# EE5907/EE5027 Week 4: Logistic Regression

**BT Thomas Yeo** 

ECE, CIRC, Sinapse, Duke-NUS, HMS

# Last Week Recap

- Univariate Gaussian
  - ML, MAP, posterior predictive
- Naïve Bayes Classifier
  - Generative classifier:  $p(x, y \mid \theta) = p(y \mid \lambda)p(x \mid y, \eta)$
  - Features are independent given class labels
  - ML, MAP or posterior predictive strategies for estimating model parameters and classifying new test sample

#### This Week

- Discriminative Classifier
  - Logistic regression
- Basic optimization techniques

# Logistic Regression

# Logistic Regression Model

- Features x and label y:
  - Generative classifier: build joint model p(x,y) = p(y)p(x|y), estimate parameters of joint model from training data, then compute p(y|x)
  - Discriminative classifier: build model p(y|x), estimate parameters of model from data, then compute p(y|x)
- Logistic regression
  - Despite name, it's a discriminative classifier
  - Binary case:  $p(y|x, w) = Ber(y|\mu(x, w)) = Ber(y|sigm(w^Tx))$



# Logistic Regression Advantages

- Easy to train
- Easy to interpret:

$$p(y=1|x) = \frac{1}{1+e^{-w^T x}}$$

$$p(y=0|x) = 1 - \frac{1}{1+e^{-w^T x}} = \frac{e^{-w^T x}}{1+e^{-w^T x}} = \frac{1}{1+e^{w^T x}}$$

- $-\log \frac{p(y=1|x)}{p(y=0|x)} = w^T x \quad \leftarrow \log \text{ odds}$
- Suppose x(1) is # cigarettes per day, x(2) is minutes of exercise, y = cancer,  $w = (1.3, -1.1) \implies$  for every extra cigarette, cancer risk increases by factor of  $e^{1.3}$
- Easy to extend to multi-class (covered in hidden slides)
- Easy to be nonlinear by using kernels (not covered)

# Training Logistic Regression Model

# Estimating Logistic Regression Parameters & Classifying New Samples

- Given training set  $\{x_{1:N}, y_{1:N}\}$ , where  $x_{1:N}$  are feature vectors of N training samples and  $y_{1:N}$  are corresponding class labels
- Already specify discriminative model  $p(y \mid x, w)$
- First estimate  $\widehat{w} = \operatorname{argmax}_{w} p(y_{1:N} \mid x_{1:N}, w)$ 
  - We did not specify joint distribution p(x, y) in our modeling, so we cannot do something like last week (naïve Bayes):  $\theta_{ML}$  = argmax<sub>θ</sub> p(x<sub>1:N</sub>, y<sub>1:N</sub> |  $\theta$ ) or  $\theta_{MAP}$  = argmax<sub>θ</sub> p( $\theta$  | x<sub>1:N</sub>, y<sub>1:N</sub>)
- To predict label  $\tilde{y}$  of test data  $\tilde{x}$ , plug  $\hat{w}$  into posterior  $p(\tilde{y}=c\mid \tilde{x},\hat{w})$  and pick class c with highest posterior probability

# Minimizing Negative Log Likelihood

$$\begin{split} \hat{w} &= \operatorname*{argmax} p(y_{1:N}|x_{1:N}, w) \\ &= \operatorname*{argmax} \log p(y_{1:N}|x_{1:N}, w) \\ &= \operatorname*{argmax} \log \prod_{w}^{N} p(y_{i}|x_{i}, w) \\ &= \operatorname*{argmax} \sum_{i=1}^{N} \log p(y_{i}|x_{i}, w) \\ &= \operatorname*{argmax} \sum_{i=1}^{N} \log p(y_{i}|x_{i}, w) \\ &= \operatorname*{argmax} \sum_{i=1}^{N} \log p(y_{i}|x_{i}, w) \\ &= \operatorname*{argmin} - \sum_{i=1}^{N} \log p(y_{i}|x_{i}, w) \stackrel{\triangle}{=} \operatorname*{argmin} NLL(w) \end{split}$$

