2-71 A656 Birds

AQUILA

A MAGYAR MADÁRTANI INTÉZET

(AZ ORSZ. KÖRNYEZET- ÉS TERMÉSZETVÉDELMI HIVATAL MADÁRTANI INTÉZETE)

ÉVKÖNYVE

ANNALES INSTITUTI ORNITHOLOGICI HUNGARICI

1983

MEGINDÍTOTTA HERMAN OTTÓ

FUNDAVIT
O. HERMAN

SZERKESZTI BANKOVICS ATTILA

EDITOR A. BANKOVICS

XC. ÉVFOLYAM, TOM. 90

VOLUME: 90

AQUILA

A MAGYAR MADÁRTANI INTÉZET

(AZ ORSZ. KÖRNYEZET- ÉS TERMÉSZETVÉDELMI HIVATAL MADÁRTANI INTÉZETE)

ÉVKÖNYVE

ANNALES INSTITUTI ORNITHOLOGICI HUNGARICI

1983

MEGINDÍTOTTA HERMAN OTTÓ

SZERKESZTI BANKOVICS ATTILA

FUNDAVIT
O. HERMAN

EDITOR A. BANKOVICS

XC. ÉVFOLYAM, TOM. 90

VOLUME: 90

BUDAPEST, 1983

Megjelent — Published 1983

Kérjük Szerzőinket, hogy közleményeiket írógéppel, három példányban, jó minőségű papírra írva, az alábbi formában szíveskedjenek az Aquila szerkesztőjének küldeni:

Bal oldalon 5 cm-es margó, 60 betűhelyes sorok, 2-es sortávolság és oldalanként 30 sorterjedelem. A táblázatokat ne a szöveg közé, hanem külön oldalra, címfelirattal ellátva készítsék. A táblázatok feliratai alatt bőségesen hagyjunk helyet a később elkészülő idegen nyelvű címszavak elhelyezésére. Forrásmunkák idézésénél az Aquilában rendszeresített forma az irányadó. Újragépeltetés esetén a költségek a szerzőt terhelik. Kérjük a közlemények végén a szerző postacímét feltüntetni. Lapzárta január 30.

A szerkesztő

TARTALOMJEGYZÉK

Dr. Bankovics Attila: A hajnalmadár (Tichodroma muraria) újabb előfordulása	
	113
Dr. Bozsko Szvetlana: A balkáni gerle (Streptopelia decaocto Friv.) populáció ivar-és	
koreloszlása, valamint fontosabb anatomomorfológiai jellemzői	95
Erőss Lajos: A madártojások alakjának funkcionális szerepe	159
Fog, Mette: A nyári lúd (Anser anser) költése Dániában 1981-ben	19
Fournier, O.—Otero, C.—Riols, C.: Az Anser fabalis rossicus telelésének jelenlegi	
helyzete Franciaországban és Spanyolországban	39
Dr. Horváth Lajos: Adatok a Hanság madárvilágáról	61
Hraskó Gábor: vide: Waliczky Zoltán	73
Hrokov, V. V.: Adatok a Tengiz-Kurgaldzsi mélyföld (Közép-Kazahsztán) fekete-	
	117
Ivanov, E.—Pomakov, V. A.: A vörösnyakú lúd (Branta ruficollis) telelése Bul-	
gáriában	29
Dr. Keve András: Csaba József 80 éves	13
Dr. Keve András: A bukórécék jelentősége a Balaton életében	105
Dr. Legány András: A Bátorligeti-láp természetvédelmi terület madárvilága	85
Magyar Gábor: vide: Waliczky Zoltán	73
Majewski, P.: Megjegyzések az Anser anser helyzetéről Lengyelországban	15
Michev, T. M.—Nankinov, D. N.—Ivanov, E. B.—Pomakov, V. A.: A telelő vad-	
ludak mennyiségi viszonyai Bulgáriában	45
Molnár Lídia: A fenyőrigó (Turdus pilaris L. 1758) fészkelése a Rétyi Nyírben	
(Kovászna megye, Románia)	81
Otero, C.: Az Anser fabalis habitátja, elterjedése és populációdinamikája Spanyol-	
országban	35
Otsu, Mariko: A vízimadár-számlálás eredményei, 1981 ősze — 1982 tavasza, Izunuma	55
Puscariu, V.: A Branta ruficollis jelenléte tél folyamán Romániában	23
Randik, A.: A vadludak száma a Duna csehszlovák—magyar szakaszán 1962/63,	
1972/73 és 1978/79 telén	43
	139
John Hallord E., dras mada	149
Waliczky Z.—Magyar G.—Hraskó G.: A sövénysármány (Emberiza cirlus L. 1766)	
újabb előfordulása Magyarországon	73
Madártani Intézet: Dr. Vertse Albert a Madártani Intézet igazgatója (1906—1979)	9
Könyvismertetés	177
to the second se	
In memoriam	179
Index alphabeticus avium	183

CONTENTS — INHALT

Dr. Bankovics, A.: New Record of the Wall Creeper (Tichodroma muraria) in Mongolia	113
Dr. Bozsko, Szvetlana: The sex and age distribution as well as the major anatomo-	
morphological characteristics of the population of Collared Doves (Streptopelia	
decaocto Friv.)	95
	159
Fog, Mette: Breeding Grev-lag Goose (Anser anser) in Denmark 1981	19
Fournier, O.—Otero, C.—Riols, C.: Status actuel des populations de Anser fabalis	
rossicus hivernant en Françe et en Espagne	39
Dr. Horváth, L.: Some Ornithological Data of the Hanság	61
Hraskó, G.: vide: Waliczky, Z	73
Хроков, В. В.: Материалы по биологии степной тиркушки (Glareola nordmanni Nordm.	
(в Тенгиз-кургальджинской впадине) Централь-ный Казахстан)	117
Ivanov, B. E.—Pomakov, V. A.: Wintering of the Red-breasted Goose (Branta	
ruficollis) in Bulgária	29
Ivanov, B. E.: vide: Michey, T. M	45
Dr. Keve, A.: József Csaba is 80 years old	13
Dr. Keve, A.: Die Bedeutung der Tauchenten im Leben des Balaton	105
Dr. Legány, A.: Avifauna of the nature conservation area at Bátorliget (Hungary)	85
Magyar, G.: vide: Waliczky, Z	73
Majewski, P.: Some remarks on the situation of Anser anser in Poland	15
Michev, T. M.—Nankinov, D. N.—Ivanov, B. E.—Pomakov, V. A.: Midwinter	
numbers of wild geese in Bulgaria	45
Molnár, Lidia: Angaben betreffend das Brüten der Wacholderdrossel (Turdus	
pilaris L. 1758) im Naturschutzgebiet Rétyi Nyír (Kreis Kovászna, Rumänien)	81
Nankinov, D. N.: vide: Michev, T. M	45
Otero, C.: Anser fabalis in Spain: habitat, distribution and population dynamics	35
Otero, C.: vide: Fournier, C	73
Otsu, Mariko: Results of Water-Birds Census, 1981 autumn — 1982 spring Izunuma	
Pomakov, V. A.: vide: Ivanov, B. E	55
Puscariu, V.: La présence de Branta ruficollis pendant l'hiver en Roumanie	23
Randik, A.: Numbers of wild geese in the Chechoslovak-Hungarian section of the	
Danube in 1962/63, 1972/73 and 1978/79	43
Riols, C.: vide: Fournier, O	73
Schmidt, E.: Bird-banding of the Hungarian Institute for Ornithology — 34 th report	
	139
Schmidt, E.: Records of birds ringed abroad — 35th report of bird-banding	149
Waliczky, Z.—Magyar, G.—Hraskó, G.: Renewed occurence of Cirl Bunting (Embe-	
riza cirlus L. 1766) in Hungary	73
Hungarian Institute for Ornithology: Dr. Vertse, Albert director of the Hungarian	
Institute for Ornithology (1906—1979)	9
	177
	179
	100
Index alphabeticus avium	183

ÁBRÁK JEGYZÉKE – LIST OF ILLUSRATION

- 1. Dr. Vertse Albert (1906–1979) Dr. A. Vertse (1906–1979)
- 1. Anser fabalis in Spain
- 2. Wintering places of Anser fabalis in Spain
- Distribution quantitative de l'hivernage d'Anser fabalis rossicus en France et en Espagne (1975–1980)
- Numbers of geese recorded in synchronized counts on the Danube between Bratislava and Szob
- 1. Shows the number of observations at each particular wetland
- 2. The average midwinter numbers of Greylag Goose
- 3. The average midwinter numbers of White-fronted Goose
- 4. Average midwinter numbers of the Red-breasted Goose
- 1. Wintering and staging places of geese in Japan (1975–80)
- Különböző sármányfajok revirjének megoszlása 1981-ben a Villányi-hegységben az éneklő hímek alapján – Distribution of forest ranges of various Bunting species in 1981 in Villányi-mountain as based on singing males
- A szülők érkezési és távozási útiránya etetéskor az 1981-ben talált fészeknél
 Route of arrival and departure of parents at feeding with nest dicovered in 1981
- 1. Bátorliget földrajzi helyzete Geographic situation of Bátorliget.
- 2. A Bátorligeti-láp természetvédelmi terület madárbiotópjának megoszlása a vegetáció alapján (Simon T. alapján) Distribution of birds biotops on the basis of vegetation on nature conservation area Bátorliget (after T. Simon)
- 1. Occurence of Tichodroma muraria in Mongolia
- 2. Nesting habitat of Tichodroma muraria in the mountain Hangal
- Frequency of feeding the young ith the wallereeper (mountain Hangai, 14. June 1978)
- Степная тиркушка. Фото В. Хрокова A feketeszárnyú székiesér Foto: V. Hrokov
- Биотопическое распределение степеных тиркушек в масавгусте (в % от люшего числа птиц): 1 солончаковые берега озер (31,4%), 2 травянистые берега озер (19,4%), 3 сухая степь, дороги, тырла (39,0%) A feketeszárnyú székicsér biotóp szerinti megoszlása május-augusztusban: 1-szikes tópartok 41,6%, 2 füves vízpartok 19,4%, 3 száraz sztyeppi utak, legelők 39,0%
- 3. Биотопическое распределение степных тиркушек в Тенгиз-Кургальджинской впадине (в % то общего числа птиц в каждом месяце): 1 солончаковые берега озер ,2 травянистые берега озер, 3 сухая степь, дороги, тырла A feketeszárnyú székicsér biotóp szerinti eloszlása a Tengiz-Kurgaldzsi mélyföldön: 1 szikes tópartok, 2 füves vízpartok, 3 száraz sztyeppi utak, legelők
- Сезонная встречаемость одиночек (1) ,пар (2) и стей (3) степных тиркушек A feketeszárnyú székiesér időszakos előfordulása: (1 – egyedek, 2 – párok, 3 – csapatok)

- 5. Гнездовая стация степной тиркушки. Оз. Ак-Уашкар. Фото: В. Хрокова A feketeszárnyú szikicsér fészkelőbiotópja. Fotó: V. Hrokov
- 6. Гнездо степной тиркушки ан такыре. Оз. Ак-Кфшкар. Фото: В. Хрокова A székicsér fészke az Ak-Kaskar tónál. Fotó. V. Hrokov
- 7. Гнездо степной тиркушки на сыром солончаке. Оз. Ак-Кашкар. Фото: В. Хрокова A feketeszárnyú székicsér fészke vízállásos sziken. Foto: V. Hrokov
- 8. Гнездо степной тиркушки в ямке от копыта лощади. Оз. Ак-Кашкар. Фото: В. Ххокова A feketeszárnyú székicsér fészke lónyomban, az Al-Kaskar tónál. Fotó: V. Hrokov
- 9. Гнегдо степной тиркушки с однодневным птенцом. Оз. Ак-Кашкар. Фото: В. Хрокова Feketeszárnyú székicsérfészek napos fiókával. Al-Kaskar tó. Fotó: V. Hrokov
- 10. Суточная ритмика питания срепных тиркушек A feketeszárnyú székicsér táplálkozásának napi ritmusa XXII/1-XXII/18. A madártojások alakjának funkcionális szerepe – The function of shape in bird's eggs

DR. VERTSE ALBERT A MADÁRTANI INTÉZET IGAZGATÓJA (1906—1979)

1981-ben lett volna 75 éves. Ebből az alkalomból emlékezünk meg róla ismét, elsősorban mint az Intézet volt igazgatójáról és a hazai madárvédelem kiemelkedő egyéniségéről.

1932-ben kezdett dolgozni a Madártani Intézetnél és 1946—1970 között $\,-\,25$ éven át — vezette azt. Ez idő alatt nemcsak méltóképpen folytatta nagy elődeinek munkáját, hanem jelentős szerepe volt abban, hogy a magyar madárvédelem nemzetközi viszonylatban is elismerésre méltó helyet ért el.

Munkásságát elsősorban az a felismerés vezette, amely szerint a madárvilág pusztulásának "legfőbb ellenszere . . . a társadalom erkölcsi-etikai nevelésének, felelősségtudatának a lehető legmagasabb fokra emelése". E célkitűzés nála egész intézeti működésére kiterjedő programnak is tekinthető. Éveken át rendszeresen írta "Madárvédelmi beszámolóit" és "Madártelepítési kísérletek" c. tanulmányait az Intézet évkönyvében, és jelentette meg sok kiadást megért, hasonló tárgyú ismeretterjesztő könyveit, A madárvédelem gondolatának terjesztését a legkülönbözőbb eszközökkel igyekezett előmozdítani. Műveiben következetesen foglalkozik a madarak gazdasági jelentőségével, festőművészi tevékenységével pedig azok esztétikai értékére hívja fel a figyelmet. Kutatóútjaira rendszeresen elkísérte felesége, aki támasza és aktív segítője volt munkájában.

A magyar természetvédelem terén kifejtett kiemelkedő tevékenységéért — életművének elismeréseként — 1977-ben *Pro Natura* emlékéremmel tüntették ki.

Mint hivatásos ornitológusnak számos átfogó madártani témáról jelentek meg tanulmányai, a fő érdeklődési területe azonban mindvégig a madárvédelem népszerűsítése; ugyanaz a törekvés, amelyet egyik neves elődje, dr. Csörgey Titusz vallott:,,...elültetni népünkben a madárszeretetet és a madárvédelem gondolatát". Elmondhatjuk, hogy dr. Vertse Albert maradandó érdemeket szerzett ezen a téren.

Madártani Intézet

1. Dr. Vertse Albert (1906-1979) - Dr. A. Vertse (1906-1979)

CSABA JÓZSEF 80 ÉVES

Keve András

Kettős jubileumot ülünk. Nemcsak, hogy a köztiszteletben és közszeretetben álló Csaba József elérte teljes aktivitásban élete 80. évét (szül. 1903), hanem kis korrekcióval munkásságának 50. évét is ünnepelheti, amit kevés kollégánk mondhat el magáról. Akár mint közigazgatási pályán dolgozó, akár mint gazdasági szakember, akár mint nyugdíjas, a természet és a néprajz iránti vonzalma sohasem hagyta pihenni. 84 tanulmánya tanúskodik erről, csak a mi szakmánkban, és akkor még hol vannak a népi méhészetről és más népi szokásokról, felszerelésekről írott munkái. Ha segítséget kért tőle valaki, mindig készséggel állott rendelkezésre; sőt, mozgósította érdekében környezetét is. Sohasem vetett valamit elhamarkodottan papírra; mindig alaposan átgondolta, amit kiengedett kezei közül. Olyan területen dolgozott — Vas megyében —, ahol a madártannak hagyományai voltak, tehát a kritikát minden írása önmagában hordta. Pedig nehezen felfedezhető madárfajok fészkelését bizonyította be. Megtalálta a királyka, a keresztcsőrű, a siketfajd fészkét stb. Kimutatta a balkáni gerle, a balkåni fakopáncs stb. terjeszkedését megyéjében. Foglalkozott a madarak táplálkozásával, pl. a keresztcsőrű napraforgó táplálékával, a csízek pajzstetűfogyasztásával stb. Kedves, visszatérő témája volt a kormos és a dolmányos varjú arányának ingadozása Vas megyében.

Tudománytörténettel is szívesen foglalkozott, pl. $Chernel\ István$ emlékét ápolta.

Csaba József, a sokoldalú szakember méltő helyet vívott ki magának a magyar zoológia tudományában. Reméljük, hogy még a jövőben is sok értékes útbaigazítást nyerünk tőle.

International Waterfowl Research Bureau Symposion on Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

SOME REMARKS ON THE SITUATION OF ANSER ANSER IN POLAND

 $P.\ Majewski$

General situation

The Greylag in Poland has not yet been studied in detail. The data collected so far are very modest and haphazard. In recent years interest in this species increased considerably. Gromadzky and Wieloch (1982, in press) made an evaluation of the distribution and the breeding numbers of Greylag in Poland. Witkowski (1982, in press) carried out complex studies on the breeding population of fish ponds in the Barycz Valley. Nesting biology in the flood plain of the Warta River is being investigated now by the Research Station of the Polish Hunting Association in Czempin. Attempts to introduce Greylag into areas not yet occupied by this species in the south of Poland are being made by the Agricultural Academy in Krakow.

The work of *Gromadzky* and *Wieloch* (1982, in press) indicates that Greylag occurs most numerously in the western part of Poland, that it is increasing and that the increase takes place mainly within the area hitherto occupied by this species. In eastern Poland Greylag occurs only in a few sites in small numbers and the present investigations do not indicate any increase in its numbers in that area.

The purpose of this paper is to present some hypotheses on the causes of the increase of this species in Poland which follow indirectly from the authors own research and field observations.

High adaptability of the species

Greylags in Poland show a high adaptability. This is manifested by a wide range of nest site selection and an increasing ability to coexist with man. In the author's opinion this in the basic reason for the good situation of this species in Poland.

Wide possibilities of nest site selection are displayed by Greylags nesting in the flood-land of the Warta River. In Poland, beside traditional nesting in reeds and islands, Greylags nest in numbers in the area under discussion on old willow trees, in flooded willow shrubs in deep water (about 1.5 m deep), on floating branches and in artificial nests of straw or hay located on trees and shrubs. Beside Greylag, such a wide range of nest site selection is shown only by Mallard among waterfowl nesting in the area.

A very important factor for the success of Greylag as a species is its change of

reaction to disturbance by man. One of the older Polish authors describes Greylag as a bird which is "unusually vigilant and shy" "hiding in impenetrable reeds" and flies away at a distance which makes a rifle shot impossible. According to the same author, Greylag requires ,,big waters" which provide shelter for nesting and "entire peace" (Sikolowsky, 1958). A similar behaviour of Greylags in the Barycz Valley was observed at those times by Witkowski (pers. comm.). The above descriptions do not correspond at all with the present situation. In the valley of the Warta River Greylags showed high tolerance of human activity both in nest site selection and during incubation. Many nests were found in open areas in the vicinity of a busy road (about 50 m away), in small wet reed stands among stocked meadows, on small old fish ponds whose banks were often used by man.

Feeding, courting, resting and sleeping geese were often observed in the vicinity of a busy road. In their behaviour towards man the will to preserve a safe distance rather than to escape dominates. A similar change in behaviour towards man has been confirmed by Witkowski (pers. comm.) in the region of

Baryez Valley.

It seems that the above-mentioned examples manifest a gradual adaptation of Greylag to the landscape changed by man and to increased human disturbance. Flexibility in the utilization of the breeding habitat and tolerance of human activity in the environment are, in the author's opinion, very important factors permitting the continued increase in numbers of this species in Poland. It seems that changes in surrounding wetlands, unfavourable for waders and dabbling ducks, did not restict the nesting habitats of Greylag. On the other hand, human disturbance in these wetlands, associated with tourism and recreation, has greatly increased. Thus it seems that the occupation of these habitats by Greylag depends on two factors: tolerance of human disturbance and of the presence of other bredding populations in the neighbourhood.

They Greylag is not the only species which has broken out of the crisis in number in Poland. A similar increase in numbers, connected with settlement in habitats changed by man and increased tolerance of human activities is shown

by Black Stork, Crane, Raven and Mute Swan.

Colonization of new wetlands

The complex of ponds in the Barycz Valley has for many years been the place where the largest number of breeding pairs in Poland concentrates. After the war the number of Greylags amounted to about 60—70 pairs and in successive years it gradually increased, reaching about 300 pairs at the beginning of 1960s, number has for a long time stabilized at 320—360 pairs, which indicates that the habitat has been filled (Witkowski, 1982, in press). In the neighbouring German Democratic Republic there exists a strong breeding population numbering about 1800 pairs (Rutschke—Litzbarski, 1976). It seems that the increase of Greylag numbers in western Poland and the occupation of new wetlands is based on the spread of theses populations which constitute strong centers. Here the flood plain of the Warta River may be an example; at the beginning of the 1970s the number of breeding geese amounted to 25—30 pairs (Fruziński, 1973) and then towards the end of the 1970s it increased by leaps and bounds and in 1980 reached 200—250 pairs (author's research). The production of the

local population could not have effected such a speedy increase. Thus the creation of strong breeding populations permits the Greylags to occupy convenient sites quickly. The situation is different in eastern Poland, where many habitats suitable for Greylag exist; in this vast area however there is no strong population which could become the source for new colonization.

Level of hunting pressure

It seems that one factor favouring Greylag in western Poland is the moderate hunting pressure on this species. A preliminary evaluation of this factor was

made in the flood plain of the Warta River.

Local pressure. Goose hunting in the research area is very popular among local hunters. A vital factor limiting pressure on the breeding population was the ending of spring hunting for wild geese in 1976. In this period Greylags were very susceptible to hunters because of their limited activity in the nesting period. Thus a very unfavourable hunting element for geese was eliminated.

In the autumn the large numbers of Bean Geese and White-fronted Geese coming to this area mean that these species become the main object of hunting. This is favoured by regular flights of Bean and White-fronted Geese to feeding grounds in the fields, while the mobility of Greylag is comparatively low. It is possible that Bean and White-fronted Geese bear the weight of the hunting pressure and become the buffer species for Greylag. The low local Greylag harvest is apparent in tables 1 and 2.

Table 1.

Comparison of numbers of Greylag in the research area and in the bag of hunters

Research area		Hunting bag	
total Geese	Greylag	total Geese	Greylag
15 100	7.2	*	*
35 800	2.2	460	0.7
*	No.	214	4.7
*	2/4	220	0.0
14 500	3.4	262	2.7
44 600	3.6	42	0.0
	total Geese 15 100 35 800 * 14 500	total Greylag 15 100 7.2 35 800 2.2 * * * 14 500 3.4	total Geese Greylag % total Geese 15 100 7.2 * 35 800 2.2 460 * 214 * 220 14 500 3.4 262

^{*} No data

Pressure outside Poland. In 1979 and 1980 1187 moulting adults were ringed in the area under discussion. The 37 recoveries hitherto obtained show that the ringed birds winter in southwestern Spain. The hitherto modest number of recoveries does not make it possible to draw any conclusions about mortality and the level of hunting pressure. However, a comparison of the percentage of recoveries obtained from hunters in Denmark by *Paludan* (1973) with the data from Poland permits a preliminary estimate that the pressure on the population investigated is lower (Table 2).

Table 2. Recoveries of adult greylags shot during the first year after ringing

Place and year	Number of	Recoveries		
	ringed birds	Poland	abroad	total %
Poland, 1979	688	0	15	2.2
1980	499	2	8	2.0
Denmark* 1957–62	737			9.8

^{*} Palaudn (1973)

The hipotheses concerning the causes of the increase in the Greylag population in Poland can be summarized as follows:

A) The species adaptability is an important favourable factor. The accompanying development of tolerance of human activity permits Greylag to utilize the numerous attractive and unoccupied habitats.

B) Strong populations in Poland and in the GDR permit quick settlement of new sites in the western part of the country.

C) The comparatively low hunting pressure on Greylag in the breeding grounds permits increase in numbers. The pressure during migration and wintering does not seem to be high.

> Author's address: P. Majewski Polish Hunting Association Research Station Czempin Poland

References

- Fruziński, B. (1973): Ekologia ptaków Kostrzynskiego Zbiornika.
- Retencyjnego ze szczególnym uwzglednieniem Anatidae. Rocz. Akademii Roll., Poznan. 30. 1—108.
- Gromadzky, M.—Wieloch, M. (1982): Rozmieszczenie i liczebnose gegewy w Polsee.
- Acta orn. (in press)

 Paludan, K. (1973): Migration and survival of Anser anser (Aves) ringed in Denmark. Vidensk Meddr dansk naturh. Foren. 136. 217—232.
- Rutschke, E.—Litzbarski, H. (1976): Passage and wintering of geese in the GDR. Bird Migration, Tallin. 133—146.
- Sikolowski, J. (1958): Ptaki Ziem Polskich. PWN. Warszawa.
- Witkowski, J. (1982): Population studies of Greylag geese breeding in Barycz valley Poland. Acta orn. (in press)

International Waterfowl Research Bureau Symposiumon Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

BREEDING GREY-LAG GOOSE (ANSER ANSER) IN DENMARK 1981

 $Mette\ Fog$

Distribution

The densest population of Grey-lag Goose in Denmark is to be found in the eastern part of the country on the islands of Sjaelland, Lolland, Falster and Fyn. Since the Grey-lag Goose started to expand in this century, little islands in fresh water lakes, ponds and bogs were used as breeding places, and later on also islets in the sea are used for nesting.

Numbers

Dybbro (1976) estimates the Danish breeding population in 1971—1974 at

about 2000 pairs.

 $M.\ Fog\ (1977)$ registrated in July 1974 and 1975 19 000 and 22 000 Grey-lag Geese (i. e. adults, juveniles, non-breeding and young birds) on Danish haunts. At this time of the year all individuals are probably of Danish origin, as the migration from the north has not yet started, and the Danish birds are gathering on the haunts just before going south in the course of August and September. According to $Paludan\ (1973)$, the adult birds are estimated to be $30\,\%$ of the total population. This means that the above mention number from July should correspond to a breeding stock of about 2850-3000 pairs $(J.\ Fog,\ 1981,$ in press). From 1974 to 1975 there was an increase in the population of $10\,\%$, this seems to be realistic in relation to the population development. The increase has continued up to 1981.

Breeding in Denmark 1981

Because of the draught in the Spanish winterquarter in Las Marismas during winter 1980/81 and the rumours about heavy loss of Grey-lag Geese from starvation, the Game Biology Station and the Goose Research Group in the regi of the Nordic Council for Wildlife Research (NKV) decided to pay special attention to the breeding population of the Grey-lag Goose 1981 in Denmark as well as in other Nordic countries.

Material

In the course of spring 1981, The Game Biology Station sent requests to a number of persons living in or at some of the greater breeding places for Greylag Goose in Denmark and asked them to give a qualified estimate of the population level this year. The following localities were contacted: Vejlerne (Jylland), Hvidkilde, Weddellsborg, Gyldensteen (Fyn), Tissø, Amosen (Sjaelland) and Søholt (Lolland). From the localities there was no decrease in the breeding stock, and the geese seem to be in good condition. From Søholt it was said that there were fewer non-breeders than usual and that the geese came late in 1981. Some of the other localities agreed to this last point, too.

From Weddellsborg, especially the area around Tybrind, there were more geese than usual in spring 1981, but the geese arrived 2 weeks later than the previous years. From Holckenhavn, island of Fyn, there were fewer geese than usual, instead of 100 adult birds there were only 20, and all the young birds (100–200) did not arrive. A local population in the city of Horsens in Jylland usually count more than 100 individuals in June, this year there were only

about 25 birds - adults with goslings.

In Copenhagen there is a population of Grey-lag Goose on a certain locality, Utterslev Mose. Here the geese used to be studied, i. e. ringed every year. Here the first geese arrived March 9th, which is very late compared with other years, and out of 55 pull. ringed in 1980 only 2 (3.5%) returned, usually 40% return. There were only 17 breeding pairs, a lower number than usual, but the same number as in 1980, 1972, 1970 and some other years, besides there were many pairs without goslings, totally 73 pairs (Henning Jensen, pers. comm.).

Islands in the sea

An investigation on the breeding population of Grey-lag Goose on little islands in the sea was carried out in 1981. A request was sent to 47 people who usually count birds on those islands. Altogether 48 islands were included in the investigation, and there were 178 nests on 33 islands, as 15 did not contain breeding Grey-lag Geese at all. In 14 cases there were less breeding pairs than the year before, in 4 cases there were more. On 8 islands there were quite as many as the previous year, in 7 cases the warden did not know.

Conclusion

It seems as if the young birds and the non-breeders did not turn up at the Danish breeding places in as great a number as expected, but that the breeding pairs arrived. In some cases the breeding failed for unknown reasons. This might be because the winter situation did not put the geese into the usual good condition before breeding, it might be for other more local reasons.

In the NKV it is decided to pay special attention to the Grey-lag Goose popu-

lation during the next few years in the Nordic countries.

Author's address:
M. Fog
Vildbiologisk Station
Kalo
DK—8410, Ronde.
Denmark

References

Dybbro, T. (1976): De danske ynglefugles udbredelse. D. O. F. 293 p.
Fog, J. (1981): Markskader forvoldt af gaes i Danmark. (in press)
Fog, M. (1977): Gänse, Gänseforschung und Gänseprobleme Dänemarks. Die Vogelwelt.
98. 121—141. p.

International Waterfowl Research Bureau Symposium on Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

L'A PRÉSENCE DE BRANTA RUFICOLLIS PENDANT L'HIVER EN ROUMANIE

V. Puscariu

La note envisage les observations effectuées sur la présence de la bernache à cou roux (Branta ruficollis) pendant l'hiver en Roumanie, avec les indications des zones occupées pendant les dernières années.

Ensuite, l'auteur s'occupe des mesures prises pour la protection de *Branta ruficollis* et fait des propositions pour le sauvegarde et des recherches scientifiques concernant l'écologie et l'éthologie de cette Anséride.

2/3

La présence de la bernache à cou roux (Branta ruficollis) ne fut pas signalée que sporadiquement dans la première moitié de ce scièle (1910–1967)¹.

Il faut remarquer que pendant son premier voyage en Roumanie, Peter Scott s'occupe de sa présence à Gropeni (12 km/s au sud de Braila)². Mais en analysant les dates publiées par Talpeanu et Paspaleva (1970) résulte qu'après une période de 15 ans, la présence de Branta ruficollis est signalée par différents ornithologistes, à Calarasi (Rudescu, 1951), dans le basin de Jijia (Mindru, 1958), dans les rizières de Giurgeni, ensuite à Oltina et Girlita. Pour ces deux dernières localités, les auteurs constatent que leur présence correspond à la période de drainage des zones humides qui environnent la ville de Calarași.

L'esquisse, annexé à l'article, montre aussi la dispersion des localités dans le ouest du pays, d'après les dates des ornithologistes roumains et hongrois, pendant la période de 1929–1968³.

C'est pourquoi les premières observations sur la hivernation de Branta ruficollis (Ciochia—Hoestra—Hafner, 1969) dans la compagnie de Anser albifrons ont été considérés sensationelles.

¹ Dans l'exploration de déc. 1977 il a visité de nouveau la zone de Gropeni, sans rencontre^r la *Br. r.*; où s'étend maintenant des cultures agricoles.

² La majorité des exemplaires capturés dans cette période se trouve dans collections des musées des sciences naturelles de Bucarest (Gr. Antipa), Timișoara, Sibiu, Iassy, Craiova, Pitesti.

³ Il faut remarquer cependant que la majorité des Br. r.; observée dans les pays limitrofes se trouvent en Hongrie (Sterbetz-Szijj, 1968) dans la zone de l'actuel parc national Hortobágy.

⁴ Les dénombrements ont été faits sur les auspices de la Commission des Monuments Naturels de l'Académie R. S. de Roumanie, avec le concours du Trust d'Aménagement et valorisation du roseau (TAVS) de Tulcea et la Station des Recherches marines d'Agigea (Distr. de Constanța).

En effet, le chiffre de 25 000 bernaches à cou roux observés en décembre 1968 semble représenter la moitié de l'effectif général de cet oiseau dans sa patrie Sibérienne.

Ainsi, les premières ont constaté un groupe de 650 ex. à Istria (17 nov. 1968), survis par 25 000 ex. (6 déc. 1968) toujours à Istria. Dans la même région les effectifs importants observés par les ornithologistes roumains et les équipes étrangères (Eckhart Kuyken et Bob Moasen – 3–13 nov.; R. Vieser et A. Dijksen – 26 nov.–11 dec.; P. Scott et T. Lebret – 10–15 déc.: T. Lebret et E. Nadra – 16–18 déc.; J. Philippone et E. Smith – 20–24 déc.) sont de; 2000 ex. par avion à Lunca (13 jan. 1969 – V. Ciochia et H. Hafner); 3000–4000 ex. à Istria – Jurilovea (13–28 nov. 1969 – R. Vieser et A. Dyksen); 2000 ex. à Istria (18 nov. 1969 – M. Talpaenu); 4000 ex. à Istria – Enisala (12–15 nov. 1969 – T. Lebret); 3000 ex. à Sibioara – lacul Tasaul (23 jan. 1970 – V. Ciochia, M. Talpaenu et M. Paspaleva); 9300 au nord de la localité Sinos (11 déc. 1970 – M. Talpaenu A. Johnson et A. Biber).

Un rapport présenté par *Lebret* (1975) qui a effectué une exploration dans la région Mihai Bravu le lac Razelm entre 21 nov. – 2 déc. en compagnie des ornithologistes *K. Djikens, J. Kuipers, G. Ouwenel* et *J. A. van der Van* on constate la présence des agglomérations estimées à 600 ex dans zones de Mihai Bravu (21 nov. 1974 – 600 ex.), 6 Martie (21 nov. 1970 – 670 ex.) Ceamurlia de

jos (25 nov. - 600 ex.).

La seule zone avec une population majeure fut celle de Sinoe (2250 ex. – 1 déc.). Dans le reste de la région explorée le nombre varie de 26 à 380 ex. Le rapport estime, en conclusion, un maximum de 5500–6000 ex. de *Branta rufi*-

collis dans cette période aux dates mentionnées.

Malheureusement, nous ne possédons pas de dates concernant des Anserides, enregistrées par l'équipe *Scott* et *Lebret* et ses collaborateurs (déc. 1977), c'est dommage que nous ne connaissons pas ces dates, en ajoutant qu'il existe une lacune regrettable dans les années qui suivent sur les observations de hivernage de *Branta ruficollis* en Dobrogea.

Caractéristiques géographiques de la région explorée Espéces d'oies denombrées

Il est connu que Dobrogea est une région de migration de nombreuses espèces, surtout des canards, oies et autres palmipèdes, grâce aux conditions climatiques favorables au commencement de l'hiver, ainsi qu'au printemps et une abondance de nourriture végétale et piscicole.

De cette situation favorable profitent dans les années quand le gel n'est que temporaire dans les lagunes certains oiseaux migrateurs comme les cygnes et même les zones abritées du littoral sont une attraction inattendue pour les canards, sarcelles et autres palmipèdes, qui viennent du nord arctique séjour-

ner pendant l'hiver dans cette région.

C'est d'ailleurs une explication que les zones humides du district de Tulcea connaissent une crossance de l'effectif du pygargue à queue blanche (Haliaetus albicilla) – oiseau rapace en voie de disparition – par la migration des exemplaires venus de l'URSS, l'agglomération en automne de l'espèce Tadorna casarca (T. ferrugines), le séjour prolongée jusque tard dans l'automne et même

en hiver dans certaines années de tadorne de Belon (Tadorna tadorna) dans le sud du lac Tekirghiol (District de Constanța).

C'est une région de presque 30 000 ha qiu a servi au dénombrements exposés

au commencement de cette note.

Région qui représente un assez vaste paysage agricole, d'une grande fertilité et de terrains bas entrecoupés par des pâturages ondulés et à proximité du complexe lagunaire Razelm (les lacs: Razelmul Mic, Ceamurlia, Golovita, Zmeica) – voir la carte.

À la fin de novembre, commencement de décembre le maïs et surtout le blé en pleine croissance dans les vastes terrains labourés par les unités agricoles de l'Etat forment la principale nourriture, ainsique les algues (Zostera etc.) qui abondent dans le littoral des lacs situés à proximité.

Les oies sauvages qui fréquentent ces champs de blé appartiennent à trois

espèces :

- oie cendrée (Anser anser rubitostris) en roumain gisea de vara;

- oie rieuse (Anser albifrons), en roumain girlița;

- bernache à cou roux (Branta ruficollis), en roumain gisca cu git roşu.

Une forte concentration n'existe pas chez *Anser anser* qui a été observée dans les dénombrements exposés seulement en petites groupes de 5 à 15 exemplaires.

Le nombre total des *Anser albifrons* a été estimé par le dénombrement des ornithologistes jusqu' à 31 500, mais nous pensons que ce nombre est consi-

dérablement dépassé.

Avec un instinct grégaire Branta ruficollis aime toujours être en compagnie et gardée par Anser albifrons dans leur déplacements des lacs aux champs voisins et surtout dans les champs de blé verts et au repos dans les herbages. C'est 25 000 – comme nous avons vu – l'effectif maximum que Hockstra et Hafner on dénombré en hiver 1968 entourées par des disaines des miliers de Anser albifrons.

Le changement subis dans l'aire occupée pendant le séjour d'hiver de Branta ruficollis, comme conséquence de la modification de l'environnement c'est un

fait constaté surtout dans les cernières années (1979–1980).

D'abord dans les saisons sèches, depuis 1971, la bernache à cou roux, en quéte de nourriture, a dépassé au N. E. la limite de son séjour, montrant sa présence en petits groupes isolés dans les champs humides qui entourent les grandes communes de Murighiol et Dunavaţul de jos.

Depuis déc. 1977, quand j'ai accompagné l'équipe de *Scott* (1939), on pouvait observer que dans les années humides *Branta ruficollis* aime beaucoup les jeunes plantes de blé, dans les premières cultures aux champs qui l'année précédente

étaient cultivées avec du mais.

Mais le changement le plus important en ce qui concerne l'aire de son hivernage en Dobrogea du Nord-Est c'est le drainage des zones humides, au profit

de l'agriculture.

Cette constatation évidente a détérioré la situation de la réserve naturelle ,,Saraturile de la Murighiol – Plopul'' où en 1980 les nouvelles cultures de mais ont remplacé une zone humide suamatre habitée par des limicoles assez

⁵ Les herbages ces plus hautes qui encadrent ses terrains des basses collins sont 270 m entre les communes M. Kogalniceanu et Mihai Bravu et 237 m au sud de la ville de Babadag.

rares (Himantopus himantopus, Recurvirosbra avocetta), ainsi que différentes

espèces d'Anatides.

Mesures de protection. En plein accord avec les autorités du Département de la Silviculture (Inspéctorat Général de la chasse, Association Générale des chasseurs et pêcheurs sportifs) avec l'appui des autorités locales (Conseils populaires des districts Constanța et Tulcea) et sous les auspices du Conseil National pour la protection de l'environnement, l'Académie de la République Socialiste de Roumanie par la Commission des Monuments Naturels, les autorités locales ont pris des mesures de Protection très efficaces.

L'interdiction de la chasse en delta du Danube, depuis 1974, et les mesures de coercision de Mr. V. Vilcu, ancien secrétaire général du Conseil populaire du district de Constanța et membre du Conseil d'Etat ont empêché complète-

ment l'exercice du braconnage contre la bernache à cou rous.

Mentionnons aussi la propagande éducative devéloppée pour le grand public et l'enseignement et surtout la contribution apportée aussi puor la protection de *Branta ruficollis* par le film en couleurs "Le grand vol" et un interview avec *Scott*, réalisé par le studio cinématographique Al. Sahia et le concours scientifique de la Commission des Monuments Naturels.

Propositions

1. Continuation des mesures prises par les autorités locales, dans le périmètre de hivernage de Branta ruficollis.

Il faut mentionner que l'interdiction de la chasse dans la Delta facilité l'app-

lication de ces mesures.

2. La mise légale de la protection des nouvelles réserves Istria – Nuntași (120 ha) et Zmeica – Chituc (600 ha) auront une influence notoire pour maintenir le calme de ces zones de grande fréquence ornithologique à la fin de l'automne et au commencement de l'hiver, surtout pour les Ansérides et Anatides, assurant la tranquillité pour centains de milliers d'oiseaux.

3. Des observations de dénombrement en vol, en utilisant le helicoptère et des recherches scientifiques approfondies sur l'écologie et l'éthologie de Branta

ruficollis.

L'interdiction du drainage des zones humides destinées à la conservation de

la sauvagine.

4. Continuation de la campagne instructive et de propagande pour la conservation de ce monument naturel par l'intermède des moyens publicitaires, conférences, expositions etc. dans tous les degrés de l'enseignement et d'éducation, ainsi que pour le grand public.

5. L'intensification de la collaboration pour les recherches ornithologiques en hiver entre les ornithologistes roumains et étrangers, en améliorant les con-

ditions de location et d'observation dans les zones étuidées.

Je pense d'ailleurs, qu'un point gagné dans cette collaboration sera la présence au symposium des délégués qui s'intéressent de la situation de la *Branta ruficollis*, en hiver dans leur pays: *I. Sterbetz* (Hongrie), *A. A. Vinokurov* (URSS), *V. Pomakov* (Bulgarie).

Attendons, avec impatience leurs importantes contributions sur la présence de Branta ruficollis dans leurs pays, ainsi que celles de Mr. Lebret (Pays Bas), le vétéran bien connu par des observations sur le hivernage de ce magnifique oiseau en Dobrogea.

> Author's address: Prof. Valeriu Puscariu 71 102 Bucuresti Calea Victoriei 125 Romania

Bibliographie

Bannetman, D. A. (1957): Birds of the British Is. Vol. 6. London.

Ciochia, V.-Hockstra, H.-Hafner, H. (1969): Oiseaux rares de la Dobrogea (Branta ruficollis Pall., Anas angustirostris Ménétr., Melanitta fusca L.). Lucr. Stat. cerc. Marine "Prof. I. Borcea" Agigea. Vil. 3. p. 301–306.

Coombes, R. A. H. (1957): The Nedbreasted goose in Thrace. Birds of the British Is. Vol.

6. London.

Johnson, A.-Hafner, H.(1970): Winter Wildfowl counts in South-east Europe and western Turkey, Wildfowl. Vol. 21. p. 22–36.

Lebret, T. (1975): Report of an excursion to the Dobrogea Rumania, p. 14. Middelburg. Lintia, D. (1932): Beiträge zur Kenntnis der Vogelfauna von Rumänien. Publ. Soc. Nat. Rom. No. 10, p. 64-71.

Micev T. (1968): Neue Angaben über die Ernährung der Ornithofauna des Naturschutzgebietes Srebarna in der Süddobrudja, Izv. Zool. Inst. Muz. Sofia, Vol. 27, p. 13-21. Mindru, C. (1958): Citeva date zoogeografice referitoare la unele pasari in Moldova. St.

Cerc. St. Biol. St. st. Pgr. Vol. 9. No. 1. p. 97-103.

Pascovschi, S. (1934): Pasari rare, Carpatii. An. II. No. 8, p. 215–216.

Pascovschi, S. (1934): Cu prilejul unei pasari rare, Carpatii. An. II. No. 6. p. 149–150. Rudescu, L.: (1951): Oaspeti de iarna in Delta Dunarii. Rev. Vin. No. 1. p. 5-7.

Scott, P. (1939): Wild chorus. Londra. p. 53-59.

Scott, P. (1970): Redbreasts in Rumania. Wildfowl. Vol. 21. p. 37-41.

Sterbetz, I.-Sziji, J. (1968): Das Zugverhalten der Rothalsgans (Branta ruficollis) in Europa. Die Vogelwarte. Vol. 24. p. 266-277. Talpeanu, M. (1963): Anseriformes of Rumania. Proc. 1-st Europ. Mtg. on Wildfowl Con-

servation. St. Andrews, Scotland. p. 45-49.

Talpeanu, M. (1968): Note ornitologice din Dobrogea. Rev. Muzeelor. Vol. V. No. 6. p. 257 - 259.

Talpeanu, M. (1970): Les Anseriformes de Roumanie (Nidification, Hivernage). Trav. Mus. Hist. Nat. "Gr. Antipa". Vol. X. p. 295–305.

Talpeanu, M. (1971): Les anseriformes de Roumanie (II.). Trav. Mus. Hist. Nat. "Gr. Antipa". Vol. XI. p. 393–399.

Talpeanu, M.-Paspaleva, M. (1970): Branta ruficollis en Roumanie. Ocrotirea Naturii. T. 15. No. 2. p. 161–164.

Uspenski, S. M. (1965): Die Wildganse Nordeurasiens. Neue Brehm Bücherei, No. 352.

International Waterfowl Research Bureau Symposium on Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

WINTERING OF THE RED-BREASTED GOOSE (BRANTA RUFICOLLIS) IN BULGARIA

B. E. Ivanov—V. A. Pomakov

Till recent times knowledge of waterfowl wintering in Bulgaria was based only on data from sporadic studies carried out by a few professional ornitholists. However, the kind of ornithological work done so far involved more intensive work during the breeding and migration seasons while the winter months aroused little interest.

More recent studies showed that the numbers of the wintering populations as well as the status of a number of species have undergone substantial changes (Johnson-Biber, 1970; Johnson-Hafner, 1970; Ivanov, 1979; Donchev, 1980; Roberts in lit.). These changes have been called forth by factors acting outside the territory of Bulgaria, like raised population numbers due to efficient conservation measures, limitation of hunting, changes in the tratidional wintering grounds. On the other hand there are certain factors acting within the country, like milder winters during the last decade. The first quantitative studies of waterfowl wintering in Bulgaria were those made in the 1969/1970 winter and in December 1970 by Johnson, Hafner and Biber (Johnson-Biber, 1970; Johnson-Hafner, 1970). Later (1979) Ivanov published a paper dealing with three large wetlands along the Danube. His work covered the winter months of 1975/1976 and 1977/1978. In the same period Nankinov (1979) studied the concentrations of ducks in the wetlands around Sofia.

Bearing in mind the important geographical situation of our country with respect to the route of migrating ducks and geese coming from northern Europe, and the insufficient information concerning their wintering stocks in Bulgaria, the Research and Coordination Centre for the Protection and restoration of the Environment (R.C.C.P.R.E.) in cooperation with the Institute of Zoology (both being institutions of the Bulgarian Academy of Sciences) have organized and carried out since 1977 annual midwinter counts of waterfowl over the whole country. The objective was to learn more about the numbers of the wintering populations, the most important wetlands for wintering, and the environmental factors influencing the numbers and the distribution of wintering birds.

Obviously, the data concerning Branta ruficollis are of special interst. During the last few years the species has definitively shifted its wintering grounds from the Salayan and Mugan steppes in Soviet Azerbaydzhan to the Danube Delta and Northern Dobrodja (Talpeanu, 1972; Isakov, 1979). It was pointed out that the drainage of the wetlands in the Azerbaydzhanian steppes and cultivation of the land for winter wheat was the main cause for this shift. However, as later appeared, the most critical was the replacement of the wheat a new crop – cotton. Elimination of the food basis of the geese forced the wintering

birds to move westward along an old migratory route, only used by small flocks, towards the Danube Delta and the Northern Balck Sea coast. The winter of 1968/1969 sets the beginning of mass concentrations of this species in Dobrodja (Isakov, 1979). On that new wintering ground the conditions were favourable and similar to those in the Azerbaydzhanian steppes – vast areas ander winter wheat and sufficiently large lakes to provide safe roosting. Yet no one knows what happens to the flocks of B. rifucollis in January, during the coldest time of the season. There is an opinion that some of these flocks fly south towards the Maritza (Evros) Delta where B. ruficollis has been regularly observed in small numbers (Bauer et al. 1969; Hudson, 1975; Beaman, 1978; Isakov, 1979), or follows the Danube to the Hortobágy steppe which has also been known for a long time as a regular, though poorly visited wintering ground (Sterbetz–Szijj, 1968).

Till not very long ago B. ruficollis was considered to be a rare winter visitor to Bulgaria. Up to 1950 the species was known from observations of separate birds or small flocks from about 10 localities (Patev, 1950; Prostov, 1955, 1964; Kalčev, 1964). The rise in numbers of the Red-breasted Goose in Europe which began in the 1950's, and has increased ever since (Sterbetz-Szijj, 1968) is difficult to follow in our country (Table 1), due to the weak and not very efficient network of trained observers. Probably, the process has taken place in Bulgaria too, though feebly, soon after 1960, for B. ruficollis was found for the first time along the Danube in 1961 (Mičev, 1968), and in February 1964 some 10 birds were shot at Shabla Lake (Dontschev, 1967). Since none of the above – mentioned authors regarded this species as the main object of his studies, the numbers of wintering birds in Bulgaria must actually have been

bigger.

The high concentrations of this species in Dobrodja in the winter of 1968/1969 and during the following winters had its impact on the numbers of the geese wintering in Bulgaria (Johnson-Hafner, 1970; Georgiev, 1976; Smith-Philip-

pona, 1970).

The midwinter counts mentioned above showed that Bulgaria has been regularly visited by this rare goose, and that our country has become part of its winter range. In winter the main site of concentration of this species is Shabla Lake, and to a considerably lesser degree Durankulak Lake. In these lakes B. ruficollis spends the nights together with the numerous flocks of Anser albifrons. Shortly after dawn the mixed goose flocks leave the roosting sites and make for the winter wheat fields (and in recent years) towards the fields under a new forage crop, where they forage and rest during the daytime. At dusk the flocks fly back to the lakes, and again B. ruficollis joins A. albifrons. However, in 1979 we also observed flocks, made up exclusively of B. ruficollis and varying in number from 50-100 to 2000 individuals. During this and the next winter the highest numbers of this species were recorded for this part of the country. The winter of 1981 was very harsh and probably this was the cause for the diminishing numbers of the Red-breasts. It is possibly that the snowstorm that raged several days before our arrival on the spot scattered the flocks of Redbreasts wintering there and so the numbers recorded did not correspond to the numbers, actually present.

Judging from the observations of other authors, as well as from the hitherto prevailing results of our midwinter counts, the area of the Burgas Lakes mainly

Table 1.

$Occurrence\ of\ the\ Red\text{-}breasted\ Goose\ in Bulgaria$

Year	Date	Number of individuals	Locality	Reference
1920	27. XI.	1	Kumanitza, Sofia	Patev (1950)
1921	25. XI.	1	Negovan, Sofia	Patev (1950)
1924	V.	2 2	Dermantzi, Lukovit Nova Zagora	Patev (1950) Patev (1950)
1929		1	Plovdiv	Patev (1950)
$\overline{1935}$	19. IX.	1	Nova Zagora	Patev (1950)
$\overline{1939}$		15-20	Atanasovsko, Burgas	Patev (1950)
$\overline{1942}$	18. I.	1	Blatez, Sliven	Patev (1950)
1946	13. XII.	1	Mandra, Burgas	Prostov (1955, 1964)
1948	Ι.	1	Orizare, Plovdiv	Kalčev (1964)
1953	22. II.	1	Dolno Ezerovo, Burgas	Prostov (1955, 1964)
$\overline{1955}$	22. I.	1	Burgas	Prostov (1964)
1960	9. I.	1	Burgas	Prostov (1964)
$\overline{1961}$	8. XII.	1	Srebarna, Silistra	Mičev (1968)
$\overline{1963}^{-}$	5. II.	1	Kazanlak	Dontschev (1967, 1977)
1964	6-8. II.	10	Shabla	Dontschev (1967)
1965	31. I. 5. XII.	1 1	Durankulak Durankulak	Dontschev (1967) Dontschev (1967)
1966	7. II. 27. XI.	30 1	near Shabla Barrage G. Dimitrov	Dontschev (1967) Dontschev (1977)
1969	23. I. 11. II. 28–29. XII.	$ \begin{array}{r} 2 \\ 200 \\ 250-275 \end{array} $	Mandra, Burgas Atanasovsko, Burgas Burgas	Georgiev (1976) Georgiev (1976) Smith, Filippona (1970)
Winter	1969/1970	300 +	Bulgaria	Johnson, Hafner (1970)
1970	19. XII. 6. I. I. 1.	1 1000 370 6–10	Venetz, Burgas Shabla, Durankulak Predominantly Mandra Ovchi Kladenetz, Yambol	Johnson, Biber (1970) Donchev (1980) Roberts in lit. Roberts in lit.
1976	18. III. 30. X. 20. XI. 22. XI.	$ \begin{array}{c} 1 & 500 \\ & 11 \\ & 42 \\ & 2 \end{array} $	Shabla, Durankulak Atanasovsko, Burgas Persina, Danube Srebarna, Silistra	Donchev (1980) Roberts in lit. Iwanov (1979) Iwanov (1979)
	15. I. 16. I.	9 182	Srebarna, Silistra Durankulak	Iwanov (1979) Mičev, Nankinov, Iwanov in lit.
1977	28. I. I. I.	$ \begin{array}{r} 6 \\ 810 + \\ 6-10 \end{array} $	Lakes of Burgas Midwinter Count, Ovchi Kladenetz Yambol	Roberts in lit. Roberts in lit. Roberts in lit.
	5. II. 28. II. 22. III. 23. XI.	$\begin{array}{c} 11 \\ 1 \\ 32 \\ 164 \end{array}$	Lakes of Burgas Lakes of Burges Srebarna, Silistra Srebariia, Silistra	Roberts in lit. Roberts in lit. Iwanov (1979) Iwanov (1979)

Year	Date	Number of individuals	Locality	Reference
	23. I.	228	Durankulak	Iwanov, Pomakov
	24. I.	691	Shabla	Iwanov, Pomakov
1978	12. II.	1 580	Prolez, Tolbuchin	Donchev (1980)
	23-24. II.	000+	Shabla	Vatev in lit.
	27. X.	150	Persina, Danube	Iwanov~(1979)
	20. I.	23	Srebarna, Silistra	Iwanov, Pomakov
1979	22. I.	158	Durankulak	Iwanov, Pomakov
	23. I.	14 890	Shabla	Iwanov, Pomakov
	12. I.	1	Slanotran, Vidin	Iwanov, Pomakov
	14-15. I.	5	Zagrazhden, Danube	Iwanov, Pomakov
1980	20. I.	93	Durankulak	Iwanov, Pomakov
1000	21. I.	16 468	Shabla	Iwanov, Pomakov
	13. I.	11	Barrage Piasachnik	Mičev, Nankinov in lit.
1981	15. I.	22	Barrage C. Cerkovski	Mičev, Nankinov in lit.
	22. I.	230	Durankulak	Iwanov, Pomakov
	24. I.	$2\ 015$	Shabla	Iwanov, Pomakov

plays the role of an intermediate station for the small flocks of Red-breasts migrating towards or coming back in springtime from the Maritza Delta. During the midwinter counts the Red-breasts were not recorded at the Burgas Lakes. The importance of the Ovchi kladenetz Dam in the District of Yambol as well as of number of other non-freezing dams in Southern Bulgaria is similar. In all cases the Red-breasts have been present in small numbers at these sites, mixed with the large flocks of White-fronted Goose. So far the Red-breasts have not established themselves for wintering in any particular wetland in southern Bulgaria.

The Danube flood plain is the route for the westward movements of the species. Along this route flocks, usually not very large, are carried away by the

first tide of migrating White-fronts.

