Dynamic Programming I

Summer 2017 • Lecture 08/01

A Few Notes

Homework 5

Due Friday 8/4 at 11:59 p.m. on Gradescope.

Homework 6

Released Friday 8/4.

Outline for Today

Dynamic Programming

DP graph algorithms

Bellman Ford

Floyd Warshall

Bellman-Ford

Dijkstra's algorithm solves the single-source shortest path problem in weighted graphs.

Sometimes it works on graphs with negative edge weights, but sometimes it doesn't work.

Bellman-Ford also solves the SSSP problem in weighted graphs.

Always works on graphs with negative edge weights (when a solution exists).

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1. $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1. $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

How do we use $d^{(k-1)}$ to fill in $d^{(k)}[b]$?

Recall $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

Case 1: the shortest path from s to b with at most k edges actually has at most

k - 1 edges.

Suppose k = 3.

 $d^{(k)}[b] = d^{(k-1)}[b]$ i.e. the shortest path of at most k-1 edges is at least as short as any path of at most k edges.

Case 2: the shortest path from s to b with at most k edges really has k edges.


```
algorithm bellman_ford(G): d^{(k)} = [] \text{ for } k = 0 \text{ to } |V| - 1 This is a simplification to make the pseudocode nice. In reality, we'd only keep two of them at a time. d^{(\theta)}[s] = 0 for k = 1 to |V| - 1: for b in V: d^{(k)}[b] = \min\{d^{(k-1)}[b], \min_a\{d^{(k-1)}[a] + w(a,b)\}\} return d^{(|V|-1)}
```

```
algorithm bellman_ford(G): d^{(k)} = [] \text{ for } k = 0 \text{ to } |V| - 1 This is a simplification to make the pseudocode nice. In reality, we'd only keep two of them at a time. d^{(\theta)}[s] = 0 Minimum over all a such that (a, b) \in E. for b in V: d^{(k)}[b] = \min\{d^{(k-1)}[b], \min_a\{d^{(k-1)}[a] + w(a,b)\}\} return d^{(|V|-1)}
```

```
algorithm bellman_ford(G): d^{(k)} = [] \text{ for } k = 0 \text{ to } |V| - 1 This is a simplification to make the pseudocode nice. In reality, we'd only keep two of them at a time. d^{(\theta)}[s] = 0 Minimum over all a such that (a, b) \in E. for b in V: d^{(k)}[b] = \min\{d^{(k-1)}[b], \min_a\{d^{(k-1)}[a] + w(a,b)\}\} return d^{(|V|-1)} Case 1
```

```
algorithm bellman_ford(G): d^{(k)} = [] \text{ for } k = 0 \text{ to } |V| - 1 This is a simplification to make the pseudocode nice. In reality, we'd only keep two of them at a time. d^{(\theta)}[s] = 0 Minimum over all a such that (a, b) \in E. for b in V: d^{(k)}[b] = \min\{d^{(k-1)}[b], \min_a\{d^{(k-1)}[a] + w(a,b)\}\} return d^{(|V|-1)} Case 1 Case 2
```

```
algorithm bellman_ford(G): d^{(k)} = [] \text{ for } k = 0 \text{ to } |V| - 1 This is a simplification to make the pseudocode nice. In reality, we'd only keep two of them at a time. d^{(\theta)}[s] = 0 Minimum over all a such that (a, b) \in E. for b in V: d^{(k)}[b] = \min\{d^{(k-1)}[b], \min_a\{d^{(k-1)}[a] + w(a,b)\}\} return d^{(|V|-1)} Case 1 Case 2
```

```
Slower than Dijkstra's

O(|E| + |V|log(|V|))
```

```
for k = 1 to |V|-1:

for b in V:

d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\}\}
```



```
for k = 1 to |V|-1:

for b in V:

d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\}\}
```



```
for k = 1 to |V|-1:

for b in V:

d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\}
```



```
for k = 1 to |V|-1:

for b in V:

d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\}
```


We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1. Recall $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1.

Recall $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

The shortest path from s to t with 1 edge has cost ∞ (no path exists).

