Weights and Biases Assignment Expectations We are using the urlset.csv dataset where we try identify URLs that are phished or not

- Go to the Weights and Biases website and Learn how to use weight and bias (https://wandb that's the website
- Then use a Decision Tree and Logistic Regression (To create a model that will help classify either phishing websites or not)
- However, your work should not be a Notebook
- Share the URL of your GitHub record and make sure your work is accessible
- Most importantly your work should be perfectly organized in terms of
- The Data
- Read me file
- Decision Tree
- Logistic Regression
- The result of the weights and biases Note:
- Submit the URL and the screenshots of your charts from the weights and bias
- The deadline has been pushed to the 25th of next week

Out[]:		domain	ranking	mld_res	mld.ps_res	card_rem
	0	nobell.it/ 70ffb52d079109dca5664cce6f317373782/	10000000	1.0	0.0	18.0
	1	www.dghjdgf.com/paypal.co.uk/cycgi-bin/ webscrc	10000000	0.0	0.0	11.0
	2	serviciosbys.com/paypal.cgi.bin.get- into.herf	10000000	0.0	0.0	14.0
	3	mail.printakid.com/ www.online.americanexpress	10000000	0.0	0.0	6.0
	4	thewhiskeydregs.com/wp-content/themes/ widescre	10000000	0.0	0.0	8.0
	96000	xbox360.ign.com/objects/850/850402.html	339	1.0	1.0	2.0
	96001	games.teamxbox.com/xbox-360/1860/ Dead-Space/	63029	1.0	0.0	3.0
	96002	www.gamespot.com/xbox360/action/ deadspace/	753	1.0	1.0	3.0
	96003	en.wikipedia.org/wiki/ Dead_Space_(video_game)	6	1.0	1.0	4.0
	96004	www.angelfire.com/goth/devilmaycrytonite/	2547	1.0	1.0	5.0

96005 rows × 14 columns

<pre>In []: urlset.head()</pre>

Out[]:		domain	ranking	mld_res	mld.ps_res	card_rem	rat
	0	nobell.it/ 70ffb52d079109dca5664cce6f317373782/	10000000	1.0	0.0	18.0	107
	1	www.dghjdgf.com/paypal.co.uk/cycgi-bin/ webscrc	10000000	0.0	0.0	11.0	150
:		serviciosbys.com/paypal.cgi.bin.get- into.herf	10000000	0.0	0.0	14.0	73
	3	mail.printakid.com/ www.online.americanexpress	10000000	0.0	0.0	6.0	562
	4	thewhiskeydregs.com/wp-content/themes/ widescre	10000000	0.0	0.0	8.0	29

In []: urlset.info()

Some visualization of the data

```
In []: sns.set(style='whitegrid')

# 1. Histograms for numerical features
numerical_cols = urlset.select_dtypes(include=['float64']).columns

plt.figure(figsize=(15, 10))
for i, col in enumerate(numerical_cols):
    plt.subplot(3, 3, i + 1)
    sns.histplot(urlset[col], kde=True, bins=30)
    plt.title(f'Histogram of {col}')
plt.tight_layout()
plt.show()
```



```
In [ ]: sns.pairplot(urlset[numerical_cols])
                  plt.show()
                 150
               E 100
                  50
                5000
                4000
              7000 add 2000
                1000
                  0
                6000
                5000
              4000
4000
                3000
              2000
                1000
                 0
100
                  80
              jaccard_RR
09 09
                  20
                 1.0
                 0.8
               jaccard RA
                 0.2
                 0.0
                 1.0
                 0.8
               jaccard AR
9.0
9.0
                 0.2
                 0.0
                 1.0
                                           90.
                                                                 9000
                 0.8
               ₹<sub>1 0.6</sub>
               jaccard
0.4
                 0.2
                 0.0
                 1.0
                 0.8
               0.6
0.4
                 0.2
                 0.0
                                                                     2000 4000 6000 0
ratio_Arem
                                                2000 4000
ratio_Rrem
                                                                                                                                      0.5
jaccard_AR
                                                                                                                                                                       1.0 0.0
                                                                                                                                                 1.0 0.0
                           100
card_rem
                                                                                                                 0.5
jaccard_RA
                                                                                                                            1.0 0.0
                                                                                                                                                           0.5
jaccard_AA
                                                                                           50
jaccard_RR
                  correlation_matrix = urlset[numerical_cols].corr()
```

```
In []: plt.figure(figsize=(12, 8))
    correlation_matrix = urlset[numerical_cols].corr()
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
    plt.title('Correlation Heatmap')
    plt.show()
```

