

Intelligent Epitaxy Technology, Inc.

Company Information

IntelliEPI

1250 E. Collins Blvd. Richardson, TX 75081 USA

E-mail: <u>info@IntelliEPI.com</u> Web Site: <u>www.IntelliEPI.com</u>

Japanese Agent: ATN Japan

E-mail: <u>sales@ATNJapan.com</u> Web Site: www.ATNJapan.com

Intelli*EPI*: Outline

Company Information Update

- Facility and Products
- Capabilities and in-situ monitoring technology

Selected Product Highlights

- pHEMT, iHEMT, and mHEMT
- HBT Activities (InP-based HBT, HBT w/ GaAaSb base)
- PIN, QWIP, and Sb-based SLS

Quality Management System Summary

2009/2010

IntelliEPI: The Company

- A Texas semiconductor manufacturing company located in Richardson, TX, since January 1999.
- Founded by Dr. Yung-Chung Kao (TI), Dr. Paul Pinsukanjana (UCSB/JPL), Randy Thomason (TI), and Kevin Vargason (TI), combining experiences in electronics and optoelectronics. In 2001, Dr. J.M. Kuo (Lucent) and Dr. H.J. Zhu (Paul Drude Inst) joined.
- A venture capital funded company
- ISO 9001: 2000 certified since March 2007 (current ISO9001:2008)

IntelliEPI provides GaAs (up to 6in) and InP (up to 4in) MBE PHEMT and HBT epitaxial wafers to RF MMIC and wireless wafer fabs for communications applications. We also provide optoelectronics products (PIN, QWIPs, and lasers) and various III-V based industrial and energy-related products

Intelli EPI: Technical Experience

Technical team has combined experience over 100 years in industrial III-V MBE operation (GaAs and InP)

Yung-Chung Kao, Ph.D.EE, UCLA, '87; Texas Instrument, '87-'98; IET, '99-date

- 27 years in III-V related business. 25 years in MBE. Head of TI's MBE Lab. 89-96.
- 12 US patents and over 100 technical publications related to III-V materials, devices.

Paul Pinsukanjana, Ph.D.Phys., UCSB, '94; EPI (Veeco), '96-'97; JPL, '97-'99; IET, '99-

• 15 years in III-V electronics and optoelectronics: MBE growth, processing, and characterization. Hold 3 patents on in-situ real-time sensor technology for MBE.

Jenn-Ming Kuo, Ph.D.EE, Rutgers U., '87; AT&T/Lucent Bell Labs, '86-'01; IET, '01-

- 27 Years in III-V epitaxial growth by MBE and gas source MBE. 22 years experience in R&D of III-V electronic and opto-electronic device, MBE growth, and device processing.
- 9 US patents and 128 technical publications related to MBE growth and III-V devices.

Randy Thomason, Texas Instrument, '82-'96; TriQuint Semi., '96-'98; IET, '99-

- 25 years in MBE operation, modification, facility maintenance, and construction Kevin Vargason, Texas Instrument, '90-'98; IET, '99-
- 17 years in semiconductor characterization, MBE production, and failure analysis
- H.J. Zhu, Ph.D. Phys., Fudan U., China, '96; Paul Drude Institute '98-'01; IET,'01-
- 16 years in III-V electronics and opto-based MBE growth, 10 years in production MBE

Intelli EPI: Facility at Richardson, Texas

Current facility since January 2002: 1250 E. Collins, Richardson, TX (Dallas suburb)

- 23,000 ft2 (production: 13,000 ft2; Office: 10,000 ft2)
- Set up to host 8 production MBE systems
- Clean room for post growth testing and LAD processing
- 30 full time employees

MBE Facility at Intelli EPI's Facility in Richardson, Texas

- 8 MBE reactors:
 - 1 Riber 7000 (7x6", 14x4")
 - 3 Riber 6000 (4x6", 9x4", 15x3")
 - 3 Riber 49, 1 VG V100 (4x4", 5x3")
- Dedicated operation and cleaning facilities designed to handle phosphorous for all MBE systems

