Einführung in die Computerlinguistik

Verarbeitung gesprochener Sprache

WS 2019/2020

Vera Demberg

Sprachverarbeitung

Spracherkennung

Schallsignal

Grundaufgabe der Spracherkennung:

- Gegeben ein kontinuierliches Schallsignal.
- Welche Wortkette wurde vom Sprecher geäußert?

Wortkette

Spracherkennung

Schallsignal Digitale Aufnahme Oszillogramm

Wort /Wortkette

Reine Schwingung

Ein Oszillogramm

Das Oszillogramm für "afa"

Oszillogramme

Vorlesung "Einführung in die CL" 2019/2020

V. Demberg UdS Computerlinguistik

Einzelne Laute als Oszillogramme

- Laute werden charakterisiert durch Kombination von Schwingungen verschiedener Frequenzen
- Im Oszillogramm schwer erkennbar (Überlagerung)
- Deshalb: Überführung in Zeit-Frequenz-Diagramm (Spektrogramm) mittels Komponentenanalyse (Fourier-Transformation)

Spracherkennung: (Vereinfachtes) Schema

Digitale Aufnahme

Zerlegung in Einzelfrequenzen

Spektrogramm für eine Aufnahme von "neunzig"

Spektrogramm für die Vokale i,a,u

- Dunkle Färbung: große Schallenergie in einem bestimmten Frequenzbereich.
- Die Formanten (Obertöne) F1 und F2 sind für die charakteristische Vokalqualität verantwortlich.
- Der Verlauf des Basisformanten F0 (hier nicht sichtbar) gibt die Intonation der Äußerung wieder.

Spracherkennung: (Vereinfachtes) Schema

Spracherkennung: Erster Versuch

- Identifikation von Lautgrenzen im Spektrogramm (Segmentierung)
- Abgleich der Spektrogramm-segmente mit einer Datenbank "idealer" Laute (Identifikation)
- Verknüpfung der identifizierten Laute zu Wörtern und Sätzen.
- Funktioniert nicht, wegen der Varianz des Signals.

Problem 1: Varianz des Signals

- Gleicher Laut / gleiches Wort wird nicht immer gleich ausgesprochen
 - Verschiedene Dialekte
 - Verschiedene Sprecher
 - Unterschiedliche Sprechgeschwindigkeit
 - Physischer und emotionaler Zustand des Sprechers
 - Abhängig von Tonhöhe und Akzent
- Sprachexterne Einflüsse verändern das Signal
 - Raumakustik, Hall, Entfernung
 - Medium: direkte Kommunikation, Telefon, Handy
 - Mikrofonqualität und -charakteristik
 - Hintergrundgeräusche

Spracherkennung: Zweiter Versuch

- Identifikation von Lautgrenzen im Spektrogramm (Segmentierung)
- Erstellung eines Trainingskorpus mit Lautannotationen (alignierte phonetische Annotation)
- Bestimmung von Merkmalsmustern für die Spektrogrammsegmente
- Training eines statistischen Laut-Klassifikators
- Funktioniert nicht, vor allem wegen der Kontinuität des Signals und Koartikulation.

Problem 2: Kontinuität des Signals

- Die Laute eines Wortes lassen sich schwer gegeneinander abgrenzen
 - Wo hört Laut 1 auf, wo fängt Laut 2 an?
 - Dazu kommt das Phänomen der Koartikulation: Laute beeinflussen sich gegenseitig.
 - In Lautfolgen wie [am], [um], [an] kann man nicht den Vokal vom Nasal trennen: Vokal hat Nasal-Qualität und umgekehrt.
 - /k/ wird verschieden realisiert in Koffer, Kind, Kabel
- Wörter sind nur in der Orthografie sauber getrennt.
 - In der gesprochenen Sprache gibt es zwischen Wörtern meistens keine Pause
 - Pausen kommen in spontaner Sprache auch innerhalb von Wörtern vor

"Kein Mensch macht eine Pause."

Koartikulation / Kontextabhängigkeit

Spracherkennung: (Vereinfachtes) Schema

Schallsignal

Oszillogramm

Spektrogramm

Globale statistische Modellierung: Wahrscheinlichste Wortkette, gegeben akustische Merkmale der gesamten Äußerung

Wort /Wortkette

Statistische Modellierung: Allgemeines Schema

- Manuelle Korpusannotation
- Merkmalsspezifikation
- Automatische Merkmalsextraktion
- Training eines statistischen Modells
- Evaluierung

Merkmalsspezifikation

- Was sind die Einheiten, von denen wir ausgehen?
 - Zerlegung des Signals in "Beobachtungen":
 Zeitfenster von z.B. 30 ms

Spektrogramm für ein deutsches Wort

Merkmalsspezifikation: Zeitfenster "neunzig"

Merkmalsspezifikation/-extraktion

- Zerlegung des Signals in "Beobachtungen": Zeitfenster von z.B. 30 ms
- Zerlegung jeder Beobachtung in Frequenzintervalle (z.B. Vierteltonschritte im Standard-12-Ton-System)

