	Find	Insert	Delete	
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$	
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	

	Find	Insert	Delete	
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$	
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	
Bucket Array				

	Find	Insert	Delete
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$
Bucket Array	$\theta(1)$	$\theta(1)$	$\theta(1)$

	Find	Insert	Delete	Space
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$	
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	
Bucket Array	$\theta(1)$	$\theta(1)$	$\theta(1)$	

	Find	Insert	Delete	Space
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$	
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	
Bucket Array	$\theta(1)$	$\theta(1)$	$\theta(1)$	Could be large relative to n

	Find	Insert	Delete	Space
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(n)$
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(n)$
Bucket Array	$\theta(1)$	$\theta(1)$	$\theta(1)$	Could be large relative to n

	Find	Insert	Delete	Space
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(n)$
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(n)$
Bucket Array	$\theta(1)$	$\theta(1)$	$\theta(1)$	Could be large relative to n
Hash Table				

	Find	Insert	Delete	Space
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(n)$
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(n)$
Bucket Array	$\theta(1)$	$\theta(1)$	$\theta(1)$	Could be large relative to n
Hash Table				$\theta(n)$

	Find	Insert	Delete	Space
Unsorted Array	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Unsorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Array	$\theta(\log(n))$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Sorted Linked List	$\theta(n)$	$\theta(n)$	$\theta(n)$	$\theta(n)$
Binary Search Tree	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(h), \theta(n)$	$\theta(n)$
AVL Tree	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(\log(n))$	$\theta(n)$
Bucket Array	$\theta(1)$	$\theta(1)$	$\theta(1)$	Could be large relative to n
Hash Table	$\theta(1)$	$\theta(1)$	$\theta(1)$	$\theta(n)$

Universe from which the keys will be taken

U
 Universe from which the keys will be taken

- Universe from which the keys will be taken
- T = [None]*N

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- $h: U \to \{0, 1, ..., (N-1)\}$

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- h: U → {0, 1, ..., (N 1)}
 Hash function that maps keys form the universe to slots in the table

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- $h: U \rightarrow \{0, 1, ..., (N-1)\}$ Hash function that maps keys form the universe to slots in the table

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- $h: U \rightarrow \{0, 1, ..., (N-1)\}$ Hash function that maps keys form the universe to slots in the table

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- $h: U \rightarrow \{0, 1, ..., (N-1)\}$ Hash function that maps keys form the universe to slots in the table

- UUniverse from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- h: U → {0, 1, ..., (N 1)}
 Hash function that maps keys form the universe to slots in the table

- Universe from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- h: U → {0, 1, ..., (N 1)}
 Hash function that maps keys form the universe to slots in the table

- UUniverse from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- $h: U \rightarrow \{0, 1, ..., (N-1)\}$ Hash function that maps keys form the universe to slots in the table

- UUniverse from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- h: U → {0, 1, ..., (N 1)}
 Hash function that maps keys form the universe to slots in the table

- UUniverse from which the keys will be taken
- T = [None]*N

 Hash table of N slots, where the entries will be stored
- h: U → {0, 1, ..., (N 1)}
 Hash function that maps keys form the universe to slots in the table

insert(key, value):


```
insert(key, value):
i = h(key)
```



```
insert(key, value):

i = h(key)

T[i] = value
```



```
insert(key, value):

i = h(key)

T[i] = value
```

find(key):


```
insert(key, value):
i = h(key)
T[i] = value
```

```
find(key):
i = h(key)
```



```
insert(key, value)

i = h(key)

T[i] = value
```

```
find(key)

i = h(key)

return T[i]
```


The Collisions Problem:

multiple keys could be mapped to the same slot

The Collisions Problem:

multiple keys could be mapped to the same slot

An easy solution:

Chaining – store all entries that are mapped to the same slot, in some secondary collection

The Collisions Problem:

multiple keys could be mapped to the same slot

An easy solution:

Chaining – store all entries that are mapped to the same slot, in some secondary collection

Problem: When using chaining, a lot of keys could end up being stored at the same slot \Rightarrow bad performance

Problem: When using chaining, a lot of keys could end up being stored at the same slot \Rightarrow bad performance

Solution: Use a "good" hash function (a function that evens out the collisions)

Problem: When using chaining, a lot of keys could end up being stored at the same slot \Rightarrow bad performance

Solution: Use a "good" hash function (a function that evens out the collisions)

Uniform Hashing Function:

A function that when given a randomly chosen key, it will be equally likely mapped to any of the N slots of T, independently of where any other key has hashed to

$$h(k) = h_2(h_1(k))$$

 $h_1: U \rightarrow (64-bit integers)$

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting

Look at the binary representation of key,

 $h_1: U \rightarrow (64-bit\ integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 Look at the binary representation of key,

 $h_1: U \rightarrow (64-bit\ integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 Look at the binary representation of key,

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Look at the binary representation of key,

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Look at the binary representation of key,

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Look at the binary representation of key,

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Look at the binary representation of key,

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Look at the binary representation of key,

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Look at the binary representation of key,

Take the 8 least significant bytes, and interpret it as a 64-bit 2's complement number

Problem:

This approach ignores part of the data. In a biased set of keys, these parts could be where the keys differ

- i. <u>Common Approaches</u>:
 - Integer Casting

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum

Break key to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$.

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum

Break key to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$. The coding function h_1 would add all the components of key.

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Component Sum

Break key to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$. The coding function h_1 would add all the components of key. That is: $h_1(key) = k_0 + k_1 + ... + k_{m-1}$

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Component Sum

```
Break key to its components: key=(k_0,k_1,k_2,...,k_{m-1}). The coding function h_1 would add all the components of key. That is: h_1(key)=k_0+k_1+...+k_{m-1}
```

"stop"

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Component Sum

```
Break key to its components: key=(k_0,k_1,k_2,...,k_{m-1}). The coding function h_1 would add all the components of key. That is: h_1(key)=k_0+k_1+...+k_{m-1}
```

```
"stop"
```

"tops"

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Component Sum

```
Break key to its components: key=(k_0,k_1,k_2,...,k_{m-1}). The coding function h_1 would add all the components of key. That is: h_1(key)=k_0+k_1+...+k_{m-1}
```

```
"stop"
```

[&]quot;tops"

[&]quot;pots"

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Component Sum

```
Break key to its components: key=(k_0,k_1,k_2,...,k_{m-1}). The coding function h_1 would add all the components of key. That is: h_1(key)=k_0+k_1+...+k_{m-1}
```

```
"stop"
"tops"
"pots"
"spot"
```

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Component Sum

```
Break key to its components: key=(k_0,k_1,k_2,...,k_{m-1}). The coding function h_1 would add all the components of key. That is: h_1(key)=k_0+k_1+...+k_{m-1}
```

```
"stop"
"tops"
"pots"
"spot"
"post"
```

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Component Sum

Break key to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$. The coding function h_1 would add all the components of key. That is: $h_1(key) = k_0 + k_1 + ... + k_{m-1}$

 $h_1: U \to (64-bit integers)$

i. <u>Common Approaches</u>:

Integer Casting

Component Sum

Break key to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$. The coding function h_1 would add all the components of key. That is: $h_1(key) = k_0 + k_1 + ... + k_{m-1}$

Problem:

This approach doesn't take the positions of the components into account

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation
 Let z be an integer ≥ 2

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation Let z be an integer ≥ 2 To code key,

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation

Let z be an integer ≥ 2

To code key, break it to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation

Let z be an integer ≥ 2

To code key, break it to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$

We define: $h_1(key) =$

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation

Let z be an integer ≥ 2

To code key, break it to its components: $key = (k_0, k_1, k_2, \dots, k_{m-1})$

We define: $h_1(key) = k_0 \cdot z^0 + k_1 \cdot z^1 + ... + k_{m-1} \cdot z^{m-1}$

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation

Let z be an integer ≥ 2

To code key, break it to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$

We define: $h_1(key) = k_0 \cdot z^0 + k_1 \cdot z^1 + ... + k_{m-1} \cdot z^{m-1}$

Fun Fact:

 $h_1: U \rightarrow (64-bit integers)$

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation

Let z be an integer ≥ 2

To code key, break it to its components: $key = (k_0, k_1, k_2, ..., k_{m-1})$

We define: $h_1(key) = k_0 \cdot z^0 + k_1 \cdot z^1 + ... + k_{m-1} \cdot z^{m-1}$

Fun Fact: If we take z = 33

 $h_1: U \rightarrow (64-bit integers)$

i. <u>Common Approaches</u>:

- Integer Casting
- Component Sum
- Polynomial Accumulation

Let z be an integer ≥ 2

To code key, break it to its components: $key = (k_0, k_1, k_2, \dots, k_{m-1})$ We define: $h_1(key) = k_0 \cdot z^0 + k_1 \cdot z^1 + \dots + k_{m-1} \cdot z^{m-1}$

