

U.S. Rural Electrification Administration Design and
construction division
1933
T.682 ADFo

Cat^o
ADFo
Add

TRANSMISSION LINE CONSTANTS

FOR

CORONA LIMIT
CORONA LOSS
CHARGING CURRENT
CHARGING KVA

By

Glenn B. Roloson

Engineer, Design and Construction Division

UNITED STATES DEPARTMENT OF AGRICULTURE
Rural Electrification Administration
Design and Construction Division

January 1, 1944

4080

TRANSMISSION LINE CONSTANTS

FOR

CORONA LIMIT, CORONA LOSS

CHARGING CURRENT AND CHARGING KVA

In the determination of the electrical characteristics of a transmission line the corona limit, corona loss, charging current and charging KVA are of considerable significance. Frequently one or more of these items are of major importance. Fortunately, these factors are practically independent of the conductor material. This fact permits a graphical presentation of these data based upon conductor diameter and which is applicable to copper, aluminum, steel and any combinations of these or other metals.

The curves in this paper are prepared on the basis of conductor diameter and for various spacings. All voltages are line to line voltages and corrections for temperature are in Fahrenheit degrees.

CORONA LIMIT

MAY 20 1948

Many experiments and tests have been made to determine corona effects and the maximum voltage at which conductors can be successfully operated. The results are still incomplete and the formulae that have been evolved are approximate only. A formula that was developed by F. W. Peek, Jr. formerly with the General Electric Company has been widely used for voltages up to 220 KV for thirty years and has given excellent results. Peek's formula for the disruptive critical voltage is as follows:

$$E_0 = 21.1 M_0 R \delta \log_e \frac{S}{R}$$

where E_0 is the voltage at which corona loss starts in fair weather and is the corona limit voltage in KV to neutral, M_0 is the roughness or irregularity factor depending on the surface and shape of the conductor, R the radius of the conductor in centimeters, S the spacing of the conductors in centimeters and δ the air density correction factor.

The Corona Limit Curves, Curve Sheets Nos. 1-6 were calculated from the above formula modified so as to be applicable to English units and line to line voltages.

The roughness or irregularity factor has been taken as .93 for solid or tubular conductor, .87 for stranded cable, 6/1 or more strands and .78 for 3 strand conductor.

The Fair-Weather Corona Limits in KV are for line to line voltage and are the voltages at which corona loss starts in fair weather. These curves are for 60 cycle or other commercial frequencies, equilateral spacing, sea level (barometer 29.92 inches) and 77 degrees Fahrenheit. The adjustment for altitudes other than sea level and temperatures other than 77 F. are shown on Air Density Correction Curve, Curve Sheet No. 7. Some investigations indicate that 2/3 of the conductor rise above ambient should be added to the ambient temperature of the air in using the temperature correction factor.

For flat spacing whether horizontal or vertical the Corona Limit KV should be multiplied by 96% for the center conductor and multiplied by 106% for the two outside conductors.

Practice has been to design transmission lines so that they would not be operated in excess of the Fair-weather Corona limit KV. The Corona Limit KV for wet weather is approximately 80% of Fair-weather values.

Investigations by William S. Peterson of the Department of Water and Power of the City of Los Angeles indicate that Peek's formulae do not give accurate results for conductors with diameters greater than 1 inch, that is, for conductors larger than those covered by the curves relating to corona in this paper.

CORONA LOSS

Peek's formula for P the power loss due to corona is as follows:

$$P = \frac{390}{\delta} (F + 25) \sqrt{\frac{R}{S}} (E - E_0)^2 \times 10^{-5}$$

This formula gives the power loss in KW per conductor per mile where F is the frequency and E is the line to neutral voltage in KV. It will be noted that corona loss occurs only when the applied voltage exceeds the corona limit voltage. The frequency was taken as 60 cycles and the formula modified so as to be applicable to line to line voltages. The values of:

$$\frac{390 (60 + 25) \sqrt{\frac{R}{S}}}{3 \times 10^5}$$

were calculated as the Corona Constant and plotted for various diameters and spacings on the Corona Loss Curve, Curve Sheet No. 8. The following formula:

$$KW \text{ CORONA LOSS} = \frac{\text{CORONA CONSTANT } (\text{APPLIED KV} - \text{CORONA LIMIT KV})^2}{\text{AIR DENSITY CORRECTION FACTOR}}$$

gives the corona loss in KW per conductor per mile. The Applied KV and Corona Limit KV are line to line voltages. The Corona Limit KV is obtained from the Curve Sheets Nos. 1 - 6 modified by the Air Density Correction Factor as determined from Curve Sheet No. 7. For equilateral spacing the total line loss per mile is 3 times the loss per conductor per mile.

For flat spacing either horizontal or vertical the Corona Limit KV as obtained from Curve Sheets Nos. 1-6 and adjusted in accordance with Curve Sheet No. 7 should be multiplied by 96% to obtain the Corona Limit KV of the center conductor and by 106% for the Corona Limit KV of an outside conductor and these values of Corona Limit KV when substituted in the above KW Corona Loss formula will give the respective losses per mile for the center conductor and an outside conductor. For flat spacing the total line loss per mile is found by adding the loss per mile of the center conductor to 2 times the loss per mile of an outside conductor.

In order to determine the corona loss in foul or wet weather the Corona Limit KV as shown on Curve Sheets Nos. 1-6 is multiplied by 80% and after adjustment for altitude and temperature this reduced value of Corona Limit KV is substituted in the KW Corona Loss formula and the loss per mile per conductor and per mile of line is calculated in the same manner as outlined for fair weather conditions.

For conductors from .7 to 1 inch in diameter it is likely that the more detailed empirical method of Carroll and Rockwell of Stanford University will give more accurate results for the conductors which it covers than Peek's formulae.

CHARGING CURRENT

The Charging Current Curves for single phase line, Curve Sheet No. 9 where I is the charging current was calculated from the formula:

$$I = \frac{1}{2} E \frac{2 \pi F \times 38.83 \times 10^{-9}}{\log_{10} \frac{S}{R}}$$

The charging current formula for equilateral spacing where I is the charging current per conductor and E the voltage to neutral,

$$I = E \frac{2\pi F \times 38.83 \times 10^{-9}}{\log_{10} \frac{S}{R}}$$

was used in making the calculations for the Charging Current Curves for 3 phase equilateral spacing, Curve Sheets No. 10-20, except as modified so as to be applicable to line to line voltages.

The charging current formula for flat spacing, either vertical or horizontal, where I is the equivalent charging current per conductor, E the voltage to neutral and A the distance between adjacent conductors,

$$I = \frac{2\pi F \times 38.83 \times 10^{-9}}{\log_{10} \frac{1.26A}{R}}$$

was used in making the calculations for the Charging Current Curves for 3 phase flat spacing, Curve Sheets No. 21-31 except as modified so as to be applicable to line to line voltages. In a line without transpositions the charging current in the middle conductor will differ from that in the outside conductors. The current indicated by the Charging Current Curves for flat spacing are correct only for lines that are transposed at regular intervals. However, the equivalent charging current may be used for calculating voltage rise for lines with no transpositions or lines transposed at regular intervals.

The above charging current formulae do not take into account the effect of the line capacitance to earth as this effect is slight.

CHARGING KVA

The Charging KVA Curves, Curve Sheets No. 32 - 54 are based on the preceding charging currents. Line transposition or absence of transpositions have no effect on the accuracy of the Charging KVA Curves.

COPPER EQUIVALENT

The curve of Copper Equivalent Based Upon Resistance affords a ready means of determining the copper equivalent of various types of conductors.

References:

Dielectric Phenomena in High Voltage Engineering,
F. W. Peek, Jr., Third Edition, 1929.

Standard Handbook for Electrical Engineers,
Seventh Edition, 1941.

Transactions American Institute of Electrical Engineers, 1933,
Vol. 52, Page 62.

Transactions American Institute of Electrical Engineers, 1937,
Vol. 56, Page 558.

Transmission Line Formulas, Herbert B. Dwight,
Second Edition, 1925.

SOLID OR TUBULAR CONDUCTOR
 $m_0 = .93$

SOLID OR TUBULAR CONDUCTOR
 $M_o = .93$

CABLE - 7 OR MORE STRANDS
 $m_o = .87$

CABLE - 7 OR MORE STRANDS

 $m_0 = .87$

3 STRAND CONDUCTOR
 $m_0 = .78$

3 STRAND CONDUCTOR
 $m_o = .78$

CORONA LOSS
60 CYCLE

AMPERES

SPACING
IN FEET

12.47 KV
CHARGING CURRENT PER CONDUCTOR, PER MILE
3-PHASE, 60 CYCLE
EQUILATERAL SPACING

OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

30

3

20

4

10

5

5

6

0

7

22 KV
CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
EQUILATERAL SPACING

1 2 3 4 5 6 7 8 9 10

OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

5'

10

14

18

22

26

30

34

38

38 KV

LOADING CURRENT PER CONDUCTOR PER PHASE

3 PHASE, 60 CYCLE

EQUILATERAL SPACING

0 1 2 3 4 5 6 7 8 9 10

CONDUCTOR SPACING IN INCHES

SPACING
(inches)

10

12

14

16

18

6.6 KV

CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
EQUILATERAL SPACING

1 2 3 4 5 6 7 8 9 10

OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

SPACING DIAMETER IN INCHES

NO. OF COILS
CHARGING CURRENT PER COIL
3-PHASE, 50% C.H.P.
EQUILATERAL, 50% C.H.P.

1 2 3 4 5 6 7
OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

50

48

46

44

42

40

38

36

34

32

30

28

6

10

12

14

16

20

25

132 KV
CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
EQUILATERAL SPACINGS

0 1 2 3 4 5 6 7 8 9 10

OUTSIDE DIAMETER IN INCHES

OUTSIDE DIAMETER

SPACING
(FEET)

25

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

14'

16'

20'

26'

30'

35'

287 KV

CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
EQUAL SPACING

1 2 3 4 5 6 7 8 9 10
OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

.08

10'

.06

12'

.04

14'

.02

16'

.00

18'

.98

20'

.96

25'

.94

30'

.92

35'

.90

.88

.86

.84

.82

.80

.78

.76

.74

.72

.70

2 3 4 5 6 7 8 9 10

OUTSIDE DIAMETER IN INCHES

330 KV
CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
EQUILATERAL SPACING

SPACING
(FEET)

12.47 KV

CHARGING CURRENT PER CONDUCTOR PER MILE

3 PHASE, 60 CYCLE
FLAT SPACING

2 4 6 8 10

OUTSIDE DIAMETER IN INCHES

OUTSIDE DIA.

SPACING
(FEET)

10

9

8

7

6

22 KV
CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
FLAT SPACING

1 2 3 4 5 6 7 8 9 10

OUTSIDE DIAMETER IN INCHES

SPACING
(FEET)

33 KV
CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
FLAT SPACING

OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

10

17

16

15

14

13

12

11

10

4'

5'

6'

8'

10'

12'

44 KV
CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
FLAT SPACING

1 2 3 4 5 6 7 8 9 10

OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

26

5'

25

6'

24

8'

23

10'

22

12'

21

14'

20

16'

19

18

17

16

15

56 KV

CHARGING CURRENT PER CONDUCTOR PER MILE
3-PHASE, 60 CYCLE
FLAT SPACING

1 2 3 4 5 6 7 8 9 10

OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

42

41

40

39

38

37

36

35

34

33

32

31

30

6'

5'

4'

3'

2'

10 KV

MAXIMUM CURRENT PER CONDUCTOR PER 100' 2

3-PHASE, 60 CYCLE

FLAT SPACING

OUTSIDE DIAMETER IN INCHES

PROPERTIES

SPACING
(FEET)

46

44

42

40

38

36

34

32

30

28

26

8'

10'

12'

14'

16'

20

132 KV
CHARGING CURRENT PER CONDUCTOR PER MILE
3 PHASE, 60 CYCLE
FLAT SPACING

1 2 3 4 5 6 7 8 9 10
OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
(FEET)

54

10'

52

12'

50

14'

48

16'

46

20'

44

25'

42

40

38

36

34

32

154 KV

CHARGING CURRENT PER CONDUCTOR PER MILLE

3-PHASE, 60 CYCLE

FLAT SPACING

.1 .2 .3 .4 .5 .6 .7 .8 .9 .0

OUTSIDE DIAMETER IN INCHES

AMPERES

SPACING
IN FEET

72

70

68

66

64

62

60

58

56

54

52

50

48

46

12

14

16

20

25

30

220 KV
CHARGING CURRENT PER CONDUCTOR PER MILE
3-PHASE, 60 CYCLE
FLAT SPACING

1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

OUTSIDE DIAMETER IN INCHES

SPACING
(FEET)

2

KVA

22

21

20

19

18

17

16

15

14

13

12

3 4 5 6

7.2 KV
CHARGING KVA PER MILE
SINGLE PHASE, 60 CYCLE

4 5 6 7 8 9 10
OUTSIDE DIAMETER IN INCHES

22 KV
CHARGING KVA PER MILE
3 PHASE, 60 CYCLE
EQUILATERAL SPACING

10
9
8
7
6
5
4
3
2
1

2
3
4
5
6
7
8
9
10

OUTSIDE DIAMETER IN INCHES

SPACING
(FEET)

KVA

4.0

3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4

2.2

2.0

SPACING
(FEET)

KVA

40

38

36

34

32

30

28

26

24

22

20

22 KV
CHARGING KVA PER MILE
3-PHASE, 60-CYCLE
EQUILATERAL SPACING

OUTSIDE DIAMETER IN INCHES

10
9
8
7
6
5
4
3
2
1

OUTSIDE DIAMETER IN INCHES

33 KV
CHARGING KVA PER MILE
5 PHASE, 60 CYCLE
EQUILATERAL SPACING

SPACING
(FEET)

KVA

HOT &
CHARGING KVA PER MILE
3 PHASE, 60 CYCLE
EQUIVALENT SPACING

SPACING
(FEET)

154 KV
CHARGING KVA PER MILE
3 PHASE, 60 CYCLE
EQUILATERAL SPACING

OUTSIDE DIAMETER IN INCHES

SPACING
(FEET)

14' 16' 20' 25' 30' 35'

KVA

550 KV
CHARGING KVA SET WITH
3 PHASE, SO CIRCLE
EQUAL SPACING

SPACING
IN FEET

2

3

4

5

6

12

11

10

9

8

7

6

10

9

8

7

6

5

4

3

2

1

0

12.47 KV
CHARGING KVA PER MILE
3 PHASE, 60 CYCLE
FLAT SPACING

22 KV
CHARGING KVA PER MILE
3-PHASE, 60 CYCLE
FLAT SPACING

DUTY DIA. IN INCHES
.6
.5
.4
.3
.2
.1

SPACING
(FEET)

KVA

4.0

3.6

3.4

3.2

3.0

2.8

2.6

2.4

2.2

2.0

NVA

9

8

7

6

5

4

3

2

1

110 KV,
CHARGING KVA PER MILE
3-PHASE, 60-CYCLE
FLAT SPACING

OUTSIDE DIAMETER IN INCHES

.9 .8 .7 .6 .5 .4 .3 .2 .1 .0

OUTLINE FIGURES IN INCHES

132 KV
CHARGING KVA PER MILE
3-PHASE, 50 CYCLE
FLAT SPACING

SPACING
(FEET)

KVA

110

100

90

80

70

60

10

10

OUTLINE DIAMETER IN INCHES

2 4 6 8

280

300

320

340

360

380

400

420

440

460

KVA

SPACING
(FEET)

14
16
20
25
30
35

297 KV
CHARGING KVA PER MILE
3-PHASE, 60 CYCLE
FLAT SPACING

INDEX

	Page
General	1
	Curve Sheet No.

CORONA LIMIT

Solid or Tubular Conductor, Diameter .1 to .35 inches	1
Solid or Tubular Conductor, Diameter .3 to 1.0 inch	2
Stranded Cable, 7 or More Strands, Diameter .1 to .35 inches	3
Stranded Cable, 7 or More Strands, Diameter .3 to 1.0 inch	4
Three Strand Conductor, Diameter .1 to .35 inches	5
Three Strand Conductor, Diameter .3 to 1.0 inch	6
Corona Correction Factors, Air Density and Temperature	7
Corona Loss Curve	8

CHARGING CURRENT

7.2 KV, Single Phase	9
12.47 KV, Equilateral Spacing	10
22 KV, Equilateral Spacing	11
33 KV, Equilateral Spacing	12
44 KV, Equilateral Spacing	13
66 KV, Equilateral Spacing	14
110 KV, Equilateral Spacing	15
132 KV, Equilateral Spacing	16
154 KV, Equilateral Spacing	17
220 KV, Equilateral Spacing	18
287 KV, Equilateral Spacing	19
330 KV, Equilateral Spacing	20
12.47 KV, Flat Spacing	21
22 KV, Flat Spacing	22
33 KV, Flat Spacing	23
44 KV, Flat Spacing	24
66 KV, Flat Spacing	25
110 KV, Flat Spacing	26
132 KV, Flat Spacing	27
154 KV, Flat Spacing	28
220 KV, Flat Spacing	29
287 KV, Flat Spacing	30
330 KV, Flat Spacing	31

CHARGING KVA

7.2	KV, Single Phase	
12.47	KV, Equilateral Spacing	32
22	KV, Equilateral Spacing	33
33	KV, Equilateral Spacing	34
44	KV, Equilateral Spacing	35
66	KV, Equilateral Spacing	36
110	KV, Equilateral Spacing	37
132	KV, Equilateral Spacing	38
154	KV, Equilateral Spacing	39
220	KV, Equilateral Spacing	40
287	KV, Equilateral Spacing	41
330	KV, Equilateral Spacing	42
12.47	KV, Flat Spacing	43
22	KV, Flat Spacing	44
33	KV, Flat Spacing	45
44	KV, Flat Spacing	46
66	KV, Flat Spacing	47
110	KV, Flat Spacing	48
132	KV, Flat Spacing	49
154	KV, Flat Spacing	50
220	KV, Flat Spacing	51
287	KV, Flat Spacing	52
330	KV, Flat Spacing	53
		54

COPPER EQUIVALENT

Copper Equivalent, Based Upon Resistance

55

