CHAPTER 5

Homogeneous transformations matrix

 Homogeneous Transformation Matrices to Express Configurations in Robotics a sixteen-entries, 4×4 matrix

- ^At_B: Origin of frame B with respect to frame A
- Point *P* of frame {*B*} in frame {*A*}: ${}^{A}p = {}^{A}t_{B} + {}^{A}R_{B}{}^{B}p$
- · In a more compact way:

- They represent the <u>position and orientation</u> (pose) of a frame with respect to another frame
- Parts

$$T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \leftarrow \text{translation}$$

- Mathematically, they belong to SE(3): $\mathbb{R}^3 \times SO(3)$ (SE = Special Euclidean)
 - They can also be viewed from the perspective of projective geometry
- Pure transformations

$$T = \begin{bmatrix} R & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \qquad T = \begin{bmatrix} I & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$
Pure rotation Pure translation

Pure Transformation

Pure rotations:

$$Rot_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad Trans_{x}(d) = \begin{bmatrix} 1 & 0 & 0 & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Pure translations:

$$Trans_{x}(d) = \begin{bmatrix} 1 & 0 & 0 & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Trans_{y}(d) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Trans_{z}(d) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

No Rotation and No Translation

The body frame {b} is the same as the space frame {s}

$${}^{\mathrm{s}}T_b \ or \ Tsb = I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Product of two Homogenous Transformation Matrix is also Transformation Matrix

 $T_1T_2 \in SE(3)$; special Euclidean group

$$T_1 = \begin{bmatrix} R_1 & \mathbf{t}_1 \\ \mathbf{0} & 1 \end{bmatrix} \qquad T_2 = \begin{bmatrix} R_2 & \mathbf{t}_2 \\ \mathbf{0} & 1 \end{bmatrix} \qquad \qquad \Box \Rightarrow \qquad T_1 T_2 = \begin{bmatrix} R_1 R_2 & R_1 \mathbf{t}_2 + \mathbf{t}_1 \\ \mathbf{0} & 1 \end{bmatrix}$$

Associative property

$$(T_1T_2)T_3 = T_1(T_2T_3)$$

Noncommutative property

$$T_1T_2 \neq T_2T_1$$

Inverse of Homogenous Transformation Matrix

$${}^{\mathrm{s}}T_b^{-1}$$
 or $T_{sb}^{-1} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^T & -R^T t \\ 0 & 1 \end{bmatrix} = {}^{b}T_s$ or T_{bs}

Decomposition

Any homogenous transformation matrix can be decomposed in 2 components:

$$T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} I & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix}$$
Translation Rotation

- First, it applies a translation of *t* units.
- Then, it applies a rotation *R* with respect to current frame.

Subscript Cancellation Rule

$${}^{a}T_{b}{}^{b}T_{c} = {}^{a}T_{c}$$
 or $TabTbc = T_{ac}$

We can find the homogenous transformation matrix representing the pose of any frame relative to another frame. For instance, calculate the homogenous transformation matrix T_{bc} , which represents the position and orientation of the frame $\{c\}$ relative to the frame $\{b\}$, we can write:

bT_c
 or $Tbc = {}^bT_s{}^sT_c = {}^sT_b^{-1}{}^sT_c$

Example Find Homogenous transformation matrix for rotation 30 degree about z-axis of global (space) frame.

```
1_{GB} = \begin{bmatrix} 0.87 & -0.5 & 0 & 0 \\ 0.5 & 0.87 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
```

Example Find Homogenous transformation matrix for rotation 30 degree about z-axis of global (space) frame.

$${}^{G}T_{b} \ or \ TGb = \begin{bmatrix} cos30^{\circ} & -sin30^{\circ} & 0 & 0 \\ sin30^{\circ} & cos30^{\circ} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0.866 & -0.5 & 0 & 0 \\ 0.5 & 0.866 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exercise A frame {A} is rotated 90° about x, and then it is translated a vector (6,-2,10) with respect to the fixed (initial) frame. Find the homogenous transformation matrix that describes {B} respect to {A}

Exercise Rotation about and translation along a global axis.

A point P is located at (0,0,200) in a body coordinate frame. If the rigid body rotates 30 deg. About the global X-axis and the origin of the body frame translates to (X,Y,Z) = (500, 0, 600), then the coordinates of the point in the global frame are :

Example

Consider frame $\{A\}$ and $\{B\}$. Point P in frame $\{B\}$ is given by (2,0,1), find its coordinates with respect to frame $\{A\}$ using a homogeneous transformation matrix

Exercise A frame $\{A\}$ is rotated 90° about x, and then it is translated a vector (6, -2, 10)with respect to the fixed (initial) frame. Consider a point p = (-5, 2, -12) with respect to the new frame $\{B\}$. Determine the coordinates of that point with respect to the initial frame

$$T_{BA} = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{A} \cdot T_{BA} \cdot P_{B}$$

$$T_{BA} \cdot \begin{bmatrix} .5 \\ 2 \\ .11 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 10 \\ .12 \end{bmatrix}$$

Example

Consider that the transformations of the belt and of the robot base with respect to a reference frame {W} are known. The transformation of the object with respect to the belt, as well as the transformation of the end effector with respect to the robot base are also known.

