

ANSWER KEY

DATE: 19-12-2018

COURSE				
NUCLEUS				

JEE-MAIN MOCK TEST-12 XII

TEST CODE								
1	1	3	0	1				

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	3	4	3	2	1	2	3	4	2	3	2	2	1	1	3
Q.No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	2	1	1	2	2	3	4	3	2	3	4	1	2	3	2
Q.No.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	3	1	3	3	4	1	3	3	2	4	3	3	2	2	2
Q.No.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	4	1	4	1	2	2	1	3	1	1	2	1	1	2	4
	IOC	ОС	РС	IOC	ОС	РС	IOC	ОС	PC	IOC	ОС	PC	IOC	ОС	PC
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	4	2	3	4	1	2	1	4	3	2	3	4	2	3	2
	IOC	ОС	РС	IOC	ОС	PC									
Q.No.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	1	2	4	1	3	1	4	2	2	4	4	3	4	2	2

HINTS & SOLUTIONS

MATHEMATICS

Q.1 Let
$$x + 1 = t$$

$$\int_{0}^{1} (t-1) \cdot lnt \, dt$$

$$= \left(\frac{t^2}{2} - t\right) \cdot lnt \Big|_{0}^{1} - \int_{0}^{1} \left(\frac{t}{2} - 1\right) dt$$

$$=0-\left[\frac{t^2}{4}-t\right]_0^1=\frac{3}{4}$$

Q.2 Each diagonal element of matrix A has three choices.

$$\begin{array}{ll} Q.3 & (1+x+x^2+x^3)^{100} \\ &= a_0 + a_1 x + a_2 \, x^2 + + a_{300} \cdot x^{300} \,(1) \\ & \text{By differentiating both side} \\ & 100 \cdot (1+x+x^2+x^3)^{99} \cdot (1+2x+3x^2) \\ &= a_1 + 2a_2 \, x + + 300 \cdot a_{300} \cdot x^{299} \end{array}$$

If
$$x = 1$$

100 (4)⁹⁹ · (6) = $a_1 + 2a_2 + \dots + a_n + a_n$

$$300 \cdot \mathbf{a}_{300} = \sum_{r=0}^{300} r \cdot \mathbf{a}_r \dots (2)$$

$$4^{100} = a_0 + a_1 + \dots + a_{300} = k \dots (3)$$

By equation (2) & (3)

$$150 \cdot \mathbf{k} = \sum_{r=0}^{300} r \cdot \mathbf{a}_r$$

Q.4
$$\frac{a \tan \theta}{a \sec \theta + a} = \frac{1}{\sqrt{3}} = \theta = \frac{\pi}{3}$$

Now, AB =
$$\sqrt{(2a+a)^2 + (\sqrt{3}a)^2}$$

= $\sqrt{12a^2}$ = $2\sqrt{3}a$

Q.5
$$\sec^2((n (m + 2)) = 1 - (m + 1)^2$$

only possible value of $m = -1$
 $\Rightarrow \sec^2(n) = 1$
 $\Rightarrow n = 0$
 $\Rightarrow A(-1, -2)$
So, straight line passing through
 $A(-1, -2)$ and with slpoe $m = 2$ is
 $y + 2 = 2(x + 1)$
 $y = 2x$

Q.6
$$g'(0) = 1, g''(0) = 0, g'''(0) = -2018$$

Q.8 1 odd 5 even
$${}^{6}C_{1} \times 2$$

3 odd 3 even ${}^{6}C_{3} \times 2$
5 odd 1 even ${}^{6}C_{5} \times 2$
= $({}^{6}C_{1} + {}^{6}C_{3} + {}^{6}C_{5}) \cdot 2^{6} = 32 \times 2^{6} = 2^{11}$

Q.9 Prime number = 2, 3, 5, 7

Total outcomes $= 2 \cdot = 4^9 = 2^{15}$ favourable out comes

Required probability = $\frac{2^5}{2^{18}} = \frac{1}{2^{13}} = 2^5$

Q.10
$$\underset{x\to 0}{\lim f(x)} = e^{\frac{4b^2 - 9a}{2b}} = e^3$$

$$\Rightarrow 4b^2 - 6b - 9a = 0 \ \forall \ b \in R$$

$$D \ge 0 \Rightarrow a \ge \frac{-1}{4}$$

So,
$$a - 2b = -\frac{1}{2} + 2 \times \frac{3}{4} = 1$$

Q.12
$$g(x) = \int \pi \sin \pi x + 2x - 4 dx$$

= $-\cos \pi x + x^2 - 4x + 5$ (: $g(1) = 3$)

Q.13 Area =
$$\int_{0}^{\frac{b}{b^2+1}} \left[\left(-bx^2 + x \right) - \left(\frac{x^2}{b} \right) \right] dx$$

 $=(x-2)^2+(1-\cos \pi x)$

$$=\frac{b^2}{6(b^2+1)^2}$$

Let f (b) =
$$\frac{b^2}{6(b^2 + 1)^2}$$
 \Rightarrow f (b)_{max} at b = ± 1

Q.14 Equation of tangent

$$y - y_1 = \frac{dy}{dx} (x - 0)$$

$$y = y_1 + x \frac{dy}{dx} \dots (1)$$

Now,
$$\left(\frac{y_1 - 0}{0 - 1}\right) \left(\frac{dx}{dy}\right) = -1$$

$$y_1 = \frac{dx}{dy} \dots (2)$$

By equation (1) and (2)

$$\Rightarrow y \frac{dy}{dx} - x \left(\frac{dy}{dx}\right)^2 = 1$$

Q.15
$$(x\hat{i} + y\hat{j}) \cdot (x\hat{i} + y\hat{j} + 8\hat{i} - 10\hat{j}) + 41 = 0$$

 $x^2 + y^2 + 8x - 10y + 41 = 0$
centre $(-4, 5)$, $r = \sqrt{16 + 25 - 41} = 0$

So, minimum value of $\left| -4\hat{i} + 5\hat{j} + 2\hat{i} - 3\hat{j} \right|^2$

$$= \left| -2\hat{i} + 2\hat{j} \right|^2 = \left(\sqrt{4+4} \right)^2 = 8$$

Q.16
$$\lim_{x \to \frac{\pi}{2}} \sqrt{\frac{\tan x - \sin(\tan^{-1}(\tan x))}{\tan x + \cos^{2}(\tan x)}}$$

$$= \lim_{h \to 0} \sqrt{\frac{\cot h - \cos h}{\cot h + \cos^2(\cot h)}} = 1$$

Q.17
$$5 + 2\sin x - \sin^2 x = 1 + 5^{\sec^2 y}$$
$$\Rightarrow (\sin x - 1)^2 = (5 - 5^{\sec^2 y})$$
$$\Rightarrow \sin x = 1 \text{ and sec } y = 1$$
So,
$$(x + y)_{\min} = \frac{\pi}{2}.$$

Q.18
$$4\cos^2\theta = \frac{x^4 + 2x^2 + 1}{x^2 + 1} + \frac{4}{x^2 + 1}$$

 $4\cos^2\theta = (x^2 + 1) + \frac{4}{(x^2 + 1)}$

$$x^2 + 1 + \frac{4}{x^2 + 1} \ge 4$$
 and $4\cos^2\theta \in [0, 4]$

So,
$$x^2 + 1 = \frac{4}{x^2 + 1}$$

 $\Rightarrow x = \pm 1 \text{ and } \cos \theta = 1$
So, $x \cos \theta = \pm 1$

Q.19
$$(x\hat{i} + y\hat{j}) \cdot (6\hat{j} - 4\hat{i} + x\hat{i} + y\hat{j}) = 3$$

 $x^2 + y^2 - 4x + 6y - 3 = 0$
centre $(2, -3)$, $r = \sqrt{4 + 9 + 3} = 4$
So, $|\vec{r} + 2\hat{i} - 3\hat{j}|_{max} = 2(2 + \sqrt{13})$.

