MTH1102D Calcul II

Chapitre 8, section 1: Les fonctions vectorielles et les courbes paramétrées

Courbes paramétrées en deux et en trois dimensions

Introduction

- Fonctions vectorielles.
- Courbes paramétrées en deux dimensions.
- Courbes paramétrées en trois dimensions.

De nition

Une fonction vectorielle en deux dimensions $\vec{r}: \mathbb{R} \to \mathbb{R}^2$ est une fonction qui associe à chaque valeur $t \in [a, b] \subseteq \mathbb{R}$ un vecteur $\vec{r}(t) \in \mathbb{R}^2$.

De nition

Une fonction vectorielle en deux dimensions $\vec{r}: \mathbb{R} \to \mathbb{R}^2$ est une fonction qui associe à chaque valeur $t \in [a, b] \subseteq \mathbb{R}$ un vecteur $\vec{r}(t) \in \mathbb{R}^2$.

On définit habituellement une fonction vectorielle en donnant explicitement les composantes de $\vec{r}(t)$:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}, \ a \le t \le b,$$

où x, y sont des fonctions de t.

Courbe paramétrée dans le plan

Courbe paramétrée dans le plan

Courbe paramétrée dans le plan

De nition

• L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire *t* est appelé *paramètre*.

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t)).

De nition

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t)).

On peut interpréter une courbe paramétrée comme étant la trajectoire d'un objet en mouvement dans le plan.

De nition

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t)).

On peut interpréter une courbe paramétrée comme étant la trajectoire d'un objet en mouvement dans le plan.

Le point $\vec{r}(t)$ est alors la position de l'objet à l'instant t.

t: le temps

De nition

- L'ensemble des points (x(t), y(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans le plan.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t)).

Équations paramétriques de la courbe :

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in [a, b]$$

De nition

Une fonction vectorielle en trois dimensions $\vec{r}: \mathbb{R} \to \mathbb{R}^3$ est une fonction qui associe à chaque valeur $t \in [a,b] \subseteq \mathbb{R}$ un vecteur $\vec{r}(t) \in \mathbb{R}^3$.

De nition

Une fonction vectorielle en trois dimensions $\vec{r}: \mathbb{R} \to \mathbb{R}^3$ est une fonction qui associe à chaque valeur $t \in [a, b] \subseteq \mathbb{R}$ un vecteur $\vec{r}(t) \in \mathbb{R}^3$.

On définit habituellement une fonction vectorielle en donnant explicitement les composantes de $\vec{r}(t)$:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, \ a \le t \le b,$$

où x, y, z sont des fonctions de t.

De nition

• L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire *t* est appelé *paramètre*.

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t), z(t)).

De nition

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t), z(t)).

On peut interpréter une courbe paramétrée comme étant la trajectoire d'un objet en mouvement dans l'espace.

Le point $\vec{r}(t)$ est alors la position de l'objet à l'instant t.

De nition

- L'ensemble des points (x(t), y(t), z(t)), pour $t \in [a, b]$, définis par une fonction vectorielle \vec{r} est une courbe paramétrée dans l'espace.
- Le scalaire t est appelé paramètre.
- [a, b] est l'intervalle du paramètre.
- Le vecteur $\vec{r}(t)$ est le vecteur position du point (x(t), y(t), z(t)).

Équations paramétriques de la courbe :

$$\begin{cases} x = x(t) \\ y = y(t) , t \in [a, b] \\ z = z(t) \end{cases}$$

Courbes parametrees

Remarques importantes:

• Une paramétrisation définit une courbe ainsi qu'un sens de parcours de cette courbe : de $\vec{r}(a)$ à $\vec{r}(b)$.

Courbe est parcourue du point initial r(a) à gauche de l'intervalle du paramètre jusqu'au point final r(b) à droite

Courbes parametrees

Remarques importantes:

- Une paramétrisation définit une courbe ainsi qu'un sens de parcours de cette courbe : de $\vec{r}(a)$ à $\vec{r}(b)$.
- Il existe une infinité de paramétrisations possibles pour une courbe donnée (vue comme un ensemble de points dans le plan ou l'espace).

Resume

• Définition de fonction vectorielle en deux et en trois dimensions.

