3. Develop a program to implement Principal Component Analysis (PCA) for reducing the dimensionality of the Iris dataset from 4 features to 2

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load iris
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
# Load the Iris dataset
iris = load iris()
print(iris.feature_names) # Column names
print(iris.target names) # Class names
df = pd.DataFrame(data=iris.data, columns=iris.feature names)
print(df.head())
# Standardize data before applying PCA
df standardized = StandardScaler().fit transform(df)
# Apply PCA with 2 components
pca = PCA(n components=2)
principalComponents = pca.fit transform(df standardized)
# Create a new DataFrame with the principal components
pdf = pd.DataFrame(data=principalComponents, columns=['Principal Component 1', 'Principal
Component 2'])
# Concatenate the DataFrame with class labels
finalDf = pd.concat([pdf, pd.DataFrame(data=iris.target, columns=['target'])], axis=1)
print(finalDf.head())
# Visualize the data
fig, ax = plt.subplots(figsize=(8, 6))
ax.set xlabel('Principal Component 1', fontsize=15)
ax.set ylabel('Principal Component 2', fontsize=15)
explained variance = sum(pca.explained variance ratio )
ax.set title(f'2 Component PCA (Explained Variance: {explained variance:.2f})', fontsize=20)
targets = [0, 1, 2]
colors = ['r', 'g', 'b']
for target, color in zip(targets, colors):
  indicesToKeep = finalDf['target'] == target
```

Output

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] ['setosa' 'versicolor' 'virginica']

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

U	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Principal Component 1 Principal Component 2 target

0	-2.264703	0.480027	0
1	-2.080961	-0.674134	0
2	-2.364229	-0.341908	0
3	-2.299384	-0.597395	0
4	-2.389842	0.646835	0

Explained variance ratio: [0.72962445 0.22850762]