

Advanced Course on Mathematics for IIT JAM'22 - Part I

RANKER'S BATCH

PRACTICE SET 1

SAGAR SURYA

IF HARD WORK IS SLAVE.

REAL ANALYSIS

Q.1 – Which of the following is/are True for a real sequence $\{X_n\}$ with the general term x_n ?

(a)
$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
 is a Cauchy Sequence

(b)
$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
 is not a Cauchy Sequence

(c)
$$x_n = \int_1^n \frac{\cos(t)}{t^2} dt$$
 is a Cauchy Sequence

(d)
$$x_n = \int_1^n rac{\cos(t)}{t^2} dt$$
 is not a Cauchy Sequence

Q.2-Which of the following is/are True for a real sequence $\{X_n\}$ with the general term x_n ?

(a)
$$x_n = \frac{n^2}{\sqrt{n^6+1}} + \frac{n^2}{\sqrt{n^6+2}} + \cdots + \frac{n^2}{\sqrt{n^6+n}}$$
 is a Convergent Sequence

(b) $x_n = \frac{[\alpha] + [2\alpha] + \cdots + [n\alpha]}{n^2}$ is a Convergent sequence, [.] being the greatest integer function, α being an arbitrary real number

(c)
$$x_n=rac{n^2}{\sqrt{n^6+1}}+rac{n^2}{\sqrt{n^6+2}}+\cdots+rac{n^2}{\sqrt{n^6+n}}$$
 is a Divergen t Sequence

(d) $x_n = \frac{[\alpha] + [2\alpha] + \dots + [n\alpha]}{n^2}$ is a Divergent sequence, [.] being the greatest integer function, α being an arbitrary real number

Q.3- Consider a real sequence whose general term is given by $x_n = \frac{\alpha^n - \beta^n}{\alpha^n + \beta^n}$, where where α and β are real numbers such that $|\alpha| \neq |\beta|$. Then which of the following is/are True ?

- (a) Limit is -1 if $|\alpha| > |\beta|$
- (b) Limit is 1 if $|\alpha| > |\beta|$
- (c) Limit is 0 if $|\alpha| < |\beta|$
- (d) Limit is 0 if $|\alpha| < |\beta|$

Q.4- Consider the following statements about x_n ,

(I) If $\{x_n\}$ converges then, $y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$ also converges to the same limit

(II) If
$$\lim_{n \to \infty} x_{n+1} - x_n = l$$
, then $\lim_{n \to \infty} \frac{x_n}{n} = l$

Which of the following statements is False?

- (a) I but not II
- (b) II but not I
- (c) Both I and II
- (d) Neither I nor II

Q.5- Let $a_1=1$ and $a_{n+1}=\frac{1}{2}\Big(a_n+\frac{2}{a_n}\Big)$ for a sequence $\{a_n\}$ and $b_1=1$, and $b_{n+1}=\sqrt{b_n^2+\frac{1}{2^n}}$ for a sequence $\{b_n\}$. Which of the following is/are True ?

- (a) $\{a_n\}$ and $\{b_n\}$ both converge
- (b) $\{a_n\}$ converges but $\{b_n\}$ diverges
- (c) $\{a_n\}$ diverges but $\{b_n\}$ converges
- (d) $\{a_n\}$ and $\{b_n\}$ both diverge

Q.6- Let $\{x_n\}$ be a bounded sequence. Then, which of the following must be True?

- (a) There must exist a subsequence which converges to $\liminf_{n \to \infty} x_n$
- (b) There must exist a subsequence which converges to $\lim_{n \to \infty} \sup x_n$
- (c) There need not exist a subsequence which converges to $\liminf_{n \to \infty} x_n$
- (d) There need not exist a subsequence which converges to $\liminf_{n \to \infty} x_n$

Q.7 – $\{\cos n: n \in \mathbb{N}\}\$ is dense in [-1,1]. $\{T/F]$

Q.8 - Let $a_1, a_2, ..., a_p$ be fixed positive numbers. Consider the sequences $s_n = \frac{a_1^n + a_2^n + ... + a_p^n}{p}$ and $x_n = \sqrt[n]{s_n}$, $n \in \mathbb{N}$. Then the sequence is monotonically increasing.

DIFFERENTIAL CALCULUS

Q.1 -
$$\lim_{x \to 0} \frac{\sin(x)}{\sqrt{1 - \cos(x)}}$$

(b) is
$$-\sqrt{2}$$

(d) None of these

Q.2-
$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & \text{if } x \in \mathbb{Q} \text{ and } x = \frac{p}{q} \text{ in lowest terms} \end{cases}$$
 is

- (a) Continuous at each rational and discontinuous at each irrational in (0, 1)
- (b) Discontinuous at each rational and continuous at each irrational in (0, 1)
- (c) Continuous at each rational and continuous at each irrational in (0, 1)
- (d) Discontinuous at each rational and discontinuous at each irrational in (0, 1)

Q.3- Which of the following is True for the function
$$f(x) = \begin{cases} x^2 e^{-x^2} & \text{if } |x| \le 1 \\ \frac{1}{e} & \text{if } |x| > 1 \end{cases}$$
?

- (a) Continuous but not differentiable at x=1
- (b) Not differentiable at x = 1
- (c) Not continuous at x = 2
- (d) None of these

Q.4- If f is differentiable at a, then $\lim_{n\to\infty}\frac{a^nf(x)-x^nf(a)}{x-a}$ has the value,

(a)
$$a^n f'(a) - f(a) n a^{n-1}$$

(b)
$$a^n f'(a) - f(a) n a^n$$

(c)
$$a^n f'(a) + f(a)na^{n-1}$$

(d)
$$a^n f'(a) + f(a) n a^n$$

Q.5 - Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Consider the sequence $x_0 \in \mathbb{R}$ and $x_{n+1} = f(x_n)$.

