EE4C5 Digital Signal Processing

Lecture 12 – Introducing the DFT

This lecture

- Based on Chapter 8 of O&S
- Some material on CTFT and DTFT should have been in prior modules in e.g. mathematics, signals and systems
- All images from O&S book unless otherwise stated
- Some material based on Ian Bruce Lectures from McMaster University
 - Have reused some of his excellent images
- Some material from lectures based on https://dspfirst.gatech.edu/

Family of Fourier Transforms

- Continuous-Time Fourier Transform (CTFT)
 - Continuous in time, frequency and amplitude
- Discrete-Time Fourier Transform (DTFT)
 - Discrete in time, continuous in frequency and amplitude
- Discrete Fourier Transform (DFT)
 - Discrete in time and frequency, continuous in amplitude
- Fast Fourier Transform (FFT)
 - Efficient algorithm to implement the DFT

DTFT — a recap

DTFT

• Back in Lecture 4, we considered a sampled continuous time signal $x_c(t)$ as being represented by a continuous-time modulated impulse-train signal $x_s(t)$ as:

•
$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT)$$

•
$$= \sum_{n=-\infty}^{\infty} x[n] \delta(t-nT)$$

• With $x[n] = x_c(nT)$ is the point-sampled discrete-time signal

Take CTFT

• Take the continuous-time Fourier transform of $x_s(t)$:

•
$$X_S(j\Omega) = \int_{-\infty}^{\infty} x_S(t) e^{-j\Omega t} dt$$

$$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n] \delta(t-nT) e^{-j\Omega t} dt$$

•
$$= \sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} \delta(t - nT) e^{-j\Omega t} dt$$

•
$$= \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega nT} dt$$

ullet Where Ω is continuous-time frequency with units radians/sec

Yields the DTFT...

• Reformulate in terms of discrete-time frequency $\omega = \Omega T$ (with units of radians)

•
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- Above equation is the Discrete-Time Fourier Transform (DTFT) of the discrete-time sequence x[n]
- The frequency is represented by a continuous–time variable in ω
- The DTFT has infinite frequency resolution

Periodicity of DTFT

• The DTFT is periodic, with period 2π

•
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} e^{-j2\pi n}$$

$$= \sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega+2\pi)n} = X(e^{j(\omega+2\pi)})$$

Inverse DTFT

 Periodicity of DTFT means that only need consider one period of DTFT in taking inverse DTFT

•
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

• Can show this is true by:

•
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$\bullet = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{m=-\infty}^{\infty} x[m] e^{-j\omega m} e^{j\omega n} d\omega$$

$$\bullet = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{m=-\infty}^{\infty} x[m] e^{j\omega(n-m)} d\omega$$

• =
$$\sum_{m=-\infty}^{\infty} x[m] \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-m)} d\omega = x[n]$$

 $\delta[n-m]$

Compare

• Continuous Time *Fourier Series*

•
$$x(t) = \sum_{n=-\infty}^{\infty} X_n e^{j\frac{2\pi n}{T}t}$$

•
$$X_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\frac{2\pi n}{T}t} dt$$

Discrete-Time FT

$$\bullet x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Observe: if you take the Fourier Series and replace:

$$x(t) \to X(e^{j\omega}); \quad X_n \to x[n]; \quad t \to -\omega; \quad T \to 2\pi;$$

You obtain the DTFT.

Significance?

- An important conclusion follows:
 - The DTFT is equivalent to Fourier series but applied to the "opposite" domain.
- In Fourier series, a periodic continuous signal is represented as a sum of exponentials weighted by discrete Fourier (spectral) coefficients.
- In the DTFT, a periodic continuous spectrum is represented as a sum of exponentials weighted by discrete signal values.
- Important because:
 - DTFT can be derived directly from Fourier series.
 - All developments for Fourier series can be applied to DTFT.
 - Relationship between Fourier series and DTFT illustrates the duality between time and frequency domains.

Properties of DTFT

- Linearity
- Shift property
- Modulation property
- Convolution property
- Multiplication property
- All covered in 3C1 Signals and Systems
- (Can be revised in Chapter 2 of O&S if needed)

TABLE 2 FOURIER TRANSFORM THEOREMS

Sequence	Fourier Transform
x[n]	$X(e^{j\omega})$
y[n]	$Y(e^{j\omega})$
$1. \ ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$
3. $e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. $nx[n]$	$j\frac{dX\left(e^{j\omega}\right)}{d\omega}$
6. x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Parseval's theorem:	
8. $\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
9. $\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$	

Shortcomings of DTFT

- The DTFT is not suitable for a real-time real-world DSP applications
 - Can only store only a finite number of samples
 - Can only compute the spectrum only at specific discrete values of ω .
- Many signals we encounter are finite in time
- Computationally complex
- Can be sensitive to sampling rate changes

The Discrete Fourier Transform (DFT)

Consider a finite sequence

 Consider x[n], a finite sequence of length M that can be obtained from a longer sequence y[n] by applying a rectangular window of length M

$$x[n] = \begin{cases} 0, & n < 0, \\ y[n], & 0 \le n \le (M-1), \\ 0, & n \ge M. \end{cases}$$

Move to frequency domain

• Now sample the DTFT spectrum $X(e^{j\omega})$ at N points to yield X[k] as:

•
$$X[k] = X(e^{jk\Delta\omega}), \quad \Delta\omega = \frac{2\pi}{N}$$

• If N=M, then:

• The inverse:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}.$$

Sampling of the DTFT spectrum

DFT Analysis and Synthesis Equations

$$X[k] = \sum_{n=1}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}}$$
 Analysis

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}$$
 Synthesis

EE4C5 Digital Signal Processing Prof. Naomi Harte 17

DFT – alternative formulation

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}$$

$$X[k] = \sum_{n=0}^{N-1} x[n] W^{kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W^{-kn}$$

EE4C5 Digital Signal Processing Prof. Naomi Harte 18

Schematic

• With $W = e^{-j\frac{2\pi}{N}}$

Properties of the DFT

Periodicity

- DFT spectrum X[k] is periodic, with period N
- Recall DTFT periodic with period 2π
- Can show that:
 - $X[k + N] = X[k]e^{-j2\pi n} = X[k]$

Linearity

• If

•
$$x_1[n] \stackrel{DFT}{\longleftrightarrow} X_1[k]$$

and

•
$$x_2[n] \stackrel{DFT}{\longleftrightarrow} X_2[k]$$

Then

•
$$ax_1[n] + bx_2[n] \stackrel{DFT}{\longleftrightarrow} aX_1[k] + bX_2[k]$$

- Need to consider sequence length, N_1 and N_2
 - the lengths of the sequences and their DFTs are all equal to at least the maximum of the lengths of $x_1[n]$ and $x_2[n]$
- DFTs of greater length can be computed by augmenting both sequences with zero-valued samples
 - More on zero-padding later (really important)

Circular Shift

- For the DTFT $X(e^{j\omega})$ of x[n], recall that $e^{j\omega m}X(e^{j\omega})$ is the DTFT of the sequence time-shifted, i.e. x[n-m]
- Is there some similar property for the DFT?
- For $x[n] \stackrel{DFT}{\longleftrightarrow} X[k]$
- What about $X[k]e^{-j(2\pi k/N)m}$?
- It's the DFT of $x[(n-m) \mod N]$, i.e.
- $x[(n-m) \bmod N] \xrightarrow{DFT} e^{-j(2\pi k/N)m} X[k]$
- This is a circular shift...

Demonstration of circular shift concept

This is the effect in the time domain of multiplying the DFT of the sequence by a linear-phase factor.

Frequency shift (modulation)

- For $x[n] \stackrel{DFT}{\longleftrightarrow} X[k]$
- $X[(k-m) \bmod N] \xrightarrow{DFT} e^{j(2\pi n/N)m} x[n]$

EE4C5 Digital Signal Processing Prof. Naomi Harte 25

Parseval's Theorem

• Idea that Fourier Transforms preserve "energy"

•
$$\sum_{0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{0}^{N-1} |X[k]|^2$$

Important in function approximation

Conjugation

- For $x[n] \stackrel{DFT}{\longleftrightarrow} X[k]$
- Then:
- $X^*[(N-k) \bmod N] \xrightarrow{DFT} x^*[n]$

Circular Convolution

- With
 - $x[n] \stackrel{DFT}{\longleftrightarrow} X[k]$
- and
 - $y[n] \stackrel{DFT}{\longleftrightarrow} Y[k]$
- Then
 - $X[k]Y[k] \stackrel{DFT}{\longleftrightarrow} x[n] \circledast y[n]$
- (*) denotes circular convolution
- (we'll do some examples in class)

Multiplication

- With
 - $x[n] \stackrel{DFT}{\longleftrightarrow} X[k]$
- and
 - $y[n] \stackrel{DFT}{\longleftrightarrow} Y[k]$
- Then
 - $x[n]y[n] \stackrel{DFT}{\longleftrightarrow} \frac{1}{N}X[k] \circledast Y[k]$

Matrix formulation of DFT

Basic notation required

- Where $x[n] \stackrel{DFT}{\longleftrightarrow} X[k]$, introduce two Nx1 vectors
 - $\mathbf{x} = [x[0], x[1], ..., x[N-1]]^T$
 - $\mathbf{X} = [X[0], X[1], ..., X[N-1]]^T$
- And an NxN matrix W

• With
$$W = e^{-j\frac{2\pi}{N}}$$

$$\mathbf{W} = \begin{bmatrix} W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & \cdots & W^{2(N-1)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ W^0 & W^{N-1} & W^{2(N-1)} & \cdots & W^{(N-1)^2} \end{bmatrix}$$

Reformulate DFT using matrix notation

- DFT becomes:
 - X = Wx
- Inverse DFT becomes:

•
$$\mathbf{x} = \frac{1}{N} \mathbf{W}^H \mathbf{X}$$

conjugate) transpose

• where the operator $\{ \}^H$ indicates the Hermitian (or complex

Number of operations

- Look at matrix
- Direct computation of all N samples in $\{X[k]\}$ requires N^2 complex multiplications and N(N-1) complex additions
- Soon we'll look at efficient implementations of DFT

EE4C5 Digital Signal Processing Prof. Naomi Harte 33

Suggested Reading & other material

- Oppenheim & Schafer, Chapter 9
 - Though they go into more detail on DFS
- Video (~20mins) about general concepts behind Fourier Transform:
 - But what is the Fourier Transform? A visual introduction.
 - https://www.youtube.com/watch?v=spUNpyF58BY
- How are the Fourier Series, Fourier Transform, DTFT, DFT, FFT, LT and ZT Related? (~20mins)
 - https://www.youtube.com/watch?v=2kMSLqAbLj4

34