

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Data about SpaceX Falcon 9 missions are gathered, analyzed, plotted, and ML models are built to predict the rocket-stage#1 re-use ability.
- The results show that, the successful landing of the rocket-stage#1 are depends on many variables such as: Launch site, Orbit, Payload mass, Reused Count ..etc.

Introduction

- Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage.
- Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch.

Methodology

Executive Summary

- Data collection methodology:
 - Data are collected from www. spacexdata.com and from Wikipedia en.wikipedia.org using API procedures.
- Perform data wrangling
 - Data are wrangled by using some of Python packages such as Pandas and Numpy.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Optimization procedure with Grid-Search model for different models hyper-parameters are used to tune the ML models to get best accuracy.

Data Collection

Data was collected from:

- Open source SpaceX REST API
- Web-scraping Falcon9 launch data in Wikipedia

Data Collection - SpaceX API

https://github.com/Temimy/Data_Science_Cap_Stone

Data Collection - Scraping

https://github.com/Temimy/Data_Science_Cap_Stone

Data Wrangling

 Data were processed to perform exploratory Data Analysis and determine Training Labels.

Calculate the number and occurrence of each orbit

Calculate the number and occurrence of mission outcome per orbit type

Create a landing outcome label from Outcome column

Import Libraries and Define Auxiliary Functions

Identify and calculate the percentage of the missing values in each attribute

Identify which columns are numerical and categorical

Calculate the number of launches on each site

EDA with Data Visualization

• To get insights from the data, the following charts are plotted:

Chart Title	Notes
Relationship between Flight Number and Pay load Mass	To observe the effect of Flight Number and Pay load Mass on successful landing
Relationship between Flight Number and Launch Site	To observe the effect of Flight Number and Launch Site on successful landing
Relationship between Payload and Launch Site	To observe the effect of Payload and Launch Site on successful landing
Relationship between success rate of each orbit type	To observe the effect of the Orbits on successful landing
Relationship between FlightNumber and Orbit type	To observe the effect of Flight Number and Orbit type on successful landing
Relationship between Payload and Orbit type	To observe the effect of Payload and Orbit type on successful landing
The launch success yearly trend	To observe yearly progression rates of the project

EDA with SQL

The performed SQL queries are:

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was achieved.

(to be continue)

EDA with SQL

The performed SQL queries are:

- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
- List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Build a Dashboard with Plotly Dash

The dashboard plots/graphs and interactions are:

- Dropdown list to enable Launch Site selection.
- Pie chart to show the total successful launches count for all sites.
- Slider to select payload range.
- Scatter chart to show the correlation between payload and launch success.

Predictive Analysis (Classification)

Four classification models are builds.
Logistic Regressing , SVM , Decision
Tree , and KNN classifier.

Standardize the data in X then reassign it to the variable X using the Standard Scaler transform

Get each mode best parameters , accuracy score and score for test data

Split the data X and Y into training and test data

Define each model range parameters to use it

with GridSearchCV object for optimization

Create competition table between the model to select best model

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. PayLoadMass

As the flight number increases, the first stage is more likely to land successfully

Flight Number vs. Launch Site

As the flight number increases, the first stage is more likely to land successfully

Payload vs. Launch Site

For the VAFB-SLC launch site there are no rockets launched for heavy payload mass(greater than 10000)

Success Rate vs. Orbit Type

The success landing rates are high for the orbits :

ES-L1, GEO, HEO, SSO

Flight Number vs. Orbit Type

The LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit

Payload vs. Orbit Type

With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.

However for GTO we cannot distinguish this well as both positive landing rate and negative landing (unsuccessful mission) are both there here.

