Lecture Notes 7 for 9/19

The basic idea

In this class we are investigating what it means for a conclusion to logically follow from some premises.

One way of thinking about what that means has to do with interpretations.

A conclusion logically follows from some premises, when there is no interpretation where the premises are true but the conclusion is false.

Today we will be exploring a second way of thinking about things. On this second way, a conclusion is a logical consequence of some premises, when there is a derivation from the premises to the conclusion which uses nothing but rock solid inference rules.

Inference rules

To start, I introduce 8 inference rules.

Modus Ponens (MP)

- 1. p⊃q
- 2. p
- 3. ∴ q

Modus Tollens (MT)

- 1. p⊃q
- 2. ¬q
- 3. ∴¬p

Hypothetical Syllogism (HS)

- 1. p⊃q
- 2. q⊃r
- 3. ∴p⊃r

Simplification (Simp)

- 1. p ∧ q
- 2. ∴ p
- 1. p ∧ q
- 2. ∴ q

Conjunction (Conj)

- 1. p
- 2. q
- 3. ∴ p ∧ q

Disjunctive Syllogism (D.S.)

- p ∨ q
- 2. ¬р
- 3. ∴ q
- p ∨ q
- 2. ¬q
- 3. ∴ p

Addition (Add.)

- 1.
- $2. \quad \therefore p \lor q$
- 1. (
- $2. \quad \ \ \dot{} \quad p \lor q$

Dilemma (Dil.)

- 1. p⊃q
- 2. r⊃s
- 3. $p \lor r$
- 4. ∴ q ∨ s

Rule Citation

Problem 1:

- 1. (¬A ∨ ¬B) ∨ C
- 2. ¬C
- 3. So: ¬A ∨ ¬B

Problem 2:

- 4. $\neg (A \lor B) \supset (\neg A \lor \neg B)$
- 5. ¬(¬A ∨ ¬B)
- 6. So: ¬¬(A ∨ B)

Problem 3:

- 7. $(\neg B \lor \neg C) \supset \neg D$
- 8. $\neg A \supset (\neg B \lor \neg C)$
- 9. ¬A ⊃ ¬D

Sample derivation

The task: derive M from the following premises.

1	(W ∧ S)	Premise
2	$((W \; \land \; S) \; \land \; (R \; \lor \; F)) \; \supset \; (P \; \lor \; M)$	Premise
3	(P ⊃ B)	Premise
4	¬B∧L	Premise
5	¬R ∧ F	Premise
6	F	Simp 5
7	$R \lor F$	Add 6
8	$(W \land S) \land (R \lor F)$	Conj 1, 7
9	(P ∨ M)	MP 2, 8
10	¬В	Simp 4
11	¬P	MT 3, 10
12	М	DS 9, 11

Sample derivation

The task: derive $\neg P \lor (\neg F \land \neg H)$

1	$(A \vee \neg B) \supset \neg(C \vee \neg D)$	Premise
2	(F ∧ ¬H) ∨ A	Premise
3	$\neg(F \land \neg H) \land (\neg O \land \neg P)$	Premise
4	$(\neg Z \land X) \supset O$	Premise
5	¬(F /\ ¬H)	Simp 3
6	А	DS 2, 5
7	¬0 ∧ ¬P	Simp 3
8	٦0	Simp 7
9	¬(¬Z ∧ X)	MT 4,8
10	A∨¬B	Add 6

11	¬P	Simp 7
12	¬(C ∨ ¬D)	MP 10,
13	¬P ∨ (¬F ∧ ¬H)	

Proofs

Derive ¬F from:

1.	$(C \land D) \supset \neg F$	Pr	
2.	$(A\supset C)\land (B\supset C)$))	Pr
3.	(A ∧ B)	Pr	
4.	Α	Simp 3	
5.	$A \supset C$	Simp 2	
6.	С	MP 4,5	
7.	В	Simp 3	
8.	$B \supset D$	Simp 2	
9.	D	MP 7,8	
10.	$C \wedge D$	Conj 6,9	
11.	¬F	MP 1, 10)

Derive C from:

1.	$(A\supsetB)\supset(B\supsetC)$		Pr
2.	$(A \land B) \supset (A \supset B)$		Pr
3.	$(\neg F \supset A) \land (\neg D \supset B)$	Pr	
4.	$(F\supset T) \land (D\supset S)$		Pr
5.	¬T /\ ¬S	Pr	
6.	¬T	Simp 5	
7.	$F\supset T$	Simp 4	
8.	¬F	MT 6,7	
9.	¬S	Simp 5	
10.	$D\supset S$	Simp 4	
11.	¬D	MT 9,10)
12.	$\neg F \supset A$	Simp 3	
13.	A	MP 8, 1	2
14.	$\neg D \supset B$	Simp 3	
15.	В	MP 11,1	_4
16.	$A \wedge B$	Conj 13	, 15
17.	$A \supset B$	MP 2, 1	6
18.	$B \supset C$	MP 1, 1	7
19.	С	MP 15,	18