IntelliEPI: Multi-Wafer Production MBE Platen Design

Capacity for production reactors

Riber7000: 7x6"

14x4"

25x3"

Riber6000: 4x6"

9x4"

15x3"

Riber 49: 4x4"

3x5"

11x2"

Riber7000: 7x6" MBE reactor

Experienced with product transition:

- Development to production on multi-wafer MBE systems
- Reactor & substrate size scaling: mainly support from 2" to 6" size substrates (1" and 8" are also supported)

Post-growth Characterization Capability

- Class 100 clean room: (2000 ft²)
- Characterization tools:
 - X-ray diffraction
 - PL mapping
 - Surface particle scan
 - Hall measurement
 - Contactless resistivity mapping
 - Electro-chemical CV profiling
 - White light reflection spectrometer
 - Electrical CV profiling
 - Mercury probe CV

Intelli EPI: III-V Compound Semiconductor Product Matrix

	RF and microwave	High Speed Digital	Optoelectronics
Applications	 RF components in handsets Automotive radar Defense related 	OC768- 40Gbps networkOC192-10Gbps network	Fiber optic network light sources and Photo-detectors
Device Structure (Red in Production mode)	GaAs pHEMTGaAs mHEMTInP HEMTInP HBT	 InP SHBT/DHBT InP HEMT GaAs mHEMT GaAsSb DHBT 	 GaAs PIN/APD InP PIN/APD QWIP Diode laser Modulator

Intelli EPI: Thickness Uniformity Across Platen for 7x6" MBE

Riber 7000 thickness uniformity measured by white light reflection

2,500Å GaAs

2,000Å AlAs

GaAs substrate

- Thickness variation across platen < 1% across 7X6" platen configuration
- Si doping GaAs layer uniformity by contactless resistivity mapping:
 - 6" wafer doping variation < 1%
 - Difference from center wafer to outside wafer < 0.5%

CBr4 Carbon Doping of P-type InGaAs

Number	of	Test	Points	

Number of Test Points		36
Average Value		73.8482
Maximum Value		74.1416
Minimum Value		73.521
Sample Spread (%)		0.84
Std Dev Value		0.1379
Wafer Uniformity Value	(శ)	0.19

Sheet resistance measurement using Lehighton shows the resistivity across 4" wafer grown from a 4x4 MBE system. The epi layer is a 350 nm thick InGaAs doped at 4e19 cm-3.

Production MBE Operation Improvement by In Situ Sensors

- Run-to-run reproducibility:
 - Maintaining critical specification ranges
 - Verification of growth process details (condition and layers)
- Limitations of ex-situ characterization:
 - Slow post-growth feedback
 - Additional wafer handling and cost
 - Limited information about growth condition profile vs. epi-depth
- New product development:
 - Faster development cycle time
 - Improved performance for more demanding specifications
- Bad run detection/correction/termination:
 - Loss of wafers: very expensive for larger systems and for InP
 - Wasted machine time, materials, & operating expenses

Overview of IntelliEPI in-situ Sensor Technologies

- Substrate temperature
 - Pyrometry
 - Absorption Band-Edge Spectroscopy (ABES): band-gap dependence on temp
- Materials composition
 - Optical-based Flux Monitor (OFM): atomic absorption of group III fluxes
- Growth rate
 - Optical Reflectometry
 - Pyrometric Interferometry

2009/2010

PHEMT In-situ Composition Monitoring with OFM

OFM Profile During PHEMT Growth

PHEMT Structure

	Сар	n+ GaAs
	Etch Stop	n InGaP
	Gate	n AlGaAs
	Spacer	AlGaAs
Si - delta	Channel	InGaAs
	Spacer	AlGaAs
		AlGaAs
	– 01	GaAs
	SL	AlGaAs
	Buffer	GaAs
	Substrate	GaAs