Q.20
$$\left[(\alpha - 2)^3 \right]^4 + \frac{(12)^{12}}{(\alpha \beta)^{12}} - 1 \left[\therefore \beta - 6 = -\frac{12}{\beta} \right]$$

$$= \left[\alpha^3 - 8 - 6\alpha (\alpha - 2) \right]^4$$

$$= \left[\alpha \left[\alpha^2 - 6\alpha + 12 \right] - 8 \right]^4 = 8^4$$
So, a^b may be 2^{12} , 4^6 , 8^4 etc.
So, $(a + b)_{min} = 4 + 6 = 10$

Q.21 At $\lambda = 1$, radical axis of circles are parallel.

Q.22
$$AA^{-1} = \frac{1}{10}[\lambda A^2 + 9A - A^3]$$

 $10I = \lambda A^2 + 9A - A^3$
After solving above $\lambda = 2$

Q.23
$$\left(\frac{7!}{4! \cdot 3!} \times 3! \cdot 3!\right) \left(\frac{8!}{4! \cdot 4! \cdot 2!} \times 3! \cdot 3!\right) = \frac{(7!)^2}{16}$$

Q.24
$$f'(x) = 6x^{2} - 6 \cdot 2\sqrt{2} \times \sin^{2}\theta + 6\sin^{2}\theta$$

$$D \ge 0$$

$$\Rightarrow 36 \cdot 8 \cdot \sin^{4}\theta - 4 \cdot 6 \cdot 6\sin^{2}\theta \ge 0$$

$$\Rightarrow \sin^{2}\theta (2\sin^{2}\theta - 1) \ge 0$$

$$\Rightarrow \sin^{2}\theta \ge \frac{1}{2}$$

Q.25 One of its period is 3.

So that
$$\int_{15}^{25} f(x) dx = 10 \int_{0}^{3} f(x) dx = 50.$$

Page #3

- Q.26 Equation of tangents are $y = \frac{2x}{5}$ and $y = \frac{-5x}{2}$ Here, $m_1 m_2 = -1$.
- Q.28 |z + 1 2i| = 3Centre $C_1 (-1, 2), r_1 = 3$ |z - 2 - 6i| = 2Centre $C_2 (2, 6), r_2 = 2$ $\Rightarrow C_1 C_2 = r_1 + r_2 = 5$
- Q.29
- Q.30 $\tan \theta = \frac{x}{x} = 1$ $\theta = 45^{\circ}$.

PHYSICS

Q.31
$$\frac{\tan 60^{\circ}}{\tan 30^{\circ}} = \frac{Y_B}{Y_A} \Rightarrow Y_B = 3Y_A$$

Q.32 From kinematics and symmetry in vertical ascent and descent motion of the ball,

required time =
$$\sqrt{\frac{2h}{g}} + \sqrt{\frac{2h/2}{g}} = t + \frac{t}{\sqrt{2}}$$

Q.33 $(\chi) = \frac{\text{Intensity of magnetisation (I)}}{\text{Magnetizing field (H)}}$ or, $I = \chi H$

- Q.34 Pressure difference between lungs of student and atmosphere = (760 750) mm of Hg = 1 cm of Hg = 13.6 cm of waterHence h = 13.6 cm.
- Q.35 No friction is required for pure rolling of ring.
- Q.36 $\vec{v}_{I,L} = m^2(\vec{v}_{O,L})$ $\Rightarrow 0 - (-v_I) = n^2(v_O - (-v_I))$

$$\Rightarrow$$
 $v_O = \left(\frac{1-n^2}{n^2}\right) v_L$ towards screen

Q.37 Applying Snell's law at O and P $1 \times \sin 90^{\circ} = n(y) \sin \alpha$

$$\Rightarrow n(y) = cosec \ \alpha = \frac{R}{R - y}$$

Q.38 Let v be the velocity of the particle at point B. Applying conservation of mechanical energy at point A and B, we have

$$-\frac{GMm}{2R} = -\frac{GMm}{R} + \frac{1}{2} m v_B^2$$

$$\Rightarrow v_B = \sqrt{\frac{GM}{R}}$$

Thereafter
$$v = \sqrt{\frac{GM}{R}} = constant$$

(: inside shell, $\vec{F}_g = m\vec{E}_g = 0$)

$$\therefore t_{BD} = \frac{2R}{v}$$

Q.39
$$I_1 = I$$
 and $I_2 = 4I$
 $\therefore I_{net} = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$
 $\therefore I_A = I + 4I = 5I \ (\because \phi_A = \pi/2)$
& $I_B = I + 4I - 2\sqrt{4I.I} = I \ (\because \phi_B = \pi)$
 $\Rightarrow I_A - I_B = 4I$

