Décomposition de Littlewood-Paley et opérateurs paradifférentiels

Sacha Ben-Arous, Mathis Bordet

Ce document a pour objectif d'exposer les principaux théorèmes de paralinéarisation en explicitant tous les outils utilisés, avec pour point de départ la décomposition de Littlewood-Paley. On s'appuiera sur [Mé08] et [GV19] comme références, en particulier les chapitres 4 et 5 du livre de Métivier.

I Décomposition de Littlewood-Paley

Nous allons dans cette section présenter la décomposition de Littlewood-Paley. C'est une décomposition de fonction dans laquelle chaque terme a un spectre borné. Nous allons également présenter des propriétés sur cette décomposition.

DÉFINITION I-1 (Transformée de Fourier). On note $\mathcal{F}: L^1(\mathbb{R}^d) \to C_0^0(\mathbb{R}^d), \ \mathcal{F}f(\xi) := \int_{\mathbb{R}^d} e^{-2i\pi\xi \cdot x} f(\xi) dx$, et on pourra utiliser la notation \hat{f} pour désigner $\mathcal{F}f$. On manipulera de plus le prolongement usuel de \mathcal{F} à l'espace des distributions tempérées $\mathcal{S}'(\mathbb{R}^d)$.

On s'intéresse dans un premier temps à l'existence et, plus précisément, à la construction de fonctions $C^{\infty}(\mathbb{R}^d)$ avec un support au voisinage de 0 mais également constantes au voisinage de 0.

Considérons le cas d=1 et notons $g:\mathbb{R}^+\to\mathbb{R}$

$$g(x) = \begin{cases} 1 & \text{si } 0 \le x \le \frac{1}{2} \\ \exp\left(-\frac{1}{\frac{1}{4} - |x - \frac{1}{2}|^2}\right) & \text{si } \frac{1}{2} \le x \le 1 \\ 0 & \text{sinon} \end{cases}$$

On a alors que g appartient à $C^{\infty}(\mathbb{R})$ puisqu'on peut montrer par récurrence que :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \left[\frac{1}{2}, 1\right], \ g^{(n)}(x) = xQ_n(|x|) \exp\left(-\frac{1}{\frac{1}{4} - |x - \frac{1}{2}|^2}\right)$$
 (1.1)

avec Q_n une fraction rationnelle dont le pôle se situe en 1, ce qui montre la continuité des $(g^{(n)})_{n\in\mathbb{N}}$ par croissances comparées. On étend alors cette construction à \mathbb{R}^d en notant $\psi(x)=g(|x|)$, qui est une fonction $C^{\infty}(\mathbb{R}^d)$ avec $\sup(\psi)\subset B(0,1)$ et est égale à 1 sur $B(0,\frac{1}{2})$.

En posant $\chi(x) = \psi(x) - \psi\left(\frac{x}{2}\right)$, on a ainsi $\operatorname{supp}(\chi(2^{-k}\cdot)) \subset B(0,2^{k+1}) \setminus B(0,2^{k-1})$, et par téléscopage on obtient l'égalité :

$$\forall \xi \in \mathbb{R}^d, \ 1 = \psi(\xi) + \sum_{k=0}^{\infty} \chi(2^{-k}\xi)$$

Lemme I-1. — Pour tout $u \in \mathcal{S}$ on a :

$$\hat{u} = \psi \hat{u} + \sum_{k=0}^{\infty} \chi(2^{-k} \cdot) \hat{u}$$

et la série converge dans l'espace de Schwartz.

PREUVE. Soit $u \in \mathcal{S}$, montrons que pout tout α et $\beta \in \mathbb{N} \times \mathbb{N}^d$, $\|x^{\alpha}\partial^{\beta}(u - \psi(2^{-k}x)u)\|_{\infty} \to_{k\to\infty} 0$ On considère pour cela :

$$\begin{aligned} \left\| x^{\alpha} \partial^{\beta} (g - \psi(2^{-k}x)g) \right\|_{\infty} &= \left\| x^{\alpha} \partial^{\beta} (g - \psi(2^{-k}x)g) \right\|_{\infty, [2^{k-1}; 2^{k+1}]} \\ &\leq \left\| x^{\alpha} \partial^{\beta} g \right\|_{\infty, [2^{k}; 2^{k+1}]} + \left\| x^{\alpha} \partial^{\beta} g (1 - \psi(2^{-k}x)) \right\|_{\infty, [2^{k-1}; 2^{k}]} \end{aligned}$$

