Representación de números en el computador

CM4F1

Ángel Enrique Ramírez Gutiérrez

aramirezg@uni.edu.pe

Escuela Profesional de Matemática Universidad Nacional de Ingeniería

26 de abril de 2022

Contenido

1. Epsilon de la máquina

2. Representación de números reales

- 2.1. Aritmética en punto flotante
- 2.2. Representación IEEE 754

3. Errores

3.1. Propagación de Errores

Épsilon de la máquina

Los números en punto flotante <u>no</u> están uniformemente distribuidos sobre la recta real, sino que están más próximos cerca del origen y más separados a medida que nos alejamos de él.

Con mayor precisión, en un intervalo fijo $[\underline{\beta}^e, \underline{\beta}^{e+1}]$ los números de punto flotante presentes están igualmente espaciados con una separación igual a $\underline{\beta}^{e-t}$.

Conforme \underline{e} se incrementa, el espaciado entre los mismos crece también. Una medida de este espaciamento es dado por el llamado **epsilon de la máquina**

$$\varepsilon_M = \beta^{1-t}$$
 (1)

el cual representa la distancia entre el número 1 y el número de punto flotante siguiente más próximo, es decir, es el número más pequeño en $\mathbb{F}(\beta,t,L,U)$ tal que $1 + \varepsilon_M > 1$, 1.

Contenido

- 1. Epsilon de la máquina
- 2. Representación de números reales
 - 2.1. Aritmética en punto flotante
 - 2.2. Representación IEEE 754
- 3. Errores
 - 3.1. Propagación de Errores

Representación de números reales I

Sea $\underline{\beta}$ un natural fijo tal que $\underline{\beta} \geq 2$ y sea \underline{x} un número real con un número finito de dígitos x_k con $0 \leq x_k < \beta$ para $k = -m, \dots, n$. La notación:

$$x_{\beta} = (-1)^{s} (x_{n} x_{n-1} \dots x_{1} x_{0} \dots x_{-1} x_{-2} \dots x_{-m}), \quad x_{n} \neq 0$$

es llamada **representación posicional** de x con respecto a la base β .

Luego, cualquier número real puede ser aproximado por números que tienen una representación finita, es decir, fija una base β , se cumple:

$$\forall \varepsilon > 0 \,\forall x_{\beta} \in \mathbb{R}, \exists y_{\beta} \in \mathbb{R} \text{ tal que } |y_{\beta} - x_{\beta}| < \varepsilon,$$
 (2)

donde y_{β} tiene representación posicional finita, [1].

Representación de números reales II

En efecto, dado el número real $x_{\beta}=x_nx_{n-1}\dots x_0 \cdot x_{-1}\dots x_{-m}\dots$ con un número d<u>e dígi</u>tos (que puede ser finito o <u>infin</u>ito), para cualquier $r\geq 1$ se puede construir:

$$\underline{x_{\beta}^{l}} = \sum_{k=0}^{r-1} x_{n-k} \beta^{n-k}, \quad \underline{x_{\beta}^{u}} = x_{\beta}^{l} + \beta^{n-r+1}$$

que tienen \underline{r} dígitos, tal que $x^{\lambda}_{\beta} < x_{\beta} < x^{u}_{\beta}$ y $x^{u}_{\beta} - x^{l}_{\beta} = \beta^{n-r+1}$. Si elegimos r tal que $\beta^{n-r+1} < \varepsilon$ entonces tomando y_{β} igual a x^{l}_{β} o x^{u}_{β} se obtiene la desigualdad (2).

Esto justifica la representación de números reales en un computador.

Representación de números reales III

El hecho que sólo un subconjunto $\mathbb{F} \subset \mathbb{R}$ es representado en un computador trae severos problemas prácticos, en principio, la representación de cualquier número real $r \in \mathbb{R}$ mediante un elemento de \mathbb{F} . Además, observe que si $\underline{x},\underline{y} \in \mathbb{R}$, luego, si operamos con ellos, el resultado puede no ser un elemento de \mathbb{F} , esto motiva definir una **arimética** sobre \mathbb{F} .

