Using External Material Functions in the Structural Mechanics Module

Overview

- A new way to specify user-defined material models is included in COMSOL Multiphysics version 5.2.
- You can now access external material functions, written in C code, which have been compiled into a shared library.
- By writing a wrapper function in C code, you can also use material functions written in another programming language.
- This makes it possible to program your own material models and distribute such models as add-ons.
- Available with the
 - AC/DC Module (2D magnetics available without the AC/DC Module)
 - Structural Mechanics Module
 - MEMS modules
- Examples include a model file, a source code file, and a shared library compiled and linked for 64-bit Windows
- Running the models on Linux™ and OS X requires additional compilation and linking

External Materials

 The external material model is implemented as a C-function with a certain calling convention, compiled and linked to create dynamically linked libraries that can be called from a material node in the Model Builder at runtime.

```
1 /** Interface to an isotropic linear elastic solid with two parameters E and nu.
 2 * Example code implements linear elastic behaviour. */
    /** You are allowed to use, modify, and publish this External Material File and your modifications of it subject
       to the terms and conditions of the COMSOL Software License Agreement (www.comsol.com/sla). */
    /** Copyright @ 2015 by COMSOL. */
 9 #include <math.h>
 10 #include <stdlib.h>
11 #include <string.h>
12 #include <stdio.h>
13 #ifdef MSC_VER
14 #define EXPORT __declspec(dllexport)
15 #else
16 #define EXPORT
17 #endif
18
19 EXPORT int eval(double *e,
                                     // Input: Green-Lagrange strain tensor components in Voigt order (xx,yy,zz,yz,zx,xy)
                   double *s.
                                     // Output: Second Piola-Kirchhoff stress components in Voigt order (xx,yy,zz,yz,zx,xy)
                   double *D,
                                     // Output: Jacobian of stress with respect to strain, 6-by-6 matrix in row-major order
                   int *nPar,
                                     // Input: Number of material model parameters, scalar
                   double *par,
                                     // Input: Parameters: par[0] = E, par[1] = nu
                   int *nStates, // Input: Number of states, scalar
                   double *states) { // States, nStates-vector
     // Check inputs
     if (nPar[0]!=2)
                                 // only two parameters needed, E and nu
       return 1:
                                // error code 1 = "Wrong number of parameters"
30 if (nStates[0]!=0)
                                // simple linear elastic material, no states needed
                                 // error code 2 = "Wrong number of states"
```

 For details, see the section Working with External Materials in the COMSOL Multiphysics Reference Manual.

Allowing External Processes and Libraries

- For security reasons, executing external code is by default not allowed in a new COMSOL installation
- Open the Preferences dialog box, go to Security and select Allow external processes and libraries
- Restart COMSOL Multiphysics

The External Material Node

 The External Material node is only available under the Global Definitions>Materials node, not under Materials inside Components

Referencing a Shared Library file

- Enter a **Library** path and name (the complete network path), or click **Browse** to locate a library to import.
- Depending on the platform, the library can be a .dll (Windows®), .so (Linux™, or .dylib (OS X) file.
- Select the Interface type, depending on your external library implementation.

Interface Types

- The implementation contains four different built-in Interface types, or external material sockets:
 - General stress-strain relation
 - Inelastic residual strain
 - General H(B) relation*
 - General B(H) relation*
 - * For magnetic materials in AC/DC Module

• For details, see the section Working with External Materials in the COMSOL Multiphysics Reference Manual.

External Materials in Solid Mechanics

 Add your external material to the domain in the same way you add any of the built-in material models.

Selecting the External Material

- Select your material model from the list
- The Include geometric nonlinearity option will be selected and grayedout in the study step

Inelastic Residual Strain and External Strain

 For the Inelastic residual strain interface type (selected in the External Material node), add an External Strain contribution to a Linear Elastic Material in the same way as adding any of the built-in inelastic strains contributions.

Example

- Compare a linear elastic material written in C to the built- in Linear elastic material
- Use compiled library linear_elastic.dll
- Add two Solid Mechanics interfaces on a simple 2D axisymmetric geometry
- Uniaxial tensile test, 5 % axial strain
- Material parameters: E=2e9 Pa, v=0.3

Adding an External Material

Right-click the Materials node, add
 an External Material node

Right-click Solid Mechanics, under Material Models, select External
 Stress-Strain Relation

 In the Settings for External Stress-Strain Relation, select the domains to use the external material, under the External material list, select — External Material 1

Settings for External Material

 Select your library. Not necessary to add the full path if the .dll file is located in the same folder as the .mph file

- Use General stress-strain relation
- No need for states in this example
- Add Young's modulus and Poisson's ratio, use brackets and commas to separate inputs {2e9,0.3}

Results

