Projeto Final

Projeto e Implementação de um Amplificador Eletrônico

Carlos Henrique Hannas de Carvalho nº USP: 11965988;

Pedro Antonio Bruno Grando nº USP: 12547166.

Sumário

1	Intr	rodução	1
2	Met	todologia	2
3	Resultados		5
	3.1	Simulação LTspice	5
	3.2	Metodologia Experimental	6
4	Con	nclusão	8
${f L}$	ista	de Figuras	
	1	Topologia do MOSFET amplificador em fonte comum com degeneração	1
	2	Esquematização do amplificador fonte comum no LTspice	4
	3	Sinais de entrada e saída do circuito simulado	5
	4	Sinais de entrada e saída vistos do osciloscópio.	6
	5	Tensão de porta medida pelo osciloscópio	7
	6	Ganho com a carga de $R_L = 100K\Omega$	8

1 Introdução

Os transistores de efeito de campo tipo metal-óxido-semicondutor se tornaram populares no fim da década de 1970, porque podem ser feitos com dimensões extremamentes pequenas. Então, atualmente muito se utiliza as tecnologias MOS nos circuitos integrados, devido à pequena área de ocupação dos aparelhos.

Os transistores possuem diversas aplicações, como chaves, reguladores de tensão e amplificadores - nessa prática estuda-se o comportamento do MOSFET como um amplificador de estágio fonte comum com degeneração[2]. Esse tipo de circuito é comumente ultilizado em equipamentos de áudio, para amplificar sinais e minimizar algumas distorções, comparado a outros equipamentos.

Como citado, estuda-se o comportamento do MOSFET como amplificador em fonte comum, seguindo a topologia da figura 1. A prática envolve o projeto do circuito de duas diferentes maneiras: simulação, via LTspice, e montagem em bancada de laboratório. Dessa forma, pode-se comparar o resultado de ganho esperado do circuito simulado com o experimento prático.

Figura 1: Topologia do MOSFET amplificador em fonte comum com degeneração.

2 Metodologia

Primeiramente, é preciso ter conhecimento da transcondutância do processo e dimensões do transistor NMOS, modelo 2N7002, da Onsemi. A corrente de dreno é dada por:

$$I_d = K(V_{GS} - V_t)^2$$

Com base no datasheet¹, verificou-se $V_t = 2, 1\,V$. Para $V_{GS} = 4, 5\,V$ a corrente no dreno é $I_d \approx 600\,mA$. Assim, a transcondutância é dada por:

$$K = \frac{1}{2}k'_n(\frac{W}{L}) = 0,1042 \, A/V^2$$

e a equação de corrente no transistor é:

$$I_d = 0,1042(V_{GS} - 2,1)^2 (1)$$

Inicialmente encontra-se o ponto de polarização. Deseja-se obter um ganho $A_v=-5$, para tanto, é preciso recordar que a equação de ganho é dada por:

$$A_v = \frac{R_D}{1/g_m + R_S} \tag{2}$$

A existência de degeneração dificulta atingir ganhos mais altos, portanto, optou-se por um ganho médio. Ainda, é válido lembrar que a transcondutância g_m pode ser relevante para projeto a depender da corrente de dreno, i.e., para uma corrente de dreno alta, a transcondutância é alta o suficiente para não ser levada em consideração. Surge, a partir disso, um desafio de balancear uma corrente alta, com um ganho considerável e a necessidade de manutenção de um bom V_{GS} .

No circuito da imagem 1, adotou-se uma alimentação $V_{DD}=15V$. Em seguida, fezse a polarização do transistor M1, considerando um subcircuito formado pela fonte de alimentação e uma associação em série dos resistores R_1 e R_2 , com valores nominais de $27k\Omega$ e $10k\Omega$, respectivamente - isso resulta em $V_G=4,054V$.

 $^{^{1}} Disponível\ em:\ https://www.onsemi.com/download/data-sheet/pdf/nds7002a-d.pdf$

O estudo do transistor baseia-se na região de operação de saturação, sendo preciso determinar o ponto quiescente de operação. Uma forma de projetar é escolher um dos resistores, e através da equação de ganho, encontrar o outro. Sabe-se que R_4 terá o menor valor, logo, escolhe-se $R_4 = 100\Omega$, de forma que R_3 não deverá ser um valor tão alto. Com isso, $V_S = 100I_D$, que aplicado na equação da corrente, resulta em:

$$I_D = 0.1041(V_G - R_4 I_D - V_t)^2 = 0.1041(1.95 - 100 I_D)^2$$

Resolvendo a equação quadrática, obtém-se:

$$\begin{cases} i_{d1} = 24, 33 \, mA \\ i_{d2} = 15, 62 \, mA \end{cases}$$

Testando ambos os valores, nota-se que i_{d1} não é solução viável para a região de operação de saturação. Assim, $I_D = 15,62 \, mA$. Logo, pode-se calcular a transcondutância g_m :

$$g_m = \frac{2 \cdot 15,62 \cdot 10^{-3}}{4,05-1,562-2,1} = 80 \, mS$$

Em seguida, pode-se determinar R_3 :

$$R_3 = A_v(1/g_m + R_S) = 5(12, 5 + 100) = 562, 5\Omega$$
 ou nominal 560Ω

Por fim, os valores das capacitâncias são calculadas seguindo a seguinte fórmula [1]:

$$C_i \ge \frac{1}{0, 2\pi f R_{TH}} \tag{3}$$

em que f=2kHz e R_{TH} é o equivalente de Thévenin:

$$\begin{cases} R_{TH} = R1//R2 = 7, 3k\Omega, & i = 1 \\ R_{TH} = R3//R4 = 85\Omega, & i = 2 \end{cases}$$

Substituindo os valores na equação 3, determinou-se $C_1 \geq 0, 1\mu F$ e $C_2 \geq 9, 47\mu F$. Dessa forma, projetou-se o circuito com as capacitâncias $C_1 = 100\mu F$ e $C_2 = 100\mu F$.

Finalmente, adotou-se um resistor de carga $R_{L1} = 10k\Omega$. Os componentes utilizados, para uma melhor visualização do projeto, encontram-se na tabela 1 abaixo:

Componente	Valor
R_1	$27k\Omega$
R_2	$10k\Omega$
R_3	560Ω
R_4	100Ω
R_{L1}	$10k\Omega$
R_{L2}	100Ω
C_1	$100\mu F$
C_2	$100\mu F$

 ${\it Tabela 1: Components utilizados.}$

Abaixo, a figura 2 mostra a esquematização do circuito simulado no LTspice, em que aplicou-se um sinal V_i de entrada de 2kHz e $10mV_{PP}$:

Figura 2: Esquematização do amplificador fonte comum no LT
spice.

3 Resultados

A saída V_o do circuito é calculado através da seguinte fórmula:

$$V_o = A_v \cdot V_i \tag{4}$$

em que $A_v=-5V/V$ e V_i possui $10mV_{PP}$. Dessa forma, substituindo os valores na equação 4, espera-se um resultado de $|V_o|=50mV_{PP}$.

3.1 Simulação LTspice

A imagem abaixo mostra os sinais de entrada e saída do circuito simulado.

Figura 3: Sinais de entrada e saída do circuito simulado.

Os sinais de entrada e saída são representados em verde e vermelho, respectivamente, na figura 3. Percebe-se que o circuito projetado possui o ganho esperado de $|A_v| = 5V/V$, uma vez que o sinal de saída possui amplitude $50mV_{PP}$.

3.2 Metodologia Experimental

O valor experimental é calculado através da fórmula 2, mas o resistor de dreno R_D em paralelo com o resistor de carga R_L . Dessa fórmula, resolvendo a equação com os valores dos componentes utilizados na prática obteve-se: $|A_v| = 4,711V/V$.

A imagem abaixo contém os sinais de entrada e saída vistos do osciloscópio:

Figura 4: Sinais de entrada e saída vistos do osciloscópio.

Segundo a imagem 4, percebe-se que o ganho é:

$$|A_v| = \frac{185mV}{41mV} = 4,51V/V$$

A imagem 5 mostra a tensão de porta oferecida no circuito experimental.

Figura 5: Tensão de porta medida pelo osciloscópio.

A tensão de porta prática foi: $V_G=4,08V$ - ligeiramente superior ao que se esperava de tensão de porta em $V_G=4,05V$.

Finalmente, trocou-se a resistência de carga para $R_L = 100\Omega$. Espera-se uma diminuição do ganho, calculado através da equação 2 com resistor de dreno em paralelo com resistor de carga, de forma que: $A_v = 0,754V/V$. A imagem 6 mostra o ganho calculado:

Figura 6: Ganho com a carga de $R_L=100K\Omega$.

O ganho real foi:

$$A_v = \frac{31mV}{42mV} = 0,738V/V$$

4 Conclusão

A análise do experimento aponta para resultados em conformidade com as expectativas, evidenciando um ganho prático de 4,51V/V, aproximando-se do valor teórico desejado de, aproximadamente, 4,7V/V - o valor simulado de ganho foi 5V/V. A medição da tensão de porta indicou 4,08V, ligeiramente superior à simulação de 4,05V.

Vale ressaltar que a resistência de carga foi submetida a testes, revelando uma redução no ganho de saída à medida que a resistência diminuiu drasticamente. Inicialmente, com uma resistência de carga em aproximadamente $10k\Omega$ obteve-se ganho de 4,51V/V; a resistência de de carga em 100Ω , no mesmo circuito, forneceu ganho de 0,738V/V.

Apesar das pequenas discrepâncias entre simulação e medição, a montagem do amplificador com fonte comum de degeneração utilizando um MOSFET foi bem-sucedida.

Como considerações finais, é interessante apontar as dificuldades encontradas ao longo do projeto. A existência de degeneração na fonte exigiu que os cálculos fossem extremamente cautelosos e acabou por limitar consideravelmente o ganho a uma faixa de 4 a 6 vezes. A necessidade de conciliar uma boa relação entre R_3 e R_4 para manutenção do ganho e ainda manter uma polarização boa , tendo em vista que a alimentação estava limitada a 15V foi um desafio grande, pois pequenos aumentos no transistore de dreno inibiam o funcionamento em saturação. Contudo, foi possível encontrar um ponto de estabilidade e desenvolver, com sucesso, o amplificador dentro das especificações.

Referências

- [1] J. E. Globig. A practical approach to designing mosfet amplifiers for a specific gain.

 122nd ASEE Anual Conference Exposition, 2015.
- [2] A. S. Sedra and K. C. Smith. *Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering)* 7th edition. Oxford University Press, 2014.