

IN THE CLAIMS:

Please amend claims 6, 12, 18, 24 and 30 as follows:

Sub D² A¹
6. (Amended) The device of claim 1 wherein said display is a digital
gradation display.

Sub D⁴ A²
12. (Amended) The device of claim 7 wherein said display is a digital
gradation display.

Sub D⁴ A³
18. (Amended) The device of claim 13 wherein said display is a digital
gradation display.

Sub D⁵ A⁴
24. (Amended) The device of claim 19 wherein said display is a digital
gradation display.

Sub D¹⁰ A⁵
30. (Amended) The device of claim 25 wherein said display is a digital
gradation display.

Please add new claims 31-55 as follows:

Sub D¹¹ A⁶
--31. The device of claim 1 wherein said display further comprises a tuner
for receiving television radio wave to constitute a television.

32. The device of claim 7 wherein said display further comprises a tuner
for receiving television radio wave to constitute a television.

33. The device of claim 13 wherein said display further comprises a tuner for receiving television radio wave to constitute a television.

34. The device of claim 19 wherein said display further comprises a tuner for receiving television radio wave to constitute a television.

35. The device of claim 25 wherein said display further comprises a tuner for receiving television radio wave to constitute a television.

36. The device of claim 31 wherein said television is a liquid crystal television.

37. The device of claim 32 wherein said television is a liquid crystal television.

38. The device of claim 33 wherein said television is a liquid crystal television.

39. The device of claim 34 wherein said television is a liquid crystal television.

40. The device of claim 35 wherein said television is a liquid crystal television.

41. The device of claim 1 wherein said thin film transistor has at least one gate electrode adjacent to said semiconductor film, said gate electrode comprising

a material selected from the group consisting of silicon, molybdenum, tungsten, molybdenum silicide, and tungsten silicide.

42. The device of claim 7 wherein said thin film transistor has at least one gate electrode adjacent to said semiconductor film, said gate electrode comprising a material selected from the group consisting of silicon, molybdenum, tungsten, molybdenum silicide, and tungsten silicide.

43. The device of claim 13 wherein said thin film transistor has at least one gate electrode adjacent to said semiconductor film, said gate electrode comprising a material selected from the group consisting of silicon, molybdenum, tungsten, molybdenum silicide, and tungsten silicide.

44. The device of claim 19 wherein said thin film transistor has at least one gate electrode adjacent to said semiconductor film, said gate electrode comprising a material selected from the group consisting of silicon, molybdenum, tungsten, molybdenum silicide, and tungsten silicide.

45. The device of claim 25 wherein said thin film transistor has at least one gate electrode adjacent to said semiconductor film, said gate electrode comprising a material selected from the group consisting of silicon, molybdenum, tungsten, molybdenum silicide, and tungsten silicide.

46. The device of claim 1 wherein a liquid crystal material is formed between said substrate and an opposite substrate, said liquid crystal material selected from the group consisting of a twisted nematic liquid crystal, super twisted

nematic liquid crystal, ferroelectric liquid crystal, antiferroelectric liquid crystal, dispersion liquid crystal, and polymer liquid crystal.

47. The device of claim 7 wherein a liquid crystal material is formed between said substrate and an opposite substrate, said liquid crystal material selected from the group consisting of a twisted nematic liquid crystal, super twisted nematic liquid crystal, ferroelectric liquid crystal, antiferroelectric liquid crystal, dispersion liquid crystal, and polymer liquid crystal.

AB
48. The device of claim 13 wherein a liquid crystal material is formed between said substrate and an opposite substrate, said liquid crystal material selected from the group consisting of a twisted nematic liquid crystal, super twisted nematic liquid crystal, ferroelectric liquid crystal, antiferroelectric liquid crystal, dispersion liquid crystal, and polymer liquid crystal.

49. The device of claim 19 wherein a liquid crystal material is formed between said substrate and an opposite substrate, said liquid crystal material selected from the group consisting of a twisted nematic liquid crystal, super twisted nematic liquid crystal, ferroelectric liquid crystal, antiferroelectric liquid crystal, dispersion liquid crystal, and polymer liquid crystal.

50. The device of claim 25 wherein a liquid crystal material is formed between said substrate and an opposite substrate, said liquid crystal material selected from the group consisting of a twisted nematic liquid crystal, super twisted nematic liquid crystal, ferroelectric liquid crystal, antiferroelectric liquid crystal, dispersion liquid crystal, and polymer liquid crystal.