Pandas je python knjižnjica namenjena za uporabo pri analizo podatkov. Omogoča nam računanje statističnih podatkov (max, min, povprečje, data distribution, itd..). Omogoča nam čiščenje podatkov, filtracijo in vizualizacijo.

Install

pip install pandas

In [1]:

import pandas as pd

Basic objects

Pandas v glavnem operira z dvema primarnima objektoma:

Series in DataFrame.

- Series predstavlja en stolpec podatkov
- · DataFrame predstavlja tabelo podatkov

Series Da					Data	rame		
	apples			oranges			apples	oranges
0	3		0	0		0	3	0
1	2	+	1	3	=	1	2	3
2	0		2	7		2	0	7
3	1		3	2		3	1	2

Series ustvarimo s preprostim ukazom:

In [2]:

```
data = pd.Series([0.25, 0.5, 0.75, 1.0])
print(type(data))
print(data)
```

```
<class 'pandas.core.series.Series'>
0    0.25
1    0.50
2    0.75
3    1.00
dtype: float64
```

Pri izpisu vidimo naše podatke (values) in številčne vrednosti, ki predstavljajo index vrstic (index).

In [3]:

```
print(data.values)
print(data.index)

[0.25 0.5 0.75 1. ]
RangeIndex(start=0, stop=4, step=1)
```

Tako kot pri numpy lahko do vrednosti dostopamo preko indexa.

In [4]:

```
print(data[1])
print()
print(data[0:2])
```

0.5

0 0.25 1 0.50 dtype: float64

Index ne potrebuje biti številčna vrednost. Lahko ga definiramo sami:

In [5]:

```
data = pd.Series([0.25, 0.5, 0.75, 1.0], index=["a", "b", "c", "d"])
print(data)
print(data["a"])
print(data["b":])
     0.25
а
     0.50
b
     0.75
С
     1.00
dtype: float64
0.25
     0.50
b
     0.75
C
d
     1.00
dtype: float64
```

In [6]:

```
# ustvarjanje Series s pomočjo dictionary
data = pd.Series({
    "a": 0.25,
    "b": 0.5,
    "c": 0.75,
    "d": 1
})
print(data)

a    0.25
b    0.50
c    0.75
```

dtype: float64

1.00

DataFrame je skupek Series in ga lahko prav tako ustvarimo na več načinov.

Eden izmed načinov je s pomočjo dictionary, kjer vsak **key:value** par predstavlja stolpec v našem DataFrame.

In [7]:

d

```
data = {
    "apples": [3,1,0,4],
    "oranges": [2,0,3,1]
}

df = pd.DataFrame(data)
print(type(df))
df
```

<class 'pandas.core.frame.DataFrame'>

Out[7]:

	apples	oranges
0	3	2
1	1	0
2	0	3
3	4	1

Index je bil določen samodejno, vendar ga lahko prav tako tudi sami določimo.

In [8]:

```
data = {
    "jabolka": [3,1,0,4],
    "pomaranče": [2,0,3,1]
}

df = pd.DataFrame(data, index=["Maja", "Janez", "Jaka", "Živa"])
df
```

Out[8]:

	jabolka	pomaranče
Maja	3	2
Janez	1	0
Jaka	0	3
Živa	4	1

Basic info from our data

Za začetek bomo uvozili večjo količino podatkov. Uporabili bomo IMDB dataset, kjer je shranjeno 1000 najpopularnejših filmov od 2006 do 2016.

https://we.tl/t-aXOfVSSyer (https://we.tl/t-aXOfVSSyer)

In [2]:

```
import pandas as pd
```

In [3]:

```
data = pd.read_csv("IMDB-Movie-Data.csv", index_col="Title")
```

Za hiter pregled lahko uporabimo funkcijo df.head() - ki nam pokaže prvih 5 vrstic - ali funkcijo df.tail() - ki nam pokaže zadnjih 5 vrstic.

