A Method For Fine Resolution Frequency Estimation From Three DFT Samples

Signal-Processing Final Project

Team-30 (Litelo)

Abhishek Chawla (2019102020) Pragya Singhal (2019112001)

Overview

The project suggests a nonlinear relation involving three DFT samples already calculated to produce a real valued, fine resolution frequency estimate. The estimator approaches Jacobsen's estimator for large N and presents a bias correction which is especially important for small and medium values of N.

Goals

- 1. Our goal in this project is to estimate δ , where $|\delta| < 1/2$, from three samples around the peak in the DFT spectrum using different estimators.
- 2. Finally we comment on the accuracy of various estimators and find the most suitable one!

Problem Description

We are given a signal r[n] with the white gaussian noise(w[n]) as follows:

$$r[n] = Ae^{j\omega n} + w[n]$$

Our objective is to calculate the peak location from the given 3 DFT (R[k]) samples namely R[Kp-1], R[Kp] and R[Kp+1]. The peak location in the DFT magnitude spectrum is expected to be around the true frequency ω if the SNR (Signal to noise ratio = $A^2/^2$) is sufficiently large. Hence we assume the below calculations to be done for high SNR only.

The Magnitude spectrum of r[n] for the noiseless case is shown below:

Calculation of δ

We use the three DFT samples given to us to calculate the value of δ , after which we can calculate the peak location by the formula (Kp + δ).

Given: $\omega = (2pi/N)(Kp + \delta)$, where N = size of the DFT

Now we have the following DFT-

$$\begin{split} R[k_p - 1] &= A \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(\delta + 1)n} + \tilde{w}[k - 1] \\ &= Af(\delta + 1) + \tilde{w}[k_p - 1] \\ R[k_p] &= A \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}\delta n} + \tilde{w}[k] \\ &= Af(\delta) + \tilde{w}[k_p] \\ R[k_p + 1] &= A \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}(\delta - 1)n} + \tilde{w}[k + 1] \\ &= Af(\delta - 1) + \tilde{w}[k_p + 1]. \end{split}$$

Here $\tilde{w}[k]$ is the DFT of w[n] which is also white and jointly Gaussian distributed.

The function $f(\cdot)$ appearing on the right hand side of the equations given in (1) is defined as follows:

$$f(\alpha) = \sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}\alpha n}.$$

Here α is a generic variable for the function $f(\cdot)$.

Error in calculating δ

There are a total of 4 equations that are derived for the calculation of δ . According to the paper - E. Jacobsen and P. Kootsookos, "Fast, accurate frequency estimators," they are labelled as error 2, error 3, error 4, error 5 respectively.

$$\delta = \frac{(|X_{k+1}| - |X_{k-1}|)}{(4|X_k| - 2|X_{k-1}| - 2|X_{k+1}|)} \,. \tag{2}$$

Equation 2- It is a poor estimation with a high error (specially in case with noise). Some simple changes in this equation increases the accuracy and produces the third equation.

$$\delta = -\text{Re}\left[\frac{(X_{k+1} - X_{k-1})}{(2X_k - X_{k-1} - X_{k+1})}\right].$$
(3)

Equation 3- It is very accurate especially in case of rectangular windows. However, for non-rectangular cases we have the below equations.

$$\delta = \frac{P(|X_{k+1}| - |X_{k-1}|)}{(|X_k| + |X_{k-1}| + |X_{k+1}|)}, \quad (4)$$

$$\delta = \text{Re}\left[\frac{Q(X_{k-1} - X_{k+1})}{(2X_k + X_{k-1} + X_{k+1})}\right], \quad (5)$$

Equation 4 and 5- They are less accurate than the third one and give more biased outputs but are more accurate when applied to DFT samples of non-rectangular windowed data.

Plot

Below is the plot for different errors:-

Conclusion:- Error 3 is the least and hence the most accurate one. It gives the least biased outputs as compared to other equations. It is observed that **equation 3 is similar to the Jacobsen estimator** (it will come later in this report). Error 2 is the poorest of all.

Different Estimators

Next we apply different estimators as given in the research paper to find out the most accurate value for δ for the best estimation.

