Unitary Time Changes of Stationary Processes Yield Oscillatory Processes and a Functional Framework Toward a Hilbert— Pólya Construction

BY STEPHEN CROWLEY

September 16, 2025

Abstract

A unitary time-change operator U_{θ} is constructed for absolutely continuous, strictly increasing time reparametrizations θ , acting on functions that are square-integrable over compact sets. Applying U_{θ} to the Cramér spectral representation of a stationary process yields an oscillatory process in the sense of Priestley with oscillatory function $\varphi_t(\lambda) = \sqrt{\dot{\theta}(t)} \ e^{i\lambda\theta(t)}$ and evolutionary spectrum $dF_t(\lambda) = \dot{\theta}(t)dF(\lambda)$. It is proved that sample paths of any non-degenerate second-order stationary process almost surely lie in $L^2_{\text{loc}}(\mathbb{R})$, making the operator applicable to typical realizations. A zero-localization measure $d\mu(t) = \delta(Z(t)) |Z'(t)| dt$ induces a Hilbert space $L^2(\mu)$ on the zero set of an oscillatory process Z, and the multiplication operator (Lf)(t) = tf(t) has simple pure point spectrum equal to the zero crossing set of Z. This produces a concrete operator scaffold consistent with a Hilbert–Pólya-type viewpoint.

Table of contents

1	Function Spaces and Unitary Time Change
	1.1 σ -compact sets and local L^2
2	Oscillatory Processes (Priestley)
3	Stationary Processes and Time Change
	3.1 Stationary processes
4	Sample Paths Live in L^2_{loc}
5	Zero Localization and Hilbert–Pólya Scaffold
	5.1 Zero localization measure

TODO: add zero counting function and expected zero counting function!!!!!

1 Function Spaces and Unitary Time Change

1.1 σ -compact sets and local L^2

Definition 1. σ -compact sets A subset $U \subseteq \mathbb{R}$ is σ -compact if

$$U = \bigcup_{n=1}^{\infty} K_n \tag{1}$$

with each K_n compact.

Definition 2. [Locally square-integrable functions] Define

$$L^{2}_{loc}(\mathbb{R}) := \left\{ f : \mathbb{R} \to \mathbb{C} : \int_{K} |f(t)|^{2} \ dt < \infty \ for \ every \ compact \ K \subseteq \mathbb{R} \right\}$$
 (2)

Remark 3. Every bounded measurable set in \mathbb{R} is compact or contained in a compact set; hence $L^2_{loc}(\mathbb{R})$ contains functions that are square-integrable on every bounded interval, including functions with polynomial growth at infinity.

1.2 Unitary time-change operator

Definition 4. [Unitary time-change] Let the time-scaling function $\theta: \mathbb{R} \to \mathbb{R}$ be absolutely continuous, strictly increasing, and bijective, with $\dot{\theta}(t) > 0$ almost everywhere and $\dot{\theta}(t) = 0$ only on sets of Lebesgue measure zero. The function θ maps σ -compact sets to σ -compact sets. Define, for f measurable,

$$(U_{\theta} f)(t) = \sqrt{\dot{\theta}(t)} f(\theta(t)) \tag{3}$$

Proposition 5. [Inverse map] The inverse map is given by

$$(U_{\theta}^{-1}g)(s) = \frac{g(\theta^{-1}(s))}{\sqrt{\dot{\theta}(\theta^{-1}(s))}}$$
(4)

which is well-defined almost everywhere on every σ -compact set.

Proof. Since $\dot{\theta}(t) = 0$ only on sets of measure zero, and θ^{-1} maps sets of measure zero to sets of measure zero (as absolutely continuous bijective functions preserve measurezero sets), the denominator $\sqrt{\dot{\theta}(\theta^{-1}(s))}$ is positive almost everywhere. The expression is therefore well-defined almost everywhere on every σ -compact set, which suffices for defining an element of $L^2_{\text{loc}}(\mathbb{R})$.

Theorem 6. [Local unitarity on σ -compact sets] For every σ -compact set $C \subseteq \mathbb{R}$ and $f \in L^2_{loc}(\mathbb{R})$,

$$\int_{C} |(U_{\theta} f)(t)|^{2} dt = \int_{\theta(C)} |f(s)|^{2} ds$$
 (5)

Moreover, U_{θ}^{-1} is the inverse of U_{θ} on $L^{2}_{loc}(\mathbb{R})$.