Fun Fact: If we take z=33, When coding 50,000 English words, have at most 6 collisions

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation
- ii. Python's Built-in coding function:

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation
- ii. Python's Built-in coding function: hash(key)

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation
- ii. Python's Built-in coding function: hash(key)
 - Can be called with built-in immutable types (int, str, float, tuple)

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation
- ii. Python's Built-in coding function: hash(key)
 - Can be called with built-in immutable types (int, str, float, tuple)
 - User defined classes are unhashable, unless they overload the __hash___ method

- i. <u>Common Approaches</u>:
 - Integer Casting
 - Component Sum
 - Polynomial Accumulation
- ii. Python's Built-in coding function: hash(key)
 - Can be called with built-in immutable types (int, str, float, tuple)
 - User defined classes are unhashable, unless they overload the __hash___ method
 - Make sure that $(x = y) \rightarrow hash(x) = hash(y)$

Hash Functions

$$h(k) = h_2(h_1(k))$$

Hash Functions

$$h(k) = h_2(h_1(k))$$

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

• The Division Method

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

• The Division Method

We define: $h_2(k) =$

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

○ If keys are chosen randomly → satisfies the "Uniform Hashing" property

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- $_{\circ}$ If keys are chosen randomly ightarrow satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- $_{\circ}$ If keys are chosen randomly ightarrow satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- $_{\circ}$ If keys are chosen randomly ightarrow satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

Example: if our keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}:

For N=10:

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- $_{\circ}$ If keys are chosen randomly ightarrow satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- If keys are chosen randomly → satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- $_{\circ}$ If keys are chosen randomly ightarrow satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- If keys are chosen randomly → satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

Example: if our keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}:

A common heuristic is to choose N to be prime.

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- $_{\circ}$ If keys are chosen randomly ightarrow satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

Example: if our keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}:

A common heuristic is to choose N to be prime.

For N=7:

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- If keys are chosen randomly → satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

The Division Method

We define: $h_2(k) = k \mod N$

- If keys are chosen randomly → satisfies the "Uniform Hashing" property
- Long chains might be created, if keys are biased

Example: if our keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}:

A common heuristic is to choose N to be prime.

For N=7:

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

• The Division Method

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method Let p be a prime number, p > |U|

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method Let p be a prime number, p > |U|Let a be a random number from $\{1, 2, ..., p-1\}$

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p - 1\}
Let b be a random number from \{0, 1, 2, ..., p - 1\}
```

 $h_2: (64-bit\ integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) =
```

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [k] \mod N
```

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [ak] \mod N
```

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [ak + b] \mod N
```

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = \lceil (ak+b) \mod p \rceil \mod N
```

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method Let p be a prime number, p > |U|Let a be a random number from $\{1, 2, ..., p-1\}$

Let b be a random number from $\{0, 1, 2, ..., p-1\}$

We define: $h_2(k) = [(ak + b) \mod p] \mod N$

Example: if |U|=60

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [(ak + b) \mod p] \mod N
```

Example: if |U|=60

the keys are:

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [(ak + b) \mod p] \mod N
```

Example: if |U|=60

the keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [(ak + b) \mod p] \mod N
```

Example: if |U|=60

the keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}

we choose:

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [(ak + b) \mod p] \mod N
```

Example: if |U|=60

the keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}

we choose: p=101 a=30 b=6

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [(ak + b) \mod p] \mod N
```

Example: if |U|=60

the keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}

we choose: p=101 a=30 b=6

For a table of size N=10:

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [(ak + b) \mod p] \mod N
```

Example: if |U|=60

the keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}

we choose: p=101 a=30 b=6

For a table of size N=10:

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
We define: h_2(k) = [(ak + b) \mod p] \mod N
```

Example: if |U|=60

the keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}

we choose: p=101 a=30 b=6

For a table of size N=10: $h_2(k) = [(30k + 6) \mod 101] \mod 10$

 $h_2: (64-bit integers) \to \{0, 1, ..., N-1\}$

Common Approaches:

- The Division Method
- The Multiply-Add-and-Divide (MAD) Method

