Some Topics in Elementary Mathematics/Grade 11

Nguyễn Quản Bá Hồng 1

Ngày 4 tháng 8 năm 2022

Mục lục

1	Đại Số & Giải Tích – Algebra & Analysis	1
1	Hàm Số Lượng Giác & Phương Trình Lượng Giác – Trigonometric Function & Trigonometric Equation 1.1 Các Hàm Số Lượng Giác – Trigonometric Functions 1.1.1 Các hàm số $y = \sin x \& y = \cos x$ 1.1.1.1 Khái niệm 1.1.1.2 Tính chất tuần hoàn của các hàm số $y = \sin x \& y = \cos x$ 1.1.1.3 Sự biến thiên & đồ thị của hàm số $y = \sin x$ 1.1.1.4 Sự biến thiên & đồ thị của hàm số $y = \cos x$ 1.1.2 Các hàm số $y = \tan x \& y = \cot x$ 1.1.2.1 Dịnh nghĩa 1.1.2.2 Tính chất tuần hoàn 1.1.2.3 Sự biến thiên & đồ thị của hàm số $y = \tan x$ 1.1.2.4 Sự biến thiên & đồ thị của hàm số $y = \cot x$ 1.1.3 Về khái niệm hàm số tuần hoàn 1.1.4 Dao động điều hòa 1.1.5 Âm thanh 1.2 Phương Trình Lượng Giác Cơ Bản	2 2 2 2 2 2 3 4 4 4 5 5 6 7 7
	1.3 1 Số Đạng Phương Trình Lượng Giác Cơ Bản	7
2	Tổ Hợp & Xác Suất 2.1 2 Quy Tắc Đếm Cơ Bản 2.2 Hoán Vị, Chỉnh Hợp & Tổ Hợp 2.3 Nhị Thức Newton 2.4 Biến Cổ & Xác Suất của Biến Cổ 2.5 Các Quy Tắc Tính Xác Suất 2.6 Biến Ngẫu Nhiên Rời Rạc	8 8 8 8 8 8
3	Dãy Số. Cấp Số Cộng & Cấp Số Nhân 3.1 Phương Pháp Quy Nạp Toán Học 3.2 Dãy Số 3.3 Cấp Số Cộng 3.4 Cấp Số Nhân	9 9 9 9
4	Giới Hạn 4.1 Dãy Số Có Giới Hạn 0 4.2 Dãy Số Có Giới Hạn Hữu Hạn 4.3 Dãy Số Có Giới Hạn Vô Cực 4.4 Định Nghĩa & 1 Số Định Lý về Giới Hạn của Hàm Số 4.5 Giới Hạn 1 Bên 4.6 1 Vài Quy Tắc Tìm Giới Hạn Vô Cực 4.7 Các Dạng Vô Hình 4.8 Hàm Số Liên Tục	10 10 10 10 10 10 10 10
5	Đạo Hàm5.1 Khái Niệm Đạo Hàm5.2 Các Quy Tắc Tính Đạo Hàm5.3 Đạo Hàm của Các Hàm Số Lượng Giác5.4 Vi Phân	11 11 11 11 11

Sест. 0.0 Мис luc

	5.5 Đạo Hàm Cấp Cao	. 11
II	Hình Học – Geometry	12
6	Phép Dởi Hình & Phép Đồng Dạng Trong Mặt Phẳng 6.1 Mở Đầu về Phép Biến Hình 6.2 Phép Tịnh Tiến & Phép Dời Hình 6.3 Phép Đối Xứng Trục 6.4 Phép Quay & Phép Đối Xứng Tâm 6.5 2 Hình bằng Nhau 6.6 Phép Vị Tự 6.7 Phép Đồng Dạng 6.8 Hình Tự Đồng Dạng & Hình Học Fractal	. 13 . 13 . 13 . 13 . 13
7	Đường Thẳng & Mặt Phẳng Trong Không Gian7.1Đại Cương về Đường Thẳng & Mặt Phẳng7.22 Đường Thẳng Song Song7.3Đường Thẳng Song Song với Mặt Phẳng7.42 Mặt Phẳng Song Song7.5Phép Chiếu Song Song7.6Phương Pháp Tiên Đề Trong Hình Học	. 14. 14. 14. 14
8	Vector Trong Không Gian. Quan Hệ Vuông Góc8.1Vector Trong Không Gian. Sự Đồng Phẳng của Các Vector8.22 Đường Thẳng Vuông Góc8.3Đường Thẳng Vuông Góc với Mặt Phẳng8.42 Mặt Phẳng Vuông Góc8.5Khoảng Cách	. 15 . 15 . 15
	Phụ Lục - Appendices A.1 Hàm Số Chẵn & Hàm Số Lẻ - Even & Odd Functions A.1.1 Hàm số chẵn - Even function A.1.2 Hàm số chẵn - Odd function A.1.3 Các tính chất cơ bản A.1.3.1 Tính duy nhất A.1.3.2 Cộng & trừ hàm số chẵn lẻ A.1.3.3 Nhân & chia hàm số chẵn lẻ A.1.3.4 Hàm hợp (tích ánh xạ) A.1.4 Phân tích chẵn-lẻ	. 16 . 16 . 16 . 16 . 16 . 17 . 17
Tà	ni liệu tham khảo	19

