To Fly or Not to Fly

MEET THE TEAM

ERIC
Data Collector
Guru

NEESHA Data Cruncher

RYAN

Data Viz

Whiz

The Story

Delayed or canceled flights can ruin business trips, vacations, family events, and so much more.

\$28 Billion

FAA/Nextor estimated the annual costs of delays in 2018

Questions:

1 How does weather impact flight cancellations?

Are certain weather events impact the decision to cancel more than other?

Are certain airlines more prone to cancel flights based on weather?

Tools Used

ERIC Data Collector Guru

- Data Acquisition
- Preprocessing
- Database Storage
- Data Retrieval

Data Sources

- 1. KAGGLE, Historical Flight Delay and Weather Data USA
 - United States Bureau of Transportation Statistics
 - National Oceanic and Atmospheric Administration
- 2. The Global Airport Database

Data Sources

1. KAGGLE, Historical Flight Delay and Weather Data USA

2. The Global Airport Database

Extract-Transform-Load

Download Datasets

Download Primary Dataset

```
import kaggle
from kaggle.api.kaggle api extended import KaggleApi
kag = KaggleApi()
kag.authenticate()
# Download primary dataset from Kaggle
kag.dataset download files(
    dataset=datasource primary,
     unzip=True,
   path=data dir,
print('Download complete.')
Download complete.
```

Download Secondary Dataset

Download complete.

```
import requests

# Download the secondary dataset
response = requests.get(datasource_secondary)

try:
    with open(dataset_secondary, 'xb') as dl_file:
        for chunk in response.iter_content(chunk_size=128):
            dl_file.write(chunk)
        print('Download complete.')
except FileExistsError:
    print('Download complete. (File already exists.)')
```

Preliminary Entity Relationship Diagram

* ICAO: International Civil Aviation Organization

* IATA: International Air Transport Association

airports

id	Ov seria
icao_code	varchar(4
iata_code	char(3
name	tex
city	tov

country lat ded lat_min lat sec Ion dea Ion min lon_sec lon_dir char(1) altitude lat decimal Ion decimal

flights and weather

carrier_code	char(2
flight_number	intege
origin_airport	char(3
destination_airport	char(3
filght_date	date
scheduled_elapsed_time	intege
tail_number	varchar(6)
departure_delay	intege
arrival_delay	intege
delay_carrier	intege
delay_weather	intege
delay_national_aviation_system	intege
delay_security	intege
delay_late_aircarft_arrival	intege
cancelled_code	boolear
scheduled_departure_dt	timestamp
scheduled_arrival_dt	timestamp
actual_departure_dt	timestamp'
actual_arrival_dt	timestamp'
STATION_X	numeric'
HourlyDryBulbTemperature_x	numeric'
HourlyPrecipitation_x	numeric'
HourlyStationPressure_x	numeric'
HourlyVisibility_x	numeric'
HourlyWindSpeed_x	numeric'
STATION_y	numeric'
HourlyDryBulbTemperature_y	numeric'
HourlyPrecipitation_y	numeric'
HourlyStationPressure_y	numeric'
HourlyVisibility_y	numeric'
HourlyWindSpeed_y	numeric'

Airports Data Flights and Weather Data

Preprocessing the tables

100

PostgreSQL Database Integration **Upload**

More complications

Use object-relational mapping (ORM) to create SQL objects in SQLAlchemy (Python package)

print(db.exists().select from(faw table).select())

SELECT EXISTS (SELECT * FROM flights and weather) AS anon 1

PostgreSQL Database Integration Upload

- Use object-relational mapping (ORM) to create SQL objects in SQLAlchemy (Python package)
- Letter Case for Column Names: PostgreSQL columns are lowercase
- IATA code FOREIGN KEY CONSTRAINT
- Upload is slow: replace method with custom function!

