COMPLEMENTOS de MATEMÁTICAAula Teórico-Prática – Ficha 2

FUNÇÕES A VÁRIAS VARIÁVEIS; GRADIENTES

- 1) Determine a função de campo escalar f(x, y, z), tal que o seu valor no ponto (x, y, z) é:
 - a) A área da superfície da caixa, sem a sua tampa superior, cujos lados são definidos pelos vectores $x\vec{i}$, $y\vec{j}$ e $z\vec{k}$.
 - **b**) O valor do ângulo formado pelos vectores $\vec{i} + \vec{j}$ e $x\vec{i} + y\vec{j} + z\vec{k}$.
 - c) O volume do prisma definido pelos vectores \vec{i} , $\vec{i} + \vec{j}$ e $x\vec{i} + y\vec{j} + z\vec{k}$.
- 2) Considere a equação $x^2 + \frac{y^2}{b^2} = z$, $b \in \mathbb{R} \setminus \{0\}$.
 - a) Que superfície é o lugar geométrico dos pontos cujas coordenadas satisfazem a equação dada.
 - **b)** O que acontece a esta superfície quando $b \to \infty$.
 - c) Qual a secção resultante da intersecção da superfície dada com a superfície z=1.
 - **d**) O que acontece a esta secção quando $b \rightarrow \infty$.
- 3) Identifique as superfícies definidas pelas equações:

a)
$$g(x, y) = \sqrt{x^2 + 4y^2}$$
.

- **b**) $\rho(\theta, \varphi) = \sin \varphi \cos \theta$.
- 4) Obtenha o limite da função $f(x, y) = \frac{xy}{x^2 + y^2}$, quando $(x, y) \to (0, 0)$ ao longo de:
 - a) Eixo dos xx.

b) Eixo dos yy.

c) Recta y = mx, $m \neq 0$.

- **d**) Espiral $r = \theta$, $\theta > 0$.
- e) Arco $r = \sin(3\theta)$, $\theta \in \left(\frac{\pi}{6}, \frac{\pi}{3}\right)$.

- **f**) Curva descrita pela função vectorial $\vec{r}(t) = \frac{1}{t}\vec{i} + \frac{\sin t}{t}\vec{j}$, t > 0.
- 5) Calcule as derivadas parciais das seguintes funções de campo escalares:

a)
$$\rho(\theta, \varphi) = \operatorname{sen}(\varphi) \cos(\theta)$$
.

b)
$$g(x, y) = \sqrt{x^2 + 4y^2}$$
.

c)
$$h(x, y) = \text{arc tg}(2x + y)$$
.

d)
$$u(x, y, z) = \frac{e^z}{xy^2}$$
.

e)
$$\omega(x, y, z) = \ln(zx + 3y)$$
.

f)
$$v(x, y, z) = x^{y^z}$$
.

g)
$$f(x, y) = \ln\left(x^2 + \sqrt{x^3 + y^2}\right)$$
.

6) Calcule o gradiente das seguintes funções de campo escalar:

a)
$$f(x, y, z) = xe^y \operatorname{sen}(z + x)$$
.

b)
$$g(x, y, z) = (-x + 2y)^5 + \frac{2}{z}$$
.

- 7) Seja a função de campo escalar $f(x, y) = x(4 y^2)$ e a função vectorial $\vec{\alpha}(t) = 2\cos(t)\vec{i} + 2\sin(t)\vec{j}$. Obtenha a derivada da função composta das funções dadas:
 - a) Sem efectuar a composição das funções.
- b) Determinando a função composta.
- 8) Determine a derivada direccional da função de campo escalar $f(x, y, z) = z \ln \frac{x}{y}$ no ponto P = (1, 2, -2), na direcção do ponto Q = (2, 2, 1).
- 9) Calcule a derivada direccional da função de campo escalar $f(x, y, z) = xe^{y^2 z^2}$ em P = (1, 2, -2), na direcção do percurso descrito pela função vetorial $\vec{r}(t) = t\vec{i} + 2\cos(t-1)\vec{j} 2e^{t-1}\vec{k}$, $t \in \mathbb{R}$.
- **10**) Obtenha a derivada direccional da função de campo escalar $f(x, y, z) = (x + y^2 + z^3)^2$ no ponto P = (1, -1, 1), na direcção definida pelo vetor $\vec{i} + \vec{j}$.

