# PENG, Bo (bp820)

Imperial College London

## Department of Computing Academic Year **2020-2021**



Page created Tue Nov 3 23:15:06 GMT 2020

70051 rac101 2 t5 bp820 v1



 ${\bf Electronic\_submission}$ 

Tue - 03 Nov 2020 04:00:19

bp820

#### **Exercise Information**

Module: 70051 Introduction to Symbolic

Artificial Intelligence (MŠc AI)

Exercise: 2 (CW)

Title: Logic FAO: Craven, Robert (rac101)

**Issued:** Tue - 20 Oct 2020

Due: Tue - 03 Nov 2020 Assessment: Individual

Submission: Electronic

### Student Declaration - Version 1

• I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-11-03 03:32:27

For Markers only: (circle appropriate grade)

PENG, Bo (bp820) | 02001599 | t5 | 2020-11-03 03:32:27 | A\* A B C D E F

# Introduction to Symbolic AI - Coursework 1

Bo Peng

CID: 02001599

October 2020

# 1 Formalize each of the following in propositional logic

• If Michel isn't either fulfilled or rich, he won't live another five years.

$$((\neg(p\vee q))\to(\neg r))$$

p = Michel fulfiiled

q = Michel rich

q = Michel live another five years

• Unless the snowstorm doesn't arrive, Raheem will wear his boots; but I'm sure it will arrive

$$(((\neg p) \lor q) \land (r \lor q))$$

p = snowstorm arrives

q =Raheem wear his boots

q = I'm sure

• If Akira and Toshiro are on set, then filming will begin if and only if the caterers have cleared out

$$(((p \vee q) \to (r)) \leftrightarrow s)$$

p = Akira on set

q = Toshiro on set

r = film will begin

s = caterers have cleaned out

• Either Irad arrived, or Sarah didn't: but not both

$$((p \vee (\neg q)) \wedge (\neg (p \wedge q)))$$

p = Irad arrived

q = Sarah arrived

• It's not the case both that Herbert heard the performance and Anne-Sophie did, if the latter didn't answer her phone calls

$$((\neg(p \land q)) \lor r)$$

p =Herbert heard the performance

q = Anne-Sophie heard the performance

r = Anne-Sophie answered her phone calls

### 2 Answer the questions

2.1 What is the definition of the satisfiability of a propositional formula, A?

A propositional formula A is satisfiable if there is some v such that  $h_v(A) = \top$ 

2.2 What is the definition of the logical equivalence of two propositional formulas A and B?

Two propositional formulas A and B are logically equivalent if, for every v,  $h_v(A) = h_v(B)$ 

- 2.3 Prove that a propositional formula  $\neg A$  is satisfiable iff  $\neg \neg A \not\equiv \top$  (i.e., iff it's not the case that  $\neg \neg A \equiv \top$ )
- $(\Rightarrow)$  If  $\neg A$  is satisfiable, then there exists at least one v such that  $h_v(\neg A) = \top$ . Which implies for the same v,  $h_v(\neg \neg A) = \bot$ , and thus  $\neg \neg A \not\equiv \top$ .

 $(\Leftarrow)$  If  $\neg \neg A \not\equiv \top$ , i.e.,  $\neg \neg A$  is not valid, then there exists at least one v suth that  $h_v(\neg \neg A) = h_v(A) = \bot$ . Then for the same v, we have  $h_v(\neg A) = \top$ , which means  $\neg A$  is satisfiable.

3 Use truth-tables to determine whether the following is valid or

**not:** 
$$(p \land q \leftrightarrow \neg(\neg r \lor \neg p)) \rightarrow (\neg \neg q \rightarrow r)$$

Here we can see, for the evaluation function v such that  $v(p) = \mathbf{t}, v(q) = \mathbf{t}, v(r) = \mathbf{f}$ , we will have  $h_v(p \land q \leftrightarrow \neg(\neg r \lor \neg p)) \to (\neg \neg q \to r) = \bot$ . Thus the formula is not valid.

## 4 Answer the Question

4.1 Which of the following are in CNF? Which are in DNF?

**CNF**: a, b, f, g

 $\mathbf{DNF}$ : b, e, h

4.2 Define the property of the refutation-soundness and -completeness of a resolution derivation. Why is this property important?

Let S be in Conjuctive Normal Form (CNF).  $S \vdash_{res(PL)} \emptyset$  iff  $S \models \bot$  is the property of the refutation-soundness and -completeness of a resolution derivation.

This property is important because it shows the connection between resolution derivation and satisfiability, which implies a logic to derive satisfiability from CNF.

