Periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting by the dual least action principle

Sonia Acinas *

Dpto. de Matemática, Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa (L6300CLB) Santa Rosa, La Pampa, Argentina

sonia.acinas@gmail.com

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto (5800) Río Cuarto, Córdoba, Argentina,

fmazzone@exa.unrc.edu.ar

Abstract

1 Introduction

This paper deals with system of equations of the type:

$$\begin{cases} \frac{d}{dt} D_y \mathcal{L}(t, u(t), u'(t)) = D_x \mathcal{L}(t, u(t), u'(t)) & \text{a.e. } t \in (0, T) \\ u(0) - u(T) = u'(0) - u'(T) = 0, \end{cases}$$
 (P₁)

where $\mathcal{L}:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R},\ d\geqslant 1$, is called the Lagrange function or lagrangian and the unknown function $u:[0,T]\to\mathbb{R}^d$ is absolutely continuous. In other words, we are interested in finding periodic weak solutions of Euler-Lagrange system. This topic was deeply addressed for the Lagrange function

$$\mathcal{L}_{p,F}(t,x,y) \coloneqq \frac{|y|^p}{p} + F(t,x),\tag{1}$$

2010 AMS Subject Classification. Primary: . Secondary: .

Keywords and phrases. .

^{*}SECyT-UNRC and FCEyN-UNLPam

[†]SECyT-UNRC, FCEyN-UNLPam and CONICET

for $1 . For example, the classic book [Mawhin and Willem, 1989] deals mainly with problem <math>(P_1)$, for the lagrangian $\mathcal{L}_{2,F}$, through various methods: direct, dual action, minimax, etc. The results in [Mawhin and Willem, 1989] were extended and improved in several articles, see [Tang, 1995, Tang, 1998, Wu and Tang, 1999, Tang and Wu, 2001, Zhao and Wu, 2004] to cite some examples. Lagrange functions (1) for arbitrary $1 were considered in [Tian and Ge, 2007, Tang and Zhang, 2010] and in this case <math>(P_1)$ is reduced to the p-laplacian system

$$\begin{cases} \frac{d}{dt} \left(u'(t) | u'|^{p-2} \right) = \nabla F(t, u(t)) & \text{a.e. } t \in (0, T) \\ u(0) - u(T) = u'(0) - u'(T) = 0. \end{cases}$$
 (P₂)

In this context, it is customary to call F a potential function, and it is assumed that F(t,x) is differentiable with respect to x for a.e. $t \in [0,T]$ and the following conditions are verified:

- (C) F and its gradient ∇F , with respect to $x \in \mathbb{R}^d$, are Carathéodory functions, i.e. they are measurable functions with respect to $t \in [0,T]$, for every $x \in \mathbb{R}^d$, and they are continuous functions with respect to $x \in \mathbb{R}^d$ for a.e. $t \in [0,T]$.
- (A) For a.e. $t \in [0, T]$, it holds that

$$|F(t,x)| + |\nabla F(t,x)| \le a(|x|)b(t). \tag{2}$$

In this inequality we assume that the function $a:[0,+\infty) \to [0,+\infty)$ is continuous and non decreasing and $0 \le b \in L^1([0,T],\mathbb{R})$.

In [Acinas et al., 2015] it was treated the case of a lagrangian ${\cal L}$ which is lower bounded by a Lagrange function

$$\mathcal{L}_{\Phi,F}(t,x,y) = \Phi(|y|) + F(t,x),\tag{3}$$

where Φ is an N-function (see section 2 for the definition of this concept). In the paper [Acinas et al., 2015] it was assumed a condition of *bounded oscillation* on F (see xxxxx below). In this paper we apply the dual method ([Mawhin and Willem, 1989, Ch. 3]) to obtain solutions of (P_1) .

2 Anisotropic Orlicz and Orlicz-Sobolev spaces

In this section, we give a short introduction to Orlicz and Orlicz-Sobolev spaces of vector valued functions associated to anisotropic Young functions $\Phi: \mathbb{R}^n \to \mathbb{R}_+$, i.e. functions such that $\Phi(x)$ depends on the direction of x, unlike the radial case where $\Phi(x) = \Phi(|x|)$. References for these topics are [Schappacher, 2005, Skaff, 1969, Desch and Grimmer, 2001].

