# Localizations of Models of Dependent Type Theory

Matteo Durante

Advisor: Hoang-Kim Nguyen Coadvisor: Denis-Charles Cisinski

Regensburg University

June 23, 2022



### Introduction

Dependent Type Theory is a candidate foundation for mathematics. Why is it interesting?

- Closely linked to computations and computer science, makes proof assistants possible
- Sufficient by itself, unlike Set Theory and Propositional Calculus
- Opening a second of the sec
- Better concept of equality

# Dependent Type Theory

About dependent types A over contexts  $\Gamma$  and their terms x:A. Structural rules: how to work with variables.

Logical rules: construct new types and their terms from old, carry out computations; provide  $\Sigma$ -types  $\Sigma(A,B)$ ,  $\Pi$ -types  $\Pi(A,B)$  and Id-types Id<sub>A</sub>, natural-numbers-type Nat...

#### Problem

Providing a model of Dependent Type Theory is hard.

### Solution

Defining a class of algebraic models.

# Contextual Categories

#### Definition

A category C with:

- **1** a grading on objects  $Ob C = \coprod_{n \in \mathbb{N}} Ob_n C$ ;
- ② a map  $\operatorname{ft}_n \colon \operatorname{Ob}_{n+1} \mathsf{C} \to \operatorname{Ob}_n \mathsf{C}$  for each  $n \in \mathbb{N}$ ;
- **3** basic dependent projections  $p_A : \Gamma.A \to \operatorname{ft}_n(\Gamma.A) = \Gamma$ ;
- a functorial choice of a pullback squares

$$\begin{array}{ccc}
\Delta.f^*A & \xrightarrow{q(f,A)} & \Gamma.A \\
\downarrow^{p_{f^*A}} & & \downarrow^{p_A}; \\
\Delta & \xrightarrow{f} & \Gamma
\end{array}$$

**5** ..



# Extra Structure

Modeling logical rules requires some extra structure. Id-types require from  $\Gamma.A$  an object  $\Gamma.A.A$ .  $\mathrm{Id}_A...$   $\Pi$ -types require from  $\Gamma.A.B$  an object  $\Gamma.\Pi(A,B)$ , a map  $\mathrm{app}_{A.B} \colon \Gamma.\Pi(A,B).A \to \Gamma.A.B...$ 

#### Definition

A categorical model of type theory is a contextual category C with  $\Sigma$ , Id and  $\Pi$  structures.

# Bi-Invertibility

#### Definition

In a contextual category with Id-structure C, a map  $f: \Gamma \to \Delta$  is bi-invertible if we can give:

- **1** maps  $g_1: \Delta \to \Gamma$ ,  $\eta: \Gamma \to \Gamma$ . $(1_{\Gamma}, g_1 f)^* \operatorname{Id}_{\Gamma}$ ;
- $② \ \textit{maps} \ \textit{g}_2 \colon \Delta \to \Gamma \text{, } \epsilon \colon \Delta \to \Delta. (1_{\Delta},\textit{fg}_2)^* \, \mathsf{Id}_{\Delta}.$

### Question

What happens if we localize a contextual category at bi-invertible maps?



# Internal Languages Conjecture

### Conjecture (Kapulkin-Lumsdaine 2016)

The horizontal maps, given by simplicial localization, induce equivalences of  $\infty$ -categories.

$$\begin{array}{ccc} \mathsf{CxlCat}_{\Sigma,1,\mathsf{Id},\Pi} & \longrightarrow \mathsf{LCCC}_{\infty} \\ & & & \downarrow \\ & & & \downarrow \\ \mathsf{CxlCat}_{\Sigma,1,\mathsf{Id}} & \longrightarrow \mathsf{Lex}_{\infty} \end{array}$$

Proof by Nguyen-Uemura has recently become available on arxiv. One hopes to extend this to an equivalence between  $CxlCat_{HoTT}$  and  $ElTopos_{\infty}$ .

## Fibrational Structure

#### Definition

An  $\infty$ -category with weak equivalences and fibrations is a triple  $(\mathcal{C}, W, Fib)$  where:

...some conditions similar to fibration categories but weaker, with  $\mathcal C$  an  $\infty$ -category.

# Theorem (Avigad-Kapulkin-Lumsdaine 2013)

A contextual category with  $\Sigma$  and  $\operatorname{Id}$  structures defines a fibration category, where weak equivalences are bi-invertible maps and fibrations are maps isomorphic to dependent projections.

# Localizing Fibrational Categories

## Proposition (Cisinski)

The localization at weak equivalences of an  $\infty$ -category with weak equivalences and fibrations C is a finitely complete  $\infty$ -category.

# Proposition (Cisinski)

Given an  $\infty$ -category with weak equivalences and fibrations  $\mathcal{C}$ , if for every fibration  $f: x \to y$  between fibrant objects the pullback functor between fibrant slices  $f^*: \mathcal{C}(y) \to \mathcal{C}(x)$  has a right adjoint preserving trivial fibrations, then  $L(\mathcal{C})$  is locally cartesian closed.

# Localizations of Models are Cartesian Closed

### Lemma (Kapulkin 2015)

Given a categorical model of type theory C and a dependent projection  $p_{\Delta} : \Gamma.\Delta \to \Gamma$ , there exists a right adjoint to  $p_{\Delta}^*$  given by

$$(\rho_{\Delta})^*(\Gamma.\Delta.\Theta) = \Gamma.\Pi(\Delta,\Theta)$$

preserving the fibrational structure.  $app_{\Delta,\Theta}$  induces the counit.

## Theorem (Kapulkin 2015)

Given a categorical model of type theory C, its localization L(C) is a locally cartesian closed  $\infty$ -category.



Thank you for your attention!