Proof-of-Concept for OpenStack Neutron Agent

-Piyush Raman Intern, Cloud Networking, GTS, IBM India Pvt. Ltd

OpenStack Nodes and Data Center Networks

NETWORK NODE

COMPUTE NODE

CONTROLLER NODE

neutron-metadata-agent

neutron-I3-agent

neutron-dhcp-agent

neutron-plugin-agent

Other neutron agents

nova-compute-agent

ceilometer-agent

neutron-plugin-agent

RabbitMQ, MySQL

Neutron Server

Nova Server

Glance Server

All servers / api handlers

Mgmt. N/W

API. N/W

External N/W

Plugin Architecture- OpenStack Neutron

OpenStack Bridge Setup

COMPUTE NODE

OpenStack Neutron Router

OpenStack Neutron Virtualization

Proof-Of-Concept Overview

The POC implements a novel OpenStack Neutron Agent which supports L3 routing for overlay network to external (underlay / virtual) network having following functionalities-

Overlay within / across subnet routing and NATing (SNAT/DNAT) via flows

Virtualize Neutron Router using flows defined by OpenFlow Protocol

Multiple external networks across / within tenants using single instance of the agent

De-centralize the overlay across subnet decision on each compute node

ARP Responder / L2 Population Mechanism on each node to minimize ARP request broadcasts

Openstack Setup Description For POC

Following is the setup description for POC-

OpenStack Havana

ML2 Plugin for OpenStack Neutron

• OVS 2.1

L2 Population / ARP Responder enabled (introduced in OpenStack Icehouse)

VXLAN Tunneling (For 'N' nodes setup, N-1 VXLAN Tunnel Ports on each node)

OpenStack Neutron Bridge Setup For POC

COMPUTE NODE

- Decentralize overlay across subnet routing decision on each compute node

ORIGINAL MECHANISM

- Decentralize overlay across subnet routing decision on each compute node (functionality introduced in Openstack Juno)

NEW MECHANISM

- Virtualize Neutron router using flows instead of Linux Namespace, iptables, Host Stack
- SNAT / DNATing using flows

ORIGINAL MECHANISM

- Virtualize Neutron router using flows instead of Linux Namespace, iptables, Host Stack
- SNAT / DNATing using flows

- Manage all external networks using single instance of agent
- Multiple external networks can use same bridge

neutron-l3-agent (1st instance)

neutron-l3-agent (2nd instance)

ORIGINAL MECHANISM

NETWORK NODE

External Network

Subnet

Subnet

GW

Router

GW

10.10.1.0/24

- Manage all external networks using single instance of agent (functionality introduced in Openstack Icehouse)
- Multiple external networks can use same bridge

- Manage all external networks using single instance of agent (functionality introduced in Openstack Icehouse)
- Multiple external networks can use same bridge

- Minimize ARP Request flooding using ARP Responder / L2 Population

(functionality derived from Openstack Havana)

ORIGINAL MECHANISM (FLOODING OF ARP PACKET)

- Minimize ARP Request flooding using ARP Responder / L2 Population

(functionality derived from Openstack Havana)

NEW MECHANISM (ARP RESPONDER)

- Minimize ARP Request flooding using ARP Responder / L2 Population

(functionality derived from Openstack Havana)

ORIGINAL MECHANISM

- Minimize ARP Request flooding using ARP Responder / L2 Population

(functionality derived from Openstack Havana)

NEW MECHANISM (With L2 Population)

Hardware Specification-

- 4 nodes setup (1 controller / network and 3 compute nodes)

- Each node connected to Tunnel Network via 10 Gbps link

- Network Node connected to External Network via 10 Gbps link

- VM configuration – 2 VCPUs, 2048 MB RAM, CentOS

Use Case - SNAT for single host

POC vs OpenStack Performance Analysis

Use Case - SNAT for multiple hosts

Use Case - DNAT for single host

Use Case - DNAT for multiple host

Use Case - DNAT for multiple host (POC only)

Future Work

- ICMP support for router interfaces by generating ICMP replies using the new Agent
- SNAT support for ICMP packets. Implement OpenFlow protocol to allow access to ICMP identifier field and use port mapping for ICMP and TCP/UDP sessions
- Implement OpenStack Nova Security Groups using flows on OVS integration bridge, thus, mapping VM's directly on the OVS integration bridge
- Updating ARP cache for external network at OVS external bridge programatically
- Updating ARP Responder / Cache on OVS tunnel / integration bridge programatically
- Deletion of flows in a programmatic manner

Credits

- Rachappa B Goni
 Advisory Engineer
 Cloud Networking, GTS, IBM India Pvt. LTD
 grachapp@in.ibm.com
- Prashanth K Nageshappa Senior Engineer, Master Inventor Cloud Networking, GTS, IBM India Pvt. LTD nprashan@in.ibm.com
- Gowtham Narasimhaiah
 Development Manager
 Cloud Networking, GTS, IBM India Pvt. LTD ngowtham@in.ibm.com
- Vaidyanathan Gopalakrishnan
 Operations Manager
 Cloud Networking, GTS, IBM India Pvt. LTD vaigopal@in.ibm.com

BACKUP SLIDES

OVS TUNNEL (BR-TUN) FLOWS COMPUTE NODE

Use Case - SNAT for single host (POC)

No. of VM's	Bandwidth (Gbps)
1	5.5
2	5.48
3	5.37
4	5.35
5	5.36

Use Case - SNAT for single host (OpenStack)

No. of VM's	Bandwidth (Gbps)
1	3.44
2	3.38
3	3.48
4	3.39
5	3.14

Use Case - SNAT for multiple hosts (POC)

No. of hosts	No. of VMs	Bandwidth (Gbps)
2	2 (one per host)	9.03
3	3 (one per host)	9.07

Use Case - SNAT for multiple hosts (OpenStack)

No. of hosts	No. of VMs	Bandwidth (Gbps)
2	2 (one per host)	6.28
3	3 (one per host)	8.25

Use Case - DNAT for single host (POC)

No. of VM's	Bandwidth (Gbps)
1	3.09
2	3.89
3	3.66
4	3.54

Use Case - DNAT for single host (OpenStack)

No. of VM's	Bandwidth (Gbps)
1	3.2
2	4.02
3	3.9
4	3.618

Use Case - DNAT for multiple hosts (POC)

No. of hosts	No. of VM's	Bandwidth (Gbps)
2	2 (one per host)	6.48
3	3 (one per host)	8.73
3	6 (two per host)	9.15
3	9 (three per host)	9.3

Use Case 4- DNAT for multiple hosts (OpenStack)

No. of hosts	No. of VM's	Bandwidth (Gbps)
2	2 (one per host)	5.97
3	3 (one per host)	8.29