Discrete versus Continuous Markov Decision Processes

Ashwin Rao

ICME, Stanford University

March 8, 2019

"Discrete or Continuous" in States, Actions or Time Steps

- When we say Discrete or Continuous MDP, we could be talking of:
 - States
 - Actions
 - Time Steps
- Basic Case: Finite in States & Actions, Discrete in Time Steps
- Classical Dynamic Programming (DP) algorithms cover this case
- DP algorithms sweep through all States, consider all State Transitions
- Updates a table mapping each State to its Value Function (VF)
- We call these (Policy Iteration, Value Iteration) as tabular algorithms
- Policy Improvement sweeps though all Actions ($\arg \max_a Q(s, a)$)

States: Value Function Approx and Sampling/Simulations

- Let's first consider State Space in real-world problems
- Real-world problems suffer from the two so-called "Curses":
 - Curse of Dimensionality (CD): Multi-Dim/Continuous State Space
 - Curse of Modeling (CM): Transition Probabilities/Rewards too complex
- CD leads us to Value Function Approximation (eg: Deep Networks)
- CD and CM can be cured with Sampling/Simulations
- RL algorithms can be employed either with Actual Experiences or with Sampling/Simulations
- Simulation Model is often a feasible alternative to Probability Model
- Besides, we don't need the precise model dynamics as long as we have a good approximation for the Value Function

Policy Improvement for Multi-Dim/Continuous Actions

- arg max_a sweep not possible for Multi-Dim/Continuous Actions
- So we have to perform an (unconstrained) optimization over Actions
- Analytical DP solutions based on partial derivatives of Q(s,a) with respect to the dimensions of Action Space, and setting them to 0
- Substitute this solution for optimal actions in Bellman Optimality Eqn
- Assuming a suitable functional form (with unknown parameters) for the VF, this gives a recursive formulation for the VF parameters
- Knowing boundary condition for the VF, solve for the VF parameters
- This gives us the Optimal VF and the Optimal Policy
- ullet If we are restricted to doing RL \Rightarrow Policy Gradient Algorithms

Continuous in States, Actions, Time Steps

- Optimal VF expressed in terms of state dimensions s_t and time t
- In continuous time, we can write Optimal VF as a differential dV^*

$$\max_{a} \mathbb{E}[dV^*(t, s_t) + R(t, s_t, a_t) \cdot dt] = 0$$

where $R(t, s_t, a_t)$ is the Reward per unit time

- This is called the Hamilton-Jacobi-Bellman (HJB) equation
- dV^* is expanded as Taylor series in terms of t and s_t (involving partial derivatives of V^* w.r.t. t and s_t)
- \bullet This is Ito's Lemma if dynamics for s_t based on Brownian motion
- ullet We eliminate randomness from the expression due to the ${\mathbb E}$ operation
- ullet Let resultant expression (involving partials w.r.t. $t,s_t)$ be $\phi(t,s_t,a_t)$

$$\max_{\mathbf{a}} \phi(t, s_t, a_t) = 0$$

Continuous in States and Actions and Time Steps

- Setting partial derivatives of ϕ w.r.t. a_t to 0 gives optimal a_t^*
- a_t^* is now in terms of partial derivatives of V^* w.r.t. t and s_t
- Substituting a_t^* in ϕ gives:

$$\phi(t,s_t,a_t^*)=0$$

- ullet This is a partial differential equation for V^* in terms of t and s_t
- Boundary condition for PDE obtained from terminal Reward
- We would typically solve this PDE numerically
- If we seek an analytic solution, use Boundary condition to make a smart guess for functional form of V^* in terms of t and s_t
- ullet This would lead us to an ODE whose solution provides V^* as well as a_t^* in terms of t and s_t