지능 로봇 - II Autonomous Vehicles

이건명 충북대학교 대학원 산업인공지능학과

학습 내용

- 자율주행차에 대해서 알아본다.
- 자율주행 핵심요소인 인식 문제와 센서 융합, 위치 추정, 계획 수립, 제어 등에 대해 서 알아본다.

1. 자율주행

❖ 자율 주행

- self-driving car, autonomous vehicle, driverless car, robotic car (robo-car)
- SAE(Society of Automotive Engineers) 자율주행 수준
 - Level 0 비자동화;
 - Level 1 운전자 지원(hands on/shared control);
 - Level 2 부분 자동화(hands off);
 - Level 3 조건부 자동화(eyes off);
 - Level 4 고도 자동화(mind off);
 - Level 5 완전 자동화(steering wheel optional)

자율주행

❖ 자율주행 운행 사례

- 승용차 자율주행 모드, 자율주행 셔틀, 자율주행 택시
- 자율 군집 트럭
- 전국적 시범 서비스
 - 서울시(국회의사당 부근. 청계천, 청와대 등)
 - 인천공항, 세종, 제주

• ...

자율주행의 핵심요소

- ❖ 인식(perception)
 - 주변환경과 장애물 인식
- ❖ 위치추정(localization)
 - 환경 내에서 차량의 위치 추정 (cm 단위의 정확도 요구)
- ❖ 계획수립(planning)
 - 인식 내용 및 추정 위치를 토대로 원하는 위치로 이동을 위한 궤적 생성
- ❖ 제어(control)
 - 궤적을 따라 이동하기 위해 조향 및 가속정보 생성

자율주행 개발 플랫폼

❖ ROS 2 기반 자율주행 구조

▪ ROS 2 Iron Irwini : 실시간 지원

▪ Gazebo **시뮬레이터** : 시뮬레이션 환경 제공

자율주행 개발 플랫폼

❖ ROS 2 기반 자율주행 시스템 개발 과정

- 1. ROS 2 설치 및 환경 구성
- 2. 센서 <mark>통합</mark>: 다양한 센서(LIDAR, 카메라, GPS, IMU 등)와 인터페이스하기 위해 ROS 2 노드(개별동작 프로세스) 사용
- 3. 데이터 처리: 센서 데이터 융합, 객체 탐지, 위치 확인, 매핑을 위한 알고리즘 구현 또는 ROS2 데이터 처리 패키지 사용
- 4. 제어 시스템: 해석된 센서 데이터를 처리하여 조향, 가속, 제동 등의 주행 동작을 실행하는 차량 제어 시스템을 위한 노드 개발
- 5. 시뮬레이션: Gazebo 등의 ROS 2 호환 시뮬레이터를 사용하여 가상 환경에서 자율주행 알고리즘 테스트
- 6. <mark>통신</mark>: ROS 2 메시징 시스템을 활용하여 노드 간 통신을 구현. 자율주행 파이프라인을 통해 데이터의 원활한 통신 구현 및 확인.
- 7. 안전성 및 중복성: 시스템에 안전 조치와 장애 처리를 위한 중복 시스템이 포함되어 있는지 확인
- 8. 테스트 및 검증: 제어된 환경에서 자율주행 시스템을 철저히 테스트하고, 엄격한 안전 프로토콜 하에 실제 환경의 시나리오에서 테스트
- 9. 반복 및 최적화: 테스트 데이터와 실제 주행 피드백을 바탕으로 알고리즘과 시스템을 지속적으로 업데이트하고 최적화

❖ 인식 센서의 종류

- 카메라
- Lidar
- Radar

Proximity Detection Sensor Cost Range 3 Sensor size Resolution Works in dark Provides Colour / Works in bright Works in snow/ fog / rain

Proximity Detection Sensor Cost 4 Range 3 Resolution Detects speed Provides Colour / Contrast Works in snow/ fog / rain

Lidar

❖ 2D 물체 감지

■ 물체의 경계상자(bounding box) 정보 제공

YOLO, SSD, RetinaNet

- ❖ 3D 물체 감지
 - RGB-D 센서 데이터
 - Point Cloud 데이터
 - RGB + Point Cloud 데이터

3D Instance

Segmentation

PointNet

3D Instance Segmentation

(m points)

center residual

Amodal 3D Box Estimation

translation

Amodal

3D Box

Estimation

PointNet

(n points)

Frustum PointNet

RGB

RGB image

CNN

Frustum Proposal

(절두체)

