Chase

Time Limit: 4 s Memory Limit: 512 MB

Il gatto Tom sta nuovamente inseguendo il topo Jerry! Jerry cerca di guadagnare terreno correndo tra gruppi di piccioni, dove per Tom è più difficile seguirlo. Fortunatamente, Jerry è appena arrivato nel parco centrale di Lubiana. Il parco ha n statue, numerate $1 \dots n$, e n-1 percorsi tra di esse che non si intersecano e che le collegano in modo tale che è sempre possibile raggiungere ogni statua da ogni altra statua seguendo alcuni percorsi. Vicino alla statua i ci sono p_i piccioni. Jerry ha v briciole di pane nelle tasche. Se fa cadere una briciola di pane vicino alla statua in cui si trova, i piccioni di tutte le statue vicine voleranno immediatamente a questa statua per mangiare la briciola. Di conseguenza il numero di piccioni p attorno a questa statua e alle statue vicine cambia.

Questo avviene nel seguente ordine: prima Jerry arriva alla statua i e incontra p_i piccioni. Dopodichè, lascia cadere la briciola e lascia la statua. I piccioni da statue vicine si spostano alla statua i prima che Jerry arrivi alla statua successiva (in modo che non contino nel totale dei piccioni che Jerry ha incontrato).

Jerry può entrare nel parco a una statua qualsiasi, percorrere qualche percorso (ma non può utilizzare lo stesso percorso due volte) e poi uscire dal parco dalla statua che preferisce. Dopo che Jerry esce dal parco, Tom entrerà e attraverserà esattamente la stessa sequenza di percorsi. Facendo cadere al massimo v briciole di pane, Jerry vuole massimizzare la differenza tra il numero di piccioni che Tom incontrerà lungo il suo intero percorso nel parco e il numero di piccioni che sono stati incontrati da lui stesso lungo il medesimo percorso. Nota che solo i piccioni che sono presenti in una statua prima che uno dei nostri eroi vi arrivi contano per il totale dei piccioni da lui incontrati. Il commento all'esempio fornisce ulteriori spiegazioni.

Limiti

- $1 < n < 10^5$
- $0 \le v \le 100$
- $0 \le p_i \le 10^9$

Subtask 1 (20 punti)

• 1 < n < 10

Subtask 2 (20 punti)

• $1 \le n \le 1000$

Subtask 3 (30 punti)

• Una sequenza di percorsi ottima inizia dalla statua 1.

Subtask 4 (30 punti)

• Nessuna limitazione ulteriore.

Input

La prima riga contiene il numero di statue n e il numero di briciole di pane v separate da uno spazio. La seconda riga contiene n interi separati da uno spazio, ovvero $p_1 cdots p_n$. Le successive n-1 righe descrivono i percorsi con coppie di numeri a_i e b_i , che indicano che c'è un percorso tra le statue a_i e b_i .

Output

Stampa esattamente un numero, la massima possibile differenza tra il numero di piccioni che Tom incontra e il numero di piccioni che Jerry incontra.

Esempio

Input	Output
12 2	36
2 3 3 8 1 5 6 7 8 3 5 4	
2 1	
2 7	
3 4	
4 7	
7 6	
5 6	
6 8	
6 9	
7 10	
10 11	
10 12	

Commento

Una possibile soluzione è la seguente. Jerry entra nel parco alla statua 6. Lì incontra 5 piccioni. Lascia cadere una briciola di pane, e quindi ora p_6 è 27 e $p_5 = p_7 = p_8 = p_9 = 0$. Dopodichè corre verso la statua 7 e incontra 0 piccioni. Lascia cadere la seconda briciola di pane. p_7 ora è 41 e $p_2 = p_4 = p_6 = p_{10} = 0$. Esce dal parco, avendo incontrato 5 + 0 = 5 piccioni. Tom lo insegue lungo la stessa sequenza di percorsi ma incontra $p_6 + p_7 = 0 + 41 = 41$ piccioni. La differenza è 41 - 5 = 36.