Лекции по Математическому анализу 4 семестр

Ilya Yaroshevskiy

19 апреля 2021 г.

Оглавление

1		3
	1.1	Теория меры
	1.2	Интеграл
		1.2.1 Измеримые функции
		1.2.2 Меры Лебега-Стильеса
2		8
	2.1	Теореия меры
		2.1.1 Измеримые функции
		2.1.2 Сходимость почти везде и по мере
	2.2	Интеграл
3		17
	3.1	Интеграл
		3.1.1 Предельный переход под щнаком интеграла 21
4		25
	4.1	Плотность одной меры по отношению к другой 29
		4.1.1 Замена перменных в интеграле
5		32
	5.1	Плотности
	5.2	Мера лебега
6		39
	6.1	Сферические координаты в R^m
	6.2	Произведение мер
7		46
	7.1	Принцип Кавальери
	7.2	Поверхностные интегралы
		7.2.1. Порорущости то инторрали I рода. 48

O1	ГЛАВЛЕНИЕ	2
8	5 апреля 8.1 Поверхностный интеграл II рода	50
	8.2 Ряды Фурье	53
9	12 апреля 9.1 Формула Грима	56 56
10	19 апреля 10.1 Формула Стокса	63 64

Лекция 1

1.1 Теория меры

Лемма 1 (о структуре компактного оператора). $V: \mathbb{R}^m \to \mathbb{R}^m$ — невырожденный линейный оператор, т.е. $\det V \neq 0$ Тогда:

- \exists ортонормированные базисы $g_1, \ldots, g_m; \ h_1, \ldots, h_m$
- $\exists S_1,\ldots,S_m>0$

$$\forall x \in \mathbb{R}^m \quad V(x) = \sum_{i=1}^m S_i \langle x, g_i \rangle h_i$$

$$x=\sum \langle x,g_i
angle g_i$$
 — разложение по базису **При этом** $|\det V|=S_1S_2\dots S_m$

Доказательство. $W := V^*V^*$ — транспонирование в \mathbb{R}^m W — самосопряженный оператор(матрица симметрична относительно диагонали)

Собственные числа c_1,\dots,c_m — вещественные

Собственные векторы g_1, \ldots, g_m

Заметим что $c_i\langle g_i,g_i\rangle=\langle Wg_i,g_i\rangle=\langle Vg_i,Vg_i\rangle>0\Rightarrow c_i>0$

- $S_i := \sqrt{c_i}$
- $h_i := \frac{1}{S_i} V g_i$

$$\langle h_i, h_j \rangle = \frac{1}{S_i S_j} \langle V g_i, V g_j \rangle = \frac{1}{S_i S_j} \langle W g_i, g_j \rangle = \frac{c_i}{S_i S_j} \langle g_i, g_j \rangle = \delta_i$$

$$V(x) = V(\sum_{i=1}^n \langle x, g_i \rangle g_i) = \sum_{i=1}^m \langle x, g_i \rangle V(g_i) = \sum_i s_i \langle x, g_i \rangle h_i$$

$$(\det V)^2 = \det(V^*V) = \det W = c_1 \dots c_m$$
 (1.1)

1.1 — т.к. диагональная матрица

Теорема 1.1.1 (преобразование меры лебега при линейном отображении).

• $V: \mathbb{R}^m \to \mathbb{R}^m$ — линейное отображение

Тогда:

- $\forall E \in \mathfrak{M}^m \quad V(E) \in \mathfrak{M}^m$
- $\lambda(V(E)) = |\det V| \cdot \lambda E$

Доказательство.

$$(\det V = 0)$$
 Im (V) — подпространство в $\mathbb{R}^m \Rightarrow \text{мера} = 0$

$$\mu(E+a) = \lambda(V(E+a)) = \lambda(V(E)+Va) = \lambda(V(E)) = \mu E$$

 $\Rightarrow \exists k: \mu = k \cdot \lambda$ (Лемма из предыдущего семестра) Q — единичный куб на векторах g_i и $V(g_i) = S_i h_i, V(Q) = \{\sum \alpha_i S_i h_i | \alpha_i \in [0,1]\}$ — паралеллепипед со сторонами S_i,\ldots,S_m

1.2 Интеграл

1.2.1 Измеримые функции

Определение.

- 1. E множество, $E = \bigsqcup_{\text{кон.}} e_i$ разбиение множества
- 2. $f:X\to\mathbb{R}$ **ступенчатая**, если \exists разбиение $X=\bigsqcup_{\text{кон.}}e_i:\ \forall i\ f\big|_{e_i}=const=c_i$ При этом такое разбиение **допустимое разбиение**

Пример.

- 1. Характеристическая функция множества $E\subset\mathcal{X}_E(x)=\left[\begin{array}{cc}1&x\in E\\0&x\in X\setminus E\end{array}\right.$
- 2. $f = \subset \text{кон.} \sum c_i \mathcal{X}_{e_i}$, где $\mathcal{X} = | \cdot | e_i$

I 1. 5

Примечание.

1. $\forall f, g$ — ступенчатые Тогда \exists разбиения, допутимые и для f, и для g

$$f = \sum_{\text{koh.}} c_i \mathcal{X}_{e_i} \quad h = \sum_{\text{koh.}} b_k \mathcal{X}_{A_k}$$

$$f = \sum_{i \ k} c_i \mathcal{X}_{e_i \cap A_k} \quad g = \sum b_k \cdot \mathcal{X}_{e_i \cap A_k}$$

2. f,g — ступенчатые, $\alpha \in \mathbb{R}$ — Ступенчатые $\alpha f, fg, max(f,g), min(f,g), |f|$ — ступенчатые

Определение. $f:E\subset X\to\overline{\mathbb{R}},\ a\in\mathbb{R}$

 $E(f < a) = \{x \in E : f(x) < a\}$ — лебегово множество функции f $E(f \le a), \ E(f > a), E(f \ge a)$ — также лебеговы множества Если f задана на X: $X(f < a), \ X(f \le a), \ldots$ — лебеговы множества

Примечание. $E(f \ge a) = E(f < a)^C; \ E(f < a) = E(f \ge a)^C$

$$E(f \le a) = \bigcap_{b > a} E(f < b) = \bigcap_{n \in \mathbb{N}} E(f < a + \frac{1}{n})$$

Определение.

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- E ∈ A

f — измерима на множестве E: $a\in\mathbb{R}$ — E(f< a) — измеримо $(\mathrm{r.e.}\in\mathfrak{A})$

Обозначение.

- f измеримо на X говорят просто "измеримо"
- \bullet $X=\mathbb{R}^m$, мера Лебега измеримо по Лебегу

Примечание. Эквивалентны:

- 1. $\forall a \quad E(f < a)$ измеримо
- 2. $\forall a \quad E(f \leq a)$ измеримо
- 3. $\forall a \quad E(f > a)$ измеримо
- 4. $\forall a \quad E(f \geq a)$ измеримо

$$\Pi$$
ример. 1. $E\subset X,\,E$ — измеримо, \mathcal{X}_E — измеримо $E(\mathcal{X}_E< a)=\left[egin{array}{cc}\emptyset&,a<0&\\X\setminus E&,0<=a<=1&\\X&,a>1&\end{array}
ight.$

2. $f: \mathbb{R}^m \to \mathbb{R}$ — непрерывна. Тогда f — измеримо по Лебегу Примечание. Свойства:

1. f — измерима на E

$$\Rightarrow \ \forall a \in \mathbb{R} \ E(f=a)$$
 — измеримо

$$otin f: \mathbb{R} \to \mathbb{R} \quad f(x) = \mathcal{X} + \mathcal{X}_{\text{неизм.}}$$

- 2. f измерима $\Rightarrow \forall \alpha \in R \quad \alpha f$ измерима
- 3. f измерима $E_1, E_2, \dots \Rightarrow f$ измерима на $E = \bigcup E_k$
- 4. f измерима на E; $E' \subset E \Rightarrow f$ измерима на E' $E'(f < a) = E(f < a) \cap E'$
- 5. $f \neq 0$ измерима на $E \Rightarrow \frac{1}{f}$ измерима на E
- 6. $f \geq 0$, измерима на $E,\, \alpha \in \mathbb{R}.$ Тогда f^{α} измерима на E

Теорема 1.2.1. f_n — измерима на X.

Тогда:

1.

$$\sup_{n\in\mathbb{N}} f_n; \quad \inf_{n\in\mathbb{N}} f_n \tag{1.2}$$

- 1.2 измеримы
- 2. $\overline{\lim} f_n$; $\underline{\lim} f_n$ измеримы
- 3. Если

$$\forall x \; \exists \lim_{n \to +\infty} f_n(x) = h(x)$$

, то h(x) — измеримо

Доказательство.

1.
$$g = \sup f_n$$
 $X(g > a) = \bigcup X(f_n > a)$

2.

$$(\overline{\lim} f_n)(x) = \inf\{s_n : s_n = \sup(f_n(x), f_{n+1}(x), \dots)\}\$$

3. очев.

1.2.2 Меры Лебега-Стильеса

Определение. $\mathbb{R},\mathcal{P}^1,g:\mathbb{R}\to\mathbb{R}$ — возрастает, непрерывна $\mu[a,b):=g(b)-g(a)$ — σ -конечный объем

$$g(a+0) = \lim_{x \to a+0} g(x), g(a-0) = \lim_{x \to a-0} g(x)$$
$$\mu[a,b) := g(b-0) - g(a-0)$$

— тоже σ -конечная мера

Применим теорему о продолжении, получим меру μg на некой σ -алгебре — мера Лебега-Стилтьеса

Oпределение. $g(x) = \lceil x \rceil$

Пусть μg определена на Борелевской σ -алгебре — мера Бореля-Стилтьеса

Лекция 2

2.1 Теореия меры

2.1.1 Измеримые функции

- (X,\mathfrak{A},μ)
- $f: X \to \overline{R}$ имзмерима
- $\forall a \in R \quad X(f < a) \in \mathfrak{A}$
- $\mathcal{X}_E \quad \sum \alpha_k \mathcal{X}_{E_k}$

Теорема 2.1.1 (характеризация измеримости функции с помощью ступенчатых).

- $f: X \to \overline{R}$
- $f \ge 0$
- \bullet f измерима

<u>Тогда</u> $∃f_n$ — ступенчатая

- 1. $0 \le f_1 \le f_2 \le \dots$
- 2. $\forall x f(x) = \lim_{n \to +\infty} f_n(x)$

Доказательство.

$$e_k^{(n)} = X(\frac{k-1}{n} \le f \le \frac{k}{n}) \quad k = 1, \dots, n^2$$

$$e_{n^2+1}^{(n)} = X(n \le f)$$

$$g_n := \sum_{k=1}^{n+1} \frac{k-1}{n} \mathcal{X}_{e_k^{(n)}}$$

$$g_n \ge 0 \quad \lim_{n \to +\infty} g_n(x) = f(x)$$

 $\it C$ ледствие 2.1.1.2. $\it f,g$ — измеримы

<u>Тогда</u> fg — измемрима $(0\cdot\infty=0)$

Доказательство.
$$f_n \to f$$
 $g_n \to g, (f_n, g_n)$ — ступеначтые $f_n g_n$ — ступенчатая $f_n g_n \to fg$

 ${\it Cледствие}$ 2.1.1.3. f,g — измеримы

 $Tо\underline{\text{гда}} \ f + g$ — измерима

Доказательство. $f_n \to f$ $g_n \to g$, (f_n,g_n) — ступеначтые $f_n + g_n$ — ступенчатая $f_n + g_n \to f + g$ Считаем что $\forall x$, не может быть $f(x) = \pm \infty$, $g(x) = \mp \infty$

- $A \subset X$
- \bullet A полная мера
- $\mu(X \setminus A) = 0$

Теорема 2.1.2 (об измеримости непрерывной на множестве полной меры).

- $f: E \to \mathbb{R}$
- $E \subset \mathbb{R}^m$
- \bullet $e \subset R$
- $\lambda_m e = 0$
- f непрерывна на $E' = E \setminus e$

Тогда f — измерима

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

$$egin{aligned} e(f < a) \subset e \ \lambda_n - & \text{полная} \end{aligned} \} \Rightarrow e(f < a) -$$
измерима в E
$$E(f < a) = E'(f < a) \cup e(f < a)$$

Пример.

- $E = \mathbb{R}$
- $f = \mathcal{X}_{Irr}$

Следствие 2.1.2.4.

