Solution for Problem Set 7

201300035 方盛俊

Problem 1

(a)

由 Stirling's approximation 可知 $k! \sim \sqrt{2\pi n} (\frac{n}{e})^n$,或 $\sqrt{c_1 n} (\frac{n}{e})^n \leqslant k! \leqslant \sqrt{c_2 n} (\frac{n}{e})^n$,则 $\frac{\sqrt{c_1 k}}{k!} \leqslant (\frac{e}{k})^k$

即证
$$Q_k = \binom{n}{k} \frac{1}{n^k} (1 - \frac{1}{n})^{n-k} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-1)^{n-k}}{n^n} \leqslant \frac{\sqrt{c_1 k}}{k!} \leqslant (\frac{e}{k})^k$$

即证
$$\frac{n!}{(n-k)!} \cdot \frac{(n-1)^{n-k}}{n^n} \leqslant \sqrt{c_1 k}$$

即证
$$rac{\sqrt{c_2 n} (n-1)^{n-k}}{e^n (n-k)!} \leqslant \sqrt{c_1 k}$$

可以看出, 当 k 递增时, 不等式左边递减, 右边递增, 则我们令 k=1, 即只需证明

$$\frac{\sqrt{n}(n-1)^{n-1}}{e^n(n-1)!}\leqslant \sqrt{\frac{c_1}{c_2}}$$

即证
$$\sqrt{n}(n-1)^{n-1} \leqslant \sqrt{\frac{c_1}{c_2}}e^n \cdot \sqrt{c_1(n-1)}(\frac{n-1}{e})^{n-1} \leqslant \sqrt{\frac{c_1}{c_2}}e^n(n-1)!$$

即证
$$\sqrt{c_2 n} \leqslant e \sqrt{c_1^2 (n-1)}$$

即证
$$\frac{n}{n-1} \leqslant e^2 \cdot \frac{c_1^2}{c_2}$$

因为 c_1 和 c_2 是及其接近的一个数, 所以可以近似看作 $c_1 pprox c_2$, 那么就有 $\dfrac{c_1^2}{c_2} pprox 1$ 成立

则
$$rac{n}{n-1} \leqslant rac{2}{2-1} = 2 \leqslant e^2 \cdot rac{c_1^2}{c_2}$$
 成立

则原式
$$Q_k = \binom{n}{k} \frac{1}{n^k} (1 - \frac{1}{n})^{n-k} \leqslant (\frac{e}{k})^k$$
 成立.

(b)

记时间 A_i 为第 i 个位置刚好有 k 个键且该位置有最多的键. 则 $P(A_i)\leqslant Q_k$

由布尔不等式可知
$$P_k = P(igcup_{i=1}^n A_i) \leqslant igcup_{i=1}^n Q_k = nQ_k$$

(c)

即证
$$P_k \leqslant nQ_k \leqslant n(rac{e}{k})^k < rac{1}{n^2}$$

即证 $k \lg k - k \lg e > 3 \lg n$

当 $k\geqslant 3$ 时, k 递增, 则 $k\lg k-k\lg e$ 也递增

因为
$$k \geqslant \frac{c \lg n}{\lg \lg n}$$
, 只需带入 $k = \frac{c \lg n}{\lg \lg n}$

则只需找出c使得

$$\frac{c \lg n}{\lg \lg n} (\lg \frac{c \lg n}{\lg \lg n} - \lg e) > 3 \lg n$$

即
$$\frac{c}{\lg\lg n}(\lg\frac{\lg n}{\lg\lg n} + (\lg c - \lg e)) > 3$$

令
$$t = \lg \lg n$$
,则 $2^t = \lg n$,即

$$c(1-\frac{\lg t}{t}+\frac{\lg c-\lg e}{t})>3$$

$$f(t) = 1 - \frac{\lg t}{t} + \frac{\lg c - \lg e}{t}$$

뗏
$$f'(t) = -rac{rac{1}{\ln 2} - \lg t}{t^2} - rac{\lg c - \lg e}{t^2} = rac{\lg t - \lg c}{t^2}$$

