UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA/INFORMÁTICA CURSO SUPERIOR DE ENGENHARIA DE COMPUTAÇÃO

GEORGEA DANIELEWICZ GEOVANE VINICIUS FERREIRA

SISTEMA PARA DETECÇÃO DE COMPLEXO QRS EM SINAIS DE ELETROCARDIOGRAFIA

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA

2013

GEORGEA DANIELEWICZ GEOVANE VINICIUS FERREIRA

SISTEMA PARA DETECÇÃO DE COMPLEXO QRS EM SINAIS DE ELETROCARDIOGRAFIA

Trabalho de Conclusão de Curso apresentado ao Departamento Acadêmico de Eletrônica/Informática como requisito parcial para obtenção do grau de Engenheiro no Curso Superior de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Orientador: Professor Doutor Miguel Antonio

Sovierzoski

CURITIBA

2013

AGRADECIMENTOS

Nossos sinceros agradecimentos ao Professor Miguel Antonio Sovierzoski, por ter orientado este trabalho com grande dedicação, estando sempre presente.

Agradecemos de coração a todos os nossos familiares, pois sem eles esta realização jamais teria sido possível. E também a nossos amigos e colegas, pelos incentivos e pelo apoio.

"The human heart is not unchanging (nay, changes almost out of recognition in the twinkling of an eye) ..." – C.S. Lewis

"O coração humano não é imutável (ou melhor, muda quase que irreconhecivelmente no piscar de um olho) ..." – C.S. Lewis

RESUMO

DANIELEWICZ, Georgea

e FERREIRA, Geovane Vinícius. Sistema para Detecção de Complexo QRS em Sinais de Eletrocardiografia. 27 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

Segundo

Palavra-chave 1, Palavra-chave 2, ...

ABSTRACT

DANIELEWICZ, Georgea

e FERREIRA, Geovane Vinícius. System for QRS Complex Detection in Electrocardiographical Signals . 27 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

Abstract text (maximum of 500 words).

Keywords: Keyword 1, Keyword 2, ...

LISTA DE FIGURAS

FIGURA 1	– ANATOMIA DE UM CORAÇÃO	12
FIGURA 2	– FIBRAS MUSCULARES CARDÍACAS	13
FIGURA 3	– DERIVAÇÕES CARDÍACAS	15
FIGURA 4	– ONDAS, SEGMENTOS E INTERVALOS DOS SINAIS DE ECG	17
FIGURA 5	– PARTE DA GRAVAÇÃO 105 DA BASE DE ECG	20

LISTA DE TABELAS

TABELA 1	_	EXEMPLO DE UMA TABELA	 24

LISTA DE SIGLAS

UML Unified Modeling Language

CONEP Comissão Nacional de Ética em Pesquisa

MIT Massachusetts Institute of Technology

LISTA DE SÍMBOLOS

SUMÁRIO

1 INTRODUÇÃO	10
1.1 MOTIVAÇÃO E JUSTIFICATIVA	10
1.2 OBJETIVOS	
1.3 ESTRUTURA DO TRABALHO	10
2 FUNDAMENTAÇÃO TEÓRICA	11
2.1 FISIOLOGIA DO CORAÇÃO	11
2.2 FORMAÇÃO DO SINAL DE ELETROCARDIOGRAFIA	12
2.3 EXAME DE ELETROCARDIOGRAFIA	13
2.4 SISTEMA DE DERIVAÇÕES	15
2.5 ONDAS, SEGMENTOS E INTERVALOS DOS SINAIS DE ECG	16
2.6 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES	17
2.6.1 Teste Diagnóstico	
2.6.2 Sensibilidade	17
2.6.3 Especifidade	18
2.6.4 Curva ROC	18
2.7 CORRELAÇÃO DISCRETA	18
2.8 REDES NEURAIS ARTIFICIAIS	18
2.9 CONSIDERAÇÕES	
3 DESENVOLVIMENTO	19
3.1 BASE DE DADOS	
3.2 DESENVOLVIMENTO DO SOFTWARE	
3.2.1 Formato EDF	
3.2.2 Bibliotecas	
3.3 MÓDULOS DO SISTEMA	21
3.3.1 Visualização do sinal	21
3.3.2 Marcação de eventos	
3.3.3 Extração de Características	21
3.3.4 Reconhecimento de padrões	
3.3.5 Avaliação de Resultados	21
3.4 MODELAGEM UML	
3.5 METODOLOGIA DE TESTES	21
3.6 CONSIDERAÇÕES SOBRE O DESENVOLVIMENTO	22
4 RESULTADOS OBTIDOS	
4.1 TESTES COM RAW ECG	23
4.2 TESTES COM ECG COM CORRELAÇÃO	
4.3 COMPARATIVO DOS RESULTADOS	23
4.4 CONSIDERAÇÕES SOBRE OS RESULTADOS OBTIDOS	
5 CONSIDERAÇÕES FINAIS	25
6 GESTÃO DO PROJETO	26
REFERÊNCIAS	

