CLAIM AMENDMENTS

Please replace all prior versions and listings of claims with the amended claims as follows:

1. (Currently amended) A compound having formula (I):

$$R_3$$
 A
 R_4
 R_2
 R_1
 R_3
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

wherein:

q is 0-2; and wherein:

each R° is independently selected from hydrogen, a C_{1-6} aliphatic, wherein said C_{1-6} aliphatic group is either unsubstituted or substituted with one or more substitutents

selected from =0, =S, =NNHR*, =NN(R*)2, =NNHC(0)R*, =NNHCO2(alkyl), =NNHSO2(alkyl), =NR*NH2, NH(C1-4 aliphatic), N(C1-4 aliphatic), N(C1-4 aliphatic), NO2, CN, CO2H, CO2(C1-4 aliphatic), O(halo C1-4 aliphatic), or halo C1-4 aliphatic; an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, phenyl, -O(Ph), or -CH2(Ph), or wherein two occurrences of R*, on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein:

each R^{\ast} is independently selected from hydrogen or a C_{1-6} aliphatic group wherein said aliphatic group of R^{\ast} is either unsubstituted or substituted with one or more substituents selected from NH₂, NH(C₁₋₄ aliphatic), N(C₁₋₄ aliphatic)₂, halogen, C_{1-4} aliphatic, OH, O(C₁₋₄ aliphatic), NO₂, CN, CO₂H, CO₂(C₁₋₄ aliphatic), O(halo C₁₋₄ aliphatic), or halo(C₁₋₄ aliphatic);

the nitrogen of any non-aromatic heterocyclic ring is either unsubstituted or substituted with one or more groups selected from $-R^+$, $-N(R^+)_2$, $-C(0)R^+$, $-OR^+$, $-CO_2R^+$, $-C(0)C(0)R^+$, $-C(0)CH_2C(0)R^+$, $-SO_2R^+$, $-SO_2N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$, or $-NR^+SO_2R^+$; wherein:

 $\rm R^+$ is hydrogen, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, an unsubstituted $\rm C_{1-6}$ aliphatic, unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted -CH₂(Ph), unsubstituted -CH₂(Ph), or -CH₂(Ph), or C₁₋₆ aliphatic, phenyl (Ph), -O(Ph), -CH₂(Ph), or -CH₂(Ph) substituted with one or more groups selected from NH₂, NH(C₁₋₄ aliphatic), N(C₁₋₄ aliphatic)₂, halogen, C₁₋₄ aliphatic, OH, O(C₁₋₄ aliphatic), NO₂, CN, CO₂H, CO₂(C₁₋₆ aliphatic), O(halo C₁₋₆ aliphatic), or halo(C₁₋₆ aliphatic) or wherein two occurrences of R⁺, on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 R_a is -COOH; n is [[0-4]] 1;

R₁ is [[H, or]] a hydroxyaliphatic, aminoaliphatic, aliphatic-COOH, aliphatic-CONH₂, or arylaliphatic wherein said hydroxyaliphatic, aminoaliphatic, aliphatic-CONH₂, or arylaliphatic wherein said hydroxyaliphatic, aminoaliphatic, aliphatic-CONH₂, or arylaliphatic is either unsubstituted or substituted with one or more substituents selected from halogen, -R°, -OR°, -SR°, 1,2-methylene-dioxy, 1,2-ethylenedioxy; unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted -CH₂(Ph), unsubstituted $-CH_2$ (Ph), or -CH₂(Ph), or -CH₂(Ph) substituted with one or more -R° groups; -NO₂, -CN, -N(R°)₂, -NR°C(O)R°, -NR°C(O)N(R°)₂, -NR°CO₂R°, -C(O)C(O)R°, -NR°NR°C(O)R°, -CO₂R°, -C(O)C(O)R°, -CO₂R°, -C(O)R°, -CO₂R°, -C(O)R°, -CO₂R°, -C(O)R°, -CO₂R°, -C(O)R°, -CO₂R°, -C(O)R°, -CO₂R°, -CO₂R°, -C(O)R°, -NR°SO₂N(R°)₂, -NR°SO₂R°, -C(-C(S)N(R°)₂, -C(-C(S)

q is 0-2; and wherein:

each R° is independently selected from hydrogen, a C_{1-6} aliphatic, wherein said C_{1-6} aliphatic group is either unsubstituted or substituted with one or more substituents selected from =0, =S, =NNHR*, =NN(R^*)_2, =NNHC(0)R*, =NNHCO_2(alkyl), =NNHSO_2(alkyl), =NR*NH_2, NH(C_{1-4} aliphatic), $N(C_{1-4}$ aliphatic)_2, halogen, C_{1-4} aliphatic, O_1 , O_1 , O_2 ,

each R^* is independently selected from hydrogen or a C_{1-6} aliphatic group wherein said aliphatic group of R^* is either

