

Da bi se od mrežnog napona dobio jednosmerni napon željene vrednosti, potrebno je

- 1. smanjiti njegovu vrednost
- 2. usmeriti ga (napraviti jednosmerni napon)
- 3. ukloniti naizmeničnų komponentu ("ispeglati")
- 4. stabilisati regulisati ga

 (učiniti nezavisnim od promena uslova rada

 potrošača i/ili napona mreže)

Izvori jednosmernog napona

- Stabilizatori - regulatori napona

Stabilizatori - regulatori napona Napon na izlazu usmerača i filtra zavisi od:

pobuđuju (na izlazu transformatora).

- Otpornosti potrošača

Stabilizatori - regulatori napona

Cilj je da jednosmerni napon bude konstantan, odnosno *stabilan*, nezavisan od promene napona na ulazu i/ili otpora potrošača

Elektronsko kolo koje obezbeđuje stabilan izlazni napon naziva se *stabilizator* ili regulator napona (voltage regulator).

Napon na izlazu stabilizatora ne treba da zavisi od promena:

- a) ulaznog napona (napona na izlazu iz filtra)
- b) otpornosti potrošača (struje kroz potrošač)

11. januar 2010.

Prof. dr Predrag Petković

Kvalitet stabilizatora određuje osetljivost izlaznog napona na promene:

- a) ulaznog napona (napona na izlazu iz filtra)

$$\mathbf{S} = \frac{\Delta V_{\mathrm{os}}}{\Delta V_{\mathrm{o}}} \bigg|_{\substack{I_{\mathrm{os}} = \mathrm{C}^{\mathrm{ta}} \\ T = \mathrm{C}^{\mathrm{ta}}}}$$

ova veličina naziva se faktor stabilizacije (line regulation)

11. januar 2010.

Prof. dr Predrag Petković

Stabilizatori - regulatori napona

Stabilizator je idealan ako je faktor stabilizacije=0

Stabilizator je dobar ako je faktor stabilizacije mali S < 0.1%

Stabilizatori - regulatori napona

Kvalitet stabilizatora određuje osetljivost izlaznog napona na promene:

- b) otpora potrošača (napona na izlazu iz filtra)

$$R_{o} = \frac{\Delta V_{os}}{\Delta I_{os}} \Big|_{\substack{V_{o} = C^{ta} \\ T = C^{ta}}} = \frac{\Delta V_{os}}{\Delta I_{p}} \Big|_{\substack{V_{o} = C^{ta} \\ T = C^{ta}}}, \text{ jer je } I_{os} = I_{p}$$

ova veličina naziva se dinamička izlazna otpornost

Stabilizatori - regulatori napona

Kvalitet stabilizatora određuje osetljivost izlaznog napona na promene:

- b) otpora potrošača (napona na izlazu iz filtra)

11. januar 2010.

Prof. dr Predrag Petković

P

Stabilizatori - regulatori napona

Stabilizator je idealan ako je $R_o = \theta$

Stabilizator je dobar ako je $R_o < 10\Omega$

Stabilizator

Potrošač

os

Potrošač

$$V'_{\text{os}} = V_{\text{p}} = V_{\text{os}} - I_{\text{os}} \cdot R_o$$

$$V_{\rm DD} = V_{\rm os} - I_{\rm DD} \cdot R_{o}$$

11. januar 2010.

Prof. dr Predrag Petković

10

Stabilizatori - regulatori napona

Ako je potrošač operacioni pojačavač, $I_{DD} = \Sigma I_{DDi}$, gde su I_{DDi} struje kroz svaku granu vezanu za V_{DD}

$$V_{\rm DD} = V_{\rm os} - I_{\rm DD} \cdot R_o$$

Stabilizatori - regulatori napona

Alternativno se definiše faktor opterećenja (load regulation)

$$S_P = \frac{V_{os} - V'_{os \min}}{V'_{os \min}} = \frac{V_{os} - V'_{os}|_{I_{os} = I_{os \max}}}{V'_{os}|_{I_{os} = I_{os \max}}}$$

11. januar 2010. Prof. dr Predrag Petković

11. januar 2010.

Kvalitet stabilizatora određuje i osetljivost izlaznog napona na promene

- c) temperature

$$S_T = \frac{\Delta V_{
m os}}{\Delta T} \left|_{\substack{I_{
m os} = C^{
m ta} \ V_{
m os} = C^{
m ta}}} \right|_{}$$

11. januar 2010.

Prof. dr Predrag Petković

12

Realizacija stabilizatora napona

U osnovi postoje dva tipa realizacije stabilizatora

- 1. Linearni stabilizatori regulatori napona
 - 1.1 Sa Zener diodom
 - 1.2 Paralelni stabilizatori regulatori napona
 - 1.3 Redni stabilizatori regulatori napona
- 2. Prekidački stabilizatori regulatori napona
 - 2.1 Spuštači napona
 - 2.2 Podizači napona
 - 2.3 Invertori

11. januar 2010.