- Direct composition monitoring for each critical layer
- In-situ composition monitoring for key layers:
 - InGaAs Channel: Accurate x-ray measurement
 - AlGaAs Gate: X-ray represents average of SL and Gate
 - InGaP Etch Stop: Very thin layer limits x-ray accuracy

MHEMT: Temperature and Group III flux control

- MHEMT: InP-performance on GaAs substrate.
- Critical growth parameters: substrate temperature, and growth rates.
- Room temp mobility 11,000 cm2/V*sec, ns~3.9e12 cm-2.

E-Mode In_{0.7}Ga_{0.3}As/InP HEMT and mHEMT on GaAs

Strain-relaxed InP mHEMT on GaAs

- *Gm = 1.7 S/mm*
- $f_T = 500 \text{ GHz}$
- $f_{max} = 320 \text{ GHz}$

InP HEMT on InP

- Gm = 2.2 S/mm
- $f_T = 550 \text{ GHz}$
- $f_{max} = 350 \text{ GHz}$

Intelli EPI: InP SHBT/DHBT Status

Strong Customer Base Facilitates Fast Structure Optimization

- US and Japan foundries and companies
- Both C and Be doped SHBTs and DHBTs
- HBT-PIN and HBT-Opto structure integration In-House Large Area Device (LAD) Fabrication Capability
 - Fast turn around (~8 hours)
 - Correlation with customers device characteristics
 - CV measurements for device fine tune
- Correlation with in-house in situ growth database
 Developed GaAsSb-base HBT under DARPA TFAST Program
 - GaAsSb-base up to 1e20 cm-3 carbon doping

Intelli EPI: InP-HBT Experience Highlights

Pohang University of Science and Technology (POSTECH): InP-HBT results

• F_{max} = 689 GHz (Postech/IntelliEPI, IEDM, San Francisco, December 2004)

University of Illinois, Urbana Champaign: InP-HBT results

Most recent data: F_t = 710 GHz (Hafez et al. Appl. Phys. Lett., 87, 2005)

Intelli *EPI* provides volume InP-based HBTs to US and Japan InP IC foundries

- High level of integration VIP-1 SHBT: ~5000 transistors inside 3 mm square die
- 100% transistor yield for VIP-2 DHBT: over 450 GHz F_t and F_{max} (DARPA TFAST)

InP/InGaAs SHBT with High Base doping DC Characteristics

Layer	comment	Material	Thickness (Å)	Dopant	Level (/cm³)
7	lnGaAs:Si	ln(x)Ga(1-x)As	500	Si	2.00E+19
6	InP:Si	InP	500	Si	1.0E+19
5	InP:Si	InP	500	Si	5.0E+17
4	lnGaAs :C	ln(x)Ga(1-x)As	400	С	8.0E+19
3	InGaAs :Si	ln(x)Ga(1-x)As	2,000	Si	2.0E+16
2	InP:Si	InP	100	Si	2.00E+19
1	InGaAs :Si	ln(x)Ga(1-x)As	4,000	Si	2.00E+19
_	Substrate	lnP			-

- Current Gain
 - 24 @ 10A/cm2,
 - 25 @ 100A/cm2,
 - 26 @ 1kA/cm2
- Base Rbs (TLM)
 406 Ohm/sq
- Current cross-over < 1.0E-9 A
- Von @ 5A/cm2 542 mV

100% Transistor Yield attained!

