LEARNING WITH COMPLEX DATA

THOMAS MOREAU

A word about Me

PhD, tenured researcher at

- https://tommoral.github.io/
- thomas.moreau@inria.fr
- Research topics: Optimization, deep learning, unsupervised learning, benchmarks, ML for Physiological and Physical Signals

You will learn...

- About the different types of data
- About method to cast complex data to simple ML tasks
- About the different tasks that can be considered with complex data
- About the caveat of model validation with complex data
- With some case studies with scientific data

Agenda

1. Complex tabular data

- Encoding complex data.
- Automated encoding with skrub.

2. Machine learning with signals (time series)

- What differs with functional data?
- How to get back to the classical ML framework?

3. Complex tasks with signals (forecasting, event detection)

- Framing the problem.
- How to get back to classical ML framework?
- Model validation and stationarity

01 - Complex tabular data

Recall from yesterday...

- Machine learning aims at predicting a certain quantity \boldsymbol{y} from data \boldsymbol{X}
- For a regression task with $y \in \mathbb{R}$, with a typical linear model:

$$y = \theta^{\top} X$$
 with $\theta, X \in \mathbb{R}^d$

- But what if $X
 otin \mathbb{R}^d$? Some features are categories, dates, strings...
- Or if we want more complex models? Think about polynomials

Strategy: features extraction

embed
$$X$$
 as $\widetilde{X} = f(X) \in \mathbb{R}^d$ and learn $y = \theta^\top \widetilde{X}$

Data embedding

- Feature extraction, or data embedding is a process that goes from $X\in\mathcal{X}$ to an euclidean space $\widetilde{X}\in\mathbb{R}^d$.
- Typically, for categories, use Ordinal encoding or One Hot encoding.
- But this can cover more cases: textual data (n-grams), dates, ...
- Can also extra a priori information: interaction, polynomial features, ...

$$\widetilde{X} = \begin{bmatrix} X_i \\ X_i^2 \\ X_i X_j \\ \dots \end{bmatrix}$$

Encoding complex data with fuzzy logic

01-complex-tabular-data.ipynb

02 - Working with signals

What are the different types of signals?

Can you give examples of cases where you would need to process signals with your applications?

Univariate vs Multivariate time-series

Sun spots data

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{t-1} \\ x_t \end{bmatrix}$$

$$X = \begin{bmatrix} x_1^1 & x_1^2 & \dots & x_1^p \\ x_2^1 & x_2^2 & \dots & x_2^p \\ \vdots & \dots & \vdots \\ x_{t-1}^1 & x_{t-1}^2 & \dots & x_{t-1}^p \\ x_t^1 & x_t^2 & \dots & x_t^p \end{bmatrix}$$

Time

Different flavors of signals

Sunspots data

Temperature field

EEG data

Images

Tokamak vector field

How do you define a signal?

$$X_t = f(t) \in \mathbb{R}^d$$
 for $t \in \Omega$

Sunspots data

For univariate time-series, Ω is a time segment and d=1

Tokamak vector field

For vector-fields, Ω is a the domain of definition 3D + the time.

Signals with covariates

$$X = \operatorname{concat} \left(\begin{bmatrix} x_1^1 & x_1^2 & \dots & x_1^p \\ x_2^1 & x_2^2 & \dots & x_2^p \\ \vdots & \dots & & \vdots \\ x_t^1 & x_t^2 & \dots & x_t^p \end{bmatrix}, \begin{bmatrix} z_1^1 & \dots & z_1^q \\ z_2^1 & \dots & z_2^q \\ \vdots & \dots & \vdots \\ z_t^1 & \dots & z_t^q \end{bmatrix} \right)$$
time-series covariates

(e.g. holidays, weather etc.)

Regularly vs Irregularly sampled signals

- Regular grids can also have missing values.
- Sometimes, irregular signals can be resampled (NUFFT)

Learning to look at Signals

00-times_series_visualization.ipynb

What are time series problems

- Classification (e.g. brain computer interfaces, diagnosis from physiological signals like ECG)
- Regression (e.g. brain age prediction from EEG)
- Forecasting (e.g. sales & energy consumption, online user traffic, weather forecast, stock market)
- Anomaly/Event detection (e.g. factory monitoring)
- Segmentation / change point detection (e.g. detecting changes on user demand)
- Survival analysis (churn, attrition, ...)

Focus on signal classification

- We have N signals $X^{(i)}$ and we want to predict $y^{(i)}$.
- Consider the full signal to make the prediction.

Problems

- For features, there is a notion of distance between features: we need to account for this.
- Data are "functional data": dedicated metrics, notion of scale, spectral content, patterns, different lengths/scales
- Generic APIs (like scikit-learn) are much harder to design
- The ecosystem is a lot more scattered / messy...

