Machine Learning in High Dimension IA317 Dimension Reduction

Thomas Bonald

2023 - 2024

High dimension

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

High dimension = d >> 1 (possibly larger than n) Typically a **sparse** matrix

Examples

- Textual data (bags of words)
- Medical data
- Customer data

Dimension reduction

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

Dimension reduction

$$X = \left[\right] \rightarrow Z = \left[\right]$$

Objective: Find a **dense** representation of data with meaningful **distances** (e.g., Euclidean or cosine similarity). Useful for:

- ► classification / regression → nearest neighbors, SVM
- **Let up** clustering \rightarrow *k*-means, Ward
- ▶ visualization → UMAP, TSNE

Feature selection

Select the k most important features j_1, \ldots, j_k of data X, like

- most correlated features
- features of highest statistical dependence
- features of highest mutual information

with respect to the labels y

Feature selection

$$X = \begin{bmatrix} & & \\ & & \end{bmatrix} \quad y = \begin{bmatrix} \\ \end{bmatrix} \quad o \quad Z = \begin{bmatrix} & \\ & \end{bmatrix}$$

Random projection

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

Projection over *k* random vectors (usually Gaussian):

$$V = (v_1, \ldots, v_k) \in \mathbb{R}^{d \times k}$$

Random projection

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

Projection over *k* random vectors (usually Gaussian):

$$V = (v_1, \ldots, v_k) \in \mathbb{R}^{d \times k}$$

Random projection

$$X = \begin{bmatrix} \\ \end{bmatrix} \rightarrow Z = XV = \begin{bmatrix} \\ \end{bmatrix}$$

Note: Pairwises Euclidean distances preserved for *k* large enough cf. **Johnson-Lindenstrauss** lemma

Matrix factorization

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

Principle

$$X = \left[\right] \approx \left[\right] \left[\right]$$

$$\approx$$

$$]\quad \rightarrow \quad Z = \left| \quad \right|$$

Overview

3 main techniques for dimension reduction:

- 1. Feature selection
 - \rightarrow Supervised learning X, y
- 2. Random projection
 - ightarrow No learning
- 3. Matrix factorization
 - \rightarrow Unsupervised learning λ

Train set = n samples, each with d features

$$X_{\text{train}} \in \mathbb{R}^{n \times d} \quad \rightarrow \quad Z_{\text{train}} \in \mathbb{R}^{n \times k}$$

Question

How to reduce the dimension of the **test set** $X_{\rm test} \to Z_{\rm test}$ so that distances between $Z_{\rm train}$ and $Z_{\rm test}$ make sense?

Train set = n samples, each with d features

$$X_{\text{train}} \in \mathbb{R}^{n \times d} \quad \rightarrow \quad Z_{\text{train}} \in \mathbb{R}^{n \times k}$$

Question

How to reduce the dimension of the **test set** $X_{\rm test} \to Z_{\rm test}$ so that distances between $Z_{\rm train}$ and $Z_{\rm test}$ make sense?

1. Feature selection

$$\rightarrow$$
 Same features

$$j_1,\ldots,j_k\in\{1,\ldots,d\}$$

Train set = n samples, each with d features

$$X_{\text{train}} \in \mathbb{R}^{n \times d} \quad \rightarrow \quad Z_{\text{train}} \in \mathbb{R}^{n \times k}$$

Question

How to reduce the dimension of the **test set** $X_{\rm test} \to Z_{\rm test}$ so that distances between $Z_{\rm train}$ and $Z_{\rm test}$ make sense?

- 1. Feature selection
 - \rightarrow Same features
- 2. Random projection
 - \rightarrow Same vectors

$$j_1,\ldots,j_k\in\{1,\ldots,d\}$$

$$v_1,\ldots,v_k\in\mathbb{R}^d$$

Train set = n samples, each with d features

$$X_{\text{train}} \in \mathbb{R}^{n \times d} \quad \rightarrow \quad Z_{\text{train}} \in \mathbb{R}^{n \times k}$$

Question

How to reduce the dimension of the **test set** $X_{\rm test} \to Z_{\rm test}$ so that distances between $Z_{\rm train}$ and $Z_{\rm test}$ make sense?

