Dataset Details

The synthetic dataset simulates lead-acid battery degradation for TOTO E-rickshaws in Kolkata, comprising 10,000 samples of 7-day sequences for state of health (SOH) prediction, as described in Section IV. Below, we detail its structure, generation, and properties.

Structure

Each sample represents a 7-day sequence for one E-rickshaw, with 29 features:

- Client ID: Unique identifier (1 to 10,000).
- Features per Day (Days 1–7):
 - Average Voltage (V_{avg} , V): Daily mean terminal voltage.
 - Current Standard Deviation (I_{std} , A): Variability in current draw.
 - Maximum Temperature (T_{max} , °C): Peak daily temperature.
 - Internal Resistance (R_{int} , Ω): Battery internal resistance.
- **SOH** (%): Target variable, defined as SOH = $\frac{C_{\text{current}}}{C_{\text{constant}}}$.

The dataset is formatted as a CSV with 29 columns, scalable from the 100-sample subset provided.

Generation Logic

The dataset is generated based on degradation models (sulfation, corrosion, water loss) under Kolkata's climate (25–42°C), following [1, 2, 3]:

- Voltage (V_{avg}): Starts at 12.7 V, decreases by \sim 0.1 V/day due to 20% capacity loss over 200 cycles.
- Current (I_{std}): Ranges from 0.3 to 0.9 A, reflecting varied usage (e.g., urban vs. suburban routes).
- **Temperature** (T_{max}): Peaks at 38–42°C on Day 3, simulating thermal stress events.
- Internal Resistance (R_{int}): Starts at 0.013 Ω , increases by \sim 0.001 Ω /day due to sulfation (2% per °C above 25°C) and grid deterioration (5–10% annually).
- **SOH**: Ranges from 91.5% to 96.8%, computed based on capacity loss influenced by temperature and usage.

Gaussian noise ($\sigma = 0.05$) is added to ensure realism.

Non-IID Conditions

The dataset reflects non-IID distributions by varying $I_{\rm std}$ and $T_{\rm max}$ across clients, simulating heterogeneous usage patterns (e.g., different routes, driving styles), as requested by Reviewer 1.

Scalability

The provided 100-sample subset is scalable to 10,000 samples by extending the pattern with additional noise, supporting the federated learning setup (100 clients, 80%–20% train-test split).

Reproducibility

Generation scripts will be shared at https://github.com/Surit25/ev/tree/main in a future version, ensuring transparency per Reviewer 3's feedback.

Usage

The dataset supports TALNet training, achieving a MAPE of 0.8% (Section V). It aligns with the pilot study results (MAPE of 0.82%, 20% lifespan extension) and Figure 4 (SOH trends).

References

- [1] Y. Jiang and Z. Song, "Sulfation Effects in Lead-Acid Batteries," *Electrochimica Acta*, vol. 412, 2022.
- [2] L. Chen et al., "Grid Deterioration in Lead-Acid Batteries," *Journal of Power Sources*, vol. 589, 2024.
- [3] D. Kumar et al., "Impact of High Temperatures on Lead-Acid Battery Degradation," *Journal of Energy Storage*, vol. 55, 2023.