t-Stochastic Neighbor Embedding

A Mathematical Journey

Advanced Multivariate Analysis

UPC Barcelona

October 2025

The Fundamental Problem

Given:

•
$$X = \{x_1, \dots, x_n\}$$

•
$$x_i \in \mathbb{R}^d$$
, $d \gg 2$

Find:

•
$$Y = \{y_1, \dots, y_n\}$$

•
$$y_i \in \mathbb{R}^2$$

Information Loss:

$$\mathsf{Loss} = \frac{d-2}{d} \times 100\%$$

$$d = 100 \Rightarrow 98\%$$
 loss!

Key Question:

Which 2% of structure should we preserve?

2 / 60

Distance Matrices

Distance Matrix:

$$D_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|_2$$

Properties:

• Symmetric: $D_{ij} = D_{ji}$

• Non-negative: $D_{ii} \ge 0$

• Zero diagonal: $D_{ii} = 0$

Can we embed exactly in \mathbb{R}^2 ? Usually NO!

Example: 4 points

	Α	В	C	D
Α	0	1	1	1
В	1	0	1	1
A B C D	1	1	0	1
D	1	1	1	0

This is a tetrahedron!

- Needs \mathbb{R}^3 minimum
- \bullet Cannot draw in \mathbb{R}^2

The Curse of Dimensionality

Volume of *d***-sphere**:

$$V_d(r) \propto r^d$$

Shell volume ratio:

Inner radius =
$$0.9$$
, Outer = 1.0

Dim	In shell
2	19%
10	65%
100	99.997%

In high-D: All points on boundary!

The Crowding Problem

1000 points in \mathbb{R}^{10}

- 99% in shell $r \in [0.8, 1.0]$
- Average distance ≈ 1.13

Project to \mathbb{R}^2 :

- Area ratio: $(0.8)^2 = 0.64$
- 99% must fit in 36% area
- Crowding!

From Distances to Probabilities

Why Probabilities?

- Distances: absolute
- Probabilities: relative
- Focus on local structure

Transform:

$$s_{ij} = \exp\left(-rac{d_{ij}^2}{2\sigma_i^2}
ight)$$

$$p_{j|i} = rac{s_{ij}}{\sum_{k
eq i} s_{ik}}$$

d = 1: $s \approx 0.606$

 $d = 2: s \approx 0.135$

Computing Conditional Probabilities

Example: 3 points

With
$$\sigma_A = 1$$
:
 $s_{AB} = e^{-1/2} \approx 0.606$
 $s_{AC} = e^{-2} \approx 0.135$
Sum = 0.741

$$p_{B|A} = 0.606/0.741 \approx 0.82$$

 $p_{C|A} = 0.135/0.741 \approx 0.18$

Key Properties:

- $\sum_{j} p_{j|i} = 1$ (normalized)
- ullet $p_{j|i}
 eq p_{i|j}$ (asymmetric)
- Close points: high probability
- Far points: nearly zero

Adaptive σ :

Dense

Sparse

Perplexity: Setting σ_i

Definition:

Perplexity =
$$2^{H(P_i)}$$

where $H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}$

Interpretation:

Effective number of neighbors

Algorithm:

- User sets perplexity (5-50)
- Binary search finds σ_i
- Each point gets its own σ_i

Example: Perplexity = 3

3 effective neighbors

Typical values:

Small data: perplexity = 5-30 Large data: perplexity = 30-50

SNE Objective Function

Kullback-Leibler divergence:

$$C = \sum_{i} KL(P_i||Q_i)$$

$$=\sum_{i}\sum_{j}p_{j|i}\log\frac{p_{j|i}}{q_{j|i}}$$

What KL measures:

- Info lost using Q for P
- Asymmetric penalty
- Focus on preserving neighbors

Penalty structure:

$p_{j i}$	$q_{j i}$	Cost
Large	Small	High
Small	Large	Low

Optimization:

Gradient descent on Y

$$\frac{\partial C}{\partial y_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

Why SNE Fails: Crowding in Optimization

The Problem:

- Gaussian decay: e^{-d^2}
- Too steep for moderate distances
- Forces all points together

Example:

Distance 2 vs 4:

$$e^{-4}/e^{-16} = e^{12} \approx 162,754$$

Ratio too extreme!

