

Vorläufige Beschreibung

DC-MIKROVOLTMETER

UIG

Ident.-Nr. 203.5111

Zusammengestellt
nach R 22780

Printed in West Germany

R 22779 Bl. 1

1.

Bitte lesen Sie vor **Inbetriebnahme** Ihres neuen Rohde & Schwarz-Gerätes den zunächst wichtigsten Teil dieser Beschreibung: die Bedienungsanleitung.

Anhand der Zusammenstell-Vorschrift (ZV) – das ist die Liste am Schluß – können Sie prüfen, ob die Beschreibung in allen Teilen komplett ist und dem vorgeschriebenen Änderungszustand (ÄZ) entspricht.

Reklamationen bitte mit Angabe der in der rechten unteren Ecke der ZV genannten R-Nr. und der Pos.-Nr. (siehe Postkarte Anschriftseite).

2.

Wir möchten unsere **Kundenkartei** ausbauen und Sie auch in Zukunft mit Neuentwicklungen bekannt machen. Außerdem interessiert uns, was zum Kauf dieses R&S-Gerätes bei Ihnen den Ausschlag gab.

Bitte senden Sie uns deshalb untenstehende Postkarte ausgefüllt zurück.

Vielen Dank im voraus, und vor allem ungetrübte Freude mit Ihrem R&S-Gerät!

3.

Zur **Ersatzteilbeschaffung** wenden Sie sich am besten an Ihre nächstgelegene R&S-Vertretung oder an Rohde & Schwarz, D 8000 München 80, Postfach 801469; Tel. (0811) 4129-465, Telex 523703, Telegramm: rohdeschwarz muenchen.

Bei der Bestellung eines Ersatzteils bitte angeben:

- Kennzeichen und R&S-Sach-Nr. des schadhaften Bauteils (gemäß Schaltstelliste)
- Typ bzw. Bestellbezeichnung sowie Fertigungsnummer (FNr) des Gerätes (gemäß Frontplattenbeschriftung)
- Genaue Lieferanschrift (Absender)

Werbearbeit

Absender:

An
ROHDE & SCHWARZ
Abteilung 5 ZI
D 8000 München 80
Postfach 801469

Die Beschreibung zu umseitigem Gerät ist nicht komplett.
Bitte senden Sie laut ZV-R-Nr.
folgende Pos.-Nr.:

Inhaltsübersicht

1. Eigenschaften

- 1.1. Anwendung
- 1.2. Arbeitsweise und Aufbau
- 1.3. Technische Daten
- 1.4. Mitgeliefertes Zubehör
- 1.5. Empfohlene Ergänzungen

2. Betriebsvorbereitung und Bedienung

- 2.1. Betriebsvorbereitung
 - 2.1.1. Legende zum Bedienungsbild
 - 2.1.2. Aufstellen des Gerätes
 - 2.1.3. Prüfen und Nachstellen des mechanischen Instrument-Nullpunktes
 - 2.1.4. Batteriekontrolle und Einschalten
 - 2.1.5. Prüfen und Nachstellen der elektrischen Instrument-Nullpunkte
 - 2.1.6. Erden des Gehäuses
 - 2.1.7. Anschließen vor- und nachgeschalteter Geräte
- 2.2. Bedienung
 - 2.2.1. Allgemeines zur Strom- und Spannungsmessung
 - 2.2.2. Hinweise zum Meßaufbau
 - 2.2.3. Messungen mit dem 30-kV-Gleichspannungstaster
 - 2.2.4. Verwendung als Meßverstärker

3. Wartung und Reparatur

- 3.1. Elektrische Wartung
 - 3.1.1. Auswechseln des Batteriesatzes
 - 3.1.2. Nachstellen des Null- Abgleichbereiches J
- 3.2. Elektrische Reparatur
 - 3.2.1. Auswechseln der Schmelzeinsätze

Bild 1-1 Blockschaltbild

Bild 2-1 Bedienungsbild

Schaltteillisten

Stromläufe

Zusammenstell-Vorschrift

1. Eigenschaften

1.1. Anwendung

Das DC-Mikrovoltmeter UIG Ident.-Nr. 203.5111 ist ein hochempfindliches Meßgerät für Gleichspannungen und Gleichströme. Zusätzlich hat das Gerät einen Verstärkerausgang. Dadurch ist es auch als rausch- und driftarmer Vorverstärker für Gleichspannungsschreiber und Digitalvoltmeter sowie als Meßverstärker verwendbar.

Der Spannungsmeßbereich reicht von 0,2 μ V bis 320 V (mit Gleichspannungstaster bis 30 kV), der Strommeßbereich von 1 pA bis 320 mA. Die Meßbereiche werden mit zwei Schaltern eingestellt: die Meßeinheit in den Stufen nA/ μ A/mA/mV/V, der Bereichsendwert in den Stufen 0,01/0,03/0,1/.../300. Das Drehspulinstrument mit 105°-Spiegelskala hat den Nullpunkt in Skalenmitte, dadurch entfällt das Umschalten der Polarität. Der Eingang des UIG ist durch eine elektronische Schutzschaltung, in den Strombereichen zusätzlich durch Schmelzsicherungen, gegen Überlastung geschützt.

Durch die Betriebsspannungsversorgung aus Trockenbatterien ist das Gerät unabhängig vom Netz, beweglich im Einsatz und auch für Messungen geeignet, die erdfreien Aufbau erfordern. Der Stromverbrauch ist so gering, daß die Lebensdauer der Batterien nur durch deren Lagerfähigkeit begrenzt wird. Die Betriebsspannung kann mit dem eingebauten Anzeigegerät kontrolliert werden.

Die beschriebenen Merkmale ermöglichen eine Vielfalt von Messungen in Labor, Fertigung und Service. Mit Hilfe einer Spannungs- oder Stromquelle lassen sich sehr hohe (bis 10^{14} Ω) und sehr niedrige (ab 10^{-6} Ω) Widerstandswerte messen. Wegen der hohen Empfindlichkeit in Verbindung mit erdfreiem Aufbau eignet sich das Gerät auch als Nullindikator und Toleranzzeiger bei Brückenmessungen.

1. 2. Arbeitsweise und Aufbau

Hierzu Blockschaltbild Bild 1-1.

Das DC-Mikrovoltmeter UIG besteht aus der Kettenschaltung zweier Gleichspannungsverstärker, deren erster als Zerhackerverstärker ausgeführt ist. Die Verstärker sind durch ein Widerstandsnetzwerk gegengekoppelt, die Bereichumschaltung wird am Geräteeingang, im Verstärker- und im Gegenkopplungszweig vorgenommen.

Die zu messende Größe, Spannung oder Strom, gelangt über einen Schalter, dessen Stellungen mit den Meßeinheiten nA/ μ A/mA/mV/V beschriftet sind, an die Verstärkeranordnung. In der Stellung mV ist der Verstärker (über den Tiefpaß) direkt mit der Klemme U verbunden, man erhält die Bereiche 10 μ V bis 300 mV mit dem Eingangswiderstand 10 M Ω . In der Stellung V wird ein 60-dB-Spannungsteiler zwischen Eingangsklemme und Verstärker geschaltet und es ergeben sich die Bereiche 10 mV bis 300 V bei einem Eingangswiderstand von 50 M Ω . In den Stellungen mA, μ A und nA liegt der Verstärker an Klemme J; diesem Eingang werden Nebenwiderstände von 1 Ω , 1 k Ω oder 1 M Ω gegen Schaltungsnull parallelgeschaltet. Die zugehörigen Meßbereiche erstrecken sich von 10 μ A bis 300 mA, 10 nA bis 300 μ A und 10 pA bis 300 nA. Die Nebenwiderstände 1 Ω und 1 k Ω sind durch Schmelzsicherungen gegen Überlastung geschützt. Der Spannungsabfall am Meßobjekt beträgt in den Strombereichen 10 μ V bis 300 mV, er kann aus der Stellung des Meßbereichschalters direkt abgelesen werden.

