

ON THE WAVE EQUATION WITH QUADRATIC NONLINEARITIES IN THREE SPACE DIMENSIONS

AXEL GRÜNROCK

ABSTRACT. The Cauchy problem for the nonlinear wave equation

$$\square u = (\partial u)^2, \quad u(0) = u_0, \quad u_t(0) = u_1$$

in three space dimensions is considered. The data (u_0, u_1) are assumed to belong to $\widehat{H}_s^r(\mathbb{R}^3) \times \widehat{H}_{s-1}^r(\mathbb{R}^3)$, where \widehat{H}_s^r is defined by the norm

$$\|f\|_{\widehat{H}_s^r} := \|\langle \xi \rangle^s \widehat{f}\|_{L_\xi^{r'}}, \quad \langle \xi \rangle = (1 + |\xi|^2)^{\frac{1}{2}}, \quad \frac{1}{r} + \frac{1}{r'} = 1.$$

Local well-posedness is shown in the parameter range $2 \geq r > 1$, $s > 1 + \frac{2}{r}$. For $r = 2$ this coincides with the result of Ponce and Sideris, which is optimal on the H^s -scale by Lindblad's counterexamples, but nonetheless leaves a gap of $\frac{1}{2}$ derivative to the scaling prediction. This gap is closed here except for the endpoint case. Corresponding results for $\square u = \partial u^2$ are obtained, too.

1. INTRODUCTION AND MAIN RESULTS

In this note we consider the Cauchy problem

$$(1) \quad \square u = (\partial_t^2 - \Delta)u = B_k(u, u), \quad u(0) = u_0, \quad u_t(0) = u_1$$

for the nonlinear wave equation in \mathbb{R}^3 , where the right hand side is given by

$$(2) \quad B_1(u, v) = \partial(uv) \quad \text{or} \quad B_2(u, v) = \partial u \partial v$$

with $\partial \in \{\partial_t, \partial_{x_1}, \partial_{x_2}, \partial_{x_3}\}$, and no special structure of the bilinear forms B_k , $k \in \{1, 2\}$, such as a null-structure is assumed. Concerning the local well-posedness (LWP) of this problem with data $(u_0, u_1) \in H^s(\mathbb{R}^3) \times H^{s-1}(\mathbb{R}^3)$ the following is known. For $s > k + \frac{1}{2}$ energy estimates can be applied to obtain an affirmative result. Ponce and Sideris showed in [15] how to improve this down to $s > k$ by using Strichartz inequalities. Further progress is possible, if the nonlinearity satisfies a null-condition such as

$$\tilde{B}_2(u, v) = \langle \nabla_x u, \nabla_x v \rangle - \partial_t u \partial_t v,$$

see the work of Klainerman and Machedon [8], [9], [10], who used wave Sobolev spaces to exploit the null-structure of the bilinear terms, thus reaching LWP for $s > s_c(k) = k - \frac{1}{2}$, which is here the critical Sobolev regularity by scaling considerations. If no such structure is present in the quadratic term, one has in fact ill-posedness of the Cauchy problem (1) for $s \leq k$, as the sharp counterexamples of Lindblad show, see [12], [13], [14]. So in general there is a gap of half a derivative between the optimal LWP result on the H^s -scale and the scaling prediction.

For several important nonlinear dispersive equations in *one* space dimension – such as cubic NLS and DNLS, KdV, mKdV and its higher order generalizations –

2000 *Mathematics Subject Classification.* 35L70.

Key words and phrases. Nonlinear wave equation – Cauchy Problem – local wellposedness – generalized Bourgain spaces.

