DETAILED ACTION

This application is a 371 of PCT/US04/31224.

Continued Examination Under 37 CFR 1.114

A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on January 5, 2010 has been entered.

Claims 1-5, 8-12, 14-15, 42-46 and 49 are pending. Claims 44-46 are withdrawn.

Claims 1-5, 8-12, 14-15, 42-43 and 49 are under consideration.

Information Disclosure Statement

The information disclosure statement (IDS) submitted on December 14, 2010 is in compliance with the provisions of 37 CFR 1.97. Accordingly, the information disclosure statement is being considered by the examiner.

Response to Arguments

Applicant's amendment and arguments filed on January 5, 2010, have been fully considered and are deemed to be persuasive to overcome some of the rejections

Art Unit: 1652

previously applied. Rejections and/or objections not reiterated from previous office actions are hereby withdrawn.

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Claims 1-3, 8-12, 14-15, 42-43, and 49 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

Claims 1-3, 8-12, 14-15, 42-43, and 49 are drawn to a method of reducing the incorporation of non-standard amino acids into a heterologous protein in a microorganism by co-expressing in said microorganism said heterologous protein and a (A) a non-standard amino acid degrading protein glutamate dehydrogenase, or (B) an *E. coli* glutamate dehydrogenase with a leucine at the amino acid position that corresponds with amino acid 92 of a wild type glutamate dehydrogenase. It is noted that MPEP 2111.01 states that "[d]uring examination, the claims must be interpreted as broadly as their terms reasonably allow." In this case, regarding claims 3-4, the *E. coli* glutamate dehydrogenase with a leucine at the amino acid position that corresponds

Art Unit: 1652

with amino acid 92 of a wild type glutamate dehydrogenase is not limited to only the substitution at position 92 since the phrase "with a leucine at the amino..." does not create a presumption that the body of the claim is closed (See MPEP 2111.03).

Therefore, while the variant glutamate dehydrogenase comprises the recited substitution, the same variant glutamate dehydrogenase can comprise any amino acids in any other positions. Therefore, the claims are encompass a method of using (A) any or all glutamate dehydrogenases, isolated from any or all source, including any or all mutants, recombinants and variants thereof or (B) any or all variants of a glutamate dehydrogenase from E. colil comprising a leucine residue at position 92 and any other amino acids at any other position. Therefore, the claims are drawn to a method of using a genus of glutamate dehydrogenase having non-standard amino acid degrading activity, but having unknown structure.

In University of Calfornia v. Eli Lilly & Co., 43 USPQZd 1938, the Court of Appeals for the Federal Circuit has held that "A written description of an invention involving a chemical genus, like a description of a chemical species, 'requires a precise definition, such as by structure, formula, (or) chemical name,' of the claimed subject matter sufficient to distinguish it from other materials". As indicated in MPEP 2163, the written description requirement for a claimed genus may be satisfied through sufficient description of a representative number of species by actual reduction to practice, reduction to drawings, or by disclosure of relevant, identifying characteristics, i.e., structure or other physical and/or chemical properties, by functional characteristics coupled with a known or disclosed correlation between function and structure, or by a

combination of such identifying characteristics, sufficient to show that Applicant was in possession of the claimed genus. In addition, MPEP 2163 states that a representative number of species means that the species which are adequately described are representative of the entire genus. Thus, when there is substantial variation within the genus, one must describe a sufficient variety of species to reflect the variation within the genus.

The recitation of "non-standard amino acid degrading" and "glutamate dehydrogenase" fails to provide a sufficient description of the claimed genus of proteins as it merely describes the functional features of the genus without providing any definition of the structural features of the species within the genus. The CAFC in UC California v. Eli Lilly, (43 USPQ2d 1398) stated that: "in claims to genetic material, however a generic statement such as 'vertebrate insulin cDNA' or 'mammalian insulin cDNA,' without more, is not an adequate written description of the genus because it does not distinguish the claimed genus from others, except by function. It does not specifically define any of the genes that fall within its definition. It does not define any structural features commonly possessed by members of the genus that distinguish them from others. One skilled in the art therefore cannot, as one can do with a fully described genus, visualize or recognize the identity of the members of the genus." Similarly with the claimed genus of "non-standard amino acid degrading" and "glutamate dehydrogenase" proteins, the functional definition of the genus does not provide any structural information commonly possessed by members of the genus which distinguish

the protein species within the genus from other proteins such that one can visualize or recognize the identity of the members of the genus.

