

DATA CREATOR CAMP

2024 데이터 크리에이터 캠프

대학부 팀명: Data Nexus

1-1 성별&스타일 통계표 작성

해석: 이미지 파일명을 이용해 Training 및 Validation 데이터에서 "성별 & 스타일" 통계를 도출하여 분석.

데이터 로드 및 성별/스타일 추출: 파일명을 기반으로 이미지ID, 성별, 스타일정보를 추출예: W_65122_10_sportivecasual_W.jpg→ 성별: W(여성), 스타일: sportivecasual

분류 과정: 추출된 성별 & 스타일별로 데이터를 Training, Validation 세트로 나누어 분류 count_images함수: Training 및 Validation 데이터에서 각 성별/스타일별 이미지 수를 카운트

각 데이터 세트에서 성별 & 스타일별 이미지 수를 집계하여 통계표 작성

- ->dict_to_dataframe함수로 성별 & 스타일별 이미지 수를 표 형식으로 변환
- ->reshape_dataframe함수로 데이터를 가독성 높은 형식으로 재구성

최종 통계 출력

재구성된 표는Training과Validation데이터에서 성별과 스타일별 이미지 분포를 요약하여 시각화

1-1 성별&스타일 통계표 작성

Training 데이터				Validation 데이터		
	성별	스타일	이미지 수	성별	스타일	이미지 수
	여성	feminine	154	여성	feminine	44
	여성	normcore	153	여성	minimal	35
	여성	sportivecasu al	157	여성	sportivecasu al	48
	남성	normcore	364	남성	normcore	51
	남성	hiphop	274	남성	hippie	82
				•••	•••	•••

1-2 ResNet-18을 활용한 성별 & 스타일 분류

데이터 준비

데이터 전처리

모델 구성

학습 및 검증

모델 저장

<훈련 및 검증 데이터 전처리 과정 정리>

과정

훈련 데이터 전처리

검증 데이터

전처리

크기조정

224x224 픽셀

224x224 픽셀

랜덤수평 뒤집기 100% 확률로 적용

미적용

랜덤회전

-10~10도 사이에서 무작위 회전

미적용

색상조정

밝기, 대비, 채도, 색조 변환

미적용

정규화

Mean=[0.4933, 0.4610,

동일하게

적용

0.4464]

, **Std=**[0.2573, 0.2508,

0.2519]

1-2 ResNet-18을 활용한 성별 & 스타일 분류

<ResNet-18 모델 구성>

Conv Layers

ResNet-18 Block (무작위 초기화)

Fully Connected Layeer 수정

<학습 및 검증 설정 요약>

항목

손실함수

최적화 기법

학습률 스케줄러

평가지표

총 Epoch 수 모델 저장 경로 방법

CrossEntropyLoss(클래스 가중치 적용)

Adam Optimizer, learning rate = 0.01, weight_decay=1e-3

ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5)

Top-1 accuracy (Validation 데이터 기준)

300회 학습

resnet18_fashion_classification.pth

2-1 "성별&스타일"에 따른 설문ID 기반 통계

{W/T}_{이미지ID}_{시대}_{스타일}_{성별}_{설문ID}.json

collect_label_info_with_respondent(label_dirs, image_ids, dataset_name, image_dir)

Training 데이터

Validation 데이터	Val	lidatio	n 더	0	E
----------------	-----	---------	-----	---	---

스타일	남성	여성
athleisure	43	381
bodyconscious	48	452
bold	133	1011
cityglam	96	233
classic	143	361

스타일	남성	여성
athleisure	0	80
bodyconscious	3	111
bold	6	215
cityglam	6	59
classic	19	98

