Find	the	interva	of	Conve	rgeno	re for	th	e Sev	ies		
Σ N=0 (3x) ⁿ										
_R	atic	Test									
	im N-900	Oluri an									
	= \im N =00	(3X) 1.	1+9								
	Lua	1(3x)(ut9)									
_	= N-cc	(3x)(ut9)									
	= (3)	() lim v N→eo i	1+10								
	= 3x										
	Con	vergent	when	[3x	(< (
		•									
13	x <										
lx	143										
·	1 - 3										
-	上 </td <td>$\chi \leq \frac{1}{3}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$\chi \leq \frac{1}{3}$									
\mathcal{L}	herk	$\chi = \frac{1}{3}$									
	Co	N									
	S C	+9									
	V (• V										

CO					
$=\sum_{n\geq 0}\frac{1}{n+q}$					
P Series					
Diverges					
Check X=-3					
CO (-3)M					
N=0					
(-1) ^M					
Check $X = -\frac{1}{3}$ $\sum_{n=0}^{\infty} \frac{(-\frac{1}{3})^n}{n+q}$ $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+q}$					
Alternative Series Test					
lim N-900 Oln					
N-900 AN					
$=\lim_{N\to\infty}\frac{(-1)^{N}}{N+q}$					
=0					
Converges					
Interval et Convergence					
- 13 4 X < 1/3					

Ratio Test			
$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right $			
$=\lim_{N\to\infty}\left \frac{(3x)^{n+1}}{N+1}\cdot\frac{N}{(3x)^n}\right $			
n-a n+1 Cxx			
$=\lim_{N\to\infty}\left \frac{(3x)N}{N+1}\right $			
1. I:m M			
$= (3x) _{n \to \infty} \frac{n}{n+1}$			
= 3x			
Convergent when 13x1<1			
[3x[<]			
$ \chi < \frac{1}{3}$			
- 1 3? X? 1 3			
- 1 3? X? 1 3			
- 1 3? X? 1 3			
- 1 3? X? 1 3			
- 1 3? X? 1 3			
- 1 3? X? 1 3			

Diverges				
Check X=-3				
$Check X = -\frac{1}{3}$ $\sum_{N=0}^{\infty} \frac{(-3\frac{1}{3})^{N}}{N}$				
00 (-1)n				
$=\sum_{N=0}^{\infty}\frac{(-1)^{N}}{N}$				
Alternating Series				
THIEV NOTHING JEYTES				
lim n=co Oln				
lim c >h 1				
$=\lim_{n\to\infty} \left(-1\right)^n \frac{1}{n}$				
= ± 0				
= 0				
Converges				
Interval of Convergence				
-13 4 X 6 13				
$\left[-\frac{1}{3},\frac{1}{3}\right)$				

Determine the interval ex convergence	
$ \frac{\sqrt{2}}{\sqrt{N+4}} = \sum_{n=0}^{\infty} \frac{(q_x)^{n+1}}{\sqrt{N+q}} $	
N=S (D N+1)	
$= \sum_{n=0}^{\infty} \frac{(q_x)^{n+1}}{\sqrt{n+q}}$	
Rottic Test	
lim and and	
$=\lim_{N\to\infty}\left \frac{(q_X)^{N+1+1}}{(N+q_{fl})} \circ \frac{\sqrt{N+q_{fl}}}{(q_X)^{N+1}}\right $	
$=\lim_{N\to\infty}\left \frac{(q_{X})(q_{X})^{N+1}}{(n+10)}\cdot\frac{(q_{X})^{N+1}}{(q_{X})^{n+1}}\right $	
$= (qx) _{h=a0}^{lim} \frac{ln+q}{\sqrt{n+l0}} $	
$= q_X $	
Converges when 19x1<1	
[9x1<]	
$ \chi < \frac{1}{q}$	
-\frac{1}{9} \times \frac{1}{9}	
Check x= \frac{1}{9}	
Unec K X - q	

So (q	· 				
N=0 V	+ 0				
= \(\sum_{h=0}^{\infty} \)	1+9				
и=0					
-(40.	+ Comparison	Tont			
LIVIT	Companisa	1 1 (5)			
	1 = \(\frac{1}{10+9} \)				
	$n = \sqrt{n}$				
•					
Li	m / 1				
	h-oo Mra				
	h-00 [N+0				
=					
	Solh series co	MV + Von P CN	división e		
		VIVE OF	arverge		
N=C IN					
W=C					
0.0					
P Se	ries				
Dive	VOLES				
	V = - d				
UNECK	X- 9				
∞ (-	9.1)n+1				
Check So C-	140				

$$\begin{array}{lll}
& = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n+n}} \\
& = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n+n}} \\
& = \frac{1}{\sqrt{n+n}} (-1)^{n+1} \frac{1}{\sqrt{n+n}} \\
& = \sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(x+2)^{n+1}} \\
& = \sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(x+2)^{n+1}} \\
& = \sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(x+1)^{n+2} \cdot 2^{n+1}} \\
& = \sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(x+1)^{n+2}} \\$$