- NLL(w) stands for negative log likelihood.
- There is no real advantage to minimizing versus maximizing, but I am following book's convention

# **Expanding Negative Log Likelihood**

• Negative log likelihood:

$$\log p(y_i = 1|x_i, w) = \log \frac{1}{1 + \exp(-w^T x_i)} = \log \mu_i$$

$$\log p(y_i = 0|x_i, w) = \log(1 - p(y_i = 1|x_i, w)) \neq \log(1 - \mu_i)$$

$$NLL(w) = -\sum_{i=1}^{N} \log p(y_i|x_i, w) = -\sum_{i=1}^{N} [y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)]$$

- When  $y_i = 1$ , first term =  $\log \mu_i$ , while  $(1 y_i) = 0$ , so second term = 0
- When  $y_i = 0$ , first term = 0, while  $(1 y_i) = 1$ , so second term =  $\log(1 \mu_i)$

#### **Gradient & Hessian**

• From previous slide:

$$\log p(y_i = 1 | x_i, w) = \log \frac{1}{1 + \exp(-w^T x_i)} = \log \mu_i$$

$$\log p(y_i = 0 | x_i, w) = \log(1 - p(y_i = 1 | x_i, w)) = \log(1 - \mu_i)$$

$$NLL(w) = -\sum_{I=1}^{N} \log p(y_i | x_i, w) = -\sum_{I=1}^{N} \left[ y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \right]$$

• Derivatives (see non-graded assignment)

$$g = \frac{d}{dw} NLL(w) = \sum_{i=1}^{N} (\mu_i - y_i) x_i = X^T(\mu - y)$$
 D x 1 D x N N x 1 N x 1

 $-g = D \times 1$  vector,  $X^T = [x_1, \dots, x_N]$   $(D \times N \text{ matrix}), \mu, y \text{ are } N \times 1$  column vectors obtained by concatenating  $\mu_i$  and  $y_i$ 

#### **Gradient & Hessian**

• From previous slide:

$$\log p(y_i = 1 | x_i, w) = \log \frac{1}{1 + \exp(-w^T x_i)} = \log \mu_i$$

$$\log p(y_i = 0 | x_i, w) = \log(1 - p(y_i = 1 | x_i, w)) = \log(1 - \mu_i)$$

$$NLL(w) = -\sum_{I=1}^{N} \log p(y_i | x_i, w) = -\sum_{I=1}^{N} \left[ y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \right]$$

• Derivatives (see non-graded assignment)

$$g = \frac{d}{dw}NLL(w) = \sum_{i=1}^N (\mu_i - y_i)x_i = X^T(\mu - y)$$
 
$$H = \frac{d}{dw}g(w)^T = \sum_{i=1}^N \mu_i(1 - \mu_i)x_ix_i^T = X^TSX,$$
 D x D D x N N x N N x D

- $-g = D \times 1$  vector,  $X^T = [x_1, \dots, x_N]$   $(D \times N \text{ matrix}), \mu, y \text{ are } N \times 1$  column vectors obtained by concatenating  $\mu_i$  and  $y_i$
- $-H = D \times D$  matrix,  $S = N \times N$  diagonal matrix (zeros except for diagonals), where *i*-th diagonal is  $\mu_i(1 \mu_i)$

# Interlude: Convexity & Global Minimum



Χ

2<sup>nd</sup> derivative NOT positive everywhere => not convex => local minimum (e.g., red star) might not be global minimum

- In higher dimensions,
   "positive 2<sup>nd</sup> derivative"
   condition becomes
   "positive-definite Hessian"
- Definition: D x D matrix H
  is positive definite if for all
  D x 1 vector z (which are
  not zero vectors), z<sup>T</sup>Hz > 0

