드론 기반 영상 분석 AI: 균열 진단 (0.1mm) 및 길이 측정 수행

TEAM 22조 이어드림 이현민, 김승빈, 유대순, 한세진

CHAPTER 1 프로젝트 주제

- 1) 주제소개
- 2) 기획 의도 및 동기
- 3) 문제 정의 및 목표

CHAPTER 2

데이터

- 1) 데이터 기획
- 2) 데이터 활용 방안

CHAPTER 3 활용 모델

- 1) 모델 구현 계획
- 2) Model Serving 계획

CHAPTER 4

프로젝트 진행안

- 1) 사용 가능한 기술
- 2) 개발환경 및 기술스택
- 3) 업무분담
- 4) 타임라인

CHAPTER 5 활용방안 및 기대효과

1) 프로젝트 주제 소개

"

드론이 촬영한 영상을 분석하여 0.1mm 수준의 균열을 진단하고, 픽셀 단위 사이즈로 길이 및 폭을 측정하는 모델을 만든다.

2) 프로젝트 기획 의도 및 동기

점점 노후화되는 국내 인프라 시설

출처: https://www.seoul.co.kr/news/newsView.php? id=20220210008009

국내 주요 인프라 시설: 16만 381개 (2020년 11월 기준) **30년 이상 된 시설물:** 2만 7997개

┗ → 5개 中 1개가 노후 시설

출처: http://tbs.seoul.kr/news/newsView.do?seq_800=20469504&typ_800=7

10년뒤, 전체의 44.2%가 30년을 넘은 노후시설물

2-1) 인력 사용으로 인한 안전문제

근로자 추락 4명 사망...교량 점검시설 6개월전 시공

"충남 예산군 대전당진고속도로 차동1교에서 근로자 4명이 추락해 숨진 것과 관련해, 이들이 추락한 것으로 추정되는 교량 점검 시설물이 지난해 12월에 시공된 것으로 확인됐다."

출처: 뉴시스 https://mobile.newsis.com/view.html?ar-id=NISX20180519 0000313268# enliple

경부고속도로 교량 점검 근로자 40m 추락해 숨져

"고속도로 교량을 점검하던 50대 근로자가 다리 아래로 추락해 실종됐다가 수색 9시간 만에 숨진 채 발견됐다."

출처: 연합뉴스 https://www.yna.co.kr/view/AKR20180914013400064

(단위: 명, %, %p)

구분	Эl	떨어짐		부딪힘		물체에 맞음		끼임		깔림. 뒤집힘		기타	
			비중		비중		비중		비중		비중		비중
2020년	87	66	75.9	7	8.0	3	3.4	4	4.6	1	1.1	6	6.9
2019년	54	46	85.2	5	9.3	1	1.9	1	1.9	0	0.0	1	1.9
증 감	33	20	-9.3	2	-1.3	2	1.5	3	2.7	1	1.1	5	5.0

"보수공사의 사고사망자 대부분은 '떨어짐' 으로 인해 발생했으며, 전년대비 '보수공사 중 떨어짐 사망사고' 가 크게 증가했다."

출처: 고용노동부 2020년 산업재해 업종별 사고사망 통계

2-2) 중장비 사용, 인력 고용에 의한 고가 비용

출처: https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=kobridge20&logNo=220520948 100

1. 굴절차 대여 비용

- 굴절차 1회 대여에 약 100만원 가량의 높은 비용이 발생

2주일 정도의 시일이 걸린다. 그러나 최근 국내 한 건설사가 이를 드론 서비스업체에 맡겨 반나절 만에 끝냈다."

"준공 아파트의 품질 검사에는 통상 50여 명의 인력이 투입돼

"강원 지역에서 30여 개 다리 구조물(교량)을 관리하는 한 엔지니어링업체는 정기 안전검사를 최근 국내 드론 서비스업체에 맡겼다. 교량당 4~5명의 인부가 붙어 이틀 걸리는 작업을 드론 한 대로 6시간 만에 끝냈다."

드론 초기 구매 비용만 소요됨

2. 투입 인력

- 교량 안전 진단 시 평균 11명의 인력 필요
- 10개 교량을 기준으로 평균 4천만원의 진단 비용이 발생

드론을 운전하는 인력 1명만 필요

2-3) 육안점검에 의한 한계

육안 점검

사고 직전 정기안전점검에서 송정1교는 양호(B등급), 성황교는 우수(A등급)

BUT,

지난 2020년 9월 태풍 마이삭 때 강원 평창군의 송정1교와 삼척시의 성황교가 붕괴되는 사고 발생

이러한 문제점을 해결하기 위해 드론을 이용하여 사람이 확인하기 어려운 위치의 균열이나 놓치기 쉬운 0.1mm단위의 균열을 잡아낼 수 있는 딥러닝 모델의 필요성을 느꼈다.

3-1) 프로젝트 문제 정의

현재 스마트인사이드AI에서 위의 문제점을 해결하기 위해 드론의 촬영 기법을 접목한 콘크리트 균열 진단 AI를 사용하고 있다. 하지만 해당 solution에는 몇 가지 개선 사항이 있음을 확인하였다.

1. 이미지에서 positive pixel(=target, crack)의 비율이 낮다.

따라서, 스마트인사이드AI에서 사용하는 드론 기반 균열 진단 모델은 Accuracy는 높지만 f1 score값과 precision이 낮게 나온다.

2. 균열의 길이, 면적 측정 방식의 부재

데이터에 축적이 있다면 길이와 면적을 쉽게 계산할 수 있지만, 촬영 렌즈에 따라 굴절률이 달라 축척으로 계산한 길이와 면적이 실제 값을 대표하지 못한다는 한계가 있다.

