Constrained NLP: Project description

Salil Sharma
IE 538 Nonlinear Optimization Algorithms and Models
Spring 2017
Purdue University

Contents

1	Introduction	2
2	Sequential Quadratic Programing	2
2.1	Analysis of algorithm	2
3	MATLAB code	3
4	Execution of MATLAB code	3
5	Results	3
5.1	r=2	3
5.2	r=3	4
5.3	r=4	4
5.4	r=5	4
5.5	r=6	5
5.6	r=k	5
6	Discussion	6
7	Reference	6

1 Introduction

To solve the constrained nonlinear optimization problem with equality constraints, Sequential Quadratic Programing (SQP) is implemented in the MATLAB.

2 Sequential Quadratic Programing

```
Algorithm (Local SQP Algorithm)

1: Choose an initial pair (x^0);

2: set k \leftarrow 0 and \lambda^0;

3: repeat until a convergence test is satisfied

4: Evaluate f_k, \nabla f_k, \nabla^2_{xx} \mathcal{L}, c_k and A_k;

5: Solve for p^k and \lambda^k;

6: Set x^{k+1} \leftarrow x^k + p^k and \lambda^{k+1} \leftarrow \lambda^k

7: end (repeat)
```

2.1 Analysis of algorithm

Line 1: We choose initial guess of the solution in the form of x^0 .

Line 2: Start with k = 0 iteration.

Line 3: Iterate the loop body until a convergence is reached. If $\nabla \mathcal{L}$ is within our specified tolerance, we terminate the loop an state that we have reached a critical point.

Line 4: To compute $\nabla^2_{xx}\mathcal{L}$, the Lagrange is separated in to two parts: objective function and constraint functions. Then both parts are added up.

Line 5: p^k and λ^k are solved using Gaussian Elimination. The equation is as follows:

$$\begin{bmatrix} \nabla_{xx}^2 \mathcal{L} & -A_k^T \\ A_k & 0 \end{bmatrix} \quad \begin{bmatrix} p^k \\ \lambda^{k+1} \end{bmatrix} = \begin{bmatrix} -\nabla f_k \\ -c_k \end{bmatrix}$$

Line 6: Update the iterates.

Line 7: Repeat until the loop satisfies the termination criterion.

3 MATLAB code

This section describes all the m-files which were developed to implement SQP algorithm. The zip file contains following files.

1. cnlp.m

It solves non-linear optimization with equality constraints using Sequential Quadratic Programing. It requires three inputs: initial guess (column vector), objective function, and the equality constraints separated by ';' in nx1 matrix. It outputs the both the optimal solution and the function value at the optimal point

2. solveHessian.m

It produces the Hessian matrix for a function. It requires the input vector as well as the function for which Hessian to be computed.

3. LagHessian.m

It produces a structure array of Hessian matrices computed from the equality constraints.

4. gradientfd.m

It produces the gradient of a function using forward difference method.

5. LagGrad.m

Since equality constraints forms a column vector during the constraint input, this function evaluates the gradient vector separately for all the constraints and arranges them in a column of the matrix.

6. GE1.m

It solves the system of equation of the form Ax = b using Gaussian Elimination with back substitution.

4 Execution of MATLAB code

The MATLAB code is called from the command line by calling:

```
>> [optsol, optofv] = cnlp(x0, @(x) objfn(x), @(x) consfn(x))
```

5 Results

```
Choose n = 3. x^0 = [0.2; 0.2; 0.1] (Initial guess)
```

5.1 r=2

The following function is called at the terminal:

```
>> [optsol,optofv] = cnlp([0.2;0.2;0.1], @(x) -x(1)^2 + x(2)^2 - x(3)^2, @(x)[([x(1),x(2),x(3)]...]) + (x(2),x(3)) + (x(2),x(3
*[x(1);x(2);x(3)])-4;([x(1)-1,x(2),x(3)]*[1,0,0;0,2,0;0,0,1]*[x(1)-1;x(2);x(3)])-4])
optsol =
                     0.5000
                 -0.0000
                     1.9365
optofv =
                 -4.0000
Elapsed time is 0.006066 seconds.
5.2 r=3
optsol =
                     0.5000
                 -0.0001
                      1.9365
optofv =
                 -7.3868
Elapsed time is 0.015943 seconds.
5.3 r=4
optsol =
                     0.5000
                -0.0001
                     1.9365
optofv =
           -14.1250
Elapsed time is 0.011325 seconds.
5.4 r=5
optsol =
```

1.4495

-1.3780

-0.0001

optofv =

-11.3678

Elapsed time is 0.012842 seconds.

5.5 r=6

optsol =

1.4495

-1.3780

-0.0001

optofv =

-2.4266

Elapsed time is 0.282015 seconds.

5.6 r=k

5.6.1 n=3

optsol =

0.5000

-0.0000

1.9365

optofv =

-7.7618

Elapsed time is 0.035374 seconds.

$5.6.2 \quad n=4$

 $x^0 = [0.2; 0.2; 0.1; 0.1]$ (Initial guess)

optsol =

0.5000

-0.0001

1.9365

```
-0.0001 optofv =
```

-7.7618

Elapsed time is 0.020302 seconds.

5.6.3 n=5

```
x^0 = [0.2; 0.2; 0.1; 0.1; 0.1] (Initial guess)
```

optsol =

- 1.3165
- -0.0001
- -0.7961
- 1.2779
- -0.0000

optofv =

1.8548

Elapsed time is 0.028902 seconds.

6 Discussion

The algorithm works up to r = 5. For the cases, r = k, the algorithm works up to n=4.

7 Reference

Mikosch, Thomas V., Wright Stephen J, Nocedal Jorge, and Springerlink (Online Service). *Numerical Optimization*. N.p.: New York, NY: Springer New York, 2006. Print.