

What is claimed is:

1. An apparatus for use in a wellbore, comprising:
2 an element formed of a superplastic material to perform a predetermined
3 downhole task.

1 2. The apparatus of claim 1, further comprising a component including a seal
2 engageable with the element.

1 2. The apparatus of claim 1, further comprising a component including an
2 anchor actuatable by the element.

1 2. The apparatus of claim 1, wherein the element is selected from the group
2 consisting of a casing, a liner, a tubing, and a pipe.

1 5. The apparatus of claim 1, wherein the element includes a sand screen.

1 6. The apparatus of claim 1, further comprising a shock absorber including
2 the element.

1 7. The apparatus of claim 1, further comprising a releasable connector
2 mechanism including the element.

1 8. The apparatus of claim 1, further comprising an explosive component
2 including the element.

1 9. The apparatus of claim 8, wherein the explosive component includes a
2 shaped charge.

1 10. The apparatus of claim 1, further comprising a weak point connector
2 including the element.

1 11. The apparatus of claim 1, further comprising a heating device to heat the
2 element to a temperature sufficient to cause the element to exhibit superplastic behavior.

1 12. An apparatus comprising:
2 a flowable element; and
3 a deformable element adapted to be expanded by flowing the flowable
4 element.

1 13. The apparatus of claim 12, wherein the flowable element includes a
2 eutectic material.

1 14. The apparatus of claim 12, wherein the flowable element is selected from
2 the group consisting of a eutectic material, a fusible alloy, a blocking alloy, solder, and a
3 material containing bismuth.

1 15. The apparatus of claim 12, wherein the flowable element contains
2 bismuth.

1 16. The apparatus of claim 15, wherein the flowable element includes a
2 bismuth alloy.

1 17. The apparatus of claim 12, wherein the deformable element includes a
2 sleeve.

1 18. The apparatus of claim 12, wherein the deformable element includes a
2 superplastic material.

1 19. The apparatus of claim 18, wherein the flowable element melts at a
2 temperature close to a temperature at which the superplastic material exhibits superplastic
3 behavior.

1 20. The apparatus of claim 12, further comprising a sealing element, wherein
2 the deformable element is adapted to translate the sealing element into engagement with a
3 downhole structure.

1 21. The apparatus of claim 20, comprising a plug.

1 22. The apparatus of claim 20, comprising a packer.

1 23. The apparatus of claim 20, comprising a patch.

1 24. The apparatus of claim 12, further comprising an anchor element, wherein
2 the deformable element is adapted to translate the anchor element into engagement with
3 another structure.

1 25. A method of installing a tubular structure into a wellbore, comprising:
2 running the tubular structure having a reduced diameter into the wellbore;
3 activating a heating element to heat at least a portion of the tubular
4 structure to enable the tubular structure to exhibit a highly deformable characteristic
5 while maintaining structural integrity; and
6 expanding the diameter of the tubular structure.

1 26. A method of performing a task in a wellbore, comprising:
2 heating an element to a temperature such that the element exhibits
3 superplastic behavior; and
4 deforming the element.

Add B3