Math 582 Intro to Set Theory Lecture 20

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

March 15, 2009

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

1 / 30

Normal functions

Normal functions defined

Definition

Let $F : \mathbf{ON} \to \mathbf{ON}$.

- F is order preserving if $\forall \alpha, \beta \in (\alpha < \beta \rightarrow F(\alpha) < F(\beta))$.
- F is continuous if for every limit ordinal α , $F(\alpha) = \sup\{F(\beta) \mid \beta < \alpha\}.$
- *F* is normal if *F* is order preserving and continuous.

Notes.

- *F* is a class function, so should, by convention, by boldface. I will use capital *F*, *G*, *H* for normal functions in this lecture. In later lectures I will always make it clear these will be normal functions.
- There is no reason that F could not be a set function with an ordinal $\alpha>\omega$ as domain. It may be convenient to allow this later.

Theorem: Normal is increasing

Theorem

Let $F : \mathbf{ON} \to \mathbf{ON}$ be a normal function. Then $\alpha \leq F(\alpha)$.

Proof.

By Transfinite induction on α .

Suppose that $\beta \leq F(\beta)$ for all $\beta < \alpha$.

So, $\beta \leq F(\beta) < F(\alpha)$ for every $\beta < \alpha$.

Thus, $\alpha \subseteq F(\alpha)$, equivalently, $\alpha \le F(\alpha)$. (Lemma 3 of Lecture 17, Slide 24.)

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

4 / 30

Normal function

Sufficient condition for normality

The following sufficient condition for normality simplifies the checking of order-preserving for normality.

Theorem

Let F be a continuous function such that $F(\beta) < F(\beta + 1)$ for all β . Then F is normal.

Proof. The proof of order-preserving is by Transfinite Induction on β :

$$\forall \alpha, \beta \ (\alpha < \beta \rightarrow F(\alpha) < F(\beta)).$$

$$\forall \alpha, \beta (\alpha < \beta \rightarrow F(\alpha) < F(\beta)).$$

 $\beta = 0$. The antecedent is false for all α .

 $\beta = \gamma + 1$. Suppose $\alpha < \beta = \gamma + 1$. If $\alpha \leq \gamma$, then

$$F(\alpha) \le F(\gamma) < F(\gamma + 1) = F(\beta),$$

by the i.h. and by assumption on F.

 β is a limit. Suppose $\alpha < \beta$. For some δ , $\alpha < \gamma < \beta$. So,

$$\begin{array}{lcl} F(\alpha) & < & F(\gamma) & \text{ i.h.} \\ & \leq & \sup\{F(\xi) \, \big| \, \xi < \beta\} \\ & = & F(\beta) & \text{ continuity.} \end{array}$$

 \checkmark Thus, order-preserving holds, and F is normal.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009 6 / 30

Normal functions

Example: Ordinal operations

We already have several interesting examples of normal functions.

Theorem

Fix α . Then

- \bullet $(\xi \mapsto (\alpha + \xi))$ is normal.
- 2 $(\xi \mapsto (\alpha \cdot \xi))$ is normal, provided $\alpha > 0$.
- **3** $(\xi \mapsto (\alpha^{\xi}))$ is normal, provided $\alpha > 1$.

Proof

Proof.

By the previous Theorem, we need only show $F(\beta) < F(\beta + 1)$, since each of the ordinal operators are continuous by definition.

(a).
$$\alpha + (\beta + 1) = (\alpha + \beta) + 1 > \alpha + \beta$$
.

- (b). Let $\alpha > 0$. Then $\alpha \cdot (\beta + 1) = \alpha \cdot \beta + \alpha > \alpha \cdot \beta$, by the Order Lemma (a) for Lecture 19.
- (c). Let $\alpha > 1$. Then $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha > \alpha^{\beta}$, once we prove $\alpha^{\beta} \neq 0$ for any β and the following Order Lemma for multiplication:

$$\alpha > 0 \land \beta < \gamma \rightarrow \alpha \cdot \beta < \alpha \cdot \gamma.$$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

8 / 30

Normal functions

Theorem: limits of normal functions

Theorem

Let F be a normal function and α a limit ordinal. Then $F(\alpha)$ is also a limit ordinal.

Proof.

Show that $\{\beta \mid \beta < F(\alpha)\}$ has no greatest element.

Suppose $\beta < F(\alpha) = \sup\{F(\gamma) \mid \gamma < \alpha\}.$

By continuity $\beta < F(\gamma)$ for some $\gamma < \alpha$, and by order increasing, $F(\gamma) < F(\alpha)$.