11) Determine a direcção e o sentido segundo os quais a função de campo escalar $f(x, y) = y^2 e^{2x}$ tem a sua taxa de variação máxima no ponto P = (0,1).

- 12) Obtenha a direcção e o sentido segundo os quais a função de campo escalar $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ tem a sua taxa de variação máxima no ponto P = (1, -2, 1).
- 13) Calcule a derivada direccional da função de campo escalar $f(x, y) = \ln \sqrt{x^2 + y^2}$ no ponto $(x, y) \neq (0, 0)$, na direcção da origem.
- 14) Calcule a derivada direccional de:
 - a) $f(x, y, z) = x^2 + xy + yz$ em P = (1, 0, 2), segundo a normal à superfície $z = 3 x^2 y^2 + 6y$.
 - **b**) $f(x, y, z) = x^2 + y^2 z^2$ em Q = (3, 4, 5), segundo o vector tangente à curva de intersecção das superfícies $2x^2 + 2y^2 z^2 = 25$ e $z^2 = x^2 + y^2$ nesse ponto.
- 15) Seja f uma função de campo escalar contínua e diferenciável em todos os pontos do segmento de recta [AB], com f(A) = f(B). Mostre que existe um ponto, C, situado entre A e B, tal que $\nabla f(C) \cdot (B-A) = 0$.
- **16)** Considere a função de campo escalar $f(x, y, z) = 4xz y^2 + z^2$, diferenciável em \mathbb{R} , e os pontos A = (0,1,1) e B = (1,3,2). Determine o ponto C situado no segmento de reta [AB], tal que $f(B) f(A) = \nabla f(C) \cdot (B A)$.
- 17) Obtenha um vector que seja normal e um vector que seja tangente à curva de equação cartesiana $x^3 + y^2 + 2x = 6$ no ponto P = (-1,3).
- 18) A temperatura, T, na vizinhança do ponto $P = (\pi/4,0)$ é dada pela função de campo escalar $T(x,y) = \sqrt{2}e^{-y}\cos x$. Uma partícula desloca-se nessa vizinhança seguindo uma trajectória que passa em P e que, em cada ponto, segue uma direcção que corresponde à máxima taxa de variação de temperatura. Determine essa trajetória.

19) Determine os pontos das superfícies z - xy = 0 e $4x + 2y - x^2 + xy - y^2 - z = 0$, onde o plano tangente é horizontal.

- **20)** Calcule o vector normal e o plano tangente à superfície $x^2 + y^2 + z^2 = 3$ no ponto P = (1,1,1).
- 21) Obtenha o plano tangente e a recta normal à superfície xy + yz + xz = 11 no ponto P = (1, 2, 3).
- **22)** Mostre que a superfície esférica de equação $x^2 + y^2 + z^2 8x 8y 6z + 24 = 0$ é tangente ao elipsoide de equação $x^2 + 3y^2 + 2z^2 = 9$ no ponto P = (2,1,1).
- **23**) A curva do espaço descrita pela função vectorial $\vec{r}(t) = 2t\vec{i} + 3t^{-1}\vec{j} 2t^2\vec{k}$, t > 0, e o elipsoide de equação $x^2 + y^2 + 3z^2 = 25$ intersectam-se no ponto P = (2,3,-2). Determine o valor do ângulo, α , de intersecção.
- **24)** Sejam as superfícies de equações $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{\omega}$, $\omega > 0$. Mostre que a soma das coordenadas dos pontos de intersecção de todos os planos tangentes às superfícies com os eixos coordenados é igual a ω .
- **25**) Supondo que a equação $x\cos(xy) + y\cos(x) = 2$ define y implicitamente em função de x, y = f(x), calcule $\frac{dy}{dx}$.
- **26**) Admitindo que a equação $x^2 + z^4 + z^3 + y^2 + xy = 2$ define z implicitamente em função de x e y, z = f(x, y), calcule $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$.
- **27**) Seja a função de campo escalar $\omega = \omega(x, y, z)$, em que x = x(u, v), y = y(u, v), z = z(u, v) e u = u(s,t), v = v(s,t). Desenhe a árvore diagrama para o cálculo das derivadas parciais $\frac{\partial \omega}{\partial s}$ e $\frac{\partial \omega}{\partial t}$, e calcule-as.