In [10]:

data.head()

Out[10]:

	Rank	Genre	Description	Director	Actors	Year
Title						
Guardians of the Galaxy	1	Action,Adventure,Sci-Fi	A group of intergalactic criminals are forced	James Gunn	Chris Pratt, Vin Diesel, Bradley Cooper, Zoe S	2014
Prometheus	2	Adventure,Mystery,Sci-Fi	Following clues to the origin of mankind, a te	Ridley Scott	Noomi Rapace, Logan Marshall- Green, Michael Fa	2012
Split	3	Horror,Thriller	Three girls are kidnapped by a man with a diag	M. Night Shyamalan	James McAvoy, Anya Taylor-Joy, Haley Lu Richar	2016
Sing	4	Animation,Comedy,Family	In a city of humanoid animals, a hustling thea	Christophe Lourdelet	Matthew McConaughey,Reese Witherspoon, Seth Ma	2016
Suicide Squad	5	Action,Adventure,Fantasy	A secret government agency recruits some of th	David Ayer	Will Smith, Jared Leto, Margot Robbie, Viola D	2016

Za pregled osnovnih značilnosti našega DataFrame lahko uporabimo funkcijo df.info().

In [11]:

data.info()

<class 'pandas.core.frame.DataFrame'>

Index: 1000 entries, Guardians of the Galaxy to Nine Lives

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Rank	1000 non-null	int64
1	Genre	1000 non-null	object
2	Description	1000 non-null	object
3	Director	1000 non-null	object
4	Actors	1000 non-null	object
5	Year	1000 non-null	int64
6	Runtime (Minutes)	1000 non-null	int64
7	Rating	1000 non-null	float64
8	Votes	1000 non-null	int64
9	Revenue (Millions)	872 non-null	float64
10	Metascore	936 non-null	float64

dtypes: float64(3), int64(4), object(4)

memory usage: 93.8+ KB

V izpisu vidimo koliko vrstic vsebuje naš DataFrame, koliko stolpcev, imena stolpcev, kakšen data tip se nahaja v stolpcu, itd..

S pomočjo funkcije describe() lahko najdemo osnovne statistične parametre, kot so min, max, distribucija, itd..

In [13]:

data.describe()

Out[13]:

	Rank	Year	Runtime (Minutes)	Rating	Votes	Revenue (Millions)	Metasc
count	1000.000000	1000.000000	1000.000000	1000.000000	1.000000e+03	872.000000	936.0000
mean	500.500000	2012.783000	113.172000	6.723200	1.698083e+05	82.956376	58.9850
std	288.819436	3.205962	18.810908	0.945429	1.887626e+05	103.253540	17.1947
min	1.000000	2006.000000	66.000000	1.900000	6.100000e+01	0.000000	11.0000
25%	250.750000	2010.000000	100.000000	6.200000	3.630900e+04	13.270000	47.0000
50%	500.500000	2014.000000	111.000000	6.800000	1.107990e+05	47.985000	59.5000
75%	750.250000	2016.000000	123.000000	7.400000	2.399098e+05	113.715000	72.0000
max	1000.000000	2016.000000	191.000000	9.000000	1.791916e+06	936.630000	100.0000
4							

Za bolj podroben opis vsakega stolpca lahko uporabimo funkcijo value_counts().

```
In [14]:
```

```
data["Director"].value_counts()
Out[14]:
                       8
Ridley Scott
M. Night Shyamalan
                       6
Michael Bay
                       6
Paul W.S. Anderson
                       6
David Yates
                       6
Lisa Addario
                       1
Rich Moore
                       1
Robin Swicord
                       1
Stephen Chbosky
                       1
Mark Mylod
                       1
Name: Director, Length: 644, dtype: int64
```

Slicing, selecting, extracting data

Iz našega DataFrame lahko izberemo specifičen stolpec na sledeč način:

In [15]:

```
genre = data["Genre"]
print(type(genre))
print(genre)
```

```
<class 'pandas.core.series.Series'>
Guardians of the Galaxy
                              Action, Adventure, Sci-Fi
Prometheus
                             Adventure, Mystery, Sci-Fi
Split
                                      Horror, Thriller
                              Animation, Comedy, Family
Sing
Suicide Squad
                             Action, Adventure, Fantasy
Secret in Their Eyes
                                  Crime, Drama, Mystery
Hostel: Part II
                                                Horror
Step Up 2: The Streets
                                  Drama, Music, Romance
Search Party
                                     Adventure, Comedy
Nine Lives
                                Comedy, Family, Fantasy
```

Tako dobimo Series object.

