* Cauchy Integral formula:-

Statement: Let f(z) be the analytic everywhere on and inside a simple closed contour c taken in the anticlockwise direction.

If zo is any point interior to C then $f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z_0)}{z_0-z_0} dz$

that is $\int_{C} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$

=> Important Note;

The General Cauchy Integral formula is

$$\int_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_{0})$$

In perticular,

*
$$\int_{C} \frac{f(z)}{(z-z_{0})^{2}} dz = \frac{2\pi i}{1!} f'(z_{0}), \quad \text{for } n=1$$

*
$$\int_{C} \frac{f(z)}{(z-z_{0})^{3}} dz = \frac{2\pi i}{2!} \int_{C}^{11} (z_{0}), \text{ for } n=2$$

and so on.

* Examples on Cauchy Integral formula:

Example ① Evaluate
$$\int \frac{z^3-6}{3z-i} dz$$
, where C is $|z|=1$

let
$$f(z) = z^3 - 6$$

Note that
$$\int_{C} \frac{z^{3}6}{3z-i} dz = \frac{1}{3} \int_{C} \frac{z^{3}-6}{(z-\frac{1}{3})} - 0$$

clearly,
$$f(z) = z^{3} - 6$$
 is analytic everywhere on and inside C

only
$$z_0 = \frac{1}{3}$$
 lie inside C with order 1
: By cauchy integral formula

$$\int_{c} \frac{f(z)}{z-z} dz = 2\pi i f(z_{0})$$

$$\Rightarrow \int_{c} \frac{z^{3}-6}{z-\frac{i}{3}} dz = 2\pi i \left(\frac{i}{3}\right)^{3}-6\right)$$

$$= 2\pi i \left(\frac{-i}{27}-6\right)$$

$$= -2\pi i \left(\frac{1}{27} + 6\right)$$

$$\int_{C} \frac{z^{3}-6}{3z-i} dz = \frac{1}{3} \int_{C} \frac{z^{3}-6}{z-\frac{1}{3}} dz$$

$$= \frac{1}{3} \left[-2\pi i \left(\frac{1}{27} + 6 \right) \right]$$

$$= \frac{-2\pi i}{3} \left(\frac{1}{27} + 6 \right)$$

i.e.
$$\int \frac{z^3-6}{3z-i} dz = -\frac{2\pi i}{3} \left(\frac{i}{27} + 6 \right)$$

Example @ Evaluate
$$\int \frac{e^{3z}}{z-i} dz$$
, where C is the

$$\Rightarrow |(x+iy)-2|+|(x+iy)+2|=6 (-3,0)$$

$$\Rightarrow |(\chi-2)+iy|+|(\chi+2)+iy|=6$$

$$\Rightarrow \sqrt{(\chi-2)^2 + y^2} + \sqrt{(\chi+2)^2 + y^2} = 6$$

if
$$y=0$$
 -then $\sqrt{(x-2)^2} + \sqrt{(x+2)^2} = 6$

$$\Rightarrow \quad \alpha-2+\alpha+2=6 \quad \Rightarrow \quad \alpha=3$$

if
$$x=0$$
 then $\sqrt{(-2)^2+y^2} + \sqrt{(2)^2+y^2} = 6$

$$\Rightarrow$$
 $2\sqrt{y^2+4} = 6$

$$\Rightarrow \sqrt{y^2 + 4} = 3$$

$$\Rightarrow y^2 + 4 = 9$$

$$\Rightarrow$$
 $y^2 = 5$

$$y = \pm \sqrt{5}$$

: Intersection points of ellipse with
$$\chi$$
-axis are $(-3,0)$, $(3,0)$

and Intersection points of ellipse with y axis are
$$(0, \sqrt{5})$$
, $(0, -\sqrt{5})$