In the framework of anisotropic Sobolev-Orlicz spaces, we can study system of p-laplacian equations as the following example shows.

Example 1. Let $1 < p_1, p_2 < \infty$. We define $\Phi_{p_1, p_2} : \mathbb{R}^n \to \mathbb{R}_+$ by

$$\Phi_{p_1,p_2}(y_1,y_2) \coloneqq \frac{|y_1|}{p_1} + \frac{|y_2|}{p_2}.$$

where $|\cdot|$ is the Euclidean norm on \mathbb{R}^n . Suppose the following Lagrange function

$$\mathcal{L}(t,x,y) = \Phi_{n_1,n_2}(y) + F(t,x).$$

Then the equations (P_1) becomes

$$\begin{cases}
\frac{d}{dt} \left(|u_1'|^{p_1 - 2} u_1' \right) = F_{x_1}(t, u) & \text{a.e. } t \in (0, T) \\
\frac{d}{dt} \left(|u_2'|^{p_2 - 2} u_2' \right) = F_{x_2}(t, u) & \text{a.e. } t \in (0, T) \\
u(0) - u(T) = u'(0) - u'(T) = 0,
\end{cases} (P_3)$$

EN CONSTRUCCION!!!!...FALTA ORDENAR, REVISAR, AGREGAR O QUITAR....

Las F de arriba....qué hacemos????

We apply the method of Lagrange multipliers to solve the problem

$$G(r) = \min\{\Phi(x,y) : \frac{1}{2} \|(x,y)\|_2^2 = \frac{r^2}{2}\}$$

then $F(x,y) = \Phi(x,y) - \lambda \frac{1}{2} \|(x,y)\|_2^2$.

Now, the first order equations are

$$\begin{cases} |x|^{p_1-2}x + \lambda x &= 0\\ |y|^{p_2-2}y + \lambda y &= 0\\ |x|^2 + |y|^2 &= r^2 \end{cases}$$

The critics points are $(x,0,-|x|^{p_1-2})$ and $(0,y,-|y|^{p_2-2})$ with |x|=r and |y|=rrespectively.

In case of $2 \le p_1 \le p_2$, the critic values are $\Phi(x,0) = \frac{r^{p_1}}{p_1}$ and $\Phi(0,y) = \frac{r^{p_2}}{p_2}$ Now, suppose that $x \ne 0$ and $y \ne 0$ then $|x|^2 + |y|^2 = r^2$ and $|y| = |x|^{\frac{p_1-2}{p_2-2}}$ and

 $\lambda = -|x|^{p_1 - 2}.$

If r is bigger enough then $G(r) \sim r^{p_1}$. And, if r is small enough we have $G(r) \sim$ r^{p_2} ????

If $p_1 \le 2$ and $p_2 \le 2$ with one of them different to 2, the second order criterium [?, Thm. —] implies that the minimum appear in x = 0 or y = 0.

These equations are known in the literature as (p_1, p_2) -Laplacian system, see [Yang and Chen, 2013, Pasca and Wang, 2016, Yang and Chen, 2012, Pasca, 2010, Pasca and Tang, 2010, Pasca and Tang, 2011].

On the other hand, anisotropic Orlicz-Sobolev spaces allow to simplify the writing, and they provide the natural frame of statements of the type [Tian and Ge, 2007, Lemma 3.1]. This type of question was what motivated us to use these spaces.

Hereafter we denote by \mathbb{R}^+ the set of all non negative real numbers. A function $\Phi: \mathbb{R}^d \to \mathbb{R}_+$ is called an Young's function if Φ is convex, $\Phi(0) = 0$, $\Phi(-x) = \Phi(x)$ and $\Phi(x) \to +\infty$, when $|x| \to +\infty$. Additionally, we assume that the Young's functions which we deal with, satisfy that $\Phi(x) > 0$ when $x \neq 0$. Following [Schappacher, 2005] we say that Φ is an N_{∞} -function if

$$\lim_{|x|\to\infty}\frac{\Phi(x)}{|x|}=+\infty.$$

Given a Young's function Φ , we define function $A_{\Phi}: \mathbb{R}^+ \to \mathbb{R}^+$ by

$$A_{\Phi}(s) = \min \{ \Phi(x) | \|x\| = s \}, \tag{4}$$

Let us establish some elementary properties of A_{Φ} that we will use in this article.

