REMARKS

By the foregoing amendments, claims 1, 7, and 12 have been amended and claims 6 and 11 have been canceled. Currently, claims 1-5, 7-10, 12, and 13 are pending. The amendments do not include new subject matter. For example, the amendments to claim 1 contains claim language from previous claim 6. Thus, Applicants note that support for the amended claims can be found throughout the specification.

Formal Matters

Applicants note with appreciation that the Action has acknowledged the claim of priority under 35 U.S.C. § 119(a)-(d).

Applicants also thank the Examiner for consideration of the documents submitted to the PTO in the Information Disclosure Statements of July 26, 2006, September 21, 2006, July 18, 2007, and January 15, 2008 by returning electronically signed and initialed copies of the forms PTO-1449.

Claim Rejections under 35 U.S.C. § 112, second paragraph

The Action rejects claims 1, 6, 9, and 11 under 35 U.S.C. § 112, second paragraph, as allegedly indefinite. The Action suggests that there should be clarification with respect to the block polymers and the random copolymers.

By the foregoing amendments to the claims, Applicants respectfully submit that the rejection has been addressed. Applicants respectfully request withdrawal of the rejection.

Claim Rejections under 35 U.S.C. § 102

The Office raises the following anticipation rejections:

- a.) The Action rejects claims 1-5, 7-11, and 12-13 under 35 U.S.C. § 102(b) as allegedly being anticipated by Doki et al. (U.S. Patent Application Publication No. 2002/0115790).
- b.) The Action rejects claims 6 and 11 under 35 U.S.C. § 102(b) as allegedly being anticipated by Doki et al. with evidentiary support from Kuraray, Co. product specification website.

In view of the cancellation of claims 6 and 11, Applicants respectfully request the above rejection b).

As for rejection a), Applicants respectfully note that Doki et al. employs a thermoplastic elastomer with a main dispersion peak temperature in a $\tan \delta$ curve obtained by the measurement of viscoelasticity between -30 °C and +50 °C (see Doki et al., [0028]). Doki et al. presents as specific examples of the thermoplastic elastomer, HYBRAR-5127 (styrene-isoprene-styrene block polymer), HYBRAR-7125 (styrene-hydrogenated isoprene-styrene block polymer), and Tuftec H1041 (styrene-ethylenebutylene-styrene block copolymer).

The present invention requires a thermoplastic elastomer containing a block composed of a hydrogenated aromatic vinyl compound that is randomly copolymerized with a diene compound. Neither HYBRAR-5127 nor HYBRAR-7125 nor Tuftec H1041 contains randomly

copolymerized elastomers. In evidence of this statement, Applicants submit a catalog excerpt of "HYBRAR" obtained from Kuraray Co., Ltd. The catalog illustrates that HYBRAR-5127 consists of "hard blocks" (polystyrene blocks) and "soft blocks" (vinyl-bond rich polydiene). Each of the two blocks are not random blocks. Thus, the catalog indicates that HYBRAR-5127 does not contain a random block as required by the present invention.

Applicants further submit that the elastomers containing random blocks as in the present invention do not only result in high vibration damping ability and excellent frictional wear properties but also oil resistance to the polyoxymethylene resin. Applicants further note that *Comparative* Examples 2, 3, 4, 5, 7, and 8 of the present application use HYBRAR-5127 as a elastomer. The *Comparative* Examples show that resins containing HYBRAR-5127 do not have the desired oil resistance.

By the foregoing amendments to the claims, Applicants respectfully submit that the rejections have been addressed. Applicants respectfully request withdrawal of the rejection.

CONCLUSION

In view of the foregoing amendments and remarks, Applicants submit that all of the claims are patentably distinct from the prior art of record and are in condition for allowance. The Examiner is respectfully requested to pass the above application to issue. Favorable consideration with early allowance of all of the pending claims is most earnestly requested.

Should the Examiner have any questions, the Examiner is invited to contact the undersigned at the below-listed telephone number.

Respectfully submitted, Mitsuhiro HORIO et al.

Bruce H. Bernstein

Reg. No. 29,027

September 8, 2008 GREENBLUM & BERNSTEIN, P.L.C. 1950 Roland Clarke Place Reston, VA 20191 (703) 716-1191

Enclosures: "Thermoplastic elastomer HYBRAR," catalog obtained from Kuraray Co., Ltd

INDEX

What is HYBRAR™ ?1
Application Examples of HYBRAR™2
HYBRAR™Grades ······3~4
HYBRAR™ Properties
HYBRAR™ Applications ~Polymer Blends~
HYBRAR™ Applications ~PP / HYBRAR™ (Hydrogenated) Blends~9~10
HYBRAR™ Applications ~Cured Foam~

What is HYBRAR™?