Q.40
$$\begin{array}{ccc}
T(say) & 2T & T/2 \\
\uparrow & \uparrow & \uparrow \\
a_{A} \downarrow & A & B & B
\end{array}$$

$$\Sigma \vec{T} \cdot \vec{a} = 0 \quad \therefore -Ta_{A} - 2Ta_{B} - \frac{T}{2}a_{C} = 0$$

$$\Rightarrow 2a_{A} + 4a_{B} + a_{C} = 0$$

$$Q.41 \qquad \begin{array}{c} S_{_{1}} & S_{_{2}} & S_{_{3}} \\ E=0 \\ + & - \\ + & - \\ + & - \\ + & - \\ \end{array} E=0$$

$$\therefore C_{eq} = C_{between S_2 \& S_3} = \frac{4\pi \in_0 bd}{d-b}$$

Q.42 In a steady state no current will pass through the capacitor. In the outer loop

$$2V - 2iR - iR - V = 0 \Rightarrow i = \frac{V}{3R}$$

For the upper loop,

$$V - V_C - iR - V = 0$$

$$\Rightarrow |V_C| = iR = \frac{V}{3}$$

Q.43
$$eV_0 = K.E_{max} \Rightarrow V_0 = \frac{K.E_{max}}{e}$$

Q.44
$$\therefore \theta = \theta_0 e^{-\gamma t} \Rightarrow 5 = 10 e^{-\gamma (100 \times 2)}$$

 $\Rightarrow \gamma = \frac{\ln 2}{200} \text{ and Q.F.} = \frac{\omega_0}{2\gamma} = \left(\frac{2\pi}{T}\right) \cdot \frac{1}{2\gamma}$

Q.45 $v_e = \text{Escape velocity}(\text{from height h}) = \sqrt{\frac{2GM}{R+h}} = \sqrt{\frac{2gR^2}{R+h}}$ $\because v_{satellite} > v_e \implies \text{it escapes earth's gravity along a hyperbolic path.}$

Q.46 For concave mirror $v = \frac{fu}{u - f} = -1100 \text{ cm}$ $\Rightarrow I_1 \text{ is } 100 \text{ cm left of A}$

∴ I₂ will be formed as shown

Q.47 The circuit can be redrown as shown in the figure

$$\Rightarrow R_{eq} = \frac{(2R + R_{eq})R}{R + (2R + R_{eq})}$$
$$\Rightarrow R_{eq}^2 + (2R)R_{eq} - 2R^2 = 0$$
$$\therefore R_{eq} = (\sqrt{3} - 1)R$$

Q.48
$$W_{net} = (\Sigma \Delta Q)_{cycle} = 10 + 15 - 10 = 15 \text{ J}$$

 $\Delta Q_{in} = 10 + 15 = 25 \text{ J}$
 $\Rightarrow \eta = \frac{15}{25} \times 100 = 60\%$

Q.49
$$a_r = a \sin 37^\circ = 3 \text{m/s}^2$$
.
Also, $r = \frac{v^2}{a_r} = \frac{25}{3} \text{m}$

Q.50 Capacitance per unit length is given by

$$C = \frac{\lambda}{V} = \frac{2\pi\epsilon_0}{\ln(D_2/D_1)}$$

where $\lambda = \text{charge per unit length}$

$$\begin{split} E_{core} &= \frac{\lambda}{2\pi\epsilon_{0}r_{core}} = \frac{\lambda}{\pi \in_{0} D_{1}} \\ &= \frac{2V}{D_{1}\ln(D_{2}/D_{1})} \\ &\therefore \text{ for } E_{min} \Rightarrow \frac{dE_{core}}{dD_{1}} = 0 \Rightarrow D_{1} = \frac{D_{2}}{e} \end{split}$$

Q.51 Magnetic field is in –Z-direction. $\vec{v} \perp \vec{B}$ \Rightarrow path of particle will be a circle in XY plane.

