EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

• Text:

Cormen, Leiserson, Rivest & Stein (CLRS), Fundamental text
 "Introduction to Algorithms" 3rd Edition MIT Pres

• Reference:

- Wikipedia
- Mark Allen Weiss "Data Structure and Algorithms in C++".
- Handouts on specific topics as needed

Grading:

_	HW (Written)	20%
_	HW: Software	20%
_	Project	20%
	Fxams (2)	40%

- Web Site in <u>learn.bu.edu</u>
- On-line classes
- Regular HW (not weekly; 8 or so during term)
- Office hours: TBD, or by appointment.
- Software: C++, using C++ 11 compatible
- Development: Accounts set up
- HW submission: On Blackboard, with code submitted separately
- Important: This is not a course to learn software. We use software
 to learn about data structures and algorithms, not the other way
 around...

- Lectures are recorded, will be posted to web site within 5 hours
- In-class questions welcome
 - Unmute and ask
 - Or raise hand (less clear to instructor!)
- HW will have on-line component, hand-in component and software component
 - On-line short questions with instant feedback using Blackboard quiz
 - SW will provide main program, input files, and output files for debugging.
 You will develop needed functions.
- We will use Piazza for asynchronous question/answers at all hours
 - Enables all of you to benefit from answers

- Course includes a project
 - Some topics will be suggested
 - Topics can be suggested by students
- Projects can be done in teams of up to 4 people
 - Or individually...Depends on how large a project one proposes
- Typical project: Develop a set of algorithms for solving a class of problems, implemented with different data structures, and evaluate the computation performance on realistic problem data.

- Policy on Cooperation
 - HW: Discussions with classmates, colleagues and googling on web are allowed in general
 - But you have to write down the solution yourself and fully understand what you write
 - Your code must be your own: base it on what you read on the web, but don't copy verbatim
 - Plagiarism tools will be used extensively. Any violations will result in course failure and referral to College Academic Council

- Policy on Cooperation
 - HW: Discussions with classmates, colleagues and googling on web are allowed in general
 - But you have to write down the solution yourself and fully understand what you write
 - Your code must be your own: base it on what you read on the web, but don't copy verbatim
 - Plagiarism tools will be used extensively. Any violations will result in course failure and referral to College Academic Council

What is EC504 About?

- Data structures store data in manners that support efficient algorithm computation.
- Algorithms with appropriate data structures can improve problem solution efficiency by orders of magnitude.
- In this course, we study both advanced algorithms and appropriate data structures for solution of practical problems.
- We will focus on rigorous analysis, realistic applications and implementation.
- Software implementations of algorithms/data structures will be part of the course.

Course Outline

- 1. Review: Algorithm Analysis (CLRS 2-4)
 - Asymptotic complexity
 - Recursions
- 2. Sorting: Classical and modern approaches (CLRS 4,9, Notes on TimSort)
- 3. Review: Trees and their Properties (CLRS App. B)
- 4. Efficient Search in one-dimension
 - Hash Tables (CLRS 11)
 - Balanced Search Trees (Red-Black, Splay, B-Trees, VEB trees) (CLRS 12,13,18,20)
 - Priority queues (Binary, Binomial, Fibonacci Heaps, VEB trees) (CLRS 6,19,20)

Course Outline - 2

- 6. Graphs and Network Optimization (CLRS 22)
 - Minimum spanning trees: Greedy algorithms (CLRS 23)
 - Shortest Paths: Greedy algorithms, Dynamic Programming (CLRS 24,25)
 - Max-flow: Ford-Fulkerson, Preflow-push (CLRS 26)
 - Min-cost flow: Assignment problems, auction algorithms, successive shortest path algorithms (Notes)
 - Applications (Notes)
- 7. Complexity Theory
 - NP-Complete Problems Definition and examples (CLRS 34)
 - Approximation Algorithms Knapsack, Traveling Salesperson, ... (CLRS 35)
- 8. Advanced Topics

What is an <u>algorithm?</u> An unambiguous list of steps (program) to transform some input into some output.

- Pick a Problem (set)
- Find method to solve
 - 1. Correct for all cases (elements of set)
 - 2. Each step is finite (Δt_{step} < max time)
 - Next step is unambiguous
 - Terminate in finite number of steps
- You know many examples:GCD, Multiply 2 N bit integers, ...

