DISCIPLINA: ESTRUTURA DE DADOS II 2018

Busca em Grafos

Prof. Luis Cuevas Rodríguez, PhD

Busca em Grafos

- Busca em grafos: seguir suas arestas sistematicamente, de modo a visitar seus vértices.
 - a busca vai parar quando encontramos o que queremos ou visitamos todos os vértices
- Algoritmos de busca:
 - Busca em profundidade.
 - Busca em largura.

AMAZONAS

- Busca em profundidade (Depth-first Search ou DFS): buscar mais fundo no grafo sempre que é possível
 - As arestas são exploradas a partir do vértice v mais recentemente descoberto que ainda tem a aresta não explorada saindo dele.
 - Quando todas as arestas de v são exploradas, a busca volta ao vértice anterior a v (backtracking), para seguir arestas ainda não exploradas

Nó	Conectado a
v1	v2, v5, v3
v2	v1, v5
v3	v1, v5, v6
v4	v6
v5	v1, v2, v3, v6
v6	v3, v4, v5

- 3. O processo continua até ter descoberto todos os vértices que são atingíveis a partir do vértice inicial.
 - Atingíveis: o vértice u é atingíveis desde v se houver um caminho de v até u
 - Grafos não conexos.
 - Grafos dirigidos.
- 4. Se restarem ainda vértices não visitados, um é selecionado e reiniciamos a busca a partir dele

- 1. Definia um vértice inicial
- 2. Escolha um de seus adjacentes ainda não visitado. Visite-lho
- Repetir o processo até atingir objetivo ou um vértice cuja adjacência já tenha sido visitada ou não tenha adjacência
- 4. Se atingir um nó final que não seja objetivos:
 - 1. Continue de um vértice irmão ainda não visitado
 - 2. Voltar ao pai deste
 - 3. Escolher outro nó inicial

Depth-First Search

www.combinatorica.com

TDA necessários

- O grafo: lista de adjacência ou matriz de adjacência.
- Uma PILHA: armazenar o caminho atual.
- Um vetor: armazenar os no visitados.

pilha={s}
adj={r,w}
vist={s}

pilha={r,s}
adj={v}
vist={r,s}

pilha={u,t,w,s}
adj={x,y, t}
vist={u, t, v,r, w,s}

pilha={y,u,t,w,s}
adj={x,u}
vist={y,u, t, v,r, w,s}

pilha={x,u,y,u,t,w,s}
adj={}
vist={x,y,u, t, v,r, w,s}

 A estrutura resultante é um arvore o uma floresta (vários árvores)

Árvores de busca em profundidade

Busca em profundidade - Exercício

va 👈	vb,2 → vd,1 → ve,5
vb →	va,2 → vc,2
vc →	vb,2 → vf,8
vd →	va,1 → vf,3
ve →	va,5 → vf,4
vf →	ve,4 → vd,3 → vc,8

Busca em profundidade - Exercício

v1 →	V6
V2 →	v1, v4
V3 →	v2
v4 →	v4, v5,
v5 →	
V6 →	v4

 Busca em largura (breadth-first search ou BFS): primeiro visita todos os adjacente de um vértice para depois visitar os adjacentes dos adjacentes.

Busca em forma de camada

- Os vértices a serem visitados são colocados em uma FILA.
- Ao visitar um vértice colocamos seus adjacentes na FILA, somente se não estiverem.
- Continuar até achar o vértices objetivo ou a FILA ficar vazia.
- Se a FILA esta vazia e ainda restarem nós não visitados, reiniciar o procedimento a partir de um destes.

TDA necessários

- O grafo: lista de adjacência ou matriz de adjacência.
- Uma FILA: armazenar no descobertos.
- Um vetor: armazenar os no visitados.

 A estrutura resultante é um arvore o uma floresta (vários árvores)