Therefore, in the instant case, the claim is drawn to a method of using a genus of alutamate dehydrogenase having non-standard amino acid degrading activity, but having unknown structure. The specification only describes a method of reducing the incorporation of non-standard amino acids of a heterologous polypeptide produced by a microorganism by transforming into said microorganism a vector comprising said heterologous polypeptide and the mutant glutamate dehydrogenase of SEQ ID NO:2 or 4 (mutant of the wild type E. coli alutamate dehydrogenase of SEQ ID NO:2, wherein said mutant consists of the K92L substitution) and said mutant has norleucine degrading activity. While MPEP 2163 acknowledges that in certain situations "one species adequately supports a genus," it also acknowledges that "[f]or inventions in an unpredictable art, adequate written description of a genus which embraces widely variant species cannot be achieved by disclosing only one species within the genus." In view of the widely variant species encompassed by the genus, this one example is not enough and does not constitute a representative number of species to describe the whole genus of any or all variants, recombinant and mutants of any or all glutamate dehydrogenases having non-standard amino acid degrading activity, including any or all variants, recombinants and mutants thereof, and there is no evidence on the record of the relationship between the structure of the mutant glutamate dehydrogenase having norleucine degrading activity of SEQ ID NO:2 or 4 and the structure of any or all recombinant, variant and mutant of any or all alutamate dehydrogenases having non-

Art Unit: 1652

standard amino acid degrading activity. Therefore, the specification fails to describe a representative species of the genus comprising any or all glutamate dehydrogenases having non-standard amino acid degrading activity, including any or all variants, recombinants and mutants thereof.

Given this lack of additional representative species as encompassed by the claims, applicants have failed to sufficiently describe the claimed invention in such full, clear, concise, and exact terms that a skilled artisan would recognize applicants were in possession of the claimed invention.

Applicant is referred to the revised guidelines concerning compliance with the written description requirement of U.S.C. 112, first paragraph, published in the Official Gazette and also available at www.uspto.gov.

In response to the previous Office Action, applicants have traversed the above rejection. Applicants should note that the rejection has been amended in light of the amendment of the claims.

Applicants argue that the claims meet the written description requirement because (1) claim 3 has been amended to delete the phrase "having" and (2) NSAADP enzymes are disclosed in the specification and well known in the art. Examiner respectfully disagrees. (1) The phrase "with a leucine at the amino.." does not create a presumption that the body of the claim is closed (See MPEP 2111.03). (2) While the NSAADP enzymes recited in claim 1 is known in the art, a method of using said enzymes for reducing the incorporation of norleucine in a heterologous protein expressed in a microorganism is not known. Other the specific enzymes listed in Table

Art Unit: 1652

5 on page 36 of the specification, the specification does not disclose which enzymes from the wide genus of glutamate dehydrogenase (and those recited in claim 1 which are currently withdrawn) are able to reduce incorporation of norleucine in polypeptides or which have norleucine degrading activity. Applicants on page 9 of the Remarks filed on January 5, 2010 state that "it was surprising that wild type *E. coli* GDH had norleucine-degrading activity". Therefore, at the time the invention was filed, other than wild type *E. coli* GDH and the mutant GDH having the amino acid sequence of SEQ ID NO:4, neither art nor the specification describes a method of reducing the incorporation of norleucine in a heterologous polypeptide by expressing said heterologous polypeptide and a GDH having norleucine degrading activity.

Therefore, the specification lacks description of a representative number of species to describe the whole genus. As discussed in the written description guidelines, the written description requirement for a claimed genus may be satisfied through sufficient description of a representative number of species by actual reduction to practice, reduction to drawings, or by disclosure of relevant, identifying characteristics, i.e., structure or other physical and/or chemical properties, by functional characteristics coupled with a known or disclosed correlation between function and structure, or by a combination of such identifying characteristics, sufficient to show the applicant was in possession of the claimed genus. A representative number of species means that the species which are adequately described are representative of the entire genus. Thus, when there is substantial variation within the genus, one must describe a sufficient variety of species to reflect the variation within the genus. Satisfactory disclosure of a

representative number depends on whether one of skill in the art would recognize that the applicant was in possession of the necessary common attributes or features of the elements possessed by the members of the genus in view of the species disclosed. For inventions in an unpredictable art, adequate written description of a genus which embraces widely variant species cannot be achieved by disclosing only a few species within the genus. In the instant case the claimed genera of the claims includes species which are widely variant in structure. The claims are drawn to structurally diverse species as it encompasses glutamate dehydrogenase having unknown structure. As such, the description of solely functional features present in all members of the genus is insufficient to be representative of the attributes and features of the entire genus.

