Manual for the JHU generator

For simulation of a single-produced resonance at hadron colliders (version 4.3.1, release date December 10, 2013)

The generator from [1-3] is a model-independent generator for studying spin and parity properties of new resonances. Please cite [1-3] if using the generator.

The code can be downloaded from [4]. The generator outputs LHE files which can be passed to parton shower programs for hadronization. Only relative values of cross sections are supposed to produce meaningful results, while absolute values are often subject to an arbitrary normalization.

Additionally, the package now includes code for computing the matrix elements standalone which can be used in a numerical matrix element analysis.

Contents

I.	Installation	2
II.	Configuration A. Command line configuration B. Configuration in parameter file 1. General parameters 2. Spin-0 parameters 3. Spin-1 parameters 4. Spin-2 parameters	2 3 3 4 5 6
III.	Examples A. $J^P = 0_m^+$ resonance, $X \to ZZ$ or WW B. $J^P = 0_m^-$ resonance, $X \to ZZ$ or WW C. $J^P = 0_m^+$ resonance, $X \to \gamma \gamma$ D. $J^P = 0_m^-$ resonance, $X \to \gamma \gamma$ E. $J^P = 2_m^+$ resonance, $X \to ZZ$ or WW or $\gamma \gamma$ F. Cross-section calculation and fraction notation	6 6 7 7 7 7 8
IV.	JHU Generator Matrix Elements (JHUGenMELA) A. Native matrix elements B. Interface with MCFM	8 8 9
v.	Release notes	9
A.	Specific configurations 1. "SM-like spin-zero", 0^+ 2. "Higher order spin-zero", 0^+_h 3. "Pseudoscalar spin-zero", 0^- 4. "Vector spin-one", 1^- 5. "Pseudovector spin-one", 1^+ 6. "Minimal Graviton, spin-two", 2^+ 7. "Higher order Graviton, spin-two", 2^+_h 8. "Higher order Graviton, spin-two", 2^h	11 11 11 12 12 12 12 13

14

References

I. INSTALLATION

Register and download the package from www.pha.jhu.edu/spin and untar the file. Go to the directory JHUGenerator where the code exists for generating events with the JHU Generator. In the makefile, you have two options for compiler, Comp = ifort or Comp = gfort. Then simply compile with:

\$ make

II. CONFIGURATION

There are two ways to configure the program, either from the command line or in the file mod_Parameters.F90. For documentation from the command line, one can use JHUGen help. In addition, the command line configurables are defined in the file main.F90. When one change the fortran code directly, one should also recompile the code for changes to take effect. In general, command-line configuration handles general event properties while the configuration file handles all of the couplings and physics handles.

A. Command line configuration

The list of command line configurables and the default values are (also defined in the README):

```
- Collider=x
                (Collider: 1= pp, e.g LHC, 2= p\over p, e.g. Tevatron, 0 = p^2, e.g ILC),
                default value:1
- VegasNc0,1,2 =x (number of evaluations)
- PChannel=x
                (partonic channel: 0=glu+glu, 1=quark+antiquark, 2=both), default value:2
- PDFSet=x
                (parton distr. functions, 1=CTEQ6L1 (2001), 2=MSTW(2008),
2xx=MSTW with eigenvector set xx=01..40), default=1
- DecayMode1=x (decay mode for vector boson 1), default x=0
- DecayMode2=x (decay mode for vector boson 2), default x=0
               x=0: X-> Z1 Z2, Z1->21,
               x=1: X-> Z1 Z2, Z1->2q,
               x=2: X-> Z1 Z2, Z1->2tau,
               x=3: X-> Z1 Z2, Z1->2nu,
               x=4: X-> W1 W2, W1->lnu,
               x=5: X-> W1 W2, W1->2q,
               x=6: X-> W1 W2, W1->taunu
               x=7: X-> gamma gamma
               x=8: Z \longrightarrow 1+ 1- (1=e,mu,tau)
               x=9: Z \longrightarrow anything
               x=10: W --> l nu_l (l=e,mu,tau)
               x=11: W \longrightarrow anything
- DataFile=x
                (name of the output file), default value: "output"
                (gives the resonance spin 0,1 or 2, or 50=pp/ee->VH, 60=weakVBF, 61=pp->Hjj)
- Process=x
                (only applies to Higgs production, x,y,z can be 1 or 0 indicating real off-shellness
- OffXVV=xyz
for Higgs, Z/W boson 1/2, resp.), default 011 if a parameter is not specified
                (generates weighted or unweighted events), default value: ".true."
- Unweighted=x
- ReadLHE="x"
                (allows NLO production of spin-O particles by reading in LHE file
                from NLO generator, e.g., POWHEG, or allows generating spin-O particle decay
                after generating VBF, H+JJ, or VH production with the JHU generator),
                default value: .false."
- InputLHEFormat="x"
                       (LHE format is different for 1=POWHEG, 2=JHUGen), default value: 1
- writeWeightedLHE="x" (produces an LHE file when running in weighted mode, can be large), default value
```

A few more details on some particular parameters:

• VegasNc0,1,2: For unweighted event generation VegasNc0 specifies the number of evaluations for the initial integrand scan. The actual event generation is controlled by either VegasNc1 or VegasNc2. VegasNc1 specifies the number of tries in the accept/reject phase and VegasNc2 is the number of generated events. When generating

unweighted events in ReadLHE mode, both VegasNc1 or VegasNc2 can be used to specify the number of generated events. For the generation of weighted events VegasNc1 specifies the number of evaluations for each of 5 iterations during the initial integrand scan. VegasNc2 gives the (approximate) number of generated weighted events.

