```
In [1]:
          1 import pandas as pd
           2 import numpy as np
          3 import matplotlib.pyplot as plt
          4 from lifelines import KaplanMeierFitter
In [2]:
          1 data = pd.read_csv("lung.csv")
           2 data.head()
Out[2]:
            Unnamed: 0 inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
                                                                             1175.0
          0
                     1
                        3.0
                             306
                                         74
                                                      1.0
                                                             90.0
                                                                      100.0
                                                                                      NaN
          1
                     2
                        3.0
                             455
                                         68
                                               1
                                                     0.0
                                                             90.0
                                                                      90.0
                                                                             1225.0
                                                                                      15.0
          2
                     3 3.0 1010
                                                             90.0
                                         56
                                                     0.0
                                                                      90.0
                                                                               NaN
                                                                                      15.0
          3
                                                             90.0
                        5.0
                             210
                                         57
                                                     1.0
                                                                      60.0
                                                                             1150.0
                                                                                      11.0
                     5 1.0
                             883
                                      2 60
                                                     0.0
                                                            100.0
                                                                       90.0
                                                                               NaN
                                                                                       0.0
In [3]:
          1 data.columns
Out[3]: Index(['Unnamed: 0', 'inst', 'time', 'status', 'age', 'sex', 'ph.ecog',
                 'ph.karno', 'pat.karno', 'meal.cal', 'wt.loss'],
               dtype='object')
In [ ]:
```

In [4]: 1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 228 entries, 0 to 227
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	228 non-null	int64
1	inst	227 non-null	float64
2	time	228 non-null	int64
3	status	228 non-null	int64
4	age	228 non-null	int64
5	sex	228 non-null	int64
6	ph.ecog	227 non-null	float64
7	ph.karno	227 non-null	float64
8	pat.karno	225 non-null	float64
9	meal.cal	181 non-null	float64
10	wt.loss	214 non-null	float64
		-> • • • ->	

dtypes: float64(6), int64(5)

memory usage: 19.7 KB

In [5]:

1 data.describe()

Out[5]:

	Unnamed: 0	inst	time	status	age	sex	ph.ecog	ph.karno	pat.karno	meal.cal	wt.
count	228.00000	227.000000	228.000000	228.000000	228.000000	228.000000	227.000000	227.000000	225.000000	181.000000	214.000
mean	114.50000	11.088106	305.232456	1.723684	62.447368	1.394737	0.951542	81.938326	79.955556	928.779006	9.83
std	65.96211	8.303491	210.645543	0.448159	9.073457	0.489870	0.717872	12.327955	14.623177	402.174707	13.139
min	1.00000	1.000000	5.000000	1.000000	39.000000	1.000000	0.000000	50.000000	30.000000	96.000000	-24.000
25%	57.75000	3.000000	166.750000	1.000000	56.000000	1.000000	0.000000	75.000000	70.000000	635.000000	0.000
50%	114.50000	11.000000	255.500000	2.000000	63.000000	1.000000	1.000000	80.000000	80.000000	975.000000	7.000
75%	171.25000	16.000000	396.500000	2.000000	69.000000	2.000000	1.000000	90.000000	90.000000	1150.000000	15.75(
max	228.00000	33.000000	1022.000000	2.000000	82.000000	2.000000	3.000000	100.000000	100.000000	2600.000000	68.000

```
1 kmf = KaplanMeierFitter()
 In [7]:
 In [8]:
            1 data.loc[data.status == 1 ,'dead'] = 0
            2 data.loc[data.status == 2 ,'dead'] = 1
 In [9]:
            1 data.head()
 Out[9]:
             Unnamed: 0 inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss dead
           0
                      1
                         3.0
                               306
                                           74
                                                        1.0
                                                                90.0
                                                                         100.0
                                                                                 1175.0
                                                                                          NaN
                                                                                                1.0
           1
                      2
                          3.0
                               455
                                            68
                                                 1
                                                        0.0
                                                                90.0
                                                                          90.0
                                                                                1225.0
                                                                                          15.0
                                                                                                 1.0
           2
                          3.0 1010
                                                                90.0
                                                        0.0
                                                                          90.0
                                                                                  NaN
                                                                                          15.0
                                                                                                 0.0
           3
                          5.0
                               210
                                           57
                                                        1.0
                                                                90.0
                                                                          60.0
                                                                                 1150.0
                                                                                          11.0
                                                                                                 1.0
                      5 1.0
                               883
                                           60
                                                        0.0
                                                               100.0
                                                                          90.0
                                                                                                1.0
                                                                                  NaN
                                                                                           0.0
In [10]:
            1 ##Fitting our data
            2 kmf.fit(durations = data["time"],event_observed = data["dead"])
```

Out[10]: difelines.KaplanMeierFitter: "KM_estimate", fitted with 228 total observations, 63 right-censored observations

In [11]:	<pre>1 kmf.event_table</pre>						
Out[11]:			removed	observed	censored	entrance	at_risk
	ever	nt_at					
		0.0	0	0	0	228	228
		5.0	1	1	0	0	228
		11.0	3	3	0	0	227
		12.0	1	1	0	0	224
		13.0	2	2	0	0	223
	8	40.0	1	0	1	0	5
	8	83.0	1	1	0	0	4
	9	65.0	1	0	1	0	3

0

1

187 rows × 5 columns

1010.0

1022.0

2

1

0

In [18]: 1 kmf.survival_function_

Out[18]:

KM_estimate

timeline	
0.0	1.000000
5.0	0.995614
11.0	0.982456
12.0	0.978070
13.0	0.969298
840.0	0.067127
883.0	0.050346
965.0	0.050346
1010.0	0.050346
1022.0	0.050346

187 rows × 1 columns


```
In [ ]: 1
```