- (X,\mathfrak{A},μ)
- $f: E \to \mathbb{R}$
- $e \subset E \subset X$
- $E' = E \setminus e$
- \bullet f измерима на E'

 $\frac{\text{Тогда}}{\tilde{f}}$ модно так переопределить f на множестве e, что полученая функция \tilde{f} будет измерима на E

Доказательство. Пусть:

$$\tilde{f} = \left\{ \begin{array}{ll} f(x) & , x \in E \\ const & , x \in e \end{array} \right.$$

$$E(\tilde{f} < a) = E'(\tilde{f} < a) \cup e(\tilde{f} < a)$$

 $\mathit{Cnedcmeue}\ 2.1.2.5.\ f:\langle a,b\rangle\to\mathbb{R}$ — монотонна Тогда f— измерима

2.1.2 Сходимость почти везде и по мере

- (X,\mathfrak{A},μ)
- E ∈ A
- W(x) высказывание $(x \in X)$

W(x) — верное при почти всех $x \in E$

- = почти всюду на E
- = почти везде на E

$$\exists e \subset E \quad \mu e = 0 \quad W(x)$$
 — истино при $x \in E \setminus e$

 Π ример. $x = \mathbb{R}, x$ — иррационально

Пример. $f_n(x) \to n \to +\infty f(x)$ при почти всех $x \in E$ $\exists e, \mu e = 0$, при $x \in E \setminus e$ $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$

Примечание. Свойства:

1.
$$\mu$$
 — полная $f_n, f: X \to \overline{\mathbb{R}}$ $f_n(x) \to f(x)$ почти везде на X $\Big|$ Тогда f — измерима f_n — измерима

 $\mathcal{ Д}$ оказательство. $f_n\to f$ на X', где $e=X\setminus X', \mu e=0$ f — измерима на X' μ — полная $\Rightarrow f$ — измерима на X

$$X(f < a) = X'(f < a) \cup e(f < a)$$

12

2. В условии п. 1

Можно переопределить
$$f$$
 на e . Получится \hat{f} $f_n(x) \to \hat{f}(x)$ почти везде \hat{f} — измкрима

 $Onpedenehue. \ f = g$ почти везде Будем говорить что f и g эквивалентны

3. Пусть $\forall n \ W_n(x)$ — истинно при почти всех x — <u>Тогда</u> утверждение " $\forall n \ W_n(x)$ — истинно " — верно при почти всех x — Это высказывание верно при

$$x \in X \setminus (\bigcup_{i=1}^{+\infty} e_i) \quad \mu(\bigcup e_i) = 0$$

- ullet $f_n,f:X o\overline{\mathbb{R}}$ почти везде конечные
- f_n сходится к f по мере

•
$$f_n \Longrightarrow_{\mu} f : \forall \varepsilon > 0 \ \mu X(|f_n - f| \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0$$

Примечание. f_n и f можно изменить на множестве меры 0 Т.е. предел не задан однозначно

Пример.

$$\begin{array}{l} f_n(x) = \frac{1}{nx}, x > 0 \\ X \ \mathbb{R}_+ \ \lambda \\ f_n \to f \text{ всюду на } (0, +\infty) \\ f_n \underset{\lambda}{\Longrightarrow} f \end{array}$$

Пример.

$$f_n(x) := e^{-(n-x)^2} \ x \in \mathbb{R}$$

 $f_n(x) \to 0$ при всех x

 $f_n(x) \to 0$

$$\mu(\mathbb{R}(e^{-(n-x)^2} \ge \varepsilon)) = const \not\to 0$$

, при $0 < \varepsilon < 1$

Пример. $n=2^k+e, 0 \le e < 2^k$

 $X = [0,1] \lambda$

 $f_n(x):=\mathcal{X}_{[\frac{e}{2^k},\frac{e+1}{2^k}]}$ $\lim f_n(x)$ — не существует ни при каких x

$$\lambda X(f_n > \varepsilon) = \frac{1}{2^k} \xrightarrow[n \to +\infty]{} 0$$
$$f_n \Longrightarrow 0$$

Теорема 2.1.3 (Лебега).

- (X,\mathfrak{A},μ)
- f_n, f измеримые, почти везде конечные
- $f_n \to f$ почти везде
- μX конечна

 $\underline{\text{Тогда}} f_n \Longrightarrow f$

Доказательство. Переопределим f_n, f на множестве меры 0, чтобы сходимость была всюду Частный случай: $\forall x$ последовательность $f_n(x)$ монотонно убывает к 0(т.е. f < 0)

$$X(|f_n| \ge \varepsilon) = X(f_n \ge \varepsilon) \supset X(f_{n+1} \ge \varepsilon)$$
 $X(f_n \ge \varepsilon) = \emptyset$ $X(f_n \ge \varepsilon) = \emptyset$ $X(f_n \ge \varepsilon) = \emptyset$

Общий случай: $f_n \to f$

$$\varphi_n(x) = \sup_{k \ge n} |f_k(x) - f(x)|$$

Тогда $\varphi_n \to 0$, монотонна

$$X(|f_n - f| \ge \varepsilon) \subset X(\varphi_n \ge \varepsilon)$$

14

$$\mu X(|f_n - f| \ge \varepsilon) \le \mu X(\varphi_n \ge \varepsilon) \to 0$$

Теорема 2.1.4 (Рисс).

- (X,\mathfrak{A},μ)
- \bullet f_n, f измеримы почти везде, конечны
- $f_n \Longrightarrow f$

Тогда $\exists n_k f_{n_k} \to f$ почти везде

 \mathcal{A} оказательство. $\forall k \ \mu X(|f_n-f| \geq \frac{1}{k}) \to 0$ $\exists n_k \colon \text{при } n > n_k \ \mu X(|f_n-f| \geq \frac{1}{k}) < \frac{1}{2^k}$ можно считать: $n_1 < n_2 < n_3$ Проверим $f_{n_k} \to f$ почти везде

$$E_k := \bigcup_{i=k}^{+\infty} X(|f_{n_i} - f| \ge \frac{1}{i}) \quad E = \bigcap E_i$$

$$E_k \supset E_{k+1} \quad \mu E_k \le \sum_{i=k}^{+\infty} \mu X(|f_{n_i} - f| \ge \frac{1}{i}) < \sum_{i=k}^{+\infty} \frac{1}{2^i} \le \frac{2}{2^k} \to 0$$

$$\mu E_k \to \mu E \Rightarrow \mu E = 0$$

При $x \notin E$ $f_{n_k} \to f$

$$x \notin E \exists N \ x \notin E_k$$

при
$$k>N$$
 $|f_{n_k}(x)-f(x)|<rac{1}{k},$ т.е. $f_{n_k}(x) o f(x)$

Следствие 2.1.4.6.

- $f_n \Longrightarrow_{\mu} f$
- $|f_n| \leq g$ почти везде

Тогда $|f| \leq g$ почти везде

Теорема 2.1.5 (Егорова).

- $\mu X < +\infty$
- f_n, f почти везде конечны, измеримы
- $f_n \to f$ почти везде

15

2.2 Интеграл

 (X,\mathfrak{A},μ)

Определение. $f = \sum \alpha_k \mathcal{X}_{E_k}$ E_k — дополнительное разбиение $\alpha_k \geq 0$

$$\int_X f d\mu = \sum \alpha_k \mu E_k$$

, считаем $0 \cdot +\infty = 0$

Примечание. Свойства:

1. Не зависит от представления f в виде сумме

$$f = \sum \alpha_k \mathcal{X}_{E_k} = \sum \alpha'_k \mathcal{X}_{E'_k} = \sum_{k,j} \alpha_k \mathcal{X}_{E_k \cap E'_j}$$
$$\int f = \sum \alpha_k \mu E_k$$

2.
$$f \leq g$$
 $\int f \leq \int g, f, g - ct$.

Определение. $f \ge 0$ — измерима

$$\int_X f d\mu := \sup_{\substack{g \, - \, \operatorname{cryn.} \\ 0 \leq g \leq f}} \int g d\mu$$

Примечание. Свойства:

- 1. Если f ступенчатая то Опр. 2 = Опр. 1
- 2. $0 \le \int f \le +\infty$
- 3. $g \leq f, f$ измерима, g ступенчатая $\Rightarrow \int_X g \leq \int_X f$

Определение.

- f измерима
- $\int_X f^+$ или $\int_x f^-$ конечный

Тогда

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

Теорема 2.2.1 (Тонедди).

- $f: \mathbb{R}^{m+n} \to \overline{\mathbb{R}}$
- $f \ge 0$ измерима
- $E \subset \mathbb{R}^{m+n}$

Обозначение. $\forall x \in \mathbb{R}^m \quad E_x = \{y \in \mathbb{R}^n : (x,y) \in E\}$

Тогда

- 1. при почти всех $x \in \mathbb{R}^m$ функция $y \mapsto f(x,y)$ измерима на \mathbb{R}^n
- 2. функция

$$x \mapsto \int_{E_k} f(x, y) d\lambda_n(y) \ge 0$$

3.

$$\int_E f(x,y) d\mu = \int_{\mathbb{R}^m} \left(\int_{E_x} f(x,y d\lambda_n(y)) \right) d\lambda_m(x)$$

Лекция 3

3.1 Интеграл

- 1. $f \geq 0$, ступенчатые $f = \sum_{\text{кон.}} \alpha_k \chi_{E_k}, E_k$ измеримое $\int_X f = \sum \alpha_k \mu E_k$
- 2. $f \geq 0$, измеримая $\int_X f d\mu = \sup_{\substack{0 \leq g \leq g \\ f = \text{ступ.}}} \int_X g d\mu$
- 3. f измерима, $f^+, f^- \ge 0$ измеримые Пусть $\int_X f^+$ или $\int_X f^-$ конечные Тогда $\int_X f = \int_X f^+ \int_X f^-$

Определение. Если $\int_x f^+,\ \int_X f^-$ — оба конечные, то f назывется суммируемой

Примечание. f — измеримая, ≥ 0, интеграл 3 = интеграл 2

4.

Определение. $E\subset X$ — измкримое, f — измерима на X $\int_E f d\mu = \int_X f\cdot \chi_E$

Примечание. $f = \sum \alpha_k \chi_{E_k} \int_E f = \sum \alpha_k \mu(E_k \cap E)$

 $\mbox{\it Примечание}.\ \int_E f d\mu = \sup\{fg:\ 0 \le g \le f \ \mbox{ha}\ E, g-$ ступенчатые}, можно считать что g-тождественный 0 вне множества E

 Π римечание. $\int_E f$ не зависит от значений f вне E

 Π римечание. (X, \mathfrak{A}, μ) $E \subset X$ — измеримое, g, f — измеримые. Свойства:

1. Монотонность $f \leq g \int_E f \leq \int_E g$

Доказательство.

- (a) $f,g \ge 0$ очевидно
- (b) f,g произвольные $f^+ \le g^+ \ f^- \le g^- \\ \int_E f^+ \le \int_E g^+ \ \int_E f^- \le \int_E g^- \Rightarrow \text{OK}$

2. $\int_E A d\mu = \mu E \ \int_E 0 d\mu = 0$

3. $\mu E = 0$ $\int_{E} f = 0$

Доказательство. (a) f — ступенчатая

(b) $f \ge 0$ — измеримая

Змечание:

f — измеримая. Тогда f — суммируемая $\Leftrightarrow \int |f| < +\infty$

- (\Leftarrow) следует из свойства 1. $f^+,f^-\leq |f|$
- (⇒) позже

4. $\int_E (-f) = -\int_E f$, $\forall c \in \mathbb{R}$ $\int_E cf = c \int_E f$

- (a) $(-f)^+ = f^- (-f)^- = f^+$
- (b) можно считать c>0 для $f\geq 0$ тривиально

5.

$$\exists \int_E f d\mu$$
 Тогда | $\int_E f d\mu | \leq \int_E |f| d\mu$

$$\square$$
оказательство. $-|f| \leq f \leq |f|$. По свойствам 3 и 4

19

6. $\mu E \leq +\infty$, $a \leq f \leq b$

Тогда $a\mu E \leq \int_E f \leq b\mu E \ a\chi_E \leq f \leq b\chi_E$

 $\it Cnedcmeue$ 3.1.0.7. f — измерима на $E,\,f$ — ограничена на $E,\,\mu E<+\infty$

Тогда f — суммируемая на E

7. f — суммируемая на E. Тогда f — почти везде конечная

Доказательство.

(а)
$$f \geq 0$$
 $f = +\infty$ на $A \subset E \ \forall n \in \mathbb{N} \ \int_E f \geq n \mu A$

(b)
$$f = f^+ - f^-$$

Лемма 2.

$$A = \bigsqcup_{i=1}^{+\infty} A_i$$

— измеримые, g — ступенчатая, $g \ge 0$ Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu$$

Доказательство. $\int_A g d\mu = \sum_{\text{кон.}} \alpha_k \mu(E_k \cap A) = \sum_k \sum_i \underbrace{\alpha_k \mu(E_k \cap A_i)}_{\geq 0} =$

$$\sum_{i} \sum_{k} \dots = \sum_{i} \int_{A_{i}} g d\mu$$

Теорема 3.1.1. $A=\bigsqcup A_i$ — измеримые, $f:X\to \overline{\mathbb{R}}$ — измеримая на A, $f\geq 0$

$$\underline{\underline{\text{Тогда}}} \int_A f d\mu = \sum_{i=1}^{+\infty} \int_{A_i} f d\mu$$

Доказательство.

 (\leq) ступенчатая $g:~0\leq g\leq f~\int_a g=\sum\int_{A_i}gd\mu\leq\sum\int_{A_i}f$ — по Лемме

(
$$\geq$$
) 1. $A = A_1 \cup A_2$
 $0 \leq g_1 \leq f \chi_{A_1} \ 0 \leq g_2 \leq f \chi_{A_2}$

$$g_1 = \sum \alpha_k \chi_{E_k} \ g_2 = \sum \beta_k \chi_{E_k}$$

20

Считаем что E_k – совместное разбиение

$$0 \le g_1 + g_2 \le f \chi_A$$

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_A g_1 + g_2 \le \int_A f$$

Перейдем к супремуму

$$\int_{A_1} f + \int_{A_2} g_2 \le \int_A f$$

$$\int_{A_1} f + \int_{A_2} f \le \int_A f$$

2. $\forall n \in \mathbb{N}$ — индукция по n

3.

$$A = \bigsqcup_{i=1}^{n} A_i \sqcup B_n$$

, где

$$B_n = \bigsqcup_{i > n} A_i$$

$$\int_{A} f = \sum_{i=1}^{n} \int_{A_{i}} f + \int_{B_{n}} f \ge \sum_{i=1}^{n} \int_{A_{i}} f$$

Следствие 3.1.1.8.

• $f \ge 0$ — измеримая

•
$$\nu: \mathfrak{A} \to \overline{\mathbb{R}}_+$$

$$ullet$$
 $u E := \int_E f d\mu$
Тогда u — мера

Следствие 3.1.1.9 (аддитивности интеграла). f — суммируема на $A = \bigsqcup A_i$

Тогда

$$\int_A f = \sum \int_{A_i} f$$

Доказательство. $f^+, f^- \dots ???$

Предельный переход под щнаком интеграла

 $f_n \to f$. Можно ли утверждать $\int_E f_n \to \int_E f$?

Пример. $f_n, f: \mathbb{R} \to \mathbb{R}$

 $f_n = \frac{1}{n} \cdot \chi_{[0,n]} \ f \equiv 0 \ f_n \to f$ (даже $f_n \rightrightarrows f$ на $\mathbb R$)

$$\int_{\mathbb{R}} f_n = \frac{1}{n} \lambda[0, n] = 1 \not\longrightarrow_{n \to +\infty} 0 = \int_{\mathbb{R}} f$$

Теорема 3.1.2 (Леви). $(X,\mathfrak{A},\mu), f_n$ — измеримая

 $\forall n \ 0 \leq f_n \leq f_{n+1}$ почти везде $f(x) := \lim_{n \to +\infty} f_n(x)$ почти везде Тогда $\lim_{n\to+\infty} \int_X f_n d\mu = \int_x f d\mu$

f = 0 на e

Tогда f — измерима на X.

