Review of Lecture 7

ullet VC dimension $d_{
m VC}(\mathcal{H})$ most points \mathcal{H} can shatter

Scope of VC analysis

Utility of VC dimension

$$N \propto d_{
m VC}$$

Rule of thumb: $N \geq 10 \ d_{\rm VC}$

Generalization bound

$$E_{\mathrm{out}} \leq E_{\mathrm{in}} + \Omega$$

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 8: Bias-Variance Tradeoff

Outline

Bias and Variance

• Learning Curves

Learning From Data - Lecture 8 2/22

Approximation-generalization tradeoff

Small $E_{
m out}$: good approximation of f out of sample.

More complex $\mathcal{H} \Longrightarrow$ better chance of approximating f

Less complex $\mathcal{H}\Longrightarrow$ better chance of **generalizing** out of sample

 $|\mathsf{deal}| \, \mathcal{H} = \{f\} \qquad \text{winning lottery ticket } \odot$

Quantifying the tradeoff

VC analysis was one approach: $E_{
m out} \leq E_{
m in} + \Omega$

Bias-variance analysis is another: decomposing $E_{
m out}$ into

- 1. How well ${\mathcal H}$ can approximate f
- 2. How well we can zoom in on a good $h \in \mathcal{H}$

Applies to real-valued targets and uses squared error

Start with E_{out}

$$E_{\text{out}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \Big[\big(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \big)^2 \Big]$$

$$\mathbb{E}_{\mathcal{D}} \left[E_{\text{out}}(g^{(\mathcal{D})}) \right] = \mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{\mathbf{x}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right]$$
$$= \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right]$$

Now, let us focus on:

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

The average hypothesis

To evaluate
$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x})-f(\mathbf{x})\right)^2\right]$$

we define the 'average' hypothesis $\bar{g}(\mathbf{x})$:

$$\bar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[g^{(\mathcal{D})}(\mathbf{x}) \right]$$

Imagine **many** data sets $\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_K$

$$\bar{g}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} g^{(\mathcal{D}_k)}(\mathbf{x})$$

Using $\bar{g}(\mathbf{x})$

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) + \bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

+ 2
$$\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right) \left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)$$

$$= \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2$$

Bias and variance

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\text{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\text{bias}(\mathbf{x})}$$

Therefore,
$$\mathbb{E}_{\mathcal{D}}\left[E_{\mathrm{out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]\right]$$

$$= \mathbb{E}_{\mathbf{x}}[\mathsf{bias}(\mathbf{x}) + \mathsf{var}(\mathbf{x})]$$

$$=$$
 bias $+$ var

8/22

The tradeoff

$$\mathsf{bias} = \mathbb{E}_{\mathbf{x}} \left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

$$\mathsf{var} = \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] \right]$$

 $\mathcal{H} \uparrow$

Example: sine target

$$f:[-1,1] \to \mathbb{R}$$
 $f(x) = \sin(\pi x)$

Only two training examples! N=2

Two models used for learning:

$$\mathcal{H}_0$$
: $h(x) = b$

$$\mathcal{H}_1$$
: $h(x) = ax + b$

Which is better, \mathcal{H}_0 or \mathcal{H}_1 ?

Approximation - \mathcal{H}_0 versus \mathcal{H}_1

 \mathcal{H}_0 \mathcal{H}_1

Learning From Data - Lecture 8

Learning - \mathcal{H}_0 versus \mathcal{H}_1

 \mathcal{H}_0 \mathcal{H}_1

Learning From Data - Lecture 8 12/22

Bias and variance - \mathcal{H}_0

Learning From Data - Lecture 8

Bias and variance - \mathcal{H}_1

Learning From Data - Lecture 8 14/22

and the winner is ...

15/22

Lesson learned

Match the 'model complexity'

to the data resources, not to the target complexity

Learning From Data - Lecture 8 16/22

Outline

Bias and Variance

Learning Curves

Learning From Data - Lecture 8 17/22

Expected $E_{\rm out}$ and $E_{\rm in}$

Data set \mathcal{D} of size N

Expected out-of-sample error $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{out}}(g^{(\mathcal{D})})]$

Expected in-sample error $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{in}}(g^{(\mathcal{D})})]$

How do they vary with N?

The curves

Simple Model

Complex Model

Learning From Data - Lecture 8 19/22

VC versus bias-variance

Number of Data Points, N

VC analysis

Number of Data Points, N

bias-variance

20/22 Learning From Data - Lecture 8

Linear regression case

Noisy target $y = \mathbf{w}^{*\mathsf{T}}\mathbf{x} + \mathsf{noise}$

Data set
$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$$

Linear regression solution: $\mathbf{w} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$

In-sample error vector = $X\mathbf{w} - \mathbf{y}$

'Out-of-sample' error vector $= X\mathbf{w} - \mathbf{y}'$

Learning curves for linear regression

Best approximation error = σ^2

Expected in-sample error $=\sigma^2\left(1-\frac{d+1}{N}\right)$

Expected out-of-sample error $=\sigma^2\left(1+\frac{d+1}{N}\right)$

Expected generalization error $=2\sigma^2\left(\frac{d+1}{N}\right)$

Learning From Data - Lecture 8 22/22