Phần I

Đại Số & Giải Tích – Algebra & Analysis

Hàm Số Lượng Giác & Phương Trình Lượng Giác – Trigonometric Function & Trigonometric Equation

"Nhiều hiện tượng tuần hoàn đơn giản trong thực tế được mô tả bởi những hàm số lượng giác. Chương này cung cấp những kiến thức cơ bản về các hàm số lượng giác & cách giải các phương trình lượng giác đơn giản." – Quỳnh et al., 2020, p. 3

Nội dung. Tính chất tuần hoàn của các hàm số lượng giác & phương pháp sử dụng đường tròn lượng giác để tìm nghiệm của các phương trình lượng giác cơ bản, kỹ năng biến đổi lượng giác & kỹ năng giải các dạng phương trình lượng giác.

1.1 Các Hàm Số Lượng Giác – Trigonometric Functions

"Các hàm số lượng giác/trigonometric 1 2 functions thường được dùng để mô tả những hiện tượng thay đổi 1 cách tuần hoàn hay gặp trong thực tiễn, khoa học & kỹ thuật." – Quỳnh et al., 2020, p. 4

1.1.1 Các hàm số $y = \sin x \& y = \cos x$

1.1.1.1 Khái niệm

Định nghĩa 1.1.1 (Hàm số sin, cos). Quy tắc đặt tương ứng mỗi số thực $x \in \mathbb{R}$ với sin của góc lượng giác có số đo radian bằng x được gọi là hàm số sin, ký hiệu là $y = \sin x$. Quy tắc đặt tương ứng mỗi số thực $x \in \mathbb{R}$ với côsin của góc lượng giác có số đo radian bằng x được gọi là hàm số côsin, ký hiệu là $y = \cos x$.

"Tập xác định của các hàm số $y=\sin x,\,y=\cos x$ là $\mathbb R.$ Do đó các hàm số sin & côsin được viết là:

$$\sin: \mathbb{R} \to \mathbb{R}$$
 $\cos: \mathbb{R} \to \mathbb{R}$ $x \mapsto \sin x$, $x \mapsto \cos x$

Hàm số $y = \sin x$ là 1 hàm số lễ vì $\sin(-x) = -\sin(x)$, $\forall x \in \mathbb{R}$, trong khi hàm số $y = \cos x$ là 1 hàm số $\cosh x$ vì $\cos(-x) = \cos x$, $\forall x \in \mathbb{R}$." – Quỳnh et al., 2020, p. 4. Về định nghĩa & tính chất của hàm số chẵn & hàm số lễ, xem Sect. A.1. Có thể xem thêm Wikipedia/hàm số chẵn & lễ & Wikipedia/even & odd functions.

1.1.1.2 Tính chất tuần hoàn của các hàm số $y = \sin x \& y = \cos x$

"Với mỗi $k \in \mathbb{Z}$, số $k2\pi$ thỏa mãn: $\sin(x+k2\pi) = \sin x$, $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z}$. Ngược lại, có thể chứng minh rằng số T sao cho $\sin(x+T) = \sin x$, $\forall x \in \mathbb{R}$ phải có dạng $T = k2\pi$, với $k \in \mathbb{Z}$. Rỗ ràng, trong các số dạng $k2\pi$ ($k \in \mathbb{Z}$), số dương nhỏ nhất là 2π . Vậy đối với hàm số $y = \sin x$, số $T = 2\pi$ là số dương nhỏ nhất thỏa mãn $\sin(x+T) = \sin x$, $\forall x \in \mathbb{R}$. Hàm số $y = \cos x$ cũng có tinh chất tương tự. Ta nói 2 hàm số đó là những hàm số tuần hoàn với chu kỳ 2π .

