# Analyzing the A/B test results

CUSTOMER ANALYTICS & A/B TESTING IN PYTHON



Ryan Grossman

Data Scientist, EDO



### **Analyzing A/B Test Results**





### **Evaluating our Test**



### **Test Results**

```
test_demographics = pd.read_csv('test_demographics.csv`)

test_results = pd.read_csv('ab_test_results.csv')

test_results.date = pd.to_datetime(test_results.date)

test_results.head(n=5)
```

| ı | uid        | date       | purchase |   | sku | price | group |
|---|------------|------------|----------|---|-----|-------|-------|
| ı | 90554036.0 | 2018-02-27 | 14:22:12 | 0 | NaN | NaN   | С     |
| ı | 90554036.0 | 2018-02-28 | 08:58:13 | 0 | NaN | NaN   | С     |
| ı | 90554036.0 | 2018-03-01 | 09:21:18 | 0 | NaN | NaN   | С     |
| ı | 90554036.0 | 2018-03-02 | 10:14:30 | 0 | NaN | NaN   | С     |
|   | 90554036.0 | 2018-03-03 | 13:29:45 | 0 | NaN | NaN   | С     |

### **Confirming Test Results**



### **Confirming Test Results**

```
group uid
0 C 48236
1 V 49867
```

### **Confirming Test Results**

| country | gender | device | group | uid  |
|---------|--------|--------|-------|------|
| BRA     | F      | and    | С     | 5070 |
| BRA     | F      | and    | V     | 4136 |
| BRA     | F      | iOS    | С     | 3359 |
| BRA     | F      | iOS    | ٧     | 2817 |
| BRA     | М      | and    | С     | 3562 |
| BRA     | М      | and    | ٧     | 3673 |
| BRA     | М      | iOS    | С     | 2940 |
| BRA     | М      | iOS    | ٧     | 3109 |
| CAN     | F      | and    | С     | 747  |
| CAN     | F      | and    | ٧     | 806  |
| CAN     | F      | iOS    | С     | 447  |

## Finding The Test & Control Group Conversion Rates

```
test_results_grpd = test_results_demo.groupby(by=['group'], as_index=False)
test_results_summary = test_results_grpd.agg({'purchase': ['count', 'sum']})
test_results_summary
```

```
group purchase
count sum
0 C 48236 1657
1 V 49867 2094
```

```
test_results_summary['conv'] = (test_results_summary.purchase['sum'] / test_results_summary.purchase['count'])
test_results_summary
```

```
group purchase conv
count sum
0 C 48236 1657 0.034351
1 V 49867 2094 0.041984
```





### p-Values

#### p-value:

- Probability under the Null Hypothesis of obtaining a result as or more extreme than the one observed.
- Represents a measure of the evidence against retaining the Null Hypothesis.

### Interpreting a p-Value

| p-value     | Conclusion                                       |
|-------------|--------------------------------------------------|
| < 0.01      | very strong evidence against the Null Hypothesis |
| 0.01 - 0.05 | strong evidence against the Null Hypothesis      |
| 0.05 - 0.10 | very weak evidence against the Null Hypothesis   |
| > 0.1       | small to no evidence against the Null Hypothesis |

### **Next Steps**



### Let's practice!

CUSTOMER ANALYTICS & A/B TESTING IN PYTHON



# Understanding statistical significance

CUSTOMER ANALYTICS & A/B TESTING IN PYTHON

**Ryan Grossman**Data Scientist, EDO





### Next Steps In Our Analysis



### Revisiting Statistical Significance



### p-value Function

```
def get_pvalue(con_conv, test_conv,con_size, test_size,):
    lift = - abs(test_conv - con_conv)
    scale_one = con_conv * (1 - con_conv) * (1 / con_size)
    scale_two = test_conv * (1 - test_conv) * (1 / test_size)
    scale_val = (scale_one + scale_two)**0.5

    p_value = 2 * stats.norm.cdf(lift, loc = 0, scale = scale_val )
    return p_value
```

### Calculating our p-value

```
con_conv = 0.034351
test_conv = 0.041984
con_size = 48236
test_size = 49867
p_value = get_pvalue(con_conv, test_conv, con_size, test_size)
p_value
```

4.2572974855869089e-10



### Finding the Test Power

get\_power(test\_size, con\_conv, test\_conv, 0.95)

0.99999259413722819





### **Confidence Intervals**

#### **Confidence Interval**

- Provides contextualization of the estimation process.
- The conversion rate is a fixed quantity, the estimation is what is variable.

