$f_1(n) = n^{2.5}$ polynomial function, it is $O(n^{2.5})$ $f_2(n) = \sqrt{2}n$ sublinear function, it is $O(\sqrt{n})$ $f_3(n) = n + 10$ linear function, it is O(n) $f_4(n) = 10^n$ exponentinal function, it is $O(10^n)$ $f_5(n) = 100^n$ exponential function, it is $O(100^n)$ $f_6(n) = n^2 \log n$ Logarithmic function, it is $O(n^2 \log n)$ $O(\sqrt{n}) < O(n) < O(n^2 \log n) < O(n^{2.5}) < O(10^n) < O(100^n)$

by this statement

 $f_2(n) = \sqrt{2}n$, polynomial functions which grows the slowest $f_3(n) = n+10$, linear function is faster than square root but Slower than $f_6(n) = n^2 \log n$, is slightly faster than linear function, it being Logarithmic $f_1(n) = n^2 \cdot 5$, is polynomial faster than Logarithmic Linear $f_4(n) = 10^n$, is an exponential function where base is 10 much faster than $n^2 \cdot 5 \cdot 10^n$, also an exponential function with larger base 100 is fastest

Ascending Order in terms of growth Rate

$$f_2 < f_3 < f_6 < f_1 < f_4 < f_5$$

 $\sqrt{2n} < n+10 < n^2 \log n < n^{2.5} < 10^n < 100^n$