clustering_hclust

June 11, 2018

```
In [1]: import pandas as pd
    import seaborn as sn
```

0.1 1. Preparing Data

Read data from a specified location

```
In [2]: from IPython.core.interactiveshell import InteractiveShell
       InteractiveShell.ast_node_interactivity = "all"
In [3]: raw_df = pd.read_csv( "/Users/Rahul/Documents/Datasets/Hclust_Beer data.csv",
                              sep = ',', na_values = ['', ''])
       raw_df.columns = raw_df.columns.str.lower().str.replace(' ', '_')
       raw_df.head()
Out [3]:
                    beer cal sod alc cost
          id
                              15 4.7 0.43
          1
               Budweiser 144
       1
           2
                 Schlitz 151
                                19 4.9 0.43
         3
               Lowenbrau 157
                                15 4.9 0.48
                                7 5.2 0.73
         4 Kronenbourg 170
                 Heineken 152
                                11 5.0 0.77
           5
```

0.2 2. Extract Features and Standardize

Two ways to extract the features:

- use pd.filter and pass the list of features to extract for scaling
- Use pd.drop and pass the list of features which need not be extracted

The feature can also be extracted by using dataframeName[[<name of features>]]

```
In [4]: #feature_df = raw_df[['cal', 'sod', 'alc', 'cost']]
    feature_df = raw_df.drop({'id','beer'}, axis =1)
    col_names = feature_df.columns
    #col_names

row_index = raw_df.iloc[:,1]
    #row_index
```

Use rename function, in case renaming of a specific column or index is required

```
In [6]: #feature_scaled_df.rename(index={'Budweiser':'Bud'}, inplace=True)
```

The referening of a row or column can be changed by using the below code chunk. Uncomment and change the values within iloc to understand how referencing works:

In [8]: feature_scaled_df

Out[8]:		cal	sod	alc	cost
	beer				
	Budweiser	0.393336	0.007795	0.351095	-0.470541
	Schlitz	0.630693	0.631369	0.621168	-0.470541
	Lowenbrau	0.834143	0.007795	0.621168	-0.114071
	Kronenbourg	1.274950	-1.239354	1.026278	1.668282
	Heineken	0.664602	-0.615780	0.756205	1.953459
	Old Mil	0.427244	1.254943	0.216058	-1.539953
	Augsburger	1.444491	1.410837	1.431387	-0.684423
	Strohs	0.562877	1.878518	0.351095	-0.541835
	Miller lite	-1.132535	-0.771673	-0.189051	-0.470541
	Bud light	-0.657820	-1.083460	-0.999270	-0.399247
	Coors	0.257703	0.475475	0.216058	-0.399247
	Coors lite	-1.030811	0.007795	-0.459124	-0.327953
	Michelob light	0.088161	-0.615780	-0.324088	0.028518
	Becks	0.596785	0.631369	0.351095	1.882165
	Kirin	0.562877	-1.395248	0.756205	2.096047

0.3 3. Cluster and Visualize

Pabst Hamms

Heilemans

Olympia

Refer to http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html for reference to available methods, metric.

-2.183691 0.007795 -2.889782 -0.827012

0.393336 1.410837 0.621168 -0.470541

-2.048058 -1.395248 -2.079563 -0.256659

Schilitz lite -1.200352 -1.239354 -0.324088 -0.185365

Rather than standardizing the values above We could have set z_score parameter inside the clustermap to 1 for standardizing the column values.

Out[9]: <seaborn.matrix.ClusterGrid at 0x116372748>