Here again, as in Dobrodja, the main wintering grounds are always in areas adjacent to the fields under winter corps. Unfavourable weather conditions along the Danube in January frequently prevent regular and exact observations and counts of the wintering birds but we may assume that their numbers are not very high. The Nature Reserve of Lake Srebarna should be mentioned as a fairly important wintering ground for Red-breasts along the Danube flood plain. The lake's open water surface was completely frozen only in the winter of 1981, when some 1500 White-fronts were recorded resting on the ice; we assume that they most probably moved towards the sea in the following days. January 1981 was a very hard month for the waterfowl along the Danube, not only because a thick layer of snow had covered the winter crops and temperatures were very low; the water level of the river was unusually high and the sand bars on which geese roost at night were then under water. That is why this winter only separate small flocks were recorded along the river. The Red-breasted geese were not observed at all. So far we have not found a more or less permanent wintering ground of the Red-breasts along the Bulgarian part of the Danube. Perhaps only the Nature Reserve of Lake Srebarna should be considered as a wintering ground of any value although weather conditions are not always favourable for the identification of birds at the time of observation.

Our studies of the last few winters give us enough reason to assume that the

area of Lakes Shabla and Durankulak is a new wintering ground for a large part of the world population of the Red-breasted Goose crossing the border form the lakes in Northern Dobrodja and from the Danube Delta. Through the whole winter, both lakes are free of ice. The arable land around them is mainly under winter wheat and even during heavy winters there is always a strip of land along the sea coast which stays free of snow, since the snow cover is of very short duration. Lake Shabla is under a special regime of protection and use, and Lake Durankulak has been declared a Natural Monument. Around both lakes a strip of land some 500 m wide has been set apart as a buffer zone and hunting is permitted only outside this perimeter.

Exclusion of the Red-breasted Goose from the list of hunted species is imminent. Unfortunately hunting pressure on this goose cannot be eliminated completely since it associates closely with the White-fronted Goose which is the main quarry species in Bulgaria. Anyway we consider that the hunting pressure on the Red-breasted Goose in this particular part of the country is not very heavy due to the conservation measures already taken and to some peculiarities of goose behaviour. Our observations show that the birds take of very steeply and climb high enough while still above the lake so that when out of the buffer zone they are so high that they are practically invulnerable to hunters. When feeding, the geese stay in the middle of the huge wheat fields and bearing in mind their habit of remaining constantly on the watch, we can completely exclude them being surprised by hungers. Apart from this, goose hunting is not practised at their feeding grounds. Only rarely, unfavourable meteorological conditions (like fog) may give some chance to hunters waiting for the birds at dusk or early in the morning.

The regular wintering of the Red-breasted Goose in Bulgaria is already a fact. Most probably the population is moving to our country to escape from the cold in Northern Dobrodja and the Danube Delta. It is possible that reason for this move is the replacement of the winter wheat in the wintering grounds in Romania with other crops (like maize), according to Mrs. Papaleva and Mr. Talpeanu. Coordinated research in Northern Dobrodja and the Danube Delta is necessary to clarify the role and place of the new wintering ground within

the whole winter range.

Author's address:
Bozhidar E. Ivanov
Institute of Zoology
Sofia
Bulgaria
Vladimir A. Pomakov
Research and Coordination Centre
for the Protection an Restoration
of the Environment (RCCPRE)
1113 Sofia
Gagarin 2

References

Bauer, W.-Helversen, O. v.-Hodge, M.-Martens, J. (1969): Catalogus Faunae Gracciae.
Pars II. Aves. Thessaloniki. p. 203.
Beaman, M. (1978): The Ornithological Society of Turkey. Bird Report. 1974–1975.

Beaman, M. (1978): The Ornithological Society of Turkey. Bird Report. 1974–1975.
 Dontschev, S. (1967): Beitrag zur Erforschung der Schwimmvögel in Bulgarien. Bull. de l'institute et musee de zoologic. 23. p. 79–94.

Dontschev, S. (1977): Die Vögel im Rosental. Acta Zool. Bulgarica. 6. p. 15-34.

Bulgaria

Donchev, S. (1980): Bird Migartions Along the Bulgarian Black Sea Coast. Ecology. 7. p. 68-82.

Georgiev, Zh. (1976): Birds Along the Black Sea Coast Between Burgas and Varna. Terrestrial Fauna of Bulgaria. Materials, Sofia. p. 201–284.

Hudson, R. (1975): Threatened Birds of Europe. Macmillan London Limited, London.

pp. 128.

Isakov, Yu. A. (1979): Migartions of Red-breasted Goose – Rufibrenta ruficollis. Migrations of Birds of Eastern Europe and Northern Asia. Ciconiiformes – Anseriformes. Nauka, Moscow. p. 203–209.

Ivanov, B. (1979): Study of the Numerical Strength of the Natatory and Marsh Birds in the Winter Months of 1975/1976-1977/1978 in Three Marshes Along the Danube. Eco-

logy. 5. p. 30-43.

Johnson, A. R.-Biber, O. (1970): I.W.R.B. Goose-Working Group Mission to Eastern Europe. December 1970. p. 1–8. Printed Circular.

Johnson, A. R.-Hafner, H. (1970): Winter Wildfowl Counts in South-East Europe and

Western Turkey. Wildfowl. 21. p. 22–30.

Kalčev, B. (1964): Zur Kenntnis der Vogelfauna der Umgebung von Plovdiv (Bulgarien). Zool. Abh. Staatl. Mus. Tierkd. Dresden. 26. p. 293–297.
Mičev, T. (1968): Neue Angaben über die Ornithofauna des Naturschutzgebiets Srebârna

in der Süddobrudja. Bull. de l'institut et musee de zoologie. 27. p. 13-20.

Nankinov, D. (1979): Current Biotopes and Concentrations of Migrating and Wintering Ducks in the Environs of the City of Sofia. Ecology. 5. p. 21–29.

Pater, P. (1950): The Birds of Bulgaria. BAS, Sofia. pp. 364.

Prestov, A. (1955): Neue Angaben über die Ornithofauna der bulgarischen Schwarzmeerküste. Bull. de l'institut et musee de zoologie. 4-5. p. 451-460.

Prostov, A. (1904): Untersuchungen der Ornithofauna im Gebiet von Burgas. Bull. de

l'institut et musee de zoologie. 15. p. 5-67.

Smith, E. C.-Philippona, J. (1970): Preliminary Report on Observations of Waterfowl and Other Birds in Rumania, Bulgaria, Turkey and Hungaria. Autumn and Winter 1969–1970. p. 1–3. Printed Circular.
Sterbetz, I.-Szijj, J. (1968): Das Zugverhalten der Rothalsgans (Branta ruficollis) in Euro-

pa. Die Vogelwarte. 24. 3/4. p. 266-277.

Talpeanu, M. (1972): Notes écologiques sur Branta ruficollis. Trav. Mus. Hist. Nat. "Gr. Antipa". 12. p. 343–354. International Waterfowl Research Bureau Symposium on Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

ANSER FABALIS IN SPAIN: HABITAT, DISTRIBUTION AND POPULATION DYNAMICS

C. Otero

According to Bernis, Anser fabalis wintering in Spain are of the subspecies A. f. rossicus, or between A. f. rossicus and A. f. fabalis.

The only ringing recoveries in Spain are of two adults ringed in February and March 1963 or 1964 at Alem in the southern Netherlands, both shot in Tierra de

Campos, northern Spain.

The maximum number recorded is 6000 in 1969, the minimum 400 in 1978 and 1980. The average wintering population numbers 4000. They stay from the beginning of November until the end of February, mostly in Zamora provence, but also in the provinces of Burgos, Zaragoza, Valladolid, Soria and Toledo (Fig. 1), between 43° and 40° N. The preferred habitat is cultivated land, with low density of human population.

1. Anser fabalis in Spain

36

In the last four years, following the drought, the population of A. fabalis wintering in Spain has changed its roosting area from the lagoons at Villafáfila (Zamora province) to the nearly artificial reservior on the Esla River. The two sites cover 1200 square kilometres (Fig. 2).

The problems confronting the geese are as follows:

- Hunting: there is no specialized A. fabalis hunting;

- Agriculture: there is probably some influence of pesticides (now being studied), with traces of pesticides found in muscles and viscera;

- Disturbance: some influence of human pressure is found with building of

new roads;

- Drought: the recent drought has caused the birds to change roosting places

in its principal area.

The associated fauna in the area includes: up to 2000 Grus grus in November and December; up to 1000 Anser anser between November and March; a total of up to 5000 ducks (Anas penelope, A. acuta, A. crecca, A. clypeata and A. platyrhynchos); other non waterfowl species – Otis tarda, O. tetrax, Pterocles orientalis, P. alchata.

Author's address:
Carlos Otero
Fundacion Jose Maria Blanc
Centro de Estudios Cinegeticos
El Masegar
Recursos Naturales
Ayala 48
Madrid 1
Spain

International Waterfowl Research Bureau Symposium on Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

STATUS ACTUEL DES POPULATIONS DE ANSER FABALIS ROSSICUS HIVERNANT EN FRANCE ET EN ESPAGNE

O. Fournier — C. Otero — C. Riols

Les effectifs et la répartition d'Anser fabalis rossicus hivernant en France et en Espagne ont subi des changements depuis environ vingt ans. L'absence d'absence d'études spécifiques et de relations suivies au niveau international n'ont pas permis jusqu'a aujourd'hui la synthése des connaissances récentes sur ces évolutions dans ces deux pays. Cette comminucation a donc pour objet de compléter les exposés de M. Fog et C. Otero donnés lors de ce symposium et publiés dans ce fascicule.

Evolution des effectifs et de la distribution

La carte 1 montre la distribution quantitative connue de nos jours. En Espagne (Bernis, 1963) l'effectif régulier atteignait 25 000 individus dont une grande proportion était centrée sur la Laguna de Nava. Une estimation vers 1969 (Coronado, 1973) a laissé apparitre une trés importante diminution et moins de 6000 individus représentaient l'effectif huvernant moyen. En 1980 (Otero, 1983) l'hivernage réguier de A. f. rossicus ne concerne plus que 4000 individus, répartis en plusieurs stations dont une reste la plus importante zone (Fig. 1). En France l'effectif hivernant fut (sous)-estimé à 1000 environ dans les années 50-70, dans diverses stations dispersées. Il semble que l'effectif se soit accru récemment et le nombre des hivernants semble être actuellement de 5000 individus environ, répartis en quelques stations importantes et plusiers secteurs dispersés. Ainsi la population actuellement hivernant réguliérement en France et en Espagne es estimée à 9000 individus alors qu'il y a vingt ans elle pouvait compter de 25 000 à 30 000. A partir de 1963 des observations faites en France ont permis à l'un des auteurs présents de supposer que l'ensemble des Anser tabalis hivernant dans l'ouest de l'Europe appartenaient à la sous-espéce rossicus (Fournier-Jarry, 1965; et non publié), l'ensemble des observations récentes dans nos deux pays a confirmé cette hypothèse. M. Fog précise, ainsi que Mooij (1981) que Anser fabalis rossicus est la sous-espéce hivernante dans le sud des Pays-Bas et le "Niederrhein" (Sud-Ouest R. F. A.).

C'est seulement durant les hivers les plus sévéres que sont observés dans le Nord de la France des individus se rapprochant du phénotype fabalis, certainement en provenance des zones normales d'hivernage du nord des Pays-Bas, de R. F. A. et de R. D. A. Il y a certainement aussi une zone de brassage génétique induisant des phénotypes intermédiaires entere fabalis et rossicus dans le nord des Pays-Bas, de la R. F. A. et en R. D. A. comme l'a souligné Rutschke (viva voce); mais le "cline" semble relativement limité à une zone de contact assez

Limite de l'aire d'hivernage d'A.f. rossicus

Zone de transition fabalis/rossicus

0 - 100 individus (irrégulier)

100 - 500 individus

500 - 1500 individus

1500 - 4000 individus

1. Distribution quantitative de l'hivernage d'Anser fabalis rossicus en France et en Espagne (1975–1980)

restreinte en hivernage normal. Il n'y a donc que peu de doutes quant à l'individualité des populations fréquentant réguliérement et traditionnellement la France et l'Espagne. La distribution de ces populations est à commenter. D'une part il y a des secteurs d'hivernage qu'on peut appeler massif et d'autre part de nombreuses stations dispersées accueillant de petits effectifs qui semblent assez attachés à leur tradition d'hivernage si l'Environnement n'est pas modifié.

Discussion sur les changements et la repartition

Les évolutions constatées dans la répartition des effectifs en France et en

Espagne montrent un contraste qui peut être expliqué en partie.

En France un certain nombre de changements sont intervenus dans le Nord-Est avec la création des grands réservoirs de Seine et de Marne et le canal du Rhin. Une région traditionnelle d'hivernage est ainsi devenue plus favorable et l'augmentation peut donc être attribuée à une meilleure capacité d'accueil du milieu. Dans les autres régions la situation est fluctuante. L'hivernage est plus variable ou irréguier. On peut attribuer co problème essentiellement à la pression de chasse quit, soit empéche le renouvellement d'un stationnement occasionnel, soit se développe localement dans un secteur ou le stationnement se développe aussi. Ainsi il n'y a pratiquement en France de stationnement traditionnel que des zones où les réserves des chasse sont suffisamment frandes et satisfont aux exigences fondamentales de l'espéce. Pourtant de nombreuses régions de l'ensemble du territoire français pourraient convenir comme en témoignent les "essais" d'hivernage de groupes quelquefois importants. Ainsi le dérangement (probablement plus que le prélévement), soit sur les zones d'alimentation, soit sur le dortoir nocturne, semble être le principal facteur limitant l'augmentation du nombre des A. f. rossicus hivernant en France, malgré l'augmentation générale des effectifs de la population constatée par M. Foq

En Espagne, les differents spécialistes s'accordent pour expliquer la diminution rapide de l'effectif hivernant par la dégradation considérable de l'habitat en zone humide, particulièrement dans la principale station centrée sur la Laguna de Nava (Palencia). Le suivi dans d'autres stations à montré une certaines dispersion mais les nombres d'hivernants dans ces conditions restent

faibles.

Conclusion

La France et l'Espagne sont des zones d'hivernage traditionnelles d'Anser fabalis rossicus. L'effectif global hivernant réguilérement dans ces pays a considérablement régréssé depuis vingt ans mais la situation est trés differente entre les deus nations. Si en France le nombre des hivernants à augmenté sensiblement, le niveau des effectifs reste faible avec une moyenne de 5000 individus.

La capacité d'accueil est jogée trés supérieure et le facteur limitant est certainement la pression de chasse et de dérangement. En Espagne la destruction de l'habitat principal à dramatiquement réduit le nombre des hivernants, mais il existe encore plusieures stations dispersées totalisant réguliérement 4000 hivernants.

Mesures necessaires d'amenagement

La synthése des quelques données disponibles conduisent à préconiser un certain nombre de mesures indispensable au maintien – et peut – étre à l'accrois-

sement – de cette population hivernante en situation précaire.

En premier lieu la protection active de tous les secteurs d'hivernage actuels, petits et grands, devrait étre envisagée tant au plan des milieux indispensables que des groupes d'oiseaux traditionnellement attachés à ces quartiers d'hiver. Dans ce but il serait nécessaire de coordonner une étude pratique entre les deux pays concernés dés l'hiver 1982–1983, sous l'égide du B.I.R.O. (I.W.R.B.). En deuxième lieu il serait intéressant de favorier l'implantation durable de

l'hivernage dans des secteurs où récemment des stationnements hivernaux ont

été notés et où le dérangement semble étrela cause de l'abandon.

Enfin, connaissant l'influence importante en France de création de nouveaux habitats hivernaux constitués par les grands réservoirs hydrauliques, des mesures d'aménagement pour les Oiseaux d'eau et particuliérement les Oise et Canards gibiers, devraient être prises afin de favoriser de nouvelles implantations hivernales à titre compensatoire de la perte d'autres zones humides.

Author's address:
O. Fournier
"Les Proutieres" Sainte-Foy
85 150 La Mothe-Achard, France

Centro de estudios cinegeticos Recursos Naturales, C/Ayala 48 Madrid 1, Espagne

> C. Riols Ambrires, 51 290 Saint-Rémy – en Bouzemont, France

Bibliographle

Bernis, F. (1963): La invernada y migracion de nuestras Anseres. Ardeola. 9. (2). Fog, M. (1982): Number of Bean Goose (Anser fabalis) in the wintering areas. Aquila, 89. Fournier, O.-Jarry, G. (1965): Capture d'une Oie des moissons de Sibérie (Anser fabalis rossieus, Buturlin) en Vendée. L'Oiseau et R.F.O. 35. p. 158-159.

Mooij, J. (1981): The "Niederrhein" (Lower Rhine) area (North Rhine Westphalia F.R. G.) a Goose wintering area of increasing importance in the Dutch-German border region.

Aquila, 89.

Otero, C. (1983): Anser fabalis in Spain. Aquila. 90.

Riols, C. (1981): Rapport au B.I.R.O. France, Octobre 1981.

International Waterfowl Research Bureau Symposium on Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

NUMBERS OF WILD GEESE IN THE CZECHOSLOVAK—HUNGARIAN SECTION OF THE DANUBE IN 1962/63, 1972/73 AND 1978/79

A. Randik

Abstract

The Czechoslovak—Hungarian section of the Danube (the stretch between Bratislava and Szob) is an important gathering area for water birds, including wild geese, during migration and wintering periods. In this section, the Danube

1. Numbers of geese recorded in synchronized counts on the Danube between Bratislava and Szob

does not have the character of an Alpine river, and at present it is a major inland river delta.

Since the Gabcikova-Nagymaros Danube water conservation project has been started in this section, it can be assumed that the character of the whole section will be totally changed. For this reason, before building started, biological research began to document the ecological conditions affecting waterfwol; the research is continuing during building operations.

Result of the synchronized international census of wild geese during migration and wintering periods on the Bratislava–Szob section of the Danube in 1962/63 are given by Hudec, Nagy and Randik (1967), who identify the section as an important migration and wintering region. Randik (1979) reported on the results of the synchronized international census in 1972/73. The international

Table 1

Numbers of geese (95–98% Anser fabalis, 2–5% A. albifrons) recorded in synchronized counts on the Danube between Bratislava and Szob

Year	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Average	Maxm
1962/63 1972/73 1978/79	$\begin{array}{c} 6 & 757 \\ 22 & 045 \\ - \end{array}$	$\begin{bmatrix} 12 & 967 \\ 8 & 236 \\ 2 & 528 \end{bmatrix}$	$\begin{array}{c} - \\ 4\ 220 \\ 3\ 434 \end{array}$	$\begin{array}{c} 19\ 531 \\ 7\ 622 \\ 3\ 168 \end{array}$	$\begin{bmatrix} - \\ 547 \\ 2650 \end{bmatrix}$	$^{1\ 648}_{\ 25}$	$\begin{bmatrix} 10 & 226 \\ 7 & 116 \\ 2 & 945 \end{bmatrix}$	19531 22045 3434

census of wild geese was repeated in this section of the Danube in 1978/79. The same methods were used in all censuses and so it is possible to compare results (Table 1) and show short-term fluctuations in goose numbers.

Conclusions

- A) To forbid irregular hunting techniques and to unify methods and open seasons for hunting on both sides of the Danube, based on a bilateral agreement between Czechoslovakia and Hungary.
- B) To continue research and synchronized censuses on both sides of the Danube every 2–5 years, the next census being in 1982/83.
- C) To build up a system of protected refuges for water birds throughout the region of interest on the Danube water conservation works and the new reservoirs.

Author's address:
Dr. A. Randik
Centre of Bio-ecological Sciences
Slovak Academy of Sciences
UEFE CBEV SAV
90 028 Ivánka pri Dunaji (Bratislava)

International Waterfowl Research Bureau Symposium on Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

MIDWINTER NUMBERS OF WILD GEESE IN BULGARIA

T. M. Michev—D. N. Nankinov— B. E. Ivanov—V. A. Pomakov

Determining the midwinter numbers of wild geese as well as studying their dynamics is of importance for science, nature conservation and wildfowl management. Some species of wild geese are a considerable nature resource (White-fronted Goose) while other are already included in the "Red Data Books" of Bulgaria and the USSR, or in the "List of Rare and Endangered Birds of Europe" (Greylag Goose, Lesser White-fronted Goose and Red-breasted Goose).

Up to now studies on the winter distribution of wild geese in Bulgaria have only been made for parts of the country and only for a season or two at the most (Prostov, 1964; Paspalova, 1966; Dontchev, 1967, 1973; Paspaleva-Michev, 1971; Johnson-Hafner, 1970; Johnson-Biber, 1971; Roberts, 1980; Ivanov, 1979). A wholesale study of the midwinter numbers in all important wetlands of the country has not been undertaken. Data from hunting kill during the winter periods in the past several years are irrelevant as sources of information concerning the numbers of waterfowl, including wild geese, wintering in Bulgaria.

On the other hand, during the past decades there were substantial changes in the structure, area, and ecological properties of our wetlands wich had their consequencies on species composition and numbers of waterfowl migrating throng, and wintering in Bulgaria.

Besides Bulgaria was left aside from the midwinter census of waterfowl organized by IWRB and carried out in most countries of Eurpoe, Middle East and North Africa.

Because of this, the Research and Coordination Centre for Preservation and Restoration of the Environment with the help of the Institute of Zoology (both institutions are from the Bulgarian Academy of Sciences), organized yearly midwinter counts of waterfowl in every important wetland of the country. Studies were carried out from 1977 till 1981 on the dates appointed by IWRB (usually between 10 and 25 January each year). Gathering of the basic data was made by two groups, one each for Northern and for Southern Bulgaria. For the whole period of the research (5 years) a total of approximately 26 000 km were covered along the same routes each year. Map I shows the number of observations at each particular wetland. The Fig. 1 is based on a 10-square kilometer UTM grid. It is evident that most of the important wetlands have been surveyed 4 to 5 times during the period of the study. Some wetlands, mainly parts of the Danube flood plain, have been controlled 2 or 3 times because of the frequent thick foga, so typical for that part of the country in January. Artificial lakes in the Rhodope mountains have been visited only once.

1. Shows the number of observations at each particular wetland

Due to their considerable altitude they are covered with a thick layer of ice and snow in the winter and are practically of no significance for wintering waterfowl. Only some shallow impoundments of small area, mainly in Northern Bulgarian were left out of our investigation. We have the information that they get completely frozen in winter.

So it can be assumed that our study covers all wetlands in the country which provide any opportunity for wintering of wild geese in significant concentrations.

The counts were made by an established and widely used technique. Wild geese were counted in the roosting sites in the evening when they land or in the mornings when they take off for foraging. In some cases geese were counted both in the morning and in the evening but only larger numbers were taken into consideration. Species determination and counting were made with the help of a binocular telescope $20\text{--}40\times120$ mm and by a monocular telescope 47×120 mm.

During our study, data were gathered concerning all other waterfowl species, as well as wintering raptors and song birds at all points of observation. The results concerning these species will be the subject of a separate publication.

Evaluation of the international importance of some of the studied wetlands has been done according to criteria, worked out by *Scott* (1980).

The area of the country was arbitrarily divided into four regions as follows:

- 1. the Danube flood plain with adjacent wetlands;
- 2. Black Sea coast with adjacent wetlands;

3. wetlands in Southern Bulgaria (excluding the Black Sea coast);

4. wetlands in Northern Bulgaria (excluding the Danube flood plain; those wetlands are practically of no importance for the species in question so they will not be discussed now).

Results

The Tables present numerical data concerning particular species in different years together with the most important of their wintering grounds.

We assume that the midwinter numbers of the wild geese depend on several

factors, the most important of which are:

1. Favourable climatic conditions – positive average January temperatures, and snow cover and ice phenomena of short duration. In this respect optimal climatic conditions in Bulgaria exist in two parts of the country – around Burgas Bay and in the southernmost parts of the Struma (Strimon) Valley. These regions are within the limits of the January isotherm of ± 2 °C, the snow cover is less than 20 days a year, while ice phenomena are of even shorter duration – about 10 days a year (Atlas of the Peoples Republic of Bulgaria).

2. Presence of extensive areas of wetland which provide safe roosting sites

for large flocks of waterfowl.

3. Presence of large areas of winter crops situated relatively close to the roosting sites.

4. Lack of direct and indirect anthropogenic influence – hunting pressure, water pollution, intensive traffic of transport vessels, other economic activities

The four factors mentioned exert a combined influence upon wintering populations of the species studied. This means that the absence of one of these factors will lead immediately to disapearance of the wintering birds from the particular part of the country or wetland. The combination of the different quantitative values of the four factors (the measurement of which for the time being is almost impossible) probably determines the size of the midwinter populations of the species studied.

These preliminary fundamental assumptions were confirmed by the results of our work. The highest average midwinter numbers among all of the studied species were fixed (with the exception of the Greylag Goose) along the Black Sea coast. Fot the wintering of the geese (with the exception of the White-fronted Goose) is the Danube flood plain is apparently of lesser importance. The least

important in this respect are the Southern Bulgarian wetlands.

Shabla Lake supported the highest average midwinter numbers of geese of all the Black Sea coast wetlands. Formerly this lake was not known as such a wintering ground for wild geese (Petrov-Zlatanov, 1955; Johnson-Hafner, 1970), when only the first three environmental factors operated – the January isotherm of +1 °C, snow cover of less than 10 days a year duration. After putting the lake ecosystem under a special regime – almost complete restriction of hunting and entering by people – the fourth factor came into operation, and large quantities of White-fronted and Red-breasted Geese began to winter there. The situation with the Nature Reserve of Lake Srebarna was similar. Paspaleva et Michov (1971) and Johnson and Hafner (1970) found no wintering geese at all. After putting an end to the mowing of the reed (which took place

exclusively in winter time) the Reserve became a goose wintering site of international importance. The examples of Shabla and Srebarna Lakes allow us to presume that after declaration of Lake Durankulak as a protected territory in 1980, the numbers of the wintering wild goose populations will rise substantially there.

The case with Burgas and Mandra lakes is exactly opposite. From wintering grounds for considerable numbers of wild geese in the past (we can assume that probably all necessary conditions existed there), today, due the substantial pollution of the waters of these lakes, the notable rise in hunting pressure, and considerable decrease of areas under winter wheat, these wetlands only support minimal midwinter numbers of wild geese. It is highly probably that wintering populations of Whitefronted Goose have shifted their wintering grounds to the newly built dams of ovcharitza and Malko Sharkovo where relatively high numbers were counted every year of our work.

Midwinter numbers of the different species

Greylag Goose — Anser anser

The average midwinter number of this species for the whole country is 1370 individuals, wintering mainly along the Danube (Table 1 and Fig. 2). Greylag numbers varied from 3035 in 1978 to 40 in 1981. The low total of Greylag goose numbers does not permit the species to be considered any more as a hunting

X/2. The average midwinter numbers of Greylag Goose

Midwinter numbers of Greylag Goose in Bulgaria

	1977	1978	1979	1980	1981	Average	970
Danube flood plain	1059	1839	1261	9	17	837.0	61.1
Black Sea coast	476	1176	795	175	13	527.0	38.5
Southern Bulgaria		20	1	_	10	6.2	0.5
Total	1535	3035	2057	184	40	1370.2	100.0
* Srebarna Nature Reserve	813+	809	1000	9	_	524.4	38.3
* Natural Monument of Lake Durankulak	474	890	605	131	13	422.6	30.8
* Persina Island	193	211	122	_	10	107.2	7.8
Lake Shabla	1	162	190	44	-	79.4	5.8
Absolute numbers	$1\overline{4}81$	2063	1917	184	23	1026.4	
% of total in Bulgaria	96.5	68.0	93.2	100	57.5	74.9	

The asterisk means that the particular wetland is of international importance to the population of this species.

resource. Moreover the species is most probably native, breeding in Bulgaria with only 3 known nesting sites – the swamp and marshes on Persina Island on the Danube, the Nature Reserve of Srebarna and the Natural Monument of Lake Durankulak. Obviously it is not a matter of chance that these nesting sites are at the same time the most important wintering grounds of this species in Bulgaria.

The low midwinter numbers of the Greylag Goose and the inclusion of the species in the "Red Data Books" of Bulgaria are sufficient reason to propose suspension of its hunting till it overcomes the cortical state of its nesting and wintering population.

In respect to the wintering Greylag population in Bulgaria the Nature Reserve of Lake Srebarna (Listed under the Ramsar Conventon), Persina Island and the Natural Monument of Lake Durankulak are of international importance. These wetlands support on average over 100 wintering Greylag their totals representing 38.3%, 7.8% and 30.8% respectively of the whole wintering population of the species in our country.

White-fronted Goose—Anser albifrons

The average midwinter number of the species for the whole country are 66 160 individuals, wintering mostly along the Black Sea coast. Their numbers fluctuate from 98 163 in 1978 to 42 825 in 1981. These considerable fluctuations are probably due to the varying meteorological and climatic conditions in particular years. Deduction of such dependencies in this respect however requires more long-term observations.

From these results it becomes obvious that White-fronted goose is a relatively major hunting resource. Till recent times the hunting was restricted during migration – that is in autumn and spring time.

3. The average midwinter numbers of White-fronted Goose

Table 2
Midwinter numbers of White-fronted Goose in Bulgaria

	1977	1978	1979	1980	1981	Average	0/
Danube flood plain	17 013	15 774	5 466	87	1 828	80 336.0	12.2
Black Sea coast	22 840	$68\ 554$	34 293	56 209	39 436	44 266.4	66.9
Southern Bulgaria	$(4\ 275)$	$13 \ 808$	15 337	34 321	1 561	$13\ 860.4$	20.9
Total	44 128	98 136	$55\ 096$	90 617	42.825	66 160.4	100.0
* Lake Shabla	9 556	37 327	19 680	52 624	26 569	29 151.2	44.1
* Lake Durankulak	$12\ 397$	29.869	13 010	1 871	10 756	13 580.6	20.5
* Oveharitza Dam	2000+	11 737	$(15\ 000)$	30 674	10	11 884.2	18.0
* Nature Reserve	11 493	5 000	3 000	_	1 568	4 212.2	6.4
of Srebarna			t				
* Malko Sharkovo	9	1.458	1.570	$3\ 200$	1 000	1 807.0	2.8
Dam							
* Lake Mandra	(20)	903	1.553	1490	1 900	1173.2	1.8
Absolute numbers	35 466	8 294	53 813	89 958	41 803	61 447.0	-92.9
% of total	80.4	87.9	97.7	99.2	97.6	92.9	
International	1 000						
importance						I	

The asterisk means that the particular wetland is of international importance to the population of this species.

The wintering population of the White-fronted Goose is to a large degree concentrated in Lakes Shabla and Durankulak where about 64.6 % of the birds winter. These lakes are followed by Ovcheritza Dam with 18.0% of the geese and the Nature Reserve of Lake Srebarna with 6.4%. The Malko Sharkovo Dam is reported now for the first time as a wintering ground. Its lake regularly supports over 1000 White-fronted Geese in winter which makes it of international importance together with the other wintering grounds mentioned above. The wetlands shown in the Table provide wintering grounds for about 92.9% of the whole wintering population of the species in our country. We should emphasize in this connection that, if strong mesaures are taken against poaching by means of boats and other vessels and against all hunting in the lake waters as well as for controlling water pollution and for establishing buffer zones in their vicinity, the importance of these areas for the wintering of the White-fronted Geese will be greatly enhanced. This no doubt will have an immediate positive effect on the hunting use of this resource. It is necessary also that all permanent wintering grounds of the species be listed under the Ramsar Convention and that a yearly census of numbers of wintering geese in them be carried out.

Lesser white-fronted Goose — Anser erythropus

Rare individuals of this species have been observed or heard in the flocks of white-fronted geese in January 1977 and 1978 at Lakes Shabla, Durankulak and Burgas. We could assert for certain that this species winters in negligible numbers in our country. This circumstance and the fact that Lesser white-fronted Goose has been listed as a rare and endangered bird of Europe gives enough reason to propose its hunting to be suspended, too.

Snow Goose—Anser (Chen) caerulescens

We have observed two birds of this species in flight over the eastern part of the Lake Durankulak on 22 January 1979. According to personal communication from Mr. Stoyan Nonev, a taxidermist at the Natural History Museum in the city of Tolbuchin, the species has been observed several times previously by him and other local hunters in this part of the country. Snow Goose is a new species for the Bulgarian avifauna, and is now reported for the first time. Snow goose should be declared as protected by law as a rare and occasional winter visitor to our country.

Barnacle Goose—Anser fabalis and Pink-footed Goose— Anser brachyrhynchus

Although both of these species are included in the Bulgarian avifauna we have not observed them in our field trips. This appears sufficient reason to exclude these two species from hunting because their numbers are obviously extremely low.

Red-breasted Goose—Branta ruficollis

This is the only goose species in our study whose numbers have certainly been proved to increase in recent winters. This fact could be satisfactorily explained with the shifting of the wintering grounds of the species from the southern coast of the Caspian Sea towards South-east Europe.

Average midwinter numbers of the red-breasted geese in our country are 7222 individuals, wintering chiefly along the Black Sea coast (Fig. 4 and Table 3). The numbers of the wintering populations in different years has varied from 16 566 in 1980 to 897 in 1978. Omitting the data from 1981 which was with an extremely hard winter we can note an obvious trend for wintering numbers of red-breasted geese to increase in Bulgaria.

The largest wintering ground of the species during the period of the study is Lake Shabla where 97.7% of the whole wintering population of the species is concentrated. Another regular winter site for this goose is Lake Durankulak though with considerably lower average midwinter numbers. In all the rest of the wintering grounds, wintering of the red-breasted goose has been occasional, sporadic or only once.

Only Lake Shabla is of international importance for the preservation of the total population of the Red-breasted Goose. According to the "Red Data Book" of the USSR the total number of the species in the world is about 30 000. Lake Shabla regularly supports far over 200 birds required by the evaluation criteria.

4. Average midwinter numbers of the Red-breasted Goose

Midwinter numbers of Red-breasted Goose in Bulgaria

	1977		1978	-	1979	1980	1981	Average	9%
Danube flood plain	9		_		23	5	_	7.4	0.1
Black Sea coast	1265		897		15 048	16 561	2273	7208.8	99.8
Southern Bulgaria	_	1				-	38	6.6	0.1
Total	1274		897		15 071	16 566	2306	7222.8	100.0
* Lake Shabla	1235		$66\overline{4}$	- -	14 890	16 468	2015	7054.4	97.7
Natural Monument	30		228		158	93	230	147.8	2.1
of Lake Durankulak									
Nature Reserve	9		_		23	_	_	6.4	0.1
of Srebarna									
Absolute numbers	1274		892		15 071	16 561	2245	7208.6	
% of the total	100	1	99.4		100	99.9	97.4	99.8	99.8

The asterisk means that the particular wetland is of international importance to the species.

The results obtained from our study and also the inclusion of this species in the "Red Data Book" of USSR and Bulgaria present sufficient basis to propose its exclusion from hunting use and this protection by the Law for the Protection of Nature.

Conclusions

1. The average midwinter number of wild geese in Bulgaria for the period from 1977 to 1981 inclusive is 74 753 individuals, totals for each particular species being as follows:

White-fronted Goose – 66 160. Red-breasted Goose – 7 222.

Greylag Goose – 1 370.

Lesser white-fronted Goose has been observed in a few cases and Bean Goose and Pink-footed Goose have not been observed at all.

Snow Goose was found as a new species for the Bulgarian avifauna by which the number of species of wild geese recorded in our country rides to 7 species.

- 2. Due to low and practically insignificant numbers the following goose species should be excluded from hunting use: Greylag Goose, Lesser white-fronted Goose, Bean Goose, Pink-footed Goose, Snow Goose and Red-breasted Goose.
- 3. The wintering population of the White-fronted Goose in Bulgaria is a relatively promising hunting object. Measures against shooting and poaching it the waters of the important wetlands, and for controlling pollution and for restricting economic activities in the vicinity of their ecosystems will considerably enhance the use of this resource without depleting its quantity and quality.

4. The following wetlands are of international importance for the winte-

ring of wild geese:

A) the Nature Reserve of Lake Srebarna – in regard to the Greylag and White-fonted Goose;

- B) the Natural Monument of Lake Durankulak in regard to the Greylag and White-fronted Goose;
 - C) Lake Shabla in regard to the White-fronted and Red-breasted Goose;

D) Persina Island on the Danube – in regard to the Greylag Goose;

- E) the Lake of the Ovcharitza Dam in regard to the White-fronted Goose;
- F) the Lake of the Sharkovo Dam in regard to the White-fronted Goose;

G) Lake Mandra – in regard to the White-fronted Goose.

Author's address: Research and Coordination Centre for Preservation and Restoration of the Environment Institute of Zoology of the Bulgarian Academy of Science Sofia, Bulgaria

Referens

Дончев Ст. (1967): Принос към опознаването на водоплаващия дивеч в България. Изв. Зоол. инст. с музей. БАН. 13. п. 79-95.

Иванов Б. (1979): Проучване върху числеността на някои водоплаващи птици през зимните

месеци на 1975/76—77/1978 г. в три блта край р. Дунав. Екология. 5. п. 30—43.

Паспалева М.—Мичев Т. (1971): Численост и сезонна динамика на някои в доплаващи и блатни птици в резервата "Сребърна" южна Добруджа през 1966—1967 г. Изв. Зоол. инст. с музей, 33. п. 13—22.

Петров Б. М.—Златанов С. И. (1955): Материали по фауната на птиците на Добруджа. Спис. на научноизследов. инст. при М-во на земе делието. 1, п. 93—113.

Простов Ал. (1964): Изучаване на орнитофауната в Бургаско. Изв. Зоол. инст. с музей, БАН. 15. п. 5—68.

Простов Ал. (1978): Красная книга СССР. Лесная промышленность. Москва. 1—459.

Dontchev, St. (1973): Migration, Wintering and nesting sites of the mute Swan—Cygnus olor (Gmelin) in Bulgaria. Proc. IWRB. p. 72—74.

Johnson, A.—Hafner, H. (1971): Winter Wildfowl Counts in South-east Europe and

Western Turkey. Wildfowl. 21. p. 22—36.

Johnson, A.—Biber, O. (1971): IWRB Goose-working group mission to Eastern Europe.

December 1970. Manuscript. Station Biologique de la Tour de Valat.

Roberts, J. (1980): Observation on migrant and winter wildfowl populations on the Bulga-

rian Black Sea coast. Wildfowl. p. 19—27.

Scott, D. A. (1980): A Preliminary Inventory of Wetlands of Internation Importance for Waterfowl in West Europe and Nortwest Africa. IWRB Special Publication. p. 1—127. Sterbetz, I.—Szijj, J. (1968): Das Zugverhalten der Rothalsgans (Branta ruficollis) in Europa. Vogelwarte. 24. p. 266—277.

International Waterfowl Research Bureau Symposium on Population Ecology of Geese Debrecen, Hungary, 26–30 October 1981

RESULT OF WATER-BIRDS CENSUS, 1981 AUTUMN—1982 SPRING IZUNUMA

Mariko Otsu

Japan Association for Wild Geese Protection Tohoku Univ. Wild Bird Researching Group

Introduction

We are continuing our water-birds census, especially observing wild geese, in each winter since 1973. After being carried privately, it has been done under the support and program of Japan Association for Preservation of Birds, once a month. It is used as our basic monthly data, however, as we also do 4–6 times geese-countings per a month, the geese numbers in this don't always coincide with the monthly maximum nor half-monthly maximum in our other data.

Location and environmental situation of census area

Lake Izunuma, 376 ha, Lake Uchinuma 138 ha. Belonging to com. Wakayanagi, Tsukidate, Hasama. Miyagi Pref., Japan. By N 38° 43′ E 141° 6′. Including about 80% water-surface, 10% natural marsh, 10% paddyfield. The ratio of water and marsh varies in relation to water level which is controlled for agricultural use. A part of specified "the first class river". Inland. Sorruonding paddyfields, population, low hillsides with sparce artificial forest constitute a typical landscape of NE Japan. Those paddyfields are important in productivity and as geese wintering area.

Monthly average temperature, -4-0. The lowest was -15, Jan 31.

Water depth in the lowest level, about 2 m.

Dominant species in summer vegetation: (marsh-emersiherbosa) Phragmites communis, Zizania latifolia, (water-leaf floating) Nelumbo nucifera, Trapa natans, (water-submerged) Cabomba caloriniana, Hydrilla verticillata, Ceratophyllum demersum and others. Cabomba was introduced in a recent year.

Designation on natural reservation

Water surface and birds — a natural monument — fixed in 1967.

The total area inside the surrounding dikes-an environmental reservation area of prefecture – in 1973 – wild animals and birds reserve – in 1966.

1. Wintering and staging places of geese in Japan (1975–80) JAWGP

Methods

Line and fixed censuses are used together. Aggregated total number of person

was 80 per 6 times, including beginners training.

The whole area (Fig. 1) is devided into 5 counting area. Geese counting is done within about one hour soon after sunrise as to count while their morning flights. Swan was counted at 9–10, and ducks and coot at 7–10. Varied owing to weather.

All species observed on/above water surface was counted.

In this result, total numbers from Nov. to Feb. are mentioned, required by Japan Association for Preservation of Birds, however the data of male/female ratio and eclipse of ducks, bill patterns of Bewick's swan can be refered.

Notice

In this season numbers of ducks except genera Mergus and Aythya were less, that is nearly a half of that in usual winter in maximum.

Maxima of swan numbers were also less, especially of Bewick's Swan. About Whooper Swan, they were often observed feeding in paddyfields near though

outside of lakes themselves, however that had hardly been seen in past ten years in this prefecture.

Noticeably dying leaves of lotus, Nelumbo nucifera are very few in the last days, which make a peculiar landscape in general winter, because of very high water surface level in the last two summers. On the same reason the belt of Zizania latifolia got damage. The other species of plants have been changing.

Climate was in standard. Days of complete freezing-up were seven or less. Disturbance by fishing boats (occupying) were very often seen, and it seemed

easy to move by boat as there were less ice and dying plants.

Maxima of geese numbers out of whole data of us in this season were fol-

lowing:

Additional noticeable observation: Aythya valisineria 2 males Dec. 13. Anas querquedula 100 ± Oct. 2.

Summary

In water-birds census, 1981 autumn – 1982 spring, we got 44 species in Lake Izunuma area. Numbers of swans and ducks were less compared with the passed season. Geese numbers' maxima were not always taken in this series. One of this reason is that most care and time was used for 'training of counters' especially as a program.

Table 1,

Species		limate data i		
	15. Nov.	20. Dec.	24. Jan.	21. Feb.
Podiceps ruficollis	14	4	3	
P. griseigena	1		1	
P. cristatus	$\tilde{2}$			
Egretta alba	1 - 4	4	12	12
E. intermedia	i	_	2	
E. garzetta	129	156	4	$\bar{1}3$
Ardea cinerea	2	4	1	
Branta canadensis			1	
eucopareia*				
Anser albifrons	$6\ 312$	7 317	5.169	5.882
A. erythropus			i	2
4. fabalis	133	134	1 945	570
A. caerulescens		1	1	1
Undecided geese		371	1 532	1 985
Cygnus olor			i	1
O. cygnus	36	212	1 071	604
7. columbianus	86	35	39	43
Undecided swans	321	56	267	235
Anas platyrhynchos	-2313	2.568	2715	$2\ 326$
4. poecitorhyncha	442	635	1291	691
4. crecca	100	56	153	198
4. formosa			6	1
4. falcata				24
A. strepera	1	5		2
4. penelope	8			7
4. acuta	2.926	6 211	8 627.	8 575
4. clypeata	1	1		2
Aythya ferina	56	52	287	318
4. fuligula	173	12	66	63
4. marila	6	,		
Bucephala clangula	15		2	
Merĝus albellus	295	70	185	156
M. merganser	47	176	458	228
Undecidecid ducks	3470		367	1 487
Wilvus migrans	9	12	3	
Haliaetus albicilla			2	
Phasianus colchicus	1	. 4		
Fulica atra	94		26	7
Pluvialis squatarola	1	!		
Limnodromus	1	1	1	1
scolopaceus			1	
Tringa erythropus	1			3
T. nebularia	2		1	
Tallinago gallinago	4			
Larus ridibundus	4	9		
$L.\ crassirostris$		4		
L. tridactylus				2
Motacilla alba			1	2
$M.\ grand is$	5	. 1	2	
$\overline{\mathrm{rot.}}$	17 013	20 616	24 242	23 439
Density nos./ha	33.1	40.1	47.2	45.
Climate data weather	eloudy	elsnowy	clsn.	snel.
yind wind	N 3	N-NW	NNW	O-N 1
WIRG	11/19	1-3	1-3	O-M I

	Climate data is added behind						
Species	15. Nov.	20. Dec.	24. Jan	21. Feb.			
temp. max.			1	4			
		$\frac{-2}{10}$	$\begin{array}{c} -6.5 \\ 10 - 85 \end{array}$	0-10			
snow depth agg. nil.		$_{\mathrm{nm}}$:= nm	m			

^{*} This species was observed continuously from Oct. to Feb.

Concludingly we suppose the possibility of existance of influences of vegetation exchange and/or resulted artifical distrubances. It will be difficult but important to consider how to keep an adequate water level for water flora in summer.

Author's address: M. Otsu Peperstraat 9 Wijk bij Duurstede NL

SOME ORNITHOLOGICAL DATA OF THE HANSÁG

Dr. L. Horváth

Out of the listed 126 species 96 breed in the Hanság; the other 30 are partly

transition migrants, winter visitors, vagrants or summer guests.

I made intensiv investigations on the birds of the Hanság through three years, 1949–1951. I did not publish the data of my work this time with exception of those concerning the southwestern part of the Great Alderwood up to this date. I took still some further short excursions in the 1950's and 1960's and finally in 1981. Furthermore I made use of data published by others in the special literature on the sake of wholeness too.

Now I enumerate the occurring species in a scientific order as follows.

1. Podiceps ruficollis. It nests only on the Lake Barbacs but here in more pairs usually.

2. Podiceps griseigena. It nests in the Hanság according to Király but he

mentions this fact only in generality; he did not find its nest.

3. Ardea cinerea. It nests regularly at the eastern end of the Csikos alderwood (the easternmost part of the Great Alderwood of Hanság) in 1949–1951.

4. Ardea pupurea. It nested in 3-4 pairs on the Lake Barbacs; the nests were in old reeds in 1949-1951. I saw a specimen on the reedy shore of one of the canals intersect the Great Alderwood on 16th April 1949.

5. Egretta alba. There are two observation data. It appeared one specimen of it on Lake Fehér-tó on 23rd June 1930; and four other ones on the same

place at the beginning of July 1933 according to Studinka.

6. Ixobrychus minutus. There are three breeding data from the Lake Barbaes

according to Király (in his eggeollection; unpublished).

7. Ciconia ciconia. Twelve pairs bred in an old line of poplartrees at the Öntés-major in the near of Osli alderwood in 1949–1951. Generally may be say that it nests in the settlements of Hanság – villages and towns (e. g. Csorna) – in some pairs.

- 8. Ciconia nigra. One pair bred on a very old oaktree in the Kapuvári alderwood in 1951 (clutch 5). I saw one pair in 1949 and again in 1950 but only under spring migration; they did not breed here in these years. Out of the former years Studinka published two data of its occurence in the Hanság only (on 11th August 1931, one specimen; on 20th June 1933, four ones in a group).
- 9. Plegadis falcinellus. We only know one data from the special literature. Studinka observed about 100 birds in flocks on the Lake Fehér-tó in July 1930 during some weeks.

10. Platalea leucorodia. Some specimens appeared regularly on the Lake Fehér-tó at the end August in the 1930's according to Studinka.

11. Cygnus cygnus. Király published two old date of its occurrence on the Hanság (two old specimens at Tárnokréti in winter 1939–1940, and one specimen on the Hanság-canal on 5th january 1954 at Bősárkány).

12. Anser anser. It bred regularly on the Lake Barbacs in the 1930's according to Király. It bred usually one pair only on the Lake Fehér-tó in these years according to Studinka.

13. Anser albifrons. It regularly appears in winter in the Hanság at Lébény

according to Studinka.

14. Anser fabalis. It occurs exclusively this species at spring and autumn

migrations in the Hanság according to Studinka.

15. Anas platyrhynchos. It is not rare. It interesting to mention that I found it breeding in a deserted nest of the Lesser Spotted Eagle in the Boldog-asszonyi alderwood in 1951.

16. Anas acuta. I found it nesting on the marshy meadows at Mosonszent-

péter in April 1951.

17. *Milvus milvus*. I saw a specimen of it over the Kapuvári alderwood on 15th April 1949.

18. Milvus migrans. I found it nesting in the Kapuvári alderwood in April 1950. Its nest was on the edge of the forest bordering ploughfields and on the most outside tree 7 m high. I observed only this single pair in 1949—1951.

19. Accipter gentilis. It is a common breder in the Great Alderwood (its clutch is 3–6). Onto one occupied Goshawk's nest fall five Busard's nests. This is the case in the whole extensive (5 times 15 km) alderwood of the Hanság.

20. Buteo rufinus. We have only one data of its occurrence in the Hanság. In this way J. Domonkos shot a specimen at Farád on 20th October 1952

according to Király.

21. Buteo buteo. It is the commonest breeding raptor of the Hanság. 50-60 pairs bred scattered yearly in all parts of the Great Alderwood in 1949–1951. Now, in the last decade it is fairly rare: the number of the breeding pairs are under ten for a year.

22. Butco lagopus. It is a rare winter visitor in the Hanság. There are only two exact data of its occurrence here. One of them is at Csorna in February 1932 according to $Kir\acute{a}ly$, and the other at Lébény on 6th November 1933

according to Studinka.

23. Hieraaetus pennatus. One pair bred in the Kapuvári alderwood in the years 1949–1951. It built its nest on another aldertree in every year as

I found. Király saw a pair in the same place on 15th April 1954.

24. Aquila heliaca. Chernel and Madarász found a nest of it with one egg in the Kapuvári alderwood in spring 1889. They saw one of the old birds too in the forest under their common investigation to the Great Alderwood of Hanság.

25. Aquila clanga. I found three occupied nests of it – one per year – in 1949–1951; the clutch was one egg in every case. The first nest (1949) was in the Róka-tó part of the Boldogasszonyi alderwood; the second one (1950) was in the Csíkos alderwood (the easternmost part of the Great

Alderwood); the third one (1951) was again in the Boldogasszonyi alderwood, in a younger forestpart behind the keeper's huose. *Studinka* saw a single specimen only onetime in the Hanság at Lébény in October 1933.

26. Aquila pomarina. I also found three occupied nests of this eagle species between 1949–1951 (one per year). The clutch was two eggs in every case. It bred – the same pair presumably – in every year in the Harcsás-tó part of the Boldogasszonyi alderwood but not in the same nest. It bred only one pair in the Great Alderwood of Hanság in 1981. I found this nest in an old part of the Csikos alderwood. Studinka saw it in the summer months in 3–4 specimens in the alderwoods at Lébény in the 1930's. They did not nest here according to him. Chernel and Madarász (together) found two occupied nests in the Boldogasszonyi alderwood in 1889. Király estimated the number of breeding pairs 3–4 in the Hanság in 1930's (two pairs in Kapuvári, one-one pair in Osli, Boldogasszonyi, Csíkos alderwoods). He did not find any nest of it.

27. Haliaaetus albicilla. It resided in 1930's in the Hanság at Lébény through

all winters in 3-4 specimens according to Studinka.

28. Circus cyaneus. It is very common as a migrating bird in the Hanság. It also breeds here rarely but there is no any material proof of this according to Studinka who never found its nest only observed it in breeding period—at the beginning of May. They arrive in October to this place, and remain here through all the winter. It resides in 35–40 pairs from year to year, the number of males in only 6–7 of them according also to Studinka who presumably understand of these only the old males those are easily recognisable. Király also mentions them among the winter birds of the Hanság.

29. Circus macrourus. It is fairly rare in the Hanság, and it appears only at the end of August, at the beginning of September. On one occasion five young birds were on the Lake Fehér-tó in the second half of August that however does not prove of its breeding here. In the same way not the single male that stays at Lébény in the Hanság through all the breeding

season in 1933. The above data originate form Studinka.

30. Circus pugarqus. There is, more exactly there was most breeders in the Hanság in the whole Hungary. It appeared as breeding bird in the Hanság in the 1880's after the beginning of the peat mining when rushes overgrown the marshy abandoned pits. It breeds regularly in 20-25 pairs here in 1930's, in particular 1931-1935. Its number slowly decreased since then because the pits were gradually afforested. These were named "Figurák" (as figures in English) that is swampy soiled, spacious pits with alderwoods. The afforested parts (pits) decreased to 100 acres already to 1941, and only some pairs bred here. The easternmost part of this landscape is the Hanság of Lébény. Király estimated the number of breeding pairs only 1-3 per year in western part of this region in the near Mosonszentjános, Mosonszentpéter. Likewise according to him it did not nest to south of the Hanság-canal. I walked all over the Hanság in 26th-28th May 1981, but the "Figurak" were wholly afforested to this time. I only found a single breeding pair on the northern side of the Hanság-canal vis a vis of the Csikos alderwood, in West Hanság. I did not observed it to the south of the Hanság-canal neither earlier (1949-1951) nor later (1981).

31. Circus aeruginosus. It is a common breeding bird in the Hanság but only in the reedbeds (Lake Barbacs, Lake Fehér-tó, swampy areas of Királyrét, some parts of the Hanság in the near of Lébény). I found it breeding in some pairs only on the Lake Barbacs in the years 1949–1951.

32. Circaetus gallicus. It does not breed in the Hanság but it occures as a transition migrant. I observed one specimen above the Kapuvári alder-

wood in 1950.

33. Pandion haliaetus. Studinka saw one-one specimen of it between 1931–1933 on the Lake Fehér-tó and in the Csikos alderwood, respectively.

34. Falco cherrug. It was shot a specimen on the fringe of the Kiserdő forest

at Csorna on 24th December 1933 according to Király.

35. Falco peregrinus. It was shot a specimen on the same palce and date as the preceding one with double shoot while they swept down upon a partridge.

36. Falco subbuteo. I found it breeding next to Lake Barbacs in 1951.

- 37. Falco columbarius. It is fairly common in winter in the Hanság according to Studinka.
- 38. Falco naumanni. A young male was shot at Mosonszentmiklós on 5th September 1932 according to Studinka.

39. Falco tinnunculus. It breeds sporadically in the Hanság.

- 40. Perdix perdix. It is widespread in the Hanság but does not in Big number.
- 41. Phasianus colchicus. It is a fairly common breeding bird in the Hanság.
- 42. Grus grus. It still bred in the Hanság up to the turn of the century according to Smuk but he had not any proof of this statement. Since this time it is only a very rare transition migrant. Studinku saw two specimens at Lébény on 7th September 1929, and another two on the Lake Fehér-tó in August 1930.

43. Crex crex. Studinka found a just hatched set of it in the Hanság at Lébény

on 24th June 1932.

44. Gallinula chloropus. Király kept it a common breeding bird on the Lake Barbacs. Presumably it breeds on the Lake Fehér-tó too.

45. Fulica atra. It breeds on the Lake Barbacs and Lake Fehér-tó but not in

big number.

46. Otis tetrax. It was shot a female in the near Lébény on 8th October 1933

according to Studinka.