Từ tính chất tuần hoàn với chu kỳ 2π , ta thấy khi biết giá trị các hàm số $y = \sin x \ \& \ y = \cos x$ trên 1 đoạn có độ dài 2π (e.g., đoạn $[0; 2\pi]$ hay đoạn $[-\pi; \pi]$) thì ta tính được giá trị của chúng tại mọi $x \in \mathbb{R}$. (Cứ mỗi khi biến số được cộng thêm 2π thì giá trị của các hàm số đó lai trở về như cũ; điều này giải thích từ "tuần hoàn")." – Quỳnh et al., 2020, p. 4–5

 $^{^{1}}$ trigonometric [a] (also trigonometrical) (mathematics) connected with the types of mathematics that deals with the relationship between the sides & angles of triangles.

²trigonometry [n] [uncountable] the type of mathematics that deals with the relationship between the sides & angles of triangles.

1.1.1.3 Sự biến thiên & đồ thị của hàm số $y = \sin x$

"Do hàm số $y = \sin x$ là hàm số tuần hoàn với chu kỳ 2π nên ta chỉ cần khảo sát hàm số đó trên 1 đoạn có độ dài 2π , e.g., trên đoạn $[-\pi;\pi]$."

• Chiều biến thiên. Bảng biến thiên của hàm số $y = \sin x$ trên đoạn $[-\pi; \pi]$:

Hình 1.1: Bảng biến thiên của hàm số $y = \sin x$ trên đoạn $[-\pi; \pi]$.

• Đồ thị. "Khi vẽ đồ thị của hàm số $y = \sin x$ trên đoạn $[-\pi; \pi]$, ta nên để ý rằng: Hàm số $y = \sin x$ là 1 hàm số lẻ, do đó đồ thị của nó nhận gốc tọa độ làm tâm đối xứng. Vì vậy, đầu tiên ta vẽ đồ thị của hàm số $y = \sin x$ trên đoạn $[0; \pi]$.

Hình 1.2: Đồ thị của hàm số $y = \sin x$ trên đoạn $[0, \pi]$.

Trên đoạn $[0; \pi]$, đồ thị của hàm số $y = \sin x$ (Fig. 1.2) đi qua các điểm có tọa độ (x; y) trong bảng sau:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$y = \sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Bảng 1.1: Các giá trị của hàm $y = \sin x$ tại 1 số điểm $\in [0; \pi]$.

Phần đồ thị của hàm số $y = \sin x$ trên đoạn $[0; \pi]$ cùng với hình đối xứng của nó qua gốc O lập thành đồ thị của hàm số $y = \sin x$ trên đoạn $[-\pi, \pi]$ (Fig. 1.3).

Hình 1.3: Đồ thi của hàm số $y = \sin x$ trên $\mathbb{R} - duờng hình sin$.

Tịnh tiến phần đồ thị vừa vẽ sang trái, sang phải những đoạn có độ dài $2\pi, 4\pi, 6\pi, \ldots$ thì được toàn bộ đồ thị hàm số $y = \sin x$. Đồ thị đó được gọi là 1 đường hình sin (Fig. 1.3)." – Quỳnh et al., 2020, pp. 6–7

Nhận xét 1.1.1. 1. "Khi x thay đổi, hàm số $y = \sin x$ nhận mọi giá trị thuộc đoạn [-1;1]. Ta nói tập giá trị của hàm số $y = \sin x$ là đoạn [-1;1].

2. Hàm số $y = \sin x$ đồng biến trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Từ đó, do tính chất tuần hoàn với chu kỳ 2π , hàm số $y = \sin x$ đồng biến trên mỗi khoảng $\left(-\frac{\pi}{2} + k2\pi; \frac{\pi}{2} + k2\pi\right)$, $k \in \mathbb{Z}$." – Quỳnh et al., 2020, p. 7

1.1.1.4 Sự biến thiên & đồ thị của hàm số $y = \cos x$

"Ta có thể tiến hành khảo sát sự biến thiên & vẽ đồ thị của hàm số $y = \cos x$ tương tự như đã làm đối với hàm số $y = \sin x$ trên đây. Tuy nhiên, ta nhận thấy $\cos x = \sin \left(x + \frac{\pi}{2}\right)$, $\forall x \in \mathbb{R}$, nên bằng cách tịnh tiến đồ thị hàm số $y = \sin x$ sang trái 1 đoạn có độ dài $\frac{\pi}{2}$, ta được đồ thị hàm số $y = \cos x$ (nó cùng được gọi là 1 đường hình \sin) (Fig. 1.4).

