MAT 2125 Lecture Notes

Last Updated:

April 10, 2023

Contents

In	mportant Proofs for Midterm	3
In	mportant Proofs for Final	15
1	The Real Numbers \mathbb{R} 1.1 Fields	. 24
2	Completeness of \mathbb{R} , Absolute Value, Sequences	26
3	Convergence of Sequences	27
4	Properties of Convergence, Squeeze Theorem, Monotone Squences	Se- 28
5	Subsequences, Cauchy Sequences	29
6	Limsup and Liminf	30
7	Series 7.1 Divergence Test	
8	Convergence, Topology of \mathbb{R}^d	34
	8.1 Ratio Test	
	8.2 Root Test	
	8.4 Integral Test	
	8.5 Cauchy Convergence Criterion for Series	
	8.6 Topology of \mathbb{R}^d	
	8.6.1 Norms	

$m{9} \mathbb{R}^d$ 9.1 Convergence	41 41
10 Open and Closed Sets in \mathbb{R}^d	45
11 Compactness	50
12 Limits of a Function of Continuous Variables	52
13 Continuity 13.1 One-Sided Limits	58 58 58 61
14 Properties of Continuous Functions Continued 14.1 Inverses of Continuous Functions	62 63
15	66

Important Proofs for Midterm

Theorem 1.3.13 (The Archimedean Property). The set $\mathbb{N}_{\geq 1}$ is not bounded above.

Proof. Suppose for a contradiction that $\mathbb N$ was bounded above. Then by completeness, $a=\sup\mathbb N$ exists. Since a is a least upper bound, a-1 is not an upper bound, so there exists $m\in\mathbb N$ such that

$$m > a - 1$$

Then since $m \in \mathbb{N}$, we have $m + 1 \in \mathbb{N}$, so

$$m \pm 1 > a$$

But a is an upper bound, thus a contradiction.

Proposition 2.2.4 (Uniqueness of Limits). Let $(a_n)_{n=1}^{\infty}$ be a sequence and let $L_1, L_2 \in \mathbb{R}$. If

$$\lim_{n\to\infty} a_n = L_1 \ and \ \lim_{n\to\infty} a_n = L_2$$

then

$$L_1 = L_2$$

Proof. Suppose for a contradiction $L_1 \neq L_2$. We can assume without loss of generality that $L_1 < L_2$. Define

$$\epsilon = \frac{L_2 - L_1}{2}$$

Since $\lim_{n\to\infty} a_n = L$, there exists n_0 such that $\forall n \geq n_0$

$$L_1 - \epsilon < a_n < L_1 + \epsilon$$

Using the second inequality and the definition of ϵ , we get

$$a_n < L_1 + \epsilon = L_1 + \frac{L_2 - L_1}{2} = L_1 + \frac{L_2}{2} - \frac{L_1}{2} = \frac{L_2 + L_1}{2}$$

Likewise, since $\lim_{n\to\infty} a_n = L_2$, there exists m_0 such that for all $n \geq m_0$,

$$L_2 - \epsilon < a_n < L_2 + \epsilon$$

Then from the first inequality, we get

$$a_n > L_2 - \epsilon = L_2 - \frac{L_2 - L_1}{2} = \frac{L_2 + L_1}{2}$$

So, we get that for all $n \ge \max\{n_0, m_0\}$,

$$a_n > \frac{L_2 + L_1}{2} > a_n$$

Thus, a contradiction.

Proposition 2.2.8. Let $(a_n)_{n=1}^{\infty}$ be a sequence which converges to some number $L \in \mathbb{R}$. Then $(a_n)_{n=1}^{\infty}$ is bounded.

Proof. Since $\lim_{n\to\infty} a_n = L$, set $\epsilon := 1$, there exists n_0 such that for all $n \ge n_0$

$$|a_n - L| < 1$$

So we have that $\forall n \geq n_0$

$$L - 1 < a_n < L + 1$$

Now set

$$M := \max\{a_1, a_2, \dots, a_{n_0-1}, L+1\}$$

If $n < n_0$, then it is amongst the set $\{a_1, \ldots, a_{n_0-1}\}$, so M will be the max of this set. Therefore, $\forall n < n_0, \ a_n \leq M$. Then for $n \geq n_0$, by the definition of the limit we know that $a_n < L+1$, so we get that $a_n < L+1 \leq M$. Therefore, for all values of n, the set $\{a_n : n \in \mathbb{N}\}$ is bounded above.

Similarly for the lower bound, take

$$M := \min\{a_1, a_2, \dots, a_{n_0-1}, L-1\}$$

If $n < n_0$, then it is in the set $\{a_1, a_2, \ldots, a_{n_0-1}\}$ M' is at most the minimum of this set, so $\forall n < n_0, \ a_n \ge M'$. If $n \ge n_0$, by the definition of the limit we know that for all $n \ge n_0$, $a_n > L - 1$. So M' is at most L - 1. Therefore $\forall n \ge n_0, \ a_n > L - 1 \ge M'$. Therefore, the set is bounded below and above, so it is bounded.

Proposition 2.3.3. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be converging sequences, if

$$a_n \le b_n$$

for all n, then

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

Proof. Suppose that $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are convergent sequences with $a_n < b_n$ for all n. Then by the definition of convergence, we have that $\forall \epsilon > 0$, $\exists n_0$ such that $\forall n \geq n_0$

$$|a_n - L_a| < \epsilon$$

Similarly for b_n , we have that $\exists m_0$ such that $\forall \epsilon > 0$,

$$|b_n - L_b| < \epsilon$$

Now suppose for a contradiction that $L_a > L_b$, then set $\epsilon := \frac{L_a - L_b}{2}$. So we have

$$L_a - \epsilon < a_n < \epsilon + L_a$$

So,

$$a_n > L_a - \epsilon = L_a - \frac{L_a - L_b}{2} = \frac{L_a + L_b}{2}$$

Similarly for b_n , we have

$$L_b - \epsilon < b_n < L_b + \epsilon$$

$$b_n < L_b + \epsilon = \frac{L_a + L_b}{2}$$

So we have $b_n < \frac{L_b + L_a}{2} < a_n$, but $a_n < b_n$. Thus, a contradiction.

Theorem 2.3.5 (Squeeze Theorem). Let $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ be sequences such that

- (i) $(a_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ converge to the same number L, and
- (ii) $a_n \leq b_n \leq c_n$ for all n Then $(b_n)_{n=1}^{\infty}$ also converges to L.

Proof. Let $\epsilon > 0$ be given. Suppose $a_n \leq b_n \leq c_n \ (a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ converge to L, so $\exists n_a, n_c \in \mathbb{N}$ such that for all $n \geq n_a$

$$L - \epsilon < a_n < L + \epsilon$$

and

$$L - \epsilon < c_n < L + \epsilon$$

So

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$$

Therefore,

$$L - \epsilon < b_n < L + \epsilon$$

By the definition of convergence, $(b_n)_{n=1}^{\infty}$ converges to L.

Theorem 2.6.1 (Cauchy Convergence Criterion). Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Then it converges if and only if it is Cauchy.

Proof. (\Longrightarrow) Assume that $(a_n)_{n=1}^{\infty}$ converges, then there exists n_0 such that for all $\epsilon > 0$, $\forall n \geq n_0$

$$|a_n - L| < \epsilon$$

Now take $\frac{\epsilon}{2}$ in place of ϵ since ϵ is arbitrary, we have

$$|a_n - L| < \frac{\epsilon}{2}$$

Then, for $m, n \geq n_0$, we have

$$|a_m - a_n| = |a_m - L + L - a_n| \le |a_m - L| + |L - a_n| = |a_m - L| + |a_n - L|$$

Since $m, n \ge n_0$, by the definition of convergence we have

$$|a_m - L| + |a_n - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore,

$$|a_m - a_n| < \epsilon$$

as required.

Proposition 2.7.3. For any sequence $(a_n)_{n=1}^{\infty}$,

$$\liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n$$

Proof. If the sequence isn't bounded, then either $\limsup_{n\to\infty}a_n=\infty$ or $\liminf_{n\to\infty}a_n=-\infty$, in either case the result is trivial. So assume that the sequence is bounded. Consider the sets used to define \limsup and \liminf

$$S := \{\beta : \mathbb{R} : \exists n_0 \text{ such that } a_n \leq \beta \ \forall n \geq n_0 \}$$

$$T := \{\alpha : \mathbb{R} : \exists m_0 \text{ such that } a_n \geq \alpha \ \forall n \geq m_0\}$$

So we have $\alpha \in T$ and $\beta \in S$, then for all $n \ge \max\{n_0, m_0\}$, we have

$$\alpha \le a_n \le \beta$$

Thus, we have shown that for every $\alpha \in T$, and every $\beta \in S$, we have $\alpha \leq \beta$. From the definition of \limsup and \liminf , we get that for any eventual lower bound $\alpha \in T$, it is a lower bound for the set of upper bounds S, so

$$\alpha \leq \inf T = \limsup_{n \to \infty} a_n$$

So then $\limsup_{n\to\infty} a_n$ is an upper bound for the set of lower bounds T, so

$$\limsup_{n \to \infty} a_n \ge \sup T = \liminf_{n \to \infty} a_n$$

Therefore,

$$\liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n$$

as required.

 $\textbf{Proposition .} \ \textit{The harmonic series}$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

diverges.

Proof. Consider the partial sum of the series

$$S_2 = 1 + \frac{1}{2} = \frac{3}{2}$$

Now consider the partial sums which correspond to powers of 2, S_{2^N} for $N \in \mathbb{N}$. So we have the sums S_2, S_4, S_8, \ldots Now consider the sequence of partial sums

$$S_4 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right)$$

 $\frac{1}{3} > \frac{1}{4}$, so we have that

$$S_4 > 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) = 1 + \frac{2}{2}$$

Continuing similarily,

$$S_8 = S_{2^3} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) > 1 + \frac{1}{2} + \frac{1}{2} + \frac{4}{8} = 1 + \frac{3}{2}$$

$$\vdots$$

$$S_{2^N} > 1 + \frac{N}{2}$$

So, we have

$$\lim_{N \to \infty} \left(1 + \frac{N}{2} \right) = \infty$$

But, $S_{2^N}>1+\frac{N}{2}$ for all $N\in\mathbb{N},$ so we have that the partial sums diverge. Therefore, the series diverges.

Proposition 3.1.7 (Divergence Test). Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. If the series

$$\sum_{n=1}^{\infty} a_n$$

converges, then

$$\lim_{n \to \infty} a_n = 0$$

Proof. Suppose $\sum_{n=1}^{\infty} a_n$ converges to L. Set $L := \sum_{n=1}^{\infty} a_n$. Consider the partial sums

$$S_N = \sum_{n=1}^N a_n$$

so $\lim_{n\to\infty} S_N = L$. We also have that $\lim_{n\to\infty} S_{N-1} = L$, since

$$\lim_{N \to \infty} S_{N-1} = \lim_{N \to \infty} \sum_{n=1}^{N-1} a_n = \sum_{n=1}^{\infty - 1} a_n = \sum_{n=1}^{\infty} a_n = L$$

Then, we have that

$$S_N - S_{N-1} = \sum_{n=1}^{N} a_n - \sum_{n=1}^{N-1} a_n = a_N$$

So,

$$\lim_{N \to \infty} S_N - S_{N-1} = L - L = 0$$

$$\lim_{N \to \infty} S_N - \lim_{N \to \infty} S_{N-1} = \lim_{N \to \infty} \sum_{n=1}^N a_n - \lim_{N \to \infty} \sum_{n=1}^{N-1} a_N = \lim_{N \to \infty} a_n = 0$$

Proposition 3.2.1 (Boundedness Test). Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Suppose that

- (i) $a_n \geq 0$ for all n, and
- (ii) There is a bound $M \in \mathbb{R}$ on the partial sums, so that

$$\sum_{n=1}^{N} a_n \le M$$

for all $N \in N_{\geq 1}$.

Then $\sum_{n=1}^{\infty} a_n$ converges.

Proof. Since $a_n \geq 0$, the partial sums $(S_N)_{N=1}^{\infty}$ satisfy

$$S_N \leq S_{N+1}$$
 for all N .

In other words, $(S_N)_{N=1}^{\infty}$ is an increasing sequence. The second condition ensures that the sequence is bounded above. Therefore, by the Monotone Convergence Criterion, it converges. Therefore, $\sum_{n=1}^{\infty} a_n$ converges.

Proposition 3.2.2 (Comparison Test). Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences of real numbers such that

$$0 \le a_n \le b_n$$
 for all n

Then,

(i) if
$$\sum_{n=1}^{\infty} b_n$$
 converges, then so does $\sum_{n=1}^{\infty} a_n$

(ii) iIf
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then so does $\sum_{n=1}^{\infty} a_n$

Proof. Since the sequence $\sum_{n=1}^{\infty}$ converges, take $M:=\sum_{n=1}^{\infty}$. Then, we have the sequence of partial sums

$$\left(\sum_{n=1}^{\infty} b_n\right)_{n=1}^{\infty}$$

is increasing and converges to M, so M is the supremum of this sequence, therefore

$$\sum_{N=1}^{N} b_n \le M$$

for all M. Therefore

$$\sum_{N=1}^{N} a_n \le \sum_{N=1}^{N} b_n \le M$$

Therefore, by the Boundedness test, $\sum_{n=1}^{\infty} a_n$ converges. (ii) is the contrapositive of (i) so it follows that it holds.

