

Stability for nonlinear inverse problems with a finite number of measurements

Matteo Santacesaria

MaLGa – Machine Learning Genoa Center Department of Mathematics University of Genoa

joint with Giovanni S. Alberti and Ángel Arroyo

Seminar "Quasilinear equations, inverse problems and their applications" 1 April 2021

Outline

Motivations

Calderon's problem with a finite number of measurements: global uniqueness and Lipschitz stability

Lipschitz stability: linear subspaces

Lipschitz stability: manifolds

X, Y Banach spaces, $F: X \rightarrow Y$ possibly nonlinear

Given $y = F(x) \in Y$, determine $x \in X$.

X, Y Banach spaces, $F: X \rightarrow Y$ possibly nonlinear

Given
$$y = F(x) \in Y$$
, determine $x \in X$.

Stability estimate

$$\|x_1 - x_2\|_X \le g(\|F(x_1) - F(x_2)\|_Y)$$
, where $g(t) \to 0$, as $t \mapsto 0^+$.

X, Y Banach spaces, $F: X \rightarrow Y$ possibly nonlinear

Given
$$y = F(x) \in Y$$
, determine $x \in X$.

Logarithmic stability estimate

$$\|\mathbf{x}_1 - \mathbf{x}_2\|_{\mathbf{X}} \le C \left| \log(\|\mathbf{F}(\mathbf{x}_1) - \mathbf{F}(\mathbf{x}_2)\|_{\mathbf{Y}}^{-1}) \right|^{-1}, \quad C > 0$$

Logarithmic stability estimate

$$\|x_1 - x_2\|_X \le C \left| \log(\|F(x_1) - F(x_2)\|_Y^{-1}) \right|^{-1}, \quad C > 0$$

▶ target

► reconstruction

based on: A. Greenleaf, M. Lassas, M. Santacesaria, S. Siltanen, and G. Uhlmann. Analysis & PDE 11, no. 8 (2018).

Lipschitz stability estimate

$$||x_1 - x_2||_X \leqslant C||F(x_1) - F(x_2)||_Y, \qquad C > 0$$

Lipschitz stability estimate

$$||x_1 - x_2||_X \le C||F(x_1) - F(x_2)||_Y, \qquad C > 0$$

► reconstruction

E. Beretta, S. Micheletti, S. Perotto, and M. Santacesaria. Journal of Computational Physics 353 (2018).

Other motivations

► Lipschitz stability can be used to prove a nonlinear RIP (restricted isometry property) in compressed sensing [Candès-Tao (2006), Blumensath(2013)].

► Lipschitz continuous mapping can be well approximated by neural networks [Yarotsky (2017)].

Outline

Motivations

Calderon's problem with a finite number of measurements: global uniqueness and Lipschitz stability

Lipschitz stability: linear subspaces

Lipschitz stability: manifolds

Conductivity imaging: motivations

medical imaging

► nondestructive testing

[Karhunen, Seppänen, Lehikoinen, Monteiro & Kaipio 2010] [Karhunen, Seppänen, Lehikoinen, Monteiro, Kaipio, Blunt, Hyvönen]

credits: Widlak, T., Scherzer, O. (2012). Inverse Problems, 28(8), 084008.

Low frequency contrast of σ

Pros: high contrast, cheap, safe. Cons: low resolution.

Electrical Impedance Tomography (EIT)

Example: monitoring lung ventilation distribution

credits: Zhao et al. Crit Care. 2010

Calderón's problem for EIT

- $ightharpoonup D \subset \mathbb{R}^d$, $d \geqslant 2$: bounded Lipschitz domain
- $ightharpoonup \sigma \in L^{\infty}(D)$, $\sigma(x) \geqslant \sigma_0 > 0$: unknown conductivity
- ► Conductivity equation:

$$\begin{cases} -\operatorname{div}(\sigma \nabla u) = 0 & \text{in D,} \\ u = f & \text{on } \partial D. \end{cases}$$
 (1)

▶ Dirichlet-to-Neumann (DN) map $\Lambda_{\sigma}: H^{1/2}(\partial D) \to H^{-1/2}(\partial D)$:

$$f \longmapsto \sigma \left. \frac{\partial u}{\partial \nu} \right|_{\partial D}$$

Calderón's problem

Given Λ_{σ} , determine σ in D.

