Topología Algebraica

Guido Arnone

Ejercicio 3. Sea X un espacio topológico y $U = \{U_i\}_{i \in I}$ un cubrimiento por abiertos de X. El nervio de U es el complejo simplicial N(U) cuyos vértices son los abiertos del cubrimiento y los símplices son los subconjuntos finitos no vacíos de U, $s = \{U_{i_0}, \ldots, U_{i_n}\}$ tales que $\bigcap U_{i_k} \neq \emptyset$. Notar que efectivamente N(U) es un complejo simplicial. Se dice que un espacio topológico X tiene dimensión $\leq n$ si todo cubrimiento abierto de X admite un refinamiento abierto cuyo nervio es un complejo simplicial de dimensión $\leq n$. Decimos que dim X = n si dim $X \leq n$ y dim $X \leq n-1$. Probar que:

- a) Si $A \subseteq X$ es cerrado entonces dim $A \le \dim X$.
- b) Los espacios discretos tienen dimensión 0.
- c) El intervalo I tiene dimensión 1.
- d) Si K complejo simplicial finito y dim K = n entonces dim $|K| \le n$. (En realidad vale la igualdad, se verá más adelante).

Demostración. Probamos cada inciso por separado.

a) Sea $A\subseteq X$ cerrado, $n:=\dim X$ y $\mathcal{U}=\{U_i\}_{i\in I}$ un cubrimiento por abiertos de A. Existe entonces para cada $i\in I$ un abierto V_i de X tal que $U_i=V_i\cap A$, y es entonces que la colección $\mathcal{O}=\{V_i\}_{i\in I}\cup \{A^c\}$ cubre X por abiertos, ya que A es cerrado. Por hipótesis, tenemos entonces un refinamiento $\tilde{\mathcal{O}}=\{O_j\}_{j\in J}$ de \mathcal{O} tal que $N(\tilde{\mathcal{O}})$ es un complejo simplicial de dimensión menor o igual que n. Afirmamos ahora que $\tilde{\mathcal{U}}=\{O_j\cap A\}_{j\in J}$ es refinamiento de \mathcal{U} : tenemos que

$$\bigcup_{j\in J} O_j\cap A=A\cap \bigcup_{j\in J} O_j=A\cap X=A,$$

y dado $j \in J$ luego $O_j \cap A$ es abierto en A pues O_j es abierto en X. Por úlimo, si $O_j \cap A \neq \emptyset$ luego $O_j \not\subset A^c$ y existe $i_j \in I$ con $O_j \subset V_{i_j}$ y entonces $O_j \cap A \subset V_{i_j} \cap A = U_{i_j} \in \mathcal{U}$. En cualquier caso, $O_j \cap A$ es subconjunto de algún elemento de \mathcal{U} . Para terminar, veamos que dim $N(\tilde{\mathcal{U}}) \leq n$. Sea $\sigma = \{O_{j_0} \cap A, \ldots, O_{j_k} \cap A\}$ un símplex del nervio de $\tilde{\mathcal{U}}$. Luego,

$$\varnothing \neq \bigcap_{i=0}^k A \cap O_{j_i} \subset \bigcap_{i=0}^k O_{j_i}$$

y entonces $\{O_{j_0},\ldots,O_{j_k}\}$ es un símplex de $N(\tilde{\mathcal{O}})$. Como este último tiene dimensión a lo sumo n, es

$$\dim \sigma = k \le \dim N(\tilde{\mathcal{O}}) \le n$$

y en consecuencia, dim $N(\tilde{\mathcal{U}}) \leq n$.

- b) Sea $X = \{x_{\alpha}\}_{{\alpha} \in \Lambda}$ discreto y $\mathcal U$ un cubrimiento de X por abiertos. Afirmamos que el conjunto $\mathcal O := \{\{x\} : x \in X\}$ es un refinamiento de $\mathcal U$. Los elementos de $\mathcal O$ son abiertos pues X es discreto. Por otro lado si $\{x\} \in \mathcal O$, entonces como $\mathcal U$ es cubrimiento de X existe $U \in \mathcal U$ tal que $x \in U$. Equivalentemente es $\{x\} \subset U$, y así probamos que el primero es subconjunto de algún abierto de $\mathcal U$. Basta entonces con probar que el nervio de $\mathcal O$ es de dimensión 0. Como los simplices de $N(\mathcal O)$ consisten de abiertos de $\mathcal O$ cuya intersección sea no vacía, alcanza con ver que cualesquiera dos abiertos de $\mathcal O$ son disjuntos. Esto es claro: si $\{x\} \neq \{y\} \in \mathcal O$, entonces $x \neq y$ y $\{x\} \cap \{y\} = \mathcal O$.
- c) Veamos en primer lugar que dim I \leq 0. Sea $\mathcal{U} = \{[0,\frac{2}{3}), (\frac{1}{3},0]\}$ cubrimiento de I. Cualquier refinamiento de \mathcal{U} tiene entonces al menos 2 elementos. Si I tuviese dimensión cero, existiría un refinamiento \mathcal{O} de \mathcal{U} cuyo nervio es de dimensión cero. Esto diría que los abiertos de \mathcal{O} son disjuntos y por conexión conluiríamos entonces que $1 = \#\mathcal{O} \geq 2$, lo que es absurdo.

