Aplicação de Algoritmo Guloso por Maior Valor para a Otimização do Problema da Mochila

Raiane Santos - Wanessa Caldas - Alex Souza

PAA - Projeto e Análise de Algoritmos (Prof. Valdísio Viana) MACC - Universidade Estadual do Ceará (UECE)

25 de abril de 2018

Introdução

Problema da Mochila Heurística Heurística Gulosa Algoritmo Proposto Pseudo-Código

RESULTADOS

Tabela de Resultados

Tempo de Execução

- ▶ Problema da Mochila
 - Maior Valor
- ▶ Desafios
 - ► NP-Difícil
 - Heurísticas

Problema da Mochila

Em síntese, o problema da mochila consiste em escolher um conjunto de itens, onde cada item possui um peso e um valor agregado, de forma que os itens de maior valor associado sejam preferencialmente escolhidos, porém sem ultrapassar a capacidade máxima da mochila.

► Complexidade Exponencial: O(2ⁿ)

HEURÍSTICA

São um conjunto de regras e métodos que conduzem à descoberta, à invenção e à resolução de problemas de elevado nível de complexidade, em tempo computacional razoável.

Heurística Gulosa

HEURÍSTICA GULOSA

- Este tipo de estratégia consiste em resolver o problema em uma sequência de passos, onde a cada passo é feita a melhor escolha momentânea, sem se preocupar com o impacto futuro desta escolha e sem desfazer escolhas passadas.
 - ► Complexidade: O(n)

ALGORITMO PROPOSTO

- Algoritmo Guloso
 - ▶ Problema da Mochila
 - ► Maior Valor

PSEUDO-CÓDIGO

```
Algorithm 1: ProblemaMochilaGulosoMaiorValor
  Input: Capacidade da Mochila (W)
 Input: Valores (v_1, v_2, \dots, v_n)
 Input: Pesos \langle w_1, w_2, \dots, w_n \rangle
 capacidadeTotal \leftarrow 0
  value \leftarrow 0
 numItems \leftarrow tamanho(Valores)
 valorProbMochGuloso ← Ordenação Decrescente dos Valores[1] (Maior Valor)
 ** comentário: valorProbMochGuloso[i][0] - Refere-se a Pesos
 ** comentário: valorProbMochGuloso[i][1] - Refere-se a Valores
 while Capacidade > 0 and numItems > 0 do
     idx \leftarrow 0
     if valorProbMochGuloso/idx/[1] \le Capacidade then
         value += valorProbMochGuloso(idx)/0
        capacidadeTotal += valorProbMochGuloso(idx)/1
        capacidade -= valorProbMochGuloso/idx//1)
     end
     Output: Para cada item (objeto)
     - Item alocado na Mochila
     - Valor alocado do item
     - Valor acumulado na Mochila

    Capacidade alocada do item

     - Capacidade acumulada na Mochila
     - Vetor de Valores da Mochila
     - Vetor de Pesos da Mochila
     - Itens Alocados
     return value
   end
```

ENTRADAS E SAÍDA DO ALGORITMO

► Entradas

```
capacidade = 85
valores = [60, 100, 120, 80, 30]
pesos = [20, 50, 30, 10, 40]
```

▶ Saída

```
Número de Itens - 5
                       Capacidade da Mochila: - 85
Valor - Decrescente: - [[120, 30], [100, 50], [80, 10], [60, 20], [30, 40]]
                         Item alocado na Mochila: 1
                         Valor alocado do item: 120
                     Valor acumulado na Mochila: 120.0
                       Capacidade alocada do item: 30
                   Capacidade acumulada na Mochila: 30.0
                     Num itens alocados na Mochila: 2
                        Valor alocado do item: 100
                     Valor acumulado na Mochila: 220.0
                      Capacidade alocada do item: 50
                   Capacidade acumulada na Mochila: 80.0
                  Vetor de Valores da Mochila: [120, 100]
                    Vetor de Pesos da Mochila: [30, 50]
                             Itens Alocados: 2
                             Executado em 0.001s.
```

Tabela de Resultados - Instâncias Diversas

Instâncias Comparativas				Solução	Solução Obtida			Aproximação
N^{o}	Referência	n	C	"Ótima"	Itens Alocados	tempo(s)	Inicial/Melhor	Gap
1	KP1000	1000	500	12800	10	0.006	1500	8,53
2	KP2500	2500	295	8560	17	0.072	1697	5,04
3	KP5000	5000	2500	37660	120	0.152	11885	3,16
4	KP7500	7500	3804	58165	184	0.173	18214	3,19
5	KP10000	10000	5000	77621	237	0.427	23504	3,30
Média das aproximações com resultados conhecidos (%) \Rightarrow								4,64
$N^{\underline{o}}$	Outras	n	C	Itens Alocados	Mínima	Média	Inicial/Melhor	tempo(s)
6	TE05	5	85	2	220	220	220	< 0.000
7	TE10	10	50	7	42	42	42	< 0.000
8	TE20	20	50	6	504	504	504	0.001
9	TE30	30	120	12	1066	1066	1066	0.010
10	TE50	50	180	20	1697	1697	1697	0.031

TEMPO DE EXECUÇÃO

- ► Tempo de Execução (Eixo y)
- ► Tamanho da Instância (Eixo x)

OBRIGADO

