Les applications

- 3) On considère l'application g définie de $]-2,+\infty[$ vers $]2,+\infty[$ par $g(x)=\frac{x^2+6x+10}{x+3}$
- a) Montrer que $(\forall x > -3)$ g(x) = f(x+3)
- b) Déduire que g est une bijection en déterminant sa réciproque

Exercice 7

On considère l'application f définie de $\mathbb{R}^+ \times \mathbb{R}^+$ vers $\mathbb{R} \times \mathbb{R}^+$ par : $f((x,y)) = (x^2 - y^2, xy)$

- 1) soit (a,b) un élément de R×R*
- a) Montrer que l'équation $x^2 \alpha x b^2 = 0$ admet deux solutions distincts β ; α
- b) montrer que β ; α ont des signes opposés
- 2) f est-elle injective? surjective? justifier votre réponse

Exercice 8

Soit f une application de E vers F . A et B deux parties de E

- 1) Montrer que : $A \subseteq B \Rightarrow f(A) \subseteq f(B)$
- 2) Montrer que : $f(A \cup B) = f(A) \cup f(B)$
- 3) a) montrer que: $f(A \cap B) \subseteq f(A) \cap f(B)$
 - b) Donner une application f telle que : $f(A \cap B) \neq f(A) \cap f(B)$
 - c) montrer que si f est injective alors $f(A \cap B) = f(A) \cap f(B)$

Exercice 9

E un ensemble non vide , A une partie de E .

Soit f l'application définie de P(E) vers $P(A) \times P(\overline{A})$ par $f(x) = (A \cap X, X \cap \overline{A})$

- \odot soit (X,Y) un élément de $P(A) \times P(\overline{A})$ déterminer $f(X \cup Y)$
- montrer que f est une bijection
- \odot on considère l'application g définie de $P(A) \times P(\overline{A})$ vers $P(A) \times P(\overline{A})$ par :

$$g(X,Y) = (A - X, \overline{A} - Y)$$

Montrer que $f(X) = g \circ f(\overline{X})$ en déduire que g est surjective

Exercice 10

Soit f l'application définie de $I = \mathbb{R} - \{0,1\}$ vers \mathbb{R} vérifiant :

(
$$\alpha$$
) $(\forall x \in I)$ $f(x) + f\left(\frac{x-1}{x}\right) = x+1$

- 1) on pose $g(x) = \frac{x-1}{x}$ pour tout x de I
- a) Vérifier que $(\forall x \in I)$ $g(x) \in I$ et calculer $(g \circ g)(x)$
- b) déterminer $(g \circ g \circ g)(x)$
- 2) a) montrer que $(\forall x \in I)$ $f(x) + f((g \circ g)(x)) = \frac{-1}{x-1} + 1$
 - b) calculer $f(g(x)) + f((g \circ g)(x))$ en fonction de x
 - c) en déduire les applications f qui vérifient la relation (α)

Les applications

1 BAC SM

Exercice 1

Soit l'application f définie de]-2,2[vers R par : $f(x) = \frac{|x|}{\sqrt{4-x^2}}$

- f est-elle injective ? surjective ?
- 2. soit g la restriction de f sur I =]-2,0]
- a) montrer que g est injective
- b) montrer que g est une bijection de I vers R*et définir sa réciproque g⁻¹

Exercice 2

On considère l'application f définie sur \mathbb{R} par : $f(x) = \frac{x}{|x|+1}$

- montrer que f est injective
- 2) montrer que $(\forall x \in \mathbb{R})$: |f(x)| < 1 f est-elle surjective de \mathbb{R} vers \mathbb{R} ?
- s) montrer que f est une bijection de ℝ vers]-1,1[puis définir sa réciproque f⁻¹

Exercice 3

Soit l'application f définie sur]- ∞ ,-1] par : $f(x) = x\sqrt{x^2-1}$

- a) montrer que f est strictement croissante sur]-∞,-1]
 - b) déduire que f est injective
- 2) f est-elle surjective de]-∞,-1] vers ℝ?
- 3) montrer que f est une bijection de]-∞,-1] vers]-∞,0] et déterminer sa réciproque

Exercice 4

Soit l'application f définie de \mathbb{R}^* vers \mathbb{R} par : $f(x) = \sqrt{x^2 + x} - x$