Some known results

Basic questions:

- ▶ Uniqueness: injectivity of $\sigma \mapsto \Lambda_{\sigma}$
- ▶ stability estimates: continuity of $\Lambda_{\sigma} \mapsto \sigma$
- ► reconstruction algorithm

Theoretical contributions by: Calderón, Sylvester–Uhlmann, Nachman, Novikov, Alessandrini, Astala–Päivärinta, Haberman, Caro–Rogers and many others.

Usual reduction to the Gel'fand-Calderón inverse problem for the Schrödinger equation

$$(-\Delta + q)u = 0$$
 in D, $\Lambda_q(u|_{\partial D}) = \frac{\partial u}{\partial v}\Big|_{\partial D}$,

which will be considered for the next few slides.

A finite number of measurements

$$\left\{ \begin{array}{ll} (-\Delta+q)u=0 & \quad \text{in D,} \\ u=f & \quad \text{on } \partial D, \end{array} \right. \qquad \Lambda_q(f)=\left. \frac{\partial u}{\partial \nu} \right|_{\partial D}.$$

Most results need an infinite number of measurement.

"Realistic" Calderón's problem

$$\{(f_l, \Lambda_q(f_l))\}_{l=1,\dots,N} \qquad \sim \qquad q$$

A priori assumptions: $q \in \mathcal{W}_R$ if

- $\blacktriangleright \ \ q \in \mathcal{W} \text{: known finite dimensional subspace of } L^{\infty}(D) \text{;}$
- ▶ 0 is not a Dirichlet eigenvalue for $-\Delta + q$ in D;

Nonlinear prolem - global uniqueness

Theorem (G.S. Alberti, M.S. (2018)¹)

Take $d\geqslant 3$ and let $D\subseteq \mathbb{R}^d$ be a bounded Lipschitz domain and $\mathcal{W}\subseteq L^\infty(D)$ be a finite dimensional subspace. There exists $N\in \mathbb{N}$ such that for any R>0 and $q_1\in \mathcal{W}_R$, the following is true.

There exist $\{f_l\}_{l=1}^N\subseteq H^{1/2}(\partial D)$ such that for any $q_2\in \mathcal{W}_R$, if

$$\Lambda_{q_1} f_l = \Lambda_{q_2} f_l, \qquad l = 1, \dots, N,$$

then

$$q_1 = q_2$$
.

Similar result for Calderón's problem as well.

Ideas of the proof

► Alessandrini's identity to go from the boundary to the interior.

$$\langle g, (\Lambda_q - \Lambda_0) f \rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)} = \int_D q \, u_g^0 u_f^q \, dx$$

► CGO solutions (Faddeev, Sylvester-Uhlmann): the complex parameters belong to a countable subset of \mathbb{C}^d . For $k \in \mathbb{Z}^d$, take $\mathfrak{u}^0(x) = e^{\zeta_1^k \cdot x}$ and CGO solution $\mathfrak{u}^q(x) = e^{\zeta_1^k \cdot x}(1 + r^k(x))$, with ζ_1^k , $\zeta_2^k \in \mathbb{C}^d$ such that

$$\zeta_j^k \cdot \zeta_j^k = 0, \qquad \qquad \zeta_1^k + \zeta_2^k = -2\pi i k, \qquad \|r^k\|_{L^2(\mathbb{T}^d)} \leqslant c/t_k$$

- ▶ Order the frequencies: ρ : $l \in \mathbb{N} \mapsto k_l \in \mathbb{Z}^d$ (bijection)
- ▶ Define the nonlinear measurement operator $U \colon L^{\infty}([0,1]^d) \to \ell^{\infty}$ by

$$(U(q))_l = \int_D q(x)e^{-2\pi i k_l \cdot x} (1 + r^{k_l}(x)) dx$$

ightharpoonup U = F + B, where, F Fourier transform, B is a contraction (t_k large)

Sketch of the proof

 $\blacktriangleright \;$ Define the nonlinear operator $U \colon L^{\infty}(D) \to \ell^{\infty}$ by

$$(U(q))_1 = \int_D q(x)e^{-2\pi i k_1 \cdot x} (1 + r^{k_1}(x)) dx, \qquad U = F + B$$

