Section 4.3 – Definite Integral

Definition

Let f(x) be a function defined on a closed interval [a, b]. We say that a number J is the *definite integral* of f over [a, b] and that J is the limit of the Riemann sums $\sum_{k=1}^{n} f(c_k) \Delta x_k$ if the following condition is satisfied:

Given any number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that for every partition $P = \left\{x_0, x_1, \dots, x_n\right\}$ of [a, b] with $\|P\| < \delta$ and any choice of c_k in $\left[x_{k-1}, x_k\right]$, we have

$$\left| \sum_{k=1}^{n} f(c_k) \Delta x_k - J \right| < \varepsilon$$

Leibniz introduced a notation for the definite integral that captures its construction as a limit of Riemann sums.

Integral of f from a to b.

$$\lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k = J = \int_{a}^{b} f(x) dx$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x_k = J = \int_{a}^{b} f(x) dx$$

Theorem – Integrability of Continuous Functions

If a function f is continuous over the interval [a, b], or if f has at most finitely many jump discontinuities there, then the definite integral $\int_a^b f(x)dx$ exists and f in integrable over [a, b]

Properties of Definite Integrals

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx \qquad \int_{a}^{a} f(x)dx = 0$$

Theorem

When f and g are integrable over the interval [a, b], the definite integral satisfies the rules:

Order of Integration: $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$ Zero Width Interval: $\int_{a}^{a} f(x)dx = 0$ Constant Multiple: $\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$ Sum and Difference: $\int_{a}^{b} (f(x)\pm g(x))dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$ Additivity: $\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$ Max-Min Inequality: If f has maximum value max f and minimum value min f on [a, b], then

$$(\min f) \cdot (b-a) \le \int_a^b f(x) dx \le (\max f) \cdot (b-a)$$

Domination:
$$f(x) \ge g(x) \text{ on } [a, b] \implies \int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$
$$f(x) \ge 0 \text{ on } [a, b] \implies \int_{a}^{b} f(x) dx \ge 0$$

Zero Width Interval: $\int_{a}^{a} f(x) dx = 0$

Constant Multiple: (k = 2) $\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$

Sum: (areas add)

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Additive for definite integrals:

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Max-Min Inequality:

$$\min f \cdot (b-a) \le \int_{a}^{b} f(x) dx \le \max f \cdot (b-a)$$

Domination

$$\min f \cdot (b-a) \le \int_{a}^{b} f(x) dx \le \max f \cdot (b-a) \qquad f(x) \ge g(x) \text{ on } [a,b] \Rightarrow \int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

Example

Suppose that
$$\int_{-1}^{1} f(x) dx = 5$$
, $\int_{1}^{4} f(x) dx = -2$, $\int_{-1}^{1} h(x) dx = 7$. Find:

$$a) \int_{4}^{1} f(x) dx$$

b)
$$\int_{-1}^{1} [2f(x) + 3h(x)] dx$$

Solution

a)
$$\int_{4}^{1} f(x)dx = -\int_{1}^{4} f(x)dx = -(-2) = \underline{2}$$

b)
$$\int_{-1}^{1} \left[2f(x) + 3h(x) \right] dx = 2 \int_{-1}^{1} f(x) dx + 3 \int_{-1}^{1} h(x) dx$$
$$= 2(5) + 3(7)$$
$$= 31$$

Example

Show that the value of $\int_0^1 \sqrt{1 + \cos x} dx$ is less than or equal to $\sqrt{2}$

Solution

min $f \cdot (b-a)$: is the lower bound

 $\max f \cdot (b-a)$: is the upper bound

The maximum value of $\sqrt{1+\cos x}$ on [0, 1] is $\sqrt{1+1} = \sqrt{2}$

So,
$$\int_{0}^{1} \sqrt{1 + \cos x} dx \le \sqrt{2} \cdot (1 - 0) = \sqrt{2}$$

Area Under the Graph of a Nonnegative Function

Definition

If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the area under the curve y = f(x) over [a, b] is the integral of f from a to b,

$$A = \int_{a}^{b} f(x) dx$$

Example

Compute $\int_0^b x dx$ and find the area A under y = x over the interval [0, b], b > 0.

Solution

To Compute the definite integral, we consider the partition *P* subdivides the interval [0, *b*] into *n* subintervals of equal width $\Delta x = \frac{b-0}{n} = \frac{b}{n}$.

$$P = \left\{0, \ \frac{b}{n}, \ \frac{2b}{n}, \ \frac{3b}{n}, \ \dots, \ \frac{nb}{n}\right\} \quad and \quad c_k = \frac{kb}{n}$$

$$\sum_{k=1}^{n} f(c_k) \Delta x = \sum_{k=1}^{n} \frac{kb}{n} \cdot \frac{b}{n}$$

$$= \sum_{k=1}^{n} \frac{kb^2}{n^2}$$

$$= \frac{b^2}{n^2} \sum_{k=1}^{n} k$$

$$= \frac{b^2}{n^2} \cdot \frac{n(n+1)}{2}$$

$$= \frac{b^2}{2} \left(1 + \frac{1}{n}\right)$$

$$\lim_{n \to \infty} \left[\frac{b^2}{2} \left(1 + \frac{1}{n} \right) \right] = \frac{b^2}{2}$$

$$\int_0^b x dx = \frac{b^2}{2}$$

$$A = \int_0^b x dx = \frac{b^2}{2}$$

$$\int_{a}^{b} x dx = \int_{a}^{0} x dx + \int_{0}^{b} x dx$$
$$= -\int_{0}^{a} x dx + \int_{0}^{b} x dx$$

$$= -\frac{a^2}{2} + \frac{b^2}{2}$$

$$\int_{a}^{b} x dx = \frac{b^2}{2} - \frac{a^2}{2} \qquad a < b$$

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3} \qquad a < b$$