Class 11: Comparative Structure Analysis

AUTHOR

Claire Lua A16922295

Load up the packages we will need for analysis of protein structure sets.

```
library(bio3d)
```

We will analyze the ADK starting with a single ADK database accession code: "1ake_A"

```
id <- "lake_A"
aa <- get.seq(id)</pre>
```

```
Warning in get.seq(id): Removing existing file: seqs.fasta
```

Fetching... Please wait. Done.

```
aa
```

```
pdb | 1AKE | A
             MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
                                                                            120
             DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDRI
pdb | 1AKE | A
            61
                                                                            120
                                                                            180
            VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
pdb | 1AKE | A
           121
                                                                            180
           181
                                                214
pdb | 1AKE | A
            YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
           181
Call:
  read.fasta(file = outfile)
Class:
  fasta
Alignment dimensions:
  1 sequence rows; 214 position columns (214 non-gap, 0 gap)
+ attr: id, ali, call
```

```
blast <- blast.pdb(aa)</pre>
```

```
Searching ... please wait (updates every 5 seconds) RID = 1ZYMS3VR013
```

attributes(aa)

\$names

[1] "id" "ali" "call"

\$class

[1] "fasta"

head(blast\$hit.tbl)

		queryid	subje	ctids	iden	tity	alig	nmentle	ngth	mismatch	es	gapoper	าร	q.sta	rt
1	Query_	_3822419	1/	AKE_A	100	.000			214		0		0		1
2	Query_	_3822419	88	BQF_A	99	533			214		1		0		1
3	Query_	_3822419	4)	A_M8>	99	533			214		1		0		1
4	Query_	_3822419	69	536_A	99	533			214		1		0		1
5	Query_	_3822419	80	Q2B_A	99	533			214		1		0		1
6	Query_	_3822419	8F	RJ9_A	99	533			214		1		0		1
	q.end	s.start	s.end	e١	/alue	bits	score	positiv	ves	mlog.eval	ue	pdb.id		acc	
1	214	1	214	1.666	-156		432	100	.00	358.69	65	1AKE_A	1A	KE_A	
2	214	21	234	2.716	-156		433	100	.00	358.20	63	8BQF_A	8B	QF_A	
3	214	1	214	2.966	-156		432	100	.00	358.11	81	4X8M_A	4X	8M_A	
4	214	1	214	4.35€	-156		432	100	.00	357.73	31	6S36_A	6S	36_A	
5	214	1	214	1 . 156	-155		431	99	.53	356.76	09	8Q2B_A	8Q	2B_A	
6	214	1	214	1.156	-155		431	99	.53	356.76	09	8RJ9_A	8R	J9_A	

Make a little summary figure of these results:

hits <- plot(blast)</pre>

* Possible cutoff values: 260 3

Yielding Nhits: 18 90

* Chosen cutoff value of: 260

Yielding Nhits: 18

Our "top hits" i.e. the most similar enteries in the database are:

```
hits$pdb.id
```

```
[1] "1AKE_A" "8BQF_A" "4X8M_A" "6S36_A" "8Q2B_A" "8RJ9_A" "6RZE_A" "4X8H_A"
[9] "3HPR_A" "1E4V_A" "5EJE_A" "1E4Y_A" "3X2S_A" "6HAP_A" "6HAM_A" "8PVW_A"
[17] "4K46_A" "4NP6_A"
```

```
files <- get.pdb(hits$pdb.id, path="pdbs", split=TRUE, gzip=TRUE)</pre>
```

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/1AKE.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/8BQF.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/4X8M.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6S36.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/8Q2B.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/8RJ9.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6RZE.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/4X8H.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/3HPR.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/1E4V.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/5EJE.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/1E4Y.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/3X2S.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6HAP.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6HAM.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/8PVW.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/4K46.pdb.gz exists. Skipping download Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/4NP6.pdb.gz exists. Skipping download 1 0% 6% 11% |====== |======== 17% |========== 22% 28% |========== 33%