4.3 Apply unit propagation and the pure rule repeatedly, in order to reduce the following to their simplist forms

**4.3.1** 
$$\{\{p,s\},\{q.r\},\{\neg s,q\},\{\neg p,\neg r,\neg s\}\}$$

$$\implies \{\{p,s\}, \{\neg p, \neg r, \neg s\}\}\$$
 (q is pure)

$$\implies \{\{p,s\}\} (\neg r \text{ is pure})$$

$$\implies$$
 {}  $\implies$  SATISFIABLE

**4.3.2** 
$$\{\{\neg p, q, r\}, \{\neg q\}, \{p, q, r\}, \{\neg r, q\}\}$$

$$\implies \{\{\neg p, r\}, \{p, r\}, \{\neg r\}\} \}$$
 (unit clause  $\{\neg q\}$ )

$$\implies \{\{\neg p\}, \{p\}\} \}$$
 (unit clause  $\{\neg r\}$ )

$$\implies$$
 {{}}(unit clause {p})  $\implies$  **UNSATISFIABLE** ( $\emptyset$  is in the set)

### 5 Use DP to determine whether the argument is valid or not

If we define p = I'm going, q = You're going and r = Tara's going, then we can formalize the statement to be the following:

Premises: 
$$\neg p \lor \neg q$$

$$q \lor \neg r$$

$$r \lor \neg p$$

$$p \lor r$$

Conclusion: q

To check the validity of  $A_1, \ldots, A_n \models B$ , is equivalent to check the satisfiability of  $(\bigwedge A_i) \wedge \neg B$ . Which means, if  $(\bigwedge A_i) \wedge \neg B$  is unsatisfiable, then we can conclude  $A_1, \ldots, A_4 \models B$  is valid. So to check the validity of  $(\neg p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p) \wedge (p \vee r) \models q$ , we can approve this by checking the satisfiability of  $(\neg p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p) \wedge (p \vee r) \wedge (\neg q)$ . Converting it to CNF and applying DP, we get:

$$\begin{split} & \{ \{\neg p, \neg q\}, \{q, \neg r\}, \{r, \neg p\}, \{p, r\}, \{\neg q\} \} \\ & \Longrightarrow \{ \{\neg r\}, \{r, \neg p\}, \{p, r\} \} (\text{unit clause } \{\neg q\}) \\ & \Longrightarrow \{ \{\neg p\}, \{p\} \} (\text{unit clause } \{\neg r\}) \\ & \Longrightarrow \{ \{\} \} (unit clause \{\neg p\}) \implies \textbf{UNSATISFIABLE} \end{split}$$

and thus we can conclude that the original argument is valid.

### 6 Translate into first-order logic.

• All of Andrea's aunts' aunts gave a cupcake to someone other than Andrea

$$\forall X(X = aunt(aunt(Andrea))) \rightarrow \exists Y(\neg(Y = Andrea) \land cupcake(X,Y))$$
 
$$C = \{Andrea\}$$
 
$$F_1 = \{aunt\}$$
 
$$P_2 = \{cupcake\}$$
 
$$L = Tuple(C, P_2, F_1)$$

• There's a computer connected to every computer which isn't connected to itself

$$\exists X \forall Y (computer(X) \land (computer(Y) \land \neg (X = Y) \land connect(X, Y))$$

$$P_1 = \{computer\}$$

$$P_2 = \{connect\}$$

$$L = Tuple(P_1, P_2)$$

• Any painting by Paul Klee in a British gallery hangs in a room where all Kandinsky paintings in that gallery hang

 $\forall G \exists Z \forall Y \forall X (room(Z) \land in(Z, Britishgallery(G)) \land ((Y = painting(Kandinsky)) \rightarrow in(Y, Z)) \rightarrow (X = painting(PaulKlee)) \rightarrow in(X, Z))$ 

$$C = \{PaulKlee, Kandinsky\}$$
  
 $P_1 = \{room, Britishgallery\}$   
 $P_2 = \{in\}$   
 $F_1 = \{painting\}$   
 $L = Tuple(P_1, P_2, F_1)$ 

• If there's somebody who loves nobody, then it's false that everybody loves somebody

$$\exists X(\neg(\exists Ylove(X,Y))) \rightarrow \neg(\forall Y\exists Xlove(X,Y))$$
 
$$P_2 = \{love\}$$

$$L = Tuple(P_2)$$

- 7 Determine true or false, and provide a justification in each case.
  - $\forall X a(k, X) \rightarrow \neg (X = j)$

**False**. Assume for any X, a(k, X), we can show that j = X, contradict with  $\neg (X = j)$ , so the argument is false.

$$\bullet \ c(l) \to \exists X (b(X) \wedge c(X) \wedge a(l,X))$$

**True**, for X = k.

• 
$$\exists X \neg \exists Y (\neg (X = Y) \land a(Y, X))$$

**True**, for X to be the black square.

• 
$$\forall X(\neg s(X) \to \exists Y(c(Y) \land b(Y) \land a(X,Y)))$$

**False**, for X = j.

• 
$$\forall X(\exists Y(\neg(X=Y) \land a(X,Y)) \rightarrow \exists Y(a(X,Y) \land a(Y,X)))$$

**True**, for Y = k.

• 
$$\forall X \forall Y (a(X,j) \land a(Y,j) \rightarrow (a(X,Y) \lor a(Y,X))$$

**False**, for 
$$X = k, Y = k$$
.