Name: Genre, Length: 1000, dtype: object

Če želimo izbrati samo en stolpec in ohraniti DatFrame object to storimo:

In [16]:

```
genre_df = data[["Genre"]]
print(type(genre_df))
genre_df
```

<class 'pandas.core.frame.DataFrame'>

Out[16]:

Genre

Title	
Guardians of the Galaxy	Action,Adventure,Sci-Fi
Prometheus	Adventure, Mystery, Sci-Fi
Split	Horror, Thriller
Sing	Animation,Comedy,Family
Suicide Squad	Action,Adventure,Fantasy
Secret in Their Eyes	Crime,Drama,Mystery
Hostel: Part II	Horror
Step Up 2: The Streets	Drama,Music,Romance
Search Party	Adventure,Comedy
Nine Lives	Comedy,Family,Fantasy

1000 rows × 1 columns

Če želimo izbrati več stolpcev hkrati:

In [17]:

```
subset = data[["Genre", "Director"]]
subset
```

Out[17]:

	Genre	Director
Title		
Guardians of the Galaxy	Action,Adventure,Sci-Fi	James Gunn
Prometheus	Adventure, Mystery, Sci-Fi	Ridley Scott
Split	Horror,Thriller	M. Night Shyamalan
Sing	Animation,Comedy,Family	Christophe Lourdelet
Suicide Squad	Action,Adventure,Fantasy	David Ayer
Secret in Their Eyes	Crime,Drama,Mystery	Billy Ray
Hostel: Part II	Horror	Eli Roth
Step Up 2: The Streets	Drama,Music,Romance	Jon M. Chu
Search Party	Adventure, Comedy	Scot Armstrong
Nine Lives	Comedy,Family,Fantasy	Barry Sonnenfeld

1000 rows × 2 columns

Vzememo lahko tudi celotne vrstice oziroma specifične vrednosti:

- .loc[row, column] kjer do vrstic dostopamo preko njihovega imena (index)
- .iloc[row, column] kjer do vrstic dostopamo preko njihovega števičnega indexa

In [18]:

```
prometheus = data.loc["Prometheus"]
print(type(prometheus))
print(prometheus)
```

```
<class 'pandas.core.series.Series'>
Rank
2
Genre
                                                 Adventure, Mystery, Sci-F
                       Following clues to the origin of mankind, a t
Description
e...
                                                              Ridley Scot
Director
t
                       Noomi Rapace, Logan Marshall-Green, Michael F
Actors
a...
                                                                       201
Year
                                                                        12
Runtime (Minutes)
                                                                        7.
Rating
                                                                     48582
Votes
Revenue (Millions)
                                                                     126.4
Metascore
                                                                       65.
Name: Prometheus, dtype: object
```

In [19]:

```
prometheus = data.iloc[1, 3]
print(type(prometheus))
print(prometheus)
```

<class 'str'>
Ridley Scott

Uporabljamo lahko tudi slicing:

In [20]:

```
subset = data.loc["Prometheus":"Sing"]
print(type(subset))
subset
```

<class 'pandas.core.frame.DataFrame'>

Out[20]:

	Rank	Genre	Description	Director	Actors	Year
Title						
Prometheus	2	Adventure,Mystery,Sci-Fi	Following clues to the origin of mankind, a te	Ridley Scott	Noomi Rapace, Logan Marshall- Green, Michael Fa	2012
Split	3	Horror,Thriller	Three girls are kidnapped by a man with a diag	M. Night Shyamalan	James McAvoy, Anya Taylor-Joy, Haley Lu Richar	2016
Sing	4	Animation,Comedy,Family	In a city of humanoid animals, a hustling thea	Christophe Lourdelet	Matthew McConaughey,Reese Witherspoon, Seth Ma	2016
4						•

In [21]:

```
subset = data.iloc[1:4]
print(type(subset))
subset
```

<class 'pandas.core.frame.DataFrame'>

Out[21]:

	Rank	Genre	Description	Director	Actors	Year
Title						
Prometheus	2	Adventure, Mystery, Sci-Fi	Following clues to the origin of mankind, a te	Ridley Scott	Noomi Rapace, Logan Marshall- Green, Michael Fa	2012
Split	3	Horror,Thriller	Three girls are kidnapped by a man with a diag	M. Night Shyamalan	James McAvoy, Anya Taylor-Joy, Haley Lu Richar	2016
Sing	4	Animation,Comedy,Family	In a city of humanoid animals, a hustling thea	Christophe Lourdelet	Matthew McConaughey,Reese Witherspoon, Seth Ma	2016
4						>

Opazimo, da slicing pri .loc vključuje zadnji element medtem, ko .iloc ne vključuje zadnjega elementa.

