

Facultad de Ciencias

Universidad Autónoma de México Física Estadística

Tarea 1- 18

Profesores:

Dr. Ricardo Atahualpa Solórzano Kraemer

Alumno: Sebastián González Juárez

sebastian_gonzalezj@ciencias.unam.mx

18. Usa los teoremas de combinatoria para demostrar que:

$$(a_1 + a_2 + \ldots + a_m)^n = \sum_{n_1, n_2, \ldots, n_m} {n \choose n_1, n_2, \ldots, n_m} a_1^{n_1} a_2^{n_2} \ldots a_m^{n_m}$$

Donde la suma se toma sobre todos los valores de n_i tal que

$$\sum_{i=1}^m n_i = n$$

Sol.

Expandamos el producto:

$$(a_1 + a_2 + ... + a_m)(a_1 + a_2 + ... + a_m)...(a_1 + a_2 + ... + a_m),$$
 n veces

Cada producto resultante tiene la forma: $a_1^{n_1}a_2^{n_2}\dots a_m^{n_m}$, donde: n_1 factores han contribuido con a_1 , n_2 factores han contribuido con a_2,\dots,n_m factores han contribuido con a_m .

En el cual al haber hecho n elecciones en total, se cumple que se satisface que

$$n_1 + n_2 + \ldots + n_m = n$$

El número de formas en que se puede obtener $a_1^{n_1}a_2^{n_2}\cdots a_m^{n_m}$ corresponde a distribuir las n elecciones entre los m términos de manera que el término a_i se elija n_i veces. Este número es precisamente el coeficiente multinomial, definido como

$$\binom{n}{n_1, n_2, \dots, n_m} = \frac{n!}{n_1! n_2! \dots n_m!}$$

Siendo el número de maneras en que podemos dividir los n factores en grupos de tamaños n_1, n_2, \ldots, n_m .

Como cada elección de $n_1, n_2, ..., n_m$ genera un término distinto $a_1^{n_1} a_2^{n_2} ... a_m^{n_m}$, la suma sobre todas estas combinaciones nos da la expansión multinomial:

$$(a_1 + a_2 + \dots + a_m)^n = \sum_{n_1, n_2, \dots, n_m} {n \choose n_1, n_2, \dots, n_m} a_1^{n_1} a_2^{n_2} \dots a_m^{n_m}$$

Acá agregare el desarrollo de pensar

$$\binom{n}{n_1, n_2, \dots, n_m} = \frac{n!}{n_1! n_2! \dots n_m!}$$

Supongamos que tenemos n objetos distintos y los queremos ordenar en una fila. La cantidad de formas en las que se pueden ordenar todos los n objetos es:

$$n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$$

Ahora queremos distribuir estos n objetos en m grupos, donde: El primer grupo contiene n_1 objetos, El segundo grupo contiene n_2 objetos, ... El último grupo contiene n_m objetos.

Se debe cumplir que: $n_1 + n_2 + \cdots + n_m = n$

Ahora hay que ver cuántas maneras hay de hacer esta distribución.

Para el primer grupo con n_1 elementos, de los n elementos totales hay

$$\binom{n}{n_1} = \frac{n!}{n_1! (n - n_1)!}$$

maneras de seleccionar los n_1 elementos que irán al primer grupo.

Después de haber elegido los n_1 elementos para el primer grupo, quedan $n-n_1$ elementos. Ahora, hay

$$\binom{n-n_1}{n_2} = \frac{(n-n_1)!}{n_2! (n-n_1-n_2)!}$$

maneras de elegir los n_2 elementos del segundo grupo.

Ahora quedan $n-n_1-n_2$ elementos, y el tercer grupo debe contener n_3 elementos. Entonces, hay

$$\binom{n-n_1-n_2}{n_3} = \frac{(n-n_1-n_2)!}{n_3! (n-n_1-n_2-n_3)!}$$

De manera similar, continuamos hasta llegar al último grupo.

Multiplicando todas las elecciones desde el primer hasta el último grupo:

$$\binom{n}{n_1}\binom{n-n_1}{n_2}\binom{n-n_1-n_2}{n_3}\cdots$$

Sustituyendo cada expresión:

$$\frac{n!}{n_1! (n-n_1)!} \frac{(n-n_1)!}{n_2! (n-n_1-n_2)!} \frac{(n-n_1-n_2)!}{n_3! (n-n_1-n_2-n_3)!} \cdots$$

Observemos que en el numerador y denominador aparecen términos repetidos que se cancelan en cada paso. Después de todas las cancelaciones, queda:

$$\frac{n!}{n_1! \, n_2! \dots n_m!}$$