Hình 1.4: Đồ thị của hàm số $y = \cos x$ trên \mathbb{R} .

Căn cứ vào đồ thị của hàm số $y = \cos x$, ta lập được bảng biến thiên của hàm số đó trên đoạn $[-\pi; \pi]$ (Fig. 1.5):

Hình 1.5: Bảng biến thiên của hàm số $y = \cos x$ trên đoạn $[-\pi; \pi]$.

Nhận xét 1.1.2. 1. Khi x thay đổi, hàm số $y = \cos x$ nhận mọi giá trị thuộc đoạn [-1;1]. Ta nói tập giá trị của hàm số $y = \cos x$ là đoạn [-1;1].

- 2. Do hàm số $y = \cos x$ là hàm số chẵn nên đồ thị của hàm số $y = \cos x$ nhận trực tung làm trực đối xứng.
- 3. Hàm số $y = \cos x$ đồng biến trên khoảng $(-\pi; 0)$. Từ đó do tính chất tuần hoàn với chu kỳ 2π , hàm số $y = \cos x$ đồng biến trên mỗi khoảng $(-\pi + k2\pi; k2\pi)$, $k \in \mathbb{Z}$." Quỳnh et al., 2020, pp. 8–9

Hàm số $y = \sin x$	Hàm số $y = \cos x$
Có tập xác định là \mathbb{R}	Có tập xác định là \mathbb{R}
Có tập giá trị là [-1;1]	Có tập giá trị là $[-1;1]$
Là hàm số lẻ	Là hàm số chẵn
Là hàm số tuần hoàn với chu kỳ 2π	Là hàm số tuần hoàn với chu kỳ 2π
Đồng biến trên mỗi khoảng $\left(-\frac{\pi}{2}+k2\pi;\frac{\pi}{2}+k2\pi\right)$ & nghịch	Đồng biến trên mỗi khoảng $(-\pi + k2\pi; k2\pi)$ & nghịch biến
biến trên mỗi khoảng $\left(\frac{\pi}{2} + k2\pi; \frac{3\pi}{2} + k2\pi\right), k \in \mathbb{Z}$	trên mỗi khoảng $(k2\pi; \pi + k2\pi), k \in \mathbb{Z}$
Có đồ thị là 1 đường hình sin	Có đồ thị là 1 đường hình sin

Bảng 1.2: So sánh tính chất của 2 hàm số $y = \sin x \, \& \, y = \cos x$.

1.1.2 Các hàm số $y = \tan x \& y = \cot x$

1.1.2.1 Định nghĩa

• "Với mỗi số thực $x \in \mathbb{R}$ mà $\cos x \neq 0$, i.e., $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$, ta xác định được số thực $\tan x = \frac{\sin x}{\cos x}$. Đặt $\mathcal{D}_1 := \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi | k \in \mathbb{Z} \right\}$.

Định nghĩa 1.1.2 (Hàm số tan). Quy tắc đặt tương ứng mỗi số $x \in \mathcal{D}_1$ với số thực tan $x = \frac{\sin x}{\cos x}$ được gọi là hàm số tang, ký hiệu là $y = \tan x$.

Vậy hàm số $y = \tan x$ có tập xác định \mathcal{D}_1 ; ta viết

$$\tan: \mathcal{D}_1 \to \mathbb{R}$$
$$x \mapsto \tan x.$$

• Với mỗi số thực $x \in \mathbb{R}$ mà $\sin x \neq 0$, i.e., $x \neq k\pi \tan (k \in \mathbb{Z})$, ta xác định được số thực $\cot x = \frac{\cos x}{\sin x}$. Đặt $\mathcal{D}_2 \coloneqq \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$.

Định nghĩa 1.1.3 (Hàm số cot). Quy tắc đặt tương ứng mỗi số $x \in \mathcal{D}_2$ với số thực cot $x = \frac{\cos x}{\sin x}$ được gọi là hàm số côtang, ký hiệu là $y = \cot x$.

Vậy hàm số $y = \cot x$ có tập xác định là \mathcal{D}_2 ; ta viết

$$\cot: \mathcal{D}_2 \to \mathbb{R}$$
$$x \mapsto \cot x.$$

Hình 1.6: Trục tang & trục côtang.

Trên hình 1.6, ta có (OA, OM) = x, $\tan x = \overline{AT}$, $\cot x = \overline{BS}$.

Nhận xét 1.1.3. 1. Hàm số $y = \tan x$ là 1 hàm số lẻ vì nếu $x \in \mathcal{D}_1$ thì $-x \in \mathcal{D}_1$ & $\tan(-x) = -\tan x$.

