1

Linear Equations in Linear Algebra

INTRODUCTORY EXAMPLE

Linear Models in Economics and Engineering

It was late summer in 1949. Harvard Professor Wassily Leontief was carefully feeding the last of his punched cards into the university's Mark II computer. The cards contained economic information about the U.S. economy and represented a summary of more than 250,000 pieces of information produced by the U.S. Bureau of Labor Statistics after two years of intensive work. Leontief had divided the U.S. economy into 500 "sectors," such as the coal industry, the automotive industry, communications, and so on. For each sector, he had written a linear equation that described how the sector distributed its output to the other sectors of the economy. Because the Mark II, one of the largest computers of its day, could not handle the resulting system of 500 equations in 500 unknowns, Leontief had distilled the problem into a system of 42 equations in 42 unknowns.

Programming the Mark II computer for Leontief's 42 equations had required several months of effort, and he was anxious to see how long the computer would take to solve the problem. The Mark II hummed and blinked for 56 hours before finally producing a solution. We will discuss the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize in Economic Science, opened the door to a new era in mathematical modeling in economics. His efforts at Harvard in 1949 marked one of the first significant uses of computers to analyze what was then a large-scale mathematical model. Since that time, researchers in many other fields have employed computers to analyze mathematical models. Because of the massive amounts of data involved, the models are usually *linear*; that is, they are described by *systems of linear equations*.

The importance of linear algebra for applications has risen in direct proportion to the increase in computing power, with each new generation of hardware and software triggering a demand for even greater capabilities. Computer science is thus intricately linked with linear algebra through the explosive growth of parallel processing and large-scale computations.

Scientists and engineers now work on problems far more complex than even dreamed possible a few decades ago. Today, linear algebra has more potential value for students in many scientific and business fields than any other undergraduate mathematics subject! The material in this text provides the foundation for further work in many interesting areas. Here are a few possibilities; others will be described later.

 Oil exploration. When a ship searches for offshore oil deposits, its computers solve thousands of separate systems of linear equations every day. The seismic data for the equations are obtained from underwater shock waves created by explosions from air guns. The waves bounce off subsurface rocks and are measured by geophones attached to mile-long cables behind the ship.

- Linear programming. Many important management decisions today are made on the basis of linear programming models that utilize hundreds of variables. The airline industry, for instance,
- employs linear programs that schedule flight crews, monitor the locations of aircraft, or plan the varied schedules of support services such as maintenance and terminal operations.
- Electrical networks. Engineers use simulation software to design electrical circuits and microchips involving millions of transistors. Such software relies on linear algebra techniques and systems of linear equations.

WEB

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them to introduce some of the central concepts of linear algebra in a simple and concrete setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear equations. This algorithm will be used for computations throughout the text. Sections 1.3 and 1.4 show how a system of linear equations is equivalent to a *vector equation* and to a *matrix equation*. This equivalence will reduce problems involving linear combinations of vectors to questions about systems of linear equations. The fundamental concepts of spanning, linear independence, and linear transformations, studied in the second half of the chapter, will play an essential role throughout the text as we explore the beauty and power of linear algebra.

1.1 SYSTEMS OF LINEAR EQUATIONS

A **linear equation** in the variables x_1, \ldots, x_n is an equation that can be written in the form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b \tag{1}$$

where b and the **coefficients** a_1, \ldots, a_n are real or complex numbers, usually known in advance. The subscript n may be any positive integer. In textbook examples and exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000, or even larger.

The equations

$$4x_1 - 5x_2 + 2 = x_1$$
 and $x_2 = 2(\sqrt{6} - x_1) + x_3$

are both linear because they can be rearranged algebraically as in equation (1):

$$3x_1 - 5x_2 = -2$$
 and $2x_1 + x_2 - x_3 = 2\sqrt{6}$

The equations

$$4x_1 - 5x_2 = x_1x_2$$
 and $x_2 = 2\sqrt{x_1} - 6$

are not linear because of the presence of x_1x_2 in the first equation and $\sqrt{x_1}$ in the second.

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables—say, x_1, \ldots, x_n . An example is

$$2x_1 - x_2 + 1.5x_3 = 8$$

$$x_1 - 4x_3 = -7$$
(2)

A **solution** of the system is a list (s_1, s_2, \ldots, s_n) of numbers that makes each equation a true statement when the values s_1, \ldots, s_n are substituted for x_1, \ldots, x_n , respectively. For instance, (5, 6.5, 3) is a solution of system (2) because, when these values are substituted in (2) for x_1, x_2, x_3 , respectively, the equations simplify to 8 = 8 and -7 = -7.

The set of all possible solutions is called the **solution set** of the linear system. Two linear systems are called equivalent if they have the same solution set. That is, each solution of the first system is a solution of the second system, and each solution of the second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy because it amounts to finding the intersection of two lines. A typical problem is

$$x_1 - 2x_2 = -1$$

$$-x_1 + 3x_2 = 3$$

The graphs of these equations are lines, which we denote by ℓ_1 and ℓ_2 . A pair of numbers (x_1, x_2) satisfies both equations in the system if and only if the point (x_1, x_2) lies on both ℓ_1 and ℓ_2 . In the system above, the solution is the single point (3,2), as you can easily verify. See Fig. 1.

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or they could coincide and hence "intersect" at every point on the line. Figure 2 shows the graphs that correspond to the following systems:

(a)
$$x_1 - 2x_2 = -1$$

 $-x_1 + 2x_2 = 3$ (b) $x_1 - 2x_2 = -1$
 $-x_1 + 2x_2 = 1$

FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Figures 1 and 2 illustrate the following general fact about linear systems, to be verified in Section 1.2.

A system of linear equations has

- 1. no solution, or
- 2. exactly one solution, or
- 3. infinitely many solutions.

A system of linear equations is said to be **consistent** if it has either one solution or infinitely many solutions; a system is **inconsistent** if it has no solution.

Matrix Notation

The essential information of a linear system can be recorded compactly in a rectangular array called a **matrix**. Given the system

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$-4x_1 + 5x_2 + 9x_3 = -9$$
(3)

with the coefficients of each variable aligned in columns, the matrix

$$\begin{bmatrix}
 1 & -2 & 1 \\
 0 & 2 & -8 \\
 -4 & 5 & 9
 \end{bmatrix}$$

is called the coefficient matrix (or matrix of coefficients) of the system (3), and

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix} \tag{4}$$

is called the **augmented matrix** of the system. (The second row here contains a zero because the second equation could be written as $0 \cdot x_1 + 2x_2 - 8x_3 = 8$.) An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the right sides of the equations.