Доказательство.

 (\leq) очевидно. $f_n \leq f$ почти везде $\int f_n \leq \int f$

$$\int_{X} f_n = \int_{X \setminus e} f_n + \int_{e} f_n = \int_{X \setminus e} f_n \le \int_{X \setminus e} f \le \int_{X} f$$

(≥) Достаточно: $\forall g$ — ступенчатая $0 \le g \le f$

$$\lim \int_X f_n \ge \int_X g$$

Достаточно: $\forall c \in (0,1)$

$$\lim \int_{Y} f_n \ge c \int_{Y} g$$

$$E_n := X(f_n \le cg) \cdots \subset E_n \subset E_{n+1} \subset \dots$$

 $| \; | \; E = X \;$ т.к. c < 1

$$\int_x f_n \ge \int_{E_n} f_n \ge c \int_{E_n} g$$

Тогда $\lim \int_X f_n \geq c \lim \int_{E_n} g = c \int_X g$ Последнее равентсво справедливо в силу непрерывности мнизу меры $\nu: E \mapsto \int_E g$

Теорема 3.1.3. $f,g \geq 0$ измерима на E

Тогда

$$\int_{E} f + g = \int_{E} f + \int_{E} g$$

Доказательство.

1. f, g — ступенчатые

$$f = \sum \alpha_k \chi_{E_k}, \ g = \sum \beta_k \chi_{E_k}$$
$$\int_E f + g = \sum (\alpha_k + \beta_k) \mu(E_k \cap E) = \sum \alpha_k \mu(E_k \cap E) + \sum \beta_l \mu(E_k \cap E) = \int_E f + \int_E g$$

2. $f \geq 0$ — измерима $\Rightarrow \exists$ стпенчатая $f_n: 0 \leq f_n \leq f_{n+1} \leq \ldots$ $\lim f_n = f$ $g \geq 0$ — измерима $\Rightarrow \exists$ стпенчатая $g_n: 0 \leq g_n \leq g_{n+1} \leq \ldots$ $\lim g_n = g$ $f_n + g_n \to f + g$ $\int_E f_n + g_n \to \int_E f + g$ $\int_E f_n + g_n = \int_E f_n + \int_E g_n \to \int_E f + g$

Cледствие 3.1.3.10. f,g— суммируемы на E— Тогда f+g— суммируема и $\int_E f+g=\int_E f+\int_E g$

Примечание. Свойство 3 доказано

Доказательство. Суммируемость $|f+g| \le |f| + |g|$ h = f + g. Тогда:

$$h^{+} - h^{-} = f^{+} - f^{-} + g^{+} - g^{-} \Leftrightarrow h^{+} + f^{-} + g^{-} = h^{-} + f^{+} + g^{+}$$

$$\Rightarrow \int_{E} h^{+} + \int_{E} f^{-} + \int_{E} g^{-} = \int_{E} h^{-} + \int_{E} f^{+} + \int_{E} g^{+}$$

$$\int_{E} h^{+} - \int_{E} h^{-} = \int_{E} f^{+} - \int_{E} f^{-} + \int_{E} g^{+} - \int_{E} g^{-}$$

$$\int_{E} h = \int_{E} f + \int_{E} g$$

Определение. $\mathcal{L}(X) =$ множество функций суммируемых на X

Следствие 3.1.3.11. $\mathcal{L}(X)$ — линейное пространство, а отображение $f\mapsto \int_X f$ — это линейный функционал на $\mathcal{L}(X)$, т.е. $\forall f_1,\ldots,f_n\in\mathcal{L}(X)\ \forall \alpha_1,\ldots,\alpha_k\in\mathbb{R}$

$$\sum_{k=1}^{n} \alpha_k f_k \in \mathcal{L}(X); \ \int_X \sum \alpha_k f_k = \sum_{k=1}^{n} \alpha_k \int_X f_k$$

Теорема 3.1.4 (об интегрировании положительных рядов). (X,\mathfrak{A},μ) $E\in\mathfrak{A}$ $u_n:X\to\overline{\mathbb{R}}$ $u_n\geq 0$ почти везде $\overline{\text{Тогда}}$

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n(x)\right) d\mu(x) = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu$$

Доказательство. по т. Леви: $S_n:=\sum_{k=1}^n u_k\ 0\leq S_n\leq S_{n+1}\leq \dots\ S_n\to S$ — сумма ряда $\sum u_n$ Тогда $\int_E S_n\to \int_E S,\ \int_E S_n=\sum_{k=1}^n \int_E u_k\to \int_E S$

Cледствие 3.1.4.12. u_n — измеримые $\sum_{n=1}^{+\infty} \int_E |u_n| < +\infty$
 Тогда ряд $\sum u_n(x)$ — абсолютно сходится при почти всех x

Доказательство. $S(x):=\sum |u_n(x)|\geq 0$ — измеримая

$$\int_{E} S(x) = \sum \int_{E} |u_n| < +\infty$$

 $\Rightarrow S$ — сумиируема $\Rightarrow S$ почти везде конечена

 $\varPi puмер.$ $x_n \in \mathbb{R}$ — произведение последовательности; $\sum a_n$ — абсолютно сходится

Доказательство. Достаточно проверить абсолютную сходимость на [-N,N] почти везде

$$\int_{[-N,N]} \frac{|a_n|}{\sqrt{|x-x_n|}} = \int_{-N}^{N} \frac{|a_n|}{\sqrt{|x-x_n|}} dx = |a_n| \int_{-N-x_n}^{N-x_n} \frac{dx}{\sqrt{|x|}} \le$$

$$\leq |a_n| \int_{-N}^{N} \frac{dx}{\sqrt{|x|}} = 4\sqrt{N} \cdot |a_n|$$

$$\sum_{n} \int_{[-N,N]} \frac{|a_n|}{\sqrt{|x-x_n|}} \le 4 \int_{N} \sum_{n} |a_n| < +\infty$$

Лекция 4

Теорема 4.0.1 (об абсолютной непрерывности ингтерала).

- \bullet (X,\mathfrak{A},μ)
- $f: X \to \overline{\mathbb{R}}$ суммируема

Следствие 4.0.1.13.

- f суммируемая
- $\mu E \rightarrow 0$

<u>Тогда</u> $\int_{E_n} f \to 0$

 $X_n\supset X_{n+1}\supset\dots$, а также $\mu(\bigcap X_n)=0$ Утвержение: $\forall \varepsilon \ \exists n_\varepsilon \ \int_{X_{n_\varepsilon}} |f|<\frac{\varepsilon}{2}$ — это свойство непрерывности сверху

меры $A\mapsto \int_A |F|d\mu$ Пусть $\delta:=\frac{\varepsilon}{2n_\varepsilon},$ тода при $\mu E<\delta$

$$\left| \int_{E} f \right| \leq \int_{E_{n}X_{n_{\varepsilon}}} |f| + \int_{E_{n}X_{n_{\varepsilon}}}^{C} \leq \int_{X_{n_{\varepsilon}}} |f| + \int_{E_{n}X_{n_{\varepsilon}}} n_{\varepsilon} < \frac{\varepsilon}{2} + \mu E \cdot n_{\varepsilon} \leq \varepsilon$$

Правда ли что:

$$f_n \Longrightarrow_{\mu} f \quad \forall \varepsilon > 0 \ \mu X(|f_n - f| > \varepsilon) \to 0$$

$$\int_{X} |f_n - f| d\mu \to 0$$

эквивалентны.

$$(\Rightarrow)$$
 Нет. $(X,\mathfrak{A},\mu)=(\mathbb{R},\mathfrak{M},\lambda)$
$$f_n=\frac{1}{nx}\,f_n \underset{\lambda}{\Longrightarrow} 0$$

$$\int |f_n-f|=+\infty - \text{при всех } n$$

(⇐) Да.

$$\mu\underbrace{X(|f_n-f|>\varepsilon)}_{X_n} = \int_{X_n} 1 \le \int_{X_n} \frac{|f_n-1|}{\varepsilon} = \frac{1}{\varepsilon} \int_{X_n} |f_n-f| \le \frac{1}{\varepsilon} \int_X |f_n-f| \xrightarrow[n \to +\infty]{} 0$$

26

Теорема 4.0.2 (Лебега).

- (X,\mathfrak{A},μ)
- \bullet f_n, f измеримые, почти везде конечные
- $f_n \Longrightarrow f$
- $\exists g$ суммируемая мажоранта:
 - 1. $\forall n \mid f_n \mid \leq g$ почти везде
 - $2. \, g$ усммируемая везде

Тогда f_n, f — суммируемые и $\int_X |f_n - f| d\mu \xrightarrow[n \to +\infty]{} 0$, и 'тем более' $\int_X f_n d\mu \to \int_X f d\mu$

Доказательство. f_n — суммируема в силу 1, f — суммируема по следствию т. Рисса: $|f| \leq g$ почти везде

'тем более' = $\left|\int_X f_n - \int_X f\right| \le \int_X |f_n - f| \to 0$

1. $\mu X<+\infty$ фиксируем ε $X_n=X(|f_n-f|>\varepsilon)$ $f_n\to f$, т.е. $\mu X_n\to 0$

$$|f_n - f| \le |f_n| + |f| \le 2g$$

$$\int_X |f_n - f| = \int_{X_n} + \int_{X_n^C} \le \int_{X_n} 2g + \int_{X_n^C} \varepsilon d\mu < \varepsilon + \varepsilon \mu X$$

По следствию т. об абсолютной непрерывности: $\int_{X_n} 2g \xrightarrow[n \to +\infty]{} 0$

2. $\mu X = +\infty$

Проверим утверждение: $\forall \varepsilon>0 \; \exists A\subset X$ — измеримое, μA — конечная: $\int_{X\backslash A} g<\varepsilon$

$$\int_X g = \sup \{ \int g_n, \ 0 \le g_n \le g, \ g_n - \text{ступенчатая} \}$$

$$A := \{x : g_n(x) > 0\}$$

— при достаточно больших n

$$0 \le \int_X g - \int_X g_n = \int_A g - g_n + \int_{X \setminus A} g < \varepsilon$$

Фиксируем $\varepsilon > 0$

$$\int_X |f_n - f| d\mu = \int_A + \int_{X \setminus A} \le \int_A |f_n - f| + \int_{X \setminus A} 2g$$

По 1 $\int_A |f_n-f| \xrightarrow[n \to +\infty]{} 0 \int_{X \setminus A} 2g < 2\varepsilon$ т.е. при больших $n \int_x |f_n-f| d\mu < 2\varepsilon$

Теорема 4.0.3 (Лебега).

- \bullet (X,\mathfrak{A},μ)
- f_n, f измеримые, почти везде конечные
- $f_n \to f$ почти везде
- $\exists g$ суммируемая мажоранта:
 - 1. $\forall n \mid f_n \mid \leq g$ почти везде
 - $2. \, g$ усммируемая везде

 $\underline{\text{Тогда}}\,f_n,f-$ суммируемые и $\int_X|f_n-f|d\mu\xrightarrow[n\to+\infty]{}0,$ и 'тем более' $\int_Xf_nd\mu\to$ $\int_X f d\mu$

Доказательство.

$$h_n := \sup(|f_n - f|, |f_{n+1} - f|, \dots)$$

- $0 < h_n < 2a$
- h_n монотонна убывает
- $\lim h_n = \overline{\lim} |f_n f| = 0$ почти везде

 $2h-h_n \geq 0$ — эта последовательность возрастает, $2g-h_n \rightarrow 2g$ почти везде

$$\int_X 2g - h_n \to \int_X 2g \Rightarrow \int_X h_n \to 0$$
$$\int_X |f_n - f| \le \int_X h_n \to 0$$

Пример.

$$\int_{0}^{+\infty} t^{x-1}e^{-t}dt$$

$$\lim_{x \to x_{0}} \int_{0}^{+\infty} t^{x-1}e^{-t}dt \stackrel{?}{=} \int_{0}^{+\infty} t^{x_{0}-1}e^{-t}dt$$

Да. $t^{x-1}e^{-t}\xrightarrow[x\to x_0]{}t^{x_0-1}e^{-t}$ при всех t>0 Суммируемая мажоранта: $|t^{x-1}e^{-t}|\le \underbrace{t^{\alpha-1}e^{-t}}_{\text{сумм.}},\ 0<\alpha< x_0$

Теорема 4.0.4 (Фату). • (X, \mathfrak{A}, μ)

- $f_n \ge 0$ измеримая
- \bullet $f_n o f$ почти везде
- $c > 0 \ \forall n \ \int_X f_n \le c$
 Тогда $\int_X f \le c$

Примечание. Здесь не требуется чтобы $\int_X f_n \to \int_X f$, это может быть не выполнено

Доказательство.

$$g_n:=\inf(f_n,\;f_{n+1},\;\dots)$$
 $0\leq g_n\leq g_{n+1}\;\lim g_n=\varliminf f_n=f$ почти везде $\int_Xg_n\leq\int_Xf_n\leq c$ $\int_Xg_n o\int_Xf o c$

Cледствие 4.0.4.14.

- $f_n, f \ge 0$ измеримые, почти везде конечные
- $f_n \Rightarrow f$
- $\exists c > 0 \ \forall n \int_X f_n \le c$

Тогда $\int_X f \le c$

Доказательство.

$$f_n \Rightarrow f \Rightarrow \exists n_k \ f_{n_k} \to f$$
 почти везде

Cледствие 4.0.4.15.

• $f_n \ge 0$ — измеримые

Тогда

$$\int_{X} \underline{\lim} f_n \le \underline{\lim} \int_{X} f_n$$

Доказательство. Как в теореме:

$$\int_X g_n \le \int_X f_n$$

Выберем n_k :

$$\int_X f_{n_k} \xrightarrow[n \to +\infty]{} \underline{\lim} \int_X f_n$$

Zzz..

