

데이터 저장과 파일

컴퓨터과학과 정재화

각습목가

- → 1 물리적 저장장치와 파일
- **----(2)** 저장장치관리

81 물리적 저장장치와 파일

- 물리적 저장장치의 구성
- 파일의 구성
- 파일 구조화

물리적 저장장치의 구성

□ 물리적 저장장치는 데이터 접근 속도, 용량을 기준으로 다양한 장치로 계층적(hierarchical) 구성

한국방송통신대학교 Korea National Open University

물리적 저장장치별 특징

- ▷ 기억 지속성 관점으로 휘발성과 비휘발성으로 구분
- ▷ 휘발성 저장장치
 - 캐시: CPU 내부에 위치하여 자주 사용될 것으로 예상되는 데이터를 저장
 - 메인 메모리: 임의 접근이 가능한 고속의 저장공간

▷ 비휘발성 저장장치

- 母 플래쉬 메모리: 메인 메모리와 유사하나 비휘발성
- 자기 디스크: 자성체를 통해 영구적으로 데이터를 저장
- 광학 디스크 드라이브: CD, DVD, Blu-ray 등
- 테이프: 용량이 크고 저렴하나 순차 접근 방식으로 접근 속도가 매우 느림

데이터베이스 저장 구조

데이터베이스 구성 요소

▷ 파일

● 데이터를 영구적으로 저장하기 위해 사용되는 가장 기초적인 논리적 구조

▷ 블럭

- 파일을 고정적인 길이로 분할하여 생기는 균등한 크기의 데이터 묶음
- 일반적으로 메모리와 디스크간 데이터 전송 단위로 결정

▷ 레코드

- 母 블럭에 저장되는 요소
- 관계형 모델에서 분리될 수 없는 최소 데이터 저장 단위

♥고정 길이 레코드

▷ 고정적인 바이트 수를 갖는 레코드 저장 시 고려되는 기법

CHAR(8)		CHAR(10) INT
사번	이름	부 [⁄] 서명	[/] 연봉
12012	정용호	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13030	장보고	인사부	75,000,000
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000
	ル世 12012 12034 13019 13030 13044 14001 14004	사번 이름 12012 정용호 12034 임꺽정 13019 이순신 13030 장보고 13044 나철수 14001 김영희 14004 유관순	사번 이름 부서명 12012 정용호 인사부 12034 임객정 재무부 13019 이순신 법무지원부 13030 장보고 인사부 13044 나철수 시설관리부 14001 김영희 마케팅부 14004 유관순 총무부

♥고정 길이 레코드

▷ 데이터 접근

- 母 모든 레코드는 42 바이트 크기로 구성
- ❶ i번째 레코드 접근
 - (i 1) * 42 + 1번째 바이트부터 42개의 바이트를 읽어 접근

고정 길이 레코드 할당

- □ 블럭의 길이가 레코드 길이로 정확히 나눠지지 않아 잔여 공간을 비워두는 방법
 - 블럭 내의 남은 공간 낭비

블럭1 : 레코드1 : 레코드k : 레코드k : 블럭2 : :

^(*)고정 길이 레코드 할당

- □ 블럭의 길이가 레코드 길이로 정확히 나눠지지 않아 한 레코드를 두 블럭에 나누어 저장하는 방법
 - む 레코드 접근 시 두 개의 블럭에 접근 필요

	레코드1
블럭1	
— ¬±	레코드k
	레코드k+1 (1/2)
	레코드k+1(2/2)
블럭2	: · · · · · · · · · · · · · · · · · · ·

고정 길이 레코드 할당 시 고려사항

- ▷ 레코드 삭제 시
 - む 해당 레코드가 저장된 위치에 빈 공간이 생성
 - 장시간 레코드의 삽입 및 삭제 발생 시, 저장 공간에 많은 낭비가 발생
- ▷ 레코드 삭제 시 대처 방안
 - 마지막 레코드로 공백 대체
 - ◆ 삭제 레코드 이후의 레코드를 이동
 - ♪ 가용 리스트 관리

1. 마지막 레코드로 공백 대체

사번	이름	부서명	연봉
12012	정용호	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13030	장보고	인사부	75,000,000
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000