所以带入
$$t=2$$
,则有 $c(1-\frac{\lg t}{t}+\frac{\lg c-\lg e}{t})=c(\frac{1}{2}+\frac{\lg c-\lg e}{2})>3$

取
$$c=8$$
,则 $c(rac{1}{2}+rac{\lg c-\lg e}{2})=4(1+3-\lg e)>3$

因为
$$n\geqslant \dfrac{8\lg n}{\lg\lg n}$$
,带入 $n=16$ 有 $16\geqslant \dfrac{8\times 4}{2}$ 恰好成立,说明 $n\geqslant 16$,即 $t\geqslant 2$

现在有
$$f(t)=1-\frac{\lg t}{t}+\frac{3-\lg e}{t},$$
 $f'(t)=\frac{\lg t-3}{t^2},$ $t\geqslant 2$ 则 $t=8$ 时有最小值 $f(8)=1-\frac{\lg t}{t}+\frac{3-\lg e}{t}=1-\frac{3}{8}+\frac{3-\lg e}{8}=1-\frac{\lg e}{8}>0$ 可证明出, $k=8$ 满足 $P_k<\frac{1}{n^2}$, 当 $k\geqslant \frac{c\lg n}{\lg \lg n}$

(d)

$$\begin{split} E(M) &= P(M < \frac{c \lg n}{\lg \lg n}) \cdot E(M|M < \frac{c \lg n}{\lg \lg n}) + \sum_{M = \frac{c \lg n}{\lg \lg n}}^{n} P(M) \cdot M \\ &\leq 1 \cdot O(\frac{c \lg n}{\lg \lg n}) + \sum_{M = \frac{c \lg n}{\lg \lg n}}^{n} \frac{1}{n^2} \cdot M \\ &\leq 1 \cdot O(\frac{c \lg n}{\lg \lg n}) + \sum_{M = 1}^{n} \frac{1}{n^2} \cdot n \\ &= 1 \cdot O(\frac{c \lg n}{\lg \lg n}) + O(1) \\ &= \cdot O(\frac{c \lg n}{\lg \lg n}) \end{split}$$

Problem 2

(a)

令
$$y=\sum_{i=0}^{n-1}2^{ip}y_i$$
,则其的重新排列 $x=\sum_{j=0}^{n-1}2^{jp}y_{ij}$ $\therefore (2^py_i\mod m)=(\sum_{k=1}^{yi}(2^p\mod m)\mod m)=(\sum_{k=1}^{yi}1\mod m)=(y_i\mod m)$

$$egin{aligned} \therefore h(y) &= \sum_{i=0}^{n-1} 2^{ip} y_i \mod m \ &= \sum_{i=0}^{n-1} (2^{ip} y_i \mod m) \mod m \ &= \sum_{i=0}^{n-1} (y_i \mod m) \mod m \end{aligned}$$

同理
$$h(x) = \sum_{i=0}^{n-1} (y_i \mod m) \mod m$$

则
$$h(y) = h(x)$$

(b)

因为 $h_2(k)$ 和 m 有最小公因数 d, 所以原式可以写成

$$h(k,i) = (h_1(k) + i \cdot \frac{h_2(k)}{d} \cdot d) \mod \frac{m}{d} \cdot d = [h_1(k) + d \cdot (i \cdot \frac{h_2(k)}{d}) \mod \frac{m}{d})] \mod m$$

$$\Leftrightarrow h(k,i) = h_1(k)$$
,我们又有 $d \cdot (i \cdot \frac{h_2(k)}{d} \mod \frac{m}{d}) < m$,

所以只能
$$(i \cdot \frac{h_2(k)}{d} \mod \frac{m}{d}) = 0$$
, 才有 $h(k,i) = h_1(k)$ 成立.