Resume

- Définition de fonction vectorielle en deux et en trois dimensions.
- Courbe paramétrée en deux et en trois dimensions.

lorsque t varie de 0 à pi/2, x varie de a à 0. si t = 0, cos vaut 1, alors a * 1 = a. Si t = pi/2, cos(pi/2) = 0, a*0 =0

Pour y: lorsque t =0, $\sin(0) = 0$, y=0 lorsque t = $\pi/2$, $\sin(\pi/2) = 1$, y = $\pi/1$ = a

t	
x(t)	
y(t)	
$\vec{r}(t)$	

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

t	0		$\pi/2$	
x(t)	a	V	0	
y(t)	0	7	a	
$\vec{r}(t)$	ai		aj	

lorsque t varie de 0 à pi/2, x varie de a à 0. si t = 0, cos vaut 1, alors a * 1 = a. Si t = pi/2, cos(pi/2) = 0, cos(pi/2) = 0, cos(pi/2) = 0

t	0		$\pi/2$			t varie de pi/2 à pi
x(t)	a	7	0	7	— <i>а</i>	
y(t)	0	7	a	>	0	
$\vec{r}(t)$	ai		аj		–ai	

t	0		$\pi/2$		π		$3\pi/2$	
x(t)	а	×	0	×	— <i>а</i>	7	0	
y(t)	0	7	а	\searrow	0	7	— <i>а</i>	
$\vec{r}(t)$	ai		aj		–ai ̇		–aj̇̃	

t	0		$\pi/2$		π		$3\pi/2$		2π
x(t)	а	×	0	×	— <i>а</i>	7	0	7	а
y(t)	0	7	а	\searrow	0	\searrow	— <i>а</i>	7	0
$\vec{r}(t)$	ai		aj		–ai ̇		–aj ̇		ai

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

Cercle de rayon a centré à l'origine.

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 < t < 2\pi$, où a > 0.

Algébriquement :

$$x(t)^2 + y(t)^2$$

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

Algébriquement :

$$x(t)^2 + y(t)^2 = a^2 \cos^2 t + a^2 \sin^2 t$$

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le 2\pi$, où a > 0.

Algébriquement :

$$x(t)^{2} + y(t)^{2} = a^{2}\cos^{2}t + a^{2}\sin^{2}t = a^{2}(\cos^{2}t + \sin^{2}t) = a^{2}$$

$$= 1$$

1. Identifier la courbe paramétrée par $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 < t < 2\pi$, où a > 0.

Algébriquement :

$$x(t)^{2} + y(t)^{2} = a^{2}\cos^{2}t + a^{2}\sin^{2}t = a^{2}(\cos^{2}t + \sin^{2}t) = a^{2}$$

Les points de C vérifient l'équation $x^2 + y^2 = a^2$.

cercle d'un rayon a centré à l'origine

• $\vec{r}(t) = a\cos(2t)\vec{i} + a\sin(2t)\vec{j}$, $0 \le t \le \pi$ est aussi une paramétrisation du cercle $x^2 + y^2 = a^2$ (parcouru deux fois plus vite).

• $\vec{r}(t) = a\cos(2t)\vec{i} + a\sin(2t)\vec{j}$, $0 \le t \le \pi$ est aussi une paramétrisation du cercle $x^2 + y^2 = a^2$ (parcouru deux fois plus vite).

• $\vec{r}(t) = a\cos(2t)\vec{i} + a\sin(2t)\vec{j}$, $0 \le t \le \pi$ est aussi une paramétrisation du cercle $x^2 + y^2 = a^2$ (parcouru deux fois plus vite).

$$0 \le t \le \pi/2$$

$$3\pi/2 \le t \le 2\pi$$

• $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le \pi/2$, est une paramétrisation du quart de cercle de rayon a centré à l'origine.

• $\vec{r}(t) = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $0 \le t \le \pi/2$, est une paramétrisation du quart de cercle de rayon a centré à l'origine.

2. Donner une paramétrisation d'une courbe de la forme y = f(x) avec $a \le x \le b$.

2. Donner une paramétrisation d'une courbe de la forme y = f(x) avec $a \le x \le b$.

On pose x = t et y = f(t) pour obtenir la paramétrisation

$$\vec{r}(t) = t\vec{i} + f(t)\vec{j}, \ a \le t \le b.$$

O est l'origine

• Exemples de base de courbes paramétrées.

- Exemples de base de courbes paramétrées.
- La même courbe, comme ensemble de points dans le plan, peut être paramétrée de différentes façons.

- Exemples de base de courbes paramétrées.
- La même courbe, comme ensemble de points dans le plan, peut être paramétrée de différentes façons.
- Des paramétrisations différentes changent comment la courbe est parcourue.

MTH1102D Calcul II

Chapitre 8, section 1: Les fonctions vectorielles et les courbes paramétrées

Paramétrisation d'un segment

Donner une paramétrisation du segment allant du point $A=(x_1,y_1,z_1)$ au point $B=(x_2,y_2,z_2)$.

Donner une paramétrisation du segment allant du point $A = (x_1, y_1, z_1)$ au point $B = (x_2, y_2, z_2)$.

• A et B définissent des vecteurs \overrightarrow{OA} , \overrightarrow{OB} et $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$

Donner une paramétrisation du segment allant du point $A = (x_1, y_1, z_1)$ au point $B = (x_2, y_2, z_2)$.

