TOSHIBA MOS MEMORY PRODUCT

1,048,576 WORDS × 1 BIT DYNAMIC RAM SILICON GATE CMOS

TC511000P/J/Z-85, TC511000P/J/Z-10 TC511000P/J/Z-12

DESCRIPTION

The TC511000P/J/Z is the new generation dynamic RAM organized 1,048,576 words by 1 bit. The TC511000P/J/Z utilizes TOSHIBA's CMOS Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user. Multiplexed address inputs permit the TC511000P/J/Z to be packaged in a standard 18 pin plastic DIP, 26/20 pin plastic SOJ and 20/19 pin plastic ZIP. The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. System oriented features include single power supply of 5V±10% tolerance, direct interfacing capability with high performance logic families such as Schottky TTL. "Test Mode" function is implemented from Revision C.

FEATURES

- 1,048,576 words by 1 bit organization
- · Fast access time and cycle time

		TC5110001	P/J/Z-85	-10-12
tRAC	RAS Access Time	85ns	100ns	120ns
t _{AA}	Column Address Access Time	45ns	50ns	60ns
^t CAC	CAS Access Time	25ns	25ns	30ns
tRC	Cycle Time	165ns	190ns	220ns
tPC	Fast Page Mode Cycle Time	50ns	55ns	70ns

 Single power supply of 5V±10% with a builtin V_{BB} generator · Low Power

385mW MAX. Operating(TC511000P/J/Z-85)
330mW MAX. Operating(TC511000P/J/Z-10)
275mW MAX. Operating(TC511000P/J/Z-12)
5.5mW MAX. Standby

- Output unlatched at cycle end allows two-dimensional chip selection
- Common I/O capability using "EARLY WRITE" operation
- Read-Modify-Write, CAS before RAS refresh, RAS-only refresh, Hidden refresh, Fast Page Mode and Test Mode capability
- · All inputs and output TTL compatible
- 512 refresh cycles/8ms

 Package Plastic DIP: TC511000P Plastic SOJ: TC511000J

Plastic SOJ: TC511000J Plastic Z1P: TC511000Z

PIN CONNECTION (TOP VIEW)

DIN 01 18 VSS WRITE 02 17 DOUT W RAS 03 16 CAS TF 04 15 DA9 A0 05 14 DA8 A1 06 15 DA7 A2 07 12 DA6 A3 08 11 DA5 VCC 09 10 DA4	DIN 17 2 25 UVSS RITE 12 2 25 DOUT RAS 13 24 CAS TF 14 23 UN.C. N.C. 15 22 DA9 A0 19 18 LAB A1 10 17 DA7 A2 11 16 DA6 A3 12 15 DA5 VCC 13 14 DA4

PIN NAMES

AO ∿ A9	Address Inputs				
RAS	Row Address Strobe				
DIN	Data In				
DOUT	Data Out				
CAS	Column Address Strobe				
WRITE	Read/Write Input				
v_{CC}	Power (+5V)				
Vss	Ground				
TF	Test Function				
N.C.	No Connection				

Plastic ZIP

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNITS	NOTES
Input Voltage	VIN	-1 ∿ 7	V	1
Test Function Input Voltage	VIN(TF)	-1 ∿ 10.5	V	1
Output Voltage	VOUT	-1 ∿ 7	V	1
Power Supply Voltage	VCC	-1 ∿ 7	V	1
Operating Temperature	TOPR	0 ∿ 70	°C	1
Storage Temperature	TSTG	- 55 ∿ 150	°C	1
Soldering Temperature • Time	TSOLDEP.	260 • 10	°C • sec	1
Power Dissipation	PD	600	mW	1
Short Circuit Output Current	IOUT	50	mA	1

RECOMMENDED DC OPERATING CONDITIONS ($Ta=0 \sim 70$ °C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTES
VCC	Supply Voltage	4.5	5.0	5.5	V	2
V _{CC}	Input High Voltage	2.4	-	6.5	V	2
VIL	Input Low Voltage	-1.0	-	0.8	V	2
VIH(TF)	Test Enable Input High Voltage	VCC+4.5		10.5	V	2

DC ELECTRICAL CHARACTERISTICS ($V_{CC}=5V\pm10\%$, Ta=0 $\sim70^{\circ}$ C)