Depth

- ❖ 3D 물체 감지 cont.
 - Point Cloud 데이터

PointNet mug? table? car? Classification Part Segmentation Semantic Segmentation

- PointNet (Qi et al., 2016)
 - 순서불변(permutation/order invariance), 변환(transformation) 불변
 - Point cloud 데이터

average(a, b) = average(b, a)max(a, b) = max(b, a)

- ❖ 3D 물체 감지 cont.
 - RGB + Point Cloud 데이터

Multi-View 3D networks (MV3D)

❖ Radar 데이터

lidar

camera

40m 30m 20m 10m -30m -20m -10m 20m 30m **Azimuth**

radar

range (거리)

Approaching

Doppler Radar

Radar Transmit Frequency

Reflection is

Higher frequency

2m x 5m vehicle

Receding

Reflection is Lower frequency

azimuth (angle, 각도)

- ❖ Radar 기반 차량 감지 (Major et al. 2019)
 - 레이다 데이터로 부터 주변 차량 감지

❖ 스테레오 비전(stereo vision)

- 2개의 카메라 사용
- 물체까지의 거리 추정

https://medium.com/think-autonomous/pseudo-lidarstereo-vision-for-self-driving-cars-41falac42fc9

❖ 차선 감지

■ 차선을 표현하는 식의 계수 추정

■ U-Net 기반 차선 감지

- ❖ 차선 감지 cont.
 - LaneNet
 - 2개의 네트워크 구성

- ❖ 객체 추적(object tracking)
 - 동일 대상을 시간에 따라 연속해서 추적
 - 행동 예측

물체 감지 → 인접시간의 동일물체 여부 판단, 가림(occlusion) 대응
 Hungarian 알고리즘 Kalman filter

Hungarian Algorithm (Kuhn-Munkres)

❖ 빈공간(freespace) 감지

■ 차량이 없는 비어있는 공간 감지

- ❖ 장면 인식(scene perception)
 - 의미적 영역분할(semantic segmentation)

- 접유도 (occupancy map, Occupancy Grids)
 - 주행공간을 셀로 분할하고 점유 확률 계산

❖ 장애물, 도로 표지, 신호등 감지

(c) Candidate region segmentation

(d) Minimum surrounding contour (e) Candidate region screening results

❖ 센서 융합(sensor fusion)

- 여러 센서의 데이터를 결합하여 정확도 높은 추정을 하는 것
- 완벽한 센서의 부재

❖ 센서별 장단점

- ❖ 융합 시점
 - 초기 융합(early fusion)
 - 원 데이터의 결합
 - 예. Lidar point cloud와 이미지의 픽셀의 결합
 - 지연 융합(late fusion)
 - 2D 또는 3D 경계상자(bounding box) 검출기 출력의 결합

❖ 융합 형태

- Lidar / Camera
 - 초기 융합
 - 지연 융합

- Lidar / Stereo camera
 - 지연 융합

• 지연 융합

- Radar / Lidar
 - 지연 융합

3. 위치추정

- ❖ 위치추정(localization)
 - 환경 내에서 차량 자신의 위치 추정
- ❖ 위치추정 설정
 - 지도와 시작위치 제공 상황
 - 지도 제공 + 시작위치 미제공 상황
 - 지도와 시작위치 미제공 상황
 - Simultaneous Localization And Mapping (SLAM)

❖ 지도와 시작위치 제공 위치 추정

Odometry: 시간에 따른 위치 변화를 추정하기 위해 모션 센서의 데이터(바퀴 회전수 등)를 사용하는 것

UWB(Ultra Wide Band): 저전력, 고정밀도

❖ 지도 제공 + 시작위치 미제공 위치추정

❖ 지도와 시작위치 미제공 위치 추정 (SLAM)

❖ SLAM

■ 전형적인 SLAM의 구조

Visual Odometry (Frontend)

- 카메라 이미지를 분석하여 로봇의 **위치와 방향** 결정
- 인접한 이미지 사이의 카메라 움직임 계산
- **카메라 동작에** 대한 **정량적인 측정** 필요
 - 회전 및 이동
- 카메라와 3차원 공간 점 사이의 기하학적 관계 이해 필요
- Drift error 발생
 - Visual odometry 만을 이용하여 궤적을 추정하면 오차 누적

- 해결책
 - Backend optimization과 loop closure detection 필요
 - » 현재 위치가 이전에 방문한 곳인지 판단

- Visual Odometry (Frontend) cont.
 - Deep learning 모델 적용
 - 인접 시점 이미지 → 이동, 회전 정보 추정

$$L=\lambda L_f+L_p=\lambda\|M_{ heta}(I_t,I_{t+1})-F_t^{t+1}\|+\|P_{\phi}(\hat{F}_t^{t+1})-\delta_t^{t+1}\|$$
 , where $\delta_t^{t+1}=(T,R)$ optical flow loss camera motion loss

$$L_{p}^{cos} = \frac{\hat{T} \cdot T}{max(\|\hat{T}\| \cdot \|T\|, \epsilon)} + \|\hat{R} - R\|$$

$$L_{p}^{norm} = \left\| \frac{\hat{T}}{max(\|\hat{T}\|, \epsilon)} - \frac{T}{max(\|T\|, \epsilon)} \right\| + \|\hat{R} - R\|$$

Visual Odometry (Frontend) – cont.

