How do Gamers Feel?

Joshua Sonnen sonnenj@wwu.edu

Original Data

Mohamad Tarek performed a web scraping of Steam to pull user review data. There were a total of 762,851 reviews across 290 games.

Review Features

- ★ Recommendation (binary)
- ★ Hours Played
- ★ Funny votes
- ★ Helpful votes

Game Features

- **★** Game_name (290)
- ★ Publisher (173)
- ★ Developer (216)
- ★ overall_player_rating (11)

TextBlob Generated

TextBlob is a Python NLP library. I use its sentiment analysis tool to generate additional features.

Review Features

- ★ Number of words
- ★ Number of sentences
- **★** Polarity [-1, 1]
- ★ Subjectivity [0, 1]
 - -"How opinionated the review is"

Hours Played Discretization Strategies

K Means Clustering Equal ranges

Target Discretization Analysis

- Random Forest classifier.
- Bootstrap factor of 3
- 11 feature subsets
- 4 split criteria: random, entropy, gini, log loss
- 4 discretization strategies: range, log-range, k-means, and frequency

Each t-score represents the difference in sample means b/w the majority classifier and the random forest. I use Welch's t-test to correct for unequal population variance.

 $T_{
m critical} pprox 2.04$ Significance threshold

Target Discretization Analysis

- K Neighbors classifier
- Bootstrap factor of 3
- 5 feature subsets
- 4 bin sizes
- 2 choices of k

Each t-score represents the difference in sample means b/w the majority classifier and the classifier. I use Welch's t-test to correct for unequal population variance.

 $T_{
m critical} pprox 2.04$ Significance threshold

Bootstrapping

With 760,000 data points, my first step is to remove some data

- 1. Sample with replacement. These indices are dropped
- 2. Set difference → Return not sampled indices
- 3. 80% train; 20% validation split

Sampling k points on the range (0, N) I will expect

of unsampled data =
$$e^{-k/n}$$

n = 762,851
k = 1n : (e^{-1}) = 0.3678n \rightarrow 280,637
k = 3n : (e^{-3}) = 0.0498n \rightarrow 37,990
k = 5n : (e^{-5}) = 0.00674n \rightarrow 5,119

For K Nearest Neighbors classification, I use a bootstrap factor of 3.

For Random Forest classification, I use a bootstrap factor of 5.

Bin Sizes

- Random Forest
- Bootstrap factor of 3
- All features
- Random split criterion
- Max depth = 5
- # Trees = 10

Classification becomes more difficult with more categories. My goal is to find a bin size which hours played will naturally cluster into.

- Random Forest
- Bootstrap factor of 3
- All features
- Random split criterion
- Max depth = 5
- # Trees = 10

Detailed look at the first 20 group sizes. I observe a fall-off in median classifier performance at 8.

2 Clustering – Motivated Clustering Bin Sizes

For each continuous attribute:

For each category:

Cluster into 8 groups

Calculate Silhouette score

Cluster each subgroup into 2 groups using k means clustering

Evaluate cluster using silhouette score

Continuous	Hours	Helpful	Funny	Number of	Number of	Polarity	Subjectivity
variable	played	votes	votes	words	sentences		
Group Size	9	11	10	9	10	11	11

Feature Subsets

Random Forest Parameters

Nine Hopeful Subsets

8.

9.

- 1. game_name, overall_player_rating
- 2. publisher, overall_player_rating
- 3. developer, overall_player_rating
- 4. game_name, publisher, developer, overall_player_rating
- 5. recommendation/hours played, game_name, overall_player_rating
- 6. recommendation/hours played, publisher, overall_player_rating
- 7. recommendation/hours played, developer, overall_player_rating
 - recommendation/hours played, game_name, publisher, developer, overall_player_rating
 - All categorical AND continuous features.

Each trial is ran 30 times to provide enough samples for t-testing

Bootstrap factor of 5.

