Logistic Regression

Hồi quy Logistic

Demo

Hồi quy tuyến tính và hồi quy logistic

Số km	Thành tiền			
2	13			
7	35			
g	41			
3	19			
10	45			
6	28			
1	10			
8	55			

Đầu ra mô hình hồi quy tuyến tính là dạng số vô hạn

Đầu ra mô hình hồi quy Logistic là dạng loại hữu hạn bao gồm 0 và 1

Vi dụ

Nhãn chó và mèo được **số hóa** dưới giá trị 0 và 1

0

0

1

1

x	у		
10	0		
20	0		
30	0		
40	0		
50	1		
300	1		
400	1		
800	1		

Áp dụng Linear Regression

Áp dụng Linear Regression

Áp dụng Linear Regression

Fraud Detection

Áp dụng Linear Regression

Hàm giả thiết

$$h_{ heta}(\mathbf{x}) = heta^T \mathbf{x}$$

Khi thêm một điểm dữ liệu mới làm cho mô hình tuyến tính <mark>dự đoán</mark> sai những điểm lúc trước

Áp dụng Linear Regression thường sẽ không hiệu quả với bài toán phân loại

Hồi quy Logistic

Hàm Sigmoid

Hàm giả thiết

$$h_{ heta}(\mathbf{x}) = \sigma(heta^T\mathbf{x}) \, = rac{1}{1+e^{-z}} = rac{1}{1+e^{- heta^T\mathbf{x}}}$$

Hàm sigmoid có khả năng chuyển phân phối có những giá trị trong khoảng [âm vô cùng, dương vô cùng] sang phân phối có những giá trị nằm trong

Hàm Sigmoid Sigmoid Function

Hàm giả thiết

$$h_{ heta}(\mathbf{x}) = \sigma(heta^T\mathbf{x}) \, = rac{1}{1+e^{-z}} = rac{1}{1+e^{- heta^T\mathbf{x}}}$$

Khi z càng lớn thì $h_{\theta}(\mathbf{x})$ càng gần tới 1 Khi z càng nhỏ thì $h_{\theta}(\mathbf{x})$ càng gần tới 0

Quy trình biến đổi trên 1 điểm dữ liệu Transformation Progress on a data point

Điểm dữ liệu này giờ là một vector có n features

Loss Function

Giả thiết

0.6

$$P(y=1|\mathbf{x}) = h_{ heta}(\mathbf{x}) = \sigma(heta^T\mathbf{x}) = \sigma(z)$$

Xác suất <mark>dữ liệu là nhãn 1</mark> khi cho X

$$P(y=0|\mathbf{x}) = 1 - h_{\theta}(\mathbf{x}) = 1 - \sigma(z)$$

Xác suất dữ liệu là nhãn θ khi cho X

0.4

Giống phân phối nào?

Trả lời nhanh tay nhận ngay ly nước :D

Giả thiết: tại 1 điểm dữ liệu

$$P(y=1|\mathbf{x}) = h_{ heta}(\mathbf{x}) = \sigma(heta^T\mathbf{x}) = \sigma(z)$$

Xác suất <mark>dữ liệu là nhãn 1</mark> khi cho X

$$P(y=0|\mathbf{x})=1-h_{ heta}(\mathbf{x})=1-\sigma(z)$$

Xác suất <mark>dữ liệu là nhãn θ</mark> khi cho X

Viết gọn:

$$p(y|\mathbf{x}) = (\sigma(z))^y (1-\sigma(z))^{(1-y)}$$

Loss Function

1 Giả thiết

$$p(y|\mathbf{x}) = (\sigma(z))^y (1 - \sigma(z))^{(1-y)}$$

Hàm Likelihood trên toàn tập dữ liệu X
$$(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})$$

$$egin{align} L(heta) &= p(\mathbf{y}|X; heta) \ &= \prod_{i=1}^m p(y^{(i)}|\mathbf{x}^{(i)}; heta) \ &= \prod_{i=1}^m (\sigma(z^{(i)}))^{y^{(i)}} (1-\sigma(z^{(i)}))^{(1-y^{(i)})} \ &= \prod_{i=1}^m (h_ heta(\mathbf{x}^{(i)}))^{y^{(i)}} (1-h_ heta(\mathbf{x}^{(i)}))^{(1-y^{(i)})} \end{split}$$

