AND THE STATE OF THE PROPERTY OF THE PROPERTY

RECENT DEVELOPMENT OF SURFACE MODIFICATION PROCESSING

/N=05 172893 Llb

N. Yasunaga, T. Miyazaki, S. Miyake

Seimitsu Kogaku Kaishi, vol. 53, no. 10, 1987

(MASA-TT-20326) FECENT DEVELOPMENT OF SURFACE MCDIFICATION PROCESSING (NASA) 16 p CSCL 07D

N89-13527

Unclas G5/25 0172893

Recent Development of Surface Modification Processing

N. Yasunaga*, T. Miyazaki*, and S. Miyake***
Shin Nippon Seltetsu K K
1018 Ida, Nakahara ku, Kawasaki
Job Traing College**
1960 Alhara, Sagamhara
Nippon Denshin Denwa K.E.***
3-9-11 Midori-cho, Yusashino

(Received August 28, 1987)

Seimitsu Kogaku Kaishi, 53, No. 10, 1503 (1987)

1. Introduction

Locality provision machines and tools are required to be highly precise functional addrong lasting, and they are used under severe conditions such as high vectorin, high temperature, highly corrosive environment. In order to respond to these severe demands, developments of surface modification techniques are intreasingly urged, and actually various new techniques are proposed. The Society of Precision Engineering in Japan established a subcommittee for Investigation and Research on Surface Modification in 1906. The committee is still investigating recent surface modification technologies, especially dry process. In November two, the committee held a symposium on "New Surface Modification Technology,", and now the committee is preparing a monograph, "Surface Midification", to be published from Nikkan Kogyo Shinbunsha

In this special issue frontier scientists review various aspects of surface modificulture particularly film formation processes of superhard films such as diamond and iDN. If these films are applied to practical use, their effects on materials inaustries are enormous. Though the development of new technology is sought all over the world.— no practical techniques have been established yet. The main purpose of this special issue is to present characteristics of various film formation techniques and to induce new means.

In his article, we review toverall) characteristics of various dry processings, their applicable area, and problems. Further, we present recent developments and problems of superhard films as an introduction to this issue

2. Current Status of Surface Modification Technology

Decent surface modification technology may be classified into coating methods such as CVD: homical vapor deposition) and PVD (physical vapor deposition)

and formation of surface layers such as surface diffusion or surface structure regulation. Energy sources for surface modification are traditionally heat (electrical formace, high frequency heating, plasma heating etc.), but now ions, EB (electron beam) and laser are new energy sources. Table I lists principles and characteristics of various techniques. In this Table "Yosha" represents deposition of melting particles, which strictly speaking, is not PVD. However, it is included in PVD since its treatment is very similar to PVD. Diffusion treatment using laser and CD is a ph nomenon of phase mixing on the surface melting layer. Grafting and recently formation, which form different materials on the surface, do not belong a fillusion treatment but again we classified them in the diffusion treatment. Famous know those treatments are very similar to diffusion treatment.

this ory and current applications are in the order of heat, ion, LB, and caser though lasers have great potential, their practical applications are few. The laser CVD regima laser) and laser PVD (mainly CO₂ laser) are new film making methods using mon-thermal photo chemical reactions and evaporation phenomena of high melting point materials.

-1504

IB is quite old in the vapor deposition method. With development of controlling beams, EB is considered to be effective to fine shapes.

Too is a central technique of all surface modification techniques and it becomes a main technique of the dry processing. It can activate various reaction goods process at lower temperatures, and promote reactions. Thus, this plays an amplicational tole in makinghighly functional surfaces. There are a number of TVD using roots. For example, practical applications of the ion plating method or number of mathematical in Table 2.5. The ion sputtering method involves DC2K, RF2K, expensionly detectromagnetic fields (magnetron horocathode, etc.), and facing

