#### CM50264 Machine Learning 1, Lecture 5

# Optimisation Basics 1

Xi Chen



# What is optimisation



# Why is optimisation

Many (most) machine learning problems are eventually formulated as optimisation:

- Training decision trees.
- Training linear (or nonlinear) regression.
- Discovering cluster structure.
- Training neural networks.

"Machine learning is statistics combined with optimisation."

— Gunnar Rätsch

## Real world problems

- Real world problems are mostly non-convex.
- We don't really have an elegant approach to deal with all non-convex cases.
- Mathematics is much better established for convex cases.
- Perform convex within non-convex.

• Convex parts within non-convex.



# Different ways to obtain solutions

Closed form solution

# Different ways to obtain solutions

- Closed form solution
- But if it is computationally expensive or if there's no analytical solution?

• Naive exhaustive search (brute force)

#### Naive exhaustive search



It creates and evaluates every possible solution.

photo credit: jboss.org

- Naive exhaustive search (brute force)
- Random search and LHC

## Random search and LHC

Random search v.s.
Grid search



## Random search and LHC

Random search v.s.
Grid search

 Latin hypercube sampling for some higher dimensional spaces





# Different ways to obtain solutions

- Naive exhaustive search (brute force)
- Random search
- Numerical approximations / meta-heuristic methods

Introduction

- Simulated annealing
- Genetic / particle swarm / ant colony algorithms
- Markov chain Monte Carlo / Sequential Monte Carlo / Nested sampling etc

Simulated annealing



 Particle swarm algorithm



 Particle swarm algorithm

Genetic algorithm





MCMC



MCMC



Nested sampling



# Different ways to obtain solutions

- Naive exhaustive search (brute force)
- Random search
- Numerical approximations / meta-heuristic methods
- Gradient based direction search
  - 1st order derivatives gradient gradient decent
  - 2nd order derivatives, Hessian Newton's method

• 3 Lectures to cover the optimisation basics.

- 3 Lectures to cover the optimisation basics.
- 1st lecture: introduction, simple examples, and review/prepare some mathematical concepts, including gradient and Hessian matrix.

- 3 Lectures to cover the optimisation basics.
- 1st lecture: introduction, simple examples, and review/prepare some mathematical concepts, including gradient and Hessian matrix.

Simple examples

 2nd lecture: go through the linear regression example using analytical solution and the 1st order steepest gradient decent solution.

- 3 Lectures to cover the optimisation basics.
- 1st lecture: introduction, simple examples, and review/prepare some mathematical concepts, including gradient and Hessian matrix.

Simple examples

- 2nd lecture: go through the linear regression example using analytical solution and the 1st order steepest gradient decent solution.
- 3rd lecture: go through linear regression with the 2nd order Newton's method. Compare algorithms and introduce popular optimiser variants in machine learning.

# 1D example



Our objective function  $f(\mathbf{x})$  is one-dimensional:  $f(\cdot) : \mathbb{R} \to \mathbb{R}$ .



Visually inspecting the graph of  $f(\cdot)$  shows that  $\mathbf{x}_*$  is optimum.



An iterative optimisation starts with an initial guess  $x_0$ .

 $\mathbf{x}_0$ 

X×



We can only observe  $f(\cdot)$  in a (very small) local neighbourhood of  $\mathbf{x}_0$ .

# 1D example



Decide direction to explore by inspecting  $f(\cdot)$  values around  $\mathbf{x}_0$ .

# 1D example



Decide direction to explore by inspecting  $f(\cdot)$  values around  $\mathbf{x}_0$ .



Now we are at the first solution  $x_1$ .



Again, decide the direction of next step at  $x_1$ .



Now we are at the second solution  $\mathbf{x}_2$ .

# 1D example



Decide the direction of next step at  $\mathbf{x}_2$ .

# 1D example



Decide the direction of next step at  $x_3$ .



After a few iterations, stop (converge) at point  $x_t$ .



Global optimum  $\mathbf{x}_t = \mathbf{x}_*$ .

## How does gradient search work? - 2D example



Our objective function f is two-dimensional:  $f(\cdot): \mathbb{R}^2 \to \mathbb{R}$ .



The true optimum point  $\mathbf{x}_*$  is at the centre of the contour.



We start with an (randomly selected) initial solution  $\mathbf{x}_0$ .



Again, we can observe  $f(\cdot)$  only in a small neighbourhood of  $\mathbf{x}_0$ .



Inspecting  $f(\cdot)$  around point  $\mathbf{x}_0$ .



