Lezione N+3 Geometria 2

Federico De Sisti 2025-05-20

0.1 dimostrazione ultimo corollario

Corollario 1

$$\pi_1(\mathbb{P}^n_{\mathbb{R}}) \cong \frac{\mathbb{Z}}{2\mathbb{Z}} \ \forall n \geq 2$$

Dimostrazione

Negli esercizi settimanali è dato un rivestimento

$$S^n \to \mathbb{P}^n_{\mathbb{R}}$$
.

 $di \ grado \ 2 \ \ \forall n \geq 1$

Per il teorema di ieri:

$$p^{-1}(x) \leftrightarrow p_*(\pi_1(S^1)) \backslash \pi_1(\mathbb{P}^n_{\mathbb{R}}).$$

dove $x = \mathbb{P}^n_{\mathbb{R}}$ Se $n \geq 2$ allora $\pi_1(S^n)$ è banale, quindi $p_*(\pi(S^n))$ è banale, e $p_*(\pi_1(S^1)) \backslash \pi_1(\mathbb{P}^n_{\mathbb{R}})$ è in biezione con $\pi_1(\mathbb{P}^n_{\mathbb{R}})$ Quindi $\pi_1(\mathbb{P}^n_{\mathbb{R}})$ ha solo due elementi da cui $\cong \frac{\mathbb{Z}}{2\mathbb{Z}}$

1 Geometria differenziale

1.1 Varietà topologiche e differenziali

Definizione 1

Sia X spazio topologico. Esso si dice una varietà topologica di dimensione $n \in \mathbb{Z}_{\geq 0}$ se

- 1. X di Hausdoff
- 2. $\forall x \in X$ esistono un intorno aperto $U \subseteq X$ di x, un aperot $V \subseteq \mathbb{R}^n$ e un omeomorfismo $\varphi: U \to V$ detto carta locale
- 3. $X \grave{e} 2^o$ -numerabile.

Una collezione di triple (U, V, φ) tali che i sottoinsiemi U ricoprono X è detta atlante.

Esempi:

- 1. \mathbb{R}^n è una varietà topologica di dimensione n (basta una carta locale $U=V=\mathbb{R}^n,\ Id_{\mathbb{R}^n}=\varphi$)
- 2. S^n è varietà topologica di dimensione $n,\ {\rm per}$ esempio posso prendere l'atlante

$$U_1 = S^n \setminus \{(0, \dots, 0, 1)\}$$

$$U_2 = S^n \setminus \{(0, \dots, 0, -1)\}.$$

 $V_1 = V_2 = \mathbb{R}^n$

 $U_1 \to V_1$ proiezione stereografica

- 3. $T = \text{toro in } \mathbb{R}^3$ AGGIUNGI IMMAGINE 5 39 (il toro è omeomorfo a $S^1 \times S^1$ e al quoziente di un quadrato)
- 4. Ciambelle con tanti buchi sono varietà di dimensione 2 AGGIUNGI Immagine
- 5. $\mathbb{P}^n_{\mathbb{R}}$ è varietà topologica di dimensione n : carte locali U_i dove

$$U_i = \{ [x_0, \dots, x_n] \mid x_i \neq 0 \}.$$

$$\begin{array}{l} \varphi:U_i\to V_i=\mathbb{R}^n\\ [x_0,\ldots,x_n]\to \left(\frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_n}{x_i}\right)\\ \text{è ben definita, } \underline{\text{continua}} \text{ (verifica per esercizio)}\\ \text{ed è omeomorfismo perchè ha inversa} \end{array}$$

$$V_i \to U_i$$

 $(y_0, \dots, y_n) \to [y_0, \dots, y_{i-1}, 1, y_{i+1}, \dots y_n]$

6. \mathbb{C}^n e $\mathbb{P}^n_{\mathbb{C}}$ sono varietà topologiche di dimensione 2n

Definizione 2

Sia A atlante di una varietà topologica di dimensione n. A si dice C^{∞} se per ogni

$$(U_1, V_1, \varphi_1), (U_2, V_2, \varphi_2) \in A.$$

 $la\ composizione$

$$\varphi_2 \circ \varphi_1^{-1}|_{\varphi_1(U_1 \cap U_2)} : \varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2).$$

 $\grave{e}\ di\ classe\ C^{\infty}\ se\ U_1\cap U_2\neq\emptyset$

Esempi

- 1. Gli atlanti visti prima per $\mathbb{R}^n, S^n, T, \mathbb{P}^n_{\mathbb{R}}, \mathbb{C}^n, \mathbb{P}^n_{\mathbb{C}}$, sono tutti C^{∞}
- 2. Se X ha un atlante fatto da due sole carte locali, allora questo atlante è C^{∞}

Definizione 3

Siano A, B due atlanti C^{∞} di una stessa varietà topologica si dicono compatibili se $A \cup B$ è C^{∞}

Osservazione

Si verifica facilmente che la compatibilità è una relazione d'equivalenza.

