

Birla Central Library

PILANI (Jaipur State)

Class No :- 544

Book No :- S53I

Accession No :- 32825

Identification and Qualitative Chemical Analysis of Minerals

by

ORSINO C. SMITH, A.B., A.M.
Petroleum and Chemical Technologist

D. VAN NOSTRAND COMPANY, INC.
TORONTO NEW YORK LONDON

NEW YORK

D. Van Nostrand Company, Inc., 250 Fourth Avenue, New York 3

TORONTO

D. Van Nostrand Company (Canada), Ltd., 228 Bloor Street, Toronto

LONDON

Macmillan & Company, Ltd., St. Martin's Street, London, W.C. 2

COPYRIGHT, 1946, BY

ORSINO C. SMITH, A.B., A.M.

All Rights Reserved

*This book, or any parts thereof, may not be
reproduced in any form without written
permission from the author and publisher.*

10483a20

PRINTED IN THE UNITED STATES OF AMERICA

PREFACE

These mineral identification tables and this scheme of mineral analysis were first presented in the book Mineral Identification Simplified. Since its publication, much work and research have been done in improving and developing the analytical scheme into a simple, thorough system of qualitative analysis, given in such a way that it can be carried out not only by professionals, but also by those not technically trained, and without the necessity of elaborate facilities and expensive equipment.

The following references were used:

Outlines of Methods of Chemical Analysis; Lundell and Hoffman;
John Wiley and Sons, 1938.

Analytical Chemistry; Treadwell and Hall; John Wiley and Sons,
1937 (ninth edition).

A System of Qualitative Analysis of the Rare Elements; Noyes and
Bray; Macmillan Company, 1927.

Standard Methods of Chemical Analysis; Scott; D. Van Nostrand
Company, 1938.

Qualitative Chemical Analysis; Noyes; Macmillan Company, 1928
(ninth edition).

Spot Tests; Fiegl; Nordmann Publishing Company, 1939 (second edition).

Handbook of Chemical Microscopy; Chamot and Mason; John Wiley
and Sons, 1940 (second edition).

These mineral identification tables have been revised and brought up to date and include all minerals reported to January, 1945. Although it was not thought advisable to attempt to tabulate all sub-classes and varieties, a great many have been included. The following references were used in the compilation:

The American Mineralogist.

The Mineralogical Magazine.

Mineralogical Abstracts.

Dana's System of Mineralogy, Vol. 1, Seventh Edition; Palache,
Berman and Frondel; John Wiley and Sons, 1944.

Mineral Identification Simplified; O. C. Smith; Wetzel Publishing
Co., 1940.

The author wishes to express his deepest appreciation to Dr. F. H. Pough,
Curator of Geology and Mineralogy, American Museum of Natural History,

PREFACE

New York; Dr. Thomas Clements, Professor of Geology, University of Southern California, Los Angeles, Calif.; Dr. G. E. F. Lundell, Chief, Division of Chemistry, National Bureau of Standards, Washington, D. C.; Mr. Roy L. Cornell, California Testing Laboratory, Los Angeles, Calif., and Mr. O. U. Bessette, for their help and suggestions in reviewing and criticizing the text; to Dr. Joseph Murdock, Associate Professor of Mineralogy, University of California at Los Angeles, for assisting in the selection of the mineral specimens for the plates; and to Mr. E. V. Rannells for his assistance with the photography.

O. C. SMITH.

Bell, Calif.,
October, 1945.

CONTENTS

CHAPTER I

	PAGE
Introduction	1
The Tables	4
Using the Tables	4
Finding the properties in minerals	5
Specific Gravity, its determination and uses	5
Hardness	19
Fusibility	20
Approximate melting point of metals	21
Solubility in hydrochloric acid	21
Color	22
Streak	22
Luster	22
Cleavage	23
Fracture	23
Crystal systems	23
Index of refraction	24

CHAPTER II

Ultra-Violet light and Mineral Fluorochemistry	25
Sources of ultra-violet light	26
Fluorescence and phosphorescence	28
Prospecting and mining	29
Sorting ores	32
Black Light for mineralogists and collectors	32
Testing for mercury	33
Fluorescent minerals	35

CHAPTER III

Mineral chemistry	43
Chemical classes in nature	43
Chemical formula and percentage composition	44
Chemical reagents	45
Chemical apparatus	50
The portable laboratory	51
Table of chemical elements	63

CHAPTER IV

Tables of chemical reactions	65
Chemical tests	66
Spot tests	68

CONTENTS

	PAGE
Table A	70
Table B	78
Table C	80
Table D	84
Analytical scheme	86

CHAPTER V

Qualitative chemical tests	87
--------------------------------------	----

CHAPTER VI

The flame and its use in blowpiping	137
The assay of gold and silver with the blowpipe	139
The color plates	144
Reactions with hydrogen peroxide	145
Reactions with metallic zinc in acid solutions	146
Per se reactions on plaster	148
Iodide flux reactions on plaster	149
Bromide flux reactions on plaster	150
Chromate flux reactions on plaster	152
Sublimates on charcoal	153
Bead tests	157
Hydrobromic acid reactions	159
Color changes	159
Cobalt nitrate reactions	159
Flame colorations	160
Closed tube sublimates	162
Open tube reactions	163
Fusion with sodium carbonate	164
Reactions of blowpipe tests to ultra-violet light	165
Fluorescence of sodium fluoride fusions	168
Abbreviations	169

CHAPTER VII

Tables for mineral identification	171
General index	325
Mineral index	331

List of Figures

FIGURE	TITLE	PAGE
1.	Hydrometer for Determination of Specific Gravity	6
2.	Jolly Balance	7
3.	Mandrel for Making Coil Spring	8
4.	Beam Balance, Set Up	9
5.	Beam Balance, Folded	10
6.	Beam Balance, Drawing of Beam	11
7.	Beam Balance, Drawing of Bottom Plan and Cover	12
8.	Beam Balance, Drawing of Accessories	13
9.	Ultra-Violet Wave Length, Graph	27
10.	Scheelite Fluorescence Analyzer Card	31
11.	Sorting Ore	33
12.	Willemite Screen	34
13.	Portable Laboratory, Completely Assembled	52
14.	Portable Laboratory, Drawing, Tray No. 1	53
15.	Portable Laboratory, Drawing, Tray No. 2	54
16.	Portable Laboratory, Drawing, Tray No. 3	55
17.	Portable Laboratory, Drawing, Tray No. 4	56
18.	Portable Laboratory, Drawing, Bottom of Case	57
19.	Portable Laboratory, Drawing, Top of Case	58
20.	Blow Pipe Flames	137
21.	Sampler A; Cupel Mould B; Proportional Tongs C; Calibrated Wedge D	140
22.	Assay Graph	143

List of Plates (*Color*)

COLOR		PAGE
PLATE	TITLE	
1.	Tungsten Ore, Under Ordinary Light	30
2.	Tungsten Ore, Under Ultra-Violet Rays	30
3.	Crystals of Calcium Tungstate	30
4.	Scheelite Crystal Formations	30
5.	Scheelite Color Variations	31
6.	Blue-White Scheelite Crystals	31
7.	Typical Appearance of Scheelite Crystals	31
8.	Willemite and Calcite	31
9.	Willemite, Zinc Silicate	31
10.	Typical Specimen of Wernerite	31
11.	Calcite Sample	31
12.	Blowpipe Reactions	144
13.	Blowpipe Reactions	144
14.	Blowpipe Reactions	144
15.	Blowpipe Reactions	145
16.	Blowpipe Reactions	145
17.	Blowpipe Reactions	145
18.	Bead Test Reactions	158
19.	Typical Minerals, Group 1	174
20.	Typical Minerals, Group 2	182
21.	Typical Minerals, Group 3	190
22.	Typical Minerals, Group 4	206
23.	Typical Minerals, Group 5	214
24.	Typical Minerals, Group 6	222
25.	Typical Minerals, Group 7	238
26.	Typical Minerals, Groups 8 and 9	262
27.	Typical Minerals, Group 10	286
28.	Typical Minerals, Groups 10 and 11	287

CHAPTER I

Introduction

By definition a mineral is a naturally occurring inorganic substance having a relatively constant chemical composition and fairly definite physical properties.

Chemical mineralogy is probably the most important branch of the science of mineralogy, because all of the properties of the minerals, the crystal forms assumed, and the final identification are dependent on the composition and molecular arrangement.

While minerals are considered to be of constant chemical composition, it must always be borne in mind that this does not mean they are chemically pure substances. Nature is not meticulously careful to prevent contamination, with the result that most minerals contain extraneous substances, and these often change the characteristics somewhat. Often it is these small amounts of extraneous substances which give the economic value to many mineral deposits, as for instance silver in galena, gold in pyrite, vanadium, chromium and titanium in iron minerals.

There are a number of elements that are quite easily interchangeable, with the result that one mineral may grade into another. Iron, aluminum and magnesium often partially replace each other, the iron in a mineral being partially replaced by aluminum or magnesium, or vice versa. Calcium and magnesium and sodium and potassium also act in the same way. Many of these types of substances may be considered as mixtures of two minerals, but in many cases the mineral is called by the name which represents the compound present in the greater amount; the other is considered an impurity. The distinction depends on the percentage of each, and the analyst must use his own judgment. If, for instance, a mineral was tested and found to be composed of a large amount of iron oxide, and a small quantity of titanium oxide was indicated, it would be regarded as an iron mineral with titanium as an impurity. If, however, the amount of iron and titanium were both large, it would probably be considered an iron-titanium mineral, such as ilmenite.

Identification of minerals by their physical properties only does not in any way indicate what elements are present. It does indicate that certain elements and compounds are in great preponderance. Magnetite, for instance, is not difficult to identify, but simple identification as such does not tell whether small amounts of vanadium, chromium, titanium, manganese, etc., are contained in it. Chemical analysis alone will determine this.

CHEMICAL ANALYSIS OF MINERALS

Chemical analysis of minerals therefore becomes very interesting and profitable and should be more widely used by both the professional and amateur chemist and mineralogist. It is firmly believed that many new mineral resources and deposits will be found by greater use of chemical methods.

The qualitative analysis of minerals is quite simple but has not been practiced to any great extent to date by non-professional or professional men on assigned jobs away from their place of business, because no practical system outlined in simple methods and language has been available. Those amateurs who do become interested are usually baffled the first time they open a text book on qualitative analysis, because of the technical expressions and phrases used, the references to normalities, ionizations, concentrations, etc., and the general idea of complexity in which they are engulfed. Chemical analysis is in reality a very simple mechanical sequence and, while it is admitted that certain conditions must be met and one must use some chemical terms, these can be kept to a minimum. If the procedure is understood by the operator these terms will soon become familiar to him, and without realizing it he will soon develop a fair chemical vocabulary and understanding. The carrying out of this idea has been attempted in the instructions given here.

The system of qualitative analysis set forth in this book is a combination of the blowpipe and wet systems. Each has its very decided advantages, and an effort has been made to adopt the good points of each, thus obtaining a system which by a routine procedure covers virtually all of the basic elements while retaining many excellent qualities of blowpiping. This is accomplished by group testing and separation by the wet method and blowpipe tests on the precipitates or residues.

Two new groups have been added to the ordinary scheme of wet analysis. These are the oxalic acid or rare earth group and the zirconium or titanium group. This has been done in order to simplify the iron group. The testing for and separation of these groups are as easy and complete as most of the other more common ones, and a great advantage is obtained. Elimination of possible elements is almost as important as confirmation in an analysis. These new groups assist greatly in the simplification of this procedure.

Iron is a very common element in minerals, with the result that a positive test for it is often obtained. Under the ordinary system of group separation, the iron group contains not only the commonly known elements, iron, manganese, cobalt and nickel, but also thorium, scandium, the rare earths, zirconium and titanium, with the result that a positive test for the iron group means that any one of these elements may be present, thus necessitating considerable work in separating and testing. By removing or showing the absence of the oxalic acid and zirconium groups as is done in this scheme, the iron group is converted from a complicated one of about 24 possible members to a very simple one of only 4 or 5 members.

INTRODUCTION

It may be argued that members of the oxalic acid and zirconium groups are not common elements. However, according to the best authorities, these elements appear in the earth's crust in greater amounts than the elements which we ordinarily look upon as common, and no simple system of analysis, either wet or dry, has been published which allows one to test for them in a routine procedure. In working with minerals, many of these elements are apt to be encountered and any analytical scheme should include them.

No attempt is made here to teach the principles of qualitative analysis. There are many excellent texts available on this subject. However, most all of them assume that complete laboratory facilities are at hand, with the result that the conditions required for separations are stated and described, but in virtually no case are specific instructions given as to how these may be obtained in a simple manner.

The endeavor here is to give these specific instructions, using the simplest possible means and methods to obtain the approximately correct conditions for the separations. In almost all cases this is accomplished by using the standard, concentrated reagents, which are of quite constant and uniform strength, drops from a dropping bottle, and specified volumes.

Considerable library research as well as tests on known and unknown minerals and mixtures have gone into the development of the procedure here recommended. Practical experience by amateurs and experts has reduced the tests to the simplest and most accurate routine.

The size of the sample is smaller than that ordinarily used in macro analysis but is large enough to give precipitates in quantity sufficient for identification, even when the element occurs in relatively small amounts. It can be handled by ordinary macro methods but is small enough to save much time in filtering and other operations.

The color reproductions of the blowpipe tests on charcoal and Plaster of Paris tablets, both per se and with the fluxes and the bead tests, greatly assist the analyst in the identification. Two new fluxes, not encountered in the literature, have been used, namely the bromide and chromate fluxes. In a number of cases these are not very specific and do not give pronounced films, but for some of the elements they give better results than are obtained by other means. Some of the charcoal slabs and plaster tablets show very little film, but it was thought best to include them so as to make the list as complete as possible, for here again a negative indication is about as important as a positive one in reaching a decision as to the composition and final results.

The chapter on ultra-violet light gives much information on its use in mining, mineralogy, and as a hobby. While very few minerals invariably give a specific reaction to "black light," many of them from certain localities, do fluoresce, because of the presence of some exciting substance. In these cases, the reaction to the light is specific for the mineral of *that locality*, and this fact should make the ultra-violet light quite useful. The fluorescent material itself

CHEMICAL ANALYSIS OF MINERALS

may not be of commercial value, but may be associated with the valuable ore or mineral in such a way that it indicates where the values lie.

Good, efficient sources of ultra-violet radiations have been developed only in the last few years and much is yet to be learned about their possibilities. Since minerals from one district may fluoresce while those from another may not, all fluorescent material should be carefully examined chemically to determine its nature and to find if it contains commercial values, for there is undoubtedly a great deal to be discovered by the use of this light.

THE TABLES

There are two sets of tables. The tables of chemical reactions are based on the solubility of the minerals in the common acids and is for use with simple chemical tests as an aid in the identification. This set contains only the more common minerals and is an auxiliary to the identification tables, in which all of the known minerals are arranged in the order of their decreasing specific gravity and hardness, two of the most constant of the physical properties.

Specific gravity limits which divide the minerals into thirteen groups have been selected. All minerals whose gravity range lies within the bounds of a single group will be found only in that group. In cases where there is a considerable variation in the specific gravity, the mineral will be found in all of the groups which cover the specific gravity range. Garnet, for instance, has a specific gravity range of 4.3 to 3.15, and is therefore a member of all of the groups which are necessary to cover this range, namely, groups 5 to 8 inclusive.

In the various groups, the minerals are arranged in the order of their decreasing hardness so that *all minerals of similar specific gravity and hardness are grouped together*. Those which have specific gravity but no hardness reported are found at the end of the groups. In the last group are the ones on which no specific gravity has been reported. These usually are quite rare and unimportant. The tables contain all known minerals and many of the different varieties reported up to 1945. The more common minerals are in bold type.

Using the Tables. First determine the specific gravity. This throws the specimen into one of the groups. Next find the hardness. This shows that it can be one of only a possible few of that group. A study of the other physical properties (color, streak, etc.) will usually enable the mineral to be definitely identified. If still in doubt, the chemical tests in connection with the tables of chemical reactions are applied, which will give an idea of the chemical nature. Alternative and ultimate resort can be made to blowpipe tests and complete qualitative chemical analysis.

Many minerals can be identified from their physical properties and chemical characteristics, but there are some which differ from each other by only a slight variation of their percentage composition or optical properties. Where

INTRODUCTION

this is the case, complete equipment for quantitative analysis and the determination of the optical properties is necessary.

In using the table, it should be borne in mind that the physical properties listed are those of *pure minerals*, and the specimen should be carefully examined to be sure it is not a mixture or is not somewhat altered. Because of these possibilities it is always well to search the groups immediately before and after the one into which the mineral is thrown.

FINDING THE PROPERTIES OF A MINERAL

The **mineral index** lists alphabetically the names of all the minerals. To look up the properties of a mineral, locate its name in the mineral index at the back of the book. Following this will be found its location in the group and the group to which it belongs. For example, if one wishes to find the characteristics of tremolite, on looking in the mineral index under this name he will find on page 349 the designation Tremolite, 92-8, 48-9. This means that tremolite is item #92 (numerals at left side of page) in group #8 and is found on pages 252 and 253; also it is item #48 in group #9, which is found on pages 266 and 267.

Where the mineral appears in more than one group, it is because the range of the reported specific gravity falls within these groups. Minerals with a wide range of specific gravity may be members of several groups, as, for instance, gummite.

SPECIFIC GRAVITY

Its Determination. The specific gravity of a substance is its weight in air divided by the weight of a volume of water equal to the volume of the sample being tested. These weights need not be in any of the standard units, as it is not necessary to know the weight in grams or pounds. All that is required is that both weights be taken with the same units.

The specific gravity balance is one of the most useful simple instruments available to the mineralogist, prospector and mining engineer. It is easily constructed, gives quite accurate results and can be used for a number of purposes. It is only the lack of information as to the ease of specific gravity determinations and its many values that prevents it from being used a great deal more.

There are several types of apparatus by which the specific gravity may be determined. Among these are the **hydrometer**, **Jolly** and **beam** balances, the **pycnometer**, the **Berman** balance, the use of **heavy liquids**, and also any ordinary balance or scale.

The drawings show some of these pieces of apparatus in simple form. The construction and design have purposely been made simple and many refinements omitted in order to simplify the construction for those who wish to build their own equipment.

CHEMICAL ANALYSIS OF MINERALS

Probably the simplest method is the use of the **hydrometer**. Figure 1 shows a Beaumé hydrometer for light oils, equipped to take the specific gravity of solids. A pan made of very light material is slipped over the top of the stem and another one is attached to the bottom of the hydrometer. This lower pan must be heavy enough to make the hydrometer sink to the 0 on the scale in

FIG. 1. Hydrometer for Determination of Specific Gravity.

water at 39°F. This is the zero point. That is, with nothing in either pan the 0 on the scale in the stem must be exactly at the top of the water. A tall glass container, known as a hydrometer jar, is used to hold the water.

In taking the specific gravity with this piece of apparatus, a small sample of the mineral is placed in the top pan. This causes the hydrometer to sink part way. When it has come to rest and is floating freely in the water the reading at the top of the water is taken. We will presume this to be 10. The mineral sample is now taken from the upper pan and placed in the lower one, the hydrometer placed in the water, allowed to come to rest, and the reading at the top of the water again taken. This we will assume to be 8. From these two

INTRODUCTION

readings we can determine the specific gravity as follows: the first reading (10) less the second reading (8) leaves 2, which is the weight of the water equal to the volume of the sample in terms of the hydrometer units. This (2) divided into the first reading (10) gives 5, which is the specific gravity of the sample.

The hydrometer method is simple, quite accurate, and requires apparatus

FIG. 2. Jolly Balance.

that is easily carried. It is limited to small pieces of not over 2 grams which, however, may be an advantage, as small pure specimens are usually easier to obtain than larger ones. It has the disadvantage that at the present time it is not on the market. Arrangements had been made for their manufacture, but during the war this was suspended.

A simply constructed Jolly balance is shown in Fig. 2. All of the parts necessary to build this instrument, with the exception of the spring, can be purchased from the 5 & 10 cent stores. The spring is the essential part of this piece of apparatus and must have the property of expanding equally throughout its entire range without permanent distortion; that is, it must not be perma-

CHEMICAL ANALYSIS OF MINERALS

nently stretched or elongated by use. A satisfactory spring may be made on a lathe by winding a good grade of spring steel wire on a mandrel. The one shown in the cut is a spiral made of #6 piano wire and gives very satisfactory results.

Figure 3 is a drawing of a mandrel for making the coil spring. The mandrel is easily made on a lathe from a piece of cold rolled steel.

In making the spring, the end of a roll of #6 piano wire is passed through the small hole in the flange and is bent over so that it will hold during the winding. The small end of the mandrel is clamped in the lathe chuck and the other end is supported by the tail center. The wire is clamped between two pieces of hard

FIG. 3. Mandrel for Making Coil Spring.

wood, bakelite or other similar substance, in the tool post tight enough to put a high strain on the wire as it is wound on the mandrel. Steel piano wire must be drawn very tight in order to get a good winding job. Run the lathe very slowly and wind about one and one-half inches on the mandrel. A longer or shorter spring may be made if desired. When sufficient wire has been wound, run the lathe backwards for a time to relieve the high tension the coil is under before cutting the wire. If this is not done, the operator may be cut by the wire as it unwinds. After removing the spring from the mandrel, the bottom and top ends are bent at right angles for supports.

The stand of the balance is a skirt marker, used by women to mark the length of dresses, with the measuring stick "A" turned upside down so that it reads from top down. This is in inches and eighths, which causes some inconvenience, as the readings must be converted to eighths. A measure divided into inches and tenths or a meter stick is much better.

Three screw-eyes are placed on the back of the upright about 4" apart, the middle one being out of line so that when wire "B" is passed through them it binds and will remain wherever placed. The top of this wire is bent to form a hook or eye for holding spring "C." Two metal broom holders, fastened together, are used for slide "D," one fitting around the upright "A," the other being flattened out and projecting in front, under the spring. A silk thread is suspended from the bottom of the spring.

The operation of the apparatus is as follows: slide "D" is placed at the top so as to read 0, then wire "B" is raised until the bottom of spring "C" barely

INTRODUCTION

touches the top of the slide. A piece of mineral is tied on with the silk thread and allowed to hang freely from the bottom of the spring. The slide is lowered until it is just at the bottom of the spring, and the reading is taken, say $10\frac{5}{8}''$. A glass of water is now held so that the mineral is covered completely with water but does not touch the glass. The specimen will rise to a fixed point.

FIG. 4. Beam Balance, Set Up.

The slide is moved up to the bottom of the spring again, and a reading is taken, say $6\frac{1}{4}''$. As the measure is in inches and eighths, these readings must be converted to a common unit, in this case eighths, which gives 85 for the first reading and 50 for the second. Subtracting these we have 35. This divided into 85 gives 2.43 which is the specific gravity of the specimen.

This illustration shows the very simplest form, but many refinements may be made, such as using a pair of pans instead of the thread, a sliding support for holding the glass of water, a vernier for more accurate readings, and a specially wound spring which may be purchased from a chemical supply house.

The crudely constructed Jolly balance illustrated will give results accurate to 1/10. With refinements, one may easily be built to read accurately to 1/100.

The **beam** balance illustrated in Fig. 4 is probably the most generally useful of the various types, as a properly constructed one may be used for making weighings as well as the simple determination of specific gravity. Because of this, detail construction drawings are given in Figs. 4, 5, 6, 7, and 8.

The critical parts of this type of balance are the beam, which must be graduated accurately, and the type and location of the knife edges. These have been carefully worked out, and if the details of the drawings are followed a first class piece of equipment should result.

The drawings show the beam notched with 20 divisions to the inch. This was done on a metal shaper by setting it to move $1/20''$ to each stroke and

CHEMICAL ANALYSIS OF MINERALS

having the bit ground to 60° . If this is not available it is not absolutely necessary and the constructor may leave the top of the beam smooth, and using an engineer's scale accurately mark it on the side into inches and tenths. The beam may be made of almost any material, such as hard wood, aluminum, brass or iron, but must be of uniform thickness and weight.

The knife edges are made of a three cornered file with the serrations ground off and one edge very smooth. The supporting knife edge must be in exactly the right place, for if it is too low it will be below the center of gravity and the balance will be unstable, the beam tending to go either up or down and not balance. If too high, the sensitivity of the balance is greatly reduced.

FIG. 5. Beam Balance, Folded.

The knife edge carrying the pans is exactly three inches from the supporting knife edge; in other words, the reading "3" on the beam is the same distance from the supporting knife edge as the pan support, and the beam is graduated uniformly through its whole length. This makes it possible to take fairly accurate weighings by using a set of three riders weighing 30 grams, 3 grams and $3/10$ grams respectively. They are used as follows: with the scale in balance, if the 30 gram rider is placed on reading "1," it will balance 10 grams on the pan; if at "10," it will balance 100 grams. The same is true of the other riders, except that they read 1 gram and $1/10$ gram respectively. If, then, one wishes to weigh 23.27 grams, the large rider would be placed on reading "2," the medium rider on reading "3" and the small rider on reading "2 7/10." In making weighings as above both pans should be in air and not have one pan submerged in water as when taking specific gravity, or a special single pan may be used for weighings only.

To make these riders it is best to have standard weights for use on the pan. A standard 50 gram, 5 gram and $5/10$ gram weight will be sufficient. With the 50 gram weight on the pan, the large rider is made so that when it is hung at reading "5" on the beam it exactly balances; the other riders are made the same way, using the smaller weights. If it is not possible to obtain standard weights, then approximate ones may be made by measuring accurately 50 milliliters of distilled water at 39°F . into a container on the balanced scale.

INTRODUCTION

FIG. 6. Beam Balance, Drawing of Beam.

CHEMICAL ANALYSIS OF MINERALS

FIG. 7. Beam Balance, Drawing of Bottom Plan and Cover.

INTRODUCTION

FIG. 8. Beam Balance, Drawing of Accessories.

CHEMICAL ANALYSIS OF MINERALS

This will weigh 50 grams, for 1 milliliter of water at 39°F. weighs 1 gram. Due to the fact that it is difficult to measure accurately small volumes of water without special equipment, this method should not be used unless it is impossible to make riders using standard weights.

The riders of definite weight described above can be used for both weighings and specific gravity determinations, but for taking the specific gravity only they are not necessary, as anything may be used. The drawings show a set of common iron washers for this purpose. The operation using these is as follows: the cup is filled with water deep enough so that when the specimen is placed in the bottom pan it will be covered, but the water must not reach the top pan. With the pans hanging freely in the water, rider "A" is placed so that the beam is in balance. *This rider must not be disturbed or moved during the weighings.* The specimen is placed on the upper pan and rider "C" is placed so that the beam is again in balance, and the reading is taken, say 8. This is the weight in air. The specimen is now removed from the top pan and placed in the lower one, where it is covered with water. Rider "C" is again placed so that the beam is again in balance and the reading is taken, say 6. This is the weight in water. The specific gravity is calculated by the formula:

$$\text{Sp. Gr.} = \frac{(\text{weight in air})}{(\text{weight in air}) - (\text{weight in water})}.$$

Substituting the above readings we have:

$$\text{Sp. Gr.} = \frac{8}{8 - 6} = \frac{8}{2} = 4.$$

Relatively small samples may be used satisfactorily by adjusting the weight of the rider to give readings near the end of the beam. This balance may be improved in sensitivity and accuracy by making the knife edges and supports of agate, enclosing it so as not to be affected by air currents, etc.

The **pycnometer** method is not used much by amateurs, as it requires special equipment and a very accurate balance. It is used to some extent by analytical laboratories on very small samples, where great accuracy is desired. With this method, the pycnometer is first weighed empty (weight "A," say 5.0 grams). The particles of mineral are then introduced into the pycnometer and another weighing (weight "B," say 5.2 grams) is made. The difference between these weights is the weight of the sample. The pycnometer is then filled with water and weighed again (weight "C," say 10.15 grams), care being taken that all air bubbles are removed from the mineral. This may require boiling. If this is done the apparatus must be cooled before weighing. All water and mineral are then removed from the pycnometer and it is refilled with

INTRODUCTION

water and weighed again (weight "D," say 10.00 grams). The specific gravity of the sample is calculated as follows:

$$\text{Sp. Gr.} = \frac{(B - A)}{D + (B - A) - C}.$$

Substituting, we have:

$$\frac{(5.2 - 5.0)}{10.0 + (5.2 - 5.0) - 10.15} = \frac{.20}{.05} = 4.$$

The **Berman density** balance is a torsion micro-balance developed by the late Dr. Harry Berman of Harvard University. It has great accuracy and is designed to handle very small samples. The capacity is 5 to 75 milligrams and the sensitivity is such that a vernier scale will read to 0.000001 gram. The specific gravity is determined in the same manner as with the beam balance, using the two pan system and weighing in air and in liquid. Toluene is recommended instead of water for submersion of the specimen, as the surface tension is only $\frac{1}{3}$ that of water, the ratio being 29 to 73. By using a 25 milligram sample, the balance is accurate to 0.2% and a determination can be made in about five minutes, the results checking very closely with the theoretical.

With the **heavy liquid** method, methylene iodide (CH_2I_2), Braun's solution, with a specific gravity of 3.3, may be mixed with benzol, specific gravity 0.98, for intermediate gravities or potassium mercuric iodide (KI,HgI), Thoulet's solution, with a specific gravity of 3.19 may be mixed with water. Other heavy liquids are Klein's, borotungstate of cadmium, Clerici's thallium formate and malonate and silver thallium nitrate. The procedure with these liquids is to make dilutions until the particles of mineral neither sink nor float, then determine the specific gravity of the liquid with a Westfall balance or pycnometer, or a definite volume of the liquid may be measured out and weighed.

As potassium mercuric iodide is a strong irritant poison producing painful blisters, and some of the other heavy liquids such as silver thallium nitrates, specific gravity 4.5, are very poisonous, and since special equipment must be used to determine the specific gravity of the liquid after the test, this method is used only for special samples such as gems and minute particles. A commercial system has been developed, however, using this principle, by which the lighter materials may be separated, as, for instance, coal may be freed of slate and rock.

An **ordinary spring scale** such as is used around the home, may be used on fairly large pieces by hanging the piece by a string to the scale in the same way as described under the Jolly balance, taking the weight in air, say 1 pound 4 ounces, then lowering it in a bucket of water and reading the weight, say

CHEMICAL ANALYSIS OF MINERALS

15 ounces. These readings must be converted to ounces, which gives 20 for the first reading and 15 for the second. These subtracted give 5, which divided into the first reading (20) gives 4 as the specific gravity of the sample.

All the above descriptions and directions have been given using water for the submersion of the sample. However, some minerals are soluble in water and therefore some other liquid must be used. Toluene, also known as toluol, gives excellent results. In fact, much more accurate results are obtained by using toluene instead of water on *all* substances, as the surface tension of toluene is much lower than that of water and thus does not have the restraining action or damping effect on the balance. If it is used, however, the results obtained must be corrected; since the specific gravity of toluene is 0.866 at 68°F. the results obtained will be high, and it is necessary to multiply the result by the specific gravity of the liquid (0.866) to obtain the correct specific gravity of the sample.

Sometimes it is desired to determine the specific gravity of sand, gravel, ground mineral, concentrates, etc. This can be done by weighing out a sample and placing it in a graduated container and determining the volume in milliliters displaced by it. For instance, if a sample of sand or concentrate weighed 10 grams and on placing it in a burette containing water it raised the liquid level 2 milliliters, the volume of the sample would be 2 milliliters, and since 1 milliliter weighs 1 gram, the weight of the water displaced weighs 2 grams. This divided into the weight of the sample (10) gives 5 as the specific gravity. In this determination, care must be used to see that all air is removed from the sample grains, or the volume recorded will be erroneous and an incorrect result will be obtained.

Uses of Specific Gravity. Specific gravity and the difference in specific gravity of various minerals and substances are used in a number of ways by mineralogists, mining engineers and in the arts.

One of the important uses is assisting in the *identification of minerals*. The specific gravity is one of the most constant of the physical properties of minerals and a classification based on it is one of the very few that can satisfactorily include all the minerals. In the tables of this book the minerals are divided into 13 specific gravity groups and in each group they are arranged according to their decreasing hardness.

In identifying a mineral by this method, the specific gravity is first determined, throwing the mineral into one or more of these groups, thus eliminating all minerals in the other groups. The hardness is next found and, by running down the table to this hardness, it is seen that the specimen must be one of a few minerals, as *all known minerals of that specific gravity and hardness are found together in that group*. By a comparison of the other properties, such as fusibility, solubility in hydrochloric acid, color, streak, luster, cleavage, fracture, crystal system and index of refraction, which are all conveniently listed across the page, the identification can usually be made. Simple

INTRODUCTION

blowpipe and chemical tests and the chemical composition are also given and may be used if necessary.

Most of the more common minerals and many of the rarer ones can be identified by this method, but one should not get the mistaken impression that absolutely all minerals can be identified by their physical properties or even by qualitative analysis, for some of them vary from each other by only slight differences in chemical composition, index of refraction, etc. Where this is the case, complete equipment for quantitative analysis and the determination of the optical properties and molecular structure is necessary.

In using the table, one should bear in mind that the specific gravity and other data are on the *pure minerals* and that the specimen under investigation should be observed for uniformity of texture, etc., to make sure it is not a mixture. It must also be remembered that although the specimen may be a crystal there is the possibility that it may be altered somewhat or may not be absolutely pure, with the result that its specific gravity and other properties may vary slightly from those of the pure mineral. For this reason it is always well to compare the groups immediately before and after the one into which the mineral falls.

Another important use of specific gravity is in the determination of the *percentage composition* of an ore or mixture of two minerals. With an ore, the procedure is as follows:

Assume, for example, that the ore in question is a sulfide carried in quartz as the gangue mineral. To arrive at the percentage of sulfide we must know three things, namely, the specific gravity of the sulfide, or concentrate (X), of the gangue (Y), and of the ore (Z). These can be determined by one of the methods already described. If we let X , Y and Z represent these gravities, then the percentage of the heavier mineral (sulfide) in the ore is found by the formula:

$$\text{Percentage by weight of the heavier mineral} = \frac{100 \times X \times (Z - Y)}{Z \times (X - Y)}.$$

As a concrete example, take a sample of "picture rock" gold quartz, similar to one that most mineralogists have (or wish they had) in their collections, and determine the gold content.

The specific gravity of the gold is taken as 18.00 (X).

The specific gravity of the quartz is taken as 2.65 (Y).

The specific gravity of the ore is taken as 4.65 (Z).

Substituting in the above equation we have:

$$\begin{aligned}\frac{100 \times 18.00 \times (4.65 - 2.65)}{4.65 \times (18.00 - 2.65)} &= \frac{100 \times 18.00 \times 2}{4.65 \times 15.35} = \frac{3600}{71.38} \\ &= 50.43\% \text{ gold by weight.}\end{aligned}$$

CHEMICAL ANALYSIS OF MINERALS

The percentage composition of any other mixture of two minerals or substances is determined in the same manner.

The same determination can also be made by using the formula $W = VD$, i.e., $V = W/D$, where W is the weight, V the volume in milliliters and D the density or specific gravity. This method is more complicated and requires the use of weights. The following is an example, the ore consisting of gold-bearing pyrite in rock.

The specific gravity of the pyrite is 5.

The specific gravity of the rock is 3.

The specific gravity of the ore is 4.

The weight of the sample is 100 grams.

Let X be the weight of the pyrite in grams.

Let Y be the weight of the rock in grams.

Then $X + Y = 100$ grams (weight of the sample).

From the formula $V = W/D$ we find the volume of each thus: $X/5$, $Y/3$ and $100/4$. From these we derive the equation: $X/5 + Y/3 = 100/4 = 25$. Clearing fractions, we have:

$$3X + 5Y = 25(3 \times 5) = 375.$$

Solving for X in the two equations, we have:

$$\begin{array}{rcl} 5X + 5Y & = & 500 \\ 3X + 5Y & = & 375 \\ \hline 2X & = & 125 \\ X & = & 62.5 \end{array}$$

The ore contains 62.5 grams of pyrite in the 100 gram sample, which is 62.5% by weight and a ton contains 1250 pounds.

Another use for the difference in specific gravity is utilized in **panning**. Panning is usually thought of in connection with gold, but any heavy material may be separated from a lighter one by this method. In carrying out a separation, a gold pan or other flat container is filled with the gravel or crushed ore and thoroughly wet with water by stirring and mixing. All large rock is washed and discarded. The pan is then submerged in water and given a rotary motion with a sidewise movement to agitate the contents and loosen them so that the heavier particles will settle to the bottom. After shaking for a short time the very top of the contents of the pan will be freed of the heavier substance and by a little more violent motion the water is made to wash some of this top material over the side of the pan; or one may scrape the top off by hand or dip the pan under water, then raise it out, allowing the water to run off one side, thus carrying the top away. After this removal the pan is again submerged, rotated and shaken to allow the heavier parts to settle further,

INTRODUCTION

and the top is again washed off. This cycle is repeated until nothing but the heavier material remains in the pan. When most of the lighter material has been removed it is better to transfer it to a smaller pan and, when near the end, to use a still smaller one for the final separation. By using 16", 12" and 6" pans, excellent separations can be made with a little practice.

If water is not available, as is often the case in the desert, the separation may be made by **dry panning**. This is carried out in much the same way, except that the lighter material must be removed by blowing with the mouth or pouring from one pan to another and allowing the wind to carry it away.

Still another method of separation is achieved by **jigging**. Jigging uses the same principle as panning, but the operation is different. Using this method, the gravel, sand or crushed ore is placed in a sieve, pan, or box with a fine screen bottom. This is submerged in a tub or basin of water and is raised and lowered with enough force to cause the water to flow first upward then down through the sand or ore. This loosens it and with each succeeding cycle the heavier particles move toward the bottom and are finally concentrated on the screen. After allowing to drain, a board is placed over the top and the entire apparatus is quickly turned upside down. By tapping the screen, all of the material is loosened from it and deposited on the board, and on removal of the screen or sieve the concentrate will be found on top and may be taken off with a knife or spatula. Some of the fines will have passed through the screen and these must be examined separately, possibly by panning.

These are only a few of the many uses to which specific gravity and the difference in specific gravity may be put by the mineralogist and mining engineer. In mining and ore dressing many of the methods and much equipment for separation and concentration, such as jiggs, concentrating tables, and gravity settlers, depend on specific gravity for their success. Nature is continually making use of it and it is only through the sorting action of water that we have our placer deposits of gold, tin, black sands, and many of the important deposits of minerals and gems.

HARDNESS

By hardness is meant the resistance of a mineral to abrasion. Mohs' scale is generally used for the measurement of this property, utilizing the numbers 1 to 10 to designate the various degrees of hardness. A number of common articles greatly assist in this determination. These are included with the typical minerals used as the standards listed below.

1. **Talc:** easily scratched by the finger nail.
2. **Gypsum:** scratched with difficulty by the finger nail. Will not scratch a copper coin.

Finger nail: will scratch gypsum; will not scratch calcite. Hardness about 2.5.

CHEMICAL ANALYSIS OF MINERALS

3. **Calcite:** scratches copper and is scratched by copper. Not scratched by the finger nail.

Copper: scratches calcite; will not scratch fluorite. Hardness about 3.

4. **Fluorite:** does not scratch apatite or glass. Scratches copper.

5. **Apatite:** scratches glass with difficulty and is scratched by glass with difficulty.

Glass: scratches apatite but does not scratch feldspar. Hardness about 5-5.5.

6. **Feldspar** (orthoclase): scratches glass easily; scratched with difficulty by a knife blade.

Knife blade: will scratch feldspar; will not scratch quartz. Hardness 5.5-6.

7. **Quartz:** not scratched by a knife blade; scratched with difficulty by a file.

File: will scratch quartz with difficulty; will not scratch topaz. Hardness about 7.

8. **Topaz:** will scratch quartz; will not scratch corundum; is scratched by corundum.

9. **Corundum:** will scratch topaz; will scratch silicon carbide with difficulty and is scratched by silicon carbide with difficulty.

Silicon carbide: will scratch corundum; will not scratch diamond. Hardness about 9.

10. **Diamond:** not scratched by any known substance; will scratch all other substances.

The determination of the hardness is best made by scratching the sample with a knife blade to arrive at its approximate hardness and then determined exactly by means of the test minerals. With a little practice, hardness of 5 and below can usually be determined quite well with the knife blade only.

If a sample scratches feldspar and in turn is scratched by feldspar, they both have the same hardness, which is 6. If, however, it will not scratch feldspar but will scratch apatite and is not scratched by apatite, it has a hardness of 5.5.

In making the test, care must be taken to be sure the scratch is a distinct groove and not merely a chalk mark.

On some of the minerals the hardness of the different faces varies and so must be taken into account. The hardest face is taken as the hardness of the mineral.

FUSIBILITY

The ease with which minerals melt in a flame is designated by the numbers 1 to 7. Typical minerals and their approximate fusion points are given below:

1. **Stibnite:** fuses easily in the luminous flame, in a closed tube and in a match or candle flame; about 525°C. (977°F.).

INTRODUCTION

2. **Chalcopyrite:** fuses easily in the blowpipe flame but with difficulty in the luminous flame or closed tube; about 800°C. (1472°F.).

3. **Almandite:** fuses easily in the blowpipe flame but is not fused in the closed tube or luminous flame. Finest splinters only rounded on the point in the gas flame; about 1050°C. (1922°F.).

4. **Actinolite:** thin edges fuse easily in the blowpipe flame but larger masses are difficult to fuse; about 1200°C. (2192°F.).

5. **Orthoclase:** fuses on the edges with difficulty in the blowpipe flame; larger masses are not fused, only rounded; about 1300°C. (2372°F.).

6. **Enstatite: Bronzite:** fused and rounded only on the thinnest edges and points of small pieces; about 1400°C. (2552°F.).

7. **Quartz:** infusible even on the thinnest edges and points of small pieces; over 1400°C. (2552°F.).

In using this scale, the hottest or oxidizing flame is used and the thinnest possible splinter of the mineral is tested. These should be held in the tip of the forceps or tweezers, so as to conduct away as little heat as possible. If the sample decrepitates so that splinters can not be used, it should be ground to a powder, mixed with a little water to form a paste, spread in a thin layer on charcoal and heated slowly then strongly until it forms a thin coherent mass that can be held in the forceps and tested in the oxidizing flame.

If a substance fuses easily in the blowpipe flame, but is infusible in the luminous flame or closed tube, it is said to have a fusibility of 3; if it is barely affected by the luminous flame it has a fusibility of 2.5.

APPROXIMATE MELTING POINT OF VARIOUS METALS

Metal	°C.	°F.	Metal	°C.	°F.
Mercury	-39	-38.2	Gold	1063	1945.6
Tin	232	449.6	Copper	1083	1981.4
Bismuth	271	519.8	Nickel	1455	2651.0
Cadmium	321	609.8	Cobalt	1480	2696.0
Lead	327	620.6	Iron	1535	2795.0
Zinc	419	786.2	Platinum	1774	3225.2
Antimony	630	1166.0	Molybdenum	2520	4568.0
Magnesium	650	1202.0	Tungsten	3370	6130.0
Aluminum	660	1220.0	(Approximate limit of blowpipe flame, 1500°C.)		
Silver	961	1761.8			

SOLUBILITY IN HYDROCHLORIC ACID

In the column headed HCl is recorded whether the mineral is soluble or insoluble in the acid and also its general reactions.

CHEMICAL ANALYSIS OF MINERALS

Sol., indicates that it is completely soluble.

Pt. Sol., indicates that it is partially soluble or soluble with difficulty.

Gelat., indicates that the mineral is decomposed with the formation of a gelatinous precipitate of silica.

Dcpd., indicates that the mineral is soluble with decomposition, such as evolution of gas.

Ins., indicates that the mineral is insoluble in either hot or cold acid.

In making the test, place a small piece of the specimen in a test tube and add diluted HCl. Note whether there is any reaction, such as effervescence; if there is an odor, such as chlorine or bromine; whether the rate of solution is slow or rapid; the color of the liquid, etc. If there is no reaction or only a very slight one, heat gently and observe the results. If no solution or reactions occur, repeat, using concentrated HCl.

COLOR

The color of some minerals often varies a great deal, as, for instance, that of scheelite. In these cases the various colors are covered as completely as possible in the tables. A great many, however, have distinctive colors which are excellent guides to their identity. A good example of this class is azurite. The color listed in the tables is of the unweathered material, but the general appearance must also be taken into consideration.

STREAK

The powder of a mineral often has a color which is different from that of the solid, which aids greatly in its identification. This color is called the streak and may be obtained by noting the color of the ground mineral, by scratching the surface or by drawing the specimen over a piece of unglazed porcelain known as a **streak plate**. This leaves a streak or chalk-like mark of the mineral powder. An example of the value of the streak is found with the mineral hematite, which may be steel gray, red or black in color but in which the streak is always red or brownish-red.

LUSTER

The luster of minerals depends on their ability to reflect light and is a valuable aid in their identification. The designations for luster, with the symbols as used in the tables, are as follows:

Metallic, M: looks like metal; as galena.

Sub-Metallic, Sm: not so brightly metallic in appearance.

Adamantine, A: appears hard and brilliant; as diamond.

Sub-Adamantine, Sa: not as brilliant as adamantine.

Vitreous, V: looks like glass; as quartz.

Sub-Vitreous, Sv: not as glassy appearing as vitreous.

INTRODUCTION

Resinous, R: looks like resin; as sphalerite, often called "rosin jack."

Pearly, P: Iridescent like the inside of a sea shell.

Greasy, G: appears to be covered with a thin film of grease or oil.

Silky, S: looks as though made of silk threads.

Dull, D, and **Earthy**, E: are degrees of luster and are usually applied to such substances as kaoline, chalk and clay.

CLEAVAGE

Cleavage is the tendency of a mineral to break parallel to certain planes. The type recorded in the tables occurs on at least one of the faces and is the best that is found on any of them. The different types of cleavage and their designations as used in the tables are as follows:

Eminent, E: is applied only to such cleavage as is obtained with the micas.

Perfect, Perf: is obtained very easily, as in calcite.

Distinct, Dist. or **Good**: is obtained readily but not as easily as Perfect. Arsenopyrite is an example.

Imperfect, Imperf. or **Fair**: are more difficult to obtain than Distinct. Pyrrhotite is an example.

Difficult, Diff. or **Poor**: are obtained with difficulty and are usually evident only in traces, as in bornite.

FRACTURE

The fracture is the type of surface obtained by breaking other than along a cleavage plane. Under this heading in the tables will be found the fracture characteristics in most cases, but as this is not reported in many minerals, other descriptive properties, such as brittle, granular, fibrous, etc., are also included in this column.

The designations for fracture and the abbreviations as used in the tables are as follows:

Conchoidal, Conch: the surfaces are curved like the inside of a shell, as in quartz and glass.

Sub-Conchoidal, Subconch: somewhat curved but not as distinctly as conchoidal, as in wulfenite and argentite.

Even: the break is smooth and quite flat, as in galena.

Uneven: the surfaces are even for only small spaces, as in arsenopyrite.

Hackley: the surface is pointed and rough, as in silver and copper.

Splintery: breaks into splinters and fibers, as in jadeite.

Earthy: breaks to pieces, as dirt or clay.

CRYSTAL SYSTEMS

All crystalline substances form solids with definite molecular arrangements. The minerals crystallize from vapors, water solutions and fusions and, if these

CHEMICAL ANALYSIS OF MINERALS

processes continue unhindered, bodies form with faces having definite relationships to one another and to hypothetical lines known as *axes*. The number of these and their relationship to each other is the basis of the crystal systems which are divided into six main subdivisions, depending on the number, length and inclination of these axes. They are the **isometric**, **tetragonal**, **hexagonal**, **orthorhombic**, **monoclinic**, and **triclinic**. These are further divided into a total of thirty-two sub-groups. The distinguishing characteristics of each group are as follows:

The **Isometric** system has three axes of equal length intersecting one another at right angles. Examples: galena, garnet.

The **Tetragonal** system has three axes intersecting one another at right angles. Two, which are of equal length, are considered the lateral axes; the third is the vertical axis and may be either longer or shorter than the other two. Examples: zircon, rutile.

The **Hexagonal** system has four axes. The three lateral ones are equal, intersect one another at 60° , and are at right angles to the vertical axis, which is of a different length. Examples: quartz, beryl.

The **Orthorhombic** system has three axes intersecting one another at right angles, but no two are the same length. Examples: sulfur, barite.

The **Monoclinic** system has three axes. The vertical one and one lateral axis (the one running from the front to the back) are oblique to each other, but the transverse lateral axis is at right angles to both the others. Examples: gypsum, orthoclase.

The **Triclinic** system has three axes, all oblique to one another. Crystals of this system are symmetrical to a central point only. Examples: chalcanthite, albite.

The field of crystallography is a study of its own and cannot be covered here. For further information consult any good textbook on the subject.

INDEX OF REFRACTION

The index of refraction for a substance is the ratio of the velocity of light in a vacuum to its velocity in the substance. It is a function of the substance and the light source and is a constant.

The minerals are divided into the following three general classes: The **Isotropic** group, which has only one value (n) for the index of refraction. This group includes those minerals which crystallize in the isometric system and the amorphous substances. The **Uniaxial** group, which has two values (ω , α and ϵ). This group includes minerals of the hexagonal and tetragonal systems. The **Biaxial** group, which has three values (α , β , and γ). This group includes the minerals which crystallize in the orthorhombic, monoclinic, and triclinic systems.

The index of refraction given in the table is " n " for the isotropic group, ω for the uniaxial group and β for the biaxial group. In those cases where there was a variation in the reported value the \pm was added.

CHAPTER II

Ultra-Violet Light in Mineral Fluorochemistry*

Ultra-violet rays, also known as "black light," have found a very definite place in the mineral sciences during the past several years. The branch of science which treats of the relationships between ultra-violet and other kinds of radiation and minerals is known as mineral fluorochemistry. Theoretical and academic interest along this line began to develop before the turn of the century. However, this branch of knowledge has only recently been widely recognized as of the greatest importance in almost every type of earth science.

Ultra-violet rays cause certain minerals to glow or release their own light — a phenomenon called fluorescence — and this emission of "cold light" has proven of decided value in the detection and identification of many minerals and ores. Though there are limitations in the use of ultra-violet light, as only a few important, economic minerals fluoresce, the simplicity and expediency of this agent have demonstrated that a fluorescence test is essential in all prospecting as well as in mining, sorting, grading and milling of certain ores. Its greatest usefulness is in the identification of scheelite, zircon, hydrozincite, willemite, mercury and petroleum. Other minerals which may or may not fluoresce are agate, aragonite, barite, benitoite, calcite, chalcedony, colemanite, fluorite, hyalite, semi-opal, powellite, selenite, sphalerite, wernerite, etc.

There are many instances of undiscovered values in mining properties that have been worked for certain ores, such as gold and silver, and the rock which did not carry the gold and silver values was thrown on the dump. In a number of cases the supposedly worthless rock has been proven to contain greater values in scheelite, an ore of tungsten, than the gold values actually contained in the ore which was milled.

In the Chuckawalla Mountains near the Imperial Valley of California, some miners tunneled into the side of a mountain for 350 feet. The gold values did not prove profitable and the property was abandoned. During the rush for new tungsten deposits, which occurred during the war, the dump at this property was examined by a prospector with an ultra-violet lamp. He found a section which contained many specimens of high grade scheelite. Inside the tunnel he found that an 8 foot vein, which carried from 1 to 2% of scheelite, had been cut 105 feet from the entrance. Further investigation disclosed that

*Written by Thomas S. Warren, president of Ultra-Violet Products, Inc., Los Angeles, Calif. The plates used in illustrating this chapter were furnished through the courtesy of that company.

CHEMICAL ANALYSIS OF MINERALS

the vein reached the surface above the tunnel. Possession of the property was secured and profitable operations commenced.

There is another story of a man who brought in a truck load of attractive rock from the desert for garden decoration. Several years after the rock had been installed in his garden he examined them with ultra-violet light and found they contained profitable percentages of scheelite. He immediately retraced his steps to the location from which the rock came and laid out his claims.

The largest producer of tungsten in the United States during the war was the Yellow Pine Mine in Idaho. This property has been worked for gold, and vanadium and further development was being investigated by the U. S. Geological Survey. It was while extensive core drilling was going on that scheelite was discovered by fluorescent analysis of the cores. Further work by means of core drilling disclosed a tremendous ore body and this was developed into the big producer.

In Montana there is the record of a mine which was a marginal producer of copper. A U. S. Government engineer was investigating the property and as a matter of routine inspection used an ultra-violet lamp for examination of the walls of the various tunnels. He unexpectedly discovered scheelite in several veins which had been cut. This information was given to the owner and a profitable tungsten producer was developed.

A great many other properties have been opened up in the United States after prospecting with an ultra-violet lamp. The listing of such properties would be very extensive. The more important locations include those near Essex, California; Beaver, Utah; Shoshoni, Wyoming; Winnemucca, Nevada; and the Fresno-Porterville section of the Sierra Nevada Mountains in California.

SOURCES OF ULTRA-VIOLET RADIATION

One natural source of ultra-violet rays is sunlight. Ultra-violet rays are invisible and are shorter than the visible ones. When the sun's rays are passed through a quartz prism, the white light is separated into the various colors of the spectrum: red, orange, yellow, green, blue, violet and indigo. There are rays still longer than the red, which are invisible, and are the wave lengths responsible for heat effects. They are termed "infra-red" rays. At the other end of the visible spectrum are the invisible "ultra-violet" rays. They are "cold" (have no appreciable heating effect) and have a chemical action (actinic effect) on the cells of the body. They form Vitamin D and create tan.

The wave lengths of light rays are not measured in yards, feet or inches, but by a very small unit of measurement known as the Angstrom Unit, which is about four billionths of an inch. This unit is not one of intensity or amount, but is a measurement of the wave length; and the wave length determines the nature and effects of the radiation. The infra-red rays of the sun lie between 25000 and 8000 Angstrom units. The visible rays are between 8000 and 4000

ULTRA-VIOLET LIGHT IN MINERAL FLUOROCHEMISTRY

Angstrom units in length. The ultra-violet rays are between 4000 and 3000 Angstrom units. The rays at 8000 Angstrom units have a red color; longer ones are invisible. Rays at 4000 Angstrom units are violet and shorter ones are invisible. Rays at 3000 Angstrom units are chemically active. They also excite a fluorescent effect on some minerals. They are called the "long" ultra-violet rays. The "short" ultra-violet rays are not found in sunlight which reaches the earth, but can be produced only from artificial sources such as the quartz lamps which emit short, energetic rays located at about 2500 Angstrom units. They form vitamin D, cause sunburn, kill bacteria and excite fluorescence in a wide range of minerals. It is this ability of short ultra-violet rays to create fluorescence which makes them so valuable in the mining industry.

There are several sources of ultra-violet radiations. The quartz lamp equipped with a special filter, which screens out the visible light and permits transmission of the short rays, the iron arc, the germicidal lamps, and some others.

Some prospectors have attempted to construct an ultra-violet lamp from an ordinary flashlight by using a special filter in front of the bulb. While this filter may be successful in screening out visible radiations, it does not produce the short waves necessary for the detection of certain important minerals. The result is the complete inability to fluoresce the minerals for which search is being made. The long ultra-violet rays will not cause fluorescence of any mineral of commercial importance, except certain uranium ores and petroleum.

Figure 9 shows the wave length range for the cold quartz, black light lamp. Inside the quartz tube there is a mixture of the rare gases argon, helium and neon. A small drop of mercury is also added. When the gas is ionized by an electric discharge, the mercury radiations at 2540 Angstrom units greatly predominate over all other wave lengths. Actually 89.8% of the total emission is located at this particular wave band. It is this high efficiency in the short ultra-violet wave length region which accounts for the ability of the quartz

FIG. 9. Ultra-Violet Wave Length, Graph.

CHEMICAL ANALYSIS OF MINERALS

lamp to produce fluorescence of scheelite and other valuable ores. The Mazda lamp bulbs and many other sources do not produce ultra-violet wave lengths short enough to be effective for the fluorescent analysis of minerals. It is, therefore, easy to understand that even with the filter placed in front of such lamps the results are negative, since the filter does not generate the correct wave length but only screens out conflicting visible light. In general it may be said that a filter is only as good as the light source it is designed to be employed upon. Hence, a filter which passes short wave lengths is useless if the lamp to which it is attached does not create the short waves.

There are two bulb types of lamps which produce a fluorescent effect on certain minerals. These are the Argon bulb and the so-called 50-hour black light lamp. The ultra-violet radiations from these are of the long wave length type which cause the fluorescence of a few minerals. The use of the home made flashlight with filter or either of the bulbs is ineffective when searching for economic minerals. Those using these wave lengths will find them of no value at all in the search for tungsten ore. Their value lies only in the fluorescence of such non-commercial minerals as werncrite, dakeite, curtisite, a few semi-opals, calcites and some willemites.

The wave lengths of the ultra-violet radiations emitted by the spark between iron electrodes lies between 4270 and 2100 Angstrom units. Scheelite will fluoresce brilliantly under light from this source, but for best results a filter is required to shut out the large amount of visible light.

FLUORESCENCE AND PHOSPHORESCENCE

Ultra-violet and other forms of light are ordinarily thought of as a continuous stream of energy. The undulatory characteristic, which the mind usually associates with light, has another attribute which must be considered before a true explanation of fluorescence can be developed. This other property is the real connecting link between all forms of light energy and the manner in which atoms capture or absorb, and give out or emit energy. It is known that light energy can be absorbed or emitted only in small though discrete packets called quanta; not, however, as a continuous and unbroken stream of light waves, as is commonly believed. These packets, or quanta, exhibit the properties of a wave, hence the convenient method of measuring them by their wave length.

All minerals, like all other matter, are composed of atoms, each of which consists of a core with one or more electrons revolving about it, as in a miniature solar system. The electrons are particles having a negative charge. The core or nucleus, which is made up of one or more heavier particles, has a positive charge. Ultra-violet quanta entering this atom strike in some instances the cloud of electrons, and the packets of light energy are taken up by the individual electrons. Those which take up this energy of the light quanta have their total energy content increased and jump outward from their normal

ULTRA-VIOLET LIGHT IN MINERAL FLUOROCHEMISTRY

orbits. Usually they remain away for only a minute fraction of a second and then release their excess, previously captured energy and return to their normal state.

The act of capturing quanta of light energy by electrons is called excitation. In this case the ultra-violet light is the excitant. The act of releasing quanta is called luminescence, or light emission. When the release of packets of energy occurs immediately after they have been taken up or absorbed, the luminescence is known as fluorescence. In fluorescence, the glow or light emission takes place only as long as the ultra-violet light is on the mineral and ceases as soon as the lamp is shut off. If the electrons have taken up much energy and have been driven completely away from the parent atom, they may wander about for considerable periods of time before dropping into the normal orbit of some atom, not necessarily their own, and may in addition be subject to a number of other influences peculiar to the matter itself. Wandering electrons, however, eventually drop back into their normal energy state, releasing energy as light. This is called phosphorescence, for it is a light release which goes on for some time after the ultra-violet light has been removed.

The cause of fluorescence in many minerals is due to some impurity. For instance, most forms of calcite do not fluoresce, but if a small amount of manganese is present it will serve as an activator and cause the calcite to fluoresce red. The hue and brilliance of the color will vary with the percentage of the manganese present. The calcite from Franklin, New Jersey will fluoresce red when amounts of manganese are present, varying from 1 to 5%, with 3.5% giving the most brilliant result. More or less does not act as an activator and there is no decided fluorescence. Uranium salts in various rocks will have the effect of an activator, but in such cases the fluorescence will be green or yellow-green.

There are many instances where it is difficult to determine the cause of mineral fluorescence. Not all activators have been identified. In some cases the fluorescence may be due to a variable molecular arrangement or peculiar crystallinity. The entire subject of mineral fluorescence is so new that in only a few cases are the reasons for the response to ultra-violet light fully understood. A mineral may be listed as fluorescent, while actually the fluorescent part may be only a coating of a fluorescent nature, or a responsive mineral may be present as a mixture or disseminated inclusions through the mass. Mineral species from one locality may fluoresce, while identical ones from another locality may not. Variations may also appear in minerals from the same locality. General characteristics, however, usually remain the same.

PROSPECTING AND MINING

Scheelite. As scheelite may vary considerably in color, and may be white, gray, yellow, green, orange, reddish or brown, in ordinary white light it is very

CHEMICAL ANALYSIS OF MINERALS

difficult to distinguish from certain gangue minerals such as quartz, epidote, carbonates and some lime silicates. Under the influence of the shorter wave lengths of ultra-violet light all scheelite will fluoresce. Without the help of the ultra-violet lamp it is extremely difficult to locate because of the wide variety of rock in which it occurs. This is illustrated in plates 1 and 2. Ordinarily it is found close to a limestone-granite contact, but because it is so similar in appearance to the rock in which it may be found every type of ore should be carefully examined with a lamp.

The fluorescent colors which indicate the presence of scheelite are blue, blue-white, cream and golden yellow, as shown in plates 3, 4, and 5. The pure form fluoresces a bright blue, plate 6. The crystals are hard and the edges well defined. The appearance of the ore in daylight may be white or orange-gray, but the blue-white color under ultra-violet light indicates the lack of impurities.

Scheelite usually forms in small crystals disseminated through the rock. These vary in size from that of a pin head to a silver dollar. Sometimes it forms in solid veins, stringers or chunks, but the small disseminated spots are the most common, as shown in plate 7. Some types fluoresce a white color. This ore contains a very small amount of molybdenum, and if the fluorescent areas are hard and well defined the ore can usually be considered of good commercial quality. If the crystals are soft and can be powdered with the fingernail, it usually indicates a high percentage of lime and the assay for tungsten will probably be low.

The golden yellow fluorescence is a definite indication of some impurity. Usually this is molybdenum, but it may be copper (cupro-scheelite), iron, manganese or other elements. The combination of calcium tungstate and calcium molybdate is most frequently found. This ore contains Powellite and may or may not have commercial value. If calcium tungstate predominates, the crystals will be hard, with well defined edges and apparent depth. If the fluorescent spots smear upon rubbing or powder under the pressure of the thumb nail or are more of a coating than well defined crystals, it is likely that the amount of tungsten present is small or lacking. All scheelite which fluoresces yellow should be checked by assay much more carefully than that which is blue or blue-white. A great many profitable mines are operating on golden yellow scheelite because the amount of the impurity is small, but the yellow color does indicate an impurity which must be carefully checked and analyzed before development of the property.

The U. S. Geological Survey has developed a scheelite fluorescence analyzer card by which it is possible to determine the percentage of molybdenum on a comparative basis with known samples. This card, Fig. 10 provides a simple and relatively accurate means of making this determination. They are manufactured and sold under a licensing agreement.

Occasionally a form of calcium carbonate will fluoresce a blue-white and

Overlooked in ore examined under ordinary light, crystals of valuable scheelite . . .

PLATE 1

fluoresce clearly, distinctly and brilliantly under ultra-violet rays.

PLATE 2

Crystals of calcium tungstate. Yellow indicates impurities. (California and Nevada.)

PLATE 3

These rocks illustrate large Scheelite crystal formations in characteristic colors. (Montana, Idaho, California.)

PLATE 4

Color variations may appear in individual crystals of Scheelite as illustrated below. (Drum Valley, California.)

PLATE 5

Excellent example of large blue-white Scheelite crystals. (Little McGee Creek, Bishop, California.)

PLATE 6

This specimen shows the most common appearance of Scheelite -- small, evenly disseminated crystals. (Nevada.)

PLATE 7

Willemite -- green fluorescence and calcite -- red fluorescence. (Franklin, New Jersey.)

PLATE 8

A valuable sample containing Willemite (zinc silicate) — green and calcite — red. (Franklin, N. J.)

PLATE 9

Typical specimen of wernerite — a complex silicate rock. (Ontario, Canada.)

PLATE 10

Calcite sample, which “glows like live coals of fire.” (Arizona.)

PLATE 11

ULTRA-VIOLET LIGHT IN MINERAL FLUOROCHEMISTRY

resemble scheelite closely, but it is usually pale and does not have the same luster. It is often in the form of a coating, has the appearance of a fine-grained substance and lacks crystal structure. Sometimes it is phosphorescent and this definitely proves it cannot be scheelite. In a few rare cases calcium carbonate has a golden yellow color which is similar to some scheelite, but in these cases it is soft and smears upon rubbing.

FIG. 10. Scheelite Fluorescence Analyzer Card.

The filter on the ultra-violet lamps passes a very small amount of blue-purple light. This is reflected from the rock that is being examined and will be a dark purple or blue that varies according to the natural color of the rock. A white one will reflect blue; a dark one will reflect purple. This reflection should not be confused with fluorescence. Scheelite never fluoresces green, red or pink. Also it has no apparent phosphorescence; fluorescence disappears instantly when the ultra-violet light is turned off.

Other Valuable Ores and Minerals. Another valuable ore which fluoresces is hydrozincite. This is frequently associated with smithsonite. It always fluoresces a soft blue but can easily be distinguished from scheelite as it is a soft, light weight mineral, and the fluorescent ore is usually, but not always, in the form of a coating.

Black sand very often contains small bright orange fluorescent grains. These are zircon. They are a brighter orange than scheelite and usually appear as grains, so are easily distinguishable. Zircon is one of the most frequently overlooked of all fluorescent values. It is rather easy to distinguish because of its weight and orange fluorescence. Whenever found it can be confirmed by chemical tests and its value should be carefully checked by assay.

In a number of mining properties that are being worked for gold, silver,

CHEMICAL ANALYSIS OF MINERALS

etc., it has been found that there is a fluorescent hyalite associated with the valuable ore. The hyalite itself is not of commercial value, but because of its association with the values in these particular properties the miners have found the lamp of very great assistance in enabling them to stay on the vein where the non-fluorescent but valuable ores are located.

In some properties it is advisable to use the fluorescent lamps which produce the long wave lengths as well as those giving the short ones. There are fluorite deposits which respond to either of these wave lengths, and in such cases the fluorescent analysis of the ore has proven very profitable, as by the use of these two types of ultra-violet light differentiation is obtained.

SORTING ORES

The sorting lamp is suspended over a conveyor belt in a darkened room, Fig. 11. By means of the fluorescence the ores are easily sorted so that only those of a pre-determined value reach the mill. Waste rock and pieces with a high amount of impurities are discarded. The ultra-violet light is of value at scheelite mines and in sorting willenite, zircon, hydrozincite, tremolite and steatite talc.

FIG. 11. Sorting Ore.

BLACK LIGHT FOR MINERALOGISTS AND COLLECTORS

The most vivid and beautiful fluorescent minerals in the world are the willemite and calcite rocks of New Jersey, shown in plates 8 and 9.

ULTRA-VIOLET LIGHT IN MINERAL FLUOROCHEMISTRY

Willemite is a zinc silicate and has a bright green fluorescence. It is mined extensively for its zinc content. The calcite is frequently a gorgeous red. These brilliant colors are unsurpassed for beauty and their most beautiful shades are brought out fully by the quartz ultra-violet lamps. Another mineral which fluoresces beautifully is wernerite, shown in plate 10.

The most frequent fluorescent response found in mountains and deserts of the United States is green. The green glow may be bright or dull. Usually it is in seams or as a coating and is generally a hyalite opal, chalcedony or altered quartz, or a calcite that is stained with a small amount of a uranium salt. None of these rocks have a commercial value and may be passed over when searching for valuable ores.

Many forms of calcite fluoresce. The colors are usually orange or red, some bright, some pale in color. Plate 11 illustrates the brilliant red fluorescence of the Arizona calcite, which is a mixture of calcite and a manganese salt and "glows like live coals of fire." A few calcites fluoresce blue. Many will phosphoresce and hold their glow for a considerable time after the ultra-violet light has been turned off. In one or two rare instances they have resembled scheelite, but by a careful examination for crystal structure and hardness the difference can usually be determined. If there is doubt, chemical tests and an assay are always advisable.

Fluorescent microscopy offers inviting and worthwhile results in many fields of research. New applications for the short ultra-violet rays are opening up in the study of micro-crystals, mineral slabs and polished surfaces of all sorts. An entire new field in chemical microscopy is opened when ultra-violet examination is used. Many specific crystalline substances upon which identification is based in microchemical reactions are fluorescent or react characteristically in ultra-violet light.

Testing for Mercury. The presence of extremely small amounts of mercury in cinnabar or other ore can very easily be determined with the short ultra-violet rays, a willemite screen, and small flame for heating the substance to be tested.

The willemite screen is made by grinding pure willemite to a very fine powder and painting it on a wooden board by means of a suitable binder. The result is a surface which is very sensitive to the short ultra-violet wave lengths, Fig. 12.

The quartz lamp is practically a monochromatic source of ultra-violet light. This radiation is the wave length of 2540 Angstrom units, called "mercury resonance radiation." Willemite is particularly sensitive to this wave length and fluoresces brilliantly under its action.

The simple directions for testing for mercury are as follows:

1. The sample of rock to be tested should be in small pieces or ground.
2. Place these half way between the ultra-violet lamp and the willemite screen. (The space between each should be three or four inches.)

CHEMICAL ANALYSIS OF MINERALS

3. Heat the ore over a flame. An alcohol or gas flame is suitable in the laboratory. In the field a blowtorch is best, but in many cases a candle or stove will suffice.

As the sample is heated, the mercury will be driven off as an invisible vapor. This vapor, however, completely absorbs the ultra-violet rays creating dark shadows on the otherwise brilliantly fluorescent willemite screen. Very small quantities of mercury will completely absorb the rays and cause dense shadows. The appearance is that of black clouds of billowing smoke similar to that from

FIG. 12. Willemite Screen.

a heavy oil fire. If ordinary smoke passes in front of the screen it is visible to the eye and casts only a slight shadow, as ultra-violet light will partially pass through it. The mercury vapor cannot be seen and the shadow is very dark.

Since very small quantities of mercury vapor will completely absorb the rays and cause dense shadows on the screen, the test is not reliable for quantitative work. Many operators, however, have worked out relationships between ore samples and the volume of shadows so that for these particular mines they can approximate the different percentages in the ore. This can come only from experience. The test is so sensitive that quantities as small as 1/1000th of 1% of mercury can be detected. This method is reliable, for no other vapor absorbs ultra-violet rays as effectively as mercury vapor under comparable conditions.

Examination of ore in place can be carried out by using a blowtorch and willemite screen. The blowtorch generates enough heat to vaporize the mercury and the screen will show the shadows. Many tunnels, as well as outcrops, have been tested by this method. Use should be made of the high degree of sensitivity of this test to determine leaks in retorts and milling equipment.

ULTRA-VIOLET LIGHT IN MINERAL FLUOROCHEMISTRY

In many cases the leaks may not be of commercial importance. However, as mercury vapor is quite poisonous, they can all be found and, if serious, the proper steps instituted to correct them.

Ultra-Violet Rays in Bead Tests. Most of the rare earths and many elements of high atomic order produce fluorescence of a comparatively high degree of brightness in inert bases, even in exceedingly small amounts. This is especially true of uranium salts. As little as 0.001 microgram of some elements is detectable by their fluorescence. The spectroscope is needed for the fullest appreciation of such a test. Manganese, chromium, nickel and some other elements may exert an activating effect on many compounds and the fluorescence produced contains characteristic bands which can lead to identification of small amounts of these salts.

In bead testing certain elements may suppress the fluorescence and others may promote it. As little as 0.2 parts per million of nickel in zinc-sulfide-copper-phosphor reduces the emission characteristics appreciably. Copper is universally present as an activator in zinc sulfide. Thulium in sodium fluoride has a yellow fluorescence, while in calcium oxide it has a slightly different fluorescent response. Europium in Salt of Phosphorous beads fluoresces a deep red. The presence of uranium salts causes the bead to fluoresce a strong vivid lemon-yellow. This is particularly true of the sodium or potassium fluoride beads on a platinum wire. Borax bead tests can also be used but are not as satisfactory as with the fluorides.

FLUORESCENT MINERALS

The use of the short wave quartz ultra-violet "black light" lamp will cause fluorescence or phosphorescence in the following minerals. In some cases the activating factor has been identified, but in many it is still unknown.

Agate: Widely distributed, but specimens from only a few localities fluoresce. The activator in the green fluorescent specimens is probably some uranium salt.

Albite: Has a phosphorescent response, but specimens show little if any fluorescence.

Alunite: That from Marysville, Utah, has a grayish white fluorescence. This is probably due to an activator of some kind which is peculiar to this locality, as alunite from other districts does not fluoresce.

Amazonstone: Specimens from New York and Virginia show a pale grayish-green fluorescence, but specimens from other districts fail to react.

Amber: Amber in lignite from Texas fluoresces yellow and a specimen from Prussia is yellow-green.

Amethyst: Usually does not fluoresce, but specimens from North Carolina and Madagascar fluoresce a deep blue.

CHEMICAL ANALYSIS OF MINERALS

Anglesite: From Black Hills, South Dakota, and Leadhills, Scotland, fluoresces yellow.

Anorthoclase: From Franklin, N. J., fluoresces blue.

Apatite: Is usually non-fluorescent, but specimens from certain localities respond.

Aragonite: Like calcite, is widely distributed and has a wide variety of fluorescent responses. The colors are undoubtedly due to the type of impurity or activator present.

Autunite: Has a very strong yellowish green fluorescence. Autunite is often seen as yellow coatings on granite pegmatites which carry radium bearing minerals.

Axinite: From Franklin, N. J., fluoresces red.

Barite: Has a better phosphorescence than fluorescence. Should be examined in a thoroughly darkened room. The afterglow is usually pale bluish green. Samples from Palos Verdes, California, have a yellowish white fluorescence and phosphorescence, while specimens from England have only a bluish green phosphorescence.

Bauxite: From Nadine, Georgia, has a whitish phosphorescence which is probably due to some special activator peculiar to the locality, as most other specimens fail to react.

Benitoite: These crystals are found in only one locality in the world. This is an isolated section of San Benito County, California. They are blue, but the short ultra-violet rays cause a deep and brilliant blue fluorescence that is very distinctive.

Beryl: Cannot be classed as a fluorescent ore. A few cases have been reported where there were varying shades of green fluorescence, but these are not fully corroborated. The fluorescence may be due to some impurity disseminated throughout the mineral.

Borax: Often has a greenish blue phosphorescence though very rarely fluorescent.

Calcite: One of the most spectacular and widely distributed of all fluorescent minerals. Not all fluoresce by any means, but certain impurities and activators cause almost every possible shade of fluorescent color. The calcites of New Jersey have a brilliant red color with a transitory deep red phosphorescence. Those from Texas are pink and blue and phosphoresce blue. A great variety of colors characterize the California calcites as well as those from most of the Western States. In some instances their appearance is very similar to scheelite but it is never as brilliant as scheelite, and usually the granular appearance distinguishes it from the more crystalline structure of the latter. There is a wide variation in the color responses of calcite.

Calcium Larsenite: A rare mineral from Franklin, N. J., fluoresces a bright yellow.

ULTRA-VIOLET LIGHT IN MINERAL FLUOROCHEMISTRY

Calamine: That from Superior, Arizona, has just enough iron and manganese to act as activators and cause it to fluoresce a cream color.

Celestite: From Clay Center, Ohio, has a blue-white phosphorescence, while specimens from Gembek, Germany, have a definite blue color.

Chalcedony: Is fluorescent only when an activator is present. This is usually a trace of some uranium salt.

Clinohedrite: From Franklin, N. J., has an orange and yellow fluorescence.

Colemanite: From the Calico Hills and Death Valley regions of California, fluoresces white and phosphoresces blue-white.

Copalite: From Zanzibar, fluoresces green.

Crocoite: From Dundas, Tasmania, and the Ural Mountains of Russia, fluoresces a dark brown.

Cupro-Scheelite: Usually fluoresces a yellow with a faint tinge of green. It is a calcium tungstate with copper present and is usually quite hard. Cupro-scheelite from Milford, Utah, and Plumas County, Calif., fluoresces yellow.

Curtisite: Appears in the seams in the quicksilver mines at Skaggs Springs, Calif. The fluorescence is a very bright yellow, cream and green.

Dakeite: The correct mineralogical name is Schroekingerite, but it is more readily known to collectors by the former name. It is a hydrated uranium, calcium carbonate which fluoresces a strong yellow-green. A large deposit is located near Wamsutter, Wyoming, and a small one in Europe.

Diamond: Less than 15% of those tested shows fluorescence. The cause of fluorescence is unknown and definitely has no relation to the quality of the crystal. They may be pale blue, pale green, orange or reddish, and these fluorescent colors are probably due to the presence of a very minute amount of some hydrocarbon. Diamonds from Brazil display a higher percentage of fluorescence.

Diaspore: From Chester, Mass., fluoresces pale yellow.

Dolomite: From several localities, has a fluorescent response which is probably due to a hydrocarbon or metallic impurity.

Dumortierite: From San Diego County, Calif., and Oreana, Nevada, fluoresces purple.

Elaterite: From Utah, has a brown phosphorescence.

Emeralds: Usually do not fluoresce, but a few stones from Muzo, Columbia, Minas Geraes, Brazil, and Emerald Mines, Ural Mountains, Russia, show a pale fluorescence.

Epsomite: From Death Valley, Calif, has a pale blue phosphorescence.

Fluorite: The first fluorescent mineral studied; gave its name to the whole subject. It is not particularly fluorescent under the short rays, although the brown variety from Clay Center, Ohio, and Cumberland, England, are especially spectacular. From other localities there is a wide variation in the response, most specimens being more vivid under the long wave lengths.

CHEMICAL ANALYSIS OF MINERALS

Glauberite: From Borax Lake, Calif., phosphoresces bluish gray.

Gypsum: From the saline lakes of the desert regions of Southwestern United States, has marked green fluorescence due to some type of activator. From the Grand Rapids, Michigan, area it shows a deep green. From most other areas there is a lack of fluorescence.

Gyrolite: From Bohemia, fluoresces and phosphoresces white.

Hackmanite: From Dungannon Township, Ontario, Canada, fluoresces a reddish purple with the short ultra-violet wave lengths and a brilliant orange with the long ones. This mineral has the peculiar property known as reversible photosensitivity. It is dull gray in ordinary light but after exposure to the short ultra-violet wave lengths the mineral changes color to a deep purple. On exposure to sunlight this purple color fades away and the mineral regains its original color. No other mineral will change its actual color on exposure to ultra-violet light.

Halite: The dry lake at Amboy, Calif., contains a halite that has a beautiful red fluorescence. Some fluorescent material has precipitated from solution along with the halite and causes it to fluoresce these brilliant red shades. Halite from a dry lake in San Diego County, Calif., gives the same reaction as that from Amboy.

Hanksite: From Scarles Lake, Calif., phosphoresces a light blue.

Hexagonite: From Edwards, N. Y., fluoresces red.

Howlite: From Lang, Calif., fluoresces brown and yellow.

Hyalite Opal: Is so closely associated with opal that it is described under that heading.

Hydromagnesite: From Lodi, N. J., phosphoresces a light blue.

Hydrozincite: All true hydrozincites fluoresce a strong blue, but in a few cases this may fade to a cream color with certain impurities. The mineral has a comparatively light weight and is soft and powdery. It is easily distinguished from scheelite by its general appearance and fluorescence. In a few cases it has occurred as small, bright blue spots in a hard matrix, but close examination disclosed these spots to be coatings and not the crystal structure which would indicate scheelite.

Inyoite: From Death Valley, Calif., phosphoresces a pale white.

Kunzite: (Pink spodumene.) From near Pala, Calif., fluoresces a pale yellow to strong reddish brown. It frequently phosphoresces for long periods of time.

Lepidolite: From Keystone, South Dakota, fluoresces a pale green.

Mangan-Apatite: From Strickland Quarry, Portland, Conn., and also from Grafton Center, N. H., fluoresces a beautiful creamy golden color; from St. Mary's Lake, B. C., and Valyermo, Calif., it fluoresces a bright orange similar to wernerite, but lighter in color.

Mercury: Is not fluorescent, but its presence is readily determined with the quartz ultra-violet lamp and a willemite screen as previously described.

ULTRA-VIOLET LIGHT IN MINERAL FLUOROCHEMISTRY

Meyerhofferite: From Death Valley, Calif., phosphoresces a yellow-white.

Nasonite: From Franklin, N. J., fluoresces blue.

Opal: The green fluorescent hyalite opal is probably the most common fluorescent mineral found in the United States and Canada. It is usually colorless or white in ordinary light and fluoresces various shades of green under the short ultra-violet light. It is generally found in cleavages and crevices. It sometimes is seen as green spots scattered through granite, lime and other types of rock. The response of hyalite opal is usually due to a slight trace of some uranium salt. This explains why the common opal from some localities fluoresces and others do not. The best hyalite opal for display purposes comes from Stone Mountain, Georgia, and from various Mexican localities. Less spectacular specimens are found in almost every mine in the country. The best common opal comes from Virgin Valley, Nevada, and some beautiful pieces of opalized wood come from Goldfield, Nevada.

Ozocerite: From Brazil and Persia, fluoresces a yellow-brown.

Pearls: Often fluoresce, but the fluorescence has no apparent relationship to their value. Artificial pearls as a rule do not respond, only the native and cultured ones. The activator is manganese.

Pectolite: Has only a slight fluorescence but a very striking phosphorescence. The white, radiating, fibrous variety from Patterson, N. J., Magnet Cove, Ark., and Lake County, Calif., show bright splashes of orange, yellow and green.

Petroleum: Most petroleums show a fluorescent response. Oils from different strata have different shades of color and the color varies with the gravity. Petroleum products, such as kerosene, paraffin, vaseline, medical ointments and lubricating oils, also fluoresce.

Phosgenite: From Monte Poni, Sardinia, has a brownish red or orange phosphorescence.

Powellite: The U. S. Bureau of Mines and Geological Survey state that the term "Powellite" shall be given to the mineral calcium molybdate and to the double salts calcium molybdate and calcium tungstate as long as the amount of calcium tungstate does not exceed the amount of the molybdate. The division point between powellite and scheelite, therefore, is the 50-50 point of tungsten and molybdenum. Powellite fluoresces yellow, usually is soft and powdery. Often it appears as a film over the face of crystals of other molybdenum minerals. It is frequently associated with scheelite and sometimes mistaken for it. Powellite is yellow to greenish yellow by ordinary light.

Priceite: From Death Valley, Calif., fluoresces yellowish.

Quartz: Usually does not fluoresce, but quartz tubing made from Brazilian quartz has a white phosphorescence. Smoky quartz sometimes shows a brownish yellow response, but the average quartz is negative, except in the cases of the varieties of chalcedony and agate already mentioned.

CHEMICAL ANALYSIS OF MINERALS

Rubellite: (Pink Tourmaline) From Pala, Calif., and Newry, Maine, fluoresces lavender.

Ruby: (Red Corundum). Varies in fluorescent quality. Specimens from Siam give a weak red, and those from Burma and North Carolina a strong red glow. Synthetic rubies are much more brilliant in their fluorescence than the natural ones.

Sassolite: From Tuscana, Italy, fluoresces blue.

Satin Spar: (Silky Gypsum). May fluoresce due to the presence of an activator. This will vary in districts as well as in specimens. The usual fluorescence and phosphorescence is bluish green.

Scapolite: Is more commonly known as wernerite. For further description see Wernerite.

Scheelite: (Calcium tungstate) is an ore of tungsten, a metal used in hardening steel for innumerable purposes. Scheelite fluoresces a bright vivid blue. It may appear as small crystals scattered through a matrix or as large massive chunks and even as vein material varying in thickness from a knife blade to several feet. The pure scheelite that fluoresces blue is hard and frequently has definite structural lines. The mineral varies in color due to the impurities, which are usually varying amounts of molybdenum, 0.05% of which changes the color to a faint blue; 0.48 gives a white fluorescence, and from 0.96 to 4.8% gives an increasingly yellow appearance. Amounts of molybdenum above 4.8% do not cause an appreciable variation in the color of the fluorescence.

The presence of molybdenum in the scheelite has a tendency to soften it. Scheelite that fluoresces yellow will be hard if the amount of molybdenum is low, but if the percentage is high it will be soft, crumble easily and powder under the pressure of the fingernail.

All scheelite fluoresces blue, white or golden yellow. It is never red or green and has no apparent phosphorescence.

The other ores of tungsten do not fluoresce. Wolframite very often has scheelite associated with it as a coating around the wolframite or along cleavage lines.

Selenite: (Clear crystallized gypsum.) Usually has a better phosphorescence than fluorescence. An activator is present as an impurity and causes the color which varies as to the locality and specimen.

Sapphire: (Blue corundum.) Frequently has a yellow-orange to red fluorescence. This is true of both the natural and synthetic stones, especially of the colorless varieties.

Sodalite: From Moultonboro, N. H., fluoresces orange-red.

Sphalerite: From Tsumeb, Africa, has a bright orange fluorescence and phosphorescence. Very few localities produce specimens that give a response.

Spinel: The red variety has a bright red fluorescence. Other shades of the

ULTRA-VIOLET LIGHT IN MINERAL FLUOROCHEMISTRY

mineral usually do not respond. The red spinel from Ceylon usually gives a vivid color.

Spodumene: From Portland, Conn., sometimes phosphoresces a deep red which is quite persistent.

Strontianite: From California, Germany and England, has a slight bluish-green fluorescence and phosphorescence.

Terlinguaite: From Terlingua, Texas, fluoresces yellow.

Thaumasite: From Patterson, N. J., phosphoresces white.

Topaz: Does not usually react, but a few specimens have shown fluorescence. Specimens from Schneckenstein, Germany, give a slight green color.

Trona: From Searles Lake, Calif., fluoresces blue and phosphoresces a light blue.

Tourmaline: Only the light yellow shades exhibit fluorescence and these in only a slight degree.

Uranium Salts and Minerals: Uranium is responsible for the fluorescence of a great many minerals. The characteristic color produced by uranium salts is a lemon yellow or light green. It is probably the salts of this element, acting as activators, which cause the fluorescence of most hyalite opals, many forms of chalcedony and some calcites.

The following list of the better known uranium minerals show practically identical fluorescent qualities. They are all secondary uraninites with little or no commercial value but may appear as a coating on more valuable ores, and this may be used in locating and mining the other ores.

MINERAL	FLUORESCENCE
Autunite.	Yellow-green.
Beta-Uranopilite.	Yellow-green.
Beta-Uranotil.	Yellowish.
Chalcolite.	Yellow-green.
Gummite (variable).	Violet.
Johannite (variable).	Yellow-green.
Meta-Torbernite.	Yellowish-blue
Schroeckingerite (dakeite).	Green.
Torbernite.	Yellow-green.
Uranocircite.	Yellow-green.
Uraniferous hyalite.	Yellow-green.
Uranophane.	Yellow-green
Uranopilite.	Yellow-green.
Uranospathite.	Yellow-green.
Uranothallite.	Green.
Uranotil.	Yellowish.
Zippeite.	Yellowish.

CHEMICAL ANALYSIS OF MINERALS

Wavellite: From Mt. Holly, Pa., has a blue fluorescence and phosphorescence.

Wernerite: Has a bright yellow fluorescence, easily distinguishable from uranium minerals by the experienced eye. It is popular specimen material.

Willemite: Is one of the brightest and most spectacular of all fluorescent minerals. It is one of the many zinc ores mined in New Jersey. Willemite fluoresces because of the presence of manganese which serves as an activator; when this impurity is absent it does not react. Various amounts of the activating material create different shades of green, with 1% to 5% giving the brightest fluorescence. Some specimens also phosphoresce brilliantly.

Witherite: From Hexham, England, fluoresces yellow.

Wollastonite: Is occasionally responsive to the short ultra-violet rays. This is due to an activator. The ore from quarries near Riverside, Calif., has a beautiful blue-green fluorescence and golden-yellow phosphorescence. Specimens from Pennsylvania and Alaska show the same response.

Zippeite: A mineral formed by the alteration of pitchblende. Gives a strong yellowish-green fluorescence.

Zircon: Is variable in its response to ultra-violet rays. It is found in the black placer sands of California, Oregon, and Idaho, as small, clear crystals which fluoresce a bright orange. Samples of sand from Montana, North Carolina, Wyoming and Ontario, Canada, also show the presence of zircon crystals. Specimens from Brazil have shown the same bright orange color. The effect is believed to be due to the presence of the rare element hafnium.

CHAPTER III

Mineral Chemistry

Some elements occur in the earth's crust in much greater amounts than others. Oxygen is the most abundant, composing 46.46% of all rocks. Silicon is next, with 27.61%. Since silicates contain both of these elements, we can naturally expect the great majority of the minerals to be silicates. Aluminum, 8.07%, and iron 5.06%, are the most plentiful of the metallic elements and since the silicate radical is acid in character and iron and aluminum are basic, the result is that the great majority of silicates contain iron or aluminum, or both. Next in abundance comes calcium, 3.64%; sodium, 2.75%; potassium, 2.58%; magnesium, 2.07%; titanium, 0.62% and hydrogen, 0.14%. These ten elements comprise 99% of all the minerals and rocks of the earth's crust. As there are 92 chemical elements, this means that the other 82 comprise only 1% of the rocks and minerals.

There are only a few naturally occurring acids which form compounds stable enough to persist for any length of time, so that, in general, minerals consist of a relatively few classes, most of which are listed below.

Classes of Minerals

Silicates: As pointed out above, silicates are the most abundant of all rock forming minerals and are encountered almost everywhere. The great majority contains the more plentiful metals mentioned above, but silicates of all but a few of the metals exist in nature and with the combinations possible it is easily realized that the number and forms of this type of mineral must be very great. According to Clarke, Data of Geochemistry, silica, SiO_2 , comprises about 60.0% of the earth's crust.

Carbonates: These come next in abundance, carbon dioxide, CO_2 , comprising about 0.70% of the lithosphere. As with silica, the great majority of it is combined with the most plentiful metals, of which calcium and magnesium are the most common and abundant. Great masses of limestone and dolomite are found at many places on the earth.

Sulfides: This class of compounds differs from the two above in that few of the very abundant elements form stable compounds with sulfur. Iron is the only exception. The great majority of the metallic ore minerals such as galena and sphalerite belong to this class.

Oxides: This class of minerals consists of a combination of a metal with

CHEMICAL ANALYSIS OF MINERALS

oxygen. Many of the ore minerals are of this nature. Iron in the form of hematite, magnetite and limonite are good examples.

Halides: Halides are those minerals in which the metal is combined with chlorine, bromine, iodine, or fluorine. The chloride is the most common and abundant and is best represented by sodium chloride (halite) which is very common, especially in arid regions.

Sulfo Compounds, Sulfates, and Phosphates: These are compounds encountered quite frequently in nature, with chromates, vanadates, tungstates, titanates, etc., representing relatively few minerals. There are, of course, other rare compounds and combinations, but the great majority of the minerals fall into one of these classes.

Elements: A few of the elements occur uncombined, especially those known as the Noble metals, gold, silver, platinum, etc. Others, however, not of this class, are also found in the free state as, for instance, sulfur.

CHEMICAL FORMULA

The **chemical formula** of a substance can be determined from the chemical analysis. Thus, if one knows the percentage composition, he will be able to write the formula. This is best illustrated by examples. We will assume that a substance has been analyzed and found to contain 63.52% of iron and 36.48% of sulfur. The next step is to find how many symbol weights of each element are present. This is done by dividing the percent of iron by the atomic weight of iron, which is 55.84; thus: $63.52/55.84 = 1.137$. The same is done with sulfur, with the result that: $36.48/32.06 = 1.137$. By dividing the answers obtained by the lowest one we get the number of each symbol or atomic weights represented in the compound. In the above example it is 1 in both, so the atoms of the elements are in the ration of 1 to 1, and the formula is FeS.

Another example is as follows. Chemical analysis gave: 27.09% Na, 16.50% N and 56.41% O. By dividing these results by their respective atomic weights we get: $27.09/23.00 = 1.175$, $16.50/14.00 = 1.175$, and: $56.41/16.00 = 3.526$. Dividing these results by the lowest number we get: $1.175/1.175 = 1$; $1.175/1.175 = 1$; $3.526/1.175 = 3$. Thus it is seen that there is 1 atom of sodium, 1 of nitrogen and 3 of oxygen, so the formula must be NaNO₃. These numbers do not always come out exact integers, due to the inaccuracies of the analysis, but they are close enough so there is no doubt of the number of atoms of each element present.

The **percentage composition** of a substance may be determined by reversing the above process. If, for instance, we wish to know the theoretical percentage of copper in chalcopyrite we proceed as follows. The chemical formula is CuFeS₂, which means that there is 1 atomic weight of copper, 1 of iron and 2 of sulfur in each molecule. Referring to the table of chemical elements we find that the atomic weight of copper is 63.57, of iron 55.84, and of

MINERAL CHEMISTRY

sulfur 32.06. Adding these together in the proportion they exist in the molecule we have:

$$\begin{array}{rcl} 1 \times 63.57 & = & 63.57 \\ 1 \times 55.84 & = & 55.84 \\ 2 \times 32.06 & = & 64.12 \\ \hline \text{Weight of molecule} & = & 183.53 \end{array}$$

Dividing the weight of copper by the weight of the entire molecule and multiplying the result by 100 we get the percent of copper, thus: $63.57/183.53 = .3463 \times 100 = 34.63\%$ copper.

REAGENTS FOR QUALITATIVE CHEMICAL ANALYSIS AND BLOWPIPING

A number of the chemicals listed are for special tests and are not necessary for a field kit. The term *dry reagent* means it can be carried as a solid.

Acetic Acid, $\text{HC}_2\text{H}_3\text{O}_2$: purchased in the concentrated state and diluted as required, 1 volume to $2\frac{1}{2}$ volumes of water.

Acetone, CH_3COCH_3 : used as purchased.

Alcohol, $\text{C}_2\text{H}_5\text{OH}$: 95% ethyl alcohol.

Ammonium Acetate, $\text{NH}_4\text{C}_2\text{H}_3\text{O}_2$: use a saturated solution.

Ammonium Carbonate, $(\text{NH}_4)_2\text{CO}_3$, (ordinary smelling salts): dry reagent, dissolve 20 grams in 35 ml of conc NH_4OH and dilute to 100 ml with water.

Ammonium Chloride, NH_4Cl (salammoniac): dry reagent, dissolve 27 grams in 100 ml of water.

Ammonium Hydroxide, NH_4OH : purchased in the concentrated state and diluted as required, 1 volume to 2 of water.

Ammonium Molybdate, $(\text{NH}_4)_2\text{MoO}_4$, reagent: mix 10 grams of MoO_3 with 40 ml of distilled water and 8 ml of conc NH_4OH . When solution is complete, pour slowly with constant stirring into a mixture of 40 ml of conc HNO_3 and 60 ml of water. Let stand in a warm place for several days. Decant or filter before using.

Ammonium Oxalate, $(\text{NH}_4)_2\text{C}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$: dry reagent, dissolve 4 grams in 100 ml of water.

Ammonium Phosphate, $(\text{NH}_4)_2\text{HPO}_4$: dissolve 5 grams in 100 ml of water.

Ammonium Phosphomolybdate Paper: made by impregnating filter paper with the phosphomolybdic acid reagent, holding over the ammonia bottle for a time, drying and cutting into strips. The paper will keep well in a stoppered bottle in the dark.

Ammonium Sulfide, $(\text{NH}_4)_2\text{S}$: saturate 60 ml of NH_4OH with H_2S gas and dilute to 100 ml with conc NH_4OH .

CHEMICAL ANALYSIS OF MINERALS

Ammonium Sulfide (Yellow), $(\text{NH}_4)_2\text{S}_x$: dissolve 5 to 7 grams of sulfur in 100 ml of the colorless ammonium sulfide.

Ammonium Sulfocyanate (Thiocyanate), NH_4SCN : dry reagent, dissolve 4 grams in 100 ml of water.

Ammonium Tartrate, $(\text{NH}_4)_2\text{C}_4\text{H}_4\text{O}_6$: 20% solution, dissolve 16 grams of tartaric acid in water, make alkaline with NH_4OH , boil to remove the excess NH_4OH and make up to 100 ml with water. Used in testing for scandium.

Aqua Regia: make as required by mixing 3 volumes of conc HCl and 1 volume of conc HNO_3 .

Barium Chloride, $\text{BaCl}_2 \cdot 2\text{H}_2\text{O}$: dry reagent, dissolve 6 grams in 100 ml of water.

Barium Hydroxide, $\text{Ba}(\text{OH})_2 \cdot 8\text{H}_2\text{O}$: dry reagent, dissolve 6 grams in 100 ml of water.

Benzidine Reagent: dissolve 0.05 grams of benzidine base or hydrochloride in 10 ml of conc acetic acid, dilute with water to 100 ml and filter.

Bismuth Flux: same as iodide flux.

Bone ash: ground, calcined bones, used in making cupels for gold and silver assaying.

Borax, $\text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O}$: dry reagent, used for fusions and bead tests.

Borax Glass: made by fusing borax in an iron crucible and grinding. Used in assaying.

Boric Acid, H_3BO_3 : use a saturated solution.

Boric Acid Flux: made by grinding together 4 parts, by weight, of KHSO_4 and 1 part of CaF_2 .

Bromide Flux: Grind together 1 part by weight of KBr, 1 part of KHSO_4 and 2 parts of sulfur.

Bromine, Br: Used for making HBr. Handle with care. Very corrosive and causes bad burns.

Calcium Carbonate, CaCO_3 : use the precipitated form. Sodium group test.

Calcium Hydroxide, (slaked lime), $\text{Ca}(\text{OH})_2$: dry reagent. Use a saturated solution.

Carbon Disulfide, CS_2 : used as a sulfur solvent.

Chlorine Water: made by dropping conc HCl on potassium permanganate (KMnO_4) crystals and passing the resultant chlorine gas through water to saturation.

Chromate Flux: grind together 1 part by weight of K_2CrO_4 , 1 part of KHSO_4 and 2 parts of sulfur.

Cobalt Nitrate, $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$: dry reagent. Dissolve 7 grams in 100 ml of water. Used in charcoal and plaster tests.

Cupric Oxide (copper oxide), CuO : dry reagent, powdered malachite will serve instead.

Di-ammonium Phosphate: see ammonium phosphate.

Dimethylgloxime: dissolve 1 gram in 100 ml of ethyl alcohol.

MINERAL CHEMISTRY

Di-sodium Phosphate: see sodium acid (Di-sodium) phosphate.

Ferric Chloride, $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$: dissolve 1 gram in 100 ml of water.

Ferrous Sulfate (copperas) $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$: dry reagent, use a saturated solution. Add a few scraps of metallic iron and a few drops of sulfuric acid from time to time.

Hydrobromic Acid, HBr: made by passing H_2S through a water solution of bromine till the red color of the bromine disappears.

Hydrochloric Acid, HCl: purchased in the concentrated state and diluted as required, 2 volumes to 3 of water.

Hydrofluoric Acid, HF: in ceresin bottles. Difficult to carry as it dissolves glass and dangerous as it attacks the flesh causing bad burns and sores that heal slowly.

Hydroiodic Acid, HI: made by passing H_2S through water containing iodine crystals till they disappear.

Hydrogen Peroxide, H_2O_2 : use the 3% solution as purchased.

Hydrogen Sulfide, H_2S : a convenient dry generator is made by melting 1 part by weight of paraffin and while still liquid, mixing in 3 parts of finely ground flowers of sulfur. This can be carried as a block and shaved off and put into a pyrex test tube fitted with a rubber stopper and delivery tube. On heating, H_2S is evolved. Care must be taken that the delivery tube does not become plugged as this may cause the apparatus to explode on heating. An H_2S generator for using ferrous sulfide and HCl (1 part HCl to 1 of water) may be purchased from chemical supply houses.

Hydrogen Sulfide Water: this may be made by passing H_2S through water to saturation. It should be kept in a tightly stoppered bottle. Used for drop tests where only a small amount of H_2S is required.

Iodide Flux: made by grinding together 1 part by weight of KI, 1 part of KHSO_4 and 2 parts of sulfur.

Iodine, I: crystals, used in making HI and alcoholic iodine.

Iodine, Alcoholic: dissolve 5 grams of iodine in 100 ml of ethyl alcohol.

Lead Acetate, $\text{Pb}(\text{C}_2\text{H}_3\text{O}_2)_2 \cdot 3\text{H}_2\text{O}$: dry reagent, dissolve 10 grams in 100 ml of water.

Lead Acetate Paper: made by moistening strips of filter paper in the lead acetate solution and drying. Keep in a stoppered bottle. Used for the detection of H_2S which turns it brown to black.

Litmus Paper: used for the detection of acidity or alkalinity. Acids turn blue litmus red and alkalies turn red litmus blue.

Magnesium Ribbon, Mg: a handy form of metallic magnesium.

Manganese Dioxide, MnO_2 : dry reagent.

Mercury (metallic), Hg: used in amalgamation tests.

Nitric Acid, HNO_3 : purchased in the concentrated state and diluted as required, 1 volume to 2 of water.

Oxalic Acid, $\text{H}_2\text{C}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$: dry reagent, use a saturated solution.

CHEMICAL ANALYSIS OF MINERALS

Paraffin: ordinary para wax that is used for sealing fruit jars.

Phosphomolybdic Acid: dissolve 1 gram of phosphomolybdic acid in 100 ml of water.

Potassium Bicarbonate, KHCO_3 : dry reagent.

Potassium-Bismuth Iodide Reagent: heat to boiling 1 gram of Bi_2O_3 and 5 grams of KI in 5 ml of water and add this a little at a time to 25 ml of glacial acetic acid.

Potassium Bisulfate (Potassium Acid Sulfate), KHSO_4 : dry reagent.

Potassium Chlorate, KClO_3 : dry reagent.

Potassium Chloride, KCl : dry reagent.

Potassium Chromate, K_2CrO_4 or **Potassium Dichromate,** $\text{K}_2\text{Cr}_2\text{O}_7$: dry reagent, dissolve 5 grams in 100 ml of water.

Potassium Cyanide, KCN : dry reagent, dissolve 5 grams in 100 ml of water.
Very poisonous.

Potassium Ferricyanide-Lead Acetate Reagent: mix 10 ml of a saturated solution of potassium ferricyanide with 10 ml of a saturated solution of lead acetate and filter.

Potassium Ferrocyanide, $\text{K}_4\text{Fe}(\text{CN})_6$: solid reagent, use a saturated solution.

Potassium Hydroxide, KOH : solid reagent, dissolve 28 grams in 100 ml of water.

Potassium Iodate, Reagent: dissolve 10 grams of KIO_3 in a mixture of 33 ml of conc HNO_3 and 66 ml of water.

Potassium Iodide, KI : dry reagent, dissolve 8 grams in 100 ml of water.

Potassium Nitrate, KNO_3 : solid reagent.

Potassium Nitrite, KNO_2 : solid reagent.

Potassium Permanganate, KMnO_4 : solid reagent, used in producing chlorine gas.

Potassium Thiocyanate (Potassium Sulfocyanate), KSCN : dissolve 10 grams in 100 ml of water.

Quinalizarine: use a saturated solution in ethyl alcohol (0.020 grams in 100 ml).

Salt of Phosphorous (Microcosmic Salt), $\text{HNaNH}_4\text{PO}_4 \cdot 4\text{H}_2\text{O}$: solid reagent used in bead tests.

Silver Nitrate, AgNO_3 : dissolve 4 grams in 100 ml of water. Keep in a dark colored bottle.

Slaked Lime (Calcium Hydroxide), $\text{Ca}(\text{OH})_2$: dry reagent.

Sodium Acid (Di-sodium) Phosphate, $\text{Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O}$: dry reagent, dissolve 6 grams in 100 ml of water.

Sodium Carbonate, Na_2CO_3 , or **Bicarbonate** (baking soda) NaHCO_3 : both referred to as "Soda"; used for fusion and bead tests.

Sodium Chloride (common salt), NaCl : dry reagent, used in assaying and bead tests.

MINERAL CHEMISTRY

Sodium Hydroxide (ordinary lye), NaOH: dissolve 20 grams in 100 ml of water.

Sodium Hypochlorite, NaOCl: made by passing chlorine gas through a solution of sodium hydroxide.

Sodium Meta-Phosphate, NaPO₃: dry reagent.

Sodium Peroxide, Na₂O₂: dry reagent; keep in a tightly sealed can.

Sodium Phosphate, see sodium acid (Di-sodium) phosphate.

Sodium Sulfate, Na₂SO₄: dry reagent.

Sodium Sulfide Reagent, Na₂S---Na₂S₂: made by dissolving 48 grams of Na₂S·9H₂O and 4 grams of NaOH in water, adding 1.6 grams of sulfur, shaking till the sulfur is dissolved and diluting to 100 ml with water.

Sodium Sulfite, Na₂SO₃: dry reagent.

Sodium Thiosulfate, Na₂S₂O₃·5H₂O (ordinary photographers "hypo"): dry reagent. Dissolve 12.4 grams in 100 ml of water.

Stannous Chloride, SnCl₂: dissolve 11.5 grams of SnCl₂·2H₂O in 17 ml of conc HCl and make to 100 ml with water. Keep in bottles containing a strip of metallic tin.

Starch Paper: make by moistening strips of filter paper in starch boiled in water.

Sulfur, S: finely ground or flowers of sulfur; dry reagent.

Sulfur Dioxide, SO₂: prepared by dropping a mixture of 1 part conc H₂SO₄ and 3 parts water into a concentrated solution of Na₂SO₃.

Sulfuric Acid, H₂SO₄: purchased in the concentrated state and diluted as required, 1 volume to 6 of water. In making this dilution pour the *acid into the water* and not vice versa.

Tartaric Acid, H₂C₄H₄O₆: dissolve 50 grams in water and make up to 100 ml.

- **Test Lead**, Pb: pure granulated or filings. Used in assaying.

Tin, Sn: pure granulated, or tin foil will serve. Used as a reducing agent.

Tumeric Paper: Used in testing for boron and zirconium.

Zinc, Zn: pure granulated, or the metal parts of flashlight batteries will serve. Reducing agent.

CONCENTRATED REAGENTS

	SP. GR.	PER CENT BY WEIGHT	APPROXIMATE CONCENTRATION
Acetic acid, glacial	1.06	99.5	17 N
Acetic acid	1.07	80.0	15 N
Hydrochloric acid	1.19	37.9	12 N
Nitric Acid	1.42	69.8	16 N
Phosphoric acid	1.7	85.0	15 N
Sulfuric acid	1.85	96.0	36 N
Ammonium hydroxide	0.90	28.0	15 N

CHEMICAL ANALYSIS OF MINERALS

APPARATUS

The list below contains a number of items that are convenient but not absolutely essential. If a field kit is being prepared, the larger and less important pieces may be omitted.

Anvil: a small block of steel, 2" x 2" x 1", for breaking samples.

Asbestos Thread: a piece from asbestos string or rope packing will serve.

Beakers: a nest of 100 ml down to 5 ml is very convenient.

Bunsen Burner: if gas is available; a **Candle** or an **Alcohol Lamp** will serve.

Charcoal Slabs: these come in sizes of 4" x 1" x $\frac{3}{4}$ " and 4" x 2" x 1".

Filter Paper: to fit the funnels.

Filter Stand: if working in a laboratory.

Flask: about 250 ml, fitted with a 2 hole rubber stopper; for a wash bottle.

Forceps: a platinum tipped and another cheap iron pair are needed.

Funnel: 2 short-stemmed, about 1 $\frac{1}{2}$ " in diameter.

Glass Rod: several pieces about 6" long and $\frac{3}{16}$ " in diameter.

Glass Tubing: a piece of hard glass $\frac{5}{16}$ " in diameter for open tube tests, and a piece of $\frac{1}{8}$ " diameter soft glass for making the wash bottle, H₂S generator, etc.

Graduated Cylinders: 1-50 ml and 1-10 ml.

Hammer: a small one for breaking samples.

Lens: one of about 1" to $\frac{3}{4}$ " focal length and a magnification of about 15 diameters, gives good results.

Magnet: or magnetized knife-blade.

Merwin Color Screen.

Mortar and Pestle.

Plaster Tablets: made by making a paste of Plaster-of-Paris with water, smoothing it out on glass in a layer about $\frac{1}{4}$ " thick and cutting it into 4" x 1" pieces before it hardens.

Platinum Foil: a thin piece about 1" x 1" is a convenient size.

Platinum Wire: about 27 gauge and 3" long. This is fused into a piece of glass tubing or rod and is used for making bead tests.

Porcelain, or better, **Silica Dish:** about 2" in diameter.

Ring Stand: if working in a laboratory.

Spot Plate: of white glazed porcelain.

Streak Plate: a piece of unglazed porcelain will serve.

Test Tubes: about six 3" x $\frac{3}{8}$ " for general use and one 6" x $\frac{5}{8}$ ", fitted with a one-hole rubber stopper, for an H₂S generator.

Test Tube Holder or Clamp: for holding test tubes over the flame. Ordinary spring clip clothespins do very well.

Test Tube Rack: can be made by boring holes in a block of wood and cutting away a portion of the front so the tubes can be seen.

MINERAL CHEMISTRY

Tongs, Crucible: of steel or brass.

Triangle: nichrone, about $1\frac{1}{4}$ " across.

Watch Glasses: 3 or 4 about 2" in diameter; old spectacle lenses will serve very well.

Wire Gauze: about 4" x 4".

CHARCOAL STICKS

The charcoal blocks purchased from chemical supply houses are consumed quite rapidly but may be made to give much longer life by soaking them in sal soda (ordinary washing soda, $\text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O}$). This leaves the sticks white but on heating the soda soaks into the charcoal and does not interfere with the reactions. If these blocks of charcoal are not available, charcoal sticks may be made by taking a small splinter of wood, such as a match stick, soaking it in a melted crystal of sal soda and holding in the flame until the soda has penetrated the wood. A charcoal stick made in this way will give long service and most of the oxidizing and reducing reactions on charcoal can be carried out on it very satisfactorily.

THE PORTABLE LABORATORY

Those who wish to make mineral analyses where laboratory facilities are not available should have a carrying case in which most of the essential reagents and apparatus can be kept and transported. To assist in the construction of this, a set of detail drawings, Figs. 13-19, of a portable laboratory is given. The laboratory portrayed is quite convenient and has been found very satisfactory after several years of use. The general idea in its design is to have reagents and equipment available in a convenient form for complete tests. This does not mean, however, that everything one may use occasionally can be included, for no matter how large the kit is made there will always be something else that will be desired for some special purpose.

To those accustomed to reading construction blueprints, the drawings will be self explanatory, but to others they may seem quite a puzzle. An endeavor will therefore be made to interpret them and to give advice and suggestions as to the best method of carrying on the work.

The blocks for the trays must first be built. This is done by glueing the boards together with the grain of each succeeding one running at right angles to its neighbor. This gives a block of wood that will not warp and has great strength. The drawings show these blocks built of basswood. However, if basswood is not available, a good grade of soft pine, free from knots, may be used. The covering of plywood gives an excellent finish to the blocks and also strengthens the outer edge. A water-proof or water resistant glue, such as

CHEMICAL ANALYSIS OF MINERALS

FIG. 13. Portable Laboratory, Completely Assembled.

MINERAL CHEMISTRY

FIG. 14. Portable Laboratory, Drawing, Tray No. 1.

CHEMICAL ANALYSIS OF MINERALS

FIG. 15. Portable Laboratory, Drawing, Tray No. 2.

MINERAL CHEMISTRY

FIG. 16. Portable Laboratory, Drawing, Tray No. 3.

CHEMICAL ANALYSIS OF MINERALS

FIG. 17. Portable Laboratory, Drawing, Tray No. 4.

MINERAL CHEMISTRY

FIG. 18. Portable Laboratory, Drawing, Bottom of Case.

CHEMICAL ANALYSIS OF MINERALS

FIG. 19. Portable Laboratory, Drawing, Top of Case.

MINERAL CHEMISTRY

Casein glue, should be used, and the glueing should be done with heavy pressure. Before starting to drill the holes, the glueing of the blocks for all the trays should be completed, except that the layer of *plywood on the bottom of #1 tray is not put on until after the drilling has been done.*

In laying out the holes, the figures inside the circles are used. These designate the distance of the center from the left side in the "X" direction and from the bottom in the "Y" direction. The center of hole "A" at the lower left-hand corner of tray #1 is $1\frac{1}{16}$ " from the bottom and also $1\frac{1}{16}$ " from the left side. The first line of "D" holes at the left of the drawing is $\frac{7}{8}$ " from the left side and the lowest one is $4\frac{1}{16}$ " from the bottom, the next $5\frac{3}{16}$ " from the bottom, etc. The row of "B" holes at the extreme right are $9\frac{1}{16}$ " from the left side of the drawing and the first one is $3\frac{5}{8}$ " from the bottom, the next $5\frac{3}{8}$ " from the bottom, etc.

The hole-centers are laid out on the bottom side of the block for the #1 tray, *the bottom layer of plywood having been left off.* The blocks for trays #2, #3 and #4 are complete with all plywood glued on. The block for tray #2 is placed upside down and the one for #1 tray is placed upside down on it. This puts the side with the hole layout on it facing upward. The two blocks are carefully lined up and firmly clamped together. Three or four of the "F" holes ($\frac{1}{16}$ ") are drilled through both blocks until the point of the bit starts through the #2 block. They are then turned over and the holes finished from the opposite side. This procedure is used on all holes that pass completely through a block, as a smoother hole and less tearing of the wood results. Seven sixteenth inch dowels (rods of wood) are inserted through these holes and are used to keep the blocks in line during the remainder of the drilling. The guide holes should pass through all four trays.

With the blocks lined up and the dowels in place, the holes can be bored. The diameter of the various holes, "A," "B," "C," etc. is given on the drawing. *The trays are designed to carry specific equipment, and as glass containers vary considerably in size it is best to have at least a few of each type at hand and to try for size, etc. before boring the holes.*

The drilling is carried out as before, except that the bit is allowed to barely pass through the first block and to mark the hole-center on the block below. The holes are finished from the opposite side as directed above and are carried on into the second block as required. After all the holes in the #1 tray are completed, the bottom plywood, which forms the bottom of the tray may be glued on. In drilling the holes, a much better job can be done if a drill press is used, as it is very difficult to make perpendicular, parallel holes by hand.

The #2 tray has holes on the lower side, the centers of which exactly correspond to those in tray #1 and will be marked if the operations were carried out as outlined above. These are drilled to the depth designated in the drawing of tray #2. In the center of the sketch at the bottom of the drawing, which is a

CHEMICAL ANALYSIS OF MINERALS

view of the underside of the tray, there are concentric circles, "C3" the inner one, and "B6" the outer one. The "B6" part is first drilled $1\frac{1}{16}$ " diameter and $\frac{7}{8}$ " deep, then continued with a $\frac{1}{8}$ " bit to a total depth of $2\frac{5}{8}$ ". The other holes are bored the size and depth designated in the drawing. The upper sketch of the drawing of tray #2 gives the layout for the top of the tray.

In the drawing of tray #3 the lower sketch is of the bottom of the block and shows the extensions of the holes from the block below. The sketch above is of the top of the tray and shows, along with the hole arrangement, the box-like recess that is made by gouging and chiseling out the block. Tray #2 also has one of these, shown at the upper edge of the top sketch.

In the drawing of tray #4 the same scheme is carried out, the lower sketch portraying the bottom and the upper one the top view. In this tray most of the wood has been removed to give a box effect, it being left as indicated only where the equipment in the tray below extends up into the bottom of tray #4.

After all drilling and chiseling has been completed, all parts are thoroughly sanded and the blocks are ready for finishing, the first step of which is to make the wood as acid and chemical resistant as possible. A good acid resistant wood stain, in common use on wooden tops of laboratory tables, is made and applied as follows:

SOLUTION #1	SOLUTION #2
125 grams of copper sulfate. 125 grams of potassium chlorate. 1000 milliliters of water.	150 grams of fresh analine oil. 180 grams of concentrated hydrochloric acid. 1000 milliliters of water.

To the clean, sanded wood apply two coats of #1 solution boiling hot, with a paint brush, allowing each coat to dry thoroughly. Then apply two coats of solution #2 in the same way. When the wood has completely dried, wash off the excess chemicals with hot soapsuds and again allow to dry. The blocks can then be finished by giving them several coats of linseed oil or lacquer. The carrying case is now built and finished in conventional manner.

As glass bottles and jars are to be carried, it is best to have a cushion effect on both the bottom and top of the liquid containers. Corrugated rubber matting, such as is commonly used in aisles and hallways, cut to fit, makes a very good pad for the bottom, and sponge rubber is excellent for the top of the glass stoppered bottles, for it can be made of such thickness as to keep the stoppers in place without fear of breakage.

The contents and location of the equipment of the Microlab, all on a small scale, are as follows:

MINERAL CHEMISTRY

TRAY #1

HOLE	NUMBER OF ARTICLES	SIZE AND DESCRIPTION
A	4	8 oz glass stoppered bottles.
B	9	1 oz screw top bottles.
C	21	1 oz glass stoppered bottles.
D	21	4 dram vials.
E	4	2 dram vials.

TRAY #2

E6	23	4 dram vials.
----	----	---------------

TRAY #3

A1	Note that these are $2\frac{1}{2}$ " in diameter for a depth of $\frac{7}{8}$ " on the bottom of the block and $1\frac{1}{2}$ " through the remainder of the block. They receive the top of the bottles in the "A" holes of tray #1.	
A3	4	Porcelain crucibles, #00000, #000, #0 and 1 iron crucible, made of stainless steel, for fusions which cannot be made in porcelain (not a purchased item).
B2	1	125 ml flat bottomed flask for a wash bottle.
C2	2	25 ml Erlenmeyer flasks.
D7	1	Funnel 1" top diameter. Note that the hole for this is the diameter of the top of the funnel only deep enough to receive it, the remainder of the hole being the size of the stem.
E2 & D4	1	Cupel mould as shown in the drawing under "Assay of Gold and Silver."
F2	6	Test tubes $\frac{3}{8}$ " diameter by 3" long. The tops of the holes should be widened enough to allow the flange of the tube to go down flush.
G2	1	Iron pestle to go with the mortar which goes into the rectangular opening at 1 (not a purchased item).
H5	1	3 oz tin sample cup to hold small filter paper.
I6	6	Low form Griffin beakers with lip. 5, 10, 20, 30, 50 & 100 ml. These beakers all fit one within another forming a "nest."
J6	1	Push top type can for sodium peroxide. A small paint or similar can may be used but should be well coated with paraffin in and out and kept tightly closed.
L2	1	2 oz alcohol lamp.

CHEMICAL ANALYSIS OF MINERALS

TRAY #4

This tray, as well as the box-like recesses in trays #2 and #3, is used to carry such miscellaneous equipment as Merwin screen, streak plate, small casserole, evaporating dishes, tweezers, crucible tongs, set of hardness minerals, larger filter papers, plumbers candle, plaster and charcoal slabs, and magnet.

The set is designed to use the ordinary glass stoppered bottles for liquids. Drops from these can be readily obtained by first loosening the stopper, grasping the body of the bottle in the hand and the stopper between the first and second finger. By tilting the bottle and working the stopper in and out with the fingers, drops are obtained as desired, using only the one hand. Regular dropping bottles may be obtained. Three or four of them for strong acids and ammonia are quite convenient and can be kept at the permanent place where most of the work is done.

The portable hydrogen sulfide generator gives good results and is used quite extensively. (Cartridges are supplied by chemical houses.) However, it is not quite as convenient as one using ferrous sulfide and hydrochloric acid in which the gas is always readily available. Hydrogen sulfide is used a great deal, and the liquid type generator should be used where most of the work is carried on. One may be devised, or the Kipp generator may be purchased from chemical supply houses. However, they are somewhat expensive, the smaller size costing about ten dollars.

A suggested list of reagents to be carried in the kit is given below.

IN THE EIGHT OUNCE BOTTLES

- Distilled water.
Alcohol.
Hydrochloric acid (conc).
Ammonium hydroxide (conc).
-

IN THE ONE OUNCE SCREW TOP BOTTLES

Sodium carbonate. Salt of phosphorous. Iodide flux. Bromide flux. Chromate flux.	Gold, silver flux. Borax glass. Potassium bisulfate. Ammonium chloride. Borax.
--	--

IN THE TWENTY-ONE GLASS STOPPERED BOTTLES

Hydrochloric acid (conc). Nitric acid (conc). Sulfuric acid (conc). Acetic acid (conc).	Ammonium hydroxide (conc). Ammonium molybdate reagent. Ammonium oxalate reagent. Ammonium sulfide.
--	---

MINERAL CHEMISTRY

IN THE TWENTY-ONE GLASS STOPPERED BOTTLES — *Continued*

Ammonium sulfide (yellow).	Oxalic acid.
Barium chloride.	Potassium chromate.
Cobalt nitrate.	Potassium iodide.
Dimethylglyoxime.	Sodium hydroxide (use a rubber stopper).
Di-ammonium phosphate.	Sodium sulfide reagent.
Hydrogen peroxide.	
Lead acetate.	Silver nitrate.

In the 48 vials most of the other reagents can be carried in sufficient quantities for a great many analyses.

All glass stoppers should be coated with Vaseline or stop-cock grease; strong caustics such as sodium and potassium hydroxide solutions should be kept closed with a rubber stopper, as the glass is likely to stick. The top tray, and spaces in trays #2 and #3 provide ample room for all the remaining equipment. A one-half size specific gravity balance may be included if desired.

The containers may be labeled in a number of ways, but using the ordinary adhesive label is probably the simplest. If these are used it is necessary to protect them. They should be written on in India ink, pasted on, and after thoroughly drying, coated with melted paraffin, a saturated solution of paraffin in benzene, or a solution of ordinary tooth brush handles in acetone. If well protected, they are very satisfactory and give long service.