The **size** of a matrix tells how many rows and columns it has. The augmented matrix (4) above has 3 rows and 4 columns and is called a 3×4 (read "3 by 4") matrix. If m and n are positive integers, an $m \times n$ matrix is a rectangular array of numbers with m rows and n columns. (The number of rows always comes first.) Matrix notation will simplify the calculations in the examples that follow.

Solving a Linear System

This section and the next describe an algorithm, or a systematic procedure, for solving linear systems. The basic strategy is to replace one system with an equivalent system (i.e., one with the same solution set) that is easier to solve.

Roughly speaking, use the x_1 term in the first equation of a system to eliminate the x_1 terms in the other equations. Then use the x_2 term in the second equation to eliminate the x_2 terms in the other equations, and so on, until you finally obtain a very simple equivalent system of equations.

Three basic operations are used to simplify a linear system: Replace one equation by the sum of itself and a multiple of another equation, interchange two equations, and multiply all the terms in an equation by a nonzero constant. After the first example, you will see why these three operations do not change the solution set of the system.

EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix notation, and the results are placed side by side for comparison:

$$\begin{array}{cccc}
 x_1 - 2x_2 + & x_3 = & 0 \\
 2x_2 - 8x_3 = & 8 \\
 -4x_1 + 5x_2 + 9x_3 = -9
 \end{array}
 \begin{bmatrix}
 1 & -2 & 1 & 0 \\
 0 & 2 & -8 & 8 \\
 -4 & 5 & 9 & -9
 \end{bmatrix}$$

Keep x_1 *in the first equation and eliminate it from the other equations.* To do so, add 4 times equation 1 to equation 3. After some practice, this type of calculation is usually performed mentally:

$$4 \cdot [\text{equation 1}]:
+ [\text{equation 3}]:
1 \(-4x_1 + 5x_2 + 4x_3 = 0 \)
$$-4x_1 + 5x_2 + 9x_3 = -9 \)
$$-3x_2 + 13x_3 = -9$$$$$$

The result of this calculation is written in place of the original third equation:

$$\begin{aligned}
 x_1 - 2x_2 + & x_3 &= 0 \\
 2x_2 - & 8x_3 &= 8 \\
 - 3x_2 + 13x_3 &= -9
 \end{aligned}
 \begin{bmatrix}
 1 & -2 & 1 & 0 \\
 0 & 2 & -8 & 8 \\
 0 & -3 & 13 & -9
 \end{bmatrix}$$

Now, multiply equation 2 by 1/2 in order to obtain 1 as the coefficient for x_2 . (This calculation will simplify the arithmetic in the next step.)

$$x_1 - 2x_2 + x_3 = 0$$

$$x_2 - 4x_3 = 4$$

$$-3x_2 + 13x_3 = -9$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & -3 & 13 & -9 \end{bmatrix}$$

Use the x_2 in equation 2 to eliminate the $-3x_2$ in equation 3. The "mental" computation is

$$3 \cdot [\text{equation 2}]:$$
 $3x_2 - 12x_3 = 12$
+ [equation 3]: $-3x_2 + 13x_3 = -9$
[new equation 3]: $x_3 = 3$

The new system has a triangular form:1

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 x_3 = 3$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Eventually, you want to eliminate the $-2x_2$ term from equation 1, but it is more efficient to use the x_3 in equation 3 first, to eliminate the $-4x_3$ and $+x_3$ terms in equations 2 and 1. The two "mental" calculations are

$$4 \cdot [\text{eq. 3}]: \qquad 4x_3 = 12 \qquad -1 \cdot [\text{eq. 3}]: \qquad -x_3 = -3$$

$$+ [\text{eq. 2}]: \qquad x_2 - 4x_3 = 4$$

$$| \text{new eq. 2}|: \qquad x_2 = 16 \qquad | \text{new eq. 1}|: \qquad x_1 - 2x_2 + x_3 = 0$$

¹The intuitive term *triangular* will be replaced by a precise term in the next section.

It is convenient to combine the results of these two operations:

$$\begin{array}{cccc}
x_1 - 2x_2 & = -3 \\
x_2 & = 16 \\
x_3 = 3
\end{array}$$

$$\begin{bmatrix}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{bmatrix}$$

Now, having cleaned out the column above the x_3 in equation 3, move back to the x_2 in equation 2 and use it to eliminate the $-2x_2$ above it. Because of the previous work with x_3 , there is now no arithmetic involving x_3 terms. Add 2 times equation 2 to equation 1 and obtain the system:

$$\begin{cases} x_1 & = 29 \\ x_2 & = 16 \\ x_3 & = 3 \end{cases} \qquad \begin{bmatrix} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

The work is essentially done. It shows that the only solution of the original system is (29, 16, 3). However, since there are so many calculations involved, it is a good practice to check the work. To verify that (29, 16, 3) *is* a solution, substitute these values into the left side of the original system, and compute:

$$(29) - 2(16) + (3) = 29 - 32 + 3 = 0$$
$$2(16) - 8(3) = 32 - 24 = 8$$
$$-4(29) + 5(16) + 9(3) = -116 + 80 + 27 = -9$$

The results agree with the right side of the original system, so (29, 16, 3) is a solution of the system.

Example 1 illustrates how operations on equations in a linear system correspond to operations on the appropriate rows of the augmented matrix. The three basic operations listed earlier correspond to the following operations on the augmented matrix.

Each of the original equations determines a plane in three-dimensional space. The point (29, 16, 3) lies in all three planes.

ELEMENTARY ROW OPERATIONS

- 1. (Replacement) Replace one row by the sum of itself and a multiple of another row.²
- **2.** (Interchange) Interchange two rows.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that arises as the augmented matrix of a linear system. Two matrices are called **row equivalent** if there is a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are *reversible*. If two rows are interchanged, they can be returned to their original positions by another interchange. If a row is scaled by a nonzero constant c, then multiplying the new row by 1/c produces the original row. Finally, consider a replacement operation involving two rows—say, rows 1 and 2—and suppose that c times row 1 is added to row 2 to produce a new row 2. To "reverse" this operation, add -c times row 1 to (new) row 2 and obtain the original row 2. See Exercises 29–32 at the end of this section.

² A common paraphrase of row replacement is "Add to one row a multiple of another row."

At the moment, we are interested in row operations on the augmented matrix of a system of linear equations. Suppose a system is changed to a new one via row operations. By considering each type of row operation, you can see that any solution of the original system remains a solution of the new system. Conversely, since the original system can be produced via row operations on the new system, each solution of the new system is also a solution of the original system. This discussion justifies the following statement.

If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations go quickly. Row operations in the text and exercises will usually be extremely easy to perform, allowing you to focus on the underlying concepts. Still, you must learn to perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a solution set, without completely solving the linear system.