Correlation Heatmap

card_rem	1.00	0.02	0.02	-0.02	-0.02	-0.02	-0.02	0.43
ratio_Rrem	0.02	1.00	1.00	-0.01	-0.00	-0.00	-0.00	-0.02
ratio_Arem	0.02	1.00	1.00	-0.01	-0.00	-0.00	-0.00	-0.02
jaccard_RR	-0.02	-0.01	-0.01	1.00	0.98	0.98	0.98	-0.11
jaccard_RA	-0.02	-0.00	-0.00	0.98	1.00	0.99	0.98	-0.12
jaccard_AR	-0.02	-0.00	-0.00	0.98	0.99	1.00	0.98	-0.11
jaccard_AA	-0.02	-0.00	-0.00	0.98	0.98	0.98	1.00	-0.10
label	0.43	-0.02	-0.02	-0.11	-0.12	-0.11	-0.10	1.00

card_rem ratio_Rrem ratio_Arem jaccard_RR jaccard_RA jaccard_AR jaccard_AA label

Missing data

```
In [ ]: urlset.isnull().sum()
Out[]: domain
                           0
        ranking
                          52
        mld_res
                          70
        mld.ps_res
                          81
        card_rem
                          82
        ratio_Rrem
                          82
         ratio_Arem
                          82
                          83
        jaccard_RR
        jaccard_RA
                          84
        jaccard_AR
                          85
        jaccard_AA
                          86
        jaccard_ARrd
                          86
        jaccard_ARrem
                          88
        label
                          92
        dtype: int64
       sns.heatmap(urlset.isnull(), yticklabels=False, cbar=True, cmap='viridis')
Out[]: <Axes: >
```



```
urlset.nunique()
In [ ]:
Out[]:
         domain
                           96003
         ranking
                            8206
         mld_res
                              21
         mld.ps_res
                              10
                              53
         {\tt card\_rem}
         ratio_Rrem
                           10042
         ratio_Arem
                           10231
         jaccard_RR
                            5446
         jaccard_RA
                            5628
         jaccard_AR
                            5071
                            5313
         jaccard_AA
                            1072
         jaccard_ARrd
                           30752
         jaccard_ARrem
                               2
         label
         dtype: int64
        urlset = urlset.dropna(subset=['label'])
In [ ]:
         #urlset = urlset.fillna(0)
In [ ]: urlset.isnull().sum()
```

```
Out[]: domain
                           0
         ranking
         mld_res
                           0
         mld.ps_res
         card_rem
                           0
         ratio_Rrem
                           0
         ratio_Arem
                           0
         jaccard_RR
                           0
         jaccard_RA
         jaccard_AR
                           0
         jaccard_AA
         jaccard_ARrd
         jaccard_ARrem
         label
                           0
         dtype: int64
In [ ]: sns.heatmap(urlset.isnull(),yticklabels=False,cbar=True,cmap='viridis')
Out[]: <Axes: >
                                                                    -0.100
                                                                     0.075
                                                                     0.050
                                                                     0.025
                                                                     0.000
                                                                      -0.025
                                                                      -0.050
                                                                      -0.075
                                                                      -0.100
                           ratio_Rrem
                                   jaccard_RR
                        card_rem
        Logistic regression
In [ ]:
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import accuracy_score, confusion_matrix, classificat
```

