Лабораторная работа № **14**

Имитационное моделирование

Королёв Иван Андреевич

Содержание

1	Цель работы	5							
2	Задание	6							
3	Теоретическое введение	7							
4	 Выполнение лабораторной работы 4.1 Построение модели оформления заказов клиентов одним оператором 4.2 Построение модели обслуживания двух типов заказов от клиентов в интернет-магазине	14							
5	Выводы	23							
Сп	писок литературы 2								

Список иллюстраций

4.1	Модель оформления заказов клиентов одним оператором	9
4.2	Отчёт по модели оформления заказов в интернет-магазине	10
4.3	Измененная модель оформления заказов клиентов одним оператором	11
4.4	Построение гистограммы распределения заявок в очереди	12
4.5	Гистограмма распределения заявок в очереди	12
4.6	Отчёт по модели оформления заказов в интернет-магазине при по-	
	строении гистограммы распределения заявок в очереди	13
4.7	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	15
4.8	Отчёт по модели оформления заказов двух типов	16
4.9	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от общего	
	числа заказов	17
4.10	Отчёт по модели оформления заказов двух типов заказов	18
4.11	Модель оформления заказов несколькими операторами	19
4.12	Отчет по модели оформления заказов несколькими операторами .	20
4.13	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	21
4.14	Отчет по модели оформления заказов несколькими операторами с	
	учетом отказов клиентов	22

Список таблиц

1 Цель работы

Реализовать модели обработки заказов в gpss world.

2 Задание

- Построение модели оформления заказов клиентов одним оператором
- Построение модели обслуживания двух типов заказов от клиентов в интернет-магазине
- Построение модели оформления заказов несколькими операторами

3 Теоретическое введение

gpss - язык моделирования, используемый для имитационного моделирования различных систем, в основном систем массового обслуживания

4 Выполнение лабораторной работы

4.1 Построение модели оформления заказов клиентов одним оператором

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) — ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегатог_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегатог — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. 4.1).

Рис. 4.1: Модель оформления заказов клиентов одним оператором

На выходе работы программы получаем отчёт. (рис. 4.2).

Untitled N	/lodel 1.1.1	- REPORT								
GPSS World			Simulati	ion Repo	ort - Unt	itled	Model 1	1.1.1		
			day, May							
		0.000	I	END TIME 480.000	BLOCKS	FAC	ILITIES 1	STORA 0	GES	
	1	IAME			VALUE					
	OPERA	TOR Q		10	0001.000					
	OPERA	TOK_0		10	000.000					
LABEL		LOC	BLOCK TY	/PE	ENTRY CO	UNT C	URRENT O	COUNT R	ETRY	
		1	GENERATE	2	32		0)	0	
		2	QUEUE		32)	0	
		3	SEIZE		32		0)	0	
		4	DEPART		32		()	0	
			ADVANCE		32		1	L O	0	
		_	RELEASE		31					
			TERMINAT	Œ	31)		
			GENERATE		1		0)	0	
		9	TERMINAT	ΓE	1		()	0	
PACTITES	,	ENTRIES	UTII	מיניה	TME 3373.T	T 0181	MED DEMI	TNTED	DETDV	DELYA
OPERATO		32								
0121011		02	0.005							
QUEUE		MAX CO	ONT. ENTE	RY ENTRY	(0) AVE.	CONT.	AVE.TIM	IE AV	E.(-0)	RETRY
OPERATO	OR_Q	1	0 3	32 3	31 0.	001	0.02	21	0.671	0
FEC XN	PRI	BDT					ARAMETER	R VA	LUE	
33	0	489.	786 3	33	5 6					
34	0	496.0	081 3 000 3	34	0 1					

Рис. 4.2: Отчёт по модели оформления заказов в интернет-магазине

Упражнение.

Меняю интервалы поступления заказов и время оформления заказов клиентов (рис. 4.3).

; operator GENERATE 3.14,1.7 QUEUE operator_q SEIZE operator DEPART operator_q ADVANCE 6.66,1.7 RELEASE operator TERMINATE 0 ; timer GENERATE 480 TERMINATE 1

Рис. 4.3: Измененная модель оформления заказов клиентов одним оператором

START 1

На выходе работы программы получаем отчёт. В результате работы модельное время в начале моделирования: START TIME=0.0, момент, когда счетчик завершений принял значение 0: END TIME=480.0, количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9, количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1, количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Гистограмма Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name — метка, определяющая имя таблицы. Далее

должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. 4.4).