Result: Points collapse to center

The t-Distribution Solution

Key Innovation:

Replace Gaussian with Student-t (df=1)

In low-D space:

$$q_{ij} \propto (1 + \|\mathsf{y}_i - \mathsf{y}_j\|^2)^{-1}$$

Heavy tails:

- More room for moderate distances
- Alleviates crowding
- Better separation

Ratio at d=2 vs d=4:

t-dist: $(1+4)/(1+16) \approx 0.29$

Gaussian: $e^{-4}/e^{-16} \approx 162,754$

Symmetric t-SNE: The Final Form

Symmetrization:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

$$q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

Benefits:

- Simpler gradients
- Better outlier handling
- Single KL divergence

Final objective:

$$C = KL(P||Q) = \sum_{ij} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Gradient:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) F_{ij} (y_i - y_j)$$

where
$$F_{ij} = (1 + \|y_i - y_j\|^2)^{-1}$$

This is t-SNE!

Understanding the Gradient: Forces

Gradient as forces:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) F_{ij} (y_i - y_j)$$

$$j \bullet \xrightarrow{p_{ij} > q_{ij}} \bullet j$$

Two components:

- $(p_{ij} q_{ij})$: strength
- $(y_i y_j)$: direction

$$\leftarrow_{i \atop p_{ij}} \bullet_{q_{ij}} \stackrel{\bullet}{j} \longrightarrow$$

$$j \bullet p_{ij} = q_{ii} \bullet j$$

Interpretation:

- $p_{ij} > q_{ij}$: attract
- $p_{ij} < q_{ij}$: repel

Equilibrium: Forces balance

Optimization Algorithm

Gradient Descent with Momentum:

• Initialize: $Y \sim \mathcal{N}(0, 10^{-4}I)$

• Learning rate: $\eta = 200$

• Momentum: $\alpha = 0.5$ (then 0.8)

Update rule:

$$\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\partial C}{\partial \mathcal{Y}} + \alpha (\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)})$$

Early exaggeration:

Multiply all p_{ij} by 4 for first 250 iterations

Typical schedule:

Iterations	Setting
1-250	Exaggeration = 4
	$\alpha = 0.5$
251-1000	No exaggeration
	$\alpha = 0.8$

Computational Complexity

Naive implementation:

- Computing all q_{ij} : $O(n^2)$
- Per iteration: $O(n^2)$
- 1000 iterations: $O(1000n^2)$

Memory: $O(n^2)$ for P matrix

Example times:

n	Time
1,000	30 sec
10,000	50 min
100,000	3+ days

Barnes-Hut t-SNE:

- Uses quad/oct-trees
- Approximates far interactions
- Complexity: $O(n \log n)$
- ullet Accuracy parameter heta

Speedup: 100x for large n

Practical Implementation Tips

Preprocessing:

- Center data: mean = 0
- Scale: unit variance
- **3** PCA to 50 dims (if d > 50)
- Remove duplicates

Parameter selection:

- Perplexity: try 5, 30, 50
- Learning rate: n/12 or 200
- Iterations: min 1000

Common pitfalls:

- Too few iterations
- Single perplexity value
- Not checking convergence
- Interpreting distances

Best practice:

Run 5 times with different seeds Check stability of clusters

Convergence and Validation

Monitor convergence:

- KL divergence decrease
- Gradient norm $< 10^{-7}$
- Visual stability

Validation strategies:

- Mown labels: check separation
- Multiple runs: consistency
- Oifferent perplexities
- Subset analysis

Quality indicators:

Clear clusters, stable across runs

Complete Example: 5 Points

High-D data (simplified):

Distance matrix:

	Α	В	C	D	Ε
A	0	1	3	4	2.2
В	1	0	2	3	1.4
C	3	2	0	1	1.4
D	4	3	1	0	2.2
Е	2.2	1.4	1.4	2.2	0

Goal:

Map to 2D preserving structure

Expected result:

- A-B close (blue cluster)
- C-D close (red cluster)
- E somewhat separate

Parameters:

- Perplexity = 2
- Will find σ_i for each point

Computing the P Matrix

Step 1: Find σ_A (perp = 2)

With $\sigma_A = 1.0$:

•
$$s_{AB} = e^{-0.5} = 0.606$$

•
$$s_{AC} = e^{-4.5} = 0.011$$

•
$$s_{AD} = e^{-8} = 0.0003$$

•
$$s_{AE} = e^{-2.42} = 0.089$$

Perplexity check: $2^H \approx 1.8 \checkmark$

Normalize:

•
$$p_{B|A} = 0.606/0.706 = 0.858$$

$$p_{C|A} = 0.011/0.706 = 0.016$$

$$p_{D|A} = 0.0003/0.706 = 0.0004$$

•
$$p_{E|A} = 0.089/0.706 = 0.126$$

Step 2: Symmetrize

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

Final P matrix ($\times 1000$):

	A	В	C	D	Ε
A	0	86	2	0.1	15
В	86	0	12	2	40
C	2	12	0	86	40
A B C D	0 86 2 0.1 15	2 40	86	0	15
Е	15	40	40	15	0

Note: A-B and C-D have high p_{ij}

Initial Embedding and Q Matrix

Random initialization:

All points near origin (random $\sim \mathcal{N}(0, 10^{-4}))$

Compute Q matrix:

$$q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k < l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

Initial Q ($\times 1000$):

	Α	В	C	D	Е
A	0	18	22	21	19
В	18	0	19	23	20
B C D E	0 18 22 21 19	19	0	18	21
D	21	23 20	18	0	19
Е	19	20	21	19	0

Nearly uniform! (all ~ 20)

First Optimization Step

Compute gradients:

For point A:

$$\frac{\partial C}{\partial y_A} = 4 \sum_j (p_{Aj} - q_{Aj}) F_{Aj} (y_A - y_j)$$

Forces on A:

- From B: $(86-18)\times$ attract
- From C: $(2-22)\times$ repel
- From D: $(0.1-21)\times$ repel
- ullet From E: $(15-19)\times$ repel

Result: A moves toward B

After 1 iteration:

Clusters beginning to form!

Effect of Perplexity

Perplexity = 1

Perplexity = 2

Perplexity = 4

Rule: 5 < Perplexity < 50

Real Application: MNIST Digits

Dataset:

- 60,000 handwritten digits
- 28×28 pixels = 784 dimensions
- 10 classes (0-9)

t-SNE settings:

- PCA to 50D first
- Perplexity = 30
- 1000 iterations

What we see:

- Clear digit clusters
- Similar digits nearby
- 4-9-7 often close
- 0-6 sometimes overlap

 Advanced Multivariate Analysis (UPC Barcelona)

t-SNE embedding

t-SNE vs PCA: Same Data

PCA (linear):

- Maximizes variance
- Linear projection
- Overlapping clusters
- Fast computation

t-SNE (nonlinear):

- Preserves neighborhoods
- Nonlinear mapping
- Clear clusters
- Slow computation

Interpretation Pitfalls

What NOT to trust:

1. Distances between clusters

2. Cluster sizes

What TO trust:

- 1. Local structure
 - Points close → similar
 - Within-cluster relationships
- 2. Cluster existence
 - Clear separations meaningful
 - But validate with other methods

Remember:

t-SNE creates a useful map, not a perfect representation

When t-SNE Can Mislead

Scenario 1: No real clusters

Random uniform data can show fake clusters!

Scenario 2: Wrong perplexity

- Too low: fragments clusters
- Too high: merges clusters

Scenario 3: Insufficient iterations

Solution:

- Multiple perplexities
- Run to convergence
- Multiple random seeds

Validation Strategies

1. Stability check:

- Run 5-10 times
- Different random seeds
- Compare results

2. Parameter sweep:

- Perplexity: 5, 10, 30, 50, 100
- Look for consistent patterns

3. Known structure:

- If labels exist, check separation
- Silhouette score
- Nearest neighbor preservation

4. Complementary methods:

Method	Check
PCA	Global structure
UMAP	Alternative view
Clustering	Group validity

Quality metrics:

- Trustworthiness: T(k)
- Continuity: C(k)
- KL divergence convergence

Golden rule:

Never trust a single t-SNE run!

