Wining, designed for bendeing loads Model as: W/length. T = 12h Max moment at not = $\frac{\omega L^2}{2}$ More stress = $\frac{MZ}{I} = \frac{\sigma_{mx}}{2} = \frac{\omega L^2}{2} \cdot \frac{K}{h^{4/3}}$ = 3WL² cannot exceed of h= m mass = eAL = en2L Subshult for h $\sigma_y = 3\omega L^2 \left(\frac{eL}{m}\right)^2$:. Minimum mm M= (3WL3) PL 52/3 i. chose malerial with or max 52/3/e. =

$$\frac{3}{8}CV^2 = \sigma_3$$

Ch	vose mul	المانك	in mae	59/2
	C	5	5/6	
6) Al 2024	2800	3 4-5	0.12	0.018
A 7075	2800	495	0.18	0.022
T: 6-4	4-510	910	0.20	0.021
Ph 17-7Ph.	8 000	1435	0.18	0.016
steel	7-8 W	260	0.03	o. ws
				A1 7075

Critical conde size for

Al 7075 OF ac =
$$\frac{1}{11} \left(\frac{Kc}{45y} \right) = \frac{1}{11} \left(\frac{24 \times 10^6}{4 \times 10^6} \right)$$

$$Ti6-4$$
 $a_c = \frac{1}{11} \left(\frac{50 \times 10^6}{0.9 \times 910 \times 10^6} \right)^2 = 1.2 \text{ mm}$

Small

d) Conticul concle size for Ti 6-4 is small, hander to detect, more difficult to implement a damage blevant design approach.