SUPPLEMENTARY MATERIAL OWL-NETS: Abstracting OWL for Network Inference

Callahan, Baumgartner, Bada, Stefanski, Tripodi, White, and Hunter

1. Acronyms and Definitions

1.1. Acronyms

- AUC: area under the receiver operating characteristic curve
- CCDF: Complementary Cumulative Distribution Function
- OBO: Open Biomedical Ontologies
- SPARQL: SPARQL Protocol RDF Query Language
- OWL: Web Ontology Language

1.2. Definitions

- Diameter: shortest distance between the two most distant nodes in the network.
- **Degree Heterogeneity:** is a measure of how much the degree distribution of a network deviates from a "regular network".¹
- Disassortativity: a network is said to have a dissassortative structure if high degree nodes tend to be connected to lower degree nodes.
- Cliques: a complete subgraph within a network.
- Clustering Coefficient: measure of how much the nodes of a network tend to cluster together.

2. Link Prediction Algorithms

The eight local similarity algorithms, defined consistent with the literature, ^{2,3} are:

(1) Degree Product: Given two nodes i and j, this measure is calculated as the product of the degree (i.e., the number of connected nodes) of nodes i and j, where k is the node degree:

$$score(i,j) = k_i k_j$$
 (1)

(2) Common Neighbors: Given two nodes i and j, this measure is calculated as the number of neighbors that are common to both nodes i and j, where $\Gamma(j)$ is the set of nodes connected to node j:

$$score(i,j) = |\Gamma(i) \cap \Gamma(j)|$$
 (2)

(3) Jaccard Coefficient:⁴ Given two nodes i and j, this measure is calculated as the number of neighbors that are common to both nodes i and j normalized by the number of nodes adjacent to either node i or node j:

$$score(i,j) = \frac{|\Gamma(i) \cap \Gamma(j)|}{|\Gamma(i) \cup \Gamma(j)|}$$
(3)

(4) Srenson Similarity:⁵ Given nodes i and j, this measure is calculated as the number of neighbors that are common to both nodes i and j normalized by the sum of the degrees of node i and node j:

$$score(i,j) = \frac{|\Gamma(i) \cap \Gamma(j)|}{k_i + k_j}$$
 (4)

(5) Leicht-Holme-Newman: Given two nodes i and j, this measure is calculated as the number of neighbors that are common to both nodes i and j normalized by the product of the degrees of node i and node j:

$$score(i,j) = \frac{|\Gamma(i) \cap \Gamma(j)|}{k_i * k_j}$$
(5)

(6) Shortest Paths: Given two nodes i and j, this measure is calculated as the reciprocal of the length of the shortest path from node i to node $j(\sigma(i,j))$:

$$score(i,j) = \frac{1}{\sigma(i,j)}$$
 (6)

A score of zero is given for all node pairs not connected by a path.

(7) Resource Allocation: Given two nodes i and j, this measure is calculated as the sum of the reciprocal of the degrees of nodes adjacent to both nodes i and j:

$$score(i,j) = \sum_{z \in \Gamma(i) \cap \Gamma(j)} \frac{1}{k_z}$$
 (7)

(8) Adamic-Advar: 8 Given two nodes i and j, this measure is calculated as the sum of the reciprocal of the log of the degrees of the nodes adjacent to both nodes i and j:

$$score(i,j) = \sum_{z \in \Gamma(i) \cap \Gamma(j)} \frac{1}{\log(k_z)}$$
 (8)

The two global similarity algorithms, defined consistent with the literature, 9 are:

(1) Katz:¹⁰ Given an unweighted adjacency matrix A, $A_{i,j}$ is one if there is a link between nodes i and j and zero if there is not. Each element of A_{ij} , A^k has value equal to the number of walks with length k between nodes i and j:

$$score(i,j) = \sum_{k=1}^{\infty} \beta^k A_{ij}^k \tag{9}$$

where β , must be lower than the largest eigenvector of matrix A, that is used to give shorter paths more weight. Consistent with the literature, ¹¹ a value of $\beta = 0.001$ was used.