HYBRAR™ is a styrenic block copolymer having a vinyl-polydiene soft block developed by Kuraray Co., Ltd. using its unique isoprene technology.

HYBRAR™ is a series of thermoplastic rubbers which offer high vibration damping properties due to its glass transition temperature (Tg) near room temperature. This opens HYBRAR™ for use in damping applications that are not favorable with Kuraray's SEPTON™ product series.

Hydrogenated HYBRAR™ grades, the 7000 series, exhibit excellent miscibility with polypropylene. As a result, hydrogenated HYBRAR™ /PP blends have excellent transparency. Unlike flexible PVC, they offer good flexibility and mechanical properties without the need for plasticizers while being friendlier to the environment. HYBRAR™ can be processed in various shapes including film, sheet and tube.

Similarly to many rubbers, HYBRAR™ can be vulcanized. Cured HYBRAR™ foams exhibit low compression sets and good elasticity.

Molecular Structure Model

Vinyl-bond rich SIS (5127, 5125)

$$s - \left(c - \frac{c}{c}\right)_{m} s$$

Vinyl-bond rich SEPS (7125)

$$s + (c-c)_m s$$

Vinyl-bond rich SEEPS (7311)

I: Polyisoprene

EP: Hydrogenated Polyisoprene

EEP: Hydrogenated Poly(isoprene/butadiene)

Application Examples of HYBRAR™

HYBRAR™ Grades

Tested by KURARAY CO., LTD.

			Styrene		5 :	Specific	Hardness	•	Tensile	Propert	у	М	FR	Solu	tion Vis	cosity	Physica!
			Content	Temp. of Tan&	Transition Temp.	Gravity		100% Modulus	300% Modulus	Tensile Strength	Elongation	190°C, 2.16kg	230°C, 2.16kg	15wt%	20wt%	30wt%	Form
	Grade	Туре	(wt%)	(°C)	(C)		(Type A)	(MPa)	(MPa)	(MPa)	(%)	(g/10min)	(g/10min)	(mPa·s)	(mPa·s)	(mPa·s)	
Unhydrogenated Grades	5127	Vinyl-bond rich SIS	20	20	8	0.94	84	2.8	4.7	12.4	730	5		· <u></u>		540	Pellet
Unhydro	5125	Vinyl-bond rich SIS	20	-3	-13	0.94	60	1.6	2.5	8.8	730	4		****	100	650	Pellet
enated Jes	7125	Vinyl-bond rich SEPS	20	-5	-15	0.90	64	1.7	2.7	7.1	680	0.7	4		55	350	Pellet
Hydrogenated Grades	7311	Vinyl-bond rich SEEPS	12	-17	-32	0.89	41	0.6	0.9	6.3	1050	0.5	2	90	240		Pellet
N	leasui Met	rement hod			DSC (Temp. increase by 10°C/min.)	ISO 1183	ISO 7619		ISC	O 37	-	ISO	1133	Tolu	ene sol 30°C	ution	A THE PROPERTY OF THE PROPERTY

Unit Conversion: 1MPa=10.20 kgf/cm²

1mPa·s=1cPs

- 1) Precautions should be taken in handling and storing. Refer to the appropriate Material Safety Data Sheet for further safety information.
- 2) In using HYBRAR™, please confirm related law and regulations, and examine its safety and suitability for the application.
- 3) For Medical, Healthcare and Food Contact applications, please contact your SEPTON™ representative for specific recommendations. HYBRAR™ should not be used in any devices or materials intended for implantation in the human body.

X The figures, graphs, and charts in this booklet are representative ones measured by KURARAY, and those are without guarantee because each conditions of use are beyond Kuraray's control.

Characteristics

Both(Unhydrogenated, Hydrogenated)

otin(Onnydrogenated, rydrogenated)

High vibration damping at room temperature

High affinity to polyolefins and styrenics

Can be formed

Curable like vulcanized rubbers

Rubber like elasticity

Hydrogenated

Excellent

miscibility with polypropylene

Excellent

heat and weather resistance

Temperature Dependence of Tan δ

HYBRAR™ Properties Tested by KURARAY CO., LTD.