- OffXVV: The program does not work for ZZ or WW if you set them to be on-shell (OffXVV="000") and the mass of the X resonance to be below the m_{VV} threshold. In general, the more off-shell the process, or the more "1" you have, the less efficient the VegasNc1 evaluations are. Specifically, if you are interested then, in producing a resonance with mass below threshold m_{VV} with a very narrow resonance, it is most efficient to generate with OffXVV="011"
- PChannel: This parameter is only meaningful in the spin-2 case. For spin-0, production is possible only via the gg process and for spin-1, production is only possible via the $q\bar{q}$ process.
- DecayMode2=7 note: Valid for spin-0 and spin-2, only OffXVV=000 or 100 are possible.
- VegasNc note: VegasNc1 allows the user to set the number of tries for the reject/accept method, VegasNc2 allows the user to let the program run until the number of events is generated

Then, as an example of running the generator, you could do:

- gg production:
- ./JHUGen Collider=1 Process=0 VegasNc2=100000 PChannel=0 OffXVV=011 DecayMode1=0 DecayMode2=0 \\Unweighted=.true. DataFile=test1
- $ggH \rightarrow Zgamma$
- ./JHUGen DecayMode1=0 DecayMode2=7 OffXVV=010
- VH (both pp and e^+e^- Collider options possible):
- ./JHUGen Collider=1 Process=50 Unweighted=1 VegasNc2=100000 OffXVV=011 DataFile=test2
- VBF:
- ./JHUGen Collider=1 Process=60 Unweighted=1 VegasNc2=100000 OffXVV=011 DataFile=test2
- H+jj:
- ./JHUGen Collider=1 Process=61 Unweighted=1 VegasNc2=100000 OffXVV=011 DataFile=test3

For generating Higgs decay in VBF, H+JJ, or VH production modes by the JHU generator or NLO gluon fusion with another generator (e.g. POWHEG), use JHU generator in LHE conversion mode and specify the decay mode of interest (ZZ, WW, gam gam, Z gam), while the SM fermionic decays may be generated by Pythia without loss of generality.

B. Configuration in parameter file

In the file mod_Parameters.F90, one does all the configuration of the couplings of the resonance. After modifying this file, one needs to recompile.

1. General parameters

Each generation run is different when this is .true.

```
seed_random = .true.
```

In the case when PChannel=2 for a spin-2 resonance, the user can define an approximate ratio of the production of gg and $q\bar{q}$ production.

Only for final states with 4 same flavor fermions , one can include interference effects between the leptons. The interference is controlled by the command line parameter:

Interf=0 or 1

The remaining parameters are more-or-less self-explanatory.

```
! we are using units of 100GeV, i.e. Lambda=10 is 1TeV
real(8), public, parameter :: GeV=1d0/100d0
real(8), public, parameter :: percent=1d0/100d0
real(8), public :: M_V,Ga_V
real(8), public, parameter :: M_Z
                                                             ! Z boson mass (PDG-2011)
                                      = 91.1876d0 *GeV
real(8), public, parameter :: Ga_Z
                                                             ! Z boson width(PDG-2011)
                                      = 2.4952d0
                                                  *GeV
real(8), public, parameter :: M_W
                                                             ! W boson mass (PDG-2011)
                                      = 80.399d0
                                                  *GeV
real(8), public, parameter :: Ga_W
                                                             ! W boson width (PDG-2011)
                                      = 2.085d0
                                                   *GeV
real(8), public
                           :: M_{Reso} = 125.6d0
                                                             ! X resonance mass (spin 0, spin 1, spin 2)
                                                   *GeV
real(8), public, parameter :: Ga_Reso = 0.00415d0 *GeV
                                                             ! X resonance width
real(8), public, parameter :: Lambda = 1000d0
                                                   *GeV
                                                             ! Lambda coupling enters in two places
                                                             ! overal scale for x-section and in power
                                                             ! suppressed operators/formfactors (former r).
real(8), public, parameter :: m_el = 0.00051100d0 *GeV
                                                                 ! electron mass
real(8), public, parameter :: m_mu = 0.10566d0
                                                                   ! muon mass
real(8), public, parameter :: m_tau = 1.7768d0
                                                                     ! tau mass
real(8), public, parameter :: Gf = 1.16639d-5/GeV**2
                                                             ! fermi constant
real(8), public, parameter :: vev = 1.0d0/sqrt(Gf*sqrt(2.0d0))
real(8), public, parameter :: gwsq = 4.0d0 * M_W**2/vev**2
                                                             ! weak constant squared
real(8), public, parameter :: alpha_QED = 1d0/128.0d0
                                                             ! el.magn. coupling
real(8), public, parameter :: alphas = 0.13229060d0
                                                             ! strong coupling
real(8), public, parameter :: sitW = dsqrt(0.23119d0)
                                                             ! sin(Theta_Weinberg) (PDG-2008)
real(8), public
                           :: Mu_Fact
                                                             ! pdf factorization scale
                                                               (set to M_Reso in main.F90)
real(8), public, parameter :: LHC_Energy=14000d0 *GeV
                                                              ! LHC hadronic center of mass energy
real(8), public, parameter :: TEV_Energy=1960d0 *GeV
                                                             ! Tevatron hadronic center of mass energy
real(8), public, parameter :: ILC_Energy=250d0 *GeV
                                                             ! Linear collider center of mass energy
real(8), public, parameter :: POL_A = 0d0
                                                             !e+ polarization. 0: no polarization, 100:
                                                              helicity = 1, -100: helicity = -1
real(8), public, parameter :: POL_B = 0d0
                                                             !e- polarization. 0: no polarization, 100:
                                                              helicity = 1, -100: helicity = -1
logical, public, parameter :: H_DK =.true.
                                                             !default to false so H in
                                                              V > VH (Process = 50) does not decay
real(8), public, parameter :: ptjetcut = 15d0*GeV
                                                             ! jet min pt
real(8), public, parameter :: Rjet = 0.5d0
                                                             ! jet deltaR, antikt algorithm
```