- O montrer que f est injective .
- ② montrer que $(\forall x \in \mathbb{R}^f): 0 \le f(x) < \frac{1}{2}$ f est-elle surjective?
- 3 montrer que f est bijective de \mathbb{R}^* vers $\left[0,\frac{1}{2}\right[$ puis définir sa réciproque

Exercice 5

Soit f l'application définie de \mathbb{R} par : $f(x) = \sqrt{x^2 + 1} - x$

- 1) montrer que $(\forall x \in \mathbb{R})$ $\sqrt{x^2 + 1} > x$
- 2) a) montrer que $(\forall (x,y) \in \mathbb{R}^2)$ $f(x) f(y) = (x-y) \left(\frac{x+y}{\sqrt{x^2+1} + \sqrt{y^2+1}} 1 \right)$
 - b) en déduire que f est injective
- 3) f est-elle surjective de R vers R ?
- 4) montrer que f réalise une bijection de R vers R* et déterminer sa bijection réciproque

Exercice 6

Soit f l'application définie de]1,+ ∞ [vers]2,+ ∞ [par : $f(x) = x + \frac{1}{x}$

- 1) a) montrer que $(\forall x > 1)$ f(x) > 2
 - b) En déduire que f est surjective
 - c) f est-elle injective?
- Déduire que f est bijective puis déterminer sa réciproque

GROUPE SCOLAIRE

LES APPLICATIONS LA PERFECTION

IBAC SCIENCE MATH ANNEE SCO: 2022/20:

EXCICE IL

On considere les deux ensembles suivants : E = [1;2;3] et P = [a;b] avec a # b

- 1) Déterminer toutes les applications définies de Evers F.
- 2) Déterminer parmi ces applications : les applications injectives et les applications surjectives

Exercice n°2:

On considère l'application f définie de \mathbb{R} vers \mathbb{R} par : $f(x) = x^2 - 4x + 1$

- 1) Montrer que : $\forall x \in \mathbb{R}$; f(x) = f(4-x) ; a-t-on que f est injective ?
- 2) Montrer que: $\forall x \in \mathbb{R}$: $f(x) \ge -3$; a-t-on que f est surjective?
- Soit g la restriction de f sur l'intervalle [2, +∞[;

Montrer que g est bijective de [2, $+\infty$ [vers [-3, $+\infty$ [puis déterminer sa bijection réciproque g^{-1}]

Exercice n°3:

Soit l'application $f: \mathbb{R} \to \mathbb{R}$ définie par : $f(x) = \frac{x}{\sqrt{1+x^2}}$; 1) a Etudier la parité de la fonction f ;

- b) Vérifier que : $(f(x))^2 = 1 \frac{1}{1+x^2}$; Puis montrer que : $(x,y) \in \mathbb{R}^2$: $x < y \Rightarrow f(x) < f(y)$;
- 2) a) Déterminer $f(\mathbb{R})$; Puis montrer que f est bijective de \mathbb{R} vers]-1,1[;
 - b) Déterminer la bijection réciproque f de application

Exercice n°4:

On considère l'application f définie de [1, + ∞] vers [2,43] par : $f(x) = \sqrt{x+2} - \sqrt{x-1}$

- 2) Montrer que : $f([1, +\infty[) =]0, \sqrt{3}]$. 1) Montrer que f est injective
- 3) Déduire que f est bijective en déterminant sa bijection réciproque.

Exercice n°5:

On considere l'application f définie de [1, $+\infty$ [vers $\mathbb R$ par : $f(x) = x - 1 - 2\sqrt{x - 1}$

1)a) Déterminer : f-1

- b) A-t-on que f est injective?
- 2)a) Montrer que : $f([1, +\infty[) = [-1, +\infty[$
- b) A-t-on que f est surjective?
- 3) On considere l'application g définie de $[0,+\infty[\text{vers}]-1,+\infty[\text{par}:g(x)=x^2-2x]$
 - Déterminer une application h tel que : $f = g \circ h$
 - b, Montrer que g et h sont surjectives puis déduire que f est surjective.