Comme $g \in \mathcal{S}$, on a $\|x^{\alpha}\partial^{\beta}g\|_{\infty,[2^k;2^{k+1}]}$ qui tend bien vers 0 lorsque p tend vers $+\infty$. En utilisant la formule de derivation de Leibniz sachant que $\partial^j \psi = O(x^j)$ (en utilisant (1.1)) on a que $\|x^{\alpha}\partial^{\beta}g\|_{[2^k;2^{k+1}]}$ tend bien vers 0 lorsque p tend vers $+\infty$. On utilise ensuite la continuité de la transformé de Fourier et de la transformé de Fourier inverse sur \mathcal{S} .

DÉFINITION I-2. On définit les opérateurs de la décomposition de Littlewood-Paley de la manière suivante :

Pour
$$u \in \mathcal{S}'$$
, $\widehat{\Delta_{-1}u} := \psi \cdot \hat{u}$, $\widehat{\Delta_k u} := \chi(2^{-k} \cdot) \cdot \hat{u}$ si $k \ge 0$

Proposition I-2. — Soit $u \in \mathcal{S}'$, en posant :

$$S_n u := \sum_{k=-1}^{n-1} \Delta_k u$$

On a que:

$$\lim_{n \to \infty} S_n u = u$$

PREUVE. Prenons $u \in \mathcal{S}'$ et $v \in \mathcal{S}$.

$$\langle \mathcal{F}(S_n u), v \rangle = \langle \psi(2^{-n}\xi)\mathcal{F}(u), v \rangle = \langle \mathcal{F}(u), \psi(2^{-n}\xi)v \rangle$$

Or, $\lim_{n\to+\infty} \psi(2^{-n}\xi)v = v$ dans $\mathcal{S}(\mathbb{R}^d)$ par le Lemme I-1. On obtient donc :

$$\mathcal{F}(S_n u) \to \mathcal{F}(u)$$
 dans \mathcal{S}

Par continuité de \mathcal{F}^{-1} , on a finalement $S_n u \to u$ quand $n \to +\infty$.

DÉFINITION I-3 (Espaces de Sobolev). Pour tout $s \in \mathbb{R}^+$, on définit

$$H^{s}(\mathbb{R}^{d}) := \left\{ u \in L^{2}(\mathbb{R}^{d}), \xi \mapsto (1 + |\xi|^{2})^{\frac{s}{2}} \hat{u}(\xi) \in L^{2}(\mathbb{R}^{d}) \right\}$$

et on admet que c'est un espace de Hilbert muni de la norme $||u||_{H^s} := \left(\int_{\mathbb{R}^d} (1+|\xi|^2)^s \hat{u}(\xi)^2 d\xi\right)^{\frac{1}{2}}$

DÉFINITION I-4 (Espaces de Zygmund). Pour tout $\alpha > 0$, on définit

$$C_*^{\alpha}(\mathbb{R}^d) := \left\{ u \in L^2(\mathbb{R}^d), \sup_{k \ge -1} 2^{k\alpha} \|\Delta_k u\|_{L^{\infty}} < +\infty \right\}$$

et on admet que c'est un espace de Hilbert muni de la norme $\|u\|_{C^{\alpha}_*} := \sup_{k \geq -1} 2^{k\alpha} \|\Delta_k u\|_{L^{\infty}}$

LEMME I-3 (Inégalité de Bernstein). — Soit B une boule, $1 \le p \le q \le +\infty$, $k \in \mathbb{N}$, et $\lambda > 0$. Si $u \in L^p$ est tel que $supp(\hat{u}) \subset \lambda B$, alors

$$\max_{|\alpha|=k} \|\partial^{\alpha} u\|_{L^{q}} \lesssim_{k} \lambda^{|\alpha|+d\left(\frac{1}{p}-\frac{1}{q}\right)} \|u\|_{L^{p}}$$

$$\tag{1.2}$$

PREUVE. On commence par justifier que $u \in \mathcal{S}$. En effet, u ayant un spectre borné, sa transformée de Fourier est dans l'espace de Schwartz, et l'opérateur transformée de Fourier étant un automorphisme de \mathcal{S} dans lui-même, on en déduit que $u \in \mathcal{S}$.

