Load Testing and Benchmarks

© 2004 D. A. Menascé, All Rights Reserved.

QoS Management Activities

- Benchmarking
- Load Testing
- Application Performance Management

Benchmarking

- Process used to compare the performance of a hardware or software system, the System Under Test (SUT).
 - Workload specification
 - Specification of metrics
 - Specification of measurement procedures

© 2004 D. A. Menascé. All Rights Reserved.

Benchmarking

- Workload specification: type of requests and frequency of submission of requests to the SUT.
 - Download the home page of a Web site every minute, 24 hours a day, from agent programs.
 - Mimic the execution of a customer buying books from an online bookstore according to some CBMG (see TPC-W).
 - Execute an online transaction on an online brokerage site.

Benchmarking

- Specification of metrics:determines what to measure.
 - Average download time of the home page and all of its components.
 - TPC-W: WIPS (Web Interactions per Second), \$/WIPS, WIPSb, WIPSo.

© 2004 D. A. Menascé. All Rights Reserved.

Benchmarking

- Specification of the measurement procedure: how the values of the metrics are obtained.
 - Average the home page download obtained by each agent.
 - Divide the total number of Web pages downloaded during the experiment by the measurement interval.

Web and E-commerce Benchmarks

- Standard Performance Evaluation Corporation: SPECWeb99
 - http://www.specbench.org/osg/web99/
- Mindcraft: Webstone
 - http://www.mindcraft.com/webstone/
- Transaction Processing Council: TPC-W
 - http://www.tpc.org/

8

SPECweb99

- Successor to SPECweb96.
- Standard workload includes:
 - Connections at low speed
 - Dynamic and static GETs and POSTs
 - HTTP 1.0 and 1.1
 - Dynamic ad rotation using cookies and table lookup.
 - File access pattern more closely matching actual web workloads.
- A new extension of SPECweb99, called SPEC web99 SSL, tests secure web servers over SSL connections.

© 2004 D. A. Menascé, All Rights Reserved.

SPECweb99 Workload

- The workload file set consists of a number of directories. Each directory contains 9 files per class, 36 files in total.
- The files in Class 0 are in increments of 0.1K, those in Class 1 are in increments of 1K, those in Class 2 are in increments of 10K, and those in Class 3 are in increments of 100K in size.
- A Zipf distribution is used to access files in each directory.

SPECweb99 Workload (cont'd)

File Size Distribution (four classes):

Class	File Size (KB)	Access Percentage
0	0-1	35%
1	1-10	50%
2	10-100	14%
3	100-1000	1%

© 2004 D. A. Menascé. All Rights Reserved.

SPECweb99 metric

- SPECweb99 measures the maximum number of simultaneous connections, requesting the predefined benchmark workload that a web server is able to support while still meeting specific throughput (40-50KB/sec) and error rate requirements.
- The connections are made and sustained at a specified maximum bit rate with a maximum segment size (1460 bytes) intended to more realistically model conditions that will be seen on the Internet during the lifetime of this benchmark.

SPECWeb Example

 An estimate for the number of concurrent customers, N, during the peak period is 10,000. The maximum avg. response time is 4 sec. The average think time per customer is estimated at 3 seconds.
 SPECWeb99 is deemed to be representative of the workload.

© 2004 D. A. Menascé. All Rights Reserved.

SPECWeb Example (cont'd)

From the Response Time Law:

$$X_0 \ge \frac{N}{R+Z} = \frac{10,000}{4+3} = 1,429 \text{ requests/sec}$$

- Avg. number of simultaneous connections?
 Let the avg. network time = 1.2 sec.
 Therefore, the Web site time 2.8 sec (= 4.0 1.2).
- From Little's Law:

$$N_{conn} = X_0 \times R_{site} = 1429 \times 2.8 = 4,001$$

SPECWeb99 Results

System	Conforming Connections	Throughput (req/sec)	Response Time (sec)	Kbps
А	1890	5190.1	351.9	341.1
В	3222	9020.4	358.5	335.9
С	8710	24,334.1	359.6	340.2

Select system C since it meets both the throughput and avg. no. connections requirements.

© 2004 D. A. Menascé. All Rights Reserved.

WebStone Workload

- Originally developed by SGI
- Workload specified in files read by clients.
- Requests supported:
 - GET HTML files
 - Run CGI Scripts
 - Run applications through server APIs (e.g., ISAPI and NSAPI).