- **28)** A equação $x+z+(y+z)^2=6$ define z implicitamente em função de x e y, z=f(x,y). Determine $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x^2}$ e $\frac{\partial^2 z}{\partial y \partial x}$, em função de x, y e z.
- **29**) Considere a função de campo escalar z = f(x, y), definida implicitamente pela equação $e^{\cos(z)} \ln(z+1) = \arctan(2x+y)$. Determine o valor das derivadas parciais $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ no ponto $P = \left(-\frac{1}{2}, 1, 0\right)$.
- **30)** A equação $x \ln(y) + y^2 z + z^2 = 6$ define z implicitamente em função de x e y, z = f(x, y), na vizinhança de P = (1,1,2). Obtenha as derivadas $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$ e $\frac{\partial^2 z}{\partial y \partial x}$ em P.
- **31)** Considerando $z(r,s,v) = \frac{r+s}{v}$, $r(x,y) = x\cos(y)$, $s(x,y) = y\sin(x)$ e v(x,y) = 2x y, calcule as derivadas $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$.
- 32) Seja a superfície definida implicitamente pela equação $\sqrt{x}\cos(-2y+z)=1$. Calcule as derivadas $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ nos pontos com coordenadas x=2 e y=0.
- 33) Considere a superfície definida implicitamente pela equação $xz^2 yz^2 + xy^2z 5 = 0$. Determine as derivadas $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ nos pontos com coordenadas x = 3 e y = 1.
- **34)** Considere a função de campo escalar $z = f(y, x, v, u) = x + \ln(u) + (y + v)^2$, em que x(u, v) = 2u + 3v e $y(u, v) = \cos(u) + \sin(v)$. Utilize a regra de derivação em cadeia para obter as derivadas $\frac{\partial z}{\partial u}$ e $\frac{\partial z}{\partial v}$.

- **35)** Seja a função de campo escalar $w = f(x, y, z) = \frac{xy}{z}$, em que $x = \text{tg}(u-1) e^v$, $y = u^2 v^2$ e $z = \cos(u^2 v)$. Usando a regra de derivação em cadeia, obtenha as derivadas parciais $\frac{\partial w}{\partial u}$ e $\frac{\partial w}{\partial v}$.
- **36**) Seja a função diferenciável u = f(x, y). Considerando $x = r\cos(\theta)$ e $y = r\sin(\theta)$, obtenha:
 - a) As derivadas parciais $\frac{\partial u}{\partial r}$ e $\frac{\partial u}{\partial \theta}$ em função das derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$.
 - **b**) $\frac{\partial^2 u}{\partial \theta^2}$ em função das derivadas parciais, de 1ª e 2ª ordens, de f em relação a x e y.
- **37**) Verifique que as derivadas, de 2ª ordem, $\frac{\partial^2 z}{\partial x \partial y}$ e $\frac{\partial^2 z}{\partial y \partial x}$ são iguais, se $z = e^x (\cos(y) + x \sin(y))$.
- **38)** Classifique os pontos críticos das seguintes funções e, se possível, determine os seus máximos/mínimos locais:

a)
$$f(x, y) = x^2 + y^2$$
.

b)
$$f(x, y) = x^2 - y^2$$
.

c)
$$f(x, y) = x^2 + y^2 - xy - 3x$$
.

d)
$$f(x, y) = x^4 + y^4 - 4xy$$
.