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1.

Recall $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

The shortest path from s to t with 1 edge has cost ∞ (no path exists).

The shortest path from s to t with 2 edges has cost 3 (s-v-t).

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1.

Recall $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

The shortest path from s to t with 1 edge has cost ∞ (no path exists).

The shortest path from s to t with 2 edges has cost 3 (s-v-t).

The shortest path from s to t with 3 edges has cost 2 (s-u-v-t).

We need to prove our main argument.

 $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

For our inductive step, assume that at the start of iteration k, $d^{(k-1)}[b]$ is the cost of the shortest path from s to b with at most k - 1 edges. We consider two cases:

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

For our inductive step, assume that at the start of iteration k, $d^{(k-1)}[b]$ is the cost of the shortest path from s to b with at most k - 1 edges. We consider two cases:

Case 1: $d^{(k-1)}[b] < \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains fewer than k edges. Then our algorithm correctly sets $d^{(k)}[b] = d^{(k-1)}[b]$.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

For our inductive step, assume that at the start of iteration k, $d^{(k-1)}[b]$ is the cost of the shortest path from s to b with at most k - 1 edges. We consider two cases:

Case 1: $d^{(k-1)}[b] < \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains fewer than k edges. Then our algorithm correctly sets $d^{(k)}[b] = d^{(k-1)}[b]$.

Case 2: $d^{(k-1)}[b] \ge \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains exactly k edges. Then our algorithm correctly sets $d^{(k)}[b] = \min_a \{d^{(k-1)}[a] + w(a, b)\}$, which minimizes the sum of the shortest path with at most k-1 edges to an in-neighbor of b and the weight from a to b.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

For our inductive step, assume that at the start of iteration k, $d^{(k-1)}[b]$ is the cost of the shortest path from s to b with at most k - 1 edges. We consider two cases:

Case 1: $d^{(k-1)}[b] < \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains fewer than k edges. Then our algorithm correctly sets $d^{(k)}[b] = d^{(k-1)}[b]$.

Case 2: $d^{(k-1)}[b] \ge \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains exactly k edges. Then our algorithm correctly sets $d^{(k)}[b] = \min_a \{d^{(k-1)}[a] + w(a, b)\}$, which minimizes the sum of the shortest path with at most k-1 edges to an in-neighbor of b and the weight from a to b.

At the start of iteration k = |V|, the algorithm terminates and $d^{(|V|-1)}$ is correct.

We need to prove our main argument.

 $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

What else to do? 🤔

We need to prove our main argument.

 $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

What else to do? 🤔

We still need to prove that this argument implies bellman_ford is correct i.e. $d^{(|V|-1)}[a] = distance(s, a)$.

To show this, we'll prove that the shortest path with at most |V|-1 edges is the shortest path with any number of edges (if a shortest path exists).

If the graph has a negative cycle, a shortest path might not exist!

But if there's no negative cycle.

BF Proof of Correctness

But if there's no negative cycle.

There's always a simple shortest path.

A simple path in a graph with |V| vertices has at most |V|-1 edges in it.

BF Proof of Correctness

But if there's no negative cycle.

There's always a simple shortest path.

A simple path in a graph with |V| vertices has at most |V|-1 edges in it.

We can't add another edge to this s-t path without making a cycle (an edge from s to b wouldn't be along the path).

BF Proof of Correctness

Theorem: bellman_ford is correct as long as the graph has no negative cycles.

Proof:

By our lemma, $d^{(|V|-1)}[b]$ contains the cost of the shortest path from s to b with at most |V|-1 edges. If there are no negative cycles, then the shortest path must be simple, and all simple paths have at most |V|-1 edges. Therefore, the value the algorithm returns, $d^{(|V|-1)}[b]$, is also the cost of the shortest path from s to b with any number of edges.

Bellman-Ford Algorithm

Bellman-Ford gets used in practice.

e.g. Routing Information Protocol (RIP) uses it. Each router keeps a table of distances to every other router. Periodically, we do a Bellman-Ford update.

