

MAT 3007 — Optimization The Geometry of Linear Problems

Lecture 04

June 15th

Andre Milzarek

iDDA / CUHK-SZ

Repetition

Recap: Linear Problems

- Standard form for LPs.
- We studied several types of problems that can be converted into linear problems.

Geometry of Linear Optimization Problems:

We solved the production planning problem graphically and observed that the optimal solution appears at the corner of the feasible set.

Recap: Production Planning

- ▶ Draw the feasible set and the contour lines of the objective.
- → Determine the optimal solution.

Polyhedra and Extreme Points

Some Definitions: Polyhedron

Polyhedron

A polyhedron is a set that can be written in the form:

$$\{x \in \mathbb{R}^n : Ax \ge b\},\$$

where A is an $m \times n$ matrix and $b \in \mathbb{R}^m$.

▶ Recall that in the standard form of LP, the feasible set is

$$Ax = b, \quad x \ge 0.$$

- ▶ Is this a polyhedron? Why?
- ▶ Yes, we can write it as $Ax \ge b$, $Ax \le b$, $I \cdot x \ge 0$ where I is the identity matrix.

Convex Sets and Convex Combinations

Definition: Convex Set

A set $S \subseteq \mathbb{R}^n$ is convex if for any $x, y \in S$, and any $\lambda \in [0,1]$, $\lambda x + (1 - \lambda)y \in S$.

Convex Combination

For any $x_1,...,x_n$ and $\lambda_1,...,\lambda_n \geq 0$ satisfying $\lambda_1+\cdots+\lambda_n=1$, we call $\sum_{i=1}^n \lambda_i x_i$ a convex combination of $x_1,...,x_n$.

Extreme Points

In an LP, the optimal solution tends to be in one of the corners of the feasible region. We first formalize this notion.

Definition: Extreme Point

Let P be a polyhedron. A point $x \in P$ is said to be an extreme point of P if we can not find two vectors $y, z \in P$ with $y, z \neq x$ and a scalar $\lambda \in [0, 1]$, such that $x = \lambda y + (1 - \lambda)z$.

- ► That is, x cannot be represented as a convex combination of other points in P.
- ▶ We sometimes call the extreme point the vertex or corner of the polyhedron.

Example: Extreme Points

How many extreme points are there in this feasible region?

Example: Extreme Points

How many extreme points are there in this feasible region?

Answer: 5

Extreme Points

We just introduced the definition of extreme points/vertices.

However, this does not tell us how to find those points. We want to have a good way for finding extreme points.

Preview of the Next Steps:

- ▶ We need an algebraic way to represent extreme points.
- ▶ We will show that it is sufficient to look at extreme points to solve a linear optimization problem.
- ► Finally, in order find the optimal extreme point, this will lead to the construction of the simplex algorithm for solving LPs.

Finding Extreme Points: Basic Solutions

Finding Extreme Points of an LP

In the following, we consider an LP in its standard form:

minimize
$$c^{\top}x$$

subject to $Ax = b$
 $x \ge 0$,

where $x \in \mathbb{R}^n$, A is an $m \times n$ matrix (m < n) and $b \in \mathbb{R}^m$.

General Assumption:

A has linearly independent rows (or equivalently A has full rank m).

What happens if this condition is not satisfied?

► Then either there is a redundant constraints (in which case one can remove it) or the constraints are not consistent (in which case there is no feasible point).

Extreme Points of LPs: Basic Solutions

Now, we study the extreme points of an LP in its algebraic form.

Definition: Basic Solution

We call x a basic solution of the LP if and only if

- 1. Ax = b.
- 2. There exist indices B(1), ..., B(m) such that the columns of

$$\left[\begin{array}{cccc} | & | & | \\ A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \\ | & | & | \end{array}\right]$$

are linearly independent and $x_i = 0$ for $i \neq B(1), ..., B(m)$.

Finding a Basic Solution

Procedure to Find a Basic Solution:

- 1. Choose any m independent columns of $A: A_{B(1)}, ..., A_{B(m)}$.
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$.
- 3. Solve the equation Ax = b for the remaining $x_{B(1)}, ..., x_{B(m)}$.