So, if $\beta < F(\alpha)$, there is a $\delta (= F(\gamma))$ with $\beta < \delta < F(\alpha)$.

✓ $F(\alpha)$ has no greatest element.

Theorem: limiting limits

Lemma

Let F be normal and $\beta < \alpha$. Then

$$\sup\{F(\gamma) \mid \gamma < \alpha\} = \sup\{F(\gamma) \mid \beta \le \gamma < \alpha\}.$$

Proof.

If $\delta < \beta$, then $F(\delta) < F(\beta)$, so $F(\delta) \subseteq F(\beta)$. Hence

$$\sup\{F(\gamma)\,\big|\,\gamma<\alpha\}\subseteq\sup\{F(\gamma)\,\big|\,\beta\leq\gamma<\alpha\}\subseteq\sup\{F(\gamma)\,\big|\,\gamma<\alpha\}.$$

✓ Thus, $\sup\{F(\gamma) \mid \gamma < \alpha\} = \sup\{F(\gamma) \mid \beta \le \gamma < \alpha\}.$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

Normal functions closed under composition

Theorem

Let F and G be normal functions. Then $G \circ F$ is also normal.

Proof. $G \circ F$ is increasing: for any α and β

$$\alpha < \beta \rightarrow F(\alpha) < F(\beta) \rightarrow G(F(\alpha)) < G(F(\beta)).$$

 $G \circ F$ is continuous: let γ be a limit ordinal. Show

$$G(F(\gamma)) = \sup\{G(F(\xi)) \mid \xi < \gamma\}.$$

Proof - continued

Since γ is a limit and F is normal, so $F(\gamma)$ is also a limit. G is also normal, so $G(F(\gamma))$ is a limit and

$$G(F(\gamma)) = \sup\{G(\beta) \mid \beta < F(\gamma)\}.$$

 $^{\square}$ Choose $\beta < F(\gamma)$, so for some $\xi < \gamma$:

$$\beta < F(\xi) < F(\gamma)$$
, so $G(\beta) < G(F(\xi)) < G(F(\gamma))$.

Since $\beta < F(\gamma)$ was arbitrary,

$$G(F(\gamma)) = \sup\{G(\beta) \mid \beta < F(\gamma)\}$$

$$\leq \sup\{G(F(\xi)) \mid \xi < \gamma\}$$

$$\leq G(F(\gamma)).$$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

12 / 30

Normal functions

Theorem: bracketing

I conclude this survey of properties of normal functions with an important "bracketing" condition.

Compare to Lemma 6.6.2, p. 124, of H+J.

Theorem

Let F be a normal function and α an ordinal for which there is a β with $F(\beta) \le \alpha$. Then there is a unique δ such that $F(\delta) \le \alpha < F(\delta + 1)$.

Note. The theorem relies on $dom(F) = \mathbf{ON}$ and $\alpha \leq F(\alpha)$. If we take the domain of F to be an ordinal, we need the extra condition that there is some γ with $\alpha \leq F(\gamma)$.

Proof

- Let γ be least such that $\alpha < F(\gamma)$ (which must exist, since $\alpha < F(\alpha + 1)$).
- $\mathfrak{P} \gamma > 0$, since there is some β with $F(\beta) \leq \alpha$, so $\beta < \gamma$.
- For a limit. Otherwise, $\alpha < F(\gamma) = \sup\{F(\xi) \, \big| \, \xi < \gamma\}$, so that $\alpha < F(\xi)$ for some $\xi < \varepsilon$.
- So, $\gamma = \delta + 1$. Thus, $F(\delta) \le \alpha < F(\delta + 1)$, proving existence.
- Uniqueness follows by order: if $\varepsilon \neq \delta$, then either $\varepsilon < \delta \leq \alpha$, so $F(\varepsilon + 1) \leq F(\delta) \leq \alpha$, or $\delta + 1 \leq \varepsilon$, so $\alpha < F(\delta + 1) \leq F(\varepsilon)$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

14 / 30

Fixed Point Theorem

Theorem: Fixed points

Definition

An argument x is a fixed-point for a function F if F(x) = x.

Theorem (Fixed-point theorem for normal functions)

Let F be a normal function. For every β there is an $\alpha > \beta$ such that $F(\alpha) = \alpha$.

Furthermore, the fixed-point α the theorem constructs is the least fixed-point greater than β .

