Universidade Federal da Fronteira Sul Curso de Ciência da Computação **UFFS** Campus Chapecó

Circuitos Combinacionais

Prof. Luciano L. Caimi lcaimi@uffs.edu.br

Circuitos Digitais

- Circuitos lógicos digitais são divididos em duas grandes áreas:
- Circuitos Combinacionais: em que as saídas do circuito dependem exclusivamente do valor presente na entrada. Como nos multiplexadores, somadores, codificadores, etc...
- Circuitos Sequenciais: onde as saídas do circuito dependem dos valores presentes nas entradas e do estado anterior em que o circuito se encontra. Como exemplo temos os registradores, os contadores, as máquinas de estado, dentre outros.

- Tipos de Circuitos Combinacionais

 Segundo a sua aplicação podem ser classificados em:
- Circuitos de Interconexão: seletores (conhecidos como multiplexadores), codificadores e decodificadores
- Circuitos Aritméticos: somadores, subtratores, somadores/subtratores, multiplicadores, deslocadores, comparadores e ULAS (circuitos que combinam mais de duas operações aritméticas e/ou lógicas)

Multiplexadores (ou seletores)

Multiplexador 2x1:

"Sua função é selecionar uma dentre as duas entradas de dados, fazendo a entrada selecionada aparecer na saída"

Sel	A	В	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Multiplexador 2x1 (MUX 2x1)

Sel	A	В	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

	7	<u>_</u>	^	•
Sel	0	0	1	1
Sel	0	1	1	0
	В	ВЕ		В

$$Y = \overline{Sel} \cdot A + Sel \cdot B$$

Multiplexador 2x1 (MUX 2x1)

Outra forma de ver a tabela

Sel	Α	В	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$Y = \overline{Sel} \cdot A + Sel \cdot B$$

Multiplexador 4x1 (MUX 4x1)

"Sua função é selecionar uma dentre as quatro entradas de dados, fazendo a entrada selecionada aparecer na saída"

Implementação de Funções

Um multiplexador pode ser utilizado na implementação de uma função combinacional diretamente a partir da tabelaverdade.

Os mintermos de uma função são gerados por um multiplexador através das entradas de seleção, restando apenas ligar as entradas de dados a 0 ou a 1 em conformidade com a respectiva tabela-verdade.

Uma função de N variáveis pode ser implementada com um MUX 2N:1 (N entradas de seleção e 2N entradas de dados).

Implementação de Funções

_			1/		
Α	В	С	Y		ABC
0	0	0	0		
0	0	1	0		
0	1	0	1		000
0	1	1	1		001
1	0	0	0		1010
1	0	1	1	, -	1 011
1	1	0	0		0—————————————————————————————————————
1	1	1	1		0 110

Exercícios:

- a) Implemente um MUX 8x1 (tabela-verdade, equação, circuito)
- b) Implemente um MUX 4x1 utilizando somente MUX 2x1
- c) Implemente um MUX 8x1 utilizando somente MUX 4x1

UFFS

Aplicações

MUX são utilizados para seleção de caminhos de dados em Unidades Lógicas e Aritméticas (ULAs). Observe sua utilização em uma ULA que possui a seguinte tabela verdade

S2	S1	S0	Saída
0	0	0	Α
0	0	1	A AND B
0	1	0	A OR B
0	1	1	A XOR B
1	0	0	NOT A
1	0	1	A NAND B
1	1	0	A NOR B
1	1	1	A XNOR B

Ainda no que diz respeito a seleção de caminhos de dados

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Aplicações

O MUX pode ser usado para construção de deslocadores (shifters), que recebem uma palavra binária e fornecem o valor deslocado a direita ou a esquerda, com a inclusão de "0" ou "1", ou até a rotação da palavra

S1	S0	Saída
0	0	$(0,E_3,E_2,E_1)$
0	1	(E_0, E_3, E_2, E_1)
1	0	$(E_2, E_1, E_0, 1)$
1	1	(E ₁ , E ₀ ,1,1)

Demultiplexadores

Demultiplexador 1x2:

"Realiza a função inversa dos multiplexadores, ou seja direciona a entrada para uma de 2 possíveis saídas"

Sel	A	X	Y
0	0	0	0
0	1	1	0
1	0	0	0
1	1	0	1

Sel	X	Υ
0	Α	0
1	0	Α

Demultiplexadores

Demultiplexador 1x4:

"Direciona a entrada para uma de 4 possíveis saídas"

Sel0	Sel1	A	S 0	S1	S2	S 3
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

Sel0	Sel1	S0	S 1	S2	S 3
0	0	Α	0	0	0
0	1	0	Α	0	0
1	0	0	0	Α	0
1	1	0	0	0	Α

Circuito???

