Aplicação de Reconhecimento de Padrões em Banco de Dados de Satisfação de Passageiro em Companhias Áreas

Ricardo Piero Lippoli Batista, João Vitor Santos Barbosa, Matheus Marques Duarte

I. INTRODUÇÃO

Objetivando assimilar o conhecimento adquirido em Ciência de Dados na disciplina de Reconhecimento de Padrões, foi proposto este trabalho, que consiste em utilizar os métodos de classificação estudados durante o período para classificar um banco de dados predeterminado.

A. Base de Dados

Para essa análise, foi utilizado o banco de dados "Airline Passenger Satisfaction", que essencialmente consiste em uma pesquisa de satisfação com mais de 25000 passageiros de companhias aéreas. Com o objetivo de compreender os passageiros, entender as opiniões e correlacionar os dados, foram empregados os seguintes parâmetros:

- Gênero do Passageiro
 - HOMEM
 - MULHER
- Tipo de Cliente
 - LEAL
 - DESLEAL
- Idade (anos)

– min: 7

- max: 85

- Tipo de Viagem
 - PESSOAL
 - NEGOCIOS
- Classe
 - ECO
 - ECO PLUS
 - EXECUTIVA
- Distância de Voo (km)

- min: 31

- max: 4983

- Serviço Wi-Fi a bordo
- Hora da Partida/Hora de chegada conveniente
- Facilidade de reserva online
- Localização do portão
- Comida e Bebida
- Embarque Online
- Conforto do assento
- Entretenimento a bordo
- Servi
 ço de bordo

- Serviço de quarto para pernas
- · Manuseio da bagagem
- Serviço de check-in
- Serviço de bordo
- Limpeza
- Atraso de partida (min)

- min: 0

- max: 1128

• Atraso de chegada (min)

– min: 0

- max: 1115

- Satisfação
 - SATISFEITO
 - NEUTRO OU NÃO SATISFEITO

Observe que os seis primeiros dados referem-se apenas a informações informativas sobre o passageiro, e os dados de atraso também são adquiridos, totalizando 13 dados de satisfação sobre a viagem. Os níveis de satisfação variam de 0 a 5 para todos os atributos. Entre esses, destaca-se que 18 são numéricos e 5 são textuais. A fim de verificar a eficiencia dos modelos, foram calculados as metricas: Acuracia, F1 Score, Recall, Kappa e Precisão.

II. CLASSIFICAÇÕES

Buscando trabalhar com a base de dados mencionada anteriormente, foi necessário realizar o pré-processamento dos dados para lidar com valores ausentes. Em seguida, foi gerado um histograma para cada classe, a fim de analisar e contar a quantidade de dados em cada uma. Além disso, empregouse um código para extrair informações sobre a assimetria de cada classe. Posteriormente, foi elaborado um boxplot das variáveis com atributos numéricos. Após a conclusão dessas etapas iniciais, foi possível realizar uma busca por variáveis que apresentassem outliers no banco de dados.

A. Classificação Linear

Uma vez que o atributo "Customer Type" foi definido como classe e "Satisfaction" como o alvo, a fim de identificar atributos redundantes para a classificação linear, utilizou-se o método corr() da biblioteca Pandas.

Fig. 1. Vários conjuntos de pontos (x, y), com o coeficiente de correlação de x e y para cada conjunto.

Foram utilizados três métodos diferentes para garantir a precisão da função, e após analisar o dataframe de cada método (exemplo na figura 9), foram descartados os atributos a seguir:

- Arrival Delay in Minutes
- Departure Delay in Minutes
- Cleanliness
- · Inflight service
- Inflight entertainment
- · Seat comfort
- Online boarding
- Ease of Online booking
- Departure/Arrival time convenient
- Inflight wifi service

Em seguida, foi realizada a Classificação Linear utilizando os atributos restantes e selecionando 500 amostras de cada classe. Dessa maneira, a classificação foi balanceada para facilitar a visualização.

Fig. 2. Gráfico de Dispersão com Classificador Linear e Reta de Separação.

Após a classificação foi implementado um gráfico de dispersão e traçado o hiperplano de separação.

B. Naive-Bayes

A próxima Classificação realizada foi a de Naive-Bayes. Fora calculada as probabilidades de cada nível de satisfação manualmente (figura 3) para o atributo Inflight wifi service. Após isso, os atributos textuais foram convertidos em valores de -1 a 1.

```
#Prob ser insatisfeito e dar 0:
   = (2/14573) * (0.561)/(0.0313)
   = 1 - PN0
PN1 = (2966/14573) * (0.561)/(0.1727)
PS1 = 1 - PN1
                   14573/25976 813/25976
PN2 = (4923/14573) * (0.561)/(0.2498)
PS2 = 1 - PN2
PN3 = (4694/14573) * (0.561)/(0.2431)
    = 2/14573 PN
PN4 = (1953/14573) * (0.561)/(0.1917)
PS4 = 1 - PN4
     ser insatisfeito e dar 5
      2/14573 PN = 14573/25976 813/25976
   = (35/14573) * (0.561)/(0.1111)
PS5 = 1/100 - PN5
```

Fig. 3. Calculo de Naive-Bayes de modo manual

Após determinar a matrize X com os valores do dataframe sem o atributo alvo e a matriz Y com os valores do atributo alvo, foi chamada a função de treino, com as matrizes produto da função anterior, foi feito os ajustes para o definir a classificação do modelo gausiano e a classifição.

