# **Proof of concept**

A proof-of-concept of the main "originality score" algorithm: preprocessing a sample paper, performing analytics, saving the document's hash, and returning a score.

!pip install keras gensim

```
import warnings
warnings.filterwarnings('ignore')

import os
import nltk
import numpy as np
import pandas as pd
```

### Read in dataset

Load the Reuter 50 50 training dataset (https://archive.ics.uci.edu/ml/datasets/Reuter 50 50).

TODO: download and extract directly from website

```
In [2]:
```

```
# source modified from:
# https://github.com/devanshdalal/Author-Identification-task/blob/master/learner
.py
path = 'data/C50/C50train/'
authors = os.listdir(path)
data = []

for author in authors:
    texts = os.listdir(path + author + '/')
    for text in texts:
        f=open(path + author + '/' + text, 'r')
        data.append([author, f.read()])
        f.close()

df = pd.DataFrame(data, columns=["author", "text"])
df.head()

# TODO: add more author, text pairs
```

#### Out[2]:

|   | author     | text                                           |
|---|------------|------------------------------------------------|
| 0 | RobinSidel | Drugstore giant Revco D.S. Inc. said Monday it |
| 1 | RobinSidel | Mattel Inc., seeking to expand in the market f |
| 2 | RobinSidel | A financial agreement between Barney's Inc and |
| 3 | RobinSidel | An independent shareholder advisory firm recom |
| 4 | RobinSidel | Raising the stakes in the escalating battle fo |

## **Preprocess data**

### **Process text**

Using TensorFlow backend.



#### In [4]:

```
# Pad sequences, use 500 as maximum length.
X = pad_sequences(X, maxlen=500)
print("Here is the first text tokenized, size {}:\n".format(len(X[0])), X[0])
```

```
Here is the first text tokenized, size 500:
    203
             64
                     9
                        1864
                                  10
                                                41
                                                       27
                                                              14
                                                                    694
                                                                              8
 ſ
                                          1
47
                                203
    57 10446
                1881
                        235
                                        64
                                              224 10446
                                                             80
                                                                  1297
                                                                           40
307
                                         4
                                               64
                                                       9
    89
          272
                   15
                       1133
                                216
                                                              1
                                                                    36
                                                                          393
```