2. Spin-0 parameters

N.B. The parameters "ptjetcut" and "Rjet" only apply to Process=60,61.

The *hg* parameters control the coupling of a spin-0 resonance to gluons in the production mechanism. The *hz* parameters control the decay. In practice, the production parameters are not having a large effect since angular corrections from the production mechanism are lost for spinless particles. One has the options to set the spin-0 couplings either from Eq.(9) or Eq.(11) from Ref. [2]. To switch between the two, use the parameter generate_as.

We now allow for q^2 dependent form factors as described in Ref. [2] and given in more detail in the equation below:

$$g_i(q_1^2,q_2^2) = g_i^{\text{SM}} + g_i' \frac{\Lambda_i^4}{(\Lambda_i^2 + |q_1^2|)(\Lambda_i^2 + |q_2^2|)} + g_i'' \frac{(|q_1^2| + |q_2^2|)}{\Lambda_i^2} + g_i''' \frac{(|q_1^2| + |q_2^2|)^2}{\Lambda_i^4} + g_i'''' \frac{|q_1^2| |q_2^2|}{\Lambda_i^4}$$

The user has the option to choose between these functional forms, where the term multiplying g'_i corresponds to the full functional form and the $g''_i...g'''_i$ correspond to an expansion in Λ^2 All parameters can be modified in mod_Parameters.F90 by:

```
!-- parameters that define on-shell spin 0 coupling to SM fields, see note
  logical, public, parameter :: generate_as = .false.
  complex(8), public, parameter :: ahg1 = (1.0d0,0d0)
  complex(8), public, parameter :: ahg2 = (0.0d0,0d0)
  complex(8), public, parameter :: ahg3 = (0.0d0,0d0)
                                                        ! pseudoscalar
  complex(8), public, parameter :: ahz1 = (1.0d0,0d0)
  complex(8), public, parameter :: ahz2 = (0.0d0,0d0)
                                                        ! this coupling does not contribute for gamma+gamma
  complex(8), public, parameter :: ahz3 = (0.0d0,0d0)
                                                        ! pseudoscalar
!-- parameters that define off-shell spin 0 coupling to SM fields, see note
  complex(8), public, parameter :: ghg2 = (1.0d0,0d0)
  complex(8), public, parameter :: ghg3 = (0.0d0,0d0)
  complex(8), public, parameter :: ghg4 = (0.0d0,0d0)
                                                         ! pseudoscalar
  complex(8), public, parameter :: ghz1 = (2.0d0,0d0)
  complex(8), public, parameter :: ghz2 = (0.0d0,0d0)
  complex(8), public, parameter :: ghz3 = (0.0d0,0d0)
  complex(8), public, parameter :: ghz4 = (0.0d0,0d0)
                                                         ! pseudoscalar
!-- parameters that define q^2 dependent form factors
  complex(8), public, parameter :: ghz1_prime = (0.0d0,0d0)
  complex(8), public, parameter :: ghz1_prime2= (0.0d0,0d0)
  complex(8), public, parameter :: ghz1_prime3= (0.0d0,0d0)
  complex(8), public, parameter :: ghz1_prime4= (0.0d0,0d0)
  complex(8), public, parameter :: ghz2_prime = (0.0d0,0d0)
  complex(8), public, parameter :: ghz2_prime2= (0.0d0,0d0)
  complex(8), public, parameter :: ghz2_prime3= (0.0d0,0d0)
  complex(8), public, parameter :: ghz2_prime4= (0.0d0,0d0)
  complex(8), public, parameter :: ghz3_prime = (0.0d0,0d0)
  complex(8), public, parameter :: ghz3_prime2= (0.0d0,0d0)
  complex(8), public, parameter :: ghz3_prime3= (0.0d0,0d0)
  complex(8), public, parameter :: ghz3_prime4= (0.0d0,0d0)
  complex(8), public, parameter :: ghz4_prime = (0.0d0,0d0)
  complex(8), public, parameter :: ghz4_prime2= (0.0d0,0d0)
  complex(8), public, parameter :: ghz4_prime3= (0.0d0,0d0)
  complex(8), public, parameter :: ghz4_prime4= (0.0d0,0d0)
  real(8),
              public, parameter :: Lambda_z1 = 10000d0*GeV
  real(8),
              public, parameter :: Lambda_z2 = 10000d0*GeV
  real(8),
              public, parameter :: Lambda_z3 = 10000d0*GeV
  real(8),
              public, parameter :: Lambda_z4 = 10000d0*GeV
```

3. Spin-1 parameters

The parameters below represent the couplings given in Eq. (16) from Ref. [2]. The *left* and *right* parameters control the production of the spin-1 resonance while the *_v and *_a parameters control the decay.

