Lista 2

- 1. Quais dos seguintes conjuntos são subespaços vetoriais? Em caso afirmativo exiba uma base deste subespaço.
 - (a) Vetores do plano 2x + y z = 0
 - (b) Combinações lineares de $u=(1,0,-1),\ v=(-1,1,1)$ e w=(-1,3,1) , ou seja, $ger(u,v,w)=\{z\in\mathbb{R}^3/z=a\cdot u+b\cdot v+c\cdot w\}$
 - (c) Vetores de \mathbb{R}^n cuja primeira coordenada é igual a 1.
 - (d) Vetores de \mathbb{R}^n cujas coordenadas formam uma progressão aritmética
 - (e) Vetores de \mathbb{R}^n cujas coordenadas formam uma progressão geométrica
 - (f) Matrizes $m \times n$ anti-simétricas (A é anti-simétrica se $A^T = -A$)
 - (g) Os polinômios de grau até 3 que têm pelo menos duas raízes $x_0 = 1$ e $x_1 = 2$
- 2. Explique por que podemos determinar uma base para o espaço coluna de uma matriz A coletando as colunas de A correspondentes às colunas que contém pivôs quando A é escalonada.
- 3. Exiba matrizes 2×2 com os seguintes núcleos (espaço nulo) e imagens (espaço coluna):
 - (a) Núcleo: reta y = x. Imagem: reta y = 2x
 - (b) Núcleo: reta y = 3x. Imagem: também a reta y = 3x.
- 4. Considere a base de R^2 $\beta = [u, v]$, onde u = (1, 1) e v = (2, 1)
 - (a) Se w tem coordenadas (3,5) na base β , quais são as coordenadas de w na base canônica? ($[w]_{\beta} = (3,5)$ então $[w]_{E} = (?,?)$)
 - (b) Se z tem coordenadas (1,2) na base canônica, quais são as coordenadas de w na base β ? $([z]_E = (1,2)$ então $[z]_\beta = (?,?))$
 - (c) Qual é a matriz de passagem da base β para a canônica? E da base canônica para a base β ?
- 5. Determine uma base $\beta = [u, v]$ de R^2 onde u pertence à reta y = x e v é ortogonal à u.
 - (a) Determine a matriz da projeção ortogonal $[P]_{\beta}$ sobre a reta y=x no sistema de coordendas definidos por β
 - (b) Encontre a matriz da mesma projeção ortogonal $[P]_E$ mas agora na base canônica E, fazendo o produto $[P]_E = I_E^{\beta}[P]_{\beta}I_{\beta}^E$