

Software-Defined Satellite Networking Based on Map'n'Encaps with Segment Routing (SDSN-MSR) esa

Prof. Dr. Michael Menth

- ► Entities and requirements
- ► Addressing
- ► Basic operation
- ► Mapping and forwarding information
- ► Traffic engineering use cases
- ► Conclusion and future work

Entities and Requirements

- ► Entities of the routing architecture
 - User terminals (UTs) not involved in the routing system
 - For simplicity
 - For security
 - Gateways (GWs) connect to Internet or a 5/6G mobile core
 - Satellites relay pkts between UTs and GW¶
 - Only simple pkt forwarders
 - Use segment routing (SR)
- ► Traffic engineering (TE) for
 - Delay reduction
 - Load balancing
 - Offloading
 - Fast rerouting

User terminals may be access node for other users

Gateway

Internet node

- ► Satellites
 - Segment IDs (SIDs)
- **►** GWs
 - SIDs inside constellation
 - IP addresses towards Internet
- **▶** UTs
 - Connected to one (or more) access satellites (AcSs)
 - Change over time
 - Have IP addresses from address block of a home GW (HGW)
 - Announced via BGP

Basic Operation: Internet Node → **UT**

- ► Internet node
 - Sends IP pkts to UT
 - Pkts forwarded to UT's home GW (HGW)
- **HGW**
 - Knows UT's AcSs and paths to all satellites
 - Pushes SR-header to UT's AcSs onto pkts and forwards them
- ▶ Satellites
 - Forward pkts using SR
- ► AcS
 - Forwards pkts to connected UT

Basic Operation: UT → **Internet Node**

- **▶**UT
 - Sends IP pkts to AcS
- ► AcS
 - Has configured default GW (DGW)
 - Pushes SR-header to DGW onto pkts and forwards them
- ► Satellites
 - Forward pkts using SR
- **DGW**
 - Forwards pkts to Internet

(Map'n')Encaps Information in HGW and AcS

- ► Map'n'encaps info in HGWs
 - Updated by controller
 - Knows entire satellite constellation
 - Is informed about UT's AcSs by some signalling
 - Mapping UT → AcSs changes
 - When UT has a handover to next satellite
 - Paths from HGW to satellites change
 - When HGW has a handover to next satellite
- ► Encaps info in satellites
 - Updated by controller
 - Knows entire satellite constellation
 - Updates DGW of controlled satellites
 - DGW may change when better DGW is available
 - Path from satellite to DGW changes
 - When DGW has a handover to next satellite

SR Forwarding Tables on Satellites

- ► Satellites connected to
 - Predecessor and successor within orbit (intra-orbit links)
 - One or two satellites in neighboring orbits (inter-orbit links)
- ► Neighborships relatively stable, but
 - Inter-orbit links may change near the poles
 - Satellites may fail
 - Satellites added to and removed from constellation.
- ► Forwarding tables need updates
 - Can be configured ahead of time
 - Shadow forwarding entries activated on time
- ► Satellite controllers
 - Know entire constellation
 - E.g., control GWs (CGWs)

TE Use Case (1): Long Path HGW \rightarrow UT

▶ Problem

- Packets for UT delivered to HGW
- Default paths from HGW to AcS may be long
- Many satellite hops → long delay

▶ Solution

- Access satellite may be faster reachable over another relay GW (RGW)
- Tunnel pkt from HGW to RGW and forward it from there to AcS
- Extended map'n'encaps info for UT in HGW

TE Use Case (2): Long Path DGW → **Dest Prefix**

► Problem

- Single default path on AcS for all traffic to DGW
- DGW may have only long path to certain destination IP prefix

▶ Solution

- Destination IP prefixes may be faster reachable over another egress GW (EGW)
- Install map'n'encaps info on AcS: destination IP prefix → EGW

TE Use Case (3): Overloaded Inter-Satellite Link

- ► Problem
 - Inter-satellite link may be overloaded
 - Due to traffic concentration between hot spots
- ► Solution
 - Steer traffic over other paths towards destinations using SR

TE Use Case (4): Failed Satellite

- ► Problem
 - Satellite may fail
 - May frequently due to high radiation in space
- ► Solution
 - Fast reroute traffic over other paths towards destinations using SR

TE Use Case (5): Overloaded Space-Ground Capacity

- ► Problem
 - Satellite-ground capacity (feeder) may be overloaded

▶ Solution

- Deviate traffic from and to GW via other GWs
- From HGW via RGW to AcS
- From AcS to other DGW^{*}
- From AcS to other EGW⁶

TE Use Case (6): Optical Feeders Fail

- ► Assumption
 - Optical feeders used for increased satellite-ground bandwidth in addition to RF links
- **▶** Problem
 - Optical feeders fail due to cloudy weather
- ▶ Solution
 - Deviate traffic for optical feeder to other
 GWs where weather is not cloudy
 - Same principle as in previous use case, but choice of alternate gateways depends on weather

- ► SDN approach
 - Data plane
 - Satellites using SR
 - Control plane (CGW, HGW) controls
 - SR forwarding tables and DGWs on satellites
 - Map'n'encaps tables in HGWs
- ► UTs not involved in routing
- ► TE use cases
 - For delay reduction, load balancing, offloading, fast rerouting
 - Use explicit paths or alternate GWs
- ► Future work
 - Simulate and protoype the control and data plane
 - Results and design alternatives may contribute to a SPACE RG to be