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	NOTES	
	OPERATING CURRENT	TC511000P/J/Z-85		70		
ICCI	Average Power Supply Operating Current	TC511000P/J/Z-10	-	60	mA	3,4
COL	(RAS, CAS, Address Cycling: tRC=tRC MIN.)	TC511000P/J/Z-12	-	50		
	STANDBY CURRENT					
I _{CC2}	Power Supply Standby Current		-	2	mA	
	(RAS=CAS=VIH)			ļ		
	RAS ONLY REFRESH CURRENT	TC511000P/J/Z-85	-	70		
I _{CC3}	Average Power Supply Current, RAS Only Mode	TC511000P/J/Z-10		60	mA	3
	(RAS Cycling, CAS=VIH: tRC=tRC MIN.)	TC511000P/J/Z-12		50		
	FAST PAGE MODE CURRENT	TC511000P/J/Z-85		50		
I _{CC4}	Average Power Supply Current, Fast Page Mode	TC511000P/J/Z-10		40	mA	3,4
	$(\overline{RAS}=V_{IL}, \overline{CAS}, Address Cycling: tpC=tpC MIN.)$		30			
	STANDBY CURRENT				į į	
I _{CC5}	Power Supply Standby Current				mA	
	(RAS=CAS=VCC-0.2V)					
	CAS BEFORE RAS REFRESH CURRENT	TC511000P/J/Z-85	-	70		_
I _{CC6}	Average Power Supply Current, CAS Before	TC511000P/J/Z-10		60	mA	3
	RAS Mode (RAS, CAS Cycling: tRC=tRC MIN.)	TC511000P/J/Z-12		50		
	INPUT LEAKAGE CURRENT (any input except TF)			1		
I _I (L)	Input Leakage Current, any input $(0V \le V_{IN} \le 6.5V)$	-10	10	μA		
	Pins Not Under Test=0V)					
IITF(L)	INPUT LEAKAGE CURRENT (only TF)		-10	10	uА	
-11F(L)	(or I . IN(21) I over, mill office find not ender re-	st=0V)				
I _{O(L)}	OUTPUT LEAKAGE CURRENT	٠	-10	10	uА	
0(L)	(D _{OUT} is disabled, OV ≤ V _{OUT} ≤ 5.5V)		-10	10	μА	
ITF	TEST FUNCTION INPUT CURRENT			1	mA	
-12	$(V_{CC}+4.5V \le V_{IN}(TF) \le 10.5V)$		-	i [±]	IIIA	
v _{OH}	OUTPUT LEVEL	2.4		V		
·UH	Output "H" Level Voltage (IOUT=-5mA)	2.4	-	V		
V _{OL}	OUTPUT LEVEL			٥,	7,	
·OL	Output "L" Level Voltage (IOUT=4.2mA)		-	0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC}=5V\pm10\%, Ta=0 \sim 70$ °C) (Notes 5, 6, 7)

SYMBOL	PARAMETER		TC511000P/J/Z-85 TC511000P/J/Z-10			TC5110	000P/J/Z-12	IINITT	NOTES
SIMBUL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	ONII	NOTES
tRC	Random Read or Write Cycle Time	165	_	190	-	220	_	ns	
t _{RWC}	Read-Write Cycle Time	190	_	220	-	255	_	ns	
tPC	Fast Page Mode Cycle Time	50	-	55	-	70	-	ns	
tPRWC	Fast Page Mode Read-Write Cycle Time		-	85	_	105	_	ns	
tRAC	Access Time from RAS		85	-	100	_	120	ns	8,13
^t CAC	Access Time from CAS		25	-	25	-	30	ns	8,13
t _{AA}	Access Time from Column Address		45	-	50	-	60	ns	8,14
t _{CPA}	Access Time from CAS Precharge	-	45	-	50	-	65	ns	8
tCLZ	CAS to Output in Low-Z	5	_	5	_	5	-	ns	8
tOFF	Output Buffer Turn-off Delay	0	30	0	30	0	35	ns	9
t _T	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	7
t _{RP}	RAS Precharge Time	70	-	80	_	90	_	ns	
t _{RAS}	RAS Pulse Width	85	10,000	100	10,000	120	10,000	ns	
tRASP	RAS Pulse Width (Fast Page Mode)	85	100,000	100	100,000	120	100,000	ns	
t _{RSH}	RAS Hold Time	25	_	25	_	30	-	ns	
^t CSH	CAS Hold Time	85	-	100	-	120	-	ns	
^t CAS	CAS Pulse Width	25	10,000	25	10,000	30	10,000	ns	
	RAS to CAS Delay Time	25	60	25	75	25	90	ns	13
^t RAD	RAS to Column Address Delay Time	20	40	20	50	20	60	ns	14
tCRP	CAS to RAS Precharge Time	10	-	10	-	10	_	ns	
t _{CP}	CAS Precharge Time (Fast Page Mode)	10	_	10	-	15	-	ns	
^t ASR	Row Address Set-Up Time	0	-	0	-	0	-	ns	
t _{RAH}	Row Address Hold Time	15	-	15	-	15	-	ns	
^t ASC	Column Address Set-Up Time	0	-	0	-	0	-	ns	
t _{CAH}	Column Address Hold Time	20	-	20	-	25	-	ns	
t _{AR}	Column Address Hold Time referenced to RAS	65	-	75	-	90	-	ns	
tRAL	Column Address to RAS Lead Time	45	_	50	-	60	-	ns	
	Read Command Set-Up Time	0	_	0	_	0	-	ns	
	Read Command Hold Time	0	_	0	-	0	_	ns	10
t _{RRH}	Read Command Hold Time referenced to RAS	0	_	0	-	0	-	ns	10

