zad. 4a

Założenia: $ord(g) = n, k \in \mathbb{Z}$

 $Dow \acute{o}d.$ Bez straty ogólności, zakładamy k < nponieważ w przeciwnym przypadku:

$$ord(g^k) = ord(g^{pn+k'}) = ord(g^{pn}g^{k'}) = ord(g^{k'})$$

Dla $p, k \in \mathbb{N}$ oraz k' < k.

Zgodnie z definicją rzędu musimy pokazać, że $\frac{n}{NWD(n,k)}$ spelnia dwa warunki:

Warunek 1

$$(g^k)^{\frac{n}{NWD(n,k)}} = e$$

Dow'od.

$$(g^k)^{\frac{n}{NWD(n,k)}} = (g^n)^{\frac{k}{NWD(n,k)}} = e^{\frac{k}{NWD(n,k)}} = e$$

Warunek 2

 $\frac{n}{NWD(n,k)}$ jest dolnym ograniczeniem dla liczbmtakich, że $(g^k)^m=e.$

Dowód. Weźmy dowolne $m \in \mathbb{Z}$ takie, że $(g^k)^m = e$. Skoro $g^n = g^{km} = e$ oraz n = ord(g) to:

$$n \mid km$$

$$\begin{split} \frac{n}{NWD(n,k)} \mid \frac{k}{NWD(n,k)} m \\ \frac{n}{NWD(n,k)} \mid m \\ \frac{n}{NWD(n,k)} \leqslant m \end{split}$$

Wobec powyższego: $ord(g^k) = \frac{n}{NWD(n,k)}$