GraphSLAM

- Front-end : 카메라 등 센서 입력으로 받아 Pose Graph (sub-map) 생성. 다시 방문한 장소 인식. 노드 간의 constraint 생성
- Back-end: Front-end의 시간 경과에 따른 누적된 오류 최소화(Pose Graph Optimization, PGO) 를 통해 최적화된 노드 위치 결정.

- GraphSLAM cont.
 - Pose Graph

Measurement from \mathbf{x}_j

\mathbf{x}_i : i번째 포즈

$$egin{aligned} ext{(Node)} \ \mathbf{x}_i &= [x_i \ y_i \ z_i \ lpha_i \ eta_i \ eta_i \end{bmatrix}^\intercal \ &= egin{bmatrix} \mathbf{R}_i & \mathbf{t}_i \ \mathbf{0} & 1 \end{bmatrix}_{4 imes 4} \end{aligned}$$

\mathbf{z}_{ij} : 노드 i,j 사이의 상대포즈

$$(\text{Edge}) \ \mathbf{z}_{ij} = \begin{bmatrix} x_{ij} \ y_{ij} \ z_{ij} \ \alpha_{ij} \ \beta_{ij} \ \gamma_{ij} \end{bmatrix}^{\mathsf{T}}$$

$$= \begin{bmatrix} \mathbf{R}_{ij} & \mathbf{t}_{ij} \\ \mathbf{0} & 1 \end{bmatrix}_{\mathbf{A} \times \mathbf{A}}$$

- GraphSLAM cont.
 - Pose Graph Optimization (PGO)
 - 오차가 최소화 되도록 모든 노드들의 위치를 최적화하는 과정

$$\mathbf{x}^* = rg \min_{\mathbf{x}} \|\mathbf{z} - \hat{\mathbf{z}}\|_{\Sigma}^2 = \|\mathbf{e}\|_{\Sigma}^2$$
 \mathbf{z} : 관측값, $\hat{\mathbf{z}}$: 예측값

GraphSLAM – cont.

$$\mathbf{x}^* = rg\min_{\mathbf{x}} \|\mathbf{z} - \hat{\mathbf{z}}\|_{\Sigma}^2 = \|\mathbf{e}\|_{\Sigma}^2$$

$$\mathbf{x}^* = rg\min_{\mathbf{x}} \sum_i \left\| \mathbf{z}_{i,i+1} - \hat{\mathbf{z}}_{i,i+1}
ight\|_{\Sigma_{i,i+1}}^2 + \sum_{i,j} \left\| \mathbf{z}_{i,j} - \hat{\mathbf{z}}_{i,j}
ight\|_{\Sigma_{i,j}}^2$$

순차적인 노드들 간 관측값와 예측값의 오류

시간 순서와는 상관없는노드들 간 관측값과 예측값의 오류

$$\mathbf{x}^* = rg \min_{\mathbf{x}} \sum_i (\mathbf{e}_{i,i+1}^\intercal \Omega_{i,i+1} \mathbf{e}_{i,i+1}) + \sum_{ij} (\mathbf{e}_{ij}^\intercal \Omega_{ij} \mathbf{e}_{ij})$$

오류함수 e: 회전과 관련된 cos,sin성분을 포함하여 비선형성 → 비선형 최소제곱법 적용

Gauss-Newton(GN) 또는 Levenberg-Marquardt(LM)

- GraphSLAM cont.
 - Gauss-Newton(GN) 방법

$$\mathbf{e}_{ij}(\mathbf{x}+\Delta\mathbf{x})^{\intercal}\Omega_{ij}\mathbf{e}_{ij}(\mathbf{x}+\Delta\mathbf{x})$$

$$\mathbf{Taylor} \, rac{
m 건개}{
m e}_{ij}(\mathbf{x}+\Delta\mathbf{x})|_{\Delta\mathbf{x} o\mathbf{x}} = \mathbf{e}_{ij}(\mathbf{x})+\mathbf{J}_{ij}(\mathbf{x}+\Delta\mathbf{x}-\mathbf{x})$$

