

V Semester B.Tech. (ISE) Degree Examination, February 2021 (CBCS Scheme) 18CIPC 502 : PROBABILITY AND STOCHASTIC PROCESSES

Time :	3 Hours Max. Marks : 100
	Instruction: Q. 1, Q. 2 and Q. 9 are compulsory. Answer Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.
	Define the term 'Median' with an example. (15×1=15
	What is 'Standard Deviation' in a distribution? What do you mean by 'Infinite Sample Space'? Provide an example.
d)	If A and B are not mutually exclusive events, then A \cup B =
e)	If A and B are independent events, then P (A B) =
f)	What do you mean by 'Prior' probability ?
g)	List the two properties of a probability density function pdf.
h)	If X is a continuous random variable, then E(X) =
i)	Define Covariance.
j)	Write the 'pmf' of hypergeometric distribution.
k)	What is 'memorylessness property' in exponential distribution?
1)	Give the 'mean' and 'variance' of generalized normal distribution.
m)	Define 'autocorrelation' of a stochastic process.
n	Define Discrete-Time Markov Chain.

2. a) Suppose that five good fuses and two defective ones have been mixed up. To find the defective fuses, we test them one-by-one at random and without replacement. What is the probability that we are lucky and find both of the defective fuses in the first two tests?

o) Give the Chapman-Kolmogorov equation.

b) A card is chosen at random from a deck of 52 playing cards. What is the probability that a randomly chosen card is a 'king' given the evidence that the card chosen is a 'face' card?

3. a) A random variable has the following probability distribution function.

7 6

X 0 1 2 3 5 4 P(X = x)0 k^2 2k2 $7k^2 + k$ k 2k 2k 3k

Find:

i) The value of k.

ii) Evaluate P(X < 6).

iii) If $P(X \le c) > \frac{1}{2}$, then find the minimum value of c.

b) Suppose that X is a continuous random variable with pdf given by :

7

10

$$f(x) = \begin{cases} 2x & x \in (0, 1) \\ 0 & \text{otherwise} \end{cases}$$

Find the expectation and variance of X.

OR

4. a) The amount of time in hours that an electric bulb functions before breaking down is a continuous random variable with pdf given by :

10

$$f(x) = \begin{cases} \lambda e^{-x/100} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

What is the probability that

i) The bulb will function between 200 to 300 hours before breaking down and

ii) It will function for less than 250 hours.

b) If X and Y are discrete random variables, then prove that

$$E[X + Y] = E[X] + E[Y].$$

7

5. a) A bulb manufacturing company is known to produce 5% defective. In a random sample of 15 bulbs, what is the probability that there are:

i) Exactly 3 defectives

ii) Not more than 3 defectives.

- b) Messages arrive at a computer at an average rate of 15 messages per second. The number of messages that arrive in 1 second is known to be a Poisson random variable.
 - i) Find the probability that no messages arrive in 1 second.
 - Find the probability that more than 10 messages arrive in a 1-second period.

OR

- 6. a) After the first 6 hours, the lifetime of a cell phone batteries are exponentially distributed with an average remaining lifetime of 18 hours. Let the random variable X measure the remaining lifetime after these initial 6 hours, and let the random variable Y measure the total lifetime.
 - i) Give the pdf and cdf of X.
 - ii) Compute E(X), $\sigma(X)$, E(Y) and $\sigma(Y)$.

10

9

b) Electric trains on a certain line run every half an hour between mid-night and six in the morning. What is the probability that a man entering the station at a random time during this period will have to wait at least twenty minutes?

7

a) Classify the stochastic process into four different types based on the parameter space T and state space I.

7

b) Consider an example of the Gambler's Ruin. A gambler enters a casino with \$50 with him to play. He decides to play the wheel roulette. At each spin, he places \$25 on red. If red occurs, he wins \$25. If black comes up, he loses \$25. Therefore, the probability of winning is 50% and the probability of losing is 50%. He will quit playing when he either has zero money left or he has \$75 in total. Derive the long run probabilities and find the probability of losing all his money or gaining an addition \$25 if he starts the game with \$25 and \$50 in his pocket.

10

OR

8. a) Suppose that the probability of a dry day following a rainy day is ¹/₃ and the probability of a rainy day following a dry day is ¹/₂. Given that May 1 is a dry day. Find the probability that May 3 is a dry day and also May 5 is a dry day.

b) Consider a Markov chain with state space {0, 1} and the tpm :

$$p = \begin{bmatrix} 1 & 0 \\ 1/2 & 1/2 \end{bmatrix}$$

- i) Draw the transition diagram.
- ii) Show that state 0 is recurrent.
- iii) Show that state 1 is transient.
- iv) Is the state 1 is periodic? If so, what is the period?
- v) Is the chain irreducible?
- vi) Is the chain ergodic? Explain.

10

7

- 9. a) Consider a M|M|m queuing system and derive the Erlang's C formula.
 - b) Consider a variation of the queuing model of figure given below, where the CPU node consists of two parallel processors with a service rate of μ_0 each. Draw a state diagram for this system and proceed to solve the balance equations. Obtain an expression for the average response time E[R] as a function of μ_0 , μ_1 , ρ_0 and λ .

Fig. Q. No. 9.(b)