29

4.1 Плотность одной меры по отношению к другой

4.1.1 Замена перменных в интеграле

- (X,\mathfrak{A},mu)
- (Y, \mathfrak{B}, \cdot)
- $\bullet \ \Phi: X \to Y$
- Пусть Φ измеримо в следующем смысле:

$$\Phi^{-1}(\mathfrak{B})\subset\mathfrak{A}$$

Для $E \in \mathfrak{B}$ положим $\nu(E) = \mu \Phi^{-1}(E)$ Тогда ν — мера:

$$\nu(E_n) = \mu(\Phi^{-1}(\bigsqcup E)n) = \mu(\bigsqcup \Phi^{-1}(E_n)) = \sum \mu\Phi^{-1}(E_n) = \sum \nu E_n$$

Мера ν называется образом μ при отображении Φ и

$$\nu E = \int_{\Phi^{-1}(E)} 1d\mu$$

Примечание.

ullet $f:Y o\overline{\mathbb{R}}$ — измерима относительно ${\mathfrak{B}}$

Тогда $f\circ\Phi$ — измерима относитльно $\mathfrak{A}\ (f\circ\Phi:X\to\overline{\mathbb{R}})$

$$X(f(\Phi(x)) < a) = \Phi^{-1}(\underbrace{Y(f < a)}_{\in \mathfrak{B}}) \in \mathfrak{A}$$

Определение.

- $\omega: X \to \overline{\mathbb{R}}$ измерима(на X относительно \mathfrak{A})
- $\omega \geq 0$

$$\forall B \in \mathfrak{B} \ \nu(B) = \int_{\Phi^{-1}(B)} \omega(x) d\mu(x)$$

— взвешенный образ меры μ при отображении Φ, ω — вес

Теорема 4.1.1.

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\Phi: X \to Y$

• ν — взвешенный образ меры μ при отображении Φ с весом ω

• $\omega \geq 0$ — измерима на X

$$\int_{Y} f(y)d\nu(y) = \int_{X} f(\Phi(x)) \cdot \omega(x) \mu(x)$$
(4.1)

То же верно для суммируемых f

Доказательство. $f \circ \Phi$ — измеримая

1. Пусть $f = \mathcal{X}_B, B \in \mathfrak{B}$

$$f \circ \Phi(x) = f(\Phi(x)) = \begin{bmatrix} 1 & , \Phi(x) \in B \\ 0 & , \Phi(x) \notin B \end{bmatrix} = \mathcal{X}_{\Phi^{-1}(B)}$$

Тогда 4.1:

$$\nu B \stackrel{?}{=} \int_X \mathcal{X}_{\Phi^{-1}(B)} \cdot \mu = \int_{\Phi^{-1}(B)} \mu$$

- это определение ν

- $2.\ f$ ступенчатая. 4.1 следует из линейности интеграла
- 3. $f \geq 0$ измеримая: таким образом ??? измеримая функция ступенчатая + т. Леви

$$0 \leq h_1 \leq h_2 \leq \ldots, \ h_i$$
 — ступенчатая $h_i \leq f \ h_i \to f$

$$\int_{Y} h_i d\nu = \int_{X} h_i \circ \Phi \cdot \omega d\mu \xrightarrow[i \to \infty]{}$$

4. f — измеримая \Rightarrow для |f| выполнено $4.1 \Rightarrow |f|$ и $|f \circ \Phi| \cdot \omega$ Что-то про f_+

Следствие 4.1.1.16. В условиях теоремы:

- B ∈ B
- f суммируемая на B

Тогда

$$\int_{B} f d\nu = \int_{\Phi^{-1}(B)} f(\Phi(x))\omega(x)d\mu$$

Доказательство. В теорему подствить $f \leftrightarrow f \cdot \mathcal{X}_B$

Примечание. Частный случай.

- $\bullet \ X = Y$
- $\bullet \ \mathfrak{A} = \mathfrak{B}$
- $\Phi = \operatorname{Id}$
- $\nu(B) = \int_B \omega(x) d\mu, \, \omega \geq 0$ измеримая

В этой ситуации ω — плотность (меры ν относительно меры $\mu)$ и тогда по теореме:

$$\int_X f d\nu = \int_X f(x) \omega(x) d\mu$$

Лекция 5

5.1 Плотности

Плотность (X,\mathfrak{A},μ) и $\nu:\mathfrak{A}\to\overline{\mathbb{R}}$ — мера Плотность меры ν онсительно μ — это функция $\omega:X\to\overline{\mathbb{R}}$ $\forall B\in A\quad \nu B=\int_B\omega d\mu$

Теорема 5.1.1 (критерий плотности).

- \bullet $(X,\mathfrak{A},\mu),\ \nu$ еще одна мера
- $\omega: X \to \overline{\mathbb{R}}, \ \omega \geq 0$ измеримая

Тогда ω — плотность ν отн
сительно μ \Leftrightarrow

$$\forall A \in \mathfrak{A} \ \mu A \cdot \inf_{A} \omega \leq \nu(A) \leq \mu A \cdot \sup_{A} \omega$$

Пример (нет плотности).

- $X = \mathbb{R}$
- $\mathfrak{A} = \mathfrak{M}'$
- $\mu = \lambda_1$
- ν одноточечная мера $\nu(A)=\left[\begin{array}{cc}1&,$ если $0\in A\\0&,$ иначе считаем $\nu:\mathfrak{A}\to\mathbb{R}$

Теорема 5.1.2 (Необходимое условие существования плотности). $\mu A=0\Rightarrow \nu A=0$

Теорема 5.1.3 (теорема Радона-Никодина). Это так-же достаточное условие

Доказательство критерия плотности. (\Rightarrow) очевидно

ЛЕКЦИЯ 5. 33

(\Leftarrow) Не умаляя общности $\omega>0$: $e=X(\omega=0)$ $\nu(e)=\int_e\omega d\mu=0$ Для случая когда $A\cup e=\emptyset$ все только лучше Фиксируем $q\in(0,1)$ $A_j=A(q^j\leq\omega< q^{j-1}), j\in\mathbb{Z}$

$$\frac{q^{-1} \quad q^{-2}}{0 \quad q^{2} \quad q \quad 1 = q^{0}}$$

$$A = \bigsqcup_{j \in \mathbb{Z}} A_{j}$$

$$\mu A_{j} \cdot q^{j} \le \nu A_{j} \le \mu A_{i} \cdot q^{j-1}$$

$$\mu A_{j} \cdot q^{j} \le \int_{A_{j}} \omega d\mu \le \mu A_{j} \cdot q^{j-1}$$
(5.1)

Тогда

$$q \cdot \int_A \omega d\mu \le q \cdot \sum \int_{A_j} \le \sum q^j \mu A_j \le \sum \nu A_j \le \frac{1}{q} \sum q^j \mu A_j \le \frac{1}{q} \sum \int_{A_j} = \frac{1}{q} \int_A \omega d\mu$$
 то есть:

$$q\int_A \omega d \le \nu A \le \frac{1}{q}\int_A \omega d\mu$$

и $q \to 1-0$

Лемма 3.

- \bullet f,g-суммируемые
- (X,\mathfrak{A},μ)
- $\forall A \in \mathfrak{A}$
- $\int_A f = \int_A g$

 $Tor\partial a \ f = g \ novmu$ везде

 \mathcal{A} оказательство. g:=f-g Дано $\forall A\int_A h=0$ Доказать h=0 почти везде

- $A_+ := X(h \ge 0)$
- $A_{-} := X(h < 0)$

ЛЕКЦИЯ 5. 34

 $X = A_+ \sqcup A_-$

$$\int_{A_{+}} |h| = \int_{A_{+}} h = 0$$

$$\int_{A_{-}} |h| = -\int_{A_{-}} h = 0$$

тогда

$$\int_X |h| = 0$$

 $\Rightarrow h = 0$ почти везде

 $\Pi puмечание.$ $\mathcal{L}(X)$ — линейное пространство отображений $l_A: f \mapsto \int_A f d\mu$ — линейный функционал

Таким образом множество функционалов $\{l_A, A \in \mathfrak{A}\}$ — разделяет точки $\forall f,g \in \mathcal{L}(X) \exists Al_A(f) \neq l_A(g)$

5.2 Мера лебега

Лемма 4 (о мере образа малых кубических ячеек).

- $O \subset \mathbb{R}^m om\kappa p \omega m oe$
- $a \in O$
- $\Phi: O \to \mathbb{R}^m$
- $\Phi \in C^1$

Пусть $c>|\det\Phi'(a)|\neq 0$ <u>Тогда</u> $\exists \delta>0 \ \forall \ куба \ Q\subset B(a,\delta), \ a\in Q$ выполняется перавенство $\lambda\Phi(Q)< c\cdot\lambda Q$

Примечание. Здесь можно считать что кубы замкнутые

Доказательство. $L := \Phi'(a)$ — обратимо

$$\Phi(x) = \Phi(a) + L \cdot (x - a) + o(x - a) \quad x \to a$$

$$\underbrace{a + L^{-1}(\Phi(x) - \Phi(a))}_{\Psi(x)} = x + o(x - a)$$

$$\forall \varepsilon > 0 \exists \operatorname{map} B_{\varepsilon}(a) \ \forall x \in B_{\varepsilon}(A) \ |\Psi(x) - x| < \frac{\varepsilon}{\sqrt{m}} |x - a|$$

Пусть $Q\subset B_{\varepsilon}(a)a\in Q$ — куб со стороной h. При $x\in Q:\ |x-a|\leq \sqrt{m}h$

$$|\Psi(x) - x| \le \frac{\varepsilon}{\sqrt{m}} |x - a| \le \varepsilon h$$

ЛЕКЦИЯ 5. 35

Тогда $\Psi(Q) \subset \text{Куб}$ со стороной $(1+2\varepsilon)h$: при $x,y \in Q$

$$|\Psi(x)_i - \Psi(y)_i| \leq |\Psi(x)_i - x_i| + |x_i - y_i| + |\Psi(y)_i - y_i| \leq |\Psi(x) - x| + h + |\Psi(y) - y| \leq (1 + 2\varepsilon)h$$

$$\lambda(\Psi(Q)) \le (1 + 2\varepsilon)^m \cdot \lambda Q$$

Ψ и Ф отличаются только сдвигом и линейным отображением

$$\lambda\Phi(Q) = |\det L| \cdot \lambda\Psi(Q) \leq \underbrace{|\det L| \cdot (1+2\varepsilon)^m}_{\text{выбираем ε чтобы } \ldots < c} \lambda Q$$

потом берем $\delta = \text{радиус } B_{\varepsilon}(a)$

Лемма 5.

- $O \subset \mathbb{R}^m$ открытое
- $f: O \to \mathbb{R}$ непрерывное
- ullet $Q\subset \overline{Q}\subset O$ кубическая ячейка
- $A \subset Q$

Tог ∂a

$$\inf_{\substack{G: A \subset G \\ G \ -omkphimoe \ \subset O}} \left(\lambda(G) \sup_G f\right) = \lambda A \cdot \sup_A f$$

Теорема 5.2.1.

ullet $\Phi:O\subset\mathbb{R}^m o\mathbb{R}^m$ — диффеоморфизм

Тогда $\forall A \in \mathfrak{M}^m, A \in O$

$$\lambda \Phi(A) = \int_A |\det \Phi'(x)| \, d\lambda(x)$$

Доказательство. Обозначим якобиан $J_{\Phi}(x)=|\det\Phi'(x)|$ $\nu A:=\lambda\Phi(A)$ — мера. Т.е. надо доказать: J_{Φ} — плотность ν относительно λ . Тогда достаточно проверить условие критерия плотности

$$\inf_{A} J_{\Phi} \cdot \lambda A \le \nu A \le \sup_{A} J_{\Phi} \cdot \lambda A \tag{5.3}$$

Достаточно проверить только правое неравенство. левое — это "правое для $\Phi(A)$ и отображения Φ^{-1} "

$$\inf \frac{1}{|\det(\Phi')|} \cdot \lambda \Phi(A) \le \lambda A$$

ЛЕКЦИЯ 5.

1. Проверяем второе неравенство 5.3 для случая когда A — кубическая ячейка. $A \subset \overline{A} \subset O$. От противного:

$$\lambda Q \cdot \sup_{Q} J_{\Phi} < \nu(Q)$$

Возьмем $C>\sup_Q J_\Phi:\ C\cdot \lambda Q<\nu(Q).$ Запускаем процесс половинного леления:

Режем Q на 2^m более мелких кубических ячеек. Выберем "мелкую" ячейку $Q_1\subset Q: C\cdot \lambda Q_1<\nu Q_1$. Опять делим на 2^m частей, берем $Q_2:\mathbb{C}\cdot \lambda Q_2<\nu Q_2$ и так далее

$$Q_1 \supset Q_2 \supset \dots \quad \forall nC \cdot \lambda Q_n < \nu Q_n$$
 (5.4)

36

$$a\in\bigcap\overline{Q_i}\quad c>\sup_Q J_\Phi=\sup_{\overline{Q}}J_\Phi,\,\,$$
в частности $c>|\det\Phi'(a)|$

Получаем противоречие с леммой: с скол угодно малой окрестности a имеются кубы $\overline{Q_n}$, где выполняется 5.4. **Противоречие**

2. Проверим второе неравенство 5.3 для открытых множеств $A\subset O$ Это очевидно $A=\bigsqcup Q_j,\ Q_j$ — кубическая ячейка, $Q_j\subset \overline{Q_j}\subset A$

$$\nu A = \sum \lambda Q_j \le \sum \mu Q_j \sup_{Q_j} J_{\Phi} \le \sup_{A} J_{\Phi} \sum \mu Q_j = \sup_{A} J_{\Phi} \cdot \lambda A \quad (5.5)$$

3. По лемме второе неравенство 5.3 выполнено для всех измеримых A

$$O = \bigsqcup Q_j$$
 — куба $Q_j \subset \overline{Q_j} \subset O$

$$A = \coprod \underbrace{A \cup Q_j}_{A_i} \quad A \subset G$$
 — открытое

$$JA_j \le \nu G \le \sup_G J_{\Phi} \cdot \lambda G \Rightarrow \nu A_j \le \int_G (\sup_{A_j} J_{\Phi} \cdot \lambda G) = \sup_{A_j} f \cdot \lambda A_j$$

Аналогично 5.5 получаем $\nu A \leq \sup_A f \cdot \lambda A$

Теорема 5.2.2.

