Recomendador de Problemas

Para ¡Acepta el reto!

Índice

- 1. Introducción
- 2. Obtención y almacenamiento de datos
- 3. Recomendadores
 - a. Recomendador según la dificultad
 - i. Cálculo de dificultad de problemas
 - ii. Cálculo del rating de los usuarios
 - iii. Recomendaciones
 - b. Recomendador User-Based
- 4. Conclusiones

Jueces en línea

Un juez online es un sistema de validación de problemas que, dada una serie de entradas, compila, ejecuta y compara la solución original con la obtenida mediante el programa que el usuario ha introducido.

¡Acepta el reto!

Obtención de datos I

- La página no cuenta con ninguna API.
- Tampoco cuenta con ninguna herramientas para obtener los datos de forma sencilla.

Lo único que parecemos tener son las estadísticas, que son los últimos envíos al juez:

Últimos envíos recibidos

Envío	Usuario	Problema	Resultado	Lenguaje	Tiempo	Memoria	Pos	Fecha
526595	kerqvs	Constante de Kaprekar (100)	WA	Java	0.71	1738	-	Hace 1 minuto
526594	Lopixenko	Por el hueco de la escalera	AC	Java	0.382	1737	208	Hace 13 minutos
526593	Lopixenko	¡Feliz década nueva? (539)	AC	Java	0.796	1738	153	Hace 13 minutos
526592	Lopixenko	Toesto era campo (538)	AC	Java	0.757	1729	222	Hace 14 minutos
526591	Lopixenko	Reduciendo envases (532)	AC	Java	0.162	1655	381	Hace 15 minutos
526590	JoseRam	Aprendiendo el código Mo	RTE	Java	2	27	20	Hace 15 minutos

Obtención de datos II

Aunque si vamos expandiendo los últimos envíos llegamos al final, con solo 100 de los +500k envíos que tiene la página en este momento:

526499	Diancaceres	Aburrimiento en la autopis	WA	Java	1.627	3075	-	Hace 18 horas
526498	miaumiau	Números polidivisibles (237)	AC	C++	1.011	1696	482	Hace 18 horas
526497	getWrapper	Una, dola, tela, catola (127)	WA	Java	0.141	1723	170	Hace 18 horas
526496	miaumiau	Números polidivisibles (237)	WA	C++	1.011	1696	940	Hace 18 horas
526495	getWrapper	Una, dola, tela, catola (127)	WA	Java	0.151	1723	1970	Hace 18 horas

Obtención de datos III

La solución es la siguiente:

- 1. Realizar un envío a un problema
- 2. En la URL se ve el ID del envío
- 3. Utilizar esa URL para hacer peticiones

Obtención de datos IV

Una vez tenemos a nuestra disposición los datos en una página web, escribimos un web scrapper en Python que obtenga los datos de todos los envíos

- 1. Obtenemos el HTML de la página correspondiente a un envío con request de Python
- 2. Extraemos información del HTML usando Beautifulsoup.
- 3. Dependiendo del veredicto del juez, algunos campos que obtenemos puede que no existan, por lo que debemos limpiar los datos. En este caso, esta tarea la realizamos antes de

insertarlos en base de datos.

4. Una vez obtenidos y limpiados, se insertan en BD.

```
page = "https://aceptaelreto.com/user/submission.php?id=" + str(ind)
response = get(page)
soup = BeautifulSoup(response.content, "html.parser")

#usuario = soup.findAll('div', attrs={'class':'col-md-10'})
scrap = soup.findAll('div', attrs={'class':'col-md-10'})[0]
l = scrap.text.split("\n")
l = [value for value in l if value != ""]
```

```
def insert_datos(datos):
    command = "INSERT INTO ENVIOS VALUES("
    command += datos['envio']
    command += ", \"" + datos['usuario'] + "\""
    command += ", \"" + datos['fecha'] + "\""
    command += ", " + str(datos['problema'])
    command += ", \"" + datos['lenguaje'] + "\""
    command += ", \"" + datos['veredicto'] + "\""
    command += ", " + str(datos['tiempo'])
    command += ", " + str(datos['memoria'])
    command += ", " + str(datos['posicion'])
    command += ", " + com
```

Almacenamiento de los datos I

Se realiza sobre 2 bases de datos con diferentes filosofías:

1. Una base de datos relacional local, en SQLite3: parte de la librería estándar de Python, rápida por accederse directamente desde el disco y es relacional.

2. Una base de datos NoSQL, MongoDB en la nube: en un clúster gratuito de la página MongoDB Atlas. Ocupa 98 MB de los 512 que nos ofrece la página. Usada para aumentar la redundancia,

en caso de pérdida de la local poder reconstruirla en minutos y no horas.