Uma vez feita a classificação, foram calculados as métricas, para validar a eficácia da classificação, junto a isso também foi feita uma matriz de confusão (figura 4) para observar o desempenho.

Fig. 4. Matriz de confusão referente a Naive-Bayes

C. Árvore de Decisão (simples)

Após isso, utilizando a função tree. DecisionTreeClassifier() da biblioteca sklearn, foi realizada a Classificação de Árvore de Decisão e plotado o resultado (figura 5 e em anexo). Logo em seguida também foi calculado as métricas e feita a matriz de confusão para o método de classificação (figura 6).

Fig. 5. Plote da classificação por árvore de decisão

Fig. 6. Matriz de confusão referente a árvore de decisão

D. Rede Neural MLP

Utilizando a função MLPClassifier() da biblioteca sklearn, foi realizada a Classificação de rede neural MLP e após treinar o modelo, foi obtido o valor do score. Logo em seguida, foi feita a matriz de confusão para o método de classificação (figura 7).

Fig. 7. Matriz de confusão referente a Rede Neural MLP

E. Random Florest

Semelhante a classificação anterior, usando a função RandomForestClassifier() da biblioteca sklearn, foi realizada a Classificação de random florest e após treinar o modelo. Logo em seguida, foi feita a matriz de confusão para o metodo de classificação (figura 8).

Fig. 8. Matriz de confusão referente a random florest

III. Resultados e Discussão

A. Pré-processamento

- Quantos registros a base de dados possui? 25976 Registros.
- Quantos atributos? 25 atributos.
- O que quer dizer cada atributo? 6 são dados sobre o passageiro enquanto outros 13 são notas dadas por eles para os serviços das companhias aereas.
- A base de dados possui valores ausentes? Sim, 83 dados faltantes.
- A base de dados possui outliers? Sim, 4 atributos com outliers.
- Análise monovariada e bivariada dos atributos: Exemplo da analise bivariada feita ao longo do trabalho:

Fig. 9. tabela de correlação

- Existem atributos com elevada assimetria? Sim, 2 atributos com assimetria maior que 6.
- Qual a melhor forma de normalizar os dados? No trabalho como os valores eram muito proximos, não foram usados formas de normalização. Contudo ao longo dos testes a aplicação do log1p e sqrt para os valores se mostrou eficiente.
- Existe desbalanceamento entre as classes? Sim, porem é pequeno.
- É viável fazer seleção de atributos? É viavel uma vez que são menos atributos para tratar e alguns possuem alta correlação.

B. Processamento Treinamento dos modelos

- Ajuste dos hiperparâmetros: Qual método usar?
- Qual métrica utilizada para o ajuste? Foi utilizada a metrica accuracy, F1 score, kappa, precission e recall
- Naive-Bayes: Accuracy: 0.83 | F1 Score: 0.83
- Árvore de Decisão (simples): Accuracy: 1.0 | F1 Score:
- Rede Neural MLP: Accuracy: 0.59 | F1 Score: 0.63
- Random Florest Accuracy: 0.89 | F1 Score: 0.90

C. Pós-processamento: Interpretação dos resultados

- Qual modelo desempenhou melhor? Levando em consideração tempo de processamento (medido com cronometro) e valor de metricas, o melhor modelo foi o random florest.
- tabela comparativa com os resultados da validação cruzada

Fig. 10. tabela para comparação das metricas

• Curva ROC Final

Fig. 11. Curva ROC Final

• Matriz de confusão do melhor modelo: figura 8

IV. CONCLUSÕES

Em conclusão, o estudo sobre reconhecimento de padrões revelou pontos significativos sobre a eficácia de diversos classificadores. O classificador de árvore de decisões simples demonstrou uma performance excepcional, liderando em termos de acurácia e F1 Score, refletindo sua capacidade de aprender padrões complexos. Por outro lado, o Random Forest apresentou um desempenho sólido, figurando como uma alternativa eficiente com um tempo de execução aceitável. Destaca-se que, embora a Árvore de Decisão tenha revelado competência em classificação, sua demora na execução sugere a necessidade de considerações adicionais em relação à eficiência temporal, fator crucial em muitos contextos Além disso, a exploração de arquiteturas de redes neurais alternativas e ajustes nos parâmetros pode proporcionar melhorias adicionais em todos os modelos propostos.

Em suma, este trabalho não apenas aprofundou a compreensão dos métodos de reconhecimento de padrões, mas também forneceu orientações valiosas para a escolha prática de classificadores, considerando a dualidade entre desempenho e eficiência computacional.