

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ (ИУ5)

ОТЧЕТ

по лабораторной работе

по	дисцип.	лине: <u>Техно</u>	ологии маші	инного обуч	ения	
на	тему:	Изучение	библиотек	обработки	данных	
Студ		У <u>5-62Б</u> Группа)		(Подпись, ,	дата)	Шушпанов В.О (И.О.Фамилия)
Руко	оводитель			(Подпись,	дата)	Ю.Е. Гапанюк (И.О.Фамилия)

mlcourse.ai - Open Machine Learning Course

Author: <u>Yury Kashnitsky</u>. Translated and edited by <u>Sergey Isaev</u>, <u>Artem Trunov</u>, <u>Anastasia Manokhina</u>, and <u>Yuanyuan Pao</u>. All content is distributed under the <u>Creative Commons CC BY-NC-SA 4.0</u> license.

Assignment #1 (demo)

Exploratory data analysis with Pandas

Same assignment as a Kaggle Kernel + solution.

In this task you should use Pandas to answer a few questions about the <u>Adult</u> dataset. (You don't have to download the data – it's already in the repository). Choose the answers in the <u>web-form</u>.

Unique values of all features (for more information, please see the links above):

- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,
 Without-pay, Never-worked.
- fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex : Female, Male.
- capital-gain: continuous.
- capital-loss: continuous.
- hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
- salary: >50K,<=50K

```
pd.set_option('display.max.columns', 100)
# to draw pictures in jupyter notebook
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
# we don't like warnings
# you can comment the following 2 lines if you'd like to
import warnings
warnings.filterwarnings('ignore')
```

```
In [3]: data = pd.read_csv('data/adult.data.csv')
    data.head()
```

Out[3]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	se
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Ма
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Ма
2	38	Private	215646	HS-grad	9 [Divorced	Handlers- cleaners	Not-in-family	White	Ма
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Ма
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- enecialty	Wife	Black	Fema

1. How many men and women (sex feature) are represented in this dataset?

2. What is the average age (age feature) of women?

3. What is the percentage of German citizens (native-country feature)?

4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (salary feature) and those who earn less than 50K per year?

```
In [56]: ages1 = data.loc[data['salary'] == '>50K', 'age']
   ages2 = data.loc[data['salary'] == '<=50K', 'age']
   print("The average age of the rich: {0} +- {1} years, poor - {2} +- {3}
        years.".format(
        round(ages1.mean()), round(ages1.std(), 1),
        round(ages2.mean()), round(ages2.std(), 1)))</pre>
The average age of the rich: 44.0 +- 10.5 years, poor - 37.0 +- 14.0 yea
```

6. Is it true that people who earn more than 50K have at least high school education? (education – Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

No, it isn't true

7. Display age statistics for each race (*race* feature) and each gender (*sex* feature). Use *groupby(*) and *describe(*). Find the maximum age of men of *Amer-Indian-Eskimo* race.

race	sex								
Amer-Indian-Eskimo	Female	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	80.0
	Male	192.0	37.208333	12.049563	17.0	28.0	35.0	45.00	82.0
Asian-Pac-Islander	Female	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0
	Male	693.0	39.073593	12.883944	18.0	29.0	37.0	46.00	90.0
Black	Female	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0
	Male	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.00	90.0
Other	Female	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0
	Male	162.0	34.654321	11.355531	17.0	26.0	32.0	42.00	77.0
White	Female	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0
	Male	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.00	90.0

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (marital-status feature)? Consider as married those who have a marital-status starting

with *Married* (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

```
In [58]: data.loc[(data['sex'] == 'Male') & (~data['marital-status'].str.startswi
    th('Married')), 'salary'].value_counts()

Out[58]: <=50K    7552
    >50K    697
    Name: salary, dtype: int64

In [59]: data.loc[(data['sex'] == 'Male') & (data['marital-status'].str.startswit
    h('Married')), 'salary'].value_counts()

Out[59]: <=50K    7576
    >50K    5965
    Name: salary, dtype: int64

married > singe men (earn >50K)
```

