Kapitel 4: Suchen

- Einfache Suchverfahren
 - Lineare Suche, Binäre Suche, Interpolationssuche
- Suchbäume
 - Binäre Suchbäume, AVL- Bäume, Splay-Bäume, B-Baum, R-Baum
- Hashing

Algorithmen und Datenstrukturen - Kapitel 4

101

Suche in konstanter Zeit

- Bisher: Statt lineare Suche erlauben Bäume für viele Anwendungen durch geeignete Strukturierung, den Suchaufwand auf $O(\log n)$ zu reduzieren.
- Einfügen, Löschen und Zugriff in O(log n).
- Wenn wir den Suchraum noch geschickter strukturieren, können wir dann noch schneller suchen?

Bitvektor-Darstellung für Mengen

• Geeignet für kleine Universen U N = |U| vorgegebene maximale Anzahl von Elementen $S \subseteq U = \{0,1,...,N-1\}$ Suche hier nur als "Ist-Enthalten"-Test

Verwende Schlüssel ,i' als Index im Bitvektor (= Array von Bits)

Bitvektor: Bit[i] = 1 wenn $i \in S$

Bit[i] = 0 wenn $i \notin S$

• Beispiel: $N = \{0,1,2,3,4\}, M_1 = \{0,2,3\}, M_2 = \{0,1\}$

$$Bit(M_1) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad Bit(M_2) = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Algorithmen und Datenstrukturen - Kapitel 4

103

Bitvektor-Darstellung: Komplexität

Operationen

- Insert, Delete O(1) setze/lösche entsprechendes Bit

- Search O(1) teste entsprechendes Bit

- Initialize O(N) setze ALLE Bits des Arrays auf 0

Speicherbedarf

- Anzahl Bits O(N) maximale Anzahl Elemente

- Problem bei Bitvektor
 - Initialisierung kostet O(N)
 - Verbesserung durch spezielle Array-Implementierung
 - Ziel: Initialisierung O(1)

Hashing

• 7iel:

Zeitkomplexität Suche O(1) - wie bei Bitvektor-Darstellung Initialisierung O(1)

- Ausgangspunkt
 Bei Bitvektor-Darstellung wird der Schlüsselwert direkt als Index in einem Array verwendet
- Grundidee
 Oft hat man ein sehr großes Universum (z.B. Strings)
 Aber nur eine kleine Objektmenge (z.B. Straßennamen einer Stadt)
 Für die ein kleines Array ausreichend würde
- Idee Bilde verschiedene Schlüssel auf dieselben Indexwerte ab. Dadurch Kollisionen möglich

Algorithmen und Datenstrukturen - Kapitel 4

105

Hashing

- Grundbegriffe:
 - U ist das Universum aller Schlüssel
 - $-S \subseteq U$ die Menge der zu speichernden Schlüssel mit n = |S|
 - T die Hash-Tabelle der Größe m
- Hashfunktion h:
 - Berechnung des Indexwertes zu einem Schlüsselwert x
 - Schlüsseltransformation: $h: U \rightarrow \{0, ..., m-1\}$
 - -h(x) ist der Hash-Wert von x
- Hashing wird angewendet wenn:
 - |U| sehr groß ist
 - $-|S| \ll |U|$ Anzahl der zu speichernden Elemente ist viel kleiner als die Größe des Universums

Anwendung von Hashing als Prüfziffer

IBAN (International Bank Account Number): Aufbau einer deutschen IBAN

Berechnung der Prüfziffer:

 $A \rightarrow 10, B \rightarrow 11, ...$ $xx = 98 - bbbbbbbbkkkkkkkkkk131400 \mod 97$

Universum: 10¹⁸ Bank-/Kontonummern (theoretisch) möglich

Hashwerte: $02 \le xx \le 98$

Durch die schnelle Berechnung können viele Fehler bereits bei Eingabe gemeldet werden (z.B. Zahlendreher)

Algorithmen und Datenstrukturen - Kapitel 4

Hashing-Prinzip

Grafische Darstellung - Beispiel: Studenten

- Gesucht:
 - Hashfunktion, welche die Matrikelnummern möglichst gleichmäßig auf die 800 Einträge der Hash-Tabelle abbildet

Hashfunktion

- Dient zur Abbildung auf eine Hash-Tabelle
 - Hash-Tabelle T hat m Plätze (Slots, Buckets)
 - In der Regel $m \ll |U|$ daher Kollisionen möglich
 - Speichern von |S| = n Elementen (n < m)
 - Belegungsfaktor $\alpha = n/m$
- Anforderung an eine Hashfunktion
 - h: domain(K) → {0, 1, ..., m 1} soll surjektiv sein.
 - -h(K) soll effizient berechenbar sein, idealerweise in O(1).
 - -h(K) soll die Schlüssel möglichst gleichmäßig über den Adressraum verteilen, um dadurch Kollisionen zu vermeiden (Hashing = Streuspeicherung).
 - h(K) soll unabhängig von der Ordnung der K sein in dem Sinne, dass in der Domain "nahe beieinander liegende" Schlüssel auf nicht nahe beieinander liegende Adressen abgebildet werden.

