Section: Chapter.2 Linear transformations and Matrices

2.1 Linear Transformation, Null spaces and Ranges

Def: Let V and W be vector spaces over \mathbb{F} . A function $T:V\to W$ as a linear transformation (線性轉換)

if

1)

2)

for all $\alpha \in \mathbb{F}$ and $u, v \in V$

Remark: We define $\mathcal{L}(V, W) = \{\text{all linear transformation from } V \text{ into } W\}$.

Thm: $\mathcal{L}(V, W)$ is a subspace of V.

Ex. The differentiable operator is a linearly mapping. 【101 政大應數、105 中央統計】

Proof:

Ex. Determine whether the following transformations are linear.

a)
$$T[x_1, x_2, x_3]^T = [x_1 + 1, x_2 - 1, x_3]^T$$
. 【107 中央資工】

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (x+y,x)$. 【107 中央資工類題、107 台大電機】

c)
$$L: \mathbb{R}^3 \to \mathbb{R}^2$$
, $L(x) = (x_1 + 2x_2, 3x_2 + x_3)^T$. 【108 台北資工】

d)
$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
, $L(x) = [(x_1 + x_2)^2, x_1 + x_2, x_2]^T$. 【97.99 成大資工、101 台大電信】

Ex. Determine whether the following transformations are linear.

a)
$$T: M_{22} \to M_{22}$$
, $T(A) = A^T$. 【90 成大電信、95 中興資料、99 中正數學】

b)
$$T: M_{22} \to \mathbb{R}$$
, $T(A) = \det(A)$. 【107 高雄應數、109 成大電信】

c)
$$L$$
 is defined on $\mathbb{R}^{n \times n}$, $L(A) = e^A$. 【97.99 成大資工、107 中央資工】

Ex. Determine whether the following transformations are linear.

a)
$$T(ax^2 + bx + c) = (a + b)x + (b + c)$$
. 【107 中央資工】

b)
$$T: P_2(\mathbb{R}) \to P_2(\mathbb{R}), T(f(x)) = xf'(x).$$
【101 中正數學】

c)
$$T: P_2 \to P_3$$
 by $T(p(t)) = (t+3)p(t)$. 【110 成大電機】

d)
$$T: P_3 \to P_3$$
, $L(p(t)) = p''(t) + p(0)$. 【101 台北統計】

e) $T(f(x)) = f(x) \cos x : V \to V$, where V be the set of continuous real valued functions on $[0,2\pi]$.

【108 交大應數】

Thm: Let $T \in \mathcal{L}(V, V')$.

- a) If $W \leq V$, then $T(W) \leq V'$.
- b) If $W' \leq V'$, then $T^{-1}(W') \leq V$.

(線性映射保子空間)

◎ 一些特殊的線性映射

Thm: Let $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$. Then $T {x \choose y} = {\cos \theta \choose \sin \theta} {-\sin \theta \choose y} {x \choose y}$ is a rotation mapping by θ .

(表示平面上的點(x,y),經逆時針旋轉 θ 角後到達的位置)

Proof:

Cor: 繞 \mathbb{R}^3 上x,y,z軸的旋轉矩陣.

a)
$$\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
表示繞著 z 軸,由 x 方向往 y 方向旋轉 θ 角的旋轉矩陣.

b)
$$\begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$$
 表示繞著 y 軸,由 x 方向往 z 方向旋轉 θ 角的旋轉矩陣.

$$c)\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$
表示繞著 z 軸,由 x 方向往 y 方向旋轉 θ 角的旋轉矩陣.

Thm: Let
$$T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$$
. Then $T \binom{x}{y} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \binom{x}{y}$ is a reflection mapping about L with angel θ . (表示平面上的點 (x,y) , 對直線 L 做鏡射後到達的位置,其中直線 L 與 x 軸夾角為 θ)

Proof:

Cor: 對R³上平面的鏡射矩陣.

a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
為 \mathbb{R}^3 上對 xy 平面做鏡射的鏡射矩陣.

b)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 為 \mathbb{R}^3 上對 xz 平面做鏡射的鏡射矩陣.

c)
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
為 \mathbb{R}^3 上對 yz 平面做鏡射的鏡射矩陣.

Thm: Let $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$. Then

1)
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 is a projection matrix about *x*-axis.

(表示平面上的點(x,y), 投影在x軸上的位置)

2)
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 is a projection matrix about y-axis.

(表示平面上的點(x,y),投影在y軸上的位置)

Proof:

Cor: ℝ3上的投影矩陣

a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 為投影在 xy 平面上的投影矩陣.

b)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 為投影在 yz 平面上的投影矩陣.

c)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 為投影在 xz 平面上的投影矩陣.

d)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 為投影在 x 軸上的投影矩陣.

e)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 為投影在 y 軸上的投影矩陣.

f)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 為投影在 z 軸上的投影矩陣.