Definizione 4

Una varietà differenziale di dimensione n è una varietà topologica di dimensione n con una classe di equivalenza di atlanti C^{∞}

Esempio

$$X = \mathbb{R}$$

$$A = \{(U_1, V_1, \varphi_1)\}\ U_1 = X,\ V_1 = \mathbb{R}\ \varphi_1 = Id_X$$
è atlante C^∞ $B = \{(U_2, V_2, \varphi_2)\}\ U_2 = X\ V_2 = \mathbb{R}$

$$\varphi_2: X = \mathbb{R} \to \mathbb{R}$$

$$x \to x^3$$

omeomorfismo

A e B non sono compatibili, i cambi di coordinate sono

$$\varphi_2 \circ \varphi_1^{-1}: V_1 \to V_2$$

$$x \to x^3$$

$$\varphi_1\circ\varphi_2^{-1}:V_2\to V_1$$

$$x \to \sqrt[3]{x}$$

è continua, biettiva non C^{∞}

1.2 Varietà differenziabili immerse in \mathbb{R}^N

Definizione 5 (Varietà differenziabile immersa in \mathbb{R}^N)

Sia $X \subseteq \mathbb{R}^N$ sottospazio topologico $(N \ge 0)$. X è detta varietà differenziabile immersa in \mathbb{R}^N di dimensione $m \in \mathbb{Z}_{\ge 0}$ se $\forall x \in X$ esistono $U \subseteq X$ intorno aperto di $x, V \subseteq \mathbb{R}^m$ aperto,

$$\psi: V \to U \subset \mathbb{R}^N$$
.

tale che

- 1. ψ è omeomorfismo
- 2. $\psi \ \ e^{-C^{\infty}} \ \ come \ \ applicazione \ V \to \mathbb{R}^N \ \ con \ V \subseteq \mathbb{R}^m \ \ aperto$
- 3. $\forall q \in V \text{ il differenziale di } d\psi_q \text{ è iniettivo } (d\psi_q : \mathbb{R}^m \to \mathbb{R}^n \text{ è l'applicazione lineare di matrice canonica Jacobiana di <math>\psi$ in q)

 $le \ \psi \ si \ dicono \ parametrizzazione$

Gli aperti U si dicono aperti coordinati.

Nota

In letteratura spesso "carte locali" e "parametrizzazioni" sono sinonimi. Invece di "immerse" si dice spesso "immerse regolarmente", e in inglese questo "immerse" corrisponde a "embedded" **Esempi:**

1. S^1 è varietà differenziabile immersa in \mathbb{R}^2

$$\psi_1:]0, 2\pi[\to U_1 = S^1 \setminus \{(1,0)\}$$

$$t \to (\cos(t), \sin(t))$$

$$\psi_2:]-\pi, \pi[\to U_1 = S^1 \setminus \{(-1,0)\}$$

$$t \to (\cos(t), \sin(t))$$

Si verifica facilmente che ψ_1, ψ_2 sono continue, biettive, con inversa continua.

La matrice Jacobiana di ψ_1 è

$$(J\psi_1) = \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix}.$$

matrice di un'applicazione lineare

$$\mathbb{R} \to \mathbb{R}^2$$

ha rango 1 $\forall t$ quindi $(d\psi_1)_t$ è iniettiva $\forall t$. Quindi la definizione è soddisfatta.

2. Sia $V\subseteq\mathbb{R}^m$ aperto. Sia $f:V\to\mathbb{R}$ C^∞ il grafico di f in \mathbb{R}^{m+1} è una varietà grafico immersa in \mathbb{R}^{m+1} di dimensione

Infatti $\Gamma = \{(x_1, \dots, x_m, f(x_1, \dots, x_n)) \mid (x_1, \dots, x_n) \in V\}$ mettiamo la singola parametrizzazione

$$\psi: V \to U = \Gamma$$
$$(x_1, \dots, x_m) \to (x_1, \dots, x_m, f(x_1, \dots, x_m))^{\cdot}$$

 ψ è biettiva, continua, ψ^{-1} è la restrizione a Γ alle prime m coordinate, quindi ψ^{-1} è continua

 ψ è C^{∞} perché lo sono le sue componenti.

La matrice Jacobiana è IMMAGINE

ha rango m quindi il differenziale è iniettiva.

Esercizio

Trovare parametrizzazione che rendano S^n una varietà differenzaibile immersa in \mathbb{R}^{n+1} (Suggerisco di usare parametrizzazione come quella del grafico) **Esempio:**

Nella definizione non è sufficiente richiedere ψ cibtubya biettiva, C^{∞} , un differenziabile iniettivo in ogni punto. Cioè da queste ipotesi non segue ψ^{-1} continua