中心无限除环构造

戚天成

2023年6月25日

这份笔记主要用于记录中心无限除环具体例子的构造,主要参考文献是 [Lam01]. 除环是抽象代数中的基本研究对象,它是特殊的单环,而我们熟知的域是特殊的除环. 根据模论中的 Schur 引理,任何不可约模的自同态环是除环,这是产生除环的一种手段 (反之不然,例如有理加群 $\mathbb Q$ 作为 $\mathbb Z$ -模有非平凡子模,但 $\mathrm{End}_{\mathbb Z}\mathbb Q\cong\mathbb Q$). 除环有非常丰富的理论,一个里程碑式的结果便是 Wedderburn 小定理:有限除环必是域 [MW05]. 因为单环的中心是域,所以除环的中心自然也是域. 在经典域论中,对一个域扩张 $F\subseteq E$,我们感兴趣域扩张的次数 $[E:F]=\dim_F E$. 在除环理论中,因为除环 Δ 可视作域 $Z(\Delta)$ 上的线性空间 (自然也是 $Z(\Delta)$ -代数),故除环分类的研究便化归为两种基本情形:

 $(1)\dim_{Z(\Delta)}\Delta$ 有限, 此时称 Δ 是中心有限除环. $(2)\dim_{Z(\Delta)}\Delta$ 无限, 此时称 Δ 是中心无限除环.

对于前者,每个域明显是中心有限除环、四元数代数 $\mathbb{H} = \mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} k$ 是 \mathbb{R} 上 4 维非交换代数. 而对于后者, 我们很难直接给出具体例子, 因此一下子无法断言是否存在中心无限的除环.

含幺交换环 K 上的**多项式恒等式代数** (或简称 **PI 代数**) 的指满足某个 K 上首一非交换多项式 $f \in K\langle x_1,...,x_n\rangle$ 的结合代数. \mathbb{Z} 上的 PI 代数被称为 **PI 环**. 容易证明作为中心上的模有限生成的环都是 PI 的,所以中心有限除环都是 PI 环. 对于中心无限情形,PI 代数中的 Kaplansky 定理说一个 (左) 本原 PI 环必定是其中心上的有限维中心单代数,因而如果存在中心无限的除环,那么这样的除环一定不是 PI 的. 特别地,我们也可以看到 Artin 环未必是 PI 环. 由此可见,确定中心无限除环的存在性显得十分必要.

由于水平有限, 虽然我全力以赴, 但还是无法避免笔记中存在不足与错误, 欢迎大家指出!

1 具体构造:斜 Laurent 级数环

本节记录的例子来自 D. Hilbert(1899). 固定域 \mathbb{k} 以及域 \mathbb{k} 上的自同构 $\sigma: \mathbb{k} \to \mathbb{k}$, 考虑域 \mathbb{k} 上所有 Laurent 级数作成的加法群 (易见其上有天然的 \mathbb{k} -线性结构)

下面通过域自同构 σ 在此加群上赋予乘法结构:

$$\left(\sum_{i=-\infty}^{\infty} a_i x^i\right) \left(\sum_{j=-\infty}^{\infty} b_j x^j\right) = \sum_{k=-\infty}^{\infty} \left(\sum_{i+j=k} a_i \sigma^i(b_j)\right) x^k.$$

因为对充分小的 i,j, $a_i = b_j = 0$, 所以对固定的 $k \in \mathbb{Z}$, $\sum_{i+j=k} a_i \sigma^i(b_j)$ 是有限和. 并且当 k 充分小时, x^k 的系数为零. 因此上述乘法结构是定义合理的二元运算, 记赋予该乘法运算的 Laurent 级数加群为 $\mathbb{k}((x;\sigma))$. 根据上述乘法运算的定义, 很容易看到该运算满足左右分配律, 为了说明 $\mathbb{k}((x;\sigma))$ 构成环, 还需验证:

Lemma 1.1. 设 $\sigma \in \text{Aut}\mathbb{k}$, 则 $\mathbb{k}((x;\sigma))$ 上定义的乘法具备结合律.

