Familienname:	1
Vorname:	2
Matrikelnummer:	3 1
Studienkennzahl(en):	G

Note:

Einführung in das mathematische Arbeiten Roland Steinbauer, Wintersemester 2003/04 4. Prüfungstermin (9.1.2004)

1. (a) (Analytische Geometrie) Untersuche (rechnerisch) die Lagebeziehung zwischen der angegebenen Ebene ε und der Geraden g. (4 Punkte)

$$\varepsilon: x + 6y - 18z = 65$$
 $g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} + t \begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix}$

(b) (Kurvendiskussion) Der Graph der Polynomfunktion

$$p(x) = ax^3 + bx^2 + cx + d$$

hat in O=(0,0) einen Extrempunkt und in $W=(1,\frac{2}{3})$ den Wendepunkt.

- (i) Ermittle die Funktionsgleichung von p. (3 Punkte)
- (ii) Bestimme alle Nullstellen sowie alle Extremstellen von p. (2 Punkte)
- (iii) Berechne die Fläche unter dem Graphen zwischen den beiden Nullstellen. (2 Punkte)
- 2. (Körper)
 - (a) Gib drei Beispiele eines Körpers an. Gibt es auch Körper mit endlich vielen Elementen? Wenn ja, gib ein Beispiel an. (4 Punkte)
 - (b) Beweise, dass $\sqrt{2}$ irrational ist. (7 Punkte)
- 3. (Funktionen)
 - (a) Seien A und B Mengen. Definiere den Begriff einer Funktion (Abbildung) von A nach B und den Begriff ihres Graphen. (5 Punkte)

- (b) Gib ein Beispiel
 - (i) einer injektiven aber nicht surjektiven Funktion $f_1:A_1\to B_1$ und
 - (ii) einer bijektiven Funktion $f_2:\,A_2\to B_2$
 - an, wobei A_i und B_i (i=1,2) (geeignete) Teilmengen von $\mathbb R$ sind. (4 Punkte)
- 4. (Ableitungspuzzle) Gegeben seien die Graphen der Funktionen f, g und h.

Welche der Funktionen i, j, k (Graphen siehe unten) ist

- (a) die erste Ableitung von f:
- (b) die erste Ableitung von g:
- (c) die erste Ableitung von h:

Welche der Funktionen l, m, n (Graphen siehe unten) ist

- (d) die zweite Ableitung von f:
- (e) die zweite Ableitung von g:
- (f) die zweite Ableitung von h:

(9 Punkte)