Proposition 2.1. The function A_{Φ} has the following properties:

- 1. A_{Φ} is continuous,
- 2. $A_{\Phi}(s)/s$ is increasing,
- 3. $A_{\Phi}(|x|)$ is the greatest radial minorant of $\Phi(x)$,
- 4. Φ is N_{∞} if and only if A_{Φ} is.

Proof. It is well known that finite and convex functions defined in finite dimensional vectorial spaces are locally Lipschitz functions (see [Clarke, 2013]). This fact imply item 1 immediately.

In order to prove item 2, suppose 0 < r < s and $x \in \mathbb{R}^d$ with $A_{\Phi}(s) = \Phi(x)$. Then, from the definition of A_{Φ} and the convexity of Φ ,

$$\frac{A_{\Phi}(r)}{r} \leqslant \frac{\Phi\left(\frac{r}{s}x\right)}{r} \leqslant \frac{\Phi\left(x\right)}{s} = \frac{A_{\Phi}(s)}{s}.$$

Property in items 3 and 4 are obtained easily.

We also say that $\Phi: \mathbb{R}^d \to \mathbb{R}^+$ satisfies the Δ_2^{∞} -condition, denoted by $\Phi \in \Delta_2^{\infty}$, if there exist constants K > 0 and $M \geqslant 0$ such that

$$\Phi(2x) \leqslant KH(x),\tag{5}$$

for every $|x| \ge M$.

If Φ is a Young's function we define its *Fenchel conjugate* $\Phi^* : \mathbb{R}^d \to \mathbb{R}^+$ by:

$$\Phi^*(y) = \sup_{x \in \mathbb{R}^d} x \cdot y - \Phi(x) \tag{6}$$

We denote by $\mathcal{M} := \mathcal{M}([0,T],\mathbb{R}^d)$, with $d \ge 1$, the set of all measurable functions (i.e. functions which are limits of simple functions) defined on [0,T] with values on \mathbb{R}^d and we write $u = (u_1, \ldots, u_d)$ for $u \in \mathcal{M}$. For the set of functions \mathcal{M} , as for other similar sets, we will omit the reference to codomain \mathbb{R}^d when d = 1.

Given an N-function Φ we define the modular function $\rho_{\Phi}: \mathcal{M} \to \mathbb{R}^+ \cup \{+\infty\}$ by

$$\rho_{\Phi}(u) \coloneqq \int_0^T \Phi(u) dt.$$

Here $|\cdot|$ is the euclidean norm of \mathbb{R}^d . Now, we introduce the *Orlicz class* $C^{\Phi} = C^{\Phi}([0,T],\mathbb{R}^d)$ by setting

$$C^{\Phi} := \{ u \in \mathcal{M} | \rho_{\Phi}(u) < \infty \}. \tag{7}$$

The Orlicz space $L^{\Phi} = L^{\Phi}([0,T],\mathbb{R}^d)$ is the linear hull of C^{Φ} ; equivalently,

$$L^{\Phi} := \{ u \in \mathcal{M} | \exists \lambda > 0 : \rho_{\Phi}(\lambda u) < \infty \}.$$
 (8)

The Orlicz space L^{Φ} equipped with the Luxemburg norm

$$\|u\|_{L^{\Phi}} \coloneqq \inf \left\{ \lambda \middle| \rho_{\Phi} \left(\frac{v}{\lambda} \right) dt \leqslant 1 \right\},$$

is a Banach space. By $u \cdot v$ we denote the usual dot product in \mathbb{R}^d between u and v. The subspace $E^{\Phi} = E^{\Phi}([0,T],\mathbb{R}^d)$ is defined as the closure in L^{Φ} of the subspace $L^{\infty}([0,T],\mathbb{R}^d)$ of all \mathbb{R}^d -valued essentially bounded functions. It is shown that (see [Schappacher, 2005, Thm. 5.1]) $u \in E^{\Phi}$ if and only if $\rho_{\Phi}(\lambda u) < \infty$ for any $\lambda > 0$. The equality $L^{\Phi} = E^{\Phi}$ is true if and only if $\Phi \in \Delta_2^{\infty}$ (see [Schappacher, 2005, Thm. 5.2]). Another alternative characterization of E^{Φ} , which is particularly useful for us, is that $u \in E^{\Phi}$ if and only if u has absolutely continuous norm, i.e. if $E_n \subset [0,T]$, $n=1,2,\ldots$ then $\|\chi_{E_n} u\| \to 0$ when $|E_n| \to 0$.

