More Applications

of

the Pumping Lemma

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m (critical length)
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^l z \in L$ i = 0, 1, 2, ...

Non-regular languages

$$L = \{vv^R : v \in \Sigma^*\}$$

Theorem: The language

$$L = \{vv^R : v \in \Sigma^*\} \qquad \Sigma = \{a,b\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Let m be the critical length for L

Pick a string w such that: $w \in L$

and length $|w| \ge m$

We pick
$$w = a^m b^m b^m a^m$$

From the Pumping Lemma:

we can write:
$$w = a^m b^m b^m a^m = x y z$$

with lengths:
$$|x y| \le m$$
, $|y| \ge 1$

$$\mathbf{w} = xyz = \underbrace{a...aa...a}_{m} \underbrace{m}_{m} \underbrace{m}_{m} \underbrace{m}_{m}$$

$$x \underbrace{y}_{z}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^m b^m b^m a^m$$
 $y = a^k$, $1 \le k \le m$

From the Pumping Lemma:
$$x y^i z \in L$$
 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m b^m a^m$$
 $y = a^k$, $1 \le k \le m$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...ab...bb...ba...a}^{m+k} \in L$$

Thus:
$$a^{m+k}b^mb^ma^m \in L$$

$$a^{m+k}b^mb^ma^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{vv^R : v \in \Sigma^*\}$$

$$a^{m+k}b^mb^ma^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

END OF PROOF

Non-regular languages

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Regular languages

Theorem: The language

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Let m be the critical length of L

Pick a string w such that: $w \in L$ and

length $|w| \ge m$

We pick $w = a^m b^m c^{2m}$

From the Pumping Lemma:

We can write
$$w = a^m b^m c^{2m} = x y z$$

With lengths $|x y| \le m$, $|y| \ge 1$

$$\mathbf{w} = xyz = \underbrace{a...aa...aa...ab...bc...cc...c}_{m}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^m b^m c^{2m}$$

$$y = a^k$$
, $1 \le k \le m$

From the Pumping Lemma: $x y^{l} z \in L$

$$i = 0, 1, 2, \dots$$

Thus:
$$x y^0 z = xz \in L$$

$$x y z = a^m b^m c^{2m}$$

$$y = a^k$$
, $1 \le k \le m$

From the Pumping Lemma: $xz \in L$

$$xz = a...aa...ab...bc...cc...c \in L$$

Thus:
$$a^{m-k}b^mc^{2m} \in L$$

$$a^{m-k}b^mc^{2m} \in L$$

k > 1

BUT:
$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

$$a^{m-k}b^mc^{2m} \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

END OF PROOF

Non-regular languages $L = \{a^{n!}: n \ge 0\}$

$$L = \{a^{n!}: n \ge 0\}$$

Theorem: The language $L = \{a^{n!}: n \ge 0\}$ is not regular

$$n! = 1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n$$

Proof: Use the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Let m be the critical length of L

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick $w = a^{m!}$

From the Pumping Lemma:

We can write
$$w = a^{m!} = x y z$$

With lengths $|x y| \le m$, $|y| \ge 1$

$$\mathbf{w} = xyz = a^{m!} = \underbrace{a...aa...aa...aa...aa...aa...aa}_{x y} \underbrace{a...aa...aa...aa...aa...aa}_{z}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

From the Pumping Lemma: $x y^{l} z \in L$

$$i = 0, 1, 2, \dots$$

Thus:
$$x y^2 z \in L$$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...aa...aa...aa...aa}^{m+k} \underbrace{m!-m}_{x} \in L$$

$$a^{m!+k} \in L$$

$$\in L$$

$$a^{m!+k} \in L$$

$$1 \le k \le m$$

Since:
$$L = \{a^{n!}: n \ge 0\}$$

There must exist p such that:

$$m! + k = p!$$

$m!+k \leq m!+m$ However: for m > 1 $\leq m!+m!$ < m!m + m!= m!(m+1)= (m+1)!m!+k < (m+1)!

 $m!+k \neq p!$ for any p

$$a^{m!+k} \in L$$

$$1 \le k \le m$$

BUT:
$$L = \{a^{n!}: n \ge 0\}$$

$$a^{m!+k} \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

END OF PROOF