Due: March 11th

- 1. Consider a sequence (a_n) . Show that if (b_k) is a subsequence of (a_n) and (c_m) is a subsequence of (b_k) , then (c_m) is a subsequence of (a_n) .
- 2. Let (s_n) be a sequence of real numbers.
 - (a) Show that $\liminf s_n = -\limsup(-s_n)$. HINT: Recall that, for a nonempty subset $S \subseteq \mathbb{R}$, $\inf S = -\sup\{-s : s \in S\}$.
 - (b) Show that if (t_k) is a monotonic subsequence of $(-s_n)$ converging to $\limsup(-s_n)$, then $(-t_k)$ is a monotonic subsequence of (s_n) converging to $\liminf s_n$.
 - (c) Use part (b) to complete the proof of Corollary 11.4.
- 3. Don't turn this question in. Define sequences (s_n) and (t_n) , both repeating in cycles of four, by

$$(s_n)_{n=1}^{\infty} = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, \dots)$$

$$(t_n)_{n=1}^{\infty} = (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, \dots)$$

Without proof, find each of the following:

- (a) $\liminf s_n + \liminf t_n$,
- (b) $\liminf (s_n + t_n)$
- (c) $\limsup s_n + \limsup t_n$,
- (d) $\limsup (s_n + t_n)$
- (e) $\liminf s_n + \limsup t_n$,
- (f) $\limsup (s_n t_n)$,
- (g) $\liminf (s_n t_n)$.
- 4. Suppose that (s_n) and (t_n) are bounded sequences. Show that

$$\lim \sup (s_n + t_n) \le \lim \sup s_n + \lim \sup t_n.$$

HINT: First show $\sup\{s_n+t_n:n\geq N\}\leq \sup\{s_n:n\geq N\}+\sup\{t_n:n\geq N\}$ and then apply Problem 4(c) from Assignment 5.

5. Given a sequence (s_n) of nonnegative real numbers, define a new sequence (σ_n) by

$$\sigma_n = \frac{s_1 + s_2 + \dots + s_n}{n}.$$

(a) Show that $\liminf s_n \leq \liminf \sigma_n \leq \limsup \sigma_n \leq \limsup s_n$. HINT: For the last inequality, show first that M > N implies

$$\sup\{\sigma_n : n > M\} \le \frac{s_1 + s_2 + \dots + s_N}{M} + \sup\{s_n : n > N\}.$$

(b) Deduce that if $\lim s_n$ exists, then $\lim \sigma_n$ exists and equals $\lim s_n$.