Serie 8

Philipp Stassen, Felix Jäger, Lisa Krebber

13. Juni 2018

Aufgabe 2

Sei S eine Sprache und Φ eine konsistente Menge von universellen S-Sätzen, in denen das symbol \equiv nicht auftaucht.

Behauptung: Es gibt ein Model \mathfrak{M} von Φ mit $\mathfrak{M}(t_1) \neq \mathfrak{M}(t_2)$ für alle paarweise verschiedenen Terme t_0 und t_1 .

Beweis. Wir konstruieren ein Termmodell \mathfrak{T}^{Φ} nach dem Vorbild der Vorlesung (Definition 52). Die Relation \sim sei trivial und identifiziere bloß syntaktisch identische Terme. Damit ist T^S die Grundmenge von \mathfrak{T}^{Φ} . Damit folgt die gewünschte Eigenschaft, dass $\mathfrak{T}^{\Phi}(t_0) \neq \mathfrak{T}^{\Phi}(t_1)$ für paarweise verschiedene Terme t_0 und t_1 direkt aus der Definition von \mathfrak{T}^{Φ} .

- (1) Es bleibt zu zeigen, dass $\mathfrak{T}^{\Phi} \models \Phi$. Wir wissen, dass \mathfrak{T}^{Φ} alle atomaren Formeln aus Φ erfüllt (Theorem 54). Um die Aussage $\mathfrak{T}^{\Phi} \models \Phi$ zu zeigen, müssen wir ähnlich wie bei der Konstruktion von Henkin Mengen vorgehen. Da Φ nach Annahme konsistent ist, und die Ableitungs Vollständigkeit nach Theorem 61 ohne Komplikationen auch für diesen Fall folgt, genügt es zu zeigen, dass Φ "Zeugen" enthält. Wir schwächen die Aussage etwas ab, und verlangen keine Zeugen. Im Gegenzug müssen wir die Sprache nicht erweitern, da Φ diese schwächere Annahme bereits erfüllt.
- (2) Behauptung: Für $\varphi = \forall x\psi \in \Phi$ gibt es Terme $t_0,...,t_{n-1}$ sodass $\Phi \vdash$ $\neg \varphi \to \neg (\bigwedge_{0 \leq i < n} \psi \frac{t_i}{x}).$ Beweis. Die Behauptung folgt aus Herbrands Theorem und dem Vollstän-

digkeitssatz. qed(2)

(3) Nun müssen wir um (1) zu erhalten noch zeigen, dass Lemma 56 c) und

Theorem 57 in leicht abgewandelter Form trotzdem gelten. Lemma 56 c) Für alle $t_0,...,t_{n-1}\in T^S$ gilt $\Phi\vdash \bigwedge_{0\leq i< n}\psi\frac{t_i}{x}$ gdw $\Phi\vdash \forall x\,\psi$. Der Beweis wiederholt die Argumentation des originalen Lemmas.

Beweis Theorem 57 Lediglich Part iv) des Beweises, also der Induktionsschrit zum Allquantor, muss modifiziert werden.