• $\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m$ — дифференцируемое

Тогда $\forall f$ — измеримых, ≥ 0 , заданная на $O' = \Phi(O)$

$$\int_{O'} f(y)d\lambda = \int_{O} f(\Phi(x)) \cdot J_{\Phi} \cdot d\lambda$$

, где $J_{\Phi}(x) = |\det \Phi'(x)|$. То же верно для суммируемых функций f

ЛЕКЦИЯ 5. 37

Доказательство. Применяем теорему о взвешенном образе меры. Дано:

- (X,\mathfrak{A},μ)
- (T, \mathfrak{B}, ν)
- $\Phi: X \to Y \mathbf{c}$ сохранением измеримости
- $\Phi^{-1}(\mathfrak{B}) \subset \mathfrak{A}$
- $\omega: Y \to \mathbb{R}, \geq 0$, измеримый
- ν взвешенный образ μ с весом ω :

$$\mu(B) = \int_{\Phi^{-1}(B)} \omega d\mu$$

Тогда

$$\int_B f d\nu = \int_{\Phi^{-1}(B)} f(\Phi(x)) \omega(x) d\mu$$

В нашем случае

- $X = Y \mathbb{R}^m$
- $\mathfrak{A} = \mathfrak{B} = \mathfrak{M}^m$
- Ф диффеоморфизм
- $\mu = \lambda$
- $\nu(A) = \lambda \Phi(A)$

Под действием гладкого отображния Φ , σ -аглебра \mathfrak{M}^m сохраняется По теореме

$$\nu(B) = \int_{\Phi^{-1}(A)} J_{\Phi} d\lambda$$

т.е. λ — взвешенный образ исходной меры Лебега по отношению к Φ

Пример. Полярные координаты в R^2 .

$$\begin{cases} x=r\cos\varphi\\ y=r\sin\varphi \end{cases}, \Phi: \{(r,\varphi), r>0, \varphi\in(0,2\pi)\}\to\mathbb{R}^2$$
 диффеоморфизм

$$\Phi = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$
$$\det \Phi' = r \quad J_{\Phi} = r$$

$$\iint_{\Omega} f(x,y) = d\lambda_r = \iint_{\Phi^{-1}(\Omega)} f(r\cos\varphi, r\sin\varphi) r \frac{d\lambda_r}{d\lambda_r(r,\varphi)}$$

ЛЕКЦИЯ 5. 38

 Π ример. Сферические координаты в R^3

$$\begin{cases} x = r \cos \varphi \cos \psi & r > 0 \\ y = r \sin \varphi \cos \psi & \varphi \in (0, 2\pi \\ z = r \sin \psi & \psi \in (-\frac{\pi}{2}, \frac{\pi}{2}) \end{cases}$$

$$\Phi' = \begin{cases} \cos \varphi \cos \psi & -r \sin \varphi \cos \psi & -r \cos \varphi \sin \psi \\ \sin \varphi \cos \psi & r \cos \varphi \cos \psi? & -r \sin \varphi \sin \psi \\ \sin \psi & 0 & r \cos \psi \end{cases}$$

$$\det \Phi' = r^2 (\sin^2 \psi \cos \psi + \cos^3 \psi) = r^2 \cos \psi = J_{\Phi}$$

[—] для географических координат: r — растояние от центра Земли, ψ — угол к плоскости экватора

Лекция 6

6.1 Сферические координаты в \mathbb{R}^m

Пример.

- $r, \varphi_1, \dots \varphi_{m-1}$
- $\mathbb{R}^m\supset\mathbb{R}^{m-1}\supset\cdots\supset\mathbb{R}^2$ В кажои из очередных пространств \mathbb{R}^k фиксируем ортогональное к \mathbb{R}^{k-1}
- φ_1 угол между $\overline{e_1}$ и $Ox \in [0,\pi]$
- φ_2 угол между $\overline{e_2}$ и $P_{2(e_2 \ \dots \ e_m)}(x) \in [0,\pi]$
- •
- φ_{m-1} просто полярный угол в \mathbb{R}^m

 $x_1 = r \cos \varphi_1$ $x_2 = r \sin \varphi_1 \cos \varphi_2$ $x_3 = 2 \sin \varphi_1 \sin \varphi_2 \cos \varphi_3$

:

$$x_{m-1} = r \sin \varphi_1 \dots \sin \varphi_{m-2} \cos \varphi_{m-1}$$
$$x_m = r \sin \varphi_1 \dots \sin \varphi_{m-2} \sin \varphi_{m-1}$$
$$J = r^{m-1} \sin^{m-2} \varphi_1 \sin^{m-3} \varphi_2 \dots \sin \varphi_{m-2}^1$$

Сделаем в цикле эти координаты:

$$\begin{aligned} & \text{ mar } \mathbf{1} \ \, x_m = \rho_{m-1} \sin \varphi_{m-1} \\ & x_{m-1} = \rho_{m-1} \cos \varphi_{m-1} \\ & (x_1 \ \dots \ x_n) \leadsto (x_1 \ \dots \ x_{m-2}, \ \rho_{m-1}, \ \varphi_{m-1}) \end{aligned}$$

$$& \text{ mar } \mathbf{2} \ \, \rho_{m-1} = \rho(m_2) \sin \varphi_{m-2} \\ & x_{m-2} = \rho_{m-2} \cos \varphi_{m-2} \\ & (x_1 \ \dots \ x_{m-2}, \ \rho_{m-1}, \ \varphi_{m-1}) \leadsto (x_1 \ \dots \ x_{m-3}, \ \rho_{m-2}, \ \varphi_{m-2}, \ \varphi_{m-1}) \end{aligned}$$

последний шаг $(x_1,\ \rho_2,\ \varphi_2\ \dots\ \varphi_{m-1})\leadsto (r,\ \varphi_1\ \dots\ \varphi_{m-1})$ $\rho_2=r\sin\varphi_1$ $x_1=r\cos\varphi_1$

$$\lambda_m(\Omega) = \int\limits_{\Omega} 1 d\lambda_m \xrightarrow[]{\text{I mar}} \int\limits_{\Omega_1} \rho_{m-1} \xrightarrow[]{\text{I mar}} \int\limits_{\Omega_2} \rho_{m-2}^2 \sin \varphi_{m-2} \xrightarrow[]{\text{I mar}} \int\limits_{\Omega_3} \rho_{m-3}^3 \sin^2 \varphi_{m-3} \sin \varphi_{m-2} d\lambda = \\ = \dots = \int\limits_{\Omega_{m-1}} r^{m-1} \sin^{n-2} \varphi_1 \dots \sin \varphi_{m-2}$$

6.2 Произведение мер

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)

Лемма 6. $\mathfrak{A}, \mathfrak{B} - n/\kappa \Rightarrow \mathfrak{A} \times \mathfrak{B} = \{A \times B \subset X \times Y | A \in \mathfrak{A}, B \in \mathfrak{B}\}$

 Π ример. Ячейки: В $\mathbb{R}^2=\mathbb{R}^1 imes\mathbb{R}^1$ $\mathfrak{A}=\mathcal{P}^1,\;\mathfrak{B}\in\mathcal{P}^1$ A imes B — ячейка из \mathcal{P}

Определение. $\mathcal{P}=\mathfrak{A}\times\mathfrak{B}$ — множества из этой системы называются измеримыми прямоуг. $m_o(A\times B)=\mu A\cdot \nu B$

Теорема 6.2.1.

- 1. m_0 мера на \mathcal{P}
- 2. $\nu, \mu \sigma$ -конечные $\Rightarrow m_0$ тоже σ -конечная

 $^{^{1}}$ В R^{3} "географические" координаты $J=r^{2}\cos\psi$

Доказательство.

1. $?m_0$ — счетно аддитивна $?m_0P = \sum m_oP_k$, если

$$A \times B = P = | P_k,$$
 где $P_k = A_k \times B_k$

Наблюдение: $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y)$ Тогда $\chi_P=\sum\chi_{P_k},$ т.е.

$$\forall x \in X, y \in Y \quad \chi_A(x)\chi_B(y) = \sum \chi_{A_k}(x)\chi_{B_k}(y)$$

проинтегрируем по y по мере ν :

$$\chi_A(x)\nu B = \sum \chi_A(x) \cdot \nu B_k$$

Интегрируем по x:

$$\mu A \cdot \nu B - \sum \mu A_k \cdot \nu B_k$$

2. Очев. $\mu-\sigma$ -конечная $\Rightarrow X=\bigcup X_k,\, \mu X_k$ — конечная $nu-\sigma$ -конечная $\Rightarrow Y=\bigcup Y_n,\, \nu Y_k$ — конечная

$$X imes Y = \bigcup X_k Y_n \quad m_0 \mu X_k \nu Y_n$$
 — конечная

 $\Rightarrow m_0 - \sigma$ -конечная мера

Определение.

- $(X,\mathfrak{A},\mu), (Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные

Пусть m — лебеговское продолжение меры m_0 с п/к $\mathfrak A \times \mathfrak B$ на σ -алгебра, которую будет обозначать $\mathfrak A \otimes \mathfrak B$

Определение. $(X \times Y, \mathfrak{A} \otimes \mathfrak{B}, \nu \times \mu)$ — произведение пространств с мерой (X, \mathfrak{A}, μ) и (Y, \mathfrak{B}, ν)

 Π римечание.

- 1. Это произведение ассоциативно
- 2. σ -конечность нужна для единственности произведения

Теорема 6.2.2. $\lambda_m \times \lambda_n = \lambda_{n+m}$

Доказательство. Без доказательсва

Определение.

- X, Y множества
- $C \subset X \times Y$

$$C_x := \{ y \in Y | (x, y) \in C \}$$

 $C^y := \{ x \in X | (x, y) \in C \}$

Примечание.

$$\left(\bigcup_{\alpha} C_{\alpha}\right)_{x} = \bigcup_{\alpha} (C_{\alpha})_{x}$$

$$\left(\bigcap_{\alpha} C_{\alpha}\right)_{x} = \bigcap_{\alpha} (C_{\alpha})_{x}$$

$$\left(C \setminus C'\right)_{x} = C_{x} \setminus C'_{x}$$

Теорема 6.2.3 (Кавальери).

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\nu, \mu \sigma$ -конечные, полные
- $m := \mu \times \nu$

Пусть $C \in \mathfrak{A} \otimes \mathfrak{B}$ Тогда:

- 1. $C_x \in \mathfrak{B}$ при почти всех x
- 2. $x\mapsto \nu(C_x)$ измеримая функция на X

3.
$$mC = \int_X \nu(C_x) d\mu(x)$$

Аналогичное верно для C^y

Пример. Половину шара сопоставляем с конусом.

 $^{^2}$ функция задана при почти всех x. Она равна почти везде некоторой измеримой функции, которая задана на всем X. Это "не мешает" утверждению 3

- $C_x = \text{круг}$
- C_x =кольцо

$$\lambda(C_x)=\pi(R^2-x^2)$$

$$\lambda(C_x)=\pi R^2-\pi x^2$$

$$\nu(\frac{1}{2}\text{шара})=\nu(\text{цилиндр}-\text{конуc})=\pi R^2-\frac{1}{3}\pi R^2=\frac{2}{3}\pi R$$

Доказательство. \mathcal{D} — система множеств, для которых выполнено 1. - 3.

- 1. $C = A \times B \Rightarrow C \in \mathcal{D}$
 - (a) $C_x = \begin{bmatrix} \emptyset & x \notin A \\ B & x \in A \end{bmatrix}$
 - (b) $x\mapsto \bar{\nu(x)}$ это функция $\nu B\cdot \chi_A$
 - (c) $\int \nu(C_x) d\mu = \int_X \nu B \cdot \chi_A d\mu = \nu B \cdot \mu A = mC$
- 2. $E_i \in D$, $\mathrm{dis} \Rightarrow \bigsqcup E_i \in D$ $E_i \in D \Rightarrow (E_i)_X$ измеримое почти везде \Rightarrow при почти всех x все $(E_i)_X$ измеримое
 - (а) Тогда при этих $x \; E_X = \bigsqcup (E_i)_X \in \mathfrak{B}$
 - (b) $\nu E_X = \sum_{\text{измеримая функция}} \underbrace{\nu(E_i)_X}_{\text{измеримая функция}} \Rightarrow функция <math>x \mapsto \nu E_X$ измеримая

(c)
$$\int\limits_X \nu E_X d\mu = \sum\limits_i \int\limits_X \nu(E_i)_X = \sum\limits_i m E_i = m E$$

3.
$$E_i\in\mathcal{D},\ E_1\supset E_2\supset\ldots,\ E=\bigcap_i E_i,\ \mu E_i<+\infty$$
 Тогда $E\in\mathcal{D}$

$$\int\limits_X \nu(E_i)_X d\mu = mE_i < +\infty \Rightarrow \nu(E_i)_X$$
 — конечная при почти всех x

- (a) $\forall x$ верно $(E_1)_X\supset (E_2)_X\supset\dots,\ E_X=\bigcap (E_i)_X.$ Тогда E_X измеримое при почти всех x и $\lim_{i\to+\infty}\nu(E_i)_X=\nu E_X$ при почти всех
- (b) Таким образом $x \mapsto \nu E_X$ измеримая²

(c)

$$\int\limits_X \nu E_X d\mu = \lim \int \nu(E_i)_X d\mu = \lim mE_i = mE$$

Первое равенство по теореме Лебега о предельном переходе под знаком интеграла: $|\nu(E_i)_X| \leq \nu(E_1)_X$ — из²

Итог: $A_{ij} \in \mathcal{P} = \mathfrak{A} \times \mathfrak{B}$, то $?? \bigcup A_{ij} \in \mathcal{D}$

4.
$$mE = 0 \Rightarrow E \in \mathcal{D}$$

$$mE = \inf\{\sum m_0 P_k | E \subset \bigcup P_k, \ P_k \in \mathcal{P}\}\$$

- теорема о лебеговском продолжении.
- \exists множества H вида $\bigcap_e \bigsqcup_X P_{ke}$ (т.е. $H \in \mathcal{D}$) $E \subset H, mH = mE = 0$

$$E \subset H, mH = mE = 0^e$$

$$0 = mH = \int\limits_X \nu H_x d\mu \Rightarrow \nu H_X \sim 0 \ (= 0 \ \text{при почти всех } x)$$

 $E_X \subset H_x, \nu$ — полная \Rightarrow

- (a) E_X измерима при почти всех x
- (b) $\nu E_X = 0$ почти везде
- (c) $\int \nu E_X d\mu = 0 = mE$
- 5. C-m-измеримо, $mC<+\infty$ тогда $C\in\mathcal{D}$ $C = H \setminus e$, где H — вида ??? () P_{ke} , me = 0, mC = mH
 - (a) $C_x = H_x \setminus e_X$ измерима при почти всех x, т.к. ν полная
 - (b) $\nu e_X = 0$ при почти всех $x \Rightarrow \nu C_x = \nu H_x \nu e_X = \nu H_X \Rightarrow$ измерима
 - (c) $\int_{\mathcal{V}} \nu C_x d\mu = \int_{\mathcal{V}} \nu H_x d\mu = mH = mC$
- 6. C произвольное измеримое множество в $X \times Y \Rightarrow C \in \mathcal{D}$

$$X=\bigsqcup X_k,\ \mu X_k<+\infty,\ Y=\bigsqcup Y_j,\ \nu Y_j<+\infty$$
 $C=\bigsqcup (C\cap (X_k\times Y_j))$ — используем 2.