Non-convex Optimization Landscape

The Challenge:

- KL divergence is non-convex in Y
- Multiple local minima
- ullet Different initializations o different solutions

Mathematical reason:

The function

$$q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k < l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

is non-convex in y_i

Consequence:

No guarantee of global optimum

Solution: Multiple runs

28 / 60

Barnes-Hut Approximation

The Idea:

- Group distant points
- Treat as single point
- Use tree structure

Criterion:

$$\frac{r_{\text{cell}}}{d_{\text{cell},i}} < 0$$

where $\theta \approx 0.5$ (accuracy)

Complexity:

- Naive: $O(n^2)$
- Barnes-Hut: $O(n \log n)$

Error bound:

$$|F_{\mathsf{exact}} - F_{\mathsf{approx}}| \leq \epsilon F_{\mathsf{exact}}$$

Mathematical Proof: Why Student-t?

Volume preservation:

In *d* dimensions, volume element:

$$dV_d = r^{d-1} dr \, d\Omega_{d-1}$$

For uniform distribution:

$$P(r) \propto r^{d-1}$$

In high-D:

Most volume at $r \approx \sqrt{d}$

Student-t tail:

$$t(r) \sim r^{-(d+1)}$$

Exactly compensates!

Mathematical argument:

Gaussian: $e^{-r^2} \cdot r^{d-1}$ peaks at $r = \sqrt{(d-1)/2}$ Student-t: $(1+r^2)^{-1} \cdot r$ is flatter

Key ratio:

$$\frac{q_{ij}}{q_{kl}} = \frac{1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2}{1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2}$$

Linear in squared distance! (Gaussian is exponential)

Connection to Manifold Learning

Manifold hypothesis:

High-D data lies on low-D manifold

Methods comparison:

Method	Preserves
Isomap	Geodesic distances
LLE	Local linear structure
Laplacian	Graph structure
t-SNE	Local probabilities

t-SNE advantage:

Adaptive bandwidth handles varying density

Swiss roll

Unrolled

Graph Laplacian view:

$$\mathcal{L} = D - W$$

where $W_{ij} = p_{ij}$ (similarities)

Theoretical Guarantees and Limitations

What we DON'T have:

- Global convergence guarantee
- Unique solution
- Distance preservation bounds
- Consistency as $n \to \infty$

What we DO have:

- Local neighborhood preservation
- Gradient convergence to local min
- Empirical success

Open problems:

- Optimal perplexity selection
- Convergence rate analysis
- Approximation quality bounds
- Statistical properties

Key limitation:

No embedding quality guarantee unlike PCA's variance explanation

Bottom line:

Powerful tool, but use carefully

t-SNE vs UMAP

UMAP (2018):

- Based on topology theory
- Fuzzy simplicial sets
- Cross-entropy objective
- Faster: $O(n^{1.14})$

Mathematical difference:

UMAP:
$$q_{ij} = (1 + a||y_i - y_j||^{2b})^{-1}$$

t-SNE: $q_{ij} = (1 + ||y_i - y_j||^2)^{-1}$

Parameters a, b learned from data

Feature	t-SNE	UMAP
Speed	Slow	Fast
Global	No	Partial
Theory	Prob	Торо
Params	1	4+
Stable	No	More

When to use which:

• t-SNE: Final visualization

UMAP: Exploration, large data

33 / 60

Parametric t-SNE: Neural Network Approach

The Idea:

Learn function $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^2$

Neural network:

Loss function:

$$\mathcal{L} = \mathit{KL}(P||Q) + \lambda \|\theta\|^2$$

Advantages:

- Out-of-sample predictions
- No need to store Y
- Can use mini-batches

Training:

- Sample batch of points
- ② Compute p_{ij} for batch
- **3** Forward pass: $y_i = f_\theta(x_i)$
- \bigcirc Compute q_{ij}
- Backprop KL gradient

Limitation:

Less flexible than non-parametric

Embedding Quality Metrics

Trustworthiness:

$$T(k) = 1 - \frac{2}{nk(2n - 3k - 1)} \sum_{i} \sum_{j \in U_{i}^{k}} (r_{ij} - k)$$
 $NPR = \frac{1}{n} \sum_{i} \frac{|N_{k}(x_{i}) \cap N_{k}(y_{i})|}{k}$

Measures false neighbors

2. Continuity:

$$C(k) = 1 - \frac{2}{nk(2n-3k-1)} \sum_{i} \sum_{j \in V_i^k} (\hat{r}_{ij} - k)$$

Measures torn neighborhoods

Neighborhood preservation:

$$NPR = \frac{1}{n} \sum_{i} \frac{|N_k(x_i) \cap N_k(y_i)|}{k}$$

Example values:

Metric	Good
T(10)	> 0.95
C(10)	> 0.95
NPR	> 0.7

Visual check:

Still most reliable!