Existence and Uniqueness Questions

Section 1.2 will show why a solution set for a linear system contains either no solutions, one solution, or infinitely many solutions. Answers to the following two questions will determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

- 1. Is the system consistent; that is, does at least one solution *exist*?
- **2.** If a solution exists, is it the *only* one; that is, is the solution *unique*?

These two questions will appear throughout the text, in many different guises. This section and the next will show how to answer these questions via row operations on the augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 8x_3 = 8$$
$$-4x_1 + 5x_2 + 9x_3 = -9$$

SOLUTION This is the system from Example 1. Suppose that we have performed the row operations necessary to obtain the triangular form

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 x_3 = 3$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

At this point, we know x_3 . Were we to substitute the value of x_3 into equation 2, we could compute x_2 and hence could determine x_1 from equation 1. So a solution exists; the system is consistent. (In fact, x_2 is uniquely determined by equation 2 since x_3 has only one possible value, and x_1 is therefore uniquely determined by equation 1. So the solution is unique.)

EXAMPLE 3 Determine if the following system is consistent:

$$x_2 - 4x_3 = 8$$

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$5x_1 - 8x_2 + 7x_3 = 1$$
(5)

SOLUTION The augmented matrix is

$$\begin{bmatrix} 0 & 1 & -4 & 8 \\ 2 & -3 & 2 & 1 \\ 5 & -8 & 7 & 1 \end{bmatrix}$$

To obtain an x_1 in the first equation, interchange rows 1 and 2:

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 5 & -8 & 7 & 1 \end{bmatrix}$$

To eliminate the $5x_1$ term in the third equation, add -5/2 times row 1 to row 3:

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & -1/2 & 2 & -3/2 \end{bmatrix}$$
 (6)

Next, use the x_2 term in the second equation to eliminate the $-(1/2)x_2$ term from the third equation. Add 1/2 times row 2 to row 3:

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & 0 & 5/2 \end{bmatrix}$$
 (7)

The augmented matrix is now in triangular form. To interpret it correctly, go back to equation notation:

$$2x_1 - 3x_2 + 2x_3 = 1$$

$$x_2 - 4x_3 = 8$$

$$0 = 5/2$$
(8)

The equation 0 = 5/2 is a short form of $0x_1 + 0x_2 + 0x_3 = 5/2$. This system in triangular form obviously has a built-in contradiction. There are no values of x_1, x_2, x_3 that satisfy (8) because the equation 0 = 5/2 is never true. Since (8) and (5) have the same solution set, the original system is inconsistent (i.e., has no solution).

Pay close attention to the augmented matrix in (7). Its last row is typical of an inconsistent system in triangular form.

This system is inconsistent because there is no point that lies in all three planes.

In real-world problems, systems of linear equations are solved by a computer. For a square coefficient matrix, computer programs nearly always use the elimination algorithm given here and in Section 1.2, modified slightly for improved accuracy.

The vast majority of linear algebra problems in business and industry are solved with programs that use *floating point arithmetic*. Numbers are represented as decimals $\pm .d_1 \cdots d_p \times 10^r$, where r is an integer and the number p of digits to the right of the decimal point is usually between 8 and 16. Arithmetic with such numbers typically is inexact, because the result must be rounded (or truncated) to the number of digits stored. "Roundoff error" is also introduced when a number such as 1/3 is entered into the computer, since its decimal representation must be approximated by a finite number of digits. Fortunately, inaccuracies in floating point arithmetic seldom cause problems. The numerical notes in this book will occasionally warn of issues that you may need to consider later in your career.

PRACTICE PROBLEMS

Throughout the text, practice problems should be attempted before working the exercises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the system in order to solve it. [More than one answer is possible in (a).]

a.
$$x_1 + 4x_2 - 2x_3 + 8x_4 = 12$$

 $x_2 - 7x_3 + 2x_4 = -4$
 $5x_3 - x_4 = 7$
 $x_3 + 3x_4 = -5$
b. $x_1 - 3x_2 + 5x_3 - 2x_4 = 0$
 $x_2 + 8x_3 = -4$
 $2x_3 = 3$
 $x_4 = 1$

2. The augmented matrix of a linear system has been transformed by row operations into the form below. Determine if the system is consistent.

$$\begin{bmatrix}
1 & 5 & 2 & -6 \\
0 & 4 & -7 & 2 \\
0 & 0 & 5 & 0
\end{bmatrix}$$

3. Is (3, 4, -2) a solution of the following system?

$$5x_1 - x_2 + 2x_3 = 7$$

$$-2x_1 + 6x_2 + 9x_3 = 0$$

$$-7x_1 + 5x_2 - 3x_3 = -7$$

4. For what values of h and k is the following system consistent?

$$2x_1 - x_2 = h$$
$$-6x_1 + 3x_2 = k$$

1.1 EXERCISES

Solve each system in Exercises 1–4 by using elementary row operations on the equations or on the augmented matrix. Follow the systematic elimination procedure described in this section.

1.
$$x_1 + 5x_2 = 7$$

 $-2x_1 - 7x_2 = -5$

2.
$$3x_1 + 6x_2 = -3$$

 $5x_1 + 7x_2 = 10$

3. Find the point (x_1, x_2) that lies on the line $x_1 + 2x_2 = 4$ and on the line $x_1 - x_2 = 1$. See the figure.

4. Find the point of intersection of the lines $x_1 + 2x_2 = -13$ and $3x_1 - 2x_2 = 1$

Consider each matrix in Exercises 5 and 6 as the augmented matrix of a linear system. State in words the next two elementary row operations that should be performed in the process of solving the system.

5.
$$\begin{bmatrix} 1 & -4 & -3 & 0 & 7 \\ 0 & 1 & 4 & 0 & 6 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -5 \end{bmatrix}$$

6.
$$\begin{bmatrix} 1 & -6 & 4 & 0 & -1 \\ 0 & 2 & -7 & 0 & 4 \\ 0 & 0 & 1 & 2 & -3 \\ 0 & 0 & 4 & 1 & 2 \end{bmatrix}$$

In Exercises 7–10, the augmented matrix of a linear system has been reduced by row operations to the form shown. In each case, continue the appropriate row operations and describe the solution set of the original system.

7.
$$\begin{bmatrix} 1 & 7 & 3 & -4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

8.
$$\begin{bmatrix} 1 & -5 & 4 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$

$$\mathbf{9.} \begin{bmatrix} 1 & -1 & 0 & 0 & -5 \\ 0 & 1 & -2 & 0 & -7 \\ 0 & 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

$$\mathbf{10.} \begin{bmatrix} 1 & 3 & 0 & -2 & -7 \\ 0 & 1 & 0 & 3 & 6 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$

Solve the systems in Exercises 11–14.