THE CHEMICAL ELEMENTS

NAME	SYMBOL	ATOMIC WT.	NAME	SYMBOL	ATOMIC WT.
Actinium	Ac	227.	Chlorine	Cl	35.457
Alabamine	Ab	221.	Chromium	Cr	52.01
Aluminum	Al	26.97	Cobalt	Co	58.94
Antimony	Sb	121.76	Columbium	Cb	92.91
Argon	A	39.944	Copper	Cu	63.57
Arsenic	As	74.91	Dysprosium	Dy	162.46
Barium	Ba	137.36	Erbium	Er	167.2
Beryllium	Be	9.02	Europium	Eu	152.0
Bismuth	Bi	209.00	Fluorine	F	19.00
Boron	B	10.82	Gadolinium	Gd	156.9
Bromine	Br	79.916	Gallium	Ga	69.72
Cadmium	Cd	112.41	Germanium	Ge	72.60
Calcium	Ca	40.08	Gold	Au	197.2
Carbon	C	12.01	Hafnium	Hf	178.6
Cerium	Ce	140.13	Helium	He	4.003
Cesium (Caesium)	Cs	132.91	Holmium	Ho	164.94

CHEMICAL ANALYSIS OF MINERALS

THE CHEMICAL ELEMENTS — *Continued*

NAME	SYMBOL	ATOMIC WT.	NAME	SYMBOL	ATOMIC WT.
Hydrogen	H	1.0080	Rhenium	Re	186.31
Illinium	Il	146.	Rhodium	Rh	102.91
Indium	In	114.76	Rubidium	Rb	85.48
Iodine	I	126.92	Ruthenium	Ru	101.7
Iridium	Ir	193.1	Samarium	Sm	150.43
Iron	Fe	55.84	Scandium	Sc	45.10
Krypton	Kr	83.7	Selenium	Se	78.96
Lanthanum	La	138.92	Silicon	Si	28.06
Lead	Pb	207.21	Silver	Ag	107.880
Lithium	Li	6.940	Sodium	Na	22.997
Lutecium	Lu	174.99	Strontium	Sr	87.63
Magnesium	Mg	24.32	Sulfur	S	32.06
Manganese	Mn	54.93	Tantalum	Ta	180.88
Mercury	Hg	200.61	Tellurium	Te	127.61
Molybdenum	Mo	95.95	Terbium	Tb	159.2
Neodymium	Nd	144.27	Thallium	Tl	204.39
Neon	Ne	20.183	Thorium	Th	232.12
Nickel	Ni	58.69	Thulium	Tm	169.4
Nitrogen	N	14.008	Tin	Sn	118.70
Osmium	Os	190.2	Titanium	Ti	47.90
Oxygen	O	16.000	Tungsten	W	183.92
Palladium	Pd	106.7	Uranium	U	238.07
Platinum	Pt	195.23	Vanadium	V	50.95
Phosphorous	P	30.98	Virginium	Vi	224.
Polonium	Po	210.	Xenon	Xe	131.3
Potassium	K	39.096	Ytterbium	Yb	173.04
Praseodymium	Pr	140.92	Yttrium	Y	88.92
Protoactinium	Pa	231.	Zinc	Zn	65.38
Radium	Ra	226.05	Zirconium	Zr	91.22
Radon	Rn	222.			

Didymium — mixture of Neodymium and Praseodymium.

Niobium (Nb) — Columbium.

Glucinum — Beryllium.

Niton — Radon.

Cassiopeium — Lutecium.

Celtium — Hafnium.

CHAPTER IV

Tables of Chemical Reactions

It is often possible to make a few simple chemical tests that give indications as to the chemical nature of the mineral, thus greatly assisting in making the final identification. To simplify this procedure as much as possible, tables of a number of the more common minerals have been prepared. There are four of these tables, based on the solubility of the minerals in acids. These tables are intended for use in conjunction with the mineral identification tables as outlined below.

Table A includes those minerals which are partially or completely **soluble in hydrochloric acid**.

Table B includes those minerals which are not soluble in hydrochloric acid but **dissolve in nitric acid**.

Table C includes those minerals which are not soluble in hydrochloric or nitric acids but are at least partially decomposed and **dissolved by sulfuric acid**.

Table D includes minerals **not attacked by any of the common acids**. In order to make chemical tests on these, fusion with soda or potassium bisulfate is necessary.

The use of this method of grouping the minerals tends to throw substances of a similar nature together. In table A will be found the water soluble and most of the carbonate, phosphate, sulfate and borate minerals, and a great number of the less stable silicates. In Table B are the majority of the heavy metallic sulfides, while Tables C and D consist mostly of silicates.

After making the specific gravity and hardness determinations and referring to the mineral tables, it will be seen that the specimen can be one of only a few minerals. The chemical nature of these different possible minerals should be noted and kept in mind during the chemical testing that follows. All tests should be made on fresh, unweathered material.

Soluble in Hydrochloric Acid. A small amount of the finely ground mineral is placed in a test tube and a few drops of water added. If solution does not occur, add an equal amount of concentrated hydrochloric acid and boil if necessary. If still insoluble, double the volume by adding concentrated hydrochloric acid, and boil. If complete or partial solution is obtained by any of these treatments, the mineral belongs in Table A. Dilute the concentrated acid treatment with an equal volume of water, filter off any residue, and test the clear filtrate.

CHEMICAL ANALYSIS OF MINERALS

Soluble in Nitric Acid. If solution was not obtained in the treatment with hydrochloric acid, a fresh sample is treated in a test tube with concentrated nitric acid, boiled if necessary. Solution even with the deposition of a substance places the mineral in Table B. Dilute with twice its volume of water, filter off any residue or precipitate and make the tests on the clear filtrate.

Soluble in Sulfuric Acid. If the mineral was not dissolved by either the hydrochloric or nitric acid treatments a fresh sample is treated with concentrated sulfuric acid, boiled if necessary. Solution with the deposition of silica, or only partial decomposition, places the mineral in Table C.

Not Attacked by Acids. In this group are the minerals that are unaltered by treatment with the common acids. In order to test these for their chemical constituents they must be put into solution by means of fusions.

Fuse the finely ground mineral with four times its volume of soda on charcoal. Note any metallic beads formed, color and character of any sublimates, and color of the fusion. Dissolve the fusion in nitric acid, evaporate to dryness, moisten with concentrated nitric acid, add water, boil and filter. The silica is left behind on the filter paper and the metals pass through into the filtrate. This treatment will decompose the silicates, sulfides, chlorides and sulfates, converting the latter into sulfides. On treatment of the soda fusion with acid it will be seen if the mineral is still unaffected. If this is apparent it is probably one of the oxides, corundum, chromite, cassiterite, or bauxite, etc.

CHEMICAL TESTS

The few simple tests applied indicate the acid radicals and some of the common metals in groups, and are carried out as follows:

(Note any reaction during the process of solution. Carbonates effervesce; gases are given off by some manganese and sulfur compounds; certain elements give colored solutions, such as iron, copper, nickel, manganese, chromium, cobalt, vanadium and uranium.)

1. **Sodium Carbonate Bead Test.** Treat a speck of the mineral in the soda bead on the platinum loop with the oxidizing flame. Effervescence indicates a silicate; manganese will color it green; chromium colors it yellow. Crush the bead on a silver coin and moisten with water. A darkening of the coin indicates sulfide, selenide or telluride.

2. **Ammonium Molybdate Test.** Add 1 ml. of the solution to a mixture of 1 ml. of ammonium molybdate reagent and 1 ml. of concentrated nitric acid, and warm. A yellow precipitate indicates phosphate or arsenate.

3. **Barium Chloride Test.** Add a few drops of barium chloride solution to the acid solution of the mineral. A white, insoluble precipitate indicates sulfate. This test cannot be applied to Table C.

4. **Turmeric Paper Test.** Nearly neutralize the solution of the mineral with ammonium hydroxide, moisten a piece of turmeric paper in it and dry

TABLES OF CHEMICAL REACTIONS

carefully on a test tube of hot water. A reddish-brown color that turns blue to black when treated with ammonia, indicates borates. (Titanium, columbium, molybdenum, tantalum and zirconium also color it brown.)

5. Hydrochloric Acid Test. (a.) This test is applicable only to Tables B and D. Add a few drops of hydrochloric acid, or a little common table salt, to the nitric acid solution of the mineral. A white precipitate indicates silver, lead, or mercury. If the precipitate is silver it will be dissolved by making alkaline with ammonia; if lead, it will dissolve in hot water and recrystallize on cooling. Only monovalent mercury is precipitated by the above. The divalent form may be present but gives no indication here.

(b.) Boil some of the powdered mineral with concentrated hydrochloric acid in a porcelain dish and add a little zinc. Tungsten, titanium, columbium, vanadium, molybdenum, uranium and ruthenium give characteristic color reactions. For interpretations of the results, see **Reaction of Metallic Zinc in Acid Solutions, Chapter VI.**

6. Ammonium Hydroxide Test. Add solid ammonium chloride equal to 1/10 of the volume of the test solution, then make alkaline with ammonium hydroxide, heat to boiling, and filter. Iron gives a brown, uranium a yellow, chromium a gray-green, mercury a black precipitate. Bismuth, titanium, zirconium, thorium, aluminum, beryllium, tin, lead, and antimony all give white precipitates. Molybdenum and vanadium may also be partially precipitated here.

Copper colors the filtrate blue, nickel is blue-green and cobalt is yellowish. A small amount of iron will color a white precipitate, thus obscuring that from aluminum, beryllium, etc. If it is desired to test for these elements, the precipitate is washed from the filter paper, dissolved in hydrochloric acid, made strongly alkaline with sodium hydroxide, boiled for a minute or two and filtered. Iron, chromium, mercury, bismuth, uranium, titanium, zirconium and thorium remain on the filter paper. Make the filtrate acid with hydrochloric acid, then alkaline with ammonium hydroxide. Aluminum, beryllium, tin, lead, and antimony are precipitated.

7. Ammonium Oxalate Test. To the clear filtrate from the treatment with ammonia add a little ammonium oxalate solution. A white precipitate indicates calcium, barium or strontium.

8. Ammonium Phosphate Test. To the clear filtrate from the ammonium oxalate test add a little di-ammonium phosphate. Magnesium and manganese are precipitated. That from magnesium is pure white, while the one from manganese is pinkish.

9. Miscellaneous Tests. The filtrate from the ammonium phosphate test will contain any sodium, potassium, lithium, and also copper, cobalt, nickel, molybdenum, vanadium, etc. By evaporating to dryness and heating carefully to drive off all volatile ammonia salts, flame and bead tests may be applied to this residue.

CHEMICAL ANALYSIS OF MINERALS

The operations listed above will give an excellent indication of the probable composition of the sample. If, however, on inspection of the possible minerals as obtained from the tables doubt still remains, such other tests as flame, bead, charcoal, and the complete analytical procedure should be applied.

These simple tests will in most cases enable the common minerals to be identified. Tests of only a few specific elements are obtained, but acid radicals and groups of elements are indicated, and as the physical properties of the various compounds of members of a chemical group have considerable variation, it is not difficult to determine which metal is present. Consider the following example: The sample has a specific gravity of 2.9 and a hardness of 3.5. Referring to the tables under this specific gravity and hardness, it is seen that of the common minerals it may be either margarite, ankerite, aragonite, dolomite or alunite. Treatment with hydrochloric acid gives complete solution with effervescence showing that it is carbonate, and so it must be either ankerite, aragonite or dolomite. It is a member of Table A. Tests with the soda bead, ammonium molybdate and turmeric paper are negative. On making alkaline with ammonia, a brown precipitate and colorless filtrate is obtained, showing the presence of iron. The addition of ammonium oxalate gives a white precipitate, indicating calcium, barium or strontium. As none of the possible minerals contain barium or strontium, the test indicates calcium. The addition of di-ammonium phosphate to this clear filtrate gives a precipitate indicating magnesium or manganese, but as none of the possible minerals contain manganese, the test indicates magnesium. It is therefore seen from these tests that the mineral contains calcium, magnesium, iron, and that it is a carbonate. It is evident that it is ankerite.

These few tests are for assistance in mineral identification and are not intended to take the place of a thorough chemical analysis. For a complete chemical test for impurities carried by a mineral (gold, silver, vanadium, etc.), and for testing for the rarer elements, the complete qualitative scheme should be followed.

It should always be kept in mind that the physical and chemical properties reported for a mineral are on the pure substance and that there are very often alterations and substitutions of one element for another. Iron may partially replace aluminum, aluminum replace iron, calcium partially replace magnesium or magnesium partially replace calcium and lead may partially replace antimony, or vice versa. It is very often the relative amounts of the various constituents which determine the mineral. *Proportions* of the various elements must therefore always be considered in arriving at the final result.

SPOT TESTS

A great deal of time can often be saved by making a few preliminary tests on the sample before beginning the routine qualitative analysis. Some of the blowpipe reactions may be applied and, after the mineral is in solution, spot

TABLES OF CHEMICAL REACTIONS

or drop tests can be used to great advantage. Virtually all of the different specific reactions of the elements and many group tests can be carried out by using drops of the solution and reagents.

Drop tests are made on a glass slide or a piece of window glass which has been coated with paraffin, vaseline, or oil, then wiped off so as to leave a thin film which causes the drops to cling together and prevents them from spreading over the glass; or a spot plate may be used. This is a piece of white or black glazed porcelain containing a number of small depressions for holding the liquids. Spot tests are made on paper by placing the drops of solution and reagents on a piece of filterpaper or spot test paper.

In making a test by this method, a drop or two of the solution is placed on the slide or spot plate and a drop of the reagent placed near it. With a clean glass rod these are then brought together and the results observed, using a hand lens if necessary. Reactions giving white or light colored precipitates are best carried out on the black plate, while those which give dark or colored ones should be made on the white plate. If glass is used, white or black paper can be placed under it. Testing for a group before adding the reagent to the entire solution can easily be done this way. For instance, if a drop or two of the solution of the mineral is treated with a drop of dilute HCl and no precipitate forms, the silver group is absent and it is not necessary to treat the entire solution with HCl. The same procedure may be carried out with many of the other group tests.

In the analytical procedure many drop tests are included in the confirmation of the various elements. There are several analytical methods available using the microscope and drops of solution and reagents for the entire analysis. However, it is doubtful if micro chemistry has any real advantage over the macro methods, except in the case of poisoning, or where the available sample is very small, if the size of the sample is kept small in order to save time in filtering and other manipulations, as is the case in this procedure.

Most drop and spot tests are as much a part of macro analysis as they are of the micro methods and have a very important place in analytical chemistry, but there is a tendency by some to conduct the entire analysis by this method. This leads to many difficulties; much special equipment is often required and nothing is gained where a large enough sample is available to make tests by the regular procedure using the spot tests where they fit and serve the purpose. All of the analytical systems, the different micro methods, blowpipe, spot, semi-micro, and the common macro procedure, have their good points, as well as their short-comings and faults. Therefore the best methods are those which use the good parts of each, thus eliminating as far as possible the faults of all.

CHEMICAL ANALYSIS OF MINERALS

TABLE A. MINERALS PARTIALLY OR COMPLETELY

Soluble with separation of	Gas evolved	SODIUM CARBONATE BEAD		Ammon- ium molyb- date gives a yellow precipi- tate	Barium chloride gives a white precipi- tate	Turmeric paper turns brown on drying	AMMONIUM HYDROXIDE		Ammon- ium oxalate gives a white precipi- tate	Ammon- ium phos- phate gives a white precipi- tate
		A silver coin is black- ened	Efferves- ces during fusion				Color of precipi- tate	Color of filtrate		
1				x					x	x
2				x						x
3				x						x
4				x						
5				x						
6				x						
7				x						x
8				x						
9				x						
10										
11										
12										x
13										
14										
15					x				x	
16					x					
17					x					
18					x					
19	CO ₂									
20	CO ₂									
21	CO ₂									
22	CO ₂									
23	CO ₂									
24	CO ₂									
25	CO ₂									
26	CO ₂									
27	CO ₂									
28	CO ₂									
29	CO ₂									x
30	CO ₂								x	x
31	CO ₂								x	x
32	CO ₂								x	x
33	CO ₂								x	x
34	CO ₂								x	
35	CO ₂									x
36	CO ₂									x
37	CO ₂		x						x	
38	Cl ₂									x
39	Cl ₂									x
40	Cl ₂									x

TABLES OF CHEMICAL REACTIONS

DISSOLVED BY HYDROCHLORIC ACID

NAME	COMPOSITION	REMARKS
1 Polyhalite	$K_2SO_4 \cdot CaSO_4 \cdot MgSO_4 \cdot 2H_2O$	Pt sol in water.
2 Thenardite	Na_2SO_4	Sol in water.
3 Kainite	$MgSO_4 \cdot KCl \cdot 3H_2O$	Sol in water.
4 Kalinite	$K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$	Sol in water.
5 Chalcocite	$CuSO_4 \cdot 5H_2O$	Sol in water.
6 Mirabilite	$Na_2SO_4 \cdot 10H_2O$	Sol in water.
7 Epsomite	$MgSO_4 \cdot 7H_2O$	Sol in water.
8 Melanterite	$FeSO_4 \cdot 7H_2O$	Sol in water.
9 Copiapite	$Fe_4(OH)_2(SO_4)_3 \cdot 18H_2O$	Sol in water.
10 Halite	$NaCl$	Sol in water.
11 Sylvite	KCl	Sol in water.
12 Carnallite	$KMgCl_3 \cdot 6H_2O$	Sol in water.
13 Niter	KNO_3	Sol in water.
14 Soda niter	$NaNO_3$	Sol in water.
15 Borax	$Na_2B_4O_7 \cdot 10H_2O$	Sol in water.
16 Ulexite	$Na_2O \cdot CaO \cdot 5B_2O_5 \cdot 16H_2O$	Pt sol in water.
17 Sassolite	$B_2O_3 \cdot 3H_2O$	Sol in water.
18 Kernite	$Na_2B_4O_7 \cdot 4H_2O$	Slowly sol in cold water.
19 Trona	$Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O$	Sol in water.
20 Natron	$Na_2CO_3 \cdot 10H_2O$	Sol in water.
21 Smithsonite	$ZnCO_3$	Cobalt sol on coal gives a green coat.
22 Witherite	$BaCO_3$	Sulfuric acid gives insoluble ppt.
23 Malachite	$CuCO_3 \cdot Cu(OH)_2$	Sol deposits Cu on bright iron.
24 Siderite	$FeCO_3$	Potassium ferrocyanide gives blue.
25 Azurite	$2CuCO_3 \cdot Cu(OH)_2$	Sol deposits Cu on bright iron.
26 Strontianite	$SrCO_3$	Colors flame intense red.
27 Rhodochrosite	$MnCO_3$	S.Ph. bead in O.F. is amethyst.
28 Aurichalcite	$2(Zn,Cu)CO_3 \cdot 3(Zn,Cu)(OH)_2$	Copper and zinc tests.
29 Magnesite	$MgCO_3$	
30 Ankerite	$2CaCO_3 \cdot MgCO_3 \cdot FeCO_3$	
31 Dolomite	$CaCO_3 \cdot MgCO_3$	
32 Aragonite	$CaCO_3$	
33 Calcite	$CaCO_3$	
34 Hydromagnesite	$3MgCO_3 \cdot Mg(OH)_2 \cdot 3H_2O$	
35 Gay-Lussite	$CaCO_3 \cdot Na_2CO_3 \cdot 5H_2O$	
36 Hydrozincite	$ZnCO_3 \cdot 2Zn(OH)_2$	
37 Cancrinite	$4Na_2O \cdot CaO \cdot Al_2O_3 \cdot 2CO_2 \cdot 9SiO_2 \cdot 3H_2O$	
38 Franklinite	$(Fe,Mn,Zn)O \cdot (Fe,Mn)_2O_3$	Gives manganese bead tests.
39 Psilomelane	$MnO_2 \cdot 2H_2O$	S.Ph. bead in O.F. is amethystine.
40 Pyrolusite	MnO_2	S.Ph. bead in O.F. is amethystine.

CHEMICAL ANALYSIS OF MINERALS

TABLE A. MINERALS PARTIALLY OR COMPLETELY

Soluble with separation of	Gas evolved	SODIUM CARBONATE BEAD		Ammon- ium moly- bdate gives a yellow precipi- tate	Barium chloride gives a white precipi- tate	Turmeric paper turns brown on drying	AMMONIUM HYDROXIDE		Ammon- ium oxalate gives a white precipi- tate	Ammon- ium phos- phate gives a white precipi- tate
		A silver coin is black- ened	Efferves- ces during fusion				Color of precipi- tate	Color of filtrate		
41	Cl ₂									x
42	Cl ₂									x
43	PbCl ₂	H ₂ S	x							
44	PbCl ₂	H ₂ S	x							
45	PbCl ₂	H ₂ S	x							
46		H ₂ S	x							
47		H ₂ S	x							
48			x							
49		H ₂ S	x							x
50		H ₂ S	x							
51		H ₂ S	x							
52	SiO ₂	Cl ₂		x						x
53	PbCl ₂	H ₂ S	x		x					x
54										
55				x						x
56				x						x
57				x						x
58				x						x
59				x						x
60				x						
61				x						
62				x						
63				x						
64				x						
65				x						
66				x						
67				x						
68										
69	PbCl ₂									
70	Ylw WO ₃									
71	PbCl ₂									
72				x						
73				x						
74				x						
75				x						
76				x						
77				x						
78										
79										
80										
81										x

TABLES OF CHEMICAL REACTIONS

DISSOLVED BY HYDROCHLORIC ACID (*continued*)

	NAME	COMPOSITION	REMARKS
41	Manganite	$Mn_2O_3 \cdot 2H_2O$	S.Ph. bead in O.F. is amethystine.
42	Hausmannite	Mn_2O_4	S.Ph. bead in O.F. is amethystine.
43	Boulangerite	$5PbS \cdot 2Sb_2S_3$	Sb separates out on dilution.
44	Jamesonite	$Pb_4FeSb_5S_{14}$	Sb separates out on dilution.
45	Zinkenite	$PbS \cdot Sb_2S_3$	Sb separates out on dilution.
46	Greenockite	CdS	On coal in R.F., a reddish-brown coat.
47	Pyrrhotite	Fe_2S_y	Potassium ferrocyanide gives blue.
48	Stibnite	Sb_2S_3	Fuses in a match flame.
49	Sphalerite	ZnS	Has a resinous luster.
50	Alabandite	MnS	Manganese beads. Not common.
51	Wurtzite	ZnS	Not common.
52	Braunite	$3Mn_2O_3 \cdot MnSiO_3$	Manganese bead tests.
53	Galena	PbS	$PbCl_2$ is soluble in hot water.
54	Triphyllite- Lithiophyllite	$Li(Fe,Mn)PO_4$	Flame test for lithium.
55	Amblygonite	$LiF \cdot AlPO_4$	Gives flame test for lithium.
56	Fluorapatite	$9CaO \cdot 3P_2O_5 \cdot CaF_2$	Gives test for fluorine.
57	Chlorapatite	$9CaO \cdot 3P_2O_5 \cdot CaCl_2$	Gives tests for calcium.
58	Apatite	$3Ca_3(PO_4)_2 \cdot Ca(F,Cl)_2$	
59	Collophanite	$Ca_3(PO_4)_2 \cdot H_2O$	
60	Vivianite	$Fe_3(PO_4)_2 \cdot 8H_2O$	
61	Turquoise	$CuO \cdot 3Al_2O_3 \cdot 2P_2O_5 \cdot 9H_2O$	
62	Wavellite	$4AlPO_4 \cdot 2Al(OH)_3 \cdot 9H_2O$	Potassium ferrocyanide gives blue.
63	Monazite	$(Ce,La,Dy)PO_4$	Tests for the Rare Earths.
64	Scorodite	$FeAsO_4 \cdot 2H_2O$	Gives arsenic tests.
65	Conichalcite	$8(Cu,Ca)As_2O_3 \cdot 3H_2O$	Copper and arsenic tests.
66	Annabergite	$3NiO \cdot As_2O_3 \cdot 8H_2O$	Nickel and arsenic tests.
67	Erythrite	$Co_3(AsO_4)_2 \cdot 8H_2O$	The solution is rose-red.
68	Carnotite	$K(UO_2)_2(VO_4)_2 \cdot 8H_2O$	The solution is yellowish.
69	Vanadinite	$3Pb_4(VO_4)_2 \cdot PbCl_2$	
70	Scheelite	$CaWO_4$	Reacts for tungsten. Fluorescent.
71	Wulfenite	$PbMoO_4$	Gives molybdenum reactions.
72	Brochantite	$CuSO_4 \cdot 3Cu(OH)_2$	Sol deposits Cu on bright iron.
73	Jarosite	$K_2O \cdot Fe_2O_3 \cdot 4SO_3 \cdot 6H_2O$	
74	Anhydrite	$CaSO_4$	
75	Antlerite	$3CuO \cdot SO_3 \cdot 8H_2O$	Sol deposits Cu on bright iron.
76	Glauberite	$Na_2SO_4 \cdot CaSO_4$	
77	Gypsum	$CaSO_4 \cdot 2H_2O$	
78	Atacamite	$CuCl_2 \cdot 3Cu(OH)_2$	Sol deposits Cu on bright iron.
79	Colemanite	$2CaO \cdot 3B_2O_3 \cdot 5H_2O$	
80	Boracite	$MgCl_2 \cdot 6MgO \cdot 8B_2O_3$	
81	Brucite	$Mg(OH)_2$	

CHEMICAL ANALYSIS OF MINERALS

TABLE A. MINERALS PARTIALLY OR COMPLETELY

Soluble with separation of	Gas evolved	SODIUM CARBONATE BEAD		Ammon- ium molyb- date gives a yellow precipi- tate	Barium chloride gives a white precipi- tate	Turmeric paper turns brown on drying	AMMONIUM HYDROXIDE		Ammon- ium oxalate gives a white precipi- tate	Ammon- ium phos- phate gives a white precipi- tate
		A silver coin is black- ened	Efferves- ces during fusion				Color of precipi- tate	Color of filtrate		
82								Blue		
83										
84							Brwn			
85							Brwn			
86							Brwn			
87							Brwn			
88							Wht			
89	SiO ₂			x		x			x	
90				x						
91				x					x	
92				x					x	
93				x					x	
94				x						
95				x			Brwn			x
96				x					x	x
97				x					x	
98				x					x	
99				x					x	
100				x					x	
101		H ₂ S	x	x		x				
102			x	x						
103	SiO ₂	Cl ₂		x						x
104	Res			x						x
105	Res			x						
106	Res			x						x
107	SiO ₂			x						
108	SiO ₂			x						
109	SiO ₂			x						
110	Res			x						x
111	Res			x						x
112	SiO ₂			x						x
113	Res			x						x
114	SiO ₂			x						x
115	SiO ₂			x						x
116	SiO ₂			x						x
117	SiO ₂			x						x
118	SiO ₂			x						x

TABLES OF CHEMICAL REACTIONS

 DISSOLVED BY HYDROCHLORIC ACID (*continued*)

	NAME	COMPOSITION	REMARKS
82	Cuprite	Cu_2O	Sol deposits Cu on bright iron.
83	Zincite	ZnO	
84	Hematite	Fe_2O_3	Slowly soluble.
85	Magnetite	$\text{FeO}\cdot\text{Fe}_2\text{O}_3$	Slowly soluble.
86	Goethite	$\text{Fe}_2\text{O}_3\cdot\text{H}_2\text{O}$	
87	Limonite	$\text{Fe}_2\text{O}_3\cdot3\text{H}_2\text{O}$	Sometimes leaves a residue of silica.
88	Ilmenite	$\text{FeO}\cdot\text{TiO}_2$	Slowly soluble. Titanium tests.
89	Anorthite	$\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot2\text{SiO}_2$	
90	Leucite	$\text{K}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot\text{SiO}_2\cdot5\text{H}_2\text{O}$	Decomposed without gelatinization.
91	Heulandite	$(\text{Ca},\text{Na}_2)\text{O}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2\cdot5\text{H}_2\text{O}$	Decomposed without gelatinization.
92	Stilbite	$(\text{Na}_2,\text{Ca})\text{O}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2\cdot6\text{H}_2\text{O}$	Decomposed without gelatinization.
93	Harmotome	$(\text{K}_2,\text{Ba})\text{Al}_2\text{Si}_5\text{O}_{14}\cdot5\text{H}_2\text{O}$	Decomposed without gelatinization.
94	Willemite	ZnSiO_4	Dissolved without gelatinization.
95	Chrysolite	$2(\text{Mg},\text{Fe})\text{O}\cdot\text{SiO}_2$	Dissolved without gelatinization.
96	Monticellite	$\text{CaO}\cdot\text{MgO}\cdot\text{SiO}_2$	Dissolved without gelatinization.
97	Prehnite	$2\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot3\text{SiO}_2\cdot\text{H}_2\text{O}$	Decomposed slowly without gelatinization.
98	Cancrinite	$4\text{Na}_2\text{O}\cdot\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot2\text{CO}_2\cdot9\text{SiO}_2\cdot3\text{H}_2\text{O}$	Dissolves without gelatinization.
99	Sodalite	$3\text{NaAlSiO}_4\cdot\text{NaCl}$	Dissolves without gelatinization.
100	Hueynite	$3\text{NaAlSiO}_4\cdot\text{CaSO}_4$	Dissolves without gelatinization.
101	Lazurite	$3\text{NaAlSiO}_4\cdot\text{Na}_2\text{S}$	Dissolves without gelatinization.
102	Chrysocolla	$\text{CuSiO}_3\cdot2\text{H}_2\text{O}$	Dissolves without gelatinization.
103	Braunite	$3\text{Mn}_2\text{O}_3\cdot\text{MnSiO}_3$	Gives manganese reactions.
104	Hypersthene	$(\text{Fe},\text{Mg})\text{SiO}_3$	Only partially decomposed.
105	Acmite	$\text{Na}_2\text{O}\cdot\text{Fe}_2\text{O}_3\cdot4\text{SiO}_2$	Only slightly acted on by acids.
106	Rhodonite	MnSiO_3	Only slightly acted on by acids.
107	Wollastonite	CaSiO_3	
108	Pectolite	$\text{Na}_2\text{O}\cdot4\text{CaO}\cdot6\text{SiO}_2\cdot\text{H}_2\text{O}$	Partly decomposed.
109	Nephelite	NaAlSiO_4	
110	Wernerite	$\text{Ca}_2\text{Na}_2\text{Al}_2\text{SiO}_6$	Imperfectly decomposed.
111	Vesuvianite	$12\text{CaO}\cdot3(\text{Al},\text{Fe})_2\text{O}_3\cdot10\text{SiO}_2\cdot2\text{H}_2\text{O}$	Partially decomposed.
112	Datolite	$2\text{CaO}\cdot\text{B}_2\text{O}_3\cdot2\text{SiO}_2\cdot\text{H}_2\text{O}$	Reacts for boron.
113	Epidote	$4\text{CaO}\cdot3(\text{Al},\text{Fe})_2\text{O}_3\cdot6\text{SiO}_2\cdot\text{H}_2\text{O}$	Only partially decomposed.
114	Allanite	$4(\text{Ca},\text{Fe})\text{O}\cdot3(\text{Al},\text{Ce},\text{Fe},\text{Di})_2\text{O}_3\cdot6\text{SiO}_2\cdot\text{H}_2\text{O}$	Tests for the Rare Earths.
115	Ilvaite	$2\text{CaO}\cdot4\text{FeO}\cdot\text{Fe}_2\text{O}_3\cdot4\text{SiO}_2\cdot\text{H}_2\text{O}$	
116	Calamine	$2\text{ZnO}\cdot\text{SiO}_2\cdot\text{H}_2\text{O}$	
117	Apophyllite	$\text{K}_2\text{O}\cdot8\text{CaO}\cdot16\text{SiO}_2\cdot\text{F}\cdot16\text{H}_2\text{O}$	
118	Laumontite	$\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot4\text{SiO}_2\cdot4\text{H}_2\text{O}$	

CHEMICAL ANALYSIS OF MINERALS

TABLE A. MINERALS PARTIALLY OR COMPLETELY

	Soluble with separation of	Gas evolved	SODIUM CARBONATE BEAD		Ammon- ium molyb- date gives a yellow precipi- tate	Barium chloride gives a white precipi- tate	Turmeric paper turns brown on drying	AMMONIUM HYDROXIDE		Ammon- ium oxalate gives a white precipi- tate	Ammon- ium phos- phate gives a white precipi- tate
			A silver coin is black- ened	Efferves- ces during fusion				Color of precipi- tate	Color of filtrate		
119	SiO ₂			x				Wht		x	
120	SiO ₂			x				Wht		x	
121	SiO ₂			x				Wht		x	
122	SiO ₂			x				Wht			
123	SiO ₂			x				Wht			
124	SiO ₂			x				Wht		x	
125	SiO ₂			x				Wht		x	
126	Res			x				Wht			
127	Res			x				Wht		x	
128	Res			x				Brwn			x
129	SiO ₂			x						x	
130	SiO ₂			x						x	
131	SiO ₂			x				Wht		x	
132	SiO ₂			x						x	
133	SiO ₂			x						x	
134	Res			x						x	
135	Res			x						x	
136	SiO ₂			x						x	
137				x						x	
138	SiO ₂			x						x	
139	Res			x						x	
140	SiO ₂			x						x	
141	Res			x			x			x	

TABLES OF CHEMICAL REACTIONS

DISSOLVED BY HYDROCHLORIC ACID (*continued*)

	NAME	COMPOSITION	REMARKS
119	Phillipsite	(K ₂ ,Ca)O·Al ₂ O ₃ ·4SiO ₂ ·4½H ₂ O	
12	Chabazite	(Na ₂ ,Ca)O·Al ₂ O ₃ ·4SiO ₂ ·6H ₂ O	
121	Gmelinite	(Na ₂ ,Ca)O·Al ₂ O ₃ ·4SiO ₂ ·6H ₂ O	
122	Analcite	Na ₂ O·Al ₂ O ₃ ·4SiO ₂ ·2H ₂ O	
123	Natrolite	Na ₂ O·Al ₂ O ₃ ·3SiO ₂ ·2H ₂ O	
124	Scolecite	CaO·Al ₂ O ₃ ·3SiO ₂ ·3H ₂ O	
125	Thomsonite	(Ca,Na ₂)O·Al ₂ O ₃ ·2SiO ₂ ·2½H ₂ O	
126	Lepidolite	(K,Li) ₂ O·Al ₂ O ₃ ·3SiO ₂ with F	
127	Margarite	CaO·2Al ₂ O ₃ ·2SiO ₂ ·H ₂ O	
128	Penninite	5(Mg,Fe)O·Al ₂ O ₃ ·3SiO ₂ ·4H ₂ O	
129	Sepiolite	2MgO·3SiO ₂ ·2H ₂ O	
130	Serpentine	3MgO·2SiO ₂ ·4H ₂ O	
131	Halloysite	Al ₂ O ₃ ·2SiO ₂	
132	Antigorite	3MgO·2SiO ₂ ·2H ₂ O	
133	Chrysotile	3MgO·2SiO ₂ ·2H ₂ O	
134	Garnierite	(Ni·Mg)O·SiO ₂ ·nH ₂ O	
135	Cordierite (Iolite)	4(Mg,Fe)O·4Al ₂ O ₃ ·10SiO ₂ ·H ₂ O	
13	Andradite	3CaO·Fe ₂ O ₃ ·3SiO ₂	Only partially decomposed.
137	Olivine	(Mg,Fe) ₂ SiO ₄	Difficultly soluble.
138	Forsterite	Mg ₂ SiO ₄	Slowly soluble.
139	Clinozoisite	4CaO·3Al ₂ O ₃ ·6SiO ₂ ·H ₂ O	
140	Chondrodite	4MgO·2SiO ₂ ·Mg(F,OH) ₂	
141	Titanite (Sphene)	CaO·TiO ₂ ·SiO ₂	Partially decomposed.

CHEMICAL ANALYSIS OF MINERALS

TABLE B. MINERALS

	Soluble with separation of	Gas evolved	SODIUM CARBONATE BEAD		Ammon- ium molyb- date gives a yellow precipi- tate	Barium chloride gives a white precipi- tate	Hydro- chloric acid gives a white precipi- tate	AMMONIUM HYDROXIDE		Ammon- ium oxalate gives a white precipi- tate	Ammon- ium phos- phate gives a white precipi- tate
			A silver coin is black- ened	Efferves- ces during fusion				Color of precipi- tate	Color of filtrate		
1							x				
2							x				
3								Blk			
4								Wht			
5	Wht		x								
6	Wht		x				x				
7	Wht		x				x				
8	S		x							Blue	
9			x							Grnsh	
10			x				x				
11	S		x							Blue	
12	S		x							Blue	
13	S		x							Brwn	
14			x							Brwn	
15	S		x							Blk	
16	S		x							Brwn	
17	S		x							Brwn	
18	Wht		x							Brwn	
19	Wht		x							Wht	
20	Wht		x							Wht	
21	Wht		x							Wht	
22	S		x							Wht	
23	Wht		x							Wht	
24	Wht		x							Wht	
25	Wht		x							Wht	
26	SnO ₂		x							Brwn	
27		CO ₂								Brwn	
28	Wht	CO ₂								Wht	
29	Wht					x				Wht	
30	Wht					x				Wht	
31	Wht					x				Wht	
32						x				Ylw	
33							x			Ylw	
34	Wht						x			Wht	
35											
36											
37	S		x								
38	S		x								
39	Gold		x								

TABLES OF CHEMICAL REACTIONS

SOLUBLE IN NITRIC ACID

NAME	COMPOSITION	REMARKS
1 Silver	Ag	
2 Copper	Cu	Gives a green solution.
3 Mercury	Hg	
4 Bismuthinite	Bi ₂ S ₃	Gives a wht ppt on dilution.
5 Molybdenite	MoS ₂	Gives turmeric paper test.
6 Dyscrasite	Ag ₃ Sb	May give a wht ppt on dilution.
7 Argentite	Ag ₂ S	
8 Chalcoelite	Cu ₂ S	Gives a green solution.
9 Pentlandite	(Fe,Ni)S	Gives a green solution.
10 Cinnabar	HgS	
11 Bornite	3Cu ₂ S·Fe ₂ S ₃	Sol deposits Cu on bright iron.
12 Chalcopyrite	CuFeS ₂	Green sol.
13 Pyrite	FeS ₂	S is deposited on heating the sol.
14 Smaltite	(Co,Ni)As ₂	Gives a rose-red solution.
15 Cobaltite	CoS ₂ ·CoAs ₂	
16 Marcasite	FeS ₂	
17 Arsenopyrite	FeS ₂ ·FeAs ₂	
18 Bouronite	2PbS·Cu ₂ S·Sb ₂ S ₃	Gives a blue sol.
19 Galena	PbS	
20 Stibnite	Sb ₂ S ₃	May give a wht ppt on dilution.
21 Pyrargyrite	3Ag ₂ S·Sb ₂ S ₃	May give a wht ppt on dilution.
22 Proustite	3Ag ₂ S·As ₂ S	
23 Tetrahedrite	(Cu,Fe,Zn,Ag) ₁₂ Sb ₄ S ₁₃	Green sol.
24 Stephanite	5Ag ₂ S·Sb ₂ S ₃	
25 Polybasite	9Ag ₂ S·Sb ₂ S ₃	
26 Stannite	Cu ₂ S·FeS·SnS ₂	Blue sol
27 Cerussite	PbCO ₃	
28 Phosgenite	PbCO ₃ ·PbCl ₂	
29 Pyromorphite	3Pb ₃ (PO ₄) ₂ ·PbCl ₂	
30 Mimetite	Pb ₃ (AsO ₄) ₂ ·PbCl ₂	
31 Vanadinite	3Pb ₃ (VO ₄) ₂ ·PbCl ₂	
32 Olivenite	4CuO·As ₂ O ₅ ·H ₂ O	
33 Uraninitite	U ₃ O ₈ , PbO,etc.	Soluble with difficulty.
34 Anglesite	PbSO ₄	Green sol.
35 Covellite	CuS	
36 Enargite	Cu ₃ AsS ₄	
37 Orpiment	As ₂ S ₃	
38 Realgar	As ₂ S	
39 Sylvanite	(Au,Ag)Te ₂	

CHEMICAL ANALYSIS OF MINERALS

TABLE C. MINERALS

	Soluble with separation of	Gas evolved	SODIUM CARBONATE BEAD		Ammonium molyb- date gives a yellow precipi- tate	Barium chloride gives a white precipi- tate	Turmeric paper turns brown on drying	AMMONIUM HYDROXIDE		Ammon- ium oxalate gives a white precipi- tate	Ammon- ium phos- phate gives a white precipi- tate
			A silver coin is black- ened	Efferves- ces during fusion				Color of precipi- tate	Color of filtrate		
1		F ₂								x	
2		F ₂									x
3											
4											
5											
6	SiO ₂			x			x				
7	Res			x							
8	SiO ₂			x							x
9	SiO ₂			x							x
10	SiO ₂			x							x
11	Res			x			x				
12	SiO ₂			x			x			x	
13	Res			x			x				x
14	Res			x			x	Brwn		x	
15					x						
16	Res			x							
17	SiO ₂			x							
18	SiO ₂			x							x
19			x								x

TABLES OF CHEMICAL REACTIONS

SOLUBLE IN SULFURIC ACID

	NAME	COMPOSITION	REMARKS
1	Fluorite	CaF_2	The gas etches glass.
2	Cryolite	$3\text{NaF}\cdot\text{AlF}_3$	The gas etches glass.
3	Spinel	$\text{MgO}\cdot\text{Al}_2\text{O}_3$	Difficulty soluble.
4	Gahnite	$\text{ZnO}\cdot\text{Al}_2\text{O}_3$	Difficulty soluble.
5	Gibbsite	$\text{Al}_2\text{O}_3\cdot 3\text{H}_2\text{O}$	
6	Zircon	ZrSiO_4	
7	Staurolite	$2\text{FeO}\cdot 5\text{Al}_2\text{O}_3\cdot 4\text{SiO}_2\cdot \text{H}_2\text{O}$	Only fine powder effected by conc sulfuric.
8	Biotite	$(\text{K},\text{H})_2\text{O}\cdot 2(\text{Mg},\text{Fe})\text{O}\cdot (\text{Al},\text{Fe})_2\text{O}_3\cdot 3\text{SiO}_2$	Only partly decomposed.
9	Penninite	$5(\text{Mg},\text{Fe})\text{O}\cdot \text{Al}_2\text{O}_3\cdot 3\text{SiO}_2\cdot 4\text{H}_2\text{O}$	Silica remains in thin scales.
10	Clinochlore	$5\text{MgO}\cdot \text{Al}_2\text{O}_3\cdot 3\text{SiO}_2\cdot 4\text{H}_2\text{O}$	
11	Pyrophyllite	$\text{Al}_2\text{O}_3\cdot 4\text{SiO}_2\cdot \text{H}_2\text{O}$	Partly decomposed.
12	Perovskite	CaTiO_3	
13	Columbite-Tantalite	$(\text{Fe}-\text{Mn})\text{O}\cdot \text{Cb}_2\text{O}_5\cdot \text{Ta}_2\text{O}_5$	
14	Samarskite	$3(\text{Fe},\text{Ca},\text{UO}_2,\text{etc.})\text{O}\cdot (\text{Ce},\text{Y},\text{etc.})_2\text{O}_3\cdot (\text{Cb},\text{Ta})_2\text{O}_5$	Only partially soluble.
15	Alunite	$\text{K}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 4\text{SO}_3\cdot 6\text{H}_2\text{O}$	
16	Topaz	$\text{Al}_2(\text{F},\text{OH})_6\text{SiO}_4$	Only partially decomposed.
17	Phlogopite	$2\text{K}_2\text{O}\cdot 10(\text{Mg},\text{Fe})\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 12\text{SiO}_2\cdot 3\text{H}_2\text{O}$	Gives a milky sol with con acid.
18	Chlorite	$9\text{MgO}\cdot 3\text{Al}_2\text{O}_3\cdot 5\text{SiO}_2\cdot 8\text{H}_2\text{O}$	
19	Calaverite	AuTe_2	Hot sulfuric gives a deep red color.

CHEMICAL ANALYSIS OF MINERALS

TABLE D. MINERALS NOT

	Soluble with separation of	Gas evolved	SODIUM CARBONATE BEAD		Ammon- ium molyb- date gives a yellow precipi- tate	Barium chloride gives a white precipi- tate	Turmeric paper turns brown on drying	AMMONIUM HYDROXIDE		Ammon- ium oxalate gives a white precipi- tate	Ammon- ium phos- phate gives a white precipi- tate
			A silver coin is black- ened	Efferves- ces during fusion				Color of preci- pitate	Color of filtrate		
1											
2											
3								Blk			
4											
5				x							
6				x							
7											
8											
9											
10											
11											
12											
13											
14				x							
15				x							
16				x							
17				x							x
18				x						x	x
19				x							
20				x							
21				x							x
22				x						x	x
23				x						x	
24				x						x	
25				x						x	
26				x						x	
27				x							
28				x							
29				x							
30				x							
31				x							
32				x							
33				x							
34				x							
35				x							
36				x							
37				x							
38				x							
39				x							
40				x							
41			x								

TABLES OF CHEMICAL REACTIONS

ACTED UPON BY ACIDS

	NAME	COMPOSITION	REMARKS
1	Diamond	C	
2	Gold	Au	
3	Calomel	HgCl	
4	Cerargyrite	AgCl	
5	Quartz	SiO ₂	
6	Opal	SiO ₂ ·nH ₂ O	
7	Corundum	Al ₂ O ₃	
8	Chromite	FeO·Cr ₂ O ₃	
9	Chrysoberyl	BeO·Al ₂ O ₃	
10	Cassiterite	SnO ₂	See tests for cassiterite.
11	Rutile	TiO ₂	In R.F. gives green beads. H ₂ O ₂ gives reddish-yellow color.
12	Diaspore	Al ₂ O ₃ ·H ₂ O	
13	Bauxite	Al ₂ O ₃ ·2H ₂ O	
14	Orthoclase	K ₂ O·Al ₂ O ₃ ·6SiO ₂	Flame test for potassium.
15	Microcline	K ₂ O·Al ₂ O ₃ ·6SiO ₂	Flame test for potassium.
16	Albite	Na ₂ O·Al ₂ O ₃ ·6SiO ₂	
17	Enstatite	MgO·SiO ₂	
18	Pyroxene	Ca,Fe,Mg,SiO ₂ ,etc.	
19	Jadeite	Na ₂ O·Al ₂ O ₃ ·4SiO ₂	
20	Spodumene	Li ₂ O·Al ₂ O ₃ ·4SiO ₂ (Mg,Fe)SiO ₃	Flame test for lithium.
21	Anthophyllite	Ca,Fe,Mg,Al,K,Na,SiO ₂	
22	Amphibole	3BeO·Al ₂ O ₃ ·6SiO ₂	
23	Beryl	Ca,Mg,Fe,Al,Cr,SiO ₂	
24	Garnet	2BeO·SiO ₂	Andradite is pt sol in HCl.
25	Phenacite	CaO·B ₂ O ₃ ·2SiO ₂	
26	Danburite	Al ₂ O ₃ ·(OH,F)·SiO ₂	
27	Topaz	Al ₂ O ₃ ·SiO ₂	Slightly sol in sulfuric.
28	Andalusite	Al ₂ O ₃ ·SiO ₂	
29	Sillimanite	Al ₂ O ₃ ·SiO ₂	
30	Kyanite	Al ₂ O ₃ ·SiO ₂	
31	Zoisite	4CaO·3Al ₂ O ₃ ·6SiO ₂ ·H ₂ O	
32	Axinite	6(Ca,Fe,Mn)O·2Al ₂ O ₃ ·8SiO ₂ ·H ₂ O	
33	Tourmaline	Borosilicate of K, Li, Mg, Fe and Al	
34	Muscovite	K ₂ O·3Al ₂ O ₃ ·6SiO ₂ ·2H ₂ O	
35	Kaolinite	Al ₂ O ₃ ·2SiO ₂ ·2H ₂ O	
36	Talc	3MgO·4SiO ₂ ·H ₂ O	
37	Lazulite	(Fe,Mg)O·Al ₂ O ₃ ·P ₂ O ₅ ·H ₂ O	
38	Barite	BaSO ₄	Flame tests for barium.
39	Celestite	SrSO ₄	Flame test for strontium.
40	Graphite	C	
41	Sulfur	S	

CHEMICAL ANALYSIS OF MINERALS

TABLE D. MINERALS NOT

Soluble with separation of	Gas evolved	SODIUM CARBONATE BEAD		Ammon- ium molyb- date gives a yellow precipi- tate	Barium chloride gives a white precipi- tate	Turmeric paper turns brown on drying	AMMONIUM HYDROXIDE		Ammon- ium oxalate gives a white precipi- tate	Ammon- ium phos- phate gives a white precipi- tate
		A silver coin is black- ened	Efferves- ces during fusion				Color of preci- pitate	Color of filtrate		
42			x				wht		x	
43								blue		
44			x						x	x
45			x				brwn		x	x
46			x				brwn		x	x
47			x				brwn		x	x
48			x	:			brwn			x
49			x		x		brwn			x
50					x		wht			
51					x		wht			
52							wht			
53			x				brwn	x		
54			x				brwn			x

TABLES OF CHEMICAL REACTIONS

ACTED UPON BY ACIDS (*continued*)

	NAME	COMPOSITION	REMARKS
42	Clinzoisite	4CaO·3Al ₂ O ₃ ·6SiO ₂ ·H ₂ O	
43	Niccolite	NiAs	
44	Diopside	CaO·MgO·2SiO ₂	
45	Augite	CaO·3(Fe,Mg)O·Al ₂ O ₃ ·4SiO ₂	
46	Tremolite	2CaO·5MgO·8SiO ₂ ·H ₂ O	
47	Hornblend	mCa(Mg,Fe) ₃ ·(SiO ₃) ₄ n(Al,Fe)(F,OH)SiO ₃	
48	Glauophane	Na ₂ O·Al ₂ O ₃ ·4SiO ₂ ·2(Mg,Fe)O·2SiO ₂	
49	Glauconite	K ₂ (Mg,Fe) ₂ Al ₆ (Si ₄ O ₁₀)(OH) ₁₂	
50	Amblygonite	LiF·AlPO ₄	Lithium flame test.
51	Wavellite	4AlPO ₄ 2Al(OH) ₃ ·9H ₂ O	
52	Lepidolite	(Li,K) ₂ O·Al ₂ O ₃ ·3SiO ₂ with F	
53	Arfvedsonite	4Na ₂ O·3CaO·14FeO·(Fe,Al) ₂ O ₃ ·21SiO ₂	
54	Staurolite	2(Fe,Mg)O·5Al ₂ O ₃ ·4SiO ₂ ·H ₂ O	

CHEMICAL ANALYSIS OF MINERALS

TABLE E. ANALYTICAL SCHEME

BASIC CONSTITUENTS

CHAPTER V

Qualitative Chemical Tests

In the following tests, 20 drops from a dropping bottle are taken as equal to 1 ml. and the amount of acid or alkali added is on this basis. The analyst should determine how many drops from the apparatus at hand are required to make 1 ml. and regulate the amounts added according to these results. The size of the drops depend in a large measure on the size of the point from which they fall and may vary from 20 to 30 or more to a milliliter.

Solution of the Mineral. To 1/10 of a gram (size of a BB shot) of the finely ground mineral, add water and boil. If solution is complete, proceed with Procedure #1 (P-1). If the sample is not soluble in water, add a little nitric acid (HNO_3); boil if necessary. (If tests show that the mineral is soluble in HCl, this should be used, which eliminates P-1). If the substance does not completely dissolve, add conc. HNO_3 and continue to boil. If still insoluble, evaporate nearly to dryness, add a mixture of 3 volumes of conc. hydrochloric acid (HCl) and 1 volume of conc. nitric acid (HNO_3) (forming aqua regia) in a silica or porcelain dish (not platinum) and heat slowly. Repeat two or three times if necessary, then evaporate to dryness; treat with conc. HNO_3 and evaporate to dryness; again add conc. HNO_3 and evaporate to dryness to drive off all excess acid and remove the HCl, thus converting the metals to nitrates; dissolve in water and filter. This treatment will dissolve all of the metallic sulfides and many of the silicates, leaving the silica (SiO_2) as residue.

If a residue other than SiO_2 remains, incinerate the filter paper or remove the residue from it and treat as follows: Mix the dried residue with 4 volumes of sodium carbonate (Na_2CO_3) and heat on charcoal until quiet fusion is obtained. If the HCl (silver) and H_2S (copper and tin) groups are *absent*, a platinum spoon or foil may be used instead of the charcoal. Cool, dissolve in the smallest amount of water and HNO_3 ; evaporate to dryness, add conc. HNO_3 and evaporate to dryness again; dissolve in water, and filter. This procedure decomposes the silicates, putting the metals into solution as nitrates, leaving the SiO_2 as an insoluble residue.

To incinerate a filter paper and precipitate, carefully remove the paper with the precipitate from the funnel and place it in a porcelain crucible or dish. This is then heated over a flame until the paper is completely consumed, leaving the precipitate as a carbon-free powder in the dish, from which it is removed for further tests on cooling.

Insoluble sulfates, such as barite, will not go into solution on treatment with

CHEMICAL ANALYSIS OF MINERALS

acid if the fusion is made on platinum. If made on charcoal, the sulfate is reduced to sulfide which dissolves, liberating H_2S .

If the fusion is made on platinum, then treated with water (no acid) and filtered, the majority of the sulfate passes into the filtrate as sodium sulfate and the greater part of the barium is converted to barium carbonate, which is easily soluble in HCl.

If gold, platinum, or the platinum metals are present in the sample, it is necessary to digest the Na_2CO_3 melt with aqua regia to put them into solution.

A few minerals are not completely decomposed by the above treatments. If this is apparent, incinerate the filter paper, mix the residue with 1 ml. of dry potassium bisulfate ($KHSO_4$) and heat to quiet fusion at a low red heat for several minutes in a porcelain crucible. Allow to cool, add 3 drops of conc. sulfuric acid (H_2SO_4) and reheat until the fusion is melted. Cool, dissolve the melt in *cold water*, and filter. Wash the residue from the filter paper with a small amount of water, add about 1 ml. of conc. HCl and heat to nearly boiling for a few minutes. Filter and add the *cold filtrate* to that from the other operations.

Add the clear filtrates from all operations together and treat by P-1, or if the sample is a mixture, the solutions obtained by the different treatments may be analyzed separately. This will assist in the identification of the various mineral constituents.

If the Na_2CO_3 fusion is made on the original substance before any treatment with acids, it should be observed closely for color reactions and metallic beads which indicate certain metals by their color and tenacity, as follows:

Malleable: Silver, Ag; white. Tin, Sn; white. Lead, Pb; gray. Gold, Au; yellow. Copper, Cu; red.

Brittle: Antimony, Sb; white. Bismuth, Bi; reddish-white.

The **color** of the fusion also indicates the following: Manganese, Mn; bluish-green. Chromium, Cr; yellow.

Silica, SiO_2 , is indicated by effervescence (giving off bubbles).

If it is evident that the sample is a silicate, the treatment with acids may be omitted and one may proceed directly with the Na_2CO_3 fusion.

The addition of the filtrates from $KHSO_4$ fusion to that from the previous operations will precipitate Pb, Ba and Sr as sulfates. Calcium will be partially precipitated in neutral or alkaline solutions and antimony and bismuth may be partially precipitated by hydrolysis on dilution of the solution.

In case the $KHSO_4$ fusion is to be used, it is well to test for and, if present, precipitate the silver group by P-1 from the solution of the other operations before adding the filtrates from the $KHSO_4$ fusion. If this is done, any precipitate formed will be only Ba, Sr and Ca sulfate, and Sb and Bi oxychlorides or oxynitrates.

The undissolved residue may still contain small amounts of Sb, Sn, Cr, Ti, V

QUALITATIVE CHEMICAL TESTS

and Mo, but they are not tested for here as they will appear in much greater quantities at other points in the analytical procedure. Cassiterite (SnO_2), however, may be only partially decomposed and dissolved.

Tungsten, columbium and tantalum, if present, remain with the silica as acid-insoluble residues.

Tungsten, W, remains in the residue as acid-insoluble canary-yellow WO_3 .

Treat the residue with warm NH_4OH and filter. Tungsten goes into solution.

To a portion of this solution add HCl until acid, then metallic tin, and boil. If W is present, the solution will become blue, then brown. Zinc gives purple, then reddish-brown.

To another portion add HCl and boil. W gives a yellow precipitate of WO_3 that is soluble in NH_4OH and NaOH . Adding tin and boiling gives blue, then brown.

Evaporate another portion nearly to dryness and add a drop of stannous chloride (SnCl_2). A flocculent deep blue precipitate of $\text{W}_2\text{O}_5 \cdot \text{XWO}_3$ is obtained.

Place a drop of the NH_4OH solution of the residue on three different pieces of filter paper.

To one add a drop of conc. HCl, and warm. Tungsten gives a yellow coloration.

To another add a drop of SnCl_2 . Tungsten gives a blue color.

To the third add $(\text{NH}_4)_2\text{S}$. Tungsten gives no reaction in the cold, but on warming the paper becomes green or blue.

Fusion of a tungsten mineral with Na_2CO_3 and extraction with water (no acid) gives a solution of sodium tungstate on which the above tests may be made. Molybdenum also goes into solution as sodium molybdate.

Place a little of the finely ground mineral in a porcelain dish, add a little conc. HCl then metallic zinc and boil for a few minutes. If tungsten is present a purple then reddish-brown color will develop. With small amounts, the color will appear as a ring around the dish. Dilution with water does not destroy the color (difference from columbium). Ti, Cb, V, Mo, Ru and U also give color reactions with this test.

With borax in the O.F., W gives a bead that is colorless to yellow while hot and colorless when cold; in the R.F. it is colorless while hot and yellowish-brown when cold.

With S.Ph., in the O.F., the bead is pale yellow while hot and colorless when cold; in the R.F., it is dirty blue while hot and fine blue when cold and becomes blood-red on the addition of a little FeSO_4 or dark green on long blowing with tin on coal.

Make several S.Ph. beads with the mineral or residue and dissolve in HCl. Add metallic tin and heat. If tungsten is present the solution will become dark blue. Dilute with water. If the color is due to tungsten it will persist; if due to columbium it will disappear. If zinc is used instead of tin, the color will be purple, then reddish-brown.

CHEMICAL ANALYSIS OF MINERALS

By treating the insoluble residue with NH_4OH , warming, filtering and washing, the tungsten is dissolved, leaving the columbium and tantalum with the silica.

Columbium, Cb, (Niobium, Nb). The residue after the removal of the tungsten with NH_4OH may be freed of silica by fusing with solid NaOH in an iron crucible, dissolving in water (without acid) and filtering. Sodium silicate is soluble, but the sodium columbate and sodium tantalate are insoluble in an excess of NaOH .

If this residue is carefully treated with *dilute HCl*, the precipitate formed at first is entirely soluble if it is Cb, but only partially soluble if it is Ta.

The freshly precipitated hydrous oxide of columbium is substantially insoluble in boiling conc. HCl but if the acid is decanted off and water is added to the moist residue it passes into solution. Tantalum is only partially soluble.

To the freshly precipitated hydrous oxide add dilute HCl and an equal volume of H_2O_2 and boil. Columbium gives a clear solution, tantalum is only partially soluble and tungsten is insoluble.

Place a little of the finely ground mineral in a porcelain dish, treat with conc. H_2SO_4 , evaporate to dryness then add a little conc. HCl and metallic tin, and boil for a few minutes. If columbium is present a deep blue color will develop. With small amounts the color will appear as a blue ring around the dish. Dilution with water destroys the color (difference from tungsten). Ti, W, V, Mo, Ru and U also give color reactions with this test.

Columbic acid (Cb_2O_5) is infusible.

Columbium and tantalum will go into solution if the KHSO_4 melt is dissolved in a hot 30% solution of tartaric acid. Boiling with $\frac{1}{3}$ of its volume of conc. HCl throws down Cb_2O_5 and Ta_2O_5 as white, flocculent precipitates. Tungsten is precipitated (yellow) only from concentrated solutions.

Columbium in the residue is soluble in hot conc. H_2SO_4 and the cold solution remains clear on being *diluted with cold water* (difference from tantalum). On boiling, a white precipitate is formed.

Treat the residue (after the removal of the tungsten) with conc. H_2SO_4 , heat to fuming and cool; dilute with *cold water*; add metallic zinc, and heat. If a deep blue color develops, dilute with water. If the color is due to columbium it will disappear; if due to tungsten it will persist. The original color produced by both elements is very similar.

The S.Ph. bead in the O.F. is pale yellow while hot and colorless when cold; in the R.F. it is blue-violet or brown (according to the amount present) and is changed to blood-red on the addition of FeSO_4 .

Tantalum, Ta. Treat the residue with conc. H_2SO_4 and heat to fuming. *Cool and dilute with cold water.* A colorless precipitate indicates Tantalum.

Tantalic acid (Ta_2O_5) is infusible.

The S.Ph. bead treated with Ta_2O_5 , remains colorless in both flames. The addition of FeSO_4 does not form a blood-red color (difference from Ti and Cb).

QUALITATIVE CHEMICAL TESTS

PROCEDURE 1

Add a few drops of HCl to the solution of the mineral. A white precipitate indicates the **silver group**, [Ag, Hg(ous), Pb, Tl(ous)], and any one or all may be present. *If no precipitate forms, all are absent.* Treat the solution by P-3.

If there is a precipitate, add HCl to complete precipitation, filter and wash with a little water. Treat the precipitate by P-2 and the filtrate by P-3 or, if the oxalic acid and zirconium groups are not to be tested for, by P-8.

The treatment given in this group test completely precipitates silver but divalent mercury and trivalent thallium are not thrown down. Very small amounts of thallous thallium and lead also may not show.

A separation of the common elements of this group may be made by washing the precipitate from the filter paper into a beaker, adding 10 ml. of water, heating to boiling and filtering. Lead chloride is soluble in hot water and will pass into the filtrate from which it will recrystallize on cooling. Wash the residue from the filter paper and treat with 5 ml. of conc. ammonia. Filter. Silver chloride is dissolved and passes into the filtrate from which it may be reprecipitated by acidifying with nitric acid. The mercury remains as a residue.

PROCEDURE 2

Mix 1 part of the dried residue or precipitate from P-1 with 3 parts of the fluxes and heat gently with the oxidizing flame on the plaster tablet. The various members of the group give the following reactions:

IODIDE FLUX	
Color of Coat	Remarks
Lead , Pb. Chrome-yellow coat, darker while hot, often covering the entire tablet.	A drop of yellow ammonium sulfide $[(\text{NH}_4)_2\text{S}_x]$ applied to the film, yields a black spot, often surrounded by a reddish cloud.
Mercury , Hg. If heated gently, a bright scarlet, very volatile coat with yellow fringes is formed.	If heated too strongly, the coat is pale yellow or greenish-yellow and black.
Silver , Ag. Slightly yellowish coat near the assay. Requires intense heat.	When touched with the R.F., it becomes pinkish-brown and somewhat mottled.
Thallium , Tl. Orange-yellow film near the assay, with purplish, black band far away. The entire coat finally becomes yellow.	Yellow ammonium sulfide $[(\text{NH}_4)_2\text{S}_x]$ changes the coat to chocolate brown.

CHEMICAL ANALYSIS OF MINERALS

BROMIDE FLUX

Color of Coat	Remarks
Lead , Pb. Small canary-yellow film. Quite volatile.	A drop of $(\text{NH}_4)_2\text{S}_x$ placed beyond the point where the film is visible gives a black spot surrounded by a reddish-brown cloud.
Mercury , Hg. Gives a faint yellow, very volatile coat.	A drop of $(\text{NH}_4)_2\text{S}_x$ applied to the film gives a black spot.
Silver , Ag. Gives an indistinct, slightly yellowish coat near the assay. Requires intense heat.	Treated with the R.F., the coat becomes mottled yellowish-brown and may be developed over a considerable part of the tablet. $(\text{NH}_4)_2\text{S}_x$ causes no change.
Thallium , Tl. Gives a reddish-orange coat at some distance from the assay; surrounded by a slight lemon-yellow film. The reddish coat disappears on standing, leaving only the lemon-yellow film. Both are quite volatile.	A drop of $(\text{NH}_4)_2\text{S}_x$ gives a brown spot with a darker border. NH_4OH dissolves both coats.

CHROMATE FLUX

Color of Coat	Remarks
Lead , Pb. Black near the assay and brown far away. Some traces of white may show.	A drop of $(\text{NH}_4)_2\text{S}_x$ gives a black spot and reddish cloud where no coat was visible before.
Mercury , Hg. The coat is shiny black near the assay, with a small brownish-yellow band next and gray far away. The coat is volatile.	A drop of $(\text{NH}_4)_2\text{S}_x$ gives a dark ring.
Silver , Ag. The coat is brown to yellowish and near the assay. Requires high heat.	Treated with the R.F. it becomes more prominent. $(\text{NH}_4)_2\text{S}_x$ causes no change.
Thallium , Tl. The coat is reddish-brown to greenish-yellow, and near the assay. Quite volatile. The flame is colored green.	A drop of $(\text{NH}_4)_2\text{S}_x$ gives a shiny blackish-brown spot with a darker border.

QUALITATIVE CHEMICAL TESTS

REACTIONS ON CHARCOAL	
Per se	With the Fluxes
Lead, Pb. In either flame, lead compounds (except the phosphates which require a flux) are reduced to metallic lead and yield, near the assay, a dark yellow coat which becomes sulfur-yellow when cold and has a bluish-white border. Touched with the R.F., the coating disappears, tinging the flame azure-blue.	Iodide flux. The coat is greenish-yellow, darker while hot, brown near the assay. The flame is colored azure-blue. Bromide flux. The coat is whitish-gray, volatile and some distance from the assay. Touched with the R.F., the coat disappears, tinging the flame azure-blue. Chromate flux. The coat is yellowish-white and volatile. It is not very prominent and is formed at some distance from the assay. Treated with the R.F., it disappears, tinging the flame azure-blue.
Mercury, Hg. Some mercury compounds volatilize without decomposition but most of them are reduced and decomposed and yield a grayish-white coat that is very volatile. It consists of metallic mercury and will collect into globules if rubbed.	Iodide flux. Yields only a faint yellow coat. Bromide flux. A slight yellowish-white, very volatile coat is developed at considerable distance from the assay. Chromate flux. Gives a very slight, extremely volatile gray coat.
Silver, Ag. All silver compounds are reduced to a white malleable bead of the metal. On long treatment with the O.F., a faint reddish-brown coat of the oxide is formed.	With the fluxes no special coating is formed. On long intense heating with the O.F., a faint reddish-brown coat of silver oxide is formed.
Thallium, Tl. The O.F. yields a white, very volatile coat of Tl_2O that is mostly distant from the assay. Treated with the R.F., the sublimate volatilizes, coloring the flame emerald-green.	Iodide flux. The coat is lemon-yellow and is darker and brownish near the assay. Bromide flux. Yields a yellowish coat at a considerable distance from the assay, with a slight whitish film beyond and a faint white one nearer the assay. The flame is colored green. Chromate flux. Gives a small yellowish-white coat near the assay, with a faint white one beyond. The flame is colored green.

CHEMICAL ANALYSIS OF MINERALS

ADDITIONAL TESTS

Lead, Pb. With borax and S.Ph. the beads in the O.F. are yellow while hot and colorless when cold. They can be flamed opaque. With the R.F. the borax bead becomes clear and the S.Ph. bead cloudy.

The precipitate formed by HCl ($PbCl_2$) is soluble in hot water but recrystallizes on cooling to acicular crystals with an adamantine iuster.

K_2CrO_4 precipitates yellow $PbCrO_4$ from neutral or faintly acetic acid solutions, soluble in mineral acids and alkalies. Silver gives a red precipitate.

Potassium iodide (KI) precipitates yellow PbI_2 .

H_2SO_4 gives a white precipitate of $PbSO_4$ very sparingly soluble in weak acids but soluble in hot HNO_3 .

Mercury, Hg. To confirm mercury, mix a small amount of the precipitate or powdered mineral with an equal amount of soda and heat gently in the C.T. If Hg is present, a mirror-like sublimate of metallic mercury will be formed, which will collect in small globules if rubbed with a match stick.

Most Hg compounds, if rubbed on bright copper in the presence of HCl, will coat the copper with mercury, forming a white amalgam.

Mercuric iodide heated in the C.T. yields a yellow sublimate that turns red on being rubbed.

In the open tube, a crystal of iodine just above the sample will form a bright red sublimate of mercuric iodide if mercury is present.

Silver, Ag. If there is an indication of silver, treat a small amount of the precipitate with NH_4OH in the cold and filter. To the clear filtrate add HNO_3 until acid. A white, curdy precipitate that will redissolve on making alkaline with NH_4OH shows the presence of silver.

Potassium iodide (KI) precipitates yellow AgI soluble in NH_4OH .

K_2CrO_4 gives a red precipitate of Ag_2CrO_4 . Lead gives a yellow precipitate.

Treat the precipitate with NH_4OH ; filter, place a drop of the filtrate on filter paper or the spot plate and add a drop of stannous chloride ($SnCl_2$) solution. A black coloration or spot will be formed if silver is present.

Thallium, Tl, occurs in nature very sparingly.

Only the (ous) thallium is precipitated by HCl, thallic chloride ($TlCl_3$) being soluble but decomposes at 100°C to $TlCl$ and chlorine so that if the solution is boiled after adding HCl, all but very small amounts of the thallium is precipitated.

The S.Ph. bead is colorless in both flames and the addition of $FeSO_4$ does not cause the formation of a blood-red color (difference from Ti and Cb).

KI precipitates yellow thallous iodide (TlI) which becomes green on standing, from even the most dilute solutions. This is the most sensitive test for thallium. Use an H_2SO_4 solution.

Alkali chromates precipitate yellow $TlCrO_4$ insoluble in cold dilute HNO_3 and H_2SO_4 .

QUALITATIVE CHEMICAL TESTS

Alkali carbonates cause precipitation only in very concentrated solutions (5 parts of Tl_2CO_3 dissolving in 100 parts of water). If it is desired to test for Tl it is best to use a separate portion of the solution of the sample and add $(\text{NH}_4)_2\text{CO}_3$ to complete precipitation; filter, make the filtrate slightly acid with HCl and boil. This removes all but a very small amount of the other members of the silver group and the precipitate with HCl will be principally TICl.

PROCEDURE 3

The filtrate from P-1 is made nearly neutral by adding NH_4OH drop by drop till the precipitate formed barely dissolves, or by testing for neutrality with litmus paper, then adding 1 ml. of conc. HCl. The total volume should be about 25 ml., which gives an approximately 0.5N HCl solution.

To 1 ml. of this slightly acid solution add 5 drops of a saturated solution of oxalic acid ($\text{H}_2\text{C}_2\text{O}_4$), heat to nearly boiling and allow to stand for some time. If no precipitate forms, heat again and let stand. If a positive test is obtained, add to the remainder of the solution 5 ml. of the saturated oxalic acid solution. *Do not boil* but keep quite warm for about 1 hour and let stand, overnight if possible. A precipitate indicates the **oxalic acid group** (Th, Sc, the R.E. groups and Au) and any one or all may be present. *If no precipitate forms, all are absent.*

If large quantities of the calcium group are present, Ca and to a lesser extent, Sr and Ba may be partially precipitated, thus giving a false indication of the group. Zinc and cobalt may also be precipitated in small amounts if a considerable amount is present.

If a positive test was *not obtained* and the entire solution *has not been treated* with the oxalic acid, treat the solution by P-6.

If a precipitate forms, filter, treat the precipitate by P-4, and the filtrate by P-5.

PROCEDURE 4

The precipitate from P-3 is washed from the filter paper, treated with a few drops of conc. HNO_3 , evaporated to dryness and gently ignited to destroy the oxalate radical; treated with conc. HCl, evaporated to dryness, again treated with conc. HCl and evaporated *almost to dryness*, dissolved in a small amount of water and a few drops of conc. HCl.

Any gold in the precipitate will not be dissolved by this treatment but will remain as a brown or black residue. If Au is indicated, the solution is filtered, the filter paper incinerated, the ash treated as under the cupellation test in chapter six and the gold recovered as a bright bead, or it may be put into solution and tested for as directed below.

The clear filtrate or solution is made alkaline with NH_4OH . A precipitate

CHEMICAL ANALYSIS OF MINERALS

indicates **thorium, scandium** and the **rare earths**, as the members of the Ca group are not precipitated and Zn and Co hydroxides are soluble in an excess of ammonia and ammonium chloride. *If no precipitate forms, all are absent.*

If a precipitate formed, filter. The filtrate may be tested for Ca, Ba, Sr, Co and Zn if desired, then rejected. Wash the precipitate from the filter paper, dissolve in a small amount of water and HCl, then add NH₄OH until the solution is almost neutral. To the *very weakly acid solution* add sodium thiosulfate (Na₂S₂O₃), and boil. A precipitate indicates **thorium and scandium**. Either or both may be present. *If no precipitate forms, both are absent.*

Strongly ignited thorium oxide is not soluble in HCl or HNO₃ and is soluble in conc. H₂SO₄ only after long boiling.

On treatment with Na₂S₂O₃, sulfur is often liberated, which may be mistaken for the Th, Sc precipitate.

If a precipitate forms, filter, and saturate the filtrate with sodium sulfate (Na₂SO₄). A white or light colored precipitate indicates the **cerium group** (Ce, La, Pr, Nd, Il, Sm) and any one or all may be present. *If no precipitate forms, all are absent.*

If a precipitate was formed, filter and make the filtrate alkaline with NH₄OH. A precipitate indicates the **yttrium group** (Y, Eu, Tb, Ho, Dy, Gd, Er, Tm, Yb, Lu) and any one or all may be present. *If no precipitate forms, all are absent.*

A few tests for some of the members of the oxalic acid group are given below, but as there are no simple tests for the various members of the rare earth groups, for further identification consult texts on advanced qualitative analysis.

ADDITIONAL TESTS

Thorium, Th. Dissolve a portion of the Th, Sc precipitate in HNO₃ and a little water (there must be no HCl present), evaporate to dryness carefully, add 1 ml. of water and 2 ml. of the potassium iodate reagent and heat to boiling. Thorium is thrown down as a white, bulky precipitate. Scandium remains in solution, from which it may be precipitated by making alkaline with NH₄OH.

Dissolve a portion of the Th, Sc precipitate in HCl and a little water. Place a drop of this solution and 2 drops of quinalizarine on the spot plate and mix, then add 1 drop of 20% NaOH solution. Thorium gives a blue color or precipitate quite distinct from the blue-violet of the blank which should be run at the same time. The quinalizarine reagent is decomposed by the iodate precipitate.

H₂O₂ added to a hot neutral solution or one only faintly acid with HNO₃ or H₂SO₄ or to an ammonium carbonate solution, causes all of the thorium to be precipitated as white, hydrated thorium peroxide.

Scandium, Sc. Dissolve a portion of the Th, Sc precipitate in HCl and

QUALITATIVE CHEMICAL TESTS

carefully evaporate to dryness. Take up with 1 ml. of water and add dropwise to 1 ml. of boiling 20% ammonium tartrate $[(\text{NH}_4)_2\text{C}_4\text{H}_4\text{O}_6]$ solution. Boil for several minutes, adding NH_4OH occasionally. Allow to stand and cool. Scandium gives a crystalline precipitate; thorium remains in solution.

H_2O_2 prevents the precipitation of Sc by Na_2HPO_4 from weakly acid solutions. Destroying the H_2O_2 by adding Na_2SO_3 causes the scandium phosphate to be precipitated (similar to titanium).

Cerium, Ce. Dissolve a portion of the precipitate of the cerium group in the minimum amount of HCl and water.

Place a drop of this solution on filter paper or the spot plate; add a drop of water, a drop of dilute NaOH and a drop of benzidine solution. Cerium gives a blue coloration. Mn, Co, Cu, Ag, Tl and the chromates give the same reaction, but as these should not be present the test indicates cerium.

To another drop of the HCl solution of the precipitate on filter paper or the spot plate add a drop of phosphomolybdic acid, then a drop of 20% NaOH. Cerium gives a blue color or precipitate. None of the other members of the R.E. groups give this reaction.

H_2O_2 added to an acid solution reduces ceric to cerous salts. If a cerous salt is precipitated with NH_4OH and an excess of H_2O_2 added a reddish-brown precipitate of perceric hydroxide ($\text{CeO}_2 \cdot n\text{H}_2\text{O}$) is obtained, which on boiling is changed to pure yellow $\text{Ce}(\text{OH})_4$.

The borax and S.Ph. beads in the O.F. are dark brown while hot and light yellow when cold; in the R.F. the bead is colorless both hot and cold but if heated strongly CeO_2 will remain suspended in the bead and give it a turbid, yellowish appearance.

Lanthanum, La, **Neodymium**, Nd, **Praseodymium**, Pr, and **Cerium**, Ce, all give a blue lake with quinalizarine.

Place a drop of an HCl solution of the Ce group precipitate and 2 drops of quinalizarine on the spot plate and then add 1 drop of 20% NaOH. A blue color or precipitate indicates La, Nd, Pr, or Ce. A blank should be run at the same time. The blue of these elements is quite distinct from the blue-violet of the blank. If cerium *has not been found* by the foregoing tests, this test indicates La, Nd or Pr.

Didymium, Di (a mixture of praseodymium and neodymium). With borax and S.Ph., in both the O.F. and R.F., either hot or cold, the beads are pale rose

Erbium, Er. Colors the flame a distinct green.

The color of the solutions of the rare earths give some indication of their identity. La, Ce(ous), Gd, Tb, Y, Yb and Lu solutions are colorless. Eu gives a very light pink solution, Er gives a deeper pink, Nd is reddish-violet, Sm and Ho give yellow solutions, Ce(ic) is deep reddish-orange, and Pr, Dy, and Tm give green solutions.

Ce, La, Nd, Y, Pr, Sm and Er occur in greater abundance, decreasing approximately in this order.

CHEMICAL ANALYSIS OF MINERALS

Gold, Au. To test the residue after the re-solution of the precipitate in the first part of P-4, dissolve in aqua regia, evaporate to a small volume, add conc. HCl and again evaporate until only a drop or two remains, and add a few drops of water.

Place a drop of this solution on filter paper or the spot plate and add a drop of benzidine reagent. A blue color indicates gold.

Place another drop on filter paper or the spot plate and add SnCl_2 reagent. Dark brown metallic gold or the "purple of cassius" is formed if Au is present.

Another drop is placed on the spot plate and treated with a drop of NaOH and a drop or two of H_2O_2 . If Au is present a precipitate of finely divided metal is thrown down. This appears brownish-black by reflected light and bluish-green by transmitted light. With very dilute solutions the liquid is reddish with a bluish shimmer.

Evaporate a drop of the solution on the end of a very small glass rod or tube, then fuse into a small ball. Gold will give a red color to the glass.

Zinc, iron, copper and the other base metals precipitate gold from solution.

All gold compounds give a yellow malleable button of free gold if treated with soda on coal.

Gold treated per se on the plaster tablet, with high heat, gives a purplish to rose colored coat near the assay.

Mercury, if ground with an ore containing free gold or used in the pan while panning, will form an amalgam with it. The gold may be separated from the mercury in the amalgam by dissolving the Hg in dilute HNO_3 or by straining through a chamois skin, placing the solid that remains in a crucible and heating. The old miners used their frying pans. As Hg vapors are poisonous, a half potato, turnip or onion, hollowed out to allow for the amalgam, is placed over it during heating. This condenses and holds the mercury and leaves the gold as a yellow, spongy mass.

If an ore contains only a small amount of gold or is in a very fine state, the *cupellation test* (fire assay) should be used. This is given in Chapter VI.

PROCEDURE 5

The oxalic acid in the filtrate from P-3 must be destroyed before proceeding with the analysis. Evaporate to dryness; treat the residue with conc. HNO_3 , evaporate to dryness and ignite. Moisten the residue with conc. HCl, evaporate to dryness; again moisten with conc. HCl, evaporate *almost to dryness*. and dissolve in water.

The solution and residues are treated together by P-6.

To ignite a substance, place it in a porcelain dish or crucible and heat over a flame to dull redness.

Complete solution may not be obtained, for titanium may be converted to Ti(OH)_4 , and antimony and bismuth may be changed to the oxychlorides

QUALITATIVE CHEMICAL TESTS

or oxides, all of which are difficultly soluble in weak acids. Some iron may also remain as the difficultly soluble oxide, coloring the residue brown.

PROCEDURE 6

The mixture of the solution and residue from P-5 is heated to boiling and made alkaline with NH_4OH . On heating, a precipitate sometimes forms before the addition of the ammonia. Make barely acid with HCl , then add 1 drop of conc. HCl for each 2 ml. of the solution. A white flocculent precipitate indicates the **zirconium group** ($\text{Zr}, \text{Ti}, \text{Sb}, \text{Bi}$), and any one or all may be present. *Complete solution of all the precipitate shows that all are absent.* Treat the solution by P-8.

If a precipitate remains undissolved, filter, treat the precipitate by P-7 and the filtrate by P-8.

The solution is not boiled after making alkaline, because aluminum hydroxide becomes quite insoluble on long boiling and may give a false indication of the Zr group.

The iron precipitate from P-5 may color the precipitate brown or obscure it entirely. On boiling, the SbOCl may be in part changed to the oxide, Sb_2O_4 , which is practically insoluble in acids.

Palladium, rhodium and possibly some of the other platinum metals may be partially precipitated if they are fairly concentrated.

A very small amount of Zr and Ti may remain in the filtrate and reappear in the iron group, and the Sb and Bi that remain in the solution will be precipitated with the H_2S group.

PROCEDURE 7

The precipitate from P-6 is washed from the filter paper, evaporated to dryness and treated with conc. H_2SO_4 . Heat till only a drop or two of the acid remains, cool, dilute with water to about 10 ml., filter, add 3 ml. of 3% H_2O_2 and a little sodium phosphate (Na_2HPO_4). A white precipitate indicates **zirconium**. *If no precipitate forms, Zr is absent.* If a precipitate forms and further identification is desired, filter and subject the precipitate to the Zr tests given below.

Titanium gives a reddish-yellow to deep amber color with H_2O_2 . *If the solution or filtrate is colorless, Ti is absent.* This color reaction should be sufficient evidence of the presence of Ti. If it is desired to precipitate the titanium, the filtrate from the precipitation of the Zr is treated with 1 ml. of dry sodium sulfite (Na_2SO_3). A white precipitate indicates titanium. *If no precipitate or only a faint cloud forms, Ti is absent.* If a precipitate was formed and further confirmation is desired, filter and submit the precipitate to the tests for Ti given below.

Test the filtrate from the precipitation of Zr and Ti for iron; then the fil-

CHEMICAL ANALYSIS OF MINERALS

trate and any residue from the first part of the procedure are treated together by P-8. A precipitate indicates **antimony, bismuth** and possibly **palladium, rhodium, or any of the platinum metals**. *No precipitate indicates that all are absent.* If a precipitate forms, filter, reject the filtrate and treat the dried precipitate with the fluxes as directed in P-10.

The phosphates of Zr and Ti are very difficultly soluble; if further tests are to be made, they are rendered soluble in acids by boiling with NaOH and filtering. The PO_4 is removed in the filtrate.

There are no simple tests for palladium, rhodium, or the platinum metals. However, they may be recovered as metal by cupellation. See Fire Assay for gold and silver, Chapter VI.

The hydroxides of Zr and Ti, when precipitated in the cold, are readily soluble in dilute acids but when precipitated from boiling solutions, they are very difficultly soluble.

Zirconium and titanium are the only elements precipitated from strong acid solutions by Na_2HPO_4 .

ADDITIONAL TESTS

Zirconium, Zr. Zirconium oxide (ZrO_2) is infusible.

Dissolve a portion of the zirconium precipitate in HCl and a little water. Place a drop of this solution and two drops of quinalizarine on the spot plate and mix, then add one drop of 20% NaOH. Zirconium gives a blue color or precipitate quite distinct from the blue-violet of the blank which should be run at the same time. Ti, Sb, and Bi do not give this color reaction or precipitate.

Fuse some of the powdered mineral or precipitate with soda on the Pt. foil or make several beads. Dissolve in HCl. Moisten a piece of turmeric paper with this solution or the one above, and allow to dry. If Zr is present, the paper will be turned orange or reddish-brown. (Difference from thorium.) Borates and titanium give the same test and their absence must be determined. They should not be present in the precipitate.

Zirconium gives no reactions with the beads.

Titanium, Ti. Titanium minerals are almost insoluble in acids.

Boil a little of the finely pulverized mineral with conc. HCl; filter, place the filtrate in a porcelain dish, add a little conc. HCl and metallic zinc and boil for a few minutes. If titanium is present a blue-violet color will develop. With small amounts the color may appear as a blue ring around the dish. W, Cb, V, Mo, Ru and U also give color reactions.

Fuse the pulverized mineral with soda on the Pt. foil or make several beads. Dissolve this fusion or the residue, or several of the beads, in the least amount of HCl and heat the solution with metallic zinc or tin. The solution should be fairly concentrated. If Ti is present, the liquid will become blue-violet or blue

QUALITATIVE CHEMICAL TESTS

after a time, and subsequently a blue precipitate which turns white, will form.

Fuse some of the precipitate or powdered mineral with KHSO_4 , dissolve in water and add hydrogen peroxide (H_2O_2). If titanium is present, the solution will become reddish-yellow to deep amber. Chromates, vanadates, molybdates and ceric salts also give color reactions with H_2O_2 .

With borax in the O.F., Ti gives a bead that is pale yellow while hot and colorless when cold; in the R.F. it is grayish while hot and brownish-violet when cold, becoming enamel blue on flaming.

With S.Ph., in the O.F., the bead is pale yellow while hot and colorless when cold; in the R.F. the bead is yellow while hot and delicate violet when cold.

If tin is added to the borax or S.Ph. bead containing Ti which has been treated in the reducing flame, the violet color appears more quickly. If iron is added the bead becomes brownish-red.

Bismuth, Bi. The tests for this element will be found under P-10.

Antimony, Sb. The tests for this element will be found under P-12.

PROCEDURE 8

The filtrate from P-6 or, if the oxalic and zirconium groups are not to be tested for, from P-1, should be only weakly acid. The correct acidity is obtained by adding NH_4OH dropwise till the precipitate formed barely dissolves, or by testing for neutrality with litmus paper, then adding 1 drop of conc. HCl for each 2 ml. of the solution, i.e., for 20 ml. of solution (after it has been made neutral) add 10 drops of conc. HCl. This gives an approximately 0.03N HCl solution.

Heat to nearly boiling and pass in H_2S for several minutes. Filter and test the filtrate with H_2S . A precipitate indicates the **copper group** (Cu, Pb, Cd, Bi, Pd, Rh, Os, Re, Po) and/or the **tin group** (Sn, Hg(ic), As, Sb, Mo, Se, Te, Pt, Ir, Ge, Ru) and any one or all may be present. *If no precipitate forms, all are absent.* Treat the solution by P-13.

If a precipitate forms, filter, treat the precipitate by P-9 and the filtrate by P-13.

It is best to heat the filtrate to nearly boiling and again pass in hydrogen sulfide to make sure that the precipitation is complete (with the exception of molybdenum). It is almost impossible to get complete precipitation of molybdenum under these conditions; if the solution has turned blue and a brown precipitate was obtained on the second and subsequent additions of H_2S , **molybdenum is indicated**. **Vanadium** gives a blue solution but no precipitate. *If Mo is indicated, do not attempt to completely precipitate it.* See P-21 for further treatment of molybdenum and vanadium.

The formation of a white precipitate on diluting or reducing the acidity of the solution shows the presence of considerable antimony and/or bismuth. The

CHEMICAL ANALYSIS OF MINERALS

precipitate, which consists of SbOCl and/or BiOCl , need not be filtered off, as these substances are converted to sulfide by the hydrogen sulfide.

Care must be taken in the above procedure, as sulfur is easily thrown down as a white precipitate and the analyst is apt to consider this a precipitate of the group.

If the precipitation of gold was not complete in P-3, or Pd and Rh in P-6, it will appear in this group.

If the acidity is too low, indium may be partially precipitated and may be found in both the tin and copper groups.

The treatment in P-6 may tend to form amines with the platinum metals, which may prevent their complete precipitation by the hydrogen sulfide.

PROCEDURE 9

Transfer the precipitate from P-8 to a beaker or casserole, add 5 ml. of the Na_2S reagent and warm gently for about 3 minutes with constant agitation. Add 5 ml. of water, mix and filter. A residue indicates the **copper group** (Cu , Pb , Bi , Cd , Pd , Rh , Os , Re , Po) and any one or all may be present. *No residue shows that all are absent.* Treat the solution by P-11.

If a further separation of the common elements is desired, treat the residue with a mixture of 1 part conc. HNO_3 and 4 parts water and boil for 2 or 3 minutes while stirring. Filter, treat the filtrate with 1 ml. of conc. H_2SO_4 , evaporate to strong fuming, cool and dilute with water. Lead is precipitated as white, PbSO_4 . Filter and make the filtrate strongly alkaline with NH_4OH . Bismuth is precipitated as white, $\text{Bi}(\text{OH})_3$. Filter. A blue filtrate indicates copper. Treat the filtrate by P-8. Copper and cadmium are reprecipitated as sulfides. Filter and reject the filtrate. Treat the precipitate with a mixture of 1 part conc. HCl and 3 parts water and heat slowly to boiling while stirring. CdS is dissolved, leaving the CuS as a black residue. Filter and make the filtrate alkaline with Na_2CO_3 . Cadmium is precipitated as white, basic carbonate. This may be greenish-blue from a small amount of copper.

Treat the residue by P-10 and the filtrate from the treatment with the Na_2S reagent by P-11.

As Au, Pt and Ir sulfides are not readily soluble in the Na_2S reagent, a portion may remain with the copper group.

There are no simple tests for the various platinum metals; for further identification the student is referred to texts on advanced qualitative analysis.

PROCEDURE 10

Mix 1 volume of the dried residue from P-9 with 3 volumes of the fluxes and treat with the O.F. on the plaster tablet. The various members of the group react as follows:

QUALITATIVE CHEMICAL TESTS

IODIDE FLUX

Color of Coat	Remarks
Lead , Pb. Chrome-yellow coat, darker while hot, often covering the entire tablet.	A drop of $(\text{NH}_4)_2\text{S}_x$ applied to the film yields a black spot, often surrounded by a reddish cloud.
Bismuth , Bi. Chocolate-brown coat with underlying crimson and yellowish on the outer edge.	Subjected to NH_4OH fumes, the brown coating changes to orange-yellow then cherry-red.
Copper , Cu. Very slight lemon-yellow coat.	$(\text{NH}_4)_2\text{S}_x$ gives a light brown ring and darkens the coat around it.
Cadmium , Cd. Orange-yellow coat near the assay.	$(\text{NH}_4)_2\text{S}_x$ gives a slight yellowish gray spot with a lemon-yellow border.

BROMIDE FLUX

Color of coat	Remarks
Lead , Pb. Forms a small, quite volatile canary-yellow film.	$(\text{NH}_4)_2\text{S}_x$ placed beyond the point where the film is visible gives a black spot surrounded by a reddish cloud.
Bismuth , Bi. Near the assay, a brownish-black to red coat. Farther away the coat is canary-yellow and at a distance a brown border develops.	A drop of $(\text{NH}_4)_2\text{S}_x$ forms a black spot surrounded by a brownish haze. NH_4OH has no effect.
Copper , Cu. Gives a brownish to yellow coat near the assay with a slight purplish band far away.	The assay is greenish and the flame is colored blue. $(\text{NH}_4)_2\text{S}_x$ gives a brown ring.
Cadmium , Cd. Gives a lemon-yellow coat near the assay.	$(\text{NH}_4)_2\text{S}_x$ gives a slight grayish spot.

CHEMICAL ANALYSIS OF MINERALS

CHROMATE FLUX	
Color of Coat	Remarks
Lead , Pb. The coat is black near the assay and brown far away. Traces of white may show in some places.	$(\text{NH}_4)_2\text{S}_x$ gives a black spot and reddish cloud where no coat was visible before.
Bismuth , Bi. The coat is dark brown near the assay and light brown far away.	$(\text{NH}_4)_2\text{S}_x$ forms a deeper brown spot.
Cadmium , Cd. Gives a coat near the assay, red while hot and lemon-yellow when cold.	$(\text{NH}_4)_2\text{S}_x$ gives a light yellow spot.
Copper , Cu. None.	

REACTIONS ON CHARCOAL	
Per se	With the fluxes
Lead , Pb. In either flame, lead compounds (except the phosphates which require a flux) are reduced to metallic lead and yield, near the assay, a dark yellow coat which becomes sulfur-yellow when cold and has a bluish-white border. Touched with the R.F., the coating disappears, tinging the flame azure-blue.	Iodide flux. The coat is greenish-yellow, darker while hot, brown near the assay; the flame is colored azure-blue. Bromide flux. The coat is whitish-gray, volatile and some distance from the assay. Touched with the R.F., the coating disappears, tinging the flame azure-blue. Chromate flux. The coat is yellowish-white and volatile. It is not very prominent and is formed at some distance from the assay. Treated with the R.F., it disappears, tinging the flame azure-blue.
Bismuth , Bi. The coat of Bi_2O_3 is dark orange-yellow while hot and lemon-yellow when cold. It is greenish-white far away. Volatile in both flames. In both the O.F. and R.F. a brittle, metallic button is formed and the flame is colored a pale greenish-white.	Iodide flux. The coat is chocolate-brown with underlying scarlet. NH_4OH fumes change it to orange-yellow. Bromide flux. The coat is white near the assay and greenish far away. Chromate flux. Gives a slight whitish coat near the assay.

QUALITATIVE CHEMICAL TESTS

REACTIONS ON CHARCOAL (*Continued*)

Per se	With the fluxes
Cadmium, Cd. The coating of CdO is black to reddish-brown near the assay and yellowish-green far away. Thin coats show peacock colors. The coat is volatile in both flames.	Iodide flux. Gives a slight whitish to greenish coat. Bromide flux. The coat is gray and some distance from the assay. Chromate flux. The coat is near the assay, reddish while hot and canary-yellow to greenish-yellow when cold.
Copper, Cu. In the R.F. the Cu minerals are reduced to globules of red, malleable metal and the flame is colored emeral-green or azure-blue.	Iodide flux. Slight grayish-white coating. Bromide flux. Very slight gray coat. The flame is colored a brilliant blue. Chromate flux. None.

ADDITIONAL TESTS

Lead, Pb. The lead reactions have been set forth under P-2.

Bismuth, Bi. Strong acid solutions of Bi hydrolyze on the addition of water, similar to Sb, but the precipitate is more soluble than those of antimony.

On heating a Bi compound in the upper reducing flame of a Bunsen burner, the bismuth is reduced to metal which volatilizes and is reoxidized in the uppermost part of the flame. If a porcelain dish filled with water is held over this, a barely visible deposit of Bi_2O_3 is formed. Moisten a piece of asbestos in alcoholic iodine, start burning and hold under the deposit on the dish. A small amount of hydriodic acid is formed which will turn the oxide into the scarlet $\text{H}(\text{BiI}_4)$. By blowing the fumes from the ammonia bottle over this it is changed to the orange ammonia salt $[\text{NH}_4(\text{BiI}_4)]$. If the coat is moistened with SnCl_2 , black metallic bismuth is formed.

If Bi is dissolved in S.Ph. by the O.F. and is then treated on coal with tin in the R.F., a bead is obtained that is colorless while hot but blackish-gray and opaque when cold.

The per se reactions of bismuth and lead on coal are quite similar, but the reactions with the fluxes serve to distinguish them.

Dimethylglyoxime added to a hot solution of BiCl_3 or $\text{Bi}(\text{NO}_3)_3$ and made strongly alkaline with NH_4OH gives a yellow precipitate. If the sulfate is used the precipitate is white.

Copper, Cu. With borax and S.Ph. in the O.F., the bead is green while hot and blue to greenish-blue when cold. By repeated slow reduction and oxidation, the bead becomes ruby-red. In the R.F. the bead is greenish to colorless

CHEMICAL ANALYSIS OF MINERALS

while hot and opaque and brownish when cold. Also by saturating the S.Ph. bead with a substance containing copper, adding NaCl and treating in the O.F., an azure-blue flame is obtained.

NH₄OH added to the solution of a Cu mineral will form a deep blue color. If a precipitate is formed by the NH₄OH, it should be filtered out to determine accurately the color of the liquid.

A slightly acid solution of a Cu mineral will deposit a red copper coating on bright iron, such as a nail or knife blade.

Traces of Cu may be detected as follows: Treat the substance in a borax bead in the O.F.; add a trace of tin or a tin compound and heat until the tin is completely dissolved, then treat the bead lightly in the R.F. and remove quickly. If Cu is present the bead is colorless while hot but ruby-red when cold. If reduced too far it will remain colorless, but by carefully treating in the O.F. the color returns.

Copper may be separated from iron by placing metallic zinc in the acidified solution. Cu is precipitated but Fe remains in solution.

Place a drop of the solution to be tested or a small amount of the precipitate from P-9 on the spot plate and add a drop or two of 1% KCN solution. If the precipitate is used, stir for a few minutes, then place a drop of this on filter paper, add a drop of phosphomolybdic acid and a drop of dilute HCl. Copper gives a blue color. Nitric acid should be absent.

Potassium ferrocyanide [K₄Fe(CN)₆] precipitates from acid or neutral solutions of a cupric salt, reddish-brown cupric ferrocyanide. NaOH changes it to black (difference from uranium) and it is soluble in NH₄OH, to a blue color (difference from molybdenum). The only other metals giving similar colored precipitates are molybdenum and uranium.

Cadmium, Cd. H₂S added to an acid solution of a cadmium mineral yields a yellow to orange or almost brown precipitate of cadmium sulfide (CdS).

On smoked plaster, with iodide flux, a white coating is obtained that is changed to orange by ammonium sulfide.

With borax and S.Ph., in the O.F., the bead is clear yellow while hot and colorless when cold, but can be flamed milk-white.

Zinc, lead and bismuth are interfering elements; to confirm Cd, treat with the O.F. to remove As, collect the coat from the charcoal, mix with charcoal dust and heat gently in the C.T. Cadmium will yield either a reddish-brown ring or metallic mirror.

If cadmium oxide is treated in the upper reducing flame of a Bunsen burner, it is reduced to metal which volatilizes and is reoxidized in the upper flame and will give a brown deposit on a glazed porcelain dish filled with water if held over it. If this coat is moistened with silver nitrate solution, a black deposit of metallic silver is obtained. This test may be applied to the residue from P-9 by first roasting to convert it from the sulfide to the oxide.

Palladium, Pd. Palladium(ous) is precipitated by dimethylglyoxime,

QUALITATIVE CHEMICAL TESTS

giving a yellow precipitate soluble in NH_4OH and KCN solution but only slightly soluble in 50% alcohol and dilute acids. Gold and platinum interfere as they are reduced to metals, but the other platinum metals do not. However, Pd may be separated from Pt by this method in 0.8-0.9N HCl (1 ml. of conc. HCl to 14 ml. of water) as the Pd is precipitated and the Pt stays in solution.

In the presence of HCl, SnCl_2 forms a red then brown and finally green solution; but if no acid is present a partial reduction to metal occurs and the solution turns green. The precipitate is soluble in HCl, giving an intense green solution.

All Pd compounds yield the metal on ignition. This is soluble in HNO_3 and aqua regia.

An alcoholic solution of iodine dropped on metallic palladium will turn black.

Rhodium, Rh. All Rh compounds are reduced to metal on charcoal with soda. The ignited metal is almost insoluble in aqua regia but may be brought into solution by fusion with KHSO_4 and treatment with water, yielding a yellow solution which turns red on the addition of HCl.

Osmium, Os. Compact osmium is insoluble in all acids but in the finely divided state it is difficultly soluble in HNO_3 and more soluble in aqua regia.

Osmium forms volatile salts and is apt to be lost in the regular process of solution of the mineral and analytical procedure.

Stannous chloride gives a brown to black precipitate which is soluble in HCl, giving a brown solution.

Metallic zinc precipitates metallic osmium from acid solutions.

Osmium tetroxide (OsO_4) volatilizes at 100°C. and has a characteristic chlorine-like odor. It is very poisonous, attacks the mucous membranes; great care should be exercised in handling even minute amounts.

Rhenium, Re and Polonium, Po. There are no simple tests for these elements.

PROCEDURE 11

To the filtrate from P-9 add HCl in slight excess. A black or orange-yellow precipitate indicates the **tin group** [Sn, Hg(ic), As, Sb, Mo, Te, Se, Pt, Ir, Ge, Ru] and any one or all may be present. *If no precipitate forms, or it is nearly white, all are absent.* Reject the solution.

If a precipitate was formed, filter, treat the precipitate by P-12 and reject the filtrate.

A further separation of the common elements of this group may be made by treating the precipitate with 1 ml. of conc. HCl and heating almost to boiling, adding seven or eight drops of water and filtering. Sb and Sn are dissolved, leaving the mercury and arsenic as a residue with the sulfur. Treat this residue with 5 ml. of saturated ammonium carbonate solution, warm and filter. The arsenic is dissolved, leaving the mercury as a residue with the

CHEMICAL ANALYSIS OF MINERALS

sulfur. Make the filtrate acid with HCl. Arsenic is precipitated. The filtrate from the first treatment is diluted to 5-6 ml. with water and treated with H_2S . Antimony and tin are reprecipitated as sulfides.

Metallic iron added to a slightly acid HCl solution of antimony and tin will cause the antimony to be deposited in the metallic state. The tin remains in solution.

When the Na_2S reagent itself is acidified, a considerable pale yellow or grayish-white precipitate of sulfur results in consequence of the decomposition of the Na_2S_2 in the reagent. This may make it doubtful whether a small quantity of the elements of the tin group are present. In case of doubt this sulfur may be removed by allowing the precipitate and filter paper to dry, then pouring a small amount of carbon disulfide (CS_2) through it.

The Au, Pt and Ir sulfides are insoluble in acids and may be separated from the other members of the tin group by boiling in a mixture of 10 ml. of conc. HNO_3 and 70 ml. of water (approximately 2N) and filtering.

If the precipitation of gold was not complete in P-3 it will also be found in this group.

There are no simple tests for the various platinum metals; for further identification the analyst is referred to texts on advanced qualitative analysis.

Hydrazine hydrochloride ($N_2H_4 \cdot 2HCl$) precipitates Se and Te from boiling acid or alkaline solutions.

SO_2 or Na_2SO_3 added to a solution not too strongly acid with HCl, causes the precipitation of Se and Te on boiling.

Se and Te may be separated from the other members of the group by treating the precipitate with conc. HCl, evaporating to dryness, taking up with water and HCl, adding SO_2 or Na_2SO_3 to the not too strongly acid solution and boiling. Antimony is precipitated to a small extent.

PROCEDURE 12

Mix 1 volume of the dried precipitate from P-11 with 3 volumes of flux and treat on the plaster tablet. The various members of this group give the following reactions:

IODIDE FLUX	
Color of Coat	Remarks
Mercury, Hg. If heated gently, a bright scarlet, very volatile coat with yellow fringes is formed.	If heated quickly the coat is pale yellow or greenish-yellow and black.
Arsenic, As. Lemon-yellow to orange-yellow coat which disappears if subjected to ammonia fumes.	A drop of $(NH_4)_2S_x$ on the coat forms a yellow ring that is <i>completely dissolved</i> by a drop of ammonia.

QUALITATIVE CHEMICAL TESTS

IODIDE FLUX — (*Continued*)

Color of Coat	Remarks
Antimony , Sb. Orange to peach-red coat that disappears when subjected to ammonia fumes.	A drop of $(\text{NH}_4)_2\text{S}_x$ on the coat forms an orange-red ring that is <i>not dissolved</i> by a drop of NH_4OH .
Selenium , Se. Gives a reddish-brown to scarlet coat. Reddish fumes are given off.	The flame is indigo-blue. $(\text{NH}_4)_2\text{S}_x$ dissolves the coat and forms a ring of deeper color.
Tellurium , Te. Gives a purplish-brown to black coat. The flame is colored pale green.	$(\text{NH}_4)_2\text{S}$ dissolves the coat. $(\text{NH}_4)_2\text{S}_x$ has no effect. A drop of conc. H_2SO_4 added to the coat and gently heated, yields an evanescent pink color.
Molybdenum , Mo. A slight volatile yellowish coat is formed.	$(\text{NH}_4)_2\text{S}_x$ forms a slight brown ring. The R.F. <i>does not turn the coat blue</i> .
Tin , Sn. The coat is canary-yellow and brownish near the assay.	The coat is obtained by treatment of the sulfide.

BROMIDE FLUX

Color of Coat	Remarks
Mercury , Hg. Only a faint yellow, very volatile coat.	A drop of $(\text{NH}_4)_2\text{S}_x$ gives a black spot.
Arsenic , As. Gives only a faint yellow coat, very volatile.	A drop of $(\text{NH}_4)_2\text{S}_x$ forms a ring of slightly darker color. NH_4OH <i>dissolves</i> both the ring and coat.
Antimony , Sb. Forms a faint yellow coat far away with reddish-orange near the assay.	$(\text{NH}_4)_2\text{S}_x$ forms an orange ring and develops the coat around it to orange-yellow. The coat and ring are <i>not dissolved</i> by NH_4OH .
Selenium , Se. Gives a brownish-red to yellow coat covering most of the tablet. Reddish fumes are given off.	The flame is colored indigo-blue. $(\text{NH}_4)_2\text{S}$ and $(\text{NH}_4)_2\text{S}_x$ dissolve the coat and form a ring of deeper color.

CHEMICAL ANALYSIS OF MINERALS

BROMIDE FLUX—(Continued)

Color of Coat	Remarks
Tellurium, Te. Gives a coat covering most of the tablet; dark gray to black near the assay, grading into reddish-brown through canary-yellow with brown far away. The flame is colored pale green.	(NH ₄) ₂ S dissolves the coat. (NH ₄) ₂ S _x applied to the lighter portions forms a ring of darker color. H ₂ SO ₄ added to the coat and warmed yields an evanescent pink color.
Molybdenum, Mo. Gives a bluish-green coat with traces of blue and yellow on the edges and sometimes brown near the assay.	A drop of (NH ₄) ₂ S _x gives a brown spot. The R.F. <i>does not turn the coat blue</i> but makes it a deeper brown.
Tin, Sn. The treatment of the sulfide yields only a slight darkening of the tablet around the assay.	No sublimate is formed. Very unsatisfactory.

CHROMATE FLUX

Color of Coat	Remarks
Mercury, HG. Shiny black near the assay, with a small brownish-yellow band next and gray far away. The coat is volatile.	A drop of (NH ₄) ₂ S _x gives a ring of darker color.
Arsenic, As. Orange-yellow near the assay and lemon-yellow far away.	(NH ₄) ₂ S _x forms an orange-yellow ring.
Antimony, Sb. Dark brown near the assay, grading into orange-yellow far away.	(NH ₄) ₂ S _x does not form a ring.
Selenium, Se. Cherry-red to crimson, very similar to that from the treatment per se.	(NH ₄) ₂ S _x dissolves the coat and forms a ring of deeper color.
Tellurium, Te. Brown to black, volatile, very similar to that from the per se treatment.	
Molybdenum, Mo. Nothing.	
Tin, Sn. None.	

QUALITATIVE CHEMICAL TESTS

REACTIONS ON CHARCOALS

Per se	With the Fluxes
Mercury, Hg. Some mercury compounds volatilize without decomposition but most of them are reduced and decomposed and yield a grayish-white coat that is very volatile. It consists of metallic mercury and will collect into globules if rubbed.	Iodide flux. Yields only a faint yellow coat. Bromide flux. A slight yellowish-white, very volatile coat is developed at a considerable distance from the assay. Chromate flux. Gives a very slight, extremely volatile gray coat.
Arsenic, As. A white, very volatile coating of As_2O_3 is formed. This is sometimes tinted with brown to yellow from volatilized sulfides. The coating consists of octahedral crystals of As_2O_3 and deposits mostly at a distance from the assay. Often the garlic odor of Arsine gas, AsH_3 , is present.	Iodide flux. Gives a volatile coat that is white near the assay with a canary-yellow border and a slight yellow coat beyond. Bromide flux. Gives a slight white, volatile coat with a faint yellow border. Chromate flux. Gives a very volatile, slight white coat with a faintly yellow tinge. It is far from the assay.
Antimony, Sb. Dense white coat of Sb_2O_4 near the assay, bluish far away. The coat is less volatile than that from As. Fumes continue after the flaming is stopped. The flame is colored pale yellowish-green.	Iodide flux. Gives a white coat near the assay with yellow far away. Bromide flux. The coat is white. Chromate flux. Gives a slight whitish coat with traces of brown near the assay.
Molybdenum, Mo. Very near the assay copper-red MoO_2 is deposited. Beyond this but still near the assay is deposited a coating of MoO_3 that is pale yellow while hot and white when cold, bluish far away. It is sometimes crystalline. Touched with the R.F., it becomes <i>azure-blue</i> and volatilizes. Volatile in the O.F. The flame is colored yellowish-green.	Iodide flux. A white coat near the assay. Touched with the R.F., it is volatilized but <i>does not turn blue</i> . Bromide flux. A very volatile, yellowish-green coat is first deposited far from the assay, then on longer flaming a white one near the assay. Treated with the R.F., it volatilizes but <i>does not turn blue</i> . Chromate flux. Nothing.

CHEMICAL ANALYSIS OF MINERALS

REACTIONS ON CHARCOAL — (*Continued*)

Per se	With the Fluxes
<p>Selenium, Se. Steel gray, very volatile coat near the assay. At some distance white SeO_2 tinged red with metallic Se and beyond a red border of metallic selenium is deposited. Red fumes are given off and the characteristic rotten horseradish odor is produced. The flame is colored blue by the coating.</p>	<p>Iodide flux. Small white coat near the assay with a yellowish-green border and traces of reddish-brown. Yellowish fumes are given off. Characteristic odor.</p> <p>Bromide flux. Small white coat and yellowish fumes with a characteristic odor.</p> <p>Chromate flux. Mixed red and yellow fumes with a characteristic odor given off. The coating is very slight, white near the assay, yellowish beyond and traces of red far away.</p>
<p>Tellurium, Te. Dense white, volatile coat of TeO_2 near the assay. Far away a gray to brownish-black coat of metallic Te. Treated with the R.F., the coat colors the flame green, and volatilizes. The coat somewhat resembles that from antimony.</p>	<p>Iodide flux. A white to gray coat. The flame is colored pale green.</p> <p>Bromide flux. White near the assay with brownish-black far away. The flame is colored pale green.</p> <p>Chromate flux. White near the assay with brownish-black far away. The flame is colored pale green.</p>
<p>Tin, Sn. The coat of SnO_2 is near the assay and is faint yellow and luminous while hot and white when cold. If moistened with $\text{Co}(\text{NO}_3)_2$ solution and heated strongly, the coat becomes bluish-green. Not volatile in the O.F. The addition of sulfur and soda increases the amount of the coat. In the R.F. a slight coat is formed.</p>	<p>The reactions with the fluxes are obtained by treatment of the sulfide.</p> <p>Iodide flux. White coat with patches and streaks of yellow through it.</p> <p>Bromide flux. White coat.</p> <p>Chromate flux. White coat.</p>

ADDITIONAL TESTS

Mercury, Hg. The reactions of Hg have already been listed under P-2.

Arsenic, As. If an arsenic mineral is mixed with soda and flamed on coal a strong garlic odor (arsine, AsH_3) is given off and a very volatile white coat

QUALITATIVE CHEMICAL TESTS

will be deposited at an appreciable distance from the assay. The flame is colored azure-blue.

In the O.T., if heated gently, arsenic compounds will deposit a white or colorless crystalline sublimate of arsenious oxide (As_2O_3) at a considerable distance above the mineral. If heated too strongly, the red or yellow sulfide may be deposited. These sublimates are volatile. This serves to distinguish As from Sb which forms a white sublimate of Sb_2O_4 that is nonvolatile.

In the C.T. the sublimate may be the white oxide, the red or yellow sulfide or the black metallic mirror. If, however, a piece of charcoal is placed above the mineral in the tube, the oxide will be reduced and give a mirror also. The mirror is soluble in sodium hypochlorite (NaOCl) solution.

If an oxygen compound of As is held in the upper reducing part of the Bunsen flame, it is reduced to metal. If a glazed porcelain dish filled with water is held directly over the sample, vapors of metallic arsenic will collect, forming a brownish-black coat which is soluble in sodium hypochlorite (NaOCl). If the volatilized metallic arsenic is not collected immediately it will be oxidized in the upper oxidizing zone of the flame, burning with a blue light, and will deposit on the dish of water as white arsenious oxide (As_2O_3). If this is moistened with AgNO_3 and held over the ammonia bottle, yellow Ag_3AsO_3 is formed, which disappears on treatment with more NH_4OH vapors.

From arsenic solutions AgNO_3 precipitates the yellow arsenite or reddish-brown arsenate, soluble in dilute acids, NH_4OH and ammonia salts.

Antimony, Sb. In the O.T., a dense, white, nonvolatile, amorphous sublimate of Sb_2O_4 is formed. The arsenic sublimate which may be mistaken for it is volatile. If antimony sulfide is too strongly heated it may yield red spots.

In the C.T., the oxide will yield a white fusible sublimate of needle-like crystals. The sulfide gives a sublimate that is black while hot and red when cold.

The S.Ph. bead, with Sb dissolved in it in the O.F., when treated on charcoal with tin in the R.F., will become gray or black.

With soda on coal Sb gives a dense white coating near the assay and a gray, brittle button is formed.

On dilution of a strong acid solution containing Sb, hydrolysis results with the precipitation of the basic salt.

The trioxide (Sb_2O_3) is soluble in conc. acids but the tetroxide (Sb_2O_4) is almost insoluble in conc. acids.

If metallic zinc and platinum are placed in contact in an HCl solution of Sb, metallic antimony is deposited as a black stain on the platinum. On removal of the zinc, the stain will persist (tin will disappear). Zinc will finally reduce the Sb to stibine gas (SbH_3). Treat the precipitate from P-11 with a few drops of a mixture of equal amounts of conc. HCl and water. This dissolves the Sb and Sn as SbCl_3 and SnCl_4 . Place a few drops of this solution on a watch glass, add a piece of metallic zinc, then place a piece of metallic platinum on this in

CHEMICAL ANALYSIS OF MINERALS

contact with the zinc. Antimony is precipitated on the Pt as dark glittering plates and tin is deposited on the zinc in a spongy form.

Place a drop of the HCl solution of the precipitate on filter paper that has been impregnated with phosphomolybdic acid and hold over steam. Sb gives a blue coloration.

Oxygen compounds of Sb are reduced in the upper reducing part of the Bunsen flame to metal which volatilizes and is reoxidized in the upper oxidizing zone to Sb_2O_3 which will deposit on a glazed porcelain dish filled with water. If this white, almost invisible deposit is moistened with $AgNO_3$ solution and treated with ammonia fumes, it becomes black, due to the separation of metallic Ag.

Tin, Sn. Metallic tin is insoluble in HNO_3 but soluble in HCl.

Cassiterite, SnO_2 . Place a fragment of the mineral in contact with metallic zinc and treat with HCl. If the mineral is cassiterite, it will become coated with a thin white layer of metallic tin. Cassiterite is insoluble in all acids.

Most tin compounds reduce to white, metallic globules by treatment with the R.F. on coal.

The oxide and soda without the addition of charcoal usually forms an infusible mass that reduces with difficulty.

With CuO in a borax bead, a faint blue color should be obtained. If this is treated with a tin compound and flamed until the tin is in solution, then for a moment with the R.F., it becomes reddish-brown or ruby-red. This is a very sensitive test. Compare similar test for copper, using tin.

See under antimony, above, for the tin reaction with zinc and platinum.

Potassium iodide gives yellow crystals of SnI_2 or SnI_4 at the junction of a tin solution and conc. sulfuric acid.

If a bead of metal is obtained on coal and this oxidizes rapidly with sprouting and cannot be fused, it is a good indication of tin.

If zinc is present, the sample should be mixed with soda, borax and charcoal and treated on charcoal with the R.F. Under these conditions the Zn is volatilized and the Sn remains in the fused mass, from which it may be removed by crushing and dissolving in water.

Impregnate a piece of filter paper with phosphomolybdic acid, hold over the ammonia bottle, then allow to dry. The ammonium phosphomolybdate paper thus formed will keep well if stored in a dark, well stoppered bottle. The tin sulfide precipitate from P-11 is soluble in conc. HCl. Dissolve a portion of the precipitate from P-11 in conc. HCl, add a piece of metallic zinc and allow to react for a short time to convert the Sn to the stannous form, then place a drop of this solution on the ammonium phosphomolybdate paper. A blue color indicates tin.

Place another drop or two of the solution on the spot plate, add a drop of 1% $FeCl_3$ solution and allow to stand for a few minutes. Add a crystal of tartric acid and when dissolved add a drop of dimethylglyoxime and make alka-

QUALITATIVE CHEMICAL TESTS

line with NH_4OH . A red coloration according to the amount of tin present, is formed.

Molybdenum, Mo. Treat some of the precipitate from P-11 with conc. HNO_3 in a porcelain dish and evaporate to dryness but do not ignite. Moisten again with conc. HNO_3 and again evaporate to dryness. A deep blue color indicates Mo. If a drop of water is added a blue solution results.

Place a small amount of the finely powdered mineral in a porcelain dish, add a little conc. HCl then metallic zinc and boil for a few minutes. If molybdenum (as molybdate) is present the solution will become blue, then green then brown. With small amounts the color will appear as a ring around the dish. W, Ti, Cb, V, Ru and U also give color reactions with this test.

Potassium ferrocyanide added to a solution containing Mo gives a reddish-brown precipitate which is soluble in NH_4OH , to a yellow solution (difference from copper). Compare this test with Cu and U.

The borax bead in the O.F. is yellow while hot and colorless when cold; in the R.F. it is brown to black and opaque both hot and cold.

The S.Ph. bead in the O.F. is yellowish-green while hot and pale yellow to colorless when cold. The bead crushed between damp, unglazed paper, will become red, brown, purple and blue, according to the amount present. In the R.F. the bead is dirty green while hot and fine emerald-green when cold.

Treat several S.Ph. beads with the mineral in the O.F. and dissolve in dilute HCl. Heat and add metallic tin, zinc or copper. If Mo is present, the solution will turn blue, green, then brown. If the beads have been treated in the R.F. the solution will become brown only.

To test for molybdates, place a small amount of the powdered mineral in a test tube along with a scrap of paper; add a few drops of water and an equal amount of conc. H_2SO_4 and heat until acid fumes are obtained. Cool and add slowly a few drops of water. Molybdenum is indicated by the formation of a deep blue solution.

Fusion of the molybdenum mineral or precipitate from P-11 with 4 volumes of Na_2CO_3 and extraction with water (no acid) gives a solution of sodium molybdate. Tungsten also goes into solution as sodium tungstate.

Place a drop of this solution on filter paper which has been moistened with HCl to prevent the interference of tungsten, and add a drop of KSCN reagent. A red spot of $\text{Fe}(\text{SCN})_3$ may be formed if iron is present, but on the addition of a drop of SnCl_2 or $\text{Na}_2\text{S}_2\text{O}_3$ it will disappear and the red spot due to molybdenum [$\text{K}_3(\text{Mo}[\text{SCN}]_6)$] will appear.

Place a pinch of the powdered mineral or the precipitate from P-11 in a porcelain dish, add conc. H_2SO_4 and heat to fumes. Cool and breathe on the residue. If Mo is present, it will turn blue. The color disappears on heating but returns on cooling. It is destroyed by water.

If a solution containing Mo is evaporated to dryness carefully so as not to overheat and the residue treated with conc. NH_4OH then H_2O_2 , a pink or

CHEMICAL ANALYSIS OF MINERALS

red color is formed. On evaporating to dryness again and treating the residue with HNO_3 or H_2SO_4 , yellow permolybdic acid (HMnO_4) is formed.

Stannous chloride or sodium thiosulfate added to a slightly acid solution of a molybdate produces a blue color and precipitate which turns green, then brown.

Selenium, Se. In the C.T. Se compounds give a dark red sublimate and a decaying horseradish odor.

Selenium minerals, fused with Na_2CO_3 on coal in the R.F., if moistened with water and placed on a silver coin, will blacken it similar to sulfur and tellurium.

Stannous chloride precipitates red metallic selenium even in the presence of considerable H_2SO_4 .

Fuse the precipitate from P-11 with Na_2CO_3 and dissolve in water and a little HCl. Place a drop of this solution on filter paper that has previously been treated with a drop of KI solution and a drop of HCl. If a brown to black color develops, add a drop of $\text{Na}_2\text{S}_2\text{O}_3$ which will destroy it and leave the red-brown color of the selenium.

If a Se compound is heated on an asbestos thread in the upper reducing flame of the Bunsen burner, it will be reduced to the red metal which will deposit on a test tube of water held over it. If this is immersed in a larger tube containing conc. H_2SO_4 and warmed, the selenium will go into solution, giving a green color. On dilution with water the red metallic Se is reprecipitated.

Red metallic selenium is precipitated by metallic zinc in acid solutions and the zinc becomes coated with Se and looks as if coated with copper. On warming the red Se is changed to brown or gray to black.

Tellurium, Te. A Te mineral fused with soda on coal in the R.F. will dis-color silver similar to sulfur and selenium.

In the O.T. a gray sublimate is formed that is fused to clear drops if gently heated.

Treat a mixture of the powdered mineral, with soda and a little charcoal in the C.T. When cool add water. If Te is present the solution will become a reddish-violet that will gradually disappear and a gray precipitate will form if a drop is transferred to a porcelain plate.

The mineral added to hot conc. H_2SO_4 will develop a fine red-violet coloration if tellurium is present. Place a little of the finely pulverized mineral in a porcelain dish, add 5 ml. of conc. H_2SO_4 and heat carefully. Tellurium gives a violet color. If heated further or diluted the color will disappear.

By heating a telluride in the upper reducing part of the flame of a Bunsen burner, metallic Te is formed which volatilizes and can be collected as a black film on a test tube of water held over it. If this tube is immersed in a larger tube containing conc. H_2SO_4 , a carmine-red colored solution will result. On dilution with water, black metallic Te is precipitated.

