Exploring Distributional Shifts in Large Language Models for Code Analysis

Shushan Arakelyan¹, Rocktim Jyoti Das², Yi Mao³, Xiang Ren¹

¹University of Southern California, ²IIT Delhi, ³Microsoft Azure AI

Motivation

20 years ago...

"What characteristics differ between projects used for building predictors?"

Open source	Yes/No		
Global	Yes/No		
development			
Code reviews	Yes/No		
Static checkers	Yes/No		
•••			

Today

More data

Larger models

More deployment

Same challenges?

Data preparation

CODE SEARCH	TRAINING	DEV	TESTING
Go	635,635	28,483	14,291
JAVA_	908.886	30,655	26.909
JAVASCRIPT	247,773	16,505	6,483
PHP	1,047,406	52,029	28,391
PYTHON	824,342	46,213	22,176
Ruby	97,580	4,417	2,279
	<u> </u>		
Tr	ain		
org. 9'	737		
repos. 158	858		
-	268		
company	System	Comp	onent
1	†		<u> </u>
itHub repo owners	GitHub repo-s	Folde reposi	
			_

Experimental setup

Train data

Test both models on unseen samples from the target domain

Models and methods

Results: Performance ID vs OOD

16

14 12 OOD

CodeT5

Codex

Code generation

How to improve OOD performance?

Training

How to improve OOD performance?

4/8/32 most similar examples from training data, combine and deduplicate

4/8 most similar examples from training data, used as demonstrations

Results [CodeT5]

Training does not get rid of ID vs OOD performance discrepance

Supervision with retrieved examples is more effective!

Results [Codex]

Code summarization

Code generation

Supervision with retrieved examples is effective with ICL

Findings

Splits naturally occurring in software present distributional shift challenge

 Domain adaptation can be effective with a very small amount of data

Retrieving examples for supervision is effective in combating distribution shift