$$= \mathbf{e}_{ij}(\mathbf{x})+\mathbf{J}_{ij}\Delta\mathbf{x}$$

$$\mathbf{J}_{ij}=\frac{\partial\mathbf{e}_{ij}(\mathbf{x}+\Delta\mathbf{x})}{\partial\Delta\mathbf{x}}$$

$$\mathbf{e}_{ij}(\mathbf{x} + \Delta \mathbf{x})^{\intercal} \Omega_{ij} \mathbf{e}_{ij}(\mathbf{x} + \Delta \mathbf{x}) \simeq (\mathbf{e}_{ij} + \mathbf{J}_{ij} \Delta \mathbf{x})^{\intercal} \Omega_{ij} (\mathbf{e}_{ij} + \mathbf{J}_{ij} \Delta \mathbf{x})$$

$$= \underbrace{\mathbf{e}_{i}^{\intercal} \Omega_{ij} \mathbf{e}_{ij}}_{\mathbf{c}_{ij}} + 2 \underbrace{\mathbf{e}_{ij}^{\intercal} \Omega_{ij} \mathbf{J}_{ij}}_{\mathbf{b}_{ij}} \Delta \mathbf{x} + \Delta \mathbf{x}^{\intercal} \mathbf{J}_{ij}^{\intercal} \Omega_{ij} \mathbf{J}_{ij} \Delta \mathbf{x}$$

$$= \mathbf{c}_{ij} + 2 \mathbf{b}_{ij} \Delta \mathbf{x} + \Delta \mathbf{x}^{\intercal} \mathbf{H}_{ij} \Delta \mathbf{x}$$

$$\mathbf{E}(\mathbf{x} + \Delta \mathbf{x}) = \sum_{ij} \mathbf{e}_{ij}^\intercal \Omega_{ij} \mathbf{e}_{ij} = \mathbf{c} + 2\mathbf{b}\Delta \mathbf{x} + \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$
 $\mathbf{H} = \mathbf{J}^\intercal \Omega \mathbf{J}$

- GraphSLAM cont.
 - Gauss-Newton(GN) 방법 cont.

$$\mathbf{E}(\mathbf{x} + \Delta \mathbf{x}) = \sum_{ij} \mathbf{e}_{ij}^\intercal \Omega_{ij} \mathbf{e}_{ij} = \mathbf{c} + 2 \mathbf{b} \Delta \mathbf{x} + \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

• $E(x + \Delta x)$ 은 Δx 에 대한 2차식(Quadratic) 형태이고, $H = J^{\mathsf{T}}\Omega J$ 는 positive definite 행렬이므로 $E(x + \Delta x)$ 를 1차 미분하여 0으로 설정한 값이 Δx 의 극소

$$rac{\partial \mathbf{E}(\mathbf{x} + \Delta \mathbf{x})}{\partial \Delta \mathbf{x}} \simeq 2\mathbf{b} + 2\mathbf{H}\Delta \mathbf{x} = 0$$

$$\mathbf{H}\Delta\mathbf{x} = -\mathbf{b}$$
 $\Delta\mathbf{x} = -\mathbf{H}^{-1}$

$$\Delta \mathbf{x} = -\mathbf{H}^{-1}\mathbf{b}$$

$$\mathbf{x} \leftarrow \mathbf{x} + \Delta \mathbf{x}$$

- Levenberg-Marguardt(LM) 방법
 - damping factor λ항 추가

$$(\mathbf{H} + \lambda \mathbf{I})\Delta \mathbf{x} = -\mathbf{b}$$

- **❖ GraphSLAM** cont.
 - Front-end 알고리즘

https://edward0im.github.io/engineering/2020/09/08/pose-graph-optimization/

GraphSLAM – cont.

• Loop closure 감지: Front-end에서 GICP(generalized iterative closest point)를 통해 새로운 관측값 \mathbf{z}_{ij} 를 구하고, 기존의 값들은 예측값 $\hat{\mathbf{z}}_{ij}$ 으로 전환

- GraphSLAM cont.
 - 관측값과 예측값의 차이를 오차 e_{ij}로 설정
 - ullet 관측값과 예측값은 상대포즈(Relative Pose)로 나타내므로, 둘의 차이는 $\mathbf{z}_{ij} \hat{\mathbf{z}}_{ij}$ 이 아닌 $\mathbf{z}_{ij}^{-1}\hat{\mathbf{z}}_{ij}$

$$\mathbf{e}_{ij} = \mathbf{z}_{ij}^{-1} \hat{\mathbf{z}}_{ij}$$

- 모든 노드의 오차가 최소화되는 **차량의 포즈** x 계산
 - 비선형 최소제곱법(GN, LM)을 통해 반복적으로 오차가 최소가 되는 포즈 갱신

GraphSLAM – cont.

