Brandon J Griffin

Data Analyst and Data Scientist San Francisco, CA

Portfolio | LinkedIn | (775) 240-9300 | BranJGriffin@gmail.com

With an academic background in physics and 5 years of experience in Data Analytics and Data Science, I'm passionate about visualizing and extracting key insights from complex datasets. In 2018, I happily relocated to the Bay Area as a STEM researcher where I'm now looking to bring my expertise to a high-growth environment building world-class, data-driven products.

EDUCATION

University of Nevada Reno Advisor: Dr. Joshua B. Williams M.S. Physics - Aug 2019 B.S. Physics, Math Minor - May 2014

SKILLS

Technical: Python, SQL, Pandas, NumPy, Scikit-learn, SciPy, Statsmodels, Tableau, Matplotlib, Seaborn, Plotly-Dash, Keras, TensorFlow, NLTK, Jupyter, Visual Studio, VS Code, Heroku, Git.

Analytics: Statistical inference and modeling, statistical mechanics, loss function analysis, A/B testing, dashboarding and automated reporting, linear algebra, real-time analytics.

EXPERIENCE

Lawrence Berkeley National Laboratory, Berkeley, CA

Feb 2021 to Jul 2021

Data Analyst - Freelance Project GitHub README | Heroku Web App | Blog Post

• Developed open-source visualization tools, built an interactive dashboard in Python with Plotly Dash, and streamlined validation of data quality via automated reporting.

General Assembly, San Francisco, CA Data Scientist - Apprenticeship

Sep 2020 to Dec 2020

- Statistical Modeling in Python with Feature Engineering: Employed machine learning (ML) algorithms to predict the sales price of real-estate and reduce loss by over 36%.
- Democratizing Autonomous Vehicle R&D (Group Project): GPU accelerated training of ML models, via GCP cloud solutions, to simulate self-driving cars.
- Time-Series analysis of stock market data and ARIMA modeling.

U.S. DOE Office of Science, Berkeley, CA Research Fellow, Advanced Photo-injector Experiment

Jun 2018 to May 2019

- Collaborated across, and reported to, cross-functional teams, ultimately increasing statistical significance of extractable insight by integrating empirical solutions into existing data pipelines.
- Applied statistical methods to investigate potential sources of insight for compatibility with existing technological limitations, and prioritized those most optimally suited for quantitative analysis.
- Presented insights and advancements to major stakeholders at the 50th Annual Meeting of the American Physical Society Division of Atomic, Molecular and Optical Physics.

Nevada System of Higher Education, Reno, NV Jun 2016 to May 2018 Graduate Research Assistant, Atomic Molecular and Optical Science Group

- End-to-End Engineering: Spearheaded design, construction, and deployment of a \$500,000 computational imaging apparatus, culminating in successful commissioning, by demonstration of overall performance, through approved experiments at a U.S. National Laboratory.
- Implemented critical understanding of interacting components, and functional impact each had on overarching system functionality, through contributions to design and technical documentation.