Der dem Verstärker vorgeschaltete dreistufige Tiefpaß dämpft Störwechselspannungen. In der folgenden Differenz-Eingangsstufe des Verstärkers wird die Gleichspannung in eine 87-Hz-Wechselspannung umgeformt, dann verstärkt und synchron wieder gleichgerichtet. Der folgende Tiefpaß hat die Aufgabe, neben einer Stabilisierung des Regelkreises das Rauschen im Übertragungsweg zu verringern. Über einen 50-dB-Gleichspannungsverstärker gelangt die Spannung an das Anzeigegerät und den Ausgang an der Frontplatte des Gerätes.

Die Ausgangsspannung wird über einen umschaltbaren Teiler an den zweiten Eingang der Differenzstufe rückgeführt. Mit der Umschaltung dieses Gegenkopplungszweiges ist die Umschaltung der Verstärkung des Wechselspannungsverstärkers so gekoppelt, daß sich die Verstärkung der gesamten Anordnung

in 10-dB-Stufen ändert, die Schleifenverstärkung jedoch konstant 40 dB bleibt. Die Schalterstellungen sind mit den Meßbereichendwerten beschriftet. Spannungs- und Stromnullpunkt des Verstärkers lassen sich mit zwei Schraubenziehereinstellungen an der Frontplatte abgleichen und sind damit unabhängig vom Innenwiderstand des Meßobjekts.

Die von den Batterien gelieferte Betriebsspannung wird auf konstanten Wert geregelt.

1.3. Technische Daten

Spannungsmeßbereich 0...±320 V, unterteilt in 20 Teilbereiche

Teilbereiche und Eingangswiderstand R_e

Schalterstellung mV ($R_e = 10 \text{ M}\Omega$) 10/30/100/300 $\mu\text{V}/1/3 \text{ mV}$
10/30/100/300 mV

Schalterstellung V ($R_e = 50 \text{ M}\Omega$) 10/30/100/300 mV
1/3/10/30/100/300 V

Strommeßbereich 0...±320 mA, unterteilt in 30 Teilbereiche

Teilbereiche und Eingangswiderstand R_e

Schalterstellung nA ($R_e = 1 \text{ M}\Omega$) 10/30/100/300 pA/1/3 nA
10/30/100/300 nA

Schalterstellung μA ($R_e = 1 \text{ k}\Omega$) 10/30/100/300 nA/1/3 μA
10/30/100/300 μA

Schalterstellung mA ($R_e = 1 \Omega$) 10/30/100/300 μA
1/3/10/30/100/300 mA

Meßeingänge getrennt für Spannung und Strom, unsymmetrisch, erdfrei; Anschlüsse 4-mm-Rändelklemmen

Maximal zulässige Spannungen

U_{max} und Ströme I_{max}

Schalterstellung V 500 V

Schalterstellung mV 300 V für 1 s
70 V dauernd

Schalterstellung mA 1 A

Schalterstellung μA 10 mA

Schalterstellung nA 5 mA

Überlastungsschutz in den

Schalterstellungen mA und μA Schmelzsicherungen

Isolationswiderstand zwischen

Schaltungsnnull und Gehäuse $> 10^{10} \Omega$

Zulässige Spannung U_{smax} zwischen Schaltungsnnull und Gehäuse	500 V
Unterdrückung netzfrequenter (50/60 Hz) Störspannungen, be- zogen auf U_{ss} :	
für Störspannungen zwischen Schaltungsnnull und Gehäuse- masse (Gleichtaktunterdrückung).	>130 dB (typisch 150 dB)
für Störspannungen zwischen den Meßklemmen (Unterdrük- kung von Reihenstörspannungen)	0,01 0,03 0,1 0,3
Schalterstellung nA/ μ A/mA/mV	>80 dB >70 dB >60 dB >60 dB >50 dB
Schalterstellung V	>90 dB >90 dB >80 dB >70 dB >70 dB
	Meßbereich
	3 10 30 100 300
Schalterstellung nA/ μ A/mA/mV	>70 dB >60 dB >50 dB >50 dB >40 dB
Schalterstellung V	>80 dB >70 dB >60 dB >60 dB >50 dB
Fehlergrenzen der Anzeige (ohne Rauschen und Drift)	
Eigenfehler bei 20 °C	
Schalterstellung nA	±2,5 % v. E.
übrige Meßarten	±1,5 % v. E.
Gesamtfehler im Temperatur- bereich +10...+35 °C	
Schalterstellung nA	±3,5 % v. E.
übrige Meßarten	±2,5 % v. E.
Nullpunktfehler (Temperaturdrift)	
Spannungsdrift	±0,2 μ V/°C
Stromdrift	±3 pA/°C
Schwankungsbreite der Anzeige (R_Q : Abschlußwiderstand des Eingangs)	
Schalterstellung V	0,3 mV (Eingang offen)
Schalterstellung mV	0,3 μ V ($R_Q = 50 \text{ k}\Omega$) 0,8 μ V ($R_Q = 1 \text{ k}\Omega$)

Schalterstellung mA	0,2 μ A	}	(Eingang offen)
Schalterstellung μ A	0,2 nA		
Schalterstellung nA	0,8 pA		

Verstärkerausgang

Schaltung und Anschluß unsymmetrisch, erdfrei, Kurzschlußfest, zwei 4-mm Rändelklemmen

Leerlaufspannung bei den Meßbereich-Endwerten (ohne Rauschen und Drift) 1 V \pm 0,5 % (in Schalterstellung nA: \pm 1,5 %)

Einschwingzeit auf \leq 1 % Abweichung vom Endwert

Schalterstellung V < 0,7 s (R_Q beliebig)

Schalterstellung mV, Bereich

0,01...0,03	< 0,5 s	}	$(R_Q \leq 10 \text{ k}\Omega)$
0,1...300	< 0,3 s		

0,01...300 < 12 s ($R_Q = 1 \text{ M}\Omega$)

Schalterstellung mA < 0,3 s

Schalterstellung μ A	< 0,3 s	}	$(R_Q$ beliebig)
------------------------------------	---------	---	------------------

Schalterstellung nA < 12 s ($R_Q \gg 1 \text{ M}\Omega$)

Eigenstörspannung U_{ss} in den empfindlichsten Meßbereichen

Schalterstellung V, Bereich 0,01 50 mV (Eingang offen)

Schalterstellung mV, Bereich 0,01	50 mV ($R_Q = 50 \text{ k}\Omega$)	}	$(Eingang offen)$
	150 mV ($R_Q = 1 \text{ M}\Omega$)		

Schalterstellung mA, Bereich 0,01 40 mV

Schalterstellung μ A, Bereich 0,01	40 mV	}	$(Eingang offen)$
--	-------	---	-------------------

Schalterstellung nA, Bereich 0,01 150 mV

Allgemeine Daten

Betriebsspannung +4,5 V / -4,5 V aus Trockenbatterien

Umgebungstemperatur

Nennbereich +10...+35 °C

Arbeitsbereich -20...+60 °C

Lagerbereich -25...+75 °C

Einlaufzeit 5 min.
Abmessungen B 162 mm, H 238 mm, T275 mm
Gewicht mit Batteriesatz 4 kg

1.4. Mitgeliefertes Zubehör

6 Monozellen 1,5 V, IEC-R20 Ident.-Nr. EB 017.0015
2 Schmelzeinsätze M 0,02 C, DIN 41571
3 Schmelzeinsätze F 1 C, DIN 41571

1.5. Empfohlene Ergänzungen

30-kV-Gleichspannungstaster BN 11101

2. Betriebsvorbereitung und Bedienung

2.1. Betriebsvorbereitung

2.1.1. Legende zum Bedienungsbild

Hierzu Bild 2-1.

