Rightarrow t - 1 - \frac{t^2}{2} \le -e^{-t} \le t - 1 - \frac{t^2}{2} + \frac{t^3}{6}$$

$$\Rightarrow -\frac{t^2}{2} \le 1 - t - e^{-t} \le -\frac{t^2}{2} + \frac{t^3}{6}$$

$$\Rightarrow -\frac{1}{2} \le \frac{1 - t - e^{-t}}{t^2} \le -\frac{1}{2} + \frac{t}{6} \Rightarrow -\frac{1}{2} \le \frac{g(t) - g(0)}{t} \le -\frac{1}{2} + \frac{t}{6}$$

$$* \lim_{t \to 0^+} \left(-\frac{1}{2} + \frac{t}{6} \right) = -\frac{1}{2} \text{ d'où : } \lim_{t \to 0^+} \frac{g(t) - g(0)}{t} = -\frac{1}{2}$$

Par suite g est dérivable à droite en 0 et $g_d'(0) = -\frac{1}{2}$

4)
$$g'(t) = \frac{(t-1)e^{-t}-1}{t^2}$$
 pour $t > 0$

Etudions le signe de g'(t)

Soit
$$V(t) = (t - 1) e^{-t} - 1$$
; $V'(t) = -t e^{-t} \le 0$ pour $t \ge 0$

V est décroissante sur [0,+∞[

$$t \ge 0 \Longrightarrow V(t) \le V(0) \Longrightarrow V(t) \le 0 \Longrightarrow g'(t) = \frac{V(t)}{t^2} \le 0 \text{ pour } t > 0$$

t	0	+∞
g'(t)	-	
g(t)	1——	
		0

EXERCICE№22

$$h(x) = (x - 2) e^x + 2$$
 ; $x \in [0, +\infty[$
 $h'(x) = (x - 1) e^x$

x	0		1		+∞
h'(x)		-	ф	+	
h(x)	0 \				→ +∞
		*	` 2- е		

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} (x - 2) e^x + 2 = +\infty$$

2) a) l'équation h(x) = 0 admet 0 comme unique solution dans [0,1[car h(0) = 0 et h est strictement décroissante sur [0,1[

* h est continue et strictement croissante sur $[1,+\infty[$, elle réalise donc une bijection de $[1,+\infty[$ sur $[2-e,+\infty[$;et Comme $0\in[2-e,+\infty[$ alors il existe un unique réel $a\in[1,+\infty[$ tel que h(a)=0

$$h(1).h(2) = 2(2-e) < 0 \implies 1 < a < 2$$

Conclusion:

l'équation h(x) = 0 admet le réel a comme unique solution non nulle.

x	0		a		+∞
h (x)	0	_	ф	+	

3) pour $x \in]0,+\infty[$; $f(x) = \frac{e^{x}-1}{x^2}$

a) *
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{x-1}}{x^2} = \lim_{x \to 0^+} \left(\frac{1}{x}\right) \frac{e^{x-1}}{x} = +\infty$$

* $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x}{x^2} - \frac{1}{x^2} = +\infty$
b) $f'(x) = \frac{e^x \cdot x^2 - 2x(e^x - 1)}{x^4} = \frac{xe^x - 2e^x + 2}{x^3} = \frac{h(x)}{x^3}$

b)
$$f'(x) = \frac{e^x \cdot x^2 - 2x(e^x - 1)}{x^4} = \frac{xe^x - 2e^x + 2}{x^3} = \frac{h(x)}{x^3}$$

x	0	a		+∞
f'	-	- φ	+	
(x)	1			
f(x)	0			* +∞
		★ f(a) -		

c)
$$h(a) = 0 \implies (a-2) e^a + 2 = 0 \implies e^a = \frac{2}{2-a}$$

d'où:
$$f(a) = \frac{\frac{2}{2-a} - 1}{a^2} = \frac{\frac{a}{2-a}}{a^2} = \frac{-1}{a(a-2)}$$
 $f(a) > 0$ car $a \in]1,2[$

$$f(a) > 0 \text{ car } a \in]1,2[$$

4)
$$h(1,5).h(1,6) < 0 \implies 1,5 < a < 1,6$$
; $a \approx 1,5$; $h(a) = 1,3$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^x}{x^3} - \frac{1}{x^3} = +\infty$$

 (C_f) admet une branche parabolique de direction celle de $(0,\vec{j})$

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 Df = IR

1)
$$\forall x \in Df$$
 on a $(-x) \in Df$ et $f(-x) = \frac{e^{-x} - e^x}{e^{-x} + e^x} = -f(x)$ Donc f est impaire

$$2)f'(x) = \frac{4}{(e^x + e^{-x})^2} > 0$$

$$\lim_{x \to +\infty} f(x) = 0$$

$$= \lim_{x \to +\infty} \left(\frac{1 - \frac{1}{e^{2x}}}{1 + \frac{1}{e^{2x}}} \right) = 1$$

$$\begin{array}{c|cccc}
x & -\infty & +\infty \\
\hline
f_n'(x) & + \\
\hline
f_n(x) & -1
\end{array}$$

 $\Rightarrow \ell \text{im } f(x) = -1 \quad \text{car } f \text{ est impaire}$ $x \Rightarrow -\infty$

b)
$$f'(0) = 1$$

3) $\lambda > 1$, $\Delta : x = \lambda$

$$A(\lambda) = \int_{0}^{\lambda} f(x).dx = \left[Ln(e^{x} + e^{-x}) \right]_{0}^{\lambda} = Ln(e^{\lambda} + e^{-\lambda}) - Ln 2$$

$$A(\lambda) = \operatorname{Ln}\left(\frac{e^{\lambda} + e^{-\lambda}}{2}\right)$$
 u.a

$$f(x) = xe^{-x} - \frac{1}{2}x$$
 ; $x \ge 0$

1) *
$$f'(x) = e^{-x} - xe^{-x} - \frac{1}{2} = (1 - x)e^{-x} - \frac{1}{2}$$

* $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{\left(\frac{e^x}{x}\right)} - \frac{1}{2}x = -\infty$

2) *
$$g(x) = (1-x)e^{-x} - \frac{1}{2} + \infty$$

a) $g'(x) = (x-2)e^{-x}$

x	0		2		+∞
g'(x)		_	φ	+	
g(x)	$\frac{1}{2}$	•	$-\frac{1}{e^2} - \frac{1}{2}$		▼ - 1/2

* g est continue et strictement décroissante sur [0,2[, elle réalise donc une bijection de [0,2[sur g([0,2[) =] $-\frac{1}{e^2} - \frac{1}{2}$, $\frac{1}{2}$] ;

Comme $0 \in g([0,2[) \text{ alors l'équation } g(x) = 0 \text{ admet une unique solution a dans l'intervalle } [0,2[$

- * $g(0).g(\frac{1}{2}) < 0$, (à *vérifier*) d'où: 0 < a < 0.5
- * g est continue et strictement croissante sur [2,+∞[d'où :

$$g([2,+\infty[) = [g(2), \lim_{x \to +\infty} g] = [-\frac{1}{e^2} - \frac{1}{2}, -\frac{1}{2}]$$

 \Rightarrow g(x) < $-\frac{1}{2}$ pour tout $x \in [2,+\infty[$

Par suite l'équation g(x) = 0 n'admet pas de solution dans l'intervalle $[2,+\infty[$ Conclusion :

l'équation g(x) = 0 admet a comme unique solution dans l'intervalle $[2,+\infty[$

b)

x	0	a		+∞
g (x)	+	þ	-	

c) f'(x) = g(x)

x	0		a		+∞
f'(x)		+	ф	_	
f(x)			y f(a)		
	0_				- ∞

2)
$$h(x) = 1 - \frac{1}{2}e^{-x}$$
 ; $x \in [0, \frac{1}{2}]$

a)
$$g(a) = 0 \Leftrightarrow (1-a)e^{-a} - \frac{1}{2} \Leftrightarrow \frac{1-a}{e^a} = \frac{1}{2} \Leftrightarrow 1-a = \frac{1}{2} e^a$$

 $\Leftrightarrow 1 - \frac{1}{2} e^a = a \Leftrightarrow h(a) = a$

D'où a est une solution de l'équation h(a) = a

Comme g est strictement décroissante sur $[0, \frac{1}{2}]$, alors a est l'unique solution de

l'équation $h(x) = x \text{ dans } [0, \frac{1}{2}]$

b)
$$h'(x) = -\frac{1}{2} e^x < 0$$

x	0	$\frac{1}{2}$
h'(x)		-
h(x)	1 2	$1-\frac{\sqrt{e}}{2}$

c) h est continue et strictement décroissante sur $[0, \frac{1}{2}]$,

d'où :
$$h([0, \frac{1}{2}]) = [h(\frac{1}{2}), h(0)] = [1 - \frac{\sqrt{e}}{2}, \frac{1}{2}]$$

d'où :
$$h([0, \frac{1}{2}]) \subset [0, \frac{1}{2}]$$
 car $1 - \frac{\sqrt{e}}{2} \ge 0$

d)
$$h'(x) = -\frac{1}{2} e^x$$

$$0 \le x \le \frac{1}{2} \Longrightarrow 1 \le e^x \le \sqrt{e} \Longrightarrow -\frac{\sqrt{e}}{2} \le -\frac{1}{2} e^x \le -\frac{1}{2} \Longrightarrow -\frac{\sqrt{e}}{2} \le h'(x) \le 0$$

$$\implies$$
 - 0,83 \leq h'(x) \leq 0 car - 0,83 \leq - $\frac{\sqrt{e}}{2}$

* h est dérivable sur $[0, \frac{1}{2}]$ et $|h'(x)| \le 0.83$

 $a \in [0, \frac{1}{2}]$ d'où pour tout $x \in [0, \frac{1}{2}]$;

$$|h(x) - h(a)| \le 0.83|x - a| \Longrightarrow |h(x) - a| \le 0.83|x - a|$$

(théorème des inégalités des accroissements finis)

3)
$$\begin{cases} U_0 = 0 \\ U_{n+1} = h(U_n) \end{cases}$$

a) montrons par récurrence que : pour tout $n \in IN$ on a : $U_n \in [0, \frac{1}{2}]$

* pour n = 0 on a :
$$U_0 \in [0, \frac{1}{2}]$$

* supposons que : $U_n \in [0, \frac{1}{2}]$ et montrons que $U_{n+1} \in [0, \frac{1}{2}]$

$$U_n \in [0, \frac{1}{2}] \implies h(U_n) \in h([0, \frac{1}{2}]) \implies U_{n+1} \in [0, \frac{1}{2}] \text{ car } h([0, \frac{1}{2}]) \subset [0, \frac{1}{2}]$$

Conclusion: $U_n \in [0, \frac{1}{2}]$ pour tout $n \in IN$

D'après 2) c)

*
$$|h(U_n) - a| \le 0.83 |U_n - a|$$
 par suite $|U_{n+1} - a| \le 0.83 |U_n - a|$

b)
$$|U_1 - a| \le 0.83 |U_0 - a|$$

 $|U_2 - a| \le 0.83 |U_1 - a|$

•••••

$$|U_n - a| \le 0.83 |U_{n-1} - a|$$

Multiplions membre à membre et simplifions, on aura;

$$|U_n - a| \le (0.83)^n |U_0 - a| \text{ d'où} : |U_n - a| \le (0.83)^n a$$

 $\lim_{x \to +\infty} (0.83)^n a = 0 \text{ d'où} : \lim_{x \to +\infty} (U_n - a) = 0 \Longrightarrow \lim_{x \to +\infty} U_n = a$

EXERCICE№25

I)
$$f(x) = (3+x) \cdot e^{-\frac{x}{2}}$$

1)
$$\lim_{x \to -\infty} (3+x) \cdot e^{-\frac{x}{2}} = -\infty$$

*
$$\lim_{X \to +\infty} f(x) = \lim_{X \to -\infty} (3-2X) \cdot e^{X}$$
 (avec $X = -\frac{x}{2}$)
= $\lim_{X \to -\infty} 3e^{X}$ $-2X \cdot e^{X} = 0$

2)
$$f'(x) = e^{-\frac{x}{2}} - \frac{3+x}{2} \cdot e^{-\frac{x}{2}} = -\left(\frac{1+x}{2}\right) \cdot e^{-\frac{x}{2}}$$

x	-∞		-1		+	-∞
f'(x)		+	ф	-		
f(x)			$2\sqrt{e}$			
	- ∞ ´				*	0

2) *
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(1 + \frac{3}{x}\right) \cdot e^{-\frac{x}{2}} = +\infty$$

- (\mathcal{C}_f) admet une branche parabolique de direction celle de $(0,\vec{j})$ au voige de $(-\infty)$
- 4)- a) f est continue et strictement croissante sur]- ∞ ,-1[, elle réalise donc une bijection de]- ∞ ,-1[sur]- ∞ , $2\sqrt{e}$ [;

Comme $3 \in]-\infty$, $2\sqrt{e}$ [alors il existe un unique réel $\alpha \in]-\infty$, -1[tel que $f(\alpha) = 3$ Dans l'intervalle $[1,+\infty[$ on a : f(0) = 3, f est continue et strictement décroissante D'où 0 est l'unique solution de l'équation $f(\alpha) = 3$ dans $[-1,+\infty[$

<u>Conclusion</u>: l'équation f(x) = 3 admet 0 et α comme seules solutions dans IR

* f est continue et strictement croissante sur $[-2, -\frac{3}{2}]$

d'où f(]-2,- $\frac{3}{2}$ [) =]f(-2),f(- $\frac{3}{2}$) [=]e, $\frac{3}{2}e^{\frac{3}{4}}$ [et comme 3ϵ]e, $\frac{3}{2}e^{\frac{3}{4}}$ [alors $\alpha \in$]-2,- $\frac{3}{2}$ [

b) * pour m \in] $-\infty$,0] \cup { $2\sqrt{e}$ }1'équation f(x) = m admet une unique solution

* pour m \in]0, $2\sqrt{e}$ [l'équation f(x) = m admet deux solutions distinctes

* pour m \in] $2\sqrt{e}$,+ ∞ [l'équation f(x) = m n'admet pas de solution

II)
$$\varphi(x) = 3e^{\frac{x}{2}} - 3$$

1)
$$f(x) = 3 \Leftrightarrow (3+x). e^{-\frac{x}{2}} = 3 \Leftrightarrow 3+x = 3e^{\frac{x}{2}} \Leftrightarrow 3e^{\frac{x}{2}} - 3 = x \Leftrightarrow \varphi(x) = x$$

2) a)
$$\varphi'(x) = \frac{3}{2}e^{\frac{x}{2}}$$
 ; $\varphi''(x) = \frac{3}{4}e^{\frac{x}{2}}$

*
$$f(\alpha) = 3 \Leftrightarrow \varphi(\alpha) = \alpha \Leftrightarrow 3e^{\frac{\alpha}{2}} - 3 = \alpha \Leftrightarrow 3e^{\frac{\alpha}{2}} = \alpha + 3$$
 d'où:

$$\varphi'(\alpha) = \frac{3}{2}e^{\frac{\alpha}{2}} = \frac{\alpha+3}{2}$$

b)
$$\varphi''(x) = \frac{3}{4}e^{\frac{x}{2}} > 0$$
 d'où : φ' est continue et strictement croissante sur IR

$$\varphi'(x) = \frac{3}{2}e^{\frac{x}{2}} > 0$$
; φ est strictement croissante sur IR

3)
$$I = [-2, \alpha]$$

a) φ est continue et strictement croissante sur I, d'où:

$$\varphi(I) = [\varphi(-2), \varphi(\alpha)] = [3(\frac{1}{e}-1), \alpha]$$

$$\varphi(I) \subset [-2, \alpha] \operatorname{car} 3(\frac{1}{e} - 1) \ge -2 \quad \text{d'où } \varphi(I) \subset I$$

b)
$$\varphi'(x) = \frac{3}{2}e^{\frac{x}{2}}$$

$$x \in I \Longrightarrow -2 \le x \le \alpha \Longrightarrow \varphi'(-2) \le \varphi'(x) \le \varphi'(\alpha)$$
 car φ' est croissante sur I

D'où:
$$\frac{3}{2e} \le \varphi'(x) \le \frac{\alpha+3}{2}$$
, on a: $\frac{3}{2e} \ge \frac{1}{2}$

$$\alpha < \frac{-3}{2} \implies 3 + \alpha \le \frac{3}{2} \implies \frac{3 + \alpha}{2} \le \frac{3}{4}$$
 d'où : $\frac{1}{2} \le \varphi'(x) \le \frac{3}{4}$ pour tout $x \in I$

c)
$$\frac{1}{2} \le \varphi'(t) \le \frac{3}{4}$$
; $\forall t \in [x, \alpha] \text{ d'où } : \int_{x}^{\alpha} \frac{1}{2} dt \le \int_{x}^{\alpha} \varphi'(t) dt \le \int_{x}^{\alpha} \frac{3}{4} dt$

$$\Rightarrow \left[\frac{1}{2} t\right]_{x}^{\alpha} \leq \left[\varphi(t)\right]_{x}^{\alpha} \leq \left[\frac{3}{4} t\right]_{x}^{\alpha} \text{ d'où } : \frac{1}{2}(\alpha - x) \leq \varphi(\alpha) - \varphi(x) \leq \frac{3}{4}(\alpha - x)$$

Or
$$x \le \alpha$$
 d'où: $0 \le \frac{1}{2}(\alpha - x) \le \varphi(\alpha) - \varphi(x) \le \frac{3}{4}(\alpha - x)$

$$4) \begin{cases} U_0 = -2 \\ U_{n+1} = \varphi(U_n) \end{cases}$$

a) (récurrence) * pour n = 0 on a :
$$U_0 = -2 \in I$$

* supposons que : $U_n \in I$; montrons que $U_{n+1} \in I$

$$U_n \in I \Longrightarrow \varphi(U_n) \in \varphi(I) \Longrightarrow U_{n+1} \in I \operatorname{car} \varphi(I) \subset I$$

<u>Conclusion</u>: U_n ∈ I pour n ∈ IN

$$0 \le \varphi(\alpha) - \varphi(U_n) \le \frac{3}{4}(\alpha - U_n) \Longrightarrow 0 \le \alpha - U_{n+1} \le \frac{3}{4}(\alpha - U_n)$$

c) on a :
$$|U_{n+1} - \alpha| \le \frac{3}{4} |U_n - \alpha|$$

Multiplions membre à membre et simplifions, on aura:

$$|U_n - \alpha| \le \left(\frac{3}{4}\right)^n |U_0 - \alpha|$$

$$\lim_{x \to +\infty} \left(\frac{3}{4}\right)^n |U_0 - \alpha| = 0 \quad \text{d'où} : \lim_{x \to +\infty} (U_n - \alpha) = 0 \implies \lim_{x \to +\infty} U_n = \alpha$$

$$\text{d)} \left(\frac{3}{4}\right)^n \le 10^{-2} \iff \text{nLn}\left(\frac{3}{4}\right) \le -\text{Ln}(100)$$

$$\iff \text{n} \ge \frac{-Ln(100)}{\text{Ln}(0,75)} \iff \text{n} \ge 16,007 ; \text{d'où} : \text{k} = 17$$

 $U_{17} \approx -1.74$

$$|\alpha - U_{17}| < 0.01$$

$$\Leftrightarrow -0.01 \le \alpha - U_{17} \le 0.01$$

$$\Leftrightarrow -0.01 + U_{17} \le \alpha \le 0.01 + U_{17}$$

$$\Leftrightarrow$$
 -1,75 $\leq \alpha \leq$ -1,73 ; $\alpha \approx$ -1,74

EXERCICE№26

$$f(x) = x \cdot e^{-x+2}$$
 sur $[0,+\infty[$

I)-1)
$$f'(x) = e^{-x+2} - x \cdot e^{-x+2} = (1 - x) \cdot e^{-x+2}$$

x	0		1		+∞	
f'(x)		+	ф	-		
f(x)			→ e			
	0 -				*	0

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^2 \cdot \frac{1}{\left(\frac{e^x}{x}\right)} = 0$$

* $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^2 \cdot \frac{1}{\frac{e^x}{x}} = 0$ 2) $\lim_{x \to +\infty} f(x) = 0$ d'où la droite d'équation : y = 0 est une asymptote à (C_f) au voisinage de $+\infty$

3) a)

l'équation $f(x) = \operatorname{Ln} x$ admet une unique solution dans $[1,+\infty[$

b)
$$g(x) = \operatorname{Ln} x - f(x)$$

 $g'(x) = \frac{1}{x} - f'(x) = \frac{1}{x} - (1 - x) \cdot e^{-x+2}$

pour $x \ge 1$ on a : g'(x) > 0 d'où g est strictement croissante sur $[1,+\infty[$

* g est continue et strictement décroissante sur $[1,+\infty[$, elle réalise donc une bijection de $[1,+\infty[$ sur $g([1,+\infty[)=[-e,+\infty[;$

Comme $0 \in [-e, +\infty[$ alors l'équation g(x) = 0 admet une unique solution α dans l'intervalle $[1, +\infty[$.

$$g(x) = 0 \iff f(x) = \operatorname{Ln} x$$

c)
$$g(3).g(3,01) < 0$$
, d'où: $3 < \alpha < 3,01$; $3,00 < \alpha < 3,01$

II) 1)
$$I = \int_0^3 x^2 \cdot e^{-2x} dx$$
;
$$\begin{cases} x^2 \to 2x \\ e^{-2x} \to -\frac{1}{2} e^{-2x} \end{cases}$$
$$I = \left[-\frac{x^2}{2} e^{-2x} \right]_0^3 + \int_0^3 x \cdot e^{-2x} dx = -\frac{9}{2} e^{-6} + \int_0^3 x \cdot e^{-2x} dx = \begin{cases} x \to 1 \\ e^{-2x} \to -\frac{1}{2} e^{-2x} \end{cases}$$

$$I = -\frac{9}{2} e^{-6} + \left[-\frac{x}{2} e^{-2x} \right]_0^3 + \frac{1}{2} \int_0^3 e^{-2x} dx$$

$$= -\frac{9}{2} e^{-6} - \frac{3}{2} e^{-6} + \frac{1}{2} \left[-\frac{1}{2} e^{-2x} \right]_0^3 = -\frac{6}{e^6} + \frac{1}{2} \left[\frac{1}{2} - \frac{e^{-6}}{2} \right] = \frac{1}{4} - \frac{25}{4e^6}$$

2)
$$V = \pi \int_0^3 [f(x)]^2 dx = \pi \int_0^3 x^2 \cdot e^{-2x+4} dx = \pi \int_0^3 e^4 \cdot x^2 \cdot e^{-2x} dx$$

 $= \pi e^4 \cdot \int_0^3 x^2 \cdot e^{-2x} dx = \pi e^4 \cdot I$
 $V = \frac{\pi e^4}{4} \cdot \left[1 - \frac{25}{e^6} \right] = \frac{\pi}{4} \cdot \left[e^4 - \frac{25}{e^2} \right] \quad (u, v)$

EXERCICENº27

I) *
$$g(x) = (1-x)e^x + 1$$

1)
$$g'(x) = -x.e^x$$

* g est strictement décroissante sur [0,+∞[

2)
$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (e^x - xe^x + 1) = 1$$
 $\lim_{x \to +\infty} g(x) = -\infty$

x	-∞	0	+∞
g'(x)	+	- ф	-
g(x)		~ 2	
	1		-∞

^{*} g est strictement croissante sur $]-\infty,0]$

$$g(]-\infty,0]) =]1,2] \Longrightarrow g(x) > 1 ; \forall x \in]-\infty,0]$$

d'où l'équation g(x) = 0 n'admet pas de solution α dans l'intervalle $]-\infty,0]$.

* g est continue et strictement décroissante sur $[0,+\infty[$, elle réalise donc une bijection de $[0,+\infty[$ sur $]-\infty,2]$;

Comme $0 \in]-\infty,2]$ alors il existe un unique réel a de $[0,+\infty[$ tel que g(a)=0 g(1,27).g(1,28)<0 (à vérifier), d'où : 1,27 < a < 1,28.

Conclusion:

l'équation g(x) = 0 admet a comme unique solution dans IR

3)

x	0	a	+∞
g (x)	+	þ	-

II)
$$f(x) = \frac{x}{e^{x} + 1} + 2$$

1)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{\frac{e^x}{x} + \frac{1}{x}} + 2 = 2$$

D'où la droite d'équation : y = 2 est une asymptote à (C_f) au voisinage de $+\infty$

2)a)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{e^{x} + 1} + 2 = -\infty$$

b)
$$\lim_{x \to -\infty} [f(x) - (x+2)] = \lim_{x \to -\infty} (\frac{x}{e^x + 1} - x) = \lim_{x \to -\infty} \frac{-xe^x}{e^x + 1} = 0$$

D'où la droite d'équation: y = x + 2 est une asymptote à (C_f) au voisinage de $-\infty$

c)
$$f(x) - (x + 2) = \frac{-xe^x}{e^x + 1}$$

x	-∞	0	+∞
f(x) - (x + 2)	+	þ	_
P.R	$(\mathcal{C}_{\mathbf{f}})$		D
	D	/\	$\overline{(\mathcal{C}_{\mathbf{f}})}$
		A(0,2)	

3)a)
$$f'(x) = \frac{(e^x + 1) - xe^x}{(e^x + 1)^2} = \frac{e^x (1 - x) + 1}{(e^x + 1)^2} = \frac{g(x)}{(e^x + 1)^2}$$

D'où le signe de f'(x)est celui de g(x)

x	-∞	a	+∞
f'(x)	+	ф	-
f(x)		f(a)	2

4)
$$a \approx 1.27$$
; $f(a) = 2.2$

III)
$$x \ge 2$$

1) D_5 : la partie du plan limitée par la courbe (\mathcal{C}) et les droites d'équations respectives y = 2; x = 2 et x = 5

2) Pour $x \ge 2$

$$* e^{x} + 1 \ge e^{x} \Longrightarrow \frac{1}{e^{x+1}} \le e^{-x} \Longrightarrow \frac{x}{e^{x+1}} \le xe^{-x}$$
 (1)

$$* x \ge 2 \Longrightarrow e^{x} \ge e^{2} \Longrightarrow e^{x} \ge 7 \Longrightarrow 8e^{x} \ge 7e^{x} + 7$$

$$\Longrightarrow \frac{1}{8e^{x}} \le \frac{1}{7(e^{x}+1)} \Longrightarrow \frac{7}{8}e^{-x} \le \frac{1}{(e^{x}+1)} \Longrightarrow \frac{7}{8}xe^{-x} \le \frac{x}{(e^{x}+1)}$$
 (2)

$$(1) + (2) \Longrightarrow \frac{7}{8} x e^{-x} \le \frac{x}{(e^{x} + 1)} \le x e^{-x} \text{ Pour } x \ge 2$$

3)
$$I_n = \int_2^n x \cdot e^{-x} dx$$
 on pose:
$$\begin{cases} u'(x) = e^{-x} \longrightarrow u(x) = -e^{-x} \\ v(x) = x \longrightarrow v'(x) = 1 \end{cases}$$
; d'où:
$$I_n = [-x e^{-x}]_2^n - \int_2^n (-e^{-x}) dx = [-x e^{-x}]_2^n - [e^{-x}]_2^n$$
$$I_n = \frac{3}{2^2} - (n+1) \cdot e^{-n}$$

4)
$$A_n = \int_2^n (f(x) - 2) dx = \int_2^n \left(\frac{x}{e^x + 1}\right) dx$$

 $\frac{7}{8} x e^{-x} \le \frac{x}{(e^x + 1)} \le x e^{-x} \text{ Pour } x \in [2, n] \text{ d'où :}$
 $\frac{7}{8} \int_2^n x e^{-x} dx \le \int_2^n \left(\frac{x}{e^x + 1}\right) dx \le \int_2^n x e^{-x} dx$

$$\begin{array}{ll}
 & \text{3 I}_2 & \text{3 I}_2 & \text{3 I}_2 & \text{3 I}_2 \\
 & \Rightarrow \frac{7}{8} I_n \le A_n \le I_n & \Rightarrow \frac{21}{8e^2} - \frac{7}{8} (n+1) e^{-n} & \le A_n \le \frac{3}{e^2} - (n+1) e^{-n}
\end{array}$$

5)a) *
$$A_n \le \frac{3}{e^2}$$
 pour tout $n \ge 2$

*
$$A_{n+1} = \int_{2}^{n+1} \left(\frac{x}{e^{x}+1}\right) dx = \int_{2}^{n} \left(\frac{x}{e^{x}+1}\right) dx + \int_{n}^{n+1} \left(\frac{x}{e^{x}+1}\right) dx$$

 $A_{n+1} = A_{n} + \int_{n}^{n+1} \left(\frac{x}{e^{x}+1}\right) dx$

$$A_{n+1} - A_n = \int_n^{n+1} \left(\frac{x}{e^x + 1}\right) dx \ge 0 \operatorname{car} \frac{x}{e^x + 1} \ge 0 \operatorname{pour} x \in [n, n+1]$$

D'où : A_n est croissante.