- A et B définissent des vecteurs \overrightarrow{OA} , \overrightarrow{OB} et $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$
- Vecteur position d'un point du segment :

$$\vec{r}(t) = \vec{OA} + t \left[\vec{OB} - \vec{OA} \right]$$

Donner une paramétrisation du segment allant du point $A = (x_1, y_1, z_1)$ au point $B = (x_2, y_2, z_2)$.

- A et B définissent des vecteurs \overrightarrow{OA} , \overrightarrow{OB} et $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$
- Vecteur position d'un point du segment :

$$\vec{r}(t) = \vec{OA} + t \left[\vec{OB} - \vec{OA} \right]$$

• t = 0 correspond à A et t = 1 correspond à B point final

Donner une paramétrisation du segment allant du point $A = (x_1, y_1, z_1)$ au point $B = (x_2, y_2, z_2)$.

- A et B définissent des vecteurs \overrightarrow{OA} , \overrightarrow{OB} et $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$
- Vecteur position d'un point du segment :

$$\vec{r}(t) = \vec{OA} + t \left[\vec{OB} - \vec{OA} \right]$$

• t = 0 correspond à A et t = 1 correspond à B

Si $t \in \mathbb{R}$, on obtient tous les points de la droite passant par A et B.

Explicitement:

$$\vec{r}(t) = \vec{OA} + t \left[\vec{OB} - \vec{OA} \right]$$

Explicitement:

remplacer en i,j,k

$$\vec{r}(t) = \vec{OA} + t \left[\vec{OB} - \vec{OA} \right]$$

$$= \left[x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k} \right] + t \left[(x_2 - x_1) \vec{i} + (y_2 - y_1) \vec{j} + (z_2 - z_1) \vec{k} \right]$$

Explicitement:

$$\vec{r}(t) = \vec{OA} + t \left[\vec{OB} - \vec{OA} \right]$$

$$= \left[x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k} \right] + t \left[(x_2 - x_1) \vec{i} + (y_2 - y_1) \vec{j} + (z_2 - z_1) \vec{k} \right]$$

$$= \left[x_1 + t(x_2 - x_1) \right] \vec{i} + \left[y_1 + t(y_2 - y_1) \right] \vec{j} + \left[z_1 + t(z_2 - z_1) \right] \vec{k}$$

Explicitement:

$$\vec{r}(t) = \vec{OA} + t \left[\vec{OB} - \vec{OA} \right]$$

$$= [x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}] + t \left[(x_2 - x_1) \vec{i} + (y_2 - y_1) \vec{j} + (z_2 - z_1) \vec{k} \right]$$

$$= [x_1 + t(x_2 - x_1)] \vec{i} + [y_1 + t(y_2 - y_1)] \vec{j} + [z_1 + t(z_2 - z_1)] \vec{k}$$

$$0 \le t \le 1$$

pour avoir explicitement un segment entre A et B

Autre facon équivalenete de paramétrer le même segment

De façon équivalente :

$$\vec{r}(t) = [x_1 + t(x_2 - x_1)]\vec{i} + [y_1 + t(y_2 - y_1)]\vec{j} + [z_1 + t(z_2 - z_1)]\vec{k}$$

De façon équivalente :

$$\vec{r}(t) = [x_1 + t(x_2 - x_1)]\vec{i} + [y_1 + t(y_2 - y_1)]\vec{j} + [z_1 + t(z_2 - z_1)]\vec{k}$$

$$= (1 - t)[x_1\vec{i} + y_1\vec{j} + z_1\vec{k}] + t[x_2\vec{i} + y_2\vec{j} + z_2\vec{k}]$$

De façon équivalente :

$$\vec{r}(t) = [x_1 + t(x_2 - x_1)]\vec{i} + [y_1 + t(y_2 - y_1)]\vec{j} + [z_1 + t(z_2 - z_1)]\vec{k}$$

$$= (1 - t)[x_1\vec{i} + y_1\vec{j} + z_1\vec{k}] + t[x_2\vec{i} + y_2\vec{j} + z_2\vec{k}]$$

$$= (1 - t)\vec{OA} + t\vec{OB}$$

$$0 \le t \le 1$$

• Équation vectorielle d'un segment.

- Équation vectorielle d'un segment.
- Deux paramétrisations possibles pour un segment.

- Équation vectorielle d'un segment.
- Deux paramétrisations possibles pour un segment.
- Paramétrisation d'une droite passant par deux points.

