Bandwidth selectors for multivariate kernel density estimation

Le choix de fenêtres pour l'estimation de la densité multivariée à noyau

Tarn Duong
Supervisor/Directeur: Dr Martin Hazelton
University of Western Australia

August/Août 2004

Outline

- 1. Motivation (finite sample)
- 2. Optimal bandwidth selectors
- 3. Asymptotic behaviour
- 4. Application to real data
- 5. Summary

Motivation – dumbbell density

Contour plot

Sample

Properties of KDE

- non-parametric
- easy to compute
- easy to interpret

Equation for KDE

Kernel density estimate (KDE) is

$$\hat{f}(\boldsymbol{x}; \mathbf{H}) = n^{-1} \sum_{i=1}^{n} K_{\mathbf{H}}(\boldsymbol{x} - \boldsymbol{X}_i)$$

where

- X_1, X_2, \dots, X_n is random sample of n d-variate data points
- **H** is **bandwidth** matrix parameter
- ullet $K_{\mathbf{H}}(\cdot)$ is normal pdf with mean $\mathbf{0}$ and variance \mathbf{H}

Constructing KDE

Individual kernels

Averaged kernels = KDE

Bandwidth selection

- single most important factor affecting performance of KDE
- induces orientation of kernel
- controls spread of kernel
- ullet diagonal bandwidth $egin{bmatrix} h_1^2 & 0 \\ 0 & h_2^2 \end{bmatrix}$ or full bandwidth $egin{bmatrix} h_1^2 & h_{12} \\ h_{12} & h_2^2 \end{bmatrix}$

Kernel orientation

Diagonal bandwidth matrix Full bandwidth matrix

KDE of simulated dumbbell density

Diagonal bandwidth matrix Full bandwidth matrix

Error measures (1)

Mean Integrated Squared Error (MISE) is

$$\mathrm{MISE}(\mathbf{H}) = \int_{\mathbb{R}^d} \mathbb{E}[\hat{f}(oldsymbol{x}; \mathbf{H}) - f(oldsymbol{x})]^2 \ doldsymbol{x}$$

where

- ullet $\hat{f}(oldsymbol{x}; \mathbf{H})$ is kernel density estimate
- f(x) is (unknown) target density

Error measures (2)

Asymptotic Mean Integrated Squared Error (AMISE) is

$$AMISE(\mathbf{H}) = \underbrace{n^{-1}R(K)|\mathbf{H}|^{-1/2}} + \underbrace{\int_{\mathbb{R}^d} [(K_{\mathbf{H}} * f)(\boldsymbol{x}) - f(\boldsymbol{x})]^2 d\boldsymbol{x}}$$

Asymptotic integrated variance

Exact integrated squared bias

where $R(K) = \int_{\mathbb{R}^d} K(\boldsymbol{x})^2 d\boldsymbol{x}$ and * is the convolution operator.

Optimal bandwidth selectors

• MISE-optimal bandwidth selector is

$$\mathbf{H}_{\mathrm{MISE}} = \underset{\mathbf{H}}{\mathrm{argmin}} \ \mathrm{MISE}(\mathbf{H}).$$

• Our surrogate for this is

$$\mathbf{H}_{\mathrm{AMISE}} = \underset{\mathbf{H}}{\mathrm{argmin}} \ \mathrm{AMISE}(\mathbf{H}).$$

• Our data-driven bandwidth selector is

$$\hat{\mathbf{H}} = \underset{\mathbf{H}}{\operatorname{argmin}} \widehat{AMISE}(\mathbf{H}).$$

Smoothed cross validation (1)

Obtain SCV estimate of AMISE by replacing f by a pilot kernel density estimate \hat{f}_P

$$\hat{f}_P(\boldsymbol{x}; \mathbf{G}) = n^{-1} \sum_{i=1}^n K_{\mathbf{G}}(\boldsymbol{x} - \boldsymbol{X}_i)$$

where G is pilot bandwidth matrix.

- ullet same as \hat{f} except for ${f G}$
- can be quite imprecise since is only a preliminary estimate
- ullet \hat{f}_P is refined to more accurate \hat{f}

Smoothed cross validation (2)

$$SCV(\mathbf{H}; \mathbf{G}) = n^{-1}R(K)|\mathbf{H}|^{-1/2}$$

$$+ n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} (K_{2\mathbf{H}+2\mathbf{G}} - 2K_{\mathbf{H}+2\mathbf{G}} + K_{2\mathbf{G}})(\mathbf{X}_i - \mathbf{X}_j)$$

where K is normal kernel.

