Bài tập Tích phân đường loại 1

<u>Câu 1:</u> Tính tích phân $I = \int_C \sqrt{x} ds$ biết rằng (C) có phương trình là $y = \sqrt{x}$ từ điểm A(1,1) đến B(4,2). Ta được giá trị của I gần nhất với:

A. 8

C. 10

B. 9

D. 11

<u>Câu 2:</u> Tính tích phân $I = \int_C (x+y)dx$ biết rằng (C) là biên của hình chữ nhât có 4 đỉnh là A(-1,1), B(-1,3), C(2,3), D(2,1). Khi đó I =

A. 0

C. 15

B. 25

D. 10

<u>Câu 3:</u> Tính tích phân $I = \int_C (x-y)ds$ biết rằng (C) là nửa trên của đường tròn $x^2 + y^2 = 4$. Khi đó I =

A. 16

C. 4

B. -16

D. -4

<u>Câu 4:</u> Tính tích phân $I=\int\limits_C (2x+y)ds$ biết rằng (C) là đường elipse $\frac{x^2}{3}+y^2=1$ nằm phía trên đường thẳng $x+y\sqrt{3}=0$. Khi đó $I=a\sqrt{b}+c\sqrt{c}$ ($a,b,c\in Z$). Khẳng định nào sau đây là đúng?

- A. a + b < 10
- C. b là số nguyên tố
- B. b là số chẵn
- D, Cả B, C đều đúng

<u>Câu 5:</u> Tính tích phân sau: $I = \int_C y^2 ds$, C là đướng cong $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$. Khi đó $I = \int_C y^2 ds$, C là đướng cong $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$

A. $\frac{128}{15}$

C. 3π

B.
$$\frac{256}{15}$$

D. Đáp án khác

<u>Câu 6:</u> Tính tích phân sau: $I = \int_{C} x ds$ trong đó C là đường cong có phương trình trong tọa độ cực là $r = \sin \varphi + \cos \varphi$, $0 \le \varphi \le 2\pi$. Khi đó $I = a\pi$. Khẳng định nào là đúng?

C.
$$a = 1$$

B.
$$a > 1$$

D. Chưa đủ dữ kiện để xác định

<u>Câu 7</u>: Tính tích phân sau: $I = \int_C (x+z)ds$ biết rằng C là đoạn thẳng AB với A(1,2,-1), B(4,6,11). Khi đó I =

A.
$$\frac{15}{2}$$

A.
$$\frac{15}{2}$$
 C. $\frac{195}{4}$

B.
$$\frac{13}{2}$$

D. Đáp án khác

<u>Câu 8:</u> Tính tích phân $I = \int_C y ds$ biết C là giao tuyến của mặt cầu $x^2 + y^2 + z^2 = 2z$ với mặt phẳng z = 1 - x nằm trong góc phần tư thứ nhất. Khi đó I=

c.
$$\frac{1}{2}$$

D. Đáp án khác

<u>Câu 9:</u> Tính tích phân $I = \int_C z ds$ biết rằng C là giao tuyến của nón $z = \sqrt{x^2 + y^2}$ và mặt phẳng y=x từ điểm O(0,0,0) đến $A(2,2,2\sqrt{2})$. Khi đó giá trị của I gần nhất với:

- A. 4
- C. 6

B. 5

D. 7

Đáp án

$$1 C \frac{17\sqrt{17} - 5\sqrt{5}}{6}$$

- 2 B
- 3 A
- 4 D(a=4,b=6,c=2)
- 5 B
- 6 C
- 7 D(195/2)
- 8 B
- 9 C ($4\sqrt{2}$)