The author was partially supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 611.

there is a similar gap between the best possible LWP result in H^s and the critical regularity. In the case of cubic nonlinearities this can be closed almost completely by considering data in the spaces \widehat{H}_s^r , defined by the norm

$$\|f\|_{\widehat{H}_s^r} := \|\langle \xi \rangle^s \widehat{f}\|_{L_\xi^{r'}}, \quad \langle \xi \rangle = (1 + |\xi|^2)^{\frac{1}{2}}, \quad \frac{1}{r} + \frac{1}{r'} = 1,$$

see [3], [4], [7], [5]; for an application in the periodic setting cf. [6]. The purpose of this note is to show that the methods developed in the one-dimensional framework also apply to the nonlinear wave equation (1), (2) in three space dimensions and give LWP for data $(u_0, u_1) \in \widehat{H}_s^r(\mathbb{R}^3) \times \widehat{H}_{s-1}^r(\mathbb{R}^3)$, provided $1 < r \leq 2$ and $s > s_k(r) := k + 1 - \frac{2}{r'}$. In the limit $r \rightarrow 1$ we can almost reach the space $\widehat{H}_{k+1}^1(\mathbb{R}^3) \times \widehat{H}_k^1(\mathbb{R}^3)$, which is critical by scaling. To prove this result we use an appropriate variant of Bourgain's Fourier restriction norm method, see [3, Section 2], and estimates for products of two free solutions of half-wave equations. The latter are very much in the spirit of the work of Foschi and Klainerman [1] and can be seen as bilinear substitutes and refinements of the Strichartz inequalities for the three-dimensional wave equation.

2. GENERAL ARGUMENTS, FUNCTION SPACES, AND PRECISE STATEMENT OF RESULTS

Following [2, Section 2] we first rewrite (1) as the first order system

$$(3) \quad (i\partial_t \mp J_x)u_\pm = \mp \frac{1}{4}J_x^{-1}B_k(u_+ + u_-) \mp \frac{1}{2}J_x^{-1}(u_+ + u_-),$$

where $J_x = (1 - \Delta_x)^{\frac{1}{2}}$ is the Bessel potential operator of order -1 in the space variable x , and $u_\pm = u \pm iJ_x^{-1}\partial_t u$ so that the initial conditions become

$$(4) \quad u_\pm(0) = u_0 \pm iJ_x^{-1}u_1 =: f_\pm \in \widehat{H}_s^r(\mathbb{R}^3).$$

To treat the system (3) with data given by (4) we will use the function spaces $X_{s,b}^{r,\pm}$ defined by their norm

$$\|u\|_{X_{s,b}^{r,\pm}} := \left(\int d\xi d\tau \langle \xi \rangle^{sr'} \langle \tau \pm |\xi| \rangle^{br'} |\mathcal{F}u(\xi, \tau)|^{r'} \right)^{\frac{1}{r'}}.$$

For $s = b = 0$ we write $\widehat{L}_{xt}^r := X_{0,0}^{r,+} = X_{0,0}^{r,-}$, correspondingly we set $\widehat{L}_x^r := \widehat{H}_0^r$. Local solutions are obtained by the contraction mapping principle in the time restriction space

$$X_{s,b}^{r,\pm}(\delta) := \{u = \tilde{u}|_{[-\delta, \delta] \times \mathbb{R}^3} : \tilde{u} \in X_{s,b}^{r,\pm}\}$$

endowed with the norm

$$\|u\|_{X_{s,b}^{r,\pm}(\delta)} := \inf \{ \|\tilde{u}\|_{X_{s,b}^{r,\pm}} : \tilde{u}|_{[-\delta, \delta] \times \mathbb{R}^3} = u \}.$$

We will always have $b > \frac{1}{r}$, hence $X_{s,b}^{r,\pm} \subset C(\mathbb{R}, \widehat{H}_s^r)$ and $X_{s,b}^{r,\pm}(\delta) \subset C([- \delta, \delta], \widehat{H}_s^r)$, which gives the persistence property of our solutions. To deal with B_2 - especially if time derivatives are involved - we also need the norms

$$\|u\|_{Z_{s,b}^{r,\pm}} := \|u\|_{X_{s,b}^{r,\pm}} + \|\partial_t u\|_{X_{s-1,b}^{r,\pm}};$$

the corresponding restriction spaces are defined precisely as above. Now our result concerning B_1 reads as follows.