Probemos ahora que dim $I \leq 1$. Sea $\mathcal{U} = \{U_i\}_{i \in I}$ un cubrimiento por abiertos de I. Como los abiertos de R son unión numerable de intervalos abiertos y disjuntos, luego para cada $i \in I$ existen conjuntos $J_i \subset \mathbb{N}$ e intervalos $\{I_i^i\}_{i \in I_i}$ abiertos (en I) y disjuntos tales que $U_i = \bigsqcup_{j \in J_i} I_j^i$. Por compacidad tenemos luego intervalos $I_1,\ldots,I_n\in\{I_i^i\}_{i\in I,j\in J_i}$ tales que $\bigcup_{i=1}^NI_i=I$ y, por construcción, cada intervalo es subconjunto de algún abierto U_i . Obtuvimos así un refinamiento $\mathcal{O}_0 = \{I_1, \dots, I_n\}$ de \mathcal{U} . Construimos a continuación un refinamiento \mathcal{O} de \mathcal{U} de la siguiente forma: tomamos primero los intevalos de \mathcal{O}_0 . A los que no sean abiertos (como intervalos) les quitamos los extremos: estos seguirán siendo abiertos en I, pues sólo pueden provenir de alguno de la forma [0,1], (a,1] o [0,b). Luego, dados $J_0,J_1\in\mathcal{O}_0$ con $s \in J_s$ para $s \in \{0,1\}$, agregamos entornos $E_0 := [0,\epsilon), E_1 := (1-\epsilon,1]$ a \mathcal{O} con $0 < \varepsilon \ll 1$ tal que estos sean disjuntos y estén contenidos en J_0 y J_1 respectivamente. Esto garantiza que \mathcal{O} cubre a I ya que volvemos a cubrir sus extremos. Finalmente, de existir algún intervalo que esté contenido en la unión de otros, seleccionamos alguno de ellos y lo quitamos. Repetimos el proceso hasta que no haya más intervalos de este tipo, lo cual es posible pues hay finitos intervalos en total. Como removemos intervalos de uno, \mathcal{O} sigue siendo refinamiento pues sigue cubriendo a I.

Afirmamos ahora que $N(\mathcal{O})$ es de dimensión a lo sumo 1, o equivalentemente, que no hay tres intervalos de \mathcal{O} cuya intersección sea no vacía. Supongamos que sí y sean $\{J_i\}_{1\leq i\leq 3}\subset \mathcal{O}$ de intersección no vacía y tales que el interior de J_i en \mathbb{R} es (a_i,b_i) . Como los intervalos no se contienen entre sí, existen dos de ellos distintos

¹Esto evita tratar por separado la posible elección de E₀ o E₁, ya que al ser los únicos dos intervalos semiabiertos, el argumento que sigue funciona aún si $a_1 ∈ J_1$ o $b_3 ∈ J_3$. Siempre tenemos que tanto J_2 o $J_1 ∩ J_3$ son intervalos abiertos, y no hace falta que las desigualdades entre a_1 y a_2 o b_2 y b_3 sean estrictas.

con el menor extremo izquierdo y mayor extremo derecho, que suponemos son J_1 y J_3 respectivamente. Así, $J_1 \cap J_3 = (a_3,b_1)$. Como $J_2 \not\subseteq J_1$ debe ser $b_2 > b_1$, y similarmente como $J_2 \not\subseteq J_3$ tenemos que $a_2 < a_3$. Si ahora $s \in J_2$, entonces $a_1 \leq a_2 < s < b_2 \leq b_3$. Si $s \neq J_1$, luego $s > b_1 > a_3$ y consecuentemente $s \in J_3$. En cualquier caso, $s \in J_1 \cup J_2$. Esto implica que $J_2 \subset J_1 \cap J_2$, lo que es absurdo: no hay entonces tres intervalos cuya intersección sea no vacía. Dado un cubrimiento arbitrario encontramos un refinamiento cuyo nervio es de dimensión a lo sumo 1, lo que completa la demostración.

d) Si K complejo simplicial finito y dim K = n entonces dim $|K| \le n$. (En realidad vale la igualdad, se verá más adelante).