

Définition

Soit $\mathbb 1$ un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur $\mathbb 1$ par :

Définition

Soit 1 un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur 1 par :

• L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$

Définition

Soit $\mathbb 1$ un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur $\mathbb 1$ par :

• L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »

Définition

Soit 1 un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur 1 par :

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: F \mapsto \neg F$

Définition

Soit $\mathbb 1$ un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur $\mathbb 1$ par :

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: F \mapsto \neg F$
 - conjonction $\wedge : F, G \mapsto (F \wedge G)$

Définition

Soit $\mathbb 1$ un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur $\mathbb 1$ par :

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: F \mapsto \neg F$
 - conjonction $\wedge : F, G \mapsto (F \wedge G)$
 - disjonction $\vee: F, G \mapsto (F \vee G)$

Définition

Soit $\mathbb 1$ un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur $\mathbb 1$ par :

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: F \mapsto \neg F$
 - conjonction $\wedge : F, G \mapsto (F \wedge G)$
 - disjonction $\vee : F, G \mapsto (F \vee G)$
 - implication \rightarrow : $F, G \mapsto (F \rightarrow G)$

Définition

Soit $\mathbb 1$ un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur $\mathbb 1$ par :

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg : F \mapsto \neg F$
 - conjonction $\wedge : F, G \mapsto (F \wedge G)$
 - disjonction $\vee : F, G \mapsto (F \vee G)$
 - implication \rightarrow : $F, G \mapsto (F \rightarrow G)$
 - équivalence \leftrightarrow : $F, G \mapsto (F \leftrightarrow G)$

Remarques

• Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :

1. Syntaxe des formules logiques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :

1. Syntaxe des formules logiques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.

1. Syntaxe des formules logiques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : \neg , \wedge , \vee , \rightarrow , \leftrightarrow

1. Syntaxe des formules logiques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : \neg , \wedge , \vee , \rightarrow , \leftrightarrow Par exemple $((\neg p) \lor (q \land r))$ s'écrit plus simplement $\neg p \lor q \land r$.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple ((¬p) ∨ (q ∧ r)) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple ((¬p) ∨ (q ∧ r)) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple ((¬p) ∨ (q ∧ r)) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Exemples

- $(((\neg p) \lor (\neg q)) \land r)$ est une formule logique qu'on pourra écrire plus simplement $(\neg p \lor \neg q) \land r$.
- $\wedge p \neg pq$ ou encore $(p \wedge q) \rightarrow (r \text{ ne sont pas des formules logiques.}$

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple ((¬p) ∨ (q ∧ r)) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Exemples

- $(((\neg p) \lor (\neg q)) \land r)$ est une formule logique qu'on pourra écrire plus simplement $(\neg p \lor \neg q) \land r$.
- $\wedge p \neg pq$ ou encore $(p \wedge q) \rightarrow (r \text{ ne sont pas des formules logiques.}$
- $(p \to q) \land (q \to p)$ et $p \leftrightarrow q$ sont deux formules logiques différentes.

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

1. Syntaxe des formules logiques

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

ullet les variables logiques et les constantes \top et \bot sont les étiquettes des feuilles

1. Syntaxe des formules logiques

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

- ullet les variables logiques et les constantes oxed et oxed sont les étiquettes des feuilles
- les noeuds internes ont pour étiquette les règles d'inférence

1. Syntaxe des formules logiques

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

- ullet les variables logiques et les constantes \top et \bot sont les étiquettes des feuilles
- les noeuds internes ont pour étiquette les règles d'inférence

Exemples

La formule logique $(p \to q) \lor (\neg r)$ admet la représentation :

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

- ullet les variables logiques et les constantes \top et \bot sont les étiquettes des feuilles
- les noeuds internes ont pour étiquette les règles d'inférence

Exemples

La formule logique $(p \to q) \lor (\neg r)$ admet la représentation :

Exemple

• Quelle est la formule logique ayant pour représentation arborescente :

Exemple

• Quelle est la formule logique ayant pour représentation arborescente :

$$((p \to q) \lor (r \leftrightarrow s)) \land (r \lor (\neg q))$$

Exemple

• Quelle est la formule logique ayant pour représentation arborescente :

$$((p \to q) \lor (r \leftrightarrow s)) \land (r \lor (\neg q))$$

• Dessiner la représentation arborescente de $\neg(\top \leftrightarrow (p \lor q))$.

Hauteur, taille et sous formule

Etant donnée une formule logique notée \mathbb{O} ,

Hauteur, taille et sous formule

Etant donnée une formule logique notée 0,

• la hauteur de 0 est la hauteur de l'arbre syntaxique associé

Hauteur, taille et sous formule

Etant donnée une formule logique notée 0,

- la hauteur de 0 est la hauteur de l'arbre syntaxique associé
- la taille de 0 est le nombre de noeuds de l'arbre syntaxiqué associé

Hauteur, taille et sous formule

Etant donnée une formule logique notée 0,

- la hauteur de 0 est la hauteur de l'arbre syntaxique associé
- la taille de 0 est le nombre de noeuds de l'arbre syntaxiqué associé
- Une sous formule de 0 est un sous-arbre de l'arbre syntaxique associé

Implémentation en OCaml

Le type somme de OCaml associé à la correspondance de motif permettent de représenter et de travailler efficacement sur les formules logiques.

Implémentation en OCaml

Le type somme de OCaml associé à la correspondance de motif permettent de représenter et de travailler efficacement sur les formules logiques.

```
type fl =
| Top | Bot
| Var of int (*les variables propositionnelles*)
| Non of fl
| Ou of fl*fl
| Imp of fl*fl
| Equ of fl*fl
```


Implémentation en OCaml

Le type somme de OCaml associé à la correspondance de motif permettent de représenter et de travailler efficacement sur les formules logiques.

On a représenté ici une variable logique par un entier, on pourrait choisir un caractère, ou un type option 'a.

Implémentation en OCaml

Le type somme de OCaml associé à la correspondance de motif permettent de représenter et de travailler efficacement sur les formules logiques.

```
type fl =
| Top | Bot
| Var of int (*les variables propositionnelles*)
| Non of fl
| Ou of fl*fl
| Et of fl*fl
| Imp of fl*fl
| Equ of fl*fl
```

On a représenté ici une variable logique par un entier, on pourrait choisir un caractère, ou un type option 'a.

La formule logique $(p \land \neg q) \rightarrow r$ est alors représentée par :

Implémentation en OCaml

Le type somme de OCaml associé à la correspondance de motif permettent de représenter et de travailler efficacement sur les formules logiques.

On a représenté ici une variable logique par un entier, on pourrait choisir un caractère, ou un type option 'a.

La formule logique $(p \land \neg q) \rightarrow r$ est alors représentée par :

```
let ex = Imp (Et ((Var 1),(Non (Var 2))), (Var 3));;
```

Implémentation en OCaml

Le calcul de la taille s'obtient alors via un pattern matching :

Implémentation en OCaml

Le calcul de la taille s'obtient alors via un pattern matching :

```
let rec taille fl =
    match fl with
| Top | Bot | Var _ -> 1
| Non sf -> 1 + taille sf
| Ou (sf1, sf2) -> 1 + taille sf1 + taille sf2
| Et (sf1, sf2) -> 1 + taille sf1 + taille sf2
| Imp (sf1, sf2) -> 1 + taille sf1 + taille sf2
| Equ (sf1, sf2) -> 1 + taille sf1 + taille sf2
```


Valuation

On note $\mathbb{B} = \{0, 1\}$, l'ensemble des valeurs de vérités

Une valuation est une attribution de l'une des deux valeurs de vérités à chaque variable propositionnelle. Une valuation φ est une donc une application de $\mathbb 1$ de B.