Theorem 1. *Let $1 < r \leq 2$, $s > \frac{2}{r}$, $\frac{1}{r} < b < 1$ and $f_\pm \in \widehat{H}_s^r$. Then there exist $\delta = \delta(\|f_+\|_{\widehat{H}_s^r}, \|f_-\|_{\widehat{H}_s^r}) > 0$ and a unique solution $(u_+, u_-) \in X_{s,b}^{r,+}(\delta) \times X_{s,b}^{r,-}(\delta)$ of*

(3) with $k = 1$ satisfying the initial condition (4). The solution is persistent and the flow map

$$(f_+, f_-) \mapsto (u_+, u_-), \quad \widehat{H}_s^r \times \widehat{H}_s^r \rightarrow X_{s,b}^{r,+}(\delta) \times X_{s,b}^{r,-}(\delta)$$

is locally Lipschitz continuous.

Similarly we can show the following for B_2 .

Theorem 2. Let $1 < r \leq 2$, $s > \frac{2}{r} + 1$, $\frac{1}{r} < b < 1$ and $f_{\pm} \in \widehat{H}_s^r$. Then there exist $\delta = \delta(\|f_+\|_{\widehat{H}_s^r}, \|f_-\|_{\widehat{H}_s^r}) > 0$ and a unique solution $(u_+, u_-) \in Z_{s,b}^{r,+}(\delta) \times Z_{s,b}^{r,-}(\delta)$ of (3) with $k = 2$ satisfying the initial condition (4). The solution is persistent and the flow map

$$(f_+, f_-) \mapsto (u_+, u_-), \quad \widehat{H}_s^r \times \widehat{H}_s^r \rightarrow Z_{s,b}^{r,+}(\delta) \times Z_{s,b}^{r,-}(\delta)$$

is locally Lipschitz continuous.

The general LWP theorem [3, Theorem 2.3] reduces the proofs of Theorem 1 and 2 to that of bilinear estimates in $X_{s,b}^{r,\pm}$ -norms. The next section is devoted to the proof of the following key estimate.

Theorem 3. Let $1 < r \leq 2$, $b > \frac{1}{r}$, and $\sigma > \frac{2}{r}$. Then

$$(5) \quad \|J_x^\sigma(uv)\|_{\widehat{L}_{xt}^r} + \|J_x^{\sigma-1}\partial_t(uv)\|_{\widehat{L}_{xt}^r} \lesssim \|u\|_{X_{s,b}^{r,\pm}} \|v\|_{X_{s,b}^{r,[\pm]}},$$

where $[\pm]$ denotes independent signs.

Assume (5) already to be proven. Concerning B_1 we then have that for all b, r and $s = \sigma$ according to the assumptions of Theorem 3 and $b' \leq 0$

$$\begin{aligned} \|J_x^{-1}\partial(uv)\|_{X_{s,b'}^{r,\pm}} &\leq \|J_x^{s-1}\partial(uv)\|_{\widehat{L}_{xt}^r} \\ &\leq \|J_x^s(uv)\|_{\widehat{L}_{xt}^r} + \|J_x^{s-1}\partial_t(uv)\|_{\widehat{L}_{xt}^r} \lesssim \|u\|_{X_{s,b}^{r,\pm}} \|v\|_{X_{s,b}^{r,[\pm]}}, \end{aligned}$$

which combined with [3, Theorem 2.3] leads to Theorem 1, since the linear term on the right of (3) can be trivially taken care of. Similarly for B_2 we have with $s = \sigma + 1 > 1 + \frac{2}{r}$ and r, b, b' as before

$$\begin{aligned} \|J_x^{-1}(\partial u \partial v)\|_{Z_{s,b'}^{r,\pm}} &\leq \|J_x^\sigma(\partial u \partial v)\|_{\widehat{L}_{xt}^r} + \|J_x^{\sigma-1}\partial_t(\partial u \partial v)\|_{\widehat{L}_{xt}^r} \\ &\lesssim \|\partial u\|_{X_{s,b}^{r,\pm}} \|\partial v\|_{X_{s,b}^{r,[\pm]}} \lesssim \|u\|_{Z_{s,b}^{r,\pm}} \|v\|_{Z_{s,b}^{r,[\pm]}}, \end{aligned}$$

which is sufficient for Theorem 2.