4. Spin-2 parameters

The a* parameters control the coupling of a spin-2 resonance to gluons in the production mechanism. The b* and c* parameters control the decay. One has the options to set the spin-2 couplings either from Eq.(18) or Eq.(19) from Ref. [2]. To switch between the two, use the parameter generate_bis.

```
logical, public, parameter :: generate_bis = .true.
logical, public, parameter :: use_dynamic_MG = .true. ! .true. (=default),
  ! the spin-2 resonance mass with MG^2=(p1+p2)^2, otherwise fixed at M_Reso^2.
complex(8), public, parameter :: a1 = (1.0d0,0d0)
                                                     ! g1 -- c.f. note
complex(8), public, parameter :: a2 = (0.0d0,0d0)
                                                     ! g2
complex(8), public, parameter :: a3 = (0.0d0,0d0)
                                                     ! g3
complex(8), public, parameter :: a4 = (0.0d0,0d0)
                                                     ! g4
complex(8), public, parameter :: a5 = (0.0d0,0d0)
                                                     ! pseudoscalar, g8
complex(8), public, parameter :: graviton_qq_left = (1.0d0,0d0)! graviton coupling to quarks
complex(8), public, parameter :: graviton_qq_right = (1.0d0,0d0)
complex(8), public, parameter :: b1 = (1.0d0,0d0)
complex(8), public, parameter :: b2 = (0.0d0,0d0)
complex(8), public, parameter :: b3 = (0.0d0,0d0)
complex(8), public, parameter :: b4 = (0.0d0,0d0)
complex(8), public, parameter :: b5 = (0.0d0,0d0)
complex(8), public, parameter :: b6 = (0.0d0,0d0)
complex(8), public, parameter :: b7 = (0.0d0,0d0)
complex(8), public, parameter :: b8 = (0.0d0,0d0)
complex(8), public, parameter :: b9 = (0.0d0,0d0)
complex(8), public, parameter :: b10 =(0.0d0,0d0)
complex(8), public, parameter :: c1 = (1.0d0,0d0)
complex(8), public, parameter :: c2 = (0.0d0,0d0)
complex(8), public, parameter :: c3 = (0.0d0,0d0)
complex(8), public, parameter :: c41= (0.0d0,0d0)
complex(8), public, parameter :: c42= (0.0d0,0d0)
complex(8), public, parameter :: c5 = (0.0d0,0d0)
complex(8), public, parameter :: c6 = (0.0d0,0d0)
complex(8), public, parameter :: c7 = (0.0d0,0d0)
```

III. EXAMPLES

The below examples are not meant to be a complete set, but rather some interesting and relevant cases. In many cases, the example is not the only way to produce such a scenario.

```
A. J^P = 0_m^+ resonance, X \to ZZ or WW
```

```
logical, public, parameter :: generate_as = .true.
```

```
complex(8), public, parameter :: ahg1 = (1.0d0,0d0)
   complex(8), public, parameter :: ahg2 = (0.0d0,0d0)
   complex(8), public, parameter :: ahg3 = (0.0d0,0d0)
                                                           ! pseudoscalar
   complex(8), public, parameter :: ahz1 = (1.0d0,0d0)
   complex(8), public, parameter :: ahz2 = (0.0d0,0d0)
   complex(8), public, parameter :: ahz3 = (0.0d0,0d0)
                                                           ! pseudoscalar
                                B. J^P = 0_m^- resonance, X \to ZZ or WW
   logical, public, parameter :: generate_as = .true.
   complex(8), public, parameter :: ahg1 = (1.0d0,0d0)
   complex(8), public, parameter :: ahg2 = (0.0d0,0d0)
   complex(8), public, parameter :: ahg3 = (0.0d0,0d0)
                                                           ! pseudoscalar
   complex(8), public, parameter :: ahz1 = (0.0d0,0d0)
   complex(8), public, parameter :: ahz2 = (0.0d0,0d0)
   complex(8), public, parameter :: ahz3 = (1.0d0,0d0)
                                                          ! pseudoscalar
                                    C. J^P = 0_m^+ resonance, X \to \gamma \gamma
 In practice, the example X \to \gamma \gamma from this section, Sec. III C and the next Sec. III D are kinematically the same
but are presented only to illustrate how one takes care of this final state.
   logical, public, parameter :: generate_as = .false.
   complex(8), public, parameter :: ghg2 = (1.0d0,0d0)
   complex(8), public, parameter :: ghg3 = (0.0d0,0d0)
   complex(8), public, parameter :: ghg4 = (0.0d0,0d0)
                                                            ! pseudoscalar
   complex(8), public, parameter :: ghz1 = (0.0d0,0d0)
   complex(8), public, parameter :: ghz2 = (1.0d0,0d0)
   complex(8), public, parameter :: ghz3 = (0.0d0,0d0)
   complex(8), public, parameter :: ghz4 = (0.0d0,0d0)
                                                            ! pseudoscalar
                                    D. J^P = 0_m^- resonance, X \to \gamma \gamma
   logical, public, parameter :: generate_as = .false.
   complex(8), public, parameter :: ghg2 = (1.0d0,0d0)
   complex(8), public, parameter :: ghg3 = (0.0d0,0d0)
   complex(8), public, parameter :: ghg4 = (0.0d0,0d0)
                                                            ! pseudoscalar
   complex(8), public, parameter :: ghz1 = (0.0d0,0d0)
   complex(8), public, parameter :: ghz2 = (0.0d0,0d0)
   complex(8), public, parameter :: ghz3 = (0.0d0,0d0)
   complex(8), public, parameter :: ghz4 = (1.0d0,0d0)
                                                            ! pseudoscalar
                             E. J^P = 2_m^+ resonance, X \to ZZ or WW or \gamma\gamma
  complex(8), public, parameter :: a1 = (1.0d0,0d0)
                                                          ! g1 -- c.f. draft
  complex(8), public, parameter :: a2 = (0.0d0,0d0)
                                                          ! g2
  complex(8), public, parameter :: a3 = (0.0d0,0d0)
                                                          ! g3
  complex(8), public, parameter :: a4 = (0.0d0,0d0)
  complex(8), public, parameter :: a5 = (0.0d0,0d0)
                                                          ! pseudoscalar, g8
```

