Лекция 08.02.23 (1)

Note 1

c479b17923b04cc899ccd36d430abf6e

Для каких функций определяется интеграл Фурье?

Кусочно-гладких на любом отрезке и абсолютно интегрируемых на $\mathbb{R}.$

Note 2

2e470cdc0266434182a07d52209c1bc

Откуда, в общих чертах, возникает понятие интеграла Фурье?

Из предельного перехода от рядов Фурье.

Note 3

a801b28fdfec4b9fa7c62fd2092d035

Как выглядит ряд Фурье 2l-периодической функции?

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l} \right).$$

Note 4

a59aff7532704ca498a695bca1ca01d1

Как определяются коэффициенты a_n ряда Фурье 2l-периодической функции?

$$\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} \, dx \, .$$

Note 5

9ecca0b0846a4282ba65eb6706848d71

Как определяются коэффициенты b_n ряда Фурье 2l-периодической функции?

$$\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} \, dx \, .$$

Note 6

64752d21c9814733ac5b4fc4a8ebb571

Для каких функций выполняется интегральная формула Фурье?

Кусочно-гладких на любом отрезке и абсолютно интегрируемых на \mathbb{R} .

Note 7

b4fb252816f14260aae170ff59eb8c0d

Как выводится интегральная формула Фурье?

Как предел разложения в ряд Фурье на [-r,r] при $r o \infty$.

Note 8

a459215af9634f8a9ef3a69def0eb908

Что в выводе интегральной формулы Фурье происходит со свободным членом разложения в ряд Фурье?

Он стремится к нулю.

Note 9

58b7f21884cd410fb9bd777ec693ebc4

Как в выводе интегральной формулы Фурье перейти от суммы к интегралу?

Использовать неформальное сходство с интегральной суммой соответствующего интеграла.

Как в выводе интегральной формулы Фурье показать неформальное сходство выражения

$$\sum_{n=1}^{\infty} \frac{1}{l} \left(\int_{-l}^{l} f(x) \cos \frac{\pi n(x-u)}{l} du \right)$$

с соответствующей интегральной суммой?

Ввести $\lambda_k = \frac{\pi n}{l}$, откуда $\Delta \lambda_k = \frac{\pi}{l}$.

Note 11

3b4198d58dcc4333b79c02b0ff82b891

Интеграл Фурье...

$$\int_0^\infty (a(\lambda)\cos\lambda x + b(\lambda)\sin\lambda x) d\lambda.$$

Note 12

c889f142f0cf44e0b06b987221c635da

Как определяется коэффициент $a(\lambda)$ в интеграле Фурье функции f?

$$a(\lambda) = \frac{1}{\pi} \int_{\mathbb{R}} f(x) \cos \lambda x \, dx.$$

Note 13

d1a6cd839e7c4a2786c48a1a3ad6b0fa

Как определяется коэффициент $b(\lambda)$ в интеграле Фурье функции f?

$$b(\lambda) = \frac{1}{\pi} \int_{\mathbb{R}} f(x) \sin \lambda x \, dx.$$

Note 14

3ea5ca54f4a44a11a08a441ee3f997ea

Коэффициенты $a(\lambda)$ и $b(\lambda)$ в интеграле Фурье фактически задают пазакон распределения амплитуд и начальных фаз в зависимости от частоты.

Как называется интеграл

$$\frac{1}{\pi} \int_0^\infty d\lambda \int_{\mathbb{R}} f(u) \cos(\lambda(t-x)) du?$$

Интеграл Фурье.

Note 16

2106cbd921f24b16abbcd357a0ca9e55

Что утверждает интегральная формула Фурье?

Равенство среднего значения односторонних пределов значению интегралу Фурье.

Note 17

0cb0976cbc5442fd977022e6b98b5088

Как интеграл Фурье упрощается для нечётных функций?

Остаются только синусы.

Note 18

ee2657adb0724053ab951a4022088d05

Как интеграл Фурье упрощается для чётных функций?

Остаются только косинусы.

Note 19

405a32411509412b8a3b7a6a0384c14b

Как интеграл Фурье строится для функций, определённых на $(0, +\infty)$?