Assume that $\lim_{n\to\infty} x_n = l$ and f'(l) exists. If $|f'(l)| \le k$, then k is ____.

Q.6 - Let $f:[a,b] \to \mathbb{R}$ be continuous and differentiable everywhere in (a,b) except maybe at $c \in (a,b)$. Assume that $\lim_{x \to c} f'(x) = l$. Then, which of these must be True ?

- (a) f must be differentiable at c
- (b) f need not be differentiable at c
- (c) f '(c) =1
- (d) None of these

Q.7- Let f(x) be a continuous function on [a,b], differentiable on (a,b), and $f'(x) \neq 0$ for any x in (a,b). Which of the following is/are True ?

- (a) f(x) is one to one
- (b) f'(x) > 0 for every $x \in (a, b)$ or f'(x) < 0 for every $x \in (a, b)$
- (c) f'(x) satisfies the intermediate value theorem on (a,b)
- (d) None of these

Q.8- Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Suppose that f'(x) > f(x) for all $x \in \mathbb{R}$, and $f(x_0) = 0$ for some $x_0 \in \mathbb{R}$. Then,

- (a) f(x) > 0 for all $x > x_0$
- (b) f(x) < 0 for all $x > x_0$
- (c) $ae^x = 1 + x + \frac{x^2}{2}$, where a > 0 has exactly one root
- (d) None of these

Q.9- Let $f: \mathbb{R} \to \mathbb{R}$. Assume that for any $x, t \in \mathbb{R}$ we have $|f(x) - f(t)| \le |x - t|^{1+\alpha}$ where $\alpha > 0$.

Which of the following must be True for f(x)?

- (a) f is continuous over R
- (b) f is differentiable over ℝ
- (c) f is constant over \mathbb{R}
- (d) None of these

Q.10 - Let $f:[0,\infty)\to\mathbb{R}$ differentiable everywhere. Assume that $\lim_{x\to\infty}f(x)+f'(x)=0$. Then, $\lim_{x\to\infty}f(x)=$ ____.

Q.11- Let $f:[0,1] \to \mathbb{R}$ be continuous and differentiable inside (0,1) such that

- (i) f(0)=0
- (ii) there exists M > 0 such that $|f'(x)| \le M|f(x)|$, for $x \in (0,1)$

then

- (a) f is continuous over R
- (b) f is differentiable over R
- (c) f is identically 0 over R
- (d) None of these

Q.12-
$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

For natural n, $f^{[n]}(0) = ____.$

Q.13 -

Consider a function f(x) whose second derivative f''(x) exists and is continuous on (a,b). Let $c \in (a,b)$. Then,

$$\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c)$$

[T/F]

Is the existence of the second derivative necessary to prove the existence of the above limit?

Q.14 -

Consider a function f(x) whose second derivative f''(x) exists and is continuous on [0,1]. Assume that f(0) = f(1) = 0 and suppose that there exists A > 0 such that $|f''(x)| \le A$ for $x \in [0,1]$.

Which of the following must be True?

(a)
$$\left| f'\left(\frac{1}{2}\right) \right| \leq \frac{A}{4}$$

(b)
$$\left| f'\left(\frac{1}{2}\right) \right| \le \frac{A}{2}$$

(c)
$$|f'(x)| \leq \frac{A}{2}$$

(d)
$$|f'(x)| \leq \frac{A}{2}$$

Q.15 – Suppose a function $f: (-a, a) \setminus \{0\} \to (0, +\infty)$ satisfies $\lim_{x \to 0} \left(f(x) + \frac{1}{f(x)} \right) = 2$. Then,

$$\lim_{x\to 0} f(x) = \underline{\hspace{1cm}}.$$

Q.16—Suppose a function $f:(-a,a)\setminus\{0\}\to(0,+\infty)$ satisfies $\lim_{x\to 0}\left(f(x)+\frac{1}{|f(x)|}\right)=0$. Then,

$$\lim_{x\to a} f(x) = \underline{\hspace{1cm}}.$$

Q.17- If f is a bounded function on [0,1] satisfying f(ax) = bf(x) for $0 \le x \le \frac{1}{a}$ and a, b > 1, then $\lim_{x \to 0^+} f(x) = f(0)$.

[T/F]

Q.18- Evaluate

(i)
$$\lim_{x\to 0} \left(x^2 \left(1 + 2 + 3 + \dots + \left[\frac{1}{|x|} \right] \right) \right)$$

(ii)
$$\lim_{x\to 0^+} \left(x\left(\left[\frac{1}{x}\right] + \left[\frac{2}{x}\right] + \dots + \left[\frac{k}{x}\right]\right)\right), k \in \mathbb{N}$$

Q.19 - If in a deleted neighborhood of zero the inequalities $f(x) \ge |x|^{\alpha}, \frac{1}{2} < \alpha < 1$, and $f(x)f(2x) \le |x|$ hold, then $\lim_{x \to 0} f(x) =$ ___.

Q.20 - Given a real α , assume that $\lim_{x\to\infty}\frac{\mu(ax)}{x^0}=g(a)$ for each positive a. Then,

there exists some c such that $g(a) = ca^{\alpha}$