absolute Häufigkeit: h_i relative Häufigkeit: $f_i = \frac{h_i}{n}$

kumulative Häufigkeitsverteilung: $H(x) = \sum_{i:a_i < x} h_i$ empirische Verteilfunktion: $F(x) = \frac{1}{n}H(x) = \sum_{i:a_i < x} f_i$ arithmetisches Mittel: $\bar{x} = \frac{1}{n}\sum_{i=1}^{n} x_i = \frac{1}{n}\sum_{i=1}^{n} h_i a_i$

geometrisches Mittel $\bar{x}_{geom} = \sqrt[n]{\prod_{i=1}^{n} x_i}$

 $\overline{x}_{geom} \leq \overline{x}$

median: $\tilde{x} = 50\% der Werte \ge \tilde{x}$

Modus = häufigster Wert

empirische Varianz: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - n\bar{x}^2)$

Standardabweichung: $s = \sqrt{varianz}$

Kovarianz: $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$

Korrelationskoeffizient: $r_x y = \frac{s_{xy}}{s_x \cdot s_y}$

 $prob(A) = \frac{|\text{günstige Fällel}}{|\text{alle Fällel}}$ $prob(B|A) = \frac{prob(B \cap A)}{prob(A)}$

Unabhängig $\Leftrightarrow prob(A \cap B) = prob(A) \cdot prob(B)$

Satz von Bayes: $prob(B|A) = prob(A|B) \frac{prob(B)}{prob(A)}$

 $prob(B|A) = prob(A|B) \frac{prob(B)}{prob(B) \cdot prob(A|B) + prob(\overline{B} \cdot prob(A|\overline{B})}$

Laplace: Alle Fälle sind gleich wahrscheinlich

Erwartungswert

diskret:
$$E(X) = \sum_{i} prob(X = x_i) \cdot x_i$$

stetig: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$

$$E(X+Y) = E(X) + E(Y); E(aX) = aE(X)$$

wenn f symmetrisch um c dann $E(X) = c$
wenn X,Y unabhängig: $E(XY) = E(X) \cdot E(Y)$

varianz

diskret:
$$\sigma^2 = \sum_i prob(X = x_i) \cdot (x_i - E(X))^2$$

stetig: $\sigma^2 = \int_{-\infty}^{\infty} (x_i - E(X))^2 f(x) dx$
 $\sigma^2 = E(X^2) - E(X)^2$

$$Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)$$

 $Var(aX+b) = a^2Var(X)$

Kovarianz

$$Cov(X,Y) = E((X - E(X)) \cdot (Y - E(Y)) = E(X \cdot Y) - E(X)E(Y)$$

Standardisierung

standartisierte Zufallsvariable
$$Z := \frac{X - \mu}{\sigma} => E(X) = 0$$
, $Var(X) = 1$

Verteilunsfunktionen

Verteilungsfunktion $F(x) = prob(X \le x)$ steigt monoton von 0 nach 1

Dichte: f(x);

f(x) = F'(x); $F(x) = \int_{-\infty}^{x} f(t)dt$

Gleichverteilung

$$f(x) = \frac{1}{b-a} fallsa < x < b, sonst0$$

$$F(x) = \frac{x-a}{b-a} fallsa < x < b, sonst0bzw.1$$

$$E(X) = (b+a)/2$$

Exponentialverteilung

$$F(x) = 1 - e^{-\lambda x};$$

 $f(x) = \lambda e^{-\lambda x}$ für $x > 0$
 $E(X)=1/\lambda := Durchschnittliche Lebensdauer$
 $Var(X) = 1/\lambda^2$

Weibull-Verteilung

$$F(x) = 1 - e^{\lambda x^{\beta}}; f(x) = \lambda \beta x^{\beta - 1} e^{-\lambda x^{\beta}} \text{ für } x > 0$$

1

Hypergeometrische Verteilung

Bei $20n \le N$ Näherung durch Binomialverteilung

Stichprobe ohne Zurücklegen: N Elemente, M Treffermöglichkeiten, Stichprobe mit n

$$\operatorname{prob}(X=x) = \frac{\binom{M}{x} \cdot \binom{N-M}{n-x}}{\binom{N}{n}}$$
$$E(X) = n\frac{M}{N} Var(X) = n\frac{M}{N} \left(1 - \frac{M}{N}\right) \frac{N-n}{N-1}$$

binomialverteilung

n= Stichprobengröße, wahrscheinlichkeit p

$$prob(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

E(X) = np; Var(X) = np(1-p)