b)
$$\lim_{n \to +\infty} I_n = \lim_{n \to +\infty} \frac{3}{e^2} - ne^{-n} - e^{-n} = \frac{3}{e^2}$$
$$\frac{7}{8} I_n \le A_n \le I_n \text{ d'où}: \lim_{n \to +\infty} \frac{7}{8} I_n \le \lim_{n \to +\infty} A_n \le \lim_{n \to +\infty} I_n$$
$$\Longrightarrow \frac{21}{8e^2} \le \lim_{n \to +\infty} A_n \le \frac{3}{e^2}$$

I)
$$f(x) = \operatorname{Ln}(e^x + e^{-x})$$
 ; $x \ge 0$
1)-a) $\lim_{n \to +\infty} f(x) = \lim_{n \to +\infty} \operatorname{Ln}(e^x + e^{-x}) = +\infty$
b) $f(x) = \operatorname{Ln}[e^x(1 + e^{-2x})] = \operatorname{Ln}(e^x) + \operatorname{Ln}(1 + e^{-2x})]$
 $= x + \operatorname{Ln}(1 + e^{-2x})$

*
$$\lim_{n \to +\infty} [f(x) - x] = \lim_{n \to +\infty} Ln(1 + e^{-2x}) = 0$$

D'où D: y = x est une asymptote à (C) au voisinage de $(+\infty)$

c)
$$f(x) - x = Ln(1 + e^{-2x})$$

$$1 + e^{-2x} > 1 \implies \operatorname{Ln}(1 + e^{-2x}) > 0$$
 d'où (C) est au dessus de D

2)
$$f(x) = Ln(e^x + e^{-x})$$

$$f'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} \ge 0$$
 pour $x \in [0, +\infty[$

x	0		+	∞
f'(x)	0	+		
f(x)	Ln2		-	+∞

II)
$$x \ge 0$$
 $F(x) = \int_0^x Ln(1 + e^{-2t})dt$

1) $F(a) = \int_0^a Ln(1 + e^{-2t})dt = \int_0^a (f(t) - t)dt$; F(a) représente l'aire de la partie du plan limitée par la courbe (\mathcal{C}) ; la droite D et les droites x = 0 et x = a

3)

2) la fonction : $t \mapsto Ln(1 + e^{-2t})$ est continue sur $[0,+\infty[$, et $0 \in [0,+\infty[$ D'où F est dérivable sur $[0,+\infty[$ et $F'(x) = Ln(1 + e^{-2x}) > 0$ F est strictement croissante sur $[0,+\infty[$

3) a > 0

$$0 \le t \le a \Longrightarrow 1 \le 1 + t \le 1 + a$$
 d'où: $\frac{1}{1+a} \le \frac{1}{1+t} \le 1$

$$\int_0^a \frac{1}{1+a} dt \le \int_0^a \frac{1}{1+t} dt \le \int_0^a dt$$

$$\frac{1}{1+a} [t]_0^a \le [Ln|1+t|]_0^a \le [t]_0^a \text{ d'où } : \frac{a}{1+a} \le Ln(1+a) \le a$$

4)
$$x \ge 0$$
 pour $a = e^{-2t}$ on aura : $\frac{e^{-2t}}{1 + e^{-2t}} \le Ln(1 + e^{-2t}) \le e^{-2t}$

D'où:
$$\int_0^x \frac{e^{-2t}}{1+e^{-2t}} dt \le \int_0^x Ln(1+e^{-2t}) dt \le \int_0^x e^{-2t} dt$$

Ce qui donne :
$$\left[-\frac{1}{2} Ln(1 + e^{-2t}) \right]_0^x \le F(x) \le \left[-\frac{1}{2} e^{-2t} \right]_0^x$$

Par suite:
$$\frac{1}{2} \operatorname{Ln2} - \frac{1}{2} \operatorname{Ln} (1 + e^{-2x}) \le F(x) \le \frac{1}{2} - \frac{1}{2} e^{-2x}$$

5)
$$\lim_{n \to +\infty} \frac{1}{2} \operatorname{Ln} 2 - \frac{1}{2} Ln (1 + e^{-2t}) = \frac{1}{2} \operatorname{Ln} 2$$

$$\lim_{n \to +\infty} \frac{1}{2} - \frac{1}{2} e^{-2t} = \frac{1}{2} \text{ d'où : } \frac{1}{2} \text{Ln2} \le L \le \frac{1}{2}$$

6)
$$U_n = \int_n^{n+1} Ln(1 + e^{-2t}) dt$$

a)
$$h(t) = Ln(1 + e^{-2t})$$
; $t \ge 0$

$$h'(t) = \frac{-2e^{-2t}}{1+e^{-2t}} < 0$$
 d'où : h est strictement décroissante sur $[0,+\infty[$

b) $n \le t \le n+1 \implies h(n+1) \le h(t) \le h(n)$ car h est décroissante.

D'où:
$$0 \le h(t) \le h(n) \implies 0 \le \int_n^{n+1} h(t) dt \le \int_n^{n+1} h(n) dt$$

 $\implies 0 \le U_n \le h(n). [t]_n^{n+1} \implies 0 \le U_n \le h(n)$

Par suite: $0 \le U_n \le Ln(1 + e^{-2n})$

c)
$$0 \le U_n \le Ln(1 + e^{-2n})$$

$$\lim_{n \to +\infty} Ln(1 + e^{-2n}) = 0 \text{ d'où} : \lim_{n \to +\infty} U_n = 0.$$

7)
$$S_n = \sum_{i=0}^{n-1} U_i = \sum_{i=0}^{n-1} \int_i^{i+1} h(t) dt$$

 $S_n = \int_0^n h(t) dt = F(n)$
 $\lim_{n \to +\infty} S_n = L$

I)
$$g(x) = (x+1)^2 e^{-x}$$

1)a)
$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (x+1)^2 e^{-x} = +\infty$$

 $\lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} (1-X)^2 e^{x} = \lim_{x \to -\infty} (e^{x} - 2Xe^{x} + X^2 \cdot e^{x}) = 0$
(en posant $X = e^{-x}$)

b)
$$g'(x) = 2(x+1)e^{-x} - (x+1)^2e^{-x} = (1-x^2)e^{-x}$$

le signe de $g'(x)$ est celui de $(1-x^2)$ car $e^{-x} > 0$

c)

x	-∞	-1	1	+∞
g'(x)	_	0	+ 0	-
g(x)	+∞		$\sqrt{\frac{4}{e}}$	
		0		0

 (C_f) admet une branche parabolique de direction $(0,\vec{j})$ au voisinage de $(-\infty)$.

$$g(-2) = e^2$$
; $g(0) = 1$; $g(3) = \frac{16}{e^3}$

3) a) * k < 0 l'équation

l'équation g(x) = k n'admet pas de solution dans IR

*
$$k \in \{0\} \cup \frac{1}{e}$$
, + ∞ [l'équation $g(x) = k$ admet une unique solution

*
$$k = \frac{4}{e}$$
; l'équation $g(x) = k$ admet deux solutions

*
$$k \in]0, \frac{4}{3}[$$
 l'équation $g(x) = k$ admet trois solutions

b) dans l'intervalle]-1,+ ∞ [; g admet $\frac{4}{e}$ comme maximum absolu

$$\Rightarrow$$
 g(x) $\leq \frac{4}{e} < 2$ pour tout $x \in]-1,+\infty [$ d'où : l'équation g(x) = 2 n'admet pas de solution dans $]-1,+\infty [$

* g est continue et strictement décroissante sur]- ∞ ,-1], elle réalise donc une bijection de]- ∞ ,-1] sur [0,+ ∞ [;

Comme $2 \in [0,+\infty[$ alors il existe un réel α de $]-\infty,-1]$ tel que $g(\alpha)=2$

Conclusion: l'équation g(x) = 2 admet α comme unique solution dans IR * g est continue et strictement décroissante sur [-2,-1] d'où :

$$g([-2,-1]) = [g(-1),g(-2)] = [0,e^2]$$
 et Comme $2 \in [0,e^2]$ alors $\alpha \in [-2,-1]$

c)
$$g(\alpha) = 2 \Leftrightarrow (\alpha + 1)^2 e^{-\alpha} = 2 \Leftrightarrow (\alpha + 1)^2 = 2e^{\alpha}$$

$$\Leftrightarrow \alpha + 1 = -\sqrt{2}. e^{\frac{\alpha}{2}} \operatorname{car} \alpha + 1 \le 0 \Leftrightarrow \alpha = -1 - \sqrt{2}. e^{\frac{\alpha}{2}}$$

II)
$$f(x) = -1 - \sqrt{2} \cdot e^{\frac{x}{2}}$$
; $x \in I = [-2, -1]$ 1)a) $f'(x) = \frac{-\sqrt{2}}{2} \cdot e^{\frac{x}{2}} < 0$

x	-2		-1
f'(x)		-	
f(x)	$-1 - \frac{\sqrt{2}}{e}$		$-1 - \sqrt{\frac{2}{e}}$

b) * f est continue et strictement décroissante sur [-2,-1] d'où :

$$\begin{split} f([-2,-1]) &= [f(-1),f(-2)] = [-1 - \sqrt{\frac{2}{e}},-1 - \frac{\sqrt{2}}{e}] \\ f([-2,-1]) &\subset [-2,-1] \ , \ car: -2 \leq f(-1) \leq f(-2) \leq -1 \\ d\text{`où pour } x \in I \ ; \ f(x) \in I \end{split}$$

c)
$$f'(x) = \frac{-\sqrt{2}}{2} \cdot e^{\frac{x}{2}}$$

 $x \in I \implies -2 \le x \le -1 \implies -1 \le \frac{x}{2} \le -\frac{1}{2} \implies \frac{1}{e} \le e^{\frac{x}{2}} \le -\frac{1}{\sqrt{e}}$
 $\implies -\frac{1}{\sqrt{2e}} \le -\frac{1}{\sqrt{2}} e^{\frac{x}{2}} \le -\frac{1}{e\sqrt{2}} \implies -\frac{1}{\sqrt{2e}} \le f'(x) < 0 \implies |f'(x)| \le \frac{1}{\sqrt{2e}}$

d) on a : $f(\alpha) = \alpha$

pour
$$x \in I$$
, on a: $|f'(x)| \le \frac{1}{2}$

D'après le théorème des inégalités des accroissements finis $|f(x) - f(\alpha)| \le \frac{1}{2} |x - \alpha|$ pour $x \in I$, ce qui donne :

$$|f(x) - \alpha| \le \frac{1}{2} |x - \alpha|$$

2)
$$\begin{cases} U_0 = -\frac{3}{2} \\ U_{n+1} = f(U_n) \end{cases}$$

- a) montrons par récurrence que $U_n \in I$, $(n \in IN)$
- * $U_0 \in I$ (vrai)
- * Supposons que $U_n \in I$, et montrons que : $U_{n+1} \in I$

$$U_n \in I \implies f(U_n) \in I \quad d'après II)$$
 1)-b) d'où : $U_{n+1} \in I$

Conclusion: $U_n \in I$, pour $n \in IN$

d'après II) 1)-d)

$$|f(U_n) - \alpha| \le \frac{1}{2} |U_n - \alpha|$$
 ce qui donne : $|U_{n+1} - \alpha| \le \frac{1}{2} |U_n - \alpha|$

b)
$$|U_1 - \alpha| \le \frac{1}{2} |U_0 - \alpha|$$

$$|U_2 - \alpha| \le \frac{1}{2} |U_1 - \alpha|$$

•••••

$$|U_n - \alpha| \leq \frac{1}{2} |U_{n-1} - \alpha|$$

Multiplions membre à membre et simplifions, on aura:

$$|U_n - \alpha| \le \left(\frac{1}{2}\right)^n |U_0 - \alpha|$$

$$\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n |U_0 - \alpha| = 0 \text{ d'où}: \quad \lim_{n \to +\infty} \left(U_n - \alpha\right) = 0 \Longrightarrow \lim_{n \to +\infty} U_n = \alpha$$

c)
$$|U_n - \alpha| \le \left(\frac{1}{2}\right)^n |U_0 - \alpha| \implies |U_n - \alpha| \le \left(\frac{1}{2}\right)^n \text{ car} : U_0 \text{ et } \alpha x \in [-2, -1]$$

$$\left(\frac{1}{2}\right)^n \le 10^{-3} \iff \text{nLn}\left(\frac{1}{2}\right) \le \text{Ln}(10^{-3}) \iff -\text{nLn}2 \le -\text{Ln}(10^3)$$

$$\Leftrightarrow$$
 nLn2 \geq Ln(1000) \Leftrightarrow n \geq $\frac{\text{Ln}(1000)}{\text{Ln}^2}$ \Leftrightarrow n \geq 9,965

Pour $n_0=10$; $|U_{10}-\alpha|\leq (10)^{-3}$ d'où : U_{10} est une valeur approchée de α à $(10)^{-3}$; $U_{10}=-1,626$

EXERCICE№30

I)
$$g(x) = \frac{e^x}{1+2e^x} - \text{Ln}(1+2e^x)$$

1)
$$g'(x) = \frac{e^x(1+2e^x)-2e^{2x}}{(1+2e^x)^2} - \frac{2e^x}{(1+2e^x)} = \frac{e^x}{(1+2e^x)^2} - \frac{2e^x(1+2e^x)}{(1+2e^x)^2} = -\frac{(e^x+4e^{2x})}{(1+2e^x)^2}$$

 $g'(x) < 0$ pour tout $x \in IR$

2)
$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} \left(\frac{e^x}{1 + 2e^x} - \ln(1 + 2e^x) \right) = 0$$

3)
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \left(\frac{1}{2+e^{-x}} - \ln(1+2e^x) \right) = -\infty$$

x	-∞ +∞
g'(x)	-
g(x)	0
	-∞

g(x) < 0 pour tout $x \in IR$

II)
$$f(x) = e^{-2x} . Ln(1+2e^x)$$

1)
$$f'(x) = -2e^{-2x} \cdot \text{Ln}(1 + 2e^x) + e^{-2x} \cdot \frac{2e^x}{(1+2e^x)}$$

 $f'(x) = 2e^{-2x} \left[\frac{e^x}{(1+2e^x)} - \text{Ln}(1+2e^x) \right]$
 $f'(x) = 2e^{-2x} \cdot g(x)$

2)
$$f(x) = \frac{\text{Ln}(1+2e^x)}{(e^x)^2}$$
; on pose : $X = e^x$

$$\lim_{x \to +\infty} f(x) = \lim_{X \to +\infty} \frac{\ln(1+2X)}{X^2} = \lim_{X \to +\infty} \frac{\ln(X(2+\frac{1}{X}))}{X^2} = \lim_{X \to +\infty} \frac{\ln X}{X^2} + \frac{\ln(2+\frac{1}{X})}{X^2} = 0 + 0 = 0$$
* on pose : $X = 2e^x$; $\lim_{X \to -\infty} f(x) = \lim_{X \to 0^+} \frac{\ln(1+X)}{\frac{X^2}{4}} = \lim_{X \to 0^+} \frac{4}{X} \cdot \frac{\ln(1+X)}{\frac{X^2}{4}} = +\infty$

3) le signe de f'(x) est celui de g(x).

x	-∞	+∞
f'(x)	-	
f(x)	+∞	
		0

4) a)
$$T: y = f'(0).(x-0) + f(0)$$

 $T: y = (\frac{2}{3} - 2\text{Ln3}) x + \text{Ln3}$
b) $\lim_{x \to -\infty} \frac{f(x)}{x} = ?$
 $\frac{f(x)}{x} = \frac{\text{Ln}(1+2e^x)}{x.(e^x)^2}$; on pose : $X = 2e^x$
 $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{\text{Ln}(1+X)}{\text{Ln}(\frac{x}{2})} \frac{x^2}{4}$
 $= \lim_{x \to 0^+} \frac{4}{x \text{Ln}(\frac{x}{2})} \frac{\text{Ln}(1+X)}{x} = -\infty$

(C) admet une branche parabolique de direction celle de $(0,\vec{j})$ au voisinage de $(+\infty)$

EXERCICENº31

I)
$$g(x) = e^x - x - 1$$

1)
$$g'(x) = e^x - 1 \ge 0$$
 pour $x \in [0, +\infty[$

x	0	+∞
g'(x)	0 +	
g(x)		+∞
	0 —	

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 - \frac{1}{x} \right) = +\infty$$

b) $x \ge 0 \Longrightarrow g(x) \ge g(0)$ car g est croissante $\Longrightarrow g(x) \ge 0$

2)
$$h(x) = (2-x) e^x - 1$$
; $x \ge 0$

a) h est dérivable sur $[0,+\infty[$ et h' $(x) = (1-x)e^x$

x	0		1		+∞
h'(x)		+	ф	-	
h(x)			→ e -1		
	1				-∞

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} (2-x) e^x - 1 = -\infty$$

b) h est continue et strictement croissante sur [0,1],

d'où
$$h([0,1]) = [h(0),h(1)] = [1,e-1]$$

pour $x \in [0,+\infty[$, $h(x) \ge 1$ d'où l'équation : h(x) = 0 n'admet pas de solution dans l'intervalle [0,1]

* h est continue et strictement décroissante sur $[0,+\infty[$ elle réalise donc une bijection de $[1,+\infty[$ sur $h([1,+\infty[) =]-\infty,e-1]$.

Comme $0 \in]-\infty,e-1]$ alors il existe un unique réel α dans $[1,+\infty[$ tel que $h(\alpha)=0$ Conclusion :

l'équation : h(x) = 0 admet α comme solution unique dans l'intervalle $[0,+\infty[$ * h est continue sur [1,2]

$$h(1).h(2) = 1-e < 0$$
 d'où $\alpha \in [1,2]$

c)
$$h(1,84).h(1,85) < 0$$
 d'où $1,84 \le \alpha \le 1,85$

d)

x	0		α		+∞
h (x)		+	ф	_	

II)
$$f(x) = \frac{e^x - 1}{e^x - x}$$
 ; $x \ge 0$

1) a) pour
$$x \ge 0$$
; $f(x) = \frac{e^x (1 - e^{-x})}{e^x (1 - x e^{-x})} = \frac{(1 - e^{-x})}{(1 - x e^{-x})}$

on pose : X = -x

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(1 - e^{-x})}{(1 - xe^{-x})} = \lim_{x \to -\infty} \frac{1 - e^{x}}{1 + xe^{x}} = 1$$
,
 $(\operatorname{car} \lim_{x \to -\infty} e^{x} = \lim_{x \to -\infty} Xe^{x} = 0)$

la droite d'équation : y = 1 est une asymptote à (C_f) au voisinage de $+\infty$

b)
$$f(x) = \frac{e^x - 1}{e^x - x}$$
; $f'(x) = \frac{e^x(e^x - x) - (e^x - 1)^2}{(e^x - x)^2} = \frac{e^x(2 - x) - 1}{(e^x - x)^2} = \frac{h(x)}{(e^x - x)^2}$

c) le signe de f'(x) est celui de h(x)

x	0		α		+∞
f'(x)		+	ф	-	
f(x)	0 -		γ f(α)		1

2) a)
$$f(x) - x = \frac{e^x - 1}{e^x - x} - x = \frac{e^x - 1 - x(e^x - x)}{e^x - x} = \frac{(1 - x)e^x - (1 - x^2)}{e^x - x}$$
$$= \frac{(1 - x)[e^x - (1 + x)]}{e^x - x} = \frac{(1 - x)g(x)}{e^x - x}$$

b)
$$f(x) - x = \frac{(1-x)g(x)}{g(x)+1}$$

le signe de (f(x) - x) est celui de (1 - x) car $g(x) \ge 0$

x	0	1	+∞
f(x) - x	0	+ 0	_
P.R	$ \begin{array}{c c} \frac{(c_{\rm f})}{\Delta} \\ & \\ 0(0,0) \end{array} $	A(1,1)	$\frac{\Delta}{(\mathcal{C}_{\mathrm{f}})}$
	01.4	2) (2)	. ((0)

b)
$$\alpha \approx 1.85$$
; $f(\alpha) = 1.2$

III)
$$U_n = \int_0^n (f(x) - 1)dt$$

1)
$$U_n = \int_0^n \left(\frac{e^x - 1}{e^x - x} - 1 \right) dt = \left[Ln(e^x - x) - x \right]_0^n = Ln(e^n - n) - n$$

2)
$$-U_1 = \int_0^1 (f(x) - 1)dt = \int_0^1 (1 - f(x))dt$$

 $(-U_1)$ représente l'aire de la partie du plan limitée par la courbe (\mathcal{C}_f) et les droites respectives : y=1, x=0 et x=1

3)
$$U_n = \varphi(n)$$
 avec $\varphi(x) = Ln(e^x - x) - x = Ln(e^x - x) - Ln(e^x)$
$$\varphi(x) = Ln(1 - \frac{1}{e^x})$$

*
$$\lim_{x \to +\infty} \varphi(x) = 0$$
, d'où: $\lim_{x \to +\infty} U_n = 0$

EXERCICE№32

I)
$$u(x) = xe^x - e^x + 1$$

1) a)
$$u'(x) = xe^x$$

x	-∞	0	+∞
u'(x)	-	φ	+
$\mathbf{u}(\mathbf{x})$	1		→ +∞
		\ 0 -	

$$\lim_{x \to -\infty} \mathbf{u}(x) = \lim_{x \to -\infty} \left(x e^x - e^x + 1 \right) = 1$$
$$\lim_{x \to +\infty} \mathbf{u}(x) = \lim_{x \to +\infty} \left(x - 1 \right) e^x + 1 = +\infty$$

U admet 0 comme minimum absolu d'où : $u(x) \ge 0$ pour tout $x \in IR$

b)
$$u'(t) = te^t$$
 et $u(0) = 0$; d'où:

$$u(x) = \int_0^x u'(t) dt = \int_0^x te^t dt$$

2) a)
$$0 \le t \le x \implies 1 \le e^t \le e^x \implies t \le te^t \le te^x$$

pour tout $t \in [0, x]$ on $a : t \le te^t \le te^x$ d'où :

$$\Longrightarrow \int_0^x t dt \le \int_0^x t e^t dt \le e^x \int_0^x t dt \Longrightarrow \left[\frac{t^2}{2}\right]_0^x \le u(x) \le e^x \left[\frac{t^2}{2}\right]_0^x$$

$$\Longrightarrow \frac{x^2}{2} \le u(x) \le \frac{x^2}{2} e^x$$

b)
$$x \le t \le 0 \implies e^x \le e^t \le 1 \implies te^x \ge te^t \ge t$$

pour tout $t \in [x, 0]$ on $a : t \le te^t \le te^x$ d'où :

$$\Rightarrow \int_{x}^{0} t dt \leq \int_{x}^{0} t e^{t} dt \leq e^{x} \int_{x}^{0} t dt \Rightarrow \left[\frac{t^{2}}{2} \right]_{x}^{0} \leq -u(x) \leq e^{x} \left[\frac{t^{2}}{2} \right]_{x}^{0}$$

$$\Rightarrow -\frac{x^2}{2} \le -u(x) \le -\frac{x^2}{2}e^x \Rightarrow \frac{x^2}{2} \cdot e^x \le u(x) \le \frac{x^2}{2}$$

3) a) * pour
$$x > 0$$
; $\Rightarrow \frac{1}{2} x^2 \le u(x) \le \frac{1}{2} x^2 \cdot e^x \Rightarrow \frac{1}{2} \le \frac{u(x)}{x^2} \le \frac{1}{2} e^x$

$$\lim_{x \to 0^{+}} \frac{1}{2} e^{x} = \frac{1}{2} \text{ d'où } : \lim_{x \to 0^{+}} \frac{\mathbf{u}(x)}{x^{2}} = \frac{1}{2}$$

* pour
$$x < 0$$
; $\Longrightarrow \frac{1}{2} x^2 . e^x \le u(x) \le \frac{1}{2} x^2 \Longrightarrow \frac{1}{2} e^x \le \frac{u(x)}{x^2} \le \frac{1}{2}$

$$\lim_{x \to 0^{-}} \frac{1}{2} e^{x} = \frac{1}{2} \text{ d'où } : \lim_{x \to 0^{-}} \frac{u(x)}{x^{2}} = \frac{1}{2}$$

$$\lim_{x \to 0^{+}} \frac{u(x)}{x^{2}} = \lim_{x \to 0^{-}} \frac{u(x)}{x^{2}} = \frac{1}{2}; \text{ d'où}: \lim_{x \to 0} \frac{u(x)}{x^{2}} = \frac{1}{2}$$

b) * pour
$$x \neq 0$$
 ; $\frac{u(x)}{x(e^x - 1)} = \frac{u(x)}{x^2} \cdot \frac{1}{\left(\frac{e^x - 1}{x}\right)}$

$$\lim_{x \to 0} \frac{u(x)}{x^2} = \frac{1}{2} \text{ et } \lim_{x \to 0} \frac{e^{x-1}}{x} = 1 \text{ d'où : } \lim_{x \to 0} \frac{u(x)}{x^2(e^{x-1})} = \frac{1}{2}.1 = \frac{1}{2}$$

II)
$$f(x) = \begin{cases} \frac{x}{e^x - 1} & si \ x \neq 0 \\ 1 & si \ x = 0 \end{cases}$$

1) a)
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{\left(\frac{e^x - 1}{x}\right)} = \frac{1}{1} = 1 = f(0)$$
; d'où f est continue en 0.

b) * pour
$$x \neq 0$$
;
$$\frac{f(x) - f(0)}{x - 0} = \frac{x - e^x + 1}{x(e^x - 1)} = \frac{xe^x - e^x + 1 + x - xe^x}{x(e^x - 1)}$$
$$= \frac{u(x)}{x(e^x - 1)} + \frac{x(1 - e^x)}{x(e^x - 1)} = \frac{u(x)}{x(e^x - 1)} - 1$$

$$\implies \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{1}{2} - 1 = -\frac{1}{2}$$
 d'où f est dérivable en 0 et f'(0) = $-\frac{1}{2}$

2) a) * pour
$$x \neq 0$$
; $f'(x) = \frac{(e^x - 1) - xe^x}{(e^x - 1)^2} = \frac{-u(x)}{(e^x - 1)^2}$

b)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{e^x - 1} = +\infty$$
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{\frac{e^x}{x} - \frac{1}{x}} = 0$$

x	-∞	+∞
f'(x)		-
f(x)	+∞	
		0

3)-a) *
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{1}{e^{x} - 1} = -1$$

* $\lim_{x \to -\infty} (f(x) + x) = \lim_{x \to -\infty} \frac{xe^{x}}{e^{x} - 1} = 0$

D'où : la droite D : y = -x est une asymptote à (C_f) au voisinage de $-\infty$

b)

EXERCICE№33

I)
$$g(x) = (1 + \frac{1}{x})e^{-\frac{1}{x}}$$

1) g est dérivable sur]0,+∞[

$$g'(x) = -\frac{1}{x^2} \cdot e^{-\frac{1}{x}} + \frac{1}{x^2} (1 + \frac{1}{x}) e^{-\frac{1}{x}}$$

$$g'(x) = \frac{1}{x^3} \cdot e^{-\frac{1}{x}} > 0$$
 pour $x \in]0,+\infty[$

x	0	+∞
g'(x)	+	
g(x)		
	0	-

*
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (1 + \frac{1}{x})e^{-\frac{1}{x}} = 1$$

*
$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (1 + \frac{1}{x})e^{-\frac{1}{x}}$$
, en posant $X = -\frac{1}{x}$
= $\lim_{x \to -\infty} (1 - X)e^X = \lim_{x \to -\infty} (e^X - Xe^X) = 0 - 0 = 0$

2) g est continue et strictement décroissante sur $]0,+\infty[$ d'où $g(]0,+\infty[$) = $]\lim_{x\to +\infty} g, \lim_{x\to 0^+} g[$ =]0,1[, donc , pour $x\in]0,+\infty[$ $g(x)\in]0,1[$, par suite 0< g(x)<1

II)
$$f(x) = \begin{cases} xLn(-x) & \text{si } x < 0 \\ x(2 - e^{-\frac{1}{x}}) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

1) a)
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} xLn(-x); \text{ on pose : } X = -x$$
$$= \lim_{x \to 0^{+}} -XLn(X) = 0 = f(0); \text{ f est continue à gauche en } 0$$

 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x \left(2 - e^{-\frac{1}{x}} \right) = 0 = f(0)$; f est continue à droite en 0 d'où f est continue en 0.

b) *
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \left(2 - e^{-\frac{1}{x}}\right) = 2$$

d'où f est dérivable à droite en 0 et $f'_d(0) = 2$

*
$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} Ln(-x) = -\infty$$
; f est dérivable à gauche en 0

c) pour
$$x > 0$$
; $f(x) = x(2 - e^{-\frac{1}{x}})$

d'où:
$$f'(x) = \left(2 - e^{-\frac{1}{x}}\right) + x\left(-\frac{1}{x^2}e^{-\frac{1}{x}}\right) = 2 - (1 + \frac{1}{x})e^{-\frac{1}{x}}$$

$$f'(x) = 2 - g(x)$$

2)* pour
$$x > 0$$
; $f'(x) = 2 - g(x) > 0$ car $g(x) < 2$

* pour
$$x < 0$$
; $f(x) = xLn(-x)$

d'où :
$$f'(x) = Ln(-x) + x(\frac{1}{x}) = 1 + Ln(-x)$$

$$\begin{cases} f'(x) = 0 \\ x < 0 \end{cases} \Leftrightarrow \begin{cases} Ln(-x) = -1 \\ x < 0 \end{cases} \Leftrightarrow \begin{cases} -x = \frac{1}{e} \\ x < 0 \end{cases} \Leftrightarrow x = -\frac{1}{e}$$

x	-∞		$\frac{-1}{e}$		0	+∞
f'(x)		+	0	-		+
f(x)	-∞′	_ ▼	$\frac{1}{e}$		^ 0 ~	▼ +∞