ا اعاد الطاعرة تعليون	Modified	Film	v Process Surface Modification Modified Layer		
		PVD	Diffusion	Structure Control-	
	themical reaction ophoto chem- litry (hermal de- composition)	-	•	quenching, onneal- ing, amorphous, melt hardening, magnetic control	
electron beam (EB)	A CONTRACTOR OF THE PARTY OF TH	evaporation	alloys grafting	quenching, annexi- ing. amor- phous, melt hard- ening, polymeriza- tion, decomposition	
1321	activating lead- tion species, low cell, vialure	actants, sput-		injertion, mixing	
†1.⊷ .T	theppas reading	Yosha	Shitan nitro- gezation. calorizing	quenching	

classification
direct current ion plating method
plasma method high frequency current ion plating method
how vacuum) holo cathode method
ARE method
high frequency ion plating method
arch discharge type
landeam method claster ion beam method
plant vacuum) electron shower method
landeam epitaxy method

and it type. Even in the superhard film processing which is a main subject in

Surface modification using heat has been widely utilized as a thermal treatment, and thermal CVD and "Yosha" are most practical techniques

Correlations between function and technique required for surface modification are classified in Table 3. In this Table we mainly focus on machine and tool parts and exclude applications to electronics and optelectronics. From this Table surface modification applies most to wear resistance parts, and then lubricating, anticorresiveness, and heat resistance.

The main objective of surface modification is to add highly functional technol-

Table 5 Relation between Surface Modification Method and Required Functions and Their Usages

method	CVD	PVD	Diff	Stre**	Usage
samae (86 1-1244). T		C		<u> </u>	piston ring, mold, roll, with
					cial joint, lens protection, bearing
					tool rotary engine parts pulley
					wrinkling parts, disc protection
					shaft, valve, gear housing nezzie
			•••		blade
Hinn White		Ü	. 🕛	Δ	bearing, magnetic disc withdia
			_		joint, winkling parts
andi-corrosion	0	0	U		turbine blade, boiler, as weldin
	_	_			selectrode heat exchanger nozzle
krat resistance	0		0	•	turbine blade, nuclear fusion fur
				i	nace wall, are welding, industria formace wall
	0	0			reflecting mirror glasses, lens. ab
in products	U	O			sorption body, decoration
oseisten -	Ō				insulation film, wire coating
arangmetism	<u> </u>	·		Ō	magnetic iron board
en e	. ~ 1	Ō		<u> </u>	speaker vibrating board
	\$? 		*	<u> </u>	artificial joint, artificial bone, arti
		0		ئى ة	helal tooth root

to final ples and whier applications will be sought. We lists current problems concerned with surface modification technology

For surface modifications such as CVD and PVD

- (1) in reasing the vapor deposition rate,
- (2) imprecing adhesivity to the base board.
- (3) homogeneity of film composition and thickness (both parallel and perpendicular to the surface).
 - 4) application to complex shapes (homogeneity, adhesivity)

for surface modifications such as diffusion and structure control

- I's gainsizing the diffusion condition.
- (1) controlling shapes of treated surface
- the improving absorption of supplied energy.

3. Recent Development of Superhard Thin Film Technology

1305

though the discovery of high temperature superconductive materials surpassed the superhard thin film technology, the thin film formation technique is superhard materials such as diamonds and EN is of most attention in the surface modification technologies. The methods of forming superhard thun films are listed in Table 5. Some of them are semi-practical, but industrial applications have not been attained By the year 2,000, total industrial sales in the diamond markstare estimated to be about \$100 billion.

Diamond is very hard, has superior electrical resistance and thermal conductivity and thus can widely be utilized. Tool makers are trying to develop diamond thin film bite. Recently, a thin film tool was made by the electron activation anemals of vapor deposition method. It was reported that the tool worked great

natting aluminum alloys. Desides tools, wear resistance surfaces, wear resistant wrinkling planes, and rollers will use diamond films, which were considered expensive previously. Diamond has excellent properties for electronics and its usage in electronics will be increasing over wear resistance usage. Table 4° lists sarious applications as electronics materials. Most promising applications will be thin this semiconductors which use superior properties of diamonds such as large loand and has dielectric constant, good thermal conductivity.

Thus, for application to cools cBN may be more valuable than diamond. However, the filming technology of cBN is behind that of dramond. Thus, before applications to cools which must endure severe mechanical and thermal conditions, other applications, which utilize themical stability, high temperature resistance, antierrosiveness, wear resistance, and electrical high functions of CBN, will be realized.