Recent Advances (2020-2025)

1. FIt-SNE:

- FFT acceleration
- Interpolation-based
- 100x speedup

2. openTSNE:

- Modular implementation
- Custom objectives
- Initialization options

3. GPU-SNE:

- CUDA implementation
- Millions of points
- Real-time interaction

4. Dynamic t-SNE:

For time-series embeddings

5. Hierarchical t-SNE:

- Multi-scale visualization
- Zoom in/out of clusters
- Interactive exploration

Software and Implementation

Python:

- sklearn.manifold.TSNE
- openTSNE (recommended)
- FIt-SNE
- RAPIDS cuML (GPU)

R:

- Rtsne package
- tsne package

Best practices:

- Use PCA preprocessing
- Set verbose=True
- Save intermediate results

Typical workflow:

- Load data
- Standardize features
- PCA to 50D
- t-SNE with perp=30
- **1** Try perp= $\{5,50,100\}$
- Validate clusters

Performance tips:

- Use float32, not float64
- Barnes-Hut for n > 5000
- GPU for n > 50000
- Subsample if needed

37 / 60

Application: Single-Cell RNA Sequencing

The Challenge:

- 20,000+ genes (dimensions)
- 10,000+ cells (points)
- Sparse data (90% zeros)
- Technical noise

Preprocessing:

- Log normalization
- Mighly variable genes
- PCA to 50 components
- t-SNE on PCA space

Reveals: Cell types, states, trajectories

Cell differentiation

Key parameters:

Perplexity = 30-50Learning rate = n/12

Application: Word Embeddings

Word vectors:

- Word2Vec, GloVe, BERT
- 100-768 dimensions
- Semantic relationships

t-SNE reveals:

- Semantic clusters
- Analogies
- Language structure

Example distances:

king - man + woman \sim queen Preserved in 2D!

Semantic clusters

Special consideration:

Cosine distance often better than Euclidean for text

39 / 60

Application: Image Feature Analysis

Deep learning features:

- CNN embeddings
- Last layer before classification
- 512-2048 dimensions

Use cases:

- Dataset exploration
- Outlier detection
- Class balance check
- Model debugging

Workflow:

Extract features \rightarrow PCA \rightarrow t-SNE

Feature clusters

Note: Similar images cluster even without labels!

Application: Time-Series and Trajectories

Dynamic t-SNE:

- Sliding windows
- Temporal regularization
- Preserve trajectories

State evolution

Applications:

- Patient monitoring
- Financial markets
- System states
- Behavior patterns

Modified objective:

$$C = \mathit{KL}(P||Q) + \lambda \sum_t \|\mathsf{Y}^t - \mathsf{Y}^{t-1}\|^2$$

Challenge:

Balance stability vs. change

Domain-Specific Considerations

Biology:

- Handle sparsity
- Log transform counts
- Remove batch effects
- Perplexity = 30-100

Text:

- TF-IDF preprocessing
- Cosine distance
- Remove stop words
- Perplexity = 5-50

Images:

- Use pretrained features
- Data augmentation aware

Common pitfalls by domain:

Domain	Pitfall	
Biology	Batch effects	
Text	Rare words	
Images	Class imbalance	
Finance	Temporal leakage	

Universal tip:

Always validate with domain knowledge!

Remember:

t-SNE is exploratory, not definitive

Mathematical Deep Dive: Gradient Derivation (1/2)

Objective function:

$$C = \sum_{ij} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Step 1: Derivative of $\log q_{ij}$

$$q_{ij} = rac{(1+d_{ij}^2)^{-1}}{Z}$$

where
$$Z = \sum_{k < l} (1 + d_{kl}^2)^{-1}$$

$$\frac{\partial \log q_{ij}}{\partial y_i} = \frac{1}{q_{ii}} \frac{\partial q_{ij}}{\partial y_i}$$

Step 2: Chain rule

$$\frac{\partial q_{ij}}{\partial \mathsf{y}_i} = \frac{\partial}{\partial \mathsf{y}_i} \left[\frac{(1 + d_{ij}^2)^{-1}}{Z} \right]$$