3-1) 프로젝트 문제 정의

프로젝트 시작 전 Test 결과

Data: kaggle 'Crack Segmentation Dataset' (https://www.kaggle.com/datasets/lakshaymiddha/crack-segmentation-dataset)

Data Augmentation: ColorJitter, resize

Model: Unet

3-2) 프로젝트 목표

1. 모델 Accuracy-0.998, Precision-0.8, Recall-0.9, F1 Score-0.8 이상 달성

Parameters	DeepCrack	개발 목표
Accuracy	0.9930	0.9980
Precision	0.3384	0.8000
Recall	0.7015	0.9000
F1 Score	0.4564	0.8000

2. 균열의 길이와 면적을 측정하는 알고리즘 개발

2. 데이터

1) 프로젝트에 활용할 데이터 기획

1. 데이터 수집 경로 github, kaggle, 스마트인사이드AI

2. 예상되는 데이터 전처리

- a. Data augmentation : Albumentations 사용
- b. Data cropping : grid_sample, OpenCV 从용
- c. Gaussian filter 적용

3. 데이터 EDA와 인사이트

- a. 이미지 개수를 수치화
- b. 라벨 픽셀 개수 / 전체 이미지 해상도 히스토그램 그리기
- c. labeling alpha mask 겹쳐서 이미지의 어느 부근에 크랙이 많이 발생하는지 확인

4. 활용 데이터셋 소개

Deep Crack, CrackForest, Crack-500 (+ 기업에서 제공 예정인 데이터셋)

2. 데이터

2) 데이터셋 활용 방안

TRAIN/VAL/TEST SPLIT

균열 및 균열의 수치를 나타내는 모델 학습

원본 이미지를 모델 적합 사이즈로 자른 후에 균열 진단 후 병합

데이터 손실 가능성이 있는 resize 대신 crop

AUGMENTATION

a. ovefitting 방지 b. 조도, 그림자, 비, 눈, 운량 등을 고려

3. 활용 모델

1) 모델 구현 계획

"

segmentation에 적합한 모델로 DeepCrack , DeepLab v3+ , UNet++ , HRNet 선정

"

1. CUSTOM DATASET 구축

2. DATA AUGMENTATION, 전처리(CROP)

3. 각 모델 아키텍처 구현

- a. DeepCrack: 논문 + 오픈 소스 참조
- b. UNet++, DeepLab v3+
 - i. PyTorch 'segmentation models' 사용
 - ii. Encoder로 EfficientNet 사용
- c. HRNet: 논문 + 오픈 소스 참조

3. 활용 모델

2) Model Serving 계획

TorchServe 사용 예정

TorchServe Architecture(https://github.com/pytorch/serve/blob/master/docs/internals.md)

1) 문제 해결을 위해 사용 가능한 기술

1-1) Training

- a) Label이미지에 Gaussian filter 적용
 - 미세한 균열도 잡아내어 안전 진단에 이점을 높힌다.
 - target인 crack이 얇기 때문에 dilate와 함께 사용.

1) 문제 해결을 위해 사용 가능한 기술

1-1) Training

- b) Data augmentation
 - Albumentations의 'Weather augmentation' 이용

원본 이미지

HI

눈

빛 번짐

그림자

안개

1) 문제 해결을 위해 사용 가능한 기술

1-2) Inference

- a) Cropping
 - 원본 이미지를 모델 적합 사이즈로 자른 후에 균열 진단 후 병합
 - ──► 정보 손실을 최소화 하기 위해 resize대신 일정한 크기로 이미지를 crop하여 추론한다.

1) 문제 해결을 위해 사용 가능한 기술

1-2) Inference

- b) 균열 측정 skeletonize, canny
 - skeletonize: 균열의 중심 뻐대를 추출하여 길이를 구한다.
 - canny: 균열의 외곽선을 추출하여 폭을 구한다.

균열 측정 예시

 $(https://github.com/Garamda/Concrete_Crack_Detection_and_Analysis_SW)\\$

2) 개발 환경 및 기술 스택

O O 스트릭스쿨

3) 팀원별 업무분담

이현민 (팀장)

데이터 전처리 EDA 모델 아키텍쳐 구현 모델 학습 model serving 발표 준비 및 결론 도출

김승빈

데이터 전처리 EDA 모델 아키텍쳐 구현 모델 학습 발표 준비 및 결론 도출

유대순

EDA 모델 아키텍쳐 구현 모델 학습 발표 준비 및 결론 도출

한세진

EDA
모델 아키텍쳐 구현
모델 학습
model serving
발표 준비 및 결론 도출

4) 타임라인: 프로젝트 진행계획

	팀 장	팀원			기획			1차 수행						2차 수행				발표	
	이 현 민	김 승 빈	한 세 진	유 대 순	9/05	9/09	9/12	9/16	9/19	9/23	9/26	9/30	10/3	10/7	10/10	10/14	10/17	10/21	10/24
사전 조사 및 주제 설정																			
데이터 전처리																			
EDA																			
모델 아키텍쳐 구현																			
학습																			
model serving																			
발표 준비 및 결론 도출																			

5. 활용 방안 및 기대효과

- 1. 딥러닝 기술을 활용한 AI 드론으로 정확성과 안전성을 동시에 높일 수 있음
- 2. 필요 인력 감소, 중장비 미사용으로 인한 비용 절감
- 3. 드론의 자유로운 이동과 빠른 균열 진단으로 시간 절약
- 4. 붕괴된 부분의 사진을 업로드하면 수리비용 측정되는 어플 또는 웹 개발로 활용 가능

THE ARTHUR EAST