Vrstice lahko izberamo tudi po specifičnih pogojih. Za primer bomo vzeli vsako vrstico, kjer je bil direktor "Ridley Scott".

In [22]:

```
pogoj = (data["Director"] == "Ridley Scott")
print(pogoj)
```

Title Guardians of the Galaxy False Prometheus True Split False Sing False Suicide Squad False Secret in Their Eyes False Hostel: Part II False Step Up 2: The Streets False Search Party False Nine Lives False

Name: Director, Length: 1000, dtype: bool

In [23]:

rs = data[pogoj]
rs

Out[23]:

	Rank	Genre	Description	Director	Actors	Year	Runtime (Minutes)
Title							
Prometheus	2	Adventure,Mystery,Sci-Fi	Following clues to the origin of mankind, a te	Ridley Scott	Noomi Rapace, Logan Marshall- Green, Michael Fa	2012	124
The Martian	103	Adventure,Drama,Sci-Fi	An astronaut becomes stranded on Mars after hi	Ridley Scott	Matt Damon, Jessica Chastain, Kristen Wiig, Ka	2015	144
Robin Hood	388	Action,Adventure,Drama	In 12th century England, Robin and his band of	Ridley Scott	Russell Crowe, Cate Blanchett, Matthew Macfady	2010	140
American Gangster	471	Biography,Crime,Drama	In 1970s America, a detective works to bring d	Ridley Scott	Denzel Washington, Russell Crowe, Chiwetel Eji	2007	157
Exodus: Gods and Kings	517	Action,Adventure,Drama	The defiant leader Moses rises up against the	Ridley Scott	Christian Bale, Joel Edgerton, Ben Kingsley, S	2014	150
The Counselor	522	Crime,Drama,Thriller	A lawyer finds himself in over his head when h	Ridley Scott	Michael Fassbender, Penélope Cruz, Cameron Dia	2013	117
A Good Year	531	Comedy,Drama,Romance	A British investment broker inherits his uncle	Ridley Scott	Russell Crowe, Abbie Cornish, Albert Finney, M	2006	117
Body of Lies	738	Action,Drama,Romance	A CIA agent on the ground in Jordan hunts down	Ridley Scott	Leonardo DiCaprio, Russell Crowe, Mark Strong,	2008	128

Runtime

Pri našem izboru lahko uporabimo več kot en pogoj, katere med seboj združimo s pomočjo | in & .

In [24]:

```
pogoj1 = data["Director"] == "Ridley Scott"
pogoj2 = data["Metascore"] > 60

subset = data[pogoj1 & pogoj2]
subset
```

Out[24]:

Title Noomi Following Rapace,	
Prometheus 2 Adventure,Mystery,Sci- Fi mankind, a te Clues to the mankind, a te Clues to the origin of mankind, a te Clues to the origin or te Clues	
An Matt astronaut Damon, The Martian 103 Adventure, Drama, Scibecomes Ridley Jessica Firstranded on Scott Chastain, Mars after Kristen hi Wiig, Ka	
American Gangster 471 Biography,Crime,Drama Gangster In 1970s America, a detective works to bring d Crowe, Chiwetel Eji Denzel Washington, Russell Scott Crowe, Chiwetel Eji	
4	•

In []:

Primer analize dataseta - Ebay Car Sales Data

Analizirali bomo dataset oglasov rabljenih avto s strani eBay Kleinanzeigen (nemški ebay).

Podatki v datasetu so sledeči:

- dateCrawled kdaj je program prvič našel oglas
- · name ime avta
- seller podatek ali je prodajalec privatni ali ne
- offerType tip ponudbe
- price cena
- abtest ali je avto vključen v A/B test
- vehicleType tip vozila

- yearOfRegistration leto v katerem je bilo vozilo registrirano
- gearbox tip menjalnika
- powerPS moč vozila v PS
- model model vozila
- odometer koliko kilometrov je že prevoženih
- monthOfRegistration mesec v katerem je bilo vozilo prvič registrirano
- fuelType tip goriva
- brand znamka vozila
- notRepairedDamage če ima vozilo še ne-popravljene poškodbe
- dateCreated datum kdaj je bil oglas ustvarjen
- nrOfPictures število slik v oglasu
- postalCode poštna številka kjer se vozilo nahaja
- lastSeenOnline kdaj je program zadnjič videl oglas

Začnemo z uvozom podatkov in osnovnimi informacijami o datasetu:

In [4]:

```
import pandas as pd
autos = pd.read_csv('data/autos.csv', encoding='Latin-1')
```

In [41]:

```
autos.head()
```

Out[41]:

	dateCrawled	name :		offerType	price	abt
0	2016-03-26 17:47:46	Peugeot_807_160_NAVTECH_ON_BOARD	privat	Angebot	\$5,000	con
1	2016-04-04 13:38:56	BMW_740i_4_4_Liter_HAMANN_UMBAU_Mega_Optik	privat	Angebot	\$8,500	con
2	2016-03-26 18:57:24	Volkswagen_Golf_1.6_United	privat	Angebot	\$8,990	1
3	2016-03-12 16:58:10	Smart_smart_fortwo_coupe_softouch/F1/Klima/Pan	privat	Angebot	\$4,350	con
4	2016-04-01 14:38:50	Ford_Focus_1_6_Benzin_TÜV_neu_ist_sehr_gepfleg	privat	Angebot	\$1,350	1
4						•

In [42]:

```
autos.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 20 columns):
#
     Column
                          Non-Null Count
                                          Dtype
     -----
                          -----
 0
     dateCrawled
                          50000 non-null
                                          object
 1
     name
                          50000 non-null
                                          object
 2
     seller
                          50000 non-null
                                          object
 3
     offerType
                          50000 non-null
                                          object
 4
    price
                          50000 non-null
                                          object
 5
    abtest
                          50000 non-null
                                          object
 6
                          44905 non-null
                                          object
    vehicleType
 7
    yearOfRegistration
                          50000 non-null
                                          int64
 8
     gearbox
                          47320 non-null
                                          object
 9
    powerPS
                          50000 non-null
                                          int64
 10
    model
                          47242 non-null
                                          object
 11
    odometer
                          50000 non-null
                                          object
    monthOfRegistration 50000 non-null
                                          int64
 13
     fuelType
                          45518 non-null
                                          object
 14
     brand
                          50000 non-null
                                          object
 15
    notRepairedDamage
                          40171 non-null
                                          object
 16
    dateCreated
                          50000 non-null
                                          object
    nrOfPictures
 17
                          50000 non-null
                                          int64
 18
    postalCode
                          50000 non-null
                                          int64
    lastSeen
 19
                          50000 non-null object
dtypes: int64(5), object(15)
memory usage: 7.6+ MB
```

Vidimo, da imamo 50'000 vrstic.

Od tega ima par stolpcev več neveljavnih vrednosti kar bo potrebno preveriti.

Večina vrednosti so "strings" (object), preostale pa so številčne.

Vidimo, da **price** in **odometer** nista številčni vrednosti, kar bo potrebno preveriti.

In []:

Cleaning the data

Za začetek bomo preimenovali stolpce v *snake_case*.

In [43]:

```
autos.columns
```

```
Out[43]:
```

In [44]:

In [45]:

```
autos.head()
```

Out[45]:

	date_crawled	name	seller	offer_type	price	a
0	2016-03-26 17:47:46	Peugeot_807_160_NAVTECH_ON_BOARD	privat	Angebot	\$5,000	(
1	2016-04-04 13:38:56	BMW_740i_4_4_Liter_HAMANN_UMBAU_Mega_Optik	privat	Angebot	\$8,500	(
2	2016-03-26 18:57:24	Volkswagen_Golf_1.6_United	privat	Angebot	\$8,990	
3	2016-03-12 16:58:10	Smart_smart_fortwo_coupe_softouch/F1/Klima/Pan	privat	Angebot	\$4,350	(
4	2016-04-01 14:38:50	Ford_Focus_1_6_Benzin_TÜV_neu_ist_sehr_gepfleg	privat	Angebot	\$1,350	
4						•
In	[]:					

Za bolj natančen opis kaj se dogaja z vrednostmi v stolpcih lahko uporabimo **describe** metodo.

In [46]:

autos.describe(include='all')

Out[46]:

	date_crawled	name	seller	offer_type	price	ab_test	vehicle_type	registration_
count	50000	50000	50000	50000	50000	50000	44905	50000.00
unique	48213	38754	2	2	2357	2	8	
top	2016-03-27 22:55:05	Ford_Fiesta	privat	Angebot	\$0	test	limousine	
freq	3	78	49999	49999	1421	25756	12859	
mean	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2005.07
std	NaN	NaN	NaN	NaN	NaN	NaN	NaN	105.71
min	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1000.00
25%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1999.00
50%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2003.00
75%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2008.00
max	NaN	NaN	NaN	NaN	NaN	NaN	NaN	9999.00
4								>

Vidimo, da ima **seler stolpec** skoraj vse vrednosti enake. Prav tako stolpec **offer_type**.

