

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

SEPTEMBER 2021(2)

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 24 pages. *Hierdie nasienriglyne bestaan uit 24 bladsye*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes te aanvaar om 'n probleem op te los, word NIE toegelaat nie.

	GEOMETRY • MEETKUNDE				
	A mark for a correct statement (A statement mark is independent of a reason)				
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)				
n	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)				
R	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)				
C/D	Award a mark if statement AND reason are both correct				
S/R	Ken 'n punt toe as die bewering EN rede beide korrek is				

Temperature/ Temperatuur (in °C)	14	24	26	18	20	28	22	17	12	19
Number of hot drinks sold Aantal warm drankies verkoop	410	258	192	324	328	156	280	384	230	280

1.1	As the temperature increases the number of hot drinks sold decreases. / Soos	✓ answer	
	die temperatuur toeneem, neem die verkope van die warm drankies af.		
	OR		
	As the temperature decreases the number of hot drinks sold increases. / Soos		
	die temperatuur afneem, neem die verkope van die warm drankies toe.		(1)
1.2			
	a = 489,47	✓ value of a	
	b = -10,37	✓ value of b	
	$\hat{y} = 489,47 - 10,37x$	✓ equation	
			(3)

1.3	$\hat{y} = 489,47 - 10,37x$ $= 489,47 - 10,37(17)$	✓substitution
	=313,18 Number of hot drinks sold = 314 Number of litres of milk = $\frac{314}{8}$ = 39,25	✓ 314 (accept 313)
	= $40 \text{ boxes of } 1\ell$	\checkmark answer as N_0 (3)
1.4	The outlier is the point (12; 230).	✓(12; 230) (1)
		[8]

2.1.1	175	✓ answer
		(1)
2.1.2	$40 \le x < 50$ OR $40 < x \le 50$	✓ answer
		(1)
2.1.3	175 – 158 = 17	✓ 158 (accept 156 to 160)
		✓ answer
		(accept 15 to 19)
		(2)
2.2.1	$\bar{x} = 74.87$	√√answer
		(2)
2.2.2	$\sigma = 16,12$	✓ answer
		(1)
2.2.3	$\bar{x} + \sigma = 74,87 + 16,12 = 90,99$	√ 90,99
	3 learners	✓ answer
		(2)

2.3	$\vec{x} - \sigma = 82,7$			
	$\vec{x} + \sigma = 94,1$			
	$2\bar{x} = 176,8$			
	$\bar{x} = 88,4$		$\sqrt{x} = 88.4$	
	$\sigma = 88,4 - 82,7$	OR $\sigma = 94,1-88,4$		
	σ =5,7	σ = 5,7	✓ answer	
				(3)
	OR			
	$\bar{x} = \frac{82,7 + 94,1}{2}$			
	$\bar{x} = 88.4$	OR $\sigma = 94,1-88,4$	$\sqrt{x} = 88.4$	
	$\sigma = 68,4 - 82,7$ $\sigma = 5,7$	$\sigma = 5.7$		
	0-5,1	O = S, I	✓ answer	(2)
				(3)
				[12]

3.1	$m_{\rm AB} = \tan 45^{\circ} = 1$	$\sqrt{m_{AB}} = \tan 45^\circ = 1$
		(1)
3.2	y = x + c $-2 = 8 + c$ $c = -10$ $y = x - 10$ $k = 4 - 10$	✓ equation of AB ✓ substitute A in equation
	$k = -6$ \mathbf{OR} $\tan \theta = m_{AB}$	(2) ✓ substitute A & B into
	$1 = \frac{k - (-2)}{4 - 8}$ $k + 2$	gradient formula ✓ equate to 1
	$\frac{k+2}{-4} = 1$ $k = -4-2$ $k = -6$	5-1,3400 00 1
	$\kappa = -0$	(2)