MTH1102D Calcul II

Chapitre 8, section 1: Les fonctions vectorielles et les courbes paramétrées

Une courbe paramétrée dans l'espace

Une courbe paramétrée dans l'espace

Soit C la courbe paramétrée par

$$\vec{r}(t) = [\sin t - t\cos t]\vec{i} + [\cos t + t\sin t]\vec{j} + t^2\vec{k}$$

avec $t \ge 0$ (un tire-bouchon). Montrer que C est située sur le paraboloïde $z = x^2 + y^2 - 1$. Montrer que chaque coin du C satisfait les coins du paraboloïde

$$x(t)^{2} + y(t)^{2} = [\sin t - t \cos t]^{2} + [\cos t + t \sin t]^{2}$$
$$= \sin^{2} t - 2t \sin t \cos t + t^{2} \cos^{2} t + \cos^{2} t + 2t \sin t \cos t + t^{2} \sin^{2} t$$

Une courbe paramétrée dans l'espace

Soit C la courbe paramétrée par

$$\vec{r}(t) = [\sin t - t\cos t]\vec{i} + [\cos t + t\sin t]\vec{j} + t^2\vec{k}$$

avec $t \ge 0$ (un tire-bouchon). Montrer que C est située sur le paraboloïde $z = x^2 + y^2 - 1$.

$$x(t)^{2} + y(t)^{2} = [\sin t - t \cos t]^{2} + [\cos t + t \sin t]^{2}$$

$$= \sin^{2} t - 2t \sin t \cos t + t^{2} \cos^{2} t + \cos^{2} t + 2t \sin t \cos t + t^{2} \sin^{2} t$$

$$= 1 + t^{2} = 1 + z(t).$$

$$t^{2} = z(t)$$

Une courbe paramétrée dans l'espace

Soit C la courbe paramétrée par

$$\vec{r}(t) = [\sin t - t\cos t]\vec{i} + [\cos t + t\sin t]\vec{j} + t^2\vec{k}$$

avec $t \ge 0$ (un tire-bouchon). Montrer que C est située sur le paraboloïde $z = x^2 + y^2 - 1$.

Les points de C satisfont à l'équation du paraboloïde.

La courbe en rouge fait bien partie de la surface en bleue

Résumé

• Un exemple d'une courbe dans l'espace contenue dans une surface.

MTH1102D Calcul II

Chapitre 8, section 1: Les fonctions vectorielles et les courbes paramétrées

La courbe d'intersection de deux surfaces

Introduction

Derivees des fonctions vectorielles Formules de derivation. Integrales des fonctions vectorielles.

La courbe d'intersection de deux surfaces

Trouver une paramétrisation de la courbe d'intersection C du cylindre $x^2 + y^2 = 4$ et du plan x + z = 5.

- *C* est aussi l'intersection du paraboloïde $z = x^2 x + y^2 + 1$ avec le plan.
- Intersection :

$$\begin{cases} z = x^2 - x + y^2 + 1 \\ z = 5 - x \end{cases} \Rightarrow x^2 + y^2 = 4$$

donc
$$x(t) = 2 \cos t$$
, $y(t) = 2 \sin t$, $0 \le t \le 2\pi$.

•
$$z(t) = 5 - x(t) = 5 - 2\cos t$$

Résumé

- Paramétrisation de la courbe d'intersection de deux surfaces.
- Une même courbe peut être l'intersection de différentes surfaces.

MTH1102D Calcul II

Chapitre 8, section 2: Les dérivées et les intégrales des fonctions vectorielles

Dérivées et intégrales des fonctions vectorielles

Introduction

- Dérivées des fonctions vectorielles
- Formules de dérivation.
- Intégrales des fonctions vectorielles.

Définition

Soit la fonction vectorielle $\vec{r}(t)$ (en 2 ou 3 dimensions) et t_0 un point de son domaine. La *dérivée* de \vec{r} en t_0 est

$$\vec{r}'(t_0) = \lim_{h \to 0} \frac{\vec{r}(t_0 + h) - \vec{r}(t_0)}{h}$$

si cette limite existe.

Théorème

Si
$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$
 alors la dérivée de \vec{r} en t est

$$\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}$$
.
chaque composante est une fonction scalaire

Autrement dit, la dérivée est obtenue en dérivant composante à composante.

Cette formule est aussi valable pour une fonction en deux dimensions (en posant $z(t) \equiv 0$).

Preuve du théorème en deux dimensions :

$$\vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

$$= \lim_{h \to 0} \frac{[x(t+h)\vec{i} + y(t+h)\vec{j}] - [x(t)\vec{i} + y(t)\vec{j}]}{h}$$

$$= \lim_{h \to 0} \frac{[x(t+h) - x(t)]\vec{i} + [y(t+h) - y(t)]\vec{j}}{h}$$

$$= \lim_{h \to 0} \left(\frac{x(t+h) - x(t)}{h}\vec{i} + \frac{y(t+h) - y(t)}{h}\vec{j}\right)$$

$$i \text{ et } j \text{ sont}$$

$$indépendents$$

$$de h$$

$$= x'(t)\vec{i} + y'(t)\vec{j}$$

La preuve est analogue pour une fonction en trois dimensions.