Hence the rejection is maintained.

Claims 1-3, 8-12, 14-15, 42-43, and 49 are rejected under 35 U.S.C. 112, first paragraph, because the specification, while being enabling for a method of reducing the incorporation of non-standard amino acids of a heterologous polypeptide produced by a microorganism by transforming into said microorganism a vector comprising said heterologous polypeptide and the glutamate dehydrogenase of SEQ ID NO:2 or 4, does not reasonably provide enablement for a method of using any or all polypeptides having non-standard amino acid degrading activity, but having unknown structure The specification does not enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the invention commensurate in scope with these claims.

Art Unit: 1652

Factors to be considered in determining whether undue experimentation is required are summarized in In re Wands 858 F.2d 731, 8 USPQ2nd 1400 (Fed. Cir., 1988). They include (1) the quantity of experimentation necessary, (2) the amount of direction or guidance presented, (3) the presence or absence of working examples, (4) the nature of the invention, (5) the state of the prior art, (6) the relative skill of those in the art, (7) the predictability or unpredictability of the art, and (8) the breadth of the claims.

Claims 1-3, 8-12, 14-15, 42-43, and 49 are drawn to a method of reducing the incorporation of non-standard amino acids into a heterologous protein in a microorganism by co-expressing in said microorganism said heterologous protein and a (A) a non-standard amino acid degrading protein glutamate dehydrogenase, or (B) an *E. coli* glutamate dehydrogenase with a leucine at the amino acid position that corresponds with amino acid 92 of a wild type glutamate dehydrogenase.

The breadth of the claims.

It is noted that MPEP 2111.01 states that "[d]uring examination, the claims must be interpreted as broadly as their terms reasonably allow." In this case, regarding claims 3-4, the *E. coli* glutamate dehydrogenase with a leucine at the amino acid position that corresponds with amino acid 92 of a wild type glutamate dehydrogenase is not limited to only the substitution at position 92 since the phrase "with a leucine at the amino.." does not create a presumption that the body of the claim is closed (See MPEP 2111.03). Therefore, while the variant glutamate dehydrogenase comprises the recited substitution, the same variant glutamate dehydrogenase can comprise any amino acids

Art Unit: 1652

in any other positions. Therefore, the claims are encompass a method of using (A) any or all glutamate dehydrogenases, isolated from any or all source, including any or all mutants, recombinants and variants thereof or (B) any or all variants of a glutamate dehydrogenase from *E. coli* comprising a leucine residue at position 92 and any other amino acids at any other position. Therefore, the claims are drawn to a method of using glutamate dehydrogenase having non-standard amino acid degrading activity, but having unknown structure. Therefore, the breadth of these claims is much larger than the scope enabled by the specification.

The scope of the claim is not commensurate with the enablement provided by the disclosure with regard to the extremely large number of a method of using any or all polypeptides having non-standard amino acid degrading activity, but having unknown structure. In the instant case, the specification enables only a method of reducing the incorporation of non-standard amino acids of a heterologous polypeptide produced by a microorganism by transforming into said microorganism a vector comprising said heterologous polypeptide and the glutamate dehydrogenase of SEQ ID NO:2 or 4.

The state of prior art, the relative skill of those in the art, and predictability or unpredictability of the art.

Since the amino acid sequence of the protein determines its structural and functional properties, predictability of which changes can be tolerated in a protein's amino acid sequence and obtain the desired activity requires a knowledge of and guidance with regard to which amino acids in the protein's sequence, if any, are tolerant of modification and which are conserved (i.e. expectedly intolerant to modification), and

Art Unit: 1652

detailed knowledge of the ways in which the proteins' structure relates to its function. In addition, the art does not provide any teaching or guidance as to (1) which amino acids within a glutamate dehydrogenase can be modified and which ones are conserved such that one of skill in the art can make the recited polypeptides having norleucine degrading activity, (2) which segments of SEQ ID NO:2 or 4 are essential for activity. and (3) the general tolerance of glutamate dehydrogenase to structural modifications and the extent of such tolerance. The art clearly teaches that changes in a protein's amino acid sequence to obtain the desired activity without any guidance/knowledge as to which amino acids in a protein are required for that activity is highly unpredictable. At the time of the invention, there was a high level of unpredictability associated with altering a polypeptide sequence with an expectation that the polypeptide will maintain the desired activity. For example, Branden et al. (Introduction to Protein Structure, Garland Publishing Inc., New York, page 247, 1991) teach that (1) protein engineers are frequently surprised by the range of effects caused by single mutations that they hoped would change only one specific and simple property in enzymes, (2) the often surprising results obtained by experiments where single mutations are made reveal how little is known about the rules of protein stability, and (3) the difficulties in designing de novo stable proteins with specific functions.

