MUSIC
RECOMMENDATION
BY ETL, ML AND
POWER BI ANALYSIS

WELCOME EVERYONE

Welcome Message

Presenting to you a recommendation system using ETL, ML and Power BI analytics and visualization

GET STARTED

LIST OF CONTENT

01

Opening Slide

Presentations are communication tools that can be used as demonstrations.

04

About Us

Team information

System Report

Project Details and explanation

End Slide

Ending note

ALL ABOUT THE TEAM

Muhammad Hamza CT-19057

Fashad Ahmed Siddique CT-19043

Why Are We Here?

To present our Music Recommendation System using ETL (extract, transform, load), Power BI visualization and machine learning algorithms.

PROBLEM STATEMENT

Our Vision

Improve user engagement, increase revenue, and differentiate our music streaming service from the competition by providing a competent music recommendation system.

A problem well stated is a problem half solved.

John Dewey

Data Visualization with POWER BI
Using the loaded data from the pipeline
to present useful analytics to the
audience.

Recommendations using various ML algos
Using the pipeline data to infer useful features
and then process them separately to produce
computations to suggest similar song choices
with respect to genres they listen to.

METHODOLOGY DIAGRAM

Step One

Using ETL pipleline to extract all the data from the source and pulling other data from secondary repositories

Step Four

Using the loaded data in the machine learning algorithms to compute the features and produce valuable results as a recommendation for the user

Step Two

Loading the data into the dataabase

Step Thre

Using the loaded data in a visualization tool to infer useful analytics and producing useful. insights

SOLUTION & CODE

ETL Code

```
HORSES - 1
    "Accept": "application/json",
    "Content-Type": "application/json",
    "Authorization": "Bearer (token)".forest(token=TOKEN)
today = datetime.datetime.now()
yesterday = today - datetime.timedelta(days=90)
yesterday_unix_timestamp = int(yesterday.timestamp()) * 1000
req = requests.get("https://api.spotify.com/vi/me/player/recently-played?after=(time)".format(time-yesterday_unix_timestamp), headers = headers)
data = req.json()
song_names = []
artist_names = []
played_at_list = []
timestamps - []
for song in data["items"]:
    song_names.append(song["track"]["name"])
    artist_names.append(song["track"]["album"]["artists"][0]["name"])
   played_at_list.append(song["played_at"])
   timestamps.append(song["played_at"][0:10])
song_dict = {
    "song name": song names,
    "artist name": artist names,
    "played_at": played_at_list,
    "timestamp": timestamps
```

ML code

```
from sklearm.cluster import EMeans
from sklearm.preprocessing import StandardScaler
from sklearm.pipeline import Pipeline

cluster_pipeline = Pipeline([('scaler', StandardScaler()), ('kmeans', EMeans(n_clusters=10))])

X = genre_data.select_dtypes(np.number)
cluster_pipeline.fit(X)
genre_data['cluster'] = cluster_pipeline.predict(X)
```

```
# Visualizing the Clusters with t-SME
from sklearn.manifold import TSME

tame_pipeline = Pipeline([('scaler', StandardScaler()), ('tame', TSME(n_components-2, verbose-1))])
gmnre_embedding = tame_pipeline.fit_transform(X)
projection = pd.DataFrame(columns-['x', 'y'], data-genre_embedding)
projection('genres'] = genre_data['genres']
projection('cluster'] = genre_data['cluster']

fig = px.scatter(
    projection, x-'x', y-'y', color-'cluster', hower_data-['x', 'y', 'genres'])
fig.show()
```