Soit $\varphi \in C_c^{\infty}(\mathbb{R}^d)$ qui vaut 1 sur un voisinage de B, on a $\hat{u}(\xi) = \varphi(\lambda^{-1}\xi)\hat{u}(\xi)$, donc $u = \lambda^d u * g$, avec $g := \mathcal{F}^{-1}(\varphi)(\lambda \cdot)$, et donc $\partial^{\alpha} u = \lambda^d u * \partial^{\alpha} g$. L'inégalité de Young donne de plus que : $||f * g||_{L^q} \le ||f||_{L^p} ||g||_{L^r}$, où $1 \le p, r \le q \le +\infty$, et $\frac{1}{p} + \frac{1}{r} = 1 + \frac{1}{q}$. Or :

$$\|\partial^{\alpha} g\|_{L^{r}}^{r} = \int_{\mathbb{R}^{d}} \left| \partial^{\alpha} \left(\mathcal{F}^{-1} \varphi(\lambda x) \right) \right|^{r} dx = \lambda^{|\alpha|r} \int_{\mathbb{R}^{d}} \left| \partial^{\alpha} \left(\mathcal{F}^{-1} (\varphi) \right) (\lambda x) \right|^{r} dx$$

$$\leq \lambda^{|\alpha|r-d} \|\partial^{\alpha} \mathcal{F}^{-1} \varphi\|_{L^{r}}^{r}$$

Ce qui donne bien:

$$\|\partial^{\alpha} u\|_{L^{q}} \leq \lambda^{|\alpha| + d(1 - \frac{1}{r})} \|\partial^{\alpha} \mathcal{F}^{-1} \varphi\|_{L^{r}} \|u\|_{L^{p}} = C_{k} \lambda^{|\alpha| + d(\frac{1}{p} - \frac{1}{q})} \|u\|_{L^{p}}$$

LEMME I-4. — Il existe C > 0 tel que pour tout $1 \le p \le +\infty$, $u \in L^p(\mathbb{R}^d)$,

$$\sup_{n \ge -1} \|S_n u\|_{L^p} \le C \|u\|_{L^p} \qquad \qquad \sup_{k \ge -1} \|\Delta_k u\|_{L^p} \le C \|u\|_{L^p}$$

PREUVE. On écrit $S_n u = 2^{nd} \mathcal{F}^{-1}(\psi(2^n \cdot)) * u$. Par inégalité de Young on obtient :

$$||S_n u||_{L^p} \le ||u||_{L^p} ||2^{nd} \mathcal{F}^{-1}(\psi(2^n \cdot))||_{L^1}$$

On procède de même pour $\|\Delta_k u\|_{L^p}$.

LEMME I-5 (Presque-orthogonalité). — Pour tout $u \in L^2(\mathbb{R}^d)$,

$$\sum_{k>-1} \|\Delta_k u\|_{L^2}^2 \le \|u\|_{L^2}^2 \le 2\sum_{k>-1} \|\Delta_k u\|_{L^2}^2 \tag{1.3}$$

PREUVE. On part de $1 = \psi(\xi) + \sum_{p=0}^{\infty} \chi(2^{-p}\xi)$. Seule deux de ces fonctions ont une intersection de support non vide. On utilise alors : $a^2 + b^2 \le (a+b)^2 \le 2(a^2+b^2)$ et on obtient :

$$\frac{1}{2} \le \psi(\xi)^2 + \sum_{n=0}^{\infty} \chi(2^{-p}\xi)^2 \le 1$$

La seconde inégalité de (1.3) s'en déduit en multipliant l'inégalité ci-dessus par \hat{u} et en utilisant l'identité de Plancherel.