 \blacksquare Путём (не)чётного продолжения функции на $\mathbb R$.

Лекция 08.02.23 (2)

Note 1

2007680aa1a24a030f84a1302dfa1061

Чем в первую очередь является интеграл, зависящий от параметра?

Функция, аргумент которой играет роль параметра.

Note 2

0e0c024c4c584815bc1daf2b87d001fe

Какие части интеграла, зависящего от параметра, собственно могут зависеть от параметра?

Границы интегрирования и подынтегральная функция.

Note 3

b96f8eb96a4d42cdb1f17860eca8ffe

Какой интеграл рассматривается в теореме о непрерывности интеграла по параметру?

Собственный интеграл по отрезку, не зависящему от параметра.

Note 4

d87dbab278f348399f0e5d5da2d74c2e

Какому множеству принадлежат значения параметра в теореме о непрерывности интеграла по параметру?

Фиксированный отрезок.

Note 5

118ac67b133e45dc9bd834fbf8a12aef

При каком условии мы можем что-либо заключить из теоремы о непрерывности интеграла по параметру?

Подынтегральная функция двух аргументов непрерывна.

На каком множестве определена подынтегральная функция в теореме о непрерывности интеграла по параметру?

Декартово произведение соответствующих отрезков.

Note 7

7e1447d4172a450a926a1e0ccb1fcaf0

Что мы заключаем из теоремы о непрерывности интеграла по параметру?

Интеграл непрерывен по параметру.

Note 8

1655e66842d543a8a4858d63d615d8d8

Пусть $\{f_{\alpha}(x)\}_{\alpha\in A}$ — семейство функций на множестве D. Говорят, что $\{e^{2\pi}f_{\alpha}(x)\underset{\alpha\to\alpha_0}{\mapsto}f(x),\}$ если $\{e^{2\pi}f_{\alpha}(x)\underset{\alpha\to\alpha_0}{\mapsto}f(x),\}$

$$\forall x \in D \quad f_{\alpha}(x) \underset{\alpha \to \alpha_0}{\mapsto} f(x).$$

Note 9

0ad3247020ff4518aea0a4cd78bab48

Пусть $\{f_{\alpha}(x)\}_{\alpha\in A}$ — семейство функций на множестве D. Говорят, что $\{(c^2):f_{\alpha}(x)\underset{\alpha\to\alpha_0}{\Longrightarrow}f(x),\}\}$ если $\{(c^2):f_{\alpha}(x)\underset{\alpha\to\alpha_0}{\Longrightarrow}f(x),\}\}$

$$\lim_{\alpha \to \alpha_0} \rho(f_\alpha, f) = 0.$$

Note 10

0ae1565fef4c4cddbc291219e3597af6

Пусть $\{f_{\alpha}(x)\}_{\alpha\in A}$ — семейство функций на множестве D. Говорят, что $f_{\alpha}(x)\underset{\alpha\to\alpha_0}{\Rightarrow} f(x)$, если (с.:

$$\forall \{\alpha_k\} \subset A \setminus \{\alpha_0\} : \alpha_k \mapsto \alpha_0$$
$$f_{\alpha_k}(x) \underset{k \to \infty}{\Longrightarrow} f(x).$$

(по Гейне)

Пусть $\{f_{\alpha}(x)\}_{\alpha\in A}$ — семейство функций на множестве D. Говорят, что $f_{\alpha}(x)\underset{\alpha\to\alpha_0}{\rightrightarrows} f(x)$, если (с.:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \alpha \in \dot{V}_{\delta}(\alpha_0) \cap A$$

$$|f_{\alpha} - f_{\alpha_0}| < \varepsilon.$$

(по Коши)

Note 12

077ae4731b5248ca9b8596fbfef72eae

Пусть $f:[a,b] imes [c,d] o \mathbb{R}$ непрерывна. Тогда $\forall y_0 \in [c,d]$ при $y o y_0$ (С1)

$$f(x,y) \Longrightarrow f(x,y_0)$$
.