e)
$$f(x, y) = 1 - (x - 1)^2 - y^2$$
.

f)
$$f(x, y) = (x - y + 1)^2$$
.

g)
$$f(x, y) = x^2 + y^2 + xy - 6x + 2$$
.

h)
$$f(x, y) = -x^2 - y^2 + xy + 4x + 2y$$
.

i)
$$f(x, y) = x^3 + y^3 - 6xy$$
.

j)
$$f(x, y) = x^3 + y^2 - 6xy + 6x + 3y - 2$$
.

k)
$$f(x, y) = e^x \cos(y)$$
.

$$\mathbf{l)} \qquad f(x,y) = x \mathrm{sen}(y) \ .$$

m)
$$f(x, y) = (x + y)(xy + 1)$$
.

n)
$$f(x, y) = xy + x^{-1} + 8y^{-1}$$
.

o)
$$f(x, y) = xy + x^{-1} + y^{-1}$$
.

p)
$$f(x, y) = x^2y + x^2 - 4y$$
.

- 39) Seja um paralelepípedo situado no 1º octante, com um dos seus vértices na origem do referencial e duas das suas arestas situadas nos eixos dos xx e dos yy. Determine o valor máximo para o seu volume, se o vértice oposto à origem estiver situado no plano x + y + z = 1.
- **40**) Calcule a distância entre as rectas com equações cartesianas 6x = 3y = 2z e x = y 2 = z.

41) Pretende-se construir uma embalagem com a forma de um paralelepípedo, aberta no seu topo e com volume 96 m³. Sabendo que o custo da produção da sua base é de 0,30€/m², enquanto o das suas faces é de 0,10€/m², calcule as dimensões da embalagem de modo a minimizar o custo da sua produção.

Soluções:

1) a)
$$f(x, y, z) = |xy| + 2|xz| + 2|zy|$$
, $D_f = \{(x, y, z) \in \mathbb{R}^3 : x \neq 0 \land y \neq 0 \land z \neq 0\}$.

b)
$$f(x, y, z) = \arccos\left(\frac{x+y}{\sqrt{2(x^2+y^2+z^2)}}\right), D_f = \mathbb{R}^3 \setminus \{(0, 0, 0)\}.$$

c)
$$f(x, y, z) = |z|, D_f = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$$

- 2) a) É um paraboloide elíptico.
 - b) A superfície inicial transforma-se num cilindro parabólico.
 - c) Trata-se de uma elipse situada no plano z = 1.
 - d) A secção anterior transforma-se nas duas rectas paralelas $x = \pm 1$, situadas no plano z = 1.
- 3) a) É um cone elíptico de uma folha.
 - **b**) Superfície esférica de raio $\frac{1}{2}$ e com centro em $C = \left(\frac{1}{2}, 0, 0\right)$.

4) a) 0. **b)** 0. **c)**
$$\frac{m}{1+m^2}$$
.

d) 0. **e**)
$$\frac{\sqrt{3}}{4}$$
. **f**) Não existe.

5) **a**)
$$\frac{\partial \rho}{\partial \theta} = -\sin(\varphi)\sin(\theta)$$
 e $\frac{\partial \rho}{\partial \varphi} = \cos(\varphi)\cos(\theta)$. **b**) $\frac{\partial g}{\partial x} = \frac{x}{\sqrt{x^2 + 4y^2}}$ e $\frac{\partial g}{\partial y} = \frac{4y}{\sqrt{x^2 + 4y^2}}$.

$$\mathbf{c}) \quad \frac{\partial h}{\partial x} = \frac{2}{1 + (2x + y)^2} e^{\frac{\partial h}{\partial y}} = \frac{1}{1 + (2x + y)^2}. \qquad \mathbf{d}) \quad \frac{\partial u}{\partial x} = -\frac{e^z}{x^2 y^2}, \quad \frac{\partial u}{\partial y} = -\frac{2e^z}{xy^3} e^{\frac{\partial u}{\partial z}} = u.$$

e)
$$\frac{\partial \omega}{\partial x} = \frac{z}{xz + 3y}$$
, $\frac{\partial \omega}{\partial y} = \frac{3}{xz + 3y}$ e $\frac{\partial \omega}{\partial z} = \frac{x}{xz + 3y}$.