Prof. dr Predrag Petković

1.1 Stabilizatori - regulatori napona sa Zener diodom

1.1 Stabilizatori - regulatori napona sa Zener diodom

Pretpostavimo da napon V_o poraste.

Tada će struja I_o da poraste. Ako je dioda idealna, biće $V_{os}=V_z$, zato će struja kroz potrošač ostati ista $I_{os}=I_P=V_z/R_p$, jer će "višak" struje da ide kroz diodu.

11. januar 2010.

1.1 Stabilizatori - regulatori napona sa Zener diodom

Pretpostavimo da struja I_P poraste zato što se smanji R_p .

Ako je dioda idealna, biće $V_{os} = V_z$.

Tada će struja I_o da zadrži vrednost, ali će struja kroz diodu da se smanji.

11. januar 2010.

Prof. dr Predrag Petković

Kroz diodu će proticati minimalna struja kada je struja kroz potrošač maksimalna.

17

11. januar 2010.

Prof. dr Predrag Petković

18

1.1 Stabilizatori - regulatori napona sa Zener diodom

1.1 Stabilizatori - regulatori napona sa Zener diodom

Kroz diodu će proticati maksimalna struja kada je struja kroz potrošač minimalna.

11. januar 2010.

Prof. dr Predrag Petković

11. januar 2010.

 V_o

1.1 Stabilizatori - regulatori napona sa Zener diodom

$$V_{\text{os}} = \frac{r_z || R_P}{r_z || R_P + R} V_o + \frac{R || R_P}{R || R_P + r_z} V_z$$

\mathbb{Z} a $r_z << R_P$ i $R_P << R$

$$V_{\text{os}} \approx \frac{r_z}{r_z + R} V_o + \frac{R_P}{R_P + r_z} V_z \approx \frac{r_z}{R} V_o + V_z \approx V_z$$

nuar 2010.

Prof. dr Predrag Petković

11. januar 2010.

21

1.1 Stabilizatori - regulatori napona sa Zener diodom

Za idealnu diodu, $r_z=\theta$: $S=\theta$

11. januar 2010.

Prof. dr Predrag Petković

22

1.1 Stabilizatori - regulatori napona sa Zener diodom

23

Za idealnu diodu, $r_z=\theta$: $R_o=\theta$

11. januar 2010. Prof. dr Predrag Petković

1.1 Stabilizatori - regulatori napona sa Zener diodom

$$S_T = \frac{\partial V_{\text{os}}}{\partial \Gamma} \approx \frac{\partial V_{\text{z}}}{\partial \Gamma}$$

Za idealnu diodu: $S_{\tau}=0$

11. januar 2010.

Izbor diode za zadate vrednosti V_o , V_{os} i opseg promene R_p

Izabere se vrednost R tako da radna tačka diode bude na sredini dinamičkog opsega između I_{zmin} i I_{zmax} . Pri tome je $I_{zmax} = P_d/V_z$; I_{zmin} , P_d i V_z dati su u katalogu.

11. januar 2010.

Prof. dr Predrag Petković

25

1.1 Stabilizatori - regulatori napona sa Zener diodom

$$I_{zM} = (I_{zmin} + I_{zmax})/2 \approx I_{zmax}/2$$

$$R = (V_o - V_z)/I_{zM}$$

11. januar 2010.

Prof. dr Predrag Petković

26

1.1 Stabilizatori - regulatori napona sa Zener diodom

Ako se otpornost potrošača smanji, povećaće se struja I_P , a smanjiće se strja I_z .

Prof. dr Predrag Petković

Napon V_{os} smanjiće se za ΔV_{os}

1.1 Stabilizatori - regulatori napona sa Zener diodom

Ako se otpornost potrošača poveća, smanjiće se struja I_p , a povećaće se sturja I_z

Napon V_{os} povećaće se za ΔV_{os}

Da bi se zaštitila dioda od pregorevanja, R može da se izabere tako da pri najnepovoljnijim uslovima, struja kroz diodu ne bude veća od I_{zmax} :

$$R = (V_o - V_z)/I_{zmax}$$

Tada postoji realna opasnost da se pri malim otpornostima potrošača izgubi stabilizaciono dejstvo, jer će struja kroz diodu da opadne ispod I_{zmin} .

$$R_{Pmin} = V_z/(I_{zmax} - I_{zmin}) \approx V_z/I_{zmax}$$
.

11. januar 2010.

Prof. dr Predrag Petković

1.1 Stabilizatori - regulatori napona sa Zener diodom

Primer:

11. januar 2010.

Prof. dr Predrag Petković

30

1.1 Stabilizatori - regulatori napona sa Zener diodom

31

1.1 Stabilizatori - regulatori napona sa Zener diodom

Primer:

Regulacija se izgubila pri ofpornosti potrošača od 150 Ω .