PROPOSITION I-6 (Caractérisation des espaces de Sobolev). — Si $s \in \mathbb{R}^+$, $u \in L^2(\mathbb{R}^d)$, on a alors $u \in H^s(\mathbb{R}^d) \Leftrightarrow \sum_{k \geq -1} 2^{2ps} \|\Delta_k u\|_{L^2}^2 < +\infty$. De plus, il existe C > 0 tel que :

$$\frac{1}{C} \sum_{k>-1} 2^{2ks} \|\Delta_k u\|_{L^2}^2 \le \|u\|_{H^s}^2 \le C \sum_{k>-1} 2^{2ks} \|\Delta_k u\|_{L^2}^2 \tag{1.4}$$

PREUVE. En notant $\langle \xi \rangle = \sqrt{1 + |\xi|^2}$, on a $||u||_{H^s} = ||\langle D \rangle^s u||_{L^2}$, et le Lemme I-5 donne

$$\sum_{k \ge -1} \|\Delta_k \langle D \rangle^s u\|_{L^2}^2 \le \|u\|_{H^s}^2 \le 2 \sum_{k \ge -1} \|\Delta_k \langle D \rangle^s u\|_{L^2}^2$$

La formule de Plancherel et la définition de Δ_k , on obtient l'existence de C > 0 tel que $\forall k \geq -1$

$$\frac{1}{C} 2^{ps} \|\Delta_k u\|_{L^2} \le \|\Delta_k \langle D \rangle^s u\|_{L^2} \le C 2^{ps} \|\Delta_k u\|_{L^2}$$

et donc il existe \tilde{C} tel que :

$$\frac{1}{\tilde{C}} \sum_{k \ge -1} 2^{2ks} \|\Delta_k u\|_{L^2}^2 \le \|u\|_{H^s}^2 \le \tilde{C} \sum_{k \ge -1} 2^{2ks} \|\Delta_k u\|_{L^2}^2$$

ce qui donne l'équivalence des normes voulue.

Lemme I-7 (Injection de Sobolev). — Soit $s > \frac{d}{2}$, si $u \in H^s(\mathbb{R}^d)$ alors $u \in C^{s-\frac{d}{2}}_*(\mathbb{R}^d)$, en particulier $u \in L^{\infty}(\mathbb{R}^d)$, et pour tout $k \in \mathbb{N}$:

$$\|\Delta_k u\|_{L^\infty} \lesssim 2^{k(\frac{d}{2}-s)} \|u\|_{H^s}$$

PREUVE. Soit $u \in H^s(\mathbb{R}^d)$, d'après le résultat précédent on sait que pour tout $k \in \mathbb{N}$, $\Delta_k u \in L^2(\mathbb{R}^d)$, donc sa transformée de Fourier y est de même, et comme elle est à support compact, elle est dans $L^1(\mathbb{R}^d)$. D'après la formule d'inversion, on a ainsi :

$$\Delta_k u(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} \widehat{\Delta_k u}(\xi) d\xi$$

Alors, l'inégalité de Cauchy-Schwarz donne :

$$\|\Delta_k u\|_{L^{\infty}} \leq \|\Delta_k u\|_{L^2} \left| B(0, C2^k) \right|^{\frac{1}{2}} \lesssim 2^{k(\frac{d}{2}-s)} 2^{ks} \|\Delta_k u\|_{L^2} \leq 2^{k(\frac{d}{2}-s)} (\sum_{k \geq -1} 2^{ks} \|\Delta_k u\|_{L^2}^2)^{\frac{1}{2}} \leq 2^{k(\frac{d}{2}-s)} \|u\|_{H^s}$$

Ce qui consitue l'inégalité voulue. On en déduit immédiatement que $\sup_{k\geq -1} 2^{k(s-\frac{d}{2})} \|u\|_{L^{\infty}} \leq \|u\|_{H^s}$, et donc $u\in C^{s-\frac{d}{2}}_*$. De plus, on en déduit que la série de terme général $(\Delta_k u)_{k\in\mathbb{N}}$ est absolument convergente dans L^{∞} , donc par complétude elle converge simplement vers un \tilde{u} . On a déjà vu que cette série converge dans \mathcal{S}' vers u, donc $u=\tilde{u}\in L^{\infty}(\mathbb{R}^d)$.

PROPOSITION I-8. — Soit $(u_k)_{k\geq -1}$ tel que $\exists R>0, \forall k\geq -1, supp \ \hat{u}_k\subset B(0,R2^k)$.

