UD5: INFERENCE

Part 1: Distributions in sampling

Part 2: Inference about one population Comparison of 2 populations

Part 3: ANOVA (Analysis of Variance)

Design of experiments

Part 4: Regression

RESSION ESSION

TWO-DIMENSIONAL RANDOM VARIABLES

- E.g. In the population of students, we observe the height (cm) and weight (kgs) of each student.
- For the control of energy consumption in a factory, we record every day the CONSUMPTION and the daily temperature (°C).

Study of 2 QUALITATIVE VARIABLES:

BY MEANS OF A CONTINGENCY TABLE

REPEAT GENDER	YES 1	NO 2	Row Total	Marginal frequency of gender
MALE	5	41	46	Marginal frequency of
1	83.3 10.9	63.1 89.1	64.8	repeat Relative frequency of
FEMALE	1	24	25	gender conditined to
2	16.7 4.0	36.9 96.0	35.2	repeat Relative frequency of
COLUMN	6	65	71	repeat conditioned to
TOTAL	8.5	91.5		gender

Marginal frequencies:

Frequency of each value of one variable without taking into account the other

Relative conditional frequencies:

Relative frequency of the value of one variable in relation to each value of the other

Study of 2 QUANTITATIVE VARIABLES:

1) BY MEANS OF A CONTINGENCY TABLE AFTER GROUPING THE DATA IN INTERVALS.

- 2) Scatter plot: graphical representation of the relationship.
- 3) Covariance and linear correlation: quantifies the "degree" of linear relationship between x, y
- 4) Simple regression: models the relationship for predictive purposes.

HEIGHT

		145	155	165	175	185	Row
		155	165	175	185	195	Total
WEIG	НТ						
40	55	9	17	0	0	0	26
		75.0	44.7	.0	.0	.0	20.0
55	70	3	18	31	5	0	57
		25.0	47.4	53.4	29.4	.0	43.8
70	85	0	3	24	12	3	42
		.0	7.9	41.4	70.6	60.0	32.3
85	99	0	0	3	0	2	5
		.0	.0	5.2	.0	40.0	3.8
Colu	ımn	12	38	58	17	5	130
Tota		9.2	29.2	44.6	13.1	3.8	100

Marginal frequency of weight
Marginal frequency of height
Relative frequency of weight conditioned to height

PROBLEM: SOME INFORMATION IS LOST IN THE TABULATION

HEIGHT	N° of		STANDARD		
	cases	MEAN	DEVIATION	MIN.	MAXIMUM
145-155	12	53.0000	6.39602	45	65
155-165	38	57.7895	7.45856	46	80
165-175	53	70.8793	7.61134	56	90
175-185	17	73.4118	4.71777	66	84
185-195	5	84.0000	4.18330	77	88

Multiple Box-and-Whisker Plot

PROBLEM: SOME INFORMATION IS LOST IN THE TABULATION

SCATTERPLOT

What colors corresponds to men and women?

TWO-DINENSIONAL NORNAL DISTRIBUTION

EXAMPLES:

- Speed of processor and time required to execute a calculation
- Room temperature and power consumption in heating
- Weight and height of a person
 ... are two components of a bivariate Normal distribution
- Vector of averages $\vec{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$ being $m_1 = E(x_1)$ y $m_2 = E(x_2)$
- Matrix of variances covariances

$$\overline{\overline{V}} = \begin{bmatrix} \sigma_1^2 & \sigma_{1,2}^2 \\ \sigma_{2,1}^2 & \sigma_2^2 \end{bmatrix}$$
 being: $\sigma_1^2 = \text{var}(x_1)$, $\sigma_2^2 = \text{var}(x_2)$,
$$\sigma_{1,2}^2 = \sigma_{2,1}^2 = \text{Cov}(x_1, x_2)$$

Two-dimensional density function: f (x, y)

$$\forall S \in \Re^2 \quad P((x, y) \in S) = \iint_S f(x, y) dx dy$$

The two components X_1 and X_2 of a bivariate random variable have a bivariate normal distribution if the joint density function is:

$$f(x_1,x_2) = \frac{1}{2\pi \cdot \sigma_1 \sigma_2 \sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\frac{(x_1-m_1)^2}{\sigma_1^2} + \frac{(x_2-m_2)^2}{\sigma_2^2} - 2\rho \frac{(x_1-m_1)(x_2-m_2)}{\sigma_1\sigma_2} \right]}$$

Being:

 m_1 , σ_1^2 : mean and variance of the distribution of X_1

 m_2 , σ_2^2 : mean and variance of the distribution of X_2

ρ: correlation coefficient between X₁ and X₂

TWO-DIMENS. NORMAL DISTRIBUTION

ISODENSITY CURVES

Bivariate Normal Surface

Volume under the surface = 1

Probabilities are obtained integrating

$$\int \int_{\mathbb{R}^2} f(x, y) dx dy = 1$$

$$\vec{Y} \sim N_2(\vec{0}, \vec{V}_{\vec{Y}})$$

$$\vec{\mathbf{V}}_{\vec{Y}} = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$$