3. PROOF OF THE KEY ESTIMATE

Theorem 3 will be a consequence of several bilinear estimates for free solutions of the half-wave equations $(i\partial_t \pm D_x)u = 0$, subject to the initial condition $u(0) = u_0$. So for the remaining part of the paper let $u_{\pm}(t) = e^{\pm itD_x}u_0 = \mathcal{F}_x^{-1}e^{\pm it|\xi|}\mathcal{F}_x u_0$ and $v_{\pm}(t) = e^{\pm itD_x}v_0$. By the transfer principle - see e. g. [11, Proposition 3.5] or [3, Lemma 2.1] - the proof of (5) essentially¹ reduces to showing that

$$(6) \quad \|J_x^{\sigma-1}\partial_x(u_{\pm}v_{[\pm]})\|_{\widehat{L}_{xt}^r} + \|J_x^{\sigma-1}\partial_t(u_{\pm}v_{[\pm]})\|_{\widehat{L}_{xt}^r} \lesssim \|u_0\|_{\widehat{H}_\sigma^r} \|v_0\|_{\widehat{H}_\sigma^r}.$$

¹for low frequencies $|\xi| \leq 1$ we obtain $\|J_x^\sigma(uv)\|_{\widehat{L}_{xt}^r} \lesssim \|u\|_{X_{s,b}^{r,\pm}} \|v\|_{X_{s,b}^{r,[\pm]}}$ by Young's inequality and Sobolev type embeddings.

To prove (6) we make substantial use of the calculations in [1]. By symmetry it suffices to consider the $(++)$ - and $(+-)$ -cases. For both we calculate the space-time Fourier transform of the product. Defining $P_{\pm}(\eta) := |\frac{\xi}{2} - \eta| \pm |\frac{\xi}{2} + \eta|$ with $\nabla P_{\pm}(\eta) = \frac{\eta - \frac{\xi}{2}}{|\eta - \frac{\xi}{2}|} \pm \frac{\eta + \frac{\xi}{2}}{|\eta + \frac{\xi}{2}|}$ and using the properties of the δ -distribution we obtain

$$\mathcal{F}u_+v_{\pm}(\xi, \tau) = c \int_{P_{\pm}(\eta)=\tau} \frac{dS_{\eta}}{|\nabla P_{\pm}(\eta)|} \widehat{u}_0(\frac{\xi}{2} - \eta) \widehat{v}_0(\frac{\xi}{2} + \eta),$$

for more details see [1, Sections 3 and 4]. Observe that the set $\{P_+(\eta) = \tau\}$ ($\{P_-(\eta) = \tau\}$) is an ellipsoid (hyperboloid) of rotation, so the $(++)$ -case ($(+-)$ -case) is henceforth referred to as elliptic (hyperbolic).

3.1. The elliptic case. We choose $0 < s_{1,2} < \frac{2}{r}$ with $s_1 + s_2 = \frac{2}{r}$ and use Hölder's inequality to get

$$|\mathcal{F}u_+v_+(\xi, \tau)| \lesssim \left(\int_{P_+(\eta)=\tau} \frac{dS_{\eta}}{|\nabla P_+(\eta)|} |\frac{\xi}{2} - \eta|^{-s_1 r} |\frac{\xi}{2} + \eta|^{-s_2 r} \right)^{\frac{1}{r}} \times \\ \left(\int_{P_+(\eta)=\tau} \frac{dS_{\eta}}{|\nabla P_+(\eta)|} |\widehat{J_x^{s_1} u_0}(\frac{\xi}{2} - \eta) \widehat{J_x^{s_2} v_0}(\frac{\xi}{2} + \eta)|^{r'} \right)^{\frac{1}{r'}}.$$

