Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005

Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

6.873/HST.951 Medical Decision Support Spring 2005

Artificial Neural Networks

Lucila Ohno-Machado

(with many slides borrowed from Stephan Dreiseitl. Courtesy of Stephan Dreiseitl. Used with permission.)

Overview

- Motivation
- Perceptrons
- Multilayer perceptrons
- Improving generalization
- Bayesian perspective

Motivation

Images removed due to copyright reasons.

benign lesion

malignant lesion

Motivation

- Human brain
 - Parallel processing
 - Distributed representation
 - Fault tolerant
 - Good generalization capability
- Mimic structure and processing in computational model

Biological Analogy

Perceptrons

Activation functions

Perceptrons (linear machines)

Abdominal Pain Perceptron

AND

input	output	$(f(x_1w_1 + x_2w_2) = y)$	A	
00	0	$\longrightarrow f(Ow_1 + Ow_2) = O$		
01	0			$f(a) = \int 1$, for $a > \theta$
10	0			0, for $a \le \theta$
11	1	$f(1w_1 + 1w_2) = 1$	θ	

some possible values for w_1 and w_2

W ₁	W ₂
0.20	0.35
0.20	0.40
0.25	0.30
0.40	0.20

Single layer neural network

Single layer neural network

Training: Minimize Error

Error Functions

 Mean Squared Error (for regression problems), where t is target, o is output

$$\Sigma(t-o)^2/n$$

Cross Entropy Error (for binary classification)

$$-\Sigma(t \log o) + (1-t) \log (1-o)$$

$$o_j = 1/(1 + e^{-(a_j + \theta_j)})$$

Error function

- Convention: $w := (w_0, w), x := (1, x)$
- *w*₀ is "bias"
- $o = f(w \cdot x)$
- Class labels t_i ∈ {+1,-1}
- Error measure

$$-E = -\sum_{i \text{ miscl.}} t_i (w \cdot x_i)$$

• How to minimize *E*?

Minimizing the Error

winitial wtrained

Gradient descent

Perceptron learning

• Find minimum of E by iterating $w_{k+1} = w_k - \eta \operatorname{grad}_w E$

•
$$E = -\sum_{i \text{ miscl.}} t_i (w \cdot x_i) \Rightarrow$$

$$grad_w E = -\sum_{i \text{ miscl.}} t_i x_i$$

• "online" version: pick misclassified x_i $W_{k+1} = W_k + \eta t_i x_i$

Perceptron learning

- Update rule $w_{k+1} = w_k + \eta t_i x_i$
- Theorem: perceptron learning converges for linearly separable sets

Gradient descent

- Simple function minimization algorithm
- Gradient is vector of partial derivatives
- Negative gradient is direction of steepest descent

Figures by MIT OCW.

Classification Model

Independent variables

x1, x2, x3

Coefficients

a, *b*, *c*

Dependent variable

p

Terminology

- Independent variable = input variable
- Dependent variable = output variable
- Coefficients = "weights"
- Estimates = "targets"

Iterative step = cycle, epoch

XOR

input	output		A	
00	0	$\longrightarrow f(Ow_1 + Ow_2) = O$		
01	1			$f(a) = \int 1$, for $a > \theta$
10	1			0, for $a \le \theta$
11	0	$f(1w_1 + 1w_2) = 0$	θ	

some possible values for w_1 and w_2

XOR

input	output
00	0
01	1
10	1
11	0

$$f(w_1, w_2, w_3, w_4, w_5)$$

a possible set of values for w_s

$$(w_1, w_2, w_3, w_4, w_5)$$

$$(0.3,0.3,1,1,-2)$$

$$f(a) = \begin{cases} 1, \text{ for } a > \theta \\ 0, \text{ for } a \leq \theta \end{cases}$$

XOR

input	output
00	0
01	1
10	1
11	0

 $\theta = 0.5$ for all units

$$f(w_1, w_2, w_3, w_4, w_5, w_6)$$

a possible set of values for w_s

$$(w_1, w_2, w_3, w_4, w_5, w_6)$$

$$(0.6, -0.6, -0.7, 0.8, 1, 1)$$

$$f(a) = \begin{cases} 1, \text{ for } a > \theta \\ 0, \text{ for } a \le \theta \end{cases}$$

From perceptrons to multilayer perceptrons

Why?

Abdominal Pain

Heart Attack Network

Multilayered Perceptrons

Neural Network Model

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

"Combined logistic models"

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Not really, no target for hidden units...

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Hidden Units and Backpropagation

Multilayer perceptrons

- Sigmoidal hidden layer
- Can represent arbitrary decision regions
- Can be trained similar to perceptrons

ECG Interpretation

Linear Separation

Separate n-dimensional space using one (n - 1)-dimensional space

Another way of thinking about this...