(2) Rooted PageRank: A random walker starts from node i and randomly moves to a neighbor of node i. The walker then has a probability of $1 - \alpha$ for teleporting back to node i. Consistent with the literature, 11 a value of $\alpha = 0.15$ was used.

Table S1. Descriptive Characteristics by Network Representation

Property	OWL	OWL-NETS	p-value
Nodes	1578.400 (155.850)	247.950 (22.741)	< 0.0001
Edges	4110.930 (445.103)	1130.100 (153.514)	< 0.0001
Average Degree	5.204 (0.091)	9.083 (0.473)	< 0.0001
Density	$0.003\ (0.000)$	0.037(0.002)	0.002
Diameter	10.000(0.000)	$5.880\ (0.325)$	< 0.0001
Clustering Coefficient	$0.067 \ (0.005)$	$0.338\ (0.013)$	0.013
Degree Assortativity	-0.223 (0.001)	-0.122 (0.019)	0.019
Degree Heterogeneity	$13.684\ (1.542)$	2.354 (0.185)	< 0.0001
Number of Shortest Paths	5694.170 (1054.645)	683.680 (116.755)	< 0.0001
Average Shortest Path Length	$3.760 \ (0.039)$	2.934 (0.048)	< 0.0001
Number of Cliques	3532.050 (376.901)	703.110 (95.554)	< 0.0001

Table S2. Descriptive Characteristics by Network Representation and Query

Property	Q2:OWL	Q2:OWL-NETS	Q3:OWL	Q3:OWL-NETS
Nodes	840	59	22,679	1783
Edges	1426	59	33,848	3940
Average Degree	3.419	2.000	2.980	4.420
Density	0.0040	0.0344	0.0001	0.0020
Diameter	13	4	9	18^{a}
Degree Assortativity	-0.193	-0.630	-0.124	-0.308
Degree Heterogeneity	8.789	4.533	558.463	6.673
Number of Shortest Paths	2,683	202	91,483	$8,986^{a}$
Average Shortest Path Length	4.06	3.19	4.13	6.54^a

^{*}Query (Q). All descriptives were run on the undirected versions of the networks.

 $[^]a\mathrm{Query}$ 3: OWL-NETS statistics were derived on the largest connected component.

Table S3. Query 2 Link Prediction Run-Time

Algorithm	OWL	OWL-NETS
Degree Product	00:00:07	00:37:42
Shortest Path	00:00:10	01:49:08
Common Neighbors	00:00:07	00:31:47
Jaccard Coefficient	00:00:07	00:32:04
Sorenson Similarity	00:00:07	00:32:09
Leicht-Holme-Newman	00:00:07	00:32:09
Adamic Advar	00:00:08	00:32:51
Resource Allocation	00:00:07	00:32:36
Katz	00:00:30	08:12:51
Rooted Page Rank	00:01:00	12:16:21

Fig. S1. Comparison of Link Prediction Methods by Network. (left) The original OWL representation network and (right) the OWL-NETS abstraction networks created from Query 2 (Table 1).

Fig. S2. Link Prediction Methods. The OWL-NETS abstraction networks created from Query 3 (Table1).

Table S4. Top Scoring Edges from the Query 3 OWL-NETS Abstraction Networks (n=6 edges)