47. Otis tarda. The number of the here breeding pairs very diminshed after the peat conflagration in 1947–1948 according to Studinka. It remained only insignificantly small numbered breeders out of the former (1933's) 100–120 breeding pairs. Now they breed mostly in the western parts of the Hanság to the north and south of the Hanság-canal.

48. Vanellus vanellus. It is not a very common breeding bird compared to other similar areas of the country. It nests still mostly on the spacious

meadows at Mosonszentpéter and Csorna.

49. Charadrius dubius. One-one pair breeds yearly on the gravelly soiled, wet parts of the meadows at Mosonszentpéter.

50. Charadrius alexandrius. One-two pairs breed regularly on the areas

characterized at the Little Plover above.

51. Numerius arquata. Cerva gave information at first about the breeding of the Curlew in the Hanság and at the same time also in Hungary in 1928. This place was in the northernmost part of the Hanság not very far

south of the Moson town. It bred about 150-200 pairs in times before the peatmining on the 5000 acres meadowland in the near Lébény according to Studinka. However, there in no material proof or exact observation data to this supposition. It might give the reason of this supposition the erroneous explanation of the great number of the transition migrants. That is Studinka observed only two Curlew families with their small youngs just out of nest on 16th June 1931. The number of the breeding pairs strongly diminished at the beginning of the peatmining as in the case of the Great Bustard according to also Studinka. He estimated already the here breeding pairs only 50 again without any material proof. I found two set of eggs (clutch 4 and 2) of it on the peatbog meadow around the Korona forest. One-two pairs nest on the peatbog meadows south of the Hanság-canal according to Király's personal communication.

52. Limosa limosa. It bred on the meadows of Mosonszentpéter in at least ten pairs (I found them personally) in 1951. Király also found here nests regularly in years after 1951. However, he estimates the number of pairs

only five per year.

53. Tringa erythropus, Studinka saw one specimen on the Lake Fehér-tó on

20th June 1933.

54. Tringa totanus. I took the breeding of three pairs for granted on the meadow of Mosonszentjános where they bred in common area with the Godwits in 1951. It bred here one-two pairs in the later years too according to Király's personal communication.

55. Burhinus oedicnemus. Studinka observed it only. He saw six specimens in the near Lébény in summer of 1933 but he held out the question their

breeding here.

56. Larus ridibundus. I saw two specimens over the Királyrét in 1949.

57. Stercorarius longicaudus. Studinka shot a specimen on the meadows around Lébény on 27th June 1937.

58. Columba palumbus. We have data only from Király about its breeding in the Hanság. I did not see it in breeding season.

59. Streptopelia turtur. It is not an uncommon breeder on the edges of forests

and in bushy, young laced forests.

60. Cuculus canorus. It is common in the reedborders along the canals. It lays regularly his eggs into the nests of the Great Reed Warbler. I found Cuckoo's egg in the nest of the Red-backed Shrike too.

61. Tyto alba. I found a nest of eggs of it (clutch was six) in the Boldogaszszonyi alderwood on 21st May 1949. The eggs were in a little loft above

a brick builted oven at the keeper's house.

62. Strix aluco. I found at first a clutch of 5 eggs, afterwards of 6 ones in the same hole, of an old willow on the edge of the Kapuvári alderwood.

63. Asio otus. It is fairly common breeder in the alderwoods. I found it breeding also in a deserted Lesser Spotted Eagle's nest in 1950. Otherwise it lays in abandoned Crow's and Magpie's nests out of forests as I found in 1981 at Öntés-major south of the Osli alderwood.

64. Asio flammeus. We have only data of its breeding from Studinka. He supposed the breeding of about eleven pairs at Lébény in 1933 (this was a very miceafflicted year) on the basis of the sojourn of them through

all the spring and summer; however he did not find any nest.

65. Coracias garrulus. It was common in the Hanság at Lébény in the 1930's according to Studinka.

66. Upupa epops. It also was common in the Hanság around Lébény in the 1930's according to Studinka. I found it fairly rare in 1949–1951 and in 1981 too.

67. Picus viridis. It may rarely see it around the isolated poplars on the

meadows, in the lines of poplar trees where it breeds too.

68. Dendrocopos maior. I estimated the number of the breeding pairs 8–10 in the alderwoods between 1949–1951. They have nested in the willows spreading about in the alderwoods, and in fruit trees around the keeper's house. Their numbers did not change up to 1981.

69. Dendrocopos syriacus. Király observed a specimen at the Lake Barbacs

on 22nd March 1954.

70. Lullula arborea. I observed a singing male in the Kapuvári alderwood on 15th April 1949.

71. Alauda arvensis. It is fairly common breeding bird in the drier parts of

the peaty meadows.

- 72. Hirundo rustica. Three pairs nested on the keeper's house in the Boldog-asszonyi alderwood between 1949-1951. This building was in the forest, more kilometers far from other houses.
- 73. Oriolus oriolus. It is surprisingly rare in the Hanság. Király collected a clutch of it from here.
- 74. Corvus cornix. It is fairly common on the meadows where it builds its nest on separated trees (poplar, willow). It always nests in two-three pairs around the Lake Barbacs.

75. Corvus frugileus. I found a rookery consist of 22 nests in a group of young

poplars in environment of Csorna.

- 76. Colocus monedula. I found it nesting in a hole of a single old willow in the Kapuvári alderwood in 1949. It bred in an old poplar at Öntés-major in 1981.
- 77. Pica pica. It is commoner than the Hooded Crow. It nests in lesser groups of tree; on separated tree rarely. I did not find it nesting in the forests in the Hanság.

78. Nucifraga caryocatactes macrorhynchos. It was shot a specimen in the

Hanság at Lébény on 28th October 1933 according to Studinka.

79. Parus maior. I saw numerous specimens of it in the Boldogasszonyi alderwood between 26th-27th April 1949. Although I did not find its nest later I took for certain its nesting in small numbers on the basis of my experiences geting in spring and summer. No doubt the cause of its relative rarity is that there were no old, dried, holed alderwoods; on the other hand I did not find woodpecker-holes in living aldertree.

80. Aegithalos caudatus. It occurs throughout of the Hanság in winter. I met him myself in the Boldogasszonyi alderwood between 26th–27th February 1949 where I saw it after breeding period too. I take for certain its bree-

ding in the rank, younger parts of the alderwood.

81. Remiz pendulinus. Two pairs regularly nested at the Lake Barbacs between 1949–1951 yearly. It also bred south of the Hanság-canal in these years. I found its nests mostly on alder, in one case on willow.

82. Panurus biarmicus. It bred regularly in small numbers on the Lake

Fehér-tó in the 1930's according to Studinka.

83. Sitta europaea. It might be find one pair in the Boldogasszonyi alderwood around the keeper's house throughout of all the breeding period. It might breed in one of the holes of acacia-, poplar-, or fruit-trees at the house; nevertheless I did not find its dwelling.

84. Certhia familiaris. I saw one in the Kapuvári alderwood on 26th Feb-

ruary 1949.

85. Certhia brachydactyla. I found one nesting pair in the Kapuvári alderwood in 1949.

86. Troglodytes troglodytes. I found a new, empty nest of it on an aldertree among rank sprouts in the Kapuvári alderwood on 25th April 1949. It may breed some pairs in similar circumstances in the forest.

87. Turdus merula. Some pairs breed only in the drier forests (e. g. Kiserdő at

Csorna) of the southern parts of the Hanság.

- 88. Turdus pilaris. It may be seen in winter in large flocks on the meadows but it does never remain here for breeding. Perhaps, it nests sometimes in the "Figurák" at Lébény according to Studinka. However, this statement or supposition originated only from a gamekeeper of him. Studinka had a personal exact data on 21st June 1932; presumably, this is also not a personal observation and it is likely the question is that the bird was a female Blackbird. There are no any spring or summer data from nobody besides these uncertain communications.
- 89. Turdus philomelos. I estimated ten the number of the breeding pairs in the alderwoods between 1949–1951. I fround the nests a little higher (3 m) than the usual because of the swampy inundated soil. It nests lower in the drier forests (Kiserdő at Csorna).
- 90. Saxicola torquata. I did not meet him in 1949–1951. I saw many in 1981 on the meadows, mostly in the nettled edge of the forest because the soil became drier in consequence of the extensive drainage. There were particularly many young birds out of the nest, that is a good proof of their breeding here.
- 91. Saxicola rubetra. I observed a pair at Miklósmajor on 29th May 1949 that bred here exactly. I found it common on the meadows at Mosonszent-péter in the years 1950, 1951. I did not see any specimens in these places in 1981, in spite of that it was the main breeding period (end of May: 26th-28th).
- 92. Luscinia megarhynchos. It is uncommon in the Hanság. It bred only 4–5 pairs in the alderwoods between 1949–1951. No doubt, the frequent high water-level hindered the nestbuilding. I found it breeding severel times in the drier Kiserdő at Csorna.
- 93. Luscinia svecica. Chernel mentions it in the Hanság in 1889. One-two pairs nested at Lébény between 1931–1933 according to Studinka. I did not meet him neither in 1949–1951 nor in 1981.
- 94. Erithacus rubecula. It is rare breeding bird in the Hanság between 1949–1951. I saw a pair in the breeding period at the south edge of the Great Alderwood. I am sure that it breeds in some pairs in the drier Kiserdő at Csorna.
- 95. Sylvia nisoria. I found a nest of it with 4 eggs at the eastern edge of the Great Alderwood on 11th June 1949. On the same day I also found a deserted nest with 5 eggs in an alder brushwood at Királyrét. In this year I found a third nest beside the Kisrába-canal in a bush. I shot one in

the Osli alderwood on 27th May 1981 thus its breeding might be sure here, too. It was commoner in former years than nowadays az I experienced.

96. Sylvia borin. It was one of the most characteristic birds in the alderwoods and also in the mixed, swampy soiled forest too of the Hanság in 1949–1951 in conditions of that time. It bred in extremely many pairs in the Koronaforest that was a mixed deciduous wood then with rich, bushy undervegetations. I went through all the Hanság in three days in 1981 and I did not meet him anywhere. The cause of this phenomenon was that the most part of the former alderwoods now replaced with Canadian poplars (Populus canadensis), the brushwood parts were very diminshed, and the soil of the woods became much drier. The wholy extiction of the Garden Warbler or at least its very diminished state may be traced back to these altered circumstances.

97. Sylvia atricapilla. It was a very common breeding bird in the alderwood between 1949–1951. Up to 1981 the number of breeding pairs was very diminished. Nevertheless it nests in some pairs anywhere in the drier, bushy parts of the forestedges nowadays too. It was very common almost mass in the Boldogasszonyi alderwood and in the Kiserdő at Csorna in

former times.

98. Locustella fluviatilis. Chernel mentions it already from the Great Alderwood in 1889. It much diminished upto 1955 compared with former, mostly with 1930's conditions according to Studinka. Considering that he mostly investigated around Lébény, his establishment also may refer to this place. I found it very common in the Great Alderwood everywhere 1949–1951. Together with the Garden Warbler it was the most characteristic and one of the commonest birds besides the Blackcap and the Red-backed Shrike. I did not see it neither in the former Great Alderwood nor in the "Figurák" at Lébény, that may explain with the whole alternation of circumstances. That is the soil of forests was dried, the alders were nearly entirely cut out and replaced with Canadian poplars.

99. Locustella luscinioides. We have breeding data only from the Lake Fehér-

tó where Studinka observed its nesting between 1931–1933.

100. Locustella naevia. Chernel mentioned it among the breeding species in the meadows of the Hanság. It multiplied in the Hanság in 1950's as compared with 1930's according to Studinka. I found it a common

breeder in the Hanság in 1949–1951.

101. Acrocephalus arundinaceus. It is a common breeding bird in the reedy borders of the canals still there too where they crossed the forests e. g. along the Kisrába-canal between the Kapuvári and Osli alderwoods. I found it breeding in the edges of reedbeds at Királyrét, in the reeds of Lake Barbacs and Lake Fehér-tó too. I experienced in 1981 that the reeds were out along the canals, therefore it might not breed already. The stock of the larger lakes (Barbacs, Fehér-tó) is unchanged.

102. Acrocephalus scirpaceus. It is not common nesting bird but it may find

everywhere in the reedy borders of lakes and canals.

103. Acrocephalus palustris. It is rarer than the preceding species. I found it breeding on the Királyrét and in the tall herbaceous plants mostly nettles bordering the outer edges of reeds of the canals. I did not find it at the lakes.

- 104. Hippolais icterina. It is a faily common and characteristic breeding bird in the alderwoods. I found its nests in the Boldogasszonyi alderwood and in the drier soiled Korona-wood which is a mixed deciduous forest. There are much more bushes in the latter one and so the possibility of breeding is much better here.
- 105. Phylloscopus sibilatrix. I found it breeding in the Kiserdő at Csorna in 1951. I did not find it nesting in the more swampy alderwoods.
- 106. Muscicapa striata. It is very rare in the alderwoods. I saw only some pairs in the breeding period between 1949–1951. Its most probable breeding place was in the orchard around the keeper's house.
- 107. Muscicapa albicollis. I have only one observation data. I saw a male at the southern edge of the Kapuvári alderwood on 25th April 1949. We may not sure about its breeding in the Hanság because it did not mention anybody (Studinka, Király).
- 108. Antus trivialis. It occurs everywhere in the drier parts of the alderwoods, mostly on the forestedges and in the near of clearings. It is more numerous in the much drier Korona-forest. I found a nest of it in one case in the meadow about 200–300 m from the forest mentioned above.
- 109. Motacilla alba. I experienced that it multiplied in 1981 compared to former years (1949–1951). I explained this phenomenon with the drier condition of the soil.
- 110. Motacilla flava. Its stock diminished in the 1950's compared to the 1930's according to Studinka. I also experienced that it was fairly common on the peaty meadows of the Hanság between 1949–1951; on the contrary I did not see any specimen in 1981 at the end of May, neither around Lébény nor at Kapuvár or Csorna on the meadows. Presumably it is account of the drier condition of the soil.
- 111. Bombycilla garrulus. It was common in winter in the Hanság at Lébény between 1931–1933 according to Studinka.
- 112. Lanius minor. It nested in moderate number in the line of poplartrees crossed the peatmeadows in the former decades (1930–1960). I saw only one nesting pair in 1981 at the end of May on my three day's trip, under these I walked all over the whole Hanság. Otherwise the fact is that this phenomenon good for the whole country that is not the consequence of the special condition through the Hanság underwent.
- 113. Lanius excubitor. It sporadically appears in winter in the Hanság according to Király. He has a real observation data from Csorna on 2nd February 1932.
- 114. Lanius collurio. It was the commonest breeding bird of the Hanság in the last decades in the alderwoods with brushwood undervegetation as well as in the bushy mixed forests (Korona-forest, Kiserdő at Csorna). After its strong diminishing that was transitional and the same time general all over the country in 1960's and 1970's in the latter years it is again increasing. It settled for nesting not only in the forest but in the bushes of the peatmeadows too.
- 115. Sturnus vulgaris. It seems the Hanság is not favourable to this species neither of the wiev-point of food nor of the bases of breeding places (there is very rarely a hollow in the alder). It may be see very rarely one or two specimens. I did not find its eggs.

116. Passer domesticus. It is not rare in the surroundings of the keeper's house in Boldogasszonyi alderwood, at the secluded houses in the meadows of the Hanság, in the near of the storknests built on poplars. It breeds mostly in the side of storknests, rarely in selfmade nest on trees.

117. Passer montanus. It is a denizen both of the meadows and forests of the Hanság; not common. It breeds in holes of poplars maybe of others in the line of trees on the peaty meadows of the Hanság, furthermore in side of stork-nest and stacks. I also found it breeding in deserted Black Kite's and Booted Eagle's nest if these are on the edge of forest or in the near of edges.

118. Chloris chloris. It breeds regularly but sporadically and only in small numbers in the Great Alderwood. It nests higher in frequently inundated fo-

rests than in drier ones.

119. Carduelis carduelis. It is a characteristic but sparse breeding bird of the forestedges. The high of nests is the same as of the Greenfinch in average

though this species contrast with it builds its nest higher.

120. Carduelis spinus. It bred in the alderwoods of Lébény between 1931-1933 according to Studinka. He founded his supposition on the observation in breeding period. Pátkai also observed it next to Lébény on 9th July 1933 namely three youngs with two old ones that more still proves its breeding the Hanság. Nevertheless nobody never found its nest.

121. Carduelis cannabina. It is a very rare breeding bird of the Hanság. Király only mentions from Csorna where he found its nests in the ball-acacias

of the streets.

122. Serinus serinus. Király regularly saw it in breeding periods but he never

found its nest.

123. Fringilla coelebs. It is a rare breeding bird in the forests of Hanság. It mostly builds its nest at the fringe of forest-clearings on young trees 1-4 m high.

124. Emberiza calandra. It is a rare breeder of the Hanság. Király only found

its nest two times in the environment of Csorna.

125. Emberiza citrinella. It is not common breeder in the forests of Hanság. I only found it breeding onetime. According to my supposition about twenty pairs bred all over the alderwoods under my former (1949-1951) investigations. Now it is commoner because the soil became drier in the two last decades.

126. Emberiza schoeniclus. It sporadically breeds on the Lake Barbaes and

Fehértó. Király found two nests of it at Barbacs.

References

Cerva, F. (1930): Megfigyelések a nagypóling fészkelési viszonyairól. A Természet. 26:

Chernel, I. (1889): Madártani kutatások a Fertő délkeleti részein és a Hanságban. Ornithologische Forschungen an dem südöstlichen Teile des Neusidlersees und im Hanság. "Sopron". 19. évf. 55:23–30.

Chernel, I. (1892): Az "Öreg-Éger". Im grossen kapuvárer Erlen-Walde. Természettudományi Társulat Évkönyve. Budapest. 202–216.

Horváth, L. (1952): Ornithologic Observations in the Alder Woods of Hanság. Annls hist. nat. Mus. natn. hung. Ser. Nov. 2:169-176.

Horváth L. (1954): A törpesas fészkelése a Hanságban. Aquila. 55–58:239.

Horváth L. (1965): A hansági Égererdő ragadozómadarai. Vertebr. hung. 7:29-36.

Király I. (1925–1926): Áttelepedő vízimadarak. Standortwechsel der Wasservögel der Hanság. Aquila. 32–33:258–259., 287.

Király I. (1927–1928). A csicsőrke a Kiasalföldön. Der Girlitz in der Kleinen-Tiefebene Aquila. 34–35: 290., 432.

Király I. (1930): A Barbacsi-tó madárvilága. Die Vogelwelt des Barbacser-Sees. Kócsag. 3:69-70.

Király I. (1931): A kis békászó sas: Aquila pomarina Brehm fészkelése hazánkban egykor és most. Einstiges und jetziges Horsten von Schreiadler in Ungarn. Kócsag. 4:89-95. Király I. (1932): Téli megfigyelések a Hanságból. Winterbeobachtungen aus der Hanság.

Kócsag. 5:55-56., 62.

Király I. (1933): Ornithológia a Hanságban, Ornithológie in der Hanság, Kócsag, 6:36-

Király I. (1934): A hamvas rétihéja fészkelése. Nisten der Wiesenweihe. A Természet. 30:13.

Király I. (1934): Két sólyom. Zwei Falken bei Csorna. A Természet. 30:14.

Király I. (1934): Hansági rétihéják. Die Weihen der Hanság. Kócsag. 7:57–60.

Király I. (1934): A "Figurák"-ban. Im Gebiet des Hanság: "Figurák". A Természet. 30: 103-108.

Király I. (1952–1955): Énekes hattyú a Hanságban, Whooper Swan in the Hanság, Western Hungary. Aquila. 59-62:377-378. 436. Király I. (1952–1955): Törpesas a Hanságban. Booted Eagle in the Hanság, Western

Hungary, Aquila, 59-62: 379., 437.

Király I. (1956–1957): Madártani adatok a Hanság vidékéről. Ornithological Observations from the Hanság, Western Hungary. Aquila. 63-64:312. 358-359.

Király I. (1960): A Hanság madárvilága. Vogelwelt des Hanság. Győr. 1–19. Király I. (1968): A Hanság madárvilága. Vogelwelt des Hanság. Szeged. 1–20. Pátkai I. (1934): Csizek a Hanságban. Erlenzeisige in der Hanság. Aquila. 38–41:350., 411.

Smuk A. (1948-1951): Darvak a Hanságban (Grus grus). Crane in the Hanság. Aquila. 55-58:226-227., 269-270.

Studinka L. (1932): A fenyőrigó (Turdus pilaris L.) költése Mosonban, Über das Brüten von Wacholderdrosseln in Komitat Moson. Kócsag. 5:123., 126–127.

Studinka L. (1933): A nagy póling (Numenius arquatus L.) a Hanságban. Der grosser Brachvogel im Hanság. A Természet. 29:33–35.

Studinka L. (1933): Tavaszi megfigyelések a lébényi Hanságból, Frühlings Beobachtungen im Hanság, bei Lébény. Kócsag. 6:132.

Studinka L. (1933): A rétihéják Magyarországon. Weihen in Ungern. A Természet. 29: 253-255., 273-276.

Studinka L. (1931–1934): Faunisztikai adatok a lébényi Hanságból. Faunistische Daten aus dem Hanság, bei Lébény. Aquila. 38-41:248-253.

Studinka L. (1934): Madárfészkek a Hanság vidékén. Vogelneste in der Gegend des Hanság. A Természet. 30:104-105.

Studinka L. (1935–1938): Nyílfarkú halfarkas (Stercorarius longicaudus Vieill.) nyári előfordulása. Sommer Vorkommen von Falkenraubmöve. Aquila. 42–45:680.

Studinka L. (1939–1942): Megfigyelések a hamvas rétihéjáról. The Habits and Plumages of Montagu's Harrier. Aquila. 46-49:225-246., 247-268.

Studinka L. (1956–1957): Faunisztikai megfigyelések a Hanságból. Faunistical Observations from the Hanság. Aquila, 63-64:312-313.

Author's address: Dr. L. Horváth Zoological Department Hungarian Natural History Museum H-1088 Budapest Hungary

Adatok a Hanság madárvilágáról

Dr. Horváth Lajos

A szerző 1949–1951 között foglalkozott a Hanság madárvilágával. E megfigyelési időszakból csupán a Nagy-Égererdő madarait ismerteti. A fennmaradó megfigyelési adatokat néhány, a későbbi években tett, kisebb hansági kirándulás eredményeivel kiegészítve. ismerteti a dolgozat.

A SÖVÉNYSÁRMÁNY (EMBERIZA CIRLUS L. 1766) ÚJABB ELŐFORDULÁSA MAGYARORSZÁGON

Waliczky Zoltán—Magyar Gábor—Hraskó Gábor

A sövénysármány Európában elsősorban a nyugati és a déli részek fészkelőmadara. Elterjedése (Wolters szerint): Észak-Afrika Tunéziától Marokkóig, Dél-Európa (északra Walesig és Dél-Angliáig, ¡Franciországban a Szajnáig – lokálisan északabbra is; Belgiumban szórványos és lokális, NSZK-ban Pfalzig, korábban Bonnig – és Svájcig, szórványosan Ausztriában, keleten Jugoszláviáig és Bulgáriáig). Északnyugat-Kisázsia, a Földközi-tenger szigetei; Új-Zélandon az Északi- és Déli-szigeten lokálisan betelepítve. A szerzők 1979 júniusában, 1980 június—júliusában Spanyolországban figyelték

meg több ízben a fajt.

Kárpát-medencei előfordulását részletesen ismerteti Jánossy (Aquila. 1976.), ezért erre itt külön nem térünk ki. Megemlítendő azonban az ő fészkelési adata, amely hazánk és egyben a Dél-Dunántúl területéről az első ilyen jellegű megfigyelés. Jánossy Dénes és Jánossy László a Villányi-hegység területén 1975. július 7–26. között öreg hím, tojó, valamint kirepült fiatal sövénysármányokat figyeltek meg, majd július 31-én Dandl József a helyszínen a madarak első hazai fészkét is megtalálta egy szőlőtőkén, egy tojással és két (elpusztult) fiókával. Nem tartozik ugyan a vizsgált tájegységhez, de említésre méltó Varga Zsolt hasonló megfigyelése Budaörsön (öreg hím és kirepült fiatalok), 1975. július 27. – augusztus 13. között (Aquila, 1976). Ez a két, egymástól független adat már akkor felhívta a figyelmet egy esetleges terjeszkedésre.

Ilyen előzmények után 1981 nyarára kutatóutat terveztünk a Villányi-hegységbe esetleges újabb sövénysármányadatok szerzése reményében. Szándékunkat megerősítette az a hír, amelyet Dandl Józseftől kaptunk, miszerint 1981. május 13–14–15-én Molnár István erdőmérnök Pécsett egy éneklő sövénysármány hímet figyelt meg. Mivel bővebb értesítést nem kaptunk, amellett Pécs a Villányi-hegységtől légvonalban alig 30 km-re van, ezért programunkba vet-

tük a Villányi-hegység mellett a pécsi adatok megerősítését is.

Túránkat 1981. július 6–11. között bonyolítottuk le, melynek során bejártuk Pécs, ill. a Villányi-hegység számba jöhető területeinek nagy részét. Utunk tartalmáról röviden: július 6-án érkeztünk Pécsre, még aznap délután sikerült megtalálnunk egy pár fiókás fészkét, valamint regisztrálnunk két másik hím jelenlétét a környéken. Július 7-én délelőtt a fészeknél végeztünk megfigyeléseket, és az éneklő hímek revirjét próbáltuk bemérni, a délutáni terepjáráskor újabb párt találtunk. Július 8-án reggel egy újabb éneklő hímet észleltünk, amely már az ötödik pár jelenlétére utalt. E napon utaztunk tovább a Villányi-hegységbe, ahol Harkány -Máriagyüd–Siklós útvonalon két hím énekét sikerült azonosítani. Július 9-én a Nagyharsány-hegy környékére tett túránk eredménytelen volt. Július 10-én a megtalált két hím revirjét kutattuk, és az egyiknél

sikerült három kirepült fiatal sövénysármányt megfigyelnünk; valamint újabb terepjárásokat végeztünk a hegység nyugati részébe, de ez már nem hozott újabb eredményt. Július 11-én visszatértünk Pécsre, ahol a már kirepült fiatalokat etető pár viselkedését figyeltük, valamint begyűjtöttük a már elha-

gyott fészket.

1982. június 10–12. között újabb megfigyeléseket végeztünk az előző évi állomány stabilizálódásának bizonyítására Pécsett. Június 10-én bejártuk a sövénysármány összes múlt évi revirjét. Ennek ellenére – valószínűleg a fülledt, meleg idő miatt – mindössze egy hím énekét észleltük. Másnap kora délelőtt ugyanezt a hímet sikerült hosszabb ideig figyelnünk éneklés, táplálkozás, revirtartó viselkedés közben. A nap folyamán még két további revirt találtunk: az egyikben az éneklő hím mellett a párját is láttuk, a másikban egy hím egy kirepült fiatalt etetett. Június 12-én bejártuk ugyanezeket a revireket *Molnár István* pécsi erdőmérnökkel; ezúttal két revirben láttunk, ill. hallottunk éneklő hímeket. Megnéztünk továbbá egy újabb revirt, ahol elhagyott fészekről volt tudomása *Molnár István*-nak. A fészket megtaláltuk, és amikor minden kétséget kizáróan megbizonyosodtunk róla, hogy a fészek tényleg teljesen elhagyatott (száraz levelek, virágszirmok voltak a csészében), lefényképezése után begyűjtöttük alaposabb vizsgálatra. E helytől légvonalban kb. 150–200 méterre ismét észleltünk egy éneklő hímet (*Magyar* és *Waliczky*).

A vizsgált terület leírása

1. Pécs északi része, a Mecsek déli lejtője: gyümölcsfákkal, bokrosokkal sűrűn benőtt tipikus kultúrbiotóp, a környék behálózva betonutakkal, lakóházakkal, nyaralókkal.

2. Å Villányi-hegység déli lejtői: sziklás, erdős hegyoldalak, gyümölcsösök,

szőlősök présházakkal.

A területeken az évi csapadékmennyiség 600–700 mm, a napsütéses órák száma évenként 2000, júliusi középhőmérséklet 21°C.

Biotóp

Az egyes sövénysármány revirek a Mecsek déli lejtőin 200–250 m tengerszint feletti magasságban, a Villányi-hegységben pedig 140–200 m tengerszint feletti magasságban voltak. A szintkülönbség oka a két helyen a különböző magasságban elhelyezkedő alkalmas biotóp; a Mecsek általunk bejárt részén a sövénysármánynak alkalmatlan városi biotóp magasabbra tolta fel a kedvező parkos gyümölcsösök élőhelyének határát, mint a Villányi-hegység lejtőin, ahol e biotóp egészen a hegység lábáig nyúlik. A megfigyelt revireket szinte kizárólag a déli lejtőkön találtuk. Ennek oka részben abban keresendő, hogy a faj számára kedvező élőhelyek főként a déli lejtőkre korlátozódnak (az északi lejtők rendszerint erdősek), részben pedig abban, hogy a faj hő- és fénykedvelő. Az Adriai-tenger közelsége (300 km) miatt a déli-délkeleti lejtők klímája mediterrán jellegű (sok napsütés, kevés csapadék, enyhe tél stb.).

A sövénysármány biotópjában megfigyelt jellemző madárfajok: vadgerle, gyurgyalag, balkáni fakopáncs, búbos pacsirta, tövisszúró gébics, cigánycsuk, házi rozsdafarkú, hantmadár, vörösbegy, feketerigó, széncinege, tengelic, ken-

1. Különböző sármányfajok revirjének megoszlása 1981-ben a Villányi-hegységben az éneklő hímek alapján – Distribution of forest ranges of various Bunting species in 1981 in Villányi-mountain as based on singing males

derike, csicsörke, mezei veréb. sárgarigó, szarka, erdei pinty. Egyes faunaelemek szintén alátámasztják a terület mediterrán jellegét (csicsörke, gyurgyalag, balkáni fakopáncs). A Villányi-hegységben megfigyelt további három sármányfaj (E. cia, citrinella, hortulana) élőhelye egymástól és a sövénysármányétól jól elkülöníthető volt. Legmagasabbra a bajszos sármány hatolt fel: élőhelye a kopár, sziklás hegyoldalak. Alatta a citromsármány az erdőszélek madara volt, ezt követte a sövénysármány a gyümölcsösökben, kertekben, legvégül a kerti sármány a hegység lábánál elterülő nagyüzemi szőlő-monokultúrákban (1. ábra).

Hang

A hím énekének három változatát különböztettük meg:

 monoton, erős és gyors "zi-zi-zi-zi-zi-zi-zi-zi-zi"; ez volt a legjellemzőbb hangja;

– a citromsármány énekéhez hasonló, de hiányzik a végéről a felütés (a há-

rom közül ez volt a leglassúbb);

– az előbbinél valamivel gyorsabb, a kis poszátáéhoz hasonló; ezt hallatta a legritkábban.

Hívóhang: fémes "szipp", illetve a nádi sármányéra emlékeztető "cii" hang. A hím a fiókák etetése alatt, röptében többször hallatott egy, a citromsármány riasztójeléhez hasonló "cri-li-li-li" hangot.

A fiókák hangja: éles, messzehangzó, a hívóhanghoz hasonló, de elnyújtot-

tabb, ismételt cippegés.

A hímek rendszerint kiemelkedő helyen (facsúcson, villanyvezetéken, sőt gyakran tv-antennán) ülve énekeltek, megesett azonban, hogy a hím a fészek közelében vagy táplálékkeresés közben a földön énekelt. Az őrhelyén ülve éneklés közben csőrét felfelé tartotta. Egy őrhelyen rendszerint csak néhányszor szólt (8–10 alkalom), majd arrébb repült. Általában így a revir határát járta be, de megtörtént, hogy a fészek, ill. a már kirepült fiatalok közelében szólt.

A megtalált fészkek adatai, fészeképítés

A fészket 1981-ben kis forgalmú betonutat szegélyező partfalban, 2,6 m magasan, sűrű szederbokorban találtuk. A partfal felett emberek által látogatott park terült el. Az út túloldalán villanyvezeték húzódott (a hím őrhelye), mögötte házak, ill. sűrű bozótos domboldal (a kirepült fiatalok tartózkodási helye).

Az 1982-ben begyűjtött fészek forgalmas gyalogút melletti partfalban, az út fölött 1,5 m magasan, de a földön épült, 1 m-re egy csonkolt fatörzstől. Környéken lakóházak, építkezési terület, valamint a gyalogút mellett egy akácfa-

sor volt.

A fészek méretei

	1. fészek	$2.\ f\'eszek$	Átlag (Groh után)
Belső átmérő	$7.0~\mathrm{cm}$	6,5 cm	6,6 cm
Külső átmérő	12,5 cm	13,5 cm	12,3 cm
Csészemélység	4.0 cm	5.0 cm	$4.3~\mathrm{cm}$
Külső magasság	$9.0~\mathrm{cm}$	6,5 cm	$6.7 \mathrm{em}$

A fészek anyaga: az 1981-ben talált fészek alapja durva leveles növényi szárakból áll, amely felfelé egyre finomabb. Körben mohával megerősítve, a csésze pereme fűszálakkal és lószőrrel körbeszőve, alja pedig finom növényi anyagokkal van kibélelve. A fészekben tojásmaradványok nem voltak találhatók, csak a tollképződéskor keletkező tokmaradványok.

Az 1982-ben talált fészek alja zöld mohából, kevés levélből, finom fűszálakból áll. Kívül durvább növényi szárak; a csésze peremén elszórva moha, valamint finom fűszálakkal van körbefonva és lószőrrel van megerősítve. A csésze

belseje emberi hajjal van kibélelve.

A řészeképítésre vonatkozóan Molnár István és Balikó Árpád rendelkeznek megfigyelésekkel. A részünkre megküldött levélbeni tájékoztatás szerint Balikó Árpád 1982. március 23-án észlelte először a sövénysármány párt: a hím fészekanyagot hordott, a tojó a közelben tartózkodott. Március 25-én újra látta a madarakat, amint kb. 100 méteres körzetben mozogtak. Április 7-én, a reggeli órákban már csak a tojó gyűjtött fészekanyagot a közeli építkezésnél használt nádpallóból, ez idő alatt a hím állandóan követte. Április 18-án találta meg Balikó a fészket. Molnár István megfigyelései szerint április 27-én a madarak még mindig a fészeképítéssel voltak elfoglalva. A fészekanyagot csak a tojó

hordta, a hím egy salakrakás tetején üldögélve figyelte 15–20 méterről. Mindketten nagyon bizalmasak voltak, nem mutattak semmi félénkséget, a közeli gyalogút forgalma sem zavarta őket. Csendesen viselkedtek. Sajnos az ezt követő napokban a fészek előtt vezető út földmunkáit végző gépek állandó zaja és mozgása mégis a fészek elhagyására kényszerítette a madarakat.

A fiatalok táplálása

A fészeknél végzett megfigyeléseink szerint a tojó és a hím egyaránt kiveszi a részét a fiókák etetéséből, ellentétben egyes szerzők állításával (pl. *Harrison*, 1975). *Groh* adatai (1975) azonban teljes mértékben alátámasztják megfigyeléseinket.

	$6^{30} - 8^{30}$	900-1100	Összesen
♂ etetése	18	18	36
♀ etetése	18	14	32
? etetése	_	5	5
$\ddot{\mathbf{O}}$ sszesen	36	37	73

A hím gyakran mutatkozott a fészek közelében az etetésen kívül is (etetés előtt vagy után gyakran kiült a villanyvezetékre, vagy leszállt az úttestre);

2. A szülők érkezési és távozási útiránya etetéskor az 1981-ben talált fészeknél – Route of arrival and departure of parents at feeding with nest discovered in 1981

a tojó viszont rendszerint egyenesen a fészekhez repült, etetés után pedig azonnal távozott, nyílt helyre csak néhány alkalommal ült ki. Itt említendő meg a faj bizalmas viselkedése: szemmel láthatólag nem zavarta őket sem az embeberek, sem a járművek jelenléte etetés vagy éneklés közben.

1981. július 11-ére a fiatalok kirepültek, és egy közeli kert gyümölcsfáinak sűrűjében megbújva várták az etetést. A Villányi-hegységben észlelt fiatalok a pécsiekhez képest már régebben kirepülhettek, mert nagyobb és nyíltabb

területen mozogtak (2. ábra).

A kirepült fiatalok táplálásában bizonyos fokú munkamegosztás is megfigyelhető volt; a hím csak az egyik, a tojó csak a másik fiatalnak vitt táplálékot. Az 1982-ben tapasztaltak szerint is a június 11-én megfigyelt fiatalt csak a hím táplálta (délelőtt folyamán átlag 3–4 percenként vitt eleséget, amelyet a szomszédos kertből vagy a betonút mellől gyűjtött), míg a tojó feltehetően a másik fiatalt (fiatalokat) etethette, bár azokat megtalálnunk nem sikerült.

Összefoglalás

Az adatok azt bizonyítják, hogy a sövénysármány 1975 óta igen jelentős szigetpopulációt hozott létre Dél-Dunántúlon (1981-ben 7 pár, 1982-ben csak Pécsett 4 pár) a Déli-Mecsek és a Villányi-hegység területén. Más észak felé terjeszkedő mediterrán madárfajokhoz hasonlóan (halvány geze, balkáni fakopáncs, balkáni gerle), ez a faj is megtalálta életfeltételeit az emberi települések közelében. Remélhető, hogy e szigettelepülés – bár a sármányfajoknál rendkívül erős állományingadozások fordulnak elő – életerősnek bizonyul, és egy esetleges terjeszkedésnek alapjául szolgál a jövőben. Ez úton is felhívjuk munkatársaink figyelmét, hogy a megfelelő dombos, hegyvidéki, mediterrán jéllegű gyümölcsösökben figyeljék előfordulását és esetleges fészkelését.

Végezetül köszönetet mondunk Molnár Istvánnak és Balikó Árpádnak megfigyeléseik rendelkezésünkre bocsátásáért, valamint Dandl József-nek mindazon támogatásáért, amelyben munkánk során részesített.

A szerzők címe: Waliczky Zoltán H–1021 Budapest Vöröshads. u. 94/a Magyar Gábor H–1052 Budapest Kígyó u. 2. Hraskó Gábor H–1056 Budapest Belgrád rkp. 18.

Irodalom

Harrison, C. (1975): A Field Guide to the Nests, Eggs and Nestlings of European Birds. London.

Hoeher, S. (1973): Gelege der Vögel Mitteleuropas. Melsungen.

Groh, G. (1975). Zur Biologie der Zaunammer in der Pfalz, Mitt. Pollichia. Bad Dürkheim. 63:72–139.

Jánossy D.-Jánossy L. (1976): A sövénysármány (Emberiza cirlus) fészkelésének első bizonyítéka hazánkban (Villányi-hegység). Aquila. LXXXIII. 179. p.

Keve A. (1960): Magyarország madarainak névjegyzéke. Budapest.

Lugitsch, R. (1957): A sövénysármány költési viszonyai Wien közelében. Aquila. LXIII–LXIV. 311–312. p.

Lugitsch, R. (1951): A bajszos és a sövénysármány telelése. Aquila. LV–LVIII. 253. p.

Makatsch, W. (1976): Die Eier der Vögel Europas. Leipzig.

Meier, H. (1951): Über eine Zaunammerbrut in Altdorf. Der Ornithologische Beobachter. 48/4:118-122.

Melcher, R. (1951): Zaunammerbeobachtungen im Glarnerland, Churer Rheintal und Unterengadin. Der Ornithologische Beobachter. 48/4:122–135.

Niethammer, G. (1937): Handbuch der deutschen Vogelkunde. Leipzig.

Voous, K. H. (1962): Die Vogelwelt Europas. Hamburg. Witherby, H. F. (1938): The Handbook of British Birds. London. Wolters, H. E. (1975): Die Vogelarten der Erde. 1–5.

Renewed occurrence of cirl bunting (Emberiza cirlus L. 1766) in Hungary

Z. Waliczky-G. Magyar-G. Hraskó

Since 1975 the cirl bunting has brought about an insular population in Southern Hungary in the Mecsek and Villányi range of mountains (in 1981 seven pairs, in 1982 only at Pécs four pairs). Likewise as other species spreading northwards (Streptopelia decaocto, Hippolais pallida, Dendrocopos syriacus) this species has also found its essential conditions in the vicinity of human settlements. It may be hoped that the insular settlement will prove vigorous and be a basis of an incidental further spread in the future too. The results of observations made in 1981 and 1982 on some southern slopes of the Villányi and Mecsek mountains are detailed in the study. Relying on the singing males, a population consisting of some five pairs seems presumable. In two discovered nests thorough hatching biological investigations have been carried out by the authors.

A FENYŐRIGÓ (TURDUS PILARIS L. 1758) FÉSZKELÉSE A RÉTYI NYÍRBEN, KOVÁSZNA MEGYE, ROMÁNIA

Molnár Lídia

A fenyőrigó Észak-Európában és Észak-Ázsiában fészkelő madárfaj volt, amellyel hazánk területén csak mint téli vendéggel találkozhattunk. Azonban már a XVIII. században megkezdődött egy délnyugat felé irányuló terjeszkedési folyamat, amelynek során a fenyőrigó országunkban is megjelent mint fészkelőmadár. Az első fenyőrigófészket Romániában Munteanu találta 1966ban a Keleti-Kárpátok keleti lejtőin. 1972-ben Béres (1973 a–b) észleli fészkelését a Máramarosi-medencében, 1977-ben már a Nyugati-Szigethegység keleti oldalán is kimutatták fészkelését (Korodi-Béres, 1977). A Dél-Kárpátok északi

lejtőin 1975-ben találják első fészkeit (Radu-Zsíros, 1975).

Kovászna megye területén 1980-ban észleltem először a fenyőrigó fészkelését a Rétyi Nyírben. A Rétyi Nyír egy 6–8 km² kiterjedésű, homokos terület a Feketeügy völgyében kb. 520 m tengerszint feletti magasságban. Természetvédelmi terület. A Feketeügy, a Szacsva- és a Béldi-patak által határolt terület homokdűnéi között kisebb-nagyobb tavak alakultak ki jellegzetes vízinövénytársulással. Az eredeti fafajt, a nyírt (Betula pendula) lassan teljesen kiszorítja a telepített erdeifenyő (Pinus silvestris) és akác (Robinia pseudacacia), valamint a mézgás éger (Alnus glutinosa). A Rétyi Nyír korántsem zavartalan terület, tehéncsordák és juhnyájak legelik tavasztól őszig a nagyobb tisztások, legelők füvét; egy lenfeldolgozó üzem működik a nyíres közvetlen szomszédságában, ugyanakkor a kirándulók és horgászok népes csapata látogatja ezt a vidéket.

A leírt terület északi szélében, az emberi behatásoknak legjobban kitett helyeken találtam meg a fenyőrigók költőtelepeit. A lenfeldolgozó üzem két oldalán, öreg erdeifenyők ágaira épített fészkekben költöttek a fenyőrigók 1980-ban és 1981-ben is.

A fenyőrigó fészkelését 1980. május 13-án észleltem először, de a fészkelő párok és a régi fészkek nagy száma, valamint az előző években tett megfigyeléseim – a fenyőrigó nyári itt-tartózkodására vonatkozóan – arra engednek követ-

keztetni, hogy a fenyőrigó már több éve fészkelhet a Rétyi Nyírben.

1980. május 13. és június 17. között 14 fészekben láttam a fenyőrigót költeni vagy fiókáit etetni; ezenkívül találtam még másik 13 lakatlan fészket, amelyeket alakjuk, a fán való elhelyezkedésük, nagyságuk után ítélve szintén fenyőrigó fészkeknek véltem. A következőkben csak a 14 lakott fészket veszem figyelembe.

Az összes fészek az erdeifenyő oldalágaira épült; kettő kivételével, amelyeket a fatörzs elágazásában találtam. Más fafajokon nem találtam fészket, pedig a műút túlsó oldalán elterülő nyíres is alkalmas lehetett volna fészkelésre. A

Románia területére vonatkozó szakirodalom szerint más vidékeken a fenyőrigó

kizárólag lombhullató fafajokon fészkel (Korodi-Béres, 1979).

A fészkek magassága 5–20,5 m között váltakozott, a 14 fészek átlagmagassága 12.8 m volt. Meghatároztam az oldalágakra épített fészkek égtájak szerinti irányultságát, amely a következő volt: kelet – 5 fészek, dél – 4 fészek, észak – 2 fészek. 3 fészek a fatörzs mellé vagy annak elágazásába épült. A 11 adat alapján nem lehet következtetni, hogy van-e valamilyen szabályszerűség a fészkek égtájak szerinti elhelyezésében. A fészkeket az erdő szélén, 4-5-ös csoportokban, 20-30 m-re egymástól találtam. Mivel a fészkek többsége elérhetetlen magasságban volt, csak 2 esetben ellenőrizhettem azok tartalmát. 1980. május 23-án egy fészekben 4 jól fejlett fiókát találtam; négy nappal később a fészek már üres volt. Ugyancsak május 23-án egy másik fészekben 4 majdnem csupasz fiókát találtam, ezek június 2-án repültek ki a fészekből. A fészek külső része erdeifenyőgallyakból, szalmából, durva növényszárakból és mohából épült, a belső agyagcsészét finom fűszálak bélelték. A fészek méretei a következők: külső átmérő = 17 cm, belső átmérő = 14 cm, mélysége = 6 cm, száraztömeg = 160 g. A többi fészekben távcsővel figyeltem a fiókák etetését. A táplálékot a fenyőrigók a Feketeügy árteréről gyűjtötték. Mielőtt a fészekre repültek volna, az etető madarak gyakran megálltak a fenyőcsoport közelében húzódó magasfeszültségű vezetéken. A fenyőrigófiókák még alig tudnak repülni a fészek elhagyásakor. Először a magas fűben rejtőznek, vagy a fa sűrű koronájában maradnak, ahol a szülők még sokáig etetik őket. Jellegzetes, szüleiket hívó hangjuk után könnyen megtalálhatók, így találtam én is 10 fiókát.

Megfigyeléseim az első költésből származó fiókák kikelése és etetése, valamint a második költés időszakára estek. Május 27-én 2 fenyőrigópárnál figyeltem meg a fészeképítéssel kapcsolatos viselkedést. Egy másik fészekben június

11-én kezdődött a második költés.

1981-ben április elsején még csapatokban láttam a fenyőrigókat. Egy héttel később már megkezdődött a párok kialakulása, a hímek egyre többet énekeltek és kergetőztek. Április 24-én már építeni kezdték a fészkeket, 28-án már 2 fészekben költöttek. A megfigyelt pároknál csak a nőstény építette a fészket, a hím eközben kísérte, és fészeképítés közben történt a párosodás is. Ebben az évben csak 8 lakott fészket figyeltem meg, amelyeket szintén kizárólag erdei-

fenvőn találtam.

A szakirodalom említést tesz a fenyőrigó és a nagy őrgébics (Lanius excubitor L. 1758) társulásáról fészkelés idején. Én 3 nagyőrgébics-fészket találtam a fenyőrigótelepek közelében. Semmilyen konfliktust nem észleltem a két faj között. Ugyanitt dolmányos varjak (Corvus corone cornix L. 1758) is fészkeltek, állandóan veszélyeztetve a fenyőrigó-fészekaljakat. Több elpusztult fiókát is találtam a hátukon vagy fejükön mély sebekkel, valamint ledobált fészkeket. A varjak elzavarásában a fenyőrigók társultak. A területen élő nagyszámú mókus (Sciurus vulgaris) is állandó veszélyt jelentett a fenyőrigók számára. Többször is megfigyeltem, hogy a tojások után kutató mókust a fenyőrigók összetársulva próbálták elzavarni.

A szerző címe: Lídia Molnár 4000 Sfintu Gheorghe Str. 16. Sabroarie nr. 10 Jud. Kovasna Romania

Llteratur-Irodalom

Béres, J. (1973): Sturzul de iarnä isi extinde arealul in Maramures. Vînat. si Pesc. Sportiv. X. 21 p.

Béres, J. (1973b): Dovezi documentare privind cuibăritul sturzului de iarnă (Turdus

pilaris L.) in depresiunes Maramuresului. Rev. Muzeelor. 3. X. 230—232. p.

Kôrodi, G. J.-Béres, J. (1979): Contributii la cunoasterea pîndirinii si biologiei reproducerii cocosarului (Turdus pilaris L.) în România. Stud. și com. Soci. St. Biol. RSR. Subfiliala Reghin. 189-208. p. Korodi, G. J.-Béres, J. (1979): Contributii la cuniasterea dezvoltării postembrionare si a

hranei puilor la cocosar (Turdus pilaris L.) Stud. si. com. Soci. St. Biol. RSR. Subfiliala

Reghin. 209-220, p.

Kovács, A. (1969): Mestecănisul de la Reci. Aluta. 211–267. p.

Munteanu, D. (1966): The Fielfare (Turdus pilaris L.) breeding in northern Romania. Bull. Brit. Ornith. Club. Vol. 88. No. 9: 171-172.

Munteanu D. (1971): Date privind migratia si cuibăritul cocosarului (Turdus pilaris) în România. Stud. si com. Muz. St. Nat. Bacău. 255-261. p.

Munteanu, D. (1974): Further expansion of the Fieldfare in the Rumanian Carpathians. Bull. Brit. Orn. Club. Vol. 94/4: 151.

Radu, D.-Zsiros, A. (1975): Cocosarul cuibăreste în Carpatii Meridionali. Vînăt. si Pesc. Sportiv. VI. 12. p. Stollmann, A. (1964): Adatok a fenyőrigó fészkeléséhez a Nyugati-Kárpátokban. Aquila.

Tom. 69-70: 195-198.

Angaben betreffend das Brüten der Wacholderdrossel (Turdus pilaris L. 1758) im Naturschutzgebiet Rétyi Nyír (Kreis Kovaszna, Rumänien)

Lídia Molnár

In vorliegender Arbeit wird eine neue Brutstelle der Wacholderdrossel (Turdus pilaris L. 1758) beschrieben, welche sich im Kreis Kovászna, im Naturschutzgebiet Rétyi Nyír in einer Höhenlange von 520 m befindet. Hier wurden zwei gesonderte kleinere Brutkolonien festgestellt, welche im Ganzen 14 Brutpaare zählen. Alle Nestern wurden ausschließlich auf Kiefern (Pinus silvestris), in einer durchschnittlichen Höhe von 12,8 m gefunden. Anschliessend werden weitere Angaben betreffend die Lage, das Nistmaterial und die Größe der gefundenen Nester gemacht. In der Brutkolonien konnte das Vorkommen des Rauwürgers (Lanius excubitor L. 1758) in 3 Brutpaaren bestättigt werden.

A BÁTORLIGETI-LÁP TERMÉSZETVÉDELMI TERÜLET MADÁRVILÁGA

Dr. Legány András

OKTH Észak-alföldi Felügyelősége, Debrecen

Bátorliget az 1914. évi első leírásától kezdve a szakmai irodalom és érdeklődés középpontjában van. Hazánkban talán az egyetlen olyan terület még ma is, amelynek élővilágáról a teljességre törekvő, összefoglaló mű jelent meg (Székessy, 1953). Ennek keretében látott napvilágot a terület első madártani felmérése is. amelyben a szerzők már próbáltak élőhelyenként differenciáltan adatokat felvenni. Ugyanakkor messzemenő következtetéseket nem vontak le, hivatkozva a kvantitatív adatfelvételezés kezdeti lépéseire.

Az azóta eltelt 30 esztendő során újabb madártani kutatások nem folytak a területen, tehát szükségesnek látszott az ismételt felmérés. Ezt indokolta a növényzetben lezajló – pozitív – változás és a szigorú védelem hatása is. Célom az volt, hogy a jellegzetes élőhelyek madáregyütteseinek kvantitatív és kvalitatív felmérése után a kapott eredményeket elemezzem, összehasonlítsam a korábbi felmérés adataival, és következtetni próbáljak a változás irányára. Csak ezek után tehetünk ugyanis bármiféle javaslatot a terület természetvédelmi kezelésére.

A vizsgált terület

Bátorliget Magyarország északkeleti csücskében fekszik. Nyírbátortól 18 km-re, közel a Nyírség pereméhez (1. ábra). Jelentőségét a lápjaiban és erdőiben megőrzött posztglaciális, valamint montán állat- és növényfajok adják. Ez a jelleg azonban nem tükröződik a madárvilágban is. Az 53 hektáros szigorúan védett terület mozaikszerűen összetett. Az egymás mellett levő növénytársulások sokszor nemcsak fajösszetételükben, de jellegükben is különböznek, ami a madárvilág fajgazdagságát eredményezi.

A madártani adatfelvételezések során 5 területet különböztettem meg, ame-

lyek jellegüknél fogya más-más madáregyüttest tartanak el.

1. Az eredeti keményfaligetek – tölgy-szil liget –, amelyekben zárványként szerepelnek a magasabb pontokon a homoki ezüsthársas-tölgyesek, valamint a mélyebb részeken a vízállásos láperdők. Itt tehát a három, jól megkülönböztethető növénytársulásnak egységes és nem differenciált madáregyüttese van, ezért madártani szempontból egy élőhelyként kezeltem. E területeket két nagy összefüggő foltban találhatjuk az északkeleti és nyugati szegélyen. Jelentősek az öreg, magasra nőtt fák, amelyek között számos odvas is van, biztosítva ezzel az odúlakók megtelepedését. Gyep- és cserjeszintje egyaránt gazdag. Területe 22.6 ha.

2. A terület centrumát képezi az eredeti keményfaligetek helyén felújított,

2. A Bátorligeti-ősláp természetvédelmi terület madárbiotópjainak megoszlása a vegetáció alapján – Distribution of bird biotops on the basis of vegetation on nature conservation area Bátorliget (after T. Simon)

viszonylag fiatal erdőtelepítés, amely fajösszetételében hasonló az eredeti, őshonos erdőtársuláshoz. Cserje- és gyepszintje az előbbinél szegényesebb. Odvasodásra alkalmas fa alig található benne. Az odúlakók jórészt a kifüggesztett mesterséges fészekodúkban telepedtek meg. Területe kb. 17 hektár (2. ábra).

3. A fűzláp – amely a terület nyugati felén húzódik keresztül – a hozzá szorosan kapcsolódó nyírlápokkal együtt képezi a harmadik olyan élőhelyet, amelynek önálló madáregyüttese van. Itt főleg a rekettyefűz alkot szinte átjárhatatlan sűrűséget. Helyenként öreg tölgyek, fehérnyárak és nyírek emelkednek a fűzláp fölé, amelyek lehetővé teszik számos arborikol és dendrikol fajnak a megtelepedést. A terület nagysága 4,4 hektár.

4. A kaszálók zömében szárazabb és magasabb területeken találhatók, kisebb foltokban elszórva, főleg a felújított keményfaligetek területén. Helyenként kisebb-nagyobb galagonyabokrok tarkítják, amelyeknek köszönhető, hogy e területeken egyáltalán madarak fészkelhetnek. A szétszórt mozaikok összterülete 7,4 ha, amely önmagában jelentős lehetne, de a kis zárványszerű foltok

nem teszik lehetővé egy önálló, gazdag madáregyüttes kialakulását.