Dynamic Programming

Bellman-Ford is an example of **dynamic programming**!

Dynamic programming is an algorithm design paradigm.

Often it's used to solve optimization problems e.g. **shortest** path.

Dynamic Programming

Elements of dynamic programming

Large problems break up into small problems.

e.g. shortest path with at most k edges.

Optimal substructure the optimal solution of a problem can be expressed in terms of optimal solutions of smaller sub-problems.

```
e.g. d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\}\}
```

Overlapping sub-problems the sub-problems overlap a lot.

e.g. Lots of different entries of $d^{(k)}$ ask for $d^{(k-1)}[a]$.

This means we're save time by solving a sub-problem once and caching the answer.

Dynamic Programming

Two approaches for DP: bottom-up and top-down.

Bottom-up iterates through problems by size and solves the small problems first (Bellman-Ford solves $d^{(0)}$ then $d^{(1)}$ then $d^{(2)}$, etc.)

Top-down recurses to solve smaller problems, which recurse to solve even smaller problems.

How is this different than divide and conquer? **Memoization**, which keeps track of the small problems you've already solved to prevent resolving the same problem more than once.

Top-Down BF Algorithm

```
algorithm recursive_bellman_ford(G):
  d^{(k)} = [None] * |V| for k = 0 to |V|-1
  d^{(0)}[v] = \infty for all v \neq s
  d^{(0)}[s] = 0
  for b in V:
    recursive_bf_helper(G, b, |V|-1)
algorithm recursive bf helper(G, b, k):
  A = \{a \text{ such that } (a, b) \text{ in } E\} \cup \{b\}
  for a in A:
    if d^{(k-1)}[a] not None:
       d^{(k-1)}[a] = recursive bf helper(G, a, k-1)
  return min{d^{(k-1)}[b], min<sub>a</sub>{d^{(k-1)}[a] + w(a, b)} }
```

Runtime: O(|V||E|)

Visualization of Top-Down

Floyd-Warshall

Another example of a graph DP algorithm!

The algorithm solves the all-pairs shortest path (**APSP**) problem.

A naive solution

```
for s in V:
   run bellman_ford starting at s
Runtime O(|V|2|E|)
```

Can we do better?

We maintain an $|V| \times |V|$ matrix $D^{(k)}$ for each k = 0, 1, ..., |V|.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

We maintain an $|V| \times |V|$ matrix $D^{(k)}$ for each k = 0, 1, ..., |V|.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

from 0 to 0 that passes through no other vertices.

We maintain an $|V| \times |V|$ matrix $D^{(k)}$ for each k = 0, 1, ..., |V|.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

from 0 to 0 that passes through no other vertices.

We maintain an $|V| \times |V|$ matrix $D^{(k)}$ for each k = 0, 1, ..., |V|.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

We maintain an $|V| \times |V|$ matrix $D^{(k)}$ for each k = 0, 1, ..., |V|.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

We maintain an $|V| \times |V|$ matrix $D^{(k)}$ for each k = 0, 1, ..., |V|.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

has weight -99.

D^(k)[u, v] is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices {0, ..., k-1}.

Since k = 1, shortest paths are allowed to pass through vertices {0} now. So the we can compare the current cost to the cost of path 3-0-1. D⁽⁰⁾ tells us the cost of 3-0 is 10 and the cost of 0-1 is 99.

D^(k)[u, v] is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices {0, ..., k-1}.

Since k = 1, shortest paths are allowed to pass through vertices {0} now. So the we can compare the current cost to the cost of path 3-0-1. D⁽⁰⁾ tells us the cost of 3-0 is 10 and the cost of 0-1 is 99. Since the sum of these values is less than ∞, replace it.

D^(k)[u, v] is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices {0, ..., k-1}.

D(k)[u, v] is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices {0, ..., k-1}.

We can represent it more graphically.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

We can represent it more graphically.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

How might we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

We can represent it more graphically.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

How might we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

We can represent it more graphically.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

We can represent it more graphically.

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v, such that all of the internal vertices on the path are in the set of vertices $\{0, ..., k-1\}$.