Proof. Let $f \in L^2_{loc}(\mathbb{R})$ and let U be any σ -compact set. The local L^2 -norm of $U_{\theta} f$ over C is:

$$\int_{C} |(U_{\theta} f)(t)|^{2} dt = \int_{C} \left| \sqrt{\dot{\theta}(t)} f(\theta(t)) \right|^{2} dt
= \int_{C} \dot{\theta}(t) |f(\theta(t))|^{2} dt$$
(6)

Since θ is absolutely continuous and strictly increasing, applying the change of variables $s = \theta(t)$ gives

$$ds = \dot{\theta}(t) dt \tag{7}$$

almost everywhere. Since θ maps σ -compact sets to σ -compact sets, as t ranges over C, $s = \theta(t)$ ranges over $\theta(C)$, which is σ -compact. Therefore:

$$\int_{C} \dot{\theta}(t) |f(\theta(t))|^{2} dt = \int_{\theta(C)} |f(s)|^{2} ds$$
 (8)

To verify that U_{θ}^{-1} is indeed the inverse, we compute explicitly. For any $f \in L^2_{loc}(\mathbb{R})$:

$$(U_{\theta}^{-1}U_{\theta}f)(s) = \left(U_{\theta}^{-1}\sqrt{\dot{\theta}(s)}f(\theta(s))\right)(s)$$

$$= \frac{\sqrt{\dot{\theta}(\theta^{-1}(s))}}{\sqrt{\dot{\theta}(\theta^{-1}(s))}}f(\theta(\theta^{-1}(s)))$$

$$= f(s)$$

$$(9)$$

since $\theta(\theta^{-1}(s)) = s$. Similarly, for any $g \in L^2_{loc}(\mathbb{R})$:

$$(U_{\theta}U_{\theta}^{-1}g)(t) = \sqrt{\dot{\theta}(t)} (U_{\theta}^{-1}g)(\theta(t))$$

$$= \frac{\sqrt{\dot{\theta}(t)}}{\sqrt{\dot{\theta}(\theta^{-1}(\theta(t)))}} g(\theta^{-1}(\theta(t)))$$

$$= \frac{\sqrt{\dot{\theta}(t)}}{\sqrt{\dot{\theta}(t)}} g(t)$$

$$= g(t)$$

$$(10)$$

since $\theta^{-1}(\theta(t)) = t$. Therefore

$$U_{\theta} U_{\theta}^{-1} = U_{\theta}^{-1} U_{\theta} = I \tag{11}$$

on
$$L^2_{\mathrm{loc}}(\mathbb{R})$$
.

Theorem 7. [Unitarity on $L^2(\mathbb{R})$] U_{θ} : $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is unitary:

$$\int_{\mathbb{R}} |(U_{\theta} f)(t)|^2 dt = \int_{\mathbb{R}} |f(s)|^2 ds$$
 (12)

and U_{θ}^{-1} is its inverse.

Proof. For $f \in L^2(\mathbb{R})$, we have:

$$\int_{\mathbb{R}} |(U_{\theta} f)(t)|^2 dt = \int_{\mathbb{R}} \dot{\theta}(t) |f(\theta(t))|^2 dt$$
(13)

By the change of variables

$$s = \theta(t) \tag{14}$$

with

$$ds = \dot{\theta}(t) dt \tag{15}$$

and since $\theta: \mathbb{R} \to \mathbb{R}$ is bijective:

$$\int_{\mathbb{R}} \dot{\theta}(t) |f(\theta(t))|^2 dt = \int_{\mathbb{R}} |f(s)|^2 ds$$
 (16)

The inverse relationship follows from the same computation as in Theorem 6, applied globally. \Box

2 Oscillatory Processes (Priestley)

Definition 8. [Oscillatory process] Let F be a finite nonnegative Borel measure on \mathbb{R} . For each $t \in \mathbb{R}$, let $A_t \in L^2(F)$ be the gain function and

$$\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t} \tag{17}$$

be the corresponding oscillatory function then an oscillatory process is a stochastic process which can be represented as

$$Z(t) = \int_{\mathbb{R}} \varphi_t(\lambda) \, d\Phi(\lambda)$$

$$= \int_{\mathbb{R}} A_t(\lambda) \, e^{i\lambda t} \, d\Phi(\lambda)$$
(18)

where Φ is a complex orthogonal random measure with spectral measure F, that is,

$$\mathbb{E}[\Phi(d\lambda)\overline{\Phi(d\mu)}] = \delta(\lambda - \mu) dF(\lambda) \tag{19}$$

and corresponding covariance kernel

$$R_{Z}(t,s) = \mathbb{E}[Z(t)\overline{Z(s)}]$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \overline{A_{s}(\lambda)} e^{i\lambda(t-s)} dF(\lambda)$$

$$= \int_{\mathbb{R}} \phi_{t}(\lambda) \overline{\phi_{s}(\lambda)} dF(\lambda)$$
(20)

Theorem 9. [Real-valuedness criterion for oscillatory processes]Let Z be an oscillatory process with oscillatory function

$$\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t} \tag{21}$$

and spectral measure F. Then Z is real-valued if and only if

$$A_t\left(-\lambda\right) = \overline{A_t(\lambda)} \tag{22}$$

for F-almost every $\lambda \in \mathbb{R}$, equivalently

$$\varphi_t(-\lambda) = \overline{\varphi_t(\lambda)} \tag{23}$$

for F-almost every $\lambda \in \mathbb{R}$.