3.3	$m_{\rm FB} = m_{\rm EA} = -\frac{1}{2} \qquad [FB \parallel EA]$	$\sqrt{m_{\rm EA}} = -\frac{1}{2}$
	$y = -\frac{1}{2}x + c$ $y - y_1 = -\frac{1}{2}(x - x_1)$	
	$-6 = -\frac{1}{2}(4) + c$ OR $y - (-6) = -\frac{1}{2}(x - 4)$	✓ substitution of (4; −6)
	$\therefore y = -\frac{1}{2}x - 4$	✓ equation (3)
3.4.1	$\tan \beta = -\frac{1}{2}$	$\checkmark \tan \beta = -\frac{1}{2}$
	$\beta = 153,43^{\circ}$	\checkmark value of β
	$\theta = 26,565^{\circ} + 45^{\circ}$ [ext $< \text{of } \Delta$] = 71,57°	\checkmark value of θ (3)
3.4.2	F(0;2)	✓ F(0;2)
	B(8;-2) BF = $\sqrt{(8-0)^2 + (-2-2)^2}$	✓ substitution ✓ answer
	$BF = \sqrt{80} = 4\sqrt{5}$	(3)
3.4.3		
) ^y	
	F(0; 2)	
	P(4; 0)	
	B(8; -2) $B(8; -2)$	
	$0 = -\frac{1}{2}x + 2$	
	$x = 4$ $\therefore P(4; 0)$ $\therefore PA \parallel y - axis$	✓ P(4; 0)
	Area $\triangle ABF = \text{area } \triangle ABP + \text{area } \triangle APF$ Area $\triangle ABF = \frac{1}{2}(6)(4) + \frac{1}{2}(6)(4)$	✓ area of ΔABP ✓ area of ΔAPF
	Area $\triangle ABF = 24 \text{ units}^2$	✓ answer
	OR	Please turn over/Plagi om asseblief

$$y = x + c$$

$$-2 = 8 + c$$

$$c = -10$$

$$T(0; -10)$$

Area $\triangle ABF = \text{area } \triangle FBT - \text{area } \triangle AFT$

Area
$$\triangle ABF = \frac{1}{2}(8)(12) - \frac{1}{2}(12)(4)$$

Area $\triangle ABF = 24 \text{ units}^2$

✓ C(0; -10)

✓ area of ∆ABT

✓ area of ∆AFT

(4)

✓ answer

OR

$$m_{\text{AF}} = \frac{-6-2}{4-0} = -2$$
 : $y = -2x+2$

$$-2 = -2x + 2$$

$$r = 2$$

$$\therefore T(2; -2)$$

Area $\triangle ABF = \text{area } \triangle FTB + \text{area } \triangle TBA$

Area
$$\triangle ABF = \frac{1}{2}(6)(4) + \frac{1}{2}(6)(4)$$

Area $\triangle ABF = 24 \text{ units}^2$

OR

 $\checkmark T(2; -2)$

✓ area of ∆FTB

✓ area of ∆TBA

✓ answer

(4)

A(4;-6)B(8;-2)

$$AB = \sqrt{(8-4)^2 + (-2-(-6))^2}$$

AB =
$$\sqrt{32} = 4\sqrt{2}$$

Area of ABF= $\frac{1}{2}$ (AB)(BF)sin ABF

$$= \frac{1}{2}(\sqrt{32})(\sqrt{80})\sin 71,57^{\circ}$$
= 24units²

$$\checkmark AB = \sqrt{32} = 4\sqrt{2}$$

- ✓ area formula
- ✓ substitution into area formula
- ✓ answer

3.5

 $RA \parallel y$ -axis

 $\hat{CPB} = 26,57^{\circ}$

 $\hat{RPB} = 90^{\circ} + 26,57^{\circ}$

 $\hat{RPB} = 116.57^{\circ}$

PB || AG

 \therefore PÂG = RP̂B = 116,57° [corresp \angle s; PB || AG]

 \checkmark CPB = 26.57°

 \checkmark RPB = 90° + CPB

√ RP̂B

✓ answer of PÂG

(4)

(4)

OR

$$\hat{OFP} = 153,43^{\circ} - 90^{\circ}$$
 [ext \angle of Δ]

 $\hat{OFP} = 63,43^{\circ}$

 $\hat{FEA} = 180^{\circ} - 63,43^{\circ}$ [co-interior \angle s; FB || EA]