SOLUTION & CODE

Database view

SELECT * FROM my_played_tracks mpt my_played_tracks 1 X F = 2 T₁ T ! ← - → -💢 🖔 Enter a SQL expression to fifter results (use Ctrl+Space) Pig played_at Faasle Aditva Rikhari 2022-12-29T15:53:15:380Z 2022-12-29 Sajan Das Na Atif Adlam 2022-12-29T15:50:46.310Z 2022-12-29 Various Artists 2022-12-29T15i46i50.102Z 2022-12-29 Hone The Pyer **Emptiness and Aitebar Various Artists** 2022-12-29T15-42:23.739Z 2022-12-29 Afsanay. 2022-12-29T12:53:13:656Z 2022-12-29 Young Stunners Soneya Asim Achar 2022-12-29T12-41:40.636Z 2022-12-29 Shubh 2022-12-29T12i37i00.355Z 2022-12-29 Elevated Billey 2022-12-29T12-33:39.243Z 2022-12-29 Daku Chani Nattan 2022-12-29T12:31:10.348Z 2022-12-29 Just Enough Whiskey 2022-12-29T12:28:58.869Z 2022-12-29 2022-12-29T04s42:12.347Z 2022-12-29 Bildhee Imaday 2022-12-29T04:34:56.703Z 2022-12-29 Anti-Hero Taylor Swift 2022-12-29T04:32:10.364Z 2022-12-29 Tuihe Kaise, Pata Na Cl. Asees Kaur 2022-12-29T04:28:48.980Z 2022-12-29 Hawa Banke **Darshan Reval** 2022-12-29T04:25:03:968Z 2022-12-29 SPACESHIP Various Artists 2022-12-29T04:22:11.512Z 2022-12-29 Elevated Shubh 2022-12-29T04:16:29.818Z 2022-12-29 licky 2022-12-29T04/13:08:672Z 2022-12-29 Chani Nattan 2022-12-29T04:10:40.114Z 2022-12-29 Just Enough Whiskey Nightshift 2022-12-29T04:08:28.414Z 2022-12-29

Colab view

```
☐ Comment #4 Share 🐞
de Help All-changes award
    + Code + Text
                "WII" ...
                "WIT",
                'MS' ,
                "BOK",
                '24'
                " 294" <sub>#</sub> .
                1290 ] <sub>e</sub>
               'disc_number': 1,
               'duration_ms': 214981,
               'explicit': True,
               'external_ids': {"isrc": "QZMER2197134"},
               "external_urls": ("spotify": "https://open.spotify.com/track/4x0h9Z138boxe250Y5bx8Z").
              'bref': 'https://api_spetify_com/wi/tracks/dught/lk8bovm75075bz82'.
              "1d": "4v0h921X6bowm398Y5b282".
               "is_local": False,
               'name': 'Just Enough Whiskey',
               'popularity': 52,
               'preview url': "https://p.scds.co/mp3-preview/cdb9379dd3ec522e5x8caf282b8d1899b97aed1?
          cid-774b2964f33844c495f306cafdad9c86 -
               "track_number": 1,
               "type": "track",
               'urd': 'spotify:truck:du@h#2188boum366%Bbc#2'},
              "played_st": "3832-13-29884:88:28.4542",
              "context": None)],
            'rest': 'https://epi.spotify.com/v1/me/player/recently-played/after-1072322125330'.
            'cursors': ("after": "1672329195380", "before": "1672286988414"),
            "limit": 30,
            'href': 'https://api.spotify.com/wi/me/player/recently-played/after-1004011520000'.
```


SOLUTION & CODE

Raw API view

```
{ □
   "items": 🖃
      { □
         "track":{
           "album":{ □
               "album_type": "single",
              "artists":[ 🖃
                 { ⊟
                     "external_urls":{
                        "spotify": "https://open.spotify.com/artist/3ozYqVCLohfpXIhalkhM8D"
                     "href": "https://api.spotify.com/v1/artists/3ozYqVCLohfpXIhalkhM8D",
                     "id": "3ozYqVCLohfpXIhalkhM8D",
                     "name": "Aditya Rikhari",
                     "type": "artist",
                     "uri": "spotify:artist:3ozYqVCLohfpXIhalkhM8D"
               "available_markets":[ 🛨 ],
               "external_urls":{
                  "spotify": "https://open.spotify.com/album/2xfAmgKBQroCYbDnl18me3"
```

Power BI Dashboard view

FUTURE WORK

Producing Better Versions

Coming up with better versions with the best methodlogies to keep the system upto date and produce better results.

Enhancing Accuracy

As the usage increases, more and more data will be aded into the datasets ultimately helping increase the accuracy of the system.

THANKS FOR YOUR TIME