| 80            |       |      |         |      |       |       |         |             |      |       |   |
|---------------|-------|------|---------|------|-------|-------|---------|-------------|------|-------|---|
| 250           | 201   | 8975 | 84      | 42   | 15    | 505   | 40      | 1487        | 565  | 272   |   |
| 5<br>1364     | 180   | 9    | 1316    | 13   | 10446 | 112   | 860     | 4841        | 2325 | 6     |   |
| 462           | 100   |      | 1310    | 13   | 10110 | 112   | 000     | 1011        | 2323 | J     |   |
| 6             | 87    | 6499 | 37      | 115  | 868   | 1032  | 120     | 933         | 288  | 954   |   |
| 764<br>6      | 256   | 120  | 87      | 470  | 391   | 72    | 5156    | 2.4         | 17/2 | 22    |   |
| 579           | 230   | 120  | 0 /     | 470  | 391   | 12    | 3130    | 34          | 1/43 | 22    |   |
| 1             | 933   | 41   | 2       | 2096 | 264   | 59    | 4       | 1432        | 764  | 3     |   |
| 861           | 7     | 201  | 602     | 7    | 1.0   | 2.2   | 211     | 1.2         | 4011 | 2     |   |
| 17281<br>1506 | 7     | 201  | 682     | 7    | 12    | 22    | 311     | 13          | 4011 | 2     |   |
|               | 3542  | 1199 | 234     | 171  | 72    | 528   | 7482    | 3754        | 201  | 682   |   |
| 24            | 2512  |      | 4.0     |      |       | _     | <b></b> |             |      | 4=00  |   |
| 46<br>719     | 2640  | 523  | 10      | 25   | 5157  | 1     | 6500    | 4592        | 3    | 1708  |   |
| 2139          | 70    | 6    | 582     | 2266 | 1578  | 12    | 24      | 46          | 1691 | 16    | 1 |
| 2794          |       |      |         |      |       |       |         |             |      |       |   |
| 123<br>71     | 801   | 6    | 87      | 6    | 17    | 156   | 25      | 1940        | 645  | 558   |   |
| 1099          | 191   | 4011 | 11      | 197  | 2326  | 2     | 5744    | 125         | 5    | 1     |   |
| 3543          |       |      |         |      |       |       |         |             |      |       |   |
| 16<br>6781    | 546   | 1381 | 3       | 201  | 8975  | 17282 | 1278    | 739         | 6    | 1767  |   |
| 861           | 5     | 5745 | 4011    | 22   | 14    | 543   | 2       | 5320        | 201  | 682   |   |
| 676           |       |      |         |      |       |       |         |             |      |       |   |
| 1208          | 7     | 4842 | 14659   | 3    | 4979  | 518   | 14660   | 74          | 201  | 8975  |   |
| 123<br>801    | 814   | 2    | 7863    | 55   | 28    | 294   | 2       | 5746        | 5    | 7864  |   |
| 1             | 011   | _    | , 5 5 5 |      |       |       | _       | 0,10        | J    | , 001 |   |
| 701           | 3     | 273  | 6211    | 137  | 775   | 16    | 1708    | 2139        | 1382 | 397   |   |
| 12<br>1780    | 17283 | 5    | 4       | 36   | 195   | 239   | 2       | 389         | 1507 | 123   |   |
| 801           | 17203 | 3    | -       | 30   | 173   | 233   | 2       | 303         | 1307 | 123   |   |
| 118           | 3671  | 13   | 1       | 41   | 25    | 7     | 17      | 1960        | 3486 | 1278  |   |
| 739<br>11     | 284   | 15   | 141     | 509  | 26    | 3     | 689     | 54          | 7    | 45    |   |
| 3             | 204   | 15   | 141     | 307  | 20    | 3     | 003     | 34          | ,    | 43    |   |
| 10446         | 63    | 2097 | 22      | 14   | 2     | 5511  | 1069    | 5747        | 913  | 5     |   |
| 5745<br>229   | 4011  | 2195 | 3231    | 861  | 6     | 201   | 682     | 24          | 2747 | 861   |   |
| 633           | 4011  | 2193 | 3231    | 001  | O     | 201   | 002     | 24          | 2/4/ | 001   |   |
| 43            | 265   | 1    | 1278    | 6    | 1     | 861   | 868     | 12          | 22   | 14    |   |
| 4             | 100   | 720  | 0       | 4011 | 7     | 610   | E1E0    | 2           | 105  | 2702  |   |
| 530<br>301    | 123   | 739  | 8       | 4011 | 1     | 610   | 5158    | 3           | 185  | 2793  |   |
| 5158          | 112   | 74   | 4011    | 49   | 7     | 12    | 22      | 5748        | 6    | 2748  |   |
| 17            | 001   | _    | 001     | 600  | ~ .   | 2.62  | 0000    | 00 <b>-</b> | _    | 00:   |   |
| 2225<br>35    | 224   | 8    | 201     | 682  | 84    | 362   | 2920    | 235         | 1    | 224   |   |
| 46            | 211   | 2    | 7865    | 198  | 1     | 61    | 70      | 49          | 7    | 90    |   |
| 3357          |       |      |         |      |       |       |         |             |      |       |   |
|               |       |      |         |      |       |       |         |             |      |       |   |

