INTRODUCTION TO ELECTRONICS FINAL EXAM

- 1. In figure 1, T_1 - T_2 are identical and β_F = h_{FE} = h_{fe} =250, $|V_{BE}|$ =0.6 V, V_T =26 mV is given.
- a) Calculate $R_1=R_2$ and R_6 so that $R_i=125$ k Ω and $V_I=0$ when $V_O=0$ (Assume $R_6>>r_{e2}$). (12.5 p)
- **b)** Calculate the gain $K_V = V_0/V_i$ and the CMRR for the differential amplifier. (12.5 p)
- 2. In figure 2, for the BJT; $\beta_F = h_{FE} = h_{fe} = 100$, $V_{BE} = 0.6$ V, $V_A \rightarrow \infty$, $V_T = 26$ mV, for the MOSFET; $\beta_n = k_n = \mu_n C_{ox} \cdot (W/L) = 4$ mA/V², $V_{TH} = 1$ V, $\lambda = 0$ is assumed.
- a) Calculate R_C , R_E , R_S so that the operation point of the BJT is $I_C=2$ mA, $V_C=6$ V, and $I_D=2$ mA for the MOSFET. (12.5 p)
- **b)** Calculate the input resistance R_i and the voltage gain v_0/v_g . (12.5 p)

- 3. In figure 3, the operational amplifier is assumed ideal and the operational amplifier output voltage saturates at $V_O^+=5~V$ and $V_O^-=-5~V$. $V_{TH}=1~V$, $\beta_n=k_n=\mu_nC_{ox}\cdot(W/L)=500~\mu A/V^2$ and $\lambda=0$ is given for the MOSFET.
- a) Express the voltage v_0 in terms of v_{I1} , v_{I2} , i_D and the resistors. (12.5 p)
- **b)** Assuming $R_1 = R_2 = R_F = 1 \text{ k}\Omega$, find the voltage v_0 for the following conditions: (12.5 p)
 - i) $v_{I_1}=1.5 \text{ V}, v_{I_2}=1 \text{ V}, v_{I_3}=0.5 \text{ V}$
 - **ii)** $v_{I_1}=0.5 \text{ V}, v_{I_2}=3.5 \text{ V}, v_{I_3}=2 \text{ V}$
 - iii) $v_{I_1}=-1 \text{ V}, v_{I_2}=1.5 \text{ V}, v_{I_3}=2.5 \text{ V}$
- **4.** In figure 4, assume the constant voltage drop model (V_D =0.7 V) for the diodes.
- a) Calculate I_{D1} and V_0 for $R_1=5$ k Ω , $R_2=10$ k Ω . (12.5 p)
- **b)** Calculate I_{D_1} and V_O for $R_1=10 \text{ k}\Omega$, $R_2=5 \text{ k}\Omega$. (12.5 p)

Figure 3

Figure 4