Introduction to Ray Tracing

RAJESH SHARMA
Walt Disney Animation Studios

Thank you to ACM SIGGRAPH!

Pol Jeremias-Vila: SIGGRAPH 2021 Chair

Tomasz Bednarz: Frontiers Program Chair

Alex Bryant: Student Volunteers Chair

Tim Hendrickson: Digital Marketing Manager

Student Volunteers:

Rogelio, Trinity, Aurora, Emily, Hunter & Kendra

Ray Tracing

Rajesh Sharma

Course Outline

- ✓ Intro, Model, Sampling
- **✓** Rays, Intersections
- ✓ Scene, Recursion
- -**✓** Materials, BRDF
- -- BRDF-2, Reflections (TODAY)
- -- Systems View: Integrators, Accelerators
- -- Wrap up, Learn more

Today

- Guest: No Guest
- Recap
- Reflection
- BRDF 2

Housekeeping

- Link to today's slides and shaderToys:
 - Log in to your google drive
 - Google drive folder: https://bit.ly/3viTHez
 - Code: https://www.shadertoy.com/user/xarmalarma
- Use the chat to ask questions, help others
- After the lecture: @xarmalarma, #siggraph2021

Simple Shading: Light anywhere

Lambert's Cosine Law

- Diffuse, Lambertian
- View Independent

Smaller the angle, more the intensity:

 $dot(L^{\hat{}}, N^{\hat{}}) = cos(angle)$

Materials

- So far our material is just a color and possibly a texture
- We have diffuse (Lambertian) surfaces

Materials - Mirror

Materials - Glossy

Materials - Things can get complicated

Mirror - Specular Metal - Glossy Skin - Subsurface Glass - Transparent Plaster, Paper - Diffuse

Materials - Simplify

$$f_{
m r}(\omega_{
m i},\,\omega_{
m r})\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{{
m d}\,E_{
m i}(\omega_{
m i})}\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{L_{
m i}(\omega_{
m i})\cos heta_{
m i}\,\,{
m d}\,\omega_{
m i}}$$

For Diffuse of Lambertian: ω_r doesn't matter

So, the BRDF in that case is simply the reciprocal of the dot product of normal and incident direction.

Materials - BRDFs for different materials

$$f_{
m r}(\omega_{
m i},\,\omega_{
m r})\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{{
m d}\,E_{
m i}(\omega_{
m i})}\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{L_{
m i}(\omega_{
m i})\cos heta_{
m i}\,\,{
m d}\,\omega_{
m i}}$$

Multiple lobes

Materials - BRDFs for different materials

$$f_{
m r}(\omega_{
m i},\,\omega_{
m r})\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{{
m d}\,E_{
m i}(\omega_{
m i})}\,=\,rac{{
m d}\,L_{
m r}(\omega_{
m r})}{L_{
m i}(\omega_{
m i})\cos heta_{
m i}\,\,{
m d}\,\omega_{
m i}}$$

https://www.disneyanimation.com/publications/physically-based-shading-at-disney/

Materials - Mirror

$$R_r = R_i - 2 N (R_i . N)$$

Materials - Mirror

Hands on: Shadertoy: Reflections

Materials - Generalizing

Materials - Generalizing

- Properties:
 - Base Color
 - Metallic
 - Roughness
 - Specularity
 - Clearcoat
 - Sheen
 - Anisotropic

Materials - Mirror

Hands on: Shadertoy: BRDF

Hands-on

- ★ Log in to your google drive
- ★ Make a shortcut to: https://bit.ly/3viTHez
- ★ Create an account on shadertoy.com
- ★ Fork a copy of:
 - https://www.shadertoy.com/view/7ts3WN

Next Class

- Continue building BRDF
- Unifying everything, optimize
- Homework:
 - Try surface varying materials, textures
 - Try animating the light
 - o @xarmalarma, #siggraph2021

QUESTIONS?

- Chat
- #xarmalarma