NMR Active Isotopes Exist for Nearly Every Element

http://bouman.chem.georgetown.edu/NMRpt/NMRPerTab.html

Select an element by clicking on it:

• NMR active nuclei possess an intrinsic angular momentum, \vec{l} , known as the spin angular momentum. The magnitude is

$$\vec{I} = \hbar [I(I+1)]^{1/2}$$

- Here I is the nuclear spin quantum number (integral or half-integral). If I = 0, no spin angular momentum (not NMR active)
- Associated with I is a magnetic moment, μ

$$\vec{\mu} = \gamma \vec{I} = \gamma \hbar \left[I (I+1) \right]^{1/2}$$

- The proportionality constant is the gyromagnetic ratio, γ
- In NMR, larger $\vec{\mu}$ for given \vec{l} (large γ), means more sensitive nucleus

- In a magnetic field, otherwise degenerate (energetically equivalent) states split into nondegenerate states (known as Zeeman splitting)
- The states are quantized, with the number of states established by the spin quantum number, I

levels =
$$2I + 1$$

 Each of the 2I+1 states/levels is associated with a magnetic quantum number, m

$$m = -1, -1+1, ..., 1-1, I$$

• The component of I along the z axis, I_z , is defined as follows $I_z = m\hbar$

Thus

$$\mu_z = \gamma I_z = m \gamma \hbar$$

• The energies of the states resulting from the interaction of the magnetic moment with a magnetic field, \vec{B} are given by

$$E = -\vec{\mu} \cdot \vec{B}$$

• The energies of the states depend on the orientations of the moments in the magnetic field, hence are proportional to the *scalar* projection of $\vec{\mu}$ on \vec{B} (the dot product), μ_z

$$E = -\mu_z B_0 = -m\gamma \hbar B_0$$

- Here B₀ is the magnetic field strength
- The 2/+1 energy levels are equally spaced. The energy difference between any two adjacent levels is

$$\Delta E = \gamma \hbar B_0$$

classical view of directional quantization for spin ½ nuclei

• The torque exerted by B_0 on the magnetic moments/dipoles promotes precession about the z-axis at a frequency given by

$$\upsilon_{L} = \gamma B_{0} / (2\pi)$$
 (Larmor frequency, in Hz)
 $\omega_{0} = \gamma B_{0}$ (radians/sec)

 The energy difference between energy (spin) states can then be written as

$$\Delta E = h v_1$$

• Transitions between energy (spin) states can be effected by an electromagnetic field with an energy equal to ΔE . This occurs when the frequency of that field, v_1 , is equal to the Larmor frequency (*resonance* condition).

$$v_1$$
= v_L

• For spin 1/2 (I = 1/2), there are 2I+1=2 energy levels, with values of of m equal to +1/2 and -1/2, called α and β , with energies

$$\mathsf{E}_{\alpha} = -\frac{1}{2} \gamma \hbar B_0 \qquad \mathsf{E}_{\beta} = +\frac{1}{2} \gamma \hbar B_0$$

 From Boltzman statistics, the population ratio of these states can be estimated

$$\frac{N_{\beta}}{N_{\alpha}} = \exp\left(\frac{-\Delta E}{k_{\rm B}T}\right) \approx 1 - \left(\frac{\Delta E}{k_{\rm B}T}\right) \approx 1 - \left(\frac{\gamma \hbar B_0}{k_{\rm B}T}\right)$$

- example: ¹H, 300 °K, 5.875 Tesla (250 MHz)

$$\frac{N_{\beta}}{N_{\alpha}} = 1 - \frac{26.7519 \times 10^{7} \times 1.0546 \times 10^{-27} \times 5.875}{1.3805 \times 10^{-16} \times 300} = 0.99996$$

• ΔE is small, so the populations of α and β are nearly equal, and the macroscopic magnetization is small: *NMR* is insensitive

• The sum of the z-components of the nuclear dipoles in an ensemble gives the macroscopic (bulk) magnetization, M_0

$$M_0 = \gamma \hbar \sum_{m=-I}^{I} m N_m \text{ (recall } \mu_z = m \gamma \hbar)$$

$$M_0 \approx \frac{N\gamma^2 \hbar^2 B_0}{k_B T (2I+1)} \sum_{m=-I}^{I} m^2 \approx \frac{N\gamma^2 \hbar^2 B_0 I (I+1)}{3k_B T} -$$

• Note: dependence on γ^2 , linear dependence on B_0 , dependence on isotopic abundance (N)