 $= 116.57^{\circ}$

 $\hat{PAG} = 116,57^{\circ}$ [corresp \angle s; FE || PA]

 \checkmark OFP = 63,43°

 \checkmark FÊA = $180^{\circ} - 63.43^{\circ}$

= 116,57°

✓ answer of PÂG

(4)

[20]

4.1.1	S(-8;0)		✓ x-value ✓ y-value	
				(2)
4.1.2	r=2		$\checkmark r = 2$	
	∴ diameter = 4 units			
				(1)
4.2.1	ER = 6 units		✓ length of ER	
	EM = 3 units		✓ answer	
				(2)
4.2.2	$S(-8;0);R\left(-\frac{8}{5};\frac{24}{5}\right)$			
	$-\frac{0-(\frac{24}{5})}{}$		✓ substitution	
	$m_{\rm SR} = \frac{0 - (\frac{24}{5})}{-8 - (-\frac{8}{5})}$		✓ m _{SM}	
	$=\frac{3}{4}$		sm	
	$m_{\rm FE} = \frac{-4}{3} [\tan \perp \operatorname{rad}]$		✓ answer	
	3		answer	(3)
4.2.2	TIME AND A SE	F 1113	() (D 2 ')	(-)
4.2.3	EM = MP = 3 units	[radii]	\checkmark MP = 3 units	
	SM = 5 units $SP^2 = 5^2 - 3^2$	[Pythagoras]	✓ length of SM	
	SP = 4 units	[1 ythagoras]	✓ length of SP	
	∴ P(-4; 0)			
	∴M(-4; 3)		✓ coordinates of M	(4)
				` /

4.2.4	$\frac{x + \left(-\frac{8}{5}\right)}{2} = -4$ and $\frac{y + \frac{24}{5}}{2} = 3$	
	$x = \frac{-32}{5} \qquad \qquad y = \frac{6}{5}$	
	$\therefore E\left(\frac{-32}{5}; \frac{6}{5}\right)$	$\checkmark x_{\rm E} \checkmark y_{\rm E}$ (2)
	OR	
	By translation:	
	$E\left(\frac{-32}{5};\frac{6}{5}\right)$	
4.3	K(-5;-3)	$\checkmark x$ -value $\checkmark y$ -value
	$SK = \sqrt{(-8 - (-5))^2 + (0 - (-3))^2}$	✓ substitution
	$SK = \sqrt{18}$	
	$SK = 3\sqrt{2}$	✓ length of SK
	SK > 3 (radius of circle)	
	∴S lies outside the circle	✓ conclusion
		(5) [19]
		[12]