Def: If a linear operator T that satisfies $T^2 = T$. We called that T is an idempotent operator (幂等算子).

Ex. Show that $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ defined by $T(A) = \frac{A + A^T}{2}$ is an idempotent.

Proof:

Def: Let $T \in \mathcal{L}(V, W)$. We define

- 1) $N(T) = \ker(T) = \{v \in V | T(v) = 0_W\}$ is called the null space (核空間) of T.
- 2) $R(T) = \{T(v) | v \in V\}$ is called the range (值域) of T.

Remark: 1) $N(id_V) =$ _____ and $R(id_V) =$ _____.

2)
$$N(0_{V \to W}) =$$
_____ and $R(0_{V \to W}) =$ _____.

Def: Define $nullity(T) = \dim(N(T))$ and $rank(T) = \dim(R(T))$.

Thm: 1) N(T) is a subspace of V. 【101 成大應數、105 台大資工】

2) R(T) is a subspace of W.

Proof:

Thm: (Theorem 2.3: Dimension Theorem: 維度定理)

Let $T \in \mathcal{L}(V, W)$. If $\dim(V) < \infty$, then _____.

- Ex. For the linear transformation T defined by $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 2x_2 + x_3 + x_4 \\ 2x_1 5x_2 + x_3 + 3x_4 \\ x_1 3x_2 + 2x_4 \end{pmatrix}$.
 - a) Find a basis for the range of T.
 - b) Find a basis for the null space of T. 【109 師大資工】

Ex. Let $T: P_2 \to P_2$ be given by T(p(x)) = p(x-1). Consider the two ordered bases $\beta = \{x^2, x, 1\}$ and $\gamma = \{x, x+1, x^2-1\}$. If the basis is γ , find the dimension of ker (T) and the basis of ker (T). 【110 政大資料】

Ex. Let the mapping $L: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $L(x) = (x_1 + 2x_2, 3x_2 + x_3)^T$. Determine the kernel of L. 【108 台北資工】

Ex. Define $T(A) = \frac{A+A^T}{2}$, where A is a $n \times n$ matrix. Then

- a) $\ker(T) = \underline{\hspace{1cm}}$.
- b) (nullity(T), rank(T)) =______.

【101 清大數學、103 政大應數、103 中興應數、106 高雄應數、102 台大資工】

Remark: 1) 任何 linear transformation 均保 linearly dependent.

- 2) T為一對一函數 if and only if T保 linearly independent.
- 3) T為映成函數 if and only if T保 spanning set.

2.2 The matrix representation of a linear transformation

Def: Let $T \in \mathcal{L}(V,W)$. Let $\beta = \{v_1, ..., v_n\}$ and $\gamma = \{w_1, ..., w_n\}$ be ordered basis for V and W, respectively. Then $[T]_{\beta}^{\gamma} = \left([T(v_1)]_{\gamma} \big| [T(v_2)]_{\gamma} \big| \cdots \big| [T(v_n)]_{\gamma} \right)_{\underline{\hspace{1cm}}}$ is called the matrix representation (表現矩陣) of T in the ordered basis β and γ .

Remark: If V = W and $\beta = \gamma$, then $[T]^{\gamma}_{\beta} = [T]_{\beta}$.

Ex. Let $T: P_3 \to P_3$ be the linear transformation is defined by T(p(x)) = 2p(x) - p'(x). Let $B = \{3 + 2x + x^2, -x + 2x^2, 1 + x^2\}$. Find the matrix T with respect to the basis B. 【109 台科資工】

- Ex. Let $V = \{p(t)|p(t) = a_0 + a_1t \text{ defined on } [-1,1] \text{ for some } a_0, a_1 \in \mathbb{R} \}$ and $W = \{q(t)|q(t) = b_0 + b_1t + b_2t^2 \text{ defined on } [-1,1] \text{ for some } b_0, b_1, b_2 \in \mathbb{R} \}$. Note V and W are vector spaces and having natural bases $S = \{p_1(t) = 1, p_2(t) = t\}$ and $T = \{q_1(t) = 1, q_2(t) = t, q_3(t) = t^2\}$, respectively. Let the linear mapping $L: V \to W$ be defined by $L(p(t))(t) = \int_{-1}^1 p(x) \, dx$.
 - a) Please find $[L(p_1(t))]_T$ and $[L(p_2(t))]_T$, the coordinate vectors of $L(p_1(t))$ and $L(p_2(t))$ with respect of the ordered basis T. Show your work.
 - b) Please find the matrix representing L with respect to the bases S and T. 【107 政大統計】

2.3 Composition of the Linear Transformation and Matrix Multiplication

Thm: (Theorem 2.9)

Let $T \in \mathcal{L}(V, W)$ and $W \in \mathcal{L}(W, Z)$. Then $(U \circ T)(x) = U(T(x)) \in \mathcal{L}(V, Z)$.

