Inferência Estatística – Testes de Hipóteses

- Introdução: hipóteses e erros de conclusão
- Testes de hipóteses para uma e duas médias
- > Testes de hipóteses para uma e duas variâncias
- > Testes de hipóteses para uma e duas proporções

Teste para a variância de uma população

Para aplicar o teste para a variância é necessário supor a **normalidade** da população de onde será extraída a amostra.

Uma hipótese testada com frequência é que a variância tenha um valor especificado.

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_A: \sigma^2 \neq \sigma_0^2$$

$$\sigma^2 > \sigma_0^2$$

$$\sigma^2 < \sigma_0^2$$

A estatística do teste é

$$Q = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$$

H₀ é rejeitada se q_c ultrapassar o valor crítico da distribuição qui-quadrado :

Tabela III. Limites unilaterais da distribuição qui-quadrado (χ^2).

Graus de													
Liberdade		E	squerda (d	q')		Direita (q)							
(v)	0,005	0,01	0,025	0,05	0,1	0,1	0,05	0,025	0,01	0,005			
1	0,00	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63	7,88			
2	0,01	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	10,60			
3	0,07	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34	12,84			
4	0,21	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	14,86			
5	0,41	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	16,75			
6	0,68	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	18,55			
7	0,99	1,24	1,69	2,17	2,83	12,02	14,07	16,01	18,48	20,28			
8	1,34	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	21,95			
9	1,73	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,59			
10	2,16	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,19			

Nota: Se o teste for bilateral, o valor de α deve ser dividido por dois.

Exercício: A quantidade mensal de produtos entregues por uma empresa segue uma distribuição Normal com média e variância desconhecidas. Analise os dados a seguir, que representam uma amostra de 20 meses e teste a hipótese de que o desvio padrão da quantidade mensal de produtos entregues pela empresa é de 1 unidade, utilizando nível de significância de 5%.

17,4							· ·		
20,2	20,2	20,5	20,7	20,9	21,0	21,3	21,5	21,9	22,6

$$\overline{X} = 20,01$$
$$S = 1,34$$

Solução:
$$H_0$$
: $\sigma^2 = 1$ $\alpha = 5\%$ $v = n - 1 = 19$ $Q = \frac{(n-1)S^2}{\sigma_0^2} = \frac{(20-1)1,34^2}{1} = 34,12$ $\frac{2,5\%}{Rejeição}$ $\frac{32,85}{Rejeição}$ $\frac{32,85}{Rejeição}$

Com 5% de significância, rejeita-se H_0 , isto é, é possível afirmar que o desvio padrão da quantidade mensal de produtos entregues pela empresa é maior que 1 unidade.

Graus de					el de Sigi	nificância				
Liberdade		E:	squerda (g')				Direita (q)		
(v)	0,005	0,01	0,025	0,05	0,1	0,1	0,05	0,025	0,01	0,005
1	0,00	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63	7,88
2	0,01	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	10,60
3	0,07	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34	12,84
4	0,21	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	14,86
5	0,41	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	16,75
6	0,68	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	18,55
7	0,99	1,24	1,69	2,17	2,83	12,02	14,07	16,01	18,48	20,28
8	1,34	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	21,95
9	1,73	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,59
10	2,16	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,19
	,	,	,	,	,	,	,	,	,	,
11	2,60	3,05	3,82	4,57	5,58	17,28	19,68	21,92	24,72	26,76
12	3,07	3,57	4,40	5,23	6,30	18,55	21,03	23,34	26,22	28,30
13	3,57	4,11	5,01	5,89	7,04	19,81	22,36	24,74	27,69	29,82
14	4,07	4,66	5,63	6,57	7,79	21,06	23,68	26,12	29,14	31,32
15	4,60	5,23	6,26	7,26	8,55	22,31	25,00	27,49	30,58	32,80
	-,	-,	-,	-,	-,	,-	,		,	,
16	5,14	5,81	6,91	7,96	9,31	23,54	26,30	28,85	32,00	34,27
17	5,70	6,41	7,56	8,67	10,09	24,77	27,59	30,19	33,41	35,72
18	6,26	7,01	8,23	9,39	10,86	25,99	28,87	31,53	34,81	37,16
19	6,84	7,63	8,91	10,12	11,65	27,20	30,14	32,85	36,19	38,58
20	7,43	8,26	9,59	10,85	12,44	28,41	31,41	34,17	37,57	40,00
20	7,40	0,20	5,55	10,00	12,77	20,41	51,71	34,17	31,31	40,00

Utilizando o Excel para obter o valor p:

$$q_c = 34,12$$
 $\alpha = 0.05$ $\nu = 19$

Como a significância do resultado (3,56%) é menor que a significância do teste (5%) é possível rejeitar a hipótese nula.

