## ベイズ相関均衡とリグレット最小化ダイナミクス

藤井海斗 (国立情報学研究所)

RAMP 2025 @ 九州大学西新プラザ

- 1 ベイジアンゲームにおけるさまざまな相関均衡の定義 信頼できる第三者(仲介者)を介した情報交換によって相関均衡が実現 ベイジアンゲームでは相関均衡の自然な(非等価な)定義が複数知られている
- 2 学習ダイナミクスによる相関均衡の計算 ゲームの繰り返しの中でプレイヤーたちがリグレット最小化すると均衡に収束 このダイナミクスをシミュレートすることで相関均衡を効率的に計算
- **整合的効用(劣モジュラ最大化)ゲームにおける社会厚生の保証** 相関均衡において社会厚生(社会的な望ましさ)が近似的に最適

## 相関均衡とベイズ相関均衡

完備情報ゲームにおける相関均衡 ベイジアンゲームにおける相関均衡

学習ダイナミクスによる相関均衡の計算

整合的効用ゲームにおける社会厚生の保証

目次 4/49

### 相関均衡とベイズ相関均衡

完備情報ゲームにおける相関均衡

ベイジアンゲームにおける相関均衡

学習ダイナミクスによる相関均衡の計算

整合的効用ゲームにおける社会厚生の保証

#### 交差点に進入する2台の車(一)と一がそれぞれ進むか停まるか決める



## ナッシュ均衡

誰も逸脱しても期待利得が 改善しない安定した状態

- (進,停)
- (停,進)
- それぞれ独立に確率 1/2 ずつ

#### 仲介者(交通信号など)によってプレイヤーたちの行動が任意に相関



## 相関均衡

仲介者 🔐 が各プレイヤーに行動推薦



cf. ナッシュ均衡では各自独立に行動選択

ナッシュ均衡を含む無限個存在 例)(進,停)と(停,進)を確率 1/2 ずつ

## 相関均衡 [Aumann'78]

$$N = \{1, 2, \dots, n\}$$
 プレイヤーの集合

$$N = \{ \rightleftharpoons, \rightleftharpoons \}$$

$$A_i$$
 プレイヤー $i \in N$  の行動の集合 (有限)

$$A_i = \{ 進, 停 \}$$

 $v_i \colon A \to \mathbb{R}$  プレイヤー $i \in N$  の効用関数

 $v_{\clubsuit}($ 進,停)=4

### 定義

行動の組の分布  $\pi \in \Delta(A)$  が相関均衡

$$a_{-i} = (a_j)_{j \in N \setminus \{i\}} i$$
 以外の行動の組

riangle 任意のプレイヤー  $i \in N$  と逸脱  $\phi: A_i \to A_i$  について

 $A = A_1 \times A_2 \times \cdots \times A_n$  行動の組 (action profile) 全体の集合

$$\mathbb{E}_{a \sim \pi}\left[v_i(\phi(a_i), a_{-i})\right] \leq \mathbb{E}_{a \sim \pi}\left[v_i(a)\right]$$
 (逸脱しても期待利得が改善しない)

 $\stackrel{\bullet}{\times}$  この定義において  $\pi$  を直積分布に制限すれば、ナッシュ均衡の定義に-致

#### 定義

行動の組の分布  $\pi \in \Delta(A)$  が相関均衡

riangle 任意のプレイヤー  $i \in N$  と逸脱  $\phi: A_i \to A_i$  について

$$\mathbb{E}_{a \sim \pi}\left[v_i(\phi(a_i), a_{-i})\right] \leq \mathbb{E}_{a \sim \pi}\left[v_i(a)\right]$$
 (逸脱しても期待利得が改善しない)

|   | 進 |   | 停 |   |
|---|---|---|---|---|
| 進 | 0 | 0 | 4 | 3 |
| 停 | 3 | 4 | 1 | 1 |

前頁の相関均衡の例は以下のような分布  $\pi \in \Delta(A)$ 

$$\pi($$
進, 停 $) = 1/2$ ,  $\pi($ 停, 進 $) = 1/2$ 

どのような  $\phi$  を使っても期待利得は非増加

例) 
$$\phi($$
進 $) = 停, \phi($ 停 $) = 停 を使うと 3.5 から 2 へ減少$ 

# 相関均衡全体の集合は $|A|=\prod |A_i|$ 変数の線形不等式系で表現される

相関均衡全体の集合は 
$$|A|=\prod_{i\in N}|A_i|$$
 変数の緑形不等式糸で表現される  $\mathsf{CE}=\left\{\pi\in[0,1]^A\left|egin{array}{c} \sum_{a\in A:\ a_i=a_i'\ }\pi(a)[v_i(a)-v_i(a_i'',a_{-i})]\leq 0\ (orall i\in N,orall a_i''\in A_i)\ \sum_{a\in A}\pi(a)=1 \end{array}
ight.$ 

プレイヤー数が定数の場合、この線形不等式系は多項式サイズ

(最適な) 相関均衡を計算する問題は効率的に解ける

cf. ナッシュ均衡全体の集合は非凸(独立性の制約が扱いづらい)

メリット 1 仲介者を用いた自然な解釈(前述)

## メリット 2 学習ダイナミクスによって効率的に計算可能(後述)

- ゲームの繰り返しでプレイヤーたちがリグレット最小化すると自然に到達
- n 人ゲームの相関均衡をnの多項式時間で計算可能 (cf. ナッシュ均衡の計算は2人でも PPAD 困難 [Chen-Deng-Teng'09])

## メリット3 さまざまなゲームにおける社会厚生の保証(後述)

都市交通、オークション、資源配分などの応用上重要なゲームで 相関均衡の社会厚生(社会的な望ましさ)は近似的に最適 [Roughgarden'15] 目次 11/49

#### 相関均衡とベイズ相関均衡

完備情報ゲームにおける相関均衡

ベイジアンゲームにおける相関均衡

学習ダイナミクスによる相関均衡の計算

整合的効用ゲームにおける社会厚生の保証

## 休日に一緒に出かけたい 👮 と 💿 がそれぞれ行き先を決める



👮 は海 🧲 に行きたいが、 💿 は山 👗 に行きたい







行きたい場所 → 1点 同じ場所 → それぞれ 3 点ずつ

## ベイジアンゲーム (不完備情報ゲーム + 共有事前分布) [Harsanyi'67] 13/49

#### 各プレイヤーのタイプ(好み)が共有された事前分布に従って決まるゲーム

👮 と 💿 はそれぞれ確率 1/2 で海 🧲 派、確率 1/2 で山 👗 派

(互いに相手のタイプは知らないが分布は知っている)





$$N = \{1, 2, ..., n\}$$
 プレイヤーの集合

$$N=\{ exttt{2}, exttt{5}\}$$

$$A_i$$
 プレイヤー $i \in N$  の行動の集合 (有限)

$$A_1 = A_2 = \{ \underline{\complement}, \underline{\blacktriangle} \}$$

$$\Theta_i$$
 プレイヤー  $i \in N$  のタイプの集合 (有限)

 $A = \prod_{i \in N} A_i$  行動の組全体の集合,  $\Theta = \prod_{i \in N} \Theta_i$  タイプの組全体の集合

$$ho \in \Delta(\Theta)$$
 タイプの組の事前分布 (共有知識)

$$ho(\mathbf{C}\mathbf{x},\mathbf{C}\mathbf{x})=1/4$$

$$v_i : \Theta \times A \to \mathbb{R}$$
 プレイヤー  $i \in N$  の効用関数

$$v_1(\mathbb{C}_{\widetilde{\mathbb{M}}},\mathbb{C}_{\widetilde{\mathbb{M}}};\mathbb{C},\mathbb{A})=1$$

- $oldsymbol{1}$  タイプの組 $\, heta\sim
  ho\,$ が生成され、各 $\,i\in N\,$ が自分のタイプ $\, heta_i\,$ を知る
- $oldsymbol{2}$  各  $i\in N$  は他人のタイプ  $heta_{-i}$  を知らないまま行動  $a_i\in A_i$  を選択

## さまざまなベイズ相関均衡 [Forges'93]

ベイズ相関均衡(ベイジアンゲームにおける相関均衡)には 複数の自然な定義があり、それぞれ異なる情報交換の仕組みをもつ



#### ベイジアンゲームの戦略形

タイプから行動への写像  $s_i \colon \Theta_i \to A_i$  (戦略と呼ぶ)を一つの行動と解釈各プレイヤーは戦略全体  $S_i \coloneqq A_i^{\Theta_i}$  から戦略を一つ選択

