Rmarkdown-exercise-worksheet

Reid Otsuji 1/5/2020

Instructions:

Complete the worksheet using RStudio and Rmarkdown. Some R Packages will be necessary to complete the worksheet.

Answer all questions in this document and have fun with Rmarkdown!

Before you begin: You will need to load the GGPLOT package to use the diamonds data set. Run the code each of the following chuncks once to install and load the GGPLOT2 package.

1. Install and Load the ggplot2 package

(if you already have GGPLOT2 installed skip this code chunk.)

```
# This is an example of a code chunk to install an R package
# Run this code chunk manually if you need to install the GGPLOT2 package
# click the green arrow to the left to install the package.
install.packages("ggplot2")
```

• Run this code chunk to Load the GGPLOT2 library.

```
# load the GGPLOT2 library
library(ggplot2)
```

- 2. In the Diamonds Data Set Description text provided below, add the proper Rmarkdown formatting to each line of text. The highlighted recommendations at at the end of each line.
 - optinoal: add a link to the Diamond Data Set Description text below using the link formt [link text](http://add link here) to the dataset information.
 - The 4 C's of Diamond Quality https://4cs.gia.edu/en-us/4cs-diamond-quality/

Prices of 50,000 round cut diamonds H1 heading Description H2 heading

A dataset containing the prices and other attributes of almost 54,000 diamonds. The variables are as follows: bold this line

Usage h3 heading

diamonds bullet

Format h3 heading

A data frame with 53940 rows and 10 variables: bold

price h4 heading, bullet price in US dollars (\$326-\$18,823) nested bullet carat h4 heading, bullet weight of the diamond (0.2-5.01) nested bullet cut h4 heading, bullet

quality of the cut (Fair, Good, Very Good, Premium, Ideal) nested bullet

color h4 heading, bullet

diamond colour, from D (best) to J (worst) nested bullet

```
clarity h4 heading, bullet a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best)) nested bullet x h4 heading, bullet length in mm (0-10.74) nested bullet y h4 heading, bullet width in mm (0-58.9) nested bullet z h4 heading, bullet depth in mm (0-31.8) nested bullet depth h4 heading, bullet total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43-79) nested bullet, inline code block table h4 heading, bullet width of top of diamond relative to widest point (43-95) nested bullet
```

For the next section you will need to load the following packages:

- knitr
- ggplot2
- kable
- pander

```
# this is an example of a code chunk
#run manually by clicking the green arrow to the left if you need to load the library
library(knitr)
```

Next, you will practice working with code chunks!

3. Adding code chunks

- On the tool bar, use the Insert button and selecting R or manually create on by typing a "code fence" 3 opening and closing backtics with {r} e.g. ```{r} at the beginning and closing with ``` to create a code chunk (see example above).
- In between the "code fence" add and run the R code summary(diamonds) to get the summary of the data set: (run the code chunk to make sure it works)
 - optional- hide the code chunk in your knitted document by adding echo=FALSE in the code chunk options

Add code chunk below:

- 4. Create a new code chunk to add a basic scatter plot to your document that shows the price as a function of carat weight:
 - Use this code plot(price ~ carat, data=diamonds) Add code chunk below:
- 5. Create a basic R table that shows the count for the diamonds cut and clarity following these steps:
 - 1. Create a code chunk
 - 2. Hide the code chunk in the knitted document output using echo=FALSE
 - 3. Use this code table(diamonds\$cut, diamonds\$clarity) to generate the table

Add code chunk below:

Next, improve to formatting of this table by using the knitr package function kable:

- 1. Use kable to imporve the look of the default table
- 2. Create a new code chunk with the option echo=FALSE
- 3. Use this code kable(table(diamonds\$cut, diamonds\$clarity)) to gernerate the table
- if you receive an error message, make sure the knitr library is enabled. run library(knitr) before you
 run the kable code.

Add code chunk below:

6. Create a publication style table using the pander package

- 1. Install pander package using: install.packages("pander") run this code chunk if you need to install the pander package.
- 2. Load the pander package using: library(pander)

library(pander)

- 3. Run an simple anova (analysis of variance model) to model price as a function of carat.
 - Run this code to add the ANOVA to the variable model1:

```
model1 <- aov(price ~ cut, data=diamonds)
summary(model1)</pre>
```

- 4. Gereate the table using the pander package.
 - Create a new code chunk with the option echo=FALSE
 - Generate the markdown output using pander
 - Use the code pander(model1)

Add code chunk below:

7. Add a lnked image to your document.

- 1. Use the image format ![image title](image link) to embed a web linked image in the document.
 - Use the sample image link to add an image to this document: https://bit.ly/2ZQAIcg Note: knitting a document with web linked images will only work when knitting to HTML. Web linked images will produce a LaTex error when knitting to PDF.

Add Rmarkdown code below:

- 8. Knit your exercise worksheet to HTML or PDF output formats.
 - Use the knit button in the tool bar to knit to the default setting
 - Use the small chevron next to knit to select optional output formats.

Congratulations! You're on your way to making great documents using RStudio and Rmarkdown!