Using quotient rule:

$$=\frac{-2(\mathsf{y}_i-\mathsf{y}_j)(1+d_{ij}^2)^{-2}Z+(1+d_{ij}^2)^{-1}\frac{\partial Z}{\partial \mathsf{y}_i}}{Z^2}$$

Mathematical Deep Dive: Gradient Derivation (2/2)

Step 3: Simplify

After algebra:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) F_{ij} (y_i - y_j)$$

where
$$F_{ij} = (1 + d_{ij}^2)^{-1}$$

Interpretation:

- $(p_{ij} q_{ij})$: error signal
- F_{ij} : weight function
- $(y_i y_j)$: direction

Beautiful symmetry:

Force on point i from j:

$$\mathsf{F}_{ij} = 4(\rho_{ij} - q_{ij}) \frac{\mathsf{y}_i - \mathsf{y}_j}{1 + \|\mathsf{y}_i - \mathsf{y}_j\|^2}$$

Note: Student-t kernel appears naturally in gradient!

Initialization Strategies

1. Random initialization:

$$Y \sim \mathcal{N}(0, \sigma^2 I)$$

- Classic: $\sigma = 10^{-4}$
- Spread out: $\sigma = 0.01$
- Risk: poor local minima

2. PCA initialization:

$$\mathsf{Y} = [\mathsf{v}_1,\mathsf{v}_2]^{\mathcal{T}}\mathsf{X}$$

- First 2 principal components
- Preserves global structure

3. Spectral initialization:

Graph Laplacian eigenvectors

Impact on convergence:

PCA: 500 iterations

Random: 1000 iterations

Advanced Initialization: Smart Strategies

Scaled PCA init:

- Compute PCA
- 2 Scale to match t-dist variance
- **1** $\alpha = 0.0001 \times \max(|X|)$

Why scaling matters:

Initial q_{ij} should be uniform Prevents early clustering

Experimental results:

Init	KL final	Time
Random	1.82	45s
PCA	1.65	30s
Scaled PCA	1.58	25s

Recommendation:

Always use PCA initialization unless specific reason not to

How to Read t-SNE Plots

DO interpret:

- ✓ Clusters existence
- ✓ Within-cluster structure
- ✓ Local neighborhoods
- ✓ Relative density

DON'T interpret:

- X Cluster sizes
- X Between-cluster distances
- X Absolute positions
- X Empty space meaning

Golden rule:

Confirm patterns with other methods

Common Visual Artifacts

1. Clumping:

0 0 0

Grid artifact

Cause: Optimization stuck

2. Outlier chains:

Cause: Early stopping

3. Pinched clusters:

Pinch

Cause: Perplexity too high

Solutions:

- Run longer
- Adjust perplexity
- Check convergence
- Multiple runs

Statistical Validation of Clusters

Silhouette score:

$$s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

- a_i: mean intra-cluster dist
- b_i: mean nearest-cluster dist
- Range: [-1, 1]

Hopkins statistic:

Tests clustering tendency H > 0.75: clusterable

Permutation test:

- Run t-SNE on real data
- Measure cluster quality Q
- Shuffle labels 100 times
- Run t-SNE on shuffled
- Ompare Q to null distribution

Cross-validation for t-SNE

Problem:

Can't embed test points directly

Solution 1: Parametric t-SNELearn mapping function

Solution 2: Out-of-sample

- Run t-SNE on training
- Fix training positions
- Optimize test positions only

k-NN classification test:

- Embed training data
- Place test points
- k-NN in 2D space
- Measure accuracy

Results:

Space	Accuracy
Original	95%
t-SNE 2D	88%
Random 2D	45%

Troubleshooting Guide

Problem: One big blob

- Increase perplexity
- Run longer
- Check data scale

Problem: Too many clusters

- Decrease perplexity
- Check duplicates
- PCA preprocessing

Problem: Strange shapes

- Increase iterations
- Check for outliers
- Try different init

Diagnostic checklist:

- KL decreasing?
 √
- **2** Gradient \rightarrow 0? \checkmark
- Multiple runs similar?
 √
- Oifferent perplexities? √
- PCA looks reasonable?
 √

Emergency fixes:

- Subsample to debug
- Remove outliers
- Try UMAP instead

Top 10 Common Mistakes

- Not standardizing data
- Single perplexity value
- Too few iterations
- Interpreting distances
- Ignoring convergence
- No PCA preprocessing
- Wrong distance metric
- Single random seed
- Over-interpreting
- Not validating