Théorème

Si $\vec{u}(t)$ et $\vec{v}(t)$ sont des fonctions vectorielles dont les dérivées existent alors

- **1** $[\vec{u}(t) \pm \vec{v}(t)]' = \vec{u}'(t) \pm \vec{v}'(t)$
- $[c\vec{u}(t)]' = c\vec{u}'(t), \text{ où } c \text{ est une constante}$
- (a) $[f(t)\vec{u}(t)]' = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$, où f est une fonction dérivable

Théorème

Si $\vec{u}(t)$ et $\vec{v}(t)$ sont des fonctions vectorielles dont les dérivées existent alors

- **1** $[\vec{u}(t) \pm \vec{v}(t)]' = \vec{u}'(t) \pm \vec{v}'(t)$
- $[c\vec{u}(t)]' = c\vec{u}'(t), \text{ où } c \text{ est une constante}$
- **3** $[f(t)\vec{u}(t)]' = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$, où f est une fonction dérivable

Théorème

Si $\vec{u}(t)$ et $\vec{v}(t)$ sont des fonctions vectorielles dont les dérivées existent alors

- **1** $[\vec{u}(t) \pm \vec{v}(t)]' = \vec{u}'(t) \pm \vec{v}'(t)$
- $[c\vec{u}(t)]' = c\vec{u}'(t), \text{ où } c \text{ est une constante}$
- (3) $[f(t)\vec{u}(t)]' = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$, où f est une fonction dérivable

Preuve de la formule 4 (cas en deux dimensions) :

$$\begin{aligned} [\vec{u}(t) \cdot \vec{v}(t)]' &= \left[\left(u_1(t)\vec{i} + u_2(t)\vec{j} \right) \cdot \left(v_1(t)\vec{i} + v_2(t)\vec{j} \right) \right]' \\ &= \left[u_1(t)v_1(t) + u_2(t)v_2(t) \right]' \\ &= \left[u_1(t)v_1(t) \right]' + \left[u_2(t)v_2(t) \right]' \\ &= \left[u_1'(t)v_1(t) + u_1(t)v_1'(t) \right] + \left[u_2'(t)v_2(t) + u_2(t)v_2'(t) \right] \\ &= \left[u_1'(t)v_1(t) + u_2'(t)v_2(t) \right] + \left[u_1(t)v_1'(t) + u_2(t)v_2'(t) \right] \\ &= \left(u_1'(t)\vec{i} + u_2'(t)\vec{j} \right) \cdot \left(v_1(t)\vec{i} + v_2(t)\vec{j} \right) \\ &+ \left(u_1(t)\vec{i} + u_2(t)\vec{j} \right) \cdot \left(v_1'(t)\vec{i} + v_2'(t)\vec{j} \right) \\ &= \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t). \end{aligned}$$

La preuve est analogue pour des fonctions en trois dimensions.

L'intégrale $\int_a^b \vec{r}(t) dt$ peut être définie avec la procédure habituelle.

Théorème

Si $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ et x, y, z sont des fonctions intégrables alors

$$\int_a^b \vec{r}(t) dt = \left(\int_a^b x(t) dt \right) \vec{i} + \left(\int_a^b y(t) dt \right) \vec{j} + \left(\int_a^b z(t) dt \right) \vec{k}.$$

Résumé

- Définition de la dérivée d'une fonction vectorielle.
- Formule de calcul pour la dérivée d'une fonction vectorielle.
- Formules de dérivation.
- Formule de calcul pour l'intégrale d'une fonction vectorielle.

MTH1102D Calcul II

Chapitre 8, section 2: Les dérivées et les intégrales des fonctions vectorielles

Exemple 1: calcul du vecteur tangent et du vecteur normal

Calculons le vecteur tangent unitaire et le vecteur normal unitaire du « tire-bouchon »

$$\vec{r}(t) = [\sin t - t\cos t]\vec{i} + [\cos t + t\sin t]\vec{j} + t^2\vec{k}, \quad t \ge 0$$
 au point $(1, \pi/2, \pi^2/4)$.

Vecteur tangent :

$$x'(t) = \cos t - (\cos t - t \sin t) = t \sin t$$

$$y'(t) = -\sin t + (\sin t + t \cos t) = t \cos t$$

$$z'(t) = 2t.$$

donc le vecteur tangent est

$$\vec{r}'(t) = t \sin t \vec{i} + t \cos t \vec{j} + 2t \vec{k}$$

Calculons le vecteur tangent unitaire et le vecteur normal unitaire du « tire-bouchon »

$$\vec{r}(t)=[\sin t-t\cos t]\vec{i}+[\cos t+t\sin t]\vec{j}+t^2\vec{k},\ t\geq 0$$
 au point $(1,\pi/2,\pi^2/4)$.