• Soit $\alpha > 0$, si $\sup 2^{k\alpha} ||u||_{L^{\infty}} < +\infty$, alors $u = \sum u_k \in C^{\alpha}_*(\mathbb{R}^d)$, et

$$||u||_{C_*^{\alpha}} \le C \sup_k 2^{k\alpha} ||u_k||_{L^{\infty}}$$

• Soit s > 0, si $\sum 2^{2ks} ||u_k||_{L^2}^2 < +\infty$, alors $u = \sum u_k \in H^s(\mathbb{R}^d)$, et

$$||u||_{H^s}^2 \le C \sum_k 2^{2ks} ||u_k||_{L^2}^2$$

PREUVE. Par hypothèse sur le support des $(u_k)_{k\geq -1}$, pour tout $q\geq -1$, en notant $N:=\lfloor q-1-\log_2(R)\rfloor$, on a :

$$\Delta_q u = \sum_{k \ge q - N} \Delta_q u_k$$

On en déduit :

$$2^{q\alpha} \|\Delta_q u\|_{L^{\infty}} \le 2^{q\alpha} \sum_{k \ge q - N} \|\Delta_q u_k\|_{L - infty} \le 2^{q\alpha} \sum_{k \ge q - N} \|u_k\|_{L^{\infty}} \le \sum_{k \ge q - N} 2^{k\alpha} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \in \mathbb{Z}} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k b_{q - k} \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} \le \sum_{k \ge q - N} a_k \|u_k\|_{L^{\infty}} 2^{(q - k)\alpha} 2^{(q - k)\alpha$$

où:

- $a_k = 2^{k\alpha} ||u_k||_{L^{\infty}}$ si $k \ge -1$, $a_k = 0$ sinon.
- $b_r = 2^{r\alpha}$ si r < N, $b_r = 0$ sinon.

Comme $\alpha > 0$, $(b_r)_{r \in \mathbb{Z}}$ est sommable, et l'inégalité de Young discrète donne :

$$||2^{k\alpha}||\Delta_k u||_{L^{\infty}}||_{\ell^{\infty}} \le ||a_q||_{\ell^{\infty}}||b_r||_{\ell^1}$$

i.e :

$$||u||_{C^{\alpha}_{*}} = \sup_{k} 2^{k\alpha} ||\Delta_{k}u||_{L^{\infty}} \le C \sup_{k} 2^{k\alpha} ||u_{k}||_{L^{\infty}}$$

On conclut alors par définition des espaces de Zygmund. La preuve dans le second cas est parfaitement analogue, en remplaçant α par s, et l'espace L^{∞} par L^2 .

PROPOSITION I-9. — Soit s > 0, $n \in \mathbb{N}$, n > s. Il existe C tel que pour toute famille $(u_k)_{k \in \mathbb{N}}$ dans $H^n(\mathbb{R}^d)$, si pour tout $\alpha \in \mathbb{N}^d$, avec $|\alpha| \le n$:

$$\|\partial^{\alpha} u_k\|_{L^2} \le 2^{k(|\alpha|-s)} \varepsilon_k$$

où $(\varepsilon_k)_{k\in\mathbb{N}}\in\ell^2(\mathbb{N})$, alors la somme $u:=\sum_k u_k\in H^s(\mathbb{R}^d)$, et $\|u\|_{H^s}^2\leq C\sum_k \varepsilon_k^2$.

PREUVE. On remarque que la série de terme général u_k est absolument convergente dans L^2 , donc par complétude elle converge simplement, et u est bien définit. Ensuite :

$$2^{js} \|\Delta_j u\|_{L^2} \le \sum_{k \ge j} 2^{js} \|\Delta_j u_k\|_{L^2} + \sum_{k < j} 2^{js} \|\Delta_j u_k\|_{L^2}$$

Par hypothèse, et en utilisant le Lemme I-4, on a d'une part :

$$\|\Delta_j u_k\|_{L^2} \le C \|u_k\|_{L^2} \le C 2^{-ks} \varepsilon_k$$

D'autre part, en utilisant l'inégalité de Bernstein (1.2),

II Estimations douces et paralinéarisation

Proposition II-1 (Estimations douces pour les paraproduits et leur restes). —

• $\forall s \in \mathbb{R}, u \in L^{\infty}, v \in H^s$,

$$||T_u v||_{H^s} \le C_s ||u||_{L^{\infty}} ||v||_{H^s}$$

• $\forall \alpha \in \mathbb{R}, u \in L^{\infty}, v \in C^{\alpha}_{*}$

$$||T_u v||_{C^{\alpha}} \le C_{\alpha} ||u||_{L^{\infty}} ||v||_{C^{\alpha}}$$

• $\forall r, s \in \mathbb{R}$, tels que r + s > 0, $u \in C^r$, $v \in H^s$,

$$||R(u,v)||_{H^{r+s}} \le C_{r,s} ||u||_{C_*^r} ||v||_{H^s}$$

• $\forall \alpha, \beta \in \mathbb{R}$, tels que $\alpha + \beta > 0, u \in C_*^{\alpha}, v \in C_*^{\beta}$,

$$||R(u,v)||_{C^{\alpha+\beta}} \le C_{\alpha,\beta} ||u||_{C^{\alpha}_{*}} ||v||_{C^{\beta}}$$