Ensemble 100 trees

Max Features = # features

Bin size = 8

Criteria

- Entropy
- Gini Index
- Log loss
- Random

Target Disc

1. Uniform

- Ulliolili
- . K means
- 3. Frequency
- 4. Equal range on log(hours_played)

Predict Recommend- Feature Subset Analysis

- Random Forest
- Random split criterion

Feature subsets 5-8 are the same as 1-4 except they also have hours played as a feature. It is unusual for the addition of a feature to hinder prediction capabilities.

Hours played is a continuous feature. Perhaps the continuity makes it difficult to split.

Predict Hours Played - Feature Subset Analysis

Recommendation does not have an influence on the classifying performance for predicting hours played.

The 4 worst performing feature groups are all continuous features, supporting my hypothesis that continuous features hinder Random Forest classification.

TextBlob Features

Trial 1: TextBlob Features

TextBlob Groups

- TextBlob 1 'num_words'
- 2. TextBlob 2 'num_sentences'
- 3. TextBlob 3 'polarity'
- 4. TextBlob 4 'subjectivity'
- 5. TextBlob_length 'num_words', 'num_sentences'
- 6. TextBlob_sentiment 'polarity', 'subjectivity'
- 7. TextBlob_pair1 'num_words', 'polarity'
- 8. TextBlob pair2 'num words', 'subjectivity'
- 9. TextBlob_pair3 'num_sentences', 'polarity'
- **10.** TextBlob_pair4 'num_sentences', 'subjectivity'
- 11. TextBlob_all 'polarity', 'subjectivity', 'num_words', 'num_sentences'

Bootstrap factor of 5.

Each trial is ran 30 times to provide enough samples for t-testing

Ensemble 10 trees

Max Features = # features

Criteria

- Entropy
- Gini
- Log
- Random

Predict Recommendation using TextBlob

- Random Forest
- Random Split
- Max Depth = 5Bootstrap factor
- of 3

Polarity seems to be the best TextBlob feature to predict recommendation.

Difference b/w Majority and Random Forest Accuracy

Predict Recommend - TextBlob Classifier Analysis

- # words, # sentences,polarity, subjectivity

These classifiers do not achieve state-of-the-art performance. Later, you will see accuracy up to 87% using all features.

All Classifiers

Predict Recommend- Classifier Analysis

- All features
- Bootstrap factor of 3.
- Sensible classifier parameters.

QDA and Naive Bayes performed below 60% accuracy.

Predict Hours Played - Classifier Analysis

- All features
- Bootstrap factor of 3.
- Sensible classifier parameters.

All classifiers improved over the Majority.

Test Set Evaluation

Test Set Evaluation Predict Recommendation

Classifier Accuracy – 89.22%

Majority Class Accuracy – 80.49%

8.73% Improvement

Random Forest

Split Criterion = Random

Trees = 100

Feature Subset = ALL

hours_played, game_name, publisher, developer, overall_player_rating, Helpful, funny, num_words, num_sentences, polarity, subjectivity

Test Set Evaluation Predict Hours Played

Classifier Accuracy – 26.16% Majority Class Accuracy – 12.49% 13.67% Improvement

Neural Network – MLP Classifier

- Alpha = 1; max_iter = 1000

Discretization Strategy = equal frequencies

Group Size = 8

Feature Subset = ALL

hours_played, game_name, publisher, developer, overall_player_rating, Helpful, funny, num_words, num_sentences, polarity, subjectivity

Future Expansions

• I only analyzed feature subsets for Random Forest and K Nearest Neighbors. Expand search to other classifiers.

• Group size of 8 is an arbitrary choice. Anywhere in the range [2, 40] could be an acceptable choice for group size. Or use a model capable of regression.

• Utilize Associative Rule Mining techniques to find optimal feature subsets. I brute forced a subset of feature groupings, but this only extended to TextBlob combinations (excluding triplets) and 9 arbitrary groupings.