A generalized version of Hölder's inequality holds in Orlicz spaces (see [Skaff, 1969, Thm. 4.1]). Namely, if $u \in L^{\Phi}$ and $v \in L^{\hat{\Phi}^*}$ then $u \cdot v \in L^1$ and

$$\int_{0}^{T} v \cdot u \, dt \le 2 \|u\|_{L^{\Phi}} \|v\|_{L^{\Phi^{*}}}. \tag{9}$$

Like in [Krasnosel'skiĭ and Rutickiĭ, 1961] we will consider the subset $\Pi(E^{\Phi},r)$ of L^{Φ} given by

$$\Pi(E^{\Phi}, r) := \{ u \in L^{\Phi} | d(u, E^{\Phi}) < r \}.$$

This set is related to the Orlicz class C^{Φ} by means of inclusions, namely,

$$\Pi(E^{\Phi}, r) \subset rC^{\Phi} \subset \overline{\Pi(E^{\Phi}, r)}$$
(10)

for any positive r (see [Schappacher, 2005, Thm. 5.6]). If $\Phi \in \Delta_2^{\infty}$, then the sets L^{Φ} , E^{Φ} , $\Pi(E^{\Phi}, r)$ and C^{Φ} are equal.

Following to [Desch and Grimmer, 2001] we introduce the next definition.

Definition 2.2. Let $u_n, u \in L^{\Phi}([0,T], \mathbb{R}^d)$. We say that u_n converges monotonically to u if there exists $\alpha_n \in L^{\infty}([0,T],\mathbb{R})$, n = 1, 2, ..., such that $0 \leq \alpha_n(t) \leq \alpha_{n+1}(t)$, $\alpha_n(t) \to 1$ a.e., when $n \to \infty$ and $u_n(t) = \alpha_n(t)u(t)$.

As usual, if $(X, \|\cdot\|_X)$ is a normed space and $(Y, \|\cdot\|_Y)$ is a linear subspace of X, we write $Y \hookrightarrow X$ and we say that Y is *embedded* in X when there exists C > 0 such that $||y||_X \le C||y||_Y$ for any $y \in Y$. With this notation, Hölder's inequality states that $L^{\Phi^*} \hookrightarrow [L^{\Phi}]^*$, where a function $v \in L^{\Phi^*}$ is associated to $\xi_v \in [L^{\Phi}]^*$ being

$$\xi_v(u) = \langle \xi_v, u \rangle = \int_0^T v \cdot u \, dt, \tag{11}$$

In [Desch and Grimmer, 2001, Thm 2.9] it was characterized a subspace of $[L^{\Phi}]^*$ which can be identified with L^{Φ^*} .

Proposition 2.3. Let $F \in [L^{\Phi}([0,T],\mathbb{R}^d)]^*$. Then the following statements are equivalent

- 1. $\xi \in L^{\Phi^*}([0,T],\mathbb{R}^d)$
- 2. ξ satisfies the monotone convergence property, which is if u_n converges monotonically to u then $\langle \xi, u_n \rangle \rightarrow \langle \xi, u \rangle$.

If $\Phi \in \Delta_2^{\infty}$ and Φ is N_{∞} then $L^{\Phi^*}([0,T],\mathbb{R}^d) = [L^{\Phi}([0,T],\mathbb{R}^d)]^*$ (see [Desch and Grimmer, 2001, Thm. 2.9 , Thm. 2.10]).

We define the Sobolev-Orlicz space W^1L^{Φ} by

 $W^1L^{\Phi}([0,T],\mathbb{R}^d) := \{u|u \text{ is absolutely continuous on } [0,T] \text{ and } u' \in L^{\Phi}([0,T],\mathbb{R}^d)\}.$

 $W^1L^{\Phi}([0,T],\mathbb{R}^d)$ is a Banach space when equipped with the norm

$$||u||_{W^1L^{\Phi}} = ||u||_{L^{\Phi}} + ||u'||_{L^{\Phi}}.$$
(12)

And, we introduce the following subspaces of W^1L^{Φ}

$$W^{1}E^{\Phi} = \{u \in W^{1}L^{\Phi} | u' \in E^{\Phi}\},\$$

$$W^{1}E^{\Phi}_{T} = \{u \in W^{1}E^{\Phi} | u(0) = u(T)\}.$$
(13)

We will use repeatedly the decomposition $u=\overline{u}+\widetilde{u}$ for a function $u\in L^1([0,T])$ where $\overline{u}=\frac{1}{T}\int_0^T u(t)\ dt$ and $\widetilde{u}=u-\overline{u}$.