Prof. dr Predrag Petković

Karakteristike Zener dioda

1N5221B - 1N5267B

500mW EPITAXIAL ZENER DIODE

SPICE MODELS: 1N5221B 1N5231B 1N5233B 1N5235B 1N5239B 1N5241B

•	diaico				
	500mW Power Dissipation				_
•	High Stability	-	l	l. n	1
•	Low Noise		← A —	→ ← B →	<u> </u>
•	Surface Mount Equivalents Availa	able			7 *
•	Hermetic Package			Ħ∎I	

Mechanical Data

Case: DO-35, Glass

Vz - Tolerance ±5%

- Terminals: Solderable per MIL-STD-202,
- Polarity: Cathode Band
- Weight: 0.13 grams (approx.)

|--|

DO-35						
Dim	Min	Max				
Α	25.40					
В	_	4.00				
С	_ '	0.60				
D — 2.00						
All Dimensions in mm						

11. januar 2010.

Prof. dr Predrag Petković

1.1 Stabilizatori - regulatori napona sa Zener diodom

Karakteristike Zener dioda

_	Zen	er Voltage Ra (Note 2)	inge	Test Current		m Zener dance		n Reverse rent		Maximum Temperature]
Type Number		Vz@Izt		I _{ZT}	Z _{ZT} @ I _{ZT}	Z _{ZK} @ I _{ZK} = 0.25mA	I _R	@V _R]	Coefficient @ IzT	
	Nom (V)	Min (V)	Max (V)	mA	Ω	Ω	μΑ	٧	T	%/°C	1
1N5221B	2.4	2.28	2.52	20	30	1200	100	1.0	Ţ	-0.085	1
1N5227B	3.6	3.42	3.78	20	24	1700	15	1.0	T	-0.065	1
1N5228B	3.9	3.71	4.10	20	23	1900	10	1.0	Ī	-0.060	
1N5229B	4.3	4.09	4.52	20	22	2000	5.0	1.0	Ι	+0.055	П
1N5230B	4.7	4.47	4.94	20	19	1900	5.0	2.0		+0.030	
1N5231B	5.1	4.85	5.36	20	17	1600	5.0	2.0		+0.030	
1N5232B	5.6	5.32	5.88	20	11	1600	5.0	3.0		+0.038	
1N5233B	6.0	5.70	6.30	20	7.0	1600	5.0	3.5		+0.038	
1N5234B	6.2	5.89	6.51	20	7.0	1000	5.0	4.0		+0.045	
1N5235B	6.8	6.46	7.14	20	5.0	750	3.0	5.0		+0.050	
1N5236B	7.5	7.13	7.88	20	6.0	500	3.0	6.0	Τ	+0.058	1
1N5237B	8.2	7.79	8.61	20	8.0	500	3.0	6.5	T	+0.062	1
1N5238B	8.7	8.27	9.14	20	8.0	600	3.0	6.5	Τ	+0.065	1
1N5239B	9.1	8.65	9.56	20	10	600	3.0	7.0		+0.068	
1N5240B	10	9.50	10.50	20	17	600	3.0	8.0	Γ	+0.075	

11. januar 2010.

Prof. dr Predrag Petković

1.1 Stabilizatori - regulatori napona sa Zener diodom

Karakteristike Zener dioda

_	Zen	er Voltage Ra (Note 2)	inge	Test Current					1	Maximum Temperature
Type Number		V _Z @ I _{ZT}		I _{ZT}	Z _{ZT} @ I _{ZT}	Z _{ZK} @ I _{ZK} = 0.25mA	I _R	@V _R		Coefficient @ IzT
	Nom (V)	Min (V)	Max (V)	mA	Ω	Ω	μΑ	٧	Ţ	%/°C
N5262B	51	48.45	53.55	2.5	125	1100	0.1	39	П	+0.096
N5263B	56	53.20	58.80	2.2	150	1300	0.1	43		+0.096
N5264B	60	57.00	63.00	2.1	170	1400	0.1	46	П	+0.097
N5265B	62	58.90	65.10	2.0	185	1400	0.1	47		+0.097
N5266B	68	64.60	71.40	1.8	230	1600	0.1	52	П	+0.097
N5267B	75	71.25	78.75	1.7	270	1700	0.1	56		+0.098
	N5262B N5263B N5264B N5265B N5266B	Nom (V) N5262B 51 N5263B 56 N5264B 60 N5265B 62 N5266B 68	Type Voice 2 V 2 @ 1 2T	Type Vz @ IzT Nom (V) Min (V) Max (V) N5262B 51 48,45 53,55 N5263B 56 53,20 56,80 N5264B 60 57,00 63,00 N5265B 62 59,90 65,10 N5266B 68 64,60 71,40	Type	Type Vz @ IzT	Type Vz @ IzT Vz Terent Impedance Vz @ IzT Vz Terent Vz W IzT Vz W	Type Humber $V_Z @ I_{ZT}$ $V_Z @ I_{ZT}$ I_{ZT} I_{ZT} $I_{ZT} @ I_{ZT}$ $I_{ZT} @ I_{ZT} = I_{R}$ I_{R} $I_{R} @ I_{R} = I_{R}$ $I_{R} = I_{R} = I_{R} @ I_{R} = I_{R}$ $I_{R} = I_{R} = I_{R} = I_{R} = I_{R}$ $I_{R} = I_{R} = I_{R} = I_{R} = I_{R} = I_{R} = I_{R} = I_{R}$	Type Vz @ Izr	Type Humber Vz @ IzT