11.
$$x_2 + 5x_3 = -4$$

 $x_1 + 4x_2 + 3x_3 = -2$
 $2x_1 + 7x_2 + x_3 = -2$

12.
$$x_1 - 5x_2 + 4x_3 = -3$$

 $2x_1 - 7x_2 + 3x_3 = -2$
 $-2x_1 + x_2 + 7x_3 = -1$

13.
$$x_1 - 3x_3 = 8$$

 $2x_1 + 2x_2 + 9x_3 = 7$
 $x_2 + 5x_3 = -2$

14.
$$2x_1$$
 $-6x_3 = -8$ $x_2 + 2x_3 = 3$ $3x_1 + 6x_2 - 2x_3 = -4$

Determine if the systems in Exercises 15 and 16 are consistent. Do not completely solve the systems.

15.
$$x_1 - 6x_2 = 5$$

 $x_2 - 4x_3 + x_4 = 0$
 $-x_1 + 6x_2 + x_3 + 5x_4 = 3$
 $-x_2 + 5x_3 + 4x_4 = 0$

16.
$$2x_1$$
 $-4x_4 = -10$
 $3x_2 + 3x_3 = 0$
 $x_3 + 4x_4 = -1$
 $-3x_1 + 2x_2 + 3x_3 + x_4 = 5$

- 17. Do the three lines $2x_1 + 3x_2 = -1$, $6x_1 + 5x_2 = 0$, and $2x_1 5x_2 = 7$ have a common point of intersection? Explain.
- **18.** Do the three planes $2x_1 + 4x_2 + 4x_3 = 4$, $x_2 2x_3 = -2$, and $2x_1 + 3x_2 = 0$ have at least one common point of intersection? Explain.

In Exercises 19–22, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.

19.
$$\begin{bmatrix} 1 & h & 4 \\ 3 & 6 & 8 \end{bmatrix}$$
 20. $\begin{bmatrix} 1 & h & -5 \\ 2 & -8 & 6 \end{bmatrix}$ **21.** $\begin{bmatrix} 1 & 4 & -2 \\ 3 & h & -6 \end{bmatrix}$ **22.** $\begin{bmatrix} -4 & 12 & h \\ 2 & -6 & -3 \end{bmatrix}$

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and *justify* your answer. (If true, give the

approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

- 23. a. Every elementary row operation is reversible.
 - b. A 5×6 matrix has six rows.
 - c. The solution set of a linear system involving variables x_1, \ldots, x_n is a list of numbers (s_1, \ldots, s_n) that makes each equation in the system a true statement when the values s_1, \ldots, s_n are substituted for x_1, \ldots, x_n , respectively.
 - d. Two fundamental questions about a linear system involve existence and uniqueness.
- **24.** a. Two matrices are row equivalent if they have the same number of rows.
 - b. Elementary row operations on an augmented matrix never change the solution set of the associated linear system.
 - Two equivalent linear systems can have different solution sets.
 - d. A consistent system of linear equations has one or more solutions.
- **25.** Find an equation involving g, h, and k that makes this augmented matrix correspond to a consistent system:

$$\begin{bmatrix} 1 & -4 & 7 & g \\ 0 & 3 & -5 & h \\ -2 & 5 & -9 & k \end{bmatrix}$$

26. Suppose the system below is consistent for all possible values of f and g. What can you say about the coefficients c and d? Justify your answer.

$$2x_1 + 4x_2 = f$$
$$cx_1 + dx_2 = g$$

27. Suppose *a*, *b*, *c*, and *d* are constants such that *a* is not zero and the system below is consistent for all possible values of *f* and *g*. What can you say about the numbers *a*, *b*, *c*, and *d*? Justify your answer.

$$ax_1 + bx_2 = f$$
$$cx_1 + dx_2 = g$$

28. Construct three different augmented matrices for linear systems whose solution set is $x_1 = 3$, $x_2 = -2$, $x_3 = -1$.

In Exercises 29–32, find the elementary row operation that transforms the first matrix into the second, and then find the reverse row operation that transforms the second matrix into the first.

29.
$$\begin{bmatrix} 0 & -2 & 5 \\ 1 & 3 & -5 \\ 3 & -1 & 6 \end{bmatrix}, \begin{bmatrix} 3 & -1 & 6 \\ 1 & 3 & -5 \\ 0 & -2 & 5 \end{bmatrix}$$

30.
$$\begin{bmatrix} 1 & 3 & -4 \\ 0 & -2 & 6 \\ 0 & -5 & 10 \end{bmatrix}, \begin{bmatrix} 1 & 3 & -4 \\ 0 & -2 & 6 \\ 0 & 1 & -2 \end{bmatrix}$$

31.
$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 4 & -1 & 3 & -6 \end{bmatrix}, \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 0 & 7 & -1 & -6 \end{bmatrix}$$

32.
$$\begin{bmatrix} 1 & 2 & -5 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & 4 & -12 & 7 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -5 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & 15 \end{bmatrix}$$

An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let T_1, \ldots, T_4 denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes—to the left, above, to the right, and below.³ For instance,

$$T_1 = (10 + 20 + T_2 + T_4)/4$$
, or $4T_1 - T_2 - T_4 = 30$

- **33.** Write a system of four equations whose solution gives estimates for the temperatures T_1, \ldots, T_4 .
- **34.** Solve the system of equations from Exercise 33. [*Hint*: To speed up the calculations, interchange rows 1 and 4 before starting "replace" operations.]

SOLUTIONS TO PRACTICE PROBLEMS

1. a. For "hand computation," the best choice is to interchange equations 3 and 4. Another possibility is to multiply equation 3 by 1/5. Or, replace equation 4 by its sum with -1/5 times row 3. (In any case, do not use the x_2 in equation 2 to eliminate the $4x_2$ in equation 1. Wait until a triangular form has been reached and the x_3 terms and x_4 terms have been eliminated from the first two equations.)

³ See Frank M. White, *Heat and Mass Transfer* (Reading, MA: Addison-Wesley Publishing, 1991), pp. 145–149.

- b. The system is in triangular form. Further simplification begins with the x_4 in the fourth equation. Use the x_4 to eliminate all x_4 terms above it. The appropriate step now is to add 2 times equation 4 to equation 1. (After that, move to equation 3, multiply it by 1/2, and then use the equation to eliminate the x_3 terms above it.)
- 2. The system corresponding to the augmented matrix is

$$x_1 + 5x_2 + 2x_3 = -6$$
$$4x_2 - 7x_3 = 2$$
$$5x_3 = 0$$

The third equation makes $x_3 = 0$, which is certainly an allowable value for x_3 . After eliminating the x_3 terms in equations 1 and 2, you could go on to solve for unique values for x_2 and x_1 . Hence a solution exists, and it is unique. Contrast this situation with that in Example 3.