Algorithmen und Datenstrukturen - Kapitel 4

109

Hashfunktion: Divisionsmethode

- Hashfunktion:
 - $-h(k) = K \mod m$ für numerische Schlüssel
 - $-h(k) = ord(K) \mod m$ für nicht-numerische Schlüssel
- Konkretes Beispiel für ganzzahlige Schlüssel:

 $h: domain(K) \rightarrow \{0,1,...,m-1\} \text{ mit } h(K) = K \text{ mod } m$

• Sei *m*=11

Schlüssel: 13,7,5,25,8,18,17,31,3,11,9,30,24,27,21,19,...

Beispiel: Divisionsmethode

- Für Zeichenketten: Benutze die *ord*-Funktion zur Abbildung auf ganzzahlige Werte, z.B.
- Sei m=17: $h: STRING \mapsto \begin{pmatrix} len(STRING) \\ \sum_{i=1} ord(STRING[i]) \end{pmatrix} \mod m$

JAN
$$\rightarrow$$
 25 mod 17 = 8 MAI \rightarrow 23 mod 17 = 6 SEP \rightarrow 40 mod 17 = 6
FEB \rightarrow 13 mod 17 = 13 JUN \rightarrow 45 mod 17 = 11 OKT \rightarrow 46 mod 17 = 12
MAR \rightarrow 32 mod 17 = 15 JUL \rightarrow 43 mod 17 = 9 NOV \rightarrow 51 mod 17 = 0
APR \rightarrow 35 mod 17 = 1 AUG \rightarrow 29 mod 17 = 12 DEZ \rightarrow 35 mod 17 = 1

- Wie sollte m aussehen?
 - m = 2^d → einfach zu berechnen
 K mod 2^d liefert die letzten d Bits der Binärzahl K → Widerspruch zur Unabhängigkeit von K
 - m gerade $\rightarrow h(K)$ gerade $\Leftrightarrow K$ gerade \rightarrow Widerspruch zur Unabhängigkeit von K
 - *m* Primzahl → hat sich erfahrungsgemäß bewährt

Algorithmen und Datenstrukturen - Kapitel 4

111

Beispiel Hashfunktion

• Einsortieren der Monatsnamen in die Symboltabelle

$$h(c) = (N(c_1) + N(c_2) + N(c_3)) \mod 17$$

0	November
1	April, Dezember
2	März
3	
4	
5	
6	Mai, September
7	
8	Januar

9	Juli
10	
11	Juni
12	August, Oktober
13	Februar
14	
15	
16	

3 Kollisionen

Perfekte Hashfunktion

- Eine Hashfunktion ist perfekt:
 - wenn für $h: U \to \{0, \dots, m-1\}$ mit $S = \{k_1, \dots, k_n\} \subseteq U$ gilt $h(k_i) = h(k_j) \Leftrightarrow i = j$
 - also für die Menge S keine Kollisionen auftreten
- Eine Hashfunktion ist minimal:
 - wenn m=n ist, also nur genau so viele Plätze wie Elemente benötigt werden
- Im Allgemeinen können perfekte Hashfunktionen nur ermittelt werden, wenn alle einzufügenden Elemente und deren Anzahl (also S) im Voraus bekannt sind (static Dictionary)
 - → In der Praxis meist nicht gegeben!

Algorithmen und Datenstrukturen - Kapitel 4

112

Kollisionen beim Hashing

- Verteilungsverhalten von Hashfunktionen
 - Untersuchung mit Hilfe von Wahrscheinlichkeitsrechnung
 - S sei ein Ereignisraum
 - E ein Ereignis $E \subseteq S$
 - P sei eine Wahrscheinlichkeitsverteilung
- · Beispiel: Gleichverteilung
 - einfache Münzwürfe: $S = \{Kopf, Zahl\}$
 - Wahrscheinlichkeit für Kopf

$$P(Kopf) = \frac{1}{2}$$

- n faire Münzwürfe: $S = \{\text{Kopf, Zahl}\}^n$
- Wahrscheinlichkeit für n-mal Kopf P(n-mal Kopf) = $\left(\frac{1}{2}\right)^n$ (Produkt der einzelnen Wahrscheinlichkeiten)

