Learning Machines Demo 1

Team Alpha: Mick IJzer, Leon Berberich, Justus Huebotter & Nikolay Polyanov

Agenda

- Problem definition
- Methodology
- Experimental setup
- Results
- Conclusions

Problem definition: Task 1

Obstacle avoidance using Robobo:

- Crucial task for a robot operating in any environment
- Robobo should be able to detect objects blocking it's path and react on the go
- Robobo also learns from it's experience
- Accomplished using sensors located in front and back of Robobo

Methodology

Different approaches tried:

- Hardcoded approach, using if statements (no learning)
- Q-learning (Q-table & TD3)
- Evolutionary algorithm (neural net & Q-table)

Problems faced

There were several challenges faced while working on the task:

- Python 2 & 3 confusion
- Q-Learning
- Evolutionary Algorithm with a Neural Net
- Experience scarcity

Methodology selected

Proceeded with a combination of an Evolutionary Algorithm and Q-Learning:

- Learning algorithm:
 - Evolutionary
 - Variation (Crossover & Mutation)
 - Selection (Parent & Survival Selection)
- Controller:
 - Q-table
 - Each row represents a state
 - Each column represents an action
 - \circ Deterministic \rightarrow Action a taken in some state s will always be the same for an individual

```
[[0, 0, 0, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]]
```

Evolution Parameters & Metrics

	Phenotype	Behavior of the robot when in a state
	Genotype	Q-Table (where every row is a state with q-values for the actions)
	Mapping	Every state has 1 deterministic action
	Fitness	-5 if collision, +5 moving forward, +0 turn (Accumulation over 50 timesteps)
	Crossover	Uniform (Every row is a copy from either P1 or P2)
	Mutation	Shuffle a row with probability mu (= 0.1)
	General Settings	Parent selection: prob. Rank (2 parents) Survivor selection: prob. Rank (15 individuals) Initialization: random Termination: 10 generations or avg. fitness > 4

Experimental setup

3 different scenes used both in simulation and real arena:

- Empty scene
- Obstacle scene
- Maze scene

Results

Info:

- 10 generations
- 15 individuals
- -5 < fitness < 5

Plot shows:

- Mean fitness
- Variance of fitness
- Worst individual
- Best individual

Conclusions

- Evolutionary Approach gives a learning curve for the population
- Performance of best individual on the task is good
- Smoothness of the movements looks better (python 3)

Outlook:

- Extend q-table for more complicated tasks
- Try to add evolutionary parameters to the genotype
 - → Don't make it more complicated than it needs to be