3. It is easy to check if a specific list of numbers is a solution. Set $x_1 = 3$, $x_2 = 4$, and $x_3 = -2$, and find that

$$5(3) - (4) + 2(-2) = 15 - 4 - 4 = 7$$

 $-2(3) + 6(4) + 9(-2) = -6 + 24 - 18 = 0$
 $-7(3) + 5(4) - 3(-2) = -21 + 20 + 6 = 5$

Although the first two equations are satisfied, the third is not, so (3, 4, -2) is not a solution of the system. Notice the use of parentheses when making the substitutions. They are strongly recommended as a guard against arithmetic errors.

4. When the second equation is replaced by its sum with 3 times the first equation, the system becomes

$$2x_1 - x_2 = h$$
$$0 = k + 3h$$

If k + 3h is nonzero, the system has no solution. The system is consistent for any values of h and k that make k + 3h = 0.

Since (3, 4, -2) satisfies the first two equations, it is on the line of the intersection of the first two planes. Since (3, 4, -2) does not satisfy all three equations, it does not lie on all three planes.

..2 ROW REDUCTION AND ECHELON FORMS

This section refines the method of Section 1.1 into a row reduction algorithm that will enable us to analyze any system of linear equations. By using only the first part of the algorithm, we will be able to answer the fundamental existence and uniqueness questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an augmented matrix for a linear system. So the first part of this section concerns an arbitrary rectangular matrix and begins by introducing two important classes of matrices that include the "triangular" matrices of Section 1.1. In the definitions that follow, a *nonzero* row or column in a matrix means a row or column that contains at least one nonzero entry; a **leading entry** of a row refers to the leftmost nonzero entry (in a nonzero row).

¹The algorithm here is a variant of what is commonly called *Gaussian elimination*. A similar elimination method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss, discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.

DEFINITION

A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- **3.** All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):

- **4.** The leading entry in each nonzero row is 1.
- **5.** Each leading 1 is the only nonzero entry in its column.

An **echelon matrix** (respectively, **reduced echelon matrix**) is one that is in echelon form (respectively, reduced echelon form). Property 2 says that the leading entries form an echelon ("steplike") pattern that moves down and to the right through the matrix. Property 3 is a simple consequence of property 2, but we include it for emphasis.

The "triangular" matrices of Section 1.1, such as

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & 0 & 5/2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

are in echelon form. In fact, the second matrix is in reduced echelon form. Here are additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries (**•**) may have any nonzero value; the starred entries (*) may have any value (including zero).

$$\begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \blacksquare & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \blacksquare & * & * & * & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ \end{bmatrix}$$

The following matrices are in reduced echelon form because the leading entries are 1's, and there are 0's below and above each leading 1.

$$\begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & * & 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 1 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \end{bmatrix}$$

Any nonzero matrix may be **row reduced** (that is, transformed by elementary row operations) into more than one matrix in echelon form, using different sequences of row operations. However, the reduced echelon form one obtains from a matrix is unique. The following theorem is proved in Appendix A at the end of the text.

THEOREM 1

Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.

If a matrix A is row equivalent to an echelon matrix U, we call U an echelon form (or row echelon form) of A; if U is in reduced echelon form, we call U the reduced echelon form of A. [Most matrix programs and calculators with matrix capabilities use the abbreviation RREF for reduced (row) echelon form. Some use REF for (row) echelon form.]

Pivot Positions

When row operations on a matrix produce an echelon form, further row operations to obtain the reduced echelon form do not change the positions of the leading entries. Since the reduced echelon form is unique, the leading entries are always in the same positions in any echelon form obtained from a given matrix. These leading entries correspond to leading 1's in the reduced echelon form.

DEFINITION

A **pivot position** in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A **pivot column** is a column of A that contains a pivot position.

In Example 1, the squares (•) identify the pivot positions. Many fundamental concepts in the first four chapters will be connected in one way or another with pivot positions in a matrix.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot columns of A.

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

SOLUTION Use the same basic strategy as in Section 1.1. The top of the leftmost nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed in this position. A good choice is to interchange rows 1 and 4 (because the mental computations in the next step will not involve fractions).

Create zeros below the pivot, 1, by adding multiples of the first row to the rows below, and obtain matrix (1) below. The pivot position in the second row must be as far left as possible—namely, in the second column. Choose the 2 in this position as the next pivot.

Pivot
$$\begin{bmatrix}
1 & 4 & 5 & -9 & -7 \\
0 & 2 & 4 & -6 & -6 \\
0 & 5 & 10 & -15 & -15 \\
0 & -3 & -6 & 4 & 9
\end{bmatrix}$$
Next pivot column

Add -5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4.

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 \end{bmatrix}$$
 (2)

The matrix in (2) is different from any encountered in Section 1.1. There is no way to create a leading entry in column 3! (We can't use row 1 or 2 because doing so would destroy the echelon arrangement of the leading entries already produced.) However, if we interchange rows 3 and 4, we can produce a leading entry in column 4.

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} \text{General form:} \\ \begin{bmatrix} \blacksquare & * & * & * & * \\ 0 & \blacksquare & * & * & * \\ 0 & 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot columns.

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$
Pivot positions

(3)

A **pivot**, as illustrated in Example 2, is a nonzero number in a pivot position that is used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2, and -5. Notice that these numbers are not the same as the actual elements of A in the highlighted pivot positions shown in (3).

With Example 2 as a guide, we are ready to describe an efficient procedure for transforming a matrix into an echelon or reduced echelon matrix. Careful study and mastery of this procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm

The algorithm that follows consists of four steps, and it produces a matrix in echelon form. A fifth step produces a matrix in reduced echelon form. We illustrate the algorithm by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix first into echelon form and then into reduced echelon form:

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$

SOLUTION

STEP 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$
Pivot column

STEP 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

STEP 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3's in column 1, it is just as easy to add -1 times row 1 to row 2.

STEP 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1–3 to the submatrix that remains. Repeat the process until there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2, select as a pivot the "top" entry in that column.

For step 3, we could insert an optional step of dividing the "top" row of the submatrix by the pivot, 2. Instead, we add -3/2 times the "top" row to the row below. This produces

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

When we cover the row containing the second pivot position for step 4, we are left with a new submatrix having only one row:

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
Pivo

Steps 1-3 require no work for this submatrix, and we have reached an echelon form of the full matrix. If we want the reduced echelon form, we perform one more step.

