引理 0.1. 线性变换 $\mathbf{L}: \mathscr{V}_n \to \mathscr{W}_m$ 是单射当且仅当存在正实数 p>0 满足 $\|\mathbf{L}\mathbf{x}\| \geq p \|\mathbf{x}\| \, \forall \mathbf{x} \in \mathscr{V}_n$ 。

证明. 如果 L 不是单射,则存在 $\mathbf{x}_0 \neq \mathbf{0}$ 满足 $\mathbf{L}\mathbf{x}_0 = \mathbf{0}$,即有 $\|\mathbf{L}\mathbf{x}_0\| = 0 < m \|\mathbf{x}\|$ 。故其逆否命 题成立。

如果 L 是单射,则其存在逆 L⁻¹ 满足 L⁻¹L = I_{\neq} 且 L⁻¹ 也是线性变换。由定理??, $\exists k > 0, \|\mathbf{L}^{-1}\mathbf{y}\| \le k \|\mathbf{y}\| \, \forall \mathbf{y} \in \mathcal{W}_m$ 。令 p = 1/k 则有 $p \|\mathbf{x}\| = m \|\mathbf{L}^{-1}\mathbf{L}\mathbf{x}\| \le pk \|\mathbf{L}\mathbf{x}\| = \|\mathbf{L}\mathbf{x}\|$ □

引理 0.2. 设 $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ 是可微函数,且在 \mathbf{x}_0 处连续可微。再假设 \mathbf{f} 在 \mathbf{x}_0 处的导数 $\mathrm{D}\mathbf{f}(\mathbf{x}_0)$ 是单射。则存在 $\delta > 0$ 和 M > 0 使得只要 $\|\mathbf{x} - \mathbf{x}_0\| < \delta$ 就有

$$\|(\mathbf{Df}(\mathbf{x}_0))\mathbf{y}\| \ge M \|\mathbf{y}\|, \quad \forall \mathbf{y} \in \mathbb{R}^n$$

证明. 记函数 **f** 的导函数为 **L**。由引理**0.1**,存在 p > 0 使得 $\|\mathbf{L}(\mathbf{x}_0)\mathbf{y}\| \ge p \|\mathbf{y}\|, \forall \mathbf{y} \in \mathbb{R}^n$ 。同时,由于 **f** 在 \mathbf{x}_0 处连续可微,故对任一正实数——此处选择 p/2 > 0——存在 $\delta > 0$ 使得只要 $\|\mathbf{x} - \mathbf{x}_0\| < \delta$ 就有 $\|\mathbf{L}(\mathbf{x}) - \mathbf{L}(\mathbf{x}_0)\| \le p/2$ 。由线性变换的范的定义,有不等式

$$\left\| \left(\mathbf{L}\left(\mathbf{x}\right) - \mathbf{L}\left(\mathbf{x}_{0}\right) \right) \mathbf{y} \right\| \leq \left\| \mathbf{L}\left(\mathbf{x}\right) - \mathbf{L}\left(\mathbf{x}_{0}\right) \right\| \left\| \mathbf{y} \right\| \leq \frac{p}{2} \left\| \mathbf{y} \right\|$$

由三角不等式又有

$$\begin{split} \|\mathbf{L}\left(\mathbf{x}_{0}\right)\mathbf{y}\| &= \|\mathbf{L}\left(\mathbf{x}_{0}\right)\mathbf{y} + \mathbf{L}\left(\mathbf{x}\right)\mathbf{y} - \mathbf{L}\left(\mathbf{x}\right)\mathbf{y}\| \\ &\leq \|\mathbf{L}\left(\mathbf{x}_{0}\right)\mathbf{y} - \mathbf{L}\left(\mathbf{x}\right)\mathbf{y}\| + \|\mathbf{L}\left(\mathbf{x}\right)\mathbf{y}\| \\ \Leftrightarrow \|\mathbf{L}\left(\mathbf{x}_{0}\right)\mathbf{y}\| - \|\mathbf{L}\left(\mathbf{x}\right)\mathbf{y} - \mathbf{L}\left(\mathbf{x}_{0}\right)\mathbf{y}\| \leq \|\mathbf{L}\left(\mathbf{x}\right)\mathbf{y}\| \end{split}$$