Remarks:

- ▶ Since $A_{B(1)}, ..., A_{B(m)}$ are linearly independent, the last step must produce a unique solution.
- Basic solution of an LP only depends on its constraints, it has nothing to do with the objective function.

Basic Solutions: Notation

We write

$$A_{B} = \left[\begin{array}{ccc} | & | & | \\ A_{B(1)} & A_{B(2)} & \cdots & A_{B(m)} \\ | & | & | \end{array} \right], \quad x_{B} = \left[\begin{array}{c} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{array} \right].$$

Since the columns $A_{B(i)}$ are linearly independent, the matrix A_B is invertible and we have $x_B = A_B^{-1}b$.

- ▶ We call $B = \{B(1), ..., B(m)\}$ the basic indices for this basic solution, $A_{B(1)}, ..., A_{B(m)}$ the basic columns, A_B the basis matrix and $x_{B(1)}, ..., x_{B(m)}$ the basic variables.
- ▶ We call the remaining indices the non-basic indices, the remaining columns of *A* the non-basic columns and the remaining variables the non-basic variables.

How many non-zeros could one have in a basic solution (assuming there are m constraints)?

- ▶ No more than *m*!
- ightharpoonup Could be anything between 0 to m (typically it is m).

How many basic solutions can one have for a linear program with m constraints and n variables?

- ▶ At most $C(n, m) = \frac{n!}{m!(n-m)!}$ (Combination number).
- ► Therefore for a finite number of linear constraints, there can only be a finite number of basic solutions!

Basic Feasible Solutions

Basic Feasible Solutions

Definition: Basic Feasible Solution

If a basic solution x also satisfies that $x \ge 0$, then we call it a basic feasible solution (BFS).

How to Find a BFS?

- First find a basic solution x.
- ▶ Check if $x \ge 0$.

Theorem: Extreme Points and BFS

For the standard LP polyhedron $P := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$, the following statements are equivalent:

- 1. x is an extreme point of P.
- 2. x is a basic feasible solution.

Example: Production Planning

Recall the production problem:

with standard form:

minimize
$$-x_1$$
 $-2x_2$
subject to x_1 $+s_1$ $= 100$
 $2x_2$ $+s_2$ $= 200$
 x_1 $+x_2$ $+s_3$ $= 150$
 x_1 , x_2 , s_1 , s_2 , s_3 ≥ 0

Example: Continued

We can denote the feasible set by $\{x : Ax = b, x \ge 0\}$, where

$$A = \left[\begin{array}{cccc} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{array} \right] \quad b = \left[\begin{array}{c} 100 \\ 200 \\ 150 \end{array} \right].$$

▶ Choose three independent columns of A, e.g., the first three $(B = \{1, 2, 3\})$, we get the corresponding basic solution via:

$$x_B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 100 \\ 200 \\ 150 \end{bmatrix} = \begin{bmatrix} 50 \\ 100 \\ 50 \end{bmatrix}.$$

▶ That is $x_1 = 50$, $x_2 = 100$, $s_1 = 50$. Therefore (50, 100, 50, 0, 0) is a basic feasible solution. One can find other basic feasible solutions by choosing other sets of columns.

Example Continued

We can list all basic (feasible) solutions:

Indices	{1,2,3}	{1,2,4}	{1,2,5}
Solution	(50, 100, 50, 0, 0)	(100, 50, 0, 100, 0)	(100, 100, 0, 0, -50)
Status	BFS	BFS	BS, not feasible
Indices	{1,3,4}	{1,4,5}	{2,3,4}
Solution	(150, 0, -50, 200, 0)	(100, 0, 0, 200, 50)	(0, 150, 100, -100, 0)
Status	BS, not feasible	BFS	BS, not feasible
Indices	{2,3,5}	{3,4,5}	
Solution	(0, 100, 100, 0, 50)	(0, 0, 100, 200, 150)	
Status	BFS	BFS	

The other two choices $\{1,3,5\}$ and $\{2,4,5\}$ lead to dependent basic columns (therefore no basic solutions can be obtained).

Verification ...

They indeed correspond to all the corners of the feasible set:

Basic Feasible Solutions

Fundamental LP Theorem

Consider a linear problem in standard form and assume that A has full row rank m.

