Khôlles de Mathématiques - Semaine 24

Hugo Vangilluwen, George Ober

22 Avril 2024

Pour cette semaine, \mathbb{K} désigne un corps commutatif, E et F des \mathbb{K} -espaces vectoriels, E' et F' des sous-espaces vectoriels respectivement de E et de F. Nous rappelons que dim $\{0_E\} = 0$ et que $\{0_E\} = \text{Vect } \emptyset$.

1 Existence d'un supplémentaire en dimension finie

Pour tout sous-espace vectoriel de E, il existe un sous-espace vectoriel complémentaire.

Démonstration.

Théorème de la base incomplète (admis ici mais démontré dans le cours) : pour toute famille libre de E, nous pouvons y adjoindre une partie d'une famille quelconque génératrice de E (généralement une base, la base canonique si elle a un sens) pour en faire une base de E.

Posons $n = \dim E$ et $p = \dim E'$. Ainsi, il existe (e_1, \dots, e_p) base de E'.

Appliquons le théorème de la base incomplète pour cette famille. Il existe (e_{p+1}, \ldots, e_n) n-p vecteurs de E tel que (e_1, \ldots, e_n) est un base de E.

Posons $E'' = \text{Vect } \{e_{p+1}, \dots, e_n\}$ et vérifions qu'il est complémentaire à E'.

- $\ast\,$ Par définition de Vect, E'' est un sous-espace vectoriel .
- * Trivialement, E' + E'' = E.
- * $\{0_E\} \subset E' \cap E''$ car E' et E'' sont deux sous-espaces vectoriels .
- * Soit $x \in E' \cap E''$.

$$X \in E' \implies \exists (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p : x = \sum_{i=1}^p \lambda_i e_i \\ X \in E'' \implies \exists (\lambda_{p+1}, \dots, \lambda_n) \in \mathbb{K}^{n-p} : x = \sum_{i=p+1}^n \lambda_i e_i \\ \text{Par différence, } \sum_{i=1}^p \lambda_i e_i + \sum_{i=p+1}^n (-\lambda_i) e_i = 0_E. \\ \text{Or } (e_i)_{i \in \llbracket 1; n \rrbracket} \text{ est une base de } E \text{ donc } \forall i \in \llbracket 1; p \rrbracket, \lambda_i = 0_{\mathbb{K}}. \\ \text{donc } x = 0_E. \text{ Ainsi, } E' \cap E'' \subset \{0_E\}.$$

2 Dimension de $\mathcal{L}_{\mathbb{K}}(E,F)$

 $\mathcal{L}_{\mathbb{K}}(E,F)$ est dimension finie et

$$\dim \mathcal{L}_{\mathbb{K}}(E, F) = \dim E \times \dim F \tag{1}$$

П

Démonstration. Notons $n = \dim E$ et $(e_i)_{i \in [1:n]}$ une base de E. Considérons

$$\varphi \mid^{\mathcal{L}_{\mathbb{K}}(E,F)} \xrightarrow{f} \xrightarrow{\text{\'evaluation de f en la base choisie}} F^n$$

- * φ est linéaire.
- * φ est bijective d'après le théorème de création des applications linéaires qui établit que pour toute famille de n vecteurs de F, il existe une unique application linéaire de E dans F envoyant la base $(e_i)_{i \in [\![1:n]\!]}$ sur cette famille.

Ainsi, $\mathcal{L}_{\mathbb{K}}(E,F)$ et F^n sont isomorphes. F^n est de dimension finie, ce qui conclut.

3 Formule de Grassman

Supposons E de dimension finie.

Soient E_1 et E_2 deux sous-espaces vectoriels. Alors $E_1 + E_2$ est de dimension finie et

$$\dim E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2 \tag{2}$$

Démonstration. Commençons par prouver une version simplifier de la somme directe. Supposons que E_1 et E_2 sont en somme directe.

Fixons \mathcal{B}_1 et \mathcal{B}_2 deux bases de E_1 et E_2 .

Alors $(\mathcal{B}_1, \mathcal{B}_2)$ engendre $E_1 + E_2$. Or $(\mathcal{B}_1, \mathcal{B}_2)$ est finie donc $E_1 + E_2$ est de dimension finie. Posons $n = \dim E_1$ et $p = \dim E_2$. Notons $(e_i)_{i \in [1;n]}$ la base \mathcal{B}_1 et $(f_i)_{i \in [1;n]}$ la base \mathcal{B}_2 .

