Deep Generative Models Lecture 8

Roman Isachenko

Moscow Institute of Physics and Technology

2020

Generative models zoo

Likelihood based models

Is likelihood a good measure of model quality?

Poor likelihood Great samples

$$p_1(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\mathbf{x} | \mathbf{x}_i, \epsilon \mathbf{I})$$

For small ϵ this model will generate samples with great quality, but likelihood will be very poor.

Great likelihood Poor samples

$$p_2(\mathbf{x}) = 0.01p(\mathbf{x}) + 0.99p_{\mathsf{noise}}(\mathbf{x})$$

$$\begin{split} &\log\left[0.01p(\mathbf{x}) + 0.99p_{\mathsf{noise}}(\mathbf{x})\right] \geq \\ &\geq \log\left[0.01p(\mathbf{x})\right] = \log p(\mathbf{x}) - \log 100 \end{split}$$

Noisy irrelevant samples, but for high dimensions $\log p(\mathbf{x})$ becames larger.

Likelihood-free learning

- Likelihood is not a perfect measure for quality measure for generative model.
- Likelihood could be intractable.

Where did we start

We would like to approximate true data distribution $\pi(\mathbf{x})$. Instead of searching true $\pi(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\boldsymbol{\theta}) \approx \pi(\mathbf{x})$.

Imagine we have two sets of samples

- $\triangleright \mathcal{S}_1 = \{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$

Two sample test

$$H_0: \pi(\mathbf{x}) = \rho(\mathbf{x}|\boldsymbol{\theta}), \quad H_1: \pi(\mathbf{x}) \neq \rho(\mathbf{x}|\boldsymbol{\theta})$$

Likelihood-free learning

Two sample test

$$H_0: \pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta}), \quad H_1: \pi(\mathbf{x}) \neq p(\mathbf{x}|\boldsymbol{\theta})$$

Define test statistic $T(S_1, S_2)$. Test statistic is likelihood free. If $T(S_1, S_2) < \alpha$, then accept H_0 , else reject it.

Desired behaviour

- ▶ The generative model $p(\mathbf{x}|\theta)$ minimizes the value of test statistic $T(S_1, S_2)$.
- ▶ Find appropriate test statistic in high dimensions is hard. We could try to learn the appropriate $T(S_1, S_2)$.

Vanila GAN

- ▶ **Generator:** latent variable model $\mathbf{x} = G(\mathbf{z})$, which minimizes two-sample test objective.
- **Discriminator:** function $D(\mathbf{x})$, which distinguish real samples from model samples and maximizes two-sample test statistic.

Objective

$$\min_{G} \max_{D} \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{\rho(\mathbf{z})} \log (1 - D(G(\mathbf{z})))$$

For fixed generator $G(\mathbf{z})$ discriminator is performing binary classification with cross entropy loss.

This minimax game has global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\theta)$.

https://arxiv.org/abs/1406.2661

Vanila GAN optimality

Objective (fixed G)

$$\max_{D} V(D) = \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z})))$$

Optimal discriminator

$$V(D) = \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log(1 - D(\mathbf{x}))$$

$$= \int \underbrace{\left[\pi(\mathbf{x}) \log D(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta}) \log(1 - D(\mathbf{x})\right]}_{y(D)} d\mathbf{x}$$

$$\frac{dy(D)}{dD} = \frac{\pi(\mathbf{x})}{D(\mathbf{x})} - \frac{p(\mathbf{x}|\boldsymbol{\theta})}{1 - D(\mathbf{x})} = 0 \quad \Rightarrow \quad D^*(\mathbf{x}) = \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}$$

Vanila GAN optimality

References

•