Setup

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.inspection import DecisionBoundaryDisplay

iris = datasets.load_iris()

iris = pd.DataFrame(
    data= np.c_[iris['data'], iris['target']],
    columns= iris['feature_names'] + ['target']
    )
iris.head()
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0

```
species = []
```

```
for i in range(len(iris['target'])):
    if iris['target'][i] == 0:
        species.append("setosa")
    elif iris['target'][i] == 1:
        species.append('versicolor')
    else:
        species.append('virginica')
```

iris['species'] = species

iris.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	species
0	5.1	3.5	1.4	0.2	0.0	setosa
1	4.9	3.0	1.4	0.2	0.0	setosa
2	4.7	3.2	1.3	0.2	0.0	setosa
3	4.6	3.1	1.5	0.2	0.0	setosa
4	5.0	3.6	1.4	0.2	0.0	setosa

Analisis Exploratorio

memory usage: 7.2+ KB

iris.info()

iris.describe()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7 900000	4 400000	6 900000	2 500000	2 000000

```
setosa = iris[iris['species'] == 'setosa']
versicolor = iris[iris['species'] == 'versicolor']
virginica = iris[iris['species'] == 'virginica']

fig, ax = plt.subplots(figsize = (13,7))

ax.scatter(setosa['petal length (cm)'],setosa['petal width (cm)'], label = 'Setosa', facecolor = "red")
ax.scatter(versicolor['petal length (cm)'],versicolor['petal width (cm)'], label = 'Versicolor', facecolor = "blue")
ax.scatter(virginica['petal length (cm)'],virginica['petal width (cm)'], label = 'Virginica', facecolor = "green")

ax.grid()
ax.legend(loc = 'upper left')
ax.set_xlabel('Petal length (cm)')
ax.set_ylabel('Petal width (cm)')
plt.tight_layout()
plt.show()
```


En el grafico podemos observar los puntos agrupados por colores, donde rojo son datos correspondientes a Setosa, Azules a Versicolor y Verde a Virginica.

Ajuste del modelo

```
X = iris.drop(['sepal width (cm)', 'sepal length (cm)', 'target', 'species'], axis = 1)
y = iris['target']
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.9, random_state = 1)
#Ajuste de los Modelos SVC
C = 1
models = (
   SVC(kernel="linear", C=C),
   SVC(kernel="rbf", gamma=0.7, C=C),
   SVC(kernel="poly", degree=3, gamma="auto", C=C),
models = (clf.fit(X_train, y_train) for clf in models)
titles = (
    "Linear kernel",
    "RBF kernel",
    "Polynomial kernel",
#Graficos de los modelos SVC
fig, sub = plt.subplots(3, 1, figsize = (10,8))
X0, X1 = X['petal length (cm)'], X['petal width (cm)']
for clf, title, ax in zip(models, titles, sub.flatten()):
   disp = DecisionBoundaryDisplay.from_estimator(
       clf,
        response_method="predict",
       cmap=plt.cm.coolwarm,
       alpha=0.8,
       ax=ax,
       xlabel='Petal Length cm',
       ylabel='Petal Width cm',
   ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors="k")
   ax.set_xticks(())
   ax.set yticks(())
   ax.set_title(title)
plt.tight_layout()
plt.subplots_adjust(top = 0.9)
plt.show()
```

