DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2022

MAT1107 - Introducción al Cálculo

Solución Interrogación N° 6

1. a) Una comunidad de conejos ha sido liberada en una isla perdida. Se ha estimado que el nivel de crecimiento de dicho población está dado por:

$$N(t) = N_0 e^{0.1t}$$

siendo t medido en meses y N_0 el número de conejos existentes al ser liberados en la isla. Determine el tiempo transcurrido para que la población se haya triplicado.

b) Resuelva la ecuación: $5^x - 25^x = -6$.

Solución.

a) Debemos hallar t de modo que

$$3N_0 = N_0 e^{0.1t} \Longrightarrow 0, 1t = \ln(3) \Longrightarrow t = \frac{\ln(3)}{0.1}.$$

b) Haciendo $u = 5^x$ vemos que

$$5^{x} - 25^{x} = -6 \iff 5^{x} - (5^{x})^{2} = -6 \iff u - u^{2} = -6 \iff u^{2} - u - 6 = 0 \iff (u - 3)(u + 2) = 0$$

Entonces u=3 o u=-2 o equivalentemente $5^x=3$ o $5^x=-2$. La solución $5^x=-2$ es imposible, por lo tanto

$$5^x = 3 \Longleftrightarrow x \ln(5) = \ln(3) \Longleftrightarrow x = \frac{\ln(3)}{\ln(5)}$$
.

Puntaje Pregunta 1.

- \blacksquare 3 puntos por obtener el valor de t.
- 3 puntos por obtener la solución $x = \ln(3)/\ln(5)$.

2. Sea $\{a_n\}$ es una sucesión que satisface $\sum_{k=1}^{9} a_k = 50$, $\sum_{k=1}^{9} a_k^2 = 100$ y $3\sum_{k=1}^{10} a_k = 180$.

a) Determine el valor de a_{10} .

[2 puntos]

b) Determine el conjunto

$$S = \left\{ c \in \mathbb{R} \mid \sum_{k=1}^{10} (2a_k - c)^2 = 1050 \right\}.$$

[4 puntos]

Solución.

a) Notemos que

$$3\sum_{k=1}^{10} a_k = 180 \Longrightarrow \sum_{k=1}^{10} a_k = 60 \Longrightarrow \sum_{k=1}^{9} a_k + a_{10} = 60 \Longrightarrow 50 + a_{10} = 60 \Longrightarrow a_{10} = 10$$

b) Tenemos que

$$\sum_{k=1}^{10} (2a_k - c)^2 = \sum_{k=1}^{10} (4a_k^2 - 4a_k c + c^2)$$

$$= 4 \sum_{k=1}^{10} a_k^2 - 4c \sum_{k=1}^{10} a_k + \sum_{k=1}^{10} c^2$$

$$= 4 \sum_{k=1}^{9} a_k^2 + 4a_{10}^2 - 4c \sum_{k=1}^{9} a_k - 4ca_{10} + 10c^2$$

Sustituyendo la información obtenida vemos que

$$\sum_{k=1}^{10} (2a_k - c)^2 = 1050 \iff 4 \sum_{k=1}^{9} a_k^2 + 4a_{10}^2 - 4c \sum_{k=1}^{9} a_k - 4ca_{10} + 10c^2 = 1050$$

$$\iff 4 \cdot (100) + 4(10)^2 - 4c(50) - 4c(10) + 10c^2 = 1050$$

$$\iff 800 - 240c + 10c^2 = 1050$$

$$\iff c^2 - 24c - 25 = 0$$

$$\iff (c - 25)(c + 1) = 0$$

$$\iff c = -1 \lor c = 25$$

Por lo tanto, el conjunto es $S = \{-1, 25\}.$

Puntaje Pregunta 2.

• 2 puntos por determinar el valor de a_{10}

■ 2 puntos por obtener la igualdad
$$\sum_{k=1}^{10} (2a_k - c)^2 = 4\sum_{k=1}^{9} a_k^2 + 4a_{10}^2 - 4c\sum_{k=1}^{9} a_k - 4ca_{10} + 10c^2$$

- 1 puntos por obtener que la igualdad que define al conjunto S es equivalente con $c^2 24c 25 = 0$.
- \blacksquare 1 punto por obtener el conjunto S.