How might we find $D^{(k)}[u, v]$ using $D^{(k-1)}$? Case 2: we need vertex k - 1. vertices {0, ..., k-2} vertices {0, ..., k-1}

Case 2, cont.: we need vertex k - 1.

Case 2, cont.: we need vertex k - 1.

If there are no negative cycles, then the shortest path from u to v through $\{0, ..., k-1\}$ is simple.

Case 2, cont.: we need vertex k - 1.

If there are no negative cycles, then the shortest path from u to v through $\{0, ..., k-1\}$ is simple.

If the shortest path from u to v needs vertex k - 1, then **the subpath** from u to k-1 must be the shortest path from u to k-1 through {0, ..., k-2} (subpaths of shortest paths are shortest paths). vertices {0, ..., k-2} vertices {0, ..., k-1}

Case 2, cont.: we need vertex k - 1.

If there are no negative cycles, then the shortest path from u to v through

 $\{0, ..., k-1\}$ is simple. This looks like our inductive hypothesis:) If the shortest path from u to v needs vertex k - 1, then **the subpath** from u to k-1 must be the shortest path from u to k-1 through {0, ..., k-2} (subpaths of shortest paths are shortest paths). vertices {0, ..., k-2} vertices {0, ..., k-1}

Case 2, cont.: we need vertex k - 1.

If there are no negative cycles, then the shortest path from u to v through $\{0, ..., k-1\}$ is simple.

If the shortest path from u to v needs vertex k - 1, then **the subpath** from u to k-1 must be the shortest path from u to k-1 through {0, ..., k-2} (subpaths of shortest paths are shortest paths).

Same for the path from k-1 to v.

Case 2, cont.: we need vertex k - 1.

If there are no negative cycles, then the shortest path from u to v through

 $\{0, ..., k-1\}$ is simple.

If the shortest path from u to v needs vertex k - 1, then **the subpath** from u to k-1 must be the shortest path from u to k-1 through {0, ..., k-2} (subpaths of shortest paths are shortest paths).

Same for the path from k-1 to v.

$$D^{(k)}[u, v] = D^{(k-1)}[u, k-1] + D^{(k-1)}[k-1, v]$$

This looks like our

```
How might we find D^{(k)}[u, v] using D^{(k-1)}?

D^{(k)}[u, v] = min\{
```


How might we find $D^{(k)}[u, v]$ using $D^{(k-1)}$? $D^{(k)}[u, v] = \min\{D^{(k-1)}[u, v],$

Case 1

How might we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

 $D^{(k)}[u, v] = \min\{D^{(k-1)}[u, v], D^{(k-1)}[u, k-1] + D^{(k-1)}[k-1, v]\}$

Case 1

Case 2

How might we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

 $D^{(k)}[u, v] = \min\{D^{(k-1)}[u, v], D^{(k-1)}[u, k-1] + D^{(k-1)}[k-1, v]\}$

Case 1

Case 2

Optimal substructure We can solve the big problem using smaller problems. Overlapping sub-problems $D^{(k-1)}[k, v]$ can be used to compute D(k)[u, v] for lots of different u's. vertices {0, ..., k-2} vertices {0, ..., k-1}

Floyd-Warshall can detect negative cycles.

If there's a negative cycle, then there's a path from v to v that has cost < 0.

How do we check for this condition?

Floyd-Warshall can detect negative cycles.

If there's a negative cycle, then there's a path from v to v that has cost < 0.

How do we check for this condition? \P We can just check $D^{(|V|)}[v, v] < 0$ at the end of the algorithm.

Graph Algorithms

	Dijkstra	Bellman-Ford	Floyd-Warshall
Problem	Single source shortest path	Single source shortest path	All pairs shortest path
Runtime	O(E + V log(V)) Worst-case with a fibonacci heap	O(V E) worst-case	O(V ³) worst case
Strengths		Works on graphs with negative edge-weights; also can detect negative cycles	Works on graphs with negative edge-weights; also can detect negative cycles
Weaknesses	Might not work on graphs with negative edge-weights		