Data visualization and a grammar of graphics

Overview

Quick review of dplyr

The grammar of graphics

ggplot

Announcement

Practice midterm exam has been posted

It was the midterm exam from last year

Homework 5 is due on Sunday

We will do a review during Tuesday's class

Come prepared with questions!

Very quick dplyr review

The **tidyverse** is a set of packages that makes it easy to process data frames

dplyr is a package that has a set of verbs for transformations data

- All these function take a data frame and other arguments and return a data frame
- 1. filter()
- 2. select()
- 3. mutate()
- 4. arrange()
- 5. summarize()
- 6. group_by()

```
age

2
hing
r

3
2
2
2
2
```

```
film results <- movies |>
   filter(title type == "Feature Film") |>
   select(critics score, audience score, genre) |>
   mutate(audience prefers =
         audience score - critics score) |>
   group_by(genre) |>
    summarize(mean audience prefers =
          mean(audience prefers)) |>
     arrange(desc(mean audience prefers))
head(film results)
```

Very quick dplyr review: group_by

group_by: split, apply, combine

group_by multiple items:

```
group_by(genre, mpaa_rating) |>
summarize(ms = mean(critics_score))
```

```
film results <- movies |>
   filter(title type == "Feature Film") |>
   select(critics_score, audience_score, genre) |>
   mutate(audience prefers =
         audience score - critics score) |>
   group by(genre) |>
    summarize(mean audience prefers =
          mean(audience_prefers)) |>
     arrange(desc(mean audience prefers))
head(film results)
```

Very quick dplyr review: summarize

One can summarize multiple variables:

One can use the n() function to count how many items are in each group

```
group_by(genre) |>
summarize(num_genre = n())
```

```
film results <- movies |>
   filter(title type == "Feature Film") |>
   select(critics_score, audience_score, genre) |>
   mutate(audience prefers =
         audience score - critics score) |>
   group_by(genre) |>
    summarize(mean audience prefers =
          mean(audience prefers)) |>
     arrange(desc(mean audience prefers))
head(film results)
```

Homework 5, part 2: flight delays

Steps:

- 1. What result do I want?
- 2. What steps can I take to get the result?
- 3. How can I implement these steps using dplyr?

Questions about dplyr?

Data visualization

Q: What are some reasons we visualize data rather than just reporting statistics?

Statistical projections which **speak to the senses without fatiguing the mind**, possess the advantage of fixing the attention on a great number of important facts.

—Alexander von Humboldt, 1811

A grammar of graphics and ggplot

How have we plotted a single categorical variable?

How have we plotted a single quantitative variable?

Histograms

How have we plotted a two quantitative variables?

Scatter plots

Line chart

What are some similarities between these graphs?

The grammar of graphics

Leland Wilkinson noticed similarities between many graphs and tried to generate a 'grammar' that could be used to express a graph

• i.e., a list elements that can be combined together to create a graph

First edition

Second edition

Graphs are composed of...

A Frame: Coordinate system on which data is placed

• E.g., Cartesian coordinate system, polar coordinates, etc.

Glyphs: basic graphic unit representing cases or statistics

- Contains visual properties (aesthetics) such as: shape, color, size, etc.
- Need to specify how properties of the data are **mapped** onto these aesthetics

Scales and guides: shows how to interpret axes and other properties of the glyphs

• i.e., gives information about how the data values were mapped into glyph properties

Plots can also contain...

Facets: allows for multiple side-by-side graphs based on a categorical variable

• Makes it easier to compare different conditions

Layers: allows for more than one types of data to be mapped onto the same figure

Theme: contains finer points of display

• E.g., font size, background color, etc.

The variables are:

- 1. Log enzyme concentration
 - -3 to 5
- 2. Gene
 - MaeN, PtsG, ...
- 3. Target
 - CcpN, Uptake,...
- 4. Flux
 - Zero or positive
- 5. Molecule:
 - Glocose, Fructose, ...

