Covariant Field Theory: For Brutes

Gabriel Casabona

Northwestern University

Electromagnetism PHY 414

Thesis Adviser: Shane Larson, Ph.D.

February 11, 2021

Motivation

- Our goal is to develop a covariant formalism for electromagnetism, i.e.
 write the laws we know of in an invariant form
- Should allow us to better understand the dynamics of a charged particle in an EM field
- This can be done in an "elegant" way, but we will do it the "brute force" way

Method

- 3D Hydro Models
- Uniform Grid
- Driving force for turbulence on box scale

grid_transp.png

Figure: 100 km box

Detonation of Pure He Run With C Seed Nuclei

 $[loop autostart] out_{\mathfrak{s}} \textit{low}.\textit{mkvout.png} \, \textit{height} = 0.7$

Detonation of 512³ run with $\rho=10^6\frac{g}{cm^3}$ and He fraction = 1.0.

 ${\tt combined_512_10e6_1.0_new.png}$

Local Abundances of He and C

He4_v_C12.png

Conclusion

Table: A table of runs with the different resolutions, densities, helium abundances, and mean temperature at the time of detonation initiation, $T_{\rm det}$ (K).

Resolution	Density (g cm $^{-3}$)	Helium Abundance	$T_{ m det}$ (K)
512 ³	10 ⁵	0.1	8.28×10^{8}
512 ³	10^{5}	0.25	8.75×10^{8}
512 ³	10^{5}	1.0	None
512 ³	10^{6}	0.1	7.80×10^{8}
512 ³	10^{6}	0.25	6.30×10^{8}
512 ³	10^{6}	1.0	1.06×10^{9}