- 1. Feature selection
 - \rightarrow Same features
- 2. Random projection
 - \rightarrow Same vectors
- 3. Matrix factorization
 - \rightarrow ?

$$j_1,\ldots,j_k\in\{1,\ldots,d\}$$

$$v_1,\ldots,v_k\in\mathbb{R}^d$$

$$X_{\mathrm{train}} \approx \left[\quad \left[\quad \right] \right]$$

Outline

Focus on 2 matrix factorization techniques:

- Singular Value Decomposition (SVD)
 → Principal Component Analysis (PCA)
- 2. Non-negative Matrix Factorization (NMF)

Singular value

Let $X \in \mathbb{R}^{n \times d}$

Definition

We say that $\sigma \geq 0$ is a **singular value** of X if there exist unit vectors $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^d$ such that

$$Xv = \sigma u$$
$$X^T u = \sigma v$$

The vectors u and v are left and right singular vectors for σ

Singular value

Let $X \in \mathbb{R}^{n \times d}$

Definition

We say that $\sigma \geq 0$ is a **singular value** of X if there exist unit vectors $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^d$ such that

$$Xv = \sigma u$$
$$X^T u = \sigma v$$

The vectors u and v are left and right singular vectors for σ

Note: The vectors u and v are respective **eigenvectors** of XX^T and X^TX for the **eigenvalue** σ^2

Interpretation

Data = n samples, each with d features

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \in \mathbb{R}^{n \times d}$$

Projection

$$Xv = \sigma u$$

The **projection** of data X over the unit vector v has **norm** σ and **direction** u in \mathbb{R}^n

Singular value decomposition

Let $X \in \mathbb{R}^{n \times d}$ of rank r

Theorem

There exist $U=(u_1,\ldots,u_r)\in\mathbb{R}^{n\times r}$, $V=(v_1,\ldots,v_r)\in\mathbb{R}^{d\times r}$ and $\Sigma=\mathrm{diag}(\sigma_1,\ldots,\sigma_r)$ such that

$$X = \begin{bmatrix} & & \\ & & \end{bmatrix} = \begin{bmatrix} & \\ & & \end{bmatrix} \Sigma \begin{bmatrix} & & \\ & & \end{bmatrix} = U\Sigma V^T$$

with

$$U^T U = I_r \quad V^T V = I_r \quad \sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$$

The matrices U and V are orthonormal bases of left and right singular vectors for the singular values $\sigma_1, \ldots, \sigma_r$.

Proof: Spectral theorem applied to either XX^T or X^TX .

Interpretation

Data = n samples, each with d features

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \in \mathbb{R}^{n \times d}$$

Projection

$$XV = U\Sigma$$

Interpretation

Data = n samples, each with d features

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \in \mathbb{R}^{n \times d}$$

Projection

$$XV = U\Sigma$$

The **projection** of data X over the unit vectors v_1, \ldots, v_r gives vectors of **norms** $\sigma_1, \ldots, \sigma_r$ and **orthogonal directions** u_1, \ldots, u_r

Top right singular vector

Let $X \in \mathbb{R}^{n \times d}$

Property

The top right singular vector is the direction of **highest inertia**:

$$v_1 = \arg\max_{v:||v||=1} ||Xv||^2$$

Top right singular vector

Let $X \in \mathbb{R}^{n \times d}$

Property

The top right singular vector is the direction of **highest inertia**:

$$v_1 = \arg\max_{v:||v||=1} ||Xv||^2$$

Note: If *X* is centered, in the sense that

$$1^T X = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} = 0$$

 v_1 is the direction of **highest variance** \rightarrow Principal Component

Top right singular vectors

Let $X \in \mathbb{R}^{n \times d}$

Property

The top-k right singular vectors are the **orthogonal** directions of **highest inertia**:

$$v_1, \dots, v_k = \arg\max_{\substack{V \in \mathbb{R}^{d \times k} \ V^T V = I}} ||XV||^2$$

Top right singular vectors

Let $X \in \mathbb{R}^{n \times d}$

Property

The top-k right singular vectors are the **orthogonal** directions of **highest inertia**:

$$v_1, \dots, v_k = \arg\max_{\substack{V \in \mathbb{R}^{d \times k} \ V^T V = I}} ||XV||^2$$

Note: If X is centered, v_1, \ldots, v_k are the directions of **highest** variance \rightarrow Principal Components

Principal Component Analysis

PCA = SVD after centering

$$X \rightarrow X - \frac{11^T}{n}X$$

The directions (= principal components) can be interpreted as the directions of **highest variance**

Warning

If X is a **sparse** matrix, its centered version is no longer sparse!