仲介者 🎎 は各プレイヤーに private channel でタイプごとの行動を推薦

← 推薦から逸脱するインセンティブがない



## エージェント標準形相関均衡

#### ベイジアンゲームのエージェント標準形

#### 戦略形相関均衡との違い:

各プレイヤーは自分のタイプ以外への推薦は観測しない

※ 仲介者 ♀ によって実現する自然なシナリオは知られていない

## ベイジアン解 [Forges'93]

🙎 仲介者 🧸 は各プレイヤーに private channel で行動を推薦

← 推薦から逸脱するインセンティブがない



#### エージェント標準形相関均衡との違い:

仲介者 🔐 はタイプの組に基づいて推薦を決められる(戦略表現性)

## コミュニケーション均衡 [Myerson'82, Forges'86]

## 仲介者 💹 とプレイヤーたちの双方向の情報交換で実現



🙎 仲介者 🧝 は private channel で各プレイヤーに行動を推薦



## コミュニケーション均衡は二つの概念の融合

## メカニズムデザイン

1 各プレイヤーがタイプを報告← 嘘をついても得しない



## 相関均衡

1 タイプなし(完備情報)

€を推薦

## ベイジアンゲームの相関均衡概念の関係



#### 相関均衡とベイズ相関均衡

### 学習ダイナミクスによる相関均衡の計算

既存研究:相関均衡とスワップリグレット

本研究:コミュニケーション均衡と嘘つきスワップリグレット

整合的効用ゲームにおける社会厚生の保証

**目次** 23/49

相関均衡とベイズ相関均衡

### 学習ダイナミクスによる相関均衡の計算

既存研究:相関均衡とスワップリグレット

本研究:コミュニケーション均衡と嘘つきスワップリグレット

整合的効用ゲームにおける社会厚生の保証

## $\epsilon$ 近似相関均衡

$$N = \{1, 2, ..., n\}$$
 プレイヤーの集合

$$N = \{ \rightleftharpoons, \rightleftharpoons \}$$

$$A_i$$
 プレイヤー  $i \in N$  の行動の集合 (有限)

$$A_i = \{ 進, 停 \}$$

 $A = A_1 \times A_2 \times \cdots \times A_n$  行動の組(action profile)全体の集合

 $v_i: A \rightarrow [0,1]$  プレイヤー  $i \in N$  の効用関数

 $v_{\clubsuit}(\mathbf{2},\mathbf{6})=4$ 

#### 定義

行動の組の分布  $\pi \in \Delta(A)$  が  $\epsilon$  近似相関均衡

riangle どのプレイヤー  $i\in N$  と逸脱  $\phi\colon A_i\to A_i$  についても

 $\mathbb{E}_{a \sim \pi} \left[ v_i(\phi(a_i), a_{-i}) \right] \leq \mathbb{E}_{a \sim \pi} \left[ v_i(a) \right] + \epsilon$ . (逸脱しても期待利得が高々  $\epsilon$  しか改善しない)

#### 定理 [Foster-Vohra'97, Hart-Mas-Collel'00, Blum-Mansour'07]

n 人ゲームで  $\epsilon$  近似相関均衡を計算する効率的なアルゴリズム存在

- ightharpoonup利得関数  $v_i$  の値オラクルを仮定  $(v_i$  の表現には n の指数サイズ必要)
- $ightharpoonup \epsilon$   $\epsilon$  近似相関均衡が n,  $\max_{i \in N} |A_i|$ ,  $1/\epsilon$  の多項式時間で確率的に求まる

 $\mathsf{cf.}$  ナッシュ均衡の計算は n に関する指数回オラクル呼び出しが必要 [Babichenko'16]



"どれでもいいから一つ相関均衡を計算"は

"どれでもいいから一つナッシュ均衡を計算"より簡単

## 相関均衡へと収束するリグレット最小化ダイナミクス をシミュレート

同じゲームの繰り返しのなかでプレイヤーたちが戦略を更新(学習基準は次頁)



for  $t = 1, 2, \ldots, T$  do

各プレイヤー $i\in N$ が混合(確率的)戦略  $\pi_i^t\in\Delta(A_i)$  を決める i の報酬ベクトル  $u_i^t(\cdot)\stackrel{\triangle}{=}\mathbb{E}[v_i(\cdot,a_{-i}^t)]$  が決まる( $j\in N$  ごと独立に  $a_j^t\sim\pi_j^t$ )各プレイヤーi は期待報酬  $\underset{a_i^t\sim\pi_i^t}{\mathbb{E}}[u_i^t(a_i^t)]$  を受けとる

## スワップリグレット [Blum-Mansour'07]

もし**進**の代わりに**停**を、**停**の代わりに**進**を選んでいたら……

| t      | 1 | 2 | 3 | 4 | 5 | 6 |
|--------|---|---|---|---|---|---|
| 🚙 (現実) | 停 | 停 | 進 | 停 | 停 | 進 |

| <i></i> | 停 | 停 | 進 | 進 | 停 | 進 |
|---------|---|---|---|---|---|---|
| 幸民酉州    | 1 | 1 | 0 | 3 | 1 | 0 |

スワップリグレットは**最適な置換による後悔の**量(この例では 12)

## スワップリグレット [Blum-Mansour'07]

もし**進**の代わりに**停**を、**停**の代わりに**進**を選んでいたら……

| t        | 1            | 2            | 3            | 4            | 5            | 6            |
|----------|--------------|--------------|--------------|--------------|--------------|--------------|
| 🚙 (現実)   | 停            | 停            | 進            | 停            | 停            | 進            |
| 🚙 (理想)   | 進            | 進            | 停            | 進            | 進            | 停            |
| <b>~</b> | 停            | 停            | 進            | 進            | 停            | 進            |
| 幸民酉州     | 1 → <b>4</b> | 1 → <b>4</b> | 0 → <b>3</b> | 3 → <b>0</b> | 1 → <b>4</b> | 0 → <b>3</b> |

スワップリグレットは**最適な置換による後悔の**量(この例では 12)

## スワップリグレット [Blum-Mansour'07]

$$R_{ ext{swap},i}^T \stackrel{\triangle}{=} \max_{\phi \colon A_i o A_i} \sum_{t=1}^T \underbrace{\mathbb{E}_{a_i^t \sim \pi_i^t} \left[ u_i^t(\phi(a_i^t)) 
ight]}_{\phi \text{ で行動を置換したときの}} - \sum_{t=1}^T \underbrace{\mathbb{E}_{a_i^t \sim \pi_i^t} \left[ u_i^t(a_i^t) 
ight]}_{t \text{ ラウンド目の期待報酬}}$$

cf. 普通のリグレット

(external regret)

$$R_i^T \stackrel{ riangle}{=} \max_{oldsymbol{a}_i^* \in A_i} \sum_{t=1}^T u_i^t(oldsymbol{a}_i^*) - \sum_{t=1}^T \mathop{\mathbb{E}}_{a_i^t \sim \pi_i^t} \left[ u_i^t(a_i^t) 
ight]$$

#### 定理 [Blum-Mansour'07]

$$T$$
 ラウンドの平均(経験分布) $\frac{1}{T}\bigotimes_{i\in N}\pi_i^t$ は $\left(\max_{i\in N}R_{\mathrm{swap},i}^T/T\right)$ 近似相関均衡

## スワップリグレット最小化 [Blum-Mansour'07]

$$R_{\mathrm{swap},i}^T \stackrel{\triangle}{=} \max_{\boldsymbol{\phi} \colon A_i \to A_i} \sum_{t=1}^T \mathop{\mathbb{E}}_{a_i^t \sim \pi_i^t} \left[ u_i^t(\boldsymbol{\phi}(\boldsymbol{a}_i^t)) \right] - \sum_{t=1}^T \mathop{\mathbb{E}}_{a_i^t \sim \pi_i^t} \left[ u_i^t(a_i^t) \right]$$



左確率行列全体  $\mathcal{Q} = \left\{Q \in [0,1]^{A_i \times A_i} \mid \mathbf{1}Q = \mathbf{1}\right\}$  を使って表現

$$R_{\mathrm{swap},i}^T = \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q \pi_i^t, u_i^t \rangle - \sum_{t=1}^T \langle \pi_i^t, u_i^t \rangle$$

## スワップリグレット最小化 [Blum-Mansour'07]

## ステップ2 左確率行列の定常分布(固有ベクトル)を利用して帰着

$$R_{ ext{swap},i}^T = \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q \pi_i^t, u_i^t 
angle - \sum_{t=1}^T \langle oldsymbol{\pi_i^t}, u_i^t 
angle$$



igspreaks 各  $t\in [T]$  で  $Q^t\pi_i^t=\pi_i^t$  が成立するように  $Q^t$  から  $\pi_i^t$  を決める

$$\begin{split} R_{\text{swap},i}^T &= \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q \pi_i^t, u_i^t \rangle - \sum_{t=1}^T \langle \mathbf{Q}^t \pi_i^t, u_i^t \rangle \\ &= \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q, \pi_i^t \otimes u_i^t \rangle - \sum_{t=1}^T \langle Q^t, \pi_i^t \otimes u_i^t \rangle \end{split}$$

