Examen Final Problemes

Enunciat-v1

17 de juny de 2015

1. Considerem el càlcul de la integral $\int_0^4 e^{-x^2} dx$ emprant la regla dels trapezis T(h) amb passos h cada vegada més petits. Calculeu T(h) per $h=2^{-k},\ k=0,1,\ldots,20$ treballant amb 6 xifres decimals com a mínim. A partir de quin valor de k és inutil continuar fent els càlculs degut als errors d'arrodoniment? Per què?

Resposta. El valor exacte s'obté per I=quad(f,0,4,tol). La successió d'errors |I-T(h)| és decreixent a 0 fins la iteració 13. Per a les iteracions següents, l'error no disminueix. Els errors d'arrodoniment fan que tots els càlculs posteriors no milloren el valor aproximat.

Taula de valors on $h=1/2^k$ i xd el nombre de decimals iguals.

k	T(h)	I-T(h)	xd	k	T(h)	I-T(h)	xd
0	0.8863185461	9.16e-005	4				
1	0.8862268965	1.53e-008	7	11	0.8862269118	1.74e-014	13
2	0.8862269074	4.43e-009	8	12	0.8862269118	5.55e-015	14
3	0.8862269106	1.15e-009	8	13	0.8862269118	5.55e-016	15
4	0.8862269115	2.92e-010	9	14	0.8862269118	1.22e-015	14
5	0.8862269117	7.32e-011	10	15	0.8862269118	2.11e-015	14
6	0.8862269118	1.83e-011	10	16	0.8862269118	3.66e-015	14
7	0.8862269118	4.58e-012	11	17	0.8862269118	8.33e-015	14
8	0.8862269118	1.14e-012	11	18	0.8862269118	1.38e-014	13
9	0.8862269118	2.86e-013	12	19	0.8862269118	1.24e-014	13
10	0.8862269118	7.17e-014	13	20	0.8862269118	1.41e-014	13

Exercici 1 Gràfic, abscises h i ordenades xifres decimals correctes

2. Per al sistema d'equacions lineals:

$$3x + y - z = 2$$
$$x + 5y - z = 1$$
$$-x + y - 4z = -3$$

- (a) Formula el mètode de Jacobi.
- (b) Estudia la convergència del mètode.
- (c) Calculeu les 10 primeres iteracions del mètode partint del vector inicial $x^0 = 0$
- (d) Calcula la solució exacta fent ús de funcions de MATLAB.
- (e) Estimeu els errors absolut i relatiu corresponents a la darrera iteració calculada. Quantes xifres significatives heu obtingut?

Resposta: Els resultats dels càlculs demanats s'han de presentar amb una precisió de com a mínim les xifres significatives obtingudes. La resposta a les preguntes sense cap tipus d'explicació i càlcul no es valorarà en cap cas.

(a) El mètode de Jacobi seria

$$\begin{pmatrix} x^{k+1} \\ y^{k+1} \\ z^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & -1/3 & 1/3 \\ -1/5 & 0 & 1/5 \\ -1/4 & 1/4 & 0 \end{pmatrix} \begin{pmatrix} x^k \\ y^k \\ z^k \end{pmatrix} + \begin{pmatrix} 2/3 \\ 1/5 \\ 3/4 \end{pmatrix}.$$

- (b) El radi espectral de la matriu de Jacobi és 0.18257, el fet que $\rho(B_J) < 1$ ens indica que és un mètode convergent.
- (c) Les 10 primeres iteracions són

	k	x^k	y^k	z^k	
1	0.66666	6667	0.2	0.750000000	
2	0.85000	0000	0.216666667	0.633333333	
3	0.80555	5556	0.156666667	0.591666667	
4	0.81166	6667	0.157222222	0.587777778	
5	0.81018	5185	0.155222222	0.586388889	
6	0.81038	8889	0.155240741	0.586259259	
7	0.81033	9506	0.155174074	0.586212963	
8	0.81034	6296	0.155174691	0.586208642	
9	0.81034	4650	0.155172469	0.586207099	
10	0.81034	4877	0.15517249	0.586206955	

(d) La solució exacte en MATLAB es pot obtenir per $A \backslash b$, que en aquest cas és

$$\chi^* = (0.81034, 0.15517, 0.58621)^t.$$

(e) L'error absolut és $|\chi^{10}-\chi^*|=0.108e-006$. L'error relatiu és

$$\frac{|\chi^{10} - \chi^*|}{|\chi^*|} = 0.106e - 006 < 0.510^{-6},$$

s'obtenen sis xifres significatives.

3. Plantegeu el mètode de la potència per a la matriu

$$A = \left(\begin{array}{ccc} 9 & 10 & 8\\ 10 & 5 & -1\\ 8 & -1 & 3 \end{array}\right)$$

per a calcular el valor propi de mòdul màxim, i realitzeu les iteracions necessàries per a determinar el valor propi i el vector propi amb tres decimals correctes. Realment, caldria fer nombroses iteracions per a obtenir un resultat que s'aproximi suficientment a la solució; quins criteris cal utilitzar per a aturar el procés iteratiu?