Fuse the precipitate from P-11 with Na_2CO_3 and extract with water. On a spot plate, place a drop of SnCl_2 , a drop of 20% NaOH and a drop of this

QUALITATIVE CHEMICAL TESTS

solution. A black or gray precipitate or color is developed by tellurium according to the amount present. Selenium does not interfere with this test.

Metallic zinc precipitates gray to black metallic Te from acid solutions.

Platinum, Pt. Like gold, platinum is usually identified by its physical properties. There are extremely few platinum compounds in nature. It is insoluble in all acids but dissolves in aqua regia.

A concentrated solution of Pt, if slightly acid, will give a yellow precipitate of K_2PtCl_6 if KCl is added.

All platinum compounds when heated with soda on coal yield gray, spongy metal which assumes a metallic luster if rubbed with a pestle in an agate mortar. It is soluble in aqua regia.

Oxalic acid does not precipitate platinum but does precipitate gold.

Iridium, Ir. Fusion with soda on coal yields a gray, brittle button which is *insoluble in aqua regia*. Fusion with Na_2O_2 converts it into a salt that is *soluble in HCl*.

A solution containing Ir, if treated with NaOH, changes color from dark red to green and on warming is changed to reddish then azure-blue.

Germanium, Ge. Germanium forms volatile salts and is likely to be lost by volatilization in the process of solution and analysis. $GeCl_4$ distills at 86°C.

Germanium sulfide is appreciably soluble in water and dissolves readily in alkali hydroxides.

Ruthenium, Ru. If a ruthenium solution is made slightly alkaline with Na_2CO_3 and boiled with KNO_2 , cooled and a little $(NH_4)_2S$ added, a carmine-red color which turns brown is obtained.

Metallic Zn turns a ruthenium chloride solution first blue then decolorizes it with the precipitation of gray metallic ruthenium.

Hydrogen sulfide in acid solution causes no precipitation at first but after a time the solution becomes azure-blue and brown Ru_2S_3 is precipitated. This is characteristic but also somewhat similar to the reaction of molybdenum.

If a few drops of ruthenium chloride are added to a solution of sodium thiosulfate made alkaline with ammonia, and the mixture boiled, a permanent reddish purple color is produced. Unless very dilute, the color by transmitted light is black. Metallic ruthenium is practically insoluble in all acids including aqua regia.

PROCEDURE 13

The filtrate from P-8 is boiled until all the H_2S has been removed (test with lead acetate paper), allowed to cool and is tested for the phosphate radical.

To test for **phosphate** (PO_4), place a drop of the solution on filter paper, add a drop of ammonium molybdate and a drop of benzidine and hold over the ammonia bottle until most of the mineral acid is neutralized. *A blue color indicates the PO_4 radical.*

CHEMICAL ANALYSIS OF MINERALS

The following test may also be used. Add 1 ml. of the solution to a mixture of 1 ml. of ammonium molybdate reagent and 1 ml. of conc. HNO₃. *Not vice versa.* Warm slightly and allow to stand. *A yellow precipitate indicates the phosphate radical (PO₄).*

Vanadium, V, is not completely precipitated by any of the group reagents. In P-14, if V is present in the vanadyl form, it will be partially precipitated. If, however, Fe, Al, U or Ba are present in sufficient quantities, the precipitation of V will be complete. The addition of an excess of ferric chloride will cause all of the V to be thrown down. The treatment in P-15 dissolves the vanadium and it will be reprecipitated with the Al group if sufficient Al or U are present, otherwise it will remain in the filtrate and may be precipitated as directed in P-21.

PROCEDURE 14

To the H₂S free filtrate from P-8, add NH₄OH to alkalinity and heat to boiling. *No precipitate shows the absence of Fe, Cr, Al, Be, U, Ga and In.* Add (NH₄)₂S in slight excess and heat to nearly boiling. A precipitate indicates the **iron group** (Fe, Mn, Co, Ni, In) or the **aluminium group** (Al, Zn, Cr, Be, U, V, Ga), and if a positive test for PO₄ was obtained, or if V is present, possibly all or a part of the **calcium group** (Ca, Ba, Sr, Mg) as phosphates or vanadates, and any one or all may be present. *If no precipitate forms, all are absent.* Treat the solution by P-19.

If a *negative test* for PO₄ was obtained or *if vanadium is absent* the Ca group *will not be precipitated.*

If PO₄ is *absent*, filter, treat the precipitate by P-15 and the filtrate by P-19.

If PO₄ is *present*, filter, treat the precipitate by P-21 and the filtrate by P-22.

The only member of the calcium group that is precipitated by vanadium is barium, and tests must be made to determine its presence or absence in the precipitate.

Nickel may form a colloidal solution of a dark brown color. If this occurs, make slightly acid with acetic acid, and boil. This coagulates the hydrosol so that it can be filtered.

PROCEDURE 15

Transfer the precipitate from P-14 to a beaker and dissolve in a little water and 1 ml. of conc. HCl. Stir, then boil for 1 or 2 minutes, add a pinch of potassium chlorate (KClO₃) and boil again for 1 or 2 minutes. Filter, and to the filtrate add NaOH until alkaline; cool and add slowly to the cold solution

QUALITATIVE CHEMICAL TESTS

1 ml. of dry sodium peroxide (Na_2O_2) stirring constantly. Boil for 1 or 2 minutes and filter. If a portion of the precipitate remains undissolved the **iron group** (Fe, Mn, Co, Ni, In) is indicated and any member or all may be present. *If none or only a slight trace of the precipitate remains undissolved, all are absent.* Treat the solution by P-17.

If a residue remains undissolved, filter, treat the residue by P-16 and the filtrate by P-17.

It is sometimes desirable to separate iron from the other members of the group. This can be done by dissolving the residue in a little water and HCl, adding 1 ml. of solid ammonium chloride (NH_4Cl), making strongly alkaline with NH_4OH and filtering. Iron and indium are precipitated but Co, Mn, and Ni remain in solution and may be precipitated as oxides from the filtrate by adding H_2O_2 or Na_2O_2 and boiling. An excess of Na_2O_2 should be avoided. Mn and Co give brown to black and Ni may give apple-green or black precipitates from the H_2O_2 treatment.

Treat the precipitates by P-16.

If the precipitation of Tl, Th, Sc, the R.E. groups, Zr and Ti was not complete in the previous operations, they will appear with the iron group.

Indium is a very rare element and it is improbable that tests for it will be obtained on the small sample used in this procedure.

Thallium is usually in the trivalent state and unless it has been converted to the monovalent condition it is not precipitated in P-1 but comes down in the iron group.

PROCEDURE 16

Dry the precipitate from P-15 and treat small amounts in the borax and S.Ph. beads. The tests for the various members of this group are as follows:

WITH BORAX

	Oxidizing Flame		Reducing Flame	
	Hot	Cold	Hot	Cold
Iron, Fe	Yellow to red.	Yellow.	Bottle-green.	Little lighter.
Manganese, Mn	Amethystine.	Reddens.*	Colorless.	Colorless.
Cobalt, Co	Blue.	Blue.	Blue.	Blue.
Nickel, Ni	Violet.	Pale-reddish-brown.	Opaque-gray.	Opaque-gray.

* Care must be taken that too much Mn is not used or the bead will be black, and opaque.

CHEMICAL ANALYSIS OF MINERALS

WITH SALT OF PHOSPHORUS

	Oxidizing Flame		Reducing Flame	
	Hot	Cold	Hot	Cold
Iron, Fe	Yellow.	Colorless.	Pale yellowish-green.	Colorless.
Manganese, Mn	Grayish-violet.	Violet.	Colorless.	Colorless.
Cobalt, Co	Blue.	Blue.	Blue.	Blue.
Nickel, Ni	Reddish to brownish-red.	Yellowish to reddish-yellow.	Reddish to brownish-red.	Yellow to reddish-yellow.

ADDITIONAL TESTS

Iron, Fe. Dissolve a part of the residue from P-15 in a small amount of water and HCl. Place a drop of this solution on filter paper or the spot plate and add a drop of potassium ferrocyanide $[K_4Fe(CN)_6]$. Ferric iron is indicated by the formation of the brilliant Prussian blue color. Ferrous iron and potassium ferricyanide $[K_3Fe(CN)_6]$ gives the deep Turnball's blue.

Dissolve another part of the precipitate from P-15 in a little water and HNO₃. Place a drop of this solution on filter paper or the spot plate and add a drop of ammonium or potassium thiocyanate (NH₄SCN or KSCN). A red color indicates ferric iron. Co, Ni, Cr and Cu reduce the sensitivity of this reaction.

The ferrocyanide and thiocyanate tests fail in the presence of phosphates, fluorides, borates, oxalates, citrates and tartrates.

Ferrous Iron. Place a drop of the freshly prepared HCl solution of the mineral on filter paper or the spot plate. If paper is used, the solution must contain tartaric acid; if the spot plate is used, a small crystal of tartaric acid is next added, then a drop of KCN solution followed by a drop of dimethylglyoxime and made alkaline with NH₄OH. An intense red color indicates ferrous iron. The color fades due to the oxidation of the iron to the ferric state. Ni and Co in large amounts interfere with the test.

Many iron compounds become magnetic if heated with soda on coal in the R.F. Cobalt and nickel compounds give a similar test but they can easily be differentiated by the bead tests.

With bromide flux, iron gives a blackish coat around the assay with a brownish band far away. (NH₄)₂S vapors turn the coat green and develop spots where no coat was seen before.

Manganese, Mn. If the mineral or residue from P-15 is fused with soda

QUALITATIVE CHEMICAL TESTS

and a little KNO_3 on platinum, and Mn is present, the fusion will be bluish-green. This is a very delicate test. This should have been in evidence if the mineral was put into solution by fusion at the beginning of the operation.

Some manganese minerals, treated with HCl and heated, give off chlorine, a very pungent and irritating gas.

NH_4OH does not precipitate Mn from solutions containing ammonia salts. Boiling the solution with H_2O_2 or Na_2O_2 precipitates the Mn as oxide. This is used to separate it from Fe, Al and all other elements forming hydroxides that are insoluble in an excess of NH_4OH . An excess of Na_2O_2 should be avoided.

Cobalt, Co. If the bead tests have been made on the precipitate of the group, they will have given a very excellent indication of the presence or absence of this element.

If bead tests are made on the mineral, and sulfur and arsenic are present, it should first be thoroughly roasted on charcoal.

NH_4OH precipitates the hydrous oxide, soluble in excess. Boiling the solution with H_2O_2 or Na_2O_2 precipitates Co as the black oxide. This may be used to separate it from Fe, Al and all other elements forming hydroxides insoluble in an excess of NH_4OH . An excess of Na_2O_2 should be avoided.

Dissolve a part of the precipitate from P-15 in a little water and HCl and add NH_4OH till the solution is only faintly acid. Place a drop on the spot plate and add a drop of saturated ammonium thiocyanate (NH_4SCN). If a red color develops (due to iron) add two or three drops of saturated ammonium acetate and two or three drops of 50% tartaric acid. This dissolves the red of the iron and allows the blue of the cobalt to appear.

Place a drop of the cobalt solution on the spot plate and add two or three drops of acetone, then a crystal of NH_4SCN . Cobalt gives a blue color which becomes pink on the addition of water.

Place a crystal of NH_4SCN on filter paper and moisten with an HCl solution of the precipitate or mineral. Treat with NH_4OH until the spot is de-colored. Chromium may leave a green spot. Dry the paper over the flame almost to carbonization. A bluish-green color (not the same as before heating) becomes apparent if cobalt is present.

Dimethylglyoxime gives no precipitate with an ammoniacal solution of cobalt but a wine-red color is obtained if ammonium sulfide is also present.

To a drop of an HCl solution of the residue or mineral on the spot plate, add two or three drops of 3% H_2O_2 and then a crystal of potassium bicarbonate (KHCO_3). Cobalt gives a green color on the crystal.

H_2O_2 added to an ammoniacal cobalt solution gives a red color.

Nickel, Ni. Dissolve the mineral or residue from P-15 in HCl, make slightly alkaline with NH_4OH , add a drop or two of dimethylglyoxime, and boil. If nickel is present, a scarlet, crystalline precipitate will be formed. In the *presence of much iron*, as is usually the case in treating the precipitate from P-15, dissolve a part of the residue in water and HCl, leaving it quite strongly acid.

CHEMICAL ANALYSIS OF MINERALS

Add a little solid NH_4Cl , make strongly alkaline with NH_4OH , filter and test the filtrate as above. Nickel remains in solution.

NH_4OH precipitates the apple-green basic salt, soluble in excess, giving a blue solution that is paler than that obtained from copper, but if sufficient ammonia salts are present, NH_4OH produces no precipitate [(similar to Co, Mg, Fe(ous), and Mn(ous)]; NaOH and KOH , however, cause apple-green hydroxide to be thrown down from this solution. Under these conditions cobalt is not precipitated.

The NH_4OH solution, boiled with H_2O_2 or Na_2O_2 , precipitates the Ni as the oxide. This may be used to separate nickel from Fe, Al and all other elements forming hydroxides insoluble in an excess of NH_4OH . An excess of Na_2O_2 should be avoided.

Indium, In. Indium may be separated from the other members of the Fe group by dissolving the precipitate in water and the minimum amount of HCl , adding NH_4OH till the solution is only faintly acid and passing in H_2S . Indium is precipitated as yellow In_2S_3 . If the acidity is too high the In will not be precipitated.

If Indium is heated on coal, the surface is given a lustrous metallic coating.

Indium salts color the flame a peculiar bluish-violet.

NH_4OH and caustic alkalies precipitate white, gelatinous $\text{In}(\text{OH})_3$ resembling $\text{Al}(\text{OH})_3$ in behavior and appearance, soluble in excess of NaOH and KOH , but the solution becomes turbid on standing, and boiling with NH_4Cl precipitates all of the indium as hydroxide.

The quinalizarine spot test for indium is made as follows: Separate the iron and indium from the other members of the group, then dissolve this in a small amount of water and acetic acid. Add NH_4OH until the solution is almost neutral. Place a drop of this solution in a small casserole and treat with $\text{Na}_2\text{S}_2\text{O}_3$ until no more violet color forms. A crystal of Na_2SO_3 and 5-6 drops of 5% KCN are then added and the mixture warmed until the precipitate is dissolved. The solution should be neutral or slightly acid with acetic acid. A drop of this solution is placed on paper that has been impregnated with the alcoholic quinalizarine and dried. This is then held over the ammonia bottle for a few minutes and then immersed in a saturated solution of boric acid. This decomposes the violet ammonium quinalizarinate and permits the red or violet indium lake to be seen against the red or yellow colored paper. This test is positive in the presence of 400 to 500 times as much iron as indium, but it is better to precipitate the In as sulfide first, then to use this test for confirmation.

PROCEDURE 17

Make the filtrate from P-15 acid with HCl , then barely alkaline with NH_4OH ; add $\frac{1}{2}$ ml. of solid ammonium chloride (NH_4Cl) and heat to nearly boiling. A precipitate indicates Al, Be, U, Ga and possibly some V. Filter, add 1 ml. of solid Na_2CO_3 and boil until there is no odor of ammonia. Zinc is

QUALITATIVE CHEMICAL TESTS

precipitated as white basic carbonate. Filter, make the filtrate acid with HCl, pass in H₂S for a few minutes, then make alkaline with NH₄OH and pass in H₂S again for several minutes. Chromium is precipitated as the grayish-green hydroxide [Cr(OH)₃], and zinc, if not precipitated as indicated above, is thrown down as the white sulfide (ZnS). Filter. If vanadium is present, the filtrate will be yellowish-red to brilliant violet-red. The addition of acids to this solution precipitates black V₂O₄ or V₂O₅. The filtrate from this may be blue and still contain appreciable amounts of vanadium.

If further separation of the Al, Be, U and Ga precipitate is desired, dissolve in a little water and HCl (not over 10 ml.), make barely alkaline with NH₄OH, add 1 ml. of solid ammonium carbonate [(NH₄)₂CO₃], and heat to nearly boiling. Aluminum is precipitated. Filter, boil to a low volume to drive off the ammonium carbonate, make acid with HCl and boil for a minute or two, then make strongly alkaline with NaOH, and boil until there is no odor of ammonia. Uranium is precipitated. Filter; make the filtrate acid with HCl, then strongly alkaline with NH₄OH and heat to nearly boiling. Beryllium and some vanadium are precipitated. Filter; add HCl until the solution is barely alkaline. Gallium is precipitated.

The precipitates are treated by P-18. Reject the final filtrate.

These separations are not sharp and each precipitate may contain small quantities of the other elements. Gallium usually occurs in very small amounts and it is improbable that tests will be obtained on the small sample used in this scheme.

PROCEDURE 18

Dry the precipitates from P-17 and treat small amounts in the borax and S.Ph. beads. The tests for the various members of the group are as follows:

WITH BORAX				
	Oxidizing Flame		Reducing Flame	
	Hot	Cold	Hot	Cold
Chromium, Cr	Yellow to red.	Yellowish-green.	Emerald-green.	Emerald-green.
Uranium, U	Yellow to orange.	Yellow.	Pale-green.	Pale green to colorless.
Vanadium, V	Colorless to yellow.	Yellowish-green to colorless.	Dirty green.	Fine green.
Aluminum, Al	None.			
Zinc, Zn	None.			
Beryllium, Be	None.			
Gallium, Ga	None.			

CHEMICAL ANALYSIS OF MINERALS

WITH SALT OF PHOSPHOROUS

	Oxidizing Flame		Reducing Flame	
	Hot	Cold	Hot	Cold
Chromium, Cr	Dirty green.	Fine emerald-green.	Dirty green.	Fine emerald-green.
Uranium, U	Yellow.	Colorless.	Pale dirty green.	Fine green.
Vanadium, V	Dark yellow.	Light yellow.	Dirty green.	Fine green.
Aluminum, Al	None.			
Zinc, Zn	None.			
Beryllium, Be	None.			
Gallium, Ga	None.			

ADDITIONAL TESTS

Aluminum, Al. Dissolve some of the mineral or precipitate from P-17 in HCl and add NH₄OH in excess. A white, flocculent precipitate indicates Al. Beryllium and zinc also give white precipitates, but Zn is soluble in ammonium chloride and Be is soluble in ammonium carbonate. Chromium forms a bluish-green precipitate that is partially soluble.

Moisten a small amount of the dried precipitate from P-17 on plaster with cobalt solution, avoiding an excess, as on heating it leaves black cobalt oxide which may obscure the test. Heat strongly in the O.F. A fine blue color indicates aluminum.

Zinc, Zn. To a small portion of the dried precipitate from P-17 add soda and borax and treat with the O.F. on coal. The presence of Zn will be indicated by the formation of a coating that is yellow while hot and white or grayish when cold. The coat if moistened with cobalt solution and treated with a strong O.F., gives a bright green color on cooling. Avoid an excess of the cobalt solution as it leaves a black oxide which may partially obscure the green of the test.

Dissolve a small portion of the precipitate from P-17 in HCl and add NH₄OH and (NH₄)₂S. If Zn is present, a white precipitate will form.

Some of the Zn minerals, when treated with a strong R.F., give a characteristic vivid pale bluish-green light which appears as streaks in the outer parts of the flame.

Some zinc silicates, when treated with cobalt solution in the O.F., give a blue color similar to aluminum.

Chromium, Cr. Fuse some of the precipitate from P-17 with soda and

QUALITATIVE CHEMICAL TESTS

KNO_3 on platinum. This yields yellow alkali chromates. If this is dissolved in water then acidified with acetic acid and AgNO_3 added, reddish-brown silver chromate (Ag_2CrO_4) is precipitated. This is a very sensitive test for minute amounts of Cr.

Mix some of the dry precipitate from P-17 with soda and treat on coal. If Cr is present, a green slag will result, which after long heating changes to infusible chromic oxide.

Free chromic acid is converted to blue perchromic acids by H_2O_2 .

If a *cold alkaline* solution of a chromate is treated with neutral H_2O_2 , the solution is colored red, which gradually changes, with evolution of oxygen, back to the original yellow of the chromate.

If a *cold neutral* solution of a dichromate is treated with H_2O_2 , it is colored violet, which gradually changes, with evolution of oxygen, back to the original color of the dichromate.

If a chromate is treated with H_2O_2 in the *presence of dilute H_2SO_4 or HCl* , intensely blue $\text{H}_7\text{CrO}_{10}$ is formed, which shortly changes to green with the evolution of oxygen.

Dissolve a portion of the precipitate from P-17 in the minimum amount of HCl and water. Place a drop of this solution and a drop of fairly strong sodium peroxide in water, and then a drop of benzidine solution on filter paper. Chromium (chromates) is indicated by a blue ring.

Beryllium, Be. There are no simple blowpipe or chemical tests for this element.

Dissolve a small amount of the precipitate from P-17 in HCl and evaporate nearly to dryness. Add a small amount of water and KOH in the amount necessary to dissolve the precipitate that forms at first, but not a great excess. The solution is diluted to 10 times its volume, filtered and boiled. If beryllium is present, a white precipitate of $\text{Be}(\text{OH})_2$ separates out. If this is treated on coal with cobalt solution it should give a gray or lavender mass.

Dissolve a portion of the precipitate from P-17 (Al,Be,U,Ga) in the minimum amount of water and HCl. Place a drop or two of this solution on the spot plate, add a drop of quinalizarine and make slightly alkaline with NaOH. A blue color or precipitate indicates beryllium. If too strongly alkaline the precipitate is soluble. The violet of the blank (which should be run at the same time) is quite different from the blue of the beryllium. Aluminum and zinc give a violet color or precipitate almost identical with the color of the blank; uranium gives a dirty yellowish precipitate; vanadium gives a light purple to violet color that is lighter than the blank and chromium gives a purplish-blue color or precipitate that is similar to beryllium; if the first portion of the precipitate of the group is used, Cr is not present.

$\text{Be}(\text{OH})_2$ is soluble in an excess of $(\text{NH}_4)_2\text{CO}_3$; $[\text{Al}(\text{OH})_3$ is not] but it is reprecipitated on boiling; it is insoluble in an excess of NH_4OH ; $[\text{Al}(\text{OH})_3$

CHEMICAL ANALYSIS OF MINERALS

is partially soluble]; it is soluble in an excess of NaOH or KOH; [Fe(OH)₃ and uranium are not].

If the precipitate from P-17 or some of the powdered mineral is fused with Na₂CO₃ and extracted with water (no acid), beryllium remains in the residue as oxide, but aluminum passes into solution. Treatment of the undissolved residue with HCl will put the beryllium into solution.

Uranium, U. Fuse the powdered mineral with three volumes of soda. Dissolve the melt in HCl, neutralize with NH₄OH, add solid ammonium carbonate, shake and allow to stand for some time. Uranium is precipitated but is soluble in excess of ammonium carbonate and by filtering may be separated from Fe, Al and the other elements that are precipitated by this reagent. Filter, boil to a low volume, make acid with HCl, and boil to drive off the CO₂; add NaOH in excess, and boil. Uranium is thrown down as a yellow precipitate and may be confirmed by the bead tests.

Treat the pulverized mineral or precipitate from P-17 with H₂SO₄ and evaporate nearly to dryness, dilute with water, filter, and to the filtrate add metallic zinc. If uranium is present the solution will change color from yellow to green; when all the acid is used, a yellow precipitate will form on the residual zinc. Large amounts of iron and vanadium interfere with the test. W, Cb, Ti, V, Mo and Ru also give color reactions.

From solutions of uranium minerals, ammonium, potassium and sodium hydroxides produce a yellow precipitate.

Dissolve some of the precipitate from P-17 in acetic acid and nearly neutralize with NH₄OH. Place a drop of this solution on filter paper or the spot plate and add a drop of potassium ferrocyanide [K₄Fe(CN)₆]. Uranium gives a dark brown color which is turned yellow by NaOH. This is a very sensitive test. Molybdenum and copper are the only other elements giving a brown precipitate with potassium ferrocyanide and they should not be present.

Metallic zinc in contact with a uranium mineral in HCl solution will form a yellow deposit on the residual zinc when the acid is used up.

Vanadium, V. In the C.T. with KHSO₄, vanadates give a yellow mass.

Dissolved in H₂SO₄ and reduced with zinc, if a vanadate is present, the solution becomes successively yellow, green, greenish-blue, bluish-green, bluish-violet, and lavender.

Place a little of the finely ground mineral in a porcelain dish, add a little conc. HCl then metallic zinc and boil for a few minutes. If vanadium is present the solution will become blue, green, then bluish-violet. W, Ti, Cb, Mo, U and Ru also give color reactions.

If H₂O₂ is added to a cold acid solution of a vanadate, a deep yellow to red tint is acquired, which changes to blue on heating. Ether does not extract the color but remains colorless (distinction from chromium). The color is not affected by H₃PO₄ (distinction from iron), or HF (distinction from titanium).

QUALITATIVE CHEMICAL TESTS

Fuse the powdered mineral with four parts of soda and two parts of potassium nitrate (KNO_3) on the platinum foil. Digest the fusion with warm water. Filter and acidify with acetic acid, and add a little lead acetate. Lead vanadate is thrown down as a pale yellow precipitate. Filter, wash, and confirm by the bead tests.

If an ammoniacal solution of vanadium is treated with H_2S , a violet-red color is obtained. This is a very sensitive test in the *absence of molybdenum*, which gives a similar color reaction.

Vanadium may be tested for in the alkaline solution before filtering off the Al group precipitate. Place a drop of the alkaline solution and a drop or two of conc. HCl in a small crucible and evaporate nearly to dryness. Pour the residual solution upon filter paper, add a drop of 1% FeCl_3 solution and three drops of dimethylglyoxime and make alkaline with NH_4OH . Vanadium gives a cherry-red to brown color. By dipping the paper into ammonia solution, the brown ferric hydroxide washes off, leaving the paper colored by the iron dimethylglyoxime.

Gallium, Ga. Ga(OH)_3 is white, resembling Al(OH)_3 , and is quite soluble in NH_4OH , which is increased by ammonia salts. Al(OH)_3 is insoluble in the presence of ammonia salts. Ga(OH)_3 is readily soluble in $(\text{NH}_4)_2\text{CO}_3$ solution; Al(OH)_3 is not soluble.

Gallium can be separated from aluminum by precipitation with potassium ferrocyanide from weak HCl solution, as white or bluish-white gallium ferrocyanide.

PROCEDURE 19

The filtrate from P-14 is concentrated to a small volume, filtered and allowed to cool. To this is added one volume of strong ammonium carbonate solution and one volume of 95% alcohol and allowed to stand for a half hour, with frequent shaking. A precipitate indicates the **calcium group** (Ca, Ba, Sr, Mg) and any one or all may be present. *If no precipitate forms, all are absent.* Treat the solution by P-22.

If a precipitate is formed, filter; treat the precipitate by P-20 and the filtrate by P-22.

PROCEDURE 20

Moisten a portion of the precipitate from P-19 with HCl, then take a piece on a clean platinum loop (cleaned by repeated dipping in conc. HCl and flaming until no further flame coloration is obtained) and hold in the nonluminous zone of the O.F. The flame colorations produced by the various members of the group are as follows:

CHEMICAL ANALYSIS OF MINERALS

FLAME COLORS		
	With Naked Eye	With Merwin Screen
Calcium, Ca.	Yellowish to orange-red.	Through 1. Flash of greenish-yellow. Through 2. Invisible. Through 3. Flash of crimson.
Barium, Ba.	Yellowish-green.	Through 1. Bright green. Through 2. Faint green. Through 3. Faint green.
Strontium, Sr.	Crimson-red.	Through 1. Invisible. Through 2. Invisible. Through 3. Crimson.
Magnesium, Mg.	None.	None.

ADDITIONAL TESTS

Calcium, Ca. The flame colorations should be sufficient identification for this element.

Calcium oxalate (CaC_2O_4) is virtually insoluble in hot acetic acid.

Calcium sulfate (CaSO_4) is quite soluble in water and HCl.

Dissolve a portion of the precipitate from P-19 in a little water and HCl, make alkaline with NH_4OH then acid with acetic acid. Place a drop of this solution, a few drops of a saturated solution of potassium ferrocyanide [$\text{K}_4\text{Fe}(\text{CN})_6$] and a drop of alcohol on a watch glass and mix. A white, crystalline precipitate indicates Ca. Strontium gives no precipitate, barium is precipitated only from concentrated solutions, and magnesium precipitates only from alkaline solutions.

Barium, Ba. Barium oxalate (BaC_2O_4) is completely soluble in hot acetic acid.

Barium sulfate (BaSO_4) is insoluble in water and HCl.

Dissolve a small part of the precipitate from P-19 in acetic acid and add K_2CrO_4 or $\text{K}_2\text{Cr}_2\text{O}_7$. A yellow precipitate indicates barium. Ca, Sr, and Mg do not give this reaction, except from concentrated solutions.

Dissolve a small part of the precipitate from P-19 in conc HCl and add a drop of H_2SO_4 . A white precipitate that is insoluble in acids indicates barium.

Strontium, Sr. The flame colorations should be sufficient indication for this element.

Strontium oxalate (SrC_2O_4) is somewhat soluble in hot acetic acid.

Strontium sulfate (SrSO_4) is much less soluble in water and HCl than CaSO_4 .

QUALITATIVE CHEMICAL TESTS

Magnesium, Mg. The oxalate and sulfate are completely soluble in hot acetic acid or a mixture of water and HCl.

Dissolve a portion of the precipitate from P-19 in dilute HCl. Place a drop of this solution and two drops of quinalizarine on the spot plate and mix thoroughly, then add one drop of 20% NaOH solution. Magnesium gives a blue precipitate or color. A blank should be run at the same time. The difference between the blue-violet of the blank and the blue of the Mg is intensified by standing, as the color of the blank gradually fades, while the blue of the Mg is stable. The other members of the group do not interfere if the NaOH concentration is sufficient. If there is any doubt, add a drop or two more NaOH. Much calcium may give a violet precipitate the same color as the blank.

Dissolve the remainder of the precipitate from P-19 in a small volume of dilute HCl, make strongly alkaline with NH₄OH, add ammonium oxalate [(NH₄)₂C₂O₄] and allow to stand for some time in the cold. This precipitates the Ca, Ba and Sr as oxalates. Filter, and to the filtrate add sodium phosphate (Na₂HPO₄) and allow to stand. A white precipitate indicates Mg. Place some of this precipitate on charcoal, moisten with cobalt solution, and heat strongly. Magnesium should give a pink or flesh color. An excess of the cobalt solution should be avoided, as it leaves a black oxide which may obscure the test.

PROCEDURE 21

If the PO₄ radical was found in the test in P-13, the precipitate from P-14 will contain the **iron and aluminum groups and a part or all of the calcium group**. In the regular wet methods these are separated, but as this calls for quite elaborate procedure and equipment, and as the tests used in this scheme for the various members of the groups interfere with each other very little, this separation is omitted in this system of analysis.

If PO₄ is present, test the precipitate from P-14 by the tests for the iron, aluminum and calcium groups, as outlined in P-16, P-18 and P-20.

If the solution is blue, or if further precipitation of molybdenum and vanadium is desired, or if no test for either was obtained and one wishes to make certain that these elements (especially vanadium) are not being overlooked, the filtrate from P-19 is made acid with HCl, boiled to expel the CO₂, cooled, made strongly alkaline with NH₄OH and H₂S passed in to complete saturation or until a bright red color is obtained. The color may be yellowish if Mo and V are present in very small amounts. On acidifying this, the Mo is thrown down as brown MoS₃ and the V is precipitated as black V₂S₄ or V₂S₅. Even this treatment may not give quantitative removal of Mo and V and detectable amounts may still remain in the filtrate, coloring it blue.

The vanadium precipitate is soluble in (NH₄)₂CO₃ and may be used to separate it from the MoS₃, which is only slightly soluble.

The filtrate is treated by P-22.

CHEMICAL ANALYSIS OF MINERALS

PROCEDURE 22

The filtrate from P-19, P-21 or, if PO_4 was present, from P-14, contains the **sodium group** (Na, K, Li, Cs, Rb). If the mineral was put into solution by fusion with soda or potassium bisulfate, this must be taken into consideration, as Na and K from this will be present. If this is the case, the presence of the sodium group may be determined by taking a new sample of the finely ground mineral, mixing with one part of ammonium chloride (NH_4Cl) and eight parts of precipitated calcium carbonate (CaCO_3), heating on charcoal or in platinum (not silica or porcelain, as these are attacked), grinding and leaching with water (no acid). This puts the alkali metals in solution as chlorides, along with a little calcium. The calcium is removed by P-19, is filtered, and the filtrate treated as below.

Evaporate in a silica or porcelain dish to dryness, slowly, to prevent spattering; ignite below redness until no more white fumes are given off, keeping the dish in continual motion and making sure that all parts of the dish have been heated to remove all ammonia and volatile salts. The residue left in the dish is the **sodium group** (Na, K, Li, Cs, Rb) and any one or all may be present. If no residue remains, all are absent.

Treat the residue by P-23.

PROCEDURE 23

Moisten the residue from P-22 with HCl, then take a small piece in a clean platinum loop (cleaned by repeated dipping in conc. HCl and flaming until no further coloration of the flame is obtained) and hold in the non-luminous part of the O.F. The coloration produced by the various members of the group are as follows:

FLAME COLORATION		
	With Naked Eye	With Merwin Screen
Sodium, Na	Intensely yellow.	Through 1. Invisible. Through 2. Invisible. Through 3. Invisible.
Potassium, K	Pale violet.	Through 1. Blue-violet. Through 2. Deep red-violet. Through 3. Red-violet.
Lithium, Li	Carmine.	Through 1. Invisible. Through 2. Invisible. Through 3. Crimson.

QUALITATIVE CHEMICAL TESTS

If much sodium is present, it is likely to mask the colors of the others so that they can not be seen with the naked eye. Lithium, however, usually shows through the sodium.

Caesium, Cs and Rubidium, Rb give flame tests almost identical with potassium and a spectroscope must be used to identify them.

ADDITIONAL TESTS

There are no simple chemical tests for the separation and identification of the alkali metals.

Caesium, Cs. Add a small amount of water to the precipitate, so that not all of the salt is dissolved, thus giving a saturated solution, and add HNO_3 until it is neutral or only faintly acid. To a drop of this solution on a spot plate add a drop of potassium ferrocyanide-lead acetate reagent. A yellow to orange precipitate after a few minutes indicates caesium.

Place another drop of the solution and a drop of potassium-bismuth iodide on filter paper. An orange to yellow stain indicates caesium. A blank should be run at the same time.

PROCEDURE 24

TESTS FOR ANIONS

Care must be exercised at all times when fusions are made on platinum, to ascertain that none of the members of the silver or hydrogen sulfide group are present, as these metals alloy with the platinum. The following tests are carried out with the sodium carbonate bead in the platinum loop.

SODIUM CARBONATE BEAD REACTIONS

Make a bead of soda and touch the hot bead to a speck of the mineral. Fuse in the O.F. and note the reactions which indicate the following:

Manganese, Mn. Bluish-green, opaque bead. This reaction may not be obtained unless potassium nitrate is also present in the soda bead.

Chromium, Cr. Yellow, opaque bead.

Silica, SiO_2 . is indicated by effervescence and solution to a clear colorless bead unless colored by one of the metals.

Sulfur, S as Sulfate, SO_4 . If the fusion has been made on Pt in the O.F., and is crushed, moistened with water and placed on bright silver, no discoloration should result. If the fusion has been made in the strong R.F. or on coal, and is crushed and placed on bright silver, it will turn black. By this treatment sulfates are reduced to sulfides.

Sulfur, S as Sulfides. If the fusion has been made on Pt in the O.F. and turns bright silver black when crushed and moistened with water, S is present as sulfides or sulfo salts. **Selenium** and **tellurium** show this also and must be tested for separately.

CHEMICAL ANALYSIS OF MINERALS

PROCEDURE 25

REACTIONS WITH KHSO_4 IN THE CLOSED TUBE

Mix the powdered mineral with an equal volume of potassium bisulfate (KHSO_4) and heat in the C.T. The indications are as follows:

Nitrates and Nitrites. Reddish-brown vapors (NO_2 , N_2O_5) with a pungent odor.

Chlorates. Yellowish-green fumes (ClO_2) with the odor of chlorine.

Iodides. Violet, choking vapors and a brown to black sublimate (free iodine).

Bromides and Bromates. Brown irritating vapors. Free bromine is liberated and the tube may be filled with a heavy brown gas.

Chlorides. Colorless gas (HCl) which forms white fumes if the mouth of the ammonia bottle is held near.

Fluorides. The colorless gas (HF) etches the glass.

Sulfides. The gas (H_2S) has the odor of rotten eggs. Turns lead acetate paper black.

Acetates. Smells like vinegar.

Carbonates. Colorless gas (CO_2) which causes a drop of lime water, if subjected to it in the Pt loop, to become turbid.

Oxalates. Colorless gas (CO) which burns with a blue flame.

Further tests for the acid radicals and elements are carried out as follows:

Boron as Borate. Warm some of the finely ground mineral with HCl and water; moisten a piece of turmeric paper with this solution and dry carefully (on a test tube of boiling water). A reddish-brown color that becomes blue to black on moistening with NH_4OH indicates boron.

Mix a small amount of the powdered mineral with three parts of boric acid flux and water to a paste. With a clean Pt loop, test this in the tip of the non-luminous flame. If boron is present, the flame will have a momentary green color. With this test lithium gives a carmine red.

Most boron minerals give a yellowish-green flame if moistened with H_2SO_4 , also if mixed with H_2SO_4 and NH_4F .

Alcohol, added to an H_2SO_4 solution of a borate, will burn with a green flame.

Carbon, C as Carbonate. All carbonates effervesce with strong HCl , most of them in the cold. Add conc. HCl (HNO_3 should be used with lead compounds) to the powdered mineral in the C.T. Carbon (CO_2) is indicated by effervescence. Place a glowing splinter in the tube. If CO_2 is present, it will be extinguished at once. Pour the gas, which is heavier than air, into another tube containing a solution of $\text{Ca}(\text{OH})_2$ or $\text{Ba}(\text{OH})_2$, close with the thumb, and shake. If CO_2 is present, a white precipitate will be formed.

QUALITATIVE CHEMICAL TESTS

The addition of a carbonate to a clear S.Ph. bead will cause effervescence during fusion.

Most carbonates are decomposed, by treatment before the blowpipe, into the oxide of the metal and CO_2 . The noble metals yield the metal instead of the oxide.

As Hydrocarbon. If the specimen gives the odor of a burning substance when ignited, it is probably organic and is one of the hydrocarbons. Heated in the C.T., hydrocarbons usually deposit a ring of oily substance in the upper part of the tube.

On the plaster tablet, carbonaceous material forms a brownish-black non-volatile coat.

Fluorine, F as Fluoride. Mix the powdered mineral with four volumes of sodium meta-phosphate (NaPO_3) and heat in the C.T. Fluorine is indicated by the etching of the glass and the deposition of a ring of SiO_2 that can not be removed by washing.

In a lead dish (porcelain or glass coated with paraffin will serve) add conc. H_2SO_4 to the mineral. Hold a watch glass over this in the fumes. The evolution of hydrofluoric acid (HF) and the etching of the glass, indicate fluorine.

Fluorides give a momentary green flame when heated in the O.F. with borax and KHSO_4 .

Most fluorides are unchanged by ignition, but by heating them with silica in moist air they are more or less completely decomposed.

Hydrogen, H as H_2O . Hydrogen as water of crystallization is tested for by heating the substance in the C.T. Care must be used that only the bottom part of the tube is heated to allow the water to condense in the upper, cooler portion. Some minerals yield acid or alkaline water. To determine this, test with litmus paper.

As Hydrocarbon. Hydrogen and carbon occur together in the hydrocarbons; if carbon as hydrocarbon is indicated above, hydrogen is also present.

Nitrogen, N as Nitrate. Boil some of the finely ground mineral with water (no acid), cool and add twice its volume of conc. H_2SO_4 . After cooling, pour a concentrated solution of ferrous sulfate (FeSO_4) carefully on top of the mixture. A dark ring at the juncture of the two liquids indicates nitrogen as nitrate.

Heat the mineral in the C.T. with KHSO_4 . Red-brown acrid vapors (NO_2 and N_2O_5) indicate the NO_3 radical. Moisten a piece of filter paper in FeSO_4 solution and hold in the vapors. If the fumes are due to nitrates, the paper will be turned brown.

Nitrates deflagrate very violently if fused on charcoal.

As Ammonia. Mix the powdered mineral with an equal amount of slaked lime [$\text{Ca}(\text{OH})_2$] and make into a paste with water (moistening the mineral with strong NaOH will give the same result), and heat in the C.T. If NH_3 is present, it will be evolved as a gas and can be detected by its odor and will turn red litmus paper blue. Ammonia turns turmeric paper brownish.

CHEMICAL ANALYSIS OF MINERALS

Oxygen, O. Oxygen is usually not tested for independently, as only a few of the minerals have an excess which will be liberated on heating. The usual test is in conjunction with the oxy-acids. If none of the acid elements are found in the mineral and it is not a metal, it is usually considered as being an oxide.

A few of the higher oxides, such as manganese dioxide (MnO_2), if heated in the C.T., yield oxygen. If a glowing splinter is held in this it will burst into flame and burn brightly.

Fuse the finely ground mineral with four volumes of soda, crush the fuse mass, boil with water (no acid), filter, divide the filtrate into three parts and treat as below.

PART 1

Acidify with HCl, boil, filter and test small portions as follows:

Sulfur as Sulfate. Add a drop of $BaCl_2$ solution. A white precipitate that is insoluble in acids indicates the sulfate radical (SO_4).

Some sulfates are insoluble in acids and must be put into solution by fusion with soda on charcoal. Barite is such a mineral. The sulfate is reduced to sulfide.

As Sulfide. If lead acetate is added to the acidified solution *before boiling* it will turn black if sulfide is present.

See also soda bead tests, P-24.

Most sulfides on roasting, yield SO_2 .

Some sulfides yield a sublimate of sulfur when heated in the C.T. This is red while hot and yellow when cold.

Silicon, Si as Silica, SiO_2 . Evaporate a portion to dryness, treat with conc. HCl and again evaporate to dryness, add HCl and water. A white insoluble residue indicates silica.

Fuse some of the mineral with an equal volume of soda on charcoal in the O.F. Silica (SiO_2) will dissolve with effervescence to a colorless bead (unless colored by one of the metals); additional soda will cause the bead to become opaque.

Borax with silica gives a clear bead.

Treat a speck of the mineral in the S.Ph. bead. The silicates will remain as a skeleton of about the same shape as the original particle and will float around in the bead.

If S.Ph. is added to a clear borax bead that is nearly saturated with silica, it will become opaque.

The procedure for putting the mineral into solution in preparation for analysis describes methods of removing silica.

SiO_2 treated with HF forms volatile SiF_4 . Many silicates, if treated with conc. H_2SO_4 and HF and heated, will decompose with the evolution of SiF_4 , leaving a silica-free residue. This is often used for the removal of silica in preparation for analysis.

QUALITATIVE CHEMICAL TESTS

PART 2

Acidify with HNO_3 , boil, filter and test small portions as follows:

Arsenic, As, as Arsenate. Arsenates give the same test with ammonium molybdate as phosphates. See below.

Chlorine, Cl as Chloride. Add a drop of AgNO_3 . A white precipitate which dissolves in NH_4OH and is reprecipitated on again making acid with HNO_3 , indicates chloride.

Mix the powdered mineral with four volumes of KHSO_4 and a little manganese dioxide (MnO_2) and heat in the C.T. Cl is indicated by acrid yellowish-green vapors.

Saturate an S.Ph. bead with CuO , add a speck of the mineral and heat in the O.F. Cl gives an azure-blue flame with a little green.

Bromine, Br, as Bromide. To another portion add a drop of AgNO_3 . A yellow precipitate which dissolves with difficulty in NH_4OH , indicates Br as bromide *in the absence of iodine*.

Saturate an S.Ph. bead with CuO , add a small amount of the mineral and treat in the O.F. Br is indicated by an azure-blue or emerald-green flame.

Fuse the mineral with soda, pulverize, mix with manganese dioxide (MnO_2), add a few drops of conc. H_2SO_4 and heat in the C.T. Br is indicated by the evolution of choking red-brown vapors.

Iodine, I, as Iodide. To a third portion add a drop of starch solution and a few drops of chlorine water. A blue color indicates iodine.

Add a speck of the mineral to an S.Ph. bead saturated with CuO and treat in the O.F. Iodine will give an emerald-green flame.

Phosphorus, P as Phosphate. To a fourth portion, add a few drops of conc. HNO_3 and ammonium molybdate solution. Warm and let stand for a few minutes. A yellow precipitate indicates phosphate.

Most phosphates give a bluish-green flame if moistened with H_2SO_4 .

Fuse the mineral with a small piece of metallic magnesium or sodium in the C.T. and moisten with water. If P is present, phosphine (PH_3), recognizable by its disagreeable odor, is evolved.

The same test may be made by mixing the powdered mineral with an equal amount of soda, placing it in the C.T. as a cover over metallic magnesium, and heating. All must be dry. On heating, if P is present, there will be a bright incandescence and on crushing the mass and moistening with water, the odor of PH_3 will be detected. This is somewhat like the garlic odor of arsine (AsH_3).

See P-13 for other tests.

PART 3

Acidify with acetic acid, boil, filter and treat small portions as follows:

Chromium, Cr, as Chromates. Add a drop of lead acetate solution. A

CHEMICAL ANALYSIS OF MINERALS

yellow precipitate indicates the chromate (CrO_4) or dichromate (Cr_2O_7) radical. See P-18 for other tests.

Carbon, C as Oxalate, C_2O_4 . To another portion add a few drops of calcium chloride (CaCl_2) solution. A white precipitate which, when mixed with manganese dioxide (MnO_2) and conc. H_2SO_4 and warmed, gives off CO_2 , indicates the oxalate radical (C_2O_4).

All oxalates are decomposed on ignition, with slight carbonization.

CHAPTER VI

The Flame and Its Use in Blowpiping

An ordinary flame such as a candle or gas burner consists of three parts. Just above the wick or burner is the transparent zone "A," composed of gas or volatilized fuel that has not yet fired. Outside of this is zone "B," composed of burning gas. In the luminous flame it is rendered yellow by minute particles of incandescent carbon produced in the thermal decomposition of some of the hydrocarbons in the fuel. In the nonluminous flame this region is bluish as sufficient air is present to oxidize these compounds without the formation of particles of free carbon. Covering the entire outside is the faint bluish, hardly visible mantle, zone "C," composed of the products of complete combustion. See Fig 20.

FIG. 20. Blow Pipe Flames.

Reducing and oxidizing reactions can be carried out in the ordinary flame, for a reducible substance will be deoxidized if held at the junction of the "C" and "B" zones, and oxidation will occur at the outer edge of the tip of the "C" zone. Using the flame in this manner, however, is not very satisfactory, and because of the much better results obtained, a blowpipe is generally used.

CHEMICAL ANALYSIS OF MINERALS

A **Blowpipe** is a tube, usually of brass, so arranged that a fine jet of air may be delivered from the mouth of the operator, at right angles to his line of vision, into or through a flame, thus directing and controlling the amount of heat and type of flame applied.

Learning the proper use of the blowpipe is somewhat difficult; a novice is inclined to blow with his lungs, which is incorrect. Good blowpiping can be accomplished only after the proper method has been learned. The success of blowpiping as a means of making qualitative tests depends on its proper manipulation, as it is necessary that the operator be able to produce a strong, steady oxidizing or reducing flame for an indefinite period. Considerable practice may be required before this can be accomplished.

The blowpipe is held in any convenient manner, with the mouth piece held firmly between the lips or firmly pressed against them. The cheeks are filled with air and the passage between the throat and mouth is closed with the tongue in the same manner as one puffs out one's cheeks. If this is done the cheeks will remain full of air and breathing through the nose can be carried on without in any way disturbing the air held in the mouth. This accomplished, the air in the mouth is expelled by the cheek muscles through the blowpipe. As the air is depleted, a fresh supply is taken in through the nose without interrupting the flow through the blowpipe. In this way a steady flame is produced and breathing is carried on normally through the nostrils.

The production of the oxidizing flame by the candle and Bunsen burner is illustrated in *c* and *e* of Fig. 20. The Bunsen burner has slipped over it a blowpipe tip ("E") which gives a flat flame and provides a support for the blowpipe.

In producing the **oxidizing flame** (O.F.), the tip of the blowpipe is inserted about $\frac{1}{8}$ " into the flame. A steady current of air will elongate the flame into a narrow cone with a point almost as definite as that of a needle, and the luminous part will disappear if sufficient air is used. An oxidizable substance held at point "X," or even further in toward the tip of inner cone "B," will be rapidly oxidized. Flame tests are made by holding the material at this place, and as the flame just above the tip of inner cone "B" is hottest, fusion tests are made here.

The **reducing flame** (R.F.), is illustrated in *b* of Fig. 20. This flame is produced by holding the tip of the blowpipe on the *outside* of the flame a short distance above the wick or burner top. A jet of air blows the entire flame into a horizontal cone, but not to as fine a point as in the oxidizing flame. The air used is not sufficient to destroy the luminosity but does oxidize much of the free carbon, thus giving a higher temperature. A reducible substance held at "X" in the yellow tip of middle zone "B" will be rapidly deoxidized or reduced.

Many of the elements give very characteristic reactions when subjected to different treatments under the blowpipe.

BLOWPIPE REACTIONS

ASSAY OF GOLD AND SILVER WITH THE BLOWPIPE

Materials Required. Approximate quantitative determination of gold and silver can easily be made by blowpiping with the aid of a few simple pieces of apparatus.

Since an accurate balance is not available to many, a method using a volume of ore and the volume of the final bead of metal has been worked out. At first consideration this might seem to lack much in the way of quantitative results but in practice, checking against assayed samples, it has been found to be quite reliable. Most gold ores are primarily quartzes or silicates with varying amounts of gold and sulfides. These vary somewhat in specific gravity and this will necessarily change the weight of a measured amount of ore, but this difference in weight is in most cases not over 10% and in the majority will not be over or under the average to anything like this extent. If the gold or silver occurs as scales or relatively large pieces, it may be very difficult to obtain a representative sample.

The **sampler** (ore measurer) shown in *a* of Fig. 21 was made of the bulb from the bottom of a thermometer. It has a volume of 2/10 milliliter and holds approximately 0.2 grams (not packed) of average, finely ground ore. The entire method is based on the treatment of this quantity.

The other materials and equipment required for this determination are as follows:

Flux. A good general purpose low melting flux is made by grinding and mixing together thoroughly the following materials in the proportions designated:

Sodium Bicarbonate (Baking soda)	5 parts by weight.
Potassium carbonate	4 parts by weight.
Borax glass	2 parts by weight.
Flour (wheat)	1 part by weight.
Litharge	6 parts by weight.

Charcoal Slab. It is best to use the large 4" x 2" x 1¼" slabs which are specially treated to retard their burning. They will give long service and many assays can be run with one slab.

Borax Glass. This may be purchased from a chemical supply house or made by heating ordinary borax in an iron crucible until it is fused, then grinding. Porecelain must not be used for the fusion, as the glaze will be dissolved.

Bone Ash. This may be purchased from a chemical supply house or made by burning ordinary bones until all the organic matter is removed, then grinding.

Cupels. In making these, a mould should be used. A very satisfactory one is shown in the detail drawing of *b* in Fig. 21. It is easily made from steel on a lathe. The cupels are made by thoroughly mixing together the ground bone ash with 10% of flour, then moistening with strong sal soda (ordinary washing

CHEMICAL ANALYSIS OF MINERALS

FIG. 21. Sampler *a*; Cupel Mould *b*; Proportional Tongs *c*; Calibrated Wedge *d*.

soda) solution until it will stick together when pinched between the fingers. If too wet, the cupel will be dense and will crack in use, while if not wet enough, it will not hold together well. After moistening, it should be sifted through a flour sieve to break up all lumps.

To make the cupels, the ring is placed on a smooth block of wood or iron

BLOWPIPE REACTIONS

and is filled with the moistened bone ash. The pestle is then inserted and pressed down with the hand, then given a sharp blow or two with a mallet. On raising the ring from the board the cupel is easily forced out. The thickness of the cupel is governed by the amount of bone ash used and the texture by the moisture content and the pressure exerted.

Proportional Tongs. The final beads are spheres. Those from rich ores are small and those from poor ones are *very tiny*. In order to measure these, special equipment must be used. Proportional dividers may be purchased from a dealer in drafting materials, but they are not as satisfactory as the proportional tongs shown in *c* of Fig. 21. These may be made from any convenient material, such as a folding steel rule, by grinding and filing into the shape shown. If one is made by the analyst, it is not necessary to have the long arms open exactly 10 times as wide as the short arms, but the *exact relationship between the two* must be accurately determined with machinists' feelers, a calibrated wedge, or a micrometer.

Calibrated Wedge. This may be purchased from a machinists' supply house or made with a little patience and care. The one illustrated in *d* of Fig. 21 was made from a $\frac{3}{8}$ " wood chisel by grinding and honing on a new perfectly straight oil stone, then calibrating with a micrometer, and marking.

Assay Procedure. The approximate quantitative determination of gold and silver by the blowpipe is carried out as follows: Mix 1 measure (approximately 0.2 grams) of the finely ground ore with 2 volumes of flux. Hollow out a shallow depression in one end of the charcoal block and place the mixture in it. Holding the block with a pair of crucible tongs, play the blowpipe flame on it gently until the material has fused, then strongly. On heating, small globules of lead will appear. As heating continues, these will gradually coalesce into larger ones. The assay must be turned and flamed from all sides so as to force the small lead particles around the edge into the center, or wherever the large globule is, so that all the lead is finally in one mass. This button of molten lead contains the gold, silver and any other precious metals.

When the assay has been completely liquefied and the lead all collected into a single ball it is brought to the edge, the assay and coal heated strongly, and the lead globule allowed to run off into a crucible, iron mortar, or other container. After cooling, the slag on the coal is removed with a knife blade and a small amount of borax glass is put in its place. The lead button is then added and **scorification** started. By playing a strong oxidizing flame over the lead, it is oxidized and the lead oxide along with the oxide of any other base metal is absorbed by the borax glass. As scorification continues, the bead is seen to become gradually smaller. When it has been reduced in size until it has a diameter of about $\frac{1}{32}$ " (about $\frac{1}{2}$ the size of a pin head) it is removed from the coal and flux as before.

It is now ready for **cupellation**. This is carried out by placing the bead in a cupel, placing the cupel on a slab of charcoal and playing a strong oxidizing

CHEMICAL ANALYSIS OF MINERALS

flame over the lead bead. As strong a blast with as much air and as little flame as is consistent with keeping the bead molten, should be used. As the bead is oxidized, the lead oxide is absorbed by the cupel, with the result that when all the lead has finally been burned off, a sphere of the precious metal remains. On removing the flame there will be a flash or "blick" when the metal solidifies. Sometimes a bright bead is not obtained, because of the presence of copper or other metals. In this case it must be melted with additional lead (gold and silver free), then be again scorified with borax glass, and recupelled. On very refractory ores it may be necessary to repeat this process several times.

The beads of gold and silver obtained from lean ores are very small, sometimes with a diameter of only 1/1000 of an inch. A bead of this size can barely be seen with the naked eye. In order to measure a bead it is picked up with the small jaws of the proportional tongs, using a hand lense. Holding the tongs very carefully, the wedge is inserted between the jaws of the long end and a reading of this width taken. For example, if this width is found to be 0.025" the bead has a diameter of 0.0025". Referring to the graph, Fig. 22, it is seen that this is equivalent to about 0.35 ounces of gold per ton, or if it is silver, 0.35×0.544 , or 0.19 ounces per ton.

The bead may consist of pure gold or silver or a mixture of these, or it may contain any of the precious metals. If it is white, it is principally silver; if yellow, principally gold. With small amounts of lead, copper, platinum or palladium, the bead is not as bright as pure gold or silver. With rhodium, iridium, ruthenium, osmium or osmiridium present, the bead does not brighten at all.

If it is thought that the bead is a mixture of gold and silver, the amount of each may be determined by **parting**. A mixture of $\frac{2}{3}$ or more of silver and $\frac{1}{3}$ of gold by weight will dissolve in nitric acid. If the bead does not have this great a silver content it is remelted with a piece of silver at least twice the size of the bead. This is then treated with nitric acid, which dissolves the silver. It is then filtered, the filter paper containing the gold carefully burned, the gold taken up with lead and re-cupelled. This bead will be pure gold and the difference between it and the original is the silver content of the ore.

The method herein described makes no claim to being absolutely exact, but by its use we can determine whether the ore under examination carries values of \$1.00, \$5.00, \$10.00 or \$1000.00 per ton, which in many cases will give the information we are after — namely, whether or not the ore is commercial and carries values that warrant further examination and expense.

It is remarkable that with ores carrying as little as \$1.00 per ton, which is 1 part by weight in about 1,000,000 parts of rock, a bead of gold will always be obtained. Sometimes it gets into a tiny crack and is lost or cannot be picked up and measured, but it is always there, and when it is considered that a bead with a diameter of 1/1000" has a volume of only 0.000,000,000,523, 6 cubic

FIG. 22. Assay Graph.

CHEMICAL ANALYSIS OF MINERALS

inch and weighs only 0.000,000,165, 6 gram it becomes still more astonishing. Due to the fact that these beads are spheres, their weight by measurement is more accurate than that obtained by using the most delicate assay balance, which is accurate to 0.000,005 gram. It takes 30 beads 1/1000" in diameter to make a mass large enough to weigh on an assay balance.

THE COLOR PLATES

The color plates show the films and sublimes formed and the various color reactions obtained by treatment of compounds containing the different elements, on charcoal slabs, Plaster of Paris tablets, and platinum foil, both per se and with different reagents; also the bead tests and representative specimens of minerals.

The list of blowpipe tests has been made as complete as possible, even including several tests which are of a negative nature. A great number of these tests were made and the ones selected for reproduction were chosen because it was thought they represented the average results obtained. It must, however, always be remembered that no two tests will be exact duplicates. The sublimes will vary in amount, degree of color and location, depending on the size of the sample used, the amount and intensity of the flame, etc. The sublimes on smoked plaster are more pronounced and definite than those on charcoal, probably due to the greater porosity of the coal. The right-hand row of Plate 17 shows a few of the per se reactions on smoked plaster.

The bead tests shown are of the cold beads. Several beads of each are shown so as to give the different degrees of color and in some instances the different colors obtained by varying the amount of metal and flame treatment. These tests were especially difficult to reproduce for, while most of the colors are seen by transmitted light, some of the beads are opaque or nearly so and are viewed with reflected light. The color reproduction is therefore a combination of both, with the result that some of the beads show the reflected color, when ordinarily that with transmitted light is the usual one, and vice versa.

The minerals shown in the color plates were selected in an endeavor to present the average, ordinary, typical specimen. The outstanding and spectacular ones are usually photographed, but for the purpose of this book it was felt that specimens which represent the great majority of those found should be reproduced, since it is intended to serve as an aid to those who wish to identify the unknown. When one knows and is able to identify a mineral, he will have very little difficulty in recognizing a spectacular specimen of it.

It is extremely difficult to describe adequately a color, for saying that a film, bead, or mineral is yellow or green really tells very little, as there are many shades and degrees of color; when these are modified by other colors,

ARSENIC, PER SE

ANTIMONY, CHROMATE FLUX

ANTIMONY, BROMIDE FLUX

ANTIMONY, IODIDE FLUX

ANTIMONY, CHROMATE FLUX

ANTIMONY, BROMIDE FLUX

ANTIMONY, IODIDE FLUX

ANTIMONY, PER SE

ALUMINUM, COBALT NITRATE

ALUMINUM, COBALT NITRATE

BERYLLIUM, COBALT NITRATE

ARSENIC, CHROMATE FLUX

ARSENIC, BROMIDE FLUX

ARSENIC, IODIDE FLUX

ARSENIC SULFIDE, HEATD STRONGLY

ARSENIC SULFIDE, HEATED GENTLY

ARSENIC, PER SE

ARSENIC, CHROMATE FLUX

ARSENIC, BROMIDE FLUX

ARSENIC, IODIDE FLUX

Copyright by O. C. Smith, 1945

CADMUM, CHROMATE FLUX

CADMUM, PER SE

BISMUTH, CHROMATE FLUX

BISMUTH, BROMIDE FLUX

BISMUTH, IODIDE FLUX & NH₄OH

BISMUTH, IODIDE FLUX

BISMUTH, CHROMATE FLUX

BISMUTH, BROMIDE FLUX

BISMUTH, IODIDE FLUX

BISMUTH, PER SE

IRON, BROMIDE FLUX

GOLD, PER SE

COPPER, BROMIDE FLUX

COPPER, IODIDE FLUX

COPPER, IODIDE FLUX

COPPER, PER SE

CHROMIUM, SODIUM CARBONATE

CARBON, PER SE

CADMUM, CHROMATE FLUX

CADMUM, PER SE

Copyright by O. C. Smith, 1945

MAGNESIUM, COBALT NITRATE

MAGNESIUM, COBALT NITRATE

LEAD, CHROMATE FLUX

LEAD, BROMIDE FLUX

LEAD, IODIDE FLUX

LEAD, PER SE

LEAD, CHROMATE FLUX

LEAD, BROMIDE FLUX

LEAD, IODIDE FLUX

LEAD, PER SE

MERCURY, BROMIDE FLUX

HG, IODIDE FLUX HEATED STRONGLY

HG, IODIDE FLUX HEATED GENTLY

MERCURY, PER SE

MERCURY, CHROMATE FLUX

MERCURY, BROMIDE FLUX

MERCURY, IODIDE FLUX

MERCURY, PER SE

MN, SODA ON PLASTER & PLATINUM

MANGANESE, SODIUM CARBONATE

Copyright by O. C. Smith, 1945

SELENIUM, PLR SE

MOLYBDENUM, BROMIDE FLUX

MOLYBDENUM, IODIDE FLUX

MOLYBDENUM, PER SE IN R.F.

MOLYBDENUM, PFR SE IN O.F.

MOLYBDENUM, BROMIDE FLUX

MOLYBDENUM, IODIDE FLUX

MOLYBDENUM, PER SE IN R.F.

MOLYBDENUM, PER SE IN O.F.

MERCURY, CHROMATE FLUX

SILVER, PER SE IN R.F.

SILVER, PER SE IN O.F.

SILVER, PER SE

SELENIUM, CHROMATE FLUX

SELENIUM, BROMIDE FLUX

SELENIUM, IODIDE FLUX

SELENIUM, PER SE

SELENIUM, CHROMATE FLUX

SELENIUM, BROMIDE FLUX

SELENIUM, IODIDE FLUX

Copyright by O. C. Smith, 1945

TELLURIUM, BROMIDE FLUX

TIN, COBALT NITRATE

TELLURIUM, IODIDE FLUX

TIN, PER SE

TELLURIUM, CHROMATE FLUX

THALLIUM, CHROMATE FLUX

TELLURIUM, BROMIDE FLUX

THALLIUM, BROMIDE FLUX

TELLURIUM, IODIDE FLUX

THALLIUM, IODIDE FLUX

TELLURIUM, CHROMATE FLUX

THALLIUM, CHROMATE FLUX

TELLURIUM, PER SE

THALLIUM, BROMIDE FLUX

SILVER, CHROMATE FLUX

THALLIUM, IODIDE FLUX

SILVER, BROMIDE FLUX

THALLIUM, PER SE

SILVER, IODIDE FLUX

TELLURIUM, CHROMATE FLUX

Copyright by O. C. Smith, 1945

ZINC, COBALT NITRATE

ZINC, PER SE

ZINC, COBALT NITRATE

ZINC, PER SE

TIN, IODIDE FLUX

TIN, COBALT NITRATE

TIN, PER SE

TIN, CHROMATE FLUX

TIN, BROMIDE FLUX

TIN, IODIDE FLUX
(On Charcoal)

THALLIUM, PER SE

TELLURIUM, PER SE

SELENIUM, PER SE

MOLYBDENUM, PER SE

MERCURY, PER SE

LEAD, PER SE

CADMIUM, PER SE

BISMUTH, PER SE

ARSENIC, PER SE

ANTIMONY, PER SE
(On Smoked Plaster)

Copyright by O. C. Smith, 1945

BLOWPIPE REACTIONS

the task is almost impossible. The color reproductions are as accurate as it is possible to obtain, taking into consideration the limitations of color photography and printing.

REACTIONS WITH HYDROGEN PEROXIDE

(Use a 3% solution.)

The precipitate or mineral is dissolved in acid or, if insoluble, fused with soda or potassium acid sulfate and the melt dissolved in water and acid.

Chromium: H_2O_2 added to a solution of a chromate acid with HCl or better H_2SO_4 , and heated, gives a blue, then green color. In a *cold alkaline* solution of a chromate, H_2O_2 produces a red color that slowly disappears.

Titanium: H_2O_2 added to a solution slightly acid with H_2SO_4 or HCl produces a yellow to orange-red color. HF or the addition of a fluoride *destroys* the color. H_2O_2 prevents the precipitation of Ti by Na_2HPO_4 from weak acid solutions (difference from Zr).

Vanadium: nearly neutralize the solution with NH_4OH , take 1 ml, add 5 drops of conc. HNO_3 and 1 or 2 drops of H_2O_2 to the cold solution. A reddish-brown color *results*. The color is *not destroyed* by the addition of HF or a fluoride.

Uranium: H_2O_2 added to a solution acid with HCl precipitates yellowish uranium tetroxide (UO_4) that is insoluble in HCl but soluble in $(NH_4)_2CO_3$ solution giving a deep yellow color. Sulfate ion hinders the precipitation.

Molybdenum: evaporate to dryness carefully so as not to overheat; treat the residue with conc. NH_4OH then with H_2O_2 . A pink or red color is formed. On evaporating to dryness again and treating the residue with HNO_3 or H_2SO_4 , yellow permolybdic acid ($HMnO_4$) is formed.

Manganese, Cobalt, Nickel: NH_4OH in the presence of NH_4Cl does not precipitate these metals. If H_2O_2 is added to the strongly ammoniacal solution and boiled, Mn and Co are precipitated as Mn_3O_4 and Co_2O_3 . Both are brown and indistinguishable. Nickel is thrown down as apple-green nickelous hydroxide [$Ni(OH)_2$]. This procedure serves to separate these elements from Fe, Al and other metals that form hydroxides that are insoluble in ammonia.

Columbium, Tantalum: when dilute HCl and H_2O_2 are added to the freshly precipitated pentoxides and heated, Cb goes completely into solution and Ta is partially dissolved, giving a yellow to orange color. By boiling to decompose the H_2O_2 , the white Cb_2O_5 and Ta_2O_5 are precipitated.

Gold: from alkaline solutions, H_2O_2 gives a precipitate of finely divided metal, brownish-black by reflected light but bluish-green by transmitted light. In dilute solutions a reddish coloration with a bluish shimmer is obtained.

CHEMICAL ANALYSIS OF MINERALS

Cerium: H_2O_2 added to an acid solution reduces ceric to cerous salts. If a cerous salt is precipitated with NH_4OH and an excess of H_2O_2 added, a reddish-brown precipitate of perceric hydroxide ($CeO_3 \cdot nH_2O$) is precipitated, which on boiling is changed to pure yellow $Ce(OH)_4$.

Zirconium: when H_2O_2 is added to a slightly acid solution, the voluminous peroxide is precipitated. If this is warmed with conc. HCl , chlorine is evolved. H_2O_2 does not prevent the precipitation of Zr by Na_2HPO_4 from weak acid solutions (difference from Ti).

Thorium, H_2O_2 added to a hot neutral solution or one faintly acid with HNO_3 or H_2SO_4 or to an ammonium carbonate solution, causes all the Th to be precipitated as white hydrated thorium peroxide.

Scandium, H_2O_2 prevents the precipitation of Sc by Na_2HPO_4 from weak acid solution. Destroying the H_2O_2 by adding Na_2SO_3 causes the scandium phosphate to be precipitated (similar to Ti).

Yttrium: H_2O_2 added to an alkaline solution precipitates gelatinous, unstable, hydrated peroxide $Y(O \cdot OH)(OH)_2$.

Copper: in a 5% $NaOH$ solution Cu usually gives a blue color, due to cupric salts, before the addition of H_2O_2 . H_2O_2 oxidizes cuprous to cupric compounds. Cuprous hydroxide is yellow, cupric hydroxide blue.

Osmium, Ruthenium, Palladium: H_2O_2 added to a solution of these elements in 5% $NaOH$, yields yellowish colors similar to chromium. The color is destroyed by adding NH_4Cl to the cold solution.

Platinum: the color is similar to Os, Ru, and Pd, but is not destroyed by NH_4Cl .

REACTIONS WITH METALLIC ZINC IN ACID SOLUTIONS

Titanium: Zn added to an HCl solution gives a violet color. The color is green if fluoride is present.

Tungsten: Sn added to an HCl solution of a tungstate or suspended oxide, and boiled, yields a beautiful blue color; Zn gives a purple then reddish-brown color. Dilution with water *does not destroy* the color (difference from columbium).

Columbium: Zn added to an acid solution and boiled gives a blue to black color. The color *disappears* on dilution with water (difference from tungsten).

Tantalum: gives no color reactions.

Vanadium: an acid solution heated with metallic Zn becomes blue, green, then bluish-violet.

Molybdenum: a solution acid with HCl or H_2SO_4 , when treated with metallic Zn, becomes blue, green, then brown.

Ruthenium: metallic Zn and HCl solution produces an azure-blue color which disappears with the precipitation of metallic Ru.

BLOWPIPE REACTIONS

Uranium: Zn in acid solutions reduces the yellow uranyl to green uranous compounds; when all the acid has been used up, a yellow precipitate or coating will form on the residual zinc.

Selenium: red metallic Se is precipitated by Zn in acid solution and the zinc becomes coated with the Se and looks as if coated with copper. On warming, the red Se is changed to brown or gray to black.

Tellurium: from acid solutions Zn precipitates gray to black metallic tellurium.

Thallium: is precipitated as the metal in tiny black crystals.

Indium: is precipitated as the metal in white lustrous flakes.

Osmium, Rhodium, Ruthenium, Iridium, Palladium, Platinum, Copper, Silver, Gold, Cadmium, Mercury, Indium, Thallium, Germanium, Tin, Lead, Bismuth, Selenium, Tellurium, Polonium, and Antimony: are all precipitated as metals by metallic zinc.

Silver, Lead, Tin, Thallium and Indium: are precipitated on the zinc from neutral or faintly acid solutions as silvery dendrites or "trees" with a metallic luster. They are usually large and loosely branched. The precipitation of the metal does not take place until the zinc has used all the free acid.

Antimony, Bismuth, Copper, Tellurium, Gold and Palladium: form dendrites more in form of moss and are shorter and more compact than those from the metals above. Some long slender "trees" may be formed. The dendrites usually have the characteristic color of the metal. Some of these metals will not be deposited on the zinc until all the free acid has been consumed.

Manganese, Nickel, Ruthenium, Platinum, Iridium, Vanadium, Uranium, Tellurium, Selenium, and possibly Antimony and Bismuth: will form a yellow to brown or black stain on the zinc, but no dendrite or "tree" is formed. Some of these metals will not be deposited until all the free acid has been consumed by the zinc.

Mercury: is precipitated as minute silvery white globules. These are black by transmitted light.

Antimony and Arsenic: may yield a gas, stibine SbH_3 and arsine AsH_3 . If these gases are allowed to escape through a tube along with hydrogen and burned, and a piece of glazed porcelain is held directly over the flame, metallic antimony and arsenic are deposited. Treated with sodium hypochlorite, this will dissolve the arsenic, but the antimony will be unaffected.

Antimony and Tin: if a drop or two of an HCl solution of Sb and Sn are placed on a piece of platinum and bright metallic zinc is then placed in the solution so that the two metals touch, a gray or black stain will be deposited on the platinum. On removal of the zinc, if the stain is due to antimony, it will not disappear; if due to tin, it will be dissolved if some free acid remains.

Cadmium: is precipitated only from neutral solutions.

CHEMICAL ANALYSIS OF MINERALS
PER SE REACTIONS ON THE PLASTER TABLET
(Use Oxidizing Flame.)

Antimony, Sb: The white coat of Sb_2O_3 and Sb_2O_4 is hardly visible; slightly yellowish around the assay.

Arsenic, As (Metal): Gives a white, very volatile coating of As_2O_3 over brownish-black metallic arsenic. The odor of garlic (arsine gas, AsH_3) is often present.

Arsenic Sulfides: yield a yellowish to reddish-brown, volatile coat of AsS and As_2S_3 . If heated too rapidly, brownish-black metallic arsenic is deposited.

Bismuth, Bi: near the assay the coat is orange-yellow while hot and lemon-yellow when cold, with bluish-green far away. The coating is not very prominent.

Cadmium, Cd: a reddish-brown to greenish-yellow or iridescent, non-volatile sublimate of CdO is formed near the assay.

Carbon, C: carbonaceous materials form a brownish-black non-volatile coat.

Copper, Cu: no coating is formed.

Gold, Au: with high heat, gold forms near the assay a slightly purplish to rose color that is best seen when cold.

Iron, Fe: no coating is formed.

Lead, Pb: the coating is dark yellow while hot and lighter yellow when cold.

Mercury, Hg: forms a drab-gray, extremely volatile sublimate of metallic mercury that may be formed into larger globules by rubbing.

Molybdenum, Mo: the O.F. produces near the assay a yellowish-white crystalline coat of MoO_3 , with red MoO_2 , which when touched with the R.F. immediately changes to a deep blue.

Selenium, Se: forms a cherry-red to crimson volatile sublimate or metallic selenium and SeO_2 and the odor of decayed horseradish. Where the coat is very thick, it is black.

Silver, Ag: with intense heat, silver produces a non-volatile yellowish coating of the oxide near the assay, which when touched with the R.F. becomes brownish and mottled.

Tellurium, Te: forms a volatile brown to black coat of Te and TeO_2 with sometimes a narrow blue fringe near the assay. Treated with conc. H_2SO_4 and heated gently it yields an evanescent pink color. Touched with the R.F., the flame is colored bluish-green.

Thallium, Tl: the white coating of the oxide is hardly visible.

Tin, Sn: the white coating of SnO_2 is hardly visible. Treated with cobalt nitrate solution and heated, gives a bluish-green color.

Zinc, Zn: the white coating of ZnO is hardly visible. Treated with cobalt nitrate solution and heated, gives a grass-green color.

(Many of the reactions that are listed under the tests on charcoal may be carried out to good advantage on smoked plaster in the O.F. and R.F.)

BLOWPIPE REACTIONS

REACTIONS WITH IODIDE FLUX

(On Plaster.)

Mix 1 part of the powdered mineral or precipitate with 3 parts of iodide flux and treat on the plaster tablet with the oxidizing flame.

COLOR OF COAT	REMARKS
Antimony , Sb. Orange to peach-red coat that disappears when subjected to ammonia fumes.	A drop of $(\text{NH}_4)_2\text{S}_x$ on the coat forms an orange-red ring that is <i>not dissolved</i> by a drop of NH_4OH .
Arsenic , As. Lemon-yellow to orange-yellow coat which disappears if subjected to ammonia fumes.	A drop of $(\text{NH}_4)_2\text{S}_x$ on the coat forms a yellow ring that is <i>completely dissolved</i> by a drop of NH_4OH .
Bismuth , Bi. Chocolate-brown coat with underlying crimson and yellowish on the outer edge.	Subjected to NH_4OH fumes, the brown coating changes to orange-yellow, then cherry-red.
Cadmium , Cd. Orange-yellow coat near the assay.	$(\text{NH}_4)_2\text{S}_x$ gives a slight yellowish-gray spot with a lemon-yellow border.
Copper , Cu. Very slight yellow coat.	$(\text{NH}_4)_2\text{S}_x$ gives a light brown ring and darkens the coat around it.
Lead , Pb. Chrome-yellow coat, darker while hot, often covering the entire tablet.	A drop of $(\text{NH}_4)_2\text{S}_x$ applied to the film yields a black spot, often surrounded by a reddish cloud.
Mercury , Hg. If heated gently a bright scarlet very volatile coat with yellow fringes is formed.	If heated quickly, the coat is pale yellow or greenish-yellow and black.
Molybdenum , Mo. A slight volatile yellowish coat is formed.	$(\text{NH}_4)_2\text{S}_x$ forms a slight brown ring. The R.F. does not turn the coat blue.
Selenium , Se. Gives a reddish-brown to scarlet coat. Reddish fumes are given off.	The flame is colored indigo-blue. $(\text{NH}_4)_2\text{S}_x$ dissolves the coat and forms a ring of deeper color.
Silver , Ag. Slightly yellowish coat near the assay. Requires intense heat.	When touched with the R.F. it becomes pinkish-brown and somewhat mottled.
Tellurium , Te. Gives a purplish-brown to black coat. The flame is colored pale green.	$(\text{NH}_4)_2\text{S}$ dissolves the coat. $(\text{NH}_4)_2\text{S}_x$ has no effect. A drop of conc. H_2SO_4 added to the coat and heated gently, yields an evanescent pink color.

CHEMICAL ANALYSIS OF MINERALS

REACTIONS WITH IODIDE FLUX—(Continued)

COLOR OF COAT	REMARKS
Thallium , Tl. Orange-yellow film near the assay, with purplish-black band far away. Entire coat finally becomes yellow.	$(\text{NH}_4)_2\text{S}_x$ changes the coat to chocolate-brown.
Tin , Sn. The coat is canary-yellow and brownish near the assay.	The coat is obtained by treatment of the sulfide.
Zinc , Zn. Nothing.	

REACTIONS WITH BROMIDE FLUX

(On Plaster.)

Mix 1 part of the powdered mineral or precipitate with 3 parts of bromide flux and treat on the plaster tablet with the oxidizing flame.

COLOR OF COAT	REMARKS
Antimony , Sb. Forms a faint yellow coat far away, with reddish-yellow near the assay.	$(\text{NH}_4)_2\text{S}_x$ forms an orange ring and develops the coat around it to orange-yellow. The coat and ring are <i>not dissolved</i> by NH_4OH .
Arsenic , As. Gives only a faint yellow coat that is very volatile.	A drop of $(\text{NH}_4)_2\text{S}_x$ forms a ring of slightly darker color. NH_4OH <i>dissolves</i> both the ring and coat.
Bismuth , Bi. Near the assay a brownish-black to red coat. Farther away the coat is canary-yellow and at a distance a brown border develops.	A drop of $(\text{NH}_4)_2\text{S}_x$ forms a black spot surrounded by a brownish haze. NH_4OH has no effect.
Cadmium , Cd. Gives a lemon-yellow coat near the assay.	$(\text{NH}_4)_2\text{S}_x$ gives a slight grayish spot.
Copper , Cu. Gives a brownish to yellow coat near the assay, with a slight purplish band far away.	The assay is greenish and the flame is colored blue. $(\text{NH}_4)_2\text{S}_x$ gives a brown ring.
Iron , Fe. Gives a blackish coat around the assay, with a brownish band far away.	$(\text{NH}_4)_2\text{S}$ vapors turn the coat green and develop spots where no coat was seen before.

BLOWPIPE REACTIONS

REACTIONS WITH BROMIDE FLUX—(Continued)

COLOR OF COAT	REMARKS
Lead , Pb. Forms a small quite volatile canary-yellow film.	(NH ₄) ₂ S _x placed beyond where the film is visible gives a black spot surrounded by a reddish cloud.
Mercury , Hg. Only a faint yellow very volatile coat.	A drop of (NH ₄) ₂ S _x gives a black spot.
Molybdenum , Mo. Gives a bluish-green coat with traces of blue and yellow on the edges and sometimes brown near the assay.	A drop of (NH ₄) ₂ S _x gives a brown spot. The R.F. <i>does not turn the coat blue</i> , but makes it a deeper brown.
Selenium , Se. Gives a brownish-red to yellow coat covering most of the tablet. Reddish fumes are given off.	The flame is indigo blue. (NH ₄) ₂ S and (NH ₄) ₂ S _x dissolve the coat and form a ring of deeper color.
Silver , Ag. Gives an indistinct, slightly yellowish coat near the assay. Requires intense heat.	Treated with the R.F., the coat becomes mottled yellowish-brown and may be developed over a considerable part of the tablet. (NH ₄) ₂ S _x causes no change.
Tellurium , Te. Gives a coat, covering most of the tablet, that is dark gray to black near the assay, grading into reddish-brown through canary-yellow, with brown far away. The flame is colored pale green.	(NH ₄) ₂ S dissolves the coat. (NH ₄) ₂ S _x applied to the lighter portions, forms a ring of darker color. H ₂ SO ₄ added to the coat and warmed, yields an evanescent pink color.
Thallium , Tl. Gives a reddish-orange coat at some distance from the assay, surrounded by a light lemon-yellow film. The reddish coat disappears on standing, leaving only the lemon-yellow film. Both coats are quite volatile.	A drop of (NH ₄) ₂ S _x gives a brown spot with a darker border. NH ₄ OH dissolves both coats.
Tin , Sn. The treatment of the sulfide yields only a slight darkening of the tablet around the assay.	No sublimate is formed. Very unsatisfactory.
Zinc , Zn. Nothing.	

CHEMICAL ANALYSIS OF MINERALS
REACTIONS WITH CHROMATE FLUX
(On Plaster.)

Mix 1 part of the powdered mineral or precipitate with 3 parts of chromate flux and treat on the plaster tablet with the oxidizing flame.

COLOR OF COAT	REMARKS
Antimony , Sb. The coat is dark brown near the assay, grading into orange-yellow far away.	Yellow ammonium sulfide does not form a ring.
Arsenic , As. The coat is orange-yellow near the assay and lemon-yellow far away.	Yellow ammonium sulfide forms an orange-yellow ring.
Bismuth , Bi. The coat is dark brown near the assay and light brown far away.	Yellow ammonium sulfide $[(\text{NH}_4)_2\text{S}_x]$ forms a deeper brown spot.
Cadmium , Cd. Near the assay a coat that is red while hot and lemon-yellow when cold.	Yellow ammonium sulfide gives a light yellow spot.
Copper , Cu. Nothing.	
Iron , Fe. Nothing.	
Lead , Pb. The coat is black near the assay and brown far away. Traces of white may show in some places.	$(\text{NH}_4)_2\text{S}_x$ gives a black spot and reddish cloud where no coat was visible before.
Mercury , Hg. The coat is shiny black near the assay, with a small brownish yellow band next and gray far away. The coat is volatile.	A drop of $(\text{NH}_4)_2\text{S}_x$ gives a ring of darker color.
Molybdenum , Mo. Nothing.	
Selenium , Se. Cherry-red to crimson coat very similar to that from the treatment per se.	$(\text{NH}_4)_2\text{S}_x$ dissolves the coat and forms a ring of deeper color.
Silver , Ag. The coat is brown to yellowish and near the assay. It requires high heat.	Treated with the R.F., it becomes more prominent. $(\text{NH}_4)_2\text{S}_x$ causes no change.
Tellurium , Te. Brown to black, volatile coat very similar to that from the per se treatment.	The flame is colored green.

BLOWPIPE REACTIONS

REACTIONS WITH CHROMATE FLUX—(Continued)

COLOR OF COAT	REMARKS
Thallium , Tl. The coat is reddish-brown to greenish yellow and near the assay. It is quite volatile. The flame is colored green.	A drop of $(\text{NH}_4)_2\text{S}_x$ gives a shiny blackish brown spot with a darker border.
Tin , Sn. Nothing.	
Zinc , Zn. Nothing.	

SUBLIMATES ON CHARCOAL

PER SE	WITH THE FLUXES
Antimony , Sb. Dense white coat of Sb_2O_4 and Sb_2O_3 near the assay. Bluish far away. The coat is less volatile than that from As. Fumes continue after flaming is stopped. The flame is colored pale yellowish-green.	Iodide flux. Gives a white coat near the assay with yellow far away. Bromide flux. The coat is white. Chromate flux. Gives a slight whitish coat with traces of brown near the assay.
Arsenic , As. A white, very volatile coating of As_2O_3 is formed. This is sometimes tinted with brown or yellow from volatilized sulfides. The coating consists of octahedral crystals of As_2O_3 and deposits mostly at a distance from the assay. Often the garlic odor of arsine gas, AsH_3 . The flame is colored light blue.	Iodide flux. Gives a volatile coat that is white near the assay, with a canary-yellow border and a slight yellow coat beyond. Bromide flux. Gives a slight white volatile coat with a faint yellow border. Chromate flux. Gives a very volatile slight white coat with a faintly yellow tinge. It is far from the assay.
Bismuth , Bi. The coat of Bi_2O_3 is dark, orange-yellow while hot and lemon-yellow when cold. It is greenish-white far away. Volatile in both flames. In both the O.F. and R.F. a brittle, metallic button is formed and the flame is colored a pale greenish-white.	Iodide flux. The coat is chocolate-brown with underlying scarlet. NH_4OH fumes changes it to orange-yellow. Bromide flux. The coat is white near the assay and greenish far away. Chromate flux. Gives a slight whitish coat near the assay.

CHEMICAL ANALYSIS OF MINERALS

SUBLIMATES ON CHARCOAL—(*Continued*)

PER SE	WITH THE FLUXES
Cadmium , Cd. The coating of CdO is black to reddish brown near the assay and yellowish green far away. Thin coats show peacock colors. The coat is volatile in both flame.	Iodide flux. Gives a slight whitish to greenish coat. Bromide flux. The coat is gray and some distance from the assay. Chromate flux. The coat is near the assay, reddish while hot and canary-yellow to greenish yellow when cold.
Copper , Cu. In the R.F., the Cu minerals are reduced to globules of red malleable metal and the flame is colored emerald-green, or azure-blue.	Iodide flux. Slight grayish-white coating. Bromide flux. Very slight gray coat. The flame is a brilliant blue. Chromate flux. None.
Gold , Au. All gold compounds give a yellow malleable button of free gold if treated with soda on coal.	Iodide, Bromide, Chromate flux. Nothing.
Lead , Pb. In either flame, lead compounds (except the phosphates which require a flux) are reduced to metallic lead and yield, near the assay, a dark yellow coat which becomes sulfur yellow when cold and has a bluish-white border. Touched with the R.F., the coating disappears, tinging the flame azure blue.	Iodide flux. The coat is greenish yellow, darker while hot, brown near the assay; the flame is colored azure blue. Bromide flux. The coat is whitish gray, volatile, and some distance from the assay. Touched with the R.F., the coat disappears, tinging the flame azure blue. Chromate flux. The coat is yellowish-white and volatile. It is not very prominent and is formed at some distance from the assay. Treated with the R.F., it disappears, tinging the flame azure blue.
Mercury , Hg. Some mercury compounds volatilize without decomposition but most of them are reduced and decomposed and yield a grayish white coat that is very volatile. It consists of metallic mercury and will collect into globules if rubbed.	Iodide flux. Yields only a faint yellow coat. Bromide flux. A slight yellowish white, very volatile coat a considerable distance from the assay. Chromate flux. Gives a very slight extremely volatile gray coat.

BLOWPIPE REACTIONS

SUBLIMATES ON CHARCOAL—(*Continued*)

PER SE	WITH THE FLUXES
Molybdenum, Mo. Very near the assay copper-red MoO_2 is deposited. Beyond this but still near the assay is deposited a coating of MoO_3 , pale yellow while hot and white when cold. Bluish far away. It is sometimes crystalline. Touched with the R.F., it becomes azure blue and volatilizes. Volatile in the O.F. The flame is colored yellowish green.	Iodide flux. Gives a white coat near the assay. Touched with the R.F., it is volatilized but does not turn blue. Bromide flux. A very volatile yellowish green coat is first deposited far from the assay then, on longer flaming, a white one near. Treated with the R.F., it volatilizes but does not turn blue. Chromate flux. Nothing.
Selenium, Se. Steel gray very volatile coat near the assay. At some distance white SeO_2 , tinged red with metallic Se, and beyond a red border of metallic selenium is deposited. Red fumes are given off; characteristic decayed horseradish odor. The flame is colored blue by the coating.	Iodide flux. Small white coat near the assay, with a yellowish green border and traces of reddish brown. Yellowish fumes are given off. Characteristic odor. Bromide flux. Small white coat and yellowish fumes with a characteristic odor. Chromate flux. Mixed red and yellow fumes with a characteristic odor. The coating is very slight, white near the assay, yellowish beyond, traces of red far away.
Silver, Ag. All silver compounds are reduced to a white malleable bead of the metal. On long treatment with the O.F., a faint reddish brown coat of the oxide is formed.	With the fluxes no special coating is formed but on long, intense heating with the O.F. a faint reddish brown coat of silver oxide is produced.
Tellurium, Te. Dense white volatile coat of TeO_2 near the assay. Far away a gray to brownish black coat of metallic Te. Treated with the R.F., the coat colors the flame green and volatilizes. The coat somewhat resembles that from antimony.	Iodide flux. Gives a white to gray coat. The flame is colored pale green. Bromide flux. White near the assay, with brownish black far away. The flame is colored pale green. Chromate flux. White near the assay, with brownish black far away. The flame is colored pale green.

CHEMICAL ANALYSIS OF MINERALS

SUBLIMATES ON CHARCOAL—(*Continued*)

PER SE	WITH THE FLUXES
Thallium, Tl. The O.F. yields a white, very volatile coat of Tl_2O that is mostly distant with sometimes a brown coating near the assay. Treated with the R.F., the sublimate volatizes, coloring the flame emerald-green.	Iodide flux. The coat is lemon-yellow and is darker and brownish near the assay. Bromide flux. Yields a yellowish coat at a considerable distance from the assay, with a slight whitish film beyond and a faint white one near the assay. The flame is colored green.
Tin, Sn. The coat of SnO_2 is near the assay and is faint yellow and luminous while hot and white when cold. If moistened with $Co(NO_3)_2$ solution and heated strongly, the coat becomes bluish green. Not volatile in the O.F. The addition of sulfur and soda increases the amount of the coat. In the R.F. a slight coat is formed.	Chromate flux. Gives a small yellowish white coat near the assay, with a faint white one beyond. The flame is colored green. The reactions with the fluxes are obtained by treatment of the sulfide.
Zinc, Zn. The coat of ZnO is near the assay and is canary-yellow while hot and white when cold. When moistened with cobalt nitrate solution and heated strongly, the coat becomes grass green. Not volatile in the O.F.	Iodide flux. White coat with patches and streaks of yellow through it. Bromide flux. White coat. Chromate flux. White coat. No reaction with the fluxes.

BLOWPIPE REACTIONS

BORAX BEAD TESTS

	OXIDIZING FLAME		REDUCING FLAME	
	Hot	Cold	Hot	Cold
Antimony	Pale yellow.	Colorless to white.	Pale yellow.	Colorless.
Bismuth	Pale yellow.	Colorless to white.	Gray.	Gray.
Cadmium	Pale yellow.	Colorless to white.	Pale yellow.	Colorless.
Cerium	Yellow.	Greenish yellow.	Colorless.	Colorless.
Chromium	Yellow.	Green.	Green.	Green.
Cobalt	Blue.	Blue.	Blue.	Blue.
Copper	Green.	Blue.	Colorless to green.	Brownish, opaque red with much oxide.
Didymium	Pale rose.	Pale rose.	Pale rose.	Pale rose.
Iron	Yellow to orange.	Greenish to brown.	Bottle-green.	Pale bottle-green.
Lead	Pale yellow.	Colorless to white.	Pale yellow.	Colorless.
Manganese	Violet.	Brownish to reddish violet.	Colorless.	Colorless.
Molybdenum	Pale yellow.	Colorless to white.	Brown.	Brown to black and opaque.
Nickel	Violet.	Reddish brown.	Opaque gray.	Opaque gray.
Titanium	Pale yellow.	Colorless to white.	Grayish or yellowish.	Brownish.
Tungsten	Pale yellow.	Colorless to white.	Yellow.	Brownish.
Uranium	Yellow to orange.	Yellow to brown. Can be flamed enamel-yellow.	Pale green.	Green. Can be flamed black.
Vanadium	Yellow.	Green.	Brownish to dirty green.	Yellow to green.

CHEMICAL ANALYSIS OF MINERALS

SALT OF PHOSPHOROUS BEADS

	OXIDIZING FLAME		REDUCING FLAME	
	Hot	Cold	Hot	Cold
Antimony	Pale yellow.	Colorless.	Gray.	Gray.
Bismuth	Pale yellow.	Colorless.	Gray	Gray.
Cadmium	Pale yellow.	Colorless.	Pale yellow.	Colorless.
Chromium	Reddish to dirty green.	Yellowish green to green.	Red to dirty green.	Green. If not completely reduced it is brown to red.
Cobalt	Blue.	Blue.	Blue.	Blue.
Columbium	Pale yellow.	Colorless.	Brown.	Red-brown.
Copper	Dark green.	Greenish blue.	Brownish green.	Opaque red.
Didymium	Pale rose.	Pale rose.	Pale rose.	Pale rose.
Iron	Yellow to brownish red.	Brownish yellow.	Red or yellow to greenish yellow.	Pale violet.
Lead	Pale yellow.	Colorless.	Gray.	Gray.
Manganese	Grayish violet.	Violet.	Colorless.	Colorless.
Molybdenum	Yellowish green.	Colorless.	Dirty green.	Yellowish green.
Nickel	Reddish to brownish red.	Yellow to brownish.	Reddish to brownish red.	Yellow to brownish.
Silica	Insoluble skeleton.	Insoluble skeleton.	Insoluble skeleton.	Insoluble skeleton.
Tantalum	Pale yellow.	Colorless.	Pale yellow.	Colorless.
Titanium	Pale yellow.	Colorless.	Yellow.	Delicate violet.
Tungsten	Pale yellow.	Colorless.	Greenish to dirty blue.	Greenish blue.
Uranium	Yellow.	Yellowish green to colorless.	Pale dirty green.	Green.
Vanadium	Yellow.	Greenish yellow.	Brown to dirty green.	Green.

BORAX BEADS

SALT OF PHOSPHORUS BEADS

Copyright by O. C. Smith, 1945

BLOWPIPE REACTIONS

REACTIONS WITH HYDROBROMIC ACID

Place the ground mineral on the plaster tablet, add a drop or two of HBr and heat with the oxidizing flame.

Bismuth: a volatile, reddish green or yellow coating is formed.

Copper: the flame is colored green and a volatile, purplish coating mottled with black is formed. This frequently changes to yellow.

Iron: rust-colored, non-volatile spots are formed near the assay. If copper is present in the sample the coating from it may obscure the iron spots; these will become visible if the flame is applied directly to the coating near the assay.

Lead: the coating is canary yellow in color.

Mercury: the coat formed is yellow and volatile.

Molybdenum: the coat formed is blue to bluish green and volatile.

COLOR CHANGES ON HEATING IN THE CLOSED TUBE

	ORIGINAL COLOR	COLOR AFTER HEATING	
		Hot	Cold
Bismuth minerals	White or colorless.	Dark yellow to brown.	Pale yellow to white.
Cobalt minerals	Pink.	Black.	Black.
Copper minerals	Blue or green.	Black.	Black.
Iron minerals	Green, brown or red.	Black.	Black or dark red.
Lead minerals	White or colorless.	Dark yellow to brown.	Pale yellow to white.
Manganese minerals	Pink.	Black.	Black.
Zinc minerals	White or colorless.	Pale canary-yellow.	White.

(The changes cited above usually occur when the oxides of the metals are produced during the heating.)

REACTIONS WITH COBALT NITRATE

The ground mineral is heated slowly with the oxidizing flame on the plaster tablet or charcoal slab, allowed to cool, cobalt nitrate added, and again heated intensely with the O.F. The mineral should be light in color and infusible, for best results.

Antimony oxide gives a bluish to dirty green color. The result is better if applied to the coat.

Aluminum compounds give an ultramarine blue. **Zinc silicates** give a similar color.

CHEMICAL ANALYSIS OF MINERALS

Beryllium oxide gives a lavender, rather indistinct color.

Magnesium minerals give a pink or flesh color which is best seen when cold.

Silica gives a rather indistinct violet color.

Titanium oxide gives a rather indistinct yellowish green color.

Tin oxide gives a bluish to dirty green color. The results are better if the test is carried out on the coating.

Zinc oxide gives a beautiful grass-green color which is very characteristic. The test is good whether carried out on small pieces, on the ground mineral, or on the zinc oxide coating.

FLAME COLORS

The flame color test should be carried out on a platinum loop that has been thoroughly cleaned. This is accomplished by repeatedly dipping the loop into conc. HCl and holding in the flame until no coloration appears.

A small amount of the mineral powder or precipitate to be tested is placed in a watch glass and moistened with conc. HCl. The clean platinum loop is dipped into this and held in the non-luminous part of the oxidizing flame and the color produced is noted. As the alkalies Na, K and Li are more volatile than the alkaline earths, Ca, Ba and Sr, by heating the loop gently and then strongly, a differentiation can often be obtained, as the alkalies will show first, and are later followed by the color from the alkaline earths.

	WITH NAKED EYE	WITH MERWIN SCREEN	REMARKS
Antimony	Pale green. Especially evident when treated on charcoal.		
Arsenic	Livid blue.		Odor of garlic.
Barium	Yellowish green.	Through 1, bright green. Through 2, faint green. Through 3, faint green.	
Bismuth	Pale greenish white.		
Boron	Yellowish green.	Through 1, bright green. Through 2, faint green. Through 3, faint green.	If a borate is decomposed with HSO_4 and added to alcohol and the alcohol ignited, it will burn with a yellowish green color.

BLOWPIPE REACTIONS
FLAME COLORS—(Continued)

	WITH NAKED EYE	WITH MERWIN SCREEN	REMARKS
Calcium	Yellowish red.	Through 1, flash of greenish yellow. Through 2, invisible. Through 3, flash of crimson.	The color is obtained very readily.
Copper Chloride and Bromide	Azure-blue.	Through 1, bright green. Through 2, bluish green. Through 3, bluish green.	The flame is tinged emerald green.
Copper Iodide	If treated per se, the flame is emerald green; with HCl, the color is azure blue.		
Copper Oxide	If treated per se, the flame is emerald green; with HCl, the color is azure blue.		
Erbium	Green.		
Indium	A corn-flower blue, tinged on the outer edges with green.		
Lead	Pale azure-blue, tinged with green on the edges.		
Lithium	Carmine.	Through 1, Invisible. Through 2, Invisible. Through 3, crimson.	If BaCl_2 is added, the red of the Li will appear before the green of the Ba.
Molybdenum	From oxides and sulfides, a faint yellowish green is developed.		
Phosphorous	Pale bluish green.	Through 1, green. Through 2, Invisible. Through 3, red violet.	Better results are obtained if H_2SO_4 is used instead of HCl.
Potassium	Pale violet.	Through 1, blue violet. Through 2, deep red violet. Through 3, red violet.	Purplish red through cobalt glass. Rubidium and caesium give similar colors and a spectroscope is necessary to distinguish between them.

CHEMICAL ANALYSIS OF MINERALS

FLAME COLORS—(*Continued*)

	WITH NAKED EYE	WITH MERWIN SCREEN	REMARKS
Selenium	Indigo blue.		Has a characteristic odor.
Sodium	Intense yellow.	Through 1, invisible. Through 2, invisible. Through 3, invisible.	Viewed through cobalt glass the yellow of Na is invisible but if K is present the purplish red will show.
Strontium	Crimson.	Through 1, invisible. Through 2, invisible. Through 3, crimson.	If BaCl_2 is added the red of the Sr will last longer than the green of the Ba.
Tellurium	Grass green.		
Thallium	Grass green.		
Zinc	Bluish green which usually appears as bright streaks in the flame.		

CLOSED TUBE SUBLIMATES

Place a small amount of the powder of the mineral in a closed tube and heat the bottom portion carefully. Heating with but very little oxidation is thus obtained and many substances react characteristically. The list below gives some of the sublimates formed and their derivation.

Antimony Oxide. Sb_2O_4 : a white fusible sublimate of needle-like crystals.

Antimony Oxsulfide, $\text{Sb}_2\text{S}_2\text{O}$: difficultly volatile sublimate which is black while hot and reddish brown when cold. Obtained from antimony sulfantimonates and sulfides of antimony.

Ammonia Salts: a very volatile, white sublimate.

Arsenic, As: a brilliant, black sublimate, which is often gray and crystalline near the heated part of the tube. Obtained from metallic arsenic and some arsenides.

Arsenic Oxide, As_2O_3 : a white, volatile sublimate consisting of octahedral crystals.

Arsenic Sulfides, AsS , and As_2S_3 : easily volatile, deep red to almost black liquid while hot and a reddish yellow solid when cold. Obtained from realgar, orpiment and sulfarsenites.

Lead Chloride, PbCl_2 : a white sublimate which fuses to yellow drops.

BLOWPIPE REACTIONS

Mercury, Hg: minute, gray, metallic globules which coalesce when rubbed with a match stick. Obtained from metallic mercury and amalgams.

Mercuric Chloride, HgCl_2 : a white *fusible* sublimate that is yellow while hot, white when cold.

Mercurous Chloride, HgCl : a white *infusible* sublimate that is yellow while hot, white when cold.

Mercuric Sulfide, HgS : a brilliant black solid which turns to red powder when rubbed. Obtained from cinnabar.

Selenium, Se: fusible black globules which become red when rubbed. Often also there are small gray crystals of the oxide SeO_2 . Obtained from selenium and the selenides. A high temperature is required.

Sulfur, S: a dark yellow to red liquid while hot and yellow to white solid when cold. Easily volatile. In small amounts it is nearly white. Obtained from sulfur and a few of the sulfides.

Tellurium, Te: fusible, black globules which are formed only at high temperatures. Fused globules of the oxide, TeO_2 are often present. Obtained from tellurium and the tellurides.

Tellurous Oxide, TeO_2 : pale yellow to colorless globules which are volatile with difficulty. Obtained from metallic tellurium and a few of its compounds.

Water, H_2O : a colorless, volatile liquid which collects in the upper, cooler part of the tube. It is usually neutral but may be either acid or alkaline. Obtained from minerals containing water of crystallization.

OPEN TUBE REACTIONS

A study should be made of both the gases evolved and the sublimates formed in the open tube tests. The results obtained by treating certain substances in the open tube are given below.

Antimony: forms dense white fumes which partly escape and partly condense as a white powder which is straw-yellow while hot. This powder is composed of crystalline, slowly volatile Sb_2O_3 and amorphous, non-volatile Sb_2O_4 .

Antimony Sulfides: the results are the same as for antimony except that fumes of SO_2 are also evolved.

Arsenic: yields a white, volatile sublimate of octahedral crystals, As_2O_3 . If complete oxidation has not taken place, a black mirror of metallic arsenic may also result. Garlic odor.

Arsenides: same as arsenic. Garlic odor (Arsine AsH_3).

Arsenic Sulfides: same as arsenic but also if the heating has been too rapid, an orange or yellow deposit of sulfur or the arsenic sulfides may result. SO_2 is formed. May have garlic odor.

Bismuth: yields a fusible sublimate of Bi_2O_3 that is brown while hot and yellow when cold.

CHEMICAL ANALYSIS OF MINERALS

Bismuth Sulfide: a white, non-volatile powder, $\text{Bi}_2(\text{SO}_4)_3$, is formed. This is fusible to yellow drops.

Lead Chloride: gives a white, partially volatile deposit of PbOCl_2 which fuses to yellow drops.

Lead Sulfide: yields white, non-volatile PbSO_4 near the assay which fuses to drops that are yellow while hot and white when cold.

Mercury and Amalgams: yield a sublimate of minute, volatile metallic droplets which coalesce when rubbed with a match stick.

Mercury Sulfide: if heated rapidly a deposit of brilliant, black sulfide is formed; if slowly, gray, metallic globules of mercury are formed and SO_2 evolved. Rubbing causes the droplets to coalesce.

Molybdenum Oxide and Sulfide: yield a delicate network of crystals of MoO_3 which are yellow while hot and white when cold.

Selenium Compounds: forms a steel-gray, volatile coating of radiating needles of SeO_2 near the assay and the characteristic odor of rotten horse-radish is evident. A reddish deposit of metallic selenium may form at some distance from the assay.

Sulfides: careful heating yields SO_2 but heated too rapidly or with an insufficient amount of air decomposition results with the deposition of sulfur which eventually disappears.

Tellurium and Tellurides: form a white, non-volatile deposit of TeO_2 which fuses into pale yellow or colorless drops.

FUSION WITH SODIUM CARBONATE

(On Charcoal.)

Make a mixture of 1 part of the powdered mineral or precipitate to be tested with 3 parts of sodium carbonate and heat on the charcoal slab with the reducing flame. Note the color of the melt, the sublimates formed and any metallic globules that may appear. Some of the elements react characteristically. The sublimates formed are in general the same as when the substance is treated per se and will be found under the heading of Sublimates on Charcoal.

FREE METALS FORMED

Antimony: gray brittle buttons or beads.

Bismuth: a reddish white somewhat malleable button with brittle edges.

Cobalt: gives magnetic particles.

Copper: gives a red, malleable bead which usually becomes black when the reducing flame is withdrawn or if touched with the oxidizing flame.

Gold: yellow malleable beads.

Iron: gives magnetic particles.

Lead: yields gray, malleable beads.

Nickel: gives magnetic particles.

BLOWPIPE REACTIONS

Silver: yields white, malleable beads.

Tin: white malleable beads which oxidize easily.

FUSION COLORS

Chromium: yellow color due to the formation of the chromate, Na_2CrO_4 . Better if the O.F. is used.

Copper: bluish green color, somewhat similar to that from manganese.

Manganese: bluish green color due to the formation of Na_2MnO_4 .

These color reactions are better obtained on platinum than charcoal as they depend on oxidation for their production. If done on platinum, add a little KNO_3 as this assists in the oxidation. If KNO_3 is used on charcoal small explosions take place.

REACTIONS OF BLOWPIPE TESTS TO ULTRA-VIOLET LIGHT

The blowpipe tests were subjected to ultra-violet light from a model No. V-41 Mineralight cold quartz lamp, with the following fluorescent and phosphorescent effects (those not listed gave no noticeable response):

- Antimony:** Per se on coal: small blue and green spots.
I flux on coal: blue and pink areas at assay.
Br flux on coal: assay is brownish and pink with a red border.
Cr flux on coal: assay is green with light orange around it.
Per se on plaster: blue-white ring at assay.
I flux on plaster: pink around assay.
Br flux on plaster: pink around assay.
Cr flux on plaster: slight brown around assay.
- Arsenic:** I flux on coal: assay is bluish white and pink.
Br flux on coal: assay is pink to red.
Sulfide heated gently on plaster: brownish red around assay.
Sulfide heated strongly on plaster: brownish red around assay.
I flux on plaster: pink around assay. Coating is brownish red.
Br flux on plaster: coating is brownish red.
Cr flux on plaster: coating is brownish red.
- Bismuth:** Per se on coal: assay is orange with a brilliant red border.
I flux on coal: assay is bright blue. Coating is brilliant red.
Br flux on coal: pink around assay.
Cr flux on coal: assay glows as though on fire.
Per se on plaster: blue white at assay.
I flux on plaster: greenish spots at assay and coating is brownish red.
Cr flux on plaster: red or orange through assay.

CHEMICAL ANALYSIS OF MINERALS

- Cadmium:** Per se on coal: the coating is brownish orange.
Cr flux on coal: orange at assay, reddish just beyond.
Per se on plaster: coating is red to deep brownish orange with sometimes brilliant ivory and green.
Cr flux on plaster: brilliant red at some distance from assay.
- Chromium:** Soda fusion on coal: green spot at assay; assay is phosphorescent.
- Copper:** Per se on coal: cream yellow at assay.
I flux on coal: green with tinges of red.
I flux on plaster: assay is green.
Br flux on plaster: assay is green.
- Iron:** Br flux on plaster: greenish white spots around assay.
- Lead:** I flux on coal: green and orange near assay with green streaks radiating outward.
Br flux on coal: bright ivory and blue green at assay.
Cr flux on coal: bright ivory and green around assay and covering considerable portion of slab.
I flux on plaster: yellow at assay with greenish yellow film at some distance.
Br flux on plaster: orange at assay.
Cr flux on plaster: pink at assay with brown at some distance.
- Manganese:** Soda fusion on coal: green spot at assay; assay is phosphorescent.
Soda fusion on plaster: phosphorescent but not fluorescent.
- Mercury:** I flux on coal: deep blue and brilliant red areas.
Br flux on coal: assay is bright brownish orange.
Cr flux on coal: bright deep brownish orange at assay.
I flux on plaster heated gently: brownish red on edge of film.
I flux heated strongly on plaster: brownish red on edge of film.
Br flux on plaster: blue and deep orange at assay.
- Molybdenum:** Per se O.F. on coal: greenish and brownish at assay.
Per se R.F. on coal: greenish and reddish brown at assay.
I flux on coal: greenish yellow and red around assay.
Per se O.F. on plaster: the assay is brilliant yellow.
Per se R.F. on plaster: the assay is brilliant yellow.
I flux on plaster: the assay is yellow.
Br flux on plaster: assay is yellow with brown at some distance.

BLOWPIPE REACTIONS

- Selenium:** I flux on coal: green around assay with sometimes deep blue areas.
Br flux on coal: assay has a yellowish brown color.
Cr flux on coal: assay is reddish orange like glowing coals of fire.
I flux on plaster: reddish orange at assay; coating is dark brown.
Br flux on plaster: assay is reddish orange; coating is dark brown.
Cr flux on plaster: assay is deep brilliant red; coating is dark brown.
- Silver:** Per se on coal: orange at assay.
- Tellurium:** I flux on coal: bluish white and pink around assay.
Br flux on coal: bluish white at assay with brown around it.
Cr flux on coal: assay is brownish orange.
- Thallium:** I flux on coal: brilliant blue, green, and ivory at assay and around it.
Br flux on coal: brilliant yellow with blue-white and orange around assay.
Cr flux on coal: bright brownish red at assay.
I flux on plaster: bright bluish green and brilliant blue at assay.
Br flux on plaster: assay is bright yellow with blue.
Cr flux on plaster: orange through the assay.
- Tin:** Per se on coal: orange-red at assay.
Per se with cobalt nitrate on coal: light orange red with green at assay.
I flux on coal: assay is green to blue.
Br flux on coal: assay and coating is yellow orange with sometimes green.
Per se on plaster: orange red spots at assay.

SMOKED PLASTER TABLETS (ALL PER SE TESTS)

- Antimony:** green with pink spots.
Arsenic: slight blue and whitish blue coloration.
Cadmium: bright blue at assay with yellowish brown ring beyond and light blue farther away.
Lead: slight greenish at assay.
Mercury: small whitish blue at assay.
Molybdenum: brilliant yellow at assay.
Tellurium: bright red spot at assay.

CHEMICAL ANALYSIS OF MINERALS

Bead Tests. The only beads which responded to the ultra-violet light were the uranium O.F. (greenish) and copper R.F. (pinkish) of the Borax beads and uranium R.F. (greenish), copper R.F. (reddish), and tungsten R.F. (pinkish), of the salt of phosphorous beads.

FLUORESCENCE OF SODIUM FLUORIDE FUSIONS

A small amount of the oxide or salt of various elements was fused with about 10 times its volume of sodium fluoride (NaF) on a charcoal slab in the O.F. After cooling, these were subjected to ultra-violet light from a model No. V-41 Mineralight lamp with the following fluorescent effects:

(Aluminum, barium, beryllium, calcium, didymium, lead, magnesium, manganese, molybdenum, tellurium, tin and vanadium gave no response.)

COLOR		
	ORDINARY LIGHT	ULTRA-VIOLET LIGHT
Antimony	Gray.	Blue and green.
Arsenic	Gray.	Blue and green.
Bismuth	Dark brown.	Greenish ivory.
Cerium	Gray; yellow while hot.	Red.
Cadmium	Red.	Light blue and green.
Cobalt	Dirty blue.	Deep blue.
Columbium	Pinkish white.	Greenish white.
Copper	Brown.	Ivory.
Lanthanum	White.	Blue with traces of pink and yellow.
Lithium	Gray.	Blue with pink and greenish areas.
Mercury	White.	Blue.
Nickel	Dirty blue.	Deep blue.
Selenium	Brown.	Light blue.
Silicon	White.	Pinkish blue.
Silver	Salmon.	Green.
Strontium	Light brown.	Yellow.
Tantalum	Pinkish.	Bluish white.
Thallium	Brown.	Dark green.
Thorium	White.	Bright blue.
Titanium	White.	Light blue.
Tungsten	Brown.	Yellow.
Uranium	Gray.	Brilliant greenish yellow.
Yttrium	White.	Pinkish blue.
Zinc	White.	Pink; sublimate is blue.
Zirconium	Salmon.	Light blue and yellow.

BLOWPIPE REACTIONS

ABBREVIATIONS

A, adamantine	I., isometric
B.B., before the blowpipe	Imperf., imperfect
Blk., black	Indist., indistinct
Blksh., blackish	Inf., infusible
Blu., blue	Ins., insoluble
Blush., bluish	Lt., light in color
Brt., bright	
Brwn., brown	M., metallic or monoclinic
Brwnsh., brownish	Mic., micaceous
c.c., cubic centimeter (almost the same as a milliliter)	Micro., microscopic
Coal, charcoal	ml., milliliter (1/1000 part of a liter, approximately 1 cubic centimeter)
Conc., concentrated	mm., millimeter (there are 2.54 mm. in an inch)
Conch., conchoidal	
C.T., closed tube (a glass tube closed at one end)	N., normal (a normal solution contains 1 gram molecular weight of a substance divided by its hydrogen equivalent in 1 liter of solution; i.e., 36.47 grams of HCl, 49.04 grams of H_2SO_4 , 32.68 grams of H_3PO_4)
D., dull	O., orthorhombic
Dcpd., decomposed	O.F., oxidizing flame
Diff., difficult	O.T., open tube (a glass tube open at both ends in which a substance is heated, allowing air to pass through, causing oxidation to take place)
Dil., dilute	
Dist., distinct in cleavage on at least one plane	
Drk., dark in color	
E., earthy in luster or eminent in cleavage	
F., fusibility	P., pearly
Fus., fusible	P-1, P-2, etc., Procedure No. 1, Procedure No. 2, etc.
G., greasy in luster	Perf., perfect cleavage on at least one face
Gelat., gelatinous or gelatinizes	Per se, alone, by itself
Grn., green	Plaster, plaster of Paris
Grnsh., greenish	Pris., prismatic
Gra., gray	Pt. sol., partly soluble or soluble with difficulty
Grash., grayish	Pt. vol., partly volatile
H., hexagonal or hardness	

CHEMICAL ANALYSIS of MINERALS

ABBREVIATIONS—*Cont.*

R., rhombohedral or resinous in luster	Sub., sublimate
Rd., red	Subconch., subconchoidal
Rdsh., reddish	Sv., subvitreous
Rdns., reddens	
R.E., rare earths	
R.F., reducing flame	T., tetragonal Tr., triclinic
S., silky in luster	
Sa., subadamantine	V., vitreous
Slt sol., slightly soluble	Vol., volatile
Slvr., silver	
Sm., submetallic	
Soda, sodium carbonate or bicarbonate	W., waxy in luster
Sol., soluble	Wht., white
S.Ph., salt of phosphorus (microscopic salt) $\text{HNaMH}_4\text{PO}_4 \cdot 4\text{H}_2\text{O}$	Whtsh., whitish
St., subresinous	Ylw., yellow
Stl., steel	Ylwsh., yellowish

CHAPTER VII

Mineral Identification Tables

MINERAL IDENTIFICATION TABLES

**GROUP 1
Specific Gravity 23.00-7.00**

H	SP. GR	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
17+	20.0	Ins	Silver white	Irregular	I
26.5-7	7.3-7.0	Easy	Pt sol	Silver, tin wht, tarnish ylw, brwn	M	Perf	Brittle	T
36.7	21.0-17.6	Inf	Ins	Tin white	Gray	M	Perf	H
46.7	21.0-17.6	Inf	Ins	Steel gray	Gray	M	Perf	H
56.7	10.58	2	Ins	Tin white	Black	M	Indist	Conch	I
66.7	22.84-22.65	Inf	Ins	Silver white, yellow tinge	Gray on frac- ture	Indist	Hackly	I
76.7	11.2	Inf	Ins	Grayish yellow	Bright	I
86.5	9.7	Inf	Ins	Blk, gray, brwnsh	Gray, grnsh gray	Sm	Poor	Uneven to subconch	I
96.6-5	8.0-5.15	Inf	Ins	Iron blk, gray, brwnsh blk	Red to blk	Sr, Sm	Dist	Uneven to subconch	O
106.6-5	7.3-7.0	Inf	Ins	Blk to steel gray	Sm	Uneven to subconch	O?
116.6-5	7.95-7.85	Inf	Pt sol	Black	Blksh to cinnam- on brwn	Sa, Sm	None	Uneven to subconch	T
126.6-5	7.95-7.85	Inf	Pt sol	Black	Blksh to cinnam- on brwn	Sa, Sm	None	Uneven to subconch	T
136	7.9-7.6	Brown	Yellow with grnsh tint	R to A	Perf	M?
145.5-6	7.1±	2	Ins	Tin white, red tinge	Grysh black	M	Pris- matic Good	Uneven	O?
155.5-6	7.65-7.2	Inf	Slowly sol	Tin white, flesh colored	Brittle	O
165-6	7.29-6.58	Fus	Ins	Ylwsh, brwn, grn, blk	Straw, ylw, cin- namon brwn	G, Sm	Indist	Small conch	I
175-6	10.63-8.0	Inf	Sol in HNO_3	Grysh, grnsh, brwnsh, blk	Grysh, olive green	Sm, G, P, D	Conch to uneven	I
185.5	8.63-8.23	1.5-2	Sol in HNO_3	Copper red to violet	Rdsh brwn	M	None	Conch to uneven	H
195.5	7.9	Reddish white	Brwnsh blk	M	Poor
205.5	9.44-9.4	2	Sol	Iron blk to brwn	Chestnut brwn	M, A	None	Small conch	T
215.5	7.53-5.68	4	Ins	Rdsh to grnsh ylw, ylw	Ylw to brwnsh	R to A	Perf	Subconch	O
225.5	7.53-5.68	4	Ins	Rdsh to grnsh ylw, ylw	Ylw to brwnsh	R to A	Perf	Subconch	O
235-5.5	7.78-7.66	2	Ins	Copper red, black tarnish	Pale brwnsh black	M	None	Uneven	H
245-5.5	7.5-7.2	4	Dcpd	Grysh to brwnsh blk, brwnsh red	Blk, brwn, gray	Sm, M, A, R	Perf	Uneven	M
255-5.5	7.5-7.2	2.5-3	Sol in H_2SO_4	Grysh to brwnsh blk, brwnsh red	Nearly black	Sm, M, A, R	Perf	Uneven	M
265-5.5	7.48-7.0	2	Silver white	Grayish blk	M	Basal	Uneven	O
275	8.44-8.03	Ins	Black	Black	Sm	None	Subconch	O
285	8.22-7.8	Inf	Sol	Silver to grysh white	M	None	Flexible	I
295	8.04-7.83	2	Pt sol	Rdsh to silver white	Blksh gray	M	None	Uneven	T
305	7.73-7.02	Tin-white	M	Perf	O

MINERAL IDENTIFICATION TABLES

GROUP 1
Specific Gravity 23.00-7.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1	AUROSMIRIDIUM	Au,Os,Ir	Brittle. A solid solution of Au and Os in cubic Ir. Insoluble in aqua regia.
2	SCHREIBERSITE	(Fe,Ni) ₃ P	B.B., a strongly magnetic globule. Strongly magnetic.
3	IRIDOSMINE	Ir,Os	Slightly malleable to nearly brittle. Per cent of Ir is greater than that of Os.
4	SISERSKITE	Os,Ir	Like iridosmine but % of Os is greater than that of Ir.
5	SPERRYLITE	PtAs ₂	Brittle. Heated in the O.T., it gives a sublimate of As ₂ O ₃ .
6	PLATINIRIDIUM	Ir,Pt	Somewhat malleable. Unattacked by acids. Very rare.
7	TANTALUM	Ta	Minute cubic crystals and fine grains.
8 2.25	THORIANITE	ThO ₂	Brittle. Radioactive. Uranium is usually present. Soluble in HNO ₃ and H ₂ SO ₄ with evolution of Helium gas.
9 2.25-2.45	COLUMBITE-TANTALITE	(Fe,Mn)(Cb,Ta) ₂ O ₆	Brittle. Partially decomposed by boiling H ₂ SO ₄ .
10	IXIOLITE	(Fe,Mn)(Cb,Ta) ₂ O ₆	Probably identical with Tapiolite.
11 2.27Li	TAPIOLOLITE	FeTa ₂ O ₆	Gives only a faint reaction for manganese.
12 2.26Li	MOSSITE	Fe(Cb,Ta) ₂ O ₆	Gives only a faint Mn reaction. Differs from Tapiolite in containing more columbium.
13 2.38±	THOREAULITE	SnTa ₂ O ₇	
14	RAMMELS-BERGITE	NiAs ₂	In C.T., gives a sublimate of metallic arsenic.
15	COHENITE	(Fe,Ni) ₃ C	Strongly magnetic. Becomes light bronze to golden yellow on exposure.
16	MONIMOLITE	3(Pb,Fe,Ca)O-Sb ₂ O ₅	B.B. on coal, gives a malleable lead colored globule.
17	URANINITE	UO ₂ or U ₃ O ₈ , PbO, etc.	Brittle. The borax bead is yellow in the O.F.; becoming green in the R.F.
18	BREITHAUPTITE	NiSb	Brittle. On coal, fuses, gives antimony fumes and coats the coal white.
19	TMISKAMITE	Ni ₄ As ₂	Reacts for arsenic and nickel.
20 2.3±	PLATTNERITE	PbO ₂	Brittle. Fibrous. B.B. on coal, gives a lead button.
21 2.404	STIBIOTANTALITE	Sb(Ta,Cb)O ₄	Only slightly attacked by boiling H ₂ SO ₄ .
22 2.419	STIBIO-COLUMBITE	Sb(Cb,Ta)O ₄	Only slightly attacked by H ₂ SO ₄ .
23	NICCOLITE	NiAs	Brittle. In C.T., gives a small white sublimate of As ₂ O ₃ .
24 2.22	HUEBNERITE	MnWO ₄	With soda and niter on Pt foil, gives greenish blue Mn reaction.
25 2.36Li	WOLFRAMITE	(Fe,Mn)WO ₄	Brittle. B.B., gives manganese reactions.
26	LOELLINGITE	FeAs ₂	In C.T., gives a sublimate of metallic arsenic.
27	BISMUTO-TANTALITE	Bi(Ta,Cb)O ₄	Insoluble in acids including HF
28	NICKEL-IRON	Ni ₃ Fe	Malleable.
29	MAUCHERITE	Ni ₁₁ As ₈	Brittle. Gives tests for nickel and arsenic.
30	PARARAMMELS-BERGITE	NiAs ₂	

MINERAL IDENTIFICATION TABLES

GROUP 1
Specific Gravity 23.00-7.00°

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
31	4.5-5	7.45-6.95	2.5	Tin-white	Grysh blk	M	Dist	Uneven to conch	O
32	4-5	9.5	Steel-gray	M	Fair	Conch	T
33	4-5	8.81	1.5	Silver-white	M	Uneven
34	4-5	7.26	Inf	Sol	Orange-red	Orange	A	Perf	O
35	4-5	9.5±	Ins	Silver-white, steel-gray	M	None	Uneven	I
36	4-5	9.22-8.64	Grysh grn, grnsh, ylw, bright ylw	Grysh to ylw	Sa, D, E	Uneven to earthy	M
37	4-4.5	19-14	Inf	Ins	Steel-gray	Gray, shiny	M	None	Hackly	I
38	4-4.5	11.9	Inf	Sol in HNO ₃	Steel-gray	Gray, shiny	M	None	Hackly	I
39	4	7.87-7.3	Inf	Sol	Steel-gray to iron-black	M	Perf	Hackly	I
40	4	8.38	2	Ins	Steel-gray, silver-white	M	None	Subconch	H
41	3.5-4	9.81-9.67	1.5	Dpd by HNO ₃	Silver white	Silver-white	M	Dist	Uneven	O
42	3.5-4	7.1-6.5	1.5-2	Sol in HNO ₃	Grn, ylw, brwn, various shades	Wht to ylwsh	R	Traces	Subconch to uneven	H
43	3.5-4	7.02	1.5	Sol	Smoky to yellow-brown	Yellow	R to A	Perf	O
44	3.5	16.11-13.48	Ins	Silver white	Same	M	Doubtful Imperf	Brittle	I
45	3.5	7.5-7.0	1	Sol in HNO ₃	Ylw, brwn, orange, white	White	R	Uneven	H
46	3.5	7.37-7.33	Pale ylw to grnsh	T
47	3.5	7.1	2	Sol in HNO ₃	Wht to brnsh ylw	R	O
48	3.5	7.29	Easy	Sol	Yellow	E	Sealy
49	3.5	7.98	Sol	Yellow to orange	Good	H
50	3.5	7.5	Easy	Ylw to brwnsh	F
51	3.5	13.71-13.48	Pt vol	Sol in HNO ₃	Silver-white	Bright	Dist	Conch	I
52	3.5	7.54	1	Sol in HNO ₃	Deep purple	M	Irregular
53	3-3.5	7.01	Lead-gray	Black	M	Good	Conch to uneven	O
54	3-3.5	7.51	1	Sol in HNO ₃	Pale bronze	Grysh to blk	Conch to uneven
55	3-3.5	14.1-13.7	Part vol	Ins	Silver white	Same	M	Conch to uneven	I
56	3-3.5	7.9-7.2	2	Ins	Tin-white to steel-gray	M	Uneven	I
57	2.5-3.5	7.04	1	Sol	Lead-gray to tin-white	Black	M	Good	Flexible	O
58	3	8.15	1.5	Tin white, yellow tinge	M	Perf	Subconch	I
59	3	7.6	1	Sol	Honey-yellow	M	Perf Good	T?
60	3	7.29	M?