## スワップリグレット最小化 [Blum-Mansour'07]

ステップ3 $|A_i|$ 個のリグレット(external regret)最小化へと分解

$$R_{ ext{swap},i}^T = \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q, \pi_i^t \otimes u_i^t 
angle - \sum_{t=1}^T \langle Q^t, \pi_i^t \otimes u_i^t 
angle$$



 $Q^t$ の選択問題を列ごとに確率ベクトル $g^t_a$ の選択問題に帰着

$$R_{\text{swap},i}^T = \sum_{a_i \in A_i} \left[ \max_{q_{a_i}^* \in \Delta(A_i)} \sum_{t=1}^T \langle q_{a_i}^*, \pi_i^t(a_i) u_i^t \rangle - \sum_{t=1}^T \langle q_{a_i}^t, \pi_i^t(a_i) u_i^t \rangle \right]$$

リグレット最小化アルゴリズムを使えば  $R_{ ext{swap},i}^T = O\left(\sqrt{T|A_i|\log|A_i|}
ight)$ 

**目次** 32/49

相関均衡とベイズ相関均衡

#### 学習ダイナミクスによる相関均衡の計算

既存研究:相関均衡とスワップリグレット

本研究:コミュニケーション均衡と嘘つきスワップリグレット

整合的効用ゲームにおける社会厚生の保証

## $\epsilon$ 近似コミュニケーション均衡

$$N = \{1, 2, ..., n\}$$
 プレイヤーの集合

$$N = \{ 2, 0 \}$$

$$A_i$$
 行動の集合,  $\Theta_i$  タイプの集合

$$A_i$$
 行動の集合,  $\Theta_i$  タイプの集合  $A_1 = A_2 = \{ \mathfrak{C}, \mathbb{A} \}, \Theta_1 = \Theta_2 = \{ \mathfrak{C}_{\mathbb{K}}, \mathbb{A}_{\mathbb{K}} \}$ 

$$A = \prod_{i \in N} A_i$$
 行動の組全体の集合,  $\Theta = \prod_{i \in N} \Theta_i$  タイプの組全体の集合

$$ho\in\Delta(\Theta)$$
 タイプの組の事前分布(共有知識)  $ho({\Bbb C}_{\Bbb K},{\Bbb C}_{\Bbb K})=1/4$ 

$$v_i: \Theta \times A \rightarrow [0,1]$$
 プレイヤー  $i \in N$  の効用関数

$$v_1(\subseteq \mathbb{K}, \subseteq \mathbb{K}; \subseteq, \mathbb{A}) = 1$$

#### 定義

タイプの組ごとの分布  $\pi \in \Delta(A)^{\Theta}$  は  $\epsilon$  近似コミュニケーション均衡

## $\epsilon$ 近(Uコミュニケーション均衡

$$N = \{1, 2, ..., n\}$$
 プレイヤーの集合

$$N = \{ 2, 0 \}$$

$$A_i$$
 行動の集合,  $\Theta_i$  タイプの集合

$$A_i$$
 行動の集合,  $\Theta_i$  タイプの集合  $A_1 = A_2 = \{ \subseteq, \mathbb{A} \}, \Theta_1 = \Theta_2 = \{ \subseteq, \mathbb{A} \}$ 

$$A = \prod_{i \in N} A_i$$
 行動の組全体の集合,  $\Theta = \prod_{i \in N} \Theta_i$  タイプの組全体の集合

$$ho\in\Delta(\Theta)$$
 タイプの組の事前分布(共有知識)

$$\rho(\mathbf{c}_{\widetilde{\mathbf{x}}},\mathbf{c}_{\widetilde{\mathbf{x}}})=1/4$$

$$v_i: \Theta \times A \rightarrow [0,1]$$
 プレイヤー  $i \in N$  の効用関数

$$v_1(\subseteq_{\widetilde{\mathbb{M}}},\subseteq_{\widetilde{\mathbb{M}}};\subseteq_{\widetilde{\mathbb{M}}})=1$$

## 定義

真のタイプ $\theta_i$  の代わりに  $\mu$  推薦された  $a_i$  の代わりに

タイプの組ごとの  $\psi(\theta_i)$  を報告  $\varphi(\theta_i,a_i)$  を選択

$$\Leftrightarrow$$
 任意の  $i \in N$ ,  $\psi$ :  $\Theta_i \to \Theta_i$ ,  $\phi$ :  $\Theta_i \times A_i \to \overline{A_i}$  に対して

$$\mathbb{E}_{\theta \sim \rho} \left[ \mathbb{E}_{a \sim \pi(\psi(\theta_i), \theta_{-i})} \left[ v_i(\theta; \phi(\theta_i, a_i), a_{-i}) \right] \right] \leq \mathbb{E}_{\theta \sim \rho} \left[ \mathbb{E}_{a \sim \pi(\theta)} \left[ v_i(\theta; a) \right] \right] + \epsilon.$$

## コミュニケーション均衡の計算

#### 定理 [Fujii'25a]

n 人ベイジアンゲームにおいて  $\epsilon$  近似コミュニケーション均衡を

計算する効率的なアルゴリズムが存在する

- ightharpoonup n, 各プレイヤーの行動数  $\max_{i \in N} |A_i|$ , タイプ数  $\max_{i \in N} |\Theta_i|$ ,  $1/\epsilon$  に関する多項式時間
  - 嘘つきスワップリグレットを定義
  - 効率的なアルゴリズムによる嘘つきスワップリグレットの  $O\left(\sqrt{T\max\{|A_i|\log|A_i|,\log|\Theta_i|\}}\right)$ 上界と $\Omega\left(\sqrt{T\log|\Theta_i|}\right)$ 下界を証明



# 嘘つきスワップリグレット [Fujii'25a]

### タイプ虚偽申告 $\psi$ と行動推薦からの逸脱 $\phi$ を考慮

$$R_{\mathrm{US},i}^{T} = \max_{\substack{\psi \colon \Theta_{i} \to \Theta_{i} \\ \phi \colon \Theta_{i} \times A_{i} \to A_{i}}} \sum_{t=1}^{T} \underset{\theta_{i} \sim \rho_{i}}{\mathbb{E}} \left[ \underset{a_{i} \sim \pi_{i}^{t}(\psi(\theta_{i}))}{\mathbb{E}} \left[ u_{i}^{t}(\theta_{i}, \phi(\theta_{i}, a_{i})) \right] \right]$$
$$- \sum_{t=1}^{T} \underset{\theta_{i} \sim \rho_{i}}{\mathbb{E}} \left[ \underset{a_{i} \sim \pi_{i}^{t}(\theta_{i})}{\mathbb{E}} \left[ u_{i}^{t}(\theta_{i}, a_{i}) \right] \right]$$

### 定理 [Fujii'25a]

経験分布  $\frac{1}{T} \bigotimes_{i \in N} \pi_i^t$  は  $\left(\max_{i \in N} R_{\mathrm{US},i}^T/T\right)$  近似コミュニケーション均衡

37/ 49

# 嘘つきスワップリグレット最小化 [Fuiji/25a]

ステップ 1  $\psi\colon\Theta_i o\Theta_i$  と  $\phi\colon\Theta_i imes A_i o A_i$  を一つの行列を使って表現

$$R_{\mathrm{US},i}^{T} \stackrel{\triangle}{=} \max_{\substack{\psi \colon \Theta_{i} \to \Theta_{i} \\ \phi \colon \Theta_{i} \times A_{i} \to A_{i}}} \sum_{t=1}^{T} \underset{\substack{\theta_{i} \sim \rho_{i} \\ a_{i} \sim \pi_{i}^{t}(\psi(\theta_{i}))}}{\mathbb{E}} \left[ u_{i}^{t}(\theta_{i}, \phi(\theta_{i}, a_{i})) \right] - \sum_{t=1}^{T} \underset{\substack{\theta_{i} \sim \rho_{i} \\ a_{i} \sim \pi_{i}^{t}(\theta_{i})}}{\mathbb{E}} \left[ u_{i}^{t}(\theta_{i}, a_{i}) \right]$$



各 $Q \in Q$ は右確率行列の各要素に左確率行列を入れたブロック行列

$$R_{\mathrm{US},i}^T = \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Qx^t, \bar{u}^t \rangle - \sum_{t=1}^T \langle x^t, \bar{u}^t \rangle$$