Decide a direction for the next step to decrease the  $f(\cdot)$  value.



Now at the first step  $x_1$ , and observing  $f(\cdot)$  around the point.



Decide a new direction.



Repeat to reach the third solution  $x_3$ .



From the third solution to the fourth.



From  $x_4$  to  $x_5$ 



Simple examples

from  $\mathbf{x}_5$  to  $\mathbf{x}_6$ 



Simple examples

from  $x_6$  to  $x_7$ 



After a few iterations, we arrive at the optimum  $\mathbf{x}_t = \mathbf{x}_*$ .

- 0 t = 0; Make an initial guess  $\mathbf{x}_t$ ;
- Iterate until the termination condition is met.
  - $\bigcirc$  Find a direction  $\mathbf{p}_t$  to move;
  - **1** Decide how much  $(\alpha_t)$  to move along  $\mathbf{p}_t$  direction;
  - $\mathbf{0} \quad \mathbf{x}_{t+1} = \mathbf{x}_t + \alpha_t \mathbf{p}_t;$

#### How do we decide

- direction to move  $\mathbf{p}_t$ ,
- step size  $\alpha_t$ ,
- when to stop (termination condition)?

#### Partial derivatives

For a function with two parameters  $\mathbf{x} = [x_1, x_2]$ 

$$f(\mathbf{x}) = f(x_1, x_2) = x_1^2 + x_2^2$$

#### Partial derivatives

For a function with two parameters  $\mathbf{x} = [x_1, x_2]$ 

$$f(\mathbf{x}) = f(x_1, x_2) = x_1^2 + x_2^2$$

Simple examples

The partial derivatives w.r.t.  $x_1$  and  $x_2$ :

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \lim_{\Delta x_1 \to 0} \frac{f(x_1 + \Delta x_1, x_2) - f(x_1, x_2)}{\Delta x_1} = 2x_1$$

#### Partial derivatives

For a function with two parameters  $\mathbf{x} = [x_1, x_2]$ 

$$f(\mathbf{x}) = f(x_1, x_2) = x_1^2 + x_2^2$$

Simple examples

The partial derivatives w.r.t.  $x_1$  and  $x_2$ :

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \lim_{\Delta x_1 \to 0} \frac{f(x_1 + \Delta x_1, x_2) - f(x_1, x_2)}{\Delta x_1} = 2x_1$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = 2x_2$$

#### Gradient

$$\nabla f(\mathbf{x}) = [2x_1, 2x_2]^{\top}$$

where  $\nabla$  is the vector differential operator.

#### Gradient

$$\nabla f(\mathbf{x}) = [2x_1, 2x_2]^{\top}$$

Simple examples

where  $\nabla$  is the vector differential operator.

The gradient of a differentiable function  $f(\cdot)$  of several variables, at a point  $x_P$ , is the vector whose components are the partial derivatives of  $f(\cdot)$  at  $\mathbf{x}_P$ .

#### Gradient

$$\nabla f(\mathbf{x}) = [2x_1, 2x_2]^{\top}$$

Simple examples

where  $\nabla$  is the vector differential operator.

The gradient of a differentiable function  $f(\cdot)$  of several variables, at a point  $x_P$ , is the vector whose components are the partial derivatives of  $f(\cdot)$  at  $\mathbf{x}_P$ .

so if at point  $\mathbf{x}_P = [2, 2]$ :

$$\nabla f(\mathbf{x}) = [4, 4]^{\top}$$

#### Hessian matrix

It is a square matrix of second-order partial derivatives of function  $f(\cdot)$ 

Mathematics review ○○○○

#### Hessian matrix

It is a square matrix of second-order partial derivatives of function  $f(\cdot)$ 

 $\mathbf{H}(f(\cdot))$  is symmetric if  $f(\cdot)$  is twice-continously differentiable.

#### Hessian matrix

It is a square matrix of second-order partial derivatives of function  $f(\cdot)$ 

Simple examples

 $\mathbf{H}(f(\cdot))$  is symmetric if  $f(\cdot)$  is twice-continously differentiable. If

we have  $\mathbf{x} = [x_1, x_2, \cdots, x_n]$ .

$$\mathbf{H}(f(\mathbf{x})) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

#### Extended questions

• What is the physical meaning of gradient and Hessian?

#### Extended questions

- What is the physical meaning of gradient and Hessian?
- What is Jacobian matrix?

Introduction

#### Extended questions

- What is the physical meaning of gradient and Hessian?
- What is Jacobian matrix?
- What is the relationship between Jacobian matrix and Hessian matrix?