(q,Q) の母関数

ラグランジアンの時間全微分の項の不定性より

$$\dot{q}_i p_i - H(q, p, t) = \dot{Q}_i P_i - K(Q, P, t) + \frac{dF(q, Q, t)}{dt}$$

全微分より

$$\frac{dF(q,Q,t)}{dt} = \frac{\partial F}{\partial q_i}\dot{q}_i + \frac{\partial F}{\partial Q_i}\dot{Q}_i + \frac{\partial F}{\partial t}$$

代入して移項して

$$(p_i - \frac{\partial F}{\partial q_i})\dot{q}_i - (P_i + \frac{\partial F}{\partial Q_i})\dot{Q}_i + K - H - \frac{\partial F}{\partial t} = 0$$

よって

$$p_i = \frac{\partial F(q,Q,t)}{\partial q_i}, P_i = -\frac{\partial F(q,Q,t)}{\partial Q_i}, K = H + \frac{\partial F(q,Q,t)}{\partial t}$$

これは次のようにも書ける

$$dF = p_i dq_i - P_i dQ_i + f dt$$

ここで $f = \frac{\partial F(q,Q,t)}{\partial t}$

(q,P) の母関数

Q を P にルジャンドル変換する。 $\Phi(q, P, t) = F(q, Q, t) + P_iQ_i$ とすると

$$\begin{split} d\Phi(q,P,t) &= dF + d(P_iQ_i) \\ &= (p_idq_i - P_idQ_i + fdt) + (P_idQ_i + Q_idP_i) \\ &= p_idq_i + Q_idP_i + fdt \\ &= \frac{\partial\Phi}{\partial a_i}dq_i + \frac{\partial\Phi}{\partial P_i}dP_i + \frac{\partial\Phi}{\partial t}dt \end{split}$$

よって $(f = \frac{\partial F}{\partial t} = K - H$ だったことを考えれば)

$$p_i = \frac{\partial \Phi(q, P, t)}{\partial a_i}, Q_i = \frac{\partial \Phi(q, P, t)}{\partial P_i}, K = H + \frac{\partial \Phi(q, P, t)}{\partial t}$$

(p,Q) の母関数

一度最初の F の式に戻り、q を p にルジャンドル変換する。 $\Psi(p,Q,t)=F(q,Q,t)-p_iq_i$ とすると

$$\begin{split} d\Psi(p,Q,t) &= (p_i dq_i - P_i dQ_i + f dt) - (p_i dq_i + q_i dp_i) \\ &= -q_i dp_i - P_i dQ_i + f dt \\ &= \frac{\partial \Psi}{\partial p_i} dp_i + \frac{\partial \Psi}{\partial Q_i} dQ_i + \frac{\partial \Psi}{\partial t} dt \end{split}$$

よって

$$q_i = -\frac{\partial \Psi(p,Q,t)}{\partial p_i}, P_i = -\frac{\partial \Psi(p,Q,t)}{\partial Q_i}, K = H + \frac{\partial \Psi(p,Q,t)}{\partial t}$$

(p,P) の母関数

 Φ の式に戻り Q を P にルジャンドル変換する。(あるいは Ψ の式でもほぼ同じことである。) $\Xi(p,P,t)=\Phi(q,P,t)-q_ip_i(=F(q,Q,t)+Q_iP_i-q_ip_i)$ とすると

$$\begin{split} d\Xi(p,P,t) &= (p_i dq_i + Q_i dP_i + f dt) - (q_i dp_i + p_i dq_i) \\ &= -q_i dp_i + Q_i dP_i + f dt \\ &= \frac{\partial \Xi}{\partial p_i} dp_i + \frac{\partial \Xi}{\partial P_i} dP_i + \frac{\partial \Xi}{\partial t} dt \end{split}$$

よって

$$q_i = -\frac{\partial \Xi(p, P, t)}{\partial p_i}, Q_i = \frac{\partial \Xi(q, P, t)}{\partial P_i}, K = H + \frac{\partial \Xi(q, P, t)}{\partial t}$$