# 嘘つきスワップリグレット最小化 [Fujii'25a]

### ステップ 2 行列 Q の固有ベクトルを利用して帰着( $\Phi$ -regret)

$$R_{\mathrm{US},i}^T = \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Qx^t, \bar{u}^t \rangle - \sum_{t=1}^T \langle \mathbf{x}^t, \bar{u}^t \rangle$$



igcup 各  $t\in [T]$  で  $Q^tx^t=x^t$  が成立するように  $Q^t$  から  $x^t$  を決める

$$\begin{split} R_{\mathrm{US},i}^T &= \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Qx^t, \bar{u}^t \rangle - \sum_{t=1}^T \langle Q^t x^t, \bar{u}^t \rangle \\ &= \max_{Q \in \mathcal{Q}} \sum_{t=1}^T \langle Q, x^t \otimes \bar{u}^t \rangle - \sum_{t=1}^T \langle Q^t, x^t \otimes \bar{u}^t \rangle \end{split}$$

# 嘘つきスワップリグレット最小化 [Fujii'25a]

## ステップ3 $|\Theta_i|^2|A_i|+|\Theta_i|$ 個のリグレット最小化へと分解

$$R_{\mathrm{US},i}^{T} = \max_{Q \in \mathcal{Q}} \sum_{t=1}^{T} \langle Q, x^{t} \otimes \bar{u}^{t} \rangle - \sum_{t=1}^{T} \langle Q^{t}, x^{t} \otimes \bar{u}^{t} \rangle$$



各  $\theta_i \in \Theta_i$  ごとのリグレット  $R_{\theta_i}^T$  と

各  $\theta_i, \theta_i' \in \Theta_i, a_i' \in A_i$  ごとのリグレット  $R_{\theta_i, \theta_i', a_i'}^T$  に分解

$$R_{\mathrm{US},i}^T \leq \sum_{\theta_i \in \Theta_i} R_{\theta_i}^T + \sum_{\theta_i \in \Theta_i} \max_{\theta_i' \in \Theta_i} \sum_{a_i' \in A_i} R_{\theta_i,\theta_i',a_i'}^T$$

上界 
$$R_{\mathrm{US},i}^T = O\left(\sqrt{T\max\{|A_i|\log|A_i|,\log|\Theta_i|\}}\right)$$
が得られる

相関均衡とベイズ相関均衡

学習ダイナミクスによる相関均衡の計算

整合的効用ゲームにおける社会厚生の保証



複数のプレイヤーが同じ場所を選んだ場合は あらかじめ決めたルールに従って分割

例) 💀 が 👮 に優先される



複数のプレイヤーが同じ場所を選んだ場合は あらかじめ決めたルールに従って分割

例) 💀 が 👮 に優先される

最悪の相関均衡 = 1



複数のプレイヤーが同じ場所を選んだ場合は あらかじめ決めたルールに従って分割

例) 💀 が 🗝 に優先される

最適な社会厚生 = 2



複数のプレイヤーが同じ場所を選んだ場合は あらかじめ決めたルールに従って分割

例) 💀 が 👮 に優先される



複数のプレイヤーが同じ場所を選んだ場合は あらかじめ決めたルールに従って分割

例) 👽 が 👮 に優先される

#### 定理 [Vetta 2002, Roughgarden'15]

整合的効用ゲームにおける相関均衡の PoA > 0.5

社会厚生( $\approx$  全員の利得の和)を集合関数  $f: 2^E \to \mathbb{R}$  で表す

(台集合は全プレイヤーの行動全体 
$$E = \bigcup_{i \in N} A_i$$
)

### 整合的効用ゲーム 🖨 社会厚生関数が単調劣モジュラ

社会厚生(pprox全員の利得の和)を集合関数  $f\colon 2^E \to \mathbb{R}$  で表す

(台集合は全プレイヤーの行動全体 
$$E = \bigcup_{i \in N} A_i$$
)

### 整合的効用ゲーム 🖨 社会厚生関数が単調劣モジュラ

$$f(\{\square_{\frac{1}{2}}\}) - f(\{\})$$
**へへへいないときの**
社会厚生の増分

社会厚生(pprox全員の利得の和)を集合関数  $f\colon 2^E o \mathbb{R}$  で表す

(台集合は全プレイヤーの行動全体 
$$E = \bigcup_{i \in N} A_i$$
)

### 整合的効用ゲーム 🖨 社会厚生関数が単調劣モジュラ

$$f(\{\square_{ rac{1}{2}}\})-f(\{\})$$

まだ誰も参加していないときの

社会厚生の増分

$$f(\{\square_{ rac{1}{2}},\square_{ rac{1}{2}}\})-f(\{\square_{ rac{1}{2}}\})$$
他の人が既に参加しているときの
社会厚生の増分

社会厚生(pprox全員の利得の和)を集合関数  $f\colon 2^E \to \mathbb{R}$  で表す

(台集合は全プレイヤーの行動全体 
$$E = \bigcup_{i \in N} A_i$$
)

### 整合的効用ゲーム 🖨 社会厚生関数が単調劣モジュラ

Q

#### タイプごとに別のプレイヤーとみなして社会厚生関数を定義



ベイズ相関均衡の各概念のあいだで PoA の保証に差はあるか?

#### タイプごとに別のプレイヤーとみなして社会厚生関数を定義



ベイズ相関均衡の各概念のあいだで PoA の保証に差はあるか?

#### タイプごとに別のプレイヤーとみなして社会厚生関数を定義



ベイズ相関均衡の各概念のあいだで PoA の保証に差はあるか?

均衡の集合  $\Pi \subseteq \Delta(A)^{\Theta}$  に対して PoA と Price of Stability (PoS) は



完備情報との違い

最適な行動  $a_i^*$  が他プレイヤーのタイプ  $\theta_{-i}$  に依存

均衡の集合  $\Pi \subseteq \Delta(A)^{\Theta}$  に対して PoA と Price of Stability (PoS) は



完備情報との違い

最適な行動  $a_i^*$  が他プレイヤーのタイプ  $\theta_{-i}$  に依存





# 戦略表現性ギャップ (SR gap) [Fujii'25b]







Player 2



Player 3







Player 2



Player 3



 $\operatorname{SRgap}_f \stackrel{\triangle}{=} rac{\operatorname{AJD} \cap \operatorname{AJD} \cap \operatorname{BE} \cap$ 







 $\operatorname{SRgap}_f \stackrel{\triangle}{=} \frac{\operatorname{8}\overline{\jmath}$  ロックから要素を一つ選んでからブロックがランダムに選ばれる  $\overline{\jmath}$   $\overline{\jmath}$ 







 $\operatorname{SRgap}_f \stackrel{\triangle}{=} \frac{\operatorname{8}\overline{\jmath}$  ロックから要素を一つ選んでからブロックがランダムに選ばれる  $\overline{\jmath}$   $\overline{\jmath}$ 







 $\mathrm{SRgap}_f \stackrel{\triangle}{=} rac{\mathrm{8} \overline{\mathrm{Ju}} \mathrm{yoho} \mathrm{seps} \mathrm{se$ 



Player 2  $A_2^{\theta_2}$   $A_2^{\theta_2'}$ 



プレイヤーごとに一つのブロックが事前分布に従って決定

 $\operatorname{SRgap}_f \stackrel{\triangle}{=} rac{\operatorname{AJD} \operatorname{Poly} \operatorname{AD} \operatorname{BE} \operatorname{AD} \operatorname{AD} \operatorname{BE} \operatorname{AD} \operatorname{AD} \operatorname{BE} \operatorname{AD} \operatorname{AD} \operatorname{AD} \operatorname{AD} \operatorname{BE} \operatorname{AD} \operatorname{AD}$ 



Player 2  $A_2^{\theta_2}$ 



プレイヤーごとに一つのブロックが事前分布に従って決定

 $\operatorname{SRgap}_f \stackrel{\triangle}{=} rac{\operatorname{AJD} \operatorname{Poly} \operatorname{AD} \operatorname{BE} \operatorname{AD} \operatorname{AD} \operatorname{BE} \operatorname{AD} \operatorname{AD} \operatorname{BE} \operatorname{AD} \operatorname{AD} \operatorname{AD} \operatorname{AD} \operatorname{BE} \operatorname{AD} \operatorname{AD}$ 







 $\mathrm{SRgap}_f \stackrel{\triangle}{=} rac{\mathrm{AJD}_{\mathrm{U}} \circ \mathrm{AD}_{\mathrm{U}} \circ \mathrm{BE}_{\mathrm{U}} \circ \mathrm{AD}_{\mathrm{U}} \circ \mathrm{BE}_{\mathrm{U}} \circ \mathrm{AD}_{\mathrm{U}} \circ \mathrm{AD}_{$ 