上式不等号左边可代入刚刚确定的结论: $\|\mathbf{L}(\mathbf{x}_0)\mathbf{y}\| \le p \|\mathbf{y}\|, -\|\mathbf{L}(\mathbf{x})\mathbf{y} - \mathbf{L}(\mathbf{x}_0)\mathbf{y}\| \ge -\frac{p}{2}$, 得

$$\|\mathbf{L}(\mathbf{x})\mathbf{y}\| \ge \|\mathbf{L}(\mathbf{x}_0)\mathbf{y}\| - \|\mathbf{L}(\mathbf{x})\mathbf{y} - \mathbf{L}(\mathbf{x}_0)\mathbf{y}\|$$
$$\ge p\|\mathbf{y}\| - \frac{p}{2}\|\mathbf{y}\| = \frac{p}{2}\|\mathbf{y}\|$$

故存在 M = p/2 > 0 满足命题。

引理 0.3. 设 $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ 是可微函数,且在 \mathbf{x}_0 处连续可微。再假设 \mathbf{f} 在 \mathbf{x}_0 处的导数 $\mathrm{D}\mathbf{f}(\mathbf{x}_0)$ 是单射,则存在正实数 $\delta > 0$ 和 M > 0 使得只要 $\|\mathbf{x}' - \mathbf{x}_0\| < \delta$ 就有 $\|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x})\| \le M \|\mathbf{x}' - \mathbf{x}\|$ 。

更新至 2024-11-17 1

证明. 记函数 f 的导函数为 L。由引理0.1, 存在 m > 0 使得 $\|\mathbf{L}(\mathbf{x}_0)\mathbf{y}\| \ge m \|\mathbf{y}\| \forall \mathbf{y} \in \mathbb{R}^n$ 。

由于 f 在 \mathbf{x}_0 处连续可微,故对任一正实数——此处选择 $M=m/(2\sqrt{n})>0$ ——存在 $\delta>0$ 使得只要 $\|\mathbf{x}-\mathbf{x}_0\|<\delta$ 就有 $\|\mathbf{L}(\mathbf{x})-\mathbf{L}(\mathbf{x}_0)\|\leq m/(2\sqrt{n})$ 。

按照命题叙述,设 \mathbf{x} 和 \mathbf{x}' 是 \mathbb{R}^n 的任意两向量满足 $\|\mathbf{x}' - \mathbf{x}_0\| < \delta, \|\mathbf{x} - \mathbf{x}_0\| < \delta$,令 $\mathbf{z} = \mathbf{x}' - \mathbf{x}$,则对 $0 \le t \le 1$ 有

$$\|\mathbf{x} + t\mathbf{z} - \mathbf{x}_0\| = \|t\mathbf{x}' + (1 - t)\mathbf{x} - \mathbf{x}_0\|$$

$$= \|t(\mathbf{x}' - \mathbf{x}) + (1 - t)(\mathbf{x} - \mathbf{x}_0)\|$$

$$\leq t\|\mathbf{x}' - \mathbf{x}_0\| + (1 - t)\|\mathbf{x} - \mathbf{x}_0\| < t\delta + (1 - t)\delta = \delta$$

上述推导结论在几何上的意义是,只要点 \mathbf{x}', \mathbf{x} 在由 $\|\mathbf{x}_0\| < \delta$ 的开集内部,则它们的连线上的点 $\mathbf{x} + t\mathbf{z}$ 都在此开集内部,或称 " δ -球是凸的"。由于导函数连续是在整个 δ -球内都成立的,因此对由 $0 \le t \le 1$ 定义的所有点 $\mathbf{x} + t\mathbf{z}$ 均有 $\|\mathbf{L}(\mathbf{x} + t\mathbf{z}) - \mathbf{L}(\mathbf{x}_0)\| < m/(2\sqrt{n})$ 。又由线性变换的模的定义有 $\|(\mathbf{L}(\mathbf{x} + t\mathbf{z}) - \mathbf{L}(\mathbf{x}_0))\| \le \|\mathbf{L}(\mathbf{x} + t\mathbf{z}) - \mathbf{L}(\mathbf{x}_0)\| \|\mathbf{y}\| \le \|\mathbf{R}^n\|$ 。