Pos.-Nr.	Beschriftung	Funktion
<u>1</u>		Anzeigegerät mit zwei Skalen und zwei blauen Toleranzfeldern zur Betriebsspannungsprüfung
<u>2</u>		Einstellung des mechanischen Nullpunktes
<u>3</u>	AUS/± BATT./EIN	Aus-Ein-Schalter für Betriebsspannung sowie Batteriespannungsprüfung
<u>4</u>	0,01/0,03/0,1/.../300 ④ , ⑤	Meßbereichschalter, Schalterstellung bei Prüfung und Nachstellung der elektrischen Nullpunkte
<u>5</u>	U - 0 AUSGANG	Verstärkerausgang gegen Schaltungsnnull
<u>6</u>	⊥	Anschluß der Gehäuseerdung
<u>7</u>	J - 0 EINGANG	Eingang bei Strommessung (gegen Schaltungsnnull)
<u>8</u>	U - 0 EINGANG	Eingang bei Spannungsmessung (gegen Schaltungsnnull)

Pos.-Nr.	Beschriftung	Funktion
<u>9</u>	V (50 M Ω) / mV (10 M Ω) / mA (1 Ω) / μ A (1 k Ω) / nA (1 M Ω) ⑪ , ⑫	Meßeinheitenschalter mit Angabe des Gerät-Eingangswiderstandes, Schalterstellung bei Prüfung und Nachstellung der elektrischen Nullpunkte
<u>10</u>	⑪ NULL-ABGLEICH	Abgleich des Spannungsnulnpunktes
<u>11</u>	⑫ NULL-ABGLEICH	Abgleich des Stromnulnpunktes

2.1.2. Aufstellen des Gerätes

Das Gerät wird so aufgestellt, daß der ausklappbare Traggriff nach oben oder nach Ausklappen des Bügels an der Gerätunterseite schräg nach oben zeigt. Nur in diesen Gebrauchslagen werden die Fehlergrenzen der Instrumentanzeige eingehalten.

2.1.3. Prüfen und Nachstellen des mechanischen Instrument-Nullpunktes

Bei ausgeschaltetem Gerät muß der Zeiger des Instrumentes 1 am Nullpunkt in der Mitte der beiden Skalen stehen. Korrektur der Zeigerlage mit 2.

2.1.4. Batteriekontrolle und Einschalten

In den Stellungen BATT. \pm des Schalters 3 kann die Spannung des Batteriesatzes überprüft werden. Der Zeiger des Instrumentes 1 muß innerhalb der blauen Toleranzfelder unterhalb der Skalen stehen.

In den beiden Kontrollstellungen wird die Summenspannung von je drei Monozellen gemessen. An der oberen Skala kann der doppelte Spannungswert abgelesen werden. In den beiden Kontrollstellungen sollen etwa gleiche Ausschläge vorhanden sein. Ist der Ausschlag in einer der beiden Stellungen zu gering, so muß der Batteriesatz (Abschnitt 3.1.1.) ausgewechselt werden.

In der Stellung EIN des Schalters 3 ist das Gerät eingeschaltet. Wenige Sekunden nach dem Einschalten ist das Gerät betriebsbereit. Die im Abschnitt 1.3. angegebenen Fehlergrenzen werden nach einer Einlaufzeit von 5 min. eingehalten. Zum Ausschalten wird der Schalter 3 in die Stellung AUS gedreht.

Der Stromverbrauch des Gerätes beträgt etwa 0,5 mA, daraus ergibt sich rechnerisch eine Lebensdauer von etwa 10.000 Betriebsstunden für den Batteriesatz. Wegen des geringen Stromverbrauches ist es nicht nötig, das Gerät in Betriebspausen abzuschalten. Bleibt das UIG jedoch wie üblich nicht dauernd eingeschaltet, so wird die Lebensdauer des Batteriesatzes vorwiegend durch dessen Lagerfähigkeit begrenzt.

2.1.5. Prüfung und Einstellung der elektrischen Instrument-Nullpunkte

Voraussetzungen: Prüfung und gegebenenfalls Einstellung des mechanischen Nullpunktes nach Abschnitt 2.1.3., Batteriekontrolle und gegebenenfalls Wechsel des Batteriesatzes nach den Abschnitten 2.1.4. und 3.1.1.

Das Gerät soll sich mindestens zwei Stunden in einem Raum mit etwa konstanter Temperatur ($\pm 2^{\circ}\text{C}$) befinden und mindestens 5 Minuten eingeschaltet sein. Der Strommeßeingang 7 darf nicht beschaltet sein.

Kontrolle und Abgleich des Stromnullpunktes:

Bereichschalter 9 in Stellung nA

Bereichschalter 4 in Stellung 0,01

Der Zeiger muß in Skalenmitte stehen.

Abgleich mit Schraubenzieher an 11.

Schalterstellungen und Abgleichschraube sind durch das Symbol \textcircled{J} bezeichnet.

Kontrolle und Abgleich des Spannungsnullpunktes:

Bereichschalter 9 in Stellung mA

Bereichschalter 4 in Stellung 0,01

Der Zeiger muß in Skalenmitte stehen.

Abgleich mit Schraubenzieher an 10.

Schalterstellungen und Abgleichschraube sind durch das Symbol \textcircled{U} bezeichnet.

Da die beiden Abgleichvorgänge nicht ganz unabhängig voneinander sind, muß der Abgleich eventuell wiederholt werden. Beim Spannungsabgleich (Stellung mA) ist der Verstärker-Eingang mit $1\ \Omega$, beim Stromabgleich (Stellung nA) mit $1\ M\Omega$ abgeschlossen. Durch den getrennten Strom- und Spannungsabgleich (Eingang offen bzw. kurzgeschlossen) wird erreicht, daß der elektrische Nullpunkt unabhängig vom Innenwiderstand der Quelle ist.

Nach einem Temperaturwechsel ändern sich Spannungs- und Stromnullpunkt vorübergehend. Die Änderung wirkt sich jedoch nur in den empfindlichsten Bereichen aus. Nach etwa zwei Stunden befinden sich alle Schaltungsteile wieder im thermischen Gleichgewicht und die Nullpunktsänderungen gehen zurück. Ein Neuabgleich nach Temperaturänderungen sollte deshalb erst zwei Stunden nach dem Temperaturwechsel erfolgen.

2. 1. 6. Anschließen vor- und nachgeschalteter Geräte

Zur Strom- und Spannungsmessung sind die Rändelklemmen 7 und 8 bestimmt. Die Ausgangsspannung des Verstärkers wird zwischen den Rändelklemmen 5 abgenommen. Der erdnahen Punkt (Schaltungsnnull) ist mit „0“ bezeichnet; er ist dem Eingang für Strom- und Spannungsmessung und dem Ausgang gemeinsam. Über die Telefonbuchse 6 (Beschriftung: \perp) wird das Gehäuse des UIG geerdet.

