

Human-Centered Data & Al

Vinicius Caridá, Ph.D.

Head of Digital Customer Service Platforms, PCP, WFM, Data and AI - Itaú Unibanco

MBA Professor - FIAP

Google Developer Expert – Machine Learning

Co-organizer TFUGSP and AWSUGSP

Zero to Hero Machine Learning na AWS

Parte 3/5

Classificação

Classificação

Agrupamento

Agrupamento

Agrupamento

Hierarchical Clustering, Clearly Explained!!!!

- 1. k centerpoints are randomly initialized.
- 2. Observations are assigned to the closest centerpoint.
- 3. Centerpoints are moved to the center of their members.
- 4. Repeat steps 2 and 3 until no observation changes membership in step 2.

Chris Albon

CLUSTERING

All observations start as their own cluster. Clusters meeting some criteria are merged. This process is repeated, growing clusters until some end point is reached.

ChrisAlbon

DBSGRK

DBSCAN looks for densely packed observations and makes no assumptions about the number or shape of clusters.

- 1. A random observation, x; , is selected
- 2. If x; has a minimum of close neighbors, we consider it part of a cluster.
- 3. Step 2 is repeated recursively for all of x's neighbors, then heighbors' neighbors etc... These are the cluster's core members.
- 4. Once Step 3 runs out of observations, a new random point is chosen

Afterwards, observations not part of a core are assigned to a nearby cluster or marked as outliers.

ChrisAlbon

Hierárquico

Hierarchical Clustering, Clearly Explained!!!!

REGLAMERATIVE CLUSTERING

All observations start as their own cluster. Clusters meeting some criteria are merged. This process is repeated, growing clusters until some end point is reached.

ChrisAlben

Hierarquia: Conceitos Básicos

Hierarquias são comumente usadas para organizar informação

Web Site Directory - Sites organized by subject

Suggest your site

Business & Economy

B2B, Finance, Shopping, Jobs...

Computers & Internet

Internet, WWW, Software, Games...

Regional

Countries, Regions, US States ...

Hierarquia: Conceitos Básicos

Exemplo: árvores filogenéticas em biologia

Métodos Clássicos para Agrupamento Hierárquico

Bottom-Up (aglomerativos):

- Iniciar colocando cada objeto em um cluster
- Encontrar o melhor par de clusters para unir
- Unir o par de *clusters* escolhido
- Repetir até que todos os objetos estejam reunidos em um só cluster

Top-Down (divisivos):

- Iniciar com todos objetos em um único *cluster*
- Sub-dividir o *cluster* em dois novos *clusters*
- Aplicar o algoritmo recursivamente em ambos, até que cada objeto forme um *cluster* por si só

Métodos Clássicos para Agrupamento Hierárquico

Algoritmos hierárquicos podem operar somente sobre uma matriz de distâncias.

Α.			\{\frac{1}{2}}		The second second
	0	8	8	7	7
		0	2	4	4
			0	3	3
				0	1
					0

Como definir Inter-Cluster (Dis)similaridade

Matriz de Distância

	p1	p2	р3	p4	p5	<u>.</u>
p1						
p2						
рЗ						
p4						
p4 p5						

- MIN
- MAX
- Group Average
- •

Como definir Inter-Cluster (Dis)similaridade

Matriz de Distância

	p1	p2	p3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
p4 p5						

- MIN
- MAX
- Group Average
- •

Single Linkage (Florek, 1951)

- Dissimilaridade entre clusters é dada pela <u>menor</u> dissimilaridade entre 2 objetos (um de cada cluster)
 - Originalmente baseado em Grafos: menor aresta entre dois vértices de subconjuntos distintos

Como definir Inter-Cluster (Dis)similaridade

Matriz de Distância

	p1	p2	р3	p4	p5	<u>.</u>
p1						
p2						
p3						
p4						
p5						

- MIN
- MAX
- Group Average
- •

Complete Linkage (Sorensen, 1948)

- Dissimilaridade entre clusters é dada pela <u>maior</u> dissimilaridade entre 2 objetos (um de cada cluster)
 - Originalmente baseado em Grafos: maior aresta entre dois vértices de subconjuntos distintos

Como definir Inter-Cluster (Dis)similaridade

Matriz de Distância

	p1	p2	p3	p4	p5	<u>.</u>
p1						
p2						
p2 p3						
p4 p5						

- MIN
- MAX
- Group Average
- •

Complete Linkage (Sokal R and Michener C, 1958)

