- 1. A particle is initially at the point $\mathbf{r}(0) = (-1, -2, 0)$. It moves so that its velocity is given by $\mathbf{v}(t) = (3\cos(5t), 4, 3\sin(5t))$.
 - (a) (6 pts.) Find the acceleration of the object at $t=\pi/2$. (You should simplify your answer so that no trigonometric functions appear.)
 - (b) (6 pts.) Find the position of the object at all times.

(c) (8 pts.) Find the length of the path the object has followed between the times $t=\pi$ and $t=3\pi$.

(d) (3 pts.) At what time (if ever) does the object cross the xz-plane?

- 2. Consider the three points in space: $A=(1,2,1),\ B=(0,2,-1),$ and C=(2,1,1).
 - (a) (5 pts.) Which of B and C is the closest to A?
 - (b) (7 pts.) Give a parameterization of a line through B that is parallel to the line between A and C.
 - (c) (9 pts.) Give an equation for the plane in which the points $A,\,B,\,$ and C lie.

3. (6 pts.) An object is acted on by a force of $\mathbf{F} = (2, 1, 1)N$. However, other constraints on the object allow it to move only in the direction given by $\mathbf{d} = (1, 1, -1)$. Calculate a vector representing the part of the force \mathbf{F} that can actually affect the motion of the object.

- 4. Consider the two parameterized paths $\mathbf{r}(t) = (t^2, 2, t)$ and $\mathbf{s}(t) = (1 + \ln t, 2t, 3t 2)$.
 - (a) (5 pts.) Show that particles following these paths would collide.

(b) (5 pts.) At what angle would the particles hit one another? Your answer may involve an inverse trigonometric function.

- (c) (3 pts.) Is the angle in part (b) acute (less than $\pi/2$), right, or obtuse (greater than $\pi/2$)? Explain how you know. (No points will be given for an answer without explanation.)
- 5. Suppose you are given three vectors **a**, **b**, and **c**. What simple formulas could you use to calculate each of the following?
 - (a) (4 pts.) The volume of the parallelepiped with edges \mathbf{a} , \mathbf{b} , and \mathbf{c} .
 - (b) (4 pts.) The area of the parallelogram with edges $\bf a$ and $\bf b$.

6. The following equations can all be graphed relatively easily in \mathbb{R}^3 . For each, with *one phrase or sentence* indicate what about the equation makes it possible to graph it without much effort, and then give the graph.

(a) (7 pts.)
$$z = 9 - y^2$$

(b) (7 pts.)
$$z = 9 - x^2 - y^2$$

(c) (7 pts.)
$$x + 2y + z = 1$$

- 7. Convert between coordinate systems, as indicated.
 - (a) (4 pts.) $(1,1,\sqrt{2})$ in rectangular coordinates = ? in spherical coordinates
 - (b) (4 pts.) $(2, \pi, -3)$ in cylindrical coordinates = ? in rectangular coordinates