WE CLAIM

5

10

15

20

25

- 1. A process comprising the steps of contacting at least one silicone containing compound with a supercritical fluid having a density of between about 0.2 and about 1 g/ml, decreasing said density so that two phases are formed a first phase comprising said at least one silicone containing compound and a second phase comprising at least one impurity and separating said second phase from said first phase.
- 2. The process of claim 1 wherein said supercritical fluid is selected from the group consisting of carbon dioxide, ethane, ethylene, propane, propylene, chlorotrifluoromethane and mixtures thereof.
 - 3. The process of claim 1 wherein the supercritical fluid comprises carbon dioxide.
- 4. The process of claim 1 wherein the supercritical fluid has a density of between about 0.4 and about 0.8 g/ml.
- 5. The process of claim 1 wherein the contacting step comprises at least two stages a first stage and a second stage wherein the density of said supercritical fluid is lower than the density in the first stage.
- 6. The process of claim 5 wherein the density of the supercritical fluid in the first first stage is between about 0.4 and about 0.8 g/ml and the density of the supercritical fluid in the second stage is between about 0.1 g/ml and about 0.4 g/ml.
 - 7. The process of claim 5 further comprising at least one additional contacting stage.
- 8. The process of claim 5 wherein the contacting step comprises at least three stages and the density of the supercritical fluid in the first stage is between about 0.5 and about 0.7 g/ml, the density of the supercritical fluid in the second stage is between about 0.3 g/ml and about 0.5 g/ml and the density of the supercritical fluid in a third stage is between about 0.1 g/ml and about 0.3 g/ml.
- 9. The process of claim 5 wherein the contacting step comprises at least four stages and the density of the supercritical fluid in the first stage is between about 0.5 and about 0.7 g/ml, the density of the supercritical fluid in the second stage is between about 0.3 g/ml and about 0.5 g/ml, the density of the supercritical fluid in a third stage is between about 0.15

g/ml and about 0.35 g/ml and the density of the supercritical fluid in a fourth stage is between about 0.1 g/ml and about 0.3 g/ml.

- 10. The process of claim 1 wherein said contacting step is conducted under conditions comprising pressures from about 1,000 psi to about 5,000 psi and temperatures greater than about 31°C.
- 11. The process of claim 1 wherein said contacting step is conducted under conditions comprising pressures from about 2,000 psi to about 3,000 psi and temperatures between about 31 and about 80°C.
- 12. The process of claim 1 wherein the silicone containing compounds is selectedfrom the group consisting of silicone containing monomers, macromers, prepolymers and mixtures thereof.
 - 13. The process of claim 12 wherein the silicone containing compound comprises at least one polymerizable group.
- 14. The process of claim 12 wherein the of silicone containing monomers is at least one monomers of Formulae I and II

$$R^{7}$$
 R^{6} C R^{8} C R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{3} R^{4}

20

5

wherein:

n is an integer between 3 and 35,

25 R¹ is hydrogen, C₁₋₆alkyl;

 R^2 , R^3 , and R^4 , are independently, C_{1-6} alkyl, tri C_{1-6} alkylsiloxy, phenyl, naphthyl, substituted C_{1-6} alkyl, substituted phenyl, or substituted naphthyl

where the alkyl substitutents are selected from one or more members of the group consisting of C_{1-6} alkoxycarbonyl, C_{1-6} alkyl, C_{1-6} alkoxy, amide, halogen, hydroxyl, carboxyl, C_{1-6} alkylcarbonyl and formyl, and where the aromatic substitutents are selected from one or more members of the group consisting of C_{1-6} alkoxycarbonyl, C_{1-6} alkyl, C_{1-6} alkoxy, amide, halogen, hydroxyl, carboxyl, C_{1-6} alkylcarbonyl and formyl;