引入"取坐标函数", $\pi_k(\mathbf{x}) = x_k, \mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n, k = 1, \dots, n$ 。 易验证 $\frac{d\pi_k(\mathbf{x})}{d\mathbf{x}} \equiv \pi_k(\mathbf{x})$ 。 若定义 $g_k(t) = \pi_k(\mathbf{f}(\mathbf{x} + t\mathbf{z})), 0 \le t \le 1$,则由链式法则可得如下关系

$$\frac{dg_k}{dt} = \pi_k \left(\mathbf{L} \left(\mathbf{x} + t\mathbf{z} \right) \mathbf{z} \right)$$

由微分中值定理,存在 $t_k \in [0,1]$ 使得 $g_k(1) - g_k(0) = \frac{dg_k}{dt_k}$ 。代入 $g_k \setminus \frac{dg_k}{dt_k}$ 的表达式得 $\pi_k(\mathbf{f}(\mathbf{x}')) - \pi_k(\mathbf{f}(\mathbf{x})) = \pi_k(\mathbf{L}(\mathbf{x} + t_k \mathbf{z}) \mathbf{z})$ 。注意到,函数 $\pi_k(\mathbf{x})$ 就是向量 \mathbf{x} 在第 k 个基上的投影长度。由投影长度不大于向量长度(代数意义是使用柯西–施瓦茨不等式),有

$$\|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x})\| \ge |\pi_k \left(\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x})\right)|$$

$$= |\pi_k \left(\mathbf{f}(\mathbf{x}')\right) - \pi_k \left(\mathbf{f}(\mathbf{x})\right)|$$

$$= |\pi_k \left(\mathbf{L} \left(\mathbf{x} + t_k \mathbf{z}\right) \mathbf{z}\right)|$$

另有以下三角不等式成立:

$$\|(\mathbf{L}(\mathbf{x} + t_k \mathbf{z}) - \mathbf{L}(\mathbf{x}_0))\mathbf{z}\| + \|\mathbf{L}(\mathbf{x}_0)\mathbf{z}\| \le \|\mathbf{L}(\mathbf{x} + t_k \mathbf{z})\mathbf{z}\|$$

上式左右取投影也成立,即

$$|\pi_k\left(\left(\mathbf{L}\left(\mathbf{x}+t_k\mathbf{z}\right)-\mathbf{L}\left(\mathbf{x}_0\right)\right)\mathbf{z}\right)|+|\pi_k\left(\mathbf{L}\left(\mathbf{x}_0\right)\mathbf{z}\right)|\leq |\pi_k\left(\mathbf{L}\left(\mathbf{x}+t_k\mathbf{z}\right)\mathbf{z}\right)|$$

以上不等式联合有

$$\|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x})\| \ge |\pi_k ((\mathbf{L}(\mathbf{x} + t_k \mathbf{z}) - \mathbf{L}(\mathbf{x}_0)) \mathbf{z})| + |\pi_k (\mathbf{L}(\mathbf{x}_0) \mathbf{z})|$$

由事实 $\|\mathbf{x}\| \le \sqrt{n} \max\{|x_i|\} \equiv \sqrt{n} \max\{\pi_i(\mathbf{x})\}$ (之前在说明范的定义的等价性时证明过该事实)知,在 $k = 1, \dots, m$ 中至少有一个 k 满足

$$\sqrt{n} |\pi_k (\mathbf{L}(\mathbf{x}_0) \mathbf{z})| \ge ||\mathbf{L}(\mathbf{x}_0) \mathbf{z}||$$

再次利用投影不大于原长,有

$$\left|\pi_{k}\left(\left(\mathbf{L}\left(\mathbf{x}+t_{k}\mathbf{z}\right)-\mathbf{L}\left(\mathbf{x}_{0}\right)\right)\mathbf{z}\right)\right|\leq\left\|\left(\mathbf{L}\left(\mathbf{x}+t_{k}\mathbf{z}\right)-\mathbf{L}\left(\mathbf{x}_{0}\right)\right)\mathbf{z}\right\|$$

