Propositional Logic: Semantics (2/3) CS402, Spring 2017

Shin Yoo

Overview

- Logical Equivalence and Substitution
- Satisfiability, Validity, and Consequence

Definition 1 (2.26)

Let $A_1, A_2 \in \mathscr{F}$. If $\nu_{\mathscr{I}}(A_1) = \nu_{\mathscr{I}}(A_2)$ for all interpretations \mathscr{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

$\mathscr{I}(p)$	$\mathscr{I}(q)$	$\nu_{\mathscr{I}}(p \lor q)$	$\nu_{\mathscr{I}}(q \vee p)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	F

We can extend the result of the previous example from atomic propositions to general formulas.

Theorem 1 (2.28)

Let A_1 and A_2 be any formulas. Then $A_1 \vee A_2 \equiv A_2 \vee A_1$.

Proof.

- Let $\mathscr I$ be an arbitrary interpretation for $A_1 \vee A_2$. Then, $\mathscr I$ is also an interpretation for $A_2 \vee A_1$, because $\mathscr P_{A_1} \cup \mathscr P_{A_2} = \mathscr P_{A_2} \cup \mathscr P_{A_1}$.
- ② Similarly, \mathscr{I} is an interpretation for A_1 and A_2 .
- Therefore, $\nu_{\mathscr{I}}(A_1 \vee A_2) = T \leftrightarrow (\nu_{\mathscr{I}}(A_1) = T \vee \nu_{\mathscr{I}}(A_2) = T) \leftrightarrow \nu(A_2 \vee A_1) = T$.

Theorem 2 (2.29)

 $A_1 \equiv A_2$ if and only if $A_1 \leftrightarrow A_2$ is true in every interpretation.

- Object Language: the language we set out to study, i.e. propositional logic in our current case.
- Metalanguage: the language that is used to discuss an object language.

What is the difference between \leftrightarrow and \equiv ?

- Material Equivalence (↔): just another statement in the object language; truth value depends on the specific interpretation.
- Logical Equivalence (\equiv): semantic statement, i.e. if p is logically equivalent to q, it means that under every possible interpretation, p and q logically means the same thing. This is a statement in the metalanguage.

Logical Substitution

Logical equivalence justifies *substitution* of one formula for another that is equivalent.

Let us present the intermediate steps first.

Definition 2 (2.30)

A is subformula of B if the formation tree for A occurs as a subtree of the formation tree for B. A is proper subformula of B if A is a subformula of B, but A is not identical to B.

Example 1 (2.31)

The formula $(p \to q) \leftrightarrow (\neg p \to \neg q)$ contains the following proper subformulas: $p \to q, \neg p \to \neg q, \neg p, \neg q, p$ and q

Definition 3 (2.32)

If A is a subformula of B, and A' is an arbitrary formula, then B', the *substitution* of A' for A in B, denoted $B\{A \leftarrow A'\}$, is the formula obtained by replacing all occurrences of the subtree for A in B by the tree for A'.

Theorem 3 (2.34)

Let A be a subformula of B and let A' be a formula such that $A \equiv A'$. Then $B \equiv B\{A \leftarrow A'\}$.

Substitution can be naturally used to *simplify* formulas.

$$p \wedge (\neg p \vee q) \equiv (p \wedge \neg p) \vee (p \wedge q) \equiv \text{false} \vee (p \wedge q) \equiv p \wedge q$$

Definition 4 (2.35)

A binary operator, o, is *defined from* a set of operators, $O = \{o_1, \ldots, o_n\}$ iff there is a logical equivalence A_1 o $A_2 \equiv A$ where A is a formula constructed from occurrences of A_1 , A_2 , and operators in O.

Similarly, an unary operator o is defined from a set of operators, $O = \{o_1, \ldots, o_n\}$ iff there is a logical equivalence o $A_1 \equiv A$ where A is a formula constructed from occurrences of A_1 , and operator o.

Example 2

- \leftrightarrow is defined from $\{\rightarrow, \land\}$ because $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$.
- \rightarrow is defined from $\{\neg, \lor\}$ because $A \rightarrow B \equiv \neg A \lor B$.
- \wedge is defined from $\{\neg, \lor\}$ because $A \wedge B \equiv \neg(\neg A \lor \neg B)$.

Satisfiability, Validity, and Consequences

Definition 5 (2.38)

- A propositional formula A is satisfiable iff $\nu_{\mathscr{I}}(A) = T$ for some interpretation \mathscr{I} .
- A satisfying interpretation is called a *model* for A.
- A is valid, denoted \models A, iff $\nu_{\mathscr{I}}(A) = T$ for all interpretation \mathscr{I} .
- A valid propositional formula is also called a tautology.
- A is unsatisfiable if and only if it is not satisfiable, that is, if $\nu_{\mathscr{I}}(A) = F$ for all interpretations \mathscr{I} .
- A is falsifiable, denoted $\not\vdash A$, if and only if it is not valid, that is, if $\nu_{\mathscr{I}}(A) = F$ for *some* interpretaion \mathscr{I} .

Theorem 4 (2.39)

A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is falsifiable.

- X (and, therefore, Z): Satisfiable.
- Y: Unsatisfiable.
- *Z*: Valid.
- $(X Z) \bigcup Y$: Falsifiable (i.e. can be shown to be false).