Proof. Assume Z is real-valued, i.e.

$$Z(t) = \overline{Z(t)} \quad \forall t \in \mathbb{R}$$
 (24)

Writing its oscillatory representation,

$$Z(t) = \int_{\mathbb{R}} A_t(\lambda) e^{i\lambda t} d\Phi(\lambda)$$
 (25)

and taking the complex conjugate gives

$$\overline{Z(t)} = \int_{\mathbb{R}} \overline{A_t(\lambda)} e^{-i\lambda t} d\overline{\Phi(\lambda)}$$
(26)

For a real-valued process, the orthogonal random measure Φ must satisfy

$$d\overline{\Phi(\lambda)} = -d\Phi(\lambda) \tag{27}$$

which ensures that the spectral representation produces real values. Substituting this identity and using the substitution

$$\mu = -\lambda \tag{28}$$

it is shown that

$$\overline{Z(t)} = \int_{\mathbb{R}} \overline{A_t(-\mu)} e^{i\mu t} d\Phi(\mu)$$
(29)

Since $Z(t) = \overline{Z(t)}$, comparison of the integrands (which are unique elements of $L^2(F)$) yields

$$A_t(\lambda) = \overline{A_t(-\lambda)}$$
 for F -a.e. λ (30)

Equivalently, because the oscillatory function (17) is given by

$$\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t} \tag{31}$$

we have

$$\varphi_t(-\lambda) = \overline{\varphi_t(\lambda)} \quad \text{for } F \text{-a.e. } \lambda$$
 (32)

Conversely, if

$$A_t(-\lambda) = \overline{A_t(\lambda)} \tag{33}$$

for F-a.e. λ , then the same substitution shows that

$$\overline{Z(t)} = Z(t) \quad \forall t \in \mathbb{R} \tag{34}$$

so Z is real-valued. This completes the proof.

Theorem 10. [Existence] If F is finite and $(A_t)_{t\in\mathbb{R}}$ is measurable in t with

$$\int_{\mathbb{R}} |A_t(\lambda)|^2 dF(\lambda) < \infty \forall t \in \mathbb{R}$$
(35)

then there exists a complex orthogonal random measure Φ with spectral measure F such that

$$Z(t) = \int_{\mathbb{R}} A_t(\lambda) e^{i\lambda t} d\Phi(\lambda)$$
 (36)

is well-defined in $L^2(\Omega)$ and has covariance R_Z as in (20) above.

Proof. The proof proceeds by constructing the stochastic integral using the standard extension procedure. First, the integral is defined for simple functions of the form

$$g(\lambda) = \sum_{j=1}^{n} c_j \mathbf{1}_{E_j}(\lambda)$$
(37)

where $\{E_j\}$ are disjoint Borel sets with $F(E_j) < \infty$ and $c_j \in \mathbb{C}$:

$$\int_{\mathbb{R}} g(\lambda) \, \Phi(d\lambda) := \sum_{j=1}^{n} c_j \, \Phi(E_j) \tag{38}$$

For such simple functions, the isometry property holds:

$$\mathbb{E}\left[\left|\int_{\mathbb{R}} g(\lambda) \Phi(d\lambda)\right|^{2}\right] = \mathbb{E}\left[\left|\sum_{j=1}^{n} c_{j} \Phi(E_{j})\right|^{2}\right]$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} \bar{c_{k}} \mathbb{E}\left[\Phi(E_{j}) \overline{\Phi(E_{k})}\right]$$

$$= \sum_{j=1}^{n} |c_{j}|^{2} F(E_{j})$$

$$= \int_{\mathbb{R}} |g(\lambda)|^{2} dF(\lambda)$$
(39)

