- 1. Анализ данных:
- Описание набора данных (размер, признаки, целевая переменная).

Размер – 42000x785

Каждая строка – изображение 28х28 пикселей (высота, ширина).

Каждый пиксель имеет соответствующее ему значение ([0:255]), указывающее на яркость или темноту этого пикселя (более большие числа означают более темный оттенок) Обучающий набор данных (train.csv) содержит 785 столбцов.

Целевая переменная – первый столбец 'label' – содержит целое число.

Признаки — столбцы с названием вида pixelx, где х — целое число от [0:783]. Содержат значения пикселей соответствующего изображения

Тестовый набор данных (test.csv) аналогичен обучающему, за исключением того, что в нем отсутствует столбец label – таргет.

• Визуализация распределений (гистограммы, box-plot). По одному признаку (рис.1-4):

По всем признакам (рис.5-7):

Interactive Histogram

• Проверка:

а. пропусков (рис. 8)nulls = train_data.isnull().sum()nulls = nulls[nulls>0]print(nulls)

Series([], dtype: int64)
(puc.8)

b. выбросов (рис.9-11):

(рис.9)

(рис.10)

(рис.11)

2. Выбор модели:

• Описание используемой архитектуры нейронной сети (например, MLP, CNN).

Архитектура сети представляет собой MLP со следующей структурой:

1. Входной слой

Преобразование данных:

- Изображения 28х28 пикселей преобразуются в вектор размерности 784 (28×28)
- Делается автоматически в forward методом x.view(-1, 28*28)

2. Основные слои архитектуры:

Слой	Тип	Размерность	Активация	Доп. обработка
fc1	Полносвязный	784 → 512	ReLU	BatchNorm + Dropout(0.5)
fc2	Полносвязный	512 → 128	ReLU	BatchNorm + Dropout(0.5)
fc3	Полносвязный	128 → 64	ReLU	BatchNorm + Dropout(0.5)
fc4	Полносвязный	64 → 10	Нет	-

(ReLU применяется неявно между слоями (в forward методе); на выходе используются raw logits (без Softmax), так как CrossEntropyLoss включает Softmax внутри себя)

3. Регуляризация и нормализация:

Batch Normalization:

- o bn1, bn2, bn3 нормализуют выходы после каждого полносвязного слоя.
- о Ускоряют обучение и улучшают стабильность.

Dropout:

- о Вероятность 0.5 после каждого слоя.
- о Предотвращает переобучение.

4. Выходной слой

- о 10 нейронов (по числу классов цифр 0-9)
- o Softmax применяется автоматически внутри CrossEntropyLoss

5. Forward

- Распрямление: изображение [1, 28, 28] → вектор [784].
- О Полносвязные слои (fc1, fc2, fc3):
 Линейные преобразования (W·x + b) с уменьшением размерности: 784
 → 512 → 128 → 64.

После каждого: BatchNorm (нормализация), ReLU (активация), Dropout (регуляризация).

о Выходной слой (fc4): 64 → 10 (логиты для 10 классов).

6. Backward:

- o Реализован в модуле torch
- Обоснование выбора активационных функций, оптимизатора и loss-функции. ReLu:
 - о Вычислительная эффективность: выполняется быстрее, чем сигмоида или гиперболический тангенс (не требует вычисления экспонент).
 - о Устранение проблемы затухающих градиентов: не "сжимает" градиенты при больших значениях, что ускоряет обучение (в отличие от сигмоиды)
 - Разреженность активаций: обнуляет отрицательные значения, что делает сеть более разреженной и устойчивой к шуму.
 - о Лучшая сходимость для задач классификации изображений.

SGD:

- Простота и надежность: хорошо работает на задачах с четкими градиентами (как MNIST).
- о Контролируемое обучение: позволяет точно настраивать learning rate и momentum.
- Меньше гиперпараметров: По сравнению с Adam или RMSprop, SGD требует меньше настроек.
- о Хорошо работает с CrossEntropy, в сочетании с ReLU дает стабильное обучение.

CrossEntropy:

- о Оптимальна для классификации: лучше штрафует за ошибки, чем MSE.
- Чувствительность к вероятностям: сильнее "наказывает" за уверенные, но неправильные предсказания.
- Гиперпараметры (число слоев, размер батча, эпох) число слоев 4 полносвязных слоя размер батча 32 кол-во эпох 8

3. Результаты:

• Таблица с метриками (accuracy, loss, RMSE и др.)

Epoch	Train Loss	Train accuracy	Valuate Loss	Valuate accuracy
0	1.1823	64.59%	0.4206	90.55%
1	0.2368	93.03%	0.1836	94.48%
2	0.1435	95.76%	0.1350	95.70%

3	0.1030	96.93%	0.1120	96.54%
4	0.0767	97.84%	0.0993	96.90%
5	0.0605	98.33%	0.0883	97.13%
6	0.0469	98.65%	0.0835	97.32%
7	0.0365	99.03%	0.0824	97.40%

• График обучения (loss и accuracy на train/val) на отдельном рисунке (рис.12-13)

• Ссылка на submission в leaderboard – https://www.kaggle.com/competitions/digit-recognizer/submissions аккаунт – AnastasiiaKotovaInt