Discrete Structures

CSE 2315 (Spring 2018)

Lecture 17 Set

Dajiang Zhu, Ph.D.

Department of Computer Science and Engineering

Set Fundamentals

- A set is an unordered collection of objects
- The fundamental question in set theory is membership, i.e., does object x belong to set A. This is denoted as: does $X \in A$?
- Two sets are equal, if they contain the same elements. Logically,

$$A = B \Rightarrow (\forall x)[x \in A \leftrightarrow x \in B]$$

Fundamentals

Representing Sets

- The extensional method Explicitly enumerate all the elements of the set; e.g., $A = \{1, 5, 7\}, B = \{1, 2, 3, ..., 100\}, C = \{red, white, blue\}.$
- The intensional method Specify a property P that characterizes the set elements; e.g., $A = \{x \mid x \text{ is an integer less than 7, but at least 3}\}.$
- Recursion We can describe the set of all even positive integers as follows:
 (a) 2 ∈ S. (b) if x ∈ S, then so is x + 2.
- Three ways to describe a sets?
 - List its elements
 - Use recursion to describe how to generate the set elements
 - Describe a property P that characterizes the set elements

Fundamentals

Some important sets

- N The set of non-negative integers $\{0, 1, \dots \}$.
- Z The set of all integers $\{..., -1, 0, 1, ...\}$.
- Q The set of all rational numbers.
- R The set of all real numbers.
- C The set of all complex numbers.
- $\{\}$ or \emptyset The set with no elements or null set.

•
$$\{\emptyset\} = \emptyset$$
 ?

Relationships

• A is said to be a subset of B, denoted by

$$A \subseteq B$$
, if $(\forall x)[x \in A \rightarrow x \in B]$

• A is said to be a proper subset of B, denoted by

$$A \subset B$$
, if $A \subseteq B$, but $A \neq B$

- Example
 - The statement $\emptyset \subseteq C$ is always **true**, since the statement $(\forall x)(x \in \phi \rightarrow x \in C)$ is vacuously **true**.
 - Let $A = \{x \mid x \text{ is a multiple of } 8\}$ and $B = \{x \mid x \text{ is a multiple of } 4\}$. Show that $A \subseteq B$.

Power Set

• The set of all possible subsets of a set S is called its **power set** and denoted by P(S)

Example

Let
$$S = \{0, 1\}$$
. $P(S) = \{\phi, \{0\}, \{1\}, \{0, 1\}\}$.

Exercise

Show that if a set has n elements, then its power set will have 2ⁿ elements

Binary Operations

- o is a binary operation on a set S, if for every ordered pair (x, y) of S, x o y exists, is unique, and is a member of S. The properties "exists" and "is unique" are collectively referred to as the property of being "well-defined"; the property that x o y ∈ S is called the closure property.
- Example

```
Is + an operation on N?
```

Is – an operation on N? Z?

Is \div an operation on N? x o y = 1, if x>=5; x o y = 0, if x<=5

Unary Operations

- # is said to be a unary operation on S, if for all $x \in S$, $x^{\#}$ is well-defined and S is closed under #.
- The operation $x^{\#} = -x$ is a unary operation on Z, but not on N.
- The operation $x^{\#} = (x)^{1/2}$ is not a unary operation on N, Z; but it is a unary operation on R_{+} .

Operations on Sets

• For discussing operations on sets, we assume the existence of a ground set S and its power set P(S). All operations are defined on the elements of P(S); P(S) is called the universal set or the universe of discourse.

Principal Operations

Let $A, B \in \mathcal{P}(S)$, i.e., A and B are subsets of S.

- (i) $A \cup B$ (union) is defined as: $\{x \mid x \in A \text{ or } x \in B\}$.
- (ii) $A \cap B$ (intersection) is defined as: $\{x \mid x \in A \text{ and } x \in B\}$.
- (iii) A' (complement) is defined as : $\{x \mid x \in S \text{ and } x \notin A\}$.
- (iv) A B (difference) is defined as: $\{x \mid x \in A \text{ and } x \notin B\}$.
- (v) $A \times B$ (Cartesian Product) is defined as: $\{(x, y) \mid x \in A \text{ and } y \in B\}$.