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x Ln(-x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x(2 - e^{-\frac{1}{x}}) = +\infty$$

3) a) *
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} 2 - e^{-\frac{1}{x}} = 1$$

*
$$\lim_{x \to +\infty} (f(x)-x) = \lim_{x \to +\infty} x(1-e^{-\frac{1}{x}})$$
; on pose : $X = -\frac{1}{x}$

$$\lim_{x \to +\infty} (f(x) - x) = \lim_{X \to 0} \frac{-1}{X} (1 - e^X) = \lim_{X \to 0} \frac{e^{X} - 1}{X} = 1$$

D'où : la droite D : y = x + 1 est une asymptote à (C_f) au voisinage de $+\infty$

b) pour
$$x < 0$$
; $f'(x) = 1 + Ln(-x)$

$$f'(x) = 1 \Leftrightarrow Ln(-x) = 0 \Leftrightarrow -x = 1 \Leftrightarrow x = -1$$

la tangente à (C_f) au point d'abscisse (-1) a pour équation :

$$y = f'(-1)(x+1) + f(-1) \iff y = 1(x+1) + 0 \iff y = x+1$$

d'où D est la tangente à (C_f) au point d'abscisse (-1)

c) pour
$$x > 0$$
; $f(x) - (x+1) = x[1 - \frac{1}{x} - e^{-\frac{1}{x}}] = x u(x)$ avec :

$$u(x) = 1 - \frac{1}{x} - e^{-\frac{1}{x}}; \ u'(x) = \frac{1}{x^2} (1 - e^{-\frac{1}{x}}) > 0$$

x	0	+∞
u'(x)	+	
u(x)		→ 0
	-∞	

 $u(x) < 0 \text{ pour } x \in]0,+\infty[$

$$f(x)-(x+1) = x u(x) < 0$$
; $f(0)-(0+1) < 0$

<u>conclusion</u>: f(x)-(x+1)<0 pour $x \ge 0$; (C_f) est au dessous de D

d)
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} Ln(-x) = +\infty$$

 (C_f) admet une branche parabolique de direction celle de $(0,\vec{j})$ au voisinage de $(-\infty)$

e) $(\mathcal{C}') = S_{(Ox)}(\mathcal{C})$

III) $\alpha \in [-1,0]$

1)
$$I = \int_{-1}^{\alpha} f(x) dx = \int_{-1}^{\alpha} x Ln(-x) dx$$
 on pose :

$$\begin{cases} u'(x) = x & \to u(x) = \frac{x^2}{2} \\ v(x) = Ln(-x) & \to v'(x) = \frac{1}{x} \end{cases}$$
 d'où:

$$I = \left[\frac{x^2}{2} Ln(-x)\right]_{-1}^{\alpha} - \int_{-1}^{\alpha} \frac{1}{2} x \, dx = \frac{\alpha^2}{2} Ln(-\alpha) - \left[\frac{x^2}{4}\right]_{-1}^{\alpha}$$

$$I = \frac{\alpha^2}{2} Ln(-\alpha) - \frac{\alpha^2}{4} + \frac{1}{4}$$

2)
$$A(\alpha) = 2 \int_{-1}^{\alpha} f(x) dx = 2I$$
$$A(\alpha) = \alpha^2 Ln(-\alpha) - \frac{\alpha^2}{2} + \frac{1}{2}$$

3)
$$\lim_{\alpha \to 0^{-}} A(\alpha) = \lim_{\alpha \to 0^{-}} (\alpha^{2} Ln(-\alpha) - \frac{\alpha^{2}}{2} + \frac{1}{2})$$

 $\beta = -\alpha$
 $\lim_{\beta \to 0^{+}} (\beta^{2} Ln(\beta) - \frac{\beta^{2}}{2} + \frac{1}{2}) = \frac{1}{2}$

OCM:

- 1) y' = 2x
- 2) parallèle à : y = 2x
- 3) f est positive
- 4) y'' + y = 0

Vrai ou faut:

1) faut

En effet : $f(x) = 2^x$

$$f'(x) = 2^x.Ln2$$

$$f'(x) - Ln2 - f(x) \neq 0$$

2) faut

 $f(x) = e^{-2x}$ est une solution de l'équation

$$y' = -2 x$$

 $\mathbf{f}'(x) = -2 \; e^{-2x} \le 0 \; ; \; \forall \; x \in \mathbf{IR}$

f est décroissante sur IR

3) vrai

F est solution de y' = 3y

$$\implies$$
 f'(x) = 3. f(x); $\forall x \in \mathbb{R}$

$$\implies$$
 f'(1) = 3. f(1) = 3

$$\implies$$
 f(1) = 1

4) vrai

Démonstration

f''(x) + 2 f(x) = 0 ; $\forall x \in IR$ $\Rightarrow f''(x) = -2 f(x)$; $\forall x \in IR$

f s'annule en $\frac{\pi}{4}$ et change de signe d'où

f'' s'annule et change de signe en $\frac{\pi}{4}$

 \Rightarrow (\mathcal{C}_f) admet le point $I(\frac{\pi}{4}, f(\frac{\pi}{4}))$ comme Point d'inflexion.

EXERCICE 1:

$$1) - a) \quad y' = -3 y$$

Les solutions sont les fonctions définies sur IR par : $f(x) = k \cdot e^{-3x}$; $k \in IR$

b)
$$y' = -\sqrt{2} y$$

les solutions sont les fonctions définies sur

IR par : $f(x) = k \cdot e^{-\sqrt{2}x}$; $k \in IR$

c)
$$y' = \frac{1}{5}y$$

 $f(x) = k \cdot e^{\frac{x}{5}}$; $k \in \mathbb{R}$

2) - a)
$$y' = \frac{1}{2}y$$
 et $f(-1) = e$

La solution est : $f(x) = e.e^{\frac{1}{2}(x+1)} = e^{\frac{1}{2}(x+3)}$

b)
$$y' = -\frac{1}{3}y$$
 et $y(Ln8) = 1$

la solution est:

$$f(x) = 1.e^{-\frac{1}{3}(x - \text{Ln8})} = 2e^{-\frac{1}{3}x}$$

c) y' = 2y et f(0) 1

la solution est:

$$f(x) = e^{2x}$$

EXERCICE 2:

1)
$$\begin{cases} f'(x) = a f(x) & \forall x \in IR \\ f(0) = 1 \\ f(x + 10) = 2 f(x) \end{cases}$$

f est la solution de l'équation différentielle :

$$y' = a y et f(0) = 1$$

$$d'où : f(x) = e^{ax}$$

$$f(x + 10) = 2 f(x)$$

$$\Rightarrow e^{a(x+10)} = 2e^{ax}$$

$$\Rightarrow e^{ax} \cdot e^{10a} = 2e^{ax} \Rightarrow e^{10a} = 2$$

$$\Rightarrow$$
 10 a = Ln2 \Rightarrow a = $\frac{1}{10}$ Ln2

D'où
$$f(x) = e^{\frac{x}{10}Ln^2} = \sqrt[10]{2^x}$$

2) f'(x) =
$$\frac{\text{Ln2}}{10} e^{\frac{x}{10} \text{Ln2}} > 0$$

x	- ∞	+ ∞
f '(x)	+	
f (x)		→ + ∞
	0	

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{X \to +\infty} \frac{\ln 2}{10} \frac{e^{X}}{X}$$
$$= +\infty$$

Avec
$$X = \frac{x \text{Ln2}}{10}$$

EXERCICE 3:

1)
$$-a$$
) $y' = 2y - 1$

Les solutions sont les fonctions définies sur IR par : $f(x) = k \cdot e^{2x} + \frac{1}{2}$; $\forall k \in IR$

b)
$$y' = \pi x - 3$$

...
$$f(x) = k \cdot e^{\pi x} + \frac{3}{\pi}$$
 ; $\forall k \in IR$

c)
$$y' = \frac{5}{2} y - \frac{1}{2}$$

...
$$f(x) = k \cdot e^{\frac{5}{2}x} + \frac{1}{5}$$
; $\forall k \in \mathbb{R}$
2) -a) $y' = y + 1$ et $y(2) = 0$
La solution est: $f(x) = e^{x-2} - 1$

La solution est : $f(x) = e^{x-2} - 1$

b)
$$y' = -\frac{1}{2}y + \frac{3}{2}$$
 et $y(0) = 3$

$$f(x) = (3-3)e^{-\frac{1}{2}x} + 3 = 3$$

c) $y' = -3y - \frac{3}{4}$ et $y(-1) = 0$

$$f(x) = \frac{1}{4} e^{-3(x+1)} - \frac{1}{4}$$

EXERCICE 4:

1) f '(t) : vitesse instantanée

f '(t) et (f(t) -25) sont proportionnelles \Rightarrow f'(t) = a [f(t) - 25]; a ϵ IR * La température initiale est 100°c \Rightarrow f(0) = 100

* f(t) prend la valeur 75 pour t = 15 mn

$$\Rightarrow f(15) = 75$$
D'où
$$\begin{cases} f'(t) = a [f(t) - 25] \\ f(0) = 100 \\ f(15) = 75 \end{cases}$$

2) f est solution de l'équation différentielle :

$$y' = ay - 25a$$
 d'où $f(t) = k \cdot e^{at} + 25$; $k \in IR$

* $f(0) = 100 \implies k + 25 = 100 \implies k = 75$ d'où $f(t) = 75e^{at} + 25$

*
$$f(15) = 75 \implies 75e^{15a} + 25 = 75$$

$$\Rightarrow e^{15a} = \frac{2}{3} \Rightarrow 15 \text{ a} = \text{Ln}(\frac{2}{3})$$

$$\implies$$
 $a = \frac{1}{15} Ln(\frac{2}{3})$ d'où

$$f(t) = 75e^{\frac{t}{15}Ln(\frac{2}{3})} + 25$$

3)
$$f(t) - 25 \le 1 \iff e^{\frac{t}{15} Ln(\frac{2}{3})} \le \frac{1}{75}$$

$$\Leftrightarrow \frac{t}{15} \operatorname{Ln}(\frac{2}{3}) \leq -\operatorname{Ln}(75)$$

$$\Leftrightarrow t \ge \frac{-15Ln(75)}{Ln(\frac{2}{3})} \text{ à la calculatrice}$$

$$t \ge \dots$$

1)
$$\begin{cases} f'(t) = a (20 - f(t)) \\ f(5) = 10 \\ f(0) = 0 \end{cases}$$

f est une solution de l'équation différentielle : y = -a y + 20a

et
$$f(5) = 10$$

d'où : $f(t) = (10 - \frac{20a}{a})e^{-a(t-5)} + \frac{20a}{a}$

$$f(t) = -10 e^{-a(t-5)} + 20$$

*
$$f(0) = 0 \implies a = \frac{1}{5} \operatorname{Ln2}$$
 d'où

$$f(t) = -10 e^{-\frac{1}{5} Ln2 (t-5)} + 20$$

$$f(t) = -20 e^{-\frac{t}{5}Ln^2} + 20$$

2) * q(10) = 20 - f(10) = 20
$$e^{-2 \text{ Ln} 2}$$

= $\frac{20}{e^{\text{ Ln} 4}} = \frac{20}{4} = 5$

$$q(10) = 5g$$

*
$$q(30) = 20 - f(30) = \frac{20}{64} = 0.312g$$

*
$$q(60) = 20 - f(60) = \frac{5}{2^{10}} = 0,004g$$

EXERCICE 6:

1)
$$\begin{cases} C'(t) = -0.25 C(t) \\ C(0) = 5 \end{cases}$$

C est une solution de l'équation différentielle : y'(t) = -0.25 y(t)

et
$$C(0) = 5$$

d'où : C(t) = 5. $e^{-0.25 t}$

$$C(t) = 5 e^{\frac{-t}{4}} \text{ alors } C'(t) = \frac{-5}{4} e^{\frac{-t}{4}} < 0$$

x	0 +∞
C'(x)	_
C(x)	5
	0

3)
$$C(t) < 1 \Leftrightarrow e^{\frac{-t}{4}} < \frac{1}{5} \Leftrightarrow \frac{-t}{4} < -Ln5$$

$$\Leftrightarrow$$
 t > 4Ln5

A la calculatrice $... \le t \le ...$

EXERCICE 7:

1)
$$y' = -y$$
 et $f(Ln3) = -2$

$$f(x) = -2 e^{-(x-Ln3)} = -6 e^{-x}$$

2) f'(x) = 6
$$e^{-x}$$

x	0	2Ln3
f '(x)		+
f (x)		→ - ²
	-6	3

EXERCICE 8:

1)
$$U(x) = 2$$
; $U'(x) = 0$

$$U'(x) + 2 U(x) = 4 = (U(x))^{2}$$

D'où U est une solution de l'équation différentielle : $y' + 2y = y^2$

2) – a)
$$U \in (E)$$
 d'où $E \neq \phi$

b) f
$$\epsilon$$
 (E) \Leftrightarrow f'(x) + 2 f(x) = f²(x)

$$\Leftrightarrow \frac{f'(x)}{f^2(x)} + \frac{2}{f(x)} = 1$$

$$\Leftrightarrow -\left(\frac{1}{f}\right)'(x) + 2\left(\frac{1}{f}\right)(x) = 1$$

$$\Leftrightarrow$$
 - g'(x) + 2g(x) = 1

$$\Leftrightarrow$$
 g'(x) = 2g(x) - 1

 \Leftrightarrow g est une solution de l'équation différentielle : y' = 2y - 1

g est une solution de l'équation différentielle : y' = 2y - 1

$$\implies$$
 g(x) = ke^{2x} + $\frac{1}{2}$ et g(x) \neq 0; \forall x \in IR

$$\implies$$
 g(x) = ke^{2x} + $\frac{1}{2}$ avec k \in IR₊

$$\implies$$
 f(x) = $\frac{2}{2ke^{2x} + 1}$ avec $k \in IR_+$

* Réciproquement

$$f(x) = \frac{2}{2ke^{2x} + 1}$$
 ; $k \in IR_+$

f est dérivable sur IR et ne s'annule pas sur IR

$$f'(x) = \frac{-8ke^{2x}}{(2ke^{2x} + 1)^2}$$

$$f'(x) + 2 f(x) = \frac{4}{(2ke^{2x} + 1)^2} = f^2(x)$$

<u>Conclusion</u>: E est l'ensemble des fonctions définies sur IR par :

$$f(x) = \frac{2}{2ke^{2x} + 1}$$
 ; $k \in IR_+$

EXERCICE 9:

1)
$$\begin{cases} y'(t) = k \ y(t) ; & k > 0 \\ y(0) = N \end{cases}$$
d'où $y(t) = N e^{kt}$

2)
$$y(2) = 4y(0)$$

$$\Rightarrow$$
 N $e^{2k} = 4$ N $\Rightarrow e^{2k} = 4$

$$\Rightarrow 2k = 2Ln2 \implies k = Ln2 \text{ d'où}$$

$$y(t) = N e^{tLn2} = N \times 2^{t}$$

$$\text{d'où} \qquad y(3) = 8.N$$

3)
$$y(5) = 6400$$

$$\Rightarrow$$
 N × 2⁵ = 6400 \Rightarrow N = 200

EXERCICE 10:

$$f(x) = e^{-x} \cdot \sin x$$

1) – a)
$$f'(x) = (\cos x - \sin x) e^{-x}$$

 $\cos x - \sin x = r.\cos(x - \varphi)$

Avec
$$\begin{cases} r = \sqrt{2} \\ \cos \varphi = \frac{1}{\sqrt{2}} \\ \sin \varphi = -\frac{1}{\sqrt{2}} \end{cases} \implies \varphi \equiv -\frac{\pi}{4} (2\pi)$$

D'où : f'(x) =
$$[\sqrt{2}.\cos(x + \frac{\pi}{4})].e^{-x}$$

$$f'(x) = \sqrt{2} \cdot e^{-x} \cdot \cos(x + \frac{\pi}{4})$$

x	$0 \frac{\pi}{4}$	$\frac{5\pi}{4}$	2π
$\cos(x + \frac{\pi}{4})$	+ φ	- O	+

$$S_{[0,2\pi]} = [0, \frac{\pi}{4} [\cup] \frac{5\pi}{4}, 2\pi]$$

c) f'(x) =
$$\sqrt{2}.e^{-x}.\cos(x + \frac{\pi}{4})$$

U) 1 (00)	,	, , ,	4
x	$0 \frac{\pi}{4}$	$\frac{5\pi}{4}$	2π
f '(x)	+ Φ	- Ф	+
f (x)	$0^{\frac{\sqrt{2}}{2}}e^{-\frac{\pi}{4}}$	$-\frac{\sqrt{2}}{2}e^{-\frac{5}{2}}$	<u> </u>

$$T_0: y = x$$

 $T_{2\pi}: y = e^{-2\pi}(x - 2\pi)$

2) – a) *
$$(\mathcal{C}_1) \cap (\mathcal{C})$$
?

$$\begin{cases} f(x) = e^{-x} \\ x \in [0, 2\pi] \end{cases} \Leftrightarrow \begin{cases} \sin x = 1 \\ x \in [0, 2\pi] \end{cases}$$

 $\Leftrightarrow x = \frac{\pi}{2} \text{ alors } (\mathcal{C}_1) \cap (\mathcal{C}) \text{ est le point}$ $\text{d'abscisse } \frac{\pi}{2}$ $* (\mathcal{C}_2) \cap (\mathcal{C}) ?$

$$\begin{cases} f(x) = -e^{-x} \\ x \in [0,2\pi] \end{cases} \Leftrightarrow \begin{cases} \sin x = -1 \\ x \in [0,2\pi] \end{cases}$$

$$\Leftrightarrow x = \frac{3\pi}{2}$$

alors $(\mathcal{C}_2) \cap (\mathcal{C})$ est le point d'abscisse $\frac{3\pi}{2}$

b)
$$g(x) = e^{-x} \implies g'(x) = -e^{-x}$$

$$g'(\frac{\pi}{2}) = -e^{-\frac{\pi}{2}}$$
; $f'(\frac{\pi}{2}) = -e^{-\frac{\pi}{2}}$

f $(\frac{\pi}{2}) = g(\frac{\pi}{2}) = e^{-\frac{\pi}{2}}$ d'où (\mathcal{C}_f) et (\mathcal{C}_1) ont la même tangente en $A(\frac{\pi}{2}, e^{-\frac{\pi}{2}})$ * de même pour (\mathcal{C}_f) et (\mathcal{C}_1)

$$3) - a) \quad f(x) = e^{-x} \cdot \sin x$$

$$f'(x) = (\cos x - \sin x) e^{-x}$$

f
$$''(x) = -2 e^{-x} .\cos x$$

vérifier que : f $''(x) + 2$ f $'(x) + 2$ f $(x) = 0$
b) Rq : f $(x) \ge 0$; $\forall x \in [0,\pi]$

$$\mathcal{A} = \int_0^\pi f(x) dx$$

$$\mathcal{A} = \int_0^{\pi} \left(-\frac{1}{2}f''(x) - f'(x)\right) dx$$

$$\mathcal{A} = \left[-\frac{1}{2} f'(x) - f(x) \right]_0^{\pi} = \frac{1}{2} (1 + e^{-\pi}) \text{ u.a}$$

$$\mathcal{A} = 20 \left[\frac{1}{2} (1 + e^{-\pi}) \right] \text{ cm}^2$$

$$\mathcal{A} = 10 [(1 + e^{-\pi})] \text{ cm}^2$$

EXERCICE 11:

(E): $y' + 2y = x^2$

1) (E_0) : y' = -2y

Les solutions de (E_0) sont les fonctions définies sur IR par : $h(x) = ke^{-2x}$; $k \in IR$ 2) $g(x) = ax^2 + bx + c$

$$g'(x) = 2ax + b$$

$$g'(x) + 2g(x) = x^2$$

$$\Leftrightarrow 2ax + b + 2ax^2 + 2bx + 2c = x^2$$

$$\Leftrightarrow$$
 $(2a - 1) x^2 + 2(a + b) x + (b + 2c) = 0$

$$\Leftrightarrow \begin{cases} 2a - 1 = 0 \\ 2(a + b) = 0 \\ b + 2c = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{2} \\ b = -\frac{1}{2} \\ c = \frac{1}{4} \end{cases}$$

d'où $g(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4}$ est la solution de (E)

3) f solution de (E)

$$\Leftrightarrow$$
 f'(x) + 2f(x) = x^2

$$\Leftrightarrow$$
 f'(x) + 2f(x) = g'(x) + 2g(x)

$$\Leftrightarrow (f - g)'(x) + 2(f - g)(x) = 0$$

 \Leftrightarrow (f – g) est une solution de (E₀)

4) f solution de (E)

 \Leftrightarrow (f – g) est une solution de (E₀)

$$\Leftrightarrow$$
 f(x) - g(x) = ke^{-2x} ; k \in IR

 \Leftrightarrow f(x) = g(x) + ke^{-2x} ; k \in IR Les solutions de (E) sont les fonctions définies sur IR par :

$$f(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4} + ke^{-2x} \quad ; k \in \mathbb{R}$$

EXERCICE 12:

(E): $y' - y = 4\cos x$

1) $(E_0): v' = v$

Les solutions de (E_0) sont les fonctions définies sur IR par : $h(x) = k.e^x$ $: k \in \mathbb{R}$

2) $g(x) = a\cos x + b\sin x$

$$g'(x) = -a\sin x + b\cos x$$

g est une solution de (E)

$$\Leftrightarrow$$
 g'(x) - g(x) = $4\cos x$

$$\Leftrightarrow$$
 (a - b + 4).cos x + (a + b).sin x = 0

$$\Leftrightarrow \begin{cases} a - b + 4 = 0 \\ a + b = 0 \end{cases} \Leftrightarrow \begin{cases} a = -2 \\ b = 2 \end{cases}$$

d'où : $g(x) = -2\cos x + 2\sin x$ est une solution de (E)

- 3) f est une solution de (E)
- \Leftrightarrow f'(x) f(x) = 4cos x

$$\Leftrightarrow$$
 f'(x) - f(x) = g'(x) - g(x)

$$\Leftrightarrow$$
 $(f-g)'(x) - (f-g)(x) = 0$

- \Leftrightarrow (f g) est une solution de (E₀)
- 4) f est une solution de (E)
- \Leftrightarrow (f g) est une solution de (E₀)
- \Leftrightarrow f(x) g(x) = k.e^x ; k \in \text{IR}

$$\Leftrightarrow$$
 f(x) = g(x) + k.e^x ; k \in IR

 \Leftrightarrow f(x) = -2 cos x + 2 sin x + k.e^x $; k \in IR$

EXERCICE 13: L.y' + r.y = E

1)
$$\begin{cases} (0,2)y' + 100.y = 10 \\ y(0) = 0 \end{cases}$$

$$\Leftrightarrow \int y' = -500y + 50$$
$$y(0) = 0$$

d'où :
$$i(t) = (\frac{-50}{500})e^{-500t} + \frac{50}{500}$$

$$i(t) = (\frac{-1}{10})e^{-500t} + \frac{1}{10}$$

2) *
$$\lim_{t \to +\infty} i(t) = \frac{1}{10} = 0.1$$

interprétation: La bobine s'oppose à L'établissement du courant dans le circuit Et ce conformément à la loi de LORENS Ouant le régime permanent s'installe i devient constant : $i=I_{permanant}$ (=0.1 ici)

EXERCICE 14:

1)
$$\begin{cases} y'' + 2y = 0 \\ y(0) = 1 \\ y'(0) = \sqrt{2} \end{cases}$$

la solution est la fonction définie sur IR par : $f(x) = \sin(\sqrt{2}x) + \cos(\sqrt{2}x)$

2)
$$\begin{cases} y'' + 16y = 0 \\ y(\pi) = -1 \\ y'(\pi) = -2 \end{cases}$$
 w = 4

$$f(x) = A\sin(4x) + B\cos(4x);$$

(A,B) \in IR²

$$f'(x) = 4A\cos(4x) - 4B\sin(4x)$$

$$\begin{cases} f(\pi) = -1 \\ f'(\pi) = -2 \end{cases} \Leftrightarrow \begin{cases} B = -1 \\ 4A = -2 \end{cases}$$

$$\Leftrightarrow \begin{cases} B = -1 \\ A = \frac{-1}{2} \end{cases}$$

D'où la solution de est la fonction définie sur IR par : $f(x) = \frac{-1}{2}\sin(4x) - \cos(4x)$ 3) même travail que pour 2)

EXERCICE 15:

(E): y'' = 2 y'

1) on pose 3 = y'

L'équation devient : 3' = 23

Les solutions sont : $h(x) = ae^{2x}$; $a \in IR$ D'où les solutions de (E) sont les fonctions définies sur IR par :

 $f(x) = \frac{a^2}{2}e^{2x} + b$; $(a,b) \in \mathbb{R}^2$

2)
$$f(x) = \frac{a}{2}e^{2x} + b$$

$$f'(x) = ae^{2x}$$

$$\begin{cases} f(0) = 2 & \Leftrightarrow \begin{cases} \frac{a}{2} + b = 2 \\ f'(0) = 1 \end{cases} & \text{and } 1$$

$$\Leftrightarrow \qquad \begin{cases} b = \frac{3}{2} \\ a = 1 \end{cases}$$

d'où:
$$f(x) = \frac{1}{2}(e^{2x} + 3)$$

EXERCICE 16:

(E): y'' = -3 y' + 1

1) on pose 3 = y'

L'équation devient : (E') : 3' = 33 + 1

Les solutions de (E') sont :

$$h(x) = ae^{-3x} + \frac{1}{3}$$
; $a \in IR$

D'où les solutions de (E) sont les fonctions définies sur IR par :

$$f(x) = -\frac{a}{3}e^{-3x} + \frac{1}{3}x + b$$
; $(a,b) \in \mathbb{R}^2$

2)
$$f(x) = -\frac{a}{3}e^{-3x} + \frac{1}{3}x + b$$

$$f'(x) = a e^{-3x} + \frac{1}{3}$$

$$\begin{cases} f(0) = 0 & \Leftrightarrow \begin{cases} -\frac{a}{3} + b = 0 \\ f'(0) = 0 \end{cases}$$

$$\Leftrightarrow \qquad \begin{cases} b = \frac{-1}{9} \\ a = -\frac{1}{3} \end{cases}$$

d'où:
$$f(x) = \frac{1}{9}e^{-3x} + \frac{1}{3}x - \frac{1}{9}$$

EXERCICE 17:

1)
$$y'' + 16y = 0$$

les solutions sont les fonctions définies sur IR par :

 $f(x) = A\sin(4x) + B\cos(4x);$

 $(A,B) \in IR^2$

 $2) f(x) = \sin(4x) + \cos(4x)$

 $3) f(t) = \cos(4t) + \sin(4t)$

$$=\sqrt{2}.\cos(4t-\varphi)$$

Avec $\begin{cases} \cos \varphi = \frac{1}{\sqrt{2}} \\ \sin \varphi = \frac{1}{\sqrt{2}} \end{cases} \qquad \varphi = \frac{\pi}{4} (2\pi)$

D'où: $f(t) = \sqrt{2} \cdot \cos(4t - \frac{\pi}{4})$ (a = 4; $b = \frac{\pi}{4}$)

4

 $\bar{f} = \frac{8}{\pi} \int_0^{\frac{\pi}{8}} f(t) dt = \frac{8}{\pi} \left[\frac{\sqrt{2}}{4} \cdot \sin(4t - \frac{\pi}{4}) \right]_0^{\frac{\pi}{8}}$ $= \frac{8}{\pi} \left(\frac{1}{4} + \frac{1}{4} \right) \qquad ; \qquad \bar{f} = \frac{4}{\pi}$

EXERCICE 18:

1)
$$y'' + y' = 0 \Leftrightarrow y'' = -y'$$

on pose 3 = y'

L'équation devient : 3' = -3

 $\mathfrak{z} = a e^{-x}$; $a \in \mathbb{R}$

D'où: $y = -a e^{-x} + b$; $(a,b) \in \mathbb{R}^2$

les solutions sont les fonctions définies sur IR par :

 $f(x) = -a e^{-x} + b$; $(a,b) \in \mathbb{R}^2$

2) les solutions de l'équation :

y''' + y'' = 0 sont les fonctions définies sur IR par :

 $g(x) = a e^{-x} + b x + c$; $(a,b,c) \in \mathbb{R}^3$

EXERCICE 19:

1)
$$\cos^{4}(x) = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{4}$$

$$= \frac{1}{16} \cdot \left[e^{4ix} + 4e^{i3x} \cdot e^{-ix} + 6e^{i2x}e^{-2ix} + 4e^{ix}e^{-3ix} + e^{-4ix}\right]$$

$$= \frac{1}{16} \left[\left(e^{4ix} + e^{-4ix}\right) + 4\left(e^{2ix} + e^{-2ix}\right) + 6\right]$$

$$= \frac{1}{16} \left[2\cos(4x) + 8\cos(2x) + 6\right]$$

$$\cos^{4}(x) = \frac{1}{8}\cos(4x) + \frac{1}{2}\cos(2x) + \frac{3}{8}$$

g est une solution de $(E) \Leftrightarrow$

$$g''(x)+g(x)=\cos^4(x)\Leftrightarrow$$

 $-16a\cos(4x)-4b\cos(2x)+a\cos(4x)+b\cos(2x)+c$

$$=\cos(4x)$$
 \Leftrightarrow

 $-15a\cos(4x)-3b\cos(2x)+c=$

$$\frac{1}{8}\cos(4x) + \frac{1}{2}\cos(2x) + \frac{3}{8} \Leftrightarrow$$

$$\begin{cases}
-15a = \frac{1}{8} & \Leftrightarrow \\
-3b = \frac{1}{2} & \Leftrightarrow \\
c = \frac{3}{8} & c = \frac{3}{8}
\end{cases}$$

D'où g(x)=
$$-\frac{1}{120}\cos(4x) - \frac{1}{6}\cos(2x) + \frac{3}{8}$$

3) f solution de (E)
$$\Leftrightarrow$$
f''(x)+f(x)=cos⁴(x)
 \Leftrightarrow f''(x)+f(x)=g''(x)+g(x)
 \Leftrightarrow (f-g)''(x)+(f-g)(x)=0
 \Leftrightarrow f-g est une solution de l'éq :y''+y=0

4) *f solution de (E)
$$\Leftrightarrow$$
f-g solution de y''+y=0
 \Leftrightarrow f(x)-g(x)=A.sin(x)+B.cos(x) AetB réels
 \Leftrightarrow f(x)= A.sin(x)+B.cos(x)+g(x)

$$\Leftrightarrow f(x) = A.\sin(x) + B.\cos(x) + \frac{1}{120}\cos(4x)$$

$$-\frac{1}{6}\cos(2x) + \frac{3}{8}$$
* f solution de (E) et f(0)=1 et f'(0)=0
$$f'(x) = A.\cos(x) - B.\sin(x) + \frac{1}{30}\sin(4x) + \frac{1}{3}\sin(2x)$$

$$\begin{cases} f(0) = 1 \\ f'(0) = 0 \end{cases} \Leftrightarrow \begin{cases} B - \frac{1}{120} - \frac{1}{6} + \frac{3}{8} = 1 \\ A = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} A = 0 \\ B = \frac{4}{5} \end{cases}$$

D'où
$$f(x) = \frac{4}{5}\cos(x) - \frac{1}{120}\cos(4x) - \frac{1}{6}\cos(2x) + \frac{3}{8}$$

EXERCICE 20:
(E):
$$4 y'' + \pi^2 y = 0$$

1) (E):
$$y'' + (\frac{\pi}{2})^2 y = 0$$

Les solutions sont :

$$f(x) = A\sin(\frac{\pi}{2}x) + B\cos(\frac{\pi}{2}x);$$

 $(A.B) \in \mathbb{R}^2$

2)
$$\begin{cases} N(\frac{1}{2}, \frac{\sqrt{2}}{2}) \in (\mathcal{C}_g) \\ T_N /\!\!/ (o, \vec{i}) \end{cases} \Leftrightarrow \begin{cases} g(\frac{1}{2}) = \frac{\sqrt{2}}{2} \\ g'(\frac{1}{2}) = 0 \end{cases}$$

$$g(x) = A\sin(\frac{\pi}{2}x) + B\cos(\frac{\pi}{2}x)$$

$$g'(x) = A \frac{\pi}{2} \cos(\frac{\pi}{2}x) - B \frac{\pi}{2} \sin(\frac{\pi}{2}x)$$

$$\begin{cases} g(\frac{1}{2}) = \frac{\sqrt{2}}{2} \\ g'(\frac{1}{2}) = 0 \end{cases} \iff \begin{cases} A\frac{\sqrt{2}}{2} + B\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \\ A\frac{\pi\sqrt{2}}{4} - B\frac{\pi\sqrt{2}}{4} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} A + B = 1 \\ A - B = 0 \end{cases} \Leftrightarrow A = B = \frac{1}{2}$$

D'où:
$$g(x) = \frac{1}{2}\sin(\frac{\pi}{2}x) + \frac{1}{2}\cos(\frac{\pi}{2}x)$$

3)
$$g(x) = \frac{1}{2} \left[\sin(\frac{\pi}{2}x) + \cos(\frac{\pi}{2}x) \right]$$

$$g(x) = \frac{1}{2} \left[\sqrt{2} \cdot \cos(\frac{\pi}{2}x - \varphi) \right]$$

Avec
$$\begin{cases} \cos \varphi = \frac{1}{\sqrt{2}} \\ \sin \varphi = \frac{1}{\sqrt{2}} \end{cases} \qquad \varphi = \frac{\pi}{4} (2\pi)$$

D'où:
$$g(x) = \frac{\sqrt{2}}{2} \cos(\frac{\pi}{2}x - \frac{\pi}{4})$$

EXERCICE 21:

R.
$$q'(t) + \frac{1}{c}q(t) = u$$

$$q(0) = 0$$

1) (E): R.
$$y' + \frac{1}{2}y = u$$

2) (E):
$$y' = -\frac{1}{Rc}y + \frac{u}{R}$$

$$q(t) = k.e^{-\frac{t}{Rc}} + \frac{\frac{u}{R}}{\frac{1}{Rc}} \qquad ; k \in IR$$

$$q(t) = k.e^{-\frac{t}{Rc}} + uc ;$$

$$q(0) = 0 \implies k + cu = 0 \implies k = -cu$$

$$q(t) = -cu.e^{-\frac{t}{Rc}} + cu$$

$$q(t) = cu - cu.e^{-\frac{t}{Rc}}$$

$$i(t) = q'(t) = \frac{u}{p} \cdot e^{-\frac{t}{Rc}}$$

EXERCICE 22:

(E): $f(x) = \int_0^x f(t)dt + x$

1) f est continue sur IR et $0 \in IR$

D'où la fonction : $x \mapsto \int_0^x f(t)dt$ est dérivable sur IR et sa dérivée est la function : $x \mapsto f(x)$

D'où la fonction : $f(x) = \int_0^x f(t)dt + x$ est dérivable sur IR comme étant somme de deux fonctions dérivables

(2) - a) f solutions de (E)

$$\implies$$
 f(x) = \int_0^x f(t)dt + x

$$\implies$$
 f'(x) = f(x) = 1

⇒ f est solution de l'équation :

$$(E'): y' = y + 1$$

b) réciproquement :

g est solution de (E´)
$$\implies$$
 g´(t) = g(t) + 1
 $\implies \int_0^x g'(t)dt = \int_0^x g(t)dt + \int_0^x dt$

$$\Rightarrow [g(t)]_0^x = \int_0^x g(t)dt + x$$

$$\Rightarrow$$
 g(x) - g(0) = $\int_0^x g(t)dt + x$

g est solution de(E) lorsque g(0) = 0

3) les solutions de (E) sont celles de (E') vérifiant f(0) = 0

d'où : $f(x) = e^x - 1$

est la seule solution de (E)

EXERCICE 23:

 $Q'(t) = -\alpha Q(t)$

1) – a) Q est solution de l'équation différentielle : $y' = -\alpha y$ et Q(0) = 1,8 D'où :

Q(t) = 1,8
$$e^{-\alpha t}$$

b) Q(1) = 1,8 $-\frac{30}{100}$ (1,8)

$$Q(1) = 1,26$$

$$\Rightarrow 1,8 e^{-\alpha t} = 1,26$$

$$\Rightarrow e^{-\alpha t} = 0,7$$

c) $f(x) = e^{-x}$; $f'(x) = -e^{-x} < 0$ f est continue et strictement décroissante sur IR, elle réalise donc une bijection de IR sur IR

Comme $(0,7) \in IR$ alors il existe un unique réel α tel que $f(\alpha) = 0,7 \Leftrightarrow e^{-\alpha} = 0,7$

*
$$g(x) = e^{-x} - 0.7$$

 $g(0) \times g(1) < 0 \implies 0 < \alpha < 1$

calculatrice \Rightarrow 0,3566< α < 0,3567

2) $\alpha \approx 0.35665$

$$O(t) = 1.8 e^{-0.35665t}$$

Q'(t)=-0,35665x1,8e^{-0,35665t} <0 \Rightarrow Q est

décroissante et $\lim_{t \to +\infty} Q(t) = 0$

3) - a)
$$R_1 = 1.8 + Q(1)$$

= $1.8 + (1.8).e^{-\alpha} = 3.06$

$$R_1 = 1.8 + (1.8) \times (0.7)$$

b)
$$R_2 = 1.8 + R_1.e^{-\alpha}$$

 $R_2 = (1.8) + (0.7) R_1 = 3.942$

c)
$$R_{n+1} = 1.8 + (0.7) R_n$$

d) Démonstration par récurrence :

* pour n = 0

$$R_0 = (1,8) = 6 \times (0,3) = 6[1 - (0,7)^1]$$

(Vrai)

* supposons que : $R_n = 6[1 - (0.7)^{n+1}]$

Montrons que : $R_{n+1} = 6[1 - (0.7)^{n+2}]$

$$R_{n+1} = 1.8 + (0.7) R_n$$

$$R_{n+1} = 1.8 + 6.(0.7) [1 - (0.7)^{n+1}]$$

$$R_{n+1} = 1,8 + 6.(0,7) [1 - (0,7)]$$

$$= 1,8 + 6[(0,7) - (0,7)^{n+2}]$$

$$= 6[0,3 + (0,7) - (0,7)^{n+2}]$$

$$= 6[1 - (0,7)^{n+2}]$$

* conclusion

$$R_n = 6[1 - (0.7)^{n+1}] \quad \forall n \in IN$$

e)
$$\lim_{x \to +\infty} (0.7)^{n+1} = 0$$

d'où:

$$\lim_{x \to +\infty} Rn = 6$$

EXERCICE 24:

(I): y' = 2y

(II): y' = y

1) * les solutions de l'équation (I) sont les fonctions définies sur IR par :

$$g(x) = k \cdot e^{2x}$$
 ; $\forall k \in \mathbb{R}$

* les solutions de l'équation (II) sont les fonctions définies sur IR par :

$$h(x) = k' \cdot e^x$$
 ; $\forall k' \in IR$

2)
$$f(x) = f_1(x) - f_2(x)$$

a)
$$f(0) = 1 \text{ car } A(0,1) \in (C_f)$$

f'(0) = 3 (coefficient directeur de T)

b) $f(x) = k.e^{2x} - k'.e^{x}$

$$f'(x) = 2k.e^{2x} - k'.e^{x}$$

$$\begin{cases} f(0) = 1 \\ f'(0) = 3 \end{cases} \Leftrightarrow \begin{cases} k - k' = 1 \\ 2k - k' = 3 \end{cases} \Leftrightarrow \begin{cases} k = 2 \\ k' = 1 \end{cases}$$

d'où
$$f(x) = 2e^{2x} - e^x$$

$$f_1(x) = 2e^{2x}$$
 ; $f_2(x) = e^x$

c)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (2e^{2x} - e^x) = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^x (2e^x - 1) = +\infty$$

d)
$$f(x) = 0 \Leftrightarrow e^x (2e^x - 1) = 0$$

$$\Leftrightarrow 2e^x - 1 = 0 \quad \text{car} \quad e^x \neq 0$$

$$\Leftrightarrow e^x = \frac{1}{2} \Leftrightarrow x = - \text{Ln}2$$

 $(C_f) \cap (0,\vec{t})$ est le point d'abscisse (- Ln2)

t < -Ln2

a)
$$\mathcal{A}(t) = -\int_{t}^{-Ln2} f(x) dx = \int_{-Ln2}^{t} f(x) dx$$

= $[e^{2x} - e^{x}]_{-Ln2}^{t}$

$$\mathcal{A}(t) = (e^{2t} - e^t + \frac{1}{4})$$
 u.a

b) *
$$\lim_{t \to -\infty} \mathcal{A}(t) = \frac{1}{4}$$

*
$$\int_{-\text{Ln}2}^{0} f(t)dt = [e^{2t} - e^{t}]_{-\text{Ln}2}^{0} = \frac{1}{4}$$

D'où:
$$\lim_{x \to -\infty} \mathcal{A}(t) = \int_{-\text{Ln}2}^{0} f(t) dt$$

* B = $\int_{-\text{Ln}2}^{0} f(t)dt$: représente l'aire de la partie du plan limitée par la courbe (C_f), l'axe des abscisses et les droites d'équations x = -Ln2 et x = 0

lorsque t
$$\; \to \;$$
 - $\otimes \;$, $\; \mathcal{A}(t) \; \to \; B$

EXERCICE 25:

1) - a) (E):
$$y' = -\frac{3}{4}y$$

Les solutions sont les fonctions définies sur

IR par : $h(x) = k \cdot e^{-\frac{3}{4}x}$; $k \in IR$

b)
$$f(x) = k \cdot e^{-\frac{3}{4}x}$$
; $k \in IR$

f'(x) =
$$-\frac{3}{4}k.e^{-\frac{3}{4}x}$$
; $k \in IR$
f'(0) = $-6 \implies -\frac{3}{4}k = -6 \implies k = 8$
d'où:

$$f(x) = 8 e^{-\frac{3}{4}x}$$

2) - a)
$$g(x) = 8 e^{-\frac{3}{4}x}$$
; $x \in [0,4]$
 $g'(x) = -6 e^{-\frac{3}{4}x}$

x	0	4
g'(x)		-
g (x)	8 —	$\frac{8}{e^3}$

b)
$$V = \pi . \int_0^4 g^2(x) dx$$

$$V = \pi. \int_0^4 64. e^{-\frac{3}{2}x} dx = 64.\pi \left[-\frac{2}{3} e^{-\frac{3}{2}x} \right]_0^4$$

$$V = \frac{128}{3} (1 - \frac{1}{e^6}) \pi \qquad (u.v)$$

<u>Remarque</u>: lorsque : $\|\vec{i}\| = \|\vec{j}\| = 1$ cm $V = \frac{128}{3} (1 - \frac{1}{e^6})\pi$ cm³

$$V = \frac{128}{3} (1 - \frac{1}{e^6}) \pi$$
 cm³

EXERCICE 26:

m(0) = 300

(E):
$$y' = -\frac{1}{5}y$$

(1) - a) les solutions de (E) sont les fonctions définies sur IR par : $f(x) = k \cdot e^{-\frac{1}{5}x}$; $k \in IR$

b)
$$m(t) = k.e^{-\frac{t}{5}}$$
; $k \in IR$

$$m(0) = 300 \implies k = 300$$

d'où m(t) = 300
$$e^{-\frac{t}{5}}$$
 = 300 $e^{-0.2 t}$

2)
$$m(t_0) = 150 \iff 300 e^{-\frac{t_0}{5}} = 150$$

$$\Leftrightarrow e^{-\frac{t_0}{5}} = \frac{1}{2} \Leftrightarrow -\frac{t_0}{5} = -\text{Ln}2$$

$$\Leftrightarrow t_0 = 5 \text{ Ln} = 2$$

3) m(t)
$$\leq 10^{-2} \iff e^{-\frac{t}{5}} \leq \frac{1}{30000}$$

$$\Leftrightarrow$$
 $-\frac{t}{5} \le - \operatorname{Ln}(30000) \Leftrightarrow t \ge 5\operatorname{Ln}(30000)$

EXERCICE 27:

 $g(x) = \cos x - \sin x$

1)
$$g'(x) = -\sin x - \cos x$$
$$= -\sin(\pi - x) + \cos(\pi - x)$$
$$= \cos(\pi - x) - \sin(\pi - x)$$
$$= g(\pi - x)$$

2) f $(x) = f(\pi - x)$

a) * la fonction : $x \mapsto \pi - x$ est dérivable sur IR, comme f est dérivable sur IR, la fonction: $x \mapsto f(\pi - x)$ est dérivable sur IR par suite f 'est dérivable sur IR d'où f est deux fois dérivable sur IR

*
$$f'(x) = f(\pi - x) \implies f''(x) = -f'(\pi - x)$$

$$\implies$$
 f $''(x) = -$ f $[\pi - (\pi - x)]$

$$\implies$$
 f $\tilde{}(x) = -f(x)$

$$\Rightarrow$$
 f''(x) + f(x) = 0

D'où f est solution de l'équation :y'' + y = 0

b)
$$f(x) = A \sin x + B \cos x$$

 $(A,B) \in \mathbb{R}^2$

EXERCICE 28:

Partie A

CMS

(E):
$$y' - 2y = -\frac{2}{1 + e^{-2x}}$$

1) la solution de l'équation : y' = 2yqui prend la valeur 1 en 0 est $h(x) = e^{2x}$

2)
$$f(0) = Ln2$$

$$f(x) = e^{2x}$$
. $g(x)$

a)
$$f(0) = e^0$$
. $g(0) \implies g(0) = f(0) = Ln2$

b) f'(x) =
$$2e^{2x}$$
. g(x) + e^{2x} . g'(x)

$$f'(x) = e^{2x} \cdot [2g(x) + g'(x)]$$

c) f est solution de (E)

$$\Leftrightarrow f'(x) - 2 f(x) = \frac{-2}{1 + e^{-2x}}$$

$$\Leftrightarrow f'(x) - 2 f(x) = \frac{-2}{1 + e^{-2x}}$$

$$\Leftrightarrow 2e^{2x} \cdot g(x) + e^{2x} \cdot g'(x) - 2e^{2x} \cdot g(x)$$

= $\frac{-2}{1 + e^{-2x}}$

$$\Leftrightarrow e^{2x}. g'(x) = \frac{-2}{1+e^{-2x}}$$

$$\Leftrightarrow g'(x) = \frac{-2e^{-2x}}{1+e^{-2x}}$$

$$\Leftrightarrow$$
 g(x) = $\text{Ln}(1 + e^{-2x}) + k$; k \in IR

$$g(0) = Ln2 \implies k = 0$$

$$d'où : g(x) = Ln(1 + e^{-2x})$$

et f (x) =
$$e^{2x}$$
 Ln(1 + e^{-2x})

Partie B
f(x) =
$$e^{2x}$$
 Ln(1 + e^{-2x})

1) h (x) = Ln(1 +
$$e^{-2x}$$
) - $\frac{1}{e^{2x} + 1}$

a)
$$\lim_{x \to +\infty} h(x)$$

a)
$$\lim_{x \to +\infty} h(x)$$

= $\lim_{x \to +\infty} \text{Ln}(1 + e^{-2x}) - \underbrace{\frac{1}{e^{2x} + 1}}$

$$= Ln 1 = 0$$

b) h'(x) =
$$\frac{-2}{(e^{2x}+1)^2}$$
 < 0

h est strictement décroissante sur IR

c)
$$\lim_{x \to -\infty} h(x) = +\infty$$

h est strictement décroissante sur IR d'où : $h(IR) = \lim_{x \to \infty} h(x)$, $\lim_{x \to \infty} h(x)$ $= 10. + \infty$

d'où: h(x) > 0; $\forall x \in IR$

2)
$$f'(x) = 2e^{2x} h(x)$$

D'où f 'et h sont de même signe.

3) *
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{Ln(1+e^{-2x})}{e^{-2x}}$$

On pose:
$$X = e^{-2x}$$
 alors $\lim_{X \to 0} \frac{Ln(1+X)}{X} = 1$

*
$$f(x) = e^{2x}$$
. $Ln[e^{-2x}(1 + e^{2x})]$
= e^{2x} . $[Lne^{-2x} + Ln(1 + e^{2x})]$
= e^{2x} . $[-2x + Ln(1 + e^{2x})]$

$$\lim_{x \to -\infty} f(x) = \\
= \lim_{x \to -\infty} (-2xe^{2x} + e^{2x}Ln(1 + e^{2x})) = 0$$

4)
$$f'(x) = 2e^{2x} h(x) > 0$$

x	-∞	+∞
f '(x)	+	
f (x)		<u></u> 1
	0	

5)
$$T: y = f'(0)(x-0) + f(0)$$

T:
$$y = (2Ln2 - 1)x + Ln2$$

Partie C

1)
$$u(x) = \frac{1}{1+e^{-2x}} = \frac{e^{2x}}{1+e^{2x}}$$

Une primitive de u sur IR est:

$$U(x) = \frac{1}{2} Ln(1 + e^{2x})$$

2)
$$\mathcal{A} = \int_{-1}^{0} f(x) dx$$

= $\int_{-1}^{0} e^{2x} Ln(1 + e^{-2x}) dx$

$$e^{2x} \xrightarrow{P} \rightarrow \frac{1}{2}e^{2x}$$

$$Ln(1+e^{-2x}) \xrightarrow{d} \xrightarrow{-2e^{-2x}}$$

$$\mathcal{A} = \left[\frac{1}{2} e^{2x} Ln(1 + e^{-2x}) \right]_{-1}^{0} + \int_{-1}^{0} \frac{1}{1 + e^{-2x}} dx$$

$$= \frac{Ln2}{2} - \frac{1}{2e^{2}} Ln(1 + e^{2}) + \left[\frac{1}{2} Ln(1 + e^{2x}) \right]_{-1}^{0}$$

$$= Ln2 - \frac{1}{2e^{2}} Ln(1 + e^{2}) - \frac{1}{2} Ln(1 + e^{-2})$$

$$\mathcal{A} = 25[\text{Ln}2 - \frac{1}{2e^2}Ln(1+e^2) - \frac{1}{2}Ln(1+e^{-2})]$$

 $A = \dots$ calculatrice

$$\label{eq:partie_D} \begin{cases} \mathbf{Partie} \ \mathbf{D} \\ \mathbf{U}_0 = \mathbf{0} \\ \mathbf{U}_{n+1} = \mathbf{f}(\mathbf{U}_n) \end{cases}$$

1) f est continue et strictement croissante sur [0,1] d'où:

$$f([0,1]) = [f(0),f(1)]$$

= $[Ln2, e^{2}Ln(1+e^{-2})]$

Ln2 ≥ 0 et $f(1) \leq 1$ d'où: $f([0,1]) \subset [0,1]$

* Démonstration par récurrence

*
$$U_0 = 0 \in [0,1]$$
 (vrai)

* supposons que : $U_n \in [0,1]$ montrons que : $U_{n+1} \in [0,1]$ $U_n \in [0,1] \implies f(U_n) \in f([0,1])$ \Rightarrow f(U_n) \in [0,1] \Rightarrow $U_{n+1} \in [0,1]$

Car $f([0,1]) \subset [0,1]$

Conclusion: $U_n \in [0,1]$; $\forall n \in IN$

2) *
$$U_0 = 0$$
 et $U_1 = f(U_0) = Ln2$
 $U_0 \le U_1$ (vrai)

* supposons que : $U_n \le U_{n+1}$ montrons que : $U_{n+1} \le U_{n+2}$

 $U_n \le U_{n+1} \implies f(U_n) \le f(U_{n+1})$ car f est croissante

 $\Longrightarrow U_{n+1} \leq U_{n+2}$

Conclusion:

(U_n) est croissante

* (U_n) est croissante et majorée par 1 donc elle converge vers un réel α

3)
$$U_{n+1} = f(U_n)$$
 ; $U_n \in [0,1]$

f est continue sur [0,1] d'où : $\alpha = f(\alpha)$ $U_n \in [0,1] \implies \alpha \in [0,1]$

$$f(0) \neq 0$$
 et $f(1) \neq 1 \Longrightarrow \alpha \in [0,1[$

4)
$$\Delta$$
: $y = x$

$$(C_f) \cap \Delta = \{ A(\alpha, \alpha) \} \quad ; \quad \alpha \approx 0.8 \quad (gr^t)$$

EXERCICE 29:

 $\theta_0 = 30^{\circ}$ C

$$\theta'(t) = k[T - \theta(t)]$$

$$k = 0.1$$
 ; $\theta(0) = 30$

1) θ vérifie l'équation différentielle :

$$y' = (0,1) [T - y]$$
 et $\theta(0) = 30$

T = 100

a) (E):
$$y' = (0,1) [100 - y]$$

(E):
$$y' = -(0,1) \cdot y + 10$$
 et $\theta(0) = 30$

D'où:

$$\theta(t) = (30 - \frac{10}{0.1})e^{-0.1t} + \frac{10}{0.1}$$

$$\theta(t) = -70 e^{-0.1t} + 100$$

b)
$$\lim_{x \to +\infty} \theta(t) = 100$$

Interprétation :

Lorsque le corps reste beaucoup de temps sa température sera 100°C

3)

$$\theta(t) = -70 e^{-0.1t} + 100$$

$$\theta'(t) = 7 e^{-0.1t} > 0$$

t	0 +∞
$\theta'(t)$	+
$\theta(t)$	100
	30

- b) T = 30 $\theta(t) = 30$ constante
 - c) T = -10

$$\theta(t) = (30 + 10)e^{-0.1t} - 10$$

$$\theta(t) = 40 e^{-0.1t} + \frac{10}{0.1}$$

$$\theta'(t) = -4 e^{-0.1t} < 0$$

t	0	+∞
$\theta'(t)$	-	
$\theta(t)$	30	10
		- 10

EXERCICE 30:

$$\theta(0) = 0$$

$$\theta'(t) + (0,1)\theta(t) = 2$$

1) θ est une solution de l'équation différentielle : y' = -(0,1).y + 2 et $\theta(0) = 0$ D'où:

$$\theta(t) = -20 e^{-0.1t} + 20$$

2) - a)
$$\theta(10) = (20 - \frac{20}{e})$$
 °C
 $\theta(60) = (20 - \frac{20}{e})$ °C

$$\lim_{t \to +\infty} \theta(t) = 20$$

 $\lim_{x \to +\infty} \theta(t) = 20$ Pour t assez grand , la température du conducteur tend vers 20°C

EXERCICE 31:

Partie A

$$f(x) = \frac{3e^{x/5}}{e^{x/5} + 2}$$

$$f'(x) = \frac{\frac{6}{5}e^{x/5}}{(e^{x/5} + 2)^2} > 0$$

$$\lim_{x \to -\infty} f(x) = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3}{1 + e^{x/3}} = 3$$

x	- ∞	+∞
f '(x)	+	
f (x)		→ 3
	0 —	

Les droites d'équations respectives :

Y = 0 et y = 3 sont des assymptôtes à (C)

2) T: y = f'(0).(x - 0) + f(0)
T: y =
$$\frac{2}{15}$$
 x + 1

$$T: y = \frac{2}{15} x + 1$$

4) – a)
$$F(x) = 15.\text{Ln}(2 + e^{\frac{x}{5}}) + k$$
; $k \in IR$

$$F(0) = 0 \implies k = -15Ln3$$

D'où :
$$F(x) = 15.\text{Ln}(2 + e^{\frac{x}{5}}) - 15\text{Ln}3$$

$$F(x) = 15.Ln \left(\frac{2 + e^{x/5}}{3}\right)$$

b)
$$\mathcal{A} = \int_0^5 f(x) dx = [F(x)]_0^5$$

= $\frac{F(5) - F(0)}{\mathcal{A} = 15 \text{ Ln}(\frac{2+e}{3})}$ u.a

Partie B

- 1) (I): $g' = \frac{1}{5}g$
- a) les solutions de (I) sont les fonctions définies sur IR par : $g(x) = k e^{x/5}$; $k \in IR$
- b) $g(0) = 1 \Longrightarrow k = 1$

d'où : g(t) =
$$e^{t/5}$$
 ; $t \in [0, +\infty[$

2) (II):
$$g' = \frac{g}{5} - \frac{g^2}{15}$$

a)
$$h = \frac{g}{3-g}$$
 h solution de (I) $\Leftrightarrow h' = \frac{h}{5}$

$$\Leftrightarrow (\frac{g}{3-g})' = \frac{g}{5(3-g)}$$

$$\Leftrightarrow \frac{g'(3-g)+g'g}{(3-g)^2} = \frac{g}{5(3-g)} \Leftrightarrow \frac{3g'}{3-g} = \frac{g}{5}$$
$$\Leftrightarrow 3g' = \frac{3}{5}g - \frac{g^2}{5} \Leftrightarrow g' = \frac{g}{5} - \frac{g^2}{5}$$

⇔ g est solution de (II)

b)
$$h(x) = ke^{\frac{x}{5}}$$
; $k \in IR$

$$\Leftrightarrow \frac{g(x)}{3-g(x)} = ke^{\frac{x}{5}}$$

$$\Leftrightarrow g(x) = \frac{3e^{\frac{x}{5}}}{1 - ke^{\frac{x}{5}}} \quad ; k \in IR$$

c)
$$g(0) = 1 \Longrightarrow \frac{3k}{1+k} = 1 \Longrightarrow k = \frac{1}{2}$$

d'où :
$$g(x) = \frac{3e^{\frac{x}{5}}}{2e^{-\frac{x}{5}}} = f(x)$$

d) $\lim_{x \to +\infty} f(x) = 3$ la population tend vers 3 milliers.