Valuation

On note $\mathbb{B} = \{0, 1\}$, l'ensemble des valeurs de vérités

Une valuation est une attribution de l'une des deux valeurs de vérités à chaque variable propositionnelle. Une valuation φ est une donc une application de $\mathbb 1$ de B.

Exemple

Si l'ensemble des variables propositionnelle est $V=\{p,q,r\}$, une valuation possible est :

$$\varphi: V \mapsto \mathbb{B}$$
, avec $\varphi(p) = \mathbb{1}$, $\varphi(q) = \mathbb{0}$ et $\varphi(r) = \mathbb{0}$.

Valuation

On note $\mathbb{B} = \{0, 1\}$, l'ensemble des valeurs de vérités

Une valuation est une attribution de l'une des deux valeurs de vérités à chaque variable propositionnelle. Une valuation φ est une donc une application de $\mathbb 1$ de B.

Exemple

Si l'ensemble des variables propositionnelle est $V=\{p,q,r\}$, une valuation possible est :

$$\varphi: V \mapsto \mathbb{B} \text{, avec } \varphi(p) = \mathbb{1} \text{, } \varphi(q) = \mathbb{0} \text{ et } \varphi(r) = \mathbb{0}.$$

Remarque

En nontant |V| = n, il y a 2^n valuations possibles.

Fonction booléennes usuelles

On rappelle les fonction booléennes usuelles associées à chaque connecteur :

$$\begin{array}{c|ccccc}
f_{\vee} : \mathbb{B}^2 & \mapsto \mathbb{B} \\
\hline
x & y & f_{\vee}(x, y) \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}$$

Et $f_{\neg}: \mathbb{B} \mapsto \mathbb{B}$, définie par $f_{\neg}(\mathbb{0}) = \mathbb{1}$ et $f_{\neg}(\mathbb{1}) = \mathbb{0}$.

Valeur de vérité d'une formule

Valeur de vérité d'une formule

- $\bullet \ [\![\top]\!]_{\varphi} = V$
- $\bullet \ [\![\bot]\!]_\varphi = F$

Valeur de vérité d'une formule

- $\bullet \ [\![\top]\!]_{\varphi} = V$
- $\bullet \ [\![\bot]\!]_\varphi = F$
- $\bullet \ \text{si} \ v \in V, \ [\![v]\!]_{\varphi} = \varphi(v)$

Valeur de vérité d'une formule

- $\bullet \ [\![\top]\!]_{\varphi} = V$
- $\bullet \ [\![\bot]\!]_\varphi = F$
- si $v \in V$, $[\![v]\!]_{\varphi} = \varphi(v)$
- $\bullet \ \llbracket \neg F \rrbracket_\varphi = f_\neg(\llbracket F \rrbracket_\varphi)$

Valeur de vérité d'une formule

- $\bullet \ [\![\top]\!]_{\varphi} = V$
- $\bullet \ \llbracket \bot \rrbracket_{\varphi} = F$
- si $v \in V$, $[\![v]\!]_{\varphi} = \varphi(v)$
- $\bullet \ \llbracket \neg F \rrbracket_{\varphi} = f_{\neg}(\llbracket F \rrbracket_{\varphi})$
- $\bullet \ \llbracket (F \wedge G) \rrbracket_{\varphi} = f_{\wedge}(\llbracket F \rrbracket_{\varphi}, \llbracket G \rrbracket_{\varphi})$
- $\bullet \ \llbracket (F \vee G) \rrbracket_{\varphi} = f_{\vee}(\llbracket F \rrbracket_{\varphi}, \llbracket G \rrbracket_{\varphi})$
- $\bullet \ \ \llbracket (F \to G) \rrbracket_{\varphi} = f_{\to}(\llbracket F \rrbracket_{\varphi}, \llbracket G \rrbracket_{\varphi})$
- $\bullet \ \ \llbracket (G \leftrightarrow G) \rrbracket_{\varphi} = f_{\leftrightarrow}(\llbracket G \rrbracket_{\varphi}, \llbracket G \rrbracket_{\varphi})$

Exemple

Sur $V=\{p,q,r\}$, on considère la valuation $\varphi:V\mapsto \mathbb{B}$, telle que $\varphi(p)=\mathbb{1}$, $\varphi(q)=\mathbb{0}$ et $\varphi(r)=\mathbb{0}$ on peut alors déterminer la valeur de vérité de la formule logique $F=(p\to q)\wedge (\neg p\vee r)$ associée à cette valuation :

Exemple

Sur $V=\{p,q,r\}$, on considère la valuation $\varphi:V\mapsto \mathbb{B}$, telle que $\varphi(p)=\mathbb{1}$, $\varphi(q)=\mathbb{0}$ et $\varphi(r)=\mathbb{0}$ on peut alors déterminer la valeur de vérité de la formule logique $F=(p\to q)\wedge (\neg p\vee r)$ associée à cette valuation : $\|F\|_{\omega}=f_{\wedge}(\|p\to q\|_{\omega},\|\neg p\vee r\|_{\omega})$

Exemple

Sur $V = \{p, q, r\}$, on considère la valuation $\varphi : V \mapsto \mathbb{B}$, telle que $\varphi(p) = 1$, $\varphi(q) = 0$ et $\varphi(r) = 0$ on peut alors déterminer la valeur de vérité de la formule logique $F = (p \rightarrow q) \land (\neg p \lor r)$ associée à cette valuation :

$$\llbracket F \rrbracket_{\varphi} = f_{\wedge}(\llbracket p \to q \rrbracket_{\varphi}, \llbracket \neg p \vee r \rrbracket_{\varphi})$$

$$\llbracket F \rrbracket_{\varphi} = f_{\wedge}(f_{\rightarrow}(\llbracket p \rrbracket_{\varphi}, \llbracket q \rrbracket_{\varphi})), f_{\vee}(\llbracket \neg p \rrbracket_{\varphi}, \llbracket r \rrbracket_{\varphi})$$

Exemple

Sur $V=\{p,q,r\}$, on considère la valuation $\varphi:V\mapsto \mathbb{B}$, telle que $\varphi(p)=\mathbb{1}$, $\varphi(q)=\mathbb{0}$ et $\varphi(r)=\mathbb{0}$ on peut alors déterminer la valeur de vérité de la formule logique $F=(p\to q)\wedge (\neg p\vee r)$ associée à cette valuation : $\llbracket F\rrbracket_{\varphi}=f_{\wedge}(\llbracket p\to q\rrbracket_{\varphi},\llbracket \neg p\vee r\rrbracket_{\varphi}) \\ \llbracket F\rrbracket_{\varphi}=f_{\wedge}(\llbracket p\rrbracket_{\varphi},\llbracket q\rrbracket_{\varphi}),f_{\vee}(\llbracket \neg p\rrbracket_{\varphi},\llbracket r\rrbracket_{\varphi}) \\ \llbracket F\rrbracket_{\varphi}=f_{\wedge}(f_{\to}(\llbracket p\rrbracket_{\varphi},\llbracket q\rrbracket_{\varphi})),f_{\vee}(\llbracket \neg p\rrbracket_{\varphi},\llbracket r\rrbracket_{\varphi})$ $\llbracket F\rrbracket_{\varphi}=f_{\wedge}(f_{\to}(\llbracket n],0),f_{\vee}(0,0))$

