Step-1

(a) Suppose \hat{I}_{j} is positive. We need to show that every S_{j} contains a vector x so that R(x) > 0.

Let if possible, there exists S_j such that for every vector $x \in S_j$, $R(x) \le 0$.

 $\max_{x \in S_j} R(x) \le 0 \quad \min_{S_j} \left[\max_{x \in S_j} R(x) \right] \le 0$ Then, $\min_{x \in S_j} \left[\max_{x \in S_j} R(x) \right] \le 0$ Thus, \hat{I}_{S_j} cannot be positive. This is a contradiction. Thus, our assumption is wrong.

This shows that every S_j contains a vector x so that R(x) > 0.

Step-2

(b) We know that $R(x) = \frac{x^T A x}{x^T x}$.

Let $y = C^{-1}x$. This gives x = Cy.

Therefore,

$$R(x) = \frac{(Cy)^{\mathsf{T}} A(Cy)}{(Cy)^{\mathsf{T}} (Cy)}$$
$$= \frac{y^{\mathsf{T}} C^{\mathsf{T}} A Cy}{y^{\mathsf{T}} C^{\mathsf{T}} Cy}$$
$$= \frac{y^{\mathsf{T}} C^{\mathsf{T}} A Cy}{y^{\mathsf{T}} y}$$

Since R(x) > 0, it is clear that $\frac{y^T C^T A C y}{y^T y} > 0$.

Step-3

(c) Consider the j^{th} eigenvalue of $C^{\mathsf{T}}AC$.

We have

$$\lambda_j = \min_{S_j} \left[\max_{x \in S_j} R(x) \right]$$

We have shown that $R(x) = \frac{y^T C^T A C y}{y^T y}$.

Step-4

Therefore,
$$\lambda_j = \min_{S_j} \left[\max_{Cy \in S_j} \frac{y^T C^T A C y}{y^T y} \right].$$

Therefore, it is clear that the j^{th} eigenvalue of C^TAC is also positive.