Prove that each of the following languages is *not* regular.

1.
$$\{0^{2^n} \mid n \ge 0\}$$

Solution (F = L): Let $F = L = \{0^{2^n} \mid n \ge 0\}$.

Let x and y be arbitrary distinct elements of F.

Then $x = 0^{2^i}$ and $y = 0^{2^j}$ for some non-negative integers $i \neq j$.

Let $z = 0^{2^i}$.

Then $xz = 0^{2^i} 0^{2^i} = 0^{2^{i+1}} \in L$.

But $yz = 0^{2^j} 0^{2^i} = 0^{2^i+2^j} \notin L$, because $i \neq j$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution ($F = 0^*$): Let $F = 0^* = \{0^n \mid n \ge 0\}$.

Let x and y be arbitrary distinct elements of F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Without loss of generality, assume i < j.

Let *r* be any integer such that $2^r > 2j$, and let $z = 0^{2^r - j}$.

Then $xz = 0^i 0^{2^r - j} = 0^{2^r - j + i} \notin L$, because $2^r > 2^r - j + i > 2^r - j > 2^r - 2^{r-1} = 2^{r-1}$.

But $yz = {0 \choose 2} {0 \choose 2^r - j} = {0 \choose 2}^r \in L$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

2. $\{0^{2n}1^n \mid n \ge 0\}$

Solution ($F = (00)^*$): Let F be the language $(00)^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = 0^{2i}$ and $y = 0^{2j}$ for some non-negative integers $i \neq j$.

Let $z = 1^i$.

Then $xz = 0^{2i} 1^i \in L$.

And $yz = 0^{2j} 1^i \notin L$, because $i \neq j$.

Thus, F is a fooling set for L.

Because *F* is infinite, *L* cannot be regular.

Solution ($F = 0^*$): Let F be the language 0^* .

Let x and y be arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = 0^i 1^i$.

Then $xz = 0^{2i} 1^i \in L$.

And $yz = 0^{i+j} 1^i \notin L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (via homomorphism): Suppose to the contrary that L is the language of some DFA $M = (Q, s, A, \delta)$. Construct a new DFA $M' = (Q, s, A, \delta')$ with the same states, start state, and accepting states as M, but with a new transition function:

$$\delta'(q, a) = \begin{cases} \delta^*(q, 00) & \text{if } a = 0\\ \delta(q, 1) & \text{if } a = 1 \end{cases}$$

In other words, M' simulates M, but pretends that every 0 it reads is actually two 0s. Let *doubleoh* be the following string function:

$$doubleoh(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ 00 \cdot doubleoh(x) & \text{if } w = 0x \\ 1 \cdot doubleoh(x) & \text{if } w = 1x \end{cases}$$

In particular, for any integer n, we have $doubleoh(0^n1^n) = 0^{2n}1^n$. Straightforward but tedious induction implies that our new DFA M' accepts a string w if and only if the original DFA M accepts the string doubleoh(w). It follows that $L(M') = \{0^n1^n \mid n \ge 0\}$. But we proved in class that L(M') is not regular, so we have reached a contradiction; the original DFA M cannot exist!

[Yes, this proof would be worth full credit. But the fooling set argument is simpler, so try that first!]

3. $\{0^m 1^n \mid m \neq 2n\}$

Solution ($F = (00)^*$): Let F be the language $(00)^*$.

Let x and y be arbitrary distinct strings in F.

Then $x = 0^{2i}$ and $y = 0^{2j}$ for some non-negative integers $i \neq j$.

Let $z = 1^i$.

Then $xz = 0^{2i} 1^i \notin L$.

And $yz = 0^{2j} 1^i \in L$, because $i \neq j$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution ($F = 0^*$): Let F be the language 0^* .

Let x and y be arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = 0^i 1^i$.

Then $xz = 0^{2i} 1^i \notin L$.

And $yz = 0^{i+j} 1^i \in L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (closure properties): If *L* were regular, then the language

$$0^*1^* \setminus L = \{0^m1^n \mid m = 2n\} = \{0^{2n}1^n \mid n \ge 0\}$$

would also be regular, because regular languages are closed under complement. But we just proved that $\{0^{2n}1^n \mid n \ge 0\}$ is not regular in problem 2.

[Yes, this proof would be worth full credit, either in homework or on an exam.]

4. Strings over $\{0,1\}$ where the number of 0s is exactly twice the number of 1s.

Solution ($F = 1^*$): Let F be the language 1^* . Let x and y be arbitrary distinct strings in F. Then $x = 1^i$ and $y = 1^j$ for some non-negative integers $i \neq j$. Let $z = 0^{2i}$. Then $xz = 1^i 0^{2i} \in L$. And $yz = 1^i 0^{2j} \notin L$, because $i \neq j$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution ($F = 0^*$): Let F be the language 0^* . Let x and y be arbitrary distinct strings in F. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i 1^i$. Then $xz = 0^{2i} 1^i \in L$. And $yz = 0^{i+j} 1^i \notin L$, because $i + j \neq 2i$. Thus, F is a fooling set for L. Because F is infinite, E cannot be regular.

