### **SYDE 556/750**

#### Simulating Neurobiological Systems Lecture 2: Neurons

Andreas Stöckel

January 9, 2020





### Textbook Neuron and Cell Membrane



### Injecting a Current Into a Detailed Neuron Model



Computer simulation of an Hodgkin-Huxley type neuron with Traub kinematics (Roger D. Traub and Richard Miles, *Neuronal Networks of the Hippocampus*, Cambridge University Press, 1991)

## The Leaky Integrate-and-Fire Equivalent Circuit



## Injecting a Current Ramp into a Detailed Neuron Model



Computer simulation of an Hodgkin-Huxley type neuron with Traub kinematics (Roger D. Traub and Richard Miles, *Neuronal Networks of the Hippocampus*. Cambridge University Press, 1991)

## Injecting a Current Ramp into a LIF Neuron Model



## Exploring the LIF Rate Approximation





### Limits of the LIF Rate Approximation membrane votential





(k) resonator

(r) accomodation

(d) phasic

hursting













adaptation



excitable



induced spiking

(e) mixed mode







adaptation



### Artifical Rate Neurons: LIF



$$G[J] = \frac{1}{\tau_{\text{ref}} + \tau_{\text{RC}} \log \left(1 - \frac{1}{J}\right)}$$

- Biologically motivated
- Captures saturation effects
- Relatively slow to evaluate numerically (for machine-learning people)
- Spike onset is smooth in noisy systems

### Artifical Rate Neurons: ReLU



$$G[J] = \max\{0, J\}$$

- Fast to evaluate
- Rough approximation of the LIF response curve
- Does not capture saturation effects
- Spike onset is smooth in noisy systems

## Artifical Rate Neurons: Smooth ReLU (Softplus)



$$G[J] = \log(1 + \exp(J))$$

- Models smooth spike onset
- Rough approximation of the LIF response curve
- Does not capture saturation effects

## Artifical Rate Neurons: Logistic Function



$$G[J] = \frac{1}{1 + e^{-J}}$$

# Usefulness to neurobiological systems modellers:

Models smooth spike onset and saturation (?)

## Artifical Rate Neurons: Hyperbolic Tangent



$$G[J] = \tanh(J) = \frac{e^J - e^{-J}}{e^J + e^{-J}}$$

- Models smooth spike onset and saturation (?)
- Negative rates