In []: features = [col for col in numerical_cols if col != 'label']

```
In [ ]: X = urlset[features]
        y = urlset['label']
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
In [ ]: X_train.shape
Out[]: (76730, 7)
In [ ]:
        X_train.head()
Out[]:
                                                                     card_rem
                                                                              ratio_Rrem
         65406
                                                                          3.0
                                                                               40.666667
         21429
                                                                         14.0
                                                                              116.571429
         67697
                                                                              265.000000
                                                                          1.0
         88510
                                                                          2.0
                                                                               55.500000
         31344
                                                                               24.000000
                                                                          1.0
In [ ]: X_train.columns
Out[ ]: Index(['card_rem', 'ratio_Rrem', 'ratio_Arem', 'jaccard_RR', 'jaccard_RA',
                'jaccard_AR', 'jaccard_AA'],
               dtype='object')
In [ ]:
        X_test.shape
Out[]: (19183, 7)
        y_train.shape
In [ ]:
Out[]: (76730,)
In [ ]: y_train.head()
Out[]:
         65406
                  0.0
         21429
                  1.0
         67697
                  0.0
         88510
                  0.0
         31344
                  1.0
         Name: label, dtype: float64
        Training and predicting
In [ ]: urlmodel = LogisticRegression()
        urlmodel
In [ ]:
Out[]:
          LogisticRegression
        LogisticRegression()
```

```
In [ ]: X_train.info()
       <class 'pandas.core.frame.DataFrame'>
       Index: 76730 entries, 65406 to 15795
       Data columns (total 7 columns):
           Column
                       Non-Null Count Dtype
           -----
                        -----
                                       _ _ _ _ _
       - - -
        0
          card_rem
                       76730 non-null float64
        1 ratio_Rrem 76730 non-null float64
        2 ratio_Arem 76730 non-null float64
           jaccard_RR 76730 non-null float64
        3
           jaccard_RA 76730 non-null float64
        4
           jaccard_AR 76730 non-null float64
            jaccard_AA 76730 non-null float64
       dtypes: float64(7)
       memory usage: 4.7 MB
In [ ]: urlmodel.fit(X_train, y_train)
Out[]:
          LogisticRegression
        LogisticRegression()
       y_pred = urlmodel.predict(X_test)
In [ ]:
        y_pred
Out[]: array([1., 0., 1., ..., 1., 0., 0.])
        Evaluation
        print(accuracy = accuracy_score(y_test, y_pred))
In [ ]:
        print(classification_report(y_test,y_pred))
                     precision
                                  recall f1-score
                                                    support
                0.0
                          0.67
                                   0.80
                                             0.73
                                                       9579
                1.0
                          0.76
                                   0.60
                                             0.67
                                                       9604
                                             0.70
                                                      19183
           accuracy
          macro avg
                          0.71
                                   0.70
                                             0.70
                                                      19183
       weighted avg
                                   0.70
                                             0.70
                          0.71
                                                      19183
In [ ]: print(sns.heatmap(confusion_matrix(y_pred, y_test), annot=True))
       Axes(0.125,0.11;0.62x0.77)
```


In []: #Evaluate the model
 print(classification_report(y_test, y_pred))
 sns.heatmap(confusion_matrix(y_test, y_pred), annot=True)

	precision	recall	f1-score	support
0.0	0.67	0.80	0.73	9579
1.0	0.76	0.60	0.67	9604
accuracy			0.70	19183
macro avg	0.71	0.70	0.70	19183
weighted avg	0.71	0.70	0.70	19183

Out[]: <Axes: >

Train Accuracy: 0.7043398931317607 Test Accuracy: 0.7034353333680863 Test AUC: 0.7034353333680863

Decision Tree

```
In []: from sklearn.tree import DecisionTreeClassifier
In []: decision_tree_model = DecisionTreeClassifier()
    decision_tree_model.fit(X_train, y_train)

Out[]: DecisionTreeClassifier
    DecisionTreeClassifier()

In []: y_pred_tree = decision_tree_model.predict(X_test)

In []: print("Decision Tree")
    print("Accuracy:", accuracy_score(y_test, y_pred_tree))
    print("Classification Report:\n", classification_report(y_test, y_pred_tr
```

Decision Tree

Accuracy: 0.8794244904342386

Classification Report:

	precision	recall	f1-score	support
0.0	0.88	0.87	0.88	9579
0.0	0.00	0.07	0.00	9579
1.0	0.87	0.89	0.88	9604
accuracy			0.88	19183
macro avg	0.88	0.88	0.88	19183
weighted avg	0.88	0.88	0.88	19183

