

UNIDADI

Transformada Discreta de Fourier

REPRESENTACIÓN

$$X[k] = R[k] + jI[k]$$

Magnitud

$$|X[k]| = \sqrt{R^2[k] + \text{Im}^2[k]}$$

Fase

$$\phi[k] = \tan^{-1} \frac{\operatorname{Im}[k]}{R[k]}$$

TRANSFORMADA DE FOURIER DE TIEMPO DISCRETO

- Representación en el dominio de la frecuencia de las señales de tiempo discreto
 - Señales discretas representadas con espectros periódicos

$$X_p(F) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi kF}$$

Inversa

$$x[n] = \int_{-\frac{1}{2}}^{\frac{1}{2}} X_p(F) e^{j2\pi nF} dF$$

TRANSFORMADA DISCRETA DE FOURIER

 Señales periódicas y discretas en un dominio son periódicas y discretas en el otro

$$X_{DFT}[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi nk}{N}} \quad k = 0,1,2,...N-1$$

Inversa

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k] e^{j\frac{2\pi nk}{N}} \qquad n = 0, 1, 2, \dots, N-1$$

TRANSFORMADA RÁPIDA DE FOURIER

Considerando

$$X_{DFT}[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi nk}{N}} \quad k = 0,1,2,...N-1$$

Entonces

$$W_N = e^{-\frac{j2\pi}{N}}$$

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn} \qquad k = 0,1,2,\dots,N-1$$

RELACIONES DE WN

$$W_N = e^{-\frac{j2\pi}{N}}$$

$$W_N^2 = \left(e^{-j\frac{2\pi}{N}}\right)^2 = e^{-j\frac{2\pi 2}{N}} = e^{-j\frac{2\pi}{N}} = W_N$$

$$W_N^{\left(k+\frac{N}{2}\right)} = W_N^k W_N^{\frac{N}{2}} = W_N^k e^{-j\left(\frac{2\pi}{N}\right)^{\left(\frac{N}{2}\right)}} = W_N^k e^{-j\pi} = -W_N^k$$

TRANSFORMADA RÁPIDA DF FOURIFR

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn} \qquad k = 0,1,2,\dots,N-1$$

$$X_{1}[k] = \underbrace{\sum_{n=0}^{N/2^{-1}} x_{2n} W_{N}^{2nk}}_{Par} + \underbrace{\sum_{n=0}^{N/2^{-1}} x_{2n+1} W_{N}^{(2n+1)k}}_{Impar}$$

$$X[k] = \sum_{n=0}^{\frac{N}{2}-1} x_{2n} W_N^{2nk} + W_N^k \sum_{n=0}^{\frac{N}{2}-1} x_{2n+1} W_N^{2nk}, \quad k = 0,1,2,\cdots,N-1$$

TRANSFORMADA RÁPIDA DF FOURIFR

$$X[k] = \sum_{n=0}^{\frac{N}{2}-1} x_{2n} W_{\frac{N}{2}}^{nk} + W_N^k \sum_{n=0}^{\frac{N}{2}-1} x_{2n+1} W_{\frac{N}{2}}^{nk}, \quad k = 0,1,2,\cdots,N-1$$

$$X_1[k] = \underbrace{X_{11}[k]}_{Par} + \underbrace{W_N^k X_{12}[k]}_{Impar}$$
, $k = 0,1,2,...,N-1$

FFT DE 8 PUNTOS

									k	n
Datos	A_0	$x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7$								07
DFT 8 puntos	$X_1[k] = X_{11}[k] + W_N^k X_{12}[k]$								0N-1 07	07
Dos secuencias	A_1	$x_0x_2x_4x_6$			A_2	$x_1 x_3 x_5 x_7$				03
DFT 4 puntos	<i>X</i> ₁₁ [$X_{11}[k] = X_{21}[k] + W_{\frac{N}{2}}^{k} X_{22}[k]$				$[k] = X_{23}[k]$	0N/2-1 03	03		
4 secuencias	A_3	x_0x_4	A_4	x_2x_6	A_5	$x_1 x_5$	A_6	x_3x_7		01
DFT 2 puntos	$X_{21}[k] = x_0$ $+W_{\frac{N}{4}}^k x_4$		$X_{22}[k] = x_2$ $+W_{\frac{N}{4}}^k x_6$		$X_{23}[k] = x_1 $ $+ W_{\frac{N}{4}}^k x_5$				0N/4-1 01	01

