Analog Electronic Circuits (EC2.103): Endsem exam

Date: 6th July, 2022, Duration: 3 Hours, Max. Marks: 30

Instructions:

- · Clearly write your assumptions (if any)
- · Numerical answers must be correct upto two places of decimal to get any credit
- · Refrain from copying
- · You can use your textbooks, lecture notebooks and own handwritten short notes in the exam hall
- · Use of mobile phone and computers are not allowed during this exam
- Consider the negative feedback loop as shown in Fig. 1. The amplifier has a voltage gain transfer function defined as $A(s) = \frac{A_0}{1+\frac{s}{p_1}}$, whereas the feedback factor is β . Derive the closed loop transfer function $H(s) = \frac{v_{aut}}{v_{in}}(s)$. Draw the Bode plots for A(s) and H(s) on same axis and clearly mark pole locations and magnitude levels. Comment on the gain bandwidth trade-off using your plots. [3 Mark]

2. Consider the circuits shown in Figure 2.

- (a) Draw small signal model of the amplifier shown in Fig. 2(a) and derive small signal voltage gain.
 [1 Mark]
- (b) Draw small signal model of the amplifier shown in Fig. 2(b) and derive small signal voltage gain. [1 Mark]
- (c) Draw voltage transfer characteristics of the circuit shown in Fig. 2(c) by sweeping v_{in} from -VDD to +VDD. Clearly show the voltage levels (input and output) on the plot. [2 Mark]

Figure 2

3. Consider the circuit shown in Figure 3.

(a) Suppose v_{in1} is swept from 0 V to 2 V, while $v_{in2}(>0V)$ is kept constant. Plot v_{out} vs v_{in1} for the fixed v_{in2} . Clearly state your assumptions (if any). [2 Mark]

- (b) Suppose v_{in2} is swept from 0 V to 2 V, while $v_{in1}(>V_T)$ is kept constant. Plot v_{out} vs v_{in2} for the fixed v_{in1} . Clearly state your assumptions (if any). [2 Mark]
- (c) Find small signal equivalent impedances Z_1 and Z_2 as shown in the figure. Clearly state your assumptions (if any). [2 Mark]

Figure 3

4. Consider the common source amplifier topology shown in Fig. 4.

- (a) Draw the small signal equivalent of the circuit and derive the small signal dc voltage gain of the amplifier. [2 Mark]
- (b) Design the amplifier (shown in Fig. 4) with a resistive load of 10 kΩ for a voltage gain > 5 and an overdrive voltage (of input transistor) of 200 mV. The minimum input signal frequency is 100 Hz. Show the design procedure with calculations for sizes of transistors ((^w/_L)₁, (^w/_L)₂), I_{REF}, C_b and R_b. What is the overall power consumed by your amplifier. Assume μ_nC_{ox} = 250 μA/V², V_T = 0.5 V. You can ignore channel length modulation. Clearly write your assumptions (if any). [4 Mark]
- 5. Fig. 5 depicts a sample and hold circuit. It contains two opamp followers, a capacitor C=100 pF, an NMOS switch (M_1) , which has threshold voltage of V_T . Slew rate (maximum rate of change of output) of the opamp is $100 \text{ V}/\mu s$.

- (a) Plot v_{out} for given v_{in} and V_G . Clearly mark amplitudes, time stamps (t_1, t_2, t_3, t_4) and plot all three graphs $(V_G, v_{in} \text{ and } v_{out})$. Describe the function of this circuit? [2 Mark]
- (b) How the value of v_{out} at t₃ will change from its value at t₂ if capacitor is made 10 times bigger than the initial value. Will it change at faster rate?
 [1 Mark]
- (c) Suppose that the capacitor is made extremely small (1 pF) such that opamp follower A1 starts delivering maximum current (I_{max}) to the capacitor. Find the value of I_{max} . [2 Mark]
- 6. Consider the circuits shown in Figures 6(a) and (b), where V_{os} depicts the offset voltage of the opamp.

Figure 6

- (a) Derive the transfer functions $H_1(s) = \frac{v_{out1}}{V_{os}}(s)$ and $H_2(s) = \frac{v_{out2}}{V_{os}}(s)$. Find pole locations and DC gains from the two transfer functions. [2 Mark]
- (b) For a given value of $V_{OS} = 2$ mV, plot v_{out1} and v_{out2} with respect to time by clearly showing the steady state values. [1 Mark]
- For circuit shown in Fig. 6(c), derive the transfer functions $H(s) = \frac{v_{out}}{v_{in}}(s)$. Give Bode magnitude plot for H(s). For what frequency, this circuit behaves as a good integrator (transfer function will have pole at origin). It is given that $v_{in}(t) = Asin(2\pi f_0)t$ V, $R_2 = 1$ $k\Omega$, $C_2 = 1$ μ F. Give approximate plots of $v_{out}(t)$ for (i) $f_0 = 10$ kHz and (ii) $f_0 = 50$ Hz. [3 Mark]