Vecteur tangent :

$$||\vec{r}'(t)|| = \sqrt{(t\sin t)^2 + (t\cos t)^2 + (2t)^2} = \sqrt{5t^2} = \sqrt{5}t \ (t \ge 0)$$

donc le vecteur tangent unitaire est

$$\vec{T} = \frac{\vec{r}'(t)}{||\vec{r}'(t)||} = \frac{1}{\sqrt{5}t} \left(t \sin t \vec{i} + t \cos t \vec{j} + 2t \vec{k} \right)$$
$$= \frac{1}{\sqrt{5}} \left(\sin t \vec{i} + \cos t \vec{j} + 2\vec{k} \right)$$

Calculons le vecteur tangent unitaire et le vecteur normal unitaire du « tire-bouchon »

$$\vec{r}(t) = [\sin t - t\cos t]\vec{i} + [\cos t + t\sin t]\vec{j} + t^2\vec{k}, \quad t \ge 0$$
 au point $(1, \pi/2, \pi^2/4)$.

Vecteur tangent :

Le point donné correspond à t tel que

$$x(t) = \sin t - t \cos t = 1$$

$$y(t) = \cos t + t \sin t = \pi/2$$

$$z(t) = t^2 = \pi^2/4$$

On trouve $t = \pi/2$ et

$$\vec{T}(\pi/2) = \frac{1}{\sqrt{5}} \left(\sin(\pi/2) \vec{i} + \cos(\pi/2) \vec{j} + 2 \vec{k} \right) = \frac{1}{\sqrt{5}} (\vec{i} + 2 \vec{k})$$

Calculons le vecteur tangent unitaire et le vecteur normal unitaire du « tire-bouchon »

$$\vec{r}(t) = [\sin t - t\cos t]\vec{i} + [\cos t + t\sin t]\vec{j} + t^2\vec{k}, \quad t \ge 0$$
 au point $(1, \pi/2, \pi^2/4)$.

Vecteur normal:

$$\vec{T}(t) = \frac{1}{\sqrt{5}} \left(\sin t \vec{i} + \cos t \vec{j} + 2 \vec{k} \right)$$

$$\vec{T}'(t) = \frac{1}{\sqrt{5}} \left(\cos t \vec{i} - \sin t \vec{j} + 0 \vec{k} \right)$$

$$||\vec{T}'(t)|| = \frac{1}{\sqrt{5}} \sqrt{\cos^2 t + \sin^2 t} = \frac{1}{\sqrt{5}}$$

$$\vec{N}(t) = \frac{\vec{T}'(t)}{||\vec{T}'(t)||} = \cos t \vec{i} - \sin t \vec{j}.$$

Calculons le vecteur tangent unitaire et le vecteur normal unitaire du « tire-bouchon »

$$\vec{r}(t) = [\sin t - t\cos t]\vec{i} + [\cos t + t\sin t]\vec{j} + t^2\vec{k}, \quad t \ge 0$$
 au point $(1, \pi/2, \pi^2/4)$.

Vecteur normal:

$$\vec{N}(t)$$
 = $\frac{\vec{T}'(t)}{||\vec{T}'(t)||} = \cos t \vec{i} - \sin t \vec{j}$.

$$\vec{N}(\pi/2) = \cos(\pi/2)\vec{i} - \sin(\pi/2)\vec{j} = -\vec{j}$$

On remarque:

- Le vecteur normal pointe toujours dans la direction où la courbe « se replie » (toujours le cas).
- Le vecteur normal est horizontal en chaque point (pas toujours le cas).

Résumé

- Identification de la valeur du paramètre correspondant à un point donné.
- Calcul du vecteur tangent général et calcul pour un point donné.
- Calcul du vecteur normal général et calcul pour un point donné.

MTH1102D Calcul II

Chapitre 8, section 2: Les dérivées et les intégrales des fonctions vectorielles

Exemple 2: droite tangente à une courbe

Soit C la courbe paramétrée par

$$\vec{r}(t) = [2\cos t + \cos 2t]\vec{i} + [2\sin t \quad \sin 2t]\vec{j} + 3\sin 3t\vec{k}, \quad 0 \quad t \quad 2\pi.$$

- a) Trouver tous les points de C où la tangente est horizontale.
- b) Trouver les équations paramétriques de la droite tangente en l'un de ces points.