Wenn X = Bi(n;p) und Y = Bi(m;p) unabhängig, dann X + Y = Bi(m+n;p)

Bei $n \ge 50, p \le 0.1$ Näherung durch Poisson-Verteilung mit $\lambda = np$ Bei $np(1-p) \ge 9$:

$$F_B(x)$$
Näherung $dF_N(x+0.5) = \Phi\left(\frac{x+0.5-np}{\sqrt{np(1-p)}}\right)$

Poisson-Verteilung

Auftreten von Ereignis in Zeitinterval:

$$prob(X = x) = \frac{\lambda^{x}}{x!}e^{-\lambda}$$

 $E(X) = Var(X) = \lambda$

Bei
$$\lambda \ge 9 F_P(x)$$
 Näherung $F_N(x+0.5) = \Phi\left(\frac{x+0.5-\lambda}{\sqrt{\lambda}}\right)$

Normalverteilung

$$\begin{split} f(x) &= \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-0.5\left(\frac{x-\mu}{\sigma}\right)^2} \\ \mu &= erwartungswert, \sigma^2 = Varianz \\ X &= N(\mu; \sigma^2), Y = aX + b \Rightarrow Y = N(a\mu + b; a^2\sigma^2) \end{split}$$

Standard-Normalverteilung z_p

Dichte: $\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-0.5x^2}$

Verteilung: Φ

 $\Phi(-x) = 1 - \Phi(x)$

E(X) = 0; Var(X) = 1;

Ablesen an Standard-Normalverteilung: $F(X) = \Phi\left(\frac{x-\mu}{\sigma}\right)$, $f(x) = \frac{\phi}{\sigma}\left(\frac{x-\mu}{\sigma}\right)$

Zentraler Grenzwertsatz, schwache Konvergenz

Die Summe $\sum_{i=1}^{n} X_i$ über identisch Verteilte Zufallsvariablen $X_i mit E(X_i) = \mu, Var(X_i) =$ σ^2 konvergiert gegen $N(n\mu, n\sigma^2)$

Chi-Quadrat (mit m Freiheitsgraden)

 $\chi^2(m)=\Sigma_{i=0}^m X_i^2$ für X_i standardnormalverteilt, unabhängig $\mathrm{E}(\chi^2)=\mathrm{m},\,\mathrm{Var}(\chi^2)=2\mathrm{m}$

z.B. $\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2$ mit X_i Stichproben aus normalverteilt ist χ^2 verteilt mit

n-1 Freheitsgraden

$$f_m(x) = \frac{x^{m/2-1}}{2^{m/2}\Gamma(m/2)}$$
 für x>0, sonst 0

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-1} dt \Leftrightarrow x! \text{ für } x \in \mathbb{N}$$

Näherung durch Normalverteilung für m>30: $\chi^2_{m:n} = \sqrt{2m}z_p + m$

t-Verteilung mit m-Freiheitsgraden

 $t(m) = \frac{Z}{\sqrt{X/m}}$ ist t-Verteilt für Z standardnormalverteilt und X Chi-Quadratverteilt

$$E(T) = 0$$
 für m>1, $Var(T) = \frac{m}{m-2}$ für m>2

z.B. $\frac{X-\mu}{S/\sqrt{n}}$ für Stichprobe mit Größe n aus Normalverteilter Grundgesamtheit

Näherung für m>30: $t_{m;p} = \approx \sqrt{\frac{m}{m-2}}\Phi(p)$

$$f_m(x) = \frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{n\pi}\Gamma(m/2)} \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}}$$

F-Verteilung

$$F(m_1; m_2) = \frac{\sqrt{X_1/m_1}}{\sqrt{X_2/m_2}} \text{ für } X_1 u n d X_2 \text{ Chi-Quadrat verteilt}$$

$$E(F) = \frac{m_2}{m_2 - 2} \text{ für } m_2 > 2, Var(X) = \frac{m_2^2(m_1 + m_2 - 2)}{m_1(m_2 - 4)(m_2 - 2)^2} \text{ für } m_2 > 4$$

Zufallsstichproben

n gewählte Elemente, die Werte sind zufällig verteilt; wenn ausgreichend Große Grundgesamtheit: Werte unabhängig und gleich verteilt

Punktschätzer

Test einer Verteilung mit zu schätzendem Parameter θ Eigenschaften:

- 1. erwartungstreu falls $E(T) = \theta$; bias= $E(T) \theta$
- 2. asymptotisch erwartungstreu: $\lim_{n\to\infty} E(T_n) = \theta$
- 3. konsistent: konvergiert stochastisch gegen θ ($\lim_{n\to\infty} prob(|T_n-\theta|<\varepsilon)=1$ für alle $\varepsilon>0$
- 4. konsistent im quadratischen Mittel: $\lim_{n\to\infty} E((T_n \theta)^2) = 0$ bzw. wenn asymptotisch erwartungstreu und $Var(X) \to 0$
 - => ist auch konsistent; Bsp: arithmetisches Mittel, empirische Verteilung

Maximum-Likelihood

ist asymptotisch erwartungstreu, asymptotisch normalverteilt mit $\mu = \theta$ und minimaler Varianz,

- 1. $L = \prod_{i=1}^n f(x_i, \theta)$ $z.B.L(x_1, \dots, x_n, \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i}$
- 2. berechne log(L) $z.B.log(L(...)) = nln(\lambda) \lambda \sum_{i} = 1^{n}x_{i}$
- 3. berechne maximum von L (**ABLEITEN**) z.B. $\Rightarrow 0 = n/\lambda \sum_i = 1^n x_i \dots$

Logarithmen:

- log(xy) = log(x) + log(y)
- $log(x^c) = clog(x)$
- $e^{\log(x)} = x$

Regressionsrechnung:

Zu nähernde Funktion f(x) in Parameterform, z.B. Gerade: y=mx+t Stichprobe mit Wertepaaren: $(x_1, y_1) \dots (x_n, y_n)$

- 1. Bilde $s\Delta := \sum_{i=1}^{n} (y_i f(x_i))^2$
- 2. Leite nach jedem Parameter ab, setze gleich Null, bestimme Parameter

Alternative für Geraden: $m = r_x y \frac{x_y}{s_x}, d = \overline{y} - k \overline{x}$

Intervallschätzung

Irrtumswahrscheinlichkeit: α Konfidenzniveau: $1 - \alpha$ einseitiges Konfidenzintervall: $[-\infty; \overline{x} + Abweichung]$

zweiseitiges Konfidenzintervall: Intervall zwischen $\bar{x} \pm Abweichung$ //siehe Folgende

unbekannte Varianz

Abweichung(einseitig): $\frac{s}{\sqrt{n}}t_{n-1; 1-\alpha}$ Abweichung(zweiseitig): $\frac{s}{\sqrt{n}}t_{n-1; 1-\alpha/2}$

Normalverteilung mit bekannter Varianz

Abweichung(einseitig): $\frac{\sigma}{\sqrt{n}}z_{1-\alpha}$ Abweichung(zweiseitig): $\frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}$

t-Test

Stichprobe mit mittel \bar{x} ; Hypothese $H_0: \mu = \mu_0$ Prüfwert: $z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$

zweiseitig

Ablehnungsbereich: $|z| > t_{n-1;1-\alpha/2} => H_0$ muss verworfen werden

einseitig

3

Ablehnungsbereich: $|z| > t_{n-1;1-\alpha} => H_0$ muss verworfen werden

Chi-Quadrat-Anpassungstest

Test auf Verteilung = vermutete Verteilung, Vorraussetzung: große Stichprobe $(np_i \ge 5)$ für alle i

Teile Werte in Intervalle I_i auf pi: $\operatorname{prob}(X \in I_i)$ und h_i : Anzahl der Werte in I_i

$$y = \sum_{i=1}^{k} \frac{(h_i - np_i)^2}{np_i} = 1/n \left(\sum_{i=1}^{k} \frac{h_i^2}{p_i}\right) - n \text{ ist asymptotisch } \chi^2(k-1) \text{ verteilt}$$

 $p_i = prob(A_i)$: Wahrscheinlichkeit von A_i gemäß vermuteter Verteilung Ablehnungsbereich: $y > \chi^2_{k-1:1-\alpha}$

368 A Tabellen

A.2 Standardnormalverteilung $\Phi(z)$

Standardnormalverteilung $\Phi(z)$ ($\Phi(-z) = 1 - \Phi(z)$):

Stan	dardnor	maiverte	$^{ m enung}arPhi$	(z) ($arPhi($ -	-z) = 1	$-\Psi(z)$):				
z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Ablesebeispiel: Der Funktionswert für z=0.23 steht in der Zeile 0.2 und der Spalte 0.03. Also $\Phi(0.23)=0.591.$

p-Quantile z_p $(z_{1-p} = -z_p)$:

F ~		P (-1-P	-P)							
p	0.6	0.7	0.8	0.9	0.95	0.975	0.99	0.995	0.999	0.9995
z_p	0.2533	0.5244	0.8416	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905

A.3 Quantile der Chi-Quadrat-Verteilung

p-Quantile χ^2 ...:

p-Quan	tile χ_m^2	;p:								
$m \setminus p$	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.995
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.60
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34	12.84
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28	14.86
5	0.412	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09	16.75
6	0.676	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81	18.55
7	0.989	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48	20.28
8	1.344	1.646	2.180	2.733	3.490	13.36	15.51	17.53	20.09	21.95
9	1.735	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67	23.59
10	2.156	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21	25.19
11	2.603	3.053	3.816	4.575	5.578	17.28	19.68	21.92	24.72	26.76
12	3.074	3.571	4.404	5.226	6.304	18.55	21.03	23.34	26.22	28.30
13	3.565	4.107	5.009	5.892	7.042	19.81	22.36	24.74	27.69	29.82
14	4.075	4.660	5.629	6.571	7.790	21.06	23.68	26.12	29.14	31.32
15	4.601	5.229	6.262	7.261	8.547	22.31	25.00	27.49	30.58	32.80
16	5.142	5.812	6.908	7.962	9.312	23.54	26.30	28.85	32.00	34.27
17	5.697	6.408	7.564	8.672	10.09	24.77	27.59	30.19	33.41	35.72
18	6.265	7.015	8.231	9.390	10.86	25.99	28.87	31.53	34.81	37.16
19	6.844	7.633	8.907	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	7.434	8.260	9.591	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	8.034	8.897	10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	8.643	9.542	10.98	12.34	14.04	30.81	33.92	36.78	40.29	42.80
23	9.260	10.20	11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	9.886	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	34.38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	36.74	40.11	43.19	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89	53.67
31	14.46	15.66	17.54	19.28	21.43	41.42	44.99	48.23	52.19	55.00
32	15.13	16.36	18.29	20.07	22.27	42.58	46.19	49.48	53.49	56.33
33	15.82	17.07	19.05	20.87	23.11	43.75	47.40	50.73	54.78	57.65
34	16.50	17.79	19.81	21.66	23.95	44.90	48.60	51.97	56.06	58.96
35	17.19	18.51	20.57	22.47	24.80	46.06	49.80	53.20	57.34	60.27
36	17.89	19.23	21.34	23.27	25.64	47.21	51.00	54.44	58.62	61.58
37	18.59	19.96	22.11	24.07	26.49	48.36	52.19	55.67	59.89	62.88
38	19.29	20.69	22.88	24.88	27.34	49.51	53.38	56.90	61.16	64.18
39	20.00	21.43	23.65	25.70	28.20	50.66	54.57	58.12	62.43	65.48

Ablesebeispiel: $\chi^2_{12;0.9}=18.55$ Für m>39 kann folgende Approximation verwendet werden:

$$\chi_{m;p}^2 \approx m(1 - \frac{2}{9m} + z_p \sqrt{\frac{2}{9m}})^3,$$

wobei z_p das $p\text{-}\mathrm{Quantil}$ der Standardnormalverteilung ist.