再次联合这些不等式有

$$\|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x})\| \ge \frac{1}{\sqrt{n}} \|\mathbf{L}(\mathbf{x}_0) \mathbf{z}\| - \|(\mathbf{L}(\mathbf{x} + t_k \mathbf{z}) - \mathbf{L}(\mathbf{x}_0)) \mathbf{z}\|$$

$$\ge 2M \|\mathbf{z}\| - M \|\mathbf{z}\| = M \|\mathbf{x}' - \mathbf{x}\|$$

有了上面三个引理,我们可正式给出反函数定理的证明。

定理 0.1 (反函数定理). 设 $\mathbf{f}: \mathbb{R}^n \supset D \to \mathbb{R}^n$ 是开集 D 上的连续可微函数,记函数 \mathbf{f} 在 D 上的导函数为 $\mathbf{L}(\mathbf{x}) \equiv D\mathbf{f}(\mathbf{x})$, $\forall \mathbf{x} \in D$ 。若 $\mathbf{L}(\mathbf{x}_0)$ 是单射,则总存在 \mathbf{x}_0 的一个邻域 N 使得 \mathbf{f} 在 N 上有连续可导的逆函数 \mathbf{f}^{-1} ; \mathbf{f} 的像的集合 $\mathbf{f}(N)$ 也是开集;对 N 内任意一点 \mathbf{x} 都有

$$\mathrm{D}\mathbf{f}^{-1}\left(\mathbf{f}\left(\mathbf{x}\right)\right) = \mathbf{L}^{-1}\left(\mathbf{x}\right)$$

证明. 我们先列出引理0.2和0.3的结论。由于 f 在 \mathbf{x}_0 处连续可微,且 $\mathbf{L}(\mathbf{x}_0)$ 是单射,故:

- 由引理0.2, 对 \mathbf{x}_0 的任一邻域 $N = \{\mathbf{x} | \|\mathbf{x} \mathbf{x}_0\| < \delta\}$ ($\delta > 0$ 为任一正实数),都能找到 正实数 $M(\mathbf{y}) > 0$ 满足 $\|\mathbf{L}(\mathbf{x})\mathbf{y}\| \ge M \|\mathbf{y}\| \, \forall \mathbf{y} \in \mathbb{R}^n$ 。进一步地,再由引理0.1可知导函数 $\mathbf{L}(\mathbf{x})$ 在 N 上的每个值都是单射线性变换。再由于 $\mathbf{L}(\mathbf{x})$ 在 N 上都是单射线性变换且其 定义域和陪域维数相同,故 $\mathbf{L}(\mathbf{x})$ 在 N 上的每个值都是双射(同构)线性变换。
- 由引理0.3,对 N 内部任一 \mathbf{x}' ,总能找到正实数 $M'(\mathbf{x}') > 0$ 满足 $\|\mathbf{f}(\mathbf{x}') \mathbf{f}(\mathbf{x})\| \ge M'\|\mathbf{x}' \mathbf{x}\|$ 。

我们令 M' = M,这相当于联系了 y 和 x'。

我们证明的任务包括:

- I 函数 f 存在逆函数 f^{-1} ;
- II 开集 N 经 \mathbf{f} 的像集 $\mathbf{f}(N)$ 也是开集;
- III $\forall \mathbf{x} \in N, \mathbf{L}^{-1}(\mathbf{x})$ 是 \mathbf{f}^{-1} 的导数;

IV **f**^{−1} 连续可微。

更新至 2024-11-17 3

I的证明:由引理0.3的结论,若 $\mathbf{x}' \neq \mathbf{x}$ 则 $\mathbf{f}(x) \neq \mathbf{f}(\mathbf{x}')$,即 \mathbf{f} 是单射,故必存在逆 \mathbf{f}^{-1} 。I证 毕。

II的证明: 首先我们确认一些比较直接的接论:

- 由于 N 是开集,故对任一 $\mathbf{x}_1 \in N$,总能找到足够小的 δ_1 使得 $B = \{\mathbf{x} | \|\mathbf{x} \mathbf{x}_1\| \le \delta_1\}$ 在 N 的内部。注意这里的 B 是一个闭集。
- 由于函数 f 存在逆函数 f⁻¹,故 x ∈ N \Leftrightarrow N \ni x = f⁻¹ (f(x)) f⁻¹ (y) \forall y \in f(N) = {y|y = f(x), x ∈ N}。即给定任一 y₁ ∈ f(N) 有且只有一个 x₁ ∈ N 满足 f(x₁) = y₁。

要证明 $\mathbf{f}(N)$ 是开集,就是要证明,对任一 $\mathbf{y}_1 \in \mathbf{f}(N)$,总能找到足够小的 $\widetilde{M} > 0$ 使得开 集 $C = \left\{ \mathbf{y} | \|\mathbf{y} - \mathbf{y}_1\| < \widetilde{M} \right\}$ 在 $\mathbf{f}(N)$ 的内部。