R⁵ is hydroxyl, an alkyl group containing one or more hydroxyl groups; or

(CH₂(CR⁹R¹⁰)_yO)_x)-R¹¹ wherein y is 1 to 5, preferably 1 to 3, x is an integer of 1 to 100, preferably 2 to 90 and more preferably 10 to 25; R⁹ - R¹¹ are independently selected from H, alkyl having up to 10 carbon atoms and alkyls having up to 10 carbon atoms substituted with at least one polar functional group,

R⁶ is a divalent group comprising up to 20 carbon atoms;

5

20

15 R⁷ is a monovalent group that can under free radical and/or ionic polymerization and comprising up to 20 carbon atoms;

R⁸ is a divalent group comprising up to 20 carbon atoms.

15. The process of claim 14 wherein R^1 is hydrogen; R^2 , R^3 , and R^4 , are independently selected from the group consisting of C_{1-6} alkyl and tri C_{1-6} alkylsiloxy;

R⁵ is hydroxyl, -CH₂OH or -CH₂CHOHCH₂OH,

 $R^6 \ is \ a \ divalent \ C_{1\text{-}6} alkyl, \ C_{1\text{-}6} alkyloxy, \ C_{1\text{-}6} alkyloxyC_{1\text{-}6} alkyl, \ phenylene,$ naphthalene, $C_{1\text{-}12} \text{cycloalkyl}, \ C_{1\text{-}6} alkoxycarbonyl, \ amide, \ carboxy, \ C_{1\text{-}6} alkylcarbonyl,$ carbonyl, $C_{1\text{-}6} alkoxy, \ substituted \ C_{1\text{-}6} alkyloxy, \ substituted \ C_{1\text{-}6} alkyloxyC_{1\text{-}6} alkyl, \ substituted \ phenylene, \ substituted \ naphthalene, \ substituted$

25 C₁₋₁₂cycloalkyl, where the substituents are selected from one or more members of the group consisting of C₁₋₆alkoxycarbonyl, C₁₋₆alkyl, C₁₋₆alkoxy, amide, halogen, hydroxyl, carboxyl, C₁₋₆alkylcarbonyl and formyl;

 R^7 comprises a free radical reactive group selected from the group consisting of acrylate, styryl, vinyl, vinyl ether, itaconate group, C_{1-6} alkylacrylate, acrylamide,

 $C_{1\text{--}6} alkylacrylamide, N-vinyllactam, N-vinylamide, C_{2\text{--}12} alkenyl, C_{2\text{--}12} alkenylphenyl, \\ C_{2\text{--}12} alkenylphenylC_{1\text{--}6} alkyl;$

 R^8 is selected from the group consisting of divalent $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, phenylene, naphthalene, $C_{1\text{-}12}$ cycloalkyl, $C_{1\text{-}6}$ alkoxycarbonyl, amide, carboxy, $C_{1\text{-}6}$ alkylcarbonyl, carbonyl, $C_{1\text{-}6}$ alkoxy, substituted $C_{1\text{-}6}$ alkyloxy, substituted $C_{1\text{-}6}$ alkyloxy, substituted $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, substituted phenylene, substituted naphthalene, substituted $C_{1\text{-}12}$ cycloalkyl, where the substituents are selected from one or more members of the group consisting of $C_{1\text{-}6}$ alkoxycarbonyl, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, amide, halogen, hydroxyl, carboxyl, $C_{1\text{-}6}$ alkylcarbonyl and formyl.

10

5

17. The process of claim 15 wherein the silicone containing compound is selected from the group consisting of

15

20

OH

and

5

10

15

where n = 1-50 and R is independently selected from H and polymerizable unsaturated group, with at least one R is a polymerizable group, and at least one R is H.

18. The process of claim 15 wherein said silicone containing compound comprises

- 19. The process of claim 12 wherein the silicone containing compound is selected from the group consisting of macromer, prepolymers and mixtures thereof.
- 20. The process of claim 19 wherein the silicone containing compound comprises at least one silicone containing acrylic star copolymer or macromer.