```
Let p be a prime number, p > |U|
Let a be a random number from \{1, 2, ..., p-1\}
Let b be a random number from \{0, 1, 2, ..., p-1\}
```

We define: $h_2(k) = [(ak + b) \mod p] \mod N$

Example: if |U|=60

the keys are: {0, 5, 10, 15, 20, 30, 35, 40, 45, 50, 55}

we choose: p=101 a=30 b=6

For a table of size N=10: $h_2(k) = [(30k + 6) \mod 101] \mod 10$

Worst-Case:

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

I. We assume that our hash function satisfies the "Uniform Hashing" property

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property
- II. Let \propto be the load-factor of the table

Worst-Case: all keys are mapped to the same slot, it takes heta(n) to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property

That is:
$$\propto = \frac{n}{N}$$

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property
- II. Let \propto be the load-factor of the table

$$\downarrow \text{ That is: } \propto = \frac{n}{N}$$

 $\propto =$

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property

That is:
$$\propto = \frac{n}{N}$$

 \propto = expected length of each chain

Worst-Case: all keys are mapped to the same slot, it takes heta(n) to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property
- II. Let \propto be the load-factor of the table

 \propto = expected length of each chain \downarrow

Expected time for *Find* =

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property
- II. Let \propto be the load-factor of the table

Expected time for $Find = \theta(1 + \infty)$

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property
- II. Let \propto be the load-factor of the table

$$\mathbb{I}$$
 That is: $\propto = \frac{n}{N}$

Expected time for $Find = \theta(1 + \infty)$

Calculate the hash function and Access slot

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property
- II. Let \propto be the load-factor of the table

$$\mathbb{I}$$
 That is: $\propto = \frac{n}{N}$

Expected time for $Find = \theta(1 + \infty)$

Calculate the hash function and Access slot

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

 $\downarrow \downarrow$

- I. We assume that our hash function satisfies the "Uniform Hashing" property

$$\mathbb{I}$$
 That is: $\propto = \frac{n}{N}$

Expected time for
$$Find = \theta(1 + \infty)$$

Calculate the hash function and Access slot

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

 $\downarrow \downarrow$

- We assume that our hash function satisfies the "Uniform Hashing" property

That is:
$$\propto = \frac{n}{N}$$

Expected time for $Find = \theta(1 + \infty)$

Calculate the hash function and Access slot

If we always maintain $n \leq N$

Worst-Case: all keys are mapped to the same slot, it takes heta(n) to scan that chain

Expected-Time:

- I. We assume that our hash function satisfies the "Uniform Hashing" property

Expected time for
$$Find = \theta(1 + \infty)$$

Calculate the hash function and Access slot

If we always maintain $n \leq N \quad \Rightarrow \quad$

Worst-Case: all keys are mapped to the same slot, it takes heta(n) to scan that chain

Expected-Time:

 $\downarrow \downarrow$

- We assume that our hash function satisfies the "Uniform Hashing" property

That is:
$$\propto = \frac{n}{N}$$

Expected time for $Find = \theta(1 + \infty)$

If we always maintain
$$n \leq N \quad \Rightarrow \quad \propto \leq 1$$

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

 $\downarrow \downarrow$

- I. We assume that our hash function satisfies the "Uniform Hashing" property
- II. Let \propto be the load-factor of the table

That is:
$$\propto = \frac{n}{N}$$

 \propto = expected length of each chain

Expected time for $Find = \theta(1 + \infty)$

If we always maintain
$$n \leq N \quad \Rightarrow \quad \propto \leq 1 \quad \Rightarrow$$

Worst-Case: all keys are mapped to the same slot, it takes $\theta(n)$ to scan that chain

Expected-Time:

 $\downarrow \downarrow$

- I. We assume that our hash function satisfies the "Uniform Hashing" property
- II. Let \propto be the load-factor of the table

That is:
$$\propto = \frac{n}{N}$$

∝ = expected length of each chain

Expected time for $Find = \theta(1 + \infty)$

If we always maintain $n \le N \implies \infty \le 1 \implies \text{Expected time for } Find = \theta(1)$

•

•

Collision resolution:

•

• Collision resolution: Chaining implemented as UnsortedArrayMap

•

- Collision resolution: Chaining implemented as UnsortedArrayMap
- Hash function:

Collision resolution: Chaining implemented as UnsortedArrayMap

Hash function: using build-in hash() function for coding +

MAD method for compressing

Collision resolution: Chaining implemented as UnsortedArrayMap

Hash function: using build-in hash() function for coding +

MAD method for compressing

Performance:

Collision resolution: Chaining implemented as UnsortedArrayMap

Hash function: using build-in hash() function for coding +

MAD method for compressing

• Performance: always keep n < N