TWO-DIMENS. NORMAL DISTRIBUTION

ISODENSITY CURVES

Bivariate Normal Surface

$$\vec{Y} \sim N_2(\vec{m}, \vec{V}_{\vec{Y}})$$

$$|\vec{\mathbf{m}} = egin{cases} \mathbf{5} \\ \mathbf{7} \end{pmatrix}$$

$$\mathbf{V}_{\vec{Y}} = \begin{bmatrix} 1 & 0.85 \\ 0.85 & 1 \end{bmatrix}$$

TWO-DIMENS. NORMAL DISTRIBUTION

ISODENSITY CURVES

SIMPLE-REGRESSION: THEORETICAL MODEL

$$\hat{Y} = E(Y/X = x_t) = \alpha + \beta \cdot x_t$$

$$y_t = \alpha + \beta \cdot x_t + u_t$$

Variance of residuals ("residual variance")

Residuals: $u_t \approx N(0, \sigma)$

(Variance of the conditional distribution = variance of residuals) < variance of Y

SIMPLE LINEAR REGRESSION

$$Y = f(X)$$

THE CONDITIONAL
DISTRIBUTION: Y / X=x_t is a random variable with parameters:

$$E(Y/X = x_t) = \alpha + \beta \cdot x_t$$

$$\sigma^2(Y/X = x_t) = \sigma^2_{\text{residual}} \text{ (constant)}$$

EXAMPLE:

Y DAILY GAS CONSUMPTION IN WINTER IN A FACTORY FOR HEATING

X TEMPERATURE OF EACH DAY (°C)

What is α ?

AVERAGE CONSUMPTION WHEN $T^a = 0^\circ$ C

What is β ? INCREASE OF Y (AVERAGE GAS CONSUMPTION) IF TEMPERATURE INCREASES 1°C

Will β be positive or negative in this case?

The linear relationship existing at the population level between the two quantitative components of a bivariate random variable (X,Y) is:

$$\mathbf{E}(\mathbf{Y}) = \mathbf{\alpha} + \mathbf{\beta} \cdot \mathbf{X}$$

SAMPLE

The linear relationship existing between the two quantitative components of a bivariate random variable, estimated from the sample, is:

$$E(Y) = a + b \cdot X$$

$$y_j = a + bx_j + e_j$$

residual

$$\hat{\alpha} = \mathbf{a}$$
 $\hat{\beta} = \mathbf{b}$

residual

How can we quantify the degree of correlation between 2 variables?

Covariance

Plot of Consump. vs Temperature

Temperature

$$Cov_{(X,Y)} = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{N-1}$$

If covariance = -50, is the correlation between the 2 variables strong or weak?

Drawback: depends on the dimensions (scale) in which variables are measured.

CORRELATION CEFFICIENT

$$r_{xy} = \frac{cov}{S_{x} \cdot S_{y}} = \frac{cov(x, y)}{\sigma_{x} \cdot \sigma_{y}}$$

$$\rho = \frac{\text{cov}(x, y)}{\sigma_{x} \cdot \sigma_{y}}$$

 $\rho = 0 \Rightarrow$ no linear relationship exists between x and y $\rho = \pm 1 \Rightarrow \exists$ exact linear relationship between x and y

Advantage: is non-dimensional

$$cov(x, x) = E[(x - m_x) \cdot (x - m_x)] = E[(x - m_x)^2] = \sigma_x^2$$

Matrix of Variances - covariances

Matrix of covariances

$$\begin{pmatrix} cov(x_1, x_1) & cov(x_1, x_2) \\ cov(x_2, x_1) & cov(x_2, x_2) \end{pmatrix} \begin{pmatrix} var(x_1) & cov(x_1, x_2) \\ cov(x_1, x_2) & var(x_2) \end{pmatrix}$$

The matrix is symmetric!

Matrix of correlations

$$\begin{pmatrix} r_{xx} & r_{xy} \\ r_{yx} & r_{yy} \end{pmatrix} \begin{pmatrix} 1 & 0,7404 \\ 0,7404 & 1 \end{pmatrix}$$

CALCULATION OF REGRESSION LINE

REGRESSION

Statistical tool used to establish a model (mathematical equation) able to predict values of a dependent variable Y as a function of one or more input variables $(X_1, X_2, ..., X_i)$.

$$Y = f(X_1, X_2, ..., X_i)$$
 => multiple regression (linear or non-linear)

If
$$\vec{X} = \begin{cases} X \\ Y \end{cases} \approx N_2(\vec{m}, \vec{V})$$

If $\vec{X} = \begin{cases} X \\ Y \end{cases} \approx N_2(\vec{m}, \vec{V})$ Then the two marginal distributions are Normal are Normal