TPC-W: an E-commerce benchmark by the TPC

- www.tpc.org
- Designed to mimic operation of an e-commerce site (e-tailer).
- Scalable in number of concurrent users and in the database size.
- Transactions generated by TPC-W include:
 - Browsing activities (e.g., browse, search, select, view product detail)
 - Product order activities (e.g., shopping cart, login, register, buy request, and buy confirm)
- Database transactions must be ACID.
- Security through SSL is used for authentication.

© 2004 D. A. Menascé. All Rights Reserved.

8

TPC-W Types of Sessions

- Browsing mix: 95% browse interactions and 5% ordering interactions 0.69% buy to visit ratio.
- Shopping mix: 80% browse interactions and 20% ordering interactions – 1.2% buy to visit ratio.
- Ordering mix: 50% browse interactions and 50% ordering interactions – 10.18% buy to visit ratio.

© 2004 D. A. Menascé. All Rights Reserved.

TPC-W Metrics: throughput and cost/throughput

- WIPS (Web Interactions Per Second) during shopping mix sessions. Specified as WIPS@number_items
- WIPSb Web Interactions Per Second during browsing mix sessions.
- WIPSo Web Interactions Per Second during ordering mix sessions.
- Cost/Performance

Hdw Cost + Softw Cost + Maint. Cost

WIPS

22

Example of TPC-W for 10,000 Items in the Catalog

Rank	System	WIPS	\$/WIPS
1	Α	5,745	\$ 69.00
2	В	3,130	\$ 67.50
3	С	3,008	\$ 81.77
4	D	1,262	\$277.08

- ☐ the total price of System A is \$396,405, i.e., 5,745 x \$69.00.
- □ system D costs almost the same, i.e., \$349,675 but can only deliver 22% of the maximum throughput measured in WIPS.

© 2004 D. A. Menascé. All Rights Reserved.

TPC Emulated Browsers (EBs)

- ☐ Each EB starts a session and generates all requests of that session.
- ☐ The minimum duration of a session (USMD) is exponentially distributed with mean 15 minutes, truncated at 60 minutes.

TPC Emulated Browsers (EBs)

Emulated Browsers

- ☐ Requests are separated by user think times (Z), which are exponentially distributed with mean 7 sec truncated at 70 sec.
- □Response Time Law:

R = (No. EBs)/WIPS - Z

© 2004 D. A. Menascé. All Rights Reserved.

Use of Interactive Response Time Law to TPC-W Results

Rank	System	WIPS	\$/WIPS
1	Α	5,745	\$ 69.00
2	В	3,130	\$ 67.50
3	С	3,008	\$ 81.77
4	D	1,262	\$277.08

$$R = \frac{\text{No. EBs}}{\text{WIPS}} - Z$$

- ☐ Assume 50,000 concurrent users.
- \square System A: R = 50,000/5,745 7 = 1.7 sec.
- \square System D: R = 50,000/1,262 7 = 32.6 sec.

TPC-W Database

☐Minimum of 8 tables with defined minimum number of fields:

Customer: Customer name and ID information.

Address: Customer address data.

➤ Country: Country name and exchange rate information,

➤ Order: Order total and shipping information,

➤ Order line: Order line item data,

> Credit card: Credit card data,

>Item: Book information, and

➤ Author: Author data.

☐TPC-W provides a function (WGEN) to generate the item title and the author last name in the database. We wrote a program to populate all other fields.

Example of TPC-W for 10,000 Items in the Catalog

Rank	System	WIPS	\$/WIPS
1	Α	5,745	\$ 69.00
2	В	3,130	\$ 67.50
3	С	3,008	\$ 81.77
4	D	1,262	\$277.08

- ☐ the total price of System A is \$396,405, i.e., 5,745 x \$69.00.
- □ system D costs almost the same, i.e., \$349,675 but can only deliver 22% of the maximum throughput measured in WIPS.

Load Testing

- Virtual user: emulates a real user.
- Virtual users need to have realistic think times.
- Virtual users should act like frustrated users and abandon the site in the case of excessive response time.
- Session abandonment is important for the correct assessment of a site's revenue throughput.

Load Testing

- What parameters to vary:
 - Workload intensity (session starts/hr)
 - Workload mix (combination of scripts)
 - Abandonment threshold and think times.
- Results of a load test:
 - Number of completed and abandoned sessions/hr as a function of the number of started sessions/hr
 - Revenue throughput and potential lost revenue throughput as a function of the number of started sessions/hr
 - Individual page download times and transaction completion times as a function of the number of started sessions/hr

Application Performance Management (APM)

- Management processes aimed at guaranteeing that the QoS of e-business applications meet their business goals.
- Approaches to APM:
 - reactive (fire-fighting): monitor QoS and react to problems
 - proactive (preferred): try to reduce occurrences of poorly performing applications.

