Section 5.1: Eigenvectors and Eigenvalues

Definition: An **eigenvector** of A is a nonzero vector \vec{x} with $A\vec{x} = \lambda \vec{x}$ for some scalar λ . A scalar λ is an **eigenvalue** of A if there is a nontrivial solution to $A\vec{x} = \lambda \vec{x}$, such an \vec{x} is an eigenvector corresponding to λ .

Example 1. Let
$$A = \begin{bmatrix} 4 & 1 \\ 3 & 6 \end{bmatrix}$$
, $\vec{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, and $\vec{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Are \vec{u} and \vec{v} eigenvectors of A ?

For \vec{u} and \vec{v} to be eigenvectors we need $A\vec{u} = \lambda_1 \vec{u}$ and $A\vec{v} = \lambda_2 \vec{v}$ for some scalars λ_1 and λ_2 .

$$A\vec{u} = \begin{bmatrix} 4 & 1 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ 21 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 3 \end{bmatrix} \implies \lambda_1 = 7$$

$$A\vec{v} = \begin{bmatrix} 4 & 1 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \end{bmatrix} \neq \lambda_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} \implies \vec{v} \text{ is not an eigenvector.}$$

Example 2. Let $A = \begin{bmatrix} 5 & 2 \\ 3 & 6 \end{bmatrix}$ and $\lambda = 3$. Is 3 an eigenvalue for A?

For 3 to be an eigenvalue, we need $A\vec{x} = 3\vec{x}$ for some nonzero vector \vec{x} . That is we need $A\vec{x} - 3\vec{x} = \vec{0}$ to have a nontrivial solution.

$$A\vec{x} - 3\vec{x} = \vec{0}$$

$$(A - 3I)\vec{x} = \vec{0}$$

$$\left(\begin{bmatrix} 5 & 2 \\ 3 & 6 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}\right)\vec{x} = \vec{0}$$

$$\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}\vec{x} = \vec{0}$$

We want to know if $\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix} \vec{x} = \vec{0}$ has a nontrivial solution. From here we set up the following augmented matrix $\begin{bmatrix} 2 & 2 & 0 \\ 3 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Since we have a free variable, we know the matrix equation $A\vec{x} = 3\vec{x}$ has a nontrivial solution, hence 3 is an eigenvalue for A.

FACTS:

- λ is an eigenvalue of A if and only if $(A \lambda I)\vec{x} = \vec{0}$ has non trivial solutions.
- Def. The set of solutions of $(A \lambda I)\vec{x} = \vec{0}$, called the eigenspace corresponding to λ , is the null space of the matrix $(A - \lambda I)$, i.e. Nul $((A - \lambda I))$.
- The eigenspace contains the zero vector, which is excluded from being an eigenvector by definition. Every nonzero vector in the eigenspace is an eigenvector corresponding to λ .

Example 3. Let $A = \begin{bmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{bmatrix}$. Find a basis for the eigenspace corresponding to $\lambda = 3$.

Solution: A basis for the eigenspace corresponding to $\lambda = 3$ is the basis for the null space of the matrix A-3I. A basis for the eigenspace corresponding to $\lambda=3$ is a basis for Nul(A-3I).

$$A - 3I = \begin{bmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 3 & -3 & 3 \\ 2 & -2 & 2 \end{bmatrix}$$

The eigenspace corresponding to $\lambda = 3$ is the null space of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 3 & -3 & 3 \\ 2 & -2 & 2 \end{bmatrix}$. To find a basis for the null space $\frac{1}{2}$.

To find a basis for the null space we row reduce the following matrix

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 3 & -3 & 3 & 0 \\ 2 & -2 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \text{A solution has the form } \vec{x} = x_3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

So, a basis for the eigenspace corresponding to $\lambda = 3$, is $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}$.

Theorem The eigenvalues of a triangular matrix are the entries on the diagonal.

Example 4. Let $A = \begin{bmatrix} 3 & 1 & 2 \\ 0 & -4 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Then the eigenvalues of A are $\lambda = 3, -4, 0$. Notice for A, we have that A is not invertible as the det(A) = 3(-4)(0) = 0.

- **Theorem: Invertible Matrix Theorem (Cont.)** Let A be an $n \times n$ matrix. Then A is invertible if and only if
 - (s) The number 0 is *not* an eigenvalue of A
 - (t) The determinant of A is *not* zero.

Theorem: If $\vec{v}_1, \dots \vec{v}_p$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots \lambda_p$ of an $n \times n$ matrix A, then $\{\vec{v}_1, \dots \vec{v}_p\}$ are linearly independent.

Example 5. Let A be a 3×3 matrix and suppose $\vec{u}, \vec{v}, \vec{w}$ are nonzero vectors in \mathbb{R}^3 such that $A\vec{u} = 2\vec{u}$, $A\vec{v} = 3\vec{v}$, and $A\vec{w} = -4\vec{w}$. Is the set $\mathcal{B} = \{\vec{u}, \vec{v}, \vec{w}\}$ a basis for \mathbb{R}^3 .

Solution: Observe since $\vec{u}, \vec{v}, \vec{w}$ are nonzero vectors and there exist scalars $\lambda_1 = 2, \lambda_2 = 3$ and $\lambda_3 = -4$ such that $A\vec{u} = 2\vec{u}$, $A\vec{v} = 3\vec{v}$, and $A\vec{w} = -4\vec{w}$, we have $\vec{u}, \vec{v}, \vec{w}$ are eigenvectors of A. Furthermore, by the above thereom since $\vec{u}, \vec{v}, \vec{w}$ correspond to distinct eigenvectors, thhen $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent. Lastyle, by the Basis Theorem in chapter 4 since we know dim(\mathbb{R}^3) = 3 and we have three linearly independent vectors in \mathbb{R}^3 , we have the set $\{\vec{u}, \vec{v}, \vec{w}\}$ forms a basis for \mathbb{R}^3 .

Fact: An $n \times n$ matrix A can have at most n distinct eigenvalues.

Textbook Practice Problems: Section 5.1 (page 273-274) # 1, 3, 5, 8, 10, 13, 15, 17, 18, 21, 22.

END OF SECTION 5.1