Soit C la courbe paramétrée par

$$\vec{r}(t) = [2\cos t + \cos 2t]\vec{i} + [2\sin t \quad \sin 2t]\vec{j} + 3\sin 3t\vec{k}, \quad 0 \quad t \quad 2\pi.$$

- a) Trouver tous les points de C où la tangente est horizontale.
- b) Trouver les équations paramétriques de la droite tangente en l'un de ces points.
 - Vecteur tangent :

$$\vec{r}'(t) = [2\sin t \quad 2\sin 2t]\vec{i} + [2\cos t \quad 2\cos 2t]\vec{j} + 9\cos 3t\vec{k}$$

Tangente horizontale :

$$9\cos 3t = 0$$

$$\cos 3t = 0$$

$$3t = \pi/2, 3\pi/2, 5\pi/2, 7\pi/2, 9\pi/2$$
 ou $11\pi/2$ si $t \in [0, 2\pi]$

$$t = \pi/6, \pi/2, 5\pi/6, 7\pi/6, 3\pi/2, \text{ ou } 11\pi/6$$

Points correspondants:

$$\vec{r}(\pi/6) = \begin{bmatrix} p \\ \bar{3} + \frac{1}{2} \end{bmatrix} \vec{i} + \begin{bmatrix} 1 & \frac{p}{3} \\ \frac{3}{2} \end{bmatrix} \vec{j} + 3\vec{k}$$

$$\vec{r}(\pi/2) = \vec{i} + 2\vec{j} + 3\vec{k}$$

$$\vec{r}(5\pi/6) = \begin{bmatrix} p \\ \bar{3} + \frac{1}{2} \end{bmatrix} \vec{i} + \begin{bmatrix} 1 + \frac{p}{3} \\ \frac{3}{2} \end{bmatrix} \vec{j} + 3\vec{k}$$

$$\vec{r}(7\pi/6) = \begin{bmatrix} p \\ \bar{3} + \frac{1}{2} \end{bmatrix} \vec{i} + \begin{bmatrix} 1 + \frac{p}{3} \\ \frac{3}{2} \end{bmatrix} \vec{j} + 3\vec{k}$$

$$\vec{r}(3\pi/2) = \vec{i} + 2\vec{j} + 3\vec{k}$$

$$\vec{r}(11\pi/6) = \begin{bmatrix} p \\ \bar{3} + \frac{1}{2} \end{bmatrix} \vec{i} + \begin{bmatrix} 1 + \frac{p}{3} \\ 1 + \frac{p}{3} \end{bmatrix} \vec{j} + 3\vec{k}$$

Soit C la courbe paramétrée par

$$\vec{r}(t) = [2\cos t + \cos 2t]\vec{i} + [2\sin t \quad \sin 2t]\vec{j} + 3\sin 3t\vec{k}, \quad 0 \quad t \quad 2\pi.$$

- a) Trouver tous les points de C où la tangente est horizontale.
- b) Trouver les équations paramétriques de la droite tangente en l'un de ces points.

Trouvons la tangente au deuxième de ces points (correspond à $t=\pi/2$) :

- Point : (1, 2, 3)
- Vecteur directeur :

$$\vec{r}'(\pi/2) = [2\sin(\pi/2) \quad 2\sin(2\pi/2)]\vec{i} + [2\cos(\pi/2) \quad 2\cos(2\pi/2)]\vec{j} + 9\cos(3\pi/2)\vec{k}$$

$$= 2\vec{i} + 2\vec{i}.$$

Soit C la courbe paramétrée par

$$\vec{r}(t) = [2\cos t + \cos 2t]\vec{i} + [2\sin t \quad \sin 2t]\vec{j} + 3\sin 3t\vec{k}, \quad 0 \quad t \quad 2\pi.$$

- a) Trouver tous les points de C où la tangente est horizontale.
- b) Trouver les équations paramétriques de la droite tangente en l'un de ces points.
 - Équations paramétriques de la droite tangente :

$$D: \left\{ \begin{array}{rcl} x & = & 1 & 2t \\ y & = & 2+2t & , t \ge \mathbb{R} \\ z & = & 3 \end{array} \right.$$

ou encore:

$$D: \vec{R}(t) = (1 \quad 2t)\vec{i} + (2+2t)\vec{j} \quad 3\vec{k}$$

En deux dimensions:

- Tangente horizontale : y'(t) = 0
- Tangente verticale : x'(t) = 0

En trois dimensions :

- Tangente horizontale : z'(t) = 0
- Tangente verticale : x'(t) = 0 et y'(t) = 0

Résumé

- Droite tangente à une courbe paramétrée.
- Conditions géométriques sur la droite tangente.

MTH1102D Calcul II

Chapitre 8, section 2: Les dérivées et les intégrales des fonctions vectorielles

Vecteur tangent et vecteur normal

Introduction

- Vecteur tangent à une courbe paramétrée.
- Vecteur normal à une courbe paramétrée.

