Playing w/ RLC circuits (Part I)

11th January 2014

Anil Kumar Pugalia

<u>Agenda</u>

- RLC Basics
- RC Visualization
- CR Oscilloscope
- Function Generator
- Frequency Filters

Introduction

<u>Impedance (Z) Fundamentals</u>

Goal: Observe these phase shifts

Basic RC Circuit

$$Z = R - \frac{\dot{j}}{\omega C} = A e^{-j\phi}$$

$$A = |Z| = \frac{\sqrt{\omega^2 R^2 C^2 + 1}}{\omega C}$$

$$\tan(\phi) = \arg Z = \frac{1}{\omega R C}$$

$$V = I * Z, Z = R - \frac{j}{\omega C}$$
 $I = \frac{V}{Z} = \frac{V}{A} e^{j\phi} = \frac{V}{A} < \phi >$

RC Continued

$$A = \frac{\sqrt{\omega^2 R^2 C^2 + 1}}{\omega C}$$
, $\tan(\phi) = \frac{1}{\omega R C}$, $I = \frac{V}{A} < \phi >$

© 2014 Computer Club of India (http://computerclub.in). All Rights Reserved

RC Conclusion

$$V = V_m * \sin(\omega t)$$

$$V_R = (V_m * \alpha) * \sin(\omega t + \phi)$$

$$\alpha = \frac{\omega R C}{\sqrt{(\omega R C)^2 + 1}}$$

$$\tan(\phi) = \frac{1}{\omega R C}$$

RC Predictions

$$\alpha = \frac{\omega RC}{\sqrt{(\omega RC)^2 + 1}}$$
, $\tan(\phi) = \frac{1}{\omega RC}$, $R = 220 \Omega$

f (Hz)	10	00	2000		
C (µF)	α	Φ (deg)	α	Ф (deg)	
100	1.00	0.4	1.00	0.2	
10	1.00	4.1	1.00	2.1	
1	0.81	35.9	0.94	19.9	
0.1	0.14	82.1	0.27	74.5	
0.01	0.01	89.2	0.03	88.4	

<u>Oscilloscope</u>

- Build your own
- Total Cost: ~₹20,000
- Parts
 - Computer (~₹20,000)
 - OSS: xoscope (₹0)
 - Audio Cable (~₹200)
- Net Additional Cost: ~₹200
- Limitations
 - Only for audio range (100Hz-20kHz)
 - DC is filtered off shows AC with 0 average

© 2014 Computer Club of India (http://computerclub.in). All Rights Reserved

RC Predictions

$$\alpha = \frac{\omega RC}{\sqrt{(\omega RC)^2 + 1}}$$
, $\tan(\phi) = \frac{1}{\omega RC}$, $R = 220 \Omega$

f (Hz)	10	00	2000		
C (µF)	α	Φ (deg)	α	Ф (deg)	
100	1.00	0.4	1.00	0.2	
10	1.00	4.1	1.00	2.1	
1	0.81	35.9	0.94	19.9	
0.1	0.14	82.1	0.27	74.5	
0.01	0.01	89.2	0.03	88.4	

<u>Function Generator</u>

- Build your own
- Electronics-way: Use electronic components
 - 555, Opamp, ...
 - Good got higher frequencies
- Programming way: Use micro-controller
 - Like AVR, ...
 - Excellent for low frequencies

FG Programming

- Requirements for the uC
 - Programmable Timer/Counter
 - Digital to Analog Convertor (DAC), Or
 - Pulse Width Modulator (PWM)
- Concept of FG
 - Run a frequency-divider timer/counter
 - Every count, generate the function output
 - Repeat for the frequency

Sine Wave Example

	sin(0°)	0.00000	sin(180°)	٨ п		-0.00000	sin(360°)	٨
	sin(18°)	0.30902	sin(162°)	()	sin(198°)	-0.30902	sin(342°)	4
	sin(36°)	0.58779	sin(144°)		sin(216°)	-0.58779	sin(324°)	
	sin(54°)	0.80902	sin(126°)		sin(234°)	-0.80902	sin(306°)	
$\langle \rangle$	sin(72°)	0.95106	sin(108°)		sin(252°)	-0.95106	sin(288°)	
۷	sin(90°)	1.00000		U V	sin(270°)	-1.00000		•

Add +1 to make all positive. Multiply by 5 / 2 to scale between 0 & 5.

	sin(0°)	2.50000	sin(180°)	٨		2.50000	sin(360°)	٨
	sin(18°)	3.27254	sin(162°)	$A \parallel$	sin(198°)	1.72746	sin(342°)	4
	sin(36°)	3.96946	sin(144°)		sin(216°)	1.03054	sin(324°)	
	sin(54°)	4.52254	sin(126°)		sin(234°)	0.47746	sin(306°)	
$\langle \rangle$	sin(72°)	4.87764	sin(108°)	1	sin(252°)	0.12236	sin(288°)	
٧	sin(90°)	5.00000		□	sin(270°)	0.00000		•

© 2014 Computer Club of India (http://computerclub.in). All Rights Reserved

Sine Wave Example (Contd.)

	sin(0°)	2.50000	sin(180°)	۸ п	9	2.50000	sin(360°)	_
	sin(18°)	3.27254	sin(162°)	$A \parallel$	sin(198°)	1.72746	sin(342°)	4
	sin(36°)	3.96946	sin(144°)		sin(216°)	1.03054	sin(324°)	
	sin(54°)	4.52254	sin(126°)		sin(234°)	0.47746	sin(306°)	
$\langle \rangle$	sin(72°)	4.87764	sin(108°)	1	sin(252°)	0.12236	sin(288°)	
٧	sin(90°)	5.00000		□	sin(270°)	0.00000		•

- We have 20 points
- For f = 1kHz => T = 1/1kHz = 1ms
- 20 points in 1ms = 1000us
- 1 point in 50us => Timer trigger every 50us

Frequency Filters

$$V = V_m * \sin(\omega t)$$

$$V_R = (V_m * \alpha) * \sin(\omega t + \phi)$$

LPF =>
$$V_C = (V_m * \sqrt{1 - \alpha^2}) * \sin(\omega t + (\phi - \frac{\pi}{2}))$$

$$\alpha = \frac{\omega RC}{\sqrt{(\omega RC)^2 + 1}} = \cos(\phi)$$

$$\tan(\phi) = \frac{1}{\omega R C}$$

C=1
$$\mu$$
F, R=10 Ω => f=16kHz

Wrap Up

- Function Generator
- Hobbyist Oscilloscope
- RLC Basics
- RC Visualization
- RC Filters

Email: anil@computerclub.in

Any Queries