The amount of direction or guidance presented and the existence of working examples.

The specification discloses a method of reducing the incorporation of nonstandard amino acids of a heterologous polypeptide produced by a microorganism by

Art Unit: 1652

transforming into said microorganism a vector comprising said heterologous polypeptide and the glutamate dehydrogenase of SEQ ID NO:2 or 4. However, the speciation fails to provide any information as to (1) norleucine as the substrate associated with any glutamate dehydrogenase isolated from any source, including variants, mutants and recombinants thereof, (2) structural elements required in a polypeptide having norleucine degrading activity, or (3) which are the structural elements in a glutamate dehydrogenase that are essential to display norleucine degrading activity. No correlation between structure and function of having norleucine degrading activity has been presented. There is no information or guidance as to which amino acid residues in the polypeptides of SEQ ID NO:2 or 4 can be modified and which ones are to be conserved to create a polypeptide displaying norleucine degrading activity.

The quantity of experimentation required to practice the claimed invention based on the teachings of the specification.

While enzyme isolation techniques, recombinant and mutagenesis techniques were known in the art at the time of the invention, e.g. hybridization or mutagenesis, and it is routine in the art to screen for multiple substitutions or multiple modifications as encompassed by the instant claims, the specific amino acid positions within a protein's sequence where amino acid modifications can be made with a reasonable expectation of success in obtaining the desired activity/utility are limited in any protein and the result of such modifications is unpredictable. In addition, one skilled in the art would expect any tolerance to modification for a given protein to diminish with each further and additional modification, e.g. multiple substitutions. Furthermore, it is not routine in the

Art Unit: 1652

art to create variants of polynucleotides encoding polypeptides having the activity recited without any knowledge as to the structural features which would correlate with that activity.

Thus, applicants have not provided sufficient guidance to enable one of ordinary skill in the art to make and use the claimed invention in a manner reasonably correlated with the scope of the claims broadly including a method of using any or all polypeptides having non-standard amino acid degrading activity, including variants, mutants, recombinants and fragments thereof. The scope of the claims must bear a reasonable correlation with the scope of enablement (*In re Fisher*, 166 USPQ 19 24 (CCPA 1970)). Without sufficient guidance, determination of any or all mutants, variants and recombinants of any or all polypeptides having the desired biological characteristics is unpredictable and the experimentation left to those skilled in the art is unnecessarily, and improperly, extensive and undue. See *In re Wands* 858 F.2d 731, 8 USPQ2nd 1400 (Fed. Cir. 1988).

In response to the previous Office Action, applicants have traversed the above rejection. Applicants should note that the rejection has been amended in light of the amendment of the claims.

Applicants argue that the claims meet the written description requirement because (1) claim 3 has been amended to delete the phrase "having" and (2) NSAADP enzymes are disclosed in the specification and well known in the art. Examiner respectfully disagrees. (1) The phrase "with a leucine at the amino.." does not create a presumption that the body of the claim is closed (See MPEP 2111.03). (2) While the

NSAADP enzymes recited in claim 1 is known in the art, a method of using said enzymes for reducing the incorporation of norleucine in a heterologous protein expressed in a microorganism is not known. Other the specific enzymes listed in Table 5 on page 36 of the specification, the specification does not disclose which enzymes from the wide genus of glutamate dehydrogenase (and those recited in claim 1 which are currently withdrawn) are able to reduce incorporation of norleucine in polypeptides or which have norleucine degrading activity. Applicants on page 9 of the Remarks filed on January 5, 2010 state that "it was surprising that wild type E. coli GDH had norleucine-degrading activity". Therefore, at the time the invention was filed, other than wild type E. coli GDH and the mutant GDH having the amino acid sequence of SEQ ID NO:4, neither art nor the specification provides teachings on which glutamate dehydrogenase that can be used in a method of reducing the incorporation of norleucine in a heterologous polypeptide. Without specific guidance, those skilled in the art will be subjected to undue experimentation. While the art may teach in general the structure of GDH, conserved amino acid sequences, and etc, such teachings will not reduce the burden of undue experimentation on those of ordinary skill in the art.