What are the mappings between each variable and visual attribute?

ggplot

ggplot2 is an R package that implements the grammar of graphics

• It builds up graphics by starting with a frame, adding glyphs, etc.

load the ggplot2 library

> library('ggplot2')

Get the book on GitHub

Example data: mtcars

PERFORMANCE	CADILLAC	LINCOLN	IMPERIAL	
Acceleration	120	207	4.2	
0-30 mph		4.30 3.97		
0-50 mph		8.49 - 8.00 12.00 9.50		
0-60 mph	12.00	9.50	12.1	
Standing Start 1/4-mile Mph	77.05 77.65		80.28	
Elapsed time	17.98 17.82		17.42	
Passing speeds 40-60 mph	6.58	5.9	7.1	
50-70 mph	7.00 6.8		6.8	
Stopping distance From 30 mph	32′1″	31'4"	27'5"	
From 60 mph	182'7"	153'10"	129'3"	
Gas mileage range	10.43	10.42	14.7	
Width - in.	79.8	80.0	79.7	
Front Track – in.	63.5	64.3	64	
Rear Track – in.	63.3	64.3	63.7	
Wheelbase – in	133.0	127.0	124.0	
Overall length – in.	233.7	232.6	231.1	
Height-in.	55.6	55.4	54.7	
Curb Weight-Ibs.	5,250	5,425	5,345	
Fuel Capacity – gals.	27	22.5	25	
Oil Capacity – qts.	4(1)	4(1)	4(1)	
Storage Capacity – cu. ft.	19.27	20.9	20+	
Base Price	\$9,312	\$7,637	\$7.062	
Price as tested	\$11,435	\$9,452	\$8,737	
Engine:	OHV V-8	0HV V-8	0HV V-8	
Bore & Stroke – ins.	4.3x4.06	4.36x3.85	4.32x3.75	
Displacement – cu. in.	472	460	440	
HP @ RPM	205 @ 3600	215@4000	230 @ 4000	
Torque: lbsft. @ rpm	365 @ 2000	350 @ 2600	350 @ 3200	
Compression Ratio	8.25:1	NA 2600	8.2:1	
Compression Hatto Carburetion	8.25:1 4V	4V	8.2:1 4V	
Transmission	Auto.	Auto.	Auto.	
Ottowns to the	Turbo Hydra-Matic	Select Shift	Torqueflite	
Final Drive Ratio	2.93	3.00	3.23 (?)	
Steering Type	Recirculating Ball & Nut Power	Recirculating Ball & Nut With Integral Power Unit	Recirculating Bal Power	
Steering Ratio	17.8-9.0	21.6 To 1	18.9:1	
Turning Diameter (curb-to-curb-ft.)	(Wall To Wall)	46.7'	44.69'	
Wheel Turns		- 1		
(lock-to-lock)	2.83	3.99	3.5	
Tire Size	LR78X15 Steel Belted Radials	LR78X15 Steel Belted Radials	LR78X15 Steel Belted Radial Ply	
Brakes	Power Disc/Drum	Power Disc/Drum	Power Disc/Disc	
Front Suspension	Coils/Shocks Front Diagonal Tie Struts Stabilizer	Coils/Shocks Axial Strut Stabilizer	Torsion Bar Shocks Stabilizer	
Rear Suspension	4 Link, Coils/ Shocks	Three Link, Rubber Cushioned Pivots Coils/Shocks	Leaf Springs Shocks	
Body/Frame Construction	Perimeter Frame	Body On Perimeter Frame	Unitized Construction	

mtcars data frame

How can you determine what variables are in a data frame?

```
> View(mtcars) # only works in Rstudio, not in Markdown
```

- > glimpse(mtcars)
- > ? mtcars # this data frame as a code book

```
[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 4] hp Gross horsepower
[, 6] wt Weight (1000 lbs)
[, 9] am Transmission (0 = automatic, 1 = manual)
```

Do cars that weigh more use more fuel?

Question: do cars that weigh more use more fuel?

What variables in the mtcars data frame are of interest?

- mpg
- wt

We can create a scatter plot using base graphics...

> plot(mtcars\$wt, mtcars\$mpg)

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

> ggplot(data = mtcars, mapping = aes(x = wt, y = mpg)) +

geom_point()

Adds a layer with glyphs

_	wt [‡]	cyl [‡]	hp [‡]	mpg [‡]	disp [‡]
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

> ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

Adds a layer with glyphs

_	wt [‡]	cyl [‡]	hp [‡]	mpg 🗦	disp [‡]
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

A lot more that ggplot can do!

- More aesthetic mapping
- Multiple glyphs/layers
- Axis labels
- Facets
- Visual themes
- Different coordinate systems
- Etc.

The R Graph Gallery

Let's try the rest in R!

