Till now we have discussed about carbohydrate catabolism...

Now we move to other macromolecules catabolism...

Lecture 15 BT 206 16/02/23

Lipid Catabolism

- •Lipases hydrolyze lipids into glycerol and fatty acids.
- •Catabolic products can be further broken down in glycolysis and the Krebs cycle.

Catabolism of Organic Food Molecules

Protein Catabolism

- •Before amino acids can be catabolized, they must be converted to various substances that enter the Krebs cycle.
- •Here bacteria is inoculated in tubes containing glucose, pH indicator and specific amino acid.
- •a) turns yellow when glucose is utilized
- •b) turns purple from decarboxylation of amino acid.

Detecting amino acid catabolizing enzymes

Now we discuss on anabolism of selective macromolecules...

Polysaccharide Biosynthesis

- •Glycogen is formed from ADPG (Adenosine diphosphoglucose)
- •UDPNAc is the starting material for the biosynthesis of peptidoglycan.

Lipid Biosynthesis

- •Lipids are synthesized from fatty acids and glycerol.
- •Glycerol is derived from dihydroxyacetone phosphate, and fatty acids are built from acetyl CoA.

Pathways of Amino Acid Biosynthesis

- •Amino acids are required for protein biosynthesis.
- •All amino acids can be synthesized either directly or indirectly from intermediates of carbohydrate metabolism, particularly from the Krebs cycle.

Amphibolic Nature of Metabolism

A Nutritional Classification of Organisms:

A Nutritional Classification of Organisms

Metabolic Diversity among Organisms

Nutritional Type	Energy Source	Carbon Source	Example
Photoautotroph	Light	CO ₂	Oxygenic: Cyanobacteria plants Anoxygenic: Green, purple bacteria
Photoheterotroph	Light	Organic compounds	Green, purple nonsulfur bacteria
Chemoautotroph	Chemical	CO ₂	Iron-oxidizing bacteria
Chemoheterotroph	Chemical	Organic compounds (glucose)	Fermentative bacteria Animals, protozoa, fungi, bacteria.

Energy Source Overview:

- In addition to organisms feeding on organic carbon for energy (chemoorganotrophs).
- There are <u>chemolithotrophs</u>, which gain energy from reduced inorganic compounds (litho = rock).
- There are <u>phototrophs</u> that yield energy from sunlight and do not depend on any chemical energy sources.
- Also note how the terminal (final) electron acceptor determines which respiration type or fermentation.