On the notion of alignment

Which signal is closer to the blue one?

They are at the same Euclidean distance!

Moreover, each $X^{(i)}$ can have its own domain Ω_i , with potentially different sizes.

On the notion of alignment

To cope with this, there are several solutions:

- Extract features invariant to alignment
 - O Global features: mean, variance, frequencies, ...
 - Features based on convolutions e.g. w/ deep learning.
- Use metrics that adapt to unalign signals

Metrics on time series

Euclidean distance

$$D(x^{1}, x^{2}) = \sqrt{\sum_{t} (x_{t}^{1} - x_{t}^{2})^{2}}$$

Dynamic Time Warping (DTW)

Metrics/distances/similarities are everywhere in ML: K-means, K-nearest neighbors, kernels / SVMs, etc.

Clustering signals

K-means result with L2 distance

Dataset

K-means result with DTW distance

Source: https://rtavenar.github.io/blog/dtw.html

Classifying signals

02-classifying-signals.ipynb

03 - Complex tasks with complex data

A side note on samples in TS

We have considered simple tasks where we have one label per signal: i = i

 $p(y^i|x^i_{[1,T]})$

However, classic tasks with signals involve $p(y_t|x_t)$

Horizon vs the context of the prediction

$$p(y_{[t,t+H]}|x_t)$$
 $p(y_t|x_{[t,t-C]})$

One can also extract features

$$p(y_t|z_t) \quad \text{where} \quad z_t = f(x_{[1,t]})$$

What is different with these tasks?

- Samples from a same signal are not *i.i.d.* anymore: samples have regularity, they are autocorrelated
- Generic APIs (like scikit-learn) are once again much harder to design.
- The ecosystem is scattered / messy...
- One can learn with as single "sample".
- The statistical power comes from stationarity.

Looking at time series (and some jargon)

Smoothness, noise and stationarity

- Smoothness measure how close two samples can be.
- Noise can hide the overall pattern
- Non-stationarity are points where the statistics or the dynamic of the signal change

Autocorrelation

• Measures the correlation between x_t and x_{t-k}

$$r_k = \frac{\sum_{t=k+1}^{T} (x_t - \bar{x})(x_{t-k} - \bar{x})}{\sum_{t=1}^{T} (x_t - \bar{x})^2}$$

Can you match the autocorrelation function (ACF) to the data?

Trend?

Seasonality?

Cyclic behavior?

Sales of new one-family houses, USA

US treasury bill contracts

Australian quarterly electricity production

Google daily closing stock price

Evaluating complex tasks with signals

03-evaluating-ts-models.ipynb

We'll now focus on forecasting

$$p(y_t|x_{[t,t-C]}) \quad \text{with} \quad y_t = \begin{cases} x_{t+1} \\ x_{[t+1,t+H]} \end{cases}$$

From Linear Models to auto-regressive (AR) models

$$y = \sum_{j=1}^{p} x_j \theta_j + \theta_0$$

Example: sales(t) =
$$\frac{j=1}{\theta_0 + \theta_1 t} + \theta_2 \cos\left(\frac{2\pi t}{12}\right)$$

trend

seasonal

VS

$$x_t = \sum_{k=1}^p x_{t-k}\theta_k + \theta_0$$

Example: sales(t) = $\theta_0 + \theta_1$ sales(t - 1) + θ_2 sales(t - 2)

Recurrent vs. non-recurrent model

$$x_t = f_{\theta}(t) + g_{\theta'}(z_t)$$

fct. covariates
of t

 $x_t = f_{\theta}(x_{t-1}, ..., x_{t-p}) + g_{\theta'}(z_t)$

- Non-recurrent model
- Prediction can be done together for all time points

- Recurrent model
- Prediction is done time-by-time

- fct. of delayed features
- covariates Prediction is reinjected into the model

FORECASTING WITH A LINEAR MODEL

A non-recurrent model: learn $t \mapsto x(t)$

$$x_t = \theta_0 + \theta_1 t + \theta_2 \cos\left(\frac{2\pi t}{12}\right) + \theta_3 \sin\left(\frac{2\pi t}{12}\right) + \epsilon$$

FORECASTING WITH A LINEAR MODEL

data = trend + seasonal + noise

See: from statsmodels.tsa.seasonal import seasonal_decompose

FORECASTING WITH A LINEAR MODEL

Recurrent model:
$$x_t = \sum_{k=1}^{p} x_{t-k}\theta_k + \theta_0$$
 AR(p)

Hain keelr Happinda. koaléa Tening ovialh evintale de ding 'the signal.

This is a very classical pattern for signals b

- Forecasting,
- Event of dbject detection,
- Anomal detection.

Also called patch based analysis.

A case study

Forecasting Bike usage

04-forecasting-bikes.ipynb

Questions?