Since simple functions are dense in $L^2(F)$, the integral is extended by continuity to all $g \in L^2(F)$. For each t, since the oscillatory function (17) is defined by

$$\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t} \tag{40}$$

and $A_t \in L^2(F)$, $\varphi_t \in L^2(F)$ holds. Therefore

$$Z(t) = \int_{\mathbb{R}} \varphi_t(\lambda) \, d\Phi(\lambda) \tag{41}$$

is well-defined in $L^2(\Omega)$. The covariance is computed as:

$$R_{Z}(t,s) = \mathbb{E}[Z(t)\overline{Z(s)}]$$

$$= \mathbb{E}\left[\int_{\mathbb{R}} \varphi_{t}(\lambda) d\Phi(\lambda) \int_{\mathbb{R}} \overline{\varphi_{s}(\mu)} d\overline{\Phi(\mu)}\right]$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi_{t}(\lambda) \overline{\varphi_{s}(\mu)} \mathbb{E}\left[d\Phi(\lambda) d\overline{\Phi(\mu)}\right]$$

$$= \int_{\mathbb{R}} \varphi_{t}(\lambda) \overline{\varphi_{s}(\lambda)} dF(\lambda)$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \overline{A_{s}(\lambda)} e^{i\lambda(t-s)} dF(\lambda)$$

$$(42) \square$$

3 Unitarily Time-Changed Stationary Processes

3.1 Stationary processes

Definition 11. [Cramér representation] A zero-mean stationary process X with spectral measure F admits the sample path representation

$$X(t) = \int_{\mathbb{R}} e^{i\lambda t} \Phi(d\lambda)$$
 (43)

which has covariance

$$R_X(t-s) = \int_{\mathbb{R}} e^{i\lambda(t-s)} dF(\lambda)$$
 (44)

3.2 Stationary \rightarrow oscillatory via U_{θ}

Theorem 12. [Unitary time change yields oscillatory process] Let X be zeromean stationary as in Definition 11. For scaling function θ as in Definition 4, define

$$Z(t) = (U_{\theta} X)(t)$$

$$= \sqrt{\dot{\theta}(t)} X(\theta(t))$$
(45)

Then Z is a realization of an oscillatory process with oscillatory function

$$\varphi_t(\lambda) = \sqrt{\dot{\theta}(t)} \ e^{i\lambda\theta(t)} \tag{46}$$

gain function

$$A_t(\lambda) = \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t)-t)}$$
(47)

and covariance

$$R_{Z}(t,s) = \mathbb{E}[Z(t)\overline{Z(s)}]$$

$$= \mathbb{E}\left[\sqrt{\dot{\theta}(t)} X(\theta(t)) \sqrt{\dot{\theta}(t)} X(\theta(t))\right]$$

$$= \sqrt{\dot{\theta}(t) \dot{\theta}(s)} \mathbb{E}[X(\theta(t)) \overline{X(\theta(s))}]$$

$$= \sqrt{\dot{\theta}(t) \dot{\theta}(s)} R_{X}(\theta(t) - \theta(s))$$

$$= \sqrt{\dot{\theta}(t) \dot{\theta}(s)} \int_{\mathbb{R}} e^{i\lambda(\theta(t) - \theta(s))} dF(\lambda)$$

$$(48)$$

Proof. Applying the unitary time change operator to the spectral representation of X(t):

$$Z(t) = (U_{\theta} X)(t)$$

$$= \sqrt{\dot{\theta}(t)} X(\theta(t))$$

$$= \sqrt{\dot{\theta}(t)} \int_{\mathbb{R}} e^{i\lambda\theta(t)} d\Phi(\lambda)$$

$$= \int_{\mathbb{R}} \sqrt{\dot{\theta}(t)} e^{i\lambda\theta(t)} d\Phi(\lambda)$$

$$= \int_{\mathbb{R}} \varphi_{t}(\lambda) d\Phi(\lambda)$$

$$(49)$$

where

$$\varphi_t(\lambda) = \sqrt{\dot{\theta}(t)} e^{i\lambda\theta(t)} \tag{50}$$

To verify this constitutes an oscillatory representation according to Definition 8, $\varphi_t(\lambda)$ has the form $A_t(\lambda) e^{i\lambda t}$:

$$\varphi_{t}(\lambda) = \sqrt{\dot{\theta}(t)} e^{i\lambda\theta(t)}
= \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t)-t)} e^{i\lambda t}
= A_{t}(\lambda) e^{i\lambda t}$$
(51)

where

$$A_t(\lambda) = \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t) - t)}$$
(52)

Since $\dot{\theta}(t) \geq 0$ almost everywhere and $\dot{\theta}(t) = 0$ only on sets of measure zero, $A_t(\lambda)$ is well defined almost everywhere. Moreover, $A_t \in L^2(F)$ for each t since:

$$\int_{\mathbb{R}} |A_{t}(\lambda)|^{2} dF(\lambda) = \int_{\mathbb{R}} \left| \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t)-t)} \right|^{2} dF(\lambda)
= \int_{\mathbb{R}} \dot{\theta}(t) |e^{i\lambda(\theta(t)-t)}|^{2} dF(\lambda)
= \dot{\theta}(t) \int_{\mathbb{R}} dF(\lambda)
= \dot{\theta}(t) F(\mathbb{R}) < \infty$$
(53)

where $|e^{i\alpha}| = 1$ for all real α is used. The covariance (48) is computed by substituting the spectral representation and applying Fubuni's theorem to interchange the order of operations.

