Cytokine Graph Database

Borna Bešić, Dilmurat Yusuf

Bioinformatics Group

Albert-Ludwigs-Universität, Freiburg

November 8, 2018

- Introduction
- 2 Methodology
- Results
- 4 Next steps

What do we want?

- Easier access to data
 - More flexible searches
 - Faster queries
 - Dynamic user interfaces
- Associated data in one place
 - Unification of databases
- This leads to
 - Accessible protein disease data
 - Faster drug discovery
- ...

STRING

- Database of known and predicted protein-protein interactions
- 7 score channels → combined score
 - Experiments
 - ② Database
 - Textmining
 - Co-expression
 - Neighbourhood
 - Fusion
 - Co-occurence
- Best overall performance for gene set recovery by propagation (Huang et al., Systematic Evaluation of Molecular Networks for Discovery of Disease Genes, Cell Systems)
- Full database dumps available for download: 512.8 GB (compressed)

Graph databases

- Nodes
- Directed edges / relationships
- Properties

Neo4j & Cypher

Example of a Cypher query

```
MATCH (:person { name: "Alan" })-[p:PURCHASED]->(b:book) RETURN p.date, b
```

- Pros:
 - Outperforming RDBMS for associative data
 - No redundancy
 - Easier to change the design
- Cons:
 - Not standard; new query language (Cypher)
 - Harder to do summing queries and max queries efficiently

Why Neo4j?

	Neighbor network	Best-scoring path	Shortest path
PostgreSQL	206.31 s	1147.74 s	976.22 s
Neo4j	5.68 s ^a	1.17 s	$0.40\mathrm{s}$
Speedup	36×	981×	2441×

Figure: Have CT, Jensen LJ. Are graph databases ready for bioinformatics?

Cytokines

- Molecular messengers between cells
- Interact with cells of the immune system
- Regulate the body's response to disease and infection
- Mediate normal cellular processes in the body

- 1 Introduction
- 2 Methodology
- Results
- 4 Next steps

Sources of data

STRING

- proteins
- protein protein associations

KEGG PATHWAY

- pathways
 - classes
 - compounds
 - drugs
 - diseases

STRING Schema

KEGG PATHWAY Flat file

```
FNTRY
            hsa00010
                                        Pathway
            Glycolysis / Gluconeogenesis - Homo sapiens (human)
DESCRIPTION Glycolysis is the process of converting glucose into pyruvate...
            Metabolism: Carbohydrate metabolism
PATHWAY MAP hsa00010 Glycolysis / Gluconeogenesis
            hsa M00001 Glycolysis (Embden-Meyerhof pathway), glucose => pyruvate [PATH:hsa00010]
MODUL F
            hsa M00002 Glycolysis, core module involving three-carbon compounds [PATH:hsa00010]
            hsa M00003 Gluconeogenesis. oxaloacetate => fructose-6P [PATH:hsa00010]
            hsa M00307 Pyruvate oxidation. pyruvate => acetyl-CoA [PATH:hsa00010]
            H00069 Glycogen storage disease
            H00071 Hereditary fructose intolerance
            H00072 Pyruvate dehydrogenase complex deficiency
            D00123 Cvanamide (JP17)
            D00131 Disulfiram (JP17/USP/INN)
            D07257 Lonidamine (INN)
            D08970 Piragliatin (USAN)
DRI TNKS
            BSTD: 82926
            GO: 0006096 0006094
ORGANISM
            Homo sapiens (human) [GN:hsal
GENE
            3101 HK3: hexokinase 3 [KO:K00844] [EC:2.7.1.1
            3098 HK1: hexokinase 1 [KO:K00844]
                                                [EC:2.7.1.1]
            3099 HK2: hexokinase 2 [KO:K00844] [EC:2.7.1.1]
            80201 HKDC1: hexokinase domain containing 1 [KO:K00844] [EC:2.7.1.1]
            2645 GCK: glucokinase [KO:K12407] [EC:2.7.1.2]
COMPOUND
            C00022 Pyruvate
            C00024 Acetyl-CoA
            C00031 D-Glucose
            C00033 Acetate
REFERENCE
            (map 1)
  ALITHORS
            Nishizuka Y (ed).
  TITLE
            [Metabolic Maps] (In Japanese)
  JOURNAL
            Tokvo Kagaku Dojin (1980)
REFERENCE
            (map 1)
  AUTHORS
            Nishizuka Y. Sevama Y. Ikai A. Ishimura Y. Kawaguchi A (eds).
  TITLE
            [Cellular Functions and Metabolic Maps] (In Japanese)
  JOURNAL
            Tokvo Kagaku Dojin (1997)
REFERENCE
  AUTHORS
            Michal G.
            Biochemical Pathways
  TITLE
```

Wilev (1999)

Cytokine Graph DB Scheme

Workflow

- Introduction
- 2 Methodology
- Results
- 4 Next steps

Cytokine Graph DB in numbers

Cytokine-cytokine receptor interaction - Human (Homo sapiens)

Nodes

Protein: 282Pathway: 325Drug: 3 731Disease: 969

• Compound: 3 465

• Class: 49

Relationships

ASSOCIATION: 13 900

• IN: 17 752

(demo)

- Introduction
- 2 Methodology
- Results
- 4 Next steps

Next steps

- Extend the database
 - Protein protein actions
 - KEGG DRUG
 - KEGG DISEASE
 - KEGG COMPOUND
- Other species
- All proteins
- Web server
- Machine learning

Thanks:)

https://backofenlab.github.io/cytokine-graph-db/https://github.com/BackofenLab/cytokine-graph-db