- (See non-graded assignment): In logistic regression, H(w) is positive definite for all w, hence NLL(w) is convex => unique global minimum
- There is no-closed form solution, so we need to do some numerical optimization
- Convexity is nice because numerical optimization can only give us local optimum, so with convexity, local optimum = global optimum

Interlude: Numerical Optimization

- Goal:  $\operatorname{argmin}_{\theta} f(\theta)$
- Gradient descent
  - Initialize  $\theta = \theta_0$
  - $-\theta_{k+1} = \theta_k + \eta_k d$  where  $\eta_k > 0$  (called step size or learning rate) & d = descent direction
- Steepest descent if  $d = -\nabla f(\theta_k)$ 
  - $-\nabla f(\theta_k) \neq 0 \implies \text{there exist } \eta_k \text{ such that } f(\theta_{k+1}) < f(\theta_k)$



Small fixed η: convergence very slow (gradients are perpendicular to level sets)



Big fixed η: might not converge (gradients are perpendicular to level sets)

- Goal:  $\operatorname{argmin}_{\theta} f(\theta)$
- Gradient descent
  - Initialize  $\theta = \theta_0$
  - $-\theta_{k+1} = \theta_k + \eta_k d$  where  $\eta_k > 0$  (called step size or learning rate) & d = descent direction
- Steepest descent if  $d = -\nabla f(\theta_k)$ 
  - $-\nabla f(\theta_k) \neq 0 \implies \text{there exist } \eta_k \text{ such that } f(\theta_{k+1}) < f(\theta_k)$
  - Find best  $\eta$  by line search:  $\hat{\eta} = \operatorname{argmin}_{\eta} f(\theta_k + \eta d)$  (http://numerical.recipes/)
  - Line search leads to zig-zag through parameter space



- Goal:  $\operatorname{argmin}_{\theta} f(\theta)$
- Gradient descent
  - Initialize  $\theta = \theta_0$
  - $-\theta_{k+1} = \theta_k + \eta_k d$  where  $\eta_k > 0$  (called step size or learning rate) & d = descent direction
- Steepest descent if  $d = -\nabla f(\theta_k)$ 
  - $-\nabla f(\theta_k) \neq 0 \implies \text{there exist } \eta_k \text{ such that } f(\theta_{k+1}) < f(\theta_k)$
  - Find best  $\eta$  by line search:  $\hat{\eta} = \operatorname{argmin}_{\eta} f(\theta_k + \eta d)$  (http://numerical.recipes/)
  - Line search leads to zig-zag through parameter space

\* Let 
$$\phi(\eta) = f(\theta_k + \eta d) \implies \phi'(n) = d^T \nabla f(\theta_k + \eta d)$$

\* 
$$\phi'(\hat{n}) = 0 \implies \nabla f = 0 \text{ (local minimum) or } d \perp \nabla f(\theta_k + \hat{\eta}d)$$

best  $\eta$ 

descent direction in current iteration

negative of descent direction at next iteration

- Goal:  $\operatorname{argmin}_{\theta} f(\theta)$
- Gradient descent
  - Initialize  $\theta = \theta_0$
  - $-\theta_{k+1} = \theta_k + \eta_k d$  where  $\eta_k > 0$  (called step size or learning rate) & d = descent direction
- Steepest descent if  $d = -\nabla f(\theta_k)$ 
  - $-\nabla f(\theta_k) \neq 0 \implies \text{there exist } \eta_k \text{ such that } f(\theta_{k+1}) < f(\theta_k)$
  - Find best  $\eta$  by line search:  $\hat{\eta} = \operatorname{argmin}_{\eta} f(\theta_k + \eta d)$  (http://numerical.recipes/)
  - Line search leads to zig-zag through parameter space
    - \* Let  $\phi(\eta) = f(\theta_k + \eta d) \implies \phi'(n) = d^T \nabla f(\theta_k + \eta d)$
    - \*  $\phi'(\hat{n}) = 0 \implies \nabla f = 0 \text{ (local minimum) or } d \perp \nabla f(\theta_k + \hat{\eta}d)$
- Momentum:  $\theta_{k+1} = \theta_k \eta_k \nabla f(\theta_k) + \mu_k (\theta_k \theta_{k-1})$ , where  $0 \le \mu_k \le 1$
- Conjugate gradient (see http://numerical.recipes/)
  - Great for quadratic objectives  $\theta^T A \theta$  or linear system  $A \theta = b$ : converge in D iterations (where D is dimension of  $\theta$ )

