

CLAIMS

1. Method for recording data, with the successive steps of :

- 5 - recording a data container ($K_e L_e V_e ; K_m L_m V_m$) having a given container length ($l_e ; l_m$) ;
- recording a key (K_{bp}) indicative of a back-pointer ;
- recording a length indicator (L_{bp}) ;
- recording a value (V_{bp}) indicative of the container length ($l_e ; l_m$).

10

2. Method according to claim 1, with the further step of :

- recording the length indicator.

3. Method according to claim 2, with the further step of :

- 15 - recording the key indicative of the back-pointer.

4. Method for retrieving sets of data on a medium in a order opposite to the recording order, comprising the steps of :

- 20 - accessing a first set of data ;
- accessing a key (K_{bp}) indicative of a back-pointer ;
- reading a value (V_{bp}) indicative of a container length ;
- accessing a second set of data ($K_e L_e V_e ; K_m L_m V_m$) using said value (V_{bp}).

25

5. Method according to claim 4, wherein the sets of data are KLV encoded.

6. Data file comprising successive blocks, each block comprising successively :

- 30 - a data container ($K_e L_e V_e ; K_m L_m V_m$) having a container length ($l_e ; l_m$) ;
- a back-pointer key (K_{bp}) ;
- a length indicator (L_{bp}) ;
- a value (V_{bp}) indicative of the container length ($l_e ; l_m$).

35

7. Medium carrying a data file according to claim 6.

8. Data structure having successively :

- a data container ($K_e L_e V_e ; K_m L_m V_m$) ;
- a back-pointer key (K_{bp}) ;
- a length indicator (L_{bp}) ;
- a value (V_{bp}) indicative of the length of the data container ($l_e ; l_m$).

5

9. Data structure according to claim 8, further having :
- the length indicator.

10

10. Data structure according to claim 9, further having :
- the back-pointer key.