❖ GraphSLAM – cont.

4. 계획 수립

- ❖ 자율주행의 계획 수립 (planning)
 - 상위/전역(high-level/global) 계획수립
 - 출발지에서 목적지로의 길(route) 결정
 - <mark>행동(behavioral) 계획수립</mark>
 - 타 차량, 보행자 등 장애물이 어떤 행동을 할 지 예측하고, 의사결정을 하는 것
 - 경로/지역(path/local) 계획 수립
 - 장애물을 회피한 궤적(trajectory) 생성

계획 수립

- ❖ 상위/전역(high-level/global) 계획수립
 - 그래프 탐색 알고리즘 적용 가능
 - A*, Dijkstra, DFS, BFS, ···
 - 확률적(probabilistic) 계획수립
 - 강화학습 적용

계획 수립

- ❖ 행동(behavioral) 계획수립
 - 의도 예측 (intention prediction)
 - 객체 추적(tracking)
 - Hungarian Algorithm : 다중 객체 추적
 - » 프레임 간 경계상자 매칭

- 타 객체의 이동 예측
 - Kalman 필터 적용
- 의사결정
 - 상황에 따른 행동 규칙 직접 제공
 - 강화학습을 통한 정책 학습

https://youtu.be/bkn6M

계획 수립

❖ 경로/지역(path/local) 계획 수립

- 장애물을 회피한 궤적(trajectory) 생성
- Rapidly-exploring Random Trees (RRT), RRT*, Probabilistic RoadMaps (PRM), PRM*, ···

Rapidly-exploring Random Trees (RRT)

5. 제어

❖ 제어(control)

■ 궤적을 따라 이동하기 위해 <mark>조향</mark> 및 가속정보 생성

제어

- ❖ 종단간(end-to-end) 주행 학습
 - 인식단계 등이 없이 입력 영상 등으로 부터 주행 제어
 - 강화학습 적용 사례

❖ 자율주행에 대한 설명으로 옳지 않은 것은?

- ① 포인트 클라우드(point cloud) 데이터는 3차원 좌표들에 대한 정보를 포함한다.
- ② 포인트 클라우드 데이터는 순서(permutation) 불변이며 변환(transformation) 불변인 연산 사용하여 처리하는 것이 바람직하다.
- ③ 스테레오 비전은 하나의 사진으로부터 물체까지의 거리를 측정하는 기술을 의미한다.
- ④ 레이다 데이터는 각도, 거리, 도플러(Doppler) 정보를 포함한다.

❖ 센서 융합에 대한 설명으로 옳지 않은 것은?

- ① 여러 센서의 데이터를 결합하여 정확도 높은 추정을 하는 것이 센서 융합이다.
- ② 융합 시점에 따라 초기 융합(early fusion)과 지연 융합(later fusion)으로 나눌 수 있다.
- ③ 원 데이터를 처리하는 시작단계에 결합하는 것을 초기 융합이라고 한다.
- ④ 레이다와 카메라 데이터에 대한 융합은 일반적으로 초기 융합을 한다.

❖ 자율 주행 차량의 SAE 레벨 0은?

- ① 완전한 자동화
- ② 공유 제어
- ③ 자동화 없음
- ④ 선택적 운전

- ❖ 자율 주행 차량 인식에 일반적으로 사용되지 않는 센서는?
 - ① 카메라
 - ② LiDAR
 - ③ 레이더
 - ④ 음향 센서
- ❖ 3D 객체 감지에서 RGB와 함께 사용되는 데이터 유형은?
 - ① 초음파 데이터
 - ② 적외선 데이터
 - ③ 포인트 클라우드 데이터
 - ④ 열화상 데이터
- ❖ 자율 주행 차량의 레이더 센서에서 제공되지 않는 데이터 유형은?
 - ① 거리
 - ② 방위각
 - ③ 색상
 - ④ 도플러

- ❖ 자율 주행 차량에서 차선 감지에 현재 가장 적합한 방식은?
 - ① GPS 매핑
 - ② U-Net 기반 감지
 - ③ 오디오 분석
 - ④ 열화상 이미지
- ❖ LaneNet 네트워크는 주로 어떤 것에 중점을 두는가?
 - ① 교통 신호 감지
 - ② 차선 감지
 - ③ 차량 속도 추정
 - ④ 날씨 예측
- ❖ 자율 주행에서 객체 추적의 주요 목적은?
 - ① 날씨 조건 예측
 - ② 시간에 따라 동일한 객체의 지속적 추적
 - ③ 도로 표지판 감지
 - ④ 차량 속도 추정