im anx	
lim Anti An Anti An Anti An Anti An Anti Anti	
$=\lim_{N\to\infty} \left \frac{(X-2)^{N+1+1}}{(N+1)^2 3^{N+1+1}} - \frac{(N+1)^2 3^{N+1}}{(X-2)^{N+1}} \right $	
$=\lim_{N\to\infty}\left \frac{(X-2)}{(N+2)^23} \cdot \frac{(N+1)^2}{N}\right $	
$= \left \frac{(\chi - 2) \prod_{i \neq 0} \frac{N^2 + 2n + 1}{N^2 + 4n + 4}}{N^2 + 4n + 4} \right $	
$=\left\lfloor \frac{X-2}{3} \right\rfloor$	
Converges when 1x-21<1	
18-21	
$-\left \frac{X-2}{3} \right $	
-3 ½ X-2 ½ 3	
-1 = x = S	
Check X=-1	
Converges	
Chak X=S	
Converges	

	I	·ha.	evv	al	c Y	٤ (,cni	vevg	ence	2										
_	_	۱٤	X	۷	5															
		•	/																	
		-1,	5	7																
	erfe	ev W	1111	e	the	il	nte1	val	ef	c	NVe'	gev	1C C	fcv	th	e s	evie	S		
) N=1	N!	L 3	χ-	1),	1															
	R	ati	0	16	287															
		la	m	<u> a</u>	14+1 11n	1														
_		اء	(M	1	(url)	! (3)	(-1) ¹⁴	†1 • –	1! (3)		- 1									
_		V	1-00	7 1		ι		<i>V</i>	1! (3)	(-1)"										
		Z	liM M-₹00	<u> </u>	Y! (ut	1)(3x	<u>-1)</u> .	1	-1											
			M -oo																	
		= l	iM 1 -9 a		(n	 	13x	-1)												
								ľ												
		-	[[3	λY.	(1-	· CC														
		=	CC)																
			4 1			N														
		<i> </i>	t[u	101	(S	Di	vev	508												
_)	1		Ţ															
_	L	hea	` K	X	= 3	ı														


```
[< x < 3
 Determine the interval ex convergence for the series
\sum_{n=1}^{\infty} \frac{(\cos(n\frac{\pi}{2})(\chi-\xi)^n}{(\cos(n\frac{\pi}{2})(\chi-\xi)^n)}
       = \frac{\cos(\frac{\pi}{2})(x-5)}{1} + \frac{\cos(\pi)(x-5)^2}{2} + \frac{\cos(\frac{2\pi}{2})(x-5)^3}{3} + \frac{\cos(2\pi)(x-5)^4}{4}
       = \frac{0}{1} + \frac{-1(x-5)^2}{2} + \frac{0}{2} + \frac{1(x-5)^4}{4}
        Eliminate cas by creating a new series
      \sum_{n=1}^{\infty} (-1)^n \frac{(x-s)^{2n}}{2n}
        Ratio Test
                im anti
              =\lim_{N\to\infty} \left| \frac{(X-S)^{2(N+1)}}{2(N+1)} \cdot \frac{2N}{(X-S)^{2n}} \right|
              =\lim_{N\to\infty} \left| \frac{(x-5)^{2n+2}}{2n+2} \cdot \frac{2n}{(x-5)^{2n}} \right|
               = \lim_{N \to \infty} \frac{(X-5)^2 (X-5)^{2N}}{2N+2} = \frac{2N}{(-5)^{2N}}
              = (x-5)^{2} \lim_{n \to \infty} \frac{2n}{2n+2}
              = |(\chi - 5)^2|
```

Converges when	CX-S	5)2								
-1 = (x-s)2 = 1										
	-									
Split into its sepero	1-le	jhi	Leuvo	als						
	•									
-1 = (x-5)2: Always T	Vue.		C	X-5)	25					
			X	-5	İ					
			_			,				
				3	χ-ς	?	1			
			1	2 7		ı				
			T	? /	1 5	b				
Merge intervals										
4 5 x 5 6										
7 7 7 0										
Check X=4										
$\sum_{n=1}^{\infty} (-1)^n \frac{(-1)^{2n}}{2n}$										
$= \sum_{N=1}^{CO} \frac{(-1)^2 n}{2N}$										
Alternating Series	Tes	+								
lim n=co an										

$=\lim_{N\to 00}\frac{(-1)^{3N}}{2N}$
N-00 2N
=0
Converges
Check x=6
$\sum_{N=1}^{CO} (-1)^N \frac{(1)^{2N}}{2N}$ $= \sum_{N=1}^{CO} (-1)^N \frac{1}{2N}$ $= \sum_{N=1}^{CO} (-1)^N \frac{1}{2N}$
N=1
$=\sum_{N=1}^{\infty}\left(-1\right)^{N}\frac{1}{2N}$
Alternating Series Test
$\lim_{n\to\infty} (-1)^n \frac{1}{2n}$
= 0
Cenverges
Interval of Convergence
4 \(\times \)
[4,6]