

02 – Variables de estado y Modelos SSR

Biomecatrónica – 2023/II

Consideraciones iniciales

El propósito del **control realimentado** es llevar la **variable de salida** de un sistema dinámico a un **valor deseado**Este es un **proceso complejo** que se logra mediante la aplicación de **varios pasos sencillos**

El primero de ellos es el **modelado matemático** del proceso

"All models are wrong, but some are useful"

George Edward Pelham Box

Descargo de responsabilidad

Como el prerrequisito, aunque indirecto, de esta asignatura es "Modelos y simulación biomédica", no nos detendremos en el detalle del proceso de modelado matemático

Modelos dinámicos estándar

Los modelos derivados a partir de variables de esfuerzo y flujo **comparten** la siguiente estructura general

$$\frac{d^2y}{dt^2} + a_1 \frac{dy}{dt} + a_2 y = b_0 \frac{d^2u}{dt^2} + b_1 \frac{du}{dt} + b_2 u$$

Esta expresión corresponde a la <u>ecuación diferencial de entrada</u> <u>salida</u> de sistemas lineales invariantes en el tiempo (SLIT)

Solución de la ODE

El enfoque más usado para resolver <u>ecuaciones diferenciales</u> <u>ordinarias lineales</u> en la comunidad de <u>ingenieros</u> es considerar que la solución completa es la suma de las soluciones de <u>entrada</u> <u>cero</u> y <u>estado cero</u>

$$y(t) = y_{\rm zi}(t) + y_{\rm zs}(t)$$

Formas estándar de modelos

Aparte de la ODE, existen otras <u>herramientas</u> útiles para representar <u>adecuadamente</u> el modelo del sistema dinámico

- Espacio de estados
- o Función de transferencia
- Diagramas de simulación

Sistemas complejos

Son sistemas en los que su comportamiento general no se puede entender sin tener en cuenta el comportamiento individual de sus componentes y de la forma en la que estas interactúan Su modelado con EDO puede complicarse, ya que se requieren ecuaciones de órdenes superiores

Modelo en el espacio de estados

En tales circunstancias, el modelado de <u>espacio de estados</u> ofrece una alternativa atractiva Una ventaja muy significativa de este enfoque es que el modelo de espacio de estados puede ampliarse fácilmente para caracterizar <u>sistemas MIMO no lineales variables en el tiempo</u>

Estado

El estado de un sistema dinámico es el conjunto más pequeño de variables tal que el conocimiento de estas variables en $t=t_0$, junto con el conocimiento de la entrada para $t\geq t_0$, determina completamente el comportamiento del sistema en cualquier momento $t\geq t_0$

Variables de estado

- Variables dinámicas que definen completamente todas las características dinámicas de un sistema
- Es importante notar que las variables que no representan cantidades físicas se pueden elegir como variables de estado

Notación

Por convención, se denotan las variables de estado por $x_1, x_2, ..., x_n$ las entradas (señales de control) por $u_1, u_2, ..., u_m$ y las salidas por $y_1, y_2, ..., y_p$

Ecuaciones de estado

Las ecuaciones de estado son una colección de n ecuaciones diferenciales que son las **derivadas de primer orden** de cada variable de estado

$$\dot{x}_1 = f_1(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m)$$

$$\dot{x}_2 = f_2(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m)$$

•

$$\dot{x}_n = f_n(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m)$$

Ejemplo

Determine las ecuaciones de estado para el sistema modelado por las siguientes ecuaciones diferenciales, donde z y w son las variables dinámicas y v es la entrada

$$2\ddot{z} + 0.8z - 0.4w + 0.2\dot{z}w = 0$$
$$4\dot{w} + 3w + 0.1w^3 - 6z = 8v$$

Espacio de estados

Cuando las f_i son lineales, se habla de una **representación en el espacio de estados** (SSR: State-space representation) En este caso, es muy útil escribir las ecuaciones de estado en forma matricial

Modelo SSR

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + b_{11}u_1 + \dots + b_{1m}u_m$$

$$\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + b_{21}u_1 + \dots + b_{2m}u_m$$

$$\vdots$$

$$\dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n + b_{n1}u_1 + \dots + b_{nm}u_m$$

$$y_1 = c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n + d_{11}u_1 + \dots + d_{1m}u_m$$

$$y_2 = c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n + d_{21}u_1 + \dots + d_{2m}u_m$$

$$\vdots$$

$$y_p = c_{p1}x_1 + c_{p2}x_2 + \dots + c_{pn}x_n + d_{p1}u_1 + \dots + d_{pm}u_m$$

Modelo SSR

$$\begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{x}} \end{bmatrix} + \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{x}} \end{bmatrix} + \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{x}} \end{bmatrix} + \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{x}} \end{bmatrix} + \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{y}} \end{bmatrix} + \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{\dot{y}} \\ \mathbf{\dot{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{$$

Ejemplo

Halle <u>una</u> SSR para los sistemas modelados mediante las ecuaciones diferenciales

1.
$$\ddot{y} + 4\dot{y} + y = u$$

2.
$$\ddot{y} + 4\dot{y} + y = \dot{u}$$

SSR con derivadas de la entrada

- Si las EDO del modelo contienen alguna de las derivadas de la entrada, la elección de las variables de estado se vuelve más complicada
- Existen varios métodos sistemáticos para elegir variables de estado para un caso general de EDO

Método 1

$$\beta_{0} = b_{0}$$

$$\beta_{1} = b_{1} - a_{1}\beta_{0}$$

$$\beta_{2} = b_{2} - a_{1}\beta_{1} - a_{2}\beta_{0}$$

$$\beta_{3} = b_{3} - a_{1}\beta_{2} - a_{2}\beta_{1} - a_{3}\beta_{0}$$

$$\vdots$$

$$\beta_{n} = b_{n} - a_{1}\beta_{n-1} - \dots - a_{n-1}\beta_{1} - a_{n}\beta_{0}$$

$$y = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} + \beta_{0}u$$

Método 2

$$\beta_0 = b_0$$

$$\beta_1 = b_1 - a_1 b_0$$

$$\vdots$$

$$\beta_n = b_n - a_n b_0$$

$$y = \begin{bmatrix} \beta_n & \beta_{n-1} & \cdots & \beta_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \beta_0 u$$