Abu Ja'far Muhammid ibn Musa Al-Khwarizmi Bagdad (Iraq) 780-850

Growth of Algorithm Run Time with Size n: Big "Oh"

 O(g(n)): Set of functions of n that grow no faster than g(n) as n gets large

$$f(n) \in O(g(n))$$
 if and only if there exists $c > 0, N_0 > 0$
such that $|f(n)| \le c|g(n)|$ whenever $n > N_0$

Alternative:
$$f(n) \in O(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

 $f(n) \in O(g(n)), \text{ or } f(n) \text{ is } O(g(n)), \text{ or } f(n) = O(g(n))$
 $f(n) \in o(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Growth of Algorithms: Other concepts

- o(g(n)) : grow strictly slower than g(n) $f(n) \in o(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
- $\Omega(\mathsf{g(n)})$: grow no slower than $\mathsf{g(n)}$ as n gets large $f(n) \in \Omega(g(n)) \text{ if and only if there exists } c > 0, N_0 > 0$ such that $|f(n)| \ge c|g(n)|$ whenever $n > N_0$
- $\omega(g(n))$: grow strictly faster than $g(n)^{f(n)} \in \omega(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$
- $\Theta(g(n))$: grow similar to g(n): $f(n) \in O(g(n)), f(n) \in \Omega(g(n))$

Intuition

•
$$f = O(g)$$
 • $f \le g$

•
$$f = o(g)$$
 • $f < g$

•
$$f = \Omega(g)$$
 \iff $f \ge g$

•
$$f = \omega(g)$$
 • $f > g$

•
$$f = \Theta(g)$$
 • $f = g$

Rules of thumb

• For polynomials, only the largest term matters.

$$a_0 + a_1 N + a_2 N^2 + \dots + a_k N^k \in O(N^k)$$

• log N is in o(N)

Proof: As N \rightarrow 1 the ratio $\log(N)/N \rightarrow 0$

- Some common functions in increasing order
 - 1 $\log N \sqrt{N} N N \log N N^2 N^3 N^{100} 2^N 3^N N! N^N$
- For r > 1, d > 0, $\Rightarrow n^d \in o(r^n)$
- For b > 1, r > 0, $\Rightarrow (\log(n))^b \in o(n^r)$

Some examples

Which increases faster? What is the relation?

```
(100n^2, 0.01 * 2^n)
```

$$(0.1 * \log n, 10n)$$

$$(10^{10}n, 10^{-10}n^2)$$

$$(0.01n^3 - 10, 100n^2)$$

$$\ln (\ln(300n^4), \ln(n))$$

$$(n^4 + 3n^2 + 1, n^{0.01})$$

$$\Box$$
 (2ⁿ, 3ⁿ)

$$(n^{10}, n^n)$$

$$(n!, n^2)$$
 (Stirling's formula: $n! \approx (2\pi n)^{1/2} (\frac{n}{e})^n$)

Why is big-O important?

time	(proces	ssor do	ing ~1,0	00,000 st	eps per s	second)
input size	_					
N	10	20	30	40	50	60
log n	3.3µsec	4.4µsec	5µsec	5.3µsec	5.6µsec	5.9µsec
n	10µsec	20μsec	30µsec	40µsec	50µsec	60µsec
n^2	100µsec	400µsec	900µsec	1.5msec	2.5msec	3.6msec
n ⁵	0.1sec	3.2sec	24.3sec	1.7min	5.2min	13min
3 n	59msec	48min	6.5yrs	385,500yı	rs 2x108 ce	enturies
n!	3sec 7.8	8x108 mille	ennia	_		

Non polynomial algorithms are terrible! Logs are great!