370 A Tabellen

A.4 Quantile der t-Verteilung

	tile t_m ;					
$m \setminus p$	0.9	0.95	0.975	0.99	0.995	0.999
1	3.078	6.314	12.71	31.82	63.66	318.3
2	1.886	2.920	4.303	6.965	9.925	22.33
3	1.638	2.353	3.182	4.541	5.841	10.21
4	1.533	2.132	2.776	3.747	4.604	7.173
5	1.476	2.015	2.571	3.365	4.032	5.893
6	1.440	1.943	2.447	3.143	3.707	5.208
7	1.415	1.895	2.365	2.998	3.499	4.785
8	1.397	1.860	2.306	2.896	3.355	4.501
9	1.383	1.833	2.262	2.821	3.250	4.297
10	1.372	1.812	2.228	2.764	3.169	4.144
11	1.363	1.796	2.201	2.718	3.106	4.025
12	1.356	1.782	2.179	2.681	3.055	3.930
13	1.350	1.771	2.160	2.650	3.012	3.852
14	1.345	1.761	2.145	2.624	2.977	3.787
15	1.341	1.753	2.131	2.602	2.947	3.733
16	1.337	1.746	2.120	2.583	2.921	3.686
17	1.333	1.740	2.110	2.567	2.898	3.646
18	1.330	1.734	2.101	2.552	2.878	3.610
19	1.328	1.729	2.093	2.539	2.861	3.579
20	1.325	1.725	2.086	2.528	2.845	3.552
21	1.323	1.721	2.080	2.518	2.831	3.527
22	1.321	1.717	2.074	2.508	2.819	3.505
23	1.319	1.714	2.069	2.500	2.807	3.485
24	1.318	1.711	2.064	2.492	2.797	3.467
25	1.316	1.708	2.060	2.485	2.787	3.450
26	1.315	1.706	2.056	2.479	2.779	3.435
27	1.314	1.703	2.052	2.473	2.771	3.421
28	1.313	1.701	2.048	2.467	2.763	3.408
29	1.311	1.699	2.045	2.462	2.756	3.396
30	1.310	1.697	2.042	2.457	2.750	3.385
31	1.309	1.696	2.040	2.453	2.744	3.375
32	1.309	1.694	2.037	2.449	2.738	3.365
33	1.308	1.692	2.035	2.445	2.733	3.356
34	1.307	1.691	2.032	2.441	2.728	3.348
35	1.306	1.690	2.030	2.438	2.724	3.340
36	1.306	1.688	2.028	2.434	2.719	3.333
37	1.305	1.687	2.026	2.431	2.715	3.326
38	1.304	1.686	2.024	2.429	2.712	3.319
39	1.304	1.685	2.023	2.426	2.708	3.313

Ablesebeispiel: $t_{12;0.9} = 1.356$

Für m > 39 kann folgende Approximation verwendet werden:

$$t_{m;p} \approx z_p (1 + \frac{1 + z_p^2}{4m}),$$

wobei z_p das Quantil der Standardnormalverteilung ist.

A.5 Quantile der F-Verteilung

	30	20 4.17	34 3.32	95 2.92	2.71 2.69		56 2.53	56	-	-	-									
	26 28	4.23 4	3.37 3.	2.98 2.	2.74 2	2.59 2.	2.47 2	2.39 2.	2.32 2.	2.27 2.	2.22	2.15 2	2.09 2	2.05 2.	2.02	1.99	1.97	1.95	1.93	1 01
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.13	2.09	2.05	2.03	2.00	1.98	1.97	1 05
	22	4.30	3.44	3.05	2.82	5.66	2.55	2.46	2.40	2.34	2.30	2.23	2.17	2.13	2.10	2.07	2.05	2.03	2.01	00 6
	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.22	2.18	2.15	2.12	2.10	2.08	2.07	906
	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.29	2.25	2.22	2.19	2.17	2.15	2.13	9 19
	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.37	2.33	2.30	2.28	2.25	2.24	2.22	9 91
	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.48	2.44	2.41	2.39	2.37	2.35	2.33	9 39
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	5.69	2.64	2.60	2.57	2.54	2.52	2.51	2.49	87.6
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.05	2.98	2.91	2.86	2.83	2.80	2.77	2.75	2.74	2.72	0 71
	6	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.03	2.99	2.96	2.94	2.92	2.90	2.89	2 84
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.24	3.20	3.17	3.15	3.13	3.12	3.10	3 00
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.53	3.49	3.47	3.44	3.43	3.41	3.40	3 30
	9	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.96	3.92	3.90	3.87	3.86	3.84	3.83	3 89
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.64	4.60	4.58	4.56	4.54	4.53	4.52	7.50
	4	7.71	6.94	6.59	6.39	6.26	6.16	60.9	6.04	00.9	5.96	5.91	5.87	5.84	5.82	5.80	5.79	5.77	5.76	2
	3	10.1	9.55	9.58	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.71	8.69	8.67	8.66	8.65	8.64	8.63	698
11,1162,P=0.00	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	10.5
- 1161	1	161	199	216	225	230	234	237	239	241	242	244	245	246	247	248	249	249	249	950
	$_1 \backslash m_2$		2	3	4	5	9	-1	8	6	10	12	14	16	18	20	22	24	26	86

Able sebcispiel: $F_{2;12;0.95} = 3.89$ Approximation für m > 30: $F_{m;1;m_2;0.95} = \exp(\frac{3.2897}{\sqrt{h-0.95}} - 1.568g)$ mit $g = \frac{1}{m_1} - \frac{1}{m_2}$ und $h = \frac{2m_1m_2}{m_1+m_2}$ Es gilt $F_{m_1;m_2;1-p} = \frac{1}{F_{m_2;m_1;p}}$.