5. A terület központjában elhelyezkedő, mintegy 1.6 hektáros nádas–zsombékos képezi az utolsó és legkisebb élőhelyet. Itt a nád és a zsombáksás ad sajátos biotópot, amely nagyon szegényes, de önálló madáregyüttesnek biztosít megtelepedést.

Az adatgyűjtés módszerei

Az állományfelvételeket 1982-ben végeztem több alkalommal, hogy a költési periódusban megállapítható legyen a fészkelőfajok és -párok száma. A kutatás ugyanis a fészkelőfajok megállapítására irányult, mert ezek játsszák a leg-

döntőbb szerepet a terület életközösségében.

Az adatok felvételezését úgy végeztem, hogy a védett területet bejárva, annak minden részéről képet alkothassak. Ennek során figyelembe vettem a megtalált fészkeket, tojáshéjakat, a fiókákat vezető és etető szülőket, az éneklő hímeket, tehát minden olyan tényt, amely egy adott faj költését bizonyítja. A több alkalommal történt bejárás lehetővé tette a felvételek pontosítását és az együttesek a valósághoz közeli, viszonylag pontos becslését.

A kutatás eredményei

A keményfaligetek madáregyüttese

Az élőhely jellegéből eredően a leggazdagabb mind a fajösszetételt, mint pe-

dig a fészkelő párok számát illetően (1. táblázat).

Öreg faállományú erdők, amelyek lehetővé tették nagyszámú dendrikol fajok megtelepedését. Ezek erdővédelmi szerepe kiemelkedő. Ugyanakkor a fajok fészkelési szintek szerinti megoszlásában jelentős szórás nem tapasztalható. A biotóp helykihasználása kiegyenlített (2. táblázat).

A fogyasztott táplálék alapján a rovarevők abszolút dominanciát élveznek,

mert a fajok 64 %-a és a párok 72 %-a rovarfogyasztó.

Az együttes alapját palearktikus – 38% – és európai faunaelemek – 29% –

A Bátorligeti-láp természetvédelmi területen megfigyelt fészkelőmadár-fajok (a számok a fészkelő párokat jelentik)

	100011010	par onat joic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Fajok Species	Keményfa- liget Hardwood grove	Keményfa- liget ültetett Hardwood grove planted	Fűzláp willow bog	Kaszáló, rét Grassland	Nádas, zsombékos Meadow reedy marshy
1. Ixobrychus minutus L.		!	2		1
2. Ciconia nigra L.	1		_		1
3. Anas platyrhynchos L.	1	1	2		1
4. Anas querquedula L.	1	1			
5. Accipiter gentilis L.	1		2		1
6. Phasianus colchicus L.	2		2		
7. Rallus aquaticus L.		1			1
8. Gallinula chloropus L.			4		2
9. Fulica atra L.	2		$\frac{2}{1}$		
10. Columba palumbus L. 11. Streptopelia turtur L.	4	1	1 1		1
12. Cuculus canorus L.	2	1	1		1
13. Strix aluco L.	. î	, 1	,		
14. Coracias garrulus L.	i		1		
15. Upupa epops L.	$\frac{1}{2}$	1	-		
16. Jynx torquilla L.	1	2	. 1	i	1
17. Dendrocopos maior L.	3		1		
18. Oriolus oriolus L.	5	3			1
19. Corvus cornix L.			1		٠.
20. Pica pica L.			1		
21. Garrulus glandarius L.	_	1		•	
22. Parus maior L.	7	2			
23. Parus caeruleus L.	3	1			
24. Aegithalos caudatus L.	$\frac{1}{2}$	1			I
25. Sitta europaea L.26. Troglodytes troglodytes L.	2		1		
27. Turdus phylomelos Brehm	2		1		1
28. Turdus merula L.	6	3	1	1	1
29. Luscinia megarhynchos	7	. 5	4		4
Brehm	•		-		
30. Erithacus rubecula L.	4				
31. Locustella fluviatilis Wolf	2			;	
32. Lucustella luscinioides	1	1	1	t	1
Savi					
33. Acrocephalus arundinaceus			2		
24 1					1
34. Acrocephalus scirpaceus		1	2		1
Herm. 35. Acrocephalus					1
schoenobaenus L.					1
36. Sylvia atricapilla L.	11	5			
37. Sylvia borin Beehst.	3	1	2		
38. Sylvia communis Lath.	**	-	Ī	I	•
39. Sylvia curruca L.	2	2			
40. Phylloscopus collybita	8	6	3		
Vieill.					
41. Phylloscopus sibilatrix	5	5			1
Bechst					
42. Muscicapa striata Pall.	2	7		1 23	1
43. Lanius collurio L.	10	1	9	2	
44. Sturnus vulgaris L.	10		2	ı	I

		-			
Species	Keményfa liget Hardwood grove	Keményfa liget ültetett Hardwood grove planted	fűzláp wilłow bog	Kaszáló rét Grassland	Nádas zsombékos Meádow reedy
45. Passer domesticus L. 46. Passer montanus L.	1				!
47. Chloris chloris L.	10	4	3		
48. Fringilla coelebs L.	9	2	1		1
49. Emberiza citrinella L.		1	,		1
A fészkelő fajok száma	34	19	24	2	5
A fészkelő párok száma	123	45	42	3	66

2. táblázat

A Bátorligeti-láp természetvédelmi területen megfigyelt költőfajok megoszlása a fészkelési szint, a fannaelemek és a fogyasztott táplálék alapján

Fajok Species	Keményfaliget Hardwood grove		ültet Hardy	Keményfaliget ültetett Hardwood grove planted		Fűzláp Willow bog		Kaszáló, rét Grassland		Nádas, zsombékos Meadow reedy marshy	
-	faj	pár	faj	pár	faj	pár	faj	pár	faj	pár	
Fészkelési szintek											
Hidroöcikus	_		1		2	6	_	_	2	3	
Phargmitidikol					3	6	-	-	3	3	
Terrikol	7	28	4	17	5	12			_		
Fruticikol	8	31	, 8	15	5	6	2	3	-	_	
Dendrikol	12	43	4	7	5	8	_	_		_	
Arborikol	7	21	3	6	4	4	- '	_		_	
$\overline{Faunael}emek$		_				_					
Palearktikus	13	40	9	17	8 1	13	1	2	1	1	
Európai–turkesz-	7	22	2	3	7	10	1	1	3	3	
tani										I	
Európai	. 10	55	8	25	4	8				_	
Holarktikus	2	2			2	3	***	_	-		
Óvilági	1	2	-		l	2		\rightarrow	_	_	
Kozmopolita	_		_	_	1	4		_	1	2	
Ismeretlen	1	2	_		1	2			-	,	
$\overline{Fogyasztott\ tapllpha l\'ek}$	·										
Húsevő	3	3		-	1	2	-	_	_	_	
Rovarevő	22	89	14	38	13	22	2	3	4	4	
Növényevő	7	20	3	.1	7	13	-		1	2	
Vegyesevő	2	11	2	3	3	5	_				
Összdiverzitás értéke	6,6	387	5,6	971	6,2:	295	1,3	296	3,9	583	

képezik. Érdekes módon a fészkelő párok számát illetően az európai fajok dominálnak $45\,\%$ -kal.

Az összdiverzitás értéke itt a legmagasabb (6,6387), amely egyértelműen utal

a terület biológiai, természetvédelmi jelentőségére.

Az 1 hektárra eső biomassza értéke 1235 g, amely a fészkelő párokra vonatkozik. Ezek alapján próbáltam kiszámítani az egységnyi – 1 ha – területre eső produkciót, amelyhez a következő összefüggést alkalmaztam:

$$P = N \cdot J \cdot K - \frac{N \cdot J \cdot K \cdot M}{5}$$

ahol:

N = fészkelő párok;

J = a fajra jellemző fiókák;

K = a költések száma;

M = a fajra jellemző középsúly.

20% fiatalkori elhullással számoltam, és ezért osztottam az értéket 5-tel.

A kapott szám a keményfaligetek esetében 3473 g/ha, amely jó értéknek tekinthető. Különösen akkor, ha figyelembe vesszük, hogy ennek jó része erdővédelmi szempontból jelentős rovarfogyasztó.

2. Az ültetett keményfaliget madáregyüttese

Az előbbihez hasonló fajösszetételű, de annál a fészkelőfajok, de főképpen a párok tekintetében jóval szegényesebb. Itt tulajdonképpen a keményfaligetek madáregyüttesének terjeszkedését, illetve korábbi területének visszahódítását figyelhetjük meg. Azok a fajok tepeledtek meg itt és alkotják az erdő madárállományát, amelyek már most megtalálták életfeltételeiket (1. táblázat).

Jelentős mennyiségben hiányzanak az odúlakók és az öreg erdőt kedvelő fajok (pl. *Accipiter gentilis, Ciconia nigra*). E viszonyokat tükrözi a fajok fészkelési szintek szerinti megoszlása is. Míg az előbb a dendrikol fajok domináltak,

addig most a terrikolok és fruticikol elemek.

A faunaelemek megoszlása minőségében és arányaiban is természetesen az előbbihez hasonló. Itt is az alapot a palearktikus és európai fajok képezik, azonban éppen úgy, mint korábban a párok tekintetében az európai elemek

abszolút dominanciájával – 56%.

Az összdiverzitás értéke 5,6971, amely az előbbi állománnyal szemben egy kisebb természetvédelmi értéket jelent és utal az együttes fejlődő állapotára. Ezt igazolja az egységnyi területre – 1 ha – jutó biomasszaérték is, amely itt 222 g. Ennek megfelelően a produkciója is csekély – 605 g/ha. E két utóbbi érték felhívja a figyelmet arra, hogy az egyes területek vizsgálatakor nem elegendő a fajok számát nézni. Minden esetben a fészkelő párokat is figyelembe kell venni. Itt a jelentősebb különbség a két állomány között nem is annyira minőségi, mint mennyiségi. A fiatal erdő madáreltartó képessége kicsi, és ez eredményezi ezt az értéket.

3. A fűzláp és a mocsár madáregyüttese

Egészen sajátos élőhely, ahol a jellegzetesen mocsári és erdei fajok keverednek. Ennek következtében egy fajgazdag, de fészkelő párokban szegény, mégis produktív együttest találunk itt (1. táblázat).

A fészkelési szintek tekintetében ez a hely kínálja a legtöbb lehetőséget, ahol a fajok, sőt a párok megoszlása is viszonylag egyenletesnek mondható. Nagy

szórás, kiugró érték nincs.

A faunaelemeknél is eddig nem tapasztalt gazdagság figyelhető meg, ahol a korábbiaktól eltérően a paleartikus alapfauna mellett az európai—turkesztáni fajok dominálnak. Ez egyúttal a terület ornitofaunájának sajátos karakterét is

megadja.

A táplálkozási kategóriák szerinti vizsgálat is adott újat. Azt ugyanis, hogy a rovarevők dominanciája mellett itt a növényevők jutottak jelentős szerephez – 30%. Ez egyúttal indokolja a biomassza és a produkció itt számított értékeit. Az 1 hektárra eső biomassza értéke ugyanis 4306 g, a produkció pedig kiugró 20 287 g/ha. Ennek az az oka, hogy olyan nagyobb testű növényevő fajok fészkelnek itt, amelyeknél a fiókák száma is nagy (Fulica atra, Gallinula chloropus, Anas platyrhynchos, Phasianus colchicus).

Az összdiverzitás nagy értéke – 6,2295 – utal az állomány önálló és kialakult

jellegére, valamint a természetvédelmi értékére.

4. A kaszálórét madarai

Madáregyüttesről itt nem lehet beszélni, mert csupán két fészkelőfajt találtam, és azt is kisszámú párban (I. táblázat). Ennek okára korábban – az élőhely leírásánál – már utaltam. A viszonylag kicsi, mozaikszerű területek nem adtak lehetőséget az önálló, a szomszédos élőhelyekről jól elkülönülő madáregyüttes létrejöttére.

Ezt egyébként mutatja az összdiverzitás kis értéke is – 1,3296 –, amely nemcsak a faj- és egyedszámbeli szegénységre utal, hanem a fészkelési és táplálko-

zási kategóriáknál mutatkozó egyhangúságra is.

5. A nádas—zsombékos madáregyüttese

A vizsgált élőhelyek közül a legkisebb kiterjedésű. Madárállománya igen fajszegénynek mondható, és némi rokonságot mutat a fűzláp irányába. Az itt megfigyelt 5 faj (1. táblázatot) egy kivételével csupán egyetlen párral képviselteti magát. A terület jellegéből eredően mindössze 2 fészkelési szintet hasznosíthatnak a madarak, ami jelentősen korlátozza a megtelepedők számát.

Egyéni karaktert jelent, hogy az egyetlen olyan élőhely, ahol nem a palearktikus fajok képezik a fauna alapját, hanem az európai-turkesztáni elemek.

A fészkelő párok túlnyomó többsége rovarevő – 66%. Ugyanakkor a növényevők nagyobb súlyuk és fiókaszámuk miatt fontos szerepet játszanak a biomassza és a produkció értékeinek kialakításában. Az 1 ha-ra jutó biomassza 761 g és a produkció 5497 g.

A Bátorligeti-láp természetvédelmi terület madárvilágának elemzése során

tehát megállapítható:

– Kialakult és a szomszédos élőhelyektől mennyiségi és minőségi viszonyaiban elkülöníthető madáregyüttese csak a fűzlápoknak és az eredeti keményfaligeteknek van. Ezek őrizték meg a terület eredeti madárállományát. Ezek a madáregyüttesek adják az ősláp madártani karakterét és jelentenek természetvédelmi értéket. A vizsgált többi terület állománya vagy kialakulóban van, mint a fiatal telepített keményfaligeteknél, vagy csupán zárványnak tekinthető.

– A most észlelt madárállománynak a korábbi adatokkal való összevetése kapcsán kitűnt, hogy jelentősen nőtt a fészkelőfajok száma – mintegy 21-gyel. Míg a korábban észleltek közül most csupán 6 olyan faj volt, amely hiányzott a területről. Ez mindenképpen az avifauna gazdagodását jelenti, ami nem magyarázható mással, mint a területen 30 év alatt végbement rekonstrukció és védelem hatásával. Ezt bizonyítják azok a fajok is, amelyek nyugalmat, zavartalanságot és öreg erdőket igényelnek (Ciconia nigra, Accipiter gentilis).

– Tekintettel arra, hogy a területnek majdnem az egészére a fával, fás szárú vegetációval való borítottság jellemző, teljesen indokolt, hogy a fészkelési szintek megoszlásában is a talaj-, a cserje-, a fatörzs- és a lombkoronaszint a meghatározó, és köztük a fajok megoszlása viszonylag nagy egyenletességet mutat.

Ez arra utal, hogy a terület a madarak számára optimálisnak tűnik.

Következtetések, javaslatok

1. Az erdők ápolását csak a természetvédelmi szempontoknak megfelelően szabad végezni. Hiba lenne az öreg, odvas fák eltávolítása. El kell érni, hogy a felújított keményfaliget-erdők is természetközeli jellegűek legyenek.

2. Az értékes madárállomány nyugalmára bármilyen erdő- vagy területkeze-

lési tevékenységet csak december és február hónapban lehet megengedni.

3. Tekintettel a vízzel borított fűzláp és nádas–zsombékos értékeire, ügyelni kell a megfelelő vízszint megtartására, amelyet nem csupán botanikai, hanem zoológiai értékek is indokolnak. A már megépített vízkormányzó rendszer jelentősége itt újra hangsúlyozottá válik.

4. A látogatók számát csak a szakmailag érdekelt személyekre kell korlátozni – tudományos intézetek, egyetemek, főiskolák munkatársai és hallgatói –, akiket a zavarási veszély elkerüléséért csak egy úton szabad vezetni. Kivételt

képeznek a kutatást végző személyek.

5. Az állományváltozás irányának követésére szükségesnek tartom a 10 évenkénti megismételt madártani felmérést. A kapott adatokból a további kezelésre vonatkozóan is következtetéseket lehet levonni.

A szerző címe: Dr. Legány András H—4440 Tiszavasvári Kossuth u. 56/a.

Literatur-Irodalom

Báldy - Horváth - Farkas - Keve - Pátkai - Szijj - Vertse (1958): Ayes - Madarak. Magyarország állatvilága, Akadémiai Kiadó, Budapest,

Bulla B. (1962): Magyarország természeti földrajza. Tankönyvkiadó, Budapest.

Legány A. – Vértes I.-né (1977): Egy modellként választott erdő madáregyüttesének kutatási eredményei. Állat. Közl. 64. 1–4:115–127.

 $P\acute{e}csi~M.~(1969):$ A tiszai Alföld. Akadémiai Kiadó, Budapest. Simon~T.~(1981): A bátorligeti természetvédelmi terület és a csarodai természetvédelmi területek növényzete helyzetének felmérése, természetvédelmi és kezelési javaslat.

Székessy V. (1953): Bátorliget élővilága. Akadémiai Kiadó, Budapest.

Voous, K. H. (1960): Atlas of European Birds. London.

Wilson, E. O. - Bossert, W. H. (1981): Bevezetés a populációbiológiába. Gondolat Kiadó, Budapest.

Avifauna of the nature conservation area at Bátorliget (Hungary)

Dr. A. Legány

Bátorliget, as a post-glacial relict situated in the north-eastern corner of Hungary is a particular site of the Carpathian basin from the floristic and faunistic aspects. The avifauna of this nature conservation area is discussed by the author from ecofaunistic point of view. On the ground of the results obtained he makes suggestion in five points concerning organization of the practice of nature conservation.

			٠.	

THE SEX AND AGE DISTRIBUTION AS WELL AS THE MAJOR ANATOMO—MORPHOLOGICAL CHARACTERISTICS OF THE POPULATION OF COLLARED DOVES (STREPTOPELIA DECAOCTO FRIV.)

Dr. Svetlana Bozsko

The present work is a continuation of research on the population dynamics of Collared Doves (Streptopelia decaocto Friv.) in Debrecen. In previous papers (Bozsko-Juhász, 1979, 1981) data concerning the size, density and territorial distribution of population as well as their changes trough seasons and over a number of years were published. As in doves visible external sex differences are absent the sex as well as the age structure of population can be established only by means of dissection of birds. Dissection was used also in order to reveal the major morphological characteristics of the population and their dynamics over the year.

Materials and methods

The birds were obtained from the University of Agriculture in Debrecen. From autumn to late spring one part the population feeds outside the town on the territory of mixing plant of University Farm. In summer the experimental sowing provide good base for a numerous flock. The samples were taken in May, July and October 1980 resp. in January and March 1981. In all, 182 birds were examined. For comparison the data of 62 doves from granary of Nyíregyháza were processed, too (37 birds in March and 25 birds in November 1980). The doves were shot without selection, thus the samples can be regarded as representative.

For the heart examination 15 Pigeons (Columba livia ssp. domestica) were

used as comparative material.

The sex, age, body weight, bill size, the heart and gonads well as moulting were established, their major indexes calculated and statistically evaluated. The data of seasonal changes of gonads as well as moulting will be published in separate paper.

The body weight was determinated without the crop content that ranged in

our material between 0.5 and 26.5 g.

Discussion of material

1. The sex stucture of population

The sex structure of the population studied is shown in Table 1. Strikingly the proportion of two sexes varied throught the year in our material. With the exception of March and July, when the birds hatched, females prevalied. This

Table 1.

Sex distribution of the population of Collared Doves in Debrecen
A balkánigerle-populáció ivari megoszlása Debrecenben

		М	ales	Females		
Date	n	abs.	07	abs.	0′	
15. V. 1980	24	11	45.83	13	54.17	
7. VII. 1980	29	20	68.96	9	31.04	
9. X. 1980	25	9	36.00	16	64.00	
23. I. 1981	50	-22	44.00	28	56.00	
26. III. 1981	54	29	53.70	25	46.30	
In all	182	91	50.00	91	50.00	

Table z.

Sex distribution of Collared Doves per months in other towns and regions
A balkáni gerle havonkénti ivari megoszlása más városokban és vidéken

		ı		Males	Fer	nales	-1
Place	Date	i n	abs.	0//0	abs.	97	Note
Nyíregyháza	3.1980	37	- 16	43.24	21	56.76	Author's data
-1,7-1-0-0,	11.1980	25	15	60.00	10	40.00	
In all		$\overline{62}$	31	50.00^{-}	31	50.50	
Bácsalmás	8.1972	234	107	45.73	127	54.27	J. Rékási (1973)
Bácsalmás	8-9.1976	94	63	67.03	31	32.97	J. Rékási, pers.
	8 - 9.1977	76	55	72.37	21	27.63	communication
	4-5.1978	33	14	42.42	19	57.58	
	8-9.1978	100	39	39.00	61	61.00	
	8 - 9.1979	106	24	22.64	82	77.36	
	4-5.1980	28	16	57.14	12	42.86	
	8-9.1980	63	28	44.44	35	55.56	
In all		734	356	48.50	378	51.50	
Nord-Dobrogea	1970-1980	1			1		
Rumania	1.	63	29	46.03	34	53.97	$I.\ B.\ Kiss$
	2.	82	46	56.10	36	43.90	J. Rékási, pers.
	3.	62	35	56.45	27	43.55	communication
	4.	6	3	50.00	3	50.00	
•	5.	8	4	50.00	4	50.00	
	6.	- 6	4	66.67	2	33.33	
	8.	54	26	48.15	28	51.85	
	9.	130	64	49.23	66	50.77	
	10.	85	33	38.82	52	61.17	
	11.	-23	13	56.52	10	43.48	
	12.	34	10	29.41	24	70.59	
In all		553	267	48.28	286	51.72	

fact seems to suggest that the sex ratio be shifted in favour of females. Nevertheless on the whole – on the basis of the 182 birds studied – the sex ratio was exactly a half-to-half, t. i. to 50%. The samples from Nyíregyháza showed a completely identical distribution (Table 2). Unfortunately data on the sex structure of population in this species are lacking in literature. Certain observations, however, urge further research into this question. My own notes in the field showed that occasionally some males have mated with strange females, too (Bozsko, 1978). On a greater series of birds dissected (unpublished data of Rékási and Kiss) it has been observed any change in the sex ratio toward the females predominance (Table 2). This question requires further study on a larger material by means of examination of sex ratio and determination of differentive mortality in both sexes.

2. The age structure of population

In case of Collared Doves it is extremely difficult to define age groups. Therefore it was necessary to take into account such morphological and anatomical features as plumage, moulting stage, body weight, size of gonads. Even so, only three age groups were distinguishable: the juvenile, subadult and adult ones.

The juvenile group included specimens that did not yet have a black stripe at the neck, their plumage was still partly in sheaths and the body weight was

around 150–160 g.

The specimens classed into the subadult group had very small immatur, but differentiated gonads, their plumage still bore traces of post-juvenilis moulting, the body weight was generally smaller than that of adults. The determinating of this group requires great circumspection in early spring when sexually immature birds from late autumn breads still occur side-of-side with the adults which have pre-nuptial moulting and their gonads are still in refractory phase in this time.

All sexually mature and bred specimens in summer as well as fully developed ones with adult plumage and large body weight in winter were classed into

adult group.

The reproductive cycle of Collared Doves in Hungary lasts from February till November, but some birds nest sporadically in winter, too. Thus the juvenile and subadult birds could be present in samples an all periods. In our material most juveniles occured in July and early October (Table 3). The youngs constituted 8% in January and were wholly absent in March because of winter nesting successed only exceptionally. Their number was rather small in May too, when the Collared Doves suffer the most losses in breeds from Jackdaws (Coloeus monedula) on the territory of Debrecen (Bozsko, 1978).

The number of subadult birds did not exceed 16% from July to January and later it was reduced to null. Their low proportion can be explained partly by the settling of youngs in new places and partly by rapid sexual maturation of the remained specimens, which take place at the age of 5–6 months (Kotov,

1979).

The greater part of the population consists of adult birds. Their proportion exceeded 50% even in early autumn, but later it gradually increased and reach-

Table 3.

Age distribution of the population of Collared Doves in Debrecen
A balkánigerle-populáció kormegoszlása Debrecenben

Date	n	Ad.	Subad.	Juv.
15. 5. 1980	24			
o ^r		11	-	
7	-	11	1	1
In all, %	100.0	91.6	4.2	4.2
7. 7. 1980	29			
of a		11	3	6
4		6	1	2
In all, %	100.0	58.6	13.8	27.6
9. 10. 1980	25			
O ^A		4	_	5
9		10	· 2	4
In all, %	100.0	56.00	8.0	36.0
23. 1. 1981	50			
c [₹]		18	3	1
. 9		20	5	3
In all, %	100.0	76.0	16.0	8.0
26. 3. 1981.	54	1		
o [₹]		29	-	
9		24	1	_
In all, %	100.0	98.1	1.9	_
In all	182	144	16	22
of a	91	73	6	. 12
♀ %	91	71	10	10
%	100.0	79.1	8.8	12.1

ed 76–98% in the winter and spring months. The great degree of sexual maturity of the population promotes, in all probability, the high reproduction rate of Collared Doves.

3. Body weight

The data of body weight given pertian only to adult and subadult groups. As these two groups cannot be unambigously separated from each other, we examined them together. The juvenile birds were not evaluated statistically for their small number.

The average body weight values and their seasonal dynamics are shown in Table 4. In males the lowest body weight was registered in May. Towards autumn it grew rapidly to higher values. Even minimum means in October exceeded the averages of spring and summer. In January and March the mean weight decreased somewhat (205 and 204 g respectively), but even then it remained considerably greater than in May and July. An increase of mean body weight in winter has been attested in a number of other bird species as well, like house sparrow, greenfinch, blackbird and songthrush (relying on O'Connor, 1975). The causes of this phenomenon are not yet clarified, but it can be associa-

Monthly statistics of Collared Doves weights, gramm A balkáni gerle testtömegének havonkénti mutatói grammokban

Date	n	x(g)	sx	8	82	V_{\min} - V_{\max}
			$Males(\ \bigcirc)$)		
05. 1980	11	195.86	2.901	9.623	92.608	177.0-208.5
07.1980	14	197.86	3.402	12.799	162.016	176.0-218.0
10. 1980	4	217.09	7.598	15.184	230.542	198.0-235.0
01. 1981	21	204.93	3.014	13.811	190.751	183.0-232.0
03. 1981	29	203.89	2.233	12.026	144.632	188.0-232.0
			Females (!)		
05. 1980	12	190.09	2.771	9.189	84.441	170.0-196.0
07. 1980	7	194.00	3.854	10.198	104.000	178.0-203.0
10. 1980	12	199.90	2.806	9.720	94.472	181.2-212.0
01. 1981	25	195.64	2.461	12.303	151.356	172.0-224.0
03.1981	25	202.67	2.485	11.916	141.988	177.3-223.0

ted primarily with increasing moulting. In Collared Doves, a change of food causes also weight uprising. From autumn on, after green food the Doves switch over to dry maize full of energy. In this time the flocks of birds cluster around granaries. In Debrecen their food basis is so good that even in the coldest months Collared Doves do not suffer from hunger. The birds dissected showed no signs of weight loss or illness.

Nearly the same body weight dynamics can be observed in females. The difference between the two sexes was conspicuous only in March, when – in comparison with January – the weight of males decreased by 1 g in average, while that of the females reached the maximum and approached that of males (Table 4). The weight increase of females in spring is usually explained by the development of the ovary and the appearance of eggs in it (O'Connor, 1975). To prove this we compared the difference of mean ovary weight and those of the average body weight from January to March. During the two months the average weight of ovaries increased in our material to the 5,5-fold and its minimum exceeded considerably the mean value for January, but in absolute terms this gain amounted only to 0,5 g in average. In the maximum variant (V_{max}), when there was formed egg yolk the weight of the ovary amounted to 2 g only (Table 5). Thus the increase of the mean body weight in our sample by 7 g

Table 5.

Tthe weight of ovaries in Collared Doves from January to March
A balkáni gerle ováriumtömege januárban és márciusban

Month		n	1	x(g)	δX	8	$V_{\mathrm{min}} - V_{\mathrm{max}}$	
27. 01. 1981 23. 04. 1981	1	28 21		0.101 0.548	$0.006 \\ 0.092$	$0.032 \\ 0.423$	0.029 -0.150 0.231- 2.002	-

seems to be caused not so much by the presence of ripe eggs in the ovarius, but in a greater degree by the accumulation of substances necessary for the ripening of eggs. Recent literature data confirm this conclusion (Murton-Westwood, 1977).

The seasonal differences in mean body weight proved to be statistically significant (t-est) in males between May and January, in females between May

and October as well as May and March.

Sexual differences in body weight, which have been observed in every sample, are worth mentioning, too (Table 4). In the material as a whole these differences (males 200.38 g, females 197.77 g, t-test = 1.66) are less striking.

4. The bill

The outer appearance of the bill serves often as an indicator of sexual dimorphism. As known the bill size changes throughout life: it grows some time

but in old specimens the wear may modify its average size.

In the present study adult specimens were exclusively used (n = 49:23 and 26 5). One of the chief aim of the study was to reveal the sexual differences in the form of the bill. The length and width of the bill and their ratio were established. The bill ratio related to the mass of body forme the bill index. The index so received was examined in each body weight category. The results summarized in Table 6. show that the length of bill is virtually the same in both sexes without significant differences. The bill width in males and females differ even less. Therefore, bill size does not show sexual dimorphism. Similarly, no differences were observed in the length/width ratio between the two sexes. The only difference was that the maximum values of bill length and bill width generally occured in males, while those closer to the minimum values were more characteristic of females.

Table 6.

Bill parameters of Collared Doves
A balkáni gerle csőrméreteinek jellemzői

Parameters	п	x	8X	8	V _{min} -V _{max}
Bill length, mm					
~*************************************	26	16.29	0.158	0.807	14.5 - 18.6
9	23	16.36	0.132	0.634	15.4 - 18.0
Bill width, mm					
ď	26	6.22	0.106	0.543	4.7 - 7.0
9	23	6.23	0.124	0.595	5.0- 7.0
Bill length/					
width relatio					
₹	26	-2.634	0.059	0.305	2.28 - 3.95
· 2	23	2.649	0,072	0.348	2.2 - 3.6
Bill index					
3	26	1.312	0.035	0.180	1.00-2.00
Ŷ	23	1.321	0.043	0.210	1.083-1.914

Bill characteristics of Collared Doves according to body weight categories

A balkáni gerle csőrjellemzői testtömeg-kategóriánként

Body weight categories		Mean bill width, nim		Mean bill length, mm		Mean bill ratio		Mean bill index	
		01	9	ď	9	C	9	್ರೆ	9
Below 180 g	$\frac{n}{x}$ s_x	6.8		16.5		2.42		1.45	
180–200 g	$\begin{bmatrix} n \\ \bar{x} \\ s_{\bar{x}} \end{bmatrix}$	$ \begin{array}{r} 11 \\ 6.07 \\ 0.21 \\ 0.687 \end{array} $	$\frac{-9}{6.03}$ $\frac{0.21}{0.638}$	$ \begin{array}{r} 11\\ 16.28\\ 0.33\\ 1.076 \end{array} $	$ \begin{array}{r} \hline $	$\begin{array}{c} 11 \\ 2.72 \\ 0.13 \\ 0.436 \end{array}$	$ \begin{array}{c c} & 9 \\ 2.77 \\ 0.12 \\ 0.403 \end{array} $	$\begin{array}{c} 11 \\ 1.42 \\ 0.06 \\ 0.210 \end{array}$	$\begin{array}{c} 9 \\ 1.40 \\ 0.06 \\ 0.166 \end{array}$
200–220 g	$\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$	$ \begin{array}{c} 11 \\ 6.23 \\ 0.12 \\ 0.374 \end{array} $	$ \begin{array}{r} 12 \\ 0.36 \\ 0.16 \\ 0.575 \end{array} $	$\begin{array}{c} 11 \\ 16.37 \\ 0.20 \\ 0.649 \end{array}$	$ \begin{array}{r} 12 \\ 16.18 \\ 0.19 \\ 0.650 \end{array} $	$ \begin{array}{c} 11 \\ 2.63 \\ 0.04 \\ 0.121 \end{array} $	$ \begin{array}{c} 12 \\ 2.57 \\ 0.09 \\ 0.320 \end{array} $	11 1.27 0.02 0.076	$ \begin{array}{r} 12 \\ 1.24 \\ 0.05 \\ 0.156 \end{array} $
Above 220 g	$\begin{bmatrix} n \\ x \\ s_x \end{bmatrix}$	$\begin{array}{c} 3 \\ 6.57 \\ 0.23 \\ 0.404 \end{array}$	$\begin{array}{r} 2 \\ 6.45 \\ 0.35 \\ 0.495 \end{array}$	$ \begin{array}{r} 3 \\ 15.96 \\ 0.09 \\ 0.153 \end{array} $	$\begin{array}{c} 2\\ 16.75\\ 0.25\\ 0.353 \end{array}$	3 2.63 0.08 0.134	$\begin{array}{c} 3 \\ 2.57 \\ 0.10 \\ 0.141 \end{array}$	3 1.07 0.04 0.068	$ \begin{array}{r} 2\\ 1.17\\ 0.04\\ 0.054 \end{array} $

In relation to body mass the width of bill increases linearly with weight. A maximum width occurs in males, in accordance with the maximum value of weight in them.

Within the body category of 190–220 g bill length showes a change in a positive direction, but in males above 220 g a decrease of bill length could be observed. This may be probably indicative of the bill wear, although it cannot

be unambigonsly proved (n = 3).

The lenght/width ratio of bill present a picture about shape of the bill. It was interesting to compare this parameter with the size of body. This index did not differ significantly by sex (Table 7). The changes of bill index according to body weight were followings. The highest value was found in the category of under 180 g. With further weight increasing the values of index became more and more reduced and the lowest one was found in the category of above 220 g. Thus, the bill size in adult birds is in inverse linear ratio to body mass.

5. The heart

The size of heart is species-specific feature whose absolut and relative means are modified in course of the ontogenesis, differently in nidifugous and insessorial birds (Shwarc, 1949, 1956). The weight of heart in adult birds does not change as a function of the nourishment or the season. Within one species, however, there are population differences in heart index (Hesse, 1924; Shwarc, 1949, 1956, 1958).

Until now data concerning the heart of Collared Doves are lacking. Our study extended over a sample from January 1981 ($n=39:18\ 3$ and 21 $\ 2$) and one

Heart mass and heart index of Collared Doves in the Debrecen population
A balkáni gerle szívtömege és szívindexe a debreceni populációban

Sex	Date	Weight of heart mass					Heart index			
		n	· <u>x</u>	8X	s	$V_{\min} - V_{\max}$	x	V_{min} - V_{max}	$C_{\mathbf{v}}$	t
o [*]	0.1 1981 03. 1981	18 20	$\frac{2.424}{2.652}$	$0.070 \\ 0.047$		2.006 - 2.945 $2.247 - 3.008$	$\frac{1.20}{1.31}$	1.09-1.39 $1.11-1.49$	12.2 7.8	3.47
	Average	38	-2.570	0.044	$0.2\overline{6}9$	2.006 - 3.008	1.25	1.03-1.49	27.4	
<u> </u>	01. 1981 03. 1981	21 17	$ \begin{array}{c} 2.26\overline{3} \\ 2.838 \end{array} $	$0.051 \\ 0.058$	1	$\begin{array}{c} 1.779 - 2.866 \\ 2.239 - 3.085 \end{array}$	$\frac{1.18}{1.43}$	0.99 - 1.32 $1.28 - 1.60$	$\begin{bmatrix} 10.3 \\ 8.4 \end{bmatrix}$	6.26
	Average	38	2.520	0.060	0.371	1.779 - 3.085	1.32	0.99-1.60	32.1	

from March ($n = 36: 19 \, \circlearrowleft$ and $17 \, \circlearrowleft$), 75 specimens in all. The statistical means of heart weight, the heart index and its variation coefficients were determined and analysed by t-test (Table 8).

The heart weight of Collared Doves ranged between 2.0–3,0 g in both sexes. Values lower than 2.0 g occurred only in three cases and exclusively in females. The mean heart weight of both sexes are nearly the same (Table 8) what is in accordance with the statement of *Shwarc* (1949). The individual variability (C_{ν}) of heart reached 7.8–12.3% in males and 8.4–10.3% in females, what means 0.15–0.30 g in reality.

The relative weight of heart – the heart index – amounted to 1.26% and 1.32% in males and females respectively, what is surprisingly low in comparison with other birds, even of similar body size where it ranges between 6-16%, but in *Vanellus vanellus* and *Fulica atra* it reaches 23.4% and 26.9% respectively (*Shwarc*, 1949).

The heart index of Collared Doves is almost identical with that of Domestic Pigeon, what reached 1.29% in our material (n=15) and ranged between 1.11 and 1.55%. The lowest index was observed in immature specimens. The variability of the heart index of Pigeons published (Simous, 1960; Sturkie, 1972) varied between 1.02 and 1.38% and was probably connected with the age or body mass differences of various genetical stocks measured. But the great similarity between the heart indexes of Collared Doves and Pigeons assumes that a heart index around 1.0-1.5% is characteristic of several genera of Columbidae firmes and is probably also an order-specific antomical feature.

A notifiable deviation in the heart weight was registered in our material in March. The heart weight average of males were then by about 10% higher than in January. The value of heart index rose significantly too (t=4.69), and its variability (C_{\circ}) decreased to 7.8% proving its authenticy (Table 8). Even greater changes were found in females, where the heart index increased more than 25%. The heart index differences were also highly significant (t=6.26) and its variability was 8.4%. It cannot be asserted that the rise of heart index followed body weight gain as in this month average body weight decreased by 1 g in males and increased by 7 g in females. Besides this it is proved that the heart weight does not fluctuate with body weight changes. Not any case of heart obesity was found during the dissections. The increase of the mean body weight in March can be partly explaned by maturation of subadult birds which, to so-

me extent, makes the higher values of heart weight more understandable. On the other hand, it is not excluded that strange migrating birds with different habit may got into the sample. This question requires further study.

Author's address:
Dr. S. Bozsko
Department of Zoology and Anthropology
L. Kossuth University
H-4010 Debrecen
Hungary

References

Bozsko Sz. (1978): Ecology and ethology of Collared Doves (Streptopelia decaocto) in the city of Debrecen. Aquila. 85:85–92.

Bozsko Sz.-Juhász L. (1979): A balkáni gerle (Streptopelia decaocto) populációdinamikája Debrecenben. (Hungarian, English summary.) Acta Biol. Debrecena. 16:57–85.

Bozsko Sz.–Juhász L. (1981): Debrecen város balkáni gerle (Streptopelia decaocto Friv.) állományának populációdinamikai vizsgálata. (English and Hungarian.) Aquila. 88:91–115.

O'Connor, R. I. (1972): Patterns of weight change in the House sparrow Passer domesticus L. In: Productivity, Population dynamics and Systematics of Granivorous Birds. Ed.: S. C. Kendeigh-J. Pinowski. Warszawa. p. 111-125.

 $Hesse,\,R.\,(192\mathring{4})\colon$ Tiergeographie auf ökologischer Grundlage. Verlag G. Fischer, Jena. p. 399–400.

Kotov, A. A. (1974): Sroki i techenije linki u kolchatoj gorlici. Mat. VI. vsesojuzn. ornitol. konf. II. Moscow. p. 71.

Murton, R. K.-Westwood, N. J. (1977): Avian breeding cycles. Clarendon Press, Oxford. p. 1-475.

Rékási J. (1974): Napraforgótábláról begyűjtött balkáni gerle (Streptopelia decaocto) tápláléka. Aquila. 80–81:287–288.

Shwarc, S. S. (1949): Novie dannie po otnositelnomu vesu serdca i pecheni u ptic. Zool. zh. 28. N. 4:355–360.

Shware, S. S. (1956): K voprosu o razvitii nekotorih interjernih priznakov nazemnih pozvonochnih zhivotnih. Zool. zh. 35. N. 8:804-819.

Swarc, S. S. (1958): Method morfo-fiziologicheskih indikatirov v ecologii nazemnih pozyonochnih zbi votnih. Zool. zh. 37. N. 2:161-179.

Simous, I. R. (1960): The blood-vascular system. In: Biology and Comparative Physiology of Birds. Ed.: A. Marshall. Acad. Press. New York-London. p. 345-362.

Strukie, P. D. (1972): Avian Physiology. Springer Verlag, New York.

A balkáni gerle (Streptopelia decaocto Friv.) populáció ivarés koreloszlása, valamint fontosabb anatomo-morfológiai jellemzői

Dr. Bozsko Szvetlana

Jelen munka Debrecen balkáni gerle populációdinamikai kutatásának (Bozsko-Juhász, 1979, 1981) a folytatása. 1980. V. és 1981. III. között öt alkalommal, összesen 182 madarat vizsgáltunk meg.

1. A populáció ivarmegoszlása az év folyamán változó volt (1. táblázat), de az összesség-

ben 50-50%-osnak bizonyult.

2. Kor szerint csak juvenilis, szubadult és adult esoportok voltak elkülöníthetők. A legtöbb juvenilis madár nyár közepén és ősz elején fordult elő, télen arányuk jelentősen esökkent, márciusban pedig már hiányoztak a mintából, ami gyors ivarérésükkel áll kapcsolatban. A májusi kis számuk (3. táblázat) a városi csókák fészekrabló tevékenységével magyarázható, ami általános jelenség Debrecenben. A populáció nagyobbik része adult példányokból áll, arányuk nyáron 50%, de téli és tavaszi hónapokban eléri a 76, ill 98%-ot. Ez a balkáni gerle gyors ivarérését és részben a fiatalok elvándorlását tükrözi.

3. A testtömeg megállapítása begytartalom nélkül történt. Csak adult és szubadult

madarak adatai kerültek közlésre.

A testtömeg átlagaiban jellegzetes évszaki dinamika mutatkozott (4. táblázat). A hímek és a tojók testtömege májusban volt a legkisebb, októberben pedig kiugróan nagy lett, ami ennél a fajnál nem csak a vedlésnek, hanem az őszi táplálékváltásnak is köszönhető. A zöld táp után ősz elején a balkáni gerle áttér a száraz, energiadús kukoricamagra, amelyet bőségesen szedhet a magtáraknál. A tavaszi és az őszi testtömeg-differenciák szignifikánsnak bizonyultak (t-próba pozitív). Márciusban a tojók átlagosan 7 grammal súlyosabbak voltak, mint januárban, testtömegük megközelítette a hímekét. Ez a gyarapodás nem magyarázható pusztán a tojás megjelenésével, mivel az ovárium átlagtömege két hónap között csak 0,5 grammal nőtt (5. táblázat). A tojók tavaszi testtömegátlagainak emelkedését az adott mintában inkább a tojáséréshez szükséges anyagok felhalmozódása okozhatta. A testtömeg ivari különbségei minden egyes mintában jól érzékelhetők (4. táblázat), de összesített anyagban ezek kevésbé feltűnőek (hímek 200,38 g, tojók 197,77 g, t-próba 1,66).

4. A balkáni gerle csőrhosszúsága, ill. -szélessége, valamint ezek aránya nem mutatott biztos ivardifferenciát. Egyedül az állapítható meg, hogy a maximális értékek általában hímeknél fordulnak elő, a minimális pedig a tojóknál (6. táblázat). A csőr szélessége a test gyarapodásával lineárisan nő, a csőrhossz 180–220 g-os kategórián belül pozitív irányú változást mutatott, de a 220 g feletti hímeknél a csőrhossz csökkent. A csőrméretek aránya a testtömeghez viszonyítva a csőrindexet képezi. A csőrindex sem mutatott szignifikáns ivarkülönbségeket. A legnagyobb értékek a 180 g alatti kategóriában figyelhetők meg. További testnövekedéssel az index értéke csökken, és legkisebb a 220 g feletti csoportban (7. táblázat). Az adult madaraknál a csőrméret relatív értéke fordított lineáris arányban

van a testtömeggel.

5. A balkáni gerle szívtömege mindkét nemnél 2–3 g között van (8. táblázat). A szívindex átlagai 1,26% a hímeknél, 1,32% a tojóknál. A balkáni gerle relatív szívtömege nagyon kiesi más madárfajokhoz képest, de majdnem azonos, mint a házi galambé (Columba livia ssp. domestica). Méréseink szerint a házi galamb szívindex-középátlaga 1,29 (n = 15). Elképzelhető, hogy a szívindex 1,0–1,5 közötti értéke a Columbidae rend specifikus bélyege. A balkáni gerle debreceni populációjában lényeges szívtömeg- és szívindex-átlageltérések mutatkoztak március hónapban (8. táblázat). A hímek szívtömege átlagosan 10,0%-kal, a tojóké 25,0%-kal növekedett a januárihoz viszonyítva. Erősen szignifikáns változás történt a két nem szívindexmutatójában is (t-próba: hímeknél 4,6%), tojóknál 6,2%). A szívmutatók változása nem függött lineárisan a testtömeg növekedésétől. Feltételezhető, hogy az észlelt jelenség részben a sub-adult példányok érésével állt kapcsolatban, de nincs kizárva, hogy más habitust mutató vonuló madarak kerültek a mintába.

Ez a jelenség további ellenőrzést kíván.

*

Köszönetnyilvánítás. Köszönetet mondok a rendelkezésemre bocsátott még nem publikált anyagért dr. Rékási Józsefnek, a boncolási munkában és az anyag statisztikai feldolgozásában nyújtott nagy segítségért Holes Lászlónak, továbbá hasznos közreműködésért Juhász Lajosnak, Tóth Tibornak és \tilde{O} lyűs Lajosnénak.

A BUKÓRÉCÉK JELENTŐSÉGE A BALATON ÉLETÉBEN

Dr. Keve András

A Balaton bukórécéiről szóló első tanulmányom anyagát 1967-tel zártam. Így ismét csaknem 15 év adatai gyűltek össze olyan időszakból, amelynek folyamán lényeges változások játszódtak le. Nem térek ki a kimondott mocsárlakóra, a cigányrécére, sem a bukókra, amelyek halevők. A Balaton nyílt vizén csapatokban járó fajokra szorítkozom, amelyek elsősorban molluskafogyasztók.

Ezeknek a récéknek életére az elmúlt 15 évben lezajló folyamatok részben pozitívan, részben negatívan hatottak. Úgy látszik azonban, nem befolyásolták a szórványosan mutatkozó récefajok mozgását. Nem feledkezhetünk meg arról sem, hogy az 1946–1966 közti telek viszonylag enyhébbek voltak, aminek ellen-

kező előjelű hatása lett volna várható.

Pozitívan hatott a téli récetömegekre, hogy a kontyos réce déli irányban terjeszkedni kezdett. 1966-ban nagyobb számú költésére bukkantak Waldviertelben (Alsó Ausztria), 1965-ben Hanság közelében valószínűsítették fészkelését; a régebbi szigetközi megfigyelések a költési időből elég bizonytalanok (1932, 1933, 1939, 1965). Kétséges, hogy vajon a kisebb számú dél-csehszlovákiai kerceréce-települések kihatással voltak-e a Balatonon telelő tömegekre.

Negatívan hatott a vándorkagyló gradációjának letörése, amivel az egyik

fontos táplálékbázis esett ki.

Hazai viszonylatban a bukórécék fő tápláléka a Lithoglyphus nevű csiga,

amit a dunai récék gyomortartalom-vizsgálata még ma is bizonyít.

Előbb a Dunában, majd 1933-ban megjelent a Balatonban a vándorkagyló (Sebestyén, 1934), amely azután egyenlő arányban került elő a récék gyomortartalmából az említett csigával. A Dreissena gradációja egyre erősödött a 30-as és a 40-es években, és félő volt, hogy számottevő veszedelmet jelent nemcsak a balatoni szivacsra és a kecskerákra, hanem még a halakra nézve is, mivel az utóbbiak kopoltyújára is telepedett, azt bisszusz-fonalaival elzárva. Viszont a hirtelen fellépő táplálékbőség megmozgatta a bukórécék vonulását mennyiségi és időbeli szempontból egyaránt.

A barátréce (Aythya ferina) a Balatonon vonulási időben főleg olyan parti szakaszokon mutatkozik esapatosan, ahol azt benövi a Potamogeton. A víz alól gyökerestül hozza fel és fogyasztja, de nemritkán ugyanígy erőlködik a vándorkagylókoloncokkal is. A költési időben mocsárlakó, és 1967 után is vannak adataink, hogy költött az Irmapusztai-halastavaknál; pl. Fodor (in litt.)

1969-ben 5-6 párra becsülte a helyi állományt.

1968–1980 között akadtak vonulási időszakok, amikor teljesen kimaradt; így 1976, 1977, 1978, 1979 tavaszán és 1974, 1978, 1980 őszén. Bár ezek a kimaradások gyakoribbak lettek, mint 1946–1967 között, de máskülönben a megszokott mennyiségek mozogtak; pl. 1970 novemberében a Kis-Balatonban több száz is megjelent vagy 1977 novemberében a Balatonon a Zala torkolatánál stb.

Előfordult, hogy a még befagyott Balaton lékein jelentek meg, pl. 1970. III.

15-én (10-20 db).

Lényeges eltolódást nem tapasztaltam sem tavaszi érkezése időpontjában, sem az őszi távozásáéban. A legkorábbi érkezési adatok: Kis-Balaton (Zalavárivíz), 1971. II. 14. (3); Fenékpuszta (Balaton), 1973. II. 18. (2). A legkésőbbi távozási adatok: Révfülöp (9) és Kornyi-tó (1), 1970. XII. 17.; Keszthely (móló), 1975. XII. 12. (20–30 db).

A barátréce esetében mennyiségi csökkenésről alig beszélhetünk, csak ingadozásról. A bukóréce bár nagy mennyiségben fogyasztja a vándorkagylót, fő tápláléka mégiscsak növényi. Ilyen ingadozások korábban is előfordultak, ha nem is ennyire gyakran. Beszélnünk kellett a barátrécéről, mivel gyakorta csatlakozik a kontyos- és kercerécecsapatokhoz éppenúgy, mint a táplálkozásá-

ban hozzá közel álló szárcsához (Keve, 1972; Stempniewicz, 1974).

A kontyos réce (Aythya fuligula) kimondottan csiga- és kagylóevő és a nyílt víztükör madara. Már 1941-ben is sikerült megfigyelnünk, hogy a Balaton déli medencéjében őszi csapatai korábban mutatkoznak, mint a Dunánál vagy a Balaton északi medencéjében. Entz, Pónyi és Tamás (1963), majd Pónyi és munkatársai (1971, 1974) mérései azután rámutattak, hogy a vándorkagyló legnagyobb mennyiségben a Gyenesdiás előtti Balaton fenekén fordul elő, míg közel azonos időszakban Sebestyén (in litt.) már csak elvétve talált Dreissena-t Tihany és Balatonfüred között.

A vándorkagylótömegek – melyek a Balaton több állatfajának fennmaradását veszélyeztették, a fürdőzőknek pedig éles felfelé álló héjukkal sérüléseket, legalábbis kellemetlenséget okoztak – természetes ellenségei első helyen a halak (*Pónyi*), utána a bukórécék, különösen a kontyos réce, amely nem fogyaszt annyi növényi táplálékot, mint a barátréce, és hosszabb időt tölt a Balatonon,

mint a kerceréce.

1949–1967 között voltak esztendők, amikor már július végén mutatkozott, leggyakrabban augusztusban, olykor csak szeptemberben, messze kinn a vizen Balatongyörök és Balatonberény között. A Keszthelyi-öbölben októberben és novemberben nem voltak ritkák a több ezres csapatok, ugyanígy márciusban is.

Az 1960-as években a *Dreissena* gradáció letört, számuk rohamosan megfogyott, ami egyre jobban éreztette hatását a kagylókkal táplálkozó récékre. 1968 után csak egyetlen esetben (1972. IX. 21.) találkoztam szeptemberben kontyos récével, 1973-ig csak októberben, és 1974 után csupán novemberben jelentkeztek, tehát *Lovassy* felfogásának megfelelően. Figyelembe kell vennünk azonban azt a hibaforrást, hogy 1973 óta a balatoni látogatásaim megritkultak és megrövidültek. ami által könnyebben kerülheti el valami a figyelmemet.

Tény azonban, hogy októberben nem láttam kontyos récét.

A táplálékbázis leapadása, úgy látszik, erősebb tényezőnek bizonyult a terjeszkedésnél. A kontyos réce költési területének déli irányú kiterjesztésének a hatása annyiban mutatkozott meg, hogy az 1966-os fonyódi előfordulás óta a május-júniusi megfigyelések gyakoribbak lettek, de ezek sohasem szólnak nagyobb számokról. Így ugyanezen a halastavon 1973. V. 3-án is láttam egy párt. A Kis-Balatonban 1972. VII. 20-án két párt, 1974. májusában Futó Elemér 6 példányt látott; 1979. V. 5-én 3 db-ot figyeltem meg; Fenékpuszta előtti parton Weisz Tibor 1968. V. 17-én 5 hímet és 2 tojót észlelt; magam 1975. V. 17-én 10-12 db-ot, a sármelléki derítőn pedig 1977. VI. 24-én 18 gácsért.

Természetesen felvetődhet a kérdés, hogy mi ebből a párzás utáni szertekóborlás, mi a kései távozás, és mi a kora őszi érkezés?

A kerceréce (Bucephala clangula) – mint már kifejtettem – a hazai vizeink igazi téli récéje. A kerceréce is csiga- és kagylóevő, életmódjában nem mutat fel különbséget a kontyossal szemben, mégsem tapasztalható, hogy a Balaton déli medencéjében korábban érkezne, mint az északiban. Lehetséges, hogy ennek oka, hogy a későbben érkező tömegek már előbb pihenésre szorulnak; nem is lehetnek válogatósak, amikor már más récefajok a legjobban ellátott pontokon tömörültek.

A kerceréce tömegeiben kisebb ingadozások a múltban is tapasztalhatók voltak, számuk azonban mintha csökkent volna, bár Bélatelep és a Fenékpuszta előtti víztükrön ma is megtalálhatók télen, ha nem állt be a Balaton jege. 1967 óta csupán 1968 tavaszán és 1974. XII. 7-én találkoztam ezer körüli tömegükkel a Balatonon. Még feltűnőbb a változás a Kis-Balatonban, bár ennek tavai sohasem voltak a kerceréce jellegzetes tartózkodási helyei, de nemritkán akadtak százon felüli számban is. 1967 után legfeljebb 2–5 példánnyal találkoztam, ha nem is ritkán, csupán 1967. XII. 18-án repült fel az új csatornáról egy 20–

25-ös csapat.

1948–1966 között – 9 esztendőben – októberben mutatkoztak az elsők. 1967–1980 között legkorábban 1972. IX. 22-én találkoztam egy "tojóval", 1971. X. 6-án kettővel, a többi években általában október közepén vagy novemberben jelentek meg. A tavaszi távozását már nehezebben tudtam megfogni, mivel a kora tavaszi kiszállásaim kimaradtak. De még ilyen körülmények között is – hét esztendőben – még áprilisban is találkoztam kercerécével (viszont be kell ismernem, hogy 5 évben ki is maradtak a tavaszi megfigyeléseim), a többi legkésőbbi tavaszi észlelésem márciusra esett, kivéve amikor 1975. V. 14-én találkoztam egy beteg gácsérral. Az 1949–1966 közötti években leggyakrabban április végéig maradtak vissza kercék, de voltak évek (1950, 1952, 1954, 1955, 1962), amikor még májusban is mutatkoztak.