Node 1	Node 2	Description
AG- 1067^a	$\mathrm{MMP2}^b$	AGI-1067 is derived from probucol, which has been shown to decrease MMP-2 expression and activity in Apolipoprotein E-deficient mice. 12
DB03683 a	$\mathrm{APAF1}^b$	DB03683a targets MMP9 through an unknown mechanism. Downregulation of MMP9 induces APAF1 expression. 13
$celiprolol^a$	CYCS^b	Celiprolol is an investigational drug used to treat hypertension. Cytochrome c has been shown to mediate hypertension in rats and in humans. 14,15
1454838^{c}	TF^b	TF binds to and transports iron. Iron is required for the proliferation of multiple myeloma cells. CD147 (1454838) is overexpressed in multiple myeloma cells and is positively correlated with cell proliferation. ^{16,17}
$DB04513^{a}$	$\mathrm{RAF1}^b$	DB04513 targets Calmodulin 1, which can regulate the threshold for activation of the Ras/Raf/MEK/ERK signaling pathway. 18
$\mathrm{CXCL}12^b$	$DB07691^{a}$	DB07691 is an n-phenylbenzamide, which can inhibit the Mitochondrial Permeability Transition Pore whose continual opening is associated with mitochondrial dysfunction. CXCL12 regulates mitochondria association around the MTOC (microtubule organizing center). ^{19,20}

^aDrugBank entity (DrugBank ID used for experimental compounds); ^bUniprot entity (gene symbol shown); ^cReactome entity (database identifier).

References

- 1. E. Estrada (ed.), The structure of complex networks: theory and applications (Oxford University Press, 2012).
- 2. A. Clauset, C. Moore and M. E. J. Newman, *Nature* 453, 98 (2008).
- 3. S. Soundarajan and J. Hopcroft, Using community information to improve the precision of link prediction methods, in *Proceedings of the 21st International Conference on World Wide Web*, ACM, 2012.
- 4. P. Jaccard, Bull Soc Vaudoise Sci Nat 37, 547 (1901).
- 5. J. A. Hanley and B. J. McNeil, *Biol Skr* 5, 1 (1948).
- 6. E. A. Leicht, P. Holme and M. E. Newman, *Physical Review E* 73, p. 026120 (2006).
- 7. T. Zhou, L. Lu and Y.-C. Zhang, Eur Phys J B 71, 623 (2009).
- 8. L. A. Adamic and E. Adar, Soc Networks 25, 211 (2003).
- 9. R. Guns, J Data Inform Sci 1, 59 (2016).
- 10. L. Katz, Psychometrika 18, 39 (1953).
- 11. D. Liben-Nowell and J. Kleinberg, J. Am. Soc. Inf. Sci. 58, 1019 (2007).
- 12. B. J. Wu, N. D. Girolamo, K. Beck, C. G. Hanratty, K. Choy, J. Y. Hou, M. R. Ward and R. Stocker, *J Pharmacol Exp Ther* **321**, 477 (2007).
- 13. C. S. Gondi, N. Kandhukuri, D. H. Dinh, W. C. Olivero, M. Gujrati and J. S. Rao, *Int J Oncol* 33, 783 (2008).
- 14. C. P. Venditti, M. C. Harris, D. Huff, I. Peterside, D. Munson, H. S. Weber, J. Rome, E. M. Kaye, S. Shanske and S. Sacconi, *J Inherit Metab Dis* 27, 735 (2004).
- 15. W.-Z. Ying and P. W. Sanders, *Kidney Int* **59**, 662 (2001).
- 16. B. K. Arendt, D. K. Walters, X. Wu, R. C. Tschumper, P. M. Huddleston, K. J. Henderson, A. Dispenzieri and D. F. Jelinek, *Leukemia* **26**, 2286 (2012).
- 17. K. VanderWall, T. R. Daniels-Wells, M. Penichet and A. Lichtenstein, *J Inherit Metab Dis* 18, 449 (2013).
- 18. N. Agell, O. Bachs, N. Rocamora and P. Villalonga, Cell Signal 14, 649 (2002).
- G. Morlino, O. Barreiro, F. Baixauli, J. Robles-Valero, J. Gonzalez-Granado, R. Villa-Bellosta, J. Cuenca, C. O. Sanchez-Sorzano, E. Veiga, N. B. Martn-Cfreces and F. Snchez-Madrid, *Mol Cell Biol* 34, 1412 (2014).
- 20. S. Roy, J. ileikyt, B. Neuenswander, M. P. Hedrick, T. D. Chung, J. Aub, F. J. Schoenen, M. A. Forte and P. Bernardi, *ChemMedChem* 11, 283 (2016).