The following lemma is an elementary generalization to anisotropic Sobolev-Orlicz spaces of known results of Sobolev spaces.

Lemma 2.4. Let $\Phi : \mathbb{R}^d \to [0, +\infty)$ be a Young's function and let $u \in W^1L^{\Phi}([0, T], \mathbb{R}^d)$. Let $A_{\Phi} : \mathbb{R}^+ \to \mathbb{R}^+$ be the function defined by (4). Then

1. For every $s, t \in [0, T]$, $s \neq t$,

$$|u(t) - u(s)| \le ||u'||_{L^{\Phi}} |s - t| A_{\Phi}^{-1} \left(\frac{1}{|s - t|}\right)$$
 (Morrey's inequality)
$$||u||_{L^{\infty}} \le A_{\Phi}^{-1} \left(\frac{1}{T}\right) \max\{1, T\} ||u||_{W^{1}L^{\Phi}}$$
 (Sobolev's inequality)

2. We have $\widetilde{u} \in L^{\infty}([0,T],\mathbb{R}^d)$ and

$$\|\widetilde{u}\|_{L^{\infty}} \le T A_{\Phi}^{-1} \left(\frac{1}{T}\right) \|u'\|_{L^{\Phi}}$$
 (Sobolev-Wirtinger's inequality)

3. If Φ is N_{∞} then the space $W^1L^{\Phi}([0,T],\mathbb{R}^d)$ is compactly embedded in the space of continuous functions $C([0,T],\mathbb{R}^d)$.

Proof. By the absolutely continuity of u, Jensen's inequality and the definition of the Luxemburg norm, we have

$$\Phi\left(\frac{u(t) - u(s)}{\|u'\|_{L^{\Phi}}|s - t|}\right) \leqslant \Phi\left(\frac{1}{|s - t|} \int_{s}^{t} \frac{u'(r)}{\|u'\|_{L^{\Phi}}} dr\right)
\leqslant \frac{1}{|s - t|} \int_{s}^{t} \Phi\left(\frac{u'(r)}{\|u'\|_{L^{\Phi}}}\right) dr \leqslant \frac{1}{|s - t|}.$$

By Proposition 2.1(3) we have $A_{\Phi}^{-1}\Phi(x) \ge |x|$, therefore we get

$$\frac{|u(t) - u(s)|}{\|u'\|_{L^{\Phi}} |s - t|} \le A_{\Phi}^{-1} \left(\frac{1}{|s - t|}\right),$$

then 1 holds.

Now, we use Morrey's inequality and Proposition 2.1 (2) and we have

$$|u(t) - \overline{u}| = \left| \frac{1}{T} \int_0^T u(t) - u(s) \, ds \right|$$

$$\leq \frac{1}{T} \int_0^T |u(t) - u(s)| \, ds$$

$$\leq \|u'\|_{L^{\Phi}} T A_{\Phi}^{-1} \left(\frac{1}{T}\right)$$

In order to prove the Sobolev's inequality, we note that, using Jensen's inequality and the definition of $\|u\|_{L^{\Phi}}$, we obtain

$$\Phi\left(\frac{\overline{u}}{\|u\|_{L^{\Phi}}}\right) \leqslant \frac{1}{T} \int_{0}^{T} \Phi\left(\frac{u(s)}{\|u\|_{L^{\Phi}}}\right) ds \leqslant \frac{1}{T}$$

Then by By Proposition 2.1(3)

$$|\overline{u}| \leqslant A_{\Phi}^{-1} \left(\frac{1}{T}\right) \|u\|_{L^{\Phi}}.$$