Proof

Define a function $f:\omega\to\mathbf{ON}$ by primitive recursion.

$$f(0) = \beta + 1$$

$$f(n+1) = F(f(n))$$

$$\alpha = \sup\{f(n) \mid n \in \omega\}.$$

Suppose f(0) is a fixed-point. Then f(0) = F(f(0)) = f(1). By a simple induction, f(0) = f(n) for all n. So, $\alpha = f(0)$ is a fixed-point.

Suppose f(0) is not a fixed point. Then f(0) < F(f(0)) = f(1). By a simple induction, f(n) < f(n+1) for all n (using F is order-preserving). So, α is a limit ordinal, and a fixed-point:

$$F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\}$$

$$= \sup\{F(f(n)) \mid n \in \omega\}$$

$$= \sup\{f(n+1) \mid n \in \omega\}$$

$$= \alpha$$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009 17 / 30

Fixed Point Theorem

Proof – continued

Suppose $f(0) < \gamma < \alpha$. Then for some n,

$$f(n) \leq \gamma < f(n+1).$$

So,

$$f(n) \le \gamma < f(n+1) \le F(\gamma) < F(f(n+1)).$$

Thus, $\gamma \neq F(\gamma)$, so γ is not a fixed-point.

 \checkmark α is the least fixed-point greater than β .

Example

Example. Define $\Lambda : \mathbf{ON} \to \mathbf{ON}$ be recursion:

$$\Lambda(\alpha) = \begin{cases} \omega & \text{if } \alpha = 0\\ \Lambda(\beta) + \omega & \text{if } \alpha = S(\beta)\\ \sup\{\Lambda(\gamma) \, \big| \, \gamma < \alpha\} & \text{if } \alpha \text{ is a limit.} \end{cases}$$

Λ is enumerating the limit ordinals. To see this verify that

- (i) $\alpha + \omega$ is smallest limit ordinal greater than α .
- (ii) Λ is normal (slide 5), so that if γ is a limit ordinal, then so is $\Lambda(\gamma)$ (slide 9).

In Homework 9, you will be essentially proving that

$$\Lambda(\alpha) = \omega \cdot \alpha.$$

By the previous theorem, there is an $0 < \alpha$ (in fact, many α) with

$$\Lambda(\alpha) = \alpha = \omega \cdot \alpha.$$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009 19 / 30

Fixed Point Theorem

Example

Example. The function $(\xi \mapsto \omega^{\xi})$ is normal (noted previously, and proven in Lecture 21). So, there exists an $\alpha > 0$ (in fact, many α) with

$$\alpha = \omega^{\alpha}$$
.

In HW9 you will prove that for any $\beta < \alpha$

$$\beta + \alpha = \alpha.$$

Such numbers are called indecomposable, or γ -numbers .

 α has a stronger closure property:

$$\alpha = \omega^{\alpha} = \omega^{\omega^{\alpha}},$$

which implies that for any $\beta < \alpha$

$$\beta \cdot \alpha = \alpha.$$

Such numbers are called δ -numbers. See next Section.

γ -numbers

Transfinite ordinals have properties that you do not find in finite number. The following property describes ordinals which absorb sums of smaller ordinals (on the left).

Definition

An ordinal α is called a γ -number if $\beta+\alpha=\alpha$ for all $\beta<\alpha$. γ -numbers are also called additively indecomposable. This is the terminology in Homework 9.

Note. $\alpha<\alpha+\beta$ when $\beta>0$, so the order of the sum matters. You can easily verify that 0 is a γ -number, and that ω is the next largest γ -number.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

22 / 30

Special Topics

γ -numbers

The following theorem is a problem on Homework 9.

Theorem

The following are equivalent.

- **1** α is a γ -number: $\beta + \alpha = \alpha$ for all $\beta < \alpha$.
- **2** For all $\beta, \gamma < \alpha, \beta + \gamma < \alpha$.
- **3** Either $\alpha = 0$, or $\alpha = \omega^{\beta}$ for some β

δ -numbers

Transfinite ordinals have properties that you do not find in finite number. The following property describes ordinals which absorb products of smaller ordinals (on the left).

Definition

An ordinal α is called a δ -number if $\beta \cdot \alpha = \alpha$ for all $0 < \beta < \alpha$. δ -numbers are also called multiplicatively indecomposable.

Note. $\alpha < \alpha \cdot \beta$ when $\beta > 1$ and $\alpha > 0$, so the order of the product matters.

You can easily verify that 0, 1, 2 are δ -numbers, and ω is the next larger γ -number.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

24 / 30

Special Topics

δ -numbers

The proof of the following theorem is similar to the previous theorem on γ -numbers.

