

## CLAIMS

1. **(Currently Amended)** A method[[.]] comprising:

receiving an input of data, the input data conforming that conforms to a query language used by a filter engine comprising two or more filter sub-engines, wherein at least one filter sub-engine is a general filter sub-engine and at least one filter sub-engine is an optimized filter sub-engine;

determining whether the input data conforms to a grammar associated with the optimized filter sub-engine, wherein the optimized filter sub-engine is configured to handle only a subset of the query language handled by the general filter sub-engine;

in an event the determining indicates the input data conforms to the grammar associated with the optimized filter sub-engine:

determining whether the input data can be processed by the optimized filter sub-engine, the determining comprising identifying if the input data comprises a subset of the query language; and

directing the input data to the optimized filter sub-engine for processing;  
whether the input data can be processed by an optimized filter sub-engine,  
wherein the optimized filter sub-engine is configured to handle only a subset of the query language handled by the general filter sub-engine, wherein the subset of the language does not include all aspects of the language; and  
if the determining indicates that the input can be processed by the optimized filter sub-engine, directing the input data to the optimized filter sub-engine for processing;

in an event the determining indicates that the input data cannot be processed by the optimized filter sub-engine;

determining whether the input data can be processed by a second optimized filter sub-engine, wherein the second optimized filter sub-engine is configured to handle only a subset of the query language, and wherein the subset of the query language that the second optimized filter sub-engine is configured to handle excludes the subset of the query language that the first optimized filter sub-engine is configured to handle; and

directing the input data to the second optimized filter sub-engine for processing;

if in an event the determining indicates that the input cannot be processed by the second optimized filter sub-engine, then directing the input to the general filter sub-engine for processing, wherein the general filter sub-engine is configured to handle all aspects of the query language; and

processing the input to derive a result.

2.       **(Canceled)**

3.       **(Canceled)**

4.       **(Previously Presented)**    The method as recited in claim 1, wherein the query language comprises a query language based on eXtensible Markup Language (XML).

5.       **(Canceled)**

6. **(Currently Amended)** The method as recited in claim 1, the method further comprising:

    parsing the input to identify first and second sub-expressions;

    determining whether the first sub-expression can be processed by the optimized filter sub-engine;

    if in an event the first sub-expression can be processed by the optimized filter sub-engine, then directing the first sub-expression to the optimized filter sub-engine for processing;

    if in an event the first sub-expression cannot be processed by the optimized filter sub-engine, directing the first sub-expression to the general filter sub-engine for processing;

    determining whether the second sub-expression can be processed by the optimized filter sub-engine;

    if in an event the second sub-expression can be processed by the optimized filter sub-engine, directing the second sub-expression to the optimized filter sub-engine for processing; and

    if in an event the second sub-expression cannot be processed by the optimized filter sub-engine, directing the second sub-expression to the general filter sub-engine for processing.

7. **(Original)** The method as recited in claim 6, further comprising:  
obtaining a result of the processing of the first sub-expression; and  
processing the second sub-expression only if the result of the first sub-expression is true.

8. **(Currently Amended)** A filter engine[[.]] comprising:  
an optimized filter sub-engine configured to accept an input that conforms to a language and process the input against a filter table associated with the optimized filter sub-engine, wherein the optimized filter sub-engine is configured to process only a subset of terms of the language, wherein the subset of terms of the language does not include all terms of the language;  
a general filter sub-engine configured to accept the input and process the input against a filter table associated with the general filter sub-engine, wherein the general filter sub-engine is configured to process all terms of the input language; and  
an analyzer configured to determine whether the input can be processed by the optimized filter sub-engine and, if so, direct the input to the optimized filter sub-engine for processing or, if not, direct the input to the general filter sub-engine for processing.

9. **(Previously Presented)** The filter engine as recited in claim 8, wherein the analyzer is further configured to analyze a new filter added to the filter engine and to determine an appropriate filter sub-engine with which to associate the new filter.

10. **(Previously Presented)** The filter engine as recited in claim 8, wherein the language is XPath.

11. **(Previously Presented)** The filter engine as recited in claim 8, wherein the analyzer is further configured to determine whether the optimized filter sub-engine can process the input by comparing the input to a grammar associated with the optimized filter sub-engine and determining whether the input consists of terms that are compatible with the grammar.

12. **(Currently Amended)** The filter engine as recited in claim 8, further comprising a sub-expression module that is configured to:

determine whether the input consists of different sub-expressions;

ifin an event the input consists of different sub-expressions, directing each of the different sub-expressions contained in the input to the analyzer; and analyzer, wherein the analyzer is further configured to determine whether each of the different sub-expressions can be processed by the optimized filter sub-engine and to direct each of the different sub-expressions to an appropriate filter sub-engine for processing.

13. **(Previously Presented)** The filter engine as recited in claim 12, wherein a first of the different sub-expressions is directed to the optimized filter sub-engine and a second of the different sub-expressions is directed to the general filter sub-engine.

14. **(Previously Presented)** The filter engine as recited in claim 8, wherein the optimized filter sub-engine comprises:

a first optimized filter sub-engine configured to process inputs that conform to a first subset of the language; and

a second optimized filter sub-engine configured to process inputs that conform to a second subset of the language;

wherein the first subset of the language is different from the second subset of the input language.