El modo más simple de resolver el primer problema es **redondear** $x \in \mathbb{R}$ de modo que el número redondeado pertenezca a \mathbb{F} . Una forma de hacerlo es como sigue: Dado $x \in \mathbb{R}$ en la notación científica, reemplazamos el valor de x por el valor $fl(x) \in \mathbb{F}$ definido como sigue:

$$fl(x) = (-1)^s (0.a_1 a_2 \dots a_{t-1} \tilde{a}_t) \cdot \beta^e, \quad \tilde{a}_t = \begin{cases} a_t, & \text{si } a_{t+1} < \beta/2, \\ a_t + 1, & \text{si } a_{t+1} \ge \beta/2 \end{cases}$$
 (3)

Representación de números reales IV

Observe que fl(x) = x para todo $x \in \mathbb{F}$. Más aún, $fl(x) \leq fl(y)$ siempre que $x \leq y$ para todo $x, y \in \mathbb{R}$. Si $x \in \mathbb{R}$ y fl(x) su respectiva aproximación en punto flotante, entonces el error relativo es:

luego:
$$\frac{\delta(x) = \frac{fl(x) - x}{x}, \quad x \neq 0}{fl(x) = x(1 + \delta(x))}$$

 $\dot{\epsilon}$ Es posible dar una cota para $\delta(x)$ que sea independiente de x ?

Representación de números reales V

Dentro del sistema de punto flotante el número cuyo valor absoluto es el más pequeño, es:

$$+(0.\underbrace{1000000...0}_{t \text{ digitos}})_{\beta} \cdot \beta^{L} = \beta^{L-1}$$

para obtener el sucesor inmediato de β^{m-1} , debemos sumar:

$$+(0.\underbrace{0.00...01}_{t \text{ digitos}}\beta^L = \beta^{L-t}$$

de lo anterior se observa que la distancia entre dos números consecutivos en el intervalo $[\beta^{L-1},\beta^L]$ resulta igual à β^{L-t} .

Representación de números reales VI

Análogamente en el intervalo $[\beta^j, \beta^{j+1}]$ donde $L-1 \leq j \leq U-1$, la distancia entre dos números consecutivos es siempre igual a

$$\beta^{j+1-t}$$
.

Luego, si la computadora representa a los números **por redondero** el error introducido es a lo más:

$$\frac{1}{2}\beta^{j+1-t},$$

y si representa por truncamiento el error introducido es a lo más:

$$\beta^{j+1-t}$$
,

obteniéndose de esta forma una medida para el error absoluto. Dado-que:

$$\beta^j \le |x| \Rightarrow \frac{1}{|x|} \le \frac{1}{\beta^j}$$

al realizar el cociente entre β^j se obtiene que el error relativo resulta:

Representación de números reales VII

- Por redondeo: $|\delta(x)| \leq \frac{1}{2}\beta^{1-n}$.
- Por truncamiento: $|\delta(x)| \leq \beta^{1-n}$.

donde $\varepsilon_M=\beta^{1-n}$ es el epsilon de la máquina.

Representación de números reales VIII

Sea $\underline{\oplus}$ la suma en el sistema de punto flotante $\underline{\mathbb{F}(\beta,t,L,U)}$ y así resulta $\underline{1} \oplus \varepsilon_M = 1 + \beta^{1-n} > 1$. Sin embargo, si $0 < \varepsilon_1 < \varepsilon_M$ se obtiene:

$$1 \oplus \varepsilon_1 = 1$$

Proposición:

Si $x \in \mathbb{R}$ es tal que $x_{min} \leq |x| \leq x_{max}$, entonces:

$$fl(x) = x(1+\delta)$$
 tal que $|\delta| \le u$

donde

$$u = \frac{1}{2}\beta^{1-t} = \frac{1}{2}\varepsilon_M$$

llamado error de redondeo unitario.

