Assignment 1

17

- □ Due Sept 27, 2019 at 10:00pm
- ☐ You are responsible for checking Avenue for news and updates.
- □ Sample script template to be posted

Keys

18

- A key is a set of attributes that uniquely identifies tuples in a relation.
- More precisely:
 - A set of attributes K is a superkey for a relation r if r cannot contain two distinct tuples t₁ and t₂ such that t₁[K]=t₂ [K];
 - K is a (candidate) key for r if K is a minimal superkey

(that is, there exists no other superkey K' of r that is contained in K as proper subset, i.e, $\ K' \subset K)$

Example

19

RegNum	Surname	FirstName	BirthDate	DegreeProg
284328	Smith	Luigi	29/04/59	Computing
296328	Smith	John	29/04/59	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	01/05/61	Fine Art
965536	Black	Lucy	05/03/58	Fine Art

- RegNum is a key: i.e., RegNum is a superkey and it contains a sole attribute, so it is minimal.
- □ {Surname, Firstname, BirthDate} is another key

Beware!

20

RegNum	Surname	FirstName	BirthDate	DegreeProg
296328	Smith	John	29/04/59	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	01/05/61	Fine Art
965536	Black	Lucy	05/03/58	Engineering

☐ There is no pair of tuples with the same values on both Surname and DegreeProg;

i.e., in each program students have different surnames; can we conclude that **Surname** and **DegreeProg** form a key for this relation?

No! There **could be** students with the same surname in the same program

Existence of Keys

21

- Relations are sets; therefore each relation is composed of <u>distinct</u> tuples.
- It follows that the whole set of attributes for a relation defines a superkey.
- Therefore each relation has a key, which is the set of all its attributes, or a subset thereof.
- The existence of keys guarantees that each piece of data in the database can be accessed,
- Keys are a major feature of the Relational Model and allow us to say that it is "value-based".

Keys and Null Values

22

- If there are nulls, keys do not work that well:
 - □ They do not guarantee unique identification;
 - They do not help in establishing correspondences between data in different relations

RegNum	Surname	FirstName	BirthDate	DegreeProg
NULL	Smith	John	NULL	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	NULL	NULL
NULL	Black	Lucy	05/03/58	Engineering

- Are the third and fourth tuple the same?
- How do we access the first tuple?

Primary Keys

23

- ☐ The presence of nulls in keys has to be limited.
- Each relation must have a primary key on which nulls are not allowed (in any attribute)
- □ Notation: the attributes of the primary key are <u>underlined</u>
- □ References between relations are realized through primary keys

RegNum	Surname	FirstName	BirthDate	DegreeProg
643976	Smith	John	NULL	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	NULL	NULL
735591	Black	Lucy	05/03/58	Engineering

Do we Always Have Primary Keys?

24

- □ In most cases, we do have reasonable primary keys (e.g., student number, SIN)
- □ There may be multiple keys, one of which is designated as primary.

Recap

25

- ☐ A set of fields is a key for a relation if:
 - No two distinct tuples can have same values in all key fields, and
 - 2. This is not true for any subset of the key.
- ☐ If #2 false, then a superkey.
- ☐ If there's >1 key for a relation, one of the keys is chosen to be the primary key.
- E.g., sid is a key for Students. (What about name?) The set {sid, gpa} is a superkey.

Primary and Candidate Keys

26

Enrolled(sid, cid, grade)

- 1. "For a given student and course, there is a single grade." vs.
- "Students can take only one course, and receive a single grade for that course; further, no two students in a course receive the same grade."
- Be careful to define Integrity Constraints (ICs) correctly at design time.
- ICS are checked when data is updated.

Enrolled(sid, cid, grade)

Enrolled(sid, cid, grade)

• key (cid, grade)

Foreign Keys

27

- Pieces of data in different relations are correlated by means of values of primary keys.
- Referential integrity constraints are imposed in order to guarantee that the values refer to existing tuples in the referenced relation.
- \square A foreign key requires that the values on a set X of attributes of a relation R_1 must appear as values for the primary key of another relation R_2 .
 - In other words, set of attributes in one relation that is used to `refer' to a tuple in another relation. (Must correspond to primary key of the second relation.) Like a `logical pointer'.

Referential Integrity

28

- □ E.g. sid is a foreign key referring to Students:
 - Enrolled(sid: string, cid: string, grade: string)
 - If all foreign key constraints are enforced, <u>referential</u> <u>integrity</u> is achieved, i.e., no dangling references.

Referential Integrity (cont'd) □ Only students listed in the Students relation should be allowed to enroll for courses. Enrolled Students sid cid grade sid name login age gpa 53666 Carnatic101 53666 Iones jones@cs 3.4 53666 Reggae203 В 3.2 53688 Smith smith@eecs 18 53650 Topology112 53650 Smith smith@math 3.8 53666 History105

Consider Students and Enrolled; sid in Enrolled is a foreign key that references Students. What should be done if an Enrolled tuple with a non-existent student id is inserted? Reject it! What should be done if a Students tuple is deleted? Also delete all Enrolled tuples that refer to it. Disallow deletion of a Students tuple that is referred to. Set sid in Enrolled tuples that refer to it to a default sid. Set sid in Enrolled tuples that refer to it to NULL. Similar if primary key of Students tuple is updated.

Where do ICs Come From? ICs are based upon the semantics of the real-world enterprise that is being described in the database relations. We can check a database instance to see if an IC is violated, but we cannot infer that an IC is true by looking at an instance. An IC is a statement about all possible instances Key and foreign key ICs are the most common; more general ICs supported too.

Referential Constraints: Comments Referential constraints play an important role in making the relational model value-based. Care is needed in case of referential constraints that involve two or more attributes.