Lab - 1

Verilog Design Entry, Synthesis and Behavioral Simulation

FPGA Flow

• It is a Multi-step process

Design Entry

- Can be done using various techniques,
 - Schematic
 - Draw your design on computer using gates and wires
 - Hardware Descriptive Language (HDL)
 - Fast, language-based process
 - no need to design in lower level hardware
 - State-Machine
 - Complex and deprecated

Hardware Descriptive Languages (HDLs)

- Used to describe the structure and behavior of electronic circuits (mostly digital logic circuits).
- There are lot of HDLs,
 - Verilog
 - VHDL
 - SystemVerilog
 - Scala Chisel

Synthesis

- Code is translated into an actual circuit with elements such as gates, flip flops, multipliers, etc.
- It is a multi-step process
 - Process begins with a syntax check
 - Optimizes reduction of logic, elimination of redundant logic, reduction of the size of the design
 - Connect the design to Logic (Wiring up)
 - Accumulation of Design Netlist

module and2 (c, b, a); output c; input a,b; assign c = a&b; endmodule

Vivado has its own proprietary tool to synthesize the design

AND gate using Verilog

Synthesized AND gate

FPGA Verification and Simulation

- At the end of each step in the FPGA design flow, you have the opportunity to simulate and test you design.
- verifying that the implemented design performs the required functionality an important part of the FPGA design flow.

Behavioral Simulation (After Design Entry)

- Also called RTL simulation, is performed before synthesis
- Used to check the functionality of the design without constraints
- Test your code and find logic errors.
- Need to write a testbench to Simulate.

EE4301 - Digital Systems Design using Programmable Logic - Summer 2023

END

Any Questions?