- 1. If the feasible set is nonempty, there is a basic feasible solution.
- 2. If there is an optimal solution, there is an optimal solution that is also a basic feasible solution.
- → In order to find an optimal solution, we only need to look among basic feasible solutions!

Corollary: Characteristics

If an LP with m constraints (in the standard form) has an optimal solution, then there must be an optimal solution with no more than m positive entries.

From Basic Feasible Solutions to Optimal Solutions

Consequences:

► We only need to search among basic feasible solutions to find the optimal solution!

How can we search among the basic feasible solutions?

- One may suggest to list all the basic feasible solutions and compare their objective values.
- → There might be too many BFS!
 - ► For a linear optimization with *m* constraints and *n* variables, how many basic feasible solutions can we have?
- \sim C(n, m) ... if n = 1000, m = 100, then this number is 10^{143} ...

The Simplex Method

Simplex Method

We need a smarter way to find the optimal solution:

Simplex method

The simplex method proceeds from one BFS (a corner point of the feasible region) to a neighboring one to continuously improve the value of the objective function until reaching optimality.

- We need to define what it means by adjacent or neighboring solution.
- We need to design an efficient way to find (and move to) the neighboring BFS (e.g., we should try to avoid taking matrix inversions every time).
- We need to design a valid stopping criterion

We will talk the first item and leave the rest to the next lectures.

Neighboring BFS

Definition: Neighboring Basic Solutions

Two basic solutions are neighboring (or adjacent) if they differ by exactly one basic (or non-basic) index.

► For example, a BFS constructed by using the columns {1,2,3} is a neighbor to the BFS constructed by using the columns {1,3,5} (but not {1,4,5}).

Consider the production planning problem:

The basic (feasible) solutions are given as follows:

Indices	{1, 2, 3}	{1, 2, 4}	{1, 2, 5}
Solution	(50, 100, 50, 0, 0)	(100, 50, 0, 100, 0)	(100, 100, 0, 0, -50)
Objective	-250	-200	infeasible
Indices	{1, 3, 4}	{1, 4, 5}	{2, 3, 4}
Solution	(150, 0, -50, 200, 0)	(100, 0, 0, 200, 50)	(0, 150, 100, -100, 0)
Objective	infeasible	-100	infeasible
Indices	{2, 3, 5}	{3, 4, 5}	
Solution	(0, 100, 100, 0, 50)	(0, 0, 100, 200, 150)	
Objective	-200	0	

Indices	{1, 2, 3}	{1, 2, 4}	{1, 2, 5}
Solution	(50, 100, 50, 0, 0)	(100, 50, 0, 100, 0)	(100, 100, 0, 0, -50)
Objective	-250	-200	infeasible
Indices	{1, 3, 4}	{1, 4, 5}	{2, 3, 4}
Solution	(150, 0, -50, 200, 0)	(100, 0, 0, 200, 50)	(0, 150, 100, -100, 0)
Objective	infeasible	-100	infeasible
Indices	{2, 3, 5}	{3, 4, 5}	
Solution	(0, 100, 100, 0, 50)	(0, 0, 100, 200, 150)	
Objective	-200	0	

Say we start from $\{3,4,5\}$ and only allow to move from one BFS to its neighbor (and we move only if the obj. value decreases). Then:

▶ If we choose $\{1,4,5\}$ first, then we can move along:

$$\{3,4,5\} \to \{1,4,5\} \to \{1,2,4\} \to \{1,2,3\}$$

 \blacktriangleright We can also start from $\{2,3,5\}$, which will give us

$$\{3,4,5\} \to \{2,3,5\} \to \{1,2,3\}$$

Both get to the optimal solution in finite steps.

Checking Neighbors

The main question is how to find a neighboring BFS that improves the current one (reduces the objective function):

▶ We only need to show how to do it for one step. Then, we can simply iterate the same methods (until we reach optimal).

A naive way is simply to check all neighbors of the current BFS:

- ▶ There are m(n-m) potential neighbors for a BFS (choosing one index to leave, choosing one to enter). For each one, we need to solve a linear equation of m variables.
- This works, but is likely to be very slow.

We want a more efficient way to do it → next lectures!

Questions?