PX3350 - Project Diary

Hofstadter's butterfly in optical ring-resonator array

October 27, 2022

Author: FULL NAME (STUDENT NUMBER)
Project Supervisor: SUPERVISOR NAME

Cardiff University
School of Physics and Astronomy

Contents

Li	st of Figures	2
1	Questions 1.1 **QUESTION**	3
2	Definitions 2.1 **TERM NAME** 2.2 **NEXT TERM**	4 4
3	Reading 3.1 **PAPER TITLE* [1]	5 5
4	Experimental 4.1 **DATE**	6
5	Calculations 5.1 **NAME OF WORKING**	6
6	References	6
${f L}$	ist of Figures	
	1 Equation blah blah with $k = 30$ math bit referencing its source [1]	4

1 Questions

1.1 **QUESTION**

ANSWER TO QUESTION

2 Definitions

2.1 **TERM NAME**

NOTES ON THE GIVEN TERM

"**QUOTE FROM EXTERNAL SOURCE**" (**SOURCE OF QUOTE**)

$$N(t)=N_0\left(rac{1}{2}
ight)^{rac{t}{t_{1/2}}}$$

Figure 1: Equation blah blah blah with k = 30 math bit referencing its source [1]

2.2 **NEXT TERM**

3 Reading

- 3.1 **PAPER TITLE* [1]
- 3.2 **LECTURE TITLE** [2]

NOTES

^{**}QUOTE FROM LECTURE**

4 Experimental

4.1 **DATE**

BRIEF DESCRIPTION OF WHAT WAS DONE

ANY NOTES PER DISCRETION

5 Calculations

5.1 **NAME OF WORKING**

Blah blah we are using blah blah and blah blah to derive blah blah

$$f(x) = h_1 e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} + h_2 e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}} + c$$
 (1)

$$E_1 = A + B \tag{2}$$

$$E_2 = (C - D)E_1$$

$$+ [(1 - R) + R(1 - Y) + \pi (1 - \delta)]E_2$$
(3)

$$+F\cdot E_3$$

$$E_3 = (\pi \cdot \chi) - (R \cdot E_1) - (RY\delta \cdot E_2) \tag{4}$$

$$N = \frac{f}{d} \tag{5}$$

6 References

- [1] D. R. Hofstadter. Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields. *Physical review B*, 14(6):2239, 1976.
- [2] P. Kim. Bloch, landau, and dirac: Hofstadter's butterfly in graphene, Jan 2014.