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

GROUP 1
Specific Gravity 23.00-7.00°

INDEX OF. REF.	NAME	COMPOSITION	REMARKS
31.....	SAFFLORITE	(Co,Fe)As ₂	Brittle. In C.T., gives a sublimate of metallic arsenic.
32.....	COOPERITE	PtS	Minute crystal grains.
33.....	HORSFORDITE	Cu ₆ Sb	Brittle. Reacts for antimony and copper.
34.2.11	CURITE	2PbO·5UO ₃ ·4H ₂ O?	B.B. it blackens. Treated with conc HCl, it yields Cl gas.
35.....	STIBIO-PALLADINITE	Pd ₃ Sb	
36.2.42±	BISMITE	Bi ₂ O ₃	
37.....	PLATINUM	Pt	Malleable and ductile. Usually in grains and scales. Soluble in aqua regia.
38.....	PLALADIUM	Pd	Ductile and malleable. Usually in grains; sometimes in divergent fibers.
39.....	IRON	Fe	Malleable. Strongly magnetic. Very rare.
40.....	ALGODONITE	Cu ₆ As	In O.T., gives a sublimate of As ₂ O ₃ . Sol in HNO ₃ .
41.....	DYSCRASITE	Ag ₃ Sb	Seetile. B.B. on coal a globule of silver and a white coating. The HNO ₃ solution leaves a white residue.
42.2.05	PYROMORPHITE	3Pb ₃ (PO ₄) ₂ ·PbCl ₂	Brittle. In C.T., gives a sublimate of PbCl ₂ . Colors the flame green.
43.2.35Li	NADORITE	PbO·Sb ₂ O ₃ ·PbCl ₂	In C.T., decrepitates and gives a sublimate of PbCl ₂ .
44.....	POTARITE	Pd ₃ Hg ₂	Spurts on heating, losing Hg. HNO ₃ sol in brown. Occurs as grains and nuggets.
45.2.135	MIMETITE	3Pb ₃ (AsO ₄) ₂ ·PbCl ₂	Brittle. In O.T., gives a sublimate of PbCl ₂ . Colors flame bluish green.
46.....	RUSSELLITE	(Bi ₂ ,W)O ₃	Fine grained, compact masses.
47.2.17	GEOGIADESITE	3PbCl ₂ ·3PbO·As ₂ O ₃	B.B. on coal, a yellow sublimate. In C.T., decrepitates.
48.....	BOKSPUTITE	6PbO·Bi ₂ O ₃ ·3CO ₂	Occurs as fine-grained, crystalline masses.
49.2.19	KLEINITE	Hg,NH ₄ Cl,SO ₄ ,etc.	Reacts for mercury.
50.....	CHILLAGITE	3PbWO ₄ ·PbMoO ₄	
51.....	MOSCHELLANDSBERGITE	Ag ₂ Hg ₃	Brittle. On coal, Hg volatilizes leaving a globule of Ag.
52.....	RICKARDITE	Cu ₄ Te ₃	Brittle. On heating, the Te volatilizes leaving a globule of Cu.
53.....	LINDSTROMITE	PbCuBi ₃ S ₆	Striated, prismatic crystals.
54.....	EMPRESSITE	AgTe	Brittle. B.B., gives a globule of metallic silver.
55.....	AMALGAM	Hg·Ag _v	B.B., the Hg volatilizes leaving metallic Ag. Amalgam containing gold is yellowish. Moschellandsbergite is amalgam with definite proportions of Ag and Hg.
56.....	DOMEYKITE	Cu ₃ As	In O.T., gives a white sublimate of As ₂ O ₃ . Sol in HNO ₃ .
57.....	GALENOBISMUTITE	PbBi ₂ S ₄	B.B., gives bismuth and lead coatings.
58.....	ALTAITE	PbTe	Seetile. In O.T., gives a white sublimate.
59.2.35Li	LORETTTOITE	6PbO·PbCl ₂	The hot HCl solution deposits white crystals on cooling.
60.....	GOONGARRITE	Pb ₄ Bi ₂ S ₇	Fibrous to platy.

MINERAL IDENTIFICATION TABLES

GROUP 1
Specific Gravity 23.00-7.00°

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
61	3	7.65	Vol	Ins	Grayish black	Black	M	Uneven to subconch	I
62	3	8.2-8.1	Inf	Sol	Black, lustrous	Fair	I
63	3	8.44-8.43	Bronze	Blk, shining	M	Perf	Lemellar	M?
64	2.75-3	7.0-6.7	2	Dcpd	Orange, ylw, grn, gray, brwn, red	White	R to A	Very smooth	Subconch	T
65	2.75-3	7.1-6.66	1.5	Dcpd	Ruby, brwnsh, ylw straw	White or ylwsh	R	Uneven to conch	H
66	2.5-3	19.3-15.2	2.5-3	Ins	Yellow	Yellow	M	None	Hackly	I
67	2.5-3	7.1-6.7	Easy	Sol in HNO ₃	Lead gray	Black	M	Perf	Brittle	I
68	2.5-3	11.1-10.1	2	Ins	Silver white	Same	M	None	Hackly	I
69	2.5-3	9.02-8.7	1.5	Dcpd by HNO ₃	Steel gray to iron black	M	Fair	Subconch	I?
70	2.5-3	7.8	2	Sol in HNO ₃	Bluish lead-gray	Darker	M	Cubic	Granular	I
71	2.5-3	8.13-7.87	2	Dcpd by HNO ₃	Grn, ylwsh, gray, brwn, red	Uncolored	R, Sm	Imperf	Conch to uneven	T
72	2.5-3	8.95	3	Ins	Reddish brown	Metallic, shiny	M	None	Hackly	I
73	2.5-3	9.26-9.22	1	Ins	Brass ylw to silver white	Ylwsh to grnsh gray	M	None	Subconch to uneven	M
74	2.5-3	7.2-7.0	1	Sol in HNO ₃	Ylwsh, white, red, or blue	White	P to A	Perf	Uneven to conch	O
75	2.5-3	7.14-6.89	1.5	Sol in HNO ₃	Bright ylw to grn	V to G	Nearly perf	T
76	2.5-3	7.21	1	Sol in HNO ₃	Yellowish	A	Imperf	Uneven	T
77	2-3	7.14-6.97	Steel-gray	Same, darker	M	Good	Brittle	...
78	2-3	8.33	Vol	Dcpd	Yellow, bronze	Grnsh to canary ylw	R to A	None	Uneven	I
79	2-3	7.70	Sol	Red-brown	Ylwsh red	Sm	Good	T
80	2-3	8.725	Vol	Sol	Grnsh sulfur-ylw	Lemon-ylw	A	M
81	2-3	8.45-8.24	1	Lead to steel gray	M	Perf Indist	Even	M
82	2-3	8.28	Sol	Ylw to brwn	Perf	M
83	2-3	7.2-7.0	Steel-gray	Black	M	Good	O
84	2-3	7.27	Gray to blk, olive grn	Dist	H
85	2-3	7.95	Sulfur-yellow	Perf	M
86	2-3	7.98	Ins	Like graphite	Blk, shining	M, D	Good	H
87	2-3	8.62	Silver wht to brass yellow	M	Perf	Subconch to uneven	O
88	2.5	8.47-8.3	Vol	Blksh, lead, steel to gray	Nearly blk	M	None	Uneven to conch	I
89	2.5	8.04	1	Sol In HNO ₃	Iron blk to gray	M	None	Subconch to uneven	I
90	2.5	8.0-7.0	2	Iron-black	Iron-black	M	Perf	I

MINERAL IDENTIFICATION TABLES

GROUP 1
Specific Gravity 23.00-7.00°

INDEX OF REF.	NAME	COMPOSITION	REMARKS
61	METACINNABAR	HgS	Brittle. In C.T., with soda, gives a sublimate of metallic Hg.
62 2.49Li	CADMUM OXIDE	CdO	Transparent. Red to orange in transmitted light.
63	PARKERITE	Ni ₂ S ₃	
64 2.4	WULFENITE	PbMoO ₄	Brittle. With S.Ph. in O.F., gives a yellowish green glass; darker in R.F.
65 2.354	VANADINITE	3Pb ₃ (VO ₄) ₂ ·PbCl ₂	Brittle. Fused with KHSO ₄ , gives a yellow mass that reddens on cooling, finally becoming yellow.
66	GOLD	Au	Very ductile and malleable. B.B., a yellow globule. Insoluble in ordinary acids. Native gold is never pure.
67	PENROSEITE	(Ni,Cu,Pb)Se ₂	In C.T., gives a sublimate of red metallic selenium.
68	Silver	Ag	Ductile and malleable. Soluble in HNO ₃ , from which HCl gives a white, curdy precipitate, which darkens on exposure to sunlight.
69	PETZITE	Ag ₃ AuTe ₂	Sectile to brittle. B.B. on coal gives a metallic globule.
70	CLAUSTHALITE	PbSe	In O.T., gives fumes of selenium and a red sublimate.
71 2.269	STOLZITE	PbWO ₄	B.B., decrepitates and fuses to a crystalline, lustrous pearl.
72	COPPER	Cu	Ductile and malleable. In HNO ₃ , gives off red fumes. Native Cu often contains enough Fe to make it soluble in HCl.
73	CALAVERITE	AuTe ₂	Brittle. On heating, leaves a button of gold. Colors the flame green.
74 2.27	MENDIPITE	2PbO·PbCl ₂	In C.T., decrepitates and becomes more yellow.
75 2.32Li	ECDEMITE	Pb ₄ As ₂ O ₇ ·2PbCl ₂	B.B., gives a yellow globule and white sublimate.
76 2.15	MATLOCKITE	PbF,Cl	B.B., fuses to metallic lead, giving off acid vapors.
77	WEIBULLITE	PbBi ₂ (S,Se) ₄	Flexible. Doubtful.
78 2.49Li	EGLESTONITE	Hg ₂ O·2HgCl	In C.T., decrepitates, becomes orange-red, gives dense white fumes.
79	HAEMATOPHANITE	Pb(Cl,OH) ₂ ·4PbO·2Fe ₂ O ₃ ? Hg ₂ OCl	Transparent in very thin flakes.
80 2.64	TERLINGUAITE	Ag ₂ Te	Mercury reactions. Similar to Eglestonite.
81	HESSITE	6PbO·2MnO·3As ₂ O ₃ ·H ₂ O	Sectile. B.B., gives a globule of Ag and reacts for Te.
82 2.10	TRIGONITE	Pb ₃ Bi ₂ S ₆	Gives reactions for manganese, lead and arsenic.
83	LILLIANITE	9PbO·3As ₂ O ₃ ·PbCl ₂	B.B., on coal, gives lead and bismuth coatings.
84 2.295	FINNEMANITE	12PbO·As ₂ O ₅ ·2PbCl ₂	Crystalline crusts in crevices in hematite.
85 1.74	SAHLINITE	Pb ₂ Bi ₂ (Se,S) ₃	
86	PLATYNITE	AuTe ₂	Brittle. On heating, leaves a globule of metallic gold.
87	KRENNERITE	HgSe	Brittle. In C.T., decrepitates, giving a black sublimate.
88	TIEMANNITE	HgTe	Brittle and friable. B.B., fuses, gives metallic Hg and a sublimate of Te.
89	COLORADOITE	Ag ₂ Se	Sectile and malleable. B.B. with soda and borax, gives a bead of metal.
90	NAUMANNITE		

MINERAL IDENTIFICATION TABLES

GROUP 1
Specific Gravity 23.00-7.00°

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
91 2.5	9.2-8.9	1	Sol	Scarlet, brwnsh, yellowish	Orange-ylw	G to D
92 2.5	7.4	Inf	Ins	Dark lead-gray	Same	Fair	Sectile	H
93 2.5	7.8-7.6	2	Sol in HNO ₃	Silver-white, lead-gray	Shining	M	None	Sectile
94 2.5	7.36	Easy	Sol	Grysh, creamy wht	P, G, S	Good
95 2.5	7.59-7.57	2	Sol in HNO ₃	Lead-gray	Same	M	Cubic	Uneven or flat conch	I
96 2.5	7.586	Iron-black	M	None	Hackly	I
97 2.5	11.23	Vol	Sol	Deep red	Ylw-brwn	V to A	Perf	Sectile	O
98 2-2.5	7.08-7.06	1	Dcpd by HNO ₃	Blksh red-gray, tarnish brwn, ylw	Grnsh blk	M	Doubtful	Uneven	O
99 2-2.5	9.83-9.7	1	Sol in HNO ₃	Silver-wht, rdsh hue	Same	M	Perf	Sectile	H
100 2-2.5	8.09	Vol	Ins	Red, brwn, gray	Scarlet	A to M	Perf	Subconch to uneven	H
101 2-2.5	7.4-7.2	1.5	Blksh lead-gray	Same, shining	M	Poor	Subconch	I
102 2-2.5	7.3-7.2	1.5	Iron-black	Same, shining	M	Indist	Uneven	O
103 2-2.5	7.12	Sol in HNO ₃	Lead-gray	Black	M	Good	M?
104 2	9.3-7.83	2	Sol	Ylw with some rdsh	Same, lighter	D to G	Traces	Flexible	O
105 2	7.31	1	Sol	Wht, grysh, bluish	Iron-gray	M	None	Hackly	T
106 2	8.18	Grysh blk, gray	M	Perf	Flexible
107 2	9.14	2	Sol	Red	G to D	Fair	T
108 2	7.2-6.9	1	Sol	White	White	M	Perf	Uneven	H
109 2	8.08	Gray	M	Dist	Flexible	O
110 1.5-2.5	8.44-8.38	Fus	Tin-wht, steel-gray	M	Perf	Flexible
111 1.5-2	8.161	1	Dcpd by HNO ₃	Ylwsh, gray, silvery	Same	M	Perf	Uneven	M
112 1.5-2	7.5-7.1	1.5	Pale steel-gray	Same	M	Perf	Flexible	H
113 1.5-2	15.46	1	Ins	Pinkish silver-wht, tarnish red to blk	M	Dist	Sectile	I
114 1.5-2	7.96-7.66	Vol	Pale lead-gray	Same	Perf	Flexible
115 1.5	11.37	1	Insol	Gray	Same	M	None	Malleable	I
116 1-1.5	7.46-7.36	1.5	Insol	Blksh lead-gray	Same	M	Perf	Flexible	M
117 1-1.5	7.35	Easy	Sol in HNO ₃	Rdsh wht, brwn tinge	Dark gray	M	Good	Flexible	H
118 Soft	8.8?	Grysh grn, grn, ylwsh grn	W to D	I
119 Liquid	13.596	Vol	Insol	Tin-white	M

MINERAL IDENTIFICATION TABLES

**GROUP 1
Specific Gravity 23.00-7.00**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
91 2.42	MINIUM	Pb ₃ O ₄	In C.T., gives off oxygen.
92	TUNGSTENITE	WS ₂	Soils the fingers. Earthy or foliated in minute scales.
93	EUCAIRITE	CuAgSe	B.B. on coal, gives fumes of Se, leaving a bead of metal.
94	BISMOCLITE	BiOCl	In C.T., yields acid water and a white sublimate.
95	GALENA	PbS	B.B. emits SO ₂ fumes; gives a coat that is yellow near the assay and bluish white at a distance.
96	AGUILARITE	Ag ₄ SeS	Sectile. In O.T., heated slowly, yields metallic silver and a red sublimate
97 2.5	MONTROYDITE	HgO	Flexible. Volatilizes completely in C.T., giving metallic mercury.
98	AIKINITE	PbCuBiS ₃	Decomposed by HNO ₃ with separation of sulfur and lead sulfate.
99	BISMUTH	Bi	On Coal, volatilizes, giving a coat that is orange-yellow while hot and lemon-yellow when cold.
100 2.876	CINNABAR	HgS	Sectile. In C.T., gives a black sublimate; on coal entirely volatile.
101	ARGENTITE	Ag ₂ S	Sectile. On coal, intumesces; yields SO ₂ and a globule of silver.
102	ACANTHITE	Ag ₂ S	Sectile. On coal, intumesces; yields SO ₂ and a globule of silver.
103	WITTITE	Pb ₅ Bi ₆ (S,Se) ₁₄	Dissolved in HNO ₃ and diluted with water, gives a white precipitate.
104 2.61Li	MASSICOT	PbO	Fuses to a yellow glass and reduces to metallic lead. The HCl sol precipitates PbCl ₂ on cooling.
105	TIN	Sn	Ductile and malleable. Found in the placers of New South Wales.
106	JOSEITE	Bi ₂ Te(Se,S)	In O.T., gives off SO ₂ then white fumes of tellurium oxide.
107 2.665	LITHARGE	PbO	Slowly soluble in alkalies. The HCl sol precipitates PbCl ₂ on cooling.
108	ZINC	Zn	Rather brittle. Existence in nature rather doubtful.
109	GRUENLINGITE	Bi ₂ TeS ₃	Bismuth reactions.
110	WEHRLITE	Bi,Ag,Te,S	On coal, fuses, volatilizes, tinges the R.F. bluish green, coats the coal white then orange.
111	SYLVANITE	(Au,Ag)Te ₂	Brittle. On coal, gives a metallic globule and a white sublimate.
112	TETRADYMITE	Bi ₂ Te ₂ S	Volatilizes; coats coal white then orange; tinges R.F. bluish green.
113	MALDONITE	Au ₂ Bi	Malleable. Soluble in aqua regia. On coal, a Bi coating and Au button.
114	TELLURO-BISMUTHITE	Bi ₂ Te ₃	Somewhat sectile. In O.T., a white sublimate of TeO ₂ .
115 2.5	LEAD	Pb	Soluble in HNO₃. Very rare in nature.
116	NAGYAGITE	Pb ₅ Au(Te,Sb) ₄ S ₅₋₈	On coal, gives two coats, one white and volatile and the other yellow and less volatile. Soluble in HNO ₃ with a residue of gold.
117	MELONITE	NI ₂ Te ₂	In O.T., melts to colorless drops. On coal, burns and leaves a greenish gray residue.
118 2.42+	SILLENITE	Bi ₂ O ₃	A secondary product associated with Bismutite.
119	MERCURY	Hg	Completely volatile. Soluble in HNO ₃

MINERAL IDENTIFICATION TABLES

GROUP 1
Specific Gravity 23.00-7.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
120?		7.1	Fus	Sol in HNO ₃	Steel-gray	M	Granular, fibrous
121?		10.0	Steel-gray	M	T
122?		8.7	Brown
123?		15.47	Pt vol	Ins	White to ylwsh	M	Conch	I?
124?		7.00	Tin-white

MINERAL IDENTIFICATION TABLES

GROUP 1
Specific Gravity 23.00-7.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
120	BADENITE	$(\text{Co}, \text{Ni}, \text{Fe})_2(\text{As}, \text{Bi})_3$	B.B. on coal, gives fumes and a magnetic globule.
121	BRAGGITE	$(\text{Pt}, \text{Pd}, \text{Ni})\text{S}$	Rounded grains and prisms.
122	PALLADINITE	PdO	An ochrous coating found on palladium gold from Brazil.
123	GOLD AMALGAM	$\text{Au}_2\text{Hg}_3?$	B.B., looses mercury leaving a globule of gold.
124	SELENO(COSALITE)	$\text{Pb}_2\text{Bi}_2(\text{S}, \text{Se})_5$	

MINERAL IDENTIFICATION TABLES

GROUP 2
Specific Gravity 6.99-6.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST- EM
17.5	6.99-6.00	Inf	Ins	Dark iron-gray	Dark gray	Bright M	Perf	Subconch	I
26.7	6.99	Inf	Pt sol	Brwn, blk, red, gray, wht, ylw.	Wht, grnsh, brwnsh	A	Imperf	Uneven to subconch	T
36.7	7.03-6.6	Inf	Pt sol	Iron-blk, grysh, brwnsh	Red to black	Sm	Dist	Uneven to subconch	O
46.5	6.02-5.4	6	Ins	Colorless, ylw, brwn, blk	Wht to brwnsh wht	G to V	Nearly perf	Subconch to uneven	M
56.6.5	8.0-5.15	Inf	Ins	Iron-blk, gray, brwnsh blk	Red to blk	Sr, Sm	Dist	Uneven to subconch	O
66	6.26±	Inf	Ins	Black	Poor	O
76	6.72	Silver-white, steel-gray	M	None	Uneven	M
85.5-6	6.9-6.1	2.5	Sol in HNO ₃	Tin-white to silver-gray	Grayish blk	Bright M	Dist	Conch to uneven	J
95.5-6	6.9-6.1	2.5	Sol in HNO ₃	Tin-white to silver- gray	Grayish blk	Bright M	Dist	Conch to uneven	I
105.5-6	6.9-6.1	2.5	Sol in HNO ₃	Tin-wht, steel-gray	Grysh blk	M	Dist	Conch to uneven	I
115.5-6	6.9-6.1	2.5	Sol in HNO ₃	Tin-white, steel-gray	Grysh blk	M	Dist	Conch to uneven	I
125.5-6	6.22-5.92	2	Dcpd by HNO ₃	Silver-white to steel- gray	Drk grysh blk	M	Dist	Uneven	M
135-6	7.29-6.58	Fus	Ins	Ylw, brwn, grn, blk	Straw, ylw, cinnamon brwn	G, Sm	Indist	Small conch	I
145-6	6.4-6.2	Pt sol	Black	Dark brown	W	Conch	O?
155.5	6.898	Inf	Pt sol	Drk pistachio green	Brwnsh blk	V	I
165.5	6.46-6.38	Inf	Ins	Pale ylw to brwn, red	Pale ylwsh to brwnsh	V, R	Dist	Subconch to uneven	I
175.5	6.33	2-3	Dcpd by HNO ₃	Rdsh wht, gray, grysh wht	Grysh blk	M	Perf	Uneven	I
185-5.5	6.69-6.61	1.5	Dcpd by HNO ₃	Tin-wht to steel-gray	Grysh blk	M	Perf	Uneven	I
195	6.16-5.92	2-3	Dcpd by HNO ₃	Grnsh to rdsh, tin- white	Black	M	Perf	Uneven	O
205	6.19	2.5	Sol	Drk rdsh brwn	V, Sm, D	Dist	Uneven	O
215	6.07	Sol	Nearly blk	Red	Good	H
224.5-5	6.37	2	Dcpd by HNO ₃	Silver to tin-white	Black	M	Uneven	O?
234.5-5	6.13	Inf	Ins	Wax-ylw, rdsh ylw	R	H
244.5-5	6.1-5.9	5	Dcpd	Brwn, gray, wht, ylw, grn, red	White	V to A	Perf Dist	Uneven	T
254.5-5	7.45-6.95	2.5	Tin-white	Grysh blk	M	Dist	Uneven to conch	O
264.5-5	6.05-5.95	2	Dcpd by HNO ₃	Silver-wht to steel- gray	Black	M	Uneven	I
274.5	6.6	2	Sol in HNO ₃	Steel gray	Nearly blk	M	Perf	Uneven	O

SCHEELITE

CUPRITE

BADDELEYITE

BUNSENITE
(green)

BISMUTITE

TENORITE
CHRYSOCOLLADESCLOIZITE
VANADINITEALLEMONTITE
and Quartz

CERUSSITE

ANGLESITE
GALENACLAUSTHALITE
und Quartz

CHLOANTHITE

GERSDORFFITE

PHOSGENITE

STROMEYERITE
CHALCOPYRITE

CROCOITE

BOULANGERITE

STEPHANITE

BISMUTHINITE
CASSITERITE

CALOMEL

BERZELIANITE
and Calcite

FERGUSONITE

SAMARSKITE

TEALLITE

MICROLITE in
LEPIDOLITEZINCITE
CALAMINE

CHALCOCITE

PYRARGYRITE

PROUSTITE

CERARGYRITE

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

GROUP 2
Specific Gravity 6.99-6.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1.....	LAURITE	RuS ₂	B.B., gives sulfur fumes, then usually fumes of osmium. Insoluble in aqua regia and unattacked by fusion with KHSO ₄ .
2 2.00±	CASSITERITE	SnO ₂	Brittle. Placed in contact with metallic zinc in HCl, it is coated with a layer of metallic tin.
3 2.25	MANGANO-TANTALITE	MnO·(Ta,Cb) ₂ O ₆	Tantalite rich in manganese. B.B. with soda and niter, gives the greenish blue manganese reaction.
4 2.19	BADDELEYITE	ZrO ₂	Brittle. B.B., glows, turns white and is nearly infusible.
5 2.25-2.45	COLUMBITE-TANTALITE	(Fe,Mn)(Cb,Ta) ₂ O ₆	Brittle. Partially decomposed by boiling H ₂ SO ₄
6 2.40Li	FERRO-COLUMBITITE	FeCb ₂ O ₆	Columbite rich in iron.
7.....	GUDMUNDITE	FeSbS	Brittle.
8.....	SKUTTERUDITE	(Co,Ni)As ₂	Brittle. In C.T., gives a sublimate of metallic arsenic.
9.....	NICKEL-SKUTTERUDITE	(Ni,Co)As ₃	Brittle. In C.T., gives a sublimate of metallic arsenic.
10.....	SMALTITE	(Co,Ni)As _{3-x}	In C.T., gives a sublimate of metallic arsenic.
11.....	CHLOANTHITE	(Ni,Co)As _{3-x}	In C.T., gives a sublimate of metallic arsenic.
12.....	ARSENOPYRITE	FeAsS	Brittle. In C.T. gives first a red then black lustrous sublimate.
13.....	MONIMOLITE	3(Pb,Fe,Ca)O·Sb ₂ O ₅	On coal, gives a malleable lead colored bead.
14.....	ISHIKAWAITE	(U,Fe,Y,etc.) (Cb,TaO ₄)	
15 2.37Li	BUNSENIITE	NiO	Occurs with native bismuth and cobalt arsenates.
16 1.93	MICROLITE	(Na,Ca) ₂ Ta ₂ O ₆ (O,OH,F)	Brittle. With S.Ph., after long heating, gives a pale bluish green bead.
17.....	COBALTITE	(Co,Fe)AsS	Brittle. In O.T., gives SO ₂ fumes and a crystalline sublimate of As ₂ O ₃ .
18.....	ULLMANNITE	(Ni,Co,Fe)(Sb,As,Bi)S	Brittle. B.B., on coal, gives a globule of metal; boils and emits Sb fumes and coats coal.
19.....	GLAUCODOT	(Co,Fe)AsS	Brittle. In O.T., gives SO ₂ fumes and a sublimate of As ₂ O ₃ .
20 2.20	KENTROLITE	2PbO·Mn ₂ O ₃ ·3SiO ₂	On Coal, gives a Pb coating and with soda a globule of metallic lead.
21.....	PLUMBOFERRITE	PbFe ₄ O ₇	The HCl solution yields Cl and a residue of PbCl ₂ .
22.....	WOLFACHITE	Ni(As,Sb)S	In C.T., heated slowly, gives a narrow yellowish red and broad yellow zones.
23 1.813	FLUOCERITE	(Ce,La,Y)F ₃	In C.T., yields water that etches the glass.
24 1.918	SCHEELITE	CaWO ₄	Brittle. B.B., gives a transparent bead which later becomes opaque. Blue under ultra-violet light.
25.....	SAFFLORITE	(Co,Fe)As ₂	Brittle. In C.T., gives a sublimate of metallic arsenic.
26.....	CORYNITE	Ni(As,Sb)S	Like Wulfachite. Between Ullmannite and Gersdorffite.
27.....	ALLOCLASITE	Co(As,Bi)S	Close to Glauco-dot

MINERAL IDENTIFICATION TABLES

GROUP 2
Specific Gravity 6.99-6.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
28	4.5	6.04	5-6	Sol	Purplish to pitch black	Brwnsh blk	Brilliant M, A	None	Flat conch	T
29	4.5	6.1	2	Gray, brwn, ylw	Uncolored, ylwsh gray	R to A	Imperf	Uneven	T
30	4.5	6.49	3	Sol in HNO ₃	Colorless or wht	A	Perf	M
31	4-4.5	6.9-6.86	1.5	Sol	Grn, wht, gray, ylw	Grnsh gray to colorless	V
32	4-4.5	6.39	Orange to dark brown	Ylwsh brwn	W	None	Conch
33	4	6.4	Black	Black	V, Sa	Perf	T
34	4	6.4	Brwnsh black	Brown	D, Sm	Indist	T
35	4	6.25	2	Sol	Rdsh brwn	Yellow	V to A	Perf	Subconch	O
36	4	6.4	1.5	Sulfur-yellow	A	Indist	M
37	3.5-4	7.1-6.5	1.5	Sol in HNO ₃	Grn, ylw, brwn, various shades	Wht to ylwsh	R	Traces	Subconch to uneven	H
38	3.5-4	6.14	3	Sol	Various shades of red, blksh	Brwnsh red, shining	A, Sm, E	Inter-rupted	Uneven to conch	I
39	3-4	6.2-5.8	1	Tin-white or reddish gray	Gray	M	Perf	H
40	3-4	6.1	1.5	Sol in HNO ₃	Siskin to olive green	None	O
41	3-4	6.046	Inf	Sol	Red, golden, brwn	A	Perf	O
42	3.5	6.5-5.8	Inf	Sol	Blk scales, steel to iron-gray	M	Perf	Uneven to conch	M
43	3.5	6.2-5.9	1.5	Sol in HNO ₃	Red, brwn, blk	Orange, brwnsh, rod, ylwsh, gray	G	None	Uneven to conch	O
44	3.5	6.13-6.09	2	Sol	Emerald-green	V	O?
45	3.5	6.84	1.5	Sol	Colorless	P	Perf	H
46	3.5	6.34	Sol	Gray, tarnishing ylw to rdsh	Dull lead-gray	M	Fair
47	3-3.5	6.72-6.61	1	Sol in conc	Tin-white	Gray	M	Perf	Uneven	H
48	3-3.5	6.57-6.46	1.5	Sol in HNO ₃	Colorless, blue, wht, gray, grn, blk	Uncolored	V, R, A, P	Dist	Conch	O
49	2.5-5	6.4-3.9	Ylw, orange, rdsh, brown to blk	Ylw, brwnsh, olive grn	G, W, V, D	Conch to uneven
50	3-3.5	6.24	1	Sol in HNO ₃	Colorless	A	Dist	O
51	2.5-3.5	6.98-6.25	1.5	Ins	Bluish gray	Gray, shining	M	Dist	Sectile	O
52	3	6.72-6.11	2.5	Depd	Gray, white	P	Dist	Uneven	H
53	3	6.0	Blue-black	Black	M
54	3	6.43-6.33	1	Depd by HNO ₃	Lead-gray	Black	M	Perf	Conch	M
55	3	6.17-6.13	1	Sol in HNO ₃	Black	Black	M	None	Conch to irregular	M

MINERAL IDENTIFICATION TABLES

GROUP 2
Specific Gravity 6.99-6.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
28	PARA-MELACONITE	CuO	On coal in R.F., yields metallic copper.
29 2.05	EULYTITE	2Bi ₂ O ₃ ·3SiO ₂	On coal, fuses and froths, staining it yellowish brown; may be tinged green.
30 1.961	ALAMOSITE	PbSiO ₃	Gives lead reactions.
31 2.26±	BISMUTITE	Bi ₂ O ₃ ·CO ₂ ·nH ₂ O	Occurs as a powder. The HCl solution is deep yellow.
32 2.098	CLARKEITE	(Ca,Pb,K ₂ ,Na ₂)O·UO ₃ ·nH ₂ O	An alteration product of Uraninite.
33 2.40Li	FERBERITE	FeWO ₄	
34	REINITE	FeWO ₄	
35 2.50Li	PUCHERITE	BiVO ₄	The HCl solution is deep red and yields chlorine; if diluted it becomes green.
36 2.15	ATELESTITE	3Bi ₂ O ₃ ·As ₂ O ₅ ·2H ₂ O	
37 2.05	PYROMORPHITE	3Pb ₅ (PO ₄) ₂ ·PbCl ₂	Brittle. In C.T., gives a sublimate of PbCl ₂ . Colors flame green.
38 2.489	CUPRITE	Cu ₂ O	Brittle. On coal, fuses and reduces to metallic copper. Soluble in NH ₄ OH and NaOH.
39	ALLEMONTITE	AsSb	Fuses to a globule; takes fire and burns, leaving a coating of Sb ₂ O ₃ on the coal.
40 2.31Li	CUPRO-DESCLOIZITE	2PbO·2CuO·V ₂ O ₅ ·H ₂ O	
41 1.92	FOURMARIERITE	PbO·4UO ₃ ·5H ₂ O?	An alteration product of Uraninite. B.B., blackens but does not fuse.
42	TENORITE	CuO	Brittle. Gives copper reactions.
43 2.27	DESCLOIZITE	(Pb,Zn) ₂ (OH)VO ₄	With S.Ph. in R.F., the head is chrome-green; in R.F., orange-yellow.
44 1.92	TSUMEBITE	4PbO·2CuO·P ₂ O ₅ ·nH ₂ O	Gives Pb reactions; Cu flame; phosphorous tests.
45 2.09	HYDROCREUSSITE	2PbCO ₃ ·Pb(OH) ₂	Yields a lead button on charcoal.
46	BENJAMINITE	Pb(Cu,Ag)Bi ₂ S ₄	In C.T., a sublimate of sulfur.
47	ANTIMONY	Sb	Brittle. Gives dense white fumes and continues to fume after flame is removed. HCl sol diluted yields a white precipitation.
48 2.076	CERUSSITE	PbCO ₃	Brittle. In C.T., turns yellow, then dark red, then yellow again on cooling. Soluble in HNO ₃ with effervescence.
49 1.762	GUMMITE	UO ₃ ·Pb,Th,R.E.,etc. H ₂ O	Brittle.
50 2.116	LAURIONITE	PbCl ₂ ·Pb(OH) ₂	Fuses to yellowish, opaque beads.
51	GUANAJUATITE	Bi ₂ Se ₃	B.B. on coal, fuses; colors flame blue; gives strong selenium odor. Soluble in aqua regia on slow heating.
52 2.033	BARYSILITE	2PbO·2SiO ₂	Decrepitates and fuses to a clear brown bead.
53	WEISSITE	Cu ₅ Te ₃	
54	JORDANITE	Pb ₁₄ As ₇ S ₂₄	Brittle. In C.T., gives a sublimate of S and As ₂ S ₃ .
55	PEARCEITE	(Ag,Cu) ₁₆ As ₂ S ₁₁	Brittle. On coal with soda, gives a metallic globule. Reacts for S and As.

MINERAL IDENTIFICATION TABLES

GROUP 2
Specific Gravity 6.99-6.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
56 3	6.19	Pale apple-green	V, D
57 2.75-3	7.1-6.66	1.5	Dcpd	Red, brwnsh, ylw, straw	Wht or ylwsh	R	Uneven to conch	H
58 2.75-3	7.0-6.7	2	Dcpd	Orange, ylw grn, gray, brwn, red	White	R to A	Very smooth	Subconch	T
59 2.75-3	6.39-6.3	1.5	Sol in HNO ₃	Colorless, wht, tinged	Uncolored	A, R, V	Dist	Conch	O
60 2.75-3	6.3-6.0	Fus	Sol in HNO ₃	Wht, gray, ylw	White	A	Dist	Sectile	T
61 2.5-3	7.1-6.7	Easy	Sol in HNO ₃	Lead-gray	Black	M	Perf	Brittle	I
62 2.5-3	6.4	1.5	Sol in HNO ₃	Bluish green	Greenish wht	R	Perf	Uneven	O
63 2.5-3	6.78-6.55	1	Pt sol	Lead to steel-gray	Black	M	Uneven	O
64 2.5-3	6.334	1	Sol	Blksh lead to steel-gray	Black	Prismatic	Granular, fibrous
65 2.5-3	6.3-6.2	1.5	Sol in HNO ₃	Dark steel-gray	Same	M	None	Subconch to conch	O
66 2.5-3	6.1-5.8	2?	Sol in H ₂ SO ₄	Grn to brwnsh blk	Grnsh, brwnsh	A to R	Uneven	M
67 2.5-3	6.04	1	Sol in HNO ₃	Steel-gray	M	None	Uneven to subconch	O
68 2.5-3	6.1-5.9	1.5	Hyacinth-red	Orange-ylw	A to V	Rather dist	Conch to uneven	M
69 2.5-3	6.4-5.96	1	Sol	Bluish lead-gray	Brwnsh gray, brwn	M	Good	Flexible	M
70 2.5-3	7.14-6.89	1.5	Sol in HNO ₃	Bright ylw to green	V to G	Nearly perf	T
71 2.5-3	6.9	1	Ins	Lead-gray	M	Brittle
72 2-3	6.36	Inf	Orange-yellow, brick-red	Yellow	G	Perf	O?
73 2-3	6.92	1-1.5	Lead-gray	M	Good	Foliated
74 2-3	7.14-6.97	Steel-gray	Same, darker	M	Good	Brittle
75 2-3	6.96	Lead-gray	Black	M	Good	O
76 2-3	6.2-6.0	1	Dcpd by HNO ₃	Blk. In splinters	Black	M	Imperf	Uneven	M
77 2-3	6.0-5.8	1	Sol in NH ₄ OH	Cherry-red	R to A	None	Uneven	I
78 2.5	6.974	1	Sol in HNO ₃	Yellow-green
79 2.5	6.3-6.1	2	Blksh gray, iron-black	Black	M	Cubic	Uneven	I
80 2.5	6.39-6.09	1-1.5	Pt sol	Black with bluish tinge	Grysh black	M	None	Uneven to subconch
81 2.5	6.46-6.1	1	Slowly sol	Lead-gray	Black	M	Indist	Uneven
82 2.5	6.5-6.3	1	Sol	Steel-gray, tarnish brass or iridescent	Black	M	Dist	Uneven	O
83 2.5	6.9	1	Sol in HNO ₃	Lead to bluish gray	Same	M	Dist	Uneven	O
84 2.5	6.15-5.82	1	Iron-blk to gray	Light gray	M	None	Uneven	O
84 2.5	6.15-5.82	1	Gray to black	Black	M	Perf	M

MINERAL IDENTIFICATION TABLES

GROUP 2
Specific Gravity 6.99-6.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
56 2.06	DUFTITE	$2\text{PbO} \cdot 2\text{CuO} \cdot \text{As}_2\text{O}_5 \cdot \text{H}_2\text{O}$	Olivenite group with Pb replacing about $\frac{1}{2}$ the Cu.
57 2.354	VANADINITE	$3\text{Pb}_3(\text{VO}_4)_2 \cdot \text{PbCl}_2$	Brittle. Fused with KHSO_4 , gives a yellow mass which reddens on cooling, finally becoming yellow.
58 2.40Li	WULFENITE	PbMoO_4	Brittle. S.Ph. in O.F., gives a yellowish brown bead which is dark green in R.F.
59 1.882	ANGLESITE	PbSO_4	Brittle. With sodium carbonate gives metallic lead.
60 2.114	PHOSGENITE	$\text{PbCO}_3 \cdot \text{PbCl}_2$	Melts to a globule which on cooling, becomes white and crystalline. Dissolves with effervescence in HNO_3 .
61	PENROSEITE	$(\text{Ni}, \text{Cu}, \text{Pb})\text{Se}_2$	In C.T., gives a sublimate of red, metallic selenium.
62 1.866	CALEDONITE	$(\text{Pb}, \text{Cu})_2(\text{OH})_2\text{SO}_4$	Dissolved in HNO_3 , leaves a residue of PbSO_4 .
63	COSALITE	$\text{Pb}_2\text{Bi}_2\text{S}_5$	Soluble in HNO_3 with separation of PbSO_4 .
64	KOBELLITE	$\text{Pb}_2(\text{Bi}, \text{Sb})_2\text{S}_5$	On charcoal, gives a yellow coat near the assay and a white one beyond.
65	STROMEYERITE	CuAgS	In C.T., fuses but gives no sublimate.
66 2.22	VAUQUELINITE	$2(\text{Pb}, \text{Cu})\text{CrO}_4 \cdot (\text{Cu}, \text{Pb})_3\text{P}_2\text{O}_8$	Fuses to a gray submetallic globule also small globules of metal.
67	DIAPHORITE	$\text{Pb}_2\text{Ag}_2\text{Sb}_3\text{S}_8$	Brittle. In O.T., gives SO_2 and a sublimate of Sb and Pb oxides.
68 2.37Li	CROCOTITE	PbCrO_4	Sectile. With S.Ph., gives an emerald-green bead in both flames.
69	BOULANGERITE	$\text{Pb}_5\text{Sb}_4\text{S}_{11}$	Brittle. On charcoal, almost entirely volatile; gives a dark yellow sublimate near the assay with white edges.
70 2.32Li	ECDEMITE	$\text{Pb}_4\text{As}_2\text{O}_7 \cdot 2\text{PbCl}_2$	B.B., gives a yellow globule and white sublimate.
71	CROOKESITE	$(\text{Cu}, \text{Tl}, \text{Ag})_2\text{Se}$	Fuses to a greenish black enamel. Soluble in HNO_3 .
72 1.985	URANO-SPHAERITE	$\text{Bi}_2\text{O}_3 \cdot 2\text{UO}_3 \cdot 3\text{H}_2\text{O}$	B.B., decrepitates and falls to pieces to a mass of crystalline needles.
73	CHIVIATITE	$\text{Pb}_3\text{Bi}_8\text{S}_{15}$	On charcoal, gives a coat that is yellow near the assay and white far away.
74	WEIBULLITE	$\text{PbBi}_2(\text{Se}, \text{S})_4$	Flexible. Doubtful.
75	GLADITE	$\text{PbCuBi}_2\text{S}_9$	
76 2.74±	POLYBASITE	$(\text{Ag}, \text{Cu})_{16}\text{Sb}_2\text{S}_{11}$	In O.T., fuses, giving sulfurous and antimonial fumes.
77 2.253	BROMYRITE	AgBr	On charcoal, emits pungent Br odors and yields a globule of silver.
78	POLYARGYRITE	$\text{Ag}_{24}\text{Sb}_2\text{S}_{15}$	Malleable and ductile. Fuses to a black globule, giving Sb fumes and a brittle globule of Ag and Sb.
79	CANFIELDITE	Ag_8SnS_6	Brittle. On charcoal, gives a white or grayish sublimate near the assay, tinged yellow on the edges.
80	REZBANYITE	$\text{Pb}_3\text{Cu}_2\text{Bi}_{10}\text{S}_{19}$	Reacts for bismuth, copper and lead.
81	KLOPROTHITE	$\text{Cu}_2\text{Bi}_4\text{S}_9$	Brittle. On charcoal with sodium carbonate, yields a dark yellow sublimate and silver-white bead of metal.
82	GEOCRONITE	$\text{Pb}_5(\text{Sb}, \text{As})_2\text{S}_8$	Almost entirely volatile in O.F.; yields a dark yellow sublimate near the assay with white edges.
83	MATILDITE	AgBiS_2	Brittle. On charcoal, a globule of metal and bismuth coating.
84	SEMSEYITE	$\text{Pb}_9\text{Sb}_8\text{S}_{21}$	Brittle.

MINERAL IDENTIFICATION TABLES

GROUP 2
Specific Gravity 6.99-6.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
85 2.5	6.06-6.03	Black	Black	Bright	Perf
86 2.5	6.14	Silver-gray	Lead-gray
87 2.5	6.24	Gray-black to lead-gray	Black to light brown	Dist	M
88 2.5	6.44-6.26	1.5	Depd by HNO ₃	Wht, ylw, grn, gray	Uncolored	P, R, A	Perf	Conch	M
89 2.5	6.24-6.2	1	Dark lead-gray	Black	M	None	Brittle	H
90 2.5	6.37-6.35	1	Depd by HNO ₃	Blksh lead-gray	Blk, shining	M	Perf	Conch	O
91 2.5	6.3-6.1	2	Steel-gray, rdsh tint, blk to bluish	Grysh blk	M	None	Uneven to flat conch	I
92 2.5	6.41	Easy	Sol in HNO ₃	Sky-blue	Perf	T
93 2.5	6.76	Easy	Sol in HNO ₃	Dull olive green	R, A	Perf	M
94 2.5	6.84	Inf	Sol	Pitch-black	Drk brwn-gray	M to A	Perf	Flexible	M
95 2.5	6.03	1	Sol	Steel-gray, silver-white	Rdsh brwn	M	Perf	Fibrous	O?
96 2-2.5	6.5-6.4	1.5	Sol	Ylwsh to grysh white
97 2-2.5	6.4-6.3	2	Depd by H ₂ SO ₄	Grnsh wht, pale ylw or gray	White	P, A, R	Perf	Flexible	M
98 2-2.5	6.23-6.04	1	Steel to lead-gray, silver-wht	Same	M	Imperf	Subconch to uneven	M
99 2-2.5	6.3-6.1	1	Ins	Tin-white	Gray	M	Perf	Brittle	M
100 2-2.5	6.3-6.2	1	Sol in HNO ₃	Honey to straw-yellow	Straw-ylw	A	Dist	Brittle	O
101 2-2.5	6.27-6.22	1	Sol in HNO ₃	Iron-black	Same	M	Imperf	Uneven to subconch	O
102 2	6.38	1	Depd by HNO ₃	Grayish to tin-white	M	Perf	Uneven to subconch	O
103 2	6.81-6.75	1	Sol in HNO ₃	Lead-gray, tin-wht, ylwsh tarnish	Same	M	Perf	Flexible	O
104 2	7.2-6.9	1	Sol	White	White	M	Perf	Uneven	H
105 2	6.737	1	Lead-gray to blk	M	None	Uneven
106 2	6.88-6.78	1	Sol	Light lead-gray	Gray	M	Indist	Brittle
107 2?	6.57-6.05	Whitish gray
108 2	6.71	1.5	Ins	Silver-white	Shining	M	None	I
109 1-2	6.48	Vol	Ins	Wht, grayish, ylwsh, brwn	Pale ylw to white	A	Dist	Conch	T
110 1.5	6.36	Sol	Blksh gray	Black	M	Perf	Flexible	O
111 ?	6.05	White	Basal	M
112 ?	6.26	Sol	Chocolate-brown	E	M
113 ?	6.69	Deep red	Perf
114 ?	6.27-5.92	Ins	Colorless with creamy surface	H

MINERAL IDENTIFICATION TABLES

GROUP 2
Specific Gravity 6.99-6.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
85.....	BLOCKITE	(Co,Ni)Se ₂	
86.....	COCINERITE	Cu ₄ Ag ₈ S	
87.....	FALKMANITE	Pb ₆ Sb ₂ S ₆	
882.00	LEADHILLITE	PbSO ₄ ·2PbCO ₃ ·Pb(OH) ₂	Sectile. Fuses and turns yellow but becomes white on cooling.
89.....	GRATONITE	Pb ₂ As ₄ S ₁₅	Decrepitates violently B.B.
90.....	MENEGHINITE	Pb ₁₃ Sb ₇ S ₂₃	Brittle. Treated with HNO ₃ , it decomposes, leaving a residue of Sb oxides and PbSO ₄ .
91.....	ARGYRODITE	Ag ₈ GeS ₈	Brittle. In C.T., a sublimate of S and at high temperatures a slight deposit of GeS which fuses to yellow drops.
921.98	DIABOLEITE	2Pb(OH) ₂ ·CuCl ₂	
932.24	CHLOROXIPHITE	2PbO·Pb(OH) ₂ ·CuCl ₂	
942.30±	QUENSELITE	PbMnO ₂ (OH)	Soluble in dilute acids, including acetic, with evolution of Cl.
95.....	OWYHEEITE	Pb ₅ Ag ₂ Sb ₆ S ₁₅	Brittle. Acidular needles or massive with indistinct fibrous structure.
961.91	DAUBREEITE	2Bi ₂ O ₃ ·BiCl ₄ ·3H ₂ O	In C.T., gives acid water; becomes grayish and on longer heating turns yellow.
971.99	LANARKITE	PbO·PbSO ₄	
98.....	FREIESLEBENITE	Pb ₃ Ag ₅ Sb ₆ S ₁₂	Rather brittle. On charcoal, gives a coat that is yellow near the assay and white far away.
99.....	TELLURIUM	Te	On charcoal, almost completely volatile, tinging the flame green, giving a white coating. Hot conc H ₂ SO ₄ gives a carmine-red color.
1002.36Li	SCHWARTZEM-BERGITE	Pb(I,Cl) ₂ PbO	B.B., gives violet vapors of iodine.
101.....	STEPHANITE	Ag ₆ Sb ₄	Brittle. In O.T., fuses and gives sulfur and antimony fumes.
102.....	EMPLECTITE	CuBiS ₂	Brittle. On charcoal, fuses with frothing and spitting coating the charcoal with bismuth oxide.
103.....	BISMUTHINITE	Bi ₂ S ₃	Sectile. On charcoal, fuses with spitting, giving a coat of yellow bismuth oxide.
104.....	ZINC	Zn	Rather brittle. Existence in nature rather doubtful.
105.....	SCHIRMERITE	PbAg ₄ Bi ₄ S ₉	Brittle. Occurs massive and finely granular.
106.....	ALASKAITE	Pb(Ag,Cu) ₂ Bi ₄ S ₈ ?	In C.T., melts but does not form a sublimate. Soluble in hot HCl with the formation of a white precipitate.
107.....	SELENO-KOBELLITE	Pb ₂ (Bi,Sb) ₂ (S,Se) ₅ ?	
108.....	BERZELIANITE	Cu ₂ Se	Malleable. In C.T., gives a red sublimate of metallic selenium and a white one of selenium oxide. Soluble in HNO ₃ .
1091.973	CALOMEL	Hg ₂ Cl ₂	Sectile. In C.T., volatilizes without fusion and condenses in the colder part of the tube.
110.....	TEALLITE	PbSnS ₂	Malleable. In C.T., does not melt but affords a sublimate of sulfur.
1112.146	PARALAURIONITE	PbCl ₂ ·PbO·H ₂ O	
1121.86	PARSONSITE	2PbO·UO ₃ ·P ₂ O ₅ ·H ₂ O	In C.T., yields water.
113.....	BERESOWITE	6PbO·3CrO ₃ ·CO ₂	
1142.06	SIMPSONITE	Al ₂ Ta ₂ O ₈	Interior of the rough, cream-colored crystal is colorless. Tabular.

MINERAL IDENTIFICATION TABLES

GROUP 3
Specific Gravity 5.99-5.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
1 8-9?	5.39?	Inf	Golden-yellow	I
2 6.5	5.73	2-2.5	Dcpd by HNO ₃	Blk to blksh gray	Grnsh gray	M to G	Good	O
3 6.5	6.02-5.4	6	Insol	Colorless, ylw, brwn, blk	White to brwnsh wht	G to V	Perf	Subconch to uneven	M
4 6.5	5.41	6	Ins	Honey-yellow	Dist	I
5 6.5	5.04	Pitch-black	Brwnsh gray	Sm	None	Subconch	O
6 6.5	5.36	Iron-gray	Uneven
7 6-6.5	5.11	Dark brown	I
8 6-6.5	8.0-5.15	Inf	Ins	Iron-blk, gray, brwnsh blk	Red to blk	Sr, Sm	Dist	Uneven to subconch	O
9 6-6.5	5.08-5.04	Inf	Sol	Steel to iron-gray	Blk, bluish black	M	Perf	Uneven	T
10 6-6.5	5.02-4.82	2.5-3	Ins	Pale brass-ylw	Grnsh, brwnsh, brwnsh blk	M	Indist	Conch to uneven	I
11 6-6.5	5.079	Inf	Pt sol	Tarry black	Black
12 6	5.52	Slowly sol	Gray-black	Dark brown	M	Perf	II
13 6	5.18-4.85	Inf	Sol	Black	Dark brown	Sm, shiring	Indist	Uneven	T
14 6+	5.30	Inf	Ins	Black	Brwnsh blk	Sm	None	Conch	R?
15 6±	5.0	Light yellow
16 5.5-6.5	5.22-5.07	Inf	Sol	Iron-black	Rdsh brwn to black	M, D	Indist	Conch to uneven	I
17 5.5-6.5	5.8-5.6	Inf	Dcpd by H ₂ SO ₄	Gray, ylw, brwn, fresh break blk	Ylw brwn, brwn, grnsh gray	D, V, Sm	Traces	Subconch	T
18 5.5-6.5	5.18-5.17	5-5.5	Sol	Iron-black	Black	M, Sm	Indist	Subconch to uneven	I
19 5.5-6.5	5.8-5.6	Inf	Dcpd by H ₂ SO ₄	Gray, ylw, brwn, fresh break blk	Brwn, ylw brwn, grnsh gray	D, V, Sm	Traces	Subconch	T
20 5.5-6.5	5.9-4.9	Inf	Dcpd	Blk, grn or brwnsh tint	Ylw, grayish, rdsh brwn	Sm, G, V	None	Subconch to conch	O
21 5.5-6.5	5.9-4.9	Inf	Dcpd	Blk, grn or brwnsh tint	Ylwsh, graysh, rdsh brwn	Sm, G, V	None	Subconch to uneven	O
22 5.5-6	6.22-5.92	2	Dcpd by HNO ₃	Silver-white to steel-gray	Drk grsh blk	M	Dist	Uneven	M
23 5.5-6	5.03	6	Ins	Ylw to resin- brown	G	I
24 5-6	5.69±	4.5-5	Pt sol	Velvet-black	Drk rdsh brwn	V to R	Indist	Conch	O
25 5-6	5.26	Inf	Sol	Steel-gray	Cherry-red to brown	M, Sm, D	None	Conch to uneven	H
26 5-6	5.05-4.84	Inf	Ins	Brwn, blk, ylw, various shades	Rdsh ylw	Sm, R, W	Traces	Conch	O
27 5-6	5.24-5.14	Inf	Ins	Blk, brwn, ylw, various shades	Blk to brwn	Sm, R, W	Traces	Conch	O
28 5.5	5.4-5.0	Inf	Pt sol	Emerald-green, black in mass	Brown	V	Fair	Fibrous break	I

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

**GROUP 3
Specific Gravity 5.99-5.00**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1.....	OSBORNITE	TiN	
2.17	MELANOTEKITE	2PbO-Fe ₂ O ₃ -2SiO ₂	Reported in a meteorite from India. Fuses with intumescence to a black bead.
3.2.19	BADDELEYITE	ZrO ₂	Glowes brightly when heated, turns white and is nearly infusible.
4.2.09	SCHNEEBERGITE	4(Ca,Fe)O-2Sb ₂ O ₄	
5.....	TODDITE	Columbite with U replacing some Mn-Fe	Possibly a mixture of columbite and Euxenite.
6.....	EICHBERGITE	(Cu,Fe)(Bi,Sb) ₂ S ₅	
7.....	MAUZELIITE	(Ti,Sb) of Pb and Ca	
8.2.25-2.45	COLUMBITE-TANTALITE	(Fe, Mn)(Cb,Ta) ₂ O ₆	Brittle. Partially decomposed by boiling H ₂ SO ₄
9.....	PYROLUSITE (crystals)	MnO ₂	Brittle. Treated with HCl, yields acrid fumes of chlorine.
10.....	PYRITE	FeS ₂	Brittle. In C.T., gives off sulfur and leaves a magnetic residue.
11.....	ISHKULITE	FeFe ₂ O ₄ , FeCrO ₄ , MgFe ₂ O ₄	Magnetic.
12.....	MAGNETO-PLUMBITE	(Pb,Mn ² ,Mn ³) ₆ O ₁₀	Strongly magnetic.
13.2.34±	HETAEROLITE	ZnMn ₂ O ₄	Brittle. Dissolved in HCl, it yields chlorine.
14.2.50Li	SENAITE	(Fe,Mn,Pb)TiO ₂	Decomposed by boiling H ₂ SO ₄ .
15.....	SILESITE	Sn ₂ SiO ₅	Probably a mixture of wood tin and silica.
16.2.36±	FRANKLINITE	ZnFe ₂ O ₄	With sodium carbonate on charcoal, gives a zinc coating.
17.2.077±	FORMANITE	(U,Zr,Th,Ca) (Ta,Cb,Ti)O ₄	Brittle. Decomposed by fusion with KHSO ₄ .
18.2.42Na	MAGNETITE	FeFe ₂ O ₄	Brittle. Strongly magnetic. In O.T., loses its influence on the magnet.
19.2.07±	FERGUSONITE	(Y,Er,Ce,Fe) (Ta,Cb,Ti)O ₄	Brittle. Decomposed by fusion with KHSO ₄ .
20.2.24±	EUXENITE	(Y,Ca,Ce,U,Th) (Cb,Ta,Ti) ₂ O ₆	Glowes on heating. Decomposed by boiling H ₂ SO ₄ .
21.2.248	POLYCRASE	(Y,Ca,Ce,U,Th) (Ti,Cb,Ta) ₂ O ₆	B.B. in forceps, swells up and changes color to a light grayish brown. Decomposed by boiling H ₂ SO ₄ .
22.....	ARSENOPYRITE	FeAsS	Brittle. In C.T., gives first a red then black, lustrous sublimate.
23.1.83	ATOPITE	2CaO-Sb ₂ O ₅	On charcoal in R.F., sublimes in part. May be Romeite.
24.2.2±	SAMARKHITE	(Y,Er,Ce,U,Ca,Fe,Pb, Th)(Cb,Ta,Ti,Sn) ₂ O ₆	Brittle. B.B., gives a momentary bright light.
25.3.22Li	HEMATITE	Fe ₂ O ₃	Brittle. Sometimes distinct parting or pseudo cleavage. On charcoal in R.F., becomes magnetic.
26.2.142	PRIORITE	(Y,Er,Ca,Fe,Th) (Ti,Cb) ₂ O ₆	Brittle. Powder partly decomposed by boiling HCl or H ₂ SO ₄ .
27.2.26±	ESCHYNITE	(Ce,Ca,Fe,Th) (Ti,Cb) ₂ O ₆	Brittle. B.B. in forceps, swells up and changes color from black to rusty brown.
28.2.16	MANGANOSITE	MnO	B.B., it blackens.

MINERAL IDENTIFICATION TABLES

GROUP 3
Specific Gravity 5.99-5.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
29 5.5	5.99-5.35	2	Dcpd by HNO ₃	Silver-white, steel-gray	Grysh wht	M	Perf	Uneven	I
30 5.5	5.88-5.75		Ylwsh to grnsh brwn, grnsh blk			Irregular	I
31 5.5	5.98	4	Ins	Grn, ylw, brwn, red	Ylw to brwn	R to A	Perf	Subconch	O
32 5.5	5.41	Easy	Sol	Black	Black	M	Imperf	Brittle	H
33 5.5	5.87		Dark red-gray			Conch
34 5.5	5.0?	Pt sol	Yellowish red	R	H
35 5.5	5.44	Inf	Pt sol	Black	D	None	Subconch	T
36 5-5.5	5.9-5.5	Inf	Ins	Black, brown	Gray	Sm, V, G	Indist	Small conch	O
37 5-5.5	5.3-4.9	Inf	Pt sol	Red, brown, ylwsh brwn	R	Perf	Conch to uneven	M
38 5	6.16-5.92	2-3	Dcpd by HNO ₃	Grysh to rdsh, tin-white	Black	M	Perf	Uneven	O
39 5	5.49		Black	Brilliant
40 5	5.16	Inf	Pt sol	Blk, brwnsh blk	Brwn	M, Sm, D	Parting	Subconch to uneven	I
41 5	5.8-5.2	Inf	Blk, to iron-blk	Grysh blk, brwnsh, grn tint	M	None	Granular	O?
42 5	5.00		Orange ylw to ylw brwn	M
43 4.5-5	5.2-4.4	Inf	Gelat	Orange to brwnsh ylw, blks, gray	Lt orange to drk brown	V, R, G	Perf	Conch	T
44 4.5-5	5.4-5.2	Inf	Gelat	Orange, brwn, blk, grn	Lt orange to drk brwn	V, R, G	Prismatic	Conch	T
45 4.5-5	6.1-5.9	5	Dcpd	Wht, ylw, brwn, grn, gray, rdsh	White	V to A	Dist	Uneven	T
46 4.5-5	5.5-5.2		Dark gray to blk	Brown	D to Sm	T
47 4.5-5	5.04		Black-brown	Brown	V	Uneven
48 4.5-5	5.58-5.07	5-6	Ins	Ylw to ylwsh and rdsh white	P to E	I
49 4.5-5	6.05-5.95	2	Dcpd by HNO ₃	Silver-wht to steel-gray	Black	M	Uneven	I
50 4-5.5	5.0-3.7	6	Pt sol	Grnsh brwn	W, V, Sm	Conch	I
51 4-5	5.49	1	Dcpd by HNO ₃	Gray-black	Black	M	None	Granular	I?
52 4.5	5.96	Gelat	Ochre-yellow	Perf	M
53 4-5	5.09-4.08	Inf	Sol	Ylw, wht, sometimes rdsh wht	Wht to ylwsh wht	G to P	Fibrous or powder	O?

MINERAL IDENTIFICATION TABLES

**GROUP 3
Specific Gravity 5.99-5.00**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
29	GERSDORFFITE	NiAsS	Brittle. In O.T., gives SO ₂ fumes and a crystalline sublimate of As ₂ O ₃ . In C.T., a yellowish brown sublimate of As ₂ S ₃ .
30 1.97	DJALMAITE	(U,Ca,Pb,Bi,Fe) (Ta,Cb,Ti,Zr) ₃ O ₉ · nH ₂ O	Transparent in thin splinters with a yellowish brown color.
31 2.419	STIBIO-COLUMBITE	SbCbO ₄	Brittle. Only slightly attacked by boiling H ₂ SO ₄ .
32	DELAFOSSITE	CuFeO ₂	Becomes magnetic on heating. Not soluble in HNO ₃ .
33 2.15-2.2	ESCHWEGITE	10TiO ₃ ·5Y ₂ O ₃ ·2Ta ₂ O ₅ · 4Cb ₂ O ₅ ·7H ₂ O	Dark red thru thin splinters.
34 1.72	BUSZITE	Nd,Er,Eu,Pr,etc, SiO ₂	Splinters are yellow.
35 1.77	MACHINTOSHITE	SiO ₂ of U, Th,Ce,etc, H ₂ O	
36 2.15±	YTTRIOTANTALITE	(Fe,Y,U,Ca,etc) (Cb,Ta,Zr,Sn)O ₄	In C.T., yields water and turns yellow.
37 1.788	MONAZITE	(Ce,La,Dy)PO ₄	B.B., turns gray when treated with H ₂ SO ₄ ; flame bluish green.
38	GLAUCODOT	(Co,Fe)AsS	Brittle. In O.T., gives SO ₂ fumes and a sublimate of As ₂ O ₃ .
39	YTTRIO-COLUMBITE	More columbium than yttriotantalite	
40 2.3?	TREVORITE	NiFe ₂ O ₄	Strongly magnetic.
41 2.3	HJELMITE	Y,Fe,U,Sn,Mn,Ca,Cb, Ta,etc	In C.T., decrepitates and yields water.
42 1.915	HUEGELITE	Hydrous vanadate of lead and zinc	
43 1.72	THORITE	ThSiO ₄	In C.T., usually yields water and changes color.
44 1.69	ORANGITE	ThSiO ₄ ·nH ₂ O	Altered thorite.
45 1.918	SCHEELITE	CaWO ₄	Brittle. With borax, gives a transparent glass which later becomes opaque and crystalline. Blue under ultra-violet light.
46	CORONADITE	MnPbMn ₆ O ₁₄	Botryoidal crusts with fibrous structure.
47	NOHLITE	(Ca,Mg,Fe,Y,etc,U) ₂ (Cb,Zr,Fe) ₃ O ₁₀	Brittle.
48 1.7±	STIBICONITE	Sb ₃ O ₆ (OH)	In C.T., gives water but does not fuse. On coal decrepitates.
49	CORYNITE	Ni(As,Sb)S	Like wulfachite. Between ullmannite and gersdorffite. May be a mixture.
50 1.925	BETAFITE	(U,Ca)(Cb,Ta,Ti) ₃ O ₉ · nH ₂ O	Brittle. B.B., gives a black slag.
51	BERTHONITE	Pb ₂ Cu ₂ Sb ₂ S ₁₃	Brittle. Treated with HNO ₃ , yields sulfur and a precipitate of lead sulfate.
52 1.91	KASOLITE	3PbO·3UO ₃ ·3SiO ₂ · 4H ₂ O?	
53 1.8±	CERVANTITE	Sb ₂ O ₄ ?	Reduces easily to metal on charcoal.

MINERAL IDENTIFICATION TABLES

**GROUP 3
Specific Gravity 5.99-5.00**

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYSTEM
54 4.5	5.35	2-3	Sol in HNO ₃	Grysh to blksh green	Siskin to apple grn	R	Subconch to uneven	M
55 4.5	5.29	Inf	Sol	Steel-gray	D, Sm
56 4.5	5.43-4.5	Inf	Ins	Black on fresh break	Drk grnsh brown	Conch	T
57 3-4.5	5.1-4.6	1	Gray to iron-black	Red, gray, brown, blk	M	None	Subconch to uneven	I
58 4	5.68-5.64	Inf	Sol	Orange-ylw, deep red	Orange-ylw	Sa	Perf	Conch	H
59 4	5.03-4.99	6	Sol	Iron-black	Blk, brwnsh	M	Perf	M?
60 4	5.7	1	Sol in HNO ₃	Wht to ylwsh wht	R	Good	H
61 4	5.0-4.6	3-4	Gray, wht, brwn, ylwsh	Wht to gray or ylwsh	R, D, E
62 4	5.02	4	Sol	Clove brwn	Light brwn	Perf	Tr
63 4	5.03-4.91	3	Sol	Dark grn to blk	Green	Perf	Tr?
64 3.5-4	5.0-4.6	1.5-3	Lt bronze-ylw	Lt bronze-brown	M	None	Conch	I
65 3-4	5.0-4.9	1	Depd by HNO ₃	Lead to iron-gray	M	Perf	Subconch	O
66 3-4	6.2-5.8	1	Tin-wht to rdsh gray	Gray	M	Perf	H
67 3.5	6.4-5.8	Inf	Sol	Steel or iron-gray to black	M	Perf	Uneven to conch	M
68 3.5	5.76	1.5	Wax-yellow	A	Dist	Tr
69 3.5	5.78-5.63	Vol	Tin-white	Tin-white	M	Perf	Uneven	H
70 3.5	6.2-5.9	1.5	Sol in HNO ₃	Red, brwn, blk	Brwnsh red, ylwsh gray	G	None	Uneven to conch	O
71 3.5	5.38	Deep red	None	O
72 3.5	5.33-5.27	1	Insol	Gray-black	Light red, ylwsh tone	Sm, M	Good	Uneven to conch	O
73 3-3.5	5.75	1.5	Sol	Cochineal to hyacinth red	Brick-red	R to A	Perf	O
74 3-3.5	5.7-5.3	1.5-2	Brass to bronze ylw, tarnished	Grnsh blk	M	Perf	Uneven	H
75 3-3.5	5.37-5.33	1	Sol	Drk steel-gray	Black	M	None	Conch	O
76 3-3.5	5.35-5.25	1	Sol	Steel-gray	Steel-gray	M	Indist	Uneven	H
77 3-3.5	5.0-4.9	Inf	Sol	Various shades of yellow	Orange-yellow to brick-red	A to R	Dist	Conch	H
78 2.5-5	6.4-3.9	Ylw, orange, rdsh, brwn to blk	Ylw, brwnsh, olive grn	G, W, V, D	Conch to uneven
79 3	5.94	1	Bluish gray	Same	M	Uneven
80 3	5.74	3?	Sol in HNO ₃	Colorless to gray	R to V	Dist	Uneven	T
81 3	5.54-5.44	Dark lead-gray to black	Chocolate brwn, purplish blk	M	Poor	Conch	O

MINERAL IDENTIFICATION TABLES

**GROUP 3
Specific Gravity 5.99-5.00**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
54 1.97	BAYLDONITE	$4(\text{Pb},\text{Cu})\text{O}\cdot\text{As}_2\text{O}_5\cdot2\text{H}_2\text{O}$	B.B., gives off water and becomes black.
55	CESAROLITE	$\text{PbMn}_3\text{O}_7\cdot\text{H}_2\text{O}$	Treated with HCl it yields chlorine.
56 2.3	BRANNERITE	$(\text{U},\text{Ca},\text{Fe},\text{Y},\text{Th})_3\cdot\text{Ti}_5\text{O}_{16}$	Altered mineral is brownish yellow. Decomposed by hot conc H_2SO_4 .
57 2.72 Li	TETRAHEDRITE-TENNANTITE	$(\text{Cu},\text{Fe},\text{Zn},\text{Ag})_{12}\cdot(\text{Sb},\text{As})_4\text{S}_{13}$	Decomposed by HNO_3 with separation of sulfur.
58 2.013	ZINCITE	ZnO	Brittle. In C.T., blackens but on cooling returns to its original color.
59	CREDNERITE	CuMn_2O_4	Insoluble in HNO_3 . Dissolved in HCl, yields chlorine.
60 1.948	HEGYPIANE	$9\text{PbO}\cdot 9(\text{Ca},\text{Ba})\text{O}\cdot 6\text{P}_2\text{O}_5\cdot 2\text{PbCl}_2$	
61 1.86±	BINDHEIMITE	$2\text{PbO}\cdot\text{Sb}_2\text{O}_5\cdot\text{H}_2\text{O}$	On charcoal, reduces to metallic Sb and Pb.
62 1.905	YEATMANITE	$(\text{Mn},\text{Zn})_{16}\text{Sb}_2\text{Si}_4\text{O}_{29}$	
63 1.78	VANDEN-BRANDITE	$\text{CuO}\cdot\text{UO}_3\cdot 2\text{H}_2\text{O}$	B.B., fuses to a black mass which becomes crystalline on cooling.
64	PENTLANDITE	$(\text{Fe},\text{Ni})_9\text{S}_8$	Brittle. Nonmagnetic. In O.T., gives sulfurous fumes.
65	CHALCOSTIBITE	CuSb_2S	Brittle. In C.T., gives a sublimate that is dark red on cooling.
66	ALLEMONTITE	AsSb	B.B. on charcoal, fuses to a globule, takes fire and gives a white coating of arsenic and antimony oxides.
67	TENORITE	CuO	Brittle. Reduces to metallic copper.
68 2.00±	WALPURGITE	$5\text{Bi}_2\text{O}_3\cdot 3\text{UO}_3\cdot 2\text{As}_2\text{O}_5\cdot 12\text{H}_2\text{O}$	
69	ARSENIC	As	Brittle. B.B., volatilizes without fusing coating the charcoal white.
70 2.27	DESCLOIZITE	$(\text{Pb},\text{Zn})_2\text{OH}\cdot\text{VO}_4$	S.Ph bead is chrome-green in R.F.; orange-yellow in O.F.
71 2.36	PYROBELONITE	$4(\text{Mn},\text{Pb})\text{O}\cdot\text{V}_2\text{O}_5\cdot\text{H}_2\text{O}$	
72 2.72	VRBAITE	$\text{Ti}(\text{As},\text{Sb})_3\text{S}_6$	Brittle. Splinters are translucent red.
73 2.38	PHENI-COCHROITE	$3\text{PbO}\cdot 2\text{CrO}_3$	On charcoal, gives a dark mass which is crystalline when cold.
74	MILLERITE	NiS	Brittle. On charcoal, fuses to a magnetic globule.
75	ANDORITE	$\text{PbAgSb}_3\text{S}_6$	Brittle. In C.T., decrepitates and melts.
76	ZINKENITE	$\text{Pb}_6\text{Sb}_{14}\text{S}_{27}$	Dissolved in hot HCl, gives H_2S and PbCl_2 settles out on cooling.
77 2.43 Li	GREENOCKITE	CdS	Brittle. In C.T., the mineral is carmen-red while hot, becoming yellow on cooling.
78	GUMMITE	$\text{UO}_3\cdot\text{Pb},\text{Th},\text{R.E.},\text{etc},\text{H}_2\text{O}$	Brittle.
79	GUITERMANITE	$\text{Pb}_{10}\text{As}_6\text{S}_{19}$	Brittle. Possibly a mixture.
80 1.91	GANOMALITE	$3\text{PbO}\cdot 2(\text{Ca},\text{Mn})\text{O}\cdot 3\text{SiO}_2$	Fuses to a clear glass which in R.F., is colored black.
81	SELIGMANNITE	PbCuAsS_3	Brittle.

MINERAL IDENTIFICATION TABLES

GROUP 3
Specific Gravity 5.99-5.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYSTEM
823	5.56-5.5	2	Sol in HNO ₃	Steel to lead-gray	Rdsh brwn	M	Perf	Conch	H
833	5.08-5.06	2	Sol in HNO ₃	Red to brwn, iridescent	Pale gray to black	M	Traces	Conch to uneven	I
843	5.41-5.33	Lead-gray, often iridescent tarnish	Chocolate brown	Perf	Conch	M
853	5.12-5.08	1	Sol in HNO ₃	Dark lead-gray	Chocolate brown	M	Fair	Conch	M
863	5.18-4.79	1	Iron-black	Black	M	Conch to uneven	M?
873	5.3	M
883	5.43	2	White	G	Imperf	H
893	5.+	Rdsh violet, slate-gray	M	Perf	Granular	H?
903	5.33	Lead to steel-gray	Chocolate brown	M	Perf	Conch	M
913	5.7	Ylwsh green, brown tinge
923	5.9	White	G	Good	O
933	5.88	Sol in HNO ₃	Colorless	Dist	M
943	5.62	Easy	Sol in HNO ₃	Dark cherry-red, violet tinge	Black	M	None	Uneven to subconch
952.5-3	5.92-5.88	1	Dcpd by HNO ₃	Grayish black	Same	M	Perf	Flexible	O
962.5-3	6.1-5.8	2?	Sol in H ₂ SO ₄	Grn to blk, brown	Grnsh to brwnsh	A to R	Uneven	M
972.5-3	6.1-5.9	1.5	Hyacinth-red	Orange-ylw	A to V	Dist	Conch to uneven	M
982.5-3	5.86-5.8	1	Dcpd by HNO ₃	Steel, blksh lead-gray, iron-blk	Same	Brilliant M	Imperf	Uneven to sunconch	O
992.5-3	5.73	Iron-black	Black	M	Good	Uneven	M
1002.5-3	5.8-5.5	2-2.5	Sol in HNO ₃	Blksh lead-gray	Same	M	Indist	Conch	O
1012.5-3	5.76	1.5	Sol	White, gray, rose	White	A to P	Perf	Brittle	O
1022.5-3	6.4-5.96	1	Sol	Bluish lead-gray	Brnsh gray, brwn	M	Good	Flexible	M
1032.5-3	5.546	Easy	Sol in HNO ₃	Blue to black	Good	Conch	I
1042-3	6.0-5.8	1	Sol in NH ₄ OH	Yellow, green	R to A	None	Uneven	I
1052-3	5.2	Amber to brwnsh yellow	Yellow	A to G	Perf	O
1062-3	5.68-5.4	1	Sol in HNO ₃	Red, brwn, orange, yellow	Orange-ylw	A	Dist	Subconch	M
1072.5	5.49-5.43	1	Slowly sol	Blksh lead-gray	Black	M	Circular	Slightly malleable
1082.5	5.72-5.48	1	Dcpd by HNO ₃	Grayish black	Grysh blk	M	Good	Uneven to conch	M
1092.5	5.87-5.77	1	Dcpd by HNO ₃	Deep red	Purplish red	A	Dist	Conch to uneven	H

MINERAL IDENTIFICATION TABLES

GROUP 3
Specific Gravity 5.99-5.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
82 2.72±	DUFRENOYSITE	Pb ₂ As ₂ S ₅	Brittle. In O.T., an odor of SO ₂ ; in upper portion a sublimate of S and in the lower portion one of As ₂ O ₃ .
83	BORNITE	Cu ₅ FeS ₄	Brittle. On charcoal in R.F., fuses to a brittle magnetic globule.
84	RATHITE	Pb ₁₃ As ₁₉ S ₄₀	
85	SARTORITE	PbAs ₂ S ₄	Brittle. In C.T., gives a sublimate of S and As ₂ S ₃ .
86	STYLOTYPITE	(Cu,Ag,Fe) ₃ Sb ₃	On charcoal, a steel-gray, magnetic globule and fumes of Sb.
87	LIVEINGITE	Pb ₅ As ₈ S ₁₇	
88 1.945	NASONITE	5PbO·4CaO·PbCl ₂ ·6SiO ₂	In C.T., gives a sublimate of white lead chloride.
89	KLOCKMANNITE	CuSe	
90	BAUMHAUERITE	Pb ₄ As ₆ S ₁₃	
91	ARSENOBISMITE	2Bi ₂ O ₃ ·As ₂ O ₅ ·2H ₂ O	
92 1.95	LARSENITE	PbO·ZnO·SiO ₂	
93 2.102	FIEDLERITE	PbO·2PbCl ₂ ·H ₂ O	
94	UMANGITE	Cu ₃ Se ₂	
95	FRANCKEITE	Pb ₆ Sn ₃ Sb ₂ S ₁₄	On charcoal, a yellow coat near the assay and white one far away.
96 2.22	VAUQUELINITE	2(Pb,Cu)CrO ₄ ·(Cu,Pb)(PO ₄) ₂	Fuses to a gray metallic bead and small globule of metal
97 2.37Li	CROCOITE	PbCrO ₄	Seetile. S.Ph, gives an emerald-green bead in both flames.
98	BOURNONITE	PbCuSbS ₃	Brittle. In C.T., decrepitates and gives a dark red sublimate. The HNO ₃ solution is blue.
99	HETERO-MORPHITE	Pb ₇ Sb ₈ S ₁₉	Brittle. Striated and rounded, also massive.
100	CHALCOCITE	Cu ₂ S	Rather brittle. On charcoal, boils and spirits.
101 2.35	VALENTINITE	Sb ₂ O ₃	In C.T., fuses and partially sublimes.
102	BOULANGERITE	Pb ₅ Sb ₄ S ₁₁	Brittle. On charcoal, almost entirely volatile giving a dark yellow sublimate with white edges.
103	DIGENITE	Cu _{2-x} S	Brittle. On charcoal, melts with spouting.
104 2.253	BROMYRITE	AgBr	On charcoal, yields pungent bromine odors and gives a globule of silver.
105 1.82	BECQUERELITE	2UO ₃ ·3H ₂ O	An alteration product of Uraninite.
106 3.0	XANTHOCONITE	Ag ₂ AsS ₃	Brittle. In C.T., heated gently, becomes dark red; regains color on cooling.
107	CYLINDRITE	Pb ₃ Sn ₄ Sb ₂ S ₁₄	Treated with hot HNO ₃ , it yields sulfur and tin and antimony oxides.
108	JAMESONITE	Pb ₄ FeSb ₆ S ₁₄	Brittle. On charcoal, gives a coat that is dark yellow near the assay and has white edges.
109 3.084Li	PYRARGYRITE	Ag ₃ SbS ₃	Brittle. In C.T., fuses and gives a reddish sublimate.

MINERAL IDENTIFICATION TABLES

GROUP 3
Specific Gravity 5.99-5.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
110 2.5	5.598	1	Ins	Brass-yellow, gray-white	Iron-gray	Perf
111 2.5	5.4	Light gray	M	O?
112 2.5	5.62-5.6	Iron-black	Black	M	Perf	Sectile	Tr
113 2.5	5.82?	Inf	Ins	Golden, ylw-grn	R, P	Perf	O?
114 2.5	5.45-5.3	1.5	Sol in HNO ₃	Deep sky-blue	Pale blue	V to A	Perf	Conch	M
115 2.5	5.51	1	Steel-black	Dark red	M	Conch	M
116 2.5	5.6-5.53	1	Dcpd	Blksh lead-gray	Same	M	Good	Conch to uneven	M
117 2.5	5.08	1	Sol in HNO ₃	Indigo-blue	Perf	T
118 2.5	6.15-5.82	1	Gray to black	Black	M	Perf	Brittle	M
119 2.5	5.0-4.85	1	Ins	Indigo-blue	P	Perf	T
120 2.5	5.59	1.5?	Oil-brown, etc.	Orange-yellow	A	Subconch	I
121 2.5	5.5	2	Bright crimson, yellow, orange	Pale yellow	A	H
122 2.5	5.23	1	Ins	Lead-gray, bluish, bronzy	Rdsh gray	M	None	Uneven	M
123 2.5	5.94	Colorless	V, A	Good	M
124 2.5	5.3-5.2	1	Dcpd by HNO ₃	Iron-black, steel-gray	Cherry-red	M, A	Imperf	Subconch to uneven	M
125 2-2.5	5.64-5.55	1	Dcpd by HNO ₃	Scarlet-vermilion	Vermilion	A	Dist	Conch to uneven	H
126 2-2.5	5.0-4.4	Inf	Sol	Iron-black to dark gray, bluish	Blk, bluish, submetallic	M	Perf	Uneven	T
127 2-2.5	5.53	1	Sol in HNO ₃	Cochineal-red	Cherry-red	M, A	Perf	Flexible	M
128 2-2.5	5.5	1.5	Sol	Colorless or grayish white	White	R, Sa	Traces	Uneven	I?
129 2	5.92-5.88	Vol	Sol	Honey or straw- yellow, white	Sa	Perf	Flexible	O
130 2	5.0-4.06	1	Ins	Blackish gray	Red	M, A	Perf	Flexible	M
131 2	5.94	1	Dcpd by HNO ₃	Hyacinth-red	Orange-yellow	A	Perf	Conch	M
132 2	5.64	1	Yellow	Same, darker	A	Dodeca- hedral	I
133 2	5.5-5.3	Lead-gray	Black	M	Perf
134 2	5.25-4.67	1	Sol in HNO ₃	Sky-blue	Sky-blue	I
135 2	5.43	Dark gray	Gray-black	M	Uneven
136 2	5.01-3.8	Inf	Ins	Black	Black	M	Good	Uneven	I
137 1-1.5	5.55	1	Ins	Colorless, grnsh, grsh, white	R to A	None	Conch	I
138 1-1.5	5.81-5.31	1	Ins	Grns to ylws, colorless	R to A	None	Uneven	I
139 1-1.5	5.7-5.6	1	Ins	Ylwsh, grnsh, brwnsh	Yellow	R to A	Perf	H

MINERAL IDENTIFICATION TABLES

GROUP 3
Specific Gravity 5.99-5.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
110.....	MUTHMANNITE	(Ag,Au)Te	Mostly soluble in HNO ₃ . B.B., similar to Sylvanite.
111.....	DURFELDTITE	Pb(Ag,Cu,Fe)MnSb ₂ S ₆	Probably a mixture.
112.....	ARAMAYOITE	Ag(Sb,Bi)S ₂	Blood-red in splinters.
1132.24	TUNGSTITE	WO ₃ ·H ₂ O	Soluble in alkalies.
1141.838	LINARITE	PbO·CuO·SO ₃ ·H ₂ O	In C.T., yields water and loses its color.
115.....	SAMSONITE	Ag ₄ MnSb ₂ S ₆	Brittle. Splinters are deep red to brown. On charcoal in R.F., an Ag button and black crust which reacts for Mn.
116.....	PLAGIONITE	Pb ₅ Sb ₈ S ₁₇	Brittle. Decrepitates. In hot HCl, it yields H ₂ S and PbCl ₂ settles out on cooling.
1172.05	BOLEITE	9PbCl ₂ ·8CuO·3AgCl·9H ₂ O	
118.....	SEMSEYITE	Pb ₉ Sb ₈ S ₂₁	Soluble in HNO ₃ . Probably identical with Boleite.
1192.03	PSEUDOBOLEITE	5PbCl ₂ ·4CuO·6H ₂ O	
1202.346	MARSHITE	Cu ₂ I ₃	Brittle.
1212.16	BELLITE	PbO·Cr ₂ O ₃ ·As ₂ O ₃ , etc	B.B., yields a globule of lead and an arsenic coating.
122.....	FULOPPITE	Pb ₃ Sb ₈ S ₁₅	Brittle. B.B., on charcoal, gives a yellow and white sublimate. In O.T., melts and yields SO ₂ and a sublimate of Sb ₂ S ₃ .
1231.91	SCHULTENITE	PbO·As ₂ O ₅ ·H ₂ O	
1242.72Li	MIARGYRITE	AgSb ₂	Brittle. In C.T., decrepitates and gives a sublimate of antimony oxysulfide.
1252.979Li	PROUSTITE	Ag ₃ AsS ₂	Brittle. On charcoal, fuses and emits fumes of S and Sb, leaving a button of silver.
126.....	PYROLUSITE (massive)	MnO ₂	Brittle. Treated with HCl, it yields acrid fumes of chlorine.
1273.71Li	LORANDITE	TlAsS ₂	Colors flame green. Volatilizes completely, giving As fumes.
1282.087	SENARMONTITE	Sb ₂ O ₃	Brittle. In C.T., fuses and partially sublimes.
1292.18Li	TELLURITE	TeO ₂	In O.F., fuses to brown drops and sublimes.
1303.0	LIVINGSTONITE	HgSb ₄ S ₇	With sodium carbonate in C.T., yields a sublimate of metallic Hg.
131.....	PYROSTILPNITE	Ag ₃ SbS ₃	In C.T., gives a reddish sublimate of Sb ₂ S ₃ .
1322.2	MIERSITE	4AgI·CuI	Soluble in NH ₄ OH.
133.....	ARSENOLAMPRITE	As	Massive with fibrous, foliated structure.
1342.05	PERCYLITE	PbO·CuCl ₂ ·H ₂ O	In C.T., yields water and colorless fumes.
135.....	RAMDOHRITE	Pb ₃ Ag ₂ Sb ₆ S ₁₃	Brittle.
1361.91	DAUBREELITE	Cr ₂ FeS ₄	Brittle. In R.F., loses luster and becomes magnetic. Soluble in HNO ₃ with liberation of sulfur.
1372.061	CERARGYRITE	AgCl	Soluble in NH ₄ OH.
1382.15±	EMBOLITE	AgCl·AgBr	Soluble in NH ₄ OH.
1392.21	IODYRITE	AgI	Soluble in NH ₄ OH.

MINERAL IDENTIFICATION TABLES

GROUP 3
Specific Gravity 5.99-5.00

	H	SP. GR.	F	HCL	COLOR	SREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
1401		5.83-5.24	1	Ins	Wht, ylw, grnsh	White	A, S, P	Perf	O
1411		5.71	1	Ins	Colorless, ylw, etc	R	Indist	I
142	Soft	5.85-5.8		Steel-gray	Black	M	Perf	Flexible	Tr?
143?		5.24	Easy	Black
144?		6.27-5.92	Ins	Colorless with creamy surface	H
145?		5.484		Yellow-gold	T

MINERAL IDENTIFICATION TABLES

GROUP 3
Specific Gravity 5.99-5.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
140 2.217	COTUNNITE	PbCl ₂	Soluble in hot water.
141 2.2	IODOBROMITE	Ag(Cl,Br,I)	On charcoal, gives a globule of silver and pungent odors of Br.
142	LENGENBACHITE	Pb ₆ (Ag,Cu) ₂ As ₄ S ₁₃	Somewhat malleable. Leaves a mark on paper.
143	KHLOPINITE	(Y,U,Th) ₃ (Cb,Ta,Fe,Ti) ₇ O ₂₀	Contains helium.
144 2.06	SIMPSONITE	Al ₂ Ta ₂ O ₈	Interior of rough, tabular, cream colored crystals is colorless.
145	SEYRIGITE	Ca(W,Mo)O ₄	

MINERAL IDENTIFICATION TABLES

GROUP 4
Specific Gravity 4.99-4.50

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYS- TEM
1 7.5-8	4.62-4.03	Inf	Ins	Grn, ylw, brwn, blk	Grayish	V to D	Indist	Conch to uneven Conch	I
2 7.5	4.86-4.2	Inf	Ins	Colorless, ylw, gray, grn, brwn, red	Uncolored	A	Imperf	Conch	T
3 6.5-7	4.5-4.0	Inf	Gelat	Blk, brwn, grn	Grnsh gray	V to G	None	Conch to splintery	M
4 6-7	4.52	Inf	Gelat	Drk grn or red.	Conch
5 6.5	4.92	Inf	Pt sol	Iron-black	Drk rdsh brown	M	None	Conch	H
6 6.5	4.85-4.77	Inf	Ins	Black	Drk brwn	Sm, M	Traces	Conch	O
7 6.5	4.74-4.48	Jet black	Grysh brwn	Sm	None	Conch to irregular	I
8 6.5	4.91	Inf	Shiny black	Pale ylw	V	None	Conch
9 6.5	4.97	Honey ylw, brwn	V to A	None	I
10 6-6.5	4.887	2.5-3	Ins	Pale brass ylw, fresh break wht.	Grnsh to brwnsh blk	M	Dist	Uneven	O
11 6-6.5	5.02-4.82	2.5-3	Ins	Pale brass ylw	Grnsh, brwnsh, brwnsh blk	M	Indist	Conch to uneven	I
12 6-6.5	4.83-4.72	Inf	Sol	Drk brwnsh blk to steel-gray	Same	Sm	Perf	Subconch to uneven	T
13 6-6.5	4.65-4.56	Inf	Pt sol	Iron-black	Black	M, Sm	I
14 6-6.5	4.945	4	Pt sol	Black	Black	M, Sm	Traces	Irregular	I
15 5.5-6.5	5.9-4.9	Ins	Dcpd	Black, grn or brwnsh tint	Ylw, grayish, rdsh, brwn	Sm, V, G	None	Subconch to uneven	O
16 5.5-6.5	5.9-5.4	Inf	Dcpd	Black, green or brownish tint	Ylw, grayish, rdsh brwn	Sm, V, G	None	Subconch to uneven	O
17 6	4.76	Inf	Sol	Deep black	Brwnsh blk	M	I
18 6	5.18-4.85	Inf	Sol	Black	Dark brown	Sm, shining	Indist	Uneven	T
19 6	4.95	Silver to grysh blk, blk	Black	M, shining	Dist	Brittle	T
20 6	4.8-4.39	6	Pt sol	Drk brown to blk	Ochre ylw to rdsh brwn	M, A, G	Dist	Uneven to subconch	O
21 5.5-6	4.7±	Black	R	Subconch	O
22 5.5-6	4.80	Inf	Sol in H_2SO_4	Black, dull brwn coating	R	Uneven to conch	O
23 5.5-6	4.62	Steel-gray	M	Good	Conch to uneven	I
24 5-6	4.54	Inf	Sol	Deep blood-red	Orange-ylw, grnsh tinge	M, Sm	Perf	Conch to subconch	H
25 5-6	4.76-4.68	Inf	Pt sol	Iron-black	Black to red	M to Sm	None	Conch	H
26 5-6	4.72-4.70	6	Sol	Iron black to steel- gray	Brwnsh blk to black	Sm, D	O
27 5-6	4.6?	Inf	Sol	Dark brwnsh to brwnsh black	Dark brown	Sm	Good	T?

MINERAL IDENTIFICATION TABLES

GROUP 4
Specific Gravity 4.99-4.50

INDEX OF REF.	NAME	COMPOSITION	REMARKS
11.79	GAHNITE	ZnAl ₂ O ₄	Brittle. Gives a coating of ZnO with soda and borax on charcoal. Slowly soluble in conc H ₂ SO ₄ .
21.926	ZIRCON	ZrSiO ₄	Some varieties change color on heating.
31.78±	GADOLINITE	2BeO·FeO·2Y ₂ O ₃ ·2SiO ₂	B.B., gives a temporary bright light, swell and cracks open.
41.725	ROWLANDITE	2Y ₂ O ₃ ·3SiO ₂	Pale green in splinters.
52.36Li	LANGBANITE	Mn ₂ O ₃ ·SiO ₂ ·Fe ₂ O ₃ ·Sb ₂ O ₃	With niter and soda, gives a deep green mass.
62.22	POLYMIGNITE	(Ca,Fe,Y,etc,Zr,Th) (Cb,Ti,Ta)O	Reddish brown in thin sections. Fine powder partially decomposed by conc H ₂ SO ₄ .
72.095	CALCIO-SAMARSKITE	(Ca,Y,etc,U,Th) (Cb,Ta,Fe,Ti,Sn)O ₁₁	
82.19	LYNDOCHITE	(Ce,La,Dy)O ₃ (Y,Er)O ₃ ·CaO·H ₂ O-etc	A thorium, calcium Euxenite, low in uranium.
92.21	WESLIENITE	Na ₂ O·FeO·3CaO·2Sb ₂ O ₃	
10.....	MARCASITE	FeS ₂	Brittle. In C.T., gives a sublimate of sulfur and leaves a magnetic residue.
11.....	PYRITE	FeS ₂	Brittle. In C.T., gives off sulfur and leaves a magnetic residue.
12.....	BRAUNITE	(Mn,Si) ₂ O ₃	Brittle. Treated with HCl, it yields chlorine and leaves a gelatinous residue of silica.
132.43Li	MAGNESIO-FERRITE	MgFe ₂ O ₄	Strongly magnetic.
14.....	BIXBYITE	(Mn,Fe) ₂ O ₃	Dissolved in HCl, gives acrid chlorine vapors.
152.24±	EUXENITE	(Y,Ca,Ce,U,Th) (Cb,Ta,Ti) ₂ O ₆	Glowes on heating. Decomposed by boiling H ₂ SO ₄ .
162.248	POLYCRASE	(Y,Ca,Ce,U,Th) (Ti,Cb,Ta) ₂ O ₃	Decomposed by boiling H ₂ SO ₄ . B.B., in forceps, swells and changes color to light grayish brown.
172.3±	JACOBSSITE	MnFe ₂ O ₄	Magnetic. Treated with HCl, it yields a small amount of chlorine.
182.34±	HETAEROLITE	ZnMn ₂ O ₃	Brittle. Dissolved in HCl, it yields chlorine.
19.....	HOLLANDITE	MnBaMn ₆ O ₁₄	
202.39Li	PSEUDO-BROOKITE	FeTiO ₅	Partially decomposed by boiling H ₂ SO ₄ .
21.....	DELORENZITE	(Y,U,Fe)(Ti,Sn,?) ₃ O ₈	Brittle. Radioactive.
222.13±	YTTROCRASITE	(Y,Th,U,Ca)·(Ti,Fe,W) ₄ O ₁₁	B.B., assumes a dark gray color and cracks open to a slight extent. Radio active.
23.....	BRAVOITE	(Ni,Fe)S ₂	Brittle.
242.481	PYROPHANITE	MnTiO ₃	Red in fine splinters.
25.....	ILMENITE	FeTiO ₃	B.B., gives titanium tests.
26.....	PSIOMELANE	BaMnMn ₈ O ₁₆ (OH) ₄	With HCl, yields pungent odors of chlorine.
272.26	HYDRO-HETAEROLITE	Zn ₂ Mn ₄ O ₈ ·H ₂ O	An alteration product of Hetaerolite.

MINERAL IDENTIFICATION TABLES

GROUP 4
Specific Gravity 4.99-4.50

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
28 5-6	5.05-4.85	Inf	Ins	Brown, blk, ylw, various shades	tdsh ylw	Sm, R, W	Traces	Conch	O
29 5.5	4.91-4.86	Inf	Gelat	Clove-brown, cherry-red, gray	Grayish white	A to R	Splintery	O
30 5.5	4.74	Ins	Black	Ylw to gray	Conch	O?
31 5.5	4.8-4.5	6	Ins	Iron to brownish black	Brown	M	None	Uneven	I
32 5.5	4.95	3	Ins	Yellow to brown	Light ylwsh brown	V to R	Perf	I
33 5.5	4.75	6	Ins	Black	R	Conch	I
34 5.5	4.5	Ins	Black, red in splinters	M	Perf	M
35 5.5	4.85-4.83	Inf	Sol	Brownish black	Chestnut brwn	Sm	Perf	Uneven	T
36 5-5.5	5.3-4.9	Inf	Pt sol	Red, brown, yellowish brown	R	Perf	Conch to uneven	M
37 5-5.5	4.57	Inf	Sol	Olive grn to drab orange, yellow	V to G	None	Conch to splintery
38 5-5.5	4.55-4.51	4	Gelat	Velvet black	Dark brown	V
39 4.5-5.5	4.8-4.5	1.5-2	Ins	Steel-gray with faint rdsh hue	Blksh gray	M	Imperf	Subconch to uneven	I
40 4.5-5.5	4.8-4.5	1.5-2	Ins	Pale steel-gray	Blksh gray	M	Imperf	Subconch to uneven	I
41 4.5-5.5	4.8-4.5	1.5-2	Ins	Light steel to gray	Blksh gray	M	Imperf	Subconch to uneven	I
42 4.5-5.5	4.8-4.5	1.5-2	Ins	Pale steel-gray	Blksh gray	M	Imperf	Subconch to uneven	I
43 4.5-5.5	4.8-4.5	1.5-2	Ins	Violet-gray	Blksh gray	M	Imperf	Subconch to uneven	I
44 5	4.53-4.51	Inf	Ins	Pitch blk to dark brwn	R	Conch	O
45 5	4.6-4.16	Inf	Ins	Black	Grnsh gray	Sm	Conch	O?
46 4.5-5	4.8-4.4	Inf	Gelat	Orange to brwnsh ylw, blk to brwn	Light orange to dark brwn	V, G, R	Dist	Conch]	T
47 4.5-5	4.62	Dark brown	Rdsh brown	A	Dist	M
48 4.5-5	5.0-3.7	6	Pt sol	Greenish brown	W, V, Sm	Conch	I
49 4-5	4.56-4.45	Inf	Ins	Brown, red, wht, ylw	Pale brwn, ylwsh, rdsh	R to V	Perf	Uneven, splintery	T
50 4-5	4.9-4.51	Inf	Ins	Blk, ylwsh, brwn	R	Subconch
51 4-5	5.09-4.08	Inf	Sol	Ylw, wht, some- times rdsh wht	Wht to ylwsh white	G to P	Fibrous or powder	O?
52 4-5	4.9-4.0	2	Sol in HNO ₃	Ylwsh, gray brwnsh, grnsh	Uncolored	R	H
53 4.5	5.43-4.5	Inf	Ins	Black on fresh break	Dark grnsh brwn	Conch	T

MINERAL IDENTIFICATION TABLES

GROUP 4
Specific Gravity 4.99-4.50

INDEX OF REF.	NAME	COMPOSITION	REMARKS
28 2.142	PRIORITE	(Y,Er,Ca,Fe,Th) (Ti,Cb) ₂ O ₆	Brittle. The fine powder is partially decomposed by boiling H ₂ SO ₄ .
29 1.818	CERITE	Hydrated cerium group silicate	B.B., not dissolved by soda but gives a dark slaggy mass.
30	SCHETELIGITE	(Ca,Y,Sb,Mn) ₂ (Ti,Ta,Cb) ₂ (O,OH) ₇	Insoluble in all acids except HF.
31 2.08	CHROMITE	FeCr ₂ O ₄	Brittle. Decomposed by fusion with KHSO ₄ . Insoluble in acids.
32 2.2	LEWISITE	5CaO·2TiO ₂ ·3Sb ₂ O ₃	
33 2.19	ZIRKELITE	(Ca,Fe,Th,U) ₂ · (Ti,Zr) ₂ O ₅ ?	Brittle. Non-magnetic.
34 1.95	CATOPTRITE	14(Mn,Fe,Ca)O· 2(Al,Fe) ₂ O ₃ ·2SiO ₂ · Sb ₂ O ₅	
35 2.46Li	HAUSMANNITE	MnMn ₂ O ₄	Brittle. Treated with HCl, it yields acrid vapors of chlorine.
36 1.788	MONAZITE	(Ce,La,Dy)PO ₄	B.B., turns gray when heated with H ₂ SO ₄ ; flame is bluish green.
37 1.758	YTTRIALITE	Y ₂ O ₃ ·ThO ₂ ,etc,SiO ₂	B.B., decrepitates violently and falls to a powder.
38 1.88±	TSCHEFFKINITE	Ce,Th,Ti,SnO ₂ ,etc	Glows, then intumesces, becomes brown and fuses to a black glass.
39	CARROLLITE	Co ₂ CuS ₄	Soluble in HNO ₃ . On charcoal, gives SO ₂ fumes and fuses to a magnetic globule.
40	LINNAEITE	Co ₃ S ₄	On charcoal, gives SO ₂ and fuses to a magnetic globule. Decomposed by H ₂ SO ₄ .
41	POLYDYMITE	Ni ₃ S ₄	In C.T., decr epitates, gives a sublimate of S and fuses to a dark green mass. Like linnaeite.
42	SEIGENITE	(Co,Ni) ₃ S ₄	Decomposed by HNO ₃ with separation of S. Like linnaeite.
43	VIOLARITE	Ni ₂ FeS ₄	Like linnaeite.
44 2.45Li	DERBYLITE	FeO·Sb ₂ O ₅ plus 5FeO·TiO ₂	With S.Ph., the bead is yellow while hot and violet when cold.
45	LORANSKITE	(Y,Ce,Ca,Zr,?) (Ta,Zr,?)O ₄	Brittle. Incompletely decomposed by acids and fusion with alkalies.
46	THORITE	ThSiO ₄	B.B., loses color on heating but regains it on cooling.
47 2.04	GAMAJARITE	Ba(Fe,Mn) ₂ V ₄ O ₁₅ (OH) ₂	
48 1.925	BETAFITE	(U,Ca)(Cb,Ta,Ti) ₃ O ₉ nH ₂ O	Brittle. B.B., gives a black slag.
49 1.721	XENOTIME	YPO ₄	When moistened with H ₂ SO ₄ , it colors the flame green.
50 1.98	HATCHETTOLITE	Pyrochlore containing uranium	Brittle.
51 1.8±	CERVANTITE	Sb ₂ O ₄ ?	On charcoal, reduces easily to metal.
54 1.654	PLUMBOGUMMITITE	PbO·2Al ₂ O ₃ ·P ₂ O ₅ · 9H ₂ O	B.B. in forceps, swells and colors the flame azure blue.
53 2.3	BRANNERITE	(U,Ca,Fe,Y,Th) ₃ · Ti ₅ O ₁₈	Decomposed by hot conc H ₂ SO ₄ .

MINERAL IDENTIFICATION TABLES

GROUP 4
Specific Gravity 4.99-4.50

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AHE	FRACTURE	SYSTEM
54	4.5	4.86			Grn, grnsh blk, brwnsh red	Light grn, ylwsh grn	V	None	Subconch	T
55	4.5	4.94		Sol	Lt grn to olive					M?
56	4.5	4.69			Red, ylw, grnsh		V			
57	4.5	4.65			Colorless with grnsh cast		V to G	Perf		R?
58	4.5	4.83			Greenish yellow					H?
59	4.5	4.5	1.5-2	Pt sol	Colorless		V	None		O
60	4.5	4.83			Greenish yellow					T?
61	4-4.5	4.93	Inf	Pt sol	Wax to ylw, rdsh brwn	Lt ylwsh gray	V to G			H
62	3.5-4.5	4.65-4.58	2.5-3.5	Sol	Bronze ylw to copper-red	Dark grysh black	M	None	Uneven to subconch	H
63	4	5.03-4.99	6	Sol	Iron-black	Blk, brwnsh	M	Perf		M?
64	4	4.9-4.88		Sol	Light green				Conch	Tr
65	4	5.0-4.6	3-4		Gray, wht, brwn, ylwsh	Wht to gray or ylwsh	R, D, E			
66	4	4.64-3.36	Fus	Pt sol	Ylw brwn, brwn, brwnsh blk		G		Irregular to conch	O?
67	4	4.82-4.75	2.5-3	Sol	Tomback brown	Black				
68	4	4.5-4.3	1.5	Dcpd by HNO_3	Steel-gray to iron-black	Blackish	M	Indist	Uneven	T
69	4	5.03-4.91	3	Sol	Drk grn to blk	Green		Perf		Tr?
70	4	4.80			Clove-brown					Tr
71	4	4.77	Inf	Sol in HNO_3	Bluish green			Perf		O
72	4	4.59	1.5	Sol	Lt wine-ylw to colorless			Good		M
73	4	4.59-4.46	6	Sol in HNO_3	Deep rdsh gray	Gray to blk	M	None	Brittle	I
74	3-4.5	5.1-4.6			Gray to iron-blk	Red, gray, brwn, blk	M	None	Subconch to uneven	I
75	3.5-4	5.0-4.6	1.5-2		Light bronze-ylw	Lt bronze- brown	M	None	Conch	I
76	3.5	4.57-4.47	1-1.5		Gray, tinted copper-red	Black			Uneven	
77	3.5	4.53	4.5	Dcpd	Pale grnsh ylw		R	None	Uneven	T
78	3.5	4.5		Sol in HNO_3	Steel-gray	Black	M		Uneven	O?
79	3-4	5.0-4.9	1	Dcpd by HNO_3	Lead to iron-gray		M	Perf	Subconch	O
80	3-4	4.72	5		Colorless to pale green		P to V	Perf		H
81	3-4	4.5-4.43			Bronze	Black	M	None	Uneven to hackly	I
82	2.5-5	6.4-3.9			Ylw, orange, rdsh, brwn, blk	Ylw, brwnsh, olive green	G, W, V, D		Conch to uneven	
83	3-4	4.63	Inf	Gelat	Greenish yellow					O
84	3-3.5	4.9±	1.5	Sol in HNO_3	Blk to steel-gray	Black	M to Sm	Fair	Brittle	O

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

**GROUP 4
Specific Gravity 4.99-4.50**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
54	MACKAYITE	$\text{Fe}_2(\text{TeO}_3)_x \cdot \text{H}_2\text{O}$	
55 1.852	TOERNEBOHMITE	$(\text{Ce-La-Di-Al})_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot \text{H}_2\text{O}$	
56	LESSINGITE	$\text{H}_2\text{Ca}_2\text{Ce}_4\text{Si}_3\text{O}_{15}$	
57 1.671	HINSDALITE	$2\text{PbO} \cdot 3\text{Fe}_2\text{O}_3 \cdot 2\text{SO}_3 \cdot \text{P}_2\text{O}_5 \cdot 6\text{H}_2\text{O}$	
58	OBERITE	La,Ce,Yt,Er?	
59 1.754	CARACOLITE	$\text{Na}_2\text{O} \cdot \text{Pb}(\text{OH})\text{Cl} \cdot \text{SO}_3$	In grains. From inner Mongolia. Fuses to a brown glass, giving a soda flame with a blue spct near the assay.
60	BEIYINITE	La,Ce,Yt,Er	
61 1.717	BASTNAESITE	$(\text{Ce-La-Di})\text{F} \cdot \text{CO}_2$	Treated with strong H_2SO_4 , it yields CO_2 and HF.
6	PYRRHOTITE	Fe_1S_2	Magnetic. Brittle. Treated with HCl, it yields H_2S . B.B., a magnetic globule.
63	CREDNERITE	CuMn_2O_4	Insoluble in HNO_3 . Dissolved in HCl, it yields chlorine.
64 1.9	BELLINGERITE	$3\text{Cu}(\text{IO}_3)_2 \cdot 2\text{H}_2\text{O}$	Brittle. Slightly soluble in hot water.
65 1.88±	BIMDHEIMITE	$2\text{PbO} \cdot \text{Sb}_2\text{O}_5 \cdot \text{H}_2\text{O}$	On charcoal, reduces to a globule of metallic lead and antimony.
66 2.13	AMPANGABEITE	$(\text{Y,Er,U,Ca,Th})_2 \cdot (\text{Cb,Ta,Fe,Ti})_7\text{O}_{16}$	Radio active. HCl solution is golden yellow.
67	TROILITE	FeS	Near pyrrhotite. Treated with HCl, it yields H_2S .
68	STANNITE	$\text{Cu}_2\text{FeSnS}_4$	Treated with HNO_3 , gives a blue solution and a precipitate of S and SnO_2 .
69 1.78	VANDEN-BRANDITE	$\text{CuO} \cdot \text{UO}_3 \cdot 2\text{H}_2\text{O}$	B.B., fuses to a black mass which becomes crystalline on cooling.
70	YEATMANITE	$(\text{Mn,Zn})_6\text{Sb}_2\text{Si}_4\text{O}_{29}$	
71 2.07	SALESITE	$\text{Cu}\text{IO}_3(\text{OH})$	In C.T., snaps to splinters and gives copious fumes of iodine which condense on the sides of the tube.
72 1.84	LAUTARITE	$\text{CaO} \cdot \text{I}_2\text{O}_5$	Sparingly soluble in water.
73	GERMANITE	$(\text{Cu,Ge})(\text{S,As})$	Decrepitates on heating.
74 2.72Li	TETRAHEDRITE-TENNANTITE	$(\text{Cu,Fe,Zn,Ag})_{12}(\text{Sb,As})_4\text{S}_{13}$	Decomposed by HNO_3 with separation of sulfur.
75	PENTLANDITE	$(\text{Fe,Ni})_9\text{S}_8$	Brittle. No magnetic. In O.T., gives sulfurous fumes.
76	FAMATINITIE	$\text{Cu}_3(\text{Sb,As})\text{S}_4$	Brittle. On charcoal, gives fumes of Sb and a black, brittle, metallic globule.
77 1.974	POWLLELITE	CaMoO_4	Yellow phosphorescence. Molybdenum reactions.
78	EPIGENITE	$(\text{Cu,Fe})_6\text{AsS}_6?$	On charcoal, a magnetic slag with copper globules.
79	CHALCOSTIBITE	CuSbS_2	Brittle. In C.T., gives a sublimate that is dark red on cooling.
80 1.815	MOLYBDO-PHYLLITE	$(\text{Pb,Mg})\text{SiO}_4 \cdot \text{H}_2\text{O}$	B.B., with soda, gives a metallic bead.
81	COLUSITE	$\text{Cu}_3(\text{As,Sn,V,Fe,Te})\text{S}_4$	In brittle granules.
82	GUMMITE	$\text{UO}_3 \cdot \text{Pb, Th R.E., etc, H}_2\text{O}$	Brittle.
83 1.68	SODDYITE	$5\text{UO}_3 \cdot 2\text{SiO}_2 \cdot 6\text{H}_2\text{O}?$	In C.T., blackens and loses water and oxygen.
84	LAUTITE	CuAsS	Decrepitates violently. In C.T., yields a sublimate of As.

MINERAL IDENTIFICATION TABLES

GROUP 4
Specific Gravity 4.99-4.50

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
85 3-3.5	5.0-4.9	Inf	Sol	Various shades of yellow	Orange-ylw to to brick-red	A to R	Dist	Conch	H
86 3	5.18-4.79	1	Iron-black	Black	M	Conch to uneven	M?
87 3	4.59-4.45	Sol	Yellow	E	Friable
88 3	4.89	Iron to grnsh black	M
89 3	4.6±	Sol
90 3	4.7	Iron-gray to blk	Black	O
91 3	4.5-4.4	1	Ins	Grayish to iron-black	Grayish blk	M	Perf	Uneven	O
92 2.5-3.5	4.6-4.3	3	Ins	Wht, tinted red, blue, grn, brwn	White	V to R	Perf	Uneven	O
93 2.5	5.0-4.85	1	Ins	Indigo-blue	P	Perf	T
94 2.5	4.8	1	Ins	Indigo-blue	Good	T
95 2-3	4.8	Black
96 2-3	4.8	Sulfur to citron-yellow	Yellow	A	Perf	O
97 2-3	4.5-4.3	1	Sol	Steel-gray, tin-white	Black	Conch	O?
98 2-3	4.64	Easy	Sol	Drk steel-gray to brown	Dark brwnsh gray	M	Indist	Brittle	O
99 2-2.5	5.0-4.4	Inf	Sol	Iron-blk to dark gray, brwnsh	Blk to bluish blk, submet	M	Perf	Uneven	T
100 2	5.0-4.06	1	Ins	Blksh gray	Red	M, A	Perf	Flexible	M
101 2	4.65-4.61	1	Sol	Lead-gray	Lead-gray	M	Perf	Subconch	O
102 2	4.8	Vol	Gray	Red	M	Good	Flexible	H
103 2	5.25-4.67	1	Sol in HNO ₃	Sky-blue	Sky-blue	I
104 2	4.6	Inf	Ins	Green, yellowish	V	Imperf
105 2	5.01-3.8	Inf	Ins	Black	Black	M	Good	Uneven	I
106 1.5-2	4.76-4.6	2.5	Ins	Indigo-blue or darker	Lead-gray to black	Sm, R	Perf	Flexible	H
107 1.5-2	4.6	Scarlet-vermilion to deep cherry-red	Same	A	Good	Conch	O
108 1.5-2	4.88	Lt red, changing to orange	Vermilion	A	Perf	Conch	M
109 1.5-2	4.7	Scarlet-vermilion	Same	A	Good	Conch	H
110 1.5	4.5	Sulfur-yellow	O
111 1-1.5	4.73-4.62	Inf	Dcpd by HNO ₃	Lead-gray	Bluish to grnsh	M	Perf	Flexible	H
112 1-1.5	4.68	1	Sol	Cherry-red	Brwnsh red	A to Sm	Perf	Flexible	M
113 ?	4.87	Orange-yellow	T
114 ?	4.9	Sol	Yellow	Perf	O
115 ?	4.5	Black	Greenish gray

MINERAL IDENTIFICATION TABLES

GROUP 4
Specific Gravity 4.99-4.50

INDEX OF REF.	NAME	COMPOSITION	REMARKS
85 2.43Li	GREENOCKITE	CdS	Brittle. In C.T., the mineral is carmen-red while hot becoming yellow on cooling.
86	STYLOTYPITE	(Cu,Ag,Fe) ₃ Sb ₃	On charcoal, gives a steel-gray, magnetic globule and fumes of antimony.
87 1.55	HOCHSCHILDITE	5SnO ₂ ·2PbO·Fe ₂ O ₃ ·SiO ₂ ·10H ₂ O	
88	MACKEN SITE	Fe ₂ O ₃ ·SiO ₂ ·2H ₂ O	
89 1.74±	PILBARITE	UO ₂ ·ThO ₂ ·PbO·2SiO ₂ ·4H ₂ O	
90	RAMSDELLITE	MnO ₂	
91	ENARGITE	Cu ₃ (As,Sb)S ₄	Brittle. In C.T., gives a sublimate of sulfur and on stronger heating also one of arsenic sulfide.
92 1.637	BARITE	BaSO ₄	With soda on charcoal, gives the sulfide test on a silver coin.
93 2.03	PSEUDOBOLEITE	5PbCl ₂ ·4CuO·6H ₂ O	Soluble in HNO ₃ . Probably identical with boleite.
94 2.041	CUMENGEITE	4PbCl ₂ ·4CuO·5H ₂ O	Soluble in HNO ₃ .
95	LUBECKITE	8CuO·Co ₂ O ₃ ·2Mn ₂ O ₃ ·8H ₂ O	Colloidal. In small spheres. Probably a mixture.
96 1.714	SCHOEPITE	4UO ₃ ·9H ₂ O?	An alteration product of uraninite.
97	WITTICHENITE	Cu ₃ BiS ₃	B.B., throws out sparks. Dissolved in HCl, it yields H ₂ S.
98	BERTHIERITE	FeSb ₂ S ₄	B.B., a weakly magnetic globule. Treated with HCl, yields H ₂ S.
99	PYROLUSITE (massive)	MnO ₂	Brittle. Treated with HCl, it yields acrid fumes of chlorine.
100 3.0	LIVINGSTONITE	HgSb ₄ S ₇	With soda in C.T., yields a sublimate of metallic mercury.
101 4.046	STIBNITE	Sb ₂ S ₃	Flexible. Sectile. Treated with KOH, it yields a characteristic yellow coating.
102	SELENIUM	Se	B.B., gives a brown smoke and rotten horseradish odor.
103 2.05	PERCYLITE	PbO·CuCl ₂ ·H ₂ O	In C.T., yields water and colorless fumes.
104 1.95	HYDRO-TUNGSTITE	H ₂ WO ₄ ·H ₂ O	
105 1.91	DAUBREELITE	Cr ₂ FeS ₄	Brittle. B.B., in R.F., loses luster and becomes magnetic. Soluble in HNO ₃ with liberation of sulfur.
106 1.45Na	COVELLITE	CuS	B.B., burns with a blue flame and fuses to a globule. In C.T., yields sulfur.
107 3.176	HUTCHINSONITE	(Pb,Tl) ₂ (Cu,Ag) ₃ S ₁₀	Brittle. Red in splinters.
108 3.27	SMITHITE	AgAsS ₂	Brittle. Red in splinters.
109 2.6Li	TRECHMANNITE	Ag ₂ AsS ₄	Brittle. Transparent to translucent.
110	FERRI-MOLYBDITE	Fe ₂ O ₃ ·3MoO ₃ ·8H ₂ O	An oxidation product of molybdenite.
111	MOLYBDENITE	MoS ₂	Sectile. Feels greasy. In O.T., gives a pale yellow sublimate of MoO ₃ . Looks like graphite.
112 2.72	KERMESITE	Sb ₂ S ₃ O	Sectile. In C.T., fuses and gives a white sublimate which becomes black to dark red on stronger heating.
113	ENALITE	(Th,U)O ₂ ·nSiO ₂ ·2H ₂ O	Radio active.
114 1.763	DEWINDTITE	3PbO·5UO ₃ ·2P ₂ O ₅ ·12H ₂ O	
115 1.774	CALCIO-GADOLINITE	Gadolinite rich in calcium	Weakly radio active.