Proposition 3.2.3 (Absolute Convergence Test). Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. If the series

$$\sum_{n=1}^{\infty} |a_n|$$

converges, then so does

$$\sum_{n=1}^{\infty} a_n$$

Proof. Assume $\sum_{n=1}^{\infty} |a_n|$ converges, Write

$$(a_n)_+ = \max\{a_n, 0\}$$

$$(a_n)_- = \max\{-a_n, 0\}$$

So $(a_n)_+$ is all the positive terms from a_n and $(a_n)_-$ is all the negative terms from a_n , but we are negating them so that they are positive, so we have

$$a_n = (a_n)_+ - (a_n)_-$$

Then, we have that

$$0 \le (a_n)_+ \le |a_n|$$

So, by the Comparison Test, we have that $|a_n|$ converges so $\sum_{n=1}^{\infty} (a_n)_+$ converges. Similarly,

$$0 \le (a_n)_- \le |a_n|$$

Therefore by the Comparison Test, $\sum_{n=1}^{\infty} (a_n)_{-}$ converges. So by linearity,

$$\sum_{n=1} \infty a_n = \sum_{n=1} \infty (a_n)_+ - \sum_{n=1} \infty (a_n)_-$$

converges.

Proposition 4.2.3. Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^d , with

$$a_n = (a_n^{(1)}, \dots, a_n^{(d)})$$
 for each $n \in \mathbb{N}$

and let $L = (L_1, ..., L_d) \in \mathbb{R}^d$. Then

$$\lim_{n \to \infty} a_n = L$$

if and only if, for each i = 1, ..., d,

$$\lim_{n \to \infty} a_n^{(i)} = L_i$$

Proof. (\Longrightarrow) Assume that $\lim_{n\to\infty}a_n=L$. Then, for each $i=1,\ldots,d$, we have that $|x_i|^2\leq \sum_{i=1}^d x_i^2=||x||_2^2$, therefore

$$|x_i| \le ||x||_2$$

Using this fact, we then have each component of $||a_n - L||_2$ is less than or equal to it. So

$$|a_n^{(i)} - L_i| \le ||a_n - L||_2$$
$$-||a_n - L||_2 \le a_n^{(i)} - L_i \le ||a_n - L||_2$$

Since $\lim_{n\to\infty} a_n = L$, we have $\lim_{n\to\infty} a_n - L = 0$. By the Squeeze theorem, it follows that

$$\lim_{n \to \infty} a_n^{(i)} - L_i = 0 \implies \lim_{n \to \infty} a_n^{(i)} = L$$

(\iff) Suppose for each $i=1,\ldots,d,$ we have

$$\lim_{n \to \infty} a_n^{(i)} = L_i$$

Then, from the definition of $||\cdot||_2$, we have

$$||a_n - L||_2^2 = (a_n^{(1)} - L_1)^2 + \dots + (a_n^{(d)} - L_d)^2$$

Now taking limits of both sides

$$\lim_{n \to \infty} ||a_n - L||_2^2 = \lim_{n \to \infty} (a_n^{(1)} - L_1)^2 + \dots + \lim_{n \to \infty} (a_n^{(d)} - L_d)^2$$

Now we'll prove exercise 2.2.5 which states that if $(a_n)_{n=1}^{\infty}$ is a sequence of non-negative real number converging to $L \geq 0$, then $\lim_{n \to \infty} \sqrt{a_n}$ converges to \sqrt{L} . To prove this we will consider two cases where L = 0, and L > 0.

• Case 1, L = 0: Suppose $(a_n)_{n=1}^{\infty} \to 0$, then from the definition of convergence we have that $\forall \epsilon > 0$, $\exists n_0$ such that $\forall n \geq n_0$,

$$|a_n - 0| < \epsilon$$

Since ϵ is abritrary, we'll replace ϵ with ϵ^2 , so

$$|a_n - 0| < \epsilon^2$$

Then we get

$$|a_n - 0| = |a_n| < \epsilon^2 \implies \sqrt{|a_n|} < \epsilon$$

Therefore, $\sqrt{a_n} \to 0$ by the definition of convergence.

• Case 2, L > 0: Suppose $(a_n)_{n=1}^{\infty} \to L > 0$. Let $\epsilon > 0$ be given, then there exists n_0 such that for all $n \ge n_0$,

$$|a_n - L| < \epsilon$$

We much such that $|\sqrt{a_n} - \sqrt{L}| < \epsilon$

$$|\sqrt{a_n} - \sqrt{L}| \cdot \frac{\sqrt{a_n} + \sqrt{L}}{\sqrt{a_n} + \sqrt{L}} = \frac{|(\sqrt{a_n} - \sqrt{L})(\sqrt{a_n} + \sqrt{L})|}{\sqrt{a_n} + \sqrt{L}}$$

Since $\sqrt{a_n} + \sqrt{L}$ is positive because $a_n, L \ge 0$, then $\sqrt{a_n} + \sqrt{L} = |\sqrt{a_n} + \sqrt{L}|$, then using the fact that $|a| \cdot |b| = |a \cdot b|$, we get

$$\frac{|a_n - \sqrt{L}\sqrt{a_n} + \sqrt{L}\sqrt{a_n} + L|}{\sqrt{a_n} + \sqrt{L}} = \frac{|a_n - L|}{\sqrt{a_n} + \sqrt{L}} \le \frac{|a_n - L|}{\sqrt{L}}$$

Now if we replace ϵ with $\frac{\epsilon}{\sqrt{L}}$, we get

$$|\sqrt{a_n} - \sqrt{L}| < \frac{|a_n - L|}{\sqrt{L}} < \frac{\epsilon}{\sqrt{L}} \implies |\sqrt{a_n} - \sqrt{L}| < \epsilon$$

Therefore, $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{L}$

Now going back to the original proof,

$$\lim_{n \to \infty} ||a_n - L||_2^2 = 0$$

So from exercise 2.2.5 we have

$$\lim_{n \to \infty} \sqrt{||a_n - L||_2^2} = \sqrt{0}$$

Therefore,

$$\lim_{n \to \infty} ||a_n - L||_2 = 0$$

as required.

Theorem 4.2.2 (Cauchy Covergence \mathbb{R}^d). Let $(a_n)_{n=1}^{\infty}$ be a sequence \mathbb{R}^d . Then it converges if it converges if and only if it is cauchy.

Proof. Suppose $(a_n)_{n=1}^{\infty}$ is a sequence in \mathbb{R}^d that converges to $L \in \mathbb{R}^d$. Let $\epsilon > 0$ be given, then there exists n_0 such that $\forall m, n \geq n_0$,

$$||a_n - L||_2 < \epsilon$$

$$||a_m - L||_2 < \epsilon$$

Since ϵ arbitrary we can replace ϵ with $\frac{\epsilon}{2}$, so

$$||a_n - L||_2 = \frac{\epsilon}{2}$$
 and $||a_m - L||_2 = \frac{\epsilon}{2}$

So,

$$||a_m - a_n||_2 = ||a_m - L + L - a_n||_2 \le ||a_m - L||_2 + ||L - a_n||_2$$
$$= ||a_m - L||_2 + ||a_n - L||_2 < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Proposition 4.3.4. Given $a \in \mathbb{R}^d$, and r > 0, the open ball B(a, r) is an open set.

Note: This is example 4.3.4 from the professors notes.

Proof. Recall the definition of an open set is that for any x in the set, we can define an open ball (or epsilon neighborhood) around x such that the ball is contained in the set. So we want an open ball $B(x; \epsilon)$ such that $B(x; \epsilon) \subseteq B(a; r)$. To see this, let $x \in B(a; r)$, so that $||x - a||_2 < r$. Define

$$\epsilon \coloneqq r - ||a - x||_2 > 0$$

Now take some element $y \in B(x; \epsilon)$, then we want to show that tis element is contained in B(a; r). So, $y \in B(x; \epsilon)$, so that $||y - x||_2 < \epsilon$. Then,

$$||y - a||_2 = ||y - x + x - a||_2 \le ||y - x||_2 + ||x - a||_2$$

 $< \epsilon + ||a - x||_2 = r$

Therefore,

$$||y - a||_2 < r$$

So $y \in B(a; r)$ as required, so B(a; r) is an open set.

Proposition 4.3.5. (i) The sets \emptyset , \mathbb{R}^d are open

(ii) For any finite collection of open sets, $U_1, \ldots, U_m \subseteq \mathbb{R}^d$, their intersection is

$$U_1 \cap \cdots \cap U_m$$

is open

(iii) For any arbitrary collection of open sets $\{U_{\alpha} : \alpha \in I\}$, their union,

$$\bigcup_{\alpha \in I} U_{\alpha}$$

 $is\ open.$

Proof. (i) (i) and (ii) are Exercise 4.3.1

- (ii) Will add them later!
- (iii) Set

$$U\coloneqq\bigcup_{\alpha\in I}U_\alpha$$

Since U_{α} is open, there is some $\epsilon > 0$ such that

$$B(x;\epsilon) \subseteq U_{\alpha}$$

Then since U is the union of all the U_{α} , we have that $U_{\alpha} \subseteq U$ so it follows that

$$B(x;\epsilon) \subseteq U$$

as required.

Theorem 4.4.5 (Heine-Borel Theorem). Let K be a subset of \mathbb{R}^d . Then K is compact if and only if K is closed and bounded.

Proof. (\Longrightarrow) Suppose that K. To see that K is closed, suppose for a contradiction that it is not closed. By proposition 4.3.9, F is closed if and only if for every sequence $(a_n)_{n=1}^{\infty}$ in F, if $(a_n)_{n=1}^{\infty}$ converges then

$$\lim_{n\to\infty} a_n \in F$$

So, if K is not closed, then it follows that there exists some sequence $(a_n)_{n=1}^{\infty}$ such that

$$\lim_{n\to\infty} a_n \not\in K$$

Then by proposition 2.5.4, if a sequence $(a_n)_{n=1}^{\infty}$ converges, then all subsequences of the sequence converge to the same point, and hence no subsequence converges to a point in K. This contradicts the fact that K is compact. Similarly for the boundess of K, suppose for a contradiction that K was not bounded. Then for any $n \in \mathbb{N}$, there exists $a_n \in K$ such that $||a_n||_2 \ge n$. So the sequence $(a_n)_{n=1}^{\infty}$ is unbounded, as well as all subsequences $(a_{n_k})_{k=1}^{\infty}$. Therefore, no subsequence converge since they are all unbounded. This contradicts the fact that K is compact.

(\Leftarrow) Assume K is closed and bounded. Since K is bounded, any sequence $(a_n)_{n=1}^{\infty}$ in K is bounded. Then by the Bolzano-Weierstrass theorem, $(a_n)_{n=1}^{\infty}$ is bounded so there exists a convergent subsequence $(a_{n_k})_{k=1}^{\infty}$ that converges to some $L \in \mathbb{R}^d$. Since K is closed, from proposition 4.3.9 we have that

$$\lim_{k\to\infty}a_{n_k}\in K$$

Therefore every sequence $(a_n)_{n=1}^{\infty}$ has a subsequence $(a_{n_k})_{k=1}^{\infty}$ that converges to some $L \in K$, so K is compact.

Important Proofs for Final

Theorem 1.3.13 (The Archimedean Property). The set $\mathbb{N}_{\geq 1}$ is not bounded above.

Proof. Suppose for a contradiction that \mathbb{N} was bounded above. Then by completeness, $a = \sup \mathbb{N}$ exists. Since a is a least upper bound, a-1 is not an upper bound, so there exists $m \in \mathbb{N}$ such that

$$m > a - 1$$

Then since $m \in \mathbb{N}$, we have $m + 1 \in \mathbb{N}$, so

$$m + 1 > a$$

But a is an upper bound, thus a contradiction.

Proposition 2.2.4 (Uniqueness of Limits). Let $(a_n)_{n=1}^{\infty}$ be a sequence and let $L_1, L_2 \in \mathbb{R}$. If

$$\lim_{n\to\infty} a_n = L_1 \ and \ \lim_{n\to\infty} a_n = L_2$$

then

$$L_1 = L_2$$

Proof. Suppose for a contradiction $L_1 \neq L_2$. We can assume without loss of generality that $L_1 < L_2$. Define

$$\epsilon = \frac{L_2 - L_1}{2}$$

Since $\lim_{n\to\infty} a_n = L$, there exists n_0 such that $\forall n \geq n_0$

$$L_1 - \epsilon < a_n < L_1 + \epsilon$$

Using the second inequality and the definition of ϵ , we get

$$a_n < L_1 + \epsilon = L_1 + \frac{L_2 - L_1}{2} = L_1 + \frac{L_2}{2} - \frac{L_1}{2} = \frac{L_2 + L_1}{2}$$

Likewise, since $\lim_{n\to\infty} a_n = L_2$, there exists m_0 such that for all $n \geq m_0$,

$$L_2 - \epsilon < a_n < L_2 + \epsilon$$

Then from the first inequality, we get

$$a_n > L_2 - \epsilon = L_2 - \frac{L_2 - L_1}{2} = \frac{L_2 + L_1}{2}$$

So, we get that for all $n \ge \max\{n_0, m_0\}$,

$$a_n > \frac{L_2 + L_1}{2} > a_n$$

Thus, a contradiction.

Proposition 2.2.8. Let $(a_n)_{n=1}^{\infty}$ be a sequence which converges to some number $L \in \mathbb{R}$. Then $(a_n)_{n=1}^{\infty}$ is bounded.

