MSCI:9110 Advanced Analytics Kurt Anstreicher Spring, 2017

SAMPLE FINAL EXAM

Name: SOZUTION

This is a two and one-half hour, open book and notes exam. There are a total of 85 points. Be sure to show your work to receive partial credit. Good Luck!

Question 1. (40 points) A regression analysis is being used to compare a production index for the G7 countries and the worldwide consumption of copper, in thousands of tons, over a 40-year period. The regression output and residual plots are shown below.

Regression of Cop	per on Index	(7
Regression S	tatistics				2	
Multiple R	0.969					
R Square	0.939					
Adjusted R Square	0.938					
Standard Error	263.126					
Observations	40					
ANOVA	1,000 1,000 1,000 1,000 1,000					
	df	SS	MS	F	Significance F	
Regression	1	40840277.821	40840277.821	589.876	0.000	
Residual	38	2630943.315	69235.350			
Total	39	43471221.136				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	2081.001	136.411	15.255	0.000	1804.852	
Index	47.331	1.949	24.287	0.000	43.386	

A. (5 points) Describe problems, if any, that you see with the residuals from this regression.

THE RESIDUAL AUTOCOMPRENTION IN HIGHER THAN PESIRABLE. THEXE N AUSO A CLIMA INCREASING THEND IN THE PETIPUALS FUNTHE LAT 15 YEARS OF PATA.

B. (10 points) Suppose that this regression is going to be used to generate a forecast for copper consumption based on a forecast of 105 for next year's G7 production index. Using the above regression, what is the forecast value for copper consumption? Approximately how large is a 95% prediction interval for this forecast? Do you have any reason to believe that this forecast might tend to be high, or low?

FOREART 15 $G = b_0 + b_1 \times - 20P1 + 47.331(105)$ = 7050.755

THE ETURN FOR A 95% PRODUTION INTENDE IS APPROXIMATELY ± 25e = 2(263.126) = ±526.25

ONE MIGUT SUSPECT TURS TURS FURFIRMT IS LOW RANGO ON THE TIME SCRIES OF RESIDENCES, SINCE POSITIVE RESIDENCES CORRESPOND PO PREDICTED VALUES REING LESS THAT ACTURE VALUES. An alternative regression uses the variables Diff_Copper and Diff_Index, where "Diff" for a time series X_t is equal to X_t - X_{t-1} The regression of Diff_Copper on Diff_Index, and residual plots, is given below.

Regression of Diff	_Copper on Di	ff_Index				
Regression S	Statistics					
Multiple R	0.770					
R Square	0.593					
Adjusted R Square	0.582					
Standard Error	222.279					
Observations	39					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	2665282.605	2665282.605	53.944	0.000	
Residual	37	1828098.182	49408.059			
Total	38	4493380.787	5.2			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-143.423	49.060	-2.923	0.006	-242.829	-44.018
Diff_Index	127.534	17.364	7.345	0.000	92.351	162,717

C. (5 points) Why does the second regression have only 39 observations, when there are 40 years of data?

D. (5 points) What advantages, if any, do you see in the residuals from the second regression compared to the first regression?

E. (5 points) Do you agree or disagree with the statement "The first regression fits the data better because the R-Square value is much higher?" Explain your answer.

F. (10 points) Suppose that the final value for the G7 index in the data is 103, and the final value for copper consumption is 7,212. Use the second regression to give a forecast for copper consumption based on a forecast of 105 for next year's G7 production index.

Question 2. (15 points) An industrial sterilizer uses 6 high-power UV bulbs. The sterilizer requires that at least 5 bulbs be working to perform adequately. The operating life of an individual UV bulb has an exponential distribution with mean 365 days. A Crystal Ball simulation has been written to determine how often the sterilizer will need to be shut down to replace bulbs. The lives of the individual bulbs are CB Assumption cells, which are then sorted in the spreadsheet. The two CB Forecast cells are the minimum life, and the second shortest life. The distributions for these two forecast cells based on a run with 500,000 trials are shown below. The mean values for the two forecast cells are also shown in the spreadsheet.

Lamp#	Life		Sort	Mean
	1	365	297	60.8
	2	400	350	133.7
	3	405	365	j
4	1	297	400)
	5	350	405	•
(5	500	500	

A. (5 points) Based on the simulation output, what is the distribution of the minimum of 6 random variables, each of which has an exponential distribution with mean 365 days?

B. (5 points) Based on the simulation output, if the sterilizer is started up with 6 new bulbs, what is the probability that it will need to be shut down to have bulbs changed after 35 days or less of operation?

C. (5 points) Suppose that 2 bulbs have burned out and the sterilizer is shut down to have bulbs changed. If the individual bulbs actually have lives with an exponential distribution, do the 4 bulbs that are still working need to be replaced? Explain.

MO. FOR AN EXPONENTIAL PRITISHED , ME REMAING CIFE AFRIK ANY GUEN TIME IS EURA TO PUE ORIGINAL CIFE ONTH PUTON. TUN MEANS MAT CIFE BULPS PUT ARE STILL MARKING THE BULPS PUT ARE STILL MARKING ARE "AS GOOD AS NEW." Question 3. (30 points) A producer of agricultural machinery must determine the production schedule for a particular tractor for the 2017 calendar year. Currently there are 100 completed tractors in inventory. Based on historical data, and market research, there are projected demands for tractors in each month of 2017. There are also production capacities for each month. These capacities are 150 units/month for the months of January-April, October, and November, 100 units/month for May-September, and 50 units for December. (Capacity is lower in the summer months because of required production of other items, and is lower in December due to holidays and scheduled maintenance.) A linear program is formulated to minimize the sum of tractors in inventory at the start of each month, from January 2017 to January 2017, subject to meeting the projected demands, not exceeding monthly production capacities, and maintaining non-negativity of inventories and production levels. A spreadsheet with the problem data, and solution, is shown below. Numbers in boldface are data, corresponding to the initial inventory, monthly demands, and monthly production capacities. The complete Excel Solver Sensitivity Report is on the following page.