#### Newton's Method

- Taylor expansion:  $f(\theta_k + d_k) \approx f_{quad} = f(\theta_k) + d_k^T \nabla f + \frac{1}{2} d_k^T H d_k$ 
  - First  $(\nabla f)$  and second (H) derivatives evaluated at  $\theta_k$
- Differentiate  $f_{quad}$  with respect to  $d_k$

$$\nabla f + H d_k = 0 \implies d_k = -H^{-1} \nabla f$$

-  $f_{quad}$  minimum for  $d_k = -H^{-1}\nabla f$  (assuming H positive definite)







#### Newton's Method

- Newton's update:  $\theta_{k+1} = \theta_k + \eta_k d_k$ , where  $H_k d_k = -\nabla f_k$
- H has to be positive definite, else  $d_k$  may not decrease cost function
  - To see this:  $\langle -\nabla f, -H^{-1}\nabla f \rangle > 0$  if H positive definite  $\Longrightarrow -H^{-1}\nabla f$  within 90 degrees direction of steepest descent direction, so will definitely decrease f for small  $\eta$
  - If Hessian not positive definite, can use Levenberg-Marquardt in the case of nonlinear least squares (wikipedia has easy explanation)

#### **Algorithm 8.1:** Newton's method for minimizing a strictly convex function

```
Initialize \theta_0;

Initialize
```

# Optimizing Logistic Regression Parameters + Need For a Bias Term

# Quick Interlude: Why we need bias term?

- In practice,  $p(y = 1 \mid x, w) = sigm(w_0 + w^T x)$
- Without bias term  $w_0$ , if all features (x) = 0, then  $p(y = 1 \mid x = \vec{0}, w)$ =  $sigm(w^T x) = sigm(w^T \vec{0}) = 0.5$
- This means that decision boundary (locations where there are equal posterior probability of two classes) must past through origin



# Newton's Method for Logistic Regression

• Previous slides:

$$g = \frac{d}{dw} NLL(w) = X^{T}(\mu - y)$$
$$H = \frac{d}{dw} g(w)^{T} = X^{T} SX,$$

- $-g = D \times 1$  vector,  $X^T = [x_1, \dots, x_N]$   $(D \times N \text{ matrix}), \mu, y \text{ are } N \times 1$  column vectors obtained by concatenating  $\mu_i$  and  $y_i$
- $-H = D \times D$  matrix,  $S = N \times N$  diagonal matrix (zeros except for diagonals), where *i*-th diagonal is  $\mu_i(1 \mu_i)$
- To introduce bias term, concatenate 1 to start of  $x_i$ , so length of feature vector is D + 1. Let's denote new feature vector  $\mathbf{x}_i$ 
  - Still model  $p(y_i = 1 | x_i, \mathbf{w}) = \text{sigm}(\mathbf{w}^T \mathbf{x}_i)$ , so now  $\mathbf{w}$  is  $(D+1) \times 1$  vector, whose first element is now bias term
  - Above g and H can be computed, replacing  $x_i$  with  $\mathbf{x}_i$ , w with  $\mathbf{w}$
  - Initialize by  $w = \vec{0}_{D+1}$
  - Repeat until convergence:  $\mathbf{w}_{k+1} = \mathbf{w}_k H_k^{-1} g_k$  (no need for line search in assignment)

# One More Modification: Regularization (Regularizations are additional constraints to reduce overfitting)

### Why do we need regularization?

• In general, NLL(w) =  $-\sum_{i=1}^N \log p(y_i|x_i,w) \ge 0$  because  $0 \le p(y_i|x_i,w) \le 1$ 