Angular speed
$$\omega = \frac{qB_0}{m} = \alpha B_0$$

In time t, the particle will rotate an angle $\theta = \omega t = B_0 \alpha t$ as shown in figure.

Hence velocity of particle at time t would be

$$\vec{\mathbf{v}} = \mathbf{v}_0 \cos \theta \hat{\mathbf{i}} + \mathbf{v}_0 \sin \theta \hat{\mathbf{j}}$$

or
$$\vec{v} = v_0 \cos(B_0 \alpha t) \hat{i} + v_0 \sin(B_0 \alpha t) \hat{j}$$

Q.52
$$U = 8x^2 - 4x^4$$

$$\frac{dU}{dx} = 16x - 16x^3 = 0$$

 \Rightarrow x = 1, 0 \rightarrow positions of equilibrium

x = 0 is stable equilibrium position

$$\left(\frac{d^2U}{dx^2} > 0\right)$$

$$\therefore F = \frac{-dU}{dx} = 16x^3 - 16x \approx -16x$$

(for small x).

$$\Rightarrow \omega = \sqrt{\frac{16}{2}} = \sqrt{8} \text{ rad/sec}$$

Q.53 The minimum length of transmitting antenna is

$$l_{\min} = \frac{\lambda}{4} = \frac{1}{4} \frac{c}{f} = 75 \text{m}$$

Q.54
$$I = I_{max} (1 - e^{-t/\tau})$$

$$\varepsilon = L \frac{dI}{dt}$$

Q.55 We know that c hange in pressure =

$$\partial P = \frac{-B\partial S}{\partial x}$$
 & will be maximum at t=0 when

$$\cos\left(\frac{100\,\pi x}{17}\right) = +1$$

Use option in above equation to justify it.

Q.56 From the given input and output waveforms, the truth table can be constructed as given

A	В	C
0	0	0

1	1	1
0	1	0
1	0	(

the logic circuit is hence an AND gate.

- Q.57 Mean absolute error is greater then the least count hence we consider mean absolute error as error in place of least count in the reported data.
- Q.58 Speed of sound is c = 10u. If frequency of source is f

Incident sound
$$c$$

Wall (observer)

Reflected sound c

$$f_{in} = f\left(\frac{c - u}{c - u/2}\right) = \frac{18f}{19}$$

$$\therefore \lambda_{in} = \frac{v_{rel}}{f_{in}} = \frac{c - u}{18f/19} = \frac{19u}{2f}$$

$$\lambda_{\text{ref}} = \frac{v_{\text{rel}}}{f_{\text{ref}}} = \frac{(c+u)}{f_{\text{in}}} = \frac{(11)(19)u}{18f}$$

Q.59 Use $I = I_0 / 2$ When unpolarised light pass through a polariser and use $I = I_0 \cos^2\theta$ when polarised light passes through a polariser.

Q.60
$$R = \frac{V}{I} = \frac{6-2}{10 \times 10^{-3}} = 400 \Omega$$

CHEMISTRY

Q.61 Na_2O_2 (yellow solid) + Moist air $\rightarrow Na_2CO_3$ + NaOH Q.62 Rate of $S_N 1$ solvolysis α stability of C^{\oplus}

$$\begin{array}{c|c} & \bigoplus_{CH_2} & \bigoplus_{CH_2} \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Q.63
$$CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$$

moles
$$\begin{array}{c} \frac{11.2}{22.4} = n_{\text{CO}_2} \\ \text{moles} & 0.5 & 0.5 \\ \text{CaO(s)} + \text{H}_2\text{O}(\textit{l}) & \longrightarrow \text{Ca(OH)}_2(\text{aq}) \\ 0.5 & & 0.5 \\ \hline - & & 0.5 \\ \text{Ca(OH)}_2(\text{aq}) & + & 2\text{HCl(aq)} & \longrightarrow \\ \text{CaCl}_2(\text{aq}) + & 2\text{H}_2\text{O}(\textit{l}) \\ 0.5 & \text{Required moles of HCl} = 1 \\ \text{Required mass of HCl} = 1 \times 36.5 = 36.5 \text{ g} \\ \end{array}$$

- Q.64 Theory based
- Q.65 At least one α -H should be present for ald ol condensation.