f)
$$\frac{\partial v}{\partial x} = y^z x^{y^z - 1}$$
, $\frac{\partial v}{\partial y} = z \ln(x) y^{z - 1} x^{y^z}$ e $\frac{\partial v}{\partial z} = \ln(x) \ln(y) y^z x^{y^z}$.

$$\mathbf{g)} \quad \frac{\partial f}{\partial x} = \frac{4x\sqrt{x^3 + y^2 + 3x^2}}{2\left(x^3 + y^2 + x^2\sqrt{x^3 + y^2}\right)} e^{\frac{\partial f}{\partial y}} = \frac{y}{\left(x^3 + y^2 + x^2\sqrt{x^3 + y^2}\right)}.$$

6) a)
$$\nabla f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k} = e^y \left(\operatorname{sen}(x+z) + x \cos(x+z) \right) \vec{i} + e^y x \operatorname{sen}(x+z) \vec{j} + e^y x \cos(x+z) \vec{k}$$
.

b)
$$\nabla g = \frac{\partial g}{\partial x}\vec{i} + \frac{\partial g}{\partial y}\vec{j} + \frac{\partial g}{\partial z}\vec{k} = -5(-x+2y)^4\vec{i} + 10(-x+2y)^4\vec{j} - \frac{2}{z^2}\vec{k}$$
.

7)
$$\frac{df}{dt} = f'(t) = -24 \text{sen}(t) \cos^2(t)$$
.

8) Designando
$$\vec{u} = \frac{\overrightarrow{PQ}}{\|\overrightarrow{PQ}\|}$$
, tem-se $f'(P, \vec{u}) = \nabla f(P) \cdot \vec{u} = -\frac{\sqrt{10}}{5} - 3\frac{\sqrt{10}}{10} \ln(2)$.

9) Designando
$$\vec{u} = \vec{T}(1) = \frac{\vec{r}'(1)}{\|\vec{r}'(1)\|}$$
, tem-se $f'(P, \vec{u}) = \nabla f(P) \cdot \vec{u} = -\frac{7\sqrt{5}}{5}$.

- **10**) $-3\sqrt{2}$.
- 11) Segundo a direcção e o sentido definidos pelo versor $\vec{u} = \frac{1}{\sqrt{2}}(\vec{i} + \vec{j})$.
- 12) Segundo a direcção e o sentido definidos pelo versor $\vec{u} = \frac{1}{\sqrt{6}}(\vec{i} 2\vec{j} + \vec{k})$.

13)
$$\frac{-1}{\sqrt{x^2 + y^2}}$$
.

14) **a**)
$$\pm \frac{14}{\sqrt{41}}$$
.

b) 0.

16)
$$C = \left(\frac{1}{2}, 2, \frac{3}{2}\right)$$
.

- 17) Vector normal: $5\vec{i} + 6\vec{j}$; vector tangente: $6\vec{i} 5\vec{j}$.
- 18) $y = \ln\left(\sqrt{2}\left|\operatorname{sen}(x)\right|\right)$.
- **19**) No caso da superfície z xy = 0 é o ponto O = (0,0,0); para a restante é o ponto $P = \left(\frac{10}{3}, \frac{8}{3}, \frac{28}{3}\right)$.

20) Vector normal: $\vec{i} + \vec{j} + \vec{k}$; plano tangente: x + y + z = 3.

21) Plano tangente: 5x + 4y + 3z = 22; recta normal: X(t) = (1, 2, 3) + t(5, 4, 3), $t \in \mathbb{R}$.

22) ----
$$23) \quad \alpha = \frac{\pi}{2} - \arccos \frac{19\sqrt{29}}{203} .$$

24) ---- 25)
$$\frac{dy}{dx} = \frac{xy \operatorname{sen}(xy) + y \operatorname{sen}(x) - \cos(xy)}{\cos(x) - x^2 \operatorname{sen}(xy)}$$
.