native to sql() *method* for DBs that support COPY FROM

```
# Alternative to sql() *method* for DBs that support COPY FROM
     From <a href="https://pandas.pydata.org/pandas-docs/stable/user-guide/io.html#io-sql-method">https://pandas.pydata.org/pandas-docs/stable/user-guide/io.html#io-sql-method</a>
   def psql insert copy(table, conn, keys, data iter):
        Execute SQL statement inserting data
        Parameters
        table : pandas.io.sql.SQLTable
        conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection
11
        keys : list of str
             Column names
        data iter : Iterable that iterates the values to be inserted
        # gets a DBAPI connection that can provide a cursor
15
        dbapi conn = conn.connection
        with dbapi conn.cursor() as cur:
            s buf = StringIO()
            writer = csv.writer(s buf)
            writer.writerows(data iter)
            s buf.seek(0)
            columns = ', '.join(['"{}"'.format(k) for k in keys])
24
             if table.schema:
                 table name = '{}.{}'.format(table.schema, table.name)
             else:
27
                 table name = table.name
            sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(
30
                 table name, columns)
31
            cur.copy_expert(sql=sql, file=s_buf)
```

PostgreSQL Database Integration Upload

```
# Function to extract from database query to Pandas dataframe
# Adapted from <a href="https://towardsdatascience.com/optimizing-pandas-r">https://towardsdatascience.com/optimizing-pandas-r</a>
def read_sql_inmem(query, db_engine, **kwargs):
    copy_sql = "COPY ({query}) TO STDOUT WITH CSV {head}".format(
        query=query, head="HEADER"
    )
    conn = db_engine.raw_connection()
    cur = conn.cursor()
    store = StringIO()
    cur.copy_expert(copy_sql, store)
    store.seek(0)
    df = pd.read_csv(store, **kwargs)
    return df
```

- Query
- Needed different methods to retrieve the same data depending on how users were going to use the data: export to CSV or extract directly to Pandas dataframe
- Extraction is slow: once again, custom function to the rescue!

PostgreSQL Database Integration Upload

- Use object-relational mapping (ORM) to create SQL objects in SQLAlchemy (Python package)
- Letter Case for Column Names: PostgreSQL columns are lowercase
- IATA code FOREIGN KEY CONSTRAINT
- Upload is slow: replace method with custom function!

Query

- Needed different methods to retrieve the same data depending on how users were going to use the data: export to CSV or extract directly to Pandas dataframe
- Extraction is slow: once again, custom function to the rescue!
- Pandas dataframe output required some post-processing due to how PostgreSQL outputs boolean values in CSVs (even virtual ones)

AIA

Final row count...

5,468,069

Whoa! That's a lot of data!

NEESHA

Data Cruncher

Description of the analysis phase of the project.

Machine Learning Model.

Analysis results.

Available Dataset after merging

5468067	5512901	DL	2436	ATL
5468068	5512902	DL	3826	ATL

5468069 rows × 36 columns

Features Selection:

5468069 rows × 21 columns

Flight and Delayed reasons other than weather conditions

Kept	Dropped
Origin_airport, origin_lat, origin_lon,	ld, carrier code
'Destination_airport, destination_lat, destination_lon	delay_national_aviation_system', 'delay_security
'departure_delay	delay_security
'arrival_delay'	delay_late_aircarft_arrival'

Weather Parameters

Kept	
Hourlydrybulbtemperature_x hourlyprecipitation_x hourlystationpressure_x hourlyvisibility_x hourlywindspeed_x	hourlydrybulbtemperature_y hourlyprecipitation_y hourlystationpressure_y hourlyvisibility_y hourlywindspeed_y

Removal of Missing Values

·-				
hourlydrybulbtemperature_x	2073		hourlydrybulbtemperature_x	0
hourlyprecipitation_x	9881		hourlyprecipitation_x	0
hourlystationpressure_x	2073		hourlystationpressure_x	0
hourlyvisibility_x	2073		hourlyvisibility_x	0
hourlywindspeed_x	2073		hourlywindspeed_x	0
station y	2078		station_y	0
hourlydrybulbtemperature y	2078		hourlydrybulbtemperature_y	0
hourlyprecipitation y	9896		hourlyprecipitation_y	0
hourlystationpressure y	2078	V	hourlystationpressure_y	0
hourlyvisibility y	2078		hourlyvisibility_y	0
hourlywindspeed y	2078		hourlywindspeed_y	0
origin lat	382438		origin_lat	0
origin lon	382438		origin_lon	0
destination lat	382775		destination_lat	0
destination lon	382775		destination_lon	0
dtype: int64			dtype: int64	