Gewöhnlich erfolgt der Anschluß an die Meßstelle durch Laborschnüre mit 4-mm-Bananensteckern. Wenn in den empfindlichen Bereichen (unter 1 mV) an einer Quelle mit hohem Innenwiderstand ($R_i > 1 \text{ k}\Omega$) gemessen wird, sollen geschirmte Kabel verwendet werden.

2. 1. 7. Erden des Gehäuses

Das Gehäuse ist aus Sicherheitsgründen in folgenden Fällen zu erden:

Wenn die Meßspannung größer als 40 V ist,

Wenn die Spannung zwischen Schaltungsnnull und Erde größer als 40 V ist,

Bei Messung von Hochspannungen mit dem Hochspannungstaster.

Es ist zu beachten, daß Meßeingänge und Verstärkerausgang einen gemeinsamen Schaltungsnulpunkt haben. Wenn am Schaltungsnulpunkt des Eingangs eine gefährliche Spannung (größer 40 V) gegen das Gehäuse auftritt, so ist diese Spannung auch im Ausgangskreis vorhanden.

2. 2. Bedienung

2. 2. 1. Allgemeines zur Strom- und Spannungsmessung

Da das UIG den Nullpunkt in Skalenmitte hat, zeigt es Betrag und Vorzeichen der zu messenden Größe an. Die Eingangswiderstände in den Bereichen des Gerätes sind an der Frontplatte ablesbar. In Stellung mV des Schalters 9 beträgt der Eingangswiderstand $10 \text{ M}\Omega$. In den Strombereichen mA, μA und nA erhält man die Eingangswiderstände 1Ω , $1 \text{ k}\Omega$ und $1 \text{ M}\Omega$. Die Be- schriftung des Bereichschalters 4 gibt bei Ausschlag 10 bzw. 3 des In- strumentes 1 gleichzeitig den Spannungsabfall an den Klemmen J in mV an.

In den Bereichen mV und nA ist für Wechselspannungen die Eingangsime- danz des Eingangstiefpasses wirksam. Sie lässt sich näherungsweise als Serienschaltung eines Widerstandes von $10 \text{ k}\Omega$ mit einer Kapazität von $1 \mu\text{F}$ darstellen. Wenn diese Belastung stört, z. B. bei der Messung von Verstär- kern, kann zur Entkopplung ein Widerstand von z. B. $100 \text{ k}\Omega$ vor die Klemme U geschaltet werden. Im Bereich mV ergibt sich dadurch ein Meßfehler von 1 %. Durch den Eingangstiepaß werden netz- und höherfrequente Störspan- nungen gedämpft.

2. 2. 2. Hinweise zum Meßaufbau

Durch den Batteriebetrieb ist das UIG vollkommen erdfrei. Da das von der Schaltung isolierte Gehäuse nicht mit dem Schutzleiter des Netzes verbunden ist, sollte es im Meßaufbau geerdet werden. Bei der Messung gefährlicher Spannungen ist diese Erdung aus Sicherheitsgründen erforderlich (siehe Ab- schnitt 2.1.7.). Bei empfindlichen Messungen dient die Erdung des Ge- häuses der Vermeidung von Netzbrummeinstreuungen und statischen Aufla- dungen. Auch wenn im Meßkreis Handempfindlichkeit auftritt, schafft gewöhn- lich die Erdung des Gehäuses Abhilfe.

Bei Beschaltung des Verstärkerausgangs ist zu beachten, daß Eingang und Ausgang einen gemeinsamen Schaltungsnulldurchgang haben. Die Erdfreiheit des Meßeinganges wird demnach durch ein an den Verstärkerausgang angeschaltetes Gerät beeinflußt. Wegen der engen Fehlergrenzen eignet sich das UIG auch als Gleichspannungsverstärker, z. B. als Vorverstärker für ein Digitalvoltmeter oder einen Gleichspannungsschreiber.

In Meßkreisen, die unsymmetrisch gegen Erde aufgebaut sind, ist der Schaltungsnulldurchgang des Meßeinganges mit dem erdseitigen Anschluß der Quelle zu verbinden. Die geringsten Störungen erhält man, wenn das Gehäuse (Buchse 6) an den Erdpunkt des Meßkreises angeschlossen wird.

Die Einschwingzeit des Gerätes wird durch den Eingangstieflpaß bestimmt. In den Schalterstellungen mV und nA hängt die Einschwingzeit vom Innenwiderstand des Meßobjekts ab. In den Bereichen V, mA und μ A ist die Einschwingzeit dagegen unabhängig vom Innenwiderstand des Meßobjekts.

Die Eingänge sind durch eine elektronische Schutzschaltung, in den mA- und μ A-Bereichen zusätzlich durch je eine Schmelzsicherung gegen Überlastung geschützt. Der Verstärkerausgang ist kurzschußfest.

2.2.3. Messungen mit dem 30-kV-Gleichspannungstaster

Mit dem 30-kV-Gleichspannungstaster BN 11101 läßt sich der Spannungsmessbereich des UIG erweitern. Man schließt hierzu den Hochspannungstaster an die Stromklemmen des UIG an und benutzt die Schalterstellung μ A. Die Teilung durch den im Gleichspannungstaster eingebauten Vorwiderstand von $990 \text{ M}\Omega$ ergibt dann die Meßeinheit kV. Es ergeben sich so ohne jede Umrechnung die Bereiche $0,01 \dots 300 \text{ kV}$, die wegen der begrenzten Spannungsfestigkeit des Gleichspannungstasters nur bis 30 kV ausnutzbar sind.

Wenn man den Bereich nA einschaltet, ergeben sich ohne Umrechnung die Bereiche 0,01...300 V. Für einige Anwendungen ist es vorteilhaft, daß dann auch relativ kleine Spannungen mit einem Eingangswiderstand von etwa 1 G Ω gemessen werden können, so daß selbst sehr hochohmige Quellen kaum belastet werden.

Bei der Messung von Hochspannung ist unbedingt darauf zu achten, daß der Erdungsanschluß des Gleichspannungstasters und das Gerätegehäuse mit Schutzerde verbunden werden.

2.2.4. Verwendung als Meßverstärker

Am Verstärkerausgang wird bei Ausschlag 10 bzw. 3 des Instrumentes 1 eine Leerlaufspannung von ± 1 V abgegeben. Der Innenwiderstand beträgt 1 k Ω . Die maximale Verstärkung von 100 000 bzw. 100 dB erhält man im 10 μ V-Bereich. Die Verstärkung läßt sich mit dem Bereichschalter 4 in 10-dB-Stufen und mit dem Bereichschalter 9 in 60-dB-Stufen umschalten. Insgesamt ergibt sich ein Verstärkungsbereich von -50 dB bis +100 dB.

In den Strombereichen kann das UIG als Strom-Spannungswandler betrieben werden. Bei der Verwendung als Meßverstärker ist besonders zu beachten, daß Eingänge und Ausgang einen gemeinsamen Nullpunkt haben (vgl. Abschnitt 2.2.2.).

