Week 2 - Building the Bomb

Eric Altenburg

HST-415

September 8, 2020

- 1. Atomic Energy for Military Purposes Book
 - Released 3 days after the bombing of Nagasaki
 - NOTE: War was not yet over
 - Written during the Manhattan project
 - Translated to Russian and people were able to know about atomic bombs outside of their govt.
 - Groves (Major General, USA) in foreword:
 - This book contains everything we can say about the bomb
 - If you say anything else not in this book, then you will be punished by Espionage Act
 - Reason for releasing: If you give them something, then they won't go looking on their own accord
 - Mainly about theoretical physics since Smyth was a theoretical physicist
 - Missing chemistry, engineering, and other types of work
 - It's the least sensitive stuff about the bomb, and everyone mainly understood the ideas prior to the war

2. Timeline

	phase	goal	methods	primary output
	exploratory	to see if a nuclear	small-scale experi-	reports
		weapon program is	ments and theoretical	
		feasible	studies	
	pilot	to evaluate the feasi-	building medium-	reports, plans, tacit
•		bility of manufactur-	scale facilities	knowledge, test sam-
		ing methods		ples
	production	making actual nu-	building large-scale	fissile material,
		clear weapons	facilities, designing	atomic bomb
			bombs, preparing for	
			use	

	country	exploratory	pilot	production
•	United States	1939	1941	1942
	Germany	1939	1942 (reactor only)	X
	UK	1940	X	X
	USSR	1940	X	X
	Japan	1941	X	x

- You need a production program to get an atomic bomb
- "Why did the United States make an atomic bomb?"
 - No one else made one
- 3. State of knowledge in 1939
 - U-238 (99%) and U-235 (<1%)
 - Only U-235 fissions from fast and slow neutron energies
 - U-235 is thus fissile (can sustain fission chain reactions in sufficient quantities)
 - U-238 will absorb slow neutrons without fissioning
 - Kills chain reaction
 - \bullet Both isotopes are chemically identical can only be separated physically, but differ by only 3 neutrons
 - If you could separate U-235, you can make a bomb. But can you? If you can't, what are the options?
 - But nuclear reactors are very possible

- Some confusion between a reactor and a bomb (out of control reactor)
- 4. Einstein-Szilard Letter, 1939
 - Written by Szilard but signed by Einstein for importance
 - Unsure about many characteristics of the bomb (ie. power, size, weight)
 - Undersold
 - Better to undersell than to oversell
 - This is a policy letter
 - Appoint a guy to keep an eye on the situation
 - FDR did not read this, he got a summary
 - Said: "make sure the Germans can't blow us up"
 - Asks to make a committee

5. Uranium Committee

- Roosevelt created it in 1939
- Used to coordinate the fission research with universities
- Figure out if a bomb is worth worrying about
- Gets absorbed in to the National Defense Research Committee
- Office of science and research and development was eventually made as well
 - Was used to develop physical things (ie. camo stuff being put on planes from MIT)
- 6. James Conant, President of Harvard
 - Thought the innovation would take a long time
 - With other things to do (ie. camo), he doesn't want the scientists to waste their time on the bomb
 - Doesn't think it'll work

7. Atomic Piles

- Bomb
 - Produces **exponential** chain reaction
 - Uses **fast** neutron reactions
 - Require **enriched** fuel (80-90% fissile material)
- Reactor
 - Produces **stable** chain reaction
 - Uses **slow** neutron reactions
 - Uses unenriched or lightly-enriched fuel and a moderator to slow neutrons
- When U-238 absorbs a neutron, it will (in several days) turn into plutonium-239 (relatively stable) which is **fissile**
 - Could use it as bomb fuel
 - Figured it out at 1941 and paved new path for the bomb
- 8. Other Programs
 - Germans though the bomb wasn't necessary for this war, for the next war
 - Why did the United States decide to make the bomb?
 - Japan kept program small and thought the US couldn't make an atomic bomb in time for the war
 - France was invaded by Germany by 1940:(
 - USSR didn't have too many sources, so they just accumulated info for post war
- 9. United Kingdom
 - Physicist were figuring out how much material would be needed for the atomic bomb
 - only 5 kg of U-235 was necessary
- 10. United Kingdom/USA
 - UK committee (MAUD) goes to USA and says the bombs feasible but you need to do it because of resources

- US cleans house on the Uranium Committee and changes name to S-1 Committee
- It is then estimated at \$400 million cost (5x under)
- It's actually much harder than expected, Germany, Japan, and USA were on the right path of saying it's too hard but the UK are dead-afraid and push the USA to think it's doable
 - The US has too much money already spent that they keep going
- FDR approves ARMY taking control over construction job with goal of **making an atomic** bomb = Manhattan Project
- 11. The Manhattan Project