Proof. 任取
$$\sum_{i=-\infty}^{\infty} a_i x^i$$
, $\sum_{j=-\infty}^{\infty} b_j x^j$, $\sum_{t=-\infty}^{\infty} c_t x^t \in \mathbb{k}((x;\sigma))$, 则

$$\left(\sum_{i=-\infty}^{\infty} a_i x^i \cdot \sum_{j=-\infty}^{\infty} b_j x^j\right) \sum_{t=-\infty}^{\infty} c_t x^t = \sum_{k=-\infty}^{\infty} \left(\sum_{i+j+t} a_i \sigma^i(b_j) \sigma^{i+j}(c_t)\right) x^k,$$

$$\sum_{i=-\infty}^{\infty} a_i x^i \left(\sum_{j=-\infty}^{\infty} b_j x^j \cdot \sum_{t=-\infty}^{\infty} c_t x^t \right) = \sum_{k=-\infty}^{\infty} \left(\sum_{i+j+t} a_i \sigma^i(b_j \sigma^j(c_t)) \right) x^k.$$

对固定的 $k \in \mathbb{Z}$, 这里 $\sum_{i+j+t} a_i \sigma^i(b_j) \sigma^{i+j}(c_t)$ 与 $\sum_{i+j+t} a_i \sigma^i(b_j \sigma^j(c_t))$ 均为有限和, 故由 σ 保持乘法即得结论. \square

由此我们看到 $\mathbb{k}((x;\sigma))$ 是 \mathbb{k} -代数, 有乘法幺元 1, 称 $\mathbb{k}((x;\sigma))$ 为**斜 Laurent 级数环** (skew Laurent series ring), 将 $\mathbb{k}((x;\sigma))$ 中元素称为**斜 Laurent 级数**. 在复分析中我们熟知复数域上 Laurent 级数环 $\mathbb{C}((x))$ 是域.

Example 1.2. 若取域自同构 $\sigma = id \in Aut \mathbb{k}$, 则 $\mathbb{k}((x; \sigma))$ 上乘法为

$$\left(\sum_{i=-\infty}^{\infty} a_i x^i\right) \left(\sum_{j=-\infty}^{\infty} b_j x^j\right) = \sum_{k=-\infty}^{\infty} \left(\sum_{i+j=k} a_i b_j\right) x^k.$$

这时斜 Laurent 级数环退化为经典 Laurent 级数环.

一般地, 斜 Laurent 级数环是非交换的. 若 $\sigma \neq id \in Aut \mathbb{k}$, 取 $b \in \mathbb{k}$ 使得 $\sigma(b) \neq b$, 则 $bx \neq \sigma(b)x = xb$. 不过因为这里 \mathbb{k} 是域, 所以它享有良好的性质—— $\mathbb{k}((x;\sigma))$ 是除环.

Proposition 1.3. 斜 Laurent 多项式环 $\Bbbk((x;\sigma))$ 是除环.

Proof. 易见 $\mathbb{k}((x;\sigma))$ 中非零元之积仍非零,故只要证任何 $\mathbb{k}((x;\sigma))$ 中非零元在 $\mathbb{k}((x;\sigma))$ 中有左逆即可. 任 取

$$\alpha = \sum_{i=-\infty}^{\infty} a_i x^i \neq 0 \in \mathbb{k}((x;\sigma)),$$

并设 $t = \min\{i \in \mathbb{Z} | a_i \neq 0\}$,希望构造 $\alpha = a_t x^t + a_{t+1} x^{t+1} + \cdots$ 的逆元. 如果 α 的左逆存在,设为 $\beta = \sum_{j=-\infty}^{\infty} b_j x^j$,则由 $\beta \alpha = 1$ 迫使 $\min\{j \in \mathbb{Z} | b_j \neq 0\} = -t$ 且 $b_{-t} = \sigma^t(a_t)$,对于 $j \geq -t + 1$,均满足

$$\sum_{j+i=k} b_j \sigma^j(a_i) = b_{-t} \sigma^{-t}(a_{k+t}) + b_{-t+1} \sigma^{-t+1}(a_{k+t-1}) + \dots + b_{k-t} \sigma^{k-t}(a_t) = 0, \forall k \ge 1.$$

