Assignment1(Abstract and Introduction)

Humans have coexisted with pathogenic microorganisms throughout its
history of evolution. We have never halted the exploration of pathogenic
microorganisms.
With the improvement of genome-sequencing technology and the
continuous reduction of sequencing costs, an increasing number of complete
genome sequences of pathogenic microorganisms have become available.
Our problem that is Genome annotation of this massive sequence
information has become a daunting task in biological research.
This paper summarizes the approaches to the genome annotation of
pathogenic microorganisms and the available popular genome annotation
tools for prokaryotes, eukaryotes and viruses.
Although we have accumulated much useful understanding of the
emergence, evolution, pandemic and pathogenic mechanism of pathogenic
microorganisms, there are still some crucial gaps in our knowledge.
Since the first complete genome sequence of the microorganism
Haemophilus influenza was published in 1995, the whole-genome era's
arrival has brought a new dawn for us to fill these gaps.
Genome annotation has become a critical element for us to understand
genomic biology, especially the genomes of pathogenic microorganisms.
Over the years of efforts, genome annotation has flourished. Today, we
know not only protein-coding genes but also many other functional
elements, such as promoters, enhancers, noncoding RNAs and DNA
methylation sites.