5.2	$2\sin(-20^{\circ}).\sin 160^{\circ} - \cos 40^{\circ}$	
3.2	$= 2(-\sin 20^{\circ}).\sin 20^{\circ} - \cos 40^{\circ}$	$\sqrt{-\sin 20^{\circ}} \sqrt{\sin 20^{\circ}}$
	$= -2\sin^2 20^\circ - (1 - 2\sin^2 20^\circ)$	
	$=-2\sin^2 20 - (1-2\sin^2 20)$ = -1	$\checkmark 1 - 2\sin^2 20^\circ$
		✓answer
		(4)
5.3.1	$3\cos x.\sin x + \tan x.\cos^2(180^\circ - x)$	
	$= 3\cos x \cdot \sin x + \tan x \cdot (-\cos x)^2$	✓ reduction
	$= 3\cos x \cdot \sin x + \frac{\sin x}{\cos^2 x}$	
	$\cos x$	✓ identity
	$=4\cos x.\sin x$	✓ simplification
	$=2\sin 2x$	✓ single ratio
5.3.2	$y \in [-2; 2]$	✓ critical values (4)
3.3.2		✓ notation
		(2)
5.4	$\frac{\cos 3x}{\cos x} = 4\cos^2 x - 3$	
	COS A	
	$LHS = \frac{\cos 3x}{\cos (2x + x)}$	
	$\cos x = \cos x$	
	$-\frac{\cos 2x \cos x - \sin 2x \sin x}{2x \sin x}$	✓ compound identity
	$-\cos x$	
	$= \frac{(2\cos^2 x - 1)\cos x}{2\sin x \cos x \sin x}$	$\sqrt{2\cos^2 x}$
	$\cos x \qquad \cos x$	$\sqrt{2\cos x} = 1$ $\sqrt{2\sin x \cos x}$
	$=2\cos^2 x - 1 - 2\sin^2 x$	2511111 0051
	$= 2\cos^2 x - 1 - 2(1 - \cos^2 x)$	$\sqrt{1-\cos^2 x}$
	$=2\cos^2 x - 1 - 2 + 2\cos^2 x$	√expansion
	$=4\cos^2 x-3$	
	=RHS	(5)
5.5	$3^{2\tan x} - 3^{\tan x+1} = 54$	(5)
0.0	$3^{2\tan x} - 3.3^{\tan x} - 54 = 0$	✓ standard from
	$(3^{\tan x} - 9)(3^{\tan x} + 6) = 0$	✓ factors
	$2\tan x$ 2^2 $2\tan x$	1001010
	or or	✓ both equations
	$\tan x = 2$ no solution $\therefore x = 63.43^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$	$\sqrt{\tan x} = 2$
	05,15 · m.100 ; n CE	$x = 63,43^{\circ} + k.180^{\circ};$ $k \in \mathbb{Z}$
		$ \begin{array}{c c} $
	OR	OR
	$\therefore x = 63,43^{\circ} + k.360^{\circ}; k \in \mathbb{Z} \text{ or } x = 243,43^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	((2.420 + 1.2600
	1 05,75 \cdot 1 00 \cdot 1 01 \cdot 1 275,75 \cdot 1 300 \cdot 1 4 \cdot 1 4	$\sqrt{x} = 63,43^{\circ} + k.360^{\circ};$ $k \in \mathbb{Z}$
		& $243,43^{\circ} + k.360^{\circ};$
		$k \in \mathbb{Z}$
		(5)
		[27]

16

6.1.1	$x \in [-30^{\circ}; 90^{\circ}]$	√endpoints
		✓ notation
		(2)
6.1.2	$x = -180^{\circ} \text{ or } -60^{\circ}$	✓ -180° ✓ -60°
		✓ –60°
		(2)
6.2	$f(x) = -\cos(x+90^\circ) + 1$ $= \sin x + 1$	$\checkmark \cos(x+90^\circ)$ $\checkmark \text{ answer}$
	$=\sin x+1$	✓ answer
		(2)
		[6]

	= 44,147 BC = 6,64 units	✓ substitution
7.2	$BC^{2} = 5^{2} + \left(\frac{5}{2\cos 30^{\circ}}\right)^{2} - 2(5)\left(\frac{5}{2\cos 30^{\circ}}\right) \cdot \cos 112^{\circ}$	✓ use area rule correctly
	$=\frac{5}{2\cos\theta}$	(5)
	$x = \frac{5\sin\theta}{2\sin\theta\cos\theta}$	$\checkmark x$ as subject
	$x.2\sin\theta\cos\theta=5\sin\theta$	✓ equating AD
	$AD = x \sin 2\theta$ $= x \cdot 2 \sin \theta \cos \theta$	$\checkmark 2\sin\theta\cos\theta$
	$\sin 2\theta = \frac{AD}{x}$	✓ trig ratio
	$AD = 5\sin\theta$	
7.1	$\sin \theta = \frac{AD}{5}$	✓ trig ratio

8.1

8.1	Construction: Draw diameter LT and draw TP Konstruksie: Trek middellyn LT en verbind TP	√Constr
	$\hat{SLK} = 90^{\circ} - \hat{TLK}$ [radius \perp tangent/raaklyn] $\hat{TPL} = 90^{\circ}$ [\angle in semi-circle/semi-sirkel] $\therefore \hat{KPL} = \hat{P} = 90^{\circ} - \hat{TPK}$	✓S ✓R ✓S /R
	= 90° – TLK [\angle s same segment/ \angle e dieselfde segment]	✓S ✓R
	$\therefore \hat{SLK} = \hat{P}$	
		(6)