complex(8), public, parameter :: graviton_qq_left = (1.0d0,0d0)! graviton coupling to quarks

```
complex(8), public, parameter :: graviton_qq_right = (1.0d0,0d0)
logical, public, parameter :: generate_bis = .true.
logical, public, parameter :: use_dynamic_MG = .true.

complex(8), public, parameter :: b1 = (1.0d0,0d0)
complex(8), public, parameter :: b2 = (0.0d0,0d0)
complex(8), public, parameter :: b3 = (0.0d0,0d0)
complex(8), public, parameter :: b4 = (0.0d0,0d0)
complex(8), public, parameter :: b5 = (1.0d0,0d0)
complex(8), public, parameter :: b6 = (0.0d0,0d0)
complex(8), public, parameter :: b7 = (0.0d0,0d0)
complex(8), public, parameter :: b8 = (0.0d0,0d0)
complex(8), public, parameter :: b9 = (0.0d0,0d0)
complex(8), public, parameter :: b9 = (0.0d0,0d0)
complex(8), public, parameter :: b9 = (0.0d0,0d0)
```

F. Cross-section calculation and fraction notation

For a vector boson coupling, we can represent the four independent parameters by two fractions (f_{g2} and f_{g4}) and two phases (ϕ_{g2} and ϕ_{g4}), defined for the HZZ and HWW couplings as follows (ignoring g_3)

$$f_{gi} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}; \qquad \phi_{gi} = \arg\left(\frac{g_i}{g_1}\right).$$

In order to obtain the cross-sections σ_i corresponding to the $g_i=1$ coupling, generate large enough (e.g. VegasNc1=1000000, VegasNc2=50000000) number of weighted (Unweighted=0) with the corresponding couplings setup $(g_i=1,\,g_{j\neq i}=0)$.

IV. JHU GENERATOR MATRIX ELEMENTS (JHUGENMELA)

A. Native matrix elements

After extracting the code, you can go to the directory JHUGenMELA to find code for computing matrix elements directly. To compile the code, simple do:

\$ make

Please take note: The setup is configured for gfort + gcc version 4.1.2 20080704 (Red Hat 4.1.2-50) and it is highly dependent on the compiler version. Please configure for your own setup accordingly. (Using 'nm' command will help decipher the module names you will need)

The usage of the package is straight-forward and an example is given in testprogram.c. There are 6 main modules allowing both specific production process and production-independent calculation:

- "modhiggs_evalamp_gg_h_vv": spin-0 matrix elements for gg initiated processes
- \bullet "modzprime_evalamp_qqb_zprime_vv": spin-1 matrix elements for $q\bar{q}$ initiated processes
- "modgraviton_evalamp_gg_g_vv:" spin-2 matrix elements for gg initiated processes
- "modgraviton_evalamp_qqb_g_vv": spin-2 matrix elements for $q\bar{q}$ initiated processes
- "modzprime_evalamp_zprime_vv": spin-1 matrix elements production-independent
- "modgraviton_evalamp_g_vv": spin-2 matrix elements production-independent

The inputs are the 4-vectors of the incoming patrons and outgoing particles in the CM frame of the object X. In addition the mass and width of the resonance are required as well as the ID of the outgoing particles. Finally the last set of inputs are the couplings themselves. They are arrays for parameters for a given spin hypothesis which mirror the parameters configurable in $mod_Parameters.F90$. As an example, the arrays are initialized in testprogram.c.

B. Interface with MCFM

Instructions for setting up the JHUGenMELA with MCFM are in the file JHUGenMELA/ggZZ_MCFM/README.