Definition 6 (2.40)

Let $\mathscr{U}\subseteq\mathscr{F}$ be a set of formulas. An algorithm is a *decision* procedure for \mathscr{U} if given an arbitrary formula $A\in\mathcal{F}$, it terminates and return the answer 'yes' if $A\in\mathscr{U}$ and the answer 'no' if $A\notin\mathscr{U}$.

By Theorem 2.39, a decision procedure for satisfiability can be used as a decision procedure for validity. Let $\mathcal V$ be the set of all satisfiable formulas. To decide the validity of A, we can apply the decision procesure for satisfiability of $\neg A$. This decision procedure is called a *refutation procedure*.

Example 3

Is $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg q)$ valid?

Example 4

 $p \lor q$ is satisfiable but not valid.

Logical Consequence

Definition 7 (2.42)

Extension of satisfiability from a single formula to a set of formulas: a set of formulas $U=A_1,\ldots,A_n$ is (simultaneously) satisfiable iff there exists an interpretation $\mathscr I$ such that $\nu_{\mathscr I}(A_1)=\ldots=\nu_{\mathscr I}(A_n)=T$. The satisfying interpretation is called a model of U. U is unsatisfiable iff for every interpretation $\mathscr I$, there exists an i such that $\nu_{\mathscr I}(A_i)=F$.

Logical Consequence

Definition 8 (2.48)

Let U be a set of formulas and A a formula. A is a *logical* consequence of U, denoted $U \models A$, iff every model of U is a model of A.

Theorem 5 (2.50)

$$U \models A \text{ iff } A_1 \land A_2 \ldots \land A_n \rightarrow A, \text{ where } U = \{A_1, \ldots, A_n\}.$$

If $U = \emptyset$, the logical consequence is the same as the validity.

Theories

Logical consequence is the central concept in the foundations of mathematics; validity is often trivial and not very interesting. For example, Euclidean geometry is an extensive set of logical consequences, all deduced from the five axioms.

Definition 9 (2.55)

Let $\mathscr T$ be a set of formulas. $\mathscr T$ is closed under logical consequence iff for all formulas A, if $\mathscr T\models A$ then $A\in\mathscr T$. A set of formulas that is closed under logical consequence is a *theory*. The elements of $\mathscr T$ are theorems.

Definition 10

Let $\mathscr T$ be a theory. $\mathscr T$ is said to be *axiomatizable* iff there exists a set of formulas U such that $\mathscr T=\{A|U\models A\}$. The set of formulas U are the axioms of $\mathscr T$. If U is finite, $\mathscr T$ is said to be *finitely axiomatizable*.

Examples of Theory

	р	q	r	$p \lor q \lor r$	$q \rightarrow r$	$r \rightarrow p$
\mathscr{I}_1		Т		T	T	T
\mathscr{I}_2	T	T	F	T	F	T
	T			T	T	T
\mathscr{I}_4	T	F	F	T	T	T
\mathscr{I}_5	F	T	T	T	T	F
\mathscr{I}_6	F	Τ	F	T	F	T
\mathscr{I}_7	F	F	T	T	T	F
<i>I</i> 8	T	F	F	F	T	Т

- $U = \{p \lor q \lor r, q \to r, r \to p\}$
- Interpretation ν_1, ν_3, ν_4 are models of U (i.e. interpretations that make all formulas in U true).
- Which of the following are true?
 - $0 \ U \models p$
 - $U \models q \rightarrow r$
 - $U \models r \lor \neg q$
 - $U \models p \land \neg q$

Examples of Theory

	p	q	r	$p \lor q \lor r$	$q \rightarrow r$	$r \rightarrow p$
ν_1	T	Т	T	T	T	T
ν_2	T	T	F	T	F	T
ν_3	T	F	Τ	T	T	T
ν_4	T	F	F	T	T	T
ν_5	F	T	Τ	T	T	F
ν_6	F	T	F	T	F	T
ν_7	F	F	Τ	T	T	F
ν_8	T	F	F	F	T	T

Theory of $U = \{p \lor q \lor r, q \to r, r \to p\}$, i.e. \mathcal{T} (U):

- $U \subseteq \mathcal{T}(U)$ because for all formula $A \in \mathcal{F}$, $A \models A$.
- $p \in \mathcal{T}(U)$ because $U \models p$.
- $(q \to r) \in \mathcal{T}(U)$ because $U \models (q \to r)$.
- $p \land (q \rightarrow r) \in \mathcal{T}(U)$ because $U \models p \land (q \rightarrow r)$.

Theory of Euclidean Geometry is based on the set of 5 axioms, $U = A_1, A_2, A_3, A_4, A_5$ such that:

- A_1 : Any two points can be joined by a unique straight line.
- A₂: Any straight line segment can be extended indefinitely in a straight line.
- A_3 : Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
- A₄: All right angles are congruent.
- A₅: For every line I and for every point P that does not lie on
 I, there exists a unique line m through P that is parallel to I.

The ancient Greeks suspected whether A_5 is a logical consequence of the other four. For about 2,000 years, various mathematicians tried to show $\{A_1,\ldots,A_4\} \models A_5$. Only in 1868, Beltrami showed that A_5 is independent from the rest. In other words, we accept A_5 as an axiom.

Beltrami also showed that non-Euclidean geometry (i.e. U with A_5 replaced with alternatives) is *consistent*.