

Algoritmos e Estrutura de Dados Avançado

Encontro 07 - Árvores AVL

Materiais e dúvidas

Nenhum material será enviado via e-mail.

Os materiais serão disponibilizados no **AVA** e no disco virtual: **bit.ly/edauniderp**

Dúvidas, questionamentos, entre outros deverão ser realizados **APENAS** pelo **e-mail** e **AVA**.

Para ingressar no grupo do **Whatsapp** da disciplina acesse o link **linklist.bio/noiza** e selecione sua disciplina.

- A eficiência da busca em uma árvore binária depende do seu balanceamento.
 - O(log N), se a árvore está balanceada
 - O(N), se a árvore não está balanceada

• N corresponde ao número de nós na árvore

Problema do balanceamento

 Infelizmente, os algoritmos de inserção e remoção em árvores binárias não garantem que a árvore gerada a cada passo esteja balanceada.

 Dependendo da ordem em que os dados são inseridos na árvore, podemos criar uma árvore na forma de uma escada

Problema do balanceamento

Inserção dos valores {1,2,3,10,4,5,9,7,8,6}

Solução para o Problema do balanceamento

- Modificar as operações de inserção e remoção de modo a balancear a árvore a cada nova inserção ou remoção.
- Garantir que a diferença de alturas das subárvores esquerda e direita de cada nó seja de no máximo uma unidade
- Exemplos de árvores balanceadas
 - Árvore AVL
 - Árvore 2-3-4
 - Árvore Rubro-Negra

Definição:

- Tipo de árvore binária balanceada com relação à altura das suas subárvores
- Criada por Adelson-Velskii e Landis, de onde recebeu a sua nomenclatura, em 1962

Definição:

- Permite o rebalanceamento local da árvore
 - Apenas parte afetada pela inserção ou remoção é rebalanceada
- Usa rotações simples ou duplas na etapa de rebalanceamento
 - Executadas a cada inserção ou remoção
 - As rotações buscam manter a árvore binária como uma árvore quase completa
 - Custo máximo de qualquer algoritmo é O(log N)

Objetivo das rotações:

- Corrigir o fator de balanceamento (ou fb), que é a diferença entre as alturas das subárvore de um nó)
- Caso uma das subárvores de um nó não existir, então a altura dessa subárvore será igual a -1.

- As alturas das subárvores de cada nó diferem de no máximo uma unidade
- O fator de balanceamento deve ser +1, 0 ou -1
- Se fb > +1 ou fb < -1: a árvore deve ser balanceada naquele nó

 Determinar o balanceamento de cada nó e dizer se a árvore é AVL

 Determinar o balanceamento de cada nó e dizer se a árvore é AVL

Árvores AVL Rotações

- Objetivo: corrigir o fator de balanceamento (fb) de cada nó
- Operação básica para balancear uma árvore AVL

- Ao todo, existem dois tipos de rotação
 - Rotação simples
 - Rotação dupla

- As rotações diferem entre si pelo sentido da inclinação entre o nó pai e filho
- Rotação simples
 - O nó desbalanceado (pai), seu filho e o seu neto estão todos no mesmo sentido de inclinação
- Rotação dupla
 - O nó desbalanceado (pai) e seu filho estão inclinados no sentido inverso ao neto
 - Equivale a duas rotações simples

- Ao todo, existem duas rotações simples e duas duplas:
 - Rotação simples a direita ou Rotação LL
 - Rotação simples a esquerda ou Rotação RR
 - Rotação dupla a direita ou Rotação LR
 - Rotação dupla a esquerda ou Rotação RL

- Rotações são aplicadas no ancestral mais próximo do nó inserido cujo fator de balanceamento passa a ser +2 ou -2
- Após uma inserção ou remoção, devemos voltar pelo mesmo caminho da árvore e recalcular o fator de balanceamento (fb) de cada nó
- Se o fb desse nó for +2 ou -2, uma rotação deverá ser aplicada

- Rotação LL ou rotação simples à direita
- Um novo nó é inserido na subárvore da esquerda do filho esquerdo de A
 - A é o nó desbalanceado
 - Dois elementos para a esquerda: LEFT LEFT
- É necessário fazer uma rotação à direita, de modo que o nó intermediário B ocupe o lugar de A, e A se torne a subárvore direita de B

• Exemplo

Passo a passo

Árvore AVL e fator de balanceamento de cada nó

Passo a passo

Inserção do nó F na árvore

Árvore fica desbalanceada no nó A.