 $\mathit{Cnedcmeue}$ 6.2.3.17. C — измеримое в $X\times Y.$ Пусть $P_q(C)=\{x\in X|C_x\neq 0\}$ — проекция C на X. Если $P_1(C)$ — измеримое, то:

$$mC = \int\limits_{P_1(C)} \nu(C_x) d\mu$$

Доказательство. при $x \not\in P_1(C)$ $\nu(C_x) = 0$

Примечание.

- 1. измеримое $\not\Rightarrow P_1(C)$ измеримое
- 2. C измеримое $\not\Rightarrow \forall x \ C_x$ измеримо
- 3. $\forall x \forall y \ C_x, C^y$ измеримые $\not\Rightarrow C$ измеримое (пример Серпинского)

Лекция 7

Принцип Кавальери 7.1

- 1. C_x имзмерима при почти всех x
- 2. $x \mapsto \nu C_x$ измерима*

3.
$$mC = \int_{X} \mathcal{X}_x d\mu$$

$$\it C$$
ледствие 7.1.0.18. $f:[a,b]\to \mathbb{R}$ — непрерывная
$$\underline{\rm Torдa}\, \int\limits_a^b f(x)\, dx = \int\limits_{[a,b]} f\, d\lambda_1$$

 \mathcal{A} оказательство. f>0 ПГ(f[a,b]) — измеримое множество в \mathbb{R}^2 . $C_x=$ $[0, f(x)] \lambda_1(C_x) = f(x)$

$$\int_{a}^{b} f(x) dx = \lambda_{2}(\Pi\Gamma) = \int_{[a,b]} f d\lambda_{1}$$

 $\Pi pumeчanue.\ \lambda_2$ можно продолжить на множество $2^{\mathbb{R}^2}$ с сохранением свойства конечной аддитивности и это продолжение не единственно

Примечание. $\lambda_m, m > 2$ — аналогичным образом продолжить невозможно. Парадокс Хаусдорфа-Банаха-Тарского

Примечание. Для замечания 1 и замечания 2 требуется инвариантность меры относительно движения \mathbb{R}^m

Определение.

- $C \subset X \times Y$
- $f: X \times T \rightarrow$

ЛЕКЦИЯ 7. 47

• $\forall x \in X$ f_x — это функция(сечение) $f_x(y) = f(x,y)$, можно считать что она задана на C_x

• f^y — аналогичное сечение

Теорема 7.1.1.

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечныемера, полные
- $m = \mu x \nu$
- ullet $f:X imes Y o \overline{R},f\geq 0$ измерима относительно $A\otimes B$

Тогда

1. при почти всех x f_x — измеримая на Y f^y — измерима на X почти везде

2.
$$x\mapsto \varphi(x)=\int\limits_Y f_xd\nu=\int\limits_Y f(x,y)=d\nu(y)$$
 — измеримая* на X $y\mapsto \psi(y)=\int\limits_X f^yd\mu$ — измеримая* на Y

3.
$$\int_{X \times Y} df m = \int_{X} \varphi d\mu = \int_{X} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$$
$$= \int_{Y} \psi d\nu = \int_{Y} \left(\int_{X} f(x, y) d\mu(x) \right) d\nu(y)$$

Доказательство. Доделать

 $C \subset X \times Y$ $P_1(C)$ — измеримо.

Тогда

$$\int\limits_C f dm = \int\limits_{f_1(C)} \left(\int_{C_x} f(x,y) d\nu(y) \right) d\mu(x)$$

Теорема 7.1.2 (Фубини).

- (X,\mathfrak{A},μ)
- Υ, Β, ν
- $\nu, mu \sigma$ -конечные
- $m = \nu \times \mu$
- f суммируема на $X \times Y$ относительно m

Тогда

ЛЕКЦИЯ 7. 48

1. f_x — суммируема на Y при почти всех x

2.
$$x \mapsto \varphi(x) = \int_{Y} fx \, d\nu = \int_{Y} f(x,y) \, d\nu(y)$$
 — суммируема на Y

3.
$$\int_{X \times Y} f \, dm = \int_{X} \varphi \, d\mu = \int_{X} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$$

Доказательство. Без доказательства

Доделать

7.2 Поверхностные интегралы

7.2.1 Поверхностные интегралы І рода

Определение. $M\subset\mathbb{R}^3$ — простое двумерное гладкое многообразие. $\varphi:G\subset\mathbb{R}^2\to\mathbb{R}^3$ — параметризация. $E\subset M$ — измеримо по Лебегу, если $\varphi^{-1}(E)$ измеримо в \mathbb{R}^2 по Лебегу

Обозначение. $\mathfrak{A}_M = \{E \subset M | E - \text{измеримо}\} = \{\varphi(A) | A \in \mathfrak{M}^2, A \subset G\}$

Определение. Мера на \mathfrak{A}_M

$$S(E) := \iint_{\varphi^{-1}(E)} |\varphi'_u \times \varphi'_v| \, du dv$$

T.e. это взвешенный образ меры Лебега при отображении φ

 Π римечание. $\mathfrak{A}_M - \sigma$ -алгебра, S — мера

 $\Pi pume чание. \ E \subset M$ — компактное $\Rightarrow \varphi^{-1}(E)$ — компактное \Rightarrow измеримое \Rightarrow замкнутые множества измеримы \Rightarrow (относительно) открытые множества измеримы

 Π римечание. \mathfrak{A}_M не зависит от φ по теореме о двух параметризациях

 Π римечание. S не зависит от φ

$$\begin{split} |\overline{\varphi_s'} \times \overline{\varphi_v'}| &= |(\overline{\varphi_s'} \cdot u_s' + \overline{\varphi_v'} \cdot v_s') \times (\overline{\varphi_u'} \cdot u_t' + \overline{\varphi_v'} \cdot v_t')| = \\ &= |\overline{(\varphi_u' \times \varphi_v')} \cdot (u_s' \cdot v_t' - v_s' \cdot u_t')| = \boxed{\textbf{Доделать}} \end{split}$$

 Π римечание.

• $f:\mathfrak{M}\to \overline{R}$ — измеримая

M(f < a) — измеримая $\Leftrightarrow N(f \circ \varphi < a)$ — измерима относительно \mathfrak{M}^2 f — измерима относительно $\mathfrak{A}_M \Leftrightarrow f \circ \varphi$ — измерима относительно \mathfrak{M}^2

Определение (поверхностный интеграл І рода).

• M — простое гладкое двумерное иногообразие в \mathbb{R}^3

ЛЕКЦИЯ 7. 49

- \bullet φ параметризация
- $f:M \to \overline{R}$ суммируема по мере S

То

$$\iint\limits_{M} f \, ds = \iint\limits_{M} f(x, y, z) \, ds$$

называется интегралом I рода от f по многообразию M

Примечание. По теореме об интегрировании по взвешенному образу меры

$$\begin{split} \iint_{M} f \, ds &= \iint_{G} f(\varphi(u,v)) |\varphi'_{v} \times \varphi'_{v}| \, du dv \\ \varphi'_{u} \times \varphi'_{v} &= \begin{pmatrix} i & x'_{u} & x'_{v} \\ j & y'_{u} & y'_{v} \\ k & z'_{u} & z'_{v} \end{pmatrix} \\ |\varphi'_{u} \times \varphi'_{v}| &= |\varphi'_{u}| \cdot |\varphi'_{v}| \alpha = \sqrt{|\varphi'_{u}|^{2} \cdot |varphi'_{v}|^{2} \cdot (1 - \cos^{2}\alpha)} = \sqrt{EG - F^{2}} \\ E &= |\varphi'_{u}| = x'_{u}^{2} + y'_{u}^{2} + z'_{u}^{2} \\ F &= \langle \varphi'_{u}, \varphi'_{v} \rangle = x'_{u}x'_{v} + y'_{u}y'_{v} + z'_{u}z'_{v} \quad F = |\varphi'_{v}|^{2} \end{split}$$

Лекция 8

5 апреля

- *M*
- $\Phi: O \subset \mathbb{R}^2 \to \mathbb{R}^3$
- *f*
- fΦ

$$\int_{M/E} df s = \int_{O/\Phi^{-1}(E)} f \circ \Phi \cdot |\Phi' u \times \Phi' v| \, du \, dv$$

Определение. $M\subset\mathbb{R}^3$ — кусочно гладкое двумерное многообразие, если M — конечное объединение

- ullet простых гладких двумерных многообразий M_i
- гладких кривых
- точек

Примечание. Просто так сферу параметризовать не можем, но можем разбить ее на две полусферы и окружность и считать отдельно для каждой из них

Определение. $E\subset M$ — измеримое, если измеримы все $E\cap M_i$.

$$S(E) := \sum_{i} S(E \cap M_i)$$

$$\int_E f ds := \sum_i \int_{E \cap M_i} f ds$$

8.1 Поверхностный интеграл II рода

• M — простое гладкое двумерное многообразие в R^3 — поверхность

Определение. Сторона поверхности — непрерывное семейство единичных нормалей к этой поверхности

 $M \subset \mathbb{R}^3 \quad W: M \to \mathbb{R}^3$

 $\forall x \; W(x)$ — нормаль к $M, \; |w(x)| = 1, \; w(x) \perp \Phi' u, \Phi'_v$

 $\ensuremath{\textit{Примечание}}.$ Локльно каждая повехность — двустороннее. В общем случае — 1 или 2 стороны

Примечание. График функции z(x,y)

$$\Phi: (x,y) \mapsto \begin{pmatrix} x \\ y \\ z(x,y) \end{pmatrix}$$

$$\Phi'_x = \begin{pmatrix} 1 \\ 0 \\ z'_x \end{pmatrix} \quad \Phi'_y = \begin{pmatrix} 0 \\ 1 \\ z'_y \end{pmatrix}$$

— касательные векторы

$$n := \Phi'_x \times \Phi'_y = \begin{pmatrix} -z'_x \\ -z'_y \\ 1 \end{pmatrix}$$

— нормаль

$$n_0 = \pm \left(-\frac{z'_x}{\sqrt{1 + {z'_x}^2 + {z'_y}^2}}, -\frac{z'_y}{\sqrt{\cdots}}, \frac{1}{\sqrt{\cdots}} \right)$$

Примечание. Другой способ задания стороны поверхности

- 1. u, v касательные векторы $u \not | v, (u, v)$ касательный репе́р Если задано непрерывное поле реперов, то они задают сторону $n = u \times v$ (отнормировать)
- 2. Задана петля + указано непрерывное движение

Определение. M — поверхность в \mathbb{R}^3 , n_0 — сторона, γ — контур(петля) в M — ориентированный.

Говорят, что сторона поверхности n_0 согласована с ориентацией γ : ($\gamma' \times N_{\text{внутр.}}$) $\parallel n_0$. Т.е. если ориентация γ задает сторону n_0

Определение.

- M простое двумерное гладкое многообразие
- n_0 сторона M

• $F: M \to \mathbb{R}^3$ — векторное поле(непрерывное)

$$\int_{M} \langle F, n_0 \rangle \, ds$$

— **интеграл II рода** векторного поля F по поверхности M

Примечание. Смена стороны = смена знака

Примечание. Не зависит от параметра

Примечание. F = (P, Q, R) обозначается

$$\iint_{M} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy$$

Примечание. $\Phi, n = \Phi'_u \times \Phi'_v \leadsto n_0$

$$\int_{M} \langle F, n_{0} \rangle = \int_{O} \left\langle F, \frac{\Phi'_{u} \times \Phi'_{v}}{|\Phi'_{u} \times \Phi'_{v}|} \right\rangle |\Phi'_{u} \times \Phi'_{v}| \, du \, dv =$$

$$\int_{O} \underbrace{\langle F, \Phi'_{u} \times \Phi'_{v} \rangle}_{\text{смещенное произведение}} \, du \, dv \qquad (8.1)$$

$$\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$$

$$\langle F, \Phi'_{u} \times \Phi'_{v} \rangle = \det \begin{pmatrix} P & x'_{u} & x'_{v} \\ Q & y'_{u} & y'_{v} \\ R & z'_{u} & z'_{v} \end{pmatrix}$$

$$\int_{O} \frac{|y'_{u} \times z'_{v}|}{|x'_{u} \times z'_{v}|} du \, dv \qquad (8.1)$$

$$8.1 = \int_O P \cdot \begin{vmatrix} y_u' & z_v' \\ z_u' & z_v' \end{vmatrix} + Q \cdot \begin{vmatrix} z_u' & z_v' \\ x_u' & x_v' \end{vmatrix} + R \cdot \begin{vmatrix} x_u' & x_v' \\ y_u' & y_v' \end{vmatrix} \, du \, dv$$

 $\Pi puмер$. График z(x,y) над областью G по верхней стороне

$$\iint_{\Gamma_z} R \, dx \, dy = \iint_{\Gamma_z} 0 \, dy \, dz + 0 \, dz \, dy + R(x, y, z) \, dx \, dy \tag{8.2}$$

$$n_0 = \left(-\frac{z_x'}{\sqrt{1 + {z_x'}^2 + {z_y'}^2}}, -\frac{z_y'}{\sqrt{\cdots}}, \frac{1}{\sqrt{\cdots}} \right)$$

$$8.2 = \iint_{\Gamma_z} R(x, y, z) \cdot \frac{1}{\sqrt{1 + {z_x'}^2 + {z_y'}^2}} \, ds = \iint_G R(x, y, z(x, y)) \, dx \, dy = \iint_G R \, dx \, dy$$

т.е. этот интеграл II рода равен интегралу по проекции *Следствие* 8.1.0.19.