1.1 Stabilizatori - regulatori napol

Karakteristike stabilizatora sa Ze

-za S < 0.1%, potrebno je $R=10^3 r_z \approx X10$ kΩ = 0to znači da će za $I_{os}=I_{p}=10$ mA pad napona na R biti reda veličine X100V!!! Za toliko treba da bude veći napon V_a od V_{os}

Ako se ograniči vrednost R, povećaće se S!

Kako dobiti bolji stabilizator?

11. januar 2010. Prof. dr Predrag Petković 11. januar 2010. Prof. dr Predrag Petković

1.2 Paralelni stabilizatori - regulatori napona Paralelni stabilizatori - regulatori napona

$$V_{os} = V_o - RI_o$$

$$I_o = I_t + I_r + I_{os}$$

Porast V_a za ΔV_a teži da izazove porast ΔV_{as} ; tada raste V_{BE} i to približno za $\Delta V_{BE} = \frac{R_1}{R_1 + R_2} \Delta V_{os}$

To izaziva porast struje kroz tranzistor I_{t} , što dovodi do povećanja I_0 , a time i do većeg pada napona na $R(RI_a)$, čime se napon V_{os} smanjuje. $(V_{os} = V_o - R I_o)$

11. januar 2010.

1.2 Paralelni stabilizatori - regulatori napona

Integrisani paralelni stabilizatori - regulatori napona

Da bi se ostvarila bolja stabilizacija, potrebno je "ubrzati" reagovanje na promenu V_{as} .

Za dobru stabilizaciju napona potrebno je uvesti dodatnu negativnu povratnu spregu.

11. januar 2010.

Prof. dr Predrag Petković

1.2 Paralelni stabilizatori - regulatori nap Error detector Control element Sample circuit

- Q₁ je kontrolišući element vezan paralelno sa potrošačem.
- Deo izlaznog napona vraća se preko razdelnika R₃, R₄.
- Referentni napon dobijen preko D₁.
- Regulacija se postiže kontrolom struje kroz Q₁. Prof. dr Predrag Petković

Preko Zener diode na invertujući ulaz dovodi se referentni napon.

Svaka promena izlaznog napona prenosi se preko R_2 i R_{α} na neinvertujući ulaz operacionog pojačavača.

Razlikom ovih napona kontroliše se , V_{RF} tranzistora, a time i struja kroz tranzistor I_r

1.2 Paralelni stabilizatori - regulatori napona

- R₁ je redno vezan sa potrošačem i na njemu se "ublažavaju" sve promene napona △V₀.
- R_2 služi da definiše struju diode $I_D = (V_o V_z)/R_2$
- Na operacionom pojačavaču poredi se referentni napon V_z sa naponom iz razdelnika $(R_4\ V_{os})/(R_3+R_4)$.

11. januar 2010.

Prof. dr Predrag Petković

41

zato raste napon na izlazu OpAmp, a time i V_{BE} ; to izaziva porast struje kroz tranzistor I_{c} , što dovodi do povećanja I_{o} , a time i do većeg pada napona na R (RI_{o}), čime se napon V_{os} smanjuje: $V_{os} = V_{o} - RI_{o}$.

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

$$V_{os} = V_o - V_{CE}$$

$$V_{BE} = V_z - V_{os}$$

$$I_z = (V_o - V_z)/R$$

Redni tranzistor koristi se kao izvor konstantne struje;

radi u konfiguraciji sa zajedničkom bazom, tako da mu je izlazna otpornost mala.

Sve varijacije napona V_o , kompenzuju se preko V_{CE} , pri konstantnoj struji baze.

1.3 Redni stabilizatori - regulatori napona

$$V_{os} = V_o - V_{CE}$$

$$V_{BE} = V_z - V_c$$

$$I_o = I_t + I_r + I_{os}$$

Porast V_o za ΔV_o teži da izazove porast V_{os} ; usled rasta V_o raste I_z , a I_B i I_C ostaju konstantne, tako da se sprečava promena V_{os} .

$$V_{os} = V_o - U_{CE}$$

$$V_{BE} = V_z - V_{os}$$

Ukoliko postoji težnja da se V_{os} poveća usled promena u kolu potrošača (dok se V_a ne menja)

to izaziva i smanjenje napona V_{RE} ,

što dovodi do pada I_{as}

čime se napon V_{as} smanjuje.