1 INTRODUÇÃO

O presente documento (introdução normal, 2 parágrafos chega)

1.1 MOTIVAÇÃO E JUSTIFICATIVA

Como nasceu a necessidade deste projeto. Referencias do Aratã

1.2 OBJETIVOS

O objetivo geral deste projeto é desenvolver um sistema para visualização e reconhecimento de padrões em sinais biomédicos de eletrocardiografia (ECG). Para melhor definição do escopo, separamos nos seguintes objetivos específicos:

- Desenvolvimento de um ambiente para visualizar sinais;
- Marcações e salvar.
- Reconhecimento de padrões, a partir da extração de características da marcação.

1.3 ESTRUTURA DO TRABALHO

Este documento é composto pelos seguintes capítulos... (explicar os capítulos)

2 FUNDAMENTAÇÃO TEÓRICA

Pequena Introdução da Fundamentação Teórica. Dizer para que serve este Capítulo, como foi estruturado. Acho que um parágrafo é o bastante.

A seguir serão apresentados os Fundamentos Teóricos. Começamos abordando o tema dos sinais eletroencefalográficos, considerando sua aquisição e as características do sinal. Em seguida, serão tratados assuntos relativos à Análise dos Resultados do Sistema. Para isso... Por fim, encerramos o Capítulo com uma Considerações acerca do mesmo.

2.1 FISIOLOGIA DO CORAÇÃO

O coração humano possui paredes compostas por músculos cardíacos estriados, chamadas de miocárdio, formando quatro compartimentos: o átrio direito, o átrio esquerdo, o ventrículo direito e o ventrículo esquerdo. A figura 1 mostra o coração com indicações dos respectivos átrios e ventrículos (MALMIVUO; PLONSEY, 1995).

O coração possui ainda quatro válvulas. Entre o átrio direito e o ventrículo direito se encontra a válvula tricúspide, e entre o átrio esquerdo e o ventrículo esquerdo fica a válvula mitral. A válvula pulmonar fica entre o ventrículo direito e a artéria pulmonar, enquanto a válvula aorta está no trato de saída do ventrículo esquerdo, e controla o fluxo para a aorta (MALMIVUO; PLONSEY, 1995).

Para retornar da circulação sistêmica, o sangue chega ao átrio direito e dele segue pela válvula tricúspide para o ventrículo direito. Então é ejetado do ventrículo direito para os pulmões, pela válvula pulmonar. Dos pulmões, o sangue oxigenado retorna para o átrio esquerdo, e passa pela válvula mitral até o ventrículo esquerdo. Finalmente, é bombeado pela válvula aorta para a aorta e para a circulação sistêmica (MALMIVUO; PLONSEY, 1995).

A fibra muscular do coração é orientada em espiral. O fato das células musculares cardíacas permanecerem tangencialmente e radialmente, como mostra a figura 2, e a resistência do músculo ser mais baixa em direção as fibras é importante na área da eletrocardiografia, pois

Figura 1: Anatomia de um coração. Fonte: (MALMIVUO; PLONSEY, 1995)

a atividade elétrica pode se propagar de uma célula para outra em qualquer direção. Como resultado, as formas de onda de ativação são bastante complexas (MALMIVUO; PLONSEY, 1995).

2.2 FORMAÇÃO DO SINAL DE ELETROCARDIOGRAFIA

O músculo cardíaco, miocárdio, é composto por células geradoras de potencial elétricas denominadas cardiomiócitos. Em repouso, estas células especializadas em atividade elétrica permanecem polarizadas em sua membrana com um potencial elétrico de aproximadamente -90 mV. No entanto, qualquer excitação por estímulo externo pode rapidamente reverter o potencial elétrico das células miocardiais, a este processo é dado o nome de despolarização (GACEK; PREDYCZ, 2011).