- ▶ Assume that $\Lambda_{q_1} f_l = \Lambda_{q_2} f_l$ for l = 1, ..., N
- ► Then $(P_N U)(q_1) = (P_N U)(q_2)$
- ▶ Using that B is a contraction we obtain $q_1 = q_2$, since

$$\begin{split} \|q_1 - q_2\|_{L^2} &= \|F(q_1 - q_2)\|_{\ell^2} \\ &\leqslant \|P_N^{\perp} F(q_1 - q_2)\|_{\ell^2} + \|P_N(B(q_2) - B(q_1))\|_{\ell^2} \\ &\leqslant \|P_N^{\perp} F P_{\textbf{W}}(q_1 - q_2)\|_{\ell^2} + \frac{1}{2} \|q_1 - q_2\|_{L^2}, \end{split}$$

provided that N is chosen so that

$$\|P_N^{\perp} F P_{\mathcal{W}}\|_{L^2([0,1]^d) \to \ell^2} \leqslant \frac{1}{4}.$$

On the number of measurements N

lacktriangleright The number of measurements N depends only on ${\mathcal W}$ through

$$\|(I - P_N)FP_{\mathcal{W}}\|_{\mathcal{H} \to \ell^2} \leqslant 1/4.$$

- ► Relation with sampling theory: how many Fourier measurements does one need to reconstruct a function in W?
- ► It allows for an explicit calculation of N:
 - bandlimited potentials

$$N=\dim \mathcal{W}$$

piecewise constant potentials

$$N = O((\dim \mathcal{W})^4)$$

(up to log factors, and possibly not optimal)

low-scale wavelets

$$N = O(\dim \mathcal{W})$$

(up to log factors, proven only in 1D, but easy generalization)

ightharpoonup The ordering of \mathbb{Z}^d is crucial

Possible orderings of $\ensuremath{\mathbb{Z}}^d$

(a) Linear ordering

(b) Hyperbolic ordering (Jones, Adcock, Hansen, 2017)

Lipschitz stability

Theorem (G.S. Alberti, M.S. (2018)²)

Under the same assumptions, there exist $\{f_l\}_{l=1}^N\subseteq H^{1/2}(\partial D)$ such that for every $q_2\in\mathcal{W}_R$, we have

$$\|q_2 - q_1\|_{L^2(D)} \leqslant e^{CN^{\frac{1}{2} + \alpha}} \left\| (\Lambda_{q_2} f_l - \Lambda_{q_1} f_l)_{l=1}^N \right\|_{H^{-1/2}(\partial D)^N}$$

for some C > 0 depending only on D, R and α .

- ► Many Lipschitz stability estimates with the full DN map (Alessandrini, Beretta, Francini, Gaburro, de Hoop, Scherzer, Sincich, Vessella...).
- ightharpoonup The exponential $e^{\operatorname{CN}^{\frac{1}{2}+\alpha}}$ is consistent with the severe ill-posedness of this IP.
- Nonlinear reconstruction algorithm based on Banach fixed point theorem.

²Calderón's inverse problem with a finite number of measurements, Forum of Mathematics, Sigma (2019)

Local stability with a priori known boundary measurements

Theorem (G.S. Alberti, M.S. (2019)³)

Let $d \in \{3,4\}$, let N be as in the previous Theorem and take $q_0 \in \mathcal{W}_R$. There exist $\delta, C > 0$ and $L \in \mathbb{N}$ depending only on Ω , C_ρ , R, \mathcal{W} and $\|(-\Delta + q_0)^{-1}\|_{H^{-1}(\Omega) \to H^1_0(\Omega)}$ such that for every $q_1, q_2 \in \mathcal{W}_R$, if

$$\|q_0 - q_j\|_{L^2(\Omega)} \le \delta$$
 $j = 1, 2,$ (2)

then

$$\|q_2 - q_1\|_{L^2(\Omega)} \le C \|(f_{n,1}^L - f_{n,2}^L)_{n=1}^N\|_{H^{1/2}(\partial\Omega)^N},$$

where

$$f_{n,j}^{L} = \sum_{l=1}^{L} ((S_{\zeta_{n}}^{q_{0}}(\Lambda_{q_{j}} - \Lambda_{q_{0}}))^{l}(f_{q_{0}}^{n}), \qquad j = 1, 2,$$
(3)

and $S^{q_0}_{\zeta_n}$ is the generalized single layer operator corresponding to the Faddeev-Green function and to the potential q_0 and $f^n_{q_0}$ are Faddeev-CGO functions associated to q_0 .

