ЛАБОРАТОРНА РОБОТА № 8

ТЕМА: МЕТОД АСИМЕТРИЧНОГО ШИФРУВАННЯ, ЩО ГРУНТУЄТЬСЯ НА ЗАДАЧІ РЮКЗАКА

МЕТА: НАДАТИ ПРОГРАМНУ РЕАЛІЗАЦІЮ АСИМЕТРИЧНОЇ КРИПТОСИСТЕМИ НА ОСНОВІ ДАНОГО МЕТОДУ

ТЕОРЕТИЧНІ ВІДОМОСТІ

Проблему рюкзака можна сформулювати так:

Нехай задано множину натуральних чисел $A = (a_1, a_2, ..., a_n)$ і натуральне число S. Потрібно встановити, чи існує такий набір чисел x_i з (0,1), і \leq n, для якого $\Sigma a_i x_i = S$ (1 <= i <= n)?

В принципі рішення завжди може бути знайдено повним перебором підмножин A і перевіркою, яка з їх сум дорівнює S. Але при великих n доведеться перебрати 2^n варіантів. Навіть для n=300 пошук серед 2^{300} підмножин не піддається обробці.

Ідея побудови системи шифрування на основі проблеми рюкзака полягає у виділенні деякого підкласу задач про укладання рюкзака, що розв'язуються порівняно легко – задачі «суперзростаючого» рюкзака, і "маскування" задач цього класу за допомогою деякого перетворення параметрів під загальний випадок. Параметри підкласу визначають секретний ключ, а параметри модифікованої задачі - відкритий ключ.

Алгоритм шифрування:

<u>Введення</u>: натуральне число n>1, послідовність натуральних чисел $A=(a_1, a_2, ..., a_n)$, вхідне повідомлення р.

Виведення: шифротекст С.

Крок 1. Представити р у вигляді бінарної послідовності.

Крок 2. Розбити отриману бінарну послідовність на n-розрядні блоки p_i=p_{i1}p_{i2}...p_{in}.

Крок 3. Зашифрувати кожний блок за допомогою перетворення $C_i = \sum p_{ii} \cdot a_i$, $j = 1 \dots n$.

Крок 4. Отримати шифротекст $C = (C_1; C_2; ...; C_i)$

Алгоритм розшифрування:

Введення: натуральне число n>1, суперзростаюча послідовність натуральних чисел B=(b_1 , b_2 ,..., b_n), натуральні числа m> Σb_i , і t≡1(mod m), шифротекст C= (C_1 ; C_2 ; ...; C_i).

Виведення: відкрите повідомлення р.

Крок 1. Знайти таке дійсне t^{-1} , що $tt^{-1} \equiv 1 \pmod{m}$.

Крок 2. Для кожного блоку шифротексту обчислити $C_i \equiv t^{-1}C_i \pmod{m}$.

Крок 3. Розв'язати задачу «суперзростаючого» рюкзака для В і кожного Сі, отримавши відповідну бінарну послідовність рі з n бітів.

Крок 4. Шляхом декодування рі отримати текст повідомлення р.

Секретний ключ алгоритму складається з елементів $B=(b_1, b_2, ..., b_n)$, m, t.

Відкритий ключ алгоритму утворюють елементи $A=(a_1, a_2, ..., a_n)$, де $a_i=t$ b_i mod m.

ПОРЯДОК ВИКОНАННЯ РОБОТИ

- 1. Ознайомитись з методом асиметричного шифрування на основі задачі рюкзака.
- 2. Побудувати блок-схему алгоритму шифрування.
- 3. Написати програму для шифрування та розшифрування за допомогою даного методу, передбачивши в ній можливості вибору:
 - а. Файлу.
 - b. Алфавіту (наприклад, англійський та український).
 - с. Ключа.
- 4. Підготувати звіт про виконання роботи. Звіт оформлюється у вигляді документу Word з такою структурою:
 - а. титульний лист,
 - b. тема і мета роботи,
 - с. опис алгоритму роботи програми у вигляді блок-схеми або UML- діаграм (класів, діяльності тощо),
 - d. функціональні можливості програми (основні і додаткові),
 - е. фрагмент програмного коду, що реалізує базову функціональність,
 - f. особливості програмної реалізації окремих функцій.
- 5. Електронну копію звіту відправити за адресою: George@aprodos.kpi.ua.