Feedback : 문제에 대한 정확한 이해, 매칭 해결, 유효한 데이터 도출

결론: 남성보다 여성의 특정 스타일에 설문이 집중된 경향이 있어, 모델 학습 시 성별 편향이 발생할 가능성 있음

2-2 유효 라벨링 데이터 중 상위 100명 응답자 선호도 분석

combined label info with resp

1	V/ 8/71	train_스타일선호	train_스타일비선호	valid_스타일선호	valid_스타일비선호
1	64747	enderless_W_158671.jpg	0_grunge_W_158643.jpg	powersuit_W_158675.jpg	70_hippie_W_158674.jpg
2	64346	etrosexual_M_147916.jpg	normcore_M_147919.jpg	0_hiphop_M_147890.jpg	normcore_M_147894.jpg
3	65139	0_hiphop_M_174231.jpg	14_50_ivy_M_174210.jpg	tivecasual_M_174233.jpg	etrosexual_M_174240.jpg
4	64561	0_oriental_W_152840.jpg	_70_punk_W_152837.jpg	tivecasual_W_152857.jpg	0_minimal_W_152877.jpg
5	63405	_60_mods_M_122233.jpg	normcore_M_122223.jpg	94_50_ivy_M_122232.jpg	0_hiphop_M_122211.jpg
6	63369	tivecasual_M_120837.jpg	normcore_M_120830.jpg	12_50_ivy_M_120814.jpg	1_80_bold_M_120809.jpg
7	59704	.70_hippie_M_087695.jpg	1_80_bold_M_087696.jpg	.70_hippie_M_087687.jpg	33_50_ivy_M_087668.jpg
8	64633	4_80_bold_M_154754.jpg	etrosexual_M_154756.jpg	4_80_bold_M_154754.jpg	.70_hippie_M_154712.jpg
•••			4	🤈	4

Feedback : 설문id와 응답자id 혼동

데이터 필드:

• 응답자 ID: JSON의 USER > R_id

• 스타일 선호 여부: JSON의 item > survey > Q5 (1:비선호, 2:선호) 결과물: 상위 100명 응답자의 스타일 선호 정보를 별도의 JSON 포맷으로 저장

3-1 협업 필터링 user-based filtering, item-based filtering 비교

● User-based Filtering (사용자 기반 필터링): 비슷한 선호도를 가진 응답자들이 특정 스타일을 선호/ 비선호하는지를 바탕으로 <mark>새로운 응답자</mark>가 이들을 선호/ 비선호 스타일을 추천해주는 방식

적용 방법: 각 응답자의 스타일 선호/ 비선호 데이터를 바탕으로 응답자 간 유사도 계산 (유사도는 코사인 또는 피어슨 상관계수 사용) -> 벡터로 변환하여, 이를 통해 <mark>유사한 응답자</mark>를 찾는 방법

VS

● Item-based Filtering (아이템 기반 필터링): 응답자가 선호하는 <mark>스타일</mark>과 유사한 스타일을 추천하는 방식으로, 선호했던 스타일 정보를 바탕으로 유사함을 예측한다.

적용 방법: 응답자의 스타일 선호 데이터를 바탕으로 응답자의 각 선호 스타일 간의 유사도를 측정 (유사도는 코사인 또는 피어슨 상관계수 사용) -> 벡터로 변환하여, 이를 통해 <mark>유사한 스타일</mark>을 찾는 방법

3-1 협업 필터링 user-based filtering, item-based filtering 비교

VS

[예시-가정]

ID: 64747 ID:64633

선호하는 스타일 유사 서로 관계의 유사도 \$(가정) 'hippie' 스타일 선호

ID: 69704 위 응답자와의 유사도 \$ [']hippie' 스타일 선호할 것!

'minimal' 스타일 선호 ID:64633 <mark>'minimal' 스타일 선호할</mark> 것!

3-1 **협업 필터링** user-based filtering, item-based filtering 비교 [장단점 비교]

	user-based filtering	item-based filtering
장점	직관적개인화된 추천 가능선호하는 스타일 비슷한 응답자가 있을 경우 매우 효과적!	 안정적, 다양한 추천 제공 데이터 부족 문제 해결에 유리 응답자 스타일 고정적 계산 비용 낮음
단점	 데이터 부족 ⇒ 유사도 측정 어려움 - 많은 응답자에 대한 유사도를 계산=> 계산 비용이 높음. 	- 응답자 개별 취향을 충분히 반영 못할 가능성 O - 특정 스타일에 대한 선호가 강한응답자의 특이성을 반영 못할 가능성 O => 맞춤 추천이 제한적