3. Wartung und Reparatur

3.1. Elektrische Wartung

3.1.1. Auswechseln des Batteriesatzes

Dazu wird das Gerät nach Lösen von 4 Kreuzschlitzschrauben an der Frontplatte aus dem Kasten genommen und der Kunststoffdeckel an der Gerätrückseite, der den Batterieraum dicht abschließt, nach Lösen von zwei Schrauben abgenommen. Die Lage, in der die sechs neuen Batterien einzusetzen sind, geht aus der Kennzeichnung mit Symbolen hervor. Es sollen nur Batterien hoher Qualität und Lagerfähigkeit verwendet werden.

Nach Prüfung der Batteriespannung mit dem Schalter 3 wird der Kunststoffdeckel wieder angeschraubt und das Gerät in den Kasten eingebaut.

3.1.2. Nachstellen des Null-Abgleichbereiches J

Bei außergewöhnlichen Schwankungen der Umgebungstemperatur oder durch Alterung ist es möglich, daß der Variationsbereich des Drehwiderstandes 11 nicht ausreicht, die Stromdrift zu kompensieren. In diesem Fall wird das Gerät wie oben beschrieben aus dem Kasten genommen und der Bereich mit dem Mehrgang-Potentiometer R10, das durch eine Bohrung in der linken Seitenwand zugänglich ist (Schraubenziehereinstellung), verschoben.

Dazu wird der Schleifer von 11 in Mittelstellung gedreht, mit den Schaltern 4 und 9 0,01 nA eingestellt und mit R10 bei offenen Eingangsklemmen der Instrumentzeiger etwa mit dem mechanischen Nullpunkt zur Deckung gebracht. Dabei ist unbedingt das Innere des Gerätes gegen Lichteinfall abzudecken, da dadurch Fehlströme in den Halbleitern hervorgerufen und der Abgleich erheblich gestört werden kann.

Anschließend Gerät wieder in den Kasten einbauen und Nullabgleich nach Abschnitt 2.1.5. vornehmen.

3.2. Elektrische Reparatur

3.2.1. Auswechseln der Schmelzeinsätze

Die Parallelwiderstände 1Ω (Schalterstellung mA) und $1 k\Omega$ (Schalterstellung μA) sind durch Schmelzsicherungen gegen hohe Überlastung geschützt.

Zum Ersetzen eines Einsatzes wird das Gerät wie im Abschnitt 3.1.1. beschrieben aus dem Kasten genommen. Die Schmelzeinsätze sind an der Unterseite in federnde Halterungen eingesetzt. Reserveeinsätze sind in einem Halter an der Seitenwand des Gerätes angebracht. Es ist darauf zu achten, daß für Si1 der Wert M 0,02 C, für Si2 der Wert F 1 C verwendet wird.

Bild 1-1 Blockschaltbild

Bild 2-1 Bedienungsbild

ROHDE & SCHWARZ · MÜNCHEN

1 CDE	Datum	Name	Mod.-zur.	Auf-Nr.	Datum	Name	Mod.-zur.	Auf-Nr.	Datum	Name
gesiebter Ausgang	29.7.70	Ci								
beobachtet		Cu								
gesetzl. vertragl.										

Diese Zeichnung ist neuer Ersatz. Verfehlung, Verwechslung, Nichtlösung oder Verlust dieses Dokuments ist schadhaft.

ROHDE & SCHWARZ
MÜNCHEN

ÄZ
00

Datum
0970

Schaltteilliste für
DC-MIKROVOLTMETER UIG

Sachnummer

Blatt
Nr.
001

Kennzeichen	Benennung / Beschreibung	Sachnummer	enthalten in
A	DC-MIKROVOLTMETER UIG Z STROMLAUF 203.5111 S	203.5111	203.5111
BA1	1,5V RUNDZELLE R20 MONOZ.	E8 017.0015	203.5111
BIS			
BA6			
BU1	DIREKT RASTER2,54 35KONT	FP 018.9439	203.5170
BU2	DIREKT RASTER2,54 35KONT	FP 018.9439	203.5170
BU3	DIREKT RASTER2,54 35KONT	FP 018.9439	203.5170
BU4	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
BU5	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
BU6	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
BU7	TELEFONB. GEERDET GRAU	FT 018.3147	203.5111
BU8	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
BU9	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
	NUR AEZ B VERW.		
C1	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5170
C2	1,5MF+/-10% 63V QUADER MKT	CK 024.6980	203.5170
C3	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5170
C4	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5170
C6	47NF+/-20% 250V QUADER MKT	CK 006.5162	203.5170
C7	47NF+/-20% 250V QUADER MKT	CK 006.5162	203.5170
C9	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5170
C10	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5170
GL1	FD300 125V/225MIA/6PF	AD 012.1442	203.5170
GL2	FD300 125V/225MIA/6PF	AD 012.1442	203.5170
GL3	ZE1,5 1,35BIS1,55V PLAST	AE 012.4629	203.5170
GL4	ZE1,5 1,35BIS1,55V PLAST	AE 012.4629	203.5170
J1		JD 057.7907	203.5111
R1	2 W 50 MOHM+/-0,1%	RF 067.7313	203.5170
R2	01125W 50x25KOHM +/-0,1%	RL 067.7307	203.5170
R3	0,5W 1,111 MOHM+/-0,1%	RF 067.7294	203.5170
R4	0,5W 1 KOHM +/-0,1%	RF 067.7288	203.5170
R5	1 W 1 OHM+/-0,1%	RD 067.7394	203.5170
R6	0,5 W 10 KOHM +/-5%	RF 007.1490	203.5170
R7	0,5 W 10 KOHM +/-5%	RF 007.1490	203.5170
R8	0,5 W 10 KOHM +/-5%	RF 007.1490	203.5170
R10	0,75W 1 MOHM+/-10% CERMET	RS 037.7473	203.5170
R11	0,25W100 MOHM +/-10%	RF 067.7271	203.5170
R12	0,5W 1 GOHM +/-10%	RF 067.7265	203.5170
R13	0,7W 1 MOHM KURVE 1 L12	RS 067.7407	203.5111
R16	1 W 13 MOHM +/-2%	RF 067.7323	203.5170
R17	0,7W 1 MOHM KURVE 1 L12	RS 067.7407	203.5111
R18	0,25 W 220 KOHM +/-2%	RF 028.1782	203.5170
R20	0,25 W 1 MOHM +/-5%	RF 007.0512	203.5170
R21	0,25 W 1 MOHM +/-5%	RF 007.0612	203.5170
R22	0,25 W 1 MOHM +/-5%	RF 007.0612	203.5170
R23	0,25 W 1 KOHM +/-2%	RF 028.1524	203.5170
R25	0,125W 21,940KOHM+/-0,1%	RL 067.7213	203.5170
R26	0,25 W 1 KOHM +/-2%	RF 028.1524	203.5170
K27	0,25 W 2,2 KOHM +/-2%	RF 028.1582	203.5170
R28	0,25 W 6,8 KOHM +/-2%	RF 028.1647	203.5170
R29	0,25 W 22 KOHM +/-2%	RF 028.1699	203.5170
R30	0,25 W 68 KOHM +/-2%	RF 028.1753	203.5170

