Proof of Time Complexity for the Recursive Fibonacci Algorithm

Mohammad Hayeri

10/14/24

Fibonacci Recursive Function

The naive recursive Fibonacci function can be defined as follows:

```
def fibonacci(n):
    if n <= 1:
return n
return fibonacci(n - 1) + fibonacci(n - 2)</pre>
```

Recurrence Relation

The time complexity T(n) of the Fibonacci function can be expressed as a recurrence relation:

```
For n=0 or n=1: T(n)=O(1)
For n>1: T(n)=T(n-1)+T(n-2)+O(1)
```

The O(1) term accounts for the constant time taken to perform the addition and the function call overhead.

Simplifying the Recurrence Relation

Ignoring the constant term for simplicity, we can write:

$$T(n) = T(n-1) + T(n-2)$$

This recurrence relation is similar to the Fibonacci sequence itself. To solve this, we can use the characteristic equation method.

Characteristic Equation

The characteristic equation for the recurrence relation T(n) = T(n-1) + T(n-2) can be derived as follows:

1. Assume a solution of the form $T(n) = r^n$. 2. Substitute into the recurrence relation:

$$r^n = r^{n-1} + r^{n-2}$$

3. Dividing through by r^{n-2} (assuming $r \neq 0$):

$$r^2 = r + 1$$

4. Rearranging gives us the characteristic equation:

$$r^2 - r - 1 = 0$$

Solving the Characteristic Equation

Using the quadratic formula $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$: Here, a = 1, b = -1, c = -1:

$$r = \frac{1 \pm \sqrt{5}}{2}$$

The two roots are:

$$r_1 = \frac{1+\sqrt{5}}{2}$$
 (the golden ratio, approximately 1.618)
 $r_2 = \frac{1-\sqrt{5}}{2}$ (approximately -0.618)

General Solution

The general solution to the recurrence relation can be expressed as:

$$T(n) = Ar_1^n + Br_2^n$$

where A and B are constants determined by the initial conditions.

Asymptotic Behavior

As n grows large, the term involving r_2 (which is negative and less than 1 in absolute value) becomes negligible. Therefore, the dominant term is:

$$T(n) \approx Ar_1^n$$

Since r_1 is approximately 1.618, we can conclude that:

$$T(n) = O(r_1^n) = O\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$

Conclusion

Time Complexity: $O(2^n)$ (since $r_1 \approx 1.618 < 2$, but grows exponentially)

This analysis shows that the naive recursive Fibonacci algorithm has exponential time complexity due to the nature of the recursive calls, which can be modeled using a recurrence relation and solved using characteristic equations.