EXERCICE 32:

(E):
$$y'' + \frac{1}{Lc}y = 0$$

$$C = 1.25 \times 10^{-3}$$
$$L = 0.5 \times 10^{-2}$$

1) les solutions de (E) sont les fonctions définies sur IR par :

$$f(x) = A \cos(\frac{x}{\sqrt{Lc}}) + B \sin(\frac{x}{\sqrt{Lc}});$$

 $(A,B) \in IR^2$

$$Lc = (0.0625) \times 10^{-4}$$

$$\sqrt{Lc} = (0, 25) \times 10^{-2}$$

$$\frac{1}{\sqrt{Lc}} = 400 \quad ; \text{ d'où} :$$

$$f(x) = A \cos(400x) + B \sin(400x);$$

(A,B) $\in IR^2$

2)
$$q(0) = 6 \times 10^{-3}$$

$$q'(0) = 0$$

d'où : $q(t) = 6 \times 10^{-3} \cos(400t)$;

 $t \in [0, +\infty]$

$$q(t) = (0,006). \cos(400t)$$

- 3) i(t) = -q'(t)
 - a) $q(t) = (0,006) \cdot \cos(400t)$

d'où: i(t) = -q'(t)

$$i(t) = (2,4). \sin(400t)$$

b) $J = \frac{400}{\pi} \int_0^{\frac{\pi}{400}} \cos(800t) dt$

$$J = \frac{400}{\pi} \left[\frac{1}{800} \sin(800t) \right]_0^{\frac{\pi}{400}}$$

$$J = \frac{1}{2\pi} \sin(2\pi) \quad ; \quad \boxed{J = 0}$$

(I_e)² =
$$\frac{400}{\pi} \int_0^{\frac{\pi}{400}} i^2(t) dt$$

$$i^2(t) = 5.76 \sin^2(400t)$$

$$i^{2}(t) = 5,76.(\frac{1-\cos(800t)}{2})$$

$$i^{2}(t) = 2,88 (1 - \cos(800t))$$

D'où:

$$(I_e)^2 = (\frac{400}{\pi})(2,88). \int_0^{\frac{\pi}{400}} (1 - \cos(800t) dt)$$

$$= \frac{1152}{\pi} \left(\int_0^{\frac{\pi}{400}} 1 dt - J \right)$$

$$= \frac{1152}{\pi} \left[t \right]_0^{\frac{\pi}{400}} = 2,88$$
D'où:

$$I_e = \sqrt{2,88} = 1,697 \text{ Ampères}$$

QCM

1. a)
$$\frac{C_{10}^2}{C_{20}^2} = \frac{9}{38}$$

b)
$$\frac{10^2}{20^2} = 0.25$$

c)
$$\frac{A_{10}^2}{A_{20}^2} = \frac{90}{380} = \frac{9}{38}$$

- 2. a/ La probabilité de B sachant A est 0,1
 - b/ La probabilité de $\overline{A} \cap \overline{B}$ est égale à $0.1 \times 0.1 = 0.01$
 - c/ La probabilité de A sachant B

est:
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \cap A)}{P(B \cap A) + P(B \cap \overline{A})} = \frac{0.09}{0.09 + 0.09} = 0.5$$

VRAI-FAUX

1. Faux

Justification : si A et B sont indépendants alors P(A∩B)=P(A).P(B)

Or $P(A \cup B) = P(A) + P(B) - P(A \cap B) \neq P(A) + P(B)$ dès que P(A) et P(B) non nuls (contre exemple pour $A = B = \Omega$)

- 2. Faux Justification: si A et B sont incompatibles alors $P(A \cap B) = p(\emptyset) = 0$
- 3. Faux justification : contre exemple pour $A=B=C=\Omega$

EX 1:

1.
$$P_1 = \frac{C_8^3}{C_{12}^3} = \frac{56}{220} = \frac{14}{55}$$

2.
$$P_2 = \frac{C_4^1 \cdot C_8^2}{C_{12}^3} = \frac{4 \times 28}{220} = \frac{28}{55}$$

3.
$$P_3=1-\frac{C_8^3}{C_{12}^3}=\frac{41}{55}$$

EX 2:

1. Le nombre des boules est : $1+2+3+...+9=9.\frac{1+9}{2} = 45$ (somme de 9 termes Consécutifs d'une suite arithmétique)

2. a/Le nombre des boules de numéros pair est 2+4+6+8=20

$$\frac{C_{20}^2}{C_{15}^2} = \frac{190}{990} = \frac{19}{99}$$

La probabilité que les deux numéros soient pairs est : $\frac{C_{20}^2}{C_{45}^2} = \frac{190}{990} = \frac{19}{99}$ b/ P(la somme de deux numéros obtenues 2)b/ $P(la \ somme \ de \ deux \ numéros \ obtenus \ge 3) = 1$ (événement certain)

c/ P(S
$$\leq$$
15)=1-P(S $>$ 15)= 1- ($\frac{7\times9}{990}+\frac{C_{17}^2}{990}$)

3.
$$P(1983) = \frac{1}{45} \cdot \frac{9}{44} \cdot \frac{8}{43} \cdot \frac{3}{42}$$
 et $P(1389) = \frac{1}{45} \cdot \frac{3}{44} \cdot \frac{8}{43} \cdot \frac{9}{42}$ donc $P(1983) = P(1389)$

4.
$$P(1983) = \frac{1}{45} \cdot \frac{9}{45} \cdot \frac{8}{45} \cdot \frac{3}{45}$$
 et $P(1389) = \frac{1}{45} \cdot \frac{3}{45} \cdot \frac{8}{45} \cdot \frac{9}{45}$ donc $P(1983) = P(1389)$

EX3:

- 1. P(l'élève aime les trois matières)=0
- 2. P(l'élève aime les math et n'aime pas le sport)= $\frac{25}{40}$
- 3. P(l'élève n'aime pas la philo et les math) = $\frac{8}{40}$
- 4. P(l'élève n'aime pas les trois matières)= $\frac{3}{40}$
- 5. P(l'élève aime au moins une matière)= 1- P(l'élève n'aime pas les trois matières)= $1-\frac{5}{40}$

EX 4:

1.
$$\frac{C_{80}^3}{C_{100}^3} = \frac{82160}{161700} = \frac{4108}{8085} \approx 0.5$$

2.
$$\frac{C_{80}^{2} \cdot C_{20}^{1}}{C_{100}^{3}} = \frac{3160.20}{161700} = \frac{632}{1617}$$

- 3. $\frac{C_{80}^{100} \cdot C_{20}^{2}}{C_{100}^{3}}$ 4. $\frac{C_{20}^{3}}{C_{100}^{3}}$
- 5. $1 \frac{C_{20}^3}{C_{100}^3}$

EX 5:

P(M) = 80% = 0.8; P(S/M) = 75% = 0.75; $P(S/\overline{M}) = 40\% = 0.4$ $P(S) = P(S/M).P(M)+P(S/\overline{M}).P(\overline{M}) = 0.75 \times 0.8 + 0.4 \times 0.2 = 0.68$

EX 6:

- 1. $P_1=(0.005)^2$
- 2. $P_2=1-(0.005)^2$

EX 7:

- $P(A \cap B) = P(A) \cdot P(B) = 0.08$
- $P(A \cup B) = P(A) + P(B) P(A \cap B) = 0.2 + 0.4 0.08 = 0.52$
- $P(A \cap \overline{B}) = P(A).P(\overline{B}) = 0.2 \times 0.6 = 0.12$
- $P(\overline{A} \cup B) = 1 P(A \cap \overline{B}) = 1 0.12 = 0.88$

EX 8:

- 1. a/P(interroger une femme ingénieur)= $P(F \cap I)=P(F/I).P(I)=40\%$.10% = 0.04
 - b/ P(interroger un homme tec) = $P(H \cap T) = P(H/T)$, P(T) = 10%, 80% = 0.08c/ P(interroger une femme administratif)= $P(F \cap A)$

On a $P(F) = P(F \cap I) + P(F \cap T) + P(F \cap A) \Rightarrow P(F \cap A) = P(F) - P(F \cap I) - P(F \cap T)$ $(P(F \cap T) = P(F/T).P(T) = 90\% . 80\% = 0.72)$ = 0.8 - 0.04 - 0.72 = 0.04

2. a/ P(T/F) =
$$\frac{P(T \cap F)}{P(F)} = \frac{0.72}{0.8} = 0.9$$

b/ P(I/F) =
$$\frac{P(I \cap F)}{P(F)} = \frac{0.04}{0.8} = 0.05$$

3. a/
$$P(F/I) = \frac{P(F \cap I)}{P(I)} = \frac{0.04}{0.1} = 0.4$$

b/ $P(H/I) = 1 - P(F/I) = 1 - 0.4 = 0.6$

EX 9:

1.
$$P(S) = \frac{1200}{2000} = \frac{3}{5} = 0.6$$

2. a/ P(C∩S)=P(C/S).P(S)=0 ,32 .0,6=0,192 b/ P(C) = P(C∩S)+P(C∩ \overline{S}) \Rightarrow P(C∩ \overline{S})= P(C)- P(C∩S) \Rightarrow P(C∩ \overline{S})= $\frac{960}{2000}$ -0,192=0,48-0,192=0,288

La probabilité pour que le client ait acheté le modèle B et choisi l'abonnement II est : $P(\overline{C} \cap \overline{S}) = P(\overline{S}) - P(C \cap \overline{S}) = 0.4 - 0.288 = 0.112$

EX 10:

1.
$$p(C/P) = \frac{C_6^2 + C_2^2}{C_8^2} = \frac{15+1}{28} = \frac{4}{7} ; \qquad p(D/P) = \frac{C_4^2 + C_4^2}{C_8^2} = \frac{6+6}{28} = \frac{3}{7}$$

$$p(B/P) = p(C \cap D/P) = \frac{C_3^2 + C_3^2}{C_8^2} = \frac{3+3}{28} = \frac{3}{14}$$

$$p(A/P) = p(CUD/P) = p(C/P) + p(D/P) - p(C \cap D/P) = \frac{11}{14}$$
2.
$$p(A/F) = p(CUD/F) = p(C/F) + p(D/F) - p(C \cap D/F)$$

$$= p(C/F) + p(D/F) - p(B/F)$$

$$or \qquad p(C/F) = \frac{A_6^2 + A_2^2}{A_8^2} = \frac{30+2}{56} = \frac{4}{7} ; \qquad p(D/F) = \frac{A_4^2 + A_4^2}{A_8^2} = \frac{12+12}{56} = \frac{3}{7}$$

$$et \qquad p(B/F) = \frac{A_3^2 + A_3^2}{A_8^2} = \frac{6+6}{56} = \frac{3}{14} \quad Donc \quad p(A/F) = \frac{11}{14}$$

$$p(A) = p(A/F) \cdot p(F) + p(A/P) \cdot p(P) = \frac{11}{14} \cdot \frac{8}{15} + \frac{11}{14} \cdot \frac{7}{15} = \frac{11}{14}$$

EX 11:

Désignons par A l'événement : << la cible est atteinte>>

$$P(Y/A) = \frac{P(Y \cap A)}{P(A)} = \frac{P(A \cap Y)}{P(A)} = \frac{P(A/Y).P(Y)}{P(A/Y).P(Y) + P(A/X).P(X)}$$
$$= \frac{\frac{4}{10} \cdot \frac{2}{3}}{\frac{4}{10} \cdot \frac{2}{3} + \frac{9}{10} \cdot \frac{1}{3}} = \frac{8}{17}$$

EX 12:

Soit I l'évènement :<< le total des points obtenues est≤7>> ⇒P(I)= $\frac{21}{36} = \frac{7}{12}$

1. Désignons par E l'évènement << Obtenir 2 boules blanches et 2 b rouges>> $P(E)=P(E/I).P(I)+P(E/\bar{I}).P(\bar{I}) = \frac{A_3^2 \cdot A_5^2}{A_4^4} \cdot \frac{4!}{2!2!} \cdot \frac{7}{12} + \frac{A_7^2 \cdot A_5^2}{A_4^4} \cdot \frac{4!}{2!2!} \cdot \frac{5}{12} = \frac{1}{4} + \frac{35}{198} = \frac{169}{396}$

2. Désignons par R l'évènement << n'obtenir que des boules rouges>>

$$P(R)=P(R/I).P(I)+P(R/\bar{I}).P(\bar{I}) = \frac{A_5^4}{A_8^4}.\frac{7}{12} + \frac{A_5^4}{A_{12}^4}.\frac{5}{12} = \frac{109}{2376}$$

3.
$$P(\overline{I}/R) = \frac{P(\overline{I} \cap R)}{P(R)} = \frac{P(R \cap \overline{I})}{P(R)} = \frac{2376}{109} \cdot P(R/\overline{I}) \cdot P(\overline{I}) = \frac{2376}{109} \cdot \frac{A_5^4}{A_{12}^4} \cdot \frac{5}{12} = \frac{10}{109}$$

EX 13: P_n:<<les deux amies arrivent avec n jours d'écart>>

- 1. P(les deux amies arrivent le même jour) = $P_0 = \frac{8}{64} = \frac{1}{8}$.
- 2. P(les deux amies arrivent avec un jour d'écart)= $P_1 = \frac{14}{64} = \frac{7}{32}$
- 3. P(les deux amies puissent se rencontrer)= $P(R)=P_0+P_1+P_2$

$$=\frac{1}{8} + \frac{7}{32} + \frac{12}{64} = \frac{34}{64} = \frac{17}{32}$$

4. P(les deux amies passent ensembles au moins 2 jours/R)= $\frac{P_0 + P_1}{P(R)} = \frac{11}{17}$

<u>EX14:</u>

1.

$$\begin{array}{c|c}
0,7 & F_{n+1} \\
\hline
0,3 & F_{n+1} \\
\hline
F_n & 0,2 & F_{n+1} \\
\hline
0,8 & \overline{F}_{n+1}
\end{array}$$

$$P(F_{n+1}/F_n)=0.7$$
; $P(\overline{F_{n+1}}/F_n)=0.3$; $P(F_{n+1}/\overline{F_n})=0.2$; $P(\overline{F_{n+1}}/F_n)=0.8$

- 2. $P_{n+1}=P(F_{n+1})=P(F_{n+1}/F_n).P(F_n)+P(F_{n+1}/\overline{F_n}).P(\overline{F_n})$ (P.P. Totale) = 0,7 . $p_n + 0,2$. $(1-p_n)$ = 0,5. $p_n + 0,2$
- 3. a. $a_{n+1}=p_{n+1}$ -0,4=0,5 p_n +0,2-0,4=0,5 p_n -0,2=0,5(p_n -0,4)=0,5. a_n Donc a_n est une suite géométrique de raison 0,5 donc de limite 0 b. Lim a_n =0 (car sa raison ϵ]-1,1[)

Lim p_n=0,4 interprétation: La probabilité pour que cet individu reste enfin un fumeur est 0,4

EX 15:
1.
$$P_1=P(A_1)=1$$
; $P_2=P(A_2)=0.9$

;
$$P_2=P(A_2)=0.9$$

$$P_3=P(A_3)=P(A_3/A_2).P(A_2)+P(A_3/\overline{A_2}).P(\overline{A_2})=0.9\times0.9+0.1\times0.1=0.82$$

3.
$$P_{n+1}=P(A_{n+1})=P(A_{n+1}/A_n).P(A_n)+P(A_{n+1}/\overline{A_n}).P(\overline{A_n})=0.9\times P_n+0.1\times (1-P_n)$$

=0.8×P_n+0.1

4. Considérons la suite $a_n = p_n + \alpha$ $a_{n+1} = p_{n+1} + \alpha = 0.8 \times p_n + 0.1 + \alpha = 0.8.(p_n + \frac{0.1 + \alpha}{0.8})$ si on choisi α de sorte que $\frac{0.1+\alpha}{0.8}$ = \alpha on aura a_n suite géométrique de raison 0,8

Donc pour $\alpha=-1/2$ a_n suite géométrique de raison 0,8 a_n=a₁×(0,8)ⁿ⁻¹ $a_n = 1/2 \times (0.8)^{n-1}$ $p_n = a_n - \alpha$ $p_n = 1/2 \times (0.8)^{n-1} + 1/2$

Conclusion:
$$p_n = 1/2 \times (0,8)^{n-1} + 1/2$$

- 5. $P_{20} = 1/2 \times (0.8)^{19} + 1/2$
- 6. Lim $P_n = \text{Lim} 1/2 \times (0.8)^{n-1} + 1/2 = 1/2$

EX 16:

1. a/ p(<>)=p(A,A)=
$$\frac{2}{2}$$
. $\frac{1}{2}$ = $\frac{1}{2}$

b/ p(
$$<<$$
Aa $>>$)= p(A,a)= $\frac{2}{2} \cdot \frac{1}{2} = \frac{1}{2}$

2. a/ p(
$$<<$$
AA>>)=p(A,A)= $\frac{1}{2}.\frac{1}{2}=\frac{1}{4}$

b/ p(<>)= p(A,a)+p(a,A)=
$$\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{2}=\frac{1}{2}$$

c/p(<>)= p(a,a)=
$$\frac{1}{2}.\frac{1}{2}=\frac{1}{4}$$

3.

•	n ^{ième} génération	(n+1) ^{ième} génération
Père mère	AA111	$AA \rightarrow 1.p_n.p_n = p_n^2$
Père mère	$ \begin{array}{c} AA \\ Aa \end{array} $	$AA \rightarrow \frac{1}{2} \cdot p_n \cdot q_n$ $Aa \rightarrow \frac{1}{2} \cdot p_n \cdot q_n$
Père mère	$\begin{bmatrix} Aa \\ AA \end{bmatrix} = \frac{1/2}{1/2}$	$AA \rightarrow \frac{1}{2} .p_n.q_n$ $Aa \rightarrow \frac{1}{2} .p_n.q_n$
Père mère	AA aa]1	$Aa \rightarrow 1.p_n.r_n$
Père mère	aa AA]1	$Aa \rightarrow 1.p_n.r_n$
Père mère		$AA \rightarrow \frac{1}{4}. q_n^2$ $Aa \rightarrow \frac{1}{2} q_n^2$ $Aa \rightarrow \frac{1}{4}. q_n^2$
Père mère	$ \begin{array}{c} \text{Aa} \\ \text{aa} \end{array} $	$Aa \rightarrow \frac{1}{2} .r_n.q_n$ $aa \rightarrow \frac{1}{2} .r_n.q_n$
Père mère	$ \begin{bmatrix} aa \\ Aa \end{bmatrix} = \frac{1/2}{1/2} $	$Aa \rightarrow \frac{1}{2} .r_n.q_n$ $aa \rightarrow \frac{1}{2} .r_n.q_n$
Père mère	aa <u>1</u> aa <u> </u>	$ aa \rightarrow 1.r_n.r_n $
$a/p_{n+1}=p(A_{2})$	A)= $p_n^2 + 1/2.p_n.q_n + 1/2.$	$p_n.q_n+1/4.q_n^2 = \left(p_n + \frac{q_n}{2}\right)^2$
$b/r_{n+1} = p(aa)$	$=r_n^2 + 1/2.r_n.q_n + 1/2.r_n.q_n$	$q_n + 1/4.r_n^2 = \left(r_n + \frac{q_n}{2}\right)^2$
c/ On a $p_{n+1} + q_{n+1} + r_{n+1} = 1$ $q_{n+1} = 1 - p_{n+1} - r_{n+1} = 1 - \left(p_n + \frac{q_n}{2}\right)^2 - \left(r_n + \frac{q_n}{2}\right)^2$		

4. a/ (Par recurrence)

Soit $n \in \mathbb{N}$: supposons que et montrons que p_{n+1} - r_{n+1} = α

$$p_{n+1}-r_{n+1}=\left(p_n+\frac{q_n}{2}\right)^2-\left(r_n+\frac{q_n}{2}\right)^2=p_n^2-r_n^2+p_nq_n-r_nq_n=(p_n-r_n).(p_n+r_n+q_n)$$

Conclusion: pour tout n on a

$$p_n-r_n=\alpha$$

b/ $2r_n+q_n=r_n+1-p_n=1+(r_n-p_n)=1-\alpha$

c/
$$2r_n + q_n = 1 - \alpha$$
 $q_n = 1 - \alpha - 2r_n$ $r_{n+1} = \left(r_n + \frac{1 - \alpha - 2r_n}{2}\right)^2 = \left(\frac{1 - \alpha}{2}\right)^2$

 r_n est constante p_n est constante (car p_n = α + r_n) et q_n est constante (car q_n =1- α -2 r_n)

EX 17:

1.
$$p_n = \frac{C_n^1 \cdot C_{2n}^2}{C_{3n}^3} = \frac{n \cdot \frac{2n!}{2!(2n-2)!}}{\frac{3n!}{3!(3n-3)!}} = \frac{n \cdot (2n-1) \cdot n}{\frac{(3n-2) \cdot (3n-1) \cdot n}{2}} = \frac{2n \cdot (2n-1)}{(3n-2) \cdot (3n-1)}$$

Lim $p_n=4/9$ donc p=4/9

2. q_n=1-P(aucune boule rouge)

$$=1-\frac{C_{2n}^{3}}{C_{3n}^{3}}=1-\frac{\frac{2n!}{3!(2n-3)!}}{\frac{3n!}{3!(3n-3)!}}=1-\frac{\frac{(2n-2).(2n-1).2n}{6}}{\frac{(3n-2).(3n-1).3n}{6}}=1-\frac{(2n-2).(2n-1).2}{(3n-2).(3n-1).3}$$

$$\mathsf{Limq_n} = \mathsf{Lim1} - \frac{2 \cdot (2n-1) \cdot (2n-2)}{3 \cdot (3n-1) \cdot (3n-2)} = 1 - \frac{8}{27} = \frac{19}{27} \Rightarrow q = \frac{19}{27}$$

3. a/

P(obtenir une seule b rouge)=
$$\left(\frac{n}{3n}, \frac{2n}{3n}, \frac{2n}{3n}\right)$$
. $3 = \frac{4}{9} = p$

P(obtenir une seule boule rouge)=p

b/ P(obtenir au moins une boule rouge)=1-P(n'obtenir aucune b rouge)

$$=1-\left(\frac{2n}{3n}\right)^3=1-\frac{8}{27}=\frac{19}{27}=q$$

EX 18:

- 1. Soit p le nombre de fois où face appara ît p+2 est le nombre de fois Où pile appara ît le nombre des lancers est p+p+2=2.(p+1) pair
- 2. P(le joueur gagne au plus au bout de 2 lancers)=P(pile ;pile)= $\frac{5}{12}$. $\frac{5}{12}$ = $\frac{25}{144}$
- 3. P(le joueur gagne au plus au bout de 4 lancers)=
 p(gagne au bout de 2 lancers)+P(gagne au bout de 4 lancers)=

$$\frac{25}{144} + C_{4}^{1} \left(\frac{5}{12}\right)^{3} \cdot \left(\frac{7}{12}\right)^{1}$$

- 4. Soit n un entier naturel pair alors n=2p
 - P(le joueur gagne au plus au bout de n lancers)= $\sum_{k=1}^{p} C_{2k}^{k+1} \cdot \left(\frac{5}{12}\right)^{k+1} \cdot \left(\frac{7}{12}\right)^{k-1}$
- 5. P(le joueur gagne au plus au bout de 20 lancers)= $\sum_{k=1}^{10} C_{2k}^{k+1} \cdot \left(\frac{5}{12}\right)^{k+1} \cdot \left(\frac{7}{12}\right)^{k-1}$

Q C M

1. a/ P(X>2) =P(X=3) =
$$C_3^3 \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^0 = \left(\frac{1}{3}\right)^3$$

b/ E(X)=1
c/ F(1)= P(X=0)+P(X=1)= $\frac{12}{27}$

2. Si X est une variable aléatoire qui suit la loi exponentielle de paramètre 0,1 Alors $P(X>10) = e^{-0.1\times10} = e^{-1} \approx 0.37$

VRAI-FAUX

- 1. Faux en effet $P(X \ge 1) = 1 P(X = 0) = 1 (0.8)^8$
- 2. Faux (justification : les épreuves ne sont pas identiques)
- 3. vrai $\forall c \in [0; 0,0000001]$ p(c)=0
- 4. Vrai car p(X=0)=0
- 5. a/ E(X)= $-1 \times 0.25 + 0 \times 0.5 + 1 \times 0.25 = 0$ vrai b/ V(X)= $(-1)^2 \times 0.25 + 0^2 \times 0.5 + 1^2 \times 0.25 - (E(X))^2 = 1$ donc V(X) non nulle

EX 1:

$$p_{1} = \frac{C_{80}^{3}}{C_{100}^{3}} = \frac{82160}{161700} = \frac{4108}{8085} \approx 0,508$$

$$p_{2} = \frac{C_{80}^{2} \times C_{20}^{1}}{C_{100}^{3}} = \frac{3160 \times 20}{161700} = \frac{632}{1617} \approx 0,391$$

$$p_{3} = \frac{C_{80}^{1} \times C_{20}^{2}}{C_{100}^{3}} = \frac{80 \times 190}{161700} = \frac{152}{1617} \approx 0,09$$

$$p_{4} = \frac{C_{20}^{3}}{C_{100}^{3}} = \frac{1140}{161700} = \frac{114}{1617} \approx 0,07$$

$$P_{5} = 1 - p_{4} = \frac{1503}{1617} \approx 0,93$$

EX2: Soit A l'évènement :<<la cible est atteinte>>

$$P(Y/A) = \frac{P(A/Y).P(Y)}{P(A/Y).P(Y) + P(A/X).P(X)}$$
$$= \frac{\frac{4}{10} \cdot \frac{2}{3}}{\frac{4}{10} \cdot \frac{2}{3} + \frac{9}{10} \cdot \frac{1}{3}} = \frac{8}{17}$$

EX 3:

	1	1	1	2	2	3
1	2	2	2	3	3	4
1	2	2	2	3	3	4
1	2	2	2	3	3	4
2	3	3	3	4	4	5
2	3	3	3	4	4	5
3	4	4	4	5	5	6

 $X(\Omega) = \{2,3,4,5,6\}$

Loi de probabilité de X:

Xi	2	3	4	5	6
$P(X=x_i)$	9/36	12/36	10/36	4/36	1/36

1.
$$E(X) = \sum_{x_i \in X(\Omega)} x_i P(X = x_i) = 10/3$$
 $V(X) = E(X^2) - [E(X)]^2 = 1,1111$

2. Pour $x \in]-\infty; 2[F(x)=0$

Pour $x \in [2;3[$ F(x)=9/36

Pour $x \in [3;4[$ F(x)=21/36

Pour $x \in [4;5[$ F(x)=31/36Pour $x \in [5;6[$ F(x)=35/36Pour $x \in [6;+\infty[$ F(x)=1

(courbe de f en escalier : très simple)

EX 4:

 $X(\Omega) = \{1; 2; 3; 4; 5; 6; 7\}$

$$P(X=1) = 4/10$$
; $P(X=2) = \frac{6}{10} \cdot \frac{4}{9}$; $P(X=3) = \frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8}$; $P(X=4) = \frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{4}{7}$

$$P(X=5) = \frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{4}{6} \quad ; P(X=6) = \frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{4}{5} \quad ; P(X=7) = \frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{1}{5} \cdot \frac{4}{4}$$

Loi de probabilité de X:

Xi	1	2	3	4	5	6	7
$P(X=x_i)$	84/210	56/210	35/210	20/210	10/210	4/210	1/210

 $E(X) = \sum_{x_i \in X(\Omega)} x_i P(X = x_i) = 2,2 \quad ; V(X) = E(X^2) - [E(X)]^2 = 1,76$

$$\underline{EX 5:} \atop X(\Omega)=Y(\Omega)=\{1;2;3;4;5;6\}$$

Loi de probabilité de X:

Xi	1	2	3	4	5	6
$P(X=x_i)$	1/36	3/36	5/36	7/36	9/36	11/36

Loi de probabilité de Y:

y _i	1	2	3	4	5	6
$P(Y=y_i)$	11/36	9/36	7/36	5/36	3/36	1/36

$$E(X) = \sum_{x_i \in X(\Omega)} x_i P(X = x_i) \approx 4,472222 \qquad V(X) = E(X^2) - [E(X)]^2 \approx 1,97145$$

$$E(Y) = \sum_{y_i \in Y(\Omega)} y_i P(Y = y_i) \approx 2,52777 \qquad V(Y) = E(Y^2) - [E(Y)]^2 \approx 1,97145$$

- EX 6:1. $P_1 = (0.9)^{10}$
 - $2. P_2 = C_{10}^5 \times (0.9)^5 (0.1)^5$
 - 3. $P_3 = 1 (0.1)^{10}$

EX 7 : Désignons par X la variable Aléatoire égal au nombre de fois où on obtient face. X suit une loi binomiale de paramètres n=20 et p=1/2

1. Le nombre moyen de faces obtenus est $:E(X)=n.p=20\times1/2=10$

2.
$$P(X=10) = C_{20}^{10} \cdot \left(\frac{1}{2}\right)^{10} \cdot \left(1 - \frac{1}{2}\right)^{10} = C_{20}^{10} \cdot \left(\frac{1}{2}\right)^{20} = \frac{184756}{1048576} = \frac{46189}{262144}$$

3.
$$P(9 \le X \le 11) = \left(\frac{1}{2}\right)^{20} \cdot \left[C_{20}^9 + C_{20}^{10} + C_{20}^{11}\right] = \left(\frac{1}{2}\right)^{20} \cdot \left[2.C_{20}^9 + C_{20}^{10}\right]$$

4.
$$P(8 \le X \le 12) = \left(\frac{1}{2}\right)^{20} \left[C_{20}^{8} + C_{20}^{9} + C_{20}^{10} + C_{20}^{11} + C_{20}^{12}\right] = \left(\frac{1}{2}\right)^{20} \left[2C_{20}^{8} + 2.C_{20}^{9} + C_{20}^{10}\right]$$

5.
$$P(7 \le X \le 13) = \left(\frac{1}{2}\right)^{20} \left[2.C_{20}^7 + 2C_{20}^8 + 2.C_{20}^9 + C_{20}^{10}\right]$$

EX 8 :

La moyenne $E=0,1\times400=40$

L'écart type
$$\sigma = \sqrt{(0,1) \times (400) \times (0,9)} = \sqrt{36} = 6$$

- EX 9:
 1. P(aucune face rouge ne soit visible)=0
- 2. P(aucune face bleue ne soit visible)= $\left(\frac{1}{4}\right)^{3}$

3.
$$P(A) = \left(\frac{2}{4}\right)^3 = \frac{1}{8}$$

4.
$$p_n = C^1 \cdot \frac{1}{8} \cdot \left(\frac{7}{8}\right)^{n-1} = n \cdot \frac{7^{n-1}}{8^n}$$

EX 10:

- 1. $p(A_2)=p(pair ; pair)+p(impair ; impair) = \frac{3}{6} \cdot \frac{3}{6} + \frac{3}{6} \cdot \frac{3}{6} = \frac{1}{2}$
- 2. $p(A_3)=p(A_2;pair)+p(\overline{A_2};impair)=\frac{1}{2}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{2}$
- 3. Supposons que $p(A_n)=1/2$ et montrons que $p(A_{n+1})=1/2$

$$P(A_{n+1}) = p(A_n; pair) + p(\overline{A_n}; impair) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

Conclusion: $p(A_n) = \frac{1}{2}$ pour tout entier naturel non nul n

EX 11:

1. P(au moins un billet gagnant)=1-P(aucun billet gagnant)

$$= 1 - \frac{C_{50}^2}{C_{100}^2} = 1 - \frac{1225}{4950} = \frac{149}{198}$$

2. a/p_n=1-P(aucun billet gagnant)

$$=1-\frac{C_{n}^{2}}{C_{2n}^{2}}=1-\frac{\frac{n!}{2!(n-2)!}}{\frac{(2n)!}{2!(2n-2)!}}=1-\frac{\frac{n.(n-1)}{2}}{\frac{(2n-1).2n}{2}}=1-\frac{n-1}{4n-2}=\frac{3n-1}{4n-2}$$

b/ $p_1 = \frac{3-1}{4-2} = 1$ explication : si 2 billets seulement sont mises en vente

et qu'un promeneur achète les deux billets alors il est certain qu'il ait au moins un billet gagnant.

c/pour tout entier n non nul on a:

$$p_{n} - \frac{3}{4} = \frac{3n-1}{4n-2} - \frac{3}{4} = \frac{1}{4 \cdot (2n-1)} \ge 0 \Rightarrow p_{n} \ge \frac{3}{4}$$

$$p_{n} - 1 = \frac{3n-1}{4n-2} - 1 = \frac{-n+1}{4n-2} \le 0 \Rightarrow p_{n} \le 1$$

$$\Rightarrow \frac{3}{4} \le p_{n} \le 1$$

3. a/ Soit X l'aléa numérique égale au nombre de fois où il obtient au moins un billet gagnant.

