

RGB-D Fusion for Real Time Object Detection Chayan Patodi, Nikhil Mehra and Raghav Nandwani

FEARLESS IDEAS

Motivation

Exploring RGB+Depth Fusion for Real-Time Object Detection

By: Tanguy Ophoff, Kristof Van Beeck and Toon Goedemé

Objective: Whether fusion of depth data with the RGB data can help increase the performance of current state of the art single shot networks.

Model Architecture

Figure 1. The main building blocks of our parameterizable fusion network. (a) The fuse layer can be transparently implemented after any arbitrary layer, allowing for a parameterizable fusion level. (b) The fuse layer combines both information streams and divides the number of output channels by two.

Network training

- Used ImageNet pretrained weights instead of random initialization
- Same weights for depth network, just removed the weights of first layer

Network training

- Used ImageNet pretrained weights instead of random initialization
- Same weights for depth network, just removed the weights of first layer

Why??

- The networks looks for similar features in both RGB and Depth images
- If the depth subnetwork does not provide any substantial information compared to the RGB network, the fusion layer could possibly ignore those feature maps.

Dataset

EPFL pedestrian depth dataset

KITTI depth map

Evaluation

The main advantages of fusing depth data is in that the clearly distinguishable **silhouettes** in the **depth maps** allow for more accurate bounding boxes AP of the networks was measured using COCO IoU thresholding scheme, which is defined as follows.

$$AP = \frac{\sum_{IoU \in I} AP_{IoU}(Annotations, Detections)}{I}; I = \{0.50, 0.55, 0.60, \dots, 0.95\}$$

Results

Results Continued

Our Approach

Proposed Architecture

Proposed Arch. Continued

Expectation

- Time taken for a detection will increase, as the number of fusion layer increases.
- Difficulty in training as the number of parameters increases.
- Might get increase in the accuracy/AP metric.

Future Work

Thank You