2. Hàm số $y = \cot x$ cũng là 1 hàm số lẻ vì nếu $x \in \mathcal{D}_2$ thì $-x \in \mathcal{D}_2$ & $\cot(-x) = -\cot x$." – Quỳnh et al., 2020, pp. 9–10

1.1.2.2 Tính chất tuần hoàn

"Có thể chứng minh rằng $T = \pi$ là số dương nhỏ nhất thỏa mãn $\tan(x+T) = \tan x$, $\forall x \in \mathcal{D}_1$, & $T = \pi$ cũng là số dương nhỏ nhất thỏa mãn $\cot(x+T) = \cot x$, $\forall x \in \mathcal{D}_2$. Ta nói các hàm số $y = \tan x$ & $y = \cot x$ là những hàm số tuần hoàn với chu kỳ π ." – Quỳnh et al., 2020, p. 10

1.1.2.3 Sự biến thiên & đồ thị của hàm số $y = \tan x$

"Do tính chất tuần hoanf với chu kỳ π của hàm số $y = \tan x$, ta chỉ cần khảo sát sự biến thiên & vẽ đồ thị của nó trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \subset \mathcal{D}_1$, rồi tịnh tiến phần đồ thị vừa vẽ sang trái, sang phải các đoạn của độ dài $\pi, 2\pi, 3\pi, \ldots$ thì được toàn bộ đồ thị của hàm số $y = \tan x$.

• Chiều biến thiên:

Hình 1.7: Chiều biến thiên của hàm $y = \tan x$.

Khi cho x=(OA,OM) tăng từ $-\frac{\pi}{2}$ đến $\frac{\pi}{2}$ (không kể $\pm \frac{\pi}{2}$) thì điểm M chạy trên đường tròn lượng giác theo chiều dương từ B' đến B (không kể B' & B). Khi đó điểm T thuộc trục tang At sao cho $\overline{AT}=\tan x$ chạy dọc theo At suốt từ dưới lên trên, nên tan x tăng từ $-\infty$ đến $+\infty$ (qua quá trị 0 khi x=0)."

• $D\hat{o}$ thị: "Đồ thị của hàm số $y = \tan x$ có dạng như ở hình 1.8.

Hình 1.8: Đồ thị của hàm $y = \tan x$.

Nhận xét 1.1.4. 1. Khi x thay đổi, hàm số $y = \tan x$ nhận mọi giá trị thực. Ta nói tập giá trị của hàm số $y = \tan x$ là \mathbb{R} .

- 2. Vì hàm số $y = \tan x$ là hàm số lẻ nên đồ thị của nó nhận gốc tọa độ làm tâm đối xứng.
- 3. Hàm số y = tan x không xác định tại x = π/2 + kπ (k ∈ Z). Với mỗi k ∈ Z, đường thẳng vuông góc với trục hành, đi qua điểm (π/2 + kπ;0) gọi là 1 đường tiệm cận của đồ thị hàm số y = tan x. (Từ "tiệm cận" có nghĩa là ngày càng gần. E.g., nói đường thẳng x = π/2 là 1 đường tiệm cận của đồ thị hàm số y = tan x nhằm diễn tả tính chất: điểm M trên đồ thị có hoành độ càng gần π/2 thì M càng gần đường thẳng x = π/2)." Quỳnh et al., 2020, pp. 11-12

1.1.2.4 Sự biến thiên & đồ thị của hàm số $y = \cot x$

"Hàm số $y = \cot x$ xác định trên $\mathcal{D}_2 = \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$ là 1 hàm số tuần hoàn với chu kỳ π . Ta có thể khảo sát sự biến thiên & vẽ đồ thị của nó tương tự như đã làm đối với hàm số $y = \tan x$. Đồ thị của hàm số $y = \cot x$ có dạng như hình 1.9.

Hình 1.9: Đồ thị của hàm $y = \cot x$.