Remark: TU is not defined.

2.4 Invertibility and Isomorphism

Def: Let $T \in \mathcal{L}(V, W)$. If $T \circ U = id_W$ and $U \circ T = id_V$, then we called $U \in \mathcal{L}(W, V)$ is inverse (可逆元/反元素). If T has an inverse, then we called T is invertible (可逆的). Finally, if T is invertible, then the inverse of T is _____ and we denoted by T^{-1} .

Thm: T is invertible if and only if T is bijective.

Thm: Let V and W are finite-dimensional vector space and let $T \in \mathcal{L}(V, W)$.

- a) T is injective if and only if $N(T) = \{0_V\}$. 【97 輔大資工、102.108 台北統計】
- b) T is surjective if and only if R(T) = W.
- c) If $\dim(V) = \dim(W)$, then T is injective if and only if T is onto.

【97 政大統計、101 中興應數】

Proof:

- Thm: 1) If T is injective, then $\dim(V) \leq \dim(W)$.
 - 2) If T is surjective, then $\dim(W) \leq \dim(V)$.

Proof:

Def: Let V and W be vector spaces over \mathbb{F} . Let $T \in \mathcal{L}(V,W)$. T is an isomorphism (同構函數) if T is bijection. If $T \in \mathcal{L}(V,W)$ is an isomorphism, we say that V and W are isomorphic (同構:此指向量空間), denoted by $V \cong W$.

Thm: Let V and W are finite-dimensional vector space over \mathbb{F} .

- 1) $V \cong W$ if and only if $\dim(V) = \dim(W)$. (同維即同構) 【100 交大資工、103 師大數學】
- 2) $\mathcal{L}(V, W)$ is a vector space over \mathbb{F} .

Proof:

Def: Let $T \in \mathcal{L}(V)$ and $W \leq V$. If $T(W) \subseteq W$, then W is called the T-invariant (T的不動子空間).

Thm: $\{0\}$, V, N(T), R(T) are T-invariant.

Thm: If $W_1, ..., W_k$ are T-invariant, then

- 1) $W_1 + \cdots + W_k$ is T-invariant. 【99 交大應數】
- 2) $W_1 \cap \cdots \cap W_n$ is T-invariant. 【99 交大應數】

Thm: (Theorem 2.18)

Let $T \in \mathcal{L}(V, W)$ and let β and γ be the orderd bases for V and W. Then T is isomorphism if and only if $[T]_{\beta}^{\gamma}$ is invertible and $[T^{-1}]_{\beta}^{\gamma} = \left([T]_{\beta}^{\gamma}\right)^{-1}$.

※ 求 inverse 時經常會用到這條定理,請務必熟記.

Thm: If T and U are invertible, then TU is invertible and $(TU)^{-1} = \underline{\hspace{1cm}}$.

2.5 The Change of Coordinate matrix.

Thm: Let β and β' be ordered bases for V. Let $Q = [I_V]_{\beta}^{\beta'}$.

- 1) Q is invertible.
- 2) $[v]_{\beta'} = [I_v]_{\beta}^{\beta'}[v]_{\beta}$. (一般化的座標變換公式)

Thm: (Change of variable:座標變換)

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. Let β and γ be ordered bases over V.

Then

where $Q = [I_V]_{\gamma}^{\beta}$.

※ 任何向量空間的基底變換都依照這個定理,請務必記下,且要學會追蹤座標~~~

Ex. Let $u_1={3 \choose 1},\ u_2={5 \choose 2},$ and let L be the linear operator that rotates vectors in \mathbb{R}^2 by 45° in the counterclockwise direction. Find the matrix representation of L with respect to the ordered basis $\{u_1,u_2\}.$ 【96 台科電機類題、102.104 成大資工】

- Ex. Let $T: P_2 \to P_2$ be given by T(p(x)) = p(x-1). Consider the two ordered bases $\beta = \{x^2, x, 1\}$ and $\gamma = \{x, x+1, x^2-1\}$.
 - a) Find $[T]_{\beta}$ and $[T]_{\gamma}$.
 - b) Find the matrix S such that $[T]_{\gamma} = S[T]_{\beta}S^{-1}$. 【110 政大資料】