The conditional distribution of Y when X = x is Normal with:

Mean:
$$\hat{Y} = E(Y/X = x) = m_Y + \rho \frac{\sigma_Y}{\sigma_X} (x - m_X)$$
 (regression line)

Variance:
$$\sigma^2(Y/X = x) = \sigma_Y^2 \cdot (1 - \rho^2)$$
 (residual variance)

Does not depend on X (homoskedasticity)

INDEPENDENCE OF 2 CONTINUOUS VARIABLES

Two components X, Y of a bivariate random variable are independent if the events ($X \le x$) and ($Y \le y$) are independent

EXAMPLE: Two variables are studied: the height of a student and the time required to arrive at university.

r²: proportion of the variability of Y explained by variable X

In simple regression:

coefficient of determination (R^2) = (correlation coefficient)² = r^2

INTERPRETATION OF REGRESSION MODELS TYPES OF SCATTERPLOTS

TYPES OF SCATTERPLOTS

INTERPRETATION OF RELATIONSHIPS BETWEEN 2 VARIABLES

EXAMPLE: The government wants to promote the use of computers among citizens.

- One study reveals that, in Spanish homes, the annual expenses in computers is positively correlated with the expenses in shoes.
- CONCLUSION: the government decides to promote the expenses in shoes (by lowering the prices) in order to incentivate the use of computers.

Nº children/family, age, level of studies, family income...

Not causal relationship

Partial dependence

VERY IMPORTANT RULE:

THE CORRELATION OBSERVED BETWEEN 2 VARIABLES DOES NOT IMPLY NECESSARILY A CAUSE-EFFECT RELATIONSHIP

INTERPRETATION OF RELATIONSHIPS

One-way causal dependence

CAUSE

Room temperature

Amount of rain

Speed of computer processor

<u>EFFECT</u>

Power consumption for heating

Amount of water in reservoirs

Time required to carry out a computational operation

INTERPRETATION OF RELATIONSHIPS

Partial dependence with one or more variables:

CAUSE

Genetic characteristics

Family income

Attendance of theory classes

N° hours of study of Statistics

EFFECT

Height and weight

Expenses in shoes of families

Final score in the exam

Final score in the exam

Interdependence between both variables:

Supply and demand of a product

Levels of sales and expenses in advertising

Age of husband and wife in a couple

RESIDUALS

Residual u_t = y_{observed} - y_{predicted}

(example of gas consumption vs T^a):

 u_t = consumption observed at day t (y_t) MINUS average consumption estimated when temperature = x_t

$$E(Y/x = x_t) = \alpha + \beta x_t \longrightarrow Y_t = \alpha + \beta x_t + u_t$$
$$u_t = y_t - (\alpha + \beta x_t)$$

$$\mathbf{E}(\mathbf{u}_{t}) = \mathbf{0} \qquad \mathbf{\sigma}^{2}(\mathbf{u}_{t}) = \mathbf{\sigma}^{2}$$

- IT IS ASSUMED THAT u_t :
 - ARE NORMALLY DISTRIBUTED
 - ARE INDEPENDENT BETWEEN THEM

U_t COLLECTS THE EFFECT OF ALL REMAINING FACTORS (NOT INCLUDED IN THE MODEL) OVER GAS COMSUPTION IN A GIVEN DAY t.

ANALYSIS OF RESIDUALS

- Outliers: are identified with a Normal Probability Plot
- Lack of normality in the data: it can be studied by plotting residuals in a Normal Probability Plot.
- Lack of linearity in the relationship between E(Y) and X: it can be studied by plotting e_i as a function of X_i

ANALYSIS WITH STATGRAPHICS

Data of weight (kg) and height (cm) were collected from students registered in this university certain year.

Data were analyzed by means of a regression analysis using Statgraphics.

- a) Weight = a + b · height What is the interpretation of a?
- b) Weight = a + b · (height 150) What is the interpretation of a?

What model is more convenient for an easier interpretation of the regression coefficients?

Regression Analysis - Linear Model: Y = a + b X

Dependent Variable: WEIGHT

Independent Variable: HEIGHT - 150

Parameter	Estimate	Standard error	T statistic	P-value
Intercept	46,343	1,7078	27,1355	0,0000
Slope	0,869	0,0695	12,5124	0,0000

Analysis of Variance

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model	8094,44	1	8094,44	156,56	0,0000
Residual	6669,58	129	51,70		
Total	14764,00	130			

Correlation Coeficient 0,7404

R-squared: 54,83 %

Standard Error of Est. =

- a) What is the standard deviation of weight for those students with a height of 175 cm?
- b) Obtain for the 95% of cases, the weight of students with a height of 175 cm.