Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the Application.

- 1. (CURRENTLY AMENDED) A device for sensing NO_x compounds comprising: a calix[4]arene compound, wherein the calix[4]arene compound forms a stable and reversible calix[4]arene-nitrosonium complex with at least one NO⁺-cation, wherein a detectable charge-transfer reaction occurs between the at least one NO⁺ cation and the calix[4]arene detectable as a color change, wherein NO⁺ is derived from an oxide of nitrogen in a form other than nitric oxide.
- 2. (ORIGINAL) The device of claim 1, wherein the detection is selected from the group consisting of visualization, measurement of electrochemical changes, and measurement of spectroscopic changes.
- 3. (ORIGINAL) The device of claim 1, wherein the complex undergoes dissociation.
 - 4. (ORIGINAL) The device of claim 3, wherein the complex is decolorized.
- 5. (ORIGINAL) The device of claim 1, wherein the calix[4] arene compound is alternatively a cone calix[4] arene, a 1, 3-alternate calixarene or a combination thereof.
- 6. (ORIGINAL) The device of claim 1, wherein the calix[4] arene compound is optionally immobilized, in solution, attached to a ligand, attached to a solid support, or any combination thereof.
- 7. (PREVIOUSLY PRESENTED) The device of claim 1, wherein the charge-transfer reaction is detected in the presence of mixtures selected from the group consisting of H₂O, O₂, HCl, SO_x, NH₃, NO, their derivatives and combinations thereof.
- 8. (ORIGINAL) The device of claim 1, wherein the complex is a storage device for the NO⁺ cation.
- 9. (ORIGINAL) The device of claim 1, wherein the complex is capable of transferring the NO⁺ cation to a substrate.

- 10. (ORIGINAL) The device of claim 1, wherein the complex is stabilized by one or more Lewis acids.
- 11. (CURRENTLY AMENDED) A device for purifying chemical compounds containing NO_x comprising:

a calix[4]arene compound, wherein the calix[4]arene compound reversibly forms a calix[4]arene-nitrosonium complex complexes a NO⁺ cation-from the chemical compound and purifies the chemical compound free of the NO⁺ cation wherein NO⁺ is derived from an oxide of nitrogen in a form other than nitric oxide.

- 12. (ORIGINAL) The device of claim 11, wherein the calix[4] arene compound is optionally immobilized, in solution, attached to a ligand, on a solid interface, attached to a solid support, or a combination thereof.
- 13. (ORIGINAL) The device of claim 11, wherein the complex is a storage device for the NO⁺ cation.
- 14. (ORIGINAL) The device of claim 13, wherein the complex is chemically stable for at least several weeks.
- 15. (CURRENTLY AMENDED) A method of purifying chemical compounds comprising:

exposing a calix[4]arene compound to a mixture of chemical species containing at least one NO_x compound;

allowing the calix[4]arene compound to interact with the mixture, wherein the calix[4]arene compound forms a stable and reversible calix[4]arene-nitrosonium complex with an NO⁺ from the NO_{*} compound and wherein NO⁺ is derived from an oxide of nitrogen in a form other than nitric oxide, wherein a detectable charge-transfer reaction occurs between the NO⁺ eatien and the calix[4]arene for identification of the NO⁺.

- 16. (CURRENTLY AMENDED) A molecular container comprising:
 a calix[4]arene compound enriched with electron donating groups; and
 at least one NO⁺ eation, wherein NO⁺ is derived from an oxide of nitrogen in a
 form other than nitric oxide, wherein the NO⁺ eation is attracted to an electron donating
 group, forms a stable and reversible calix[4]arene-nitrosonium complex with the
 ealix[4]arene compound and wherein the NO+ eation is now made available for transfer
 to a second container that accepts the NO⁺ eation.
- 17. (ORIGINAL) The molecular container of claim 16, wherein the calix[4] arene compound complexes the NO⁺ cation and is capable of storing it.
- 18. (ORIGINAL) The molecular container of claim 16, wherein the calix[4] arene compound complexes the NO⁺ cation and is capable of transferring it to another substrate.
 - 19. (CURRENTLY AMENDED) An optical switch comprising:
 a reversible and stable calix[4]arene-nitrosonium complex formed by noncovalent
 forces between a calix[4]arene compound and free nitrosonium in which the nitrosonium
 switches between a free and a complexed state wherein the switching is detected
 optically, wherein the nitrosonium is derived from an oxide of nitrogen in a form other
 than nitric oxide.
- 20. (CURRENTLY AMENDED) An optical switch comprising:
 a means for reversibly forming a calix[4]arene-nitrosonium complex complex complexing in a
 stable form a nitrosonium cation by noncovalent forces, wherein the nitrosonium is derived from
 an oxide of nitrogen in a form other than nitric oxide; and

a means for detecting the presence of the complexed nitrosonium cation.

- 21. (PREVIOUSLY PRESENTED) The optical switch of claim 19, wherein the calix[4]arene compound is immobilized on a solid support.
- 22. (PREVIOUSLY PRESENTED) The molecular container of claim 16, wherein the second container is selected from the group consisting of calix[4]arene compound, solid support, and solid interface.

23. (CURRENTLY AMENDED) An improved nitrosating agent comprising:
a compound that reversibly forms a calix[4]arene-nitrosonium complex for
entrapping entraps one or more nitrosonium cations in a deep cavity by noncovalent
forces and releases the one or more nitrosonium cations under reactive conditions,
wherein the reactive conditions are selected from the group consisting of a change in
temperature, solvent polarity, and cavity shape, wherein the compound is a a
ealix[4]arene compound selected from the group consisting of a cone and a 1, 3-alternate
conformation specifically synthesized with a deep cavity.