ROHDE & SCHWARZ
MÜNCHEN

ÄZ
00

Datum
0970

Schaltteilliste für

DC-MIKROVOLTMETER UIG

Sachnummer

203.5111 SA

Blatt
Nr.
001

Kennzeichen	Benennung / Beschreibung	Sachnummer	enthalten in
A	DC-MIKROVOLTMETER UIG Z STROMLAUF 203.5111 S	203.5111	203.5111
BA1	1,5V RUNDZELLE R20 MONOZ.	E8 017.0015	203.5111
BIS			
BA6			
BU1	DIREKT RASTER2,54 35KONT	FP 018.9439	203.5170
BU2	DIREKT RASTER2,54 35KONT	FP 018.9439	203.5170
BU3	DIREKT RASTER2,54 35KONT	FP 018.9439	203.5170
BU4	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
BU5	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
BU6	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
BU7	TELEFONB.GEERDET GRAU	Z FT 018.3147	203.5111
BU8	RAENDELKL.ISOL.GRAU	Z VK 035.3212	203.5111
BU9	RAENDELKL.ISOL.GRAU NUR AEZ B VERW.	Z VK 035.3212	203.5111
C1	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5170
C2	1,5MF+/-10% 63V QUADER MKT	CK 024.6980	203.5170
C3	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5170
C4	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5170
C6	47NF+/-20%250V QUADER MKT	CK 006.5162	203.5170
C7	47NF+/-20%250V QUADER MKT	CK 006.5162	203.5170
C9	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5170
C10	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5170
GL1	FD300 125V/225MIA/6PF	AD 012.1442	203.5170
GL2	FD300 125V/225MIA/6PF	AD 012.1442	203.5170
GL3	ZE1,5 1,35BIS1,55V PLAST	AE 012.4629	203.5170
GL4	ZE1,5 1,35BIS1,55V PLAST	AE 012.4629	203.5170
J1		JD 067.7907	203.5111
R1	2 W 50 MOHM+/-0,1%	RF 067.7313	203.5170
R2	01125W 50,25KOHM +/-0,1%	RL 067.7307	203.5170
R3	0,5W 1,111 MOHM+/-0,1%	RF 067.7294	203.5170
R4	0,5W 1 KOHM +/-0,1%	RF 067.7288	203.5170
R5	1,5W 1 OHM+/-0,1%	RD 067.7394	203.5170
R6	0,5 W 10 KOHM +/-5%	RF 007.1490	203.5170
R7	0,5 W 10 KOHM +/-5%	RF 007.1490	203.5170
R8	0,5 W 10 KOHM +/-5%	RF 007.1490	203.5170
R10	0,75W 1 MOHM+/-10% CERMET	RS 037.7473	203.5170
R11	0,25W100 MOHM +/-10%	RF 067.7271	203.5170
R12	0,5W 1 OHM +/-10%	RF 067.7265	203.5170
R13	0,7W 1 MOHM KURVE 1 L12	RS 067.7407	203.5111
R16	1 W 13 MOHM +/-2%	RF 067.7322	203.5170
R17	0,7W 1 MOHM KURVE 1 L12	RS 067.7407	203.5111
R18	0,25 W 220 KOHM +/-2%	RF 028.1782	203.5170
R20	0,25 W 1 MOHM +/-5%	RF 007.0512	203.5170
R21	0,25 W 1 MOHM +/-5%	RF 007.0612	203.5170
R22	0,25 W 1 MOHM +/-5%	RF 007.0612	203.5170
R23	0,25 W 1 KOHM +/-2%	RF 028.1524	203.5170
R25	0,125W 21,940KOHM+/-0,1%	RL 067.7213	203.5170
R26	0,25 W 1 KOHM +/-2%	RF 028.1524	203.5170
R27	0,25 W 2,2 KOHM +/-2%	RF 028.1582	203.5170
R28	0,25 W 6,8 KOHM +/-2%	RF 028.1647	203.5170
R29	0,25 W 22 KOHM +/-2%	RF 028.1699	203.5170
R30	0,25 W 68 KOHM +/-2%	RF 028.1753	203.5170

ROHDE & SCHWARZ · MÜNCHEN

Diese Zeichnung ist unser Eigentum. Veröffentlichung, Vervielfältigung, unbefugte Verarbeitung, Mitteilung an andere ist strafbar und schadet dem Rechtseigentümer.

ROHDE & SCHWARZ
MÜNCHEN

ÄZ
00

Datum
0970

Schaltteilliste für

WECHSELSPANNUNGSVERSTR.

Sachnummer

203.5263 SA 001

Blatt
Nr.

Kennzeichen	Benennung / Beschreibung	Sachnummer	enthalten in
A	WECHSELSPANNUNGSVERSTR. Z STRÖM. 203.5263 S	203.5263	203.5263
C101	220MF 3V RD9 X12 TROPF	CE 022.9730	203.5263
C102	220MF 3V RD9 X12 TROPF	CE 022.9730	203.5263
C103	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5263
C105	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5263
C106	470NF+/-20% 63V QUADER MKT	CK 024.6950	203.5263
C107	600PF+/-10% 160V 5RDX10 KS	CK 006.4208	203.5263
C108	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5263
C110	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5263
C111	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5263
C112	600PF+/-10% 160V 5RDX10 KS	CK 006.4208	203.5263
C113	600PF+/-2,5% 160V 5RDX10 KS	CK 023.7530	203.5263
C115	470NF+/-20% 63V QUADER MKT	CK 024.6950	203.5263
C116	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5263
C117	600PF+/-10% 160V 5RDX10 KS	CK 006.4208	203.5263
C118	47MF 6V RD7X10TA/TROPF.	CE 022.8410	203.5263
C120	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5263
C121	1MF+/-10% 63V QUADER MKT	CK 024.6973	203.5263
R101	0,25 W 1 MOHM +/-5%	RF 007.0612	203.5263
R102	0,25 W 1 MOHM +/-5%	RF 007.0612	203.5263
R103	0,25 W 12 KOHM +/-5%	RF 007.0387	203.5263
R104	0,25 W 22 KOHM +/-5%	RF 007.0412	203.5263
R105	0,25 W 22 KOHM +/-5%	RF 007.0412	203.5263
R106	0,25 W 180 OHM +/-2%	RF 028.1430	203.5263
R107	0,25 W 180 OHM +/-2%	RF 028.1430	203.5263
R108	0,25 W 39 KOHM +/-5%	RF 007.0441	203.5263
R110	0,25 W 39 KOHM +/-5%	RF 007.0441	203.5263
R111	0,25 W 12 KOHM +/-2%	RF 028.1660	203.5263
R112	0,25 W 12 KOHM +/-2%	RF 028.1660	203.5263
R113	0,25 W 180 KOHM +/-5%	RF 007.0529	203.5263
R114	0,25 W 100 KOHM +/-5%	RF 007.0493	203.5263
R115	0,25 W 180 KOHM +/-5%	RF 007.0529	203.5263
R116	0,25 W 68 KOHM +/-5%	RF 007.0470	203.5263
R117	0,25 W 470 OHM +/-5%	RF 007.0212	203.5263
R118	0,25 W 470 OHM +/-5%	RF 007.0212	203.5263
R119	0,25 W 100 KOHM +/-5%	RF 007.0493	203.5263
R120	0,25 W 180 KOHM +/-5%	RF 007.0529	203.5263
R121	0,25 W 180 KOHM +/-5%	RF 007.0529	203.5263
R122	0,25 W 100 KOHM +/-5%	RF 007.0493	203.5263
R123	0,25 W 120 KOHM +/-5%	RF 007.0506	203.5263
R125	0,25 W 2,2 KOHM +/-2%	RF 028.1582	203.5263
R126	0,25 W 68 KOHM +/-5%	RF 007.0470	203.5263
R127	0,25 W 100 KOHM +/-5%	RF 007.0493	203.5263
R128	0,25 W 82 KOHM +/-2%	RF 037.4616	203.5263
R130	0,25 W 150 KOHM +/-5%	RF 007.0512	203.5263
R131	0,25 W 470 OHM +/-5%	RF 007.0212	203.5263
R132	0,25 W 1 MOHM +/-2%	RF 067.7259	203.5263
R133	0,25 W 470 OHM +/-5%	RF 007.0212	203.5263
R134	0,25 W 180 KOHM +/-5%	RF 007.0529	203.5263
R135	0,25 W 100 KOHM +/-5%	RF 007.0493	203.5263
R136	0,25 W 180 KOHM +/-5%	RF 007.0529	203.5263
R137	0,25 W 18 KOHM +/-2%	RF 028.1682	203.5263
R138	0,25 W 18 KOHM +/-2%	RF 028.1682	203.5263
R140	0,25 W 82 KOHM +/-2%	RF 037.4616	203.5263
R141	0,25 W 68 KOHM +/-5%	RF 007.0470	203.5263
R142	0,25 W 270 KOHM +/-5%	RF 007.0541	203.5263