A despolarização geralmente é ocasionada pelo aumento da permeabilidade da membrana ao sódio, permitindo assim que íons positivamente carregados de sódio entrem na célula. Algumas células cardíacas podem ser carregadas com íons de cálcio no lugar de íons de sódio (GACEK; PREDYCZ, 2011).

A variação negativa do potencial elétrico é chamada de fase de repolarização. Ocorre devido

Figura 2: Fibras musculares cardíacas Fonte: (MALMIVUO; PLONSEY, 1995)

ao movimento de íons de potássio para fora da célula, considerando que após a despolarização, o músculo retorna a seu estado elétrico original. Durante a repolarização, o músculo cardíaco é incapaz de ser estimulado, o que o protege de alguma eventual estimulação prematura (GACEK; PREDYCZ, 2011), evitando danos ao sistema cardíaco.

Estas mudanças no potencial elétrico durante os processos de despolarização e repolarização das fibras do miocárdio são registradas com a colocação de eletrodos posicionados na superfície do peito e nas derivações dos membros, e constituem os sinais de Eletroencefalografia (ECG). A forma de onda do ECG pode ser impressa em papel ou mostrada na tela do computador (GACEK; PREDYCZ, 2011).

2.3 EXAME DE ELETROCARDIOGRAFIA

Falar do equipamento para aquisição do ECG

Podem ser citadas como vantagens dos exames de ECG seu baixo custo, facilidade de implementação, o fato de ser um procedimento não invasivo e a obtenção imediata dos re-

sultados (GACEK; PREDYCZ, 2011).

Os exames de ECG podem auxiliar em diagnósticos cardiológicos tais como (MALMI-VUO; PLONSEY, 1995):

- 1. Eixo elétrico do coração
- 2. Monitoramento de frequência cardíaca
- 3. Arritmias
 - (a) Arritmias supraventriculares
 - (b) Arritmias ventriculares
- 4. Desordens na sequência de ativação
 - (a) Defeitos na condução atrioventricular
 - (b) Bloqueio atrioventricular de primeiro grau
 - (c) Síndrome de Wolff-Parkinson-White
- 5. Aumento da espessura das paredes ou do tamanho dos átrios e ventrículos
 - (a) Hipertrofia atrial
 - (b) Hipertrofia ventricular
- 6. Isquemia e infarto do miocárdio
 - (a) Isquemia
 - (b) Infarto
- 7. Efeito de drogas
- 8. Desequilíbrio eletrolítico
 - (a) Potássio
 - (b) Cálcio
- 9. Cardite
 - (a) Pericardite
 - (b) Miocardite
- 10. Monitoramento de marca-passo

Falar de artefatos (1 parágrafo)

2.4 SISTEMA DE DERIVAÇÕES

O sistema de configuração mais comum em exames ambulatoriais de ECG é o sistema 12 derivações, que consiste nas seguintes derivações (MALMIVUO; PLONSEY, 1995):

- Derivações dos membros (Limb leads): I, II, III
- Derivações aumentadas ou de Goldberger (Goldberger Augmented Leads): aV_R, aV_L
- Derivações Precordiais (*Precordial leads*): V₁, V₂, V₃, V₄, V₅ e V₆

As seis primeiras derivações, I, II, III, aV_R , aV_L e aV_F são derivadas dos mesmos três pontos de medição. Por isso, qualquer par dentre este grupo fornece a mesma informações que os quarto restantes (MALMIVUO; PLONSEY, 1995). A localização das derivações é ilustrada na figura 3.

Figura 3: Derivações cardíacas

Fonte: (MALMIVUO; PLONSEY, 1995)

Mais de 90% da atividade elétrica cardíaca pode ser explicada com a medição de três componentes independentes. A princípio, duas das derivações límbicas I II III devem ser suficiente para descrever completamente o vetor elétrico cardíaco. A principal razão para que sejam gravadas as 12 derivações é porque enriquece o reconhecimento dos padrões. Esta combinação de

derivações fornece ao medico a oportunidade de observar diversas projeções do vetor elétrico cardíaco, que consiste em um modo de visualizar o gerador de potencial elétrico do coração como um dipolo elétrico (MALMIVUO; PLONSEY, 1995).

