443 Project

2022-11-06

Data Cleaning and Preprocessing

1

NA 1978-01-01

```
# read csv
df <- read.csv("Data_Group11.csv")</pre>
We first convert the data in to a more usable long format.
# convert month and day to MM-DD format
singledig <- which(df$X.1 < 10)</pre>
df$day <- as.character(df$X.1)</pre>
df$day[singledig] <- paste0("0", df$day[singledig])</pre>
df$MMDD <- pasteO(df$month, "-", df$day)</pre>
# drop unnecessary columns
to_drop <- c("X", "X.1", "X.2", "X1981.2010.mean", "X1981.2010.median", "month", "day")
df <- subset(df, select=!(names(df) %in% to_drop))</pre>
# melt years to be one column
library(tidyr)
df <- pivot_longer(data=df, cols=!MMDD, names_to="year", values_to="extent")</pre>
# format year and creating a column with YY-MM-DD format
library(stringr)
df$year = str_replace(df$year, "X", "")
df$YYMMDD <- pasteO(df$year, "-", df$MMDD)</pre>
# tell R YYMMDD is a date
df$YYMMDD = as.Date(df$YYMMDD) # also conveniently rids of non leap year Feb 29's
# drop unnecessary columns
to drop <- c("MMDD", "year")
df <- subset(df, select=!(names(df) %in% to_drop))</pre>
# order data by date
df <- df[order(df$YYMMDD),]</pre>
head(df)
## # A tibble: 6 x 2
   extent YYMMDD
##
     <dbl> <date>
```

```
## 2 NA 1978-01-02
## 3 NA 1978-01-03
## 4 NA 1978-01-04
## 5 NA 1978-01-05
## 6 NA 1978-01-06
```

We then deal with NA values.

```
# drop initial and ending NAs because we don't have data collected for these dates library(zoo)
```

```
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
df <- na.trim(df)</pre>
```

There seems to be a change point at 1988-01-13 where a new method of measurement may of been put in to place. Before this date, there is a long stretch of NA values, and all measurements previously were recorded every second day.

```
# There is a period between 1987-12-03 and 1988-01-12 with a stretch of NAs. The following allows this df_subset <- subset(df, YYMMDD>as.Date("1987-12-01") & YYMMDD<as.Date("1988-01-15")) print(df_subset)
```

```
## # A tibble: 44 x 2
##
      extent YYMMDD
##
       <dbl> <date>
##
        12.6 1987-12-02
    1
##
    2
        NA
             1987-12-03
##
        NA
             1987-12-04
    3
##
    4
        NA
             1987-12-05
   5
##
        NA
             1987-12-06
##
   6
        NΑ
             1987-12-07
    7
##
        NA
             1987-12-08
##
    8
        NA
             1987-12-09
##
    9
        NA
             1987-12-10
## 10
        NA
             1987-12-11
## # ... with 34 more rows
```

To deal with this long stretch of NAs and the NA values caused by measurement every second day, we propose two options. Either, we impute the missing data using cubic splines, or drop all observations before the possible changepoint.

```
# impute missing values using cubic splines as one option
df_imputed <- df
df_imputed$extent <- na.spline(df_imputed$extent)

# drop all data before 1988-01-13 as another option
df <- subset(df, YYMMDD>=as.Date("1988-01-13"))
```

We are interested in overall trend, not day to day fluctuations, so we consider aggregating values by month. library(dplyr)

##

```
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
df aggregated <- df %>%
  group_by(year=year(YYMMDD), month=month(YYMMDD)) %>%
  mutate(avg_extent = mean(extent)) %>%
  distinct(year, month, .keep_all=TRUE) %>%
  subset(select=c(year, month, avg_extent))
Now that our data is cleaned and processed, we may proceed with analysis.
library(huxtable)
##
## Attaching package: 'huxtable'
## The following object is masked from 'package:dplyr':
##
##
       add_rownames
summary_Avg_Extent <- summary(df_aggregated$avg_extent)</pre>
summary_Extent <- summary(df$extent)</pre>
summary <- as.data.frame(rbind(matrix(summary_Avg_Extent,nrow=1), matrix(summary_Extent,nrow=1)),</pre>
                          row.names=c("Aggregated", "Unaggregated"))
colnames(summary) <- c("Min", "First Quartile", "Median", "Mean", "Third Quartile", "Max")
summary_table <- hux(summary, add_rownames = "")</pre>
summary_table %>%
  set_number_format(3) %>%
  set_align(everywhere, c(2,3,4,5,6,7), "center") %>%
  set_bottom_border(1, everywhere)
```

	Min	First Quartile	Median	Mean	Third Quartile	Max
Aggregated	3.566	8.276	11.914	11.150	14.166	15.957
Unaggregated	3.340	8.303	11.882	11.127	14.109	16.309

Aggregated Data

We analyze the monthly aggregated data.

```
# make a ts object
Avg_ExtentTS <- ts(df_aggregated$avg_extent, frequency=12, start=year(df$YYMMDD[1]))
plot(Avg_ExtentTS, ylab="Average Ice Extent", main="Average Ice Extent VS Time")</pre>
```

Average Ice Extent VS Time

Plotting Classical Decomposition
plot(decompose(Avg_ExtentTS)\$trend, ylab="Average Ice Extent", main="Trend Component")

Trend Component

plot(decompose(Avg_ExtentTS)\$season, ylab="Average Ice Extent", main="Seasonal Component")

Seasonal Component

plot(decompose(Avg_ExtentTS)\$random, ylab="Average Ice Extent", main="Random Component")

Random Component

From the decomposition, we see there is a significant seasonal pattern, and likely significant trend.

Variance

From the plot of the data, we see a clear seasonal pattern, and perhaps a decreasing linear trend.

It is unclear whether variance is constant. We test this using the Fligner-Killeen test.

```
# do Fligner test for constant variance.
segments = factor(c(rep(1:4, each=84), rep(5, times=82)))
fligner.test(Avg_ExtentTS, segments)
##
##
   Fligner-Killeen test of homogeneity of variances
##
## data: Avg_ExtentTS and segments
## Fligner-Killeen:med chi-squared = 5.8565, df = 4, p-value = 0.2101
segments = factor(c(rep(1:9, each=42), rep(10, times=40)))
fligner.test(Avg_ExtentTS, segments)
##
   Fligner-Killeen test of homogeneity of variances
##
##
## data: Avg_ExtentTS and segments
## Fligner-Killeen:med chi-squared = 8.2771, df = 9, p-value = 0.5065
segments = factor(c(rep(1:19, each=21), rep(20, times=19)))
fligner.test(Avg_ExtentTS, segments)
##
##
   Fligner-Killeen test of homogeneity of variances
##
```

```
## data: Avg_ExtentTS and segments
## Fligner-Killeen:med chi-squared = 13.213, df = 19, p-value = 0.8275
segments = factor(c(rep(1:34, each=12), rep(35, times=10))) # corresponds to number of years of data
fligner.test(Avg_ExtentTS, segments)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: Avg_ExtentTS and segments
## Fligner-Killeen:med chi-squared = 12.564, df = 34, p-value = 0.9997
All give high p-value so may conclude that variance is relatively constant. This is against expectation, but
perhaps this is because the change in variance is not significant over such a small time frame.
# define mse function for future use
mse <- function(y, yhat) {</pre>
  return(mean((as.vector(y)-as.vector(yhat))^2))
}
First, split the data, in to train and test set.
Avg_ExtentTS_Train <- window(Avg_ExtentTS, 1988, 2020+11/12)</pre>
Avg_ExtentTS_Test <- window(Avg_ExtentTS, 2021, 2022+9/12)</pre>
```

Regression

Try to remove non-stationarity using Regression (Multiple Linear, Ridge, Lasso, Elastic Net).

Multiple Linear Regression

```
tim <- as.vector(time(Avg_ExtentTS_Train))
season <- factor(cycle(Avg_ExtentTS_Train))

# degree 1 polynomial of time
mlr_train <- lm(Avg_ExtentTS_Train~tim+season)

new <- data.frame(tim=as.vector(time(Avg_ExtentTS_Test)), season=factor(cycle(Avg_ExtentTS_Test)))
pmse_mlr <- mse(Avg_ExtentTS_Test, predict.lm(mlr_train, new))

# degree 2 polynomial of time
mlr_train_2 <- lm(Avg_ExtentTS_Train~poly(tim,2)+season)
pmse_mlr_2 <- mse(Avg_ExtentTS_Test, predict.lm(mlr_train_2, new))

# degree 3 polynomial of time
mlr_train_3 <- lm(Avg_ExtentTS_Train~poly(tim,3)+season)
pmse_mlr_3 <- mse(Avg_ExtentTS_Test, predict.lm(mlr_train_3, new))</pre>
```

The cubic model performs best on the hold out set.

```
# plot of cubic data
plot(Avg_ExtentTS)

# plot of fit
points(time(Avg_ExtentTS_Train), predict.lm(mlr_train_3), type='l', col='red')

# plot of test set prediction
```

```
points(time(Avg_ExtentTS_Test), predict.lm(mlr_train_3, new), type='l', col='blue')
# plot line at test set cutoff
abline(v=2021, lty="dashed")
```


plot of model residuals
plot(mlr_train_3\$residuals, type="l")

plot of acf of residuals
acf(mlr_train_3\$residuals)

Series mlr_train_3\$residuals

Checking normality of this model:

```
# training the cubic model on the entore data
tim <- as.vector(time(Avg_ExtentTS))
season <- factor(cycle(Avg_ExtentTS))
mlr_3 <- lm(Avg_ExtentTS~poly(tim,3)+season)

# model diagnostics
par(mfrow=c(1,3)) # Dividing the plotting page into 4 panels
plot(mlr_3$fitted, mlr_3$residuals , pch=16 , col=adjustcolor("black" , 0.7), xlab="Fitted Values", ylatitle(main = "MLR With Polynomial Degre p=3")
abline(h=0,lty=2 , lwd=2 , col="red") # plotting a horizontal line at 0
car::qqPlot(mlr_3$residuals , pch=16, xlab="Theoretical Quantiles", ylab="Sample Quantiles")

## [1] 297 394
title(main = "MLR With Polynomial Degre p=3")
plot(mlr_3$residuals, pch=16 , col=adjustcolor("black" , 0.7), xlab="Time Index", ylab="Residuals") # p
title(main = "MLR With Polynomial Degre p=3")
abline(h=0,lty=2 , lwd=2 , col="red") # plotting a horizontal line at 0</pre>
```

MLR With Polynomial Degre p= MLR With Polynomial Degre p= MLR With Polynomial Degre p=

Prediction from MLR Degree 3


```
ridge_train_3 <- glmnet(X_3, as.vector(Avg_ExtentTS_Train), alpha=0)</pre>
# compute mse on training data for each value of lambda
ridge_train_fitted <- predict(ridge_train, X)</pre>
ridge_train_fitted_2 <- predict(ridge_train_2, X_2)</pre>
ridge_train_fitted_3 <- predict(ridge_train_3, X_3)</pre>
mses <- c()
mses 2 <- c()
mses_3 <- c()
for(i in 1:100) {
  mses <- c(mses, mse(Avg_ExtentTS_Train, ridge_train_fitted[,i]))</pre>
  mses_2 <- c(mses_2, mse(Avg_ExtentTS_Train, ridge_train_fitted_2[,i]))</pre>
  mses_3 <- c(mses_3, mse(Avg_ExtentTS_Train, ridge_train_fitted_3[,i]))</pre>
min10_mses <- head(sort(mses), 10)</pre>
min10_mses_2 <- head(sort(mses_2), 10)</pre>
min10_mses_3 <- head(sort(mses_3), 10)</pre>
ridge_train_lambdas <- c()</pre>
ridge_train_lambdas_2 <- c()</pre>
ridge_train_lambdas_3 <- c()</pre>
for(m in min10 mses) {
  ridge_train_lambdas <- c(ridge_train_lambdas, ridge_train$lambda[which(mses==m)])</pre>
for(m in min10_mses_2) {
  ridge_train_lambdas_2 <- c(ridge_train_lambdas_2, ridge_train_2$lambda[which(mses_2==m)])</pre>
for(m in min10_mses_3) {
  ridge_train_lambdas_3 <- c(ridge_train_lambdas_3, ridge_train_3$lambda[which(mses_3==m)])
}
# retrain using lambdas that gave the 10 best fits
ridge_train <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=0, lambda=ridge_train_lambdas)
ridge_train_2 <- glmnet(X_2, as.vector(Avg_ExtentTS_Train), alpha=0, lambda=ridge_train_lambdas_2)
ridge_train_3 <- glmnet(X_3, as.vector(Avg_ExtentTS_Train), alpha=0, lambda=ridge_train_lambdas_3)
# predict the test set
tim <- as.vector(time(Avg_ExtentTS_Test))</pre>
season <- factor(cycle(Avg ExtentTS Test))</pre>
X <- model.matrix(as.vector(Avg_ExtentTS_Test)~tim+season)</pre>
X_2 <- model.matrix(as.vector(Avg_ExtentTS_Test)~poly(tim,2)+season)</pre>
X_3 <- model.matrix(as.vector(Avg_ExtentTS_Test)~poly(tim,3)+season)</pre>
ridge_predictions <- predict(ridge_train, X)</pre>
ridge_predictions_2 <- predict(ridge_train_2, X_2)</pre>
ridge_predictions_3 <- predict(ridge_train_3, X_3)</pre>
# compute pmse on test set
pmses <- c()
pmses_2 <- c()
pmses_3 \leftarrow c()
for(i in 1:10) {
```

```
pmses <- c(pmses, mse(Avg_ExtentTS_Test, ridge_predictions[,i]))</pre>
  pmses_2 <- c(pmses_2, mse(Avg_ExtentTS_Test, ridge_predictions_2[,i]))</pre>
  pmses_3 <- c(pmses_3, mse(Avg_ExtentTS_Test, ridge_predictions_3[,i]))</pre>
lambda_ridge <- ridge_train$lambda[which.min(pmses)]</pre>
pmse_ridge <- pmses[which.min(pmses)]</pre>
lambda_ridge_2 <- ridge_train_2$lambda[which.min(pmses_2)]</pre>
pmse_ridge_2 <- pmses_2[which.min(pmses_2)]</pre>
lambda_ridge_3 <- ridge_train_3$lambda[which.min(pmses_3)] #which.min</pre>
pmse_ridge_3 <- pmses_3[which.min(pmses_3)]</pre>
lambda_ridge
## [1] 0.1653056
pmse_ridge
## [1] 0.5345
lambda_ridge_2
## [1] 0.3818774
pmse_ridge_2
## [1] 5.203632
lambda_ridge_3
## [1] 0.3818774
pmse_ridge_3
## [1] 5.395475
We see that the degree 1 polynomial gives the lowest MSE.
#degree 1 polynomial
tim <- as.vector(time(Avg_ExtentTS_Train))</pre>
season <- factor(cycle(Avg_ExtentTS_Train))</pre>
X <- model.matrix(as.vector(Avg_ExtentTS_Train)~tim+season)</pre>
newX <- model.matrix(as.vector(Avg_ExtentTS_Test)~as.vector(time(Avg_ExtentTS_Test))+factor(cycle(Avg_E
ridge <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=0, lambda=0.1653056)</pre>
ridge_fitted <- predict(ridge, X)</pre>
plot(Avg_ExtentTS)
points(time(Avg_ExtentTS_Train), ridge_fitted, type='l', col='red')
points(time(Avg_ExtentTS_Test), predict(ridge, newX), type='1', col='blue')
abline(v=2021, lty="dashed")
```


ridge_residuals <- Avg_ExtentTS_Train - ridge_fitted
plot(ridge_residuals, type="1")</pre>

acf(ridge_residuals)


```
#degree 2 polynomial
tim <- as.vector(time(Avg_ExtentTS_Train))
season <- factor(cycle(Avg_ExtentTS_Train))
X <- model.matrix(as.vector(Avg_ExtentTS_Train) ~ poly(tim,2) + season)
newX <- model.matrix(as.vector(Avg_ExtentTS_Test) ~ poly(as.vector(time(Avg_ExtentTS_Test)),2) + factor(cyc
ridge <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=0, lambda=0.3818774)
ridge_fitted <- predict(ridge, X)

plot(Avg_ExtentTS)
points(time(Avg_ExtentTS_Train), ridge_fitted, type='l', col='red')
points(time(Avg_ExtentTS_Test), predict(ridge, newX), type='l', col='blue')
abline(v=2021, lty="dashed")</pre>
```


ridge_residuals <- Avg_ExtentTS_Train - ridge_fitted
plot(ridge_residuals, type="1")</pre>

acf(ridge_residuals)