Several methods of making diamond and eBN films are listed in Table 1. Diamond films which have crystal structures close to natural bulk diamonds are mode by the CVE method. The basic mechanism of diamond synthesis by the CVE method is that hydrocarbons consisting mainly of methane (CH₂) are diamond by H₂ gas, heated to about 1,500°C, activated and decomposed. In other works the methyl radical CH₃ is essential to synthesizing diamonds, and activated bydrogen molecules pull H from methane to form methyl radicals. Further hydrogen gas reads with graphite layers coexisting with diamonds and makes graphites gaseous

ne present status of (VD) method for synthesizing framond films is as follows

OF POOR QUALITY

o coperty	Application	Characteristics
irsela tion	surface protection film	resistance to high voltage (5 10 V/cm)
roermal conduc-	base board, heat sink	highly thermally conductive base board, high power laser
transparency	transparent window to visible and ultrared light, laser ends protection	life, reliability, wide wave length ranges
sound velocity	speaker material, ultra sound transmission media	wide ranges
lon Aktion coefe Lekat	surface coating, disc surface	wear resistance, lubrication
semmonated in the	5ap), photo electron mo- tive force element, ultraviolet sensor	speed motion 500°C, high speed optical switch
and-lan aillet	passivation, surface protec- tion film	Na ion prohibition

1	*** \$ 1	* * * *				
	 	14.5	a de la rece	H . Ltri	No. 1 - 2 - 1	Trace C
1 /1 (1)	 Diamond	(LL): \(\frac{1}{2}\)	1 11111	T TTTT	JYME.	TECOTO.

	CVD method					
	synthesis	basic process	formed film			
ware	Lot Hament	CH_4 , C_2H_3 , C_2H_3 – H_2	5			
		alcehol, acetone – H.	** \			
r: 	direct current plasma	$\mathrm{CH}_{\mathrm{f}} - \mathrm{H}_{\mathrm{f}}$	DC			
†	high hegation plasma	$CH_{\rm f} - H_{\rm f}$	D. G			
, , ,	nikowa se plasnia	$CH_{\epsilon} - H_{\epsilon}$	Ľ:			
% F .+3	high frequency thermal plasma	$\mathbb{CH}_{3} = \mathbb{H}_{3} = \mathbb{A}_{1}$	- -			
.C	ECR plasma	$CH_{4} + H_{3}$	r iq •••1			
	electron beam irradiation CVD	$CH_1 + H_2$	₹ •			
- .	AT her CVD	$C_2H_2 - H_2$	<u>"</u>			
		$C_2H_3C1+H_2+Ar$	4-0			
	vacuum ultraviolet light + EB gun	$CH_4 - H_2$	<u>.</u>			
	reactive pulse plasma	$B_zH_z + N_z + H_z$	cBN, wBN			
	plasma-themical transport	$B = N_0 - H_0$	cBN, wBN			
N [±]	thermal electron radiation of	$(B_0H_0)+NH_0+H_0$	cBN			
	gilarma					
	ECR plasma	$\mathrm{B}(\mathrm{H_{\odot}} + \mathrm{N_{\odot}})$ acceleration	$e\mathbf{B}\mathbf{N}$			

Table 5-2 Plamond cBN Thin Film Synthesis.

		PVD method	
	synthesis	basic process	formed hin
	en beam simil	Ar + He ior G sputi	D a-C
	Ket i laser spatt	G spatt by 10° W. cm	a-C
	ion syntt —ion gun	C sputt + H ⁺ acceleration	en
	ion plating	G evaporation +H ₂ ionization, acceleration	<u> </u>
A	anion beam deposition	C-, C7 acceleration	a-C
	ICL	$C_{\epsilon}H_{\epsilon}$ thermal electron ionization, acceleration	a-Ĉ
0	inonization depositon	CH4, C/H/ inonization, acceleration	D. a-C
×.		C. Hy +Ar ionization, acceleration	J-(
F.	high frequency ion plat-	CH; -H, ionization, acceleration	3 - C
	ing		
	double plasma	CH ₄ ionization, acceleration	a-C
	HCD-ARI	B evaporation + N ionization, acceleration	EBN
-	ID ARD	B evaporation - N ionization, acceleration	$\pm BN$
<u></u>	1/17	B evaporation + N. ionization, occeleration	$\pm BN$
*, *	lanication capet deposi-	B evaporation - N ionization, acceleration	$\epsilon { m DN}$
	12: 1		
	Live laser PVD	hBN evaporation	$a\mathrm{BN}$
		hBN evaporation - No ionization, acceleration	- 55
	ion iteam	$\mathrm{B_3N_3H_0}$ ionization acceleration	BN wBN