Soient $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_p$) $\in \mathbb{K}^{n+p}$ fixés quelconquesfixés quelconques $\sum_{i=1}^n \lambda_i e_i + \sum_{i=1}^p \mu_i f_i = 0_E$. Alors $\sum_{i=1}^n \lambda_i e_i = \sum_{i=1}^p (-\mu_i) f_i$. Or $\sum_{i=1}^n \lambda_i e_i \in E_1$ et $\sum_{i=1}^n (-\mu_i) e_i \in E_2$ donc $\sum_{i=1}^n \lambda_i e_i \in E_1 \cap E_2 = \{0_E\}$. Donc $\lambda = \tilde{0}$. De même $\mu = \tilde{0}$

 $E_1 \cap E_2 = \{0_E\}$. Donc $\lambda = 0$. De même, $\mu = 0$.

Donc $(\mathcal{B}_1, \mathcal{B}_2)$ est libre.

Ainsi, $(\mathcal{B}_1, \mathcal{B}_2)$ est une base de $E_1 \oplus E_2$. Donc dim $E_1 \oplus E_2 = |(\mathcal{B}_1, \mathcal{B}_2)| = |\mathcal{B}_1| + |\mathcal{B}_2| = \dim E_1 + |\mathcal{B}_2|$ $\dim E_2$.

Enlevons l'hypothèse que E_1 et E_2 sont en somme directe.

 $E_1 \cap E_2$ est un sous-espace vectoriel de E_2 et E_2 est un \mathbb{K} -espace vectoriel de dimension finie donc il existe E_2' sous-espace vectoriel de E_2 tel que $E_2 = (E1 \cap E_2) \oplus E_2'$.

Montrons que $E_1 + E_2 = E_1 \oplus E_2'$

* E_1 et E_2' sont en somme directe.

$$E_1 \cap E_2' = E_1 \cap (E_2' \cap E_2)$$
 car $E_2' \subset E_2$
= $(E_1 \cap E_2) \cap E_2'$ car \cap est associative et commutative
= 0_E car E_1 et E_2 sont en somme directe et E_2' sev

*
$$E_1 + E_2 \subset E_1 + E_2'$$

Soit $x \in E_1 + E_2$. Alors $\exists (x_1, x_2) \in E_1 \times E_2 : x = x_1 + x_2$.
Or $x_2 \in E_2 = (E_1 \cap E_2) \oplus E_2'$ donc $\exists (x_{21}, x_2') \times E_2' : x_2 = x_{21} + x_2'$.
D'où $x = \underbrace{x_1 + x_{21}}_{\in E_1} + \underbrace{x_2'}_{\in E_2} \in E_1 + E_2$.

* Trivialement, $E_1 + E_2' \subset E_1 + E_2$ (car $E_2' \subset E_2$).

Ainsi, E_1 et E_2' (car sev) étant de dimension finie, dim $E_1 \oplus E_2' = \dim E_1 + \dim E_2'$. De plus, $\dim E_2 = \dim(E_1 \cap E_2) \oplus E'_2 = \dim E_1 \cap E_2 + \dim E'_2$. Donc dim $E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2$.

4 Caractérisation injectivité/bijectivité/surjectivité par le rang

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

(i) Si E est de dimension finie

$$f \text{ injective } \iff \operatorname{rg} f = \dim E$$
 (3)

(ii) Si F est de dimension finie

$$f \text{ surjective } \iff \operatorname{rg} f = \dim F$$
 (4)

(iii) Si E et F sont de même dimension finie

$$f$$
 bijective \iff f injective \iff f sujective

C'est l'accident de la dimension finie!

Démonstration.

(i) Supposons E de dimension finie, fixons (e_1, \ldots, e_n) une base de E (avec $n = \dim E$) Supposons f injective:

$$\operatorname{rg} f = \dim \operatorname{Im} f = \dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \}$$

Donc $(f(e_1), \dots f(e_n))$ est génératrice. $(f(e_1), \dots f(e_n))$ est de plus libre car f est injective. Donc c'est une base, donc

$$\dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \} = n = \dim E$$

donc $\operatorname{rg} f = \dim E$. Réciproquement, supposons que $\operatorname{rg} f = \dim E = n$. Alors

$$n = \operatorname{rg} f = \dim \operatorname{Vect} \{ f(e_1), \dots, f(e_n) \}$$

Donc $(f(e_1), \ldots f(e_n))$ est génératrice de cardinal n, égal à la dimension du sous-espace vectoriel engendré. C'est donc une base du sous-espace vectoriel engendré. Donc $(f(e_1), \ldots, f(e_n))$ est libre, donc f est injective.

(ii) Supposons F de dimension finie

$$f$$
 surjective \iff Im $f = F \iff$ dim Im $f = \dim F$

(iii) Supposons E et F de même dimension finie

$$f$$
 injective \iff rg $f = \dim E \iff$ rg $f = \dim F \iff$ f surjective

D'où la bijectivité.

