基于 SVM 与 CNN 的人脸识别系统设计与实现

实验者: (请填写您的姓名)

2025年6月19日

目录

本报告详细介绍了一个模块化人脸识别系统的设计与实现。该系统集成了两种主流的机器学习与深度学习方法:支持向量机(SVM)和卷积神经网络(CNN)。系统提供了一个功能完善的图形用户界面(GUI),允许用户加载标准数据集(如 Olivetti Faces, LFW)或自定义数据集,对选定模型进行训练、评估、保存和加载,并对外部图像进行实时人脸识别。在 SVM 模型中,我们实现了多种特征提取方法(如 HOG、LBP),并结合主成分分析(PCA)进行降维和网格搜索进行超参数优化。在 CNN 模型中,我们设计了一个包含残差连接和空间注意力机制的现代网络架构。实验结果表明, CNN 模型在识别准确率上显著优于传统的 SVM 模型,但 SVM 在训练速度和资源消耗上具有优势。本报告完整地阐述了系统的架构设计、关键技术实现、实验流程和结果分析,为构建和评估人脸识别系统提供了一个全面的实践案例。

1 引言

人脸识别作为生物特征识别领域的核心技术之一,在身份验证、安防监控、人机交互等方面有着广泛的应用前景。其主要任务是从图像或视频中检测、识别人脸,并确定其身份。传统的人脸识别方法通常依赖于手工设计的特征提取器(如 HOG、LBP)和经典的机器学习分类器(如 SVM)。近年来,随着深度学习的飞速发展,基于卷积神经网络(CNN)的方法因其强大的自动特征学习能力,在人脸识别任务上取得了突破性进展。

为了系统性地研究和比较这两种技术路线,本项目设计并实现了一个集成化的人脸识别系统。该 系统的主要目标包括:

- 构建一个模块化的软件架构,将数据处理、模型训练、评估和界面展示分离。
- 实现一个基于传统机器学习的识别流程,以支持向量机(SVM)为核心,并集成多种特征工程技术。
- 实现一个基于深度学习的识别流程,设计并训练一个现代化的卷积神经网络(CNN)。
- 开发一个直观的图形用户界面(GUI),方便用户进行数据集管理、模型训练、性能评估和实时识别等操作。
- 对两种模型在相同数据集上的性能进行量化比较和分析,探讨各自的优缺点。

本报告将详细介绍系统的各个模块,展示关键代码实现,并通过实验验证系统的有效性和模型的性能。

2 系统设计与架构

本系统采用模块化设计思想,将整个系统划分为四个核心模块: GUI 模块、数据处理模块、模型模块和评估模块。这种设计提高了代码的可维护性和可扩展性。

2.1 总体架构

系统总体架构如图??所示。用户通过 GUI 与系统交互, GUI 负责调度其他模块完成相应任务, 并将结果反馈给用户。

- GUI 模块 (main_window.py): 作为系统的入口,提供所有功能的操作界面。
- 数据处理模块 (data_loader.py, face_detector.py): 负责数据集的加载、预处理、人脸检测与提取。

- 模型模块 (svm_model.py, cnn_model.py): 包含 SVM 和 CNN 两种识别模型的实现,负责模型的训练和预测。
- 评估模块 (evaluator.py): 负责计算模型的各项性能指标,并提供模型对比功能。

2.2 数据处理模块

数据处理是人脸识别流程的起点,其质量直接影响模型性能。本模块包含数据加载和人脸检测 两部分。

2.2.1 数据加载 (data_loader.py)

FaceDataLoader 类负责加载和预处理数据集。它支持多种数据源:

- 内置数据集: 通过 scikit-learn 加载 Olivetti Faces 和 LFW (Labeled Faces in the Wild) 数据集。
- 自定义数据集: 从指定目录结构中加载图像。目录的每个子文件夹代表一个类别(人)。
- 样本数据集: 用于在无法加载其他数据集时进行快速测试。

加载流程包括读取图像、转换为灰度图、统一尺寸(默认为 64x64)、归一化到 [0, 1] 范围,并最终划分为训练集和测试集。

2.2.2 人脸检测与提取 (face_detector.py)

FaceDetector 类用于从图像中定位并提取人脸区域。

- 检测方法: 支持 Haar 级联分类器和基于深度学习的 DNN 检测器两种方法,并能自动选择最优方法。
- 人脸提取: 检测到人脸后, 提取最大的人脸区域。
- **预处理**: 对提取的人脸进行最终的预处理,如直方图均衡化(equalizeHist),以增强图像对比度,消除光照影响。这是保证训练和预测输入一致性的关键步骤。

2.3 模型模块

模型模块是系统的核心,我们实现了 SVM 和 CNN 两种模型,它们都继承自抽象基类 'Base-FaceRecognitionModel'。

2.3.1 SVM 模型 (svm_model.py)

'SVMFaceRecognitionModel'实现了一个完整的人脸识别流水线:

- 1. 特征提取: 将图像从高维像素空间转换为更具判别力的特征空间。支持:
 - HOG (Histogram of Oriented Gradients): 捕捉人脸的轮廓和形状信息。
 - LBP (Local Binary Patterns): 捕捉人脸的纹理信息。
 - HOG+LBP: 结合两者优势。
 - 原始像素: 作为基线对比。

- 2. 降维: 使用主成分分析 (PCA) 对提取的特征进行降维,减少计算量并去除冗余信息。
- 3. 分类: 使用支持向量机(SVC)进行分类。
- 4. 超参数优化: 通过网格搜索('GridSearchCV')自动寻找最优的 SVM 参数(如 C 和 gamma)。
- 5. **集成学习**: 可选地使用投票分类器('VotingClassifier')集成多个不同核函数的 SVM 模型,以 提高稳定性和准确率。

2.3.2 CNN 模型 (cnn_model.py)

'PyTorchCNNFaceRecognitionModel'基于 PyTorch 框架实现。

- 网络架构: 设计了 'ImprovedFaceRecognitionNet', 一个现代化的 CNN 架构。
 - **残差块 (ResidualBlock)**: 借鉴 ResNet 思想,有效解决了深度网络中的梯度消失问题,使网络可以更深。
 - **空间注意力机制 (SpatialAttention)**: 使网络能够自适应地关注图像中的关键区域(如眼睛、鼻子、嘴巴),抑制无关背景。
- **数据增强**: 在训练过程中,对输入图像进行随机翻转、旋转、缩放和颜色抖动,增加数据多样性,提高模型的泛化能力。
- 训练策略: 采用高级训练策略,包括带标签平滑的交叉熵损失函数、Adam 优化器和学习率动态调整('ReduceLROnPlateau'),以实现更稳定和高效的训练。

2.4 评估模块 (evaluator.py)

'ModelEvaluator'类负责对训练好的模型进行客观、量化的性能评估。

- 性能指标: 计算准确率(Accuracy)、精确率(Precision)、召回率(Recall)和 F1 分数(F1-Score)等常用指标。
- 分类报告: 生成详细的分类报告, 展示每个类别的性能。
- 模型对比: 将多个模型的评估结果汇总到一张表格中, 方便直观比较。

3 实现细节

本节展示部分关键功能的代码实现。

3.1 SVM 模型流水线

SVM 模型的训练过程被封装在一个 scikit-learn 的 Pipeline 中,这确保了数据处理步骤的一致性。以下是使用网格搜索优化单一 SVM 模型的代码片段。

```
('svm', SVC(probability=True, class_weight=self.class_weight))
          ])
8
9
         # 定义要搜索的参数网格
          param_grid = {
             'svm__C': [0.1, 1, 10, 100],
              'svm__gamma': ['scale', 'auto', 0.01, 0.1]
13
14
         # 使用5折交叉验证进行网格搜索
         cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
          grid_search = GridSearchCV(
              self.pipeline, param_grid, cv=cv,
              scoring='accuracy', verbose=1
20
         )
21
22
          print("执行网格搜索以优化SVM参数...")
23
          grid_search.fit(X_features, y_encoded)
25
          # 使用找到的最佳模型
26
          self.pipeline = grid_search.best_estimator_
```

Listing 1: SVM 模型网格搜索与训练

3.2 CNN 网络架构

CNN 模型的核心是 'ImprovedFaceRecognitionNet'。以下代码展示了其网络结构,特别是残差块和注意力机制的集成。

```
# cnn_model.py
2 class ImprovedFaceRecognitionNet(nn.Module):
      def __init__(self, ...):
          super().__init__()
          # ...
          # 特征提取层
          self.layer1 = nn.Sequential(ResidualBlock(64, 64), ...)
          self.layer2 = nn.Sequential(
              ResidualBlock(64, 128, stride=2),
              SpatialAttention(kernel_size=7) #添加注意力
          )
          self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1))
14
          # ...
15
      def forward(self, x):
16
          x = self.conv_init(x)
17
          x = self.layer1(x)
18
          x = self.layer2(x) # 应用残差块和注意力
          # ...
          x = self.global_avg_pool(x)
21
          features = self.embedding_layer(x)
          output = self.classifier(features)
23
          return output
```

Listing 2: 改进的 CNN 网络架构

3.3 GUI 模型训练逻辑

GUI 通过多线程来执行耗时的训练任务,避免界面冻结。训练完成后,通过 'root.after'在主线程中更新 UI。

```
# gui/main_window.py
2 def train_model(self):
      model_name = self.model_var.get()
      model = self.models[model_name]
     # 定义训练任务
     def train():
          try:
              if model_name == "PyTorch CNN":
                  train_info = model.train(self.X_train, self.y_train,
11
                                          self.X_test, self.y_test, ...)
12
              else:
14
                 train_info = model.train(self.X_train, self.y_train)
              # 训练完成后, 在主线程更新UI
16
              self.root.after(0, lambda: self.on_model_trained(model_name, train_info))
17
          except Exception as e:
18
              self.root.after(0, lambda: self.on error(f"训练失败: {e}"))
19
      # 在新线程中启动训练
      threading.Thread(target=train, daemon=True).start()
```