因此,我们如下递归地定义序列 $\{b_j\}_{j=-t}^{\infty}$: 置 $b_{-t} = \sigma^t(a_t)$. 如果对 $t \leq j-1$ 已经定义好 $b_{-t}, b_{-t+1}, ..., b_{j-1}$ 的取值,定义 $b_j = -[b_{-t}\sigma^{-t}(a_{j+2t}) + b_{-t+1}\sigma^{-t+1}((a_{j+2t-1}) + \cdots + b_{j-1}\sigma^{j-1}(a_{t+1})]\sigma^{-j}(a_t)$. 由此得到 $\beta = b_{-t}x^{-t} + b_{-t+1}x^{-t+1} + \cdots$. 根据 β 的定义,直接验证便知 β 是 α 的左逆. 故 $\mathbb{k}((x;\sigma))$ 是除环.

Exercise. 设 R 是含幺环, $\sigma \in \text{Aut} R$ 是 R 上环自同构. 类似定义斜 Laurent 级数环 $R((x;\sigma))$, 验证它是含幺环并证明当 R 是除环时, $R((x;\sigma))$ 也为除环.

Exercise (Hilbert 原始构造). 设 $\mathbb{k} = \mathbb{Q}(t)$ 是 \mathbb{Q} 上以 t 为变量的有理函数域. 定义

$$\sigma: \mathbb{Q}(t) \to \mathbb{Q}(t), \frac{f(t)}{g(t)} \mapsto \frac{f(2t)}{g(2t)}.$$

验证 σ 是定义合理的域自同构并说明 σ 在 Autlk 中的阶是无穷.

现在我们可以给出主要结论, 它表明中心无限除环的存在性.

Proposition 1.4. 设 k 是域, $\sigma \in \text{Autk}$ 满足阶是无穷. 那么除环 $\Delta = \mathbb{k}((x;\sigma))$ 的中心

$$Z(\Delta) = \mathbb{k}_0 = \{ a \in \mathbb{k} | \sigma(a) = a \}.$$

特别地, Δ 作为 $Z(\Delta)$ 上的线性空间维数无限.

Proof. 任取 $f = \sum_{i=n}^{\infty} a_i x^i \in Z(\Delta)$,对每个 $a \in \mathbb{R}$,利用 af = fa 可知对任何 $a_j \neq 0$ 有 $\sigma^j(a) = a$. 即一旦 f 存在使得 $a_j x^j \neq 0$ 的项,便有 $\sigma^j = id$. 由于 σ 的阶是无穷,故满足 $a_j \neq 0$ 的指标 f 只可能是零. 这一观察表明 $f = a_0 \in \mathbb{R}$. 于是由 fx = xf 立即得到 $f = a_0 \in \mathbb{R}$ 0. 反之,每个 f0 会 为 为 f0 的,以 f0 之,为 为 f0 的,以 f0 之,为 f0 之,为 f0 的,因为 f1 的,因为 f2 的,因为 f2 的,因为 f2 的,因为 f2 的,因为 f2 的,因为 f2

Corollary 1.5. 存在除环 Δ 使得 Δ 是中心无限除环.

Corollary 1.6. 存在左 Artin 单环 R 使得 R 作为 Z(R)-模不是有限生成的.

Corollary 1.7. 存在左 Artin 环 R 使得 R 不是 PI 环.

以下的环 R 均默认有幺元 $1 \neq 0$.

Exercise. 设 R 是单环, 证明: Z(R) 是域.

Exercise. 设 R 是素环, 证明: Z(R) 是整区.

Exercise. 设 R 是左 Noether 环, 证明: R 的满自同态一定单.

Exercise. 设 R 是左 Artin 环, 举例说明 R 的单自同态未必满.

参考文献

[Lam01] T. Y. Lam. A First Course in Noncommutative Rings. Springer-Verlag, 2nd edition, 2001.

[MW05] J. H. Maclagan-Wedderburn. A theorem on finite algebras. Transactions of the American Mathematical Society, 6(3):349–352, 1905.