Automata Theory (CSE4058-01) Homework # 01 Solution

- 1.12 Observe that $D \subseteq b^*a^*$ because D doesn't contain strings that have ab as a substring. Hence D is generated by the regular expression $(aa)^*b(bb)^*$. From this description, finding the DFA for D is more easily done.
 - 1.22 **b.** $/\#(\#^*(a \cup b) \cup /)^*\#^+/$
 - 1.30 The error is that $s = 0^p 1^p$ can be pumped. Let s = xyz, where x = 0, y = 0 and $z = 0^{p-2}1^p$. The conditions are satisfied because
 - i) for any $i \ge 0$, $xy^iz = 00^i0^{p-2}1^p$ is in 0^*1^* .
 - ii) |y| = 1 > 0, and
 - iii) $|xy| = 2 \le p$.
 - 1.31 We construct a DFA which alternately simulates the DFAs for A and B, one step at a time. The new DFA keeps track of which DFA is being simulated. Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ be DFAs for A and B. We construct the following DFA $M = (Q, \Sigma, \delta, s_0, F)$ for the perfect shuffle of A and B.
 - i) $Q = Q_1 \times Q_2 \times \{1, 2\}.$
 - ii) For $q_1 \in Q_1, q_2 \in Q_2, b \in \{1, 2\}$, and $a \in \Sigma$:

$$\delta((q_1, q_2, b), a) = \begin{cases} (\delta_1(q_1, a), q_2, 2) & b = 1\\ (q_1, \delta_1(q_2, a), 1) & b = 2. \end{cases}$$

- iii) $s_0 = (s_1, s_2, 1)$.
- iv) $F = \{(q_1, q_2, 1) | q_1 \in F_1 \text{ and } q_2 \in F_2\}.$
- Assume language E is regular. Use the pumping lemma to a get a pumping length p satisfying the conditions of the pumping lemma. Set $s = {0 \brack 1}^p {1 \brack 6}^p$. Obviously, $s \in E$ and $|s| \ge p$. Thus, the pumping lemma implies that the string s can be written as xyz with $x = {0 \brack 1}^a$, $y = {0 \brack 1}^b$, $z = {0 \brack 1}^c {1 \brack 0}^p$, where $b \ge 1$ and a + b + c = p. However, the string $s' = xy^0z = {0 \brack 1}^{a+c} {1 \brack 0}^p \not\in E$, since a + c < p. That contradicts the pumping lemma. Thus E is not regular.
- One short solution is to observe that $\overline{Y} \cap 1^* \# 1^* = \{1^n \# 1^n | n \geq 0\}$. This language is clearly not regular, as may be shown using a straightforward application of the pumping lemma. However, if Y were regular, this language would be regular, too, because the class of regular languages is closed under intersection and complementation. Hence Y isn't regular.

Alternatively, we can show Y isn't regular directly using the pumping lemma. Assume to the contrary that Y is regular and obtain its pumping length p. Let $s=1^{p!} \# 1^{2p!}$. The pumping lemma says that s=xyz satisfying the three conditions. By condition 3, y appears among the left-hand 1s. Let l=|y| and let k=(p!/l). Observe that k is an integer, because l must be a divisor of p!. Therefore, adding k copies of y to s will add p! additional 1s to the left-hand 1s. Hence, $xy^{1+k}z=1^{2p!}\# 1^{2p!}$ which isn't a member of Y. But condition 1 of the pumping lemma states that this string is a member of Y, a contradiction.