Рис. 4.4: Построение гистограммы распределения заявок в очереди

Гистограмма. (рис. 4.5).

Рис. 4.5: Гистограмма распределения заявок в очереди

Отчет. 4.6).

START	TIME 0.000		BLOCKS 10	FACILITIES	STORAGES 0
N/ CUSTN FIN OPERAT OPERAT WAITT	ror ror o	10	VALUE 0002.000 10.000 0003.000 0001.000		
LABEL	1 GENE 2 TEST 3 SAVE	CRATE CVALUE CON JE LE	ENTRY COUR 102 102 55 55 55 54 53 53	NT CURRENT CC 0 0 0 0 1 1 1 0	0 0 0 0 0 0
FIN	10 TERM		100	0	o o
FACILITY OPERATOR	ENTRIES UTI				INTER RETRY DELAY
QUEUE OPERATOR_Q	MAX CONT. 2 2	ENTRY ENTRY 55	(0) AVE.CO	ONT. AVE.TIM 52 10.628	E AVE.(-0) RETRY 10.824 0
TABLE WAITTIME	MEAN ST 10.709 2	0.000 2.000 4.000 8.000 10.000 12.000		0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000	1 1.89 0 1.89 1 3.77 0 3.77 4 11.32 12 33.96 17 66.04 14 92.45 4 100.00
SAVEVALUE CUSTNUM	RETRY				
CEC XN PRI 98 0	M1 341.236		RENT NEXT	T PARAMETER CUSTNUM	
FEC XN PRI 103 0	BDT 356.553		RENT NEXT	r parameter	VALUE

Рис. 4.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

Проанализируем гистограмму и отчёт. На выходе работы программы получаем отчёт. В результате работы модельное время в начале моделирования: START TIME=0.0, момент, когда счетчик завершений принял значение 0: END TIME=353.895, количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10, количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1, количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в

0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

4.2 Построение модели обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй — заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE—DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE—RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. 4.7, 4.8).

Model 3.gps

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator_q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.7: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

Satur	day, May 10, 202	5 14:27:40		
START TIME	END TIME	BLOCKS F	ACTITIES ST	ODAGES
0.000	480.000	17	1	0
NAME	10	VALUE		
OPERATOR	10	001.000		
OPERATOR_Q	10	000.000		
LABEL LOC	BLOCK TYPE	ENTRY COUNT	CURRENT COUN	T RETRY
1	GENERATE QUEUE	32	0	0
2	QUEUE		4	0
3	SEIZE	28	0	0
4	DEPART	28	0	0
	ADVANCE		1	0
	RELEASE	27	0	0
	TERMINATE	27	0	0
	GENERATE	15 15	0	0
	QUEUE	15	3	0
	SEIZE	12	0	0
	DEPART	12	0	0
	ADVANCE		0	0
	ADVANCE	12	0	0
	RELEASE	12		
15	TERMINATE	12	0	0
I .	GENERATE	1		
17	TERMINATE	1	0	0
FACILITY ENTRIES				
OPERATOR 40	0.947 11	.365 1	42 0	0 0 7
OTTETTE MAY C	OMT FMTDV FMTDV	(O) AVE CON	T AVE TIME	AVE (=0) DETDY
QUEUE MAX C OPERATOR_Q 8	ONI. ENIKI ENIKI	(U) AVE.COM	24 261	2E 704 0
OPERATOR_V	, 4,	2 0.000	34.201	55.764 0
FEC XN PRI BDT			PARAMETER	VALUE
42 0 487. 50 0 493.	825 42 164 50	5 6		
50 0 493.	164 50	0 1		
49 0 499. 51 0 960.	562 49 000 51	0 16		
31 0 960.	000 81	0 16		

Рис. 4.8: Отчёт по модели оформления заказов двух типов

Упражнение.

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. 4.9).

Model 1_ex.gps

;operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1

Рис. 4.9: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем отчёт. На выходе работы программы получаем отчёт. В результате работы модельное время в начале моделирования: START TIME=0.0, момент, когда счетчик завершений принял значение 0: END TIME=480.0, количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11, количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1, количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. (рис. 4.10).