Ta dva stolpca lahko odstranimo saj nam ne moreta pomagati pri analizi dataseta.

Odstranimo lahko tudi stolpec **num_photos** saj so vse vrednosti v stolpcu enake 0.

In [47]:

```
autos = autos.drop(["num_photos", "seller", "offer_type"], axis=1)
autos.head()
```

Out[47]:

	date_crawled	name	price	ab_test	vehicle_type
0	2016-03-26 17:47:46	Peugeot_807_160_NAVTECH_ON_BOARD	\$5,000	control	bus
1	2016-04-04 13:38:56	BMW_740i_4_4_Liter_HAMANN_UMBAU_Mega_Optik	\$8,500	control	limousine
2	2016-03-26 18:57:24	Volkswagen_Golf_1.6_United	\$8,990	test	limousine
3	2016-03-12 16:58:10	Smart_smart_fortwo_coupe_softouch/F1/Klima/Pan	\$4,350	control	kleinwager
4	2016-04-01 14:38:50	Ford_Focus_1_6_Benzin_TÜV_neu_ist_sehr_gepfleg	\$1,350	test	komb
4					>

In []:

Poglejmo si sedaj stolpca price in odometer_km.

Vrednosti v stolpcih bi morale biti številčne vendar so tipa string.

In [48]:

```
autos.loc[:, ("price","odometer_km")]
```

Out[48]:

	price	odometer_km
0	\$5,000	150,000km
1	\$8,500	150,000km
2	\$8,990	70,000km
3	\$4,350	70,000km
4	\$1,350	150,000km
49995	\$24,900	100,000km
49996	\$1,980	150,000km
49997	\$13,200	5,000km
49998	\$22,900	40,000km
49999	\$1,250	150,000km

50000 rows × 2 columns

V stolpcu **price** imamo dodan še \$ znak in pa , (vejico) . Ta dva znaka odstranimo.

Podobno naridmo za **odometer_km** stolpec.

```
In [49]:
autos["price"] = (autos["price"]
                           .str.replace("$","")
                           .str.replace(",","")
                           .astype(int)
autos["price"]
<ipython-input-49-b1fb2bc4b711>:1: FutureWarning: The default value of
regex will change from True to False in a future version. In addition,
single character regular expressions will*not* be treated as literal s
trings when regex=True.
  autos["price"] = (autos["price"]
Out[49]:
0
          5000
          8500
1
2
          8990
3
          4350
          1350
49995
         24900
49996
          1980
49997
         13200
49998
         22900
49999
          1250
Name: price, Length: 50000, dtype: int64
In [50]:
autos["odometer km"] = (autos["odometer km"]
                              .str.replace("km","")
                              .str.replace(",","")
                              .astype(int)
                              )
autos["odometer km"]
Out[50]:
0
     150000
1
     150000
2
      70000
```

```
1 150000

1 150000

2 70000

3 70000

4 150000

Name: odometer_km, dtype: int64
```

In []:

Poglejmo si sedaj še bolj natančno vrednosti v teh dveh stolpcih.

In [51]:

```
autos["odometer_km"].value_counts()
Out[51]:
150000
           32424
125000
            5170
100000
            2169
90000
            1757
80000
            1436
70000
            1230
            1164
60000
50000
            1027
             967
5000
40000
             819
30000
             789
20000
             784
10000
             264
Name: odometer_km, dtype: int64
```

Vidimo, da so vrednosti kilometrov zaokrožene. To po vsej verjetnosti pomeni, da so lahko oglaševalci izbirali med že v-naprej definiranimi možnostmi, ko so ustvarjali oglas.

Vidimo tudi, da ima večina avto večje število prevoženih kilometrov.

Preverimo še stolpec price.