2.5 ONDAS, SEGMENTOS E INTERVALOS DOS SINAIS DE ECG

Além das ondas, os elementos existentes na forma de onda do ECG são (GACEK; PREDYCZ, 2011):

- Linha isoelétrica: a linha horizontal quando não há atividade elétrica no ECG;
- Segmentos: a duração da linha isoelétrica entre as ondas;
- Intervalos: o tempo entre dois segmentos de ondas adjacentes

A onda P é a primeira deflexão do ECG e resulta da despolarização dos átrios, que ocorre durante a despolarização ventricular. É positiva na maioria das derivações, mesmo sendo pouco evidente. Sua amplitude não excede 0,15 mV e 0,25 mV nas derivações precordiais, e dura no máximo 0,12 segundos (GACEK; PREDYCZ, 2011).

A onda T, por sua vez, representa a repolarização ventricular, a restauração do repouso no potencial da membrana. As ondas T se diferenciam das ondas P, por seguirem o complexo QRS após cerca de 0,2 segundos. Após a onda T, ocorre a onda U, com a mesma polaridade da onda T que a precede. Ondas U invertidas podem aparecer na presença de hipertrofia do ventrículo esquerdo ou isquemia (GACEK; PREDYCZ, 2011).

O segmento PQ expressa tempo decorrido entre a despolarização atrial e o começo da despolarização ventricular, durando entre 0,12 e 0,2 segundos. O intervalo ventricular ST-T coincide com a repolarização do músculo ventricular. O intervalo QT corresponde à duração do potencial de ação ventricular e da repolarização. O intervalo TP é o período em que os átrios e ventrículos estão na diástole. O intervalo RR corresponde um ciclo cardíaco e é utilizado para o cálculo da frequência cardíaca (GACEK; PREDYCZ, 2011).

A identificação do complexo QRS não apresenta grandes dificuldades, uma vez que possui forma de onda característica e amplitude dominante. Esta amplitude mede cerca de 1 mV em um coração normal, mas pode ser muito maior em uma hipertrofia ventricular. O complexo QRS é o maior grupo de ondas no ECG e corresponde à despolarização ventricular. A primeira deflexão negativa é a onda Q. Seguida de uma deflexão positiva, a onda R, sendo finalizada

com uma última deflexão negativa denominada de onda S, completando um complexo QRS (GACEK; PREDYCZ, 2011).

A duração normal do QRS fica entre 0.08 e 0,09 segundos. Durações maiores são geralmente devidas à despolarização assíncrona dos dois ventrículos. Isto ocorre em casos de bloqueio atrioventricular de primeiro grau, síndromes de pré-excitação ou contração ventricular prematura. Nestas situações, um ventrículo é despolarizado mais cedo que o outro, fazendo com que o complexo QRS apresente uma onda R seguida de outra onda R. Estas ondas correspondem à despolarização dos dois ventrículos (GACEK; PREDYCZ, 2011). A figura 4 mostra as formas de onda características de um ciclo cardíaco.

Figura 4: Ondas, segmentos e intervalos dos sinais de eletrocardiografia
Fonte: (GACEK; PREDYCZ, 2011)

2.6 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES

Nesta seção serão apresentados alguns itens pertinentes a compreensão de formas de avaliação de sistemas classificadores.

2.6.1 Teste Diagnóstico

Tabela de contingência. Verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos.

2.6.2 Sensibilidade

Explica o que é. E coloca a fórmula. Possivelmente também algum gráfico.

2.6.3 Especifidade

Explica o que é. E coloca a fórmula. Possivelmente também algum gráfico.

2.6.4 Curva ROC

Incluir a figura da Curva ROC. Talvez não seja possível traçar a curva ROC. Para isso, sensibilidade e especificidade precisam variar.

2.7 CORRELAÇÃO DISCRETA

Explicar sobre a correlação matemática dada na equação (1).

$$R_{r,a}(\tau) = \frac{1}{K} \sum_{n=0}^{N-1} f_r(n) f_s(\tau + n)$$
 (1)

2.8 REDES NEURAIS ARTIFICIAIS

Falar sobre as Redes Neurais. Tem muita coisa pra falar disso aqui. Citar o Haykin. 2.8.1 mlp

2.9 CONSIDERAÇÕES

3 DESENVOLVIMENTO

Este capítulo aborda os recursos e metodologias utilizadas em todo o desenvolvimento deste trabalho. O capítulo foi dividido em seções: Base de Dados 3.1, seguida da seção de Desenvolvimento do *Software* 3.2, Modelagem UML 3.4, Metodologia de Testes 3.5 e por fim as Considerações sobre o Desenvolvimento 3.6.