| 136  | 214  | 22   | 14    | 5512 | 53    | 60   | 7866  | 52   | 498  | 4011 |   |
|------|------|------|-------|------|-------|------|-------|------|------|------|---|
| 228  |      |      |       |      |       |      |       |      |      |      |   |
| 34   | 184  | 1079 | 4     | 5321 | 333   | 13   | 201   | 682  | 619  | 4    | 1 |
| 7284 |      |      |       |      |       |      |       |      |      |      |   |
| 15   | 17   | 2466 | 6     | 3544 | 6782  | 157  | 12    | 751  | 1    | 201  |   |
| 682  |      |      |       |      |       |      |       |      |      |      |   |
| 367  | 1289 | 59   | 1     | 1455 | 6     | 2166 | 1     | 36   | 6    | 244  |   |
| 224  |      |      |       |      |       |      |       |      |      |      |   |
| 20   | 4011 | 685  | 3     | 72   | 1104  | 42   | 32    | 1424 | 641  | 397  | 1 |
| 1469 |      |      |       |      |       |      |       |      |      |      |   |
| 68   | 19   | 1979 | 18    | 4    | 470   | 3004 | 11469 | 347  | 2    | 442  |   |
| 201  |      |      |       |      |       |      |       |      |      |      |   |
| 682  | 109  | 2195 | 14661 | 1209 | 1725  | 1    | 7867  | 131  | 163  | 4011 |   |
| 2195 |      |      |       |      |       |      |       |      |      |      |   |
| 66   | 4843 | 861  | 5     | 378  | 14662 | 7867 | 6     | 2140 | 163  | 1    |   |
| 107  |      |      |       |      |       |      |       |      |      |      |   |
| 13   | 201  | 682  | 19    | 344  | 18    | 4    | 731   | 454  | 8    | 4011 |   |
| 31   |      |      |       |      |       |      |       |      |      |      |   |
| 228  | 34   | 28   | 19    | 927  | 5     | 4    | 928   | 987  | 13   | 4711 |   |
| 1959 |      |      |       |      |       |      |       |      |      |      |   |
| 1    | 61   | 70   | 35    | 1079 | 4     | 1210 | 8     | 4711 | 1959 | 2    |   |
| 287  |      |      |       |      |       |      | 4.0   |      |      |      |   |
| 4011 | 8    | 39   | 161   | 44   | 23    | 1    | 107   | 3927 | 53   | 843  |   |
| 1606 | 1.0  |      | 4 4 5 | 0.5  | 746   | 405  | 105-  |      |      |      |   |
| 1053 | 10   | 1    | 441   | 27   | /46   | 425  | 137]  |      |      |      |   |

### **Process authors**

```
In [5]:
```

. 0.

0. 0.]

```
Train Network
```

### **Create training and test sets**

```
In [51]:
from sklearn.model selection import train test split
# Keeps some authors aside for hash testing
x train, x new, y train, y new = train test split(X, y, train size=0.8, shuffle=
False)
# Split remainder into 70% training and 30% testing and shuffle
x train, x test, y train, y test = train test split(x train, y train, train size
=0.7, random state=1)
            {} text from {} authors".format(x new.shape[0], len(np.unique(y new
print("New:
, axis=0))))
print("Train: {} text from {} authors".format(x train.shape[0], len(np.unique(y
train, axis=0))))
print("Test: {} text from {} authors".format(x test.shape[0], len(np.unique(y t
est, axis=0))))
     500 text from 10 authors
Train: 1400 text from 40 authors
Test: 600 text from 40 authors
In [105]:
```

```
print("Sample training data, showing authors")
print(np.argmax(y_train, axis=1)[:100])

Sample training data, showing authors
[ 6 39 40 45 3 46 23 3 5 8 1 10 20 41 25 49 21 15 14 7 10 13 2 8 22
```

```
8 22
0 39 20 14 25 22 40 7 35 5 33 8 33 29 35 38 1 28 16 40 15 10 2
7 9
23 13 5 46 41 27 10 33 5 40 45 9 10 18 20 45 21 29 45 36 31 41 2
1 0
14 18 40 27 12 33 19 41 20 8 23 13 8 27 34 14 16 27 22 16 19 28 16 15
```

#### Create network model

10 17 16 36]

In [14]:

| Layer (type)      | Output Shape      | Param # |
|-------------------|-------------------|---------|
| embed (Embedding) | (None, None, 128) | 2560000 |
| lstm (LSTM)       | (None, 32)        | 20608   |
| dense (Dense)     | (None, 50)        | 1650    |