Analysis of Algorithms

- Algorithms don't have constant run time for a given input size
 - Run time depends on nature of input
 - Best-Case, Average Case, Worst Case
 - Typically care about worst case (other cases useful in practice)
- Example: <u>Insertion Sort(a[0:n-1])</u>:

```
for (i=1; i < n; i ++) {
    key = a[i]; j = i-1;
    while (j >= 0 && a[j] > key) {
        a[j + 1] = a[j];
        j = j - 1;
    }
    a[j + 1] = key;
}
```

OUTER LOOP TRACE FOR INSERTION SORT:

	a[0]	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7] (Swaps)
•	6	5	2	8	3	4	7	1	(1)
	5€	→ 6	3						
	5	6	2	8	3	4	7	1	(2)
	0.4		2 ← →	6					
	2€	• → 5)						
•	2	5	6	8	3	4	7	1	(0)
	2	5	6	8	3	4	7	1	(3)
•	2	3	5	6	8	4	7	1	(3)
	2	3	4	5	6	8	7	1	(1)
	2	3	4	5	6	7	8	1	(7)
•	1	2	3	4	5	6	7	8	(17 total swaps)
									10

Analysis of Algorithms

• Example: <u>Insertion Sort(a[0:n-1])</u>:

```
for (i=1; i < n; i ++) {
    key = a[i]; j = i-1;
    while (j >= 0 && a[j] > key) {
        a[j + 1] = a[j];
        j = j - 1;
    }
    a[j + 1] = key;
}
```

- Analysis:
 - Best case: input is sorted, so while loop ends after 2 ops: $\Theta(n)$
 - Average case: while loop goes over 1/2 of list to find insert
 - Worst case: input is sorted in reverse, so while look ends at j = -1.

```
for ( i = 0; i < N; i++)
    for(j = i; j < N; j++) {
        Sum = 0;
        for(k=i; k < j+1; k++)
            Sum += a[k];
        if(Sum > MaxSum)
            MaxSum = Sum;
        }
}
```

Different Algorithm

```
MergeSort (int *array, int 1, int r):
    if(1 < r) {
        int m = 1+(r-1)/2;
        mergeSort(array, 1, m);
        mergeSort(array, m+1, r);
        merge(array, 1, m, r);
    }</pre>
```

Recursive equation algorithm:

T(n): run time for a list of size n. m(n): time to merge arrays of length n

$$T(n) = 2T\left(\frac{n}{2}\right) + m(n)$$

Merge Algorithm

```
void merge(int *array, int l, int m, int r) {
   int i, j, k, nl, nr;
  nl = m-l+1; nr = r-m;
  int larr[nl], rarr[nr];
   for (i = 0; i < nl; i++)
      larr[i] = array[l+i];
   for (j = 0; j < nr; j++)
      rarr[j] = array[m+1+j];
   i = 0; j = 0; k = 1;
   //marge temp arrays to real array
   while(i < nl && j<nr) {</pre>
      if(larr[i] <= rarr[j]) {</pre>
         array[k] = larr[i];
         i++;
      }else{
         array[k] = rarr[j];
         j++;
  k++;
```

```
while(i<nl) {    //extra element in left array
    array[k] = larr[i];
    i++; k++;
}
while(j<nr) {    //extra element in right array
    array[k] = rarr[j];
    j++; k++;
}
}</pre>
```

Mergesort Illustration

Figure 2.4 The operation of merge sort on the array $A = \langle 5, 2, 4, 7, 1, 3, 2, 6 \rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

MASTER EQUATION:
$$T(n) = aT(\frac{n}{b}) + f(n)$$

Theorem: The asymptotic Solution is:

- Define $\gamma = \log_b(a) \to a = b^{\gamma}$
- Then, there are three cases
 - 1. $T(n) \in \Theta(n^{\gamma})$ if $f(n) \in O(n^{\gamma \epsilon})$ for some $\epsilon > 0$
 - 2. $T(n) \in \Theta(f(n))$ if $f(n) \in \Omega(n^{\gamma+\epsilon})$ for some $\epsilon > 0$
 - 3. $T(n) \in \Theta(n^{\gamma} \log(n))$ if $f(n) \in \Theta(n^{\gamma})$

BUILD TREE TO SOLVE

$$T(n) = aT(n/b) + f(n)$$

$$n/b^h = 1 \implies h = \log_b(n)$$

$$n = n$$

$$n/b \implies h = \log_b(n)$$

$$n/b \implies n/b \implies$$

LET'S ANALYZE FOR $n = b^h, f(n) \in O(n^k)$, so $f(n) = cn^k$

$$T(n) = f(n) + af(n/b) + \dots + a^{\log_b(n)-1}f(b^2) + a^hT(1)$$

$$T(n) = cn^k + ac(n/b)^k + a^2c(n/b^2)^k + \dots + a^{h-1}c(b^2)^k + a^hT(1)$$

$$= cn^k + (\frac{a}{b^k})cn^k + (\frac{a}{b^k})^2cn^k + \dots + (\frac{a}{b^k})^{h-1}cn^k + a^hT(1)$$