3.1 BASE DE DADOS

De acordo com informações disponibilizadas pela CONEP (CONEP, 2011), "as pesquisas envolvendo apenas dados de domínio público que não identifiquem os participantes da pesquisa, ou apenas revisão bibliográfica, sem envolvimento de seres humanos, não necessitam aprovação por parte do Sistema CEP-CONEP." Por esta razão, a equipe optou por utilizar a base de dados pública MIT-BIH Arrhythmia Database.

A MIT-BIH Arrhythmia Database foi desenvolvida pelo Beth Israel Hospital de Boston em parceria com o MIT durante uma pesquisa sobre arritmia e temas correlatos. Tem sido utilizada como um conjunto de dados padrão para testes e avaliação para sistemas detectores de arritmias e pesquisa em dinâmica cardíaca (MOODY; MARK, 1990).

Os dados correspondem à 48 gravações ECG com duração de meia hora cada uma. São apresentados dois sinais, *modified limb lead II (MLII)* e *lead VI* (podendo ser ocasionalmente V2, V5 ou V4), ambos obtidos com os eletrodos colocados no peito. Esta é a configuração padrão utilizada pelo BIH Arrhythmia Laboratory. Pode-se observar maior proeminência dos complexos QRS no sinal superior (GOLDBERGER et al., 2000 (June 13)). A figura 5 mostra parte da gravação do exame 105.

Os exames foram realizados com 47 pacientes acompanhados pelo BIH Arrhythmia Laboratory entre os anos de 1975 e 1979. Vinte e três gravações foram aleatoriamente de um conjunto de 4000 exames ambulatoriais de ECG com duração de 24 horas coletadas de pacientes internos (cerca de 60%) e pacientes ambulatoriais (cerca de 40%) do Boston's Beth Israel

Figura 5: Parte da gravação 105 da base de dados MIT-BIH Arrhythmia Database.

Fonte: Autoria própria

Hospital. Os outros 25 exames foram selecionados do mesmo conjunto para incluir arritmias clinicamente incomuns (MOODY; MARK, 1990).

Uma equipe com dois cardiologistas realizou anotações dos batimentos em cada uma das gravações, resultando em aproximadamente 110 mil marcações. Estas foram incluídas na base de dados. A base completa tem sido disponibilizada gratuitamente pelo desde 2005 (MOODY; MARK, 1990).

Para a etapa de testes deste projeto, foi selecionado apenas o arquivo 105 por apresentar maior dificuldade na detecção do complexo QRS (SARAIVA, 2012).

3.2 DESENVOLVIMENTO DO SOFTWARE

3.2.1 Formato EDF

Falar sobre o formato EDF. Como surgiu. Para que serve Podemos colocar o cabeçalho do arquivo.

O software foi desenvolvido na linguagem C Sharp.

O ambiente de desenvolvimento utilizado foi o Visual Studio versão X. Para a licença deste produto a equipe participou do DreamSpark.

3.2.2 Bibliotecas

Bibliotecas gráficas, biblioteca para abrir arquivo EDF.

3.3 MÓDULOS DO SISTEMA

Eu consigo antever cinco módulos (Aí explica o que cada um faz): Telas do sistema vão aqui.

Pode ser um diagrama de blocos. Processo de detecção.

3.3.1 Visualização do sinal

Explicar por exemplo, a duração do exame, quantos canais, a frequência e amplitude.

3.3.2 Marcação de eventos

Que tipo de eventos marcamos, em arquivo de texto, seguindo um padrão definido.

3.3.3 Extração de Características

Aqui será explicado o modo como foi utilizada a operação da Correlação. Correlação de um evento marcado com o sinal inteiro, gerando um novo sinal... com picos onde eventos daquele tipo ocorrem.

3.3.4 Reconhecimento de padrões

No caso utilizamos a Rede Neural MultiLayer Perceptron.

3.3.5 Avaliação de Resultados

Módulo que compara marcações com os resultados obtidos.

3.4 MODELAGEM UML

Usamos algum padrão, MVC, etc....

3.5 METODOLOGIA DE TESTES

Achei que já tínhamos explicado isso aqui na Fundamentação Teórica. Mas se não foi o suficiente explicamos melhor aqui... O que são os VP, VN, FP, e FN no nosso caso (complexo

QRS, arritmias...). E o que precisou ser variado para gerar a curva ROC. Threshold Podemos colocar umas telas, comparando o resultado obtido com a marcação que já vem com a base de dados.