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYS- TEM
19	4.1-4.0	Inf	Ins	Blue, red, ylw, gray, brwn, wht	Uncolored	A to V	None	Uneven to conch	H
28	4.1-3.5	Inf	Ins	Red, blue, grn, ylw, brwn, blk	White	V	Imperf	Conch to uneven	I
38	4.29	Ins	Colorless to wine yellow	Dist	H
48	4.08	Inf	Ins	Ylwsh to grnsh brwn	White	V	None	Conch	I
57.5-8	4.62-4.03	Inf	Ins	Grn, ylw, brwn, gray, blk	Grayish	V to D	Indist	Conch to uneven	I
67.5	4.1	Drk grn to brwn	T
77.5	4.86-4.2	Inf	Ins	Colorless, ylw, gray, grn, red, brwn	Uncolored	A	Imperf	Conch	T
87.5	4.4	Gray	T
97.5	4.23	Inf	Ins	Black	Red-brown	V	Imperf	Conch	I
107.5	4.09	Grnsh gray, brwn, grn	I
117	4.2-3.9	3	Ins	Red, brown	White	V to R	Good	Subconch to uneven	I
127	4.03	Inf	Ins	Colorless	G	Good
136.5-7.5	4.3-4.0	3.5	Ins	Hyacinth, tinged violet to brwnsh	White	V to R	Good	Subconch to uneven	I
146.5-7.5	4.3-3.15	3-6	Ins	Red, brwn, ylw, wht, grn	White	V to R	Varies	Subconch to uneven	I
156.5-7	4.5-4.0	Inf	Gelat	Blk, brwn, grn	Grnsh gray	V to G	None	Conch to splintery	M
166.5-7	4.0	3	Ylwsh, rdsh	G	Subconch	M
176-7	4.03	3	Ins	Brownish red	Basal	M
186.5	4.17-3.9	3	Gelat	Gray, ylw, blk, red, whtsh, brwn, grn	G	Dist	Subconch to uneven	O
196.5	4.14-4.0	4	Gelat	Ylw, brwnsh, blk	M to R	Dist	Imperf conch	O
206.5	4.22	Flesh-red	None	Uneven to splintery	M
216.5	4.3	4	Gelat	Dist	O
226.5	4.74-4.48	Jet black	Graysh brwn	Sm	None	Conch to irregular	I
236-6.5	4.41	4-5	Sol	Grnsh brwn	V to G	None	Conch	H
246-6.5	4.25-4.21	Inf	Ins	Brwn, red, ylw, blk, blue, violet	Pale brwn to ylwsh	M to A	Dist	Subconch to uneven	T
256	4.8-4.39	6	Pt sol	Drk brwn to blk	Ochre-ylw to rdsh brwn	M, A, G	Dist	Uneven to subconch	O
266	4.35	Dark rdsh brwn	Imperf	Brittle	H

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1 1.768	CORUNDUM	Al_2O_3	Sometimes perfect parting giving a pseudo-cleavage. B.B., gives a blue color with cobalt nitrate.
2 1.72±	SPINEL	MgAl_2O_4	Brittle. B.B., the color changes but returns on cooling.
3 1.772	SWEDENBORGLITE	$\text{Na}_2\text{O} \cdot 2\text{Al}_2\text{O}_3 \cdot \text{Sb}_2\text{O}_5$	
4 2.05±	PICOTITE	$(\text{Mg},\text{Fe})\text{O} \cdot (\text{Al},\text{Cr})_2\text{O}_3$	A chrome spinel.
5 1.79	GAHNITE	ZnAl_2O_4	Brittle. Gives a coating of ZnO when treated with soda and borax on charcoal. Slowly soluble in conc H_2SO_4 .
6	OYAMALITE	A variety of Zircon with P_2O_5	In radial aggregates.
7 1.926	ZIRCON	ZrSiO_4	The colored varieties change color on heating.
8	HAGATALITE	ZrSiO_4 plus Rare Earths	A variety of zircon.
9 1.923	GALAXITE	MnAl_2O_4	Spinel group.
10 1.818	NAEGITE	$\text{SiO}_2 \cdot \text{ZrO}_2 \cdot \text{UO}_3 \cdot \text{ThO}_2 \cdot (\text{Cb},\text{Ta},\text{V})_2\text{O}_3$	Radio active. A rare earth zircon.
11 1.801	ALMANDITE	$3\text{FeO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$	One of the precious garnets.
12 1.696	BARYLITE	$4\text{BaO} \cdot \text{Al}_2\text{O}_3 \cdot 7\text{SiO}_2$	
13 1.811	SPESSARTITE	$3\text{MnO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$	One of the garnet family.
14 1.8±	GARNET]	$3(\text{Ca},\text{Mg},\text{Fe},\text{Mn})\text{O} \cdot (\text{Al},\text{Fe},\text{Mn},\text{Cr},\text{Ti})_2\text{O}_3 \cdot 3\text{SiO}_2$	Most varieties fuse easily to a black or light brown glass.
15 1.78±	GADOLINITE	$2\text{BaO} \cdot \text{FeO} \cdot 2\text{Y}_2\text{O}_3 \cdot 2\text{SiO}_2$	B.B., gives a momentary bright light; swell and cracks open.
16 1.8±	PARTSCHINITTE	$3(\text{Mn},\text{Fe})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$	May be spessartite.
17 1.81	HANCOCKITE	$4(\text{Pb},\text{Ca},\text{Sr})\text{O} \cdot 3(\text{Al},\text{Fe},\text{Mn})_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{H}_2\text{O}$	With soda on charcoal, gives a lead oxide coating.
18 1.838	KNEBELITE	$2(\text{Fe},\text{Mn})\text{O} \cdot \text{SiO}_2$	
19 1.877	FAYALITE	$\text{FeO} \cdot \text{SiO}_2$	Fuses to a black globule.
20 1.738	THALENITE	$2\text{Y}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot \text{H}_2\text{O}$	
21 1.836	MANGAN-FAYALITE	$2(\text{Mn},\text{Fe})\text{O} \cdot \text{SiO}_2$	
22 2.095	CALCIO-SAMARSKITE	$(\text{Ca},\text{Y},\text{etc},\text{U},\text{Th})_3 \cdot (\text{Cb},\text{Ta},\text{Fe},\text{Ti},\text{Sn})_5 \cdot \text{O}_{15}$	
23 1.76	CAPPELENITE	B_2SiO_5 of $\text{Y}, \text{Ba}, \text{Ce}, \text{La}, \text{Th}, \text{etc}$	B.B., swells and fuses to a white enamel
24 2.6	RUTILE	TiO_2	Brittle. With S.Ph. In R.F., gives a violet colored bead.
25 2.39Li	PSEUDOBROOKITE	Fe_2TiO_5	Partially decomposed by boiling H_2SO_4 .
26 1.75	ABUKUMALITE	$\text{Ca}_2\text{Y}_2(\text{Si},\text{P})_2\text{O}_8$	Isomorphous with britholite with Y in place of Ce.

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
27 6	4.25-4.17	Black, red in splinters
28 6	4.0	3-4	Gelat	Red-brown	Dist	O
29 5.5-6	4.12-4.0	3.5-6	Gelat	Red, brwn, gray	Pale gray	V to G	Dist	Subconch	O
30 5.5-6	4.03	Ylwsh brwn to blk	Gray	V to R	Conch	M?
31 5.5-6	4.2	Inf	Dcpd	Sulfur, lemon or wine-ylw	P to V	Perf	Conch	R
32 5.5-6	4.23	Ylwsh grn	Fibrous	O?
33 5.5-6	4.08-3.95	6	Gelat	Ylw, grn to blk	Ylw to rdsh gray	V to G	Dist	O
34 5.5-6	4.5-3.5	2.5	Gelat	Brwn, blk, grn, gray, ylw	Gray, grnsh, or brwnsh	V, Sm, R, P	Traces	Uneven to subconch	M
35 5.5-6	4.05-3.99	2.5	Gelat	Iron-blk to dark grыш blk	Blk inclining to grn or brwn	Sm	Good	Uneven	O
36 5.5-6	4.2-4.08	Inf	Ins	Brwn, ylw, rdsh brwn, blk	Uncolored, grыш ylwsh	M, A, Sm	Indist	Subconch to uneven	O
37 5-6	4.05	Inf	Pt sol	Brwnsh blk	Blk to brwnsh red	M to Sm	Perf	Conch to uneven	H
38 5-6	4.13	Inf	Dcpd	Deep brwn to blk	Light brwn	G to V	None	Conch	R
39 5-6	4.29	Inf	Sol	Nut-brown	V to G	None	Conch	R
40 5-6	4.16	Brownish red	Good	O
41 5.5	4.25	Pt sol	Steel-gray	Brown	Sm, M	Subconch	M?
42 5.5	4.3-4.1	Inf	Ins	Black	Brown	M	None	Uneven	I
43 5.5	4.25-4.15	Gelat	Dark brown	Ylwsh gray	R	Indist	R
44 5.5	4.18-3.89	3.5-5	Gelat	Wht, grn, ylw, brwn red	Uncolored	V, R	Easy	Conch to uneven	R
45 5.5	4.05-3.97	Inf	Ins	Blk, brwn, ylw	Colorless, grayish	A to M	Imperf	Uneven to subconch	M?
46 5.5	4.446	Brown	G to V	Uneven	O
47 5.5	4.25-4.05	Black	Gray to brwnsh blk	Conch
48 5.5	4.02	Pink, grayish pink	None	O
49 5-5.5	4.3-3.3	6	Sol	Ylw, red, brwn, blk	Brwnsh to ochre-ylw	A, D, S	Perf	Uneven	O
50 5-5.5	4.45-4.33	Inf	Pt sol	Dark red, blksh brwn, brwn	Light to ylw brwn	V to R	Indist	Subconch uneven	I
51 5-5.5	4.13	Lt to drk brwn	Lt brwn to ylwsh brwn	R	Uneven to conch	I
52 5	4.02-3.9	4.5	Sol	Grnsh to blk, tinged violet	Dark	S	O
53 5	4.21	Easy	Sol	Black	Brwnsh blk	M	Granular	O?
54 5	4.09-4.07	3	Sol	Ylw to rdsh	Wht to orange-ylw	R	None	Subconch	I
55 5	4.07-3.94	2	Lt to drk orange-red	Cream-ylw	V	Dist	Uneven	M

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
27	PICROILMENITE	(Mg,Fe)TiO ₃	Between geikielite and ilmenite.
28 1.727	PICROTEPHROITE	2(Mn,Mg)O·SiO ₂	
29 1.807	TEPHROITE	2MnO·SiO ₂	The streak darkens on exposure, to brown or black.
30	PISEKITE	Ch,Ta,Ti or U, Rare Earths, Th and Sn	
31	NORDEN-SKIOELLDINE	CaO·SnO ₂ ·B ₂ O ₃	Colors flame green. Strong double refraction.
32	STASZCITE	(Ca,Cu,Zn) ₅ (AsO ₄) ₂ ·(OH) ₄	An alteration product of tennantite.
33 1.786	ROEPPERITE	2(Fe,Mn,Zn)O·SiO ₂	On charcoal with soda, gives a ZnO coating.
34 1.73±	ALLANITE (orthite)	4(Ca,Fe)O·3(Al,Ce,Fe,Di) ₂ O ₃ ·6SiO ₂ ·H ₂ O	Most varieties gives much water in C.T.
35	ILVAITE	CaO·4FeO·Fe ₂ O ₃ ·4SiO ₂ ·H ₂ O	B.B., fuses to a black magnetic bead
36 2.586	BROOKITE	TiO ₂	Brittle. With S.Ph. in R.F., it gives a violet colored bead.
37 2.31	GEIKIELITE	MgTiO ₃	Titanium reactions.
38 1.73±	MELANOCERITE	Ce,Di,La,Y,B,Th,Ta, Zr,Si,F,etc	B.B., becomes lighter in color and swells without fusing.
39 1.74±	CARYOCERITE	Ce,Di,Y,La,Th,Zr, SiO ₂ ,F,B,etc	B.B., becomes lighter in color and swells.
40 1.81	ARSENOKLASITE	5MnO·As ₂ O ₅ ·2H ₂ O	
41 2.62±	ARIZONITE	Fe ₂ Ti ₃ O ₉	Brittle. Decomposed by hot H ₂ SO ₄ .
42	MAGNESIO-CHROMITE	MgCr ₂ O ₄	Brittle.
43 1.757±	TRITOMITE	Ce,Di,La,Y,Th,Zr, SiO ₂ ,B,F,etc	With HCl, it yields chlorine.
44 1.691	WILLEMITE	Zn ₂ SiO ₄	Glowes in ultra violet light.
45 2.34	PEROVSKITE	CaTiO ₃	Brittle. Decomposed by hot conc H ₂ SO ₄ .
46 1.775	BRITHOLITE	SiO ₂ an 1 P ₂ O ₆ of Ce metals and Ca	
47	UHLIGITE	Ca ₃ (Ti,Al,Zr) ₉ O ₂₀	May be a variety of perovskite.
48 1.78	ALLEGHANYITE	5MnO·2SiO ₂	
49 2.393	GOETHITE	HFeO ₂	Brittle. Moistened with H ₂ SO ₄ , some varieties impart a bluish green color to the flame.
50 2.00	PYROCHLORE	Na,Ca,Cb ₂ O ₆ -F	Brittle. When tested it glows momentarily as though it had taken fire.
51	MARIGNACITE	Variety of pyrochlore	
52 1.85±	LUDWIGITE	Mg ₃ Fe ²⁺ Fe ³⁺ B ₂ O ₁₀	Heated in air it becomes red. Cuts easily.
53	VONSENITE	3(Fe,Mg)O·B ₂ O ₃ ·FeO·Fe ₂ O ₃	Brittle. B.B., yields a black, magnetic mass and green boron flame.
54 1.748±	BERZELIITE	3(Ca,Mn,Mg)O·2(AsO ₄) ₂	Reacts for arsenic and manganese.
55 1.673	DURANGITE	NaF,AlAsO ₄	In C.T., blackens but regains color on cooling. Decomposed by H ₂ SO ₄ .

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
56 5	4.45-4.3	Inf	Sol	Wht, blue, grn, brwn	White	V to P	Perf	Uneven to conch	R
57 5	4.15	Inf	Sol	Yellow	Cubic	Conch	I
58 5	4.1	Sol	Peacock to grnsh blue	O
59 5	4.2±	Black	Brown	I
60 5	4.12	Apple-green	W, R	I
61 5	4.19	Depd	White	P	Perf	Tr
62 5?	4.41	Inf	Depd by H ₂ SO ₄	Brwnsh ylw	Grnsh ylw	A	None	Uneven
63 5	4.6-4.16	Inf	Ins	Black	Grnsh gray	Sm	Conch	O?
64 5	4.13-4.05	Inf	Sol	Ruby-red to rdsh brwn	Dull orange	Sm	Perf	Brittle	O
65 4.5-5	4.4-4.0	2-2.5	Sol	Drk emeral-grn	Lighter grn	A to V	Perf	Conch to uneven	M
66 4.5-5	4.4-3.4	2-2.5	Sol	Green	Pale green	V
67 4.5-5	4.8-4.4	Inf	Gelat	Orange to brwnsh ylw, blk to brwn	Lt orange to dark brown	V, G, R	Dist	Conch	T
68 4.5-5	4.414	Inf	Dark red-brown	Ylw-brown	R to V	Subconch	...
69 4.5-5	4.04	2-2.5	Sol in HNO ₃	Emerald-green	Paler green	D, R	Traces
70 4-5.5	5.0-3.7	6	Pt sol	Grnsh brwn	W, V, Sm	Conch	I
71 4-5.5	4.3-2.7	Inf	Sol	Brwn to nearly blk, ylw	Ylwsh brwn to rdsh	S, Sm, E	Conch to uneven	...
72 4-5	4.56-4.45	Inf	Ins	Brwn, red, ylw, wht	Pale brwn, ylwsh, rdsh	R to V	Perf	Uneven to splintery	T
73 4-5	5.09-4.08	Inf	Sol	Ylw, wht, sometimes rdsh wht	Wht to ylwsh wht	G to P	Fibrous or powder	O?
74 4-5	4.9-4.0	2	Sol in HNO ₃	Ylwsh gray, brwnsh, grnsh	Uncolored	R	H
75 4-5	4.47-4.13	Inf	Sol	Black, steel-gray	Black	D, M	Good	Uneven to conch	O?
76 4-5	4.19-4.17	4	Sol	Rose to flesh-red, rdsh ylw	Lt rose-red	G	Dist	M
77 4.5	4.17-4.16	Easy	Green	Conch	O?
78 4.5	4.12	2.5-3	Sol	Green	Green	Splintery	O
79 4.5	4.26	Easy	Sol	Green	Perf	M
80 4.5	4.36	Inf	Sol	Brwnsh yellow	Ylwsh white	V, R, P	Perf	Small conch	H
81 4.5	4.31	Inf	Sol	Pale wax-ylw	V to A	Dist	Uneven	H
82 4.5	4.33	3	Sol	Malachite to ylwsh green	O
83 4.5	4.07	Light green to sky-blue	O?
84 4-4.5	4.21	Red-orange	I

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
56 1.849	SMITHSONITE	ZnCO ₃	In C.T., gives off CO ₂ .
57 1.812	BECKELITE	2(Ce,La,Di)O ₃ ·3(CaO·3SiO ₂)	S.Ph. bead is pale ylw green in the O.F. and does not change in the R.F.
58 1.81	CORNETITE	6CuO·P ₂ O ₅ ·3H ₂ O	Near perovskite but containing cerium.
59 2.3	KNOPITE	(Ca,Y,Fe,Ce)O·TiO ₂	Probably a mixture. Decomposed by H ₂ SO ₄ .
60 1.702	ARANDISITE	5SnO·3SiO ₂ ·4H ₂ O	With HCl, it swells and opens to shreds.
61 1.616	SANBORNITE	BaO·2SiO ₂	Brittle. B.B., turns brownish black.
62 2.24	METALOPARITE	Si,Ti,Cb,Ta,Th,etc	
63	LORANSKITE	(Y,Ce,Ca,Zr,?) (Ta,Zr,?)O ₄	Brittle. Incompletely decomposed by acids and fusion with alkalies.
64 2.2Na	LEPIDOCROCITE	FeO·(OH)	
65 1.762	DIHYDRITE	2Cu(OH) ₂ ·Cu ₃ (PO ₄) ₂	In C.T., yields water and turns black.
66 1.762	PSEUDO-MALACHITE	Cu ₃ (PO ₄) ₂ ·3Cu(OH) ₂	In C.T., yields water and turns black.
67	THORITE	ThSiO ₄	B.B., loses color on heating but regains it on cooling.
68 1.71	URANOThORITE	ThO ₂ ·SiO ₂ ·UO ₃ ·CaO·etc	
69 1.86	ERINITE	Cu ₃ (AsO ₄) ₂ ·2Cu(OH) ₂	B.B., on charcoal emits arsenical odors.
70 1.925	BETAFITE	(U,Ca)(Cb,Ta,Tl)O ₃ ·nH ₂ O	Brittle. B.B., gives a black slag.
71 2.06±	LIMONITE	HFeO ₂ ·nH ₂ O	Usually in stalactitic, botryoidal or mammillary form.
72 1.721	XENOTIME	YPO ₄	When moistened with H ₂ SO ₄ , it colors the flame green.
73 1.8±	CERVANTITE	Sb ₂ O ₄ ?	On charcoal, reduces easily to metal.
74 1.654	PLUMGOGUMMITE	PbO·2Al ₂ O ₃ ·P ₂ O ₅ ·9H ₂ O	B.B. in forceps, swells and colors the flame azure-blue.
75	STAINERITE	CoO(OH)	Nonmagnetic. HCl solution is green and yields chlorine.
76 1.807	SARKINITE	Mn ₃ (AsO ₄) ₂ ·Mn(OH) ₂	With soda on charcoal, gives a brownish mass and arsenical odors.
77 1.81	CORNWALLITE	Cu ₃ (AsO ₄) ₂ ·2Cu(OH) ₂ ·H ₂ O	On charcoal, gives arsenical fumes and a bead of copper enveloped in a brittle crust.
78 1.778	CONICHALCITE	8(Cu,Ca)As ₂ O ₃ ·3H ₂ O	In forceps, colors the flame green then light blue near the assay.
79 2.00	LINDGRENITE	2CuMoO ₄ ·Cu(OH) ₂	In C.T., darkens, decrepitates and forms a brownish sublimate.
80 1.676±	PARISITE	2(Ce,La,Di,Th)OF·CaO·3CO ₃	In C.T., gives off CO ₂ and becomes lighter in color.
81 1.764	CORDYLITE	Fluo-carbonate of Ce metals and Ba	Moistened with HCl, it colors the flame green.
82 1.831	HIGGINSITE	2CuO·2CaO·As ₂ O ₅ ·H ₂ O	
83 1.83	ROSASITE	CuO·3CuCO ₃ ·5ZnCO ₃	
84	SODA-BERZELIITE	(Na ₂ ,Ca)(Mn,Mg) ₂ ·(As,V) ₃ O ₁₂	

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
85	3.5-4.5	4.3-4.0	3.5	Sol	Grn, blk, brwn	Grnsh ylw to yellow	V, Sa, R	Easy	R
86	4	4.34-4.32	Inf	Sol	Steel-gray to black	Rdsh brwn to nearly blk	Sm	Perf	Uneven	M
87	4	4.5-4.3	1.5	Dpd by HNO ₃	Steel-gray to iron-black	Blackish	M	Indist	Uneven	T
88	4	4.59-4.46	6	Sol in HNO ₃	Deep rdsh gray	Gray to blk	M	None	Brittle	I
89	4	4.13-4.02	Inf	Sol	Rose-red	Peach-bloom red	V	R
90	4	4.13		White	Dist	Fibrous	Tr?
91	4	4.64-3.36	Fus	Pt sol	Ylw brwn, brwn, brwnsh blk	G	Irregular to conch	O?
92	4	4.15	6	Sol	Dark chocolate to chestnut-brown	Lighter brown	V to G	None	Conch to uneven	O
93	4	4.2±	Inf	Sol	Olive, ylw, brwn, black	Grnsh to grysh blk	V, Sa, R	Easy	R
94	4	4.15-4.12	2	Sol	Colorless, ylw, brwn, red, grn	V	Good	Tr
95	4	4.23	2	Sol	Black	Brown	Poor	Tr
96	4	4.07		Reddish brown	Indist	O
97	3.5-4	4.3-4.1	2	Sol in HNO ₃	Brass-yellow, iridescent	Grnsh blk	M	Fair	Uneven	T
98	3.5-4	4.1-3.9	5	Sol	Ylw, brwn, blk, red, wht	Lt brwn to ylw, wht	R to A	Perf	Conch	I
99	3.5-4	4.0±	3	Sol	Iron-blk, brwnsh tarnish	Green	Sm	Perf	Uneven	I
100	3.5-4	4.03-3.9	2	Sol	Bright green	Lighter	A, V, S, E	Perf	Sunconch to uneven	M
101	3-4	4.35-4.28	2	Sol	Wht, ylwsh, grysh	White	V to R	Dist	Uneven	O
102	3-4	4.5-4.43		Bronze	Black	M	None	Uneven to hackly	I
103	3-4	4.08	2-2.5	Sol	Verdigris to emerald-green	Verdigris green	V	Dist	Uneven	M
104	3-4	4.2	Dpd	Dark brown	Basal	H
105	2.5-5	6.4-3.9		Ylw, orange, rdsh, brwn to blk	Ylw, brwnsh, olive grn	G, W, V, D	Conch to uneven
106	3.5	4.35-4.34	3	Sol	Ylw, violet, red, grn, colorless	White	V	Dist	Uneven	O
107	3.5	4.04-3.98	Inf	Dpd	Blk to brwn	Red-brwn	Sm	Conch	M?
108	3.5	4.01-3.94	Inf	Sol	Brwn, pinkish, ylwsh wht	G	Uneven
109	3.5	4.18-4.03	2	Bronze to brass-yellow	Rdsh bronze to black	None	Conch	O
110	3.5	4.3		Red to brown	Good	T
111	3.5	4.0		Bronze-yellow	Black	M	Perf	I
112	3-3.5	4.25	2.5	Sol in HNO ₃	Brwn to ylwsh brwn	Ylwsh wht	G	Good	Splintery	O
113	2.5-3.5	4.6-4.3	3	Ins	Wht tinted red, blue, ylw, brwn	White	V to R	Perf	Uneven	O
114	3	4.0		Silver-white	None	Brittle

MINERAL IDENTIFICATION TABLES

**GROUP 5
Specific Gravity 4.49-4.0**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
85 1.96	BEUDANTITE	$P_2O_5 \cdot As_2O_5 \cdot SO_3$, of Pb and Fe	Yields water.
86 2.25Li	MANGANITE	$MnO(OH)$	Brittle. In C.T., yields water. Treated with HCl, it yields chlorine.
87	STANNITE	Cu_2FeSnS_4	Treated with HNO_3 , gives a blue solution and a deposit of S and tin oxide.
88	GERMANITE	$(Cu,Ge)(S,As)$	Decrepitates on heating.
89 1.855	SPHAERO-COBALTITE	$CoCO_3$	In C.T., becomes black.
90 1.755	BRICKERITE	$4ZnO \cdot 3CaO \cdot 2As_2O_5$	Probably identical with austinite.
91 2.13	AMPANGABEITE	$(Y,Er,U,Ca,Th)_2(Cb,Ta,Fe,Ti)_7O_{18}$	Radio active. HCl solution is dark golden-yellow.
92 1.788	RETZIAN	Basic As_2O_3 of Mn, Ca and Rare Earths	On Charcoal with soda, gives As fumes.
93 1.93	CORKITE	$2PbO \cdot 3Fe_2O_3 \cdot P_2O_5 \cdot 2SO_3 \cdot 6H_2O$	In C.T., yields water.
94 1.765	TARBUTTITE	$Zn_3P_2O_6 \cdot Zn(OH)_2$	In C.T., decrepitates and gives a small amount of water.
95 2.01	ARMANGITE	$3MnO \cdot As_2O_5$	
96 1.77	HOLDENITE	$8MnO \cdot 4ZnO \cdot As_2O_5 \cdot 5H_2O$	
97	CHALCOPYRITE	$CuFeS_2$	Brittle. In C.T., decrepitates and gives a sublimate of sulfur.
98 2.34Li	SPHALERITE	ZnS	In O.T., gives SO_2 and generally changes color.
99 2.7Li	ALABANDITE	MnS	Brittle. Treated with HCl, it evolves H_2S .
100 1.875	MALACHITE	$CuCO_3 \cdot Cu(OH)_2$	In C.T., blackens and yields water.
101 1.676	WITHERITE	$BaCO_3$	Colors flame yellowish green.
102	COLUSITE	$Cu_3(As,Sn,V,Fe,Te)S_4$	In brittle granules.
103 1.84	TAGILITE	$4CuO \cdot P_2O_5 \cdot 3H_2O$	In C.T., yields water and turns black.
104 1.96	DIXENITE	$5MnO \cdot SiO_2 \cdot As_2O_3 \cdot H_2O$	Red in transmitted light.
105	GUMMITE	$UO_3 \cdot Pb \cdot Th \cdot R.E., etc.$ H_2O	Brittle.
106 1.744	ADAMITE	$4ZnO \cdot As_2O_5 \cdot H_2O$	In C.T., decrepitates feebly, yields a little water and becomes white.
107 1.769	KALKOWSKITE	$Fe_2Ti_3O_9?$	In thin plates with a fibrous structure.
108 1.654	RHABDOPHANITE	$(La,Di,Y)PO_4 \cdot H_2O$	Bead test is rose-red in both flames.
109	CUBANITE	$CuFe_2S_3$	Magnetic. On charcoal, gives SO_2 and fuses to a magnetic globule.
110	SCHAFAZIKITE	$nFeO \cdot P_2O_5$	
111	SULVANITE	Cu_2VS_4	
112 1.78	CARYINITE	$(Pb,Mn,Ca,Mg)_3(AsO_4)_2$	In C.T., a sublimate of sulfur.
113 1.637	BARITE	$BaSO_4$	With soda on charcoal, gives the sulfide test on a silver coin.
114	NIGGLIITE	$PtTe_3?$	

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYSTEM
115 3	4.5-4.4	I	Ins	Grayish to iron-gray	Grayish blk	M	Perf	Uneven	O
116 3	4.4-4.1	2-2.5	Sol in HNO ₃	Various shades of grn, brwn, ylw	Olive grn to brwn	A to V	Traces	Conch to uneven	O
117 3	4.1	Bluish green	M
118 3	4.3-4.0	Colorless	V, Sv
119 3	4.59-4.45	Sol	Yellow	E	Friable
120 3	4.19	Grass-green	Grnsh wht to gray	V to G	None	Uneven	M
121 3	4.06	Inf	Yellow	R	T
122 3	4.28	Fus	Sol	Black	Black	Sm	O
123 2.5-3	4.36-4.19	2-2.5	Sol in HNO ₃	Green	Bluish green	P, V, R	Perf	M
124 2-3	4.3-4.1	Black	A
125 2-3	4.5-4.3	1	Sol	Steel-gray, tin-white	Black	Conch	O?
126 2.5	4.1-3.9	6	Sol	Bluish to iron-black	Chocolate brown	M	Perf	Flexible	H
127 2.5	4.15	1	Sol	Colorless to wht	P, V	Perf	Fibrous	M
128 2.5	4.1	2-3	Sol in HNO ₃	Carmine to tile-red	Reddish ylw	V, P	Good	O
129 2-2.5	5.0-4.4	Inf	Sol	Iron-blk to dark gray, bluish	Blk to bluish blk	M	Perf	Uneven	T
130 2	5.0-4.06	1	Ins	Blksh gray	Red	M, A	Perf	Flexible	M
131 2	5.0-3.8	Inf	Ins	Black	Black	M	Good	Uneven	I
132 1-1.5	4.21-4.1	1.5	Ins	Brown, velvet tarnish	Black	M	Perf	Flexible	O
133 1-1.5	4.21	1.5	Ins	Brown to black	Black	M	Perf	O
134 Soft	4.1±	2.5	Sol	Yellow	Perf	O
135 Soft	4.3-3.7	Easy	Yellow	Perf	O
136 Soft	4.36	Sol	Canary-yellow	H
137 ?	4.33	White	O
138 ?	4.45-4.31	Black	A
139 ?	4.13	Orange-yellow to orange-red
140 ?	4.23	Red	I
141 ?	4.01	Canary-yellow	Fair	M
142 ?	4.13	Yellow	A
143 ?	4.31	White	G	Indist	H
144 ?	4.42	White	O
145 ?	4.0	Yellow	Perf	O

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
115.....	ENARGITE	$Cu_3(As,Sb)S_4$	Brittle. In C.T., gives a sublimate of sulfur and on stronger heating also one of arsenic sulfide.
116 1.788	OLIVENITE	$Cu_3(AsO_4)_2 \cdot Cu(OH)_2$	In C.T., gives water. Colors flame green.
117.....	CUPROZINCITE	$(Cu,Zn)CO_3 \cdot (Cu,Zn)(OH)_2$	Botryoidal or earthy. Zinc bearing malachite.
118 1.826	MALACON	$ZrO_2 \cdot SiO_2 \cdot nH_2O$	
119 1.55	HOCHSCHILDITE	$5SnO_2 \cdot 2PbO \cdot Fe_2O_3 \cdot SiO_2 \cdot 10H_2O$	
120 1.774	BARTHITE	$3ZnO \cdot CuO \cdot As_2O_5 \cdot 2H_2O$	
121 1.665	AUERLITE	Silico-phosphate of Th, etc	Becomes brown on ignition, yellow on cooling.
122.....	HULSITE	$10(Mg,Fe)O \cdot 2Fe_2O_3 \cdot SnO_2 \cdot 3B_2O_3 \cdot 2H_2O$	Yields water in C.T. Reacts for boron.
123 1.87	CLINOCLASITE	$Cu_3(AsO_4)_2 \cdot 3Cu(OH)_2$	In C.T., yields water. Colors the flame green.
124.....	MELNIKOVITE	FeS_2	Unstable mineral formed between layers of pyrite.
125.....	WITTICHENITE	Cu_3BiS_3	B.B., throws out sparks. Treated with HCl, it yields H ₂ S.
126 2.72Li	CHALCOPHANITE	$(Zn,Mn,Fe)Mn_2O_5 \cdot 2H_2O$	In C.T., yields water and oxygen, exfoliates and becomes golden. HCl treatment yields chlorine.
127 1.92	CLAUDETITE	As_2O_3	Flexible. Sublimes in C.T. condensing above in minute octahedrons.
128 2.05	CARMINITE	$Pb_2(AsO_4)_2 \cdot 10FeAsO_4$	On charcoal, a steel-gray globule giving arsenical odors.
129.....	PYROLUSITE (massive)	MnO_2	Brittle. Treated with HCl, it yields chlorine.
130 3.0	LIVINGSTONITE	$HgSb_4S_7$	With soda in C.T., yields a sublimate of metallic mercury.
131 1.91	DAUBRELLITE	Cr_2FeS_4	Brittle. B.B., in R.F., loses luster and becomes magnetic. Soluble in HNO ₃ with liberation of sulfur.
132.....	STERNBERGITE	$AgFe_2S_3$	On charcoal, gives off SO ₂ and fuses to a magnetic globule.
133.....	FRIESEITE	$AgFe_2S_3$	Very close to sternbergite.
134 1.91±	CARNOTITE	$K_2O \cdot 2UO_3 \cdot V_2O_5 \cdot 8 \pm H_2O$	Uranium and vanadium tests. Radio active.
135 1.9±	TYUYAMUNITE	$CaO \cdot 2UO_3 \cdot V_2O_5 \cdot 8 \pm H_2O$	
136 1.85	BEAVERITE	$Fe_2O_3 \cdot CuO \cdot PbO \cdot 2SO_3 \cdot 4H_2O$	
137 1.669	ZINKOSITE	$ZnSO_4$	
138.....	MAITLANDITE	$2(Pb,Ca)O \cdot 3ThO_2 \cdot 4UO_3 \cdot 8SiO_2 \cdot 23H_2O$	
139 2.16±	PYRRHITE	Near Pyrochlore	From A.ores and Lacher Sp.a.
140.....	BRANDAOSITE	$4(Fe,Mn)O \cdot (Al,Fe)_2O_3 \cdot 4SiO_2$	
141 1.709	LEGRANDITE	$28ZnO \cdot 9As_2O_5 \cdot 25H_2O$	
142.....	NICOLAYITE	$2(Pb,Ca)O \cdot 3ThO_2 \cdot 4UO_3 \cdot 8SiO_2 \cdot 21H_2O$	Possibly an alteration product of mackintoshite.
143.....	CARDYLITE	$BaF_2 \cdot Ce_2O_3 \cdot CO_2$	
144 1.769	CALCIUM LARSENITE	$(Pb,Ca)O \cdot ZnO \cdot SiO_2$	Crysolite group.
145 1.736	RENARDITE	$PbO \cdot 4UO_3 \cdot P_2O_5 \cdot 9H_2O$	

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV- AGE	FRACTURE	SYS- TEM
146?		4.12			Colorless		Sa	Good		O
147?		4.08-8.97			Black					
148?		4.1			Brown					O

MINERAL IDENTIFICATION TABLES

GROUP 5
Specific Gravity 4.49-4.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
146	AUSTINITE	CaZn(OH)AsO ₄	Occurs in septer-like or bladed crystals.
147	PAREDRITE	TiO ₂ .H ₂ O	Rutile plus water. Occurs a pebbles and compact masses.
148	TALASSKITE	2(FeO·2Fe ₂ O ₃ ·13SiO ₂)	A variety of fayalite.

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYS- TEM
1 8.5	3.85-3.65	Inf	Ins	Grn, ylw, red	Uncolored	V	Dist	Uneven to conch Conch	O
2 8	4.1-3.5	Inf	Ins	Red, brwn, blk, ylw, blue, grn	White	V	Imperf	Conch	I
3 7.5-8	3.95-3.91	Inf	Ins	Black	Grayish to leek-green	V	Imperf	Conch	I
4 7.5	3.8±	Inf	Ins	Black	None	I
5 7.5	3.77	Inf	Ins	Black to cobalt blue	Light blue	V	Subconch	O
6 7-7.5	3.75-3.65	Inf	Ins	Ylw, rdsh, brwn, brwnsh blk	Uncolored to grayish	Sv, R	Dist	Subconch	O
7 7-7.5	3.88-3.81	3-4	Gelat	Black, sometimes tarnished blue	Grayish blk	V	Conch	I
8 7	4.2-3.9	3	Ins	Red, brown	White	V to R	Good	Subconch to uneven	I
9 7	3.7	4	Gelat	Black	White	V to R	None	Conch to uneven	I
10 7	3.84	Inf	Ins	Dark red, etc	White	V to R	None	Conch to uneven	I
11 6.5- 7.5	4.3-3.15	3-6	Ins	Red, brwn, blk, wht, grn, ylw	White	V to R	Varies	Subconch to uneven	I
12 6.5- 7.5	3.75-3.7	3.5-4	Ins	Red to black	White	V to R	None	Subconch to uneven	I
13 6.5- 7.5	3.66-3.55	3	Ins	Wht, grn, ylw, brwn	White	V to R	None	Subconch to uneven	I
14 6-7.5	3.9-3.8	3.5	Gelat	Ylw, brwn, blk, grn	White	V to R	None	Subconch to uneven	I
15 6.5	4.17-3.9	3	Gelat	Gray, whtsh, brwn, blk, grn, ylw, red	G	Dist	Subconch to uneven	O
16 6.5	3.91	4	Gelat	Ylw, ylwh grn, blk	V to R	Good	Uneven	O
17 6.5	3.77-3.52	4-4.5	Dcpd	Brownish blk	Grysh brwn to dirty ylw	V to R	Dist	M
18 6.5	3.81±	Inf	Ins	Black	Gray	M, A	Imperf	Conch	H
19 5-7.5	3.67-3.56	Inf	Ins	Colorless, blue, blk, grn, gray, wht	Uncolored	V to P	Perf	Tr
20 6	3.88	5	Sol	Black	Brwnsh gray	M	Perf	Brittle	O
21 6	3.71-3.67	Pt sol	Colorless to pale wine-yellow	High	Fair	Conch
22 6	3.85	Dark green	Perf	O
23 6	3.72	Brown to black	Perf	Tr
24 6	3.89	2.5	Ins	Honey-yellow, light brown	O
25 6	3.7	4	Gelat	Black	Grysh black	A	Conch	I
26 5.5- 6.5	3.68-3.4	2.5- 3.5	Pt sol	Red, pink, brwnsh	White	V	Perf	Conch to uneven	T

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1 1.748	CHRYSOBERYL	BeAl_2O_4	Brittle. B.B., with cobalt solution, gives a blue color. Decomposed by fusion with KHSO_4 .
2 1.72±	SPINEL	MgAl_2O_4	Brittle. B.B., the color changes but returns on cooling.
3 1.8±	HERCYNITE	FeAl_2O_4	The heated powder becomes brick-red.
4 1.77±	PLEONASTE	$(\text{Mg}, \text{Fe})\text{O} \cdot \text{Al}_2\text{O}_3$	Iron, magnesia spinel.
5 1.74	LUSAKITE	$4(\text{Fe}, \text{Co}, \text{Ni}, \text{Mg})\text{O} \cdot 9(\text{Fe}, \text{Al})_2\text{O}_3 \cdot 8\text{SiO}_2 \cdot \text{H}_2\text{O}$	Cobalt bearing staurolite. Not affected by HF.
6 1.741	STAUROLITE	$\text{HFeAl}_5\text{Si}_2\text{O}_{13}$	Slightly soluble in H_2SO_4 . Reacts for Fe and sometimes for Mn.
7 1.98	SCHORLomite	$3\text{CaO} \cdot (\text{Fe}, \text{Ti})_2\text{O}_3 \cdot 3(\text{Si}, \text{Ti})_2\text{O}_3$	The HCl solution boiled with metallic tin, becomes violet.
8 1.801	ALMANDITE	$3\text{FeO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$	One of the precious garnets.
9 1.94	MELANITE	$3\text{CaO} \cdot (\text{Fe}, \text{Ti})_2\text{O}_3 \cdot 3(\text{Si}, \text{Ti})_2\text{O}_2$	One of the common garnets.
10 1.76	RHODOLITE	$3(\text{Fe}, \text{Mg})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$	One of the garnet family.
11 1.8±	GARNET	$3(\text{Ca}, \text{Fe}, \text{Mn}, \text{Mg})\text{O} \cdot (\text{Al}, \text{Fe}, \text{Cr}, \text{Ti})_2\text{O}_3 \cdot 3\text{SiO}_2$	Most varieties fuse easily to a black or light brown glass.
12 1.742	PYROPE	$3\text{MgO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$	A precious garnet.
13 1.735	GROSSULARITE	$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$	A precious garnet.
14 1.865	ANDRADITE	$3\text{CaO} \cdot \text{Fe}_2\text{O}_3 \cdot 3\text{SiO}_2$	A common garnet.
15 1.838	KNEBELITE	$2(\text{Mn}, \text{Fe})\text{O} \cdot \text{SiO}_2$	Fe and Mn reactions.
16 1.792	HORTONOLITE	$(\text{Fe}, \text{Mg})_2\text{SiO}_4$	Fe and Mn reactions.
17 1.935	KEILHAUITE	$15\text{CaO} \cdot 14\text{TiO}_2 \cdot (\text{Al}, \text{Fe}, \text{Y})_2\text{O}_3 \cdot 16\text{SiO}_2 \cdot (\text{Si}, \text{Ti})_2\text{O}_2$	With S.Ph., the bead has Fe colors and an SiO_2 skeleton. In R.F., the bead is violet.
18 1.853	HOEGBOMITE	$\text{Mg}(\text{Al}, \text{Fe}, \text{Ti})_4\text{O}_7$	Brittle. Transparent in thin splinters.
19 1.72	CYANITE	$\text{Al}_2\text{O}_3 \cdot \text{SiO}_2$	With cobalt solution, gives a blue color on ignition.
20 2.05	PINAKIOLITE	$2\text{MgO} \cdot \text{MnO} \cdot \text{Mn}_2\text{O}_3 \cdot \text{B}_2\text{O}_3$	With KHSO_4 and CaF_2 , it colors the flame intensely green.
21	STIEPELMANNITE	$\text{YPO}_4 \cdot \text{AlPO}_4 \cdot 2\text{Al}(\text{OH})_3$	
22 1.675	IRON ANTHOPHYLLITE	$7(\text{Fe}, \text{Mg})\text{O} \cdot 8\text{SiO}_2 \cdot \text{H}_2\text{O}$	One of the amphibole group.
23 1.752	SOBRALITE	$(\text{Mn}, \text{Fe}, \text{Mg}, \text{Ca})\text{O} \cdot \text{SiO}_2$	
24 1.767	JOAQUINITE	$3\text{Na}_2\text{O} \cdot 6\text{BaO} \cdot 5\text{TiO}_2 \cdot 16\text{SiO}_2$	
25 2.01	IVAARITE	Near Schorlomite	Ti tests.
26 1.724	RHODONITE	MnSiO_3	Manganese reactions.

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

H	S.P. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SY- TEM
27 5.5-6	4.5-3.5	2.5	Gelat	Brown, blk, grn, gray, ylw	Gray, grayish or brownish	V, Sm, R, P	Traces	Uneven to subconch	M
28 5.5-6	3.8	3	Ins	Amber, ylw, brown, rdsh, dark grn	V to R	Dist	Tr
29 5.5-6	3.85	3	Sol	lt purplish red, rose, colorless	V	Indist	M
30 5.5-6	4.08-3.95	6	Gelat	Ylw, grn to blk	Ylw, rdsh gray	V to G	Dist	O
31 5.5-6	4.05-3.99	2.5	Gelat	Iron-blk to dark grayish black	Blk inclining to grn or brown	Sm	Good	Uneven	O
32 5.5-6	3.9	Inf	Ins	Brown, blue, blk	Uncolored or yellowish	A to M	Perf	Subconch	T
33 5.5	4.18-3.99	3.5-5	Gelat	Wht, grn, ylw, red, brown	Uncolored	V, R	Easy	Conch to uneven	R
34 5.5	4.05-3.97	Inf	Ins	Blk, brown, ylw	Colorless, grayish	A to M	Imperf	Uneven to subconch	M?
35 5.5	3.85-3.75	3	Ins	Black	Rdsh brown	V	Dist	Uneven	Tr
36 5.5	3.92	1	Ins	Reddish brown	V to S	Perf	O
37 5.5	3.7-3.35	2-3	Sol	Nut brown to brownish red	M
38 5.5	3.77	Dark grayish brown inclining to red	Ash gray	G	None	Splintery, subconch	I
39 5.5	3.91	Sol	Black	R	M
40 5-5.5	3.81	3?	Ins	Colorless, wht, pearly, gray	V to G	Good	O
41 5-5.5	4.3-3.3	6	Sol	Ylw, red, brown, blk	Brownish to ochre-yellow	A, D, S	Perf	Uneven	O
42 5-5.5	3.67	2.5-3	Sol	Colorless, white	V	Good	Tr
43 5	4.07-3.94	2	Lt to dark orange red	Cream-yellow	V	Dist	Uneven	M
44 5	3.66	Yellow to brown	I
45 5	3.76-3.71	2-3	Sol	Gray, yellowish gray	R to G	None	Conch to uneven	M
46 5	3.67	Reddish yellow	Pale yellow	D
47 5	3.8-3.5	5	Sol	Colorless to grn	G, V	None	H
48 5	4.02-3.9	4.5	Sol	Grnsh to black tinged violet	Dark colored	S	O
49 4.5-5	3.91	2-3	Gelat	Pink to pale rdsh brown	V	Perf	M
50 4.5-5	3.76-3.72	Bluish black
51 4.5-5	4.4-3.4	2-2.5	Sol	Green	Pale green	V
52 4-5.5	3.8-3.44	1.5	Sol	Pale salmon-brown to black	Yellowish gray or brownish	R to A	Perf	Small conch	M
53 4-5.5	5.0-3.7	6	Pt sol	Greenish brown	Yellowish gray or brownish	W, V, Sm	Conch	I

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

INDEX OF REF.	NAME	COMPOSITION	REMARKS
27 1.72±	ALLANITE (orthite)	$4(\text{Ca},\text{Fe})\text{O} \cdot 3(\text{Al},\text{Ce},\text{Fe},\text{Di})_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{H}_2\text{O}$	Most varieties give much water in the C.T.
28 1.75	PYROXMANGITE	$(\text{Mn},\text{Fe})\text{O} \cdot \text{SiO}_2$	Manganese reactions
29 1.771	LEUCO- PHOENICITE	$7(\text{Mn},\text{Zn},\text{Ca})\text{O} \cdot 3\text{SiO}_2 \cdot \text{H}_2\text{O}$	Treated with HCl, yields gelatinous silica.
30 1.786	ROEPPERITE	$2(\text{Fe},\text{Mn},\text{Zn})\text{O} \cdot \text{SiO}_2$	On charcoal with soda, gives a ZnO coating.
31	ILVAITE	$\text{CaO} \cdot 4\text{FeO} \cdot \text{Fe}_2\text{O}_3 \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	Fuses to a black, magnetic globule.
32 2.554	ANATASE	TiO_2	Brittle. S.Ph. in R.F., gives a violet colored bead. Decomposed by fusion with KHSO_4 .
33 1.691	WILLEMITE	Zn_2SiO_4	Glowes in ultra-violet light.
34 2.34	PEROVSKITE	CaTiO_3	Brittle. Decomposed by hot conc H_2SO_4 . S.Ph. in O.F. gives a bead that is pale yellow while hot and colorless when cold.
35 1.8	AENIGMATITE	Titano-Silicate of columbium and iron	B.B., fuses to a brownish black glass.
36 1.774	TARAMELLITE	$4\text{BaO} \cdot \text{FeO} \cdot 2\text{Fe}_2\text{O}_3 \cdot 10\text{SiO}_2$	Fibrous. In bundles and radiating aggregates.
37 1.65	HELLANDITE	$3(\text{Al},\text{Fe},\text{Mn},\text{Ce})_2\text{O}_3 \cdot 2\text{CaO} \cdot 4\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	
38 1.87±	CHALCO- LAMPRITE	$\text{Na}_4(\text{Ca},\text{F})_2\text{Cb}_2\text{SiO}_9$	Brittle. May be pyrochlore.
39 1.76	NAGATELITE	$4(\text{Ca},\text{Fe},\text{etc})\text{O} \cdot 3(\text{Al},\text{Fe},\text{etc})_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{P}_2\text{O}_5 \cdot 2\text{H}_2\text{O}$	Epidote group, related to allanite.
40 1.963	HYALOTEKITE	$9(\text{Ca},\text{Ba},\text{Pb})\text{O} \cdot \text{B}_2\text{O}_3 \cdot 12\text{SiO}_2 \cdot \text{H}_2\text{O}$	With soda on charcoal, gives a PbO coating and metallic lead.
41 2.393	GOETHITE	HFeO_2	Brittle. Moistened with H_2SO_4 , some varieties impart a bluish green color to the flame.
42 1.711	BRANDTITE	$\text{Ca}_2\text{Mn}(\text{AsO}_4)_2 \cdot 2\text{H}_2\text{O}$	On charcoal, gives arsenical odors.
43 1.673	DURANGITE	$\text{NaF} \cdot \text{AlAsO}_4$	In C.T., blackens but regains color on cooling. Decomposed by H_2SO_4 .
44	HYDROROMEITE	$2\text{CaO} \cdot 2\text{Sb}_2\text{O}_5 \cdot 6\text{H}_2\text{O}$	
45 1.721	ADELITE	$2\text{CaO} \cdot 2\text{MgO} \cdot \text{As}_2\text{O}_6 \cdot \text{H}_2\text{O}$	With soda on charcoal yields arsenical odors.
46	STIBIANITE	$\text{Sb}_2\text{O}_5 \cdot \text{H}_2\text{O}$	An alteration product of stibnite.
47 1.68±	SVABITE	$9\text{CaO} \cdot 3(\text{As}_2\text{O}_5 \cdot \text{P}_2\text{O}_5) \cdot \text{Ca}(\text{F},\text{OH})_2$	
48 1.85±	LUDWIGITE	$\text{Mg}_3\text{Fe}^{2+}\text{Fe}^{3+}\text{B}_2\text{O}_{10}$	Heated in air it becomes red. Cuts easily.
49 1.742	HODGKINSO- NITE	$2\text{ZnO} \cdot \text{MnO} \cdot 2\text{SiO}_2 \cdot \text{H}_2\text{O}$	In C.T., decrepitates and yields water.
50 1.713	REPOSSITE	$3(\text{Fe},\text{Mn},\text{Ca})\text{O} \cdot \text{P}_2\text{O}_5$	Salmon-pink on fresh fracture, darkens to brown on exposure.
51 1.763	PSEUDO- MALACHITE	$\text{Cu}_2(\text{PO}_4)_2 \cdot 3\text{Cu}(\text{OH})_2$	In C.T., yields water and turns black.
52 1.673±	TRIPLITE	$(\text{Fe},\text{Mn})\text{FPO}_4$ with Ca and Mg	Moistened with H_2SO_4 , it colors the flame green.
53 1.925	BETAFITE	$(\text{U},\text{Ca})(\text{Nb},\text{Ta},\text{Ti})_3\text{O}_9 \cdot n\text{H}_2\text{O}$	Brittle. B.B., gives a black slag.

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
54	4-5.5	4.3-2.7	Inf	Sol	Brown to nearly black, yellow	Ylwsh brwn to rdsh	S, Sm, E	Conch to uneven
55	4-5.5	3.7	1.5	Sol	Yellow to reddish brown	Nearly wht	V, G, A	Perf	Subconch	M
56	4.5	3.9	Inf	Sol	Wax-ylw, ash-gray, hair-brown	G, V, A	None	Conch to splintery	R
57	4.5	3.95	Inf	Sol	Yellow, orange, brown, green	V to G	Splintery	O
58	4.5	3.84	5-6	Sol	Brownish red	Brwnsh gray	V to G	Dist	Uneven, splintery	M
59	4-4.5	3.87	2-3	Sol	Grnsh brwn	V to G	Poor	O
60	4-4.5	3.8-3.7	Inf	Dcpd	Ylwsh red, brwnsh	V to G	Fair	M
61	4-4.5	3.78	Gray	M
62	4-4.5	3.76-3.61	Amber-ylw, dark brown to black	A	Subconch to uneven	I
63	4-4.5	3.72	6	Sol	Colorless, white, cream, pink	V	Poor	Uneven	O
64	3.5-4.5	3.93	2.5	Sol	Dark green to yellowish green	Ylwsh grn	V	Subconch
65	4	3.8-3.6	2-2.5	Sol in HNO ₃	Dark olive green	Olive grn	R	Poor	Subconch to uneven	O
66	4	3.846	Black
67	4	3.598	Sol	Yellow to brownish yellow	Dull ylw	R	Uneven to conch
68	4	3.82	Brownish yellow
69	4	3.66-3.64	5-6	Sol	Colorless, white, gray, grn, ylw	White	V to R	Perf	Subconch to uneven	M
70	4	3.7	Brick-red	Same	Good	O
71	4	4.64-3.36	Fus	Pt sol	Ylw-brwn, brwn, brwnsh blk	G	Irregular to conch	O?
72	3.5-4	3.98	6	Sol	Brwnsh to blk	Brown	R	Easy	Conch to uneven	H
73	3.5-4	4.1-3.9	5	Sol	Ylw, brwn, red, blk, wht	Brwn to lt ylw or wht	R to A	Perf	Conch	I
74	3.5-4	3.91	3.5	Sol	Emerald to blksy grn	Paler green	V	Perf	Uneven	O
75	3.5-4	4.0±	3	Sol	Iron-black, brown tarnish	Green	Sm	Perf	Uneven	I
76	3.5-4	4.03-3.9	2	Sol	Bright green	Lighter grn	A, V, S, E	Perf	Subconch to uneven	M
77	3.5-4	3.88-3.83	4.5-5	Sol	Gray, ylw, brwn, colorless	White	V to P	Perf	Subconch to uneven	R
78	3.5-4	3.83-3.77	3	Sol	Azure-blue	Lighter	V to A	Fair	Conch	M
79	3.5-4	3.71-3.68	5-6	Sol	Colorless, green, yellow, brown	White	V to R	Good	Uneven	O
80	3.5-4	3.69	Reddish brown	Brown	D, G	Conch
81	3-4	3.79	2	Ins	Emerald-green, whitish	Lighter
82	3-4	3.8	Ylwsh, grn, blk	Conch to uneven

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

INDEX OF REF.	NAME	COMPOSITION	REMARKS
54 2.06±	LIMONITE	$\text{HFeO}_2 \cdot n\text{H}_2\text{O}$	Usually in stalactitic, botryoidal or mammillary form.
55 1.726	TRIPLOIDITE	$(\text{Mn},\text{Fe})_2 \cdot (\text{OH})_2(\text{PO}_4)_2$	In C.T., gives off water; turns black and becomes magnetic.
56	SYNCHISITE	$\text{CeF} \cdot \text{CaC}_2\text{O}_6$	Glowes brilliantly when ignited.
57 1.7	ANCYLINE	$2\text{Ce}_2\text{O}_3 \cdot 3\text{SrO} \cdot 7\text{CO}_2 \cdot 5\text{H}_2\text{O}$	Moistened with HCl, it gives an intense red flame.
58 1.799	ALLACTITE	$7\text{MnO} \cdot \text{As}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	B.B., loses water and becomes black.
59 1.801	FLINKITE	$\text{MnAsO}_4 \cdot 2\text{Mn}(\text{OH})_2$	
60 2.03±	VOLTZITE	$\text{Zn}_5\text{S}_4\text{O}$	Treated with HCl, it gives off H_2S .
61	META-JARLITE	$\text{NaSr}_3\text{Al}_3\text{F}_{16}$	
62 1.89±	ELLSWORTHITE	$\text{CaO} \cdot \text{C}_2\text{B}_5 \cdot 2\text{H}_2\text{O}$	Brittle. Contains U and Ti oxides also.
63 1.671	BROMLITE	$(\text{Ca},\text{Ba})\text{CO}_3$	B.B., colors flame yellowish green.
64 1.88	CHENEVIXITE	$\text{Cu}_2\text{Fe}(\text{AsO}_4)_2 \cdot 2\text{H}_2\text{O}$	On charcoal, gives As fumes and a black, magnetic scoria with copper grains.
65 1.745	LIBETHENITE	$\text{Cu}_3(\text{PO}_4)_2 \cdot \text{Cu}(\text{OH})_2$	In C.T., yields water and turns black. On charcoal with soda, gives metallic copper.
66	TRANSVAALITE	$\text{Co}_2\text{AsO}_3?$	
67	STIBIOFERRITE	$\text{SbO}_2\text{Fe}_2\text{H}_2\text{O}, \text{Si}, \text{etc}$	Brittle. An alteration product of stibnite.
68	CALCIOANCYLITE	$5[(\text{Ce},\text{Y})_2\text{O}_3 \cdot 3\text{CO}_2] \cdot 7[(\text{Sr},\text{Ca},\text{Ba})\text{O} \cdot \text{CO}_2] \cdot 10\text{H}_2\text{O}$	
69 1.684	BARYTOCALCITE	$\text{BaCO}_3 \cdot \text{CaCO}_3$	Colors flame yellowish green.
70	HYDROGOETHITE	$3\text{Fe}_2\text{O}_3 \cdot 4\text{H}_2\text{O}$	Probably lepidocrocite.
71 2.13	AMPANGABEITE	$(\text{Y},\text{Er},\text{U},\text{Ca},\text{Th})_2 \cdot (\text{Cb},\text{Ta},\text{Fe},\text{Ti})_7\text{O}_{18}$	Radio active. HCl solution is dark golden-yellow.
72 2.356Na	WURTZITE	ZnS	In O.T., gives SO_2 and generally changes color.
73 2.34Li	SPHALERITE	ZnS	In O.T., gives SO_2 and generally changes color.
74 1.771	BROCHANTITE	$\text{CuSO}_4 \cdot 3\text{Cu}(\text{OH})_2$	In C.T., yields H_2O and at higher temperatures H_2SO_4 . Becomes black.
75 2.71Li	ALABANDITE	MnS	Brittle. Treated with HCl, it yields H_2S .
76 1.875	MALACHITE	$\text{CuCO}_3 \cdot \text{Cu}(\text{OH})_2$	In C.T., blackens and yields water.
77 1.785	SIDERITE	FeCO_3	In C.T., decrepitates, gives off CO_2 , blackens and becomes magnetic.
78 1.758	AZURITE	$2\text{CuCO}_3 \cdot \text{Cu}(\text{OH})_2$	In C.T., blackens and yields water.
79 1.667	STRONTIANITE	SrCO_3	Swells and throws out minute sprouts when heated.
80	POECHITE	$\text{H}_{16}\text{Fe}_9\text{Mn}_2\text{Si}_3\text{O}_{29}$	
81 1.745	MIXITE	$2\text{Cu}_3(\text{AsO}_4)_2 \cdot \text{BiAsO}_4 \cdot 4\text{Cu}(\text{OH})_2 \cdot 7\text{H}_2\text{O}$	Treated with HCl, the mineral becomes covered with a white powder.
82	PARTZITE	$\text{SbO}_2\text{Cu}_2\text{Ag}, \text{etc}$	An alteration product of antimony sulfide ores.

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
83	3-4	3.93			Colorless, brwnsh					M
84	3-4	3.7	1		Dark golden-ylw		V	Imperf	Conch	M
85	2.5-5	6.4-3.9			Ylw, orange, rdsh, brwn to blk	Ylw, brwnsh, olive grn	G, W, V, D		Conch to uneven	...
86	3.5	4.01-3.94	Inf	Sol	Brown, pinkish, ylwsh wht		G		Uneven	...
87	3.5	4.04-3.98	Inf	Dcpd	Black to brown	Red-brown	Sm		Conch	M?
88	3.5	3.68-3.5	1.5-3		Yellow-green	Grn to brwnsh yellow	P	Good		M?
89	3.5	3.75		Sol	Yellowish green			Good		H
9.	3.3-5	3.97-3.95	3	Ins	White, colorless, slightly colored	White	V to P	Dist	Uneven	O
91	3.3-5	3.77-3.75	3-4	Sol	Various shades of green	Apple-green	A to V	Perf	Conch	O
92	3	3.74			Bright green	Green	V	Good	Conch	R
93	3	3.9			Light green		Bril- liant	Perf		O
94	3	3.96		Sol	Grass-green			Perf		O
95	3	3.72			Brownish red			Traces		H
96	3	3.72-3.43			Bluish to violet black	Dark brown				...
97	2.5-3	3.99	Fus		Colorless to transparent		P	Perf		Tr
98	2.5-3	3.76	1.5	Sol	Blue		V			M
99	2.5	4.1-3.9	6	Sol	Bluish to iron- black	Chocolate- brown	M	Perf	Flexible	II
100	2.5	3.8	2	Sol	Blue, bluish gray	Bluish wht	Good	Good	Brittle	O
101	2.5	3.75			Deep black	Submetallic				...
102	2-3	3.9-3.81	Inf	Gelat	Yellow		V			O
103	2-2.5	3.93	1.5	Sol	Colorless, white, grayish		A	Cubic	Conch	I
104	2.2-5	3.8-3.53	Inf	Dcpd	White, gray, ylw	Shining	E, D	Perf		M?
105	2	5.0-3.8	Inf	Ins	Black	Black	M	Good	Uneven	I
106	2	3.68	3	Sol in HNO ₃	Green, ylw, red					T
107	1-2	3.88-3.52	2 3	Sol	Blk, ylwsh, brwn	Ylwsh brwn	S			O
108	1.5	3.88-3.86	Vol	Sol	Wht tinged ylw or red	White, pale yellow	V to S	Fair	Conch	I
109	Soft	3.79	1.5	Sol	Ylw, white, grnsh, reddish		E			...
110	Soft	4.3-3.7	Easy		Yellow			Perf		O
111	Soft	3.97-3.75			Yellow					T?

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

INDEX OF REF.	NAME	COMPOSITION	REMARKS
83 1.432	JARLITE	$\text{NaSr}_3\text{Al}_3\text{F}_{16}$	
84 1.842	DIETZEITE	$\text{Ca}(\text{IO}_3)_2 \cdot 8\text{CaCrO}_4$	Soluble in hot water.
85	GUMMITE	$\text{UO}_3 \cdot \text{Pb, Th, R.E., etc,}$ nH_2O	Brittle.
86 1.654	RHABDOPHANITE	$(\text{La}, \text{Di}, \text{Y})\text{PO}_4 \cdot \text{H}_2\text{O}$	Bead tests are rose-red in both flames.
87 1.769	KALKOWSKITE	$\text{Fe}_2\text{Ti}_3\text{O}_9$	In thin plates with a fibrous structure.
88 2.05	CALCIO- VOLBORTHITE	$\text{Cu, Ca, V}_2\text{O}_5, \text{etc}$	
89 1.87	DUSSERTITE	$6\text{CaO} \cdot 3\text{Fe}_2\text{O}_3 \cdot$ $2\text{As}_2\text{O}_5 \cdot 9\text{H}_2\text{O}$	
90 1.624	CELESTITE	SrSO_4	Colors the flame red.
91 1.861	ATACAMITE	$\text{CuCl}_2 \cdot 3\text{Cu}(\text{OH})_2$	On charcoal the O.F. is azure-blue with green edges and the coal is coated with brown and gray-white coats.
92 1.846	PARATACAMITE	$\text{CuCl}_2 \cdot 3\text{Cu}(\text{OH})_2$	
93 1.738	ANTLERITE	$3\text{CuO} \cdot \text{SO}_3 \cdot 2\text{H}_2\text{O}$	
94	KAMEREZITE	$3\text{CuO} \cdot \text{SO}_3 \cdot 8\text{H}_2\text{O}$	
95 1.754	McGOVERNITE	$21(\text{Mn, Mg, Zn})\text{O} \cdot$ $3\text{SiO}_2 \cdot \frac{1}{2}\text{As}_2\text{O}_3 \cdot \text{As}_2\text{O}_5 \cdot$ $10\text{H}_2\text{O}$	In C.T., decrepitates and gives off water the H_2SO_4 .
96	WINKLERITE	$\text{Co, Ni, (OH)}?$	An alteration product of erythrite.
97 1.773	MARGAROSANITE	$\text{PbO} \cdot 2(\text{Ca, Mn})\text{O} \cdot$ 3SiO_2	Lamellar. Difficultly fusible in O.F.; fuses at 2 in R.F.
98 1.731	CHALCOMENITE	$\text{CuSeO}_3 \cdot 2\text{H}_2\text{O}$	On charcoal, a black slag; Se fumes and a deep blue flame.
99 2.72Li	CHALCOPHANITE	$(\text{Zn, Mn, Fe})\text{Mn}_2\text{O}_5 \cdot$ $2\text{H}_2\text{O}$	In C.T., yields water and oxygen; exfoliates and becomes golden-brown. Treated with HCl, it yields chlorine.
100 1.782	TEINEITE	$10\text{CuTeO}_4 \cdot 3\text{CuSO}_4 \cdot$ $26\text{H}_2\text{O}$	HCl solution is green. HNO_3 solution is blue, separates TeO_3 , then complete solution. C.T., gives H_2 . B.B., a black bead.
101	HEUBACHITE	$\text{Co, Ni, Fe, (OH)}?$	A secondary product coating barite.
102 1.667	URANOPHANE	$\text{CaO} \cdot 2\text{UO}_3 \cdot 2\text{SiO}_2 \cdot$ $6\text{H}_2\text{O}$	B.B., turns black and yields water.
103 1.93	NANTOKITE	CuCl_2	Gives off chlorine when struck with a hammer. Colors the flame azure-blue.
104 1.736	HYDROZINCITE	$\text{ZnCO}_3 \cdot 2\text{Zn}(\text{OH})_2$	In C.T., yields water.
105 1.91	DAUBREELITE	Cr_2FeS_4	Brittle. B.B. in R.F., loses luster and becomes magnetic. Soluble in HNO_3 with liberation of sulfur.
106 1.623	META- TORBERNITE	$\text{CuO} \cdot \text{UO}_3 \cdot \text{P}_2\text{O}_5 \cdot$ $8\text{H}_2\text{O}$	Formed from torbernite by hydration.
107 1.898	ARSENIOSIDERITE	$\text{CaO} \cdot 4\text{Fe}_2\text{O}_3 \cdot 3\text{As}_2\text{O}_5 \cdot$ $9\text{H}_2\text{O}$	Red in splinters.
108 1.755	ARSENOLITE	As_2O_3	In C.T., sublimes and condenses in the tube above. Slightly soluble in hot water.
109 2.09±	MONTANITE	$\text{Bi}_2\text{O}_3 \cdot \text{FeO} \cdot 2\text{H}_2\text{O}$	Earthy incrustations. In C.T., gives water.
110 1.9±	TYUYAMUNITE	$\text{CaO} \cdot 2\text{UO}_3 \cdot \text{V}_2\text{O}_5 \cdot$ $8 \pm \text{H}_2\text{O}$	
111 1.623	URANOPILITE	$\text{CaO} \cdot 8\text{UO}_3 \cdot 2\text{SO}_3 \cdot$ $25\text{H}_2\text{O}$	Velvety incrustations; small lath-like crystals.

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
112	Soft	3.67	Inf	Sol	Black	M	Perf	M?
113?		3.7	Sol	Yellow	Perf	O
114?		4.08-3.97		Black
115?		3.79		Blue-green	M.
116?		3.09		Brown

MINERAL IDENTIFICATION TABLES

GROUP 6
Specific Gravity 3.99-3.66

	INDEX OF REF.	NAME	COMPOSITION	REMARKS
112	1.74	TORDORIKITE	Hydrous oxide of Mn, etc	An alteration product of Inesite. Treated with HCl, it yields chlorine.
113	1.635	SKLOWDOWSKITE	MgO·2UO ₃ ·2SiO ₂ ·7H ₂ O	Radio active.
114	PEREDRITE	TiO ₂ ·H ₂ O	Rutile plus a small amount of water. In pebbles and compact masses.
115	1.782	SHATTUCKITE	2CuSiO ₃ ·H ₂ O	Compact, granular masses, spherulitic, fibrous.
116	1.718	MAGNESIUM-ORTHITE	7[(Mg,Fe,Ca)O+(Fe,Al,Ce,Cb,La) ₂ O ₃]·6SiO ₂ ·H ₂ O+F	

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYS- TEM
1 10	3.53-3.50	Inf	Ins	Colorless, white, various shades	A to G	Perf	Conch	I
2 8.5	3.85-3.65	Inf	Ins	Green, yellow, red	Uncolored	V	Dist	Uneven to conch	O
3 8	4.1-3.5	Inf	Ins	Red, blue, grn, ylw, brwn, blk	White	V	Imperf	Conch	I
4 8	3.65-3.4	Inf	Ins	Colorless, ylwsh, grnsh, reddish	Uncolored	V	Perf	Subconch to uneven	O
5 8	3.41-3.38	5-6	Ins	White	V to A	I
6 7.5	3.5-3.4	Inf	Ins	Pale blue, bluish or grnsh gray	V	Indist	Subconch to uneven	M
7 7.5	3.42	Greenish gray	T
8 7.5	3.52-3.41	6	Ins	Emerald green	White	V to R	None	Subconch	I
9 7-7.5	3.75-3.65	Inf	Ins	Ylw, red, brwn, brwnsh, blk	Uncolored to gray	Sv, R	Dist	Subconch	O
10 6.5-7.5	4.3-3.15	3-6	Ins	Red, brwn, ylw wht, grn, blk	White	V to R	Varies	Subconch to uneven	I
11 6.5-7.5	3.66-3.55	3	Ins	White, green, yellow, brown	White	V to R	None	Subconch to uneven	I
12 7	3.36-3.26	Inf	Ins	Blue, grnsh, rdsh, violet	V	Dist	O
13 7	3.5	3	Ins	Colorless	White	V to R	None	Subconch to uneven	I
14 5-7.5	3.67-3.56	Inf	Ins	Colorless, blk, blue, wht, grn	Uncolored	V to P	Perf	Tr
15 6.5-7	3.5-3.3	Inf	Ins	Pink to dark red, various shades	V to P	Perf	Conch	O
16 6.5-7	3.37-3.27	5-6	Gelat	Green, brwnsh	Uncolored	V	Dist	Conch	O
17 6.5-7	3.35-3.33	2.5	Ins	Green, whitish	Uncolored	Sv, P	Perf	Splintery	M
18 6.5-7	3.42	Inf	Pt sol	Blue	V	None	Subconch	Tr?
19 6-7	3.62-3.58	2-2.5	Ins	Yellow, brown	Perf	Subconch to uneven	O
20 6-7	3.5-3.25	3-4	Pt sol	Colorless, grn, red, gray, wht, etc	Uncolored, grayish	V, P, R	Perf	Uneven	M
21 6-7	3.47	5-6	Sol	Colorless, pink	V	Dist	Conch	Tr
22 6-7	3.33-3.21	Inf	Gelat	Wht, grnsh, ylwsh, bluish, gray	Uncolored	V	Dist	Subconch to uneven	O
23 6-7	3.49	Grayish green	O
24 6-7	3.57	5-6	Pt sol	Grysh grn, wht or rdsh gray	A	Good	Conch to ueven	O
25 6.5	3.4	3	Pt sol	Black, reddish	Reddish	V	Good	Uneven	M
26 6.5	3.77-3.52	4-4.5	Dcpd	Brwnsh black	Grysh brwn to dirty ylw	V to R	Dist	M
27 6.5	3.57-3.52	5-6	Gray, green	Uncolored, grysh, grnsh	P	Perf	Brittle	M

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1 2.42	DIAMOND	C	Brittle. Hardest mineral.
2 1.748	CHRYSOBERYL	BeAl ₂ O ₄	Brittle. Not attacked by acids. Decomposed by fusion with KHSO ₄ . Cobalt solution gives a blue color on heating.
3 1.72±	SPINEL	MgAl ₂ O ₄	B.B., the color changes but returns on cooling.
4 1.62	TOPAZ	Al ₂ O ₃ ·(OH,F)·SiO ₂	Reacts for fluorine. With cobalt solution, gives a blue color.
5 1.69	RHODIZITE	4(H,Na,K,Cs,Rb) ₂ O·4BeO·3Al ₂ O ₃ ·6B ₂ O ₃	Flame is green, then green below and red above, then all red.
6 1.707	SAPPHIRINE	(Mg,Fe) ₁₅ (Al,Fe) ₃₄ Si ₇ O ₃₀	B.B., does not dissolve in borax.
7	DUPARCITE	Al and Ca silicate	Radiated, elongated, prismatic crystals.
8 1.838	UVAROVITE	3CaO·Cr ₂ O ₃ ·3SiO ₂	A chrome garnet.
9 1.741	STAUROLITE	HFeAl ₅ Si ₂ O ₁₃	Reacts for Fe and sometimes Mn. Slightly soluble in H ₂ SO ₄ . Brittle.
10 1.8±	GARNET	3(Ca,Fe,Mn,Mg)O·(Al,Fe,Cr,Ti) ₂ O ₃ ·3SiO ₂	Most varieties fuse easily to a black or light brown slag.
11 1.735	GROSSULARITE	3CaO·Al ₂ O ₃ ·3SiO ₂	A precious garnet.
12 1.686	DUMORTIERITE	8Al ₂ O ₃ ·B ₂ O ₃ ·6SiO ₂ ·H ₂ O	Usually in fibrous or columnar aggregates.
13 1.745	PYRENEITE	3CaO·Al ₂ O ₃ ·3SiO ₂	One of the garnet family.
14 1.72	KYANITE	Al ₂ SiO ₅	With cobalt solution, gives a blue color after ignition.
15 1.722	DIASPORE	HAiO ₂	Brittle. Viewed on different cleavages, different colors are seen.
16 1.81	CHRYSOLITE	2(Mg,Fe)O·SiO ₂	An olivine.
17 1.659	JADEITE	NaAl(SiO ₃) ₂	Sometimes white with spots of green.
18 1.703	SERENDIBITE	2CaO·4MgO·3Al ₂ O ₃ ·B ₂ O ₃ ·4SiO ₂	With CaF ₂ and KHSO ₄ , it yields the boron flame.
19 1.79	ARDENNITE	8MnO·4Al ₂ O ₃ ·V ₂ O ₅ ·8SiO ₂ ·5H ₂ O	B.B., gives a black glass. Reacts for Mn.
20 1.742	EPIDOTE	4CaO·3(Al,Fe)O ₃ ·6SiO ₂ ·H ₂ O	In C.T., gives water on strong ignition.
21 1.72	TRIMERITE	3MnO·SiO ₂ ·BeO·SiO ₂	B.B., forms a black slag.
22 1.661	FORSTERITE	Mg ₂ SiO ₄	In C.T., gives traces of water and becomes colorless.
23	BEFANAMITE	Sc ₂ Si ₂ O ₇ +Zr and Al	
24 1.793	THORTVEITITE	(Sc,Y) ₂ O ₃ ·2SiO ₂	
25 1.782	PIEDMONTITE	3(Al,Mn,Fe)O ₃ ·4CaO·6SiO ₂ ·H ₂ O	
26 1.935	KEILHAUITE	15CaO·15TiO ₂ ·(Si,Ti)O ₂ ·(Al,Fe,Y) ₂ O ₃ ·16SiO ₂	With S.Ph., the bead has Fe colors and an SiO ₂ skeleton. In R.F., the bead is violet.
27 1.722	CHLORITOID	(Fe,Mg)O·Al ₂ O ₃ ·SiO ₂	B.B., becomes darker color and magnetic. Dcpd by H ₂ SO ₄ .

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYS- TEM
28	6.5	3.45-3.35	3	Pt sol	Ylw, blue, grn, brwn	White	V to R	Poor	Subconch to uneven
29	6.5	3.45-3.35	3	Pt sol	Ylw, blue, grn, brwn	White	V to R	Poor	Subconch to uneven
30	6.5	3.34-3.27	Inf	Ins	Colorless, blk, ylw, brwn	V	Good
31	6-6.5	3.55-3.50	2-3.5	Pt sol	Ylw, grn, brwn, blk	Pale grnsh gray	V to R	Perf	Uneven
32	6-6.5	3.37-3.25	3-4	Ins	Ylw, wht, grn, red, brwn	Uncolored	V to P	Perf	Uneven to subconch
33	6-6.5	3.36-3.16	3-4.5	Gelat	Ylw, brwn, grn	Uncolored	V to P	Traces	Uneven to conch
34	6-6.5	3.5	Flesh-red	I
35	6-6.5	3.37	6	Sol	Colorless	V	Perf
36	6-6.5	3.65-3.64	3	Ins	Blue, colorless	Imperf	H
37	6-6.5	3.42	Easy	Ins	Colorless or tinged violet, brwn	A	Conch Brittle	O
38	6-6.5	3.55-3.51	Fus	Pt sol	Colorless, ylw, green	V	Good	Brittle
39	6-6.5	3.49	3-4	Gelat	Ylw, brwn	Uncolored, whtsh gray	A	Dist
40	6-6.5	3.45-3.44	2.5	Ins	Black	Deep bluish gray	V	Perf	Uneven
41	6-6.5	3.42	3	Ins	Brown	Reddish	V	Perf	Uneven
42	6-6.5	3.5	2	Pt sol	Green, brown	Pale ylwsh gray	V to R	Perf	Uneven
43	6	3.55	3.5	Ins	Brwnsh blk, grn	Pale ylwsh gray	V to R	Perf	Uneven
44	6	3.6	4	Ins	Green, brown	Wht, gray, grayish grn	V to R	Perf	Uneven
45	6	3.43	Drk brwn to blk	O
46	6	3.4	4	Dpd	Gray, brown	Good	M
47	6	3.41	3.5	Gelat	Bluish green	O
48	6	3.65	2.5-3.5	Pt sol	Brown	White	V	Perf	Conch to uneven
49	6	3.63	3	Ins	Brown	White	V to R	None	Subconch to uneven
50	6	3.43	2	Ins	Deep velvet blk	Deep bluish gray	V	Perf	Uneven
51	6	3.42	Inf	Ins	Perf	Uneven
52	6	3.5	Fus	Black, brown	S	Perf	Fibrous
53	6	3.5	Fus	Black, brown	S	Perf	Fibrous
54	5.5-6.5	3.68-3.4	2.5-3.5	Pt sol	Red, pink, brwnsh	White	V	Perf	Conch to uneven
55	5.5-6.5	3.385	Colorless to white	Perf	Brittle

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
28 1.716	VESUVIANITE (Idocrase)	$12\text{CaO}\cdot3(\text{Al},\text{Fe})_2\text{O}_3\cdot10\text{SiO}_2\cdot2\text{H}_2\text{O}$	B.B., fuses to a greenish or brownish glass.
29 1.716	CALIFORNITE	$12\text{CaO}\cdot3(\text{Al},\text{Fe})_2\text{O}_3\cdot10\text{SiO}_2\cdot2\text{H}_2\text{O}$	The gem variety of vesuvianite. Resembles jade.
30 1.676	KORNERUPINE	$\text{MgO}\cdot\text{Al}_2\text{O}_3\cdot\text{SiO}_2$	Bright blue when treated with cobalt solution and heated.
31 1.816	ACMITE	$\text{Na}_2\text{O}\cdot\text{Fe}_2\text{O}_3\cdot4\text{SiO}_2$	B.B., gives a lustrous, black, magnetic globule; colors the flame deep yellow.
32 1.703	ZOISITE	$4\text{CaO}\cdot3\text{Al}_2\text{O}_3\cdot6\text{SiO}_2\cdot\text{H}_2\text{O}$	In C.T., gives off water when heated strongly.
33 1.739	HELVITE	$3(\text{Fe},\text{Mn})\text{O}\cdot\text{MnS}\cdot3\text{BeO}\cdot3\text{SiO}_2$	Looks very much like garnet. Treated with HCl, it gives off H_2S .
34	BODEN- BENDERITE	$\text{Ti},\text{Al},\text{Yt},\text{Mn},\text{SiO}_2$	Near beccelite.
35 1.589	CELSIAN	$\text{BaO}\cdot\text{Al}_2\text{O}_3\cdot2\text{SiO}_2$	Barium feldspar.
36 1.757	BENITOITE	$\text{BaO}\cdot\text{TiO}_2\cdot3\text{SiO}_2$	Attacked by HF and dissolved in fused Na_2CO_3 .
37 2.01	LORENZENITE	$\text{Na}_2\text{O}\cdot2(\text{Ti},\text{Zr})\text{O}_2\cdot2\text{SiO}_2$	B.B., fuses to a black globule.
38 1.723	LAVENITE	$\text{Na},\text{Ca},\text{Mn},\text{Fe},\text{Zr},\text{Ta},\text{Ti},\text{Si}$	
39 1.658	GUARINITE	$\text{CaO}\cdot\text{TiO}_2\cdot\text{SiO}_2$	B.B., some varieties change color; fuses to a yellow, brown or black slag.
40 1.70	ARFVEDSONITE	$4\text{Na}_2\text{O}\cdot3\text{CaO}\cdot14\text{FeO}\cdot\text{R}_2\text{O}_3\cdot21\text{SiO}_2$	Fuses with intumescence to a black magnetic globule.
41 1.761	MANGANEPIDOTE	$4(\text{Ca},\text{Na}_2,\text{Mn})\text{O}\cdot3(\text{Al},\text{Fe})_2\text{O}_3\cdot6\text{SiO}_2\cdot\text{H}_2\text{O}$	A member of the Epidote group.
42 1.768	DIOPSIDEACMITE	$n\text{Na}_2\text{O}\cdot\text{Fe}_2\text{O}_3\cdot4\text{SiO}_2\cdot m\text{CaO}\cdot(\text{Mg},\text{Fe})\text{O}\cdot2\text{SiO}_2$	Gives a magnetic, lustrous globule; colors flame deep yellow.
43 1.77	AEGIRITE	$\text{Na}_2\text{O}\cdot(\text{Fe},\text{V})_2\text{O}_3\cdot4\text{SiO}_2\cdot+\text{CaO}\cdot\text{MgO}\cdot2\text{SiO}_2$	B.B., fuses to a black magnetic globule.
44 1.708	DIOPSIDE- HEDENBERGITE	$\text{CaO}\cdot(\text{Mg},\text{Fe})\text{O}\cdot2\text{SiO}_2$	A pyroxene.
45	RAMSAYITE	$\text{MgO}\cdot2\text{SiO}_2\cdot2\text{TiO}_2$	
46 1.719	JOHANNSENITE	$\text{MnO}\cdot\text{CaO}\cdot2\text{SiO}_2$	B.B., fuses to a black globule.
47 1.716	GLAUCOCHROITE	CaMnSiO_4	Reacts for manganese with borax.
48 1.728	IRONRHODONITE	$(\text{Mn},\text{Fe},\text{Mg},\text{Ca})\text{MnSi}_2\text{O}_6$	Probably identical with pyroxmangite.
49 1.763	HESSONITE	$3\text{CaO}\cdot(\text{Al},\text{Fe})_2\text{O}_3\cdot3\text{SiO}_2$	A member of the garnet family.
50 1.707	BARKEVIKITE	Between Hornblende and Arfvedsonite	Fuses with intumescence to a black, magnetic globule.
51 1.691	PIGEONITE	$(\text{Mg},\text{Fe},\text{Ca})\text{O}\cdot\text{SiO}_2$	A pyroxene.
52 1.684	GRUENERITE	$7(\text{Fe},\text{Mg},\text{Mn})\text{O}\cdot8\text{SiO}_2\cdot\text{H}_2\text{O}$	One of amphibole group. Between 50-100% FeSiO_3 .
53 1.65	CUMMINGSTONITE	$7(\text{Fe},\text{Mn},\text{Mg})\text{O}\cdot8\text{SiO}_2\cdot\text{H}_2\text{O}$	One of amphibole group. Between 50-70% MgSiO_3 .
54 1.724	RHODONITE	MnSiO_3	Manganese reactions.
55 1.68	KAYSERITE	$\text{Al}_2\text{O}_3\cdot\text{H}_2\text{O}$	A micaceous alteration product of corundum.

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
56 5.5-6	4.2-3.5	2.5	Gelat	Brown, blk, grn, gray, yellow	Gray, grnsh, brwnsh	Sm, R, V, P	Traces	Uneven to subconch	M
57 5.5-6	3.44-3.41	3-3.5	Sol	Lt ylw, gray, brwn	Ylwsh wht	V to R	Dist	Conch to splintery	M
58 5.5-6	3.43	3	Gelat	Red to gray	Same, lighter	V to R	Uneven to subconch	I
59 5.5-6	3.37-3.35	3	Ins	Grn to brwnsh blk	V	Perf	Subconch	Tr
60 5.5-6	3.49	5-6	Depd	Lt ylwsh to drk grayish brwn	Uncolored	None	Uneven	O
61 5.5-6	3.52-3.39	Fus	Sol	Blk, grnsh, gray, violet	Red	R, M	Good
62 5-6	3.4-2.9	2-4	Ins	Blk, wht, grn	Uncolored	V to P	Perf	Subconch to uneven	M
63 5-6	3.43	Easy	Depd	Light brown	White	Good	Uneven to conch	O
64 5-6	3.47-3.05	Ins	Black	V to P	Perf	Subconch to uneven	M
65 5-6	3.38-3.2	4	Ins	Colorless, grns', green, black	V	Perf	Uneven to conch	M
66 5-6	3.6-3.2	4-7	Ins	Usually grn, but varying in color	Wht to grnsh	V to R	Poor	Uneven to conch	M
67 5-6	3.5-3.4	5	Pt sol	Grnsh, brwn, blk	Gray, brwnsh gray	P	Perf	Uneven	O
68 5-6	3.58-3.5	2.5	Ins	Green	Sm, D	Good	Uneven	M
69 5-6	3.52	5-6	Pt sol	Brwnsh blk, chestnut brwn	Light brwn	V	Dist	M
70 5.5	3.41	5-6	Sol	Light rose, ylwsh brwn	G	Dist	Uneven	O
71 5.5	3.57-3.55	Inf	Sol	Colorless, gray, ylwsh, drk grn	White	V	Perf	I
72 5.5	3.33	4	Gelat	Colorless, wht, amethystine	V	Perf	M
73 5.5	3.7-3.35	2-3	Sol	Nut brwn to brwnsh red	M
74 5.5	3.44	Brown	V	M
75 5.5	3.55	2-3	Ins	Colorless	V, P	Perf	O
76 5.5	3.4	Easy	Sol	Brown	R to V	None	Conch to uneven
77 5.5	3.9-3.3	Ins	Lt to drk brwn	Perf	Uneven	M
78 5.5	3.36	Pt sol	Blue	Fibrous	M, O?
79 5-5.5	3.56-3.41	3-4	Sol in H ₂ SO ₄	Gray, brwn, ylw, grn, red, blk	Wht, slightly red or grn	A to R	Good	M
80 5-5.5	4.3-3.3	6	Sol	Ylw, red, brwn, blk	Brwnsh to ochre ylw	A, D, S	Perf	Uneven	O
81 4-5.5	4.8-2.7	Inf	Sol	Brwn to nearly blk, ylw	Ylwsh brwn to rdsh	S, Sm, E	Conch to uneven

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-1.13

INDEX OF REF.	NAME	COMPOSITION	REMARKS
56 1.72±	ALLANITE (Orthite)	$4(\text{Fe},\text{Ca})\text{O} \cdot 3(\text{Al},\text{Ce},\text{Fe},\text{Di})_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{H}_2\text{O}$	Most varieties give much water in the C.T.
57 1.716	WOEHLERITE	$(\text{Ca},\text{Na}_2)\text{O} \cdot \text{C}\text{b}_2\text{O}_5 \cdot \text{ZrO}_2 \cdot \text{SiO}_2$	B.B., fused to a yellow glass.
58 1.754	DANALITE	$3(\text{Fe},\text{Zn},\text{Mn})\text{O} \cdot 3\text{BeO} \cdot 3\text{SiO}_2 \cdot (\text{Fe},\text{Zn})\text{S}$	Treated with HCl, gives H ₂ S.
59 1.730	BABIBGTONITE	$(\text{Ca},\text{Fe},\text{Mn})\text{O} \cdot \text{SiO}_2 \cdot \text{Fe}_2\text{O}_3 \cdot 3\text{SiO}_2$	B.B., fuses to a black magnetic globule.
60	ERIKITE	$(\text{Ce},\text{La},\text{Di})_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot \text{ThO}_2 \cdot \text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	In C.T., loses water and becomes white.
61 1.89	HETEROSITE	$(\text{Fe},\text{Mn})_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot \text{H}_2\text{O}$	Fuses to a deep brown, submetallic enamel.
62 1.7	AMPHIBOLE	$\text{RO} \cdot (\text{Na}_2,\text{K}_2,\text{H}_2)\text{O} \cdot \text{R}_2\text{O}_3 \cdot 2\text{SiO}_2$	B.B., tests variously with various members of the group.
63 1.635±	NORDITE	$\text{Si},\text{Ti},\text{Cb},\text{Ta},\text{Th},\text{etc}$	Brittle. B.B., turns brownish black.
64 1.67	HORNBLENDE	As amphibole	One of the amphibole group.
65 1.671	DIOPSIDE	$\text{CaO} \cdot \text{MgO} \cdot 2\text{SiO}_2$	One of the pyroxene group.
66 1.68	PYROXENE	$\text{Ca},\text{Mg},\text{Fe},\text{Si},\text{etc}$	B.B., varies with different members.
67 1.702	HYPERTHENE	$(\text{Mg},\text{Fe})\text{SiO}_3$	B.B., on coal, yields a black magnetic mass.
68 1.74	HEDENBERGITE	$\text{CaO} \cdot \text{FeO} \cdot 2\text{SiO}_2$	Fuses to a black, magnetic globule.
69 1.688	URBANITE	$\text{Na}_2\text{O} \cdot 2\text{Fe}_2\text{O}_3 \cdot (\text{Ca},\text{Mg})\text{O} \cdot 4\text{SiO}_2$	Fuses with difficulty to a magnetic slag.
70 1.689	CENOSITE	$\text{CaO} \cdot (\text{Y},\text{Er})_2\text{O}_3 \cdot \text{CO}_2 \cdot 4\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	In C.T., gives water at a low heat.
71 1.736	PERICLASE	MgO	With cobalt solution on long testing, gives a flesh-red pink.
72 1.667	CLINOHEDRITE	$\text{ZnO} \cdot \text{CaO} \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	On coal, gives a coating of ZnO.
73 1.65	HELLANDITE	$3(\text{Al},\text{Fe},\text{Mn},\text{Ce})_2\text{O}_3 \cdot 2\text{CaO} \cdot 4\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	
74 1.93	FERSMANNITE	$8(\text{Ca},\text{Na}_2)(\text{O},\text{F}_2) \cdot 4\text{TiO}_2 \cdot 3\text{SiO}_2$	
75 1.568	EPIDIDYMITE	$\text{HNaBeSi}_3\text{O}_9$	Fuses easily to a colorless glass; yields water only at high temperatures.
76 1.64±	GRIPHITE	$\text{MnO} \cdot \text{P}_2\text{O}_5 \cdot \text{H}_2\text{O}$ with Fe, Al, Ca, etc	Translucent.
77 1.683	ZINC	$(\text{Mg},\text{Mn},\text{Zn})\text{O} \cdot \text{CaO} \cdot 2\text{SiO}_2$	
78 1.66	SCHEFFERITE		A pyroxene.
78 1.66	PLANCHEITE	$2\text{CuO} \cdot 2\text{SiO}_2 \cdot \text{H}_2\text{O}$	
79 1.907	TITANITE (Sphene)	$\text{CaO} \cdot \text{TiO}_2 \cdot \text{SiO}_2$	Some varieties change color and fuse to a yellow, brown or black slag.
80 2.393	GOETHITE	HFeO ₂	Brittle. Moistened with H ₂ SO ₄ , some varieties impart a bluish green color to the flame.
81 2.06±	LIMONITE	HFeO ₂ ·nH ₂ O	Usually in stalactitic, botryoidal or mammillary form.

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
82 5	3.46	2-3	Depd	Ylwsh brwn, straw ylw Dark green	V to G	Dist	M
83 5	3.61	Colorless to grn
84 5	3.8-3.5	5	Sol	Blk to drk brwn	Grayish	R to V	Indist	Subconch	H
85 5	3.38-3.4	2	Gelat	Blk to drk brwn	Grayish	R to V	Indist	Subconch	M
86 5	3.35-3.28	Inf	Gelat	Emerald green	Green	V	Perf	Conch to uneven	R
87 5	3.59	Inf	Pt sol	Clear pale yellow	G to R	Good	Splintery, subconch	R
88 5	3.33	4	Sol	Rdsh violet, gets colorless	Poor	I
89 5	3.52	Pinkish wht to wht	II
90 5	3.4	Sol	Yellowish green	Poor	M
91 4.5-5	3.56-3.42	1.5	Sol	Ylw, brwn, blk grnsh, gray, blue	Uncolored to grysh wht	V to R	Perf	Uneven to subconch	O
92 4.5-5	4.4-3.4	2-2.5	Sol	Green	Pale green	V
93 4.5-5	3.63	Brown, red tinge
94 4.5-5	3.8-3.44	1.5	Sol	Pale salmon brwn to blk	Ylwsh gray or brwnsh	R to A	Perf	Small conch	M
95 4.5-5	3.59	Grnsh blk	Granular	M
96 4.5-5	3.56-3.42	2-2.5	Sol	Pale pink, liver brwn, ylw, grn	Uncolored to grayish wht	V to R	Perf	Uneven to subconch	O
97 4.5-5	3.34	5-6	Depd	Red-brown	Colorless	V, W	Perf	R?
98 4.5-5	3.5-3.4	6	Gelat	Colorless, white, sometimes tinted	White	V, P, A	Perf	Uneven to subconch	O
99 4.5-5	3.41	2-2.5	Sol	Deep wine ylw	R to A	Perf	Uneven to subconch	O
100 4-5	3.5-3.45	2-3?	Sol	Brwnsh, blk	V to G	Uneven to conch	M
101 4-5	3.58-3.57	2-3	Sol	Rdsh brwn, blk	Ochre ylw	Sm, D	O
102 4-5	3.43	1.5-3	Sol	Colorless, ylw, rdsh, brwn	Sr, G	Good	Uneven	M
103 4-5	3.49	Ylwsh brwn	Perf	M
104 4-5	3.45-3.36	Inf	Sol	Violet, blue, wht, rdsh brwn	V to P	Perf	Uneven	I
105 4-5	3.63-3.39	Diff	Ins	Brwn, grn, blk	Perf	M
106 4.5	3.55	Fus	Sol	Ylwsh, brwn, grn	V to G	Imperf	Uneven	I
107 4.5	3.44	Drk chocolate brwn	Ylwsh gray	V, M, G	None	Subconch, splintery	I

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
82 1.668	RINKITE	Na,Ca,Ce,Ti, Si	Fuses to a black, shining glass with continued iridescence.
83	HEADDENITE	P ₂ O ₅ of Na,K,Fe,Mn, Ca	Occurs in nodules.
84 1.68±	SVABITE	9CaO·3(As ₂ O ₅ ·P ₂ O ₅) Ca(F·OH) ₂	
85 1.725	HOMOLITE	2CaO·FeO·B ₂ O ₃ · 2SiO ₂	Fuses to a black glass.
86 1.654	DIOPTASE	CuSiO ₃ ·H ₂ O	In C.T., blackens and yields water.
87 1.68±	FLORENCITE	3Al ₂ O ₃ ·Ce ₂ O ₃ ·2P ₂ O ₅ · 6H ₂ O	In C.T., gives acid water and slight etching of the tube.
88 1.487	HACKMANITE	3Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ · 2NaCl(S)	Treated with HCl, gives H ₂ S and a small amount of flocculent SiO ₂ . Changes its color under ultra-violet light.
89 1.66	FERMORITE	9(Ca,Sr)O·(P,As) ₂ O ₈ · Ca(OH,F) ₂	A member of the apatite group.
90 1.645	RINKOLITE	Ti and Si of rare earths, Na, Sr, Ca	Related to rinkite.
91 1.69±	TRIPHYLITE	Li(Fe,Mn)PO ₄	In C.T., turns to a dark color and gives off water.
92 1.763	PSEUDO- MALACHITE	Cu ₃ (PO ₄) ₂ ·3Cu(OH) ₂	In C.T., yields water and turns black.
93	MANGANO- SPHERITE	3FeCO ₃ ·2MnCO ₃	In botryoidal aggregates.
94 1.673±	TRILPLITE	(Fe,Mn)FPO ₄ with Ca and Mg	Moistened with H ₂ SO ₄ , it colors the flame green.
95	DASHKESANITE	Fe,Al,Mg,Ca,K,Na, SiO ₂ ·H ₂ O	
96 1.666	LITHIOPHYLITE	Li(Fe,Mn)PO ₄	Colors flame red with pale bluish green exterior.
97 1.704	SCHALLERITE	8MnO-6SiO ₂ -½As ₂ O ₃ · 4H ₂ O	In C.T., gives H ₂ O and an arsenic coating. B.B., turns black.
98 1.617	CALAMINE	ZnSiO ₃ ·Zn(OH) ₂	In C.T., decrepitates, whitens and gives off water.
99 1.674	NATROPHILITE	NaMnPO ₄	B.B., colors the flame intensely yellow.
100 1.87	SYNADELPHITE	2(Al,Mn)AsO ₄ · 5Mn(OH) ₂	Gives off chlorine when warmed with HCl.
101 1.88	MAZAPILITE	3CaO·2Fe ₂ O ₃ · 2As ₂ O ₅ ·5H ₂ O	In C.T., yields water and at red heat the powder becomes brick-red.
102 1.672	FOLLOWITE	(Mn,Fe,Ca,Na ₂) _x · (PO ₄) _y ·H ₂ O	In C.T., a little neutral water.
103 1.747	MOLEN- GRAAFFITE	Na ₂ O·CaO·Al ₂ O ₃ · SiO ₂ ·TiO ₂ etc	
104 1.434	YTTROCERITE	(Er,Y,Ce)F ₃ ·5CaF ₂ · H ₂ O	In C.T., gives water.
105 1.69	JEFFERSONITE	(Mn,Zn,Fe,Mg)O· CaO·2SiO ₂	Pyroxene group. Zinc may be present as an impurity.
106 1.457	YTTRIOFLUORITE	(Ca ₃ ,Y ₂)F ₆	
107	ENDEIOLITE	R''·Cb ₂ O ₆ (OH) ₂ R'''·SiO ₃	Probably altered pyrochlore.

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
108	4-4.5	3.76-3.61	Amber, ylw, drk brwn, blk	A	Subconch to uneven	I
109	4-4.5	3.40	2-3	Sol	Deep red or purple	Purple or rose	S	Dist	Uneven	O?
110	3.5-4.5	3.6-3.45	Inf	Sol	Pink, ylw, red, brwn	White	V to P	Perf	Uneven	R
111	4	3.66-3.64	5-6	Sol	Colorless, wht, gray, grn, ylw	White	V to R	Perf	Uneven to subconch	M
112	4	3.8-3.6	2-2.5	Sol in HNO ₃	Drk olive grn	Olive grn	R	Poor	Uneven to subconch	O
113	4	3.46	3	Sol	Brwnsh blk, rdsh brwn	Brwnsh red	M, A	Imperf	Uneven to subconch	I
114	4	3.64	Sol	Flesh, red, lavender	Straw ylw	S, G	Perf	M?
115	4	4.64-3.36	Fus	Pt sol	Ylw brwn, brwn, brwnsh blk	G	Conch to uneven	O?
116	4	3.45	Easy	Sol	Dark brwn, etc	Light brown	Good	O?
117	4	3.45	Bronze to brown	Sm	Perf	M?
118	4	3.44	??	Ins	Blue to black	V	Perf	M
119	4	3.5	2-3	Pt sol	Wht to lt gray	Perf	O?
120	3.5-4	3.53	Fus	Grnsh blue	Same	T, M?
121	3.5-4	3.42-3.33	Inf	Sol	Wht, ylwsh, brwn	Wht, colorless	V to P	Perf	R
122	3.5-4	3.4-3.2	2.5	Sol	Shades of green	Siskin grn	S	Indist	O
123	3.5-4	3.39	2-2.5	Sol in HNO ₃	Emerald to leek green	V	Traces	Uneven to to conch	O
124	3.5-4	3.34	2.5-3	Sol	Olive to grass green	V to P	Perf	Uneven	M
125	3.5-4	3.62-3.55	Ylw to grysh grn	Grysh grn	Uneven
126	3.5-4	3.42	Sol	Ylwsh wht, gray, brwn	Wht, colorless	V to P	Perf	R
127	3.5	3.6-3.5	3	Sol	Rose-red	V	Perf	Tr
128	3.5	3.86-3.5	1.5-3	Ylw-grn	Grn to brwnsh ylw	P	Good	M?
129	3.5	3.4-3.3	Inf	Sol	Brwn, red	Chocolate brwn	V, G	Perf	Uneven	R
130	3.5	3.35-3.34	4	Gelat	Black	Drk olive grn	V	Perf	R
131	3.5	3.39	Black	Black	Conch	
132	3-4	3.44	Blk, rdsh, brwnsh blk	Dark brwn	D-V	Conch
133	3-4	3.38	2.5-3	Sol	Ylw, brwnsh	H
134	3-4	3.37-3.27	3	Sol	Yellowish	V	Even	T
135	3-4	3.36	Inf	Ins	Drk brwn to dull black	Bluish blk	Sm, V, P	Perf	Uneven	O
136	3-4	3.4	5	Gelat	White	V	Good	T

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
108 1.89±	ELLSWORTHITE	CaO·Ca ₂ O ₅ ·2H ₂ O	Brittle. Contains U and Ti oxides also.
109 1.86	PURPURITE	2(Fe,Mn)PO ₄ +H ₂ O	In C.T., gives off water and becomes brown. Satin-like luster.
110 1.826	RHODOCHROSITE	MnCO ₃	Dissolves with effervescence in HCl.
111 1.684	BARYTOCALCITE	BaCO ₃ ; CaCO ₃	Colors flame greenish yellow.
112 1.745	LIBETHENITE	Cu ₃ (PO ₄) ₂ ·Cu(OH) ₂	In C.T., yields H ₂ O and turns black. On coal with soda, gives Cu.
113 2.69Li	HAUERITE	MnS ₂	In C.T., gives a sublimate of sulfur. In O.T., gives SO ₂ .
114 1.728	SARCOPSIDITE	6(Fe,Mn,Ca)·2P ₂ O ₅ ·(Fe,Mn,Ca)F ₂	
115 2.13	AMPANGABEITE	(Y,Er,U,Ca,Th) ₂ (Cb,Ta,Fe,Ti) ₇ O ₁₈	Radio active. HCl solution is dark golden yellow
116 1.735	SICKLERITE	6MnO·Fe ₂ O ₃ ·4P ₂ O ₅ ·3(Li,H) ₂ O	Gives lithium flame.
117 1.754	LAMPROPHYLITE	SiO ₂ ·Ti·Fe,Mn,Na	
118 1.687	RIEBECKITE	Na ₂ O·Fe ₂ O ₃ ·FeO·5SiO ₂ ·H ₂ O	One of the amphiboles.
119 1.59	CRANDALLITE	CaO·2Al ₂ O ₃ ·P ₂ O ₅ ·6H ₂ O	Fibrous under the microscope.
120 1.658	VEZELEYITE	7(Cu,Zn)·8(OH)·(P,As) ₂ O ₅ ·9H ₂ O	
121 1.788	MESITITE	2MgCO ₃ ·FeCO ₃	B.B., blackens and becomes magnetic.
122 1.84	DUFRENITE	FePO ₄ ·Fe(OH) ₃	In C.T., blackens.
123 1.698	EUCHROITE	Cu ₃ (AsO ₄) ₂ ·Cu(OH) ₂ ·6H ₂ O	In C.T., gives water.
124 1.662	DICKINSONITE	3(Na ₂ ,K ₂ ,Li ₂ ,R'') ₃ ·(PO ₄) ₂ ·3H ₂ O	B.B., colors flame at first green then greenish yellow.
125	RIVIOTITE	Sb,Ag,Cu,CO ₂ ,etc	
126	PISTOMESITE	MgCO ₃ ·FeCO ₃	B.B., blackens and becomes magnetic.
127 1.73	ROSELITE	(Co,Ca,Mg) ₃ (AsO ₄) ₂ ·2H ₂ O	At 100° C, it is dark blue and splits up but regains its color on cooling.
128 2.05	CALCIO-VOLBORTHITE	Ca,Cu,V ₂ O ₅ ,etc.	Tests for vanadium and copper.
129 1.733	HEMATOLITE	(Al,Mn)AsO ₄ ·4Mn(OH) ₂	B.B., becomes first black then brown.
130 1.8	CRONSTEDTITE	4FeO·2Fe ₂ O ₃ ·3SiO ₂ ·4H ₂ O	In R.F., gives a magnetic black or gray globule.
131	SCHULZENITE	CuO·2CoO·Co ₂ O ₃ ·4H ₂ O	Treated with HCl, it yields chlorine.
132	HETEROGENITE	Co(ous)Co(ic)O	
133 1.582	CACOXENITE	2FePO ₄ ·2Fe(OH) ₃ ·9H ₂ O	Occurs in radiating tufts. Colors flame bluish green.
134 1.565	PINNOITE	MgO·B ₂ O ₃ ·3H ₂ O	B.B., fuses to a dense white mass.
135 1.81	WARWICKITE	6MgO·FeO·2TiO ₂ ·3B ₂ O ₃	Decomposed by H ₂ SO ₄ .
136 1.669	HARDYSTONITE	2CaO·ZnO·2SiO ₂	On coal, glows and yields a sublimate of ZnO.

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
137	3-3.5	3.55	1.5?	Olive grn, citron ylw	Ylwsh grn	P to V	Perf	M?
138	3-3.5	3.55	Lt gray-grn	Dist	M
139	3-3.5	3.43	3	Gelat	White	Fibrous	O?
140	3-3.5	3.37	White	Good	M
141	3	3.65-3.5	2?	Sol	Brwnsh to garnet red	Brick-red	V to G	Dist	Uneven	O
142	3	3.42	2	Sol	Wht tinged ylw	S to P	O?
143	3	3.72-3.43	Blksh to violet blk	Dark brown
144	3	3.4-3.1	Gray-black	Bronze
145	3	3.4-3.3	2.5-3	Dcpd	Bronze ylw	Golden	Sm, P	Perf	Brittle	O
146	3	3.36	2.5	Sol	Blue	Grnsh blue	V	H
147	3	3.58	Inf	Dcpd	Colorless	V	O
148	3	3.33	1	Dcpd	Rose-red	Basal	T
149	2.5-3	3.99	Fus	Colorless to transparent	P	Perf	Tr
150	2.5-3	3.5	3.5	Sol	Blue to grnsh blue	V to S	Good	O
151	2.5-3	3.54	Copper-red	Bronze-like	Perf
152	2-3	3.45	Fus	Sol	Ylw-grn	Perf	O
153	2.5	3.48	Easy	Sol	Black	Perf	M
154	2-2.5	3.6-3.4	3	Sol	Green	Paler	P, Sa	Traces	Brittle	M, T
155	2-2.5	3.6-3.53	Inf	Dcpd	Wht, gray, ylw	Shining	E, D	Perf	M?
156	2	3.64-3.54	Inf	Sol	Pale grn to blue	Same	P	Traces	M?
157	2	3.43	2	Sol	Emerald-green	Lighter green	V	Perf	Sectile	O
158	2	3.53	3?	Sol	Ylw-grn	P	Perf	O
159	1.5-2	3.49	1	Ins	Lemon-yellow	Paler	P, R	Perf	Flexible	M
160	1.5-2	3.56	1	Ins	Red to orange ylw	Orange to aurora red	R to G	Good	Small conch	M
161	1-2	3.88-3.52	2-3	Sol	Blk, ylwsh, brwn	Ylwsh, brwn	S	O
162	Soft	3.58	Green	O
163	?	3.63	Sol	Ylw, brwn	Good	Tr
164	?	3.58	Drk olive grn	Granular	

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
137 2.01	VOLBORTHITE	$6(\text{Cu},\text{Ca},\text{Ba})\text{O} \cdot \text{V}_2\text{O}_5 \cdot 15\text{H}_2\text{O}$	Gives a black bead which in the R.F., is blackish gray.
138 1.69	CHLORO- PHOENICITE	$10(\text{Mn},\text{Zn})\text{O} \cdot \text{As}_2\text{O}_5 \cdot 7\text{H}_2\text{O}$	Purplish in artificial light.
139 1.64	ROEBLINGITE	$7\text{CaO} \cdot 2\text{PbO} \cdot 6\text{SiO}_2 \cdot 2\text{SO}_3 \cdot 5\text{H}_2\text{O}$	With soda on coal, gives metallic lead and a lead coating.
140 1.672	MAGNESIUM CHLORO- PHOENICITE	$10(\text{Mg},\text{Mn})\text{O} \cdot \text{As}_2\text{O}_5 \cdot 7\text{H}_2\text{O}$	
141 1.88	HEMAFIBRITE	$6\text{MnO} \cdot \text{As}_2\text{O}_5 \cdot 5\text{H}_2\text{O}$	In C.T., darkens and yields neutral water.
142 1.709	SUSSEXITE	$\text{H}(\text{Mn},\text{Mg},\text{Zn})\text{BO}_3$	In C.T., darkens and yields neutral water.
143	WINKLERITE	$(\text{Co},\text{Ni})(\text{OH})?$	
144	BOODTITE	$5\text{Co}_2\text{O}_3 \cdot \text{CuO} \cdot \text{Fe}_2\text{O}_3 \cdot 11\text{H}_2\text{O}$	Occurs as friable masses.
145 1.705	ASTROPHYLLITE	$\text{Si},\text{Ti},\text{Al},\text{Fe},\text{Zn},\text{Mn}, \text{Mg},\text{Ca},\text{Na},\text{K}$	B.B., swells up and fuses to a black magnetic enamel.
146 1.724	CONNELLITE	Sulfo-chloride of copper	In C.T., gives abundant acid water.
147 1.734	GAGEITE	$8(\text{Mg},\text{Mn},\text{Zn})\text{O} \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	Transparent.
148 1.621	GILLESPITE	$\text{BaO} \cdot \text{FeO} \cdot 4\text{SiO}_2$	
149 1.773	MARGAROSANITE	$\text{PbO} \cdot 2(\text{Ca},\text{Mn})\text{O} \cdot \text{SiO}_2$	Lamellar. Difficultly fusible in O.F.; fuses at 2 in R.F.
150	LANGITE	$\text{CuSO}_4 \cdot 3\text{Cu}(\text{OH})_2 \cdot \text{H}_2\text{O}$	B.B., on heating, becomes bright green, olive green, then black.
151	CASWELLITE	$\text{CaO} \cdot \text{MgO} \cdot \text{Mn}_2\text{O}_3 \cdot \text{Fe}_2\text{O}_3 \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2$	An altered mica. Inelastic.
152 1.582	URANOSPINITE	$\text{Ca}(\text{UO}_3)_2 \cdot (\text{AsO}_4)_2 \cdot 8\text{H}_2\text{O}$	
153 1.96	MELANO- VANADITE	$2\text{CaO} \cdot 3\text{V}_2\text{O}_5 \cdot 2\text{V}_2\text{O}_4 \cdot n\text{H}_2\text{O}$	
154 1.592	TORBERNITE	$\text{CuO} \cdot 2\text{UO}_3 \cdot \text{P}_2\text{O}_5 \cdot 8\text{H}_2\text{O}$	In C.T., gives water. Glows under ultra-violet light.
155 1.736	HYDROZINCITE	$\text{ZnCO}_3 \cdot 2\text{Zn}(\text{OH})_2$	In C.T., yields water.
156 1.74	AURICHALCITE	$2(\text{Zn},\text{Cu})\text{CO}_3 \cdot 2(\text{Zn},\text{Cu})(\text{OH})_2$	In C.T., blackens and yields water.
157 1.713	GERHARDITE	$\text{Cu}(\text{NO}_3)_2 \cdot 3\text{Cu}(\text{OH})_2$	In C.T., gives nitrous fumes and acid water.
158 1.623	URANOCIRCITE	$\text{Ba}(\text{UO}_2)_2 \cdot (\text{PO}_4)_2 \cdot 8\text{H}_2\text{O}$	
159 2.81Li	ORPIMENT	As_2S_3	In C.T., gives a dark yellow sublimate. Soluble in caustic alkalies.
160 2.59Li	REALGAR	AsS	In C.T., a transparent red sublimate. Soluble in caustic alkalies.
161 1.898	ARSENIO- SIDERITE	$6\text{CaO} \cdot 3\text{Fe}_2\text{O}_3 \cdot 3\text{As}_2\text{O}_5 \cdot 6\text{H}_2\text{O}$	Red in splinters.
162 1.96	CHAPMANITE	$5\text{FeO} \cdot \text{Sb}_2\text{O}_5 \cdot 5\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	Lath shaped crystals.
163 1.875	PLUMBOJAROSITE	$3\text{Fe}_2\text{O}_3 \cdot \text{PbO} \cdot 4\text{SO}_3 \cdot 6\text{H}_2\text{O}$	
164	VARULITE	$\text{Na}_2\text{O} \cdot 5(\text{Mn},\text{Fe},\text{Ca})\text{O} \cdot 2\text{P}_2\text{O}_5$	

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
165?		3.57			Red-brown	Chocolate brown			Conch	O?
166?		3.39-3.27			Dark brown					
167?		3.33	2-3	Sol	Colorless		P, V			H
168?		3.42			Brown					M
169?		3.58			Black to brown	Red-brown	M	Good		Tr
170?		3.65			Yellow, brown		Brilliant	Good		H
171?		3.55			Black					
172?		3.33			Sky-blue					H
173?		3.37						Perf		M
174?		3.38			Brown					T
175?		3.48-3.44			Blk, bluish tinge					M

MINERAL IDENTIFICATION TABLES

GROUP 7
Specific Gravity 3.65-3.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
165 1.749	ALLODELPHITE	5MnO·2(Mn,Al) ₂ O ₃ ·As ₂ O ₃ ·SiO ₂ ·5H ₂ O?	
166	FERRI-SICKLERITE	12(Mn,Li ₂)O·5Fe ₂ O ₃ ·9P ₂ O ₅	
167 1.712	PALMIERITE	3(K,Na) ₂ O·4PbO·7SO ₃	Decomposed by boiling water.
168 1.694	GIRNARITE	Fe,Al,Ca,Mg,Na,SiO ₂	A member of the hastingsite group.
169	RHOENITE	(Ca,Na ₂ ,K ₂) ₃ Mg ₄ ,Fe ₂ ,Fe ₃ ,Al ₄ (Si,Ti) ₆ O ₃₀	Like acenigmatite but less alkalies and FeO and more (Fe,Al) ₂ O ₃ .
170 1.882	ARGENTIO-JAROSITE	Ag ₂ O·3Fe ₂ O ₃ ·4SO ₃ ·6H ₂ O	Minute micaceous scales.
171	METATRIPLITE	6MnO·3Fe ₂ O ₃ ·3P ₂ O ₅ ·2(Mn,Ca)F ₂ ·4H ₂ O	An alteration product of triplite.
172 1.75±	BUTTGEN-BACHITE	16CuO·2CuCl ₂ ·Cu(NO ₃) ₂ ·19H ₂ O	May be connellite.
173	FERRO-HASTINGSITE	Ca ₂ Na(Fe,Mg) ₄ ·(Al,Fe) ₃ Si ₁₆ O ₂₂ (OH) ₂	Amphibole group. Hastingsite rich in iron.
174	BERYLLOM-VESUVIANITE	2(Mg,Mn,Zn)O·6CaO·4BeO·Al ₂ O ₃ ·6SiO ₂	In slender crystals.
175	TAMARITE	Na,Fe amphibole	Similar to hastingsite.

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific gravity 3.32-3.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
1 10 2 9.5	3.29-3.15 3.1	Inf Inf	Ins Ins	Black Green to black	R to A M	None Poor Conch	I H
3 9	3.07	Inf	Pt sol	Colorless	Dist	H
4 8-8.5 5 7.5-8	3.09-3.08 3.0-2.97	4 Inf	Ins Ins	Pale to grnsh blue Colorless, rose, ylw, brwn	V to G V	Perf Dist	Uneven Conch	O R
6 7.5	3.2-3.16	Inf	Ins	Colorless, red, gray, grn, wht	Uncolored	V	Perf	Uneven to subconch	O
7 7.5	3.0	Inf	Ins	Bluish green	V	Good	O
8 7.5	3.1-3.05	5.5	Ins	Colorless, pale blue, grn, wht	Uncolored	V to P	Perf	Conch	M
9 7.5	3.23	Ins	Green	Good	M?
10 7-7.5	3.2-2.98	Fus	Ins	Blk, brwnsh to bluish blk, red, grn	Uncolored	V to R	Diff	Subconch to uneven	R
11 7-7.5	3.02-2.97	3.5	Ins	Colorless, wine ylw, whitsh, brwn	White	V to G	Poor	Subconch to uneven	O
12 7	3.0-2.9	2	Sol	Wht, gray, ylw, grn	White	V to A	Traces	Conch to uneven	O
13 7	3.36-3.26	Inf	Ins	Blue, rdsh, grnsh, violet	V	Dist	O
14 6.5-7.5	4.3-3.15	3-6	Ins	Red, brwn, ylw, wht, grn, blk	White	V to R	Varies	Subconch to uneven	I
15 6.5-7	3.2-3.13	3.5	Wht, ylw, grn, violet	White	V	Perf	Subconch to uneven	M
16 6.5-7	3.5-3.3	Inf	Ins	Pink to dark red, various shades	V to P	Perf	Conch	O
17 6.5-7	3.37-3.27	5-6	Gelat	Green, brwnsh	Uncolored	V	Dist	Conch	O
18 6.5-7	3.29-3.27	2-3	Ins	Gray, ylw, brwn, pinkish, blue	Uncolored	Glassy	Dist	Conch	Tr
19 6-7	3.3	5-6	Grnsb blk, blksb gray	Grysh, grnsh	Perf	M
20 6-7	3.33-3.21	Inf	Gelat	Wht, grnsh, ylwsh, bluish, gray	Uncolored	V	Dist	Subconch to uneven	O
21 6-7	3.5-3.25	3-4	Pt sol	Colorless, grn, red, gray, wht, etc.	Uncolored, grayish	V, P, R	Perf	Uneven	M
22 6-7	3.24-3.23	Inf	Ins	Brwn, grysh, grnsh, whtsh	Uncolored	V, Sa	Perf	Uneven	O
23 6-7	3.23	Inf	Ins	Colorless, gray	Perf	O
24 6.5	3.34-3.27	Inf	Ins	Colorless, blk, ylw, brwn	V	Good	O
25 6.5	3.312	Yellow	V	Prismatic
26 6.5	3.28	Inf	Ins	Colorless, pale yellow	V	None	Uneven	H
27 6.5	3.19	3.5	Ins	Brwn, gray, grn, blk	Wht, gray, grnsh	V to R	Good	Uneven to conch	M

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1.....	CARBONADO	C	Black diamond.
2 2.654Na	MOISSANITE	SiC	Found in meteorites; not depd by acids or aqua regia. Slowly depd by fused KOH.
3 1.719	BROMELLITE	BeO	Slowly soluble in HCl and HNO ₃ , more readily in conc H ₂ SO ₄ .
4 1.674	LAWSONITE	H ₄ CaAl ₂ Si ₂ O ₁₀	Yields water in C.T.
5 1.654	PHENACITE	2BeO·SiO ₂	B.B. with soda, gives a white enamel.
6 1.639	ANDALUSITE	Al ₂ O ₃ ·SiO ₂	With cobalt solution, gives a blue color after ignition.
7 1.636	GRANDIDIERITE	2Na ₂ O·8(Al,Fe,B) ₂ O ₃ ·4FeO·5SiO ₂	
8 1.656	EUCLASE	2BeO·Al ₂ O ₃ ·2SiO ₂ ·H ₂ O	B.B. in forceps, cracks and whitens, throws out points.
9 1.67	LOTRITE	4SiO ₂ ·2(Al,Fe) ₂ O ₃ ·3(Ca,Mg)O·2H ₂ O	
10 1.64±	TOURMALINE	B,Si of Fe,Al,Mg,Cr,Li,K,Na	With KHSO ₄ and CaF ₂ , gives a strong reaction for boron.
11 1.633	DANBURITE	CaO·B ₂ O ₃ ·2SiO ₂	In O.F., colors flame green. Phosphoresces.
12 1.667	BORACITE	6MgO·MgCl ₂ ·8B ₂ O ₃	Fuses with intumescence to a white pearl, colors flame green.
13 1.686	DUMORTIERITE	8Al ₂ O ₃ ·B ₂ O ₃ ·6SiO ₂ ·H ₂ O	Usually in fibrous and columnar aggregates.
14 1.8±	GARNET	3(Ca,Fe,Mn,Mg)O·(Al,Fe,Cr,Ti) ₂ O ₃ ·3SiO ₂	Most varieties fuse easily to a black or light brown slag.
15 1.666	SPODUMENE	Li ₂ O·Al ₂ O ₃ ·4SiO ₂	B.B., becomes white and opaque; swells up; colors flame purplish red.
16 1.722	DIASPORE	HAIO ₂	Brittle. Viewed on different cleavages, different colors are seen.
17 1.681	CHRYSOLITE	2(Mg,Fe)O·SiO ₂	An olivine.
18 1.685	AXINITE	6(Ca,Fe,Mn)O·2Al ₂ O ₃ ·8SiO ₂ ·H ₂ O	B.B., intumesces and imparts a green color to the flame.
19 1.73	OTTRELITE	(Fe,Mn)O·Al ₂ O ₃ ·2SiO ₂ ·H ₂ O	Yields water in C.T. Decomposed by H ₂ SO ₄ .
20 1.661	FORSTERITE	MgSiO ₄	In C.T., gives traces of water and becomes colorless.
21 1.742	EPIDOTE	4CaO·3(Al,Fe) ₂ O ₃ ·6SiO ₂ ·H ₂ O	In C.T., gives water on strong ignition.
22 1.66	SILLIMANITE	Al ₂ SiO ₅	With cobalt solution, gives a blue color after ignition.
23 1.642	MULLITE	3Al ₂ O ₃ ·2SiO ₂	
24 1.676	KORNERUPINE	MgO·Al ₂ O ₃ ·SiO ₂	Bright blue when treated with cobalt solution and heated.
25 1.629	TIRODITE	Mg,Mn,SnO ₂	Amphibole group.
26 1.64	JEREMEJEVITE	Al ₂ B ₂ O ₆	B.B. in forceps, loses transparency, becomes white and colors flame green.
27 1.704	AUGITE	CaO·3(Fe,Mg)O·Al ₂ O ₃ ·4SiO ₃	An aluminous pyroxene.

