Probability and Statistics: Lecture-22

Monsoon-2020

by Pawan Kumar (IIIT, Hyderabad) on September 30, 2020 » Online Quiz

- 1. Please login to gradescope
- 2. Attempt the online quiz 4 5
- 3. You may use calculator if necessary
- 4. Time for the quiz is mentioned in the quiz

» Checklist

- 1. Turn off your microphone
- 2. Turn on microphone only when you have question
- 3. Attend Tutorials to Practice Problems or to discuss solutions or doubts

» Table of contents

1. Solved Problems

2. Continuous Distributions

Problem-1

Consider the PDF of the random variable X

Problem-1

Consider the PDF of the random variable X

$$f_{\mathcal{X}}(extbf{ extit{x}}) = egin{cases} c extbf{ extit{x}}^2 & | extbf{ extit{x}}| \leq 1 \ 0 & ext{otherwise} \end{cases}$$

Problem-1

Consider the PDF of the random variable X

$$f_{\mathsf{X}}(\mathsf{x}) = egin{cases} c\mathsf{x}^2 & & |\mathsf{x}| \leq 1 \ 0 & & \mathsf{otherwise} \end{cases}$$

* Find the constant c

Problem-1

Consider the PDF of the random variable *X*

$$f_{\!X}({m{ extbf{x}}}) = egin{cases} c{m{ extbf{x}}}^2 & |{m{ extbf{x}}}| \leq 1 \ 0 & ext{otherwise} \end{cases}$$

- * Find the constant c
- * Find E[X] and Var[X]

Problem-1

Consider the PDF of the random variable X

$$f_{X}(x) = \begin{cases} cx^{2} & \text{if } x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

- * Find the constant c
- * Find E[X] and Var[X]
- * Find $P(X \ge \frac{1}{2})$

1. To find c, we have

$$1 = \int_{-\infty}^{\infty} f_X(u) du$$

$$= \int_{-1}^{1} cu^2 du$$

$$= \frac{2}{3}c \implies c = \frac{3}{2}.$$

1. To find c, we have

$$1 = \int_{-\infty}^{\infty} f_X(u) \, du$$
$$= \int_{-1}^{1} cu^2 \, du$$
$$= \frac{2}{3}c \implies c = \frac{3}{2}.$$

2. To find E[X], we have

$$E[X] = \int_{-1}^{1} u f_X(u) du$$
$$= \frac{3}{2} \int_{-1}^{1} u^3 du$$
$$= 0$$

1. To find c, we have

$$1 = \int_{-\infty}^{\infty} f_X(u) \, du$$
$$= \int_{-1}^{1} cu^2 \, du$$
$$= \frac{2}{3}c \implies c = \frac{3}{2}.$$

2. To find E[X], we have

$$E[X] = \int_{-1}^{1} u f_X(u) du$$
$$= \frac{3}{2} \int_{-1}^{1} u^3 du$$
$$= 0$$

1. We have

Var =
$$E[X^2]$$
 - $E[X]^2$
= $\int_{-1}^1 u^2 f_X(u) du$
= $\frac{3}{2} \int_{-1}^1 u^4 du = \frac{3}{5}$

1. To find c, we have

$$1 = \int_{-\infty}^{\infty} f_X(u) \, du$$
$$= \int_{-1}^{1} cu^2 \, du$$
$$= \frac{2}{3}c \implies c = \frac{3}{2}.$$

1. We have

Var =
$$E[X^2] - E[X]^2$$

= $\int_{-1}^1 u^2 f_X(u) du$
= $\frac{3}{2} \int_{-1}^1 u^4 du = \frac{3}{5}$

2. To find E[X], we have

$$E[X] = \int_{-1}^{1} u f_X(u) du$$
$$= \frac{3}{2} \int_{-1}^{1} u^3 du$$
$$= 0$$

2. To find $P(X \ge \frac{1}{2})$, we have

$$P(X \ge \frac{1}{2}) = \frac{3}{2} \int_{1/2}^{1} x^2 dx = \frac{7}{16}.$$

Problem 2

Consider the PDF of continuous random variable X

$$f_X(x) = \frac{1}{2}e^{-|x|}, \quad \text{for all } x \in \mathbb{R}$$

If $Y = X^2$, find the CDF of Y.