Now, let
$$f(z) = e^{3z}$$

then clearly,
$$f(z) = e^{3z}$$
 is analytic everywhere on and inside c

By cauchy integral formula,
$$\int \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

$$= 2\pi i f(i)$$

$$= 2\pi i e^{3i}$$

$$\Rightarrow \int \frac{e^{3z}}{z-i} dz = 2\pi i e^{3i}$$

Example 3 Evaluate
$$\int_{C} \frac{3z^2+z}{z^2-1} dz$$
, where C is

Solution! C:
$$|Z| = 2$$

Note that $\int \frac{3z^2+2}{z^2-1} dz = \int \frac{3z^2+2}{(z+1)(z-1)}$

Consider,
$$\frac{1}{(z+1)(z-1)} = \frac{A}{z+1} + \frac{B}{z-1}$$

$$\Rightarrow \frac{1}{(z+1)(z-1)} = \frac{(z-1)A + (z+1)B}{(z+1)(z-1)}$$

$$\Rightarrow$$
 A(z-1) + B(z+1) = 1

Now, If
$$z=-1$$
 then $A(-1-1)+B(0)=1 \Rightarrow A=-\frac{1}{2}$
If $z=1$ then $A(0)+B(1+1)=1 \Rightarrow B=\frac{1}{2}$

$$\frac{1}{(z+1)(z-1)} = \frac{-1}{2(z+1)} + \frac{1}{2(z-1)}$$

1.e.
$$\frac{1}{(z+1)(z-1)} = \frac{1}{2(z-1)} - \frac{1}{2(z+1)}$$

$$\Rightarrow \frac{3z^2+z}{(z+1)(z-1)} = \frac{3z^2+z}{2(z-1)} - \frac{3z^2+z}{2(z+1)}$$

$$\Rightarrow \int \frac{3z^2+z}{(z+1)(z-1)} dz = \frac{1}{2} \int \frac{3z^2+z}{(z-1)} dz - \frac{1}{2} \int \frac{3z^2+z}{(z+1)} dz$$

clearly, $f(z) = 3z^2 + z$ is analytic everywhere on and inside C

By cauchy integral formula,
$$\int \frac{3z^2+z}{(z+1)(z-1)} dz = \frac{1}{2} 2\pi i f(1) - \frac{1}{2} 2\pi i f(-1)$$

$$= \frac{1}{2} 2\pi i \left(3(1)^2+1\right) - \frac{1}{2} 2\pi i \left(3(-1)^2-1\right)$$

$$= \frac{1}{2} 2\pi i (4) - \frac{1}{2} 2\pi i (2)$$

$$= 4\pi i - 2\pi i$$

$$\int_{C} \frac{3z^{2}+z}{z^{2}-1} dz = 2\pi i$$

Example 4 Evaluate $\int_{C} \frac{\sin^6 z}{(z-\frac{\pi}{6})^3} dz$ where C is |z|=1

Solution: Given: C: |z|=1let $f(z) = sin^6 z$ where -i

clearly, f(z) is analytic everywhere on and inside a

only z = I lie inside c. with order 3

By general cauchy integral formula for n=3 is $\int \frac{f(z)}{(z-z_0)^3} dz = \frac{2\pi i}{2!} \cdot f''(z_0)$ $= \pi i f''(\frac{\pi}{6}) - 0$

Since,
$$f(z) = \sin^6 z$$

 $f'(z) = 6 \sin^5 z \cdot \cos z$
 $f''(z) = 6 \left[5 \sin^4 z \cdot \cos^2 z + \sin^5 z \cdot (-\sin z) \right]$
i.e. $f''(z) = 6 \left[5 \sin^4 z \cdot \cos^2 z - \sin^6 z \right]$
 $\Rightarrow f''(\frac{\pi}{6}) = 6 \left[5 \cdot \sin^4 \left(\frac{\pi}{6} \right) \cdot \cos^2 \left(\frac{\pi}{6} \right) - \sin^6 \left(\frac{\pi}{6} \right) \right]$
 $= 6 \left[5 \cdot \left(\frac{1}{2} \right)^4 \cdot \left(\frac{\sqrt{3}}{2} \right)^2 - \left(\frac{1}{2} \right)^6 \right]$
 $= 6 \left[5 \cdot \frac{1}{16} - \frac{3}{4} - \frac{1}{64} \right]$
 $= 6 \left[\frac{15}{64} - \frac{1}{64} \right]$
 $= \frac{21}{16}$