26)
$$\frac{\partial z}{\partial x} = -\frac{2x+y}{(4z+3)z^2} e^{\frac{\partial z}{\partial y}} = -\frac{x+2y}{(4z+3)z^2}.$$

27)
$$\frac{\partial \omega}{\partial s} = \frac{\partial \omega}{\partial x} \left(\frac{\partial x}{\partial u} \frac{\partial u}{\partial s} + \frac{\partial x}{\partial v} \frac{\partial v}{\partial s} \right) + \frac{\partial \omega}{\partial y} \left(\frac{\partial y}{\partial u} \frac{\partial u}{\partial s} + \frac{\partial y}{\partial v} \frac{\partial v}{\partial s} \right) + \frac{\partial \omega}{\partial z} \left(\frac{\partial z}{\partial u} \frac{\partial u}{\partial s} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial s} \right);$$

$$\frac{\partial \omega}{\partial t} = \frac{\partial \omega}{\partial x} \left(\frac{\partial x}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial x}{\partial v} \frac{\partial v}{\partial t} \right) + \frac{\partial \omega}{\partial y} \left(\frac{\partial y}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial y}{\partial v} \frac{\partial v}{\partial t} \right) + \frac{\partial \omega}{\partial z} \left(\frac{\partial z}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial t} \right);$$

28)
$$\frac{\partial z}{\partial x} = -\frac{1}{1+2y+2z}$$
, $\frac{\partial z}{\partial y} = -2\frac{y+z}{1+2y+2z}$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{2}{(1+2y+2z)^3}$ e $\frac{\partial^2 z}{\partial y \partial x} = \frac{2}{(1+2y+2z)^3} = \frac{\partial^2 z}{\partial x \partial y}$.

29)
$$\frac{\partial z}{\partial r} \left(-\frac{1}{2}, 1, 0 \right) = \frac{2}{e} e \frac{\partial z}{\partial v} \left(-\frac{1}{2}, 1, 0 \right) = \frac{1}{e}$$

30)
$$\frac{\partial z}{\partial x}(1,1,2) = 0$$
, $\frac{\partial z}{\partial y}(1,1,2) = -1$, $\frac{\partial^2 z}{\partial x \partial y}(1,1,2) = -\frac{1}{5}$ e $\frac{\partial^2 z}{\partial y \partial x}(1,1,2) = -\frac{1}{5}$

31)
$$\frac{\partial z}{\partial x} = \frac{\cos(y) + y\cos(x)}{2x - y} - 2\frac{x\cos(y) + y\sin(x)}{(2x - y)^2}; \qquad \frac{\partial z}{\partial y} = \frac{-x\sin(y) + \sin(x)}{2x - y} + \frac{x\cos(y) + y\sin(x)}{(2x - y)^2}.$$

32)
$$\frac{\partial z}{\partial x} \left(2, 0, \arccos(1/\sqrt{2}) \right) = \pm \frac{1}{4} e^{\frac{\partial z}{\partial y}} \left(2, 0, \arccos(1/\sqrt{2}) \right) = 2.$$

33)
$$\frac{\partial z}{\partial x}(3,1,1) = -\frac{2}{7} \text{ e } \frac{\partial z}{\partial y}(3,1,1) = -\frac{5}{7} \text{ ou } \frac{\partial z}{\partial x}\left(3,1,-\frac{5}{2}\right) = \frac{15}{28} \text{ e } \frac{\partial z}{\partial y}\left(3,1,-\frac{5}{2}\right) = -\frac{85}{28}.$$

34)
$$\frac{\partial z}{\partial u} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial u} = -2\operatorname{sen}(u) \left(\cos(u) + \operatorname{sen}(v) + v \right) + 2 + \frac{1}{u};$$
$$\frac{\partial z}{\partial v} = \frac{\partial f}{\partial v} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial v} = 2\left(1 + \cos(v) \right) \left(\cos(u) + \operatorname{sen}(v) + v \right) + 3.$$

35)
$$\frac{\partial w}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u} \iff$$

$$\Leftrightarrow \frac{\partial w}{\partial u} = \frac{u^2 - v^2}{\cos(u^2 v)\cos^2(u - 1)} + \frac{2u\left(\operatorname{tg}(u - 1) - e^v\right)}{\cos(u^2 v)} + \frac{2uv\operatorname{sen}(u^2 v)(u^2 - v^2)\left(\operatorname{tg}(u - 1) - e^v\right)}{\cos^2(u^2 v)};$$

$$\frac{\partial w}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v} \iff$$

$$\Leftrightarrow \frac{\partial w}{\partial v} = -\frac{(u^2 - v^2)e^v}{\cos(u^2 v)} - \frac{2v\left(\operatorname{tg}(u - 1) - e^v\right)}{\cos(u^2 v)} + \frac{u^2 \sin(u^2 v)(u^2 - v^2)\left(\operatorname{tg}(u - 1) - e^v\right)}{\cos^2(u^2 v)}.$$

36) a)
$$\frac{\partial u}{\partial r} = \cos(\theta) \frac{\partial f}{\partial x} + \sin(\theta) \frac{\partial f}{\partial y} = \frac{\partial u}{\partial \theta} = -r \sin(\theta) \frac{\partial f}{\partial x} + r \cos(\theta) \frac{\partial f}{\partial y}$$
.

b)
$$\frac{\partial^2 u}{\partial \theta^2} = r^2 \left(\sec^2(\theta) \frac{\partial^2 f}{\partial x^2} + \cos^2(\theta) \frac{\partial^2 f}{\partial y^2} \right) - \frac{r^2 \sec(2\theta)}{2} \left(\frac{\partial^2 f}{\partial y \partial x} + \frac{\partial^2 f}{\partial x \partial y} \right) - r \left(\cos(\theta) \frac{\partial f}{\partial x} + \sin(\theta) \frac{\partial f}{\partial y} \right).$$

- 37) ----
- **38)** a) Ponto estacionário em (0,0), com um mínimo local de valor igual a 0.
 - **b)** Ponto de sela em (0,0).
 - c) Ponto estacionário em (2,1), com um mínimo local de valor igual a -3.
 - **d**) Pontos estacionários em (-1,-1) e (1,1), com mínimos locais de valor igual a -2; ponto de sela em (0,0).
 - e) Ponto estacionário em (1,0), com um máximo local de valor igual a 1.
 - f) Ponto estacionário ao longo da recta y = x + 1, com um mínimo local de valor igual a 0.
 - g) Ponto estacionário em (4,-2), com um mínimo local de valor igual a -10.
 - **h**) Ponto estacionário em $\left(\frac{10}{3}, \frac{8}{3}\right)$, com um máximo local de valor igual a $\frac{28}{3}$.
 - i) Ponto estacionário em (2,2), com um mínimo local de valor igual a -8; ponto de sela em (0,0).
 - **j**) Ponto estacionário em $\left(5, \frac{27}{2}\right)$, com um mínimo local de valor igual a $-\frac{117}{4}$; ponto de sela em $\left(1, \frac{3}{2}\right)$.
 - k) Sem pontos estacionários nem mínimos ou máximos locais.
 - l) Pontos de sela em $(0, k\pi)$, $k \in \mathbb{Z}$.
 - **m**) Pontos de sela em (1,-1) e (-1,1).

- n) Ponto estacionário em $\left(\frac{1}{2},4\right)$, com um mínimo local de valor igual a 6.
- o) Ponto estacionário em (1,1), com um mínimo local de valor igual a 3.
- **p**) Pontos de sela em (2,-1) e (-2,-1).

39)
$$\frac{1}{27}$$
.

40)
$$\frac{2\sqrt{6}}{3}$$
.

41) O cesto tem uma base quadrada de dimensões $4 \times 4 \text{ m}^2$ e a sua altura é 6 m.