### **Confidence Intervals**

#### **Two Sided Confidence Interval**

- $\mu \pm \Phi \left(\alpha + \frac{1-\alpha}{2}\right) * \sigma$
- $\mu$ : Estimated Mean
- $\sigma$ : Estimated Standard Deviation
- $\alpha$ : Desired Confidence Interval Width

### **Calculating Confidence Intervals**

```
def get_ci(lift, alpha, sd):
    val = abs(stats.norm.ppf((1 - alpha)/2))
    lwr_bnd = lift - val * sd
    upr_bnd = lift + val * sd
    return_val = (lwr_bnd, upr_bnd)
    return(return_val)
```

### **Calculating Confidence Intervals**

(0.0052371462948578272, 0.010028853705142175)

### **Next Steps**



### Let's practice!

CUSTOMER ANALYTICS & A/B TESTING IN PYTHON



# Interpreting your test results

CUSTOMER ANALYTICS & A/B TESTING IN PYTHON



Ryan Grossman

Data Scientist, EDO



### **Communicating Your Test Results**

|                 | Test Group       | Control Group |
|-----------------|------------------|---------------|
| Sample Size     | 7030             | 6970          |
| Run Time        | 2 Weeks          | 2 Weeks       |
| Mean            | 3.12             | 2.69          |
| Variance        | 3.20             | 2.64          |
| Estimated Lift: | 0.56 *           |               |
| Confidence Int  | ervel 0.56 ± 0.4 |               |

<sup>\*</sup> Significant at the 0.05 Level



### **Generating Histograms - Data**

test\_results\_rollup.head(n=10)

| uid        | group | purchase |
|------------|-------|----------|
| 11128497.0 | V     | 0.000000 |
| 11145206.0 | V     | 0.050000 |
| 11163353.0 | С     | 0.150000 |
| 11215368.0 | С     | 0.000000 |
| 11248473.0 | С     | 0.157895 |
| 11258429.0 | V     | 0.086957 |
| 11271484.0 | С     | 0.071429 |
| 11298958.0 | V     | 0.157895 |
| 11325422.0 | С     | 0.045455 |
| 11340821.0 | С     | 0.040000 |



### Generating Histograms - Code

```
variant_results_rollup = test_results_rollup[test_results_rollup.group == 'V']
control_results_rollup = test_results_rollup[test_results_rollup.group == 'C']
plt.hist(variant_results_rollup['purchase'], color = 'yellow', alpha = 0.8, bins =50, label = 'Test')
plt.hist(control_results_rollup['purchase'], color = 'blue', alpha = 0.8, bins = 50, label = 'Control')
plt.legend(loc='upper right')
plt.show()
```



### Adding Lines & Annotations

```
plt.axvline(x = np.mean(variant_results_rollup.purchase), color = 'red')
plt.axvline(x= np.mean(test_results_rollup.purchase), color = 'green')
plt.show()
```



### Plotting the Distribution

```
mean\_control = 0.090965
mean\_test = 0.102005
var_control = (mean_control * (1 - mean_control)) / 58583
var_test = (mean_test * (1 - mean_test)) / 56350
control_line = np.linspace(-3 * var_control**0.5 +
                mean_control, 3 * var_control**0.5 +
                mean_control, 100)
test_line = np.linspace(-3 * var_test**0.5 +
            mean_test, 3 * var_test**0.5
            + mean_test, 100)
```

### Plotting the Distribution



### Plotting the Difference of Distributions

```
lift = mean_test - mean_control
var = var_test + var_control
```

### Plotting the Difference of Distributions

```
diff_line = np.linspace(-3 * var**0.5 + lift, 3 * var**0.5 + lift, 100)
plt.plot(diff_line,mlab.normpdf(diff_line, lift, var**0.5))
plt.show()
```



### Plotting the Confidence Interval

```
section = np.arange(0.007624, 0.01445 , 1/10000)
plt.fill_between(section, mlab.normpdf(section, lift, var**0.5))
plt.plot(diff_line, mlab.normpdf(diff_line, lift, var**0.5))
plt.show()
```

### Plotting the Confidence Interval



### Let's practice!

CUSTOMER ANALYTICS & A/B TESTING IN PYTHON



### Finale

CUSTOMER ANALYTICS & A/B TESTING IN PYTHON



**Ryan Grossman**Data Scientist, EDO



### Let's practice!

CUSTOMER ANALYTICS & A/B TESTING IN PYTHON