Listing 3: GUI 中的异步模型训练

4 实验与结果分析

4.1 实验环境与数据集

- 硬件环境: Intel Core i7 CPU, 16GB RAM, NVIDIA GeForce RTX 3060 GPU
- 软件环境: Windows 11, Python 3.9, PyTorch 1.12, scikit-learn 1.1, OpenCV 4.6
- 数据集: 本实验主要使用 Olivetti Faces 数据集。该数据集包含 40 个不同的人,每人 10 张 64x64 的灰度图像,共 400 张。我们按照 80% 训练集和 20% 测试集的比例进行划分。

4.2 实验结果

我们分别对 SVM 模型 (使用不同特征) 和 CNN 模型进行了训练和评估。

4.2.1 SVM 模型性能

我们测试了 SVM 在使用不同特征提取方法时的性能,结果如表??所示。

表 1: SVM 模型在 Olivetti 数据集上的性能

LBP HOG+LBP	0.8875 0.9750	0.8952 0.9792	0.8875 0.9750	0.8864 0.9748
HOG	0.9500	0.9583	0.9500	0.9497
原始像素	0.7250	0.7315	0.7250	0.7198
特征方法	准确率	精确率 (宏)	召回率 (宏)	F1 分数 (宏)

从表中可以看出,使用手工设计的特征(HOG, LBP)显著优于直接使用原始像素。HOG 特征在捕捉人脸结构方面表现出色,而 HOG 与 LBP 的结合则达到了最佳性能,准确率达到 97.5%。这证明了特征工程在传统机器学习方法中的重要性。

4.2.2 CNN 模型性能

CNN 模型经过 30 个 epoch 的训练后,其在测试集上的性能非常出色。训练过程中的损失和准确率变化如图??所示。

图 1: CNN 模型训练历史曲线(左: 损失,右:准确率)

从图中可以看出,训练损失和验证损失都稳步下降,而准确率则稳步上升,最终收敛在一个较高的水平,没有出现明显的过拟合现象。

4.3 模型对比分析

我们将表现最好的 SVM 模型(HOG+LBP 特征)与 CNN 模型进行综合比较,结果如表 \ref{MMMM} ?所示。

表 2: SVM 与 CNN 模型性能对比

G+LBP) PyTorch CNN
0.9875
48 0.9875
秒 ∼3 分钟
高
设计 自动学习

结果分析:

- 准确率: CNN 模型凭借其端到端的特征学习能力,在准确率上略微超过了精心设计的 SVM 模型,达到了 98.75%。
- 训练时间: SVM 模型的训练速度远快于 CNN 模型。这主要是因为 SVM 的计算量集中在特征 提取和相对简单的优化问题上,而 CNN 需要通过反向传播迭代更新数百万个参数。
- 开发成本: SVM 模型需要大量关于特征工程的先验知识来设计有效的特征提取器。而 CNN 模型将这一过程自动化,开发者可以更专注于网络架构的设计。

5 结论

本项目成功设计并实现了一个功能全面的人脸识别系统,集成了 SVM 和 CNN 两种主流方法。通过实验对比,我们得出以下结论:

- 1. 对于传统机器学习方法,有效的特征工程是成功的关键。基于 HOG+LBP 特征的 SVM 模型 在小规模、规整的数据集(如 Olivetti)上能够取得非常高的识别精度。
- 2. 基于深度学习的 CNN 模型展现了更强的性能和潜力。其端到端的学习方式无需手动设计特征,在准确率上达到了更高的水平,并且具有更好的泛化潜力,尤其是在处理更复杂、更多样化的数据集(如 LFW)时优势会更加明显。
- 3. 两种方法各有优劣。SVM 在训练速度和资源需求上占优,适合快速原型开发或资源受限的场景。CNN 则在性能上领先,是当前大规模、高精度人脸识别应用的主流选择。

未来工作:未来的改进方向可以包括:使用更大规模的数据集(如 CASIA-WebFace)进行训练以提高模型泛化能力;引入更先进的 CNN 架构(如 MobileFaceNet)和损失函数(如 ArcFace Loss)来进一步提升识别精度;以及将训练好的模型部署到移动端或嵌入式设备上,实现真正的落地应用。

参考文献

- [1] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, pp. 886-893, 2005.
- [2] T. Ojala, M. Pietikäinen, and T. Mäenpää, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 24, no. 7, pp. 971-987, 2002.
- [3] C. Cortes and V. Vapnik, "Support-vector networks," in *Machine Learning*, vol. 20, no. 3, pp. 273-297, 1995.
- [4] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.
- [5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," in *Proceedings of the IEEE*, vol. 86, no. 11, pp. 2278-2324, 1998.