Adding labels to plots

We can add labels to the plots using the lab() functions

Adding text annotations

We can text annotations using the annotate("text", x = , y = , label =) function

If you don't want an ex, label you axes!

More aesthetic mappings

Let's look at the relationship between weight, miles per gallon and transmission type on the same graph by plotting... (?)

It is better if we make am a categorical variable

```
> ggplot(mtcars, aes(x = wt, y = mpg, col = factor(am))) + geom_point()
```

Notice the guides!!!

Try mapping am on to shape using:

- 1. shape = am
- 2. size using: size = am

Which is better to use color or shape or size?

Attributes vs. Aesthetics

Setting aesthetics map a variable to a glyph property

Setting attributes set a glyph property to a fixed value

Facets

Beyond comparing variables based on aesthetics you can compare categorical variables by splitting a plot into subplots (called facets) using facet_wrap

> ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point() + facet_wrap(~am)

What do facets make it easy to see on this graph?

Facets along two dimensions

One can also do facets in two dimensions

Overplotting

Sometimes points overlap making it hard to estimate the number of points at a particular range of values

We can control the transparency of points by changing their alpha values

Overplotting

Scales

We can change the scale underlying each aesthetic visual feature

We use functions that start with scale_ to do this

For example, we can change the x scale from linear to logarithmic using:

scale_x_continuous(trans='log10')

```
> ggplot(gapminder, aes(x = gdpPercap, y = lifeExp)) + geom_point(alpha = .2) + scale_x_continuous(trans='log10')
```


Scales

We can change the scale underlying each aesthetic visual feature

We use functions that start with scale_ to do this

We can change the color scale using:

scale_color_manual()

Geometries: line plot

So far we've only created scatter plots, but we can use different geoms to create other types of plots

Create a plot that shows the GDP in the United States as a function of the year using the geom geom_line()

• Hint: filter the gapminder data first...

Geometries: columns

Create a plot that shows the GDP in the United States as a function of the year as columns geom geom_col()

Geometries: text

Create can also use text as a geom using geom_text(aes(label =))

We will first add the row names as a column to our data frame using tibble::rownames_to_column()

```
> mtcars %>%
    tibble::rownames_to_column() %>%
    ggplot(aes(x = wt, y = mpg)) +
        geom_text(aes(label = rowname))
```


Geometries: histograms

We can also make histograms using the geom_histogram() function.

Plot a histogram of the weights of cars

```
> ggplot(mtcars, aes(x = wt)) + geom_histogram()
```

Note the histogram geom only has an x aesthetic, and does not have a y aesthetic value.

Geometries: boxplot

There are many other geom as well, including geom_boxplot()

Plot a boxplot of the weights of cars

```
> ggplot(mtcars, aes(x = "", y = wt)) + geom_boxplot()
```

Side-by-side boxplots

Often it is useful to compare boxplots across different groups

> ggplot(mtcars, aes(x = factor(cyl), y = wt)) + geom_boxplot()

Violin and Joy plots

Violin and Joy plots are other ways to view distributions of data

Violin and Joy plots

Any ideas why they are called joy plots?

Multiple layers

We can also have multiple geom layers on a single graph by using the + symbol

E.g ggplot(...) + geom_type1() + geom_type2()

Create a scatter plot of miles per gallon as a function of weight and then add:

- a smoothed line using geom_smooth()
- a vertical line using geom_vline()

Multiple layers

We can also have multiple geom layers on a single graph by using the + symbol

E.g ggplot(...) + geom_type1() + geom_type2()

Recreate a boxplot of weight (wt) grouped by the factor of cylinders (cyl), and then add points using geom_point()

```
> ggplot(mtcars, aes(x = factor(cyl), y = wt)) +
        geom_boxplot() +
        geom_point()
```


Themes

We can also use different types to change the appearance of our plot

```
Add theme_classic() to your plot
```

```
> ggplot(mtcars, aes(x = wt, y = mpg)) +
        geom_point() +
        xlab("Weigth") +
        ylab("Miles per Gallon") +
        theme_classic()
```

Also see the theme_fivethirtyeight() from the ggthemes package

Themes

We can also create a customized theme using theme()

```
> ggplot(mtcars, aes(x = wt, y = mpg)) +
      geom point() +
      theme_classic() +
      theme(
               axis.text.y = element blank(),
               plot.background = element_rect(fill = "red")
```

THE WORLD IS YOUR