Representación de números reales IX

De la Proposición anterior tenemos la siguiente cota para el error relativo:

$$ER(x) = \frac{|x - fl(x)|}{|x|} \le u$$

y para el error absoluto se tiene:

$$\underbrace{EA(x) = |x - fl(x)| \le \beta^{e-t} |(\underline{a_1 \dots a_t . a_{t+1} \dots) - (\underline{a_1 \dots \tilde{a}_t})|}_{}$$

de (3) resulta:

$$|(a_1 \dots a_t, a_{t+1} \dots) - (a_1 \dots \tilde{a}_t)| \le \beta^{-1} \frac{\beta}{2}$$

y así se obtiene:

$$EA(x) \le \frac{1}{2}\beta^{e-t}.$$

Para más detalles revisar [1, 2].

Aritmética en punto flotante I

Usaremos el símbolo \square para denotar una se las siguientes operaciones aritméticas: $\underline{+},\underline{-},\times,\div$. Si $x,y\in\mathbb{F}$ es decir, números en punto flotante con t dígitos en la mantisa, entonces, en general, $x\square y\in\mathbb{F}$.

Por ejemplo, en $\mathbb{F}(10,3,-5,5)$ considere $x=0.123\times 10^4$ e $y=0.456\times 10^{-3}$, luego:

$$x+y=1230+0.000456=1230.000456 \Rightarrow x+y=0.1230000\underline{456\times 10^4}\notin \mathbb{F}(10,3,-5,5)$$

Por tanto, en general, después de realizar una operación aritmética elemental \square será necesario redondear el resultado. Esto puede resumirse en dos pasos:

- Calcular $x \square y$ con la mayor precisión posible.
- Redondear el resultado a t dígitos.

Este resultado es denotado por $fl(x \square y)$.

Aritmética en punto flotante II

Para $x,y\in\mathbb{R}$, las operaciones de suma, resta, multiplicación y división en el sistema de punto flotante \mathbb{F} , se definen:

- 1. x + y := fl(fl(x) + fl(y)).
- 2. x y := fl(fl(x) fl(y)).
- $3. x \times y := fl(fl(x) \times fl(y)).$

Suma/Resta en punto flotante

Sean $x,y\in\mathbb{F}(\beta,t,L,U)$. Luego $x\pm y$ se calcula como sigue:

- 1. **Alinear mantisas.** Tomar el número con menor exponente y desplazar su mantisa a la derecha hasta igualar los exponentes.
- 2. Sumar/Restar mantisas.
- 3. Normalizar el resultado si fuera necesario.
- 4. Redondear la mantisa al número de dígitos apropiado.
- 5. Normalizar si fuera preciso.

Ejemplo:

Considere $\mathbb{F}(10,3,-5,5)$ y sean $x=0.433\times 10^2\in\mathbb{F}$ e $y=0.745\times 10^0$. Luego:

- Alineamos mantisas: $x=0.433\times 10^2$ e $y=0.00745\times 10^2$.
- Sumamos mantisas: $x+y=0.44045\times 10^2$
- No es necesario normalizar.
- Redondeamos a 3 dígitos: $x + y = 0.440 \times 10^2$.
- No es necesario normalizar.

Por tanto: $x + y = 0.440 \times 10^2$.

Ejemplo:

Cuando \underline{x} e \underline{y} son números reales se calcula $\underline{fl(x)}, f\underline{l(y)}$ y se procede como el caso anterior. Por ejemplo, calcule en $\mathbb{F}(10,3,-5,5)$ la suma de $3\pi+0.006589$. Veamos:

- $x=3\pi=3\times(3.141592653...)=9.424777959...=0.9424777959\times10^1$ e $y=0.00658=0.6589\times10^{-2}.$
- $fl(x) = 0.942 \times 10^1$ e $fl(y) = 0.659 \times 10^{-2}$.
- $fl(x) = 0.942 \times 10^1$ e $fl(y) = 0.000659 \times 10^1$.
- $fl(x) + fl(y) = 0.942659 \times 10^{1}$
- $fl(x) + fl(y) = 0.943 \times 10^1$
- $fl(fl(x) + fl(y)) = 0.943 \times 10^{1}$.