	A	В	C	D	E
1		Inventory	Demand	Production	Capacity
2	January	100	0	0	150
3	February	100	0	0 .	150
4	March	100	20	120	150
5	April	200 /	50	150	150
6	May	300	100	100	100
7	June	300	200	100	100
8	July	200	200	100	100
9	August	100	200	100	100
10	September	0	100	100	100
11	October	0	20	20	150
12	November	0	10	10	150
13	December	0	0	0	50
14	January	0			
15	Total	1400	 -		

A. (10 points) What formula is contained in cell D4? (Hint: Note that in the LP solved by Solver the variables, or adjustable cells, are the starting inventories for February 2017-January 2017)

For each month we have
$$Tit_1 = T_i - D_i + P_i$$
, which means $Tit_1 = T_i - D_i + T_{i+1} - T_i$.

 $P_i = D_i + T_{i+1} - T_i$.

 $THE FORMULA IN CELL DY IS THEN$

$$= \frac{CY + BJ - BY}{-}$$
(70 CHECK, WE SHOULD THEN HAVE
$$120 = 20 + 200 - 100$$

Microsoft Excel 8.0a Sensitivity Report

Adjustable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$3	February Inventory	100	0	1	1E+30	2
\$B\$4	March Inventory	100	0	1	1E+30	1
\$B\$5	April Inventory	200	0	1	1E+30	1
\$B\$6	May Inventory	300	0	1	1E+30	2
\$B\$7	June Inventory	300	0	1	1E+30	3
\$B\$8	July Inventory	200	0	1	1E+30	4
\$B\$9	August Inventory	100	0	1	1E+30	5
\$B\$10	September Inventory	0	(6)	1	1E+30	6
\$B\$11	October Inventory	0	1	1	1E+30	1
\$B\$12	November Inventory	0	1	1	1E+30	1
\$B\$13	December Inventory	0	(2)	1	1E+30	2
\$B\$14	January Inventory	0	1	1	1E+30	1

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$2	January Production	0	0	150	1E+30	150
\$D\$3	February Production	0	0	150	1E+30	150
\$D\$4	March Production	120	0	150	1E+30	30
\$D\$5	April Production	150	-1	150	120	30
\$D\$6	May Production	100	-2	100	120	30
\$D\$7	June Production	100	(-3)	100	120	30
\$D\$8	July Production	100	(-4)	100	(120)	30
\$D\$9	August Production	100	-5	100	100	30
\$D\$10	September Production	100	0	100	1E+30	0
\$D\$11	October Production	20	0	150	1E+30	130
\$D\$12	November Production	10	0	150	1E+30	140
\$D\$13	December Production	0	0	50	1E+30	50
\$D\$2	January Production	0	2	0	120	30
\$D\$3	February Production	0	1	0	120	30
\$D\$4	March Production	120	0	0	120	1E+30
\$D\$5	April Production	150	0	0	150	1E+30
\$D\$6	May Production	100	0	0	100	1E+30
\$D\$7	June Production	100	0	0	100	1E+30
\$D\$8	July Production	100	0	0	100	1E+30
\$D\$9	August Production	100	0	0	100	1E+30
\$D\$10	September Production	100	0	0	100	1E+30
\$D\$11	October Production	20	0	0	20	1E+30
\$D\$12	November Production	10	0	0	10	1E+30
\$D\$13	December Production	0	1	0	50	0

B. (15 points) Suppose that it is possible to increase production capacity in the months of June, July, and August by 30 units/month, by hiring summer workers. The total cost of hiring the summer workers would be \$60,000. The cost of carrying one tractor in inventory for one month (including the cost of capital, insurance, storage cost, etc.) is \$250. Is the option of hiring the summer workers attractive? Explain. (Note: Assume that each tractor in inventory at the start of each month incurs the \$250 carrying charge for that month.)

C. (5 points) Give brief explanations of why the reduced costs for September and December inventories are 6 and 2, respectively. (Recall that the reduced cost is the shadow price for the non-negativity constraint.)

SEPTEM PER

TO HAVE A UNIS IN INVENTAT AS ME STATES OF SCATEMBER, IT WILL HAVE TO BE PRODUCTION IN AS CAPACITY FOR APPRIC -PRODUCTION IN AS CAPACITY FOR APPRIC -AUGUST.) THIS WILL ADD UNE CALL TO AUGUST.) THIS WILL ADD UNE CALL MAY, THE STATEMAN INVENTANT FOR APPRIC, MAY, THE STATEMAN INVENTANT FOR APPRIC, MAY, A TUTAL OF 6 MONTAS. A TUTAL OF 6 MONTAS.

DEREMBER

TUCKE IS NO DEMIND IN DETERMBER,

SO A UNIT IN INVENTING AT THE

START OF DETERMBER WILL ASO PET

IN INVENTORY OF MENTANY,

FUR A TOTAL OF 2 MONTHS.