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Continued)

SYMBOL	PARAMETER	TC511000	P/J/Z-85	TC511000P/J/Z-10		TC511000P/J/Z-12		IDITEC	NOTEC
SIMBUL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS	NOTES
- twch	Write Command Hold Time	20	-	20	_	25	-	ns	
twcr	Write Command Hold Time referenced to RAS	65		75	_	90	-	ns	
. t _{WP}	Write Command Pulse Width	20	_	20	_	25	_	ns	
t _{RWL}	Write Command to \overline{RAS} Lead Time	20	_	25	_	30	-	ns	
t CWL	Write Command to CAS Lead Time	20	_	25	-	30	-	ns	
t _{DS}	Data Set-Up Time	0	-	0	_	0	-	ns	11
t _{DH}	Data Hold Time	20	-	20	-	25	-	ns	11
t _{DHR}	Data Hold Time referenced to \overline{RAS}	65	-	75	-	90	-	ns	
tREF	Refresh Period		8	_	8	_	8	ms	
twcs	Write Command Set-Up Time	0	-	0	_	0	_	ns	12
^t CWD	CAS to WRITE Delay Time	25	-	25	-	30	-	ns	12
tRWD	RAS to WRITE Delay Time	85	-	100	_	120	-	ns	12
t _{AWD}	Column Address to WRITE Delay Time	45	-	50	-	60	-	ns	12
t _{CSR}	CAS Set-Up Time (CAS before RAS Cycle)	10	-	10	-	10	-	ns	
t _{CHR}	CAS Hold Time (CAS before RAS Cycle)	30	- :	30	-	30	-	ns	
tRPC	RAS to CAS Precharge Time	0	-	0	-	0	-	ns	
tCPT	CAS Precharge Time (CAS before RAS Counter Test Cycle)	50	-	50	, -	60	-	ns	
tCPN	CAS Precharge Time	15	-	15	-	20	-	ns	
tTES	Test Mode Enable Set-Up Time referenced to RAS		-	0	-	0	-	ns	
tTEH	Test Mode Enable Hold Time referenced to RAS	0	<u>-</u>	0	-	0	-	ns	

CAPACITANCE ($V_{CC}=5V\pm10\%$, f=1MHz, Ta=0 \sim 70°C)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
CII	Input Capacitance (AO ∿A9, D _{IN})	-	5	
CI2	Input Capacitance (RAS, CAS, WRITE, TF)	-	7	pF
CO	Output Capacitance (DOUT)	-	7	

NOTES:

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. All Voltages are referenced to $V_{
 m SS}$.
- Iccl, Icc3, Icc4, Icc6 depend on cycle rate.
- 4. I_{CC1} , I_{CC4} depend on output loading. Specified values are obtained with the output open.
- 5. An initial pause of 200 μ s is required after power-up followed by 8 $\overline{\text{RAS}}$ cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ initialization cycles instead of 8 $\overline{\text{RAS}}$ cycles are required.
- 6. AC measurements assume t_T =5ns.
- 7. $V_{\rm IH}({\rm min.})$ and $V_{\rm IL}({\rm max.})$ are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{\rm IH}$ and $V_{\rm IL}$.
- 8. Measured with a load equivalent to 2 TTL loads and 100pF.
- t_{OFF}(max.) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 11. These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in read-write cycles.
- 12. t_{WCS} , t_{RWD} , t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included the data sheet as electrical characteristics only. If $t_{WCS} \geq t_{WCS}$ (min.), the cycle is an early write cycle and data out pin will remain open circuit (high impedance) through the entire cycle; If $t_{RWD} \geq t_{RWD}$ (min.), $t_{CWD} \geq t_{CWD}$ (min.) and $t_{AWD} \geq t_{AWD}$ (min.), the cycle is a read-write cycle and data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 13. Operation within the $t_{RCD}(max.)$ limit insures that $t_{RAC}(max.)$ can be met. $t_{RCD}(max.)$ is specified as a reference point only: If t_{RCD} is greater than the specified $t_{RCD}(max.)$ limit, then access time is controlled by t_{CAC} .
- 14. Operation within the $t_{RAD}(max.)$ limit insures that $t_{RAC}(max.)$ can be met. $t_{RAD}(max.)$ is specified as a reference point only: If t_{RAD} is greater then the specified $t_{RAD}(max.)$ limit, then access time is controlled by t_{AA} .