Q 非負単調劣モジュラ関数における SR gap の最小値は?

$$\mathrm{SRgap}_f = \frac{\max\limits_{s^* \in S} \underset{\theta \sim \rho}{\mathbb{E}} \left[ f(s^*(\theta)) \right]}{\underset{\theta \sim \rho}{\mathbb{E}} \left[ \max\limits_{a \in A^{\theta}} f(a) \right]}$$

- 事前分布 ho がプレイヤーごとに<mark>独立</mark>な場合
    $\min_f \mathrm{SRgap}_f = 1 1/e$  相関ギャップ + 弱負回帰 [Qiu-Singla'22]
- ullet 事前分布 ho は相関してもよい場合(任意の分布)  $\min_f \operatorname{SRgap}_f = \Theta(1/\sqrt{n}) \quad \longleftarrow$  多重線形拡張 + 要素を大小に分けて解析

### PoA の上下界

 $PoA \in [0.316, 0.441]$ 



### PoS の上下界

PoS 結果はより強い条件(basic utility)下

※ 上記の結果はタイプ事前分布ρのプレイヤーごとの独立性を仮定

- 1 ベイジアンゲームにおけるさまざまな相関均衡の定義 信頼できる第三者(仲介者)を介した情報交換によって相関均衡が実現 ベイジアンゲームでは相関均衡の自然な(非等価な)定義が複数知られている
- 2 学習ダイナミクスによる相関均衡の計算 ゲームの繰り返しの中でプレイヤーたちがリグレット最小化すると均衡に収束 このダイナミクスをシミュレートすることで相関均衡を効率的に計算
- **整合的効用(劣モジュラ最大化)ゲームにおける社会厚生の保証** 相関均衡において社会厚生(社会的な望ましさ)が近似的に最適

- Robert J. Aumann. 1974. Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics, 1(1), 67–96.
- Avrim Blum and Yishay Mansour. 2007. From External to Internal Regret. Journal of Machine Learning Research 8, 1307–1324.
- Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the complexity of computing two- player Nash equilibria. *Journal of the ACM* 56, 3, 14:1–14:57.
- Françoise Forges. 1986. An approach to communication equilibria. Econometrica, 1375–1385.
- Françoise Forges. 1993. Five legitimate definitions of correlated equilibrium in games with incomplete information. *Theory and Decision* 35, 277–310.
- Dean P Foster and Rakesh V Vohra. 1997. Calibrated learning and correlated equilibrium. Games and Economic Behavior 21(1-2), 40-55.
- Kaito Fujii. 2025a. Bayes correlated equilibria, no-regret dynamics in Bayesian games, and the price of anarchy. Proceedings of Machine Learning Research vol, 291, 1-2.
- Kaito Fujii. 2025b. The Power of Mediators: Price of Anarchy and Stability in Bayesian Games with Submodular Social Welfare. In Proceedings of the 26th ACM Conference on Economics and Computation, pp. 251-251.
- John C. Harsanyi. 1967. Games with Incomplete Information Played by "Bayesian" Players, I-III. *Management Science* 14(3):159–182, 14(5):320–334, 14(7):486–502.
- Sergiu Hart and Andreu Mas-Colell. 2000. A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150.
- Roger B. Myerson. 1982. Optimal coordination mechanisms in generalized principal agent problems. *Journal of Mathematical Economics*, 10(1), 67–81.
- Tim Roughgarden. 2015. Intrinsic Robustness of the Price of Anarchy. Journal of the ACM 62(5), 32:1-32:42.
- Illustrations: "Twemoii" by Twitter, Inc and other contributors is licensed under CC BY 4.0

### Various Bayes correlated equilibria

- Strategic-form correlated equilibria (SFCE)
- Agent-normal-form correlated equilibria (ANFCE
- Bayesian solutions
- Communication equilibria

### **Details of the proposed dynamics**

#### **Smoothness**

## Various Bayes correlated equilibria

- Strategic-form correlated equilibria (SFCE)
- Agent-normal-form correlated equilibria (ANFCE)
- Bayesian solutions
- Communication equilibria

## **Details of the proposed dynamics**

**Smoothness** 

# Strategic-form correlated equilibria

## Strategic form of Bayesian games

A **strategy**  $s_i : \Theta_i \to A_i$  is interpreted as an action

The set of all actions in this interpretation is  $S_i := A_i^{\Theta_i}$ 





# Strategic-form correlated equilibria

## **Strategic form of Bayesian games**

A **strategy**  $s_i : \Theta_i \to A_i$  is interpreted as an action

The set of all actions in this interpretation is  $S_i := A_i^{\Theta_i}$ 



← No incentive to disobey the recommendation



# SFCE & Strategy swap regret

#### **Definition**

A distribution  $\sigma \in \Delta(S_1 \times \cdots \times S_n)$  is an SFCE

$$R_{\mathrm{SS},i}^T \stackrel{\triangle}{=} \max_{\phi_{\mathrm{SF}} \colon S_i \to S_i} \sum_{t=1}^T \quad \underbrace{\mathbb{E}\left[v_i(\phi_{\mathrm{SF}}(s_i^t)(\theta_i^t), a_{-i}^t)\right]}_{\text{reward in round } t \text{ if}} \quad -\sum_{t=1}^T \underbrace{\mathbb{E}\left[v_i(s_i^t(\theta_i^t), a_{-i}^t)\right]}_{\text{reward in round } t}$$
 the strategies are replaced according to  $\phi_{\mathrm{SF}}$ 

 $\stackrel{\bullet}{\times}$  Each player chooses  $\sigma_i^t \in \Delta(S_i)$  and generates  $s_i^t \sim \sigma_i^t$ 

# SFCE & Strategy swap regret

### **Definition**

Choosing strategy  $\phi_{SF}(s_i)$ 

A distribution  $\sigma \in \Delta(S_1 \times \cdots)$  instead of recommended  $s_i$ 

$$R_{\mathrm{SS},i}^T \stackrel{\triangle}{=} \max_{\phi_{\mathrm{SF}} \colon S_i \to S_i} \sum_{t=1}^T \quad \underbrace{\mathbb{E}\left[v_i(\phi_{\mathrm{SF}}(s_i^t)(\theta_i^t), a_{-i}^t)\right]}_{\text{reward in round } t \text{ if } the \text{ strategies are replaced according to } \phi_{\mathrm{SF}} \qquad -\sum_{t=1}^T \underbrace{\mathbb{E}\left[v_i(s_i^t(\theta_i^t), a_{-i}^t)\right]}_{\text{reward in round } t}$$

 $\stackrel{\bullet}{\mathbf{x}}$  Each player chooses  $\sigma_i^t \in \Delta(S_i)$  and generates  $s_i^t \sim \sigma_i^t$ 

## Various Bayes correlated equilibria

- Strategic-form correlated equilibria (SFCE)
- Agent-normal-form correlated equilibria (ANFCE)
- Bayesian solutions
- Communication equilibria

## **Details of the proposed dynamics**

**Smoothness** 

# Agent-normal-form correlated equilibria

### ANFCE is defined as CE of the agent normal form

### **Agent normal form of Bayesian games**

The same player with different types are regarded as different players

Only (hypothetical) players with realized types play the game

In our example, randomly selected two out of  $(\cite{a}, \cite{a}), (\cite{a}, \cite{a}), (\cite{o}, \cite{a}), (\cite{o}, \cite{a})$  play the game

## **Difference from SFCE**

Each player cannot observe the recommendation to unrealized types

🔆 No realistic scenario involving a mediator 🧝

# ANFCE & Type-wise swap regret

### Definition

A distribution  $\sigma \in \Delta(S_1 \times \cdots \times S_n)$  is an ANFCE

$$R_{\mathrm{TS},i}^{T} \stackrel{\triangle}{=} \max_{\phi \colon \Theta_{i} \times A_{i} \to A_{i}} \sum_{t=1}^{T} \underbrace{\mathbb{E}\left[v_{i}^{t}(\phi(\theta_{i}, s_{i}^{t}(\theta_{i})), a_{-i}^{t})\right]}_{\text{reward in round } t \text{ if the actions are replaced according to } -\sum_{t=1}^{T} \underbrace{\mathbb{E}\left[v_{i}^{t}(s_{i}^{t}(\theta_{i}), a_{-i}^{t})\right]}_{\text{reward in round } t}$$

