Pipelining avançado – Parte 2

- Máquina load/store
- ISA com estilo RISC
- Suporte para exploração explícita de ILP
- Papel do compilador
 - Identifica e aproveita o paralelismo
 - Codifica o paralelismo no formato de instrução
- EPIC
 - "Explicit Parallel Instruction Computer"

- Diferenças entre MIPS e IA-64
 - IA-64 tem mais registradores
 - » 128 para inteiros; 128 para ponto flutuante
 - » 8 registradores especiais para desvios
 - » 64 registradores de 1 bit para predicados
 - IA-64 empacota instruções em "bundles"
 - » Formato fixo
 - » Codificação explícita de dependências

• "Bundle"

• "Bundle"

Instrução 1	Instrução 2	Instrução 3	Template
-------------	-------------	-------------	----------

```
{     .mii
     ld4     r1 = [r5]
     sub     r3 = r7, r8
     add     r2 = r5, r6
}
```

• "Bundle"

Instrução 1	Instrução 2	Instrução 3	Template
-------------	-------------	-------------	----------

UF cada instrução executa

• "Bundle"

```
ld4 r1 = [r5] sub r3 = r7, r8 add r2 = r5, r6 00000
```

• "Bundle"

Instrução 1	Instrução 2	Instrução 3	Template
Instrução 4	Instrução 5	Instrução 6	Template
Instrução 7	Instrução 8	Instrução 9	Template

• "Instruction group"

"Instruction group"

Instrução 1	Instrução 2	Instrução 3	00010
Instrução 4	Instrução 5	Instrução 6	00000
Instrução 7	Instrução 8	Instrução 9	01010

A posição de um stop é codificada como parte do template (onde também é codificado o mapeamento para UF)

O paralelismo entre as instruções é codificado explicitamente! (EPIC)

- Suporte para predicação
- Conceito
 - Execução condicional de uma instrução
 - Dependendo de um predicado
- Consequência
 - Eliminação de desvios condicionais
 - » Redução de hazards de controle
- Exemplo: if (p) {S1} else {S2}
 - (p) S1
 - (~p) S2

IA-64: exemplo de predicação

• Exemplo: código fonte

```
x = A[i];
if (y > 0) y = k + w;
k = x - z;
```

Exemplo: código assembly

```
.mii
    ld4    r20=[r22]
(pr1)    add    r2 = r3, r6 ;;
    sub    r3 = r20, r8
}
```

ILP: Especulação

- Permite compilador ou HW "adivinhar"
 - Propriedades de uma instrução
 - » Resultado de um desvio condicional
 - » Se um load depende de um store
- Desvios
 - Executar o desvio
 - Antes de ser conhecido o resultado do teste
- Load
 - Executar o load
 - Antes de saber se o store tem mesmo endereço

Especulação: desvio

```
if (A==0) A = B; else A = A + 4;
                                       Novo valor de $s1 não
Hipótese: A \rightarrow 0($s3); B \rightarrow 0($s2)
                                     pode ser escrito no banco
Previsão: desvio tomado
                                         de registradores
                                               $51, 0($s3)
               $$1, 0($$3)
 gera
        lw
                                        lw
hazard
                                               $s1,$s1,4
               $$1, $zero, L1
        bne
                                        addi
               $s1, 0($s2)
                                               $$1, $zero, L3
        lw
                                        bne/
                                               $s1, 0($s2)
                                        W
              $s1, $s1, 4
        addi
                                               $s1, 0($s3)
                                        SW
                                      Só atualizar o banco de
               $s1, 0($s3)
L2:
        SW
                                     registradores se hipótese
     Solução: armazenar o
                                        resultar verdadeira
```

Luiz C. V. dos Saetos INFROT D'Uffer

resultado provisoriamente

Especulação: load

```
sw $s1, 0($s3)
...
|?
lw $s2, 4($s4)
```

- Pode-se executar o lw antes do sw ?
 - Se 0 + \$s3 = 4 + \$s4, são dependentes
 » Não se pode reordená-las
- Pode-se fazê-lo desde que:
 - O valor lido pelo lw não seja escrito em \$s2
 - Seja armazenado em buffer
 - Até que os endereços efetivos sejam conhecidos

Emissão múltipla dinâmica

- Superscalar
- Instruções emitidas em ordem
 - CPU decide número de instruções emitidas
 - » Nenhuma, uma ou mais
- Compilador favorece
 - Reordenando instruções
 - Para aumentar chances de emissão múltipla

Emissão múltipla dinâmica

- Migração entre implementações
 - Código herdado ("legacy code")
- VLIW requer recompilação
 - Para garantir execução correta ou
 - Para assegurar desempenho aceitável
- E o superscalar?
- Superscalar garante execução correta
 - Independentemente do código gerado
 - » Detecção de hazards e pausas
- Superscalar garante execução eficiente
 - Mesmo sem recompilação
 - » Escalonamento dinâmico

Pipeline: escalonamento dinâmico

Motivação

lw	\$t0,	20(\$	52)
addu	\$t1,	\$t0,	\$t2
sub	\$s4,	\$s4,	\$t3
slti	\$t5,	\$s4,	20

Pode se revelar muito lenta em tempo de execução

Não depende de 1w nem de addu, mas <u>não</u> pode iniciar execução antes delas.

