0.0.1 Primo esercizio

$$L = 0.5 \, m$$
 $M = 10 \, Kg$ $J = 0.2 \, kg \, m^2$ $J_D = 0.5 \, kg \, m^2$ $F = 100 \, N$ $\omega = 1 \, rad/s$ $\dot{\omega} = 3 \, rad/s^2$

Il sistema rappresentato in figura è posto nel piano verticale. L'asta omogenea \mathbf{AB} , avente massa \mathbf{M} , momento d'inerzia J e lunghezza L, è incernierata a terra in \mathbf{A} , mentre in \mathbf{B} è incernierata ad un'altra asta \mathbf{BC} , avente lunghezza L e massa trascurabile.

L'asta **BC** è incernierata nel punto C ad un disco (avente momento d'inerzia J_D e raggio $R = \frac{L}{2}$), a sua volta incernierato a terra nel proprio baricentro **O**. Come indicato in figura, sull'asta **AB** agisce una coppia C_m , mentre sul punto medio dell'asta **BC** agisce una forza F nota e diretta come in figura.

Nota la geometria del sistema e assegnate la velocità e accelerazione angolare dell'asta **AB**, si chiede di calcolare:

- 1. La velocità e accelerazione angolare del disco.
- 2. La coppia C_m necessaria per garantire la condizione di moto assegnata.

0.0.2 Risoluzione primo esercizio (non verificata)

Primo punto

Equazione di chiusura Identifico come equazione di chiusura il quadrilatero $(A_B) + (B - C) = (A - 0) + (O - C)$ ed assegno le seguenti variabili:

$$a = BA = 0.5 \, m$$
 $b = BC = 0.5 \, m$ $c = CO = 0.25 \, m$ $d = AO = 0.5 \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{4} \, m$

Inoltre, definisco α l'angolo che descrive l'orientamento di AB, β di BC e γ di OC. I valori iniziali che questi angoli assumono sono i seguenti:

$$\alpha = \frac{\pi}{2} rad$$
 $\beta = -\frac{\pi}{6} rad$ $\gamma = \frac{\pi}{2} rad$

Spostamento

$$ae^{i\alpha} + be^{i\beta} = d + ce^{i\gamma}$$

Velocità

$$a\dot{\alpha}e^{\left(\frac{\pi}{2}+\alpha\right)}+b\dot{\beta}e^{\left(\frac{\pi}{2}+\beta\right)}=c\dot{\gamma}e^{\left(\frac{\pi}{2}+\gamma\right)}$$

Separo in componenti cartesiane:

$$\begin{cases} a\dot{\alpha}\cos\alpha + b\dot{\beta}\cos\beta = c\dot{\gamma}\cos\gamma \\ -a\dot{\alpha}\sin\alpha - b\dot{\beta}\sin\beta = -c\dot{\gamma}\sin\gamma \end{cases}$$

È possibile semplificare il sistema notando che, nell'istante considerato, $\alpha = \gamma = \frac{\pi}{2}$:

$$\begin{cases} b\dot{\beta}\cos\beta = 0\\ -a\dot{\alpha} - b\dot{\beta}\sin\beta = -c\dot{\gamma} \end{cases}$$

Nella prima relazione, $b \neq 0$ e $\cos \beta = \frac{\sqrt{2}}{2} \neq 0$, per cui $\dot{\beta} = 0 \, rad/s$.

$$\begin{cases} \dot{\beta} = 0 \, rad/s \\ \dot{\gamma} = \frac{a}{c} \dot{\alpha} = 2 \, rad/s \end{cases}$$

Accelerazione

$$a\ddot{\alpha}e^{\left(\frac{\pi}{2}+\alpha\right)}-a\dot{\alpha}^{2}e^{i\alpha}+b\ddot{\beta}e^{\left(\frac{\pi}{2}+\beta\right)}-b\dot{\beta}^{2}e^{i\beta}=c\ddot{\gamma}e^{\left(\frac{\pi}{2}+\gamma\right)}-c\dot{\gamma}^{2}e^{i\gamma}$$