(1)
$$Me \longrightarrow \alpha$$
-H present

Unstable enolate ion

No α-H present

Q.66
$$\frac{1}{\lambda} = RZ^{2} \left(\frac{1}{1^{2}} - \frac{1}{n^{2}} \right)$$
$$\frac{1}{\lambda} = R \left(1 - \frac{1}{n^{2}} \right)$$
$$n = \sqrt{\frac{\lambda R}{\lambda R - 1}}$$

Q.67 Energy order of molecular orbital of N_2 is $(\sigma_{1s}) < (\sigma_{1s}^*) < (\sigma_{2s}) < (\sigma_{2s}^*) < (\sigma_{2s}^*) < \sigma_{2p_x} = \pi_{2p_y} < \sigma_{2p_z} < \pi_{2p_x}^* = \pi_{2p_y}^* < \sigma_{2p_z}^*$

Q.68
$$\bigvee_{NO_2}^{NO_2}$$
, $\bigvee_{NO_2}^{NO_2}$

Deactivating group present

$$\begin{array}{c|c} NH_2 & \stackrel{\bigoplus}{NH_2} - \stackrel{\ominus}{AlCl_3} \\ & & \\ \hline \end{array}$$

After Lewis base–Lewis acid reaction, it becomes deactivating group.

Q.69
$$\left(P + \frac{a}{V^2}\right)(V) = RT$$

 $PV + \frac{a}{V} = RT$

$$Z = 1 - \frac{a}{VRT}$$

Slope =
$$\frac{a}{RT} = 0.22$$

$$\frac{5.5}{0.08T} = 0.22$$

$$T = \frac{5.5}{0.08 \times 0.22}$$
$$= 312.5 \text{ K Ans.}$$

Q.70 Zone refining is based on the principle that impurities are more soluble in molten metal than in solid metal.

Q.71 OH
$$\xrightarrow{\text{Br}_2/\text{CCl}_4}$$

$$\stackrel{\oplus}{\underset{\operatorname{Br}}{\bigcirc}} \stackrel{\circ}{\circ}_{\operatorname{H}} \longrightarrow \stackrel{\operatorname{Br}}{\underset{\operatorname{O}}{\bigcirc}}$$

Q.72
$$(r_{x^{+}} + r_{y^{-}}) = \frac{\sqrt{3}a}{4} = \frac{\sqrt{3}}{4} \times 654 = 283.15$$
Ans.

Q.73 Group II radicals $(Pb^{2+}, Cu^{2+}, Bi^{3+}, Ag^{2+}, Cd^{2+})$

Q.74
$$\stackrel{\text{Br}}{\bigvee_{4}^{3}} \stackrel{\text{Br}}{\underset{3}{\bigvee_{2}^{2}}} \xrightarrow{\text{OCH}_{3}}$$

$$H_3CO$$
 N
 Br
 O
 2
 Br

More stable C^{\oplus} forms at carbon 4.

Q.75
$$\Delta T_b = K_b.m$$

 $100 - 99.63 = (0.52) \text{ (m)}$
 $m = \frac{0.37}{0.52}$
 $m = \frac{n_{\text{sucrose}}}{w_{\text{H}_2\text{O(g)}}} \times 1000 = \frac{0.37}{0.52}$
 $w_{\text{H}_2\text{O}} = \frac{121.67}{342} \times \frac{1000}{0.37} \times 0.52$
 $w_{\text{H}_2\text{O}} = 500 \text{ g}$

Q.76 (1) $[Fe(CO)_5]$: (CO) Due to synergic bonding

Q.77
$$H$$
 H $+Me-C-H$ $\xrightarrow{\text{dil.NaOH}}$ Δ CH_2-CH_2-C-H $+$ $CH_3-\overset{*}{C}H-CH_2-C-H$ OH OH OH OH OH

