10.7 各种内排序的比较

各种内排序方法的性能

加片之外	时间复杂度			应问与九亩	42 户 lol
排序方法	平均情况	最坏情况	最好情况	一 空间复杂度	稳定性
直接插入排序	$O(n^2)$	$O(n^2)$	$\mathbf{O}(n)$	O (1)	稳定
折半插入排序	$O(n^2)$	$O(n^2)$	$O(n\log_2 n)$	O(1)	稳定
希尔排序	$O(n^{1.3})$			O(1)	不稳定
冒泡排序	$O(n^2)$	$O(n^2)$	$\mathbf{O}(n)$	O(1)	稳定
快速排序	$O(n\log_2 n)$	$O(n^2)$	$O(n\log_2 n)$	$O(\log_2 n)$	不稳定
简单选择排序	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)	不稳定
堆排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$	O (1)	不稳定
二路归并排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$	$\mathbf{O}(n)$	稳定
基数排序	O(d(n+r))	O(d(n+r))	O(d(n+r))	$\mathbf{O}(r)$	稳定

1、按算法平均时间复杂度分类

- 平方阶O(n²): 即简单排序方法, 例如直接插入、简单选择和 冒泡排序。
- 线性对数阶O(nlog,n):例如快速、堆和归并排序。
- 线性阶O(n):例如基数排序(假设r、d为常量)。

2、按算法空间复杂度分类

● O(n): 归并排序, 基数排序为O(r)。

● O(log₂n): 快速排序。

● O(1): 其他排序方法。

3、按算法稳定性分类

● 不稳定的:希尔排序、快速排序、堆排序、简单选择排序。

• 稳定的: 其他排序方法。

【例10-12】设线性表中每个元素有两个数据项 k_1 和 k_2 ,现对线性表按以下规则进行排序:先看数据项 k_1 , k_1 值小的在前,大的在后;在 k_1 值相同的情况下,再看 k_2 , k_2 值,小的在前,大的在后。满足这种要求的排序方法是____。

A.先按 k_1 值进行直接插入排序,再按 k_2 值进行简单选择排序 B.先按 k_2 值进行直接插入排序,再按 k_1 值进行简单选择排序 C.先按 k_1 值进行简单选择排序,再按 k_2 值进行直接插入排序 D.先按 k_2 值进行简单选择排序,再按 k_1 值进行直接插入排序

解:考虑1:排序数据项顺序: k_1 、 k_2 还是 k_2 、 k_1 ?

越重要的数据项越在后面排序 \Rightarrow 应为 k_2 、 k_1

考虑2: k2选择直接插入排序还是简单选择排序? 稳定性

例如:

标识	k_1	k_2
1	80	90
2	70	90
3	80	72
4	70	72

标识	k_1	k_2
3	80	72
4	70	72
1	80	90
2	70	90

标识	k_1	k_2
2	70	90
4	70	72
1	80	90
3	80	72

十 相对次序改变 相对次序改变

标识	k_1	k_2
1	80	90
2	70	90
3	80	72
4	70	72

	护力
k ₂ 简单选择	

标识	k_1	k_2	
4	70	72	
3	80	72	J
1	80	90	
2	70	90	

标识	k_1	k_2
4	70	72
2	70	90
3	80	72
1	80	90

 k_1 直接插入排序

→ 相对次序不改变→ 相对次序不改变

思考题

排序算法的稳定性在多关键字排序中如何使用?

4、如何选择合适的排序算法

因为不同的排序方法适应不同的应用环境和要求,所以选择 合适的排序方法应综合考虑下列因素:

- 待排序的元素数目n (问题规模);
- 元素的大小(每个元素的规模);
- 关键字的结构及其初始状态;
- 对稳定性的要求:
- 语言工具的条件;
- 排序数据的存储结构;
- 时间和辅助空间复杂度。

【例10-13】若数据元素序列{11,12,13,7,8,9,23,4,5}是采用下列排序方法之一得到的第二趟排序后的结果,则该排序算法只能是。

A. 冒泡排序

C. 选择排序

B. 直接插入排序

D. 二路归并排序

说明: 本题为2009年全国考研题

【例10-14】对一组数据(2,12,16,88,5,10)进行排序, 若前三趟的结果如下:

第1趟: 2, 12, 16, 5, 10, 88

第2趟: 2, 12, 5, 10, 16, 88

第3趟: 2, 5, 10, 12, 16, 88

则采用的排序方法可能是____。

A. 冒泡排序

B. 希尔排序

C. 二路归并排序

D. 基数排序

说明: 本题为2010年全国考研题

——本章完——