In [59]:

```
print(autos["price"].unique().shape)
print(autos["price"].describe())
(2357,)
         5.000000e+04
count
         9.840044e+03
mean
std
         4.811044e+05
         0.000000e+00
min
25%
         1.100000e+03
50%
         2.950000e+03
75%
         7.200000e+03
         1.000000e+08
max
Name: price, dtype: float64
```

```
In [60]:
```

```
autos["price"].value_counts().sort_index(ascending=True).head(20)
Out[60]:
0
      1421
1
       156
2
          3
          1
3
          2
5
8
          1
9
          1
          7
10
          2
11
          3
12
          2
13
14
          1
          2
15
17
          3
          1
18
          4
20
          5
25
29
          1
          7
30
35
          1
Name: price, dtype: int64
In [61]:
autos["price"].value_counts().sort_index(ascending=False).head(20)
Out[61]:
9999999
             1
27322222
             1
12345678
             3
             2
11111111
10000000
             1
             1
3890000
1300000
             1
1234566
             1
             2
999999
999990
             1
350000
             1
345000
             1
299000
             1
295000
             1
265000
             1
259000
             1
250000
220000
             1
198000
             1
197000
             1
Name: price, dtype: int64
In [ ]:
```

Ponovno vidimo, da so cene zaokrožene. Ponovno lahko to pomeni, da so oglaševalci lahko izbirali med že localhost:8888/notebooks/LTFE01_Python/Moji_Zapiski_FINAL/Predavanje - Dodatne vsebine/pandas/Pandas.ipynb

definiranimi vrednostmi oziroma to je lahko tudi zato ker ljudje radi zaokrožujemo številke.

Vidimo da imamo 1421 avtomobilov katerih cena je 0\$. 1421 predstavlja okoli 2% celotnega dataseta zato bomo te vnose preprosto izbrisali.

Vidimo, da imamo tudi nekaj avtomobilov katerih cena je več milijonov. Te oglase bomo tudi odstranili.

Obdržimo oglase katerih cena je med 1 in 350'000 \$.

In [62]:

```
autos = autos[autos["price"].between(1,350000)]
autos["price"].describe()
```

Out[62]:

```
48565,000000
count
           5888.935591
mean
           9059.854754
std
               1.000000
min
           1200.000000
25%
           3000.000000
50%
75%
           7490.000000
         350000.000000
max
Name: price, dtype: float64
```

Poglejmo si sedaj stolpec registration_year.

In [63]:

```
autos["registration_year"].describe()
```

Out[63]:

```
48565.000000
count
          2004.755421
mean
std
             88.643887
          1000.000000
min
25%
          1999.000000
          2004.000000
50%
75%
          2008.000000
          9999.000000
max
```

Name: registration_year, dtype: float64

Vidimo, da je najmanjša vrednosti 1000 in največja 9999.

V letu 1000 še niso imeli avtov in iz prihodnosti tudi še nimamo vozil tako, da odstranimo nepravilne vnose.

Zgornja meja letnice je 2016, saj vozilo ne more biti oglaševano, če ni bilo registrirano.

Spognja letnica je bolj arbitrarno določena. Vzemimo vsa vozila od 1900 naprej.

In [65]:

```
autos = autos[autos["registration_year"].between(1900,2016)]
autos.describe()
```

Out[65]:

	price	registration_year	power_ps	odometer_km	registration_month	post
count	46681.000000	46681.000000	46681.000000	46681.000000	46681.000000	46681
mean	5977.716801	2002.910756	117.892933	125586.855466	5.827125	51097
std	9177.909479	7.185103	184.922911	39852.528628	3.670300	25755
min	1.000000	1910.000000	0.000000	5000.000000	0.000000	1067
25%	1250.000000	1999.000000	75.000000	100000.000000	3.000000	30827
50%	3100.000000	2003.000000	109.000000	150000.000000	6.000000	49828
75%	7500.000000	2008.000000	150.000000	150000.000000	9.000000	71732
max	350000.000000	2016.000000	17700.000000	150000.000000	12.000000	99998
4						•

Analiza cene avtomobilov

Poiščimo sedaj katere znamke avtomobilov se najbolj prodajajo in za koliko se povprečno prodajajo.