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
28	6.5	3.27	Green	Perf	M
29	6.5	3.11	5-6	Sol in H ₂ SO ₄	Perf	O
30	6.5	3.22	Green	Good	O
31	6.5	3.13	Colorless, light yellow	None	R
32	6.5	3.18	4-5	Gelat	Lt grn, wht, dull	Wht, grayish	R to V	Perf	T
33	6.5	3.05	5-6	Ins	Wht inclining to grysh blue	V, P	Dist	Uneven	M
34	6.5	3.312	Honey-yellow	Prismatic
35	6.5	3.21	3	Ins	Pale grn, brwn	Perf	M
36	6-6.5	3.37-3.25	3-4	Ins	Ylw, wht, grn, red, brwn	Uncolored	V to P	Perf	Uneven to subconch	O
37	6-6.5	3.36-3.16	3-4.5	Gelat	Ylw, brwn, grn	Uncolored	V to P	Traces	Uneven to conch	I
38	6-6.5	3.2-3.1	Inf	Gelat	Ylw, wht, brwn	V to R	Perf	Subconch to uneven	O
39	6-6.5	3.2-3.1	Inf	Gelat	Ylw, red, grn	V	Poor	Subconch	M
40	6-6.5	3.2-3.1	Inf	Gelat	Ylw to rdsh brwn	V	Poor	Subconch	M
41	6-6.5	3.11-3.04	3-4	Ins	Blue to bluish blk, grayish	Grayish blue	V to P	Perf	Conch to uneven	M
42	5.5-6.5	3.0	5-6	Pt sol	Pale pink to brwn	P to V	Perf	M
43	6	3.09-3.01	2	Sol	Wht, grnsh, brwn, bluish, ylw	Wht	P, V, G	Perf	Uneven to subconch	Tr
44	6	3.0	2	White	Perf	Tr
45	6	3.2-3.0	4	Ins	Green	Uncolored	V, P, S	Perf	Uneven to subconch	M
46	6	3.03	3	Sol	Rose to flesh red	White	V	Perf	Tr
47	6	3.14	Dcpd	Ylw-brwn, brwn, etc.	O
48	6	3.18	Colorless	V, P	Perf	Conch	O
49	6	3.04	6	Gelat	Colorless	Imperf	T
50	6	3.25	Fus	Ins	Gray-brown	Perf	M
51	6	3.1	Inf	Gelat	Ylw to rdsh brwn	Poor	M
52	6	3.12-3.04	Brwn to wht	A
53	6	3.05	Inf	Sol	Colorless, pale yellow	None	Brittle	I
54	6	3.3	Pt sol	Pale pink	V	Perf	Conch to uneven	Tr
55	6	3.15	Fus	Gelat	Pale grn to colorless	V	Good	M
56	6	3.09	Wht, gray, grn, brwn	Perf	M

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
28 1.674	DIOPSIDE- JADEITE	$\text{Na}_2\text{O} \cdot \text{CaO} \cdot \text{MgO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2$	
29 1.653	KOTOITE	$\text{Mg}_3\text{B}_2\text{O}_6$	Lemellar twinning and parting. From Suan, Korea.
30 1.671	VIRIDINE	$(\text{Al},\text{Fe}-\text{Mn})_2\text{O}_3 \cdot \text{SiO}_2$	Green variety of andalusite.
31 1.675	PLAZOLITE	$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2(\text{SiO}_2,\text{CO}_2) \cdot 2\text{H}_2\text{O}$	
32 1.691	FUGGERITE	$(\text{Ca},\text{Na}_2)(\text{Al},\text{Mg}) (\text{Al},\text{Si})_2\text{O}_7$	Close to gehlenite.
33 1.661	LEUCOSPHENITE	$\text{Na}_4\text{Ba}(\text{TiO}_2)(\text{Si}_2\text{O}_5)_5$	B.B., decrepitates and fuses to a dark glass.
34 1.639	TIRODITE	$\text{SiO}_2 \cdot (\text{Al},\text{Fe})_2\text{O}_3 \cdot (\text{Fe},\text{Mn},\text{Mg},\text{Ca},\text{Na}_2, \text{K}_2\text{H}_2)\text{O}$	Basal parting. Differs from dannemorite and richterite in containing more Mg and has higher optical properties.
35 1.717	CLINOZOISITE	$4\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{H}_2\text{O}$	
36 1.703	ZOISITE	$4\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{H}_2\text{O}$	In C.T., gives off water when heated strongly.
37 1.739	HELVITE	$3(\text{Fe},\text{Mn})\text{O} \cdot \text{MnS}, 3\text{BeO} \cdot 3\text{SiO}_2$	Looks very much like garnet. Treated with HCl, gives off H_2S .
38 1.632	HUMITE	SiO_2 of Mg and Fe with F	Treated with KHSO_4 in C.T., gives reactions for fluorine.
39 1.62	CHONDRODITE	$4\text{MgO} \cdot 2\text{SiO}_2 \cdot \text{Mg}(\text{F},\text{OH})_2$	As humite.
40 1.636	CLINOHUMITE	As humite	As humite.
41 1.638	GLAUCOPHANE	$\text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 2(\text{Mg},\text{Fe})\text{O} \cdot 2\text{SiO}_2$	
42 1.625	EPHESITE	$(\text{Na},\text{Ca},\text{Li})_2\text{Al}_4 \cdot \text{Si}_2\text{O}_1(\text{O},\text{OH},\text{F})_2$	In C.T., yields water.
43 1.623	AMBLYGONITE	$\text{LiF} \cdot \text{AlPO}_4$	In C.T., yields water; at high temperatures it is acid and corrodes the glass.
44 1.611	MONTEBRASITE	$\text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 2\text{Li}(\text{OH},\text{F})$	A variety of amblygonite. Soluble in H_2SO_4 .
45 1.627	ACTINOLITE	$\text{CaO} \cdot 3(\text{Mg},\text{Fe})\text{O} \cdot 4\text{SiO}_2$	One of the amphiboles.
46 1.636	INESITE	$2(\text{Ca},\text{Mn})\text{O} \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	In C.T., gives off water and turns brown.
47 1.567	NORBERGITE	$3\text{MgO} \cdot \text{SiO}_2 \cdot \text{H}_2\text{O} + \text{F}$	Member of the humite family.
48 1.613	STOKESITE	$\text{CaO} \cdot \text{SnO}_2 \cdot 3\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	
49 1.669	VELARDENITE	$2\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2$	A member of the melilite group.
50 1.65	CUMMING-STONITE	$7(\text{Mg},\text{Fe})\text{O} \cdot 8\text{SiO}_2 \cdot \text{H}_2\text{O}$	One of the amphibole group. Between 50-70% MgSiO_3 .
51 1.67	TITANOHYDRO- CLINOHUMITE	$8\text{MgO} \cdot 4\text{SiO}_2$ and $\text{TiO}_2 \cdot \text{Mg}(\text{OH})_2$	
52 1.625	GEOCEIXITE	$(\text{Ba},\text{Ca},\text{Ce})\text{O} \cdot 2\text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 5\text{H}_2\text{O}$	Alunite group.
53 1.67	HIBSCHITE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot \text{H}_2\text{O}$	Yields water freely.
54 1.674	BUSTAMITE	$\text{MnO} \cdot \text{CaO} \cdot 2\text{SiO}_2$	A form of rhodonite.
55 1.711	MERWINITE	$\text{MgO} \cdot 3\text{CaO} \cdot 2\text{SiO}_2$	
56 1.619	EDENITE	$8\text{CaO} \cdot 2\text{Na}_2\text{O} \cdot 18\text{MgO} \cdot 4\text{Al}_2\text{O}_3 \cdot 26\text{SiO}_2 \cdot \text{H}_2\text{O} \cdot 3\text{F}_2$	One of the amphibole group. Resembles anthophyllite and tremolite.

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
57.6	3.16	Fus	Ins	Bluish black	Perf	M
58.6	3.04	Fus	Brwn, ylw, red	Perf	M
59.6	3.15	Green	Perf	M
60.6	3.1	3-4	Ins	Shades of brwn	Perf	O
61.5.5-6	3.2-3.1	5-6	Ins	Gray, grn, brwn	Uncolored to brwnsh	V to P	Perf	O
62.5.5-6	3.27	3?	Gelat	Ylw, brwn	V to G	Indist	Brittle	Tr
63.5.5-6	3.07-2.9	5-7	Gelat	Lt grn, wht, brwn	Wht, graysh	R to V	Imperf	Uneven, splintery	T
64.5-6	3.4-2.9	2-4	Ins	Blk, wht, grn	Uncolored	V to P	Perf	Subconch to uneven	M
65.5-6	3.47-3.05	Ins	Black	V to P	Perf	Subconch to uneven	M
66.5-6	3.3	Easy	Sol	Orange, gray	V	Perf	Uneven	M
67.5-6	3.38-3.2	4	Ins	Colorless, grnsh, grn, blk	V	Perf	Uneven to conch	M
68.5-6	3.6-3.2	4-7	Ins	Usually grn, but varying in color	Wht to grnsh	V to R	Poor	Uneven to conch	M
69.5-6	3.12-3.06	Inf	Ins	Blue	White	V	Indist	Uneven	M
70.5-6	3.08	4	Dcpd	Pale ylw	None
71.5-6	3.23	2.5	Ins	Black	Cinnamon brwn	V	Dist	Conch	M
72.5.5	3.3-3.1	6	Ins	Wht, grn, brwn	Uncolored, gray	P to V	Perf	Uneven	O
73.5.5	3.04	Easy	Sol	Grysh wht to wht	V to G	Dist	M
74.5.5	3.23	Colorless	Imperf	T
75.5.5	3.05	Sol	Colorless	V	Small conch	O
76.5.5	3.9-3.3	Ins	Lt to drk brwn	Perf	Uneven	M
77.5.5	3.09	Inf	Colorless	O
78.5.5	3.05	Fus	Ins	Ylwsh wht	P	Good	H
79.5.5	3.2	Bluish grn	Perf	M
80.5-5.5	3.35-3.03	6	Sol	Wht, colorless, different shades	Uncolored	V to R	Dist	Subconch to uneven	O
81.5-5.5	3.1-2.91	2.5	Gelat	Pale pink, red, brown	Uncolored	V	Dist	Subconch, splintery	R
82.5-5.5	4.3-3.3	6	Sol	Ylw, red, brwn, blk	Brwnsh to ochre ylw	A, D, S	Perf	Uneven	O
83.5-5.5	3.07-2.98	4	Sol	Colorless, red, ylw, wht	Wht	V	Imperf	Uneven to splintery	M

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
57 1.67	CROSSITE	$\text{Na}_2\text{O} \cdot 4(\text{Mg},\text{Fe})\text{O} \cdot (\text{Fe},\text{Al})_2\text{O}_3 \cdot 8\text{SiO}_2$	An amphibole intermediate between glaucophane and riebeckite.
58 1.629	RICHTERITE	$\text{Ca}_2\text{Na}_2(\text{Mg},\text{Mn})_{10}\text{Si}_{16}\text{O}_{44}(\text{OH})_4$	An amphibole.
59 1.631	HASTINGSITE	$\text{Na}_2\text{O} \cdot 3(\text{Al},\text{Fe})_2\text{O}_3 \cdot 30\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	A group of amphiboles low in SiO_2 .
60 1.636	GEDRITE	$(\text{Mg},\text{Fe},\text{Al})_7(\text{Al},\text{Si})_8\text{O}_{22}(\text{OH})_2$	See anthophyllite. A variety of amphibole.
61 1.638	ANTHOPHYLLITE	$(\text{Mg},\text{Fe})_8\text{O} \cdot \text{SiO}_2$	One of the amphiboles.
62 1.658	HIORTDAHLITE	$(\text{Na}_2,\text{Ca})\text{O} \cdot (\text{Zr},\text{Si})\text{O}$	B.B., fuses to a yellowish white enamel.
63 1.691	GEHLENITE	$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$	B.B., with borax, fuses slowly to a glass colored by iron.
64 1.7	AMPHIBOLE	$\text{RO} \cdot (\text{Na}_2\text{K}_2\text{H}_2)\text{O} \cdot \text{R}_2\text{O}_3 \cdot 2\text{SiO}_2$	B.B., tests variously with different members of the group.
65 1.67	HORNBLENDE	As Amphibole	A common member of the amphibole group.
66 1.687	ROSENBUSCHITE	$2\text{Na}_2\text{O} \cdot 6\text{CaO} \cdot 7\text{SiO}_2 \cdot \text{ZrO}_2 \cdot 2\text{TiO}_2$.
67 1.671	DIOPSIDE	$\text{CaO} \cdot \text{MgO} \cdot 2\text{SiO}_2$	One of the pyroxenes.
68 1.68	PYROXENE	$\text{Ca},\text{Mg},\text{Fe},\text{Si},\text{etc.}$	B.B., varies with different members.
69 1.634	LAZULITE	$(\text{Fe},\text{Mg})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot \text{H}_2\text{O}$	In C.T., whitens and yields water.
70	CIRROLITE (KIRROLITE)	$\text{Ca}_3(\text{PO}_4)_2 \cdot \text{AlPO}_4 \cdot \text{Al}(\text{OH})_3$	B.B., fuses to a white enamel.
71 1.699	NEPTUNITE	$(\text{Na},\text{K})_2\text{O} \cdot (\text{Fe},\text{Mn})\text{O} \cdot \text{TiO}_2 \cdot \text{SiO}_2$	Deep red in splinters.
72 1.653	ENSTATITE	$(\text{Mg},\text{Fe})\text{O} \cdot \text{SiO}_2$	One of the pyroxenes.
73 1.603	FREMONTITE	$\text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot \text{H}_2\text{O}$	In C.T., gives water.
74 1.67	IRON-AKERMANNITE	$2\text{CaO} \cdot \text{FeO} \cdot 2\text{SiO}_2$	Melilite group.
75 1.68	HARSTIGITE	$6\text{CaO} \cdot 2\text{MnO} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	Treated with HCl, it yields chlorine.
76 1.683	ZINC SCHEFFERITE	$(\text{Mg},\text{Mn},\text{Zn})\text{O} \cdot \text{CaO} \cdot 2\text{SiO}_2$	A pyroxene.
77 1.554	GROTHINE	SiO_2 of Al,Ca,Fe	B.B., becomes white. Dcpd by H_2SO_4 . Small tabular crystals.
78 1.652	BITYITE	SiO_2 of Ca,Al with H_2O	.
79 1.718	PUMPELLYITE	$\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot 7\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	In minute fibers and narrow plates.
80 1.662	MONTICELLITE	$\text{CaO} \cdot \text{MgO} \cdot \text{SiO}_2$	Gelatinizes on evaporation with HCl.
81 1.606	EUDIALYTE	$6\text{Na}_2\text{O} \cdot 6(\text{Ca},\text{Fe})\text{O} \cdot 20(\text{Si},\text{Zr})\text{O}_2 \cdot \text{NaCl}$	Fuses to a light green, opaque glass. In C.T., yields water.
82 2.393	GOETHITE	HFeO_2	Brittle. Moistened with H_2SO_4 , some varieties impart a bluish green color to the flame.
83 1.57	WAGNERITE [*]	$\text{Mg}_3(\text{PO}_4)_2 \cdot \text{MgF}_2$	B.B., gives a greenish gray glass; with H_2SO_4 , colors the flame bluish green.

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
84	5-5.5	3.02-3.0	Fus	Ins	Ylw, red, blk	V	Dist	Brittle	T
85	5-5.5	3.0-2.9	2	Gelat	Wht, gray, grn, ylw, red	White	V	Conch to uneven	M
86	5-5.5	3.13-2.97	Lt red to brwn	V	Perf	Uneven	Tr
87	5	3.35-3.28	Inf	Gelat	Emerald green	Green	V	Perf	Conch to uneven	R
88	5	3.3	6	Pt sol	Ylw, brwn, red	Colorless, rdsh	V to A	Perf	R
89	5	3.26	4	Ins	Ylwsh, wht	Perf	T
90	5	3.1	2.5	Gelat	Colorless, brwn, red, etc	Uncolored	V	Poor	Subconch, splintery	R
91	5	3.15-2.97	4-5	Ins	Colorless	V	Perf	Conch	T
92	5	3.1-2.9	4	Ins	Colorless, wht, gray	Uncolored	V to P	Perf	Subconch to uneven	M
93	5	3.1-2.9	3	Wht, ylw, brwn, rdsh	V to R	Dist	Conch to uneven	T
94	5	3.14-3.10	Colorless	V, Sr	None	Subconch to uneven	R
95	5	3.05	Inf	Sol	Pale, ylwsh wht	R	None	H
96	5	3.2	Dark blue	M
97	5	3.2-3.18	3	Sol	Orange, red, violet, nearly colorless	White	V to G	Good	M
98	5	3.01-2.99	Diff	Sol	Ylwsh to grnsh	V, Sr	Poor	Subconch	O
99	5	3.23	5.5	Gelat	Pale rose red, yellow	Imperf	H
100	5	3.05	Sol	Colorless, ylw	Perf
101	5	3.2	5	Sol	Colorless, grn, blue, ylw, red, etc	White	V	Imperf	Conch to uneven	H
102	5	3.28	4-5?	Sol	Gray with tinge of violet	R, V	Perf	M
103	5	3.18	Wine to honey ylw, colorless	A to V	Fair	Brittle	Tr
104	5	3.2	5	Sol	Colorless, grn, blue, ylw, red, etc	White	V	Imperf	Conch to uneven	H
105	5	3.32	Fus	Sol	Brown	Conch
106	5	3.05	2	Sol	Colorless, ylw, grayish, grnsh	Perf	H?
107	5	3.05	5-6	Sol	Dark brown	Imperf	O
108	5	3.12	3	Gelat	Colorless	Fair	T
109	5	3.0	Inf	Ins	Leek to dark grn	Perf	Brittle	M

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
84 1.613	MELIPHANITE	$2\text{CaO}\cdot 2\text{BeO}\cdot 3\text{SiO}_2\cdot \text{NaF}$	B.B., like leucophanite but does not phosphoresce.
85 1.654	DATOLITE	$2\text{CaO}\cdot \text{B}_2\text{O}_5\cdot 2\text{SiO}_2\cdot \text{H}_2\text{O}$	In C.T., yields water.
86 1.636	SCHIZOLITE	$\text{Na}_2\text{O}\cdot 4(\text{Ca},\text{Mn})\text{O}\cdot 6\text{SiO}_2\cdot \text{H}_2\text{O}$	
87 1.654	DIOPTASE	$\text{CuSiO}_3\cdot \text{H}_2\text{O}$	In C.T., blackens and yields water.
88 1.626	SVANBERGITE	$\text{Na}_2\text{O}\cdot \text{CaO}\cdot \text{Al}_2\text{O}_3\cdot \text{SO}_3\cdot \text{P}_2\text{O}_5$	In C.T., yields acid water.
89 1.635	GOYAZITE	$3\text{CaO}\cdot 5\text{Al}_2\text{O}_3\cdot \text{P}_2\text{O}_5\cdot 9\text{H}_2\text{O}$	In C.T., gives off water and turns white and opaque.
90 1.621	EUCOLITE	$6\text{Na}_2\text{O}\cdot 6(\text{Ca},\text{Fe})\text{O}\cdot 20(\text{Si},\text{Zr})\text{O}_2\cdot \text{NaCl}$	In C.T., gives off water. B.B., yields a light green, opaque glass; colors flame yellow.
91 1.378	SELLAITE	MgF_2	Treated with conc H_2SO_4 , it yields HF and etches the glass.
92 1.616	TREMOLITE	$2\text{CaO}\cdot 5\text{MgO}\cdot 8\text{SiO}_2\cdot \text{H}_2\text{O}$	One of the amphiboles.
93 1.632	MELLILITE	$\text{Na}_2\text{O}\cdot 11(\text{Ca},\text{Mg})\text{O}\cdot 2(\text{Al},\text{Fe})_2\text{O}_3\cdot 9\text{SiO}_2$	B.B., fuses to a grnsh or yellowish glass.
94 1.629	WHITLOCKITE	$\text{Ca}_3(\text{PO}_4)_2$	
95 1.635	DAHLLITE	$2\text{Ca}_3(\text{PO}_4)_2\cdot \text{CaCO}_3\cdot \frac{1}{2}\text{H}_2\text{O}$	With HCl, gives off CO_2 .
96	TORENDRICKITE	$\text{Na}_2\text{O}\cdot 4\text{MgO}\cdot \text{CaO}\cdot \text{FeO}\cdot \text{Fe}_2\text{O}_3\cdot 10\text{SiO}_2$	An amphibole intermediate between glaucophane and reibekite.
97 1.654	HUREAULITE	$5\text{MnO}\cdot 2\text{P}_2\text{O}_5\cdot 5\text{H}_2\text{O}$	Fuses to a pearl that changes color with flaming; green flame.
98 1.612	HERDERITE	$\text{Ca}(\text{F},\text{OH})_2\cdot \text{CaO}\cdot 2\text{BeO}\cdot \text{P}_2\text{O}_5$	B.B., phosphoresces with an orange light.
99 1.655	WILKEITE	$20\text{CaO}\cdot 3\text{P}_2\text{O}_5\cdot \text{CO}_2\cdot 3\text{SiO}_2\cdot 3\text{SO}_3$	Tests for SO_3 , P_2O_5 and CO_2 .
100 1.624	LEWISTONITE	$15\text{CaO}\cdot (\text{Na},\text{K})_2\text{O}\cdot 4\text{P}_2\text{O}_5\cdot 8\text{H}_2\text{O}$	
101 1.633±	FLUORAPATITE	$9\text{CaO}\cdot 3\text{P}_2\text{O}_5\cdot \text{CaF}_2$	Moistened with H_2SO_4 , it colors the flame green.
102 1.66	TILASITE (FLUORADELITE)	$2\text{CaO}\cdot \text{MgO}\cdot \text{As}_2\text{O}_3\cdot \text{MgF}_2$	
103 1.7±	HAINITE	SiO_2 of Na, Ca, Ti and Zr	
104 1.667	CHLORAPATITE	$9\text{CaO}\cdot 3\text{P}_2\text{O}_5\cdot \text{CaCl}_2$	Moistened with H_2SO_4 , it colors the flame green.
105 1.653	LOVCHORRITE	$\text{Fe}_2\text{O}_3\cdot \text{MgO}\cdot \text{CaO}\cdot \text{MnO}\cdot \text{SiO}_2\cdot \text{TiO}_2\cdot \text{ZnO}_2$	
106 1.622	DEHRNITE	$7\text{CaO}\cdot (\text{Na},\text{K})_2\text{O}\cdot 2\text{P}_2\text{O}_5\cdot \text{H}_2\text{O}$	May be a member of the apatite group.
107 1.776	ORIENTITE	$4\text{CaO}\cdot 2\text{Mn}_2\text{O}_3\cdot 5\text{SiO}_2\cdot 4\text{H}_2\text{O}$	
108 1.633	AKERMANITE	$\text{MgO}\cdot 2\text{CaO}\cdot \text{SiO}_2$	A form of melilite.
109 1.66	BRANDISITE	$12(\text{Mg},\text{Ca})\text{O}\cdot 6(\text{Al},\text{Fe})_2\text{O}_5\cdot 5\text{SiO}_2\cdot 4\text{H}_2\text{O}$	In C.T., yields water. See seybertite.

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
110	5	3.01	Inf	Sol	Colorless, gray, bluish, ylw	V to R	Good	Uneven, splintery	M
111	5	3.08	Colorless, ylw	H
112	5	3.14-3.11	4	Sol	Rose, pink, ylw	V, Sr, G	Good	Conch to uneven	O
113	4.5-5	3.24-3.18	4	Sol	Ylwsh, wht, brwnsh	Whtsh, brwnsh	V to R	Imperf	Uneven	O
114	4-5.5	3.23-3.17	5-5.5	Sol	Wht, grn, blue, ylw, etc	White	V to R	Imperf	Conch to uneven	H
115	4.5-5	3.21	Flesh-red, ylw, white	Non- metallic	H
116	4-5.5	4.3-2.7	Inf	Sol	Brwn to nearly blk, ylw	Ylwsh brwn to rdsh	S, Sm, E	Conch to uneven
117	4-5	3.09	Inf	Ins	Leek green	V, P	Perf	Brittle	M
118	4-5	3.07	4	Dcpd	Pink, rose-red	Pale rose	Perf	R
119	4-5	3.16	Sol	Wht, ylw, pale grn
120	4-5	3.1-3.0	Inf	Sol	Rdsh brwn, copper- red	Uncolored	P, Sm	Perf	Brittle	M
121	4.5	3.23	4	Sol	Colorless, yellow tint	P, G, R	Perf	R
122	4.5	3.04
123	4.5	3.11	4-4.5	Sol	Siskin green	Pale green	V	Good	Tr
124	4.5	3.01	Sol	Colorless, flesh colored	V to P	Basal	H, R
125	4.5	3.1	Easy	Sol in HNO ₃	H
126	4.5	3.19	Yellowish brwn	Poor	M
127	4.5	3.32	Pt sol	White	Perf
128	4-4.5	3.19-3.06	3	Dcpd	Gray, grn, brwn	Paler	P	Perf	Uneven	R
129	3.5-4.5	3.12-3.0	Inf	Sol	Grysh, wht, ylwsh, brwnsh	V, S	Perf	Flat conch	R
130	3.5-4.5	3.08-2.99	Diff	Pt sol	Gray, rdsh, pink, white, ylwsh	P, V	Perf	Brittle	M
131	4	3.25-3.01	1.5	Pt sol	Wht, ylw, grn, red, purple, blue	White	V	Perf	Conch	I
132	4	3.03-2.93	2.5-3	Dcpd	Rdsh brwn	Pale ylw or grysh brwn	V, G, R	Dist	M?
133	4	3.3-3.2	3?	Ins	Blue, green	Blue, green	S	Pris	M
134	4	3.0	White, bluish	Good	O?
135	4	3.01	Inf	Sol	White	Dist	O
136	4	3.22	Black	Pitchy

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
110 1.674	SPURRITE	5CaO·CO ₂ ·2SiO ₂	B.B., gives a strong calcium light.
111 1.63	PODOLITE	10CaO·3P ₂ O ₅ ·CO ₂	
112 1.66	EOSPHORITE	2(Mn,Fe)O·Al ₂ O ₃ ·P ₂ O ₅ ·4H ₂ O	In C.T., gives water. In forceps B.B., whitens and sprouts.
113 1.678	CHILDRENITE	(Mn,Fe)(OH) ₂ ·AlPO ₄ ·H ₂ O	In C.T., gives H ₂ O. On coal, turns black and becomes magnetic.
114 1.66±	APATITE	3Ca ₅ (PO ₄) ₃ ·Ca(F,Cl) ₂	Moistened with H ₂ SO ₄ , it colors the flame bluish green.
115	HARTITE	(Sr,Ca)O·2Al ₂ O ₃ ·P ₂ O ₅ ·SO ₃ ·5H ₂ O	
116 2.06±	LIMONITE	HFeO ₂ ·nH ₂ O	Usually in stalactitic, botryoidal or mammillary form.
117 1.66	XANTHOPHYLLITE	14(Ca,Mg)O·8Al ₂ O ₃ ·5SiO ₂ ·H ₂ O	A rare green mica.
118 1.65	FRIEDELITE	II ₇ (Mn,Cl)Mn ₄ ·4SiO ₂	B.B., fuses to a black glass.
119 1.678	IRON REDDINGITE	9(Fe,Ca,Mg,Mn)O·4P ₂ O ₅ ·3H ₂ O+F	
120 1.657	SEYBERTITE	10(Mg,Ca)O·5Al ₂ O ₃ ·4SiO ₂ ·3H ₂ O	Occurs in foliated, micaceous masses.
121	HAMLINITE	PO ₄ of Al and Ba with H ₂ O and F	In C.T., gives much water and HF which etches the glass.
122	QUERCYITE	6CaO·2P ₂ O ₅ ·2CaO·2CO ₃ ·CaF ₂	
123 1.84	CHALCOSIDERITE	CuO·3Fe ₂ O ₃ ·2P ₂ O ₅ ·8H ₂ O	
124 1.636	WOODHOUSEITE	2CaO·3Al ₂ O ₃ ·P ₂ O ₅ ·2SiO ₃ ·6H ₂ O	In C.T., gives water. Champion silimanite mine, White Mts., Calif.
125 1.625	FRANCOLITE	10CaO·3P ₂ O ₅ ·CaF ₂ ·CO ₂ ·H ₂ O	A member of the apatite group.
126 1.676	AKROCHORDITE	4MnO·MgO·As ₂ O ₅ ·6H ₂ O	
127 1.62	TIKHNINITE	2SrO·3Al ₂ O ₃ ·P ₂ O ₅ ·SO ₃ ·6H ₂ O	In C.T., yields water.
128 1.675	PYROSMALITE	9(Fe,Mn)O·8SiO ₂ ·FeCl ₂ ·7H ₂ O	In C.T., yields acid water.
129 1.7	MAGNESITE	MgCO ₃	With HCl, gives CO ₂ but reacts much slower than Calcite.
130 1.643	MARGARITE	CaO·2Al ₂ O ₃ ·2SiO ₂ ·H ₂ O	In CT., yields water.
131 1.434	FLUORITE	CaF ₂	In CT., decrepitates and phosphoresces. Decomposed by H ₂ OS ₄ with liberation of HF.
132 1.649	MOSANDRITE	CaO·Ce ₂ O ₃ ·TiO ₂ ·SiO ₂ , etc	Treated with HCl and heated, it yields chlorine.
133 1.69±	CROCIDOLITE	NaFe(SiO ₃) ₂ ·FeSiO ₃	B.B., fuses to a black magnetic mass. Fibrous like asbestos.
134 1.675	LISKEARDITE	(Al,Fe)AsO ₄ ·2(Al,Fe)(OH) ₃ ·5H ₂ O	
135 1.695	TARNOWITZITE	(Ca,Pb)O·CO ₂	Aragonite containing lead.
136	BELDONGRITE	6Mn ₂ O ₃ ·Fe ₂ O ₃ ·8H ₂ O	Looks like lead.

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
137 4	3.13	Pale ylw, grn, wht	V to R	Good	M
138 4	3.13	Easy	Sol	Pale yellow	Dist	O
139 4	3.2	2	Blue-grn to blue	Perf	O
140 4	3.29	3	Sol	Brwnsh grn	Ylwsh grn	V, R, G	Dist	M
141 3.5-4	3.1-2.95	Inf	Sol	Wht, gray, rdsh	V, P	Perf	R
142 3.5-4	3.4-3.2	2.5	Sol	Shades of green	Siskin grn	S	Indist	O
143 3.5-4	3.3-3.1	2-2.5	Sol	Leek grn, brwn	White	V, Sa, Sr	Imperf	Uneven	O
144 3.5-4	3.31	Easy	Sol	Colorless	Perf	Tr
145 3-4	3.12	2-2.5	Sol	Bright green	Grnsh wht	V	Perf	M
146 3-4	3.0	Fus	Pt sol	Wht, ylw	White
147 3-4	3.08	Sol	Colorless to pale green	Perf	M
148 3-4	3.37-3.27	3	Sol	Yellowish	V	Even	T
149 3.5	3.15-3.07	4-4.5	Sol	Wht, grn, ylw	White	P, Sa	Perf	Uneven	Tr
150 3.5	3.13	Black	V	Conch
151 3.5	3.3±
152 3.5	3.07	Fus	Pitch black	Brwnsh blk	Conch
153 3.5	3.09	Drk bluish grn	M
154 3.5	3.4-3.3	Inf	Sol	Brown, red	Chocolate brown	V, G	Perf	Uneven	R
155 3.5	3.09	Easy	Sol	Honey ylw to brwn	M
156 3.5	3.3	Inf	Sol	Colorless	Perf	I
157 3-3.5	3.14	6	Sol	Gray tinted red	White	V, P	Perf	Conch	M
158 3-3.5	3.0	Colorless, brwnsh	Perf	Tr
159 3-3.5	3.1	2.5-3	Sol	Pink, ylwsh, red, brwn	V, Sr	Dist	Uneven	O
160 3-3.5	3.25-3.0	Sol	Yellow	Yellow	P	Perf	H
161 2.5-3.5	3.26-3.15	4.5	Sol	Ochre ylw, brwn	Yellow	V, Sa	Dist	Uneven	R
162 3	3.2-3.0	4.5-5	Gelat	Red, brwnsh, blk, green	Grayish green	A, V	Perf	Brittle	M
163 3	3.0-2.5	Diff	Dcpd	Blk, brwnsh blk	Ylwsh brwn	G, V	Conch
164 3	3.0-2.93	1.5	Wht, colorless	V	Indist	Uneven	M
165 3	3.2	4.5	Sol	Yellow, brwn	Dist	H
166 3	3.16	3	Sol	Colorless, wht	V	Perf	T

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
137 1.554	LECROIXITE	$2(\text{Na}_2\text{F} \cdot \text{OH}) \cdot 2(\text{Mn}, \text{Ca})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot \text{H}_2\text{O}$	
138 1.663	SEAMANITE	$3\text{MnO} \cdot (\text{B}, \text{P})_2\text{O}_5 \cdot 3\text{H}_2\text{O}$	Crystals striated. Close to reddingite.
139	SAMPLEITE	$\text{Na}_2\text{Ca}_2\text{Cu}_6(\text{PO}_4)_4 \cdot \text{Cl} \cdot 5\text{H}_2\text{O}$	B.B., a black glass and green flame.
140 1.666	JOHNSTRUPITE	$\text{Na}_2\text{O} \cdot (\text{Ti}, \text{Zr})\text{O}_2 \cdot 3\text{CaO} \cdot 5\text{SiO}_2 \cdot \text{Ce}(\text{F}, \text{OH})_3$	
141 1.72±	ANKERITE	$2\text{CaCO}_3 \cdot \text{MgCO}_3 \cdot \text{FeCO}_3$	B.B., on coal becomes magnetic.
142 1.84	DUFRENITE	$\text{FePO}_4 \cdot \text{Fe}(\text{OH})_3$	In C.T., gives water.
143 1.77±	SCORODITE	$\text{FeAsO}_4 \cdot 2\text{H}_2\text{O}$	In C.T., yields neutral water and turns yellow. Colors flame blue.
144 1.625	PARAHOPEITE	$3\text{ZnO} \cdot \text{P}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	Crystals are deeply striated.
145 1.675	LUDLAMITE	$2\text{Fe}_3(\text{PO}_4)_2 \cdot \text{Fe}(\text{OH})_2 \cdot 8\text{H}_2\text{O}$	B.B., colors the flame green and leaves a black residue.
146 1.65	SZAIBELYITE	$10\text{MgO} \cdot 4\text{B}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$	B.B., splits open, glows, fuses to a horn-like, brownish gray mass.
147 1.614	PHOSPHO-PHYLLITE	$3(\text{Zn}, \text{Fe}, \text{Mn})\text{O} \cdot \text{P}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	
148 1.565	PINNOITE	$\text{MgO} \cdot \text{B}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$	Fuses to a dense, white mass.
149 1.644	FAIRFIELDITE	$\text{Ca}_2\text{Mn}(\text{PO}_4)_2 \cdot 2\text{H}_2\text{O}$	In C.T., gives H_2O ; turns yellow then brown; becomes magnetic.
150 1.85	TRIEUITITE	$2\text{Co}_2\text{O}_3 \cdot \text{CuO} \cdot 6\text{H}_2\text{O}$	Differs from heterogenite in containing no CoO.
151	VERNADSKITE	$2\text{CuSO}_4 \cdot \text{Cu}(\text{OH})_2 \cdot 4\text{H}_2\text{O}$	An alteration of dolerophanite at Vesuvius.
152	MINDIGITE	$9\text{Co}_2\text{O}_3 \cdot 2\text{CuO} \cdot 16\text{H}_2\text{O}$	Looses water easily.
153 1.622	ARAKAWAITE	$4\text{CuO} \cdot 2\text{ZnO} \cdot \text{P}_2\text{O}_5 \cdot 6\frac{1}{2}\text{H}_2\text{O}$	
154 1.733	HEMATOLITE	$(\text{Al}, \text{Mn})\text{AsO}_4 \cdot 4\text{Mn}(\text{OH})_2$	B.B., becomes first black then brown.
155 1.624	SZOMOLNOKITE	$\text{FeSO}_4 \cdot \text{H}_2\text{O}$	Possibly identical with ferropallidite.
156 1.838	LIME	CaO	
157 1.62	CHURCHITE	$3\text{CaO} \cdot 5\text{Ce}_2\text{O}_3 \cdot 6\text{P}_2\text{O}_5 \cdot 24\text{H}_2\text{O}$	In C.T., yields acid water and becomes opaque.
158 1.653	MESSELITE	$4\text{CaO} \cdot 2(\text{Fe}, \text{Mg})\text{O} \cdot 2\text{P}_2\text{O}_5 \cdot 5\text{H}_2\text{O}$	Occurs in indistinct, minute, tabular, crystals and stellar aggregations.
159 1.656	REDDINGITE	$\text{Mn}_3(\text{PO}_4)_2 \cdot 3\text{H}_2\text{O}$	In C.T., whitens and turns yellow then brown.
160	RAIMONDITE	$2\text{Fe}_2\text{O}_3 \cdot 3\text{SO}_3 \cdot 7\text{H}_2\text{O}$	In C.T., yields water
161 1.817	JAROSITE	$\text{K}_2\text{O} \cdot 3\text{Fe}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 6\text{H}_2\text{O}$	
162 1.638	LEPIDOMELANE	$(\text{H}, \text{K})_2\text{O} \cdot 3\text{FeO} \cdot 2(\text{Fe}, \text{Al})_2\text{O}_3 \cdot 5\text{SiO}_2$	A mica. The acid solution deposits scales of silica.
163 1.57±	HISINGERITE	Hydrated ferric silicate	Fuses to a black magnetic slag. In C.T., yields water.
164 1.413	PACHNOLITE	$\text{NaF} \cdot \text{CaF}_2 \cdot \text{AlF}_3 \cdot \text{H}_2\text{O}$	Reacts for fluorine.
165 1.832	NATROJAROSITE	$\text{Na}_2\text{O} \cdot 3\text{Fe}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 6\text{H}_2\text{O}$	
166 1.662	CAHNITE	$4\text{CaO} \cdot \text{B}_2\text{O}_3 \cdot \text{As}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	In C.T., yields water and becomes opaque but does not fuse.

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
167	3	3.27	Bluish white	None	M
168	3	3.4-3.3	2.5-3	Dcpd	Bronze-yellow	Golden	Sm, P	Perf	Brittle	O
169	3	3.03	5	Sol	Grayish brown	V to P	Perf	Uneven	O
170	3	3.4-3.1	Gray-black	Bronze
171	3	3.17	Easy	Dcpd	Dark green	Green	P	Perf	Flexible	M
172	3	3.03	5	Sol	Grayish brown	V to P	Perf	Uneven	O
173	3	3.17	Brown, black	Good	M
174	3	3.14	Easy	Sol	White	Perf	M
175	3	3.3	Dcpd	Trace	M
176	2.5-3	3.2-2.82	2-2.5	Pt sol	Brown, ylw, gray, violet	P	Perf	Flexible	M
177	2.5-3	3.1-2.7	6	Brown, blk, grn	Uncolored	P, V, Sm	Perf	M
178	2.5-3	3.01-3.0	4	Sol	Apple-green	Grnsh wht	Perf	Uneven	M
179	2.5-3	3.1	3?	Sol	Carmine	Rdsh wht	S	Perf	M
180	2-3	3.14	3	Sol	Drk grn, bluish	V	Perf	Conch	R
181	2-3	3.3	Lemon-yellow	O
182	2.5	3.19-3.15	3	Gelat	Brown, green	Paler	P	Perf	Subconch	M
183	2.5	3.13	3.5	Sol	Emerald to bluish green	Light grn	V, P	Perf	Brittle	M
184	2.5	3.09	4-6	Grayish wht	D, S, R
185	2.5	3.0-2.95	2	Ins	Wht, rdsh, brwnsh	V to G	Perf	Uneven	M
186	2.5	3.0-2.9	1.5-2	Sol	Grn, brwn, ylwsh	Same, paler	A to G	Imperf	Uneven	I
187	2.5	3.27-3.03	Inf	Sol	Wht, bronze, blk	P	Perf	Flexible	H
188	2.5	3.38	Sol	Ylwsh grn	Black	O?
189	2-2.5	3.19-3.05	3	Sol	Yellow	Yellowish	P, Sa	Good	Brittle	O
190	2-2.5	3.2	3	Sol in HNO ₂	Green	P	Perf	Uneven	T
191	2-2.5	3.0-2.76	5	Ins	Grn, brwn, ylw, colorless, etc	Uncolored	V, P, S	Good	Flexible	M
192	2-2.5	3.19	Inf	Sol	Green	Paler	V	M
193	2-2.5	3.24-2.47	Sol	Pale to deep grn	P	Good	M
194	2	3.11-2.96	Inf	Sol	Apple-green	P, S	Perf	M
195	2	3.3	Sulfur-yellow
196	2	3.0-2.93	1.5	Colorless, wht, rdsh, brwn	V to P	Perf	Uneven	M

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
167 1.648	LOSEYITE	$7(\text{Mn},\text{Zn},\text{Mg})\text{O}\cdot 2\text{CO}_2\cdot 5\text{H}_2\text{O}$	Small lath-like crystals; radiating bundles.
168 1.705	ASTROPHYLLITE	$\text{Si},\text{Ti},\text{Al},\text{Fe},\text{Zn},\text{Mn},\text{Mg},\text{Ca},\text{Na},\text{K}$	In C.T., swells up and fuses to a black magnetic enamel.
169 1.532	BETA HOPEITE	$3\text{ZnO}\cdot \text{P}_2\text{O}_5\cdot 4\text{H}_2\text{O}$	Fuses to a clear colorless globule; tinges flame green.
170	BOODTITE	$5\text{Co}_2\text{O}_3\cdot \text{CuO}\cdot \text{Fe}_2\text{O}_3\cdot 11\text{H}_2\text{O}$	Occurs in friable masses.
171 1.649	DAPHNITE	$3\text{FeO}\cdot \text{Al}_2\text{O}_3\cdot 2\text{SiO}_2\cdot 3\text{H}_2\text{O}$	B.B., becomes black; does not exfoliate; fuses to a steel-gray globule.
172 1.591	ALPHA HOPEITE	$3\text{ZnO}\cdot \text{P}_2\text{O}_5\cdot 4\text{H}_2\text{O}$	Fuses to a colorless globule; tinges flame green.
173 1.68	ANNITE	$\text{K}_2\text{O}\cdot \text{Al}_2\text{O}_3\cdot 6\text{FeO}\cdot 6\text{SiO}_2\cdot 2\text{H}_2\text{O}$	Mica group. Near lepidomelane.
174 1.602	SPENCERITE	$4\text{ZnO}\cdot \text{P}_2\text{O}_5\cdot 4\text{H}_2\text{O}$	
175 1.625	PROTO-LITHIONITE	$\text{K}_2\text{O}\cdot \text{Li}_2\text{O}\cdot 2\text{Al}_2\text{O}_3\cdot 3\text{FeO}\cdot 6\text{SiO}_2\cdot 2\text{H}_2\text{O}$	A member of the mica group.
176 1.578	ZINNWALDITE	$\text{K}_2\text{O}\cdot \text{Li}_2\text{O}\cdot 2\text{FeO}\cdot \text{F}_2\cdot 2\text{Al}_2\text{O}_3\cdot 6\text{SiO}_2\cdot \text{H}_2\text{O}$	In C.T., gives off water and reacts for fluorine.
177 1.64±	BIOTITE	$(\text{K},\text{H}_2\text{O})_2\text{O}\cdot 2(\text{Mg},\text{Fe})\cdot (\text{Al},\text{Fe})_2\text{O}_3\cdot 3\text{SiO}_2$	One of the common micas. Dcpd by H_2SO_4 .
178 1.658	ANNABERGITE	$3\text{NiO}\cdot \text{As}_2\text{O}_5\cdot 8\text{H}_2\text{O}$	B.B., on coal, gives As fumes and a metallic button.
179 1.683	KOETTIGITE	$\text{ZnO}\cdot \text{As}_2\text{O}_5\cdot 8\text{H}_2\text{O}$	In CT., gives much water.
180 1.694	SPANGOLITE	$\text{AlClO}\cdot 6\text{CuO}\cdot \text{SO}_3\cdot 9\text{H}_2\text{O}$	On coal in R.F., gives a globule of copper.
181	SALEITE	$\text{MgO}\cdot \text{UO}_3\cdot \text{P}_2\text{O}_5\cdot 8\text{H}_2\text{O}$	Magnesium analogue of autunite.
182 1.66±	THURINGITE	$8\text{FeO}\cdot 4(\text{Al},\text{Fe})_2\text{O}_3\cdot 6\text{SiO}_2\cdot 9\text{H}_2\text{O}$	Fuses to a black magnetic globule.
183 1.649	HERRENGRUNDITE	$3\text{CuO}\cdot 2\text{SO}_3\cdot 6\text{H}_2\text{O}$	On coal, loses its green color and becomes black.
184	FORBESITE	$(\text{Co},\text{Ni})_2\text{H}_2(\text{AsO}_4)_2\cdot 8\text{H}_2\text{O}$	In C.T., yields water and becomes darker.
185 1.339	CRYOLITE	$3\text{NaF}\cdot \text{AlF}_3$	Treated with H_2SO_4 and heated, it yields HF which etches glass.
186 1.68±	PHARMACOSIDERITE	$3\text{FeAsO}_4\cdot \text{Fe}(\text{OH})_3\cdot 6\text{H}_2\text{O}$	In C.T., yields neutral water and turns yellow.
187 1.723	PYROCHROITE	$\text{Mn}(\text{OH})_2$	In C.T., becomes verdigris green, then dirty green, then brownish black.
188 1.72	SHARPITE	$6\text{UO}_3\cdot 5\text{CO}_2\cdot 8\text{H}_2\text{O}$	Effervesces in HCl.
189 1.575	AUTUNITE	$\text{CaO}\cdot 2\text{UO}_3\cdot \text{P}_2\text{O}_5\cdot 8\text{H}_2\text{O}$	In C.T., yields water.
190 1.643	ZEUNERITE	$\text{CuO}\cdot 2\text{UO}_3\cdot \text{As}_2\text{O}_5\cdot 8\text{H}_2\text{O}$	On coal, yields As fumes and with soda a globule of metallic Cu.
191 1.59±	MUSCOVITE	$\text{K}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 6\text{SiO}_2\cdot 2\text{H}_2\text{O}$	One of the common micas.
192 1.595	JOHANNITE	Hydrated sulfate of uranium and copper	In C.T., gives off H_2O and SO_2 and becomes brown and then black.
193 1.625	NEPOUIITE	$3(\text{Ni},\text{Mg})\text{O}\cdot 2\text{SiO}_2\cdot 3\text{H}_2\text{O}$	B.B., in C.T., yields water and blackens.
194 1.654	CABRERITE	$(\text{Ni},\text{Mg})_3(\text{AsO}_4)_2\cdot 8\text{H}_2\text{O}$	In C.T., yields water and becomes grayish yellow.
195	FERGANITE	$\text{U}_3(\text{VO}_4)_2\cdot 6\text{H}_2\text{O}$	
196 1.414	THOMSENOLITE	$\text{NaF}\cdot \text{CaF}_2\cdot \text{AlF}_3\cdot \text{H}_2\text{O}$	Fuses to a clear glass. Decomposed by H_2SO_4 .

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SY- TEM
197	2	3.03	Brown	Good	O?
198	2	3.25	White	V
199	1-2	3.01	Gelat	Grn to dark leek grn	V to G
200	1.5	3.15	Inf	Sol	White, rose	Perf	M?
201	1-1.5	3.1-3.02	2-2.5	Sol in HNO ₃	Pale grn, blue	Lighter	P, V	Perf	Flexible	O
202	1	3.14	Diff	Depd	Green	Green	Perf	M
203	Soft	3.0-2.8	Diff	Gelat	Green	Micro	M
204	Soft	3.3	2.5	Sol	Lemon-yellow	P	Perf	M
205	Soft	3.14?	Like Pyrrhotite	Perf	O?
206	?	3.16	3	Sol	Colorless	T
207	?	3.3	Easy	Sol	Greenish blue	Perf	T
208	?	3.01	3	Depd	White	O?
209	?	3.23	Violet, black
210	?	3.29	Yellow	Perf	M
211	?	3.1	Yellow	Good	M
212	?	3.0	Greenish black	Perf	M
213	?	3.2-3.14	Easy	Sol	Flesh-pink	M?
214	?	3.07	Lavender to rose	II
215	?	3.28	Inf	Ins	Colorless, ylw	Perf	M
216	?	3.3-3.0	Ylwsh wht
217	?	3.29-3.27	Dark brown
218	?	3.25	Deep brown	Good	M?
219	?	3.15-2.85	Green
220	?	3.25	1	Sol	Colorless	I
221	?	3.02	Rose-red
222	?	3.22	Lilac	O
223	?	3.26	Green
224	?	3.22	Rose-red	Good	M
225	?	3.1	Sol	Colorless	None	H?
226	?	3.05	Flesh-red	M
227	?	3.1	I

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
197 1.728	LANDESITE	$20\text{MnO}\cdot3\text{Fe}_2\text{O}_3\cdot8\text{P}_2\text{O}_5$ $27\text{H}_2\text{O}$	
198	DUNDASITE	$\text{PbO}\cdot\text{Al}_2\text{O}_3\cdot2\text{CO}_2\cdot4\text{H}_2\text{O}$	
199 1.689	BRUNSVIGITE	$6\text{SiO}_2\cdot3\text{Al}_2\text{O}_3\cdot9\text{MgO}\cdot8\text{H}_2\text{O}$	
200 1.595	SZMIKITE	$\text{MnSO}_4\cdot\text{H}_2\text{O}$	
201 1.723	TYROLITE	$5\text{CuO}\cdot\text{As}_2\text{O}_5\cdot9\text{H}_2\text{O}$	In C.T., decrepitates; yields much water. Soluble in NH_4OH .
202 1.66	STRIGOVITE	$2\text{FeO}\cdot(\text{Fe},\text{Al})_2\text{O}_3\cdot2\text{SiO}_2\cdot2\text{H}_2\text{O}$	In C.T., gives much water.
203 1.612	APHROSIDERITE	$6(\text{Fe},\text{Mg})\text{O}\cdot2(\text{Al},\text{Fe})_2\text{O}_3\cdot4\text{SiO}_2\cdot5\text{H}_2\text{O}$	
204 1.627	TROEGERITE	$3\text{UO}_3\cdot\text{As}_2\text{O}_5\cdot12\text{H}_2\text{O}$	
205	VALLERIITE	$\text{Cu}_2\text{Fe}_4\text{S}_7$	Ignites and burns. A metallic mineral having the appearance of pyrrhotite.
206 1.707	GENEVITE	$\text{CaO}\cdot\text{MgO}\cdot\text{FeO}\cdot(\text{Fe},\text{Al})_2\text{O}_3\cdot\text{SiO}_2$	Possibly the same as vesuvianite.
207 1.748	FRIERINITE	$6(\text{Cu},\text{Ca})\text{O}\cdot3\text{Na}_2\text{O}\cdot2\text{As}_2\text{O}_5\cdot6\text{H}_2\text{O}$	Fuses with intumescence.
208 1.642	JAUNITE	$10\text{CaO}\cdot4\text{MgO}\cdot\text{Al}_2\text{O}_3\cdot11\text{SiO}_2\cdot4\text{H}_2\text{O}$	Fuses to a translucent bead.
209	NEOPURPURITE	$7(\text{Fe},\text{Mn})_2\text{O}_3\cdot5\text{P}_2\text{O}_5\cdot4\text{H}_2\text{O}$	An alteration product of lithiophilite.
210 1.701	TINZENITE	$\text{Al}_2\text{O}_3\cdot\text{Mn}_2\text{O}_3\cdot2\text{CaO}\cdot4\text{SiO}_2$	Has a columnar structure.
211 1.574	BASSETITE	$\text{CaO}\cdot2\text{UO}_3\cdot\text{P}_2\text{O}_5\cdot8\text{H}_2\text{O}$	
212	EASTONITE	$\text{H}_4\text{K}_2\text{Mg}_6\text{Al}_4\text{Si}_{16}\text{O}_{24}$	A mica related to biotite.
213 1.656	PALAITA	$5\text{MnO}\cdot2\text{P}_2\text{O}_5\cdot4\text{H}_2\text{O}$	From alteration of lithiophilite and alters to hureaulite.
214	ELLESTADITE	$\text{CaO}\cdot\text{SO}_3\cdot\text{SiO}_2\cdot\text{P}_2\text{O}_5\cdot\text{CO}_2\cdot\text{Cl}\cdot\text{F}$	A sulfate-apatite with P_2O_5 almost entirely replaced by SO_3 and SiO_2 .
215 1.654	CLINOENSTATITE	$\text{MgO}\cdot\text{SiO}_2$	One of the pyroxenes.
216	FERRAZITE	$3(\text{Ba},\text{Pb})\text{O}\cdot2\text{P}_2\text{O}_5\cdot8\text{H}_2\text{O}$	
217	FERRI-SICKLERITE	$12(\text{Mn},\text{Li}_2)\text{O}\cdot5\text{Fe}_2\text{O}_3\cdot9\text{P}_2\text{O}_5$	
218 1.755	SURSASSITE	$5\text{MnO}\cdot2\text{Al}_2\text{O}_3\cdot5\text{SiO}_2\cdot3\text{H}_2\text{O}$	A manganese epidote.
219	META GREENALITE	$9\text{FeO}\cdot\text{Fe}_2\text{O}_3\cdot8\text{SiO}_2\cdot8\text{H}_2\text{O}$	
220 1.572	NITROBARITE	$\text{BaO}\cdot\text{N}_2\text{O}_5$	Soluble in water.
221 1.572	MANGANO-LANGBEINITE	$2\text{MnO}\cdot\text{K}_2\text{O}\cdot3\text{SO}_3$	From Vesuvius.
222 1.667	BIDALOTITE	Fe,Al,Mg silicate	A pyroxene. Occurs in small grains and plates.
223	MANGAN-APATITE	$9(\text{Ca},\text{Mn})\text{O}\cdot3\text{P}_2\text{O}_5\cdot\text{Ca}(\text{OH},\text{F})_2$	See apatite.
224 1.664	SERANDITE	$(\text{Mn},\text{Ca},\text{K},\text{Na})\text{Si}\cdot(\text{O},\text{OH})_3$	
225 1.623	MERRILLITE	$\text{Na}_2\text{O}\cdot3\text{CaO}\cdot\text{P}_2\text{O}_5$	Found only in meteorites.
226	PSEUDOPALAITA	$6(\text{Mn},\text{Fe})\text{O}\cdot2\text{P}_2\text{O}_5\cdot5\text{H}_2\text{O}$	Slightly different from palaita.
227	CHROMITITE	FeCr_2O_3	

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
228?		3.31			Black					M
229?		3.06-3.01						Fair		O
230?		3.12			Pale rdsh brwn					
231?		3.1			Colorless					H
232?		3.1±			Brwn, rdsh	Ylwsh brwn	D	Poor		
233?		3.263	Inf	Sol	White					M

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

GROUP 8
Specific Gravity 3.32-3.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
228	BABABUDANITE	$2\text{Na}_2\text{Fe}_3\text{Si}_4\text{O}_{12}$ $5(\text{Mg},\text{Fe},\text{H}_2,\text{Ca})\text{SiO}_2$	Occurs in acicular crystals. A soda amphibole related to riebeckite.
229 1.64	BOEHMITE	$\text{AlO}(\text{OH})$	Dimorphous with diaspore.
230 1.632	MAGNOPHORITE	$\text{Ca},\text{Na},\text{K},\text{Mg},\text{Fe},\text{Ti},$ $\text{Mn},\text{Si},\text{Al},\text{Ti},\text{O},\text{OH},\text{F}$	
231 1.625	WADEITE	$\text{K}_2\text{CaZrSi}_4\text{O}_{12}$	
232 2.16	BLAKEITE	Fe,Te compound	
233 1.608	WEINSCHENKITE	$(\text{Y},\text{Er})_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SY- TEM
1 7.5-8	3.0-2.97	Inf	Ins	Colorless, rose, yellow, brown White, red, yellow, pink, green, blue Colorless	V	Dist	Conch	R
2 7.5-8	2.8-2.63	5.5	Ins	Yellow, brown, black, red, green Colorless, wine, ylw, whtsh brwn	White	V, R	Imperf	Conch to uneven	H
3 7-8	2.77	Good		H?
4 7-7.5	3.2-2.98	3-Inf	Ins	Yellow, brown, black, red, green	Uncolored	V to R	Poor	Uneven to subconch	R
5 7-7.5	3.02-2.97	3.5	Ins	Colorless, wine, ylw, whtsh brwn	White	V to G	Poor	Uneven to subconch	O
6 7-7.5	2.66-2.60	5-5.5	Pt sol	Shades of blue	V	Dist	Subconch	O
7 7	2.87	Inf	Ins	Colorless	V	Imperf	I
8 7	3.0-2.9	2	Sol	White, gray, yellow, green	White	V to A	Traces	Conch to uneven	O
9 7	2.75	Easy	Ins	Ylw to rdsh or brownish gray	V, P	Perf	Uneven	T
10 6-7	2.67-2.65	3.5	Ins	White, various tints	V to P	Perf	Conch to uneven	Tr
11 6.5	2.9	Diff	Dcpd	Colorless	V, D	Traces	Conch	I
12 6.5	2.8	Inf	Ins	Bright azure blue	V		H
13 6.5	2.70	2.5	Sol	Colorless to pink		Perf	O?
14 6-6.5	2.95-2.80	2	Sol	White, green, gray	Uncolored	V	Dist	Uneven	O
15 6-6.5	2.80	Diff	Ins	Colorless, white, flesh red	V	Perf	Conch	M
16 6-6.5	2.76-2.74	5	Gelat	White, grayish, reddish	Uncolored	Perf	Conch to uneven	Tr
17 5-6.5	2.8-2.5	2-3	Pt sol	Colorless, white, red, blue, gray, etc	Uncolored	V	Good	Conch	T
18 6	2.83-2.6	Inf	Sol	Sky blue, bluish green, green	White to greenish	W	None	Small conch	Tr
19 6	2.80	3	Sol	Yellow, brownish, bluish, violet	Pale yellow	D, V	Perf	Conch	M
20 6	2.93-2.54	3	Gelat	Reddish, white, red	V		Conch	T
21 6	2.68		Colorless		Perf	Tr
22 6	2.66	Easy	Sol	White		Fair	Uneven to conch	O
23 6	2.73	5	Gelat	Colorless		Perf	Tr
24 6	2.92		Apple green	O
25 5.5-6	3.07-2.9	5-7	Gelat	Light green, white, brown	Grayish, white	R to V	Imperf	Uneven, splintery	T
26 5.5-6	2.84	3	Sol	Colorless, white, yellowish	P to V	Perf	Conch	O
27 5.5-6	2.74-2.70	3	Dcpd	Colorless, white	V	Perf	Conch	T
28 5-6	2.72-2.70	3	Pt sol	Colorless, gray, brown, grayish	Uncolored	P, V, Sr	Perf	Tr

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1 1.654	PHENACITE	$2\text{BeO}\cdot\text{SiO}_2$	B.B., with soda, gives a white enamel.
2 1.598	BERYL	$2\text{BeO}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2$	B.B., clear varieties become milky and cloudy.
3 1.559	ARMENITE	$\text{Ba}(\text{Ca}_2\text{Al}_6\text{Si}_8\text{O}_{26}\cdot2\text{H}_2\text{O})$	
4 1.64±	TOURMALINE	Borosilicate of K, Li, Mg, Fe and Al	With KHSO_4 and CaF_2 , gives strong reaction for boron.
5 1.633	DANBURITE	$\text{CaO}\cdot\text{B}_2\text{O}_3\cdot2\text{SiO}_2$	In O.F., colors flame green. Phosphoresces.
6 1.562±	IOLITE (Cordierite)	$4(\text{Mg},\text{Fe})\text{O}\cdot4\text{Al}_2\text{O}_3\cdot10\text{SiO}_2\cdot\text{H}_2\text{O}$	Decomposed by fusion with alkali carbonates.
7 1.596	ZUNYITE	$\text{Al}_2\text{O}_3\cdot\text{SiO}_2\cdot\text{Al}(\text{OH},\text{F},\text{Cl})_3$	In C.T., yields acid water.
8 1.667	BORACITE	$\text{MgCl}_2\cdot6\text{MgO}\cdot8\text{B}_2\text{O}_3$	Fuses with intumescence to a white pearl, colors flame green
9 1.609	NARSARSUKITE	Titanosilicate of Na, Fe, F, etc	B.B., fuses to a yellow blebby mass.
10 1.543	OLIGOCLASE	$(\text{Na}_2,\text{Ca})\text{O}\cdot\text{Al}_2\text{O}_3\cdot5\text{SiO}_2$	One of the feldspars.
11 1.518	POLLUCITE	$(\text{Na},\text{Cs})_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot5\text{SiO}_2\cdot\text{H}_2\text{O}$	In C.T., becomes opaque and yields H_2O at high temperatures.
12 1.626	BAZZITE	Silicate of Sc, etc	B.B., becomes dark and opaque.
13 1.583	XONOTLITE	$5\text{CaO}\cdot5\text{SiO}_2\cdot\text{H}_2\text{O}$	The HCl solution separates flaky silica.
14 1.625	PREHNITE	$2\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot3\text{SiO}_2\cdot\text{H}_2\text{O}$	Brittle. In C.T., yields water.
15 1.545	HYALOPHANE	$(\text{K}_2,\text{Ba})\text{O}\cdot2\text{Al}_2\text{O}_3\cdot8\text{SiO}_2$	Brittle. B.B., yields a blebby mass.
16 1.584	ANORTHITE	$\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot2\text{SiO}_2$	Brittle. B.B., a colorless glass.
17 1.55±	SCAPOLITE	A tetragonal group of $\text{Ca},\text{Na},\text{Al},\text{SiO}_2$	
18 1.62	TURQUOIS	$\text{CuO}\cdot3\text{Al}_2\text{O}_3\cdot2\text{P}_2\text{O}_5\cdot9\text{H}_2\text{O}$	In C.T., decrepitates, yields water and turns brown or black.
19 1.592	CATAPLEIITE	$(\text{Na}_2,\text{Ca})\text{O}\cdot\text{ZrO}_2\cdot3\text{SiO}_2\cdot2\text{H}_2\text{O}$	Brittle. In C.T., yields water.
20 1.62±	SARCOLITE	$3\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot3\text{SiO}_2\cdot\text{and Na}$	B.B., gives a white enamel.
21 1.559	ANEMOUSITE	$\text{Na}_2\text{O}\cdot2\text{CaO}\cdot3\text{Al}_2\text{O}_3\cdot9\text{SiO}_2$	One of the feldspar group.
22 1.549	CHKALOVITE	$\text{Na}_2\text{Be}(\text{SiO}_3)_2$	B.B., a clear bead. Semitransparent. From Kola peninsula.
23 1.572	BYTOWNITE	AbAn_4	Feldspar group.
24 1.642	FERRIPREHNITE	$2\text{CaO}\cdot(\text{Al},\text{Fe})_2\text{O}_3\cdot3\text{SiO}_2\cdot\text{H}_2\text{O}$	Like prehnite.
25 1.891	GEHLENITE	$3\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot2\text{SiO}_2$	B.B., fuses slowly with borax to a glass colored by iron.
26 1.558	BERYLLONITE	$\text{NaBe}(\text{PO}_4)$	Brittle. Colors flame yellow with green streaks on lower edge.
27 1.607	MEIONITE	$4\text{CaO}\cdot3\text{Al}_2\text{O}_3\cdot6\text{SiO}_2$	Brittle. A scapolite.
28 1.563	LABORADORITE	$(\text{Ca},\text{Na})_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot3\text{SiO}_2$	Often a beautiful play of colors on the cleavage plane.

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
29	5-6	2.86-2.85	Diff	Sol in HNO ₃	Pale rose red, colorless	V	Dist	Uneven	M
30	5-6	2.73-2.66	3	Pt sol	White, reddish, bluish, grnsh, etc	Uncolored	R, V, P	Good	Subconch	T
31	5-6	3.4-2.6	2-4	Ins	Black, white, green	Uncolored	V to P	Perf	Subconch to uneven	M
32	5-6	2.69-2.68	4-4.5	Pt sol	White, gray, red, greenish, yellow	Sv, P	Perf	Tr
33	5.5	2.72	White	Good	Fibrous	M
34	5.5	2.94	Inf	Ins	Colorless	Poor	T
35	5.5	2.83	Colorless	Fibrous	M?
36	5.5	2.98	White	A
37	5.5	2.69	Diff	Gelat	White	S	Fibrous	O
38	5.5	2.89	White	Fibrous	M
39	5-5.5	3.07-2.98	4	Sol	Colorless, yellow, red, green	White	V	Imperf	Uneven to splintery	M
40	5-5.5	2.80-2.78	White, yellowish, brownish
41	5-5.5	3.0-2.9	2	Gelat	White, gray, green, yellow, red	White	V	Conch to uneven	M
42	5-5.5	2.93	3.5	Ins	Straw to wax yellow	S	Brittle	M
43	5-5.5	3.01-2.91	2.5	Gelat	Pale pink, red, brown	Uncolored	V	Perf	Subconch, splintery	R
44	5-5.5	3.13-2.97	Light red to brown	V	Perf	Uneven	Tr
45	5±	2.75-2.5	Easy	Insol	Red, blue, green, colorless, etc	V	None	Conch	A
46	4-5.5	4.3-2.7	Inf	Sol	Brown to nearly black, yellow	Ylwsh brwn to rdsh	S, Sm, E	Conch to uneven
47	5.	3.15-2.97	4-5	Ins	Colorless	V	Perf	Conch	T
48	5.	3.1-2.9	4	Ins	Colorless, white, gray	Uncolored	V to P	Perf	Subconch to uneven	M
49	5.	3.1-2.9	3	Gelat	White, yellow, brown, reddish	V to R	Dist	Conch to uneven	T
50	5	3.01-2.99	Diff	Sol	Yellowish to greenish	V, Sr	Poor	Subconch	O
51	5.	2.94	6	Sol	Ash gray, brown	White	V, D	Dist	Uneven	O?
52	5.	2.76-2.68	2	Pt sol	Whitish, grayish	S, Sv	Perf	Uneven	M
53	5.	2.97	Brownish
54	5.	2.70-2.55	Inf	Ins	Milk white to light blue
55	5	2.92	2.5	Colorless, yellow	Perf	R
56	5.	2.95	Gray, colorless	Perf	H, R?

MINERAL IDENTIFICATION TABLES

**GROUP 9
Specific Gravity 2.99-2.66**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
29 1.595	CUSPIDINE	3CaO-CaF ₂ -2SiO ₂	Brittle. From Vesuvius.
30 1.567	WERNERITE	Ca,Al silicate	Brittle. A scapolite.
31 1.70	AMPHIBOLE	R''O-SiO ₂ -R ₂ '''O ₃ ·2SiO ₂ -(Na ₂ K ₂ H ₂)O	B.B., varies with different members of the group.
32 1.553	ANDESINE	(Na ₂ ,Ca)O-Al ₂ O ₃ ·4SiO ₂	One of the feldspars.
33 1.585	BAVENITE	BeO·4CaO-Al ₂ O ₃ ·9SiO ₂ ·H ₂ O	A zeolite.
34 1.647	AMINOFFITE	Ca ₂₄ Be ₆ Al ₃ Si ₂₄ O ₈₄ -(OH) ₈ ·12H ₂ O	
35 1.598	MILLISITE	2CaO-Na ₂ O-6Al ₂ O ₃ ·4P ₂ O ₅ ·17H ₂ O	
36	WELDITE	SiO ₂ of Al and Na	
37 1.610	HILLEBRANDITE	2CaO-SiO ₂ ·H ₂ O	B.B., gives a colorless glass bead and calcium flame.
38 1.616	LEHIIITE	5CaO-Na ₂ O-4P ₂ O ₅ ·4Al ₂ O ₃ ·12H ₂ O	
39 1.570	WAGNERITE	Mg ₃ (PO ₄) ₂ MgF ₂	B.B., a greenish-gray glass; with H ₂ SO ₄ , flame is bluish-green.
40	HARBORTITE	6Al ₂ O ₃ ·4P ₂ O ₅ ·17H ₂ O	
41 1.654	DATOLITE	2CaO-B ₂ O ₃ ·2SiO ₂ ·H ₂ O	In C.T., yields much water.
42 1.628	CARPHOLITE	MnO-Al ₂ O ₃ ·2SiO ₂ ·2H ₂ O	In C.T., gives acid water.
43 1.606	EUDIALYTE	Na ₂ O-Ce ₂ O ₃ ·FeO·MnO-Zr ₂ O ₃ ·SiO ₂	Brittle. Reacts for zirconium.
44 1.636	SCHIZOLITE	Na ₂ O-4(Ca,Mn)O·6SiO ₂ ·H ₂ O	
45 1.52±	GLASS	Na ₂ O-CaO-6SiO ₂ +Fe,K,Ba,B,Pb,etc	Not a mineral but often mistaken for one. Very common.
46 2.06±	LIMONITE	HFeO ₂ ·nH ₂ O	Usually in stalactitic, botryoidal or mammillary form.
47 1.378	SELLAITE	MgF ₂	Treated with H ₂ SO ₄ , it yields HF and etches the glass.
48 1.616	TREMOLITE	2CaO-5MgO-8SiO ₂ ·H ₂ O	One of the amphiboles.
49 1.632	MELILITE	Na ₂ O-11(Ca,Mg)O·2(Al,Fe) ₂ O ₃ ·9SiO ₂	Fuses to a greenish or yellowish glass.
50 1.612	HERDERITE	CaO-2BeO-P ₂ O ₅ ·Ca(F,OH) ₂	B.B., phosphoresces with an orange light.
51 1.674	SPODIOSITE	Ca ₃ (PO ₄) ₂ ·CaF ₂	Brittle. Fuses to a white enamel.
52 1.604	PECTOLITE	Na ₂ O-4CaO-6SiO ₂ ·H ₂ O	In C.T., gives H ₂ O. Often gives light when broken in the dark.
53 1.605	GRODNOLITE	8CaO-2P ₂ O ₅ ·CO ₂ ·H ₂ O+ $\frac{1}{4}$ H ₄ Al ₂ Si ₂ O ₉	Probably identical with collophanite. Collophanite group.
54 1.580	COERULEO-LACTITE	3Al ₂ O ₃ ·2P ₂ O ₅ ·10H ₂ O	Fibrous crusts.
55 1.622	PSEUDO-WAVELLITE	5CaO-6Al ₂ O ₃ ·4P ₂ O ₅ ·18H ₂ O	
56 1.630	DELTAITE	8CaO-5Al ₂ O ₃ ·4P ₂ O ₅ ·14H ₂ O	

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYS- TEM
57.5	2.70	Inf	Pt sol	Colorless, pale red		P	Perf		M
58.5	2.91	Diff	Gelat	Greenish-gray		G to V	Good	Brittle	M
59.5	2.96	5		White, greenish-gray					O?
60.5	2.71	2		Colorless, clear		V	Perf		M
61.5	2.71	2		Clear, colorless		V	Good		Tr
62.5	2.79	3	Ins	Light apple green			Perf		M
63.5	2.87	3	Pt sol	Light grn, bluish green, colorless	White	V	Perf		T?
64.5 ²	2.92	1	Sol	Light brown			Poor	Even	O
65.4.5-5	2.9-2.8	4	Depd	White, gray, red, yellow, brown	White	V, P	Perf	Uneven	M
66.4.5-5	2.77		Gelat	Colorless		V	Perf		M
67.4.5	2.71	Diff	Ins	Dark gray			Fair		M
68.4.5	2.89	Inf		Colorless, white, grayish		V	Dist	Uneven	M
69.4.5	2.71-2.69	5	Gelat	White, gray, pink		V	Perf	Subconch to uneven	I
70.4.5	2.85			Colorless			Perf	Fibrous	H?
71.4.5	2.73	Inf	Sol	Pink		V	Fair	Conch	Tr
72.4.5	2.92	Inf		Brown			Perf		M
73.4.5	2.9-2.7	Fus	Sol	White					
74.4.5	2.88	Easy		Colorless to pale red			Good		O
75.4.5	2.95	Easy	Ins	Colorless, white			Perf		M
76.4-4.5	2.84	3	Gelat	Brown		V	Perf		M
77.4	2.96	3	Ins	Green to pale yellow		V	Perf	Conch	O
78.4	3.03-2.93	2.5-3	Depd	Reddish brown	Pale ylw or grayish brwn	V, G, R	Dist		M?
79.4	2.88			Yellow buff			Dist		O
80.4	2.68-2.61			Black					
81.4	2.69	Fus	Sol	Colorless					M?
82.4	2.94	Easy	Ins	Wine red, white			Perf		M
83.4	2.75	2	Sol	White		S		Fibrous	M?
84.3.5-4.5	3.08-2.99	Diff	Pt sol	Gray, rdsh, pink, white, yellowish		P, V	Perf	Brittle	M
85.3.75	2.76	2.5-3	Sol	Pinkish red			Perf		O
86.3.75	2.87	2.5-3	Sol	Pinkish red	Yellowish white	V	Poor		O

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

INDEX OF REF.	NAME	COMPOSITION	REMARKS
57 1.576	AUGELITE	$2\text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 3\text{H}_2\text{O}$	In C.T., yields water.
58 1.590	CUSTERITE	$3\text{CaO} \cdot \text{CaF}_2 \cdot 2\text{SiO}_2 \cdot \text{H}_2\text{O}$	In C.T., phosphoresces with a yellow light.
59 1.60	CEBOLLITE	$5(\text{Ca}, \text{Mg})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	In C.T., gives water. In fibrous aggregates.
60 1.636	HILGARDITE	$\text{Ca}_8(\text{B}_6\text{O}_{11})_3\text{Cl}_4 \cdot 4\text{H}_2\text{O}$	In C.T., gives acid water. B.B. on coal, a white globule.
61 1.636	PARAHILGARDITE	$2[\text{Ca}_8(\text{B}_6\text{O}_{11})_3\text{Cl}_4] \cdot 4\text{H}_2\text{O}$	Very close to hilgardite.
62 1.63±	MARIPOSITE	Chromiferous mica	A member of the mica group.
63 1.590	WARDITE (SOUmansite)	$2\text{Na}_2\text{O} \cdot \text{CaO} \cdot 6\text{Al}_2\text{O}_3 \cdot 4\text{P}_2\text{O}_5 \cdot 17\text{H}_2\text{O}$	B.B., swells up and colors flame intensely yellow.
64 1.660	ROWEITE	$\text{H}_2\text{MnCa}(\text{BO}_3)_2$	Brittle. Lath-like crystals. B.B., a black glass; green flame.
65 1.632	WOLLASTONITE	CaSiO_3	Brittle. B.B., with soda, a blebby mass, with more swells and is infusible.
66 1.606	SCAWTITE	$4\text{CaO} \cdot 3\text{SiO}_2 \cdot 2\text{CO}_2$	With HCl, it effervesces leaving a gelatinous residue.
67 1.501	DIDYMOLITE	$2\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot 9\text{SiO}_2$	B.B., gives a white slag.
68 1.503	PROSOPITE	$\text{CaF}_2 \cdot 2\text{Al}_2(\text{OH}, \text{F})_6$	Brittle. In C.T., yields H_2O and SiF_4 . Soluble in H_2SO_4 .
69 1.549	EDINGTONITE	$\text{BaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	B.B., yields water and becomes opaque.
70 1.601	DENNISONITE	$6\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{P}_2\text{O}_5 \cdot 5\text{H}_2\text{O}$	
71 1.590	BULFONTEINITE	$\text{Ca}_2\text{SiO}_2 \cdot (\text{OH}, \text{F})_4$	In C.T., a little H_2O . B.B., the needles become white and enamel-like.
72 1.639	ROSCHERITE	$2\text{FeO} \cdot 3\text{MnO} \cdot 3\text{CaO} \cdot 2\text{Al}_2\text{O}_3 \cdot 4\text{P}_2\text{O}_5 \cdot 10\text{H}_2\text{O}$	
73 1.64	BAKERITE	$8\text{CaO} \cdot 5\text{B}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	Fuses to a white transparent bead coloring flame green.
74	VALLEITE	$(\text{Fe}, \text{Mg}, \text{Mn}, \text{Ca}, \text{K}_2)\text{O} \cdot \text{SiO}_2$	Fuses to a white opaque bead.
75 1.561	JEZEKITE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2(\text{Na}, \text{Li})\text{F} \cdot \text{P}_2\text{O}_5 \cdot 2(\text{Na}, \text{Li})(\text{OH})$	
76 1.603	GANOPHYLLITE	$7\text{MnO} \cdot \text{Al}_2\text{O}_3 \cdot 8\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	Resembles mica. Reacts for Mn.
77 1.595	LEUCOPHANITE	$\text{NaF} \cdot \text{CaO} \cdot \text{B}_2\text{O}_3 \cdot 2\text{SiO}_2$	Brittle. In C.T., whitens and phosphoresces with a bluish light.
78 1.649	MOSANDRITITE	$\text{CaO} \cdot (\text{Ti}, \text{Si})\text{O}_2 \cdot \text{Zr}, \text{Ce}, \text{Na}, \text{etc.}$	Treated with HCl, and heated, it gives off chlorine.
79 1.66	SALMONSITE	$\text{Fe}_2\text{O}_3 \cdot 9\text{MnO} \cdot 4\text{P}_2\text{O}_5 \cdot 14\text{H}_2\text{O}$	
80	BONDSDORFFITE	$\text{K}_2(\text{Mg}, \text{Fe})_2\text{Al}_8(\text{SiO}_2)_7 \cdot 7\text{H}_2\text{O}$	
81 1.488	VANTHOFFITE	$3\text{Na}_2\text{O} \cdot \text{MgO} \cdot 4\text{SO}_3$	Soluble in water.
82 1.562	MORINITE	$3\text{Al}_2\text{O}_3 \cdot 2\text{Na}_2\text{O} \cdot 4\text{P}_2\text{O}_5 \cdot 6\text{CaF}_2 \cdot 18\text{H}_2\text{O}$	In C.T., yields acid water that etches the glass.
83 1.576	JURUPAITE	$7\text{CaO} \cdot \text{MgO} \cdot 8\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	Fibers are soft and silky without brittleness but across them the hardness is 4. From Crestmore quarries.
84 1.643	MARGARITE	$\text{CaO} \cdot 2\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot \text{H}_2\text{O}$	In C.T., yields water.
85 1.725	PHOSPHO-SIDERITE	$4\text{FePO}_4 \cdot 7\text{H}_2\text{O}$	Gives off water and becomes opaque. Fuses to a black magnetic bead.
86 1.72±	STRENGITE	$\text{FePO}_4 \cdot 2\text{H}_2\text{O}$	B.B., a shiny black bead. Colors flame bluish-green.

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYSTEM
87 3.5-4	3.1-2.95	Inf	Sol	White, gray, reddish	V, P	Poor	R
88 3.5-4	2.99-2.93	Inf	Sol	Colorless, white, and colored	Uncolored	V, R	Dist	Subconch	O
89 3.5-4	2.99-2.84	1.5	White	V	Perf	T
90 3.5-4	2.9-2.8	Inf	Sol	White, colored and black	V, P	Perf	Subconch	R
91 3.5-4	2.75-2.58	Inf	White, grayish, reddish	White	V, P	Dist	Conch to uneven	R
92 3-4	2.8-2.64	4-6	Depd	Brown to black	Same	D	Conch
93 3-4	2.86-2.81	2	Sol	Colorless	G to V	Conch	I
94 3-4	2.83	Dark brown	Yellow	V to G	Subconch
95 3-4	2.76	6	Reddish brown	Pale red	Perf	M
96 3-4	2.79	1?	Sol	Green, brown, black	Grayish green	R	Non	Conch	?
97 3-4	2.80	Ins	Grysh, bluish, wht, ylwsh grn	S, D	Prismatic
98 2.5-4	2.9-2.8	2.5	Pt sol	Purple, rose red, ylwsh, grayish, wht	P	Perf	M
99 3.5	2.77	4.5	Depd	Black, greenish, yellowish, bronze	P, V	Perf	M
100 3.5	2.84	Easy	Sol in HNO ₃	Reddish brown	Perf	O
101 3.5	2.75	3	Pale yellowish white	V	Dist	Uneven	Tr
102 3.5	2.96	Pale green	Good	M
103 3.5	2.70	3-4	Sol	Reddish brown	Same	W	None	Conch
104 3.5	2.75	White
105 3.5	2.79	Sol	Carmine red	Perf	I
106 3.5	2.89	White	H
107 3.5	2.74	5-6	Colorless, green, yellowish	P	Perf	H
108 3.5	2.83	Sol	Greenish white	Perf	Tr
109 3.5	2.95	3	Sol	Light brown	S	Good	Tr
110 3.5	2.73	Diff	Sol	Colorless	Perf	M
111 3.5	2.95	Sol	Emerald green	O
112 3.5	2.8
113 3.5	2.78	3.5	Ins	Greenish yellow	Grayish white	V to P	None	O?
114 3-3.5	2.98-2.90	3	Sol	White, bluish, brick red	Grayish white	P	Perf	Uneven	O
115 3-3.5	2.89	Leek green	P	Perf	M
116 3-3.5	2.91-2.83	3.5	Depd	Pale yellow, brown	P	Perf	O
117 3-3.5	2.66-2.63	1.5	Sol	White tinged with blue or green	V, R	Fair	R

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

INDEX OF REF.	NAME	COMPOSITION	REMARKS
87 1.72±	ANKERITE	$2\text{CaCO}_3 \cdot \text{MgCO}_3 \cdot \text{FeCO}_3$	On coal, becomes dark and magnetic.
88 1.680	ARAGONITE	CaCO_3	Brittle. B.B., whitens and falls to pieces. The powdered mineral boiled with cobalt nitrate solution turns violet.
89 1.349	CHIOLITE	$5\text{NaF} \cdot 3\text{AlF}_3$	In O.T., gives acid water and HF. Soluble in H_2SO_4 .
90 1.681	DOLOMITE	$\text{CaCO}_3 \cdot \text{MgCO}_3$	Brittle. Acted on only slowly by HCl in the cold.
91 1.572	ALUNITE	$\text{K}_2\text{O} \cdot 3\text{Al}_2\text{O}_3 \cdot 4\text{SiO}_4 \cdot 6\text{H}_2\text{O}$	Brittle. Soluble in H_2SO_4 . In C.T., yields water.
92 1.50±	NEOTOCITE	$(\text{Mn},\text{Fe})\text{O} \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	In C.T., yields much water.
93 1.533	LANGBEINITE	$\text{K}_2\text{O} \cdot \text{MgO} \cdot 3\text{SiO}_3$	Dissolves slowly in water.
94 1.64	PICITE	$3\text{Fe}_2\text{O}_3 \cdot 2\text{P}_2\text{O}_5 \cdot 10\text{H}_2\text{O}$	
95 1.598	MANGANO-PHYLLITE	$\text{K}_2\text{O} \cdot 6(\text{Mg},\text{Mn})\text{O} \cdot (\text{Al},\text{Fe},\text{Mn})_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	A member of the mica group.
96 1.602	VOLTAITE	$15\text{H}_2\text{O} \cdot 2(\text{Al},\text{Fe})_2\text{O}_3 \cdot 5(\text{Mg},\text{Fe})\text{O} \cdot 10\text{SiO}_2$	Difficultly soluble in water.
97 1.57	SHILKINITE	$\text{K}_2\text{O} \cdot 4\text{Al}_2\text{O}_3 \cdot 8\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	
98 1.555	LEPIDOLITE	$(\text{K},\text{Li})_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$ with F	In B.T., gives water and reacts for fluorine. A mica.
99 1.73±	STILPNOMELANE	SiO_2 of Fe,Mg,Al	In C.T., much water. Fuses to a black shining magnetic globule.
100 1.725	BERMANITE	$\text{Mn,Fe,Mg,P}_2\text{O}_5$	Occurs in minute tabular crystals. B.B., on coal, first swells and separates into scales then fuses into a globule.
101 1.614	MONETITE	CaHPO_4	Brittle. In C.T., gives water.
102 1.348	WEBERITE	$\text{Na}_2\text{MgAlF}_7$	Small grains in cryolite.
103 1.64±	BORICKITE	Hydrated Ca and Fe phosphate.	In C.T., yields water.
104	CALAFATITE	$\text{Al}_2(\text{SO}_4)_3 \cdot \text{K}_2\text{SO}_4 \cdot \text{Al}(\text{OH})_3 \cdot \text{H}_2\text{O}$	
105 1.328	VILLIAUMITE	NaF	Soluble in water.
106 1.566	FLUOBORITE	$6\text{MgO} \cdot \text{B}_2\text{O}_3 \cdot 3(\text{H}_2\text{O},\text{F}_2)$	Soluble in H_2SO_4 .
107 1.575	LEUCHTEN-BERGITE	$12\text{MgO} \cdot 3\text{Al}_2\text{O}_3 \cdot 7\text{SiO}_2 \cdot 10\text{H}_2\text{O}$	Resembles talc. Soluble in H_2SO_4 .
108 1.613	ANAPIÄTE	$2\text{CaO} \cdot \text{FeO} \cdot \text{P}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	
109 1.642	COLLINSITE	$2\text{CaO} \cdot (\text{Mg},\text{Fe})\text{O} \cdot \text{P}_2\text{O}_5 \cdot 2\frac{1}{2}\text{H}_2\text{O}$	
110 1.478	CREEDITE	$\text{CaO} \cdot 2\text{Al}(\text{F},\text{OH})_3 \cdot 2\text{CaF}_2 \cdot \text{SO}_3 \cdot 2\text{H}_2\text{O}$	
111 1.695	KEMPISTE	$\text{MnCl}_2 \cdot 3\text{MnO}_2 \cdot 3\text{H}_2\text{O}$	Treated with HCl, it yields chlorine.
112	KRUGITE	$\text{K}_2\text{SO}_4 \cdot 4\text{CaSO}_4 \cdot \text{MgSO}_4 \cdot 2\text{H}_2\text{O}$	Partly soluble in cold water and partly in hot water.
113 1.594	ASTROLITE	$(\text{Na},\text{K})_2\text{O} \cdot (\text{Al},\text{Fe})_2\text{O}_3 \cdot \text{FeO} \cdot 5\text{SiO}_2 \cdot \text{H}_2\text{O}$	B.B., fuses to a gray enamel.
114 1.575	ANHYDRITE	CaSO_4	On coal with soda, it reduces to a sulfide.
115	VIRIDITE	$4\text{FeO} \cdot 2\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	An iron chlorite.
116 1.64+	CARYOPILITE	$4\text{MnO} \cdot 3\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	Reacts for manganese.
117 1.487	APHTHITALITE	$(\text{Na},\text{K})_2\text{SO}_4$	Soluble in water. Tastes bitter.

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
118	3-3.5	2.69-2.57	Inf	Sol	Emerald green	Paler	V	Conch
119	2.5-3.5	2.78	Micaceous	M
120	3	3.1-2.5	Diff	Depd	Black, brownish black	Yellowish brown	G, V	Conch
121	3	2.95	Pale blue	None	Tr
122	3	3.0-2.93	1.5	White, colorless	V	Indist	Uneven	M
123	3	2.83	3	Sol	Straw yellow, buff	O?
124	3	2.72-2.71	Inf	Sol	White, blue, varied	Same, grayish	Perf	Conch	R
125	3	2.8-2.7	White, yellowish, brownish	Perf
126	3	2.76	Easy	Gelat	Colorless, white	P	Perf
127	3	2.84	3	Ins	Copper red, purple	P, V	Perf	H
128	3	2.92	Pt sol	White	H
129	3	2.75	Violet	White	H
130	3	2.94-2.92	3?	Pt sol	Green, brown	P	Perf	M
131	2.5-4	2.9-2.8	2.5	Pt sol	Purple, rose-red, ylwsh, gray, wht	P	Perf	M
132	2.5-3	3.2-2.82	2.5-3	Brown, yellow, violet, gray	P	Perf	Flexible	M
133	2.5-3	3.1-2.7	6	Brown, black, green	Uncolored	P, V, Sm	Perf	M
134	2.5-3	2.9-2.78	Diff	Ins	White, yellowish, green, grayish	P	Perf	M
135	2.5-3	2.85-2.76	5	Sol	Grayish, brown	White	V, P	Perf	Uneven	O
136	2.5-3	2.78	Easy	Sol	Gray, colorless	V	Dist	Uneven	I
137	2.5-3	2.85-2.78	6	Brown, green, white	P	Perf	Elastic	M
138	2.5-3	2.85-2.7	1.5	Sol	Colorless, yellow, gray, red	White	V	Perf	Conch	M
139	2.5-3	2.78-2.77	1.5	Sol	Flesh red, yellow	Red	R, P	Good	M?
140	2.5-3	2.67-2.60	Inf	Sol	White, pink, yellowish	D, P	Perf	O
141	2.5-3	2.86	Easy	Sol	Colorless, tinged blue	Perf	M
142	2.5-3	2.82?	Sol	Purplish, blue, black to brown	Yellowish, same	Conch
143	2-3	2.78-2.70	Inf	Sol	White	V	Traces	R
144	2-3	2.84	Inf	Violet	Cherry red	M	Perf	Brittle
145	2-3	2.69-2.68	1.5-2	Sol	White, brown	V	Dist	Uneven	O

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

INDEX OF REP.	NAME	COMPOSITION	REMARKS
118 1.59+	ZARATITE	$\text{NiCO}_3 \cdot 2\text{Ni(OH)}_2 \cdot 4\text{H}_2\text{O}$	In C.T., yields H_2O and CO_2 and leaves a grayish-black magnetic mass.
119 1.582	HYDROBIOTITE	$2\text{K}_2\text{O} \cdot 10\text{MgO} \cdot 3\text{Al}_2\text{O}_3 \cdot 12\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	A member of the mica group.
120 1.57+	HISINGERITE	Hydrated ferric silicate	In C.T., yields H_2O . B.B., fuses to a black magnetic slag.
121 1.587	LEIGHITONITE	$\text{CuO} \cdot 2\text{CaO} \cdot \text{K}_2\text{O} \cdot 4\text{SO}_3 \cdot 2\text{H}_2\text{O}$	Slender laths and blades. From Chile.
122 1.413	PACHNOLITE	$\text{NaF} \cdot \text{CaF}_2 \cdot \text{AlF}_3 \cdot \text{H}_2\text{O}$	Reacts for fluorine.
123 1.660	MAGNESIO-SUSSEXITE	$2(\text{Mg}, \text{Mn})\text{O} \cdot \text{B}_2\text{O}_3 \cdot \text{H}_2\text{O}$	
124 1.658	CALCITE	CaCO_3	Clear crystals (Iceland spar) are strongly doubly refractive.
125 1.669	PLUMBOCALCITE	$(\text{Ca}, \text{Pb})\text{O} \cdot \text{CO}_2$	Calcite in which lead replaces a portion of the calcium.
126 1.565	ZEOPHYLLITE	$3\text{CaO} \cdot \text{CaF}_2 \cdot 3\text{SiO}_2 \cdot \text{H}_2\text{O}$	A zeolite.
127 1.594	ALURGITE	$6(\text{H}, \text{K})_2\text{O} \cdot 2(\text{Mg}, \text{Mn})\text{O} \cdot 3\text{Al}_2\text{O}_3 \cdot 12\text{SiO}_2$	Similar in cleavage to mica.
128 1.547	FLUOBORITE	$6\text{MgO} \cdot \text{B}_2\text{O}_3 \cdot 3(\text{F}_2, \text{H}_2\text{O})$	
129 1.74	VILATEITE	$\text{Mn}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 4\text{H}_2\text{O}?$	
130 1.685	ROSCOELITE	$4\text{H}_2\text{O} \cdot 2\text{K}_2\text{O} \cdot 2(\text{Mg}, \text{Fe})\text{O} \cdot 2\text{Al}_2\text{O}_3 \cdot 3\text{V}_2\text{O}_3 \cdot 10\text{SiO}_2$	B.B., fuses to a black glass.
131 1.555	LEPIDOLITE	$(\text{Li}, \text{K})_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$ with F	In C.T., gives water and reacts for fluorine.
132 1.578	ZINNWALDITE	$(\text{K}, \text{Li})_2\text{O} \cdot 2\text{FeO} \cdot \text{F} \cdot 2\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot \text{H}_2\text{O}$	In C. T., gives water and reacts for fluorine.
133 1.64±	BIOTITE	$(\text{H}, \text{K})_2\text{O} \cdot 2(\text{Mg}, \text{Fe})\text{O} \cdot (\text{Al}, \text{Fe})_2\text{O}_3 \cdot 3\text{SiO}_2$	One of the common micas. Black mica. Decomposed by H_2SO_4.
134 1.60	PARAGONITE	$\text{Na}_2\text{O} \cdot 3\text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	One of the micas.
135 1.585±	HOPEITE	$\text{Zn}_3(\text{PO}_4)_2 \cdot 2\text{H}_2\text{O}$	Brittle. In C.T., gives off water.
136 1.339	CRYO-LITHIONITE	$3\text{NaF} \cdot 3\text{LiF} \cdot 2\text{AlF}_3 \cdot 2\text{K}_2\text{O} \cdot 10(\text{Mg}, \text{Fe})\text{O}$	In C.T., decrepitates violently, fuses to a colorless liquid.
137 1.598±	PHLOGOPITE	$3\text{Al}_2\text{O}_3 \cdot 12\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	In C.T., a little water. Depd by H_2SO_4 . One of the micas.
138 1.535	GLAUBERITE	$\text{Na}_2\text{SO}_4 \cdot \text{CaSO}_4$	B.B., decrepitates, turns white, fuses to a white enamel.
139 1.560	POLYHALITE	$\text{K}_2\text{SO}_4 \cdot 2\text{CaSO}_4 \cdot \text{MgSO}_4 \cdot 2\text{H}_2\text{O}$	In C. T., gives water. Partially soluble in water.
140 1.587	LANTHANITE	$\text{La}(\text{CO}_3)_2 \cdot 9\text{H}_2\text{O}$	In C.T., yields water.
141	TAENIOLITE	$(\text{K}, \text{Li})_2\text{O} \cdot \text{MgO} \cdot 3\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	B.B., a colorless blebby mass. Colors flame intensely red.
142	CORVUSITE	$\text{V}_2\text{V}_{12}\text{D}_{34} \cdot \text{nH}_2\text{O}$	
143 1.583	ALUMIAN	$\text{Al}_2\text{O}_3 \cdot 2\text{SO}_3$	B.B., yields a fine blue color with cobalt solution.
144 1.765	MURMANITE	$2\text{Na}_2\text{O} \cdot (\text{Fe}, \text{Mg}, \text{Ca})\text{O} \cdot 4\text{SiO}_2 \cdot 4(\text{Ti}, \text{Zr})\text{O}_2 \cdot 4\text{H}_2\text{O}$	Soluble in HSO_4 .
145 1.477	THENARDITE	Na_2SO_4	Brittle. Soluble in water

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
146	2-3	2.77	Inf	Dcpd	Pale bluish green	P	Perf	Flexible	H
147	2-3	2.8	Easy	Black, brownish	V, P	Conch
148	2.5	2.85	Inf	Dcpd	Reddish brown	Bronze	Perf	O
149	2.5	3.0-2.95	2	Ins	White, reddish, brownish	V, G	Parting	Uneven	M
150	2.5	2.81	Deep blue	Perf	Flexible	T	
151	2.5	3.0-2.9	1.5-2	Sol	Yellow, green, brown	Green, brown, yellow, pale	A to G	Imperf	Uneven	I
152	2.5	2.67±	White	Micro	M
153	2.5	2.96	Inf	Dcpd	Pale indigo, green	Bluish white	P, V	Perf	Uneven	M
154	2.5	2.86	5	Ins	Green	Micro	M
155	2.5	2.90	Diff	Green	P	Perf	Flexible	M
156	2.5	2.89	Diff	Sol	Olive to blackish green	Gray to green	Mic	M
157	2.5	2.68	Diff	White, pink, yellowish green	P	Perf	M
158	2.5	2.68	Green	Perf	M
159	2.5	2.72	Chestnut brown	Perf	Brittle	M
160	2.5	2.84	Inf	Sol	Yellowish green	White	V	Perf	Brittle	M
161	2.5	2.91	Easy	Sol	Ash gray, greenish blue	S
182	2-2.5	3.0-2.76	5	Ins	Green, brown, yellow, colorless, etc.	Uncolored	V, S, P	Perf	Flexible and elastic	M
163	2-2.5	2.93-2.79	Easy	Sol	Green, black	Perf	M
164	2-2.5	2.78-2.65	5-5.5	Pt sol	Violet, green, red, yellowish	Greenish white, uncolored	P	Perf	Flexible	M
165	2-2.5	2.85-2.60	5-5.5	Pt sol	Green, red, violet, yellow, white	P, V	Perf	Flexible	M
166	2-2.5	2.73-2.64	2.5	Sol	White, grayish, red tinge	White	V, P	Perf	Uneven	M
167	2-2.5	2.70	4.5-5	Sol	White	D	Conch
168	2-2.5	2.98-2.88	3-3.5	Sol in HNO ₃	Blue to green	Same	V, R	Indist	Subconch to uneven	M
169	2-2.5	3.24-2.47	Sol	Pale, deep green	P	Perf	H
170	2	3.11-2.96	Inf	Sol	Apple green	P, S	Perf	M
171	2	2.69	White	Perf	M
172	2	3.0-2.93	1.5	Colorless, white, reddish, brown	V to P	Perf	Uneven	M
173	2	2.66-2.4	2-2.5	Deep emerald green	Paler	P, V, Sa	Perf	R

MINERAL IDENTIFICATION TABLES

**GROUP 9
Specific Gravity 2.99-2.66**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
146 1.597	AMESITE	$2(\text{Mg},\text{Fe})\text{O}\cdot\text{Al}_2\text{O}_3\cdot\text{SiO}_2\cdot 2\text{H}_2\text{O}$	A member of the chlorite group.
147	YUKONITE	Hydrous arsenate of Fe and Ca	Brittle. Decrepitates when immersed in water.
148 1.65+	IDDINGSLITE	$\text{MgO}\cdot\text{Fe}_2\text{O}_3\cdot 3\text{SiO}_2\cdot 4\text{H}_2\text{O}$	Has lamellar structure.
149 1.339	CRYOLITE	$3\text{NaF}\cdot\text{AlF}_3$	Treated with H_2SO_4 , it gives off HF etching the glass.
150 1.692	BANDYLITE	$\text{CuB}_2\text{O}_4\cdot\text{CuCl}_2\cdot 4\text{H}_2\text{O}$	Occurs in thick tabular crystals. The water solution leaves a residue of copper borate.
151 1.68±	PHARMACO-SIDERITE	$3\text{FeAsO}_4\cdot\text{Fe}(\text{OH})_3\cdot 6\text{H}_2\text{O}$	In C.T., yields neutral water and turns yellow.
152 1.581	CHLORITE	$3\text{MgO}\cdot 3\text{Al}_2\text{O}_3\cdot 5\text{SiO}_2\cdot 8\text{H}_2\text{O}$	Pearly on cleavages. A member of the chlorite group.
153 1.668	SYMPLESITE	$\text{Fe}_3(\text{AsO}_4)_2\cdot 8\text{H}_2\text{O}$	In C.T., much water. Colors outer flame light blue.
154 1.594	FUCHSITE	Chromium mica	Mica group. Near muscovite.
155 1.607	CORUNDO-PHILITE	$\text{H}_2\text{Mg}_1\text{Al}_8\text{Si}_6\text{O}_{45}$	A member of the chlorite group. Decomposed by H_2SO_4 .
156 1.619	DELESSITE	$4(\text{Mg},\text{Fe})\text{O}\cdot 2\text{Al}_2\text{O}_3\cdot 4\text{SiO}_2\cdot 5\text{H}_2\text{O}$	In C.T., yields water and becomes brown.
157 1.579	COOKEITE	$(\text{Li},\text{Na})_2\cdot 3\text{Al}_2\text{O}_3\cdot 4\text{SiO}_2\cdot 6\text{H}_2\text{O}$	B.B., fuses and exfoliates.
158 1.580	SHERIDANITE	$9\text{MgO}\cdot 3\text{Al}_2\text{O}_3\cdot 5\text{SiO}_2\cdot 8\text{H}_2\text{O}$	A member of the chlorite group.
159 1.63	GUILDITE	$2(\text{Fe},\text{Al})_2\text{O}_3\cdot 7\text{SiO}_3\cdot 3(\text{Cu},\text{Fe})\text{O}\cdot 17\text{H}_2\text{O}$	
160 1.650	KRAUSITE	$\text{K}_2\text{O}\cdot\text{Fe}_2\text{O}_3\cdot 4\text{SO}_3\cdot 2\text{H}_2\text{O}$	In C.T., decrepitates; gets yellow then brown; melts. B.B., yields a black scoria.
161	SILICOMAGNESIO-FLUORITE	$\text{H}_2\text{Ca}_4\text{Mg}_3\text{Si}_2\text{O}_7\text{F}_{10}$	In C.T., yields water. B.B., gives a clouded greenish glass.
162 1.59+	MUSCOVITE	$\text{K}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 6\text{SiO}_2\cdot 2\text{H}_2\text{O}$	One of the common micas.
163 1.595	DIABANTITE	$12(\text{Mg},\text{Fe})\text{O}\cdot 2\text{Al}_2\text{O}_3\cdot 9\text{SiO}_2\cdot 9\text{H}_2\text{O}$	Fuses to a dark gray somewhat magnetic glass.
164 1.58±	CLINOCHLORE	$5(\text{Mg},\text{Fe})\text{O}\cdot \text{Al}_2\text{O}_3\cdot 3\text{SiO}_2\cdot 4\text{H}_2\text{O}$	Decomposed by H_2SO_4 .
165 1.576	PENNINITE	$5(\text{Mg},\text{Fe})\text{O}\cdot \text{Al}_2\text{O}_3\cdot 3\text{SiO}_2\cdot 4\text{H}_2\text{O}$	In C.T., yields water. B.B., exfoliates.
166 1.589	PHARMACOLITE	$\text{CaHAsO}_4\cdot 2\text{H}_2\text{O}$	In C.T., yields water and becomes opaque.
167 1.59±	COLLOPHANITE	$\text{Ca}_3(\text{PO}_4)_2\cdot \text{H}_2\text{O}$	B.B., decrepitates violently.
168 1.652	LIROCONITE	$18\text{CuO}\cdot 4\text{Al}_2\text{O}_3\cdot 5\text{As}_2\text{O}_5\cdot 55\text{H}_2\text{O}$	In C.T., yields much water and turns olive green.
169 1.625	NEPOUIITE	$3(\text{Ni},\text{Mg})\text{O}\cdot 2\text{SiO}_2\cdot 3\text{H}_2\text{O}$	In C.T., blackens and yields water.
170 1.654	CABRIERITE	$(\text{Ni},\text{Mg})_3(\text{AsO}_4)_2\cdot 8\text{H}_2\text{O}$	In C.T., yields water and becomes grayish yellow.
171 1.553	VEATCHITE	$\text{Ca}_2\text{B}_6\text{O}_{11}\cdot 2\text{H}_2\text{O}$	Occurs in white cross fibers and veins in limestone and howlite at Lang, Calif.
172 1.414	THOMPSENOLITE	$\text{NaF}\cdot\text{CaF}_2\cdot\text{AlF}_3\cdot \text{H}_2\text{O}$	B.B., fuses to a clear glass. Decomposed by H_2SO_4 .
173 1.625±	CHALCOPHYLLITE	$7\text{CuO}\cdot \text{As}_2\text{O}_5\cdot 14\text{H}_2\text{O}$	Soluble in HNO_3 and NH_4OH .

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
174	2	2.66	Blue to steel gray	White, pale blue
175	2	2.9	2	Pale green	Perf	M
176	2	2.98-2.87	3	Sol	Reddish brown to hyacinth red	Yellow	V, P	Dist	M
177	2	2.77	1.5-2	Sol	White chalky	D	M
178	2	2.67	Fus	Sol	Black	Perf	H
179	1.5-2.5	2.95	2	Sol	Crimson to gray	Paler	P, A, V	Perf	Flexible	M
180	1.5-2.5	2.85	2.5	Sol	White	White	V, P	Perf	Flexible	O
181	1.5-2	2.68-2.58	1.5	Sol	Colorless, green, blue	Colorless to indigo	P, V	Perf	Flexible	M
182	1-2	2.96-2.78	5-5.5	Green	Green, uncolored	P	Perf	Flexible	M
183	1-2	2.83	Grayish, green	D
184	1-2	2.9-2.8	Diff	White, gray, green	P	Good	Flexible	M
185	1.5	2.92	4?	Sol	Colorless, white	V, P	Perf	M
186	1-1.5	2.8-2.7	6	Ins	White, greenish	White	P	Perf	M?
187	1-1.5	2.67	Inf	Ins	Greenish white	Perf	M
188	1-1.5	2.89	White, yellow, gray, brown	P	Perf	Brittle	M
189	1	2.75	Sky-blue	Fibrous
190	Soft	3.0-2.8	Diff	Gelat	Green	Mic	M
191	Soft	2.98	3.5	Dcpd	Pale grayish yellow	P	Perf	O
192	Soft	2.84	Sol	Leek green	Good	T
193	Soft	2.66	1	Sol	Yellow brown	Yellow	V to G
194	Soft	2.8-2.3	Inf	Dcpd	Apple green	D	O?
195?	2.9	Inf	Sol	White, yellowish	V	R
196?	2.68	Reddish brown
197?	2.67	Gelat	White, colorless	Dist	H
198?	2.88	Amber brown	R	Fibrous
199?	2.9	Black	Fibrous
200?	2.8	Sol	Green, yellow, brown
201?	3.15-2.85	Green
202?	2.94	Yellow	Good	Tr
203?	2.76-2.69	White
204?	2.74	Dark gray to black

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

INDEX OF REF.	NAME	COMPOSITION	REMARKS
174	PARAVIVIANITE	$(\text{Fe}, \text{Mn}, \text{Mg})_3\text{P}_2\text{O}_5 \cdot 8\text{H}_2\text{O}$	A Mn, Mg vivianite.
175 1.565	POLYLITHIONITE	$(\text{Na}, \text{K})_3\text{Li}_5\text{Al}_2\text{Si}_8\text{O}_{22}\text{F}_2$	A member of the mica group.
176 1.786	BERAUNITE	$3\text{Fe}_2\text{O}_3 \cdot 2\text{P}_2\text{O}_5 \cdot 8\text{H}_2\text{O}$	Fuses to a black bead.
177 1.454	GEARKSUTITE	$\text{CaF}_2 \cdot \text{Al}(\text{F}, \text{OH})_3 \cdot \text{H}_2\text{O}$	Fuses to a white enamel. In C.T., gives water.
178 1.576	EKMANNITE	$5(\text{Fe}, \text{Mn}, \text{Mg}, \text{Ca})\text{O} \cdot (\text{Al}, \text{Fe})_2\text{O}_3 \cdot 8\text{SiO}_2 \cdot 7\text{H}_2\text{O}$	Fuses to a black magnetic slag.
179 1.661	ERYTHRITE	$\text{Co}_3(\text{AsO}_4)_2 \cdot 8\text{H}_2\text{O}$	HCl solution is rose-red. In C.T., yields H_2O and turns bluish.
180 1.602	HAIDINGERITE	$\text{CaHASO}_4 \cdot \text{H}_2\text{O}$	Test for arsenic.
181 1.603	VIVIANITE	$\text{Fe}_3(\text{PO}_4)_2 \cdot 8\text{H}_2\text{O}$	On coal a grayish-black magnetic globule and bluish-green flame.
182 1.60±	PROCHLORITE	$2(\text{Mg}, \text{Fe})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	Decomposed by H_2SO_4 .
183	PYCNOCHLORITE	$(\text{Fe}, \text{Mn}, \text{Ca}, \text{Mg})\text{O} \cdot (\text{Al}, \text{Fe})_2\text{O}_3 \cdot \text{SiO}_2$	
184 1.588	PYROPHYLITE	$\text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot \text{H}_2\text{O}$	Decomposed on fusion with alkalies.
185 1.568	ISOCLASITE	$\text{Ca}_3(\text{PO}_4)_2 \cdot \text{Ca}(\text{OH})_2 \cdot 4\text{H}_2\text{O}$	B.B., it glows.
186 1.589	TALC	$3\text{MgO} \cdot 4\text{SiO}_2 \cdot \text{H}_2\text{O}$	Has a greasy feel. Sectile.
187 1.587	RUMPFITE	$7\text{MgO} \cdot 8\text{Al}_2\text{O}_3 \cdot 10\text{SiO}_2 \cdot 14\text{H}_2\text{O}$	B.B., becomes brown.
188 1.650	EPISTOLITE	$5\text{Na}_2\text{O} \cdot 2\text{Cb}_2\text{O}_5 \cdot 9(\text{Si}, \text{Ti})\text{O}_2 \cdot 10\text{H}_2\text{O}$	
189	GLAUCO-KERINITE	$10(\text{Zn}, \text{Cu})\text{O} \cdot 2\text{Al}_2\text{O}_3 \cdot \text{SO}_3 \cdot 7\text{H}_2\text{O}$	
190 1.612	APHRO-SIDERITE	$6(\text{Mg}, \text{Fe})\text{O} \cdot 2(\text{Al}, \text{Fe})_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	
191 1.64±	BEMENTITE	$2\text{MnSiO}_3 \cdot \text{H}_2\text{O}$	Fuses to a black glass.
192 1.680	SINCOSITE	$\text{V}_2\text{O}_4 \cdot \text{CaO} \cdot \text{P}_2\text{O}_5 \cdot 5\text{H}_2\text{O}$	The HCl solution is blue.
193 1.65±	EGUELITE	$6\text{Fe}_2\text{O}_3 \cdot \text{CaO} \cdot \frac{5}{4}\text{P}_2\text{O}_5 \cdot 23\text{H}_2\text{O}$	In C.T., blackens and gives off water.
194 1.59	GARNIERITE	$(\text{Ni}, \text{Mg})\text{O} \cdot \text{SiO}_2 \cdot n\text{H}_2\text{O}$	A serpentine.
195 1.606	MARTINITITE	$5\text{CaO} \cdot \text{P}_2\text{O}_5 \cdot 1\frac{1}{2}\text{H}_2\text{O}$	B.B., burns white and falls to pieces.
196	ERRITE	$7\text{MnO} \cdot 8\text{SiO}_2 \cdot 9\text{H}_2\text{O}$	Massive. May be a variety of parsettensite.
197 1.545	EUCRYPTITE	$\text{Li}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$	
198 1.65	FERRI-SYMPLESSITE	$3\text{Fe}_2\text{O}_3 \cdot 2\text{As}_2\text{O}_5 \cdot 16\text{H}_2\text{O}$	
199	KURSKITE	$2\text{Ca}_3(\text{PO}_4)_2 \cdot \text{CaF}_2 \cdot \text{CaCO}_3$	
200 1.65	GREENALITE	$\text{FeO} \cdot \text{SiO}_2 \cdot n\text{H}_2\text{O}$	Resembles glauconite but contains no potash.
201	META-GREENALITE	$9\text{FeO} \cdot \text{Fe}_2\text{O}_3 \cdot 8\text{SiO}_2 \cdot 8\text{H}_2\text{O}$	
202 1.66	STEWARTITE	$3\text{MnO} \cdot \text{P}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	An alteration product of lithiophilite.
203	BASSANITE	CaSO_4	Found in rocks ejected from Vesuvius.
204	TARTARKAITITE	$\text{R}_2\text{O} \cdot 11\text{RO} \cdot 13\text{R}_2\text{O}_3 \cdot 30\text{SiO}_2 \cdot 19\text{H}_2\text{O}$	

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SY- TEM
205?		2.866			Blue, green					...
206?		2.82		Gelat	White			None		M
207?		2.74	3	Sol	Bright blue		P			O
208?		2.89	Easy	Ins	White		P	Perf		H
209?		2.96			White, brownish					H
210?		2.62-2.56			Colorless			None		...
211?		2.75			Gray			Good		I
212?		2.725		Dpd	White, colorless					...
213?		2.98								I
214?		2.8			Red, yellow, brown					H
215?		2.70		Ins	Yellow					...
216?		2.80		Sol	Blue					...
217?		2.86	Fus	Dpd	Blackish-green					...
218?		2.93			White					I
219?		2.90			Creamy white				Fibrous	...
220?		2.7			Green or brown					H
221?		2.84			Wax yellow					M
222?		2.67		Sol	White			Good	Uneven to to conch	O
223?		2.74			Yellow			Fair		O
224?		2.91	Fus		Emerald-green			Perf		M
225?		2.75			Colorless					H?
226?		2.73							Fibrous	O
227?		2.88-2.77								...
228		2.87			Blue to black becomes grnsh ylw				Fibrous	O

MINERAL IDENTIFICATION TABLES

GROUP 9
Specific Gravity 2.99-2.66

	INDEX OF REF.	NAME	COMPOSITION	REMARKS
205	1.627	CUPRO-RIVAITE	$2(\text{Ca},\text{Na})(\text{Cu},\text{Al})(\text{Si},\text{Al})_4(\text{O},\text{OH})_{10}\text{H}_2\text{O}$	From Vesuvius.
206	1.635	TILLEYITE	$3\text{CaO}\cdot\text{SiO}_2\cdot\text{CO}_2$	
207	1.617	CYANOTRICKITE	$4\text{CuO}\cdot\text{Al}_2\text{O}_3\cdot\text{SO}_3\cdot 8\text{H}_2\text{O}$	
208	1.6±	MANANDONITE	$2\text{Li}_2\text{O}\cdot 7\text{Al}_2\text{O}_3\cdot 2\text{B}_2\text{O}_3\cdot 6\text{SiO}_2\cdot 12\text{H}_2\text{O}$	
209	1.509	NOCERITE	$2\text{MgO}\cdot\text{MgF}_2\cdot\text{CaF}_2$	Found in volcanic bombs.
210	1.542	KALSILITE	KAISIO_4	
211	1.339	HIERATITE	$2\text{KF}\cdot\text{SiF}_4$	Soluble in hot water. From volcanic fumeroles.
212	1.525	BRADLEYITE	$\text{Na}_3\text{MgCO}_3\text{PO}_4$	Slowly decomposed by cold water.
213	SCACCHITE	MnCl_2	Delequescent. From Vesuvius.
214	MOLYSITE	FeCl_3	Unstable. From Vesuvius.
215	RADIOTINE	$\text{H}_4\text{Mg}_3\text{Si}_2\text{O}_9$	In C.T., yields much water becoming brown. Like serpentine.
216	CERULEITE (COERULEITE)	$\text{CuO}\cdot 2\text{Al}_2\text{O}_3\cdot \text{As}_2\text{O}_5\cdot 8\text{H}_2\text{O}$	Loses water only at high temperatures.
217	MINGUÉTTITE	$17\text{SiO}_2\cdot 4\text{Fe}_2\text{O}_3\cdot 8\text{FeO}\cdot \text{K}_2\text{O}\cdot 8\text{H}_2\text{O}$	In C.T., yields water. B.B., fuses to a black magnetic enamel. Chlorite group.
218	1.590	KOCHITE	$2\text{Al}_2\text{O}_3\cdot 3\text{SiO}_2\cdot 5\text{H}_2\text{O}$	Gives off water at high temperatures.
219	STRONTIUM-ARAGONITE	Aragonite containing SrCO_3	
220	1.57	LAWRENCITE	FeCl_2	Unstable. From Vesuvius.
221	XANTHOXENITE	FePO_4 with Mn,Ca, Fe,Mg,Al oxides	
222	1.494	ARCANITE	$\text{K}_2\text{O}\cdot\text{SO}_3$	Brittle. Soluble in water. Close to aphthitalite.
223	1.722	TARAPACAITE	$\text{K}_2\text{O}\cdot\text{CrO}_3$	Found with soda niter in Chili.
224	1.58	CRYOPHYLLITE	$3(\text{Li},\text{K})_2\text{O}\cdot 2\text{FeO}\cdot 4\text{Al}_2\text{O}_3\cdot 20\text{SiO}_2\cdot 3\text{H}_2\text{O}\cdot 8(\text{Li},\text{K})\text{F}$	Near zinnwaldite. A member of the mica group.
225	1.312	MALLADRITE	$2\text{NaF}\cdot\text{SiF}_4$	From Vesuvius.
226	BARDOLITE	$\text{K}_2\text{O}\cdot 5\text{MgO}\cdot\text{FeO}\cdot \text{Fe}_2\text{O}_3\cdot\text{Al}_2\text{O}_3\cdot 12\text{SiO}_2\cdot 21\text{H}_2\text{O}$	A chlorite-like mineral.
227	BEACONITE	$\text{H}_2(\text{Mg},\text{Fe})_3(\text{SiO}_4)_3$	A variety of talc resembling asbestos.
228	TUHUALITE	SiO_2 of Na,K,Al, Fe, etc.	An amphibolo.

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
17.5-8	2.8-2.63	5.5	Ins	White, red, yellow, pink, green, blue	White	V, R	Imperf	Conch to uneven	H
27.5	2.35	Inf	Ins	Grayish white	V	Perf	Brittle	O
37.7.5	2.66-2.60	5-5.5	Pt sol	Shades of blue	V	Dist	Subconch	O
47	2.65	Inf	Ins	Colorless, various shades	White	V, G	Poor	Conch to uneven	R
57	2.6-2.5
67	2.33-2.28	Inf	Ins	Colorless	V, P	Indist	Conch	H
77	2.59-2.52	White to brick red	S	Fair	O
86.7	2.67-2.65	3.5	Ins	White, various tints	V to P	Perf	Conch to uneven	Tr
96-7	2.64
106-7	2.6-2.59	Inf	Ins	Pale yellow to colorless	V, P	Perf	O
116-7	2.64-2.6	Inf	Ins	White, gray, brown, red, blue, etc	White	V, W	None	Conch
126-7	2.50	Easy	Sol	Reddish violet	V, P	Perf	Tr
136.5	2.55	Diff	Ins	Brown	Fair	O
146-6.5	2.65-2.62	4	Ins	Colorless, white, reddish, greenish	Uncolored	V, P	Good	Uneven to conch	Tr
156-6.5	2.57-2.54	5	Ins	White, pale yellow, red, green	V, P	Perf	Uneven	Tr
166-6.5	2.46-2.39	5	Ins	Colorless, white, reddish, greenish	Uncolored	V, P	Perf	Subconch	M
176-6.5	2.62-2.50	5	Ins	White, colorless, pink, ylw, red, gray	Uncolored	V, P	Perf	Conch to uneven	M
185-6.5	2.8-2.5	2-3	Pt sol	Colorless, white, red, blue, gray, etc	Uncolored	V	Good	Conch	T
196	2.83-2.6	Inf	Sol	Sky blue, green, bluish-green	White to greenish	W	None	Small conch	Tr
206	2.6-2.49	3.5	Gelat	Colorless	S	Perf	Brittle	H
216	2.93-2.54	3	Gelat	Reddish, white, red	V	Conch	T
226	2.53-2.42	Diff	Gelat	Colorless	S, V	Perf	H
236	2.57	Easy	Ins	Colorless	Prismatic	H
246	2.60-2.57	Inf	Ins	White, pale yellow, red, green	Uncolored	V, P	Perf	Uneven	Tr
256	2.50	Fus	Gelat	Colorless	Perf	H
265.5-6	2.65-2.55	3.5	Gelat	Colorless, green, gray, red, brown	V to G	Dist	Subconch	H
275.5-6	2.62	3	Pt sol	Colorless, white	V	Fair	T
285.5-6	2.59-2.55	3	Ins	Pale green, colorless	V	Conch	H

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1 1.598	BERYL	$2\text{BeO}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2$	B.B., clear varieties become milky and cloudy.
2 1.591	HAMBERGITE	$4\text{BeO}\cdot\text{B}_2\text{O}_3\cdot11\text{H}_2\text{O}$	Completely dissolved in HF.
3 1.562±	IOLITE (CORDIERITE)	$4(\text{Mg},\text{Fe})\text{O}\cdot4\text{Al}_2\text{O}_3\cdot10\text{SiO}_2\cdot\text{H}_2\text{O}$	Decomposed by fusion with alkali carbonates.
4 1.544	QUARTZ	SiO_2	A very common mineral.
5	QUARTZINE	SiO_2	Anhydrous silica having a fibrous structure. Fibrous chalcedony.
6 1.47	TRIDYMYITE	SiO_2	Soluble in boiling Na_2CO_3 ; this differentiates it from quartz.
7 1.565	ELPIDITE	$\text{Na}_2\text{O}\cdot\text{ZrO}_2\cdot6\text{SiO}_2\cdot3\text{H}_2\text{O}$	
8 1.543	OLIGOCLASE	$(\text{Na}_2,\text{Ca})\text{O}\cdot\text{Al}_2\text{O}_3\cdot5\text{SiO}_2$	One of the feldspars.
9 1.529	BERLINITE	$3(\text{AlPO}_4)$	
10 1.605	BERTRANDITE	$4\text{BeO}\cdot2\text{SiO}_2\cdot11\text{H}_2\text{O}$	B.B., becomes opaque.
11 1.537	CHALCEDONY	SiO_2	Occurs in botryoidal masses, massive and lining rock cavities. A variety of quartz.
12 1.508	USSINGITE	$2\text{Na}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2\cdot\text{H}_2\text{O}$	
13 1.686	TITANOELPIDITE	$\text{Na}_2\text{O}\cdot(\text{Ti},\text{Zr})\text{O}_2\cdot6\text{SiO}_2\cdot3\text{H}_2\text{O}$	
14 1.529	ALBITE	$\text{Na}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2$	A feldspar. B.B., a colorless or white glass. Yellow flame.
15 1.526	MICROCLINE	$\text{K}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2$	A member of the feldspar group.
16 1.510	PETALITE	$\text{Li}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot8\text{SiO}_2$	B.B., gently heated, emits a blue phosphorescent light.
17 1.524	ORTHOCLASE	$\text{K}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2$	A common constituent of rocks. A feldspar.
18 1.55±	SCAPOLITE	A tetragonal group of $\text{Ca},\text{Na},\text{Al},\text{SiO}_2$	
19 1.62	TURQUOIS	$\text{CuO}\cdot3\text{Al}_2\text{O}_3\cdot2\text{P}_2\text{O}_5\cdot9\text{H}_2\text{O}$	In C.T., decomposes, yields water and turns black or brown.
20 1.532	KALIOPHILITE	$\text{K}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot2\text{SiO}_2$	
21 1.62±	SARCOLITE	$3\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot3\text{SiO}_2\cdot+\text{Na}$	In bundles of slender, acicular crystals and fine threads. B.B., a white enamel.
22 1.521	MICROSOMMITE	$3(\text{K},\text{Na})_2\text{O}\cdot\text{SO}_3\cdot4(\text{Na},\text{K})\text{Cl}\cdot4\text{CaO}\cdot6\text{Al}_2\text{O}_3\cdot12\text{SiO}_2$	
23 1.518	LEIFITE	$\text{Na}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot9\text{SiO}_2\cdot2\text{NaF}$	
24 1.525	ANORTHOCLASE	$(\text{Na},\text{K})_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot6\text{SiO}_2\cdot\text{Ab}_{45}\text{Or}_{35}$	One of the feldspar group.
25 1.522	NATRODAVYNE	Davyne with no K and much CO_2	
26 1.539	NEPHELITE	$3(\text{K},\text{Na})_2\text{O}\cdot4\text{Al}_2\text{O}_3\cdot9\text{SiO}_2$	Brittle.
27 1.54±	MIZZONITE	Near marialite	A scapolite.
28 1.532	MILARITE	$\text{K}_2\text{O}\cdot4\text{CaO}\cdot2\text{Al}_2\text{O}_3\cdot24\text{SiO}_2\cdot\text{H}_2\text{O}$	Brittle. Fuses to a white blebby mass.