Aplicar Rotação LL no nó A

Passo a passo

Árvore Balanceada

Rotação LL - Exemplo

Rotação LL - Exemplo

- Rotação RR ou rotação simples à esquerda
- Um novo nó é inserido na subárvore da direita do filho direito de A
 - A é o nó desbalanceado
 - Dois elementos para a direita: RIGHT RIGHT
- É necessário fazer uma rotação à esquerda, de modo que o nó intermediário B ocupe o lugar de A, e A se torne a subárvore esquerda de B

Exemplo

Passo a passo

Árvore AVL e fator de balanceamento de cada nó

Passo a passo

Inserção do nó F na árvore

Árvore fica desbalanceada no nó A.

Aplicar Rotação RR no nó A

Passo a passo

Árvore Balanceada

Rotação RR - Exemplo

Rotação RR - Exemplo

ANTES

DEPOIS

Rotação LR

- Rotação LR ou rotação dupla à direita
- Um novo nó é inserido na subárvore da direita do filho esquerdo de A
 - A é o nó desbalanceado
 - Um elemento para a esquerda e outro para a direita: LEFT RIGHT
- É necessário fazer uma rotação dupla, de modo que o nó C se torne o pai dos nós A (filho da direita) e B (filho da esquerda)
 - Rotação RR em B
 - Rotação LL em A

Rotação LR

• Exemplo: primeira rotação

Rotação LR

• Exemplo: segunda rotação

Rotação LR

Passo a passo

Árvore AVL e fator de balanceamento de cada nó

Rotação LR

Passo a passo

Inserção do nó F na árvore

Árvore fica desbalanceada no nó A.

Aplicar Rotação LR no nó A. Isso equivale a:

- Aplicar a Rotação RR no nó B
- Aplicar a Rotação LL no nó A

Rotação LR

Passo a passo

Árvore Balanceada

Rotação LR - Exemplo

Rotação LR - Exemplo

- Rotação RL ou rotação dupla à esquerda
- Um novo nó é inserido na subárvore da esquerda do filho direito de A
 - A é o nó desbalanceado
 - Um elemento para a direita e outro para a esquerda: RIGHT LEFT
- É necessário fazer uma rotação dupla, de modo que o nó C se torne o pai dos nós A (filho da esquerda) e B (filho da direita)
 - Rotação LL em B
 - Rotação RR em A

• Exemplo

Exemplo

Passo a passo

Árvore AVL e fator de balanceamento de cada nó

Passo a passo

Inserção do nó F na árvore

Árvore fica desbalanceada no nó A.

Aplicar Rotação RL no nó A. Isso equivale a:

- Aplicar a Rotação LL no nó C
- Aplicar a Rotação RR no nó A

Passo a passo

Rotação RL - Exemplo

Rotação RL - Exemplo

Quando usar cada rotação?

- Sinais iguais: rotação simples
- Sinal positivo: rotação à direita (LL)
- Sinal negativo: rotação à esquerda (RR)

Fator de Balanceamento de A	Fator de Balanceamento de B	Posições dos nós B e C em relação ao nó A	Rotação
+2	+1	B é filho à esquerda de A C é filho à esquerda de B	LL
-2	-1	B é filho à direita de A C é filho à direita de B	RR
+2	-1	B é filho à esquerda de A C é filho à direita de B	LR
-2	+1	B é filho à de direita A C é filho à esquerda de B	RL

Quando usar cada rotação?