Proposition II-2 (Estimations douces pour le produit). —

• $\forall s > 0, \ u, v \in L^{\infty} \cap H^s(\mathbb{R}^d),$

$$||uv||_{H^s} \le C(||u||_{L^{\infty}}||v||_{H^s} + ||v||_{L^{\infty}}||u||_{H^s})$$

• $\forall \alpha \in \mathbb{R}^+ \setminus \mathbb{N}, \ u, v \in C^{\alpha}(\mathbb{R}^d).$

$$||uv||_{C_{\star}^{\alpha}} \le C(||u||_{L^{\infty}}||v||_{C_{\star}^{\alpha}} + ||v||_{L^{\infty}}||u||_{C_{\star}^{\alpha}})$$

Théorème II-3. — Soit F une fonction C^{∞} de \mathbb{R} telle que F(0)=0. Si $u\in H^s(\mathbb{R}^d)$, avec $\rho:=s-\frac{d}{2}>0$, alors

$$F(u) - T_{F'(u)}u \in H^{s+\rho}(\mathbb{R}^d). \tag{2.1}$$

Pour prouver ce théorème, on commence par montrer le lemme suivant :

LEMME II-4. — Soit F une fonction C^{∞} de \mathbb{R} telle que F(0) = 0. Si $u \in H^s(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$, avec $s \geq 0$, alors $F(u) \in H^s(\mathbb{R}^d)$ et

$$||F(u)||_{H^s} \le C_s ||u||_{L^\infty} ||u||_{H^s} \tag{2.2}$$

PREUVE. Si s=0, le résultat se déduit de l'existence d'une fonction G continue telle que F(u)=uG(u). Alors, comme $u\in L^2$ et $G(u)\in L^\infty$ car u est bornée, on obtient bien $F\in L^2$. Quand s>0, on remarque qu'il existe C_α indépendant de u et k telle que :

$$\|\partial^{\alpha} \Delta_k u\|_{L^2} \le C_{\alpha} 2^{(|\alpha| - s)k} \varepsilon_k \tag{2.3}$$

avec $\sum \varepsilon_k^2 = ||u||_{H^s}^2$. En effet, l'inégalité de Bernstein (1.2) puis la caractérisation des espaces de Sobolev (1.4) donnent le résultat voulu. On a de plus,

$$\|\partial^{\alpha} \Delta_k u\|_{L^{\infty}} \le C_{\alpha} 2^{|\alpha|k} \|u\|_{L^{\infty}} \tag{2.4}$$

toujours par l'inégalité de Bernstein. Le lemme de presque-orthogonalité (1.3) donnant que $(\Delta_k u)_{k\in\mathbb{N}}$ est terme général d'une série absolument convergente, la complétude de L^2 fournit alors la convergence simple de cette série, i.e. $S_n u \to u$ dans L^2 . De plus, d'après le Lemme I-4, $||S_p u||_{L^{\infty}} \le C||u||_{L^{\infty}}$. On en déduit que $F(S_n u) \to F(u)$ dans L^2 car :

$$||F(S_n u) - F(u)||_{L^2} \le C \sup_{t \in [0,1]} ||F'(tS_n u - (1-t)u||_{L^\infty} ||S_n u - u||_{L^2} \to 0$$

Un argument télescopique donne alors :

$$F(u) = F(S_0 u) + \sum_{k=0}^{+\infty} F(S_{k+1} u) - F(S_k u) = F(S_0 u) + \sum_{k=0}^{+\infty} m_k \Delta_k u$$
 (2.5)

οù

$$m_k := \int_0^1 F'(S_k u + t\Delta_k u) dt$$

Alors, on obtient dans un premier temps que :

$$\|\partial^{\alpha} F'(S_k u + t\Delta_k u)\|_{L^{\infty}} \le C_{\alpha,F} 2^{|\alpha|k} \|u\|_{L^{\infty}}$$