Proof. Since $\lim_{n\to\infty} a_n = L$, set $\epsilon := 1$, there exists n_0 such that for all $n \ge n_0$

$$|a_n - L| < 1$$

So we have that $\forall n \geq n_0$

$$L - 1 < a_n < L + 1$$

Now set

$$M := \max\{a_1, a_2, \dots, a_{n_0-1}, L+1\}$$

If $n < n_0$, then it is amongst the set $\{a_1, \ldots, a_{n_0-1}\}$, so M will be the max of this set. Therefore, $\forall n < n_0, \ a_n \leq M$. Then for $n \geq n_0$, by the definition of the limit we know that $a_n < L+1$, so we get that $a_n < L+1 \leq M$. Therefore, for all values of n, the set $\{a_n : n \in \mathbb{N}\}$ is bounded above.

Similarly for the lower bound, take

$$M := \min\{a_1, a_2, \dots, a_{n_0-1}, L-1\}$$

If $n < n_0$, then it is in the set $\{a_1, a_2, \ldots, a_{n_0-1}\}$ M' is at most the minimum of this set, so $\forall n < n_0, a_n \ge M'$. If $n \ge n_0$, by the definition of the limit we know that for all $n \ge n_0$, $a_n > L - 1$. So M' is at most L - 1. Therefore $\forall n \ge n_0, a_n > L - 1 \ge M'$. Therefore, the set is bounded below and above, so it is bounded.

Proposition 3.2.1 (Boundedness Test). Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Suppose that

- (i) $a_n \geq 0$ for all n, and
- (ii) There is a bound $M \in \mathbb{R}$ on the partial sums, so that

$$\sum_{n=1}^{N} a_n \le M$$

for all $N \in N_{\geq 1}$.

Then $\sum_{n=1}^{\infty} a_n$ converges.

Proof. Since $a_n \geq 0$, the partial sums $(S_N)_{N=1}^{\infty}$ satisfy

$$S_N \leq S_{N+1}$$
 for all N .

In other words, $(S_N)_{N=1}^{\infty}$ is an increasing sequence. The second condition ensures that the sequence is bounded above. Therefore, by the Monotone Convergence Criterion, it converges. Therefore, $\sum_{n=1}^{\infty} a_n$ converges.

Proposition 4.2.3. Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^d , with

$$a_n = (a_n^{(1)}, \dots, a_n^{(d)})$$
 for each $n \in \mathbb{N}$

and let $L = (L_1, \ldots, L_d) \in \mathbb{R}^d$. Then

$$\lim_{n \to \infty} a_n = L$$

if and only if, for each i = 1, ..., d,

$$\lim_{n \to \infty} a_n^{(i)} = L_i$$

Proof. (\Longrightarrow) Assume that $\lim_{n\to\infty} a_n = L$. Then, for each $i=1,\ldots,d$, we have that $|x_i|^2 \leq \sum_{i=1}^d x_i^2 = ||x||_2^2$, therefore

$$|x_i| \le ||x||_2$$

Using this fact, we then have each component of $||a_n - L||_2$ is less than or equal to it. So

$$|a_n^{(i)} - L_i| \le ||a_n - L||_2$$

-||a_n - L||_2 \le a_n^{(i)} - L_i \le ||a_n - L||_2

Since $\lim_{n\to\infty} a_n = L$, we have $\lim_{n\to\infty} a_n - L = 0$. By the Squeeze theorem, it follows that

$$\lim_{n \to \infty} a_n^{(i)} - L_i = 0 \implies \lim_{n \to \infty} a_n^{(i)} = L$$

(\iff) Suppose for each $i=1,\ldots,d,$ we have

$$\lim_{n \to \infty} a_n^{(i)} = L_i$$

Then, from the definition of $||\cdot||_2$, we have

$$||a_n - L||_2^2 = (a_n^{(1)} - L_1)^2 + \dots + (a_n^{(d)} - L_d)^2$$

Now taking limits of both sides

$$\lim_{n \to \infty} ||a_n - L||_2^2 = \lim_{n \to \infty} (a_n^{(1)} - L_1)^2 + \dots + \lim_{n \to \infty} (a_n^{(d)} - L_d)^2$$

Now we'll prove exercise 2.2.5 which states that if $(a_n)_{n=1}^{\infty}$ is a sequence of nonnegative real number converging to $L \geq 0$, then $\lim_{n \to \infty} \sqrt{a_n}$ converges to \sqrt{L} . To prove this we will consider two cases where L = 0, and L > 0.

• Case 1, L = 0: Suppose $(a_n)_{n=1}^{\infty} \to 0$, then from the definition of convergence we have that $\forall \epsilon > 0$, $\exists n_0$ such that $\forall n \geq n_0$,

$$|a_n - 0| < \epsilon$$

Since ϵ is abritrary, we'll replace ϵ with ϵ^2 , so

$$|a_n - 0| < \epsilon^2$$

Then we get

$$|a_n - 0| = |a_n| < \epsilon^2 \implies \sqrt{|a_n|} < \epsilon$$

Therefore, $\sqrt{a_n} \to 0$ by the definition of convergence.

• Case 2, L > 0: Suppose $(a_n)_{n=1}^{\infty} \to L > 0$. Let $\epsilon > 0$ be given, then there exists n_0 such that for all $n \ge n_0$,

$$|a_n - L| < \epsilon$$

We much such that $|\sqrt{a_n} - \sqrt{L}| < \epsilon$

$$|\sqrt{a_n} - \sqrt{L}| \cdot \frac{\sqrt{a_n} + \sqrt{L}}{\sqrt{a_n} + \sqrt{L}} = \frac{|(\sqrt{a_n} - \sqrt{L})(\sqrt{a_n} + \sqrt{L})|}{\sqrt{a_n} + \sqrt{L}}$$

Since $\sqrt{a_n} + \sqrt{L}$ is positive because $a_n, L \ge 0$, then $\sqrt{a_n} + \sqrt{L} = |\sqrt{a_n} + \sqrt{L}|$, then using the fact that $|a| \cdot |b| = |a \cdot b|$, we get

$$\frac{|a_n - \sqrt{L}\sqrt{a_n} + \sqrt{L}\sqrt{a_n} + L|}{\sqrt{a_n} + \sqrt{L}} = \frac{|a_n - L|}{\sqrt{a_n} + \sqrt{L}} \le \frac{|a_n - L|}{\sqrt{L}}$$

Now if we replace ϵ with $\frac{\epsilon}{\sqrt{L}}$, we get

$$|\sqrt{a_n} - \sqrt{L}| < \frac{|a_n - L|}{\sqrt{L}} < \frac{\epsilon}{\sqrt{L}} \implies |\sqrt{a_n} - \sqrt{L}| < \epsilon$$

Therefore, $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{L}$

Now going back to the original proof,

$$\lim_{n \to \infty} ||a_n - L||_2^2 = 0$$

So from exercise 2.2.5 we have

$$\lim_{n \to \infty} \sqrt{||a_n - L||_2^2} = \sqrt{0}$$

Therefore,

$$\lim_{n \to \infty} ||a_n - L||_2 = 0$$

as required.

Proposition 4.3.4. Given $a \in \mathbb{R}^d$, and r > 0, the open ball B(a, r) is an open set.

Note: This is example 4.3.4 from the professors notes.

Proof. Recall the definition of an open set is that for any x in the set, we can define an open ball (or epsilon neighborhood) around x such that the ball is contained in the set. So we want an open ball $B(x; \epsilon)$ such that $B(x; \epsilon) \subseteq B(a; r)$. To see this, let $x \in B(a; r)$, so that $||x - a||_2 < r$. Define

$$\epsilon := r - ||a - x||_2 > 0$$

Now take some element $y \in B(x; \epsilon)$, then we want to show that its element is contained in B(a; r). So, $y \in B(x; \epsilon)$, so that $||y - x||_2 < \epsilon$. Then,

$$||y - a||_2 = ||y - x + x - a||_2 \le ||y - x||_2 + ||x - a||_2$$

 $< \epsilon + ||a - x||_2 = r$

Therefore,

$$||y - a||_2 < r$$

So $y \in B(a; r)$ as required, so B(a; r) is an open set.

Proposition 4.3.9. Let $F \subseteq \mathbb{R}^d$. Then F is closed if and only if for every sequence $(a_n)_{n=1}^{\infty}$ in F, if $(a_n)_{n=1}^{\infty}$ converges then

$$\lim_{n \to \infty} a_n \in F$$

Proof. (\Longrightarrow) Assume that F is closes, so $\mathbb{R}^d \setminus F$ is open. Let $(a_n)_{n=1}^{\infty}$ be a sequence in F which converges. Suppose for a contradiction that $L := \lim_{n \to \infty} a_n$ is not in F. So $L \in \mathbb{R}^d \setminus F$. Then by openness, there exists $\epsilon > 0$ such that $B(L; \epsilon) \subseteq \mathbb{R}^d \setminus F$. Using the definition of convergence, we have that there exists n such that

$$||a_n - L||_2 < \epsilon$$

But, this means that

$$a_n \in B(L; \epsilon) \subseteq \mathbb{R}^d \setminus F$$

which contradicts that $a_n \in F$. Therefore, $L \in F$ as required.

(\iff) Assume that every sequence in F that converges, the limit is in F. We want to show that $\mathbb{R}^d \setminus F$ is open. Take a point $x \in \mathbb{R}^d \setminus F$, and suppose for a contradiction that there is no $\epsilon > 0$ such that $B(x;\epsilon) \subseteq \mathbb{R}^d \setminus F$. We can take $\epsilon := \frac{1}{n}$. So for each $n \in \mathbb{N}_{\geq 1}$, $B(x; \frac{1}{n})$ is not contained in $\mathbb{R}^d \setminus F$. So, there must be a point in $B(x; \frac{1}{n})$ that is in F. Let a_n be such a point. Then since it is in $B(x; \frac{1}{n})$, we have that

$$||a_n - x||_2 < \frac{1}{n}$$

 $x \in \mathbb{R}^d \setminus F$ so $x \neq a_n$, so

$$0 < ||a_n - x||_2 < \frac{1}{n}$$

So by the squeeze theorem,

$$\lim_{n \to \infty} ||a_n - x||_2 = 0$$

So,

$$\lim_{n \to \infty} a_n = x$$

By our hypothesis, every sequence which converges, the limit is in F. So $x \in F$, but by our assumption $x \in \mathbb{R}^d \setminus F$, which is a contradiction. Therefore, $\mathbb{R}^d \setminus F$ is open as required.

Proposition 5.2.5. Let $X \subseteq \mathbb{R}^d$ and let $Y \subseteq \mathbb{R}^m$. Let $f: X \mapsto Y$ and $g: Y \mapsto \mathbb{R}^n$ be functions. Let $a \in X$. Suppose that f is continuous at a and g is continuous at f(a). Then $g \circ f$ is continuous at a.

Proof. Let $\epsilon > 0$ be given. Since g is continuous at f(a), there exists $\eta > 0$ such that for all $y \in Y$, if $||y - f(a)||_2 < \eta$, then $||g(y) - g(f(a))||_2 < \epsilon$ (by the definition of continuity). Since f is continuous at a, we can find δ such that for all $x \in X$, if $||x - a||_2 < \delta$, then $||f(x) - f(a)||_2 < \eta$. Now since these inequalities hold for all $x \in X$ and $y \in Y$. We can take y = f(x). So if $x \in X$ and $||x - a||_2 < \delta$, then $||f(x) - f(a)||_2 < \eta$, and so

$$||g(f(x)) - g(f(a))||_2 < \epsilon$$

as required.

Theorem 5.3.2. Let $K \subseteq \mathbb{R}^d$ be compact and let $f: K \mapsto \mathbb{R}^m$ be a continuous function. Then its image, f(K) is also compact.

Proof. Let $(y_n)_{n=1}^{\infty}$ be a sequence in f(K), we need to find a subsequence that converges to a point in f(K). Recall that $f(K) = \{f(k) : k \in K\}$. So, we can find $x_n \in K$ for each n such that $y_n = f(x_n)$. Since K is compact, there is a subsequence $(x_{n_k})_{n=1}^{\infty}$ which converges to a point $a \in K$. f is continuous so

$$\lim_{x \to a} f(x) = f(a)$$

therefore by the Sequential Characterization of Limits, $\lim_{k\to\infty} f(x_{n_k}) = f(a)$. So, the subsequence $(y_{n_k})_{n=1}^{\infty}$ converges to $f(a) \in f(K)$ as required.

Corollary 5.3.3 (Extreme Value Theorem). Let $K \subset \mathbb{R}^d$ be compact and nonempty, and let $f: K \mapsto \mathbb{R}$ be a continuous function. Then there exists $x_{\min}, x_{\max} \in K$ such that for all $x \in K$,

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$

In otherwords, the image of f is bounded above and below, and it attains its boundes.