Dimension reduction by SVD

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

1. SVD

Dimension reduction by SVD

Data = n samples, each with d features

$$X \in \mathbb{R}^{n \times d}$$

1. SVD

2. Projection

Projection on the **top**-*k* **right singular** vectors

$$Z = XV_k$$

Train set = n samples, each with d features

$$X_{\text{train}} \in \mathbb{R}^{n \times d}$$

1. $SVD \rightarrow learning$

$$X_{\text{train}} = \left[\quad \right] \Sigma \left[\quad \quad \right] = U \Sigma V^T$$

2. Projection \rightarrow inference

Projection on the **top**-*k* **right singular vectors** (of the **train set**)

$$Z_{\text{train}} = X_{\text{train}} V_k$$

 $Z_{\text{test}} = X_{\text{test}} V_k$

Example: MNIST

$$X \in \{0, \dots, 255\}^{n \times d}$$

 $n = 10,000$ samples
 $d = 28 \times 28 = 784$

Samples

Singular vectors v_1, \ldots, v_{20}

Example: MNIST

Projection on the first 20 **right singular vectors** Visualization of 1,000 samples

Low-rank approximation

Let $X \in \mathbb{R}^{n \times d}$

Definition

We say that \hat{X} is the **best rank**-k **approximation** of X if

$$\hat{X} = \arg\min_{M: \operatorname{rank}(M) = k} ||X - M||^2$$

with $||\cdot||$ the Frobenius norm (= Euclidean norm for matrices)

Low-rank approximation

Let $X \in \mathbb{R}^{n \times d}$

Definition

We say that \hat{X} is the **best rank**-k approximation of X if

$$\hat{X} = \arg\min_{M: \operatorname{rank}(M) = k} ||X - M||^2$$

with $||\cdot||$ the Frobenius norm (= Euclidean norm for matrices)

Theorem

For any $k \le r$, the **best rank**-k **approximation** of X is

$$\hat{X} = U_k \Sigma_k V_k^T$$

with U_k, V_k, Σ_k the **restrictions** to the top k singular values

Let $X \in \mathbb{R}^{n \times d}$

Corollary

For any $k \le r$, the minimum **square error** of a rank-k approximation of X is

$$||X - \hat{X}||^2 = \sum_{k < l \le r} \sigma_l^2$$

Let $X \in \mathbb{R}^{n \times d}$

Corollary

For any $k \le r$, the minimum **square error** of a rank-k approximation of X is

$$||X - \hat{X}||^2 = \sum_{k < l \le r} \sigma_l^2$$

Notes:

▶ If
$$k = 0$$
 then $\hat{X} = 0$ and $||X||^2 = \sum_{l=1}^{\infty} \sigma_l^2$

Let $X \in \mathbb{R}^{n \times d}$

Corollary

For any $k \le r$, the minimum **square error** of a rank-k approximation of X is

$$||X - \hat{X}||^2 = \sum_{k < l \le r} \sigma_l^2$$

Notes:

▶ If
$$k = 0$$
 then $\hat{X} = 0$ and $||X||^2 = \sum_{l=1}^{\infty} \sigma_l^2$

▶ If
$$k = r$$
 then $\hat{X} = X$

Let $X \in \mathbb{R}^{n \times d}$

Corollary

For any $k \le r$, the minimum **square error** of a rank-k approximation of X is

$$||X - \hat{X}||^2 = \sum_{k < l \le r} \sigma_l^2$$

Notes:

▶ If
$$k = 0$$
 then $\hat{X} = 0$ and $||X||^2 = \sum_{l=1}^{N} \sigma_l^2$

▶ If
$$k = r$$
 then $\hat{X} = X$

▶ If
$$0 < k < r$$
 then $||X - \hat{X}||^2 = ||X||^2 - \sum_{l=1}^{\kappa} \sigma_l^2$