Dynamic Viscoelastic Behavior

Test Conditions: HYBRAR* 7125
Dynamic Rheometer *REOVIBRON DDV-III* Tensile mode Heating Rate 3C/min.
Frequency 11Hz

Capillary Flow Test

Test Conditions : HYBRAR^{IM} 7125 Capillary Rheometer "CAPIRO GRAPH"

Heat Resistance

Test Conditions:
HYBRAR™ 7125
Thermo-balance Heat Degradation
Heating Rate 10°C/min.
Nitrogen Atmosphere

Electrical Properties

Item		
Specific Inductive	10³ Hz	1.5
Capacity	104 Hz	1.5
	10⁵ Hz	1.5
	106 Hz	1.5
Dielectric Loss	10³ Hz	
Tangent	10⁴ Hz	0.0015
	10⁵ Hz	0.0011
	106 Hz	0.0012
Dielectric Breakdow	n	
Strength	kV/mm	36.9
Volume Resistivity	Ω·cm	2.0×10 ¹⁷

Test Conditions:
HYBRAR™ 7125
Specific Inductive Capacity: Electrode indirect method (Vacancy mode)
Dielectric Breakdown Strength: JIS K-6911 Voltage Rising Rate 2kV/sec
Volume Resistivity: Measured 1min. after applying DC 500V (at 20°C)

Combustion Test

Combustion Gas		Amount Formed	Detection Limit
SOx(reduced to SO ₂)	(mg/g)	not detected	0.1
NOx(reduced to NO₂)	(mg/g)	not detected	0.5
HCI	(mg/g)	not detected	0.1
HCN	(mg/g)	not detected	0.05
NH₃	(mg/g)	not detected	0.1
СО	(mg/g)	140	10
CO ₂	(mg/g)	350	10
Gross Calorific Value	(J/g)	45000	

Test Conditions: HYBRAR™ 7125 Combustion gas JIS K-7217 (Combustion condition A) Gross Calorific Value JIS M8814 Calorimeter

Solubility Data

Soluble	Partially Soluble	Insoluble
Petroleum Benzine Toluene Hexane Cyclohexane Chloroform Carbon Tetrachloride Carbon Disulfide Tetrahydrofuran	Ethyl Acetate Methyl Ethyl Ketone	Methanol Ethanol Acetone Water Dimethyl Formamide

Test Conditions:
HYBRAR™ 7125
Put 10wt% of polymer into each solvent and vibrate for two days at the room temperature.
The solubility is judged by the appearance.

HYBRAR™ Applications ~Polymer Blends~

(1) Plastic/HYBRAR™ Blend

HYBRAR™ can be blended with various plastics to produce materials which exhibit excellent vibration damping properties. Some blends using HYBRAR™ 5127 and their physical properties are depicted below:

Polystyrene/HYBRAR™ Blend

				Te	sled by Kuraray Co.,L
	(wt %)	1	2	3	4
Formulation					<u> </u>
Polystyrene		100	90	85	80
HYBRAR™5127	1		10	15	20
Physical Properties		***************************************		10	
Evaluation of Dampin	g Properties				-
Tan δ Loss Factor	(0℃)	0.033	0.044	0.047	0.049
	(25°C)	0.035	0.051	0.075	0.115
	(40℃)	0.037	0.045	0.063	0.094
Loss Factor (Degree	of Damping)	0.016	0.023	0.040	0.068
Mechanical Properties	a particularity desired to the second se		AND THE PROPERTY OF THE PROPER		
Hardness	(Type-D)	83	80	76	74
Tensile Modulus	(MPa)	2600	2300	2200	1900
Tensile Strength	(MPa)	49	51	47	43
Elongation	(%)	13	18	21	17
Flexural Modulus	(MPa)	2600	2300	2100	1700
Flexural Strength	(MPa)	74	34	28	23

Conditions

Blended with Twin Screw Extruder at 200°C

Test samples molded with Injection Molder. (Cylinder at 200°C, Mold at 60°C)

Evaluation of Damping Properties:Tano measured with Rheovibron (Dynamic Viscoelastometer, Orientec) at 110Hz Loss Factor(Degree of Damping) measured by resonance method with a cantilever beam

The vibration damping behavior of the PS/5127 blend, when struck by a steel ball, is shown below.

(2) HYBRAR™ based filler compounds

Damping compounds can be produced from the combination of HYBRAR™ and inorganic fillers such as mica, graphite, calcium carbonate, etc.