Exemplo: Uma das maneiras de controlar a qualidade de um produto é controlar a sua variabilidade. Uma máquina de empacotar café está regulada para encher os pacotes com média de 500 g e desvio padrão de 10 g, onde o peso de cada pacote distribui-se normalmente. Colhida uma amostra de n=16, observou-se uma variância de 169 g². É possível afirmar com este resultado que a máquina está desregulada quanto a variabilidade, supondo uma significância de 5%?

Solução:
$$H_0$$
: $\sigma^2 = 100$
 H_A : $\sigma^2 > 100$
 $Q = \frac{(n-1)S^2}{\sigma_0^2} = \frac{(15)169}{100} = 25,35$
 $\sigma_0^2 = \frac{(15)169}{100} = 25,35$

Com 5% de significância, rejeita-se H₀, ou seja, é possível afirmar que a máquina está desregulada.

Graus de				Nív	el de Sig	nificância				
Liberdade		E:	squerda (q')			. [Direita (q))	
(V)	0,005	0,01	0,025	0,05	0,1	0,1	0,05	0,025	0,01	0,005
1	0,00	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63	7,88
2	0,01	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	10,60
3	0,07	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34	12,84
4	0,21	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	14,86
5	0,41	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	16,75
6	0,68	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	18,55
7	0,99	1,24	1,69	2,17	2,83	12,02	14,07	16,01	18,48	20,28
8	1,34	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	21,95
9	1,73	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,59
10	2,16	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,19
	,	•		•	•	,	•	•	,	,
11	2,60	3,05	3,82	4,57	5,58	17,28	19,68	21,92	24,72	26,76
12	3,07	3,57	4,40	5,23	6,30	18,55	21,03	23,34	26,22	28,30
13	3,57	4,11	5,01	5,89	7,04	19,81	22,36	24,74	27,69	29,82
14	4,07	4,66	5,63	6,57	7,79	21,06	23,68	26,12	29,14	31,32
15	4,60	5,23	6,26	7,26	8,55	22,31	25,00	27,49	30,58	32,80
	,	,	,	,	•	,		,	,	,
16	5,14	5,81	6,91	7,96	9,31	23,54	26,30	28,85	32,00	34,27
17	5,70	6,41	7,56	8,67	10,09	24,77	27,59	30,19	33,41	35,72
18	6,26	7,01	8,23	9,39	10,86	25,99	28,87	31,53	34,81	37,16
19	6,84	7,63	8,91	10,12	11,65	27,20	30,14	32,85	36,19	38,58
20	7,43	8,26	9,59	10,85	12,44	28,41	31,41	34,17	37,57	40,00
20	.,	0,20	0,00	.0,00	,	20, 11	٠٠,٠٠	٠٠, ٠٠	0.,01	.0,00

Utilizando o Excel para obter o valor p:

Como a significância do resultado (4,54%) é menor que a significância do teste (5%) é possível rejeitar a hipótese nula.

Teste de homogeneidade de variâncias

Considerando duas estimativas s₁² e s₂², frequentemente, temos interesse em verificar se tais estimativas são homogêneas.

Assim, as hipóteses a serem testadas são:

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_A: \sigma_1^2 \neq \sigma_2^2$

$$H_A: \sigma_1^2 \neq \sigma_2^2$$

H₀ é rejeitada se f_c ultrapassar o valor crítico da distribuição F:

A estatística do teste é

$$F = \frac{S_1^2}{S_2^2}$$

Atenção: sempre variância maior sobre variância menor

Tabela IV. Limites unilaterais superiores da distribuição F: $P[F > f_{\alpha}]$

	ν_1																				
ν_2	α	1	2	3	4	5	6	7	8	9	10	11	12	15	20	24	30	40	60	120	Inf.
	0,05	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5	241,9	243,0	243,9	245,9	248,0	249,1	250,1	251,1	252,2	253,3	254,3
1	0,025	647,8	799,5	864,2	899,6	921,8	937,1	948,2	956,7	963,3	968,6	976,7	984,9	984,9	993,1	997,2	1001,	1006,	1010,	1014,	1018,
	0,01	4052,	5000,	5403,	5625,	5764,	5859,	5928,	5982,	6022,	6056,	6082,	6106,	6157,	6209,	6235,	6261,	6287,	6313,	6339,	6366,
	0,001	4053*	5000*	5404*	5625*	5764*	5859*	5929*	5981*	6023*	6056*	6084*	6107*	6158*	6209*	6235*	6261*	6287*	6313*	6340*	6366*
	0,05	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49	19,50
2	0,025	38,51	39,00	39,17	39,25	39,30	39,33	39,36	39,37	39,39	39,40	39,41	39,41	39,43	39,45	39,46	39,46	39,47	39,48	39,49	39,50
	0,01	98,50	99,00	99,17	99,25	99,30	99,33	99,36	99,37	99,39	99,40	99,41	99,42	99,43	99,45	99,46	99,47	99,47	99,48	99,49	99,50
	0,001	998,5	999,0	999,2	999,2	999,3	999,3	999,4	999,4	999,4	999,4	999,4	999,4	999,4	999,4	999,5	999,5	999,5	999,5	999,5	999,5
	0,05	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,76	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
3	0,025	17,44	16,04	15,44	15,10	14,88	14,73	14,62	14,54	14,47	14,42	14,34	14,25	39,43	14,17	14,12	14,08	14,04	13,99	13,95	13,90
	0,01	34,12	30,82	29,46	28,71	28,24	27,91	27,67	27,49	27,35	27,23	27,13	27,05	26,87	26,69	26,60	26,50	26,41	26,32	26,22	26,13
	0,001	167,0	148,5	141,1	137,1	134,6	132,8	131,6	130,6	129,9	129,2	128,8	128,3	127,4	126,4	125,9	125,4	125,0	124,5	124,0	123,5
	0,05	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,93	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
4	0,025	12,22	10,65	9,98	9,60	9,36	9,20	9,07	8,98	8,90	8,84	8,75	8,66	8,66	8,56	8,51	8,46	8,41	8,36	8,31	8,26
	0,01	21,20	18,00	16,69	15,98	15,52	15,21	14,98	14,80	14,66	14,55	14,45	14,37	14,20	14,02	13,93	13,84	13,75	13,65	13,56	13,46
	0,001	74,14	61,25	56,18	53,44	51,71	50,53	49,66	49,00	48,47	48,05	47,70	47,41	46,76	46,10	45,77	45,43	45,09	44,75	44,40	44,05

Exemplo: As resistências de dois tipos de concreto foram medidas, mostrando os resultados da tabela. Fixado um nível de significância de 10%, teste a hipótese de igualdade das variâncias, considerando que os dados seguem a distribuição normal?

Tipo X	54	55	58	50	61
Tipo Y	51	54	55	52	53

Os dados obtidos da tabela são:

$$\overline{X} = 55,6 \text{ e } \overline{Y} = 53,0$$

 $S_X^2 = 17,3 \text{ e } S_Y^2 = 2,5$

$$H_0$$
: $\sigma^2_X = \sigma^2_Y$
 H_A : $\sigma^2_X \neq \sigma^2_Y$

$$F = \frac{S_1^2}{S_2^2} = \frac{17.3}{2.5} = 6.92$$

Neste caso, rejeita-se H₀, ao nível de 10% de significância, e assume-se que as variâncias populacionais são diferentes.

