NAME:

Problem 1 Find the derivative of $\sin^{-1}(e^{-x})$.

(a)
$$\cos^{-1}(e^{-x})$$

(b)
$$e^x \cos e^x$$

(c)
$$\frac{e^{-x}}{\sqrt{1-e^{-x}}}$$

$$\left(\mathbf{d}\right) \ \frac{-e^{-x}}{\sqrt{1-e^{-2x}}}$$

(e)
$$\frac{e^{-x}}{\sqrt{1-x^2}}$$

Problem 2 Find $\int_0^{\ln 9} e^{\theta} \sqrt{e^{\theta} - 1} d\theta$.

(a)
$$e^2$$

(b)
$$32\sqrt{2}$$

(c)
$$\frac{32}{3}\sqrt{2}$$

(d)
$$16\sqrt{2}$$

Problem 3 Evaluate $\int \frac{dx}{\sqrt{9x^2-4}}$.

(a)
$$\frac{1}{3} \ln \left| 3x + \sqrt{9x^2 - 4} \right| + C$$

(b)
$$\frac{3}{2} \ln \left| \sin^{-1} 3x + \sqrt{9x^2 - 4} \right| + C$$

(c)
$$\frac{\left|\ln\sqrt{9x^2-4}\right|}{18x} + C$$

(d)
$$\sec^{-1} 3x + C$$

(e)
$$\frac{1}{2} \tan^{-1} 3x - \ln(9x^2 - 4) + C$$

Problem 4 Evaluate $\int \frac{5x+2}{x^2+x} dx$

(a)
$$\ln |x^5(x^2+x)^2| + C$$

(b)
$$\ln |x^2(x+1)^3| + C$$

(c)
$$\ln |x^3(x+1)^2| + C$$

(d)
$$\ln |x(x^2+1)^2| + C$$

(e)
$$\ln |x(x+1)| + C$$

Problem 5 Evaluate $\int_0^{\pi/4} \sin^3 2\theta \cos^2 2\theta d\theta$.

- (a) $\frac{1}{15}$
- (b) $\frac{-1}{12}$
- (c) $\frac{1}{3}$
- (d) $\frac{2}{5}$
- (e) $\frac{-2}{15}$

Feedback:

- 1. What aspects of the course have been helpful in your learning?
- 2. What aspects of the course could use improvement?
- 3. Any comments on the lecture format?