- $V \subset \mathbb{R}^3$
- $M = \partial V$ гладкая двумерная поверхность

• n_0 — внешняя нормаль

$$\lambda_3 V = \iint_{\partial V} z \, dx \, dy = \frac{1}{3} \iint_{\partial V} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy$$

 $\mathit{Cnedcmeue}$ 8.1.0.20. Ω — гладкая кривая в $\mathbb{R}^2,\ M$ (— цилиндр над $\Omega)=\Omega\times[z_0,z_1]$

Тогда (сторона M любая) $\int_M R \, dx \, dy = 0$

8.2 Ряды Фурье

8.2.1 Пространства L^p

Свойство 1.

- (X,\mathfrak{A},μ)
- $f: X \to \mathbb{C}$ x = f(x) = u(x) + iv(x) $u = \Re f, \ v = \Im f$
- ullet f измеримая, если u u v измеримые
- \bullet f-суммируемая, u u v-суммирумые
- ullet f-cуммируемая: $\int_E f = \int_E u + \int_E v$

Свойство 2 (Неравенство Гёльдера).

- p, q > 1 $\frac{1}{p} + \frac{1}{q} = 1$
- (X,\mathfrak{A},μ)
- \bullet E измеримое
- $f,g:E \to \mathbb{C}$ измеримые

Tог ∂a

$$\int_{E} |fg| d\mu \le \left(\int_{E} |f|^{p}\right)^{\frac{1}{p}} \left(\int_{E} |g|^{q}\right)^{\frac{1}{q}}$$

Свойство 3 (Неравенство Минковского). *Те-же условия что и в Неравенстве Гельдера*

$$\left(\int_{E} |f+g|^{p}\right)^{\frac{1}{p}} \leq \left(\int_{E} |f|^{p}\right)^{\frac{1}{p}} + \left(\int_{E} |g|^{p}\right)^{\frac{1}{p}}$$

Примечание. При p = 1 неравенство тоже верно

Свойство 4.

Определение. L^p , $1 \le p \le +\infty$

- (X,\mathfrak{A},μ)
- $E \subset X$ измеримое

$$\mathcal{L}^p(E,\mu) := \left\{ f: \text{ почти везде } E \to \mathbb{R}(\mathbb{C}) \Big| f - \text{измеримая}, \int_E |f|^p \, d\mu < +\infty \right\}$$

— это линейное пространство (по неравенству Минковского) $f,g\in\mathcal{L}^p(E,\mu):f\sim g\quad f=h$ почти везде. $\mathcal{L}^p/_N=L^p(E,\mu)$ — линейной пространство. Задаем норму $\|f\|_{L^p(E,\mu)}=\left(\int_E|f|^p\right)^{\frac{1}{p}}$

Свойство 5.

- $L^{\infty}(E,\mu)$
- (X,\mathfrak{A},μ)
- E измеримое
- ullet f nочти везде $E
 ightarrow \overline{\mathbb{R}}$ uзмеpимая

$$\operatorname{ess\,sup}_{x\in E}f=\inf\{A\in\overline{R}\Big|f\leq A\ \textit{почти везде}\}$$

Свойство 6. ess sup $f \leq \sup f$

Свойство 7. $f \leq \operatorname{ess\,sup} f$ почти везде

Доказательство. $B = \operatorname{ess\,sup} f$ Тогда

Свойство 8. f-cyмм, $\operatorname{ess\,sup}_{F}|g|<+\infty$

Тогда

$$\left| \int_E fg \right| \leq \operatorname{ess\,sup} |g| \cdot \int_E |f|$$

Доказательство.

$$\left| \int_E fg \right| \le \int_E |fg| \le \int_E \operatorname{ess\,sup} |g| \cdot |f|$$

Примечание. $L^\infty(E,\mu)=\{f:$ п.в. $E\to\overline{\mathbb{R}}(\overline{\mathbb{C}}),$ изм., $\operatorname{ess\,sup}|f|<+\infty\}/_\sim$. Эквивалентные функции отождествленны — это нормированное пространство

$$||f||_{L^{\infty}(E,\mu)} := \operatorname{ess\,sup} |f| = ||f||_{\infty}$$

Примечание. В новых обозначениях. Неравенство Гельдера:

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$

Здесь можно брать $p=1,\ q=+\infty$

 $\mbox{$\varPi pumeranue.}\ f\in L^p\Rightarrow f$ — почти везде конечны. $1\leq p\leq +\infty\Rightarrow$ можно считать f— задана всюду на E, и всюду конечна

Лекция 9

12 апреля

• $\gamma: [a,b] \to \mathbb{R}^m$

$$\int_a^b f ds \quad \int_a^b \langle F, \gamma' \rangle dt = \int_a^b \langle F, \frac{\gamma'}{|\gamma'|} \rangle ds$$

Мера на кривой — гладкре 1-мерное многообразие, γ — параметризация. Эта мера — образ меры Лебега в \mathbb{R}^1 с весом $|\gamma'|$ — интеграл I рода. Общий случай: Интеграл II рода по (m-1)-мерной поверхности в \mathbb{R}^m . F — векторное поле

$$\int \langle F, n_0 \rangle dS_{m-1} \quad |\Phi_u' \times \Phi_v'| - \sec$$

Мера Лебега на k-мерном многообразии в \mathbb{R}^m . $\Phi:O\subset\mathbb{R}^k\to\mathbb{R}^m$. $\Phi_1',\ldots,\Phi_k',$ тогда $\lambda_k($ Паралеллепипед $(\Phi_1',\ldots,\Phi_k'))$ — вес

9.1 Формула Грима

Теорема 9.1.1.

- $D \subset \mathbb{R}^2$ компактное, связное, односвязное, ограниченное
- D ограничено кусочно гладкой кривой ∂D
- Пусть граница области D ∂D ориентированна, согласована с ориентацией D (против часовой стрелки) обозначим ∂D^+
- (P,Q) гладкое векторное поле в окрестности D

Тогда

$$\iint_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy = \int_{\partial D^{+}} P dx + Q dy$$

Доказательство. Ограничимся случаем D — 'криволинейный 4-х угольник'

 ∂D — состоит из путей γ_1,\dots,γ_4 , где γ_2,γ_4 — вертикальные отрезки (возможно вырожденные), γ_1,γ_3 — гладкие кривые(можно считать, что это графики функций $\varphi_1(x),\varphi_3(x)$). Аналогично можно Исправить . Проверим, что:

$$-\iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{\partial D^{+}} P dx + Q dy$$

Левая часть:

$$-\int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{3}(x)} \frac{\partial P}{\partial y} dy = -\int_{a}^{b} P(x, \varphi_{3}(x)) - P(x, \varphi_{1}(x)) dx$$

Правая часть:

$$\begin{split} &\int_{\gamma_1} + \underbrace{\int_{\gamma_2}}_0 + \int_{\gamma_3} + \underbrace{\int_{\gamma_4}}_0 = \\ &= \int_a^b P(x, \varphi_1(x)) \, dx - \int_a^b P(x, \varphi_3(x)) \, dx \end{split}$$

Примечание. Теорема верна для любой области D с кусочно гладкой границей, которую можно разрезать на криволинейные 4-х угольнинки

Теорема 9.1.2 (Формула Стокса).

- Ω простое гладкое двумерное многообразие в \mathbb{R}^3 (двустороннее)
- n_0 сторона Ω
- $\partial\Omega$ кусочно гладкая кривая
- $\partial\Omega^+$ ориентированная кривая с согласованной ориентацией.
- (P,Q,R) гладкое векторное поле в окрестности Ω

Тогда

$$\int_{\Omega^+} P \, dx + Q \, dy + R \, dz = \iint_{\Omega} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \, dy \, dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \, dz \, dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy$$

Доказательство. Ограничимся случаем $\Omega \in C^2$. Достаточно?:

$$\int_{\partial\Omega^{+}} P \, dx = \iint_{\Omega} \frac{\partial P}{\partial z} \, dz \, dx - \frac{\partial P}{\partial y} \, dx \, dy$$
$$\Phi = (x(u, v), y(u, v), z(u, v))$$

dx dy = -dy dx, dx dx = 0

$$dP dx + dQ dy + dR dz = (P'_x dx + P'_y dy + P'_z dz) dx + \dots$$

$$\int_{\partial\Omega^{+}} P \, dx = \int_{L^{+}} P \cdot \left(\frac{\partial x}{\partial u} \, du + \frac{\partial x}{\partial v} \, dv \right) \tag{9.1}$$

Параметризируем: $\gamma:[a,b]\to\mathbb{R}^2,\,\gamma=(u(t),v(t))$ — параметризируем L^+

$$\int_{\partial\Omega^{+}} P \, dx = \int_{a}^{b} P(\frac{\partial dx}{\partial u}u' + \frac{\partial x}{\partial v}v')dt \tag{9.2}$$

 $\Phi\circ\gamma$ — парметризируем $\partial\Omega^+,\,(\Phi\circ\gamma)'=\Phi'\cdot\gamma'$

$$9.2 = \int_{a}^{b} P \cdot \frac{\partial x}{\partial u} du + P \cdot \frac{\partial x}{\partial v} dv$$

$$9.1 = \iint_C \frac{\partial}{\partial u} \left(P \frac{\partial x}{\partial b} \right) - \frac{\partial}{\partial v} \left(P \frac{\partial x}{\partial u} \right) du dv =$$

$$= \iint_G (P'_x \cdot x'_u + P'_y \cdot y'_u + P'_z \cdot z'_u) x'_v + p \cdot x''_{uv} - (P'_x \cdot x'_v + P'_y \cdot y'_v + P'_z \cdot z'_v) x'_u - P \cdot x''_{uv} du dv =$$

$$= \iint_G \frac{\partial P}{\partial z} (z'_u x'_v - z'_v x'_u) - \frac{\partial P}{\partial y} (x'_u y'_v - x'_v y'_u) = \iint_G \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial x} dx dy$$

• $L^p(X,\mu), 1 \le p \le +\infty$

$$\left(\int_X |f|^p \, dx\right)^{\frac{1}{p}} \, -$$
 сходится

• $p = \infty$: $\operatorname{ess\,sup} |f| < +\infty$

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$

Теорема 9.1.3.

• $\mu E < +\infty$, $1 \le s < r \le +\infty$

Тогда

1.
$$L^r(E,\mu) \subset L^s(E,\mu)$$

2.
$$||f||_s \leq \frac{1}{s} - \frac{1}{r} \cdot ||f||_r$$

Доказательство.

1. Следует из 2)

2.
$$r = \infty$$

$$\left(\int |f|^s \, d\mu\right)^{\frac{1}{s}} \le \operatorname{ess\,sup}|f| \cdot \mu E^{\frac{1}{s}}$$

$$r < +\infty$$
 $p := \frac{r}{s}$, $q = \frac{r}{r-s}$

$$||f||_{s}^{s} = \int_{E} |f|^{s} d\mu = \int_{E} |f|^{s} \cdot 1 d\mu \le \left(\int_{E} |f|^{s \cdot \frac{r}{s}} d\mu \right)^{\frac{s}{r}} \cdot \left(\int_{E} 1^{\frac{r}{r-s}} d\mu \right)^{\frac{r-s}{r}} \le$$

$$\le ||f||_{r}^{s} \mu E^{1-\frac{s}{r}}$$

Cледствие 9.1.3.21.

•
$$\mu E < +\infty$$

•
$$1 \le s < r \le +\infty$$

•
$$f_n \xrightarrow{L^r} f$$

 $\underline{\text{Тогда}} f_n \xrightarrow{L^s} f$

Доказательство.

$$||f_n - f||_s \le \mu E^{\frac{1}{r} - \frac{1}{r}} \cdot ||f_n - f||_r \to 0$$

Теорема 9.1.4 (о сходимости в L^p и по мере).

• 1

•
$$f_n \in L^p(X,\mu)$$

Тогда

1.
$$f \in L^p$$
, $f_n \to f$ b $L^p \implies f_n \Longrightarrow_{\mu} f$

2.
$$f \Longrightarrow_{\mu} f$$
 либо $f_n \to f, \, |f_n| \le g, \, g \in L^p$ Тогда $f \in L^p$ и $f_n \to f$ в L^p

Доказательство.

1.
$$X_n(\varepsilon) := X(|f_n - f| \ge \varepsilon)$$

$$\mu X_n(\varepsilon) = \int_{X_n(\varepsilon)} 1 d\mu \le \frac{1}{\varepsilon^p} \int_{X_n(\varepsilon)} |f_n - f|^p d\mu \le \frac{1}{\varepsilon^p} ||f_n - f||_p^p \to 0$$

2.
$$f_n\Rightarrow f, \exists n_k\ f_{n_k}\to f$$
 почти везде $\Longrightarrow |f|\leq g$ почти везде $|f_n-f|^p\leq (2g)^p-$ суммируема (так как $g\in L^p)$ $\|f_n-f\|_p^p$ Доделать

- Фундаментальная последовательность: $\forall \varepsilon > 0 \ \exists N \ \forall k, n > N \quad \|f_n f_k\| < \varepsilon, \text{ r.e. } \|f_n f_k\| \xrightarrow[n.k \to +\infty]{} 0$
- $f_n \to f \implies f_n$ фундаментальная $\|f_n f_k\| \le \underbrace{\|f_n f\|}_{\to 0} + \underbrace{\|f f_k\|}_{\to 0}$
- C(k) пространство непрерывных функций на компакте K $\|f\| = \max_K |f|$, утверждение: C(K) полное

61

Задача 1. $L^{\infty}(X,\mu)$ — полное

Теорема 9.1.5.