STEP 5

Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row 3 to rows 2 and 1.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 2 & -4 & 4 & 0 & -14 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \leftarrow \frac{\text{Row } 1 + (-6) \cdot \text{row } 3}{\leftarrow \text{Row } 2 + (-2) \cdot \text{row } 3}$$

The next pivot is in row 2. Scale this row, dividing by the pivot.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

\$\rightarrow\$ Row scaled by \$\frac{1}{2}\$

Create a zero in column 2 by adding 9 times row 2 to row 1.

$$\begin{bmatrix} 3 & 0 & -6 & 9 & 0 & -72 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \longrightarrow \text{Row } 1 + (9) \cdot \text{row } 2$$

Finally, scale row 1, dividing by the pivot, 3.

$$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
 Row scaled by $\frac{1}{3}$

This is the reduced echelon form of the original matrix.

The combination of steps 1–4 is called the **forward phase** of the row reduction algorithm. Step 5, which produces the unique reduced echelon form, is called the backward phase.

- NUMERICAL NOTE ----

In step 2 above, a computer program usually selects as a pivot the entry in a column having the largest absolute value. This strategy, called partial pivoting, is used because it reduces roundoff errors in the calculations.

Solutions of Linear Systems

The row reduction algorithm leads directly to an explicit description of the solution set of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been changed into the equivalent reduced echelon form

$$\begin{bmatrix} 1 & 0 & -5 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

There are three variables because the augmented matrix has four columns. The associated system of equations is

$$x_1 - 5x_3 = 1 x_2 + x_3 = 4 0 = 0$$
 (4)

The variables x_1 and x_2 corresponding to pivot columns in the matrix are called **basic** variables.² The other variable, x_3 , is called a **free variable**.

Whenever a system is consistent, as in (4), the solution set can be described explicitly by solving the reduced system of equations for the basic variables in terms of the free variables. This operation is possible because the reduced echelon form places each basic variable in one and only one equation. In (4), solve the first equation for x_1 and the second for x_2 . (Ignore the third equation; it offers no restriction on the variables.)

$$\begin{cases} x_1 = 1 + 5x_3 \\ x_2 = 4 - x_3 \\ x_3 \text{ is free} \end{cases}$$
 (5)

The statement " x_3 is free" means that you are free to choose any value for x_3 . Once that is done, the formulas in (5) determine the values for x_1 and x_2 . For instance, when $x_3 = 0$, the solution is (1, 4, 0); when $x_3 = 1$, the solution is (6, 3, 1). Each different choice of x_3 determines a (different) solution of the system, and every solution of the system is determined by a choice of x_3 .

EXAMPLE 4 Find the general solution of the linear system whose augmented matrix has been reduced to

$$\begin{bmatrix} 1 & 6 & 2 & -5 & -2 & -4 \\ 0 & 0 & 2 & -8 & -1 & 3 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

SOLUTION The matrix is in echelon form, but we want the reduced echelon form before solving for the basic variables. The row reduction is completed next. The symbol ~ before a matrix indicates that the matrix is row equivalent to the preceding matrix.

$$\begin{bmatrix} 1 & 6 & 2 & -5 & -2 & -4 \\ 0 & 0 & 2 & -8 & -1 & 3 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 6 & 2 & -5 & 0 & 10 \\ 0 & 0 & 2 & -8 & 0 & 10 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 6 & 2 & -5 & 0 & 10 \\ 0 & 0 & 1 & -4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 6 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

²Some texts use the term *leading variables* because they correspond to the columns containing leading entries.

There are five variables because the augmented matrix has six columns. The associated system now is

$$x_1 + 6x_2 + 3x_4 = 0$$

$$x_3 - 4x_4 = 5$$

$$x_5 = 7$$
(6)

The pivot columns of the matrix are 1, 3, and 5, so the basic variables are x_1 , x_3 , and x_5 . The remaining variables, x_2 and x_4 , must be free. Solve for the basic variables to obtain the general solution:

$$\begin{cases} x_1 = -6x_2 - 3x_4 \\ x_2 \text{ is free} \\ x_3 = 5 + 4x_4 \\ x_4 \text{ is free} \\ x_5 = 7 \end{cases}$$
 (7)

Note that the value of x_5 is already fixed by the third equation in system (6).

Parametric Descriptions of Solution Sets

The descriptions in (5) and (7) are parametric descriptions of solution sets in which the free variables act as parameters. Solving a system amounts to finding a parametric description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to equation 1 and obtain the equivalent system

$$x_1 + 5x_2 = 21$$

$$x_2 + x_3 = 4$$

We could treat x_2 as a parameter and solve for x_1 and x_3 in terms of x_2 , and we would have an accurate description of the solution set. However, to be consistent, we make the (arbitrary) convention of always using the free variables as the parameters for describing a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system has free variables. In this case, the solution set has *no* parametric representation.

Back-Substitution

Consider the following system, whose augmented matrix is in echelon form but is *not* in reduced echelon form:

$$x_1 - 7x_2 + 2x_3 - 5x_4 + 8x_5 = 10$$
$$x_2 - 3x_3 + 3x_4 + x_5 = -5$$
$$x_4 - x_5 = 4$$

A computer program would solve this system by back-substitution, rather than by computing the reduced echelon form. That is, the program would solve equation 3 for x_4 in terms of x_5 and substitute the expression for x_4 into equation 2, solve equation 2 for x_2 , and then substitute the expressions for x_2 and x_4 into equation 1 and solve for x_1 .

Our matrix format for the backward phase of row reduction, which produces the reduced echelon form, has the same number of arithmetic operations as back-substitution. But the discipline of the matrix format substantially reduces the likelihood of errors

during hand computations. The best strategy is to use only the reduced echelon form to solve a system! The Study Guide that accompanies this text offers several helpful suggestions for performing row operations accurately and rapidly.

NUMERICAL NOTE —

In general, the forward phase of row reduction takes much longer than the backward phase. An algorithm for solving a system is usually measured in flops (or floating point operations). A **flop** is one arithmetic operation (+, -, *, /)on two real floating point numbers.³ For an $n \times (n + 1)$ matrix, the reduction to echelon form can take $2n^3/3 + n^2/2 - 7n/6$ flops (which is approximately $2n^3/3$ flops when n is moderately large—say, n > 30). In contrast, further reduction to reduced echelon form needs at most n^2 flops.