Resposta: Els resultats dels càlculs demanats s'han de presentar amb una precisió de com a mínim quatre xifres decimals. No cal escriure totes les iteracions, doneu la primera, la darrera i dues intermitges. La resposta a les preguntes sense cap tipus d'explicació i càlcul no es valorarà en cap cas.

Prenen com a vector inicial $\chi=(-1,-1,-1)^t$, per a un valor aproximat amb tol=0.0005 calen 11 iteracions, i $\lambda_{11}\approx 19.2861$ $v_\lambda=(-0.77861,-0.52049,-0.35052)^t$ fent els càlculs amb $\|\cdot\|_2$. El criteri d'aturada és $\|A*x-r(k)*x\|_\infty < tol$ concretament per 8 decimals correctes, calen 22 iteracions. Les iteracions són:

vap	vep		
17	-0.843338314198473	-0.437286533288097	-0.312347523777212
18.9668292682927	-0.753974669705813	-0.537390153354035	-0.377801562357988
19.2436056887823	-0.787764211075948	-0.511036999741214	-0.343902213780876
19.2804137093088	-0.775319208770075	-0.523168595834611	-0.353800430814586
19.285321019896	-0.779844847725816	-0.519305100792178	-0.349519993371946
19.2859784649334	-0.778169507084788	-0.52086637492683	-0.350927966560091
19.2860667848355	-0.778780137426797	-0.520328702092063	-0.350370574290548
19.286078665189	-0.778554942641948	-0.52053472493876	-0.350564974606311
19.2860802642547	-0.778637296530157	-0.520461278314614	-0.350491110054629
19.2860804795457	-0.778607002623115	-0.520488766265852	-0.350517588228179

Exercici 4 Gràfic, els punts (verd), el polinomi (vermell) i la corba $y = Ax^{\alpha}$ (blau)

4. Empreu una tècnica de mínims quadrats per ajustar la taula de dades:

X	0.25	0.50	0.75	1.00	1.25	1.50	1.75
Y	0.40	0.50	0.90	1.28	1.60	1.66	2.02

a funcions del tipus següents: (4a) $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ (4b) $y = Ax^{\alpha}$. Es demana:

- (a) Explicitar els sistemes lineals resoldre en ambdós casos.
- (b) Donar els valors ajustats, a_0 , a_1 , a_2 , a_3 , A i α així com el valor del residu obtingut per cada equació.
- (c) Representeu conjuntament els punts (verd), el polinomi (vermell) i la corba $y = Ax^{\alpha}$ (blau).
- (d) Quin d'aquests tipus sembla el més adequat?

Resposta: La resposta a les preguntes sense cap tipus d'explicació i càlcul no es valorarà en cap cas.

(4a) Per a $y=a_0+a_1x+a_2x^2+a_3x^3\,$ el sistema lineal a resoldre per mínims quadrats és

$$\begin{pmatrix} 1 & 0.25 & 0.25^2 & 0.25^3 \\ 1 & 0.5 & 0.5^2 & 0.5^3 \\ 1 & 0.75 & 0.75^2 & 0.75^3 \\ 1 & 1 & 1 & 1 \\ 1 & 1.25 & 1.25^2 & 1.25^3 \\ 1 & 1.5 & 1.5^2 & 1.5^3 \\ 1 & 1.75 & 1.75^2 & 1.75^3 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0.5 \\ 0.9 \\ 1.28 \\ 1.60 \\ 1.66 \\ 2.02 \end{pmatrix}.$$

Els valors obtinguts són $a_0=0.2343$, $a_1=0.2305$, $a_2=1.1810$, i $a_3=-0.4267$ i el residu és r=0.1992

(4b) Per a $y=Ax^{\alpha}$ el sistema lineal a resoldre per mínims quadrats és

$$\begin{pmatrix} 1 & \ln(0.25) \\ 1 & \ln(0.5) \\ 1 & \ln(0.75) \\ 1 & \ln(1) \\ 1 & \ln(1.25) \\ 1 & \ln(1.5) \\ 1 & \ln(1.75) \end{pmatrix} \begin{pmatrix} \ln(A) \\ \alpha \end{pmatrix} = \begin{pmatrix} \ln(0.4) \\ \ln(0.5) \\ \ln(0.9) \\ \ln(1.28) \\ \ln(1.60) \\ \ln(1.66) \\ \ln(2.02) \end{pmatrix}.$$

Els valors obtinguts són A=1.1986 i $\alpha=0.8958$ i el residu és r=0.2351.

Per valor de residu, el millor dels dos és el polinomi de grau 3.