³Calderón's inverse problem with a finite number of measurements II: independent data. Applicable Analysis (2020)

Other results

- ► (Rüland-Sincich 2019) fractional Calderón problem,
- ► (Harrach 2019) complete electrode model for EIT.

(Partially) Open questions

- ► Two-dimensional case.
- Extensions to other infinite dimensional IP, e.g. inverse scattering, elasticity.
- ► General Lipschitz stability result for a class of ill-posed inverse problems.

Outline

Motivations

Calderon's problem with a finite number of measurements: global uniqueness and Lipschitz stability

Lipschitz stability: linear subspaces

Lipschitz stability: manifolds

- ightharpoonup X, Y Banach spaces, $A \subseteq X$ open subset
- ▶ (priors) $W \subseteq X$ finite-dimensional, $K \subseteq W \cap A$ compact and convex.

- ightharpoonup X, Y Banach spaces, $A \subseteq X$ open subset
- ▶ (priors) $W \subseteq X$ finite-dimensional, $K \subseteq W \cap A$ compact and convex.

Theorem

Let $F \in C^1(A, Y)$ be such that $F|_{W \cap A}$ and $F'(x)|_W$, $x \in W \cap A$, are injective.

Then there exists a constant C > 0 such that

$$\|x_1 - x_2\|_X \leqslant C \|F(x_1) - F(x_2)\|_Y, \qquad x_1, x_2 \in K.$$

- ightharpoonup X, Y Banach spaces, $A \subseteq X$ open subset
- ▶ (priors) $W \subseteq X$ finite-dimensional, $K \subseteq W \cap A$ compact and convex.

Theorem

Let $F \in C^1(A, Y)$ be such that $F|_{W \cap A}$ and $F'(x)|_W$, $x \in W \cap A$, are injective. Then there exists a constant C > 0 such that

$$\|x_1 - x_2\|_X \leqslant C \|F(x_1) - F(x_2)\|_Y, \qquad x_1, x_2 \in K.$$

Many Lipschitz stability estimates for EIT with **full** DN map: Alessandrini, Beretta, Francini, Gaburro, de Hoop, Meftahi, Scherzer, Sincich, Vessella and many others.

Lipschitz stability with finite measurements: setting

Discretization: $Q_N: Y \to Y$ bounded linear map such that there exists a subspace $\widetilde{Y} \subseteq Y$ satisfying:

- 1. $\|Q_N\|_{\widetilde{Y}}\|_{\mathcal{L}(\widetilde{Y},Y)} \leq D$ for every $N \in \mathbb{N}$ and some D > 0;
- 2. $Q_N|_{\widetilde{Y}} \to I_{\widetilde{Y}}$ as $N \to \infty$ with respect to the strong operator topology, i.e.

$$\lim_{N\to\infty} \|y - Q_N y\|_Y = 0$$

for every $y \in \widetilde{Y}$.

Examples

ightharpoonup Y Hilbert space, $\{G_j\}_{j\in\mathbb{N}}$ exhaustive sequence of finite dimensional and nested subspaces.

$$Q_N = P_{G_N}$$
 orthogonal projection onto G_N .

$$\widetilde{Y} = Y$$
.

 $\blacktriangleright \ \ Y=\mathcal{L}_c(Y^1,Y^2) \ with \ Y^1,Y^2 \ Banach \ spaces. \ P^2_N \to I_{Y^2} \ and \ (P^1_N)^* \to I_{Y^1} \ strongly.$

$$Q_N(y) = P_N^2 y P_N^1.$$

$$\widetilde{Y} = \{T \in Y : T \text{ is compact}\}.$$

Lipschitz stability with finite measurements: main result

Theorem (G.S. Alberti, M.S. (2019) 4)

Let $K \subseteq A$ be convex. Suppose there exists C > 0 such that

$$\|x_1 - x_2\|_X \le C\|F(x_1) - F(x_2)\|_Y$$
, for $x_1, x_2 \in K$.

