COMP9311 16S2 Assignment 3

Question 1

i.

a.

Candidate key: ACEF, BCEF

b.

Not BCNF, e.g.

- AD \rightarrow B, AD doesn't contain a key
- $C \rightarrow D$, C doesn't contain a key
- BC → A, BC doesn't contain a key
- $B \rightarrow D$, B doesn't contain a key

c.

- The FD $C \rightarrow D$ violates BCNF
- To fix, we need to decompose into tables: CD and ABCEF.
- FDs for CD is $\{C \rightarrow D\}$, therefore key is C, therefore BCNF.
- FDs for ABCEF is $\{BC \rightarrow A\}$, Keys are BCEF, and BC \rightarrow A violates BCNF
- We then decompose BCA: FDs { $BC \rightarrow A$ }, the key is BC
- There is no FDs for *BCEF*, so it is BCNF

Final schema (with keys boldened): CD, BCA, BCEF

ii.

a.

Candidate key: AF, CF

b.

Not BCNF, e.g.

- BC \rightarrow E, BC doesn't contain a key
- $C \rightarrow AB$, C doesn't contain a key

c.

- The FD $C \rightarrow AB$ violates BCNF
- To fix, we need to decompose into tables: ABC and CDEF.
- FDs for ABC is $\{C \rightarrow AB\}$, therefore key is C, therefore BCNF.
- There is no FDs for *CDEF*, so it is BCNF

Final schema (with keys boldened): CAB, CDEF

iii.

a.

Candidate key: ABCF, BCDF

b.

Not BCNF, e.g.

- ABF → D, ABF doesn't contain a key
- $CD \rightarrow E$, CD doesn't contain a key
- BD \rightarrow A, BD doesn't contain a key

c.

- The FD $CD \rightarrow E$ violates BCNF
- To fix, we need to decompose into tables: *CDE* and *ABCDF*.
- FDs for CDE is $\{CD \rightarrow E\}$, therefore key is CD, therefore BCNF.
- FDs for ABCDF are { ABF \rightarrow D, BD \rightarrow A }, Keys are BCDF, and BD \rightarrow A violates BCNF
- We then decompose BDA: FDs { $BD \rightarrow A$ }, the key is BD
- There is no FDs for BCDF, so it is BCNF

Final schema (with keys boldened): CDE, BDA, BCDF

iv.

a.

Candidate key: AB

b.

Not BCNF, e.g.

- BCD → EF, BCD doesn't contain a key
- $B \rightarrow C$, B doesn't contain a key

c.

- The FD $B \rightarrow C$ violates BCNF
- To fix, we need to decompose into tables: BC and ABDEF.
- FDs for BC is $\{B \rightarrow C\}$, therefore key is B, therefore BCNF.
- FDs for ABDEF is { $AB \rightarrow D$ }, Keys are ABEF, and $AB \rightarrow D$ violates BCNF
- We then decompose ABD: FDs { $AB \rightarrow D$ }, the key is AB
- There is no FDs for ABEF, so it is BCNF

Final schema (with keys boldened): BC, ABD, ABEF

Question 2

```
i. TechCode = Proj[Code](Sel[Sector = "Technology"](Category))Answer = Proj[Name](TechCode Join Company)
```

 $ii. \qquad CodeGroup = GroupBy[Code, Count[Code]](Executive) \\$

CodeGroup_2 = Rename[1->Code, 2->Count](CodeGroup)

 $Answer = Proj[Code](Sel[Count >= 6](CodeGroup_2))$

iii. NameGroup = GroupBy[Person, Count[Person]](Executive)

NameGroup_2 = Rename[1->Person, 2->Count](NameGroup)

Answer = $Proj[Person](Sel[Count >= 2](NameGroup_2))$

iv. CatGroup = GroupBy[Industry, Count[Industry]](Category)

CatGroup_2 = Rename[1-> Industry, 2->Count](CatGroup)

Answer = Proj[Code, Industry](Sel[Count = 1](CatGroup_2 Join Category))

Question 3

i. Min: r, when S intersect T is zero

Max: r + t, when $T \subseteq S$, or r + s, when $S \subseteq T$

- ii. Min: 0, when no tuple meets the condition, c
 - Max: r*s, when all tuples meet the condition, c
- iii. Min: 0, when R Join S = R

Max: r, when R Join $S = \emptyset$

Question 4

i.

The graph has a cycle due to the edge from T1 to T2 and the edge from T2 to T1, hence it is not serializable.

ii.

There are conflicts that cause the cycle between:

T3 R(X) and T2 W(X),

T2 W(Y) and T1 W(Y),

T4 W(Y) and T2 R(Y),

T1 W(Y) and T2 R(Y),

T2 W(X) and T1 R(X)

Hence, the schedule is not serializable.