: equation 1 becomes.

$$\int_{C} \frac{f(z)}{(z-z_{0})^{3}} dz = \pi i \frac{21}{16}$$

i.e.
$$\int_{C} \frac{\sin^{6} z}{(z-z_{0})^{3}} dz = \frac{21 \text{ Tr} i}{16}$$

Example 5 Evaluate $\int_{C} \frac{dz}{z^{2}(z+4)}$, where C is the circle |z|=2

Note that :

$$\int_{C} \frac{dz}{z^{2}(z+4)} = \int_{C} \frac{\left(\frac{1}{z+4}\right)}{z^{2}} dz$$

let
$$f(z) = \frac{1}{z+4}$$

here, $z_0 = 0$, $z_1 = -4$ are singular points. Clearly, f(z) is analytic everywhere on and inside G

.. By general country integral formula, for n=2 $\int \frac{f(z)}{(z-z_0)^2} dz = \frac{2\pi i}{1!} \cdot f'(z_0)$

$$\frac{1}{c} = \frac{1}{z+4} dz = 2\pi i f(0)$$

$$= 2\pi i \left(-\frac{1}{(0+4)^2}\right) \left(-\frac{1}{(z+4)^2}\right)$$

$$= 2\pi i \left(-\frac{1}{16}\right)$$

$$= -\frac{\pi i}{2}$$

$$\int_{c}^{1} \frac{1}{z^{2}(z+4)} dz = -\frac{\pi i}{g}$$

Example © Evaluate $\int_{C} \frac{z+4}{z^2+2z+5} dz$ where C is the

Solution: Given: C: |Z+1-i|=2

Note that
$$|z+1-i|=2$$

 $\Rightarrow |z-(-1+i)|=2$

which is equation of circle with centre (-1,1) and radius 2

Now,
$$z^{2} + 2z + 5 = 0$$

$$\Rightarrow z = \frac{-2 \pm \sqrt{(2)^{2} - 20}}{2} = \frac{-2 \pm 4i}{2}$$

$$\Rightarrow z = -1 - 2i, -1 + 2i$$

Clearly, the point z = -1+2i = (-1,2) lies inside C and the point z = -1-2i = (-1,-2) lies outside C.

Now, $\int \frac{z+4}{z^2+2z+5} dz = \int \frac{z+4}{[z-(-1-2i)][z-(-1+2i)]} dz$

$$= \int_{C} \frac{\frac{z+4}{[z-(-1-2i)]}}{z-(-1+2i)} dz$$

: we take
$$f(z) = \frac{z+4}{z-(-1-2i)}$$

 \Rightarrow f(z) is analytic everywhere on and inside c and $z_0 = -1+2i$ lies inside c. with order 1

.. By cauchy integral formula,
$$\int \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

$$\Rightarrow \int_{C} \frac{Z+4}{[z-(-1-2i)]} dz = 2\pi i \int_{C} (-1+2i)$$

$$\Rightarrow \int_{C} \frac{Z+4}{Z^{2}+2Z+5} dz = 2\pi i \left[\frac{(-1+2i)+4}{(-1+2i)-(-1-2i)} \right]$$

$$= 2\pi i \left[\frac{3+2i}{4i} \right]$$

$$= \frac{\pi}{2}(3+2i)$$

$$\therefore \int_{C} \frac{Z+4}{Z^{2}+2Z+5} dz = \frac{\pi}{2}(3+2i)$$