V. RELEASE NOTES

In going from v4.2.x to v4.3.x, the updates are as follows:

- update LHE index of partons in VBF production and LHE conversion
- update couplings for higher dimensions in spin-2
- first version of VH generator
- synchronize JHUGenMELA with the generator

In going from v4.0.x to v4.2.x, the updates are as follows:

To JHUGenerator:

- Fix BR in "all" decay mode
- Updates to LHE output
- Option to print out CS_max, output for g' and Lambdas
- Introduction of AnalyticMELA for $ee \to ZH$ and $pp \to ZH$ and analytic parton distribution functions

In going from v3.1.x to v4.0.x, the updates are as follows:

To JHUGenerator:

- Addition of VBF and Hjj process channels
- Possibility to read in VBF LHE event files

To JHUGenMELA:

- Interface with the MCFM program for ggZZ process
- Matrix elements for VBF and Hjj processes

In going from v2.2.6 to v3.1.8, the updates are as follows:

To JHUGenerator:

- Capability reading LHE files with Higgs boson production, allows NLO production of spin-0;
- Extended the list of final state combinations;
- Log messages, lhe file headers, and minor cleanup.
- Updates to deal with non-zero lepton masses, lhe file format, and adjust default settings (e.g. lepton interference applied by default and can be configured in command line)

To JHUGenMELA:

- Production-independent JHUGenMELA for spin-0, 1, 2;
- Complex couplings in JHUGenMELA input.

In going from v2.2.3 to v2.2.6, the updates are as follows:

- A small fix which corrects the relative fraction between the $2e2\mu$ and $4e/4\mu$ channels when using interference
- beta version is still under development
- $q\bar{q} \to \text{spin-2}$ production is more safely performed with settings PChannel = 2 and $q\bar{q}$ fraction = 1.

In going from v2.1.3 to v2.2.3, the updates are as follows:

- Fix interference and randomization in the beta version
- Add the JHUGenMELA modules
- Small change for compilation on Mac OSX platforms
- \bullet Fix for tau masses in W decays

In going from v2.0.2 to v2.1.x, the updates are as follows:

- Histograms are written in file (default: ./data/output.dat) and no longer on the screen. How to understand the histogram data and how to plot is briefly described in the output.dat file.
- Added tau masses
- Added lepton interference in the ZZ4l final state
- Added switch generate_as to choose couplings in spin-0 case (works for on- and off-shell resonance). The default is ".false.".
- Added the possibility to change graviton-quark couplings. The new parameters are graviton_qq_left, graviton_qq_right and correspond to $0.5*(1-\gamma^5)$ and $0.5*(1+\gamma^5)$ helicity projectors, respectively. Up to now the coupling was always vector-like. This is also the new default, graviton_qq_left = graviton_qq_right =1.
- The random seed is now fixed with gfortran.
- The call "./JHUGen help" prints out all available command line options
- Added new command line option "Unweighted=0 or 1" (default is 1)

Appendix A: Specific configurations

We define configurations for certain models which are defined in Table 1 of [2].

complex(8), public, parameter :: ghz4 = (1.0d0,0d0)