Proof. By the previous theorem, f(K) is compact. By the Heine-Borel theorem, f(K) is closed and bounded. Since it is bounded, by completeness we have $\sup f(K)$ and $\inf f(K)$ exist. We can construct a sequence $(a_n)_{n=1}^{\infty}$ which converges to $\sup f(K)$. Let $L := \sup f(K)$. For any given $\epsilon > 0$, $L - \epsilon < L$ so it is not an upperbound. Therefore we have some element $a \in f(K)$ such that $L - \epsilon < a \le L$. Set $\epsilon := \frac{1}{n}$ for $n \in \mathbb{N}_{\geq 1}$. So we can define the sequence members of $(a_n)_{n=1}^{\infty}$ as

$$L - 1 < a_1 \le L$$

$$L - \frac{1}{2} < a_2 \le L$$

$$L - \frac{1}{3} < a_3 \le L$$

$$L - \frac{1}{n} < a_n \le L$$

This holds for all $n \in \mathbb{N}_{\geq 1}$ since if $L - \frac{1}{n}$ is an upper bound, then it contradicts that $L = \sup f(K)$. Then by the Squeeze theorem, we have that this sequence converges to L. So since f(K) is closed, $L \in f(K)$. Similarly, we can construct a sequence that converges to $\inf f(K)$. Therefore, by boundedness we have

$$\inf f(K) \le f(K) \le \sup f(K)$$

Since f(K) is closed, there exists $x_{\min} \in K$ such that $f(x_{\min}) = \inf f(K)$. Similarly, there exists $x_{\max} \in K$ such that $f(x_{\max}) = \sup f(K)$.

Note: It follows that $\sup f(K) \in f(K)$ because f(K) is closed, but I wanted to prove it in an intuitive way to be thorough.

Theorem 5.4.4. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \mapsto \mathbb{R}$ be an injective continuous function. Then $f^{-1}: f(I) \mapsto \mathbb{R}$ is continuous.

Proof. From Lemma 5.4.3, since f is injective then f is either strictly increasing or strictly decreasing. Assume without loss of generality that f is strictly increasing. Let $b \in f(I)$, we want to show that $\lim_{y \to b} f^{-1}(y) = f^{-1}(b)$. Let $\epsilon > 0$

be given. Set $a := f^{-1}(b)$, so f(a) = b. Consider 2 cases where $a \in I^{\circ}$ and $a \in \partial I$. When $a \in \partial I$ the argument follows very similarly so we will suppose that $a \in I^{\circ}$. Since ϵ is arbitrary, we can assume $a - \epsilon, a + \epsilon \in I$. Then we have

$$f(a - \epsilon) < f(a) < f(a + \epsilon)$$

Then set

$$\delta := \min\{f(a) - f(a - \epsilon), f(a + \epsilon) - f(a)\} > 0$$

We want to prove that if $y \in f(I)$ and $|y - b| < \delta$, then $|f^{-1}(y) - f^{-1}(b)| < \epsilon$. Suppose for a contradiction that this is false, then

$$f^{-1}(y) \le f^{-1}(b)$$
 or $f^{-1}(y) \ge f^{-1}(b) + \epsilon$

Set $x := f^{-1}(y)$ so f(x) = y. So we have

$$x < a - \epsilon \text{ or } x > a + \epsilon$$

In the first case since f is strictly increasing we get

$$y = f(x) \le f(a - \epsilon) \le f(a) - \delta = b - \delta$$

So $y = b - \delta$. In the second case we get

$$y = f(x) \ge f(a + \epsilon) \ge f(a) + \delta = \beta + \delta$$

In both cases, this contradicts that $|y - b| < \delta$ so we must have that our claim was true.

Proposition 6.1.5. Let $X \subseteq \mathbb{R}$, let $f: X \mapsto \mathbb{R}$ be a function, let $a \in X$ be a non-isolated point. If f is differentiable at a then f is continuous at a.

Proof. We want to show that $\lim_{x\to a} f(x) - f(a)$. We have

$$\lim_{x \to a} f(x) - f(a) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} (x - a) \right)$$

$$= \left(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \right) \left(\lim_{x \to a} x - a \right)$$

$$= f'(a) \cdot 0 = 0 \implies \lim_{x \to a} f(x) = f(a)$$

We can use algebra of limits since both limits are well defined.

Theorem 6.3.2. Let $X \subseteq \mathbb{R}$, let $f: X \mapsto \mathbb{R}$ and let $a \in X$ be an interior point. If f has a local maximum or local minimum at a and f is differentiable at a, then f'(a) = 0.

Proof. Assume that f is a local minimum at a. Let r > 0 be such that $(a - r, a + r) \subseteq X$ and

$$f(a) \le f(x) \ \forall x \in (a-r, a+r)$$

In other words, f(a) is the local minimum in the r neighborhood of a. Since f is differentiable, the limit

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. By the Sequential Characterization of Limits, for any sequence $(x_n)_{n=1}^{\infty}$ in X converging to a, we have

$$f'(a) = \lim_{n \to \infty} \frac{f(x_n) - f(a)}{x_n - a}$$

We want to construct two sequences that converge to a from the left and right, so from the right consider the sequence with members $x_n \in (a, a + r)$

$$x_n \coloneqq a + \frac{r}{n+1}$$

Then $x_n - a > 0$ and $f(x_n) - f(a) \le 0$ since $f(a) \le f(x) \ \forall x \in (a - r, a + r)$. So this implies that

$$f'(a) = \lim_{n \to \infty} \frac{f(x_n) = f(a)}{x_n - a} \ge 0$$

Similarly, we can construct a sequence from the left with members $x_n \in (a - r, a)$, take

$$x_n \coloneqq a - \frac{r}{n+1}$$

So $x_n - a < 0$, thus

$$f'(a) = \lim_{n \to \infty} \frac{f(x_n) - f(a)}{x_n - a} \le 0$$

Then by combining these inequalities, we get that f'(a) = 0, as required. \Box

The Real Numbers \mathbb{R}

Summary: \mathbb{R} is a complete ordered field.

1.1 Fields

Definition 1.1.1. A field is a set F together with operations $+, \cdot$ satisfying

- (F1) $a + b = b + a \ \forall a, b \in F \ (Commutativity)$
- $(F2)(a+b)+c=a+(b+c) \ \forall a,b,c \in F \ (Associativity)$
- $(F3) \exists 0 \in F \text{ s.t } 0 + a = a \ \forall a \in F \ (Additive \ Identity)$
- $(F4) \exists -a \in F \text{ s.t } a + (-a) = 0 \ \forall a \in F \ (Additive \ Inverse)$
- (F5) $a \cdot b = b \cdot a \ \forall a, b \in F \ (Commutativity)$
- (F6) $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall a, b, c \in F \ (Associativity)$
- $(F7) \exists 1 \in F \text{ s.t } 1 \cdot a = a \ \forall a \in F \ (Multiplicative Identity)$
- $(F8) \forall a \in F \setminus \{0\} \exists a^{-1} \in F \text{ s.t } a^{-1} \cdot a = 1 \text{ (Multiplicative Inverse)}$
- $(F9) \ a \cdot (b+c) = a \cdot b + a \cdot c \ \forall a,b,c \in F \ (Distributivity)$

1.2 Ordered Fields

Definition 1.2.1. An ordered field is a field F along with a relation < satistfying

- (O1) $\forall a, b, c \in F$, if a < b and b < c then a < c (Transitivity)
- $(O2) \forall a, b \in F$ exactly one of the following is true,

$$a < b \ or \ a = b \ or \ b < a$$

- (O3) $\forall a, b, c \in F$, if a < b, then a + c < b + c
- $\forall a, b, c \in F$, If a < b and 0 < c, then ac < bc

1.3 Complete Ordered Fields

Definition 1.3.1. Let F be an ordered field. Let $S \subseteq F$. An upper bound or S is some $M \in F$ s.t $\forall x \in S$

 $x \leq M$

Completeness of \mathbb{R} , Absolute Value, Sequences

Convergence of Sequences

Properties of Convergence, Squeeze Theorem, Monotone Sequences

Subsequences, Cauchy Sequences

Limsup and Liminf

Series

Recall:

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n$$

 $\sum\limits_{n=1}^{\infty}a_{n}$ "diverges" if above limit does not exisit.

Proposition 7.0.1. Suppose $(a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty}$ converges. Then

(i)
$$\sum_{n=1}^{\infty} a_n + b_n = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(ii)
$$\sum_{n=1}^{\infty} cb_n = c \sum_{n=1}^{\infty} b_n \ \forall c \in \mathbb{R}$$

This says

$$V := \{(a_n)_{n=1}^{\infty} : \sum_{n=1}^{\infty} a_n \ converges\}$$

is a vector space over \mathbb{R} .

Note:

$$\left(\sum_{n=1}^{N} a_n\right) \left(\sum_{n=1}^{N} b_n\right) \neq \sum_{n=1}^{\infty} a_n b_n$$

Proof. Exercise.

Proposition 7.0.2. $\sum_{n=1}^{\infty} a_n$ converges iff $\sum_{n=k}^{\infty} a_k$ converges.

Proof. Exercise.

Example: TBC.

Proposition 7.0.3. If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

7.1 Divergence Test

Proposition 7.1.1 (Divergence Test). If $a_n \not\to 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. $\sum_{n=1}^{\infty} a_n$ converges $\Longrightarrow S_n \to L$ for some L, where

$$S_n := \sum_{n=1}^{N} a_n$$

So,

$$a_n = S_n - S_{n-1}$$

By the Algebra of Limits,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1}$$
$$= L - L = 0$$

Example: TBC.

7.2 Convergence Tests

Proposition 7.2.1 (Boundedness Test). Let $(a_n)_{n=1}^{\infty}$ be a sequence, if

- (i) $a_n \geq 0$
- (ii) There is an upper bound on the parital sums

$$\exists M > 0 \ s.t \ \sum_{n=1}^{N} a_n \le M$$

Then $\sum_{n=1}^{\infty} a_n$ converges.

Proof. Let

$$S_N := \sum_{n=1}^N a_n$$

Then

$$S_{N+1} = S_N + a_{N+1}$$
$$\ge S_n$$

So by the Monotone Convergence Criterion, $(S_N)_{N=1}^{\infty}$ converges \iff it is bounded avove. By (ii), it is bounded.

Proposition 7.2.2 (Comparison Test). TBC.

Ratio, Root, Alternating Series, and Integral Test, Cauchy Convergence, Topology of \mathbb{R}^d

8.1 Ratio Test

Proposition 8.1.1 (Ratio Test). Let $(a_n)_{n=1}^{\infty}$ be a sequence of nonzero elements.

(i) If

$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(ii) If

$$\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} > 1 \right| > 1$$

then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof.

(i) Let

$$q = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

where $q < 1, \, \exists r \in (q, 1)$. By the definition of \limsup

$$\left| \frac{a_{n+1}}{a_n} \right| \le r \ \forall n \ge n_0$$

for some $n_0 \in \mathbb{N}$.

$$\left| \frac{a_{n_0+1}}{a_{n_0}} \right| \le r$$

$$|a_{n_0+1}| \le r|a_{n_0}|$$

$$|a_{n_0+2}| \le r|a_{n_0+1}| \le r^2|a_{n_0}|$$

By induction, we have

$$0 \le |a_{n_0+k} \le r^k |a_{n_0}|$$

By the comparison test,

$$\sum_{k=1}^{\infty} |a_{n_0+k}|$$

converges since

$$\sum_{k=1}^{\infty} r^k |a_{n_0}|$$

is a geometric sequence and $0 \le r < 1$.

$$\sum_{n=1}^{\infty} |a_n|$$

Converges, thus $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(ii) Let

$$q = \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

so $\exists n_0$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| > 1$$

for all $n \geq n_0$. Then

$$|a_{n_0+k} \ge |a_{n_0}| \ \forall k \ge 0$$

So $a_n \not\to 0$ as $n \to 0$, thus by the divergence test. $\sum_{n=1}^{\infty} a_n$ diverges.

Note: The ratio test does not tell us anything when the limit is 1.

For example:

$$\sum_{n\geq 1} \frac{1}{n}$$

diverges, but

$$\frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \to 1$$

But on the other hand,

$$\sum_{n>1} \frac{1}{n+1}$$

converges, and

$$\frac{\frac{1}{n+1(n+2)}}{\frac{1}{n(n+1)}} = \frac{n+1}{n+2} \to 1$$

8.2 Root Test

Proposition 8.2.1 (Root Test). Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers.

(i) If

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(ii) If

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1$$

then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof.

(i) Let

$$q = \limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

Then there exists $r \in (q, 1)$ such that $\exists n_0$

$$\sqrt[n]{|a_n|} \le r$$

for all $n \geq n_0$. Then,

$$0 \le |a_n| \le r^n$$

Therefore $\sum_{n=n_0}^{\infty} r^n$ converges since 0 < r < 1. Then by the comparison test, $\sum_{n=n_0}^{\infty} |a_n|$ converges.

$$q = \limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1$$

From exercise 2.7.3, there are infinitely many

$$\sqrt[n]{|a_n|} \ge 1 \implies |a_n| \ge 1$$

Thus $a_n \neq 0$ as $n \to \infty$, thus by the divergence test, $\sum_{n=1}^{\infty} a_n$ diverges.