9. What is the maximum number of hours a person works per week (*hours-per-week* feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (>50K) among them?

```
In [60]: max_num = data['hours-per-week'].max()
   quantity = data.loc[data['hours-per-week'] == max_num, 'age'].count()
   per=data[(data['hours-per-week'] == max_num) & (data['salary'] == '>50K'
   )].shape[0]/quantity*100
   print('maximum number of hours a person works per week^ ', max_num)
   print('people work such a number of hours: ', quantity)
   print('the percentage of those who earn a lot (>50K): ', round(per, 2),
   "%")

maximum number of hours a person works per week^ 99
   people work such a number of hours: 85
   the percentage of those who earn a lot (>50K): 29.41 %
```

10. Count the average time of work (*hours-per-week*) for those who earn a little and a lot (*salary*) for each country (*native-country*). What will these be for Japan?

```
pd.options.display.max_rows = 999
In [61]:
         data.groupby(['native-country', 'salary'])['hours-per-week'].mean()
Out[61]: native-country
                                     salarv
                                     <=50K
                                              40.164760
                                     >50K
                                              45.547945
                                              41.416667
         Cambodia
                                     <=50K
                                     >50K
                                              40.000000
         Canada
                                     <=50K
                                              37.914634
                                              45.641026
                                     >50K
         China
                                     <=50K
                                              37.381818
                                    >50K
                                              38.900000
         Columbia
                                     <=50K
                                              38.684211
                                              50.000000
                                     >50K
                                    <=50K
                                              37.985714
         Cuba
                                    >50K
                                              42.440000
         Dominican-Republic
                                    <=50K
                                              42.338235
                                              47.000000
                                     >50K
```

Ecuador	<=50K	38.041667
	>50K	48.750000
El-Salvador	<=50K	36.030928
	>50K	45.000000
England	<=50K	40.483333
	>50K	44.533333
France	<=50K	41.058824
riance	>50K	50.750000
C		
Germany	<=50K	39.139785
_	>50K	44.977273
Greece	<=50K	41.809524
	>50K	50.625000
Guatemala	<=50K	39.360656
	>50K	36.666667
Haiti	<=50K	36.325000
	>50K	42.750000
Holand-Netherlands	<=50K	40.000000
Honduras	<=50K	34.333333
	>50K	60.000000
Hong	<=50K	39.142857
3	>50K	45.000000
Hungary	<=50K	31.300000
11411941	>50K	50.000000
India	<=50K	38.233333
India	>50K	46.475000
Two	<=50K	41.440000
Iran		47.500000
T]]	>50K	
Ireland	<=50K	40.947368
_	>50K	48.000000
Italy	<=50K	39.625000
	>50K	45.400000
Jamaica	<=50K	38.239437
	>50K	41.100000
Japan	<=50K	41.000000
	>50K	47.958333
Laos	<=50K	40.375000
	>50K	40.000000
Mexico	<=50K	40.003279
	>50K	46.575758
Nicaragua	<=50K	36.093750
	>50K	37.500000
Outlying-US(Guam-USVI-etc)	<=50K	41.857143
Peru Oderying ob (Gddim obvi ete)	<=50K	35.068966
reid	>50K	40.000000
Philippines	<=50K	38.065693
Philippines		
	>50K	43.032787
Poland	<=50K	38.166667
	>50K	39.000000
Portugal	<=50K	41.939394
	>50K	41.500000
Puerto-Rico	<=50K	38.470588
	>50K	39.416667
Scotland	<=50K	39.44444
	>50K	46.666667
South	<=50K	40.156250
	>50K	51.437500
Taiwan	<=50K	33.774194
	>50K	46.800000
Thailand	<=50K	42.866667
	>50K	58.333333
Trinadad&Tobago	<=50K	37.058824
	- +	

	>50K	40.000000
United-States	<=50K	38.799127
	>50K	45.505369
Vietnam	<=50K	37.193548
	>50K	39.200000
Yugoslavia	<=50K	41.600000
	>50K	49.500000

Name: hours-per-week, dtype: float64

Japan <=50K 41.000000 >50K 47.958333