Lasso

```
library(glmnet)
# fit to training data
tim <- as.vector(time(Avg_ExtentTS_Train))</pre>
season <- factor(cycle(Avg_ExtentTS_Train))</pre>
X <- model.matrix(as.vector(Avg_ExtentTS_Train)~tim+season)</pre>
X_2 <- model.matrix(as.vector(Avg_ExtentTS_Train)~poly(tim,2)+season)</pre>
X_3 <- model.matrix(as.vector(Avg_ExtentTS_Train)~poly(tim,3)+season)</pre>
lasso_train <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=1)</pre>
lasso_train_2 <- glmnet(X_2, as.vector(Avg_ExtentTS_Train), alpha=1)</pre>
lasso_train_3 <- glmnet(X_3, as.vector(Avg_ExtentTS_Train), alpha=1)</pre>
# compute mse on training data for each value of lambda
lasso_train_fitted <- predict(lasso_train, X)</pre>
lasso_train_fitted_2 <- predict(lasso_train_2, X_2)</pre>
lasso_train_fitted_3 <- predict(lasso_train_3, X_3)</pre>
mses <- c()
mses_2 <- c()
mses_3 <- c()
for(i in 1:67) {
  mses <- c(mses, mse(Avg_ExtentTS_Train, lasso_train_fitted[,i]))</pre>
for(i in 1:68) {
  mses_2 <- c(mses_2, mse(Avg_ExtentTS_Train, lasso_train_fitted_2[,i]))</pre>
  mses_3 <- c(mses_3, mse(Avg_ExtentTS_Train, lasso_train_fitted_3[,i]))</pre>
```

```
min10_mses <- head(sort(mses), 10)</pre>
min10_mses_2 <- head(sort(mses_2), 10)</pre>
min10_mses_3 <- head(sort(mses_3), 10)</pre>
lasso_train_lambdas <- c()</pre>
lasso train lambdas 2 <- c()</pre>
lasso_train_lambdas_3 <- c()</pre>
for(m in min10 mses) {
  lasso_train_lambdas <- c(lasso_train_lambdas, lasso_train$lambda[which(mses==m)])</pre>
for(m in min10_mses_2) {
  lasso_train_lambdas_2 <- c(lasso_train_lambdas_2, lasso_train_2$lambda[which(mses_2==m)])
for(m in min10_mses_3) {
  lasso_train_lambdas_3 <- c(lasso_train_lambdas_3, lasso_train_3$lambda[which(mses_3==m)])</pre>
# retrain using lambdas that gave the 10 best fits
lasso_train <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=0, lambda=lasso_train_lambdas)</pre>
lasso_train_2 <- glmnet(X_2, as.vector(Avg_ExtentTS_Train), alpha=0, lambda=lasso_train_lambdas_2)
lasso_train_3 <- glmnet(X_3, as.vector(Avg_ExtentTS_Train), alpha=0, lambda=lasso_train_lambdas_3)
# predict the test set
tim <- as.vector(time(Avg_ExtentTS_Test))</pre>
season <- factor(cycle(Avg_ExtentTS_Test))</pre>
X <- model.matrix(as.vector(Avg_ExtentTS_Test)~tim+season)</pre>
X_2 <- model.matrix(as.vector(Avg_ExtentTS_Test)~poly(tim,2)+season)</pre>
X_3 <- model.matrix(as.vector(Avg_ExtentTS_Test)~poly(tim,3)+season)</pre>
lasso_predictions <- predict(lasso_train, X)</pre>
lasso_predictions_2 <- predict(lasso_train_2, X_2)</pre>
lasso_predictions_3 <- predict(lasso_train_3, X_3)</pre>
# compute pmse on test set
pmses <- c()
pmses_2 \leftarrow c()
pmses_3 \leftarrow c()
for(i in 1:10) {
  pmses <- c(pmses, mse(Avg_ExtentTS_Test, lasso_predictions[,i]))</pre>
  pmses_2 <- c(pmses_2, mse(Avg_ExtentTS_Test, lasso_predictions_2[,i]))</pre>
  pmses_3 <- c(pmses_3, mse(Avg_ExtentTS_Test, lasso_predictions_3[,i]))</pre>
lambda_lasso <- lasso_train$lambda[which.min(pmses)]</pre>
pmse_lasso <- pmses[which.min(pmses)]</pre>
lambda_lasso_2 <- lasso_train_2$lambda[which.min(pmses_2)]</pre>
pmse_lasso_2 <- pmses_2[which.min(pmses_2)]</pre>
lambda_lasso_3 <- lasso_train_3$lambda[which.min(pmses_3)]</pre>
pmse_lasso_3 <- pmses_3[which.min(pmses_3)]</pre>
lambda_lasso
```

```
## [1] 0.003561401
pmse_lasso
## [1] 0.368189
lambda_lasso_2
## [1] 0.007496408
pmse_lasso_2
## [1] 6.69867
lambda_lasso_3
## [1] 0.007496408
pmse_lasso_3
## [1] 6.85394
We see that the degree 1 polynomial gives the lowest MSE.
#degree 1 polynomial
tim <- as.vector(time(Avg_ExtentTS_Train))</pre>
season <- factor(cycle(Avg_ExtentTS_Train))</pre>
X <- model.matrix(as.vector(Avg_ExtentTS_Train)~tim+season)</pre>
newX <- model.matrix(as.vector(Avg_ExtentTS_Test) ~as.vector(time(Avg_ExtentTS_Test))+factor(cycle(Avg_E</pre>
lasso <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=1, lambda=0.003561401)</pre>
lasso_fitted <- predict(lasso, X)</pre>
plot(Avg_ExtentTS)
points(time(Avg_ExtentTS_Train), lasso_fitted, type='l', col='red')
points(time(Avg_ExtentTS_Test), predict(lasso, newX), type='1', col='blue')
abline(v=2021, lty="dashed")
      4
      12
Avg_ExtentTS
      10
      \infty
      9
      4
                1990
                          1995
                                     2000
                                               2005
                                                         2010
                                                                    2015
                                                                              2020
                                                Time
```

lasso_residuals <- Avg_ExtentTS_Train - lasso_fitted
plot(lasso_residuals, type="1")</pre>

acf(lasso_residuals)

s0

Elastic Net

```
library(glmnet)
alpha_seq \leftarrow seq(0.1, 0.9, by=0.1)
en_train_min_lamdas <- c()</pre>
en_train_min_lamdas_2 <- c()</pre>
en_train_min_lamdas_3 <- c()</pre>
min_pmses <- c()</pre>
min_pmses_2 \leftarrow c()
min_pmses_3 <- c()</pre>
for(a in alpha_seq){
  # fit to training data
  tim <- as.vector(time(Avg_ExtentTS_Train))</pre>
  season <- factor(cycle(Avg_ExtentTS_Train))</pre>
  X <- model.matrix(as.vector(Avg_ExtentTS_Train)~tim+season)</pre>
  X_2 <- model.matrix(as.vector(Avg_ExtentTS_Train)~poly(tim,2)+season)</pre>
  X_3 <- model.matrix(as.vector(Avg_ExtentTS_Train)~poly(tim,3)+season)</pre>
  en_train <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=a)</pre>
  en_train_2 <- glmnet(X_2, as.vector(Avg_ExtentTS_Train), alpha=a)
  en_train_3 <- glmnet(X_3, as.vector(Avg_ExtentTS_Train), alpha=a)</pre>
  # compute mse on training data for each value of lambda
  en_train_fitted <- predict(en_train, X)</pre>
  en_train_fitted_2 <- predict(en_train_2, X_2)</pre>
  en_train_fitted_3 <- predict(en_train_3, X_3)</pre>
  mses <- c()
  mses_2 \leftarrow c()
  mses_3 \leftarrow c()
  for(i in 1:length(en_train$lambda)) {
    mses <- c(mses, mse(Avg_ExtentTS_Train, en_train_fitted[,i]))</pre>
  for(i in 1:length(en_train_2$lambda)) {
    mses_2 <- c(mses_2, mse(Avg_ExtentTS_Train, en_train_fitted_2[,i]))</pre>
  for(i in 1:length(en train 3$lambda)) {
    mses_3 <- c(mses_3, mse(Avg_ExtentTS_Train, en_train_fitted_3[,i]))</pre>
  min10_mses <- head(sort(mses), 10)
  min10_mses_2 <- head(sort(mses_2), 10)</pre>
  min10_mses_3 <- head(sort(mses_3), 10)</pre>
  en_train_lambdas <- c()</pre>
  en_train_lambdas_2 <- c()</pre>
  en_train_lambdas_3 <- c()</pre>
  for(m in min10 mses) {
    en_train_lambdas <- c(en_train_lambdas, en_train$lambda[which(mses==m)])
  for(m in min10_mses_2) {
    en_train_lambdas_2 <- c(en_train_lambdas_2, en_train_2$lambda[which(mses_2==m)])</pre>
```

```
for(m in min10 mses 3) {
    en_train_lambdas_3 <- c(en_train_lambdas_3, en_train_3$lambda[which(mses_3==m)])
  # retrain using lambdas that gave the 10 best fits
  en_train <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=a, lambda=en_train_lambdas)</pre>
  en_train_2 <- glmnet(X_2, as.vector(Avg_ExtentTS_Train), alpha=a, lambda=en_train_lambdas_2)
  en_train_3 <- glmnet(X_3, as.vector(Avg_ExtentTS_Train), alpha=a, lambda=en_train_lambdas_3)
  # predict the test set
  tim <- as.vector(time(Avg_ExtentTS_Test))</pre>
  season <- factor(cycle(Avg_ExtentTS_Test))</pre>
  X <- model.matrix(as.vector(Avg_ExtentTS_Test)~tim+season)</pre>
  X_2 <- model.matrix(as.vector(Avg_ExtentTS_Test)~poly(tim,2)+season)</pre>
  X_3 <- model.matrix(as.vector(Avg_ExtentTS_Test)~poly(tim,3)+season)</pre>
  en_predictions <- predict(en_train, X)</pre>
  en_predictions_2 <- predict(en_train_2, X_2)</pre>
  en_predictions_3 <- predict(en_train_3, X_3)</pre>
  # compute pmse on test set
  pmses <- c()
  pmses_2 <- c()
  pmses_3 <- c()
  for(i in 1:10) {
    pmses <- c(pmses, mse(Avg_ExtentTS_Test, en_predictions[,i]))</pre>
    pmses_2 <- c(pmses_2, mse(Avg_ExtentTS_Test, en_predictions_2[,i]))</pre>
    pmses_3 <- c(pmses_3, mse(Avg_ExtentTS_Test, en_predictions_3[,i]))</pre>
  }
  min_pmses <- c(min_pmses, pmses[which.min(pmses)])</pre>
  min_pmses_2 <- c(min_pmses_2, pmses_2[which.min(pmses_2)])</pre>
  min_pmses_3 <- c(min_pmses_3, pmses_3[which.min(pmses_3)])</pre>
  en_train_min_lamdas <- c(en_train_min_lamdas, en_train$lambda[which.min(pmses)])
  en_train_min_lamdas_2 <- c(en_train_min_lamdas_2, en_train_2$lambda[which.min(pmses_2)])</pre>
  en_train_min_lamdas_3 <- c(en_train_min_lamdas_3, en_train_3$lambda[which.min(pmses_3)])
}
pmse_en <- min_pmses[which.min(min_pmses)]</pre>
alpha_en <- alpha_seq[which.min(min_pmses)]</pre>
lambda en <- en train min lamdas[which.min(min pmses)]</pre>
pmse_en_2 <- min_pmses_2[which.min(min_pmses_2)]</pre>
lambda_en_2 <- en_train_min_lamdas_2[which.min(min_pmses_2)]</pre>
alpha_en_2 <- alpha_seq[which.min(min_pmses_2)]</pre>
pmse_en_3 <- min_pmses_3[which.min(min_pmses_3)]</pre>
lambda_en_3 <- en_train_min_lamdas_3[which.min(min_pmses_3)]</pre>
alpha_en_3 <- alpha_seq[which.min(min_pmses_3)]</pre>
pmse_en
```

[1] 0.3659694

```
## [1] 0.004342926
alpha_en
## [1] 0.9
pmse_en_2
## [1] 6.537295
lambda_en_2
## [1] 0.008329342
alpha_en_2
## [1] 0.9
pmse_en_3
## [1] 6.668906
lambda_en_3
## [1] 0.008329342
alpha_en_3
## [1] 0.9
We see that the degree 1 polynomial gives the lowest MSE.
#degree 1 polynomial
tim <- as.vector(time(Avg_ExtentTS_Train))</pre>
season <- factor(cycle(Avg_ExtentTS_Train))</pre>
X <- model.matrix(as.vector(Avg_ExtentTS_Train)~tim+season)</pre>
newX <- model.matrix(as.vector(Avg_ExtentTS_Test)~as.vector(time(Avg_ExtentTS_Test))+factor(cycle(Avg_E</pre>
```

lambda_en

en_fitted <- predict(en, X)</pre>

abline(v=2021, lty="dashed")

plot(Avg_ExtentTS)

en <- glmnet(X, as.vector(Avg_ExtentTS_Train), alpha=0.9, lambda=0.004342926)

points(time(Avg_ExtentTS_Train), en_fitted, type='1', col='red')

points(time(Avg_ExtentTS_Test), predict(en, newX), type='l', col='blue')

en_residuals <- Avg_ExtentTS_Train - en_fitted
plot(en_residuals, type="l")</pre>

acf(en_residuals)

Holt-Winters

Try to remove non-stationarity using exponential smoothing, double exponential smoothing, additive HW, and multiplicative HW.