Examples:

•

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$

$$\sqrt[n]{\left(\frac{1}{2}\right)^2} = \frac{1}{2}$$

•

$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)_n$$

$$\sqrt[n]{\left(\frac{n}{2n+1}\right)^n} = \frac{1}{2^{n+1}} \to \frac{1}{2}$$

•

$$\sum_{n=1}^{\infty} \frac{1}{n_n}$$

$$\sqrt[n]{\frac{1}{n}} = \frac{1}{n^{\frac{1}{n}}} = \frac{1}{e^{\frac{\ln n}{n}}} \to 0$$

8.3 Alternating Series Test

Proposition 8.3.1 (Alternating Series Test). Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Suppose

- (i) $(a_n)_{n=1}^{\infty}$ is decreasing
- (ii) $\lim_{n\to\infty} a_n = 0$

Then

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges. Moreover, for any N,

$$\sum_{n=1}^{2N} (-1)^{n+1} a_n \le \sum_{n=1}^{\infty} (-1)^{n+1} a_n \le \sum_{n=1}^{2N-1} (-1)^{n+1} a_n$$

Proof. $a_n \ge 0 \ \forall n$, since $a_n \to 0$ as $n \to \infty$, and $(a_n)_{n=1}^{\infty}$ is decreasing. Let

$$S_N := \sum_{n=1}^{N} (-1)^{n+1} a_n$$

If N is even,

$$S_{N+2} = S_N + a_{N+1} - a_{N+2} \ge S_N$$

Since

$$a_{N+2} \le a_{N+1}$$

So $(S_{2N})_{N=1}^{\infty}$ is an increasing sequence and $(S_{2N-1})_{N=1}^{\infty}$ is a decreasing sequence. So by the monotone convergence criterion, both sequence converge.

$$S_{2N-1} + a_{2N} = S_{2N}$$
$$a_{2N} \xrightarrow{N \to \infty} 0$$

So,

$$\lim_{n \to \infty} S_{2N-1} = \lim_{N \to \infty} S_{2N} = L \implies \lim_{N \to \infty} S_N = L$$

 $(S_{2N})_{N=1}^{\infty}$ is increasing, so

$$L = \sup\{(S_{2N})_{N-1}^{\infty}\} \implies S_{2N} \le L$$

Similarly, $(S_{2N-1})_{N=1}^{\infty}$ is decreasing, so

$$L = \inf\{(S_{2N_1})_{n=1}^{\infty}\} \implies S_{2N-1} \ge L$$

8.4 Integral Test

Proposition 8.4.1. Let $f:[1,\infty)\to\mathbb{R}$. Suppose that

- (i) $f(x) \ge 0 \ \forall x \in [1, \infty)$
- (ii) f is decreasing

Then

 $\sum_{n=1}^{\infty} f(n)$ converges \iff the improper integral $\int_{1}^{\infty} f(x) \ dx$ converges.

8.5 Cauchy Convergence Criterion for Series

Proposition 8.5.1. Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Then

 $\sum_{n=1}^{\infty} a_n \ converges \iff \forall \epsilon > 0 \ \exists N_0 \ such \ that \ N \leq M \leq N_0, \ |\sum_{n=M}^{N} a_n| \epsilon.$

Proof. Let

$$S_N \coloneqq \sum_{n=1}^N a_n$$

Then $\sum_{n=1}^{\infty} a_n$ converges \iff $(S_N)_{N=1}^{\infty}$ converges. Cauchy convergence criterion for sequences says that

 $(S_N)_{n=1}^{\infty}$ converges \iff it is cauchy.

$$\iff \forall \epsilon > 0 \ \exists N_0 \ s,t \ |S_N - S_M| < \epsilon \ \forall N, M \geq N_0$$

8.6 Topology of \mathbb{R}^d

8.6.1 Norms

Definition 8.6.1. A norm on \mathbb{R}^d is a function $||\cdot||: \mathbb{R}^d \to [0,\infty)$ satisfying the following properties:

- (i) $||a|| = 0 \iff a = (0, \dots, 0)$
- (ii) $||ca|| = |c| \cdot ||a|| \ \forall c \in \mathbb{R}, a \in \mathbb{R}^d$
- (iii) $||a + b|| \le ||a|| + ||b|| \ \forall a, b \in \mathbb{R}^d$

The euclidean norm of \mathbb{R}^d is given by

$$||a, \dots, a_d||_2 = \sqrt{\sum_{i=1}^d a_i^2}$$

The dot product on \mathbb{R}^d is given by

$$(a_1,\ldots,a_n)\cdot(b_1,\ldots,b_n)=\sum_{i=1}^d a_ib_i$$

We also have the l_1 -norm

$$||(a_1,\ldots,a_n)||_1 = \sum_{i=1}^d |a_i|$$

And the l_{∞} -norm

$$||(a_1,\ldots,a_d)||_{\infty} = \max\{|a_1|,\ldots,|a_d|\}$$

Proposition 8.6.1. Let $a, b \in \mathbb{R}^d$, write $||\cdot||$ for the euclidean norm on \mathbb{R}^d .

(i) Cauchy Schwarz Inequality:

$$|a \cdot b| \le ||a|| \cdot ||b||$$

(ii) Triangle Inequality:

$$||a+b|| \le ||a|| + ||b||$$

(iii) $||\cdot||$ is a norm on \mathbb{R}^d

Proof.

(i) Consider the equadratic function

$$P(t) = ||a + tb||^{2}$$

$$= (a + tb) \cdot (a + tb)$$

$$= a \cdot a + 2a \cdot tb + tb \cdot tb$$

$$= ||a||^{2} + 2t(a \cdot b) + t^{2}||b||^{2}$$

The discriminant of P(t) is less than or equal to 0,

$$(2a \cdot b)^{2} - 4||a||^{2}||b||^{2} \le 0$$
$$(a \cdot b)^{2} \le ||a||^{2}||b||^{2}$$
$$|a \cdot b| \le ||a|| \cdot ||b||$$

(ii)

$$||a + b||^2 = ||a||^2 + 2a \cdot b + ||b||^2$$

$$\leq ||a||^2 + 2|a \cdot b|| + ||b||^2$$

$$\leq ||a||^2 + 2||a|| \cdot ||b|| + ||b||^2$$

$$= (||a|| + ||b||)^2$$

$$||a+b||^2 \le (||a||+||b||)^2 \implies ||a+b|| \le ||a||+||b||$$

(iii) **Exercise.** We want to prove $||a|| = 0 \iff a = 0$ and $||ca|| = |c| \cdot ||a||$.

\mathbb{R}^d

Recall:
$$||(x_1, ..., x_d)|| := \sqrt{x_1^2 + \dots + x_d^2}$$
. This is a norm. i.e. $||a + b|| \le ||a||_2 + ||b||_2 \ \forall a, b \in \mathbb{R}^d$ $||ca|| = |c| \cdot ||a||_2, \ c \in \mathbb{R}, \ a \in \mathbb{R}^d$ $||a||_2 > 0, \ \forall a \in \mathbb{R}^d \setminus \{(0, ..., 0)\}$ $||(0, ..., 0)||_2 = 0$

Other examples of norms:

- $||(x_1, \ldots, x_d)||_1 := |x_1| + \cdots + |x_d|$
- $||(x_1,\ldots,x_d)||_{\infty} := max\{|x_1|,\ldots,|x_d|\}$

Exercise: For $a \in \mathbb{R}^d$,

$$||a||_{\infty} \le ||a||_2 \le ||a||_1 \le d||a||_{\infty} (\le d||a||_2)$$

Interesting Fact: There are other norms. but they are all equivalent in the sense that if $||\cdot||, ||\cdot||'$ are norms on \mathbb{R}^d , then $\exists v, R > 0$ such that

$$r||a|| \le ||a||' \le R||a||$$

9.1 Convergence

Definition 9.1.1. Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^d and let $L \in \mathbb{R}^d$, we say $(a_n)_{n=1}^{\infty}$ converges to L, and write $\lim_{n\to\infty} = L$ or $a_n \to \infty$, if

$$\lim_{n \to \infty} ||a_n - L||_2 = 0$$

Note: We could define convergence instead using some other norm, say $||\cdot||_1$.

If $||a_n - L||_2 \to 0$, then $||a_n - L||_1 \le d||a_n - L||_2 \to 0$ If $||a_n - L||_1 \to 0$, then $||a_n - L||_2 \le d||a_n - L||_1 \to 0$

in general, if $||\cdot||$ is any norm, then since $||\cdot||$ and $||\cdot||_2$ are equivalent.

$$||a_n - L||_2 \to 0 \iff ||a_n - L|| \to 0$$

Example: Say $a_n = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$, then

$$||a_n - L||_2 = \sqrt{1/n^2, +\dots + 1/n^2} = \sqrt{\frac{d}{n^2}} = \frac{\sqrt{d}}{n} \to 0$$

$$\therefore a_n \to L$$

Given a sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^d , we write $a_1 = (a_1^{(1)}, a_1^{(2)}, \dots, a_1^{(d)})$ where $a_1^{(1)}, a_1^{(2)}, \dots, a_1^{(d)} \in \mathbb{R}$. Similarly,

$$a_1 = (a_1^{(1)}, a_1^{(2)}, \dots, a_1^{(d)})$$

$$a_2 = (a_2^{(1)}, a_2^{(2)}, \dots, a_2^{(d)})$$

$$a_3 = (a_3^{(1)}, a_3^{(2)}, \dots, a_3^{(d)})$$

$$\vdots$$

$$L = (L^{(1)}, L^{(2)}, \dots, L^{(d)}) \in \mathbb{R}^d$$

We get d sequences in \mathbb{R} , and d possible limit points $L^{(1)}, \dots, L^{(d)} \in \mathbb{R}$

Proposition 9.1.1. Given $(a_n)_{n=1}^{\infty}$ and L as above, $a_n \to L$ as $d \to \infty \iff a_n^{(i)} \to L^{(i)}$ in \mathbb{R} as $n \to \infty$, for $i = 1, \ldots, d$.

Proof. \Longrightarrow : Suppose $a_n \to L$, i.e.

$$||a_n - L||_2 \to 0$$

For $x = (x_1, \dots, x_d) \in \mathbb{R}^d$

$$||x||_2^2 = x_1^2 + \dots + x_d^2 \ge x_i^2 = |x_i|^2 : |x_i \le ||x||_2$$

Applying this to (*), we get

$$0 \le |a_n^i - L^{(i)}| \le ||a_n - L||_2 \to 0$$

So by the squeeze theorem,

$$|a_n^{(i)} - L^{(i)}| \to 0$$

 \implies : Suppose $a_n^{(i)} \to L^{(i)}$ for $i = 1, \dots, d$.

$$||a_n - L||_2^2 = (a_n^{(i)} - L^i)^2 + \dots + (a_n^d - L^d) \to 0$$

By algebra of limits,

$$\therefore ||a_n - L||_2 \to 0$$

Example: $a^n = ((-1)^n, \frac{1}{n}) \in \mathbb{R}^2$. Does (a_n) converge? No, since $(-1)^n$ does not converge.

Definition 9.1.2. A sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^d is **Cauchy** if $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}_{\geq 1}$ such that

$$||a_n - a_m||_2 < \epsilon \ \forall m, n \ge n_0$$

Theorem 9.1.1 (Cauchy Convergence Criterion for \mathbb{R}^d). Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^d . It converges \iff it is Cauchy.

Proof. \Longrightarrow : Suppose $a_n \to L \in \mathbb{R}^d$. To show it is Cauchy, let $\epsilon > 0$. $||a_n - L||_2 \to 0$, so $\exists n_0 \in \mathbb{N}_{\geq 1}$ such that

$$||a_n - L||_2 < \frac{\epsilon}{2} \ \forall n \ge n_0$$

Then if $m, n \geq n_0$,

$$||a_m - a_n||_2 = ||a_m - L + L - a_n||_2$$

 $\leq ||a_m - L||_2 + ||L - a_n||_2$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

 $(a_n)_{n=1}^{\infty}$ is Cauchy. \Longrightarrow : Suppose $(a_n)_{n=1}^{\infty}$ is Cauchy, write

$$a_n = (a_n^{(1)}, \dots, a_n^{(d)})$$

For any $m, n \in \mathbb{N}_{\geq 1}$,

$$|a_n^{(i)} - a_m^{(i)} \le ||a_n - a_m||_2$$

 $\therefore (a_n^{(i)})_{n=1}^{\infty}$ is Cauchy in \mathbb{R} . So by the Cauchy Convergence Criterion, $\exists L^{(i)} \in \mathbb{R}$, such that $a_n^{(i)} \to L^{(i)}$. By the previous proposition,

$$a_n \to (L^{(1)}, \dots, L^{(d)})$$

Definition 9.1.3. $S \subseteq \mathbb{R}^d$ is **bounded** if $\exists M > 0$ such that

$$||x|| < M \quad \forall x \in S$$

A sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^d is bound if $\{a_n : n \in \mathbb{N}_{\geq 1}\}$ is a bounded set.

Theorem 9.1.2 (Bolzano-Weierstrass for \mathbb{R}^d). If $(a_n)_{n=1}^{\infty}$ is a bounded sequence in \mathbb{R}^d , then it has a subsequence $(a_{n_k})_{n=1}^{\infty}$ that converges.

Proof. Write $a_n = (a_n^{(1)}, \dots, a_n^{(d)}).$

We will prove it by indunction on d. For d=1, this is the Bolzano-Weierstrass theorem for $\mathbb R$ For d>1 write

$$b_n := (a_n^{(1)}, \dots, a_n^{(d-1)}) \in \mathbb{R}^{d-1}$$

By the induction hypothesis, b_n has a subsequence $(b_{n_k})_{k=1}^{\infty}$ that converges. Let $L \in \mathbb{R}^{d-1}$ be the limit of this subsequence. Then $L \in \mathbb{R}^{d-1}$ is the limit of b_n . $(a_{n_k}^{(d)})_{k=1}^{\infty}$ is a bounded sequence in \mathbb{R} , so it has a subsequence $(a_{n_{k_j}}^{(d)})_{j=1}^{\infty}$ that converges. Let $L^{(d)} \in \mathbb{R}$ be the limit of this subsequence. Then $L = (L^{(1)}, \ldots, L^{(d-1)}, L^{(d)})$ is the limit of a_n .

