Chemistry 1315 Exam #1A-KEY

Name_	
1.	NO CELL PHONE—NO CALCULATOR.
2.	Make sure you showed your Buzz Card <u>BEFORE</u> the exam starts.
3. ⁻	This is a closed book exam. Give or take no assistance from other students
l prom	ise to uphold Georgia Tech's Honor Code

There are 5 sections on 9 pages. Read each questions carefully. **Write all answers** and draw all structures clearly. A blank page is included for scratch work (page 11). Grade is provided on page 10.

I- Questions. Please provide final answers on Scantron. Mark response on exam for your rec	ords.						
2pts each							
(1) Sodium, with a nuclear charge of +1, is less electronegative than nitrogen, with a nuclear charge of +7.							
(a) True (b) False							
(2) A covalent bond is a bond that results when atoms share electrons.							
(a) True (b) False							
(3) In the molecular orbital model of benzene, how many π -bonding molecular orbitals are							
there?							
a) 6 b) 5							
c) 4							
d) 3							
(4) The carbon-carbon bonds in benzene are of:							
a) equal length and are shorter than the double hand of ethene							
b) equal length and are intermediate between a double bond and a single bond.							
c) unequal length and are alternately short and long around the ring.	J						
 d) equal length and intermediate between the carbon-carbon bond lengths in ethe and ethyne. 	ne						
(5) Which of the following describes a triple bond? a) Three pi bonds							
c) One sigma bond and two pi bonds							
a) One signia bona ana one pribona							
(6) What is the conjugate base of ethanol (CH ₃ CH ₂ OH)? a) CH ₃ CH ₂							

c) CH₃CH₂O

(7) What compounds has the higher boiling point?

(8) Identify the hybridized sp3 orbital.

(9) Which of the following molecules is the strongest acid?

(10) Which of the following structures represent a cis isomer (hint: write the hydrogens at the substituted positions)?

- a) III
- b) |&||
- c) II&IV
- d) All structures

(11) Which of the following is not true for enantiomers? They have the same:

- a) Boiling point
- b) Specific rotation
- c) Melting point
- d) Density

(12) Which of the following species is/are a resonance form(s) of the species in the box?

I

II

III

IV

- a) I and II
- b) II and III
- c) III
- d) II

(13) According to molecular orbital theory, in the case of a carbon-carbon double bond, the carbon-carbon bonding electrons of higher energy occupy this molecular orbital:

- a) σ bonding MO
- b) π bonding MO
- c) σ antibonding MO
- d) π^* antibonding MO

(14) Cis-trans isomerism is possible only in the case of:

- a) CH₂=CBr₂
- b) CH₂=CHBr
- c) BrCH=CHBr
- d) Br₂C=CHBr

(15)	Which of	the followin	g would you	expect to be	e aromatic?				
\bigoplus_{\bigoplus}		::⊝ <u></u>		H	$\bigcirc \oplus$				
I	Ι	II II	I I	V	V				
	a) I b) II c) III d) IV e) V								
	(16) A hydrogen bond is formed by hydrogen acting a bridge between two highly electronegative elements.								
Ci	(a			(b) False					
(17) The (S) enantiomer of a chiral compound always rotates the plane of polarized light to the left.									
	(a)True		(b) False]				
(18) The rotational energy barrier associated with a carbon-carbon single bond is usually very large.									
	(a) True		(b) False					
(19) Which diene would be least stable?									
<i>/</i>	~ /	>	/\\						
I		II	III	IV					

- (20) The *meso* form of a molecule can be either dextrorotatory or levorotatory.
 - (a) True

a) I

II- Structures

a) For each of the following arrangement of atoms (i) draw a correct Lewis structure and (ii) indicate the formal charge associated with each of the atoms (except for hydrogens).

Formal charge for all atoms = 0

2) Draw **TWO** constitutional isomer for the molecule shown below.

- a. Draw the two chair conformers of structure of trans-1-ethyl-3-methylcyclohexane (shown below).
 - b. Circle the most stable conformer.

8 pts: 1 per ring, 1 per R group, 2 for circling most stable.

They must be very explicit with axial/equatorial. They were warned that in-between would be wrong.

4) Assign (R) or (S) designations to the compound below.

5) Indicate whether each of the following molecule pairs are identical, enantiomers, or diastereoisomers. **2 pts each**

a.

b.

c.

$$H$$
 CH_3
 H_3C
 H
 C_2H_5
 E
 H
 H
 E
 C_2H_5

III- Resonance Structures

Draw the important contributing resonance structures for each of the following. **Show all** formal charges and the curved arrows that show the movement of electrons.

1)

3 pts: 1 for double headed arrow, 1 per structure with charge, 1 per set of electron pushing

Lower is a very minor contribution, but possible and should be marked correct.

IV- "Real-world" applications

Fentanyl is 80 times as potent as morphine and is a synthesized opioid analgesic with a rapid onset and short duration of action. It is commonly used in pre-procedures. As recently as 2012, it was the most widely used synthetic opioid in clinical practice with several delivery methods.

- (a) Complete this structure of Fentanyl by adding <u>ALL</u> H atoms and bonds that and unshared electron pairs. 10 pts: 0=bad, 5=mostly right, 10=perfect
- (b) Identify either the hybridization or bond angle for the carbon atoms indicated.1 pt each
- (c) Circle and name the three functional groups in Fentanyl.6 pts: 1 per correct circle, 1 per correct name
- (d) Would you expect Fentanyl to be very soluble in water? Briefly explain.

No, Fentanyl would not be soluble. Very nonpolar with little H bonding sites. 3pts

V- Bonus Question.

a- Who first develop a theory for covalent bonds, articulated around 6 postulates?

Lewis. 2pts

b- Why racemic form thalidomide, sold as a sedative, was removed from the market?

One form fine, the other form caused birth defects. 3pts.

Question	<u>Score</u>		
I- Questions (Multiple choice & True/False)	/40		
II- Chemical Structures	/26		
III- Resonance Structures	/12		
IV- "Real-world" applications	/22		
V- Ronus Questions	/5		

This page is for scratch work. Nothing on this page will be graded.