TRAVAIL PRATIQUE 2 Un bref solutionnaire

IFT-2002 : Informatique théorique H 2014 (Julien Marcil)

Question 1 (20 + 5 points)

Soit $\Sigma = \{0, 1\}.$

- (a) Soit le langage $A = \{xy \mid x, y \in \Sigma^* \text{ et } x = y\}$. Démontrez que A n'est pas un langage hors contexte.
- (b) Soit le langage $B = \{xy \mid x, y \in \Sigma^* \text{ et } |x| = |y| \text{ mais } x \neq y\}$. Démontrez que B est un langage hors contexte.

Solution.

(a) Nous allons utiliser le lemme de pompage pour faire une preuve par contradiction.

DÉMONSTRATION.

Supposons que le langage A soit hors contexte. Alors, soit p la longueur de pompage de A. Soit le mot $w = 0^p 1^p 0^p 1^p$. Clairement $w \in A$ car w = xy pour $x = y = 0^p 1^p$.

Par le lemme de pompage des langages hors contexte, puisque $|w| \ge p$, il existe des mots u, v, x, y, z tels que w = uvxyz, $|vxy| \le p$, |vy| > 0 et pour tout entier $i \ge 0$, $uv^i x y^i z \in L$. Puisque $|vxy| \le p$ alors vxy ne peut être soit :

- 1 un mot composé uniquement de 0
- 2 un mot composé uniquement de 1
- 3 un mot $0^i 1^j$
- 4 un mot 1^j0^i

Pour le cas 1, le mot composé uniquement de 0 est soit pris dans la permière moité, ou la deuxième moité de w. Dans les deux cas, le uv^2xy^2z ne peut contenir le même nombre de 0 au début et à la fin et donc $uv^2xy^2z \notin A$. Le même raisonement s'applique pour le cas 2 avec les 1.

Pour le cas 3, si v contient des 0 alors le uv^2xy^2z ne peut contenir le même nombre de 0 au début et à la fin et donc $uv^2xy^2z\notin A$. De même si y contient des 1. Mais puisque, |vy|>0 alors il n'est pas possible que v et soit v soit vide. Le même raisonement s'applique pour le cas 4.

Il est donc imposible de trouver u, v, x, y, z tels que w = uvxyz qui respectent les conditions de pompages. Donc A n'est pas hors contexte.

Barème: 6 points pour un bon mot w, 7 points pour une bonne utilisation du lemme, 7 points pour la cohérence de la preuve.

(b) Voici un automate à pile qui accepte le langage B.

Voici une grammaire qui génère le langage B.

$$S \to AB \mid BA$$

$$A \to CAC \mid 0$$

$$B \to CBC \mid 1$$

$$C \to 0 \mid 1$$

Barème: 5 points pour un automate à pile ou une grammaire hors contexte qui accepte B.

${\rm Question}\,\,2\,\,(10\,+\,15\,\,{\rm points})$

Soit les machines de Turing $M = (S, \Sigma, \Gamma, S_0, S_{accepte})$ qui ont un seul état accepteur $S_{accepte} \in S$. Le mot produit par une machine M est celui qui se trouve sur son ruban lorsqu'elle atteint l'état $S_{accepte}$, donc lorsqu'elle s'arrête. Les machines M utilisent un ruban unique, s'étendant à l'infini à droite et à gauche.

(a) Trouvez une machine de Turing

$$M_3 = (\{S_0, S_1, S_{accepte}\}, \{a, \sqcup\}, \{a, \sqcup\}, \delta, S_0, S_{accepte})$$

qui, lorsqu'exécutée sur un ruban vide, M_3 produira un mot contenant 4 symboles a. Donnez la séquence des configurations de M_3 pour cette exécution.

(b) Quel est le plus grand nombre de symboles a que vous arrivez à produire avec une machine

$$M_4 = (\{S_0, S_1, S_2, S_{accepte}\}, \{a, \bot\}, \{a, \bot\}, \delta, S_0, S_{accepte})$$

exécutée sur un ruban vide? Exhibez votre machine de Turing M_4 et la séquence des configurations pour son exécution.

Solution.

(a) Voici un diagramme de transitions de la machine M_3 .

Voici la séquence des configurations pour l'éxécution de M_3 sur un ruban vide.