Nó nhận mỗi đường thẳng vuông góc với trục hoành, đi qua điểm $(k\pi;0)$, $k \in \mathbb{Z}$ làm 1 đường tiệm cận." – Quỳnh et al., 2020, p. 12

Hàm số $y = \tan x$	Hàm số $y = \cot x$
Có tập xác định là $\mathcal{D}_1 = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi k \in \mathbb{Z} \right\}$	Có tập xác định là $\mathcal{D}_2 = \mathbb{R} \setminus \{k\pi k \in \mathbb{Z}\}$
Có tập giá trị là \mathbb{R}	Có tập giá trị là \mathbb{R}
Là hàm số lẻ	Là hàm số lẻ
Là hàm số tuần hoàn với chu kỳ π	Là hàm số tuần hoàn với chu kỳ π
Dồng biến trên mỗi khoảng $\left(-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi\right), k \in \mathbb{Z}$	Nghịch biến trên mỗi khoảng $(k\pi; \pi + k\pi), k \in \mathbb{Z}$
Có đồ thị nhận mỗi đường thẳng $x = \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$ làm	Có đồ thị nhận mỗi đường thẳng $x=k\pi$ $(k\in\mathbb{Z})$ làm 1
1 đường tiệm cận	đường tiệm cận

Bảng 1.3: So sánh tính chất của 2 hàm số $y = \tan x \ \& \ y = \cot x$.

1.1.3 Về khái niệm hàm số tuần hoàn

"Các hàm số $y = \sin x$, $y = \cos x$ là những hàm số tuần hoàn với chu kỳ 2π ; các hàm số $y = \tan x$, $y = \cot x$ là những hàm số tuần hoàn với chu kỳ π . 1 cách tổng quát:

Định nghĩa 1.1.4 (Hàm số tuần hoàn). Hàm số y = f(x) xác định trên tập hợp \mathcal{D} được gọi là hàm số tuần hoàn nếu có số $T \neq 0$ sao cho với mọi $x \in \mathcal{D}$ ta có $x + T \in \mathcal{D}$, $x - T \in \mathcal{D}$ & f(x + T) = f(x). Nếu có số T dương nhỏ nhất thỏa mãn các điều kiện trên thì hàm số đó được gọi là 1 hàm số tuần hoàn với chu kỳ T." – Quỳnh et al., 2020, p. 13

Ví dụ 1.1.1. Các hàm số có dạng $y = a \sin bx$, với $a, b \in \mathbb{R}^* := \mathbb{R} \setminus \{0\}$ là những hàm số tuần hoàn.

1.1.4 Dao động điều hòa

"Nhiều hiện tượng tự nhiên thay đổi có tính chất tuần hoàn (lặp đi lặp lại sau khoảng thời gian xác định) như: Chuyển động của các hành tinh trong hệ mặt trời, chuyển động của guồng nước quay, chuyển động của quả lắc đồng hồ, sự biến thiên của cường độ dòng điện xoay chiều, Hiện tượng tuần hoàn đơn giản nhất là dao động điều hòa được mô tả bởi hàm số $y = A\sin(\omega x + \alpha) + B$, trong đó $A, B, \omega \& \alpha$ là những hằng số; $A \& \omega$ khác 0. Đó là hàm số tuần hoàn với chu kỳ $\frac{2\pi}{|\omega|}$; |A| gọi là biên độ. Đồ thị của nó là 1 đường hình sin có được từ đồ thị của hàm số $y = A\sin\omega x$ bằng cách tịnh tiến thích hợp (theo vector $-\frac{\alpha}{\omega}\vec{i}$ rồi theo vector $B\vec{j}$, i.e., tịnh tiến theo vector $-\frac{\alpha}{\omega}\vec{i}$ rồi theo vector B \vec{j} , i.e., tịnh tiến theo vector $-\frac{\alpha}{\omega}\vec{i}$ rồi theo vector B \vec{j} , i.e., tịnh tiến theo vector $-\frac{\alpha}{\omega}\vec{i}$ rồi theo vector pp. 15–16

1.1.5 Âm thanh

1.2 Phương Trình Lượng Giác Cơ Bản

1.3 1 Số Dạng Phương Trình Lượng Giác Cơ Bản

Tổ Hợp & Xác Suất

- 2.1 2 Quy Tắc Đếm Cơ Bản
- 2.2 Hoán Vị, Chỉnh Hợp & Tổ Hợp
- 2.3 Nhị Thức Newton
- 2.4 Biến Cố & Xác Suất của Biến Cố
- 2.5 Các Quy Tắc Tính Xác Suất
- 2.6 Biến Ngẫu Nhiên Rời Rạc

Đãy Số. Cấp Số Cộng & Cấp Số Nhân

- 3.1 Phương Pháp Quy Nạp Toán Học
- 3.2 Dãy Số
- 3.3 Cấp Số Cộng
- 3.4 Cấp Số Nhân

