Algebraic Number Theory - Assignment 8

Matteo Durante, 2303760, Leiden University

14th November 2018

Exercise 5

 \Rightarrow To prove the existence of an open neighbourhood U of $x \in G$ s.t. it doesn't contain any other point in G, it is sufficient to show that, given a bounded set $D \subset \mathbb{R}^n$, $|L \cap D| \in \mathbb{N}$. Indeed, afterwards we may consider a bounded open set $B_r(x)$ and then reduce r to $\min(\{r\} \cup \{||y|| \mid y \in L \cap B_r(y), x \neq y\})$ to create the desired U.

Fix any \mathbb{Z} -base $\{v_1, \ldots, v_m\}$ of L (which will be a set of linearly independent vectors of \mathbb{R}^n , and hence $m \leq n$), then complete it with $\{v_{m+1}, \ldots, v_n\}$ making it into a base of \mathbb{R}^n .

Let $x \in L$. Then, given $M = [v_1| \dots | v_n]$ (an invertible matrix), it can be written as x = Ma, where $a \in \mathbb{Z}^n$ as $(a_i)_{i=1}^m \subset \mathbb{Z}$ and $a_i = 0$ for i > m.

Now, considered a norm on $\mathbb{R}^{n \times n}$ compatible with $||\cdot||_{\infty}$ on \mathbb{R}^n , we have that $||a|| = ||M^{-1}x|| \le ||M^{-1}||||x|| = c||x||$. Requiring $x \in D$, where D is bounded, sets a bound on ||x|| and hence on $|a_i|$, thus there are finitely many $a \in \mathbb{Z}^n$ s.t. $x = Ma \in L \cap D$.

 \Leftarrow Let U be the subspace of $V = \mathbb{R}^n$ which is spanned by L. Let $d = \dim(U)$. L contains a basis of U as a \mathbb{R} -vector space, let's say $\{v_1, \ldots, v_d\}$.

Consider now $L' := \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_d$. Since the v_i form an \mathbb{R} -basis of U, they will form a \mathbb{Z} -basis of L', which is a lattice in V.

We see that $u \in U$ can be written as $u = \lambda_1 v_1 + \ldots + \lambda_d v_d + l'$, where $l' \in L'$ and $0 \le \lambda_i < 1$, $\lambda_i \in \mathbb{R}$. This holds in particular for $l \in L$, thus we may represent uniquely an element in the coset $l \in L/L'$ as $\lambda_1 v_1 + \ldots + \lambda_d v_d$, where $0 \le \lambda_i < 1$, $\lambda_i \in \mathbb{R}$.

This implies that an element of L/L' can be represented by a unique element in $L \cap \{u \in U \mid ||u|| < \sum_{i=1}^{d} ||v_i|| \}$ (indeed, if $l = \lambda_1 v_1 + \ldots + \lambda_d v_d + l'$ with $l' \in L'$, then $l - l' = \lambda_1 v_1 + \ldots + \lambda_d v_d$ will represent l in L/L'), which is finite because L is discrete in \mathbb{R}^n and therefore in U, hence L/L' is finite

Let a = [L:L']. Then, $aL \subset L'$ and aL is a free abelian group of rank $d' \leq d$ as it is a subgroup of a free abelian group of rank d. Being the map $L \xrightarrow{a \cdot} aL$ an isomorphism, L is a free abelian group of rank $d' \leq d$, thus, since $L' \subset L$ and therefore $d \leq d'$, it has precisely rank d. This means that there are some elements $l_1, \ldots, l_d \in L$ generating L, which will therefore be $= \mathbb{Z}l_1 + \cdots + \mathbb{Z}l_d$.

We prove that, for a subgroup G of \mathbb{R}^n , being discrete implies having finite intersection with every bounded set. It is sufficient to prove it for the compact ones K, for the closure of a bounded set is still bounded and hence compact.

Notice that we may just prove that G is closed in \mathbb{R}^n because then $G \cap K$ would be a compact set with the discrete topology, and hence finite.

Now, suppose that it is not closed. Then, there is a point $x \in \overline{G} \setminus G$ s.t. for every open ball $B_{1/n}(x)$ there is a $x_n \in B_{1/n}(x) \cap G$. For every $n, m \geq n_0$, we have that $||x_n - x_m|| < n_0$

 $||x_n-x||+||x-x_m|| < 2/n_0$, hence, considering the succession $(y_n)_{n\in\mathbb{N}}$ given by $y_n = x_{n+1}-x_n \in G$, we have that it converges to 0, as $||y_n|| < 2/n$ for every $n \in \mathbb{N}$. But then G is not discrete, against the hypothesis.

Now we prove that a subgroup G of \mathbb{R} is either dense or a lattice.

We have already proved that being discrete is equivalent to being a lattice, hence we may just prove that a non-discrete subgroup is dense.

Indeed, consider a point $x \in G$ s.t. for every neighbourhood of it U we have that there is a $y \in U \cap G$ with $x \neq y$. Consider an open set $V \subset \mathbb{R}$, which will contain an open interval (a, b). Now, choose $y \in B_{b-a}(x) \cap G$ s.t. $y \neq x$.

Clearly, $z = |x - y| \in G$ and z < b - a, hence $\emptyset \neq (a, b) \cap \mathbb{Z}z \subset V \cap G$.

Exercise 6

 $* \Rightarrow (i)$ Let $L = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_n$ and define $C := \{\sum_{i=1}^n \lambda_i x_i \mid \lambda_i \in [0,1]\}$. Consider now the projection $\pi : \mathbb{R}^n \to \mathbb{R}^n/L$, which is s.t. $\pi(x) = \pi(x')$ if and only if $x - x' \in L$. For every $x \in \mathbb{R}^n$, we may find $x' \in C$ s.t. $x - x' \in L$.

By construction, $\pi|_C$ is onto \mathbb{R}^n/L . Since C is compact, so is \mathbb{R}^n/L .

 $(i) \Rightarrow (ii)$ Consider $\pi: \mathbb{R}^n \to \mathbb{R}^n/L$, which is open as $\pi^{-1}(\pi(U)) = U + L = \bigcup_{x \in L} (x + U)$.

Given an open cover of \mathbb{R}^n , $(B_r(x))_{x \in \mathbb{R}^n}$, we have that there is a finite index I s.t. $\mathbb{R}^n/L = \bigcup_{i \in I} \pi(B_r(x_i))$. Taking preimages, we get that $\mathbb{R}^n = \bigcup_{i \in I} B_r(x_i) + L$, with $\bigcup_{i \in I} B_r(x_i)$ clearly bounded.

 $\neg * \Rightarrow \neg(ii)$ Suppose that L has rank m < n and $B \subset \mathbb{R}^n$ is bounded by c > 0. Then, there is a $x \in \mathbb{R}^n$ s.t. x is orthogonal to the subspace spanned by L. It follows that we have $||\lambda x - l|| = \sqrt{\lambda^2 ||x||^2 + ||l||^2} \ge |\lambda|||x||$ for every $\lambda \in \mathbb{R}$ and every $l \in L$.

Since B is bounded by c, we may choose a $\lambda > 0$ large enough s.t. $\lambda ||x|| > c$ and then $||\lambda x - (l+b)|| = ||(\lambda x - l) - b|| \ge |\lambda|||x|| - c > 0$ for every $l \in L$, $b \in B$. It follows that $\lambda x \notin L + B$.

References

[1] P. Stevenhagen, Number Rings, 2017.