 S_0 ullul

 S_1 $\underline{\sqcup}a_{\sqcup\sqcup\sqcup\sqcup}$

 S_0 $a\underline{a}_{\square\square\square}$

 $S_1 \quad aa_{\underline{\sqcup} \sqcup \sqcup}$

 $S_0 \quad aaa_{\sqcup\sqcup}$

 $S_1 \quad aa\underline{a}a_{\sqcup}$

 S_{acc} $aaa\underline{a}_{\sqcup}$

 ${\bf Barème}: 5$ points pour une bonne machine, 5 points pour la séquence des configurations

(b) Voici un diagramme de transitions de la machine M_4 .

Voici la séquence des configurations pour l'éxécution de M_3 sur un ruban vide.

- S_0 ulu<u>u</u>ulu
- S_1 $\square \square \square a_{\square \square \square}$
- S_0 $\square \square \underline{a} a \square \square$
- S_2 $\square \square \underline{\square} aa_{\square \square}$
- S_1 $\square \underline{\square} aaa\square \square$
- S_0 $\underline{\ }$ aaaa
- $S_1 \quad a\underline{a}aaa_{\sqcup\sqcup}$
- $S_1 \quad aa\underline{a}aa_{\sqcup\sqcup}$
- $S_1 \quad aaa\underline{a}a_{\sqcup\sqcup}$
- $S_1 \quad aaaa\underline{a}_{\sqcup\sqcup}$
- $S_1 \quad aaaaa_{\underline{\sqcup}}$
- $S_0 \quad aaaa\underline{a}a_{\square}$
- S_3 $aaa\underline{a}aa_{\square}$
- S_{acc} $aaaa\underline{a}a_{\square}$

Barème : 6 points pour une bonne machine, 6 points pour la séquence des configurations, 3 points pour une machine optimale $(6 \ a)$.

${\rm Question} \,\, 3 \,\, (10 \,+\, 10 \,+\, 10 \,\, {\rm points})$

Les ensembles d'entiers positifs peuvent être codés facilement pour les programmes RÉPÉTER. L'ensemble d'entiers $S = \{i_1, i_2, \dots, i_t\}$ est codé dans un registre r par la valeur :

$$p_{i_1} \times p_{i_2} \times \cdots \times p_{i_t}$$

où p_{i_j} correspond au i_j -ième nombre premier. Donnez les programmes RÉPÉTER pour les macros suivantes (vous pouvez utiliser n'importe quelles macros définies dans les diapositives du cours) :

- (a) Donnez la macro $CARD(r_1)$ qui retourne dans r_0 la cardinalité de l'ensemble codé par r_1 .
- (b) Donnez la macro $\texttt{AJOUT}(r_1, r_2)$ qui retourne dans r_0 l'ensemble codé dans r_1 auquel on ajoute l'entier rangé dans r_2 .
- (c) Donnez la macro $INTER(r_1, r_2)$ qui retourne dans r_0 l'intersection des ensembles codés par r_1 et r_2 .

Solution.

Nous allons premièrement définir la macro DANS? (r_1, r_2) qui retourne $r_0 = \text{VRAI}$ si l'entier rangé dans r_2 est dans l'ensemble codé dans r_1 . La macro retourne $r_0 = \text{FAUX}$ si l'entier dans r_2 n'est pas dans l'ensemble codé dans r_1 .

```
\mathtt{DANS}?(r_1,r_2)
```

```
\begin{split} r_3 &\leftarrow \texttt{PREMIERK}(r_2) \\ r_4 &\leftarrow \texttt{MOD}(r_1, r_3) \\ r_5 &\leftarrow \texttt{PG?}(1, r_4) \\ \texttt{si} \ r_5 \ \texttt{alors} \ [ \\ r_0 &\leftarrow \texttt{VRAI} \\ ] \end{split}
```

(a) $CARD(r_1)$

```
\begin{array}{c} \texttt{repeter} \; r_1 \; \texttt{fois} \; [\\ & \texttt{inc}(r_2) \\ & r_3 \leftarrow \texttt{DANS}?(r_1, r_2) \\ & \texttt{si} \; r_3 \; \texttt{alors} \; [\\ & & \texttt{inc}(r_0) \\ & \end{bmatrix}
```

```
(b) AJOUT(r_1, r_2)
                      r_0 \leftarrow r_1
                      r_3 \leftarrow \mathtt{DANS}?(r_1, r_2)
                      r_3 \leftarrow \mathtt{NEG}(r_3)
                      si r_3 alors [
                         r_4 \leftarrow \mathtt{PREMIERK}(r_2)
                        r_0 \leftarrow \texttt{MULT}(r_1, r_4)
(c) INTER(r_1, r_2)
                     r_0 \leftarrow 1
                      r_3 \leftarrow \texttt{PG}?(r_1, r_2)
                      si r_3 alors [
                         r_4 \leftarrow r_2
                      r_3 \leftarrow \texttt{NEG}(r_3)
                      si r_3 alors [
                         r_4 \leftarrow r_1
                      repeter r_4 fois [
                          inc(r_5)
                          r_6 \leftarrow \mathtt{DANS}?(r_1, r_5)
                          r_7 \leftarrow \mathtt{DANS}?(r_2, r_5)
                          r_8 \leftarrow \text{ET}(r_6, r_7)
                          \mathtt{si}\ r_8\ \mathtt{alors}\ [
                             r_0 \leftarrow \texttt{AJOUT}(r_0, r_5)
```