- Dissimilaridade entre clusters é dada pela <u>distância média</u> entre cada par de objetos (um de cada cluster)
- Também conhecido como UPGMA Unweighted Pair Group Method using Arithmetic averages

Dendrograma = Hierarquia + Dissimilaridade entre Clusters VINI

A dissimilaridade entre dois clusters (possivelmente **singletons**) é representada como a altura do nó interno mais baixo compartilhado

Dendrograma

Dendrograma -> Grupos

Partições são obtidas via cortes no dendrograma

- cortes horizontais
- no. de grupos da partição = no. de interseções

Dendrograma -> Grupos

Pode-se examinar o dendrograma para tentar estimar o número mais natural de clusters.

Dendrograma -> Outlier

Pode-se examinar de dendrograma para tentar detectar a presença de outliers.

K-means

CLUSTERING

- 1. k centerpoints are randomly initialized.
- 2. Observations are assigned to the closest centerpoint.
- 3. Centerpoints are moved to the center of their members.
- 4. Repeat steps 2 and 3 until no observation changes membership in step 2.

Chris Albon

Aqui veremos um dos algoritmos mais clássicos da área de mineração de dados em geral

- algoritmo das k-médias ou k-means
- listado entre os Top 10 Most Influential Algorithm
- Wu, X. and Kumar, V. (Editors), The Top Ten Algorithms in Data Mining, CRC Press, 2009
- X. Wu et al., "Top 10 Algorithms in Data Mining", Knowledge and Info. Systems, vol. 14, pp. 1-37, 2008

Referência Mais Aceita como Original:

J. B. MacQueen, Some methods of classification and analysis of multivariate observations, In Proceedings 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California, USA, 1967, 281–297

Porém...

"K-means has a rich and diverse history as it was independently discovered in different scientific fields by Steinhaus (1956), Lloyd (proposed in 1957, published in 1982), Ball & Hall (1965) and MacQueen (1967)" [Jain, Data Clustering: 50 Years Beyond K-Means, Patt. Rec. Lett., 2010]

... e tem sido assunto por mais de meio século!

Douglas Steinley, K-Means Clustering: A Half-Century Synthesis, British Journal of Mathematical and Statistical Psychology, Vol. 59, 2006

- 1 data(iris) #Carrega os dados
- 2 groups = kmeans(iris[1:4], center=3, iter.max=10)

Objetiva particionar N observações dentre k grupos em que cada observação pertence ao grupo mais próximo da média. Isso resulta em uma divisão do espaço de dados em um Diagrama de Voronoi.

Calculado por meio da triangulação de Delaunay

 \mathbf{a}_1

 \mathbf{a}_1

 a_1

 \mathbf{a}_1

 \mathbf{a}_1

 \mathbf{a}_1

K-Means - Simulação

 a_1

K-Means - Animação

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means

Resultado pode variar significativamente dependendo da escolha das sementes (protótipos) iniciais

k-means pode "ficar preso" em ótimos locais:

Múltiplas Execuções (inicializações aleatórias):

- Funciona bem em muitos problemas;
- Pode demandar muitas execuções (especialmente com k alto).

Agrupamento Hierárquico:

agrupa-se uma amostra dos dados para tomar os centros da partição com k grupos.

Seleção "informada" em uma amostra dos dados:

- Tomar o 1º protótipo como um objeto aleatório ou como o centro dos dados (grand mean);
- Sucessivamente escolhe-se o próximo protótipo como o objeto mais distante dos protótipos correntes.

Busca Guiada:

• X-means, k-means evolutivo, ...

K-Means

NÃO É SÓ ISSO..

Algoritmo *k*-means funciona bem se:

- Clusters são (hiper)esféricos e bem separados
- Clusters de volumes aproximadamente iguais
- Cluster com quantidades de pontos semelhantes
- Formas Globulares

Estrutura correta

k-means (3 Clusters)

Estrutura correta

K-means (3 Clusters)

(Tan, Steinbach, Kumar)

Estrutura correta

K-means (3 Clusters)

Nota: na prática, esse problema em geral não é crítico, i.e., há pouco interesse na maioria das aplicações de mundo real.

K-Means: Custo Computacional

Complexidade (assintótica) de tempo:

$$O(i \cdot K \cdot N \cdot n)$$

- O que isso significa?

O que dizer sobre a constante de tempo?

→ Computar Distância Euclidiana via aproximações sucessivas (Newton-Raphson) custa caro.

