ISS – Numerické cvičení / Numerical exercise 2.

Honza Černocký, FIT VUT Brno, September 15, 2017

Signály / Signals

1. Nakreslete (jako jednotlivé vzorky) nebo jako tabulku diskrétní signál. Draw (as individual samples) or as a table the following signal:

 $x_1[n] = \begin{cases} 1 & \text{for } n \in <0, 3> \\ 0 & \text{elsewhere} \end{cases}$

2. Dtto pro / dtto for:

$$x_2[n] = 1 + n$$

3. Dtto pro / dtto for:

$$x[n] = x_1[n] + x_2[n]$$

Posuny / Time shifts

4. Signál je definován jako / the signal is defined as x[0] = 3, x[1] = 2, x[2] = 1, 0 jinde / elsewhere. Nakreslete nebo napište následující signály. Draw or write the following signals:

$$y_1 = x[n-2]$$

5. *

$$y_2 = x[n+2]$$

6.

$$y_3 = x[-n]$$

7.

$$y_4 = x[1-n]$$

Pečlivě zkontrolujte / thoroughly check.

8.

$$y_5 = x[-2 - n]$$

Pečlivě zkontrolujte / thoroughly check.

Filtry / Filters

9. Odhadněte chování filtru s následujícími diferenčními rovnicemi ve frekvenci / predict the behavior of filter with the following difference equations in frequency:

$$y[n] = 0.5x[n] + 0.5x[n-1]$$

10.

$$y[n] = 0.5x[n] - 0.5x[n-1]$$

11. *

$$y[n] = 1$$

Je to vůbec filtr / Is this a filter at all?

12. Nakreslete schema filtru / draw a scheme of filter

$$y[n] = 0.5x[n] + 0.5x[n-1]$$

13. *

$$y[n] = 0.5x[n] - 0.5x[n-1]$$

14. Napište impulsní odezvu filtru / write the impulse reponse of filter

$$y[n] = 0.5x[n] + 0.5x[n-1]$$

15. *

$$y[n] = 0.5x[n] - 0.5x[n-1]$$

Filtrování a konvoluce / Filtering and concolution

16. Signál je definován jako / the signal is defined as x[0] = 3, x[1] = 2, x[2] = 1, 0 jinde / elsewhere. Určete výstup filtru s následující diferenční rovnicí tak, že budete ve schematu značit hodnoty jednotlivých vzorků pro každé n a pro každou kombinaci spočítáte výstup. / Determine the output of the filter by using its scheme - mark the values of individual samples for all values of n and for each combination, obtain the output.

$$y[n] = 0.5x[n] + 0.5x[n-1]$$

17. * dtto for / pro

$$y[n] = 0.5x[n] - 0.5x[n-1]$$

18. Proveďte filtrování z příkladu 16 pomocí konvoluce. Perform the filtering from exercise 16 using convolution. Help:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- 19. dtto pro příklad 17 / dtto for exercise 17.
- 20. * Provedte jeden z předchozích výpočtů pomocí druhé možné definice konvoluce / perform one of the previous computations using the second possible definition of convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

Zkontrolujte, zda je výsledek stejný / check if the result is the same.

- 21. Komentujte, zda výsledky odpovídají předpovězenému chování ve frekvenci. / Comment if these results correspond to the predicted behavior in frequency.
- 22. Napište funkci v C implementující diferenční rovnici / Write a function in C implementing differential equation

$$y[n] = 0.5x[n] + 0.5x[n-1]$$

IIR filtry / IIR filters

23. Nakreslete schéma IIR filtru / Draw scheme of an IIR filter

$$y[n] = x[n] + 0.5y[n-1]$$

- 24. Určete jeho impulsní odezvu / Determine its impulse response.
- 25. Filtrujte tímto filtrem následující signál / Filter the following signal with this filter: x[0] = 1, x[1] = 1, 0 jinde / elsewhere.
- 26. Určete podmínku pro koeficient $-a_1$ násobící vzorek y[n-1] tak, aby byl filtr stabilní. / Determine the condition for coefficient $-a_1$ multiplying sample y[n-1] such that the filter is stable.
- 27. Napište funkci v C implementující tento IIR filtr / Write a function in C implementing this IIR filter.