如何由已知条件来找到这个 \widetilde{M} 呢? 由于 N 是开集,我们通过 $\mathbf{x}_1 = \mathbf{f}^{-1}(\mathbf{y}_1) \in N$,可以找到使得闭集 $B = \{\mathbf{x} | \|\mathbf{x} - \mathbf{x}_1\| \leq \delta_1\}$ 在 N 的内部的一个正实数 δ_1 。

如果 \widetilde{M} 存在,则对任一 $\mathbf{y} \in C$,我们可以从 B 中找到一个 \mathbf{x}' 使得 $\mathbf{y}' = \mathbf{f}(\mathbf{x}')$ 到 $\mathbf{y} \in C$ 的距离最短,并由引理 $\mathbf{0.3}$,总能找到足够小的正实数 M' 使得

$$\|\mathbf{f}(\mathbf{x}') - \mathbf{y}_1\| = \|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x}_1)\| \ge M' \|\mathbf{x}' - \mathbf{x}_1\| = M' \delta_1$$

接下来我们将证明:

i 如果 $\widetilde{M} = M'\delta/2$, 那么上述的 \mathbf{x}' 在 B 的内部 (即不在 B 的边界上);

ii 这一 y′ 就是 y。

上面两条若得证,则给定任一 $\mathbf{y}_1 \in \mathbf{f}(N)$,总有正实数 \widetilde{M} (且具体地 $\widetilde{M} = M'\delta_1/2$) 使得开集 $C = \left\{ \mathbf{y} | \|\mathbf{y} - \mathbf{y}_1\| < \widetilde{M} \right\}$ 在 $\mathbf{f}(N)$ 的内部。 \mathbf{H} 也就得证了。

i的证明: 反证法。设 \mathbf{x}' 在 B 的边界上,即 $\|\mathbf{x}'-\mathbf{x}_1\|=\delta_1$,则由引理 $\mathbf{0.3}$,总能找足够小的正实数 M' 使得

$$\|\mathbf{f}(\mathbf{x}') - \mathbf{y}_1\| = \|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x}_1)\| \ge M' \|\mathbf{x}' - \mathbf{x}_1\| = M' \delta_1$$

那么,由三角不等式,对任一 $\mathbf{y} \in C$ (即总有 $\|\mathbf{y} - \mathbf{y}_1\| < M'\delta_1/2$),

$$\|\mathbf{f}(\mathbf{x}') - \mathbf{y}\| \ge \|\mathbf{f}(\mathbf{x}') - \mathbf{y}_1\| - \|\mathbf{y} - \mathbf{y}_1\|$$

$$> M'\delta_1 - \|\mathbf{y} - \mathbf{y}_1\|$$

$$> M'\delta_1 - \frac{M'\delta_1}{2}$$

$$= \frac{M'\delta_1}{2}$$

$$> \|\mathbf{y} - \mathbf{y}_2\|$$

$$= \|\mathbf{f}(\mathbf{x}_1) - \mathbf{y}\|$$

但这与"y'到y的距离最短"相矛盾,故x'在B的内部。

ii的证明:设到 y 的距离平方函数

$$g(\mathbf{x}) = \|\mathbf{f}(\mathbf{x}) - \mathbf{y}\|^2 = (\mathbf{f}(\mathbf{x}) - \mathbf{y}) \cdot (\mathbf{f}(\mathbf{x}) - \mathbf{y})$$

则 \mathbf{x}' 应使得该函数的一阶导数等于零,即 $\mathrm{D}g(\mathbf{x})=\mathbf{0}$ (零变换)。由零变换性质和链式法则,对任一 $\mathbf{z}\in\mathbb{R}^n$,

$$0 = Dg(\mathbf{x}')\mathbf{z} = 2(\mathbf{f}(\mathbf{x}') - \mathbf{y}) \cdot (\mathbf{L}(\mathbf{x}')\mathbf{z})$$