Pour cela on utilise la règle de la chaine (plus précisement la formule de Faà di Bruno), on majore uniformément les termes en F' avec le Lemme I-4 et on utilise (2.4) pour les termes en u. En intégrant, on obtient alors :

$$\|\partial^{\alpha} m_k\|_{L^{\infty}} \le C_{\alpha,F} 2^{|\alpha|k} \|u\|_{L^{\infty}} \tag{2.6}$$

Donc par la formule de Leibniz et l'inégalité (2.3), on obtient :

$$\|\partial^{\alpha}(m_k\Delta_k u)\|_{L^2} \le C_{\alpha,F} 2^{(|\alpha|-s)k} \|u\|_{L^{\infty}} \varepsilon_k$$

On peut donc conclure par la Proposition I-9.

Preuve du Théorème II-3. On commence par remarquer que quitte à soustraire un terme linéaire au à F(u), on peut supposer que F'(0) = 0. Cela ne change rien à la preuve car :

$$F(u) + au - T_{F'(u)+a}u = F(u) + au - T_{F'(u)}u - T_au = F(u) + au - T_{F'(u)}u - au = F(u) - T_{F'(u)}u$$

Ensuite, comme $\rho > 0$, le Lemme I-7 donne $u \in L^{\infty}(\mathbb{R}^d)$. Par définition, on a

$$T_{F'(u)}u = S_{-3}F'(u) \cdot u_0 + \sum_{k=0}^{\infty} S_{k-2}F'(u) \cdot \Delta_k u$$

En utilisant (2.5), comme $F(S_0u)$ et $S_{-3}F'(u) \cdot u_0$ sont dans H^{∞} , il suffit de prouver que :

$$\sum_{k=0}^{\infty} (m_k - S_{k-2}g) \Delta_k u \in H^{s+\rho}$$

Cela découle de la Proposition I-9, que l'on peut appliquer d'une part grâce à (2.3), et d'autre part car on a l'inégalité :

$$\|\partial^{\alpha}(m_k - S_{k-2}F'(u))\|_{L^{\infty}} \le C_{\alpha}2^{(|\alpha|-\rho)k}$$

Pour obtenir cette dernière, on va montrer séparément :

$$\|\partial^{\alpha}(m_k - F'(S_{k-2}u))\|_{L^{\infty}} \le C_{\alpha} 2^{(|\alpha| - \rho)k} \tag{2.7}$$

$$\|\partial^{\alpha}(F'(S_k u) - S_k F'(u))\|_{L^{\infty}} \le C_{\alpha} 2^{(|\alpha| - \rho)k}$$
(2.8)

On commence par écrire la formule de Taylor avec reste intégral, qui donne

$$F'(S_k u + t\Delta_k u) - F'(S_{k-2}u) = \mu_k w_k$$

avec

$$w_k = (\Delta_{k-2}u + \Delta_{k-1}u + t\Delta_k u)$$
 et $\mu_k = \int_0^1 F''(S_{k-2}u + \tau w_k) d\tau$.

De manière analogue à (2.6), on a

$$\|\partial^{\alpha}\mu_{k}\|_{L^{\infty}} \le C_{\alpha,F}2^{|\alpha|k}\|u\|_{L^{\infty}}$$

Tandis que w_k vérifie

$$\|\partial^{\alpha} w_k\|_{L^{\infty}} \leq C_{\alpha} 2^{\frac{d}{2}k} \|\partial^{\alpha} w_k\|_{L^2} \leq C_{\alpha} 2^{\frac{d}{2}k} 2^{(|\alpha|-s)k} \varepsilon_k \leq \tilde{C}_{\alpha} 2^{(|\alpha|-\rho)k}$$

où l'on a utilisé l'inégalité de Bernstein (1.2), puis (2.3). On en déduit donc que

$$\|\partial^{\alpha}(\mu_k w_k)\|_{L^{\infty}} \le C_{\alpha} 2^{(|\alpha|-\rho)k}$$

