# Chapter 1 Simple Linear Regression (part 4)

# 1 Analysis of Variance (ANOVA) approach to regression analysis

Recall the model again

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, ..., n$$

The observations can be written as

| obs | Y     | X     |  |
|-----|-------|-------|--|
| 1   | $Y_1$ | $X_1$ |  |
| 2   | $Y_2$ | $X_2$ |  |
| :   | :     | :     |  |
| n   | $Y_n$ | $X_n$ |  |

The deviation of each  $Y_i$  from the mean  $\bar{Y}$ ,

$$Y_i - \bar{Y}$$

The fitted  $\hat{Y}_i = b_0 + b_1 X_i, i = 1, ..., n$  are from the regression and determined by  $X_i$ . Their mean is

$$\bar{\hat{Y}} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \bar{Y}$$

Thus the deviation of  $\hat{Y}_i$  from its mean is

$$\hat{Y}_i - \bar{Y}$$

The residuals  $e_i = Y_i - \hat{Y}_i$ , with mean is

$$\bar{e} = 0$$
 (why?)

Thus the deviation of  $e_i$  from its mean is

$$e_i = Y_i - \hat{Y}_i$$

Write

$$\underbrace{Y_i - \bar{Y}}_{\text{Total deviation}} = \underbrace{\hat{Y}_i - \bar{Y}}_{\text{Deviation}} + \underbrace{e_i}_{\text{Deviation}}$$

$$\underbrace{\text{Deviation}}_{\text{due the regression}} + \underbrace{e_i}_{\text{Deviation}}$$

| obs     | deviation of                       | deviation of                             | deviation of            |
|---------|------------------------------------|------------------------------------------|-------------------------|
|         | $Y_i$                              | $\hat{Y}_i = b_0 + b_1 X_i$              | $e_i = Y_i - \hat{Y}_i$ |
| 1       | $Y_1 - \bar{Y}$                    | $\hat{Y}_1 - \bar{Y}$                    | $e_1 - \bar{e} = e_1$   |
| 2       | $Y_2 - \bar{Y}$                    | $\hat{Y}_2 - \bar{Y}$                    | $e_2 - \bar{e} = e_2$   |
| :       | :                                  | :                                        | :                       |
| n       | $Y_n - \bar{Y}$                    | $\hat{Y}_n - \bar{Y}$                    | $e_n - \bar{e} = e_n$   |
| Sum of  | $\sum_{i=1}^{n} (Y_i - \bar{Y})^2$ | $\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$ | $\sum_{i=1}^{n} e_i^2$  |
| squares | Total Sum                          | Sum of                                   | Sum of                  |
|         | of squares                         | squares due to                           | squares of              |
|         |                                    | regression                               | error/residuals         |
|         | (SST)                              | (SSR)                                    | (SSE)                   |

We have

$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{SST}} = \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{SSR}} + \underbrace{\sum_{i=1}^{n} e_i^2}_{\text{SSE}}$$

Proof:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y} + Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^{n} \{ (\hat{Y}_i - \bar{Y})^2 + (Y_i - \hat{Y}_i)^2 + 2(\hat{Y}_i - \bar{Y})(Y_i - \hat{Y}_i) \}$$

$$= SSR + SSE + 2 \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})(Y_i - \hat{Y}_i)$$

$$= SSR + SSE + 2 \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})e_i$$

$$= SSR + SSE + 2 \sum_{i=1}^{n} (b_0 + b_1 X_i - \bar{Y})e_i$$

$$= SSR + SSE + 2b_0 \sum_{i=1}^{n} e_i + 2b_1 \sum_{i=1}^{n} X_i e_i - 2\bar{Y} \sum_{i=1}^{n} e_i$$

$$= SSR + SSE$$

It is also easy to check

$$SSR = \sum_{i=1}^{n} (b_0 + b_1 X_i - b_0 - b_1 \bar{X})^2 = b_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$
 (1)

#### Breakdown of the degree of freedom

The degrees of freedom for SST is n-1: noticing that

$$Y_1 - \bar{Y}, ...., Y_n - \bar{Y}$$

have one constraint  $\sum_{i=1}^{n} (Y_i - \bar{Y}) = 0$ 

The degrees of freedom for SSR is 1: noticing that

$$\hat{Y}_i = b_0 + b_1 X_i$$

(see Figure 1)