1. We have $R_{\underline{Y}} = [0, \infty)$.

- 1. We have $R_Y = [0, \infty)$.
- 2. For $\mathbf{y} \in [0, \infty)$,

- 1. We have $R_Y = [0, \infty)$.
- 2. For $y \in [0, \infty)$,

$$F_{Y}(y) = P(Y \le y) = P(X^{2} \le y)$$

$$= P(-\sqrt{y} \le X \le \sqrt{y})$$

$$= \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{2} e^{-|x|} dx$$

$$= \int_{0}^{\sqrt{y}} e^{-x} dx = 1 - e^{-\sqrt{y}}$$

Thus,

$$F_{Y}(y) = egin{cases} 1 - e^{-\sqrt{y}} & y \geq 0 \ 0 & ext{otherwise} \end{cases}$$

Problem 3

Consider the PDF of the continuous random variable

Problem 3

Consider the PDF of the continuous random variable

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} 4\mathbf{x}^3 & 0 < \mathbf{x} \leq 1 \\ 0 & ext{otherwise} \end{cases}$$

Problem 3

Consider the PDF of the continuous random variable

$$f_X(x) = egin{cases} 4x^3 & 0 < x \le 1 \\ 0 & ext{otherwise} \end{cases}$$

Find
$$P(X \le \frac{2}{3} \mid X > \frac{1}{3})$$
.

We have

Problem 4

Consider the PDF of random variable X

Problem 4

Consider the PDF of random variable X

$$f_{\chi}(\mathbf{x}) = \begin{cases} \mathbf{x}^{2}(2\mathbf{x} + \frac{3}{2}) & 0 < \mathbf{x} \le 1\\ 0 & \text{otherwise} \end{cases}$$

Problem 4

Consider the PDF of random variable X

$$f_{\mathsf{X}}(\mathsf{x}) = egin{cases} \mathsf{x}^2(2\mathsf{x} + rac{3}{2}) & 0 < \mathsf{x} \leq 1 \ 0 & \mathsf{otherwise} \end{cases}$$

If
$$Y = \frac{2}{X} + 3$$
, find $Var(Y)$.

- » Solution to Problem 4
 - * We have

$$\operatorname{Var}(Y) = \operatorname{Var}(\frac{2}{X} + 3) = 4 \operatorname{Var}(\frac{1}{X})$$

* We have

$$\operatorname{Var}(\mathbf{Y}) = \operatorname{Var}(\frac{2}{\mathbf{X}} + 3) = 4\operatorname{Var}(\frac{1}{\mathbf{X}})$$

* We now find
$$\operatorname{Var}(\frac{1}{\mathbf{X}}) = \mathbf{E}[\frac{1}{\mathbf{X}^2}] - (\mathbf{E}[\mathbf{X}])^2$$

* We have

$$\mathsf{Var}(\mathit{Y}) = \mathsf{Var}(\frac{2}{\mathit{X}} + 3) = 4 \, \mathsf{Var}(\frac{1}{\mathit{X}})$$

- * We now find $Var(\frac{1}{\mathbf{Y}}) = E[\frac{1}{\mathbf{Y}^2}] (E[X])^2$
- * We have

$$E\left[\frac{1}{X}\right] = \int_0^1 x(2x + \frac{3}{2}) \, dx = \frac{17}{12}$$
$$E\left[\frac{1}{X^2}\right] = \int_0^1 (2x + \frac{3}{2}) \, dx = \frac{5}{2}$$

* We have

$$Var(Y) = Var(\frac{2}{X} + 3) = 4 Var(\frac{1}{X})$$

- * We now find $Var(\frac{1}{X}) = E[\frac{1}{X^2}] (E[X])^2$
- * We have

$$E[\frac{1}{X}] = \int_0^1 x(2x + \frac{3}{2}) \, dx = \frac{17}{12}$$
$$E[\frac{1}{X^2}] = \int_0^1 (2x + \frac{3}{2}) \, dx = \frac{5}{2}$$