Cluster0 Version 4.4.6	This is a Shared Tier Cluster If you need a database that's better for high-performance production applications, upgrade to a			
CONNECT METRICS COLLECTIONS CLUSTER TIER MO Sandbox (General)	dedicated cluster. Upgrade			
REGION AWS / Frankfurt (eu-central-1) TYPE Replica Set - 3 nodes	Logical Size 98.3 MB	512.0 ME		
LINKED REALM APP None Linked	Last 30 Days	0.0 B		

Almacenamiento de datos II

Diferencia entre insertar elementos de uno en uno a insertar en bloque:

- 524640 envíos de 9 campos cada uno, insertados en paquetes de 1000: 53.6 s
- 899 categorías de 3 campos cada una, insertados de 1 en 1: 34.1 s
- 504 problemas de 5 campos cada uno, insertados a la vez: 67.1 milisegundos
- 13982 ratings, de 2 campos cada uno, insertados a la vez: 851 milisegundos

Y con esto aclarado, aquí los tamaños de cada base de datos en MongoDB

	CATEGORIAS	ENVIOS	PROBLEM_DIFF	USER_RATING
Nº Documentos	898	524640	504	13982
Tamaño colección	49.99KB	85.53 MB	55.13KB	833.44KB
Tamaño índices	36KB	11.4MB	32KB	368KB

Recomendadores construidos

Se han desarrollado 2 recomendadores en base a criterios diferentes:

- En base a la dificultad de los problemas y habilidad del usuarios
- En base a la similitud con otros usuarios, *User-Based*

```
Recommended problems for KPsychO
- 224 (Solved by 4)
- 306 (Solved by 4)
- 247 (Solved by 2)
- 320 (Solved by 2)
- 472 (Solved by 2)

Recommended problems for gremio
- 515 (Solved by 4)
- 517 (Solved by 4)
- 518 (Solved by 4)
- 519 (Solved by 4)
```

Recomendador según la dificultad I

Para poder recomendar problemas en base a cómo de difíciles les resulten a los usuarios debemos tener 2 métricas entre nuestros datos:

- Los problemas deben tener una dificultad asignada.
- El usuario debe tener cuantificada su habilidad, que llamaremos rating.

Cómo ni los problemas están categorizados por dificultad ni los usuarios tienen una habilidad asignada, debemos hacerlo nosotros mismos con no más datos que los envíos a la página.

La dificultad de los problemas depende de los usuarios que lo resuelven y la habilidad de los usuarios depende de los problemas que resuelvan -> Buena paradoja

Asignar dificultad a problemas I

Solución -> Romper la paradoja

Establecemos la dificultad de los problemas en base a una seria de métricas y con esta dificultad, obtenemos los *ratings* de los usuarios.

Las métricas que vamos a utilizar son:

- Número de usuarios únicos que han resuelto el problema.
- Media de envíos hasta el primer aceptado.
- Media de problemas resueltos de los usuarios que lo resuelven.

Asignar dificultad a problemas II

Número de usuarios únicos que han resuelto el problema

```
SELECT PROBLEMA, COUNT(T) as C FROM (
SELECT PROBLEMA, COUNT(*) AS T FROM ENVIOS
WHERE VEREDICTO = 'AC'
GROUP BY NOMBRE, PROBLEMA
)
GROUP BY PROBLEMA
```


Asignar dificultad a problemas III

Media de envíos hasta el primer aceptado

Asignar dificultad a problemas IV

Media de problemas resueltos de los usuarios que lo resuelven

Asignar dificultad a problemas V

Asignar dificultad a problemas VI

Dificultad final de los problemas

POS	PROBLEMA	VALOR	UNIQUE	TRIES	AVG_SOL
1	313	2.54	1236	1.21	32.17
2	217	2.55	1689	1.34	27.67
3	116	2.58	4831	1.76	13.1
502	566	7.38	10	9.21	331.1
503	391	7.49	17	8.7	389.18
504	567	7.65	6	9.33	390.33

Asignar rating a los usuarios I

Una vez hemos asignado dificultad a los problemas, calcular el rating de los usuarios es más fácil.

Cuidado con la forma en la que se calcula:

- Recompensar el resolver problemas difíciles.
- No tener en cuenta los problemas intentados, queremos que los usuarios intenten.
- No permitir la inflación del *rating* resolviendo problemas fáciles.