A instrução sub poderia completar antes das duas primeiras

Isto requer execução fora de ordem ("out-of-order" execution)

Pipeline com escalonamento dinâmico

Pipeline: escalonamento dinâmico

Exemplo: AMD Opteron X4 (Barcelona)

- Reformata instruções x86 (CISC)
 - Instruções tornam-se RISC-operations (AMD)
 - » Micro-operations (Intel)
- Superscalar
 - Emissão múltipla dinâmica
 - » 3 RISC-operations por ciclo
 - Pipeline profundo
 - » 12 estágios (int), 17 estágios (ponto flutuante)
- Pipeline com escalonamento dinâmico
 - Executa as micro-operações
 - » Execução especulativa
 - » Execução fora de ordem

minimizar

CPI

maximizar

AMD Opteron X4: micro-arquitetura

AMD Opteron X4: micro-arquitetura

AMD Opteron X4: pipeline (inteiro)

- Idéia-chave: minimizar latência entre instruções para diminuir impacto das dependências de dados.
- Gargalos de desempenho:
 - Instruções x86 complexas não mapeiam para poucas Rops
 - Desvios de difícil previsão
 - » Má-previsão: pausas ou recomeços (especulação)
 - Longas dependências
 - » Instruções demoradas ou falta na cache
 - Atrasos no acesso à memória
 - » Penalidade de falta na cache

Discussão e conclusão

- O porquê do escalonamento dinâmico ?
- Por que não deixar isso para o compilador?
- Algumas pausas não são previsíveis
 - Exemplo: faltas na cache
- HW faz previsão dinâmica de desvios
 - Para especulação dinâmica
 - Não faz sentido sem escalonamento dinâmico
- Migração entre implementações
 - Código velho roda eficientemente na máquina nova

Desempenho: idéias-chave até 2004

Miniaturização e superpipeling

$$IPS = \frac{f}{CPI}$$

Emissão múltipla, escalonamento (dinâmico e estático), especulação, previsão de desvios (estática e dinâmica), memórias cache

Microprocessor	Year	Clock Rate (MHz)	Pipeline Stages	Issue Width	Out-of-Order/ Speculation	Cores/ Chip	Power (W)
Intel 486	1989	25	5	1	No	1	5
Intel Pentium	1993	bΰ	5	2	No	1	10
Intel Pentium Pro	1997	200	10	3	Yes	1	29
Intel Pentium Willamette	2001	2000	22	3	Yes	1	75
Intel Pentium Prescott	2004	3600	31	3	Yes	1	103
Intel Core	2000	2930	14	4	Yes	2	75
Sun UltraSPARC III	2003	1950	14	4	No	1	90
Sun UltraSPARC T1 (Niagara)	2005	1200	6	1	No	8	70
		V					

10 vezes em 4 anos

1,8 vezes nos 3 anos seguintes

Limite compatível com dissipação economicamente viável

Profundidade do pipeline correlata com a frequência

Potência correlata com frequência

Microprocessor	Year	Clock Rate (MHz)	Pipeline Stages	Issue Width	Out-of-Order/ Speculation	Cores/ Chip	Power (W)
Intel 486	1989	25	5	1	No	1	5
Intel Pentium	1993	66	5	2	No	1	10
Intel Pentium Pro	1997	200	10	3	Yes	1	29
Intel Pentium Willamette	2001	2000	22	3	Yes	1	75
Intel Pentium Prescott	2004	3600	31	3	Yes	1 /	103
Intel Core	2006	2930	14	4	Yes	2	75
Sun UltraSPARC III	2003	1950	14	4	No	1 /	90
Sun UltraSPARC T1 (Niagara)	2005	1200	6		No	8	70

Emissão múltipla ou simples?

Volta ao pipeline com emissão simples e poucos estágios

Transição para multicore

Mesma
potência
com 4
vezes mais
cores

Escalonamento dinâmico ou não?

Redução no número de estágios

Microprocessor	Year	Clock Rate (MHz)	Pipeline Stages	Issue Width	Out-of-Order/ Speculation	Cores/ Chip	Power (W)
Intel 486	1989	25	5	1	No	1	5
Intel Pentium	1993	66	5	2	No	1	10
Intel Pentium Pro	1997	200	10	3	Yes	1	29
Intel Pentium Willamette	2001	2000	22	3	Yes	1	75
Intel Pentium Prescott	2004	3600	31	3	Yes	1	103
Intel Core	2006	2930	14	4	Yes	2	75
Sun UltraSPARC III	2003	1950	14	4	No	1	90
Sun UltraSPARC T1 (Niagara)	2005	1200	6	1	No	8	70

Conclusão 1: as técnicas de ILP continuarão minimizando a ociosidade de um dado core, enquanto técnicas de TLP buscarão compensar a menor frequência (e o menor número de instruções emitidas por ciclo, quando for o caso)

Microprocessor	Year	Clock Rate (MHz)	Pipeline Stages	Issue Width	Out-of-Order/ Speculation	Cores/ Chip	Power (W)
Intel 486	1989	25	5	1	No	1	5
Intel Pentium	1993	66	5	2	No	1	10
Intel Pentium Pro	1997	200	10	3	Yes	1	29
Intel Pentium Willamette	2001	2000	22	3	Yes	1	75
Intel Pentium Prescott	2004	3600	31	3	Yes	1	103
Intel Core	2006	2930	14	4	Yes	2	75
Sun UltraSPARC III	2003	1950	14	4	No	1	90
Sun UltraSPARC T1 (Niagara)	2005	1200	6	1	No	8	70

Conclusão 2: o limite à dissipação de potência tornou crucial a Programação Concorrente, mas há ainda muitas dificuldades para sincronização, consistência de memória e depuração de software paralelo