Sostituisco $\dot{\beta} = 0$ per semplificare l'espressione:

$$a\ddot{\alpha}e^{\left(\frac{\pi}{2}+\alpha\right)} - a\dot{\alpha}^{2}e^{i\alpha} + b\ddot{\beta}e^{\left(\frac{\pi}{2}+\beta\right)} = c\ddot{\gamma}e^{\left(\frac{\pi}{2}+\gamma\right)} - c\dot{\gamma}^{2}e^{i\gamma}$$

Separo in componenti cartesiane:

$$\begin{cases} a\ddot{\alpha}\cos\alpha - a\dot{\alpha}^2\sin\alpha + b\ddot{\beta}\cos\beta = c\ddot{\gamma}\cos\gamma - c\dot{\gamma}^2\sin\gamma \\ -a\ddot{\alpha}\sin\alpha - a\dot{\alpha}^2\cos\alpha - b\ddot{\beta}\sin\beta = -c\ddot{\gamma}\sin\gamma - c\dot{\gamma}^2\cos\gamma \end{cases}$$

È possibile nuovamente semplificare il sistema notando che, nell'istante considerato, $\alpha = \gamma = \frac{\pi}{2}$.

$$\begin{cases} -a\dot{\alpha}^2 + b\ddot{\beta}\cos\beta = -c\dot{\gamma}^2 \\ -a\ddot{\alpha} - b\ddot{\beta}\sin\beta = -c\ddot{\gamma} \end{cases} \implies \begin{cases} \ddot{\beta} = \frac{a\dot{\alpha}^2 - c\dot{\gamma}^2}{b\cos\beta} = -1.33 \, rad/s^2 \\ -a\ddot{\alpha} - (a\dot{\alpha}^2 - c\dot{\gamma}^2)\tan\beta = -c\ddot{\gamma} \end{cases}$$

$$\begin{cases} \ddot{\beta} = \frac{a\dot{\alpha}^2 - c\dot{\gamma}^2}{b\cos\beta} = -1.33 \, rad/s^2 \\ \ddot{\gamma} = \frac{a\ddot{\alpha} + (a\dot{\alpha}^2 - c\dot{\gamma}^2)\tan\beta}{c} = 7.15 \, rad/s^2 \end{cases}$$

Secondo punto

Uso il bilancio delle potenze per calcolare la coppia.

Energia cinetica

$$E_c = \frac{1}{2}J\omega^2 + \frac{1}{2}J_D\dot{\gamma}^2 + \frac{1}{2}Mv_g^2$$

Sostituisco con i legame $v_g = \omega \frac{L}{2}$.

$$E_c = \frac{1}{2}J\omega^2 + \frac{1}{2}J_D\dot{\gamma}^2 + \frac{1}{2}M(\omega\frac{L}{2})^2$$

Derivo l'espressione ed ottengo:

$$\frac{E_c}{dt} = J\omega\dot{\omega} + J_D\dot{\gamma}\ddot{\gamma} + M\omega\dot{\omega}(\frac{L}{2})^2$$

Potenza totale

$$\sum W_i = \vec{F}_g \bullet \vec{v}_{g_{AB}} + \vec{F} \bullet \vec{v}_{g_{BC}} + \vec{C}_m \bullet \dot{\omega}$$

- 1. La forza di gravità F_g forma un angolo di $\frac{\pi}{2}$ con la velocità $v_{g_{AB}}$, per cui non contribuisce alla potenza totale.
- 2. La forza F forma un angolo di $\frac{\pi}{3}$ con la forza $v_{g_{BC}}$, che siccome $\dot{\beta}=0$ la velocità del baricentro coincide con quella degli estremi.

$$\sum W_i = F v_{g_{BC}} \cos \left(\frac{\pi}{3}\right) = \frac{1}{2} F \omega \frac{L}{2} = \frac{1}{4} F \omega L + C_m \omega$$

Bilancio di potenze

$$\frac{1}{4}F\omega L + C_m\omega = J\omega\dot{\omega} + J_D\dot{\gamma}\ddot{\gamma} + M\omega\dot{\omega}(\frac{L}{2})^2$$

$$C_m = J\dot{\omega} + \frac{J_D\dot{\gamma}\ddot{\gamma}}{\omega} + M\dot{\omega}(\frac{L}{2})^2 - \frac{1}{4}FL = -2.875 Nm$$