Week#14 Logging & Recovery in SQLite

Sangeun Chae 2018314760

1. INTRODUCTION

데이터베이스 저널이란, 데이터베이스가 예상하지 못한 이벤트 (Ex: 예상하지 못한 shutdown) 가 발생할 때 복구를 위해 필요한 시스템이다. SQLite 에서 지원하는 journaling mode 는 총 6 가지가 있다. Delete (default), Truncate, Memory, Persist, WAL 그리고 None(Off). 이번 랩에서는 6 가지의 journaling mode 중, Delete (default) mode 와 WAL mode 에 대해 알아보고자 한다.

Delete (default) Journaling mode

Delete journaling mode 는 SQLite 에서 지원하는 default journaling mode 이다. Delete mode 는 하나의 트랜잭션 마다 rollback 을 위한 journal 파일을 매번 생성 및 삭제한다. 즉, journal 파일을 생성하여 기존 database 의 "old" 한 데이터를 journal 파일에 저장한다. Rollback operation 수행 시, journal 파일에 저장되어 있는 "old" 데이터를 데이터베이스에 복구한다.

WAL Journaling mode

WAL journaling mode 는 SQLite 에서 지원하는 journaling mode 중에 하나이다. WAL journaling mode 는 다른 journal mode 와는 다르게, "old"한 데이터를 journal 파일에다 저장하는 방식이 아닌, 새롭게 insert 되거나 update 되는데이터를 log 파일에 저장한다. 이후 batch 형태로 한 번에데이터를 commit 하는 방식을 따른다. WAL (Log) file 은 DB Connection 이 처음 이뤄질 때 생성되고, last connection 이 close 될 때 제거된다. 하지만 정상 종료하지 않고 예외상황이 발생하면 WAL 파일을 남게 되고, 다음에 DB open 시 이정보를 활용해 DB를 원상 복구한다.

2. METHODS

전반적인 실험은 pytpcc benchmark 를 통해서 이루어진다. 벤치마크를 실행하기 전에, 우선 TPC-C database 를 load 하고, load 된 데이터를 기준으로 벤치마크를 실행하여 성능을 비교한다. 벤치마크를 실행할 때는 journal mode 를 delete mode 와 WAL mode 로 변화를 주어 각각 실험을 진행한다. 각각의 journal mode를 통해서 나온 결과를 redirection을 통해 따로 파일로 저장하고, 실험이 모두 종료되면 각각의 결과를 비교 및 대조하여 분석한다.

3. Performance Evaluation

3.1 Experimental Setup

Specify the experimental setup (e.g., OS, Linux version, kernel version, CPU spec, DRAM size, storage devices, etc.) and benchmark setup (e.g., database size, # of concurrent threads, running time).

Type	Specification
OS	Ubuntu 18.04.5
CPU	Intel® Xeon® Gold 5125 CPU 2.50GHz (10 Core, 40 Threads)
Memory	64GB
Kernel	Linux 4.19.108
Storage	SSD 860 PRO 512GB (SATA)

Table 1: System Setup

Туре	Configuration
Benchmark Type	Pytpcc benchmark
Warehouse	10
Duration	1800s
Journal mode	Delete, WAL

Table 2: Benchmark Setup

3.2 Experimental Results

Delete journaling mode 와 WAL journaling mode 에 대한 transaction per throughput 과 throughput average 는 다음과 같다.

Figure 1: Throughput per Journal mode

Figure 2: Average throughput per journal mode

[Figure 1]을 통해 확인할 수 있듯이, WAL journal mode 가전반적으로 transaction per throughput 이 Delete journal mode 에 비해 높은 것을 알 수 있다. WAL journal mode 와 Delete Journal mode 의 차이는 journal file 에 저장하는 데이터 종류에서 발생한다. WAL journal mode 에서는 새롭게 insert 되는 데이터나 update 되는 데이터를 journaling file (WAL file)에 저장한다. 하지만 Delete journal mode 는 "old"한 데이터를 journal file 에 저장하고, 새롭게 insert 되거나

되는 데이터는 데이터베이스에 저장한다. update 데이터베이스에서도 데이터가 파일로 저장이 되기 때문에, delete journal mode 의 경우에는 disk I/O (File I/O)가 두 번 일어나게 된다. 하지만 WAL journaling mode 의 경우에는 새롭게 저장하는 데이터를 WAL file 에 저장하기 때문에, commit 이 일어나기 전까지는 데이터베이스 파일에 접근하지 않는다. 따라서 commit 이 일어나는 경우가 아닐 때는 disk I/O (File I/O)가 한 번만 일어나게 되고, commit 이 일어나게 되더라도 batch 형태로 한 번에 데이터베이스에 쓰기가 일어나기 때문에 file open system call 과 file close system call, file create system call, file delete system call 0 불리는 횟수가 delete journal mode 에 비해 현저히 적게 일어난다. 따라서 [Figure 1] 과 [Figure 2]에서 같은 결과가 도출되게 된다.

[The root cause of the performance gap between delete mode and wal is Number of I/O occurs]

4. Conclusion

데이터베이스의 성능에 영향을 주는 요소 중, 가장 빈번하게 발생하는 성능 저하 요인은 I/O 횟수의 증가이다. 이번 랩에서 살펴본, Delete (default) Journaling mode 과 WAL journaling mode 는 I/O 횟수에서 큰 차이가 있다. WAL journaling mode 는 특정 상황이 아니면, Disk I/O 가 한 번 밖에 일어나지 않는다. 하지만 Delete Journaling mode 의 경우에는 Disk I/O 가 데이터가 새롭게 insert 되거나 update 될 때 마다두 번씩 일어난다. 따라서 성능적인 부분에서는 WAL journaling mode 가 Delete (default) Journaling mode 에 비해 월등이 뛰어남을 알 수 있다.

5. REFERENCES

- [1] https://github.com/meeeejin/SWE3033-F2021/tree/main/week-14
- [2] https://www.sqlite.org/pragma.html#pragma_journal_mode