X suit une loi binomiale de paramètres n=3 et p=p_n= $\frac{3n-1}{4n-2}$

$$q_n = p(X \ge 1) = 1 - p(X = 0) = 1 - C_3^0 \left(\frac{3n-1}{4n-2}\right)^0 \left(1 - \frac{3n-1}{4n-2}\right)^3 = 1 - \left(\frac{n-1}{4n-2}\right)^3$$

b/
$$Limq_n = Lim_{n \to +\infty} 1 - \left(\frac{n-1}{4n-2}\right)^3 = 1 - \left(\frac{1}{4}\right)^3 = \frac{63}{64}$$

EX 12 :

1. Soit X l'aléa numérique égale au nombre de billets gagnants.

X suit une loi binomiale de paramètres n=n et p=0,01.

$$P(A)=P(X\geq 1)=1-P(X=0)=1-C^{0}(0,01)^{0}.(0,99)^{n}=1-(0,99)^{n}$$

2. $P(A)>0.5 \Leftrightarrow 1-(0.99)^n>0.5 \Leftrightarrow (0.99)^n<0.5 \Leftrightarrow Ln((0.99)^n) < Ln(1/2)$

$$\Leftrightarrow$$
n.Ln(0,99) <-Ln(2) \Leftrightarrow n. >- $\frac{Ln(2)}{Ln(0,99)} \approx 68,96$

Conclusion: il faut qu'il achète au moins 69 billets

EX 13:

1. a/P(X=1)=1/n

b/ P(X=2)=
$$\frac{n-1}{n}$$
. $\frac{1}{n-1}$ = $\frac{1}{n}$

c/ Loi de probabilité de X :

Xi	1	2		i		n
$P(X=x_i)$	1/n	1/n	•••	1/n	••••	1/n

d/ E(X)=
$$(1+2+...+n).1/n = \frac{1+n}{2}$$

$$V(X)=E(X^2)-[E(X)]^2$$

$$=\frac{1}{n} \cdot \sum_{k=1}^{n} k^{2} - \frac{(1+n)^{2}}{4} = \frac{1}{n} \cdot \frac{n \cdot (n+1)(2n+1)}{6} - \frac{(1+n)^{2}}{4} = \frac{\cdot (n+1)(2n+1)}{6} - \frac{(1+n)^{2}}{4} = \frac{n^{2}-1}{12}$$

2. a/P(Y=1)=1/n

b/ P(Y=n-1)=
$$\frac{n-1}{n}$$
. $\frac{n-2}{n-1}$. $\frac{n-3}{n-2}$... $\frac{2}{3}$. $\frac{2}{2}$ = $\frac{2}{n}$

c/Loi de probabilité de Y :

y _i	1	2	 i		n-1
P(Y=y _i)	1/n	1/n	 1/n	••••	2/n

d/ E(Y)=
$$(1+2+...+(n-2)).1/n + (n-1).2/n = \frac{(n-1)(n+2)}{2n}$$

$$V(Y) = E(Y^2) - [E(Y)]^2 = \frac{1}{n} \cdot \sum_{k=1}^{n-1} k^2 + \frac{(n-1)^2}{n} - \left[\frac{(n-1)(n-2)}{2n} \right]^2 =$$

$$= \frac{n^4 + 24n^3 - 61n^2 + 48n - 12}{12n^2}$$

EX 14:

- 1. P(x=0,1)=P(x=0,0005)=P(x=0,99999)=0
- 2. $P(x \in [0,5;1] = \frac{1-0,5}{1-0} = 0,5$ (Loi uniforme)
- 3. $P(x \in [0,001;0,002] = \frac{0,002-0,001}{1-0} = 0,001$
- 4. $P(x<0.99999) = \frac{0.999999-0}{1-0} = 0.99999$
- 5. P(x>0,99999)=1- P(x<0,99999) =0,00001

EX 15:

- 1. $P(2<X<5)=\frac{5-2}{20-0}=\frac{3}{20}$ (Loi uniforme)
- 2. $P(10 < X < 13) = \frac{13 10}{20 0} = \frac{3}{20}$
- 3. P(x=3)=0
- 4. P(X<3)=P(0<X<3)= $\frac{3-0}{20}=\frac{3}{20}$
- 5. $P(X>3)=1-P(X<3)=1-P(0<X<3)=1-\frac{3}{20}=\frac{17}{20}$

EX 16:

- 1. a/P(X=10)=0 b/P(X<10)=1- $e^{-0.2\times10}$ =1- e^{-2} c/P(X>10)=1-P(X<10)= e^{-2}
- 2. $P(X \le c) = P(X \ge c) \Leftrightarrow 1 e^{-0.2 \times c} = e^{-0.2 \times c} \Leftrightarrow e^{-0.2 \times c} = 1/2 \Leftrightarrow -0.2.c = -Ln(2) \Leftrightarrow c = 5.Ln(2)$

EX 17:

- 1. $P(5 < d.d.vie < 8) = e^{-0.0005 \times 5} e^{-0.0005 \times 8} = e^{-0.0025} e^{-0.004}$
- 2. $P(d.d.vie>5) = e^{-0.0005 \times 5} = e^{-0.0025}$
- 3. P(d.d.vie>8)= $e^{-0.0005\times8} = e^{-0.004}$

EX 18:

- 1. $P(X \le 1) = 1 e^{-1,5 \times 1} = 1 e^{-1,5} = 0,777$ $P(X \ge 2) = e^{-1,5 \times 2} = e^{-3} = 0,050$ $P(1 \le X \le 2) = e^{-1,5 \times 1} - e^{-1,5 \times 2} = e^{-1,5} - e^{-3} = 0.173$
- 2. Désignons par A l'évènement :<<Le cylindre est accepté>> a/ $P(A)=P(A/X \le 1)$. $P(X \le 1)+P(A/1 \le X \le 2)$. $P(1 \le X \le 2)$

= 1 . 0,777 + 0,8 . 0,173=0,9154
b/ P(R/A)=P(1
$$\le$$
X \le 2/A)= $\frac{P(R \cap A)}{P(A)} = \frac{P(A \cap R)}{0,9154} = \frac{P(A/R).P(R)}{0,9154}$
= $\frac{0,8 \times P(1 \le X \le 2)}{0.9154} = \frac{0,8 \times 0,173}{0.9154} = 0,151$

EX 19:

1.
$$P(X>6)=0.3 \Leftrightarrow e^{-\lambda \times 6}=0.3 \Leftrightarrow -6\lambda=Ln(0.3) \Leftrightarrow \lambda=-\frac{Ln(0.3)}{6}=0.2$$

2. 1 mois≈0,8 Année

t=dix-sept ans et trios mois

- 3. La probabilité qu'une machine n'ait pas de panne au cours de deux Premières années de sa vie est : $P(X>2)=e^{-0.2\times2}=e^{-0.4}$
- 4. Soit Y l'aléa numérique égal au nombre des machines ayant une durée de vie supérieure à deux ans .

Y suit une loi binomiale de paramètres n=5 et p=e^{-0,4}

La probabilité que dans ce lot il ait au moins une machine qui n'ait pas eu de panne au cours des deux premières années est :

$$P(Y \ge 1) = 1 - P(Y = 0) = 1 - (e^{-0.4})^5 = 1 - e^{-2} \approx 0.864$$

EX 1:

- 1. Le nuage de point ne justifie pas la recherche d'un ajustement affine.
- 2. Le nuage de point justifie la recherche d'un ajustement affine.
- 3. Le nuage de point justifie la recherche d'un ajustement affine.
- 4. Le nuage de point ne justifie pas la recherche d'un ajustement affine.

EX 2: 1.

X ₁	65	63	67	64	68	62
Y ₁	63	61	66	62	67	60

X_2	70	66	68	67	69	71	
Y ₂	69	65	67	67	66	70	

2.
$$\overline{X_1} = 64,833333$$

 $\overline{Y_1} = 63,1666667$

$$\overline{X_2} = 68,5$$
 $\overline{Y_2} = 67,333333$

$$a = \frac{\overline{Y_2} - \overline{Y_1}}{\overline{X_2} - \overline{X_1}} = \frac{67,33333 - 63,166667}{68,5 - 64,83333} \approx 1,13636$$

67,33333=a.68,5+b ⇒ b=67,33333 - 1,13636 × 68,5≈-10,50757

D: y=1,13636.x -10,50757

3. $X=77 \Rightarrow y=1,13636.77 -10,50757=76,992$

Conclusion : Le fils ainé d'un homme qui pèse 77Kg devrait avoir 77Kg

EX 3:

- 1. Nuage de la série (X,Y).
- 2. G(7,5; 6325,92857)
- 3.

X ₁	1	2	3	4	5	6	7
Y ₁	4425	4500	5099	5257	5344	5965	6177

G₁(4;5252,42857)

X ₂	8	9	10	11	12	13	14
Y ₂	6464	6819	7149	7444	7767	7964	8189

G₂(11:7399,42857)

$$a = \frac{7399,42857 - 5252,42857}{11 - 4} \approx 306,71428$$

 $5252,42857=a.4+b \Rightarrow b=5252,42857-4.a \approx 4025,57142$

D: y=306,71428.x + 4025,57142

4. Année 2010→x=21 ⇒ y=306,71428×21 + 4025,57142≈10466,57

Conclusion :Le nombre des médecins estimés en 2010 est : 10467médecins

EX 4: (voir exercice résolu page 213)

$$a/\overline{X} = 2.81$$
 $\sigma(X) \approx 0.924$

$$\sigma(X) \approx 0.924$$

$$b/\overline{Y} = 1,92$$

$$\sigma(Y) \approx 1,129$$

2. a/ r≈0,618

b/ on a : $|r| < \frac{\sqrt{3}}{2}$ donc un ajustement affine de la série (X, Y) n'est pas justifier

EX 5:

1. a/ Nuage des points

$$d/x=23 \rightarrow y=a.23+b\approx0,32$$

EX 6:

- 1. Nuage des points
- 2. r≈0,896
- 3. D: y= 0,9.x+49,1
- a/ x=35→y=0,9.35+49,1=80,6
 Une clinique possédant 35 lits doit embaucher 81 personnes

b/81-60=21

<u>EX 7 :</u>

A/

Année	Rang (X)	Υ	Z=Ln(Y)
1999	0	600	6,396
2000	1	690	6,537
2001	2	794	6,677
2002	3	913	6,817
2003	4	1045	6,952
2004	5	1207	7,096
2005	6	1380	7,230

1. a/ r=0,99997 > $\frac{\sqrt{3}}{2}$ Donc on peut réaliser un ajustement affine par la

méthode des moindres carrés de la série (X, Z)

b/ 2006
$$\rightarrow$$
X=7 \rightarrow Z=0,139.7 +6,3976 \approx 7,371428565 \rightarrow Y=1590

Une prévision du nombre d'adhérents en 2006 est : 1590 adhérents

2. On a Z=0,139.X +6,3976 \Rightarrow Ln(Y)= 0,139.X +6,3976

$$\Rightarrow$$
Y = $e^{0.139.X + 6.3976} = e^{6.3976}.(e^{0.139})^X \Rightarrow$ Y \approx 602×(1,15)^X

B/

1.
$$\lim_{n \to +\infty} f(n) = \lim_{n \to +\infty} \frac{3600}{1 + 0.5e^{-n}} = \frac{3600}{1 + 0} = 3600$$

2. a/

Année	2007	2008	2009	2010	2011	
n_	1	2	3	4	5	
f(n)	3040	3372	3512	3567	3587	

b/M=3415.6

3.

$$\overline{f} = \frac{1}{5,5-0,5} \int_{0,5}^{5,5} \frac{3600}{1+0,5 \cdot e^{-x}} dx = \frac{1}{5} \int_{0,5}^{5,5} \frac{3600 e^{x}}{e^{x}+0,5} dx = \frac{3600}{5} \int_{0,5}^{5,5} \frac{e^{x}}{e^{x}+0,5} dx$$

= 720
$$\left[Ln(e^x+0.5)\right]_{0.5}^{5.5}$$

EX 8:

- a/ Nuage de points de la série (X,Y)
 b/ Un ajustement affine n'est pas justifier
- 2. a/ r≈0,7878

b/ D: Y=0,3173 X-1,884

c/ X=180→Y=0,3173 .180 -1,884≈55,235Kg

La masse d'une jeune fille mesurant 180cm est estimé: 55,235Kg

- 3. a/ M = (180-100) (180-130)/2 = 55 Kg
 - b/ Le résultat de 2. c/ justifie la loi de Lorentz

EX 9:

1. $\frac{12}{2} \neq \frac{20}{2.5}$ Donc les deux séries ne sont pas proportionnelles

2.

X	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7
Υ	12	20	28	38	50	64	78	95	113	133	154
$Z=\sqrt{2}$	\overline{Y} $\sqrt{12}$	$\sqrt{20}$									

- a/ Nuage des points de la série (X,Z)
- b/ ρ_{XZ} =0,999945 est très proche de 1

Donc Z est presque proportionnelle à X on peut faire donc un très bon ajustement affine entre Z et X

c/ D:Z=1,8.X

d/ Nous savons que : Aire= π .r² \Rightarrow Y= π .X² \Rightarrow Z= $\sqrt{\pi}$.X

Z=1,8.X et Z=
$$\sqrt{\pi}.X \Rightarrow \pi \approx (1,8)^2 = 3,24$$

EX 10:

- 1. $\rho_{XY} \approx -0.9822$
- 2. y = -0.3 x + 226.5
- 3. a/ $r(x) = y(x).x = (-0.3 x + 226.5).x = (226.5 0.3 x).x = -0.3.x^2 + 226.5.x$ b/ $f(x) = -0.3.x^2 + 226.5.x \Rightarrow f'(x) = -0.6x + 226.5$

x	0		377,5		+∞
f'(x)		+	0	-	
f(x)			→ 42751,875	5	
	0			~	-00

Le prix de vente pour lequel la recette est maximale est 377,5 DT

La recette maximale est: 42751,875 DT

EX 11:

A/ 1. r=0,989

2. a/ D: y=1,064.x +15,75

b/ Tracer la droite D

c/ 2008 \rightarrow x=33 \rightarrow y=1,064x33+15,75=50,871 \Rightarrow Une estimation de la population en 2008 à un millier prés est :51

B/ 1. $f(x)=a.e^{bx}$

 $f(0)=18 \Rightarrow a=18$

$$f(b)=50 \Rightarrow 18.e^{b.30} = 50 \Rightarrow 30.b = Ln(\frac{50}{18}) \Rightarrow b \approx 0,034$$

- 2. $18.e^{0.034.33} \approx 55,2778 \Rightarrow$ Une estimation de la population en 2008 à un millier prés est :55
 - 3. Courbe de f sur le même graphique
 - 4. L'ajustement par la fonction exponentielle est plus pertinent.

Puisqu'il a donner une estimation plus proche de la réalité(en plus l'allure de la nuage permet de conclure que l'ajustement exponentielle est plus pertinent que l'ajustement affine)

C/ 1.
$$f(x)=18.e^{0.034.x}$$

$$\overline{f} = \frac{1}{30} \cdot \int_0^{30} 18 \cdot e^{0.034 \cdot x} dx = \frac{18}{30} \left[\frac{1}{0.034} e^{0.034 \cdot x} \right]_0^{30} \approx 31,29158824 \approx 31,3$$

2. Lecture graphique→X=16,2→L'Année 1991

EX 12:

A/ 1. Nuage de points de (T,P)

c/y=0,021.t+2,081
$$\Rightarrow$$
Ln(P)=0,021.t+2,081 \Rightarrow P=e^{0,021.t+2,081}=e^{2,081}.e^{0,021.t}

$$\Rightarrow$$
P= 8.e^{0,021.t}

B/
$$f(t)=8.e^{0.02.t}$$
 sur [0,35]

1.
$$f'(t) = 0.16.e^{0.02.t} > 0 sur [0.35]$$

t	0	35
f'(t)	+	
f(t)		→ f(35)≈16,11
	8	

3. a/

$$I = \int_0^{35} f(t)dt = \int_0^{35} 8 \cdot e^{0.02 \cdot t} dt = \left[400 \cdot e^{0.02 \cdot t} \right]_0^{35} = 400 \cdot \left(e^{0.7} - 1 \right) \approx 405,50$$

b/ m=
$$\frac{1}{35-0}$$
. $I = \frac{405,5}{35} \approx 11,586$

4.
$$\frac{f(t+1)-f(t)}{f(t)} = \frac{8 \cdot e^{0.02(t+1)} - 8 \cdot e^{0.02t}}{8 \cdot e^{0.02t}} = \frac{8 \cdot e^{0.02t} \cdot (e^{0.02} - 1)}{8 \cdot e^{0.02t}} = e^{0.02} - 1 \approx 0,02$$

Interprétation en terme de pourcentage : Le tau d'accroissement de la population est :2%

5.
$$f(t)>19 \Leftrightarrow 8.e^{0,02.t}>19 \Leftrightarrow 0,02.t> Ln(19/8)$$

$$\Leftrightarrow$$
 t > 50.[Ln(19)-Ln(8)] \approx 43,25

La population aurait dépassé les 19 millions d'habitants en 2009

EX 15 :

1. Nuage de points

2.

Т	0	2	6	8	10	12
D	0,4	1,2	5,4	5 ,8	6,4	6,9
U	Ln(19)	Ln(17/3)	Ln(13/27)	Ln(11/27)	Ln(1/4)	Ln(11/69)

a/
$$\rho_{TU} \approx -0.9679$$

$$b/u = -0.39974.t + 2.503$$

c/

$$U = Ln\left(\frac{8}{D} - 1\right) \Leftrightarrow \frac{8}{D} - 1 = e^{U} \Leftrightarrow \frac{8}{D} = 1 + e^{U}$$

$$\Leftrightarrow D = \frac{8}{1 + e^{U}} = \frac{8}{1 + e^{-0.399 \cdot t + 2.503}} = \frac{8}{1 + e^{2.503} \cdot e^{-0.399 t}}$$

$$\Leftrightarrow D = \frac{8}{1 + c \cdot e^{-a \cdot t}} \quad avec \quad c = e^{2.503} \text{ et } a = 0.399$$

3. a/

b/
$$\lim_{t \to +\infty} D(t) = \frac{8}{1+0} = 8$$

Donc le diamètre de la plante ne dépassera pas 8cm

REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2008

NOUVEAU REGIME SESSION PRINCIPALE

SECTION: SCIENCES EXPERIMENTALES

EPREUVE: MATHEMATIQUES

DUREE: 3 h

COEFFICIENT: 3

EXERCICE 1 (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte.

Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse correcte vaut 1 point, une réponse fausse ou l'absence de réponse vaut 0 point.

- 1) Le nombre complexe $\frac{1+i\sqrt{3}}{1+i}$ a pour argument
 - a) $\frac{\pi}{12}$;

- 2) Dans le plan complexe rapporté à un repère orthonormé direct $(O, \overline{i}, \overline{j})$, on considère les points A. B. C. et D d'affixes respectives -1, 1+2i, 3, et - 3i. Alors on a
 - a) les vecteurs \overrightarrow{AD} et \overrightarrow{BD} sont orthogonaux;
 - b) le quadrilatère ABCD est un parallélogramme;
 - c) les vecteurs AB et CD sont colinéaires.
- 3) L'équation différentielle y' = 2y + 1 admet pour solutions les fonctions f définies sur \mathbb{R} par

 - a) $f(x) = ke^{2x}$, $k \in \mathbb{R}$; b) $f(x) = ke^{2x} \frac{1}{2}$, $k \in \mathbb{R}$; c) $f(x) = ke^{-x}$, $k \in \mathbb{R}$.

Dans le graphique ci-contre :

Γ est la courbe représentative, dans un repère orthonormé, d'une fonction f définie sur l'intervalle $[0, +\infty[$ et dérivable sur $]0, +\infty[$."

- Les points O, A et B appartiennent à Γ.
- La droite (AC) est la tangente à Γ au point A.
- Γ admet une branche parabolique de direction l'axe des ordonnées au voisinage de $+\infty$.
- 1) Par une lecture graphique:
- a) Déterminer f (0), f (2), f (2e), f '(2) et f '(2e).
- b) Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
- c) Justifier que la restriction g de f à

l'intervalle $[2, +\infty]$ admet une fonction réciproque g⁻¹ et préciser l'ensemble de définition de g⁻¹.

- 2) On admet que g est définie par $g(x) = x(1 + \ln 2 \ln x)$, pour tout $x \ge 2$. On désigne par $\mathscr C$ la courbe représentative de g et par $\mathscr C'$ celle de g^{-1} dans un repère orthonormé (O, \vec{i}, \vec{j}) du plan. Tracer, les courbes \mathscr{C} et \mathscr{C}' .
- 3) Soit D la partie du plan limitée par les axes (O, \vec{i}) et (O, \vec{j}) et les courbes \mathscr{C} et \mathscr{C}' .
 - a) Hachurer D.
 - b) Montrer, à l'aide d'une intégration par parties, que $\int_{2}^{2e} g(x) dx = e^{2} 3$.
 - c) Calculer l'aire de D.

(since **EXERCICE 3 (4 points)**

On considère la suite (u_n) définie sur \mathbb{N}^* par $u_n = \sum_{k=1}^n (-1)^k \frac{k}{e^k} = -\frac{1}{e} + \frac{2}{e^2} - \frac{3}{e^3} + \dots + (-1)^n \frac{n}{e^n}$.

- 1) a) Montrer que pour tout entier naturel n, (2n+2)-e(2n+1)<0.
- b) Montrer que pour tout entier naturel non nul n.

$$u_{2n+2} - u_{2n} = \frac{1}{e^{2n+2}} [(2n+2) - e(2n+1)].$$

En déduire que la suite $(u_{2n})_{n>1}$ est décroissante.

- 2) Montrer que la suite $(u_{2n+1})_{n>1}$ est croissante.
- 3) a) Montrer que pour tout entier naturel non nul n, $u_{2n} > u_{2n+1}$.
 - b) Calculer $\lim_{n\to+\infty} (u_{2n} u_{2n+1})$.
- 4) Montrer que la suite (u_n) converge vers un réel α et que $u_3 < \alpha < u_2$.

EXERCICE 4 (4 points)

L'espace est rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$. On considère les points A(3,2,6); B(1,2,4) et C(4,-2,5).

- b) En déduire que les points A, B et C ne sont pas alignés.
- c) Calculer le volume du tétraèdre OABC.
- 2) Soit H le projeté orthogonal du point O sur le plan (ABC). Montrer que $OH = \frac{4}{3}$.
- 3) Soit S la sphère de centre O et passant par A.
 - a) Justifier que l'intersection de S avec le plan (ABC) est un cercle @de centre H.
 - b) Calculer le rayon du cercle \(\mathbb{C} \).

EXERCICE 5 (4 points)

Le tableau ci-dessous donne, pour des filles entre 1 et 14 ans, la taille moyenne X (en centimètres) et le poids moyen Y (en kilogrammes) :

Âge	1	2	3	4	5	6	7	8	9	10	11	12	13	14
X	72.5	84.5	92.8	99,7	106.4	112.4	118,2	123,9	129,4	134,8	140,1	147,4	154,4	157,9
Y	9.2	11.6	13,6	15,3	17,2	19	22,3	23.8	26,7	29,7	33	37	45	48,3

1) On a représenté le nuage de points de la série (X, Y) dans la figure ci-dessous. Indiquer si le nuage de points justifie la recherche d'un ajustement affine entre les variables X et Y.

- 2) a) Calculer la moyenne \overline{X} et l'écart-type σ_X de la variable X.
 - b) Calculer la moyenne \overline{Y} et l'écart-type σ_Y de la variable Y.
 - c) Calculer le coefficient de corrélation linéaire de la série double (X, Y).
- 3) On admet qu'il existe un ajustement de la série (X, Y) donné par la fonction f définie sur $[0, +\infty[$ par $f(x) = 2,1463 e^{0,0197x}$ et on suppose que cet ajustement reste valable pour les filles jusqu'à l'âge de 17 ans.

Estimer le poids moyen des filles de 17 ans ayant une taille moyenne égale à 165 centimètres.

REPUBLIQUE TUNISIENNE

MINISTERE DE L'EDUCATION ET DE LA FORMATION

EXAMEN DU BACCALAUREAT **SESSION DE JUIN 2008**

NOUVEAU REGIME

SESSION DE CONTROLE

SCIENCES EXPERIMENTALES SECTION:

EPREUVE: MATHEMATIQUES DUREE: 3 h

COEFFICIENT: 3

Exercice 1 (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse correcte vaut 1 point, une réponse fausse ou l'absence de réponse vaut 0 point.

ABCDEFGH est un cube d'arête 1.

On munit l'espace du repère orthonormé direct $(A, \overline{AB}, \overline{AD}, \overline{AE})$.

a) 0

b) $\sqrt{2}$

c) $\sqrt{3}$.

2) Une équation du plan (ECG) est :

a) x + y - 2 = 0

b) x + y - 1 = 0 c) x - y = 0.

Soit S la sphère de centre I et passant par F. Alors on a :

a) Le plan (BEG) est tangent à la sphère S.

b) L'intersection de la sphère S et le plan (BEG) est le cercle de diamètre [EG].

c) L'intersection de la sphère S et le plan (BEG) est le cercle circonscrit au triangle EGH.

- b) Montrer que (I_n) est une suite décroissante.
- c) En déduire que (In) est une suite convergente.

2) a) Montrer que pour tout
$$n \in \mathbb{N}^{\cdot}$$
, $I_n + I_{n+2} = \frac{1}{n+1}$.

b) En déduire la limite de la suite (I_n).

3) Calculer I_1 , I_2 et I_4 .

Exercice 3 (6 points)

- 1) a) Résoudre, dans \mathbb{C} , l'équation (E): $z^2 + z + 1 = 0$.
 - b) Mettre les solutions de (E) sous forme exponentielle.
 - c) En déduire les solutions de l'équation (E'): $z^4 z^2 + 1 = 0$.
- 2) Mettre le polynôme $P(z) = z^4 z^2 + 1$ sous la forme d'un produit de deux polynômes du second degré à coefficients réels

у

3) Le plan est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

On désigne par A, B, C et D les images des solutions de l'équation (E') telles que

- $Re(z_A) > 0$, $Im(z_A) > 0$; $Re(z_B) > 0$ et $Im(z_D) > 0$
- a) Placer les points A, B, C et D.
- b) Déterminer la nature du quadrilatère ABCD.