Outline

Focus on 2 matrix factorization techniques:

- Singular Value Decomposition (SVD)

 ⇔ Principal Component Analysis (PCA)
- 2. Non-negative Matrix Factorization (NMF)

Data = n samples, each with d non-negative features

$$X \in \mathbb{R}^{n \times d}$$
 $X \geq 0$

NMF

$$X \approx WH = \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \end{bmatrix} \rightarrow Z = W = \begin{bmatrix} & \\ & & \end{bmatrix}$$

with $W, H \ge 0$

Data = n samples, each with d non-negative features

$$X \in \mathbb{R}^{n \times d}$$
 $X \geq 0$

NMF

$$X \approx WH = \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \end{bmatrix} \rightarrow Z = W = \begin{bmatrix} & \\ & & \end{bmatrix}$$

with $W, H \ge 0$

Note: Not a projection!

Interpretation

Data = n samples, each with d non-negative features

$$X \in \mathbb{R}^{n \times d}$$
 $X \ge 0$

Let $W, H \ge 0$ such that

$$X \approx WH$$
 with $H = \begin{bmatrix} h_1^T \\ \vdots \\ h_k^T \end{bmatrix}$

Interpretation

Data = n samples, each with d non-negative features

$$X \in \mathbb{R}^{n \times d} \quad X \geq 0$$

Let $W, H \ge 0$ such that

$$X \approx WH$$
 with $H = \begin{bmatrix} h_1^T \\ \vdots \\ h_k^T \end{bmatrix}$

Each data sample $x \in \mathbb{R}^d$ (row of X) can be seen as the weighted **superposition** of the components (or patterns) $h_1, \ldots, h_k \in \mathbb{R}^d$:

$$x \approx w_1 h_1 + \ldots + w_k h_k \quad w_1, \ldots, w_k \geq 0$$

A probabilistic view

After normalization, each data sample can be seen as a **probability distribution** over the features:

$$X \in \mathbb{R}^{n \times d}$$
 $X \ge 0$ \rightarrow $P \in \mathbb{R}^{n \times d}$ $P \ge 0, P1 = 1$

Let $W, H \geq 0$ such that

$$P \approx WH$$
 with $H = \begin{vmatrix} h_1' \\ \vdots \\ h_k^T \end{vmatrix}$ $H1 = 1$

A probabilistic view

After normalization, each data sample can be seen as a **probability distribution** over the features:

$$X \in \mathbb{R}^{n \times d}$$
 $X \ge 0$ \rightarrow $P \in \mathbb{R}^{n \times d}$ $P \ge 0, P1 = 1$

Let $W, H \geq 0$ such that

$$P pprox WH$$
 with $H = \begin{bmatrix} h_1^T \\ \vdots \\ h_k^T \end{bmatrix}$ $H1 = 1$

Each data sample $p \in \mathbb{R}^d$ (row of P), seen as a probability distribution over the features, is a **mixture** of the probability distributions $h_1, \ldots, h_k \in \mathbb{R}^d$:

$$p \approx w_1 h_1 + \ldots + w_k h_k \quad w_1, \ldots, w_k \geq 0$$

Let $X \in \mathbb{R}^{n \times d}$ with $X \geq 0$

We seek to solve:

$$\min_{W,H\geq 0}\|X-WH\|^2$$

This optimization problem is **convex** in W or H but not in both

Let $X \in \mathbb{R}^{n \times d}$ with $X \ge 0$

We seek to solve:

$$\min_{W,H\geq 0}\|X-WH\|^2$$

This optimization problem is **convex** in W or H but not in both

Lee-Seung's algorithm (2000)