Así la suma x+y en la máquina $\mathbb{F}(10,3,-5,5)$ resulta igual a $0.943\times 10^1=9.43$.

Multiplicación/División en punto flotante

Sean $x, y \in \mathbb{F}(\beta, t, L, U)$. Luego $x \pm y$ se calcula como sigue:

- 1. Sumar/restar los exponentes.
- 2. Multiplicar/dividir mantisas.
- 3. Normalizar el resultado.
- 4. Redondear la mantisa al número de dígitos apropiado.
- 5. Normalizar si es preciso.
- 6. Determinar el signo del resultado.

Ejemplo:

Calcule en $\mathbb{F}(10,3,-5,5)$ el siguiente producto 0.003483×3.159 . Veamos:

•
$$x = 0.3483 \times 10^{-2}$$
 e $y = 0.3159 \times 10^{1}$.

•
$$fl(x) = 0.348 \times 10^{-2}$$
 e $fl(y) = 0.316 \times 10^{1}$.

- $fl(x)fl(y) = 0.109968 \times 10^{-1}$
- $fl(fl(x)fl(y)) = 0.110 \times 10^{-1}$.

Así el producto xy en la máquina $\mathbb{F}(10,3,-5,5)$ resulta igual a $0.110 \times 10^{-1} = 0.0110$. Si * denota cualquier operación en \mathbb{R} , sea * la correspondiente operación en $\mathbb{F}(\beta,t,L,U)$. De la Proposición 5 resulta que existe δ tal que:

$$fl(x \circledast y) = (x * y)(1 + \delta), \quad y \mid \delta \mid \le u$$

Ejemplo:

Si $\underline{x,y,z}$ son números en un computador con longitud de palabra de 32 bits y $\underline{\beta}=2$, estime la cota superior que puede ser obtenida para el error relativo al calcular z(x+y).

Solución:

Primero se calcular x+y. Esta operación aritmética da como resultado $\underline{fl(x+y)}$, el cual difiere de x+y por el redondeo. Por el axioma dado, se tiene que existe δ_1 tal que:

$$fl(x+y) = (x+y)(1+\delta_1), \quad |\delta_1| \le 2^{-24}.$$

Como z es un número máquina, cuando se multiplica por el número máquina fl(x+y), el resultado es el número máquina fl(zfl(x+y)). Estos números se diferencian del valor exacto por un δ_2 tal que:

$$fl(zfl(x+y)) = zfl(x+y)(1+\delta_2)$$
 donde $|\delta_2| \le 2^{-24}$.

Ejemplo(Cont.)

De las dos ecuaciones anteriores resulta:

$$fl(zfl(x+y)) = z(x+y)(1+\delta_1)(1+\delta_2)$$

$$= z(x+y)(1+\delta_1+\delta_2+\delta_1\delta_2)$$

$$\approx z(x+y)(1+\delta_1+\delta_2)$$

$$= z(x+y)(1+\delta)$$

donde el término $\delta_1\delta_2$ es ignorado, dado que $|\delta_1\delta_2|\leq 2^{-48}$ y $\delta=\delta_1+\delta_2$. Observe que:

$$|\delta| \le |\delta_1| + |\delta_2| \le 2^{-24} + 2^{-24} = 2^{-23},$$

entonces la cota superior que se espera para el error relativo es 2^{-23} .

