Logistic Regression

一、模型:

特性:依變數(Y)為二分類的反應數,以1及0代表。

假設 $y = \ln(odds) = \beta_0 + \beta_1 X$, $odds = 勝算 = \frac{prob(y=1)}{prob(y=0)}$

Model:

$$Y_i = E\{Y_i\} + \varepsilon_i$$

 $E\{Y_i\} = p_i = \frac{1}{1 + e^{-y}}, y = \beta_0 + \beta_1 X_i, i = 1, \dots, n$

說明:注意 Sigmoid Function 算出預測機率

說明:用 0.5 作為切分點,將資料分群

☐ ` Confusion Matrix

說明:

混淆矩陣是對有監督學習分類算法準確率進行評估的工具。通過將模型預測的數據與測試數據進行對比,使用準確率,覆蓋率和命中率等指標對模型的分類效果進行度量。

假設檢定表格複習

		根據研究結果的判斷	
		拒絕 H ₀ (實際上拒絕零假設)	接受 H ₀ (實際上接受零假 設)
真實情況	H ₀ 是真實的 (理論上應接受零假 設)	錯誤判斷 (陽性判斷錯誤 偽陽性、type-1 error)	正確判斷
	H ₀ 是錯誤的 (理論上不接受零假 設)	正確判斷	錯誤判斷 (陰性判斷錯誤 偽陰性、type-2 error)

名詞解釋:

在進行決策的過程中,常將特徵空間劃分成若干空間,每兩個決策空間的交界處即為決策邊界。如直線或曲線即為二維空間的決策邊界,平面或曲面即為三維空間的決策邊界。

說明:下圖解釋如何畫出 logistic regression 的 Decision Boundary