* Hence,

$$\operatorname{Var}(\frac{1}{X}) = \frac{71}{144}$$

* We have

$$\operatorname{Var}(Y) = \operatorname{Var}(\frac{2}{X} + 3) = 4\operatorname{Var}(\frac{1}{X})$$

- * We now find $\operatorname{Var}(\frac{1}{\mathbf{X}}) = E[\frac{1}{\mathbf{X}^2}] (E[\mathbf{X}])^2$
- * We have

$$extstyle E[rac{1}{X}] = \int_0^1 x(2x + rac{3}{2}) \, dx = rac{17}{12} \ E[rac{1}{X^2}] = \int_0^1 (2x + rac{3}{2}) \, dx = rac{5}{2} \$$

* Hence,

$$\mathsf{Var}(rac{1}{oldsymbol{\chi}}) = rac{71}{144}$$

*
$$\operatorname{Var}(Y) = 4 \operatorname{Var}(\frac{1}{X}) = \frac{71}{36}$$

Problem 5

Let
$$extit{X} \sim \operatorname{Uniform}(-\frac{\pi}{2},\pi)$$
 and $extit{Y} = \sin(extit{X}).$ Find $extit{f}_{ extit{Y}}(extit{y}).$

* Here Y = g(X), where g is a differentiable function

Problem 5

Let $X \sim \text{Uniform}(-\frac{\pi}{2},\pi)$ and $Y = \sin(X)$. Find $f_Y(y)$.

- * Here Y = g(X), where g is a differentiable function
- * g is not monotone, but it can be divided to a finite number of regions in which it is monotone

Problem 5

Let $X \sim \text{Uniform}(-\frac{\pi}{2}, \pi)$ and $Y = \sin(X)$. Find $f_Y(y)$.

- * Here Y = g(X), where g is a differentiable function
- * g is not monotone, but it can be divided to a finite number of regions in which it is monotone

» Answer to previous problem 5... WAS a misfake, refer to this corrected stide [15/24]

Recall: Uniform Distribution

The PDF of $X \sim \mathsf{Uniform}(a,b)$ is given by

Recall: Uniform Distribution

The PDF of $X \sim \text{Uniform}(a, b)$ is given by

$$f_X = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & x < a \text{ or } x > b \end{cases}$$

Recall: Uniform Distribution

The PDF of $X \sim \text{Uniform}(a, b)$ is given by

$$f_X = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & x < a \text{ or } x > b \end{cases}$$

* The expectation E[X] is given by

Recall: Uniform Distribution

The PDF of $X \sim \text{Uniform}(a, b)$ is given by

$$f_X = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & x < a \text{ or } x > b \end{cases}$$

* The expectation E[X] is given by

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{1}{b-a} dx = \frac{a+b}{2}$$

Recall: Uniform Distribution

The PDF of $X \sim \text{Uniform}(a, b)$ is given by

$$f_X = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & x < a \text{ or } x > b \end{cases}$$

* The expectation E[X] is given by

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = \int_a^b \frac{1}{b-a} \, dx = \frac{a+b}{2}$$

* To find the variance, we have

Recall: Uniform Distribution

The PDF of $X \sim \text{Uniform}(a, b)$ is given by

$$f_X = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & x < a \text{ or } x > b \end{cases}$$

* The expectation E[X] is given by

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = \int_a^b \frac{1}{b-a} \, dx = \frac{a+b}{2}$$

* To find the variance, we have

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_a^b x^2 \left(\frac{1}{b-a}\right) dx = \frac{a^2 + ab + b^2}{3}$$

Recall: Uniform Distribution

The PDF of $X \sim \text{Uniform}(a, b)$ is given by

$$f_X = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & x < a \text{ or } x > b \end{cases}$$

* The expectation E[X] is given by

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{1}{b-a} dx = \frac{a+b}{2}$$

* To find the variance, we have

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_a^b x^2 \left(\frac{1}{b-a}\right) dx = \frac{a^2 + ab + b^2}{3}$$

* Hence the variance is: $Var(X) = E[X^2] - (E[X])^2 = \frac{(b-a)^2}{12}$

Definition of Exponential Distribution

Let X be a continuous random variable. Here X is said to have exponential distribution with parameter $\lambda>0$ shown as $X\sim \mathsf{Exponential}(\lambda)$, if its PDF is given as follows

