

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik

Fakultät III - Prozesswissenschaften

Aufgabe 6.1

In einer Warmwasserheizung soll isobar ein Wassermassenstrom $\dot{m}_{\rm W}$ von $T_{\rm 1W}=30\,^{\circ}{\rm C}$ auf $T_{\rm 2W}=50\,^{\circ}{\rm C}$ isobar aufgeheizt werden. Für die Erwärmung werden die Abgase eines Ölbrenners verwendet, welche als ideales Gas betrachtet werden können.

- a) Wie groß muss $\dot{m}_{\rm W}$ für die Übertragung eines Wärmestroms von $10\,{\rm kW}$ sein?
- b) Der Abgasstrom kühlt von $T_{1A} = 800\,^{\circ}\text{C}$ auf $T_{2A} = 90\,^{\circ}\text{C}$ ab. Wie groß ist der Abgasmassenstrom?

$$\begin{array}{l} \underline{\text{Daten des Wassers:}} \ c_p\big|_{0\,^{\circ}\text{C}}^{50\,^{\circ}\text{C}} = 4.183\,\text{kJ/(kg\,K)} \\ \underline{\text{Daten des Abgases:}} \ c_p^{\circ}\big|_{0\,^{\circ}\text{C}}^{90\,^{\circ}\text{C}} = 1.007\,\text{kJ/(kg\,K)}, \ c_p^{\circ}\big|_{0\,^{\circ}\text{C}}^{800\,^{\circ}\text{C}} = 1.071\,\text{kJ/(kg\,K)} \end{array}$$

Aufgabe 6.2

Ein Luftkompressor, der Luft von $p_1=1$ bar auf $p_2=10$ bar isotherm $(T=285\,\mathrm{K})$ verdichtet, hat eine Förderleistung von $\dot{m}_1=0.1\,\mathrm{kg/s}$ und benötigt eine Antriebsleistung $P_{12}=23\,\mathrm{kW}.$

- a) Wie groß ist der irreversible Anteil der Antriebsleistung, der dissipiert wird?
- b) Wie viel Wärme muss bei der Kompression übertragen werden?

<u>Hinweis:</u> Die Luft soll als ideales Gas mit $R = 0.287 \,\mathrm{kJ/kgK}$ betrachtet werden.