Note 13

7a2ac45c10144aa59a5e9582002f921b

В чём основная идея доказательства теоремы о непрерывности интеграла по параметру?

Равномерная непрерывность функции под интегралом и предельный переход под знаком интеграла.

Note 14

e55223eb41114fe092beeffc38509358

При каком условии можно дифференцировать по параметру под знаком определённого интеграла?

Функция и её производная по параметру непрерывны.

Note 15

e287f587adf9483ebb3c4a0deeaa74b6

Какой интеграл рассматривается в теореме о дифференцировании интеграла по параметру?

Собственный интеграл по отрезку, не зависящему от параметра.

Note 16

c4bb67f8fb544eb982b967fc570ec6b0

Какому множеству принадлежат значения параметра в теореме о дифференцировании интеграла по параметру?

Фиксированный отрезок.

Note 17

ecf4e70ff554f4b935fe30fb72d3b90

При каком условии мы можем что-либо заключить из теоремы о дифференцировании интеграла по параметру?

Функция под интегралом и её производная по параметру непрерывны.

Note 18

7232b8f9240c403b9c4e58d656d379a7

На каком множестве определена подынтегральная функция в теореме о дифференцировании интеграла по параметру?

Декартово произведение соответствующих отрезков.

Note 19

7ae69cc649ef498f8dd4813ce820fb56

Что мы в первую очередь заключаем из теоремы о дифференцировании интеграла по параметру?

Интеграл имеет непрерывную производную по параметру.

Note 20

6b76e966d30c45f898f47c3e102ecbb0

Что мы дополнительно заключаем из теоремы о дифференцировании интеграла по параметру?

Оператор дифференцирования по параметру можно внести под интеграл.

Note 21

24341c10b12c4a51a7a40f068f64f0b

В чём основная идея доказательства теоремы о дифференцировании интеграла по параметру?

Определение производной через предел и предельный переход под знаком интеграла.

Note 22

2a807a4554824403941c3c7ff5a961bc

В доказательстве теоремы о дифференцировании интеграла по параметру, как показать, что

$$\frac{f(x,y+h)-f(x,y)}{h} \underset{h\to 0}{\Rightarrow} \frac{\partial f}{\partial y}(x,y)$$
?

Теорема Лагранжа, определение через (ε, δ) и равномерная непрерывность $\frac{\partial f}{\partial u}$.

Note 23

5a5735d8797344c886913921f7e9007a

Что утверждает теорема об интегрировании интеграла по параметру?

При кратном собственном интегрировании непрерывной функции неважен порядок интегралов.

Note 24

a6589b1e039d4cc598e8d98f047d8a95

На каком множестве определена функция из теоремы об интегрировании интеграла по параметру?

Декартово произведение соответствующих отрезков.

Семинар 13.02.23

Note 1

3d8dc9a6be641fdb16ae59c9e766905

Если (с2:: $\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n\cos nx+b_n\sin nx\right)$ есть ряд Фурье функции f ,)) то пишут (с1::

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
.

Note 2

4b02dc9235904406b993092fcf164df3

Что можно сказать про коэффициенты Фурье функции f, если она является нечётной?

Коэффициенты перед $\cos nx$ обращаются в ноль.

Note 3

28a6a43ea3f84c0791428245b2836c87

Что можно сказать про коэффициенты Фурье функции f, если она является чётной?

Коэффициенты $\sin nx$ обращаются в ноль.

Note 4

a67cfd6b10a54e3582540f8aa941aa25

Ряд Фурье для $f(x) = \frac{\pi - x}{2}$ на $[-\pi, \pi]$. . .

$$\frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin nx.$$

Note 5

c013eb6c81d34b76b548427e583d4706

Пусть $f:[0,\pi]\to\mathbb{R}$ интегрируема. Как разложить f в ряд Фурье только по косинусам?

Продолжить f на $[-\pi,\pi]$ чётным образом.

Note 6

d53acb408ebf46339447f5b81493d648

Пусть $f:[0,\pi] \to \mathbb{R}$ интегрируема. Как разложить f в ряд Фурье только по синусам?

Продолжить f на $[-\pi,\pi]$ нечётным образом.