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Znajući da je $I_R << I_T$

$$V_B \approx \frac{R}{R+r_z}V_z + \frac{r_z}{R+r_z}V_o$$

$$V_B \approx V_z + \frac{r_z}{R} V_o$$

$$V_{os} = V_B - V_{BE}$$

Iako je izraz za S isti kao kod $V_{\text{os}} \approx V_{\text{z}} + \frac{\mathbf{r}_{\text{z}}}{\mathbf{R}} V_{\text{o}} - V_{\text{BE}}$ $S = \frac{\partial V_{\text{os}}}{\partial V_{\text{o}}} \approx \frac{r_z}{R};$

stabilizatora sa zener diodom, R može da bude mnogo veće, jer I_z kontroliše samo baznu struju, tako da se ostvaruje mnogo manji faktor stabilnosti

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Model za naizmenični signal

$$\vec{l}_{B} = -\frac{V_{os}}{h_{11} + R||r_{z}|} \approx -\frac{V_{os}}{h_{11} + r_{z}} \approx -\frac{V_{os}}{h_{11}}$$

$$\Delta I_{os} = -(h_{21} + 1)i_{B} = -(h_{21} + 1)(-\frac{\Delta V_{os}}{h_{11}})$$

$$\boldsymbol{R}_{o} = \frac{\Delta \boldsymbol{V}_{os}}{\Delta \boldsymbol{I}_{os}} \approx \frac{\boldsymbol{h}_{11}}{\boldsymbol{h}_{21} + 1}$$

1.3 Redni stabilizatori - regulatori napona

Karakteristike rednog stabilizatora mogu da se poboljšaju ako se "ubrza" reagovanje rednog tranzistora

$$V_{B} = -A \frac{R_{2}}{R_{1} + R_{2}} V_{os}$$

$$V_{BE} = V_{B} - V_{os} = -\left(A \frac{R_{2}}{R_{1} + R_{2}} + 1\right) V_{os}$$

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Praktična realizacija u diskretnoj tehnici

Promene za ΔV_{as} pojačavaju se tranzistorom T2 i prenose na ΔV_{REI} ;

$$\underbrace{V_{\text{BE2}}} = \underbrace{R_2 V_{os} - V_z}$$

$$V_{os} = (V_{BE2} + V_z) \left(1 + \frac{R_1}{R_2}\right) \approx V_z \left(1 + \frac{R_1}{R_2}\right)$$

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Porast V_{os} izazvaće porast V_{B2} , odnosno V_{BE2} ; tada raste I_{C2} i smanjuje se V_{C2} , tako da se smanjuje napon V_{BEI} , što dovodi do pada I_c , a time i I_p , čime se napon V_{as} smanjuje.

1.3 Redni stabilizatori - regulatori napona

$$S_T \approx \left(\frac{\partial V_{BE2}}{\partial T} + \frac{\partial V_z}{\partial T}\right) \left(1 + \frac{R_1}{R_2}\right)$$

Integrisani redni stabilizatori - regulatori napona

11. januar 2010.

Prof. dr Predrag Petković

53

1.3 Redni stabilizatori - regulatori napona

Integrisani redni stabilizatori - regulatori napona

- Q₁ je kontrolišući element vezan redno sa potrošačem.
- Deo izlaznog napona vraća se preko razdelnika R_2 , R_3 .
- Referentni napon dobijen preko D₁.
- Regulacija se postiže kontrolom struje kroz Q₁.

11. januar 2010. Prof. dr Predrag Petković

54

Preko Zener diode, na neinvertujući ulaz dovodi se referentni napon: V_z

Svaka promena izlaznog napona V_{os} prenosi se na invertujući ulaz operacionog pojačavača $V_{=}R_{3}V_{os}/(R_{2}+R_{3})$.

Razlikom ovih napona kontroliše se $V_{\rm BE}$ tranzistora $\{V_{\rm B}=A(V_{\rm z}-V_{\rm o})\}$, a time i struja kroz tranzistor $I_{\rm t}$.

1.3 Redni stabilizatori - regulatori napona

$$V_{\text{os}} \cong \left(1 + \frac{R_2}{R_3}\right) V_{\mathbf{Z}}$$

- R_I služi da definiše struju diode $I_D = (V_o V_z)/R_1$
- Na operacionom pojačavaču poredi se referentni napon V_z sa naponom iz razdelnika:

$$V_{-} = \frac{R_3}{R_2 + R_3} V_{\text{os}}$$

11. januar 2010.

Prof. dr Predrag Petković

5

Porast V_a za ΔV_a teži da izazove porast ΔV_{as} ;

tada raste V_{i} i to za

$$\Delta V_{-} = \frac{R_3}{R_2 + R_3} \Delta V_{os} \qquad ;$$

zato opada napon na izlazu OpAmp, a onda se smanjuje V_{RE} ; to izaziva smanjenje struje kroz tranzistor I_{r} što dovodi do smanjenja I_P ,

čime se napon V_{os} smanjuje: $V_{os} = R_P I_P$.