 $(54) \square$

Corollary 13. [Evolutionary spectrum] The evolutionary spectrum is

$$dF_t(\lambda) = |A_t(\lambda)|^2 dF(\lambda)$$

= $\dot{\theta}(t) dF(\lambda)$ (55)

Proof. By definition of the evolutionary spectrum and using the gain function from Theorem 12:

$$dF_{t}(\lambda) = |A_{t}(\lambda)|^{2} dF(\lambda)$$

$$= \left| \sqrt{\dot{\theta}(t)} e^{i\lambda(\theta(t)-t)} \right|^{2} dF(\lambda)$$

$$= \dot{\theta}(t) |e^{i\lambda(\theta(t)-t)}|^{2} dF(\lambda)$$

$$= \dot{\theta}(t) dF(\lambda)$$
(56)

since

$$|e^{i\alpha}| = 1 \forall a \in \mathbb{R} \tag{57} \quad \Box$$

3.3 Covariance operator conjugation

Proposition 14. [Operator conjugation] Let

$$(T_K f)(t) := \int_{\mathbb{R}} K(|t - s|) \ f(s) \ ds \tag{58}$$

with stationary kernel

$$K(h) = \int_{\mathbb{R}} e^{i\lambda h} dF(\lambda)$$
 (59)

Define the transformed kernel

$$K_{\theta}(s,t) := \sqrt{\dot{\theta}(t)\,\dot{\theta}(s)} K(|\theta(t) - \theta(s)|) \tag{60}$$

and corresponding integral covariance operator

$$(T_{K_{\theta}}f)(t) := \int_{\mathbb{R}} K_{\theta}(s,t) \ f(s) \ ds \tag{61}$$

Then

$$T_{K_{\theta}} = U_{\theta} \ T_K \ U_{\theta}^{-1} \tag{62}$$

on $L^2_{loc}(\mathbb{R})$.

Proof. For any $g \in L^2_{loc}(\mathbb{R})$, the integral operator is transformed from coordinates (r, w) to coordinates (t, s) by applying both coordinate transformations

$$r = \theta(t) \tag{63}$$

and

$$w = \theta(s) \tag{64}$$

by simultaneous substitution with Jacobians

$$dr = \dot{\theta}(t) dt \tag{65}$$

and

$$dw = \dot{\theta}(s) ds \tag{66}$$

The operator T_K in (r, w) coordinates is:

$$(T_K f)(r) = \int_{\mathbb{R}} K(|r - w|) f(w) dw$$
(67)

Under the simultaneous transformation $r = \theta(t)$ and $w = \theta(s)$:

$$((U_{\theta}T_{K}U_{\theta}^{-1})g)(t) = \sqrt{\dot{\theta}(t)\dot{\theta}(s)} \int_{\mathbb{R}} K(|\theta(t) - \theta(s)|) (U_{\theta}^{-1}g)(\theta(s)) \frac{\dot{\theta}(s)}{\sqrt{\dot{\theta}(s)}} ds$$

$$= \sqrt{\dot{\theta}(t)\dot{\theta}(s)} \int_{\mathbb{R}} K(|\theta(t) - \theta(s)|) \frac{g(s)}{\sqrt{\dot{\theta}(s)}} \sqrt{\dot{\theta}(s)} ds$$

$$= \sqrt{\dot{\theta}(t)\dot{\theta}(s)} \int_{\mathbb{R}} K(|\theta(t) - \theta(s)|) g(s) ds$$

$$= \int_{\mathbb{R}} \sqrt{\dot{\theta}(t)\dot{\theta}(s)} K(|\theta(t) - \theta(s)|) g(s) ds$$

$$= \int_{\mathbb{R}} K_{\theta}(t, s) g(s) ds$$

$$= (T_{K_{\theta}}g)(t)$$

$$(68)$$

where

$$K_{\theta}(t,s) = \sqrt{\dot{\theta}(t)\,\dot{\theta}(s)}\,K(|\theta(t) - \theta(s)|) \tag{69}$$

Therefore

$$T_{K_{\theta}} = U_{\theta} T_{K} U_{\theta}^{-1} \tag{70} \quad \Box$$

4 Sample Paths Live in L^2_{loc}

Theorem 15. [Sample paths in $L^2_{loc}(\mathbb{R})$] Let $\{X(t)\}_{t\in\mathbb{R}}$ be a second-order stationary process with

$$\sigma^2 := \mathbb{E}[X(t)^2] < \infty \tag{71}$$

then, almost surely, every sample path $t \mapsto X(\omega, t)$ belongs to $L^2_{loc}(\mathbb{R})$.