Figure 1: A figure shows the degree of freedom

The degrees of freedom for SSE is n-2: noticing that

$$e_1, ..., e_n$$

have TWO constraints  $\sum_{i=1}^{n} e_i = 0$  and  $\sum_{i=1}^{n} X_i e_i = 0$  (i.e., the normal equation). Mean (of) Squares

$$MSR = SSR/1$$
 called **regression mean square**  $MSE = SSE/(n-2)$  called **error mean square**

Analysis of variance (ANOVA) table Based on the break-down, we write it as a table

| Source of  |                                                |     |    |                         |         |
|------------|------------------------------------------------|-----|----|-------------------------|---------|
| variation  | $\mathbf{SS}$                                  | df  | MS | F-value                 | P(>F)   |
| Regression | $SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$ |     |    | $F^* = \frac{MSR}{MSE}$ | p-value |
| Error      | $SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$     |     |    |                         |         |
| Total      | $SST = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$ | n-1 |    |                         |         |

#### R command for the calculation

where "object" is the output of a regression.

#### **Expected Mean Squares**

$$E(MSE) = \sigma^2$$

and

$$E(MSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

[Proof: the first equation was proved (where?). By (1), we have

$$E(MSR) = E(b_1)^2 \sum_{i=1}^n (X_i - \bar{X})^2 = [Var(b_1) + (Eb_1)^2] \sum_{i=1}^n (X_i - \bar{X})^2$$
$$= \left[ \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2} + \beta_1^2 \right] \sum_{i=1}^n (X_i - \bar{X})^2 = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \bar{X})^2$$

1

## **2** F-test of $H_0: \beta_1 = 0$

Consider the hypothesis test

$$H_0: \beta_1 = 0, \quad H_a: \beta_1 \neq 0.$$

Note that  $\hat{Y}_i = b_0 + b_1 X_i$  and

$$SSR = b_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

If  $b_1 = 0$  then SSR = 0 (why). Thus we can test  $\beta_1 = 0$  based on SSR. i.e. under  $H_0$ , SSR or MSR should be "small".

We consider the F-statistic

$$F = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/(n-2)}.$$

Under  $H_0$ ,

$$F \sim F(1, n-2)$$

For a given significant level  $\alpha$ , our criterion is

If 
$$F^* \leq F(1-\alpha, 1, n-2)$$
 (i.e. indeed small), accept  $H_0$   
If  $F^* > F(1-\alpha, 1, n-2)$  (i.e. not small), reject  $H_0$ 

where  $F(1-\alpha,1,n-2)$  is the  $(1-\alpha)$  quantile of the F distribution.

We can also do the test based on the p-value =  $P(F > F^*)$ ,

If p-value 
$$\geq \alpha$$
, accept  $H_0$   
If p-value  $< \alpha$ , reject  $H_0$ 

**Example 2.1** For the example above (with n = 25, in part 3), we fit a model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

(By (R code)), we have the following output

Analysis of Variance Table

| Response: | Y  |        |         |         |           |     |
|-----------|----|--------|---------|---------|-----------|-----|
|           | Df | Sum Sq | Mean Sq | F value | Pr(>F)    |     |
| X         | 1  | 252378 | 252378  | 105.88  | 4.449e-10 | *** |
| Residuals | 23 | 54825  | 2384    |         |           |     |

Suppose we need to test  $H_0: \beta_1 = 0$  with significant level 0.01, based on the calculation, the p-value is  $4.449 \times 10^{-10} < 0.01$ , we should reject  $H_0$ .

Equivalence of F-test and t-test We have two methods to test  $H_0: \beta_1 = 0$  versus  $H_1: \beta_1 \neq 0$ . Recall  $SSR = b_1^2 \sum_{i=1}^n (X_i - \bar{X})^2$ . Thus

$$F^* = \frac{SSR/1}{SSE/(n-2)} = \frac{b_1^2 \sum_{i=1}^n (X_i - \bar{X})^2}{MSE}$$

But since  $s^2(b_1) = MSE / \sum_{i=1}^n (X_i - \bar{X})^2$  (where?), we have under  $H_0$ ,

$$F^* = \frac{b_1^2}{s^2(b_1)} = \left(\frac{b_1}{s(b_1)}\right)^2 = (t^*)^2.$$

Thus

$$F^* > F(1 - \alpha, 1, n - 2) \iff (t^*)^2 > (t(1 - \alpha/2, n - 2))^2 \iff |t^*| > t(1 - \alpha/2, n - 2).$$

and

$$F^* \le F(1-\alpha, 1, n-2) \iff (t^*)^2 \le (t(1-\alpha/2, n-2))^2 \iff |t^*| \le t(1-\alpha/2, n-2).$$

