El problema del logaritmo discreto

José Galaviz

1976, MIT.

Whitfield Diffie.

Martin Hellman.

Ralph Merkle.

La idea

- Poner de acuerdo a dos entidades en un secreto común.
- Intercambiando datos a través de un canal inseguro.
- Sin que el eventual espía que interviene al canal pueda saber el secreto.

El primero

- Gauss, C.F.,
 Disquisitiones
 Arithmeticae, Leipzig,
 1801, §57.
- Index.
- Si r = b^e (mód n), e es
 el index de r base b
 módulo n.
- Logaritmo discreto.

Grupo

Un grupo (G, +) es un conjunto no vacío G, junto con una operación binaria "+", en el que se satisfacen los siguientes requisitos.

- Cerradura. a,b en G significa que a+b está en G.
- Asociatividad. Si a,b,c en G entonces

$$a + (b + c) = (a + b) + c$$

- Identidad. Existe un único elemento distinguido e en G, tal que para toda a en G: a + e = e + a = a
- Inverso (simétrico). Para todo a en G, existe un elemento a' en G tal que a + a' = e

El número de elementos en el grupo es el orden del grupo

Convenciones

- Si la operación se denota con "+" suele llamarse grupo aditivo y entonces el neutro es 0 y el simétrico es... simétrico o inverso aditivo denotado -a.
- Si la operación se denota con * o punto o nada, entonces se llama grupo multiplicativo el neutro es 1, y el simétrico es inverso multiplicativo, denotado a⁻¹.
- Y esto NO es relevante. Es pura sintaxis.
- La operación no necesariamente es conmutativa, si lo és el grupo es abeliano.

Ejemplos

- (►►►), +) no es grupo. Tampoco (►►►,*).
- (**Z**, +) sí lo es, pero no (**Z**, *).
- (\Pi, +) sí lo es, y (\Pi, *) lo sería si quitamos al cero.
- (Z_m, +) sí lo es, pero (Z_m, *) sólo si m es primo (y le quitamos el cero), en cuyo caso de hecho es más que un grupo, como sabemos.

De orden 4

Hay dos, exactamente, grupos de orden 4:

 $(\mathbb{Z}_4, +)$ y el 4-grupo de Klein.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

*	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	\mathbf{c}	1	a
c	c	b	a	1

Grupos cíclicos

Son grupos especiales en los que todos los elementos pueden ser generados a partir de uno sólo de ellos usando la operación de grupo. Si G es un grupo cíclico entonces existe un elemento g, tal que cualquier otro elemento del grupo q se puede escribir como (grupo aditivo):

$$q = g + g + ... + g (k \text{ veces}) = k g.$$

o (grupo multiplicativo):

$$q = g * g * ... * g (ka veces) = g^k$$
.

g es un **generador** del grupo.

Ejemplos

- (**Z**_m, +) tiene al 1 como generador.
- (**Z**₇\ {0}, *) es cíclico:

1	30
2	3 ²
3	3 ¹
4	3 ⁴
5	3 ⁵
6	3 ³

No todos lo son

- (**Z**₄, +) es cíclico.
- El 4-grupo de Klein no lo es.

Otro ejemplo, el 2 como generador o raíz primitiva

$x \in \mathbb{Z}_{11}^*$	Expresión	Valor nominal
1	2^{10}	1024
2	2^{1}	2
3	2^{8}	256
4	2^2	4
5	2^4	16
6	2^{9}	512
7	2^{7}	128
8	2^{3}	8
9	2^{6}	64
10	2^5	32

¿Y si usamos a 3?

$$3^0 = 1$$
, $3^1 = 3$, $3^2 = 9$, $3^3 = 5$, $3^4 = 4$, $3^5 = 1$, ...

Nomás generamos un subgrupo cíclico de orden 5

Veamos...

Si se nos proporcionan valores para g, m y s, donde m es el tamaño del módulo en un campo finito o un grupo cíclico generado por la raíz primitiva g y existe un exponente e tal que: $s \equiv g^e$ (mod m). Dado que:

- La secuencia de resultados para ge no tiene un patrón distinguible y
- Que la secuencia generada por g es del tamaño del orden del grupo.

Entonces no parece fácil encontrar el valor de e.

El problema del logaritmo discreto

Definición 2. Dados un grupo cíclico (G, \cdot) , un elemento generador $g \in G$ y un elemento $s \in G$, el problema del logaritmo discreto en G consiste en encontrar el valor de $e \in \mathbb{Z}$ tal que:

$$s = g^e$$

¿Qué tan difícil?

- No se ha encontrado un algoritmo (clásico) que resuelva el problema del logaritmo discreto en tiempo polinomial.
- Se cree que si P ≠ NP entonces el problema está en una clase que se ha llamado NPI (NP-intermedios).
- El algoritmo de Shor (1999) puede resolver el problema en tiempo polinomial en una computadora cuántica.

¿Qué tan difícil es encontrar un generador?

No son tan escasas

Teorema 1. Si t es una raíz primitiva en el grupo cíclico de orden m, \mathbb{Z}_m , entonces

$$t^{\frac{m-1}{2}} \equiv m - 1 \pmod{m} \equiv -1 \pmod{m}$$

Están bien caracterizadas, así que se pueden buscar haciendo la prueba. Hay $\phi(\phi(m))$, si m es primo hay $\phi(m-1)$. $\phi(m)$ es la cantidad de números primos relativos con m menores que él.

Ejemplo

Ejemplo 2.0.4. 6 es raíz primitiva módulo 761:

 $6^{760/2} \equiv 760 \pmod{761}$

Por otra parte $\varphi(760)=288,$ así que ese es el número de raíces primitivas módulo 761

Intercambio de llaves de Diffie-Hellman 1/2

Dos interlocutores A y B. Un canal que suponemos intervenido.

- 1. A y B escogen un número primo grande p y una raíz primitiva $g \in \mathbb{Z}_p^*$. Se pueden poner de acuerdo usando el canal.
- A elige un entero aleatorio grande a: 0 < a < p-1 y envía a
 B: X = g^a (mod p)
- 3. B elige un entero aleatorio grande b: 0 < b < p-1 y envía a
 A: X = g^b (mod p)

Intercambio de llaves de Diffie-Hellman 2/2

- 4. A calcula $K_1 = Y^a \pmod{p}$.
- 5. B calcula $K_2 = X^b \pmod{p}$.

$$K_1 = K_2 = g^{ab} \pmod{p} = K$$

Dificultad del criptoanálisis

Alguien que haya estado escuchando el canal posee p, g, X y Y. Para calcular K necesitaría:

- Obtener el logaritmo discreto de X o de Y en base g módulo p, para obtener a o b (con uno basta) y poder calcular K = g^{ab} (mod p).
- Calcular K = g^{ab} (mod p) de alguna otra manera.

Siendo precisos

La seguridad del protocolo de Diffie-Hellman se basa en DOS premisas:

- Calcular el logaritmo discreto es un problema difícil computacionalmente hablando.
- 2. No hay otra manera de obtener K más que calculando el logaritmo discreto (hipótesis de Diffie-Hellman).