Therefore, from this and (Sobolev-Wirtinger's inequality) we get

$$\begin{aligned} \|u\|_{L^{\infty}} & \leq |\overline{u}| + \|\widetilde{u}\|_{L^{\infty}} \\ & \leq A_{\Phi}^{-1} \left(\frac{1}{T}\right) \|u\|_{L^{\Phi}} + T A_{\Phi}^{-1} \left(\frac{1}{T}\right) \|u'\|_{L^{\Phi}} \\ & \leq A_{\Phi}^{-1} \left(\frac{1}{T}\right) \max\{1, T\} \|u\|_{W^{1} L^{\Phi}} \end{aligned}$$

In order to prove item 3, we take a bounded sequence u_n in $W^1L^\Phi([0,T],\mathbb{R}^d)$. Since Φ is N_∞ , from Proposition 2.1(4) we obtain $sA_\Phi^{-1}(1/s) \to 0$ when $s \to 0$. Therefore (Morrey's inequality) implies that u_n are equicontinuous. Furthermore (Sobolev's inequality) implies that u_n is bounded in $C([0,T],\mathbb{R}^d)$. Therefore by the Arzela-Ascoli Theorem we obtain a subsequence n_k and $u \in C([0,T],\mathbb{R}^d)$ with $u_{n_k} \to u$ in $C([0,T],\mathbb{R}^d)$.

3 Differentiability Gateâux of action integrals in anisotropic Orlicz spaces

In this section we give a brief introduction to superposition operators between anistropic Orlicz Spaces. We apply these results to obtain Gateâux differentiability of action integrals associated to lagrangian functions defined in Sobolev-Orlicz spaces.

Henceforth we assume that $f:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$ is a Carathéodory function, i.e.

(C) f is measurable with respect to $t \in [0, T]$ for every $x \in \mathbb{R}^d$, and f is a continuous function with respect to $x \in \mathbb{R}^d$ for a.e. $t \in [0, T]$.

Definition 3.1. For $f:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$ we denote by \boldsymbol{f} the Nemytskii (o superposition) operator defined for functions $u:[0,T]\to\mathbb{R}^d$ by

$$fu(t) = f(t, u(t))$$

In the following Theorem we enumerate some known properties for superposition operators definied in anisotropic Orlicz spaces of vectorial functions. For the proofs see [Krasnosel'skii et al., 2011] for scalar functions and [Płuciennik, 1987, Płuciennik, 1985b, Płuciennik, 1985a] for the generalization to \mathbb{R}^d -valued (moreover Banach spaces valued) functions in a anisotropic Orlicz Spaces (moreover modular anisotropic spaces).

Theorem 3.2. We assume that f satisfies condition ((C)) and that $\Phi_1, \Phi_2 : \mathbb{R}^d \to [0, +\infty)$ are anisotropic Young functions. Then

- Measurability. The operator f maps masurable function into measurable functions
- 2. Extensibility. If the operator ${\bf f}$ acts from the ball $B_{L^{\Phi_1}}(r)\coloneqq \{u\in L^{\Phi_1}|\|u\|_{L^{\Phi_1}}< r\}$ into the space L^{Φ_2} or the space E^{Φ_2} then ${\bf f}$ can be extended to $\Pi(E^{\Phi_1},r)$ into space L^{Φ_2} or E^{Φ_2} respectively.
- 3. Continuity. If the operator f acts from $\Pi(E^{\Phi_1}, r)$ into space E^{Φ_2} , then f is continuous.

Acknowledgments

The authors are partially supported by a UNRC grant number 18/C417. The first author is partially supported by a UNSL grant number 22/F223.

References

[Acinas et al., 2015] Acinas, S., Buri, L., Giubergia, G., Mazzone, F., and Schwindt, E. (2015). Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting. *Nonlinear Analysis, TMA.*, 125:681 – 698.