15. **(Currently Amended)** ~~One or more computer readable storage media containing computer executable instructions that, when executed, direct a computing system to:~~

A computer-readable storage medium encoded with instructions that, when executed by a processor of a device, cause the device to perform acts comprising:

determining determine an appropriate filter sub-engine to which an input message should be directed for processing against a set of queries;

processing the input message using an optimized filter sub-engine if the optimized filter sub-engine comprises a grammar that supports processing of the input message;

processing the input message in a general filter sub-engine if the optimized filter sub-engine grammar does not support processing of the input message; and

wherein:

the input message is in accordance with a query language;

the optimized filter sub-engine supports a subset, less than the whole, of the query language; and

the general filter sub-engine supports the entire query language.

**16. (Currently Amended)** The ~~one or more computer-readable storage media~~ computer-readable storage medium as recited in claim 15, further comprising computer-executable instructions that, when executed, direct the computing system to perform acts comprising:

accept input messages for both the optimized filter sub-engine and the general filter sub-engine by way of a single input means so that an input message sending application ~~does not have to~~ is not required to distinguish between the optimized filter sub-engine and the general filter sub-engine.

**17. (Currently Amended)** The ~~one or more computer-readable storage media~~ computer-readable storage medium as recited in claim 15, wherein the query language is XPath.

**18. (Currently Amended)** The ~~one or more computer-readable storage media~~ computer-readable storage medium as recited in claim 15, wherein the query language is an XML query language.

19. (Currently Amended) The computer-readable storage medium ~~one or~~  
~~more computer-readable storage media~~ as recited in claim 15, further comprising  
computer-executable instructions that, when executed, direct the computing system to  
perform acts comprising:

prior to determining which filter sub-engine will process the input message,  
parse the input message into two or more sub-expressions;

for each of the two or more sub-expressions, determine an appropriate filter  
sub-engine that can process the sub-expression; and

direct each of the two or more sub-expressions to the appropriate filter sub-  
engine for processing.

20. (Currently Amended) The computer-readable storage medium ~~one or~~  
~~more computer-readable storage media~~ as recited in claim 19, further comprising  
computer-executable instructions that, when executed, direct the computing system to  
derive a final result of the input message processing from at least one result of the sub-  
expression processing.

21. (Currently Amended) The computer-readable storage medium ~~one or more computer-readable storage media~~ as recited in claim 19, further comprising computer-executable instructions that, when executed, direct the computing system to perform acts comprising:

determine if a first of the two or more sub-expressions evaluates true;

proceed with processing of subsequent sub-expressions of the two or more sub-expressions if the first sub-expression evaluates to true; and

forego processing of subsequent sub-expressions of the two or more sub-expressions if the first sub-expression evaluates to false.

22. (Currently Amended) The computer-readable storage medium ~~one or more computer-readable storage media~~ as recited in claim 15, wherein each filter sub-engine includes a set of queries against which input messages directed to the respective filter sub-engine are tried, and wherein each set of queries is unique.

23. (Currently Amended) A message processing system[[,]] comprising:

means for receiving a message;

an optimized filter sub-engine that supports only a subset, less than the whole, of a message language, wherein the message conforms to the message language;

a general filter sub-engine that supports all of the message language;

analyzing means for analyzing the message to determine if the optimized filter sub-engine is configured to process the message; and

distribution means for distributing the message;

to the optimized filter sub-engine if the optimized filter sub-engine can process the message; or

to the general filter sub-engine if the optimized filter sub-engine cannot process the message.

**24. (Previously Presented)** The message processing system as recited in claim 23, wherein:

the optimized filter sub-engine comprises a first set of queries against which the message can be compared;

the general filter sub-engine comprises a second set of queries against which the message can be compared; and

the first set of queries contains fewer queries than the second set of queries.

**25. (Previously Presented)** The message processing system as recited in claim 23, wherein:

the message language comprises an XML query language;

the general filter sub-engine is configured to support the entire XML query language; and

the optimized filter sub-engine is configured to support a subset of the XML query language, wherein the subset of the XML query language is less than the entire XML query language.

26. **(Original)** The message processing system as recited in claim 25, wherein the XML query language is XPath.

27. **(Previously Presented)** The message processing system as recited in claim 23, wherein the optimized filter sub-engine comprises means for increasing message processing performance by combining individual filters for use in a single procedure.

28. **(Previously Presented)** The message processing system as recited in claim 27, wherein the means for increasing message processing performance further comprises a hash function.

29. **(Previously Presented)** The message processing system as recited in claim 23, wherein:

the optimized filter sub-engine comprises:

    a first optimized filter sub-engine that supports only a first unique subset of the query language; and

    a second optimized filter sub-engine that supports only a second unique subset of the query language; and

    each of the first and second unique subsets of the query language are less than that entire query language;

the distribution means is further configured to distribute the message to the second optimized filter sub-engine if the first optimized filter sub-engine cannot process the message but the second optimized filter sub-engine can process the message.

**30. (Previously Presented)** The message processing system as recited in claim 23, further comprising:

means for parsing the message into constituent sub-expressions;

wherein the analyzing means is further configured to process each of the constituent sub-expressions as an individual message and to evaluate sub-expression processing results to derive a result corresponding to the message.

**31. (Original)** The message processing system as recited in claim 23, wherein the message is a sub-expression of a parent message.

**32. (Previously Presented)** The message processing system as recited in claim 23, further comprising means for determining whether a filter in the system is associated with the general filter sub-engine or with the optimized filter sub-engine.

**33. (Previously Presented)** The method as recited in claim 1, wherein: determining comprises generating a hash of the input data in order to determine if an optimized sub-engine is capable of handling the input data.