- $L^p(X,\mu)$ полное
- $1 \le p < +\infty$

Доказательство. f_n — фундаментальная

$$\varepsilon = \frac{1}{2} \exists N_1 \ \forall n_1, k > N \quad ||f_{n_1} - f_k||_p < \frac{1}{2}$$

Возьмем один такой n_1 и зафиксируем:

$$\varepsilon = \frac{1}{4} \exists N_2 > n_1 \ \forall n_2, k > N_2 \quad ||f_{n_2} - f_k||_p < \frac{1}{4}$$

Повторим это действие. Получим последовательность (n_k) :

$$\sum_{k} \|f_{n_{k+1}} - f_{n_k}\|_p < 1$$

Рассмотрим ряд:

$$S(x) = \sum_{k} |f_{n_{k+1}}(x) - f_{n_k}(x)| \quad S(x) \in [0, +\infty]$$

 S_N — частичные суммы ряда S

$$||S_N||_p \le \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}||_p 1$$

, т.е. $\int_X S_N^p < 1,$ по теореме Фату: $\int_X S^p \, d\mu < 1,$ т.е. S^p — суммируема $\implies S$ — почти везде конечна

$$f(x) = f_{n_1}(x) + \sum_{k=1}^{+\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$$

— его частичные суммы — это $f_{n_{N+1}}(x)$, т.е. схоимость этого ряда почти везде означает, что $f_{n_k}\to f$ почти везде. Проверим, что $\|f_n-f\|_p\to 0$

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \quad ||f_n - f_m||_p < \varepsilon$$

Берем $m = n_k > N$

$$||f_n - f_{n_k}||_p^p = \int_X |f_n - f_{n_k}|^p d\mu < \varepsilon^p$$

это выполняется при всех больших k. По теореме Фату:

$$\int_{Y} |f_n - f|^p d\mu < \varepsilon^p$$

, r.e.
$$||f_n - f|| < \varepsilon$$

Определение. Y — метрическое пространство, $A\subset Y,$ A — (всюду) плотно в Y

$$\forall y in Y \ \forall U(y) \ \exists a \in A : \ a \in U(y)$$

 $\Pi puмер. \mathbb{Q}$ плотно в \mathbb{R}

Лемма 7.

- (X,\mathfrak{A},μ)
- $1 \le p \le +\infty$

Множество ступенчатых функций (из L^p) плотно в L^p

Примечание. $\varphi \in L^p$ — ступенчатая $\implies (\varphi \neq 0) < +\infty$

Доказательство.

 $p=\infty$ $f\in L^{\infty}$, изменив f на множестве C меры 0, считаем, что $|f|\leq \|f\|_{\infty}$. Тогда существуют ступенчатые $0\leq \varphi_n \rightrightarrows f^+,\ 0\leq \psi_n \rightrightarrows f^-$. Тогда сколько угодно близко к f можно найти ступенчатую фкнцию вида $\varphi_n+\psi_n$

 $p<+\infty$ Пусть $f\geq 0$. $\exists \varphi_n\geq 0$ — ступенчатая: $\varphi_n\uparrow f$

$$\|\varphi_n - f\|_p^p = \int_X |\varphi_n - f|^p \to 0$$

, по теореме Лебега. f — любого знака: берем f^+, f^-, \dots

Определение. $f: \mathbb{R}^m \to \mathbb{R}$ — финитная, если $\exists B(0,r): f \equiv 0$ вне B(0,r). $C_0(\mathbb{R}^m)$ — непрерывные финитные функции. $\forall p \geq 1$ $C_0(\mathbb{R}^m) \subset L^p(\mathbb{R}^m, \lambda_m)$

Определение. Топологическое пространство X — **нормальное**, если

- 1. Точки X замкнутые множества
- 2. $\forall F_1,F_2\subset X$ замкнутые, $\exists U(F_1),U(F_2)$ открытые и $U(F_1)\cap U(F_2)=\emptyset$

Задача 2. R^m — нормальное

Лекция 10

19 апреля

Теорема 10.0.1 (Формула Остроградского).

•
$$V = \{(x, y, z) | (x, y) \in G \subset \mathbb{R}^2, f(x, y) \le z \le F(x, y)\}$$

- G компактно
- ∂G кусочно гладкая
- $f, F \in C^1$
- R в окрестности $V \to \mathbb{R}, \in C^1$

Фиксируем внешнюю сторону поверхности Тогда

$$\iiint_V \frac{\partial R}{\partial z} \, dx \, dy \, dz = \iint_{\partial V} R \, dx \, dy = \iint_{\partial V} 0 \, dy \, dz + 0 \, dz \, dx + R \, dx \, dy$$

Доказательство.

$$\iiint_{V} \frac{\partial R}{\partial z} = \iint_{G} dx \, dy \int_{f(x,y)}^{F(x,y)} \frac{\partial R}{\partial z} \, dz = \iint_{G} R(x,y,F(x,y)) \, dx \, dy - \iint_{G} R(x,y,f(x,y)) \, dx \, dy =$$

$$= \iint_{\Omega_{F}} R(x,y,z) \, dx \, dy + \iint_{\Omega_{f}} R \, dx \, dy + \underbrace{\iint_{\Omega} R \, dx \, dy}_{0}$$

Следствие 10.0.1.22 (обобщение формула Остроградского).

$$\iiint_V \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \, dx \, dy \, dz = \iint_{\partial V_{\text{BHeim.}}} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy$$

Определение. V — гладкое векторное поле. **Дивергенция**:

$$\operatorname{div} V = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Примечание.

$$\operatorname{div} = \lim_{\varepsilon \to 0} \frac{1}{\frac{4}{3}\pi\varepsilon^3} \iiint_{B(a,\varepsilon)} \operatorname{div} V \, dx \, dy \, dz = \lim_{\varepsilon \to 0} \frac{1}{\frac{4}{3}\pi\varepsilon^3} \iint_{S(a,\varepsilon)} \langle V, \overline{n}_0 \rangle ds$$

— не зависит от координат

Cледствие 10.0.1.23.

- $l \in \mathbb{R}^3$
- $f \in C^1(\text{okp}(V))$

$$\iiint_V \frac{\partial f}{\partial l} \, dx \, dy \, dz = \iint_{\partial V} f \cdot \langle f, n_0 \rangle ds$$

10.1 Формула Стокса

$$\int_{\partial\Omega} P \, dx + Q \, dy + R \, dz = \iint_{\Omega} \langle rot(V), n_0 \rangle ds$$
$$rot \, V = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

— ротор векторного поля (вихрь векторного поля)

Пример.

$$V(x, y, z) = (-y, x, 0)$$

rot $V = (0, 0, 2)$

Примечание. V = (P, Q, R) — потенциально, $\exists f$

$$V = \operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Теорема 10.1.1.

Ω — область

Тогда V — потенциально \Leftrightarrow rot V=0

Определение. Векторное поле $A = (A_1, A_2, A_3)$ — соленоидально в области $\Omega \subset \mathbb{R}^2$, если \exists гладкое векторное поле B в Ω :

$$A = \operatorname{rot} B$$

B — называется векторным потенциалом A

Теорема 10.1.2 (Пуанкаре').

- Ω открытый паралеллепипед
- A векторное поле в $\Omega, A \in C^1$

Тогда A — соленоидально $\Leftrightarrow \operatorname{div} A = 0$

Доказательство.

 (\Rightarrow) div rot B=0

(⇐) Дано:

$$A_{1x}' + A_{2y}' + A_{3z}' = 0 (10.1)$$

. Найдем векторный потенциал $B=(B_1,B_2,B_3),\ A={
m rot}\, B.$ Путь $B_3\equiv 0$

$$\left. \begin{array}{l} B_{3'y}' - B_{2'z}' = A_1 \\ B_{1z}' - B_{3x}' = A_2 \\ B_{2x}' - B_{1y}' = A_3 \end{array} \right\} \leadsto \left. \begin{array}{l} -B_{2z}' = A_1 & (1) \\ B_{1z}' = A_2 & (2) \\ B_{2x}' - B_{1y}' = A_3 & (3) \end{array} \right.$$

(1)
$$B_2 := -\int_{z_0}^z A_1 dz + \varphi(x, y)$$

$$(2) B_1 := \int_{z_0}^z A_2 dz$$

$$-\int_{z_0}^z A_{1_x'} \, dz + \varphi_x' - \int_{z_0}^z A_{z_y'} \, dz = A_3 \xrightarrow[10.1]{} \int_{z_0}^z A_{3_z'} dz + \varphi_x' = A_3$$

$$A_3(x,y,z) - A_3(x,y,z_0) + \varphi_x' = A_3(x,y,z) \Leftrightarrow \varphi_x' = A_3(x,y,z_0)$$
 Отсюда найдем $\varphi = \int_{x_0}^x A_3(x,y,z_0) \, dx$

Примечание.

$$\int_{\partial\Omega} A_l \, dl = \int_{\partial\Omega} \langle A, l_0 \rangle \, dl = \iint_{\Omega} (\operatorname{rot} A)_n \, ds$$
$$(\operatorname{rot} A)_n(a) = \lim_{\varepsilon \to 0} \frac{1}{\lambda(\Omega_{\varepsilon})} \iint_{\Omega_{\varepsilon}} (\operatorname{rot} A)_n \, ds = \lim_{\varepsilon \to 0} \frac{1}{\lambda\Omega} \cdot \int_{\partial\Omega_{\varepsilon}} A_l \, dl$$

Лемма 8 (Урнсона).

- $\bullet \ X$ нормальное
- $F_0, F_1 \subset X$ замкнутые, $F_0 \cap F_1 = \emptyset$

<u>Тогда</u> $\exists f: X \to \mathbb{R} \ - \ \mathit{nenpepus}$ ная, $0 \le f \le 1, \ f\big|_{F_0} = 0, \ f\big|_{F_1} = 1$

Доказательство. Перефразируем нормальность: Если $F_{\text{замк.}} \subset {}_{\text{октр.}G}, \exists U(F)$ — открытое:

$$F \subset U(F) \subset \overline{U(F)} \subset G$$

.

$$F \leftrightarrow F_0 \quad G \leftrightarrow (F_1)^C \quad F_0 \subset \underbrace{U(F_0)}_{G_0} \subset \underbrace{\overline{U(F_0)}}_{G_2} \subset \underbrace{F_1^C}_{G_1}$$

Строим $G_{\frac{1}{2}}$:

$$\overline{G_0} \subset \underbrace{U(\overline{G_0})}_{G_{\frac{1}{2}}} \subset \underbrace{\overline{U(\overline{G_0})}}_{\overline{G_{\frac{1}{2}}}} \subset G_1$$

Строим $G_{\frac{1}{4}}$, $G_{\frac{3}{4}}$:

$$\overline{G_{\frac{1}{2}}} \subset \underbrace{U(\overline{G_{\frac{1}{2}}})}_{G_{\frac{3}{4}}} \subset \overline{U(\overline{G_{\frac{1}{2}}})} \subset G_1$$

Таким образом для любого двоично рационального числа $\alpha \in [0,1]$ задется множество G_{α}

$$f(x) := \inf\{\alpha - \text{двоично рациональное} | x \in G_{\alpha} \}$$

Проверим что: f — непрерывно $\Leftrightarrow f^{-1}(a,b)$ — всегда открыто. Достаточно проверить:

- 1. $\forall b \ f^{-1}(-\infty, b)$ открыто
- 2. $\forall a \ f^{-1}(-\infty, a)$ замкнуто

Покажем это:

1.

$$f^{-1}(-\infty,b) = \bigcup_{\substack{q < b \ q - ext{дв. рац.}}} G_q$$
 — открыто

- (\supset) Очевидно: При $x \in G_q \ f(x) \le q-b$
- (С) $f(x) = b_0 < b$ Возьмем $q: b_0 < q < b$. Тогда $x \in G_q$
- 2. $f^{-1}(-\infty,a] = \prod_{q>a} G_q = \bigcap_{q>a} \overline{G_q}$ замкнуто
 - (⊃) Тривиально
 - (\subset) q,r двоично рациональные

$$\prod_{\substack{q>a\\\text{BCEX}}} G_q\supset \bigcap_{\substack{r>a\\\text{HEKOTOPDIX}}} \overline{G_r}\supset \bigcap_{\substack{r>a\\\text{BCEX}}} \overline{G_r}$$

Теорема 10.1.3.

- $(\mathbb{R}, \mathfrak{M}, \lambda_{\mathfrak{M}})$
- $E \subset \mathbb{R}^m$ измеримое

Тогда в $L^P(E,\lambda_{\mathfrak{M}})$ множество непрерывных финитных функция плотно

 $\Pi pume vanue.\ f$ — финитная в $\mathbb{R}^m=\exists$ шар B f=0 вне B. f— непрерывная финитная на $E=\exists g\in C_0(\mathbb{R}^m)\ f=g\big|_E$

Доказательство. Доделать

 $\Pi puмечание.$ В $L^\infty(E,\lambda_\mathfrak{M})$ утверждение теоремы неверно. $L^\infty(\mathbb{R},\lambda)$ В $\left(\chi_{[a,b]},\frac{1}{2}\right)$ не содержит непрерывных функций

$$\sup_{\mathbb{R}} |f - \chi_A| \ge \max(\lim_{x \to a+0} |f(x) - \chi_A|, \lim_{x \to a-0} |f(x) - \chi_A|) =$$

$$= \max(|f(a) - 1|, |f(a) - 0|) \ge \frac{1}{2}$$

Примечание. В $L^p(E, \lambda_{\mathfrak{M}}), p < +\infty$ плотны:

- Гладкие функции
- Непрерывные функции
- Доделать