Wyniki:

Eksperymenty zostały przeprowadzone dla 3 metod uczenia modelu ML:

- analizy całości ruchu sieciowego z ekstrakcją prostego zestawu cech: entropia, średnia, odchylenie standardowe
- analizy całości ruchu sieciowego z ekstrakcją pełnego zestawu cech: wariancja, współczynnik skośności, współczynnik Kurtoza, wskaźnik punktów zwrotnych (turning points rate)
- przesuwnego okna z ekstrakcją pełnego zestawu cech

Dla każdej metody predykcję powtórzono 64 razy z podziałem 70%/30% danych treningowych i testowych oraz wyliczona została zwykła i zbalansowana dokładność wykrywania anomalii.

Wyniki eksperymentów zostały przedstawione na wykresach. Pierwsze dwa wykresy przedstawiają porównanie dokładności wykrywania anomalii poszczególnych metod odpowiednio dla zbalansowanej średniej (figura 1) i zwykłej średniej (figura 2). Pozostałe wykresy zawierają porównanie wyników dokładności zbalansowanej i zwykłej dla każdej z metod: analizy całościowej z ekstrakcją prostych cech (figura 3), analizy całościowej z ekstrakcją pełnych cech (figura 4) oraz przesuwnego okna (figura 5). Dla każdej z metod wyliczono średnią wartość dokładności zbalansowanej i zwykłej, co zostało przedstawione w tabeli 1.

Wnioski:

Analiza uzyskanych wyników i wyliczonych statystyk pozwala uzyskać następujące wnioski w zakresie wykrywania anomalii przez modele:

- Wszystkie modele uzyskały wysokie wartości dokładności w wykrywaniu anomalii (powyżej 90%), co oznacza, że wszystkie analizowane metody trenowania modeli pozwalają uzyskać akceptowalne wyniki.
- Całościowa analiza z ekstrakcją prostych cech uzyskała nieco gorsze wyniki dokładności od pozostałych, zarówno dla dokładności zbalansowanej (o ok. 1pp.) i zwykłej (o ok 0.5pp.)
- Metody analizy całościowej z pełnymi cechami i przesuwanego okna uzyskały niemal identyczne wyniki (ok. 95% zbalansowanej i ok 97% zwykłej dokładności)
- Żadna z metod nie uzyskiwała zawsze lepszych lub gorszych wyników od pozostałych dla
 eksperymentów (to, który algorytm uzyskał najlepszą dokładność, a który najgorszą, było
 zależne od konkretnego eksperymentu). Nieznaczna różnica w dokładności jest dobrze
 widoczna jedynie po wyliczeniu średnich z wyników.
- Dla wszystkich metod średnie wyniki dokładności zwykłej były o ok. 2-3pp. wyższe od średnich wyników dokładności zbalansowanej.
- Dla niektórych eksperymentów wyniki dokładności zbalansowanej były wyższe od wyników dokładności zwykłej.
- Ze względu na bardzo wysoką dokładność modelu i to, że kategorie danych nie były bardzo
 mocno niezbalansowane, do stwierdzenia skuteczności modelu nie jest konieczne
 wyliczenie dokładności zbalansowanej (można to ocenić już po wynikach zwykłej
 dokładności).

Porównanie wyników - zbalansowana dokładność

Porównanie wyników - zwykła dokładność

Porównanie dokładności - proste cechy

Porównanie dokładności - pełne cechy

Porównanie dokładności - przesuwane okno

Typ dokładności	Proste cechy	Pełne cechy	Przesuwane okno
zbalansowana	93.88%	94.97%	95.00%
zwykła	96.56%	96.89%	96.98%