Hence the rejection is maintained.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and

Art Unit: 1652

the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

Claims 1-2, 8-11, 14-15, 42-43, and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bogosian et al. and Wang et al.

Claims 1-2, 8-11, 14-15, 42-43, and 49 are drawn to a method of reducing the incorporation of norleucine into a bovine somatotropin in a microorganism by co-expressing in said microorganism said somatotropin and a glutamate dehydrogenase having norleucine degrading protein activity.

Bogosian et al. (JBC, Vo. 264, No. 1, pp. 531-539, 1989 - form PTO-1449) discloses incorporation of norleucine into bovine somatotropin when said bovine somatotropin is expressed in *E. coli* (abstract). Bogosian et al. discusses several options for reducing the incorporation of norleucine (pages 531-532). Bogosian et al. discloses supplementing media with methionine in order to avoid norleucine incorporation into a target protein (page 539) since the additional methionine impedes

Art Unit: 1652

norleucine from attaching to the tRNA^{Met} (norleucine is charged onto tRNA^{Met} and subsequently incorporated into the protein).

Wang et al. (Eur J Biochem. 2001 Nov;268(22):5791-9 – cited previously on form PTO-892) discloses a mutant glutamate dehydrogenase isolated from *Clostridium symbiosum*, wherein said mutant has a K89L mutation and said mutant has increased activity for degrading norleucine (abstract, Table 4 on page 5796).

With the teaching of Wang et al. at hand, one having ordinary skill would have recognized the advantage of expressing the mutant glutamate dehydrogenase of Wang et al. in order to directly degrade norleucine instead of indirectly reducing availability of norleucine.

Therefore, combining the teachings of Bogosian et al. and Wang et al., it would have been obvious to one having ordinary skill in the art at the time the claimed invention was made to reduce the incorporation of norleucine in production of heterologous proteins, such as bovine somatotropin, in *E. coli*, by transforming *E. coli* with a vector comprising said heterologous protein or bovine somatoropin and the mutant of Wang et al. or two vectors comprising each of the proteins and supplement the media with methionine to ensure enough availability of methionine since the mutant of Wang et al. also degrades methionine.

One of ordinary skill in the art would have been motivated to combine the above references in order to reduce incorporation of norleucine when producing heterologous proteins in *E. coli* and thereby produce heterologous proteins of interest with minimal norleucine contamination. One of ordinary skill in the art would have had a reasonable

Art Unit: 1652

expectation of success since Wang et al. teaches a mutant enzyme which degrades norleucine and Bogosian et al. teaches expression of bovine somatotropin.

Therefore, the above references render claims 1-2, 8-11, 14-15, 42-43, and 49 prima facie obvious.

In response to the previous Office Action, applicants have traversed the above rejection.

Applicants argue that since (1) the mutant GDH taught by Wang degrades standard amino acid methionine in addition to norleucine and (2) such mutants would have been expected to impede expression of heterologous proteins, skilled artisans would not have been motivated to overexpress the mutants of Wang et al. Examiner respectfully disagrees. In order to prevent degradation of methionine residues by the action of the mutant of Wang et al., one having ordinary skill in the art would have recognized to add methionine into the media. This addition of methionine has two effects: ensures enough availability of methionine in production of the target protein and impeding norleucine from attaching to the tRNA^{Met} and thereby reducing norleucine incorporation into the protein.

Applicants also argue that expression of heterologous protein is surprising in view of the negative effects on protein translation that would have been expected to occur in attempting to overexpress NSAADPs such as those taught by Wang et al.

Examiner respectfully disagrees. Obviousness does not require absolute predictability, but a reasonable expectation of success (see MPEP 2143.02). The claims do not recite any limitation on the efficiency or yield of the expression of the heterologous protein, but

that the incorporation of norleucine is reduced. Further, the triple mutant of Wang et al. (K89L/S380A/A163G) only recognizes one natural amino acid methionine and two nonstandard amino acids norleucine and norvaline. Addition of methionine ensures enough availability of methionine in production of the target protein and impeding norleucine from attaching to the tRNA^{Met} and thereby reducing norleucine incorporation into the protein.

Hence the rejection is maintained.

Claims 3-5 and 12 rejected under 35 U.S.C. 103(a) as being unpatentable over Bogosian et al. and Wang et al. as applied to claims 1-2, 8-11, 14-15, 42-43, and 49 above, and further in view of Rice et al.