# ANFCE & Type-wise swap regret

### **Definition**

Choosing strategy  $\phi(\theta_i, s_i(\theta_i))$ 

A distribution 
$$\sigma \in \Delta(S_1 \times \cdots \times \text{instead of recommended } s_i(\theta_i))$$
  $\Leftrightarrow$  For any player  $i \in N$ ,  $\phi \colon \Theta_i \times A_i \to A_i$ , 
$$\mathbb{E}_{\theta \sim \rho} \left[ \mathbb{E}_{s \sim \sigma} \left[ v_i(\theta; s_1(\theta_1), \dots, s_n(\theta_n)) \right] \right] \geq \mathbb{E}_{\theta \sim \rho} \left[ \mathbb{E}_{s \sim \sigma} \left[ v_i(\theta; \phi(\theta_i, s_i(\theta_i)), s_{-i}(\theta_{-i})) \right] \right].$$

$$R_{\mathrm{TS},i}^{T} \stackrel{\triangle}{=} \max_{\phi \colon \Theta_{i} \times A_{i} \to A_{i}} \sum_{t=1}^{T} \underbrace{\mathbb{E}\left[v_{i}^{t}(\phi(\theta_{i}, s_{i}^{t}(\theta_{i})), a_{-i}^{t})\right]}_{\text{reward in round } t \text{ if the actions are replaced according to } -\sum_{t=1}^{T} \underbrace{\mathbb{E}\left[v_{i}^{t}(s_{i}^{t}(\theta_{i}), a_{-i}^{t})\right]}_{\text{reward in round } t}$$

# **Example of Bayesian game**



(type: 🗥) and 🙎 do not have any preference





## **Example of ANFCE but not SFCE**

We consider the following strategy-profile distribution



## **ANFCE but not SFCE**

In this distribution, and (type: ) are always recommended the same place

This distribution is not an SFCE because  $\bigcirc$  (type:  $\bigcirc$ ) is always recommended  $\bigcirc$  but can deviate to the same action as  $\bigcirc$  by observing the recommendation to  $\bigcirc$  (type:  $\bigcirc$ )

On the other hand, this is an ANFCE because (type: (type: ) can observe only the recommendation to himself (always )

## Various Bayes correlated equilibria

- Strategic-form correlated equilibria (SFCE
- Agent-normal-form correlated equilibria (ANFCE)
- Bayesian solutions
- Communication equilibria

## **Details of the proposed dynamics**

**Smoothness** 

# Bayesian solutions [Forges'93]

## Mediator 🧸 knows the true types in advance

1 Each player privately tells their true types to the mediator 🔒



2 The mediator 🤬 privately sends a recommendation to each player



# Bayesian solutions [Forges'93]

## Mediator 🧸 knows the true types in advance

1 Each player privately tells their true types to the mediator 🤬



2 The mediator 🤬 privately sends a recommendation to each player



# **Bayesian solutions**

#### **Definition**

A distribution  $\pi \in \Delta(A)^{\Theta}$  is a Bayesian solution

$$riangleq$$
 For any player  $i\in N$ ,  $\phi\colon\Theta_i imes A_i o A_i$  ,

### Difference from ANFCE

 $\pi \in \Delta(A)^{\Theta}$  can express broader distributions than  $\sigma \in \Delta(S)$ , which we call **strategy representability** (e.g.,  $\pi$  in the previous page)

# **Example of non-SR distribution**

This distribution cannot be realized by any strategy-profile distribution







## Various Bayes correlated equilibria

- Strategic-form correlated equilibria (SFCE)
- Agent-normal-form correlated equilibria (ANFCE)
- Bayesian solutions
- Communication equilibria

**Details of the proposed dynamics** 

**Smoothness** 

# Communication equilibria [Myerson'82, Forges'86]

## Equilibria realized by 🎎 with bidirectional communication

1 Each player privately tells their types to the mediator



2 The mediator 🧝 privately sends a recommendation to each player



## Communication equilibria [Myerson'82, Forges'86]

## Equilibria realized by 🎎 with bidirectional communication

1 Each player privately tells their types to the mediator 🔝

← No incentive to tell an untrue type



2 The mediator 🤬 privately sends a recommendation to each player



## Communication equilibria [Myerson'82, Forges'86]

## Equilibria realized by 🎇 with bidirectional communication

1 Each player privately tells their types to the mediator 🔝

← No incentive to tell an untrue type



2 The mediator 🤬 privately sends a recommendation to each player





#### **Definition**

A distribution  $\pi \in \Delta(A)^{\Theta}$  is a communication equilibrium

- $oldsymbol{1}$  Each player  $i\in N$  privately tells  $heta_i$  (possibly  $\psi( heta_i)$ ) to  $oldsymbol{\mathbb{R}}_i$
- $oxed{2}$   $egin{aligned} oxed{2} & & & & & \\ oxed{2} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$  to each player
- $oxed{3}$  Each player i chooses their action  $a_i$  (possibly deviates to  $\phi( heta_i,a_i)$ )

### **Definition**

A distribution 
$$\pi \in \Delta(A)^{\Theta}$$
 is instead of true type  $\theta_i$  instead of recommended  $a_i$   $\Leftrightarrow$  For any player  $i \in N$ ,  $\psi \colon \Theta_i \to \Theta_i$ , and  $\phi \colon \Theta_i \times A_i \to A_i$ , 
$$\mathbb{E} \left[ \mathbb{E} \left[ v_i(\theta; \phi(\theta_i, a_i), a_{-i}) \right] \right] \leq \mathbb{E} \left[ \mathbb{E} \left[ v_i(\theta; a) \right] \right].$$

- Each player  $i \in N$  privately tells  $\theta_i$  (possibly  $\psi(\theta_i)$ ) to  $\mathbb{R}$
- **2**  $\mathbb{R}$  privately sends recommendations  $a \sim \pi(\theta)$  to each player
- Each player i chooses their action  $a_i$  (possibly deviates to  $\phi(\theta_i, a_i)$ )

# Communication equilibrium combines ...

## **Mechanism design**

Each player tells their types← No incentive to lie



decides the outcome
← This decision is binding

# Correlated equilibria

1 No type (complete info.)



Various Bayes correlated equilibria

Details of the proposed dynamics

**Smoothness** 

**Details of Bayesian valid utility games** 

# No-regret dynamics in Bayesian games

#### For t = 1, 2, ..., T:

Each player  $i \in N$  decides a (mixed) strategy  $\pi_i^t \in \Delta(A_i)^{\Theta_i}$ 

All players' strategies  $(\pi_i^t)_{i \in N}$  are revealed to each other

Each player i obtains reward  $\mathbb{E}[v_i(\theta; a^t)]$ ,

where  $\theta \sim \rho$  and then  $a_i^t \sim \pi_i^t(\theta_i)$  independently for each i



 $\red{N}$  We consider the expected value w.r.t.  $\theta$  and a in each round

# **Untruthful swap regret**

### Untruthful swap regret for player $i \in N$

$$R_{\mathrm{US},i}^T = \max_{\substack{\psi \colon \Theta_i \to \Theta_i \\ \phi \colon \Theta_i \times A_i \to A_i}} \sum_{t=1}^T \underset{\theta_i \sim \rho_i}{\mathbb{E}} \left[ \underset{a_i \sim \pi_i^t(\psi(\theta_i))}{\mathbb{E}} \left[ u_i^t(\theta_i, \phi(\theta_i, a_i)) \right] \right] \\ - \sum_{t=1}^T \underset{\theta_i \sim \rho_i}{\mathbb{E}} \left[ \underset{a_i \sim \pi_i^t(\theta_i)}{\mathbb{E}} \left[ u_i^t(\theta_i, a_i) \right] \right],$$
 where  $u_i^t(\theta_i, a_i) \stackrel{\triangle}{=} \underset{\theta_{-i} \sim \rho_{-i} \mid \theta_i}{\mathbb{E}} \left[ \underset{a_{-i} \sim \pi_{-i}^t(\theta_{-i})}{\mathbb{E}} \left[ v_i(\theta; a) \right] \right]$  is the reward vector at round  $t$  ( $\rho_i$  the marginal distribution,  $\rho_{-i} \mid \theta_i$  the conditional distribution)

#### Two incentive constraints for communication equilibria

- 1. No incentive to **tell an untrue type** (represented by  $\psi$ )
- 2. No incentive to **disobey the recommendation** (represented by  $\phi$ )

# Untruthful swap regret minimization

## Suppose each player minimizes USR against adversarial players

Upper bound

 $\Phi$ -regret minimization framework + decomposition

### **Theorem**

The proposed algo. achieves  $R_{\mathrm{US},i} = O\left(\sqrt{T \max\{|A_i|\log |A_i|,\log |\Theta_i|\}}\right)$ 

