Zadanie: TRA

Trasa – zadanie trudniejsze

Laboratorium z ASD, Egzamin. Dostępna pamięć: 64 MB.

30.01.2016, 13:00:00

W zadaniu rozważamy silnie spójne grafy skierowane, w których wagi krawędzi zmieniają się w czasie. Dla zadanych wierzchołków a i b należy obliczyć najtańszą trasę rozpoczynającą się w wierzchołku a przechodzącą przez wierzchołek b i wracającą do a.

Każda krawędź grafu e = (u, v) ma pewną ustaloną wagę początkową c_e , która następnie ulega zmianie w kolejnych jednostach czasu o p_e (jeśli $p_e > 0$ waga wzrasta, jeśli $p_e < 0$ waga maleje).

W zadaniu rozważamy graf w jednostkach czasu $t \in \{1, \ldots, d\}$, można też założyć, że dla zadanych danych wejściowych wartości w_e i p_e są tak dobrane, że waga zawsze będzie dodatnia.

Zadanie

Napisz program, który:

- \bullet wczyta opis grafu G, numery wierzchołków a i b oraz maksymalną wartość czasu d,
- wyznaczy minimalny koszt trasy z a do b i z powrotem, przy założeniu, że możemy wybrać dowolny czas $t \in \{1, \dots, d\}$,
- wypisze obliczony koszt.

Wejście

W pierwszym wierszu wejścia znajduje się pięć liczb całkowitych $n,m,a,b,d,2 \le n \le 100\,000,1 \le m \le 100\,000,$ $2 \le d \le 10\,000$, gdzie n jest liczbą wierzchołków grafu, m liczbą krawędzi, a numerem wierzchołka startowego, b numerem wierzchołka końcowego $(a \ne b),d$ maksymalnym rozważanym czasem. Wierzchołki są numerowane 1 do n. W następnych m wierszach znajdują się opisy kolejnych krawędzi. Każdy wiersz zawiera sześć liczb całkowitych: n_1,n_2,c_1,p_1,c_2,p_2 . Liczby n_1 i n_2 to numery wierzchołków, które łączy krawędź. Liczby c_1 i c_2 oznaczają początkowe wagi krawędzi n_1 do n_2 oraz z n_2 do n_1 . W każdej kolejnej jednostce czasu waga pierwszej krawędzi zmienia się o p_1 , a waga drugiej krawędzi o p_2 . Wiadomo, że dla $t = \{1, \ldots, d\}$ każda waga będzie dodatnia i nigdy nie przekroczy $10\,000$.

Wyjście

W pierwszym i jedynym wierszu powinna się znajdować dokładnie jedna liczba całkowita — minimalny koszt trasy z a do b i z powrotem.

Przykład

Dla danych wejściowych:

4 4 1 4 3 1 2 5 -1 10 -1 3 2 12 2 7 2 3 4 8 -1 20 -3 1 4 27 -2 3 0

poprawnym wynikiem jest:

23

Jednym z optymalnych rozwiązań dla testu przykładowego jest trasa:

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$$

dla t = 2, kiedy to koszt trasy wynosi 23.