Or

$$m_k - F'(S_{k-2}u) = \int_0^1 \mu_k w_k \mathrm{d}t$$

Ce qui donne (2.7). Pour montrer la seconde inégalité, on commence par décomposer en deux membres le terme à majorer :

$$[F'(S_k u) - S_k F'(S_k u)] + [S_k F'(S_k u) - S_k F'(u)] = (I) + (II)$$

L'inégalité de Bernstein (1.2) donne alors

$$\|\partial^{\alpha} S_k(F'(u) - F'(S_k u))\|_{L^{\infty}} \lesssim_{\alpha} 2^{(|\alpha| + \frac{d}{2})k} \|S_k(F'(u) - F'(S_k u))\|_{L^2}.$$

De plus:

$$||S_k(F'(u) - F'(S_k u))||_{L^2} \lesssim ||F'(u) - F'(S_k u))||_{L^2} \lesssim ||u - S_k u||_{L^2} \lesssim 2^{-ks} ||u||_{H^s}$$

grâce au Lemme I-4, puis aux accroissements finis, et finalement avec une majoration du reste géométrique dans la caractérisation des espaces de Sobolev (1.4). Ainsi (II) vérifie l'inégalité (2.8).

Il reste maintenant à étudier (I). Pour cela, on remarque que $S_k u \in H^{\infty}$ car sa transformée de Fourier est à support compact. Alors, d'une part $S_k u \in L^{\infty}$ par le Lemme I-4 car $u \in L^{\infty}$, et sa norme est bornée indépendamment de k. D'autre part, en écrivant la norme usuelle de Sobolev et en utilisant l'inégalité de Bernstein, on a que pour tout $N \in \mathbb{N}$:

$$||S_k u||_{H^{s+N}} \le C||S_k u||_{H^s} + C \sum_{|\alpha|=s+N} ||\partial^{\alpha} S_k u||_{L^2}$$

$$\le ||S_k u||_{H^s} + C_{\alpha,N} 2^{kN} ||S_k u||_{H^s}$$

$$\le C_{\alpha,N} 2^{kN} ||u||_{H^s}.$$

où l'on a observé que $||S_k u||_{H^s} \le ||u||_{H^s}$ à partir de l'écriture utilisant les multiplicateurs de Fourier, et avec la norme de Sobolev adaptée. Alors, le Lemme II-4 donne que $F'(S_k u) \in H^{s+N}$, et

$$||F'(S_k u)||_{H^{s+N}} \le C_{\alpha,N} 2^{kN} ||u||_{H^s} ||u||_{L^{\infty}}$$
(2.9)

En utilisant l'inégalité de Bernstein puis le Lemme I-7, on remarque que pour $\sigma > |\alpha| + \frac{d}{2}$ et $a \in H^{\sigma}(\mathbb{R}^d)$,

$$\|\partial^{\alpha} \Delta_{j} a\|_{L^{\infty}} \le C 2^{j(\frac{d}{2} - \sigma + |\alpha|)} \|a\|_{H^{\sigma}}$$

Et alors, comme $a - S_k a = \sum_{j \ge k} \Delta_j a$, par majoration d'un reste géométrique, on a :

$$\|\partial^{\alpha}(a - S_k a)\|_{L^{\infty}} \le C 2^{k(\frac{d}{2} - \sigma + |\alpha|)} \|a\|_{H^{\sigma}}$$

$$\tag{2.10}$$

En appliquant (2.10) avec $a = F'(S_k u)$ et $\sigma = s + N$ où N est suffisamment grand pour que $s + N > \frac{d}{2} + |\alpha|$, on a

$$\|\partial^{\alpha}(F'(S_{k}u) - S_{k}F'(S_{k}u))\|_{L^{\infty}} \leq C2^{k(\frac{d}{2}-s-N+|\alpha|)} \|F'(S_{k}u)\|_{H^{s+N}}$$
$$\leq C_{\alpha,N}2^{k(\frac{d}{2}-s+|\alpha|)} \|u\|_{H^{s}}$$

où l'on a utilisé (2.9), ce qui donne finalement la majoration attendue pour (I), conclut la preuve de l'inégalité (2.8) et achève donc la preuve du Théorème II-3.

Références

- $\begin{tabular}{ll} [M\'e08] & Guy M\'etivier. \end{tabular} Para-differential \end{tabular} Calculus \end{tabular} and \end{tabular} Applications \end{to} to the \end{tabular} Cauchy \end{tabular} Problem for \end{tabular} Nonlinear \end{tabular} Systems. 2008.$
- [GV19] David Gérard-Varet. Around the Nash-Moser theorem. 2019.