(i) If $K \subseteq W \cap A$ is compact, where W is a finite dimensional subset of X and for every $\xi \in K$, $ran(F'(\xi)|_W) \subseteq \tilde{Y}$, then

$$\lim_{N\to +\infty} s_N = 0, \qquad s_N = \sup_{\xi\in K} \|(I-Q_N)F'(\xi)\|_{W\to Y}.$$

(ii) If $s_N \leqslant \frac{1}{2C}$, then

$$\|x_1 - x_2\|_X \le 2C\|Q_N(F(x_1)) - Q_N(F(x_2))\|_Y, \quad x_1, x_2 \in K.$$

The smoothing condition: $ran(F'(\xi)|_W) \subseteq \tilde{Y}$

▶ Y Hilbert space, $\{G_j\}_{j\in\mathbb{N}}$ exhaustive sequence of finite dimensional and nested subspaces. $Q_N = P_{G_N}$ orthogonal projection onto G_N .

Since $Q_N \to I_Y$ strongly and $\widetilde{Y} = Y$, the condition is satisfied.

 $\blacktriangleright \ \ Y=\mathcal{L}_c(Y^1,Y^2) \ with \ Y^1,Y^2 \ Banach \ spaces. \ P^2_N \to I_{Y^2} \ and \ (P^1_N)^* \to I_{Y^1} \ strongly.$

$$Q_N(y) = P_N^2 y P_N^1.$$

Assuming that $F'(\xi)\tau: Y^1 \to Y^2$ is compact, i.e. $F'(\xi)\tau \in \widetilde{Y}$, for every $\xi \in K$, $\tau \in W$ then the condition is satisfied.

On the number of measurements N

N depends on the Lipschitz constant C for the full data and on the subspace W:

$$\sup_{\xi \in K} \|(I-Q_N)F'(\xi)\|_{W \to Y} \leqslant \frac{1}{2C}$$

which can be explicitly computed in several cases.

Example I: electrical impedance tomography

Let N_{σ} be the Neumann-to-Dirichlet map and assume

$$\|\sigma_1-\sigma_2\|_{L^\infty(\Omega)}\leqslant C\|\mathfrak{N}_{\sigma_1}-\mathfrak{N}_{\sigma_2}\|_{L^2_\alpha(\partial\Omega)\to L^2_\alpha(\partial\Omega)},\qquad \sigma_1,\sigma_2\in K,$$

where K is a compact subset of a finite dimensional subspace of L^∞ conductivities $(L^2_\diamond(\partial\Omega)=\{f\in L^2(\partial\Omega):\int_{\partial\Omega}f\,ds=0\})$. Then there exists $N\in\mathbb{N}$ such that

$$\|\sigma_1-\sigma_2\|_{\infty}\leqslant 2C\,\|P_N\mathcal{N}_{\sigma_1}P_N-P_N\mathcal{N}_{\sigma_2}P_N\|_{L^2_{\alpha}(\partial\Omega)\to L^2_{\alpha}(\partial\Omega)},\qquad \sigma_1,\sigma_2\in K.$$

 $\Omega \subseteq \mathbb{R}^2$ unit disk. Let P_N be the projection on the trigonometric current patterns $\sin(n\theta), \cos(n\theta)$, for $n \leq N, \theta \in \partial\Omega$.

Then we have $N = O(C^2)$ (recall that for EIT $C = O(\exp(\dim W))$).

Example II: inverse scattering

$$\left\{ \begin{array}{ll} \Delta u + k^2 n(x) u = 0 & \text{ in } \mathbb{R}^3, \\ u = e^{ikx \cdot d} + u^s & \text{ in } \mathbb{R}^3, \\ \text{ radiation condition for } u^s \end{array} \right.$$

- ightharpoonup k > 0 is the (fixed) wavenumber, $d \in S^2$,
- ▶ $n \in L^{\infty}(\mathbb{R}^3; \mathbb{C})$ is the refractive index with $lm(n) \geqslant 0$ in \mathbb{R}^3 and supp $(1-n) \subseteq B$ for some open ball B.

Problem. Given the far field $u_n^{\infty}(\hat{x}, d) \in L^2(S^2 \times S^2)$ at fixed k > 0, find n in B.