Proof. Fix any bounded interval [a, b] and consider the random variable

$$Y_{[a,b]} := \int_{a}^{b} X(t)^{2} dt \tag{72}$$

By stationarity and Fubini's theorem:

$$\mathbb{E}[Y_{[a,b]}] = \mathbb{E}\left[\int_{a}^{b} X(t)^{2} dt\right] = \int_{a}^{b} \mathbb{E}[X(t)^{2}] dt$$

$$= \int_{a}^{b} \sigma^{2} dt$$

$$= \sigma^{2} (b-a) < \infty$$

$$(73)$$

Equivalently, invoking the evolutionary spectrum

$$dF_t(\lambda) = \dot{\theta}(t) dF(\lambda) \tag{74}$$

it can be seen that the oscillatory process can be expressed as

$$Z(t) = (U_{\theta}X)(t) \tag{75}$$

whose (ensemble) variance is given by

$$\mathbb{E}[Z(t)^2] = \int dF_t(\lambda)$$

$$= \dot{\theta}(t) \int dF(\lambda)$$

$$= \dot{\theta}(t) \sigma^2$$
(76)

Therefore for any bounded interval [a, b]:

$$\mathbb{E}\left[\int_{a}^{b} Z(t)^{2} dt\right] = \int_{a}^{b} \dot{\theta}(t) \,\sigma^{2} dt$$

$$= \sigma^{2} \left[\theta(b) - \theta(a)\right] < \infty$$
(77)

By Markov's inequality, for any M > 0:

$$P\left(Y_{[a,b]} > M\right) \le \frac{\mathbb{E}[Y_{[a,b]}]}{M} = \frac{\sigma^2 \left(b - a\right)}{M} \tag{78}$$

Taking $M \to \infty$, the conclusion is

$$P\left(Y_{[a,b]} < \infty\right) = 1\tag{79}$$

, i.e., almost surely the sample path is square-integrable on [a,b]. Since $\mathbb R$ is the countable union of bounded intervals:

$$\mathbb{R} = \bigcup_{n=1}^{\infty} \left[-n, n \right] \tag{80}$$

by countable subadditivity of probability:

$$P\left(\bigcap_{n=1}^{\infty} \left\{ \int_{-n}^{n} X(t)^2 dt < \infty \right\} \right) = 1 \tag{81}$$

Now let K be any compact set. Then K is bounded, so

$$K \subseteq [-N, N] \tag{82}$$

for some N. Therefore:

$$\int_{K} X(t)^{2} dt \le \int_{-N}^{N} X(t)^{2} dt < \infty$$
 (83)

almost surely. This holds for every compact set K, so almost surely every sample path lies in $L^2_{loc}(\mathbb{R})$.

5 Zero Localization and Hilbert–Pólya Scaffold

5.1 Zero localization measure

Definition 16. [Zero localization measure] Let Z be real-valued with $Z \in C^1(\mathbb{R})$ having only simple zeros

$$Z(t_0) = 0 \Rightarrow \dot{Z}(t_0) \neq 0 \tag{84}$$

Define, for Borel $B \subset \mathbb{R}$,

$$\mu(B) = \int_{\mathbb{R}} \mathbf{1}_{B}(t) \, \delta(Z(t)) \, |\dot{Z}(t)| \, dt \tag{85}$$

Theorem 17. [Atomicity on the zero set] For every $\phi \in C_c^{\infty}(\mathbb{R})$,

$$\int_{\mathbb{R}} \phi(t) \, \delta(Z(t)) \, |\dot{Z}(t)| \, dt = \sum_{t_0: Z(t_0) = 0} \phi(t_0) \tag{86}$$

hence

$$\mu(t) = \sum_{t_0: Z(t_0) = 0} \delta_{t_0}(t) \tag{87}$$

Proof. Since all zeros of Z are simple and $Z \in C^1(\mathbb{R})$, by the inverse function theorem each zero t_0 is isolated. Near each zero t_0 , Z is locally monotonic, so the one-dimensional change of variables formula for the Dirac delta can be applied.

