

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com



Dates of Tests: Aug 3 ~ Aug 18, 2009 Test Report S/N: LR500190908H Test Site: LTA CO., LTD.

# **CERTIFICATION OF COMPLIANCE**

FCC ID.

**APPLICANT** 

**V60LMT100** 

**QUFIELD CO.,LTD.** 

**Licensed Non-Broadcast Station Transmitter Device Category** 

**Manufacturing Description** MULTIPURPOSE CORDLESS CALLING SYSTEM

11K2F1D

Manufacturer **QUFIELD CO.,LTD.** 

Trade mark **QUFIELD Model name** LM-T100

**Serial number Identical prototype** 

**FCC Rule Part(s) §2, §90** 

**Frequency Range** 447.8625MHz

**RF Output Power** 11.18dBm

**Channel Separation** Only one channel

**Emission Designators:** Data of issue Aug 18, 2009

This test report is issued under the authority of:

The test was supervised by:

Dong -Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

# TABLE OF CONTENTS

| 1. GENERAL INFORMATION'S                           | 3  |
|----------------------------------------------------|----|
| 2. INFORMATION'S ABOUT TEST ITEM                   | 4  |
| 3. TEST REPORT                                     | 5  |
| 3.1 SUMMARY OF TESTS                               | 5  |
| 3.2 REQUIREMENTS                                   | 6  |
| 3.2.1 CARRIER OUTPUT POWER (CONDUCTED)             | 6  |
| 3.2.2 UNWANTED EMISSIONS (TRANSMITTER CONDUCTED)   | 7  |
| 3.2.3 FIELD STRENGTH OF SPURIOUS RADIATION         | 8  |
| 3.2.4 EMISSION MASKS (OCCUPIED BANDWIDTH)          | 10 |
| 3.2.5 TRANSIENT FREQUENCY BEHAVIOR                 | 11 |
| 3.2.6 FREQUENCY STABILITY (TEMPERATURE VARIATION)  | 12 |
| 3.2.6 FREQUENCY STABILITY (VOLTAGE VARIATION)      | 12 |
| 3.2.7 Emissions Designator                         | 13 |
| 3.2.8 DC Voltages and Current into Final Amplifier | 13 |
| 3.2.9 AC conducted emission                        | 14 |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
| APPENDIX                                           |    |
| APPENDIX I TEST EQUIPMENT USED FOR TESTS           | 17 |
| APPENDIX II TEST PLOTS                             | 19 |

# 1. General information's

# 1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : <a href="http://www.ltalab.com">http://www.ltalab.com</a>
E-mail : <a href="mailto:chahn@ltalab.com">chahn@ltalab.com</a>
Telephone : +82-31-323-6008
Facsimile : +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

# 1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

| Agency | Country | Accreditation No. | Validity   | Reference           |
|--------|---------|-------------------|------------|---------------------|
| NVLAP  | U.S.A   | 200723-0          | 2009-09-30 | ECT accredited Lab. |
| RRL    | KOREA   | KR0049            | 2011-06-20 | EMC accredited Lab. |
| FCC    | U.S.A   | 610755            | 2011-04-22 | FCC filing          |
| VCCI   | JAPAN   | R2133, C2307      | 2011-06-21 | VCCI registration   |
| IC     | CANADA  | IC5799            | 2010-05-03 | IC filing           |

# 2. Information's about test item

## 2-1 Client & Manufacturer

Company name : QUFIELD CO.,LTD.

Address : 1485-13,BF1, SONGRYONG BLDG. SEOCHO-DONG,

SEOCHO-GU, SEOUL, KOREA.

TEL / FAX : 82-31-420-4782

# **2-2 Equipment Under Test (EUT)**

Trade name : MULTIPURPOSE CORDLESS CALLING SYSTEM

FCC ID : V6OLMT100 Model name : LM-T100

Serial number : Identical prototype

Date of receipt : August 3, 2009

EUT condition : Pre-production, not damaged

: 11.18dBm

Antenna type : Helical Antenna Frequency Range : 447.8625 MHz

Channel Separation : -

Power Source : Input: 120VAC, Output: 12VDC, 0.78A used adaptor

# **2-3 Tested frequency**

RF output power

|                 | LOW | MID      | HIGH |
|-----------------|-----|----------|------|
| Frequency (MHz) | -   | 447.8625 | -    |

## 2-4 Ancillary Equipment

| Equipment | Model No. | Serial No. | Manufacturer |
|-----------|-----------|------------|--------------|
| -         | -         | -          | -            |
| -         | -         | -          | -            |

# 3. Test Report

# 3.1 Summary of tests

| FCC Part                   | Parameter                                       | Status   |
|----------------------------|-------------------------------------------------|----------|
| Section(s)                 | i ai ametei                                     | (note 1) |
| 2.1046                     | Corrier Output Power (Conducted)                | C        |
| 90.205                     | Carrier Output Power (Conducted)                |          |
| 2.1051                     | Unwanted Emissions (Transmitter Conducted)      | С        |
| 90.210                     | Unwanted Emissions (Transmitter Conducted)      |          |
| 2.1053                     | Field Strongth of Springers Dediction           | С        |
| 90.210                     | Field Strength of Spurious Radiation            |          |
| 2.1049                     | Emission Marks (Occurried Bondwidth)            | С        |
| 90.209                     | Emission Masks (Occupied Bandwidth)             |          |
| 90.214                     | Transient Frequency Behavior                    | С        |
| 2.1055                     | Program on Stability                            | С        |
| 90.213                     | Frequency Stability                             |          |
| 2.201                      | Emssion Designator                              | Noted    |
| 2.1033 (c)                 | DC Voltages and Current into Final Amplifier    | Noted    |
| 15.207 /15.107             | AC Conducted Emssion (ANSI C-63.4-2003)         | С        |
| <u>Note 1</u> : C=Complies | NC=Not Complies NT=Not Tested NA=Not Applicable |          |

The following measurement report is submitted on behalf of applicant in support that the certification in accordance with Part 2 Subpart J and Part 90 of the Commission's Rules and Regulations.

# 3.2 Transmitter requirements

# 3.2.1 Carrier Output Power (Conducted)

#### **Definition:**

- The carrier power output for a transmitter for this service is the power available at the output terminals of the transmitter when the output terminals are connected to the standard transmitter load.

Specification : 47 CFR 2.1046 (a)

Test method : ANSI/TIA/EIA-603-C-2004

#### **Measurement Procedure:**

- (1) Antenna was replaced with a short connector

- (2) The spectrum offset was adjusted to compensate the losses caused by the connection.

- (3) Set the spectrum., RBW = 100KHz, VBW = 100KHz, SPAN = 100KHz

| Frequency(MHz)          | Rated(dBm) | Output power(dBm) Power(mW) |       |
|-------------------------|------------|-----------------------------|-------|
| 447.8625                | 10         | 11.18                       | 13.12 |
| Measurement uncertainty |            | ± 0                         | ,45dB |

#### **Measurement Data:**

# 3.2.2 Unwanted Emissions (Transmitter Conducted)

#### **Definition:**

- Conducted spurious emissions are emissions at the antenna terminals on a frequency or frequencies which are outside a band sufficient to ensure transmission of information of required quality for the class of communication desired.

Specification : 47 CFR 2.1051

Test method : ANSI/TIA/EIA-603-C-2004

#### **Measurement Procedure:**

- (1) Set the ref level to the RF power output.
- (2) Antenna was replaced with a short connector
- (3) The spectrum offset was adjusted to compensate the losses caused by the connection.
- (4) Set spectrum Frequency start from 30MHz to 5GHz, RBW = 100KHz, VBW = 100KHz.

To record the spurious emissions.

| Frequency(MHz) | Spurious(dBm) | Limit(dBm) | Result |
|----------------|---------------|------------|--------|
| 30MHz-5GHz     | Underlimit    | -20        | Pass   |

#### LIMIT

-20dBm

#### **Measurement Data:**

# 3.2.3 Field Strength of Spurious Radiation

#### **Definition:**

Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a
frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of
required quality for the class of communications desire.