ROHDE & SCHWARZ

MÜNCHEN

ÄZ

Datum

Schaltteilliste für

Sachnummer

Blatt
Nr.

00

0970

WECHSELSPANNUNGSVERSTR.

203.5263 SA

002

Kennzeichen	Benennung / Beschreibung	Sachnummer	enthalten in
R143	0,25 W 270 KOHM +_5%	RF 007.0541	203.5263
R144	0,25 W 150. KOHM +_2%	RF 028.1776	203.5263
R145	0,25 W 82 KOHM +_2%	RF 037.4616	203.5263
R146	0,25 W 100. KOHM +_5%	RF 007.0493	203.5263
R148	0,25 W 100 KJHM +_5%	RF 007.0493	203.5263
R149	0,25 W 470 OHM +_5%	RF 007.0212	203.5263
R150	0,25 W 470 OHM +_5%	RF 007.0212	203.5263
T101	2N3964 PNPSI 45V 0,1A	AK 010.2812	203.5263
T102	2N3964 PNPSI 45V 0,1A	AK 010.2812	203.5263
T103	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T104	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T106	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T107	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
T108	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T109	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
T110	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T111	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T113	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
T114	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
T115	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T116	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
T118	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T119	BC173C SINPN 20V100MIA	AK 010.4444	203.5263
T120	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
T122	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
T123	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
T124	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5263
		ENDE	

Diese Unterlage ist unser Eigentum. Veröffentlichung,
 unerlaubte Verteilung, Mitteilung an andere ist strafbar
 und schadensersatzpflichtig.

ROHDE & SCHWARZ · MÜNCHEN

Diese Zeichnung ist unser Eigentum. Vervielfältigung, Verbreitung, Mitteilung an andere ist strafbar und schadensersatzpflichtig.

Alle Gleihochohmig

Name	And. Mittig.	Datum	Name	And. Mittig.	Datum	Name	And. Mittig.	Datum
gezeichnet	4.6.7.0	Ci	geprüft	4.6.7.0	Ci	geprüft	4.6.7.0	Ci
bearbeitet	Cu		bearbeitet	Cu		bearbeitet	Cu	
normgepr.			normgepr.			normgepr.		

203.5111 V	203.5111
------------	----------

Zeichn. Nr.

203.5263 S

Stromlauf zu

Wechselspannungsverstärker

Z

ROHDE & SCHWARZ
MÜNCHEN

ÄZ 00 Datum 0970 Schaltteilliste für
ENDVERSTAERKER

Sachnummer

Blatt
Nr.

203.5286 SA 001

Kennzeichen	Benennung / Beschreibung	Sachnummer	enthalten in
A	ENDVERSTAERKER STROML. 203.5286 S	Z 203.5286	203.5286
C201	4,7MF 35V RD8,5X10 TROPF	022.9975	203.5286
C203	3,3MF+20%63V RD9,4X25MKU	CK 024.8699	203.5286
R201	0,25 W 150 KOHM +_2%	RF 028.1776	203.5286
R202	0,25 W 150 KOHM +_2%	RF 028.1776	203.5286
R203	0,25 W 82 KOHM +_2%	RF 037.4616	203.5286
R205	0,25 W 1 MOHM +_5%	RF 007.0612	203.5286
R206	0,25 W 1 MOHM +_5%	RF 007.0612	203.5286
R207	0,25 W 1 MOHM +_5%	RF 007.0612	203.5286
R208	0,5W 220KOHM+_20%LIN PIN	RS 066.9874	203.5286
R210	0,25 W 220 KOHM +_2%	RF 028.1782	203.5286
R211	0,25 W 1 KOHM +_2%	RF 028.1524	203.5286
R212	0,25 W 330 KOHM +_2%	RF 067.7236	203.5286
R213	0,25 W 82 KOHM +_5%	RF 007.0487	203.5286
R214	0,25 W 120 KOHM +_5%	RF 007.0506	203.5286
R215	0,25 W 39 KOHM +_5%	RF 007.0441	203.5286
R217	0,25 W 12 KOHM +_2%	RF 028.1660	203.5286
R218	0,25 W 1 MOHM +_5%	RF 007.0612	203.5286
R219	0,25 W 12 KOHM +_2%	RF 028.1660	203.5286
R220	0,25 W 1 MOHM +_5%	RF 007.0612	203.5286
R222	0,25 W 1 MOHM +_5%	RF 007.0612	203.5286
R223	0,25 W 12 KOHM +_2%	RF 028.1660	203.5286
R224	0,25 W 1 MOHM +_5%	RF 007.0612	203.5286
R225	0,25 W 12 KOHM +_2%	RF 028.1660	203.5286
R227	0,125W100,00KOHM+_0,1%	RL 067.7342	203.5286
R228	0,125W320,41 OHM+_0,1%	RL 067.7413	203.5286
R229	0,125W 6,8377KOHM+_0,1%	RL 067.7336	203.5286
R230	0,125W 2,1623KOHM+_0,1%	RL 067.7365	203.5286
R231	0,125W683,77 OHM+_0,1%	RL 067.7371	203.5286
R232	0,125W216,23 OHM+_0,1%	RL 067.7388	203.5286
R233	0,125W100,00 OHM+_0,1%	RL 067.7359	203.5286
T201	BF244A N-KANAL 30V FET	AM 010.8510	203.5286
T202	BF244A N-KANAL 30V FET	AM 010.8510	203.5286
T205	TD101 SINPN 30V DIFVERST.	AK 010.6801	203.5286
T206	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5286
T207	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5286
T208	BC173C SINPN 20V100MIA	AK 010.4444	203.5286
T209	BC173C SINPN 20V100MIA	AK 010.4444	203.5286
T210	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5286
		ENDE	

Diese Unterlage ist unser Eigentum. Verwendung, Anwendung, und
weitergabe ist untersagt, es sei denn schriftliche Genehmigung.
und schadensersatzpflichtig.

Diese Zeichnung ist unser Eigentum. Vervielfältigung, unbefugte Verwertung, Mitteilung an andere ist strafbar und schadensersatzpflichtig.

ICDE	Datum	Name	And. zust.	And.-Mittig. Nr.	Datum	Nr.
gezeichnet	1. 6. 70	Ci				
beobachtet		Cu				
geprüft						
normgepr.						

203. 5111V | 203. 5111

Die Eintragung der elektrischen Werte von Bauelementen ist unverbindlich.
Genaue Werte siehe Schaltteiliste.