After performing all the calculations we arrive with the following equations for different estimators :

I. Parabolic Interpolation- This is the poorest estimation

$$\widehat{\delta} = (|R_{k+1}| - |R_{k-1}|)/(4|R_k| - 2|R_{k-1}| - 2|R_{k+1}|)$$

II. Quinn

$$\begin{array}{ll} \alpha_1 = \operatorname{Real}(R_{k-1}/R_k), & \alpha_2 = \operatorname{Real}(R_{k+1}/R_k) \\ \delta_1 = \alpha_1/(1-\alpha_1), & \delta_2 = \alpha_2/(1-\alpha_2) \\ \text{if } \delta_1 > 0 \text{ and } \delta_2 > 0, \ \widehat{\delta} = \delta_2 \\ \text{else} & \widehat{\delta} = \delta_1 \end{array}$$

III. MacLeod

IV. Jacobsen

$$\widehat{\delta} = \text{Real}\{(R_{k-1} - R_{k+1})/(2R_k - R_{k-1} - R_{k+1})\}$$

The estimators Quinn, MacLeod, Jacobsen have exactly the same bias in the absence of the noise.

V. Jacobsen with Bias Correction (Proposed) - This is the least biased one

$$\widehat{\delta} = \frac{\tan(\pi/N)}{\pi/N} \text{Real}\{ (R_{k-1} - R_{k+1}) / (2R_k - R_{k-1} - R_{k+1}) \}$$

Plots

The bias basically describes the error in calculating δ , hence more the bias - more will be the error in calculating δ - less accurate will be the estimation!

Conclusion:- It is very clear from the above plot that the **Proposed estimator is the most efficient one**, with the least bias (for every N) and the **Parabolic is the poorest** with a high bias. While **Quinn**, **MacLeod and Jacobsen have the exact same bias!**

Also the bias decreases as N tends to infinity or SNR increases. However, the above plot is plotted for N=8 and since this is a non-linear estimation we have a positive bias for all the estimators (even for the proposed one).

This plot is plotted with respect to "The Proposed Estimator". This shows that the remaining estimators have a positive bias relative to the proposed one and hence they have a higher bias than the proposed and hence are less accurate.

This plot is plotted with respect to "The Quinn Estimator". As one can see the proposed estimator has a negative relative bias while the parabolic has a positive relative bias. The jacobsen and macleod have a zero relative bias.

Hence the Final Conclusion is -

Bias - Proposed < Jacobsen = MacLeod = Quinn < Parabolic

Accuracy - Proposed > Jacobsen = MacLeod = Quinn > Parabolic

*This is for noiseless case (very high SNR).

In the presence of noise

Here, we fix the value of δ =0.25 and vary the SNR value to examine the bias in presence of noise.

Conclusion:- The plots clearly show that as the value of SNR increases, the Bias as well as RMSE move towards the ideal (noiseless) case.

Final Conclusions

- The value of δ can be best calculated by the third equation in case of rectangular windowed data (from the reference paper) as it has the least error and gives less biased outputs.
- The best estimation is done with the help of the Jacobsen which is improved with bias correction (Proposed estimator) among all the estimators (for every N in general).

Bias - Proposed < Jacobsen = MacLeod = Quinn < Parabolic

Accuracy - Proposed > Jacobsen = MacLeod = Quinn > Parabolic

- The Proposed estimator closely follows the Cramer-Rao bound (least error) in the high SNR region.
- When N is large, Jacobsen's formula and its bias corrected version have the same performance for a large SNR range.
- In the presence of noise, we observe that the error decreases as SNR is increased.
- After calculation of δ , we can estimate the location of the peak value as follows:

Peak location = $(Kp + \delta)$

Special Note: The present work utilizes the data processed by a rectangular window.

References

- 1. E. Jacobsen and P. Kootsookos, "Fast, accurate frequency estimators,"
- 2. B. G. Quinn, "Estimating frequency by interpolation using Fourier coefficients,"
- 3. B. G. Quinn, "Estimation of frequency, amplitude, and phase from the DFT of a time series,"
- 4. https://matlab.mathworks.com/
- 5. https://www.wikipedia.org/