

Sampling Distribution

Inferential Statistics

A Sample

- When we draw a sample and study it, we find its characteristics by calculating its measures.
- We may calculate its mean and standard deviation.
- By calculating the measures, we intend to find the estimates of corresponding population parameters.

Example

- Consider that we want to estimate the average salaries of Oracle Functionals working in IT industry with 5 to 6 years of experience in India.
- So we draw a random sample of size 10 and calculate the measures.
 (Figures in Lakhs)

8.9	9.3	6.7	8.5	5.66	7.66	10.2	11.3	12.4	9.21
		Mean =	8.983						

Hence we have the sample mean as 8.983 lakhs.

Sample from person B: Mean = 9.683

Sample from person C: Mean = 10.09 Hence we see that if the experiments is performed by different people we get different values for the sample mean.

Sample from person A: Mean = 8.64 Sample from person D: Mean = 8.77

So we implies that...

- The values from different samples namely by persons A, B, C, D etc. also follow a random pattern.
- This pattern of randomness is the sampling distribution.

Population and Sample Notations

	Population	Sample
Mean	μ	$ar{x}$
Variance	σ^2	s^2
Standard Deviation	σ	S
Correlation	ρ	r

Population Parameters

Statistics

- A Statistic is said to be an estimator of a population parameter
- An estimator is a formula and estimate is its particular value

Estimation Terminology

- **Point estimate** is calculated as being a "best guess" of the population parameter. e.g. Sample mean is point estimate of population mean.
- A confidence interval is an interval around the point estimate calculated from the sample data, where it is strongly believed that the true value of the population parameter lies.
- The difference between the point estimate and the true value of the population parameter is called **estimation error** or **sampling error**.
- The standard deviation of the sampling distribution of the estimate is called standard error of the estimate.

Point Estimate

Interval Estimate

Confidence Interval

- Interval (x1,x2) is said to be 95% confidence interval of population parameter μ ,
 - If $P(x1 \le \mu \le x2) = 0.95$
- Similarly,
- Interval (x1,x2) is said to be 99% confidence interval of population parameter μ ,
 - If $P(x1 \le \mu \le x2) = 0.99$

C.I. of μ

• Assuming Normal Distribution, C.I. of mean μ with known standard deviation is given by the formula(Sample size = n):

$$(x-z.value \frac{\sigma}{\sqrt{n}}, x+z.value \frac{\sigma}{\sqrt{n}})$$

Assuming Normal Distribution, C.I. of mean μ with unknown standard deviation is given by the formula (Sample size = n):

$$(x-t.value \frac{s}{\sqrt{n}}, x+t.value \frac{s}{\sqrt{n}})$$

Margin of Error

- The quantity t.value* s / \(\n \) is margin of error.
- More is the margin of error wider is the C.I.
- If its 95% C.I. then its confidence coefficient is 0.95.
- If its 99% C.I. then its confidence coefficient is 0.99.
- Confidence coefficient is denoted by (1- α)
- More the confidence coefficient wider is the C.I.
- Also greater is the sample size n, lesser would be the margin of error.

Thank You