F(10, 3, -5, 5)Sean x = 1928.342 y = 0.92157 x + y = 2? x = 0.1928342 = 0 y = 0.92157 = 0 y = 0.00082157 = 0 $y(x) = 0.193 \times 10$ y(x) = 0.000 = 0 $y(x) = 0.193 \times 10$ $y(x) = 0.193 \times 10$ $y(x) = 0.193 \times 10$

Precision simple

Representación IEEE 754

La precisión t de un sistema de números de punto flotante en una computadora estará limitada por la longitud de la palabra N disponible para representar un número. Con el fin de evitar una gran diversidad de sistemas de punto flotante incompatibles entre sí, a fines de la década de 1980 se desarrolló la norma o **stándard IEEE-754**, la cual es implementada en todas las computadoras actuales y aplicado también a otros sistemas. Esta norma define dos formatos básicos de punto flotante con base $\beta=2$. La distribución de los N bits son en el siguiente orden:

	Formato	Bits			
	Precisión	Palabra (N)	$Signo\;(s)$	Exponente sesgado (E)	Mantisa (m)
Hardwing -	Simple	32	1	8	23
\ _ -	Doble	64	1	11	52
Soffmanco	Cuádruple	128	1	14	113

Precisión simple - IEEE 754

Considera el sistema de punto flotante $\mathbb{F}(\underline{2},\underline{24},-126,127)$ y una longitud de palabra igual a N=32 bits. Dado $x\in\mathbb{R}$ en **notación científica normalizada** de la forma siguiente:

$$x = (-1)^s (d_{1*}d_2 \dots d_{23}d_{24}d_{25}\dots)_2 \times 2^e, \quad d_1 \neq 0$$

su respectiva notación en punto flotante es:

$$fl(x) = (-1)^s (d_1.d_2...d_{23}\tilde{d}_{24}) \times 2^e$$

Como en base 2 se cumple que $d_1=1$ siempre, entonces su representación en el computador es como sigue:

- Si tenemos n bits para el exponente, calculamos el sesgo como sigue $2^{n-1}-1$. Para n=8 el sesgo es $2^7-1=127$.
- Expresamos el exponente sesgado: E = e + 127 en base 2.
- Colocamos los dígitos $d_2, d_3, \dots d_{24}$ en los bits asignados a la mantisa.
- El dígito d_1 es llamado **bit escondido**.

Ejemplo:

Representar -31.125 en precisión simple IEEE-754.

Solución:

- Número negativo: s = 1.
- Se tiene que $31 = 11111_2$ y $0.125 = 0.001_2$ entonces $31.125 = 11111.001_2$.
- Notación científica normalizada: $31.125 = 1.1111001_2 \times 2^4$.
- El exponentes es e=4. Entonces el exponente sesgado es $E=e+127=131=10000011_2$.
- La representación pedida es:

signo	exponente	$\operatorname{mantisa}$
1	10000011	000000000000001111001

```
N = -31.42
PA
                       11111. 0110101111000... (2)
   0.42
 2(0.42) = 0.84 -> 6,=0
                                            mantisa.
                              E
                                                         1011
                          1/0/01/7
 2(0.44) = 0.99
                           RA
2(0.14) = 0.37 = dn =
 N= 501.01
 N = 1/1/20/01.000000101000...(2)
     (1). 111101010000001010000000012
   E = 10111(8)
 81800
```

0 110111 11 111111

Observación Precisión Simple IEEE-754

La representación usada para el exponente se conoce como sesgada, porque se calcula un nuevo exponente al sumar 127 al exponente original: E=e+127. De esta forma, el exponente sesgado varía en el rango $1 \le E \le 254$ que pueden ser representados por un binario entero de 8 bits. Más aún, podemos incluir los valores del exponente para L-1=-127(E=0) y U+1=128(E=255), ya que todos los enteros en el rango $0 \le E \le 255$ pueden ser representados como un binario entero sin signo de 8 bits. En efecto, con 8 bits tenemos $2^8 = 256$ combinaciones distintas, una para cada uno de los 256 números enteros del intervalo [0, 255]. El límite inferior, el " 0", corresponde a todos los bits igual a cero, mientras que el límite superior, el 255, corresponde a todos los dígitos igual a 1. Estos dos valores del exponente no representan números en punto flotante del sistema, pero serán usados para almacenar números especiales. como veremos a continuación.

