

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>
Лабораторная работа № <u>1</u>
Тема Исследование псевдослучайных чисел
Студент Сушина А.Д.
Группа ИУ7-716
Оценка (баллы)
Преподаватель Рудаков И.В.

Задание на лабораторную работу

Изучить методы генерирования псевдослучайных чисел, а также критерии оценки случайности последовательности. Реализовать критерий оценки случайной последовательности. Сравнить результаты работы данного критерия на одноразрядных, двухразрядных и трехразрядных последовательностях целых чисел. Последовательности получать алгоритмическим и табличным способами.

Теоретическая часть

Для выполнения работы был выбран критерий «хи-квадрат». Это один из самых известных статистических критериев, также это основной метод, используемый в сочетании с дргуими критериями.

С помощью этого критерия можно узнать, удовлетворяет ли генератор случайных чисел требованию равномерного распределения или нет.

Для оценки по этому критерию необходимо вычислить статистику V по формуле:

$$V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s} \right) - n \quad , \tag{1}$$

где n — количество независимых испытаний, k — количество категорий, Ys — число наблюдений, которые действительно относятся k категории k, k0 рk0 вероятность того, что каждое наблюдение относится k1 категории k2.

Значение V является значением критерия «хи-квадрат» для экспериментальных данных. Приемлемое значение этого критерия можно определить по таблице 1. Для этого используем строку с v = k-1, где k = 10, 90, 900 для задания лабораторной. P в этой таблице — это вероятность того, что экспериментальное значение Vэксп. будет меньше табулированного (теоретического) VTeop. или равно ему. Ее также можно рассматривать как доверительную вероятность.

Если вычисленное V окажется меньше 1%-й точки или больше 99%-й точки, можно сделать вывод, что эти числа недостаточно случайные. Если V лежит между 1% и 5% точками или между 95% и 99% точками, то эти числа «подозрительны». Если V лежит между 5% и 10% точками или 90%-95% точками, то числа можно считать «почти подозрительными». Обычно необходимо произвести проверку три раза и более с разными данными. Если по крайней мере два из трех результатов оказываются подозрительными, то числа рассматриваются как недостаточно случайные.

	p = 1%	p = 5%	p = 25%	p = 50%	p = 75%	p = 95%	p = 99%	
$\nu = 1$	0.00016	0.00393	0.1015	0.4549	1.323	3.841	6.635	
$\nu = 2$	0.02010	0.1026	0.5754	1.386	2.773	5.991	9.210	
$\nu = 3$	0.1148	0.3518	1.213	2.366	4.108	7.815	11.34	
$\nu = 4$	0.2971	0.7107	1.923	3.357	5.385	9.488	13.28	
$\nu = 5$	0.5543	1.1455	2.675	4.351	6.626	11.07	15.09	
$\nu = 6$	0.8721	1.635	3.455	5.348	7.841	12.59	16.81	
$\nu = 7$	1,239	2.167	4.255	6.346	9.037	14.07	18.48	
$\nu = 8$	1.646	2.733	5.071	7.344	10.22	15.51	20.09	
$\nu = 9$	2.088	3.325	5.899	8.343	11.39	16.92	21.67	
$\nu = 10$	2.558	3.940	6.737	9.342	12.55	18.31	23.21	
$\nu = 11$	3.053	4.575	7.584	10.34	13.70	19.68	24.72	
$\nu = 12$	3.571	5.226	8.438	11.34	14.85	21.03	26.22	
$\nu = 15$	5.229	7.261	11.04	14.34	18.25	25.00	30.58	
$\nu = 20$	8.260	10.85	15.45	19.34	23.83	31.41	37.57	
$\nu = 30$	14.95	18.49	24.48	29.34	34.80	43.77	50.89	
$\nu = 50$	29.71	34.76	42.94	49.33	56.33	67.50	76.15	
$\nu > 30$	$\nu + \sqrt{2\nu}x_p + \frac{2}{3}x_p^2 - \frac{2}{3} + O(1/\sqrt{\nu})$							
$x_p =$	-2.33	-1.64	674	0.00	0.674	1.64	2.33	

Таблица 1. Некоторые процентные точки χ^2 - распределения. (Источник: Кнут Д. Э. «Искусство программирования»)

Таким образом, процедура проверки следующая:

- 1. Выделяем k категорий. В нашем случае это количество возможных полученных значений: 10, 90 и 900 для одноразрядных, двухразрядных и трехразрядных.
- 2. Запускаем генератор случайных чисел N раз.
- 3. Определяем количество случайных чисел, попавших в каждую категорию.
- 4. Вычисляем значение V по формуле (1).
- 5. Сравниваем полученное значение с теоретическими значениями в таблице, определяем к какому интервалу оно относится.
- 6. Делаем выводы о случайности величины, возможны три случая:
 - 1. Если Vэксп лежит между 1% и 99% точками, то генератор удовлетворителен. (Однако необходимо учитывать «подозрительные результаты», о которых написано выше)
 - 2. Если Vэксп меньше 1% точки, то генератор не удовлетворителен, так как разброс чисел слишком мал, чтобы быть случайным.

