```
Algorithm 1: PDD-based Algorithm for Solving (\mathcal{P}_5)
 1 Initialize \vartheta^0, \theta^0, \lambda^0, \tilde{\theta}, k = 1, c < 1, and \epsilon_{\text{out}} > 0;
    repeat
           t=0:
           Set \vartheta^{k-1,0} = \vartheta^{k-1}, \theta^{k-1,0} = \theta^{k-1}, \lambda^{k-1,0} = \lambda^{k-1}:
           repeat
                 l = 0;
                 repeat
                       Update \theta^{k-1,t+1} by solving problem (\mathcal{P}_9);
                   l \leftarrow l + 1:
                       \tilde{\boldsymbol{\theta}} = \boldsymbol{\theta}^{k-1,t+1};
10
                 until convergence;
11
                 Update \vartheta^{k-1,t+1} according to (50);
12
13
                 t \leftarrow t + 1:
           until convergence;
14
           Set \vartheta^k = \vartheta^{k-1,t}, \theta^k = \theta^{k-1,t}:
15
           \boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \frac{1}{a^k} (\boldsymbol{\theta}^k - \boldsymbol{\vartheta}^k);
16
           \rho^{k+1} = c\rho^k:
17
           k \leftarrow k + 1:
18
```

19 until $\|\boldsymbol{\vartheta}^k - \boldsymbol{\theta}^k\|_2$ is below a certain threshold ϵ_{out} ;