SCV algorithms

- Hall, Marron & Park (1992)'s univariate selector, with optimal pilot selector g independent of h
- ullet Sain, Baggerly & Scott (1994)'s multivariate selector, diagonal matrix with sub-optimal pilot selector set equal to ${f H}$
- Proposed: multivariate selector, full matrix with optimal pilot selector $g^2\mathbf{I}$ independent of \mathbf{H}

Pilot bandwidth matrix selection (1)

- Simplify problem first by using $\mathbf{G} = g^2 \mathbf{I}$
- Appropriate value of g

$$g_0 = \underset{g>0}{\operatorname{argmin}} \operatorname{MSE}(\hat{\mathbf{H}}(g))$$

where

$$MSE(\hat{\mathbf{H}}(g)) = g^{4}C_{1} + 2n^{-1}g^{-d-2}C_{2} + n^{-2}g^{-2d-8}C_{3} + O(n^{-2}g^{-2d-8} + n^{-1})$$

Pilot bandwidth matrix selection (2)

• $\mathrm{MSE}(\hat{\mathbf{H}}(g))$ has minimum at

$$g_0 = \left[\frac{2(d+4)C_3}{n\sqrt{-(d+2)C_2 + C_1}}\right]^{1/(d+6)}$$

where C_1, C_2 and C_3 are constants that involve d, f, K but not n.

• Estimate C_1, C_2, C_3 and 'plug-in' estimates to give \hat{g}_0 .

Proposed SCV algorithm

- 1. Set pilot bandwidth to $\hat{g}_0^2 \mathbf{I}$.
- 2. Form $SCV(\mathbf{H}; \hat{g}_0^2 \mathbf{I})$
- 3. $\hat{\mathbf{H}} = \underset{\mathbf{H}}{\operatorname{argmin}} \operatorname{SCV}(\mathbf{H}; \hat{g}_0^2 \mathbf{I})$

Order in probability – univariate

Let $\{a_n\}, \{b_n\}$ be sequence of numbers. Then

$$a_n = O(b_n)$$
 if $\exists M, L : n > M \Rightarrow |a_n| < L|b_n|$

Let $\{A_n\}$ be sequence of random variables. Then

$$A_n = O_p(b_n) \text{ if } \forall \epsilon > 0, \exists M, L : n > M \Rightarrow \mathbb{P}(|A_n| < L|b_n|) > 1 - \epsilon$$

Relative convergence rate – univariate

 \hat{h} converges to $h_{\rm AMISE}$ with (relative) rate $n^{-\alpha}$ if

$$\hat{h} - h_{\text{AMISE}} = O_p(n^{-\alpha})h_{\text{AMISE}}$$

 \hat{h} converges to $h_{\rm MISE}$ with (relative) rate $n^{-\alpha}$ if

$$\hat{h} - h_{\text{MISE}} = O_p(n^{-\alpha})h_{\text{MISE}}$$

Order in probability – multivariate

Let $\{\mathbf{A}_n\}, \{\mathbf{B}_n\}$ be sequences of matrices of the same dimensions. Then

$$\mathbf{A}_n = O_p(\mathbf{B}_n) \text{ if } a_{n,ij} = O_p(b_{n,ij})$$

for all elements $a_{n,ij}$ of \mathbf{A}_n and $b_{n,ij}$ of \mathbf{B}_n .

Relative convergence rate – multivariate

• $\hat{\mathbf{H}}$ converges to $\mathbf{H}_{\mathrm{AMISE}}$ with (relative) rate $n^{-\alpha}$ if

$$\operatorname{vech}(\hat{\mathbf{H}} - \mathbf{H}_{\text{AMISE}}) = O_p(n^{-\alpha}\mathbf{J}) \operatorname{vech} \mathbf{H}_{\text{AMISE}}$$

where

- vech is vector half operator e.g. if $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\operatorname{vech} \mathbf{A} =$
- $\begin{bmatrix} a & c & d \end{bmatrix}^T \\ \mathbf{J} \text{ is } \tfrac{1}{2}d(d+1) \times \tfrac{1}{2}d(d+1) \text{ matrix of ones} \\ \end{bmatrix}$
- ullet Corresponding definition for ${f H}_{
 m MISE}.$

Strategy (1)

Let
$$MSE(\hat{\mathbf{H}}) = \mathbb{E}[\text{vech}(\hat{\mathbf{H}} - \mathbf{H}_{AMISE}) \text{ vech}^T(\hat{\mathbf{H}} - \mathbf{H}_{AMISE})].$$

lf

$$MSE(\hat{\mathbf{H}}) = O(n^{-2\alpha}\mathbf{J})(\operatorname{vech}\mathbf{H}_{AMISE})(\operatorname{vech}^T\mathbf{H}_{AMISE})$$

then $\hat{\mathbf{H}}$ has relative rate $n^{-\alpha}$ of convergence to $\mathbf{H}_{\mathrm{AMISE}}$.