- Sinais diferentes: rotação dupla
- A positivo: rotação dupla a direita (LR)
- A negativo: rotação dupla a esquerda (RL)

Fator de Balanceamento de A	Fator de Balanceamento de B	Posições dos nós B e C em relação ao nó A	Rotação
+2	+1	B é filho à esquerda de A C é filho à esquerda de B	LL
-2	-1	B é filho à direita de A C é filho à direita de B	RR
+2	-1	B é filho à esquerda de A C é filho à direita de B	LR
-2	+1	B é filho à de direita A C é filho à esquerda de B	RL

Exemplo de sucessivas inserções

Inserção - Maio

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção - Março

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção - Novembro

Depois da inserção

Inserção - Agosto

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção - Abril

Depois da inserção

Inserção - Janeiro

Depois da inserção

Agosto O Abril Abril

Inserção - Dezembro

Depois da inserção

+1 Maio

-1 Agosto

-1 Março

O Abril

O Dezembro

Novembro

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção - Julho

Depois da inserção

+1
Maio

-1
Agosto

0
Abril

0
Janeiro

0
Julho

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção - Fevereiro

Depois da inserção

Inserção - Junho

Depois da inserção

Maio Mar Dez +1 Ago Nov Jan Abril Fev Julho 0 Junho

Inserção - Outubro

Depois da inserção

Inserção - Setembro

Depois da inserção

Jan +1 Maio Dez Ago Fev Julho Nov Abril Junho Out Mar Set

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Árvore AVL: Remoção

- Como na inserção, temos que percorremos um conjunto de nós da árvore até chegar ao nó que será removido
- Existem 3 tipos de remoção
 - Nó folha (sem filhos)
 - Nó com 1 filho
 - Nó com 2 filhos*

^{*}Substituir pelo nó mais à direita da subárvore esquerda (maior elemento da subárvore esquerda)

Árvore AVL: Remoção

Uma vez removido o nó:

- Devemos voltar pelo caminho percorrido e calcular o fator de balanceamento de cada um dos nós visitados
- Aplicar a rotação necessária para restabelecer o balanceamento da árvore se o fator de balanceamento for +2 ou -2
 - Remover um nó da subárvore direita equivale a inserir um nó na subárvore esquerda

Exemplo de sucessivas remoções

Antes da remoção

Depois da remoção

Antes da remoção

Depois da remoção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Obs.: Foi utilizado o maior elemento da subárvore esquerda do nó sendo removido

Antes da remoção

Depois da remoção

Depois do rebalanceamento

Depois da remoção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Depois da remoção

Depois do rebalanceamento

Depois da remoção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Depois da remoção

Depois do rebalanceamento

Depois da remoção

(10) 10)

Depois do rebalanceamento

Atividade

Exercícios

• Inserir os elementos a seguir em uma árvore AVL, mostrando a árvore em cada etapa: 4, 5, 7, 2, 1, 3, 6

• Inserir na árvore AVL abaixo os seguintes elementos: 3,33,11 e 9

• Remova da seguinte árvore AVL a seguinte sequência de valores: 8, 10, 3, 1, 7.

 Analise os casos abaixo considerando uma árvore AVL e identifique o tipo de transformação de balanceamento que deve ser efetuado. Mostre o resultado após o balanceamento.

Exercício 4 (continuação)

• Remova da seguinte árvore AVL o elemento 65.

• Nesta questão, você deverá executar a lista de operações na árvore AVL mostrada baixo. Desenhe a árvore resultante da operação correspondente.

- Remova 99
- Remova 36

- Dada uma AVL que é uma folha com a chave 50
- (a) Insira os elementos {1, 64, 12, 18, 66, 38, 95, 58, 59, 70, 68, 39, 62, 7, 60, 43, 16, 67, 34, 35} nesta árvore, indicando as rotações necessárias;
- (b) A ordem em que os elementos são inseridos numa árvore AVL não importa, pois independente da ordem, sempre resulta na mesma árvore. Esta afirmação está correta?
- (c) Remova os elementos {50, 95, 70, 60, 35} desta árvore, explicitando as rotações

• Considere a árvore AVL abaixo e mostre o resultado dessa árvore após remover as chaves 1, 78 e 41.

Encerramento

DÚVIDAS, CRÍTICAS E SUGESTÕES, ENVIAR PARA:

noiza@anhanguera.com

