VCCP: A Transparent, Coordinated Checkpointing System for Virtualization-based Cluster Computing

```
N. Saragol * Hong Ong# <u>K. Chanchio*</u>
Box Leangsuksun+
```

* Thammasat University, Patumtani, Thailand # Oak Ridge National Laboratory, Oak Ridge, TN, USA + Louisiana Tech University, Ruston, LA, USA

Outline

- Introduction
- Goals and Motivations
- Related Works
- VCCP Mechanisms
 - Protocol and Analysis
- Experimental Results
- Progress and Future Works

Introduction

- Fault tolerance is necessary for HPC
 - The more hw/sw components, the higher the chances some of them will fail
 - Bad for long-running parallel applications
- Checkpoint/Restart is a common technique used to provide fault tolerance. Common approaches include:
 - Modifying App. source code
 - Linking App with User-level library
 - Modifying OS kernel

Problems

Existing checkpoint/restart tools for parallel processing are:

Complex: require runtime systems and/or compilation tools, thus adding more components system-wide

Not user-friendly: require additional works such as software installation, code modification, kernel modification, recompilation/re-linking.

Vendor-specific: each software tool for parallel processing has a different checkpoint/restart implementation

Goals

- High transparency
 - Checkpoint/restart mechanisms should be transparent to applications, OS, and runtime environments; no modification required
- Efficiency
 - Checkpoint/restart mechanisms should not generate unacceptable overheads
 - Normal Execution
 - Communication
 - Checkpointing Delay

Goals (cont.)

etwork of VMs as **an abstract system unit** that all expointing to be conducted **transparently** and **ciently** without modifying guest OS or applications.

Motivations

- Leverage Virtualization Technology to provide highly transparent checkpointing mechanisms for HPC
 - Hypervisor can transparently save and restore
 VM state
- A Cluster of Virtual Machines can be built to run parallel applications
- Virtual Machine Technology keeps get better
 - E.g. HW supports (Intel VT), Virtual I/O

Related Works

- Most coordinated checkpointing approach are implemented at library level
 - E.g. LAM/MPI, MPICHV, CoCheck
- Some is hypervisor-based, but require software component on guest OS
 - Scarpuzza et al.: a Xen-based system on Infiniband
- Highly-transprent, hypervisor-based, but not coordinated checkpointing approach
 - Kangarlou et al. implement a non-blocking snapshot on Xen and VIOLIN virtual network

Contributions

- Layered Virtual Cluster Architecture
- Novel Hypervisor-based Coordinated Checkpointing Protocols
 - Transparent C/R mechanisms
- Correctness Analysis
- Preliminary Implementation & Experiments
 - A proof of concepts

Cluster Architecture

Virtual Cluster Architecture

Typical Virtual Cluster Architecture

Virtual Cluster Architecture

Virtual Cluster CheckPointing (VCCP) Protocol

- 1. Stop VM computation
- 2. Flush messages out of the network
- 3. Locally Save State of every VM
- 4. Continue computation

VCCP VCCP checkpoint protocol

VCCP checkpoint protocol

VCCP VCCP checkpoint protocol

VCCP checkpoint protocol

VCCP recovery protocol VCCP recovery protocol

Coordinator:

- Broadcast loading requests
- Load VM state and Recv Queue
- Repeat
- Receive frames
- Until (restore done frames are received from all other VMs)
- 6. Broadcast resume VM request
- Resume local VM

Compute:

Upon receiving a loading request,

- 1. Load VM and Recv Queue
- Send restore done frame to Coordinator
- Wait until receiving a resume VM frame
- Resume VM

Correctness Analysis

- The checkpoint/recovery protocols do not cause problems to normal execution
 - TAB/VDE/TCP maintain FIFO ordering and reliable
- The protocols can cause clock skew
 - Cannot guarantee pausing and resuming at the exact same time on every VM
- Checkpointing and recovery events can affect RTT (See Next slide)

RTT analysis

- 1. Checkpointing can affect message RTT; depending on the clock skew value
- 2. This problem also occurs on traditional checkpointing mechanisms
- 3. Solutions:
 - Make the timeout threshold large
 - Keep the clock skew value small

Experiment

- Cluster Node x 9 (8 compute, 1 virtual switch)
 - Processor: Intel Xeon 2.6 GHz x 2
 - Memory: 2 GB
 - HD: 40 GB
 - Host OS: Rock 4.2.1
 - 1 Gigabit Ethernet
- Virtual Cluster x 8
 - Hypervisor: Modified QEMU
 - Guest OS: Damn Small Linux 3.4.1 + OpenMPI 1.2.3
 - Memory: 512 MB
 - HD: 300 MB (4 GB Maximum)

Testbed Configuration

Virtual Distributed Ethernet (VDE)

Layer 1: Virtual Network

Benchmarks

NAS Parallel Benchmark

- EP: estimate floating point performance minimal interprocessor communication
- CG: estimate unstructured matrix vector multiplication performance with interprocessor communication
- IS: estimate integer sort performance with interprocessor communication
- MG: estimate data communication performance