Se também tenho problema de espaço em memória...

- → Solução aproximada (sampling).
- → Paralelizar (mesmo computador) ou distribuir (e.g., map-reduce) o processamento.

Resumo das (des)vantagens do k-means

Vantagens

- Simples e intuitivo
- Complexidade linear em todas as variáveis críticas
- Eficaz em muitos cenários de aplicação
- Resultados de interpretação simples

Desvantagens

- k = ?
- Sensível à inicialização dos protótipos (mínimos locais de J)
- Limita-se a encontrar clusters volumétricos / globulares
- Cada item deve pertencer a um único cluster (partição rígida)
- Limitado a atributos numéricos
- Sensível a outliers

K-Medianas

K-medianas: Substituir as médias pelas medianas

- Média de 1, 3, 5, 7, 9 é 5
- Média de 1, 3, 5, 7, 1009 é 205
- Mediana de 1, 3, 5, 7, 1009 é 5

Vantagem: menos sensível a outliers

Desvantagem: implementação mais complexa cálculo da mediana em cada atributo...

K-Medóides

K-medóides: Substituir cada centróide por um objeto representativo do cluster, denominado **medóide**

 Medóide = objeto mais próximo aos demais objetos do cluster mais próximo em média (empates resolvidos aleatoriamente)

Vantagens:

- menos sensível a outliers
- permite cálculo relacional (apenas matriz de distâncias)
 - logo, pode ser aplicado a bases com atributos categóricos
- convergência assegurada com qualquer medida de (dis)similaridade

Desvantagem: Complexidade quadrática com no. de objetos (N)

DB Scan

DBSERN

DBSCAN looks for densely packed observations and makes no assumptions about the number or shape of clusters.

- 1. A random observation, x; , is selected
- 2. If x; has a minimum of close neighbors, we consider it part of a cluster.
- 3. Step 2 is repeated recursively for all of x's neighbors then heighbors' neighbors etc... These are the cluster's core members.
- 4. Once Step 3 runs out of observations, a new random point is chosen

Afterwards, observations not part of a core are assigned to a nearby cluster or marked as outliers.

ChrisAlbon

Algoritmos Baseados em Densidade

Paradigma de Agrupamento por Densidade

- Clusters como regiões de alta concentração de objetos separadas por regiões de baixa concentração de objetos
- Paradigma alternativo àquele baseado em protótipos: K-means e variantes, EM, etc

Existem vários algoritmos, veremos a seguir um dos mais conhecidos: DBSCAN

DBScan: definições

- A point is a core point if it has at least a specified number of points (MinPts) within the radius Eps (including the point itself)
 - These are points that are in the interior of a cluster
- A border point has fewer than MinPts within Eps, but is in the neighborhood (within the radius) of at least 1 core point
- A noise point is neither a core point nor a border point

DBScan: algoritmo

Algoritmo Conceitual:

- 1. Percorra a BD e rotule os objetos como core, border ou noise
- 2. Elimine aqueles objetos rotulados como noise
- 3. Insira uma aresta entre cada par de objetos core vizinhos
- 2 objetos são vizinhos se um estiver dentro do raio Eps do outro
- 4. Faça cada componente conexo resultante ser um cluster
- 5. Atribua cada **border** ao cluster de um de seus core associados
- Resolva empates se houver objetos core associados de diferentes clusters

DBScan: algoritmo

epsilon = 1.00 minPoints = 4

Restart

Vinicius F. Caridá

DBScan: Exemplo

Point types: core, border and noise

Resumo das (des)vantagens do DBScan

Vantagens

- Não necessita do número de clusters a priori
- Consegue encontrar clusters com formatos arbitrários
- Tem uma definição de ruído e é robusto a outliers
- Necessita de apenas dois parametros:
 - Raio
 - Número de vizinhos para virar core (minpts)

Desvantagens

- Extremamente sensível aos parametros Raio e minPts
- Depende da distância utilizada para determiner se um ponto está ou nao presente dentro do raio. (tipicamente se utiliza euclidiana)
- Não consegue clusterizar dados com grupos com grandes diferenças de densidades
- Se a escala dos dados não for conhecida, desterminar o raio pode ser difícil

Thanks!

Vinicius Fernandes Caridá vfcarida@gmail.com

@vfcarida

@vinicius caridá @vfc

@vfcarida

@vinicius caridá

@vfcarida

@vinicius caridá