TIMING WAVEFORMS

READ CYCLE

: "H"or"L"

NOTE: "TF" pin should be connected to ${\tt V}_{\hbox{\scriptsize IL}}$ level or open, if "Test Mode" is not used.

WRITE CYCLE (EARLY WRITE)

: "H"or"L"

NOTE: "TF" pin should be connected to ${\rm V}_{\mbox{\scriptsize IL}}$ level or open, if "Test Mode" is not used.

READ-WRITE CYCLE

NOTE: "TF" pin should be connected to ${\rm V}_{\rm IL}$ level or open, if "Test Mode" is not used.

FAST PAGE MODE READ CYCLE

: "H"or"L"

NOTE: "TF" pin should be connected to ${\rm V}_{\rm IL}$ level or open, if "Test Mode" is not used.

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

: "H"or"L"

NOTE: "TF" pin should be connected to ${\tt V_{IL}}$ level or open, if "Test Mode" is not used.

FAST PAGE MODE READ-WRITE CYCLE

: "H"or"L"

NOTE: "TF" pin should be connected to ${\rm V}_{\rm IL}$ level or open, if "Test Mode" is not used.

RAS ONLY REFRESH CYCLE

	v _{OH} -	-		
$\mathtt{D}_{\mathtt{OUT}}$			OPEN	
	Vor. —			

: "H" or "L"

NOTE: WRITE="H" or "L", A9="H" or "L"

"TF" pin should be connected to ${\rm V}_{\rm IL}$ level or open, if "Test Mode" is not used.

CAS BEFORE RAS REFRESH CYCLE

HIDDEN REFRESH CYCLE (READ)

: "H"or"L"

NOTE: "TF" pin should be connected to V_{IL} level or open, if "Test Mode" is not used.

HIDDEN REFRESH CYCLE (WRITE)

: "H"or"L"

NOTE: "TF" pin should be connected to ${\tt V}_{\rm IL}$ level or open, if "Test Mode" is not used.

NOTE: "TF" pin should be connected ${\rm V}_{\rm IL}$ level or open, if "Test Mode" is not used.

DESCRIPTION OF THE TEST MODE FOR 1M DRAMS

The TC511000/1/2 is a CMOS DRAM organized as 1,048,576 words by 1-bit. It is internally organized as 262,144 words by 4-bits.

The "Test Mode" function allows for a 1M DRAM to be tested virtually as if it were a 256K DRAM. Figure 1 shows the block diagram of the "Test Mode" circuit. Data is written into the four 256K blocks in parallel and is retrieved the same way. A logical "and" operation is performed on the outputs of the four internal 256K blocks.

- o For a good device, the output data of the four internal blocks are identical to the input data (all "H" or all "L") and consequently the same data will appear on the output pin.
- o For a bad device, the output data of one or more of the internal blocks will differ from the input data and a high impedance state will be detected on the output pin.

Block Diagram in Test Mode

TF Pin = Super voltage; Test Mode
TF Pin = Low level or Hi-Z; Normal

Truth Table in Test mode Function

A	В	С	D	DOUT
0	0	0	0	0
1	1	1	1	1
	oth	nerwi	Hi-Z	

Fig. 1

DESCRIPTION OF THE TEST MODE FOR 1M DRAMS (CONTINUED)

The "Test Mode" function is enabled by applying a "Super Voltage" (VCC+4.5V, max. voltage=10.5V) on the "TF" pin for a specified period (tTES and tTEH as shown in figure 2). It can be used while operating in any mode, including static column mode. It achieves a 4:1 reduction in test time for N patterns and a 16:1 reduction in test time for N² patterns. The A9 address input is ignored during the "Test Mode".

During normal operation or when the "Test Mode" function is not used, the "TF" pin must be connected to VSS or TTL Logic Low Level, or left unconnected on the printed wiring board.

Fig.2 Test Mode Cycle

· Plastic DIP

Unit in mm

Note: Each lead pitch is 2.54mm.

All leads are located within $0.25 \, \mathrm{mm}$ of their true longitudinal position with respect to No.1 and No.18 leads.

All dimensions are in millimeters.

· Plastic SOJ

Unit in mm

Plastic ZIP

Unit in mm

Note: Each lead pitch is 1.27mm.

All dimensions are in millimeters.

Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.