Tabela IV. Limites unilaterais superiores da distribuição F: $P[F > f_{\alpha}]$

	ν_1																				
ν_2	α	1	2	3	4	5	6	7	8	9	10	11	12	15	20	24	30	40	60	120	Inf.
	0,05	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5	241,9	243,0	243,9	245,9	248,0	249,1	250,1	251,1	252,2	253,3	254,3
1	0,025	647,8	799,5	864,2	899,6	921,8	937,1	948,2	956,7	963,3	968,6	976,7	984,9	984,9	993,1	997,2	1001,	1006,	1010,	1014,	1018,
	0,01	4052,	5000,	5403,	5625,	5764,	5859,	5928,	5982,	6022,	6056,	6082,	6106,	6157,	6209,	6235,	6261,	6287,	6313,	6339,	6366,
	0,001	4053*	5000*	5404*	5625*	5764*	5859*	5929*	5981*	6023*	6056*	6084*	6107*	6158*	6209*	6235*	6261*	6287*	6313*	6340*	6366*
	0,05	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49	19,50
2	0,025	38,51	39,00	39,17	39,25	39,30	39,33	39,36	39,37	39,39	39,40	39,41	39,41	39,43	39,45	39,46	39,46	39,47	39,48	39,49	39,50
	0,01	98,50	99,00	99,17	99,25	99,30	99,33	99,36	99,37	99,39	99,40	99,41	99,42	99,43	99,45	99,46	99,47	99,47	99,48	99,49	99,50
	0,001	998,5	999,0	999,2	999,2	999,3	999,3	999,4	999,4	999,4	999,4	999,4	999,4	999,4	999,4	999,5	999,5	999,5	999,5	999,5	999,5
	0,05	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,76	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
3	0,025	17,44	16,04	15,44	15,10	14,88	14,73	14,62	14,54	14,47	14,42	14,34	14,25	39,43	14,17	14,12	14,08	14,04	13,99	13,95	13,90
	0,01	34,12	30,82	29,46	28,71	28,24	27,91	27,67	27,49	27,35	27,23	27,13	27,05	26,87	26,69	26,60	26,50	26,41	26,32	26,22	26,13
	0,001	167,0	148,5	141,1	137,1	134,6	132,8	131,6	130,6	129,9	129,2	128,8	128,3	127,4	126,4	125,9	125,4	125,0	124,5	124,0	123,5
	0,05	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,93	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
4					2									8,66							8,26
	0,01	21,20	18,00	16,69	15,98	15,52	15,21	14,98	14,80	14,66	14,55	14,45	14,37	14,20	14,02	13,93	13,84	13,75	13,65	13,56	13,46
	0,001	74,14	61,25	56,18	53,44	51,71	50,53	49,66	49,00	48,47	48,05	47,70	47,41	46,76	46,10	45,77	45,43	45,09	44,75	44,40	44,05

Utilizando o Excel para obter o valor p:

$$f_c = 6.92$$
 $\alpha = 10\%$ $v_1 = n_x - 1 = 4$ $v_2 = n_y - 1 = 4$

Conclusão: Como a significância do resultado (8,76%) é menor que a significância do teste (10%), é possível rejeitar a hipótese nula.

Exercício: Uma alta quantidade de nitrato introduzida na alimentação animal tem mostrado possuir efeitos danosos incluindo baixa produção de tiroxina, aumento de incidência de cianose em recém nascidos e baixa produção de leite. Os dados que seguem referem-se a medida de ganho de peso percentual em ratos de laboratório, submetidos a uma dieta padrão e a uma dieta com 2000 ppm de nitrato na água de beber.

Nitrato: 12,7 19,3 20,5 10,5 14,0 10,8 16,6 14,0 17,2 Controle: 18,2 32,9 10,0 14,3 16,2 27,6 15,7.

$$\overline{x}_N = 15,07$$
 $s_N^2 = 12,66$
 $\overline{x}_C = 19,27$ $s_C^2 = 64,85$

- a) Verifique, através do teste F, se as variâncias das populações são iguais.
- b) Verifique, através do teste t, o efeito do nitrato sobre o ganho de peso.

$$\begin{array}{cccc} H_{0}:\sigma_{1}^{2}=\sigma_{2}^{2} & F=\frac{S_{1}^{2}}{S_{2}^{2}} \\ H_{A}:\sigma_{1}^{2}\neq\sigma_{2}^{2} & F=\frac{S_{2}^{2}}{S_{2}^{2}} \end{array}$$

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}S^2} \qquad S^2 = \frac{S_1^2(n_1 - 1) + S_2^2(n_2 - 1)}{(n_1 - 1) + (n_2 - 1)}$$

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \qquad \nu = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$$

Profa Lisiane Selau

Exercício: Calculadoras eletrônicas utilizam dois métodos diferentes de entrada e processamento numérico. Vamos denominar um dos métodos de "método algébrico" (MA) e o outro de "método polonês" (MP). Para comparar qual deles é mais eficaz é feito um teste com 20 usuários sem experiência prévia com calculadoras, onde 10 vão utilizar calculadoras de um tipo e o outros 10 as de outro tipo. A tabela mostra o tempo em segundos que cada operador gastou para realizar um conjunto padrão de cálculos. Testar a hipótese de existência de diferença entre os dois métodos no que se refere ao tempo de operação, utilizando uma significância de 5%.

MA										
MP	10	17	18	16	19	12	17	15	17	14

$$\overline{x}_A = 14,00 \quad s_A = 2,21$$

 $\overline{x}_P = 15,50 \quad s_P = 2,80$

Exercício: Os valores a seguir representam os tempos de produção de duas máquinas. Analise os dados e conclua a respeito da variabilidade das máquinas 1 e 2:

M1	91,0	90,3	90,2	92,1	91,8	91,3	89,3,	91,0	91,2	89,6
M2	91,8	91,2	89,4	89,2	90,7	92,6	91,3	91,2		

$$S_1^2 = 0.8307$$
 $S_2^2 = 1.316$