Algorithmen und Datenstrukturen - Kapitel 4

Kollisionen beim Hashing

- Analogie zum Geburtstagsproblem (-paradoxon)
 - Wie groß ist die Wahrscheinlichkeit, dass mindestens 2 von n Leuten am gleichen Tag Geburtstag haben?
 - -m=365 Größe der Hash-Tabelle (Tage), n= Anzahl Personen
- Eintragen des Geburtstages in die Hash-Tabelle
 - -p(i,m) = Wahrscheinlichkeit, dass für das i-te Element eine Kollision auftritt
 - p(1, m) = 0

da keine Zelle belegt

- p(2,m) = 1/m

da 1 Zellen belegt

- -p(i,m) = (i-1)/m da (i-1) Zellen belegt

Algorithmen und Datenstrukturen - Kapitel 4

Kollisionen beim Hashing

- Eintragen des Geburtstages in die Hash-Tabelle
 - Wahrscheinlichkeit für keine einzige Kollision bei n Einträgen in eine Hash-Tabelle mit m Plätzen ist das Produkt der einzelnen Wahrscheinlichkeiten

$$P(NoCol|n, m) = \prod_{i=1}^{n} (1 - p(i, m)) = \prod_{i=0}^{n-1} (1 - \frac{i}{m})$$

- Die Wahrscheinlichkeit, dass es mindestens zu einer Kollision kommt, ist somit

$$P(Col|n,m) = 1 - P(NoCol|n,m)$$

Kollisionen beim Hashing

Kollisionen bei Geburtstagstabelle

Anzahl Personen n	P(Col n,m)
10	0,11695
20	0,41144
22	0,47570
23	0,50730
24	0,53835
30	0,70632
40	0,89123
50	0,97037

- Schon bei einer Belegung von 23/365 = 6% kommt es zu 50% zu mindestens einer Kollision
- Daher Strategie für Kollisionen wichtig
- Wann ist eine Hashfunktion gut?
- Wie groß muss eine Hash-Tabelle in Abhängigkeit zu der Anzahl Elemente sein?

Algorithmen und Datenstrukturen - Kapitel 4

117

Kollisionen beim Hashing

• Wie muss m in Abhängigkeit zu n wachsen, damit P(NoCol|n,m) konstant bleibt?

$$P(NoCol|n,m) = \prod_{i=0}^{n-1} \left(1 - \frac{i}{m}\right)$$

• Durch Anwendung der Logarithmus-Rechenregel kann ein Produkt in eine Summe umgewandelt werden: $ab = e^{\ln(ab)} = e^{\ln a + \ln b}$

$$P(NoCol|n, m) = \exp\left(\sum_{i=0}^{n-1} \ln\left(1 - \frac{i}{m}\right)\right)$$

• Logarithmus: $ln(1 - \varepsilon) \approx -\varepsilon$ für kleine ε

• Da $n \ll m$ gilt: $\ln\left(1 - \frac{i}{m}\right) \approx -\left(\frac{i}{m}\right)$

Kollisionen beim Hashing

· Auflösen der Gleichung

$$P(NoCol|n,m) \approx \exp\left(-\sum_{i=0}^{n-1} \ln\left(\frac{i}{m}\right)\right) = \exp\left(-\frac{n(n-1)}{2m}\right) \approx \exp\left(-\frac{n^2}{2m}\right)$$

ullet Ergebnis: Kollisionswahrscheinlichkeit bleibt konstant wenn die Größe m der Hash-Tabelle quadratisch mit der Zahl n der Elemente wächst.

Algorithmen und Datenstrukturen - Kapitel 4

119

Hashing: Umgang mit Kollisionen

- Kollisionen treten auf, wenn zwei Schlüssel den selben Hashwert erhalten und an die gleiche Stelle gespeichert werden müssen.
- Kollisionen sind lassen sich nicht vermeiden, deswegen gibt es entsprechende Methoden zur Behandlung.
- Tritt eine Kollision auf, so gibt es zwei populäre Auflösungsstrategien:
 - Offenes Hashing mit geschlossener Adressierung
 - Geschlossenes Hashing mit offener Adressierung

Achtung: In der Literatur gerne als Offenes/Geschlossenes Hashing abgekürzt und dann teils vertauscht benutzt!

Offenes Hashing (mit geschlossener Adressierung)

- Speicherung der Schlüssel außerhalb der Tabelle, z.B. als verkettete Liste.
- Bei Kollisionen werden Elemente unter der selben Adresse abgelegt.
- Die externe Speicherstruktur hat großen Einfluss auf Effektivität und Effizienz.

Algorithmen und Datenstrukturen - Kapitel 4

121

Geschlossenes Hashing (mit offener Adressierung)

- Bei Kollision wird mittels bestimmter Sondierungsverfahren eine freie Adresse gesucht.
- Jede Adresse der Hashtabelle nimmt höchstens einen Schlüssel auf.
- Das Sondierungsverfahren bestimmt die Effizienz, so dass nur wenige Sondierungsschritte nötig sind.

