Graduate Homework In Mathematics

Functional Analysis 12

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2023年11月25日

ROBEM I \mathcal{X} is a linear space on \mathbb{C} . p is a seminorm on \mathcal{X} . $p(x_0) \neq 0, x_0 \in \mathcal{X}$. Prove: $\exists f$ is a linear functional on \mathcal{X} such that

- 1. $f(x_0) = 1$
- 2. $|f(x_0)| \leq \frac{p(x)}{p(x_0)}, \forall x \in \mathcal{X}.$

SOUTHON. Consider $p^*: \mathcal{X} \to \mathbb{C}$, $x \mapsto \frac{p(x)}{p(x_0)}$. Obviously p^* is a seminorm on \mathcal{X} . Let $\mathcal{X}_0 := \operatorname{Span}\{x_0\} \subset \mathcal{X}$ is a subspace of \mathcal{X} . $f: \mathcal{X}_0 \to \mathbb{C}$, $\alpha x_0 \mapsto \alpha f(x_0)$, where $f(x_0) = 1$. So f is a linear functional on \mathcal{X}_0 . And $\forall x \in \mathcal{X}_0, x = \alpha x_0, |f(x)| = |\alpha||f(x_0)| \leq |\alpha| = \frac{p(\alpha x_0)}{p(x_0 v)} = p^*(x)$. Thus, by Hahn-Banach theorem, $\exists \tilde{f}: \mathcal{X} \to \mathbb{R}$ is a linear functional on \mathcal{X} such that

- 1. $\tilde{f}(x) = f(x), \forall x \in \mathcal{X}_0$.
- 2. $|\tilde{f}(x)| \leq p^*(x) = \frac{p(x)}{p(x_0)}, \forall x \in \mathcal{X}.$

So
$$\tilde{f}(x_0) = f(x_0)$$
.