3-2 item-based filtering 구현 후 성능 측정

< 유사도 계산 및 선호도 예측 정리 >

과정

훈련 데이터 전처리

특징 벡터 추출 응답자별 모든 이미지의 특징 벡터 추출

유사도 임계값 설정 유사도 기준 0.7로 설정

응답자별 데이터 수집 응답자 ID, 선호/비선호 학습 및 검증 이미지

유사도 계산 검증 이미지 <-> 학습 이미지 간 코사인 유사도 계싼

선호도 예측 학습 선호 이미지와의 최고 유사도 > 비선호 이미지와의

유사도/임계값 => '선호' 예측

3-2 item-based filtering 구현 후 성능 측정

< 유사도 계산 및 선호도 예측 정리 >

과정

훈련 데이터 전처리

특징 벡터 추출 유사도 임계값 설정 응답자별 데이터 수집 유사도 계산 선호도 예측 응답자별 모든 이미지의 특징 벡터 추출

유사도 기준 0.7로 설정

응답자 ID, 선호/비선호 학습 및 검증 이미지

검증 이미지 <-> 학습 이미지 간 코사인 유사도 계산

학습 선호 이미지와의 최고 유사도 > 비선호 이미지와의

유사도/임계값 => '선호' 예측

actual_preference	predicted_preference	valid_image	dent_id
True	True	dataset/validation_image/W_38588_19_genderless	64747
True	True	dataset/validation_image/W_44330_10_sportiveca	64747
True	True	dataset/validation_image/W_37491_70_military_W	64747
True	True	dataset/validation_image/W_22510_80_powersuit	64747
True	False	dataset/validation_image/W_30988_90_kitsch_W_1	64747
	344	PH .	
False	True	$dataset/validation_image/W_32314_19_normcore_M$	64295
False	False	$dataset/validation_image/W_25761_90_hiphop_M_1$	64295
False	False	$dataset/validation_image/W_31478_19_normcore_M$	64295
False	False	dataset/validation_image/W_16374_10_sportiveca	64295
False	False	dataset/validation_image/W_23900_50_ivy_M_1466	64295

3-2 item-based filtering 구현 후 성능 측정

	respondent_id	정밀도 precision	재현율 recall	F1 점수 f1_score
0	368	1.000000	0.833333	0.909091
1	837	1.000000	0.600000	0.750000
2	7658	1.000000	0.333333	0.500000
3	7905	1.000000	0.500000	0.666667
4	9096	0.666667	0.400000	0.500000
				7.0

결론: 모델이 예측할 때 비교적 신뢰할 수 있는 결과를 제공

'Data Nexus' 팀원들 소감

구동한

미션을 수행하면서 가장 먼저 문제를 명확하게 이해하는 게 중요한 것 같다는 생각이 많이 들었습니다.

어떤 방식으로 어떤 기준을 가지고 문제를 해결해야 할지 모호한 경우가 있어. 수행하는데 생각보다 시간이 많이 소요되었고 오류를 해결하고 테스트 하는 과정에서도 많은 시간이 들었습니다. 막바지에 좀 더 여유가 있었으면 했지만 짧은 시간 동안 데이터 처리 하는 방법에 대해 많이 배운 것 같아 뜻 깊은 시간이었습니다.

노을

캠프를 참여한 당시엔 실제로 미션을 받아 데이터 분석을 해본 적은 처음이었습니다. 직접 문제를 파악하고 데이터를 분석하기 위해 생각해보는 시간을 가지며 차차성장해 나가고 있음을 느낄 수 있었습니다! 데이터 분석에 있어서 문제를 잘 파악하고, 어떤 데이터를 전처리하고 활용하며 분석을 해야 하는지가 가장 중요한 것같다고 생각했습니다.

정유진

데이터 수집과 해석 능력이 중요해지는 요즘, 데이터를 다루며 그 과정의 복잡함을 깨달았습니다. 여러 도전에 직면하면서 팀과의 협업 가치를 재발견하고 최적의 해결책을 찾는 과정은 제 성장에 큰 도움이 되었습니다. 또한, 협업 필터링 기법을 통해 사용자 선호를 분석하고 시각적으로 표현하는 경험은 타 연구에서도 유용하여, 이 계기로 앞으로도 계속 배워 나가겠습니다.

홍다빈

데이터 크리에이터 캠프에 참여하면서 처음 접하는 내용들이 많아 예상보다 어려움을 느꼈습니다. 이론만으로는 부족하다는 것을 깨달았고, 실제로 다양한 실습을 통해 여러 시행착오를 겪으며 제 부족함을 더 많이 느꼈습니다. 이러한 경험을 통해 앞으로 더 열심히 공부 해야겠다는 결심을 하게 되었습니다.

DATA CREATOR CAMP

2024 데이터 크리에이터 캠프

감사합니다