Loss Function

1 Giả thiết

$$p(y|\mathbf{x}) = (\sigma(z))^y (1 - \sigma(z))^{(1-y)}$$

Hàm Likelihood trên toàn tập dữ liệu X
$$(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})$$

$$egin{align} L(heta) &= p(\mathbf{y}|X; heta) \ &= \prod_{i=1}^m p(y^{(i)}|\mathbf{x}^{(i)}; heta) \ &= \prod_{i=1}^m (\sigma(z^{(i)}))^{y^{(i)}} (1-\sigma(z^{(i)}))^{(1-y^{(i)})} \ &= \prod_{i=1}^m (h_ heta(\mathbf{x}^{(i)}))^{y^{(i)}} (1-h_ heta(\mathbf{x}^{(i)}))^{(1-y^{(i)})} \end{split}$$

Giả thiết

$$p(y|\mathbf{x}) = (\sigma(z))^y (1 - \sigma(z))^{(1-y)}$$

$$L(heta) \ = \prod_{i=1}^m (h_{ heta}(\mathbf{x}^{(i)}))^{y^{(i)}} (1 - h_{ heta}(\mathbf{x}^{(i)}))^{(1-y^{(i)})}$$

3 Hàm Log Likelihood

$$LL(heta) = \sum_{i=1}^m y^{(i)} \log h_{ heta}(\mathbf{x}^{(i)}) + (1-y^{(i)}) \log (1-h_{ heta}(\mathbf{x}^{(i)}))$$

Loss Function

$$L(heta) \ = \prod_{i=1}^m (h_ heta(\mathbf{x}^{(i)}))^{y^{(i)}} (1 - h_ heta(\mathbf{x}^{(i)}))^{(1-y^{(i)})}$$

(3) Hàm Log Likelihood

$$LL(heta) = \sum_{i=1}^m y^{(i)} \log h_{ heta}(\mathbf{x}^{(i)}) + (1-y^{(i)}) \log (1-h_{ heta}(\mathbf{x}^{(i)}))$$

4 Cực đại hóa Log Likelihood. 3 phương pháp

Cực đại hóa Log Likelihood

Cách 1: Cực tiểu hóa-LL(heta) sử dụng Gradient Descent

$$egin{aligned} J(heta) &= -\sum_{i=1}^m y^{(i)} \log h_ heta(\mathbf{x}^{(i)}) + (1-y^{(i)}) \log (1-h_ heta(\mathbf{x}^{(i)})) \ & heta_j := heta_j - lpha rac{\partial J(heta)}{\partial heta_j} := heta_j - lpha \sum_{i=1}^m (h_ heta(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)} \end{aligned}$$

Cách 2: Cực đại hóa LL(heta) sử dụng Gradient Ascent

$$egin{aligned} LL(heta) &= \sum_{i=1}^m y^{(i)} \log h_ heta(\mathbf{x}^{(i)}) + (1-y^{(i)}) \log (1-h_ heta(\mathbf{x}^{(i)})) \ & heta_j := heta_j + lpha rac{\partial LL(heta)}{\partial heta_j} := heta_j + lpha \sum_{i=1}^m (y^{(i)} - h_ heta(\mathbf{x}^{(i)})) x_j^{(i)} \end{aligned}$$

Gradient Descent

Gradient Descent

Cực đại hóa Log Likelihood

Cross Entropy

Cực tiểu hóa -LL(heta) sử dụng Gradient Descent

$$J(heta) = -\sum_{i=1}^m y^{(i)} \log h_{ heta}(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - h_{ heta}(\mathbf{x}^{(i)}))$$

 $heta_j := heta_j - lpha rac{\partial J(heta)}{\partial heta_i} := heta_j - lpha \sum_{i=1}^m (h_{ heta}(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$

Công thức tổng quát trên toàn tập dữ liệu X

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$J(heta) = -rac{1}{m} \sum (\mathbf{y} \odot \log(h_{ heta}(X)) + (1-\mathbf{y}) \odot (1-\log(h_{ heta}(X))))$$

Quá trình training. Ở mỗi vòng lặp (epoch)

???

Ranh giới quyết định

$$z = heta^T \mathbf{x}$$

Giả sử mô hình dự đoán là nhãn 1

$$h_{ heta}(\mathbf{x}) \geq rac{1}{2} \Leftrightarrow e^{-z} \leq 1 \Leftrightarrow z \geq 0 \Leftrightarrow heta^T \mathbf{x} \geq 0$$
 Giả sử mô hình dự đoán là nhãn 0

$$h_{ heta}(\mathbf{x}) < rac{1}{2} \Leftrightarrow heta^T \mathbf{x} < 0$$

$$heta^T \mathbf{x} = 0$$

Chính là đường <u>ranh giới</u> quyết định phần chia nhãn

Ranh giới quyết định

Practice

Thực hành