Open and Closed Sets in \mathbb{R}^d

Roughly, an open set is one that we draw with dotted lines. The line represents a "boundary" that is the not in the set. This is not a rigorous definition.

Definition 10.0.1 (Open Ball). Let $a \in \mathbb{R}^d$, r > 0. The **open ball** of radius r centered at a is

$$B(a;r) \coloneqq \{x \in \mathbb{R}^d : ||x - a||_2 < r\}$$

Relation to Convergence: If $a_n \to L$, then this means that $||a_n - L||_2 < \epsilon$ for all n large. So, $a_n \in B(L; \epsilon)$

Definition 10.0.2 (Open Sets). A set $U \subseteq \mathbb{R}^d$ is open if $\forall a \in U, \exists r > 0$, such that $B(a;r) \subseteq U$

Idea: If $a \in U$, then a is not on the boundary but it is truly "inside" the set, so we can fit a ball containing a in the set.

Definition 10.0.3 (Closed Sets). A set $k \in \mathbb{R}^d$ is **closed** if its complement $\mathbb{R}^d \setminus k$ is open.

Example: $U \subseteq (0,1)$. Is this open? Yes.

Proof. Let $a \in U$. We let $r := \min\{|a-0|, |a-1|\}$ (We do this so that r is at most the distance to the closest bound, i.e. if a is closer to 0, then the radius r cannot be |a-1|)then

$$B(a;r) = (a-r, a+r) \subset (0,1) = U$$

Example: U := [0, 1]. Is this open? No.

Proof. Let $a := 0 \in U$. The for any r > 0, $\exists z \in B(a; r) = (-r, r)$ s.t z < 0, so $z \notin U$. Therefore $B(a; r) \subseteq U$

Is U closed? This is the same as asking if $\mathbb{R} \setminus U = (-\infty, 0) \cup (1, \infty)$ is open. This is open.

Proof. Let $a \in (-\infty, 0) \cup (1, \infty)$.

• Case 1: $a \in (-\infty, 0)$. Set r := |a|, so

$$B(a;r) = (a-r, a+r) = (2a, 0) \subseteq U$$

• Case 2: $a \in (1, \infty)$ similar.

Therefore U = [0, 1] is closed.

Example: Is U := (0,1] open? No, for any r > 0

$$B(1;r) \not\subseteq U$$

Therefore, it is not open.

Note: Sets are not always open or closed. Most sets are neither open nor closed.

This set U is one such example U is not closed since $\mathbb{R} \setminus U = (-\infty, 0] \cup (1\infty)$ $0 \in \mathbb{R} \ U$ but $\forall r > 0, \ B(0; r) \not\subseteq R \setminus U$

Example: For any $a \in \mathbb{R}^d$, r > 0 B(a; r) is an open set.

Proof. Let $x \in B(a; r)$, so $||x - a||_2 < r$. Set

$$r_0 := r - ||x - a||_2 > 0$$

Claim: $B(x; r_0) \subseteq B(a; r)$ To see this, let $y \in B(x; r_0)$ so $|y - x||_2 < r_0$. So,

$$||y - a||_2 \le ||y - x||_2 + ||x - a||_2$$
 (\triangle -inequality)
 $< r_0 + ||x - a||_2$
 $= r$

Proposition 10.0.1. (i) \emptyset , \mathbb{R}^d are both open in \mathbb{R}^d

- (ii) If $U_1, U_2, \ldots, U_n \subseteq \mathbb{R}^d$ are all open, then so is $U_1 \cap U_2 \cap \cdots \cap U_n$.
- (iii) If $U_a \subseteq \mathbb{R}^d$ is an open set for all $\alpha \in I$, (I is some index set) then

$$\bigcup_{a\in I} U_a$$

is open.

Proof. (i), (ii) are exercises.

(iii): Set

$$V \coloneqq \bigcup_{\alpha \in I} U_a$$

Let $a \in V$. This means $\exists \alpha \in I$ such that $a \in U_{\alpha}$. U_{α} is open so $\exists r > 0$ s.t $B(a;r) \subseteq U_{\alpha}$. $U_{\alpha} \le \bigcup_{\alpha \in I} U_{\alpha} = V$ So $B(a;r) \subseteq V$ as required.

Example: For any $n \in \mathbb{N}_{\geq 1}$.

$$\left(\frac{-1}{n}, \frac{1}{n}\right) = B(0; \frac{1}{n})$$

is open in \mathbb{R} . The intersection of these open sets is

$$\bigcap_{n=1}^{\infty} \left(\frac{1}{n}, \frac{-1}{n} \right) = \{0\}$$

which is not open. This shows that openess is not preserved by infinite intersections.

Example: Let

$$U := \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$$

U is open but not closed.

$$U = V \cap W$$

where

$$V := \{(x, y) : x > 0\} \qquad \qquad W := \{(x, y) : y > 0\}$$

To show V is open, let $a=(x,y)\in V$. Set $r\coloneqq x>0$. Then if $(w,z)\in B(a;r)$. Then

$$|w - z| \le ||(w, z) - a||_2 < r = x$$

 $\therefore w > x - x = 0$

So $(w, z) \in U$. Similarly, W is open. Therefore U is open.

Not Closed: Exercise.

Proposition 10.0.2. Let $K \subseteq \mathbb{R}^d$. K is closed \iff for any subsequence $(a_n)_{n=1}^{\infty}$ in K, If it converges, then

$$\lim_{n\to\infty} a_n \in K$$

Proof. (\Longrightarrow) Suppose K is closed. Let $(a_n)_{n=1}^{\infty}$ be a sequence in K s.t

$$L := \lim_{n \to \infty} a_n$$

exists. Suppose for a contradction $L \notin K$. This means $L \in \mathbb{R}^d \setminus K$, which is open. So $\exists r > 0$ such that

$$B(L;r) \subseteq \mathbb{R}^d \setminus K$$

Since $a_n \to L$, we must have $a_n \in B(L; a)$ for some n (in fact, for all n sufficiently large. So $a_n \in B(L; r) \subseteq \mathbb{R}^d \setminus K$. Therefore $a_n \notin K$, which is a contradiction.

(\iff) Suppose K is not closed, and we'll prove $\exists (a_n)_{n=1}^{\infty}$ in K such that $a_n \to L \notin K$. Since K is not closed, $\mathbb{R}^d \setminus K$ is not open. So $\exists L \in \mathbb{R}^d \setminus K$ such that $\forall r > 0$

$$B(L;r) \not\subseteq \mathbb{R}^d \setminus K$$

For each $n \in \mathbb{N}_{\geq 1}$, we can fine $a_n \in B(L; \frac{1}{n})$ such that $a_n \notin \mathbb{R}^d \setminus K$. So $a_n \in K$. This gives a sequence $(a_n)_{n=1}^{\infty}$ in K and

$$||a_n - L||_2 < \frac{1}{n} \to 0$$

Therefore by the Squeeze Theorem,

$$||a_n - L||_2 \to 0 \implies a_n \to L$$

$$L \in \mathbb{R}^d \setminus K$$
, so $L \notin K$.

Definition 10.0.4. Let $A \subseteq \mathbb{R}^d$ and let $a \in \mathbb{R}^d$, a is:

- (i) an interior point if $\exists r > 0$ s.t $B(a; r) \subseteq A$
- (ii) an accumulation point if \exists a sequence $(a_n)_{n=1}^{\infty}$ in A s.t $a_n \to a$
- (iii) a **boundary point** if it is an accumulation point and it is not an interior point.

$$A^{\circ} := \{All \ interior \ points\}$$

 $\bar{A} := \{All\ accumulation\ points\}$

$$\partial A := \{All\ boundary\ points\} = \bar{A} \setminus A^{\circ}$$

Note: The set of interior points, accumulation points, and boundary points are referred to as the **interior** of A, the **closure** of A, and the **boundary** of A respectively

Example: $A := (0,1] \cup \{2\}$

$$A^{\circ} = (0, 1)$$

$$\bar{A} = [0,1] \cup \{2\}$$

$$\partial A = \{0,1,2\}$$

Example: $A \coloneqq \mathbb{Q}$

Since any open interval contains irrational numbers, we have

$$A^{\circ} = set$$

Proposition from chapter 2,

$$\bar{A}=\mathbb{R}$$

$$\partial A = \mathbb{R}$$

Compactness

Definition 11.0.1. A set $A \subseteq \mathbb{R}^d$ is (sequentially) compact if every sequence $(a_n)_{n=1}^{\infty}$ in A has a subsequence $(a_{n_k})_{k=1}^{\infty}$ that converges to a point in A.

Example 1: Is [0,1] compact? Yes.

Proof. **Recall:** Bolzano-Weierstrass theorem states bounded sequence has a convergent subsequence.

Therefore, every sequence $(a_n)_{n=1}^{\infty}$ in [0,1] has a subsequence $(a_{nk})_{k=1}^{\infty}$ that converges. So

$$0 \le a_{n_k} \le 1 \implies 0 \le \lim_{k \to \infty} a_{n_k} \le 1$$
$$\therefore L \in [0, 1]$$

Example 2: Is (0,1) compact? No.

Proof. By counter example, let $a_n := \frac{1}{n+1}$, so $a_n \to 0$. Therefore for all subsequences of a_n , $a_{n_k} \to 0$. So there exists no subsequence which converges to a point in (0,1).

Example 3: Is $[0, \infty)$ compact? No.

Proof. The Bolzano-Weierstrass theorem does not apply since $[0, \infty)$ is unbounded. Set $a_n := n$, then $a_n \to \infty$, so it has no bounded subsequence and therefore no convergent subsequences.

Theorem 11.0.1 (Heine-Borel). Let $A \subseteq \mathbb{R}^d$. A is compact \iff A is closed and not bounded.

Proof. (\Longrightarrow) Similar to example 1. Assume A is closed and bounded. Let $(a_n)_{n=1}^{\infty}$ be a sequence in A. The sequence is bounded since A is, so by the Bolzano-Weierstrass theorem for \mathbb{R}^d , it has a subsequence $(a_{n_k})_{k=1}^{\infty}$ that converges to some $L \in \mathbb{R}^d$. $a_{n_k} \in A \ \forall k$ and $a_{n_k} \to L$ and A is closed, so by the

sequential characterization of closedness, $L \in A$, therefore A is compact.

(\iff) Assume A is compact. To show A is closed, assume for a contradction that A is not closed. Therefore there exists a sequence $(a_n)_{n=1}^{\infty}$ in A such that $a_n \to L \notin A$. Then for any subsequence $(a_{nk})_{k=1}^{\infty}$, we have

$$a_n \to L \not\in A$$

This contradicts that A is compact, therefore A is closed.

Tow show A is bounded, assume for a contradiction that A is not bounded. Then $\forall n \in \mathbb{N}_{\geq 1}$, there exists $a_n \in A$ such that $||a_n||_2 \geq n$. This gives a sequence $(a_n)_{n=1}^{\infty}$. Since A is compact, it has a subsequence $(a_{nk})_{k=1}^{\infty}$ that converges. But

$$||a_{n_k}||_2 \ge n_k \to \infty$$

So $(a_{nk})_{k=1}^{\infty}$ is unbounded, which is a contradiction.

Proposition 11.0.1.

- (i) If $k_1, \ldots, k_n \subseteq \mathbb{R}^d$ are compact, then $\bigcup_{i=1}^n k_i$ is compact.
- (ii) If $k_1, \ldots, k_n \subseteq \mathbb{R}^d$ are compact, then $\bigcap_{i=1}^n k_i$ is compact.

Proof. Exercise:

- (i) Assume $A := \bigcup_{i=1}^n k_i$. Let $(a_n)_{n=1}^{\infty}$ be a sequence in A. Then there exists $i \in \{1, \ldots, n\}$ such that $a_n \in k_i$. Since k_i is compact, it has a subsequence $(a_{nk})_{k=1}^{\infty}$ that converges to some $L \in \mathbb{R}^d$. $L \in k_i$ and $k_i \subseteq A$, so $L \in A$. Therefore A is compact.
- (ii) Assume $A := \bigcap_{i=1}^n k_i$. Let $(a_n)_{n=1}^{\infty}$ be a sequence in A. Then $a_n \in k_i$ $\forall i \in \{1, \ldots, n\}$. Since k_i is compact, it has a subsequence $(a_{nk})_{k=1}^{\infty}$ that converges to some $L \in \mathbb{R}^d$. $L \in k_i \ \forall i \in \{1, \ldots, n\}$ and $k_i \subseteq A$, so $L \in A$. Therefore A is compact.

Definition 11.0.2. $A \subseteq \mathbb{R}^d$ is **compact** if for any collection

$$U_{\alpha}: \alpha \in I$$

of open sets such that

$$A\subseteq\bigcup_{\alpha\in I}U_\alpha$$

There exists finitely many indeces $\alpha_1, \ldots, \alpha_n$ such that

$$A \subseteq \bigcup_{i=1}^{n} U_{\alpha_i}$$

Limits of a Function of Continuous Variables

A sequence is a function $\mathbb{N} \to \mathbb{R}$. Here, we'll consider function that are going from $\mathbb{R} \to \mathbb{R}$ (or $\mathbb{R}^d \to \mathbb{R}^m$).