Solution (closure properties): If *L* were regular, then the language

$$L \cap 0^*1^* = \{0^{2n}1^n \mid n \ge 0\}$$

would also be regular, because regular languages are closed under intersection. But we just proved that $\{0^{2n}1^n \mid n \geq 0\}$ is not regular in problem 2.

[Yes, this proof would be worth full credit, either in homework or on an exam.]

5. Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]){} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

Solution: Let F be the language (*. Let x and y be arbitrary distinct strings in F.

Then $x = (^i \text{ and } y = (^j \text{ for some non-negative integers } i \neq j$.

Let $z =)^i$.

Then $xz = (^i)^i \in L$.

And $yz = (^j)^i \notin L$, because $i \neq j$.

Thus, F is a fooling set for L.

Because F is infinite, F cannot be regular.

Solution (closure properties): If *L* were regular, then the language

$$L' := L \cap (^*)^* = \{(^n)^n \mid n \ge 0\}$$

would also be regular, because regular languages are closed under intersection. But L' is the same as the language $\{0^n1^n \mid n \ge 0\}$, except for renaming the symbols $0 \mapsto ($ and $1 \mapsto)$, and we proved that $\{0^n1^n \mid n \ge 0\}$ in class.

[Yes, this proof would be worth full credit, either in homework or on an exam.]

Work on these later:

6. Strings of the form $w_1 \# w_2 \# \cdots \# w_n$ for some $n \ge 2$, where each substring w_i is a string in $\{0,1\}^*$, and some pair of substrings w_i and w_j are equal.

Solution (make n=2): Let F be the language 0^* . Let x and y be arbitrary distinct strings in F. Then $x=0^i$ and $y=0^j$ for some non-negative integers $i \neq j$. Let $z=\#0^i$. Then $xz=0^i\#0^i \in L$. And $yz=0^j\#0^i \notin L$, because $i \neq j$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

7. $\{0^{n^2} \mid n \ge 0\}$

Solution (F = L): Let x and y be arbitrary distinct strings in L.

Without loss of generality, $x = 0^{i^2}$ and $y = 0^{j^2}$ for some $i > j \ge 0$.

Let $z = 0^{2i+1}$.

Then $xz = 0^{i^2 + 2i + 1} = 0^{(i+1)^2} \in L$

On the other hand, $yz = 0^{i^2 + 2j + 1} \notin L$, because $i^2 < i^2 + 2j + 1 < (i + 1)^2$.

Thus, z distinguishes x and y.

We conclude that L is a fooling set for L.

Because L is infinite, L cannot be regular.

Solution ($F = 0^*$): Let x and y be arbitrary distinct strings in 0^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 0$.

Let $z = 0^{i^2 + i + 1}$.

Then $xz = 0^{i^2 + 2i + 1} = 0^{(i+1)^2} \in L$.

On the other hand, $yz = 0^{i^2+i+j+1} \notin L$, because $i^2 < i^2+i+j+1 < (i+1)^2$.

Thus, z distinguishes x and y.

We conclude that 0^* is a fooling set for L.

Because 0^* is infinite, L cannot be regular.

Solution ($F = 0000^*$): Let x and y be arbitrary distinct strings in 0000^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 3$.

Let $z = 0^{i^2 - i}$.

Then $xz = 0^{i^2} \in L$.

On the other hand, $yz = 0^{i^2 - i + j} \notin L$, because

$$(i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2$$
.

(The first inequality requires $i \ge 2$, and the second requires $j \ge 1$.)

Thus, z distinguishes x and y.

We conclude that 0000^* is a fooling set for L.

Because 0000^* is infinite, L cannot be regular.

8. $\{w \in (0+1)^* \mid w \text{ is the binary representation of a perfect square}\}$

Solution: We design our fooling set around numbers of the form $(2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = 10^{k-2} 10^k 1 \in L$, for any integer $k \ge 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F = 1(00)^*1$, and let x and y be arbitrary distinct strings in F.

Then $x = 10^{2i-2}1$ and $y = 10^{2j-2}1$, for some positive integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Let $z = 0^{2i} 1$.

Then $xz = 10^{2i-2}10^{2i}1$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$.

On the other hand, $yz = 10^{2j-2}10^{2i}1$ is the binary representation of the integer $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$(2^{i+j})^2 = 2^{2i+2j}$$

$$< 2^{2i+2j} + 2^{2i+1} + 1$$

$$< 2^{2(i+j)} + 2^{i+j+1} + 1$$

$$= (2^{i+j} + 1)^2.$$

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that F is a fooling set for L.

Because F is infinite, L cannot be regular.