Name	Period
1 tuille	1 0110 4

1. Refer to the code below to answer the following		
String s = "Get here Thanksgiving!";		
String m = "er";		
int j = 8, z = 99;		
, , ,		
(a)		
int k = s.indexOf(m);	5	
System.out.println(k);		
(b)		
int k = s.indexOf("T");	9	
System.out.println(k);		
(c)		
char p = s.charAt(6);	r	
System.out.println(p);		
(d)		
int k = s.indexOf(z);	-1	
System.out.println(k);		
(e)		
int k = s.indexOf('g', j);	15	
System.out.println(k);		
(f)		
char $p = s.charAt(z - 90);$	T	
System.out.println(p);		
(g)		
int k = s.indexOf(m, 15);	-1	
System.out.println(k);		
(h)		
int k = s.indexOf(z + 2, 4);	5	
System.out.println(k);		
(i)		
boolean k = s.contains(m);	true	
System.out.println(k);		
(j)		
String s2 = " JAVA ";	!JAVA!	
String k = "!" + s2.trim() + "!"		
System.out.println(k);		
(k)		
System.out.println(m.compareTo(s));	30	
		/11

© Pluska

2. The Alphabetize class below, alphabetizes three words. Consider the following examples. Write the Alphabetize class.

```
        Values of Strings s1, s2, and s3 before
        Values of s1, s2, and s3 after

        String s1 = "cat";
        String s1 = "car";

        String s2 = "car";
        String s2 = "cat";

        String s3 = "dog";
        String s3 = "dog";

        String s1 = "dog";
        String s1 = "car";

        String s2 = "cat";
        String s2 = "cat";

        String s3 = "dog";
        String s3 = "dog";
```

```
public class Alphabetize{
     public static void main(String args[]){
     //check if s1 is last
     if(s1.compareTo(s2)>0 && s1.compareTo(s3)>0){
          temp = s3;
          s3 = s1;
          s1 = temp;
     //check if s2 is last
     if(s2.compareTo(s1)>0 && s2.compareTo(s3)>0){
          temp = s3;
          s3 = s2;
          s2 = temp;
     }
     //compare s1 and s2
     if(s1.compareTo(s2)>0){
         temp = s2;
          s2 = s1;
          s1 = temp;
     System.out.println(s1 + " " + s2 + " " + s3);
    }
```

Score _____/21

3. Write an algorithm that could be used to count the number of times a string occurs in another string. Consider the examples below¹. This algorithm requires that you incorporate a loop along with the substring() and length() methods.

String to search	String to find	Occurrences
BAAB	AA	1
AAAAA	AA	2
AABABAAA	ABA	2
ABBAABB	ABA	0

public class FindOccur{

public static void main(String args[]){

```
Solution 1
```

```
int count = 0;
int i = 0;
int len = smallStr.length();

while (i < largeStr.length() - len + 1)
{
   if (smallStr.equals(largeStr.substring(i,
        i + len)))
   {
      count++;
      i += len;
   }
   else
   {
      i++;
   }
}</pre>
```

Solution 2

```
int count = 0;
String word = largeStr;
int len = smallStr.length();
int ind = word.indexOf(smallStr);
while (ind != -1)
{
   count++;
   word = word.substring(ind + len);
   ind = word.indexOf(smallStr);
}
```

Score _____/21

¹ Adapted from the 2020 AP Computer Science A Exam