unsubstituted or substituted with one or more substituents selected from NH_2 , $NH(C_{1-4}$ aliphatic), $N(C_{1-4}$ aliphatic), halogen, C_{1-4} aliphatic, OH, $O(C_{1-4}$ aliphatic), NO_2 , CN, CO_2H , $CO_2(C_{1-4}$ aliphatic), $O(halo\ C_{1-4}$ aliphatic), or halo $(C_{1-4}$ aliphatic);

the nitrogen of any non-aromatic heterocyclic ring is either unsubstituted or substituted with one or more groups selected from $-R^+$, $-N(R^+)_2$, $-C(0)R^+$, $-OR^+$, $-CO_2R^+$, $-C(0)C(0)R^+$, $-C(0)CH_2C(0)R^+$, $-SO_2R^+$, $-SO_2N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$, or $-NR^+SO_2R^+$; wherein:

 $\rm R^{+}$ is hydrogen, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, an unsubstituted $\rm C_{1-6}$ aliphatic, unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted -CH₂(Ph), unsubstituted -CH₂(Ph); or $\rm C_{1-6}$ aliphatic, phenyl (Ph), -O(Ph), -CH₂(Ph), or -CH₂(Ph) substituted with one or more groups selected from NH₂, NH(C₁₋₄ aliphatic), N(C₁₋₄ aliphatic)₂, halogen, C₁₋₆ aliphatic, OH, O(C₁₋₄ aliphatic), NO₂, CN, CO₂H, CO₂(C₁₋₆ aliphatic), O(halo C₁₋₆ aliphatic), or halo(C₁₋₆ aliphatic) or wherein two occurrences of $\rm R^{+}$, on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 R_2 is an unsubstituted aliphatic, or a cycloaliphaticaliphatic or heteroarylaliphatic, wherein said cycloaliphaticaliphatic or heteroarylaliphatic is either unsubstituted or substituted with one or more substituents selected from halogen, $-R^{\circ}$, $-OR^{\circ}$, $-SR^{\circ}$, 1,2-methylene-dioxy, 1,2-ethylenedioxy; unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted $-CH_2(Ph)$, unsubstituted $-CH_2(Ph)$, unsubstituted $-CH_2(Ph)$, or $-CH_2(Ph)$, or $-CH_2(Ph)$, substituted with one or more $-R^{\circ}$ groups; $-NO_2$, -CN, $-N(R^{\circ})_2$, $-NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}NR^{\circ}C(O)R^{\circ}$, $-CO_2R^{\circ}$, -

 $-NR^{\circ}SO_2N(R^{\circ})_2$, $-NR^{\circ}SO_2R^{\circ}$, $-C(=S)N(R^{\circ})_2$, $-C(=NH)-N(R^{\circ})_2$, or $-(CH_2)_3NHC(O)R^{\circ}$; wherein:

g is 0-2; and wherein:

each R° is independently selected from hydrogen, a C_{1-6} aliphatic, wherein said C_{1-6} aliphatic group is either unsubstituted or substituted with one or more substituents selected from =0, =S, =NNHR*, =NN(R^*)_2, =NNHC(0)R^*, =NNHCO_2(alkyl), =NNHSO_2(alkyl), =NR*NH_2, NH(C_{1-4} aliphatic), $N(C_{1-4}$ aliphatic)_2, halogen, C_{1-4} aliphatic, OH, $O(C_{1-4}$ aliphatic), NO_2 , CN, CO_2H , $CO_2(C_{1-4}$ aliphatic), $O(halo\ C_{1-4}$ aliphatic), or halo C_{1-4} aliphatic; an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, phenyl, -O(Ph), or $-CH_2(Ph)$, or wherein two occurrences of R°, on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein:

each R^* is independently selected from hydrogen or a C_{1-6} aliphatic group wherein said aliphatic group of R^* is either unsubstituted or substituted with one or more substituents selected from NH_2 , $NH(C_{1-4}$ aliphatic), $N(C_{1-4}$ aliphatic), halogen, C_{1-4} aliphatic, OH, $O(C_{1-4}$ aliphatic), NO_2 , CN, CO_2H , $CO_2(C_{1-4}$ aliphatic), $O(halo\ C_{1-6}$ aliphatic), or halo $(C_{1-6}$ aliphatic);

the nitrogen of any non-aromatic heterocyclic ring is either unsubstituted or substituted with one or more groups selected from $-R^+$, $-N(R^+)_2$, $-C(0)R^+$, $-OR^+$, $-CO_2R^+$, $-C(0)C(0)R^+$, $-C(0)CH_2C(0)R^+$, $-SO_2R^+$, $-SO_2N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$, or $-NR^+SO_2R^+$; wherein:

 R^+ is hydrogen, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, an unsubstituted C_{1-6} aliphatic, unsubstituted phenyl (Ph), unsubstituted -O(Ph), unsubstituted -CH₂(Ph), unsubstituted -CH₂CH₂(Ph); or C_{1-6} aliphatic, phenyl(Ph), -O(Ph), -CH₂(Ph), or -CH₂CH₂(Ph) substituted with one or more groups selected from NH₂, NH(C₁₋₄ aliphatic), N(C₁₋₄ aliphatic)₂, halogen,

 C_{1-4} aliphatic, OH, O(C_{1-4} aliphatic), NO₂, CN, CO₂H, CO₂(C_{1-4} aliphatic), O(halo C_{1-4} aliphatic), or halo(C_{1-4} aliphatic) or wherein two occurrences of R^+ , on the same substituent or different substituents, taken together, form a 5-8-membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 $\rm R^3$ and $\rm R^4$ are independently selected from $\rm R^{11},~\rm R^{12},~\rm R^{14}$ or $\rm R^{15},$

wherein:

each R^{11} is independently selected from 1,2-methylenedioxy, 1,2-ethylenedioxy, R^6 or $(CH_2)_m-Y$;

wherein m is 0, 1 or 2; and

Y is selected from halogen, CN, NO2, CF3, OCF3, OH, SR6, S(O)R6, SO2R6, NH2, NHR6, N(R6)2, NR6R8, COOH, COOR6 or OR6:

each R^{12} is independently selected from (C_1-C_6) -straight or branched alkyl, or (C_2-C_6) -straight or branched alkenyl or alkynyl; and each R^{12} optionally comprises up to 2 substituents, wherein:

the first of said substituents, if present, is selected from ${\rm R}^{11},~{\rm R}^{14}$ and ${\rm R}^{15},$ and

 $\label{eq:the second of said substituents, if present, is $_{R}11$.}$

each \mathbb{R}^{15} is a cycloaliphatic, aryl, heterocyclyl, or heteroaromatic; and each \mathbb{R}^{15} optionally comprises up to 3 substituents, each of which, if present, is \mathbb{R}^{11} ;

each R^6 is independently selected from H, (C_1-C_6) -straight or branched alkyl, or (C_2-C_6) straight or branched alkenyl; and each R^6 optionally comprises a substituent that is R^7 ;

 R^7 is a cycloaliphatic, aryl, heterocyclyl, or heteroaromatic; and each R^7 optionally comprises up to 2 substituents independently chosen from H, (C_1-C_6) -straight or branched alkyl, (C_2-C_6) straight or branched alkenyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or $(CH_2)_p$ -Z;

wherein p is 0, 1 or 2; and

Z is selected from halogen, CN, NO₂, CF₃, OCF₃, OH, $S(C_1-C_6)$ -alkyl, $SO(C_1-C_6)$ -alkyl, $SO_2(C_1-C_6)$ -alkyl, NH₂, NH₄(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, N((C₁-C₆)-alkyl)_R⁸, COOH, C(O)O(C₁-C₆)-alkyl or O(C₁-C₆)-alkyl; and

 \mathbb{R}^{8} is -C(0)CH3, -C(0)Ph or -SO2Ph; provided that:

 R^3 and R^4 are not simultaneously hydrogen; when R^3 is H, then R^4 is not chloro; and when R^4 is H, then R^3 is not -SCH₃ or -NH-C(O)CH₃.

2. (Currently amended) The compound according to claim 1, wherein ring A is an optionally substituted [[5 or]] 6 membered

aryl or heteroaryl ring, wherein said heteroaryl ring contains up to 2 ring heteroatoms independently selected from O, S, or NH.

- 3. (Original) The compound according to claim 2, wherein ring A is phenyl.
- 4. (Currently amended) The compound according to claim 1, wherein R_1 is $\frac{hydrogen_r}{(CH_2)_q}$ -X, wherein q is 1-4, and X is OH, NH₂, COOH or CONH₂, (C1-C6)-alkyl, or benzyl.
- 5. (Currently amended) The compound according to claim 4, wherein R_1 is $\frac{hydrogen_7}{hydroxymethyl}$, methyl, -CH₂COOH, -CH₂CONH₂, aminobutyl, or isopentyl.
- 6. (Previously presented) The compound according to claim 1, wherein R_2 is selected from butyl, isobutyl, cyclopentyl, cyclohexylmethyl, pyridylmethyl, furanylmethyl, or thienylmethyl.
- 7. (Previously presented) The compound according to claim 6, wherein R_2 is selected from 2-furanylmethyl.

8. (Canceled)

9. (Previously presented) A pharmaceutical composition comprising a compound according to any one of claims 1-7 and 17-18 and a pharmaceutically acceptable adjuvant or carrier.

10-16. (Canceled)

17. (Previously presented) The compound according to claim 1 wherein R_3 and R_4 are independently selected from hydrogen, halo, acetamido, allyloxy, thiophenyl, sulfoxyalkyl, or sulfoxyphenyl.

18. (Currently amended) A compound according to claim 1 selected from:

6-3-08