Existence and Uniqueness Questions

Although a nonreduced echelon form is a poor tool for solving a system, this form is just the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

$$3x_2 - 6x_3 + 6x_4 + 4x_5 = -5$$
$$3x_1 - 7x_2 + 8x_3 - 5x_4 + 8x_5 = 9$$
$$3x_1 - 9x_2 + 12x_3 - 9x_4 + 6x_5 = 15$$

SOLUTION The augmented matrix of this system was row reduced in Example 3 to

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
 (8)

The basic variables are x_1 , x_2 , and x_5 ; the free variables are x_3 and x_4 . There is no equation such as 0 = 1 that would indicate an inconsistent system, so we could use back-substitution to find a solution. But the existence of a solution is already clear in (8). Also, the solution is *not unique* because there are free variables. Each different choice of x_3 and x_4 determines a different solution. Thus the system has infinitely many solutions.

When a system is in echelon form and contains no equation of the form 0 = b, with b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient. Either the basic variables are completely determined (with no free variables) or at least one of the basic variables may be expressed in terms of one or more free variables. In the former case, there is a unique solution; in the latter case, there are infinitely many solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

³Traditionally, a *flop* was only a multiplication or division, because addition and subtraction took much less time and could be ignored. The definition of flop given here is preferred now, as a result of advances in computer architecture. See Golub and Van Loan, Matrix Computations, 2nd ed. (Baltimore: The Johns Hopkins Press, 1989), pp. 19-20.

THEOREM 2

Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column—that is, if and only if an echelon form of the augmented matrix has no row of the form

$$\begin{bmatrix} 0 & \cdots & 0 & b \end{bmatrix}$$
 with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique solution, when there are no free variables, or (ii) infinitely many solutions, when there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM

- 1. Write the augmented matrix of the system.
- 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.
- 3. Continue row reduction to obtain the reduced echelon form.
- **4.** Write the system of equations corresponding to the matrix obtained in step 3.
- 5. Rewrite each nonzero equation from step 4 so that its one basic variable is expressed in terms of any free variables appearing in the equation.

PRACTICE PROBLEMS

1. Find the general solution of the linear system whose augmented matrix is

$$\begin{bmatrix} 1 & -3 & -5 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

2. Find the general solution of the system

$$x_1 - 2x_2 - x_3 + 3x_4 = 0$$

$$-2x_1 + 4x_2 + 5x_3 - 5x_4 = 3$$

$$3x_1 - 6x_2 - 6x_3 + 8x_4 = 2$$

1.2 EXERCISES

In Exercises 1 and 2, determine which matrices are in reduced echelon form and which others are only in echelon form.

$$\mathbf{1.} \ \ \, \text{a.} \ \, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Row reduce the matrices in Exercises 3 and 4 to reduced echelon form. Circle the pivot positions in the final matrix and in the original matrix, and list the pivot columns.

3.
$$\begin{bmatrix} 1 & 2 & 4 & 8 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{bmatrix}$$
 4.
$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 2 & 4 & 5 & 4 \\ 4 & 5 & 4 & 2 \end{bmatrix}$$

- **5.** Describe the possible echelon forms of a nonzero 2 × 2 matrix. Use the symbols ■, *, and 0, as in the first part of Example 1.
- **6.** Repeat Exercise 5 for a nonzero 3×2 matrix.

Find the general solutions of the systems whose augmented matrices are given in Exercises 7–14.

7.
$$\begin{bmatrix} 1 & 3 & 4 & 7 \\ 3 & 9 & 7 & 6 \end{bmatrix}$$
8.
$$\begin{bmatrix} 1 & -3 & 0 & -5 \\ -3 & 7 & 0 & 9 \end{bmatrix}$$
9.
$$\begin{bmatrix} 0 & 1 & -2 & 3 \\ 1 & -3 & 4 & -6 \end{bmatrix}$$
10.
$$\begin{bmatrix} 1 & -2 & -1 & 4 \\ -2 & 4 & -5 & 6 \end{bmatrix}$$
11.
$$\begin{bmatrix} 3 & -2 & 4 & 0 \\ 9 & -6 & 12 & 0 \\ 6 & -4 & 8 & 0 \end{bmatrix}$$
12.
$$\begin{bmatrix} 1 & 0 & -9 & 0 & 4 \\ 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

13.
$$\begin{bmatrix} 1 & -3 & 0 & -1 & 0 & -2 \\ 0 & 1 & 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1 & 9 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
14.
$$\begin{bmatrix} 1 & 0 & -5 & 0 & -8 & 3 \\ 0 & 1 & 4 & -1 & 0 & 6 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Exercises 15 and 16 use the notation of Example 1 for matrices in echelon form. Suppose each matrix represents the augmented matrix for a system of linear equations. In each case, determine if the system is consistent. If the system is consistent, determine if the solution is unique.

15. a.
$$\begin{bmatrix} \bullet & * & * & * \\ 0 & \bullet & * & * \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
b.
$$\begin{bmatrix} 0 & \bullet & * & * & * \\ 0 & 0 & \bullet & * & * \\ 0 & 0 & 0 & \bullet & 0 \end{bmatrix}$$

16. a.
$$\begin{bmatrix} \blacksquare & * & * \\ 0 & \blacksquare & * \\ 0 & 0 & \blacksquare \end{bmatrix}$$
b.
$$\begin{bmatrix} \blacksquare & * & * & * \\ 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & \blacksquare & * \end{bmatrix}$$

In Exercises 17 and 18, determine the value(s) of *h* such that the matrix is the augmented matrix of a consistent linear system.

17.
$$\begin{bmatrix} 1 & -1 & 4 \\ -2 & 3 & h \end{bmatrix}$$
 18. $\begin{bmatrix} 1 & -3 & 1 \\ h & 6 & -2 \end{bmatrix}$

In Exercises 19 and 20, choose h and k such that the system has (a) no solution, (b) a unique solution, and (c) many solutions. Give separate answers for each part.

19.
$$x_1 + hx_2 = 2$$
 20. $x_1 - 3x_2 = 1$ $4x_1 + 8x_2 = k$ $2x_1 + hx_2 = k$

In Exercises 21 and 22, mark each statement True or False. Justify each answer.⁴

- **21.** a. In some cases, a matrix may be row reduced to more than one matrix in reduced echelon form, using different sequences of row operations.
 - b. The row reduction algorithm applies only to augmented matrices for a linear system.
 - c. A basic variable in a linear system is a variable that corresponds to a pivot column in the coefficient matrix.
 - d. Finding a parametric description of the solution set of a linear system is the same as *solving* the system.
 - e. If one row in an echelon form of an augmented matrix is [0 0 0 5 0], then the associated linear system is inconsistent.
- 22. a. The reduced echelon form of a matrix is unique.
 - b. If every column of an augmented matrix contains a pivot, then the corresponding system is consistent.
 - The pivot positions in a matrix depend on whether row interchanges are used in the row reduction process.
 - d. A general solution of a system is an explicit description of all solutions of the system.
 - e. Whenever a system has free variables, the solution set contains many solutions.
- **23.** Suppose the coefficient matrix of a linear system of four equations in four variables has a pivot in each column. Explain why the system has a unique solution.
- **24.** Suppose a system of linear equations has a 3 × 5 *augmented* matrix whose fifth column is not a pivot column. Is the system consistent? Why (or why not)?