Előfordult, hogy kora tavasszal még csak lékeket találtak a jégen, így Fonyód 1971. II. 13. (1-2); Badacsonytomaj, 1971. III. 12. (50-60); Keszthely, 1971.

III. 15. (80-100).

A Balatonon kívül a környező halastavakon is találkoztam kercerécével: Fonyód, 1970. III. 13. (23 db); Monostorapáti-Hegyesd, 1978. XI. 16. (3).

A tömegekben megjelenő fajok után rátérhetünk az alkalmilag mutatkozók-

ra, amelyek csak egyes példányokban érkeznek a Balatonra.

A hegyi réce (Aythya marila) az a faj. amelyet 1941-ig csupán egy példány alapján ismertek a Balatonról (Szalay), amikor azonban elérkezett 1941-ben a rendszeres napi megfigyelésekre az alkalom, XI. 14. és XII. 19. között naponta láttuk 8–10-es csapatát Tihanynál. 1948–1966 között csaknem évente találkoztam hegyi récével a tágabb értelemben vett Keszthelyi-öbölben, sőt egy ízben nagyobb (60–80) csapatát is megfigyelhettem (1948. XI. 13.), rendszerint azonban csak 1–2 példány keveredett a kontyos vagy kercerécék közé főként novemberben és február végén, márciusban távoztak. Amióta azonban a napi téli megfigyeléseim száma csökkent, már ugyanazt írhatnám róla, mint a régi szerzők, hogy "ritka". 1967–1980 között csupán egyetlen megfigyelésem volt a keszthelyi mólónál 1973. XI. 23-án (1–2), de ebből még a faj egyedszámának a csökkenésére nem mernék következtetni.

A jeges réce (Clangula hyemalis) először 1900. XII. 2-án került elő a Kis-Balatonból (Lovassy). 1941-ben, majd az azt követő években ősszel és tavasszal

is találkoztunk vele Tihanynál; később 1960 januárjában *Győry* Siófoknál. 1948–1966 között Keszthely körül négy megfigyelésem volt, néha több napon át, maximálisan 3 példányban, november–december hónapban. Ugyanígy 1967–80 között két ízben láttam: 1973. XI. 23. (5db); 1975. XI. 23.–XII. 12. között naponta. Tehát egyrészt a legnépesebb csapatáról volt szó, másrészt a leghosszabb idejű itt-tártózkodásról (1–2).

A pehelyrécét (Somateria mollissima) első ízben 1903-ban fogták Keszthelynél (Lovassy). 1941-ben két novemberi napon láttam Tihanynál. 1948-66 között 5 saját megfigyelésem volt Keszthely körül; Bogdán pedig 1961. X. 16-án Fonyódnál 6-7-es csapatát észlelte. 1967-80 között a keszthelyi mólónál 1973. XI. 23-án és 1980. X. 19-én két-két fiatal példánnyal találkoztam. Az utóbbiak

rendkívül bizalmasan viselkedtek.

Összefoglalás

A Balaton nagyarányú eutrofizálódása következtében jelentős változások állottak be a tó életében, de nemcsak emiatt, hanem a behurcolt fajok is változásokat idéztek elő, elsősorban a vándorkagyló, amely 1933-ban lépett fel. A Dreissena gradáció által előidézett változásokról nem tudunk sokat mondani madártani szempontból, mivel az akkori kutatók ennek vizsgálatára kevés súlyt helyeztek; pedig a vándorkagyló elszaporodása rendkívül fontos taplálékbázist jelentett a bukórécéknek, a Balaton tömeges téli vendégeinek. Hasonló változásokat észleltek a Léman- (Genfi-) tavon (Géroudet, 1966) és a Boden-tavon is (Leuzinger, 1969, 1972; Leuzinger—Schuster, 1970; Jacoby—Leuzinger, 1972; Leuzinger, 1972), ahol még időben sikerült megfogni a vándorkagyló-gradáció és a bukórécék számának felszaporodása közti összefüggést.

Csupán az 1941-es vizsgálatok mutattak rá az eleinte különösnek vélt jelenségre, hogy a korán érkező kontyosrécecsapatok először a Balaton déli medencéjében gyülekeznek. LOVASSY még esak téli vendégként ismerte ezt a fajt is, ezzel szemben vizsgálataink már az augusztusi megjelenéséről szólottak az említett balatoni részleten, és a későbbi kuantitatív mérések rámutattak, hogy a Balatonnak ez a szakasza bővelkedik legerősebben vándorkagylóban. Az 1960-as években bekövetkezett a vándorkagyló-gradáció letörése, és az 1967–1980 közötti récekutatás sejteti, hogy a bukórécék őszi érkezése későbbre tolódott

ismét.

Tavasszal a téli tömeg elvonulása után május-júniusban kisebb számban felbukkan helyenként a kontyos réce. Ezt a költési területének déli irányú kiterjesztéséből magyarázhatjuk, mert a párosodás után szerte kóborló gácsérok így könnyen elérhetik a Balatont,

de ilyen esetekben soha sincsen tömegről szó, mint télen.

A kerceréce mindig is későbben érkezett ősszel, mint a kontyos, és mire elérte a Balatont, a legjobb táplálkozóhelyeken a kontyos- és a barátréce-, valamint a szárcsatömegeket már ott találta, így az amúgy is távolabbi északról érkező csapatainak nem nyílott alkalma a helyekben válogatni. Ezért a kerceréce esetében nem tapasztalhatunk olyan jelenséget, mint a kontyos réce esetében, viszont a táplálékbázis megfogyatkozásával úgy tűnik, hogy a kerceréce őszi érkezése is későbbre tolódott.

A többi bukóréce (hegyi, jeges, pehely) 1967 előtt és után is csak szórványosan mutatkozott. Itteni tartózkodásuk időszakában mennyiségében eltolódás nem észlelhető.

> A szerző címe: Dr. Keve András H–1054 Budapest Veres Pálné u. 9.

Literatur-Irodalom

Entz, B.-Pónyi, J. E. Tamás, G. (1963): Sedimentumuntersuchungen im südwestlichsten Teile des Balaton . . . Ann. Biol. Tihany. 30:103–125.

Festetics, A. (1967): Zur Ökologie der Reiherente (Aythya fuligula) eines neuen Brutvogels in Österreich. Vogelwelt. 88:43-58.

Géroudet, P. (1966): Premières conséquences ornithologiques de l'introduction de la "moule zébrée" Dreissena polymorpha dans le lac Léman. Nos Oiseaux. XXVIII. 301–307. p.

Jacoby, H.-Leuzinger, H. (1972): Die Wandermuschel (Dreissena polymorpha) als Nah-

rung der Wasservögel am Bodensee, Anz. O. G. B.11:26-35.

 $Keve\ (Kleiner),\ A.\ (1940)$: Mitteilungen über die Ornis der mittleren Donau. Folia Zool. et Hydrobiol, X. 450-479, p.

Keve, A. (1969): Die Tauchenten und Säger des Balaton-Sees. Aquila. LXXV. 21–44. p.

Keve, A. (1972): Die Rallen des Balaton. Allatt. Közl. LIX. 67–85. p.

Keve, A. (1975): Die Taucher-, Pelikan- und Kormoranarten vom Balaton. Veszpr. M. Muz. Közl. 12:565–573.

Keve, A. (1978): Spätherbstlicher Wasservogelzug bei der Mole von Keszthely. Aquila. LXXXIV. 101-110. p.

Leuzinger, H. (1969): Zum Auftreten der Wandermuschel am Untersee und dessen Auswirkungen auf die Wasservögel, Orn. Beob. 66:64.

Leuzinger, H. (1972): Zur Ökologie der Schellente Bucephala clangula am wichtigsten Überwinterungsplatz des nördlichen Alpenvorlandes. Orn. Beob. 69:207–235.

Leuzinger, H.-Schuster, H. (1970): Auswirkungen der Massenvermehrung der Wandermuschel Dreissena polymorpha auf die Wasservögel des Bodensees. Orn. Beob. 67:269-274.

Nagy, I. (1967): Observations on the Tufted Duck nestling in Hanság. Aquila. LXXIII-

EXXIV. 177-178, p. 193-194, p.

Pónyi, J. E. (1971): Investigations on Crustecean and Molluscan Remains in the Upper Sedimentary Layer of Lake Balaton. Annal. Biol. Tihany. 38:183–197.

Pónyi, J. E. (1980): A maktobentosz mennyiségi vizsgálata a Balatonon. (In print)

Pónyi, J. E.-Tusnády, Gy.-Vagner, E.-Richnovszky, A. (1974): Investigation with Conputer ICL system 4 on the morphometry and composition of the population of Dreissena polymorpha shells . . . Ann. Biol. Tihany. 41:217–234.

Sebestyén, O. (1934): Appearance and rapid increase of Dreissensia polymorpha Pall. in

Lake Balaton. M. Bio. Kut. Munk. 7:190–204.

Stempniewicz, L. (1974): The effect of feeding of the coot (Fulica atra L.) on the character of the shoals of Dreissena polymorpha Pall, in the Lake Gopto, Acta Univ. Cop. (Limnol.) 34/8:83-103.

Die Bedeutung der Tauchenten im Leben des Balaton

Dr. A. Keve

Die Tauchenten des Balaton-Sees habe ich schon ausführlich behandelt (1969), in welcher Studie ich das Material mit Jahre 1967 abschliess. Seither sind fasst 15 Jahre wieder verloren, sogar solche Jahre, während welchen bedeutende Anderungen sich abspielten. Nun befasse ich mich mit der ausgesprochene Sumpfente, mit der Moorente, noch mit den fischfressende Säger, nur mit solchen Arten, die am freien Wasserspiegel des Sees sich aufhalten und Molluskenfresser sind.

Die erwehnte Änderungen hatten teils positive, teils negative Einflüsse auf die Tauchenten, die im Winter in Massen den See aufsuchen, auf solche Arten, die nur gelegentlich Gässte des Sees sind, übten sie keinen Einfluss aus. Die Jahre zwischen 1946-66 waren

relative milder, wo von ein umgekehrter Ereignis zu erwarten wäre.

Als positive Wirkung kann betrachtet werden, dass die Reiherente ihr Areal nach Süden ausgestreckt hat. Sie brütete 1966 in grösserer Anzahl im Waldviertel (Niederösterreich), im 1965 in NW-Ungarn; die früheren Daten über ihre Brut an der Kleinen-Schüttinsel sind ziemlich unsicher (1932, 1933, 1939, 1965). Fraglich scheint zu sein, ob die kleinere Ansiedlung der Schellente in Süd-Böhmen einen Einfluss auf die am Balaton überwinternde Massen gehabt hätte.

Zu der negativen Wirkung muss der Abbruch der Gradation der Wandermuschel ge-

rechnet werden, wodurch ein bedeutender Nahrungsbasis ausgefallen ist.

Die ursprüngliche Hauptnahrung der Tauchenten in Ungarn war die Schnecke Lithoglyphus, die nach Beweis der Mageninhalte der an der Donau gesammelten Exemplare noch heute geblieben ist.

Erst in die Donau, 1933 auch in Balaton ist die Wandermuschel eingeschleppt wurden

(SEBESTYÉN, 1934), vermehrte sich plötzlich und nacher fand man sie in den Mägen vieler Vogelarten, besonders aber von Tauchenten in gleicher Menge mit der genannten Schnecke. Die Gradation verstärkte sich lange Jahre hindurch, und bedrohte viele einheimischen Tierarten, sogar auch Fische mit ihren Bissusfäden. Anderseits aber der unerwarteter Nahrungsangebot zog die Tauchenten an, und ihre Aufenhaltszeit am Balaton verlängerte sich.

Die Tafelente (Aythya ferina) sucht am Balaton besonders diese Ufergewässer auf, welche mit Potamogeton eingewachsen sind, und bringt vom Boden sammt Wurzel selben hinauf, doch oft auch Klotzen der Wandermuschel. Die Tafelente brütet in den Sümpfen rund um den See, worüber wir Angaben auch nach 1967 besitzen, z. B. an den Fischteichen von Irmapuszta (Balatonlelle) schätzte FODOR den Bestand vom 1969 auf 5-6 Paare

Zwischen 1968–1980 gab es Zugperioden, in welchen die Art ganz ausgeblieben ist, z.B. im Frühling von 1976, 1977, 1978, 1979, oder im Herbst 1974, 1978, 1980. Zwar wurden diese Ausfälle häufiger als zwischen 1946-1967, doch meisst bewegten sich die gewohnten Flüge, z.B. im November 1970 gab es im Kisbalaton mehrere hunderte, ebenso am Balaton bei der Mündung des Zala-Flüsschen im November 1977 usw. Es geschah auch, daß die Tafelenten am eingefrorenen Balaton nur Rissen frei fanden, und auf diese angewiesen wurden, z.B. 15. HI. 1970 (10–20 St.).

Es gab keine bedeutende Verschiebungen in den Termienen der Frühlingsankunft oder des Herbstabzuges. Die früheste Ankunft: Kis-Balaton, 14. II. 1971 (3); Fenékpuszta Balaton, 18. II. 1973 (2). Die späteste Abzugstermine: Révfülöp-Balaton (9), und

Kornyi-Teich (1), 17. XII. 1970; Keszthely (Mole), 12. XII. 1975 (20–30).

Also im Falle der Tafelente, die hauptsächlich Vegetabilien und nur teils Muschel frisst, können wir nur über Schwankungen, aber keine Abnahme ihrer Massen sprechen, doch müsste wir sie erwehnen, weil sie sich gern der Flüge von Reiher und Schellente,

anderseits von Blässralle anschliesst.

Die Reiherente (Aythya fuligula) ist schon ausgesprochene mullusskenfresser und ein Vogel des freien Wasserspiegel. Wir konnten schon 1941 beobachten, daß ihre Herbstflüge sich im südlichen Becken des Balatons früher zeigen, als bei der Donau oder im nördlichen Becken, was auf ersten Moment unerklährlich schien. Bald aber die Messungen von ENTZ, PONYI und TAMAS (1963), dann von PONYI u. Mitarbeiter (1971, 1974) bewiesen, daß die Wandermuschel in höchster Zahl am Boden der Mitte des Sees vor Gyenesdiás vorkommt, während in der letzten Zeit schon SEBESTYEN (in litt.) in nördlichen Becken zwischen Tihany und Balatonfüred kaum welche fand.

Die natürliche Feinde der Wandermuschel, die so gefährlich für viele Tiere und unangenehm für Badegässte wurde, sind sie Fische (PÓNYI) und zweitens die Tauchenten, speziel die Reiherente, welche weniger Vegetabilien frisst, als die Tafelenten und ihre

Aufenthaltsperiode am Balaton länger dauert, als die der Schellente.

Zwischen 1949-67 gab es Jahre, in welchen die Reiherenten schon Ende Juli, aber meisst im August erschienen sind, nur gelegentilch im September an der erwehnten Stelle. Die Flüge von mehr Tausend Exemplare waren im Bucht von Keszthely im October und

im November, wie auch im März nicht selten.

Nachdem die Gradation der Dreissena in den 1980-er Jahren zum Schluß kam, war die Wirkung besonders auf die Reiherente fesststellbar. Nach 1968 traf ieh mich im einzigen Falle (21. IX. 1972) mit Reiherente im September zusammen, nicht mehr in der zweiten Sommerhälfte, bis 1973 nur im October und seit 1974 bloss im November – es muß aber eine Fehlerquelle in Betracht gezogen werden, nehmlich dass meine Dienstreisen seltener geworden sind und auch mein Aufenthalt beim Balaton kürzer wurde. Dies bringt die Gefahr mit, dass manche Vögel übersehen werden, doch eines bleibt sicher, dass

ich seit 1974 im October keine Reiherenten sah.

Zwischen dem zwei Factoren schien die Abnahme des Nahrungsbasis stärker zu wirken, als die Arealexpansion. Die letztere hatte nur den Einfluß, daß die Beobachtungen vom Mai und Juni seit 1966 häufiger geworden sind, doch in all diesen Fälle handelt sich nie über Massen, wie im Winter, sondern nur über kleinere Flüge oder vereinzelte Exemplare, wie an dem Fischteich von Fonyód am 3. V. 1973 ein Paar, im Kis-Balaton am 20. VII. 1972 zwei Paare, ebenda sah E, $\dot{F}UTO$ im Mai 1974 6 Stück und am $5.~\mathrm{V}.~1979$ beobachtete ich drei; am Balatonstrande bei Fenékpuszta sah T. WEISZ am 17. V. 1968 5 Erpel und 2 Weibehen, selber sah ich am 17. V. 1975 10-12 Exemplare; endlich an den Klährungsanlagen von Sármellék beobachtete ich am 24. VI. 1977 18 Erpel. Natürlich bleibt die Frage offen, was kann man zu den Streich nach der Paarung, was zum verspäteten Frühlingsabzug und was zu frühen Herbstankunft rechnen?

Die Schellente (Bucephala clangula) ist die richtige Winterente, wie gesagt. Ihre Lebensweise unterseidet sich sonst von selben der Reiherente nicht, nur daß sie später in Herbst ankommt und dies kann die Ursache sein, warum sie keine weitere Strecken bis zu ihrer Raststelle überfliegt, wie die Reiherente tut, weil sie einerseits von weiteren Ferne kommt, anderseits die an Nahrung reiche Plätze schon von Mengen anderer Tauchenten und Blässeralle besetzt sind.

Kleinere Schewankungen in ihrem Bestand waren immer zu behaupten. Massenhafte Mengen waren und sind an einigen Stellen (Bélatelep, Fenékpuszta usw.) im Winter, wenn der See hier nicht unter Eisdecke liegt zu finden, obwohl scheinbar in etwas abgenommer Zahl. Massen über Tausend habe ich seit 1967 nur im Frühling 1968 und am 7. XII. 1974 treffen können. Die Änderung ist im Kis-Balaton (= Kleiner Balaton) noch scharfer erkennbar, obwohl dieses Sumpfgebiet von der Schellente nie sehr frequentiert war, doch gab es nicht selten Flüge von über Hundert Exemplare. Nach 1967 traf ich hier nur 2–5 Stücke ziemlich oft und nur am 18. XII. 1967 flog ein Flug von 20–25 Stücke vom Kanal auf.

Die ersten Ankömmlinge im Herbst zeigten sich zwischen 1948–66 in neun Jahren October, meisst im November. Zwischen 1967–80 fand ich am frühesten am 22. IX. 1972 ein "Weibehen" und am 6. X. 1971 zwei, in den weiteren Jahren zeigten sich die Schellenten nach Mitte October oder im November. Zu den Frühlingsabzug kann ich nichts neues sagen, weil meine Dienstreisen im Anfang des Frühlinges kaum gelungen sind, doch auch bei solchen Umständen traf ich die Schellente in sieben Jahren noch im April da – über 5 Jahre kann ich kein Referat geben –, in den weiteren Jahren waren meine letzte Beobachtungen aus März, mit der Ausnahme von 14. V. 1975, wie ieh einen kranken Erpel fand. Zum Vergleich mit den Jahren 1948–66, in welchen die Schellente Ende April verschwand, nur ausnahmsweise im Mai (1950, 1952, 1954, 1955, 1962).

Wenn der See einfriert, muss auch die Schellente weiterziehen, und selbst nach solchen Winter erscheinen sie schon bald, wie sie nur Einlass am Eisdecke fanden, B.Fonyód, 13. II. 1971 (1-2); Badacsonytomaj, 12. III. 1971 (50-60); Keszthely, 15. III. 1971 (80-100).

Die Schellente besucht auch die Fischteiche neben den Balaton so: Fonyód, 13. III. 1970 (23); Monostorapáti-Hegyesd, 16. XI. 1978 (5).

Nach den in Massen erscheinende Tauchenter können wir auch etwas neueres über

diese Arten sagen, die nur vereinzelt den Balaton besuchen.

Bergente (Aythya marila) war bis 1941 nur in einem Exemplar vom Balaton bekannt (SZALAI). Die regelmäßige Beobachtungen am See bewiesen, daß sie nicht so "selten" ist, denn schon 1941 könnten wir zwischen 14. XI. und 19. XII. alltäglich einen Flug von 8–10 Exemplare bei Tihany beobachten. Gelengentlich der Untersuchungen zwichen 1948–66 habe ich die Bergente faßt jährlich in dem Bucht von Keszthely (im weiteren Sinne) getroffen, sogar in einem Fall (13. XI. 1948) auch einen Flug vob 60–80 Stücke. Meisst aber mischten sich nur vereinzelte Vögel in die Flüge der Reiher- oder Schellenten hauptsächlich im November oder Ende Februar, dann im März sind sie veschwunden. Seit aber meine Beobachtungsmöglickeiten agenommen haben, könnte ich ebenso wie die alten Forscher sagen, daß die Bergente am Balaton "selten" wäre, denn zwischen 1967–80 komnte ich sie bei der Mole von Keszthely nur am 23. XI. 1973 in 1–2 Exemplare beobachten. Davon ist aber nicht zu folgern, daß die Bergente an Zahl abgenommen hätte.

Die Eisente (Clangula hyemalis) wurde erst am 2. XII. 1900 aus dem Kis-Balaton bewiesen (LOVASSY), dann trafen wir sie bei Tihany in einigen Exemplaren so am Frühling-, wie am Herbstzuge, dies folgten in den folgenden Jahren die Beobachtungen von PATKAI (1942), UDVARDY (1944) (5 St.) ebenda und von GYÖRY 1960 bei Siófok, Zwischen 1948-66 hatte ich vier Beobachtungen bei Keszthely, maximal 3 Exemplare, manchmal während mehrere Tage, und nur in Monaten von November und Dezember.

Zwischen 1967–80 sah ich Eisente bei Keszthely in zwei Fällen sogar 5 St. am 23. XI.

1973 und der längste Aufenthalt war zwischen 23. X1. und 12. X11. 1975.

Die Eiderente (Somateria mollissima) wurde auch ziemlich spät (1903) beim Balaton fesgestellt (LOVASSY). Gelegentlich der täglichen Beobachtung 1941 in Tihany sah ich sie an zwei Novembertagen. Zwischen 1948–1966 hatte ich seehs Beobachtungen bei Keszthely und BOGDÁN traf einen Flug von 6–7 St. bei Fonyód. In der nun behandelten Periode sah ich je zwei Jungvögel bei Keszthely am 23. XI. 1973 und 19. X. 1980, die letzteren benahmen sich ungewöhnlich zahm.

Zusammenfassung

Bedeutende Änderungen traten im Leben des Balatonsees durch die starke Eutrophisation ein, aber auch durch Einschleppung fremden Tierarten, wie von der Wandermuschel. Wenn auch die Wandermuschel von mehreren Gründen unerwünscht war, wirkte auf die Zahl der Tauchenten als wichtige Nahrungsquelle lange Jahre hindurch positive, ebenso wie am Léman-(Genfer-)See (GÉROUDET, 1966) oder am Bodensee (LEUZIN-GER, 1969, 1972; LEZUINGER-SCHUSTER, 1970; JACOBY-LEUZINGER, 1972). Diese Gradation der Wandermuschel hat nach cea 20 Jahren plötzlich aufgehört. Leider LOVASSY (1897) und auch HOMONNAY (1940) begnügten sich damit, dass sie die Reiher- und die Schellente als "häufigen Wintergast" bezeichneten, so können wir heute nicht mehr darüber sprechen, dass die Zahl dieser Tauchenten s. Zt. zugenommen hätte, nur das einziege bejahende Zeichen ist, dass wir 1941 im südlichen Becken des Balatons die Reiherente schr früh, also im August schon getroffen haben. Die spätere Messungen bewiesen, dass diese Stelle am reichsten an Wandermuschel war. Nach dem Abbruch der Dreissena Gradation in den Jahren 1967–80 scheint, dass auch die Herbstankunft der Reiherente für späteren Herbst sich verschoben hat.

Die Mai-Juni-Beobachtungen der Reiherente, aber nicht über grössere Anzahl, nur über einzelne Exemplare oder kleine Flüge haben sich vermehrt, weil die Art ihr Areal nach Süden erweiterte, und so können die nach der Paarung herumstreichende Erpel den Ba-

laton schnell erreichen.

Die Schellente kam immer später im Herbst an, wie die Reiherente. Bis sie den Balaton erreicht sind die an Nahrung reichere Stellen schon von anderen Tauchenten und Blässrallen ziemlich besetzt, also die Schnellente überfliegt nicht so weite Strecken (Donau, Nord Becken des Balaton), wie die Reiherente, sondern die von weiteren Norden ankommende Gäste benützen schon die für ihnen nähere und nicht so guten Plätze auch. Es scheint aber daß auch der Herbstzug der Schellente sich etwas für spätere Zeit verschoben hat, eventuell auch die Flüge blieben nicht so zahlreich.

Die anderen Tauchenten, und Massen der Tafelente, die als Vegetablienfresser nicht so sehr an Molluskennahrung angewiesen ist, also die Änderung der Nahrungsbasis sie nicht so stark rührte, scheinen ihren Besuch am Balaton nicht geändert haben. Sie erschienen auch früher sporadischer und in kleineren Zahl, und wenn sie nicht so viel Dreissena finden, reicht ihnen die ursprüngliche Molluskennahrung die Schnecke Lithoglyphus. Dies beweisen die Mageninhalte der Exemplare, die an der Donau geschos-

sen wurden.

NEW RECORD OF THE WALL CREEPER (TICHODROMA MURARIA) IN MONGOLIA

Dr. Attila Bankovics

Hungarian Institut for Ornithology

The northern border of the area of the south-palearctic Wall Creeper (Tichodroma muraria) (L.) 1766) is extending through Mongolia (Piechocki—Bolod, 1972). According to Kozlova (1973), this bird is also common in the Gobi-Altai, in the southern part of the country. It is also supported by recent records reporting the occurrence of at least 7 nesting pairs on the area of Jolyn-am, in Gobi-Altai (Mauersberger et al., 1982). A similar frequency of occurrence has been reported in the mountain Gurban-Sajchna by Zieger (1967). Accordingly Tarasow (1962), the Wall Creeper also occurs in the south-eastern part of the Mongolian-Altai, in the mountain-steppy zone (Vaurie, 1964; Piechocki—Bolod, 1972). The latter has been considered so far as its northernmost occurrence in Mongolia. In 1978, this species could be observed in another mountain, in the Hangai, too. Based on personal observations, a hatching succes of a Wall Creeper pair was discovered in the central region of the mountain Hangai, near the village Mandal, along a rocky range of 3 km. Here, nesting of some more 3 pairs seemed probable. This observation corresponds to the northernmost occurrence of Wall Creepers, in Mongolia, near the northern latitude of 47°. In the atlas of Voous (1962), the area for Tichodroma muralis is devoid of Mongolia, this a modification of the occurrence map is needed (Fig. 1).

1. Occurrence of Tichodroma muraria in Mongolia

The circumstance of finding and the environmental conditions.

In 1978, between June 5 and 15, our expedition was staying in the mountain Hangai, 140 km to northwest of Bajan-Hongor, near the village Mandal (additional participants of the expedition were: Gy. Buzetzky, B. Kalocsa and I. Karáth). Our camp was situated the bank of the river Cagan-turut (-Gol), on the southern edge of the rocky range. The mountain-steppy area is located at about 2600 m above sea level. The surrounding mountains are bare or covered by straggling steppy vegetation. Forest spotties appear only on the northern side of the remote mountains. The river Cagan-turut is accompanied by a granit rocky wall, of 50 to 120 m high, in a distance of around 3 km. The rocky range is populated by an avian community rich in species. The avian community, involved Wall Creeper, consisted of the following species: Ciconia nigra, Anser indicus, Casarca ferruginea, Mergus merganser, Columba rupestris, Apus pacificus, Bubo bubo, Delichon urbica, Coloeus dauurica, Pica pica, Pyrrhocorax purrhocorax, Tichodroma muraria, Monticala saxatilis, Oenanthe oenanthe. Oe. isabellina, Phoenicurus ochruros, Prunella collaris, Prunella fulvescens, Passer montanus and Petronia petronia.

Appearance of the Wall Creeper was discovered by *B. Kalocsa* on June 8th. He observed one specimen at the opposite end of the rocky range, 3 km from

our camp.

On June 10th, I noticed the first specimen 1 km from our camp. It was probably one of the nesting parents observed later. At 14⁴⁵ this female flew down to the rocky wall, at a height of 8 m, and began to spring upwards. It was gloomy. As the sun was breaking, the bird flew to another rock within 100 m

and then to the opposite shadowed wall of the rocky gorge.

On June 11th, I observed a male in the same district. At 20^{21} this specimen was springing upwards the windless side of the rocky wall. (The strong, cold wind blowing from the south was actually perpendicular to the rocky wall. Air temperature was $+10\,^{\circ}\mathrm{C}$ and about 1 hr later it was fetting dark.) Over the succeeding 10 minutes I observed its movement. Apparently, the bird tried to gather food only on the windless rocky cabin and inside the larger rocky slits. At 20^{20} after having creeped up to a cliff it was shaken by a strong blast of wind, then settled down to another rocky slit.

On June 12th, it was turned colder. The temperature fell to +3 °C by night. In the morning of June 12th, a storm-wind arose from south-east with dark cumuli and rain clouds over the sky. On previous night it was little raining but in the morning it was uninterruptedly raining for hours. In the afternoon, the rain was sometimes stopped but since evening it continued to rain all over the next morning (June 13th). On the night by next morning the minimal temperature was +2 °C. By the morning, the nearby river flooded and the surrounding mountains were covered by thin layer of fresh snow, but it melted later on the same day.

June 13th. Nesting of Wall Creepers was evidenced on this day. At 9¹⁰ a specimen was searching for food on the rocky wall. It was vigorously moving in the strong wind. At 9²⁵ the bird with food in its beak disappeared inside the slit of a rocky block of 50 m, at a height of 48 m (Fig. 2). After a minute the bird returned with a whites faecal material in its beak and transported it

to more than 100 m away.

On June 14th, in the morning and in the afternoon I made some observations on Tichodroma's hatching biology and frequency of feeding occassions. At 9^{20}

2. Nesting habitat of Tichodroma muraria in the mountain Hangai (Photo: Dr. A. Bankovics, 10. VI. 1978)

both adults were moving together. They were creeping upwards from the height of 20 m along the rocky wall, in a distance of 3 to 4 m in between. The birds moving along the sunny wall exhibited no sign of food collection. One of them, however, slipped in a shadowed slit and returned with food in its beak. At 11³⁰ one of the specimens was again moving on the rocky wall but without a longer stay for searching food. As the bird got higher, it began to search for food on a small spot for 1 minute, under the shadow of a rock bending underneath.

In the afternoon, between 15¹⁵ and 16³⁰ I could continuously observe their feeding frequency over 75 minutes, just prior to the outbreak of a summer rainstorm (Fig. 3).

As it can be seen, the parents fed their nestlings on 14 occassions over 75 minutes. The mean fedding interval was 5,4 minutes with a range from 2 to 12 minutes. A feeding occasion lasted for 5 to 12 seconds. The food collecting place took around 300 m distance of the nest in both directions, say a 600 m long part of the rocky wall. At the blazing sunshine in the afternoon, the birds gathered food anly on the shadowed rocky wall. Sometimes they picked up

Hour 15	0 0	0		0	0			0
Minutes 15	21 23	27		35	42			54
15	16 0 0	0	0	0	0	0	016	
55	00 03	08	11	15	22	26	30	
o Feeding								

3. Frequency of feeding the young at the Wallerceper (mountain Hangai, 11. June 1978)

food from the rocky slits, 15 to 20 m from the nest. On an occasion they picked up more insects in their beak. On two occasions I observed as the bird kept beating a larger insect to the wall to be stunted it prior to collect some more. In one instance it cought a flying insect in a flycatcher manner. The birds approached the nesting split always by springing on the wall. Even then approaching along the rocky wall from larger distances they settled down 5 to 10 m from the nest. Most frequently they approached the nest upwards from below, sometimes obliquely sideways, and once from above. Over the 75 minute observation, the male fed less frequently the nestlings than the female. In the course of the 10 minutes prior to rain storm, when it was thundering and lightning, it settled outside to the edge of the rock and on two occasions began to sing. During this 75 minutes, the faeces was only once transported from the nest, in a distance of 200 m. As I mentioned, the nesting slit was situated on a rocky wall facing to southward and it was exposed to sunshine from sunrise to 15⁵⁰ (June 14th). After 15⁵⁰ it was shadowed by the rocky eaves. The position of this nesting place is contradictory to the usual nesting habit of Wallcreepers, namely that Tichodroma prefers usually shadowed walls, rocky gorges for nesting.

Summary

Ascertained by nesting data (Mandal, 10 June, 1978), the Wall Creeper can be classified as a member of the nesting avian fauna of the mountain Hangai. Based on observations, its hatching, particularly the period of rearing the nestlings, takes place in the most rainy season, during June. Contrary to the usual habit, their nesting habitat was situated on a granite rocky wall of southern exposure. However, the bird gathered food on the rocky wall mainly on shadowed sites, rocky cavities and slits, as usual. Occasionally, it searched for food also on the sunny rocky wall, mainly in the morning at warming up and in the sunshine after showers. During this period the insects are, probably, more active on the sunny wall thus, easy to prey by the birds.

References

Kozlova, E. V. (1933): The birds of south-west Transbaikalia, northern Mongolia, and central Gobi. Ibis. pp. 59–87:301–332.

Mauersberger, G.-Wagner, S.-Wallschlager, D.-Warthold, R. (1982): Neue Daten zur Avifauna Mongolica. Mitt. zool. Mus. Berlin. Band 58. Heft 1. pp. 11-74.

Piechocki, R.-Bolod, A. (1972): Beiträge zur Avifauna der Mongolie. Teil II. Passeriformes. Ibid. 48:41–175.

Tarasow, M. P. (1962): Zur Kenntnis der Vogelwelt der südwestlichen Mongolei. Falke. 9:259–262.

Vaurie, C. (1964): A Survey of the Birds of Mongolia. Bull. Ammer. Mus. Nat. Hist. 127: 103–144.

Voous, K. H. (1962): Die Vogelwelt Europas und ihre Verbreitung. Hamburg und Berlin.

Author's address: Dr. A. Bankovics Hungarian Institut for Ornithology H-1121 Budapest Költő u. 21. HUNGARY

MATEPИAЛЫ ПО БИОЛОГИН СТЕПНОЙ ТИРКУШКИ (GLAREOLA NORMANNI NORDM.) В ТЕНГИЗ-КУРГАЛЬДЖИНСКОЙ ВПАДИНЕ (ЦЕНТРАЛЬНЫЙ КАЗАХСТАН)

В. В. Хроков

Ареал степной тиркушки вытянут в меридиональном направлении – от низовьев Дуная до верховьев Оби, что связано с приуроченностью к степной зоне. В Казахстане на значительном протяжении проходит южная граница гнездовой области,

1. Степная тиркушка. Фото В. Хрокова — 1. Feketeszárnyű székicsér, Fotó: V. Hrokor

местами заходя в полупустынную и пустынную зоны. Здесь гнездование установлено до низовий Урала, Устюрта, низовий Тургая, северных островов Аральского моря, долины Сыр-Дарьи, низовьев Сарысу и Зайсанской котловины (Долгуш, ин, 1962).

Стационарные наблюдения проводились на территории Кургальджинского государственного заповедника в 1969–1972 гг. В Тенгиз-Кургальджинской впадине, лежащей близ южной границы ареала, степная тиркушка гнездится спорадично в небольшом числе (рис. 1). Гнездование отмечено в 1970–1972 гг. у озер Есей и Ак-Кашкар (в 1969 г. численность птиц была очень низкой и ни одного гнезда не было найдено). Кривицкий (1969) отмечает гнездование на юго-восточном берегу Тенгиза.

Численность

В пойме Нуры встречается редко – в конце второй декады мая на десятикилометровом маршруте по старицам и разливам встречена всего 1 пара. В конце мая на 1 км береговой линии Кульшумских разливов приходится до 10 птиц. На таком же отрезке солончакового берега Ак-Кашкара, поросшего низкорослыми солянками и солеросом, в июне встречается по 1–4, в июле – не более двух особей. Гнездится колониально, местами на небольших участках достигая значительной плотности. Так, на двух временных островах Ак-Кашкара, площадью 2 и 4,5 га в 1971 и 1972 гг. гнездилось по 20–25 пар степных тиркушек.

Относительное обилие степной тиркушки среди всех куликов, встречаемых в Тенгиз-Кургальджинской впадине на гнездовании и пролете (38 видов), составляет 0.8% от общего числа зарегистрированных особей; среди гнездящихся видов (13) 3.0%, что близко к числу встречаемых в заповеднике малых зуйков, ходулочников и шилоклювок. Период пребывания тиркушки в исследуемом районе очень короткий менее четырех месяцев (май–август), наибольшая встречаемость отмечена в июне (58.0%).

Половой диморфизм выражен нечетко и только в брачном пере. Самка несколько бледнее, уздечка и полоска, окаймляющая горло, у нее не черного, а темнобурого цвета. Самцы крупнее самок (табл. 1). По данным *Гладкова* (1951) и *Долгушина* (1962) самцы в среднем тяжелее самок. Молодые птицы хорошо отличаются от взрослых пестрой окраской верха и отсутствием черной горловой полоски.

Таблица 1. Ризмеры (мм) и вес (г) степных тиркушек (в скобках число экз.) A feketeszárnyú székicsér méretei mm-ben és súlya g-ban (=példányszám)

пол Хет	покаэатели Mutatók	Крыло Szárny	Хвост Farok	Плюсна Csűd	Клюв Csőr	Bec Tömeg
Самцы	Предельные					
Hím	Szélső	190 - 205	103-118	33- 39	13-16	94-101,8
	Средние					
	Átlag	197,7 (12)	109,4 (12)	37,0 (12)	14,0 (12)	97,6 (11)
Самки (4)	Предельные					
Tojó (4)	Szélső	186 - 200	91-112	35- 37	13 - 16	94,3-104,5
J - (· ·)	Средние					
	Átlag	193,2	101,2	36,3	14,3	98,2

Размеры молодой самки от 8 июля и самца от 10 августа: крыло -165 и 190 мм, хвост -75 и 82 мм, плюсна -37 и 34,5 мм, клюв -12 и 13 мм; вес птиц -83,5 и 100 г.

Сезонные изменения веса и упитанности взрослых птиц незначительны. Жирных тиркушек я не встречал, упитанность добытых не превышала трех баллов*. Наибольший вес для самцов отмечен 17 мая (101,8 г при упитанности в 2 балла), для самок 30 июня (104,5 г, 3 балла).

Степная тиркушка обитает в непосредственной близости от воды. Здесь, по солончаковым и травянистым берегам озер она гнездится и кормится. Не менее важное значение, как кормовой биотоп, имеет для нее сухая степь, дороги и тырла (рис. 2). В мае прилетевшие птицы держатся в степи и по солончаковым берегам водоемов, в июне, кроме того, по травянистым берегам с сочной луговой растительностью (рис. 3). Впоследствии значение степного биотопа снижается, а прибрежных повышается к июлю (солончаковые) в августу (травянистые берега).

2. Биотопическое распределение степеных тиркушек в мае августе (в % от лющего числа птии): 1 — солончаковые берега озер (41,6%), 2 — травянистые берега озер (19,4%), 3 — сухая степь, дороги, тырла (39,0%)— A feketeszárnyű székicsér biotóp szerinti megoszlása május-augusztusban: I. szikes tópartok 41,6%, 2. füves vízpartok 19,4%, 3. száraz sztyeppei utak, legelők 39,0%

3. Биотопическое распределение степных тиркушек в Тенгиз-Кургальджинской впадине (в % от общего числа птиц в каждом месяце): 1 — солончаковые берега озер, 2 — травянистые берега озер, 3 — сухая степь, дороги, тырла —

A fekeszárnyú székicsér biotóp szerinti eloszlása a Tengiz-Kurgaldzsi mélyföldön:

1. szikes tópartok, 2. füves vízpartok, 3. száraz sztyeppei utak, legelők

^{*} Упитанность определялась по глазомерной шкале Н. Н. Данилова с поправкой Г. А. Новикова для куликов (Новиков, 1953).

4. Сезонная встречаемость одиночек (1) ,пар (2) и стей (3) степных тиркушек — A feketeszárnyű székicsér időszakos előfordulása: 1 – egyedek, 2 – párok, 3 – csapatok

Прилетает очень поздно, в начале-середине мая. В 1969 г. первые встречены 13 мая, в 1970 г. – 1 мая, в 1972 г. – 17 мая. В 1959. г первое появление зарегистрировано 8 мая (Гаврин, 1973), в 1960 г. – 9 мая, в 1961 г. – 5 мая (Кривицкий, 1969). Весенняя миграция, как впрочем и осенняя, совершенно не выражена. Птицы появляются в заповеднике парами (встречаемость в мае 77,8%), реже поодиночке и небольшими группами по 4–6 особей (рис. 4). Имеются сведения, что тиркушки спариваются во время пролета (Зарудный, 1888; Гладков, 1951). В июне встречаемость одиночек и стаек несколько возрастает, что можно объяснить поздним прилетом отставших неразмножающихся особей и объединением пар, утративших кладки. Прилетевшие весной осторожны, но автомашину или мотоцикл подпускают близко. Нередко ночуют на степных дорогах. Каких либо брачных игр, свойственных другим куликам, я не наблюдал.

На гнездовых местах тиркушки появляются с хорошо развитыми гонадами. Размеры левого семенника у самца, добытого 17 мая, были 11.5×7 мм, вес гонад 0.31 г. Добытый из пары с ним другой самец имел значительно меньшие семенники, размером 8×4.5 мм (вес 0.13 г.). В июне размеры тестикул колеблются в пределах $6-7 \times 3.5-5$ мм (5 экз.) и в среднем составляют 5.9×4.2 мм при весе в 0.07 г. Размеры левых семенников у трех июльских самцов были $4 \times 2-2.5$ мм, у двух из них гонады весили 0.02 и 0.03 г. Подобным образом происходят изменения в репродуктивных органах самок. Диаметр наибольшей фолликулы у самки от 23 мая был 5 мм, яичник весил 0.3, яйцевод 1.11 г. Фолликулы самки от 11 июня не превышали

4 мм, яичник и яйцевод весили соответственно 0,18 и 0,31 г. Самка, добытая 30 июня, имела наибольшую фолликулу диаметром 2,5 мм, а у самки от 2 июля они были уже очень мелкие, не более 0,5 мм.

Степные тиркушки почти сразу же по прилету появляются на гнездовых участках, расположенных по берегам озер, поросших редкими и невысокими кустиками солянок, солероса и полыни (рис. 5). Из 27 найденных гнезд 18 (66,7%) помещались на сухой глинистой или солонцеватой почве, причем 2 из них на голом такыре (рис. 6). Девять (33,3%) гнезд были расположены на сырой солончаковой почве (рис. 7). В аналогичных стациях тиркушки гнездятся и в других районах Казахстана (Сушкии, 1908; Долгушин, 1962). В западных частях ареала, в частности на Украине, нередко поселяются на возделываемых землях (Гладков, 1951; Губкин, 1973). От воды гнезда устраиваются в 5–70 (21 измерение), в среднем 30 м. Иногда небольшие колонии поселяются в 10 и более километрах от ближайшей воды (Гладков, 1951).

Степные тиркушки колониальные птицы. Из пяти известных мне колоний 3 размещались на небольших временных островах. Число гнездящихся пар в них было

5. Гнездовая стация степной тиркушки. Оз. Ак-Уашкар. Фото: В. Хрокова -

 $[\]boldsymbol{A}$ feketeszárnyű székicsér fészkelőbiotópja, Foto: V. Hrokor

6. Гнездо степной тиркушки ан такыре. Оз. Ак-Кфшкар. Фото: В. Хрокова — A székicsér fészke az Ak-Kaskar tónál. Foto: V. Hrokov

7. Гнездо степной тиркушки на сыром солончаке. От. Ак-Кашкар. Фото: В. Хрокова — A feketeszárnyű székicsér fészke vízállásos sziken. Foto: V. Hrokov

от 3 до 25. Небольшие поселения по 10–20 пар в исследуемом районе находил и Кривщий (1969). В других частях арела тиркушки могут образовывать колонии по нескольку сотен и даже тысяч особей (Гладков, 1951; Долгушии, 1962). Случаев одиночного гнездования не известно. Одна островная колония на оз. Ак-Кашкар в течение двух лет (1971 и 1972 гг.) существовала на одном месте, но при частом беспокойстве гнездовое сообщество тиркушек может распадаться (Соломапии, 1973). В колонии отдельные пары селятся на расстоянии 5–20 (5 измерений), в среднем 10 м. В некоторых колониях на 1 гнездо приходится 0,1–0,2 га. Ближайшие соседи тиркушек на гнездовании: травник (среднее расстояние по 6 измерениям 6 м), кряква (по двум 10 м), большой веретенник (по четырем 11 м), чибис и малая крачка (по пяти 11,6 м), малый зуек (по трем 11,7 м), ходулочник (по четырем 19,2 м). В местах размножения двух видов тиркушек, степной и луговой G. pratincola G. nordmanni образуются их смешанные колонии (Спангенберг и Фейгин, 1936; Гладков, 1951; Винокуров, 1958). Известны даже случаи скрещивания между этими близкими видами (Walmsley, 1970; Sterbetz, 1974; Nadler, 1969).

Гнездо степной тиркушки представляет собой небольшое углубление в почве, вырытое птицами, реже используются ямки от копыт лошадей и коров (рис. 8).

8. Гнездо степной тиркушки в ямке от копыта лошади. Оз. Ак-Кашкар. Фото: В. Ххокова – A feketeszárnyű székicsér fészke lónyomban, az Al-Kaskar tónál. Fotó: V. Hrokw

Размеры 22 гнезд:

диаметр 10–18, в среднем 13,6 см; диаметр лотка 5–12, в среднем 7,2 см; глубина 1–4, в среднем 2,3 см.

Некоторые очень мелкие с совершенно не выраженным лотком. Выстилка скудная, состоит главным образом из стеблей солянок, найденных в 24 (88,9%) гнездах, причем 20 из них были выстланы одними солянками. В трех гнездах, кроме того, присутствовали веточки полыни, в одном — кусочки стеблей тростника. Одно (3,7%) гнездо было выстлано только полынью, в двух (7,4%) яйца лежали на голой земле, без подстилки. Сухой вес выстилки 15 гнезд составлял 3–18, в среднем 9,8 г.

В полной кладке 2–4 яйца, причем в 12 гнездах (54,5%) было по 3; в девяти (40,9%) по 4; в одном (4,6%) 2 яйца. Очевидно, в повторных кладках больше трех янц не бывает. Средний размер кладки по 22 гнездам 3,4 яйца. В Уральской области (Дебело, 1969) средний размер кладки по 10 гнездам был 3,5, на Днепропетровщине (Губкин, 1973) по 21 гнезду 3,6, в Калмыкии (Кривенко-Кривоносов, 1973) по 13 гнездам 3,8 яйца. Известны кладки, содержащие 5 (Гладков, 1951) и даже 6 янц (Кривенко-Кривоносов, 1973). Размеры 70 яиц: 29–35,5 × 22,5–27, в среднем 32,4 × 24,6 мм. Свежие (14 шт) весят 10–12,3, в среднем 10,7 г; сильно насиженные (31) 7–10,5, в среднем 8,8 г. Разница в весе янц ненасиженных и перед вылуплением птенцов в отдельных случаях составляет от 1,5 до 2, в среднем 1,9 г (17,8%). Есть сведения (Долгушин, 1962), что по мере насиживания птицы засыпают кладку веточками солянок, кусочками солончака или другим материалом, как это делают некоторые зуйки.

Период размножения длится в целом около 2,5 месяцев, с середины мая (начало откладки яиц) до конца июля (подъем на крыло последних птенцов). Инкубационный период неизвестен. У близкого вида, луговой тиркушки он составляет 17–18 дней (Sterbetz, 1974). Ориентируясь на эти цифры, можно высчитать примерные сроки начала откладки яиц в найденных гнездах*. С середины мая она началась в 5 гнездах (18,5%), с конца мая в 5 (18,5%), с начала июня в 11 (40,8%), с середины июня в 6 (22,2%). Таким образом, разница в сроках появления яиц в гнездах отдельных пар составляет 1 месяц. Лавров (1930) в прикургальджинских степях находил уже сильно насиженные кладки в третьей декаде мая.

Первые птенцы появляются в конце первой-второй декадах июня. Процесс вылупления длителен. В одном гнезде от проклюнутого яйца до вылупления прошло около двух суток. Птенцы появляются неодновременно. В двух гнездах 3 и 4 птенца появились в течение трех суток. Очевидно, насиживание в этих гнездах началось не с откладки последнего яйца, а несколько ранее, но в одном из найденных гнезд тиркушка села насиживать после снесения третьего (последнего) яйца. Интересно, что в одном гнезде с 4 средне насиженными яйцами, найденном 8 июня, какой-то паук свил паутину, соединив между собой 3 яйца. Это создавало впечатление, что кладка брошена. Тем не менее, 16–18 июня все птенцы вылупились. Скорлупа от последнего яйца нередко остается в гнезде, от предыдущих выносится птицами.

Однодневные пуховички (6) весят 6,7–8, в среднем 7,5 г. Их размеры: плюсна 12.5–16, в среднем 14,1 мм; клюв 6–7, в среднем 6,5 мм. Два трехдневных птенца

^{*} В период с 5 июня по 11 июля (1970—1972 гг.) найдено 27 гнезд с кладками различной степени насиженности.

9. Гнегдо степной тиркушки с однодневным птенцом. Оз. Ак-Кашкар. Фото: В. Хрокова – Feketeszárnyű székicsérfészek napos fiókával. Al-Kaskar tó. Fotó: V. Hrokov

весили 13 и 15 г, длина плюсны была 17 и 18 мм, клюва 7 и 8 мм. «Яйцевый зуб» сохраняется 2–3 дня. Помимо найденных гнезд, в разное время были пойманы 8 оперяющихся птенцов, относящихся к четырем разным выводкам. Четыре птенца, выросшие наполовину, в кисточках, с маховыми, достигшими 1/3 нормальной длины, были отловлены 22 июня и 15 июля. Их средние размеры: крыло 75,6 мм, плюсна 32,1 мм, клюв 9,8 мм. Два из них весили по 59 г. Три птенца, пойманные 27 июня, были постарше. Маховые выросли наполовину. Вес одного 75 г, длина его крыла была 95 мм, плюсны 34,5 мм, клюва 11 мм. Птенец от 22 июня уже почти полностью оперился, рудевые выросли наполовину, маховые на 2/3. Длина его крыла 111 мм, плюсны 35,3 мм, клюва 13 мм. К помощи крыльев впервые прибегают в трехнедельном возрасте (Зарудный, 1888). Летные молодые начинают попадаться в заповеднике обычно с середины первой декады июля, но в 1972 г. первая встречена 29 июня. Размеры фабрициевых сумок у двух молодых гиркушек составляли 7 и 9 × 4 и 5,5 мм, весили 0,06 и 0,16 г.

Только вылупившиеся пуховички некоторое время находятся в гнезде (рис. 9), но

при малейшей опасности покидают его, затаиваясь в 0,3–1 м среди кустиков полыни и солянок, в ямках от копыт лошадей или коров. В жару ищут укрытие в тени от кустиков растений, комков земли, помета домашних животных, иногда прячутся под сгенками скрадка вместе с птенцами малой крачки. Будучи постарше, потревоженные уходят на мелководье на расстояние до 50 м от гнезда и замирают там среди затопленных солянок (нередко забираются в центр кустика), вытянувшись и полузакрыв глаза. В отличие от птенцов чибиса, травника, большого веретенника и ходулочника, замеченные на мелководье тиркушата вскакивают и бегут прятаться на сушу. Однако, в одном случае 4 оперяющихся пуховичка (один выводок) вначале устремились от меня вглубь, но затем распластались на чистой воде в 25 м от берега, подобно тому, как это делают птенцы вышеуказанных куликов. Тиркушата очень крикливы, однодневные в руках непрерывно пищат, более старшие громко кричат и пытаются вырваться. Нередко при этом птенцы прибегают к помощи клюва (щиплют и клюют пальцы рук), что в целом для куликов нехарактерно. С другими птицами в колонии уживаются мирно.

Гибель гнезд высокая. Из 22 кладок, чья судьба прослежена, погибло 11 (*Хроков*, 1974), причем все они относятся в 1971 году. Вылупление произошло в 11 гнездах, по пяти кладкам итог гнездования неизвестен. Затоплено 5 гнезд (3 их них были найдены уже затопленными, в 1–2 м от суши). Тиркушки бросают гнездо, едва его подмочит, отличаясь этим от чибисов, травников, ходулочников и шилоклювок, пытающихся сохранить кладку надстраиванием гнезда (*Хроков*, 1975). По 2 гнезда было раздавлено пасущимися коровами и лошадьми, 2 найдены брошеными. Оплодотворенность яиц составляет 93,3% (5 болтунов из 74 яиц). Врагами

тиркушек могут являться волки, лисицы и корсаки (Зарудный, 1888).

Насиживают оба пола. Наседные пятна обнаружены у птиц, добытых в период с 20 мая по 20 июля. Их размеры: $50-61 \times 12-17$ мм, в среднем у самок (3) $57,7 \times 18,7$, у самцов (4) $56,2 \times 15,0$ мм. Наседные пятна трех самцов и самки, добытых 27 июня, 1, 2 и 10 июля уже начали зарастать (в пеньках). Самец от 13 июня не имел наседных пятен. Очевидно, это был бродячий, неразмножающийся экземпляр. По некоторым сведениям насиживание происходит ночью, утром и вечером, а днем птицы улетают на водопой или кормежку, оставляя колонию нескольким «сторожам» (Заруаный, 1888; Сушкин, 1908). Это утверждение сомнительно. Скорее всего, оно основано на встречах свободных от насиживания особей, группирующихся для вылета на кормежку или защиту колонии. Такие стайки (по 5–30 экз.) наблюдаются в течение всего гнездового периода. Создается впечатление, что они состоят исключительно из самцов. Так, 13 июня из стайки в 20 особей одним выстрелом было добыто 3 кулика, оказавшихся самцами. Из стайки в 12 особей 10 июля также добыты 3 самца.

В защите смешанной гнездовой колонии от врагов тиркушки принимают самое активное участие. При приближении человека они стаей вылетают навстречу за $100{\text -}150~\text{M}$, с криками вьются над ним, пикируют на голову. Подобное поведение наблюдается иногда у стаи куликов, кормящихся где-нибудь на берегу или в степи на значительном удалении от места гнездования (в 1 км и более). Нередко при этом птицы даже отводят от «гнезд». Отвлекающие демонстрации для тиркушек очень характерны. Чаще (в $75{,}0\%$ случаев) они выражаются имитацией раненой птицы, распластавшейся на земле с распростертыми крыльями, бьющейся и с трудом продвигающейся вперед, волоча, словно парализованные, ноги. Второй способ отвода от гнезда-имитация насиживания. У гнезд тиркушки довольно осторожны, дистанция, с которой удавалось сфотографировать из укрытия птиц, была не менее $5{\text -}7~\text{M}$.

После подъема молодых на крыло тиркушки сбиваются в стайки и кочуют в поисках корма по солончаковым и травянистым берегам водоемов, степным дорогам и тырлам. В это время становятся очень доверчивыми, подпуская вплотную. До июля включительно была еще высока встречаемость одиночек (рис. 4), но это могли быть отдыхающие или кормящиеся члены колонии, тем более, что все они отмечались не далее, как в 300 500 м от мест гнездовий. В августе ни одной одиночки не наблюдалось.