Launch Success Yearly Trend

We can observe that the success rate since 2013 kept increasing till 2020

All Launch Site Names

4 launch sites are used for spacex missions

	Launch_Site
0	CCAFS LC-40
1	VAFB SLC-4E
2	KSC LC-39A
3	CCAFS SLC-40

Launch Site Names Begin with 'CCA'

• 5 records where launch sites begin with `CCA` (sample of query's EDA)

[12]:		Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
	0	04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	1	08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2	22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	3	08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	4	01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

The total payload carried by boosters from NASA about 46 ton

sum(PAYLOAD_MASS__KG_)

45596.0

Average Payload Mass by F9 v1.1

The average payload mass carried by booster version F9 v1.1, it's about 3 ton.

avg(PAYLOAD_MASS__KG_)
2928.4

First Successful Ground Landing Date

 The dates of the first successful landing outcome on ground pad recorded in 1/5/2017

Min(Date)

01-05-2017

Successful Drone Ship Landing with Payload between 4000 and 6000

• A list of the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000 are :

	Booster_Version
0	F9 FT B1022
1	F9 FT B1026
2	F9 FT B1021.2
3	F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

• The total number of successful and failure mission outcomes are :

Boosters Carried Maximum Payload

• A list of the names of the booster which have carried the maximum payload mass are :

	${\sf Booster_Version}$	PAYLOAD_MASSKG_
0	F9 B5 B1048.4	15600
1	F9 B5 B1049.4	15600
2	F9 B5 B1051.3	15600
3	F9 B5 B1056.4	15600
4	F9 B5 B1048.5	15600
5	F9 B5 B1051.4	15600
6	F9 B5 B1049.5	15600
7	F9 B5 B1060.2	15600
8	F9 B5 B1058.3	15600
9	F9 B5 B1051.6	15600
10	F9 B5 B1060.3	15600
11	F9 B5 B1049.7	15600

2015 Launch Records

 A list of the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015 are:

0	FO 4 4 D4040		
U	F9 V1.1 B1012	CCAFS LC-40	Failure (drone ship)
1	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

SpaceX Launch Records Dashboard

- All launch sites are shown in the map
- SpaceX uses a total of 4 facilities;
 - · California:
 - VAFB SLC-4E
 - Florida:
 - KSC LC-39A
 - CCAFS LC-40
 - CCAFS SLC-40

Color Labeled Launches Outcomes

GREEN MARKERS
Successful landings

RED MARKERS
Unsuccessful landings

Selected Launch Site to its Proximities

- Distance CCAFS_SLC40 to Florida East Coast Railway: ABOUT 22 km
- Distance CCAFS_SLC40 to Highway 195: 26.8 km
- Distance CCAFS_SLC40 to Orlando: 78.8 km

Launch Success Count for all Sites

It's clear that KSC LC-39A is the launch site with the highest success rate of 41.7%

Launch Success rates for KSC LC-39A

< Payload vs. Launch Outcome scatter plot for all sites

- Most missions are in the range of PayLoadMass of (2-5) k.
- For the PayLoadMass range (5-8)K most booster fails to land successfully.

Classification Accuracy

The used Classification Models are:

- Logistic Regressions
- Support Vector Machine (SVM)
- Decision Tree
- K-Nearest Neighbor model

Confusion Matrix

- The Confusion Matrix for the Decision Tree Classifier is shown.
- Since the classifier give a score of 0 for the prediction of (FN), i.e. the False prediction for the non successful landing is equal to zero. So that, the classifier will predict with good apportinuty the bad landing, and this will help to prevent of wasting money on a non successful landing, i.e. prevent accident from occurs.

Conclusions

- 1. Orbits GEO, ES-L1, GEO, HEO, SSO have the best success rate.
- 2. SpaceX has come a long way, as their landing success rates have steadily increased over the years and show a rising trend going forward.
- 3. While CCAFS SLC-40 site is used for most launches ,KSC LC-39A in Florida, is the site with the most successful landing outcomes overall.
- 4. Most missions are in the range of PayLoadMass of (2-5) k.
- The Decision Tree algorithm is the best pick for our predictive model using this dataset.