Exercice 4 (6 points)

Dans le graphique ci-contre : \mathscr{C} et Γ sont les courbes représentatives, dans un repère orthogonal $\left(O,\vec{i},\vec{j}\right)$, d'une fonction f dérivable sur \mathbb{R} et de sa fonction dérivée f .

Chacune des deux courbes \mathscr{C} et Γ possède :

- une branche parabolique de direction
 l'axe des ordonnées au voisinage de +∞.
- une asymptote d'équation y = 0 au voisinage de $-\infty$.

- a) Déterminer, parmi les courbes \mathscr{C} et Γ, celle qui représente la fonction f'.
- b) Déterminer f(0), f'(0) et f'(1).
- c) Dresser le tableau de variation de f.

- a) Calculer f'(x), pour $x \in \mathbb{R}$.
- b) Montrer que pour tout $x \in \mathbb{R}$ on a: $f(x) f'(x) = f(x) \cdot \frac{2x+1}{1+x+x^2}$.
- c) En déduire les coordonnées du point d'intersection des deux courbes Cet Γ.
- d) Montrer que pour tout $x \ge -\frac{1}{2}$ on a: $f(x) f'(x) \ge \frac{4}{3\sqrt{e}} \cdot \frac{2x+1}{1+x+x^2}$.
- 3) Soit t un réel supérieur ou égal à 1.

On désigne par A(t) l'aire de la partie du plan limitée par les deux courbes $\mathscr E$ et Γ et les droites

d'équations : $x = -\frac{1}{2}$ et x = t.

- a) Montrer que $A(t) \ge \frac{4}{3\sqrt{e}} \ln(1+t+t^2) \frac{4}{3\sqrt{e}} \ln(\frac{3}{4})$.
- b) En déduire $\lim_{t\to +\infty} A(t)$.

X

REPUBLIQUE TUNISIENNE
MINISTERE DE L'EDUCATION
ET DE LA FORMATAIN

SESSION PRINCIPALE

EXAMEN DU BACCALAURÉAT SESSION DE JUIN 2009

SECTION:

SCIENCES EXPERIMENTALES

EPREUVE: MATHEMATIQUES

DURÉE: 3 heures

COEFFICIENT: 3

Le sujet comporte 3 pages numérotées de 1/3 à 3/3. La page 3/3 est à rendre avec la copie.

EXERCICE 1 (3 points)

Répondre par Vrai ou Faux à chacune des propositions suivantes. Aucune justification n'est demandée.

- 1) Toute suite croissante et bornée est convergente.
- 2) La suite (U_n) définie sur IN* par $U_n = (-1)^n \sin(\frac{1}{n})$ n'admet pas de limite.
- 3) Soit f une fonction continue et strictement croissante sur l'intervalle] 1, 1 [et telle que $\lim_{x\to (-1)^+} f(x) = -\infty \quad \text{et} \quad \lim_{x\to 1^-} f(x) = +\infty \, .$

L'équation f(x) = 2009 admet une solution unique dans l'intervalle -1, 1.

- $4 \quad \lim_{x \to -\infty} (e^{-x} x^2) = -\infty$
- Soit f une fonction continue sur IR. Si pour tout $x \in [2, 3]$, $2 \le f(x) \le 3$ alors $2 \le \int_2^3 f(x) dx \le 3$.
- \hat{z} Toute fonction f continue sur [a, b] et telle que $\int_a^b f(x) dx \ge 0$ est une fonction positive sur [a, b].

EXERCICE ·2 (6 points)

Comy23/2

Dans la figure de la page 3/3, (O, \vec{u}, \vec{v}) est un repère orthonormé direct du plan, \mathscr{C} est le cercle de centre O et de rayon 2 et B est un point d'affixe z_B .

Déterminer par une lecture graphique le module et un argument de z_B.

En déduire que $z_B = -1 + i\sqrt{3}$.

- 2) a) Placer sur la figure le point C d'affixe $z_C = 1 + i\sqrt{3}$.
 - b) Montrer que le quadrilatère OACB est un losange.
- 3. On se propose de déterminer l'ensemble E des points M d'affixe z tels que z³ soit un réel positif ou nul.
 - a) Vérifier que les points O, A et B appartiennent à E.
 - b) Prouver que tout point M de la demi-droite $\left[O\:B\right)$ appartient à E.
 - c) Soit z un nombre complexe non nul , de module r et d'argument θ .

 Montrer que z^3 est un réel positif si et seulement si $\theta = \frac{2k\pi}{2}$; $k \in \mathbb{Z}$.
 - d) En déduire que E est la réunion de trois demi-droites que l'on déterminera. Représenter E sur la figure.

EXERCICE 3 (5 points)

L'espace est rapporté à un reprire orthonormé direct (A, i, j, k) et ABCDEFGH est un parallélépipède tel que $\overrightarrow{AB} = 2\overrightarrow{i}$: $\overrightarrow{AD} = 4\overrightarrow{i}$ et $\overrightarrow{AE} = 3\overrightarrow{k}$.

- 1) a) Vérifier que $\overrightarrow{AG} = 2\overrightarrow{i} + 4\overrightarrow{i} + 3\overrightarrow{k}$.
 - b) Déterminer les composantes de chacun des vecteurs \overrightarrow{EB} : \overrightarrow{EG} et $\overrightarrow{EB} \wedge \overrightarrow{EG}$.
 - c) Déterminer une équation cartésienne du plan (EBG).

- a) Vérifier que M décrit la droite (AG) privée du point G.
- b) Montrer que M n'appartient pas au plan (EBG).
- 3) Soit v le volume du tétraèdre MEBG.
 - a) Exprimer v en fonction de α .
 - b) Calculer le volume du tétraèdre AEBG.
 - c) Pour quelles valeurs de α, v est-il égal au volume du parallélépipède ABCDEFGH?

1) Dans le graphique ci-contre, C et Γ sont les courbes représentatives dans un repère orthonormé, des deux fonctions u et v définies sur IR_+ par $u(x) = -x^2 + x$ et $v(x) = x \ln x$ pour x > 0, v(0) = 0.

Par une lecture graphique

- a) Reconnaître la courbe de chacune des deux fonctions u et v.
- b) Donner le signe de u(x) v(x).
- 2) Soit f la fonction définie sur IR, par f(0) = 0 et

$$f(x) = -\frac{x^3}{3} + \frac{3}{4}x^2 - \frac{1}{2}x^2 \ln x , \text{ si } x > 0.$$

f est-elle dérivable à droite en 0 ?

E

- 3) a) Vérifier que pour tout $x \ge 0$; f'(x) = u(x) v(x).
 - b) Calculer l'aire de la partie du plan limitée par les courbes C et Γ et les droites d'équations respectives x = 0 et x = 1.
- 4) On désigne par \mathscr{C}_f la courbe représentative de f dans un repère orthonormé $\{0,\overline{i},\overline{j}\}$.
 - a) Etudier les variations de f.
 - b) Montrer que la courbe \mathscr{C}_f coupe l'axe $(0, \overline{i})$ en un seul point autre que 0. On notera α l'abscisse de ce point. Vérifier que 1,5 < α < 1,6.
 - c) Tracer \mathscr{C}_f . (on précisera la demi-tangente à \mathscr{C}_f au point O).

l l	N° d'inscri ption : Sér ie :	() with with white
1	sance :	l l
×		

FEUILLE A RENDRE AVEC LA COPIE

REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION

SESSION DE CONTROLE

EXAMEN DU BACCALAURÉAT SESSION DE JUIN 2009

SECTION:

SCIENCES EXPERIMENTALES

MATHEMATIQUES

DURÉE: 3 heures

COEFFICIENT: 3

EXERCICE 1 (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

- 1) L'équation $z^2 = -16$ admet dans l'ensemble \mathbb{C} exactement
 - a) une solution
- b) deux solutions
- c) quatre solutions

2) Un argument du nombre complexe (1+i)²⁰⁰⁹ est

a)
$$\frac{\pi}{2}$$

b)
$$\frac{\pi}{4}$$

c)
$$\frac{3\pi}{4}$$

3) Si f est la solution de l'équation différentielle y' = 2y - 2 telle que f(0) = $\frac{3}{2}$ alors

a)
$$f(x) = e^{\frac{x}{2}} + \frac{1}{2}$$

a)
$$f(x) = e^{\frac{x}{2}} + \frac{1}{2}$$
 b) $f(x) = \frac{1}{2}e^{2x} + 1$

c)
$$f(x) = \frac{1}{2}e^{2x} + \frac{3}{2}$$

4) La fonction $x \mapsto \sin(2x + \frac{\pi}{3})$ est une solution de l'équation différentielle

a)
$$y'' + 4y = 0$$

b)
$$y'' - 4y = 0$$

c)
$$4y'' + y = 0$$

Exercice 2 (3 points)

Les courbes C_f , C_g et C_h ci-dessous sont les représentations graphiques, dans un repère orthonormé (O, \vec{i}, \vec{j}) , de trois fonctions f, g et h.

Les solides S₁, S₂ et S₃ ci-dessous sont obtenus par rotation autour de l'axe (Ox) des courbes Cf, Cg et Ch.

- 1) Associer à chaque courbe le solide qu'elle engendre.
- 2) a) Calculer, à l'aide d'une intégration par parties, l'intégrale $I = \int x \ln x \, dx$.
 - b) C_f étant la courbe de la fonction f définie $sur \left[\frac{1}{e}, 2\right]$ par $f(x) = \sqrt{1 + x \ln x}$, calculer le volume du solide associé à Cr. 166

West Contract

EXERCICE 3 (3 points)

La durée de vie d'une machine (exprimée en années) suit une loi exponentielle de paramètre 0,2.

- 1) Calculer la probabilité qu'une machine ait une durée de vie comprise entre 2 et 4 ans.
- 2) Calculer la probabilité pour que la durée de vie d'une machine dépasse 2 ans.
- 3) On considère un lot de 4 machines fonctionnant de manière indépendante. Déterminer la probabilité que la durée de vie d'au moins une machine parmi les 4 dépasse 2 ans. (On donnera une valeur approchée de cette probabilité à 10⁻² près).

EXERCICE 4 (6 points)

L'espace est rapporté à un repère orthonormé direct $\left(0,\,\vec{i},\,\vec{j},\,\vec{k}\right)$. On considère la droite Δ passant par le point A(-3, -1, -3) et de vecteur directeur $\vec{u} = 2\vec{i} - 2\vec{j} - \vec{k}$ et la droite D passant par le point B(3, 2, 3) et de vecteur directeur $\vec{v} = \vec{i} + 2\vec{j} - 2\vec{k}$.

Demoire Low Organ

- 1) a) Calculer $\vec{u} \cdot \vec{v}$ et $det(\vec{u}, \vec{v}, \overrightarrow{AB})$.
 - b) Justifier que les droites Δ et D sont orthogonales et non coplanaires.
 - c) Déterminer une équation cartésienne du plan contenant Δ et parallèle à D.
- 2) Soit S la sphère de centre C(-1, 0, -1) et de rayon 6 et \mathcal{P} le plan d'équation 2x + y + 2z + 13 = 0.
 - a) Montrer que S et P se coupent suivant un cercle de centre A. Déterminer le rayon de ce cercle.
 - b) Montrer que la droite D est tangente à la sphère S au point B.
- 3) a) Calculer AB. En déduire que le point C appartient au segment [AB].
 - b) Déterminer alors une droite perpendiculaire aux droites D et Δ .

EXERCICE 5 (5 points)

(an/dr/16)/e

On considère la fonction f définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = -1 + \frac{x-1}{x+1} e^x$. On désigne par \mathscr{C} la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) Calculer $\lim_{x\to (-1)^-} f(x)$, $\lim_{x\to (-1)^+} f(x)$, $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- 2) a) Montrer que pour $x \in IR \setminus \{-1\}$, $f'(x) = \frac{x^2 + 1}{(x + 1)^2} e^x$.
 - b) Donner le tableau de variation de f.
- 3) a) Montrer que l'équation f(x) = 0 admet dans]-1, $+\infty[$ une unique solution α et que $1.5 < \alpha < 1.6$.
 - b) Vérifier que $e^{\alpha} = \frac{\alpha + 1}{\alpha 1}$ et que $f(-\alpha) = 0$.
- 4) a) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.
 - b) Tracer la courbe &

SESSION PRINCIPAE 2008

BAREME DE NOTATION

EXERCICE 1:3 points

QUESTIONS	SOLUTIONS	BAREME	COMMENTAIRES
1)	a	1	
2)	c	1	
3)	b	1	

EXERCICE 2:5 points

QUESTIONS	SOLUTIONS	BAREME	COMMENTAIRES
1)	a)		→0 ,5 pour les valeurs de f
		1	(une erreur \rightarrow 0,25)
			(plus qu'une erreur \rightarrow 0)
			→0 ,5 pour les valeurs de f'
	b)	0,75	\rightarrow 0,25 et O,5 (indivisible)
	c)	0,5	2x0,25
2)	Courbe C	1	\rightarrow 0,5 pour (C)indivisible
	Courbe C'		\rightarrow 0,5 pour (C):0,25 pour
			la tangente et la demi-tngte et 0 ;25 pour l'allure
	a)	0,25	
3)	b)	0,5	\rightarrow 0,25 pour l'integration par parties \rightarrow 0,25 pour le reste
	c)	1	\rightarrow 0,5 pour 2(e ² -3)
			\rightarrow 0,5 pour le reste

EXERCICE 3:4 points

QUESTIONS	SOLUTIONS	BAREME	COMMENTAIRES
1)	a)	0,5	
	b)	1	\rightarrow 0,5pour U_{2n+2} - U_{2n} =
			\rightarrow 0,5pour (U_{2n})est
			décroissante
2)			→0,5pour le calcul de
		1	U_{2n+3} - U_{2n+1}
			\rightarrow 0,5pour (U_{2n+1})est
			croissante
3)	a)	0,5	
	b)	0,25	
4)		0,75	0,25 pour adjaentes
			0,25 pour (U _n) convergente
			$0,25 \text{ pour } U_3 < \alpha < U_2$

EXERCICE 4:4 points

QUESTIONS	SOLUTIONS	BAREME	COMMENTAIRES
1)	$\overrightarrow{AB} \wedge \overrightarrow{AC} = -4(2\overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k})$	0,5	
	b)	0,5	
	$v = \frac{8}{3}$	1	$ →0,5 \text{ pour} $ $ V = \frac{1}{6} \overrightarrow{AO}.(\overrightarrow{AB} \land \overrightarrow{AC}) $ $ →0,5 \text{ pour le reste} $
2)		1	→0,5 pour Aire de
			$\left (ABC) = \frac{1}{2} \left \overrightarrow{AB} \wedge \overrightarrow{AC} \right = 6 \right $
			→0,5 pour le reste
3)	a)	0.5	\rightarrow 2×0.25
	b)	0.5	

EXERCICE 5:4 points

QUESTIONS	SOLUTIONS	BAREME	COMMENTAIRES
1)		0.5	0.25 pour une réponse non justifiée
2)	a) $\overline{X} = 119.6$ $\sigma_x = 25,36$	$1 = 2 \times 0.5$	On accordera 0.25 pour une formule appliquée et un calcul faux
	b) $\overline{Y} = 25.12$ $\sigma_y = 11,75$	1 = 2×0.5	On accordera 0.25 pour une formule appliquée et un calcul faux
	c) $\sigma_{xy} = 0.965$	0.5	On accordera 0.25 pour une formule appliquée et un calcul faux
3)	$P \approx 55,4Kg$	1	On accordera 0.25 pour un calcul inachevé

SESSION CONTROLE 2008

BAREME DE NOTATION

EXERCICE 1:3 points

QUESTIONS	SOLUTIONS	BAREME	COMMENTAIRES
1)	a	1	
2)	С	1	
3)	b	1	

EXERCICE 2:5 points

QUESTIONS		BAREME	COMMENTAIRES
1)	a)	1	
	b).	1	0,5→la factorisation
			0,5→le reste
	c)	0,5	Enlever 0,25 si le minorant n'est pas precisé.
2)	a)	1.	0,25→la factorisation
			0,5→primitive

			0,25→le reste	
	b)	0,5	indivisible	
3)		1	0,5+0,25+0,25	

EXERCICE 3:6 points

QUESTIONS		BAREME	COMMENTAIRES
	a)	1	4x0,25
1)	b)	1	2x0,25(l'écriture sous forme exponentielle est exigée)
	C)	1	4x0,25(on accepte toute forme d'écriture des solutions)
2)		1	On accordera 0,5 pour l'écriture de P(z) sous forme de produit de4 polynômes du 1 ^{er} degré
3)	a)	1	4x0,25
	b)	1	0,5 pour ABCD est un parallélogramme

EXERCICE 4:6 points

QUESTIONS		BAREME	COMMENTAIRES
	a)	0,75	0,25 s'il n'ya aucune justification
	b)	0,75	3x0,25
1)	c)	0,5	
	a)	0,5	
2)	b)	1	
	c)	0,5	2x0,25(abscisse et ordonnée)
	d)	1	on acceptera le raisonnement graphique
2)	a)	0,5	0,25 →une primitive
3)			0,25 le reste
	b)	0,5	

SESSION PRINCIPAE 2009

BAREME DE NOTATION

EXERCICE 1:3 points

QUESTIONS	CORRIGE	BAREME	COMMENTAIRES
	VFVFVF	0,5x6	

EXERCICE 2:6 points

QUESTIONS	CORRIGE	BAREME	COMMENTAIRES
1)		1	0,5x2
		0,5	0,25x2
2) a)		0,5	indivisible
2)b)		0,5	indivisible
3)a)		1	0,25+0,25+0,5
3)b)		1	0,5x2
			-0,25 si on ne tient pas
			compte de z=0
3)c)		O,75	0,5 si on ne traite pas la
			réciproque
3)d)	E=[OA)U[OB)U	0,75	0,25x3 (0,5 sans
	[OB');B' est le		représentation
	symetrique de B		graphique)
	par rapport à l'axe		(représentation
	des abscisses		graphique seulement:0)

EXERCICE 3:5 points

QUESTIONS	CORRIGE	BAREME	COMMENTAIRES
1) a)		0,5	Indivisible (on accepte les
			coordonnées de G
			directement)
1) b)		1	0,25+0,25+05
1)c)		1	0,75 pour une méthode correcte de l'équation d'un plan et 0,25 pour le reste
2)a)		0,5	0,25 pour M≠G
2) b)		0,5	indivisible
3) a)		0,5	0,25 pour la formule
			0,25 pour le reste
3) c)	,	0,5	0,25 pour V=24
			0,25 pour lereste

EXERCICE 4:6 points

QUESTIONS	CORRIGE	BAREM	COMMENTAIRES
2020110	Johnson	E	
1) a)		0,5	
1)b)		0,5	indivisible
2)		0,75	0,25 formule
			0,25 calcul(on exige l'écriture
			de sin x)
			0,25 conclusion
3)a)		0,75	0,25 pour x=0
3)b)		0,75	0,25 pour la traduction de
			l'aire en une integrale
			$0.25 \text{ pour A}=[f(x)]_0^1$
			0,25 pour le reste
4) a)		0,75	0.25 pour la limite en $+\infty$
			justifiée
			-0,25 s'il manque une valeur
			dans le tableau de
			variation($f(0)$, $f'(0)$
4) b)		1	0,25 pour f s'annule
			seulement en 0 sur [0,1]
			0.25 pour l'image de $[1,+\infty[$
			par f
			0,25 pour l'existce de α
			0,25 pour l'encadrement
4)c)		1	0,25 x 4

SESSION CONTROLE 2009

BAREME DE NOTATION

EXERCICE 1:3 points

QUESTIONS	CORRIGE	BAREME	COMMENTAIRES
1)	b)	0,75	
2)	b)	0,75	
3)	b)	0,75	
4)	a)	0,75	

EXERCICE 2:3 points

QUESTIONS	CORRIGE	BAREME	COMMENTAIRES
1)		0,75	0,25x3
2) a)		1	0,5 pour la formule
			0,5 pour le calcul
2) b)		1,25	0,25
			0,5
			0,5

EXERCICE 3:3 points

(0,25) r une formule absente
r una formula abcanta
i une formule absente
lcul faux
e
r la valeur approchée à
(

EXERCICE 4:6 points

QUESTIONS	BAREME	COMMENTAIRES
1) a)	0,5	0,25 pour la formule du produit scalaire. 0,25 pour la formule du déterminant
	0,5	·
1) b)	0,5	0,25 x 2
1) c)		0,5 pour vecteur normal
	1	0.25 pour 2x+y+2z+d=0
		0,25 pour le reste

2) a)	1,25	P et S sont sécants :0,5(0,25x2) Centre A :0,5
	1,200	Rayon 0,25
2) b)		0,5 pour BC
,	1	0,25 pour la position relative
		0,25 pour B
3) a)	0,5	
	0,25	
3) b)	0,5	0 ,25x2

EXERCICE 5:5 points

QUESTIONS	BAREME	COMMENTAIRES
1)	1	4x0,25
2) a)	0,5	0,25 pour la formule
2)b)	0,5	Le tableau doit être conformes aux résultats précédentes 0,25 pour le tableau sans les limites
3) a)	0,75	Avec justification (-0,25 pour f bijection sans justificatiob)
3) b)	0,5	0,25 x2
4) a)	0,25 0,25	
4) b)	1	Les éléments de la courbe : • les deux asymptotes • la branche parabolique • les points d'abscisses α et(-α) (-0,25) pour deux éléments manquants.

CORRIGE

Session Principale2008:

Exercice1:

- 1) a) $\frac{\pi}{12}$
- 2) c) $\overrightarrow{AB}et \overrightarrow{CD}$ sont colinéaires.
- 3) b) $f(x) = ke^{2x} \frac{1}{2}$

Exercice2:

- 1) a) f(0)=0; f(2)=2; f(2e)=0
- f'(2)=0 et f'(2e)=-1.
- b) $\lim_{x \to +\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$
- c) g est continue et strictement décroissante sur
- $[2, +\infty[$, elle réalise donc une bijection de $[2, +\infty[$

Sur g ($[2, +\infty[$)= $] - \infty, 2]$.

Par suite g admet une fonction réciproque g⁻¹ définie sur] $-\infty$, 2].

2) ζ est le symétrique de ζ par rapport à la droite d'équation: y=x.

- 3) a) voir figure.
- b) $\int_{2}^{2e} g(x)dx = \int_{2}^{2e} x(1 + \ln 2 \ln x)dx$ On pose:

$$u'(x) = x \to u(x) = \frac{x^2}{2}$$

$$v(x) = 1 + ln2 - lnx \rightarrow v'(x) = -\frac{1}{x}$$

CMS

BAC 2008

$$\int_{2}^{2e} g(x)dx = \left[\frac{x^{2}}{2} (1 + \ln 2 - \ln x)\right]_{2}^{2e} + \int_{2}^{2e} \frac{x}{2} dx$$

$$=-2+\left[\frac{x^2}{4}\right]_2^{2e}$$

 $=e^2-3$

c) A=
$$2^2 + 2 \cdot \int_{2}^{2e} g(x) dx$$

$$A = 4+2(e^2-3)$$

$$A = 2(e^2 - 1)$$
 u. a

Exercice3:

$$u_n = \sum_{k=1}^{n} (-1)^k \frac{k}{e^k} = -\frac{1}{e} + \frac{2}{e^2} - \frac{3}{e^3} + \dots + (-1)^n \frac{n}{e^n}$$

1) a) (2n+2)— e (2n+1)=2n (1-e)+ (2-e)< 0

Car e > 2.

$$u_{2n} = \sum_{k=1}^{2n} (-1)^k \frac{k}{e^k} = -\frac{1}{e} + \frac{2}{e^2} - \frac{3}{e^3} + \dots + (-1)^{2n} \frac{2n}{e^{2n}}$$

$$u_{2n+2} = \sum_{k=1}^{2n+2} (-1)^k \frac{k}{e^k} = \sum_{k=1}^{2n} \left(-1\right)^k \frac{k}{e^k} + \left(-1\right)^{2n+1} \frac{2n+1}{e^{2n+1}} + \left(-1\right)^{2n+2} \frac{2n+2}{e^{2n+2}}$$

$$= u_{2n} - \frac{2n+1}{e^{2n+1}} + \frac{2n+2}{e^{2n+2}}$$

$$u_{2n+2} - u_{2n} = \frac{1}{2^{2n+2}} [(2n+2) - e(2n+1)]$$

 $u_{2n+2}-u_{2n<0}$ d'après 1) a). d'où (u_{2n}) est décroisste

$$u_{2n+1} = \sum_{k=1}^{2n+1} (-1)^k \frac{k}{e^k} = -\frac{1}{e} + \frac{2}{e^2} - \frac{3}{e^3} + \dots + (-1)^{2n+1} \frac{2n+1}{e^{2n+1}}.$$

$$u_{2n+3} = \sum_{k=1}^{2n+3} (-1)^k \frac{k}{e^k} = \sum_{k=1}^{2n+1} (-1)^k \frac{k}{e^k} + (-1)^{2n+2} \frac{2n+2}{e^{2n+2}} + (-1)^{2n+3} \frac{2n+3}{e^{2n+3}}$$

$$=u_{2n+1}+\frac{2n+2}{a^{2n+2}}-\frac{2n+3}{a^{2n+3}}$$

$$u_{2n+3} - u_{2n+1} = \frac{1}{2^{2n+3}} \left[-(2n+3) + e(2n+2) \right]$$

$$u_{2n+3} - u_{2n+1} = \frac{1}{e^{2n+3}} \left[2n(e-1) + (2e-3) \right]$$

$$u_{2n+3} - u_{2n+1} > 0$$

D'où (u_{2n+1}) est croissante.

3) a)

$$u_{2n} = \sum_{k=1}^{2n} (-1)^k \frac{k}{e^k}$$

$$u_{2n+1} = \sum_{k=1}^{2n+1} \left(-1\right)^k \frac{k}{e^k} = u_{2n} + \left(-1\right)^{2n+1} \frac{2n+1}{e^{2n+1}}$$

$$u_{2n+1} - u_{2n} = -\frac{2n+1}{e^{2n+1}} < 0$$

D'où $u_{2n} > u_{2n+1}$

b)
$$u_{2n} - u_{2n+1} = \frac{2n+1}{e^{2n+1}}$$
 d'où

$$\lim_{n \to +\infty} \left(u_{2n} - u_{2n+1} \right) = \lim_{n \to +\infty} \left(\frac{2n+1}{e^{2n+1}} \right) = \lim_{N \to +\infty} \left(\frac{N}{e^N} \right) = 0$$

4) d'après ce qui précède les suites (u_{2n}) et (u_{2n+1})

Sont adjacentes, elles convergent donc vers une même limite ∝.

Par suite (u_n) converge vers \propto .

Pour $n \ge 2$, on $a: u_{2n} \le u_4$ car (u_{2n}) décroissante.

D'où $\propto \leq u_4 < u_2$

Pour $n \ge 2$ on a $u_{2n+1} \ge u_5$ car (u_{2n+1}) est

Croissante.

D'où $\alpha \ge u_5 > u_3$ par suite $u_3 < \alpha < u_2$

Exercice4:

A(3,2,6); B(1,2,4) et C(4,-2,5).

$$1) \mathbf{a}) \overrightarrow{AB} \begin{pmatrix} -2 \\ 0 \\ -2 \end{pmatrix} et \ \overrightarrow{AC} \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} \ \mathsf{d'où} \ \ \overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} -8 \\ -4 \\ 8 \end{pmatrix}.$$

b) $\overrightarrow{AB} \wedge \overrightarrow{AC} \neq \overrightarrow{0}$ d'où A, B et C ne sont pas alignés

c)
$$\overrightarrow{AO}\begin{pmatrix} -3\\ -2\\ -6 \end{pmatrix}$$

$$v = \frac{1}{6} \left| \left(\overrightarrow{AB} \wedge \overrightarrow{AC} \right) \cdot \overrightarrow{AO} \right| = \frac{1}{6} |24 + 8 - 48| = \frac{8}{3} \quad (u.v)$$

2) Soient a: l'aire du triangle ABC et

$$V = \frac{1}{3}$$
 OH. a avec $a = \frac{1}{2} \left\| \overrightarrow{AB} \wedge \overrightarrow{AC} \right\| = 6$ d'où

$$OH = \frac{3v}{a} = \frac{8}{6} = \frac{4}{3}$$
.

CMS

3) a) H est le projeté orthogonal de O sur le plan (ABC). Le rayon de S est OA > OH d'où l'intersection de S et le plan (ABC) est un cercle C de centre H.

b)
$$R = \sqrt{OA^2 - OH^2} = \sqrt{49 - \frac{16}{9}} = \sqrt{\frac{425}{9}} = \frac{5\sqrt{17}}{3}$$
.