Specification : 47 CFR 2.1053(a)

Test method : ANSI/TIA/EIA-603 2.2.12

#### **Measurement Procedure:**

(1) Set-up followed by TIA/EIA-603 2.2.12 (Substitution Method)

(2) Pd (dBm) = Pg (dBm) - Cable loss (dB) + antenna gain (dB)

(where, Pd is the equivalent power and Pg is the generator output into the substitution antenna)

#### LIMIT

All spurious emission are to be attenuated by at least  $50+10\log_{10}{(P)}$  dBc The rated power of 10mW gives a limit of -20dBm

## Measurement Data: Attached for Worst Case

| Freq.<br>(MHz) | Pol.<br>(H/V) | Signal Generator<br>level(dBm) | C.F  | Emission Level (dBm) | Limit<br>(dBm) |
|----------------|---------------|--------------------------------|------|----------------------|----------------|
| 298.63         | V             | -36.34                         | 6.3  | -30.01               | -20            |
| 397.49         | V             | -32.13                         | 6.6  | -25.53               | -20            |
| 496.30         | V             | -41.10                         | 5.5  | -35.60               | -20            |
| 595.23         | V             | -40.82                         | 9.2  | -31.62               | -20            |
| 2688.4         | V             | -42.44                         | 10.1 | -32.34               | -20            |
|                |               |                                |      |                      |                |

# Remarks

C.F = Antenna gain - Cableloss

No emissions were detected at a level greater than 20dB below limit.

# 3.2.4 Emission Masks (Occupied Bandwidth)

#### **Definition:**

- The term transmitter Sideband Spectrum denotes the sideband energy produced at a discrete frequency separation from the carrier up to the test bandwidth due to all sources of unwanted noise within the transmitter in a modulated condition.

Specification : 47 CFR 2.1049(c)(1)

Test method : ANSI/TIA/EIA-603-C-2004

#### **Measurement Procedure:**

- (1) Set the ref level to the RF power output.
- (2) Antenna was replaced with a short connector
- (3) The spectrum offset was adjusted to compensate the losses caused by the connection.

Set spectrum, RBW = 100Hz, VBW = 100Hz, SPAN = 50KHz

- (4) Set the EUT at modulation mode.
- (5) The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

#### **Measurement Data:**

#### 3.2.5 Transient Frequency Behavior

#### **Definition:**

- The transient frequency behavior is a measure of the difference, as a function in time. of the actual transmitter frequency to the assigned transmitter frequency when the transmitted RF output power is switched on or off.

Specification : 47 CFR 90.214

Test method : ANSI/TIA/EIA-603-C-2004

#### **Measurement Procedure:**

- The EUT was set up as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a guide.
- The transmitter was turned on.
- Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as step f.
- The transmitter was turned off.
- An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step f, as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at step h.
- The oscilloscope was set up using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) of 5ms/div (VHF).
- The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step l.
- The carrier on-time as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The carrier off-time as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.
- For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for  $\pm 2.5$  /  $\pm 1.25$  kHz deviation (or 50% modulation). With level constant, the signal level was increased 16dB.
- For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

#### **Measurement Data:**

# 3.2.6 Frequency Stability

#### **Definition:**

- Modulation limiting refers to the transmitter circuits ability to limit the transmitter from producing deviations due to modulation in excess of a rated system deviation.

Specification : 47 CFR 2.1055

Test method : ANSI/TIA/EIA-603-C-2004

#### **Measurement Procedure:**

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -30 to +60 using an environmental chamber.
- b) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification- The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within  $\pm 0.00025(\pm 2.5 \text{ppm})$  of the center frequency.

#### Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25 to 27 to provide a reference).
- 2. The equipment is subjected to an overnight "soak" at -30 without power applied.
- 3. After the overnight "soak" at 30 (usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements are made at 10 interval up to room temperature. At least a period of one and one half-hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency measurements are at 10 intervals starting at -30 up to +60 allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after reapplying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

NOTE: The EUT is tested down to the battery endpoint.

#### **Measurement Data:**

# 3.2.7 Emissions Designator (Part 2.201)

Referencing Part 2.201 and 2.202 of the FCC Rules and Regulation and using the following formula the Emissions Designator(s) and Necessary Bandwidths were calculated.