In [74]:

```
autos["brand"].value_counts(normalize=True)#[:5].sum()
```

Out[74]:

volkswagen	0.	2112	64
bmw		1100	
opel	0.	1075	81
mercedes_benz	0.	0964	63
audi	0.	0865	66
ford	0.	0699	00
renault	0.	0471	50
peugeot	0.	0298	41
fiat	0.	0256	42
seat	0.	0182	73
skoda	0.	0164	09
nissan	0.	0152	74
mazda	0.	0151	88
smart	0.	0141	60
citroen	0.	0140	10
toyota	0.	0127	03
hyundai	0.	0100	25
sonstige_autos	0.	0098	11
volvo	0.	0091	47
mini	0.	0087	62
mitsubishi	0.	0082	26
honda	0.	0078	40
kia	0.	0070	69
alfa_romeo	0.	0066	41
porsche	0.	0061	27
suzuki	0.	0059	34
chevrolet	0.	0056	98
chrysler	0.	0035	13
dacia	0.	0026	35
daihatsu	0.	0025	06
jeep		0022	
subaru		0021	
land_rover	0.	0020	99
saab		0016	
jaguar	0.	0015	64
daewoo	0.	0015	00
trabant	0.	0013	92
rover	0.	0013	28
lancia		0010	
lada		0005	
Name: brand, dtype	:	floa	t64

Vidimo, da je najbolj popularna znamka **volkswagen**.

Vidimo tudi, da prvih 5 znamk predstavlja okoli 60% vseh oglasov. Zato se bomo osredotočili na znamke, ki predstavljajo vsaj 5% vseh oglasov.

```
4/20/22, 10:54 AM
                                              Pandas - Jupyter Notebook
  In [79]:
  brand counts = autos["brand"].value counts(normalize=True)
  common_brands = brand_counts[brand_counts > .05].index
 print(common brands)
  Index(['volkswagen', 'bmw', 'opel', 'mercedes benz', 'audi', 'ford'],
 dtype='object')
 Pridobimo sedaj povprečno ceno za vsako znamko
 In [80]:
 brand mean prices = {}
  for brand in common brands:
      brand_only = autos[autos["brand"] == brand]
      mean price = brand only["price"].mean()
      brand mean prices[brand] = int(mean price)
 brand mean prices
  Out[80]:
  {'volkswagen': 5402,
   'bmw': 8332,
   'opel': 2975,
   'mercedes_benz': 8628,
   'audi': 9336,
   'ford': 3749}
 Vidimo, da je opazna razlika med povprečnimi cenami znamk.
 In [ ]:
  In [ ]:
```

In []:

In []:

Vaja

Iz dataseta nej najdejo "title" podjetja, k je najbolj profitabilno (profits najboljši), za vsak sector (financial, itd..)

In [28]:

```
import pandas as pd
```

In [29]:

```
f500 = pd.read_csv("DATA_fortune_500_2017.csv", index_col = "Rank")
f500.head()
```

Out[29]:

	Title	Website	Employees	Sector	Industry	Hqloc
Rank						
1	Walmart	http://www.walmart.com	2300000	Retailing	General Merchandisers	Bentor
2	Berkshire Hathaway	http://www.berkshirehathaway.com	367700	Financials	Insurance: Property and Casualty (Stock)	Omaha
3	Apple	http://www.apple.com	116000	Technology	Computers, Office Equipment	Cupe
4	Exxon Mobil	http://www.exxonmobil.com	72700	Energy	Petroleum Refining	Irvinį
5	McKesson	http://www.mckesson.com	68000	Wholesalers	Wholesalers: Health Care	Franc
5 rows	× 22 colum	nns				

5 rows × 22 columns

In [30]:

```
f500["Sector"].value_counts().index
```

Out[30]:

In [31]:

In [32]:

```
df = pd.DataFrame()

for sector in sectors:
    sector_data = f500[f500["Sector"] == sector]
    #print(sector_data.head())
    best = sector_data[sector_data["Profits"] == sector_data["Profits"].max()]
    df = df.append(best)

df.head()
```

Out[32]:

In []:

	Title	Website	Employees	Sector	Industry	Hqlocation
Rank						
21	J.P. Morgan Chase	http://www.jpmorganchase.com	243355	Financials	Commercial Banks	New York NY
4	Exxon Mobil	http://www.exxonmobil.com	72700	Energy	Petroleum Refining	Irving, TX
1	Walmart	http://www.walmart.com	2300000	Retailing	General Merchandisers	Bentonville AR
3	Apple	http://www.apple.com	116000	Technology	Computers, Office Equipment	Cupertino CA
35	Johnson & Johnson	http://www.jnj.com	126400	Health Care	Pharmaceuticals	New Brunswick NJ
5 rows	× 22 colu	ımns				
4						•

localhost:8888/notebooks/LTFE01_Python/Moji_Zapiski_FINAL/Predavanje - Dodatne vsebine/pandas/Pandas.ipynb