All sites over 300 GHz Ft and Fmax (DHBT) All sites functional and operational at high speed

X-ray data of GaAsSb uniformity across 4x4" platen

 GaAsSb composition uniformity is within ± 0.1 atomic percent across 4x4" platen

11

Position on Platen (mm)

InAIAs/GaAsSb/InP DHBT DC characteristics

InAIAs emitter GaAsSb DHBT (Improved E-B junction)

Layer	Comment	Material	х	Thick. (Å)	Dop.	Level	Туре
						(/cm³)	
8	Emitter cap	ln(x)Ga(1-x)As	0.532	1,000	Si	3.0E+19	N+
7	Emitter cap	InP		300	Si	5.0E+18	N+
6	Emitter	lnP		300	Si	5.0E+17	Ν
5	Emitter	ln(x)Al(1-x)As	0.522	150	Si	5.0E+17	Ν
4	Base	GaAs(1-x)Sb(x)	0.513	400	С	4.5E+19	P+
3	Collector	lnP		2,000	Si	3.0E+16	N
2	Subcollector 1	InP		500	Si	5.0E+18	N
1	Etch stop	ln(x)Ga(1-x)As	0.532	2,000	Si	3.0E+19	N+
	Substrate						·

- Current Gain
 - 34.3 @ 10A/cm2,
 - 36.6 @ 100A/cm2,
 - 38.1 @ 1kA/cm2
- Base Rbs (TLM)885.9 Ohm/sq
- Current cross-over
 - < 1.0E-9 A
- nc = 1.10; nb = 1.29

Low Intrinsic Background InGaAs on InP

Intelli EPI's optimized MBE PIN advantages:

- Nearly depleted at 0V bias
- Background doping level better than MOCVD
- Intrinsic InGaAs mobility from 10 12x10³ cm²/V·sec

Comparison of InGaAs Hall Mobility

High Speed InGaAs/InP PIN Photodetector from MBE

Data Courtesy of

VITESSE

8.E+09

3 dB Bandwidth Histogram Across 4" Wafer

3 dB Bandwidth @ 1550 nm

75 µm Diameter Active Area

<u></u> 40C

- - Average 3 dB bandwidth of ~ 4.6 GHz @ –2V
- Dark current well below 1 nA @ –2V

Intelli*EPI*: QWIP Production Experience

Courtesy of QmagiQ

8.6 µm thermal image taken with large format 640x512 QWIP FPA IntelliEPI. Die size ~16x13 mm².

- Stability of growth rate during long repeated structure as indicated by narrow x-ray peaks
- Excellent interface and materials quality as indicated by sharp x-ray peaks
- ± 0.5% thickness uniformity across 6 inch diameter wafer based on x-ray
- Achieved 100% pixel yield with 320x256 format FPA

Intelli EPI: Device Data for QWIP FPA

NETD Value (mK)

Data

Courtesy

of

QmagiQ

- 320x256 and 640x512 formats
- LWIR band, 8.6-mm peak wavelength
- Optical response uniformity ≈ 2%
- Average NEDT less than 25 mK at F/4
- Operability greater than 99.8%

Intelli EPI: Dual-color QWIP

Data
Courtesy
of
QmagiQ

- 2-color per pixel in 320x256 format
- Dual-band for MWIR and LWIR
- Epi materials on 6" GaAs

Intelli EPI: InAs/GaSb SLS Growth for LWIR Applications

- QmagiQ design InAs / binary GaSb SL for long wavelength (LW) IR detection
- SL FWHM < 30 arc sec, SL0 peak mismatch < 16 arc sec
- Thickness uniformity from center to inner ring within ± 1%

2009/2010

IntelliEPI: Quality Management System

SPC chart of contactless sheet resistivity mapping during PHEMT production

- ISO9001:2000 certified since March 2007
- Utilize SPC for volume production tracking/control

Intelli*EPI*: Summary

Intelli *EPI*'s real-time sensors monitor growth and maintain reproducible conditions

- Non-invasive; early identification of problems during run: immediate feedback
- Yield improvement, fast product development and delivery
 Intelli EPI developed advanced MBE growth technology and materials
- High volume GaAs product such as PHEMTs for handset switch applications
- High performance InP based HBTs and PINs for fiber optical applications

Intelli *EPI* provides 100% customer satisfaction guaranty