Soit C une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ avec $a \le t \le b$ et $t_0 \in [a, b]$.

Soit C une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ avec $a \le t \le b$ et $t_0 \in [a, b]$.

● « vecteur sécant » :

$$\vec{r}(t_0+h)-\vec{r}(t_0)$$

Soit *C* une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ avec $a \le t \le b$ et $t_0 \in [a, b]$.

 « vecteur sécant » : car la droite est sécante à la courbe c

$$\vec{r}(t_0+h)-\vec{r}(t_0)$$

Soit C une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ avec $a \le t \le b$ et $t_0 \in [a, b]$.

● « vecteur sécant » :

$$\vec{r}(t_0+h)-\vec{r}(t_0)$$

Soit C une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ avec $a \le t \le b$ et $t_0 \in [a, b]$.

« vecteur sécant » :

$$\vec{r}(t_0+h)-\vec{r}(t_0)$$

vecteur sécant « normalisé » :

$$\frac{\vec{r}(t_0+h)-\vec{r}(t_0)}{h}$$

Soit C une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ avec $a \le t \le b$ et $t_0 \in [a, b]$.

« vecteur sécant » :

$$\vec{r}(t_0+h)-\vec{r}(t_0)$$

vecteur sécant « normalisé » :

$$\frac{\vec{r}(t_0+h)-\vec{r}(t_0)}{h}$$

Soit C une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ avec $a \le t \le b$ et $t_0 \in [a, b]$.

« vecteur sécant » :

$$\vec{r}(t_0+h)-\vec{r}(t_0)$$

vecteur sécant « normalisé » :

$$\frac{\vec{r}(t_0+h)-\vec{r}(t_0)}{h}$$

Soit *C* une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ avec $a \le t \le b$ et $t_0 \in [a, b]$.

● « vecteur sécant » :

$$\vec{r}(t_0+h)-\vec{r}(t_0)$$

vecteur sécant « normalisé » :

$$\frac{\vec{r}(t_0+h)-\vec{r}(t_0)}{h}$$

• Lorsque $h \to 0$, le « vecteur sécant » devient tangent à la courbe au point $\vec{r}(t_0)$, s'il est non nul.

Ce qui précède se généralise à des courbes dans l'espace.

Définition

Soit *C* une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ avec $a \le t \le b$.

- Le vecteur tangent à C au point correspondant à t est $\vec{r}'(t)$.
- ② Le vecteur tangent unitaire à C au point correspondant à t est

$$\vec{T}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}.$$

Définition

Soit C une courbe paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ avec $a \le t \le b$.

Le vecteur normal unitaire à C au point correspondant à t est

perpendiculaire à la courbe
$$\vec{N}(t) = \frac{\vec{T}'(t)}{||\vec{T}'(t)||}$$
.

Montrons que \vec{T} et \vec{N} sont perpendiculaires.

$$\vec{\mathcal{T}}$$
 unitaire $\Rightarrow \vec{\mathcal{T}} \cdot \vec{\mathcal{T}} = ||\vec{\mathcal{T}}||^2 = 1$

donc

$$0 = \frac{d}{dt} ||\vec{T}||^2 = (\vec{T} \cdot \vec{T})' = \vec{T}' \cdot \vec{T} + \vec{T} \cdot \vec{T}' = 2\vec{T} \cdot \vec{T}'$$

Ainsi,

$$\vec{T} \cdot \vec{T}' = 0 \Rightarrow \vec{T} \cdot \frac{\vec{T}'}{||\vec{T}'||} = 0 \Rightarrow \vec{T} \cdot \vec{N} = 0$$

Montrons que \vec{T} et \vec{N} sont perpendiculaires.

$$\vec{\mathcal{T}}$$
 unitaire $\Rightarrow \vec{\mathcal{T}} \cdot \vec{\mathcal{T}} = ||\vec{\mathcal{T}}||^2 = 1$

donc

$$0 = \frac{d}{dt} ||\vec{T}||^2 = (\vec{T} \cdot \vec{T})' = \vec{T}' \cdot \vec{T} + \vec{T} \cdot \vec{T}' = 2\vec{T} \cdot \vec{T}'$$

Ainsi,

$$\vec{T} \cdot \vec{T}' = 0 \Rightarrow \vec{T} \cdot \frac{\vec{T}'}{||\vec{T}'||} = 0 \Rightarrow \vec{T} \cdot \vec{N} = 0$$

donc \vec{T} et \vec{N} sont perpendiculaires.

Résumé

- Interprétation de la dérivée d'une fonction vectorielle comme le vecteur tangent à une courbe paramétrée.
- Vecteur normal à une courbe paramétrée.
- Perpendicularité des vecteurs tangent et normal.