Cosinusovky / Cosines

28. Nakreslete jednu periodu cosinusovky. Vyznačte několik hodnot na ose x. / Draw one period of cosine. Mark couple of values on the x axis.

$$x(t) = \cos(t)$$

29. Dtto pro / dtto for

$$x(t) = \cos(2\pi t)$$

30. Dtto pro / dtto for

$$x(t) = \cos(2\pi 1000t)$$

- 31. Vypočtěte periodu a frekvenci cosinusovky z předchozího příkladu. Compute the period and frequency of cosine from the previous exercise.
- 32. Nakreslete jednu periodu cosinusovky jako vzorky / draw one period of cosine as samples:

$$x[n] = \cos(2\pi \frac{1}{8}n)$$

- 33. Vypočtěte periodu a normovanou frekvenci cosinusovky z předchozího příkladu. Compute the period and normalized frequency of cosine from the previous exercise.
- 34. Převedte tuto normovanou frekvenci na obyčejnou, pokud $F_s = 8000$ Hz. Convert this normalized frequency to standard one provided that $F_s = 8000$ Hz.
- 35. * Dtto pro / dtto for $F_s = 48 \text{ kHz}$
- 36. Nakreslete / napište cosinusovku jako vzorky. Draw / write cosine as samples. Help: $\cos(\frac{\pi}{2}) = 0.7$.

$$x[n] = \cos(2\pi \frac{1}{8}n - \frac{\pi}{2})$$

37. * Dtto pro / dtto for

$$x[n] = \cos(2\pi \frac{1}{8}n + \pi)$$

Analýza / Analysis

38. Neznámý signál x[n] má délku N=8 vzorků a je definován jako / The unknown signal x[n] has N=8 samples and is given as:

$$x[n] = [16 \ 11 \ 6 \ -3 \ -4 \ -3 \ 6 \ 11]$$

Pokuste se o intuitivní frekvenční analýzu - které frekvence signál obsahuje a kolik? / Try out intuitive frequency analysis - which frequencies does the signal contain and how much of which?

39. Proveďte projekci signálu do báze / perform projection of signal into basis. Help: $c_k = \sum_{n=0}^{N-1} x[n]a[n]$

$$a_0[n] = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]$$

Komentujte výsledek / Comment the result.

40. Dtto pro / dtto for

$$a_1[n] = \begin{bmatrix} 1 & 0.7 & 0 & -0.7 & -1 & -0.7 & 0 & 0.7 \end{bmatrix}$$

Komentujte výsledek / Comment the result.

41. Dtto pro / dtto for

$$a_2[n] = [1 \ 0 \ -1 \ 0 \ 1 \ 0 \ -1 \ 0];$$

Komentujte výsledek / Comment the result.

42. Dtto pro / dtto for

$$a_3[n] = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix};$$

Komentujte výsledek / Comment the result.

Komplexní exponenciála / Complex exponential

43. Na nějakém podlouhlém kulatém předmětu (tužka, pero, rulička od WC papíru, ...) zobrazte hodnoty komplexní exponenciály / On an allongated round object (pencil, pen, WC paper roll, ...), show the values of complex exponential.

$$x[n] = e^{j2\pi \frac{1}{8}n}$$

44. * Dtto pro / dtto for

$$x[n] = e^{j2\pi \frac{1}{4}n}$$

Diskrétní Fourierova transformace / Discrete Fourier Transform

- 45. Pro výpočet DFT máte N=256 vzorků. Pro hodnoty $k=[0,\ 1,\ 2,\ 3,\ 4,\ 5]$ napište hodnoty normované frekvence, na kterých "sedí" vypočítané koeficienty X[k]. / You have DFT máte N=256 for computing DFT. For $k=[0,\ 1,\ 2,\ 3,\ 4,\ 5]$, write the values of normalized frequency, on which the computed coefficients X[k] are "sitting".
- 46. Přepočítejte na skutečné frekvence, pokud je vzorkovací frekvence je $F_s=64$ kHz. / Convert to standard frequencies, provided that the sampling frequency is $F_s=64$ kHz.
- 47. Doplňte kód, kterým v Matlabu získáme dobrou frekvenční osu pro zobrazování výsledků DFT. Proměnná Fs obsahuje vzorkovací frekvenci. / Complete the Matlab code for obtaining a good frequency axis for visualizing DFT results. Variable Fs contains the sampling frequency.