Отлет на юг происходит незаметно, начинаясь уже с первой половины июля. 8 июля я спугнул из травы у уреза воды стаю, птицы сразу набрали высоту и с криками улетели в южном направлении. Повидимому, молодые и старые отлетают вместе, в стайках видны те и другие. Иногда кормятся с азиатскими зуйками, кречетками и чибисами, но чаще отдельно, «чистыми» группами по 3-46 особей. Показатель стайности (среднее число птиц в стае) в период кочевок и отлета составляет 12,4. Мигрируют и парами. Поздним вечером 1 августа у Ак-Кашкара наблюдалась отдыхающая стая. Птицы сидели в невысокой траве, нахохлившись, поджав лапки и втянув шеи, напоминая крупных ласточек. При приближении к ним, мелкими шажками перебегали вперед, иногда дружно поднимались, перелетали 10-15 м и вновь садились. Последние исчезают рано и внезапно. В 1969 г. 5 августа Москалев в районе Ныгымана видел большое количество тиркушек, но через день их там уже не было. В 1970 г. последняя встреча была 10 августа, в 1972 г. 19 августа. В 1971 г. после 11 июля, когда была отмечена пара птиц (а за день до этого небольшая стайка), ни одной тиркушки более не наблюдалось в заповеднике.

Линька

Линька тиркушек слабо изучена (Гладков, 1951). Весной появляются в свежем перебрачного наряда. В некоторых случаях частичная линька запаздывает, заканчиваясь на гнездовых местах. Так, у самки от 24 мая из Целиноградской области (р. Мурбук)* на надхвостье было несколько недоросших перьев в кисточках. 12 экземпляров, добытых в конце апреля-мае в Южном, Западном и Центральном Казахстана перелиняли полностью.

О полной линьке известно только, что она идет уже интенсивно в двадцатых числах июня (Сушкин, 1908) или в конце июля-начале августа (Гладков, 1951). По моим материалам послебрачная линька начинается со второй декады июня – самка от 11 июня из Кургальджинского заповедника сменяла перья на горле и темени. Из четырех особей, добытых в заповеднике 13 июня, линять начали две. В конце месяца у некоторых экземпляров мелкое перо обновляется по всему телу. В то же время часть птиц еще не приступает к линьке. Из 11 июньских экземпляров перо сменялось у 5 (45,5%). В июле мелкое перо обновляли все осмотренные тиркушки (14 экз.). Многие птицы, по-видимому, успевают сменить мелкое оперение на родине.

Линька крупного пера начинается в конце июня со смены первостепенных маховых. Самка от 30 июня из Кургальджина обновляла первое и второе перво-

^{*} За недостаточностью собранного мной материала для характеристики линьки была использована коллекция Института зоологии АН Каз ССР.

степенные маховые**. Три самца, добытые 10 июля из одной стайки, находились на разной стадии линьки. Один из них сменял 3 пера, другой 4 (1-е уже новое); третий обновил 1-е и 2-е перья, 3-е дорастало, 4-е было в кисточке. У последнего, кроме того, линяло (дорастало) первое второстепенное маховое. Два самца начали смену рулевых (по одному перу из первой и второй пар). Очевидно, линька крупного пера до отлета на зимовки начинается далеко не у всех особей из 25 обследованных за июнь и июль линяло 5, что составляет всего 20,0%. К сожалению, ни одного августовского экземпляра у меня не имелось. Начавшие линьку маховых и рулевых, заканчивают ее во время миграции, а возможно, и на местах зимовок.

Семь молодых птиц, добытых в Центральном, Западном и Северном Казахстане в период с 8 июля по 6 сентября, находились на различной стадии линьки в первый зимний наряд, причем у всех еще дорастали маховые или рулевые юношеского наряда. Заканчивается частичная линька молодых, очевидно, на зимовках.

Питание

Кормовая активность тиркушек в течение дня имеет 2 ясно выраженных пика – в 9 и 15 часов (рис. 10), что связано с дневным образом жизни птип, охотящихся преимущественно в воздухе. В полученные часы нередко кормятся и отдыхают у воды или на степных дорогах. Степные тиркушки питаются исключительно животными кормами, основу которых составляют насекомые (табл. 2). В большом количестве поедаются муравьи (1264 экз., что составляет 84,3% от общего числа насекомых), но найдены они всего у трех птиц (17,7%). Около половины муравьев относится к жнецам (Messor sp.). По встречаемости на первом месте стоят жесткокрылые (194 экз., 100%). Из них доминируют долгоносики (86 экз., 44,3%) и чернотелки (78 экз., 40.2%). В меньшем числе поедаются жужелицы, листоеды, пилоусы,

10. Суточная ритмика питания срепных тиркутек

A feketeszárnyú székicsér táplálkozásának napi ritmusa

^{**} Первостепенные маховые считались центробежно от карпального сустава, второстепенные центростремительно, рулевые от центральной пары.

Таблица 2. Питание степной тиркушки в Тенгиз-Кургальджинской впадине в 1969—1972 гг. (17 желудков)

17 példány G. nordmanni táplálkozásvizsgálata

Вид пищи	Встречаемость	Количество экз.
Животная пища	100	1502
Mollusea	5,9	1
Insecta	100,0	1500
I. larvae	11,8	2
Odonata, Lestidae	5,9	8
Libellulidae, larvae	5,9	2
Orthoptera	11,8	2
Acrididae	5,9	3
Hemiptera, Pentatomidae	5,9	1
Corixidae, Corixa sp.	5,9	3
Coleoptera	29,4	5
Carabidae	5,9	1
$Nebria\ sp.$	5,9	1
Agonum[sp.	5,9	1
$Amara\ sp.$	5,9	2
Pseudopĥonus pubescens Müll.	5,9	1
$Pterostichus\ sp.$	17,6	3
Dytiscidae, Colymbetes sp.	5,9	1
Histeridae, Hister sp.	5,9	1
Elateridae	11,8	2
$Agriotes\ sp.$	5,9	1
Hydrophilidae	5,9	1
Heteroceridae, Heterocerus sp.	5,9	4
Meloidae, $Mylabris sp.$	5,9	1
Tenebrionidae	5,9	1
$Pedinus\ sp.$	5,9	$\frac{2}{71}$
$Opatrum\ sp.$	17,6	$\frac{i1}{2}$
O. sabulosum L.	11,8	1
$Gonocephalum\ sp.$	5,9	i
Penthicus dilectans F.	5,9	î
Chrysomelidae, Donacia cinerea	5,9	1
Herbst.	5,9	1
Cassida viridis L.	11,8	2
C. nebulosa L.	5,9	ĩ
C. sanguinolenta Müll.	23,5	42
Curculionidae	5,9	2
Otiorrhynchus sp.	11,8	5
Sitona sp.	5,9	10
Cleonus sp. Bothynoderes sp.	29,4	6
Stephanophorus strabus Gyll.	11,8	3
Phytonomus sp.	5,9	2
Ceuthorrhynchus sp.	5,9	. 1
Sphenophorus sp.	5,9	2
Sph. abbreviatus F.	11,8	4
Stephanocleonus sp.	17,6	8
$Mecinus\ sp.$	5,9	1
Diptera, larvae	5,9	1
Empididae	5,9	4
Dolichopodidae	5,9	1
Museidae	5,9	2
Ephydridae	5,9	6
Limoniidae	5,9	1

Вид пищи	Встречаемость %	Количесво экз.
Hymenoptera, Ichneumonidae	5,9	1
Formicidae	11,8	664
Messor sp.	5,9	- 600
Arachnida	5,9	1

щелкуны и др. Характерно, что все эти жуки были съедены взрослыми, тогда как многие другие кулики кормятся в значительной мере личинками. Насекомые других отрядов представлены небольшим числом: двукрылые (15 экз.), стрекозы (8 взрослых и 2 личинки), прямокрылые (5) полужесткокрылые (4). Тиркушки кормятся главным образом наземными беспозвоночными, встречаемость которых составляет $100\,^o$ ₀. Водные организмы встречены в $29,4\,^o$ ₀ желудков, причем присутствовали они там вместе с сухопутными насекомыми, такими как некоторые жужелицы, чернотелки и долгоносики, которые так же могли быть съедены близ уреза воды.

Долгоносики, чернотелки и жужелицы поедаются в течение всего сезона с мая по август. Муравьи идут в пищу в июне-августе, прямокрылые - в июне и июле, из двукрылых в июне найдены толкунчики, а в июле- луговики, зеленушки, береговушки и настоящие мухи (все имаго). Только в июне встречены листоеды, пилоусы, щелкуны, полужесткокрылые, карапузик, нарывник, плавунец и водолюб; в июле моллюск и паук; в августе стрекозы и наездник. У некоторых добытых птиц в желудке и пищеводе содержится большое количество насекомых. Так, у самки от 23 мая найдено 47 долгоносиков и 1 жужелица, у самца от 17 мая 60 чернотелок, у самца от 27 июня около 650 муравьев и 2 долгоносика. Желудок, пищевод и глотка самки от 2 июля были забиты крылатыми муравьями-жнецами, которых оказалось более 600 экземпляров. Существует предположение, что тиркушки приносят своим птенцам корм в пищеводе и затем отрыгивают его порциями (Юдин, 1965; Тайсхерсту, 1923). Во время массового выплода саранчовых тиркушки уничтожают их в большом количестве. В кормовой рацион птиц входят также осы, пчелы, бронзовки, мертвоеды, клопычерепашки и др. (Гладков, 1951; Чельнов-Бебутов, 1953; Долгушин, 1962; Кривинкий, 1969). Гастролиты мной не встречены. Не было механических примесей и в трех желудках птиц, добытых *Чельцов-Бебутовым* в Наурзуме (*Гладков*, 1951). *Рябов* и *Мосалова* (1966) отмечает редкую встречаемость гастролитов. Растительная пища не найдена. Сырой вес пищи в одном желудке составляет 0,2-3 (17 взвешиваний) в среднем 1,1 г; в сухом виде 0,04-0,07, в среднем 0,032 г. Сырой вес содержимого пищевода составляет (4 взвешивания), в среднем 1,86 г.

По характеру питания степная тиркушка полезная птица, поедающая таких насекомых-вредителей, как долгоносики, чернотелки, листоеды, саранчовые, жнецы и др. В настоящее время она нигде не является многочисленной, а в конце прошлого века перед отлетом на юг в степях скапливались огромные стаи по нескольку тысяч особей в каждой (Зарудный, 1888; Гладков, 1951 по наблюдениям Браупера). Необходима своевременная и строгая охрана этих оригинальных представителей ржанкообразных.

G. G. Hrokow СССР г. Алма-Ата Институт зоологии АН КазССР

Литература

- Винокуров А. А. (1958): К распространению и биологии луговой тиркушки Glareola pratincola Л. Бюлл. МОИП. т. 63. отд. биол., вып. 4. М.
- Гаврии В. ф. (1973): О весеннем пролете куликов в окрестностях оз. Кургальджин. «Фауна и экология куликов». вып. 2. изд. МГУ. М.
- *Г. 1адков Н. А. (1951):* Отряд Кулики. «Птицы Советского Союза», т. 3. изд. «Сов. Наука», М.
- Губкин А. А. (1973): К биологии степной тиркушки и ходулочника на Днепропетровщине. «Фауна и экология куликов». вып. 1. изд. МГУ. М.
- Дебело П. В. (1969): О гнездовании куликов в окрустностях озера Чалкар. «Орнитология в СССР», кн. 2. Мат-лы Пятой Всес. орнитол. конфер. Ашхабад.
- Долгушин И. А. (1962): Отряд Кулики. «Птицы Казахстана». т. 2. изд. АН КазССР. Алма-Ата.
- *Зарудный Н. А.* (1888): Орнитологическая фауна Оренбургского края. Приложение к 57 т. зап. Импер. АН. № 1. СПБ.
- Кошелев Н. Т.—Шапошников Л. В. (1966): Степная тиркушка. Уч. зап. т. 47. зоология. Тр. Рязанского педагогич. ин-та.
- Кривенко В. Г.—Кривоносов Г. А. (1973): О распространении и биологии куликов на внутренних водоемах Калмыкии, «Фауна и экология куликов», вып. 2. изд. МГУ. М.
- Кривицкий И. А. (1969): Птицы южных степей Целиноградской области (эколого-фаунистический анализ). Рукопись диссерт. на соиск. уч. степени канд. биологич. наук. Харьков.
- Лавров С. Д. (1930): Результаты зоологической экспедиции в Тенизо-Кургальджинский озерный бассейн. Изв. Зап.-Сиб. отд. РГО. т. 7. Омск.
- Новиков Г. А. (1953): Полевые исследования по экологии наземных позвоночных. Изд. «Сов. Наука». М.
- Рябов В. ф.—Мосалова Н. И. (1966): Питание куликов в районах освоения целинных земель (кречетка, чибис, степная тиркушка, каспийский зуек). Зоол. ж. т. 45. вып. 6. М.
- Соломатин А. О. (1973): Колониальное гнездование куликов в Наурзумском заповеднике. «Фауна и экология куликов». вып. 1. изд. МГУ. М.
- Спангенберг Е. П.—фейгин Г. А. (1936): Птицы нижней Сыр-Дары и прилегающих районов. Сб. тр. Зоол. музея МГУ. т. 3. М.
- Cушкин Π . Π . (1908): Прицы Средней Киргизской степи. Мат-лы к позн. фауны и флоры Росс. имп. т. 8. М.
- *Хроков В. В.* (1974): О причинах гибели гнезд куликов. Мат-лы Шестой Всес. орнитол. конфер. ч. 2. изд. МГУ. М.
- *Хроков В. В. (1975):* Реакция прибрежных тпиц на затопление их гнезд. «Экология», № 3. изд. «Наука». Свердловск.
- *Чельцов-Бебутов А. М. (1953):* Истребление птицами перелетной саранчи в Семнозерном районе Кустанайской области. Тр. Ин-та географии. вып. 54. Мат-лы по биогеографии СССР. 1. Зоогеография и экология наземной фауны Казахстана. М.
- *Юдин К. А.* (1965): Филогения и классификация ржанкообразных. «Фауна СССР». Птицы. т. 2. вып. 1. ч. 1. изд. «Наука». М.—Л.
- Sterbetz, I. (1974): Die Brachschwalbe. Die Neue Brehm-Bücherei. A. Ziemsen Verlag. Wittenberg-Lutherstadt.
- Walmsley, I. G. (1970): Une Glaréole de Nordmann en Camarque. Premiére observation et premier cas de nidification pour la France. "Alauda". 38. No. 4.
- Автор статьи: «Материалы по биологии степной тиркушки в Тенгиз-Кургальджинской впадине (Центральный Казахстан)». Хроков Валерий Васильевич. аспирант лаборатории орнитологии Института зоологии АН КазССР.
- Адрес Института: 480 032. г. Алма-Ата. Академгородок Институт зоологии, Служебный телефон: 44-06-32.
- Домашний адрес: 480 051. г. Алма-Ата. пр. Ленина. 132.

Adatok a Tengiz-Kurgaldzsi mélyföld (Közép-Kazahsztán) feketeszárnyú székicséreinek (Glareola nordmanni Nordm.) biológiájához

V. V. Hrokov

A feketeszárnyú székicsér elterjedési területe meridionálisan a Duna alsó folyásától az Ob felső folyásáig nyúlik, ami a madár sztyeppei zónához való kötöttségével áll kapcsolatban. A Kazahsztánban a faj költési területének déli határa jelentős hosszban húzódik, és helyenként a félsivatagi és a sivatagi zónába hatol be. Ezen a területen a faj az Ural folyó alsó szakaszáig, Usztürtig, Turgaj alsó részéig, az Aral-tó északi szigetéig, a Szir-Darja völgyéig, a Szariszu alsó folyásáig, ill. a Zaiszan katlanig fészkel (Dolgusin, 1962).

Állandó megfigyeléseimet Kurgaldzs állami természetvédelmi területén végeztem 1969–1972. években. A Tengiz-Kurgaldzsi mélyedésben, amely az área déli határánál fekszik, a feketeszárnyú székicsér kis számban és szórványosan fészkel (1. ábra). A költést 1970–72-es években az Észej és az Ak-Kaskar tónál észleltem (1969-ben a madárszám nagyon kicsi volt, és a fészket nem találtam). *Krivickij* (1969) a Tengiz délkeleti partján figyelt költést.

Madárszám

A Nura árterületén ritkán fordul elő: május második dekádja végén egy 10 km-es szakaszon régi medrekben és árterületeken mindössze egy madárpárt figyeltem meg. Május végén Kulsum árterülete 1 km-es partvonalán 10 madár volt található. Az alacsony ballagófűvel és sziksófűvel benőtt Ak-Kaskar szikes partjának azonos hosszúságú szakaszán júniusban 1–4, júliusban pedig 2 egyednél többel nem találkoztam. Csoportosan költ, helyenként kis területen a madársűrűség jelentős. Így az Ak-Kaskar két ideiglenes szigetén — területük csak 2, ill. 4,5 ha volt – 1971. és 1972. évben mindegyiken 20–25 madárpár fészkelt.

A feketeszárnyú székicsér relatív egyedsűrűsége a többi Tengiz-Kurgaldzsi mélyedésben fészkelő, ill. vonuló Lilealakúakhoz (38 faj) viszonyítva, az összes észlelt példányok 0,8%-ot, a fészkelőfajok (13) közötti arány 3%-ot tesz ki, ami közel egybeesik a védett területen előforduló kis lile, gólyatöcs és gulipán számával. A székicsér tartózkodási ideje a vizsgált körzetben igen rövid, és nem haladja meg a 4 hónapot sem (május-augusztus),

legnagyobb előferdulást júniusban regisztráltam (58%).

A nemi dimorfizmus kevésbé feltűnő és inkább a násztollazatban vehető észre. A tojó valamivel halványabb, a kantárja és a torokpajzsszegélye nem fekete, hanem sötétbarna. A hímek nagyobbak a tojóknál (1. táblázat). Gladkov (1951) és Dolgusin (1962) adatai szerint a hímek súlyosabbak a tojóknál. A fiatalokat könnyen megkülönböztethetjük az adult madaraktól, mivel a hátoldaluk tarka, a fekete torokpajzsszegély hiányzik róluk. Egy fiatal tojó VII. 8-i és egy hím VIII. 10-i méretei: szárny – 165 és 190 mm, farok – 75 és 82 mm, csüd – 37 és 34,5 mm, csör – 12–13 mm, testtömeg – 83,5 és 100 g (megfelelően).

A testtömeg ill. a zsírosság évszakos ingadozása jelentéktelen. Kövér székicsérrel nem találkoztam, a lelőtt példányok zsírossága nem haladta meg a három fokot*. A hímek legnagyobb tömegét (101,8 g és 2-ik zsírossági fok) május 17-én, a tojókét (104,5 g, 3-ik

fok) június 30-án észlelték.

A feketeszárnyú székicsér a víz közvetlen közelében él. Itt a tavak szikes vagy füves partján fészkel és táplálkozik. Nem kevésbé fontos részére a száraz sztyepp, az utak és a delelők, melyek táplálkozási biotópok (2. ábra). Érkezés után – májusban – a madarak főként a sztyeppen és a vízmedencék sziki partján tartózkodnak, júniusban a nedves réti növényekben gazdag füves partokon is (3. ábra). Később a sztyeppi biotóp szerepe csökken, a parti biotópoké pedig növekszik júliusban (szikesek), augusztusban (füves partok).

A feketeszárnyű székicsér későn érkezik tavasszal, általában május közepén vagy végén. 1969-ben az első példányokat V. 13-án, 1970-ben V. 1-én, 1972-ben V. 17-én észlelték. 1959-ben az első előfordulást V. 8-án (*Gravin*, 1973), 1960-ban V. 9-én, 1961-ben V. 5-én

^{*} A zsírosság fokát Danilov-féle szemmértékű skála alapján határozták meg, figyelembe véve a Lilealakúak részére Novikov (1953) által javasolt korrekciót.

(Krivickij, 1969) regisztrálták. A tavaszi, valamint az őszi vonulás nem kifejezett. A természetvédelmi területen a madarak párokban jelennek meg (előfordulás májusban – 77,8%), ritkábban egyenként, vagy 4–6-os kis csapatokban (4. ábra). Vannak adatok arról, hogy a párosodás vonuláskor történik (Zarudnij, 1888; Gladkov, 1951). Júniusban az egyes madarak, ill. a kis csoportok előfordulása valamivel gyakoribb, és ez összefügghet a későn érkező, párt nem alkotó egyedek és a fészekaljat elvesztett madárpárok megjelenésével. A tavasszal érkezett madarak általában félénkek, de a motorkerékpárt vagy a gépkocsit közel engedik magukhoz. Nemritkán a sztyepei utakon éjszakáznak. Semmiféle nászrepülést – amely más lilékre jellemző – nem figyeltem meg náluk.

A költőhelyekre a székicsérek már jól fejlett gonádokkal érkeznek. Május 17-én lőtt hímnek bal testise 11.5×7 mm és 0.31 g volt. Egy másik, vele együtt tartózkodó hímnek sokkal kisebb testise volt; méretei 8.0×4.5 mm és 0.13 g. Júniusban a testis méretei $6-7\times3.5-5$ mm között változnak (5 példány), átlagosan 5.9×4.2 mm és 0.07 g-ot tesznek ki. Júliusban három hím testisének méretei a következők voltak: $4.0\times2-2.5$ mm és 0.02-0.03 g. Hasonló változás megy végbe a tojó reprodukciós szerveiben. Májusban a legnagyobb folliculus átmérője elérte az 5 mm-t, a petefészek 0.3 g-os, a petevezetéké 1.11 g-os volt. Június 4-én lelőtt tojóknál a folliculus átmérője nem haladta meg a 4 mm-t, a petefészek és a petevezeték tömege 0.18 ill. 6.31 g-ot ért el. Június 30-án elejtett példánynál a folliculus maximális átmérője 2.5 mm volt, július 2-án egy másik tojónál már nem haladta meg a 0.5 mm-t.

A feketeszárnyú székicsérek majdnem azonnal az érkezésük után elfoglalják a fészkelési területüket a ritka és alacsony sziksófűvel, ballagófűvel, ill. ürömmel benőtt vízpartokon (5. ábra). 27 megtalált fészekből 18 (66,7%) száraz agyag- vagy szikes talajon helyezkedett el, ebből 2 csupasz takiron (6. ábra). 9 fészek (33,3%) nedves szolonyec szikesen volt (7. ábra). Hasonló habitátokban fészkel a székicsér Kazahsztán más vidékein (Szuskin, 1908; Dolgusin 1962). Az área nyugati részein – például Ukrajnán – sokszor a megművelt földeken is költ (Gladkov, 1951; Gubkin, 1973). A fészkeket a víztől 5–70 m-es távolságban (21 mérés), átlagosan 30 m-nyire helyezi el. Néha kisebb kolóniák 10 vagy több km-nyire

találhatók a legközelebbi vizektől (Gladkov, 1951).

A feketeszárnyú székicsér telepalkotó madár. Az 5 ismert telepből három időszakos szigeteken alakult. A költő párok száma 3 és 25 között ingadozott. Kisebb, 10–20 párból álló telepeket a kutatott területen Krivickij (1969) is talált. A área más vidékein ezek a székicsérek több száz, sőt több ezer példányt számláló kolóniákat alakíthatnak (Gladkov, 1951; Dolgusin, 1962). A magányos fészkelés ismeretlen. Az egyik szigeti település Ak-Kaskar tónál ugyanazon a helyen két évig (1971 és 1972) létezett. A gyakori zavarás miatt a feketeszárnyú székicsér fészkelési kolóniái szét is eshetnek (Szolomatin, 1973). Az egyes madárpárok 5–20 (5 mérés), átlagosan pedig 10 méteres távolságban költenek egymástól. Egyes településeken egy fészekre 0,1–0,2 ha terület esik. Fészkelőbiotópjában a legközelebbi madártársai a piroslábú cankó (átlagos távolság 6 mérésből 6 m), a tőkés réce (2 mérésből 10 m), a nagygoda (4 mérésből 11 m), a bíbic és a kis csér (5 mérésből 11,6 m) a kislile (3 mérséből 11,7 m), a gólyatöcs (4 mérésből 19,2 m). A székicsér két faja (G. pratincola és G. nordmanni) költési helyein kevert kolóniák is kialakulnak (Szpanbenberg et al., 1936; Gladkov, 1951; Vinokurov, 1958). Ismeretesek a két közelálló faj kereszteződésének esetei (Walmsley, 1970; Sterbetz, 1974, Nadler, 1969).

A feketeszárnyú székicsér fészke egy kis talajmélyedésből áll, amelyet maguk a madarak kaparnak ki, ritka esetben felhasználják a lovak és a tehenek patanyomait (8.

ábra). A 22 fészek méretei:

külső átmérője 10-18, átlagosan 13,6 cm;

fészekesésze belső átmérője 5–12, átlagosan 7,2 cm;

mélysége 1-4, átlagosan 2,3 cm.

Egyes fészkek olyan sekélyek, hogy fészekcsésze alig van. A fészke bélése szegény, főként a ballagófű szálaiból áll; a megtalált 24 (88,9%) fészekből 20-ban a bélelés tisztán ebből a fűből tevődött össze. Három esetben ezen kívül ürmöt, egyikben nádszáldarabkákat találtam. Egy fészek (3,7%) ki volt bélelve kizárólag ürömmel, kettőben (7,4%) a tojások földön feküdtek. A fészekcsésze bélése 15 fészekben 3–18, átlagosan 9,8 g volt.

Teljes fészekalj 2–4 tojásból áll, konkrétan 12 fészekben (54,4%) 3; 9-ben (40,9%) 4; egyikben (4,6%) 2 tojás volt. Nyilvánvaló, hogy a pótköltésben háronmál több tojás nem szokott lenni, Átlagos tojásrakás (22 fészek alapján) 3,4 tojásból áll. Ural vidékén (Debelo 1969) átlagos tojásszám – 10 mérés szerint – 3,5 tojás, Dnyepropetrovszk megyében (Gubkin, 1973) – 21 adat szerint – 3,6; Kalmikijában (Krivenko-Krovonoszov, 1973) –13 fészek szerint – 3,8 tojás. Ismeretesek 5 (Gladkov, 1961), ill. 6 (Krivenko-Krivonoszov, 1973) tojásból álló fészekaljak is. Tojásméretek (70 db): 29–35,5 \times 22,5–27, átlagosan

 32.4×24.6 mm. A friss tojás (14 db) tömege: 10-12.3, átlagosan 10.7 g; erősen inkubáltaké (31 db): 7-10.5, átlagosan 8.8 g. A különbség a nem kotlott és a kikelés előtti tojások között egyes esetekben 1.5-2, átlagosan 1.9 g (17.8%). Vannak megfigyelések arról, hogy az inkubáció haladásával a székicsér a lilékhez hasonlóan betakarja a tojásokat a ballagó-

fű kis szálaival, szikdarabokkal vagy más anyagokkal (Dolgusin, 1962).

A költési idény kb. 2,5 hónapig tart, május közepétől (tojásrakás kezdete) július végéig (az utolsó fiókák szárnyrakapása). Az inkubálási időtartam ismeretlen. A közelálló fajnál – a székicsérnél – 17–18 napig tart (Sterbetz, 1974). Ezekre a számokra alapozva kiszámítható a költés valószínű kezdete a megtalált fészekben*. Május közepétől a tojásrakás 5 (18,5%), május végén 5 (18,5%), június elejétől 11 (40,8%) és június közepétől 6 (22,2%) fészekben kezdődött. Tehát az első tojás megjelenésének dátumai közötti különbség egy hónapot tesz ki egyes pároknál. Lavrov (1930) a kurgaldzsi sztyeppen már május harmadik dekádjában erősen előrehaladott költésekre akadt rá.

Az első fiókák június első-második dekádjában jelennek meg. A kikelés elég hosszadalmas. Az egyik fészekben a tojás feltörésétől a kikelésig két nap telt el. A fiókák nem egyszerre kelnek ki. A két fészekben 3, ill. 4 fióka három nap alatt jelent meg. Valószínű, hogy a költés nem az utolsó tojás lerakása után, hanem valamivel előbb kezdődött, de például az egyik megtalált fészekben a tojó csak a harmadik (utolsó) tojás után kezdett kotlani. Érdekes eset volt, amikor az egyik – VI. 8-án talált – fészekben 4 közepes ideig inkubált tojásra valami pók hálót szőtt, amivel 3 tojást beborított. Úgy nézett ki, hogy a fészek elhagyott. Azonban VI. 16–18-án kikelt minden fióka. Az utolsó tojás héja sok-

szor marad a fészekben, de az előzőket a madarak elhordják.

Az egynapos pelyhesek (6 példány) 6,7–8, átlagosan 7,5 g-osak. Méreteik: csüd 12,5–16, átlagosan 14,1 mm, csőr 6–7, átlagosan 6,5 mm; 2 db háromnapos fióka 13 és 15 g-os; csüdjük 17 és 18 mm, csőrük 7 és 8 mm volt. A "tojásfog" 2–3 napig marad meg. A megtalált fészkeken kívül sikerült megfogni a 4 különböző családhoz tartozott 8 tollasodó fiókát. A négy fiókát, amelynél a fedőtollazat már kezdett kibújni a tokjából, de az evezők csak egyharmadát érték el a végső hosszúságnak, VI. 22-én és VII. 15-én fogtam meg. Átlagméreteik: szárny 75,6 mm, csüd 32,1 mm, csőr 9,8 mm. Kettő közülük 59–59 g-os volt. A június 27-én fogott három fióka valamivel idősebb volt. Az evezők már félhosszúra nőttek ki. Az egyik 75 g-os, szárnyhossza 95 mm, csüdje 34,5 mm, csőre 11 mm. A június 22-én fogott fióka majdnem teljesen tollas volt, kormánytollai felére, evezői kétharmadra nőttek ki; szárnyhossza 111 mm, csüdje 35,3 mm, csőre 13 mm. Szárnyhasználatra háromhetes korukban került sor (Zarudnij, 1888). A nyári fiatalok átlalában június első dekádja közepétől jelennek meg a természetvédelmi területen, de 1972-ben első megfigyelés június 22-re esett. A bursa fabricii két fiatal székicsérnek 7 és 9×4 és 4,5 mm nagyságú volt, tömege pedig 0,06 és 0,16 g.

A frissen kikelt pelyhesek egy ideig a fészekben tartózkodnak (9. ábra), de a legkisebb veszélyre otthagyják a fészket, és 0,3–1 méteres távolságban lelapulnak a ballagófű és az üröm bokraiba, a tehén-, ill. a lópata nyomaiba, gödrökbe. A hőségtől a növénybokrok, a föld-, ill. a trágyacsomók árnyékában keresnek menedéket, néha a karám mellé bújnak a kis csér fiókáival együtt. Idősebb korukban, ha megzavarják őket, zátonyos helyekre menekülnek, sokszor 50 méteres távolságra a fészektől. Ott a ballagófű bokraiba rejtőzködnek (gyakran a bokor közepéig behatolva), ahol kinyújtózkodva félig lehunyt szemmel megmerevednek. A bíbic, a piroslábú cankó, a gulipán és a nagygoda fiókáitól eltérően, a zátonyos helyről a kis fekete székicsérek nem vízbe, hanem partra szaladnak elbújni. Igaz, egyik alkalommal 4 tollasodó pelyhes (egy család) előbb a víz belsejébe igyekezett tőlem, de azután a parttól 25 méterre a tiszta vízben lelapultak az említett partimadár-fiókákhoz hasonlóan. A kis székicsérek igen lármásak, a kézbe vett egynapos fiókák állandóan csipognak, idősebbek hangosan kiáltoznak, és igyekeznek kiszabadulni. Nemegyszer ilyenkor a csőrüket is használják (csípik és szurkálják a kezet); ez a lilékre

nem jellemző. A madártelepülés más fajaival békésen összeférnek.

A řészekveszteség igen nagy. A végig figyelt 22 fészekaljból 11 elpusztult (*Hrokov*, 1974), és ezek mind 1971-ben. 11 fészekben kikeltek a fiókák, de 5 költés eredményessége ismeretlen. 5 fészket kiöntött a víz (ebből hármat már elöntött területen találtam 1–2 méteres távolságban a parttól). A bíbic, a cankók, a gólyatöcs és a gulipán viselkedésétől eltérően, amelyek ráépítéssel igyekeznek megőrizni az elázott fészket, a feketeszárnyú székicsér otthagyja a fészkét, alig hogy az nedvesedik (*Hrokov*, 1975). Két fészket kitapostak a

^{*} Június 5. és július 11. közötti időszakban (1970–1972. évek) 27 fészket találtak a különböző fokig inkubált tojásokkal.

legelő lovak és tehenek, kettőt már elhagyottan találtam. A tojás megtermékenyítettsége 93,5% os (74-ből 5 zápult meg). A székicsér ellenségei a farkasok, a vörös- ill. a pusztai ró-

kák (Zarudnij, 1888).

A feketeszárnyú székicsérnél mindkét szülő kotlik. A "kotlófoltot" a V. 20. és VII. 10. között gyűjtött madaraknál találtam meg. Méreteik: $50-61\times12-17$ mm, a tojóknál (3) átlagosan $57,7\times18,7$ mm, a hímeknél (4) $56,2\times15,0$ mm. A VI. 27-én, VII. 1–2 és 10-én elejtett 3–3 hímnek, ill. tojónak már kezdett tollal benőni a "kotlófolt"-ja. Egy VI. 13-án megyizsgált hímnek egyáltalán nem volt, valószínűleg egy kóborló, nem fészkelő példány lehetett. Egyes adatok szerint a kotlás éjjel, reggel és este folyik, nappal pedig a madarak itató- és táplálkozási helyekre vonulnak, rábízva a kolóniát néhány madárőrre (Zarudnij, 1888; Szuskin, 1908). Ezt az állítást kétségesnek tartom. Több mint valószínű, hogy ez a megállapítás olyan nem költő, szabad egyedek megfigyelésén alapszik, amelyek táplálkozásra, ill. a kolónia védelmére csoportosulnak. Ilyen (5–30-as) csapatok a költési idény egész folyamatán megfigyelhetők. Az a benyomásom, hogy ezek kizárólag hímekből tevődnek össze. Így VI. 20-án a 20 madárból álló csapatból egy lövéssel három csért ejtettem el, amely mind hímnek bizonyult. A 12 példányos csapatból VII. 10-én szintén három hímet lőttem le.

Az ellenség elleni védelemben – ha ez vegyes fészkelőkolóniákban történik – a csérek aktívan részt vesznek. Az ember közeledésére csapatostul szállnak 100–150 m-es távolságról, és az ember felé repülnek; majd a feje fölött keringenek, és rárepüléseket végeznek. Hasonlóan viselkednek néha a székicsércsapatok, amikor vízparton vagy sztyeppen, távol a fészkelésüktől (1 km-ig) táplálkoznak. Nem ritka az – ilyenkor is megfigyelhető – ellenség "elvezetése". A csaló színlelés nagyon jellemző a székicsérre. Leggyakrabban (75%) a megsebesült madár imitációjában nyilvánul ez meg, amikor is a csér a földre lógó szárnyaival vergődik, és alig halad előre, mintha megbénult lábát vonszolná. A második elcsalogató, elvezetési módszer a kotlás utánzása. A székicsérek elég óvatosak a fészküknél; a távolság, amelyről rejtőzve fényképezhettem, nem volt kisebb 5–7 méternél.

A fiatalok szárnyra kelése után csapatokba verődnek, és kóborolnak a szikes és füves vízpartokon, sztyeppi utakon, legelőkön táplálékot keresve. Ilyenkor kevésbé félénkek, és megengedik megközelíteni magukat. Júliusig bezárólag még mindig nagy számban fordultak elő szólóban élő madarak (4. ábra). Bár ezek a település pihenő vagy táplálkozó tagjai is lehettek, annál is inkább, mert ezeket nem messzebb, mint 300–500 m távolságban a fészkelőhelytől figyeltem meg. Augusztusban magányos madarakat már sohasem

láttam.

Vonulásuk észrevétlenül történik már július első felétől kezdve. Amikor júl. 8-án felriasztottam a vízparton egy csoportot, a madarak rögtön magasba emelkedtek, és dél irányába repültek el. A fiatalok az öregekkel együtt vonultak, mivel a csapatokban keverve figyelhetők meg. Időnként leszálltak eledelt szedni az ázsiai lilekkel, lilebíbicekkel és bíbicekkel együtt, de gyakrabban egyedül, "tiszta" 3–46-os csapatokban. A csoportosulási mutató (a csapat egyedszámának átlaga) a kóborló és a vonulási időszakokban 12,4-et tesz ki. Párokban is vonultak. Augusztus 1-én késő este megfigyeltem egy pihenő csapatot Ak-Kaskarnál. A madarak felborzolt tollazattal, behúzott lábbal és nyakkal az alacsony fűben ültek, nagyobb fecskékre hasonlítva. Megközelítéskor apró léptekkel szaladtak előre, időnként mindnyájan felszálltak, de 10–15 m után újra leereszkedtek. Az utolsó madarak elég korán és hirtelen tűntek el. 1969. VIII. 5-én Moszkaljer sok székicsért látott Nigiman környékén, de egy nap múlva mér nem voltak ott. 1970-ben utolsó megfigyelés VIII. 10-én, 1972-ben VIII. 19-én. 1971-ben VII. 11-e után – amikor még egy párt regisztráltam (előző napon még kisebb csapatot) – egyetlen székicsért sem figyeltem a természetvédelmi területen.

Vedlés

A székicsérek vedlése alig ismert (Gladkov, 1951). Tavasszal már friss násztollazatban jelennek meg. Egyes esetekben a részes vedlés késik, és már a költőhelyen ér véget. Így V. 24-én Celinográd megyében (Mirbak folyónál)* begyűjtött tojónál a farokesík feletti részén néhány toll még tokban volt. Április végén, májusban Dél-, Nyugat- és Közép-Kazahsztánban gyűjtött 12 példány teljesen vedlett volt.

^{*} Anyag híján a vedlés jellemzésének céljából a Kazah SZSZR Intézetének anyagát is felhasználtam.

Teljes vedlésről csak annyit tudunk, hogy már június 20. körül (Szuskin, 1908) vagy július végén. augusztus elején (Gladkov, 1951) erőteljesen folyik. Adataim szerint a fészkelés utáni vedlés már június második dekádjában kezdődik; egy VI. 11-én kurgaldzsi védett területén begyűjtött tojónál már cserélődtek a torok, ill. a fejtető tollai. Június 13-án lelőtt négy példányból kettő már kezdett vedleni. Egyes madaraknál az apró fedőtollak már a hónap végére felújulnak. Ugyanakkor a székicsérek egy része még nem jutott el a vedlésig, 11 júniusi példányból a tollazatcsere megtörtént 5 madárnál (45,5%). Júliusban pedig az összes megvizsgált csér (14 példány) már új tollalaztot viselt. Valószínűleg

sok madárnak még a költőhelyen sikerült felújítani a fedőtollazatát.

A nagy tollak váltása az elsőrendű evezőkkel már június végén megkezdődik. Egy június 30-én lelőtt tojónál Kurgaldzsiban I. és II. elsőrendű evező ki volt eserélve*. Az egyik csapatból lelőtt három hím a vedlés különböző stádiumában volt. Egyik madár kicserélte már 3 tollát, a második 4-et (az I. már új volt) a harmadiknál az I. és a II. toll új volt, a III. még nőtt, a IV. tokban volt. Az utolsónál kinőtt az I. másodrendű evezője is. Két hímnél már a kormánytollak cseréje is megindult (1–1 toll az első, ill. a második párból). Nyilvánvaló, hogy az őszi vonulás előtt a nagy tollak vedlése messze nem minden egyednél kezdődik meg. Június-júliusban 25 megvizsgált példányból csak 5, vagyis 20% vedlett. Sajnos egyetlen augusztusi példányom sem volt. Azok a madarak, amelyek elkezdték az evezők és a kormánytollak cseréjét, befejezik a vedlésüket volnulás alatt, vagy talán már a települési helyeken.

Július 8. és szeptember 6. között Közép-, Nyugat- és Észak-Kazahsztánban begyűjtött 7 fiatal madár az első téli tollazat fejlődésének különböző stádiumában volt; emellett még növekedésben voltak a juvenilis tollazat evezői és kormánytollai. A fiatalok részleges ved-

lése valószínűleg a települési helyen ér véget.

Táplákozás

A feketeszárnyú székicsér táplálkozási aktivitásának kifejezetten két csúcsa van: 9, ill. 15 óra tájban (10. ábra). Ez a madár nappali életmódjával áll kapcsolatban, mivel főként levegőben vadászik. Déli órákban számos esetben a víznél vagy a sztyeppi utakon táplálkoznak, pihennek. A táplálékuk kizárólag állati eredetű, és főként rovarokból áll (2. táblázat). Nagy mennyiségben fogyasztják a hangyát (1264 példány, az összes rovarok 84,3%), de ezeket csak három madárban (17,7%) találtam. A hangyák fele maggyűjtőkhöz (Messor sp.) tartozik. Előfordulás szempontjából első helyen a bogarak állnak (194 példány, 100%); közöttük túlsúlyban az ormányos bogarak (86 példány, 44,3%) és gyászbogarak (78 példány, 40,2%) vannak. Kisebb számban elfogyasztják a futóbogarakat, a levélbogarakat, a pattanóbogarakat stb. Jellemző, hogy ezek a bogarak mind imágók voltak, ugyanakkor sok más parti madár nagymértékben lárvákat fogyaszt. Más rovarrendek képviselői ritkábbak: kétszárnyúak (15), szitakötők (8 im., 2 lárva), egyenesszárnyúak (5), poloskafélék (4). A székicsérek főként szárazföldi gerinctelenekkel táplálkoznak, előfordulásuk 100% ot tesz ki. Vízi szervezeteket a gyomrok 29,4% a tartalmazott, de ezek olyan szárazföldi rovarokkal együtt voltak, mint a futóbogarak, a gyászbogarak és az ormányos bogarak, amelyeket szintén a vízfelszínnél foghattak meg.

Ormányos bogarak, gyászbogarak és futóbogarak egész idényben találhatók májustól augusztusig. A hangyák június—augusztusban, az egyenesszárnyúak június-júliusban, a kétszárnyúakból júniusban akadtak táncoslegyek, júliusban szőrös kiscsíkbogarak, rizslegyek és igazi legyek (mind imágó). Csak júliusban fordultak elő levélbogarak, pattanóbogarak, poloskák, hólyaghúzó bogár, csíkbogár és más bogarak. Júliusban molluska és pók, augusztusban szitakötők és egy fürkész. Egyes lelőtt madarak nyelőcsövében, ill. gyonrában nagy számban vannak a rovarok. Így például V. 23-án begyűjtött tojónál 47 ormányos bogárt és egy futrinkát, egy hímnél V. 17-én 60 gyászbogarat, egy másik hímnél VI. 27-én kb. 650 hangyát és 2 ormányos bogarat találtam. VII. 2-án egyik lelőtt tojó szája, nyelőcsöve és gyomra tömve volt maggyűjtő hangyákkal, amelyekből több mint 600-at számláltam. Feltételezik (Judin, 1965; Ticehurst, 1923), hogy a csérek nyelőcsövükben hozzák a táplálékot fiókáiknak, és porciónként öklendezik ki. Sáskajáráskor a székicsér sokat pusztít belőlük. "Étlapjukon" szerepelnek még a darazsak, a méhek, a rózsabogarak, a húslegyek, a mórpoloska stb. (Gladkov, 1951; Cselcov-Bebutov, 1953; Dolqusin, 1962; Krivickij, 1969). Gasztrolitokkal nem találkoztam. Nem volt mechani-

^{*} Az elsőrendű evezőket a carpalis ízülettől centrifugálisan tekintettük, a másodrendűeket centripetálisan, a kormánytollakat a középső pártól kezdve.

kai adatuk Naurzumban Cselcov-Bebutov által begyűjtött gyomrokben sem (Gladkov, 1951). Rjabov és Moszalova (1966) rámutatnak a gasztrolitok ritkaságára. Növénytáplálék sem akadt. A gyomortartalom tömege nedves állapotban 0,2–3 g (17 mérés), átlagosan $1,1~\mathrm{g};$ szárazanyag tömege0,04-6,7,átlagosan $0,32~\mathrm{g}$ volt. A nyelőcsőtartalom nedvesen

1-3 (4 mérés), átlagosan 1,86 g volt.

A feketeszárnyű székicsér káros rovarokat fogyaszt; pl. az ormányos, a gyászlevélrágó bogarak, a sáskák, a maggyűjtő hangyák stb. Jelenleg ez a madár sehol nem fordul elő nagy számban; ellenben a múlt század végén – délre vonulása előtt – ezres csapatokban gyülekeztek a sztyeppen (Zarudni), 1888; Gladkor, 1951; Brauner megfigyelései szerint). Feltétlenül szükséges ezeknek a Lilealakúak originális képviselőinek időbeni, szigorú védelme!

A MADÁRTANI INTÉZET MADÁRJELÖLÉSEI— XXXIV. GYŰRŰZÉSI JELENTÉS BIRD-BANDING OF THE HUNGARIAN INSTITUTE FOR ORNITHOLOGY—34th REPORT ON BIRD-BANDING

$Egon\ Schmidt$

Nycticora	ıx nucti	corux	
503 284	0	Nagyhegyes, Hortobágy 47.32 N 21.21 E	2. 7. 1978
	*	Annaba, Algeria	e o 1000
503 713	0	cea 36.50 N 07.40 E Tiszaluc	6. 8. 1980 10. 6. 1979
		48.02 N 21.04 E	10.0.1001
	*	Caserta, <i>Italia</i> cea 41.05 N 14.20 E	10. 3. 1981
$506\ 035$	0	Tiszaluc	4. 6. 1981
	,	48.02 N 21.04 E	17. 2. 1982
	+	Niafounké, <i>Mali</i> 15.59 N 04.00 W	17. 2. 1502
Ciconia e	ciconia	·	
V 143	0	Szeremle 46.08 N 18.54 E	4. 7. 1975
	\mathbf{V}	Maos Chaim, <i>Israel</i> 32,30 N 35.33 E	24–25. 3. 1981
V 733	0	Bácsalmás	2. 7. 1978
	*	46.08 N 19.20 E Csorlu, Sarilár Köyü, <i>Türkey</i>	8. 9. 1980
	***	cca 41.10 N 27.30 E	
V 866	0	Katymár	23. 6. 1977
		46.04 N 19.14 E	
	*	Bethulie Distr., Orange Free St., South Africa	März 1982
		30.23 S 25.53 E	
Z 790	0	Dávod 46.00 N 18.55 E	2. 7. 1980
	*	Gemli, Bursa, Türkey	1. 6. 1981
77 994	0	cca 40.30 N 29.10 E Felsőszentiván	29. 6. 1981
Z 824	U	46.17 N 19.13 E	
	*	Gluckstadt, Natal, South Africa 27.59 S 31.15 E	23. 11. 1981

Anas penelope		
401 729 j ♂		6. 9. 1979
1	46.36 N 20.07 E	20 12 1000
+		20. 12. 1980
	$45.00 \text{ N} \ 10.45 \text{ E}$	
Damie animon	10	
Pernis apivoru 504 879 0		10 7 1001
90 1 919 0	Bélmegyer 46.53 N 21.13 E	18. 7. 1981
+		18. 9. 1981
T	35.51 N 14.30 E	10. 9. 1901
	50.01 T(14.00 E	
Milvus migran	<i>l.</i> 8	
502 577 0		9. 6. 1977
	47.46 N 18.55 E	0. 0. 10
+		28. 4. 1981
1	cea 39.30 N 30.00 E	
$Fulica\ atra$		
404 813 ad.	Fülöpháza	16. 8. 1979
	$46.53~\mathrm{N}~19.28~\mathrm{E}$	
+	Val Moraro, Rovigo, <i>Italia</i>	26. 1. 1980
	cea $45.04 \text{ N } 11.47 \text{ E}$	
TT 77		
Vanellus vanel		
309 024 0	zzpecj poszero	27. 5. 1980
1	47.08 N 19.10 E	10 1 1002
+		10. 1. 1982
911 961	49.06 N 03.11 E	27 0 1000
311 261 juv.		, 27. 8. 1980
I	46.36 N 20.07 E Macerata, <i>Italia</i>	23. 11. 1980
+	43.18 N 13.27 E	23. 11. 1980
	49.10 N 19.27 L	
Tringa ochropa	us	
728 279		12. 8. 1978
	47.41 N 16.52 E	12. 0. 19.0
\mathbf{V}		14. 4. 1980
	50.15 N 21.46 E	11. 1. 1000
Gallinago galli	nago	
668 187	Mexikó-puszta	16. 8. 1978
	47.41 N 16.52 E	
+	St. Gilles, France	17. 2. 1980
	43.41 N 04.26 E	

T amount wi	1:1	40	
Larus ri			6 10 10 7
$301\ 326$	ad.	Budapest	6. 12. 1975
	3.7	47.29 N 19.03 E	2 = 1001
	V	Pajulahti, Finland	2. 7. 1981
306 352	0	60.35 N 27.45 E	0 0 10=0
500 552	0	Fülöpszállás	9, 6, 1976
	1	46.49 N 19.15 E	27 0 1070
	+	Zug, Schweiz	27. 9. 1976
311 242	0	47.10 N 08.31 E Csaj-tó, Tömörkény	10 - 1000
011 242	U	46.36 N 20.07 E	18. 5. 1980
	1	Rades, Tunis	11 4 1001
	+	36.43 N 10.13 E	11. 4. 1981
		50.10 11 10.10 12	
Columba	ı palum	bus	
$405\ 134$	0	Alsónémedi	29. 6. 1980
		47.18 N 19.10 E	
	+	Vico, Corse, France	6. 2. 1981
		42.10 N 08.48 E	
$406\ 927$	0	Alsónémedi	3. 8. 1980
		47.18 N 19.10 E	
	+	Arbellara, Corse, France	9. 2. 1981
		41.41 N 08.59 E	
m 17.			
$Tyto \ alb$		Tradd	10 6 1001
$406\ 136$	0	Fadd	19. 6. 1981
	st.	46.27 N 18.50 E	10 9 1000
	*	Altheim, <i>BRD</i> 48.19 N 09.46 E	12. 3. 1982
		48.19 N 09.40 E	
Hirunde	rustica		
778 488	0	Solymár	7. 7. 1978
		47.41 N 16.35 E	
	*	Nyaramba, Ituri, Zaire	15. 9. 1980
		02.03 N 31.02 E	
895 884	juv.	Budakeszi	23. 8. 1981
	v	47.31 N 18.56 E	
	*	Sahr, Tschad	17. 9. 1981
		cea 08.00 N 18.00 E	
D!			
Riparia	~		20 - 10=-
$723\ 429$	ਰੋਂ	Tahitótfalu	29, 5, 1977
	\mathbf{V}	47.45 N 19.05 E	8 C 10-0
	V	Chlaba, Nové Zámky, CSSR 47.50 N 18.50 E	8. 6. 1979
		11,00 1 10,00 1	
Corvus j	rugilegi	18	
318 380	juv.	Szálkahalom, Hortobágy	19. 4. 1980
	· ·	cca 47.37 N 21.06 E	
	1	Chisinau Cris, Romania	10. 5. 1980
		46.24 N 21.25 E	

D			
Parus n		Mezőkövesd	2, 2, 1975
$610\ 202$	ad.	47.49 N 20.34 E	4. 4. 1919
	9		9 11 1076
	š	Grodno, USSR	3. 11. 1976
77		53.41 N 23.50 E	
Turdus			94 1 1070
$209\ 388$	ਠੰ	Sárisáp	24. 1. 1979
		47.42 N 17.40 E P.S. Elpidio, Ascoli Piceno, <i>Italia</i>	14. 2. 1981
	+	43.15 N 13.45 E	14. 2. 1901
660 149	4	Budapest	12. 2. 1978
$660\ 148$	3	47.29 N 19.03 E	12. 2. 1910
	?	Batkat, Tomsk, USSR	3. 5. 1978
	•	56.36 N 83.54 E	o. o. 1010
674 059	70	Budapest	22. 1. 1979
074 000	0	47.29 N 19.03 E	22. 1. 10.0
	+	Campotto, Ferrara, Italia	20. 12. 1979
	\top	44.37 N 11.50 E	20. 12. 1010
		11.00 11	
Turdus	philomel	08	
$206\ 231$	juv.	Szilasliget	13. 6. 1976
	9	$47.35 \stackrel{\circ}{ m N} 19.17 \stackrel{\circ}{ m E}$	
	+	Stazzano, Sabina, Italia	20. 1. 1980
	,	42.04 N 12.46 E	
$665\ 618$	juv.	Királyrét	10. 5. 1978
	v	47.53 N 18. 58 E	•
	+	S. Urbano, Narni, Terni, <i>Italia</i>	17. 11. 1978
		42.31 N 12.31 E	
$675\ 491$	ad.	Báceslmás	19. 10. 1981
		46.08 N 19.20 E	
	+	Costantine in Agro di Giudignano,	
		Italia	6. 12. 1981
		40.07 N 10.25 E	
$680\ 215$	ad.	Szigetszentmiklós	12. 3. 1979
		47.21 N 19.03 E	
	+	Seravezza, Lucca, <i>Italia</i>	20. 12. 1980
		43.59 N 10.13 E	
m 1	,		
	merula	m u ·	
$203\ 512$	0	Telki	9. 5. 1975
		47.32 N 18.53 E	00 10 1001
	-	Provincia di Viterbo, <i>Italia</i>	30. 12. 1981
90 5 000	: 0	42.25 N 12.05 E	20 0 1070
$20\ 5\ 090$	j♀	Felnémet	20. 9. 1978
		47.56 N 20.22 E	
	+	Lungo Litorale Adriatico, Chieti, Italia	22, 12, 1978
		42.07 N 14.21 E	44, 14, 1978
		T2.01 IV 1T.21 I	

$665\ 647$	\$	Kóspallag	16. 10. 1978
		47.52 N 18.55 E	91 1 1001
	+	Levie, Corse, France	31. 1. 1981
005 110		41.42 N 09.07 E	~ 10 10 7 0
$665\ 116$	jδ	Zagyvaróna	5. 10. 1979
		47.05 N 16.37 E	30 30 3050
	+	Colle a Serra di Ben., Lucca, <i>Italia</i>	29. 10. 1979
000 505		44.01 N 10.35 E	10 10 1055
$668\ 507$	2	Alsónyék	16. 10. 1977
		46.12 N 18.45 E	20 10 10 10
	+	Acerenza, Potenza, Italia	23. 12. 1979
000 00=		40.48 N 15.56 E	
$669\ 097$	jδ	Budakeszi	6. 8. 1978
		47.31 N 18.56 E	
	+	Isola, D'Elba, Livorno, <i>Italia</i>	29. 10. 1978
		42.46 N 20.17 E	
$670\;589$	õ	Sándorfalva	1. 5. 1980
		46.24 N 20.06 E	
	+	Lopigna, Corse, France	15. 1. 1981
		42.06 N 08.50 E	
$672\ 238$	0	Nagykovácsi	27. 5. 1979
		47.35 N 18.45 E	
	+	Turohina, Viterbo, <i>Italia</i>	20. 12. 1979
		42.25 N 12.06 E	
$675 \ 908$	juv.	Visegrád	1. 7.1980
	v	47.46 N 18.56 E	
	+	Milano, Medesano, Italia	15.11.1980
	,	44.45 N 10.08 E	
$685\ 181$	juv.	Szigetcsép	20.8.1981
	U	47.15 N 18.57 E	
	+	Ravenna Prov., Italia	9.11.1981
		45.25 N 11.59 E	
Erithac	us rubeci	ula	
875 942	juv.	Pilisszentlászló	20, 8.1981
	J	47.44 N 18.59 E	
	+	Kebir, Algeria	$18. \ \ 2.1982$
		?	
888 900	ad.	Siófok	1. 4.1982
000 000		46.54 N 18.03 E	
Stockholn	n AH	Ottenby, Öland, Schweden	12.10.1982
98 04		56.12 N 16.24 E	
,,,,	•		
Acrocer	ohalus ar	rundinaceus	
735 940	ad.	Sopron	$2. \ 6.1979$
.00 010		47.41 N 16.35 E	
Radolfzel	LDH	Illmitz, Austria	$14. \ 7.1981$
68 0		47.46 N 16.48 E	
550.			