- ❖ 자율 주행의 장면 인식에서 사용되는 주요 방식은?
 - ① 의미 분할
 - ② 색상 감지
 - ③ 소리 분석
 - ④ 온도 측정
- ❖ 자율주행차의 주요 핵심 요소가 아닌 것은?
 - ① 인식
 - ② 위치 추정
 - ③ 계획 수립
 - ④ 운전자 감정 분석
- ❖ 자율주행차에서 '인식' 단계에서 주로 수행되는 작업은?
 - ① 궤적 생성
 - ② 위치 추정
 - ③ 주변 환경 및 장애물 파악
 - ④ 조향 및 가속 정보 생성

- ❖ 자율주행차의 '계획 수립' 단계에서 주로 고려되는 요소는?
 - ① 주변 환경 인식
 - ② 속도 제어
 - ③ 원하는 위치로 이동을 위한 궤적 생성
 - ④ 배터리 수명 관리
- ❖ 자율주행차의 '제어' 단계에서 주로 수행되는 작업은?
 - ① 주변 환경 인식
 - ② 위치 추정
 - ③ 궤적 따라 이동을 위한 조향 및 가속 정보 생성
 - ④ 목적지 설정
- ❖ 자율주행차에서 '라이다' 데이터를 처리하는데 적합한 알고리즘은?
 - ① YOLO
 - ② SSD
 - ③ PointNet
 - 4 U-Net

- ❖ 자율주행차에서 '레이더' 센서가 제공하는 정보는?
 - ① 색상 인식
 - ② 3D 이미지
 - ③ 거리, 각도, 도플러(Doppler) 정보
 - ④ 온도 측정
- ❖ 자율주행차에서 '스테레오 비전'의 주요 목적은?
 - ① 속도 측정
 - ② 물체까지의 거리 추정
 - ③ 음성 인식
 - ④ 내부 온도 조절
- ❖ 자율주행차의 SAE 레벨 중 운전자의 주의가 필요 없고 핸들이 선택적인 단계는?
 - 1 Level 3
 - 2 Level 4
 - ③ Level 5
 - 4 Level 2

- ❖ 다음 중 자율주행차의 인식 센서가 아닌 것은?
 - ① 카메라
 - ② Lidar
 - 3 Radar
 - 4 GPS
- ❖ 자율주행차에서 2D 물체 감지를 위해 사용되는 기술은?
 - ① YOLO
 - ② GPS
 - ③ RRT
 - 4 SLAM
- ❖ 다음 중 자율주행차에서 사용되는 3D 물체 감지 알고리즘은?
 - ① YOLO
 - ② Frustum PointNet
 - ③ U-Net
 - 4 A*

- ❖ PointNet 알고리즘의 특징 중 하나는?
 - ① 순서 불변성
 - ② 지리적 정확성
 - ③ 시간적 연속성
 - ④ 색상 인식 능력
- ❖ 자율주행차의 위치추정 단계에서 사용되는 기술은?
 - SLAM (Simultaneous Localization And Mapping)
 - ② GPS (Global Positioning System)
 - 3 LiDAR (Light Detection and Ranging)
 - 4 Radar (Radio Detection and Ranging)
- ❖ 자율주행차의 객체 추적(Object Tracking) 단계에서 많이 사용되는 알고리즘은?
 - ① Hungarian 알고리즘
 - ② Kalman 필터
 - ③ Deep Learning 알고리즘
 - ④ Hungarian 알고리즘과 Kalman 필터

- ❖ 자율주행차에서 '학습 기반 접근법(learning-based approach)'이란?
 - ① 차량의 오디오 시스템 학습
 - ② 차량의 배터리 수명 최적화
 - ③ 데이터를 통한 의사 결정 알고리즘 개선
 - ④ 차량의 색상 변화 학습
- ❖ 자율주행차에서 '환경 매핑(environmental mapping)'의 중요성은?
 - ① 차량의 오디오 시스템 개선
 - ② 차량 주변 환경의 정확한 3D 모델 생성
 - ③ 차량의 연료 효율 향상
 - ④ 차량 내부의 온도 조절
- ❖ 자율주행차에서 '경로 계획 알고리즘(Path Planning Algorithm)'의 주요 목적은?
 - ① 차량의 오디오 시스템 조정
 - ② 최적의 경로 결정 및 탐색
 - ③ 차량의 색상 변경
 - ④ 차량의 연료 효율 향상

