CHEM202 Organic Chemistry

Nick Green

nick.green@otago.ac.nz, 3n11

Module 1: Spectroscopy and Characterisation

Lecture 8: NMR Spectroscopy

Certain NMR experiments can be used to distinguish enantiomers!

Lecture 8

- Chirality and ¹H NMR
- COSY, 2D-NMR.
- NOE, NOESY

Chirality and ¹H NMR

There is free rotation about the bond, but H1 and H2 will never occupy an equivalent pair of envonments.

The test for diastereotopic protons is: if you replace either with a deuterium atom, will it create a pair of diastereomers?

The CH₂ group of aspartic acid displays resonances characteristic of the AB part of an ABX system. The protons are inequivalent and are said to be **diastereotopic**.

Correlation Spectroscopy (COSY)

- COSY provides a map of all coupling networks between protons in a molecule spectroscopy in a single experiment (cf with spin decoupling).
- Coupling provides connectivity through the bonds
- It is an example of a two-dimensional (2D) NMR technique.
- Refer Appendix 12; Advanced NMR techniques
 (Expt. 3, 4 & 5)

1D spectrum for 2-butanone

Coupling for this simple molecule can be extracted from the 1D spectrum. But what does a 2D spectrum look like?

COSY spectrum of 1-nitropropane.

Notes: "A" shows that "a" is coupled to "b" and "B" shows that "b" is coupled to "c."

COSY spectrum of 2-methyl-3-pentanone

lodobutane

All four signals are part of one spin system.

Thus, we expect all signals to be (indirectly) connected through the COSY

Predict the COSY for this molecule

All four signals are part of one spin system.

Thus, we expect all signals to be (indirectly) connected through the COSY

NOESY (Nuclear Overhauser Effect Spectroscopy)

- Enables the molecular geometry to be defined
- Effect (NOE) is transmitted through space (not bonds) between interacting nuclei
- Interaction is based on relaxation processes following excitation of the nuclei
- The NOE rapidly diminishes with distance (depends on d-6)
- Nuclei must be relatively close together (d < 0.5 nm)
- Refer Appendix 12; Advanced NMR techniques (Expt. 4)

A synthetic unknown, C₁₃H₁₀N₂

- could be structure A or B?

A

126

A synthetic unknown, C₁₃H₁₀N₂

- could be structure A or B?

A

Spin systems colourised.

The difference in number of protons in each spin system will be diagnostic.

B 127

COSY spectrum of unknown

A synthetic unknown, C₁₃H₁₀N₂

- could be structure A or B?

A

B 129

COSY spectrum of unknown:

NOESY spectrum of unknown:

COSY spectrum of unknown

COSY spectrum of unknown:

NOESY spectrum of unknown:

Use the number of signals expected in each set of spin systems to decide.

(Note: because the COSY is always symmetrical about

