Rolle's Theorem

Theorem (29.1 – criterion for max and min)

Suppose f is defined on an open interval I, has max or min at $x_0 \in I$. If f is differentiable at x_0 , then $f'(x_0) = 0$.

Theorem (29.2)

Suppose $f : [a, b] \to \mathbb{R}$ is continuous, differentiable on (a, b). If f(a) = f(b), then $\exists x \in (a, b)$ s.t. f'(x) = 0.

Proof. f attains its max and min; say $f(y_0) \le f(x) \le f(x_0)$ for any $x \in [a, b]$. In particular, $f(y_0) \le f(a) = f(b) \le f(x_0)$. If $f(y_0) = f(a) = f(b) = f(x_0)$, then f is a constant, hence f' = 0 on (a, b).

If
$$f(x_0) > f(a) = f(b)$$
, then $x_0 \in (a, b)$, hence $f'(x_0) = 0$.
If $f(y_0) < f(a) = f(b)$, then $y_0 \in (a, b)$, hence $f'(y_0) = 0$.

Mean Value Theorem

Theorem (29.2 – MVT)

If $f:[a,b]\to\mathbb{R}$ is continuous, differentiable on (a,b), then $\exists x\in(a,b)$ s.t. $f'(x)=\frac{f(b)-f(a)}{b-a}$.

Proof. Let
$$L(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
, $g(x) = f(x) - L(x)$. g is continuous on $[a, b]$, differentiable on (a, b) , $g(a) = 0 = g(b)$. By Rolle's Theorem, $\exists x \in (a, b)$ s.t. $g'(x) = 0$. Then $f'(x) = g'(x) + L'(x) = 0 + \frac{f(b) - f(a)}{b - a}$.

Example. For $x, y \in \mathbb{R}$, $|\sin x - \sin y| \leq |x - y|$.

Apply MVT to
$$f(t) = \sin t$$
 on $[x, y]$: $\exists z \in (x, y)$ s.t.
$$\frac{f(x) - f(y)}{x - y} = f'(z) = \cos z. \mid \cos z \mid \leqslant 1, \text{ hence } \frac{|f(x) - f(y)|}{|x - y|} = |\cos z| \leqslant 1.$$

Consequences of Mean Value Theorem

Corollary (29.4)

If f is differentiable on (a, b), and f' = 0 on (a, b), then f is a constant function.

Proof. Suppose f is not a constant. Find x < y s.t. $f(x) \neq f(y)$. By MVT, $\exists z \in (x, y)$ s.t. $f'(z) = \frac{f(y) - f(x)}{y - x} \neq 0$.

Corollary (29.5)

If f, g are differentiable on (a, b), and f' = g' on (a, b), then $\exists c \in \mathbb{R}$ s.t. $f(x) = g(x) + c \ \forall x \in (a, b)$.

Proof. Apply Corollary 29.4 to h = f - g.

Increasing and decreasing functions

Definition (29.6)

A function f on an interval I is called increasing (strictly increasing) if $f(x_1) \leq f(x_2)$ ($f(x_1) < f(x_2)$) when $x_1 < x_2$.

Corollary (29.7)

Suppose f is a differentiable function on (a, b).

- f is increasing iff $f' \ge 0$ on (a, b).
- If f' > 0 on (a, b), then f is strictly increasing.

Remark. f strictly increasing $\Rightarrow f' > 0$ on (a, b). For instance, $f(x) = x^3$ is strictly increasing on (-1, 1); however, $f'(x) = 3x^2$, so f'(0) = 0.

Increasing and decreasing functions, continued

Corollary 29.7(i) Suppose f is differentiable on (a, b). Then f is increasing iff $f' \ge 0$ on (a, b).

Proof. (1) Suppose f is increasing on (a, b). For $c \in (a, b)$, $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$. Right hand side is ≥ 0 .

(2) Suppose
$$f' \ge 0$$
 on (a, b) . If $x_1 < x_2$, use MVT to find $x \in (x_1, x_2)$ s.t. $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x) \ge 0$, hence $f(x_2) \ge f(x_1)$.

Corollary (not in the textbook)

Suppose f is continuous on [a, b], and differentiable on (a, b).

- (i) f is increasing on [a, b] iff $f' \ge 0$ on (a, b).
- (ii) If f' > 0 on (a, b), then f is strictly increasing on [a, b].

Remark. Suppose f'(c) > 0. Is f "locally increasing" at c – that is, does there exist $\delta > 0$ s.t. f increases on $(c - \delta, c + \delta)$? No! See Exercise 29.10.

