

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Lenguaje ensamblador

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto	025043	85

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Proveer el conocimiento para el desarrollo de software de bajo nivel explotando capacidades específicas del hardware que dispone un equipo de cómputo.

TEMAS Y SUBTEMAS

- 1 Fundamentos del lenguaje ensamblador
 - 1.1 Organización de la computadora
 - 1.2 Lenguaje máquina y lenguaje ensamblador
 - 1.3 Lenguajes ensambladores y lenguajes de alto nivel
 - 1.4 Aplicaciones del lenguaje ensamblador
 - 1.5 Tipos de lenguajes ensambladores
 - 1.6 Estructura de un programa en ensamblador
 - 1.7 Ensamble, enlace y ejecución
 - 1.8 El entorno de programación
- 2 Elementos del lenguaje
 - 2.1 Formato de las instrucciones
 - 2.2 Definición de datos
 - 2.3 Instrucciones básicas, de transferencia de datos y aritméticas
 - 2.4 Manipulación de bits
 - 2.5 Ramas y lazos
- 3 Programación híbrida
 - 3.1 Directivas para compilación híbrida
 - 3.2 Funciones en ensamblador
 - 3.3 Integración de módulos de ensamblador con lenguajes de alto nivel
- 4 Procedimientos y macros
 - 4.1 Programación modular
 - 4.2 La pila
 - 4.3 Direccionamiento indirecto
 - 4.4 Procedimientos
 - 4.5 Macros
- 5 Arregios
 - 5.1 Direccionamiento indexado
 - 5.2 Declaración de arreglos
 - 5.3 Acceso a los elementos del arreglo
 - 5.4 Arreglos multidimensionales
 - 5.5 Cadenas
- 6 Punto flotante

- 6.1 Representación en punto flotante
- 6.2 Aritmética de punto flotante
- 6.3 El coprocesador numérico: Hardware e Instrucciones
- 7 Manejo e interrupciones
 - 7.1 Definición de interrupción
 - 7.2 Interrupción de video básico
 - 7.3 Interrupción de teclado
 - 7.4 Interrupciones de archivos y directorios

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora portátil, dispositivos de plataformas de ejemplo y el proyector de video. Asimismo, se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%). Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Guide assembly Language: A Concise Introduction. Streib, J. Springer. 2011.
- Professional Assembly Language. Blum, R. Wrox Press. 2005.
- 3. X86 Assembly Language and C Fundamentals, Cavanagh, J. CRC Press, 2013.
- 4. Guide to Assembly Language Programming in Linux, Dandamudi, S. P. Springer, 2005.
- 5. Brey B. B. (2006). Microprocesadores intel (Prentice-Hall).

Consulta:

- 1. Lenguaje Ensamblador para PC. Carter, P. A. 2007.
- Lenguaje ensamblador para computadoras basadas en Intel. Irvine, K. Pearson Educación. 2008.
- 3. Assembly Language Steep-by-steep: Programming with DOS and Linux. Duntemann, J. Wiley. 2000.
- 4. Linux Assembly Language Programming. Neveln, B. Prentice-Hall. 2000.

PERFIL PROFESIONAL DEL DOCENTE

INGENIERIA EN COMPUTACION

Maestría o doctorado en ciencias de la computación, electrónica o área afín.

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

ACADÉMICA