1. "SM-like spin-zero", 0⁺

```
!-- parameters that define on-shell spin 0 coupling to SM fields, see note
  logical, public, parameter :: generate_as = .false.
  complex(8), public, parameter :: ahg1 = (1.0d0,0d0)
  complex(8), public, parameter :: ahg2 = (0.0d0,0d0)
  complex(8), public, parameter :: ahg3 = (0.0d0,0d0)
                                                        ! pseudoscalar
  complex(8), public, parameter :: ahz1 = (1.0d0,0d0)
                                                        ! this coupling does not contribute for gamma+gamma final states
  complex(8), public, parameter :: ahz2 = (0.0d0,0d0)
   complex(8), public, parameter :: ahz3 = (0.0d0,0d0)
                                                        ! pseudoscalar
!-- parameters that define off-shell spin 0 coupling to SM fields, see note
  complex(8), public, parameter :: ghg2 = (1.0d0,0d0)
  complex(8), public, parameter :: ghg3 = (0.0d0,0d0)
   complex(8), public, parameter :: ghg4 = (0.0d0,0d0)
                                                         ! pseudoscalar
   complex(8), public, parameter :: ghz1 = (1.0d0,0d0)
   complex(8), public, parameter :: ghz2 = (0.0d0,0d0)
  complex(8), public, parameter :: ghz3 = (0.0d0,0d0)
  complex(8), public, parameter :: ghz4 = (0.0d0,0d0)
                                                         ! pseudoscalar
                                             "Higher order spin-zero", 0_h^+
!-- parameters that define on-shell spin 0 coupling to SM fields, see note
  logical, public, parameter :: generate_as = .false.
   complex(8), public, parameter :: ahg1 = (1.0d0,0d0)
  complex(8), public, parameter :: ahg2 = (0.0d0,0d0)
  complex(8), public, parameter :: ahg3 = (0.0d0,0d0)
                                                        ! pseudoscalar
  complex(8), public, parameter :: ahz1 = (1.0d0,0d0)
  complex(8), public, parameter :: ahz2 = (0.0d0,0d0)
                                                        ! this coupling does not contribute for gamma+gamma final states
  complex(8), public, parameter :: ahz3 = (0.0d0,0d0)
                                                        ! pseudoscalar
!-- parameters that define off-shell spin 0 coupling to SM fields, see note
  complex(8), public, parameter :: ghg2 = (1.0d0,0d0)
   complex(8), public, parameter :: ghg3 = (0.0d0,0d0)
  complex(8), public, parameter :: ghg4 = (0.0d0,0d0)
                                                         ! pseudoscalar
  complex(8), public, parameter :: ghz1 = (0.0d0,0d0)
   complex(8), public, parameter :: ghz2 = (1.0d0,0d0)
   complex(8), public, parameter :: ghz3 = (0.0d0,0d0)
   complex(8), public, parameter :: ghz4 = (0.0d0,0d0)
                                                         ! pseudoscalar
                                          3. "Pseudoscalar spin-zero", 0
!-- parameters that define on-shell spin O coupling to SM fields, see note
  logical, public, parameter :: generate_as = .false.
  complex(8), public, parameter :: ahg1 = (1.0d0,0d0)
  complex(8), public, parameter :: ahg2 = (0.0d0,0d0)
   complex(8), public, parameter :: ahg3 = (0.0d0,0d0)
                                                        ! pseudoscalar
  complex(8), public, parameter :: ahz1 = (1.0d0,0d0)
  complex(8), public, parameter :: ahz2 = (0.0d0,0d0)
                                                        ! this coupling does not contribute for gamma+gamma final states
  complex(8), public, parameter :: ahz3 = (0.0d0,0d0)
                                                        ! pseudoscalar
!-- parameters that define off-shell spin 0 coupling to SM fields, see note
  complex(8), public, parameter :: ghg2 = (0.0d0,0d0)
  complex(8), public, parameter :: ghg3 = (0.0d0,0d0)
  complex(8), public, parameter :: ghg4 = (1.0d0,0d0)
                                                         ! pseudoscalar
  complex(8), public, parameter :: ghz1 = (0.0d0,0d0)
  complex(8), public, parameter :: ghz2 = (0.0d0,0d0)
  complex(8), public, parameter :: ghz3 = (0.0d0,0d0)
```

! pseudoscalar

4. "Vector spin-one", 1

6. "Minimal Graviton, spin-two", 2⁺

N.B. If an exclusive production mode is desired (e.g. $q\bar{q}$ or gg), this is handled at command-line configuration level via the PChannel variable.

```
!-- parameters that define spin 2 coupling to SM fields, see note
! minimal coupling corresponds to a1 = b1 = b5 = 1 everything else 0
 complex(8), public, parameter :: a1 = (1.0d0,0d0)
                                                      ! g1 -- c.f. draft
 complex(8), public, parameter :: a2 = (0.0d0,0d0)
                                                       ! g2
 complex(8), public, parameter :: a3 = (0.0d0,0d0)
                                                       ! g3
 complex(8), public, parameter :: a4 = (0.0d0,0d0)
                                                       ! g4
 complex(8), public, parameter :: a5 = (0.0d0,0d0)
                                                       ! pseudoscalar, g8
 complex(8), public, parameter :: graviton_qq_left = (1.0d0,0d0)! graviton coupling to quarks
 complex(8), public, parameter :: graviton_qq_right = (1.0d0,0d0)
!-- see mod_Graviton
 logical, public, parameter :: generate_bis = .true.
 logical, public, parameter :: use_dynamic_MG = .true.
 complex(8), public, parameter :: b1 = (1.0d0,0d0)
                                                       ! all b' below are g's in the draft
 complex(8), public, parameter :: b2 = (0.0d0,0d0)
 complex(8), public, parameter :: b3 = (0.0d0,0d0)
 complex(8), public, parameter :: b4 = (0.0d0,0d0)
 complex(8), public, parameter :: b5 = (1.0d0,0d0)
 complex(8), public, parameter :: b6 = (0.0d0,0d0)
 complex(8), public, parameter :: b7 = (0.0d0,0d0)
 complex(8), public, parameter :: b8 = (0.0d0,0d0)
 complex(8), public, parameter :: b9 = (0.0d0,0d0)
 complex(8), public, parameter :: b10 =(0.0d0,0d0) ! this coupling does not contribute for gamma+gamma final states
 complex(8), public, parameter :: c1 = (1.0d0,0d0)
 complex(8), public, parameter :: c2 = (0.0d0,0d0)
 complex(8), public, parameter :: c3 = (0.0d0,0d0)
 complex(8), public, parameter :: c41= (0.0d0,0d0)
 complex(8), public, parameter :: c42= (0.0d0,0d0)
 complex(8), public, parameter :: c5 = (0.0d0,0d0)
 complex(8), public, parameter :: c6 = (0.0d0,0d0)
 complex(8), public, parameter :: c7 = (0.0d0,0d0)
```