Examples

Examples. (1) $\sin x \le x$ for $x \ge 0$. Consider $f(x) = x - \sin x$. Want to show: $f \geqslant 0$ on $[0, \infty)$.

f is differentiable (hence continuous) on \mathbb{R} . $f'(x) = 1 - \cos x \ge 0$, hence f is increasing on \mathbb{R} . If $x \ge 0$, then $f(x) \ge f(0) = 0$.

- (2) Bernoulli Inequality. If $n \in \mathbb{N}$, and x > -1, then $(1+x)^n \ge 1 + nx$. Let $f(x) = (1+x)^n - (1+nx)$, and show that $f \ge 0$ on $(-1, \infty)$. The
- function f is differentiable (hence continuous) on $(-1, \infty)$.
- $f'(x) = n((1+x)^{n-1}-1)$; f' < 0 on (-1,0), and f' > 0 on $(0,\infty)$.
- Thus, f decreases on (-1,0], increases on $[0,\infty)$.
- If $x \in (-1,0]$, then $f(x) \ge f(0) = 0$. If $x \in (0,\infty)$, then $f(x) \ge f(0) = 0$.
- Thus, for any $x \in (-1, \infty)$, $f(x) \ge f(0) = 0$.

Inermediate Value Theorem for Derivatives

Theorem (29.8 – IVT for Derivatives, due to Darboux)

Suppose f is differentiable on (a,b), $a < x_1 < x_2 < b$, and c lies between $f'(x_1)$ and $f'(x_2)$. Then $\exists y \in (x_1,x_2)$ s.t. f'(y) = c.

Theorem (Intermediate Value Theorem, Lecture 19)

Suppose g is continuous on $[x_1, x_2]$, and c lies between $g(x_1)$ and $g(x_2)$. Then $\exists y \in (x_1, x_2)$ s.t. g(y) = c.

Remark. f' need not be continuous! Consider

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}.$$

So, we cannot apply IVT to prove IVTD.

Intermediate Value Theorem for Derivatives

Theorem (29.8 – IVT for Derivatives, due to Darboux)

Suppose f is differentiable on (a,b), $a < x_1 < x_2 < b$, and c lies between $f'(x_1)$ and $f'(x_2)$. Then $\exists y \in (x_1,x_2)$ s.t. f'(y) = c.

Proof. Say $f'(x_1) < c < f'(x_2)$. g(x) = f(x) - cx attains its min on $[x_1, x_2]$ at some y. $\lim_{x \to x_1} \frac{g(x) - g(x_1)}{x - x_1} = g'(x_1) = f'(x_1) - c < 0$, hence $\exists \delta > 0$ s.t. $g(x) < g(x_1)$ for $x \in (x_1, x_1 + \delta)$. Thus, $y \neq x_1$. Similarly, $y \neq x_2$. $y \in (x_1, x_2)$, so g'(y) = 0, and f'(y) = c.

IVT for Derivatives: applications

- **Examples.** (1) Suppose f is differentiable on \mathbb{R} , f(0) = 7, f(2) = 1, f(5) = 4. Prove that there exists $x \in \mathbb{R}$ s.t. f'(x) = -1.
- (i) Apply MVT to [0,2]: $\exists x_1 \in (0,2)$ s.t. $f'(x_1) = \frac{f(2) f(0)}{2 0} = -3$.
- (ii) Apply MVT to [2,5]: $\exists x_2 \in (2,5) \text{ s.t. } f'(x_2) = \frac{f(5) f(2)}{5 2} = 1.$
- (iii) Apply IVTD to (x_1, x_2) , with $-1 \in (f'(x_1), f'(x_2))$.
- (2) There is **no** function f, differentiable on \mathbb{R} , so that $f'(x) = \operatorname{sign}(x)$ (recall that $\operatorname{sign}(x) = 1$ if x > 0, $\operatorname{sign}(x) = -1$ if x < 0, and $\operatorname{sign}(0) = 0$). Apply IVTD with $x_1 = 0$, $x_2 = 1$, $c = \frac{1}{2}$: there is no $x \in (x_1, x_2)$ s.t. $\operatorname{sign}(x) = c$.

Differentiating inverse functions (pp. 237-239)

Set-up. Suppose I is an interval, and $f:I\to\mathbb{R}$ is a continuous strictly monotone function. Then J=f(I) is an interval; $g=f^{-1}:J\to I$ is strictly monotone, and continuous (Section 18).

Theorem (29.9)

If f is differentiable at $c \in I$, and $f'(c) \neq 0$, then g is differentiable at d = f(c), and $g'(d) = \frac{1}{f'(g(d))} = \frac{1}{f'(g(d))}$.

A way to memorize the formula: $\forall y \in J$, f(g(y)) = y. Differentiate both sides at d, using Chain Rule: f'(g(d))g'(d) = 1. This is not a proof! We need to prove g is differentiable at d.