Necessary Bandwidth:

B = 2M + 2DK

Frequency deviation (D) = 5.1 KHz

Baud rate = 960 baud

M = Baud / 2 = 1200 / 2 = 480

D = 5.1 KHz and using K = 1

For the 5.1 KHz deviation:

B = 2 (480) + (2) (5100) (1) = 11160

Emission Designator: The EUT is an FM device containing digital information for data transmission therefore the

emission designator is F1D.

Final emission designator: 11K2F1D

# 3.2.8 POWER INPUT (Part 2.1033 (c))

DC Voltages and Current into Final Amplifier:

POWER INPUT

FINAL AMPLIFIER ONLY

Vce = 12 Volts

IC = 45 mA

## 3.2.9 AC Conducted Emissions

#### **Procedure:**

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

### **Measurement Data: Complies**

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.
- The used antenna is "R-AN2400-1901RS" and it gave the worse case emissions.

#### Minimum Standard: FCC Part 15.207(a)/EN 55022

| Frequency Range | Conducted Limit (dBuV) |            |  |
|-----------------|------------------------|------------|--|
| (MHz)           | Quasi-Peak             | Average    |  |
| 0.15 ~ 0.5      | 66 to 56 *             | 56 to 46 * |  |
| 0.5 ~ 5         | 56                     | 46         |  |
| 5 ~ 30          | 60                     | 50         |  |