3.6 CONSIDERAÇÕES SOBRE O DESENVOLVIMENTO

4 RESULTADOS OBTIDOS

Introdução do Capítulo. Um parágrafo basta.

Muitos Gráficos!

4.1 TESTES COM RAW ECG

Tabela de contingência/confusão: VP, VN, FP, e FN. Aqui vai a análise de sensibilidade, especificidade. Curva ROC.

4.2 TESTES COM ECG COM CORRELAÇÃO

Tabela de contingência/confusão: VP, VN, FP, e FN. Aqui vai a análise de sensibilidade, especificidade. Curva ROC.

4.3 COMPARATIVO DOS RESULTADOS

Curva ROC comparativa.

4.4 CONSIDERAÇÕES SOBRE OS RESULTADOS OBTIDOS

Então.. o sistema é classificador ou não? (De acordo com a curva ROC) Compara a outros trabalhos

Tabela 1: Comparação dos métodos utilizados para detecção do QRS oriunda da tabela de Zhang e Lian (2009) acrescido das quatro últimas linhas com resultados obtidos no trabalho de (SARAIVA, 2012)

201 <i>2)</i>					
Método	QRS	FP	FN	DER	Referências
Algoritmos genéticos	2572	86	5	3,54	Poli, Cagnoni e Valli (1995)
Filtro passa banda	2572	67	22	3,46	Pan e Tompkins (1985)
Wavelet denoising	2572	78	5	3,23	Chen, Chen e Chan (2006)
Bancos de filtragem	2139	53	16	3,22	Afonso et al. (1999)
BPF/search-back	2564	53	22	2,95	Hamilton e Tompkins (1986)
Filtro adaptativo linear	2572	40	22	2,40	Xue, Hu e Tompkins (1992)
Filtragem otimizada	2572	35	21	2,18	Ruha, Sallinen e Nissilä (1997)
Topological mapping	2572	41	4	1,75	Lee et al. (1996)
Transformada wavelet	2572	15	12	1,09	Li, Zheng e Tai (1995)
Filtro adaptativo e rede neural	2572	10	4	0,5	Xue, Hu e Tompkins (1992)
Morfologia 1M	2572	49	10	2,29	Zhang e Lian (2009)
Morfologia 2M	2572	27	9	1,40	Zhang e Lian (2009)
Morfologia 3M	2572	19	7	1,01	Zhang e Lian (2009)
Morfologia 1M	2690	40	2	1,56	Saraiva (2012)
Morfologia 2M	2690	41	2	1,60	Saraiva (2012)
Morfologia 3M	2690	40	0	1,49	Saraiva (2012)
Morfologia 4M	2690	39	0	1,45	Saraiva (2012)

Fonte: Modificada de (SARAIVA, 2012)

5 CONSIDERAÇÕES FINAIS

Alcançou os objetivos?? Quanto conseguiu atingir? A metodologia foi boa ou ruim? Cada seção teve a sua conclusão, então completa a discussão. Elementos resultantes do processo de união. Não apresentar nenhum dado novo! 1 folha e meia no máximo. Propostas futuras? Resultados futuros.

Com redes SOM, ou com outras bases de dados.

6 GESTÃO DO PROJETO

O Dario mandou ter este capítulo aqui. Fala dos esforços e das etapas. Quantidade de horas trabalhadas. Gráfico com barras comparando o esperado com o real. Falar da mudança de base de dados.

REFERÊNCIAS

CONEP. Perguntas e Respostas Frequentes. 2011.

GACEK, A.; PREDYCZ, W. ECG Signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence. [S.l.]: Springer, 2011.

GOLDBERGER, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. **Circulation**, v. 101, n. 23, p. e215–e220, 2000 (June 13). Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215 PMID:1085218; doi: 10.1161/01.CIR.101.23.e215.

MALMIVUO, J.; PLONSEY, R. **Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields**. New York: Oxford University Press, 1995. Disponível em: http://www.bem.fi/book/>.

MOODY, G.; MARK, R. The mit-bih arrhythmia database on cd-rom and software for use with it. In: **Computers in Cardiology 1990, Proceedings.** [S.l.: s.n.], 1990. p. 185–188.

SARAIVA, A. A. Detecção do Complexo QRS através de Morfologia Matemática Multiescalar. 2012.