**Lower bound** 

Analyze a hard instance with optimal stopping theory

#### **Theorem**

Any algorithm satisfies  $R_{\mathrm{US},i} = \Omega\left(\sqrt{T\max\{|A_i|\log|A_i|,\log|\Theta_i|\}}\right)$ 

# External regret minimization algo.

 $u^t \in [0,1]^A$  reward vector in round  $t \in [T]$ 

 $\pi^t \in \Delta(A)$  mixed strategy in round  $t \in [T]$   $\qquad \qquad \&$  Subscript i is omitted from now on

$$\text{ExternalRegret}^T \stackrel{\triangle}{=} \max_{a^* \in A} \sum_{t=1}^T u^t(a^*) - \sum_{t=1}^T \sum_{a^t \sim \pi^t} \left[ u^t(a^t) \right]$$

**Multiplicative Weights Update method**: Initialize  $\pi^1(a) = 1/|A|$  ( $\forall a \in A$ ),

For each  $t \in [T]$ : Update  $\pi^{t+1}(a) \propto \pi^t(a) \exp(\eta u^t(a))$  ( $\forall a \in A$ )

### Theorem [Cesa-Bianchi-Lugosi'07]

If  $\eta = \sqrt{rac{\log |A|}{T}}$ , MWU achieves  $\operatorname{ExternalRegret}^T = O\left(\sqrt{T\log |A|}
ight)$ 

# Untruthful swap regret minimization algo.

$$R_{\mathrm{US},i}^T = \max_{\substack{\boldsymbol{\psi} \colon \Theta \to \Theta \\ \boldsymbol{\phi} \colon \Theta \times A \to A}} \sum_{t=1}^T \mathop{\mathbb{E}}_{\boldsymbol{\theta} \sim \rho} \left[ \mathop{\mathbb{E}}_{a \sim \pi^t(\boldsymbol{\psi}(\boldsymbol{\theta}))} \left[ u^t(\boldsymbol{\theta}, \boldsymbol{\phi}(\boldsymbol{\theta}, a)) \right] \right] - \sum_{t=1}^T \mathop{\mathbb{E}}_{\boldsymbol{\theta} \sim \rho} \left[ \mathop{\mathbb{E}}_{a \sim \pi^t(\boldsymbol{\theta})} \left[ u^t(\boldsymbol{\theta}, a) \right] \right]$$



$$R_{\mathrm{swap},i}^{T} \stackrel{\triangle}{=} \max_{Q \in \mathcal{Q}} \sum_{t=1}^{T} \langle Q \pi^{t}, u^{t} \rangle - \sum_{t=1}^{T} \langle \pi^{t}, u^{t} \rangle, \text{ where}$$
 
$$Q = \left\{ Q \in [0,1]^{(\Theta \times A) \times (\Theta \times A)} \middle| \begin{array}{c} \text{there exists some } W \in [0,1]^{\Theta \times \Theta} \text{ such that} \\ \sum_{\theta' \in \Theta} W(\theta,\theta') = 1 \ (\forall \theta \in \Theta) \text{ and} \\ \sum_{a \in A} Q((\theta,a),(\theta',a')) = W(\theta,\theta') \ (\forall \theta,\theta' \in \Theta,a' \in A) \end{array} \right\}$$

 $\stackrel{*}{\ \ }$   $\pi^t$  and  $u^t$  are flattened to be a  $|\Theta| \times |A|$  dimensional vector

26/44

# Untruthful swap regret minimization algo.



# Full description of the algorithm

The set of types  $\Theta_i$  and the set of actions  $A_i$  are specified in advance. The reward vector  $u_i^t \in [0,1]^{\Theta_i \times A_i}$  is given at the end of each round  $t \in [T]$ . Initialize subroutines as follows:

- let  $\mathcal{E}_{ heta_i}$  be a multiplicative weights algorithm with decision space  $\Theta_i$  for each  $heta_i \in \Theta_i$
- let  $\mathcal{E}_{\theta_i,\theta_i',a_i'}$  be AdaHedge with decision space  $A_i$  for each  $\theta_i,\theta_i'\in\Theta_i$  and  $a_i'\in A_i$

**for** each round  $t=1,\ldots,T$  **do** 

Let  $w_{\theta_i}^t \in \Delta(\Theta_i)$  be the output of  $\mathcal{E}_{\theta_i}$  in round t for each  $\theta_i \in \Theta_i$ 

Let  $y^{t^{*}}_{\theta_i,\theta'_i,a'_i} \in \Delta(A_i)$  be the output of  $\mathcal{E}_{\theta_i,\theta'_i,a'_i}$  in round t for each  $\theta_i,\theta'_i \in \Theta_i$  and  $a'_i \in A_i$ 

$$\text{Define } Q^t \in [0,1]^{(\Theta_i \times A_i) \times (\Theta_i \times A_i)} \text{ by } Q^t((\theta_i,a_i),(\theta_i',a_i')) = w^t_{\theta_i}(\theta_i') y^t_{\theta_i,\theta_i',a_i'}(a_i) \text{ for each } \theta_i,\theta_i' \in \Theta_i \text{ and } a_i,a_i' \in A_i$$

Compute an eigenvector  $x^t \in \mathbb{R}^{\Theta_i \times A_i}$  of  $Q^t$  such that  $Q^t x^t = x^t$  and  $(x^t)^\top \mathbf{1} = |\Theta_i|$ 

Decide the output  $\pi_i^t \in \Delta(A_i)^{\Theta_i}$  by  $\pi_i^t(\theta_i; a_i) = x^t(\theta_i, a_i)$  for each  $\theta_i \in \Theta_i$  and  $a_i \in A_i$ 

Observe reward vector  $u_i^t \in [0,1]^{\Theta_i \times A_i}$  and feed reward vectors to subroutines as follows:

$$- \text{ feed } \sum_{a_i,a_i' \in A_i} y_{\theta_i,\theta_i',a_i'}^t(a_i) \pi_i^t(\theta_i';a_i') \rho_i(\theta_i) u_i^t(\theta_i,a_i) \text{ as the reward for decision } \theta_i' \in \Theta_i$$

to subroutine  $\mathcal{E}_{\theta_i}$  for each  $\theta_i \in \Theta_i$ 

- feed  $\pi_i^t(\theta_i';a_i') \hat{\rho_i}(\theta_i) u_i^t(\theta_i,a_i)$  as the reward for decision  $a_i \in A_i$  to subroutine  $\mathcal{E}_{\theta_i,\theta_i',a_i'}$  for each  $\theta_i,\theta_i' \in \Theta_i$  and  $a_i' \in A_i$ 

Various Bayes correlated equilibria

Details of the proposed dynamics

### **Smoothness**

**Details of Bayesian valid utility games** 

# Price of anarchy (PoA)

最悪の均衡によって  
達成される社会厚生
$$\operatorname{PoA} riangleq rac{\inf_{\pi \colon \text{均衡}} \mathbb{E}_{a \sim \pi} \left[v_{\mathrm{SW}}(a)
ight]}{\max_{a \in A} v_{\mathrm{SW}}(a)}$$
最良の社会厚生

社会厚生  $v_{\mathrm{SW}}\colon A o \mathbb{R}_{\geq 0}$  は社会的な望ましさを表す利得和  $v_{\mathrm{SW}}(a) ext{$\stackrel{ riangle}{=}$} \sum_{i\in N}v_i(a)$  など

※ PoA は均衡概念ごとに決まる(ナッシュ均衡の PoA、相関均衡の PoA など)



PoA が抑えられないゲームも存在する

左のゲームでは  $PoA \approx 0$ 

最悪の均衡での利得和:2 at (D, D)

最良の利得和:20 at (C, C)

## どのようなゲームにおいて PoA は抑えられるか?

### 定義 [Roughgarden'15]

O

$$n$$
 人ゲームが  $(\lambda, \mu)$  平滑

社会最適 (大域最適解)



## Smooth games are a broad class of games with bounded PoA

### **Theorem** [Roughgarden'15]

$$(\lambda,\mu)$$
 平滑ゲームにおける相関均衡の PoA は  $\frac{\lambda}{1+\mu}$  以上 Roughgarden further proved this bound for *coarse correlated equilibria*

## **Examples of smooth games**

Congestion games, various auctions, competitive facility location, effort market games, competitive information spread, ...