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

Tranzistor Q2 počinje No da vodi tek kada je V_o pad napona na R4dovoljno veliki.

Kada provede Q2, proteče I_{C2} i smanjuje se I_{RI} , a tada se smanjuje i struja I_{CI} , time i struja potrošača I_n

Maksimalna vrednost struje potrošača ograničena je na

$$I_{P(max)} = 0.7V/R_4$$

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

NIC 7800C

Referentni napon

1.3 Redni stabilizatori - regulatori napona

Karakteristike integrisanih stabilizatora

- Jednostavna upotreba
- Pakuju se u standardnim kućištima
- TO-3 (20 W)

Prof. dr Predrag Petković 11. januar 2010.

11. januar 2010.

Karakteristike integrisanih stabilizatora

- Pakuju se u standardnim kućištima
- TO-220 (15 W)

11. januar 2010.

Prof. dr Predrag Petković

61

1.3 Redni stabilizatori - regulatori napona

Karakteristike integrisanih stabilizatora

- Pakuju se u standardnim kućištima
- TO-92 (1 W)

• TO 263 (S)

http://malaysia.rs-online.com/web/generalDisplay.html?id=centre/eem techref semipack

11. januar 2010.

Prof. dr Predrag Petković

62

1.3 Redni stabilizatori - regulatori napona

63

Karakteristike integrisanih stabilizatora

- serije 78/79XX stabilizatora prave se obično za izlazne napone od 5, 6, 8, 12, 15, 18, ili 24 V
- Maksimalna struja 0,1A; 1A; 2A; 3A
- Ugrađena zaštita od pregrevanja
- Pad napona na stabilizatoru od 3V (prave se i za manje napone – LDO Low DropOut < 1V)
- http://www.analog.com/en/power-management/linearregulators/products/index.html?gclid=CK_GsZ7or6YCFQY03wod4SIDnw

1.3 Redni stabilizatori - regulatori napona

Karakteristike integrisanih stabilizatora

(b) The 7800 series

11. januar 2010. Prof. dr Predrag Petković

11. januar 2010.

Karakteristike integrisanih stabilizatora

\wedge		
100		
	TO-220	Pin 1. Input
\sim	T SUFFIX	2. Ground
Pro.	CASE 221A	3. Output
111117	Heatsink surface	
1 2	connected to Pin 2.	

Type number	Output voltage
7905	-5.0 V
7905.2	-5.2 V
7906	-6.0 V
7908	–8.0 V
7912	-12.0 V
7915	-15.0 V
7918	-18.0 V
7924	-24.0 V

(b) The 7900 series

11. januar 2010.

(c) Typical packages

Prof. dr Predrag Petković

65

1.3 Redni stabilizatori - regulatori napona

- C₁ i C₂ su opcioni kondenzatori.
- C₁ služi da neutrališe parazitne induktivnosti
- C₂ smanjuje šum (filtrira).

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Realizacija simetričnog napajanja uz pomoć integrisanih stabilizatora

1.3 Redni stabilizatori - regulatori napona

Povećanje struje potrošača

11. januar 2010. Prof. dr Predrag Petković

11. januar 2010.

1

Povećanje struje potrošača

 \bullet U režimu malih struja kroz potrošač, $Q_{\text{ext}} \ je \ zakočen$

11. januar 2010.

Prof. dr Predrag Petković

69

1.3 Redni sta

1.3 Redni stabilizatori - regulatori napona

Povećanje struje potrošača

- Q_{ext} počinje da vodi kada je $V_{Rext} > 0.7 V$.
- vrednost R_{ext} bira se tako da je $I_{Rext} = I_{max} \approx 0.1 \text{ A}$ (najveća struja kroz IC).
- Disipacija na Q_{ext} je $P = (V_o V_{os})I_{ext}$.

11. januar 2010.

Prof. dr Predrag Petković

70

1.3 Redni stabilizatori - regulatori napona

71

Zaštita od kratkog spoja

Q_{lim} služi za zaštitu od kratkog spoja.

1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

• Q_{lim} počinje da vodi pri , $V_{Rlim} > 0.7 V$.

11. januar 2010.

Prof. dr Predrag Petković

11. januar 2010.

Zaštita od kratkog spoja

- Cilj je da Q_{lim} počne da vodi tek kada struja kroz Q_{ext} premaši maksimalnu dozvoljenu vrednost.
- Tada se struja kroz Q_{ext} smanjuje i usmerava 11 **krozo stabilizator.** Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

- Stabilizator ima internu zaštitu od pregrevanja
- Maksimalni V_{CElim} < 1.4 V.

11. januar 2010.

Prof. dr Predrag Petković

74

1.3 Redni stabilizatori - regulatori napona

73

Zaštita od kratkog spoja

1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

11. januar 2010. Prof. dr Predrag Petković

11. januar 2010.