Exemple

```
Sur V=\{p,q,r\}, on considère la valuation \varphi:V\mapsto\mathbb{B}, telle que \varphi(p)=\mathbb{1}, \varphi(q)=\mathbb{0} et \varphi(r)=\mathbb{0} on peut alors déterminer la valeur de vérité de la formule logique F=(p\to q)\wedge (\neg p\vee r) associée à cette valuation :  \llbracket F\rrbracket_{\varphi}=f_{\wedge}(\llbracket p\to q\rrbracket_{\varphi},\llbracket \neg p\vee r\rrbracket_{\varphi}) \\ \llbracket F\rrbracket_{\varphi}=f_{\wedge}(\llbracket p\rrbracket_{\varphi},\llbracket q\rrbracket_{\varphi}),f_{\vee}(\llbracket \neg p\rrbracket_{\varphi},\llbracket r\rrbracket_{\varphi}) \\ \llbracket F\rrbracket_{\varphi}=f_{\wedge}(f_{\to}(\mathbb{1},\mathbb{0}),f_{\vee}(\mathbb{0},\mathbb{0})) \\ \llbracket F\rrbracket_{\varphi}=f_{\wedge}(0,\mathbb{0})
```


Exemple

```
Sur V=\{p,q,r\}, on considère la valuation \varphi:V\mapsto \mathbb{B}, telle que \varphi(p)=\mathbb{1}, \varphi(q)=0 et \varphi(r)=0 on peut alors déterminer la valeur de vérité de la formule logique F=(p\to q)\wedge (\neg p\vee r) associée à cette valuation :  \llbracket F\rrbracket_{\varphi}=f_{\wedge}(\llbracket p\to q\rrbracket_{\varphi},\llbracket \neg p\vee r\rrbracket_{\varphi}) \\ \llbracket F\rrbracket_{\varphi}=f_{\wedge}(f_{\to}(\llbracket p\rrbracket_{\varphi},\llbracket q\rrbracket_{\varphi})), f_{\vee}(\llbracket \neg p\rrbracket_{\varphi},\llbracket r\rrbracket_{\varphi}) \\ \llbracket F\rrbracket_{\varphi}=f_{\wedge}(f_{\to}(\mathbb{1},0),f_{\vee}(0,0)) \\ \llbracket F\rrbracket_{\varphi}=f_{\wedge}(0,0) \\ \llbracket F\rrbracket_{\varphi}=0
```


Exemple

Sur $V = \{p, q, r\}$, on considère la valuation $\varphi : V \mapsto \mathbb{B}$, telle que $\varphi(p) = 1$, $\varphi(q) = 0$ et $\varphi(r) = 0$ on peut alors déterminer la valeur de vérité de la formule logique $F = (p \to q) \land (\neg p \lor r)$ associée à cette valuation :

$$\begin{split} \llbracket F \rrbracket_{\varphi} &= f_{\wedge}(\llbracket p \to q \rrbracket_{\varphi}, \llbracket \neg p \vee r \rrbracket_{\varphi}) \\ \llbracket F \rrbracket_{\varphi} &= f_{\wedge}(f_{\to}(\llbracket p \rrbracket_{\varphi}, \llbracket q \rrbracket_{\varphi})), f_{\vee}(\llbracket \neg p \rrbracket_{\varphi}, \llbracket r \rrbracket_{\varphi}) \\ \llbracket F \rrbracket_{\varphi} &= f_{\wedge}(f_{\to}(\mathbb{1}, \mathbb{0}), f_{\vee}(\mathbb{0}, \mathbb{0})) \\ \llbracket F \rrbracket_{\varphi} &= f_{\wedge}(\mathbb{0}, \mathbb{0}) \end{split}$$

$$[F]_{\varphi} = f_{\wedge}(0,0)$$
$$[F]_{\omega} = 0$$

• Donner la valeur de vérité de cette proposition pour la valuation φ' définie par : $\varphi'(p) = \mathbb{O}, \varphi'(q) = \mathbb{O}, \varphi'(r) = \mathbb{O}$

Exemple

Sur $V=\{p,q,r\}$, on considère la valuation $\varphi:V\mapsto \mathbb{B}$, telle que $\varphi(p)=\mathbb{1}$, $\varphi(q)=\mathbb{0}$ et $\varphi(r)=\mathbb{0}$ on peut alors déterminer la valeur de vérité de la formule logique $F=(p\to q)\land (\neg p\lor r)$ associée à cette valuation :

$$\begin{split} & [\![F]\!]_{\varphi} = f_{\wedge}([\![p \to q]\!]_{\varphi}, [\![\neg p \lor r]\!]_{\varphi}) \\ & [\![F]\!]_{\varphi} = f_{\wedge}(f_{\to}([\![p]\!]_{\varphi}, [\![q]\!]_{\varphi})), f_{\vee}([\![\neg p]\!]_{\varphi}, [\![r]\!]_{\varphi}) \\ & [\![F]\!]_{\varphi} = f_{\wedge}(f_{\to}(\mathbb{1}, \mathbb{0}), f_{\vee}(\mathbb{0}, \mathbb{0})) \\ & [\![F]\!]_{\varphi} = f_{\wedge}(\mathbb{0}, \mathbb{0}) \end{split}$$

- $[F]_{\varphi} = f_{\wedge}(0,0)$ $[F]_{\varphi} = 0$
 - Donner la valeur de vérité de cette proposition pour la valuation φ' définie par : $\varphi'(p)=\mathbb{0}, \varphi'(q)=\mathbb{0}, \varphi'(r)=\mathbb{0}$
 - Déterminer la valeur de vérité de $((p \to q) \lor (r \leftrightarrow s)) \land (r \lor (\neg q))$ pour la valuation φ .

Tautologie, antilogie, satisfiabilité

• Une formule est une tautologie si sa valeur de vérité est 1 pour toute valuation. c'est-à-dire que F est une tautologie ssi pour tout $\varphi \in \mathbb{B}^V$, $[\![F]\!]_{\varphi} = 1$.

C16 Logique

2. Sémantique des formules logiques

Tautologie, antilogie, satisfiabilité

- Une formule est une tautologie si sa valeur de vérité est $\mathbb 1$ pour toute valuation. c'est-à-dire que F est une tautologie ssi pour tout $\varphi \in \mathbb B^V$, $[\![F]\!]_\varphi = \mathbb 1$.
- Une formule est une antilogie si sa valeur de vérité est $\mathbb O$ pour toute valuation. c'est-à-dire que F est une antilogie ssi pour tout $\varphi \in \mathbb B^V$, $\llbracket F \rrbracket_\varphi = \mathbb O$.

Tautologie, antilogie, satisfiabilité

- Une formule est une tautologie si sa valeur de vérité est $\mathbb 1$ pour toute valuation. c'est-à-dire que F est une tautologie ssi pour tout $\varphi \in \mathbb B^V$, $[\![F]\!]_\varphi = \mathbb 1$.
- Une formule est une antilogie si sa valeur de vérité est 0 pour toute valuation. c'est-à-dire que F est une antilogie ssi pour tout $\varphi \in \mathbb{B}^V$, $[\![F]\!]_\varphi = 0$.
- Une formule est satisfiable s'il existe une valuation pour laquelle sa valeur de vérité est 1. c'est-à-dire que F est satisfiable ssi il existe $\varphi \in \mathbb{B}^V$ tel que $\llbracket F \rrbracket_{\varphi} = 1$.