Note: $a^h = n^{\gamma}$

If $k < \gamma$, then $b^k < a$. Case 1

If $k > \gamma$, then $b^k > a$. Case 2

If $k = \gamma$, then $b^k = a$. Case 3

Back to Mergesort

$$T(n) = 2T\left(\frac{n}{2}\right) + m(n)$$
$$m(n) \in \Theta(n)$$

Therefore, a = 2, b = 2, $\gamma = 1 \Rightarrow T(n) \in \Theta(n \log(n))$

Worst case for mergesort:

Average case for mergesort:

Best case for mergesort:

Order Statistics

- Select the i-th smallest of n elements (the element with rank i).
 - i = 1: minimum;
 i = n: maximum;
 i = [(n+1)/2] or [(n+1)/2]: median.
- Naive algorithm: Sort and index ith element.
- Worst-case running time = $\Theta(n \lg n) + \Theta(1) = \Theta(n \lg n)$,
 - using merge sort or Timsort or ...
- Can one do better?

Order Statistics

- SELECT(i, n)
 - Divide the n elements into groups of 5. Find the median of each 5element group by rote.
 - Recursively SELECT the median x of the [n/5] group medians to be the pivot.
 - Partition around the pivot x. Let k = rank(x).
 - if i=k then return x else if i < k
 - recursively SELECT the i-th smallest element in the lower part
 - else recursively SELECT the (i-k) th smallest element in the upper part

- At least half the group medians are ≤ x, which is at least [[n/5] /2] = [n/10] group medians. Therefore, at least 3 [n/10] elements are ≤ x.
- Similarly, at least $3 \lfloor n/10 \rfloor$ elements are $\geq x$.
- Recursion: $T(n) \le T(n/5) + T(7n/10) + cn$
- Result: $T(n) \in \Theta(n)$

5 row of N/5 Columns

Generalization of Master's Equation

Let
$$\alpha_1,\alpha_2,\ldots,\alpha_k>0$$
 be such that $\sum_{j=1}^k\alpha_j<1$. Then, If $T(n)=T(\alpha_1n)+T(\alpha_2n)+\cdots+T(\alpha_kn)+cn$, then $T(n)\in\Theta(n)$

Other useful recursive solutions

T(n) = aT(n-1) + bT(n-2) (Discrete difference equation, constant coefficient)

Can solve via z-transforms (if you know EC 401..) or follow method below:

Solution form: k^n

Characteristic equation: Substitute into equation to get

$$k^{n} = ak^{n-1} + k^{n-2} \Rightarrow k^{2} - ak - b = 0$$

Two solutions k_1, k_2 (or a repeated root).

If
$$k_1 \neq k_2$$
 then $T(n) = Ak_1^n + Bk_2^n$. Otherwise, $T(n) = Ak_1^n + Bnk_1^n$.

Example: Fibonacci numbers

$$F(n) = F(n - 1) + F(n - 2)$$

Characteristic equation:

Solutions:

Initial condition: F(0) = 0; F(1) = 1

.

Simple Data Structures: Abstract Data Type (ADT)

- In Object Oriented Programming data and the operations that manipulate that data are grouped together in classes
- Abstract Data Types (ADTs) or data structures or collections store data and allow various operations on the data to access and change it
- High level languages like C++, Java, Python often provide implementations of ADTs

The List ADT

- List of size N: A₀, A₁, ..., A_{N-1}
- Each element A_k has a unique position in the list
- Elements can be arbitrarily complex
- o Operations
 - o Depend on what the list is for
- o Implementation: either as arrays or as linked lists

Sample List (C++) ADT

```
class List {
 public:
                     // constructor
 List();
 List(const List& list);
                     // copy constructor
 ~List();
                      // destructor
 List& operator=(const List& list); // assignment operator
                     // boolean function
 bool empty() const;
                   // add to the head
 void addHead(double x);
 double deleteHead();
                     // delete, get head
 double deleteEnd();
                     // delete, get end
 bool findNode (double x); // search for a given x
 elements
};
```