- a) Find the pose of the object with respect to the base of the robot
- b) Find the pose of the object with respect to the end effector

There are different frame attach to different part.

Example

Consider that the transformations of the belt and of the robot base with respect to a reference frame {W} are known. The transformation of the object with respect to the belt, as well as the transformation of the end effector with respect to the robot base are also known.

- a) Find the pose of the object with respect to the base of the robot
- b) Find the pose of the object with respect to the end effector

Solution

Belt(F) Resp.to R-Base(B) Resp.to Obj(O) Resp.to End-Ef(E) Resp.to World(W) frame World(W) frame Belt(F) frame R-Base(B) frame

- Known transformations: ${}^{\text{\tiny W}}T_{\text{\tiny F}}, {}^{\text{\tiny W}}T_{\text{\tiny B}}, {}^{\text{\tiny F}}T_{\text{\tiny O}}, {}^{\text{\tiny B}}T_{\text{\tiny E}}$
- a) Desired pose (in terms of the known transformations): ${}^{B}T_{O}$ Obj(O) Resp. to R-Base(B) frame = ?

$${}^{\mathcal{B}}T_{\mathcal{O}} = \left({}^{\mathcal{B}}T_{\mathcal{W}}\right)\left({}^{\mathcal{W}}T_{\mathcal{O}}\right) = \left({}^{\mathcal{W}}T_{\mathcal{B}}^{-1}\right)\left(\left({}^{\mathcal{W}}T_{\mathcal{F}}\right)\left({}^{\mathcal{F}}T_{\mathcal{O}}\right)\right)$$

b) Desired pose (in terms of the known transformations): ${}^{E}T_{Q}$ Obj(0) Resp. to End-Ef(E) frame = ?

$$\begin{split} ^{E}T_{O} &= \left(^{E}T_{W} \right) \left(^{W}T_{O} \right) = \left(^{W}T_{E}^{-1} \right) \left(^{W}T_{F} \right) \left(^{F}T_{O} \right) \\ &= \left(\left(^{W}T_{B} \right) \left(^{B}T_{E} \right) \right)^{-1} \left(^{W}T_{F} \right) \left(^{F}T_{O} \right) \\ &= \left(^{B}T_{E} \right)^{-1} \left(^{W}T_{B} \right)^{-1} \left(^{W}T_{F} \right) \left(^{F}T_{O} \right) \end{split}$$

Example Expressing the configuration of a frame {B} relative to a space frame

 $T = R_{a}(-90) R_{x}(-9) t(1,-15,5)$

$$T_{a} : T_{bc} : T_{Ab} = \begin{bmatrix} 0 & 0 & -1 & 250 \\ 0 & -1 & 0 & -150 \\ -1 & 0 & 0 & 200 \\ 0 & 0 & 0 & 1 \end{bmatrix}, T_{de} = \begin{bmatrix} 0 & 0 & -1 & 300 \\ 0 & -1 & 0 & 120 \\ -1 & 0 & 0 & 200 \\ 0 & 0 & 0 & 1 \end{bmatrix}, T_{bc} = \begin{bmatrix} 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 30 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -40 \\ 1 & 0 & 0 & 25 \\ 0 & 0 & 0 & 1 \end{bmatrix}, T_{ad} = \begin{bmatrix} 0 & 0 & -1 & 400 \\ 0 & -1 & 0 & 50 \\ -1 & 0 & 0 & 300 \\ 0 & 0 & 0 & 1 \end{bmatrix}, T_{ce} = ?$$

Example

The figure shows a robot whose base is 1m away from the base of the table. The table is 1m height and its surface is a square. Frame $\{1\}$ is fixed on a corner of the table. A 20 cm cube is located on the middle of the table, and it has frame $\{2\}$ attached to its center. A camera is located 2m above the table, just over the cube, and it has frame $\{3\}$ attached to it.

- a) Find the homogeneous transformations that relate each of these frames with the base system {0}
- b) Find the homogeneous transformation that relates the cube frame {2} with respect to the camera frame {3}

Exercises (20 Mins)

Exercise #5

Wrap Up

1. Homogeneous transformations

- Pure Transformation
- Composition
- Decomposition
- Examples
- 2. Exercises (20 Mins)

References

- 1. Bruno Siciliano and et.al., Robotics: Modelling, Planning and Control, Robotics Modelling, Planning and Control,
- 2. Prof. Alessandro De Luca, Robotic1
- 3. Introduction to robotics with robotic manipulators master
- 4. Zhu. et.al Face Alignment in Full Pose Range: A 3D Total Solution. IEEE Transactions on Pattern Analysis and Machine Intelligence.
- 5. MathWork
- 6. Oscar Ramos Foundations of Robotics
- 7. Mecharithm Robotics and Mechatronics : https://mecharithm.com/