Exponential Smoothing

```
es <- HoltWinters(Avg_ExtentTS_Train, gamma = FALSE, beta = FALSE)
predict_es = predict(es, n.ahead=22)
pmse_es <- mse(Avg_ExtentTS_Test, predict_es)</pre>
```

	Prediction MSE	Degree of Time Polynomial	Lambda	Alpha
X	0.366	1.000		
MLR	0.455	2.000		
X0.100	0.233	3.000		
X0.200	0.535	1.000	0.165	
Ridge	5.204	2.000	0.382	
X0.300	5.395	3.000	0.382	
X0.400	0.368	1.000	0.004	
Lasso	6.699	2.000	0.007	
X0.500	6.854	3.000	0.007	
X0.600	0.366	1.000	0.004	0.900
Elastic.Net	6.537	2.000	0.008	0.900
X0.700	6.669	3.000	0.008	0.900

Double Exponential Smoothing

```
des <- HoltWinters(Avg_ExtentTS_Train, gamma = FALSE)
predict_des = predict(des, n.ahead=22)
pmse_des <- mse(Avg_ExtentTS_Test, predict_des)</pre>
```

No Trend

```
no_trend <- HoltWinters(Avg_ExtentTS_Train, beta = FALSE)
predict_no_trend = predict(no_trend, n.ahead=22)
pmse_no_trend <- mse(Avg_ExtentTS_Test, predict_no_trend)</pre>
```

Additive Holt-Winters

```
additive <- HoltWinters(Avg_ExtentTS_Train, seasonal = "additive")
predict_additive = predict(additive, n.ahead=22)
pmse_additive <- mse(Avg_ExtentTS_Test, predict_additive)</pre>
```

Multiplicative Holt-Winters

```
HW_table <- hux(HW, add_rownames = "")

HW_table %>%
   set_number_format(3) %>%
   set_align(everywhere, everywhere, "center") %>%
   set_bottom_border(1, everywhere)
```

ExponentialSmoothing DoubleExponentialSmoothing HWWithoutTrend AdditiveHW MultiplicativeHW

Prediction MSE 13.561 14.468 0.459 0.778 0.778

Best of HW models seems to be model with no trend. We fit this model to the entire data.

residuals_HW <- as.vector(Avg_ExtentTS_Train[which(time(Avg_ExtentTS_Train)>=1989)]) - no_trend\$fitted[plot(residuals_HW, type="l")

acf(residuals_HW, lag.max=36)

Series residuals_HW

predict_no_trend <- predict(no_trend, n.ahead=22, prediction.interval = TRUE , level=0.95)
plot(no_trend, predict_no_trend)</pre>

Holt-Winters filtering

Series residuals_HW

pacf(residuals_HW, lag.max=36)

Series residuals_HW

Note here that a more thoporough analysis might have applied Box-Jenkins on the HW residuals, because a case could be made that they are stationary.

Prediction With best HW:

```
# Getting predictions for HW and plotting
HW <- HoltWinters(Avg_ExtentTS, beta = FALSE)
predict_HW <- predict(HW, n.ahead=60, prediction.interval = TRUE, level=0.95)

plot(Avg_ExtentTS, xlim = c(2015, 2027+10/12), ylim=c(1,18), ylab="Average Ice Extent", main="Predict
#The three lines below plot the prediction interval in a grey scale
x = c(time(predict_HW[,"upr"]), rev(time(predict_HW[,"upr"])))
y = c(predict_HW[,"upr"], rev(predict_HW[,"lwr"]))
polygon(x, y, col="grey", border=NA)

#The three line below add the predicted values and highlight the borders of the prediction interval
lines(predict_HW[,"upr"], col="black", lty=2)
lines(predict_HW[,"lwr"], col="black", lty=2)
lines(predict_HW[, "fit"], col="red")
abline(v=2022+9.5/12, lty="dashed")</pre>
```

Prediction from Holt-Winters

Differencing on Train Data

Try differencing to remove non-stationarity.

Series Avg_ExtentTS_Train

#differencing in lag of season
diff12.Extent=diff(Avg_ExtentTS_Train, lag=12)
acf(diff12.Extent, lag.max=50)

Series diff12.Extent

pacf(diff12.Extent, lag.max=50)

Series diff12.Extent

plot(diff12.Extent)

#regular differencing
diff.Extent=diff(Avg_ExtentTS_Train)
acf(diff.Extent, lag.max=36)

Series diff.Extent

seasonal+regular differencing
diff12.diff.Extent=diff(diff12.Extent)
acf(diff12.diff.Extent, lag.max=36)

Series diff12.diff.Extent

It seems that regression performs poorly in terms of removing non-stationarity compared to HW and Differencing. HW and differencing seem to perform similarly. For simplicity, we proceed with differencing. #TODO reword this

acf(diff12.diff.Extent, lag.max=50)

Series diff12.diff.Extent

Series diff12.diff.Extent

We propose the following models:

Box-Jenkins on Seasonally differenced data

Seasonal differencing of the data seems to be enough to achieve stationarity, so we proceed with that. See appendix for analysis of seasonal + regular differencing

```
library(astsa)
\#SARIMA(1,0,1)x(0,1,1)_12
model_21_train <- sarima(Avg_ExtentTS_Train, p=1, d=0, q=1, P=0, D=1, Q=1, S=12, details = TRUE)
## initial value -0.801086
## iter
         2 value -1.133503
## iter
          3 value -1.361046
         4 value -1.364659
## iter
## iter
          5 value -1.367122
## iter
          6 value -1.367636
          7 value -1.367710
## iter
          8 value -1.367744
## iter
## iter
          9 value -1.367751
## iter
        10 value -1.367751
## iter 10 value -1.367751
## final value -1.367751
## converged
## initial value -1.365232
## iter
          2 value -1.365266
         3 value -1.365293
## iter
```

```
## iter    4 value -1.365301
## iter    5 value -1.365301
## iter    6 value -1.365301
## iter    6 value -1.365301
## iter    6 value -1.365301
## final value -1.365301
## converged
```

1.0

0.5

1.5

0.0

3.0

0

2

2.5

2.0

model_21_train_residuals = resid(model_21_train\$fit)
hist(model_21_train_residuals)

Histogram of model_21_train_residuals

shapiro.test(model_21_train_residuals)

```
##
   Shapiro-Wilk normality test
##
##
## data: model_21_train_residuals
## W = 0.98802, p-value = 0.002432
\#SARIMA(1,0,1)x(1,1,0)_12
model_22_train <- sarima(Avg_ExtentTS_Train, p=1, d=0, q=1, P=1, D=1, Q=0, S=12, details = TRUE)
## initial value -0.794710
         2 value -1.125638
## iter
## iter
          3 value -1.297146
## iter
         4 value -1.306046
## iter
         5 value -1.306798
         6 value -1.306962
## iter
## iter
          7 value -1.307040
          8 value -1.307043
## iter
## iter
          9 value -1.307044
## iter
        10 value -1.307044
        11 value -1.307044
## iter
        12 value -1.307044
## iter
        12 value -1.307044
## iter 12 value -1.307044
## final value -1.307044
## converged
## initial value -1.307068
## iter
          2 value -1.307118
## iter
         3 value -1.307150
```

```
## iter
          4 value -1.307158
## iter
          5 value -1.307161
   iter
          6 value -1.307161
          7 value -1.307161
##
  iter
          8 value -1.307161
##
   iter
## iter
          8 value -1.307161
          8 value -1.307161
## iter
## final value -1.307161
## converged
```


model_22_train_residuals = resid(model_22_train\$fit)
hist(model_22_train_residuals)

Histogram of model_22_train_residuals

shapiro.test(model_22_train_residuals)

```
##
   Shapiro-Wilk normality test
##
##
## data: model_22_train_residuals
## W = 0.98428, p-value = 0.0002677
\#SARIMA(1,0,1)x(0,1,3)_12
model_23_train <- sarima(Avg_ExtentTS_Train, p=1, d=0, q=1, P=0, D=1, Q=3, S=12, details = TRUE)
## initial value -0.801086
         2 value -1.144412
## iter
## iter
          3 value -1.344981
## iter
         4 value -1.357046
## iter
         5 value -1.368996
         6 value -1.371115
## iter
## iter
          7 value -1.371624
         8 value -1.371650
## iter
## iter
          9 value -1.371662
## iter
        10 value -1.371662
        11 value -1.371662
## iter
        11 value -1.371662
## iter
## iter 11 value -1.371662
## final value -1.371662
## converged
## initial value -1.368723
## iter
          2 value -1.368752
          3 value -1.368772
## iter
## iter
         4 value -1.368806
```

```
## iter 5 value -1.368811

## iter 6 value -1.368813

## iter 7 value -1.368813

## iter 7 value -1.368813

## iter 7 value -1.368813

## final value -1.368813

## converged
```


model_23_train_residuals = resid(model_23_train\$fit)
hist(model_23_train_residuals)

Histogram of model_23_train_residuals

shapiro.test(model_23_train_residuals)

```
##
   Shapiro-Wilk normality test
##
##
## data: model_23_train_residuals
## W = 0.98706, p-value = 0.001346
\#SARIMA(1,0,1)x(0,1,4)_12
model_24_train <- sarima(Avg_ExtentTS_Train, p=1, d=0, q=1, P=0, D=1, Q=4, S=12, details = TRUE)
## initial value -0.801086
         2 value -1.140892
## iter
## iter
          3 value -1.368903
## iter
         4 value -1.371731
## iter
         5 value -1.373468
         6 value -1.375135
## iter
## iter
          7 value -1.375394
          8 value -1.375462
## iter
## iter
          9 value -1.375466
## iter
        10 value -1.375469
        11 value -1.375469
## iter
        11 value -1.375469
## iter
## iter 11 value -1.375469
## final value -1.375469
## converged
## initial value -1.372802
## iter
          2 value -1.372833
## iter
          3 value -1.372871
## iter
         4 value -1.372893
```

```
## iter 5 value -1.372905
## iter 6 value -1.372905
## iter 6 value -1.372905
## iter 6 value -1.372905
## final value -1.372905
## converged
```


model_24_train_residuals = resid(model_24_train\$fit)
hist(model_24_train_residuals)

Histogram of model_24_train_residuals

shapiro.test(model_24_train_residuals)

```
##
   Shapiro-Wilk normality test
##
##
## data: model_24_train_residuals
## W = 0.98849, p-value = 0.003246
\#SARIMA(1,0,1)x(1,1,1)_12
model_25_train <- sarima(Avg_ExtentTS_Train, p=1, d=0, q=1, P=1, D=1, Q=1, S=12, details = TRUE)
## initial value -0.794710
## iter
         2 value -1.152892
## iter
          3 value -1.325426
## iter
         4 value -1.345857
## iter
         5 value -1.352890
         6 value -1.359234
## iter
## iter
          7 value -1.360827
          8 value -1.361190
## iter
## iter
          9 value -1.361198
## iter
        10 value -1.361203
        11 value -1.361205
## iter
        12 value -1.361205
## iter
## iter 12 value -1.361205
## final value -1.361205
## converged
## initial value -1.364327
## iter
          2 value -1.364958
          3 value -1.365484
## iter
## iter
         4 value -1.365574
```

```
## iter 5 value -1.365589
## iter 6 value -1.365590
## iter 7 value -1.365590
## iter 8 value -1.365590
## iter 8 value -1.365590
## final value -1.365590
## converged
```


model_25_train_residuals = resid(model_25_train\$fit)
hist(model_25_train_residuals)

Histogram of model_25_train_residuals

shapiro.test(model_25_train_residuals)

18 value -1.377458 19 value -1.377458

iter

```
##
   Shapiro-Wilk normality test
##
##
## data: model_25_train_residuals
## W = 0.98841, p-value = 0.00309
\#SARIMA(13,0,0)x(0,1,1)_12
model_26_train <- sarima(Avg_ExtentTS_Train, p=13, d=0, q=0, P=0, D=1, Q=1, S=12, details = TRUE)
## initial value -0.794710
         2 value -1.008413
## iter
## iter
          3 value -1.149498
## iter
         4 value -1.247785
## iter
         5 value -1.312226
## iter
          6 value -1.340321
## iter
          7 value -1.362277
          8 value -1.368586
## iter
## iter
          9 value -1.372893
## iter
        10 value -1.376137
        11 value -1.377199
## iter
         12 value -1.377346
## iter
        13 value -1.377423
## iter
        14 value -1.377445
## iter
         15 value -1.377456
## iter
         16 value -1.377457
## iter
## iter
        17 value -1.377457
```

```
## iter 19 value -1.377458
## iter 19 value -1.377458
## final value -1.377458
## converged
## initial
            value -1.378066
## iter
          2 value -1.378820
## iter
          3 value -1.379100
          4 value -1.379263
## iter
## iter
          5 value -1.379282
## iter
          6 value -1.379285
## iter
          7 value -1.379285
          8 value -1.379285
## iter
          8 value -1.379285
##
  iter
          8 value -1.379285
## iter
## final value -1.379285
## converged
```


model_26_train_residuals = resid(model_26_train\$fit)
hist(model_26_train_residuals)

Histogram of model_26_train_residuals

shapiro.test(model_26_train_residuals)