Números especiales IEEE-754

• El **cero** es representado con ceros para el exponente y la mantisa.

• Los valores $+\infty$ y $-\infty$ son representados por:

• Si la secuencia de bits para el exponente está compuesta por todos los dígitos iguales a uno y la mantisa es no nula, es decir:

se tiene la ocurrencia de NaN (Not a Number) que representan expresiones inválidas como:

$$0 * \infty$$
, $0/0$, ∞/∞ , $\infty - \infty$

Precisión doble - IEEE 754

Considera el sistema de punto flotante $\mathbb{F}(2,\underline{53},\underline{-10}22,\underline{1023})$ y una longitud de palabra igual a N=64 bits. Dado $x\in\mathbb{R}$ en **notación científica normalizada** de la forma siguiente:

$$x = (-1)^s (d_1.d_2...d_{63}d_{64}d_{65}...)_2 \times 2^e, \quad d_1 \neq 0$$

su respectiva notación en punto flotante es:

$$fl(x) = (-1)^s (d_1.d_2...d_{63}\tilde{d}_{64}) \times 2^e$$

Como en base 2 se cumple que $d_1=1$ siempre, entonces su representación en el computador es como sigue:

- Si tenemos n bits para el exponente, calculamos el sesgo como sigue $2^{n-1}-1$. Para n=11 el sesgo es $2^{10}-1=1023$.
- Expresamos el exponente sesgado: E=e+1023 en base 2.
- Colocamos los dígitos $d_2, d_3, \dots d_{64}$ en los bits asignados a la mantisa.
- El dígito d_1 es llamado **bit escondido**.

Contenido

1. Epsilon de la máquina

- 2. Representación de números reales
 - 2.1. Aritmética en punto flotante
 - 2.2. Representación IEEE 754

3. Errores

3.1. Propagación de Errores

Errores

Error Absoluto

Sea x^* una aproximación de x. El **Error Absoluto** se define por:

$$EA(x) = |x - x^*|$$

Error Relativo

Sea x^* una aproximación de $x \neq 0$. El **Error Relativo** se define por:

$$E(x) = \frac{|x - x^*|}{|x|}$$

Propagación de errores absolutos

Sea \tilde{x} una aproximación para x e \tilde{y} una aproximación para y. Luego, los errores absolutos son:

$$EA(x) = x - \tilde{x}, \quad EA(y) = y - \tilde{y}.$$

Por tanto resulta:

$$x+y=EA(x)+\underline{\tilde{x}}+EA(y)+\tilde{y}\Rightarrow x+y=\tilde{x}+\tilde{y}+\left(EA(x)+EA(y)\right)$$

así tenemos:

$$EA(x+y) = EA(x) + EA(y)$$

De forma análoga se obtiene:

$$EA(x - y) = EA(x) - EA(y)$$

Demuestre que:

$$EA(xy) = \tilde{x}EA(y) + \tilde{y}EA(x)$$
 $EA(x/y) = \frac{EA(x)}{\tilde{y}} - \frac{\tilde{x}EA(y)}{\tilde{y}^2}$

Propagación de errores relativos

Para la suma y sustracción:

$$ER(x\pm y) = \frac{EA(x)\pm EA(y)}{\tilde{x}\pm \tilde{y}} = \frac{EA(x)}{\tilde{x}\pm \tilde{y}} \pm \frac{EA(y)}{\tilde{x}\pm \tilde{y}} = \frac{\tilde{x}}{\tilde{x}\pm \tilde{y}}ER(x) \pm \frac{\tilde{y}}{\tilde{x}\pm \tilde{y}}ER(y)$$