Con todos estos requisitos, se ha utilizado finalmente un sistema ponderado con la siguiente fórmula:

$$\frac{1}{10} * \sum_{n=0}^{nSolved} PD_n * 0.9^n \longrightarrow \frac{\begin{vmatrix} 3 & 5 & 7 \\ 10 & 1.95 & 3.25 & 4.55 \\ \hline 20 & 2.63 & 4.39 & 6.14 \\ \hline 100 & 2.99 & 4.99 & 6.99 \end{vmatrix}$$

Asignar rating a los usuarios II

Más gráficas para ilustrar el sistema ponderado:

Asignar rating a los usuarios III

Ratings finales de los usuarios:

Usuario	Rating	Resueltos
Aletheia	6.95	504
Davian99	6.95	504
Davvid	6.95	504
tirutu	6.95	504
gremio	6.81	317
CecilioG	6.79	498
cobotejelalana	6.79	499
karel-the-robot	6.77	474
AperezaC	6.71	490
Apereza	6.71	492

Recomendador según la dificultad II

Utilizando la dificultad del problema y el *rating* del usuario, recomienda 4 problemas de diferentes rangos de dificultad.

Las recomendaciones se hacen en base al *expected_score*, o resultado esperado. Esta es una medida que nos proporciona cuál es la probabilidad de que un usuario de *rating ra* resuelva un problema de dificultad *pd*:

$$expected_score = \frac{1}{1 + 10^{\frac{PD - RA}{2}}}$$

Recomendador según la dificultad III

Se recomiendan 4 problemas:

- Trivial: un problema que el usuario tiene un 80% de probabilidades de resolver.
- Fácil: tiene un 60%
- Medio: un 40%
- Difícil: un 20%

No se recomiendan problemas que ya ha resuelto, por lo que puede que se repitan problemas o que directamente no pueda recomendar nada.

```
Recommended problems for Davian99 (6.95)
 - Nothing to recommend
Recommended problems for KPsych0 (5.61)
 - TRIVIAL: 143 (4.40, 0.80)
 - EASY:
            486 (5.25, 0.60)
 - MEDIUM: 414 (5.96, 0.40)
 - HARD:
            118 (6.77, 0.21)
Recommended problems for Ignacio1997corrales (4.75)
 - TRIVIAL: 165 (3.53, 0.80)
            109 (4.39, 0.60)
 - EASY:
 - MEDIUM: 329 (5.10, 0.40)
 - HARD:
            271 (5.95, 0.20)
Recommended problems for gremio (6.81)
 - TRIVIAL: 280 (5.59, 0.80)
 - EASY:
            294 (6.34, 0.63)
 - MEDIUM: 240 (6.74, 0.52)
            530 (7.18, 0.40)
 - HARD:
```

Recomendador según la afinidad I

El segundo recomendador resultó ser mucho más fácil de implementar:

- No necesita asignar dificultades ni ratings
- No necesita normalizar y combinar métricas para recomendar

Simplemente, utiliza los problemas resueltos de un usuario y obtiene los usuarios más parecidos a él de toda la página.

Este tipo de recomendadores son conocidos cómo *User-based*, ya que utilizan la información de los usuarios para recomendar problemas, sin tener en cuenta estos.

Recomendador según la afinidad II

Vamos a utilizar la similitud del coseno para encontrar los usuarios más parecidos al dado.

La similitud del coseno encuentra cómo de parecidos son dos vectores, por lo que tenemos que vectorizar los problemas de cada usuario.

Esto es sencillo, construimos un array de Numpy de dos dimensiones:

```
problems_solved_user_np = np.zeros(shape=(len(lista_usuarios), max(lista_problemas) + 1))
```

Y lo rellenamos en base a si el usuario ha resuelto el problema o no.

Recomendador según la afinidad III

Con las similitudes, obtenemos los usuarios más parecidos a uno dado:

Y para recomendar, simplemente obtenemos los n usuarios más similares y recomendamos los problemas que no tengamos resueltos que más se repiten entre nuestros afines:

Red	omme	ended problems	for	KPsych0
	224	(Solved by 4)		
	306	(Solved by 4)		
	247	(Solved by 2)		
	320	(Solved by 2)		
	472	(Solved by 2)		
Red	omme	ended problems	for	gremio
	515	(Solved by 4)		
	517	(Solved by 4)		
	518	(Solved by 4)		
	519	(Solved by 4)		

Affinity with	Davian99
Aletheia	1.0000
Davvid	1.0000
tirutu	1.0000
cobotejelalana	0.9950
CecilioG	0.9940
Affinity with	KPsych0
	=== ======
dsinapellido	0.7619
nickN.A.S	0.6835
JMaria	0.6529
Affinity with	gremio
Aletheia	0.7931
Davian99	0.7931
Davvid	0.7931

Conclusiones

A estado guay hacer este proyecto. Los recomendadores obtenidos finales funcionan bastante bien y estoy muy contento con los resultados obtenidos en la asignación de dificultad y *rating*.

Recomendador basado en los problemas, o *Content-Based* no terminó de funcionar por que lo único que une a los problemas entre sí son las categorías.

Estas son muy pocas por problema, por lo que la similitud del coseno o métodos parecidos ofrecen una sugerencias muy pobres, por lo que no pasó a formar parte de la entrega.

Problemas sin categorías asignada cómo positivo.