Blatt aus
1 Blatt

Stromlauf zu

203. 5286 S

Endverstärker

(U) (J) T201,T202

E C E C
B B B

T 205

B C E
E E E

T 206...T209

ROHDE & SCHWARZ
MÜNCHEN

AZ 00 Datum 0970

Schaltteilliste für
REGELTEIL

Sachnummer

Blatt
Nr.
001

Kennzeichen	Benennung / Beschreibung	Sachnummer	enthalten in
A	REGELTEIL STRÖML. 203.5305 S	Z 203.5305	203.5305
C301	47MF 6V RD7X10TA/TRÖPF.	CE 022.8410	203.5305
C302	47MF 6V RD7X10TA/TRÖPF.	CE 022.8410	203.5305
C303	10NF+80-20% HDK6000 12X10	CC 022.0632	203.5305
C304	2,2NF+-20% 100V RM7,5 KC	CK 006.4472	203.5305
C305	10NF+80-20% HDK6000 12X10	CC 022.0632	203.5305
C306	47MF 6V RD7X10TA/TRÖPF.	CE 022.8410	203.5305
C307	47MF 6V RD7X10TA/TRÖPF.	CE 022.8410	203.5305
C310	470NF+-20% 63V QUADER MKT	CK 024.6950	203.5305
C311	220PF+- 10% 63V 3RDX 7 KS	CK 023.7160	203.5305
C312	10NF+-1% 63V RD 7X18KS	CK 024.4593	203.5305
C313	1 NF+- 5% 63V 4RDX10 KS	CK 023.7201	203.5305
C315	1 NF+- 5% 63V 4RDX10 KS	CK 023.7201	203.5305
C316	220PF+- 10% 63V 3RDX 7 KS	CK 023.7160	203.5305
C317	10NF+-1% 63V RD 7X18KS	CK 024.4593	203.5305
C318	470NF+-20% 63V QUADER MKT	CK 024.6950	203.5305
GL301	IN4148SI75V75MIA	AD 012.0698	203.5305
GL302	IN4148SI75V75MIA	AD 012.0698	203.5305
R301	0,25 W 100 KOHM +-5%	RF 007.0493	203.5305
R302	0,25 W 270 KOHM +-5%	RF 007.0541	203.5305
R303	0,5W 100KOHM+-20% LIN PIN	RS 066.8868	203.5305
R304	0,25 W 120 KOHM +-2%	RF 067.7220	203.5305
R305	0,25 W 330 KOHM +-2%	RF 067.7236	203.5305
R307	0,25 W 220 KOHM +-5%	RF 007.0535	203.5305
R308	0,3 W 220 KOHM+-1%	RF 028.6149	203.5305
R310	0,25 W 270 KOHM +-5%	RF 007.0541	203.5305
R312	0,25 W 100 KOHM +-5%	RF 007.0493	203.5305
R313	0,25 W 270 KOHM +-5%	RF 007.0541	203.5305
R314	0,25 W 100 KOHM +-5%	RF 007.0493	203.5305
R315	0,25 W 390 KOHM +-5%	RF 007.0564	203.5305
R317	0,25 W 220 KOHM +-5%	RF 007.0535	203.5305
R318	0,3 W 220 KOHM+-1%	RF 028.6149	203.5305
R320	0,25 W 220 KOHM +-5%	RF 007.0535	203.5305
R321	0,25W 27 KOHM+-2%	RF 028.1701	203.5305
R322	0,5W 820KOHM+-1%	RF 029.0444	203.5305
R323	0,25 W 1 MOHM +-5%	RF 007.0612	203.5305
R325	0,25 W 10 KOHM +-5%	RF 007.0370	203.5305
R326	0,25 W 150 KOHM +-2%	RF 028.1775	203.5305
R327	0,25 W 150 KOHM +-2%	RF 028.1776	203.5305
R330	0,25W 27 KOHM+-2%	RF 028.1701	203.5305
R331	0,5W 820KOHM+-1%	RF 029.0444	203.5305
R332	0,25 W 1 MOHM +-5%	RF 007.0612	203.5305
R333	0,25 W 220 KOHM +-5%	RF 007.0535	203.5305
R334	0,25 W 10 KOHM +-5%	RF 007.0370	203.5305
T301	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5305
T302	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5305
T303	TD101 SINPN 30V DIFVERST.	AK 010.6801	203.5305
T305	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5305
T306	FELDEFFEKT-TRANSISTOR	203.5405	203.5305
T307	BC173C SINPN 20V100MIA	AK 010.4444	203.5305
T308	BC173C SINPN 20V100MIA	AK 010.4444	203.5305
T310	TD401 SIPNP 30V DIFVERST.	AK 010.6818	203.5305
T311	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5305
T312	BC173C SINPN 20V100MIA	AK 010.4444	203.5305

Diese Unterlage ist unser Eigentum. Vervielfältigung, am andern ist strafbar.
unbefugte Verwendung, Mitteilung an andere ist strafbar
und schadensersatzpflichtig.

ROHDE & SCHWARZ
MÜNCHEN

ÄZ

00 0970

Schaltteilliste für

REGELTEIL

Sachnummer

203.5305 SA 002

Blatt
Nr.

Kennzeichen	Benennung / Beschreibung	Sachnummer	enthalten in
T313	BC253C PNPSI 20V 0,1A	AK 010.2829	203.5305
T314	BC173C SINPN 20V100MIA	AK 010.4444 ENDE	203.5305

Diese Unterlage ist unser Eigentum. Vervielfältigung,
unbefugte Verwertung, Mitteilung an andere ist strafbar.
und schadensersatzpflichtig.

ROHDE & SCHWARZ · MÜNCHEN

Diese Zeichnung ist unser Eigentum. Veröffentlichung, Vervielfältigung, Weiterleitung oder andere abweigende Verwertung, Mitteilung an andere ist streng verboten und schadetourrechtlich ungültig.

T301, T302, T305
T307, T308, T311, T314

T306

T303, T310

Die Eintragung der elektrischen Werte von Bauelementen ist unverbindlich.
Genaue Werte siehe Schaltteiliste.

Alle Gleichspannungen sind hochohmig ($R_E = 10M\Omega$) gegen \perp gemessen.

x) Nach R & S Vorschrift ausgesucht

Regelteil

203.5111 V 203.5111

Z 203.5305 S

Zeichn. Nr.

Zusammenstell - Vorschrift Nr. R 22780

~~zur deutschen englischen~~ Geräte ~~Grundgeräte~~ Einschub Zusatzeräte Baugruppen ~~Einsatz Rahmen Anlagen~~ Beschreibung für

Typ **UIG**

DN

FNr. M 1930/1...50

Ident.-Nr.203.5111

Zusammenstellung nach Pos.-Nr.

Kunststoffordner 40 mm

Kunststoffordner 60 mm

Umschlagbeschriftung ohne, dafür 4-fachlochung mit Banderole auf 1 Seite nach Vorlage R 22779 B1 23

~~auf Rücken nach Vorlage R~~

Register Nr. 4319 (1 . . . 10)

~~Nr. 4320 (11...20)~~

~~Nr. 4321 (21...30)~~

~~Nr. 4322 (31...40)~~

5 KWB	Name	Datum			
bearb.	Zenkl	3.8.71			
geschr.	Scheffcz.	6.8.71			
geprüft	P	6.8.71	Liste besteht aus	1 Blatt	R 22780