Overheads

Kemel EP	2 nodes	4 nodes	8 nodes		Kemel CG	2 nodes	4 nodes	8 node
VCCP cluster	57.78	28.71	14.63		VCCP cluster	91.02	128.68	110.4
QEMU cluster	57.41	28.7	14.59		QEMU cluster	90.37	124.57	109.74
Overheads	0.37	0.01	0.04		Overheads	0.65	4.11	0.71
Overheads %	0.64%	0.03%	0.27%		Overheads %	0.72%	3.30%	0.65%
Kemel IS	2 nodes	4 nodes	8 nodes		Kemel MG	2 nodes	4 nodes	8 nodes
VCCP cluster	2.48	1.73	1.46		VCCP cluster	7.88	17.05	21.29
QEMU cluster	2.45	1.69	1.42		QEMU cluster	7.7	16.87	21.17
Overheads	0.03	0.04	0.04	_	Overheads	0.18	0.18	0.12
Overheads %	1.22%	2.37%	2.82%		Overheads %	2.34%	1.07%	0.57%

Overheads

Kemel EP	2 no	odes	4 nodes	8 nodes	•	Kemel CG	2 nodes	4 nodes	8 nodes
VCCP cluster	5	7.78	28.71	14.63		VCCP cluster	91.02	128.68	110.45
QEMU cluster	5	7.41	28.7	14.59		QEMU cluster	90.37	124.57	109.74
Overheads								4.11	0.71
Overheads %	0.	\	VCCP	V.S.	Q	emu clu	ıster	3.30%	0.65%
			Avera						
Kemel IS	2 n		Minimum 0.03% (EP 4				nodes	8 nodes	
VCCP cluster			Nodes),				17.05	21.29	
QEMU cluster					m	3.30% (CG 4	16.87	21.17
Overheads			Nodes	5)				0.18	0.12
Overheads %	1.							1.07%	0.57%

Overheads (cont.)

Kemel EP	2 nodes	4 nodes	8 nodes
VCCP cluster	57.78	28.71	14.63
REAL cluster	51.39	25.73	12.92
Overheads	6.39	2.98	1.71
Overheads %	12.43%	11.58%	13.24%

- VCCP v.s. Qemu cluster
 - Average 1.33 %
 - Minimum 0.03% (EP 4 Nodes),
 Maximum
 3.30% (CG 4 Nodes)
- VCCP v.s. Real cluster
 - Average 12.41 % (EP)
 - Minimum 11.58% (EP)

Maximum 13.24% (EP)

Overheads (cont.)

Kemel EP	2 nodes	4 nodes	8 nodes
VCCP cluster	57.78	28.71	14.63
REAL cluster	51.39	25.73	12.92

VCCP v.s. Real cluster

Average 12.41 % Minimum 11.58%,

- VCCP v.s. Q
 - Average 1.3
 - Minimum 0.

3.30% (CG

Maximum 13.24% (No hardware supports)

l cluster L % (EP) 8% ,(EP)

24% (EP)

Overheads

Overheads

Virtual Network Problems:

- 1. VM and VDE compete for resources
- 2. Hot spot on central VDE switch

Kemel IS	2 nodes	4 nodes	8 nodes
VCCP cluster	2.48	1.73	1.46
QEMU cluster	2.45	1.69	1.42
Overheads	0.03	0.04	0.04
Overheads %	1.22%	2.37%	2.82%

Kemel CG	2 nodes	4 nodes	8 nodes
VCCP cluster	91.02	128.68	110.45
QEMU cluster	90.37	124.57	109.74
Overheads	0.65	4.11	0.71
Overheads %	0.72%	3.30%	0.65%

Kemel MG	2 nodes	4 nodes	8 nodes
VCCP cluster	7.88	17.05	21.29
QEMU cluster	7.7	16.87	21.17
Overheads	0.18	0.18	0.12
Overheads %	2.34%	1.07%	0.57%

Checkpointing Performance

Checkpoint time = Flush time

- + Time to save VM State
- + Save messages to disks
- + Wait time

Checkpointing Performance

Checkpointing Performance

Progress

- We have developed a transparent hypervisor-based coordinated checkpointing system for Virtual Clusters
- Transparency is achieved
- Efficiency requires further investigations
 - Low normal execution overhead
 - High communication overhead
 - High local checkpointing overhead

Future Works

- Study and develop new virtual network
 - Direct TCP connections among VM
 - Virtio
- We are investigating low-latency local VM checkpointing mechanisms
 - Multi-threaded mechanism to save VM state
 - Diskless checkpointing

THANK YOU and QUESTIONS?

Backup

VCCP recovery protocol

VCCP recovery protocol

Recovery Performance

Restoration time = coordinate time + load coordinator's vm time + load coordinator's frame time + wait time

Recovery Performance

Recovery Performance

8 modes

4 modes

2 modes

