The Impacts of the International Climate Policies on Global Temperature

Kevin Wu and Matthew Chen

University of Chicago

May 18, 2022

Theoretical Framework - Introduction

- ► Climate change is a major issue of academic interest, and trillions are spent every year to understand and combat it
- ➤ Kyoto Protocol: signed in 1997, went into effect in 2005, required all developed countries (except U.S.) to reduce emissions to 5% below 1990 levels
- ► How effective was Kyoto?

Theoretical Framework - Our Theory

- Our metric of success: overall rates of global warming before and after Kyoto Protocol
- Independent variable: rate of warming
- Dependent variable: time in years
- Causal mechanisms: reduction in greenhouse gas emissions, climate oscillations (sunspot cycles, El Niño, La Niña)
- Previous time-series analyses have shown that the Earth is warming at a significant rate; we add on to this fact by considering a major landmark event
- ▶ Theory: Kyoto has successfully decreased the rate of warming by
 - 1. lowering yearly rate of change
 - 2. lowering impact of previous years negative effects

Data Source

- Berkeley Earth, an independent U.S. non-profit organization affiliated with the Lawrence Berkeley National Laboratory
- ▶ Data from 39,000 unique weather stations, combining 1.6 billion reports from 16 preexisting archives, then cleaned and filtered
- Can filter by country/major city we will use global and U.S.
- Key variables
 - 1. Date: starts in 1750, but only require 1850 present
 - 2. LandAverageTemperature: global average land temperature (°C)
 - 3. LandAverageTemperatureUncertainty: the 95% confidence interval around the average, accounting for statistical and spatial under-sampling effects

Empirical Framework - ARMA Model

- ► Time-based model: $y_t = a_1 y_{t-1} + a_2 y_{t-2} \cdots + a_n y_{t-n} + w_t + \epsilon_t$
- Introduce backshift operator: define B to be an operator on any time-related variable y_t such that $By_t = y_{t-1}$. Then we can write

$$y_t = a_1 B y_t + a_2 B^2 y_t \cdots a_n B^n y_t + w_t$$

- lsolate w_t in terms of y_t : $y_t (a_1By_t + a_2B^2y_t \cdots a_nB^ny_t) = w_t$
- Write our backshift operator as a polynomial expression in terms of B to get $\phi(B)y_t = w_t$, model will determine the best-fitting $\phi(B)$
- ightharpoonup Drift term, w_t may also be affected by past drift terms
- Using same logic as before, we can incorporate this: $\phi(B)y_t = \theta(B)w_t + \epsilon_t$
- This is called ARMA (autorregressive moving average), which tries to determine the polynomials ϕ, θ that best model this result

Empirical Framework - Tests for Significance

- ▶ Unit root test we need to test that our model converges well enough to predict past data (i.e. that variance isn't infinite). This occurs when the "roots" of $\phi(B)$ can be bounded. We can do a statistical test of significance on this
- ACF test autocorrelation function measures the correlation and significance of each given coefficient to determine whether or not it belongs in the model

▶ AIC / BIC - Akaishe information criterion and Bayesian information criterion - they are a test of complexity to determine the optimal model - i.e. are we overfitting? accounting for too many factors? is our model simple enough?

Empirical Framework - Our Model and Controls

- Our empirical method will compare two models
 - 1. ARMA (n_1, m_1) model built on data from 1850-present
 - 2. ARMA(n_2 , m_2) model built on data from 2000-present * n_1 , m_1 , n_2 , m_2 determined by ACF/PACF tests
 - 3. Determine if the rate of warming over the past 20 years has a statistically significant (p < 0.05) decrease from the predicted values
- We can control for is the existence of alternative mechanisms that impact global climate temperature, such as sunspot cycles, El Niño, La Niña, and other climate oscillation patterns
- ▶ We can use a psuedo-control on Kyoto to look at warming rates locally within the U.S., the last major developed nation to engage in climate change control, and the only one not in Kyoto