Fonction exponentielle

Propriété (admise). Il existe une <u>unique</u> fonction $f: \mathbb{R} \to \mathbb{R}$ dérivable sur \mathbb{R} telle que f(0) = 1 et f' = f

Définition. Cette fonction est appelée fonction exponentielle. On la note exp. Sa courbe représentative est représentée ci-contre

Notation exponentielle. Les propriétés de l'exponentielle sont similaires à celles des puissances. Pour cette raison on préfère la notation e^x plus compacte que $\exp(x)$.

Définition. Pour tout $x \in \mathbb{R}$, on note $e^x = \exp(x)$

Définition. Le nombre e est l'image de 1 par la fonction exponentielle. $e = e^1 = \exp(1) \approx 2,718 \dots$

Hypothèse. Soit $x, y \in \mathbb{R}$.

Propriété.
$$e^{x+y} = e^x \times e^y$$

Exemple. Simplifier $e^5 \times e^3$
 $e^5 \times e^3 = e^{5+3} = e^8$

Propriété.
$$e^{-x} = \frac{1}{e^x}$$

Exemple. Simplifier $\frac{1}{e^{-3}}$

$$\frac{1}{e^{-3}} = e^{-(-3)} = e^3$$

Remarque.
$$e^{-1} = \frac{1}{e}$$

Propriété.
$$e^{x-y} = e^x \times e^{-y} = \frac{e^x}{e^y}$$

Exemple. Simplifier
$$\frac{e^7}{e^{-3}}$$

$$\frac{e^7}{e^{-3}} = e^{7 - (-3)} = e^{10}$$

Propriété.
$$(e^x)^y = e^{xy}$$

Exemple. Simplifier
$$(e^{-2x})^3$$
 $(e^{-2x})^3 = e^{(-2x)(3)} = e^{-6x}$

Propriété. $\sqrt{e} = e^{\frac{1}{2}}$ plus généralement $\sqrt[n]{e} = e^{\frac{1}{n}}$ **Exemple.** Simplifier $\sqrt{e^{4x}}$

Exemple. Simplifier
$$\sqrt{e^{4x}}$$
 $\sqrt{e^{4x}} = (e^{4x})^{\frac{1}{2}} = e^{\frac{1}{2} \times 4x} = e^{2x}$

Propriété.
$$e^x > 0$$

Propriété. $e^x > 0$ Preuve. $e^x = e^{2 \times \frac{x}{2}} = \left(e^{\frac{x}{2}}\right)^2 \ge 0$ car un carré est ≥ 0 . De plus, s'il existait $x \in \mathbb{R}$ tel que $e^x = 0$, on aurait $1 = e^0 = e^{x-x} = e^x e^{-x} = 0$. Absurde, donc $e^x > 0$.

Propriété. exp est strictement croissante sur R

Propriété. $e^a = e^b \Leftrightarrow a = b$

Exemple. Résoudre l'équation $(E) \Leftrightarrow e^{2x+3} = e^{-3x}$ $(E) \Leftrightarrow 2x + 3 = -3x \Leftrightarrow 5x = -3 \Leftrightarrow x = -\frac{3}{5}$

Propriété. $e^a < e^b \Leftrightarrow a < b$

Exemple. Résoudre l'inéquation $(I) \Leftrightarrow e^{3x} < e^9$ $(I) \Leftrightarrow 3x < 9 \Leftrightarrow x < \frac{9}{2} \Leftrightarrow x < 3$

Propriété. Si u est dérivable sur \mathbb{R} , alors e^u est dérivable sur \mathbb{R} et : $(e^u)' = u' \times e^u$

Exemple. Soit f définie sur \mathbb{R} par $f(x) = e^{-8x+2}$. Alors $f'(x) = -8e^{-8x+2}$ pour tout $x \in \mathbb{R}$

Propriétés. Variations d'une fonction exponentielle paramétrée par $k \in \mathbb{R}$

Si k < 0, $x \mapsto e^{kx}$ est strictement décroissante sur \mathbb{R} . Si k > 0, $x \mapsto e^{kx}$ est strictement croissante sur \mathbb{R}

Remarque. A quoi sert la fonction exponentielle ? C'est une solution particulière de l'équation différentielle " f' = f". Les solutions d'une équation différentielle plus générale de la forme " f' = af + b " où a, b sont des constantes, peuvent s'écrire à l'aide de la fonction exponentielle. On rencontre ce type d'équations différentielles en physique, en économie, en biologie, ... Pour savoir manipuler leurs solutions, il suffit de savoir manipuler la fonction $x \mapsto e^x$.