Barème : 5 points pour la bonne approche, 5 points pour le bon programme RÉPÉTER.

Question 4 (10 + 10 points)

- (a) Soit $S_a = \{ \langle M \rangle \mid M \text{ est un AFD}^1 \text{ tel que } M \text{ accepte } w^{\mathcal{R}} \text{ si } M \text{ accepte } w \}$. Montez que S_a est un langage décidable.
- (b) Soit $S_b = \{\langle M_1, M_2 \rangle \mid M_1 \text{ et } M_2 \text{ sont des AFD}^1 \text{ tels que } L(M_1) \subseteq L(M_2) \}$. Montez que S_b est un langage décidable.

Solution.

(a) $S_a \leq_m EQ_{AFD}$

Pour un langage L, nous définissons $L^{\mathcal{R}} = \{w^{\mathcal{R}} \mid w \in L\}$. Nous avons démontrez dans l'examen intra que si L est un langage régulier, alors $L^{\mathcal{R}}$ est régulier aussi. Nous savons également comment construire un automate fini déterminste $M^{\mathcal{R}}$ qui accepte $L^{\mathcal{R}}$ étant donné un automate fini détermiste M qui accepte L.

$$\langle M \rangle \in S_a \implies \forall_{w \in \Sigma^*} \ w \in L(M) \Rightarrow w^{\mathcal{R}} \in L(M)$$

$$\implies L(M) \subseteq L(M)^{\mathcal{R}}$$

$$\implies L(M) \subseteq L(M^{\mathcal{R}})$$

et aussi

$$\langle M \rangle \in S_a \implies \forall_{w \in \Sigma^*} \ w^{\mathcal{R}} \in L(M) \Rightarrow (w^{\mathcal{R}})^{\mathcal{R}} \in L(M)$$

 $\implies \forall_{w \in \Sigma^*} \ w^{\mathcal{R}} \in L(M) \Rightarrow w \in L(M)$
 $\implies L(M)^{\mathcal{R}} \subseteq L(M)$
 $\implies L(M^{\mathcal{R}}) \subseteq L(M)$

Donc

$$\langle M \rangle \in S_a \iff L(M) = L(M^{\mathcal{R}})$$

Pour la réduction $S_a \leq_m EQ_{AFD}$ il nous faut donc un fonction f tel que

$$f: S_a \to EQ_{AFD}$$

 $\langle M \rangle \mapsto \langle M, M^{\mathcal{R}} \rangle$

avec commme propriété

$$\langle M \rangle \in S_a \iff \langle M, M^{\mathcal{R}} \rangle \in EQ_{AFD}$$

 $\iff L(M) = L(M^{\mathcal{R}})$
 $\iff \langle M, M^{\mathcal{R}} \rangle \in EQ_{AFD}$

^{1.} automate fini déterministe

(b) $S_b \leq_m EQ_{AFD}$

Premièrement, remarquons que

$$\langle M_1, M_2 \rangle \in S_b \iff L(M_1) \subseteq L(M_2)$$

 $\iff L(M_1) \cap L(M_2) = L(M_1)$

De plus, nous savons constuire M_i tel que $L(M_i) = L(M_1) \cap L(M_2)$ Pour la réduction $S_b \leq_m EQ_{AFD}$ il nous faut donc un fonction f tel que

$$f: S_b \to EQ_{AFD}$$

 $\langle M_1, M_2 \rangle \mapsto \langle M_1, M_i \rangle$

avec commme propriété

$$\langle M \rangle \in S_b \iff L(M_1) \subseteq L(M_2)$$

 $\iff L(M_1) \cap L(M_2) = L(M_1)$
 $\iff L(M_i) = L(M_1)$
 $\iff \langle M_1, M_i \rangle \in EQ_{AFD}$

 ${\bf Bar\`eme}: 5$ points pour la démonstration.