How to avoid:

- Always standardize
- Try 3+ perplexities
- Min 1000 iterations
- Focus on local structure
- Check KL curve
- PCA to 50D first
- Match metric to data
- Run 5+ times
- Confirm with other methods
- Use validation metrics

The Complete t-SNE Pipeline

Mathematical Journey: Synthesis

From distances to geometry:

- ① Distances: $D_{ij} = ||\mathbf{x}_i \mathbf{x}_j||$
- ② Similarities: $s_{ij} = e^{-D_{ij}^2/2\sigma_i^2}$
- **3** Probabilities: $p_{ij} = s_{ij} / \sum_{kl} s_{kl}$
- **1** Embedding: $min_Y KL(P||Q)$
- **5** Forces: $\nabla = 4(P Q) \odot F \odot D$

Key insights:

- Local > global
- Relative > absolute
- Adaptive > fixed

The mathematics that matters:

- Information: KL divergence
- Probability: Conditional → Joint
- Optimization: Non-convex
- Geometry: Manifold learning
- Statistics: Heavy tails

Unified view:

- $\mathsf{t}\text{-}\mathsf{SNE} = \mathsf{Information} \ \mathsf{geometry}$
- + Stochastic neighbors
- + Heavy-tailed embeddings

The t-SNE Recipe: Your Go-To Guide

Ingredients:

- Data matrix: $n \times d$
- Perplexity: 30 (default)
- Iterations: 1000
- Learning rate: 200 or n/12

Instructions:

- Center & scale data
- ② PCA to 50D (if d > 50)
- **3** Set perplexity \in [5, 50]
- Initialize with PCA
- Sun with early exaggeration
- Oheck convergence
- Try 3 perplexities

Quality control:

- ✓ KL decreasing?
- ◆ ✓ Clusters stable?
- ✓ Known structure visible?
- ✓ No artifacts?

Serving suggestions:

- Color by known labels
- Interactive plot (plotly)
- Compare with PCA
- Validate with clustering

Warning:

Never trust distances! Always run multiple times!

Open Problems and Future Directions

Theoretical challenges:

- Convergence guarantees
- Optimal perplexity theory
- Embedding quality bounds
- Statistical consistency
- Manifold reconstruction

Algorithmic advances:

- Linear time algorithms
- Online/streaming t-SNE
- 4 Automatic hyperparameters
- Interpretable embeddings

Applications frontier:

- Million-point datasets
- Real-time visualization
- 3D and VR embedding
- Temporal dynamics
- Multi-modal data

Your contribution?

Many problems remain open! Combine theory + practice

t-SNE in the Deep Learning Era

Visualizing deep networks:

- Layer activations
- Learned representations
- Attention patterns
- Embedding spaces

Model debugging:

- Feature collapse
- Class separation
- Adversarial examples
- Transfer learning

Integration approaches:

- **1** Extract \rightarrow t-SNE \rightarrow Visualize
- 2 Joint training (parametric)
- Regularization with t-SNE

Complete Example: Iris Dataset

Data:

- 150 samples, 4 features
- 3 species (50 each)
- Classic test case

Steps:

- **1** Load: (150×4) matrix
- Scale: mean=0, std=1
- Oistances: Euclidean
- Perplexity: 30
- **5** σ search: [0.1, 10]
- O P matrix: symmetrize
- Init: PCA × 0.0001
- Optimize: 1000 iterations

Results:

Perfect separation achieved!

Key Takeaways: What to Remember

Core concepts:

- Preserves neighborhoods, not distances
- Probabilities ¿ distances
- Heavy tails solve crowding
- Non-convex optimization
- Multiple runs essential

Practical wisdom:

- Always standardize
- Try multiple perplexities
- PCA preprocessing helps
- Validate findings

Mathematical insights:

- KL divergence for matching
- Student-t for heavy tails
- Gradient = attractive/repulsive forces
- Adaptive bandwidth crucial

Remember:

t-SNE is a tool for exploration, not proof!

Use wisely, interpret carefully

Final Thoughts: The Art and Science of t-SNE

t-SNE bridges mathematics and intuition

You now have:

- Mathematical understanding
- Practical skills
- Critical perspective

Go forth and visualize responsibly!

