

介绍

教程简介:

• 面向对象:量子计算初学者

• 依赖课程:线性代数,解析几何,量子力学(非必需)

知乎专栏:

https://www.zhihu.com/column/c_1501138176371011584

Github & Gitee 地址:

https://github.com/mymagicpower/quantum_quest https://gitee.com/mymagicpower/quantum_quest

* 版权声明:

- 仅限用于个人学习,或者大学授课使用 (大学授课如需ppt 原件,请用学校邮箱联系我获取)
- 禁止用于任何商业用途

介绍

本开发教程基于我开源的量子线路模拟器 – circuit_weaver 编写。

• 项目价值:学习基本的线路设计,直观了解量子门与量子态演化

Github & Gitee 代码地址:

https://github.com/mymagicpower/quantum_quest/circuit_weaver https://gitee.com/mymagicpower/quantum_quest/circuit_weaver

本节内容基于 qubits.top 开源的QuantumWeaver编写,可以在线测试使用。 http://qubits.top/CircuitWeaver.html

Quantum Circuit Simulator

All rights reserved by Calvin, QQ: 179209347 Mail: 179209347@qq.com

量子线路介绍

所谓量子线路,从本质上是一个量子逻辑门的执行序列,它是从左至右依次执行的。

量子线路,也称量子逻辑电路是最常用的通用量子计算模型,表示在抽象概念下,对于量子比特进行操作的线路。组成包括了量子比特、线路(时间线),以及各种逻辑门。最后常需要量子测量将结果读取出来。

不同于传统电路是用金属线所连接以传递电压讯号或电流讯号,在量子线路中,线路是由时间所连接,亦即量子比特的状态随着时间自然演化,过程中是按照哈密顿运算符的指示,一直到遇上逻辑门而被操作。

由于组成量子线路的每一个量子逻辑门都是一个酉算子 , 所以整个量子线路整体也是一个大的 酉算子。

Pauli-X 作用在单量子比特上,跟经典计算机的 NOT 门的量子等价,将量子态翻转,量子态变换规律是:

$$|0\rangle \rightarrow |1\rangle$$

$$|1\rangle \rightarrow |0\rangle$$

Pauli-X 门矩阵形式为泡利矩阵 σ_x ,即:

$$X = \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Pauli-X 门矩阵又称为NOT门,其量子线路符号:

X 门作用在基态 |0>:

$$X|0\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

Pauli-Y 作用在单量子比特上,作用相当于绕布洛赫球 Y 轴旋转角度π.

Pauli-Y 门矩阵形式为泡利矩阵 σ_v ,即:

$$Y = \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Pauli-Y 门矩阵,其量子线路符号:

Y 门作用在基态 |0):

$$Y|0\rangle = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix} = i \begin{bmatrix} 0 \\ 1 \end{bmatrix} = i |1\rangle$$

Pauli-Z 作用在单量子比特上,作用相当于绕布洛赫球 Z 轴旋转角度π.

Pauli-Z 门矩阵形式为泡利矩阵 σ_z ,即:

$$Z = \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Pauli-Z 门矩阵,其量子线路符号:

Z 门作用在基态 |0):

$$Z|0\rangle = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

H (Hadamard) 门

Hadamard 门是一种可以将基态变为叠加态的量子逻辑门,简称H门。

Hadamard 门矩阵形式:
$$H = \frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\1 & -1\end{bmatrix} = \frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}\langle 0| + \frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}\langle 1|$$

Hadamard 门矩阵,其量子线路符号:

H 门作用在基态 |0):

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$RX(\theta)$

Final amplitudes

RX门由Pauli-X 矩阵作为生成元生成, 其矩阵形式为:

$$R_{x}(\theta) = e^{-i\theta X/2} = \cos(\theta/2) \text{ I - i } \sin(\theta/2) X$$

$$= \begin{bmatrix} \cos(\theta/2) & -i\sin(\theta/2) \\ -i\sin(\theta/2) & \cos(\theta/2) \end{bmatrix}$$

其量子线路符号: -Rx(θ)-

RX(π/2)门作用在基态:

设置参数 $\theta = \pi / 2$:

Local wire states (Chance/Bloch)

$RY(\theta)$

RY门由Pauli-Y 矩阵作为生成元生成, 其矩阵形式为:

$$R_{y}(\theta) = e^{-i\theta Y/2} = \cos(\theta/2) \text{ I - i } \sin(\theta/2) \text{Y}$$

$$= \begin{bmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{bmatrix}$$

其量子线路符号: -Ry(θ)-

RY(π/2) 门作用在基态:

$$R_{y}(\theta) |0\rangle = \begin{bmatrix} \cos\left(\frac{\pi}{4}\right) & -\sin\left(\frac{\pi}{4}\right) \\ \sin\left(\frac{\pi}{4}\right) & \cos\left(\frac{\pi}{4}\right) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} \cos\left(\frac{\pi}{4}\right) \\ \sin\left(\frac{\pi}{4}\right) \end{bmatrix}$$

$$= \cos\left(\frac{\pi}{4}\right) |0\rangle + \sin\left(\frac{\pi}{4}\right) |1\rangle$$

$$= \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$
Aff rights reserved by Calvin, QQ: 179209347 Mail: 179209347@qq.com

设置参数 $\theta = \pi / 2$:

$RZ(\theta)$

RZ门又称为相位转化门(phase-shift gate),由Pauli-Z矩阵作为生成元生成,其矩阵形式为:

$$R_{z}(\theta) = e^{-i\theta Z/2} = \cos(\theta/2) \text{ I - i } \sin(\theta/2) Z$$

$$= \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix} = e^{-i\theta/2} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$$

其量子线路符号:-Rz(θ)-

由于 $e^{-i\theta/2}$ 是一个全局相位,其没有物理意义,只考虑单门,则可以省略该参数。于是,RZ门矩阵可简写为:

$$R_{z}(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$$

 $*e^{-i\theta/2}$ 并没有对计算基 $|0\rangle$ 和 $|1\rangle$ 做任何改变,而只是在原来的态上绕Z轴逆时针旋转 θ 角。

设置参数 $\theta = \pi / 2$:

RZ门作用在基态:

$$R_{z}(\theta) |0\rangle = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

$$R_{z}(\theta) |1\rangle = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ e^{i\theta} \end{bmatrix} = e^{i\theta} |1\rangle$$

CNOT 门

控制非门(Control - NOT), 通常用 CNOT表示,是一种普遍使用的两量子比特门。

如果低位作为控制比特,则它的矩阵形式:

CNOT CNOT = I

A - Control

B - Target

 Input
 Output

 A
 B
 A'
 B'

 0
 0
 0
 0

 1
 0
 1
 1

 0
 1
 0
 1

 1
 1
 1
 0

All rights reserved by Calvin, QQ: 179209347 Mail: 179209347@qq.com

SWAP门

SWAP门可以将 |01) 态变为 |10) , |10) 变为 |01) , 它的矩阵形式:

$$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$|\psi'\rangle = SWAP |01\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = |10\rangle$$

$$|\psi'\rangle = SWAP |10\rangle$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = |01\rangle$$

Toffoli (CCNOT)

Toffoli门即CCNOT门,它涉及3个量子比特,两个控制比特,一个目标比特,它的矩阵形式:

All rights reserved by Calvin, QQ: 179209347 Mail: 179209347@qq.com