Definition 12.0.1. Let $X \subseteq \mathbb{R}^d$, $a \in \mathbb{R}^d$ a limit point of X. $f: X \to \mathbb{R}^m$, $L \in \mathbb{R}^m$. We say the limit of f as X approaches a is L if

$$\forall \epsilon > 0, \exists \delta > 0 \ s.t \ \forall x \in X$$

$$x \in B(a; \delta) \land x \neq a \implies ||f(x) - L||_2 < \epsilon$$

The idea is like the definition of convergence of a sequence, except we replace $n \ge n_0$ (which captures "n is sufficiently large") with $x \in B(a; \delta)$, $x \ne a$ (which captures "x is close to, but not equal to a). In other words, the definition says that if x is close to (but not equal to) a then f(x) is close to L.

Why "not equal to"?: Often we consider the limit as x approaches a when f(a) is not defined. Other times we compare the limit to f(a). So we do not want to use f(a) in the definition of the limit.

Notation: We write

$$\lim_{x \to a} f(x) = L$$

or

$$f(x) \to L \text{ as } x \to d$$

to mean that the limit of f is L as x approaches a.

Example: $f: \mathbb{R} \to \mathbb{R}$. f(x) := 3x - 2. Let $a \in \mathbb{R}$. Claim

$$\lim_{x \to a} f(x) = 3a - 2$$

Proof. Let $\epsilon > 0$. Consider

$$|f(x) - (3a - 2)| = |3x - 2 - 3a + 2|$$

= $3|x - a|$

We want this $<\epsilon$, set $\delta := \frac{\epsilon}{3}$. Then if $x \in B(a;\delta) = (a-\delta,a+\delta)$ (i.e $|x-a| < \delta$) then

$$|f(x) - (3a - 2)| = 3|x - a| < 3\delta = \frac{3\epsilon}{3} = \epsilon$$

Example: $g: \mathbb{R} \to \mathbb{R}$. $g(x) := x^2$. Claim:

$$\lim_{x \to a} g(x) = a^2$$

Proof. Let $\epsilon > 0$ be given.

$$|g(x) - a^2| = |x^2 - a^2|$$

= $|x - a||x + a|$

What happens if x is close to a? Intuitively, |x+a| is close to |a+a| and |x-a| is small.

$$\begin{aligned} |x+a| &= |x-a+a+a| \leq |x-a| + |a+a| \\ &< 2|a| + \delta & \text{ (if } |x-a| < \delta) \\ &\leq 2|a| + 1 & \text{ } (\delta \leq 1) \end{aligned}$$

Then,

$$|x^{2} - a^{2}| = |x - a||x + a| \le |x - a|(2|a| + 1)$$

$$< \delta(2|a| + 1) \qquad (if |x - a| < \delta)$$

$$\le \epsilon \qquad (if \delta \le \frac{\epsilon}{2|a| + 1})$$

Important: Do not define δ in terms of x or δ ! We can use a here since a is constant

So we set $\delta := \min\{1, \frac{\epsilon}{2|a|+1}\}$ Then $\delta \leq \frac{\epsilon}{2|a|+1}$ and $\delta \leq 1$. So if $|x-a| < \delta$. Then from the work above, $|x^2-a^2| < \epsilon$ as required.

Note: In proofs where we have $\delta - \epsilon$, we often use

$$\delta \coloneqq \min\{\ldots\}$$

In proofs where we have $n_0 - \epsilon$, we often use

$$n_0 := \max\{...\}$$

Proposition 12.0.1 (Uniqueness of Limits). Let $f: X \to \mathbb{R}^m$ $(X \subseteq \mathbb{R}^d)$, $a \in \mathbb{R}^d$ a limit point of X, $L, L' \in \mathbb{R}^m$. If the limit of f as $x \to a$ is L and the limit of f as $x \to a$ is L', then L = L'

Proof. By contradction. Suppose $L \neq L'$. So

$$||L - L'||_2 > 0$$

Set

$$\epsilon\coloneqq\frac{||L-L||_2}{2}>0$$

Since $f(x) \to L$ as $x \to a$, $\exists \delta > 0$ such that if $x \in X \cap B(a; \delta) \setminus \{a\}$, then

$$||f(x) - L||_2 < \epsilon$$

Since $f(x) \to L'$ as $x \to a$, $\exists \delta' > 0$ such that

$$x \in X \cap B(a; \delta') \setminus \{a\} \implies ||f(x) - L'||_2 < \epsilon$$

Let $\delta_0 \neq \min\{\delta, \delta'\}$. Let

$$x \in X \cap B(a; \delta_0) \setminus \{a\}$$

Then

$$x \in X \cap B(a; \delta) \setminus \{a\}$$

So,

$$||f(x) - L||_2 < \epsilon$$
$$||f(x) - L'||_2 < \epsilon$$

So,

$$||L - L'||_2 \le ||L - f(x)||_2 + ||f(x) - L'|| < \epsilon + \epsilon$$

= $||L - L'||_2$

And thus, a contradction.

Proposition 12.0.2 (Sequential Characterization of Limits). Let $X \subseteq \mathbb{R}^d$, $a \in \mathbb{R}^d$, a limit point of X. $f: X \to \mathbb{R}^m$, $L \in \mathbb{R}^m$.

 $\lim_{x\to a} f(x) = L \iff \text{for every sequence } (x_n)_{n=1}^{\infty} \text{ in } X \text{ such that } x_n \to a, \text{ we have}$

$$\lim_{n \to \infty} f(x_n) = L$$

Proof. (\Longrightarrow) Suppose $\lim_{x\to a} f(x) = L$. Let $(x_n)_{n=1}^{\infty}$ be a sequence in $X\setminus\{a\}$ such that $x_n\to a$. We must show that $f(x_n)\to L$.

Let $\epsilon > 0$ be given. Since $f(x) \to L$ as $x \to a$, $\exists \delta$ such that

$$x \in X \cap B(a; \delta) \setminus \{a\} \implies ||f(x) - L||_2 < \epsilon$$

Since $x_n \to$, using δ in place of ϵ , $\exists n_0$ such that $\forall n \geq n_0$, $||x_n a||_2 < \delta$. i.e. $x_n \in B(a, \delta)$. Also $x_n \in X \setminus \{a\}$ Therefore,

$$||f(x) - L||_2 < \epsilon$$

(\Leftarrow) Suppose \forall sequences $(x_n)_{n=1}^{\infty}$ ins $X \setminus \{a\}$ converging to $a, f(x) \to L$, and for a contradction, suppose

$$f(x) \not\to L$$

We negate " $f(x) \to L$ " to get that $\exists \epsilon > 0$ such that $\forall \gamma > 0, \exists x \in X \cap B(a; \delta) \setminus \{a\}$ such that $||f(x) - L||_2 \ge \epsilon$.

This gives a sequence $(x_{nn})_{n=1}^{\infty}$ in $X \setminus \{a\}$, $||x_n - a||_2 \le \frac{1}{n} \, \forall n$, so by the squeeze theorem

$$||x_n - a||_2 \to 0$$

Since $||f(x_n) - L||_2 \ge \epsilon$, $f(x_n) \ne L$. This is a contradction.

Note: if $\lim_{n\to\infty} f(x_n) = L$ for *some* sequence $(x_n)_{n=1}^{\infty}$ in $X\setminus\{a\}$ convering to a, it *does not* follow that $\lim_{x\to a} f(x) = L$

Example:

$$f(x) := \begin{cases} 0 \text{ if } x = \frac{1}{n}, n \in \mathbb{N}_{\geq 1} \\ 1 \text{ otherwise} \end{cases}$$

 $\lim_{x\to 0} f(x)$ does not exist but $\lim_{n\to\infty} f(\frac{1}{n}) = 0$

Proposition 12.0.3 (Algebra of Limits). Let $x \subseteq \mathbb{R}^d$, $a \in \mathbb{R}^d$ a limit point of X, $f: X\mathbb{R}^m$, $g: X \to \mathbb{R}^m$, $L, K \in \mathbb{R}^m$. Suppose $\lim_{x \to a} f(x) = L$, $\lim_{x \to a} g(x) = K$

$$\lim_{x \to 0} f(x) + g(x) = L + K$$

$$\lim_{cf(x)} = cL$$

(iii) If m=1,

$$\lim_{x\to a} f(x)g(x) = LK$$

(iv) If m = 1, $g(x) \neq 0 \ \forall x \in X$, $K \neq 0$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{K}$$

Proof. (i) Use Sequential Characterization: Let $(x_n)_{n=1}^{\infty}$ be in $X \setminus \{a\}$ such that $x \to a$. Then $f(x_n) \to L$ and $g(x_n) \to K$ So by algebra of limits for sequences,

$$f(x_n) + g(x_n) = L + K$$

$$\therefore f(x) + g(x) \to L + K$$

- (ii) Exercise.
- (iii) Exercise.
- (iv) Exercise.

Theorem 12.0.1 (Squeeze Theorem). Let $X \subseteq \mathbb{R}^d$, $a \in \mathbb{R}^d$ a limit point of X, $f, g, h : X \to \mathbb{R}$

$$f(x) \le g(x) \le h(x) \ \forall x \in X$$

and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

Then

$$\lim_{x \to a} g(x) = L$$

Proof. Exercise

If $f: X \to \mathbb{R}_m$, We can define functions

$$f_1,\ldots,f_m:X\to\mathbb{R}$$

by

$$(f_1(x),\ldots,f_m(x))=f(x)$$

 f_1, \ldots, f_m are called the *component functions* of f.

Proposition 12.0.4. Let $X \in \mathbb{R}^d$, $a \in \mathbb{R}^d$ a limit point of X, $f: X \to \mathbb{R}^m$, f_1, \ldots, f_m its component functions. $L = (L_1, \ldots, L_m) \in \mathbb{R}^m$. Then

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a} f_i(x) = L_i \ \forall 1 \le i \le m$$

Proof. Exercise.

Definition 12.0.2. Let $X \subseteq \mathbb{R}$, $a \in \mathbb{R}$, $f : X \to \mathbb{R}^d$.

• If a is a limit point of $X \cap (a, \infty)$ then we write $\lim_{x \to a^+} f(x) = L$ to mean that

$$\lim_{x \to a} g(x) = L$$

where

$$g=f\big|_{X\cap(a,\infty)}$$

• If a is a limit point of $X \cap (-\infty, a)$ then we write $\lim_{x\to a^+} f(x) = L$ to mean that

$$\lim_{x \to a} g(x) = L$$

where

$$g = f \mid_{X \cap (-\infty, a)}$$

Example:

$$f(x) \coloneqq \begin{cases} -1, x < 0 \\ 0, x = 0 \\ 1, x > 0 \end{cases}$$
$$\lim_{x \to 0^+} f(x) = 1 \neq \lim_{x \to 0^-} f(x) = -1$$

Continuity

13.1 One-Sided Limits

Recall: For $X \subseteq \mathbb{R}$, $f: X \to \mathbb{R}^m$, $a \in \mathbb{R}$

• If a is a limit point of $X \cap [a, \infty]$, then

$$\lim_{x \to a^+} f(x) := \lim_{x \to a} f_{X \cap [a,\infty)}(x)$$

 $\lim_{x\to a^-} f(x)$ is defined similarly.

In other words, $\lim_{x \to a^+} f(x) = L$ means $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $a < x < a + \delta$ and $x \in X$, then

$$||f(x) - L||_2 < \epsilon$$

13.2 Continuity

Definition 13.2.1. Let $f: X \to \mathbb{R}^m$ where $X \subseteq \mathbb{R}^d$. Let $a \in X$.

• If a is not an isolated point, then we say f is continuous at a if

$$\lim_{x \to a} f(x) = f(a)$$

• If a is an isolated point, then we always say f is continuous at a.

Definition 13.2.2 ($\delta - \epsilon$ Characterization of Continuity). f is continuous at $a \iff \forall \epsilon > 0, \exists \gamma > 0$ s.t if

$$x \in X \cap B(a; \delta)$$

then

$$||f(x) - f(a)||_2 < \epsilon$$

In other words if x is close to a, the f(x) is close to f(a). This holds regardless of whether or not a is isolated.

Example: $f: \mathbb{R} \to \mathbb{R}$ $f(x) := x^2$. For any $a \in \mathbb{R}$, we proved last lecture that

$$\lim_{x \to a} f(x) = a^2 = f(a)$$

Therefore, f is continuous at a.

Example:

$$f(x) := \begin{cases} 1 & \text{if } x \le 1 \\ 2 & \text{if } x > 1 \end{cases}$$

For this function,

$$\lim_{x \to 1^+ f(x) = 2 \neq f(x) = 1}$$

Therefore, f is not continuous at 1.

Example:

$$f(x) := \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x > 0\\ L & \text{if } x = 0 \text{ for some } L \in \mathbb{R} \end{cases}$$

No matter how we choose L, f is not continuous at 0.

Proof. We want to show $\lim_{x\to 0} f(x)$ does not exist. Consider the sequence

$$\left(\frac{1}{2\pi n}\right)_{n=1}^{\infty} \to 0$$

and $f\left(\frac{1}{2\pi n}=0\to 0\right)$. But we also have

$$\left(\frac{1}{2\pi n + \pi/2}\right)_{n=1}^{\infty} \to 0$$

and $f\left(\frac{1}{2\pi n + \pi/2}\right) = 1 \to 1$. So if $\lim_{x\to 0} f(x)$ exists, then $f(a_n) \to L$ for a sequence $(a_{nn})_{n=1}^{\infty}$ in $(0,\infty)$ such that $a_n \to 0$. So L=0 and L=1, therefore a contradiction

Example:

$$f(x) := \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

f is not continuous at any point.

