18.404/6.840 Lecture 8

Last time:

- Decision procedures for automata and grammars $A_{\rm DFA}$, $A_{\rm NFA}$, $E_{\rm DFA}$, $EQ_{\rm DFA}$, $A_{\rm CFG}$, $E_{\rm CFG}$ are decidable $A_{\rm TM}$ is T-recognizable

Today:

- $A_{\rm TM}$ is undecidable
- The diagonalization method
- $\overline{A_{\rm TM}}$ is T-unrecognizable
- The reducibility method
- Other undecidable languages

Pset 3 will be posted soon Continue to have chat-breaks; will try to keep them short.

Recall: Acceptance Problem for TMs

Let $A_{\text{TM}} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Today's Theorem: $A_{\rm TM}$ is not decidable

Proof uses the diagonalization method, so we will introduce that first.

The Size of Infinity

How to compare the relative sizes of infinite sets?

Cantor (~1890s) had the following idea.

Defn: Say that set A and B have the same size if there is a one-to-one and onto function $f: A \rightarrow B$

$$x \neq y \rightarrow$$
 Range $(f) = B$
 $f(x) \neq f(y)$ "surjective" We "injective"

We call such an f a 1-1 correspondence

Informally, two sets have the same size if we can pair up their members.

This definition works for finite sets.

Apply it to infinite sets too.

Countable Sets

Let
$$\mathbb{N} = \{1,2,3,...\}$$
 and let $\mathbb{Z} = \{...,-2,-1,0,1,2,...\}$

Show $\mathbb N$ and $\mathbb Z$ have the same size

$$\frac{n}{\mathbb{N}} \frac{f(n)}{\mathbb{Z}}$$

Let
$$\mathbb{Q}^+ = \{ m/n \mid m, n \in \mathbb{N} \}$$

Show \mathbb{N} and \mathbb{Q}^+ have the same size

\mathbb{Q}^+	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	2/2	2/3	2/4	
3	[3/1]	3/2	3/3	3/4	
4	4/1	4/2	4/3	4/4	
:		÷			

Defn: A set is <u>countable</u> if it is finite or it has the same size as \mathbb{N} .

Both \mathbb{Z} and \mathbb{Q}^+ are countable.

R is Uncountable – Diagonalization

Let $\mathbb{R} = \overline{\text{all real numbers (expressible by infinite decimal expansion)}}$

Theorem: \mathbb{R} is uncountable

Proof by contradiction via diagonalization: Assume $\mathbb R$ is countable

So there is a 1-1 correspondence $f: \mathbb{N} \to \mathbb{R}$

n	f(n)
1	
2	
3	
4	
5	
6	
7	
÷	Diagonalization

Demonstrate a number $x \in \mathbb{R}$ that is missing from the list.

$$x = 0$$
.

differs from the $n^{\rm th}$ number in the $n^{\rm th}$ digit so cannot be the $n^{\rm th}$ number for any n.

Hence x is not paired with any n. It is missing from the list.

Therefore f is not a 1-1 correspondence.

R is Uncountable – Corollaries

Let $\mathcal{L} = \text{all languages}$

Corollary 1: \mathcal{L} is uncountable

Proof: There's a 1-1 correspondence from \mathcal{L} to \mathbb{R} so they are the same size.

Observation: $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$ is countable.

Let $\mathcal{M} = \text{all Turing machines}$

Observation: \mathcal{M} is countable.

Because $\{\langle M \rangle | M \text{ is a TM}\} \subseteq \Sigma^*$.

Corollary 2: Some language is not decidable.

Because there are more languages than TMs.

We will show some specific language $A_{\rm TM}$ is not decidable.

Check-in 8.1

Hilbert's 1^{st} question asked if there is a set of intermediate size between \mathbb{N} and \mathbb{R} . Gödel and Cohen showed that we cannot answer this question by using the standard axioms of mathematics. How can we interpret their conclusion?

- (a) We need better axioms to describe reality.
- (b) Infinite sets have no mathematical reality so Hilbert's 1st question has no answer.

$A_{\rm TM}$ is undecidable

Recall $A_{\text{TM}} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: $A_{\rm TM}$ is not decidable

Proof by contradiction: Assume some TM H decides $A_{\rm TM}$.

So
$$H$$
 on $\langle M, w \rangle = \begin{cases} Accept & \text{if } M \text{ accepts } w \\ Reject & \text{if not} \end{cases}$

Use H to construct TM D

$$D =$$
 "On input $\langle M \rangle$

- 1. Simulate H on input $\langle M, \langle M \rangle \rangle$
- 2. Accept if H rejects. Reject if H accepts."

D accepts $\langle M \rangle$ iff M doesn't accept $\langle M \rangle$. D accepts $\langle D \rangle$ iff D doesn't accept $\langle D \rangle$.

Contradiction.

Why is this proof a diagonalization?

Check-in 8.2

Recall the Queue Automaton (QA) defined in Pset 2. It is similar to a PDA except that it is deterministic and it has a queue instead of a stack.

Let $A_{OA} = \{\langle B, w \rangle | B \text{ is a QA and } B \text{ accepts } w\}$

Is A_{OA} decidable?

- (a) Yes, because QA are similar to PDA and $A_{\rm PDA}$ is decidable.
- (b) No, because "yes" would contradict results we now know.
- (c) We don't have enough information to answer this question.

$A_{\rm TM}$ is T-unrecognizable

Theorem: If A and \overline{A} are T-recognizable then A is decidable

Proof: Let TM M_1 and M_2 recognize A and A.

Construct TM T deciding A.

T = "On input w

- 1. Run M_1 and M_2 on w in parallel until one accepts.
- 2. If M_1 accepts then accept. If M_2 accepts then reject."

Corollary: A_{TM} is T-unrecognizable

Proof: A_{TM} is T-recognizable but also undecidable

Check-in 8.3

From what we've learned, which closure properties can we prove for the class of T-recognizable languages? Choose all that apply.

- (a) Closed under union.
- (b) Closed under intersection.
- (c) Closed under complement.
- (d) Closed under concatenation.
- (e) Closed under star.

The Reducibility Method

Use our knowledge that $A_{\rm TM}$ is undecidable to show other problems are undecidable.

Defn: $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$

Theorem: $HALT_{TM}$ is undecidable

Proof by contradiction, showing that $A_{\rm TM}$ is reducible to $HALT_{\rm TM}$:

Assume that $HALT_{\rm TM}$ is decidable and show that $A_{\rm TM}$ is decidable (false!).

Let TM R decide $HALT_{TM}$.

Construct TM S deciding $A_{\rm TM}$.

 $S = \text{"On input } \langle M, w \rangle$

- 1. Use R to test if M on w halts. If not, reject.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If *M* has accepted then *accept*. If *M* has rejected then *reject*.

TM S decides $A_{\rm TM}$, a contradiction. Therefore $HALT_{\rm TM}$ is undecidable.

Quick review of today

- 1. Showed that \mathbb{N} and \mathbb{R} are not the same size to introduce the Diagonalization Method.
- 2. A_{TM} is undecidable.
- 3. If A and \overline{A} are T-recognizable then A is decidable.
- 4. $\overline{A_{\rm TM}}$ is T-unrecognizable.
- 5. Introduced the Reducibility Method to show that $HALT_{\rm TM}$ is undecidable.