Total params: 2,582,258
Trainable params: 2,582,258
Non-trainable params: 0

#### **Train network**

Epoch 12/30

Epoch 13/30

```
In [15]:
logger = keras.callbacks.TensorBoard(
  log dir='logs/{}'.format(RUN NAME),
  write graph=True,
  histogram freq=5
)
model.fit(x_train,
     y train,
     epochs=30,
     validation_split=0.2,
#
      callbacks=[logger],
     shuffle=True)
Train on 1120 samples, validate on 280 samples
Epoch 1/30
.9005 - acc: 0.0455 - val_loss: 3.8867 - val_acc: 0.1143
Epoch 2/30
.8360 - acc: 0.0616 - val loss: 3.8166 - val acc: 0.0179
Epoch 3/30
.7217 - acc: 0.0455 - val loss: 3.7102 - val acc: 0.0750
Epoch 4/30
.6289 - acc: 0.0982 - val loss: 3.6156 - val acc: 0.1071
Epoch 5/30
.5035 - acc: 0.1545 - val_loss: 3.4953 - val acc: 0.1750
Epoch 6/30
.3575 - acc: 0.1839 - val loss: 3.3904 - val acc: 0.1714
Epoch 7/30
.2056 - acc: 0.2241 - val loss: 3.2824 - val acc: 0.1857
Epoch 8/30
.9926 - acc: 0.2768 - val loss: 3.1555 - val acc: 0.2393
Epoch 9/30
.8313 - acc: 0.3009 - val loss: 3.0405 - val acc: 0.2286
Epoch 10/30
.6458 - acc: 0.3509 - val loss: 2.9049 - val acc: 0.2714
Epoch 11/30
```

.4466 - acc: 0.4232 - val loss: 2.8368 - val acc: 0.2893

.3260 - acc: 0.4571 - val\_loss: 2.7575 - val\_acc: 0.3000

```
.1583 - acc: 0.4982 - val loss: 2.6947 - val acc: 0.3107
Epoch 14/30
.0012 - acc: 0.5545 - val loss: 2.6363 - val acc: 0.3214
Epoch 15/30
.8773 - acc: 0.5875 - val loss: 2.5684 - val acc: 0.3357
Epoch 16/30
.7443 - acc: 0.6321 - val loss: 2.5947 - val acc: 0.3250
Epoch 17/30
.6312 - acc: 0.6643 - val_loss: 2.5357 - val_acc: 0.3429
Epoch 18/30
.5236 - acc: 0.6821 - val_loss: 2.4975 - val_acc: 0.3429
Epoch 19/30
.3982 - acc: 0.7152 - val loss: 2.5123 - val acc: 0.3250
Epoch 20/30
.3265 - acc: 0.7375 - val loss: 2.4991 - val acc: 0.3536
Epoch 21/30
.2645 - acc: 0.7384 - val_loss: 2.4996 - val_acc: 0.3643
Epoch 22/30
.1545 - acc: 0.7848 - val loss: 2.4928 - val acc: 0.3857
Epoch 23/30
.1012 - acc: 0.7982 - val_loss: 2.4119 - val acc: 0.3607
Epoch 24/30
.0354 - acc: 0.8009 - val loss: 2.4981 - val acc: 0.3714
Epoch 25/30
.9638 - acc: 0.8179 - val_loss: 2.4708 - val_acc: 0.3714
Epoch 26/30
.9084 - acc: 0.8214 - val loss: 2.4786 - val acc: 0.3857
Epoch 27/30
.8602 - acc: 0.8464 - val loss: 2.4985 - val acc: 0.3750
Epoch 28/30
.8147 - acc: 0.8455 - val loss: 2.4927 - val acc: 0.3786
Epoch 29/30
.7342 - acc: 0.8652 - val loss: 2.5473 - val acc: 0.3893
Epoch 30/30
.7321 - acc: 0.8634 - val loss: 2.5506 - val acc: 0.3893
```

```
Out[15]: <keras.callbacks.History at 0x1a2e4c3e80>
```

#### **Test network**

## **Create and compare hashes**

In [70]:

```
from sklearn.metrics.pairwise import cosine_similarity

def get_author(index):
    one_hot = y_new[index]
    i = np.argmax(one_hot)
    return encoder.inverse_transform(i)

def get_hash(text):
    prediction = model.predict(text)
    prediction = prediction[-1]
    return prediction

def get_similarity(hash1, hash2):
    return float(cosine_similarity([hash1], [hash2]))

x_hash = [get_hash(x) for x in x_new]
```

```
In [96]:
```

Comparision of text 0 and 60

Comparision of text 0 and 110

sen is:

mphrey is:

0.834044337272644

0.759009063243866

```
def get similarity from index(i, j):
    return get similarity(x hash[i], x hash[j])
def print similarity(i, j):
    similarity = get similarity from index(i, j)
    if get_author(i) == get_author(j):
        print("Comparision of text {} and {} \tfor same author {} is: \t\t{}".fo
rmat(
             i, j, get author(i), similarity))
    else:
        print("Comparision of text {} and {} \tfor authors {} and {} is: \t{}".f
ormat(
             i, j, get author(i), get author(j), similarity))
print similarity(0,2)
print similarity(0,11)
print similarity(0,60)
print similarity(0,110)
Comparision of text 0 and 2
                                for same author MatthewBunce is:
Comparision of text 0 and 11
                                for same author MatthewBunce is:
1.0
```

for authors MatthewBunce and ToddNis

for authors MatthewBunce and PeterHu

```
In [136]:
```

```
true positive, true negative, false positive, false negative = 0,0,0,0
margin = 0.8
num_texts = len(x_new)
for i in range(num texts):
    for j in range(min(i+1, num texts), num texts):
        similarity = get_similarity_from_index(i, j)
        if similarity >= margin:
            if get author(i) == get author(j):
                true positive += 1
            else:
                false positive += 1
        else:
            if get author(i) == get author(j):
                false negative += 1
            else:
                true negative += 1
print("True positives ", true_positive)
print("False positives", false_positive)
print("True negatives ", true negative)
print("False negatives", false negative)
```

True positives 8273
False positives 58658
True negatives 53842
False negatives 3977

```
In [140]:
# Comparison just for the same author
y new ints = np.unique(np.argmax(y new, axis=1))
y_new_authors = encoder.inverse_transform(y_new_ints)
new authors = {name:{"correct":0, "incorrect":0} for name in y new authors}
for i in range(num texts):
    author_i = get_author(i)
    for j in range(min(i+1, num texts), num texts):
        if author i == get author(j):
            similarity = get similarity from index(i, j)
            if similarity >= margin:
                new authors[author i]["correct"] += 1
            else:
                new authors[author i]["incorrect"] += 1
print("Number of correctly identified text belonging to each author:")
new authors
Number of correctly identified text belonging to each author:
Out[140]:
{'AlexanderSmith': {'correct': 524, 'incorrect': 701},
 'BernardHickey': {'correct': 636, 'incorrect': 589},
 'GrahamEarnshaw': {'correct': 952, 'incorrect': 273},
 'KirstinRidley': {'correct': 567, 'incorrect': 658},
 'LydiaZajc': {'correct': 1086, 'incorrect': 139},
 'MatthewBunce': {'correct': 976, 'incorrect': 249},
 'PeterHumphrey': {'correct': 982, 'incorrect': 243},
 'SarahDavison': {'correct': 745, 'incorrect': 480},
 'TimFarrand': {'correct': 649, 'incorrect': 576},
 'ToddNissen': {'correct': 1156, 'incorrect': 69}}
In [146]:
[new_authors[d]["correct"] for d in new_authors]
```

Out[146]:

[524, 636, 952, 567, 1086, 976, 982, 745, 649, 1156]

```
In [158]:
```

```
import plotly.plotly as py
import plotly.graph_objs as go
trace1 = go.Bar(
    x=y_new_authors,
    y=[new_authors[d]["correct"] for d in new_authors],
    name='Correct'
)
trace2 = go.Bar(
    x=y_new_authors,
    y=[new authors[d]["incorrect"] for d in new authors],
    name='Incorrect'
)
data = [trace1, trace2]
layout = go.Layout(
    title='Hash correctness using Margin=0.8',
    barmode='group'
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='jupyter-basic_bar')
```

### Hash correctness using Marg



### **Analysis**

The chart above shows that the neural network does a great job of identifying the text written by Lydia and Todd and a good job identifying the text from Graham, Matthew, and Peter. For the other authors, it does not perform as well; in two cases (Alexander and Kristin) it is wrong more than it is right. Another issue is the large percentage of false positives when compared to other author texts. While some text from different authors may share certain characteristics, the goal of the algorithm is to maximize their differences.

More work will be coming in two areas: (1) improving the network to have > 80% test accuracy (if possible) and improving the comparison algorithm's ability to differentiate texts.