Proof. Let $a \in \mathbb{R}$. We'll prove $\lim_{x \to a} f(x)$ does not exist.

$$\exists ((_n)_{n=1}^{\infty} x) \in \mathbb{Q} \text{ s.t } x_n \to a$$

so
$$f(x_n) = 1 \to 1$$

$$\exists (\binom{n}{n-1}y) \in \mathbb{R} \setminus \mathbb{Q} \text{ s.t } y_n \to a$$

Since we can find $z_n \in \mathbb{Q}$ such that $z_N \to a + \sqrt{2}$, so $y := z_n - \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$, $y_n \to a$. So $f(y_n) = 0 \to 0$. Therefore, the $\lim_{x \to a} f(x)$ does not exist.

Example:

$$f(x) := \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

f is continuous.

Proof. Use squeeze theorem, if $x \ge 0$, then $-x \le f(x) \le x$. So

$$-|x| \le f(x) \le |x|$$

$$\lim_{x \to 0} |x| = 0 = \lim_{x \to 0} -|x|$$

$$\therefore \lim_{x \to 0} f(x) = 0 = f(0)$$

Proposition 13.2.1. Let $X \subseteq \mathbb{R}^d$, $Y \subseteq \mathbb{R}^m$, and $f: X \mapsto Y$, $g: Y \to \mathbb{R}^n$, $a \in X$. If f is continuous at a and g is continuous at f(a), then $g \circ f$ is continuous at a.

Proof. Use the $\delta - \epsilon$ characterization. Let $\epsilon > 0$ be given. Since g is at f(a), $\exists \eta > 0$ (using η instead of δ), such that if $y \in B(f(a); \eta) \cap Y$, then

$$||g(x) - g(f(a))||_2 < \epsilon$$

Since f is continuous at $a, \exists \delta > 0$ such that if $x \in B(a; \delta) \cap X$, then

$$||f(x) - f(a)||_2 < \eta$$

In other words, $f(x) \in B(f(a); \eta)$. Therefore if $x \in B(a; \delta) \cap X$, then since $f(x) \in B(f(a); \eta)$,

$$||g(x) - g(f(a))||_2 < \epsilon$$

as required.

Proposition 13.2.2. Let $X \subseteq \mathbb{R}^d$, $f, g: X \mapsto \mathbb{R}^m$, $a \in X$ such that f, g are continuous at a,

- (i) $f + g: X \mapsto \mathbb{R}^m$ is continuous at a
- (ii) $cf: X \mapsto \mathbb{R}^m$ is continuous at a for any $c \in \mathbb{R}$
- (iii) $\gamma f: X \mapsto \mathbb{R}^m$ is continuous at a if $\gamma: X \mapsto \mathbb{R}$ is continuous at a.
- (iv) If m = 1, and $g(x) \neq 0$, $\forall x \in X$, then

$$\frac{f}{g}: X \mapsto \mathbb{R}$$

is continuous at a.

Proof. Follows from the algebra of limits.

П

If $f: X \mapsto \mathbb{R}^m$, $f = (f_1, \dots, f_m)$ where $f_i: X \mapsto \mathbb{R}$, then f is continuous at a if and only if f_i is continuous at a for all $i \in \{1, \dots, m\}$.

• You are allowed to use the fact that sin, cos, exp, log are all continuous functions log are all continuous log : $[0,\infty) \mapsto \mathbb{R}$ is continuous at all $a \in [0,\infty)$.

13.3 Properties of Continuous Functions

 $f: X \mapsto \mathbb{R}^m$ is (globally) continuous if f is continuous at a for all $a \in X$.

Theorem 13.3.1. Let $K \subseteq \mathbb{R}^d$ be a compact set. If $f: K \mapsto \mathbb{R}^m$ is continuous, then f(K) is compact.

Proof. Let $(a_n)_{n=1}^{\infty}$ be a sequence in f(K). We need to show that \exists a subsequence. We need to show that \exists a subsequence $(a_{n_k})_{k=1}^{\infty}$ s.t $a_{n_k} \to b$ for some $b \in f(K)$. Since $a_n \in f(K)$, $\exists x_n \in K$ s.t $f(x_n) = a_n$ for all n. This gives a sequence $(x_n)_{n=1}^{\infty}$ in K. Since K is compact, \exists a subsequence $(x_{n_k})_{k=1}^{\infty}$ s.t $x_{n_k} \to x_0$. Since f is continuous at $x_0, f(x_{n_k}) \to f(x_0)$. Therefore, $a_{n_k} \to f(x_0)$ and $(a_{n_k})_{n=1}^{\infty}$ is a subsequences of $(a_n)_{n=1}^{\infty}$. This is what we wanted.

Corollary 13.3.1 (Extreme Value Theorem). Let $K \subseteq \mathbb{R}^d$ be compact, $f: K \to \mathbb{R}$ a continuous function. Then f is bounded and it attains its bounds, i.e $\exists x_{\min}, x_{\max} \in K$ such that $\forall x \in K$

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$

Proof. From the previous result, f(K) is compact in \mathbb{R} . By the Heine-Borel theorem, this means f(k) is closed and bounded. Therefore, f is bounded. Since f(K) is closed, $\sup f(K) \in f(K)$ since there is a sequence $(y_n)_{n=1}^{\infty}$ in f(K) such that $y_n \to \sup f(K)$. So $\exists x_{\max} \in K$ such that

$$f(x_{\text{max}}) = \sup f(k)$$

Therefore,

$$f(x) \le f(x_{\text{max}}) \ \forall x \in K$$

Similarly, $\exists x_{\min} \in K$ such that $f(x_{\min}) \leq f(x) \ \forall x \in K$.

Properties of Continuous Functions Continued

Recall:

Corollary 13.3.1 (Extreme Value Theorem). If $K \subseteq \mathbb{R}^d$ is compact and $f: K \to \mathbb{R}$ is continuous, then $\exists x_{\min}, x_{\max} \in K$ such that $f(x_{\min}) \leq f(x) \leq f(x_{\max})$ for all $x \in K$.

Theorem 14.0.1 (Intermediate Value Theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous, and let $y_0 \in \mathbb{R}$ be any number between f(a) and f(b). Then there exists a number x_0 between a and b such that $f(x_0) = y_0$.

Proof. Without loss of generality, assume $f(a) \leq f(b)$. So $x_0 \in [f(a), f(b)]$. Let

$$S := \{x \in [a, b] : f(x) \le x_0\}$$

 $S\subseteq [a,b]$, so S is bounded. $a\in S$ since $f(a)\leq x_0$. Therefore $S\neq\emptyset$. So $\exists x_0\coloneqq\sup S\in [a,b]$. We will show $f(x_0)=y_0$. We will consider the cases, where $f(x_0)=y_0,\ f(x_0)< y_0,\ \text{and}\ f(x_0)>y_0$. If $f(x_0)< y_0,\ \text{set}\ \epsilon\coloneqq y_0-f(x_0)$. Since f is continuous at $x_0,\ \exists\delta>0$ s.t if $|x-x_0|<\delta$ and $x\in [a,b]$. Then $|f(x)-f(x_0)|<\epsilon$. Since $f(x_0)< y_0\leq f(b)$ for $x_0\neq b$. So we can find $x>x_0$ such that $x\in [a,b]$ and $|x-x_0|<\delta$. Then $f(x)< f(x_0)+\epsilon=y_0$. So $x\in S$ by the definition of S, since $S=\{x:f(x)\leq y_0\}$. This is a contradiction since $x>x_0$, but x_0 is an upper bound for S.

If $f(x_0) > y_0$, set $\epsilon := f(x_0) - y_0$. Since f is continuous at x_0 , $\exists \delta > 0$ such that if $x \in [a,b]$ and $|x-x_0| < \delta$, then $|f(x)-f(x_0)| < \epsilon$. So $f(x_0) > y_0 \le f(a)$. So $x_0 > a$. We may assume that $x_0 - \delta > a$ since δ is abritrary and can be arbitrarly small.

Claim: $x_0 - \delta$ is an upper bound for S. Proof of claim, if $x > x - \delta$, then either $|x - x_0| < \delta$, in which case $f(x) > f(x_0) - \epsilon = y - 0$, or $x > x_0$, in which case $x \notin S$ since x_0 is an upper bound for S. Therefore, if $x > x_0 - \delta$, then $x \notin S$.

This proves the claim.

The claim contradits that x_0 is the least upper bound for S.

Corollary 14.0.1. Let $f:[a,b] \to \mathbb{R}$ be continuous. Then f([a,b]) = [c,d] for some $c \leq d$.

Proof. By extreme value theorem, $\exists x_{\min}, x_{\max} \text{ such that } f(x) \in [f(x_{\min}), f(x_{\max})]$ $\forall x \in [a, b]$. So we can set $c \coloneqq f(x_{\min})$ and $d \coloneqq f(x_{\max})$ and we have

$$f([a,b]) \subseteq [c,d]$$

for $y_0 \in [c, d] = [f(x_{\min}), f(x_{\max})]$. By the Intermediate Value Theorem, $\exists x_0$ between x_{\min} nad x_{\max} such that $f(x_0) = y_0$. Therefore

$$[c,d] \subseteq f([a,b])$$

Thus,

$$f([a,b]) = [c,d]$$

14.1 Inverses of Continuous Functions

Let $f: A \mapsto B$, f is

- **Injective** (or one-to-one) If $\forall x, y \in A$, if f(x) = f(y), then x = y.
- Surjective (or onto) If $\forall y \in B, \exists x \in A \text{ such that}$

$$f(x) = y$$

• **Bijective** (or one-to-one and onto) If f is both injective and surjective.

f is bijective \iff it is invertible $\iff \exists f^{-1}: B \mapsto A \text{ s.t } f \circ f^{-1} = id_B \text{ and } f^{-1} \circ f = id_A$

Proof. (\longleftarrow) If f is inveritble, then it is

- Injective since if f(x) = f(y) then $x = f^{-1}(f(x)) = f^{-1}(f(y)) = y$
- Surjective since given $y \in B$, $x := f^{-1}(y)$ satisfies f(x) = y.

 (\Longrightarrow) If f is bijective, then for $y\in B, \exists x\in A$ such that f(x)=y. Also, this x is unique since f is injective. So we can define

$$f^{-1}(y) := x$$

and this is an inverse to f.

Given $f: A \mapsto \mathbb{R}$ that is injective, we view f as a function $A \mapsto f(A)$, and this way we force f to be surjective. Thus $f^{-1}: f(A) \mapsto A$ exists.

Question: If f is injective and continuous, must f^{-1} be continuous? No. Consider the example with $f:[0,1)\cup[2,\infty]$

$$f(x) := \begin{cases} x_1 \text{ if } x < 1\\ x - 1 \text{ if } x \ge 2 \end{cases}$$

 $f^{-1}:[0,\infty)\mapsto[0,1)\cup[2,\infty]\subseteq\mathbb{R}$, so

$$f^{-1}(y) = \begin{cases} y_1 & \text{if } y < 1\\ y + 1 & \text{if } y \ge 1 \end{cases}$$

 f^{-1} is not continuous.

Definition 14.1.1. *Let* $A \subseteq \mathbb{R}$, $f : A \mapsto \mathbb{R}$. f *is*

- (i) increasing if $\forall x, y \in A, x \leq y \text{ then } f(x) \leq f(y)$
- (ii) strictly increasing if $\forall x, y \in A, x < y \text{ then } f(x) < f(y)$
- (iii) decreasing if $\forall x, y \in A, x \leq y$ then $f(x) \geq f(y)$
- (iv) strictly decreasing if $\forall x, y \in A, x < y \text{ then } f(x) > f(y)$

Lemma 14.1.1. Let $I \subseteq \mathbb{R}$ be an interval, $f: I \mapsto \mathbb{R}$ be an injective continuous function. Then f is either strictly increasing or strictly decreasing.

Proof. It suffices to consider the case where I is a closed, bounded interval. A general interval I is a union of an increasing sequence of closed bounded intervals, so if f is strictly increasing or strictly decreasing on each of these subintervals, then f is strictly increasing or decreasing on all of I. Consider the case I = [a, b] with (a < b). Without loss of generality, assume f(a) < f(b), in this case we'll show that f is strictly increasing. By contradiction, if f is not strictly increasing, then there exists $x_1 < x_2$ such that

$$f(x_1) \geq f(x_2)$$

We'll break this into 2 cases.

• Case 1: f(x) > f(b). In this case,

$$f(a) < f(b) < f(x_1)$$

and

$$f|_{[a,x_1]}$$

is continuous. So by the Intermediate Value Theorem, $\exists z \in [a, x_1]$ such that f(z) = f(b). But,

$$z < x_1 < x_2 < b$$

So $z \neq b$, which contradicts that f is injective.

• Case 2: $f(x_1) \leq f(b)$. In this case, $f(x_2) \leq f(x_1) \leq f(b)$ and $f|_{[x_1,b]}$ is continuous. So by the Intermediate Value Theorem, $\exists z \in [x_1,b]$ such that $f(z) = f(x_1)$. $z \geq x_2 > x_1$ so $z \neq x_1$. But, this contradicts that f is injective.

In both cases, we get a contridction, so our assumption that f is not strictly increasing is false. \Box

Let $I\subset\mathbb{R}$ be an interval, $f:I\mapsto\mathbb{R}$ be a continuous function. Then $f^{-1}:f(I)\mapsto\mathbb{R}$ is continuous.