8-A,B

Тема: Подібність трикутників. Розв'язування задач

Мета уроку: узагальнити та систематизувати знання учнів з теми «Подібність трикутників»; виховувати вміння аналізувати, робити висновки; розвивати логічне мислення, культуру спілкування математичною мовою.

Хід уроку

Ознаки подібності трикутників:

- 1. Якщо два кути одного трикутника відповідно дорівнюють двом кутам іншого, то такі трикутники подібні.
- 2. Якщо дві сторони одного трикутника пропорційні двом сторонам іншого трикутника і кути, утворені цими сторонами рівні, то такі трикутники подібні.
- 3. Якщо три сторони одного трикутника пропорційні трьом сторонам іншого, то такі трикутники подібні.

Задачі:

- 1. У трикутниках ABC і $DEF \angle A = \angle E$, $\angle C = \angle D$, CA = 6 м, DE = 10 м, суми сторін AB і EF, BC і DF відповідно дорівнюють 24 м і 32 м. Знайдіть довжину цих сторін.
- 2. Бісектриса, проведена з вершини прямокутника, ділить його діагональ на відрізки 15 см і 20 см. Знайдіть периметр прямокутника.
- 3. Дано рівнобедрену трапецію ABCD ($BC \parallel AD$), AC, BD бісектриси гострих кутів, які перетинаються в точці O. AO:OC=DO:OB=13:5; висота BE=32 см. Знайдіть периметр трапеції.

Задача 1. Розв'язання

Нехай AB = x м (x > 0), а BC = y м (y > 0), тоді EF = (24 - x) м, DF = (32 - y) м. Із рівності кутів A і E, C і D випливає подібність трикутників ABC і EFD. Звідси

$$\frac{AB}{FE} = \frac{BC}{FD} = \frac{AC}{DE}; \quad \frac{x}{24 - x} = \frac{y}{32 - y} = \frac{6}{10} = \frac{3}{5}; \quad \frac{x}{24 - x} = \frac{3}{5}; \quad 5x = 72 - 3x; \quad 8x = 72; \quad x = 9. \text{ Отже,}$$

$$AB = 9 \text{ M}, FE = 24 - 9 = 15 \text{ M}.$$
 $\frac{y}{32 - y} = \frac{3}{5}; 5y = 96 - 3y; 8y = 96; y = 12.$

Отже, BC = 12 м, DF = 20 м.

Відповідь: 9 м, 12 м, 15 м, 20 м.

Задача 2. Розв'язання

Нехай *АВСD* – даний прямокутник, BD — його діагональ. AM – бісектриса кута A, BM = 15 см, MD = 20 см. За властивістю бісектриси в трикутнику BAD

$$A$$
 C
 C
 D

маємо:
$$\frac{AB}{AD} = \frac{15}{20} = \frac{3}{4}$$
. Тоді $AB = 3x$,

 $AD=4x\ (x>0)$. Із трикутника $ABD\ (\angle BAD=90^{\circ})$: $AB^2+AD^2=BD^2;\ 9x^2+16x^2=BD^2;$

 $BD^2 = 25x^2$; BD = 5x. З іншого боку, BD = BM + MD = 35 (см). Отже, 5x = 35; x = 7. Звідси AB= 21 см, AD = 28 см. Отже, $P_{ABCD} = 2(AB + AD) = 2(21 + 28) = 98$ (см). Відповідь: 98 см.

Задача 3. Розв'язання

Нехай ABCD – дана трапеція. $\Delta BOC \propto \Delta AOD$, оскільки $AO : OC = DO : OB = 13 : 15, \angle AOD = \angle BOC$ як вертикальні, тоді AD : BC = 13 : 15. Нехай AD = 13x, BC =5x (x > 0), де x – коефіцієнт пропорційності. $\angle BAC = \angle$ $CAD (AC - бісектриса кута BAD); \angle CAD = \angle BCA$

(внутрішні різносторонні при паралельних прямих *AD* і *BC*

й січній AC), тоді $\angle BAC = = \angle BCA$, тому трикутник ABC рівнобедрений з основою AC. Звідси BA = BC = 5x, BA = CD, отже CD = 5x. Проведемо висоти $BE \ (BE \perp AD)$ і CF

$$(CF \perp AD)$$
. Як відомо, $AE = FD = \frac{AD - BC}{2} = \frac{13x - 5x}{2} = 4x$.

Із трикутника CFD ($\angle CFD = 90^{\circ}$): $CD^2 = CF^2 + FD^2$; $25x^2 = 32^2 + 16x^2$; $x = \frac{32}{3}$ см.

$$P_{ABCD} = 3 \cdot BC + AD = 3 \cdot 5x + 13x = 28x = 28 \cdot \frac{32}{3} = 298 \frac{2}{3}$$
 (cm).

 $Bi\partial noвiдь: 298\frac{2}{3}$ см.

Задача 4

Дано: $\triangle ABC \sim \triangle A_1B_1C_1$ AB = 7cM, BC = 9cM, AC = 11см, $A_1B_1 = 28$ см. Знайти: B_1C_1 , A_1C_1

Розв'язання.

 $\triangle ABC \sim \Delta A_1 B_1 C_1$, TO відповідні сторони даних трикутників пропорційні $A_1B_1: AB = 28: 7 = 4$, k = 4 – коефіцієнт подібності. Звідси

$$B_1C_1 = 4 \cdot BC = 4 \cdot 9 = 36$$
(см)

$$A_1C_1 = 4 \cdot AC = 4 \cdot 11 = 44(c_M)$$

В-дь: $A_1C_1 = 44cM$, $B_1C_1 = 36cM$.

Домашнє завдання:

Повторити параграф 13.

Виконати письмово № 617,618. Стор.123.

617. На катеті AC і гіпотенузі AB прямокутного трикутника ABC позначено точки P і L такі, що $\angle APL = 90^{\circ}$. Доведіть, що $\triangle APL \sim \triangle ACB$.

618. Відрізки AB і CD перетинаються в точці O, OB = 3OA, OC = 3OD. Доведіть, що $\triangle AOD \simeq \triangle BOC$.

Відправити на Human або електронну пошту smartolenka@gmail.com