SMOOTH MAPS

Definition. We say that a map $F: M \to N$ between smooth manifolds is *smooth* if for every $p \in M$, there exists smooth charts (U, φ) and (V, ψ) containing p and F(p) respectively, such that $F(U) \subseteq V$ and $\widehat{F} := \psi \circ F \circ \varphi^{-1}$ is smooth.

$$\begin{array}{ccc} U & & & F & & V \\ \varphi \downarrow & & & \downarrow \psi & & \\ \widehat{U} & & & & \widehat{V} & & \end{array}$$

Remark. Suppose $F: M \to N$ is smooth. Then F is continuous on a neighbourhood around each point, because we can write $F = \psi^{-1} \circ \widehat{F} \circ \varphi$. Thus, F is continuous by the pasting lemma.

Any \widehat{F} constructed by composing F with charts is called a *coordinate representation* of F. The smoothness of \widehat{F} is independent of the choice of charts, as the next proposition shows.

Proposition. Let $F: M \to N$ be smooth. Let (U, φ) and (V, ψ) be smooth charts for M and N respectively. Then $\widehat{F} := \psi \circ F \circ \varphi^{-1}$ is smooth on $\varphi(U \cap F^{-1}(V))$.

Proof. Let $\varphi(p) \in \varphi(U \cap F^{-1}(V))$. Then there exists smooth charts (W, θ) and (X, η) containing p and F(p) respectively, such that $F(W) \subseteq X$, and $\eta \circ F \circ \theta^{-1}$ is smooth. Observe that the following diagram commutes:

Thus, $\widehat{F} = \psi \circ F \circ \varphi^{-1} = (\psi \circ \eta^{-1}) \circ (\eta \circ F \circ \theta^{-1}) \circ (\theta \circ \varphi^{-1})$ is smooth on a neighbourhood around $\varphi(p)$. Therefore, \widehat{F} is smooth, because it is smooth on a neighbourhood of every point in its domain.

Examples. Here are a few examples of smooth maps.

- The identity map id : $M \to M$ is smooth.
- Any constant map is smooth.
- If (U,φ) is a smooth chart for M, then $\varphi:U\to \widehat{U}$ is a smooth map.

Proposition. Let $F: K \to M$ and $G: M \to N$ be smooth maps. Then $G \circ F$ is smooth.

Proof. Fix $p \in K$. Then there exist smooth charts (U, φ) and (V, ψ) around p and f(p) respectively, such that $F(U) \subseteq V$, and $\widehat{F} = \psi \circ F \circ \varphi^{-1}$ is smooth. Also, there exist smooth charts (W, θ) and (X, η) around F(p) and G(F(p)) respectively, such that $G(W) \subseteq X$, and $\widehat{G} = \eta \circ G \circ \theta^{-1}$ is smooth.

Now, observe that $(G \circ F)(U \cap F^{-1}(W)) \subseteq X$, and the following diagram commutes:

