Comparison of Compositional Approaches to Taxonomic Binning for Metagenomics

Patrick Kimball, Ryan Nelson
02620 Machine Learning for Scientists – Group Project
May 5, 2021

Outline

- Introduction
- Methods
- Results
- Conclusions

Outline

- Introduction
- Methods
- Results
- Conclusions

Introduction

Metagenomics

- Analysis of genetic sequences discovered through broad-stroke sampling of an environment
- Goal is to reconstruct full genome of discovered organisms
- Taxonomic binning enables this: Classify samples into groups
 - Alignment strategy (BLAST)
 - Compositional strategy (ML classification)

Introduction

Motivation

- Previous approaches leverage discriminative or generative models
 - Vervier et al. Large-scale machine learning for metagenomics sequence classification. (2015)
- Our goal is to compare the performance of these strategies
- Our second goal is to develop an understanding of how to prepare metagenomics data for supervised machine learning

Introduction

Metagenomics Data

- Dataset comes from paper Vervier et al. (2015)
- For supervised learning, species label for each sequence is known
- Collected sequences vary significantly in length (1000 bp 10M+ bp)
- Need a way to standardize the length for use in machine learning without losing information provided by sequences

Outline

- Introduction
- Methods
- Results
- Conclusions

Dataset Prep

- Similar to paper
- Hyperparameters
 - Sample length
 - Coverage
 - K-mer size

Load Data

Draw Random Fragments

Build Fragment Dataset

Build k-mers (k=4)

101218

101218

Dataset Prep

- Training set dimensions scale dramatically based on hyperparameters
- Explored sample length: 100 400, coverage: 0.1-400, k: 1 12

Dataset Dimensions	Sample Length	Coverage	K
314 x 400	100	1	1
122,706 x 369,078	100	400	10
:			
30,676 x 1,600	400	400	1
30,676 x 952,099	400	400	10

Dataset Prep

- Hit performance limits quickly
- Built two smaller-scale multiclass datasets

Original Dataset

1564 sequences 193 species

2000-lengths Dataset

5 sequences5 species

3000-lengths Dataset

20 sequences 12 species

Model Selection

- Discriminative Models: SVM, Random Forest, Logistic Regression
- Generative Model: Naive Bayes
- We implemented Naive Bayes and (multiclass) Logistic Regression
 - We used sklearn version of LR to explore advanced options.

Note: SVM, Random Forest, Naive Bayes are "naturally" multiclass.

Scoring strategy

- Average recall
 - According to Vervier et. al: "We first compute the prediction recall within each species, i.e. the proportion of fragments originating from this species that are correctly classified and consider the average recall observed across species. In a multiclass setting, this indicator is indeed less biased toward over-represented classes than the global rate of correct classification."

Outline

- Introduction
- Methods
- Results
- Conclusions

Discriminative Models

Logistic Regression (our implementation)

2000-lengths Dataset

3000-lengths Dataset

Discriminative Models

Logistic Regression (sklearn)

Explored different penalties

2000-lengths Dataset L2 penalty, balanced weights

2000-lengths Dataset L1 penalty

Discriminative Models

Logistic Regression (sklearn)

2000-lengths Dataset L2 penalty, balanced weights

2000-lengths Dataset L2 penalty

Discriminative Models

Logistic Regression (sklearn)

2000-lengths Dataset L2 penalty, balanced weights

3000-lengths Dataset L2 penalty, balanced weights

Discriminative Models

Random Forest

3000-lengths Dataset

Discriminative Models

Linear SVM

 Explore different kernels

2000-lengths Dataset (linear kernel)

2000-lengths Dataset (RBF kernel)

Discriminative Models

Linear SVM

 Explore different hyperparameters

2000-lengths Dataset (linear kernel, C-value)

2000-lengths Dataset (RBF kernel, C-value)

Discriminative Models

Linear SVM

2000-lengths Dataset (linear kernel)

3000-lengths Dataset (linear kernel)

Note: RBF kernel runs very slowly for large datasets

Generative Models

Naive Bayes

10

12

2000-lengths Dataset

3000-lengths Dataset

Outline

- Introduction
- Methods
- Results
- Conclusions

Conclusions

Fragment generation

- Current approach results in a very imbalanced dataset
- Potential to bucket sequences based on length before generating fragments

Generative vs Discriminative models

- No clear difference between the two methods from our results
- For all methods:
 - Increase sample length → lower average recall
 - Increase coverage → higher average recall
- Random Forest was the only classifier that consistently performed better with smaller k-mer sizes
- Metagenomics data is a challenge for standard ML packages!

References

Vervier, K., Mahé, P., Tournoud, M., Veyrieras, J. B., Vert, J. P. (2016). Large-scale machine learning for metagenomics sequence classification. Bioinformatics (Oxford, England), 32(7), 1023–1032. https://doi.org/10.1093/bioinformatics/btv683

Questions?