Spin ½ Nuclei are Most Useful in Biomolecular NMR

	¹H	¹³ C	¹⁵ N	¹⁹ F	³¹ P
Spin	1/2	1/2	1/2	1/2	1/2
Natural abundance	99.985%	1.108%	0.37%	100%	100%
Magnetogyric ratio (γ/10 ⁷ , rad T ⁻¹ s ⁻¹)	26.7519	6.7283	-2.7126	25.1815	10.8394
Relative sensitivity	1.00	1.59 × 10 ⁻²	1.04 × 10 ⁻³	0.83	6.63 × 10 ⁻²
Relative receptivity	1.00	1.76 × 10 ⁻⁴	3.85 × 10 ⁻⁶	0.83	6.63 × 10 ⁻²
Magnetic moment (μ/μ _N)	4.8372	1.2166	-0.4903	4.5532	1.9601
Quadrupole moment	0	0	0	0	0
Resonance frequency (MHz)	100	25.144	10.133	94.077	40.481

Polypeptides are Rich in NMR Active Nuclei

Nuclear Properties

- Not all nuclei have magnetic moments, Why?
- Not all nuclei are equally abundant, Why?
- Spins vary, Why?
- Magnetogyric ratios vary, Why?

Fundamental Particle Properties

Stern Gerlach experiment:

- demonstrated particles (electrons) possess an intrinsic angular momentum, and it is quantized
- Na atom 1 unpaired electron
 Two spots implies quantized moments: +/- 1/2
 protons and neutrons are also spin 1/2 particles

Understanding Magnetic Moments

- Current Loop Model: classical analogy to connect "spin" to magnetic moment
- Can get reasonable estimate of γ for electron

Estimates:
$$i = -ev/(2\pi r)$$
, $S = \pi r^2$, M (or μ) = $-ev/(2\pi r)$ $\overrightarrow{\mu} = -e(\overrightarrow{r} \times \overrightarrow{v})/2$, $\overrightarrow{L} = m_e \overrightarrow{r} \times \overrightarrow{v}$, $\overrightarrow{\mu} = -e/(2m_e)$ $\overrightarrow{L} = \gamma \overrightarrow{L} = \gamma h/(2\pi)l$ $\gamma = -g$ (e/(2m_e)), $g = L$ ande g factor

Values of Particle Magnetogyric Ratios

Electron: $g \approx 2$, $\gamma_e = -17.7 \times 10^{10} \text{ T}^{-1} \text{s}^{-1}$

Proton: expect $1/m_p$ dependence, 1/2000 and positive $2.7 \times 10^8 \text{ T}^{-1}\text{s}^{-1}$

Neutron: similar mass to proton -1.8 x 10⁸ T⁻¹s⁻¹

Heavier Nuclei: the Shell Model

Analogous to shell model for atomic electrons Some rules:

- a) spherical particle in a box potential $\psi = R_{nl}(r) Y_l^m(\theta,\phi)$, E(n,l) ladder of energy levels like H atom, but all Is allowed I=0, 1, 2, 3 for "s", "p", "d", and "f" like atomic case
- b) strong coupling of spin and orbit angular momentum quantized total: $j = l \pm 1/2$ for spin 1/2 particle larger j, lower energy (usually)

Shell Model Rules Continued

- c) Treat protons and neutrons separately and fill from bottom up assuming 2j + 1 degeneracy
- d) Assume particle pair strongly within levels: only unpaired spins count total spin angular momentum given by j of level for unpaired spin
- e) sign of moment depends on sign of moment for fundamental particle ($+\frac{1}{2}$ for proton, $-\frac{1}{2}$ for neutron) but changes sign when moment subtracts instead of adds to I in giving j

Energy Level Diagram

n+1		j d	total	
		$(j = l \pm \frac{1}{2})$	(2j + 1)	
2s (I=0)		1/2	2	20
1d (I=2)		3/2	4	
		- 5/2	6	
1p (l=1)		1/2	2	8
		3/2	4	
1s (I=0)		1/2	2	2

Example: $^{13}{}_{6}$ C (6 protons, 7 neutrons)
- unpaired neutron (-1/2) in $1p_{1/2}$ (j = 1-1/2 = 1/2), so spin=1/2, positive γ

Example: $^{15}_{7}N$ (7 protons, 8 neutrons)
- unpaired proton (+1/2) in $1p_{1/2}$ (j = 1-1/2 = 1/2), so spin=1/2, negative γ

Example: ¹⁶₈O (8 protons, 8 neutrons, two magic numbers), spin = 0 - highly stable (99.76% of all oxygen on Earth)

n+1	protons	neutrons	j ((j = l ± ½)	degeneracy (2j + 1)	total
2s (I=0)			1/2	2	20
1d (I=2)			3/2	4	
			5/2	6	
1p (l=1)	1	1	1/2	2	8
	+ +	# #	3/2	4	
1s (I=0)		1	1/2	2	2

Particle Physics / Spin

Proton Spin Mystery Gains a New Clue:

https://www.scientificamerican.com/article/proton-spin-mystery-gains-a-new-clue1/