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

-	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SY- TEM
29	5.5-6	2.56	3-4	Pt sol	Colorless, white	V	Fair	H
30	5.5-6	2.5-2.4	4.5	Gelat	Blue, green, red, yellow	Bluish to colorless	V, G	Dist	Conch to uneven	I
31	5.5-6	2.5-2.45	Inf	Gelat	Colorless, gray, white	Uncolored	V	Imperf	Conch	I
32	5.5	2.4-2.25	4.5	Gelat	Blue, gray, black, brownish	Poor	I
33	5.5	2.56	Brown, gray, red
34	5.5	2.4±	Fus	Gelat	White, colorless	V, P	Perf	H
35	5-6	2.5-2.40	2	Sol	Colorless, gray, red, ylw, blue-grn	Uncolored	Sv, P, G	Perf	H
36	4.5-6	2.48-2.3	2-3	Gelat	White, gray to black	V	H?
37	5-5.5	2.45-2.38	3	Gelat	Azure to grnsh-blue	V	Poor	Uneven	I
38	5-5.5	2.4-2.16	2	Gelat	White	V, S	Perf	M
39	5-5.5	2.4-2.3	2	Gelat	Reddish, greenish, white, brown	Uncolored	V, P	Perf	Uneven to subconch	O
40	5±	2.75-2.5	Easy	Insol	Red, blue, green, colorless, etc	V	None	Conch	A
41	5	2.46	Inf	Sol	Green	V	Fair	O
42	5	2.70-2.55	Inf	Ins	Milk white to lt blue
43	5	2.45	3	Dcpd	White, yellow, gray	V, P	Perf	Uneven	M
44	5	2.4-2.2	2-2.5	Gelat	White, gray, yellowish	V, S	Perf	Brittle	M
45	5	2.52	Inf	Ins	Green, colorless	V	None	O
46	5	2.65	Pt sol	Green, colorless	None
47	5	2.36	Easy	Inf	Colorless	Fair	O
48	5	2.55	Easy	Ins	Blue	O? M?
49	5	2.44	2	Gelat	Colorless	Perf	H
50	5	2.61	White needles	T
51	5	2.38	Easy	Ins	Brown to black	Brown	R	Uneven to conch
52	4.5-5	2.4-2.3	1.5	Dcpd	Colorless, white, tinted	P, V	Perf	Uneven	T
53	4-5	2.6±	Diff	Green	White	Sr, G, P, D	Fair	Conch, splintery	M
54	4.5	2.62-2.56	Inf	Colorless, white, yellowish	V	None	Uneven	I
55	4.5	2.57	Fus	Sol	Gray, red, green, yellow	Yellowish to bluish white	V, G	O

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
29 1.54±	MARIALITE	$3\text{Na}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 8\text{SiO}_2\cdot 2\text{NaCl}$	A scapolite.
30 1.496	HAUENITE	$3\text{Na}_2\text{O}\cdot \text{Al}_2\text{O}_3\cdot 2\text{SiO}_2\cdot \text{CaSO}_4$	On coal with soda gives the sulfide test.
31 1.508	LEUCITE	$\text{K}_2\text{O}\cdot \text{Al}_2\text{O}_3\cdot 4\text{SiO}_2$	Brittle. B.B., with cobalt solution, gives a blue color.
32 1.495	NOSELITE	$5\text{Na}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 6\text{SiO}_2\cdot 2\text{SO}_3$	On coal with soda, gives the sulfide test.
33 1.540	IGALIKITE	$\text{NaKAl}_4\text{Si}_4\text{O}_{15}\cdot 2\text{H}_2\text{O}$	Minute scales in pseudo-hexagonal arrangement.
34 1.518	DAVYNE	$4(\text{Na},\text{K})_2\text{O}\cdot \text{CaO}\cdot 2\text{CO}_2\cdot 4\text{Al}_2\text{O}_3\cdot 9\text{SiO}_2\cdot 3\text{H}_2\text{O}$	Fuses with intumescence, coloring the flame yellow.
35 1.524	CANCRINITE	$4\text{Na}_2\text{O}\cdot \text{CaO}\cdot 4\text{Al}_2\text{O}_3\cdot 2\text{CO}_2\cdot 9\text{SiO}_2\cdot 3\text{H}_2\text{O}$	In C.T., gives water.
36 1.490	HYDRO- NEPHELITE	$2\text{Na}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 6\text{SiO}_2\cdot 7\text{H}_2\text{O}$	
37 1.50±	LAZURITE	$3(\text{Na}_2\text{O}\cdot \text{Al}_2\text{O}_3\cdot 2\text{SiO}_2)\cdot 2\text{Na}_2\text{S}$	B.B., on heating, glows with a beetle-green light.
38 1.519	SCOLOCITE	$\text{CaO}\cdot \text{Al}_2\text{O}_3\cdot 3\text{SiO}_2\cdot 3\text{H}_2\text{O}$	B.B., sometimes curls up like a worm.
39 1.525±	THOMSONITE	$(\text{Ca},\text{Na}_2)_2\text{O}\cdot \text{Al}_2\text{O}_3\cdot 2\text{SiO}_2\cdot 2\frac{1}{2}\text{H}_2\text{O}$	B.B., gives a white enamel. A zeolite.
40 1.52±	GLASS	$\text{Na}_2\text{O}\cdot \text{CaO}\cdot 6\text{SiO}_4 + \text{Fe}, \text{K}, \text{Ba}, \text{B}, \text{Pb}, \text{etc}$	Not a mineral but often mistaken for one. Very common.
41 1.534	FISCHERITE	$\text{AlPO}_4\cdot \text{Al}(\text{OH})_3\cdot 2\frac{1}{2}\text{H}_2\text{O}$	Soluble in H_2SO_4 . B.B., becomes white and clouded.
42 1.580	COERULEO- LACTITE	$3\text{Al}_2\text{O}_3\cdot 2\text{P}_2\text{O}_5\cdot 10\text{H}_2\text{O}$	Occurs in fibrous crusts.
43 1.512	BREWSTERITE	$(\text{Sr},\text{Ba},\text{Ca})_2\text{O}\cdot \text{Al}_2\text{O}_3\cdot 6\text{SiO}_2\cdot 5\text{H}_2\text{O}$	Brittle. Fuses to a white enamel.
44 1.505	MESOLITE	$\text{Na}_2\text{O}\cdot 2\text{CaO}\cdot 3\text{Al}_2\text{O}_3\cdot 9\text{SiO}_2\cdot 8\text{H}_2\text{O}$	B.B., becomes opaque and swells up to worm-like forms.
45 1.571	VARISCITE	$\text{Al}_2\text{O}_3\cdot \text{P}_2\text{O}_5\cdot 4\text{H}_2\text{O}$	Soluble in HCl after ignition.
46 1.517	PLANERITE	$3\text{Al}_2\text{O}_3\cdot 2\text{P}_2\text{O}_5\cdot 18\pm\text{H}_2\text{O}$	B.B., decrepitates. Probably identical with coeruleolactite.
47 1.59	STERRETTITE	$\text{Al}_6(\text{PO}_4)_4(\text{OH})_6\cdot 5\text{H}_2\text{O}$	In C.T., fuses, yields water, leaving a dark infusible residue.
48	RIVAITE	$(\text{Ca},\text{Na}_2)_2\text{Si}_2\text{O}_5$	Prisms of wollastonite embedded in glass. B.B., a glass and yellow flame.
49 1.507	SULPHATIC CANCRINITE	$4\text{Na}_2\text{O}\cdot \text{CaO}\cdot 4\text{Al}_2\text{O}_3\cdot \text{CO}_2\cdot \text{SO}_3\cdot 9\text{SiO}_2\cdot 3\text{H}_2\text{O}$	
50 1.536	ASCHROFTINE	$\text{Na}_4\text{K}_4(\text{Ca},\text{Mg},\text{Mn})_6\cdot \text{Al}_{10}\text{Si}_{22}\text{O}_{35}\frac{1}{2}\text{H}_2\text{O}$	
51 1.561	LOVOZERITE	Hydrous zircono-silicate of calcium	B.B., an opaque white bead.
52 1.536	APOPHYLLITE	$\text{K}_2\text{O}\cdot 8\text{CaO}\cdot 16\text{SiO}_2\cdot 16\text{H}_2\text{O}$	In C.T., exfoliates, whitens and yields acid water.
53 1.502	ANTIGORITE	$3\text{MgO}\cdot 2\text{SiO}_2\cdot 2\text{H}_2\text{O}$	In C.T., yields water. A serpentine.
54 1.427	RALSTONITE	$(\text{Mg},\text{Na}_2)\text{F}_2\cdot 3\text{Al}(\text{F},\text{OH})_3\cdot 2\text{H}_2\text{O}$	Brittle. Decomposed by H_2SO_4 with evolution of HF.
55 1.660	BARRANDITE	$(\text{Al},\text{Fe})\text{PO}_4\cdot 2\text{H}_2\text{O}$	B.B., splits open and becomes dark color.

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
56	4.5	2.5-2.44	3.5	Dcpd	White, yellow, red, brown	White	V	Easy	Uneven to subconch	M
57	4.5	2.33	Easy	Sol	Emerald-green	Perf	M
58	4-4.5	2.5-2.49	4.5-5	Sol	Colorless to brown, yellow	Yellowish	R	Perf	R?
59	4-4.5	2.43-2.42	1.5	Sol	Colorless, white, yellowish	V to A	Perf	Uneven to subconch	M
60	4-4.5	2.37-2.28	2.5-3	Dcpd	Colorless to white	V	None	Brittle	M
61	4	2.58	Inf	Sol	Pale brown	Perf	I
62	4	2.54	Inf	Gray to blue	G, V	Dist	O
63	4	2.68-2.61	Black
64	4	2.6	Inf	White	Dist
65	4	2.53	Pale green to colorless
66	4	2.5	Dark brown	Brown	P	Conch
67	4	2.54	Inf	Ins	Green	O
68	4	2.5	Ashy brown	R
69	4	2.45-2.38	Fus	Sol	Colorless	D	Dist	Brittle	O
70	4	2.63	Diff	Sol	Colorless	Perf	M
71	4	2.41	Green, yellow	R, P	Perf	M
72	4	2.5	Dcpd	Green, brown, ylw	Perf	O
73	4	2.53	Grnsh, colorless	Perf	M
74	3.5-4	2.39	Blue to gray	Good	M?
75	3.5-4	2.75-2.58	Inf	White, grayish, reddish	White	V, P	Dist	Conch to uneven	R
76	3.5-4	2.36-2.25	2.5-3	Gelat	White, yellow, red	Uncolored	V, P	Perf	Uneven	M
77	3.5-4	2.38	1	Sol	Colorless, gray, yellow, brown	None	Conch	I
78	3.25-4	2.34-2.32	Inf	Sol	White, yellow, green	White	V, P	Fair	Uneven to subconch	O
79	3-4	2.41	Dcpd	Green	Greenish white	R
80	3-4	2.58	Inf	Pt sol	Yellow	White	V, P	Dist	Conch
81	3-4	2.8-2.64	4-6	Dcpd	Brown to black	Same	D
82	3-4	2.39	Diff	Dcpd	White	V, P	Mic
83	3.5	2.49	1	Sol	Greenish, yellow	V	None	I
84	3.5	2.57	White, buff, gray	Glossy	None	Conch	O
85	3.5	2.59-2.55	2	Ins	White	Sv	Even	M
86	3.5	2.61	Easy	Sol	Clear, colorless	None	Brittle

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
56 1.505	HARMOTOME	$(\text{K}_2\text{Ba})\text{O}\cdot\text{Al}_2\text{O}_3\cdot 5\text{SiO}_2\cdot 5\text{H}_2\text{O}$	B.B., whitens, then crumbles and fuses to a white translucent glass.
57 1.656	NATROCHALCITE	$\text{Na}_2\text{O}\cdot 4\text{CaO}\cdot 3\text{SO}_3\cdot 3\text{H}_2\text{O}$	Slowly soluble in water.
58 1.830	CARPHOSIDERITE	$3\text{Fe}_2\text{O}_3\cdot 3\text{SO}_3\cdot 10\text{H}_2\text{O}$	Insoluble in water.
59 1.592	COLEMANITE	$2\text{CaO}\cdot 3\text{B}_2\text{O}_3\cdot 5\text{H}_2\text{O}$	B.B., decrepitates, exfoliates, sinters, fuse imperfectly.
60 1.50	WELLSITE	$\text{BaO}\cdot \text{K}_2\text{O}\cdot 2\text{Al}_2\text{O}_3\cdot 6\text{SiO}_2\cdot 8\text{H}_2\text{O}$	In C.T., yields water. A member of the zeolite group.
61 2.137	OLDHAMITE	CaS	Treated with HCl, it yields H_2S . Decomposed by boiling water.
62 1.576	SPHAERITE	$4\text{AlPO}_4\cdot 6\text{Al}(\text{OH})_3\cdot 7\text{H}_2\text{O}$	B.B., colors the flame bluish-green.
63	BONDSDORFFITE	$\text{K}_2(\text{Mg},\text{Fe})_2\text{Al}_8(\text{Si}_4\text{O}_7)_6\cdot 7\text{H}_2\text{O}$	An alteration product of cordierite.
64 1.585±	NATROALUNITE	$\text{Na}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 4\text{SO}_3\cdot 6\text{H}_2\text{O}$	Soluble in HCl and partly in water after ignition.
65 1.574	OVERITE	$2[\text{Ca}_3\text{Al}_6(\text{PO}_4)_8\cdot 20\text{H}_2\text{O}]$	Prismatic crystals in variscite nodules.
66 1.758	ASOVSKITE	$\text{P}_2\text{O}_5\cdot 3\text{Fe}_2\text{O}_3\cdot 6\text{H}_2\text{O}$	Occurs in shells, veins, and nodules.
67 1.588	METAVARISCITE	$\text{Al}_2\text{O}_3\cdot \text{P}_2\text{O}_5\cdot 4\text{H}_2\text{O}$	Becomes lavender on heating. Soluble in HCl after gently heating.
68	CODAZZITE	$(\text{Ca},\text{Mg},\text{Fe},\text{Ce})\text{CO}_3\cdot 6\text{MgO}\cdot 2\text{B}_2\text{O}_3\cdot 2\text{SO}_3\cdot 9\text{H}_2\text{O}$	
69 1.540	SULPHOBORITE		Soluble in water. Colors flame green.
70 1.62	AFWILLITE	$3\text{CaO}\cdot 2\text{SiO}_2\cdot 3\text{H}_2\text{O}$	
71 1.545	PHOLIDOLITE	Like caledonite with Al	
72 1.550	CHRYSOTILE	$3\text{MgO}\cdot 2\text{SiO}_2\cdot 2\text{H}_2\text{O}$	Serpentine asbestos. Fibers usually long and flexible.
73 1.578	MONTGOMERITE	$\text{Ca}_4\text{Al}_5(\text{PO}_4)_6(\text{OH})_5\cdot 11\text{H}_2\text{O}$	
74	KOLBECKITE	$\text{H}_2\text{O}\cdot \text{SiO}_2\cdot \text{P}_2\text{O}_5$ of Be	Short prismatic crystals.
75 1.572	ALUNITE	$\text{K}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 4\text{SO}_3\cdot 6\text{H}_2\text{O}$	Brittle. Soluble in H_2SO_4 . In C.T., yields water.
76 1.524	LAUMONTITE	$\text{CaO}\cdot \text{Al}_2\text{O}_3\cdot 4\text{SiO}_2\cdot 4\text{H}_2\text{O}$	B.B., a white enamel.
77 1.514	NORTHUPITE	$\text{MgO}\cdot \text{Na}_2\text{O}\cdot 2\text{CO}_2\cdot \text{NaCl}$	B.B., froths and fuses to an alkaline mass.
78 1.534	WAVELLITE	$4\text{AlPO}_4\cdot 2\text{Al}(\text{OH})_3\cdot 9\text{H}_2\text{O}$	Brittle. Soluble in KOH.
79	GENTHITE	$2\text{NiO}\cdot 2\text{MgO}\cdot 3\text{SiO}_2\cdot 6\text{H}_2\text{O}$	In C.T., blackens and gives off water.
80	LOEWIGITE	$\text{K}_2\text{O}\cdot 3\text{Al}_2\text{O}_3\cdot 4\text{SO}_3\cdot 9\text{H}_2\text{O}$	Similar to alunite.
81 1.50±	NEOTOCITE	$(\text{Mn},\text{Fe})\text{O}\cdot \text{SiO}_2\cdot 2\text{H}_2\text{O}$	In C.T., yields much water.
82 1.549	GYROLITE	$4\text{CaO}\cdot 6\text{SiO}_2\cdot 5(\text{Na},\text{K},\text{H})_2\text{O}$	In C.T., yields H_2O ; intumesces and separates into thin scales.
83 1.454	SULPHOHALITE	$2\text{Na}_2\text{SO}_4\cdot 2\text{NaCl}\cdot \text{NaF}$	Slowly soluble in water.
84 1.488	BURKEITE	$2\text{Na}_2\text{SO}_4\cdot \text{Na}_2\text{CO}_3$	Brittle. Soluble in water.
85 1.598	HOWLITE	$4\text{CaO}\cdot 5\text{B}_2\text{O}_3\cdot 2\text{SiO}_2\cdot 5\text{H}_2\text{O}$	Tests for boron.
86 1.440	SCHAIRERITE	$\text{Na}_2\text{SO}_4\cdot \text{Na}(\text{F},\text{Cl})$	Soluble in water. Colors flame intensely yellow.

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST- EM
87	3.5	2.45	White	O
88	3.5	2.45	Blue	None	Tr
89	3.5	2.59-2.46	1	Sol	Colorless	None	I
90	3.5	2.6	Sol	Good	R
91	3.5	2.62	Inf	Sol	White	Uneven
92	3.5	2.65	Brown	Light brown
93	3.5	2.38	Diff	Gelat	Iron black	Dark smoky gray	G to P	Basal
94	3.5	2.58-2.50	Diff	Depd	Perf	R
95	3.5	2.65	Dark green to nearly black	Green
96	3-3.5	2.66-2.63	1.5	Sol	White tinged with blue or green	V, R	Fair	R
97	3-3.5	2.57-2.52	2-3	Sol	White, yellowish	V	Perf	M
98	3-3.5	2.56	1.5	Sol	White, yellowish	V, D	Dist	Uneven to subconch	H
99	3-3.5	2.69-2.57	Inf	Sol	Emerald-green	Paler	V	Conch
100	3-3.5	2.5-2.49	Inf	Greenish white, green	White	G, V	Indist	Uneven to subconch	O
101	3-3.5	2.63	Fus	Ins	Ash gray	P to D	Perf
102	3-3.5	2.35	2-2.5	Sol	Colorless, white	V	None	Conch	O
103	2.5-4	2.65-2.5	5-6	Depd	Green, brownish, red	White	S, G, P, R, E P, V	Fair	Conch to splintery	M
104	2.5-3.5	2.4-2.3	Inf	Grayish, reddish, white, green	Perf	M
105	3	2.4	4.5-5	Sol	White	V	Perf	O
106	3	2.63	1	Sol	V	Dist	Conch	O
107	3	2.60	Greenish	Fibrous
108	3	3.1-2.5	Diff	Depd	Black, brownish black	Yellowish brown	G, V	Conch
109	3	2.34	Colorless	M
110	3	2.47	Sol	White to colorless	Perf	M
111	3	2.36	Inf	Gelat	Snow white	S	Fibrous
112	3	2.64	2	Depd	White	S	Fibrous	O?
113	3	2.65	Colorless	Mic	O?
114	3	2.4	Sol	Snow white	Perf	Tr
115	3	2.34	Easy	Sol	Colorless, rose, yellow, brown	S	Perf	Splintery	H

Copyright by O. C. Smith, 1945

Copyright by O. C. Smith, 1945

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
87 1.534	MINYULITE	$2\text{K}(\text{OH},\text{F}) \cdot 2\text{Al}_2\text{O}_3 \cdot 2\text{P}_2\text{O}_5 \cdot 7\text{H}_2\text{O}$	Radiating groups of white needles like wavellite.
88 1.555	VAUXITE	$\text{FeO} \cdot \text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 6\text{H}_2\text{O}$	
89 1.508	TYCHITE	$2\text{MgO} \cdot 3\text{Na}_2\text{O} \cdot 4\text{CO}_2 \cdot \text{SO}_2$	Slightly soluble in water.
90 1.552	ZIRKLERITE	$2\text{Al}_2\text{O}_3 \cdot 9(\text{Fe},\text{Mg},\text{Ca})\text{Cl}_2 \cdot 3\text{H}_2\text{O}$	Decomposed by H_2O with separation of Al_2O_3 and $\text{Fe}(\text{OH})_3$.
91	GAJITE	Hydrous $(\text{Ca},\text{Mg})\text{CO}_3 \cdot (\text{Mn},\text{Mg},\text{Ca})\text{O} \cdot 4\text{Al}_2\text{O}_3 \cdot 3\text{P}_2\text{O}_5 \cdot 21\text{H}_2\text{O}$	In C.T., yields alkaline water.
92	OXY-KERTSCHENITE	$\text{H}_4\text{Fe}_2(\text{Al},\text{Fe})_4 \cdot \text{Si}_7\text{O}_{24}$	
93	MORAVITE	$\text{Ca},\text{Al},\text{SiO}_2 + \text{H}_2\text{O}$	B.B., gives a black shining bead.
94 1.564	REYERITE		In C.T., yields alkaline water. After heating gives an alkaline reaction.
95	KERTSCHENITE	Hydrated basic ferric phosphate	
96 1.487	APHTHITALITE	$(\text{Na},\text{K})_2\text{SO}_4$	Soluble in water. Tastes bitter.
97 1.533	KIESERITE	$\text{MgSO}_4 \cdot \text{H}_2\text{O}$	Soluble in water.
98 1.481	HANKSITE	$9\text{Na}_2\text{SO}_4 \cdot \text{Na}_2\text{CO}_3 \cdot \text{KCl}$	Brittle. Soluble in water.
99 1.59±	ZARATITE	$\text{NiCO}_3 \cdot 2\text{Ni}(\text{OH})_2 \cdot 4\text{H}_2\text{O}$	In C.T., yields water and leaves a grayish black magnetic mass.
100	PEGANITE	$\text{AlPO}_4 \cdot \text{Al}(\text{OH})_3 \cdot \frac{1}{2}\text{H}_2\text{O}$	In C.T., yields water and assumes a violet or rose red color
101	SPODIO-PHYLLITE	$(\text{Na}_2\text{K}_2)_2(\text{Mg},\text{Fe})_3 \cdot (\text{Fe},\text{Al})_2(\text{SiO}_3)_3$	B.B., gives a nearly colorless bead.
102 1.510	PIRSSONITE	$\text{CaO} \cdot \text{Na}_2\text{O} \cdot 2\text{CO}_2 \cdot 2\text{H}_2\text{O}$	Gives an alkaline reaction after heating.
103	SERPENTINE	$3\text{MgO} \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	In C.T., yields water. There are many varieties.
104 1.566	GIBBSITE	$\text{Al}(\text{OH})_3$	Soluble in H_2SO_4 . In C.T., yields water and becomes opaque and white.
105 1.542	DAWSONITE	$\text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{CO}_2 \cdot 2\text{H}_2\text{O}$	B.B., swells up and colors flame deep yellow.
106 1.555	SHORTITE	$\text{Na}_2\text{O} \cdot 2\text{CaO} \cdot 3\text{CO}_2$	Strongly pyroelectric. Dcpd by H_2O .
107	NEMAPHYLLITE	As serpentine	A variety of serpentine containing Na_2O .
108 1.57±	HISINGERITE	Hydrated ferric silicate	In C.T., yields water. Fuses to a black magnetic slag.
109 1.561	METAVAUXITE	$\text{FeO} \cdot \text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	
110 1.545	MOOREITE	$8(\text{Mg},\text{Mn},\text{Zn})\text{O} \cdot \text{SO}_3 \cdot 11\text{H}_2\text{O}$	White tabular crystals.
111 1.594	FOSHAGITE	$5\text{CaO} \cdot 3\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	B.B., water is expelled and it becomes pale blue. May be identical with hillebrandite.
112 1.60	RIVERSIDEITE	$2\text{CaO} \cdot 2\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	B.B., fuses to a white glass.
113 1.572	ENGLISHHITE	$4\text{CaO} \cdot \text{K}_2\text{O} \cdot 4\text{Al}_2\text{O}_3 \cdot 4\text{P}_2\text{O}_5 \cdot 14\text{H}_2\text{O}$	
114 1.591	PRICEITE	$4\text{CaO} \cdot 5\text{B}_2\text{O}_3 \cdot 7\text{H}_2\text{O}$	Chalky. In crystalline and cryptocrystalline compact masses.
115 1.589	RINNEITE	$\text{FeCl}_4 \cdot 3\text{KCl} \cdot \text{NaCl}$	The taste is astringent like ink.

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
116	2.5-3	2.67-2.6	Inf	Sol	White, pink, yellowish White		D, P	Perf		O
117	2.5-3	2.5					P	Perf		
118	2.5-3	2.62-2.46			Yellowish green	Green		Perf		H?
119	2.5-3	2.37	1.5	Sol	White, yellowish, rdsh		V	Dist	Conch	T
120	2.5-3	2.51	Diff	Pt sol	White					H
121	2-3	2.5-2.2	Easy	Sol	Brown, yellowish, white	Yellowish to white	V, G			
122	2-3	2.61			Silvery white, grayish			Perf		M
123	2-3	2.53		Depd	White					
124	2-3	2.45		Sol	Clear glassy, yellow			Good		Tr
125	2-3	2.4			White, ylw tint					
126	2.5	2.53	5	Sol	Yellow					H
127	2.5	2.6-2.1	1.5	Sol	Colorless, red, blue, purple		V	Perf	Conch	I
128	2.5	2.6	1.5-2		White		V	Perf	Conch	M
129	2.5	2.63	Inf	Pt sol	White		P	Perf		
130	2.5	2.53-2.52	Easy	Depd	Yellow, green	Sulfur yellow	P	Perf	Flexible Brittle	M?
131	2.5	2.4-2.38	Inf	Sol	White, blue, green		P, V, W	Perf		R
132	2.5	2.44	Fus	Sol	Colorless			Perf		M
133	2.5	2.51			Green-yellow			Perf		
134	2.5	2.51	Easy	Depd	White		P	Mic		
135	2.5	2.46	Easy	Sol	Red to yellow, orange	Yellow	V, Sa	Poor	Conch	M
136	2.5	2.55			Deep orange			Perf		O
137	2.5	2.63			Sky blue			Perf		O
138	2.5	2.4			Bluish-green		V	Perf	Conch	O
139	2-2.5	2.5-2.0	2-3?	Sol	Apple green	Paler to white	V	Perf		O
140	2-2.5	2.78-2.65	5-5.5	Pt sol	Violet, green, red, yellowish	Uncolored, greenish wht	P	Perf	Flexible	M
141	2-2.5	2.85-2.6	5-5.5	Pt Sol	Grn, red, violet, yellowish, white		P, V	Perf	Flexible	M
142	2-2.5	2.73-2.64	2.5	Sol	White, grayish, red tinge	White	V, P	Perf	Uneven	M
143	2-2.5	2.63-2.6	Inf	Ins	White, various tints		P, D, E	Perf	Flexible	M
144	2-2.5	2.48			Colorless, white		V	Perf		M?
145	2-2.5	2.35-2.15	2	Sol	Yellow	Pale yellow		Perf		O
146	2-2.5	3.24-2.47		Sol	Pale, deep green		P	Perf		H
147	1-4	2.5±			Turquoise blue		D		Conch	

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
116 1.587	LANTHANITE	$\text{La}(\text{CO}_3)_2 \cdot 9\text{H}_2\text{O}$	In C.T., yields water.
117 1.542	FOSHALLASSITE	$3\text{CaO} \cdot 2\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	Scaly, spheroidal aggregates. Related to foshagite and centrallassite.
118 1.59±	CONNARITE	$2\text{NiO}_2 \cdot 3\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	
119 1.490	LOEWEITE	$2\text{Na}_2\text{SO}_4 \cdot 2\text{MgSO}_4 \cdot 5\text{H}_2\text{O}$	Soluble in water.
120 1.56	COLERAINITE	$4\text{MgO} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	
121 1.635±	PITTICITE	Hydrated ferric AsO_4 and SO_4	In C.T., yields water and SO_2 .
122 1.537	NAUJAKASITE	$3(\text{Na}_2\text{Fe})\text{O} \cdot 2\text{Al}_2\text{O}_3 \cdot 8\text{SiO}_2 \cdot \text{H}_2\text{O}$	Minute mica-like plates.
123	RADIOPHYLLITE	$\text{CaO} \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	
124 1.770	ROSSITE	$\text{CaO} \cdot \text{V}_2\text{O}_5 \cdot 4\text{H}_2\text{O}$	Soluble in water.
125 1.542	KOLSKITE	Hydrous SiO_2 of Mg	
126 1.591	METAVOLTINE	$5(\text{K}_2, \text{Na}_2, \text{Fe})\text{O} \cdot 3\text{Fe}_2\text{O}_3 \cdot 12\text{SO}_3 \cdot 18\text{H}_2\text{O}$	Partly soluble in water.
127 1.544	HALITE	NaCl	Soluble in water. Common salt.
128 1.517	SYNGENITE	$\text{K}_2\text{SO}_4 \cdot \text{CaSO}_4 \cdot \text{H}_2\text{O}$	Partly soluble in water. In C.T., decrepitates violently, yielding water.
129 1.729	DONBASSITE	$\text{H}_2\text{O} \cdot \text{Al}_2\text{SiO}_5$	B.B., splits into separate folia and whitens.
130 1.575	CALCIOFERRITE	$\text{Ca}_3(\text{PO}_4)_2 \cdot 2\text{FePO}_4 \cdot (\text{Fe}(\text{OH}))_3 \cdot 8\text{H}_2\text{O}$	B.B., gives a shining black magnetic globule.
131 1.559	BRUCITE	$\text{Mg}(\text{OH})_2$	In C.T., yields water; becomes opaque and friable.
132 1.52	HAUTEFEUILLITE	$3(\text{Mg}, \text{Ca})\text{O} \cdot \text{P}_2\text{O}_5 \cdot 8\text{H}_2\text{O}$	Fuses to a greenish white globule.
133 1.542	SCHROECKIN-GERITE	$3\text{CaCO}_3 \cdot \text{Na}_2\text{SO}_4 \cdot \text{UO}_3 \cdot 10\text{H}_2\text{O}$	Erroneously renamed dakeite. Soluble in cold water. Decomposed by hot water.
134 1.548	CENTRALLASITE	$4\text{CaO} \cdot 7\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	
135 1.815	PASCOITE	$3\text{V}_2\text{O}_5 \cdot 2\text{CaO} \cdot 11\text{H}_2\text{O}$	In C.T., yields much water. Soluble in water.
136 1.674	BUTLERITE	$(\text{Fe}, \text{Al})_2\text{O}_3 \cdot 2\text{SO}_3 \cdot 5\text{H}_2\text{O}$	
137 1.643	RANSOMITE	$\text{CuO} \cdot (\text{Fe}, \text{Al})_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 7\text{H}_2\text{O}$	
138 1.685	ANTOFAGASTITE	$\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$	Brittle. Usually in curved and verniform shapes.
139 1.662	LINDACKERITE	$3\text{NiO} \cdot 6\text{CuO} \cdot \text{SO}_3 \cdot 2\text{As}_2\text{O}_3 \cdot 7\text{H}_2\text{O}$	Fuses to a black bead. The HCl solution yields a yellow precipitate with H_2S .
140 1.58±	CLINOCHLORE	$5(\text{Fe}, \text{Mg})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	Decomposed by H_2SO_4 .
141 1.576	PENNINITE	$5(\text{Mg}, \text{Fe})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	Decomposed by H_2SO_4 . B.B., exfoliates.
142 1.589	PHARMACOLITE	$\text{CaAsO}_4 \cdot 2\text{H}_2\text{O}$	In C.T., yields water and becomes opaque.
143 1.565	KAOLINITE	$\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	In C.T., yields water.
144	WAPPLERITE	$2\text{CaHAsO}_4 \cdot 7\text{H}_2\text{O}$	
145 1.525	SIDERONATRITE	$2\text{Na}_2\text{O} \cdot \text{Fe}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 7\text{H}_2\text{O}$	Decomposed by boiling water.
146 1.625	NEPOUIITE	$3(\text{Ni}, \text{Mg})\text{O} \cdot 2\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	In C.T., blackens and yields water. Reacts for nickel.
147 1.54±	AIDYRLITE	$4\text{NiO} \cdot 4\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 15\text{H}_2\text{O}$	

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
148	1-3	2.34	Diff	Pt sol	Green	Lighter	G
149	2	2.66-2.4	2-2.5	Deep emerald green	Paler	R, V, Sa	Perf	R
150	2	2.57-2.51	Pt sol	Dark green	Good	Scaly
151	2	2.58-2.55	1.5	Sol	White, green	Perf	R
152	2	2.43	Yellowish, gray	A
153	2	2.4-2.2	Easy	Pt sol	Green, gray	D	Perf	M
154	2	2.43	Pale yellow
155	2	2.49-2.13	Sol	Yellow	D, R	Perf	Uneven	O
156	2	2.6	Inf	Ins	White	Perf	M
157	1.5-2	2.68-2.58	1.5	Sol	Colorless, blue, green	Colorless to indigo	P, V	Flexible	M
158	1-2	2.41	Fus	Sol	Colorless, white	Good	M
159	1.5	2.33	Inf	Sol	Colorless, yellowish	P	Perf	O
160	1.5	2.6	Inf	White, green, yellow, brown	Mic
161	1.5	2.58	1	Sol in HNO ₃	Orange-yellow	A	None	Brittle	O
162	1	2.47	2-3?	Sol	White	P	Perf	Flexible	M
163	1	2.62	Silvery bluish green	Fibrous
164	Soft	2.45	Easy	Sol	White	Perf	M
165	Soft	2.41	White	Chalky	A
166	Soft	2.47	White	Perf
167	Soft	2.57	White, cream	Chalky
168	Soft	2.50	Inf	Gelat	Yellowish green	Mic	O
169	Soft	2.58	White	P	Dist	M
170	Soft	2.37	Sol	Black	Black
171	Soft	2.8-2.3	Inf	Dcpd	Apple green	D	O?
172	Soft	2.6	1	Sol	Brownish yellow	Yellow	V to G
173	Soft	2.37	Inf	Pt sol	White	Dist	R
174	Soft	2.58±	3	Sol	Olive to apple green	E	Micro
175?		2.59	Fus	Dcpd	Copper red	H
176?		2.5	Light brown	Perf
177?		2.63
178?		2.50
179?		2.55	Inf	Ins	White, yellow, brown, green	O

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
148	HOEFERITE	$\text{Fe}_2\text{O}_3 \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	B.B., becomes reddish brown then grayish black. Fuses to a black slag.
149 1.625±	CHALCO-PHYLLITE	$7\text{CuO} \cdot \text{As}_2\text{O}_5 \cdot 14\text{H}_2\text{O}$	Soluble in HNO_3 and NH_4OH .
150 1.581	SKOLITE	$\text{H}_2\text{O} \cdot \text{SiO}_2$ of $\text{Al}, \text{Fe}, \text{K}$, etc.	Loses water easily but reabsorbs it.
151 1.559	FERRONATRITE	$3\text{Na}_2\text{SO}_4 \cdot \text{Fe}_2(\text{SO}_4)_3 \cdot 6\text{H}_2\text{O}$	Soluble in water.
152 1.535	TORNIELLITE	$(\text{OH})_8\text{Al}_4(\text{Si}_4\text{O}_{10}) \cdot 2\text{H}_2\text{O}$	Clay-like. Amorphous form of halloysite.
153 1.63±	GLAUCONITE	Hydrated silicate of K and Fe.	B.B., gives a black magnetic glass.
154 1.535	TORNIELLITE	Hydrous SiO_2 of Al	Feels soapy. Very porous. Sticks to the tongue.
155 1.561	HUMBOLDTINE	$2\text{Fe}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$	In C.T., yields water, turns black and becomes magnetic.
156 1.563	DICKITE	$\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	One of the kaoline group.
157 1.603	VIVIANITE	$\text{Fe}_3(\text{PO}_4)_2 \cdot 8\text{H}_2\text{O}$	On coal, a grayish-black magnetic globule; bluish flame.
158 1.520	BOBIERITE	$3\text{MgO} \cdot \text{P}_2\text{O}_5 \cdot 8\text{H}_2\text{O}$	Insoluble in water.
159 1.518	FELSOEBANYITE	$2\text{Al}_2\text{O}_3 \cdot \text{SiO}_3 \cdot 10\text{H}_2\text{O}$	In C.T., yields water at high temperatures.
160 1.516±	BEIDELLITE	$\text{Al}_2\text{O}_3 \cdot 3 \pm \text{SiO}_2$	
161 1.665	DIMORPHITE	As_3S_3	On heating, turns red, then brown; gives yellow fumes; ignites and burns without residue.
162 1.571	HOERNESITE	$\text{Mg}_3(\text{AsO}_4)_2 \cdot 8\text{H}_2\text{O}$	In C.T., much water. On coal, an arsenical odor.
163	ISHKYLDITE	$\text{H}_{20}\text{Mg}_{11}\text{Si}_{11}\text{O}_{47}$	A variety of chrysotile.
164 1.533	SEARLESITE	$\text{Na}_2\text{O} \cdot \text{B}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	Partly soluble in water.
165	HYDROMAGNO-CALCITE	$\text{CaCO}_3 \cdot \text{Mg}(\text{OH})_2$	
166 1.549	TRUSCOTTITE	$4(\text{Ca}, \text{Mg})\text{O} \cdot 7\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	
167	KAUAIITE	$2\text{Al}_2\text{O}_3 \cdot 3(\text{K}, \text{Na}, \text{H})\text{O} \cdot \text{SO}_3$	Powdery.
168 1.59±	NONTRONITE	$(\text{Ca}, \text{Mg})\text{O} \cdot \text{Fe}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2 \pm \text{H}_2\text{O}$	
169 1.632	PICRO-PHARMACOLITE	$3(\text{Ca}, \text{Mg})\text{O} \cdot \text{As}_2\text{O}_5 \cdot 6\text{H}_2\text{O}$	
170	CUPRO-ASBOLANE	$(\text{Cu}, \text{Mg}, \text{H}_2)\text{O} \cdot (\text{Fe}, \text{Al}, \text{Co}, \text{Mn})_2\text{O}_3$	HCl solution yields chlorine. From Katanga, Ruashi, etc.
171 1.59	GARNIERITE	$(\text{Ni}, \text{Mg})\text{O} \cdot \text{SiO}_2 \cdot n\text{H}_2\text{O}$	A serpentine.
172 1.65	EQUELITE	$18\text{Fe}_2\text{O}_3 \cdot 3\text{CaO} \cdot 16\text{Fe}_2\text{O}_5 \cdot 69 \pm \text{H}_2\text{O}$	In C.T., blackens and gives water. On coal, fuses with intumescence to a black globule.
173	NEWTONITE	$\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	Gives aluminum reactions with cobalt solution.
174 1.63	CELADONITE	$\text{R}_2\text{O}_3 \cdot 3(\text{RO}, \text{R}_2\text{O}_3) \cdot 8\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	Occurs in minute scales. Feels greasy.
175 1.576	PARSETTENSITE	$3\text{MnO} \cdot 4\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	Probably identical with errite.
176 1.59	MANGANBRUCITE	$(\text{Mg}, \text{Mn})\text{O} \cdot \text{H}_2\text{O}$	See brucite.
177	ALPHA-CHLORITITE	$4\text{Al}_2\text{O}_3 \cdot 5\text{SiO}_2 \cdot 7\text{H}_2\text{O}$	
178	FERRUCCITE	NaBF_4	Minute crystals from Vesuvius.
179	BAUXITE	$\text{Al}_2\text{O}_3 \cdot 2\text{H}_2\text{O}$	In round concretionary masses; massive, oölitic, earthy, clay-like. A mixture; not a mineral.

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
180?		2.65-2.30			White		Chalky			
181?		2.63			Black					H?
182?		2.58			Yellow-orange					M
183?		2.42			Green, blue					T
184?		2.57			Colorless					Tr
185?		2.50			Yellow to pale green			Perf		O
186?		2.34	Inf	Sol	White					
187?		2.51	Easy	Sol	Deep red	Brown to maroon	S			O?
188?		2.55	1-2	Sol	Red	Bronze, maroon	S			O
189?		2.62			Yellowish to reddish sublimate					O
190?		2.50-2.40			Yellowish		V			A
191?		2.52			Bluish-green			Perf		O

MINERAL IDENTIFICATION TABLES

GROUP 10
Specific Gravity 2.65-2.33

INDEX OF REF.	NAME	COMPOSITION	REMARKS
180.....	LEUCO-PHOSPHITE	$K_2(Fe,Al)_7(OH)_{11} \cdot (PO_4)_4 \cdot 6H_2O$	
181.....	ANGARALITE	$5(Al,Fe)_2O_3 \cdot 6SiO_2$	B.B., on heating, becomes dark bronze.
182 1.635	SARMIENTITE	$SO_3 \cdot As_2O_5 \cdot Fe_2O_3$, etc	
183 1.637	MITCHER-LICHITE	$2KCl \cdot CuCl_2 \cdot 2H_2O$	From crater of Vesuvius.
184 1.52	CARNEGIEITE	$Na_2O \cdot Al_2O_3 \cdot 2SiO_2$	A feldspar.
185 1.510	URANOSPATHITE	$CuO \cdot 2UO_3 \cdot P_2O_5 \cdot nH_2O$	Previously considered to be autunite.
186 1.53±	KEHOITE	$3(Zn,Ca)O \cdot 2Al_2O_3 \cdot P_2O_5$ and $27 \pm H_2O$	Chalky.
187 2.10	METAHEWETTITE	$CaO \cdot 3V_2O_5 \cdot 9H_2O$	Slightly soluble in water. B.B., loses water and changes color to yellow-brown.
188 2.18	HEWETTITE	$CaO \cdot 3V_2O_5 \cdot 9H_2O$	B.B., loses water and changes color to bronze.
189 1.324	AVOGADRITE	$KBF_4 + 10\% CsBF_4$	A sublimate of Vesuvius.
190.....	VUDYAVRITE	$Ce_2(TiO_3)_3 \cdot 5(Ca,H)SiO_3 \cdot H_2O$	An alteration product of lovchorrite.
191 1.642	SERPIERITE	$(Cu,Zn,Ca)O \cdot SO_3 \cdot H_2O$	

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYSTEM
1 7	2.32-2.28	Inf	Ins	Colorless		V, P	Indist	Conch	H
2 7	2.20	Inf	Ins	Colorless					
3 6.5-7	2.04			Colorless, lt brown		V			
4 6-7	2.3	Inf	Ins	White		D	None		I
5 5.5-6.5	2.3-1.9	Inf	Ins	White, red, green, brown, yellow, etc	White	V, R, P	Conch		
6 5.5-6	2.3-2.14	3.5-4	Gelat	Gray, grnsh, blue, ylwsh, red	Uncolored	V, G	Fair	Conch to uneven	I
7 4.5-6	2.48-2.3	3	Gelat	White, gray, black		V			H?
8 5.5	2.4-2.23	4.5	Gelat	Blue, grnsh, brnsh, black			Poor		I
9 5-5.5	2.4-2.16	2	Gelat	White		V, S	Perf		M
10 5-5.5	2.4-2.3	2	Gelat	White, grnsh, rdsh, brown	Uncolored	V, P	Perf	Uneven to subconch	O
11 5-5.5	2.29-2.22	2.5	Gelat	Colorless, white, grayish, grnsh, etc		V	Traces	Subconch	I
12 5-5.5	2.25-2.2	2	Gelat	White, grayish, yellowish, red		V, P	Perf	Uneven	O
13 5	2.4-2.2	2-2.5	Gelat	White, gray, ylwsh		V, S	Perf	Brittle	M
14 5	2.11	3-4	Ins	Colorless white		V	Perf		O
15 5	2.22	2	Gelat	White			Perf		Tr
16 4.5-5	2.28	2.5	Gelat	White shaded ylw and green		P	Traces		O
17 4.5-5	2.23	Fus	Gelat	White		D	Good		M?
18 4.5-5	2.4-2.3	1.5	Depd	Colorless, white, tinted		P, V	Perf	Uneven	T
19 4.5-5	2.25			White		S			O?
20 4-5	2.13	1	Sol	Colorless, white		V	Perf		M
21 4-5?	2.0±	Diff	Dcpd	Pale yellow				Granular	M
22 4-5	2.16-2.08	3	Dcpd	White, flesh red	Uncolored	V	Dist	Uneven	R
23 4.5	2.26	3	Gelat	Colorless, white, bluish, grayish, rdsh		V	None	Subconch	M
24 4.5	2.17-2.04	2.5-3	Dcpd	Colorless, ylwsh, greenish, reddish		V	Easy	Uneven	R
25 4.5	2.13	1	Sol	White			Perf		M
26 4-4.5	2.25	3	Pt sol	Colorless, white, yellowish		V	Perf	Uneven	M
27 4-4.5	2.21	3	Gelat	White, reddish	Uncolored	V	Fair	Uneven	M

MINERAL IDENTIFICATION TABLES

**GROUP 11
Specific Gravity 2.32-2.00**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1 1.47	TRIDYMITE	SiO_2	Soluble in boiling Na_2CO_3 , differentiating it from quartz.
2 1.462	LECHATE-LIERITE	SiO_2	Naturally fused quartz from fulgerite.
3	MELANO-PHLOGITE	$\text{Fe}_2\text{O}_3 \cdot \text{SO}_3 \cdot \text{C} \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	In minute cubes and spherical aggregates. B.B., turns black.
4 1.486	CRISTOBOLITE	SiO_2	
5 1.44±	OPAL	$\text{SiO}_2 \cdot n\text{H}_2\text{O}$	Soluble in KOH. Sometimes a rich play of colors.
6 1.483	SODALITE	$3\text{NaAlSiO}_4 \cdot \text{NaCl}$	Brittle. In C.T., blue varieties become white and opaque
7 1.490	HYDRO-NEPHELITE	$2\text{Na}_2\text{O} \cdot 3\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 7\text{H}_2\text{O}$	B.B., gives a white enamel.
8 1.495	NOSELITE	$5\text{Na}_2\text{O} \cdot 3\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 2\text{SO}_3$	On coal with soda, gives the sulfide test.
9 1.519	SCOLOCITE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 3\text{H}_2\text{O}$	B.B., sometimes curls up like a worm.
10 1.525±	THOMSONITE	$(\text{Ca}, \text{Na}_2)\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2\frac{1}{2}\text{H}_2\text{O}$	B.B., gives a white enamel. A zeolite.
11 1.487	ANALCITE	$\text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	Brittle. In C.T., yields water.
12 1.482	NATROLITE	$\text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	In C.T., whitens and becomes opaque.
13 1.505	MESOLITE	$\text{Na}_2\text{O} \cdot 2\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot 9\text{SiO}_2 \cdot 8\text{H}_2\text{O}$	B.B., becomes opaque, swells up; worm-like forms.
14 1.475	PTIOLITE	$(\text{Ca}, \text{Na}_2, \text{K}_2)\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 10\text{SiO}_2 \cdot 9\text{H}_2\text{O}$	B.B., gives a clear glass. A zeolite.
15 1.510	PSEUDO-MESOLITE	$2\text{CaO} \cdot \text{Na}_2\text{O} \cdot 3\text{Al}_2\text{O}_3 \cdot 9\text{SiO}_2 \cdot 8\text{H}_2\text{O}$	Near mesolite.
16 1.52±	OKENITE	$\text{CaO} \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	In C.T., yields water.
17 1.475	LAUBANITE	$2\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 5\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	Fuses to a blebby mass.
18 1.536	ANTHOPYLLITE	$\text{K}_2\text{O} \cdot 8\text{CaO} \cdot 16\text{SiO}_2 \cdot 16\text{H}_2\text{O}$	In C.T., exfoliates, whitens, yields acid water.
19 1.508	GONNARDITE	$\text{Ca}_2\text{Na}_4\text{Al}_6\text{Si}_{12}\text{O}_{40} \cdot 14\text{H}_2\text{O}$	A zeolite.
20	HEINTZITE	$\text{K}_2\text{O} \cdot 4\text{MgO} \cdot 9\text{B}_2\text{O}_3 \cdot 16\text{H}_2\text{O}$	B.B., colors the flame green.
21 1.56	FARATSIHITE	$(\text{Al}, \text{Fe})_2\text{O}_3 \cdot 2\text{SiO}_2 \cdot 2\text{H}_2\text{O}$	B.B., gives a grayish glass. Clings to the tongue.
22 1.483±	CHABAZITE	$(\text{Na}_2, \text{Ca})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	Brittle. B.B., intumesces; fuses to a blebby mass.
23 1.539	GISMONDITE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	In C.T., yields water; becomes opaque.
24 1.47±	GMELINITE	$(\text{Na}_2, \text{Ca})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	Brittle. B.B., gives a white enamel.
25 1.526	KALIBORITE	$\text{K}_2\text{O} \cdot 4\text{MgO} \cdot 11\text{B}_2\text{O}_3 \cdot 18\text{H}_2\text{O}$	B.B., a colorless glass. Slightly soluble in water; gives an alkaline reaction.
26 1.510	PISTILBITTE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	Brittle. B.B., gives a vesicular enamel
27 1.500	PHILLIPSITE	$(\text{K}_2, \text{Ca})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 4\frac{1}{2}\text{H}_2\text{O}$	Brittle. B.B., crumbles and fuses to a white enamel.

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
28	4-4.5	2.16-2.09	2-2.5	Gelat	White, grnsh, rdsh, yellowish	V	Indist	Subconch	R
29	4-4.5	2.165	Fus	Dcpd	White	Perf	M
30	3.5-4	2.12	Light flesh red	Perf	O
31	3.5-4	2.36-2.25	2.5-3	Gelat	White, yellow, red	Uncolored	V, P	Perf	Uneven	M
32	3.5-4	2.22-2.18	2-2.5	Dcpd	White, tinted red, gray, brown	White	P, V	Perf	Subconch to uneven	M
33	3.5-4	2.2-2.09	2-2.5	Dcpd	White, brownish, yellow, red	Uncolored	V, P	Perf	Uneven	M
34	3.25-4	2.34-2.32	Inf	Sol	White, yellow, green	White	V, P	Fair	Uneven to subconch	O
35	3-4	2.15-2.08	4-5	Pt sol	Yellow, pink, white	V, P	Perf	Uneven	M
36	3.5	2.3	3	Sol	Yellow	Yellow	V	Fair
37	3.5	2.09	White	Good	M
38	3.5	2.18-2.14	Inf	Sol	White	White	V, S, P, E	Perf	Brittle	M
39	3.5	2.28	3	Colorless	Perf	M
40	2-4	2.24-2.0	Inf	Dcpd	Green to blue	White	V, E	Conch
41	3-3.5	2.17-2.10	4.5-5	Sol	Chestnut brown	V	Perf	Uneven	Tr
42	3-3.5	2.1	Sol	White	V	Perf	O
43	3-3.5	2.076	Sol	White or pale buff	V, G, D	Subconch	T
44	3-3.5	2.05-1.95	Grnsh, white, green, yellowish
45	3-3.25	2.15	3-3.5	Ins	White	V, P	Perf	O
46	3+	2.05	Diff	Dcpd	Black	Yellow-brown	Brittle
47	3	2.17	Inf	Ins	Colorless, white	V	Indist	O
48	3	2.15	Inf	Sol	Colorless, lt green	V, P	Perf	M
49	3	2.14-2.08	4.5-5	Sol	Red, brownish	G	Dist	M?
50	3	2.27	Emerald green	Fibrous
51	3	2.12	5	Sol	Chestnut brown	Orange yellow	V	Perf	M
52	3	2.03	Easy	Sol	Brown, yellow	Uncolored	R, V	Conch	M
53	3	2.30	Colorless	Perf	Tr
54	3	2.18	Inf	Sol	Bluish-brown
55	3	2.25	Easy	Sol	Colorless, white, yellow	V	Indist	Conch	M
56	3	2.1	Diff	Sol	White, yellow, brown	Uncolored	R, V	Conch	Tr?

MINERAL IDENTIFICATION TABLES

**GROUP 11
Specific Gravity 2.32-2.00**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
28 1.496	LEVYNITE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	Brittle. B.B., intumesces and fuses to a white blebby mass.
29 1.496	DACHIARDITE	$3(\text{Ca}, \text{Na}_2, \text{K}_2)\text{O} \cdot 2\text{Al}_2\text{O}_3 \cdot 18\text{SiO}_2 \cdot 14\text{H}_2\text{O}$	A zeolite. B.B., decrepitates, exfoliates, fuses to a white enamel.
30 1.492	STELLERITE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 7\text{SiO}_2 \cdot 7\text{H}_2\text{O}$	A member of the zeolite group.
31 1.524	LAUMONTITE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	B.B., gives a white enamel.
32 1.485	HEULANDITE	$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	Brittle. B.B., exfoliates and curves into fan-like or vermicular forms.
33 1.498	STILBITE	$(\text{Na}_2, \text{Ca})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	Brittle. B.B., exfoliates and curves into fan-like or vermicular forms.
34 1.534	WAVELLITE	$4\text{AlPO}_4 \cdot 2\text{Al}(\text{OH})_3 \cdot 9\text{H}_2\text{O}$	Brittle. Soluble in KOH.
35 1.475	MORDENITE	$(\text{Ca}, \text{Na}_2)\text{O} \cdot \text{AlCO}_3 \cdot 9\text{SiO}_2 \cdot 6\text{H}_2\text{O}$	Brittle. B.B., gives a white enamel. A zeolite.
36 1.60±	KONINCKITE	$\text{FePO}_4 \cdot 3\text{H}_2\text{O}$	
37 1.524	GINORITE	$2\text{CaO} \cdot 7\text{B}_2\text{O}_3 \cdot 8\text{H}_2\text{O}$	
38 1.527	HYDRO-MAGNESITE	$3\text{MgCO}_3 \cdot \text{Mg}(\text{OH})_2 \cdot 3\text{H}_2\text{O}$	In C.T., yields water and CO_2 .
39 1.543	GORDONITE	$\text{MgO} \cdot \text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 9\text{H}_2\text{O}$	
40 1.40±	CHRYSOCOLLA	$\text{CuSiO}_3 \cdot 2\text{H}_2\text{O}$	In C.T., blackens and yields water. Colors the flame green.
41 1.571	ROEMERITE	$\text{FeSO}_4 \cdot \text{Fe}_2(\text{SO}_4)_3 \cdot 12\text{H}_2\text{O}$	Brittle. Soluble in water. Tastes saline. Astringent.
42 1.518	NEWBERYITE	$\text{MgHPO}_4 \cdot 3\text{H}_2\text{O}$	Soluble in HNO_3 .
43	TEEPLEITE	$\text{Na}_2\text{B}_2\text{O}_4 \cdot 2\text{NaCl} \cdot 4\text{H}_2\text{O}$	Flat beveled plates, usually rounded into flat cushions. Borax Lake, Calif.
44 1.584	SCHROETTERITE	$8\text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 30\text{H}_2\text{O}$	A clay mineral.
45 1.479	FERRIERITE	$2(\text{Mg}, \text{Na}_2, \text{H}_2)\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 5\text{SiO}_2$	
46	STURTITE	$6(\text{Mn}, \text{Ca}, \text{Mg})\text{O} \cdot \text{Fe}_2\text{O}_3 \cdot 8\text{SiO}_2 \cdot 23\text{H}_2\text{O}$	B.B., gives a magnetic mass.
47 1.490	FLUELLITE	$\text{AlF}_3 \cdot \text{H}_2\text{O}$	
48 1.553	HYDROCALUMITE	$4\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 13 \pm \text{H}_2\text{O}$	
49 1.529	QUETENITE	$\text{MgO} \cdot \text{Fe}_2\text{O}_3 \cdot 3\text{SO}_3 \cdot 13\text{H}_2\text{O}$	Decomposed by water with separation of iron sesquioxide.
50	MAUFITE	$(\text{Mg}, \text{Ni}, \text{Fe})\text{O} \cdot 2\text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 4\text{H}_2\text{O}$	
51 1.643	CASTANITE	$\text{Fe}_2\text{O}_3 \cdot 2\text{SO}_3 \cdot 8\text{H}_2\text{O}$	B.B., changes color from orange to brown to black. Decomposed by H_2SO_4 .
52 1.61±	DIADOCHITE	$2\text{Fe}_2\text{O}_3 \cdot 2\text{SO}_3 \cdot \text{P}_2\text{O}_5 \cdot 12\text{H}_2\text{O}$	In C.T., yields water, swells up and becomes lustrous.
53 1.558	PARAVAUXITE	$\text{FeO} \cdot \text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 5\text{H}_2\text{O}$	
54	MELITE	$2(\text{Al}, \text{Fe})_2\text{O}_3 \cdot \text{SiO}_2 \cdot 8\text{H}_2\text{O}$	B.B., gives off water and the residue becomes brown.
55 1.487	LEONITE	$\text{K}_2\text{O} \cdot \text{MgO} \cdot 2\text{SO}_3 \cdot 4\text{H}_2\text{O}$	Soluble in water.
56 1.625	DESTINEZITE	$2\text{Fe}_2\text{O}_3 \cdot \text{P}_2\text{O}_5 \cdot 2\text{SO}_3 \cdot 13\text{H}_2\text{O}$	In C.T., yields much water.

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
57	3	2.22	Easy	Dcpd	White		V, ID			M
58	2-4	2.24-2.0	Inf	Dcpd	Green to blue	White	V, E		Conch	...
59	2.5-3.5	2.4-2.3	Inf	Grysh, grnsh, rdsh white, white		P, V	Perf		M
60	2-3.5	2.2-2.0	5-6	Dcpd	White, yellow, green, red		G		Brittle	...
61	2.5-3	2.26	Inf	Sol	White, bluish					H
62	2.5-3	2.19-2.07	1.5-2	Sol	Colorless, white, red		V	Dist		M
63	2.5-3	2.2	Inf	Sol	White, violet			Cubic		I
64	2.5-3	2.14-2.11	1.5	Sol	White, gray		V	Perf	Uneven to subconch	M
65	2.5-3	2.18	Sol	Brown					O
66	2-3	2.5-2.2	Easy	Sol	Brown, yellow, white	Yellow to white	V, G			...
67	2-3	2.14	Inf	Sol	White, pink, ylwsh, bluish	White	P	Perf		II
68	2-3	2.2	3	Sol	Rose, pink					Tr
69	2-3	2.1	Sol	Pale blue					Tr
70	2-3	2.2	Sol	Pale blue					Tr
71	2-3	2.15	Easy	Sol	Black					A
72	2-3	2.2	3	Sol	Pale green, white					Tr
73	2-3	2.10	3	Sol	Pale pink					Tr
74	2-5	2.14-2.1	Inf	Sol	Golden, white, green		W, V, P	Perf	Flexible	H
75	2-3	2.151	Easy	Dcpd	Black	Brownish	R	None	Uneven	...
76	2.5	2.28-2.23	1.5	Sol	Colorless, bluish, green, yellow, rdsh		V			M
77	2.5	2.6-2.1	1.5	Sol	Colorless, red, blue, purple		V	Perf	Conch	I
78	2.5	2.1	2	Sol	White			Perf		M
79	2.5	2.3-2.12	3	Sol	Blue, greenish	Uncolored	V	Imperf	Conch, Brittle	Tr
80	2.5	2.11	4.5-5	Sol	Red orange	Lemon yellow		Perf	Brittle	Tr
81	2.5	2.12	4.5-5	Sol	Reddish violet		V	Perf		M
82	2.5	2.10	4.5-5	Sol	Yellow, reddish, violet		P	Perf		M
83	2.5	2.31	Easy	Sol	Yellow		V	None	Conch	H
84	2.5	2.14		White			Fair		M

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
57 1.603	CRESTMORIETE	4CaO·4SiO ₂ ·7H ₂ O	
58 1.40±	CHRYSOCOLLA	CuSiO ₃ ·2H ₂ O	In C.T., blackens and yields water. Colors the flame green.
59 1.566	GIBBSITE	Al(OH) ₃	Soluble in H ₂ SO ₄ . In C.T., yields water and becomes white and opaque.
60	DEWEYLITE	4MgO·3SiO ₂ ·6H ₂ O	In C.T., yields much water.
61 1.534	ZINC-ALUMINITE	6ZnO·3Al ₂ O ₃ ·2SO ₃ ·18H ₂ O	In C.T., yields much water.
62 1.505	KAINITE	MgSO ₄ ·KCl·3H ₂ O	Soluble in water.
63 1.52	HYDROPIHLITE	KCl·CaCl ₂	Strongly hydroscopic. Tastes bitter.
64 1.492	TRONA	Na ₂ CO ₃ ·NaHCO ₃ ·2H ₂ O	Soluble in water. In C.T., yields water and CO ₂ .
65 1.558	LOUDER-BACKITE	2FeO·3(Fe,Al) ₂ O ₃ ·10SO ₃ ·35H ₂ O	Soluble in water.
66 1.635±	PITTICITE	Hydrated ferric As ₂ O ₃ and SO ₄	In C.T., yields water and SO ₂ .
67 1.540	BRUG-NATELLITE	6MgO·Fe ₂ O ₃ ·CO ₂ ·12H ₂ O	Micaceous, lamellar. B.B., turns golden and becomes magnetic.
68 1.549	COBALT CHALCANTHITE	CoO·SO ₃ ·5H ₂ O	Soluble in water.
69 1.534	ZINC COPPER CHALCANTHITE	ZnO·CuO·2SO ₃ ·10H ₂ O	Soluble in water.
70 1.536	IRON COPPER CHALCANTHITE	FeO·CuO·2SO ₃ ·19H ₂ O	Soluble in water.
71 1.582	CHING-LUSUITE	2(Na,K) ₂ O·5(Mn,Ca)O·3(Ti,Zr)O ₂ ·14SiO ₂ ·9H ₂ O	Pale yellow in splinters. B.B., a dark glass.
72 1.537	SIDEROTIL MANGANESE CHALCANTHITE	FeO·SO ₃ ·5H ₂ O	Soluble in water.
73 1.508	MnO·SO ₃ ·5H ₂ O	Soluble in water.	
74 1.565±	PYROAURITE	6MgO·Fe ₂ O ₃ ·CO ₂ ·12H ₂ O	B.B., turns brown and becomes magnetic.
75 1.582	CHINLUSUITE	2(Na,K) ₂ O·5(Mn,Ca)O·3(Ti,Zr)O ₂ ·14SiO ₂ ·9H ₂ O	In C.T., swells, melts easily to a dark brown glass.
76 1.486	BLOEDITE	Na ₂ O·MgO·2SO ₃ ·4H ₂ O	Soluble in water. B.B., loses water rapidly.
77 1.544	HALITE	NaCl	Soluble in water. Common salt.
78 1.463	PICROMERITE	K ₂ SO ₄ ·MgSO ₄ ·6H ₂ O	Soluble in water. In C.T., yields water.
79 1.537	CHALCANTHITE	CuSO ₄ ·5H ₂ O	Soluble in water. A drop of solution on bright iron coats it with copper.
80 1.605	AMARANTITE	Fe ₂ O ₃ ·2SO ₃ ·7H ₂ O	Decomposed by cold water.
81 1.543±	QUENSTEDTITE	Fe ₂ (SO ₄) ₃ ·10H ₂ O	Soluble in water.
82 1.543	COPIAPITE	2Fe ₂ O ₃ ·5SO ₃ ·18H ₂ O	B.B. on coal, becomes magnetic.
83 1.59	CHLORO-MANGANOKALITE	4KCl·MnCl ₂	Delequesent. From Vesuvius.
84 1.525	KRAMERITE	Na ₂ O·2CaO·5B ₂ O ₃ ·10H ₂ O	Possibly identical with probertite.

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
85 2.5	2.29	5	Sol	Nile blue	Perf	Tr?
86 2.5	2.23	Inf	Sol	Colorless	V, G, P	Good	Conch	M
87 2.5	2.2	Fus	Gelat	Cream, pink	P, G	Conch, splintery	O?
88 2.5	2.20	1?	Sol	Colorless	Perf	T
89 2.5	2.29	Sol	Colorless, yellowish	Glossy	Perf	Uneven	H, R
90 2.5	2.1	Inf	Pt sol	Pale grnsh blue, indigo blue	Traces	M
91 2.5	2.14-2.08	Inf	Sol	Ylwsh to bwnsh wht	W, V, P	Perf	Flexible	H
92 2-4	2.24-2.0	Inf	Dcpd	Green to blue	White	V, E	Conch	...
93 2-3.5	2.2-2.0	5-6	Dcpd	White, yellow, green, red	G	Brittle	...
94 2-2.5	2.3-2.2	Inf	Gelat	Green, bluish	Bluish, green	D	Subconch	M?
95 2-2.5	2.35-2.15	2	Sol	Yellow	Pale yellow	Perf	O
96 2-2.5	2.21	3	Sol	Colorless, yellowish	P, V	Perf	M
97 2-2.5	2.5-2.0	2-3?	Sol	Apple green	Paler to white	V	Perf	O
98 2-2.5	2.14-2.04	4.5-5	Sol	Red to yellow	Ochre yellow	V	Dist	M
99 2-2.5	2.10-2.09	4.5-5	Sol	White, yellow, violet, greenish	Imperf	R
100 2-2.5	2.1-1.9	Inf	Sol	Colorless, reddish, bluish, yellowish	V	Perf	Brittle	O
101 2-2.5	2.0	Inf	Sol	Apple green	White	V	Perf	O
102 2-2.5	2.0	5-6	Gelat	White, tinged	O
103 2-2.5	2.0	5-6	Gelat	White, tinged	Fibrous	O
104 1.5-2.5	2.09-2.05	1	Ins	Yellow, grnsh, rdsh	White	R, G	Imperf	Conch to uneven	O
105 2	2.4-2.2	Easy	Pt sol	Green, gray	D	M
106 2	2.04-1.89	4.5-5	Sol	Yellowish white	S	M?
107 2	2.28	3	Chocolate brown	Dk orange-ylw	G
108 2	2.14-2.09	1	Sol	White	White	V	Perf	Subconch to uneven	O
109 2	2.09-2.03	Inf	Sol	White, brwnsh tint	White	P, W	Perf	Flexible	H
110 2	2.0-1.9	2	Sol	White with red spots	Perf	M?
111 2	2.49-2.13	Sol	Yellow	D, R	Perf	Uneven	O
112 2	2.19	Inf	Gelat	White	S	O?
113 2	2.02	Easy	Sol	Light blue, green	M?

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
85 1.525	CHALCOALUMITE	CuO·2Al ₂ O ₃ ·SO ₃ ·9H ₂ O	
86 1.555	WHEWELLITE	CaO·C ₂ O ₃ ·H ₂ O	Brittle.
87 1.525	SPADAITE	5MgO·6SiO ₂ ·4H ₂ O	In C.T., gives water. B.B., gives a glassy enamel.
88 1.481	DARAPSKITE	3Na ₂ O·Na ₂ O ₅ ·2SO ₃ ·2H ₂ O	Soluble in water. In C.T., yields water.
89	UNGEMACHITE	Na ₄ (K,Fe ³⁺) ₂ (OH)·(SO ₄) ₃ ·5H ₂ O	Brittle.
90 1.55	MILOSCHITE	(Al,Cr) ₂ O ₃ ·2SiO ₂ ·2H ₂ O	In C.T., yields water.
91 1.573	SJOGRENITE	Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ ·4H ₂ O	B.B., exfoliates; turns golden-brown then yellow-brown and becomes magnetic.
92 1.40±	CHRYSOCOLLA	CuSiO ₃ ·2H ₂ O	In C.T., blackens and yields water. Colors the flame green.
93	DEWEYLITE	4MgO·3SiO ₂ ·6H ₂ O	In C.T., yields much water.
94 1.585	VOL-	(Cr,Fe,Al) ₂ O ₃ ·2SiO ₂ ·2H ₂ O	B.B., blackens. In C.T., yields water.
	CHONSKOITE		
95 1.525	SIDERO-	2Na ₂ O·Fe ₂ O ₃ ·4SO ₃ ·7H ₂ O	Decomposed by boiling water.
	NATRITE		
96 1.546	BRUSHITE	CaHPO ₄ ·2H ₂ O	In C.T., whitens and gives off water at red heat.
97 1.662	LINDACKERITE	3NiO·6CuO·SO ₃ ·2As ₂ O ₃ ·7H ₂ O	B.B., gives a black bead. The HCl solution yields a yellow precipitate with H ₂ S.
98 1.529	BOTRYOGEN	MgO·FeO·Fe ₂ O ₃ ·4SO ₃ ·18H ₂ O	Slightly soluble in water. In C.T., yields water leaving a reddish yellow earth.
99 1.550	COQUIMBITE	Fe ₂ (SO ₄) ₃ ·9H ₂ O	Soluble in water. Decomposed by boiling water.
100 1.480	GOSLARITE	ZnO·SO ₃ ·7H ₂ O	Soluble in water. In C.T., yields water.
101 1.489	MORENOSITE	NiSO ₄ ·7H ₂ O	Soluble in H ₂ O. B.B. on coal, glows strongly and yields SO ₂ .
102 1.52	SEPIOLITE	2MgO·3SiO ₂ ·2H ₂ O	In C.T., yields water. Fibrous is alpha or para and the amorphous is beta sepiolite.
103 1.506	PARASEPIOLITE	2MgO·3SiO ₂ ·2H ₂ O	The fibrous sepiolite is Alpha or Para. Beta is amorphous variety.
104 2.037	SULPHUR	S	Burns readily with a blue flame giving SO ₂ .
105 1.63±	GLAUCONITE	Hydrated silicate of K and Fe	B.B., gives a black magnetic mass.
106 1.488	HALOTRICHITE	FeSO ₄ ·Al ₂ (SO ₄) ₃ ·24H ₂ O	Soluble in water. Fuses first in its own water of crystallization.
107	ELBRUSSITE	Al,Fe,Mg,etc SiO ₂ ·H ₂ O	
108 1.504	NITER	KNO ₃	Brittle. Soluble in water. Colors flame violet.
109 1.512	HYDRO-TALCITE	6MgO·Al ₂ O ₃ ·15H ₂ O	In C.T., yields water.
110 1.534	HYDRO-BORACITE	CaO·MgO·3B ₂ O ₃ ·6H ₂ O	In C.T., yields water. B.B., gives a clear glass.
111 1.561	HUMBOLDTINE	2Fe ₂ O ₃ ·3H ₂ O	In C.T., yields water, turns black and becomes magnetic.
112 1.48	ZEBE-DASSITE	5MgO·Al ₂ O ₃ ·6SiO ₂ ·4H ₂ O	Fibrous.
113 1.483	ZINC COPPER MELANTERITE	CuO·ZnO·2SO ₃ ·14H ₂ O	Soluble in water.

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
114	2	2.23	Inf	Sol	Colorless	P	Perf	Flexible	H
115	2	2.03	White	O
116	2	2.1-2.0	Wht, bluish, grysh, brwnsh wht	W, P	Perf	Flexible	H
117	2	2.12	Easy	Sol	Colorless	V to S	Perf	Tr
118	1.5-2	2.16	Inf	Sol	Rose, lilac, pink	Pale lilac to pink	W, G, P	Perf	Flexible	H
119	1.5-2	2.32	2.5-3	Sol	Wh, various shades	White	P, Sv	Perf	Conch	M
120	1.5-2	2.15-2.05	Lilac, rose-pink	Pale lilac	W, P	Perf	Flexible	H
121	1.5-2	2.29-2.24	1	Sol	White, red, brown, gray, yellow	V	Perf	Flexible	R
122	1.5	2.2	Brown
123	1.5	2.30	Fus	Dcpd	Yellowish, brwnsh	P	Perf	Flexible	H?
124	1-2	2.23-2.09	Inf	Ins	Black to gray	M, D, E	Perf	R
125	1-2	2.2-2.0	Inf	Dcpd	Wh, gray, grnsh, ylwsh, bluish, rdsh	P, W, D	Conch
126	1-2	2.15-2.0	Inf	Dcpd	White	Glim- mering
127	1-1.5	2.166	Dcpd	Ylwsh wht, ylwsh brwn
128	1	2.03	Fus	Sol	Colorless	V	M?
129	Soft	2.30-2.24	Diff	Colorless, tinted ylw, green, blue	G
130	Soft	2.31	4	Gelat	Dark green	Mic	M?
131	Soft	2.32	Red	Fibrous	T?
132	Soft	2.30-2.18	Inf	White, grayish, reddish	Greasy	G
133	Soft	2.25±	Inf	Ins	White, gray, red, grn	Perf
134	Soft	2.8-2.3	Inf	Dcpd	Apple green	D	O?
135	Low	2.07	Pale yellow, greenish cast	M
136	?	2.31	Inf	Sol	Colorless, brown, amethyst	S	Good	M
137	?	2.1	Inf	Ins	Yellow
138	?	2.31	Sky-blue	O
139	?	2.05	Fus	Sol	Colorless	Pris- matic	Fibrous	M
140	?	2.16	Easy	Gelat	Colorless, yellow	Perf	O

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
114 1.574	PORLTANDITE	$\text{Ca}(\text{OH})_2$	Sectile, cleavage plates flexible. Slowly soluble in water.
115 1.534	ARTINITE	$2\text{MgO}\cdot\text{CO}_2\cdot 4\text{H}_2\text{O}$	
116 1.524	MANASSEITE	$\text{Mg}_6\text{Al}_2(\text{OH})_{16}\text{CO}_3\cdot 4\text{H}_2\text{O}$	Greasy feel.
117 1.535	MEYER-HOFFERITE	$2\text{CaO}\cdot 3\text{B}_2\text{O}_3\cdot 7\text{H}_2\text{O}$	B.B., gives an opaque enamel. Colors flame green.
118 1.542	STICHTITE	$6\text{MgO}\cdot\text{Cr}_2\text{O}_3\cdot\text{CO}_2\cdot 12\text{H}_2\text{O}$	Occurs in micaceous scales.
119 1.523	GYPSUM	$\text{CaSO}_4\cdot 2\text{H}_2\text{O}$	In C.T., yields water and becomes opaque.
120 1.557	BARBERTONITE	$\text{Mg}_6\text{Cr}_2(\text{OH})_{16}\text{CO}_3\cdot 4\text{H}_2\text{O}$	Greasy feel.
121 1.587	SODA NITER	NaNO_3	Soluble in water. Tastes cooling.
122	FERRO-HALLOYSITE	$(\text{Al},\text{Fe})_2\text{O}_3\cdot 2\text{SiO}_2\cdot 3\text{H}_2\text{O} + \text{Al}_2\text{O}_3\cdot\text{Fe}_2\text{O}_3$	
123 1.560	JEFFERISITE	$10(\text{Mg},\text{Fe})\text{O}\cdot 4(\text{Al},\text{Fe})_2\text{O}_3\cdot 10\text{SiO}_2\cdot 7\text{H}_2\text{O}$	A vermiculite. B.B., opens out in worm-like forms. A hydrated mica.
124 2.0±	GRAPHITE	C	Burns at high temperatures. Thin laminae are flexible. In contact with metallic Zn in CuSO_4 solution, it is coated with copper.
125 1.555	HALLOYSITE	$\text{Al}_2\text{O}_3\cdot 2\text{SiO}_2\cdot 2\text{H}_2\text{O}$	In C.T., yields water.
126	COLLYRITE	$2\text{Al}_2\text{O}_3\cdot\text{SiO}_2\cdot 9\text{H}_2\text{O}$	In C.T., yields water. Sticks to the tongue. Gelatinizes with HNO_3 .
127	HANUSITE	$\text{H}_2\text{Mg}_2\text{Si}_8\text{O}_{16}\cdot\text{H}_2\text{O}$	
128 1.487	TAMARUGITE	$\text{Na}_2\text{SO}_4\cdot\text{Al}_2(\text{SO}_4)_3\cdot 12\text{H}_2\text{O}$	Fibrous.
129 1.53+	SAPONITE	Hydrous silicate of Al and Mg	Decomposed by H_2SO_4 . B.B., gives off water and blackens.
130 1.565	GRIFFITHITE	$4(\text{Mg},\text{Fe},\text{Ca})\text{O}\cdot (\text{Al},\text{Fe})_2\text{O}_3\cdot 5\text{SiO}_2\cdot 7\text{H}_2\text{O}$	A member of the chlorite group.
131 1.520±	JANITE	$\text{H}_2\text{O}\cdot\text{SiO}_2$ of $\text{Fe},\text{Al},\text{Ca},\text{Mg}$, etc	Related to chloropal or celadonite.
132	CIMOLITE	$2\text{Al}_2\text{O}_3\cdot 9\text{SiO}_2\cdot 6\text{H}_2\text{O}$	In C.T., yields water. Adheres to the tongue.
133 1.516±	MONTMORILLONITE	$(\text{Mg},\text{Ca})\text{O}\cdot\text{Al}_2\text{O}_3\cdot 5\text{SiO}_2\cdot n\text{H}_2\text{O}$	Softens in water. A clay-like mineral.
134 1.59	GARNIERITE	$(\text{Ni},\text{Mg})\text{O}\cdot\text{SiO}_2\cdot n\text{H}_2\text{O}$	A serpentine.
135	ROSICKYITE	S	Natural gamma-sulfur modification. Minute crystals. Czechoslovakia.
136 1.581	KORNELITE	$\text{Fe}_2\text{O}_3\cdot 3\text{SO}_3\cdot 8\text{H}_2\text{O}$	B.B., turns brown and assumes worm-like shapes.
137	DEECKEITE	$(\text{H},\text{K},\text{Na})_2\text{O}\cdot(\text{Mg},\text{Ca})\cdot(\text{Al},\text{Fe})_2(\text{Si}_2\text{O}_5)_5\cdot 9\text{H}_2\text{O}$	B.B., becomes opaque. A pseudomorph after melilite.
138 1.491	MERCALLITE	KHCO_4	A stalactite from the crater of Vesuvius.
139 1.541	LUENEBERGITE	$\text{Mg}_3(\text{PO}_4)_2\cdot\text{B}_2\text{O}_3\cdot 8\text{H}_2\text{O}$	In flattened masses; fibrous to earthy structure.
140 1.501	EPIDESMINE	$\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot 6\text{SiO}_2\cdot 6\text{H}_2\text{O}$	In C.T., gives water.

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTUE	SYS-TEM
141?		2.3	Diff	Sol	Wht, grnsh, bluish, grn, rdsh, ylwsh	G	Perf	O?
142?		2.11	Sol	Colorless	Basal	Granular	O
143?		2.16	Easy	Sol	White	Good	M
144?		2.17-2.15	Light gray
145?		2.22	White	Perf	M
146?		2.26	Inf	Pt sol	Red, white, various colors	Perf	Fibrous	O?
147?		2.20	Yellowish
148?		2.23	Inf	Sol	Chalkywhite, pale blue	Mic	M
149?		2.25	Yellowish green	Fibrous	O?
150?		2.2	Inf	Sol	Yellow, brown	A
151?		2.23	I?	Sol	Clear blue	Perf	M
152?		2.25	Dark gray
153?		2.0	Gray	Perf	I
154?		2.3	Gray, grnsh tinge	M?
155?		2.11	Pale violet	R
156?		2.0	Easy	Sol	White	P	Fibrous	O
157?		2.18	P
158?		2.15	T
159?		2.16	M?
160?		2.0
161?		2.3	White, light yellow

MINERAL IDENTIFICATION TABLES

GROUP 11
Specific Gravity 2.32-2.00

INDEX OF REF.	NAME	COMPOSITION	REMARKS
141 1.57±	BOWLINGITE	Silicate of Fe,Mg,Al and H ₂ O	B.B., gives water and blackens. Close to saponite.
142 1.528	PATERNOITE	MgB ₈ O ₁₃ ·4H ₂ O	Related to larderellite.
143 1.480	KALICINITE	K ₂ O·2CO ₂ ·H ₂ O	Soluble in water.
144	HYDRO-	2MgO·CO ₂ ·3H ₂ O	Probably a mixture.
	GIOBERTITE		
145 1.500	NAHCOLITE	Na ₂ O·2CO ₂ ·H ₂ O	
146 1.476	ARDUINITE	CaO·Na ₂ O·2Al ₂ O ₃ ·3SiO ₂ ·5H ₂ O	In C.T., yields water. A zeolite.
147	KARACHAITE	MgO·SiO ₂ ·H ₂ O	An asbestosiform variety of chrysotile.
148 1.553	ALUMOHYDRO-	CaO·Al ₂ O ₃ ·2CO ₂ ·5H ₂ O	
	CALCITE		
149	LABITE	H ₂ MgSi ₃ O ₈ ·H ₂ O	Occurs as fibers in serpentine.
150 1.5±	ROSIÉRÉSITE	Hydrous phosphate of Al,Pb and Cu	B.B., blackens. In C.T., yields water.
151 1.486	CYANOCHROITE	K ₂ O·CuO·2SO ₃ ·6H ₂ O	Soluble in water. From Vesuvius. Isomorphous with picromerit.
152	LUCIANITE	A clay	Colloidal. In water swells to many times original volume.
153 1.370	CRYPTOHALITE	2NH ₄ F·SiF ₄	Observed in a Vesuvius fumerole.
154 1.641	ABKHAZITE	Variety of amphibole asbestos	
155	PARACOQUIMBITE	Fe ₂ (SO ₄) ₃ ·9H ₂ O	Rhombohedral coquimbite.
156 1.44	ERIONITE	(Na,K)O·2Al ₂ O ₃ ·CaO·12SiO ₂ ·12H ₂ O	A zeolite. B.B., gives a clear colorless glass.
157	BATAVITE	4MgO·Al ₂ O ₃ ·4SiO ₂ ·4H ₂ O	Occurs in pearly micaceous scales.
158 1.470	CHLELÖEWEITE	K ₂ Na ₄ Mg ₂ (SO ₄) ₅ ·5H ₂ O	May be identical with loëweite.
159 1.488	DOUGLASITE	2KCl·FeCl ₂ ·2H ₂ O	Formed by alkaline waters at Douglas Springs, Arizona.(?)
160	HYDRO-	(H ₂ ,Na ₂ ,Ca) _n Al ₂ Si ₂ O ₈ ·5H ₂ O	A decomposition product of thomsonite or scolecite.
161	THOMSONITE		
	ARDEALITE	CaHPO ₄ ·CaSO ₄ ·4H ₂ O	Fine crystalline powdery mineral.

MINERAL IDENTIFICATION TABLES

GROUP 12
Specific Gravity 1.99 And Lower

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
1 5.5-6.5	2.3-1.9	Inf	Ins	White, yellow, red, brown, green, etc	White	V, R, P	Conch
2 5	1.92	3	Dcpd	White, brown	V, A	Dist	Uneven	I
3 2.5-4.5	1.87-1.73	Inf	Pt sol	Orange, green, ylw	Perf	Conch to splintery
4 3.5-4	1.94	Inf	Sol	Colorless, white, tinged yellow or blue	White	V, R	Subconch
5 3.5-4	2.0-1.57	Jet-black	Brilliant	None	Conch
6 3-4	1.91	Easy	Sol	Colorless	Pris- matic Traces	Brittle	M
7 3.5	1.88	Inf	Dcpd	White	G, D	Subconch	T?
8 3-3.5	2.05-1.95	Greenish-white, green, yellowish
9 3	1.89-1.85	Inf	Gelat	Colorless, green, blue, yellow	Uncolored	V, Sr	Conch
10 3	1.85	Fus	Sol	Indist	M?
11 3	1.88	1	Sol	White
12 3	1.83	Sol	Yellowish gray
13 2.5-3.5	1.93	Colorless, white	V	Good	Conch
14 2.5-4.5	1.87-1.73	Inf	Pt sol	Orange, grn, ylw	Perf	Conch to splintery
15 2-3	1.95-1.93	1.5	Sol	White, yellowish white	Uncolored, gray	V	Perf	Conch	M
16 2-3	1.82	Diff	Dcpd	Yellow to bronze, red	Yellow	G	Perf
17 2-3	1.96	Inf	Sol	White, yellow, brown	D
18 2-3	1.9	Easy	Sol	Blue	V	Easy	M
19 2.5	1.98	1	Sol	Azure blue	V	Dist	Conch	M
20 2.5	1.98-1.94	Pt sol	Bluish grn changing to black	Nearly white	D	None	Conch
21 2.5	1.84	Inf	Sol	Colorless, white	V, G	Perf	Splintery	O
22 2.5	1.69-1.54	Inf	Sol	White	V, D	Dist	Tr
23 2.5	1.91	Easy	Sol	White to colorless	V, P	Perf	M
24 2.5	1.99-1.85	Sol	Brown, reddish	A
25 2.5	1.09
26 2.5	1.05	Pale ylw to reddish brown
27 2.5	1.93	Inf	Sol	Amber, yellow	Perf
28 2.5	1.725	Sol	Water-clear, yellow	None	Conch	M
29 2.5	1.76	Sol	Yellowish	Perf	M
30 2.5	1.05	Yellow, whitish
31 2.5	1.81	4.5-5	Sol	Orange-yellow	M

MINERAL IDENTIFICATION TABLES

**GROUP 12
Specific Gravity 1.99 And Lower**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1 1.44±	OPAL	$\text{SiO}_2 \cdot n\text{H}_2\text{O}$	Soluble in KOH. Sometimes a rich play of colors.
2 1.480	FAUJASITE	$\text{Na}_2\text{O} \cdot \text{CaO} \cdot 2\text{Al}_2\text{O}_3 \cdot 10\text{SiO}_2 \cdot 20\text{H}_2\text{O}$	B.B., fuses with intumescence to a white blebby enamel.
3	CHLOROPAL	$\text{Fe}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	In C.T., yields water. B.B., turns black and becomes magnetic.
4 1.485	EVANSITE	$3\text{Al}_2\text{O}_3 \cdot \text{P}_2\text{O}_6 \cdot 18\text{H}_2\text{O}$	In C.T., gives neutral water; decrepitates, leaving a milk-white powder.
5	THUCHOLITE	C and rare elements	Brittle. A carbonaceous material from a pegmatite. Explodes when heated.
6 1.520	PROBERTITE	$\text{Na}_2\text{CaB}_6\text{O}_{11} \cdot 6\text{H}_2\text{O}$	B.B., whitens then fuses quietly to a clear glassy bead. Crushes into long splinters.
7 1.507	THAUMASITE	$\text{CaSiO}_3 \cdot \text{CaCO}_3 \cdot \text{CaSO}_4 \cdot 15\text{H}_2\text{O}$	In C.T., decrepitates giving much water.
8 1.584	SCHROETTERITE	$8\text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 30\text{H}_2\text{O}$	A clay mineral. Resembles allophane. May be a mixture.
9 1.48±	ALLOPHANE	$\text{Al}_2\text{SiO}_5 \cdot 5\text{H}_2\text{O}$	Brittle. In C.T., gives much water.
10 1.51	KURNAKOVITE	$\text{Mg}_2\text{B}_6\text{O}_{11} \cdot 13\text{H}_2\text{O}$	B.B., a white enamel.
11 1.458	MENDOZITE	$\text{Na}_2\text{SO}_4 \cdot \text{Al}_2(\text{SO}_4)_3 \cdot 24\text{H}_2\text{O}$	In C.T., yields water.
12	IDRIZITE	$(\text{Mg},\text{Fe})(\text{Al},\text{Fe})_2 \cdot \text{Si}_3\text{O}_5 \cdot 16\text{H}_2\text{O}$	Insoluble in water.
13 1.521	INDERBORITE	$\text{CaMg}_3\text{B}_6\text{O}_{22} \cdot 11\text{H}_2\text{O}$	
14	CHLOROPAL	$\text{Fe}_2\text{O}_3 \cdot 3\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	In C.T., yields water. B.B., turns black and becomes magnetic.
15 1.516	GAY-LUSSITE	$\text{CaCO}_3 \cdot \text{Na}_2\text{CO}_3 \cdot 5\text{H}_2\text{O}$	In C.T., decrepitates and becomes opaque.
16	STILPNO-CHLORAN	$\text{H}_{24}(\text{Al},\text{Fe})_{10}(\text{Ca},\text{Mg}) \cdot \text{Si}_9\text{O}_{46}$	In C.T., yields water and blackens. Feels greasy.
17 1.505	VASHEGYITE	$4\text{Al}_2\text{O}_3 \cdot 3\text{P}_2\text{O}_5 \cdot 30\text{H}_2\text{O}$	Sticks to the tongue.
18 1.479	PISANITE	$(\text{Fe},\text{Cu})\text{O} \cdot \text{SO}_3 \cdot 7\text{H}_2\text{O}$	Soluble in water. B.B., reacts for copper.
19 1.578	KROEHNKITE	$\text{CuSO}_4 \cdot \text{Na}_2\text{SO}_4 \cdot 2\text{H}_2\text{O}$	B.B., fuses to a green mass. Soluble in water giving an acid solution.
20 1.51	RACEWINITE	$2(\text{Al},\text{Fe})_2\text{O}_3 \cdot 5\text{SiO}_2 \cdot 9\text{H}_2\text{O}$	Adheres to the tongue. In H ₂ O slacks and falls to pieces.
21 1.501	NESQUEHONITE	$\text{MgCO}_3 \cdot 3\text{H}_2\text{O}$	
22 1.468	LANSFORDITE	$3\text{MgCO}_3 \cdot \text{Mg}(\text{OH})_2 \cdot 21\text{H}_2\text{O}$	Alters to nesquehonite.
23 1.472	KERNITE	$\text{Na}_2\text{O} \cdot \text{B}_2\text{O}_3 \cdot 4\text{H}_2\text{O}$	Fuses to a glass. Breaks into long thin fibers and laths.
24 1.716±	DELVAUXITE	$2\text{Fe}_2\text{O}_3 \cdot \text{P}_2\text{O}_6 \cdot 9\text{H}_2\text{O}$	Amorphous concretions.
25 1.542	TELEGDITE	A fossil resin	Partly soluble in alcohol.
26 1.541Na	AJKAITE	A fossil resin.	On heating gives off H ₂ S.
27 1.560	TRUDELLITE	$4\text{AlCl}_3 \cdot 3\text{Al}_2\text{O}_3 \cdot 3\text{SO}_3 \cdot 36\text{H}_2\text{O}$	Delequescent.
28 1.485	PHOSPHOR-RÖSSLERITE	$\text{MgHPO}_4 \cdot 7\text{H}_2\text{O}$	Probably identical with wapplerite. Sol in H ₂ O. In C.T., whitens.
29 1.476	KIROVITE	$(\text{Fe},\text{Mg})\text{SO}_4 \cdot 7\text{H}_2\text{O}$	Magnesium melanterite.
30	BACALITE	A fossil resin	
31 1.543±	IHLEITE	$\text{Fe}_2(\text{SO}_4)_3 \cdot 12\text{H}_2\text{O}$	Soluble in water.

MINERAL IDENTIFICATION TABLES

GROUP 12
Specific Gravity 1.99 And Lower

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
32	2-2.5	1.85	4.5-5	Sol	Pale yellow, white	S, P	M?
33	2-2.5	2.1-1.9	Inf	Sol	Colorless, rdsh, yellowish, bluish	V	Perf	Brittle	O
34	2-2.5	1.07	Easy	Ins	Black	Rich brown	Brilliant	None	Conch
35	2-2.5	1.76	1	Sol	Yellowish gray, lemon yellow	V	Dist	O
36	2-2.5	1.75	Inf	Sol	Colorless	Perf	H
37	2-2.5	1.75	1	Sol	White	V	I
38	2-2.5	1.10-1.05	Melts	Yellowish, rdsh, brown, whitish	White	R	None	Conch
39	2-2.5	1.75	1	Sol	White	White	V, E	Perf	Conch	O
40	2-2.5	1.72-1.69	1-1.5	Sol	White, sometimes tinted	White	V, R	Perf	Conch	M
41	2-2.5	1.65-1.55	Yellow, rdsh, brwnsh	White	R, V	Indist	Conch	T
42	2-2.5	1.94	Fus	Sol	Blue	Imperf	Uneven	M
43	2	2.0-1.9	2	Sol	White with red spots	Perf	M?
44	2	1.19	Brown
45	2	1.97	1.5	Sol	White, blue, ylw, red, from inclusions	V	Perf	Uneven	I
46	2	1.89	Easy	Sol	Green to white	Uncolored	V	Perf	Conch	M
47	2	1.8-1.7	4.5	Sol	Yellowish	Yellow	H?
48	2	1.7-1.65	3	Sol	Ylw to brown, white	V	Good	Conch to uneven	O
49	2	1.61	1	Sol	White stained yellowish brown	V	M
50	2	1.87	Fus	Colorless	V	Good	Irregular	M
51	2	1.87	White to yellow
52	2	1.67	1	Sol	Yellow	Good	R
53	2	1.76	1	Sol	Colorless	None
54	2	1.21?	Diff	Pt sol	White	None
55	2	2.04-1.89	4.5-5	Sol	Yellowish white	S	M?
56	2	1.92	Easy	Sol	Flesh to rose red	V	M
57	2	1.72-1.68	1	Sol	Colorless	None	M
58	1.5-2	1.8-1.6	Inf	Sol	White tinged red or yellow	V, S	M
59	1.5-2	1.53	1	Sol	White, yellowish, grayish	V	Imperf	Conch	I
60	1.5-2	1.48	1.5	Sol	White	V	Perf	M
61	1-2	1.50	1	Sol	White	V	None

MINERAL IDENTIFICATION TABLES

**GROUP 12
Specific Gravity 1.99 And Lower**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
32 1.533	FIBROFERRITE	$\text{Fe}_2\text{O}_3 \cdot 2\text{SO}_3 \cdot 10\text{H}_2\text{O}$	In C.T., yields H_2O and H_2SO_4 . Decomposed by boiling water.
33 1.480	GOSLARITE	$\text{ZnO} \cdot \text{SO}_3 \cdot 7\text{H}_2\text{O}$	Soluble in water. In C.T., yields water.
34	GILSONITE	Hydrocarbon	Brittle. A natural asphalt from Utah. Burns with a brilliant flame like sealing wax.
35 1.523	MASCAGNITE	$(\text{NH}_4)_2\text{SO}_4$	In C.T., yields water and sublimes. With lime gives NH_3 .
36 1.488	ETTRINGITE	$6\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SO}_3 \cdot 33\text{H}_2\text{O}$	Slightly soluble in water. B.B., swells up.
37 1.452	KALINITE	$\text{K}_2\text{SO}_4 \cdot \text{Al}_2(\text{SO}_4)_3 \cdot 24\text{H}_2\text{O}$	Melts in its own water of crystallization.
38 1.535±	SUCCINITE (AMBER)	Hydrocarbon	Fossil resin. Sometimes contains bugs and sticks.
39 1.455	EPSOMITE	$\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$	Fuses at first then finally gives an infusible alkaline mass.
40 1.470	BORAX	$\text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O}$	B.B., puffs up before fusing.
41 1.539	MELLITE	$\text{Al}_2\text{C}_{12}\text{O}_{12} \cdot 18\text{H}_2\text{O}$	In C.T., yields water. Soluble in HNO_3 .
42 1.48	BOOTHITE	$\text{CuO} \cdot \text{SO}_3 \cdot 7\text{H}_2\text{O}$	Brittle.
43 1.534	HYDROBORACITE	$\text{CaO} \cdot \text{MgO} \cdot 3\text{B}_2\text{O}_3 \cdot 6\text{H}_2\text{O}$	In C.T., yields water. B.B., gives a clear glass.
44 1.542	KISCELLITE	Hydrocarbon	A sulfur-bearing resin. When heated H_2S is evolved and it burns with a smoky flame.
45 1.490	SYLVITE	KCl	Heated with H_2SO_4 , it yields HCl. Colors flame violet.
46 1.478	MELANTERITE	$\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$	On coal, becomes brown, red, black and magnetic. Soluble in water.
47 1.820	CYPRUSITE	$7\text{Fe}_2\text{O}_3 \cdot \text{Al}_2\text{O}_3 \cdot 10\text{SO}_3 \cdot 14\text{H}_2\text{O}$	Slightly soluble in water.
48 1.496	STRUVITE	$\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O}$	In C.T., gives off water and ammonia.
49 1.441	STERCORITE	$\text{HNa}(\text{NH}_4)\text{PO}_4 \cdot 4\text{H}_2\text{O}$	Fuses to a clear colorless glass that is soluble in water.
50 1.505±	INYOITE	$2\text{CaO} \cdot 3\text{B}_2\text{O}_3 \cdot 13\text{H}_2\text{O}$	Colors the flame green. B.B., decrepitates and fuses with intumescence.
51 1.500	BILINITE	$\text{FeO} \cdot \text{Fe}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 24\text{H}_2\text{O}$	A ferric iron halotrichite.
52 1.526	TACHHYDRITE	$\text{CaCl}_2 \cdot 2\text{MgCl}_2 \cdot 12\text{H}_2\text{O}$	Delequescent.
53 1.456	ALUM	$\text{K}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 24\text{H}_2\text{O}$	Natural potash alum. Soluble in water.
54 1.403	TERMIERITE	$\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 18\text{H}_2\text{O}$	Clay-like.
55 1.488	HALOTRICHITE	$\text{FeSO}_4 \cdot \text{Al}_2(\text{SO}_4)_3 \cdot 24\text{H}_2\text{O}$	Soluble in water. Fuses first in its own water of crystallization.
56 1.483	BIEBERITE	$\text{CoSO}_4 \cdot 7\text{H}_2\text{O}$	In C.T., yields water and SO_2 .
57 1.470	BOUSSING-AULTITE	$(\text{NH}_4)_2\text{SO}_4 \cdot \text{MgSO}_4 \cdot 6\text{H}_2\text{O}$	Soluble in water.
58 1.476	ALUNOGEN	$\text{Al}_2(\text{SO}_4)_3 \cdot 18\text{H}_2\text{O}$	In C.T., yields water and H_2SO_4 .
59 1.639	SAL AMMONIAC (SALMIAC)	NH_4Cl	In C.T., it sublimes.
60 1.395	MIRABILITE	$\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$	Soluble in water. In air loses its water and falls to a powder.
61 1.459	TSCHERMIGITE	$(\text{NH}_4)_2\text{SO}_4 \cdot \text{Al}_2(\text{SO}_4)_3 \cdot 24\text{H}_2\text{O}$	In C.T., yields water. B.B., sublimes.

MINERAL IDENTIFICATION TABLES

GROUP 12
Specific Gravity 1.99 And Lower

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYS- TEM
62	1-2	1.1	Easy	Ins	Black, pitch-like	Brilliant	None	Conch
63	1-2	1.66	Inf	Sol	White	D, E	Earthy	M
64	1-2	1.65	Fus	Sol	Colorless, white	V, D	M
65	1.5	1.78	Inf	Sol	White tinged green, rose or yellow	S	M?
66	1.5	1.45	Vol	Sol	Yellowish to white	O
67	1.5	0.92	Vol	Sol	White, bluish	Colorless	V	Conch	H
68	1-1.5	1.6-1.5	1.5	Sol	White, grayish, ylw	V	Diff	O
69	1-1.5	1.46-1.42	1	Sol	White, gray, yellow	V, E	Dist	Conch	M
70	1	1.85	Easy	Sol	White, yellowish, rose red	S	M?
71	1	1.65	1	Sol	White	S	M
72	1	1.60	1-1.5	Sol	White, reddish	G	None	Conch	O
73	1	1.48	1	Sol	White, yellowish	P	Perf	Flexible	Tr
74	1	0.9	1-	Ins	White, reddish, gray, green	P, R
75	1	0.96	Easy	Ins	White, yellowish, greenish	P, G	Perf	O
76	1	0.9	1-	Ins	White, yellow, brown, green
77	Soft	1.50-1.46	Easy	Sol	Yellowish, white	S	Imperf	O
78	Soft	1.97	Ins	Pt sol	Yellowish green	Yellowish	D
79	Soft	1.06	1-	Ins	Colorless, white	Tr
80	Soft	1.21	1-	Yellow to greenish	V, A	Perf	Conch	O?
81	Soft	1.98	Sol	Red, brown	Perf	R
82	Soft	1.09	1-	Colorless	Imperf	O
83	Soft	1.89	Fus	Pt sol	Yellowish	Good	Tr
84	?	1.81	Diff	Sol	White	S	M?
85	?	1.95-1.80	Pale yellow, white
86	?	1.81	Vol	Colorless, cloudy	Poor
87	?	1.80	White
88	?	1.19	Bluish violet or grnsh	P
89	?	1.59	Sol	Blue	T
90	?	1.12-1.03	Yellow, black, green
91	?	1.48	White
92	?	1.76	Inf	So:	White with green tone	P	Perf	Conch	M
93	?	1.88	Colorless, white	None	R
94	?	1.90	Yellowish green	H, R
95	?	1.43	Colorless	Perf	O
96	?	1.818
97	?	1.868	V	Conch
98	?	1.66	Lemon-yellow

MINERAL IDENTIFICATION TABLES

**GROUP 12
Specific Gravity 1.99 And Lower**

INDEX OF REF.	NAME	COMPOSITION	REMARKS
62	ALBERTITE (LIBOLITE)	Hydrocarbon.	A mineral asphalt.
63 1.464	ALUMINITE	$\text{Al}_2\text{O}_3 \cdot \text{SO}_3 \cdot 9\text{H}_2\text{O}$	In C.T., gives much H_2O which at high temperatures is acid.
64 1.507	BISCHOFITE	$\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$	Soluble in water.
65 1.482	APJOHNITE	$\text{MnSO}_4 \cdot \text{Al}_2(\text{SO}_4)_3 \cdot 24\text{H}_2\text{O}$	Soluble in water. Tastes like alum.
66 1.536	TESCHE- MACHERITE	$(\text{NH}_4)_2 \cdot \text{CO}_2 \cdot \text{H}_2\text{CO}_3$	In C.T., yields water and ammonia fumes.
67 1.309	ICE (WATER)	H_2O	Melts at ordinary temperatures to neutral water.
68 1.506	THERMONATRITE	$\text{Na}_2\text{CO}_3 \cdot \text{H}_2\text{O}$	Seetile. Tastes alkaline.
69 1.425	NATRON	$\text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O}$	Brittle. Soluble in water.
70 1.480	PICKERINGITE	$\text{MgSO}_4 \cdot \text{Al}_2(\text{SO}_4)_3 \cdot 22\text{H}_2\text{O}$	Soluble in water. Has an alum taste.
71 1.504	ULEXITE	$\text{Na}_2\text{O} \cdot 2\text{CaO} \cdot 5\text{B}_2\text{O}_3 \cdot 16\text{H}_2\text{O}$	Not soluble in cold water but some in hot water.
72 1.474	CARNALLITE	$\text{KMgCl}_3 \cdot 6\text{H}_2\text{O}$	Strongly phosphorescent. Tastes bitter.
73 1.456	SASSOLITE	$\text{B}(\text{OH})_3$	Soluble in water and alcohol.
74 1.502	PARAFFIN	Hydrocarbon	Burns and melts easily.
75 1.523	HATCHETTITE	$\text{C}_{38}\text{H}_{78}$	Burns. Hydrocarbon. Soluble with difficulty in alcohol and ether.
76 1.515	OZOCERITE (OZOKERITE)	Hydrocarbon	Melts and burns easily.
77 1.547	OXAMMITE	$(\text{NH}_4)_2\text{C}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$	Soluble in water.
78	MUELLERITE	$\text{Fe}_2\text{Si}_3\text{O}_9 \cdot 2\text{H}_2\text{O}$	B.B., slowly loses water and finally becomes brown.
79 1.555	BOMBICCITE	C_7HO_{13}	Soluble in alcohol and ether.
80 1.734	CURTISITE	$\text{C}_{24}\text{H}_{18}$	In C.T., melts to a clear liquid but discolors rapidly.
81 1.52	KOENENITE	$\text{Al}_2\text{O}_3 \cdot 3\text{MgO} \cdot 2\text{MgCl}_2 \cdot 8\text{H}_2\text{O}$	Thin folia flexible. Decomposed by boiling water.
82 1.512	FLAGSTAFFITE	$\text{H}_{20}\text{C}_{10}\text{O}_{22} \cdot \text{H}_2\text{O}$	Soluble in alcohol.
83 1.572	HANNAYITE	$\text{Mg}_3(\text{PO}_4)_2 \cdot 2\text{H}_2(\text{NH}_4)\text{PO}_4 \cdot 8\text{H}_2\text{O}$	In C.T., yields water and ammonia.
84 1.455	WATTEVILLITE	$\text{CaSO}_4 \cdot \text{Na}_2\text{SO}_4 \cdot 4\text{H}_2\text{O}$	Tastes first sweet then astringent. Soluble in water.
85	EARLANDITE	$\text{Ca}_3(\text{C}_6\text{H}_5\text{O}_7)_2 \cdot 4\text{H}_2\text{O}$	Fine grained nodules. From sediments of Weddell Sea. Antarctica.
86 1.526	LETOVICITE	$\text{H}(\text{NH}_4)_3(\text{SO}_4)_2$	Soluble in water.
87	INDERITE	$\text{Mg}_2\text{B}_6\text{O}_{11} \cdot 15\text{H}_2\text{O}$	Small nodules and aggregates of small needles.
88 1.725	KRATOCHVILITE	$\text{C}_{18}\text{H}_{10}$	Hydrocarbon. Pearly scales from burning coal heaps.
89 1.556	JULIENITE	Hydrated nitrate of cobalt.	Soluble in water.
90	ROMANITE	Hydrocarbon	Amber from Rumania.
91	LASSALITE	$2\text{MgO} \cdot 2\text{Al}_2\text{O}_3 \cdot 10\text{SiO}_2 \cdot 7\text{H}_2\text{O}$	Fibrous.
92 1.453	HEXAHYDRITE	$\text{MgO} \cdot \text{SO}_3 \cdot 6\text{H}_2\text{O}$	Fibrous, salty, bitter taste. B.B., exfoliates and yields water.
93 1.461	TINCALCONITE	$\text{MgO} \cdot 2\text{B}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$	From dehydration of borax or hydration of kernite.
94 1.530	SLAVIKITE	$(\text{Na}, \text{K})_2\text{O} \cdot 5\text{Fe}_2\text{O}_3 \cdot 13\text{SiO}_2 \cdot 66\text{H}_2\text{O}$	Product of oxidation of pyrite.
95 1.75	HOELITE	$\text{C}_4\text{H}_8\text{O}_2$	Produces by burning coal seams. Delicate needles.
96 1.471	JAROSITE	$(\text{Fe}, \text{Mg})\text{SO}_4 \cdot 7\text{H}_2\text{O}$	
97 1.472	CUPROJAROSITE	$\text{Cu}_2\text{Mg melanterite}$	
98 1.513	CADWALADERITE	$\text{AlOCl} \cdot 5\text{H}_2\text{O}$	

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAVAGE	FRACTURE	SYSTEM
1 5.5-6.5				Brown					
2 6±							Perf		M
3 5.5-6	4	Sol	Black	Dark chocolate brown	M				
4 5-6			Emerald-green				Good		M?
5 5+			Black						O
6 5	?		Brown	Brown					I
7 5			Green				Perf		M
8 5		Fus	Sol	Yellow-green			Perf		M?
9 5		Inf	Pt sol	White or pale reddish			Fair		M?
10 5				Dark olive-green					O?
11 5±	Easy	Sol	Red						
12 4.5-5		Fus	Sol	Pistachio, olive, leek green	Ylwsh, ylw, gray, grnsh	V	Dist		
13 4				Whitish gray	Same		Good	Brittle	
14 4			Sol	Lead gray	Red	Brilliant	Perf	Brittle	
15 4				Black	Cherry red	M			
16 4±				Brown			Perf		H?
17 3.5		Easy	Sol	Brownish red	Yellowish brown		Good		R?
18 3.5				Gray		M	Good		
19 3-4	High			Reddish, steel gray	Black		Good		M?
20 3-3.5				Dark lead gray		M		Conch	
21 3+				Pale lemon yellow				Conch	I
22 3	Easy	Sol		Yellow, reddish-ylw				Conch	
23 3		Sol in HNO ₃		Sulfur-yellow		A			O
24 3				Yellowish-green to brown	Chrome yellow		Basal	Brittle	O?
25 3				Brown, black			Perf		M
26 3		Sol		Lemon-yellow		E	Perf		M?
27 3				Lead to steel gray	Black, chocolate tinge			Conch	M
28 2.5-3	Inf	Sol		Sisken-green	Same, paler	V, P	Dist		O
29 2-3				Brownish black	Grayish brown	D, P		Flat conch	
30 2-3				Light brown					
31 2.5	2.5-3	Depd		Brownish yellow		A	Perf		M
32 2.5	2-2.5	Sol		Virdigris-green		S			O
33 2.5				Turquoise-blue		D		Conch	
34 2-2.5		Fus	Sol	Greenish yellow		V, D	Perf		O

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

INDEX OF REF.	NAME	COMPOSITION	REMARKS
1	COULSONITE	FeO·(Fe,V) ₂ O ₃	Occurs in magnetite.
2 1.699	SCHEFERITE	(Mg,Mn)O·CaO·2SiO ₂	A manganese pyroxene.
3	SKEMMATITE	3MnO·2Fe ₂ O ₃ ·6H ₂ O	In C.T., gives water and oxygen. B.B., a magnetic globule.
4	COSMOCHLORE	A chromium silicate.	Found as embedded splinters in the Toluca meteorite.
5	WEINBERGERITE	NaAlSiO ₄ ·3FeSiO ₃	From a meteorite. Spherical aggregates and radiating fibers
6	MAGHEMITE	Fe ₂ O ₃	
7 1.70	ARROJADITE	6R ₂ O ₃ ·27RO·11P ₂ O ₅	
8 2.09±	EMMONSITE	Hydrated ferric teluride	In C.T., fuses to a deep red globule.
9	MUNKFORSSITE	CaO·SO ₃ ·P ₂ O ₅ ·Al ₂ O ₃	Does not give a blue color with cobalt solution.
10	TURANITE	5CuO·V ₂ O ₅ ·2H ₂ O	Radial aggregates.
11	YUKSPORITE	5(Na ₂ K ₂ Ca)O·6SiO ₂ ·5H ₂ O	In fibers and scales. Near pectolite but more Na and K.
12 2.15	CUPROTUNGSTITE	CuWO ₄	In C.T., blackens and gives water. On coal, fuses with intumescence.
13	ELFESTORPITE	Hydrated manganese arsenate?	
14	LAMPROSTIBIAN	FeO·MnO	Red in thin layers. The HCl solution yields chlorine.
15	MELANOSTIBIAN	6(Mn,Fe)O·Sb ₂ O ₃	
16 1.718	FERRO-SCHALLERITE	12(Mn,Fe)O·9SiO ₂ ·As ₂ O ₃ ·7H ₂ O	Schallerite rich in iron.
17 1.794	ARSENIOPLEITE	9RO·R ₂ O ₃ ·3As ₂ O ₅ ·3H ₂ O	Blood red in splinters. B.B., a black slag and trace of Pb sublimate.
18	BENJAMINITE	(Cu,Ag) ₂ S·2PbS·2Bi ₂ S ₃	
19	HAMMARITE	Pb ₂ Cu ₂ Bi ₄ S ₉	Short needles.
20	GOLDFIELDITE	Cu ₁₀ Si ₄ Te ₃ S ₁₆	Brittle. Forms a mineral crust.
21 2.065	MOSEITE	Hg,NH ₄ Cl,SO ₃ ,H ₂ O	
22	CHONDRASENITE	6MnO·As ₂ O ₅ ·3H ₂ O	May be sarkinite. In C.T., gives water. On coal, gives a black bead and arsenical fumes.
23 2.34Li	OCHROLITE	4PbO·Sb ₂ O ₃ ·2PbCl ₂	Soluble in caustic potash.
24	PLANOFERRITE	Fe ₂ O ₃ ·SO ₃ ·15H ₂ O	
25 1.670	SIDEROPHYLLITE	K ₂ O·5FeO·2Al ₂ O ₃ ·5SiO ₂ ·2H ₂ O	Biotite mica with much iron.
26 1.621	ZIPPEITE	2UO ₃ ·SO ₃ ·4H ₂ O	
27	MARRITE	Composition unknown.	Brittle.
28 1.503	URAROTHALLITE	2CaO·UO ₃ ·4CO ₂ ·10H ₂ O	Gives bead tests for uranium.
29	RILANDITE	H ₂ O,SiO ₂ of Cr,Al	
30	CALCIUM FERRI-PHOSPHATE	2CaO·3Fe ₂ O ₃ ·P ₂ O ₅ ·10H ₂ O+	
31 2.27	RASPITE	PbO·WO ₃	
32 1.686	TRICHALCITE	3CuO·As ₂ O ₅ ·5H ₂ O	When heated it decrepitates, yields much water, becomes dark brown.
33 1.54±	AIDYRLITE	2NiO·2Al ₂ O ₃ ·3SiO ₂ ·7H ₂ O	
34 1.955	DURDENITE	Fe ₂ O ₃ ·3TeO ₂ ·4H ₂ O	B.B., gives a magnetic residue.

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
35	2-2.5	Diff	Colorless	V, P	Perf
36	2-2.5	1	Colorless	V	Pris-matic	O
37	2-2.5	Inf	Sol	Apple green	V	Fair
38	2-2.5	Easy	Blackish gray	Black	M	Perf	Brittle
39	2-2.5		Sol	Green	Apple green
40	2	Fus	Dirty white, brownish yellow	S	Fibrous	M?
41	2	Steel gray	Same	M	O
42	2	1.5	Yellowish white	O?
43	2	Colorless, gray	Basal	O?
44	2		Sol in HNO ₃	Creamy white, mauve	M	Perf	M?
45	2	Dark lead gray	Dark gray	Good	M
46	1.5-2	Scarlet-vermilion	Same	A	Good	Conch	R
47	1-2		Sol	Pinkish buff
48	1			White	G	Perf	Brittle	M
49	Soft	1-	Sol	White to yellowish	Perf	M
50	Soft	1-	Sol	White to yellowish	Bright	Perf	M
51	Soft			Pale blue, white	O
52	Soft			Silver white	Granular	A
53	Soft	1	Colorless	H
54	Soft			Yellow, brownish, black	Yellow, brown	R, E
55	Soft	Easy	Sol	Dull yellow	P, D	Perf
56	Soft			White, gray	S	Perf
57	Soft			White, chalky
58	Soft		Sol	Rose-colored	Pale rose
59	Soft	Easy	Sol	Bluish-green	Perf	T
60	Soft		Sol	Lemon-yellow	O
61	Soft	Inf	Sol	Emerald-green	P	Tr?
62	Soft			Blood red
63	Soft			Dark blood red
64			Pale ochre, yellow	Dist	H?
65			White to brick red
66			Flesh-red	M
67		Sol	Steel blue	M, Sm
68	Easy			White
69	Diff	Ins		White	T

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

INDEX OF REF.	NAME	COMPOSITION	REMARKS
35 1.564	KOSSMATTITE	$3\text{Mg}_0\cdot 7\text{CaO}\cdot 3\text{Al}_2\text{O}_3\cdot 7\text{SiO}_2\cdot 9\text{H}_2\text{O}$	Contains some F. A brittle mica.
36 1.452	LECONТИTE	$(\text{Na}, \text{NH}_4, \text{K})_2\text{O} \cdot \text{SO}_3 \cdot 2\text{H}_2\text{O}$	Soluble in water. Bitter taste. In C.T., gives NH_3 .
37	LIEBIGITE	$\text{CaCO}_3 \cdot (\text{UO}_2)\text{CO}_3 \cdot 20\text{H}_2\text{O}$	Probably identical with urarothallite. In C.T., gives much water, and becomes yellowish-gray.
38	SELENTELLURIUM	Se, Te	On coal, fuses easily, colors flame blue with greenish tinge.
39 1.655	URANOCHALCITE	$\text{UO}_4, \text{CuO}, \text{CaO}, \text{SO}_3, \text{H}_2\text{O}$	
40 1.480	DIETRICHITE	$(\text{Zn}, \text{Fe}, \text{Mn})\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 22\text{H}_2\text{O}$	Soluble in water.
41	HISTRIXITE	$\text{Cu}_6\text{Fe}_5\text{Bi}_4\text{Sb}_1\text{S}_{32}$	Radiating groups of prismatic crystals.
42 1.448	TAYLORITE	$\text{K}_2\text{O} \cdot (\text{NH}_4)_2\text{O} \cdot 6\text{SO}_2$	Tastes pungent and bitter. Unaltered in the air.
43 1.551	RHOMBOCLASE	$\text{Fe}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 9\text{H}_2\text{O}$	
44	PARPERITE	NiS_3	Resembles molybdenite. Effervesces.
45	FIZELYITE	$\text{Pb}_5\text{Ag}_2\text{Sb}_8\text{S}_{18}$	
46 2.6Li	TRECHMANNITE	$\text{Ag}_2\text{S} \cdot \text{As}_2\text{S}_3$	Brittle. Transparent to translucent.
47 1.638	HYDROTHORITE	$\text{ThSiO}_4 \cdot 4\text{H}_2\text{O}$	Radio active. Alteration product of mackintoshite.
48 1.578	FICHTELITE	Cs_8H_{32}	Soluble in ether. Solidifies at 36. Distills without decomposition.
49 1.52	LARDERELLITE	$(\text{NH}_4)_2\text{O} \cdot 5\text{B}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$	Gives off NH_3 in C.T. Fuses to a colorless glass.
50 1.487	AMMONIOBORITE	$(\text{NH}_4)_2\text{O} \cdot 5\text{B}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$	In C.T., gives NH_3 . Fuses to a colorless globule.
51 1.625	BISBEITE	$\text{CuO} \cdot \text{SiO}_2 \cdot \text{H}_2\text{O}$	Fibrous. Very thin laths. From hydration of shattuckite.
52	CHILENITE	Ag_6Bi	Antergrowth of native Ag and cuprite.
53 1.675	CHLORO-MAGNESITE	MgCl_2	Very delequescent. From Vesuvius.
54 1.8±	GLOCKERITE	$2\text{Fe}_2\text{O}_3 \cdot \text{SO}_3 \cdot 6\text{H}_2\text{O}$	Insoluble in water. Sometimes in stalactitic forms.
55 1.85+	METAROSSITE	$\text{CaO} \cdot \text{V}_2\text{O}_5 \cdot 2\text{H}_2\text{O}$	Soluble in water. The HCl solution is mahogany red.
56 1.498	NITROCALCITE	$\text{CaO} \cdot \text{N}_2\text{O}_5 \cdot \text{nH}_2\text{O}$	Tastes sharp and bitter. On coal, fuses with a slight detonation.
57 1.470	PARALUMINITE	$2\text{Al}_2\text{O}_3 \cdot \text{SO}_3 \cdot 15\text{H}_2\text{O}$	Probably from alteration of aluminite.
58	REMINGTONITE	Hydrous cobalt carbonate	Cobalt reactions. May be a mixture.
59 1.90	TRIPPKEITE	$n\text{CuO} \cdot \text{As}_2\text{O}_3$	In C.T., becomes emerald green, then brownish then green.
60 1.79	URA CONITE	$\text{SO}_3, \text{UO}_3, \text{H}_2\text{O}$, etc.	
61 1.547	VOLGITE	Hydrous carbonate of U, Ca, Cu	In C.T., blackens and yields water; colors flame green.
62	ALAITE	$\text{V}_2\text{O}_5 \cdot \text{H}_2\text{O}$	In dark bluish-red moss-like masses. Rare.
63	ALAITE	$\text{V}_2\text{O}_5 \cdot \text{H}_2\text{O}$	From Turkestan. Occurs in moss-like masses.
64 1.80	AMMONIO-JAROSITE	$(\text{NH}_4)_2\text{O} \cdot 3\text{Fe}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot \text{H}_2\text{O}$	Occurs in flattened grains. Member of the alunite group.
65 1.482	ASHTONITE	$(\text{Ca}, \text{Na}_2, \text{K}_2)\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 9\text{SiO}_2 \cdot 5\text{H}_2\text{O}$	A zeolite. Occurs in radiating crystals.
66 1.657	BALDAUFITE	$3(\text{Fe}, \text{Mn}, \text{Mg}, \text{Ca})\text{O} \cdot \text{P}_2\text{O}_5 \cdot 3\text{H}_2\text{O}$	Isomorphous with wenzelite.
67	BASILIITE	$11(\text{Mn}_2\text{O}_3 \cdot \text{Fe}_2\text{O}_3) \cdot \text{Sb}_2\text{O}_5 \cdot 21\text{H}_2\text{O}$	Non-magnetic. In C.T., yields H_2O ; turns black then red-brown.
68	BECHILITE	$\text{CaO} \cdot 2\text{Be}_2\text{O}_3 \cdot 4\text{H}_2\text{O}$	Found in crusts as a deposit from springs. In C.T., yields H_2O .
69	BELONESITE	MgMoO_4	From Vesuvius. Dissolves readily in S.Ph, less readily in borax.