Spektrogramm für ein deutsches Wort

Merkmalsspezifikation/-extraktion

- Zerlegung des Signals in "Beobachtungen": Zeitfenster von z.B. 30 ms
- Zerlegung jeder Beobachtung in Frequenzintervalle (z.B. Vierteltonschritte im Standard-12-Ton-System)
- Bestimmung des Schalldrucks (Schallenergie) in jedem Zeit-Frequenz-Fenster
- Resultat: Eine Folge von Einzelbeobachtungen, die durch Merkmalsvektoren charakterisiert sind

Spektrogramm für ein deutsches Wort

Merkmalsmuster, Ausschnitt

	0	1	2	2	3	3						
	0	2	1	1	3	4						
	0	4	5	5	6	6	•••					
	1	4	3	3	6	8						
	2	5	7	7	8	5						
	2	5	9	9	9	7	•••					
\equiv	7	-8	9	9	9	9	•••					

Spracherkennung: (Vereinfachtes) Schema

Statistische Modellierung

• Aufgabe: Ermittle für ein Eingabesignal, dass durch eine Folge von Beobachtungen/ Vektoren $O = o_1 o_2 \dots o_m$ charakterisiert ist:

$$\max_{W} P(W|O) = P(w_1 w_2 \dots w_n | o_1 o_2 \dots o_m)$$

- Wir suchen die wahrscheinlichste Wortfolge gegeben die Beobachtungen O. → sparse-data Problem!
- Erster Schritt: Verwendung des Bayes-Theorems.

Das Bayessche Theorem

Das Bayessche Theorem oder die Bayes-Regel:

$$P(E \mid F) = \frac{P(F \mid E) \cdot P(E)}{P(F)}$$

 Die Bayes-Regel ist ein elementares Gesetz der Wahrscheinlichkeitstheorie. Sie ist überall da nützlich, wo der Schluss von einer Größe F auf eine andere Größe E bestimmt werden soll (typischerweise von einem Symptom auf eine relevante Eigenschaft / die Ursache), die Abhängigkeit in der anderen Richtung (von der Ursache auf das Symptom) aber besser zugänglich ist.

Wie bestimmen wir P(W|O)?

- **Symptom:** Folge von akustischen Beobachtungen $O = o_1 o_2 \dots o_m$
- Ursache: vom Sprecher geäußerte, intendierte Wortkette $W = w_1 w_2 \dots w_n$
- Mit Bayes-Regel : $P(W \mid O) = \frac{P(O \mid W) \cdot P(W)}{P(O)}$

Wie bestimmen wir P(W|O)?

- Symptom: Folge von akustischen Beobachtungen $O = o_1 o_2 \dots o_m$
- Ursache: vom Sprecher geäußerte, intendierte Wortkette $W = w_1 w_2 \dots w_n$
- Mit Bayes-Regel : $P(W \mid O) = \frac{P(O \mid W) \cdot P(W)}{P(O)}$
- Die wahrscheinlichste Wortkette: $\max_{W} P(W \mid O) = \max_{W} \frac{P(O \mid W) \cdot P(W)}{P(O)}$ = $\max_{W} P(O \mid W) \cdot P(W)$
- P(W) ist die globale, "a priori"-Wahrscheinlichkeit der Wortkette W.
- *P(O)*, die Wahrscheinlichkeit des Merkmalsmusters, wird nicht mehr benötigt.

Akustisches Modell und Sprachmodell

$$\max_{W} P(W \mid O) = \max_{W} P(O \mid W) \cdot P(W)$$

- P(O|W) ist die Wahrscheinlichkeit, dass eine Wortfolge in einer bestimmten (durch den Merkmalsvektor bezeichneten) Weise ausgesprochen wird: Akustisches Modell
- P(W) ist die Wahrscheinlichkeit, dass eine bestimmte Wortfolge geäußert wird: "Sprachmodell"

Sprachmodelle

$$\max_{W} P(W \mid O) = \max_{W} P(O \mid W) \cdot \frac{P(W)}{P(W)}$$

- Wie berechnen wir $P(W) = P(w_1 w_2 \dots w_n)$?
- Grundlage ist die Frequenz von Wortfolgen in Korpora.
- Sparse-Data-Problem: Ganze Sätze kommen viel zu selten vor.
- Kettenregel erlaubt die Reduktion von P(w₁w₂ ... w_n) auf bedingte Wahrscheinlichkeiten:

$$P(w_1 w_2 ... w_n)$$

$$= P(w_1) * P(w_2 | w_1) * P(w_3 | w_1 w_2) * ... * P(w_n | w_1 w_2 ... w_{n-1})$$

aber:

• $P(w_n|w_1w_2...w_{n-1})$: Sparse-Data-Problem ist nicht beseitigt!

