Problem 1

Sketch the region enclosed by each given curves and find its area.

- 1. $y = x^2$, $y = 4x x^2$
- 2. $y = e^x$, $y = xe^x$, x = 0
- 3. $x = 2y^2$, $x = 4 + y^2$
- 4. y = |x|, $y = x^2 2$

Problem 2

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

- 1. $y = x^3$, y = 8, x = 0 about the y axis.
- 2. $y = 1 x^2$, y = 0, about the *x* axis.
- 3. $y = \frac{1}{4}x^4$, $y = 5 x^2$, about the *x* axis.
- 4. $y = e^{-x}$, y = 1, x = 2 about the y = 2 axis.

Problem 3

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis or line.

- 1. $y = \sqrt[3]{x}$, y = 0, x = 1 about the y axis.
- 2. $y = \sqrt{x}$, x = 0, y = 2 about the x axis.
- 3. $y = x^2$, $y = 2 x^2$ about the x = 1 axis.
- 4. $x = y^2 + 1$, x = 2 about the y = -2 axis.