Inhaltverzeichnis

1	Terr	estrisches Laserscanning	2
	1.1	Grundlagen und Systemübersicht	2
	1.2	Messverfahren	2
		1.2.1 Streckenmessung	2
		1.2.2 Winkelmessung (Hz, V)	3
		1.2.3 Intensitätsmessung	3
	1.3	Auswertestrategien	3
	1.4	Registrierung und Georeferenzierung	3
	1.5	Fehlerquellen	3
	1.6	Flächen- und Volumenbestimmung	4
	1.7	Prüfung und Kalibrierung	4
		1.7.1 Komponentenprüfung	4
		1.7.2 Typische Fragestellung der Systemüberprüfung	4
		1.7.3 Prüfverfahren nach VDI/VDE	4

1 Terrestrisches Laserscanning

1.1 Grundlagen und Systemübersicht

- Winkelmessung über Encoder, gleichabständige Tastung.
- Streckenmessung im Impuls- oder Phasenvergleichsverfahren
- Strhachskompensator und/oder Horizontier- (und Zentrier) rorichtung (nicht Zwangsweise notwendig)
- Intensität der reflektierten Signals als vierte Messgrößer ⇒ Keine Messung von Einzelpunkten
- Integration einer Kamera (????????) Standard; Nutzung nur zur Texturierung
- z.T weitere Sensoren wie GNSS-Empfänger integriert ⇒ außerdem:
 - Scannende Tachymeter
 - tachymetrisch messende Scanner

Einteilung nach Reichweite:

Nahbereich 100 bis 200m:

Innenraumaufnahme, (?????) Management, 3D-Stadtmodelle, Industrievermessung, Monitoring...

Fernbereich >200m

Monitoring, Außenraumaufnahme, Bergbau(Tagebau), Naturgefahren

1.2 Messverfahren

2-a Streckenmessung

Impulsverfahren

- Reichweite hoch: $\leq 4km$
- Messrate geringer: $\leq 100MHz$
- · Genauigkeit geringer

Phasenvergleichverfahren

- Reichweite gering $\leq 200m$
- Messrate höher > 1000MHz
- Genauigkeit höher

Kombination

Eigenschaft auch als Kombination.

2-b Winkelmessung (Hz, V)

- Drehgebar mit Inkrementalteilung(Inkrementelle Encoder)
- Äquidistante Drehbewegung steuert Aussendung des Lasersignals
- Genauigkeit 1mgon bis 20mgon

2-c Intensitätsmessung

• reflektierte Signalstärke $\Rightarrow 4D - Laserscanner!$

1.3 Auswertestrategien

1.4 Registrierung und Georeferenzierung

1.5 Fehlerquellen

Strahdivergenz:

- Strahldurchmesser in Entfernung Z: D(Z)
- Strahldurchmesser beim Verlassen des Scanners: D_0
- Wellenlänge: λ

$$D(Z) = D_0 \sqrt{1 + \frac{4}{\pi} \frac{\lambda \cdot Z^2}{D_0^2}} \approx D_0 + \frac{4 \cdot \lambda}{\pi \cdot D_0} \cdot z$$

Beispiel: $\lambda = 660nm$ (roter Laser), $D_0 = 3mm$

Z	D(Z)
10m	6mm
100m	3cm
1km	28,3cm

1.6 Flächen- und Volumenbestimmung

1.7 Prüfung und Kalibrierung

7-a Komponentenprüfung

Entfernungsmessung

- Einzelmessung nicht zu realisierung
- Nutzung von Zielzeichen oder Kugeln
- Vergleich mit Soll-Werten

Winkelmessung

 wie bei Entfernungsmessung, aber Betrachtung von Quer- oder Höhenabweichungen ⇒ zur Zeit systemüberprüfung (da Komponentenüberprüfung schwer realisierbar)

7-b Typische Fragestellung der Systemüberprüfung

- Messrauschen
- Auflösung (Detailiertheit)
- Kantenerkennung
- Oberflächenbeschaffenheit
- Gesamtsystem
- Identifizierung individueller Einflussquellen(Elementarfehler)

7-c Prüfverfahren nach VDI/VDE

Antastabweichung

- Nutzung einer Kugel mit grob bekannten Radius
- zehnmalige Bestimmung des Radius und des Mittelpunktes von verschiedene Position
- radiale Abweichung $\bar{\Delta R} = \frac{1}{n} \sum_{i=1}^{n} v_i$ pro Position
- mittlere Antastabweichung $S_R=\sqrt{\frac{\sum S_{\bar{R}}^2}{m}}$ mit $S_{\bar{R}}^2$ Varianz des Radius pro Person ist.

Abstandsabweichung

- Nutzung im Raum verteilter gleich geformter Kugeln
- Abstände der Kugelmittelpunkte sind bekannt
- Bestimmung der Kugelmittelpunkte und der Abstände aus den Messdaten: $\Delta L = \frac{1}{n} \sum_{i=1}^{n} \Delta L_i$ mit $\Delta L_i = L_{gemessen,i} L_{soll,i}$
- mittlere Abstandsabweichung: $s_{\bar{l}} = \sqrt{\frac{\sum \Delta L_i^2}{n}}$

Ebenheitsabweichung

- Abweichung der Messungen von einer ausgleichenden Ebene
- Nutzung geradeförmiger Prüfkörper

pro Ebene:

$$R_E = \frac{1}{n} \sum_{i=1}^n V_{E,i}$$

mittelere Ebenheitsabweichung:

$$S_E = \sqrt{\frac{\sum S_{E,j}^2}{m}}$$

m ist Anzahl der Ebene, $S_{E,j}$ ist Standabweichung pro Ebene.