3. Если Vэксп больше 99% точки, то генератор не удовлетворителен, так как разброс чисел слишком велик, чтобы быть случайным.

n-1	P = 1%	P=5%	P=25%	P=50%	P=75%	P=95%	P=99%
V= 9	2.088	3.325	5.899	8.343	11.39	16.92	21.67
V= 89	60.93	68.25	79.68	88.33	97.60	112.02	122.94
V=899	803.31	830.41	870.05	898.33	927.23	969.86	1000.57

Таблица 2. Значения Vтеор для количества степеней свободы по заданию.

По таблице 2 можно будет сделать выводы о полученных в программе значениях.

Результаты работы программы

В качестве алгоритмического метода был взят линейный конгруэнтный метод генерации псевдослучайных чисел.

Программа, реализованная в лабораторной работе, выводит на экран таблицу из 7 столбцов и 12 строк. 10 строк представлены для того, чтобы можно было пронаблюдать, какие числа возвращает генератор случайных чисел. Для каждого из реализованных методов в таблице есть по три столбца для чисел с разным количеством разрядов.

В последнем столбце выводится значение V, подсчитанное для каждого столбца. (N = 10000)

======		====== RES	TART: C:\iu7\sem7\mo			
+	+	Табличный метод -+	+	A. +	лгоритмический мето; +	ц +
Nº	1 разряд	2 разряд	3 разряд	1 разряд	2 разряд	3 разряд
0	8	24	545	3	71	863
1	5	19	249	4	18	526
2	2	83	916	9	l 27	509
3	1 5	45	581	0	J 50	236
4	1	18	982] 3	J 75	831
5	1 5	77	814	0] 38	462
6	1	92	656	J 5	J 57	989
7	0	82	769	0	J 96	300
8	1	28	381	7] 35	999
9] 3	44	558	0	16	698
коэф	15.040000000000873	80.0900000000015	880.4599999999991	3.816000000000713	76.8680000000004	938.059999999995

Рис 1. Первый запуск программы

Ns	1 разряд	2 разряд	3 разряд	1 разряд	2 разряд	3 разряд
0	5	14	686	3	51	977
1	l 6	59	273	l 6	92	500
2	1 2	90	312	7	31	223
3	4	70	204	8	84	122
4	4	22	854	5	19	673
5	1	85	610	4	20	180
6	1	71	621	7	19	695
7	5	21	281	6	74	986
8	9	53	157	5	99	125
9	l 6	29	578	J 8	34	212
коэф	15.94800000000032	90.3140000000003	905.8400000000001	7.727999999999156	74.36599999999999	899.1800000000003

Рис 2. Второй запуск программы

			START: C:\iu7\sem7\m					
Табличный методАлгоритмический метод ++								
l Nº	1 разряд	2 разряд	3 разряд	1 разряд	2 разряд	3 разряд		
1 0	4	36	748	8	62	356		
1	1 8	94	149	1 7	71	539		
2	1 0	87	222	1 0	44	678		
3	J 9	23	460	7	85	769		
4	1 4	63	993	1 2	58	936		
1 5	1 5	52	774	1 7	l 85	551		
6	1	41	696	8	24	262		
7	1 8	47	794] 3	81	805		
8	1 6	50	380	8	l 86	536		
9	1 2	96	117	1 7	97	491		
коэф	9.86399999999578	65.16799999999967	815.1200000000008	11.379999999999	96.09200000000055	892.7000000000007		

Рис 3. Третий запуск программы

Для правильной оценки случайности методов было проведено 3 испытания.

Сравним полученные данные с таблицей 2. Получим следующий результат:

	Г	Габличный ме	год	Алгоритмический метод		
No	1 разряд	2 разряд	3 разряд	1 разряд	2 разряд	3 разряд
эксперимента						
1	75%-95%	25%-50%	25%-50%	5%-25%	5%-25%	75%-95%
2	75%-95%	50%-75%	50%-75%	25%-50%	5%-25%	50%-75%
3	50%-75%	1%-5%	1%-5%	50%-75%	50%-75%	25%-50%

Таблица 3. Оценка полученных результатов.

Как видно из таблицы 3, в некоторых случаях при применении табличного метода значения оказываются «подозрительным», однако это не критично и результаты работы генераторов можно признать удовлетворительными. Для алгоритмического метода полученные значения V находятся в рамках 5%-95%, поэтому можно признать и этот метод удовлетворительным.