由于 $\mathbf{L}(\mathbf{x})$ 在 N 上的每个值都是双射(同构)线性变换,故有且只有一个向量 $\mathbf{z} \in \mathbb{R}^n$ 满足 $\mathbf{L}(\mathbf{x}')\mathbf{z} = \mathbf{f}(\mathbf{x}') - \mathbf{y}$ 。故上式 \Leftrightarrow

$$0 = 2(\mathbf{f}(\mathbf{x}') - \mathbf{y}) \cdot (\mathbf{f}(\mathbf{x}') - \mathbf{y}) \Leftrightarrow \mathbf{f}(\mathbf{x}') - \mathbf{y} = \mathbf{0}$$

即,只要 $\mathbf{x}' \in N$ 是使 $\mathbf{y}' = \mathbf{f}(\mathbf{x}')$ 到任一 $\mathbf{y} \in \mathbf{f}(N)$ 的距离最短的点,则 $\mathbf{f}(\mathbf{x}') = \mathbf{y}' = \mathbf{y}$ 。ii证毕。 II证毕。

III的证明:按照导数的定义,相当于要证明对任一 $x \in N$,极限

$$\lim_{f(x') \rightarrow f(x)} \frac{x' - x - L^{-1}\left(x\right)\left(f\left(x'\right) - f\left(x\right)\right)}{\left\|f\left(x'\right) - f\left(x\right)\right\|} = 0$$

令未求极限前的比增量为 s, 即

$$s = \frac{x' - x - L^{-1}\left(x\right)\left(f\left(x'\right) - f\left(x\right)\right)}{\|f\left(x'\right) - f\left(x\right)\|}$$

由于 L(x) 在 $x \in N$ 内都有定义, 故极限

$$\lim_{x' \to x} \frac{f\left(x'\right) - f\left(x\right) - L\left(x\right)\left(x' - x\right)}{\left\|x' - x\right\|} = 0$$

 \Rightarrow

$$\mathbf{r} = \frac{\mathbf{f}\left(\mathbf{x}'\right) - \mathbf{f}\left(\mathbf{x}\right) - \mathbf{L}\left(\mathbf{x}\right)\left(\mathbf{x}' - \mathbf{x}\right)}{\left\|\mathbf{x}' - \mathbf{x}\right\|}$$

则 $\lim_{\mathbf{x}'\to\mathbf{x}}\mathbf{r}=\mathbf{0}$ 。对 $\mathbf{x}'\in N, \mathbf{x}'\neq\mathbf{x}$,s 可由 \mathbf{r} 表示为

$$s = -\frac{\left\|x' - x\right\|}{\left\|\mathbf{f}\left(x'\right) - \mathbf{f}\left(x\right)\right\|} \mathbf{L}^{-1}\left(x\right) \mathbf{r}$$

由引理0.3, 存在足够小正实数 M 使得 $\|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x})\| \ge M \|\mathbf{x}' - \mathbf{x}\|$, 故有

$$0 \ge -\frac{\|\mathbf{x}' - \mathbf{x}\|}{\|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x})\|} \ge -\frac{1}{M}$$

即 $-\frac{\|x'-x\|}{\|f(x')-f(x)\|}$ 是有界的。

又由定理??的推论,线性变换都是连续函数,故由复合函数的连续性,极限

$$\lim_{x'\to x}\mathbf{L}^{-1}\left(x\right)\mathbf{r}=\mathbf{L}^{-1}\left(x\right)\lim_{x'\to x}\mathbf{r}=\mathbf{0}$$

由于一个有界函数与一个有极限的函数的积的极限等于那个有极限的函数的极限*,故 $\lim_{x'\to x}s=0$ 。又由于当 $x'\to x$ 时 $f(x')\to f(x)$,由 s 的形式有 $\lim_{x'\to x}s=0$ ⇔ $\lim_{f(x')\to f(x)}s=0$ 。 III证毕。

IV的证明: 要证 \mathbf{f}^{-1} 的导函数连续,即对任一 $\mathbf{x}_1 \in N, \mathbf{y}_1 = \mathbf{f}(\mathbf{x}_1)$ 有

$$\lim_{\mathbf{y} \to \mathbf{y}_1} \mathbf{D} \mathbf{f}^{-1} \left(\mathbf{y} \right) = D \mathbf{f}^{-1} \left(\mathbf{y}_1 \right)$$

由III的证明我们已经有

$$\mathrm{D}\mathbf{f}^{-1}\left(\mathbf{y}\right) = \mathbf{L}^{-1}\left(\mathbf{x}\right), \quad \mathbf{y} = \mathbf{f}\left(\mathbf{x}\right), \forall \mathbf{x} \in N$$

故只需证

$$\lim_{\mathbf{x} \to \mathbf{x}_1} \mathbf{L}^{-1} (\mathbf{x}) = \mathbf{L}^{-1} (\mathbf{x}_1)$$

由引理0.3,总存在足够小正实数 M 满足 $\|\mathbf{L}(\mathbf{x})\mathbf{y}\| \ge M \|\mathbf{y}\| \, \forall \mathbf{y} \in \mathbb{R}^n$,故令 $\mathbf{z} = \mathbf{L}(x)\mathbf{y}$,则 $\|\mathbf{z}\| > M \|\mathbf{L}^{-1}(\mathbf{x})\mathbf{z}\|$ 。

由于 \mathbf{f} 是连续可微函数,设 $\mathbf{x}_1 \in N$,对任一 $\epsilon' > 0$,总存在 $\delta > 0$,使得只要 $\|\mathbf{x} - \mathbf{x}_1\| < \delta$ 就有 $\|\mathbf{L}(\mathbf{x}) - \mathbf{L}(\mathbf{x}_1)\| < \epsilon'$ 。具体的,设由 δ 定义的 \mathbf{x}_1 的邻域 $N_1 = \{\mathbf{x} | \|\mathbf{x} - \mathbf{x}_1\|\} < \delta$ 在 N 的内部,则对任一 $\mathbf{x} \in N_1$,以下不等式成立

$$\begin{aligned} \left\| \left(\mathbf{L}^{-1} \left(\mathbf{x} \right) - \mathbf{L}^{-1} \left(\mathbf{x}_{1} \right) \right) \mathbf{z} \right\| &= \left\| \mathbf{L}^{-1} \left(\mathbf{x} \right) \left(\mathbf{L} \left(\mathbf{x} \right) - \mathbf{L} \left(\mathbf{x}_{1} \right) \right) \mathbf{L}^{-1} \left(\mathbf{x}_{1} \right) \mathbf{z} \right\| \\ &\leq \frac{1}{M} \left\| \left(\mathbf{L} \left(\mathbf{x} \right) - \mathbf{L} \left(\mathbf{x}_{1} \right) \right) \mathbf{L}^{-1} \left(\mathbf{x}_{1} \right) \mathbf{z} \right\| \\ &\leq \frac{1}{M} \left\| \mathbf{L} \left(\mathbf{x} \right) - \mathbf{L} \left(\mathbf{x}_{1} \right) \right\| \left\| \mathbf{L}^{-1} \left(\mathbf{x}_{1} \right) \mathbf{z} \right\| \\ &\leq \frac{1}{M^{2}} \left\| \mathbf{L} \left(\mathbf{x} \right) - \mathbf{L} \left(\mathbf{x}_{1} \right) \right\| \left\| \mathbf{z} \right\| \end{aligned}$$

由线性变换的范的定义(最大下界),上述不等式 ⇔

$$\left\|\mathbf{L}^{-1}\left(\mathbf{x}\right) - \mathbf{L}^{-1}\left(\mathbf{x}_{1}\right)\right\| \leq \frac{1}{M^{2}}\left\|\mathbf{L}\left(\mathbf{x}\right) - \mathbf{L}\left(\mathbf{x}_{1}\right)\right\| \leq \frac{\epsilon'}{M^{2}}$$

令 $\epsilon = \frac{\epsilon'}{M^2}$,我们就有对于任一 $\mathbf{x}_1 \in N$ 和任一 $\epsilon > 0$,总有 $\delta > 0$ 使得只要 $\|\mathbf{x} - \mathbf{x}_1\| < \delta$ 就有 $\|\mathbf{L}^{-1}(\mathbf{x}) - \mathbf{L}^{-1}(\mathbf{x}_1)\| < \epsilon$ 。具体地,这个 δ 总存在是由于 M 总存在。这相当于说 $\lim_{\mathbf{x} \to \mathbf{x}_1} \mathbf{L}^{-1}(\mathbf{x}) = \mathbf{L}^{-1}(\mathbf{x}_1)$,**IV**证毕。

^{*}这个基本定理可由极限的 $\delta - \epsilon$ 语言证明,很多地方有,此略。