D. Harmond, G. graphite, a-C. amorphous hard carbon, wBN wortz type BN.

aBN amorphous hard BN

- (1) Listead of hydrocarbons, organic compounds such as alcohols and acetone are used, since they produce more methyl radicals than hydrocarbons. The rate of birm formation is increased by activating under a high temperature environment such as thermal plasma.
- (1) In order to make uniform and smooth films by densely generating nuclei the base board and synthesizing method are developed.
- 13). To relax internal stresses during symbesis and to increase adhesiveness. the base board material, temperature, and reaction conditions are optimized.

The PVD method is to collide high speed ions and gas particles with the base is said. This method yields amorphous carbons contrary to film synthesis by the CVE method. By sputtering of graphites, ionization of hydrocarbons and streleration of them by bias potential, superhard carbon films are synthesized the waves they are mostly amorphous. Ionization and acceleration of the latter + 1500 rield annulphous carbon films, which are usually called I-C. However, we classified them in self. There are a couple of advantages using the PVD method, the base to and temperature can be low (less than several hundred 'C), large films may be obtained, the film surface is smooth and can be used without reabrasion. The current problems associated to this method are that the rate of film formation is slow, film compositions and structures are unstable, and the resulting films weakir where

For aBN, both CVD and PVD methods are developed. Contrary to diamond synthesis mentioned above, the PVD method is ahead of CVD. An EB gun makes evaporates metal B, or COs laser has hBN evaporates and simultaneously modiation and bias acceleration of ionized N attains cBN. Some methods yield and many type Boron nitrate) which is intermediate between aBN and kBN

The problems associated with aBN film synthesis are as follows

- (1) It is difficult to control B/N ratio as close as the stoichiometric value. Very often is rich films are formed.
- (2) In diamond synthesis, unwanted graphites coexist. Similarly, for aBN film remation hBN can not be excluded.
- The BM teach is chemically stable and thus adhesiveness of BN to the base board is not strong.

It will take some time before coating took which are expected to work for iron materials becomes practical

4. Conclusion

We discussed surface modification technologies, of which the dry process is most important, and reviewed superhard thin him synthesis. In 1970, diamond films were synthesized in the USSR, Since then with this as a turning point research and development have been initiated in Japan in 1980's. The Japanese research level is one of the highest in the world. Various techniques presented in this issue are unique and their future will be promising. This article is written following our activities in the committee.

The authors thank T. Kuroyanagi (Furukawa Aluminum Kogyo), T. Sawamoto Nippon Seiko; and S. Kozu (Toshiba Tangaroi) for making Tables I and 3.

References

- 1) Symposium New Surface Modification Technology and Trypology', text
 - 2) Monograph, "Surface Modification", editing committee
- 3) T. Sakurai: Surface Modification by Ion plating and Sputtering. "New Surface Modification Technology and Trypology", text, (1986) 69.
 - 4) Nikkan Kogyo Shinbun July 21 issue, 1967.

National Aeronaulius and Space Administration	Report Documentation Pa	ıge ı
. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
тт-20326		
4. Title and Subtitle		5. Report Date
	i	SEPTEMBER 1988
RECENT DEVELOPMEN' MODIFICATION PROC		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
M Vacunada T M	iyazaki, S. Miyake	
N. lasunaga, 1. I	Iyabaxi, bi ii-yami	10. Work Unit No.
9. Performing Organization Name and Addre		
National Aeronautics Washington, DC 20546	and Space Administrati	on 11. Contract or Grant No. NASW-4307
		13. Type of Report and Period Covered
2. Sponsoring Agency Name and Address		translation
NASA - LEWIS RESE	ARCH CENTER	14. Sponsoring Agency Code
thin films ea.	efs. is given on the f diamond, cubic BN, by ition, phys. vapor dep	ary processes (e.g.,
17. Key Words (Suggested by Author(s))	18. Distribution unclas	ssified-unlimited
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of pages 22. Price
unclassified	unclassified	16