<sup>\*</sup> Decreases with the logarithm of the frequency

## AC Conducted Emissions at normal operation mode – Line



243 Juhug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : LM-T100 Phase : LINE

Test Mode : TX mode Test Power : 120 / 60

Temp./Humi, : 25 / 61 Test Engineer : B.S.KIM



## AC Conducted Emissions at normal operation mode - Neutral



243 Juhug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : LM-T100 Phase : NEUTPAL

Test Mode : TX mode Test Power : 120 / 60

Temp./Humi, : 25 / 61 Test Engineer : B.S.KIM



Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

# APPENDIX I

# TEST EQUIPMENT USED FOR TESTS

|    | Description              | Model No.   | Serial No.    | Manufacturer  | Next Cal. Date |
|----|--------------------------|-------------|---------------|---------------|----------------|
| 1  | Spectrum Analyzer        | FSV-30      | 100757        | R&S           | Feb-10         |
| 2  | Spectrum Analyzer        | 8563E       | 3425A02505    | НР            | Apr-10         |
| 3  | Spectrum Analyzer        | 8594E       | 3710A04074    | HP            | Oct-09         |
| 4  | Signal Generator         | 8648C       | 3623A02597    | НР            | Apr-10         |
| 5  | Signal Generator         | 83711B      | US34490456    | НР            | Apr-10         |
| 6  | Attenuator (3dB)         | 8491A       | 37822         | НР            | Oct-09         |
| 7  | Attenuator (10dB)        | 8491A       | 63196         | НР            | Oct-09         |
| 8  | Attenuator (30dB)        | 8498A       | 1801A06689    | НР            | Oct-09         |
| 9  | EMI Test Receiver        | ESVD        | 843748/001    | R&S           | Apr-10         |
| 10 | Horn Antenna(18 ~ 40GHz) | SAS-574     | 154           | Schwarzbeck   | Nov-10         |
| 11 | Horn Antenna(18 ~ 40GHz) | SAS-574     | 155           | Schwarzbeck   | Nov-10         |
| 12 | RF Amplifier             | 8447D       | 2949A02670    | HP            | Oct-10         |
| 13 | RF Amplifier             | 8449B       | 3008A02126    | HP            | Apr-10         |
| 14 | Test Receiver            | ESHS10      | 828404/009    | R&S           | Apr-10         |
| 15 | TRILOG Antenna           | VULB 9160   | 9160-3212     | SCHWARZBECK   | Apr-11         |
| 16 | LogPer. Antenna          | VULP 9118   | 9118 A 401    | SCHWARZBECK   | Apr-11         |
| 17 | Biconical Antenna        | BBA 9106    | VHA 9103-2315 | SCHWARZBECK   | Apr-11         |
| 18 | Horn Antenna             | 3115        | 00055005      | ETS LINDGREN  | Mar-11         |
| 19 | Horn Antenna             | BBHA 9120D  | 9120D122      | SCHWARZBECK   | Dec-11         |
| 20 | Dipole Antenna           | VHA9103     | 2116          | SCHWARZBECK   | Nov-09         |
| 21 | Dipole Antenna           | VHA9103     | 2117          | SCHWARZBECK   | Nov-09         |
| 22 | Dipole Antenna           | VHA9105     | 2261          | SCHWARZBECK   | Nov-09         |
| 23 | Dipole Antenna           | VHA9105     | 2262          | SCHWARZBECK   | Nov-09         |
| 24 | Hygro-Thermograph        | THB-36      | 0041557-01    | ISUZU         | Apr-10         |
| 25 | Splitter (SMA)           | ZFSC-2-2500 | SF617800326   | Mini-Circuits | -              |
| 26 | RF Switch                | MP59B       | 6200414971    | ANRITSU       | -              |
| 27 | Power Divider            | 11636A      | 6243          | HP            | Oct-09         |
| 28 | DC Power Supply          | 6622A       | 3448A03079    | HP            | Oct-09         |
| 29 | Frequency Counter        | 5342A       | 2826A12411    | HP            | Apr-10         |
| 30 | Power Meter              | EPM-441A    | GB32481702    | HP            | Apr-10         |
| 31 | Power Sensor             | 8481A       | 2702A64048    | HP            | Apr-10         |
| 32 | Audio Analyzer           | 8903B       | 3729A18901    | HP            | Oct-09         |
| 33 | Modulation Analyzer      | 8901B       | 3749A05878    | HP            | Oct-09         |
| 34 | TEMP & HUMIDITY Chamber  | YJ-500      | LTAS06041     | JinYoung Tech | Oct-09         |
| 35 | LOOP-ANTENNA             | FMZB 1516   | 151602/94     | SCHWARZBECK   | Mar-11         |
| 36 | Stop Watch               | HS-3        | 601Q09R       | CASIO         | Apr-10         |
| 37 | LISN                     | ENV216      | 100408        | R&S           | Oct-09         |
| 38 | Oscillo Scope            | TDS340A     | B013937       | Tektronics    | Apr-10         |

# APPENDIX II

# **TEST PLOTS**

## **Output power Data:**



#### **Unwanted Emission Measurement Data:**



#### **Emission Masks Measurement Data:**

OPERATING FREQUENCY : 447.8625 MHz

MODULATION : on





# 447.8625MHz TRASIENT TEST DATA





# Frequency Stability Measurement Data:

OPERATING FREQUENCY : 447,862,511 MHz

REFERENCE VOLTAGE: 120 Vac
DEVIATION LIMIT: ± 0.00025 % or 2.5ppm

| VOLTAGE (%) | POWER<br>(VAC) | TEMP<br>(dB) | FREQ<br>(Hz) | Deviation (%) |
|-------------|----------------|--------------|--------------|---------------|
| 100%        | 120            | +20(Ref)     | 447,862,511  | 0.000000      |
| 100%        | 1              | -30          | 447,862,651  | -0.000031     |
| 100%        | 1              | -20          | 447,862,590  | -0.000018     |
| 100%        |                | -10          | 447,862,579  | -0.000015     |
| 100%        | 1              | 0            | 447,862,557  | -0.000010     |
| 100%        |                | +10          | 447,862,542  | -0.000007     |
| 100%        | 1              | +20          | 447,862,511  | 0.000000      |
| 100%        | 1              | +25          | 447,862,491  | 0.000004      |
| 100%        |                | +30          | 447,862,488  | 0.000005      |
| 100%        | 1              | +40          | 447,862,451  | 0.000013      |
| 100%        | 1              | +50          | 447,862,446  | 0.000015      |
| 100%        | 1              | +60          | 447,862,431  | 0.000018      |
| 85%         | 102            | +20          | 447,862,482  | 0.000006      |
| 115%        | 138            | +20          | 447,862,498  | 0.000003      |