Handling imbalance in the data

```
df_new['cancelled'].value_counts()

f    4674943
t    33957
Name: cancelled, dtype: int64
```

After Undersampling

```
df_final.shape
(67914, 21)

df_final
```

Splitting into training and test datasets

```
# Use the train_test_split function to create training and testing subsets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,
    y, random_state=1, stratify=y, test_size=0.1)
X_train.shape
(61122, 20)
```

Label Encoding:

```
from sklearn.preprocessing imp

Le = LabelEncoder()

y_train[:5]

22488   f
47918   t
14565   t
11452   f
3805   f
Name: cancelled, dtype: object
```

```
y_train_cln
array([0, 1, 1, ..., 1, 1, 0])
```

Using Standard Scaler and Column Transformer

```
In [69]:
           clf = ColumnTransformer([
               ('ohe', OneHotEncoder(sparse=False, handle unknown = 'ignore'), obj col),
               ('ss', StandardScaler(), num col)
           1, remainder='passthrough')
In [73]:
           X train
                 origin_airport destination_airport departure_delay arrival_delay
                                                                                station_x hourlydrybulbtemperature_x hourlyprecipitation_x hourlystationpres
Out[73]:
          22488
                         SAN
                                            SAT
                                                                         -6 7.229002e+10
                                                                                                               75.0
                                                                                                                                    0.0
          47918
                         DFW
                                           other
                                                                                                                                    0.0
                                                                          0 7.225900e+10
                                                                                                               73.0
```

Logistic Regression

Validate using test data from sklearn.metrics import accuracy score accuracy score(y test cln, y pred) 0.71849234393404

Confusion Matrix

not cancelled

actual cancelled

predicted

2437

985

959

2411

accuracy macro avg

weighted avg

recall f1-score

0.71

0.71

0.71

0.71

0.71

0.72

0.71

0.71

0.71

Classification Report

precision

0.71

0.72

0.71

0.71

3396 3396

6792

6792

6792

support

Machine-learning Trial Accuracy Results

<u>Trial</u>	<u>Method</u>	<u>Accuracy</u>
1	Logistic regression with undersampling	72%
2	Logistic regression with oversampling	71%
3	Random forest with undersampling	87%
4	Random forest with oversampling	99%
5	Random forest (raw)	99%

RYAN, Data Viz Whiz

Visualization of analysis

Recommendation for future analysis

Anything the team would have done differently

Airline Observations

We noticed that although Delta Airlines (DL) is the second highest carrier by volume of total flights, they are fourth in number of cancellations. We wanted to look into this further, so we looked at percentages of total flights vs. percentages of cancellations (next slide).

Airline Observations

American Airlines (AA) accounts for about 26% of total flight volume, but about 42% of cancellations due to weather, whereas Delta (DL) accounts for about 22% of total flights but only about 7% of cancelled flights due to weather.

FINAL THOUGHTS

Recommendations for future analysis:

- 1. Use Random Forest to determine feature importance to analyze the results and determine if we have overfitted the model
- 2. Add additional functionality to the interactive map
- Additional analysis to explore causes for higher cancellation rates in some airlines/airports
- 4. Source a cleaner dataset for airport data

QUESTIONS?

Machine Learning Model

Supervised Learning

Logistic Regression

Undersampling

Datasets and Airline Codes

Airports for which weather data was available.

AA	American Airlines	G4	Allegiant Air
AS	Alaska Airlines Inc	НА	Hawaiian Airlines Inc
В6	JetBlue Airways	NK	Spirit Air Lines
DL	Delta Air Lines Inc	UA	United Air Lines Inc
F9	Frontier Airlines Inc	WN	Southwest Airlines Co

Cancellation Codes

А	Carrier Caused	
В	Weather	
С	National Aviation System	
D	Security	

Using Binary Classification and Running Logistic Regression

```
# Make predictions using the test data
y_pred = classifier.predict(X_test_cln)
results = pd.DataFrame({
    "Prediction": y_pred,
    "Cancelled": y_test_cln
}).reset_index(drop=True)
results.head()
```

	Prediction	Cancelled
0	0	1
1	1	0
2	0	0
3	1	1
4	1	1

```
# Validate using test data
from sklearn.metrics import accuracy_score
accuracy_score(y_test_cln, y_pred)
```

0.71849234393404