Claims 3-5 and 12 are drawn to a method of reducing the incorporation of nonstandard amino acids into a bovine somatropin in a microorganism by co-expressing in said microorganism said somatropin and a non-standard amino acid degrading protein/glutamate dehydrogenase variant (K92L) comprising the amino acid sequence of ID NO:4 which is encoded by a sequence of SEQ ID NO: 3.

As discussed, above, it would have been obvious to one having ordinary skill in the art to reduce the incorporation of non-standard amino acid, norleucine, into a bovine somatotropin in a microorganism by co-expressing in said microorganism said somatotropin and a norleucine degrading mutant of Wang et al. Further, Wang et al. teaches that Ivsine 89 (which corresponds to Ivsine 92 in E. coli glutamate dehydrogenase) is in the substrate binding site (page 5792). Even though the triple

Art Unit: 1652

mutant of Wang et al. (K89L/S380A/A163G) no longer recognizes glutamate, said mutant degrades methionine in addition to norleucine. With the teaching at hand, one having ordinary skill in the art would have concluded to either supplement the reaction medium with methionine to ensure sufficient availability of methionine for the production of the target protein or make similar mutations (making substitutions corresponding to residues 89, 380, and 163 of the *C. symbiosum*) in homologous glutamate dehydrogenase, thereby obtaining a mutant having greater substrate specificity towards norleucine by making substitutions corresponding to residues 89, 380, and 163 of the *C. symbiosum*.

Rice et al. (FEMS Microbiol Rev. 1996 May;18(2-3):105-17 - form PTO-892) discloses a an alignment of three glutamate dehydrogenase against *C. symbiosum* glutamate dehydrogenase, including glutamate dehydrogenase isolated from *E. coli* (Figure 1 on page 107). Lysine at position 89, serine at position 380 and alanine at position 163 of *C. symbiosum* glutamate dehydrogenase corresponds to lysine at position 89, serine at position 380 and alanine at position 163 of *E. coli* glutamate dehydrogenase.

Therefore, it would have been obvious to one having ordinary skill in the art at the time the claimed invention was made to make K89L/S380A/A163G mutations in an *E. coli* glutamate dehydrogenase in order to make an enzyme that has greater substrate specificity towards norleucine over other natural and non-standard amino acids and use said mutant enzyme to reduce incorporation of norleucine in heterologous proteins in *E. coli*.

One of ordinary skill in the art would have been motivated to make the above mutant in order to obtain an enzyme having greater substrate specificity towards norleucine thereby providing a norleucine degrading enzyme available for use in reducing incorporation of norleucine into a target protein. One of ordinary skill in the art would have had a reasonable expectation of success since lysine 92(E. coli)/lysine 89 (C. symbiosum) is in the substrate binding pocket and making site specific mutations are routine.

Therefore, the above references render claims 3-5 and 12 *prima facie* obvious.

In response to the previous Office Action, applicants have traversed the above rejection.

Applicants argue that the claims are not obvious over the cited references because a skilled artisan would have expected $E.\ coli$ K92L GDH to have substantially greater norleucine-degrading activity compared to wild type $E.\ coli$ GDH since wild type $C.\ symbiosum$ GDH does not have norleucine degrading activity and the mutant of K92L of Wang et al. has norleucine degrading activity (Tables 2 and 4). However, applicants argue that the activity of K92L GDH was not greatly increased over the activity of wild type $E.\ coli$ GDH. Examiner respectfully disagrees. (1) The rejection is not limited to making a substitution at only reside 89. (2) Contrary to applicants arguments, at pH 7, the K92L mutant of Wang et al. only had a slightly increased activity for norleucine, 0.16 k_{cal}/K_m , see Table 4 on page 5796. It's the double and triple mutant of Wang et al. which has appreciable activity against norleucine, see Table 2. One having ordinary skill in the art would have had a reasonable expectation of success

Art Unit: 1652

in making a mutant having greater substrate specificity towards norleucine since the triple mutant of Wang et al. has greater substrate specificity towards norleucine compared to the wild type enzyme.

Hence the rejection is maintained.

Conclusion

Claims 1-5, 8-12, 14-15, 42-43, and 49 are rejected.

No claim is allowed

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Yong Pak whose telephone number is 571-272-0935. The examiner can normally be reached 6:30 A.M. to 5:00 P.M. Monday through Thursday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Robert Mondesi can be reached on 571-272-0956. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is 571-272-1600.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll free).

Application/Control Number: 10/572,711 Page 23

Art Unit: 1652

/Yong D Pak/ Primary Examiner, Art Unit 1652