19 value -1.340734

iter

```
##
   Shapiro-Wilk normality test
##
##
## data: model_26_train_residuals
## W = 0.98804, p-value = 0.002459
\#SARIMA(13,0,0)x(1,1,0)_12
model_27_train <- sarima(Avg_ExtentTS_Train, p=13, d=0, q=0, P=1, D=1, Q=0, S=12, details = TRUE)
## initial value -0.801164
         2 value -1.017847
## iter
## iter
          3 value -1.143844
## iter
         4 value -1.232274
## iter
         5 value -1.284447
          6 value -1.311521
## iter
## iter
          7 value -1.320540
          8 value -1.328806
## iter
## iter
          9 value -1.334262
## iter
        10 value -1.338005
        11 value -1.339163
## iter
         12 value -1.339774
## iter
        13 value -1.340389
## iter
        14 value -1.340593
## iter
         15 value -1.340695
## iter
         16 value -1.340719
## iter
## iter
        17 value -1.340730
        18 value -1.340734
```

```
## iter
          20 value -1.340735
          20 value -1.340735
## final value -1.340735
## converged
## initial
             value -1.338080
## iter
           2 value -1.338274
           3 value -1.338681
## iter
## iter
           4 value -1.338714
           5 value -1.338795
## iter
## iter
           6 value -1.338818
           7 value -1.338842
## iter
           8 value -1.338848
##
   iter
           9 value -1.338850
   iter
## iter
          10 value -1.338850
## iter
          11 value -1.338850
## iter
          11 value -1.338850
         11 value -1.338850
## final value -1.338850
## converged
      Model: (13,0,0) (1,1,0) [12]
                                          Standardized Residuals
   4
  ^{\circ}
  0
  7
                          1995
                                        2000
                                                      2005
                                                                   2010
             1990
                                                                                 2015
                                                                                               2020
                                                    Time
                   ACF of Residuals
                                                              Normal Q-Q Plot of Std Residuals
                                                     Sample Quantiles -4 0 2 4
  0.2
ACF
0.0
  -0.2
                                        2.5
     0.0
            0.5
                   1.0
                          1.5
                                 2.0
                                                3.0
                                                           -3
                                                                         -1
                                                                                0
                                                                                              2
                                                                                                     3
                        LAG ÷ 12
                                                                        Theoretical Quantiles
                                     p values for Ljung-Box statistic
  0.8
p value
0.4 (
        15
                              20
                                                   25
                                                                         30
                                                                                              35
```

model_27_train_residuals = resid(model_27_train\$fit)
hist(model_27_train_residuals)

20 value -1.340735

LAG (H)

Histogram of model_27_train_residuals

shapiro.test(model_27_train_residuals)

iter

19 value -1.397085

```
##
   Shapiro-Wilk normality test
##
##
## data: model_27_train_residuals
## W = 0.98468, p-value = 0.0003358
\#SARIMA(13,0,0)x(0,1,3)_12
model_28_train <- sarima(Avg_ExtentTS_Train, p=13, d=0, q=0, P=0, D=1, Q=3, S=12, details = TRUE)
## initial value -0.794710
## iter
         2 value -1.013936
## iter
          3 value -1.173142
## iter
         4 value -1.265645
## iter
         5 value -1.324556
          6 value -1.329399
## iter
## iter
          7 value -1.354647
          8 value -1.368673
## iter
## iter
          9 value -1.381611
## iter
        10 value -1.389125
        11 value -1.391039
## iter
         12 value -1.391755
## iter
        13 value -1.392861
## iter
        14 value -1.394528
## iter
         15 value -1.395490
## iter
         16 value -1.396737
## iter
## iter
        17 value -1.396990
        18 value -1.397072
```

```
## iter 20 value -1.397089
## iter 21 value -1.397089
## iter 22 value -1.397089
## iter 22 value -1.397089
## iter 22 value -1.397089
## final value -1.397089
## converged
## initial value -1.392610
## iter 2 value -1.392693
## iter
       3 value -1.392839
## iter
       4 value -1.392864
## iter
       5 value -1.392891
## iter
       6 value -1.392893
       7 value -1.392897
## iter
       8 value -1.392898
## iter
        9 value -1.392903
## iter
## iter 10 value -1.392904
## iter 11 value -1.392908
## iter 12 value -1.392910
## iter 13 value -1.392911
## iter 14 value -1.392912
## iter 15 value -1.392912
## iter 16 value -1.392912
## iter 16 value -1.392912
## iter 16 value -1.392912
## final value -1.392912
## converged
```


Histogram of model_28_train_residuals


```
shapiro.test(model_28_train_residuals)
##
##
   Shapiro-Wilk normality test
##
## data: model_28_train_residuals
## W = 0.9863, p-value = 0.0008591
\#SARIMA(13,0,0)x(0,1,4)_12
model_29_train <- sarima(Avg_ExtentTS_Train, p=13, d=0, q=0, P=0, D=1, Q=4, S=12, details = TRUE)
## initial value -0.794710
## iter 2 value -1.018370
## iter 3 value -1.185015
## iter 4 value -1.269162
       5 value -1.338386
## iter
## iter
        6 value -1.361375
## iter
        7 value -1.373123
## iter
        8 value -1.389868
## iter
        9 value -1.390417
## iter 10 value -1.395151
## iter 11 value -1.396699
## iter 12 value -1.398587
## iter 13 value -1.399541
## iter 14 value -1.401027
## iter 15 value -1.401975
## iter 16 value -1.402455
## iter 17 value -1.402620
## iter 18 value -1.402660
## iter 19 value -1.402671
## iter 20 value -1.402672
## iter 21 value -1.402673
## iter 22 value -1.402673
## iter 22 value -1.402673
## iter 22 value -1.402673
## final value -1.402673
## converged
## initial value -1.397598
## iter 2 value -1.397676
## iter
       3 value -1.397908
## iter
       4 value -1.397918
       5 value -1.397948
## iter
## iter
        6 value -1.397953
## iter
       7 value -1.397964
## iter
       8 value -1.397968
## iter
        9 value -1.397974
## iter 10 value -1.397981
## iter 11 value -1.397982
## iter 12 value -1.397982
## iter 13 value -1.397983
## iter 14 value -1.397983
## iter 14 value -1.397983
## iter 14 value -1.397983
```

final value -1.397983

converged

model_29_train_residuals = resid(model_29_train\$fit)
hist(model_29_train_residuals)

Histogram of model_29_train_residuals

shapiro.test(model_29_train_residuals)

```
##
   Shapiro-Wilk normality test
##
##
## data: model_29_train_residuals
## W = 0.98626, p-value = 0.0008373
\#SARIMA(13,0,0)x(1,1,1)_12
model_30_train <- sarima(Avg_ExtentTS_Train, p=13, d=0, q=0, P=1, D=1, Q=1, S=12, details = TRUE)
## initial value -0.801164
         2 value -1.035924
## iter
## iter
          3 value -1.163984
## iter
         4 value -1.273600
## iter
         5 value -1.313108
          6 value -1.345098
## iter
## iter
          7 value -1.350268
          8 value -1.361690
## iter
## iter
          9 value -1.364074
## iter
        10 value -1.364704
        11 value -1.365211
## iter
         12 value -1.365454
## iter
        13 value -1.365788
## iter
        14 value -1.366112
## iter
         15 value -1.366710
## iter
         16 value -1.367095
## iter
## iter
        17 value -1.367549
         18 value -1.367600
## iter
        19 value -1.367614
```

```
20 value -1.367619
## iter
         21 value -1.367620
         22 value -1.367621
         23 value -1.367621
  iter
  iter
         23 value -1.367621
         23 value -1.367621
## iter
## final value -1.367621
## converged
##
  initial value -1.378413
          2 value -1.381305
##
  iter
## iter
          3 value -1.381612
          4 value -1.383730
##
  iter
          5 value -1.384338
##
  iter
          6 value -1.385117
##
  iter
## iter
          7 value -1.385893
##
  iter
          8 value -1.386815
          9 value -1.387004
##
  iter
         10 value -1.387072
         11 value -1.387079
##
  iter
         12 value -1.387081
##
  iter
         13 value -1.387081
         14 value -1.387081
         14 value -1.387081
## iter
## iter
        14 value -1.387081
## final value -1.387081
## converged
```



```
model_30_train_residuals = resid(model_30_train$fit)
hist(model_30_train_residuals)
```

Histogram of model_30_train_residuals

shapiro.test(model_30_train_residuals)

```
##
##
    Shapiro-Wilk normality test
##
## data: model_30_train_residuals
## W = 0.98623, p-value = 0.00082
\#SARIMA(1,0,2)x(0,1,1)_12
model_31\_train \leftarrow sarima(Avg\_ExtentTS\_Train, p=1, d=0, q=2, P=0, D=1, Q=1, S=12, details = TRUE)
## initial value -0.801086
```

```
## iter
         2 value -1.138952
          3 value -1.342237
## iter
         4 value -1.355399
## iter
## iter
         5 value -1.360693
## iter
          6 value -1.362722
## iter
         7 value -1.364221
         8 value -1.365966
## iter
## iter
          9 value -1.367305
        10 value -1.367779
## iter
         11 value -1.367834
        12 value -1.367835
## iter 12 value -1.367835
## final value -1.367835
## converged
## initial value -1.365277
```

```
2 value -1.365339
## iter
          3 value -1.365342
## iter
  iter
          4 value -1.365342
          5 value -1.365343
##
  iter
          6 value -1.365344
##
   iter
##
  iter
          7 value -1.365344
          7 value -1.365344
## iter
          7 value -1.365344
## iter
          value -1.365344
## final
## converged
```


model_31_train_residuals = resid(model_31_train\$fit)
hist(model_31_train_residuals)

Histogram of model_31_train_residuals

shapiro.test(model_31_train_residuals)

```
##
   Shapiro-Wilk normality test
##
##
## data: model_31_train_residuals
## W = 0.98783, p-value = 0.002153
\#SARIMA(2,0,1)x(0,1,1)_12
model_32_train <- sarima(Avg_ExtentTS_Train, p=2, d=0, q=1, P=0, D=1, Q=1, S=12, details = TRUE)
## initial value -0.799783
         2 value -1.147624
## iter
## iter
          3 value -1.332335
## iter
         4 value -1.355514
## iter
         5 value -1.366626
         6 value -1.366675
## iter
## iter
          7 value -1.366841
         8 value -1.366857
## iter
## iter
         9 value -1.366899
## iter
        10 value -1.366998
        11 value -1.367081
## iter
        12 value -1.367109
## iter
        13 value -1.367111
## iter
        14 value -1.367112
## iter
        14 value -1.367112
## iter
## iter 14 value -1.367112
## final value -1.367112
## converged
## initial value -1.365359
```

```
2 value -1.365381
## iter
          3 value -1.365409
## iter
          4 value -1.365409
  iter
          5 value -1.365410
##
  iter
          6 value -1.365412
##
  iter
##
          7 value -1.365416
  iter
## iter
          8 value -1.365420
          9 value -1.365421
## iter
## iter
         10 value -1.365421
         10 value -1.365421
## iter
## iter
         10 value -1.365421
## final value -1.365421
## converged
```


20 LAG (H)

25

30

35

model_32_train_residuals = resid(model_32_train\$fit)
hist(model_32_train_residuals)

15

10

5

Histogram of model_32_train_residuals

shapiro.test(model_32_train_residuals)

```
##
   Shapiro-Wilk normality test
##
##
## data: model_32_train_residuals
## W = 0.98755, p-value = 0.001822
\#SARIMA(2,0,2)x(0,1,1)_12
model_33_train <- sarima(Avg_ExtentTS_Train, p=2, d=0, q=2, P=0, D=1, Q=1, S=12, details = TRUE)
## initial value -0.799783
         2 value -1.066061
## iter
## iter
          3 value -1.228003
## iter
         4 value -1.328895
## iter
         5 value -1.356060
         6 value -1.366108
## iter
## iter
          7 value -1.366516
         8 value -1.367171
## iter
## iter
          9 value -1.367298
## iter
        10 value -1.367313
        11 value -1.367313
## iter
        11 value -1.367313
## iter
## iter 11 value -1.367313
## final value -1.367313
## converged
## initial value -1.365536
## iter
          2 value -1.365571
          3 value -1.365588
## iter
## iter
         4 value -1.365590
```

```
## iter 5 value -1.365591
## iter 6 value -1.365591
## iter 6 value -1.365591
## final value -1.365591
## converged
```


LAG (H)

model_33_train_residuals = resid(model_33_train\$fit)
hist(model_33_train_residuals)

Histogram of model_33_train_residuals

shapiro.test(model_33_train_residuals)

3 value -1.361301

iter

```
##
   Shapiro-Wilk normality test
##
##
## data: model_33_train_residuals
## W = 0.98761, p-value = 0.001885
# Weird combo of optimal parameters for d=0, and d=1 (because had good results with d=D=1)
\#SARIMA(1,0,1)x(3,1,0)_12
model_34_train <- sarima(Avg_ExtentTS_Train, p=1, d=0, q=1, P=3, D=1, Q=0, S=12 , details = TRUE)</pre>
## initial value -0.795069
## iter
         2 value -1.107339
## iter
         3 value -1.327476
## iter
         4 value -1.351082
## iter
         5 value -1.353717
## iter
          6 value -1.360317
         7 value -1.360498
## iter
          8 value -1.360526
## iter
## iter
          9 value -1.360547
## iter
        10 value -1.360548
         11 value -1.360548
## iter
        11 value -1.360548
## iter
## iter 11 value -1.360548
## final value -1.360548
## converged
## initial value -1.361106
## iter
          2 value -1.361247
```

```
## iter
          4 value -1.361318
## iter
          5 value -1.361322
          6 value -1.361323
  iter
          7 value -1.361324
##
  iter
          8 value -1.361324
##
  iter
## iter
          8 value -1.361324
          8 value -1.361324
## iter
## final value -1.361324
## converged
```


model_34_train_residuals = resid(model_34_train\$fit)
hist(model_34_train_residuals)

Histogram of model_34_train_residuals

shapiro.test(model_34_train_residuals)

```
##
##
   Shapiro-Wilk normality test
##
## data: model_34_train_residuals
## W = 0.99035, p-value = 0.01064
# Weird combo of optimal parameters for d=0, and d=1 (because had good results with d=D=1)
\#SARIMA(1,0,1)x(3,1,0)_12
model_35_train <- sarima(Avg_ExtentTS_Train, p=1, d=0, q=1, P=4, D=1, Q=0, S=12 , details = TRUE)</pre>
## initial value -0.804892
## iter
         2 value -1.078475
## iter
         3 value -1.326207
## iter
         4 value -1.348467
## iter
         5 value -1.357442
## iter
          6 value -1.366662
         7 value -1.367642
## iter
          8 value -1.367689
## iter
## iter
          9 value -1.367707
        10 value -1.367713
## iter
        11 value -1.367715
## iter
        12 value -1.367715
## iter
        12 value -1.367715
## iter
## iter 12 value -1.367715
## final value -1.367715
## converged
## initial value -1.365081
         2 value -1.365423
## iter
```

```
3 value -1.365564
## iter
          4 value -1.365571
## iter
          5 value -1.365575
## iter
          6 value -1.365577
## iter
            value -1.365577
##
  iter
## iter
          8 value -1.365577
## iter
          8 value -1.365577
          8 value -1.365577
## iter
          value -1.365577
## final
## converged
```