Propagación de errores relativos

Observe que para la multiplicación:

$$xy = (\tilde{x} + EA(x))(\tilde{y} + EA(y)) = \tilde{x}\tilde{y} + \tilde{x}EA(x) + \tilde{y}EA(y) + EA(x)EA(y)$$

por tanto, si \tilde{x} e \tilde{y} son mayores que 1 (en valor absoluto), los términos $\tilde{x}EA(x)$ e $\tilde{y}EA(y)$ indican que hay una posibilidad de que los errores originales EA(x) y EA(y) sean magnificados. Sin embargo, si analizamos los errores relativos se tiene una percepción más clara, pues al reordenar los términos:

$$xy - \tilde{x}\tilde{y} = \tilde{x}EA(x) + \tilde{y}EA(y) + EA(x)EA(y)$$

si x e y son no nulos, entonces podemos divir entre xy, así resulta:

$$\underline{ER(xy)} = \frac{EA(xy)}{xy} = \frac{\tilde{x}EA(y) + \tilde{y}EA(x) + EA(x)EA(y)}{xy} = \underline{ER(x)} + \underline{ER(y)}$$

siempre que \tilde{x} e \tilde{y} sean buenas aproximaciones de \underline{x} e \underline{y} (por tanto $\tilde{x}/x \approx 1$) $\tilde{y}/y \approx 1$) $(EA(x)/x)(EA(y)/y) \approx 0$).

Ejemplo:

Determine el valor absoluto cuando p es aproximado por p^* , donde:

- 1. $p = 0.3000 \times 10^1 \text{ y } p^* = 0.3100 \times 10^1.$
- 2. $p = 0.3000 \times 10^{-3} \text{ y } p^* = 0.3100 \times 10^{-3}$.
- 3. $p = 0.3000 \times 10^4$ y $p^* = 0.3100 \times 10^4$.

Solución:

- 1. $EA(p) = 0.1 \text{ y } ER(p) = 0.333\overline{3} \times 10^{-1}.$
- 2. $EA(p) = 0.1 \times 10^{-4} \text{ y } ER(p) = 0.333\overline{3} \times 10^{-1}.$
- 3. $EA(p) = 0.1 \times 10^3 \text{ y } ER(p) = 0.333\overline{3} \times 10^{-1}.$

Ejemplo:

Suponga que usted recibe una calculadora super moderna como regalo de cumpleaños, capaz de almacenar 4 dígitos en la mantisa utilizando redondeo. Ansioso por usar la nueva calculadora, consideró x=17534 e y=21178.

- 1. Determine los errores relativos de x, y.
- 2. Después de calcular x + y e xy, calcule el respectivo error relativo.

Solución:

Debido a que se usa 4 dígitos en la mantisa y redondeo, resulta:

$$x = 0.17534 \times 10^5 \Rightarrow x \approx 0.1753 \times 10^5 \Rightarrow \tilde{x} = 17530$$

 $y = 0.21178 \times 10^5 \Rightarrow y \approx 0.2118 \times 10^5 \Rightarrow \tilde{y} = 21180$

1. Calculamos los errores absolutos:

$$EA(x) = x - \tilde{x} = 17534 - 17530 = 4, \quad EA(y) = 21178 - 21180 = -2.$$

Los errores relativos son:

$$ER(x) = 4/17530 = 2.281 \times 10^{-4}, \quad ER(y) = -\frac{2}{21180} = 9.442 \times 10^{-5}.$$

2. Ejercicio.

Bibliografía

A. Quarteroni, R. Sacco, and F. Saleri, *Numerical mathematics*, vol. 37. Springer Science & Business Media, 2010.

G. Hämmerlin and K.-H. Hoffmann, *Numerical mathematics*. Springer Science & Business Media, 2012.

Otras referencias

- Numerical Analysis: Mathematics of Scientific Computing, Third Edition David Kincaid: University of Texas at Austin, Austin, TX, Ward Cheney.
- Numerical Methods Using Matlab, 4th Edition John H. Mathews, California State University, Fullerton, Kurtis K. Fink, Northwest Missouri State University
- Numerical Lineal Algebra. Lloyd N. Trefethen and David Bau, III xii+361 pages. SIAM, 1997
- Elementary Numerical Analysis, 3rd Edition Kendall Atkinson, Weimin Han