COMP 250

Lecture 15

big O

Oct. 14, 2016

Motivation

We want to express how some function, t(n), grows with n, as n becomes large.

We want to compare the function with *simpler* functions such as log_2n , n, n^2 , 2^n , etc.

The constant n_0 is not unique.

Preliminary Definition

Let t(n) and g(n) be two functions, where $n \geq 0$. We say t(n) is asymptotically bounded above by g(n) if there exists an n_0 such that, for all $n \geq n_0$,

$$t(n) \leq g(n)$$
.

Claim: 5n + 70 is asymptotically bounded by 6n.

Proof:

We want to show there exists an n_0 such that, for all $n \ge n_0$, $5n + 70 \le 6n$.

$$5n + 70 \le 6n$$

$$\Leftrightarrow 70 \le n$$

Thus, we can use $n_0 = 70$.

Means "if and only if" i.e. logically equivalent

Motivation for big O definition

Express how some function t(n) grows with n as n becomes large.

Compare the function with *simpler* functions g(n), such as $log_2 n$, n, $n log_2 n$, n^2 , 2^n , etc.

Ignore constant factors, which depend on implementation.

Definition of Big O

Let t(n) and g(n) be two functions, where $n \ge 0$.

We say t(n) is O(g(n)), if there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

$$t(n) \leq c g(n)$$
.

Claim: 5 n + 70 is O(n).

Claim: 5n + 70 is O(n).

Proof 1:

$$5n + 70 \le 5n + 70n, n \ge 1$$

$$= 75 n$$

So take c = 75, $n_0 = 1$.

Claim:
$$5n + 70$$
 is $O(n)$.

Proof 2:

$$5n + 70 \le 5n + 6n, n \ge 12$$

$$= 11 n$$

So take c = 11, $n_0 = 12$.

Claim:
$$5n + 70$$
 is $O(n)$.

Proof 3:

$$5n + 70 \le 5n + n$$
, $n \ge 70$

$$= 6n$$

So take c = 6, $n_0 = 70$.

Claim:
$$8n^2 - 46n + 17$$
 is $O(n^2)$.

Proof (1):

$$8 n^2 - 46n + 17$$

Claim:
$$8n^2 - 46n + 17$$
 is $O(n^2)$.

Proof (1):

$$8 n^2 - 46n + 17$$

$$\leq 8 n^2 + 17 n^2, \quad n \geq 1$$

$$\leq 25 n^2$$

So take c = 25, $n_0 = 1$.

Claim:
$$8n^2 - 46n + 17$$
 is $O(n^2)$.

Proof (2):

$$8 n^2 - 46n + 17$$

$$\leq 8 n^2 + n^2, \quad n \geq 5$$

$$\leq 9 n^2$$

So take c = 9, $n_0 = 5$.

What does O(1) mean?

We say t(n) is O(1), if there exist two positive constants n_0 and c such that, for all $n \ge n_0$,

$$t(n) \leq c$$
.

Assignment 2 Question 2d

d) (10 points)

Let
$$t(n) = \sqrt{n^2 + 100 n} - n$$
.

Use the formal definition of O() from lecture 14 to show that t(n) is O(1).

15

Correct vs. incorrect vs. incomplete proofs

Example of incorrect proof

Claim: for all n > 0, $2n^2 \le (n+1)^2$.

Proof:

$$2n^2 \le (n+1)^2$$

 $\le (n+n)^2$, when $n > 0$
 $= 4 n^2$

Since $2n^2 \le 4 n^2$, we are done.

But the claim is false!

Claim: for all
$$n > 0$$
, $2n^2 \le (n+1)^2$.

Proof:

$$2n^2 \le (n+1)^2$$

 $\le (n+n)^2$, when $n > 0$
 $= 4 n^2$

It is incorrect to assume what you are trying to prove.

Example: midterm exam Q7

7. **(2 points)**

Use mathematical induction to prove that, for all $n \geq 4$, $2^n \leq n!$.

SOLUTION:

Base case			GRADING POINTS 0.5
induction step			
$2^{k+1} =$	$2 * 2^k$		0.5
<	$(k + 1)* 2^k,$	when $k \ge 4$	0.5
<=	(k + 1)* k!,	by induction hypothesis	0.5
<=	(k + 1)!		

Proof:

Q: What's wrong with it?

Base case: $16 \le 24$.

Induction step:

$$2^{k+1} \le (k+1)!$$

$$2 * 2^k \le (k+1) * k!$$

(induction hypothesis)

$$2 * 2^k \le (k+1) * 2^k$$

 $2 \le k+1$ which is true for $k \ge 4$

Proof:

Q: What's wrong with it?

Base case: $16 \le 24$.

A: The proof is **incomplete**.

Induction step:

It isn't clear which statement implies which.

$$2^{k+1} \le (k+1)!$$

(We gave either 0 or .5 / 1)

$$2 * 2^{k} \le (k+1) * k!$$

(induction hypothesis)

$$2 * 2^k \le (k+1) * 2^k$$

$$2 \le k + 1$$

 $2 \leq k+1$ which is true for $k \geq 4$

Claim: 5n + 70 is O(n).

We want to show there exists two constants n_0 , c such that, for all $n \ge n_0$, $5n + 70 \le cn$.

Proof: What's wrong with it?

$$5n + 70 \leq cn$$

$$5n + 70n \leq cn, \qquad n \geq 1$$

$$75n \leq cn$$

So take c = 75, $n_0 = 1$.

Claim: 5n + 70 is O(n).

We want to show there exists two constants n_0 , c such that, for all $n \ge n_0$, $5n + 70 \le cn$.

Proof: The proof is incomplete.

$$5n + 70 \leq cn$$

$$5n + 70n \leq cn$$

$$75n \leq cn$$

So take
$$c = 75$$
, $n_0 = 1$.

$$n \ge 1$$

Which inequality implies which?

Does the first imply the second, or vice-versa?

Does the first inequality refer to

"some n" or "all n" or "some c" or "all c"?

Announcements

Next week: one more big O lecture.

Then onto trees and graphs!