OR

8.1	Construction: Draw diameter LT and draw KT	✓ construction
	Konstruksie: Trek middellyn LT en verbind KT	
	$\hat{SLK} = 90^{\circ} - \hat{TLK}$ [radius \perp tangent/raaklyn]	/ C /D
	$L\hat{K}T = 90^{\circ}$ [\(\neq \text{in half circle}\)/semi-sirkel]	✓ S /R ✓ S ✓ R
	$\therefore \hat{P} = K\hat{T}L \ [\angle s \text{ same segment}/\angle e \text{ dieselfde segment}]$	✓ S
	= 90° – TĹK	✓ S / R
	$\therefore \hat{SLK} = \hat{P}$	(6)

8.2

8.2.1(a)	$\hat{S}_1 = 25^{\circ}$	[tan chord theorem/ \(\text{tussen raaklyn en koord} \)	✓S ✓R	
				(2)
8.2.1(b)	$\hat{O}_1 = 50^{\circ}$	[\angle at centre = $2 \times \angle$ at circumference / midpts. \angle	✓S ✓R	
		$= 2 \times omtreks \angle]$		(2)
8.2.1(c)	$\hat{R}_2 = \hat{W}_3 + \hat{W}_4 = 65^{\circ}$	$[\angle s \text{ opp} = \text{radii} / \angle e \text{ teenoor } = \text{radiusse}]$	✓ S ✓ R	
	P=60°	$[\angle s \text{ of equilateral } \Delta / \angle e \text{ van gelyksydige } \Delta]$	✓ S/R	
	$\hat{R}_1 = 55^{\circ}$	[opp \angle of cyclic quad / teenoorst. $\angle e \ van \ kvh$]	✓ S ✓ R	
				(5)
8.2.2	$\hat{W}_1 = \hat{S}_2 = 60^{\circ}$	[tan chord theorem / ∠ tussen en koord]	✓ S/R	
	P=60°	$[\angle s \text{ of equilateral } \Delta / \angle e \text{ van gelyksydige } \Delta]$		
	$\therefore \hat{\mathbf{W}}_{1} = \hat{\mathbf{P}} = 60^{\circ}$		✓ S	
	SP TW	[alt \angle s = / verwisselende \angle e gelyk]	✓ R	
				(3)

8.3

8.3.1 $OG = x + 6$	✓ S
$\therefore HM = 2x + 6$	✓ S
	(2)
8.3.2 OM \perp JL [line from centre to midp of chord/lyn van midpt halv kd]	J ✓ S ✓ R
$OJ^2 = JM^2 + OM^2$ [Pythagoras]	
$(x+6)^2 = 12^2 + x^2$	✓ subst into Pyth
$x^2 + 12x + 36 = 144 + x^2$	
x = 9	\checkmark value of x
r=15 units	✓ length of radius
	(5)
OR	
OM \perp JL [line from centre to midp of chord/lyn van midpt halv kd]	$ \checkmark S \checkmark R$
$HJ^2 = HM^2 + JM^2$ [Pythagoras]	
$(12\sqrt{5})^2 = (2x+6)^2 + 12^2$	✓ subst into Pyth
$720 = 4x^2 + 24x + 36 + 144$	
$0 = 4x^2 + 24x - 540$	
$0 = x^2 + 6x - 135$	
0 = (x-9)(x+15)	
x = 9	\checkmark value of x
r=15 units	✓ radius
	(5)
	[25]

		[8]
	1 – W ∴ TPVW is a cyclic quad [converse ∠s in the same segment / lyn onderspan gelyke hoeke]	✓R (5)
	$\hat{Q}_1 = \hat{T} \qquad [\text{ corres } \angle s \text{ ,TV } \parallel QS \text{ / ooreenkomstige } \angle e,$ $TV \parallel QS]$ $\therefore \hat{T} = \hat{W}$	✓S
	$\hat{R}_1 = \hat{W} \qquad [\text{ corres } \angle s, \text{ RS } \text{ VW } / \text{ ooreenkomstige } \angle e, \\ \text{RS } \text{ VW }]$ $\therefore \hat{Q}_1 = \hat{W}$	✓S/R
9.2	$\hat{Q}_1 = \hat{R}_1$ [\(\neq \text{s in the same segment} \) \(\neq \text{in dieselfde sirkel}\) \(\sec{segment}\) \[\]	✓S ✓R
	$\therefore \frac{TQ}{QP} = \frac{WR}{RP}$	(3)
	$\frac{\text{VS}}{\text{SP}} = \frac{\text{WR}}{\text{RP}} \qquad [\text{Prop Th}, \text{RS} \parallel \text{VW} / Lyn \mid\mid \text{een sy van } \Delta]$	✓ S/R
9.1	$\frac{\text{TQ}}{\text{QP}} = \frac{\text{VS}}{\text{SP}} \qquad [\text{Prop Th}, \text{TV} \parallel \text{QS} / \text{Lyn} \mid\mid \text{een sy van } \Delta]$	✓S ✓ R