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYSTEM
70				Sol	White			Good		O
71				Sol	White					M
72				Sol	Yellow		E			R?
73		1.5?			Black	Yellow				M?
74					Amber brown			Perf		
75					Colorless, white or yellow					R
76					Bluish green			None		A
77					Sulfur yellow					
78				Sol in HNO ₃	Colorless		V, A		Subconch	O
79			Fus		Brown	Brownish yellow				M
80					Yellow					O?
81					White			Fair		O
82					Red					O
83				Sol	Dull green				Fibrous	
84				Dcpd	Yellow, brownish yellow					H
85					Golden brown					M?
86					Lemon yellow					
87				Sol	Green, brownish, yellowish, sky blue					O
88					Violet black	Brown-violet		Mic		O
89				Sol	Clear green					M?
90		Easy			Greenish, yellowish, pinkish white			Basal		
91		Easy	Sol		Greenish yellow		V, A	Perf	Brittle	O
92					Dark green					
93					Ruby red					O
94					Yellow					A
95			Gelat		White, gray			Good		M
96					White		S			M
97		2-2.5			White		S			O
98		Inf	Sol		Colorless				Fibrous	M
99		Inf	Sol		Black	Brownish		Good		M?
100		Easy	Sol		Blue		V	Perf		M?
101		Easy	Sol		White		S		Fibrous	M?
102					White					
103		Easy			Colorless				Fibrous	M?

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

INDEX OF REF.	NAME	COMPOSITION	REMARKS
70 1.525	BIALITE	CaO·MgO·P ₂ O ₆ ·H ₂ O	Magnesian variety of tavistockite.
71 1.494	BIANCHITE	FeO·2ZnO·3SO ₃ ·18H ₂ O	Soluble in cold water.
72 1.816	BORGSTROEMITE	3Fe ₂ O ₃ ·4SO ₃ ·9H ₂ O	From oxidation of pyrite or pyrrhotite.
73 2.36Li	BRACKEBUSCHITE	3(Pb,Mn,Fe)O·V ₂ O ₅ ·H ₂ O?	
74 1.580	CANBYITE	Fe ₂ O ₃ ·2SiO ₂ ·4H ₂ O	May be crystalline phase of the amorphous hisingerite.
75 1.60±	CHLOR-	AlCl ₃ ·6H ₂ O	From Vesuvius.
76 1.54±	ALLUMINITE	mCuO·nSiO ₂ ·H ₂ O	Isotropic chrysocolla.
77	CORNUITE	CuI·AgI	Close to miersite. Harder and less sectile than iodyrite. A decomposition product of stromeyerite.
78	IODARGYRITE	Oxychloride of Pb	Yields metallic Pb with soda on coal.
79	DAVIESITE		
80 1.89	IODARGYRITE		
81 1.590	DOLEROPHANITE	2CuO·SO ₃	Partly soluble in water. B.B., a black scoriaceous residue.
82 1.75	ERYTHRO-	2PbO·3UO ₃ ·P ₂ O ₅ ·5H ₂ O	
83 2.05	SIDERITE		Very delequescent. Found in the cone of Vesuvius.
84 1.80	FERNANDINITE	CaO·V ₂ O ₄ ·5V ₂ O ₅ ·14H ₂ O	Slightly soluble in water giving a green solution.
85 2.222	FERVANITE	Fe ₂ O ₃ ·2V ₂ O ₅ ·5H ₂ O	In C.T., yields water. Product of oxidation of wolframite.
86	FLAJOLOTITE	4FeSbO ₄ ·3H ₂ O	Insoluble in water.
87 1.733	HYDROCYANITE	CuO·SO ₃	Compact or earthy. In nodular masses.
88 1.900	IANTHINITE	2UO ₂ ·7H ₂ O	Soluble in water. Effervesces readily. From Versuvius
89 1.518	ILESITE	(Mn,Zn,Fe)O·SO ₃ ·4H ₂ O	Acicular crystals. An alteration product of uraninite.
90	IRVINGITE	A lithia mica.	Bitter taste. Soluble in water.
91 2.61Li	KOECHLINITE	Bi ₂ O ₃ ·MoO ₃	Folia tough and elastic.
92 2.04	KOLOVRATITE	Nickel vanadate	In C.T., fuses and forms a sublimate.
93	KREMERSITE	KCl·NH ₄ Cl·FeCl ₂ ·H ₂ O	In crusts.
94 1.64	LAGONITE	Fe ₂ O ₃ ·3B ₂ O ₃ ·3H ₂ O	Soluble in water. Unstable.
95 1.715	LARNITE	2CaO·SiO ₂	Occurs as an incrustation at the Tuscan lagoons.
96 1.628	LAUSENITE	Fe ₂ O ₃ ·3SO ₃ ·6H ₂ O	Slowly attacked by H ₂ O giving an alkaline solution.
97 1.807	LEUCOCHALCITE	4CuO·As ₂ O ₃ ·3H ₂ O	Silky fibers.
98	MALLARDITE	MnO·SO ₃ ·7H ₂ O	Slender needle-like crystals. B.B., becomes a green then black glass.
99 1.95	MANGANO-	10MnO·Sb ₂ O ₅	On exposure rapidly loses water. B.B., decomposes.
100 1.530	STIBIITE		On coal, an Sb coating; with soda Mn reactions.
101 1.480	MINASRAGITE	V ₂ O ₄ ·3SO ₃ ·16H ₂ O	Soluble in cold water. In C.T., fuses and yields water.
102	MISENITE	K ₂ O·2SO ₃ ·H ₂ O	Soluble in water. Tastes acid and bitter. Violet colored flame.
103 1.506	NITRO-	6NaNO ₃ ·2Na ₂ SO ₄ ·3H ₂ O	Fibrous crystalline structure.
104	GLAUBERITE		
105	NITRO-		
106	MAGNESITE	MgO·N ₂ O ₅ ·nH ₂ O	Soluble in water. Tastes bitter.

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
104				Sol	White, reddish		A			R
105			1	Sol in HNO ₃	White		V, G	Dist		H
106			3?	Sol	Lemon-yellow		P			M?
107					Green					
108		Easy		Sol in HNO ₃	Siskin to olive green					
109					Red, brown					
110		Easy			Lead gray, reddish tinge	Blackish lead gray	M		Uneven to conch	H
111		Inf		Pt sol	White		P	Perf	Fragile	O
112				Sol	White		D			
113					Light blue					A
114					Black			Cubic		I
115			Diff		Orange-yellow		S			R
116					Brownish yellow			Good	Granular	O
117					Dark green					
118					Grayish yellow					I
119		Inf		Sol	White			None		H
120					Flesh pink					M
121					Reddish					
122										
123					Pale greenish yellow					M
124					Pink to black					O?
125				Sol	Greenish, yellowish brownish			Good		H
126					Ash gray					O
127					Sulfur yellow					
128					Blue-gray					T?
129					Blue-green					O
130					Light green					
131					Black					O
132					Green			Perf		
133										
134					Yellow					M
135										

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

INDEX OF REF.	NAME	COMPOSITION	REMARKS
104	OTAVITE	Basic cadmium carbonate	
105 2.13	PENFIELDITE	PbO·2PbCl ₂	In C.T., decrepitates and yields sublimate of lead chloride.
106 1.720	PHOSPHURANY-LITE	3UO ₃ ·P ₂ O ₅ ·6H ₂ O	In C.T., yields water and becomes brownish yellow on cooling.
107	PINTADOITE	2CaO·V ₂ O ₅ ·9H ₂ O	An efflorescence.
108	PSITTACINITE	4(Pb,Cu)O·V ₂ O ₅ ·2H ₂ O	Considered a variety of descloizite. B.B., a black shining mass. Reacts for Pb, Cu and V.
109	SELEN-SULPHUR	Se ₂ S	Found in volcanoes.
110	STÜTZITE	Ag ₄ Te	O.T., gives tellurium dioxide. With soda a globule of silver.
111 1.530	TAVISTOCKITE	3CaO·Al ₂ O ₃ ·P ₂ O ₅ ·2H ₂ O?	Transparent. B.B., becomes opaque. Gives a blue color with cobalt solution.
112 1.57	TENTERITE	Y,Be ₂ CO ₃	Pulverulent. In thin coatings. Effervesces with acid.
113 1.565	TRAVERSOITE	2(Cu,Ca)O·Al ₂ O ₃ ·2SiO ₂ ·12H ₂ O	A mixture of chrysocolla and gibbsite.
114	UHLIGITE	CaO·Al ₂ O ₃ ·ZrO·2TiO ₂	Near zirkelite. Brown and transparent on thin edges.
115	UTAHITE	3Fe ₂ O ₃ ·3SiO ₃ ·4H ₂ O	In C.T., gives acid water and turns red.
116 1.879	UVANITE	2UO ₃ ·3V ₂ O ₅ ·15H ₂ O	Insoluble in water. Soluble in (NH ₄) ₂ CO ₃ .
117 2.04	UZBEKITE	3CuO·V ₂ O ₅ ·3H ₂ O	Two varieties, alpha and beta, varying slightly in composition.
118	TANTALUM	Ta	Found in the gold washings of Ural and Altai mountains.
119 1.633	VOELCKERITE	10CaO·3P ₂ O ₅	Apatite group.
120 1.655	WENTZELITE	3(Mn,Fe,Mg)O·P ₂ O ₅ ·5H ₂ O	May be hureaulite.
121	ALMERAITE	KCl·NaCl·MgCl ₂ ·H ₂ O	
122	AMARGOSITE	MgO·Al ₂ O ₃ ·5SiO ₂ ·7H ₂ O	Trade name of bentonite clay. Same as montmorillonite.
123	AMARILLITE	Na ₂ O·Fe ₂ O ₃ ·4SO ₃ ·12H ₂ O	
124	AMBATOARINITE	5SrCO ₃ ·4(Ce,La,Di) ₂ (CO ₃) ₃ ·(Ce,La,Di) ₂ O ₃	Skeleton-like groups of crystals.
125	AMELETITE	6Al ₂ O ₃ ·9Na ₂ O·12SiO ₂ ·½NaCl	Occurs in minute crystals and grains.
126	AMOSITE	(Fe,Mg,Ca)O·SiO ₂ ·xH ₂ O	Fibrous. An asbestos.
127	ARSENOSTIBITE	3(Sb,As) ₂ O ₃ ·5(Sb,As) ₂ O ₅ ·25H ₂ O	
128	ARSENSCHWEFEL	As ₂ S ₃ ·H ₂ O	Granular crystalline aggregates.
129	ARZRUNITE	PbSO ₄ ·PbO·3(CuCl ₂ ·H ₂ O)·Cu(OH) ₂	Drusy incrustations.
130	ATTAPULGITE	(OH) ₂ ·H ₂ O(Mg,Al _{4/3})·Si ₃ H ₄ O ₁₀	A fuller's earth.
131	BAECKSTROEMITE	Mn(OH) ₂	In prismatic crystals.
132	BATCHELORITE	Al ₂ O ₃ ·2SiO ₂ ·H ₂ O	Has a foliated structure.
133	BENTONITE	A soapy clay	Swells up when mixed with water. Montmorillonite.
134	BLEIMALACHITE	2CuCO ₃ ·PbCO ₃ ·Cu(OH) ₂	
135	BOSPHORITE	3Fe ₂ O ₃ ·2P ₂ O ₅ ·17H ₂ O	

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYST-EM
136					Greenish yellow					O
137					Gray, white					I
138					White					
139					Colorless					M
140					Emerald green					O
141					Greenish gray					
142		Easy	Sol in HNO ₃		Yellowish white		S		Fibrous	
143					Green					
144					Black					
145					Black					A
146					Reddish white					R
147					Pale bluish green					H
148					Orange red					
149										
150					Violet					
151										
152					Colorless, yellow					
153					Yellowish green				Fibrous	A
154					Bluish green					
155					Black					A
156										
157										M
158					Purplish black					
159					Black					
160										
161							V			A
162					White					O
163			Sol		Yellow	Yellow				
164			Depd		Canary yellow					A
165					Olive green				Fibrous	
166					Black to grayish black					I
167					Black					
168					Pale blue					H?
169					Dark brown, gray					

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

INDEX OF REF.	NAME	COMPOSITION	REMARKS
136.....	CUPRO-SKLODOWSKITE	$\text{CuO} \cdot 2\text{UO}_3 \cdot 2\text{SO}_2 \cdot 6\text{H}_2\text{O}$	
137.....	DIENERITE	Ni_3As	
138.....	DOUGHTYITE	$\text{Al}_2(\text{SO}_4)_3 \cdot 5\text{Al}_2(\text{OH})_6 \cdot 21\text{H}_2\text{O}$	From alkaline waters of Doughty Springs, Colo.
139.....	ENELECTRITE	Hydrocarbon?	Lath-like crystals occurring in amber.
140.....	EUCHLORINE	$4(\text{K}, \text{Na})_2\text{SO}_4 \cdot 6\text{CuSO}_4 \cdot 3\text{Cu}(\text{OH})_2$	In the lava from Vesuvius.
141.....	FERRI-PARALUMINITE	$2(\text{A}, \text{Fe})_2\text{O}_3 \cdot \text{SO}_3 \cdot 15\text{H}_2\text{O}$	Occurs in crusts.
142.....	FRAIPONTITE	$8\text{ZnO} \cdot 2\text{Al}_2\text{O}_3 \cdot 5\text{SiO}_2 \cdot 11\text{H}_2\text{O}$	Fibrous crust like asbestos.
143.....	HYDROMELANO-THALLITE	$\text{CuCl}_2 \cdot \text{CuO} \cdot 2\text{H}_2\text{O}$	Scales from Vesuvius.
144.....	IOZITE	FeO	Minute grains in lava.
145.....	JEROMITE	$\text{As}(\text{S}, \text{Se})_2$	Globular.
146.....	KUTNOHORITE	$(\text{Ca}, \text{Mg}, \text{Fe}, \text{Mn})\text{CO}_3$	
147.....	LEUCOCGLAUCITE	$\text{Fe}_2\text{O}_3 \cdot 4\text{SO}_3 \cdot 5\text{H}_2\text{O}$	
148 1.732	LOPEZITE	$\text{K}_2\text{Cr}_2\text{O}_7$	Occurs as minute crystals and balls.
149.....	MEYERSITE	$\text{AlPO}_4 \cdot 2\text{H}_2\text{O}$	Agate-like masses in lava.
150.....	MILLO-SEVICHITE	Normal Fe, Al sulfate	A volcanic incrustation.
151.....	MITHRIDATITE (MITRIDATITE)	$2\text{CaO} \cdot 2\text{Fe}_2\text{O}_3 \cdot 2\text{P}_2\text{O}_5 \cdot n\text{H}_2\text{O}$	Alteration product of vivianite.
152.....	MUNKRUDITE	P_2O_5 and SO_3 of Fe and Ca	Occurs foliated and crystalline.
153.....	OLIVEIRAITE	$3\text{ZrO}_2 \cdot 2\text{TiO}_2 \cdot 2\text{H}_2\text{O}$	Minas Geraes, Brazil. Associated with Euxenite.
154.....	PARA-URICHALCITE	Zn malachite?	Botryoidal or earthy.
155.....	PATRONITE	VS4?	
156.....	PHOSPHOROUS	P	
157.....	PLUMBO-MALACHITE	$2\text{CuCO}_3 \cdot \text{Cu}(\text{OH})_2 \cdot \text{PbCO}_3$	Reported in stone meteorite, Saline township, Kansas.
158.....	RAUVITE	$\text{CaO} \cdot 2\text{UO}_3 \cdot 6\text{V}_2\text{O}_5 \cdot 20\text{H}_2\text{O}$	
159.....	ROBELLAZITE	V, Nb, Ta, W, Al, Fe, Mn	Occurs as concretionary masses with carnotite in Colorado.
160.....	SCHERTELITE	$\text{Mg}(\text{NH}_4)_2\text{H}_2(\text{PO}_4)_2 \cdot 4\text{H}_2\text{O}$	Crystals in bat guano. Like hannayite.
161.....	SHANYAVSKITE	$\text{Al}_2\text{O}_3 \cdot 4\text{H}_2\text{O}$	Colloidal. From near Moscow, Russia.
162.....	SIMONELLITE	C_{16}H_2	A hydrocarbon incrustation on lignite.
163.....	SJÖGRUFVITE	$\text{H}_2\text{O} \cdot \text{As}_2\text{O}_5 \cdot \text{Fe}_2\text{O}_3 \cdot \text{MnO} \cdot \text{PbO} \cdot \text{CaO}$	Red in splinters. Crystalline.
164.....	STEIGERITE	$\text{Al}_2\text{O}_3 \cdot \text{V}_2\text{O}_5 \cdot 6\frac{1}{2}\text{H}_2\text{O}$	Powdery appearance. The acid solution is deep cherry-red.
165 2.01	TANGEITE	$2\text{CaO} \cdot 2\text{CuO} \cdot \text{V}_2\text{O}_5 \cdot \text{H}_2\text{O}$	
166.....	ULRICKITE	UO_2	
167.....	VANOXITE	$\text{V}_4\text{V}_2\text{O}_{13} \cdot 8\text{H}_2\text{O}$	
168.....	WISCHNEWITE	$3\text{Na}_2\text{Al}_2\text{Si}_2\text{O}_8 \cdot \text{Na}_2\text{SO}_4 \cdot 3\text{H}_2\text{O}$	
169.....	ZINK-MANGANERZ	Hydrous zinc manganate	

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

	H	SP. GR.	F	HCL	COLOR	STREAK	LUSTER	CLEAV-AGE	FRACTURE	SYS-TEM
170					Greenish gray				Fibrous	O
171			Fus	Sol	Sulfur-yellow				Brittle	M
172				Sol	Black	Black	M			
173					Brown to violet					A
174										
175					Yellow					
176					Silver-white					
177					Blk, blue, blue-blk					
178				Sol	Black	Black	M			
179					White					
180					Silver-white to pale steel-gray		Bright	Good		H?
181					White					T?

MINERAL IDENTIFICATION TABLES

GROUP 13
Specific Gravity Not Reported

INDEX OF REF.	NAME	COMPOSITION	REMARKS
170 1.633	PICROAMOSITE	Like amphibole	Brittle. An orthorhombic amphibole.
171	KELBELSBERGITE	Basic SO ₄ of Sb with Fe,Mg,Na,K,Bi,P ₂ O ₅	Occurs as tufts and minute needles in stibnite.
172	KOLBECKINE	Sn ₂ S ₃	Occurs as minute black scales resembling pyrolusite.
173	ALOISIITE	H ₂ O,SiO ₂ of Ca,Fe'', Mg and Na.	A cement in tuff. From Uganda.
174	NORILSKITE	Alloy of Pt,Fe,Ni,Cu	
175	NICKEL OXIDE	Ni ₃ O ₄	Magnetic. Yellow scales in the black sands of Fraser River, B. C.
176	IGELSTROMITE	Mg ₈ Fe ₂ (OH) ₁₈ ·6H ₂ O	On ignition, turns chocolate-brown and becomes magnetic.
177	ILSEMANNITE	MoO ₃ ·Mo ₃ O ₈ ·nH ₂ O	Earthy masses.
178	HERZENBERGITE	Zn ₂ S ₃	In fine grains. Soluble in H ₂ SO ₄ with evolution of H ₂ S.
179	VOLGERITE	Sb,O,H ₂ O,etc.	Massive or as a powder. Probably an alteration product of stibnite.
180	ALLOPALLADIUM	Pd,Hg,Pt,Ru,Co?	Opaque.
181	SELENOLITE	SeO ₂	Reported as white needles on cerussite and molybdomenite.

GENERAL INDEX

- Abbreviations, 169:**
- Acetates, tests for, 132
 - Acid resistant wood stain, 60
 - Aluminum group, tests for, 118, 122
 - Aluminum, tests for, 123, 124, 159 Plate 12
 - Ammonia, tests for, 133
 - Ammonium hydroxide test, 67, 122
 - molybdate test for arsenic, 66, 135
 - molybdate test for phosphorous, 66, 117, 135
 - oxalate test, 67, 129
 - phosphate test, 67
 - phosphomolybdate test for tin, 114
 - sulfocyanate test for cobalt, 121
 - sulfocyanate test for iron, 120
 - Analyser card, fluorescence, 30
 - Analytical scheme, 86
 - Anions, tests for, 131-136
 - Antimony, tests for, 109-113, 147-168 Plates 12, 17
 - Apparatus, chemical, 50
 - Aqua Regia, 87
 - Arsenates, tests for, 135
 - Arsenic, tests for, 108-113, 135, 147-168 Plates 12, 17
 - Assay of gold and silver, 139, 141
 - Atomic weights, 63
 - Balance, beam, 9**
 - Berman's, 15
 - Jolly, 7
 - specific gravity, 5
 - Barium chloride test, 66
 - hydroxide test, 132
 - Bead tests, 157, 158
 - borax, 157
 - response to ultra-violet light, 168
 - salt of phosphorous, 158
 - sodium carbonate, 66, 131
 - sodium fluoride, 168
 - Beam balance, 9
 - Benzidine test for cerium, 97
 - gold, 98
 - phosphate, 117
 - Berman density balance, 15
 - Beryllium, tests for, 123-125 Plate 12
 - separation of, 125
 - Biaxial group, 24
 - Bismuth flux, see iodide flux
 - Bismuth, tests for, 103-105, 147-168 Plates 13, 17
 - Black light, see ultra-violet light
 - Blowpipe, 138
 - assay with, 139
 - tables, 145-168
 - tests, 145-168
 - response to ultra-violet light, 165
 - using, 137
 - Blowpiping, 137
 - Borates, tests for, 67, 132
 - Borax bead tests, 157
 - Boron, tests for, 67, 132
 - Braun's solution, 15
 - Bromates, tests for, 132
 - Bromide flux, 46
 - reactions, 150, 153-156
 - Bromides, tests for, 132, 135
 - Bromine, tests for, 132, 135
 - Cadmium, tests for, 103-106, 147-168 Plates 13, 17**
 - Caesium, tests for, 131
 - Calcium group, tests for, 127
 - Calcium, tests for, 67, 128
 - Calibrated wedge, 141
 - Carbon, tests for, 132, 136, 148 Plate 13
 - Carbonates in nature, 43
 - Carbonates, tests for, 66, 132
 - Cassiterite, tests for, 114
 - Cerium, tests for, 97, 146 Plate 18
 - Changes, color, 159
 - Charcoal, sublimates on, 153-156
 - tests on, 153-156, 164
 - Chemical analysis, 66, 87
 - apparatus, 50
 - atomic weights, 63
 - classes in nature, 43
 - composition, 44
 - elements, table of, 63
 - formula, 44
 - laboratory, portable, 51
 - reactions, tables of, 65
 - reagents, 45
 - resistant wood stain, 60
 - symbols, 63
 - Chlorates, tests for, 132
 - Chlorides, tests for, 132, 135
 - Chlorine, tests for, 132, 135
 - Chromate flux, 46
 - Chromate flux reactions, 152-156
 - Chromates in nature, 44

GENERAL INDEX

- Chromates**, tests for, 135
Chromium, tests for, 124, 131, 135, 145 Plates
 13, 18
Classes, chemical, 43
Cleavage of minerals, 23
Clerici's solution, 15
Closed tube sublimates, 162
Cobalt nitrate reactions, 159
Cobalt, separation from iron, 119
 tests for, 119–121, 157, 158, 164, 168 Plate
 18
Color of minerals, 22
Color changes in the closed tube, 159
Color plates, 144
Coloration, flame, 160–162
Columbium, tests for, 90, 145, 146, 158, 168
 Plate 18
Composition, chemical, 44
 of earth's crust, 43
 determination by specific gravity, 17
 percentage, 44
Concentrated reagents, 49
Copper group, tests for, 101
Copper, tests for, 103–105, 146–168 Plates
 13, 18
Crust of earth, composition of, 43
Crystal systems, 23
Cupel mould, 140
Cupellation test, 141
Cupels, making of, 139

Didymium, tests for, 97, 157, 158 Plate
 18
Dimethylglyoxime test for bismuth, 105
 cobalt, 121
 iron, 120
 nickel, 121
 palladium, 106
 tin, 114
 vanadium, 127
Dysprosium, tests for, 96

Elements, interchangeable, 1
 free in nature, 44
 table of chemical, 63
Erbium, tests for, 97
Europium, tests for, 96

Ferric iron, tests for, 120
Ferrous iron, tests for, 120
Flame, Bunsen, 137
 candle, 137
 colorations, 160–162
 oxidizing, 138
 reducing, 138
Fluorescence, 28
 analyzer card, 30
- Fluorescence**, causes of, 29
Fluorides, fusion with, 168
 tests for, 132, 133
Fluorine, tests for, 132, 133
Fluorochemistry, 25
Flux, bismuth, see iodide flux
 boric acid, 46
 bromide, 46
 chromate, 46
 iodide, 47
 gold, silver, 139
Formula, chemical, 44
Fracture of minerals, 23
Fusibility, scale of, 20
Fusions on charcoal, 164, 165
 platinum, 87, 131
 porcelain, 130
 potassium bisulfate, 132
 sodium carbonate, 66, 87, 164, 165
- Gadolinium**, tests for, 96
Gallium, separation of, 127
 tests for, 123, 127
Generator, hydrogen sulfide, 62
Germanium, tests for, 117, 147
Globules, metallic, 88, 164
Gold, amalgamation of, 98
 panning of, 19
 silver assay, 139, 141
 silver parting, 142
 silver separation, 142
 tests for, 98, 145, 147, 148, 154, 164 Plate
 13
Graph, gold, silver, 143
- Halides** in nature, 44
Hardness scale, 19
Heavy liquids for specific gravity determinations, 15
 use in separations, 15
Hexagonal system, 24
Holmium, tests for, 96
Hydrobromic acid, reactions with, 159
Hydrochloric acid group, tests for, 91
 solubility in, 21
 test, 67
Hydrocarbons, tests for, 133
Hydrogen peroxide, reactions with, 145
Hydrogen sulfide group, tests for, 101
 tests for, 117, 132, 134
Hydrogen, tests for, 133
Hydrometer for specific gravity determination, 6
- Identification** of minerals, 4, 16
Ignition, how to accomplish, 98
Index of minerals, 331

GENERAL INDEX

Index of refraction, 24
 Indium, tests for, 122, 147
 Introduction, 1
 Iodide flux, 46
 reactions with, 149, 153-156
 Iodides, tests for, 132, 135
 Iodine, tests for, 132, 135
 Iridium, tests for, 117, 147
 Iron, ferric, tests for, 120
 ferrous, tests for, 120
 group, tests for, 118
 separation from Mn, Co, Ni, 119
 tests for, 120, 148-168 Plates 13, 18
 Isometric system, 24
 Isotropic group, 24

Jigging, 19
 Jolly balance, 7

Klein's solution, 15

Labels, protection of, 63
 Laboratory, portable, 51
 Lanthanum, tests for, 97
 Lead acetate test, 132, 134
 Lead, tests for, 91-94, 103-105, 147-168
 Plates 14, 17
 Lithium, tests for, 130
 Luster of minerals, 22
 Lutecium, tests for, 96

Magnesium, tests for, 67, 129 Plate 14
 separation of, 129
 Mandrel for making coil spring, 8
 Manganese, separation from iron, 119, 121
 tests for, 119, 120, 145-168 Plates 14, 18
 Melting point of metals, 21
 Mercury, tests for, 33, 91-94, 108-111, 147-168 Plates 14, 15, 17
 in gold recovery, 98
 Metals, natural occurrence, 44
 melting point of, 21
 Metallic globules, 104
 Metallic zinc, reactions with, 146
 Mineral analysis, 87
 identification, 4, 16
 identification tables, 171
 index, 331
 Mineralogy, chemical, 1
 Minerals, composition of, 43
 definition of, 1
 how to find the properties of, 5
 not soluble in common acids, tables of, 82-85
 soluble in hydrochloric acid, tables of, 70-77

Minerals, soluble in nitric acid, tables of, 78-79
 soluble in sulfuric acid, tables of, 80-81
 tables of chemical properties of, 70-85
 Mould, cupel, 139
 Molybdates, tests for, 115
 Molybdenum, tests for, 109-115, 145-167
 Plates 15, 17, 18
 Monoclinic system, 24

Neodymium, test for, 97
 Niobium, see columbium
 Nickel, separation of, 119
 tests for, 119-121, 145, 147, 157, 158, 164, 168 Plate 18
 Nitrates, tests for, 132, 133
 Nitrites, tests for, 132
 Nitrogen, tests for, 132, 133

Open tube reactions, 163
 Ores, sorting of, 32
 Orthorhombic system, 24
 Osmium, tests for, 107, 146
 Oxalates, tests for, 132, 136
 Oxalic acid group, tests for, 95
 Oxides in nature, 43
 Oxidizing flame, 138
 Oxygen, tests for, 134

Palladium, tests for, 106, 146, 147
 Panning of gold, 18, 19
 Parting, gold, silver, 142
 Percentage composition, 17, 44
 Phosphates in nature, 44
 Phosphate, tests for, 66, 117, 135
 Phosphomolybdic acid test for cerium, 97
 copper, 106
 Phosphorescence, causes of, 28, 29
 Phosphorous, tests for, 66, 117, 135
 Plaster tablets, how to make, 50
 bromide flux reactions on, 150
 chromate flux reactions on, 152
 iodide flux reactions on, 149
 per se reaction on, 148
 Platinum, fusions on, 87, 131
 tests for, 117, 146, 147
 Platinum wire, cleaning of, 130
 Polonium, tests for, 107, 147
 Portable laboratory, construction of, 51
 equipment for, 61
 reagents for, 62
 Potassium-bismuthiodidetest for caesium, 131
 Potassium bisulfate, fusions with, 88, 132
 reactions with, 132
 Potassium iodate test for thorium, 96
 Potassium ferricyanide-lead acetate test for caesium, 131

GENERAL INDEX

- Potassium ferrocyanide test for calcium, 128
 copper, 106
 iron, 120
 molybdenum, 115
 uranium, 126
- Potassium sulfocyanate test for iron, 120
 molybdenum, 115
- Potassium, tests for, 130
- Praseodymium, tests for, 97
- Preliminary tests, 66, 68
- Properties of minerals, how to find, 5
- Proportional tongs, 141
- Prospecting with ultra-violet light, 29
- Protecting labels, 63
- Pycnometer for specific gravity determinations, 14
- Qualitative scheme**, methods used, 2, 87
 chemical tests, 66, 68, 87
- Quinalizarine test for beryllium, 125
 cerium, 97
 lanthanum, 97
 magnesium, 129
 neodymium, 97
 praseodymium, 97
 thorium, 96
 zirconium, 100
- Rare Earths**, tests for, 95-96
 Reactions, bead, 66, 157, 158
 blowpipe tests to ultra-violet light, 165
 bromide flux on plaster, 150
 charcoal, 153-156
 chromate flux on plaster, 152
 closed tube, 162
 cobalt nitrate, 159
 hydrobromic acid, 159
 hydrogen peroxide, 145
 iodide flux on plaster, 149
 metallic zinc, 146
 open tube, 163
 per se on plaster, 148
 potassium bisulfate, 132
 sodium carbonate, 66, 88, 164, 165
 sodium fluoride fusions to ultra-violet light, 168
 table of chemical, 65
- Reagents, chemical, 45
 concentrated, 49
- Reducing flame, 138
- Refraction, index of, 24
- Rhenium, tests for, 107
- Rhodium, tests for, 107, 147
- Rubidium, tests for, 131
- Ruthenium, tests for, 117, 146, 147
- Salt of phosphorous bead tests**, 158
- Samarium, tests for, 96
- Sample, solution of, 87
- Sampler, 139
- Sand, specific gravity of, 16
- Scandium, tests for, 96, 146
- Scheme, analytical, 86
- Scorification, 141
- Selenium, tests for, 66, 107-116, 146-168
 Plates 15, 17
- Silicates in nature, 43
 tests for, 66, 134, 158
- Silicon, tests for, 66, 131, 134, 158
- Silver, assay of, 139, 141
 tests for, 67, 91-94, 147-168 Plates 15, 16
- Silver group, tests for, 91
- Sodium carbonate bead tests, 66
 fusions with, 164
 reactions, 66, 88, 131, 164
- Sodium group, tests for, 130
- Sodium fluoride fusions, 168
 response to ultra-violet light, 168
- Sodium, tests for, 130
- Solubility of minerals in hydrochloric acid,
 determination of, 21
 tables of, 65, 70-77
 nitric acid, tables of, 66, 78-79
 sulfuric acid, tables of, 66, 80-81
- Solubility test (hydrochloric acid), 21
- Solution of mineral, 87
- Sorting ores, 32
- Specific gravity, definition of, 5
 beam balance for determination of, 9
 Berman balance for determination of, 15
 calculating composition from, 17, 18
 determination of, 5
 heavy liquid, use in determination of, 15
 hydrometer for determination of, 6
 Jolly balance for determination of, 7
 pycnometer for determination of, 14
 of concentrates, determination of, 16
 of gravel, determination of, 16
 of ground mineral, determination of, 16
 of minerals, determination of, 5
 of sand, determination of, 16
 uses of, 16
- Spot plate, 69
- Spot tests, 68
- Spring scales for specific gravity determination, 7, 15
- Spring, making of, 8
- Streak of minerals, 22
- Streak plate, 22
- Strontium, tests for, 128
- Sublimates in the closed tube, 162
 in the open tube, 163
 on charcoal, 153-156

GENERAL INDEX

- Sublimates on plaster, 148-153
Sulfates in nature, 44
tests for, 66, 131, 134
Sulfides in nature, 43
tests for, 66, 131, 132, 134
Sulfur, tests for, 66, 131, 132, 134
Symbols of chemical elements, 63
Systems, crystal, 23
- Tables**, arrangement of minerals in, 4
mineral, 171
using the, 4
Tables of chemical elements, 63
chemical reactions, 70-85
minerals soluble in hydrochloric acid, 70-77
minerals soluble in nitric acid, 78-79
minerals soluble in sulfuric acid, 80-81
minerals insoluble in the common acids, 82-85
- Tablets, Plaster of Paris, 50
Tantalum, tests for, 90, 145, 146
Tellurium, tests for, 109-116, 147-168 Plates 16, 17
Terbium, tests for, 96
Tests, bead, 66, 157, 158
chemical, 66, 68, 87
spot, 68
Tetragonal system, 24
Thallium, tests for, 91-94, 147-168 Plates 16, 17
Thorium, tests for, 96, 146
Thoulet's solution, 15
Thullium, tests for, 96
Tin group, tests for, 101
Tin, tests for, 109-114, 147-167 Plates 16, 17
Titanates in nature, 44
Titanium, tests for, 99, 145, 146, 157, 158 Plate 18
Toluene in specific gravity determinations, 16
Tongs, proportional, 141
Triclinic system, 24
Tungstates in nature, 44
Tungsten, tests for, 89, 146, 157, 158 Plates 2-7, 18
- Turmeric paper test for boron, 66, 132
titanium, 66, 100
zirconium, 66, 100
- Ultra-violet light**, 25
application of, 3
fluorescence from, 28
for collectors, 32
list of minerals which respond to, 35-42
mercury, testing for with, 33
phosphorescence from, 28
prospecting with, 29
reactions of bead tests to, 35, 168
blowpipe tests to, 165
sodium fluoride fusions to, 168
sorting ores with, 32
testing for mercury with, 33
uses with bead tests, 168
uses with blowpipe tests, 165
uses in prospecting and mining, 29
uses of, 3
wave lengths of, 27
- Uniaxial group, 24
Uranium, separation of, 123
tests for, 123-126, 145-147 Plate 18
Uses of specific gravity, 16
Using the tables, 4
- Vanadates in nature**, 44
Vanadium, tests for, 118, 123-126, 129, 145-147 Plate 18
- Water**, tests for, 133, 163
Wedge, calibrated, 141
Weights, atomic, 63
Willemite screen, 34
Wood stain, chemical resisting, 60
- Ytterbrium**, tests for, 96
Yttrium, tests for, 96, 146
- Zinc**, tests for, 123, 124, 148-162, 168 Plate 17
reactions with metallic, 146
Zirconium group, tests for, 100
Zirconium, tests for, 67, 100, 146, 168

MINERAL INDEX

- | | |
|---|---|
| <p>Abkhazite, 154–11
 Abukumalite, 26–5
 Acanthite, 102–1
 Acmite, 31–7, 105-A, plate 24
 Actinolite, 45–8, plate 25
 Adamite, 106–5
 Adelite, 45–6
 Adularia; variety of orthoclase, plate 28
 Aegirite (aegirine), 43–7
 Aenigmatite (enigmatite), 35–6
 Aeschynite (eschynite)
 Afwillite, 70–10
 Agate; banded chalcedony
 Agnolite (inesite)
 Agricolite (eulatite)
 Aguarite, 96–1
 Aidyrlite 147–10
 Aikinite, 98–1
 Ajakaite (aikaite), 26–12
 Akermanite, 108–8
 Akrochordite, 126–8
 Alabandite, 99–5, 75–6, 50-A, plate 23
 Alabaster; a variety of fine-grained gypsum
 Alabaster, oriental; a form of calcite
 Alaita, 62–13, 63–13
 Alamosite, 30–2
 Alaskaite, 106–2
 Albite, 14–10, plate 28
 Albertite, 62–12
 Alexandrite; emerald-green chrysoberyl
 Algondonite, 40–1
 Alkanasul (natroalunite)
 Allactite, 58–6
 Allanite, 34–5, 27–6, 56–7, 14-A, plate 21
 Alleghanyite, 48–5
 Alle montite, 39–2, 66–3, plate 20
 Alloclasite, 27–2
 Allodelphite, 165–7
 Allophane, 9–12
 Allopalladium, 180–13
 Almandite, 11–5, 8–6, plate 21
 Almerite, 121–13
 Aloisiite, 173–13
 Aloite, 63–13
 Alpha-chloritite, 177–10
 Alpha-hopeite, 172–8
 Altaite, 58–1, plate 19
 Alum, 53–12
 Alumian, 143–9</p> | <p>Aluminite, 63–12
 Aluminohydrocalcite, 148–11
 Alunite, 91–9, 75–10, 15-C, plate 27
 Alunogen, 58–12
 Alurgite, 127–9
 Amalgam, 55–1, plate 19
 Amarantite, 80–11
 Amargosite; a bentonite clay, 122–13
 Amarillite, 123–13
 Amazonite; a variety of microcline, plate 28
 Ambatoarinite, 124–13
 Amber (succinate), 38–12, plate 27
 Amblygonite, 43–8, 55-A, 50-D, plate 26
 Ameletite, 125–13
 Amesite, 146–9
 Amethyst; violet-colored quartz
 Amethyst, oriental; gem quality purple corundum
 Aminoffite, 34–9
 Ammonioborite (larderellite)
 Ammoniojarosite, 64–13
 Anositie, 126–13
 Ampangabeite, 66–4, 91–5, 71–6, 115–7, plate 23
 Amphibole, 62–7, 64–8, 31–9, 22-D
 Analcite, 11–11
 Anapaite, 108–9
 Anatase, 32–6, plate 24
 Anauxite (cimolite)
 Aencylite, 57–6, 122-A
 Andalusite, 6–8, 28-D, plate 25
 Andesine, 32–9, plate 26
 Adorite, 75–3
 Andradite, 14–6, 136-A, plate 23
 Anemosite, 21–9
 Angaralite, 181–10
 Anglesite, 59–2, 34-A, plate 20
 Anhydrite, 114–9, 74-A, plate 27
 Ankerite, 141–8, 87–9, 30-A, plate 26
 Annabergite, 178–8, 66-A, plate 26
 Annerodite (aanerodite)
 Annite, 173–8
 Anorthite, 16–9, 89-A, plate 26
 Anorthoclase, 24–10
 Anthophyllite, 18–11, 21-D
 Anthopyllite, 61–8
 Antigorite, 53–10, 132-A
 Antimony, 47–2
 Antimony glace (stibnite)</p> |
|---|---|

MINERAL INDEX

- Antlerite**, 93-6, 75-A
Antofagastite, 138-10
Apatite, 114-8, 58-A, plate 26
Aphrosiderite, 203-8, 190-9, plate 26
Aphthitalite, 117-9, 96-10
Apjohnite, 65-12
Apophyllite, 52-10, 117-A
Aquamarine; bluish green beryl
Aragonite, 88-9, 32-A, plate 27
Arakawaite, 153-8
Aramayoite, 112-3
Arandisite, 60-5
Arcanite, 222-9
Ardealite, 161-11
Ardennite, 19-7
Arduinite, 146-11
Arfvedsonite, 40-7, 53-D, plate 24
Argentite, 101-1, 7-B, plate 19
Argentojarosite, 170-7
Argyrodite, 91-2
Arizonite, 41-5
Armangite, 95-5
Armenite, 3-9
Arrojadite, 7-13
Arsenic, 69-3
Arseniopleite, 17-13
Arseniosiderite, 107-6, 161-7
Arsenobismite, 91-3
Arsenoferrite (loellingite)
Arsenoklasite (arsenoclasite), 40-5
Arsenolamprite, 133-3
Arsenolite, 108-6
Arsenopyrite, 12-2, 22-3, 17-B, plate 19
Arsenostibite, 127-13
Arsenschwefel, 128-13
Artinite, 115-11
Arzunite, 129-13
Asbestos; fibrous amphibole or serpentine, plate 28
Aschairite (szaibelyite)
Aschroftine, 50-10
Ashtonite, 65-13
Asovskite, 66-10
Asparagus-stone; yellowish green apatite
Astrolite, 113-9
Astrophyllite, 145-7, 168-8, plate 25
Atacamite, 91-6, 78-A, plate 24
Atelestite, 36-2
Atopite, 23-3
Attapulgite, 130-13
Auerlite, 121-5
Augelite, 57-9
Augite, 27-8, 45-D, plate 25
Aurichalcite, 156-7, 28-A, plate 25
Aurosmiridium, 1-1
Austinite, 146-5
Automolite (ghanite)
- Autunite**, 189-8, plate 26
Avasite; probably a mixture of iron oxide and silica
Aventurine; feldspar with reddish reflections; quartz spangled with mica, hematite, etc.
Avogadrite, 189-10
Axinite, 18-8, 32-D, plate 25
Azurite, 78-6, 25-A, plate 24
- Bababudanite**, 228-8
Babingtonite, 59-7
Bacalite, 30-12
Baddelyite, 4-2, 3-3, plate 20
Badenite, 120-1
Baeckstroemite, 131-13
Baemulerite (chlorocalcite)
Bakerite, 73-9, plate 27
Balas ruby; rose-red spinel
Baldaufite, 66-13
Bandylite, 150-9
Barbertonite, 120-11
Bardolite, 226-9
Barite, 92-4, 113-5, 38-D, plate 21
Barkevikite, 50-7, plate 24
Barrandite, 55-10
Barthite, 120-5
Barylite, 12-5
Barysilite, 52-2
Barytocalcite, 69-6, 111-7
Basiliite, 67-13
Basobismutite (bismutite)
Bassanite, 203-9
Bassetite, 211-8
Bastnaesite, 61-4
Batavite, 157-11
Batchelorite, 132-13
Baumhauerite, 90-3
Bauxite, 179-10, 13-D
Bavenite, 33-9
Bayldonite, 54-3
Bazzite, 12-9
Beaconite, 227-9
Beaverite, 136-5
Bechelite, 68-13
Beckelite, 57-5
Becquerelite, 105-3
Beegerite (schirmerite and matildite)
Befanomite, 23-7
Beidellite, 160-10
Beiynite, 60-4
Beldongrite, 136-8
Bellingerite, 64-4
Bellite, 121-3
Bell-metal ore (stannite)
Belonesite, 69-13
Bementite, 191-9

MINERAL INDEX

- | | |
|--|---|
| <p>Benitoite, 36-7, plate 24
 Benjamineite, 46-2
 Bentonite, 133-13
 Beraunite, 176-9
 Beresowite, 113-2
 Berlinite, 9-10
 Bermanite, 100-9
 Berthierite, 98-4
 Berthonite (bournonite)
 Bertrandite, 10-10
 Beryl, 2-9, 1-10, 23-D plate
 Beryllium-vesuvianite, 174-7
 Berylonite, 26-9
 Berzelianite, 108-2, plate 20
 Berzeliite, 54-5
 Beta-ascharite (szaibelyite)
 Betafite, 50-3, 48-4, 70-5, 53-6 plate 21
 Beta-hopeite, 169-8
 Beudantite, 85-5
 Beyrickite (millerite)
 Bialite, 70-13
 Bianchite, 71-13
 Bidalotite, 222-8
 Bieberite, 56-12
 Bilinite, 51-12
 Bindheimite, 61-3, 65-4, plate 22
 Binnite (tennantite)
 Biotite, 177-8, 133-9, 8-C, plate 26
 Bisbeeite, 51-13
 Bischofite, 64-12
 Bismite, 36-1
 Bismoclite, 94-1
 Bismuth, 99-1
 Bismuth glance (bismuthinite)
 Bismuth ochre (impure bismite)
 Bismuthinite, 103-2, 4-B, plate 20
 Bismutite, 31-2, plate 20
 Bismutoplagionite (galenobismutite)
 Bismutosmaltite (bismuth skutterudite)
 Bismutosphaerite (bismutite)
 Bismutotantalite, 27-1
 Bityite, 78-8
 Bixbyite, 14-4
 Black band ore; siderite in sedimentaries
 Black jack (sphalerite)
 Black lead (graphite)
 Blakeite, 232-8
 Bleimalachite, 134-13
 Blend (sphalerite)
 Blockite, 85-2
 Bloedite, 76-11
 Blomstrandine (betafite), plate 21
 Blood stone; green chalcedony with red spots
 Blue vitriol (chalcanthite)
 Bobierite, 158-10
 Bodenbenderite, 34-7
 Boehmite, 229-8</p> | <p>Bog ore (limonite)
 Bokspuitite, 48-1
 Boleite, 117-3
 Bolivarite (variscite)
 Bolivianite (stannite)
 Bologna stone; barite containing barium sulfide
 Bombiccite, 79-12
 Bondsdoeffite, 80-9, 63-10
 Boodtite, 144-7, 170-8
 Boothite, 42-12
 Boracite, 12-8, 8-9, 80-A
 Borax, 40-12, 15-A
 Borgstroemite, 72-13
 Boric acid (sassolite)
 Borickite, 103-9
 Bornite, 83-3, 11-B, plate 22
 Bort; inferior diamond
 Bosphorite, 135-13
 Botryogen, 98-11
 Boulangerite, 69-2, 102-3, 43-A, plate 20
 Bournonite, 98-3, 18-B
 Boussingaultite, 57-12
 Bowlingite, 141-11
 Bowmannite (hamlinite)
 Brackebuschite, 73-13
 Bradleyite, 212-9
 Braggite (fergusonite)
 Brandaosite, 140-5
 Brandisite, 109-8
 Brandtite, 42-6
 Brannerite, 56-3, 53-4
 Braunite, 12-4, 52-A, 103-A, plate 21
 Bravrite, 23-4
 Brazilian emerald; green tourmaline
 Brazilite; name for zirconium ore from Brazil
 Brazilian sapphire; blue tourmaline
 Breithauptite, 18-1, plate 19
 Brewsterite, 43-10
 Brickerite, 90-5
 Bristol diamond (quartz)
 Britholite, 46-5
 Brittle silver ore (stephanite)
 Brochanthite, 74-6, 72-A, plate 24
 Bromellite, 3-8
 Bromlite, 63-6
 Bromyrite, 77-2, 104-3
 Brongnairdite; shown to be a mixture
 Bronzite (enstatite)
 Brookite, 36-5, plate 21
 Brucite, 131-10, 81-A
 Brugnatellite, 67-11
 Brunsvigite, 199-8
 Brushite, 96-11
 Bulfonteinite, 71-9
 Bunsenite, 15-2, plate 20
 Burkeite, 84-10</p> |
|--|---|

MINERAL INDEX

- Bustamite, 54-8
 Buszite, 34-3
 Butlerite, 136-10
 Buttgenbachite, 172-7
Bytownite, 23-9
 Cabrerite, 194-8, 170-9
 Cacoxenite, 133-7
 Cadwaladerite, 98-12
 Cadmium blend (greenockite)
 Cadmium oxide, 62-1
 Cahnite, 166-8
 Calafatite, 104-9
Calamine, 98-7, 116-A, plates 20, 25
Calaverite, 73-1, 19-C, plate 19
 Calcio-ancylite, 68-6
 Calcioferrite, 130-10
 Calcio gadolinite, 115-4
 Calciosamariskite, 7-4, 22-5
 Calcio-tantalite; possibly a microlite, tantalite mixture
 Calcio-volborhite, 88-6, 128-7
Calcite, 124-9, 33-A, plates 8, 9, 11, 22, 25, 27
 Calcium ferri-phosphate, 30-13
 Calcium larsenate, 144-5
 Calco-zincite; a mixture of zincite and calcite
 Calc spar (calcite)
 Caldasite; zirconium ore from Brazil
 Caledonite, 62-2
 Caliche (soda niter)
 Californite, 29-7
 Callianite (coeruleolactite)
Calomel, 109-2, 3-D, plate 20
 Calvonigrite; mixture of manganese, iron, and aluminum oxides
 Camsellite (szaibelyite)
 Canbyite, 74-13
Cancrinite, 35-10, 37-A 98-A, plate 28
 Canfieldite, 79-2
 Cannizzarite (galenobismutite)
 Capillary pyrites (millerite)
 Cappelenite, 23-5
 Caracolite, 59-4
Carbonado, 1-8
 Carborundum (moissanite)
 Cardylite, 143-5
 Carminite, 128-5
Carnallite, 72-12, 12-A
 Carnegieite, 184-10
 Carnelian; clear, red chalcedony
Carnotite, 134-5, 68-A, plate 23
 Carpholite, 42-9
 Carphosiderite, 58-10
 Carrollite, 39-4
 Caryinite, 112-5
 Caryocerite, 39-5
 Caryopilite, 116-9
- Cassiterite**, 2-2, 10-D, plates 19, 20
 Castanite, 51-11
 Caswellite, 151-7
 Catapleite, 19-9
 Cat's eye; chatoyant quartz and crysoberyl
 Catoptrite, 34-4
 Cebollite, 59-9
 Celadonite, 174-10
Celestite, 90-6, 39-D, plate 24
 Celsian, 35-7, plate 24
 Cenosite, 70-7
 Centrallasite, 134-10
Cerargyrite, 137-3, 4-D, plate 20
 Cerite, 29-4, plate 22
 Cerulcite (coeruleite)
Cerussite, 48-2, 27-B, plate 20
Cervantite, 5-3, 51-4, 73-5, plate 23
 Cesarolite, 55-3
Chabazite, 22-11, 120-A
Chalcanthite, 79-11, 5-A, plate 28
Chalcedony, 11-10
 Chalcoalumite, 85-11
Chalcocite, 100-3, 8-B, plate 20
 Chalcodite (stilpnomelane)
 Chalcolamprite, 38-6
 Chalcomenite, 98-6
 Chalcophanite, 126-5, 99-6
 Chalcophyllite, 173-9, 149-10
Chalcopyrite, 97-5, 12-B, plates 20-23
 Chalcosiderite, 123-8
 Chalcostibite, 65-3, 79-4
 Chalk; a soft form of calcite
 Chalmersite (cubanite)
 Chapmanite, 162-7
 Chenevixite, 64-6
 Chert; impure, flinty cryptocrystalline quartz
 Chiastolite; a variety of andalusite
 Childrenite, 113-8
 Chile-loeweite, 158-11
 Chilenite, 52-13
 Chillagite, 50-1
 Chinlusuite, 71-11
 Chiolite, 89-9
 Chivatite, 73-2
 Chkalovite, 22-9
Chloanthite, 11-2, plate 20
 Chlopinitite (khlopinitite)
 Chloroalluminite, 71-13
Chlorapatite, 104-8, 57-A
Chlorite, 152-9, 18-C, plate 27
Chloritoid, 27-7, plate 24
 Chlorocalcite (hydrophilite)
 Chloromagnesite, 53-13
 Chloromanganokalite, 83-11
 Chloropal, 3-12, 14-12, plate 28
 Chlorophoenacite, 138-7
 Chloroxiphite, 93-2

MINERAL INDEX

- | | |
|---|---|
| <p>Chondrarsenite, 22-13
 Chondrodite, 39-8, 140-A
 Chromite, 31-4, 8-D, plates 22, 24
 Chromitite, 227-8
 Chrysoberyl, 1-6, 2-7, 9-D, plate 23
 Chrysoprase; apple-green chalcedony
 Chrysocolla 40-11, 58-11, 92-11, 102-A,
 plates 20, 28
 Chrysolite, 16-7, 17-8, 95-A, plate 24
 Chrysotile, 72-10, 133-A
 Chubutite (lorettoite)
 Churchite, 157-8
 Cimolite, 132-11
 Cinnabar, 100-1, 10-B, plate 19
 Cirrolite (kirrolite), 70-8
 Clarkeite, 32-2
 Claudetite, 127-5
 Clausthalite, 70-1, plate 20
 Clevelandite; a variety of albite
 Clinochlore, 164-9, 140-10, 10-C, plate 27
 Clinoclasite, 123-5
 Clinoenstatite, 215-8
 Clinohedrite, 72-7
 Clinohumite, 40-8
 Clinozoisite, 35-8, 42-D, 139-A
 Cobalt bloom (erythrite)
 Cobalt chalcantite, 68-11
 Cobalt glace (cobaltite)
 Cobalt nickelpyrite (siegenite and pyrite)
 Cobalt pyrite; pyrite containing cobalt
 Cobaltite, 17-2, 15-B
 Cocinerite, 86-2
 Cockscomb pyrite (marcasite)
 Codazzite, 68-10
 Coeruleite (ceruleite), 216-9
 Coeruleolactite, 54-9, 42-10
 Cohemite, 15-1
 Colemanite, 59-10, 79-A
 Colerainite, 120-10
 Collinsite, 109-9
 Collophanite, 167-9, 59-A
 Collyrite, 126-11
 Coloradoite, 89-1
 Columbite, 9-1, 5-2, 8-3, 13-C, plate 19
 Colusite, 81-4, 102-5
 Comuccite (jamesonite)
 Conichalcite, 78-5, 65-A, plate 23
 Connarite, 118-10
 Connellite, 146-7
 Cookeite, 157-9
 Coolgardite; mixture of calaverite, coloradoite,
 and sylvanite
 Cooperite, 32-1
 Copiapite, 82-11, 9-A
 Copper, 72-1, 2-B, plate 19
 Copper glace (chalcocite)
 Copper pyrite (chalcopyrite)</p> | <p>Copperas (melanterite)
 Coquimbite, 99-11
 Cordierite (folite), 6-9, 3-10, 135-A
 Cordylite, 81-5
 Corkite, 93-5
 Cornetite, 58-5
 Cornuite, 76-13
 Cornwallite, 77-5
 Coronadite, 46-3
 Corundophilite, 155-9
 Corvusite, 142-9
 Corundum, 1-5, 7-D, plate 21
 Corynite, 26-2, 49-3
 Cosalite, 63-2
 Cosmochlore, 4-13
 Cossyrite (enigmatite)
 Cotton stone; a form of mesolite
 Cotunnite, 140-3
 Coulsonite, 1-13
 Covellite, 106-4, 35-B, plate 21
 Crandallite, 119-7
 Crednerite, 59-3, 63-4
 Creedite, 110-9
 Crestmoreite, 57-11
 Cristobalite, 4-11
 Crocidolite, 133-8, plate 26
 Crocoite, 68-2, 97-3, plate 20
 Cronstedtite, 130-7
 Crookesite, 71-2
 Crossite, 57-8
 Cryolite, 185-8, 149-9, 2-C, plate 26
 Cryolithonite, 136-9
 Cryophyllite, 224-9
 Crytohalite, 153-11
 Cubanite, 109-5
 Cube ore (pharmacosiderite)
 Cub spar (anhydrite)
 Cumengeite, 94-4
 Cummingsite, 53-7, 50-8
 Cuprite, 38-2, 82-A, plate 20
 Cupro-asbolane, 170-10
 Cuprobismutite (emplectite)
 Cuprodescloizite, 40-2
 Cuproiodargyrite, 77-13
 Cuprojarosite, 97-12
 Cuprovivaita, 205-9
 Cuprosklodwskite, 136-13
 Cuprotungstite, 12-13
 Cuprozincite, 117-5
 Curite, 34-1
 Curtisite, 80-12
 Cupidine, 29-9
 Custerite, 58-9
 Cyanite (hyanite) (kyanite), 19-6, 30-D,
 plate 23
 Cyanochroite, 151-11
 Cyanotrichite, 207-9</p> |
|---|---|

MINERAL INDEX

- | | |
|---|---|
| <p>Cylindrite, 107-3
 Cymophane (chrysoberyl)
 Cyprusite, 47-12</p> <p>Dachiardite, 29-11
 Dahllite, 95-8
 Dakeite (schroeckingerite)
 Danalite, 58-7
 Danburite, 11-8, 5-9, 26-D, plate 25
 Daphnite, 171-8
 Darapskite, 88-11
 Dashkesanite, 95-7
 Datolite, 85-8, 41-9, 112-A, plate 25
 Daubreeite, 96-2
 Daubreelite, 136-3, 105-4, 131-5, 105-6
 Davidsonite; greenish-yellow beryl
 Daviesite, 78-13
 Davyne, 34-10
 Dawsonite, 105-10
 Deeckeite, 137-11
 Dehrnite, 106-8
 Delafossite, 32-3
 Delessite, 156-9
 Delorenzite, 21-4
 Deltaite, 56-9
 Delvauxite, 24-12
 Dennisonite, 70-9
 Derbylite, 44-4
 Descloizite, 43-2, 70-3, plate 20
 Destinezite, 56-11
 Deweylite, 60-11, 93-11
 Dewindtite, 114-4
 Diabantite, 163-9
 Diaboeleite, 92-2
 Diadochite, 52-11
 Diallage; a lemmellar pyroxene
 Diamond, 1-7, 1-D
 Diaphorite, 67-2
 Diaspore, 15-7, 16-8, 12-D, plate 23
 Dickinsonite, 124-7
 Dickite, 156-10
 Didymolite, 67-9
 Dienerite, 137-13
 Dietrichite, 40-13
 Dietzeite, 84-6
 Digenite, 103-3
 Dihydrite, 65-5
 Dillinite (kaolinite)
 Dimorphite, 161-10
 Diopside, 65-7, 67-8, 44-D, plate 25
 Diopside-acmite, 42-7
 Diopside-jadeite, 28-8
 Diopside-hedenbergite, 44-7
 Dioptase, 86-7, 87-8, plate 25
 Dipyre (mizzonite)
 Disthene (cyanite)
 Dixenite, 104-5</p> | <p>Djalmaite, 30-3
 Dog tooth spar (calcite)
 Dognaskite; mixture of bismuthinite, chalcopyrite, etc.
 Dolerophanite, 79-13
 Dolomite, 90-9, 31-A, plate 27
 Domeykite, 56-1
 Donbassite, 129-10
 Doughtyite, 138-13
 Douglasite, 159-11
 Dravite (brown tourmaline)
 Dry bone (smithsonite)
 Dufrenite, 122-7, 142-8
 Dufrenoysite, 82-3
 Duftite, 56-2
 Dumontite, 80-13
 Dumortierite, 12-7, 13-8, plate 24
 Dundasite, 198-8
 Duparcite, 7-7
 Durangite, 55-5, 43-6
 Durdenite, 34-13
 Durfeldtite, 111-3
 Dussertite, 89-6
 Dysanalyte (columbian perovskite)
 Dyscrasite, 41-1, 6-B</p> <p>Eakleite (xonotlite)
 Earlandite, 85-12
 Easonite, 212-8
 Ebhelmenite; psilomelane containing potassium
 Ecdemite, 75-1, 70-2
 Echellite (thomsonite)
 Ectropite (bementite)
 Edenite, 56-8
 Edingtonite, 69-9
 Eggonite, 81-13
 Eglestonite, 78-1
 Egueite, 193-9
 Eichbergite, 6-3
 Eichwaldite (jeremejevite)
 Eisenbrucite; probably a mixture of pyroaurite, brucite, etc.
 Ekmannite, 178-9
 Elburssite, 107-11
 Electrum; natural gold, silver alloy
 Eleolite (nephelite)
 Eleanorite (beraunite)
 Elfestorpite, 13-13
 Ellestadite, 214-8
 Ellsworthite, 62-6, 108-7, plate 24
 Elpidite, 7-10
 Embolite, 138-3, plate 21
 Emerald; emerald-green beryl
 Emerald, oriental; green gem corundum
 Emery; corundum mixed with magnetite, menatite, spinel, etc.
 Emmonsite, 8-13</p> |
|---|---|

MINERAL INDEX

- Emplectite, 102-2
 Empressite, 54-1
 Enelite, 113-4
Enargite, 91-4, 115-5, 36-B, plate 23
Endeiolite, 107-7
 Endlichite; vanadinite with vanadium partially replaced by arsenic
 Enelectrite, 139-13
 Englishite, 113-10
 Enigmatite (aenigmatite)
Enstatite, 72-8, 17-D
 Eosphorite, 112-8
 Ephesite, 42-8
Epiboulangerite; probably a mixture of boulangerite and galena
 Epidesmine, 140-11
 Epididymite, 75-7
Epidotite, 20-7, 21-8, 113-A, plate 24
 Epigenite, 78-4
 Epistilbite, 26-11
 Epistolite, 188-9
Epsomite, 39-12, 7-A
 Epsom salts (epsomite)
 Equeite, 172-10
 Erikite, 60-7
 Erinite, 69-5
 Erionite, 156-11
 Ernita (grossularite)
 Errite, 196-9
Erythrite, 179-9, 67-A
 Erythrosiderite, 82-13
 Eschwegeite, 33-3
 Eschynite, 27-3
 Esmeraldaite; shown to be a mixture
 Ettringite, 36-12
 Euairite, 93-1
 Euchlorine, 140-13
 Euchroite, 123-7
 Euclase, 8-8
 Eucolite, 90-8
Eucryptite, 197-9, plate 27
 Eudialite, 81-8, 43-9
 Eulytite, 29-2
 Eumanite; probably brookite
Euxenite, 20-3, 15-4, plate 21
 Evansite, 4-12
- Facillite (kaliopilitite)
 Fairfieldite, 149-8
 Falkmanite, 87-2
Famatinitite, 76-4, plate 22
 Faratsihite, 21-11
 Faroelite (thomsonite)
 Faujasite, 2-12
 Fava; rolled mineral pebbles from the diamond sands of Brazil
Fayalite, 19-5
- Felsoebanyite**, 159-10
 Feberite, 33-2
 Ferganite, 195-8
Fergusonite, 19-3, plate 20
 Fermorite, 89-7
 Fernandinite, 83-13
 Ferrazite, 216-8
 Ferrierite, 45-11
Ferrimolybdite, 110-4, plate 21
 Ferri-paraluminite, 141-13
 Ferri-prehnite, 24-9
 Ferri-sicklerite, 166-7, 217-8
 Ferrisymplessite, 198-9
 Ferroanthophyllite (actinolite)
 Ferrocolumbite, 6-2
 Ferrohalloysite, 122-11
 Ferrohastingsite, 173-7
 Ferronatriite, 151-10
 Ferropallidite (szmolnokite)
 Ferroschallerite, 16-13
 Ferrotungstite, 84-13
 Ferruccite, 178-10
 Fersmannite, 74-7
 Fervanite, 85-13
 Fibroferrite, 32-12
 Fibrolite (sillimanite)
 Fichtelite, 48-13
 Fiedlerite, 93-3
 Fillowite, 102-7
 Finnemanite, 84-1
 Fire opal; opal with rainbow color reflections
 Fischerite, 41-10
 Fizelyite, 45-13
 Flagstaffite, 82-12
 Flajolite, 86-13
 Flinkite, 59-6
 Flint; impure chalcedony with dull colors
 Float stone; a porous stone that floats on water
 Flokite (mordenite)
 Florencite, 87-7
 Fluellite, 47-11
 Fluoborite, 106-9
 Fluocerite, 23-2
 Fluoradelite (tilasite)
Fluorapatite, 101-8, 56-A
Fluorite, 131-8, 1-C, plate 26
 Fluorspar (fluorite)
 Forbesite, 184-8
 Formanite, 17-3
Forsterite, 22-7, 20-8, 138-A, plate 23
 Foshagite, 111-10
 Foshallassite, 117-10
 Fouqueite (clinozoisite)
 Fourmarierite, 41-2
 Fraipontite, 142-13

MINERAL INDEX

- Franckeite**, 95-3
Francolite, 125-8
Franklinite, 16-3, 38-A, plate 20
Freieslebenite, 98-2
Fremontite, 73-8
Friedelite, 118-8
Frierinite, 207-8
Frieseite, 133-5
Fuchsite, 154-9, plate 27
Fuggerite, 32-8
Fulopppite, 122-3

Gadolinite, 3-4, 15-5, plate 22
Gageite, 147-7
Gahnite, 1-4, 5-5, 4-C, plate 22
Gajite, 91-10
Galaxite, 9-5
Galena, 95-1, 53-A, 19-B, plates 19, 20
Galenobismutite, 57-1
Camajarite, 47-4
Ganomalite, 80-3
Ganophyllite, 76-9
Garnet, 14-5, 11-6, 10-7, 14-8, 24-D plate 21
Garnierite, 194-9, 171-10, 134-11, 134-A
Gay-lussite, 15-12, 35-A
Gearksutite, 177-9
Gedrite, 60-8.
Gehlenite, 63-8, 25-9
Geikielite, 37-5
Genevite, 206-8
Genthite, 79-10, plate 27
Geocromite, 82-2, plate 22
Geoceixite, 52-8
Georgiadesite, 47-1
Gerhardtite, 157-7
Germanite, 73-4, 88-5, plate 21
Gersdorffite, 29-3, plate 20
 Geyserite; siliceous deposits from geysers
Gibbsite, 104-10, 59-11, 5-C
Gillespite, 148-7, plate 24
Gilpinite (johannite)
Gilsonite, 34-12
Ginorite, 37-11
Gioberite (magnesite)
Girnarite, 168-7
Gismondite, 23-11
Gladite, 75-2
Glaserite (aphthitalite)
Glass, 45-9
Glauberite, 138-9, 76-A, plate 27
Glaucochroite, 47-7
Glaucodot, 19-2, 38-3
Glaucookerinitite, 189-9
Glauconite, 153-10, 105-11, 49-D
Glauophane, 41-8, 48-D, plate 25
Glockerite, 54-13
Gmelinite, 24-11, 121-A, plate 27

Goethite, 49-5, 41-6, 80-7, 82-8, 86-A, plate 23
Gold, 66-1, 2-D, plate 19
Gold amalgam, 123-1
Goldfieldite, 20-12
Goldschmidtine (stephanite)
Goldschmidtite (sylvanite)
Gonnardite, 19-11
Goongarrite, 60-1
Gordonite, 39-11
Goslarite, 100-11, 33-12
Gossan; limonite cap of an ore body
Gosseletite (viridine)
Goyazite, 89-8
Gradidierite, 7-8
Graphic granite; an intergrowth of quartz and feldspar resembling Egyptian writing
Graphite, 124-11, 40-D, plate 28
Grattonite, 89-2
Green lead ore (pyromorphite)
Greenalite, 200-9
Greenockite, 77-3, 85-4, 46-A, plate 22
Griffithite, 130-11
Graphite, 76-7
Grodnolite, 53-9
Grossularite, 13-6, 11-7, plate 23
Grothine, 77-8
Gruenerite, 52-7, plate 24
Gruenlingite, 109-1
Guanajuatite, 51-2
Guarinite, 39-7
Gudmundite, 7-2
Guejarite (chalcostibite)
Guildite, 159-9
Guitermanite, 79-3
Gummite, 49-2, 78-3, 82-4, 105-5, 85-6
Gumacionite; arsenic bearing sphalerite
Gunnarite (pentlandite)
Gypsum, 119-11, 77-A
Gyrolite, 82-10

Hackmanite, 88-7
Haematophanite, 79-1
Hagatalite, 8-5
Haidingerite, 180-9
Hainite, 103-8
Hair salt (epsomite)
Halite, 127-10, 77-11, 10-A, plate 28
Halloysite, 125-11, 131-A
Halotrichite, 106-11, 55-12
Hambergite, 2-10
Hamlinite, 121-8
Hammarite, 19-13
Hancockite, 17-5
Hanksite, 98-10, plate 28
Hannayite, 83-12
Hanusite, 127-11

MINERAL INDEX

- | | |
|---|---|
| <p>Harbortite, 40-9
 Hardystonite, 136-7
 Harmotome, 56-10, 93-A, plate 25
 Harstigite, 75-8
 Hartite, 115-8
 Hastingsite, 59-8
 Hatchettite, 75-12
 Hatchettolite, 50-4
 Hauchecornite; a mixture
 Hauerite, 113-7
 Hauyne, 30-10, 100-A
 Hausmannite, 35-4, 42-A, plate 22
 Hautefeuillite, 132-10
 Hawaiite; gem olivine from Hawaiian Islands
 Headenite, 83-7
 Heavy spar (barite)
 Heazelwoodite (pentlandite)
 Hebromite (amblygonite)
 Hedenbergite, 68-7, plate 25
 Hegyphane, 60-3
 Heintzite, 20-11
 Heiliophyllite (ecdemite)
 Hellandite, 37-6, 73-7
 Helvite, 33-7, 37-8
 Hemafibrite, 141-7
 Hematite, 25-3, 84-A, plate 22
 Hematolite, 129-7, 154-8
 Hematophanite (haematophanite)
 Hemimorphite (calamine), 97-7, 116-A
 Hercynite, 3-6
 Herderite, 98-8, 50-9
 Herengrundite, 183-8
 Herzenbergite, 178-13
 Hessite, 81-1
 Hessonite, 49-7
 Hetaerolite, 13-3, 18-4
 Heterogenite, 132-7
 Heteromorphite, 99-3
 Heterosite, 61-7
 Heubachite, 101-6
 Heulandite, 32-11, 91-A
 Hewettite, 188-10
 Hexahydrite, 92-12
 Hibschite, 53-8
 Hiddenite; green gem spodumene
 Hjelmite (hjelmite), 41-3
 Hieratite, 211-9
 Higginsite, 82-5
 Hilgardite, 60-9
 Hillebrandite, 37-9
 Hinsdalite, 57-4
 Hiortdahlite, 62-8
 Hisingerite, 163-8, 120-9, 108-10
 Histrixite, 41-13
 Hjelmite, 41-3
 Hochschildite, 87-4, 119-5
 Hodgkinsonite, 49-6</p> | <p>Hoeferite, 148-10
 Hoegbomite, 18-6
 Hoelite, 95-12
 Hoernesite, 162-10
 Hohmannite (amarantite)
 Holdenite, 96-5
 Hollandite, 19-4
 Holmquistite; lithium glaucophane
 Homolite, 85-7
 Hopeite, 135-9
 Hornblende, 64-7, 65-8, 47-D, plate 25
 Horn quicksilver (calomel)
 Horn silver (cerargyrite)
 Hornstone (chert); like flint but more brittle
 Horsfordite, 33-1
 Hortonolite, 16-6
 Houghite (hydrotalcite)
 Howlite, 85-10
 Huebnerite, 24-1, plate 19
 Huegelite, 42-3
 Hulsite, 122-5
 Humboldtine, 155-10, 111-11
 Humite, 38-8
 Hureaulite, 97-8
 Hutchinsonite, 107-4
 Hyalophane, 15-9
 Hyalotekite, 40-6
 Hydragillite (gibbsite)
 Hydrobiotite, 119-9
 Hydrobismutite (bismutite)
 Hydroboracite, 110-11, 43-12
 Hydrocalumite, 48-11
 Hydrocerussite, 45-2
 Hydrocyanite, 87-13
 Hydrogiobertite, 144-11
 Hydrogoethite, 70-6
 Hydrohetaerolite, 27-4
 Hydromagnesite, 38-11, 34-A
 Hydromagnocalcite, 165-10
 Hydromelanthallite, 143-13
 Hydronephelite, 36-10, 7-11
 Hydrophilite (chlorocalcite), 63-11
 Hydroromeite, 44-6
 Hydrotalcite, 109-11
 Hydrotentonite; mixture of tenanite and chrysocolla
 Hydrothomsonite, 160-11
 Hydrothorite, 47-13
 Hydrotitanite (anatase)
 Hydrotungstate, 104-4
 Hydroxanthite; sienna earth
 Hydrozincite, 104-6, 155-7, 306-A, plate 24
 Hypersthene, 67-7, 104-A, plate 24</p> <p>Ianthinite, 88-13
 Ianthite (ianthinite)
 Ice, 67-12</p> |
|---|---|

MINERAL INDEX

- Iceland spar; clear crystallized calcite
Iddingsite, 148-9
Idocrase (vesuvianite), 28-7, 111-A
Idrizite, 12-12
Igalikite, 33-10
Iglestromite, 176-13
Ihleite, 31-12
Ilesite, 89-13
Illite (bravaisite)
Ilmenite, 25-4, 88-A, plate 22
Ilsmannite, 177-13
Ilvaite, 35-5, 31-6, 115-A, plate 21
Impsonite; natural asphalt, similar to albertite
Inathite (ianthinite)
Inderborite, 13-12
Inderite, 87-12
Indicolite; blue tourmaline
Inesite, 46-8
Infusorial earth; siliceous shells of diatoms, etc.
Inyoite, 50-12
Iodemblomite (iodobromite)
Iodobromite, 141-3
Iodyrite, 139-3
Iolite, 6-9, 3-10, 135-A
Ionite (anauxite)
Iozite, 144-13
Iridium, see iridosmine
Iridosmine, 3-1
Iron, 39-1
 Iron akermanite, 74-8
 Iron anthophyllite, 22-6
 Iron-copper chalcanthite, 70-11
 Iron meteorite, plate 19
 Iron reddingite, 119-8
 Iron rhodonite, 48-7
 Irvingite, 90-13
 Ishikawaite, 14-2
 Ishkulite, 11-3
 Ishkyldite, 163-10
 Isoclasite, 185-9
 Itacolumite,
 Ivaarite, 25-6
 Ixiolite, 10-1

 Jacobsite, 17-4
 Jade (nephrite and jadeite)
Jadeite, 17-7, 19-D, plate 24
Jamesonite, 108-3, 44-A, plate 22
 Janite, 131-11
 Jarlite, 83-6
Jarosite, 161-8, 96-12, 73-A, plate 26
 Jasper; impure, opaque chalcedony of various colors
 Jaunite, 208-8
Jefferisite, 123-11, plate 28

 Jeffersonite, 105-7
 Jeremejevite, 26-8
 Jeromite, 145-13
 Jezekite, 75-9
 Joaquinite, 24-6
 Johannite, 192-8
 Johannsenite, 46-7
 Johnstrupite, 140-8
 Jordanite, 54-2
 Joseite, 106-1
 Josephinite, plate 19
 Julienite, 89-12
 Jurupaite, 83-9

 Kaemmererite, plate 24
 Kaersutite; titanian hornblende
Kainite, 62-11, 3-A
 Kalgoorlite; mixture of coloradoite and petzite
 Kaliborite, 25-11
 Kalicinite, 143-11
Kalinite, 37-12, 4-A
 Kaliophilite, 20-10
Kalkowskite, 107-5, 87-6
 Kaliphite; mixture of iron and manganese oxides with zinc silicates
 Kalsilite, 210-9
 Kamerezite, 94-6
Kaolinite, 143-10, 35-D
 Karachaite, 147-11
 Kasoite, barium feldspar
 Kasolite, 52-3
 Kauaiite, 167-10
 Kayserite, 55-7
 Keeleyite (zinkenite)
 Kehoeite, 186-10
 Keilhauite, 26-7
 Kempite, 111-9
 Kentrolite, 20-2
 Kermesite, 112-4
Kernite, 23-12, 18-A
 Kertschenite, 95-10
 Keweenawite; a mixture
 Khlopinitie, 143-3
 Kidney ore; reniform masses of hematite
 Kidney stone (nephrite)
 Kielhauite, 17-6
 Kieserite, 97-10
 Kilbrickenite (geocromite)
 Kipushite (arakawaite)
 Kirovite, 29-12
 Kirrolite (cirrolite),
 Kiscellite, 44-12
 Klaprothite, 81-2
 Klebelsbergite, 171-13
 Kleinite, 49-1
 Klockmannite, 89-3
 Knebelite, 18-5, 15-6

MINERAL INDEX

Knopite, 59-5	Lautarite, 72-4
Knoxvillite; chromium bearing copiapite	Lautite, 84-4
Kobellite, 64-2	Lavenite, 38-7
Kochite, 218-9	Lawrencite, 220-9
Koechlinite, 91-13	Lawsonite, 4-8
Koenenite, 81-12	Lazulite, 69-8, 37-D, plate 25
Koettigite, 179-8	Lazurite, 37-10, 101-A, plate 28
Kolbeckine, 172-13	Lead, 115-1
Kolbeckite, 74-10	Lead glance (galena)
Kolovratite, 92-13	Leadhillite, 88-2
Kolskite, 125-10	Lechatelierite, 2-11
Koninckite, 36-11	Lecontite, 36-13
Koppite (pyrochlore)	Ledouxite; a mixture
Kornelite, 136-11	Legrandite, 141-5
Kornerupine, 30-7, 24-8	Lehiite, 38-9
Kossmatite, 35-13	Lehnerite (ludlamite)
Kotoite, 29-8	Lehrbachite (tiemannite and clauthalite)
Kramerite, 84-11	Leifite, 23-10
Kratockvilitie, 88-12	Leightonite, 121-9
Kraurite (dusrenite)	Lengenbachite, 142-3
Krausite, 160-9	Leonardite (laumontite)
Kremersite, 93-13	Leonite, 55-11
Krennerite, 87-1	Lepidocrosite, 64-5
Kreuzbergite (fluellite)	Lepidolite, 98-9, 131-9, 26-A, 52-D, plate 20, 27
Kroehnkite, 19-12	Lepidomelane, 162-8, plate 26
Krugite, 112-9	Lessingite, 56-4
Kunzite; clear reddish spodumene	Letovicite, 86-12
Kurnakovite, 10-12	Leuchtenbergite, 107-9
Kurskite, 199-9	Leucite, 31-10, 90-A, plate 28
Kutnorite, 146-13	Leuchochalcite, 97-13
Kyanite (cyanite), 19-6, 14-7, 30-D, plate 23	Leucoglaucite, 147-13
Labite, 149-11	Leucophanite, 77-9
Labradorite , 28-9, plate 28	Leucophoenicite, 29-6
Lacroixite, 137-8	Leucophosphate, 180-10
Lagonite, 94-13	Leucosphenite, 33-8
Lamprophyllite, 117-7	Leverrierite (beidellite)
Lamprostibian, 14-13	Levynite, 28-11
Lanarkite, 97-2	Lewisite, 32-4
Landesite, 197-8	Lewistonite, 100-8
Langbanite, 5-4	Libethenite, 65-6, 112-7
Langebeinite, 93-9	Libolite (albertite)
Langite, 150-7	Liebigite, 37-13
Lansfordite, 22-12	Lillianite, 83-1
Lanthanite, 140-9, 116-10	Lime, 156-8
Lapis-lazuli (lazurite)	Limestone; massive calcium carbonate
Lapparentite (tamarugite)	Limestone, magnesian (dolomite)
Larderellite (ammonioborite), 49-13	Limonite , 71-5, 54-6, 81-7, 116-8, 46-9, 87-A, plate 21
Larnite, 95-13	Linarite, 114-3, plate 22
Larsenite, 92-3	Lindackerite, 139-10, 97-11
Lassalite, 91-12	Lindgrenite, 79-5
Laubanite, 17-11	Lindstromite, 53-1
Lauderbackite, 65-11	Linnaeite , 40-4, plate 22
Laurmontite , 76-10, 31-11, 118-A, plate 28	Linnite; bog ore of recent origin
Laurionite, 50-2	Liroconite, 168-9
Laurite, 1-2	Liskeardite, 134-8
Lausenite, 96-13	

MINERAL INDEX

- Litharge (massicot), 107-1
 Lithia mica (lepidolite)
Lithiophyllite, 96-7, 54-A, plate 25
 Livegite, 87-3
 Livingstonite, 130-3, 100-4, 130-5, plate 21
 Load stone; magnetite possessing polarity
 Loeweite, 119-10
 Loewigite, 80-10
Loellingite, 26-1, plate 19
 Loparite; columbian perovskite
 Lopezite, 148-13
 Lorandite, 127-3
 Loranskite, 45-4, 63-5
 Lorenzenite, 37-7
 Lorettoite, 59-1
 Loseyite, 167-8
 Lossenite (beudantite)
 Lotrite, 9-8
 Louderbackite, 65-11
 Lovchorrite, 105-8
 Lovozerite, 51-10
 Lubeckite, 95-4
 Lucianite, 152-11
 Lucinite (variscite)
 Ludlamite, 145-8
 Ludwigite, 52-5, 48-6, plate 23
 Lueneburgite, 139-11
 Lusakite, 5-6
 Lydian stone; velvety black, flinty jasper
 Lyndochite, 8-4
- Mackayite, 54-4
 Mackensite, 88-4
 Mackintoshite, 35-3
 Maghemite, 6-13
 Magnesia alum (pickeringite)
 Magnesiochromite, 42-5
 Magnesioferrite, 13-4
 Magnesioludwigite
 Magnesiosussexite, 123-9
Magnesite, 129-8, 29-A, plate 26
 Magnesium chlorophoenicite, 140-7
 Magnesium orthite, 116-6
 Magnetic iron ore (magnetite)
 Magnetic pyrite (pyrrhotite)
Magnetite, 18-3, 85-A, plate 22
 Magnetoplumbite, 12-3
 Magnophorite, 230-8
 Maitlandite, 138-5
Malachite, 100-5, 76-6, 23-A, plate 23
 Malacon, 118-5
 Maldonite, 113-1
 Malladrite, 225-9
 Mallardite, 98-13
 Manandonite, 208-9
 Manasseite, 116-11
 Manganapatite, 223-8, plate 26
- Manganbrucite, 176-10
 Manganepidote, 41-7
 Manganese alum (apjohnite)
 Manganese chalcanthite, 73-11
 Manganfayalite, 21-5
 Manganite, 86-5, 41-A, plate 23
 Manganolangbeinite, 221-8
 Manganophyllite, 95-9
 Manganosite, 28-3
 Manganospherite, 93-7
 Manganostibiite, 99-13
 Manganotantalite, 3-2
 Marble; compact, massive limestone fit for
 polishing
Marcasite, 10-4, 16-B, plate 22
Margarite, 130-8, 84-9, 127-A, plate 26
 Margarosanite, 97-6, 149-7
Marialite, 29-10
 Marignacite, 51-5
 Mariposite, 62-9, plate 27
 Marrite, 27-13
 Marshite, 120-3
 Martinite, 195-9
 Martite; a form of hematite
 Mascagnite, 35-12
 Massicot, 104-1
 Matildite, 83-2
 Matlockite, 76-1
 Maucherite, 29-1
 Maufite, 50-11
 Mauzelite, 7-3
 Mazapilite, 101-7
 McGovernite, 95-6
 Meerschaum (sepiolite)
Meionite, 27-9
 Melanite, 9-6
 Melanoferite, 38-5
 Melanochalcite; mixture of tenorite, chrysocolla and malachite
 Melanophlogite, 3-11
 Melanosiderite; probably a mixture of iron
 and a silicate
 Melanostibian, 15-13
 Melanotekite, 2-3
 Melanovanadite, 153-7
 Melanterite, 46-12, 8-A
 Melilite, 93-8, 49-9
 Meliphantine, 84-8
 Melite, 54-11
 Mellite, 41-12
 Melnikovite, 124-5
 Melonite, 117-1
 Mendelejevite (betafite)
 Mendipite, 74-1
 Mendozite, 11-12
 Meneghinite, 90-2
 Mercallite, 138-11

MINERAL INDEX

- Mercury**, 119-1, 3-B
Merrillite, 225-8
Merwinite, 55-8
Mesomite, 121-7
Mesolite, 44-10, 13-11
Messelite, 158-8
Metabrushite (brushite)
Metacinnabar, 61-1
Metagreenalite, 219-8, 201-9
Metahewettite, 187-10
Metajarlite, 61-6
Metaloparite, 62-5
Metarossite, 55-13
Metasimpsonite (microlite)
Metatorbernite, 106-6
Metatriplite, 171-7
Metavariscite, 67-10
Metavauxite, 109-10
Metavoltine, 126-10
 Meteoric iron; native iron in a meteorite, plate 19
 Mexican onyx; translucent marble from Mexico
Meyerhofferite, 117-11
Meyersite, 149-13
Miargyrite, 124-3
Microcline, 15-10, 15-D, plate 28
Microcosmic salt (stercorite)
Microlite, 16-2, plate 20
Microsommite, 22-10
Miedziankite; zincian tennantite
Miersite, 132-3
Milarite, 28-10
Millerite, 74-3, plate 22
Millisite, 35-9
Millosevichite, 150-13
Miloschite, 90-11
Mimetite, 45-1, 30-B, plate 19
Minasragite, 100-13
Mindigite (heterogenite), 152-8
Minguetite, 217-9
Minium, 91-1
Minyulite, 87-10
Mirabilite, 60-12, 6-A
Misenite, 101-13
Mispickel (arsenopyrite)
Mitcherlichite, 183-10
Mitridatite (mithridatite), 151-13
Mixite, 81-6
Mizzonite, 27-10
Mohavite (tincalconite)
Mocha stone (moss agate)
Mohawkite; a mixture
Moissanite, 2-8
Molengraaffite, 103-7
Molybdenite, 111-4, 5-B, plate 23
Molybdate (ferrimolybdite)
- Molybdochyllite**, 80-4
Molybite, 214-9
Monazite, 37-3, 36-4, 63-A, plate 22
Monetite, 101-9
Monimolite, 16-1, 13-2
Monite; mixture of francolite and dahlite
Montanite, 109-6
Montebrasite, 44-8
Montgomeryite, 73-10
Monticellite, 80-8, 96-A, plate 25
Montmorillonite, 133-11
Montroydite, 97-1
Moonstone; adularia with opalescent reflections, plate 28
Mooreite, 110-10
Moravite, 93-10
Mordenite, 35-11
Morencite (nontronite)
Morenosite, 101-11, plate 28
Morinite, 82-9
Mosandrite, 132-8, 78-9
Moschellandsbergite, 51-1
Mosesite, 21-13
Moss agate; translucent chalcedony with moss-like or dendritic inclusions
Mossite, 12-1
Mountain cork; a form of tremolite
Mountain leather; a form of tremolite
Mountain wood; a form of tremolite
Muellerite, 78-12
Mullanite (boulangerite)
Mullite, 23-8
Mundic; miner's name for pyrite and marcasite
Munkforsite, 9-13
Munkrudite, 152-13
Murmanite, 144-9
Muscovite, 191-8, 162-9, 34-D, plate 26
Muscovy glass (muscovite)
Muthmannite, 110-3
- Nacrite**; a kaoline mineral
Nadorite, 43-1
Naegite, 10-5
Nagatelite, 39-6
Nagyagite, 116-1, plate 19
Nahcolite, 145-11
Nailhead spar; calcite having this resemblance
Nantokite, 103-6
Narsarsukite, 9-9
Nasonite, 88-3
Natrolunite, 64-10
Natrochalcite, 57-10
Natrodavyne, 25-10
Natrojarosite, 165-8
Natrolite, 12-11, 123-A, plate 24
Natron, 69-12, 20-A

MINERAL INDEX

- | | |
|---|---|
| <p>Natrophilite, 99-7
 Naumannite, 90-1
 Naujakasite, 122-10
 Naurite; mixture of francolite and dahlite
 Nemaphyllite, 107-10
 Neopurpurite, 209-8
 Neotantalite; altered microlite
 Neotocite, 92-9, 81-10
 Nephelite (nepheline), 26-10, 109-A
 Nepouite, 193-8, 169-9, 146-10
 Neptunite, 71-8, plate 24
 Nesquehonite, 21-12
 Newberryite, 42-11
 Newtonite, 173-10
 Niccolite, 23-1, 43-D, plate 19
 Nickel iron, 28-1
 Nickel oxide, 175-13
 Nickel skutterudite, 9-2
 Nicolayite, 142-5
 Nigrite; a variety of natural asphalt from Utah
 Niggite, 114-5
 Niter (nitraline), 108-11, 13-A
 Nitratite (sodanite), 121-11, 14-A, plate 28
 Nitrobarite, 220-8
 Nitrocalcite, 56-13
 Nitroglauberite, 102-13
 Nitromagnesite, 103-13
 Nocerite, 209-9
 Nohlite, 47-3
 Nontronite, 168-10, plate 27
 Norbergite, 47-8
 Nordenskioeldine, 31-5
 Nordite, 63-7
 Norilskite, 174-13
 Normannite (bismutite)
 Northupite, 77-10
 Noselite, 32-10, 8-11
 Nuolaite; possibly altered samarskite

 Oberite, 58-4
 Ochre, brown (limonite)
 Ochre, red (hematite)
 Ochrolite (nadorite), 23-13
 Ocathedralite (anatase), 32-6, plate 24
 Okenite, 16-11
 Oldhamite, 61-10
 Oligoclase, 10-9, 8-10, plate 28
 Oliveiraita, 153-13
 Olivenite, 116-5, 32-B, plate 23
 Olivine (chrysolite), 16-7, 17-8, 137-A, plate 24
 Onofrite; metacinnabar containing selenium
 Onyx; banded chalcedony
 Onyz, Mexican; transparent marble from Mexico
 Opal, 5-11, 1-12, 6-D, plate 27
 Orangite, 44-3 </p> | Oriental alabaster ; a form of translucent calcite
Oriental amethyst ; clear, purple corundum
Oriental emerald ; clear, green corundum
Oriental ruby ; clear, red corundum
Oriental topaz ; clear, yellow corundum
Orientite , 107-8
Orinithite (francolite and dahlite)
Orpiment , 159-7, 37-B, plate 25
Orthite (allanite)
Orthoclase , 17-10, 14-D, plate 28
Oruetite ; shown to be a mixture
Osbornite , 1-3
Osmite ; iridium, osmium mixture
Otavite , 104-13
Otaylite ; a variety of bentonite clay
Ottrelite , 19-8
Overite , 65-10
Owheeite , 95-2
Oxamite , 77-12
Oxykertschenite , 92-10
Oyamalite , 6-5
Ozocerite (ozokerite), 76-12

Pachnolite , 164-8, 122-9
Palacheite (botryogen)
Palaite , 213-8
Paladinite , 122-1
Palladium , 38-1
Palladium amalgam (potarite)
Palmierite , 167-7
Pandermite (priceite)
Paracelsian ; mixture of celsian and orthoclase
Paracoquimbite , 155-11
Paraffin , 74-12
Paragonite , 134-9, plate 27
Parahilgardite , 61-9
Parahopeite , 144-8
Paralaurionite , 111-2
Paraluminite , 57-13
Paramelaconite , 28-2
Parametacamite ; twinned atacamite
Pararammelsbergite , 30-1
Parasepiolite , 103-11
Paratacamite , 92-6
Paraurichalcite , 154-13
Paravauxite , 53-11
Paravivianite , 174-9
Paredrite , 147-5
Pargasite ; a form of hornblende
Parkerite , 63-1
Parisite , 80-5
ParseDDS , 175-10
Parsonsite , 112-2
Partschinite , 16-5
Partzite , 82-6
Pascoite , 135-10 |
|---|---|

MINERAL INDEX

- Paternoite**, 142-11
Patronite, 155-13
 Peacock ore (bornite)
Pearceite, 55-2
 Pearl spar (dolomite)
Pectolite, 52-9, 108-A, plate 27
Peganite, 100-10
 Pencil stone (pyrophyllite)
Penfieldite, 105-13
Penninite, 165-9, 141-10, 128-A, 9-C, plate 27
Penroseite, 67-1, 61-2
Pentlandite, 64-3, 75-4, 9-B, plate 21
Percylite, 134-3, 103-4
Peredrite, 114-6
Periclase, 71-7
 Peridot (chrysolite)
Perofskite (perovskite), 45-5, 34-6, 12-C, plate 21
Petalite, 16-10
Petzite, 69-1
Pharmacolite, 166-9, 142-10
Pharmacosiderite, 186-8, 151-9
Phenacite (phenakite), 5-8, 1-9, 25-D, plate 25
Phillipsite, 27-11, 19-A, plate 27
Phlogopite, 137-9, 17-C, plate 27
 Phoenicochroite, 73-3
 Pholidolite, 71-10
Phosgenite, 60-2, 28-B, plate 20
 Phosphoferrite (iron reddingite)
 Phosphophyllite, 147-8
 Phosphosiderite, 85-9
 Phosphorus, 156-13
 Phosphor-rosslerite, 28-12
 Phosphuranylite, 106-13
 Picite, 94-9
 Pickeringite, 70-12
 Picotite, 4-5
 Picroamosite, 170-13
 Picroilmenite, 27-5
 Picromerite, 78-11
 Piicropharmacolite, 169-10
 Picrotephroite, 28-5
 Piedmontite, 25-7, plate 23
 Pigeonite, 51-7
 Pilbarite, 89-4
 Pinakiolite, 20-6
 Pinnite, 134-7, 148-8
 Pintadoite, 107-13
 Pirssonite, 102-10
 Pisanite, 18-12, plate 28
 Pisekite, 30-7
 Pistomesite, 126-7
 Pitchblende (uraninite)
 Pitticite, 121-10, 66-11
 Plagioclase; a group of feldspars
- Plagionite**, 116-3
Plancheite, 78-7
Planerite, 46-10
Planoferrite, 24-13
 Plasma; green semi-translucent chalcedony
Platinum, 37-1
Platiniridium, 6-1
Plattnerite, 20-1
Platynite, 86-1
Plazolite, 31-8
Plenargyrite (matildite)
Pleonaste, 4-6, plate 21
Plumbago (graphite)
Plumbocalcite, 125-9
Plumboferrite, 21-2
Plumbogummite, 52-4, 74-5
Plumbojarosite, 163-7
Plumbomalachite, 157-13
Plumboniobite (samarskite)
 Plumbostannite; probably a mixture containing franckeite
Plumbosynadelphite; synadelphite containing lead
Podolite, 111-8
Poechite, 80-6
Polianite; crystallized prytolusite, plate 22
Pollucite, 11-9, plate 26
Polyargyrite, 78-2
Polybasite, 76-2, 25-B, plate 22
Polycrase, 21-3, 16-4, plate 22
Polydymite, 41-4
Polyhalite, 139-9, 1-A, plate 27
Polylithionite, 175-9
Polymignyte, 6-4
Portlandite, 114-11
Potarite, 44-1
 Potash alum (alum)
Powellite, 77-4
Prehnite, 14-9, 97-A, plate 26
Priceite, 114-10
Priorite, 26-3, 28-4
Probertite, 6-12
Prochlorite, 182-9
Prolectite (chondrodite)
Prosopite, 68-9
Protolithionite, 175-8
Proustite, 125-3, 22-B, plate 20
Pseudoboleite, 119-3, 93-4
Pseudobrookite, 20-4, 25-5
Pseudomalachite, 66-5, 51-6, 92-7
Pseudomesolite, 15-11
Pseudopalaite, 226-8
Pseudowavellite, 55-9
Psilomelane, 26-4, 39-A, plate 22
Psittacinite, 108-13
Ptilolite, 14-11
Pucherite, 35-2

MINERAL INDEX

- | | |
|---|--|
| <p>Pufahlite; mixture of teallite and wurtzite or sphalerite</p> <p>Pumpellyite, 79-8</p> <p>Purple copper ore (bornite)</p> <p>Purpurite, 109-7</p> <p>Pycnochlorite, 183-9</p> <p>Pyrargyrite, 109-3, 21-B, plate 20</p> <p>Pyreneite, 13-7</p> <p>Pyrite, 10-3, 11-4, 13-B, plates 21, 22</p> <p>Pyrite, arsenical (arsenopyrite)</p> <p>Pyrite, capillary (millerite)</p> <p>Pyrite, cockscomb (marcasite)</p> <p>Pyrite, copper (chalcopyrite)</p> <p>Pyrite, iron (pyrite)</p> <p>Pyrite, magnetic (pyrrhotite)</p> <p>Pyrite, radiated (marcasite)</p> <p>Pyrite, spear (marcasite)</p> <p>Pyrite, tin (stannite)</p> <p>Pyrite, white iron (marcasite)</p> <p>Pyroaurite, 74-11</p> <p>Pyrobelonite, 71-3</p> <p>Pyrochlore, 50-5</p> <p>Pyrochroite, 187-8</p> <p>Pyroclasite; mixture of francolite and dahlite</p> <p>Pyrolusite (crystalline), 9-3, 40-A, plate 21</p> <p>Pyrolusite (massive), 126-3, 99-4, 129-5, 40-A, plate 21</p> <p>Pyromelane; probably brookite</p> <p>Pyromorphite, 42-1, 37-2, 29-B</p> <p>Pyrope, 12-6, plate 23</p> <p>Pyrophanite, 24-4</p> <p>Pyrophosphorite (whitlockite)</p> <p>Pyrophyllite, 184-9, 11-C, plate 27</p> <p>Pyrosmalite, 128-8</p> <p>Pyrostilpnite, 131-3</p> <p>Pyroxene, 66-7, 68-8, 18-D</p> <p>Pyroxmangite, 28-6</p> <p>Pyrrhite, 139-5</p> <p>Pyrrhotite, 62-4, 47-A, plate 21</p> <p>Quartz, 4-10, 5-D, plates 19, 20, 22-26</p> <p>Quartzine, 5-10</p> <p>Quenselite, 94-2</p> <p>Quercyte, 122-8</p> <p>Quenstedtite, 81-11</p> <p>Quetenite, 49-11</p> <p>Quirogite; probably impure galena</p> <p>Quicksilver (mercury)</p> <p>Racewinite, 20-12</p> <p>Racieite; psilomelane containing calcium</p> <p>Radiophyllite, 123-10</p> <p>Radiotine, 215-9</p> <p>Raimondite, 160-8</p> <p>Ralstonite, 54-10</p> <p>Ramdohrite, 135-3</p> | <p>Ramsayite, 45-7</p> <p>Rammelsbergite, 14-1</p> <p>Ramsdellite, 90-4</p> <p>Ransomite, 137-10</p> <p>Raspite, 31-13</p> <p>Rathite, 84-3</p> <p>Rauvite, 158-13</p> <p>Realgar, 160-7, 38-B, plate 25</p> <p>Red antimony (kermesite)</p> <p>Red chalk (hematite)</p> <p>Red copper ore (cuprite)</p> <p>Red ochre (hematite)</p> <p>Red zinc ore (zincite)</p> <p>Reddingite, 159-8</p> <p>Reinite, 34-2</p> <p>Remingtonite, 58-13</p> <p>Renardite, 145-5</p> <p>Reniforite (reniformite) (jordanite)</p> <p>Reposite, 50-6</p> <p>Retzian, 92-5</p> <p>Reyerite, 94-10</p> <p>Rezbanyite, 80-2</p> <p>Rhabdophanite, 108-5, 86-6</p> <p>Rhamdohrite (andorite)</p> <p>Rhodizite, 5-7</p> <p>Rhodochrosite, 110-7, 27-A, plate 25</p> <p>Rhodolite, 10-6</p> <p>Rhodonite, 26-6, 54-7, 106-A, plate 23</p> <p>Rhoenite, 169-7</p> <p>Rhomboclase, 43-13</p> <p>Richterite, 58-8</p> <p>Rickardite, 52-1</p> <p>Riebeckite, 118-7, plate 25</p> <p>Rilandite, 29-13</p> <p>Rinkite, 82-7</p> <p>Rinkolite, 90-7</p> <p>Rinneite, 115-10</p> <p>Risorite; variety of fergusonite</p> <p>Ritterite (xanthoconite)</p> <p>Riversideite, 112-10</p> <p>Riviate, 48-10</p> <p>Riviotite, 125-7</p> <p>Robellazite; probably a mixture containing columbium, tantalum, tungsten, vanadium, etc., 159-13</p> <p>Rock crystal; crystallized quartz</p> <p>Rock salt (halite)</p> <p>Roeblingite, 139-7</p> <p>Roemerite, 41-11</p> <p>Roeperite, 33-5, 30-6</p> <p>Romancheite; probably a mixture containing psilomelane</p> <p>Romanite, 90-12</p> <p>Romeite (romeine) (atopite)</p> <p>Rosasite, 83-5</p> <p>Roscherite, 72-9</p> <p>Roscoelite, 130-9</p> |
|---|--|

MINERAL INDEX

- | | |
|---|---|
| <p>Rose quartz; quartz with a rose-red or pink color</p> <p>Roselite, 127-7</p> <p>Rosenbuschite, 66-8</p> <p>Rosickyite, 135-11</p> <p>Rosieresite, 150-11</p> <p>Rossite, 124-10</p> <p>Roweite, 64-9</p> <p>Rowlandite, 4-4</p> <p>Rubellite; red or pink tourmaline</p> <p>Ruby; clear red corundum</p> <p>Ruby, almandine; violet spinel</p> <p>Ruby, balas; rose-red spinel</p> <p>Ruby, oriental; clear, red corundum</p> <p>Ruby, spinel; magnesian spinel</p> <p>Ruby blend (sphalerite)</p> <p>Ruby copper (cuprite)</p> <p>Ruby silver (pyrargyrite) (proustite)</p> <p>Ruby zinc (sphalerite)</p> <p>Rumpsite, 187-9</p> <p>Russelite, 46-1</p> <p>Ruthenosmiridium; iridosmine containing ruthenium</p> <p>Rutherfordine; altered fergusonite</p> <p>Rutile, 24-5, 11-D, plate 21</p> <p>Safflorite 31-1, 25-2</p> <p>Sahlinite, 85-1</p> <p>Salmiac (sal ammoniac), 59-12</p> <p>Sal ammoniac, 59-12</p> <p>Saleite, 181-8</p> <p>Salesite, 71-4</p> <p>Salmonsite, 79-9</p> <p>Salvadorite (kroehnkitc)</p> <p>Samarskite, 24-3, 14-C, plate 20</p> <p>Samiresite; lead betafite</p> <p>Sampleite, 139-8</p> <p>Samsonite, 115-3</p> <p>Sanbornite, 61-5, plate 24</p> <p>Saponite, 129-11</p> <p>Sapphirine, 6-7</p> <p>Sapphire; clear, blue corundum</p> <p>Sarcolite, 20-9, 21-10</p> <p>Sarcopsis, 114-7</p> <p>Sard; clear, red chalcedony</p> <p>Sardonyx; like onyx but with layers of sard</p> <p>Sarkinite, 76-5</p> <p>Sarmientite, 182-10</p> <p>Sartorite, 85-3</p> <p>Sassolite, 73-12, 17-A</p> <p>Satin spar; fine, fibrous, silky calcite or gypsum</p> <p>Scacchite, 213-9</p> <p>Scapolite, 17-9, 18-10</p> <p>Scawtite, 66-9</p> <p>Schafarzikite, 110-5</p> <p>Schairerite, 86-10</p> | <p>Schallerite, 97-7</p> <p>Schanyavaskite (shanyavskite)</p> <p>Schapbachite; mixture of matildite and galena</p> <p>Scheelite, 24-2, 45-3, 70-A, plates 1-7, 20</p> <p>Schefferite, 2-13</p> <p>Schertelite, 160-13</p> <p>Scheteligite, 30-4</p> <p>Schirmerite, 105-2</p> <p>Schizolite, 86-8, 44-9</p> <p>Schneebergite, 4-3</p> <p>Schoepite, 96-4</p> <p>Schorl (black tourmaline)</p> <p>Schorlomite, 7-6, plate 23</p> <p>Schreibersite, 2-1</p> <p>Schroeckingerite, 133-10</p> <p>Schroetterite, 44-11, 8-12</p> <p>Schultenite, 123-3</p> <p>Schulzenite, 131-7</p> <p>Schwartzembergite, 100-2</p> <p>Scocelite, 38-10, 9-11, 124-A, plate 26</p> <p>Scorodite, 143-8, 64-A, plate 26</p> <p>Seamanite, 138-8</p> <p>Searlesite, 164-10</p> <p>Seigenite, 42-4</p> <p>Selenite; clear, crystallized gypsum</p> <p>Selenium, 102-4</p> <p>Selenocosalite, 124-1</p> <p>Selenokobellite, 107-2</p> <p>Selenolite, 181-13</p> <p>Selen-sulphur, 109-13</p> <p>Selen-tellurium, 38-13</p> <p>Seligmanite, 81-3</p> <p>Sellaite, 91-8, 47-9</p> <p>Semseyite, 84-2, 118-3</p> <p>Senaite, 14-3</p> <p>Senarmontite, 128-3</p> <p>Sepiolite, 102-11, 129-A</p> <p>Serandite, 224-8</p> <p>Serendibite, 18-7</p> <p>Sericite; fine, scaly muscovite</p> <p>Serpentine, 103-10, 130-A, plates 27, 28</p> <p>Serpierite, 191-10</p> <p>Serverite (kaolinite)</p> <p>Seybertite, 120-8</p> <p>Seyrigite, 145-3</p> <p>Shannonite (monticellite)</p> <p>Shanyavskite, 161-13</p> <p>Sharpite, 188-8</p> <p>Shattuckite, 115-6, plate 23</p> <p>Sheridanite, 158-9</p> <p>Shilkinitc, 97-9</p> <p>Shortite, 106-10</p> <p>Sicklerite, 116-7</p> <p>Siderite, 77-6, 24-A, plate 24</p> <p>Sideronatrile, 145-10, 95-11</p> <p>Siderophyllite, 25-13</p> |
|---|---|

MINERAL INDEX

- Siderotil, 72-11
 Silesite, 15-3
 Silicomagnesiofluorite, 161-9
 Sillenite, 118-1
Sillimanite, 22-8, 29-D, plate 25
Silver, 68-1, 1-B, plate 19
 Silver glance (argentite)
 Simonellite, 162-13
 Simpsonite, 114-2, 144-3
 Sincosite, 192-9
 Sipylite (fergusonite)
 Siserskite, 4-1
 Sitaparite (bixbyite)
 Sjogruvite (sjogrenite), 91-11
 Skemmatite, 3-13
 Sklowdowskite, 113-6
 Skogboelite (tapiolite)
 Skolite, 150-10
 Skutterudite, 8-2
 Slavikite, 94-12
Smaltite, 10-2, 14-B, plate 19
 Smithite, 108-4
Smithsonite, 56-5, 21-A, plate 23
 Smoky quartz; quartz with a smoky color
 Soapstone (talc, steatite)
 Sobralite, 23-6
Sodalite, 6-11, 99-A, plate 28
 Soda-berzeliite, 84-5
 Soda margarite (ephesite)
Soda niter (nitratite), 121-11, 14-A, plate 28
 Sodomite (soddyite)
 Soddyite, 83-4
 Soretite; a hornblende
 Souesite (nickel iron)
 Sousmansite (wardite)
 Spadaite, 87-11
 Spangolite, 180-8
 Spathic iron ore (siderite)
 Specular iron (hematite)
 Spencerite, 174-8
Sperrylite, 5-1
Spessartite, 13-5, plate 21
 Sphaerite, 62-10
 Sphaerocobaltite, 89-5
Spalerite, 98-5, 73-6, 49-A, plate 23
Sphene (titaniite), 79-7, 141-A, plate 25
 Spenomanganite; variety of manganite
Spinel, 2-5, 2-6, 3-7, 3-C, plate 21
 Spodiophyllite, 101-10
 Spodiosite, 51-9
Spodumene, 15-8, 20-D, plate 25
 Spurrite, 110-8, plate 26
 Stainierite (heterogenite), 75-5
 Stalactite; calcareous deposit on the roof of a cavern
 Stalagmite; calcareous deposit on the floor of a cavern
Stannite, 68-4, 87-5, 26-B, plate 21
 Starlite; artificially colored zircon
 Star quartz; quartz showing asterism
 Star sapphire; sapphire having a stellate opalescence
 Stasite; probably dewindtite
 Staszicite, 32-5
Staurolite, 6-6, 9-7, 7-C, 4-D, plate 23
 Steatite (talc)
 Steigerite, 164-13
 Stellerite, 30-11
 Stelznerite (antlerite?)
Stephanite, 101-2, 24-B, plate 20
 Stercorite, 49-12
 Sternbergite, 132-5
 Sterrettite (eggונית), 47-10
 Stetefeldite; near stibiconite
 Stewartite, 202-9
 Stibianite, 46-6
Stibiconite, 48-3
 Stibiocolumbite, 22-1, 31-3
 Stibiodomeykite; domeykite with antimony
 Stibioferrite, 67-6
 Stibiopalladinite, 35-1
 Stibiotantalite, 21-1
Stibnite, 101-4, 48-A, 20-B, plate 21
 Stichtite, 118-11
 Stiepelmannite, 21-6
Stillbite, 33-11, 92-A, plate 28
 Stilpnomelanc, 99-9
 Stilpnochloran, 16-12
 Stoffertite (brushite)
 Stokesite, 48-8
 Stolzite, 71-1
 Stream tin; cassiterite in a stream bed
 Strengite, 86-9
 Strigovite, 202-8
Stromeyerite, 65-2, plate 20
Strontianite, 79-6, 26-A, plate 24
 Strontium-aragonite, 219-9
 Strewerite; rutile containing tantalum
 Struvite, 48-12
 Sturtite, 46-11
 Stützite, 110-13
 Styloptyite, 86-3, 86-4
Succinite, 38-12, plate 27
 Sulphatic cancrinite, 49-10
 Sulphoborite, 69-10
 Sulphohalite, 83-10
Sulphur, 104-11, 41-D, plate 28
 Sulvanite, 111-5
 Sundtite (andorite)
 Sursassite, 218-8
 Sussexite, 142-7
 Svabite, 47-6, 84-7
 Svanbergite, 88-8, plate 25
 Swedenborgite, 3-5

MINERAL INDEX

- | | |
|---|---|
| <p>Sylvanite, 111-1, 39-B, plate 19
 Sylvite, 45-12, 11-A
 Symplesite, 153-9
 Synadelphite, 100-7
 Synchisite, 56-6
 Syngenite, 128-10
 Szaibelyite, 146-8
 Szmikite, 200-8
 Szomolnokite, 155-8</p> <p>Tabular spar (wollastonite)
 Tachhydrite, 52-12
 Taeniolite, 141-9
 Tagilite, 103-5
 Talasskite, 149-5
 Talc, 186-9, 36-D
 Tallow, mineral (hatchettite)
 Tamarite (taramite), 175-7
 Tamarugite, 128-11
 Tanatarite (diaspore)
 Tangeite, 165-13
 Tantalic ochre; brown coating on tantalite
 Tantalite, 9-1, 5-2, 8-3, 13-C, plate 19
 Tantulum, 7-1, 118-13
 Tanteuxenite; euxenite with much tantalum
 Tapalpite; a mixture
 Tapiolite, 11-1
 Taramellite, 36-6
 Taramite (tamarite)
 Tarapacaite, 223-9
 Tarbuttite, 94-5
 Tarnowitzite, 135-8
 Tartarkaite, 204-9
 Tavistockite, 111-13
 Taylorite, 42-13
 Teallite, 110-2, plate 20
 Teepleite, 43-11
 Teineite, 100-6
 Telegdite, 25-12
 Tellurite, 129-3
 Tellurium, 99-2
 Tellurobismuthite, 114-1
 Tengerite, 112-13
 Tennantite, 57-3, 74-4, plate 21
 Tenorite, 42-2, 67-3, plate 20
 Tephroite, 29-5, plate 21
 Terlinguaite, 80-1
 Termierite, 54-12
 Teschemacherite (tschemacherite), 66-12
 Tetradymite, 112-1
 Tetrahedrite, 57-3, 74-4, 23-B, plate 22
 Thalenite, 20-5
 Thaumasite, 7-12
 Thenardite, 145-9, 2-A, plate 27
 Thermonatrite, 68-12
 Thinolite, a tufa deposit of calcium carbonate
 Thomsenolite, 196-8, 172-9</p> | <p>Thomsonite, 39-10, 10-11, 125-A
 Thoreaulite, 13-1
 Thorianite, 8-1
 Thorite, 43-3, 46-4, 67-5, plate 22
 Thortveitite, 24-7
 Thucholite, 5-12
 Thuringite, 182-8
 Tiemannite, 88-1, plate 19
 Tiger eye; cricidolite replaced by silica
 Tikhivinite, 127-8
 Tilasite, 102-8
 Tilleyite, 206-9
 Tin, 105-1
 Tin stone (cassiterite)
 Tin pyrite (stannite)
 Tincalconite, 93-12
 Tinzenite, 210-8
 Tirodite, 34-8
 Titanic iron ore (ilmenite)
 Titanite (sphene), 79-7, 141-A, plate 25
 Tiranoelpidite, 13-10
 Tiranohydroclinohumite, 51-8
 Tmiskamite, 19-1
 Toad's eye tin; cassiterite in botryoidal and reniform shapes
 Toddite, 5-3
 Todorokite, 112-6
 Toernebohmite, 55-4
 Topaz, 4-7, 16-C, 27-D, plate 24
 Topaz, false; yellow quartz
 Topaz, oriental; clear, yellow corundum
 Torbernite, 154-7, plate 26
 Torenkrite, 96-8
 Torniellite, 152-10
 Touchstone (lydian stone)
 Tourmaline, 10-8, 4-9, 33-D, plates 21, 26
 Transvaalite, 66-6
 Traversoite, 113-13
 Travertine; calcareous deposit from springs and rivers
 Treahmannite, 109-4
 Tremolite, 92-8, 48-9, 46-D, plate 26
 Trevorite, 40-3
 Trichalcite, 32-13
 Tridymite, 6-10, 1-11
 Trielite (heterogenite), 150-8
 Trigonite, 82-1
 Trimerite, 21-7
 Triphyllite, 91-7, 54-A, plate 25
 Triplite, 52-6, 94-7
 Tripleoidite, 55-6
 Trippkeite, 59-13
 Tritomite, 43-5
 Troegerite, 204-8
 Troilite, 67-4
 Trona, 64-11, 19-A
 Trudellite, 27-12</p> |
|---|---|

MINERAL INDEX

- | | |
|---|---|
| <p>Truscottite, 166-10
 Tscheffkinite, 38-4
 Tschemacherite (teschemacherite)
 Tscher migite, 61-12
 Tsumebite, 44-2
 Tu hualite, 228-9
 Tufa, calcareous; deposits like travertine but soft
 Tungstenite, 92-1
 Tungstite, 113-3
 Tunnerite; wad containing zinc
 Turanite, 10-13
 Turgite (hematite), plate 21
 Turquois, 18-9, 19-10, 61-A, plate 26
 Tuxtlite; a mixture of diopside and jadeite in equal amounts
 Tychite, 89-10
 Tyrolite, 201-8
 Tysonite (fluocerite)
 Tyuyamunite, 135-5, 110-6</p> <p>Uhligite, 47-5
 Ulexite, 71-12, 16-A
 Ullmannite, 18-2
 Ulrichite, 166-13
 Ultrabasite; probably diaphorite
 Umangite, 94-3
 Ungemachite, 89-11
 Uraconite, 60-13
 Uraninite, 17-1, 33-B, plate 19
 Uranochalcite, 39-13
 Uranocircite, 158-7
 Uranophane (uranotil), 102-6, plate 24
 Uranolepidite (vandenbrandeite)
 Uranopilit e, 111-6
 Uranospathite, 185-10
 Uranosphaerite, 72-2
 Uranospinit e, 152-7
 Uranothallite, 28-13
 Uranothorite, 68-5
 Urbanite, 69-7
 Ussingite, 12-10
 Urvolgite (herrengrundite)
 Utahite, 115-13, plate 28
 Uvanite, 116-13
 Uvarovite, 8-7, plate 24
 Uvite; one of the tourmalines
 Uzbekite, 117-13</p> <p>Valentinite, 101-3
 Valleite, 74-9
 Valleriite, 205-8
 Vanadinite, 65-1, 57-2, 69-A, 31-B, plates 19, 20
 Vandenbrandeite, 63-3, 69-4
 Vandiesite; mixture of tellurobismite and hessite</p> | <p>Vanoxite, 167-13
 Vanthoffite, 81-9
 Variegated copper ore (bornite)
 Variscite, 45-10, plate 28
 Varulite, 164-7
 Vashegyite, 17-12
 Vauquelinite, 66-2, 96-3
 Vauxite, 88-10
 Veachite, 171-9
 Vegasite (plumbojarosite)
 Velardene, 49-8
 Vermiculite; see jefferisite, plate 28
 Vernadskite, 151-8
 Vesuvianite, 28-7, 111-A, plates 24, 26
 Vezelyite, 120-7
 Vilatec ite, 129-9
 Villamaninite (bravoite)
 Villiaumite, 105-9
 Volarite, 43-4
 Viridine, 30-8
 Viridite, 115-9
 Vivianite, 181-9, 157-10, 60-A, plate 27
 Voelcherite, 119-13
 Volgite, 61-13
 Volborthite, 137-7
 Volchonskoite, 94-11
 Volgerite, 179-13
 Voltaite, 96-9
 Voltzite, 60-6
 Vonsenite, 53-5, plate 23
 Vrabaite, 72-3
 Vredenburgite; mixture of jacobsite and hausmannite
 Vudyavrite, 190-10</p> <p>Wad; mixture of impure psilomelane and pyrolusite
 Wadeite, 231-8
 Wagnerite, 83-8, 39-9
 Walpurgite, 68-3
 Wapplerite, 144-10
 Wardite, 63-9
 Warrenite; mixture of jamesonite and zinkenite
 Warthite (goongarrite)
 Warwickite, 135-7
 Water (ice), 67-12
 Wattevillite, 84-12
 Wavellite, 78-10, 34-11, 62-A, 51-D, plate 28
 Weberite, 102-9
 Webnerite (andorite)
 Wehrlite, 110-1
 Weibullite, 77-1, 74-2
 Weinbergerite, 5-13
 Weinschenkite, 233-8
 Weissite, 53-2</p> |
|---|---|

MINERAL INDEX

Weldite, 36-9	Yeatmanite, 62-3, 70-4
Wellsite, 60-10	Yttrialite, 37-4
Wentzelite, 120-13	Yttrcerite, 104-7
Wernerite , 30-9, 110-A, plates 10, 26	Yttrcolumbite, 39-3
Wesljenite, 9-4	Yttrocrasite, 22-4
Wheel ore (bouronite)	Yttrofluorite, 106-7
Whewellite, 86-11	Yttrotantalite, 36-3
White antimony (senarmontite, valentinite)	Yukonite, 147-9
White arsenic (arsenolite, claudetite)	Yuksporite, 11-13
White iron ore (marcasite)	
White lead ore (cerussite)	Zaratite, 118-9, 99-10
Whitlockite, 94-8	Zebedassite, 112-11
Whitneyite; copper containing arsenic	Zeolites; a group of hydrous silicates
Wiikite; mixture high in columbium, tantalum, titanium, silicon, yttrium	Zeolite mimetica (dachiardite)
Wilkeite, 99-8	Zeophyllite, 126-9
Willemite , 44-5, 33-6, 94-A, plates 8, 9, 21	Zepharovichite (wavellite)
Willyamite; cobalt ulmannite	Zeugite (martinitite)
Wiltshireite (rathite)	Zeunerite, 190-8
Winklerite, 96-6, 143-7	Zinc, 108-1, 104-2
Wischnewite, 168-13	Zinc, red oxide of (zincite)
Witherite , 101-5, 22-A, plate 23	Zincaluminite, 61-11
Wittichenite, 97-4, 125-5	Zinc blende (sphalerite)
Wittite, 103-1	Zinc-copper chalcantite, 70-11
Woehlerite, 57-7	Zinc-copper melanterite, 113-11
Woelchite, partly altered bournonite	Zincdibraunite; probably a mixture
Wolfachite, 22-2	Zincite , 58-3, 83-A, plates 20, 21
Wolframite , 25-1, plate 19	Zinc schetterite, 77-7, 76-8
Wollastonite , 65-9, 107-A, plate 27	Zinc ore, red (zincite)
Wood copper; fibrous olivenite	Zinc spinel (gahnite)
Wood tin; cassiterite in botryoidal and reniform shapes	Zinkenite , 76-3, 45-A, plate 22
Woodhouseite, 124-8	Zinkosite, 137-5
Wulfenite , 64-1, 58-2, 71-A, plate 19	Zinkmanganerz, 169-13
Wurtzite , 72-6, 51-A, plate 24	Zinnwaldite, 176-8, 132-9, plate 27
 Xanthitane (anatase)	Zippeite, 26-13
Xanthoconite, 106-3	Zircon , 2-4, 7-5, 6-C, plate 22
Xanthophyllite, 117-8, plate 26	Zirconium oxide (baddeleyite)
Xanthosiderite (goethite)	Zirkelite, 33-4
Xanthoxenite, 221-9	Zirkite; name for zirconium ore from Brazil
Xenotime , 49-4, 72-5, plate 21	Zirklerite, 90-10
Xonotlite (eakleite), 13-9	Zirlite; probably gibbsite
 Yellow copper ore (chalcopyrite)	Zoisite , 32-7, 36-8, 31-D, plate 24
	Zonotilte (xonotlite)
	Zorgite; shown to be a mixture
	Zunyite , 7-9
	Zundererz; impure jamesonite

CENTRAL LIBRARY
BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE
PILANI (Rajasthan)

Call No.

Acc. No.

32025

DATE OF RETURN

--	--	--	--