Tautologie, antilogie, satisfiabilité

- Une formule est une tautologie si sa valeur de vérité est 1 pour toute valuation. c'est-à-dire que F est une tautologie ssi pour tout $\varphi \in \mathbb{B}^V$, $[\![F]\!]_{\varphi} = 1$.
- Une formule est une antilogie si sa valeur de vérité est 0 pour toute valuation. c'est-à-dire que F est une antilogie ssi pour tout $\varphi \in \mathbb{B}^V$, $[\![F]\!]_{\varphi} = 0$.
- Une formule est satisfiable s'il existe une valuation pour laquelle sa valeur de vérité est 1. c'est-à-dire que F est satisfiable ssi il existe $\varphi \in \mathbb{B}^V$ tel que $\llbracket F \rrbracket_{\omega} = 1$.

Remarques

• F est une tautologie ssi $\neg F$ n'est pas satisfiable.

Tautologie, antilogie, satisfiabilité

- Une formule est une tautologie si sa valeur de vérité est 1 pour toute valuation. c'est-à-dire que F est une tautologie ssi pour tout $\varphi \in \mathbb{B}^V$, $[\![F]\!]_{\varphi} = 1$.
- Une formule est une antilogie si sa valeur de vérité est $\mathbb O$ pour toute valuation. c'est-à-dire que F est une antilogie ssi pour tout $\varphi \in \mathbb B^V$, $[\![F]\!]_{\varphi} = \mathbb O$.
- Une formule est satisfiable s'il existe une valuation pour laquelle sa valeur de vérité est $\mathbb{1}$. c'est-à-dire que F est satisfiable ssi il existe $\varphi \in \mathbb{B}^V$ tel que $[\![F]\!]_{\varphi} = \mathbb{1}$.

Remarques

- F est une tautologie ssi $\neg F$ n'est pas satisfiable.
- F est satisfiable ssi $\neg F$ n'est pas une tautologie.

Tables de vérité

La table de vérité d'une formule logique F contenant n variables logiques consiste à présenter sous forme de tableau la valeur de vérité de F pour chacune des 2^n valuations possibles.

Tables de vérité

La table de vérité d'une formule logique F contenant n variables logiques consiste à présenter sous forme de tableau la valeur de vérité de F pour chacune des 2^n valuations possibles.

Exemple

• Dresser la table de vérité de $F = (p \rightarrow q) \leftrightarrow (\neg p \lor q)$

Tables de vérité

La table de vérité d'une formule logique F contenant n variables logiques consiste à présenter sous forme de tableau la valeur de vérité de F pour chacune des 2^n valuations possibles.

Exemple

• Dresser la table de vérité de $F = (p \rightarrow q) \leftrightarrow (\neg p \lor q)$

Tables de vérité

La table de vérité d'une formule logique F contenant n variables logiques consiste à présenter sous forme de tableau la valeur de vérité de F pour chacune des 2^n valuations possibles.

Exemple

ullet Dresser la table de vérité de $F=(p
ightarrow q) \leftrightarrow (\neg p \lor q)$

p	q	$p \rightarrow q$	$\neg p \vee q$	F
0	0			
0	1			
1	0			
1	1			

Tables de vérité

La table de vérité d'une formule logique F contenant n variables logiques consiste à présenter sous forme de tableau la valeur de vérité de F pour chacune des 2^n valuations possibles.

Exemple

ullet Dresser la table de vérité de $F=(p
ightarrow q) \leftrightarrow (\neg p \lor q)$

p	q	$p \rightarrow q$	$\neg p \vee q$	F
0	0	1		
0	1	1		
1	0	0		
1	1	1		

Tables de vérité

La table de vérité d'une formule logique F contenant n variables logiques consiste à présenter sous forme de tableau la valeur de vérité de F pour chacune des 2^n valuations possibles.

Exemple

ullet Dresser la table de vérité de $F=(p
ightarrow q) \leftrightarrow (\neg p \lor q)$

p		q	$p \rightarrow q$	$\neg p \vee q$	F
0)	0	1	1	
0)	1	1	1	
1		0	0	0	
1		1	1	1	

Tables de vérité

La table de vérité d'une formule logique F contenant n variables logiques consiste à présenter sous forme de tableau la valeur de vérité de F pour chacune des 2^n valuations possibles.

Exemple

• Dresser la table de vérité de $F = (p \rightarrow q) \leftrightarrow (\neg p \lor q)$

p	q	$p \rightarrow q$	$\neg p \vee q$	F
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

Tables de vérité

La table de vérité d'une formule logique F contenant n variables logiques consiste à présenter sous forme de tableau la valeur de vérité de F pour chacune des 2^n valuations possibles.

Exemple

• Dresser la table de vérité de $F = (p \rightarrow q) \leftrightarrow (\neg p \lor q)$

p	q	$p \rightarrow q$	$\neg p \vee q$	F
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

• Que peut-on en déduire? F est une tautologie.

C16 Logique

2. Sémantique des formules logiques

Equivalence logique

On dit que deux formules logiques F et G sont logiquement équivalentes si pour toute valuation φ , $[\![F]\!]_{\varphi}=[\![G]\!]_{\varphi}$. On notera alors $F\equiv G$.

C16 Logique

2. Sémantique des formules logiques

Equivalence logique

On dit que deux formules logiques F et G sont logiquement équivalentes si pour toute valuation φ , $[\![F]\!]_{\varphi}=[\![G]\!]_{\varphi}$. On notera alors $F\equiv G$. Cela traduit l'égalité sémantique de F et G, et permet de simplifier les formules.

Equivalence logique

On dit que deux formules logiques F et G sont logiquement équivalentes si pour toute valuation φ , $[\![F]\!]_{\varphi}=[\![G]\!]_{\varphi}$. On notera alors $F\equiv G$.

Cela traduit l'égalité sémantique de F et G, et permet de simplifier les formules. A ne pas confondre avec \leftrightarrow qui est un connecteur logique.

$$\neg (\neg F) \equiv F$$

Equivalence logique

On dit que deux formules logiques F et G sont logiquement équivalentes si pour toute valuation φ , $[\![F]\!]_{\varphi}=[\![G]\!]_{\varphi}$. On notera alors $F\equiv G$.

Cela traduit l'égalité sémantique de F et G, et permet de simplifier les formules. A ne pas confondre avec \leftrightarrow qui est un connecteur logique.

- $\neg (\neg F) \equiv F$
- $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$

Equivalence logique

On dit que deux formules logiques F et G sont logiquement équivalentes si pour toute valuation φ , $[\![F]\!]_{\varphi}=[\![G]\!]_{\varphi}$. On notera alors $F\equiv G$.

Cela traduit l'égalité sémantique de F et G, et permet de simplifier les formules. A ne pas confondre avec \leftrightarrow qui est un connecteur logique.

- $\neg (\neg F) \equiv F$
- $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$
- $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$

Equivalence logique

On dit que deux formules logiques F et G sont logiquement équivalentes si pour toute valuation φ , $[\![F]\!]_{\varphi}=[\![G]\!]_{\varphi}$. On notera alors $F\equiv G$.

Cela traduit l'égalité sémantique de F et G, et permet de simplifier les formules. A ne pas confondre avec \leftrightarrow qui est un connecteur logique.