Details of the proposed dynamics

**Smoothness** 

#### **Details of Bayesian valid utility games**

Our setting: Bayesian valid utility games

Our technique: Strategy-representability gap

Details of the proposed dynamics

**Smoothness** 

#### **Details of Bayesian valid utility games**

Our setting: Bayesian valid utility games

Our technique: Strategy-representability gap

# **Notations for Bayesian games**

$$N = \{1, 2, \dots, n\}$$
 players

$$N = \{ \overline{\mathbb{Q}}, \overline{\mathbb{O}} \}$$

 $\Theta_i$  finite set of types for player  $i \in N$ 

$$\Theta_{\tiny{\scriptsize{\scriptsize{1}}}}=\Theta_{\tiny{\scriptsize{\scriptsize{0}}}}=\{\textcircled{\tiny{\scriptsize{1}}},\textcircled{\tiny{\scriptsize{1}}}\}$$

$$A_i^{\theta_i}$$
 finite set of actions for player  $i \in N$  with type  $\theta_i \in \Theta_i$   $A_{\odot}^{\textcircled{\bullet}} = \{ \blacksquare, ilde{ ilde{w}} \}$ 

 $\Theta = \prod_{i \in N} \Theta_i$  type profiles

$$\rho \in \Delta(\Theta)$$
 prior distribution over type profiles

$$\rho(\textcircled{\bullet},\textcircled{\bullet})=1/4$$

 $v_i: A \to \mathbb{R}_{>0}$  utility function for each player  $i \in N$ ,

where 
$$A = \prod_{i \in N} \left( \bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i} \right)$$
 is the set of all possible action profiles

### **Equivalence of two formulations**

#### **Original formulation**

 $A_i$  finite set of actions for player  $i \in N$ 

 $v_i \colon \Theta \times A \to \mathbb{R}$  utility function for player  $i \in N$ 

$$(\theta_i,a_i)$$
 as an action  $A_i\coloneqq \bigcup_{\theta_i}A_i^{\theta_i}$  and ignore actions for  $\forall \theta_i'\neq \theta_i$ 

#### **Type-dependent-action formulation**

 $A_i^{ heta_i}$  finite set of actions for player  $i \in N$  with type  $heta_i \in \Theta_i$ 

 $v_i \colon A o \mathbb{R}_{\geq 0}$  utility function for each player  $i \in N$ ,

where  $A=\prod_{i\in N}\left(\bigcup_{\theta_i\in\Theta_i}A_i^{\theta_i}\right)$  is the set of all possible action profiles

Let  $E = \bigcup_{i \in N} \bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i}$  be the set of all possible actions

Let  $E = \bigcup_{i \in N} \bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i}$  be the set of all possible actions

#### **Assumption** [Vetta'02]

The social welfare function  $f \colon 2^E \to \mathbb{R}$  is assumed to be

- **non-negative**:  $f(X) \ge 0$  for any  $X \subseteq E$
- **monotone**:  $f(X \cup \{v\}) \ge f(X)$  for any  $X \subseteq E$  and  $v \in E$
- submodular:  $f(X \cup \{v\}) f(X) \ge f(Y \cup \{v\}) f(Y)$

for any  $X \subseteq Y \subseteq E$  and  $v \in E \setminus Y$ 

The marginal contribution to social welfare of each action decreases as other actions are added

The marginal contribution to social welfare of each action decreases as other actions are added

$$f(\{\square_{2}\}) - f(\{\})$$

The increase in social welfare when no one attended yet

# The marginal contribution to social welfare of each action decreases as other actions are added

$$f(\{\square_{\widehat{\underline{u}}}\}) - f(\{\})$$

The increase in social welfare when no one attended yet

$$f(\{\square_{\scriptsize{\scriptsize{\textcircled{\tiny 0}}}},\square_{\scriptsize{\scriptsize{\textcircled{\tiny 0}}}}\})-f(\{\square_{\scriptsize{\scriptsize{\textcircled{\tiny 0}}}}\})$$

The increase in social welfare when other players already attended

The marginal contribution to social welfare of each action decreases as other actions are added

$$f(\{ {\color{red} \square_{ \underline{ \mathfrak{D}} }}\}) - f(\{\})$$



The increase in social welfare when no one attended yet

$$f(\{{\color{red} \square_{\color{red} \square}}, {\color{red} \square_{\color{red} \square}}\}) - f(\{{\color{red} \square_{\color{red} \square}}\})$$

The increase in social welfare when other players already attended

The marginal contribution to social welfare of each action decreases as other actions are added

$$f(\{\square_{2}\}) - f(\{\})$$
The increase in social welfare when no one attended yet 
$$f(\{\square_{2},\square_{0}\}) - f(\{\square_{0}\})$$

$$\text{The increase in social welfare}$$

$$\text{when other players already attended}$$

Intuitively, this assumption is **substitutability** among players' actions

Note that we assume this property even among the same player's actions

# Bayesian valid utility games

 $v_i\colon A o \mathbb{R}_{\geq 0}$  utility function for each player  $i\in N$ , where  $A=\prod_{i\in N}\left(\bigcup_{ heta_i\in\Theta_i}A_i^{ heta_i}
ight)$  is the set of all possible action profiles

# Bayesian valid utility games

 $v_i \colon A \to \mathbb{R}_{>0}$  utility function for each player  $i \in N$ , where  $A = \prod_{i \in N} \left( \bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i} \right)$  is the set of all possible action profiles

#### **Assumption** [Vetta'02]

- (marginal contribution condition)

# Bayesian valid utility games

 $v_i \colon A \to \mathbb{R}_{>0}$  utility function for each player  $i \in N$ ,

where 
$$A = \prod_{i \in N} \left( \bigcup_{\theta_i \in \Theta_i} A_i^{\theta_i} \right)$$
 is the set of all possible action profiles

#### **Assumption** [Vetta'02]

- (marginal contribution condition)
- The sum of utility values is at most  $f(\square)$
- Example: 👨 gets all, 🙎 gets all, two players share equally, or both get 0

**Details of the proposed dynamics** 

**Smoothness** 

#### **Details of Bayesian valid utility games**

Our setting: Bayesian valid utility games

Our technique: Strategy-representability gap

# SR gap lower bound (independent case)

#### **Theorem**

If  $\rho$  is independent,  $SRgap \ge 1 - 1/e$ , and this bound is tight

**Lower bound** 

based on the correlation gap bound [Vondrák'07]

#### **Upper bound**



#### Optimal social welfare: n

∴ There exists a perfect matching w.h.p.

#### Optimal strategy profile: pprox (1-1/e)n

The expected probability that each resource is chosen can be upper-bounded

### SR gap lower bound (correlated case)

#### **Theorem**

 $SRgap = \Omega(1/\sqrt{n})$ , and this bound is tight

#### Lower bound

(complicated)

**Upper bound** 
$$\Theta_1 = \cdots = \Theta_n = [n]^k$$
, where  $k = \sqrt{n}$   $j \sim [k]$  and  $\ell_1, \ldots, \ell_k \sim [n]$ 

Types  $\{(\ell_1,\ldots,\ell_{i-1},t,\ell_{i+1},\ldots,\ell_k)\mid t\in[n]\}$  are randomly assigned to n players



1st action



2nd action

$$E = [k] \times [n]$$
 set of resources

The hth action of type  $\ell$  is to choose  $(h, \ell_h) \in E$ 

Optimal social welfare: n

Optimal strategy profile:  $\leq k + n/k = 2\sqrt{n}$ 

Details of the proposed dynamics

**Smoothness** 

#### **Details of Bayesian valid utility games**

Our setting: Bayesian valid utility games

Our technique: Strategy-representability gap

\_ .

# Improved PoA lower bound for com. eq.

#### **Proposition**

If ho is independent,  $ext{PoA}_{ ext{Com.Eq.}} \geq 0.5$ , which improves on the SR-gap approach

Based on the smoothness arguments for Bayes–Nash equilibria [Roughgarden'15b, Syrgkanis'12]

#### The key step of their proof

Swapping  $\theta_i$  and  $\theta_i'$  in  $\theta\sim\rho$  and  $\theta'\sim\rho$  using the independence of  $\rho$ 

 $\leftarrow$  Incentive constraints for misreporting  $heta_i'$  instead of  $heta_i$  can be used

**Remark** The sar

The same result also holds for agent-normal-form CE

# PoA upper bound for Bayesian solutions

#### **Proposition**

$$PoA_{BS} \le \frac{1 - 1/\sqrt{e}}{3/2 - 1/\sqrt{e}} \approx 0.4403$$
 for some example with independent  $\rho$ 



Odd players are connected to all resources Even players are connected to random one Odd players are prioritized over even ones

#### **Bad Bayesian solution**:

Each (2k-1)th player is recommended to choose the (2k)th player's action

Optimal: 
$$\approx n/2 + (1 - 1/\sqrt{e})n$$
,

Bayesian solution:  $\approx (1 - 1/\sqrt{e})n$