Acroce	phalus sci	irpaceus	
$704\ 797$	juv.	Fülöpháza	24. 7.1976
		46.53 N 19.28 E	TT 1
	į	Zwischen Damietta und Bahij,	Herbst 1979
		Egypt	
F 4 F 9 1 0		cea 25.00 N 31.00 E	20 7 1077
747 316	juv.	Fülöpháza	23. 7.1977
	+	46.53 N 19.28 E Serres, <i>Greece</i>	2. 2.1981
	T	cea 41.00 N 23.30 E	2. 2.1901
		000 11.00 It 20.00 II	
Acroce	phalus sch	hoenobaenus	
827 981	juv.	Fülöpháza	2. 9. 1979
		46.53 N 19.28 E	
	*	Korsholm, Ingå, Finland	1. 6. 1980
		59.59 N 24.08 E	
Q l			
800 459	atricapill	a Budakeszi	13. 8. 1979
000 400	j♂	47.31 N 18.56 E	19. 0. 1979
	+	Larneca, Cyprus	30, 1, 1982
	I	34.55 N 33.55	00, 1, 100
Sylvia	curruca		
$862\ 494$?	Budakeszi	30. 8. 1980
		47.31 N 18.56 E	
	V	Akerya, Hvaler, Norwegen	24. 5. 1981
		59.02 N 10.53 E	
Marsci	capa stria	ta	
849 416	$\operatorname{ad}_{\cdot}$	Budakeszi	20, 9, 1980
0.10 1.10		47.31 N 18.56 E	20, 0, 2000
	*	Vasarainen, Turku, Finland	28. 6. 1981
		61.05 N 21.36 E	
× 1	• • • •		
	cilla garr		20 2 1076
$200\ 293$	\$	Budapest 47.29 N 19.03 E	29. 2. 1976
	V	Chernogorsk, USSR	3. 6. 1978
	v	53.48 N 91.23 E	J. U. 1970
201 574	Š	Budapest	16. 12. 1974
	·	47.29 N 19.03 E	
	V	$ ext{Kirov}, extit{USSR}$	16. 10. 1975
		58.38 N 49.39 E	
$662\ 014$	9	Budapest	2, 3, 1976
	_	47.29 N 19.03 E	
	Š	Chebarkul, USSR	10. 3. 1978
		55.03 N 60.31 E	

Ctarman	l.ani.		
	s vulgaris		24 - 10
204 319	0	Dömös 47.46 N 18.55 E	24. 5. 1975
	1	Bologna, Italia	0 3 1000
	+	44.28 N 11.26 E	9. 2. 1980
660 603	0	Tolna	01 ~ 10=0
000 003	U	46.25 N 18.47 E	31. 5. 1978
	1	Merad, Algeria	14 1 1000
	+	?	14. 1. 1982
671 930	0	Tököl	96 6 1000
071 990	U	47.18 N 18.58 E	26. 6. 1980
	1	Poggio Rossino, Grosseto, Italia	21 12 1001
	+	cea 42,46 N 18.08 E	31, 12, 1981
672 801	ad.	Csobánka	31. 5. 1977
012 001	aa.	47.39 N 18.57 E	31. 3. 1977
	š.	Zemmora, Algeria	9. 1. 1980
	•	?	3, 1, 1980
$675\ 578$	0	Kecskemét	8. 6. 1978
0.0 0.0		46.54 N 19.36 E	0. 0. 1970
	+	S. Maria Rio Petra, Forli, <i>Italia</i>	18. 3. 1979
	,	44.00 N 12.18 E	10. 0. 10.0
$681\ 362$	š	Fülöpháza	9. 9. 1980
	-	46.53 N 19.28 E	0. 0. 1000
	+	Staffolo, Ancona, Italia	2. 11. 1980
	,	43.26 N 13.11 E	_, _, _,
Coccoth	raustes co	ccothraustes	
Coccoth 666 699	raustes co juv.	ccothraustes Budapest	16. 7. 1977
			16. 7. 1977
		Budapest	16. 7. 1977 Oktober 1979
	juv.	Budapest 47.29 N 19.03 E	
	juv.	Budapest 47.29 N 19.03 E Frosone, Belluno, <i>Italia</i> cca 46.15 N 12.15 E Budapest	
666 699	juv. +	Budapest 47.29 N 19.03 E Frosone, Belluno, <i>Italia</i> cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E	Oktober 1979 23. 8. 1979
666 699	juv. +	Budapest 47.29 N 19.03 E Frosone, Belluno, <i>Italia</i> cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, <i>Italia</i>	Oktober 1979
666 699 669 658	juv. + juv. +	Budapest 47.29 N 19.03 E Frosone, Belluno, <i>Italia</i> cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, <i>Italia</i> 45.59 N 13.23 E	Oktober 1979 23. 8. 1979
666 699	juv. + juv.	Budapest 47.29 N 19.03 E Frosone, Belluno, <i>Italia</i> cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, <i>Italia</i> 45.59 N 13.23 E Pilisszentlászló	Oktober 1979 23. 8. 1979
666 699 669 658	juv. + juv. + ♂	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977
666 699 669 658	juv. + juv. +	Budapest 47.29 N 19.03 E Frosone, Belluno, <i>Italia</i> cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, <i>Italia</i> 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, <i>Italia</i>	Oktober 1979 23. 8. 1979 21. 10. 1979
666 699 669 658 671 067	juv. + juv. + 3	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979
666 699 669 658	juv. + juv. + ♂	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977
666 699 669 658 671 067	juv. + juv. + ♂ + juv.	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978
666 699 669 658 671 067	juv. + juv. + 3	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979
666 699 669 658 671 067 672 038	juv. + juv. + ♂ + juv. +	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia 46.06 N 13.25 E	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978 22. 10. 1979
666 699 669 658 671 067	juv. + juv. + ♂ + juv.	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia 46.06 N 13.25 E Budakeszi	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978
666 699 669 658 671 067 672 038	juv. + juv. + ♂ + juv. +	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia 46.06 N 13.25 E Budakeszi 47.31 N 18.56 E	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978 22. 10. 1979 20. 5. 1979
666 699 669 658 671 067 672 038	juv. + juv. + ♂ + juv. +	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia 46.06 N 13.25 E Budakeszi 47.31 N 18.56 E Parre, Bergamo, Italia	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978 22. 10. 1979
666 699 669 658 671 067 672 038 673 608	juv. + juv. + juv. + do +	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia 46.06 N 13.25 E Budakeszi 47.31 N 18.56 E Parre, Bergamo, Italia cca 45.30 N 09.00 E	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978 22. 10. 1979 20. 5. 1979 31. 10. 1979
666 699 669 658 671 067 672 038	juv. + juv. + ♂ + juv. +	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia 46.06 N 13.25 E Budakeszi 47.31 N 18.56 E Parre, Bergamo, Italia cca 45.30 N 09.00 E Budakeszi	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978 22. 10. 1979 20. 5. 1979
666 699 669 658 671 067 672 038 673 608	juv. + juv. + ♂ + juv. + ~	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia 46.06 N 13.25 E Budakeszi 47.31 N 18.56 E Parre, Bergamo, Italia cca 45.30 N 09.00 E Budakeszi 47.31 N 18.56 E	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978 22. 10. 1979 20. 5. 1979 31. 10. 1979 2. 6. 1979
666 699 669 658 671 067 672 038 673 608	juv. + juv. + juv. + do +	Budapest 47.29 N 19.03 E Frosone, Belluno, Italia cca 46.15 N 12.15 E Budapest 47.29 N 19.03 E Manzano, Udine, Italia 45.59 N 13.23 E Pilisszentlászló 47.44 N. 18.59 E C. de Palazzi, Spinetoli, Italia 42.53 N 13.46 E Szokolya 47.52 N 19.01 E Cividale del Friuli, Udine, Italia 46.06 N 13.25 E Budakeszi 47.31 N 18.56 E Parre, Bergamo, Italia cca 45.30 N 09.00 E Budakeszi	Oktober 1979 23. 8. 1979 21. 10. 1979 4. 5. 1977 2. 11. 1979 5. 9. 1978 22. 10. 1979 20. 5. 1979 31. 10. 1979

683 076	3	Solymár 15 11 N 16 25 F	12. 4. 1980
	+	47.41 N 16.35 E Migliano, Perugia, <i>Italia</i>	Oktober 1981
		42.56 N 12.55 E	
Chloris ch	hloris		
$741\ 483$	3	Zagyvaróna	27. 2. 1979
	-14	47.05 N 16.37 E	7 1 1000
	*	Bakowa, <i>Poland</i> 51.13 N 21.29 E	7. 1. 1980
764 895	3	Sződliget	17. 1. 1978
		47.44 N 19.10 E	
	\mathbf{V}	Jonave, Lituania, USSR	6. 4. 1981
		55.05 N 24.17 E	21 0 1000
837 551	3	Sződliget 47.44 N 19.10 E	21. 3. 1980
	*	Skawa, Bielso Biala, Poland	Herbst 1981
	不	50.02 N 19.27 E	1101030 1301
Candonalia			
Carduelis 724 137	<i>ъртии</i> ⊊	s Pilisszentlászló	4, 10, 1977
124 101	+	47.44 N 18.59 E	1, 10, 1011
	\mathbf{V}	Ramsel, Belgien	15. 1. 1980
		$51.02 \ \mathrm{N} \ 04.50 \ \mathrm{E}$	
$822\ 434$	3	Budapest	25. 10. 1979
		47.29 N 19.03 E	
	+	Sella Forredor, Gemona, <i>Italia</i>	25. 10. 1981
090 090	0	46.19 N 13.09 E	30. 9. 1980
832 830	2	Pomáz 47.39 N 19.02 E	30. 9. 1900
	+	Ajševica, Yugoslavien	15. 10. 1980
	1	45.58 N 13.39 E	20, 20, 2000
835 093	2	Pilisszentlászló	11. 10. 1981
		47.44 N 18.59 E	
	V	Nova Gorica, Yogoslavien	21. 11. 1981
		45.58 N 13.40 E	
$838\ 074$	3	Pomáz	4. 10. 1980
Sammach A		47.39 N 19.02 E	
Sempach A 357 528	\mathbf{V}	Suhr, Schweiz	18. 2. 1981
301 020	V	47.22 N 08.05 E	10, 2, 1301
Carduelis	cannal	hina	
618 146	Quinus P	Budapest	7. 4. 1975
010 110	+	47.29 N 19.03 E	,, 1, 1010
	+	Malta	Oktober 1980
	•	eea 35.55 N 14.30 E	

Candonal	: . 11		
Carduel			21 2 10 2
$655\ 106$	2	Budapest	21. 2. 1978
	0	47.29 N 19.03 E	
	į	Sverdlovsk, $USSR$	31. 3. 1979
		$56.52 \; \mathrm{N} \; 60.54 \; \mathrm{E}$	
Damahad		.1	
Pyrrhul			0 11 1000
705 645	<i>ੋ</i>	Isaszeg	6. 11. 1977
	2	47.32 N 19.26 E	
	į	Orekhovo-Zuyevo, Moscow Reg.,	17 10 1070
		USSR	15. 10. 1979
		55.51 N 38.53 E	
Fringille	a coolaha		
183 020	<i>u coeieo</i> e 2	Pusztamarót	21. 7. 1974
100 020	Ŧ	47.40 N 18.32 E	21. 7. 1974
	1		2 11 1000
	+	S. Salvatore, Telesino, Italia	2. 11. 1980
641 491	; 0	44.14 N 14.30 E	20 0 1077
$641\ 431$	j♀	Dunabogdány	28. 9. 1975
	1	47.48 N 19.01 E	90 10 1050
	+	Rossello Terme, Italia	30, 12, 1979
740.770	: 4	cca 42.46 N 11.08 E	10 0 10==
740 579	j♂	Dunabogdány	12. 8. 1977
		47.48 N 19.01 E	3 13 10 20
	+	Benevento, Italia	2. 12. 1979
		41.08 N 14.45 E	10 0 10 7
$758\ 071$	jб	Pilisszentlászló	13. 8. 1978
		47.44 N 18.59 E	** 1
	+	Maremma, Toscana, Italia	Herbst 1979
		cea 42.46 N 11.08 E	
$765\ 344$	\$	Dunabogdány	30. 7. 1978
		47.48 N 19.01 E	
	7	Amantea, Cosenza, Italia	6. 12. 1981
		39.08 N 16.04 E	
772 910	¥	Felgyő	28. 10. 1978
		46.39 N 20.06 E	
	+	Abdriace, Italia	22, 12, 1979
		40.17 N 16.34 E	
803 769	3	Zagyvaróna	30. 9. 1979
		47.05 N 16.37 E	
	+	Lamezia Terme, Calabria, <i>Italia</i>	22, 11, 1980
		eea 39.00 N 17.00 E	
$838\ 529$	र्व	Pomáz	24. 10. 1980
		47.39 N 19.02 E	
	-	Moggio Udinese, Udinese, Italia	18. 11. 1980
		46.25 N 13.12 E	
$897 \ 807$	र्वे	Páty	11. 10. 1981
		47.30 N 18.49 E	
	+	Spoleto, Perugia, <i>Italia</i>	18. 11. 1981
		42.44 N 12.44 E	

Fringill	a montify	ringilla	
$781\ 407$	3	Budapest	29. 10. 1978
		47.29 N 19.03 E	
	+	Cima Ekar, Asiago, <i>Italia</i>	1. 11. 1970
		45.52 N 11.30 E	
$807\ 822$	70	Fülöpháza	29. 1. 1989
		$46.53 \; \mathrm{N} \; 19.28 \; \mathrm{E}$	
	+	Porpetto, Italia	6. 12. 1980
		45.42 N 13.14 E	
$809\ 049$	ð	Sopron	29. 1. 1980
		47.41 N 16.35 E	
	+	Tretto Schio, Vicenza, <i>Italia</i>	12. 11. 1980
		45.35 N 12.11 E	
$812\ 168$	2	Dunapataj	12. 1. 1980
		46.38 N 19.00 E	
	*	La Roche de Glun, France	Herbst 1980
		45.00 N 04.51 E	
77 7 .	•. •	71	
	ea citrine		10 0 1001
$909\ 516$	र्ठ	Budakeszi	10. 9. 1981
		47.31 N 18.56 E	1 1 1000
	+	Ben-M'Hidi, Annabe, Algeria	1. 1. 1982
		$36.46 \; \mathrm{N} \; 07.54 \; \mathrm{E}$	

Author's address: Egon Schmidt Magyar Madártani Egyesület Budapest Keleti Károly u. 48. H–1024

KÜLFÖLDI GYŰRŰS MADARAK KÉZREKERÜLÉSEI XXXV. GYŰRŰZÉSI JELENTÉS RECORDS OF BIRDS RINGED ABROAD 35 th REPORT OF BIRD-BANDING

$Egon\ Schmidt$

Phalacroco	rax ce	arbo	
Copenhagen	0	Brendegårds, Fyn, Dänemark	6, 6, 1981
5 661		$55.08 \; ext{N} \; 10.24 \; ext{E}$	
	*	Kab-hegy, Veszprém	24. 10. 1981
		47.03 N 17.37 E	
Ardea cine	rea		
Matsalu	0	Leebiku, Estonia	24, 5, 1981
R 3 123		$58.05 \; \mathrm{N} \; 25.58 \; \mathrm{E}$	
	*	Dunapataj	13. 11. 1981
		46.38 N 19.00 E	
Egretta alb	oa		
Radolfzell	Ó	Winden, Austria	9. 7. 1963
B 54 146		47.56 N 16.46 E	
	*	Sárszentágota	$26.\ 11.\ 1980$
		46.58 N 18.33 E	
Ciconia cie	conia		
Helgoland	0	Oetjendorf, Schleswig-Holstein,	
		BRD	6. 7. 1980
1 177		53.41 N 10.20 E	
	*	Hortobágy	31. 10. 1981
		47.37 N 21.06 E	
Helgoland	0	Neustadt, Hannover, BRD	6. 7. 1974
3 609		52.30 N 09.28 E	
	7*	Lovászpatona (ältere Leiche)	15. 10. 1979
		47.25 N 17.36 E	
Helgoland	0	Hollinsstädt, BRD	7. 7. 1979
5647		54.29 N 09.21 E	1 0 1070
	*	Arka	1, 9, 1979
		48.22 N 21.15 E	200 0 2002
Helgoland	0	Schwarme, BRD	18. 6. 1981
F 203		52.54 N 09.01 E	10 0 1001
	*	Szigetbecse	13. 9. 1981
		47.08 N 18.56 E	

Hiddensee	ly	Steckby, DDR	8. 5. 1979
$201\ 465$		51.54 N 12.02 E	
	*	Hódmezővásárhely	20. 1. 1980
		$46.25 \; \mathrm{N} \; 20.30 \; \mathrm{E}$	
Hiddensee	0	Ravensruh, Wismar, DDR	2. 7. 1979
A = 0.363		53.54 N 11.28 E	
	*	Bélmegyer	27. 8. 1980
		46.53 N 21.13 E	
Hiddensee	0	Zoellmersdorf, DDR	4. 7. 1980
A 2 163		51.51 N 13.43 E	
	*	Rétközberencs	14. 4. 1981
		48.12 N 21.57 E	
Hiddensee	0	Friedersdorf, DDR	17. 7. 1980
A~2~786		51.26 N 14.15 E	
	*	Magyarhomorog	25, 8, 1980
		47.02 N 21.33 E	
Hiddensee	0	Bennewitz, Torgau, DDR	28. 6. 1980
$A \ 3 \ 009$		51.34 N 12.59 E	
	*	Vajdácska	2. 10. 1980
		48.19 N 21.38 E	
Hiddensee	0	Kreckwitz, Bautzen, DDR	8. 7. 1979
A~3~676		51.11 N 14.26 E	
	3	Szécsény	20. 11. 1979
		48.06 N 19.32 E	
Praha	0	Kvitkovice, $CSSR$	4. 7. 1971
KK 137		48.58 N 14.20 E	• '
	\mathbf{V}	Kisköre	Juli-August 1978
		47.28 N 20.30 E	
Praha	0	Hospriz, $CSSR$	25. 6. 1978
KK 630		49.08 N 15.05 E	
	*	Gomba	25, 12, 1978
		47.23 N 19.32 E	
Radolfzell	0	Sonnendorf, BRD	22. 6. 1981
$02\ 118$		48.14 N 11.55 E	
	*	Nyárád	August 1981
		47.18 N 17.23 E	0
Radolfzell	0	Illmitz, Austria	15. 7. 1967
$BB\ 15\ 623$		47.46 N 16.48 E	
	*	Sopron	10. 7. 1980
		cca 47.41 N 16.35 E	
$Cygnus\ olor$			
Gdansk	0	Ruda Milieka Miliez, Poland	30. 5. 1978
Z = 0.439		51.33 N 17.21 E	
	*	Kelebia	20. 1. 1982
		46.12 N 19.06 E	

Anser fabe	alis	·	
Arnhem	ad.	Arnheim Bij Nijkerk, Holland	4. 1. 1979
$8\ 030\ 551$		52.15 N 05.27 E	
	+	Tata	16. 12. 1981
		47.39 N 18.18 E	
\mathbf{Arnhem}	3	Rosmalense Hoeven, Holland	8. 1. 1979
$8\ 030\ 724$		51.45 N 05.24 E	
	+	Székesfehérvár	20. 11. 1981
		47.12 N 18.25 E	
Arnhem	3	Maren, Holland	10. 1. 1980
8 031 833		51.46 N 05.23 E	
	+	Kalocsa	19, 12, 1981
		46.32 N 18.55 E	
Hiddensee	ly	Gülper-See, Rathenow, DDR	11. 10. 1979
214 436		52.44 N 12.16 E	
		Pacsa	15. 11. 1980
		46.43 N 17.01 E	
Anas plat	yrhynd	chos	
Gdansk	3	Res. Slonsk, Gorzów Wlkp.,	
		Poland	8. 7. 1979
SA 00985		52.34 N 14.43 E	
	+	Aba	17. 10. 1980
		47.02 N 18.32 E	
London	juv.	Apethorpe, Gundle, England	4. 10. 1973
GP 81 634		52.33 N 0.29 W	
	+	Szeged–Fehér-tó	9. 12. 1981
		46.20 N 20.09 E	
Moskwa	3	Novgorod, $USSR$	5. 7. 1973
D 799 359		57.54 N 30.42 E	
	+	Szigetcsép	10. 12. 1979
		47.15 N 18.57 E	
Anas quer	guedui	la	
Riga	. 4	Lake Engure, Tukums, <i>USSR</i>	9. 6. 1979
B 1 763		57.15 N 23.07 E	
	+	Hajdúdorog	25. 8. 1981
		47.48 N 21.30 E	
Aythya fer	ina		
Sempach	8	Vevey, Schweiz	19. 1. 1980
Z 29799		$46.28 \; \mathrm{N} \; 06.50 \; \mathrm{E}$	
	*	Mezőfalva	5. 3. 1980
		46.56 N 18.46 E	
Aythya fu	ligula		
Riga	0	Nagli, Rezekne, Latvia, $USSR$	4. 7. 1980
C 46 423		56.42 N 26.48 E	
	\times	Tiszavasvári	29, 9, 1980
		47.58 N 21.23 E	

Described	a.I. a. a. a		
Bucephala Helsinki	_		19 5 1070
HT 44 954	o ²	Sipoo Udenmaan, Finland 60.22 N 25.19 E	13. 5. 1978
111 44 994	1	Verőcemaros	90 1 1001
	+	47.49 N 19.02 E	28. 1. 1981
		47.49 N 19.02 E	
Buteo bute	0		
Lituania	0	Marcinkonys, Varena, <i>USSR</i>	24. 6. 1981
168 201		54.03 N 24,25 E	
	*	Lovászpatona	27, 2, 1982
		$47.25 \ \text{N} \ 17.36 \ \text{E}$	
\mathbf{R} adolfzell	0	Burgau, Fürstenfeld, Austria	27. 5. 1974
C 47 213		47.09 N 16.06 E	
	*	Körmend	15. 7. 1977
		47.01 N 16.36 E	
CC:			
Circus aer	-		10 0 10 0
Hiddensee 414 945	0	Randau, DDR	16. 6. 1972
414 940	s le	52.01 N 11.45 E	15 9 1050
	*	Decs	15. 3. 1979
		46.17 N 18.45 E	
Pandion h	aliaet	us	
Stockholm	0	Sodra Torpon, Sommen, Schweden	11. 7. 1980
$9\ 219\ 443$		58.00 N 15.10 E	
	*	Dunaföldvár	13. 9. 1980
		46.48 N 18.55 E	
77 1	,		
Falco tinn			
Praha	ly		7. 12. 1978
$\mathbf{E}\ 237\ 872$,	48.20 N 18.06 E	01 0 7050
	+	Veszprém (ZOO)	21. 2. 1979
		47.06 N 17.55 E	
Falco colum	mbari	91.S	
Helsinki	0	Tuupuovaara, Finland	14. 7. 1979
S 79 555		62.19 N 30.51 E	22, 1, 2010
	*	Hetes	6. 1. 1980
	.,.	46.24 N 17.38 E	
T7 77	7.7		
Vanellus v			14 19 1070
Bologna S 350 669	2	Bellaria Igea Marina, Forli, <i>Italia</i> 44.09 N 12.19 E	14. 12. 1979
D 990 009	V.	Hidegség	Oktober 1980
	*	47.37 N 16.45 E	ORTONEL 1900
Praha	0	Piestany, CSSR	19. 5. 1973
H 42 929	U	48.36 N 17.49 E	10. 0. 1010
~_ ~~	*	Hegyeshalom	5, 4, 1980
	.12	47.55 N 17.09 E	3, 1, 1000

$Tringa\ glareola$		
Paris ?	Séri, Mopti, Mali	$2.\ 3.\ 1979$
$2\ 166\ 980$	14.59 N 04.37 E	
*	Kiskunlacháza	14. 8. 1980
	47.10 N 19.00 E	
Larus fuscus		
Helsinki 0	Espo Udeman, Finland	9. 7. 1979
HT 49 754	60.07 N 24.49 E	0. 1. 1010
*	Agárd	2, 10, 1981
木	47.12 N 18.37 E	2. 10. 1901
	41.12 N 18.31 E	
Larus ridibundu	0	
Lituania 0		12. 6. 1989
172 033	Alytus, Lituania, USSR	12, 0, 1969
	54.28 N 23.38 E	~ ~ 1001
*	Dunapataj	5. 5. 1981
74.0° ()	46.38 N 19.00 E	00 0 10=0
Matsalu 0	Metsapoole, Estonia, $USSR$	30, 6, 1978
$U\ 190\ 122$	57.54 N 24.23 E	
*	Budapest	1. 2. 1982
	47.29 N 19.03 E	
Radolfzell juv.	St. Andrä, Neusiedl, Austria	12, 6, 1966
E 69 894	47.47 N 16.57 E	
*	Balmazújváros (cea 1974 eingegang.)	28. 7. 1980
$Hydroprogne\ cas$	pia	
Stockholm 0	Ö. Skräplorna, Schweden	25, 6, 1971
7 017 467	59.09 N 18.46 E	
*	Szakmár	
	46.35 N 19.05 E	3. 4. 1981
Stockholm 0	Norrbadarna, St. Anna, Schweden	3. 7. 1965
8 016 942	58.21 N 17.04 E	0. 7. 1000
	Szakmár	3. 4. 1981
*	46.35 N 19.05 E	J. 4, 1901
	40.35 N 19.05 E	
Marta alla		
Tyto alba	Daniel Acades	99 0 1001
Steiermark 0	Burgeau, Austria	22, 8, 1981
52-55	47.08 N 16.05 E	10 11 1001
V	Táplánszentkereszt	12. 11. 1981
	47.13 N 16.40 E	
41 1 411		
Alcedo atthis	0.1	4 0 10=0
Praha juv.	Ostrava-Antosovice, $CSSR$	4. 8. 1978
R 101 991	49.54 N 18.19 E	
**	Hévíz	11, 12, 1978
	46.48 N 17.12 E	

Merops a	miastor		
Praha	piusiei 3	Maly Horeš, Trebisov, CSSR	21. 7. 1978
R 104 214	0	48.24 N 21.57 E	
10 101 211	V	Tarcal	27. 7. 1979
	•	48.09 N 21.20 E	
Jynx torqui	illa		
Helsinki	0	Porvoo, $Finland$	13. 7. 1980
P 364 814		60.16 N 25.51 E	
	*	Szeged	25, 4, 1982
		46.15 N 20.09 E	
Hirundo	rustica		
Praha	0	Viesice, CSSR	5. 7. 1975
M 605 422		49.33 N 16.30 E	
	š	Dunaszekcső	16. 5. 1978
		46.05 N 18.45 E	
D: :			
Riparia i		Ctunero CCCP	12, 5, 1978
Praha	3	Sturovo, CSSR	12. 9. 1978
S 97 000	al.	47.48 N 18.43 E	11. 6. 1978
	*	Dorog 47.43 N 18.42 E	11. 0. 1976
Dualia			16. 7. 1979
Praha T 101 281	juv.	Chlaba, <i>CSSR</i> 47.50 N 18.50 E	10. 7. 1979
1 101 201	\mathbf{V}	Vác	9. 7. 1980
	v	47.47 N 19.08 E	
		11.11 14 15.00 12	
Corvus fr	·uaileau	8	
Moskwa	juv.	Vyshgorod, Kiev, USSR	29, 5, 1979
C 220 508	J	50.36 N 30.23 E	
	+	Kisújszállás	30. 1. 1980
	'	47.13 N 20.46 E	
Moskwa	juv.	Vyshgorod, Kiev, USSR	29. 5. 1979
$C\ 220\ 539$	9	50.36 N 30.23 E	
	+	Mosonmagyaróvár .	20. 3. 1980
		47.52 N 17.15 E	
Moskwa	juv.	Shilov, $USSR$	20, 5, 1977
$\mathbf{E} \ 807 \ 374$		54.19 N 40.48 E	
	+	Fertőboz	Frühling 1978
		47.39 N 16.43 E	
Radolfzell	ad.	Wien-Mauer, $Austria$	1. 2. 1976
$\mathrm{HF}~4~973$		48.09 N 16.16 E	
	+	Nagyréde	31. 10. 1981
**		47.45 N 19.52 E	10 0 3050
Varsovia	ad.	Wieliczka, Kraków, Poland	16. 2. 1979
D 38 563		49.59 N 20.04 E	10 0 1000
	+	Sülysáp	10. 3. 1980
		47.26 N 19.31 E	

Turdus j	oilaris		
Bruxelles 6Z 59 314	juv.	Beerse, Antwerpen, $Belgien$ 51.19 N 04.52 E	7. 11. 1975
02 09 314	*	Nagymaros	27. 5. 1980
	*	47.47 N 18.56 E	27. 9. 1980
		17.17 N 10,00 L	
Erithacus	s rubec	cula.	
Praha	juv.	Piestany, $CSSR$	28. 8. 1975
Z 524 854	J	48.36 N 17.49 E	
	V	Hedrehely	9. 3. 1976
		46.12 N 17.39 E	
		rundinaceus	
Gdansk	0	Ruda Miliczka, Wrocław, Poland	26. 6. 1982
JA 51 178	3.7	51.32 N 17.20 E	35 0 1000
	V	Sumony	27. 8. 1982
Praha		45.58 N 17.54 E Jestrebi, $CSSR$	10 0 1050
Z 540 465	juv.	50.37 N 14.35 E	19. 8. 1978
Z 340 403	V	Fehér-tó	29. 7. 1979
	,	47.41 N 17.23 E	20. 1. 1919
Radolfzell	juv.	Illmitz, Austria	30. 7. 1982
DH 71 135		46.46 N 16.48 E	00. 1. 1002
	V	Fehér-tó	3. 8. 1982
		47.41 N 17.23 E	
Valetta	?	Lunzjata, Valley, Malta	8. 4. 1982
BO 3 057		36.03 N 14.14 E	
	V	Fülöpháza	2, 5, 1982
		46.53 N 19.28 E	
	,		
Acroceph			10
Praha	juv.	Sedlec, CSSR	18. 7. 1979
M 821 193	V	48.47 N 16.42 E	11 % 1000
	V	Fülöpháza 46.53 N 19.28 E	11. 5. 1980
Radolfzell	juv.	Illmitz, Austria	6. 8. 1974
BF 55 955	juv.	47.46 N 16.48 E	0. 0. 1074
DI 00 000	\mathbf{V}	Fehér-tó	30. 7. 1981
	_ •	47.41 N 17.23 E	301 11 1001
Radolfzell	juv.	Winden, Neusiedl, Austria	8. 7. 1982
$\mathrm{BJ}\ 42\ 045$	J	47.56 N 16.46 E	
	V	Fehér-tó	8. 8. 1982
		47.41 N 17.23 E	
Radolfzell	juv.	Illmitz, $Austria$	15. 7. 1978
BO 80 881	_	47.46 N 16.48 E	
	V	Dinnyés	$1. \ 8. \ 1978$
		47.11 N 18.34 E	

BS 268	Dadolfzell	i	Illmita Austria	C 7 1070
Radolfzell juv. Illmitz, Austria 22. 7. 1981	Radolfzell	juv.	Illmitz, Austria	6. 7. 1979
Radolfzell juv. Illmitz, Austria 12, 9, 1980	DB 200	77		9 9 1070
Radolfzel juv. Illmitz, Austria 7. 8. 1980		•		2. 0. 1919
BS 45 000	Radolfzell	inv		7 8 1080
Radolfzell juv. Illmitz, Austria 22. 7. 1982 Badolfzell juv. Illmitz, Austria 22. 7. 1982 Badolfzell juv. Illmitz, Austria 22. 7. 1981 Badolfzell juv. Illmitz, Austria 22. 7. 1981 Badolfzell juv. Illmitz, Austria 22. 7. 1981 Badolfzell juv. Podersdorf, Neusiedl, Austria 21. 7. 1982 Badolfzell juv. Podersdorf, Neusiedl, Austria 28. 7. 1982 Badolfzell juv. Illmitz, Austria 2. 7. 1982 Badolfzell juv. Illmitz, Austria 2. 7. 1982 Badolfzell juv. Illmitz, Austria 2. 7. 1982 Badolfzell juv. Illmitz, Austria 25. 7. 1982 Badolfzell juv. Illmitz, Au		juv.		7. 8. 1980
Radolfzell juv. Holes	DO 10 000	\mathbf{v}		4 9 1980
Radolfzell BS 85 404 juv. Illmitz, Austria 47.46 N 16.48 E 8. 7. 1981 Radolfzell BS 85 404 v Fehér-tó 47.41 N 17.23 E 30. 7. 1981 Radolfzell BS 86 230 juv. Illmitz, Austria 22. 7. 1981 22. 7. 1981 Radolfzell BT 21 162 juv. Podersdorf, Neusiedl, Austria 47.51 N 16.51 E 21. 7. 1982 Radolfzell BT 21 763 juv. Podersdorf, Neusiedl, Austria 47.51 N 16.51 E 28. 7. 1982 Radolfzell BT 21 763 juv. Podersdorf, Neusiedl, Austria 47.51 N 16.51 E 28. 7. 1982 Radolfzell BT 24 154 juv. Podersdorf, Neusiedl, Austria 22. 7. 1982 27. 1982 Radolfzell BT 24 154 juv. Illmitz, Austria 22. 7. 1982 27. 1982 Radolfzell BT 26 126 juv. Illmitz, Austria 15. 7. 1982 27. 1982 Radolfzell BT 26 127 juv. Illmitz, Austria 25. 7. 1982 25. 7. 1982 Radolfzell BT 26 128 juv. Illmitz, Austria 25. 7. 1982 25. 7. 1982 Radolfzell BT 26 128 juv. Illmitz, Austria 25. 7. 1982 25. 7. 1982 Radolfzell BT 26 128 juv. Illmitz, Austria 25. 7. 1982 25. 7. 1982 Radolfzell BT 26 188 juv. Illmitz, Austria 25. 7. 1982 25. 7. 1982 Radolfzell BT 26 188 juv. Illmitz, Au		•		
BS 85 404	Radolfzell	iuv		
Radolfzell Juv. Illmitz, Austria 22. 7. 1981		jar.	· · · · · · · · · · · · · · · · · · ·	0. 7. 1001
Radolfzell Juv. Illmitz, Austria 22. 7. 1981	200 00 101	V		30 7 1981
Radolfzell juv. Illmitz, Austria 22. 7. 1981 BS 86 230				00. 1. 1001
BS 86 230	Radolfzell	iuv.		22. 7. 1981
Radolfzell juv. Podersdorf, Neusiedl, Austria 21. 7. 1982 47.51 N 16.51 E V Fehér-tó 47.41 N 17.23 E 3. 8. 1982 47.51 N 16.51 E V Podersdorf, Neusiedl, Austria 28. 7. 1982 47.51 N 16.51 E V Podersdorf, Neusiedl, Austria 28. 7. 1982 47.51 N 16.51 E V Fehér-tó 47.41 N 17.23 E 47.51 N 16.51 E V Fehér-tó 47.41 N 17.23 E 47.46 N 16.48 E V Fehér-tó 47.46 N 16.48 E V Fehé		J		
Radolfzell BT 21 162 juv. Podersdorf, Neusiedl, Austria 21. 7. 1982 BT 21 162 V Fehér-tó 3. 8. 1982 Ladolfzell BT 21 763 juv. Podersdorf, Neusiedl, Austria 28. 7. 1982 BT 21 763 V Fehér-tó 3. 8. 1982 BT 21 763 V Fehér-tó 3. 8. 1982 Radolfzell BT 24 154 Juv. Illmitz, Austria 2. 7. 1982 BT 24 154 V Fehér-tó 2. 7. 1982 BT 24 154 V Fehér-tó 2. 7. 1982 BT 25 126 V Fehér-tó 2. 7. 1982 BT 25 126 V Fehér-tó 25. 7. 1982 BT 25 126 V Fehér-tó 25. 7. 1982 BT 26 127 47.46 N 16.48 E 25. 7. 1982 BT 26 127 47.46 N 16.48 E 25. 7. 1982 Radolfzell Jiuv. Illmitz, Austria 25. 7. 1982 BT 26 168 47.46 N 16.48 E 25. 7. 1982 Radolfzell Jiuv. Sumony 7. 8. 1982 Acrocephalus schoenobuenus 46.28 N 23.49 E 7. 8. 1982 Helsinki Jiuv. Tampere, Finland 61.28 N 23.49 E 69. 1981 Accomphalus schoenobus 46.53 N 19.28 E 31. 7. 1980 Radolfzell BS 44 381 <td></td> <td>V</td> <td></td> <td>5. 8. 1981</td>		V		5. 8. 1981
Radolfzell BT 21 162 juv. Podersdorf, Neusiedl, Austria 47.51 N 16.51 E 21. 7. 1982 47.61 E Radolfzell Juv. Podersdorf, Neusiedl, Austria 47.51 N 16.51 E 28. 7. 1982 47.51 N 16.51 E Radolfzell Juv. Podersdorf, Neusiedl, Austria 47.51 N 16.51 E 28. 7. 1982 47.51 N 16.51 E Radolfzell Juv. Illmitz, Austria 47.46 N 16.48 E 2. 7. 1982 47.41 N 17.23 E BT 24 154 Fehér-tó 47.41 N 17.23 E 2. 7. 1982 47.46 N 16.48 E Radolfzell Juv. Illmitz, Austria 47.46 N 16.48 E 25. 7. 1982 47.41 N 17.23 E Radolfzell Juv. Illmitz, Austria 47.46 N 16.48 E 25. 7. 1982 47.46 N 16.48 E Radolfzell Juv. Illmitz, Austria 47.46 N 16.48 E 25. 7. 1982 47.46 N 16.48 E Radolfzell Juv. Illmitz, Austria 47.46 N 16.48 E 25. 7. 1982 47.46 N 16.48 E V Fehér-tó 47.41 N 17.23 E 25. 7. 1982 47.46 N 16.48 E Radolfzell Juv. Illmitz, Austria 57. 1982 47.46 N 16.48 E 25. 7. 1982 47.46 N 16.48 E V Sumony 45.58 N 17.54 E 47.46 N 16.48 E Acrocephalus schoenobaenus Helsinki Juv. Tampere, Finland 61.28 N 23.49 E 14. 8. 1981 61.28 N 23.49 E Radolfzell ad. Illmitz, Austria 46.53 N 19.28 E 31. 7. 1980 47.46 N 16.48 E V Dinnyés 18. 7. 1981				
BT 21 162	Radolfzell	juv.		21. 7. 1982
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ð		
Radolfzell BT 21 763 juv. Podersdorf, Neusiedl, Austria 47.51 N 16.51 E 28. 7. 1982 47.51 N 16.51 E Radolfzell BT 21 763 V Fehér-tó 47.41 N 17.23 E 3. 8. 1982 47.41 N 17.23 E Radolfzell BT 24 154 juv. Illmitz, Austria 2. 7. 1982 47.46 N 16.48 E 2. 7. 1982 47.46 N 16.48 E Radolfzell BT 25 126 juv. Illmitz, Austria 47.46 N 16.48 E 15. 7. 1982 47.46 N 16.48 E Radolfzell BT 26 127 juv. Illmitz, Austria 47.46 N 16.48 E 25. 7. 1982 47.41 N 17.23 E Radolfzell BT 26 127 y Fehér-tó 47.41 N 17.23 E 12. 8. 1982 47.46 N 16.48 E Radolfzell BT 26 168 juv. Illmitz, Austria 25. 7. 1982 47.46 N 16.48 E 25. 7. 1982 47.46 N 16.48 E Acrocephalus schoenobaenus Helsinki Juv. Tampere, Finland 61.28 N 23.49 E 7. 8. 1981 46.53 N 19.28 E Radolfzell ad. Illmitz, Austria 46.53 N 19.28 E 6. 9. 1981 46.53 N 19.28 E Radolfzell ad. Illmitz, Austria 47.46 N 16.48 E 31. 7. 1980 47.46 N 16.48 E V Dinnyés 18. 7. 1981		V		3. 8. 1982
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			47.41 N 17.23 E	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Radolfzell	juv.	Podersdorf, Neusiedl, Austria	$28.\ 7.\ 1982$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BT 21763			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V	Fehér-tó	3. 8. 1982
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			47.41 N 17.23 E	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		juv.	Illmitz, Austria	2. 7. 1982
$\begin{array}{c} \text{Radolfzell} \\ \text{BT 25 126} \\ \text{BT 25 126} \\ \\ V \\ \text{Fehér-to} \\ 47.46 \text{ N } 16.48 \text{ E} \\ \\ V \\ \text{Fehér-to} \\ 47.41 \text{ N } 17.23 \text{ E} \\ \\ 47.41 \text{ N } 17.23 \text{ E} \\ \\ \text{BT 26 127} \\ \text{BT 26 127} \\ \\ V \\ \text{Fehér-to} \\ 47.46 \text{ N } 16.48 \text{ E} \\ \\ V \\ \text{Fehér-to} \\ 47.41 \text{ N } 17.23 \text{ E} \\ \\ 47.41 \text{ N } 17.23 \text{ E} \\ \\ \text{Radolfzell} \\ \text{BT 26 168} \\ \text{Juv.} \\ \text{Illmitz, } Austria \\ 47.46 \text{ N } 16.48 \text{ E} \\ \\ V \\ \text{Sumony} \\ 45.58 \text{ N } 17.54 \text{ E} \\ \\ \\ Acrocephalus schoenobaenus \\ \text{Helsinki} \\ \text{Juv.} \\ \text{Tampere, } Finland \\ 41.28 \text{ N } 23.49 \text{ E} \\ \\ V \\ \text{Fülöpháza} \\ 46.53 \text{ N } 19.28 \text{ E} \\ \\ \text{Radolfzell} \\ \text{BS 44 381} \\ \\ V \\ \text{Dinnyés} \\ \end{array} \begin{array}{c} 47.46 \text{ N } 16.48 \text{ E} \\ \\ \text{V} \\ \text{Dinnyés} \\ \end{array} \begin{array}{c} 14.8 \text{ 1981} \\ 31.7 \text{ 1980} \\ \\ 31.7 \text{ 1980} \\ \\ 18.7 \text{ 1981} \\ \end{array}$	BT 24 154		47.46 N 16.48 E	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V		2. 7. 1982
BT 25 126				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		juv.		15. 7. 1982
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BT 25 126			
Radolfzell BT 26 127 juv. Illmitz, Austria 25. 7. 1982 BT 26 127 47.46 N 16.48 E 12. 8. 1982 V Fehér-tó 12. 8. 1982 47.41 N 17.23 E 25. 7. 1982 BT 26 168 47.46 N 16.48 E 7. 8. 1982 V Sumony 45.58 N 17.54 E 7. 8. 1982 Acrocephalus schoenobaenus 14. 8. 1981 Helsinki juv. Tampere, Finland 61.28 N 23.49 E 14. 8. 1981 J 824 397 61.28 N 23.49 E V Fülöpháza 46.53 N 19.28 E 6. 9. 1981 Radolfzell ad. Illmitz, Austria 47.46 N 16.48 E 31. 7. 1980 BS 44 381 47.46 N 16.48 E V Dinnyés 18. 7. 1981		V		25. 7. 1982
BT 26 127	TO 1 10 11			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		juv.		25. 7. 1982
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BT 26 127	70.77		
Radolfzell juv. Illmitz, Austria 25. 7. 1982 BT 26 168 47.46 N 16.48 E V Sumony 7. 8. 1982 Acrocephalus schoenobaenus Helsinki juv. Tampere, Finland 14. 8. 1981 J 824 397 61.28 N 23.49 E V Fülöpháza d. 46.53 N 19.28 E Radolfzell ad. Illmitz, Austria 31. 7. 1980 BS 44 381 47.46 N 16.48 E V Dinnyés 18. 7. 1981		V		12. 8. 1982
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D a d alf	•		25 5 1000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		juv.		25. 7. 1982
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D1 20 108	*7		5 0 1000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V		7. 8. 1982
Helsinki juv. Tampere, Finland 14. 8. 1981 J 824 397 61.28 N 23.49 E 6. 9. 1981 V Fülöpháza 46.53 N 19.28 E 6. 9. 1981 Radolfzell BS 44 381 ad. Illmitz, Austria 47.46 N 16.48 E 31. 7. 1980 V Dinnyés 18. 7. 1981			49.98 N 17.94 E	
Helsinki juv. Tampere, Finland 14. 8. 1981 J 824 397 61.28 N 23.49 E 6. 9. 1981 V Fülöpháza 46.53 N 19.28 E 6. 9. 1981 Radolfzell BS 44 381 ad. Illmitz, Austria 47.46 N 16.48 E 31. 7. 1980 V Dinnyés 18. 7. 1981	Acrocanh	ulue oo	hoomohumua	
J 824 397 61.28 N 23.49 E 6. 9. 1981 V Fülöpháza 46.53 N 19.28 E 6. 9. 1981 Radolfzell BS 44 381 ad. Illmitz, Austria 47.46 N 16.48 E 31. 7. 1980 V Dinnyés 18. 7. 1981				14 9 1091
V Fülöpháza 46.53 N 19.28 E 6. 9. 1981 46.53 N 19.28 E Radolfzell BS 44 381 ad. Illmitz, Austria 47.46 N 16.48 E 31. 7. 1980 18. 7. 1981		juv.		14. 0. 1901
Radolfzell ad. Illmitz, <i>Austria</i> 31. 7. 1980 BS 44 381 V Dinnyés 18. 7. 1981	0 024 007	V		6 0 1091
Radolfzell ad. Illmitz, Austria 31. 7. 1980 BS 44 381 47.46 N 16.48 E V V Dinnyés 18. 7. 1981		,		0, 9, 1901
BS 44 381 47.46 N 16.48 E V Dinnyés 18. 7. 1981	Radolfzell	ad		31 7 1980
V Dinnyés 18. 7. 1981		uu.	,	01. 7. 1000
		V		18. 7. 1981
			47.11 N 18.34 E	20, ., 2001

D . 3 . 10 . 11			4 0 1000
Radolfzell BS 44 759	juv.	Illmitz, Austria 47.46 N 16.48 E	4. 8. 1980
DD 44 100	V	Dinnyés	18. 7. 1981
	_ ' =	47.11 N 18.34 E	10. 1. 1001
Stockholm	juv.	Löddesnäs, Bjärred, Schweden	$29.\ 8.\ 1981$
$AE\ 80\ 698$	-	55.44 N 13.00 E	
	V	Fülöpháza	$2.\ 8.\ 1982$
		46.53 N 19.28 E	
Calain at			
Sylvia ata Copenhager		Christianso, Bornholm, <i>Dänmark</i>	9 10 1001
9 637 478	T 1 2	55.19 N 15.12 E	8. 10. 1981
9 091 ±10	*	Pilisesaba	7. 11. 1981
	~	47.38 N 18.50 E	7. 11, 1501
		11.00 14 10.00 12	
Sturnus v	vulgaris		
Bologna	3	Bellaria Igena Marina, Forli, <i>Italia</i>	$9. \ 4. \ 1979$
S 384 500		44.09 N 12.28 E	
	*	Jászapáti	25. 3. 1981
		47.30 N 20.10 E	
Condendia			
Carduclis			30. 3. 1980
Bologna A 12 808	ੋਂ	Ravaldino in Monte, Forli, <i>Italia</i> 44.43 N 12.03 E	50. 5. 1980
Budapest		44.45 N 12.05 L	
899 099	V	Pomáz	17.10 1981
000 000	_ '	47.39 N 19.02 E	11.10 1001
Stockholm	9	Nyköping, Söderm., Schweden	21. 3. 1980
AB 50 838	7	58.45 N 17.04 E	24, 01, 1000
	\mathbf{V}	Sopron	18. 1. 1982
		47.41 N 16.35 E	
Carduelis			
Bologna		Castellano, Italia	23. 3. 1977
m L~685~477		43.15 N 13.45 E	0 0 1070
	*	Szombathely	2. 6. 1979
		47.15 N 16.36 E	
Fringilla	montif	ringilla	
FVG	<i>ਜਹਿਜਵਾ</i> ਰ	Pramariaceo, Udine, <i>Italia</i>	8. 11. 1977
$\stackrel{\cdot}{\mathrm{E}}$ 23 072	9	46.04 N 13.23 E	
	\mathbf{V}	Balassagyarmat	5. 2. 1979
		48.05 N 19.17 E	

Author's address: Egon Schmidt Magyar Madártani Egyesület Budapest Keleti Károly u. 48. H–1024

A MADÁRTOJÁSOK ALAKJÁNAK FUNKCIONÁLIS SZEREPE

Erőss Lajos

A dolgozat célja az egyes tojástípusok mozgásával kapcsolatos néhány jellegzetesség vizsgálata, különös tekintettel arra, hogy az alak és a fészkelési szokások között milyen összefüggés mutatkozik.

1.

Definiáljunk mindenekelőtt néhány fogalmat, melyekről mindenkinek van elképzelése, de egyértelmű meghatározásuk a következőkben szükséges lesz.

A tojás csúcsainak nevezzük a héj egymástól legtávolabb levő két felszíni pontját (1. ábra).

A tojás *hosszán* ezt a távolságot értjük (2. ábra).

A tojás *tengelyének* a két csúcson átmenő egyenest nevezzük.

Megállapítható, hogy a tengely egyben szimmetriatengely is (Mödlinger—Kapocsy, 1980), már csak a megtojás fiziológiája miatt is, amelyből adódik, hogy a tengelyre minden merőleges síkmetszet kör (2. ábra).

A tojás szélességén az említett legnagyobb kör átmérőjét értjük (3. ábra).

A hegyesebbik csúcsnak a maximális átmérőjű kör (főkör) síkjától távolabbit, a tompábbik csúcsnak a közelebbit nevezzük.

Súlyponton az általános fizikai értelemben vett súlypontot értjük.

Megjegyzem, hogy a fekvő tojás súlypontja némileg a tengely alá süllyed, miA madártojások alakjának funkcionális szerepe – The function of shape in bird's eggs

vel a tömegeloszlás nem egyenletes. A sárgája a tengelyhez képest kissé lejjebb kerül, és a sárgája súlypontja is az alsó (vegetatív) részben van, hogy a felső (animális) részt érje a kotló madár melege (4. ábra).

Nyújtottságon (szokás ezt profilnak, tojásindexnek is nevezni) a szélességgel elosztott hosszúságot értjük.

Tompaságon ennek a reciprokát.

A definícióból látható, hogy a nyújtottság 1-nél nagyobb, a tompaság 1-nél kisebb pozitív szám; továbbá az, hogy az ilyen módon képzett index nem ad felvilágosítást sem a tojás nagyságáról, sem pedig a héj görbületéről (5. ábra).

Abból a célból, hogy az egyes alakcsoportokat pontosabban tudjuk jellemezni, tekintsük a 6. ábrán közölt sémát, amely Makatsh (1972) irodalmi adatán alapszik.

Természetes, hogy a tipizálás nem meríti ki az összes lehetséges alakot, és azt sem jelenti, hogy pontosan ilyen alakú tojások léteznek. Mindössze modellt

	Ellipszoid	0vális	Jétékcsiga	
Rövid 				
Közepes				
Nyújtott				

ad a vizsgálatok számára. Konkrét esetben a hasonlóság mértéke határozza meg a kapott eredmény alkalmazhatóságát.

6.

2.

 $\it Erőn$ viszonylag kis erőket értünk, azaz olyanokat, amelyek nem törik össze a héjat.

A mozgások fő típusaival foglalkozunk:

- a) súrlódó (csúszó) mozgás (helyváltoztatás),
- b) gördülés (hely- és helyzetváltoztatás),
- c) pördülés (helyzetváltoztatás).

A következőkben sematikusan megvizsgáljuk — egy (elméleti) gömb alakú tojás példáján — az aljazattal párhuzamosan ható erő esetét (7. ábra).

Az \hat{F} erő két komponensre bomlik, az egyik gördíteni, a másik pördíteni igyekszik a tojást (ha mindkettő akadályozva van, úgy csúszás jön létre). A szélső esetektől eltekintve, mindkét mozgás fellép, amelynek eredője ívmozgás lesz, és amelynek nyitottsága a támadó erőnek a héjjal bezárt szögétől függ.

Mivel a madarak nagy része zárt odvakban, költőüregekben vagy ovális csészéjű fészkekben költ, az előbbi típusú mozgás módosulva megy végbe (8. ábra). Azaz megállapíthatjuk, hogy még a gömbszerűen kerek vagy tetszőleges alakú tojások sem gurulhatnak ki, mivel mozgásba lendülve az odú (fészek) legmélyebb pontja felé törekszenek.

Azt, hogy a fészek öblössége vagy a tojás speciális alakja a biztonságos költés szempontjából milyen lényeges, lemérhetjük például a balkáni gerle (Strep-

A mozgás iranya

Felbontás :

Az eredő elmozauias iv

topelia decaocto) esetében. Itt ugyanis a közönséges ovális tojásalak találkozik a lapos fészekkel, és bizony nem ritka, hogy a tojások kihullanak a fészekből hirtelen felröppenés vagy más ok hatására.

3.

A továbbiakban ki fogom mutatni, hogy a vázolt tojásalaktípusoknak konkrét funkciójuk van. Nem véletlenszerű tehát az, hogy egy faj hogyan fészkel, és milyen alakú tojásokat tojik.

Nevezzůk érintkezési pontnak a héjfelület azon külső pontját, amelyre he-

lyezve a tojás a sík aljzaton nyugalomban marad.

Az ilyen tulajdonságú pontok egy körívet alkotnak (a tengely szimmetriatengely voltából következően). Nevezzük ezt a kört érintkezési körnek (9. ábra).

Felvetődik a kérdés, hogy a főkör (a maximális sugarú körmetszet) és az

érintkezési kör egybeesik-e?

A válasz: általában nem, csak abban a kivételes esetben, ha a súlypont a

főkör síkjában helyezkedik el (11. ábra, a).