Theorem

The following are equivalent.

- **1** α is a δ -number: $\beta \cdot \alpha = \alpha$ for all $0 < \beta < \alpha$.
- **2** For all $\beta, \gamma < \alpha, \beta \cdot \gamma < \alpha$.
- **3** Either $\alpha = 0, 1, 2$, or $\alpha = \omega^{\omega^{\beta}}$ for some β

ϵ-numbers

Transfinite ordinals have properties that you do not find in finite number. The following property describes ordinals which absorb exponents of smaller ordinals.

Definition

An ordinal α is called an ϵ -number if $\alpha^{\beta} = \alpha$ for all $1 < \beta < \alpha$.

Note. $\alpha \leq \beta^{\alpha}$ when $\beta >$ 1, so the order of the exponent matters. You can easily verify that 0, 1, 2 are ϵ -numbers, and ω is the next larger ϵ -number.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

26 / 30

Special Topics

Fixed points of exponentiation

Since $(\xi \mapsto \omega^{\xi})$ is normal, it has fixed points, $\alpha = \omega^{\alpha}$. These fixed points will be δ -numbers and γ numbers, from the characterization of slides 23 and 25:

$$\alpha = \omega^{\alpha} = \omega^{\omega^{\alpha}}.$$

This fixed point is also an ϵ -number. Let $\beta < \alpha = \omega^{\alpha}$. Since α is a limit, there is a $\gamma < \alpha$ with $\beta < \omega^{\gamma}$. Then

$$eta^{lpha} \leq \left(\omega^{\gamma}\right)^{lpha}$$
 L. 21, s. 17, (d)
 $= \omega^{\gamma \cdot \alpha}$ L. 21, s. 18, (b)
 $= \omega^{\alpha} = \alpha$ α is δ -number.

 $^{\square}$ We turn to finding a nice characterization of ϵ numbers.

Knuth Double Arrow notation

Extend Knuth's "double arrow" operator to the transfinite:

$$\beta \uparrow \uparrow \alpha = \underbrace{\beta^{\beta^{\beta^{\cdot \cdot \cdot \cdot }}}}_{\alpha \text{ copies}}$$

Definition (Ordinal Double Arrow)

For all ordinals β ,

$$\begin{array}{rcl} \beta \uparrow \uparrow 0 & = & 1 \\ \beta \uparrow \uparrow (\alpha + 1) & = & \left(\beta \uparrow \uparrow \alpha\right)^{\beta} \\ \beta \uparrow \uparrow \alpha & = & \sup\{\beta \uparrow \uparrow \xi \, \big| \, \xi < \alpha\} & \text{when } \alpha \text{ is a limit} \end{array}$$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 20

March 15, 2009

Special Topics

Fixed points and ϵ_0

Example. The least fixed point of the normal function $(\xi \mapsto \omega^{\xi})$ is

$$\epsilon_0 = \omega \uparrow \uparrow \omega = \underbrace{\omega^{\omega^{\omega^{\star^{\star^{\star}}}}}}_{\omega \text{ copies}}$$

You can check this by looking back to the construction in the proof of the Fixed-Point Theorem on slide 16.

The function $(\xi \mapsto \omega \uparrow \uparrow \xi)$ is normal, so there are (many) fixed points

$$\alpha = \omega \uparrow \uparrow \alpha = \underbrace{\omega^{\omega^{\omega^{\cdot^{\cdot^{\cdot^{\cdot}}}}}}}_{\alpha \text{ copies}}$$

and these will be ϵ -numbers.

Not all ϵ -numbers are fixed points of $\uparrow \uparrow$, for example $\epsilon_0 \neq \omega \uparrow \uparrow \epsilon_0$. (In fact, $\epsilon_0 \neq \epsilon_0^{\omega} = \omega \uparrow \uparrow (\omega + 1)$ – see L. 21, s. 17, (c).)

ϵ -numbers

Theorem

The following conditions are equivalent

- (a) α is an ϵ -number: $\beta^{\alpha} = \alpha$ for all $\beta < \alpha$.
- (b) $\alpha = 1$, or for all $\beta, \gamma < \alpha$, $\beta^{\gamma} < \alpha$.
- (c) $\alpha = \beta \uparrow \uparrow \omega$ for some β .

Note. For (c),

$$\begin{array}{lll} 1 & = & 1 \uparrow \uparrow \beta & \quad \text{for all } \beta \\ \omega & = & n \uparrow \uparrow \omega & \quad \text{for all } n \in \omega. \end{array}$$