

"Implementacja Algorytmu Browna-Łomickiego"

Projekt Modelowanie Procesów Dyskretnych

Michał Oleś 120271 Informatyka Stosowana Stopień 2 1 rok 1 semestr

Spis treści 1 Zadanie projekto

1.Zadanie projektowe	2
2.Graficzny interface użytkownika	2
3.Charakterystyka środowiska oraz opis technologii	3
4. Opis Algorytmu	4
5.Przeprowadzone testy	5
6.Możliwy rozwój aplikacji	5
7.Wnioski	5
8.Bibligrafia	5

1.Zadanie projektowe

Projekt miał na celu zaimplementowanie algorytmu Browna-Łomickiego wraz z graficznym interfacem użytkownika.

Aplikacja miała umożliwiać wczytywanie danych z pliku oraz generować raport z wykresem Gantta.

2. Graficzny interface użytkownika

Aplikacja umożliwia zmianę zarówno liczby maszyn jak i ilość zadań. Pozwala ręcznie wprowadzać dane oraz wczytać je z pliku(Open From File). Umożliwia ponadto edycje etykiet produktów.

Aby zacząć obliczenia należy wcisnąć przycisk Calculate . Pojawią się wyliczenia oraz w nowym oknie wykres Gantta.

Aby wygenerować raport należy wcisnąć Generate Raport. Raport otworzy się w przeglądarce WWW.

3. Charakterystyka środowiska oraz opis technologii.

Do zaimplementowania algorytmu wykorzystałem język Java z uwagi na jego dużą przenoszalność aplikacji oraz bogatą bazę bibliotek.

Język Java zapewnia prawie taką samą szybkość obliczeń jak język C++ tak więc można go wykorzystać do bardzo dużych zadań np. 50 produktów 50 maszyn.

Do generowania wykresu Gantta wykorzystałem darmową bibliotekę jFreeChart.

4. Opis Algorytmu

I-zbiór numerów wyrobów I={1..m}

m-liczba wyrobów

n -liczba maszyn

W-dowolny podzbiór zbioru I

T(i,w)- czas wykonania zbioru W na i-tym stanowisku

Algorytm znajduje iteracyjnie kolejne najbardziej optymalne do wykonania sekwencje wykonywania produktów $[\min(W\{...\})]$.

gdzie

$$i \in \{1..n\}$$

$$W\{...\}$$
 to max $(g_1...g_n)$

$$g_i = T(i, w) + \sum_{j \neq w} t_{ij} + \min_{j \neq w} \sum_{k=i+1}^{n} t_{kj}$$

Po znalezieniu najkorzystniejszego do wykonania produktu uwzględniamy go w następnych krokach,

Przykład.

Jeśli mamy zbiór produktów 1,2,3,4.

To najpierw obliczamy W[1],W[2],W[3],W[4]. Jeśli najmniejszą wartość ma np. 3 to w następnym kroku liczymy W[3,1],W[3,2],W[3,4] i tak dalej do wyczerpania elementów.

Dla n musimy wykonać n-1 wykonań tego algorytmu.

Wartość W ostatniej iteracji to całkowity czas wykonania partii wyrobów.

5.Przeprowadzone testy

Do klasy implementującej algorytm zostały napisane testy jednostkowe sprawdzające poprawność obliczeń.

Dane to testu:

n	1	2	3	4	5
1	10	5	6	5	14
2	12	7	10	7	9
3	14	12	10	12	8
4	6	10	8	4	14
5	8	4	12	3	10

Wynik testu: 84

Wynik jest zgodny z wynikiem zawartym w źródle 1 oraz z moimi ręcznymi obliczeniami.

6. Możliwy rozwój aplikacji

Aplikacja napisana jest w sposób umożliwiający bezproblemową implementacje algorytmu z innym GUI graficznym oraz z inną biblioteką generującą wykres Gantta.

Algorytm można optymalizować za pomocą algorytmów do tego stworzonych.

Z uwagi na fakt, że kod aplikacji został udostępniony: https://github.com/mikoxp/pk-BrownLomicki

istnieje możliwość, że zostanie udoskonalona lub stanie się komponentem większej całości.

7. Wnioski

Rozwiązanie problemu metodą Browna-Łomickiego daje tak dobre wyniki, że można wykorzystywać ją do optymalizacji w nawet największych zakładach produkcyjnych.

Fakt że może dawać wyniki nie do końca optymalne rekompensuje mała złożoność obliczeniowa algorytmu.

8.Bibligrafia

1.Bogusław Filipowicz "Badania Operacyjne Wybrane metody obliczeniowe i algorytmy część 1" Kraków 1997