0	November
1	April
2	Maerz
3	Dezember
4	
5	
6	Mai
7	September
8	Januar

Polynomielles Sondieren

• Für $j = 0 \dots m$ teste die Hashadressen h(x, j), bis eine freie Adresse gefunden wird:

$$h(x,j) = (h(x) + c_1 j + c_2 j^2 + \cdots) \mod m$$

• Lineares Sondieren $h(x,j) = (h(x) + c_1 j) \bmod m$

• Quadratisches Sondieren $h(x, j) = (h(x) + c_2 j^2) \mod m$

 Problem Clusterbildung: für gleiche Schlüssel werden dieselben Positionen sondiert.

Algorithmen und Datenstrukturen - Kapitel 4

122

Geschlossenes Hashing: Komplexität

Anzahl Sondierungsschritte

Einfügen: $C_{ins}(n, m)$

Suche ohne Erfolg: $C_{search}^{-}(n,m)$ Suche mit Erfolg: $C_{search}^{+}(n,m)$

Suche mit Erfolg: Löschen:

 $C_{del}(n,m)$

m: Größe der Hash-Tabelle

n: Anzahl der Einträge

 $\alpha = \frac{n}{m}$: Belegungsfaktor der

Hash-Tabelle

Belegung
$$\alpha$$
 $C_{search}^{-}(n,m) = C_{Ins}(n,m) \approx \frac{1}{1-\alpha}$ $C_{search}^{+}(n,m) = C_{Del}(n,m) \approx \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$

0,5 ≈ 2 $\approx 1,38$

0,7 $\approx 3,3$ $\approx 1,72$

0,9 ≈ 10 $\approx 2,55$

0,95 ≈ 20 $\approx 3,15$

min. n=19 und m=20 damit α =0,95 (bei ganzen Zahlen)

Doppelhashing

- Doppelhashing soll Clusterbildung verhindern, dafür werden zwei unabhängige Hashfunktionen verwendet.
- Dabei heißen zwei Hashfunktionen h und h' unabhängig, wenn gilt
 - Kollisionswahrscheinlichkeit $P(h(x) = h(y)) = \frac{1}{m}$
 - $-P(h'(x) = h'(y)) = \frac{1}{m}$
 - $P(h(x) = h(y) \wedge h'(x) = h'(y)) = \frac{1}{m^2}$
- Sondierung mit $h(x,j) = (h(x) + h'(x) \cdot j^2) \mod m$
- Nahezu ideales Verhalten aufgrund der unabhängigen Hashfunktionen h(x)h(y)

Algorithmen und Datenstrukturen - Kapitel 4

125

Hashing: Suchen nach Löschen

- Offenes Hashing: Behälter suchen und Element aus Liste entfernen → kein Problem bei nachfolgender Suche
- · Geschlossenes Hashing:
 - Entsprechenden Behälter suchen
 - Element entfernen und Zelle als gelöscht markieren
 - Notwendig da evtl. bereits hinter dem gelöschten Element andere Elemente durch Sondieren eingefügt wurden
 - (In diesem Fall muss beim Suchen über den freien Behälter hinweg sondiert werden)
 - Gelöschte Elemente dürfen wieder überschrieben werden

Hashing: Zusammenfassung

- Anwendung:
 - Postleitzahlen (Statische Dictionaries)
 - IP-Adresse zu MAC-Adresse (i.d.R. im Hauptspeicher)
 - Datenbanken (Hash-Join)
- Vorteil
 - Im Average Case sehr effizient: 0(1)
- Nachteil
 - Skalierung: Größe der Hash-Tabelle muss vorher bekannt sein
 - · Abhilfe: Spiral Hashing, lineares Hashing
 - Keine Bereichs- oder Ähnlichkeitsanfragen
 - Lösung: Suchbäume

Algorithmen und Datenstrukturen - Kapitel 4

127

Suchen: Zusammenfassung

Hashing

- Extrem schneller Zugriff für Spezialanwendungen
 - Bestimmung einer Hashfunktion für die Anwendung
 - Beispiel: Symboltabelle im Compilerbau, Hash-Join in Datenbanken

Binärer Bäum (AVL-Baum, Splay-Baum)

- Allgemeines effizientes Verfahren für Indexverwaltung im Hauptspeicher
 - Bereichsanfragen möglich, da explizit ordnungserhaltend
 - Bei Updates effizienter als sortierte Arrays

B-Baum, B+-Baum, R-Baum, etc.

- Effiziente Implementierung für die Verwendung von blockorientierten Sekundärspeichern
- B+-Bäume werden in nahezu allen Datenbanksystemen eingesetzt