- $\neg (\neg F) \equiv F$
- $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$
- $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$
- $\neg (F \lor G) \equiv \neg F \land \neg G$ (loi de De Morgan)

Equivalence logique

On dit que deux formules logiques F et G sont logiquement équivalentes si pour toute valuation φ , $[\![F]\!]_{\varphi}=[\![G]\!]_{\varphi}$. On notera alors $F\equiv G$.

Cela traduit l'égalité sémantique de F et G, et permet de simplifier les formules. A ne pas confondre avec \leftrightarrow qui est un connecteur logique.

Quelques équivalences à connaitre

- $\neg (\neg F) \equiv F$
- $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$
- $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$
- $\neg (F \lor G) \equiv \neg F \land \neg G$ (loi de De Morgan)
- $\neg (F \land G) \equiv \neg F \lor \neg G$ (loi de De Morgan)

Equivalence logique

On dit que deux formules logiques F et G sont logiquement équivalentes si pour toute valuation φ , $[\![F]\!]_{\varphi}=[\![G]\!]_{\varphi}$. On notera alors $F\equiv G$.

Cela traduit l'égalité sémantique de F et G, et permet de simplifier les formules. A ne pas confondre avec \leftrightarrow qui est un connecteur logique.

Quelques équivalences à connaitre

- $\neg (\neg F) \equiv F$
- $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$
- $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$
- $\neg (F \lor G) \equiv \neg F \land \neg G$ (loi de De Morgan)
- $\neg (F \land G) \equiv \neg F \lor \neg G$ (loi de De Morgan)
- $F \to G \equiv \neg F \lor G$

Exemple

Montrer que :

 $\bullet \ P \vee \neg P \equiv \top \ \text{(tiers exclu)}$

Exemple

Montrer que :

- $P \vee \neg P \equiv \top$ (tiers exclu)
- $\bullet \ P \to Q \equiv \neg Q \to \neg P \ \text{(contraposition)}$

Exemple

Montrer que :

- $P \vee \neg P \equiv \top$ (tiers exclu)
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$ (contraposition)

Conséquence logique

On dit que qu'une formule G est conséquence logique d'un ensemble de formules $\Gamma = \{F_1, \dots F_n\}$ si pour toute valuation φ , qui rend vraies les formules $(F_i)_{1 \leqslant i \leqslant n}$ rend aussi vraie G. On notera alors $\Gamma \vDash Q$.

Exemple

Montrer que :

- $P \vee \neg P \equiv \top$ (tiers exclu)
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$ (contraposition)

Conséquence logique

On dit que qu'une formule G est conséquence logique d'un ensemble de formules $\Gamma = \{F_1, \dots F_n\}$ si pour toute valuation φ , qui rend vraies les formules $(F_i)_{1\leqslant i\leqslant n}$ rend aussi vraie G. On notera alors $\Gamma \vDash Q$.

A ne pas confondre avec \rightarrow qui est un connecteur logique.

Exemple

Montrer que :

- $P \vee \neg P \equiv \top$ (tiers exclu)
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$ (contraposition)

Conséquence logique

On dit que qu'une formule G est conséquence logique d'un ensemble de formules $\Gamma = \{F_1, \dots F_n\}$ si pour toute valuation φ , qui rend vraies les formules $(F_i)_{1\leqslant i\leqslant n}$ rend aussi vraie G. On notera alors $\Gamma \vDash Q$.

A ne pas confondre avec \rightarrow qui est un connecteur logique.

Remarques

 $\bullet \ \ {\rm Une \ formule} \ F \ {\rm est \ est \ une \ tautologie \ ssi} \ \varnothing \vDash F, \ {\rm on \ notera \ simplement}, \vDash F.$

Exemple

Montrer que :

- $P \vee \neg P \equiv \top$ (tiers exclu)
- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$ (contraposition)

Conséquence logique

On dit que qu'une formule G est conséquence logique d'un ensemble de formules $\Gamma = \{F_1, \dots F_n\}$ si pour toute valuation φ , qui rend vraies les formules $(F_i)_{1 \leqslant i \leqslant n}$ rend aussi vraie G. On notera alors $\Gamma \vDash Q$.

A ne pas confondre avec \rightarrow qui est un connecteur logique.

Remarques

- Une formule F est est une tautologie ssi $\varnothing \models F$, on notera simplement, $\models F$.
- $F \equiv G$ ssi $F \models G$ et $G \models Q$.

• Un littéral est une formule qui est soit une variable propositionnelle p, soit sa négation $\neg p$.

- Un littéral est une formule qui est soit une variable propositionnelle p, soit sa négation $\neg p$.
- Une forme normale conjonctive est une formule qui est une conjonction de disjonctions de littéraux.

$$(p_{1,1} \vee p_{1,2} \ldots \vee p_{1,k_1}) \wedge \underbrace{(p_{2,1} \vee p_{2,2} \ldots \vee p_{2,k_2})}_{\text{une clause}} \wedge \ldots \wedge (p_{m,1} \vee p_{m,2} \ldots \vee p_{m,k_m})$$

- Un littéral est une formule qui est soit une variable propositionnelle p, soit sa négation $\neg p$.
- Une forme normale conjonctive est une formule qui est une conjonction de disjonctions de littéraux.

$$(p_{1,1} \vee p_{1,2} \ldots \vee p_{1,k_1}) \wedge \underbrace{(p_{2,1} \vee p_{2,2} \ldots \vee p_{2,k_2})} \wedge \ldots \wedge (p_{m,1} \vee p_{m,2} \ldots \vee p_{m,k_m})$$

une clause

 Une forme normale disjonctive est une formule qui est une disjonction de conjonctions de littéraux.

$$(p_{1,1} \wedge p_{1,2} \dots \wedge p_{1,k_1}) \vee (p_{2,1} \wedge p_{2,2} \dots \wedge p_{2,k_2}) \vee \dots \vee (p_{m,1} \wedge p_{m,2} \dots \wedge p_{m,k_m})$$

- Un littéral est une formule qui est soit une variable propositionnelle p, soit sa négation $\neg p$.
- Une forme normale conjonctive est une formule qui est une conjonction de disjonctions de littéraux.

$$(p_{1,1} \vee p_{1,2} \ldots \vee p_{1,k_1}) \wedge \underbrace{(p_{2,1} \vee p_{2,2} \ldots \vee p_{2,k_2})}_{\text{une clause}} \wedge \ldots \wedge (p_{m,1} \vee p_{m,2} \ldots \vee p_{m,k_m})$$

• Une forme normale disjonctive est une formule qui est une disjonction de conjonctions de littéraux.

$$(p_{1,1} \land p_{1,2} \ldots \land p_{1,k_1}) \lor (p_{2,1} \land p_{2,2} \ldots \land p_{2,k_2}) \lor \ldots \lor (p_{m,1} \land p_{m,2} \ldots \land p_{m,k_m})$$

Exemple

 $(p \land q \land \neg r) \lor (\neg p \land r) \lor (p \land \neg q \land \neg r)$ est une FND.

• Pour tout formule logique F, il existe une FNC G et une FND H telles que $F \equiv G \equiv H$.

