DAILY ASSESSMENT REPORT

Date:	26 May 2020	Name:	Gagan M K
Course:	DIGITAL SIGNAL PROCESSING	USN:	4AL17EC032
Topic:	 Fourier Series & Gibbs Phenomena using Python Fourier Transform Fourier Transform Derivatives Fourier Transform and Convolution Intuition of Fourier Transform and Laplace Transform Laplace Transform of First order Implementation of Laplace Transform using Matlab Applications of Z-Transform Find the Z-Transform of sequence using Matlab 	Semester & Section:	6 th sem & 'A' sec
Github Repository:	Alvas-education-foundation/Gagan- Git		

FORENOON SESSION DETAILS Image of session Search Up next Up next The Laplace Transform A AUTORAN The Laplace Transform A Great Department of Equation Search Up next The Laplace Transform A Great Department of Equation Search The Transform Second of Equation Search The Transform Second Search The Laplace Transform Second

Report – Report can be typed or hand written for up to two pages.

Fourier Series & Gibbs Phenomena using Python:

Fourier Transform & Fourier Transform Derivatives:

Digital Signal Processing/Discrete Fourier Transform. As the name implies, the
Discrete Fourier Transform (DFT) is purely discrete: discrete-time data sets are converted
into a discrete-frequency representation. This is in contrast to the DTFT that uses discrete
time, but converts to continuous frequency.

The Fourier Transformies Fourier Transform

$$f(x) = \sum_{k=-\infty}^{\infty} C_k e^{ik\pi x/L} \qquad \omega_k = \frac{k\pi}{L} = K\Delta M$$

$$C_k = \frac{1}{a\pi} \langle f(x), \psi_k \rangle = \frac{1}{aL} \int_{\pi/a}^{\pi/a} f(x) e^{-ik\pi x/L} dx$$

$$f(x) = \lim_{\Delta H \to 0} \sum_{k=-\infty}^{\infty} \frac{\Delta M}{a\pi} \int_{-\pi/aM}^{\pi/a} f(\xi) e^{-ik\Delta M} d\xi$$

$$= \int_{-\infty}^{\infty} \frac{1}{a\pi} \int_{-\pi/aM}^{\pi/a} f(\xi) e^{-ik\pi} d\xi e^{-ik\Delta M} d\omega$$

$$= \int_{-\infty}^{\infty} \frac{1}{a\pi} \int_{-\pi/aM}^{\pi/a} f(\xi) e^{-ik\pi} d\xi e^{-ik\Delta M} d\omega$$

Fourier Transform and Convolution:

 Why study Fourier transforms and convolution? Each of these sinusoidal terms has a magnitude (scale factor) and a phase (shift). – Note that in a computer, we can represent a function as an array of numbers giving the values of that function at equally spaced points.

Laplace Transform of First order:

 One familiar input to a first order system is the step change or step input. A step change from 0 to 1 is equivalent to a function that is equal to 0 for time < 0, and is equal to 1 for time ³ 0. The Laplace transform of such a function is 1/s.

$$\frac{\theta_o(s)}{\theta_i(s)} = \frac{\theta_o(s)}{a/s}$$

$$\Rightarrow \theta_o(s) = \frac{a}{s} \frac{K}{(1+\tau s)} = Ka \frac{1}{s(1+\tau s)}$$

$$\Rightarrow \theta_o(s) = Ka \frac{1/\tau}{s(1/\tau + s)} = Ka \frac{1/\tau}{s(s+1/\tau)}$$

Implementation of Laplace Transform using Matlab:

Code:

Output:

```
L = 1/(a + s)
```

Applications of Z-Transform

- Sampled systems
- Inputs and outputs are related by difference equations and Z-transform techniques are used to solve those difference equations.
- VOICE TRANSMISSION: To band-limit the signal and filter noise from the signal.
- Calculation of a signal to control a system.

Find the Z-Transform of sequence using Matlab:

The above picture is a basic example of Z-Transform using Matlab.

Date:	26 May 2020	Name:	Gagan M K
Course:	The Python Mega Course	USN:	4AL17EC032
Topic:	Application 4: Build a Personal	Semester	6 th sem & 'A' sec
	Website with Python and Flask	& Section:	

Report – Report can be typed or hand written for up to two pages.

Build a Personal Website with Python and Flask:

- We have learnt to build our Personal website using Python.
- It shows how to render links from one page to another.
- It also includes HTML format for making good visuals.
- Also shows how to create virtual environment to run the app.
- This course helped in putting our website into global domain as well.
- There is scope for further improvement in the current website.
- The below shown are some images of personal website built by me.