For the first factor we apply [1, Lemma 4.1] to see that

$$\begin{aligned} \int_{P_+(\eta)=\tau} \frac{dS_{\eta}}{|\nabla P_+(\eta)|} |\frac{\xi}{2} - \eta|^{-s_1 r} |\frac{\xi}{2} + \eta|^{-s_2 r} \\ = c \int_{-1}^1 |\tau + |\xi|x|^{1-s_1 r}| \tau - |\xi|x|^{1-s_2 r} dx \\ = c \int_{-1}^1 |\frac{\tau}{|\xi|} + x|^{1-s_1 r} |\frac{\tau}{|\xi|} - x|^{1-s_2 r} dx \leq c_{s_1, s_2}. \end{aligned}$$

Taking the $L_{\xi, \tau}^{r'}$ -norm of the second factor and using the coarea formula we arrive at

$$\|u_+v_+\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^{s_1} u_0\|_{\widehat{L}_x^r} \|J_x^{s_2} v_0\|_{\widehat{L}_x^r}.$$

Unfortunately this argument breaks down, if $s_1 = 0$ or $s_2 = 0$, cf. the necessary condition (9) in [1]. To overcome this difficulty we split $u_+v_+ = P_{\gtrsim}(u_+, v_+) + P_{\ll}(u_+, v_+)$, where

$$\mathcal{F}_x P_{\gtrsim}(f, g)(\xi) := \int_{\xi_1 + \xi_2 = \xi} \widehat{f}(\xi_1) \widehat{g}(\xi_2) \chi_{\{|\xi_1| \gtrsim |\xi_2|\}} d\xi_1.$$

By the preceding we have

$$(7) \quad \|P_{\gtrsim}(u_+, v_+)\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^{\frac{2}{r}} u_0\|_{\widehat{L}_x^r} \|v_0\|_{\widehat{L}_x^r}.$$

To estimate $P_{\ll}(u_+, v_+)$ we decompose u_0 dyadically into $u_0 = \sum_{k \geq 0} P_{\Delta k} u_0$ with $P_{\Delta 0} = \mathcal{F}_x^{-1} \chi_{\{|\xi| \leq 1\}} \mathcal{F}_x$ and, for $k \geq 1$, $P_{\Delta k} = \mathcal{F}_x^{-1} \chi_{\{|\xi| \sim 2^k\}} \mathcal{F}_x$, so that

$$\|P_{\ll}(u_+, v_+)\|_{\widehat{L}_{xt}^r} \leq \sum_{k \geq 0} \|P_{\ll}(P_{\Delta k} u_+, v_+)\|_{\widehat{L}_{xt}^r}.$$

Now by [1, Lemma 12.2] we have

$$(8) \quad \int_{P_{\pm}(\eta)=\tau} \frac{dS_{\eta}}{|\nabla P_{\pm}(\eta)|} \chi_{\{2^k \sim |\frac{\xi}{2} - \eta| \ll |\frac{\xi}{2} + \eta|\}} \lesssim 2^{2k},$$

hence a Hölder application as above gives

$$\|P_{\ll}(P_{\Delta k} u_+, v_+)\|_{\widehat{L}_{xt}^r} \lesssim 2^{\frac{2k}{r}} \|P_{\Delta k} u_0\|_{\widehat{L}_x^r} \|v_0\|_{\widehat{L}_x^r}.$$

Summing up the dyadic pieces and combining the result with (7) we obtain for $\sigma > \frac{2}{r}$

$$(9) \quad \|u_+v_+\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^\sigma u_0\|_{\widehat{L}_x^r} \|v_0\|_{\widehat{L}_x^r}.$$