Árvores de busca em largura

fila={s} adj={r,w} vist={}

fila={r,w} adj={v} vist={s}

fila={w,v} adj={t,x} vist={s,r}

Exercício- Breadth First Search

http://www.cc.gatech.edu/~bader/COURSES/GATECH/CS6505-Spring2006/demo-bfs.ppt_

Sem descobrir

Descoberto

Top da Pilha

Fim

Pilha: s

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: s 2

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: s 2 3

Pilha: 2 3 5

Sem descobrir

Descoberto

Top of Pilha

Sem descobrir

Descoberto

Top of Pilha

Pilha: 2 3 5 4

Sem descobrir

Descoberto

Top of Pilha

Sem descobrir

Descoberto

Top of Pilha

Pilha: 3 5 4

Sem descobrir

Descoberto

Top of Pilha

Pilha: 3 5 4

Sem descobrir

Descoberto

Top of Pilha

Pilha: 3 5 4 6

Sem descobrir

Descoberto

Top of Pilha

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 5 4 6

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 5 4 6

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 4 6

Pilha: 4 6

Sem descobrir

Descoberto

Top of Pilha

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 4 6 8

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 68

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 687

Pilha: 6 8 7 9

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 8 7 9

Sem descobrir

Descoberto

Top of Pilha

Fim

DO ESTADO DO A M A Z O N A S

Pilha: 79

Sem descobrir

Descoberto

Top of Pilha

Fim

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 79

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 79

Sem descobrir

Descoberto

Top of Pilha

Fim

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 9

Sem descobrir

Descoberto

Top of Pilha

Fim

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha: 9

Sem descobrir

Descoberto

Top of Pilha

Fim

Pilha:

Exercício 2 - Breadth First Search

front

No inicial para a Fila

front

A

Próximo no na filha

front

A

Visita vizinhos de A

front

UEA
UNIVERSIDADE
DO ESTADO DO
A M A Z O N A S

Visita vizinhos de A

front

UEA
UNIVERSIDADE
DO ESTADO DO
A M A Z O N A S

B Descoberto

front

В

Visita vizinhos de A

front

В

I Descoberto

front

BI

Fim com A

front

BI

Próximo no na filha

front

BI

Visita vizinhos de B

front

I

Visita vizinhos de B

front

I

F Descoberto

front

I F

Visita vizinhos de B

front

[F

A já foi descoberto

front

[F

Fim com B

front

I F

Próximo no na filha

front

F

Visita vizinhos de I

front

F

Visita vizinhos de I

front

F

A já foi descoberto

front

F

UEA
UNIVERSIDADE
DO ESTADO DO

AMAZONAS

Visita vizinhos de I

front

F

E Descoberto

front

F E

Visita vizinhos de I

front

F E

F já foi descoberto

front

F E

I Fim

front

F E

Próximo no na filha

front

F E

Visita vizinhos de F

front

E

G Descoberto

front

E G

F Fim

front

E G

Próximo no na filha

front

E G

Visita vizinhos de E

front

G

E Fim

front

G

Próximo no na filha

front

G

UE

DO ESTADO DO A M A Z O N A S

Visita vizinhos de G

front

C Descoberto

front

Visita vizinhos de G

front

C

H Descoberto

front

C H

G Fim

front

C H

Próximo no na filha

front

C H

Visita vizinhos de C

front

H

D Descoberto

front

H D

C Fim

front

H D

get next vertex

front

H D

Visita vizinhos de H

front

D

Fim H

front

ע

Próximo no na filha

front

D

Visita vizinhos de D

front

D Fim

front

Próximo no na filha

front

Exercícios

Do seguinte grafo diga:

- a) O grafo é dirigido o no dirigido?
- b) Identifique um vértice adjacente do vértice 4
- c) Qual é o grão do vértice 1
- d) Apresente o caminho desde o vértice 4 até o vértice 1
- e) Qual é comprimento do caminho (5,2,3,4,6)
- f) O grafo é acíclico o cíclico.
- g) É um grafo ponderado o não.
- h) Represente as arvores de busca a para uma busca em largura no grafo. Qual é a estrutura de dados utilizada para percorrer o grafo?. Mostre para cada passo como fica essa estrutura.
- i) Represente as arvores de busca a para uma busca em profundidade no grafo. Qual é a estrutura de dados utilizada para percorrer o grafo?. Mostre para cada passo como fica essa estrutura.

Exercícios

Do seguinte grafo diga:

- a) O grafo é dirigido o no dirigido?
- b) Identifique um vértice adjacente do vértice 3
- c) Qual é o grão de entrada do vértice 4
- d) Apresente o caminho desde o vértice 5 até o vértice 3
- e) Qual é comprimento do caminho (1,3,4,2)
- f) O grafo é acíclico o cíclico.
- g) É um grafo ponderado o não.
- h) Represente as arvores de busca a para uma busca em largura no grafo. Qual é a estrutura de dados utilizada para percorrer o grafo?. Mostre para cada passo como fica essa estrutura.
- i) Represente as arvores de busca a para uma busca em profundidade no grafo. Qual é a estrutura de dados utilizada para percorrer o grafo?. Mostre para cada passo como fica essa estrutura.

