FLUID SLOSHING COUPLED WITH THE SOLID DYNAMICS

$$M_F \ddot{Q} + K_F Q = 0$$

THE ADDED MASS PROBLEM

$$p(\underline{x},t) = \ddot{q}(t)\varphi_p(\underline{x})$$

$$\varphi_P = -x$$
 $\underline{\varphi}_u = \underline{e}_X$ $m_A = M$

EFFECT OF THE SOLID MOTION ON SLOSHING

$$p(\underline{x},t) = \ddot{Q}(t)\phi_p(\underline{x}) + \ddot{q}(t)\varphi_p(\underline{x})$$

$$\int_{\text{free surface}} \left[\ddot{p} + \frac{1}{F_D^2} \nabla p \cdot \underline{e}_Z \right] \phi_P dS = 0$$

$$M_F \ddot{Q} + K_F Q + \left[\int_{\text{Free Surface}} \varphi_p \phi_p \, dS \right] \ddot{q} = 0$$

EFFECT OF THE SOLID MOTION ON SLOSHING

$$p(\underline{x},t) = \ddot{Q}(t)\phi_p(\underline{x}) + \ddot{q}(t)\varphi_p(\underline{x})$$

$$M_F \ddot{Q} + K_F Q = -m_{SF} \ddot{q}$$

Solid-to-fluid coupling mass

$$m_{SF} = \int \varphi_p \phi_p \, dS = \frac{2}{\pi^2}$$
Free Surface

EFFECT OF FLUID ON THE SOLID MOTION

Fluid-to-solid coupling mass

 m_{FS}

Added mass

 m_A

FLUID SLOSHING COUPLED WITH THE SOLID DYNAMICS

$$M_F \ddot{Q} + K_F Q = -m_{SF} \ddot{q}$$

$$(1+m_A)\ddot{q}+q=-m_{FS}\ddot{Q}$$

FLUID SLOSHING COUPLED WITH THE SOLID DYNAMICS

INTERNAL TIME SCALES OF THE FLUID

 S_T

Solid

motion

MULTIMODE DYNAMICS

COUPLINGS AT LOW REDUCED VELCOTIES

COUPLINGS AT LOW REDUCED VELCOTIES

CLASSIFYING PROBLEMS USING DIMENSIONLESS NUMBERS

EFFECT OF THE REDUCED VELOCITY

$$\mathbf{U}_R = \frac{T_{\text{SOLID}}}{T_{\text{FLUID}}}$$