Total product will be (3)

$$Q.78 \quad A \longrightarrow 2B + C$$

$$P_0$$

$$P_0 - x \quad 2x \quad x$$

$$- \quad 2P_0 \quad P_0$$

$$P_{\infty} = 3P_0$$

$$P_0 = P_{\infty}/3$$

$$P_T = P_0 - x + 3x$$

$$x = \frac{P_{T} - \frac{P_{\infty}}{3}}{2}$$
$$k = \frac{1}{t} \ln \frac{P_{0}}{P_{0} - x}$$

$$k = \frac{1}{t} ln \left(\frac{2P_{\infty}}{3(P_{\infty} - P_{T})} \right)$$

Q.79 1st I.E. order : Na < Mg > Al < Si $3s^1$ $3s^2$ $3p^1$ $3p^2$ (fully filled)

Q.80
$$O_2N$$
 O_2N O_2 O_2N O_2 O_2N O_2 O_2

Strongest acid due to S.I.R. effect

Q.81 Theory based

Q.82 [Co(NH₃)₅(SO₄)]Cl and [Co(NH₃)₄(SO₄)]Cl Has no isomerism because molecular formula is different.

Q.83
$$\bigcirc$$
 > \bigcirc >

$$O_2N$$
 O_2
 O_2
 O_2
 O_2
 O_2
 O_2
 O_3
 O_4
 O_4
 O_4
 O_5
 O_5
 O_7
 O_8
 O_8
 O_8
 O_8
 O_8
 O_9
 O_9

Q.84
$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

1 - - d d d

$$K_{P} = \frac{\left(\frac{d}{1+d}.P\right)^{2}}{\left(\frac{1-d}{1+d}.P\right)^{1}}$$

$$K_{P} = \frac{d^{2}.P}{1-d^{2}}$$

$$\therefore d << 1$$

$$\therefore 1 - d^{2} = 1$$

$$d^{2} = \frac{K_{P}}{P}$$

$$d \propto \frac{1}{\sqrt{P}}$$

Q.85 Aluminium itself is a very strong reducing agent.

Q.87
$$H_2(g) + 2H^+(aq) = \frac{n-2}{2} 2H^+(aq) + H_2(g)$$

1 xM 10⁻⁸ 1

$$0.180 = \frac{0.06}{2} log \frac{\left[H^+\right]^2}{\left[10^{-8}\right]^2}$$

$$[H^+] = 10^{-5}$$

$$pH = 5$$

$$pOH = 9$$

Q.88 (1) $Pb(NO_3)_2 \rightarrow$

$$Pb^{2+} \xrightarrow{excess NaOH} Na_{2}PbO_{2}(soluble)$$

$$\xrightarrow{excess NH_{4}OH} Pb(OH)_{2} \downarrow$$

$$(2) \operatorname{Zn(NO_3)_2} \rightarrow \\ \operatorname{Zn^{2+}} \xrightarrow{\operatorname{excess} \operatorname{NaOH}} \operatorname{Na_2ZnO_2(clear)} \\ \xrightarrow{\operatorname{excess} \operatorname{NH_4OH}} \operatorname{[Zn(NH_3)_4]^{2+}(clear)}$$

(3)
$$\operatorname{Cr(NO_3)_3} \rightarrow$$
 $\operatorname{Cr}^{3+} \xrightarrow{\operatorname{excess NaOH}} \operatorname{NaCrO_3} \xrightarrow{\operatorname{excess NH_4OH}} \left[\operatorname{Cr(NH_3)_6}\right]^{2+}(\operatorname{Pink})$

$$(4) \operatorname{Hg(NO_3)_2} \rightarrow \\ \operatorname{Hg^{2+}} \xrightarrow{\operatorname{excess} \operatorname{NaOH}} \operatorname{Hg(OH)_2} \downarrow \\ \xrightarrow{\operatorname{excess} \operatorname{NH_4OH}} \operatorname{HgO.HgNH_2} \downarrow$$

Q.90
$$C_m = C_{v_1m} + \frac{R}{1-x}$$

During process $P \propto T^3$
 $P'T^{-3} = K$
 $P^{1-x} T^x = K$
 $PT^{x/1-x} = K$
 $\frac{x}{1-x} = -3$
 $x = -3 + 3x$
 $x = \frac{3}{2}$

$$C_{m} = \frac{5R}{2} + \frac{R}{1 - \frac{3}{2}}$$
$$= \frac{5R}{2} - 2R = \frac{R}{2}$$