Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum II

,				1	Λ
ĽΠ	-	na	×	•	u
U	w	Iа	U.	_	•

Název úlohy: Měření s torzním mag	gnetometrem
Jméno: Vladislav Wohlrath	Obor: FOF FAF FMUZV
Datum měření: .10. 10. 2016	Datum odevzdání:

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

zoval:	dne:

Pracovní úkoly

- 1. Změřte závislost výchylky magnetometru na proudu protékajícím cívkou. Měření proveď te pro obě cívky a různé počty závitů (5 a 10).
- 2. Výsledky měření znázorněte graficky.
- 3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.
- 4. Změřte direkční moment vlákna metodou torzních kmitů.
- 5. Určete magnetický moment magnetu užívaného při měření (v Coulombových i Ampérových jednotkách).

Teoretická část

Malý permanentní tyčový magnet o neznámém Coulombově magnetickém momentu p zavěsíme vodorovně na tenké vlákno a umístíme do středu kruhové cívky kolmo k jeho ose. Pokud bude cívka mít poloměr r, počet závitů N a poteče jí proud I, vytvoří v místě magnetu podle Biotova-Savartova zákona magnetické pole o intenzitě

$$H = \frac{NI}{2r} \,. \tag{1}$$

Vektor intenzity pole bude kolmý na magnetický moment magnetu a na magnet bude působit moment síly

$$M = pH, (2)$$

a vychýlí se z původní polohy o úhelⁱ

$$\alpha = \frac{M}{D} = \frac{pH}{D} = \frac{pNI}{2rD} \,, \tag{3}$$

kde Dje direkční moment vlákna. Z Biotova-Savartova zákona tedy vyplývá závislost

$$\alpha \propto \frac{NI}{r}$$
, (4)

kterou experimentálně ověříme.

Direkční moment D určíme metodou torzních kmitů. Na vlákno zavěsíme vodorovně mosaznou tyč. Jestliže je moment setrvačnosti tyče vzhledem k ose otáčení J a zanedbáme momenty ostatních částí magnetometru, bude kyvadlo kmitat s periodou

$$T = 2\pi \sqrt{\frac{J}{D}} \,. \tag{5}$$

Ze známého direkčního momentu a naměřené závislosti (4) můžeme pomocí (3) vypočítat magnetický moment p.

Kromě Coulombova magnetického momentu p definujeme též Ampérův magnetický moment

$$m = \frac{p}{\mu_0} \tag{6}$$

Podmínky a použité přístroje

Výsledky měření

Diskuze

Závěr

i
Pro malé úhly, kdy je torzní síla pružná a platí $\sin(\alpha) \approx \alpha$