Aula Prática 8

ASA 2024/2025

 $\mathbf{Q1}$ ($\mathbf{T1}$ $\mathbf{06}/\mathbf{07}$ $\mathbf{I.1}$) Considere o grafo não dirigido seguinte.

Para todos os nós u, calcule d[u] e $\pi[u]$ obtidos por uma procura em largura primeiro a partir do nó A.

Solução:

,	A	В	С	D	Е	F	G	Н
d	0	1	2	1	2	2	3	4
π	-	A	В	A	D	D	F	G

Q: A B D C E F G H

Q2 (Ex. 22.2-1) Aplique uma BFS no seguinte grafo, a começar em 3 e utilizando a ordem númerica para os vizinhos. Indique também o d e π de cada valor.

Solução:

	1	2	3	4	5	6		
d	∞	3	0	2	1	1		
π	-	4	-	5	3	3		
Q: 3 5 6 4 2								

Q3 (Ex. 22.2-7) Proponha um algoritmo O(V+E) que reconheça se um dado grafo é bipartido. Produza a partição ou mostre que tal partição não existe.

Solução:

- 1. Usar uma BFS considerando: os níveis pares no conjunto de vértices L, e os níveis ímpares no conjunto de vértices R
- 2. Validar os arcos para trás/frente/cruzamento. Se d[u]%2 da visita inicial ao nó u fôr diferente do valor (d[v]+1]%2 quando visitamos u numa vez subsequente, atravessando o arco (v,u), então não é bipartido!

Observações:

- Equivalente ao problema 2-coloring clássico
- \bullet É irrelevante se o grafo G é dirigido ou não. Podemos considerar como não dirigido

Q4 (R1 08/09 I.3) Considere a aplicação de uma pesquisa em largura (BFS) num grafo G = (V, E), onde $s \in V$ é o vértice origem da BFS. Considere ainda a utilização da árvore BF para classificação dos arcos, tal como na execução de uma pesquisa em profundidade (DFS). Assim, para cada uma das seguintes afirmações, indique se é verdadeira (V) ou falsa (F).

- 1. A BFS permite identificar os caminhos mais curtos para todos os vértices do grafo atingíveis a partir de s.
- 2. Sejam u e v vértices do grafo atingíveis a partir de s tal que d[v] > d[u] + 1. Nesse caso, o arco (u, v) não existe no grafo.
- 3. Se o grafo G for não dirigido, na aplicação de uma BFS podem existir arcos para a frente.
- 4. Sejam u e v dois vértices do grafo atingíveis a partir de s tal que d[v] > d[u]. Então temos necessariamente que d[v] d[u] denota o número de arcos no caminho mais curto de u para v.
- 5. Para cada arco (u, v) da árvore BF temos que d[v] = d[u] + 1.
- 6. Se o grafo G for não dirigido, na aplicação de uma BFS não existem arcos de cruzamento.

Solução:

1.	2.	3.	4.	5.	6.
V	V	F	F	V	F

Q5 (T1 06/07 II.1) Considere o grafo da figura.

Indique os valores de d e π para cada vértice quando faltam extrair dois nós da fila de prioridade na execução do algoritmo de Dijkstra a partir do vértice c.

Solução:

	a	b	c	d	e	f	g
d	6	10	0	8	8	5	5
π	c	a	Nil	a	f	c	f

 $\mathbf{Q6}$ (T1 $\mathbf{08/09}$ II.3) Considere o grafo da figura.

- 1. Indique os valores de d e π para cada vértice imediatamente após a aplicação do procedimento Relax sobre todos os arcos com origem no vértice v_5 , durante a execução algoritmo de Dijkstra a partir do vértice v_1 .
- 2. Indique os valores de d e π para cada vértice imediatamente após serem processados 5 arcos durante a execução do algoritmo para cálculo de caminhos mais curtos de origem única em grafos dirigidos acíclicos (DAGs) a partir do vértice v_1 . Deve considerar a ordenação topológica mais pequena por ordem lexicográfica.

Solução:

		v_1	v_2	v_3	v_4	v_5	v_6
a)	d	0	3	2	7	6	9
	π	Nil	v_1	v_1	v_5	v_3	v_5

b) Ordenação topológica: $\langle v_1, v_2, v_3, v_5, v_4, v_6 \rangle$

	v_1	v_2	v_3	v_4	v_5	v_6
d	0	3	2	8	6	∞
π	Nil	v_1	v_1	v_2	v_3	Nil

Q7 (CLRS Ex. 24.3-3) Suponha que alteramos a linha 4 do algoritmo de Dijktra da seguinte forma:

while
$$|Q| > 1$$

Isto resulta no ciclo **while** ser executado |V|-1 vezes em vez de |V| vezes. A alteração proposta está correcta?

Solução:

Sim, está correcto, dado que não podem existir pesos negativos:

- se u não é alcançável, $d[u] = \delta(s, u) = \infty$
- se u é alcançável, então existe um caminho $p=s \rightsquigarrow x \to u$ e quando x passou de Q para S o arco (x,u) foi relaxado. Logo, $d[u]=\delta(s,u)$.

Q8 (CLRS Ex. 24.3-4) O Professor Gaedel escreveu um programa que ele alega ser a implementação do algoritmo de Dijkstra. O programa produz d[v] e $\pi[v]$ para cada vértice $v \in V$. Indique um algoritmo que execute em tempo O(V+E) para verificar o output do programa do professor. O seu algoritmo deve determinar se os valores em d e π correspondem a uma árvore de caminhos mais curtos. Pode assumir que todos os pesos dos arcos são não-negativos.

Solução:

Verificar que:

- 1. o resultado de $\pi[v]$ é uma árvore
- 2. $d[s] == 0 \&\& \pi[s] == NIL$
- 3. $d[v] == d[\pi[v]] + w(\pi[v], v), \forall v \neq s$
- 4. $d[v] == \infty$ se e só se $\pi[v] == NIL, \forall v \neq s$

Se alguns deste passos falhar, não é Dijkstra

Se não falhar, confirmar fazendo uma passagem de relaxação em todos os arcos:

- se algum arco mudar, não é Dijkstra
- se não mudar, o resultado é correcto