Examples

Let $A = \{1, 2, 3\}$ and $B = \{a, b, 1\}$. Compute $A \cup B$, $A \cap B$, A - B, $A \times B$ and $B \times A$. What is $(A \cup B)$, $(A \cap B)$, $(A \cap B)$, $(A \times B)$, $(B \times A)$?

```
A \cup B = \{1, 2, 3, a, b\},\

A \cap B = \{1\},\

A - B = \{2, 3\},\

A \times B = \{(1, a), (1, b), (1, 1), (2, a), (2, b), (2, 1), (3, a), (3, b), (3, 1)\},\

B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (1, 1), (1, 2), (1, 3)\}.
```

- Note
 - Two set A and B such that $A \cap B = \emptyset$ are said to be **disjoint**.
 - A \times A is referred to as A^2 , A \times A \times A as A^3 and so on.

Set Identities

 Recall that all sets under discussion are subsets of the ground set S.

Commutative :
$$\begin{cases} A \cup B = B \cup A \\ A \cap B = B \cap A \end{cases}$$
Associative :
$$\begin{cases} (A \cup B) \cup C = A \cup (B \cup C) \\ (A \cap B) \cap C = A \cap (B \cap C) \end{cases}$$
Distributive :
$$\begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{cases}$$
Identity :
$$\begin{cases} A \cup \emptyset = A \\ A \cap S = A \end{cases}$$
Complement :
$$\begin{cases} A \cup A' = S \\ A \cap A' = \emptyset \end{cases}$$

Proving Set Identities

```
Show that A \cup (B \cap C) = (A \cup B) \cap (A \cup C)

Observe that,

x \in A \cup (B \cap C) \rightarrow x \in A \text{ or } x \in (B \cap C)

\rightarrow (x \in A) \text{ or } (x \in B \text{ and } x \in C)

\rightarrow (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C)
```

Simply reverse the argument to show that every element in the set represented by the RHS is also an element of the set represented by the LHS.

 \rightarrow $(x \in A \cup B)$ and $(x \in A \cup C)$

 \rightarrow $x \in (A \cup B) \cap (A \cup C)$

Spring 2018 Dajiang Zhu Discrete Structures

Proving Set Identities

Show that

$$[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$$

Solution

```
[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)')
= ([A \cup (B \cap C)] \cap [A' \cup (B \cap C)]) \cap (B \cap C)' \text{ Associativity}
= ([(B \cap C) \cup A] \cap [(B \cap C) \cup A']) \cap (B \cap C)' \text{ Commutativity}
= ([(B \cap C) \cup (A \cap A')]) \cap (B \cap C)' \text{ Distributivity}
= [(B \cap C) \cup \emptyset] \cap (B \cap C)' \text{ complement}
= (B \cap C) \cap (B \cap C)' \text{ identity}
= \emptyset \text{ complement}
```

Three approaches to proving set identities

- Draw a Venn diagram
- Establish set inclusion in each direction
 - take an arbitrary member of one side and show it belongs to the other side, and conversely.
- Use already proved identities
 - be sure to match the pattern of the identity you want to use.

Countable and Uncountable Sets

- The number of elements in a set S is called its **cardinality**.
- A set S is said to be **finite**, if |S| = k, for some $k \in N$.
- A set S is said to be **denumerable**, if its cardinality is ∞ , but its elements can be enumerated in some order. e.g., N, Z^+ , Z^- , Z and so on.
- A set S is said to be **countable** if it is either finite or denumerable. Otherwise, it is said to be **uncountable**.

Countability

- Is the set Q⁺ (positive rationals) countable?
- Solution

```
\begin{bmatrix} 1/1, & 1/2, & 1/3, & 1/4, \dots \\ 2/1, & 2/2, & 2/3, & 2/4, \dots \\ 3/1, & 3/2, & 3/3, & 3/4, \dots \\ & \vdots & \vdots & \vdots & \end{bmatrix}
```