Chapter 2 – Combinational Digital Circuits

Part 3 – Additional Gates and Circuits

Overview

- Part 1 Gate Circuits and Boolean Equations
 - Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms
- Part 2 Circuit Optimization
 - Two-Level Optimization
 - Map Manipulation
 - Practical Optimization (Espresso)
 - Multi-Level Circuit Optimization
- Part 3 Additional Gates and Circuits
 - Other Gate Types
 - Exclusive-OR Operator and Gates
 - High-Impedance Outputs

Other Gate Types

Why?

- Implementation feasibility and low cost
- Power in implementing Boolean functions
- Convenient conceptual representation

Gate classifications

- Primitive gate a gate that can be described using a single primitive operation type (AND or OR) plus an optional inversion(s).
- Complex gate a gate that requires more than one primitive operation type for its description
- Primitive gates will be covered first

AND, OR, NOT Operations

- They are defined by Boolean functions.
- They represent 3 functions out of 16 possible two variable functions.

X	у	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

X	у	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0 4	. 1

Other Logic Operations

- Some of the two variable Boolean functions
 - Constant functions: $F_0 = 0$ and $F_{15} = 1$
 - AND function: $F_1 = xy$
 - OR function: $F_7 = x + y$
 - ExclusiveOR function (XOR):
 - $F_6 = x' y + xy' = x \oplus y (x \text{ or } y, \text{ but not both})$
 - Equivalence function (XNOR):
 - $F_9 = xy + x'$ $y' = (x \oplus y)'$ (x equals to y)
 - NOR function:
 - $F_8 = (x + y)' = (x \downarrow y)$ (Not-OR)
 - NAND function:
 - $F_{14} = (x y)' = (x \uparrow y) \text{ (Not-AND)}$

Logic Gate Symbols

Buffer

A buffer is a gate with the function F =X:

- In terms of Boolean function, a buffer is the same as a connection!
- So why use it?
 - A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

NAND Gate

- The basic NAND gate has the following symbol, illustrated for three inputs:
 - AND-Invert (NAND)

$$\begin{array}{ccc}
X \\
Y \\
Z
\end{array}$$

$$F(X,Y,Z) = \overline{X \cdot Y \cdot Z}$$

• NAND represents <u>NOT AND</u>, i. e., the AND function with a NOT applied. The symbol shown is an AND-Invert. The small circle ("bubble") represents the invert function.

NAND Gates (continued)

Applying DeMorgan's Law gives Invert-OR (NAND)

- This NAND symbol is called Invert-OR, since inputs are inverted and then ORed together.
- AND-Invert and Invert-OR both represent the NAND gate. Having both makes visualization of circuit function easier.
- A NAND gate with one input degenerates to an inverter.

NAND Gates (continued)

- The NAND gate is the natural implementation for CMOS technology in terms of chip area and speed.
- *Universal gate* a gate type that can implement any Boolean function.
- The NAND gate is a universal gate as shown in Figure 2-24 of the text.
- NAND usually does not have a operation symbol defined since
 - the NAND operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!

NOR Gate

- The basic NOR gate has the following symbol, illustrated for three inputs:
 - OR-Invert (NOR)

NOR represents NOT - OR, i. e., the OR function with a NOT applied. The symbol shown is an OR-Invert. The small circle ("bubble") represents the invert function.

NOR Gate (continued)

Applying DeMorgan's Law gives Invert-AND (NOR)

- This NOR symbol is called Invert-AND, since inputs are inverted and then ANDed together.
- OR-Invert and Invert-AND both represent the NOR gate. Having both makes visualization of circuit function easier.
- A NOR gate with one input degenerates to an inverter.

NOR Gate (continued)

- The NOR gate is a natural implementation for some technologies other than CMOS in terms of chip area and speed.
- The NOR gate is a universal gate
- NOR usually does not have a defined operation symbol since
 - the NOR operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!

Exclusive OR/ Exclusive NOR

- **The eXclusive OR (XOR) function is an important** Boolean function used extensively in logic circuits.
- The XOR function may be;
 - implemented directly as an electronic circuit (truly a gate) or
 - implemented by interconnecting other gate types (used as a convenient representation)
- The *eXclusive NOR* function is the complement of the XOR function
- By our definition, XOR and XNOR gates are complex gates.

Exclusive OR/ Exclusive NOR

- Uses for the XOR and XNORs gate include:
 - Adders/subtractors/multipliers
 - Counters/incrementers/decrementers
 - Parity generators/checkers
- Definitions
 - The XOR function is: $X \oplus Y = XY + XY$
 - The eXclusive NOR (XNOR) function, otherwise known as equivalence is: $X \oplus Y = XY + \overline{X} \overline{Y}$
- Strictly speaking, XOR and XNOR gates do no exist for more that two inputs. Instead, they are replaced by odd and even functions.

Truth Tables for XOR/XNOR

Operator Rules: XOR

X	Y	X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

X	Y	(X⊕Y)		
		or X≡Y		
0	0	1		
0	1	0		
1	0	0		
1	1	1		

The XOR function means:

X OR Y, but NOT BOTH

Why is the XNOR function also known as the equivalence function, denoted by the operator =?

XOR/XNOR (Continued)

The XOR function can be extended to 3 or more variables. For more than 2 variables, it is called an *odd* function or modulo 2 sum (Mod 2 sum), not an XOR:

$$X \oplus Y \oplus Z = \overline{X} \overline{Y} Z + \overline{X} Y \overline{Z} + X \overline{Y} \overline{Z} + X Y Z$$

- The complement of the odd function is the even function.
- The XOR identities:

$$X \oplus 0 = X$$
 $X \oplus 1 = \overline{X}$
 $X \oplus X = 0$ $X \oplus \overline{X} = 1$
 $X \oplus Y = Y \oplus X$
 $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$

XOR Implementations

The simple SOP implementation uses the following structure: $x \rightarrow -$

A NAND only implementation is:

Universal Gate

- NAND and NOR gates are universal.
- All Boolean functions can be implemented by AND, OR and NOT gates.
- These operations can be implemented by NAND and NOR gates.

X	У	(xy)'	x'	У′	(x' y')'
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	1

19

NAND Gates

$$\times$$
 — $(x x)' = x' \rightarrow NOT$

NOR Gate

$$x - (x + x)' = x' \rightarrow NOT$$

Example 1

 $F_1 = x'y + xy'$

Example 2

Multiple Input Gates

- AND and OR gates:
 - Commutative and associative properties exist.
 - There is no problem to increase the number of inputs.
- NAND and NOR gates:
 - They have commutative, but not associative property.
 - It is not easy to increase the number of inputs.
- **Example:** NAND gates

•
$$((x y)'z)' \neq (x(yz)')'$$

•
$$((xy)'z)' = ((x'+y')z)'=xy+z'$$

•
$$(x (yz)')' = x' + yz$$

