Total No.	of Questions : 4] SEAT No. :
PA-26	[Total No. of Pages: 1
	[5931] - 36
	S.E. (Information Technology)
LOGIC DESIGN & COMPUTER ORGANIZATION	
(2019 Pattern) (Semester - I) (214442)	
Time: 1 F	Hour] [Max. Marks : 30
Instructio	ons to the candidates :
1)	Attempt Q.1 or Q.2 and Q.3 or Q.4.
2)	Figures to the right indicate full marks.
Q1) a)	List and explain the characteristics of CMOS. [7]
b)	Perform following operations using unsigned binary format [8]
	1011 + 1100
	ii) 1011 – 0110
	OR)
Q2) a)	Design 4-bit binary to gray code convertor. [7]
b)	Simplify f (A, B, C, D) = $\sum m(0, 2, 5, 6, 7, 8, 10, 13, 14, 15)$ using
	k-map and draw it's logic diagram. [8]
Q3) a)	Design Full Subtractor using basic gates.
b)	Design Full Subtractor using basic gates. Differentiate multiplexor & Demultiplexor. OR Design BCD adder using binary adder IC 7483. Implement following using IC 74138 Decoder [8]
	OR
Q4) a)	Design BCD adder using binary adder IC 7483. [7]
b)	Implement following using IC 74138 Decoder [8]
	$y_0(A, B, C) = \sum m(0, 3, 4)$
	$y_1(A, B, C) = \sum m(0, 1, 7)$
	$y_2(A, B, C) = \sum m(0, 5, 6)$
	$y_3(A, B, C) = \sum m(1, 4, 7)$
	Design BCD adder using binary adder IC 7483. [7] Implement following using IC 74138 Decoder y_0 (A, B, C) = $\sum m(0, 3, 4)$ y_1 (A, B, C) = $\sum m(0, 1, 7)$ y_2 (A, B, C) = $\sum m(0, 5, 6)$ y_3 (A, B, C) = $\sum m(1, 4, 7)$
	S. V