Example II: inverse scattering

- $ightharpoonup X = L^{\infty}(B; \mathbb{C}), Y = L^{2}(S^{2} \times S^{2});$
- $\qquad \qquad A=L^\infty_+(B)=\{f\in L^\infty(B;\mathbb C): \text{Im}(\mathfrak n)\geqslant \lambda \text{ in } B \text{ for some } \lambda>0\};$
- ▶ W finite-dimensional subspace of $L^{\infty}(B; \mathbb{C})$
- ▶ K convex and compact subset of $W \cap A$;

[Bourgeois 2013] proved Lipschitz stability in this case:

$$\|n_1 - n_2\|_{L^{\infty}(B)} \leqslant C \|u_{n_1}^{\infty} - u_{n_2}^{\infty}\|_{L^2(S^2 \times S^2)}, \qquad n_1, n_2 \in K.$$

 $\begin{array}{l} \blacktriangleright \ \, Q_N \colon L^2(S^2 \times S^2) \to L^2(S^2 \times S^2) \ \text{bounded linear maps, } Q_N \to I_{L^2(S^2 \times S^2)} \ \text{strongly.} \\ \\ \|n_1 - n_2\|_{L^\infty(B)} \leqslant 2C \, \big\| Q_N(\mathfrak{u}_{n_1}^\infty) - Q_N(\mathfrak{u}_{n_2}^\infty) \big\|_{L^2(S^2 \times S^2)} \,, \qquad n_1, n_2 \in K. \end{array}$

Example: Q_N projections onto the span of the first N spherical harmonics.

Outline

Motivations

Calderon's problem with a finite number of measurements: global uniqueness and Lipschitz stability

Lipschitz stability: linear subspaces

Lipschitz stability: manifolds

Low-dimensional manifolds

 $M\subseteq X$ (Banach space) a $\mathfrak n$ -dimensional C^1 manifold with atlas $\{(U_i,\phi_i)\}_{i\in I}$:

- ▶ topologically embedded in X (i.e. not a C¹ submanifold),
- ightharpoonup lpha-Hölder for $lpha \in (0,1]$, that is $\phi_i^{-1}: \phi_i(U_i) \to M$ is lpha-Hölder, for $i \in I$.

Examples:

- ▶ Indicator functions on balls with variable centres, radii and intensities,
 - Hölder in $L^p(\mathbb{R}^n)$, p > 1, Lipschitz in $L^1(\mathbb{R}^n)$, not C^1 embedded.
- Indicator functions on simplexes.
- A manifold generated by a neural network (e.g. autoencoder, GAN, etc.)

Hölder-Lipschitz stability from an infinite amount of measurements

Theorem (G.S. Alberti, A. Arroyo, M.S. (2020) 5)

Let X and Y be Banach spaces, $\alpha \in (0,1]$, $M \subseteq X$ be an n-dimensional differentiable manifold α -Hölder in X and $K \subseteq M$ be a compact set. Consider $F \in C^1(M,Y)$ with:

- 1. F is injective,
- 2. the differential $dF_x : T_xM \to Y$ is injective for every $x \in M$.

Then there exists a constant C > 0 such that

$$\|x-y\|_X \leqslant C\|F(x)-F(y)\|_Y^{\alpha}, \qquad x,y \in K.$$

Key ideas:

- short distance and long distance cases;
- workaround for the lack of convexity of K.

Finite number of measurements

Let $Q_N : Y \to Y$ and $\widetilde{Y} \subset Y$ be as in the linear case.

Theorem (G.S. Alberti, A. Arroyo, M.S. (2020)⁶)

Let X and Y be Banach spaces, $M \subseteq X$ an n-dimensional C^1 manifold Lipschitz in X. $K \subseteq M$ a compact set. Consider $F \in C^1(M, Y)$ satisfying:

- 1. F is injective:
- 2. the differential $dF_x: T_xM \to Y$ is injective for every $x \in M$;
- 3. $\operatorname{ran}(F|_{\kappa}) \subset \widetilde{Y}$:
- 4. $ran(dF_x) \subseteq \widetilde{Y}$ for every $x \in M$.

Then

$$\|x - y\|_X \le C\|Q_N F(x) - Q_N F(y)\|_Y, \quad x, y \in K,$$

for some C > 0 and every sufficiently large $N \in \mathbb{N}$.

Ongoing work and conclusions

- ▶ Global reconstruction algorithms for both linear and manifold cases.
- ▶ Applications of the results on manifolds on classical inverse problems.
- Add sparsity and random subsampling: non-linear compressed sensing.
- Approximate the inverse mapping with a deep neural network.

Thank you!