- Pour tout formule logique F, il existe une FNC G et une FND H telles que $F \equiv G \equiv H$.
- On dispose d'un algorithme pour calculer une forme normale :

- Pour tout formule logique F, il existe une FNC G et une FND H telles que $F \equiv G \equiv H$.
- On dispose d'un algorithme pour calculer une forme normale :
 - $lue{0}$ supprimer les ot et les ot

- Pour tout formule logique F, il existe une FNC G et une FND H telles que $F\equiv G\equiv H$.
- On dispose d'un algorithme pour calculer une forme normale :
 - lacktriangle supprimer les ot et les ot
 - **2** Remplacer \rightarrow et \leftrightarrow par des formules sémantiquement équivalentes n'utilisant pas ces connecteurs : $A \rightarrow B \equiv \neg A \lor B$ et $A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$.

- Pour tout formule logique F, il existe une FNC G et une FND H telles que $F \equiv G \equiv H$.
- On dispose d'un algorithme pour calculer une forme normale :
 - lacktriangle supprimer les ot et les ot
 - ② Remplacer \rightarrow et \leftrightarrow par des formules sémantiquement équivalentes n'utilisant pas ces connecteurs : $A \rightarrow B \equiv \neg A \lor B$ et $A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$.
 - Utiliser les lois de De Morgan afin de faire descendre les ¬ au niveau des feuilles de l'arbre syntaxique

- Pour tout formule logique F, il existe une FNC G et une FND H telles que $F\equiv G\equiv H$.
- On dispose d'un algorithme pour calculer une forme normale :
 - lacktriangle supprimer les ot et les ot
 - ② Remplacer \rightarrow et \leftrightarrow par des formules sémantiquement équivalentes n'utilisant pas ces connecteurs : $A \rightarrow B \equiv \neg A \lor B$ et $A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$.
 - Ottiliser les lois de De Morgan afin de faire descendre les ¬ au niveau des feuilles de l'arbre syntaxique
 - Appliquer les propriétés d'associativité et de distributivité des connecteurs ∧ et ∨.

- Pour tout formule logique F, il existe une FNC G et une FND H telles que $F\equiv G\equiv H$.
- On dispose d'un algorithme pour calculer une forme normale :
 - ullet supprimer les \bot et les \top
 - ② Remplacer \rightarrow et \leftrightarrow par des formules sémantiquement équivalentes n'utilisant pas ces connecteurs : $A \rightarrow B \equiv \neg A \lor B$ et $A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$.
 - Ottiliser les lois de De Morgan afin de faire descendre les ¬ au niveau des feuilles de l'arbre syntaxique
 - ◆ Appliquer les propriétés d'associativité et de distributivité des connecteurs ∧ et ∨.
 - $\begin{tabular}{l} \textbf{0} & \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} & \textbf{0} \\ \textbf{0} \\ \textbf{0} & \textbf{0} \\ \textbf$

- Pour tout formule logique F, il existe une FNC G et une FND H telles que $F\equiv G\equiv H$.
- On dispose d'un algorithme pour calculer une forme normale :
 - lacktriangle supprimer les ot et les ot
 - ② Remplacer \rightarrow et \leftrightarrow par des formules sémantiquement équivalentes n'utilisant pas ces connecteurs : $A \rightarrow B \equiv \neg A \lor B$ et $A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$.
 - Ottiliser les lois de De Morgan afin de faire descendre les ¬ au niveau des feuilles de l'arbre syntaxique
 - ◆ Appliquer les propriétés d'associativité et de distributivité des connecteurs ∧ et ∨.
 - \bullet simplifier les doublons éventuelles dans les clauses de littéraux ($v \land \neg v \equiv \bot$ et $v \lor \neg v = \top$)
- Une autre méthode consiste à utiliser la table de vérité.

C16 Logique

3. Formes normales

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

$$P = ((p \to q) \land \neg r) \lor (\neg (p \to q) \land \neg \neg r) \text{ (\'equivalence s\'emantique de } \leftrightarrow \textbf{)}$$

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

$$\begin{array}{l} P = ((p \rightarrow q) \land \neg r) \lor (\neg (p \rightarrow q) \land \neg \neg r) \text{ (\'equivalence s\'emantique de } \leftrightarrow \text{)} \\ P = ((\neg p \lor q) \land \neg r) \lor (\neg (\neg p \lor q) \land r) \text{ (\'equivalence s\'emantique de } \rightarrow \text{)} \end{array}$$

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

$$\begin{array}{l} P = ((p \rightarrow q) \land \neg r) \lor (\neg (p \rightarrow q) \land \neg \neg r) \text{ (\'equivalence s\'emantique de } \leftrightarrow) \\ P = ((\neg p \lor q) \land \neg r) \lor (\neg (\neg p \lor q) \land r) \text{ (\'equivalence s\'emantique de } \rightarrow) \\ P = ((\neg p \lor q) \land \neg r) \lor ((p \land \neg q) \land r) \text{ (lois de DeMorgan)} \end{array}$$

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

$$P = ((p \to q) \land \neg r) \lor (\neg (p \to q) \land \neg \neg r)$$
 (équivalence sémantique de \leftrightarrow)

$$P = ((\neg p \lor q) \land \neg r) \lor (\neg (\neg p \lor q) \land r) \text{ (\'equivalence s\'emantique de } \to)$$

$$P = ((\neg p \vee q) \wedge \neg r) \vee ((p \wedge \neg q) \wedge r)$$
 (lois de DeMorgan)

$$P = (\neg p \wedge \neg r) \vee (q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \text{ (distributivit\'e et associativit\'e)}$$

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

• Méthode 1 : utilisation de l'algorithme

$$\begin{array}{l} P = ((p \rightarrow q) \land \neg r) \lor (\neg (p \rightarrow q) \land \neg \neg r) \text{ (\'equivalence s\'emantique de } \leftrightarrow) \\ P = ((\neg p \lor q) \land \neg r) \lor (\neg (\neg p \lor q) \land r) \text{ (\'equivalence s\'emantique de } \rightarrow) \\ P = ((\neg p \lor q) \land \neg r) \lor ((p \land \neg q) \land r) \text{ (lois de DeMorgan)} \end{array}$$

 $P = (\neg p \wedge \neg r) \vee (q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \text{ (distributivit\'e et associativit\'e)}$

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

• Méthode 1 : utilisation de l'algorithme

$$P = ((p \to q) \land \neg r) \lor (\neg (p \to q) \land \neg \neg r) \text{ (\'equivalence s\'emantique de } \leftrightarrow \text{)}$$

$$P = ((\neg p \vee q) \wedge \neg r) \vee (\neg (\neg p \vee q) \wedge r) \text{ (\'equivalence s\'emantique de } \rightarrow \text{)}$$

$$P = ((\neg p \vee q) \wedge \neg r) \vee ((p \wedge \neg q) \wedge r)$$
 (lois de DeMorgan)

$$P = (\neg p \wedge \neg r) \vee (q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \text{ (distributivit\'e et associativit\'e)}$$

mother a calmoution as a table as relies							
p	q	r	$p \rightarrow q$	$\neg r$	P		
0	0	0	1	1	1	$\longrightarrow (\neg p \land \neg q \land \neg r) \lor$	
0	0	1	1	0	0		
0	1	0	1	1	1		
0	1	1	1	0	0		
1	0	0	0	1	0		
1	0	1	0	0	1		
1	1	0	1	1	1		
1	1	1	1	0	0		