Alternate updates

$$H \leftarrow H \times \frac{W^T X}{W^T W H}$$
 $W \leftarrow W \times \frac{X H^T}{W H H^T}$

with component-wise matrix multiplications and divisions

Theorem

The approximation error $||X - WH||^2$ is **non-increasing**

Inference

Train set = n samples, each with d non-negative features

$$X_{\text{train}} \in \mathbb{R}^{n \times d}$$
 $X_{\text{train}} \geq 0$

1. NMF \rightarrow learning

Inference

Train set = n samples, each with d non-negative features

$$X_{\text{train}} \in \mathbb{R}^{n \times d}$$
 $X_{\text{train}} \geq 0$

1. NMF \rightarrow learning

$$egin{aligned} X_{ ext{train}} = \left[egin{array}{ccc} \end{array}
ight] pprox ext{\it WH} &
ightarrow & Z_{ ext{train}} = W = \left[egin{array}{ccc} \end{array}
ight] \end{aligned}$$

2. Constrained NMF \rightarrow partial learning

For the **test set**, apply Lee-Seung's algorithm with H fixed:

$$X_{ ext{test}} = \left[egin{array}{ccc} & & & \\ & & \end{array}
ight] pprox W'H &
ightarrow & Z_{ ext{test}} = W' = \left[egin{array}{ccc} & & & \\ & & \end{array}
ight]$$

Example: MNIST

$$X \in \{0, \dots, 255\}^{n \times d}$$

 $n = 10,000$ samples
 $d = 28 \times 28 = 784$

Samples

Components h_1, \ldots, h_{20}

Example: MNIST

NMF in dimension 20 Visualization of 1,000 samples

Loss function

Let $X \in \mathbb{R}^{n \times d}$ with $X \ge 0$ We have seen the NMF for the **square error**:

$$\min_{W,H\geq 0}\|X-WH\|^2$$

What about other loss functions?

Let $F:\Omega\to\mathbb{R}$ be a **strictly convex** function of class C^1

Definition

The Bregman divergence associated with F is:

$$\forall x, y \in \Omega, \quad D_F(x, y) = F(x) - F(y) - \nabla F(y).(x - y)$$

Let $F: \Omega \to \mathbb{R}$ be a **strictly convex** function of class C^1

Definition

The Bregman divergence associated with F is:

$$\forall x, y \in \Omega, \quad D_F(x, y) = F(x) - F(y) - \nabla F(y).(x - y)$$

Proposition

We have $D_F(x,y) \ge 0$ and $D_F(x,y) = 0$ if and only if x = y

Note: In general, not a metric!

- ▶ Not symmetric
- No triangle inequality

Let $F: \Omega \to \mathbb{R}$ be a **strictly convex** function of class C^1

Definition

$$\forall x, y \in \Omega, \quad D_F(x, y) = F(x) - F(y) - \nabla F(y).(x - y)$$

Let $F: \Omega \to \mathbb{R}$ be a **strictly convex** function of class C^1

Definition

$$\forall x, y \in \Omega, \quad D_F(x, y) = F(x) - F(y) - \nabla F(y).(x - y)$$

Examples

$$ightharpoonup \Omega = \mathbb{R}^d, F(x) = ||x||^2$$

$$D_F(x,y) = ||x-y||^2$$

$$D_F(x,y) = \sum_{i=1}^d \left(x_i \log \frac{x_i}{y_i} + x_i - y_i \right)$$

→ Generalized Kullback-Leibler divergence

NMF for the Kullback-Leibler divergence

Let $X \in \mathbb{R}^{n \times d}$ with $X \geq 0$

We seek to solve:

 $\min_{W,H\geq 0} \overline{D(X||WH)}$

This optimization problem is **convex** in W or H but not in both

NMF for the Kullback-Leibler divergence

Let $X \in \mathbb{R}^{n \times d}$ with X > 0

We seek to solve:

$$\min_{W,H\geq 0} D(X||WH)$$

This optimization problem is **convex** in W or H but not in both

Lee-Seung's algorithm (2000)

Alternate updates

$$H \leftarrow H \times \frac{W^T \frac{X}{WH}}{W^T 11^T} \quad W \leftarrow W \times \frac{\frac{X}{WH} H^T}{11^T H^T}$$

with component-wise matrix multiplications and divisions

Theorem

The divergence D(X||WH) is **non-increasing**

Summary

Dimension reduction

- ► Feature selection → supervised learning
- ► Random projection → no learning
- ► Matrix factorization → unsupervised learning SVD ↔ projection NMF ↔ superposition

