Reproducing

Neural ODE Processes

Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, Pietro Liò (to appear in ICLR 2021)

Visualizing model predictions

extra target points

Learning latent dynamics

Do context points suffice to represent different dynamics?

Train on: $t \rightarrow A \sin(wt)$ where 0.3 < w < 2.0. Test on: $t \rightarrow A \sin(wt)$ where w = 1.0, 1.5, 2.0.

Left: PCA (k=2) illustrates μ_z of **test time series context points**, with clear separation. Different colors have different latent dynamics (oscillator frequency).

Right: In latent space, we can interpolate between w = 1 and w = 2. Note the continuous transformation of the mean decoding.

Adaptation to noise level

Does the learned $q(z \mid C)$ represent noise in the training data?

- : noisy context points

Train/test on: $t \rightarrow \sin(wt) + \sigma dB(t)$, where w = 2. Deterministic dynamics, noisy samples.

Left: $\sigma = 0.1$. **Right:** $\sigma = 0.2$.

Note that the estimated and true uncertainty levels are close.

Summary

Architecture

- NDP = NODE + NP
- Handles irregular sampling (alternative to binning).
- Captures distribution over dynamics & uncertainty.
- Scales to **high-dimensional data**.

Key references

- ¹ Casale et al. Gaussian Process Prior Variational Autoencoders. NeurIPS (2018)
- ² Garnelo *et al. Neural Processes*. ICML workshop (2018)
- ³ Chen et al. Neural Ordinary Differential Equations. NeurlPS (2018)
- ⁴ Le et al. Empirical Evaluation of NP Objectives. NeurlPS workshop (2018)

Poster by: Théophile Cantelobre Matthias Crémieux Alexandre Thomas