10.1.1	$\hat{D}_1 = x$ [tan chord theorem / \angle tussen en raaklyn koord]	✓ S ✓ R	
	$\hat{C}_2 = \hat{D}_1 = x$ [Tans from common pt / <i>Rklyne vanuit dies punt</i>]	✓ S✓ R	
	$\hat{E}_1 = 180^{\circ} - 2x$ [sum of int \angle s Δ ; $\angle e \Delta$]	✓ R	
	OR		(5)
	$\hat{D}_1 = x$ [tan chord theorem / raaklyn koordst.]	✓ S ✓ R	
	$\hat{C}_2 = x$ [tan chord theorem / raaklyn koordst.]	✓ S✓ R	
	$\hat{E}_1 = 180^\circ - 2x$ [sum of int $\angle s \Delta$; $\angle e \Delta$]	✓ R	
			(5)
10.1.2	In \triangle ECD and \triangle CBD	(C / D	
	$\hat{C}_2 = \hat{B} = x$ [tan chord theorem / raaklyn koordst.]	✓ S / R	
	$\hat{D}_2 = \hat{B} = x$ [\(\angle \text{s opp equal sides} / \angle \text{teenoor gelyke sye}\)]		
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{D}}_2 = x$	✓ S ✓ R	
	$\therefore \Delta ECD \parallel \Delta CBD [\angle, \angle, \angle]$	V K	(3)
	OR In \triangle ECD and \triangle CBD		
	$\hat{C}_2 = \hat{B} = x$ [tan chord theorem / raaklyn koordst.]	✓ S / R	
	$\hat{D}_2 = \hat{B} = x$ [\(\angle \text{s opp equal sides} / \angle \text{ teenoor gelyke sye}\)]		
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{D}}_2 = x$	✓ S	
	$\hat{\mathbf{E}}_1 = \hat{\mathbf{C}}_3 \qquad [3^{\mathrm{rd}} \angle \text{ of } \Delta / \angle e \Delta]$	✓ S	
	∴ ∆ECD ∆CBD		(3)

10.2.1	$\frac{EC}{BC} = \frac{CD}{BD} = \frac{ED}{CD} \qquad [\Delta ECD \parallel \Delta CBD]$ $CD ED$	✓ S
	$\overline{BD} = \overline{CD}$ $CD^{2} = ED.BD$ $ED = CE$ $\therefore CD^{2} = CE.BD$	\checkmark CD ² = ED.BD \checkmark ED = CE
10.2.2	$ \begin{array}{ll} \hat{C}_2 = \hat{D}_2 = x & [proven / reeds \ bewys] \\ BD \parallel CE & [alt \angle s = / verwisselende \angle gelyk] \\ \therefore \frac{FE}{DE} = \frac{FC}{CB} & [line \parallel one \ side \ of \ \Delta / \ lyn \mid \ een \ sy \ van \ \Delta] \\ \therefore \frac{CF^2}{EF^2} = \frac{CB^2}{DE^2} \\ \therefore \frac{CF^2}{EF^2} = \frac{DE.BD}{DE^2} [CB = CD] \\ \therefore \frac{CF^2}{EF^2} = \frac{BD}{DE} \end{array} $	(3) ✓ S ✓ R ✓ S ✓ R ✓ squaring ✓ subst CD ² = ED.BD
		(6) [17]

TOTAL/TOTAAL: 150