Lesson 17: Inference for One Proportion

Preparation

Solutions

Please note that the steps show rounded numbers, but that the final answers to the problems are calculated without rounding.

		~ .
Problem	Part	Solution
1	-	$\hat{p} = \frac{x}{n}$
		x = number of successes
		n = number of trials.
2	-	$\hat{p}\pm z^*\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$
3	-	$n\hat{p} \geq 10$
		$n(1-\hat{p}) \ge 10$
4	-	$n(1-\hat{p}) \ge 10$ $n = (\frac{z^*}{2m})^2$
5	-	$z = \frac{\sqrt{\frac{2m}{\hat{p}} - p}}{\sqrt{\frac{p(1-p)}{n}}}$
6	-	
		$n(1-p) \ge 10$
7	A	$n(1-p) \ge 10$ $\hat{p} = \frac{x}{n} = \frac{684}{1006} = 0.6799$
7	В	$n\hat{p} \ge 10 -> 1006 * 0.6799 \ge 10 -> 684 \ge 10$
		$n(1-\hat{p}) \ge 10 -> 1006(1-0.6799) \ge 10 -> 322 \ge 10$
		The requirements are met.
7	\mathbf{C}	$1.96 * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.96 * \sqrt{\frac{0.6799(1-0.6799)}{1006}} = 0.0288$
7	D	$\hat{p} \pm \text{margin of error} \rightarrow 0.6799 \pm 0.0288 \rightarrow (0.6511, 0.7087)$
		We are 95% confident that the true population mean, p , is between 0.6511 and
		0.7087.
7	\mathbf{E}	$n = (\frac{z^*}{2m})^2 = (\frac{1.96}{2 \times 0.015})^2 = 4268.4444 -> 4269$
8	A	$H_0: p = 0.6$
		$H_a: p > 0.6$
8	В	$z = \frac{0.6799 - 0.6}{\sqrt{0.6(1 - 0.6)}} = 5.174$
		$\sqrt{\frac{3002}{1006}}$

|--|

Normal Probability Applet

8	\mathbf{C}	
		p = 0
8	D	We reject the null hypothesis
8	E	We have sufficient evidence to conclude that the true proportion of students that have been in a car accident within the last 5 years is greater than 0.6.