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Definition of Exponential Distribution

Let X be a continuous random variable. Here X is said to have exponential distribution with parameter $\lambda>0$ shown as $X\sim \mathsf{Exponential}(\lambda)$, if its PDF is given as follows

$$f_{X}(x) = egin{cases} \lambda e^{-\lambda x} & x > 0 \ 0 & ext{otherwise} \end{cases}$$

Definition of Exponential Distribution

Let X be a continuous random variable. Here X is said to have exponential distribution with parameter $\lambda>0$ shown as $X\sim \mathsf{Exponential}(\lambda)$, if its PDF is given as follows

$$f_{X}(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

The CDF is given by

$$F_X(x) = \int_0^x \underline{\lambda e^{-\lambda t}} dt = \underline{1 - e^{-\lambda t}}$$

Definition of Exponential Distribution

Let X be a continuous random variable. Here X is said to have exponential distribution with parameter $\lambda>0$ shown as $X\sim \mathsf{Exponential}(\lambda)$, if its PDF is given as follows

$$f_{\mathsf{X}}(\mathsf{x}) = egin{cases} \lambda e^{-\lambda \mathsf{x}} & \mathsf{x} > 0 \ 0 & \mathsf{otherwise} \end{cases}$$

The CDF is given by

$$F_X(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda t}$$

The expectation is

Definition of Exponential Distribution

Let X be a continuous random variable. Here X is said to have exponential distribution with parameter $\lambda>0$ shown as $X\sim \mathsf{Exponential}(\lambda)$, if its PDF is given as follows

$$f_{\mathsf{X}}(\mathsf{x}) = egin{cases} \lambda e^{-\lambda \mathsf{x}} & \mathsf{x} > 0 \ 0 & \mathsf{otherwise} \end{cases}$$

The CDF is given by

$$F_X(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda t}$$

The expectation is

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda} \int_0^\infty y e^{-y}$$
$$= \frac{1}{\lambda} [-e^{-y} - y e^{-y}]_0^\infty = \frac{1}{\lambda}$$

Definition of Exponential Distribution

Let X be a continuous random variable. Here X is said to have exponential distribution with parameter $\lambda>0$ shown as $X\sim \mathsf{Exponential}(\lambda),$ if its PDF is given as follows

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} \lambda \mathbf{e}^{-\lambda \mathbf{x}} & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

Definition of Exponential Distribution

Let X be a continuous random variable. Here X is said to have exponential distribution with parameter $\lambda>0$ shown as $X\sim \mathsf{Exponential}(\lambda),$ if its PDF is given as follows

$$f_{\mathsf{X}}(\mathsf{x}) = egin{cases} \lambda e^{-\lambda \mathsf{x}} & \mathsf{x} > 0 \ 0 & \mathsf{otherwise} \end{cases}$$

Var(X) is given by:

$$E[X^{2}] = \int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} dx = \frac{1}{\lambda^{2}} \int_{0}^{\infty} y^{2} e^{-y} dy$$
$$= \frac{1}{\lambda^{2}} \left[-2e^{-y} - 2ye^{-y} - y^{2}e^{-y} \right]_{0}^{\infty} = \frac{2}{\lambda^{2}}$$

Definition of Exponential Distribution

Let X be a continuous random variable. Here X is said to have exponential distribution with parameter $\lambda>0$ shown as $X\sim \mathsf{Exponential}(\lambda),$ if its PDF is given as follows

$$f_{\mathsf{X}}(\mathsf{x}) = egin{cases} \lambda e^{-\lambda \mathsf{x}} & \mathsf{x} > 0 \ 0 & \mathsf{otherwise} \end{cases}$$

Var(X) is given by:

$$E[X^{2}] = \int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} dx = \frac{1}{\lambda^{2}} \int_{0}^{\infty} y^{2} e^{-y} dy$$
$$= \frac{1}{\lambda^{2}} \left[-2e^{-y} - 2ye^{-y} - y^{2}e^{-y} \right]_{0}^{\infty} = \frac{2}{\lambda^{2}}$$

$$Var(X) = E[X^2] - (E[X])^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$