Análise de Complexidade

Função de Complexidade

- Descreve o "custo" de executar um algoritmo dado o tamanho da entrada (o tal do "n")
- Geralmente remete ao "Pior Caso", mas também pode ser referente ao "Caso Médio"
 - "Melhor Caso" é válido, mas raramente útil
- Todo algoritmo possui um "custo"
 - Tempo de processamento
 - Alocação de memória
 - Operações lentas (ler arquivo)
 - Tempo online no AWS
- Abstrai muito dos detalhes de implementação

O que se presume?

- Analisando o tempo de execução
 - Todas operações tem o mesmo custo
 - Não há interferência do Sistema Operacional
 - Não acontecem erros

- Analisando a memória
 - O sistema nunca fica sem espaço
 - Não inclui memória do sistema

Exemplo: Busca Maior elemento

```
A: Array // tamanho = n
func find_max(A):
   max = A[0] // c1
   for elemento in A: // roda n vezes
      if elemento > max: // c2
         max = elemento // c3
   return max // c4
F(n) = c1 + c4 + n*(c2 + c3) = c5 + c6*n \approx n
```

Detalhe Importante: Tamanho

Complexidade é sempre em termos relativos ao tamanho da entrada

- Mas não pode se pode presumir o formato dessa entrada
 - Caso seja feito, sua complexidade vai se aplicar a uma versão "restrita" do problema

- O tamanho pode ser separado dependendo da entrada
 - Exemplo: Algoritmo recebe dois arrays diferentes como entrada

Exemplo: Busca Por Elemento (Sequencial)

```
A: Array, buscado: Int
func find_normal(A, buscado):
  size = A.size()
   for indice in 0...size: // máximo n vezes
     elemento = A[indice] // cada operação
     if elemento == buscado:// executa apenas 1 vez
        return indice
Complexidade (pior caso): F(n) = n
```

Mas e o caso médio?

```
A: Array, buscado: Int

func find_normal(A, buscado):
    size = A.size()
    for indice in 0..size:
        elemento = A[indice]
        if elemento == buscado:
        return indice
```

 Supondo que o elemento sempre está no array

 E que ele tem probabilidade igual de estar em qualquer posição

 A complexidadedo caso médio é F(n) = (n+1)/2

Análise Assintótica

- Análise de funções para "valores arbitrariamente grandes"
 - Semelhante ao estudo de limites em cálculo

 Separa funções em conjuntos chamados "Ordens de Complexidade"

- Pode ser simplificada focando nos fatores "dominantes"
- Facilita comparação de algoritmos

Notação de Ordens de Complexidade

Define uma classe de funções com base em uma função "limite"

- Existem 3 tipos principais:
 - O ("ó grande") e Ω ("Omega grande") são opostos
 - Θ ("téta grande") é a união dos dois

- Para dizer que uma função f pertence a "ó grande" de outra g:
 - f(n) = O(g(n))

Exemplo "Intuitivo"

 Nesse exemplo, a partir de um certo ponto:

- F nunca vai superar G
- H nunca vai superar F
- H nunca vai superar G

Definição Formal

- Útil pra provar complexidades na prova!
- Dadas duas funções f(n) e g(n), podemos dizer que f(n) = O(g(n))
- Se
 - A partir de algum n' arbitrário, exista uma constante C tal que:
 - f(n) < C*g(n)
 - Se n>n'
- O mesmo vale pra Ω, trocando apenas a comparação para ">"

• $f(n) = \Theta(g(n))$ se e somente se f for O(g(n)) e $\Omega(g(n))$

Divisão em Classes

 Ordens de complexidade dividem as funções em classes

- Existe uma "hierarquia de funções" mais comuns
 - As "piores" são as exponenciais
 - As "melhores" são as logaritmicas

Na Prática

- A grande maioria dos algoritmos usáveis são "Polinomiais"
 - Da ordem O(n^x) onde x é um número positivo
 - O termo polinomial de maior expoente "domina" os menores
 - $F(n) = n + 100000*n^2 + 0.00001*n^3 = \Theta(n^3)$

- Funções logaritmicas são mais "lentas" que qualquer polinômio
- Exponenciais são raras em algoritmos usáveis
 - Rapidamente se tornam "intratáveis

Na prática: Busca Maior

```
A: Array // tamanho = n
func find_max(A):
   max = A[0] // c1
   for elemento in A: // roda n vezes
      if elemento > max: // c2
         max = elemento // c3
   return max // c4
F(n) = c1 + c4 + n*(c2 + c3) = c5 + c6*n \approx n = O(n)
```

Na Prática: Caso Médio da Busca Sequencial

```
A: Array, buscado: Int
func find_normal(A, buscado):
    size = A.size()
    for indice in 0..size:
        elemento = A[indice]
        if elemento == buscado:
        return indice
```

• A complexidade \acute{e} F(n) = (n+1)/2

•
$$(n+1)/2 = \Theta(n)$$

 Portanto a ordem de complexidade do caso médio é Θ(n)

Um exemplo mais complexo: InsertionSort

```
A: Array
func sort(A):
    for i in 0..(A.size-1): // executa de 0 até n-1
        // função find_max vista anteriormente: 0(n)
        max = find_max(A[i:]) //maior elemento a partir de i
        troca(A[max], A[i]) // coloca maior elemento em i
```

Executa n vezes uma função com complexidade $\Theta(n)$

Complexidade: $f(n) = \Theta(n^2)$

Foi isso

Caso dê tempo: Teorema Mestre

- Teorema usado pra funções recursivas
 - Particularmente as do tipo "dividir para conquistar"

Simplifica bastante o processo de análise de funções assim

Possui 3 casos onde se aplica

Exemplo: Busca Binária

```
A: Array, buscado: Int // A é ordenado
func find_binario(A, buscado, comeco, fim):
   meio = (comeco + fim)/2
   if buscado == A[meio]:
      return meio
   elif buscado < A[meio]:</pre>
      return comeco + find_binario(A, buscado, meio, fim)
   else:
      return meio + find_binario(A, buscado, meio, fim)
```

Os casos do teorema mestre

- Seja a o número de vezes que uma função se chama
- Seja b o fator pelo qual a entrada é dividida
- Seja f(n) a complexidade não-recursiva de uma chamada

O teorema mestre avalia a expressão de complexidade da forma

$$T(n) = aT(n/b) + f(n)$$

 $T(0) = 1$

Os 3 casos

- Sempre compara a função não-recursiva f(n) com o custo recursivo
 - Custo recursivo é dado na forma n^c, sendo c=log_b(a)
- Uma versão simplificada:
 - Se $f(n) < n^c$, $T(n) = \Theta(n^c)$
 - Se $f(n) = n^c$, $T(n) = \Theta(f(n)*log(n))$
 - Se $f(n) < n^c$, $T(n) = \Theta(f(n))$
- Mas existem detalhes importantes!