5 Théorème du rang

Si E est de dimension finie alors pour toute $f \in \mathcal{L}_{\mathbb{K}}(E,F)$ application linéaire,

$$\dim E = \operatorname{rg} f + \dim \ker f \tag{5}$$

 $D\acute{e}monstration$. Démontrons d'abord le lemme suivant. Soient $f \in \mathcal{L}_{\mathbb{K}}(E,F)$ et H un supplémentaire de $\ker f$ dans E. Alors $f_{|H}^{|\mathrm{Im}f}$ est un isomorphisme de H sur $\mathrm{Im}f$.

Notons \hat{f} un telle restriction et corestriction. Cette application est bien définie (car $f(H) \subset \text{Im} f$) et $\hat{f} \in \mathcal{L}_{\mathbb{K}}(H, \text{Im} f)$.

 $\ker \hat{f} = \{x \in H \mid \hat{f}(x) = 0_E\} = \{x \in H \mid x \in \ker f\} = H \cap \ker f = \{0_E\} \text{ car } H \text{ et } \ker f \text{ sont complémentaire. Donc } \hat{f} \text{ est injective.}$

Soit $y \in \text{Im} f$. D'où $\exists x \in E : y = f(x)$.

Décomposons x dans $E = H \oplus \ker f$, $\exists (x_H, x_k) \in H \times \ker f : x = x_H + x_k$.

Ainsi, $y = f(x) = f(x_H) + f(x_k) = f(x_H)$ car $x_k \in \ker f$. Donc y admet un antécédent par \hat{f} (qui est x_H).

Donc \hat{f} est surjective.

Donc $f_{|H}^{|\text{Im}f}$ est un isomorphisme de H sur Imf.

Supposons maintenant que E est de dimension finie. Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

D'après le théorème d'existence d'un supplémentaire en dimension finie, $\ker f$, étant un sous-espace vectoriel de E, admet un supplémentaire H c'est-à-dire $E = H \oplus \ker f$.

En prenant la dimension sur cette égalité, dim $E = \dim \ker f + \dim H$. D'après le lemme précédent, dim $H = \dim \operatorname{Im} f = \operatorname{rg} f$.

D'où
$$\dim E = \operatorname{rg} f + \dim \ker f$$
.

6 Rang d'une composition d'applications linéaires

Soit G un \mathbb{K} -espace vectoriel et $(u,v) \in \mathcal{L}_{\mathbb{K}}(E,F) \times \mathcal{L}_{\mathbb{K}}(F,G)$. Si E et F sont de dimension finie alors

$$\operatorname{rg} u = \operatorname{rg} v \circ u + \dim \ker v \cap \operatorname{Im} u \tag{6}$$

Démonstration. Considérons que E et F sont de dimension finie. Soient de tels objets.

Appliquons le théorème du rang à $v_{|\text{Im}u}$ ce qui est autorisé puisque $v_{|\text{Im}u}$ est une application linéaire et Imu est un \mathbb{K} -ev de dimension finie (car sev de F).

$$\dim \operatorname{Im} u = \operatorname{rg} v_{|\operatorname{Im} u} + \dim \ker v_{|\operatorname{Im} u}$$

 $\ker v_{|\operatorname{Im} u} = \{ y \in \operatorname{Im} u \mid v(y) = 0_G \} = \{ y \in \operatorname{Im} u \mid y \in \ker v \} = \operatorname{Im} u \cap \ker v$

 $\operatorname{Im} v_{|\operatorname{Im} u} = v(Imu) = \operatorname{Im} v \circ u$ (cette égalité est vraie pour deux fonctions de E dans F et de F dans G quelconques, pas forcément linéaires.)

Donc

$$\operatorname{rg} f = \operatorname{rg} v \circ u + \dim \ker v \cap \operatorname{Im} u$$

7 Lemme sur les formes linéaires non nulles

Soient E un \mathbb{K} -espace vectoriel, et $\varphi \in E^*$ une forme linéaire non nulle. Soit F un sous-espace vectoriel de E de dimension finie $p \in \mathbb{N}$, alors

$$\dim_{\mathbb{K}} F \cap \ker \varphi = \left\{ \begin{array}{ll} p & \text{ si } F \subset \ker \varphi \\ p-1 & \text{ sinon} \end{array} \right.$$