0.0

0.5

1.0

1.5

LAG ÷ 12

3.0

-3

2

-1 0 1 Theoretical Quantiles

2.5

2.0

model_35_train_residuals = resid(model_34_train\$fit)
hist(model_35_train_residuals)

Histogram of model 35 train residuals

shapiro.test(model_35_train_residuals)

set_number_format(col=c(2,3,4,5), value=3) %>%

```
##
##
             Shapiro-Wilk normality test
##
## data: model_35_train_residuals
## W = 0.99035, p-value = 0.01064
Summarize the fit of these models in a table.
library(huxtable)
goodness_of_fit <- hux(</pre>
                           'SARIMA(13,0,0)x(0,1,1)_12', 'SARIMA(13,0,0)x(1,1,0)_12', 'SARIMA(13,0,0)x(0,1,3)_12'
                                                               "SARIMA(1,0,2)x(0,1,1)_12", "SARIMA(2,0,1)x(0,1,1)_12", "SARIMA(2,0,2)x(0,1,1)_12", "SARIMA(2,0,2)x(0,1,1)_12", "SARIMA(2,0,2)x(0,1,1)_12", "SARIMA(2,0,2)x(0,1,1)_12", "SARIMA(2,0,2)x(0,1,1)_12", "SARIMA(2,0,2)x(0,1,2)_2", "SARIMA(2,0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x(0,2)x
                           AIC = c(model_21_train$AIC, model_22_train$AIC, model_23_train$AIC, model_24_train$AIC, model_2
                                                       model_26_train$AIC, model_27_train$AIC, model_28_train$AIC, model_29_train$AIC, model_3
                                                       model_31_train$AIC, model_32_train$AIC, model_33_train$AIC, model_34_train$AIC, model_3
                           AICc = c(model_21_train$AICc, model_22_train$AICc, model_23_train$AICc, model_24_train$AICc, 
                                                       model_26_train$AICc, model_27_train$AICc, model_28_train$AICc, model_29_train$AICc, mod
                                                       model_31_train$AICc, model_32_train$AICc, model_33_train$AICc, model_34_train$AICc, mod
                           BIC = c(model_21_train$BIC, model_22_train$BIC, model_23_train$BIC, model_24_train$BIC, model_2
                                                       model 26 train$BIC, model 27 train$BIC, model 28 train$BIC, model 29 train$BIC, model 3
                                                       model_31_train$BIC, model_32_train$BIC, model_33_train$BIC, model_34_train$BIC, model_3
                           MSE = c(mean(model_21_train_residuals^2), mean(model_22_train_residuals^2), mean(model_23_train_
                                                       mean(model_26_train_residuals^2), mean(model_27_train_residuals^2), mean(model_28_train
                                                       mean(model_31_train_residuals^2), mean(model_32_train_residuals^2), mean(model_33_train
                    )
goodness_of_fit %>%
```

```
set_bottom_border(c(1,11,14), everywhere) %>%
set_bold(c(2,4,5,6), everywhere) %>%
set_background_color(evens, everywhere, "grey95")
```

Model	AIC	AICc	BIC	MSE
SARIMA(1,0,1)x(0,1,1)_12	0.133	0.134	0.185	0.061
$SARIMA(1,0,1)x(1,1,0)_12$	0.250	0.250	0.301	0.070
SARIMA(1,0,1)x(0,1,3)_12	0.137	0.137	0.209	0.061
$SARIMA(1,0,1)x(0,1,4)_12$	0.134	0.135	0.216	0.060
SARIMA(1,0,1)x(1,1,1)_12	0.138	0.138	0.200	0.061
$SARIMA(13,0,0)x(0,1,1)_12$	0.163	0.166	0.327	0.060
SARIMA(13,0,0)x(1,1,0)_12	0.244	0.247	0.408	0.066
$SARIMA(13,0,0)x(0,1,3)_12$	0.146	0.150	0.331	0.058
$SARIMA(13,0,0)x(0,1,4)_12$	0.141	0.146	0.336	0.057
SARIMA(13,0,0)x(1,1,1)_12	0.152	0.156	0.327	0.059
SARIMA(1,0,2)x(0,1,1)_12	0.138	0.139	0.200	0.061
SARIMA(2,0,1)x(0,1,1)_12	0.138	0.139	0.200	0.061
SARIMA(2,0,2)x(0,1,1)_12	0.143	0.144	0.215	0.061
SARIMA(1,0,1)x(3,1,0)_12	0.152	0.152	0.224	0.062
SARIMA(1,0,1)x(4,1,0)_12	0.148	0.149	0.231	0.062

•

Model Selection

We evaluate performance on the test set of a few of the models which gave the best fit.

 $\label{local_power_pow$

model_23_train_forecast<- sarima.for(Avg_ExtentTS_Train, n.ahead=22, p=1,d=0,q=1,P=0,D=1,Q=3,S=12)
lines(Avg_ExtentTS_Test,col='blue',type='b',pch=16)</pre>

model_24_train_forecast<- sarima.for(Avg_ExtentTS_Train, n.ahead=22, p=1,d=0,q=1,P=0,D=1,Q=4,S=12)
lines(Avg_ExtentTS_Test,col='blue',type='b',pch=16)</pre>


```
model_25_train_forecast<- sarima.for(Avg_ExtentTS_Train, n.ahead=22, p=1,d=0,q=1,P=1,D=1,Q=1,S=12)
lines(Avg_ExtentTS_Test,col='blue',type='b',pch=16)</pre>
```



```
mean((model_21_train_forecast$pred-Avg_ExtentTS_Test)^2)
```

[1] 0.3343123

mean((model_23_train_forecast\$pred-Avg_ExtentTS_Test)^2)

[1] 0.3455438

mean((model_24_train_forecast\$pred-Avg_ExtentTS_Test)^2)

[1] 0.3370083

mean((model_25_train_forecast\$pred-Avg_ExtentTS_Test)^2)

[1] 0.3340769

Summarize these results in a table.

Model	PMSE
SARIMA(1,0,1)x(0,1,1)_12	0.334
$SARIMA(1,0,1)x(0,1,3)_12$	0.346
SARIMA(1,0,1)x(0,1,4)_12	0.337
SARIMA(1,0,1)x(1,1,1)_12	0.334

```
# Best SARIMA model
model_21 \leftarrow sarima(Avg\_ExtentTS, p=1, d=0, q=1, P=0, D=1, Q=1, S=12, details = TRUE)
## initial value -0.789422
## iter 2 value -1.114422
## iter 3 value -1.355131
## iter 4 value -1.356779
## iter
       5 value -1.365174
## iter
        6 value -1.367226
        7 value -1.367725
## iter
        8 value -1.367797
## iter
## iter
        9 value -1.367800
## iter 10 value -1.367803
## iter 11 value -1.367803
## iter 12 value -1.367804
## iter 12 value -1.367804
## iter 12 value -1.367804
## final value -1.367804
## converged
## initial value -1.365801
        2 value -1.365834
## iter
## iter
        3 value -1.365859
## iter
       4 value -1.365875
## iter
        5 value -1.365876
## iter
        5 value -1.365876
## iter
         5 value -1.365876
## final value -1.365876
## converged
```



```
Upper_Limit = pred_model_21$pred + 2*pred_model_21$se # upper prediction band
Lower_Limit = pred_model_21$pred - 2*pred_model_21$se # lower prediction band
plot(Avg_ExtentTS , xlim = c(2015 , 2027+10/12), ylab="Average Ice Extent", main="Prediction from SARIM
#The three lines below plot the prediction interval in a grey scale
x = c(time(Upper_Limit) , rev(time(Upper_Limit)))
y = c(Upper_Limit , rev(Lower_Limit))
polygon(x, y, col="grey", border=NA)

#The three line below add the predicted values and highlight the borders of the prediction interval
lines(Upper_Limit, col="black" , lty=2)
lines(Lower_Limit, col="black", lty=2)
lines(pred_model_21$pred , col="red")
abline(v=2022+9.5/12, lty="dashed")
```


Min	First Quartile	Median	Mean	Third Quartile	Max
4.257	7.148	11.065	10.197	13.431	14.442

First year of prediction from best sarima model.

```
prediction <- as.data.frame(rbind(matrix(head(pred_model_21$pred, 12),nrow=1)))</pre>
colnames(prediction) <- c("Nov.", "Dec.", "Jan.", "Feb.", "Mar.", "Apr.", "May", "Jun.", "Jul.", "Aug.",
prediction_table <- hux(prediction)</pre>
prediction_table %>%
     set number format(3) %>%
     set_align(everywhere, everywhere, "center") %>%
     set_bottom_border(1, everywhere) %>%
     set_bold(1, everywhere) %>%
     print_latex(tabular_only=TRUE)
##
##
        ```{=latex}
##
 \providecommand{\huxb}[2]{\arrayrulecolor[RGB]{#1}\global\arrayrulewidth=#2pt}
##
 \providecommand{\huxvb}[2]{\color[RGB]{#1}\vrule width #2pt}
##
 \providecommand{\huxtpad}[1]{\rule{0pt}{#1}}
##
 \providecommand{\huxbpad}[1]{\rule[-#1]{0pt}{#1}}
##
\begin{tabular}{l | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
##
##
\hhline{}
\arrayrulecolor{black}
##
\multicolumn{1}{!{\huxvb{0, 0, 0}{0}}c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6
\# \multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} \textbf{Dec.} \hs
\# \multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} \textbf{Jan.} \hspace{6pt} \textbf{Jan.}
\# \multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} \textbf{Feb.} \hs
\multicolumn\{1\}\{c!\{\huxvb\{0, 0, 0\}\{0\}\}\}\{\huxtpad\{6pt + 1em\}\centering \hspace\{6pt\} \textbf\{Mar.\} \hs
\# \multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} \textbf{May} \hspace{6pt} \textbf{May} \hspace{6pt} \textbf{May} \hspace{6pt} \textbf{May} \hspace{6pt} \textbf{May} \hspace{6pt} \textbf{May} \hspace{6pt} \hspace{6pt} \textbf{May} \hspace{6pt} \hspace{
\# \multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} \textbf{Jun.} \hs
\# \multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} \textbf{Jul.} \hspace{6pt} \textbf{Jul.}
\multicolumn\{1\}\{c!\{\huxvb\{0, 0, 0\}\{0\}\}\}\{\huxtpad\{6pt + 1em\}\centering \hspace\{6pt\} \textbf\{Aug.\} \hspace\{6pt\} \textbf\{Aug.\} \hspace\{6pt\} \textbf\{Aug.\} \hspace\{6pt\} \textbf\{Aug.\} \hspace\{6pt\} \textbf\{Aug.\} \hspace\{6pt\} \textbf\{Aug.\} \hspace\{6pt\} \hspace\{6pt\} \textbf\{Aug.\} \hspace\{6pt\} \textbf\{Aug.\} \hspace\{6pt\}
\multicolumn\{1\}\{c!\{\huxvb\{0, 0, 0\}\{0\}\}\}\{\huxtpad\{6pt + 1em\}\centering \hspace\{6pt\} \textbf\{Sep.\} \hs
\# \multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} \textbf{0ct.} \hs
##
##
\hhline{>{\huxb{0, 0, 0}{0.4}}->{\huxb{0, 0, 0}{0.4}}->{\huxb{0, 0, 0}{0.4}}->{\huxb{0, 0, 0}{0.4}}-
\arrayrulecolor{black}
##
\multicolumn{1}{!{\huxvb{0, 0, 0}{0}}c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 11.962 \hspace{6p}
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 13.526 \hspace{6pt}
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 14.323 \hspace{6pt}
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 14.442 \hspace{6pt}
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 13.656 \hspace{6p}
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 12.376 \hspace{6pt}
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 10.562 \hspace{6pt}
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 7.691 \hspace{6pt}
```

## \multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 5.381 \hspace{6pt}

```
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 4.468 \hspace{6pt}
\multicolumn{1}{c!{\huxvb{0, 0, 0}{0}}}{\huxtpad{6pt + 1em}\centering \hspace{6pt} 6.168 \hspace{6pt}
##
\hhline{}
\arrayrulecolor{black}
\end{tabular}
```
code used for additional plots in report
plot(acf(Avg_ExtentTS, lag.max=36), main="ACF of Aggregated Data")
```

## Series Avg\_ExtentTS



# **ACF of Aggregated Data**



plot(acf(mlr\_train\_3\$residuals, lag.max=36), main="ACF of MLR Residuals")

## Series mlr\_train\_3\$residuals



### **ACF of MLR Residuals**



plot(acf(residuals\_HW, lag.max=36), main="ACF of HW Residuals")

## Series residuals\_HW



#### **ACF of HW Residuals**



plot(acf(diff12.diff.Extent, lag.max=36), main="ACF of Differenced Data (Seasonal+Regular)")

### Series diff12.diff.Extent



# ACF of Differenced Data (Seasonal+Regular)



plot(pacf(diff12.diff.Extent, lag.max=36), main="PACF of Differenced Data (Seasonal+Regular)")

#### Series diff12.diff.Extent



# PACF of Differenced Data (Seasonal+Regular)



plot(acf(diff12.Extent, lag.max=36), main="ACF of Differenced Data (Seasonal)")

#### Series diff12.Extent



# **ACF of Differenced Data (Seasonal)**



plot(pacf(diff12.Extent, lag.max=36), main="PACF of Differenced Data (Seasonal)")

#### Series diff12.Extent



## **PACF of Differenced Data (Seasonal)**



### Things we tried but didn't make the report

#### Unaggregated Data

We analyze the unaggregated data.

```
make a TS object
ExtentTS <- ts(df$extent, frequency=365, start=year(df$YYMMDD[1]))
plot(ExtentTS)</pre>
```



acf(ExtentTS, lag.max=365)

## Series ExtentTS



#### Variance

From the plot, we see a clear seasonal pattern, and perhaps a decreasing linear trend. It is unclear whether variance is constant. We test this using the Fligner-Keileen test.