1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

11. januar 2010.

Prof. dr Predrag Petković

77

Povećanje izlaznog napona na potrošaču

• R_1 se bira tako da je $R_1 \approx 0.1 \ V_{ref}/I_Q$, gde je I_Q mirna struja stabilizatora (neopterećenog).

• V_{os} može da bude i veći od nominalnog napona stabilizatora V_{ref} .

$$V_{\text{os}} = V_{\text{ref}} + \left(\frac{V_{\text{ref}}}{\mathbf{R}_{1}} + \mathbf{I}_{\mathbf{Q}}\right) \mathbf{R}_{2}$$

odnosno

$$\mathbf{R}_{2} = \frac{\mathbf{R}_{1}(V_{\text{os}} - V_{\text{ref}})}{V_{\text{ref}} + \mathbf{I}_{Q}\mathbf{R}_{1}}$$

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Stabilizatori - regulatori napona promenljivog napona

- Moguće je realizovati stabilizator promenljivog napona ako se R₂ zameni potenciometrom.
 Međutim:
 - Minialni izlazni napon je V_{ref} (a ne 0 V).
 - I_O je relativno veliko.
 - Disipacija na R_2 može da bude velika tako da zahteva glomazan potenciometar.
- Postoji više tipova IC stabilizatora namenjenih za promenljive napone n.p.r. LM317 (za pozitivne) ili LM 337 (za negativne napone).

1.3 Redni stabilizatori - regulatori napona

Između OUT i ADJ pinova postoji referentni napon od V_{ref} =1.25V (na R_I =100-240 Ω)

11. januar 2010. Prof. dr Predrag Petković

11. januar 2010.

Izborom R₂ moguća regulacija u opsegu 1.25V-30V

$$V_{\rm os} = V_{\rm ref} + \left(\frac{V_{\rm ref}}{\mathbf{R}_{\rm 1}} + \mathbf{I}_{\rm adj}\right) \mathbf{R}_{\rm 2}$$

 $I_{adi} = 50 \mu A$

11. januar 2010.

Prof. dr Predrag Petković

1.3 Redni stabilizatori - regulatori napona

Kondenzator C₂ smanjuje šumove (10μF)

11. januar 2010.

Prof. dr Predrag Petković

82

1.3 Redni stabilizatori - regulatori napona

83

D₁ i D₂ štite kolo od prenapona u primenama sa većim strujama i naponima

2. Prekidački stabilizatori - regulatori napona

- Prekidački LC filtar →Potrošač tranzistor impulsno Referentni **Detektor** širinski napon greške modulator
- Kontrolišući element (tranzistor) radi u prekidačkom režimu tako da je disipacija na njemu mala
- Kada je tranzistor zakočen $I_C=0$ A, a kada vodi, onda radi u zasićenju sa $V_{CE}=V_{CES}\approx 0.2 \text{V}$).

11. januar 2010. Prof. dr Predrag Petković 11. januar 2010.

2. Prekidački stabilizatori - regulatori napona

Prednosti

- Bar dva puta efikasniji od linearnih, stepen iskorišćenja 70%-90%.
- Idealni su za primene u kojima se traže velike struje (zbog male disipacije).
- · Izlazni napon može biti i veći od ulaznog
- Mogu da invertuju ulazni napon
- Realizacija ne zahteva glomazne komponente.

11. januar 2010.

Prof. dr Predrag Petković

__

2. Prekidački stabilizatori - regulatori napona

Nedostaci

- · Znatno su složeniji.
- Unose VF šum.
- Problemi sa EMC
- · "Zagađuju" mrežni napon harmonicima

11. januar 2010.

Prof. dr Predrag Petković

P

2. Prekidački stabilizatori - regulatori napona

- Mogu da se realizuju kao
 - spuštači napona V_{os}<V_o (Step-Down)
 - podizači napona V_{os}>V_o (Step-Up, boost)
 - invertori napona V_{os}=-V_o (Inverter, fly-back; podizači/spuštači)

2. Prekidački stabilizatori - regulatori napona

2.1 Spuštači napona

- Operacioni pojačava radi kao komparator.
- Referentni napon obezbeđuje $\mathbf{D}_{\mathbf{z}}$.
- Razdelnik R_2 i R_3 definiše izlazni napon u odnosu na V_z .

11. januar 2010. Prof. dr Predrag Petković

11. januar 2010.

2.1 Spuštači napona

- R_1 služi da polariše D_z .
- L i C čine filtar.
- D_1 sprečava da napon na emitoru bude $V_E < 0$.

11. januar 2010.

Prof. dr Predrag Petković

89

2.1 Spuštači napona

• Kada je $V_{R3} < V_z$, izlaz OP je u pozitivnom zasićenju (+ V_{CC}) i tranzistor vodi, a D1 zakočena.

11. januar 2010.