Specifically, near t_0 where $Z(t_0) = 0$ and $\dot{Z}(t_0) \neq 0$, locally

$$Z(t) = (t - t_0) \dot{Z}(t_0) + O((t - t_0)^2)$$
(88)

holds. The distributional identity for the Dirac delta under smooth changes of variables gives:

$$\delta(Z(t)) = \sum_{t_0: Z(t_0) = 0} \frac{\delta(t - t_0)}{|\dot{Z}(t_0)|} \tag{89}$$

Therefore:

$$\int_{\mathbb{R}} \phi(t) \, \delta(Z(t)) \, |\dot{Z}(t)| \, dt = \int_{-\infty}^{\infty} \phi(t) \, |\dot{Z}(t)| \sum_{t_0: Z(t_0) = 0} \frac{\delta(t - t_0)}{|\dot{Z}(t_0)|} \, dt$$

$$= \sum_{t_0: Z(t_0) = 0} \int_{\mathbb{R}} \phi(t) \frac{|\dot{Z}(t)| \, \delta(t - t_0)}{|\dot{Z}(t_0)|} \, dt$$

$$= \sum_{t_0: Z(t_0) = 0} \frac{|\dot{Z}(t_0)|}{|\dot{Z}(t_0)|} \, \phi(t_0)$$

$$= \sum_{t_0: Z(t_0) = 0} \frac{|\dot{Z}(t_0)|}{|\dot{Z}(t_0)|} \, \phi(t_0)$$

$$= \sum_{t_0: Z(t_0) = 0} \phi(t_0)$$

This shows that μ is the discrete measure

$$\mu(t) = \sum_{t_0: Z(t_0) = 0} \delta_{t_0}(t) \tag{91}$$

assigning unit mass to each zero.

5.2 Hilbert space on zeros and multiplication operator

Definition 18. [Hilbert space on the zero set] Let $\mathcal{H} = L^2(\overline{\mu})$ with inner product

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(t) \overline{g(t)} \, \mathrm{d}\mu (t)$$
 (92)

Proposition 19. [Atomic structure] Let

$$\mu = \sum_{t_0: Z(t_0) = 0} \delta_{t_0} \tag{93}$$

then

$$\mathcal{H} \cong \left\{ f : \{ t_0 : Z(t_0) = 0 \} \to \mathbb{C} : \sum_{t_0 : Z(t_0) = 0} |f(t_0)|^2 < \infty \right\} \cong \ell^2$$
(94)

with orthonormal basis $\{e_{t_0}\}_{t_0:Z(t_0)=0}$ where

$$e_{t_0}(t_1) = \delta_{t_0}(t_1) \tag{95}$$

Proof. By the atomic form of μ , for any $f \in L^2(\mu)$:

$$||f||_{\mathcal{H}}^2 = \int |f(t)|^2 d\mu(t)$$
 (96)

$$= \int |f(t)|^2 \sum_{t_0: Z(t_0)=0} \delta_{t_0}(t)$$
 (97)

$$= \sum_{t_0: Z(t_0)=0} |f(t_0)|^2 \tag{98}$$

This shows the isomorphism with ℓ^2 where the functions e_{t_0} defined by

$$e_{t_0}(t_1) = \delta_{t_0}(t_1) \tag{99}$$

satisfy the relations

$$\langle e_{t_0}, e_{t_1} \rangle = \int e_{t_0}(t) \overline{e_{t_1}(t)} d\mu(t)$$

$$= \sum_{t: Z(t) = 0} \delta_{t_0}(t) \delta_{t_1}(t)$$

$$= \delta_{t_0}(t_1)$$

$$= \delta t_1(t_0)$$
(100)

thus forming an orthonormal set. Thus, any $f(t) \in \mathcal{H}$ can be written as

$$f(t) = \sum_{t_0: Z(t_0) = 0} f(t_0) e_{t_0}(t)$$
(101)

proving they form a basis.

Definition 20. [Multiplication operator] Define the linear operator

$$L: \mathcal{D}(L) \subset \mathcal{H} \to \mathcal{H} \tag{102}$$

by

$$(Lf)(t) = tf(t) \tag{103}$$

on the support of μ with domain

$$\mathcal{D}(L) := \left\{ f \in \mathcal{H} : \int |t| f(t)|^2 \ \mu(dt) < \infty \right\}$$
 (104)

Theorem 21. [Self-adjointness and spectrum] L is self-adjoint on \mathcal{H} and has pure point, simple spectrum

$$\sigma(L) = \overline{\{t \in \mathbb{R}: Z(t) = 0\}} \tag{105}$$

with eigenvalues $\lambda = t_0$ for each zero t_0 and corresponding eigenvectors e_{t_0} .