레코드 삭제 대처

2. 삭제 레코드 이후의 레코드를 이동

	사번	이름	부서명	연봉
레코드1	12012	정용호	인사부	90,000,000
레코드2	12034	임꺽정	재무부	80,000,000
레코드3	13019	이순신	법무지원부	90,000,000
레코드4	13030	장보고	인사부	75,000,000
	13044	 나철수	시설관리부	80,000,000
레코드5	13044	니근ㅜ	시르민니구	80,000,000
레코드6	14001	김영희	마케팅부	90,000,000
레코드7	14004	유관순	총무부	92,000,000
레코드8	14017	안창호	생산부	98,000,000

고정 길이 레코드

3. 가용 리스트 관리

					_	
파일헤더	공백 레코드 포인터					
레코드1	12012	정용호	인사부	90,000,000	 	
레코드2	12034	임꺽정	재무부	80,000,000		
레코드3	13019	이순신	법무지원부	90,000,000		
레코드4	13030	장보고	인사부	75,000,000		
레코드5	13044	나철수	시설관리부	80,000,000	 	
레코드6	14001	김영희	마케팅부	90,000,000		
레코드7	14004	유관순	총무부	92,000,000		
레코드8	14017	안창호	생산부	98,000,000]	

◇가변 길이 레코드

- □ **블럭에 저장되는 레코드의 길이가** 서로 다른(가변적) 레코드를 할당**하는 방법**
- ▷ 가변 길이 레코드가 고려되어야 하는 상황
 - む 한 블럭 내에 저장되는 레코드 유형이 둘 이상
 - 母 길이가 고정되지 않은 컬럼의 개수가 하나 이상
 - 母 레코드가 멀티셋을 허용하는 컬럼을 가질 때

레코드의 컬럼값이 여러 개인 컬럼

가변 길이 레코드

	C	HAR(8)	VARCHA	R(20)	CHAR(10)	IN	Т		
						<u> </u>				
		사번	이름		부서명		연봉			
		12012	홍길동		인사부	90,	000,0	000		
		12034	임꺽정		재무부	80,	000,0	000		
		13019	이순신	법	무지원부	90,	000,0	000		
		13030	장보고		인사부	75,0	000,C	000		
		13044	나철수	시	설관리부	80,	000,0	000		
		14001	김영희		마케팅부 -	90,	000,0	000		
		14004	유관순		총무부	92,0	000,C	000		
		14017	안창호		생산부	98,	000,0	000		
바이트 번호	0	•	4 1:	2	22	2	26 2	27		32
		27, 6	12012	인사부	90,0	000,000	NULL		홍길동	
-		 							^	♣한글방송

全吴**III0I**II 구조

마일 구조화 방법

▷ 파일 구조화

母 파일 수준에서 레코드를 관리(순서 등)하는 기법

사번	이름	부서명	연봉
12012	홍길동	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13030	장보고	인사부	75,000,000
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000

블럭 1 블럭 2 블럭 3 : 블럭 n

파일 구조화 방법의 종류

- ▷ **힙 파일 구조**: 저장순서 고려없이 파일 내 임의 블럭에 배치
- ▷ 순차 파일 구조: 레코드가 탐색키 기준으로 정렬되어 저장
- ▷ 해시 파일 구조: 해시 함수를 사용하여 블럭 주소를 계산

사번	이름	부서명	연봉
12012	홍길동	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13030	장보고	인사부	75,000,000
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000
16048	손흥민	총무부	40,000,000

🏲 순차 파일 구조의 예

탐색키

	사번	이름	부서명	연봉	
	14001	김영희	마케팅부	90,000,000	
\	13044	나철수	시설관리부	80,000,000	
/	14017	안창호	생산부	98,000,000	
	14004	유관순	총무부	92,000,000	
	13019	이순신	법무지원부	90,000,000	
	12034	임꺽정	재무부	80,000,000	
	13030	장보고	인사부	75,000,000	
	12012	홍길동	인사부	90,000,000	
	16048	손흥민	 총무부	40,000,000	
	10040	습니	S TT	40,000,000	

