$D(2740)^0$

$$I(J^P) = \frac{1}{2}(?^?)$$

OMITTED FROM SUMMARY TABLE J^P consistent with unnatural parity (AAIJ 13CC).

ח	(2740	1)0	ΜΔ	55
U	<i>Z I</i> 41	,,	IVI	22

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2737.0±3.5±11.2	7.7k	AAIJ	13CC LHCB	$pp \rightarrow D^{*+}\pi^{-}X$

D(2740)⁰ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$73.2 \pm 13.4 \pm 25.0$	7.7k	AAIJ	13CC LHCB	$pp \rightarrow D^{*+}\pi^{-}X$

D(2740)⁰ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$D^{*+}\pi^-$	seen

$D(2740)^0$ POLARIZATION AMPLITUDE A_{D,I}

A polarization amplitude A_{D_J} is a parameter that depends on the initial polarization of the D_J . For D_J decays the helicity angle, θ_H , distribution varies like $1+A_{D_J}\cos^2(\theta_H)$, where θ_H is the angle in the D_J rest frame between the two pions emitted in the $D_J \to D^*\pi$ and $D^* \to D\pi$ decays.

 VALUE
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 3.1±2.2
 7.7k
 ¹ AAIJ
 13CC LHCB
 $pp → D^{*+}π^-X$

 ¹ Systematic uncertainty not estimated.

D(2740)⁰ REFERENCES

AAIJ 13CC JHEP 1309 145 R. Aaij et al. (LHCb Collab.)

Created: 5/30/2017 17:22