- ❖ Hungarian 알고리즘은 주로 어떤 문제에 사용되는가?
 - ① 최단 경로 문제
 - ② 네트워크 플로우 문제
 - ③ 다중 객체 추적 문제
 - ④ 그래프 색칠 문제
- ❖ Hungarian 알고리즘은 어떤 유형의 데이터에 적용되는가?
 - ① 시계열 데이터
 - ② 이미지 데이터
 - ③ 텍스트 데이터
 - ④ 비용 행렬 데이터
- ❖ Kalman filter를 사용하는 이유는?
 - ① 데이터 저장 공간 최적화
 - ② 데이터 전송 속도 향상
 - ③ 추적 대상의 행동 예측 및 가림(occlusion) 대응
 - ④ 사용자 인터페이스 개선

❖ 자율주행차에서 '통합 제어 시스템(Integrated Control System)'의 핵심 기능은?

- ① 차량의 색상 변경
- ② 차량 내부의 오디오 시스템 관리
- ③ 다양한 시스템과 센서의 조정 및 통합 제어
- ④ 차량의 연료 효율 관리

❖ GraphSLAM에서 Front-end의 역할은?

- ① 카메라 등 센서 입력으로 Pose Graph (sub-map)를 생성하고, 다시 방문한 장소를 인식하며, 노드 간의 제약을 생성한다.
- ② 오차를 최소화하기 위해 모든 노드들의 위치를 최적화한다.
- ③ Gauss-Newton 방법을 사용하여 비선형 최소제곱 문제를 해결한다.
- ④ damping factor를 추가하여 Levenberg-Marquardt 방법을 적용한다.

❖ GraphSLAM에서 Back-end의 주요 기능은?

- ① 카메라 등 센서 입력으로 Pose Graph를 생성한다.
- ② Front-end의 시간 경과에 따른 누적된 오류를 최소화하여 최적화된 노드 위치를 결정한다.
- ③ Levenberg-Marquardt 방법을 사용하여 최적화를 수행한다.
- ④ Pose Graph를 생성하여 장소를 인식한다.

❖ Pose Graph Optimization (PGO)의 목적은?

- ① 카메라와 다른 센서로부터 데이터를 수집한다.
- ② Pose Graph를 통해 장소를 인식한다.
- ③ 오차가 최소화되도록 모든 노드들의 위치를 최적화한다.
- ④ damping factor를 추가하여 최적화 문제를 해결한다.

❖ GraphSLAM에서 Gauss-Newton 방법의 역할은?

- ① Pose Graph를 생성한다.
- ② Front-end의 오류를 최소화한다.
- ③ 모든 노드들의 위치를 최적화한다.
- ④ 비선형 최소제곱 문제를 해결하기 위해 사용된다.

❖ Levenberg-Marquardt 방법이 GraphSLAM에서 사용되는 이유는?

- ① 카메라 입력으로 Pose Graph를 생성하기 위해.
- ② Pose Graph를 최적화하기 위해.
- ③ damping factor를 추가하여 최적화 문제를 더 효과적으로 해결하기 위해.
- ④ Front-end에서 장소를 인식하기 위해.

❖ 자율주행에서 계획수립(planning)의 주요 목적은?

- ① 차량의 위치를 추정한다.
- ② 주변 환경과 장애물을 인식한다.
- ③ 인식 내용 및 추정 위치를 토대로 원하는 위치로 이동을 위한 궤적을 생성한다.
- ④ 장애물을 탐지하고 분류한다.

❖ 자율주행에서 상위/전역(high-level/global) 계획수립에서 고려해야 할 주요 요소는?

- ① 차량의 속도와 방향을 조절한다.
- ② 출발지에서 목적지로의 길(route)을 결정한다.
- ③ 자동차와 보행자의 행동을 예측한다.
- ④ 실시간으로 위치를 추적한다.

❖ 자율주행에서 행동(behavioral) 계획수립의 핵심은?

- ① 출발지에서 목적지까지의 최적 경로를 계획한다.
- ② 타 차량, 보행자 등 장애물이 어떤 행동을 할지 예측하고 의사결정을 한다.
- ③ 센서 데이터를 분석하여 장애물을 탐지한다.
- ④ 주변 환경을 3D 지도로 구성한다.

❖ 자율주행에서 경로/지역(path/local) 계획 수립의 주요 목적은?

- ① 차량의 실시간 위치를 정확하게 추적한다.
- ② 센서 데이터를 분석하여 주변 환경을 인식한다.
- ③ 장애물을 회피한 궤적(trajectory)을 생성한다.
- ④ 차량과 보행자 사이의 거리를 유지한다.

❖ 자율주행에서 상위/전역 계획수립에 사용되는 기술은?