39%

44%

 ===================================	I	50%
 ===================================	I	56%
 ===================================	I	61%
 ===================================	l	67%
 ===================================	I	72%
 ===================================	I	78%
 ===================================	I	83%
 ===================================	I	89%
 ===================================	I	94%
 ===================================	=	100%

Align and supperpose all these structures

```
pdbs <- pdbaln(files, fit = TRUE, exefile="msa")</pre>
```

```
Reading PDB files:
pdbs/split_chain/1AKE_A.pdb
pdbs/split_chain/8BQF_A.pdb
pdbs/split chain/4X8M A.pdb
pdbs/split_chain/6S36_A.pdb
pdbs/split_chain/8Q2B_A.pdb
pdbs/split_chain/8RJ9_A.pdb
pdbs/split_chain/6RZE_A.pdb
pdbs/split_chain/4X8H_A.pdb
pdbs/split_chain/3HPR_A.pdb
pdbs/split_chain/1E4V_A.pdb
pdbs/split_chain/5EJE_A.pdb
pdbs/split_chain/1E4Y_A.pdb
pdbs/split_chain/3X2S_A.pdb
pdbs/split_chain/6HAP_A.pdb
pdbs/split_chain/6HAM_A.pdb
pdbs/split_chain/8PVW_A.pdb
pdbs/split_chain/4K46_A.pdb
pdbs/split_chain/4NP6_A.pdb
```

PDB has ALT records, taking A only, rm.alt=TRUE

- . PDB has ALT records, taking A only, rm.alt=TRUE
- .. PDB has ALT records, taking A only, rm.alt=TRUE
- . PDB has ALT records, taking A only, rm.alt=TRUE
- . PDB has ALT records, taking A only, rm.alt=TRUE
- . PDB has ALT records, taking A only, rm.alt=TRUE
- .. PDB has ALT records, taking A only, rm.alt=TRUE
- .. PDB has ALT records, taking A only, rm.alt=TRUE
- PDB has ALT records, taking A only, rm.alt=TRUE
- . PDB has ALT records, taking A only, rm.alt=TRUE

. PDB has ALT records, taking A only, rm.alt=TRUE

Extracting sequences

```
name: pdbs/split_chain/1AKE_A.pdb
pdb/seq: 1
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 2
             name: pdbs/split_chain/8BQF_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 3
             name: pdbs/split_chain/4X8M_A.pdb
pdb/seq: 4
             name: pdbs/split_chain/6S36_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
             name: pdbs/split_chain/8Q2B_A.pdb
pdb/seq: 5
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 6
             name: pdbs/split_chain/8RJ9_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 7
             name: pdbs/split_chain/6RZE_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 8
             name: pdbs/split_chain/4X8H_A.pdb
pdb/seq: 9
             name: pdbs/split_chain/3HPR_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 10
              name: pdbs/split_chain/1E4V_A.pdb
pdb/seq: 11
              name: pdbs/split_chain/5EJE_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 12
              name: pdbs/split chain/1E4Y A.pdb
pdb/seq: 13
              name: pdbs/split_chain/3X2S_A.pdb
pdb/seq: 14
              name: pdbs/split_chain/6HAP_A.pdb
pdb/seq: 15
              name: pdbs/split_chain/6HAM_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 16
              name: pdbs/split_chain/8PVW_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
              name: pdbs/split_chain/4K46_A.pdb
pdb/seq: 17
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 18
              name: pdbs/split_chain/4NP6_A.pdb
Side-note:
```

library(bio3dview)
view.pdbs(pdbs)

This is better but still difficult to see what is similar and different in all these structures or indeed learn much about how this family works.

Let's try PCA:

```
pc <- pca(pdbs)
plot(pc)</pre>
```


plot(pc, pc.axes=1:2)

view.pca(pc)

Write a PDB "trajectory" for mol-star

```
mktrj(pc, file="pca_results.pdb")
```