

เฉขที่นั่งสอบ:

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ข้อสอบปลายภาคการศึกษาที่ 2/2550

ข้อสอบปลายภาคการศึกษาที่ 2/	/2550
วันอังคารที่ 11 มีนาคม 2551 321 Basic Electronics Lab วิชา CPE 224 Circuit and Electronic Lab.	เวลา 13.00 -15.00 น. น.ศ. วศ.คอมพิวเตอร์ชั้นปีที่ 2A,B
คำสั่ง	
 ข้อสอบมีทั้งหมด 9 ข้อ จำนวน 8 แผ่น(รวมแผ่นนี้) ค ให้น.ศ.ทำข้อสอบทุกข้อลงในช่องว่างที่เตรียมไว้ให้ ใ อนุญาตให้ใช้เครื่องคำนวณตามระเบียบมหาวิทยาลัย อนุญาตให้นำเอกสารเข้าห้องสอบ เขียนเลขที่นั่งสอบ ชื่อ และ รหัสประจำตัว ลงในปก 	นตัวข้อสอบชุดนี้ บ
(ผศ.	. สนั่น สระแก้ว)
Å Q	เื้ออกข้อสอบ
ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิศวกรรมคอมพิวเดอร์เ	แล้ว

ชื่อรหัสประจำตัว.....

- จงอ่านค่าความต้านทานหรือค่าความจุ พร้อมค่าคลาดเคลื่อน จากรหัสและแถบสี

 คังต่อไปนี้ (2 คะแนน)
 ก) แดง แดง สัม ทอง
 บ) น้ำตาล แดง แดง ดำ แดง
 - ค) K104 _____ µF ±_____%
 - 4) 220 _____μF ±____%
- 2. จากสัญญาณที่ปรากฏบน oscilloscope ต่อไปนี้ จงอ่านค่า ความถี่ magnitude และ phase difference ของ output เทียบกับ input (2 คะแนน)

Input - CH1: Volts/Div. = 0.5, Output - CH2: Volts/Div. = 2, Time/Div. = 0.1 ms

Vin	V_{rms}
Vout	V_{rms}
Gain	dB
Phase difference	0
Frequency	kHz

3. จงอธิบายขั้นตอนการใช้ DMM วัคค่าความต้านทาน มาพอสังเขปพร้อมระบุข้อควร ระวัง (2 คะแนน) 4. ด้วยคำอธิบายที่สั้นที่สุด จงอธิบายว่า transistor คืออะไร มีคุณสมบัติอย่างไร สามารถ นำไปใช้งานได้อย่างไรบ้าง (4 คะแนน)

- 5. 3195 CE voltage-divider bias
 - ก) ถ้ากำหนดกราฟคุณสมบัติมาให้ จงอธิบายขั้นตอนการออกแบบวงจรขยาย
 สัญญาณ
 - ข) ปัจจัยที่มีผลต่อ gain ของวงจรมีสิ่งใดบ้าง
 - ค) การตอบสนองต่อความถี่ต่ำถูกกำหนคคัวยสิ่งใคบ้าง
 - ง) Emitter bypass capacitor มีผลต่อวงจรอย่างไร

(4 คะแนน)

6. SCR(Silicon-controlled rectifier) เป็นอุปกรณ์สารกึ่งตัวนำแบบ four-layer หรือ แบบ pnpn ซึ่งประกอบด้วยขั้ว 3 ขั้วคือ anode cathode และ gate หลักการทำงานจะ คล้ายคลึงกับ diode ธรรมดา ทั้งนี้การนำกระแสของ SCR จะถูกควบคุมด้วยแรงคันที่ gate ถ้าวัตถุประสงค์ของการทคลองคือ เพื่อศึกษาถึงคุณสมบัติของ SCR และการ นำไปใช้งาน จงบอกประเด็นที่จะศึกษามา 4 ข้อ (4 คะแนน)

7. จงวาควงจร(พร้อมระบุค่าอุปกรณ์ทุกตัว) single-pole low-pass active filter โดยใช้
OpAmp กำหนดให้ cut-off frequency = 2 kHz และ overall gain = 10 เท่า (4 กะแนน)

รหสวชา ชอวชา การทคลองมีทั้งหมค		หน่วย
การทดลองมทงหมด		٩.٧. ملاء م
	การพศสอง ยะ เรบาง (ระบุษย ละการทคลองเป็นเท่าใค การทคลอง	
	รทคลองใคต้องทำรายงานเป็นแบบ f	
,		•
•		
ชื่อ-สกุล อาจารย์ผู้สอน		
ชื่อ-สถล ผู้ชายสถุบ 1		
ชื่อ-สกุล ผู้ช่วยสอน 2		
ชื่อ-สกุล สมาชิกในกลุ่ม		

9. ระบบทำน้ำอุ่นอัตโนมัติซึ่งประกอบด้วยขคลวดความร้อน(heater) และตัวตรวจจับ อุณหภูมิ(heat sensor) ต่อเป็นวงจรตามรูปที่ 1 ขคลวดความร้อนทำงานเมื่อกระแสไหล ผ่านในช่วง 40 mA – 100 mA (ขคลวดจะเริ่มร้อนเมื่อกระแสไหลผ่านที่ 40mA และจะ ร้อนสูงสุดที่ ค่ากระแส100 mA) ค่าความต้านทานของขคลวดมีค่าคงที่เท่ากับ 100 โอห์ม คุณสมบัติของทรานซิสเตอร์แสดงดังรูปที่ 2 คุณสมบัติของตัวตรวจจับอุณหภูมิ แสดงดังรูปที่ 3 การทำงานของวงจร เมื่ออุณหภูมิน้ำเพิ่มขึ้นสูงกว่า 70 องสา ทรานซิสเตอร์จะนำกระแสต่ำกว่า 40 mA ซึ่งจะทำให้ขดลวดความร้อนไม่ร้อน อุณหภูมิน้ำจะค่อยๆ ลดลง ในช่วงนี้ถ้าอุณหภูมิของน้ำลดลง ทรานซิสเตอร์จะเริ่ม นำกระแสได้มากขึ้น ขดลวดความร้อนจะค่อยๆ ร้อนขึ้น ทั้งนี้ถ้าอุณหภูมิของน้ำลด ต่ำลงถึง 40 องสา ทรานซิสเตอร์จะนำกระแสสูงสุดที่ค่า 100 mA

3.1) จงเขียน DC load line

- 3.2) หาค่า I_B ที่ทำให้ ขคลวคเริ่มร้อน
- 3.3) หาค่า I_B ที่ทำให้ ขคลวคร้อนสูงสุด
- 3.4) หาค่า R1

