

Prepare data for ML with ease, speed, and accuracy

Mark Roy

Principal ML Architect

Agenda

Overview of SageMaker Data Wrangler and Feature Store Deep dive and demos

Overview of SageMaker Data Wrangler and SageMaker Feature Store

60% of time spent on data prep

What data scientists spend the most time doing

- Cleaning and organizing data
- Collecting data sets
- Mining data for patterns
- Other
- Refining algorithms
- Building training sets

Source: Forbes survey of 80 data scientists, March 2016

... and teams typically start from scratch

Standalone feature engineering for each new model

Challenges

- Feature duplication
- Slow time to market
- Inaccurate predictions

So, how does SageMaker help?

Amazon SageMaker Data Wrangler

The fastest and easiest way to prepare data for machine learning

Quickly select and query data

Support for data from multiple sources

Easily transform data with built-in transformations

Use built-in data transformations to covert raw data to features for machine learning

Customize data transformations

Complete flexibility to bring your own custom transformations in PySpark, SQL, or Pandas

Understand data visually

Quickly detect outliers or extreme values – all without writing code

Quickly estimate machine learning model accuracy

Diagnose potential issues in data preparation workflows that could hinder machine learning model accuracy

Easily deploy data preparation workflows

Manage all steps of the data preparation workflow through a single visual interface to quickly operationalize workflows into production settings

Amazon SageMaker Feature Store

Securely store, discover, and share features for both real-time inference and training

Batch and streaming ingestion

High throughput writes for ingesting features

Online and offline features

Online features for real-time prediction, and offline features for historical data for model training and batch prediction

Feature metadata and data cataloging

Store metadata for features and leverage automatic data cataloging to easily guery and extract feature data

Feature discovery and reuse

Search for feature discovery

Security and access control

Access control for feature data and feature metadata, and support for encryption at rest, Amazon VPC, and AWS PrivateLink

Fully managed

Online features cached in low-latency store; maintain consistency between online and offline store to avoid train-infer skew

Build features once and reuse them

Benefits

- Feature reuse
- Reproducible features
- Accurate training datasets
- Low latency inference
- Consistent features for training and inference

Flight delay prediction

Raw flight delay historical data

Flight	Date	Origin	Destination		Delayed more than 15 minutes?
AA329	2020-02-01	BOS	SFO	•••	1 (yes)
AA329	2020-02-02	BOS	SFO	•••	0 (no)
•••	•••	•••	•••	•••	
SW85	2020-03-30	LAX	SEA	•••	1 (yes)

Will my flight be delayed by more than 15 minutes?

3 months of US flights, 1.7 million rows, 26 columns

Demo 1: SageMaker Data Wrangler

Deep dive on feature ingestion

Feature store in context

Feature pipeline options

Key implementation considerations

- Existing ecosystem
- Data scientist skillset
- ML engineering capacity
- Scale

Feature ingestion API's

PutRecord API

Python SDK

Spark Connector

Data Wrangler feature pipeline

Feature pipeline can be part of larger ML pipeline

SageMaker Pipelines

Pipeline execution

- On demand
- Scheduled
- Triggered by code check-in
- Triggered by new raw data

AWS Lambda

Amazon EventBridge

Working with offline features

Using Amazon Athena to query features

Training

Batch scoring

Querying features interactively or with Python SDK

Athena console

```
New query 1 +

1 select count(*) from "fg-flow-13-21-32-45-75c60c12-1618349567"

Run query Save as Create >
```

Python SDK

```
s = f'SELECT COUNT(*) FROM "{fg.athena_query().table_name}" ' + \
         'WHERE fl_date = \'2020-03-31\''
q = feature_group.athena_query()
q.run(s, output_location=output_location)
q.wait()
df = q.as_dataframe()
```

Offline store, under the hood

- Compressed parquet files
- Partitioned by event time
- Feature value history for point-in-time correct datasets

```
S3://.../offline-store/flight-delays-fg/data/
year=2020/
month=03/
day=31/
hour=00/
```

Name

- 20200331T000000Z_dD6TOLNJDGnjyCvv.parquet
- 20200331T000000Z_dRks1omtxu7Q8Ht8.parquet
- 20200331T000000Z_dTMroptdkVWCP5aR.parquet
- 20200331T000000Z_dz1vwlFZ9Qd3sDoj.parquet
- 20200331T000000Z_Eg4XDeRIDgMqbBBx.parquet
- 20200331T000000Z_GiVBADnjVrUVpcQN.parquet
- 20200331T000000Z_GnGo1iEvidVAbAIN.parquet
- 20200331T000000Z_gYS938zYCb9KdVYm.parquet

Demo 2: SageMaker Feature Store, feature pipelines, pulling features for model training

Summary

Prepare data for machine learning with ease, speed, and accuracy

SageMaker Data Wrangler

The fastest and easiest way to prepare data for machine learning

SageMaker Feature Store

Securely store, discover, and share features for both real-time inference and training

SageMaker Data Wrangler blog posts

Data Wrangler overview - <u>link</u>

Handling imbalanced data - <u>link</u>

Prepare data from JSON and ORC files - <u>link</u>

Data Wrangler with SageMaker Autopilot - <u>link</u>

Patient readmission use case - <u>link</u>

Preparing data from Snowflake - <u>link</u>

Launch processing jobs - <u>link</u>

SageMaker Feature Store blog posts

Understanding key capabilities - <u>link</u>

Using streaming ingestion to make ML-backed decisions in near-real time - <u>link</u>

Automating feature pipelines - <u>link</u>

Extending ML lineage to include features - link

Directly ingesting historical feature data to S3 - link

Building accurate training datasets using point-in-time queries - <u>link</u>

Enabling feature reuse across accounts - <u>link</u>

Scaling batch ingestion - <u>link</u>

Monitor ML features - <u>link</u>

Using feature store in a Java environment - <u>link</u>

SageMaker Feature Store workshop

This workshop gives you an end-to-end hands-on introduction to SageMaker Feature Store - link

https://github.com/aws-samples/amazon-sagemaker-feature-store-end-to-end-workshop

Thank you!