(you can check in the statistical table  $F(1-\alpha,1,n-2)=(t(1-\alpha/2,n-2))^2$ ) Therefore, the test results based on F and t statistics are the same. (But ONLY for simple linear regression model)

### 3 General linear test approach

To test whether  $H_0: \beta_1 = 0$ , we can do it by comparing two models

Full model: 
$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

and

Reduced model: 
$$Y_i = \beta_0 + \varepsilon_i$$

Denote the SSR of the FULL and REDUCED models by SSR(F) and SSR(R) respectively (and SSE(R), SSR(F)). We have immediately

$$SSR(F) \ge SSR(R)$$

or

$$SSE(F) \leq SSE(R)$$
.

A question: when does the equality hold?

Note that if  $H_0: \beta_1 = 0$  holds, then

$$\frac{SSE(R) - SSE(F)}{SSE(F)}$$
 should be small

Considering the degree of freedoms, define

$$F = \frac{(SSE(R) - SSE(F))/(df_R - df_F)}{SSE(F)/df_F}$$
 should be small

where  $df_R$  and  $df_F$  indicate the degrees of freedom of SSE(R) and SSE(F) respectively. Under  $H_0: \beta_1 = 0$ , it is proved that

$$F \sim F(df_R - df_F, df_F)$$

Suppose we get the F value as  $F^*$ , then

If 
$$F^* \leq F(1 - \alpha, df_R - df_F, df_F)$$
, accept  $H_0$   
If  $F^* > F(1 - \alpha, df_R - df_F, df_F)$ , reject  $H_0$ 

Similarly, based on the p-value  $= P(F > F^*),$ 

If p-value 
$$\geq \alpha$$
, accept  $H_0$   
If p-value  $< \alpha$ , reject  $H_0$ 

# 4 Descriptive measures of linear association between X and Y

It follows from

$$SST = SSR + SSE$$

that

$$1 = \frac{SSR}{SST} + \frac{SSE}{SST}$$

where

- $\frac{SSR}{SST}$  is the proportion of Total sum of squares that can be explained/predicted by the predictor X
- $\bullet$   $\frac{SSE}{SST}$  is the proportion of Total sum of squares that caused by the random effect.

A "good" model should have large

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

 $R^2$  is called R-square, or coefficient of determination

Some facts about  $\mathbb{R}^2$  for simple linear regression model

- 1.  $0 \le R^2 \le 1$ .
- 2. if  $R^2 = 0$ , then  $b_1 = 0$  (because  $SSR = b_1^2 \sum_{i=1}^n (X_i \bar{X})^2$ )
- 3. if  $R^2 = 1$ , then  $Y_i = b_0 + b_1 X_i$  (why?)
- 4. the correlation coefficient between

$$r_{X,Y} = \pm \sqrt{R^2}$$

[Proof:

$$R^{2} = \frac{SSR}{SST} = \frac{b_{1}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = r_{XY}^{2}$$

- 5.  $R^2$  only indicates the fitness in the observed range/scope. We need to be careful if we make prediction outside the range.
- 6.  $\mathbb{R}^2$  only indicates the "linear relationships".  $\mathbb{R}^2 = 0$  does not mean X and Y have no nonlinear association.

# 5 Considerations in Applying regression analysis

- 1. In prediction a new case, we need to ensure the model is applicable to the new case.
- 2. Sometimes we need to predict X, and thus predict Y. As a consequence, the prediction accuracy also depends on the prediction of X
- 3. The range of X for the model. If a new case X is far from the range, in the prediction, we need be careful
- 4.  $\beta_1 \neq 0$  only indicates the correlation relationship, but not a cause-and-effect relation (causality).
- 5. Even if  $\beta_1 = 0$  can be concluded, we cannot say Y has no relationship/association with X. We can only say there is no LINEAR relationship/association between X and Y.

### 6 Write an estimated model

$$\hat{Y} = b_0 + b_1 X$$
(S.E.)  $(s(b_0))$   $(s(b_1))$ 

$$\hat{\sigma}^2(\text{or MSE}) = ..., \quad R^2 = ...,$$
F-statistic = ... (and others)

Other formats of writing a fitted model can be found in Part 3 of the lecture notes.