Giới Hạn

- 4.1 Dãy Số Có Giới Hạn 0
- 4.2 Dãy Số Có Giới Hạn Hữu Hạn
- 4.3~ Dãy Số Có Giới Hạn Vô Cực
- 4.4~ Định Nghĩa & 1 Số Định Lý về Giới Hạn của Hàm Số
- 4.5 Giới Hạn 1 Bên
- 4.6 1 Vài Quy Tắc Tìm Giới Hạn Vô Cực
- 4.7 Các Dạng Vô Hình
- 4.8 Hàm Số Liên Tục

Đạo Hàm

- 5.1 Khái Niệm Đạo Hàm
- 5.2 Các Quy Tắc Tính Đạo Hàm
- 5.3 Đạo Hàm của Các Hàm Số Lượng Giác
- 5.4 Vi Phân
- 5.5 Đạo Hàm Cấp Cao

$\begin{array}{c} {\rm Ph \grave{a} n} \; {\rm II} \\ \\ {\rm H\grave{n} h} \; {\rm H\acute{o} c} - {\rm Geometry} \end{array}$

Phép Dời Hình & Phép Đồng Dạng Trong Mặt Phẳng

- 6.1 Mở Đầu về Phép Biến Hình
- 6.2 Phép Tịnh Tiến & Phép Dời Hình
- 6.3 Phép Đối Xứng Trục
- 6.4 Phép Quay & Phép Đối Xứng Tâm
- 6.5 2 Hình bằng Nhau
- 6.6 Phép Vị Tự
- 6.7 Phép Đồng Dạng
- 6.8 Hình Tự Đồng Dạng & Hình Học Fractal

Đường Thẳng & Mặt Phẳng Trong Không Gian

- 7.1 Đại Cương về Đường Thẳng & Mặt Phẳng
- 7.2 2 Đường Thẳng Song Song
- 7.3 Đường Thẳng Song Song với Mặt Phẳng
- 7.4 2 Mặt Phẳng Song Song
- 7.5 Phép Chiếu Song Song
- 7.6 Phương Pháp Tiên Đề Trong Hình Học

Vector Trong Không Gian. Quan Hệ Vuông Góc

- 8.1 Vector Trong Không Gian. Sự Đồng Phẳng của Các Vector
- 8.2 2 Đường Thẳng Vuông Góc
- 8.3 Đường Thẳng Vuông Góc với Mặt Phẳng
- 8.4 2 Mặt Phẳng Vuông Góc
- 8.5 Khoảng Cách

Phu luc A

Phụ Lục – Appendices

A.1 Hàm Số Chẵn & Hàm Số Lẻ – Even & Odd Functions

"Trong toán học, hàm số chẵn & hàm số lẻ là các hàm số thỏa mãn các quan hệ đối xứng nhất định khi lấy nghịch đảo phép cộng. Chúng rất quan trọng trong nhiều lĩnh vực của giải tích toán, đặc biệt trong lý thuyết chuỗi lũy thừa & chuỗi Fourier. Chúng được đặt tên theo tính chẵn lẻ của số mũ lũy thừa của hàm lũy thừa thỏa mãn từng điều kiện: hàm số $f(x) = x^n$ là 1 hàm chẵn nếu n là 1 số nguyên chẵn, & nó là hàm lẻ nếu n là 1 số nguyên lẻ." – Wikipedia/hàm số chẵn & lẻ

A.1.1 Hàm số chẵn – Even function

Định nghĩa A.1.1 (Hàm số chẵn). "Cho f là 1 hàm số giá trị thực của 1 đối số thực, f là hàm số chẵn nếu điều kiện sau được thỏa mãn với mọi x sao cho cả x \mathscr{E} -x đều thuộc miền xác định của f: f(x) = f(-x), $\forall x \in \text{dom}(f)$, với dom(f) ký hiệu miền xác định của f, hoặc phát biểu 1 cách tương đương, nếu phương trình sau thỏa mãn f(x) - f(-x) = 0, $\forall x \in \text{dom}(f)$.

Về mặt hình học, đồ thị của 1 hàm số chẵn đối xứng qua trục y, nghĩa là đồ thị của nó giữ không đổi sau phép lấy đối xứng qua trục y." – Wikipedia/hàm số chẵn & lẻ

Ví dụ A.1.1 (Hàm chẵn). Hàm trị tuyệt đối $x \mapsto |x|$, các hàm đơn thức dạng $x \mapsto x^{2n}$, hàm cosin cos, hàm cosin hyperbolic cosh.