7. "Higher order Graviton, spin-two", 2_h^+

```
complex(8), public, parameter :: a4 = (1.0d0,0d0)
                                                      ! g4
                                                    ! pseudoscalar, g8
 complex(8), public, parameter :: a5 = (0.0d0,0d0)
 complex(8), public, parameter :: graviton_qq_left = (1.0d0,0d0)! graviton coupling to quarks
 complex(8), public, parameter :: graviton_qq_right = (1.0d0,0d0)
!-- see mod_Graviton
 logical, public, parameter :: generate_bis = .true.
 logical, public, parameter :: use_dynamic_MG = .true.
 complex(8), public, parameter :: b1 = (0.0d0,0d0)
                                                       ! all b' below are g's in the draft
 complex(8), public, parameter :: b2 = (0.0d0,0d0)
 complex(8), public, parameter :: b3 = (0.0d0,0d0)
 complex(8), public, parameter :: b4 = (1.0d0,0d0)
 complex(8), public, parameter :: b5 = (0.0d0,0d0)
 complex(8), public, parameter :: b6 = (0.0d0,0d0)
 complex(8), public, parameter :: b7 = (0.0d0,0d0)
 complex(8), public, parameter :: b8 = (0.0d0,0d0)
 complex(8), public, parameter :: b9 = (0.0d0,0d0)
 complex(8), public, parameter :: b10 =(0.0d0,0d0) ! this coupling does not contribute for gamma+gamma final states
 complex(8), public, parameter :: c1 = (1.0d0,0d0)
 complex(8), public, parameter :: c2 = (0.0d0,0d0)
 complex(8), public, parameter :: c3 = (0.0d0,0d0)
 complex(8), public, parameter :: c41= (0.0d0,0d0)
 complex(8), public, parameter :: c42= (0.0d0,0d0)
 complex(8), public, parameter :: c5 = (0.0d0,0d0)
 complex(8), public, parameter :: c6 = (0.0d0,0d0)
 complex(8), public, parameter :: c7 = (0.0d0,0d0)
                                    8. "Higher order Graviton, spin-two", 2_h^-
!-- parameters that define spin 2 coupling to SM fields, see note
! minimal coupling corresponds to a1 = b1 = b5 = 1 everything else 0
 complex(8), public, parameter :: a1 = (0.0d0,0d0)
                                                      ! g1 -- c.f. draft
 complex(8), public, parameter :: a2 = (0.0d0,0d0)
                                                      ! g2
 complex(8), public, parameter :: a3 = (0.0d0,0d0)
                                                      ! g3
 complex(8), public, parameter :: a4 = (0.0d0,0d0)
                                                      ! g4
 complex(8), public, parameter :: a5 = (1.0d0,0d0)
                                                      ! pseudoscalar, g8
 complex(8), public, parameter :: graviton_qq_left = (1.0d0,0d0)! graviton coupling to quarks
 complex(8), public, parameter :: graviton_qq_right = (1.0d0,0d0)
!-- see mod_Graviton
 logical, public, parameter :: generate_bis = .true.
 logical, public, parameter :: use_dynamic_MG = .true.
 complex(8), public, parameter :: b1 = (0.0d0,0d0)
                                                       ! all b' below are g's in the draft
 complex(8), public, parameter :: b2 = (0.0d0,0d0)
 complex(8), public, parameter :: b3 = (0.0d0,0d0)
 complex(8), public, parameter :: b4 = (0.0d0,0d0)
 complex(8), public, parameter :: b5 = (0.0d0,0d0)
 complex(8), public, parameter :: b6 = (0.0d0,0d0)
 complex(8), public, parameter :: b7 = (0.0d0,0d0)
 complex(8), public, parameter :: b8 = (1.0d0,0d0)
 complex(8), public, parameter :: b9 = (0.0d0,0d0)
 complex(8), public, parameter :: b10 =(0.0d0,0d0)
                                                    ! this coupling does not contribute for gamma+gamma final states
 complex(8), public, parameter :: c1 = (1.0d0,0d0)
 complex(8), public, parameter :: c2 = (0.0d0,0d0)
 complex(8), public, parameter :: c3 = (0.0d0,0d0)
 complex(8), public, parameter :: c41= (0.0d0,0d0)
 complex(8), public, parameter :: c42= (0.0d0,0d0)
 complex(8), public, parameter :: c5 = (0.0d0,0d0)
 complex(8), public, parameter :: c6 = (0.0d0,0d0)
 complex(8), public, parameter :: c7 = (0.0d0,0d0)
```

- [1] Y.Y. Gao, A. V. Gritsan, Z.J. Guo, K. Melnikov, M. Schulze and N. V. Tran, "Spin-Determination of Single-Produced Resonances at Hadron Colliders". Phys. Rev. D 81, 075022 (2010). arXiv:1001.3396 [hep-ph].
- [2] S. Bolognesi, Y.Y. Gao, A. V. Gritsan, K. Melnikov, M. Schulze, N. V. Tran and A. Whitbeck, "On the Spin and Parity of Single-Produced Resonance at the LHC". Phys. Rev. D 86, 095031 (2012). arXiv:1208.4018 [hep-ph].
- [3] I. Anderson, S. Bolognesi, F. Caola, Y.Y. Gao, A. V. Gritsan, C. B. Martin, K. Melnikov, M. Schulze, N. V. Tran, A. Whitbeck, Y. Zhou, "Constraining anomalous HVV interactions at proton and lepton colliders". arXiv:1309.4819 [hep-ph].
- [4] See webpage: www.pha.jhu.edu/spin