- Have data set $D = \{(x_i, t_i)\}$ drawn from probability distribution P(x, t)
- Model P(x,t) given samples D by ANN with adjustable parameter w
- Statistics analogy:

Maximum Likelihood Estimation

- Maximize likelihood of data D
- Likelihood $L = \prod p(x_i, t_i) = \prod p(t_i|x_i)p(x_i)$
- Minimize $-\log L = -\sum \log p(t_i|x_i) \sum \log p(x_i)$
- Drop second term: does not depend on w
- Two cases: "regression" and classification

Likelihood for classification (ie categorical target)

- For classification, targets t are class labels
- Minimize $-\Sigma \log p(t_i|x_i)$
- $p(t_i|x_i) = y(x_i, w)^{t_i}(1 y(x_i, w))^{1-t_i} \Rightarrow$ -log $p(t_i|x_i) = -t_i \log y(x_i, w) - (1 - t_i)^* \log(1 - y(x_i, w))$
- Minimizing $-\log L$ equivalent to minimizing $-[\sum t_i \log y(x_i, w) + (1 t_i) * \log(1 y(x_i, w))]$ (cross-entropy error)

Likelihood for "regression" (ie continuous target)

- For regression, targets t are real values
- Minimize $-\Sigma \log p(t_i|x_i)$
- $p(t_i|x_i) = 1/Z \exp(-(y(x_i, w) t_i)^2/(2\sigma^2)) \Rightarrow$ -log $p(t_i|x_i) = 1/(2\sigma^2) (y(x_i, w) - t_i)^2 + \log Z$
- $y(x_i, w)$ is network output
- Minimizing –log L equivalent to minimizing $\sum (y(x_i, w) t_i)^2$ (sum-of-squares error)

Backpropagation algorithm

 Minimizing error function by gradient descent:
 w_{k+1} = w_k - η grad_w E

• Iterative gradient calculation by propagating error signals

Backpropagation algorithm

Problem: how to set learning rate η ?

Figures by MIT OCW.

Better: use more advanced minimization algorithms (second-order information)

Backpropagation algorithm

Classification

cross-entropy

sigmoidal neuron

sigmoidal neurons

linear neurons

Regression

sum-of-squares

linear neuron

sigmoidal neurons

linear neurons

Overfitting

Improving generalization

Problem: memorizing (*x*,*t*) combinations ("overtraining")

0.7		0
-0.5	0.9	1
-0.2	-1.2	1
0.3	0.6	1
-0.2	0.5	?

Improving generalization

- Need test set to judge performance
- Goal: represent information in data set, not noise
- How to improve generalization?
 - Limit network topology
 - Early stopping
 - Weight decay

Limit network topology

- Idea: fewer weights ⇒ less flexibility
- Analogy to polynomial interpolation:

Limit network topology

Early Stopping

Early stopping

- Idea: stop training when information (but not noise) is modeled
- Need hold-out set to determine when to stop training

Overfitting

Early stopping

Weight decay

- Idea: control smoothness of network output by controlling size of weights
- Add term $\alpha ||w||^2$ to error function

Weight decay

Bayesian perspective

- Error function minimization corresponds to maximum likelihood (ML) estimate: single best solution w_{MI}
- Can lead to overtraining
- Bayesian approach: consider weight posterior distribution p(w|D).

Bayesian perspective

- Posterior = likelihood * prior
- p(w|D) = p(D|w) p(w)/p(D)
- Two approaches to approximating p(w|D):
 - Sampling
 - Gaussian approximation

Sampling from p(w|D)

prior

likelihood

Sampling from p(w|D)

prior * likelihood = posterior

Bayesian example for regression

Bayesian example for classification

Model Features (with strong personal biases)

	Modeling Effort	Examples Needed	Explanat.
Rule-based Exp. Syst. Classification Trees Neural Nets, SVM Regression Models	high low low high	low high+ high moderate	high? "high" low moderate
Learned Bayesian Nets (beautiful when it works)	low	high+	high

Regression vs. Neural Networks

$$Y = a(X_1) + b(X_2) + c(X_3) + d(X_1X_2) + ...$$

Summary

- ANNs inspired by functionality of brain
- Nonlinear data model
- Trained by minimizing error function
- Goal is to generalize well
- Avoid overtraining
- Distinguish ML and MAP solutions

Some References

Introductory and Historical Textbooks

- Rumelhart, D.E., and McClelland, J.L. (eds) Parallel Distributed
 Processing. MIT Press, Cambridge, 1986. (H)
- Hertz JA; Palmer RG; Krogh, AS. Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, 1991.
- Pao, YH. Adaptive Pattern Recognition and Neural Networks.
 Addison-Wesley, Reading, 1989.
- Bishop CM. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.