LÓGICA BINARIA

CLASE 3

FECHA: 03/08/2024

CONTENIDO

Algebra de Boole

Mapas de Karnaugh

Minterminos y Maxterminos

LÓGICA BINARIA

- La lógica binaria se ocupa de variables que adoptan dos valores discretos y de operaciones que asumen un significado lógico
- Los dos valores que pueden adoptar las variables reciben diferentes nombres, pero para nuestros fines es conveniente pensar en ellos en términos de bits y asignarles los valores 1 y 0.

OPERACIONES BÁSICAS

LA LÓGICA BINARIA CONSISTE EN VARIABLES BINARIAS Y OPERACIONES LÓGICAS.

HAY TRES OPERACIONES LÓGICAS BÁSICAS: AND, OR Y NOT.

LAS COMPUERTAS LÓGICAS SON CIRCUITOS ELECTRÓNICOS QUE OPERAN CON UNA O MÁS SEÑALES DE ENTRADA PARA PRODUCIR UNA SEÑAL DE SALIDA.

ALGEBRA DE BOOLE

El álgebra booleana, al igual que todos los sistemas matemáticos deductivos, se define con un conjunto de elementos, un conjunto de operadores y varios axiomas o postulados.

Postulados y teoremas del álgebra booleana

Postulado 2	a)	x + 0 = x	b)	$x \cdot 1 = x$
Postulado 5	a)	x + x' = 1	b)	$x \cdot x' = 0$
Teorema 1	a)	x + x = x	b)	$x \cdot x = x$
Teorema 2	a)	x + 1 = 1	b)	$x \cdot 0 = 0$
Teorema 3, involución		(x')' = x		
Postulado 3, conmutatividad	a)	x + y = y + x	b)	xy = yx
Teorema 4, asociatividad	a)	x + (y + z) = (x + y) + z	b)	x(yz) = (xy)z
Postulado 4, distributividad	a)	x(y+z)=xy+xz	b)	x + yz = (x + y)(x + z)
Teorema 5, DeMorgan	a)	(x+y)'=x'y'	b)	(xy)' = x' + y'
Teorema 6, absorción	a)	x + xy = x	b)	x(x+y)=x

Propiedades del álgebra de Boole

1) Conmutativa

- a+b = b+a
- a·b = b·a

2) Asociativa

- a+b+c = a+(b+c)
- a·b·c = a·(b·c)

3) Distributiva

- a·(b+c) = a·b + a.c
- a+(b·c) = (a+b)·(a+c) ¡ojo!

4) Elemento neutro

- a+0 = a
- a·1 = a

5) Elemento absorbente

- a+1=1
- · a·0 = 0

6) Ley del complementario

- a+ā = 1
- a·ā = 0

7) Idempotente

- a+a = a
- · a·a = a

9) Teoremas de Demorgan

- $\overline{a+b} = \overline{a} \cdot \overline{b}$
 - $\overline{a \cdot b} = \overline{a} + \overline{b}$

8) Simplificativa

- a+a·b = a
- a·(a+b) = a

MINTERMINOS Y MAXTERMINOS

MINTÉRMINO

Para una función booleana de n variables $x_1,...x_n$, se le llama minterm a un producto booleano en el que cada una de las n variables aparece una sola vez (negada o sin negar) . Es decir, un minterm es una expresión lógica de n variables consistente únicamente en el operador conjunción lógica (AND) y el operador complemento o negación (NOT).

MAXTÉRMINO

Un maxterm es una expresión lógica de n variables consiste únicamente en la disyunción lógica y el operador complemento o negación. Los maxterms son una expresión dual de los minterms. En vez de operaciones AND utilizamos operaciones OR y procedemos de forma similar.

Minitérminos y maxitérminos para tres variables binarias

			Minitérminos		Maxitérminos		
x	y	z	Términos	Designación	Términos	Designación	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

MINTERMINOS Y MAXTERMINOS

MAPAS DE KARNAUGH

Es un diagrama utilizado para la simplificación de funciones algebraicas Booleanas. Dichos mapas reducen la necesidad de hacer cálculos extensos para la simplificación de expresiones booleanas, aprovechando la capacidad del cerebro humano para el reconocimiento de patrones y otras formas de expresión analítica, permitiendo así identificar y eliminar condiciones muy inmensas.

		x	\ ^y	, ₀ –	<u>y</u> 1
m_0	m_1		0	x'y'	x'y
m_2	m_3	x	1	xy'	xy
a	,	b)			

REPRESENTACIÓN DEL MAPA DE 2 VARIABLES

REPRESENTACIÓN DEL MAPA DE 3 VARIABLES

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

a)

	, yz			,			
1	vx\	0.0	01	11	10	ı	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'		
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'		
	11	wxy'z'	wxy'z	wxyz	wxyz'	x	
w	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	,	
ž							
b)							

REPRESENTACIÓN DEL MAPA DE 4 VARIABLES

PROCEDIMIENTO

- Paso # 1: Rellenar el Mapa de Karnaugh con la Función a simplificar.
- Paso # 2: Búsqueda de la mínima cantidad de conjuntos ya sean de 0´s o 1´s dependiendo de la elección de MinTerms o MaxTerms.
- Paso # 3: Reduccion de Terminos en los conjuntos encontrados, entre filas y columnas, el resultado será una expresión de MinTerms o MaxTerms dependiendo el caso.
- Paso # 4: Si la Expresión se puede minimizar aún más, se minimiza por medio de algebra booleana.

CIRCUITO COMBINACIONAL

Un circuito combinacional consiste en la interacción de compuertas lógicas utilizando lógica binaria, en donde las salidas del circuito dependen por completo de sus entradas, sin que afecten estados anteriores.

\$DUD\$