EPITA

Mathématiques

Contrôle S3

Novembre 2021

Durée: 3 heures

Nom:		
Prénom :		
Classe:		
NOTE:		
Consigned		
Consignes: — Documents et calculatrices interdits.		

— Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée.

— Ne pas écrire au crayon de papier.

Exercice 1 (3 points)

1. Déterminer la nature de la série de terme général $u_n = \frac{\sin(2n)}{n^2}$.

2. Déterminer la nature de la série de terme général $u_n = \frac{n^2}{e^{n^2}}$.

3. Quelle est la nature de la série $\sum \frac{(-1)^n}{\ln(n)}$?

Exercice 2 (3 points)

Considérons la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par : $u_n = \sqrt{n + (-1)^n} - \sqrt{n}$.

Le but de l'exercice est de déterminer la nature de $\sum u_n$. 1. Déterminer $(a,b) \in \mathbb{R}^2$ tel que $u_n = \frac{a(-1)^n}{n^{\frac{1}{2}}} + \frac{b}{n^{\frac{3}{2}}} + o\left(\frac{1}{n^{\frac{3}{2}}}\right)$.

2. À l'aide du résultat de la question précédente, déterminer la nature de $\sum u_n$.

Exercice 3 (4 points)

Le but de cet exercice est d'étudier la nature de la suite (u_n) définie par : $u_n = \frac{2 \times 4 \times 6 \times \cdots \times (2n)}{1 \times 3 \times 5 \times \cdots \times (2n-1)}$. Pour cela, on utilise la suite auxiliaire (v_n) définie par : $v_n = \ln(u_n)$.

1. Soit $n \in \mathbb{N}^*$. Calculer $\frac{u_{n+1}}{u_n}$ et en déduire $v_{n+1} - v_n$.

2. Déterminer $a \in \mathbb{R}^+$ tel que $(v_{n+1} - v_n) \sim \frac{a}{n}$.

4. En déduire $\lim_{n\to+\infty} u_n$?

Exercice 4 (6 points)

Les questions de cet exercice sont interdépendantes.

Si vous n'avez pas répondu à certaines d'entre elles, n'hésitez pas à admettre leurs résultats et à les réutiliser, si besoin, dans des questions ultérieures.

1. Soit $q \in \mathbb{R}^*$. On considère la série entière $\sum q^n x^n$.

a. Quel est son rayon de convergence R?

b. Soit la fonction f définie sur]-R,R[par $: f(x)=\sum_{n=0}^{+\infty}q^n\,x^n.$

Exprimer f(x) sous la forme d'une fraction rationnelle.

c. En déduire une expression de la fonction $g: x \longmapsto \frac{1}{(1-qx)^2}$ sous la forme : $g(x) = \sum_{n=0}^{+\infty} a_n x^n$.

2. Soit $p \in]0,1[$. On considère une expérience qui peut mener soit à un succès (avec la probabilité p) soit à un échec (avec la probabilité 1-p). On suppose que cette expérience peut être tentée autant de fois que l'on souhaite, chaque résultat étant indépendant des autres.

Enfin, on définit la variable aléatoire $X = \emptyset$ nombre de tentatives nécessaires pour obtenir un premier succès ». Ainsi, si la première tentative est un succès, on aura X = 1.

a. Donner la loi de X.

3.

En déduire l'espérance et la variance de X .	

	etion génératrice $G_Y(t)$			
c. Application : en u	tilisant les résultats pr	écédents, déterminer $P($	<u>Y=5</u>).	
ccice 5 (4 poin	ots)			
•				
		enératrice $G_X(t) = a \ln a$	$\left(1-\frac{t}{3}\right)$.	
Quelle est la valeur de	e <i>a</i> ?			
		e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
En partant de la série et en déduire la loi de		e développement en série	entière de $G_X(t)$. Préci	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préci	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préci	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préci	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
		e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
et en déduire la loi de	X.	e développement en série	entière de $G_X(t)$. Préci	ser le rayon de conv
et en déduire la loi de		e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
et en déduire la loi de	X.	e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
et en déduire la loi de	X.	e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
et en déduire la loi de	X.	e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv
et en déduire la loi de	X.	e développement en série	entière de $G_X(t)$. Préci	ser le rayon de conv
et en déduire la loi de	X.	e développement en série	entière de $G_X(t)$. Préc	ser le rayon de conv

4.	Trouver une fonction	f telle que.	. en posant Y =	= f(X), or	ait : ($G_{\mathbf{Y}}(t) = t G_{\mathbf{Y}}(t)$	
Ι.	ilouver and folicaton	j cone que,	, cii posaiic i –	- J (21), Oi.	i care .	$G_{Y}(v) = vG_{X}(v)$	٠