Strategy (2)

We have

$$MSE(\hat{\mathbf{H}}) = Var(\hat{\mathbf{H}}) + [Bias(\hat{\mathbf{H}})][Bias^{T}(\hat{\mathbf{H}})]$$

where

$$\operatorname{Bias}(\hat{\mathbf{H}}) = O\left(\mathbb{E}\left[\frac{\partial}{\partial \operatorname{vech} \mathbf{H}}(\widehat{\operatorname{AMISE}} - \operatorname{AMISE})(\mathbf{H}_{\operatorname{AMISE}})\right]\right)$$
$$\operatorname{Var}(\hat{\mathbf{H}}) = O\left(\operatorname{Var}\left[\frac{\partial}{\partial \operatorname{vech} \mathbf{H}}(\widehat{\operatorname{AMISE}} - \operatorname{AMISE})(\mathbf{H}_{\operatorname{AMISE}})\right]\right)$$

Strategy (3)

1. Compute order of expected value and variance of

$$\frac{\partial}{\partial \operatorname{vech} \mathbf{H}} (\widehat{\operatorname{AMISE}} - \operatorname{AMISE}) (\mathbf{H}_{\operatorname{AMISE}}).$$

- 2. Compute $\mathrm{MSE}(\hat{\mathbf{H}})$ from Step 1. Convergence rate to $\mathbf{H}_{\mathrm{AMISE}}$ follows immediately.
- 3. If rate of $\mathbf{H}_{\mathrm{AMISE}}$ to $\mathbf{H}_{\mathrm{MISE}}<$ rate of $\hat{\mathbf{H}}$ to $\mathbf{H}_{\mathrm{AMISE}}$ then convergence rate of $\hat{\mathbf{H}}$ to $\mathbf{H}_{\mathrm{MISE}}$ is same as in Step 2.

Convergence rate for SCV selector (1)

Step 1. (a)

$$\mathbb{E}\left[\frac{\partial}{\partial \operatorname{vech} \mathbf{H}}(\operatorname{SCV} - \operatorname{AMISE})(\mathbf{H}_{\operatorname{AMISE}})\right]$$
$$= O((g_0^2 + n^{-1}g_0^{-d-4})\mathbf{J})\operatorname{vech} \mathbf{H}_{\operatorname{AMISE}}$$

as

$$\mathbb{E}[SCV(\mathbf{H}; g^2\mathbf{I})] = AMISE(\mathbf{H}) + O((g^2 + n^{-1}g^{-d-4}) \|\operatorname{vech} \mathbf{H}\|^2)$$

Convergence rate for SCV selector (2)

Step 1. (b)

$$\operatorname{Var}\left[\frac{\partial}{\partial \operatorname{vech} \mathbf{H}}(\operatorname{SCV} - \operatorname{AMISE})(\mathbf{H}_{\operatorname{AMISE}})\right]$$
$$= O((n^{-2}g_0^{-d-8} + n^{-1})\mathbf{J})(\operatorname{vech} \mathbf{H}_{\operatorname{AMISE}})(\operatorname{vech}^T \mathbf{H}_{\operatorname{AMISE}})$$

as

$$Var[\dots] = n^{-2}V_1 + n^{-1}V_2$$

where

$$V_1 = O(g^{-d-8}\mathbf{J})(\operatorname{vech}\mathbf{H})(\operatorname{vech}^T\mathbf{H})$$

$$V_2 = O(\mathbf{J})(\operatorname{vech} \mathbf{H})(\operatorname{vech}^T \mathbf{H})$$

Convergence rate for SCV selector (3)

Step 1. (cont.)

Bias(
$$\hat{\mathbf{H}}$$
) = $O(n^{-2/(d+6)}\mathbf{J})$ vech \mathbf{H}_{AMISE}
Var($\hat{\mathbf{H}}$) = $O(n^{-4/(d+6)}\mathbf{J})$ (vech \mathbf{H}_{AMISE})(vech^T \mathbf{H}_{AMISE})

Step 2.

$$MSE(\hat{\mathbf{H}}) = O(n^{-4/(d+6)}\mathbf{J})(\operatorname{vech}\mathbf{H}_{AMISE})(\operatorname{vech}^T\mathbf{H}_{AMISE})$$

 $\Rightarrow \hat{\mathbf{H}}$ has convergence rate $n^{-2/(d+6)}$ to $\mathbf{H}_{\mathrm{AMISE}}$.

Convergence rate for SCV selector (4)

Step 3.

- Rate of $\mathbf{H}_{\mathrm{AMISE}}$ to $\mathbf{H}_{\mathrm{MISE}}$ is $n^{-2/(d+4)}$.
- This is smaller than $n^{-2/(d+6)}$ for all d.
- So $\hat{\mathbf{H}}$ has rate $n^{-2/(d+6)}$ to $\mathbf{H}_{\mathrm{MISE}}$ for all d.

Unicef data (1)

Unicef data (2)

Diagonal selector

Full SCV selector

Summary and future directions

Summary

- Constructed full SCV selector (includes optimal scalar pilot selector)
- Supplied asymptotic relative convergence rate
- Shown good finite sample behaviour with simulated and real data

Future directions

• Develop full matrix pilot selector instead of current scalar selector