```
do Fligner test for constant variance.
segments = factor(c(rep(1:4, each=2542), rep(5, times=2543)))
fligner.test(ExtentTS, segments)
##
 Fligner-Killeen test of homogeneity of variances
##
##
data: ExtentTS and segments
Fligner-Killeen:med chi-squared = 170.73, df = 4, p-value < 2.2e-16
segments = factor(c(rep(1:9, each=1271), rep(10, times=1272)))
fligner.test(ExtentTS, segments)
##
##
 Fligner-Killeen test of homogeneity of variances
##
data: ExtentTS and segments
Fligner-Killeen:med chi-squared = 219.12, df = 9, p-value < 2.2e-16
segments = factor(c(rep(1:49, each=254), rep(50, times=265)))
fligner.test(ExtentTS, segments)
##
##
 Fligner-Killeen test of homogeneity of variances
##
data: ExtentTS and segments
Fligner-Killeen:med chi-squared = 1326.7, df = 49, p-value < 2.2e-16
segments = factor(c(rep(1:99, each=127), rep(100, times=138)))
fligner.test(ExtentTS, segments)
Fligner-Killeen test of homogeneity of variances
##
data: ExtentTS and segments
Fligner-Killeen:med chi-squared = 3386.9, df = 99, p-value < 2.2e-16
segments = factor(c(rep(1:34, each=364), rep(35, times=335))) # corresponds more closely to each "wave"
fligner.test(ExtentTS, segments)
##
 Fligner-Killeen test of homogeneity of variances
##
data: ExtentTS and segments
Fligner-Killeen:med chi-squared = 368.79, df = 34, p-value < 2.2e-16
All give really low p-value so may conclude that variance is not constant. However, this could be due to the
amount of data we have.
```

#### Regression

Try to remove non-stationarity using Regression (Multiple Linear, Ridge, Lasso, Elastic Net).

#### Multiple Linear Regression

```
mlr <- lm(ExtentTS~time(ExtentTS)+factor(cycle(ExtentTS)))
#summary(mlr) #verrrryyyyy long output and complicated model.</pre>
```





We see from the regression, that including daily data leads to a very complicated regression model, and acf plot which has to go way beyond recommended lag to observe an entire period. For this reason, and because we care mostly about overall trend and not daily fluctuation, we proceed with the aggregated data.

#### Differencing on Entire Data

Try differencing to remove non-stationarity.

acf(Avg\_ExtentTS, lag.max=36)

# Series Avg\_ExtentTS





#differencing in lag of season
diff12.Extent=diff(Avg\_ExtentTS, lag=12)
acf(diff12.Extent, lag.max=36)

### Series diff12.Extent



pacf(diff12.Extent, lag.max=36)

### Series diff12.Extent





#regular differencing
diff.Extent=diff(Avg\_ExtentTS)
acf(diff.Extent, lag.max=36)

## Series diff.Extent





#seasonal+regular differencing
diff12.diff.Extent=diff(diff12.Extent)
acf(diff12.diff.Extent, lag.max=36)

#### Series diff12.diff.Extent





acf(diff12.diff.Extent, lag.max=36)

### Series diff12.diff.Extent



pacf(diff12.diff.Extent, lag.max=36)

#### Series diff12.diff.Extent



Noted after that differencing should have been done on training data.

#### Smoothing, followed by differencing

Try smoothing before differencing to see effect on acf

```
smoothing <- HoltWinters(Avg_ExtentTS_Train, season="additive")
smoothed <- smoothing$fitted[,1]
diff12.Extent_smooth=diff(smoothed, lag=12)
acf(diff12.Extent_smooth, lag.max=36)</pre>
```

## Series diff12.Extent\_smooth







diff12.diff.Extent\_smooth=diff(diff12.Extent\_smooth)
acf(diff12.diff.Extent\_smooth, lag.max=36)

## Series diff12.diff.Extent\_smooth







acf(diff12.diff.Extent\_smooth, lag.max=36)

## Series diff12.diff.Extent\_smooth



pacf(diff12.diff.Extent\_smooth, lag.max=36)

### Series diff12.diff.Extent\_smooth



This didn't change anything.

#### **Model Fitting**

Seasonal + regular differencing.

```
\#SARIMA(0,1,2)x(0,1,1)_12
model_1_train <- sarima(Avg_ExtentTS_Train, p=0, d=1, q=2, P=0, D=1, Q=1, S=12, details = TRUE)
initial value -1.046835
iter 2 value -1.270895
iter 3 value -1.286671
iter 4 value -1.288786
iter 5 value -1.299437
iter 6 value -1.301999
iter 7 value -1.302786
iter 8 value -1.302845
iter 9 value -1.302850
iter 10 value -1.302854
iter 11 value -1.302854
iter 11 value -1.302854
iter 11 value -1.302854
final value -1.302854
converged
initial value -1.299104
iter 2 value -1.299174
iter 3 value -1.299223
iter 4 value -1.299225
iter 5 value -1.299225
iter 5 value -1.299225
iter 5 value -1.299225
final value -1.299225
converged
```



## Histogram of model\_1\_train\_residuals



```
shapiro.test(model_1_train_residuals)
##
Shapiro-Wilk normality test
##
data: model_1_train_residuals
W = 0.98032, p-value = 3.21e-05
\#SARIMA(0,1,2)x(3,1,0)_12
model_2_train <- sarima(Avg_ExtentTS_Train, p=0, d=1, q=2, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.039490
iter 2 value -1.176658
iter 3 value -1.269525
iter 4 value -1.294457
iter 5 value -1.299214
iter 6 value -1.299421
iter 7 value -1.299429
iter 8 value -1.299429
iter 8 value -1.299429
iter 8 value -1.299429
final value -1.299429
converged
initial value -1.297378
iter 2 value -1.297439
iter 3 value -1.297448
iter 4 value -1.297451
iter 5 value -1.297451
iter 6 value -1.297451
iter 6 value -1.297451
iter 6 value -1.297451
final value -1.297451
converged
```



# Histogram of model\_2\_train\_residuals



```
shapiro.test(model_2_train_residuals)
##
##
 Shapiro-Wilk normality test
##
data: model_2_train_residuals
W = 0.98446, p-value = 0.0002963
\#SARIMA(0,1,2)x(1,1,1)_12
model_3_train <- sarima(Avg_ExtentTS_Train, p=0, d=1, q=2, P=1, D=1, Q=1, S=12, details = TRUE)
initial value -1.044499
iter 2 value -1.237721
iter 3 value -1.282334
iter 4 value -1.287558
iter 5 value -1.293725
iter 6 value -1.293955
iter 7 value -1.294047
iter 8 value -1.294078
iter 9 value -1.294083
iter 10 value -1.294083
iter 10 value -1.294083
final value -1.294083
converged
initial value -1.299017
iter
 2 value -1.299579
iter 3 value -1.300082
iter 4 value -1.300197
iter 5 value -1.300210
iter 6 value -1.300211
iter 7 value -1.300211
iter 8 value -1.300211
iter 8 value -1.300211
iter 8 value -1.300211
final value -1.300211
converged
```



# Histogram of model\_3\_train\_residuals



```
shapiro.test(model_3_train_residuals)
##
Shapiro-Wilk normality test
##
data: model_3_train_residuals
W = 0.98178, p-value = 6.856e-05
\#SARIMA(4,1,0)x(0,1,1)_12
model_4_train <- sarima(Avg_ExtentTS_Train, p=4, d=1, q=0, P=0, D=1, Q=1, S=12, details = TRUE)
initial value -1.045273
iter 2 value -1.275376
iter 3 value -1.289687
iter 4 value -1.291649
iter 5 value -1.300383
iter 6 value -1.302661
iter 7 value -1.303220
iter 8 value -1.303284
iter 9 value -1.303285
iter 9 value -1.303285
iter 9 value -1.303285
final value -1.303285
converged
initial value -1.305545
iter 2 value -1.305718
iter 3 value -1.305759
iter 4 value -1.305764
iter 5 value -1.305764
iter 5 value -1.305764
iter 5 value -1.305764
final value -1.305764
converged
```



# Histogram of model\_4\_train\_residuals



```
shapiro.test(model_4_train_residuals)
##
Shapiro-Wilk normality test
##
data: model_4_train_residuals
W = 0.98293, p-value = 0.0001267
\#SARIMA(4,1,0)x(3,1,0)_12
model_5_train <- sarima(Avg_ExtentTS_Train, p=4, d=1, q=0, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.034768
iter 2 value -1.176278
iter 3 value -1.267070
iter 4 value -1.292224
iter 5 value -1.298051
iter 6 value -1.298311
iter 7 value -1.298325
iter 8 value -1.298325
iter 8 value -1.298325
iter 8 value -1.298325
final value -1.298325
converged
initial value -1.301857
iter 2 value -1.302141
iter 3 value -1.302152
iter 4 value -1.302153
iter 5 value -1.302153
iter 5 value -1.302153
iter 5 value -1.302153
final value -1.302153
converged
```



# Histogram of model\_5\_train\_residuals



```
shapiro.test(model_5_train_residuals)
##
##
 Shapiro-Wilk normality test
##
data: model_5_train_residuals
W = 0.98537, p-value = 0.0004979
\#SARIMA(4,1,0)x(1,1,1)_12
model_6_train <- sarima(Avg_ExtentTS_Train, p=4, d=1, q=0, P=1, D=1, Q=1, S=12, details = TRUE)
initial value -1.041584
iter 2 value -1.241588
iter 3 value -1.287381
iter 4 value -1.292821
iter 5 value -1.300492
iter 6 value -1.300777
iter 7 value -1.300797
iter 8 value -1.300801
iter 9 value -1.300802
iter 9 value -1.300802
iter 9 value -1.300802
final value -1.300802
converged
initial value -1.305672
iter
 2 value -1.306365
iter 3 value -1.306596
iter 4 value -1.306681
iter 5 value -1.306698
iter 6 value -1.306701
iter 7 value -1.306701
iter 7 value -1.306701
iter 7 value -1.306701
final value -1.306701
converged
```



## Histogram of model\_6\_train\_residuals



```
shapiro.test(model_6_train_residuals)
##
##
 Shapiro-Wilk normality test
##
data: model_6_train_residuals
W = 0.98408, p-value = 0.0002389
\#SARIMA(5,1,0)x(0,1,1)_12
model_7_train <- sarima(Avg_ExtentTS_Train, p=5, d=1, q=0, P=0, D=1, Q=1, S=12, details = TRUE)
initial value -1.051141
iter 2 value -1.280688
iter 3 value -1.294984
iter 4 value -1.299314
iter 5 value -1.306323
iter 6 value -1.308043
iter 7 value -1.308352
iter 8 value -1.308378
iter 9 value -1.308378
iter 9 value -1.308378
iter 9 value -1.308378
final value -1.308378
converged
initial value -1.312741
iter
 2 value -1.313183
iter 3 value -1.313486
iter 4 value -1.313497
iter 5 value -1.313500
iter 6 value -1.313500
iter 6 value -1.313500
iter 6 value -1.313500
final value -1.313500
converged
```



# Histogram of model\_7\_train\_residuals



```
shapiro.test(model_7_train_residuals)
##
Shapiro-Wilk normality test
##
data: model_7_train_residuals
W = 0.98416, p-value = 0.0002503
\#SARIMA(5,1,0)x(3,1,0)_12
model_8_train <- sarima(Avg_ExtentTS_Train, p=5, d=1, q=0, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.034323
iter 2 value -1.181171
iter 3 value -1.276196
iter 4 value -1.303175
iter 5 value -1.309458
iter 6 value -1.309745
iter 7 value -1.309762
iter 8 value -1.309762
iter 8 value -1.309762
iter 8 value -1.309762
final value -1.309762
converged
initial value -1.309715
iter 2 value -1.310249
iter 3 value -1.310286
iter 4 value -1.310300
iter 5 value -1.310300
iter 6 value -1.310300
iter 6 value -1.310300
iter 6 value -1.310300
final value -1.310300
converged
```



# Histogram of model\_8\_train\_residuals



```
shapiro.test(model_8_train_residuals)
##
Shapiro-Wilk normality test
##
data: model_8_train_residuals
W = 0.98765, p-value = 0.00193
\#SARIMA(5,1,0)x(1,1,1)_12
model_9_train <- sarima(Avg_ExtentTS_Train, p=5, d=1, q=0, P=1, D=1, Q=1, S=12, details = TRUE)
initial value -1.047019
iter 2 value -1.250977
iter 3 value -1.298091
iter 4 value -1.305471
iter 5 value -1.315008
iter 6 value -1.315491
iter 7 value -1.315527
iter 8 value -1.315540
iter 9 value -1.315541
iter 9 value -1.315541
iter 9 value -1.315541
final value -1.315541
converged
initial value -1.313961
iter
 2 value -1.314344
iter 3 value -1.314392
iter 4 value -1.314401
iter 5 value -1.314406
iter 6 value -1.314406
iter 7 value -1.314406
iter 7 value -1.314406
iter 7 value -1.314406
final value -1.314406
converged
```



# Histogram of model\_9\_train\_residuals



```
shapiro.test(model_9_train_residuals)
##
##
 Shapiro-Wilk normality test
##
data: model_9_train_residuals
W = 0.98544, p-value = 0.0005193
\#SARIMA(1,1,1)x(0,1,1)_12
model_10_train <- sarima(Avg_ExtentTS_Train, p=1, d=1, q=1, P=0, D=1, Q=1, S=12, details = TRUE)
initial value -1.045552
iter 2 value -1.242919
iter 3 value -1.258615
iter 4 value -1.265606
 5 value -1.269085
iter
iter
 6 value -1.271594
iter
 7 value -1.272018
iter
 8 value -1.272061
iter
 9 value -1.272075
iter 10 value -1.272103
iter 11 value -1.273789
iter 12 value -1.274147
iter 13 value -1.274999
iter 14 value -1.275080
iter 15 value -1.276771
iter 16 value -1.276973
iter 17 value -1.277440
iter 18 value -1.277524
iter 19 value -1.277528
iter 20 value -1.277529
iter 21 value -1.277529
iter 22 value -1.277530
iter 23 value -1.277530
iter 24 value -1.277530
iter 25 value -1.277531
iter 26 value -1.277531
iter 26 value -1.277531
iter 26 value -1.277531
final value -1.277531
converged
initial value -1.276765
iter
 2 value -1.276787
iter 3 value -1.276795
iter 4 value -1.276795
iter
 5 value -1.276795
iter
 6 value -1.276796
iter
 7 value -1.276797
iter
 8 value -1.276797
iter
 9 value -1.276798
iter 10 value -1.276798
iter 10 value -1.276798
iter 10 value -1.276798
```

## final value -1.276798

#### ## converged



model\_10\_train\_residuals = resid(model\_10\_train\$fit)
hist(model\_10\_train\_residuals)

## Histogram of model\_10\_train\_residuals



shapiro.test(model\_10\_train\_residuals)

18 value -1.276115

19 value -1.281384

## iter