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

• Méthode 1 : utilisation de l'algorithme

$$P = ((p \to q) \land \neg r) \lor (\neg (p \to q) \land \neg \neg r) \text{ (\'equivalence s\'emantique de } \leftrightarrow \text{)}$$

$$P = ((\neg p \vee q) \wedge \neg r) \vee (\neg (\neg p \vee q) \wedge r)$$
 (équivalence sémantique de \to)

$$P = ((\neg p \vee q) \wedge \neg r) \vee ((p \wedge \neg q) \wedge r) \text{ (lois de DeMorgan)}$$

$$P = (\neg p \wedge \neg r) \vee (q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \text{ (distributivit\'e et associativit\'e)}$$

q	r	$p \rightarrow q$	$\neg r$	P	
0	0	1	1	1	$\longrightarrow (\neg p \land \neg q \land \neg r) \lor$
0	1	1	0	0	
1	0	1	1	1	$\longrightarrow (\neg p \land q \land \neg r) \lor$
1	1	1	0	0	
0	0	0	1	0	
0	1	0	0	1	
1	0	1	1	1	
1	1	1	0	0	
	0 0 1 1 0 0	0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0	0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1	0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1	0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

• Méthode 1 : utilisation de l'algorithme

$$P = ((p \rightarrow q) \land \neg r) \lor (\neg (p \rightarrow q) \land \neg \neg r) \text{ (\'equivalence s\'emantique de } \leftrightarrow)$$

$$P = ((\neg p \lor q) \land \neg r) \lor (\neg (\neg p \lor q) \land r) \text{ (\'equivalence s\'emantique de } \rightarrow)$$

$$P = ((\neg p \lor q) \land \neg r) \lor ((p \land \neg q) \land r) \text{ (lois de DeMorgan)}$$

$$P = (\neg p \wedge \neg r) \vee (q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \text{ (distributivit\'e et associativit\'e)}$$

p	q	r	$p \rightarrow q$	$\neg r$	P	
0	0	0	1	1	1	$\longrightarrow (\neg p \land \neg q \land \neg r) \lor$
0	0	1	1	0	0	
0	1	0	1	1	1	$\longrightarrow (\neg p \land q \land \neg r) \lor$
0	1	1	1	0	0	
1	0	0	0	1	0	
1	0	1	0	0	1	$\longrightarrow (p \land \neg q \land r) \lor$
1	1	0	1	1	1	
1	1	1	1	0	0	

Exemple

Mise sous forme normale de $P = (p \rightarrow q) \leftrightarrow \neg r$

• Méthode 1 : utilisation de l'algorithme

$$P = ((p \to q) \land \neg r) \lor (\neg (p \to q) \land \neg \neg r) \text{ (\'equivalence s\'emantique de } \leftrightarrow \textbf{)}$$

$$P = ((\neg p \vee q) \wedge \neg r) \vee (\neg (\neg p \vee q) \wedge r)$$
 (équivalence sémantique de \to)

$$P = ((\neg p \vee q) \wedge \neg r) \vee ((p \wedge \neg q) \wedge r)$$
 (lois de DeMorgan)

$$P = (\neg p \wedge \neg r) \vee (q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \text{ (distributivit\'e et associativit\'e)}$$

					_	i
p	q	r	$p \to q$	$\neg r$	P	
0	0	0	1	1	1	$\longrightarrow (\neg p \land \neg q \land \neg r) \lor$
0	0	1	1	0	0	
0	1	0	1	1	1	$\longrightarrow (\neg p \land q \land \neg r) \lor$
0	1	1	1	0	0	
1	0	0	0	1	0	
1	0	1	0	0	1	$\longrightarrow (p \land \neg q \land r) \lor$
1	1	0	1	1	1	$\longrightarrow (p \land q \land \neg r)$
1	1	1	1	0	0	

4. Problème SAT - Algorithme de Quine

Définitions

• Un problème de décision sur un ensemble E, est une question sur les éléments de E à laquelle on répond par oui ou non.

Par exemple sur \mathbb{N} , savoir si un entier n est premier ou non est un problème de décision.

- Un problème de décision sur un ensemble E, est une question sur les éléments de E à laquelle on répond par oui ou non.
 - Par exemple sur \mathbb{N} , savoir si un entier n est premier ou non est un problème de décision.
- La théorie de la calculabilité étudie l'existence ou non d'un algorithme capable de répondre à un problème de décision.
 - Par exemple le problème de l'arrêt est indécidable

<u>Dé</u>finitions

- Un problème de décision sur un ensemble E, est une question sur les éléments de E à laquelle on répond par oui ou non.
 - Par exemple sur \mathbb{N} , savoir si un entier n est premier ou non est un problème de décision.
- La théorie de la calculabilité étudie l'existence ou non d'un algorithme capable de répondre à un problème de décision.
 Par exemple le problème de l'arrêt est indécidable
- La théorie de la complexité s'intéresse à la complexité des algorithmes lorsqu'un problème de décision est décidable.

4. Problème SAT - Algorithme de Quine

Problème SAT

Le problème SAT (pour satisfiabilité) est le problème de savoir si une formule logique F définie sur un ensemble de variable logique $V=\{p_1,\dots p_n\}$ est satisfiable ou non.

Algorithme de Quine

Pour tester la satisfiabilité d'une formule logique, on peut construire sa table de vérité ou utiliser l'algorithme de Quine. Soit F une formule contenant les variables logiques $p_1, \ldots p_n$.

- On fixe $\varphi(p_1)=0$ et on teste récursivement la satisfiabilité de F dans laquelle toutes les occurences de p_1 sont remplacées par \bot (notée $F[\bot/p_1]$).
- En cas d'échec, on fixe $\varphi(p_1)=\mathbb{1}$ et on teste récursivement la satisfiabilité de $P[\top/p_1].$
- En cas d'échec la formule n'est pas satisfiable.

4. Problème SAT - Algorithme de Quine

Exemple

Dérouler l'algorithme de Quine sur $F=(p\ \lor q)\land (\lnot q\lor\lnot r)\land (\lnot p\lor r)\land (p\lor r)$

ullet On affecte la valeur ${\mathbb O}$ à p et on teste la satisfiabilité de :

C16 Logique

4. Problème SAT - Algorithme de Quine

Exemple

Dérouler l'algorithme de Quine sur $F=(p\ \lor q) \land (\neg q \lor \neg r) \land (\neg p \lor r) \land (p \lor r)$

• On affecte la valeur $\mathbb O$ à p et on teste la satisfiabilité de : $F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$

Dérouler l'algorithme de Quine sur $F=(p\ \lor q)\land (\lnot q\lor\lnot r)\land (\lnot p\lor r)\land (p\lor r)$

• On affecte la valeur $\mathbb 0$ à p et on teste la satisfiabilité de : $F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$

 $= q \wedge (\neg q \vee \neg r) \wedge \top \wedge r$

4. Problème SAT - Algorithme de Quine

Exemple

Dérouler l'algorithme de Quine sur $F=(p\ \lor q)\land (\lnot q\lor\lnot r)\land (\lnot p\lor r)\land (p\lor r)$

$$\begin{split} F[\bot/p] &= (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r) \\ &= q \land (\neg q \lor \neg r) \land \top \land r \\ &= q \land (\neg q \lor \neg r) \land r \end{split}$$

4. Problème SAT - Algorithme de Quine

Exemple

Dérouler l'algorithme de Quine sur $F=(p\ \lor q) \land (\neg q \lor \neg r) \land (\neg p \lor r) \land (p \lor r)$