Demultiplexadores

Demultiplexador 1x4:

Sel0	Sel1	S0	S1	S2	S 3
0	0	Α	0	0	0
0	1	0	Α	0	0
1	0	0	0	Α	0
1	1	0	0	0	Α

Exercícios:

- a) Implemente um DEMUX 1x8 (tabela- verdade, equação, circuito)
- b) Implemente um DEMUX 1x4 utilizando somente DEMUX 1x2
- c) Implemente um DEMUX 1x8 utilizando somente DEMUX 1x4

Decodificadores

Decodificador 2:4

Sua função é ativar uma e somente uma dentre as 4 saídas, de acordo com a combinação de valores das entradas

Ativar, neste caso, quer dizer <u>diferenciar</u>, <u>destacar</u>

Existe uma relação entre o número de saídas (ns) e o número de entradas (ne):

Decodificadores

Decodificador 2:4

Tabela-verdade e Símbolo

tabela-verdade

entr	adas	saídas						
A0	A1	S0 S1 S2 S						
0	0	1	0	0	0			
0	1	0	1	0	0			
1	0	0	0	1	0			
1	1	0	0	0	1			

símbolo

Decodificadores

Decodificador 2:4

Cada combinação de entrada pode ser vista como o endereço de uma saída específica

Decodificadores

Decodificador 2:4

Cada uma das 4 saídas corresponde a um mintermo diferente

Decodificadores

Decodificador 2:4 - com saídas em lógica invertida (ou complementar)

ta	hal	2-1	orc	hel	ı

Como fica o circeintradas			saídas				
	A0	A1	S 0	S1	S2	S3	
	0	0	0	1	1	1	
	0	1	1	0	1	1	
	1	0	1	1	0	1	
	1	1	1	1	1	0	

símbolo

Decodificadores

Decodificador 2:4 – acrescentando uma entrada de habilitação (enable)

Decodificadores

Decodificador 3:8, 4:16, 5:32, etc

- ✓ Seguem o mesmo princípio dos decodifica-dores vistos, sempre observando a relação n:2ⁿ (número de entradas: número de saídas)
- ✓ Também se pode "montar" um decodificador a partir de decodificadores menores, que possuam entrada de habilitação

Decodificadores

Decodificador 3:8 - formado de 2:4, complementar, sem entrada

de habilitação

Exemplo

Decodificador BCD

	В	CD		O ₀	O ₁	02	O ₃	O ₄	O ₅	O ₆	O ₇	O ₈	O ₉
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1

Circuito???

Alguns Códigos

Numéricos

- Código BCD (0000; 0001; 0010 ...)
- Código Excesso de 3 (0011; 0100; 0101 ...)
- Código Gray (000; 001; 011; 010; 110 ...)
- 7 segmentos

Alfanuméricos

- Código ASCII (7 bits; estendida: 8bits)
- Código Unicode (16 bits)
- Código UTF
- Código ISSO 8859

Codificadores

Conceito: grosso modo, codificadores realizam a função oposta dos decodificadores

Codificadores servem para reduzir o número de bits necessários para a representação de alguma informação (facilitando sua manipulação e seu armazenamento)

Codificadores

Conceito: grosso modo, codificadores realizam a função oposta dos decodificadores

Codificadores servem para reduzir o número de bits necessários para a representação de alguma informação (facilitando sua manipulação e seu armazenamento)

Os principais tipos de codificadores são: binários, de prioridade.

Codificadores

Codificador binário 4:2

Apenas as situações de entrada contendo somente uma posição valendo 1 são consideradas

As demais situações são tratadas como don't cares (usar Karnaugh)

	entra	saídas			
A3	A2	S1	S0		
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Exercícios

- Implementar um codificador BCD;
- Implementar um codificador Gray;
- Implementar um decodificador Gray;
- Implementar um decodificador Gray/7 segmentos;