$$X_{21}[k] = x_0 + W_{\frac{N}{4}}^k x_4$$

$$X_{21}[0] = x_0 + x_4$$

$$X_{21}[1] = x_0 + W_2 x_4 = x_0 + e^{-j\frac{2\pi}{2}} x_4 = x_0 + e^{-j\pi} x_4 = x_0 - x_4$$

$$X_{21}[0] = x_0 + x_4$$
 $X_{21}[1] = x_0 - x_4$

$$X_{22}[0] = x_2 + x_6$$
 $X_{22}[1] = x_2 - x_6$

$$X_{23}[0] = x_1 + x_5$$
 $X_{23}[1] = x_1 - x_5$

$$X_{24}[0] = x_3 + x_7$$
 $X_{24}[1] = x_3 - x_7$

$$X_{11}[k] = X_{21}[k] + W_{\frac{N}{2}}^{k} X_{22}[k]$$

$$X_{11}[0] = X_{21}[0] + W_{N/2}^{0}X_{22}[0] = X_{21}[0] + X_{22}[0]$$

$$X_{11}[1] = X_{21}[1] + W_{\frac{N}{2}}^{1}X_{22}[1] = X_{21}[1] + e^{-j\frac{\pi}{2}}X_{22}[1] = X_{21}[1] - jX_{22}[1]$$

$$X_{11}[2] = X_{21}[2] + W_{\frac{N}{2}}^{2}X_{22}[2] = X_{21}[2] + e^{-j(\frac{2\pi}{8})(2)(2)}X_{22}[2]$$

$$X_{11}[2] = X_{21}[2] + e^{-j\pi}X_{22}[2] = X_{21}[2] - X_{22}[2]$$

$$X_{21}[2] = x_0 + W_{\frac{N}{4}}^2 x_4 = x_0 + W_2^2 x_4 = x_0 + x_4 = X_{21}[0]$$

$$X_{22}[2] = x_2 + W_{\frac{N}{4}}^2 x_6 = x_2 + W_2^2 x_6 = x_2 + x_6 = X_{22}[0]$$

$$\longrightarrow$$
 $X_{11}[2] = X_{21}[0] - X_{22}[0]$

$$X_{11}[3] = X_{21}[3] + W_{\frac{N}{2}}^{3}X_{22}[3] = X_{21}[3] + e^{-j(\frac{2\pi}{4})(3)}X_{22}[3]$$

$$X_{11}[3] = X_{21}[3] + e^{-j\frac{3\pi}{2}}X_{22}[3] = X_{21}[3] + jX_{22}[3]$$

$$X_{21}[3] = x_0 + W_{\frac{N}{4}}^3 x_4 = x_0 + e^{-j\left(\frac{2\pi}{2}\right)(3)} x_4 = x_0 + e^{-j3\pi} x_4 = x_0 - x_4 = X_{21}[1]$$

$$X_{22}[3] = x_2 + W_{\frac{N}{4}}^3 x_6 = x_2 + W_2^3 x_6 = x_2 - x_6 = X_{22}[1]$$

$$X_{11}[3] = X_{21}[1] + jX_{22}[1]$$

$$X_{11}[0] = X_{21}[0] + W_8^0 X_{22}[0] = X_{21}[0] + X_{22}[0]$$

$$X_{11}[2] = X_{21}[0] - W_8^0 X_{22}[0] = X_{21}[0] - X_{22}[0]$$

$$X_{11}[1] = X_{21}[1] + W_8^2 X_{22}[1] = X_{21}[1] - jX_{22}[1]$$

$$X_{11}[3] = X_{21}[1] - W_8^2 X_{22}[1] = X_{21}[1] + jX_{22}[1]$$

MARIPOSA (FFT)