Írjuk fel a potenciális energia egyenletét a súlypont és a héjfelület pontjai közötti távolság függvényében:

$$E_{\text{pot}} = mt(P),$$

a nyugalmi helyzet ott van, ahol a potenciális energia minimális:

$$O = \frac{dE_{pot}}{dt(P)} = m \frac{dt (P)}{d(P)}$$

 $\mathbf{E}\mathbf{z}$ megfelel annak, hogy a súlypont a lehető legalacsonyabban helyezkedik el.

9.

Innen adódik, hogy a súlypont, ha nincs a főkör origójában, akkor attól lejjebb van, azaz a tengely nem párhuzamos (nyugalmi helyzetben) az aljazattal, hanem azzal valamilyen szöget zár be.

Nevezzük ezt a szöget lehajlási szögnek, a tengely és az alapsík döféspontját pedig elfordulási centrumnak (9. ábra).

Vegyük sorra az egyes típusokat.

Ellipszoid alakú tojások

Könnyen belátható, hogy ebben az esetben az érintkezési kör és a főkör egybeesik, hiszen a főkör sugara éppen a kistengely és ez éppen a héjnak a súlyponthoz legközelebb eső pontjait határozza meg. Ebből következnek:

— a tengely párhuzamos a sík aljazattal;

— a főkör síkjában támadó erő egyenes vonalú gördülő mozgást hoz létre;

— minél közelebb hat az erő a csúcsokhoz, annál nagyobb mérvű pördülést hoz létre (10. ábra).

Mindezek azt eredményezik, hogy az ilyen alakú tojások nyugalmi helyzete már kis erők hatására is könnyen megbomlik. Kis erők is könnyen gördítik,

pördítik ezeket, és már kis erő eltéríti őket pályájukról.

Mi lehet ennek a formának a funkciója? Nézzük meg, mely madaraknál fordul elő ez a — nem túl gyakori — forma. Mindenek előtt a vöcskökre (Podicipitiadae) jellemző ez az alak. Itt a legtipikusabb és a legkifejezettebb. Tudjuk jól, hogy ezek növényi anyagokból épített "tutaj"-fészekben költenek, amelyet moszat, rothadó növényi anyag alkot. Ebbe az aljazatba a tojások besüppednek, a fellépő súrlódási erők nagyok, így az az optimális, ha a tojás minél könnyebben mozdítható, forgatható a biztonságos költés végett.

Hasonló a helyzet a pusztaityúkok (Pterocliadae) esetében is, csak itt az aljazat a puszta homokos talaj, amelybe szintén benyomódnak a tojások.

Némely ragadozó nagyméretű, általában kisebb számú tojásának rövid ellipszis alakja szintén a könnyebb forgathatóságot szolgálja, de itt a térkitöltés nem elsőrendű fontosságú.

Ovális alakú tojások

Mint már korábban is megállapítottuk, a súlypont csak kivételes esetben helyezkedik el a főkör síkjában, azaz csak abban az esetben, ha a főkör síkja a tojást két egyenlő térfogatú részre osztja (11. ábra, a). Mivel ez általában nincs így, a tengely lehajlik, és erő hatására speciális mozgás jön létre. A támadó erő itt is két komponensre bomlik: az egyik gördíteni, a másik pördíteni igyekszik a tojást. Minél távolabb támad az erő az érintkezési ponttól, annál nagyobb mérvű a helyzetváltoztatás. Az eredő elmozdulás ív lesz (11. ábra, b).

 \hat{A} létrejött elmozdulás megfelel egy kúp csúcsa körüli elfordulásnak, amelyet egyrészt az elfordulási centrum mint csúcs, másrészt az érintkezési kör mint

alapkör határoz meg (9. ábra). Formulázható a leírt körpálya sugara:

$$R = \sqrt{r_e^2 + r_e^2 ct g^2 a} = r_e \sqrt{1 + et g^2 a} = r_e / \sin x$$

és az is, hogy hány fordulat után tér vissza eredeti helyzetébe:

$$N = K/k = \frac{2r_{
m e}\pi}{\sin\!a} \left| 2r_{
m e}\pi = \frac{1}{\sin\!a} \right|.$$

Látható, hogy minél nagyobb a lehajlási szög, annál kisebb a leírt kör sugara, és annál kevesebb fordulat után tér vissza kiindulóhelyzetébe.

Joggal vethető fel a kérdés, hogy a tompább ovális tojások kisebb köríven

mozdulnak-e el?

A válasz általában nemleges. Ugyanis ha a súlypont helyzete változatlan maradna, akkor igaz volna. Mivel a tompább tojásoknál a súlypont és az érint-

kezési kör középpontja természetesen közelebb kerül a főkör középpontjához, a tengely lehajlása csökken (11. ábra, c). Azaz a súlypont nem Q-ban, hanem

hátrább helyzkedik el.

Megállapítható tehát, hogy a nyugalmi helyzet könnyen megváltoztatható, így az elgurulás veszélye is nagy. Ez azonban inkább előny, mivel ez a típus főleg odvakban, csészeszerű fészkekben fordul elő: innen ki nem gurulhat, viszont forgatásuk könnyű. Az ilyen tojások általában többedmagukkal fordulnak elő, így egymáshoz is súrlódnak, méginkább fontos ezért a könnyű mozgathatóság. Ez az alak a golyó formájú vagy ellipszoid alakú tojásokkal szemben más előnyöket is hordoz, éspedig:

jobb térkitöltésűek (12. ábra, a),
könnyebb a befedésük (12. ábra, b).

Felhívom a figyelmet a fészek csésze alakjának szerepére.

Fordított játékcsiga alakú tojások

Ennek a típusnak az a fő jellemzője, hogy a hegyesebbik vége felé hosszabbrövidebb kúppalástra illeszkedő (vagy majdnem illeszkedő) része van (13. ábra).

Becsüljük meg a súlypont helyzetét a főkör síkjához képest. Közelítsük a tojás alakját egy félgömb és egy kúp segítségével. Annak feltétele, hogy a súlypont ebben az esetben a főkör origójában legyen, a következő:

$$\frac{4r^3\pi}{3}/2 = \frac{r^2\pi m}{3} = > 2r = m.$$

Látható, hogy ebben az idealizált esetben is csak akkor állna fenn, ha a kúpszerű rész kétszer olyan magas lenne, mint a gömbszerű. Ez a valóságban azonban nincs így, mert a gömbszerű rész benyomottabb, a kúpszerű

pedig lekerekített. Ebből következően a súlypont a főkör síkja előtt helyezke-

dik el a hegyesebbik csúcs felé (13. ábra).

Minden olyan esetben, amelyben a $P_{\rm n}$ rész a $P_{\rm a}$ és az $P_{\rm n}$ közé esik (és ez a gyakorlatban így van), az egyensúlyi helyet azonos pozícióban áll fenn, azonban minél nyújtottabb a tojás, annél alcsonyabban helyezkedik el a súlypont, azaz az egyensúlyi helyzet annál stabilabb.

Mivel az érintkezés itt nem egy ponton történik, hanem egy vonal mentén, célszerű érintkezési vonalról, illetve érintkezési felületről beszélni (13. ábra).

Ez az érintkezési vonalnak a tengely körüli forgatásával keletkezik.

Az előbbiekből következik, hogy lökés vagy űtődés hatására létrejövő mozgás nem pördülés lesz (hiszen az érintkezési vonalon fellépő súrlódás ezt meggátolja), és a mozgásfajta nem lehet elgurulás sem, mivel a létrejövő gördülés kicsiny sugarú körben megy végbe. Természetesen, ha a támadó erő a hegyesebbik csúcs közelében hat, úgy az a tojást a $P_{\rm B}$ rész körül megforgathatja. Ez azonban a nagy súrlódás miatt gyorsan lefékeződik (14. ábra, a—b).

Látható, hogy mindkét esetben a létrejövő mozgás pályája egészen szűk

behatárolt kör, azaz az elgurulás sík felületen kizárt.

Megjegyzem, hogy a megpördülés, azaz a 14. ábra a) részén vázolt körbefordulás nem pontosan a hegyesebbik csúcs körül megy végbe, hanem egy ahhoz közeli pont, a képzeletbeli érintőkúp csúcsa körül. Ez a forma nemcsak az elgurulás, hanem a legurulás ellen is (bizonyos fokú) védelmet nyújt.

Milyen esetek fordulhatnak elő lejtős felületen?

A 15. ábra a) pontján ábrázolt helyzet:

— a tojás a tompább végével a lejtőn lefelé helyezkedik el, és a súlypont az érintkezési ponton átmenő, a lejtő alapjára (vízszintes) merőleges és a hegyesebb esúcs között foglal helyet. Ez az állapot a stabil egyensúlyi helyzet. Azaz a tojás enyhe lejtőn egyensúlyban marad!

A 15. ábra b) pontján ábrázolt helyzet:

— ebben az esetben a hegyesebb csúcs mutat a lejtő irányába. Ez labilis

egyensúlyi helyzet, kitérítve innen körben fordul, majd (némi ingaszerű mozgás után) az a) pontban leírt stabil egyensúlyi helyzetbe kerül. Azaz ebben az

esetben sem gurul el.

Ha a lejtő meredekebb, természetesen a 15. ábra c) pontján ábrázolt eset áll elő. Ekkor a súlypont a merőleges és a tompább csúcs között foglal helyet, így egyensúly nem áll fenn, és a tojás azonnal a 15. ábra b) pontján ábrázolt helyzetbe jut, majd némileg fékezett bukdácsoló mozgással legurul.

Vonjuk le a következtetéseket a vázolt jelenségekből, és vizsgáljuk meg,

milyen funkciót tölt be ez a forma, és miért jellemző egyes fajokra.

Ez a típusú tojás főleg sziklákon, csupasz, sík felületeken fészkelő madaraknál gyakori. Különösen jellemző a madárhegyek keskeny sziklakiszögellésein fészkelő fajokra. Itt a hatalmas madártömeg kénytelen minden helyet kihasználni. A tojás biztonságos kiköltése veszélyeztetve volna, vagy éppen lehetetlen

lenne, ha valamilyen mechanizmus nem óvná őket a sík vagy az enyhén lejtős felületen való elgurulástól. Ez a mechanizmus éppen a tojás előbb ismertetett speciális alakja.

Gondoljunk a sajátságosan költő császárpingvin (Aptenodytes forstrei) nem ilyen alakú tojásaira. Ha a tojás kipottyan a költőtasakból, el is gurul, és a madárnak nem kis ügyességébe és fáradságába kerül helyére visszajuttatni.

Másrészt ez a forma az optimális térkitöltés szempontjából is nagyon előnyös. A goda, a bíbic stb. földre rakott tojásai csúcsukkal összefordulnak és — annak ellenére, hogy viszonylag nagyok — minimális teret töltenek ki (16. ábra, a).

17.

b)

a)

18.

Harmadrészt, mivel az ilyen típus a hegyesebbik csúcsával lefelé mutatva helyezkedik el, biztosítva van, hogy a befedés és a melegítés optimális legyen (16. ábra, b). Az, hogy az egész teret nem tölti ki, azért fontos, hogy a forgatás ilyen speciális típus mellett is lehetséges.

Joggal vethető fel a kérdés, hogy ha ennek a formának ilyen sok előnye van,

miért nem ilyen alakú tojást raknak az ovális tojású madarak?

Amint a 17. ábráról (a) is látható, az ovális tojásalak megfelel a csészeszerű fészek (vagy odú, költőüreg) kívánalmainak, addig a játékcsiga alakú tojások nem. Ez ugyan a teret jól kitöltené, de nem biztosítaná az optimális melengetést, másrészt olyannyira összeszorulnának, hogy a forgatásuk nehézzé vagy lehetetlenné válna (17. ábra, b).

Megjegyzem, hogy az irodalomban szokás csepp vagy körte alakú tojásokról is beszélni. Ezek a hegyesebbik végük közelében enyhén beszűkülnek. Elkülönítésük a játékcsiga alakúaktól nehézkes, és elviekben sem jelent újat. Ugyanis ezek mozgása megfelel a játékcsiga alkúak mozgásának. A fogalmak is néhány módosítással átvihetők. Az érintkezési felület helyett a két érintkezési kör által definiált érintkezési felületről kell beszélni (18. ábra).

Author's address: Erőss Lajos H—6000 Kecskemét Liszt Ferenc u. 15/B. III. 1c.

Literatur-Irodalom

Herman O. (1914): A madarak hasznáról és káráról. About the use and damage of birds Budapest, Pallas Kiadó.

Madarász G. (1903): Magyarország madarai. The birds of Hungary. Természettudományi Társ. Budapest.

Makatsch, W. (1972): Ahány madár, annyi tojás. So many birds, so many eggs. Natura, Budapest. 10–12. p.

Mödlinger P.-Kapocsy G. (1980): A madarak világa. The world of birds. Budapest, Gon-

dolat Kiadó, 112-117 p.

Peterson, R. T.-Mountfort, G.-Hollom, P. A. D. (1977): Európa madarai. The birds of Europe. Budapest, Gondolat Kiadó. Urania, 1970

The function of shape in bird's eggs

L. Erőss

The paper is aimed at studying some characteristics of motion in various egg types with special regard to the relationship between shape and nesting habits.

1.

Let us define first of all a few concepts of which everybody has some idea but explicit determination of which will be needed hereinafter.

The two *outside points* of the egg being the most distant from one another are called the points of the egg (Fig. 1).

By egg length we mean this distance (Fig. 2).

The straight passing through the two points is called the axis of the egg.

The axis is at the same time a median axis (Mödlinger-Kapocsy, 1980) if only because of the physiology of egg laying from which it follows that every plane section perpendicular to the axis is a circle (Fig. 2).

By egg width we mean the diameter of the largest circle (Fig. 3).

The point being more distant from the maximum-dia circle (great circle) is called pointed end, the one closer to it, obtuse end.

By center of gravity we mean the center of gravity taken in the general physical sense. It should be noted that in the lying egg the center of gravity sinks to some slight extent below the axis, the distribution of mass not being equable. The yolk gets slightly deeper compared to the axis and the centre of gravity of the yolk is also in the lower (vegetative) part in a way that the warmth of the brooding bird should reach the upper (animal) part (Fig. 4).

By extension (called also profile, eqq index) we mean length divided by width.

By obtuseness the reciprocal thereof.

As seen from definition, extension is a positive number higher that 1, obtuseness lower than 1; further on, the index formed that way does not inform about either egg size or shell curvature (Fig. 5).

With a view to more exactly characterize the various shape groups, let us study the

scheme shown in Fig. 6 based on findings of Makatsch (1972).

Naturally, the above typifying does not cover all possible shapes, neither does it mean that eggs of exactly such shape would exist. It gives all in all a model for the investigations. In a particular case adaptability of the obtained result is determined by the rate of likeness.

6

In the part hereinafter we mean by force relatively small forces, that is ones that do not break up the shell.

The main types of motion discussed are:

a) frictional (sliding) motion (change of place); b) rolling (change of place and position);

c) twirl (change of position).

Further on, we are going to schematically examine – by the example of a (theoretical) spherical egg – the case of a force acting parallel with the bedding (Fig. 7).

Force \overrightarrow{F} divides into 2 components, one of them tending to roll, the other to twirl the egg (should both be hindered, the egg will slide). Disregarding some extreme cases both motions arise, the resultant will be an arched motion whose openness depends on the angle enclosed by attacking force and shell.

Since majority of the birds hatch in closed dens, hatching hollows or in calycular nests, the above type of motion is taking place in a modified way (Fig. 8). That is, even spheroid, round eggs or ones of any shape will not roll off since when getting in motion

they tend towards the deepest point of the den (nest).

Importance of the hollowness of the nest or of the special shape of the egg for safe

hatching can be assessed e.g. on the case of the Collared Dove (Streptopelia decaocto). Here namely, the common oval egg shape coincides with the flat nest and it is not rare at all that the eggs fall out of the nests on sudden flying up or for some other reason.

3

Hereinafter I am going to point out that the egg shape types outlined above have particular function. It is namely not a matter of mere chance how a species nests and eggs of what shape it lays.

Let us call point of contact the outward point of the shell surface whereupon the egg

remains in a standstill on plane bedding.

The points of such quality form an arc (ensuing from the axis being the median axis). Let us call this circle the circle of contact (Fig. 9).

The question arises: do the great circle (the maximum-radius circular section) and the

circle of contact coincide?

The answer is: generally not, except in the rare case when the centre of gravity is located in the plane of the great circle (Fig. 11. a).

Let us state the equation of potential energy in function of distance between center of gravity and points of shell surface:

$$E_{\rm pot} = mt(P),$$

static condition will be at the point where the potential energy is minimal:

$$O = \frac{dE_{\text{pot}}}{dt(P)} = m \frac{dt(P)}{d(P)}$$

This corresponds with the finding that the centre of gravity is located the lowermost possible.

From this it follows that if the centre of gravity, is not in the origin of the great circle it is further down, that is, the axis is not in line (in static condition) with the bedding but encloses some angle with it.

Let us call this angle inclination angle, and the thrust point of axis and basic plane

deviation centre (Fig. 9).

Now let us see ther various types in turn.

Ellipsoidal eggs

It is easy to see that in this case the circle of contact and the great circle overlap since the radius of the great circle is exactly the small axis that determines just the points of the shell being the closest to the centre of gravity. Consequences thereof are as follows:

- the axis is parallel with the level bedding;

a force attacking in the plane of the great circle induces rectilinear rolling motion;
 the closer to the points the force is acting, the higher rate twirl it will bring about
 (Fig. 10).

From the abovesaid it follows that the static condition of the eggs of such shape is easily upset already on effect of small forces. Also small forces easily roll, twirl the eggs

and already a small force diverts them from their course.

What might be the function of this shape? Let us consider which are the birds that have eggs of this not too frequent shape. First of all the grebes (Podicipiticalae). For these birds this egg shape is the most typical and the most explicit. As well known they hatch in "raft" nests built from algae, rotten plant matter. The eggs sink into this bedding, the arising frictional forces are great, consequently it is optimal if the egg is easy to move and turn in view of safe hatching.

The situation is similar in the case of pintails (Ptreocliudae) except that here the bed-

ding is the mere sandy soil into which the eggs become pressed in.

For some birds of prey the ellypsis shape of their large-size eggs generally rather few in number also serves for the easier rotation but here filling up of the space is not of primary importance. As stated earlier the centre of gravity is located in the plane of the great circle only exceptionally that is only of the plane of the great circle divides them into two parts of equal cubic capacity (Fig. 11). Since it is generally not that way, the axis inclines and on the effect of force a special motion comes about. The force of attack divides into two components also here: one tends to roll, the other point to twirl the egg. The more distant from the point of contact the force attacks, the higher the rate of change of position will be. The resultant displacement will be an arc (Fig. 11, b).

The displacement produced corresponds to the turning of a cone round the top that is defined by the centre of turning round as top and the circle of contact as basic circle (Fig.

9). The radius of the described circule can be formulated as follows:

$$R = \sqrt{r_e^2 + r_e^2 \text{ctg}^2 \alpha} = r_e \sqrt{1 + \text{ctg}^2 \alpha} = \frac{r_e}{\sin \alpha},$$

and the number of revolutions after which it returns to its original position:

$$N = K/k = \frac{2r_{\rm e}\pi}{\sin\alpha} / 2r_{\rm e}\pi = \frac{1}{\sin\alpha}$$

Evidently, the larger the angle of inclination the smaller will be the radius of the described circle, and the lower the number of revolutions before returning to the initial position.

It would only proper to ask whether more obtuse oval eggs move in a smaller are? The answer is generally negative. Namely, if the centre of gravity would remain in an unchanged position it would be true but since as regards more obtuse eggs the centre of gravity and the centre of the circle of contact naturally get closer to the centre of the great circle whereby the inclination of the axis decreases (Fig. 11, c). That is the centre of gravity is not located in Q but farther back.

Accordingly, it can be stated that the static condition is readily changed thus the danger of rolling off is great. This however is an advantage since this type mainly occurs in dens, calycular nests: from these the eggs cannot roll off whilst they are easy to turn round. Such eggs generally occur with several others, rub against one another wherefore their easy movability is rather important. This shape has also other advantages in comparison to spherical or ellipsoid eggs, namely:

- better filling in of space (Fig. 12, a).
- eggs are easier to cover (Fig. 12, b).

Attention should be paid to the role of the calveular shape of the nest.

Eggs of reversed whip-top shape

Main characteristic of this type is to have towards the pointed end a part fitting (or almost fitting) to a shorter or longer surface of cone (Fig. 13).

Let us estimate the position of the centre of gravity as compared to the plane of the great circle. Let us near the egg shape using a semi-globe and a cone. The centre of gravity will be in the origin of the great circle under the following condition:

$$\frac{4r^3\pi}{3}/2 = \frac{r^2\pi m}{3} = 2r = m.$$

As seen, even in this idealized case it would be that way only if the conoid part were twice as high as the globular. In reality, however, it is otherwise since the globular part is rather flattened, and the conoid rounded. Consequently, the centre of gravity is located before the plane of the great circle towards the pointed end (Fig. 13).

beofre the plane of the great circle towards the pointed end (Fig. 13).

In each case when $P_{\scriptscriptstyle E}$ falls between $P_{\scriptscriptstyle A}$ and $P_{\scriptscriptstyle B}$ (in practice it is that way), the state of equilibrium subsists in the same position, the more extended however the egg, the lower down the centre of gravity will be located that is the state of equilibrium will be the more

stable.

Since in this case the contact does not occur at one point but along a line, it is advisable to speak of a line of contact or a surface of contact, respectively (Fig. 13). This comes

about by turning the line of contact round the axis.

It follows from the aforesaid that the motion caused by shock or impact will not be either twirl (since this is hindered by friction occurring on the line of contact) or rolling off since the occurring sliding is taking place in a small-radius circle. Naturally, should the force of attack act near the pointed end this may rotate the egg round the P_n . This, however, is quicky slowed down due to high rate friction (Fig. 14, a-b).

Evidently, in both cases the course of motion coming about is a quite narrow delimited

circle that is, on a plane surface rolling off is impossible.

It should be noted that the twirl, that is the turning round shown in Fig. 14 a does not take place exactly round the pointed end but round a near-by point, the tip of the imaginary cone of contact. This shape offers protection not only against rolling away but (to a certain extent) against rolling off too.

What kinds of cases may occur on sloping surface?

The position illustrated in point a) of Fig. 15:

- the egg is located on the slope with its obtuse end downwards and the centre of gravity takes place between the (horizontal) perpendicular to the base of slope passing through the point of contact and the pointed end. This position is a stable condition of equilibrium. That is, on a low gradient the egg keeps its balance!

The position shown in point b) of Fig. 15:

- in this case the pointed end points to the slope. This is an unstable equilibrium, the egg when deflected turns round, then (after some pendular movement) takes up the stable condition of equilibrium as described in point a). That is, it does not roll off in this case either.

Should the slope rise to a greater extent, naturally the case shown in point c) of Fig. 15 will come about. Then the centre of gravity takes place between the perpendicular and the obtuse end, thus the balance does not subsist and the egg immediately gets into the position as shown in poin b) of Fig. 15, then rolls off by a slightly damped stumbling movement.

Let us draw the conclusions of the phenomena outlined above and examine what func-

tion does this shape fulfil and why it occurs just in the species it does.

This type of egg is frequent mainly in birds nesting on rocks, bare plane surfances. It is characteristic especially of species nesting on narrow ledged rocks of bird-mountains. Here the great mass of birds are compelled to make use of all places. Safe hatching of the egg would be endangared or quite impossible should some mechanism not protect the eggs from rolling off on plane or shelving surface. This mechanism is excatly the special shape of the egg as described above.

Let us consider the different-shape egg of the emperor penguin (Aptendytes forstrei) hatching in a particular way. Should the egg fall out of the hatching sac it rolls off and the

bird needs much skill and effort to reposit it.

On the other hand, this shape is highly favourable from the aspect of the optimal filling in of space. Eggs of the godwit, plover etc. laid on the ground with their tips converging

fill in minimal space in spite of their relatively large size (Fig. 16, a).

The third reason is that this type of egg is located with its pointed end pointing downwards whereby optimal covering and warming are ensured (Fig. 16, b). The fact that it does not fill in the whole space is of importance for turning to be ensured even with such special type.

It would only be proper to ask if this shape has so many advantages why do birds with

oval eggs not lay eggs of such shape?

As seen in Fig. 17 a) the oval egg shape meets the requirements of the calveular nest (or den, hatching lair), eggs of whip-top shape do not. Although latter would well fill in the space they would not provide for optimal warming up, on the other hand, they would press together to such an extent that their turning would be difficult or quite impossible

(Fig. 17, b).

It should be mentioned that sometimes guttiform or pyriform eggs are spoken of in special literature. These grow slightly narrow close to their pointed end. Their separation from the whip-top shaped eggs is rather cumbersome and is no novelty even in principle. Namely, their motion corresponds to that of whip-top shaped eggs. The concepts too are transferable with some modifications. Instead of surface of contact it is the surface of contact as defined by the two circles of contact that should be spoken of (Fig. 18).

·		

KÖNYVISMERTETÉS

Chramp, S.-Simmons, K. E. L. (editors) 1983: The Birds of the Western Palearctic

Oxford University Press, Oxford-London-New York, Vol. III. 913 p.)

Immár harmadik kötetét üdvözölhetjük e korszerű, alapos kézikönyvnek, amely Európa, Közel-Kelet és Észak-Afrika területéről a Charadriiformes rend Rostratulidae, Haematopidae, Recurvirostridae, Dromaidae, Glareolidae, Scolopacidae, Stercorariidae és Laridae családját tárgyalja. Az egyes fejezetek szerzői: Habitat – E.~M.~Nicholson.~Állományviszonyok – Š. Cramp. Vonulás – R. Hudson. Táplálkozás – P. J. S. Olnev. Magatartás – Dr.~K.~E.~L.~Simmons–Dr.~N.~J.~Collar.~Hang – Dr.~K.~E.~L.~Simmons–Dr.~N.~J.~Collar. Szaporodásbiológia – M. A. Ogilvie. Tollazat, vedlés, méretek, alfajok – Dr. J. Wattel-C. Ś. Roselaar. A kötetet 48 színes madárábrákat tartalmazó tábla és 18, ugyancsak színes tojáshatározó tábla illusztrálja. Valamennyi tárgyalt fajt elterjedési térkép és szonogramm is szemlélteti. Az illusztrációkat N. Arlott, Dr. P. J. K. Burton, N. W. Cusa, R. Gillmor és Dr. I. M. Wallace készítették. A tárgyalt területek teljes faunája 740 fajt, ebből 600 fészkelőfajt számlál. E kötet mindezekből 112 fajjal foglalkozik. A Glutz-Bauer szerkesztésében folyamatosan megjelenő: Die Vögel Mitteleuropas c. kézikönyvhöz hasonlóan ez a sorozat is kötetről kötetre bővül, egyre kiterjedtebb részletességgel foglalja össze a tárgyalt fajokról rendelkezésre álló ismereteket. A két alapmű szerencsésen egészíti ki egymást, birtoklásuk mondhatni könyvtárat pótló lehetőségeket kínál sokoldalú forrásmunkaként. A kézikönyy harmadik kötete 49,50 angol fontért vásárolható.

Dr. Sterbetz István

Ogilvie, M. A. 1978: Wild Geese

(T. & A. D. Poyser kiadó, Berknamsted, 350 p.)

À vízivad szakirodalmában közismert szerző Éurázia és Észak-Amerika vadlúdfaunáját tárgyalja e tudományos részletességű, de egyben népszerűsítésre is alkalmas kötetben. Fejezetei a ludak rendszertanával, szabadtéri meghatározásával, ökológiájával, táplálkozásával, populációdinamikájával, elterjedésével, státusával, vonulásával és védelmi kérdéseivel foglalkoznak. Kézikönyv vonatkozásában a pale- és neoarktikus vadlúdproblémákról pillanatnyilag ez a legfrissebb, átfogó tanulmány, amelyet Carol Ogilvie színes és fekete-fehér ábrái ötletes szemléltetéssel díszítenek.

Dr. Sterbetz István

Eberhard Redding, 1981: Die Bekassine

(Die Neue Brehm Bücherei, H. 533, A. Ziemsen Verlag, Wittenberg-Lutherstadt, 135 p.) A szerző a közkedvelt Brehm füzetekben szokásos monografikus teljességgel tárgyalja a sárszalonka problémáit, azok rendszertanát, elterjedési viszonyait, vonulását, telelőhelyeit, ökológiáját, táplálkozási problémáit, szaporodásbiológiáját és magatartási sajátosságait. A hatalmas mennyiségű forrásmunka-feldolgozás mellett e kötet sajátos értéke a sárszalonka nászrepülésének és párosodásának újszerű leírása, amelynél külön ki kell hangsúlyozni az erről készített, különlegesen szemléltető fényképeket is. A monográfiát az ornitológus és a vadász egyaránt kitűnően használhatja.

Dr. Sterbetz István

Schmidt Egon, 1982: Gyakorlati madárvédelem

(Natura, Budapest 135 p. 36 Ft)

A magyar madártan kezdete óta egymást váltják a gyakorlati madárvédelmet szolgáló, különböző szintű és terjedelmű kiadványok. Ennek ellenére az érdeklődés kifogyhatatlan, és ez a téma az olvasó számára mindenkor időszerű. Ezért is szerencsés adottság, hogy a szerző a sok hasonló kiadvány mellett mégis sok újat tudott kötetében nyújtani. A madártelepítés és a madáretetés receptjei mellett a nagyközönség ökológiai tájékozottságát a sokat népszerűsítő szakíró rutinos biztonságával alapozza meg, majd jellemző példákkal világít rá a hazai madaraink fennmaradási problémáira. Jól válogatott fajokkal nyújt tájékoztatást a városban és a szabadban szemlélődők számára a legjellegzetesebb madarak felismeréséről, végül a madárvédelem legfontosabb vonatkozó jogszabályait, az ebben érdekelt hatóságokat és a társadalmi bázist ismerteti. A könyv értékeinél külön ki kell emelni Muray Róbert és Muray Péter illusztrációinak esztétikai és szakmai szempontból egyaránt magas szintű szemléltetését.

Dr. Sterbetz István

K. Hudec-E. Rutschke (editors), 1982: The Greylag Goose Anser anser in Europe (I) (Acta Scientiarum Naturalium Academie Scientiaruum Bohemoslovacae Brno. XVI.

nova series, No. 12. 49 p.)

A szerkesztők egy-egy ország nyárilúd-állományát monografikus feldolgozásra törekvő dolgozatokban igyekeznek e faj európai státusáról nagyon részletes összefoglalót készíteni. Az első ilyen tartalmú füzet M. A. Ogilvie tollából az angol, M. Fog összeállításában a dán, D. Hummel-től a Német Szövetségi Köztársaság, E. Rutschke, J. Naacke és H. Litzbarski munkája szerint pedig az NDK állományát tárgyalja.

Dr. Sterbetz István

IN MEMORIAM

Barelay–Smith, Phyllis Ida – sz. Cambridge, 1902. † London, 1980. I. 6. Anatómiaproprofesszor lánya, akiben kora ifjúságától fogva feléledt a természettudomány iránti érdeklődés, mégpedig későbben a madár- és a természettvédelem foglalta le minden erejét és energiáját. 1924-ben titkára a brit madárvédelmi egyesületnek, 1935-ben a Nemzetközi Madárvédelmi Bizottság (ICBP) társtitkára. Fáradhatatlanul dolgozik a szervezetért, szerkeszti évkönyvét, rendezi üléseit stb., sőt ismeretterjesztő könyveket is ír. Mivel Magyarország SCHENK révén az ICBP alapító tagjai közt szerepelt, ezért csakhamar felkereste hazánkat, és felismerve agilitását, 1935-ben a Madártani Intézet levelező tagja lett. 1940-ben újra hazánkban találjuk BARCLAY-t W. HIGMAN társaságában, amikor az első magyarországi színes madárfilmet forgatják Budapest környékén és a Kis-Balatonon stb. A háború után értesülve az intézet pusztulásáról, az elsők között siet segítségére, így a BOU-t ráveszi, hogy csaknem teljes THE IBIS-sorozatot küldjenek az elégett könyvtár pótlására. 1968-ban tevékenyen veszi ki részét a balatonszemesi ICBP-konferencia rendezésében. Kedves, közvetlen segítőkészségét felejteni nem lehet.

Boros István dr. – sz. Sárosd, 1891. IX. 6. † Pécs, 1980. VII. 11. A Természettudományi Múzeum ny. főigazgatója, szűkebb kutatási köre a herpethológia és a tudománytörténet. Madártani megmozdulásokban is mindig részt vett, így a Mecseki Madárvédő Egyesület rendezvényein; 1934-ben jelent meg első madártani közleménye az Aquilában. HORVÁTH-tal társszerzőségben tisztázták a Passer moabiticus rendszertani helyét (1958). HORVÁTH egy Egyiptomban gyűjtött pacsirtát róla nevezett el (Ammomanes deserti borosi HORVÁTH, 1958). 1974-ben a Madártani Egyesület pécsi szakosztálya alakuló ülésén ismét találkozhattunk vele.

Böhme, Friedrich – sz. Auerswalde, 1901. V. 31. † Marianske Lanze, 1980. IV. 30. A Ziemsen Verlag szerkesztője és a Die Neue Brehm Bücherei füzeteinek lektora. Boldogok lehettek azok a magyar szerzők, akinek munkája Böhme kezébe került stiláris javítás végett. Alaposan javított, de sohasem a szerző elgondolásainak rovására. Segítőkészségéről mindig hálával emlékezünk meg.

Dementiev, George Petrovics – sz. Peterhof, 1898. VII. 5. † Moszkva, 1969. IV. 14. Orvosesalád sarja, aki már 13 éves korában írt eikket a sólymokról, és már gimnazista korában végez madártani kutatásokat Finnországban és Turkméniában, egyidejűleg széles körű nyelvismeretekre tesz szert. Kapcsolata egyre szorosabb BUTURLIN-nal. A gimnáziumot 1915-ben aranyéremmel zárta, utána jogra iratkozott be, és szívesen vett részt olyan összejöveteleken, amelyeken muzsikálhatott. Egyetemi tanulmányait Moszkvában 1920-ban fejezte be, röviddel utána a zoológiai múzeumban nyert alkalmazást; hazai és külföldi kutatókkal szoros kapcsolatokat épített ki. Tanulmányainak száma több száz, súlyt helyezett az ismeretterjesztő írásokra is. Számos expedíció tagja volt, 1958–1960-ban Mongóliát kutatta. A második világháború idején a moszkvai műzeum gyűjteményét Ashabadba menekítették. Így huzamos időn át benne él Közép-Ázsia állatvilágában, ekkor RUSTAMTOW-val együtt ismertetik Turkménia madarait két kötetben. Legkiemelkedőbb műve a hatkötetes "Szovjetunió madarai" c. kiadvány, amelyet GLADKOW-val szerkesztett (1951–1954), és Lenin-díjat kaptak érte. Számunkra is fontos forrásmunka. 28 taxont írt le, róla 7-et neveztek el.

Fába László – sz. Budapest, 1910. V. 23. † Budapest, 1981. III. 26. Édesapja F. Rezső mellett dolgozott, aki a LENDL-féle "laboratóriumot" vette át, és országszerte híres állatpreparátor névre tett szert. Fia – bár gyermekkora óta csaknem béna volt féloldalasan – bámulatos ügyességgel és finom művészi érzékkel készített dísztárgyakat is, sőt festegetett. Az 1940-es évek végén a Természettudományi Múzeumban segédkezett minden ellenszolgáltatás nélkül. Élete utolsó évei ágyhoz kötötték, példamutató türelemmel viselte nehéz sorsát.

Geréby György – sz. Debrecen, 1908. XI. 8. † Pécs, 1980. VIII. 15. Igazságügyi gazdadasági szakértő, aki főiskoláit (ma egyetem) Pallagon végezte. A Tiszántúlon, majd a Kiskunságban és végül Baranyában mezőgazdasági elfoglaltsága mellett gondot fordított a madarak megfigyelésére, rendszeresen küldött jelentéseiért 1935-ben "rendes megfigyelői" oklevelet kapott az intézettől. 1950–1969 között 11 közleménye jelent meg az Aquilában. A Magyar Madártani Egyesület és annak pécsi tagozatának megalakításában tevékenyen részt vett.

Homoki-Nagy István dr. – sz. Mezőtúr, 1914. IX. 2. † Budapest, 1979. XII. 14. Fiatalsága java részét Kiskunfélegyházán töltötte, ahonnan kapcsolatot teremtett részben VĀSVÁRI-val, főleg GRESCHIK-kel, aki számára gazdag madársorozatokat küldött. Köztük a balkáni fakopáncs példányait, amelyet akkor még hazánk határain belül nem ismertek, ezt le is írta (Kócsag). Jogi pályán indult, az ügyvédi és a bírói vizsgát is letette, dolgozott a budapesti járásbíróságon, Monoron pedig átvette édesapja közjegyzői irodáját. A természet iránti vonzalma azonban erősebbnek bizonyult a paragrafuskeresésnél. A természetfényképezéshez az első útmutatásokat a sokoldalú GRESČHIK-től nyerte, majd BERETZK-nél gazdagította, míg teljesen önálló utakra nem tért. 1943-ban a Vigadóban nemcsak a fényképész, hanem a költő is bemutatkozott. De se a fényképpel, se a feketefehér filmmel nem tudott megelégedni (Kis-Balaton), egymást követték színes filmjei: Vadvízország (szegedi Fehér-tó), Gyöngyvirágtól lombhullásig (Gemene), Cimborák (a Bükktől a Kis-Balatonig), majd a kisfilmek sora. Ugyan a Kékvércsék erdejében (Ohatierdő) c. filmje a baseli szakközönség előtt nem állta meg helyét, de HOMOKI-NAGY nem is szakembereknek, hanem a nagyközönségnek készítette filmjeit, néha a természetvédelem szabályait is félrelökve. Filmjeivel így is számos barátot szerzett a természet iránti érdeklődésnek, és ezért két ízben kapott Kossuth-díjat. Vezette néhány évig a Természettudományi Múzeum propagandaosztályát, majd a filmgyárhoz ment át, és élete végéig Alcsuton dolgozott. Filmkockáival szívesen támogatta a szakemberek munkáját, de ismételt biztatás ellenére sem állított össze szakfilmet.

Morse Nice, Margaret - sz. Amherst, Massachusetts, 1883, XII. 6. † Chicago, 1974. VI. 26. Publikálni 1896-ban kezdett a madarak táplálkozásáról. Ökológiai irányba terelődtek kutatásai, olyan irányba, amely már súrolta az etológia határát; így bizonyos szempontból önálló irányzat megalapítója és kidolgozója. Legszorosabb kapcsolatot tartott részben a Nobel-díjas etológussal, LORENZ-cel, részben az energiaforgalom kiváló kutatójával KENDEIĞH-gel. 1933-ban az énekes verébről írott tanulmánya felkeltette STRESE-MANN érdeklődését, le is közölte lapjában német nyelven, majd 1937-ben megjelent angolul is kétkötetes könyvalakjában, és forradalmasította a madárökológiát. 1909-ben ment férjhez L. B. NICE-hez, és mint ötgyermekes családanya is szorgalmasan figyelgeti kertje énekesveréb-állományát. Ezen életművén kívül számos más tanulmányt írt, élete végén autobiográfiáját is, amelyet halála után a róla elnevezett kanadai madártani társaság adott ki 1979-ben. A munka előszavát LORENZ írta. NICE életében sokat utazott. Az 1938-as rouani nemzetközi kongresszus után SCHENK-kel elesaltuk Magyarországra is, meglátogatta a Kis-Balatont, a Velencei-tavat. Útjáról hangulatos közleményben számolt be, és önéletrajzában is hosszabb fejezetet szentel útjának. 1945-ben rögtön jelentkezik, és amikor tájékoztatást kapott a magyar ornitológusokról, HAMMERSTROM, MELONE stb. segédletével szélcs körű segélyakciót indított meg, az intézetet pedig könyvadományokkal segítette újjáéleszteni.

Reichart Gábor dr. – sz. Szeged, 1917. V. 16. † Budapest, 1979. XI. 19. A budapesti tudományegyetem növénytani tanszékén kezdte tudományos működését 1939-ben, majd 1944-ben a Növényvédelmi Kutatóintézetben (akkor Rovartani Állomás) folytatta munkáját. Így került kapcsolatba a madártani témákkal (mint az amerikai szövőlepke stb. elleni védekezés kérdésével). Pontos gyomortartalom-meghatározásaiért ezeken kívül is mindig hálásak voltunk, de írt önálló madártani cikkeket is az Aquilában.

Studinka László dr. – sz. 1918. † Budapest, 1981. IV. 22. A madártan iránti érdeklődése már gyermekkorában feltámadt. 11 éves, amikor KITTENBERGER Nimródjában megjelenik első cikke, és 16 éves korában az oxfordi nemzetközi madártani kongresszuson tartott nagy sikerű előadást a hamvas rétihéja életéről. Ebben a tárgykörben hazai viszonylatban úttörő volt cikke, amely azonban csak 1942-ben jelenik meg az Aquilában, 1935-ben kapta meg a Madártani Intézet rendes megfigyelői oklevelét. A budapesti egyetem jogi karán szerzett doktori diplomát, de egyidejűleg elvégezte Magyaróváron az akkori mezőgazdasági főiskolát, és e tanulmányát Edinburghban folytatta. H. A. GILBERT-tel ők találják meg fészkelve Szigetközben a szürkebegyet. A Hanság madártani feltárása KIRÁLY IVÁN mellett STUDINKA nevéhez fűződik.

Mészáros Sándor – A szegedi Fehér-tó őre, aki alapos madárismereit BERETZK mellet szerezte. Hosszas, kínos betegeskedés után Röszkén 1981. V. 11-én hunyt el.

Lugitsch, Rudolf – sz. Graz, 1888. II. 13. † Mödling, 1975. X. 18. Szülei korai halála miatt a mödlingi árvaházba került, itt végezte el a gimnáziumot, majd a helyi hitelintézet szolgálatába került, és mint számvevőségi tanácsos ment 1950-ben nyugdíjba. De már aktív tisztviselő korában is szorgalmasan látogatta a bécsi Naturhistorisches Museumot, ahol SASSI-val együtt sok esztendőn át dolgozott, éspedig inkább ökofaunisztikában. A Fertő-tó madárvilágának feltárásában oszlopos részt vállalt. Több könyve is megjelent, részben BAUER és FREUNDL társszerzőségében. Intézetünkkel a legszorosabb kapcsolatot tartotta.

Hadnagy Béla – sz. Sepsiszentgyörgy, 1898. XI. 24. † Szeged, 1981. VII. 6. Építész volt és szenvedélyes vadász. Így került a legszorosabb barátságba BERETZK-kel, akivel évtizedeken át együtt bújták a Fehér-tavat. Részletesebben madártani munkásságáról nehéz írni, annyira egybeolvad BERETZK-ével. Annak a kis munkaközösségnek, amely BERETZK köré tömörült, HADNAGY volt a tréfamestere, és a nehéz körülményeken át sokszor az ő jó kedélye segítette át barátait is.

Steffel Gábor – sz. Zalavár, 1909. VI. 14. † Zalavár, 1981. IV. 25. 1947–1973 között a kis-balatoni természetvédelmi terület lelkiismeretes és fáradtságot nem ismerő őre. Madár-

ismeretével ő vitte tovább azt a vonalat, amit előtte GULYÁS képviselt.

Nagy Imre – sz. Győr, 1909. VI. 28. † Győr, 1981. XI. 5. Vadászlapokban már korán, 1925-ben kezdett cikkezni, majd ő is megtalálta az utat a Madártani Intézethez, elsősorban VASVARI MIKLOS-hoz. Első tudományos közleménye azonban csak 1954-ben jelent meg, de ettől fogya 1968-ig 17 kisebb-nagyobb tanulmánya követte egymást az Aquilában. NÅGY IMRE is HEGY MEGHY tanítványa volt, mint általában az akkori győri fiatalok. Faunisztika és ökológia iránt érdeklődött. Utolsó közleményeinek egyikében a kontyos réce első hazai költéséről számolt be. 1957–1959 között a győri Tudományos Ismeretterjesztő Társaság (TIT) madártani csoportját szervezte meg és havi üléseket tartott. Előadókat is hívott meg, ugyancsak ebben a keretben láttak hozzá az országos gólyaszámlálás győr megyei felvételének előkészítéséhez. Jó munkatársakra talált, BÜRNOVSZ-KY-ra, NAGY JÓZSEF-re, RAPOS-ra, CSIBÁ-ra, ZSELLÓ-ra stb. Ezen munkássága alapján kapta meg a győri "Vidámpark" és ennek keretében a "Vadaskert" (állatkert) vezetését, amelyet 1970-ig látott el. Nyugalomba vonulásakor az utóbbi részlegben helyét BURNOVSZKY-nak adta át. A természetet ezután is járta, és továbbra is cikkezett az Aquilában, a vadász- és ismeretterjesztő lapokban. Utolsó éveiben betegsége akadályozta, hogy szemmel tartsa Győr és távolabbi környéke madárvilágát. Halálával a madártani megfigyelőlánc egyik fontos szeme hullott ki.

ifj. Szomjas Gusztáv – sz. Mezőtúr, 1898. XI. 1. † Tardosbánya, 1959. VIII. 3. Öccsével együtt Szomjas Lászlóval 1923-ban kapták meg a Madártani Intézet rendes megfigyelői oklevelét, mivel atyjuk nyomdokain haladva a Hortobágyon tanulmányozták a madár-, főleg a libavonulást, és észleléseikről rendszeresen beszámoltak. Erről tanúskodnak az 1926-ig megjelent madárvonulási jelentések. De ezeken kívül több önálló cikke is megjelent az Aquilában, a vadászlapokban is gyakorta közölte madármegfigyeléseit. A Madártani Intézet gyűjteménye is több értékes adományukkal gazdagodott. 1950-ben Tiszalökről átköltözött Tokajba, majd 1951-ben Tardosbányára. Szorgalmas munkásságában csak betegsége akadályozta élete utolsó éveiben. Mint sportember (korong- és galamblövő) is ismert volt a neve.

INDEX ALPHABETICUS AVIUM

refree of marting artificing (00), 00, 110,	
155	Ardea purpure
Aerocephalus palustris (68)	Asio flammeus
Acrocephalus schoenobaenus 88, 144, 156	Asio otus (65)
Acrocephalus scirpaceus (68), 88, 144, 155	Aythya ferina
Aegithalos caudatus (66), 88	Aythya fuligu
Alauda arvensis (66)	112), 151
Alcedo atthis 153	Aythya marila
Anas acuta (37), (58), (62)	Aythya valisir
Anas elypeata (37), (58)	
Anas crecca (37), (58)	Bombyeilla ga
Anas falcata (58)	Branta canade
Anas formosa (58)	Branta rufico
Anas penelope (37), (58), 140	(52-54)
Anas platyrhynchos (15), (37), (58), (62),	Bubo bubo (11
88, 91, 151	Bucephala ela
Anas poecilorhyncha (58)	(111-112),
Anas querquedula (57), 88, 151	Burhinus oedic
Anas strepera (58)	Buteo buteo (6
Anser albifrons (17), (23), (25), (30),	Buteo lagopus
(32-33), (44), (47-51), (53-54),	Buteo rufinus
(57-58), (62)	
Anser anser $(15-21)$, (25) , (37) , (45) ,	Carduelis cann
(47-49), (53-54), (62)	Carduelis card
Anser anser rubriristris (25)	Carduelis chlor
Anser brachyrhynchus (51), (53)	Carduelis flam
Anser eaeruleseens (51), (53), (58)	Carduelis spin
Anser erythropus (45), (51), (53), (58)	Casarca ferrug
Anser fabalis (17), (35-42), (44), (51),	Certhia brachy
(53), (57-58), (62), (151),	Certhia familia
Anser fabalis fabalis (35)	Charadrius ale
Anser fabalis rossicus (35), (39-41)	Charadrius du
Anser indicus (114)	Ciconia ciconia
Anthus trivialis (69)	Ciconia nigra (
Aptenodytes forsteri 170, (175)	Circaetus galli
Apus pacificus (114)	Circus aerugin
Aquila clanga (62)	Circus cyaneus
Aquila heliaca (62)	Circus macrou
*	

Accipiter gentilis (62), 88, 90, 92

Aerocephalus arundinaceus (68), 88, 143,

Aquila pomarina (63)
Ardea cinerca (58), (61), 149
Ardea purpurca (61)
Asio flammeus (65)
Asio otus (65)
Aythya ferina (58), 105—106, (110), 151
Aythya fuligula (58), 106—108, (110—112), 151
Aythya marila (58), 107—108, (111)
Aythya valisineria (57)

Bombyeilla garrulus (69), 144
Branta canadensis leucopareia (58)
Branta ruficollis (23—34), (45), (47), (52—54)
Bubo bubo (114)
Bucephala elangula (58), 106—108, (111—112), 152
Burhinus oedienemus (65)
Buteo buteo (62), 152
Buteo lagopus (62)
Buteo rufinus (62)

nabina (70), 74, 146, 157 luelis (70), 74 oris (70), 89, 146 nnea 147 nus 13, (70), 146, 157 ginea (114) ydaetyla (67) aris (67) exandrinus (64) ıbius (64), 132 a (61), 139, 149 (16), (61), 88, 90, 92, (114) icus (64) $100 \log (64), 152$ is (63) irus (63)

Circus pygargus (63) Clangula hyemalis 107—108, (111) Coccothraustes coccothraustes 145 Coloeus daurica (114) Coloeus monedula (66), (97) Columba livia domestica (95), 104 Columba palumbus (65), 88, 141 Columba rupestris (114) Coracias garrulus (66), 88 Corvus corax (16) Corvus cornix 13, (66), 82, 88 Corvus frugilegus (66), 141, 154 Crex crex (64) Cucuclus canorus (65), 88 Cygnus columbarius (58) Cygnus cygnus (58), (62)Cygnus olor (16), (58), 150

Delichon urbica (114) Dendrocopos major (66), 88 Dendrocopos syriacus 13, (66), 74, 78, (79)

Egretta alba (58), (61), 149
Egretta garzetta (58)
Egretta intermedia (58)
Emberiza calandra (70)
Emberiza cia 75
Emberiza cirlus 73—78, (79)
Emberiza cirlus 73—78, (79)
Emberiza citrinella (70), 75—76, 89, 148
Emberiza hortulana 75
Emberiza schoeniclus (70), 76
Erithacus rubecula (67), 74, 88, 143, 155

Falco cherrug (64)
Falco columbarius (64), 152
Falco naumanni (64)
Falco peregrinus (64)
Falco subbuteo (64)
Falco tinnunculus (64), 152
Fringilla coelebs (70), 75, 89, 147
Fringilla montifringilla 148, 157
Fulica atra (58), (64), 88, 91, (102), 106, 108, (112), 140

Galerida cristata 74
Gallinago gallinago (58), 140
Gallinula chloropus (64), 88, 91
Garrulus glandarius 88
Glareola nordmanni (117—131), 132—137
Glareola pratincola (122), 132—133
Grus grus (64)

Haliaetus albicilla (24), (58), (63) Hieraetus pennatus (62) Himantopus himantopus (26), 132, 134 Hippolais icterina (69) Hippolais pallida 78, (79) Hirundo rustica (66), 141, 154 Hydroprogne caspia 153

Ixobrychus minutus (61), 88

Jynx torquilla 88, 154

Lanius collurio (69), 74, 88 Lanius excubitor (69), 82, (83) Lanius minor (69) Larus crassirostris (58) Larus fuscus 153 Larus ridibundus (58), (65), 141, 153 Larus tridactylus (58) Limnodromus scolopaceus (58) Limosa limosa (65), 134 Locustella fluviatilis (68), 88 Locustella luscinioides (68), 88 Locustella naevia (68) Loxia curvirostra 13 Lullula arborea (66) Luscinia megarhynchos (67), 88 Luscinia svecica (67)

Mergus albellus (58)
Mergus merganser (58), (114)
Merops apiaster 74, 154
Milvus migrans (58), (62), 140
Milvus milvus (62)
Monticola saxatilis (114)
Motacilla alba (58), (69)
Motacilla flava (69)
Motacilla grandis (58)
Muscicapa albicollis (69)
Muscicapa striata (69), 88, 144

Nucifraga caryocatactes (66) Numenius arquata (64) Nyeticorax nyeticorax 139

Oenanthe isabellina (114) Oenanthe oenanthe 74, (114) Oriolus oriolus (66), 75, 88 Otis tarda (37), (64) Otis tetrax (37), (64)

Pandion haliaetus (64), 152 Panurus biarmicus (66) Parus caeruleus 88 Parus major (66), 74, 88, 142 Passer domesticus (70), 89 Passer montanus (70), 75, 89, (114), Perdix perdix (64)

Pernis apivorus 140 Petronia petronia (114) Phalaerocorax carbo 149 Phasianus eolehicus (58), (64), 88, 91 Phoenicurus ochruros 74, (114) Phyllsocopus collybita 88 Phyllsocopus sibilatrix (69), 88 Pica pica (66), 75, 88, (114) Pieus viridis (66) Platalea leucorodia (62) Plegadis falcinellus (61) Pluvialis squatarola (58) Podiceps cristatus (58) Podiceps griseigena (58), (61) Podiceps ruficollis (58), (61) Prunella collaris (114) Prunella fulvescens (114) Pterochles alchata (37) Pterochles orientalis (37) Pyrrhocorax pyrrhocorax (114)

Rallus aquaticus 88 Recurvirostra avosetta (26), 132, 134 Regulus regulus 13 Remiz pendulinus (66) Riparia riparia 141, 154

Saxicola rubetra (67). Saxicola torquata (67), 74 Serinus serinus (70), 75 Sitta europaea (67), 88 Somateria mollissima 108, (111) Stereorarius longicaudus (65) Streptopelia decaoeto 13, 78, (79), (95—103), 103—104, 16, (173) Streptopelia turtur (65), 74, 88 Strix alueo (65), 88 Sturnus vulgaris (69), 88, 145, 157 Sylvia atricapilla (68), 88, 144, 157 Sylvia borin (68), 88 Sylvia communis 88 Sylvia curruca 88, 144 Sylvia nisoria (67)

Tadorna ferruginea (24)
Tadorna tadorna (25)
Tetrao urogallus 13
Tichodroma muraria (113—116)
Tringa erythropus (65)
Tringa glarcola 153
Tringa nebularia (58)
Tringa ochropus (58), 140
Tringa totanus (65), 134
Troglodytes troglodytes (67), 88
Turdus merula (67), 74, 88, 142
Turdus philomelos (67), 88, 142
Turdus pilaris (67), 81—82, (83), 142, 155
Tyto alba (65), 141, 153

Upupa epops (66), 88

Vanellus vanellus (64), (102), 134, 140, 152

Megjelent a Mezőgazdasági Könyvkiadó Vállalat gondozásában Felelős kiadó az Országos Környezet- és Természetvédelmi Hivatal Madártani Intézete

> 83. 32305 Petőfi Nyomda, Kecskemét Felelős szerkesztő dr. Bankovics Attila Szerkesztő Pomozi Árpádné Műszaki vezető Asbóthné Alvinczy Katalin Műszaki szerkesztő Bujdos Magdolna

Nyomásra engedélyezve 1983. december 2-án Megjelent 1100 példányban, 16,5 (A/5) ív terjedelemben, 45 ábrával Készült az MSZ 5601–59 és 5602–55 szabvány szerint

MG 3729-a-8300