 $^{^4}$ True/false questions of this type will appear in many sections. Methods for justifying your answers were described before Exercises 23 and 24 in Section 1.1.

- 25. Suppose the coefficient matrix of a system of linear equations has a pivot position in every row. Explain why the system is consistent.
- **26.** Suppose a 3×5 coefficient matrix for a system has three pivot columns. Is the system consistent? Why or why not?
- 27. Restate the last sentence in Theorem 2 using the concept of pivot columns: "If a linear system is consistent, then the solution is unique if and only if _____.'
- 28. What would you have to know about the pivot columns in an augmented matrix in order to know that the linear system is consistent and has a unique solution?
- 29. A system of linear equations with fewer equations than unknowns is sometimes called an underdetermined system. Can such a system have a unique solution? Explain.
- 30. Give an example of an inconsistent underdetermined system of two equations in three unknowns.
- 31. A system of linear equations with more equations than unknowns is sometimes called an overdetermined system. Can such a system be consistent? Illustrate your answer with a specific system of three equations in two unknowns.
- **32.** Suppose an $n \times (n+1)$ matrix is row reduced to reduced echelon form. Approximately what fraction of the total number of operations (flops) is involved in the backward phase of the reduction when n = 20? when n = 200?

Suppose experimental data are represented by a set of points in the plane. An interpolating polynomial for the data is a polynomial whose graph passes through every point. In scientific work, such a polynomial can be used, for example, to estimate values between the known data points. Another use is to create curves for graphical images on a computer screen. One method for finding an interpolating polynomial is to solve a system of linear equations.

WEB

33. Find the interpolating polynomial $p(t) = a_0 + a_1 t + a_2 t^2$ for the data (1, 6), (2, 15), (3, 28). That is, find a_0 , a_1 , and a_2 such that

$$a_0 + a_1(1) + a_2(1)^2 = 6$$

$$a_0 + a_1(2) + a_2(2)^2 = 15$$

$$a_0 + a_1(3) + a_2(3)^2 = 28$$

34. [M] In a wind tunnel experiment, the force on a projectile due to air resistance was measured at different velocities:

Find an interpolating polynomial for these data and estimate the force on the projectile when the projectile is traveling at 750 ft/sec. Use $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^2 + a_5t^3 + a_5t^4 + a_5t^5 + a_5t^5$ a_5t^5 . What happens if you try to use a polynomial of degree less than 5? (Try a cubic polynomial, for instance.)⁵

SOLUTIONS TO PRACTICE PROBLEMS

1. The reduced echelon form of the augmented matrix and the corresponding system

$$\begin{bmatrix} 1 & 0 & -2 & 9 \\ 0 & 1 & 1 & 3 \end{bmatrix} \quad \text{and} \quad \begin{aligned} x_1 & -2x_3 &= 9 \\ x_2 + x_3 &= 3 \end{aligned}$$

The basic variables are x_1 and x_2 , and the general solution is

$$\begin{cases} x_1 = 9 + 2x_3 \\ x_2 = 3 - x_3 \\ x_3 \text{ is free} \end{cases}$$

Note: It is essential that the general solution describe each variable, with any parameters clearly identified. The following statement does *not* describe the solution:

$$\begin{cases} x_1 = 9 + 2x_3 \\ x_2 = 3 - x_3 \\ x_3 = 3 - x_2 \end{cases}$$
 Incorrect solution

This description implies that x_2 and x_3 are both free, which certainly is not the case.

The general solution of the system of equations is the line of intersection of the two planes.

 $^{^5}$ Exercises marked with the symbol [M] are designed to be worked with the aid of a "Matrix program" (a computer program, such as MATLAB[®], MapleTM, Mathematica[®], MathCad[®], or DeriveTM, or a programmable calculator with matrix capabilities, such as those manufactured by Texas Instruments or Hewlett-Packard).

$$\begin{bmatrix} 1 & -2 & -1 & 3 & 0 \\ -2 & 4 & 5 & -5 & 3 \\ 3 & -6 & -6 & 8 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 & 3 & 0 \\ 0 & 0 & 3 & 1 & 3 \\ 0 & 0 & -3 & -1 & 2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -2 & -1 & 3 & 0 \\ 0 & 0 & 3 & 1 & 3 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

This echelon matrix shows that the system is *inconsistent*, because its rightmost column is a pivot column; the third row corresponds to the equation 0 = 5. There is no need to perform any more row operations. Note that the presence of the free variables in this problem is irrelevant because the system is inconsistent.

1.3 VECTOR EQUATIONS

Important properties of linear systems can be described with the concept and notation of vectors. This section connects equations involving vectors to ordinary systems of equations. The term *vector* appears in a variety of mathematical and physical contexts, which we will discuss in Chapter 4, "Vector Spaces." Until then, *vector* will mean an *ordered list of numbers*. This simple idea enables us to get to interesting and important applications as quickly as possible.

Vectors in \mathbb{R}^2

A matrix with only one column is called a **column vector**, or simply a **vector**. Examples of vectors with two entries are

$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} .2 \\ .3 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

where w_1 and w_2 are any real numbers. The set of all vectors with two entries is denoted by \mathbb{R}^2 (read "r-two"). The \mathbb{R} stands for the real numbers that appear as entries in the vectors, and the exponent 2 indicates that each vector contains two entries.¹

Two vectors in \mathbb{R}^2 are **equal** if and only if their corresponding entries are equal. Thus $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$ and $\begin{bmatrix} 7 \\ 4 \end{bmatrix}$ are *not* equal, because vectors in \mathbb{R}^2 are *ordered pairs* of real

Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , their sum is the vector $\mathbf{u} + \mathbf{v}$ obtained by adding corresponding entries of \mathbf{u} and \mathbf{v} . For example,

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1+2 \\ -2+5 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Given a vector \mathbf{u} and a real number c, the **scalar multiple** of \mathbf{u} by c is the vector $c\mathbf{u}$ obtained by multiplying each entry in \mathbf{u} by c. For instance,

if
$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
 and $c = 5$, then $c\mathbf{u} = 5 \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 15 \\ -5 \end{bmatrix}$

¹Most of the text concerns vectors and matrices that have only real entries. However, all definitions and theorems in Chapters 1–5, and in most of the rest of the text, remain valid if the entries are complex numbers. Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.