Lists Using Arrays

Operations

- o addHead(X) O(N)
- o deleteHead() O(N)
- o addEnd(X) O(1)
- o deleteEnd() O(1)
- o findNode(X) O(N)

Linked Lists

- Elements not stored in contiguous memory
- Nodes in list consist of data element and next pointer

Lists Using Linked Lists

Operations

- o addHead(X) O(1)
- o deleteHead() O(N)
- o addEnd(X) O(N)
- o deleteEnd() O(N)
- o findNode(X) O(N)
- Can modify using doubly-linked lists, pointers to end
 Make addEnd(X), deleteEnd O(1).

List Applications: Stacks

o Stack is a list where insert and remove take place only at the "top"

- o Operations
 - o Push (insert) element on top of stack
 - o Pop (remove) element from top of stack
 - o Top: return element at top of stack

top >	2
	4
	1
	3
	6

- o LIFO (Last In First Out) queue
- Stack is a list, any list implementation will do, but will have different advantages

Stack ADT

Stack using linked lists

```
struct Node{
  public:
        double data;
        Node* next;
class Stack {
  public:
        Stack();
                                  // constructor
        Stack(const Stack& stack); // copy constructor
        ~Stack();
                                 // destructor
        bool empty() const;
        void push(const double x);
        double pop();
                                  // change the stack
        bool full(); // unnecessary for linked lists
        double top() const; // keep the stack unchanged
        void print() const;
   private:
        Node* top;
```

Stack using arrays

```
class Stack {
public:
                                           //
      Stack(int size = 10);
constructor
      ~Stack() { delete [] values; } // destructor
      bool empty() { return top == -1; }
      void push(const double x);
      double pop();
      bool full() { return top == maxTop; }
      double top();
      void print();
private:
      int maxTop;
                        // max stack size = size - 1
                        // current top of stack
      int top;
      double* values
                        // element array
```

Array versus Linked List Implementation

- push, pop, top are all O(1) constant-time operations in both array and linked list implementation
 - For array implementation, the operations are performed in very fast constant time
- Linked List structures are larger need pointers
- Array allocate space contiguously useful for cache, etc.
- Arrays may have to be resized (lots of data movement...) but amortized analysis says worst case is still O(1)!

Stack Application: Balancing Symbols

- To check that every right brace, bracket, and parentheses must correspond to its left counterpart (e.g. MATLAB, code syntax checkers, ...)
 - e.g. [()] is legal, but [(]) is illegal
- Algorithm
 - (1) Make an empty stack.
 - (2) Read characters until end of file
 - i. If the character is opening symbol, push onto the stack
 - ii. If closing symbol and stack is empty, error
 - iii. Otherwise, pop stack. If symbol popped is not corresponding opening symbol, error
 - (3) At end of file, if stack is not empty, error

Other applications

- Function calls, recursion, ...
- Back/Forward stacks on browsers
- Undo/Redo stacks in Excel or Word

Queue

- Queue is a list where insert takes place at back, but remove takes place at the front
- Operations
 - o Enqueue (insert) element at the back of the queue
 - o Dequeue (remove and return) element from the front of the queue
- o FIFO (First In First Out)
- Applications: simple job scheduling, graph traversals, priority queues, routing, printer queues, I/O streams

Implementation of Queue

- Just as stacks can be implemented as arrays or linked lists, so with queues.
- Need to have fast access to beginning and end of queues
 - Dequeue at front
 - Enqueue at back
- Similar advantages for arrays vs linked lists
 - But there are different ways to do it with arrays which can result in much data movement, O(n) computation!

Array implementation of Queue

- Naive: front is always position 0, back is variable.
 - Dequeue is O(n)! Must move positions
- Better way: Use circular array
 - When an element moves past the end of a circular array, it wraps around to the beginning, e.g. size 9, top 5, bottom 8
 - Enqueue(4); $000007963 \rightarrow 400007963$ (top 5, bottom 0)
 - Detect an empty or full queue: Use a counter of the number of elements in the queue.
 - O(1)
 - Only issue is fixed size... reallocate if full. Amortized cost O(1).