The convolution constraint $\xi = \xi_1 + \xi_2 = (\frac{\xi}{2} - \eta) + (\frac{\xi}{2} + \eta)$ implies $\langle \xi \rangle^\sigma \lesssim \langle \xi_1 \rangle^\sigma + \langle \xi_2 \rangle^\sigma = \langle \frac{\xi}{2} - \eta \rangle^\sigma + \langle \frac{\xi}{2} + \eta \rangle^\sigma$, and we may exchange u_0 and v_0 in (9). This gives

$$(10) \quad \|J_x^\sigma(u_+v_+)\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^\sigma u_0\|_{\widehat{L}_x^r} \|J_x^\sigma v_0\|_{\widehat{L}_x^r},$$

provided $\sigma > \frac{2}{r}$. In (10) we may clearly replace $J_x^\sigma(u_+v_+)$ by $J_x^{\sigma-1}\partial_t(u_+v_+)$, since in the support of $\mathcal{F}(u_+v_+)$ we have $\tau = |\frac{\xi}{2} - \eta| + |\frac{\xi}{2} + \eta|$ and hence $\langle \xi \rangle^{\sigma-1}|\tau| \leq \langle \frac{\xi}{2} - \eta \rangle^\sigma + \langle \frac{\xi}{2} + \eta \rangle^\sigma$. Thus we have shown:

Lemma 1. *Let $1 \leq r \leq 2$ and $\sigma > \frac{2}{r}$. Then*

$$\|J_x^\sigma(u_+v_+)\|_{\widehat{L}_{xt}^r} + \|J_x^{\sigma-1}\partial_t(u_+v_+)\|_{\widehat{L}_{xt}^r} \lesssim \|u_0\|_{\widehat{H}_\sigma^r} \|v_0\|_{\widehat{H}_\sigma^r}.$$

3.2. The hyperbolic case. The estimation in this case goes along similar lines as in section 3.1, as long as

$$(11) \quad \left| \frac{\xi}{2} - \eta \right| + \left| \frac{\xi}{2} + \eta \right| \leq c_1 |\xi|.$$

If (11) is fulfilled, we choose again $s_{1,2} \in (0, \frac{2}{r})$ with $s_1 + s_2 = \frac{2}{r}$ and obtain from [1, Lemma 4.4] that

$$\begin{aligned} \int_{P_-(\eta)=\tau} \frac{dS_\eta}{|\nabla P_-(\eta)|} & \left| \frac{\xi}{2} - \eta \right|^{-s_1 r} \left| \frac{\xi}{2} + \eta \right|^{-s_2 r} \chi_{\{(11)\}} \\ &= c \int_1^{c_1} \left| \frac{\tau}{|\xi|} + x \right|^{1-s_1 r} \left| \frac{\tau}{|\xi|} - x \right|^{1-s_2 r} dx \leq c_{s_1, s_2}, \end{aligned}$$

which gives

$$\|u_+v_-\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^{s_1} u_0\|_{\widehat{L}_x^r} \|J_x^{s_2} v_0\|_{\widehat{L}_x^r}$$

and hence

$$(12) \quad \|P_>(u_+, v_-)\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^{\frac{2}{r}} u_0\|_{\widehat{L}_x^r} \|v_0\|_{\widehat{L}_x^r}.$$

A dyadic decomposition together with (8) shows that

$$(13) \quad \|P_{\ll}(P_{\Delta k} u_+, v_-)\|_{\widehat{L}_{xt}^r} \lesssim 2^{\frac{2k}{r}} \|P_{\Delta k} u_0\|_{\widehat{L}_x^r} \|v_0\|_{\widehat{L}_x^r},$$

and combining (12) and (13) after summation in k we arrive at

$$\|u_+v_-\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^\sigma u_0\|_{\widehat{L}_x^r} \|v_0\|_{\widehat{L}_x^r},$$

provided $1 \leq r \leq 2$, $\sigma > \frac{2}{r}$, and u_+v_- fulfills assumption (11). To fix a partial result concerning the hyperbolic case, let $P(u, v)$ denote the projection on the domain in Fourier space, where (11) holds. Then, taking into account the arguments at the end of Section 3.1, we have the following estimate.

