K. S. Institute of Technology

Department of Computer Science & Engineering

Mini Project Report

Academic Year:	2019-20(Even)		
Course Name(Code):	Cryptography Network Security & Cyber Law (17CS61)		
Mini Project Title:	Implementation of Ceasar Cipher Algorithm		
Group No:	07		
Group Members:	Divya Yashaswi Kanney	1KS17CS023	
Semester/Section	VI/A		

1. Description of the mini project:

- The aim of the project is to implement the Caesar Cipher algorithm to encrypt plain text into cipher text with the help of a key and to decrypt cipher text into plain text with the help of a key.
- Front end: Tkinter Python
- Back end: Python
- Working of the mini project: The mini project contains a python file named 'CaesarCipher.py'.
- Prerequisites:
 - 1. Python (Download)
 - 2. Tkinter module
- · Steps to run:
 - 1. Launch the terminal or the command prompt
 - 2. Change the directory to the directory containing the files of the mini project
 - 3. Type python CaesarCipher.py
 - 4. Select 'ENCRYPTION' or 'DECRYPTION' to navigate and perform respective operation

2. Description of the algorithm:

The Caesar cipher is one of the earliest known and simplest ciphers. It is a type of substitution cipher in which each letter in the plaintext is 'shifted' a certain number of places down the alphabet. For example, with a shift of 1, A would be replaced by B, B would become C, and so on. The method is named after Julius Caesar, who apparently used it to communicate with his generals.

Example

The text we will encrypt is 'go to war', with a shift (key) of 2.

plaintext: go to war ciphertext: iq vq yct

It is easy to see how each character in the plaintext is shifted up the alphabet. Decryption is just as easy, by using an offset of -2.

3. Algorithm:

Encryption:

First we translate all of our characters to numbers, 'a'=0, 'b'=1, 'c'=2, ..., 'z'=25. We can now represent the caesar cipher encryption function, e(x), where x is the character we are encrypting, as:

$$e(x) = (x+k) \pmod{26}$$

Decryption:

Where k is the key (the shift) applied to each letter. After applying this function the result is a number which must then be translated back into a letter. The decryption function is:

$$e(x) = (x - k) \pmod{26}$$

4. Implementation of algorithm(code):

```
from tkinter import *
from random import *
root = Tk()
root.title("Caesar Cipher")
root.minsize(500, 500)
firstLabel = Label(root, text="Caesar Cipher")
firstLabel.grid(row=25, column=250)
msg label = Label(root, text="Enter your Message:")
msg label.grid(row=30, column=150)
msg = Entry(root)
msg.grid(row=30, column=250, columnspan=2)
radio = IntVar()
question label = Label(root, text="Would you like to provide a key or generate a key?")
question label.grid(column=250)
key shift = Entry(root)
def print key():
  key label = Label(root, text="Enter the shift position:")
  key label.grid(row =150, column=150)
  # key shift = Entry(root)
  global key shift
  key shift.grid(row=150, column=250, columnspan=2)
provide = Radiobutton(root, text="Provide a Key", variable=radio, value=1, command=print key)
provide.grid(column=250)
def generate key():
  keyshift = randint(1, 26)
  # global key
  # key = key shift
  return keyshift
generate = Radiobutton(root, text="Generate a Key", variable=radio, value=2, command=generate key)
generate.grid(column=250)
generate.deselect()
provide.deselect()
```

4. Implementation of algorithm(code): Continued...

```
def encrypt():
  kev = ""
  option = radio.get()
  if option == 1:
     key = key shift.get()
  elif option == 2:
     key = str(generate key())
     label = Label(root, text="Please select an option")
     label.grid(column=250)
  # shift = IntVar()
  message = msg.get()
  if message == "" or key == "":
     label = Label(root, text="Please Enter a Message and/or Key!")
     label.grid(column=250)
  else:
     cipher text = ""
     shift = int(key)
     key label = Label(root, text="Your Key is " + key)
     key label.grid(column=250)
     for i in range(len(message)):
       char = message[i]
       if char.isalpha():
          if char.isupper():
            cipher text += chr((ord(char) + shift - 65) % 26 + 65)
          else: cipher text += chr((ord(char) + shift - 97) % 26 + 97)
       else: cipher text += char
     label = Label(root, text=cipher text)
     label.grid(column=250)
     decrypt button = Button(root, text="Decrypt the Message", padx=50,
       command=lambda: decrypt(shift, cipher text))
     decrypt button.grid(column=250)
def decrypt(shift, cipher text):
  plain text = ""
  for i in range(len(cipher text)):
     char = cipher text[i]
     if char.isalpha():
       if char.isupper():
          plain text += chr((ord(char) - shift - 65) % 26 + 65)
       else:
          plain text += chr((ord(char) - shift - 97) % 26 + 97)
     else:
       plain_text += char
  label = Label(root, text=plain text)
  label.grid(column=250)
encrypt button = Button(root, text="Encrypt the Message", padx=50, command=encrypt)
encrypt button.grid(row=250, column=250)
root.mainloop()
```

5. Snapshots of output:

Caesar Cipher		-	\times
	Caesar Cipher		
Enter your Message:			
Would	d you like to provide a key or gener	ate a key?	
	C Provide a Key		
	C Generate a Key		
	Encrypt the Message		

Caesar Cipher		<u> </u>	\times
	Caesar Cipher		
Enter your Message:	Go to war		
Would	l you like to provide a key or gene	rate a key?	
	Provide a Key		
	○ Generate a Key		
Enter the shift position:	2		
	Encrypt the Message		
	Your Key is 2		
	lq vq yct		
	Decrypt the Message		
_			

Caesar Cipher		_	\times
Enter your Message:	Caesar Cipher go to wai Vould you like to provide a Key Provide a Key Generate a Key Encrypt the Message Your Key is 13 tb gb jne Decrypt the Message	Ey?	×
	Caesar Cipher go to war		×
	Would you like to provide a key or generate a Provide a Key Generate a Key Encrypt the Message Your Key is 13 tb gb jne Decrypt the Message go to war	key?	

6. Conclusion:

The project works successfully to encrypt plain texts to cipher texts and decrypt the cipher text to plain text using caesar cipher algorithm.

7. References:

- https://www.geeksforgeeks.org/caesar-cipher-in-cryptography/
- https://www.geeksforgeeks.org/python-tkinter-grid location-and-grid size-method/
- https://www.delftstack.com/howto/python-tkinter/how-to-pass-arguments-to-tkinter-button-command/
- https://www.youtube.com/watch?v=YXPyB4XeYLA&t=2800s