- ① 강화학습을 적용하여 확률적 계획수립을 한다.
- ② LiDAR 데이터를 사용하여 장애물을 탐지한다.
- ③ Kalman 필터를 사용하여 타 차량의 이동을 예측한다.
- ④ Rapidly-exploring Random Trees (RRT)를 사용하여 경로를 계획한다.

❖ Visual Odometry에서 카메라 이미지 분석을 통해 결정되는 것은?

- ① 로봇의 속도와 가속도
- ② 로봇의 위치와 방향
- ③ 카메라의 해상도와 감도
- ④ 로봇의 온도와 배터리 수준

- ❖ Visual Odometry에서 인접한 이미지 사이의 카메라 움직임을 계산하는 이유는?
 - ① 이미지의 화질을 향상시키기 위해
 - ② 카메라의 위치 변화와 로봇의 이동 경로를 추정하기 위해
 - ③ 데이터 전송 속도를 최적화하기 위해
 - ④ 이미지 저장 공간을 최소화하기 위해
- ❖ Visual Odometry를 사용하여 궤적을 추정할 때 발생할 수 있는 문제는?
 - ① 과속 감지
 - ② 배터리 소모 증가
 - ③ Drift error의 누적
 - ④ 이미지의 해상도 감소
- ❖ Visual Odometry에서 drift error를 해결하기 위해 필요한 것은?
 - ① 더 높은 해상도의 카메라
 - ② Backend optimization과 loop closure detection
 - ③ 데이터 압축 알고리즘
 - ④ 강화학습 모델

❖ Visual Odometry에서 deep learning 모델이 적용되는 부분은?

- ① 카메라의 실시간 이미지 향상을 위해
- ② 이미지 저장 알고리즘의 최적화를 위해
- ③ 인접 시점 이미지로부터 이동과 회전 정보를 추정하기 위해
- ④ 센서 데이터의 전처리를 위해

❖ 센서 융합(sensor fusion)이란?

- ① 여러 센서의 데이터를 결합하여 정확도 높은 추정을 하는 것
- ② 단일 센서의 데이터만을 사용하여 분석을 수행하는 것
- ③ 센서의 오류를 수정하기 위해 추가적인 센서를 개발하는 것
- ④ 센서 데이터를 클라우드에 저장하는 과정

❖ 초기 융합(early fusion)이란?

- ① 센서들 사이에서 데이터를 교환하는 과정
- ② 센서의 데이터를 시간에 따라 결합하는 방법
- ③ 원 데이터의 결합, 예를 들어 Lidar point cloud와 이미지의 픽셀의 결합
- ④ 센서 데이터를 머신 러닝 모델에 입력하는 것

- ❖ Lidar와 Camera를 사용한 센서 융합에서 가능한 융합 형태는?
 - ① 오직 초기 융합만이 가능하다.
 - ② 오직 지연 융합만이 가능하다.
 - ③ 초기 융합과 지연 융합 둘 다 가능하다.
 - ④ 융합이 불가능하다.
- ❖ Lidar와 Stereo camera를 사용한 센서 융합에서 적용되는 융합 방식은?
 - ① 초기 융합
 - ② 지연 융합
 - ③ 데이터 병합
 - ④ 동시 융합
- ❖ 센서 융합을 통해 차량이 수행할 수 있는 기능은?
 - ① 환경 내에서 차량 자신의 위치 추정
 - ② 센서의 파손 여부 판단
 - ③ 다른 차량의 연비 계산
 - ④ 기상 조건 예측

❖ 종단간 주행 학습이란?

- ① 인식단계를 포함한 여러 단계를 거쳐 주행을 제어하는 것.
- ② 인식단계 등이 없이 입력 영상 등으로부터 주행 제어를 하는 것.
- ③ 오직 Lidar 센서만을 이용하여 주행을 제어하는 것.
- ④ 주행 중 발생하는 모든 데이터를 저장하는 것.

❖ 종단간 주행 학습에서 인식단계의 제외의 의미는?

- ① 주행 중에는 인식을 수행하지 않는다는 것.
- ② 인식단계를 별도로 구축하지 않고, 입력으로부터 바로 주행 제어 정보를 추론한다는 것.
- ③ 인식과 관련된 센서가 고장 났을 때의 주행 방법을 의미한다.
- ④ 인식단계를 다른 차량과 공유하지 않는다는 것.

❖ 종단간 주행 학습에서의 주행 제어 정보는 어떻게 결정되는가?

- ① 전통적인 알고리즘에 의해 결정된다.
- ② 전문가의 판단에 의해 수동으로 조정된다.
- ③ 입력 데이터로부터 직접 추론하여 결정된다.
- ④ 사전에 프로그램된 경로를 따라 자동으로 결정된다.