En particulier, on a toujours $\dim_{\mathbb{K}} F \cap \ker F \geqslant p-1$

Démonstration. Si $F \subset \ker \varphi$, $F \cap \ker \varphi = F$ donc dim $F \cap \ker \varphi = p$ Sinon, il existe $a \in F$ tel que $a \notin \ker \varphi$. Ainsi,

$$\operatorname{Vect}\left\{a\right\} \oplus \ker \varphi = E$$

Montrons alors que $F = \text{Vect}\{a\} \oplus (F \cap \ker \varphi)$.

$$\operatorname{Vect}\left\{a\right\}\cap\left(F\cap\ker\varphi\right)=\underbrace{\operatorname{Vect}\left\{a\right\}\cap F}_{=\operatorname{Vect}\left\{a\right\}}\cap\ker\varphi=\operatorname{Vect}\left\{a\right\}\cap\ker\varphi=\left\{0_{E}\right\}$$

car les deux espaces sont supplémentaires donc en somme directe.

Donc Vect $\{a\} \oplus (F \cap \ker \varphi)$.

Par double inclusion, montrons que Vect $\{a\} + (F \cap \ker \varphi) = F$

Pour l'inclusion directe, remarquons que $a \in F$ donc $\mathrm{Vect}\,\{a\} \subset F$ or $F \cap \ker \varphi \subset F$ donc leur somme est bien incluse $\mathrm{Vect}\,\{a\} + (F \cap \ker \varphi) \subset F$ Réciproquement, soit $x \in F$ fq. Puisque $\mathrm{Vect}\,\{a\} \oplus \ker \varphi = E$

$$\exists (\lambda, x_K) \in \mathbb{K} \times \ker \varphi : x = \lambda . a + x_K$$

De plus, $x_K = x - \lambda . a \in F$ car $(a, x) \in F^2$ donc

$$x = \underbrace{\lambda.a}_{\in \operatorname{Vect}\{a\}} + \underbrace{x_K}_{\in F \cap \ker \varphi} \in \operatorname{Vect}\{a\} + (F \cap \ker \varphi)$$

D'où l'inclusion réciproque.

donc $F = \text{Vect}\{a\} \oplus (F \cap \ker \varphi)$ en passant à la dimension :

$$\underline{\dim F} = \underline{\dim \operatorname{Vect}\left\{a\right\}} + \dim(F \cap \ker \varphi)$$

Donc $\dim(F \cap \ker \varphi) = p - 1$.

Appliquons ce lemme pour la démonstration de la propriété suivante

Soit E un \mathbb{K} espace vectoriel de dimension $n \in \mathbb{N}^*$

Soient $m \in \mathbb{N}^*$ et $(H_i)_{n \in [1,m]}$, m hyperplans de E.

Alors

$$\dim_{\mathbb{K}} \bigcap_{i=1}^{m} H_i \geqslant n - m$$

Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $m \in \mathbb{N}^*$ par.

$$\mathcal{P}(m)$$
: 'pour tous H_1, \ldots, H_m hyperplans de $E, \dim_{\mathbb{K}} \bigcap_{i=1}^m H_i \geqslant n - m$ '

4

Soit H_1 un hyperplan de E fixé quelconque. D'après la caractérisation des hyperplans en dimension finie,

$$\dim_{\mathbb{K}} \bigcap_{i=1}^{1} H_i = \dim_{\mathbb{K}} H_1 = n - 1 \geqslant n - 1$$

Donc $\mathcal{P}(1)$ est vraie.

Soit $m \in \mathbb{N}^*$ fixé quelconque tel que $\mathcal{P}(m)$ est vraie. Soient H_1, \ldots, H_m et H_{m+1} m+1 hyperplans de E. D'après la définition d'un hyperplan, il existe $\varphi \in E^*$ non nulle telle que $H_{m+1} = \ker \varphi$. Appliquons donc le lemme précédent pour $F \leftarrow \bigcap_{i=1}^m H_i$ (autorisé car c'est un sous espace de l'espace E, qui est de dimension finie, donc ses sous espaces les sont aussi) et $\varphi \leftarrow \varphi$ (autorisé car c'est une forme linéaire non nulle):

$$\dim_{\mathbb{K}} \underbrace{\left(\bigcap_{i=1}^{m} H_{i}\right) \cap \ker \varphi}_{=\left(\bigcap_{i=1}^{m} H_{i}\right) \cap H_{m+1}} \geqslant \dim_{\mathbb{K}} \left(\bigcap_{i=1}^{m} H_{i}\right) - 1 \underset{\text{en appliquant } \mathcal{P}(\updownarrow) \text{ pour } H_{1}, \dots, H_{m}}{\geqslant n - m - 1}$$

Donc par associativité de l'intersection, $\dim_{\mathbb{K}}\bigcap_{i=1}^{m+1}H_i\geqslant n-(m+1)$ Donc $\mathcal{P}(m+1)$ est vraie.