我们又有
$$\frac{h_2(k)}{d}$$
 与 $\frac{m}{d}$ 互素,

当
$$0 < i < rac{m}{d}$$
 时,假设 $(i \cdot rac{h_2(k)}{d} \mod rac{m}{d}) = 0$

则
$$i$$
 能被 $\dfrac{m}{d}$ 整除, 这与 $0 < i < \dfrac{m}{d}$ 矛盾, 所以 $(i \cdot \dfrac{h_2(k)}{d} \mod \dfrac{m}{d})
eq 0$

当
$$i = \frac{m}{d}$$
时,恰有 $(i \cdot \frac{h_2(k)}{d} \mod \frac{m}{d}) = 0$

说明此时 $h(k,i) = h_1(k)$

所以原命题成立.

Problem 3

(a)

对于任意两个元素来说, 他们碰撞的概率为 $\frac{1}{m}$

所以碰撞的预期值为
$$E(X) = \binom{n}{2} \cdot \frac{1}{m} = \frac{n(n-1)}{2m}$$

(b)

概率为
$$p=rac{m}{m}\cdotrac{m-1}{m}\cdot\dots\cdotrac{m-n+1}{m}=rac{m!}{m^n\cdot n!}$$

(c)

设Y为找到一个完美哈希函数时,已经尝试了多少个不同的函数.

则
$$P(Y = k) = p(1-p)^{k-1}$$

$$\therefore E(Y) = \sum_{k=1}^{\infty} kp(1-p)^{k-1} = \frac{1}{p} = \frac{m^n \cdot n!}{m!}$$

(d)

前
$$N$$
 个函数均不是完美的概率是 $p'=(1-p)^N=(1-rac{m!}{m^n\cdot n!})^N$

(e)

$$\Leftrightarrow 1 - p' = 1 - \frac{1}{n}$$

$$\therefore (1 - \frac{m!}{m^n \cdot n!})^N = \frac{1}{n}$$

$$\therefore N[\lg(m^n \cdot n! - m!) - \lg(m^n \cdot n!)] = -\lg n$$

$$\therefore N = \frac{\lg n}{n \lg m + \lg(n!) - \lg(m^n \cdot n! - m!)}$$

所以至少要找
$$N = rac{\lg n}{n\lg m + \lg(n!) - \lg(m^n \cdot n! - m!)}$$
 个哈希函数

Problem 4

我们认为 $\hat{c}_i=3$, 下面是证明:

这一系列的操作, 对应的开销分别是:

对应序号:

我们将第 2^k 位置的开销 2^k 均摊到 $2^{k-1}+1$ 到 2^k 位置的开销中, 可以看出, 每一位需要多均摊 2 的开销.

并且, 随着 k 的变化, 每一位最多只会均摊一次 2 , 不会有重叠的部分, 所以我们可以保证

$$\sum_{i=1}^n c_i \leqslant \sum_{i=1}^n \hat{c}_i$$

所以可得均摊开销是 O(1).

Problem 5

我们令 $\hat{c}_i = 9$

目标: 证明 $\sum_{i=1}^k c_i \leqslant \sum_{i=1}^k \hat{c}_i$, 对于任何 $i \in \mathbb{N}^+$

策略: 使用归纳法, 保证余额永远非负.

Basis: 在第一次操作之前, 余额为 0.

I.H.: 在第i 次操作之前, 余额非负.

I.S.:

消耗最大的路径是 $\frac{3}{4}n \xrightarrow{-n} \frac{3}{8}n \xrightarrow{+(\hat{c}_i-1)\cdot \frac{1}{8}n} \frac{1}{4}n \xrightarrow{-n} \frac{1}{2}n \xrightarrow{+(\hat{c}_i-1)\cdot \frac{1}{4}n} \frac{3}{4}n \to \cdots$

可以看出, 只要我们确保 $(\hat{c}_i-1)\cdot \frac{1}{8}n\geqslant n$, 即 $\hat{c}_i\geqslant 9$, 就可以保证余额仍然非负.

由以上分析可知,均摊消耗仍然是O(1)