Lemma 2. *Let $1 \leq r \leq 2$ and $\sigma > \frac{2}{r}$. Then*

$$\|J_x^\sigma P(u_+, v_-)\|_{\widehat{L}_{xt}^r} + \|J_x^{\sigma-1}\partial_t P(u_+, v_-)\|_{\widehat{L}_{xt}^r} \lesssim \|u_0\|_{\widehat{H}_\sigma^r} \|v_0\|_{\widehat{H}_\sigma^r}.$$

We turn to the region, where

$$(14) \quad c_1 |\xi| < \left| \frac{\xi}{2} - \eta \right| + \left| \frac{\xi}{2} + \eta \right|,$$

and denote the projection thereon by $Q(u, v)$. We apply again [1, Lemma 4.4] with $F(|\frac{\xi}{2} - \eta|, |\frac{\xi}{2} + \eta|) = |\frac{\xi}{2} - \eta|^{-s_1 r} |\frac{\xi}{2} + \eta|^{-s_2 r} \chi_{\{(14)\}}$, where $s_{1,2} \geq 0$ and $s_1 + s_2 = \frac{3}{r} + \varepsilon$. This gives

$$\begin{aligned} & \int_{P_-(\eta)=\tau} \frac{dS_\eta}{|\nabla P_-(\eta)|} |\frac{\xi}{2} - \eta|^{-s_1 r} |\frac{\xi}{2} + \eta|^{-s_2 r} \chi_{\{(14)\}} \\ &= c \int_{c_1}^\infty |\tau + |\xi|x|^{1-s_1 r}| \tau - |\xi|x|^{1-s_2 r} dx \\ &= c|\xi|^{2-(s_1+s_2)r} \int_{c_1}^\infty |\frac{\tau}{|\xi|} + x|^{1-s_1 r} |\frac{\tau}{|\xi|} - x|^{1-s_2 r} dx \lesssim |\xi|^{2-(s_1+s_2)r}, \end{aligned}$$

which in turn implies

$$(15) \quad \|D_x^{s_1+s_2-\frac{2}{r}} Q(u_+, v_-)\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^{s_1} u_0\|_{\widehat{L}_x^r} \|J_x^{s_2} v_0\|_{\widehat{L}_x^r}.$$

Bilinear interpolation of (15) with $r = 1$ and

$$\|u_+ v_-\|_{L_{xt}^2} \lesssim \|J_x^{\sigma_1} u_0\|_{L_x^2} \|J_x^{\sigma_2} v_0\|_{L_x^2}, \quad (\sigma_{1,2} \geq 0, \sigma_1 + \sigma_2 > 1),$$

which follows from Strichartz estimate, gives the sharpened version

$$\|D_x^s Q(u_+, v_-)\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^{s_1} u_0\|_{\widehat{L}_x^r} \|J_x^{s_2} v_0\|_{\widehat{L}_x^r},$$

where $1 \leq r \leq 2$, $s = (1 - \frac{2}{r'})(1 + \varepsilon)$, $s_{1,2} \geq 0$ with $s_1 + s_2 = 3 - \frac{4}{r'} + \varepsilon$ and $\varepsilon > 0$. If in addition $r > 1$ and ε is sufficiently small, so that $s \leq 1$, we may replace the D_x^s by $J_x^{s-1} \partial_x$ and hence by $J_x^{-\frac{2}{r'}} \partial_x$. This gives

$$\|J_x^{-\frac{2}{r'}} \partial_x Q(u_+, v_-)\|_{\widehat{L}_{xt}^r} \lesssim \|J_x^{s_1} u_0\|_{\widehat{L}_x^r} \|J_x^{s_2} v_0\|_{\widehat{L}_x^r}$$

for all $r \in (1, 2]$ and $s_{1,2} \geq 0$ with $s_1 + s_2 > 3 - \frac{4}{r'}$. Using once more $\langle \xi \rangle \leq \langle \frac{\xi}{2} - \eta \rangle + \langle \frac{\xi}{2} + \eta \rangle$ we conclude for $\sigma > \frac{2}{r}$ that

$$\|J_x^{\sigma-1} \partial_x Q(u_+, v_-)\|_{\widehat{L}_{xt}^r} \lesssim \|u_0\|_{\widehat{H}_\sigma^r} \|v_0\|_{\widehat{H}_\sigma^r},$$

which also holds true with ∂_t instead of ∂_x , since we are in the hyperbolic case, where $|\tau| \leq |\xi|$. Summarizing we have:

Lemma 3. *Let $1 < r \leq 2$ and $\sigma > \frac{2}{r}$. Then*

$$\|J_x^{\sigma-1} \partial_x Q(u_+, v_-)\|_{\widehat{L}_{xt}^r} + \|J_x^{\sigma-1} \partial_t Q(u_+, v_-)\|_{\widehat{L}_{xt}^r} \lesssim \|u_0\|_{\widehat{H}_\sigma^r} \|v_0\|_{\widehat{H}_\sigma^r}.$$

Now the crucial estimate (6) follows from the Lemmas 1, 2, and 3.

REFERENCES

- [1] Foschi, Damiano; Klainerman, Sergiu: Bilinear space-time estimates for homogeneous wave equations. Ann. Sci. Ecole Norm. Sup. (4) 33 (2000), no. 2, 211–274
- [2] Ginibre, Jean; Tsutsumi, Yoshio; Velo, Giorgio: On the Cauchy Problem for the Zakharov System, J. of Functional Analysis 151 (1997), 384–436
- [3] Grünrock, Axel: An improved local well-posedness result for the modified KdV equation, IMRN 2004, No. 61, 3287–3308
- [4] Grünrock, Axel: Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, IMRN 2005, No. 41, 2525–2558
- [5] Grünrock, Axel: On the hierarchies of higher order mKdV and KdV equations. Preprint, arXiv:0909.2971
- [6] Grünrock, Axel; Herr, Sebastian: Low regularity local well-posedness of the derivative non-linear Schrödinger equation with periodic initial data. SIAM J. Math. Anal. 39 (2008), no. 6, 1890–1920.
- [7] Grünrock, Axel; Vega, Luis: Local well-posedness for the modified KdV equation in almost critical \widehat{H}_s^r -spaces, Trans. Amer. Math. Soc. 361 (2009), 5681–5694.
- [8] Klainerman, Sergiu; Machedon, Matei: Smoothing estimates for null forms and applications. Duke Math. J. 81 (1995), no. 1, 99–133

- [9] Klainerman, Sergiu; Machedon, Matei: Estimates for null forms and the spaces $H_{s,\delta}$. *Internat. Math. Res. Notices* 1996, no. 17, 853–865
- [10] Klainerman, Sergiu; Machedon, Matei: On the regularity properties of a model problem related to wave maps. *Duke Math. J.* 87 (1997), no. 3, 553–589
- [11] Klainerman, Sergiu; Selberg, Sigmund: Bilinear estimates and applications to nonlinear wave equations. *Commun. Contemp. Math.* 4 (2002), no. 2, 223–295
- [12] Lindblad, Hans: A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations. *Duke Math. J.* 72 (1993), no. 2, 503–539
- [13] Lindblad, Hans: Counterexamples to local existence for semi-linear wave equations. *Amer. J. Math.* 118 (1996), no. 1, 1–16
- [14] Lindblad, Hans: Counterexamples to local existence for quasilinear wave equations. *Math. Res. Lett.* 5 (1998), no. 5, 605–622
- [15] Ponce, Gustavo; Sideris, Thomas C.: Local regularity of nonlinear wave equations in three space dimensions. *Comm. Partial Differential Equations* 18 (1993), no. 1-2, 169–177

AXEL GRÜNROCK: RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN, MATHEMATISCHES INSTITUT, ENDENICHER ALLEE 60, 53115 BONN, GERMANY.

E-mail address: gruenroc@math.uni-bonn.de