Exercice5:

- 1. Le nuage de points ne justifie pas la recherche d'un ajustement affine entre X et Y car il représente une courbure avant l'allure d'une fonction exponentiell Plutôt qu'une fonction affine
- 2. a/ $\overline{X} = \frac{\sum x_i}{14} = 119,6$

$$\sigma_X = \sqrt{\overline{X^2} - \left(\overline{X}\right)^2} = 25,36$$

$$\overline{Y} = \frac{\sum y_i}{14} = 25,12$$

$$\sigma_{Y} = \sqrt{\overline{Y^{2}} - \left(\overline{Y}\right)^{2}} = 11,75$$

$$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sigma_{Y}\sigma_{Y}} = 0,965$$

3.

le poids estimé est

$$P=2,1463 e^{0,0197 \times 165} \approx 55,4 kg$$

Session de contrôle2008 :

Exercice1:

1) a)
$$\overrightarrow{AC}.\overrightarrow{BH} = 0$$

2) c)
$$x - y = 0$$

3) b)
$$S \cap (BEG)$$
 est le cercle de diamètre $[EG]$

Exercice2:

 $I_n \ge 0$

donc convergente.

 $= \left[\frac{1}{n+1} (\tan x)^{n+1} \right]^{\frac{n}{4}} = \frac{1}{n+1}$

 $\lim_{n \to +\infty} I_n = l \Rightarrow \lim_{n \to +\infty} I_{n+2} = l$

b) soit l sa limite.

2) a)

$$I_n = \int_0^{\frac{\pi}{4}} (\tan x)^n dx \quad ; n \ge 1$$

$$-\int_0^{\infty} (\tan x) \, dx$$
, $n \ge 1$

1) a) on a pour
$$x \in \left[0, \frac{\pi}{4}\right]$$
; $(\tan x)^n \ge 0$

$$\operatorname{ur} x \in \left[0, \frac{\pi}{4}\right] ; (\tan x)$$

D'où
$$\int_0^{\frac{\pi}{4}} (\tan x)^n dx \ge 0$$
 ce qui donne

$$(x)$$
 $ax \ge 0$ ce qui donne

b)
$$I_{n+1} = \int_0^{\frac{\pi}{4}} (\tan x)^{n+1} dx$$

Pour
$$x \in \left[0, \frac{\pi}{4}\right]$$
 on a: $0 \le \left(\tan x\right) \le 1$ d'où $\left(\tan x\right)^{n+1} \le \left(\tan x\right)^n$ Par suite

$$\int_0^{\frac{\pi}{4}} (\tan x)^{n+1} dx \le \int_0^{\frac{\pi}{4}} (\tan x)^n dx$$

$$\Rightarrow I_{_{n+1}} \leq I_{_n}$$
 La suite $(I_{_n})$ est donc décroissante.

La suite
$$(I_n)$$
 est donc décroissante.

$$\Rightarrow I_{n+1} \ge I_n$$
 La suite (I_n) est donc declossante.
c) (I_n) est décroissante et minorée par 0 elle est

 $= \int_0^{\frac{\pi}{4}} \left[(\tan x)^n + (\tan x)^{n+2} \right] dx = \int_0^{\frac{\pi}{4}} (1 + \tan^2 x) (\tan x)^n dx$

 $I_n + I_{n+2} = \int_{-\pi}^{\pi} (\tan x)^n dx + \int_{-\pi}^{\pi} (\tan x)^{n+2} dx$

$$\leq I_n$$
 La suite (I_n) est donc decroissante.

La suite
$$(I_n)$$
 est donc decroissante.

La suite
$$(I_{\scriptscriptstyle n})$$
 est donc décroissante.

La suite
$$(I_{\scriptscriptstyle n})$$
 est donc décroissante.

La suite
$$(I_n)$$
 est donc décroissante.

CMS

Exercice3:

D'après 2) a)

$$=1^2-4=-3\Rightarrow 0$$

Les solutions sont: $z' = \frac{1 - i\sqrt{3}}{2}$ et $z'' = \frac{1 + i\sqrt{3}}{2}$

b)
$$z' = e^{-i\frac{\pi}{3}}$$
 et $z'' = e^{i\frac{\pi}{3}}$

c) (E'):
$$z^4 - z^2 + 1 = 0$$

On pose $t = z^2$

(E'):
$$z^4 - z^2$$

E'):
$$z^4 - z^2$$

- $\Delta=1^2-4=-3\Rightarrow\delta=i\sqrt{3}$

 $= \left[\tan x - x\right]_0^{\frac{\pi}{4}} = 1 - \frac{\pi}{4}$

1) a) $z^2 - z + 1 = 0$

L'équation devient : $t^2 - t + 1 = 0$

D'après a) $t = e^{-i\frac{\pi}{3}}$ ou $t = e^{i\frac{\pi}{3}}$

 $t = e^{-i\frac{\pi}{3}} \iff z^2 = e^{-i\frac{\pi}{3}}$

 $t = e^{i\frac{\pi}{3}} \iff \tau^2 = e^{i\frac{\pi}{3}}$

 $I_2 + I_4 = \frac{1}{2} \Rightarrow I_4 = \frac{1}{2} - I_2 = \frac{\pi}{4} - \frac{2}{2}$.

$$+I_{n+2} = \frac{1}{n+1}$$
 Par passage au

$$I_n + I_{n+2} = \frac{1}{n+1}$$
 Par passage aux limites on aura

$$\lim_{n \to +\infty} (I_n + I_{n+2}) = \lim_{n \to +\infty} (\frac{1}{n+1}) \Rightarrow l+l = 0$$

$$l = 0$$

$$* I_1 = \int_0^{\frac{\pi}{4}} (\tan x) \, dx = \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x} \, dx = \left[-\ln(\cos x) \right]_0^{\frac{\pi}{4}}$$

 $=-\ln\left(\frac{1}{\sqrt{2}}\right)=\ln(\sqrt{2})=\frac{1}{2}\ln 2$

 $*I_2 = \int_0^{\frac{\pi}{4}} (\tan x)^2 dx = \int_0^{\frac{\pi}{4}} (\left[1 + (\tan x)^2 \right] - 1) dx$

$$\Leftrightarrow z = e^{i\frac{\pi}{6}} = \frac{\sqrt{3}+i}{2}$$
 ou $z = -e^{i\frac{\pi}{6}} = \frac{-\sqrt{3}-i}{2}$

 $\Leftrightarrow z = e^{-\frac{i\pi}{6}} = \frac{\sqrt{3}-i}{2}$ ou $z = -e^{-\frac{i\pi}{6}} = \frac{-\sqrt{3}+i}{2}$

$$P(z) = \left[\left(z - e^{i\frac{\pi}{6}} \right) \left(z - e^{-i\frac{\pi}{6}} \right) \right] \left[\left(z + e^{i\frac{\pi}{6}} \right) \left(z + e^{-i\frac{\pi}{6}} \right) \right]$$

$$= \left[z^2 - \left(e^{i\frac{\pi}{6}} + e^{-i\frac{\pi}{6}} \right) z + 1 \right] \left[z^2 + \left(e^{i\frac{\pi}{6}} + e^{-i\frac{\pi}{6}} \right) z + 1 \right]$$

$$= \left(z^2 - 2 \left(\cos \frac{\pi}{6} \right) z + 1 \right) \left(z^2 + 2 \left(\cos \frac{\pi}{6} \right) z + 1 \right)$$

$$=(z^2-\sqrt{3}z+1)(z^2+\sqrt{3}z+1)$$

3)
$$Z_{A=} \frac{\sqrt{3}+i}{2}$$
 ; $Z_{B=} \frac{\sqrt{3}-i}{2}$; $Z_{D=} \frac{-\sqrt{3}+i}{2}$; $Z_{C=} \frac{-\sqrt{3}-i}{2}$

a)
$$z_{A=}e^{i\frac{\pi}{6}}$$

$$|z_A| = 1$$
 et $\arg(z_A) \equiv \frac{\pi}{6} [2\pi]$

D'où OA=1 et
$$(\widehat{\vec{u}}, \widehat{\overrightarrow{OA}}) \equiv \frac{\pi}{6} [2\pi]$$

De même: OB =OC =OD =1 et $(\widehat{\vec{u}, OB}) \equiv -\frac{\pi}{6} [2\pi]$

$$\widehat{\left(\overrightarrow{u},\overrightarrow{OC}\right)} \equiv \frac{-5\pi}{6} [2\pi] \ ; \ \widehat{\left(\overrightarrow{u},\overrightarrow{OD}\right)} \equiv \frac{5\pi}{6} [2\pi]$$

b) les segments [AC] et [BD] ont le même milieu O

$$car z_C = -z_A \ et z_D = -z_B$$

d'où ABCD est un parallélogramme.

$$AC = BD = 2$$

Par suite ABCD est un rectangle.

Exercice4:

1) a) ζ représente la fonction f'.

Car la fonction représentée par Γ est positive sur IR

et si elle représente f' alors f sera croissante sur IR.

b)
$$f(0)=1$$
; $f'(0)=0$ et $f'(1)=0$

c)

$$2) f(x) = \frac{e^x}{1+x+x^2}$$

a)
$$f'(x) = \frac{(x^2-x)e^x}{(1+x+x^2)^2}$$

b)
$$f(x) - f'(x) = \frac{e^x}{1+x+x^2} - \frac{(x^2-x)e^x}{(1+x+x^2)^2}$$

= $f(x) \cdot \left(1 - \frac{x^2-x}{1+x+x^2}\right)$
= $f(x) \cdot \frac{2x+1}{1+x+x^2}$

c)
$$f(x) = f'(x) \Leftrightarrow f(x) - f'(x) = 0$$

$$\Leftrightarrow f(x).\frac{2x+1}{1+x+x^2} = 0$$

$$\Leftrightarrow f(x) = 0 \text{ ou } \frac{2x+1}{1+x+x^2} = 0$$

$$\Leftrightarrow x = -\frac{1}{2} \operatorname{car} f(x) \neq 0$$
 pour tout réel x.

D'où
$$\zeta \cap \Gamma = \left\{ A \left(-\frac{1}{2}, \frac{4}{3\sqrt{e}} \right) \right\}$$

d) f est croissante sur $\left[-\frac{1}{2}, 0\right]$ d'où $f(x) \ge f(-\frac{1}{2})$

$$\Rightarrow f(x) \ge \frac{4}{3\sqrt{a}} \text{ Pour } x \in \left[-\frac{1}{2}, 0\right]$$

f admet $\frac{e}{3}$ comme minimum absolu sur $[0,+\infty[$

d'où
$$f(x) \ge \frac{e}{3}$$
 pour tout $x \in [0, +\infty[$

Comme $\frac{e}{3} \ge \frac{4}{3\sqrt{a}}$ alors $f(x) \ge \frac{4}{3\sqrt{a}}$ par suite

$$f(x).\frac{2x+1}{1+x+x^2} \ge \frac{4}{3\sqrt{\rho}} \frac{2x+1}{1+x+x^2} \quad \operatorname{Car} \frac{2x+1}{1+x+x^2} \ge 0$$

Ce qui donne
$$f(x) - f'(x) \ge \frac{4}{3\sqrt{e}} \frac{2x+1}{1+x+x^2}$$

 $|pour x \ge -\frac{1}{2}|$

- 3) $t \geq 1$
- a) $A(t) = \int_{-\frac{1}{2}}^{t} (f(x) f'(x)) dx \operatorname{car} f(x) \ge f'(x)$
- on a pour $x \ge -\frac{1}{2}$; $f(x) f'(x) \ge \frac{4}{3\sqrt{e}} \frac{2x+1}{1+x+x^2}$
- d'ou $\int_{-\frac{1}{2}}^{t} (f(x) f'(x)) dx \ge \int_{-\frac{1}{2}}^{t} \frac{4}{3\sqrt{e}} \frac{2x+1}{1+x+x^2} dx$
- $\Rightarrow A(t) \ge \frac{4}{3\sqrt{\rho}} \left[\ln \left(1 + x + x^2 \right) \right]_{\frac{1}{2}}^{t}$
- $\Rightarrow A(t) \ge \frac{4}{3\sqrt{e}} \ln\left(1 + t + t^2\right) \frac{4}{3\sqrt{e}} \ln\left(\frac{3}{4}\right)$
- b) $A(t) \ge \frac{4}{3\sqrt{e}} \ln(1+t+t^2) \frac{4}{3\sqrt{e}} \ln(\frac{3}{4})$ et
- $\lim_{t \to +\infty} \left[\frac{4}{3\sqrt{e}} \ln\left(1 + t + t^2\right) \frac{4}{3\sqrt{e}} \ln\left(\frac{3}{4}\right) \right] = +\infty \quad \text{d'où}$
- $\lim_{t\to +\infty} A(t) = +\infty$

Session principale 2009:

Exercice1:

- 1) vrai.
- 2) faux.
- 3) vrai.
- 4) faux.
- 5) vrai.
- 6) faux.

Exercice2:

1. $1/|z_B| = OB = 2$ et arg $(z_B) \equiv (\widehat{u}, \widehat{OB})$ (2π)

$$\equiv \pi - \frac{\pi}{3} (2\pi)$$

D'où $\arg(z_B) \equiv \frac{2\pi}{3}$ (2 π).

Par suite $z_B=2.\left(\cos\frac{2\pi}{3}+i.\sin\frac{2\pi}{3}\right)$

$$Z_B=2.\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)=-1+i\sqrt{3}$$

2/ a) C est le symétrique de B par rapport à l'axe des ordonnées (voir figure)

b) $z_A=2$ on a: $aff(\overrightarrow{OA})=z_A=2$

Aff
$$(\overrightarrow{BC}) = z_C - z_B = 2$$

D'ou $\overrightarrow{OA} = \overrightarrow{BC}$ par suite OACB est un parallélogramme. De plus OA=OB=2 donc OACB est un losange.

$$3/a) Z_0^3 = 0^3 = 0$$

$$z_A^3 = 2^3 = 8$$
; $z_B^3 = (2e^{i\frac{2\pi}{3}})^3 = 8e^{2i\pi} = 8$

Z_O³, z_A³ et z_B³ sont des réels positifs ou nuls.

Par suite O, A et B appartiennent à E.

b)
$$M \in [OB) \Rightarrow \overrightarrow{OM} = \propto . \overrightarrow{OB}$$
; $\alpha \geq 0$.

$$\Rightarrow$$
 z= \propto . z_B ; $\propto \geq 0$.

$$\Rightarrow$$
 $z^3 = x^3 \cdot z_B^3 = 8 \cdot x^3$; $x \ge 0$.

D'où z^3 est un réel positif ou nul. Par suite : $M \in E$.

c)z=r.
$$e^{i\theta}$$
 ; $z^3=r^3.e^{3i\theta}$

 z^3 est un réel positif SSi arg $(z^3)=2k\pi$; $k\in\mathbb{Z}$.

SSi
$$3\theta = 2k\pi : k \in \mathbb{Z}$$
.

SSi
$$\theta = \frac{2k\pi}{3}$$
; $k \in \mathbb{Z}$.

d) Me
$$E \iff$$
 M=O ou $(\widehat{u}, \widehat{OM}) = \frac{2k\pi}{3}$;

k∈ℤ.

 \Leftrightarrow M \in [OA) \cup [OB) \cup [OD) avec D est le symétrique de C par rapport à O.

Exercice3:

1/ a)
$$\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CG}$$

$$=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AE}$$

$$=2\vec{\imath}+4\vec{\jmath}+3\vec{k}$$

b)

$$\overrightarrow{EB} = \overrightarrow{EA} + \overrightarrow{AB} = \overrightarrow{AB} - \overrightarrow{AE}$$

$$\overrightarrow{EB} = 2\overrightarrow{i} - 3\overrightarrow{k}$$
D'où $\overrightarrow{EB} \begin{pmatrix} 2 \\ O \\ -3 \end{pmatrix}$

*
$$E(0,0,3)$$
 et $G(2,4,3)$ d'ou $\overrightarrow{EG} \begin{pmatrix} 2\\4\\0 \end{pmatrix}$

Par suite :
$$\overrightarrow{EB} \wedge \overrightarrow{EG} \begin{pmatrix} 12 \\ -6 \\ 8 \end{pmatrix}$$
.

c)
$$\overrightarrow{EB} \wedge \overrightarrow{EG} \begin{pmatrix} 12 \\ -6 \\ 8 \end{pmatrix}$$
 est un vecteur normal au plan

(EBG), d'où (EBG): 12x-6y+8z+d=0

$$E(0,0,3) \in (EBG)$$
 ce qui donne 24+d=0
d=-24 par suite : (EBG) :12x-6y + 8z - 24 = 0
(EBG) : 6x-3y+4z-12=0

2/ a)
$$\overline{AM} \begin{pmatrix} 2\alpha \\ 4\alpha \\ 3\alpha \end{pmatrix}$$
 et $\overline{AG} \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$ on a donc

 $\overrightarrow{AM} = \alpha . \overrightarrow{AG}$ avec $\alpha \neq 1$ d'où M appartient à la droite (AG) privée du point G.

b)

6.(2 \propto)-3.(4 \propto)+4.(3 \propto)-12=12.(\propto -1) \neq 0car $\alpha \neq 1$ d'où M n'appartient pas au plan (EBG) .

3/ a)
$$v = \frac{1}{6} \left| \overrightarrow{EM} \cdot \left(\overrightarrow{EB} \wedge \overrightarrow{EG} \right) \right|$$

Avec
$$\overrightarrow{EM} \begin{pmatrix} 2\alpha \\ 4\alpha \\ 3(\alpha-1) \end{pmatrix}$$
 et $\overrightarrow{EB} \wedge \overrightarrow{EG} \begin{pmatrix} 12 \\ -6 \\ 8 \end{pmatrix}$ d'où

$$V = \frac{1}{6} |24\alpha - 24\alpha + 24(\alpha - 1)| = 4|\alpha - 1|$$

b) Pour M=A ; $\alpha=0$

v= v'= 4|0-1|=4 c)soit V le volume de ABCDEFGH. V=2 \times 4 \times 3 =24

$$v = V \Leftrightarrow 4|\alpha - 1| = 24 \Leftrightarrow |\alpha - 1| = 6$$

 $\Leftrightarrow \alpha - 1 = 6 \text{ ou } \alpha - 1 = -6$
 $\Leftrightarrow \alpha = 7 \text{ ou } \alpha = -5$

Exercice4:

1/a) C et Γ sont les courbes représentatives respectivement des fonctions v et u .

b)
$$u(0)=v(0)=u(1)=v(1)=0$$

* pour x \in] 0, 1[; u(x) > v(x) car Γ est au dessus de C sur]0,1[·

* pour x \in] 1, + ∞ [; v(x) > u(x) car Γ est au dessous de C sur]0,1[·

D'où :

, D 0u .	0	1	1
Х		4	Ι +ω
U(x)-v(x)	0	+ 0) –

$$2/\lim_{x\to 0^+} \frac{f(x)-f(0)}{x} = \lim_{x\to 0^+} \left(-\frac{x^2}{3} + \frac{3}{4}x - \frac{1}{2}x.\ln x\right)$$

D'où f est dérivable à droite en 0 et $f'_{d}(0)=0$

3/a) * pour x=0 on a : f'(0)=u(0)-v(0).

• Pour x > 0

$$f'(x) = -x^{2} + \frac{3}{2}x - \frac{1}{2}(2x \cdot \ln x + x^{2} \cdot 1/x)$$

$$= -x^{2} + \frac{3}{2}x - x \cdot \ln x - \frac{1}{2}x$$

$$= -x^{2} + x - x \cdot \ln x$$

$$= u(x) - v(x)$$

b)A=
$$\int_0^1 (u(x) - v(x)) dx$$

= $\int_0^1 f'(x) dx$
= $[f(x)]_0^1$
= $f(1) - f(0)$

4/a) f'(x)=u(x)-v(x)

Х	0		1	+∞
f'(x)	0	+	d	
f(x)	0 /		\$\frac{5}{12}\	

$$\lim_{x \to +\infty} f(x) = -\infty \quad \text{car}$$

$$\lim_{x \to +\infty} \left(-\frac{x^3}{3} + \frac{3}{4}x^2 \right) = \lim_{x \to +\infty} \left(-\frac{x^3}{3} \right) = -\infty \text{ et}$$

$$\lim_{x \to +\infty} \left(-\frac{1}{2} x^2 . \ln x \right) = -\infty$$

b)f est continue et strictement décroissante sur $[1 , +\infty[$ elle réalise donc une bijection de $[1 , +\infty[$ sur $]-\infty , \frac{5}{12}]$. Comme $0\in]-\infty , \frac{5}{12}]$ alors il existe un unique réel ∞ de l'intervalle $[1 , +\infty[$ tel que $f(\infty)=0$.

f est continue et strictement croissante sur[0,1[et f(0)=0 d'où l'équation f(x)=0 admet 0 comme unique solution dans [0,1[.

Concl: l'équation f(x)=0 admet \propto comme unique solution non nulle.

Par suite la courbe (C_f) coupe l'axe ($0,\overline{\iota}$) en un seul point autre que O.

f(1,5).f(1,6) <0 à vérifier

d'où 1,5<∝< 1,6.

c) $f'_d(0)=0$ d'où (C_f) admet une demi-tangente horizontale au point O.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(-\frac{x^2}{3} + \frac{3}{4}x - \frac{1}{2}x \cdot \ln x \right) = -\infty$$

D'où (C_f) admet une branche parabolique de direction celle de (O,\overrightarrow{J}) au voisinage de $+\infty$.

Session de contrôle 2009:

Exercice1:

1/b) l'équation z²=-16 admet exactement deux

2/ b) un argument de $(1+i)^{2009}$ est $\frac{\pi}{4}$.

3/b)
$$f(x) = \frac{1}{2}e^{2x} + 1$$

$$4/a$$
) $y''+4y=0$

Exercice2:

2/ a)
$$I = \int_{1}^{2} x \ln x dx$$

On pose:
$$\begin{cases} u'(x) = x \\ v(x) = lnx \end{cases}$$
 on aura :
$$\begin{cases} u(x) = \frac{x^2}{2} \\ v'(x) = \frac{1}{x} \end{cases}$$

$$I = \left[\frac{x^2}{2} \ln x\right]_{\frac{1}{e}}^2 - \int_{\frac{1}{e}}^2 \frac{x}{2} dx$$
$$= \left[\frac{x^2}{2} \ln x\right]_{1}^2 - \left[\frac{x^2}{4}\right]_{1}^2$$

D'où
$$=2\ln 2 - 1 + \frac{3}{4e^2}$$

b)
$$V = \pi . \int_{\frac{1}{e}}^{2} f^{2}(x) dx = \pi \left(\int_{\frac{1}{e}}^{2} (1 + x \ln x) dx \right)$$

$$V = \pi \left(\int_{\frac{1}{e}}^{2} 1.dx + \int_{\frac{1}{e}}^{2} x \ln x dx \right)$$

$$V = \pi \left(\left[x \right]_{\frac{1}{2}}^{2} + I \right)$$

$$V = \pi \left(2 - \frac{1}{e} + 2 \ln 2 - 1 + \frac{3}{4e^2} \right)$$

$$V = \pi \left(1 + 2 \ln 2 - \frac{1}{e} + \frac{3}{4e^2} \right)$$

Exercice3:

1/
$$p_1=p(2 \le X \le 4) = e^{-2(0,2)} - e^{-4(0,2)} = e^{-0,4} - e^{-0,8}$$

2/
$$p_2 = p(X \ge 2) = e^{-0.4}$$

$$3/ p=1-(1-e^{-0.4})^4$$

P=0.98

Exercice4:

$$\frac{1}{\vec{u}\begin{pmatrix} 2\\ -2\\ -1 \end{pmatrix}}, \ \vec{v}\begin{pmatrix} 1\\ 2\\ -2 \end{pmatrix} \text{ et } \overrightarrow{AB}\begin{pmatrix} 6\\ 3\\ 6 \end{pmatrix}$$

$$\vec{v} \cdot \vec{v} = 2 - 4 + 2 = 0$$

$$\vec{u} \cdot \vec{v} = 2 - 4 + 2 = 0$$

$$\det(\vec{u}, \vec{v}, \overrightarrow{AB}) = 2 \cdot \begin{vmatrix} 2 & 3 \\ -2 & 6 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 6 \\ -2 & 6 \end{vmatrix} - \begin{vmatrix} 1 & 6 \\ 2 & 3 \end{vmatrix}$$
$$= 2(18) + 2(18) - (-9) = 81$$

b) $\vec{u} \cdot \vec{v} = 0$ d'où Δ et D sont orthogonales.

 $det(\vec{u}, \vec{v}, \overrightarrow{AB}) \neq 0$ d'où les vecteurs \vec{u}, \vec{v} et \overrightarrow{AB} ne sont pas coplanaires par suite Δ et D ne sont pas coplanaires.

c) Q passe par A et dont un couple de vecteurs directeurs est (\vec{u}, \vec{v}) .

$$\vec{u} \wedge \vec{v} \begin{pmatrix} 6 \\ 3 \\ 6 \end{pmatrix}$$
 est un vecteur normal à Q d'ou

Q: 6x+3v+6z+d=0

$$A(-3,-1,-3) \in P \Rightarrow -18-3-18+d=0$$

Donc d=39 par suite Q:6x+3y+6z+39=0

$$Q: 2x+y+2z+13=0$$

$$2/C(-1,0,-1)$$
; R=6

$$P: 2x+y+2z+13=0$$

a)d(C,P)=
$$\frac{\left|-2+0-2+13\right|}{\sqrt{4+1+4}} = \frac{9}{3} = 3$$
 et R=6

d(C,P)<R d'où S et P sont sécants suivant un Cercle de rayon $r=\sqrt{36-9}=\sqrt{27}=3\sqrt{3}$

AE P et \overrightarrow{AC} ($\overset{\circ}{1}$) est normal à P d'où A est le

Le projeté orthogonal de C sur P. par suite A est Le centre du cercle d'intersection de S et P.

b)
$$\overrightarrow{CB} \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

 \overrightarrow{CB} . $\overrightarrow{v} = 4+4-8=0$ et CB=6=R et B \in D On a donc B ∈ S et (CB) perpendiculaire à D d'ou

D est tangente à S en B. 3/a) AB= $\sqrt{36+9+36}=9$

On a: CB=R=6; AC=d(C,P)=3 d'ou

AB= AC+CB par suite $C \in [AB]$

b) (AC) \perp P et $\Delta \subset$ P d'où (AC) $\perp \Delta$

(BC) ⊥ D et A, B, C sont alignés

D'où la droite (AB) est la perpendiculaire commune aux Droites D et A.

Exercice5:

$$f(x) = -1 + \frac{x-1}{x+1}e^{x}$$

$$1/\lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} (-1 + \frac{x-1}{x+1}e^{x})$$

$$= +\infty$$

$$\lim_{x \to (-1)^+} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -1 \operatorname{car} \lim_{x \to -\infty} \frac{x-1}{x+1} = 1 \operatorname{et} \lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to +\infty} f(x) = +\infty \operatorname{car} \lim_{x \to +\infty} \frac{x-1}{x+1} = \operatorname{1et} \lim_{x \to +\infty} e^x = +\infty$$

2/a)
$$f'(x) = \frac{(x+1)-(x-1)}{(x+1)^2} e^x + \frac{x-1}{x+1} e^x$$

$$=\left(\frac{2}{(x+1)^2} + \frac{x-1}{x+1}\right)e^x = \frac{x^2+1}{(x+1)^2}e^x$$

b) f'(x) > 0

b) r (x)>	• 0	
x	∞ -	1 +∞
f'(x)	+	+
f(x)	+ ∞ -1	+∞

3/ a) f est continue et strictement croissante sur

] $-1, +\infty$ [elle réalise donc une bijection de] $-1, +\infty$ [sur IR, comme $0 \in IR$ alors il existe un unique réel \propto dans] $-1, +\infty$ [tel que $f(\propto)=0$.

 $F(1,5).f(1,6) = (-0,10).(0,14) < 0 \quad \text{d'où } 1,5 < \; \propto < 1,6.$

b) *
$$f(\alpha)=0 \implies -1 + \frac{\alpha-1}{\alpha+1}e^{\alpha} = 0$$

$$\Rightarrow \frac{\alpha-1}{\alpha+1}e^{\alpha} = 1$$

$$\Rightarrow e^{\alpha} = \frac{\alpha+1}{\alpha-1}$$

$$e^{\alpha} = \frac{\alpha+1}{\alpha-1} \implies e^{-\alpha} = \frac{\alpha-1}{\alpha+1} \text{ d'ou}$$

$$f(-\alpha) = -1 + \frac{-\alpha - 1}{-\alpha + 1}e^{-\alpha}$$
$$= -1 + \frac{\alpha + 1}{\alpha - 1}e^{-\alpha}$$

$$=-1 + \left(\frac{\alpha+1}{\alpha-1}\right) \cdot \left(\frac{\alpha-1}{\alpha+1}\right) = -1 + 1 = 0$$
4/a)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{-1}{x} + \left(\frac{x-1}{x+1}\right)\left(\frac{e^x}{x}\right)\right) = +\infty$$

 (C_f) admet une branche parabolique de direction Celle de (O_f) au voisinage de $+\infty$.

b)

Les droites d'équations x=-1 et y=-1 sont des $Asymptotes \grave{a} \ (C_f).$

	1000
•	
•	

Collection

C M S

9aim - 8aim - 7aim

1 ère - 2 ème - 3 ème - 4 ème

Prix: 8000

I.S.B.N: 978-9938-808-09-