 \bullet On affecte la valeur 0 à p et on teste la satisfiabilité de :

$$\begin{split} F[\bot/p] &= (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r) \\ &= q \land (\neg q \lor \neg r) \land \top \land r \\ &= q \land (\neg q \lor \neg r) \land r \end{split}$$

ullet On affecte la valeur ${\mathbb O}$ à q et on teste la satisfiabilité de :

Dérouler l'algorithme de Quine sur $F=(p\ \lor q)\land (\lnot q\lor\lnot r)\land (\lnot p\lor r)\land (p\lor r)$

 \bullet On affecte la valeur $\mathbb 0$ à p et on teste la satisfiabilité de :

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

$$\bot \land (\neg \bot \lor \neg r) \land r$$
 qui est non satisfiable

Dérouler l'algorithme de Quine sur $F=(p\ \lor q) \land (\neg q \lor \neg r) \land (\neg p \lor r) \land (p \lor r)$

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

- ullet On affecte la valeur ullet à q et on teste la satisfiabilité de :
 - $\bot \land (\neg \bot \lor \neg r) \land r$ qui est non satisfiable
- \bullet On affecte la valeur 1 à q et on teste la satisfiabilité de :

Dérouler l'algorithme de Quine sur $F=(p\ \lor q)\land (\lnot q\lor\lnot r)\land (\lnot p\lor r)\land (p\lor r)$

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

- On affecte la valeur $\mathbb 0$ à q et on teste la satisfiabilité de :
 - $\bot \land (\neg \bot \lor \neg r) \land r$ qui est non satisfiable
- On affecte la valeur 1 à q et on teste la satisfiabilité de :
 - $\top \wedge (\neg \top \vee \neg r) \wedge r = \neg r \wedge r$ donc non satisfiable.

Dérouler l'algorithme de Quine sur $F = (p \lor q) \land (\neg q \lor \neg r) \land (\neg p \lor r) \land (p \lor r)$

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

- On affecte la valeur $\mathbb 0$ à q et on teste la satisfiabilité de : $\bot \land (\lnot \bot \lor \lnot r) \land r$ qui est non satisfiable
- On affecte la valeur 1 à q et on teste la satisfiabilité de : $\top \land (\neg \top \lor \neg r) \land r = \neg r \land r$ donc non satisfiable.
- ullet On affecte la valeur 1 à p et on teste la satisfiabilité de :

Dérouler l'algorithme de Quine sur $F=(p\ \lor q)\land (\neg q\lor \neg r)\land (\neg p\lor r)\land (p\lor r)$

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

- On affecte la valeur $\mathbb 0$ à q et on teste la satisfiabilité de : $\bot \land (\neg \bot \lor \neg r) \land r$ qui est non satisfiable
- On affecte la valeur $\mathbb 1$ à q et on teste la satisfiabilité de : $\top \wedge (\neg \top \vee \neg r) \wedge r = \neg r \wedge r$ donc non satisfiable.
- On affecte la valeur 1 à p et on teste la satisfiabilité de : $F[\top/p] = (\top \vee q) \wedge (\neg q \vee \neg r) \wedge (\neg \top \vee r) \wedge (\top \vee r)$

Dérouler l'algorithme de Quine sur $F = (p \lor q) \land (\neg q \lor \neg r) \land (\neg p \lor r) \land (p \lor r)$

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

- On affecte la valeur 0 à q et on teste la satisfiabilité de : $\bot \land (\neg \bot \lor \neg r) \land r$ qui est non satisfiable
- On affecte la valeur $\mathbb 1$ à q et on teste la satisfiabilité de : $\top \wedge (\neg \top \vee \neg r) \wedge r = \neg r \wedge r$ donc non satisfiable.
- On affecte la valeur 1 à p et on teste la satisfiabilité de : $F[\top/p] = (\top \vee q) \wedge (\neg q \vee \neg r) \wedge (\neg \top \vee r) \wedge (\top \vee r)$ $F[\top/p] = (\neg q \vee \neg r) \wedge r$

Dérouler l'algorithme de Quine sur $F = (p \lor q) \land (\neg q \lor \neg r) \land (\neg p \lor r) \land (p \lor r)$

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

- On affecte la valeur $\mathbb 0$ à q et on teste la satisfiabilité de : $\bot \land (\neg \bot \lor \neg r) \land r$ qui est non satisfiable
- On affecte la valeur $\mathbb 1$ à q et on teste la satisfiabilité de : $\top \wedge (\neg \top \vee \neg r) \wedge r = \neg r \wedge r$ donc non satisfiable.
- On affecte la valeur 1 à p et on teste la satisfiabilité de : $F[\top/p] = (\top \vee q) \wedge (\neg q \vee \neg r) \wedge (\neg \top \vee r) \wedge (\top \vee r) \\ F[\top/p] = (\neg q \vee \neg r) \wedge r$
 - ullet On affecte la valeur ullet à q et on teste la satisfiabilité de :

Dérouler l'algorithme de Quine sur $F = (p \lor q) \land (\neg q \lor \neg r) \land (\neg p \lor r) \land (p \lor r)$

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

- On affecte la valeur 0 à q et on teste la satisfiabilité de : $\bot \land (\neg\bot \lor \neg r) \land r$ qui est non satisfiable
- On affecte la valeur $\mathbb 1$ à q et on teste la satisfiabilité de : $\top \wedge (\neg \top \vee \neg r) \wedge r = \neg r \wedge r$ donc non satisfiable.
- On affecte la valeur 1 à p et on teste la satisfiabilité de : $F[\top/p] = (\top \vee q) \wedge (\neg q \vee \neg r) \wedge (\neg \top \vee r) \wedge (\top \vee r) \\ F[\top/p] = (\neg q \vee \neg r) \wedge r$
 - On affecte la valeur $\mathbb 0$ à q et on teste la satisfiabilité de : $(\neg\bot\vee\neg r)\wedge r=r$ qui est satisfiable.

Dérouler l'algorithme de Quine sur $F = (p \lor q) \land (\neg q \lor \neg r) \land (\neg p \lor r) \land (p \lor r)$

 \bullet On affecte la valeur 0 à p et on teste la satisfiabilité de :

$$F[\bot/p] = (\bot \lor q) \land (\neg q \lor \neg r) \land (\neg \bot \lor r) \land (\bot \lor r)$$

$$= q \land (\neg q \lor \neg r) \land \top \land r$$

$$= q \land (\neg q \lor \neg r) \land r$$

- On affecte la valeur 0 à q et on teste la satisfiabilité de :
 ⊥ ∧ (¬⊥ ∨ ¬r) ∧ r qui est non satisfiable
- On affecte la valeur $\mathbb 1$ à q et on teste la satisfiabilité de : $\top \wedge (\neg \top \vee \neg r) \wedge r = \neg r \wedge r$ donc non satisfiable.
- \bullet On affecte la valeur 1 à p et on teste la satisfiabilité de :

$$F[\top/p] = (\top \vee q) \wedge (\neg q \vee \neg r) \wedge (\neg \top \vee r) \wedge (\top \vee r)$$

$$F[\top/p] = (\neg q \vee \neg r) \wedge r$$

• On affecte la valeur 0 à q et on teste la satisfiabilité de : $(\neg \bot \lor \neg r) \land r = r$ qui est satisfiable.

On dispose à la fin d'un valuation φ telle que $[\![P]\!]_{\varphi}=V: \varphi(p)=V, \varphi(q)=F$ et $\varphi(r)=V.$