p-Guantine		$m_1; m_2; p=0.975$.975																	
$m_1 \backslash m_2$	1	2	3	4	2	9	-1	∞	6	10	12	14	16	18	20	22	24	56	82	30
-	648	38.5	17.4	12.2	10.0	8.81	8.07	7.57	7.21	6.94	6.55	6.30	6.12	5.98	2.87	5.79	5.72	5.66	5.61	5.57
2	262	39.0	16.0	10.6	8.43	7.26	6.54	90.9	5.71	5.46	5.10	4.86	4.69	4.56	4.46	4.38	4.32	4.27	4.22	4.18
3	864	39.2	15.4	9.98	7.76	09.9	5.89	5.42	5.08	4.83	4.47	4.24	4.08	3.95	3.86	3.78	3.72	3.67	3.63	3.59
4	006	39.2	15.1	09.6	7.39	6.23	5.52	5.05	4.72	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.38	3.33	3.29	3.25
22	922	39.3	14.9	9.36	7.15	5.99	5.29	4.82	4.48	4.24	3.89	3.66	3.50	3.38	3.29	3.22	3.15	3.10	3.06	3.03
9	937	39.3	14.7	9.20	86.9	5.82	5.12	4.65	4.32	4.07	3.73	3.50	3.34	3.22	3.13	3.05	2.99	2.94	2.90	2.87
7	948	39.4	14.6	9.07	6.85	5.70	4.99	4.53	4.20	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.82	2.78	2.75
∞	957	39.4	14.5	8.98	92.9	5.60	4.90	4.43	4.10	3.85	3.51	3.29	3.12	3.01	2.91	2.84	2.78	2.73	5.69	2.65
6	963	39.4	14.5	8.90	89.9	5.52	4.82	4.36	4.03	3.78	3.44	3.21	3.05	2.93	2.84	2.76	2.70	2.65	2.61	2.57
10	696	39.4	14.4	8.84	6.62	5.46	4.76	4.30	3.96	3.72	3.37	3.15	5.99	2.87	2.77	2.70	2.64	2.59	2.55	2.51
12	226	39.4	14.3	8.75	6.52	5.37	4.67	4.20	3.87	3.62	3.28	3.05	2.89	2.77	2.68	2.60	2.54	2.49	2.45	2.41
14	983	39.4	14.3	89.8	6.46	5.30	4.60	4.13	3.80	3.55	3.21	2.98	2.82	2.70	2.60	2.53	2.47	2.42	2.37	2.34
16	286	39.4	14.2	8.63	6.40	5.24	4.54	4.08	3.74	3.50	3.15	2.92	2.76	2.64	2.55	2.47	2.41	2.36	2.32	2.28
18	066	39.4	14.2	8.59	6.36	5.20	4.50	4.03	3.70	3.45	3.11	2.88	2.72	2.60	2.50	2.43	2.36	2.31	2.27	2.23
20	993	39.4	14.2	8.56	6.33	5.17	4.47	4.00	3.67	3.42	3.07	2.84	2.68	2.56	2.46	2.39	2.33	2.28	2.23	2.20
22	995	39.5	14.1	8.53	6.30	5.14	4.44	3.97	3.64	3.39	3.04	2.81	2.65	2.53	2.43	2.36	2.30	2.24	2.20	2.16
24	266	39.5	14.1	8.51	6.28	5.12	4.41	3.95	3.61	3.37	3.02	2.79	2.63	2.50	2.41	2.33	2.27	2.22	2.17	2.14
56	666	39.5	14.1	8.49	6.26	5.10	4.39	3.93	3.59	3.34	3.00	2.77	2.60	2.48	2.39	2.31	2.25	2.19	2.15	2.11
28	1000	39.5	14.1	8.48	6.24	5.08	4.38	3.91	3.58	3.33	2.98	2.75	2.58	2.46	2.37	2.29	2.23	2.17	2.13	2.09
30	1000	39.5	14.1	8.46	6.23	5.07	4.36	3.89	3.56	3.31	2.96	2.73	2.57	2.44	2.35	2.27	2.21	2.16	2.11	2.07

Able sebeispiel: $F_{2;12;0:975} = 5.10$ Approximation für m > 30: $F_{m_1;m_2;0.95} = \exp(\frac{3.9197}{\sqrt{h-1.14}} - 1.948g)$ mit $g = \frac{1}{m_1} - \frac{1}{m_2}$ und $h = \frac{2m_1m_2}{m_1+m_2}$ Es gilt $F_{m_1;m_2;1-p} = \frac{1}{F_{m_2;m_1;p}}$.