全计 III일 구조

- ▷ 레코드가 탐색키 순서대로 정렬
- ▷ 레코드가 파일에 삽입되는 시점에서 키 값이 부여
- ▷장점
 - 검색키에 대한 정렬 연산이 불필요, 키 값들의 순서로 레코드를 판독하는 연산에 효율적
 - 현재 레코드에서 정렬된 키 순서로 다음 레코드를 찾을 때 부가적인 블럭 접근이 불필요
 - 이진 탐색을 사용하면 더 빠르게 레코드를 검색
- ▷ 단점
 - 母 레코드 삽입, 삭제에 많은 비용 소요

오버플로우 블럭

▷ 순차 파일 구조에서 레코드의 정렬된 상태 유지를 위해 삽입된 신규 블럭

LLHH		HUM	ИH	$\overline{}$
사번	<u>이름</u>	부서명	연봉	
14001	김영희	마케팅부	90,000,000	
13044	나철수	시설관리부	80,000,000	
14017	안창호	생산부	98,000,000	
14004	유관순	총무부	92,000,000	
13019	이순신	법무지원부	90,000,000	
12034	임꺽정	재무부	80,000,000	
13030	장보고	인사부	75,000,000	
12012	홍길동	인사부	90,000,000	
16048	손흥민	총무부	40,000,000	-

62 저장망치 관리

- 저장장치 접근
- 버퍼 관리자
- 버퍼 교체 전략

저장장치 접근

- ▷ 파일은 논리적 관점에서의 저장 객체
- □ 실제 저장될 때에는 여러 개의 물리적 단위인 블럭으로 저장
 - 블럭은 메모리와 디스크 간 데이터의 전송 단위
 - 일반적으로 2KB ~ 32KB 사용
 - 블럭 전송을 최소화할 수록 입출력 소요 시간이 단축
 - 사용 중인 블럭을 지속적으로 메모리에 적재
 - 한정적 공간으로 인하여 필요에 따라 특정 블럭 할당을 해지
 - 메모리 내부에 버퍼라는 공간에 블럭을 저장하고,
 이를 관리하기 위한 버퍼 관리자를 사용

저장장치 접근

(A) 한국방송통신대학교 Korea National Open University

世間 型引队

- □ DBMS가 메모리 내부의 공간인 버퍼(buffer)를 효율적으로 관리하기 위한 하위 시스템
- □ DBMS상의 소프트웨어는 필요한 블럭이 있을 때 버퍼 관리자에게 해당 블럭을 요청
 - 요청된 블럭이 버퍼에 있다면, 버퍼 관리자는 블럭이 위치한 메모리 주소를 프로그램에게 전달
 - 요청된 블럭이 없는 경우, 버퍼 관리자는 버퍼내의 새로운 공간을 할당하고 해당 블럭을 적재
 - 더 이상 적재할 공간이 없다면, 버퍼에 있는 기존 블럭을 선택하여 할당을 해지하고 해당 블럭을 적재

버머 관리자의 기능

□ 버퍼 교체

- ひ 가용 공간을 확보 하기 위해 기존에 적재된 블록을 특정 기준에 의하여 해지
- 미래에 가장 적게 사용될 블럭을 선택하여 디스크로 내보내는 것이 이상적인 버퍼 교체 전략
- 母 버퍼 교체 전략
 - LRU(Least Recently Used): 최근에 가정 적게 참조된 블럭을 교체
 - MFU(Most Frequently Used): 특정 기간동안 가장 여러 번 사용된 블럭을 선택하여 블럭을 교체

고정 블럭과 블럭 강제 출력

버머 관리자의 기능

▷ 블럭 고정

- 장애로 메모리의 데이터가 손실되어 작업이 중단될 경우, 중단된 작업의 결과물이 디스크에 기록되는 것을 방지
- む 디스크 블럭이 교체되는 것을 제한

□ 블럭 강제 출력

- ◆ 시스템 로그와 같이 중요한 데이터는 디스크에 영구적으로 기록되어야 할 필요
- 버퍼 공간이 필요 없어도 강제로 디스크에 기록

다음 /기간

#