- [Clarke, 2013] Clarke, F. (2013). Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics.
- [Desch and Grimmer, 2001] Desch, W. and Grimmer, R. (2001). On the well-posedness of constitutive laws involving dissipation potentials. *Trans. Amer. Math. Soc.*, (353):5095–5120.
- [Krasnosel'skii et al., 2011] Krasnosel'skii, M., Zabreyko, P., Pustylnik, E., and Sobolevski, P. (2011). *Integral operators in spaces of summable functions*. Mechanics: Analysis. Springer Netherlands.
- [Krasnosel'skiĭ and Rutickiĭ, 1961] Krasnosel'skiĭ, M. A. and Rutickiĭ, J. B. (1961). *Convex functions and Orlicz spaces.* P. Noordhoff Ltd., Groningen.
- [Mawhin and Willem, 1989] Mawhin, J. and Willem, M. (1989). *Critical point theory and Hamiltonian systems*. Springer-Verlag, New York.
- [Pasca, 2010] Pasca, D. (2010). Periodic solutions of a class of nonautonomous second order differential systems with (q, p)-laplacian. *Bulletin of the Belgian Mathematical Society-Simon Stevin*, 17(5):841–851.
- [Paşca and Tang, 2010] Paşca, D. and Tang, C.-L. (2010). Some existence results on periodic solutions of nonautonomous second-order differential systems with (q, p)-laplacian. *Applied Mathematics Letters*, 23(3):246–251.
- [Pasca and Tang, 2011] Pasca, D. and Tang, C.-L. (2011). Some existence results on periodic solutions of ordinary (q, p)-laplacian systems. *Journal of applied mathematics & informatics*, 29(1-2):39–48.
- [Pasca and Wang, 2016] Pasca, D. and Wang, Z. (2016). On periodic solutions of nonautonomous second order hamiltonian systems with (q, p)-laplacian. *Electronic Journal of Qualitative Theory of Differential Equations*, 2016(106):1–9.
- [Płuciennik, 1985a] Płuciennik, R. (1985a). Boundedness of the superposition operator in generalized Orlicz spaces of vector-valued functions. *Bull. Pol. Acad. Sci., Math.*, 33:531â540.
- [Płuciennik, 1985b] Płuciennik, R. (1985b). On some properties of the superposition operator in generalized Orlicz spaces of vector-valued functions. *Ann. Soc. Math. Pol., Ser. I, Commentat. Math.*, 25:321â337.
- [Płuciennik, 1987] Płuciennik, R. (1987). The superposition operator in Musielak-Orlicz spaces of vector-valfued functions. Abstract analysis, Proc. 14th Winter Sch., Srní/Czech. 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 14, 411-417 (1987).
- [Schappacher, 2005] Schappacher, G. (2005). A notion of Orlicz spaces for vector valued functions. *Appl. Math.*, 50(4):355–386.
- [Skaff, 1969] Skaff, M. S. (1969). Vector valued orlicz spaces. ii. *Pacific J. Math.*, 28(2):413–430.

- [Tang, 1995] Tang, C.-L. (1995). Periodic solutions of non-autonomous second-order systems with γ -quasisubadditive potential. *Journal of Mathematical Analysis and Applications*, 189(3):671–675.
- [Tang, 1998] Tang, C.-L. (1998). Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. *Proc. Amer. Math. Soc.*, 126(11):3263–3270.
- [Tang and Wu, 2001] Tang, C. L. and Wu, X.-P. (2001). Periodic solutions for second order systems with not uniformly coercive potential. *J. Math. Anal. Appl.*, 259(2):386–397.
- [Tang and Zhang, 2010] Tang, X. and Zhang, X. (2010). Periodic solutions for second-order Hamiltonian systems with a *p*-Laplacian. *Ann. Univ. Mariae Curie-Skłodowska Sect. A*, 64(1):93–113.
- [Tian and Ge, 2007] Tian, Y. and Ge, W. (2007). Periodic solutions of non-autonomous second-order systems with a *p*-Laplacian. *Nonlinear Anal.*, 66(1):192–203.
- [Wu and Tang, 1999] Wu, X.-P. and Tang, C.-L. (1999). Periodic solutions of a class of non-autonomous second-order systems. *J. Math. Anal. Appl.*, 236(2):227–235.
- [Yang and Chen, 2012] Yang, X. and Chen, H. (2012). Periodic solutions for a non-linear (q, p)-laplacian dynamical system with impulsive effects. *Journal of Applied Mathematics and Computing*, 40(1-2):607–625.
- [Yang and Chen, 2013] Yang, X. and Chen, H. (2013). Existence of periodic solutions for sublinear second order dynamical system with (q, p)-laplacian. *Mathematica Slovaca*, 63(4):799–816.
- [Zhao and Wu, 2004] Zhao, F. and Wu, X. (2004). Periodic solutions for a class of non-autonomous second order systems. *J. Math. Anal. Appl.*, 296(2):422–434.