Universidade Federal de Pelotas Cursos de Ciência e Engenharia de Computação Disciplina: Cálculo Numérico Computacional

Prof^{a.} Larissa A. de Freitas Implementação

Método da Tangente (Newton-Raphson) e Método da Secante

1) Tangente; $f(x) = cos(x) + 2sen(x) + x^2$; x0 = 0; precisão = 0.001

i	х	f(x)	xi- xi-1
1	-0.5	0.16873	0.5
2	-0.6367	0.02039	0.13667
3	-0.6586	0.00058	0.02194
4	-0.6593	0.00000	0.00066

2) Tangente; $f(x) = e^x \cos(x)$; x0 = 1.3; precisão = 0.00001

i	x	f(x)	xi- xi-1
1	1.6876	-0.65470	0.38765
2	1.5828	-0.06076	0.10481
3	1.5709	-0.00073	0.01190
4	1.5708	-0.00000	0.00015
5	1.5708	-0.00000	0.00000

3) Tangente; $f(x) = x^2 - 2$; x0 = 1; precisão = 0.001

i	х	f(x)	xi- xi-1
1	1.5	0.25	0.5
2	1.4167	0.00694	0.08333
3	1.4142	0.00001	0.00245
4	1.4142	0.00000	0.00000

4) Secante; $f(x) = cos(x) + 2sen(x) + x^2$; x0=-1 e x1=0; precisão = 0.001

х	f(x)	xi- xi-1
-0.8752	-0.12851	0.87517
-0.7755	-0.08468	0.09966
-0.5830	0.07365	0.19251
-0.6725	-0.01140	0.08955
-0.6605	-0.00111	0.01200
-0.6592	0.00002	0.00130
-0.6593	-0.00000	0.00002
-0.8752	-0.12851	0.87517

5) Secante; $f(x) = e^x \cos(x)$; x0=1.2 e x1=1.3; precisão = 0.00001

х	f(x)	xi- xi-1
1.7430	-0.97921	0.44303
1.5218	0.22447	0.22127
1.5630	0.03709	0.04126
1.5712	-0.00191	0.00817
1.5708	0.00001	0.00040
1.5708	0.00000	0.00000

6) Secante; $f(x) = x^2 - 2$; x0=0 e x1=1; precisão = 0.001

х	f(x)	xi- xi-1
2	2	1
1.3333	-0.22222	0.66667
1.4000	-0.04000	0.06667
1.4146	0.00119	0.01463
1.4142	-0.00001	0.00042