MATH 531 Homework 1 Spring 2025

- 1. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a set of k orthogonal vectors in \mathbb{R}^n . That is $\mathbf{x}_i^T \mathbf{x}_j = 0$ for all $i \neq j$. Show that this set is linearly independent when $k \leq n$. Also explain why this problem does not make sense when k > n!
- 2. Suppose $\mathcal{V}_n \subset \mathbb{R}^n$ is a vector space. Prove the following results.
 - (a) If $x \in \mathcal{V}_n$ and $x \perp \mathcal{V}_n$ then x = 0.
 - (b) $\mathcal{V}_n^{\perp} = \{ \boldsymbol{x} : \boldsymbol{x} \perp \mathcal{V}_n \}$ is a vector space.
- 3. Let $\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k\}$ be a basis of a vector space \mathcal{W} . Then show that $\boldsymbol{y}\in\mathcal{W}^{\perp}$ if and only if (aka iff) $\boldsymbol{y}\perp\boldsymbol{x}_i,\ i=1,2,\ldots,k$.
- 4. Recall the Cauchy-Schwartz inequality for two vectors , ${\bf x}$ and ${\bf y}$ in \mathbb{R}^n

$$|\mathbf{x}^T \mathbf{y}| \le \|\mathbf{x}\| \|\mathbf{y}\|$$

use this inequality to show that the sample correlation coefficient between two data vectors is always in the range [-1, 1]

- 5. Recall the projection of a vector \mathbf{y} onto \mathbf{x} is given by $\hat{\mathbf{y}} = \beta \mathbf{x}$ with $\beta = (\mathbf{x}^T \mathbf{y})/(\mathbf{x}^T)$ Using the fact that $\|\mathbf{y} \hat{\mathbf{y}}\| \ge 0$ for all \mathbf{x} and \mathbf{y} prove the Cauchy-Schwartz inequality
- 6. Extra Credit Who were Cauchy and Schwarz in the equality given in the previous problem? If you could go to dinner with either one who would you choose?