n-Gramme

- n-Gramm-Methode:
 - Wir approximieren die Wahrscheinlichkeit, dass ein Wort w im Kontext einer beliebig langen Wortfolge auftritt, durch die relative Häufigkeit, mit der es in einem auf n Wörter begrenzten Kontext auftritt ("Markov-Annahme")
 - Dabei wird das Wort selbst mitgezählt. n-Gramm-Wahrscheinlichkeit berücksichtigt also einen Vorkontext von n-1 Wörtern.
- Meistens wird mit Bigrammen und Trigrammen gearbeitet.
- Beispiel Bigramm-Approximation:
 - $P(w_n|w_1w_2... w_{n-1}) \approx P(w_n|w_{n-1})$ $P(w_1w_2... w_n) \approx P(w_1) *P(w_2|w_1) *P(w_3|w_2) * ... P(w_n|w_{n-1})$

How to get from the spectrogram to words

Just reading off the sounds from the spectrogram is hard, because of

- variance in the signal (different voices, dialects)
- continuity of the signal (no pauses between words)
- coarticulation

Example for speech recognition output based only on acoustics:

Input: What is your review of linux mint?

ASR output: WHEW AW WR CZ HEH ZZ YE AW WR OF YE WR ARE 'VE LENOX MAY AND

ASR output with language model: WHAT IS YOUR REVIEW OF LINUX MINT?

Akustische Modelle

$$\max_{W} P(W \mid O) = \max_{W} P(O \mid W) \cdot P(W)$$

Training von "Lautmodellen" auf Datensammlungen für gesprochene Sprache:

- Aufnahmen von Sprachlauten mit ihrer phonetischen Kategorie/ Umschrift
- Liefert die Wahrscheinlichkeit, mit der bestimmte Laute durch Merkmalsmuster realisiert werden
- Aussprachewörterbuch, das für jedes Wort die phonetische Umschrift enthält

Aussprache vs. Orthographie

Aussprache ≠ Rechtschreibung

→ daher Aussprachelexikon

Beispiele:

```
[,tant] as [,tant]
[,hemt] as [,hembt]
[re:dou] as [re:du]
```

Aussprachevarianten werden mit gewichteten Automaten repräsentiert

Akustische Modelle

$$\max_{W} P(W \mid O) = \max_{W} P(O \mid W) \cdot P(W)$$

- Aussprachewörterbuch, das für jedes Wort die phonetische Umschrift enthält
 - Genauer: Die Umschrift für alternative
 Aussprachen, die in einem gewichteten endlichen
 Automaten kodiert sind.
- Für die statistische Zuordnung von Merkmalsmustern und Wörtern wird die HMM-Methode ("Hidden Markov Models") verwendet.

Spracherkennung: (Vereinfachtes) Schema

Spracherkennung: Schema

Spracherkennung: Schema

Deep Neural Nets for Speech Recognition

- Die Abbildung von Phonemketten auf Spektrogrammmerkmale ist sehr komplex.
- Mit DNNs kann dies mit größerem Erfolg als bei vorigen Ansätzen gelernt werden.
- Vorteil: bessere Ausnutzung von Kontextinformation.

Spracherkennung: Schema

Autoencoder für Merkmalsmusterextraktion

output

hidden

input

- Der Autoencoder soll als Output den Input möglichst akkurat reproduzieren.
- Durch die kleineren hidden Layers (hier nur schematisch als ein hidden Layer dargestellt, können aber mehr sein) wird die relevante Information mit nur minimalem Informationsverlust komprimiert.
- Vorteil: geringerer Informationsverlust als bei traditioneller Merkmalsextraktion mit Zeit-Frequenz-fenster.

Stand der Spracherkennung

Spracherkennung mit NN (2009)

Fehlerrate sank um 25%: absolut phänomenal.

Erkennerperformanz ist abhängig von:

- Sprechmodus: Einzelwort, kontinuierlich, spontan
- Sprecherbindung: abhängig, unabhängig, adaptiv
- Größe des Lexikons:
 - Einfache Sprachsteuerungssysteme: 100-200 Wortformen
 - Dialogsysteme: 500-1000 Wortformen (+ spezieller Wortschatz)
 - Diktiersysteme: ab 50000 Wortformen
- Perplexität: Maß für die Uniformität der Eingabe beschränkte Domäne, gesteuerter Dialog: niedrige Perplexität keine Domänenbeschränkung, freie Rede: hohe Perplexität
- Eingabequalität
- Verarbeitungszeit

Stand der Spracherkennungstechnik

- Maß für die Erkennerperformanz: Wortfehlerrate (wie viele Wörter der "besten Kette" wurden falsch verstanden/gar nicht verstanden/hinzuphantasiert?)
- Wortfehlerrate hängt von der verfügbaren Verarbeitungszeit und verschiedenen externen Faktoren ab.
- Gängige Systeme analysieren in Echtzeit (Verarbeitungszeit ≤ Sprechzeit) und sind in der Wortfehlerrate in einem akzeptablen Bereich.