Prof. dr Predrag Petković

20

2.1 Spuštači napona

•Kada je $V_{R3}>V_z$, izlaz OP je u negativnom zasićenju $(-V_{CC})$ i tranzistor je zakočen, a D1 vodi.

2.1 Spuštač napona

• Napon na emitoru biće $V_o - V_{CES}$ kada tranzistor radi u zasićenju ili 0, kada ne vodi.

11. januar 2010.

Prof. dr Predrag Petković

11. januar 2010.

2.1 Spuštač napona

2.1 Spuštač napona

• Struja kroz kalem nastavlja da teče i kada tranzistor prestane da vodi, jer D1 provede i dopunjuje *C*.

11. januar 2010.

Prof. dr Predrag Petković

93

95

• Napon na izlazu nalazi se u granicama $V_{ref} \pm v_u$

11. januar 2010.

Prof. dr Predrag Petković

11. januar 2010. Prof. dr Predrag Petković

11. januar 2010.

2.1 Spuštač napona

11. januar 2010.

Prof. dr Predrag Petković

97

2.1 Spuštač napona

11. januar 2010.

Prof. dr Predrag Petković

98

2.1 Spuštač napona

(a) $V_{\rm OUT}$ depends on the duty cycle.

(b) Increase the duty cycle and $V_{\rm OUT}$ increases.

11. januar 20 (c) Decrease the duty cycle and $V_{\rm OUT}$ decreases.

99

2.1 Spuštač napona

$$V_{os} = \frac{t_{on}}{T} V_{\mathbf{o}} < V_{\mathbf{o}}$$

11. januar 2010.

2. Prekidački stabilizatori - regulatori napona

2.2 Podizači napona

- Napon na izlazu veći je od ulaznog napona za V_L.
- Osnovna razlika odnosi se na funkciju Q1 i L.

11. januar 2010. Prof. dr Predrag Petković

2.2 Podizači napona

• Kada Q_1 vodi (u zasićenju) => D_1 je zakočena.

11. januar 2010.

Prof. dr Predrag Petković

- Kada je Q₁ zakočen => D₁ vodi,
 energija se iz L prenosi u C.
- Napon na C veći je za V_L od ulaznog napona.

102

103

2. Prekidački stabilizatori - regulatori napona

2.3 Invertori napona

• Izlazni napon ima suprotan polaritet od ulaznog

11. januar 2010.

Prof. dr Predrag Petković

.__

- Kada Q₁ vodi,
- D1 je inverzno polarisana
- napon na kalemu jednak je ulaznom naponu (umanjenom za $V_{\it CES}$),
- •napon na C zadržava vrednost (sporo se prazni kroz R_L)

11. januar 2010.

Prof. dr Predrag Petković

ne

Prof. dr Predrag Petković

- Kada je Q₁ zakočen,
- \bullet napon na L menja polaritet,
- D₁ vodi,
- C se preko r_d puni na V_L =- V_{os}

- Zavisno od odnosa vremena uključivanja tranzistora napon na izlazu može biti (po apsolutnoj vrednosti)
 - manji , $(t_{on}/T) < 0.5$
 - veći, $(t_{on}/T) > 0.5$ ili

 $V_{os} = -\frac{\binom{on}{T}}{1 - \binom{t_{on}}{T}} V_{o}$

• jednak ulaznom naponu, $(t_{on}/T)=0.5$

11. januar 2010.

Prof. dr Predrag Petković

11. januar 2010.

107

Integrisani stabilizatori - regulatori napona napona **Zaključak**

Stabilizatori - regulatori napona napona

- Obezbeđuju konstantni DC napon na izlazu, nezavisno od promena napona na ulazu i struje kroz potrošač.
- Osnovni tipovi stabilizatora su linearni i prekidački
- Linearni se realizuju kao redni i paralelni
- Prekidački mogu biti spuštači, podizači ili invertori napona

11. januar 2010.

Prof. dr Predrag Petković

Integrisani stabilizatori - regulatori napona napona

Zaključak

- Prekidački stabilizatori regulatori napona znatno su efikasniji od linearnih i pogodni za primene koje zahtevaju veće struje
- Prekidački i linearni stabilizatori-regulatori napona realizuju se u integrisanoj tehnici
- Postoje *integrisani* stabilizatori regulatori napona za *fiksne* i *promenljive* <u>pozitivne</u> ili <u>negativne</u> napone
- Mogućnosti integrisanih stabilizatora mogu da se prošire ubacivanjem spoljašnjih tranzistora.

11. januar 2010. Prof. dr Predrag Petković

. . .

111

Pretvarači jednosmernog u jednosmerni napon (DC to DC converter) mogu se realizovati na istim principima kao prekidački stabilizatori - regulatori napona.

Više o ovoj temi na kursu "Energetska elektronika"

Sledi:

- -Šumovi
- -Rekapitulacija (pitanja/odgovori)

11. januar 2010. Prof. dr Predrag Petković

11. januar 2010.