• When data is linearly separable, ||w|| becomes infinity, resulting in infinitely steep sigmoid, i.e., overfitting NLL(w) = 0, because  $p(y \mid x, w) = 0$ 

1 for all data, so this is global optimum (achieved when  $|w| = \infty$ )  $p(y = 1 \mid x, w)$ NLL(w) = some positive number because  $p(y \mid x, w)$  strictly less than 1 for all data Feature x Class 0 Class 1 Super confident Super confident this is class 0 this is class 1

# $l_2$ Regularization

•  $l_2$  regularization prevents w from exploding

$$-NLL_{reg}(\mathbf{w}) = NLL(\mathbf{w}) + \frac{1}{2}\lambda\mathbf{w}^T\mathbf{w}$$

- If w is big, then  $\frac{1}{2}\lambda \mathbf{w}^T \mathbf{w}$  is big, so  $NLL_{reg}(\mathbf{w})$  is big. Since we are minimizing  $NLL_{reg}(\mathbf{w})$ , this means big w is discouraged
- New gradient and hessian:

$$g_{reg}(\mathbf{w}) = g(\mathbf{w}) + \lambda \mathbf{w}$$
  
 $H_{reg}(\mathbf{w}) = H(\mathbf{w}) + \lambda I,$ 

where I is a  $(D+1) \times (D+1)$  identity matrix

# But we do not want to regularize bias term

- Another wrinkle: we don't want to regularize bias term  $w_0$ 
  - Suppose features are 2-dimensional:  $x_1$  and  $x_2$
  - Decision boundary corresponds to  $sigm(w_0 + w_1x_1 + w_2x_2) = 0.5 \implies w_0 + w_1x_1 + w_2x_2 = 0 \implies x_2 = -\frac{w_1}{w_2}x_1 \frac{w_0}{w_2}$
  - If we put  $l_2$  regularization on  $w_0$  means we encourage decision boundary to pass close to origin



# But we do not want to regularize bias term

- Another wrinkle: we don't want to regularize bias term  $w_0$ 
  - Suppose features are 2-dimensional:  $x_1$  and  $x_2$
  - Decision boundary corresponds to  $sigm(w_0 + w_1x_1 + w_2x_2) = 0.5 \implies w_0 + w_1x_1 + w_2x_2 = 0 \implies x_2 = -\frac{w_1}{w_2}x_1 \frac{w_0}{w_2}$
  - If we put  $l_2$  regularization on  $w_0$  means we encourage decision boundary to pass close to origin



# Exclude Bias from $l_2$ Regularization

• Exclude  $w_0$  from regularization:

$$-NLL_{reg}(\mathbf{w}) = NLL(\mathbf{w}) + \frac{1}{2}\lambda w^T w$$

-  $\mathbf{w}$  is  $(D+1) \times 1$  vector, while w is  $D \times 1$  vector ( $\mathbf{w}$  without the first element)

$$g_{reg}(\mathbf{w}) = g(\mathbf{w}) + \lambda \begin{pmatrix} 0_{1\times 1} \\ w_{D\times 1} \end{pmatrix}$$
 
$$H_{reg}(\mathbf{w}) = H(\mathbf{w}) + \lambda \begin{pmatrix} 0_{1\times 1} & \cdots \\ \vdots & I_{D\times D} \end{pmatrix}$$
 row is all zero column is all zero

# Summary

- Discriminative Classifier p(y | x, w): Logistic Regression
- Numerical optimization
  - Gradient descent
  - Newton's method
  - Hessian positive definite everywhere => cost function convex => unique global minimum and every local minimum is global minimum
- Logistic regression
  - NLL is convex optimize with Newton's method
  - Bias term
  - Regularization

# **Optional Reading**

- Notes based on
  - KM Chapter 8.1, 8.3, 8.3 (beware of typos)