Proof. First, self-adjointness is verified. For $f, g \in \mathcal{D}(L)$:

$$\langle Lf, g \rangle = \int (Lf)(t)\overline{g(t)}d\mu(t)$$

$$= \int tf(t)\overline{g(t)}d\mu(t)$$

$$= \int f(t)\overline{t}\overline{g(t)}d\mu(t)$$

$$= \int f(t)\overline{(Lg)(t)}d\mu(t)$$

$$= \langle f, Lg \rangle$$
(106)

Thus L is symmetric and acts as

$$(Lf)(t_0) = t_0 f(t_0)$$
 (107)

for each t_0 in the atomic representation where

$$Z(t_0) = 0 \tag{108}$$

This is unitarily equivalent to the diagonal operator on ℓ^2 with diagonal entries

$$\{t_0: Z(t_0) = 0\} \tag{109}$$

Such diagonal operators are self-adjoint. For the spectrum calculation:

$$L e_{t_0} = t_0 e_{t_0} \forall \{t_0: Z(t_0) = 0\}$$
(110)

holds, so each t_0 is an eigenvalue of L with eigenvector e_{t_0} and since $\{e_{t_0}\}$ forms an orthonormal basis, L has pure point spectrum. The spectrum of a diagonal operator equals the closure of the set of diagonal entries, hence

$$\sigma(L) = \overline{\{t_0: Z(t_0) = 0\}}$$
(111)

The eigenvalues are simple.

Remark 22. [Operator scaffold] The construction

stationary
$$X \xrightarrow{U_{\theta}}$$
 oscillatory $Z \xrightarrow{\mu = \delta(Z)|\dot{Z}|dt} L^{2}(\mu) \xrightarrow{L:t} (L, \sigma(L))$ (112)

produces a concrete self-adjoint operator whose eigenvalues equal the zero set of Z and whose spectrum equals the closure of the zero set, determined by the choice of time-change θ and spectral measure F. This provides an explicit realization consistent with Hilbert-Pólya approaches to encoding arithmetic information in operator spectra.

6 Appendix: Regularity and Simple Zeros

Definition 23. [Regularity and simplicity] Assume $Z \in C^1(\mathbb{R})$ and every zero is simple:

$$Z(t_0) = 0 \Rightarrow \dot{Z}(t_0) \neq 0 \tag{113}$$

Lemma 24. [Local finiteness and delta decomposition] Under Definition 23, zeros are locally finite and

$$\delta(Z(t)) = \sum_{t_0: Z(t_0) = 0} \frac{\delta(t - t_0)}{|\dot{Z}(t_0)|} \tag{114}$$

whence

$$\mu = \sum_{t_0: Z(t_0) = 0} \delta_{t_0} \tag{115}$$

Proof. Since $Z \in C^1(\mathbb{R})$ and $\dot{Z}(t_0) \neq 0$ at each zero t_0 , the inverse function theorem implies that Z is locally invertible near each zero. Specifically, there exists a neighborhood U_{t_0} of t_0 such that $Z|_{U_{t_0}}$ is strictly monotonic and invertible.

This implies zeros are isolated: if $Z(t_0) = 0$ and $\dot{Z}(t_0) \neq 0$, then there exists $\epsilon > 0$ such that $Z(t) \neq 0$ for $0 < |t - t_0| < \epsilon$. Therefore zeros are locally finite (finitely many in any bounded interval).

For the distributional identity, the one-dimensional change of variables formula for the Dirac delta is considered. If $g: I \to \mathbb{R}$ is C^1 on interval I with $\dot{g}(x) \neq 0$ for all $x \in I$, then

$$\delta(g(x)) = \sum_{x_0: \, g(x_0) = 0} \frac{\delta(x - x_0)}{|\dot{g}(x_0)|} \tag{116}$$

Applying this locally around each zero t_0 of Z, and since zeros are isolated, the local results can be patched together to obtain the global identity:

$$\delta(Z(t)) = \sum_{t_0: Z(t_0) = 0} \frac{\delta(t - t_0)}{|\dot{Z}(t_0)|} \tag{117}$$

Consequently:

$$d\mu(t) = \delta(Z(t))|\dot{Z}(t)| dt$$

$$= \sum_{t_0: Z(t_0)=0} \frac{|\dot{Z}(t)|}{|\dot{Z}(t_0)|} \delta(t - t_0) dt$$

$$= \sum_{t_0: Z(t_0)=0} \delta_{t_0}(dt)$$
(118)

where the last equality uses the fact that

$$\frac{|\dot{Z}(t_0)|}{|\dot{Z}(t_0)|} = 1\tag{119}$$

when evaluating at $t = t_0$.