W&B

```
In [ ]: !pip install wandb -qU
```

6.8/6.8 MB 35.3 MB/s eta 0:00:00 207.3/207.3 kB 9.3 MB/s eta 0:00 303.6/303.6 kB 12.4 MB/s eta 0:00 62.7/62.7 kB 3.9 MB/s eta 0:00:00

```
In [ ]: import wandb
In [ ]: wandb.login()
```

wandb: Logging into wandb.ai. (Learn how to deploy a W&B server locally: http: wandb.me/wandb-server)

wandb: You can find your API key in your browser here: https://wandb.ai/authowandb: Paste an API key from your profile and hit enter, or press ctrl+c to quantum control of the control of

wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc

Out[]: True

```
In [ ]: wandb.init(project='url-assignment')
```

Tracking run with wandb version 0.17.5

Run data is saved locally in /content/wandb/run-20240725_145522-czdjs4q9

Syncing run jolly-lion-2 to Weights & Biases (docs)

View project at https://wandb.ai/shamywams-usiu/url-assignment

View run at https://wandb.ai/shamywams-usiu/url-assignment/runs/czdjs4q9

```
Out[]: Display W&B run
```

```
In [ ]: !pip install scikit-plot
   import scikitplot as skplt
```

```
Collecting scikit-plot
         Downloading scikit_plot-0.3.7-py3-none-any.whl.metadata (7.1 kB)
       Requirement already satisfied: matplotlib>=1.4.0 in /usr/local/lib/python3.10.
       packages (from scikit-plot) (3.7.1)
       Requirement already satisfied: scikit-learn>=0.18 in /usr/local/lib/python3.10
       dist-packages (from scikit-plot) (1.2.2)
       Requirement already satisfied: scipy>=0.9 in /usr/local/lib/python3.10/dist-
       packages (from scikit-plot) (1.11.4)
       Requirement already satisfied: joblib>=0.10 in /usr/local/lib/python3.10/dist
       packages (from scikit-plot) (1.4.2)
       Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/
       packages (from matplotlib>=1.4.0->scikit-plot) (1.2.1)
       Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist
       packages (from matplotlib>=1.4.0->scikit-plot) (0.12.1)
       Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10.
       packages (from matplotlib>=1.4.0->scikit-plot) (4.53.1)
       Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10.
       packages (from matplotlib>=1.4.0->scikit-plot) (1.4.5)
       Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.10/dist-
       packages (from matplotlib>=1.4.0->scikit-plot) (1.25.2)
       Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/d:
       packages (from matplotlib>=1.4.0->scikit-plot) (24.1)
       Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dis
       packages (from matplotlib>=1.4.0->scikit-plot) (9.4.0)
       Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/
       packages (from matplotlib>=1.4.0->scikit-plot) (3.1.2)
       Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3
       dist-packages (from matplotlib>=1.4.0->scikit-plot) (2.8.2)
       Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3
       dist-packages (from scikit-learn>=0.18->scikit-plot) (3.5.0)
       Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-pac
       (from python-dateutil>=2.7->matplotlib>=1.4.0->scikit-plot) (1.16.0)
       Downloading scikit_plot-0.3.7-py3-none-any.whl (33 kB)
       Installing collected packages: scikit-plot
       Successfully installed scikit-plot-0.3.7
In [ ]: # Log metrics to wandb
        epoch = 10
        train_accuracy = accuracy_score(y_train, urlmodel.predict(X_train))
        test_accuracy = accuracy_score(y_test, y_pred)
        test_auc = accuracy_score(y_test, y_pred)
        wandb.log({
              'epoch': epoch + 1,
                'train_accuracy': train_accuracy,
                'test_accuracy': test_accuracy,
                'test_auc': test_auc
            })
In [ ]: wandb.finish()
       VBox(children=(Label(value='0.011 MB of 0.011 MB uploaded\r'),
```

FloatProgress(value=1.0, max=1.0)))

Run history:

Run summary:

epoch	epoch	
test_accuracy	test_accuracy	0.70
test_auc	test_auc	0.70
train_accuracy	train_accuracy	0.70

View run jolly-lion-2 at: https://wandb.ai/shamywams-usiu/url-assignment/runs/czdjs4q9

View project at: https://wandb.ai/shamywams-usiu/url-assignment

Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)

Find logs at: ./wandb/run-20240725_145522-czdjs4q9/logs

The new W&B backend becomes opt-out in version 0.18.0; try it out with `wandb.require("core")`! S https://wandb.me/wandb-core for more information.