```
##
 Shapiro-Wilk normality test
##
##
data: model_10_train_residuals
W = 0.97359, p-value = 1.319e-06
\#SARIMA(1,1,1)x(3,1,0)_12
model_11_train <- sarima(Avg_ExtentTS_Train, p=1, d=1, q=1, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.038097
iter
 2 value -1.144641
iter
 3 value -1.239216
iter
 4 value -1.265137
iter
 5 value -1.269506
 6 value -1.269577
iter
iter
 7 value -1.269587
 8 value -1.269588
iter
iter
 9 value -1.269590
iter
 10 value -1.269601
 11 value -1.269726
iter
 12 value -1.269928
iter
 13 value -1.269990
iter
 14 value -1.270074
iter
 15 value -1.270123
iter
 16 value -1.270398
iter
iter
 17 value -1.274020
```

```
iter 20 value -1.292576
iter 21 value -1.304600
iter 22 value -1.318963
iter 23 value -1.331206
iter 24 value -1.334219
iter 25 value -1.334457
iter 26 value -1.334997
iter 27 value -1.336065
iter 28 value -1.336081
iter 29 value -1.336093
iter 30 value -1.336095
iter 30 value -1.336095
iter 30 value -1.336095
final value -1.336095
converged
initial value -1.332968
iter
 2 value -1.334981
iter
 3 value -1.336741
iter
 4 value -1.336979
 5 value -1.337236
iter
iter
 6 value -1.337267
iter 7 value -1.337272
iter 8 value -1.337273
iter
 9 value -1.337273
iter 9 value -1.337273
iter
 9 value -1.337273
final value -1.337273
converged
```



# Histogram of model\_11\_train\_residuals



```
shapiro.test(model_11_train_residuals)
##
##
 Shapiro-Wilk normality test
##
data: model_11_train_residuals
W = 0.99044, p-value = 0.01131
\#SARIMA(1,1,1)x(1,1,1)_12
model_12_train <- sarima(Avg_ExtentTS_Train, p=1, d=1, q=1, P=1, D=1, Q=1, S=12, details = TRUE)
initial value -1.043857
iter 2 value -1.216764
iter 3 value -1.259588
iter 4 value -1.264738
 5 value -1.271016
iter
iter
 6 value -1.271155
iter
 7 value -1.271164
iter
 8 value -1.271165
iter
 9 value -1.271166
iter 10 value -1.271174
iter 11 value -1.271177
iter 12 value -1.271179
iter 13 value -1.271182
iter 14 value -1.271192
iter 15 value -1.271226
iter 16 value -1.271350
iter 17 value -1.271513
iter 18 value -1.271902
iter 19 value -1.272301
iter 20 value -1.272695
iter 21 value -1.272800
iter 22 value -1.272856
iter 23 value -1.272922
iter 24 value -1.273079
iter 25 value -1.273307
iter 26 value -1.273488
iter 27 value -1.273600
iter 28 value -1.273602
iter 29 value -1.273604
iter 30 value -1.273604
iter 31 value -1.273604
iter 31 value -1.273604
iter 31 value -1.273604
final value -1.273604
converged
initial value -1.276218
iter
 2 value -1.276807
iter
 3 value -1.277527
 4 value -1.277549
iter
iter
 5 value -1.277577
iter
 6 value -1.277709
iter
 7 value -1.277802
```

## iter

8 value -1.277869



1.0

0.5

0.0





3.0

-3

2

model\_12\_train\_residuals = resid(model\_4\_train\$fit) hist(model\_12\_train\_residuals)

2.0

2.5

## Histogram of model\_12\_train\_residuals



shapiro.test(model\_12\_train\_residuals)

```
##
 Shapiro-Wilk normality test
##
##
data: model_12_train_residuals
W = 0.98293, p-value = 0.0001267
\#SARIMA(1,1,2)x(3,1,0)_12
model_13_train <- sarima(Avg_ExtentTS_Train, p=1, d=1, q=2, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.038097
 2 value -1.174147
iter
iter
 3 value -1.267295
iter
 4 value -1.292320
iter
 5 value -1.298557
 6 value -1.301947
iter
iter
 7 value -1.306400
 8 value -1.321210
iter
iter
 9 value -1.330951
iter
 10 value -1.335397
 11 value -1.337789
iter
 12 value -1.340572
iter
 13 value -1.347191
iter
 14 value -1.348937
iter
 15 value -1.350213
iter
 16 value -1.351118
iter
iter
 17 value -1.351773
 18 value -1.352098
 19 value -1.352148
iter
```

```
20 value -1.352151
 21 value -1.352151
iter
 21 value -1.352151
final value -1.352151
converged
initial
 value -1.349885
iter
 2 value -1.351590
 3 value -1.352561
iter
iter
 4 value -1.352788
 5 value -1.352968
iter
iter
 6 value -1.352987
 7 value -1.353011
##
 iter
 8 value -1.353019
##
 iter
 9 value -1.353020
 iter
iter
 10 value -1.353021
 10 value -1.353021
iter
 10 value -1.353021
final value -1.353021
converged
 Model: (1,1,2) (3,1,0) [12]
 Standardized Residuals
 \alpha
 0
 7
 4
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 Time
 ACF of Residuals
 Normal Q-Q Plot of Std Residuals
 0.3
 Sample Quantiles -4 0 2 4
ACF
0.1
 Ò
 0.0
 1.5
 2.0
 2.5
 3.0
 -2
 0
 2
 LAG ÷ 12
 Theoretical Quantiles
 p values for Ljung-Box statistic
 10
 15
 20
 25
 30
 35
```

model\_13\_train\_residuals = resid(model\_13\_train\$fit)
hist(model\_13\_train\_residuals)

LAG (H)

## Histogram of model\_13\_train\_residuals



shapiro.test(model\_13\_train\_residuals)

```
##
 Shapiro-Wilk normality test
##
##
data: model_13_train_residuals
W = 0.98949, p-value = 0.006128
\#SARIMA(2,1,1)x(3,1,0)_12
model_14_train <- sarima(Avg_ExtentTS_Train, p=2, d=1, q=1, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.036901
 2 value -1.166690
iter
iter
 3 value -1.255867
iter
 4 value -1.280740
iter
 5 value -1.285485
 6 value -1.286803
iter
iter
 7 value -1.286902
 8 value -1.286964
iter
iter
 9 value -1.287912
iter
 10 value -1.294229
 11 value -1.298570
iter
 12 value -1.305005
iter
 13 value -1.310441
iter
 14 value -1.314638
iter
 15 value -1.315596
iter
 16 value -1.329652
iter
iter
 17 value -1.330212
 18 value -1.330363
iter
 19 value -1.330578
```

```
20 value -1.330666
iter
iter
 21 value -1.330705
 22 value -1.330707
 23 value -1.330707
 iter
 iter
 24 value -1.330707
iter
 24 value -1.330707
iter
 24 value -1.330707
final value -1.330707
converged
initial
 value -1.343351
 iter
 2 value -1.348834
 3 value -1.350278
iter
 4 value -1.351392
##
 iter
iter
 5 value -1.351635
iter
 6 value -1.351709
iter
 7 value -1.351762
iter
 8 value -1.351781
 9 value -1.351785
iter
iter
 10 value -1.351785
 10 value -1.351785
iter
iter
 10 value -1.351785
final value -1.351785
converged
 Model: (2,1,1) (3,1,0) [12]
 Standardized Residuals
 ^{\circ}
 0
 7
 4
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 Time
 ACF of Residuals
 Normal Q-Q Plot of Std Residuals
 Sample Quantiles -4 0 2 4
 2
ACF
0.1
 ,
Ö
 2.5
 3.0
 0.0
 0.5
 1.0
 1.5
 2.0
 -3
 -2
 0
 2
 LAG ÷ 12
 Theoretical Quantiles
```



3

model\_14\_train\_residuals = resid(model\_14\_train\$fit)
hist(model\_14\_train\_residuals)

## Histogram of model\_14\_train\_residuals



shapiro.test(model\_14\_train\_residuals)

```
##
 Shapiro-Wilk normality test
##
##
data: model_14_train_residuals
W = 0.99044, p-value = 0.01131
\#SARIMA(2,1,2)x(3,1,0)_12
model_15_train <- sarima(Avg_ExtentTS_Train, p=2, d=1, q=2, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.036901
 2 value -1.157349
iter
iter
 3 value -1.257467
iter
 4 value -1.285105
iter
 5 value -1.293434
iter
 6 value -1.295560
iter
 7 value -1.300881
 8 value -1.302705
iter
iter
 9 value -1.311610
iter
 10 value -1.325367
 11 value -1.333384
iter
 12 value -1.335509
iter
 13 value -1.335519
iter
 14 value -1.337033
iter
 15 value -1.338102
iter
 16 value -1.339632
iter
iter
 17 value -1.340943
 18 value -1.341232
iter
 19 value -1.343535
```

```
iter 20 value -1.345330
iter 21 value -1.346789
iter 22 value -1.346934
iter 23 value -1.347039
iter 24 value -1.347063
iter 25 value -1.347078
iter 26 value -1.347086
iter 27 value -1.347112
iter 28 value -1.347139
iter 29 value -1.347147
iter 30 value -1.347149
iter 31 value -1.347149
iter 32 value -1.347149
iter 32 value -1.347149
iter 32 value -1.347149
final value -1.347149
converged
initial value -1.348512
iter 2 value -1.349569
 3 value -1.349586
iter
iter
 4 value -1.350848
iter 5 value -1.350982
 6 value -1.351193
iter
iter
 7 value -1.352121
iter
 8 value -1.352601
iter
 9 value -1.353193
iter 10 value -1.353272
iter 11 value -1.353333
 12 value -1.353339
iter
iter 13 value -1.353341
iter 14 value -1.353341
iter 15 value -1.353341
iter 16 value -1.353342
iter 16 value -1.353341
iter 16 value -1.353341
final value -1.353342
converged
Warning in sqrt(diag(fitit$var.coef)): NaNs produced
Warning in sqrt(diag(fitit$var.coef)): NaNs produced
```



# Histogram of model\_15\_train\_residuals



```
shapiro.test(model_15_train_residuals)
##
##
 Shapiro-Wilk normality test
##
data: model_15_train_residuals
W = 0.98876, p-value = 0.003849
\#SARIMA(1,1,3)x(3,1,0)_12
model_16_train <- sarima(Avg_ExtentTS_Train, p=1, d=1, q=3, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.038097
iter 2 value -1.179338
iter 3 value -1.282734
iter 4 value -1.316080
 5 value -1.323583
iter
iter
 6 value -1.325829
iter
 7 value -1.327176
iter
 8 value -1.330400
iter
 9 value -1.336051
iter 10 value -1.343009
iter 11 value -1.345708
iter 12 value -1.349993
iter 13 value -1.351352
iter 14 value -1.351698
iter 15 value -1.352012
iter 16 value -1.352157
iter 17 value -1.352161
iter 18 value -1.352172
iter 19 value -1.352179
iter 20 value -1.352186
iter 21 value -1.352188
iter 22 value -1.352189
iter 23 value -1.352190
iter 24 value -1.352190
iter 24 value -1.352190
iter 24 value -1.352190
final value -1.352190
converged
initial value -1.349943
iter
 2 value -1.352612
 3 value -1.352925
iter
 4 value -1.353025
iter
iter 5 value -1.353075
iter 6 value -1.353123
iter
 7 value -1.353167
 8 value -1.353192
iter
iter
 9 value -1.353198
iter 10 value -1.353199
iter 11 value -1.353199
iter 11 value -1.353199
iter 11 value -1.353199
final value -1.353199
```

## converged



# Histogram of model\_16\_train\_residuals



```
shapiro.test(model_16_train_residuals)
##
Shapiro-Wilk normality test
##
data: model_16_train_residuals
W = 0.98903, p-value = 0.004551
This is commented out because it results in an error
\#SARIMA(3,1,1)x(3,1,0)_12
\#model_17_train \leftarrow sarima(Avg_ExtentTS_Train, p=3, d=1, q=1, P=3, D=1, Q=0, S=12, details = TRUE)
#model 17 train residuals = resid(model 17 train$fit)
#hist(model_17_train_residuals)
\# shapiro.test(model_17_train_residuals)
#qives an error when run
\#SARIMA(2,1,3)x(3,1,0) 12
model_18_train <- sarima(Avg_ExtentTS_Train, p=2, d=1, q=3, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.036901
iter
 2 value -1.163257
iter 3 value -1.266869
iter
 4 value -1.296361
iter 5 value -1.310632
iter
 6 value -1.321697
iter 7 value -1.325417
iter
 8 value -1.332240
iter 9 value -1.336089
iter 10 value -1.340935
iter 11 value -1.350055
iter 12 value -1.350337
iter 13 value -1.350570
iter 14 value -1.350839
iter 15 value -1.350916
iter 16 value -1.351018
iter 17 value -1.351217
iter 18 value -1.351605
iter 19 value -1.351656
iter 20 value -1.351764
iter 21 value -1.351810
iter 22 value -1.351859
iter 23 value -1.351932
iter 24 value -1.352073
iter 25 value -1.352252
iter 26 value -1.352391
iter 27 value -1.352416
iter 28 value -1.352463
iter 29 value -1.352465
iter 30 value -1.352465
iter 31 value -1.352466
iter 32 value -1.352466
iter 32 value -1.352466
iter 33 value -1.352466
iter 33 value -1.352466
iter 33 value -1.352466
```

```
final value -1.352466
converged
initial
 value -1.352034
 2 value -1.352248
 iter
##
 iter
 3 value -1.352661
iter
 4 value -1.352988
iter
 5 value -1.353009
 6 value -1.353020
iter
iter
 7 value -1.353021
 8 value -1.353021
iter
iter
 9 value -1.353021
 9 value -1.353021
iter
 9 value -1.353021
iter
final
 value -1.353021
converged
Warning in sqrt(diag(fitit$var.coef)): NaNs produced
Warning in sqrt(diag(fitit$var.coef)): NaNs produced
 Model: (2,1,3) (3,1,0) [12]
 Standardized Residuals
 \alpha
 0
 7
 4
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 Time
 ACF of Residuals
 Normal Q-Q Plot of Std Residuals
 Sample Quantiles -4 0 2 4
ACF
0.1
 o.
 0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0
 -3
 0
 2
 3
 LAG ÷ 12
 Theoretical Quantiles
 p values for Ljung-Box statistic
 9.0
 -0-0-0-0-0-0-0-0-0-0-
 10
 15
 20
 25
 30
 35
 LAG (H)
```

model\_18\_train\_residuals = resid(model\_18\_train\$fit)
hist(model\_18\_train\_residuals)

## Histogram of model\_18\_train\_residuals



shapiro.test(model\_18\_train\_residuals)