G	PSS World Sim	ulation Re	port - 1	fodel :	3_ex.1.1		
	Saturday,	May 10, 2	025 14:3	32:58			
	T TIME						
	0.000	480.0	00 11	L	1	0	
N.	AME		VALUE				
EXTRA			7.00				
	RA		8.00				
OPERA:	TOR TOR_Q		10001.00	_			
OPERA'	TOR_Q		10000.00	00			
LABEL	LOC BLO	CK TVDE	FNTDV	COUNT	CHIDDENT C	OUNT DETDY	
	1 GEN	ERATE		33			
	2 QUE	ERATE UE	3	33	0	0	
	3 SEI	ZE ART ANCE	3	33	0	0	
	4 DEP	ART	3	33	0	0	
	5 ADV	ANCE	3	33	0	0	
	6 TRA	NSFER	3	33	0	0	
EXTRA	7 ADV	ANCE		8	1	0	
NOEXTRA	8 REL	EASE	3	32	0	0	
	9 TER 10 GEN	MINATE	3	1	0	0	
				1			
	11 TER	MINATE		1	0	0	
FACILITY OPERATOR	ENTRIES UT	IL. AVE.	TIME AV	AIL.	OWNER PEND	INTER RETRY	DELAY
OPERATOR	33 0	.766	11.146	1	34 0	0 0	0
QUEUE OPERATOR_Q	MAX CONT.	ENTRY ENT	RY(0) AV	E.CON	T. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR_Q	1 0	33	25	0.054	0.78	1 3.220	0 0
FEC XN PRI	BDT	ASSEM C	URRENT	NEXT	PARAMETER	VALUE	
FEC XN PRI 34 0	482.925	34	7	8			
35 0	487.726	35	0	1			
36 0	487.726 960.000	36	0	10			
I							

Рис. 4.10: Отчёт по модели оформления заказов двух типов заказов

4.3 Построение модели оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем

к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. 4.11).

Рис. 4.11: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. 4.12).

	Saturday, May 10, 2025 14:34:10	
	TIME END TIME BLOCKS FACILITIES STORAGES	
	TE VALUE OR 10000.000 OR_Q 10001.000	
LABEL	LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GEMERATE 93 0 0 2 QUEUE 93 0 0 3 ENTER 93 0 0 4 DEPART 93 0 0 5 ADVANCE 93 2 0 6 LEAVE 91 0 0 7 TERMINATE 91 0 0 8 GENERATE 1 0 0 9 TERMINATE 1 0 0	
QUEUE OPERATOR_Q	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RE. 1 0 93 93 0.000 0.000 0.000	TRY 0
STORAGE OPERATOR	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELL 4 2 0 4 93 1 1.926 0.482 0 0	
FEC XN PRI 95 0 93 0 94 0 96 0	BDT ASSEM CURRENT NEXT PARAMETER VALUE 480.457 95 0 1 482.805 93 5 6 483.473 94 5 6 960.000 96 0 8	

Рис. 4.12: Отчет по модели оформления заказов несколькими операторами

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$ орегаtor_q, 2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. 4.13).

```
operator STORAGE 4
GENERATE 5,2
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator_l
DEPART operator_q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.13: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем отчёт. На выходе работы программы получаем отчёт. В результате работы модельное время в начале моделирования: START TIME=0.0, момент, когда счетчик завершений принял значение 0: END TIME=480.0, количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9, количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1, количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. (рис. ~ 4.14).

	Saturday, May 10, 2025 14:35:48
START 1	TIME END TIME BLOCKS FACILITIES STORAGES
0.	.000 480.000 10 0 1
NAM	E VALUE
OPERATO	R 10000.000
OPERATO	R Q 10001.000
LABEL	LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
	1 GENERATE 94 27 0 2 TEST 67 0 0
	2 TEST 67 0 0 3 QUEUE 67 3 0
	4 ENTER 64 0 0
	5 DEPART 64 0 0
	6 ADVANCE 64 4 0
	7 LEAVE 60 0 0
	8 TERMINATE 60 0 0
	9 GENERATE 1 0 0
	10 TERMINATE 1 0 0
OUTTIE	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
QUEUE OPERATOR_Q	3 3 67 4 2.701 19.347 20.576 27
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
OPERATOR	4 0 0 4 64 1 3.885 0.971 0 3
FFC XN PRT	BDT ASSEM CURRENT NEXT PARAMETER VALUE
	480.736 96 0 1
	491.784 62 6 7
	491.929 63 6 7
64 0 65 0	495.070 64 6 7
	499.648 65 6 7
97 0	960.000 97 0 9

Рис. 4.14: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

5 Выводы

Реализовал модели обработки заказов в gpss world.

Список литературы