Exercice nº6:

On considere l'application f définie de \mathbb{R}^2 vers $\mathbb{R}^+ \times \mathbb{R}$ par : $f(x;y) = (x^2;y+2)$

- 2) A-t-on que f est injective?
- Montrer que f est surjective. 3) On considère l'application g définie de $\mathbb{R}^+ \times \mathbb{R}$ vers $\mathbb{R}^+ \times \mathbb{R}$ par : $g(x;y) = (x^2;y+2)$
- Montrer que g est bijective en déterminant sa bijection réciproque g^{-1} .
- 4) Déterminer toutes les applications f dans \mathbb{R} vérifiant : $\forall (x,y) \in \mathbb{R}^2$; f(x)f(y) = f(xy) + x + y .

Serie N= 3 } Exercice 1: Soit fune application définie de IR dans 1R par: $f(x) = \frac{x^2}{x^2 + x + 1}$ 1) a - Résoudre dans 1R; l'équation b - f est-elle injective? 2) a - Montrer que = f(1R) c [0; 4/3] b-fest-elle surjective? 3) Soit gla restriction de fa IR+. Montrer que g est bijective de IR+ dans [0;1]; puis determiner g-1. Exercice Q: On considere l'application f définie de] 2,2[dans IR par: f(x) = 1x1 1) f est-elle injective? f est-elle surjective? 2) Soit g la restriction de f à I=J-2,0] a. Montrer que g est injective b-Montrer que g'est bijective de I dans IR+; puis déterminer X Exercice 3: On considere l'application & définie de 18t dans R pars f(x) = Jx . 3 1) a - Déterminer l'image

Les applications ?

réciproque de l'ensomble:

A = [1; 1] par f.

b - f est-elle surjective?

2) Montrer que: f(R+) = [= 3/2; 1/2]

3) Soit g l'application

définie de R+ dans [= 3/2; 1/2]

par: g(x) = f(x).

a) Montrer que g est injective.

b) En déduire que g est bijective ; puis déterminer g¹

Exercice (4): On considère

l'application f définie de IR dans IR par. $f(x) = \frac{x(1-x)^2}{(x^2+1)^2}$ A) a - Vérifier que: $\forall x \in \mathbb{R}^*$; $f(\frac{1}{x}) = f(\frac{1}{x})$

1) a - Vérifier que: Vx EIR*; f(1)=f1>
b - f est - elle injective?
2) a - Montrer que: Vx EIR; f(x) < 1/4
b - f est - elle surjective?

Exercice 5: On considère

l'application f définie de IR+

dans IR par: f(n) = \(\ni^2 + \ni - \ni

1) Montrer que f est injective.

2) a - Montrerer que :

\(\ni \times \) R = IR+; O \(\xi \) \(\ni \)

Exercice 6: On considere

l'application & définie de $R \cdot \left\{-1\right\} \text{ dans } R \text{ par:}$ $f(x) = \frac{3x-1}{x+1}$ 1) Montrer que: Vx E1R1{-13; f(x)=3-2) Déterminer: f(]-0;-1[). Exercice (7: On considère l'application: f= R -> R Déterminer f-1(A) avec : A = 71,2] A Exercice 1 : On considère l'application: he IR+ -> [1 i+0] x + x + 12 + 1 1) Ecrire l'application & comme la composée de deux applications fet g; tq: h=gof 2) Montrel que f'est bijective de IR+ dans [1/2]+00[jet déterminer sa bijection reciproque 3) Montrer que q est bijective de [1 1+0[dans [1 1+0[; et déterminer sa loijection reciproque 4) En déduire que h est une bijection de Rt dans [1 1+0[] et déterminer sa bijection

·36) +8 = 0

réciproque 4-2.

Exercice 9: On considère les deux applications f et g tq:

f: [-1; +0[- 1Rt

x - 1,1[

q: R+ - [-1;1[

x+2

1) Montrer que f est une bijection; et déterminer sa bijection réciproque f⁻¹. 2) Montrer que g est une bijection; et déterminer sa bijection réciproque g⁻¹. 3) On considere l'application: h: [-1; +\alpha[-1; 1[

a) Vérifier que: $h = g \circ f$.

b) En déduire que h est une bijection. 4) a - Déterminer la bijection réciproque de l'application f.

réciproque de l'application fl.

Prof: Asma OULBAZ Abac &M