```
##
 Shapiro-Wilk normality test
##
##
data: model_18_train_residuals
W = 0.9895, p-value = 0.00616
\#SARIMA(3,1,2)x(3,1,0)_12
model_19_train <- sarima(Avg_ExtentTS_Train, p=3, d=1, q=2, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.036159
 2 value -1.160007
iter
iter
 3 value -1.259848
iter
 4 value -1.286934
iter
 5 value -1.296300
iter
 6 value -1.299039
iter
 7 value -1.331452
 8 value -1.341032
iter
iter
 9 value -1.349800
iter
 10 value -1.351699
 11 value -1.352268
iter
 12 value -1.352842
iter
 13 value -1.354250
iter
 14 value -1.357163
iter
iter
 15 value -1.359003
 16 value -1.359630
iter
iter
 17 value -1.360347
 18 value -1.361172
 18 value -1.361172
iter
```

```
iter 18 value -1.361172
final value -1.361172
converged
initial
 value -1.349476
iter
 2 value -1.350545
iter
 3 value -1.352126
iter
 4 value -1.352892
 5 value -1.353195
iter
iter
 6 value -1.353227
 7 value -1.353242
iter
iter
 8 value -1.353248
 9 value -1.353255
##
 iter
 10 value -1.353260
 iter
 11 value -1.353313
 iter
iter
 12 value -1.353376
 13 value -1.353392
iter
 14 value -1.353425
 iter
 15 value -1.353444
iter
 16 value -1.353444
 17 value -1.353446
iter
iter
 17 value -1.353445
final value -1.353446
converged
 Model: (3,1,2) (3,1,0) [12]
 Standardized Residuals
 \alpha
 0
 7
 4
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 Time
 ACF of Residuals
 Normal Q-Q Plot of Std Residuals
 Sample Quantiles -4 0 2 4
 2
ACF
0.1
 0
 2.5
 3.0
 0.0
 0.5
 1.0
 1.5
 2.0
 -3
 -2
 0
 2
 3
 LAG ÷ 12
 Theoretical Quantiles
 p values for Ljung-Box statistic
 9.4
 20
 25
 30
 35
 10
 15
 LAG (H)
```

model\_19\_train\_residuals = resid(model\_19\_train\$fit)
hist(model\_19\_train\_residuals)

## Histogram of model\_19\_train\_residuals



shapiro.test(model\_19\_train\_residuals)

```
##
 Shapiro-Wilk normality test
##
##
data: model_19_train_residuals
W = 0.98931, p-value = 0.005438
\#SARIMA(3,1,3)x(3,1,0)_12
model_20_train <- sarima(Avg_ExtentTS_Train, p=3, d=1, q=3, P=3, D=1, Q=0, S=12, details = TRUE)
initial value -1.036159
 2 value -1.164260
iter
iter
 3 value -1.261457
iter
 4 value -1.294471
iter
 5 value -1.310799
iter
 6 value -1.331362
iter
 7 value -1.332748
 8 value -1.340710
iter
iter
 9 value -1.342401
iter
 10 value -1.344768
 11 value -1.356444
iter
 12 value -1.358054
iter
 13 value -1.361687
iter
 14 value -1.361893
iter
iter
 15 value -1.361951
 16 value -1.362041
iter
iter
 16 value -1.362041
 17 value -1.362048
 17 value -1.362048
iter
```

```
iter 18 value -1.362055
iter 18 value -1.362055
iter 19 value -1.362057
iter 19 value -1.362057
iter 19 value -1.362057
final value -1.362057
converged
initial value -1.349245
iter
 2 value -1.350423
iter
 3 value -1.351430
iter
 4 value -1.352904
 5 value -1.352954
iter
iter
 6 value -1.353039
 7 value -1.353175
iter
iter
 8 value -1.353367
iter
 9 value -1.353555
iter
 10 value -1.353680
 11 value -1.353702
 12 value -1.353712
iter
iter
 13 value -1.353734
iter 14 value -1.353767
iter
 15 value -1.353868
iter
 16 value -1.353965
 17 value -1.354067
iter
iter
 18 value -1.354333
iter
 19 value -1.354582
iter
 20 value -1.354746
 21 value -1.354794
iter
iter
 22 value -1.354799
iter 23 value -1.354846
iter
 24 value -1.354906
iter
 25 value -1.355108
iter
 26 value -1.356058
 27 value -1.356158
iter
iter
 28 value -1.356195
iter 29 value -1.357452
iter 30 value -1.358237
iter 31 value -1.358849
iter
 32 value -1.359578
iter 33 value -1.360331
 34 value -1.361291
iter
iter
 35 value -1.361471
iter
 36 value -1.362078
iter
 37 value -1.362381
 38 value -1.362544
iter
 39 value -1.362731
iter
iter
 40 value -1.362773
iter
 41 value -1.362816
iter
 42 value -1.362843
iter
 43 value -1.362863
iter 44 value -1.362906
iter 45 value -1.362946
iter 46 value -1.363173
iter 47 value -1.363342
```

```
48 value -1.363621
iter
iter
 49 value -1.363728
 50 value -1.363844
 51 value -1.363959
 iter
 iter
 52 value -1.364065
 53 value -1.364278
##
 iter
iter
 54 value -1.364305
 55 value -1.364463
iter
 iter
 56 value -1.364505
 57 value -1.364535
 iter
 iter
 58 value -1.364554
 59 value -1.364565
 iter
 60 value -1.364576
 iter
 61 value -1.364584
 62 value -1.364587
 iter
 63 value -1.364587
 iter
 64 value -1.364587
 iter
 64 value -1.364587
iter
 64 value -1.364587
final value -1.364587
converged
 Model: (3,1,3) (3,1,0) [12]
 Standardized Residuals
 N
 0
 7
 4
 1995
 2000
 2005
 2010
 2015
 1990
 2020
 Time
 ACF of Residuals
 Normal Q-Q Plot of Std Residuals
 Sample Quantiles -4 0 2 4
 0.0
 2.0
 2.5
 3.0
 0.5
 1.0
 1.5
 -2
 0
 2
 LAG ÷ 12
 Theoretical Quantiles
 p values for Ljung-Box statistic
p value
0.4 C
```

model\_20\_train\_residuals = resid(model\_20\_train\$fit)
hist(model\_20\_train\_residuals)

20

15

10

LAG (H)

25

30

35

#### Histogram of model\_20\_train\_residuals



shapiro.test(model\_20\_train\_residuals)

Shapiro-Wilk normality test

## ##

```
##
data: model_20_train_residuals
W = 0.99038, p-value = 0.01088
Summarize the fits of these models in a table.
library(huxtable)
goodness_of_fit <- hux(</pre>
 SARIMA(4,1,0)x(0,1,1)_12', SARIMA(4,1,0)x(3,1,0)_12', SARIMA(4,1,0)x(1,1,1)_12',
 'SARIMA(5,1,0)x(0,1,1)_12', 'SARIMA(5,1,0)x(3,1,0)_12', 'SARIMA(5,1,0)x(1,1,1)_12',
 'SARIMA(1,1,1)x(0,1,1)_12', 'SARIMA(1,1,1)x(3,1,0)_12', 'SARIMA(1,1,1)x(1,1,1)_12',
 'SARIMA(1,1,2)x(3,1,0)_12', 'SARIMA(2,1,1)x(3,1,0)_12', 'SARIMA(2,1,2)x(3,1,0)_12',
 "SARIMA(1,1,3)x(3,1,0)_12", "SARIMA(2,1,3)x(3,1,0)_12", "SARIMA(3,1,2)x(3,1,0)_12",
 'SARIMA(3,1,3)x(3,1,0)_12'),
 AIC = c(model_1_train$AIC, model_2_train$AIC, model_3_train$AIC,
 model_4_train$AIC, model_5_train$AIC, model_6_train$AIC,
 model_7_train$AIC, model_8_train$AIC, model_9_train$AIC,
 model_10_train$AIC, model_11_train$AIC, model_12_train$AIC,
 model_13_train$AIC, model_14_train$AIC, model_15_train$AIC,
 model_16_train$AIC, model_18_train$AIC, model_19_train$AIC,
 model_20_train$AIC),
 AICc = c(model_1_train$AICc, model_2_train$AICc, model_3_train$AICc,
 model_4_train$AICc, model_5_train$AICc, model_6_train$AICc,
 model_7_train$AICc, model_8_train$AICc, model_9_train$AICc,
 model_10_train$AICc, model_11_train$AICc, model_12_train$AICc,
 model_13_train$AICc, model_14_train$AICc, model_15_train$AICc,
```

```
model_16_train$AICc, model_18_train$AICc, model_19_train$AICc,
 model_20_train$AICc),
 BIC = c(model_1_train$BIC, model_2_train$BIC, model_3_train$BIC,
 model_4_train$BIC, model_5_train$BIC, model_6_train$BIC,
 model_7_train$BIC, model_8_train$BIC, model_9_train$BIC,
 model_10_train$BIC, model_11_train$BIC, model_12_train$BIC,
 model_13_train$BIC, model_14_train$BIC, model_15_train$BIC,
 model_16_train$BIC, model_18_train$BIC, model_19_train$BIC,
 model_20_train$BIC),
 MSE = c(mean(model_1_train_residuals^2), mean(model_2_train_residuals^2), mean(model_3_train_re
 mean(model_4_train_residuals^2), mean(model_5_train_residuals^2), mean(model_6_train_re
 mean(model_7_train_residuals^2), mean(model_8_train_residuals^2), mean(model_9_train_re
 mean(model_10_train_residuals^2), mean(model_11_train_residuals^2), mean(model_12_train_
 mean(model_13_train_residuals^2), mean(model_14_train_residuals^2), mean(model_15_train
 mean(model_16_train_residuals^2), mean(model_18_train_residuals^2), mean(model_19_train
 mean(model_20_train_residuals^2))
)
goodness_of_fit %>%
 set_number_format(col=c(2,3,4,5), value=3) %>%
 set_bottom_border(c(1,13,16), everywhere) %>%
 set_bold(c(12,14,15,16), everywhere) %>%
 set_background_color(evens, everywhere, "grey95")
```

Model	AIC	AICc	BIC	MSE
SARIMA(0,1,2)x(0,1,1)_12	0.260	0.260	0.302	0.070
$SARIMA(0,1,2)x(3,1,0)_12$	0.274	0.275	0.336	0.071
$SARIMA(0,1,2)x(1,1,1)_12$	0.264	0.264	0.315	0.070
$SARIMA(4,1,0)x(0,1,1)_12$	0.258	0.258	0.320	0.069
$SARIMA(4,1,0)x(3,1,0)_12$	0.275	0.276	0.358	0.070
$SARIMA(4,1,0)x(1,1,1)_12$	0.261	0.262	0.333	0.069
SARIMA(5,1,0)x(0,1,1)_12	0.247	0.248	0.320	0.068
$SARIMA(5,1,0)x(3,1,0)_12$	0.264	0.265	0.357	0.069
SARIMA(5,1,0)x(1,1,1)_12	0.251	0.252	0.333	0.068
$SARIMA(1,1,1)x(0,1,1)_12$	0.305	0.305	0.346	0.073
SARIMA(1,1,1)x(3,1,0)_12	0.195	0.195	0.257	0.064
SARIMA(1,1,1)x(1,1,1)_12	0.308	0.309	0.360	0.069
SARIMA(1,1,2)x(3,1,0)_12	0.168	0.169	0.241	0.062
$SARIMA(2,1,1)x(3,1,0)_12$	0.171	0.171	0.243	0.062
SARIMA(2,1,2)x(3,1,0)_12	0.173	0.174	0.255	0.062
$SARIMA(1,1,3)x(3,1,0)_12$	0.173	0.174	0.256	0.062
SARIMA(2,1,3)x(3,1,0)_12	0.179	0.180	0.272	0.062
SARIMA(3,1,2)x(3,1,0)_12	0.178	0.179	0.271	0.062
SARIMA(3,1,3)x(3,1,0)_12	0.161	0.162	0.264	0.060

#### **Model Selection**

We evaluate performance on the test set of a few of the models which gave the best fit.

 $\label{local_problem} $$ model_11_train_forecast<- sarima.for(Avg_ExtentTS_Train, n.ahead=22, p=1,d=1,q=1,P=3,D=1,Q=0,S=12)$ lines(Avg_ExtentTS_Test,col='blue',type='b',pch=16)$ $$ $$ model_11_train_forecast<- sarima.for(Avg_ExtentTS_Train, n.ahead=22, p=1,d=1,q=1,P=3,D=1,Q=0,S=12)$ $$ lines(Avg_ExtentTS_Test,col='blue',type='b',pch=16)$ $$ $$$ 



model\_13\_train\_forecast<- sarima.for(Avg\_ExtentTS\_Train, n.ahead=22, p=1,d=1,q=2,P=3,D=1,Q=0,S=12)
lines(Avg\_ExtentTS\_Test,col='blue',type='b',pch=16)</pre>



 $\label{local_series} $$ model_14\_train\_forecast<- sarima.for(Avg\_ExtentTS\_Train, n.ahead=22, p=2,d=1,q=1,P=3,D=1,Q=0,S=12)$ lines(Avg\_ExtentTS\_Test,col='blue',type='b',pch=16)$$ 



 $\label{local_strain_forecast} $$ model_15\_train_forecast<- sarima.for(Avg_ExtentTS_Train, n.ahead=22, p=2,d=1,q=2,P=3,D=1,Q=0,S=12)$ lines(Avg_ExtentTS_Test,col='blue',type='b',pch=16)$ 



mean((model\_11\_train\_forecast\$pred-Avg\_ExtentTS\_Test)^2)

```
[1] 0.3321616
```

mean((model\_13\_train\_forecast\$pred-Avg\_ExtentTS\_Test)^2)

#### ## [1] 0.3385571

mean((model\_14\_train\_forecast\$pred-Avg\_ExtentTS\_Test)^2)

#### ## [1] 0.3363344

mean((model\_15\_train\_forecast\$pred-Avg\_ExtentTS\_Test)^2)

#### ## [1] 0.3388543

Summarize these results in a table.

Model	PMSE
SARIMA(1,1,1)x(3,1,0)_12	0.332
SARIMA(1,1,2)x(3,1,0)_12	0.339
SARIMA(2,1,1)x(3,1,0)_12	0.336
SARIMA $(2,1,2)$ x $(3,1,0)$ 12	0.339