A.1.2 Hàm số chẵn – Odd function

Định nghĩa A.1.2 (Hàm số lẻ). Cho f là 1 hàm số giá trị thực của 1 đối số (biến) thực, f là hàm số lẻ nếu điều kiện sau được thỏa mãn với mọi x sao cho cả x $\mathscr E$ -x đều thuộc miền xác định của f: f(-x) = -f(x), $\forall x \in \text{dom}(f)$, với dom(f) ký hiệu miền xác định của f, hoặc phát biểu 1 cách tương đương, nếu phương trình sau thỏa mãn f(x)+f(-x)=0, $\forall x \in \text{dom}(f)$.

"Về mặt hình học, đồ thị của 1 hàm lẻ có tính đối xứng tâm quay qua gốc tọa độ, i.e., đồ thị của nó không đổi sau khi thực hiện phép quay 180° quanh điểm gốc." – Wikipedia/hàm số chẵn & lẻ

Ví dụ A.1.2 (Hàm số lẻ). Hàm đồng nhất $x \mapsto x$, các hàm đơn thức dạng $x \mapsto x^{2n+1}$, hàm sin sin, hàm sin hyperbol sinh, hàm lỗi erf.

A.1.3 Các tính chất cơ bản

A.1.3.1 Tính duy nhất

- "Nếu 1 hàm số vừa chẵn & vừa lẻ, nó bằng 0 ở moi điểm mà nó được xác đinh.
- Nếu 1 hàm là lẻ thì giá trị tuyệt đối của hàm đó là 1 hàm chẵn." Wikipedia/hàm số chẵn & lẻ

A.1.3.2 Công & trừ hàm số chẵn lẻ

- Tổng & hiệu của 2 hàm số chẵn là 2 hàm số chẵn.
- Tổng & hiệu của 2 hàm lẻ là 2 hàm lẻ.
- Tổng của 1 hàm chắn & 1 hàm lẻ thì không chẵn cũng không lẻ, trừ khi 1 trong các hàm ấy bằng 0 trên miền đã cho.

A.1.3.3 Nhân & chia hàm số chẵn lẻ

- Tích & thương của 2 hàm chẵn là 2 hàm chẵn.
- Tích & thương của 2 hàm lẻ là 2 hàm chẵn.
- Tích & thương của 1 hàm chẵn với 1 hàm lẻ là 2 hàm lẻ.

A.1.3.4 Hàm hợp (tích ánh xạ)

- Hàm hợp của 2 hàm chẵn là hàm chẵn.
- Hàm hợp của 2 hàm lẻ là hàm lẻ.
- 1 hàm chẵn hợp với 1 hàm lẻ là hàm chẵn.
- Hàm hợp của bất kỳ hàm số nào với 1 hàm chẵn là hàm chẵn (nhưng điều ngược lại không đúng).

A.1.4 Phân tích chẵn-lẻ

"Mọi hàm có thể được phân tích duy nhất thành tổng của 1 hàm chẵn & 1 hàm lẻ, được gọi tương ứng là *phần chẵn* & *phần* lẻ của 1 hàm số, nếu ta đặt như sau:

$$f_{e}(x) := \frac{f(x) + f(-x)}{2}, \ f_{o}(x) := \frac{f(x) - f(-x)}{2},$$

sau đó f_e là hàm chẵn, f_o là hàm lẻ, & $f(x) = f_e(x) + f_o(x)$. Ngược lại nếu f(x) = g(x) + h(x), trong đó g là chẵn & h là lẻ, thì $g = f_e$ & $h = f_o$, bởi vì

$$2f_{e}(x) = f(x) + f(-x) = g(x) + g(-x) + h(x) + h(-x) = 2g(x),$$

$$2f_{o}(x) = f(x) - f(-x) = g(x) - g(-x) + h(x) - h(-x) = 2h(x).$$

Ví dụ A.1.3. Hàm cosin hyperbolic & sin hyperbolic có thể được coi là các phần chẵn & phần lẻ của hàm số lũy thừa tự nhiên, bởi vì hàm thứ nhất là chẵn, hàm thứ 2 là lẻ, & $e^x = \sinh x + \cosh x$." – Wikipedia/hàm số chẵn & lẻ

Tài liệu tham khảo

[NQBH/elementary math] Nguyễn Quản Bá Hồng. Some Topics in Elementary Mathematics: Problems, Theories, Applications, & Bridges to Advanced Mathematics. Mar 2022—now.

Tài liệu tham khảo

Quỳnh, Đoàn et al. (2020). Đại Số & Giải Tích 11 nâng cao. Tái bản lần thứ 13. Nhà Xuất Bản Giáo Dục Việt Nam, p. 241.