(3) SEPTON™ and HYBRAR™ combination compound

HYBRAR™ can be blended with olefins and/or SEPTON™ to produce soft compounds which exhibit excellent vibration damping properties. Some compounds using HYBRAR™ 5127 and their physical properties are depicted below:

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	Teste	d by KURARAY CO.,LTI
	(parts by weight)	1	2	3
Formulation			- Contraction	
SEPTON™ 4055		100	100	100
HYBRAR™5127	- Conference - Con		100	100
Process Oil		180	100	60
Polypropylene	-	50	40	40
Physical Properties				
Resilience	(%)	40	17	12
Hardness	(Type A)	48	51	61
Tensile Modulus	(MPa)	8.0	1	1.4
Tensile Strength	(MPa)	9.3	10.3	13.9
Elongation	(%)	990	850	800
Compression Set	777		and controllers of the controlle	
25℃×22h	(%)		15	17
70°C×22h	(%)	41		59
MFR (230°C, 21N)	(g/10min)	5	17	6

Mixing Condition: Twin Screw Extruder at 210°C

Molding Condition: Injection Molding (Cylinder at 210°C, Mold at 50°C)

Resilience: ISO 4662 Lupke Type Rebound Resilience Tester =Hr/Ho x100 (Hr: Rebound Height, Ho: Fall Height)



Red: HYBRAR™ based compound Blue: Common rubber based compound

# **HYBRAR™** Applications

# ~PP / HYBRAR™ (Hydrogenated) Blends~

Hydrogenated HYBRAR™ grades (HYBRAR™ 7125 and HYBRAR™ 7311) exhibit excellent miscibility with polypropylene. Unlike flexible PVC, they offer good flexibility and mechanical properties without the need for plasticizers while being friendlier to the environment.

HYBRAR™ 7311 has a lower styrene content and a lower glass transition temperature than HYBRAR™ 7125. As a result, PP/7311 blends are more flexible at room temperature than PP/7125 blends and offer better impact properties at lower temperatures.

## PP/7125, PP/7311 Blends

Tested by KURARAY CO.,LTD.	

(part	s by weight)	1	2	3	4	5	6	7
Formulation Polypropylene (Random) HYBRAR™7125 HYBRAR™7311		100	90 10	80 20	70 30	90 10	80 20	70 30
Physical Properties	///							
Hardness	(Type A)	98	98	96	98	94	96	94
<del></del>	(Type D)	63	55	46	42	54	44	35
Young's Modulus	(MPa)	490	480	250	140	380	140	90
Tensile Strength	(MPa)	37	35	30	30	34	30	28
Elongation	(%)	1400	1400	1400	1600	1400	1600	1700
Impact strength								
Notched Izod at-20°C	(J/m)	30	32	36	38	45	320	860
Haze (1mm thick film)	(%)	52	49	30	19	52	33	27



## Mono Layer (Cast Film)

Tested by KURARAY CO.,LTD.

	( wt%)	•	1		2		3		4
Formulation				-					
Polypropylene (Random)		9	0	85		80		70	
HYBRAR™7125			5	20		30			
Mechanical Properties	74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MD	TD	MD	TD	MD	TD	MD	TD
Tensile Strength	(MPa)	38	35	35	38	37	36	38	30
Young's Modulus	(MPa)	240	230	200	220	140	150	110	100
Elongation	(%)	1090	1130	1000	1200	1270	1170	1150	1090
Optical Properties	V								***************************************
Haze	(%) 3.9 2.8		0.9		0.4				

(Thickness=50 μm)

# Comparison of PP/ HYBRAR™ (Hydrogenated) blends and Flexible PVC

	PP / HYBRAR™ (Hydrogenated) Blend	Soft PVC
Halogen Free	0	×
Plasticizer Free	. 0	×
Low Specific Gravity	0	×
Transparency	0	0
Flexibility	0	0
Heat Resistance	O	0
Weather Resistance	0	0

(OGood XNot Good)

# Dynamic Viscoelastic Behavior for PP / HYBRAR™ 7125



In case of PP/HYBRAR™ 7125=30/70 formulation ( ——), it shows very similar dynamic viscoelastic behavior to Soft PVC shown as above, and so it has very similar feeling to Soft PVC ( ——) such as unique slow-recovery property.

# HYBRAR™ Applications ~Cured Foam~

Damping foams can be made with HYBRAR™ by using foaming and curing agents. An example is shown below.

# Comparison data between conventional EVA foam and HYBRAR™ based foam

	T	ested by KURARAY CO.,LT
(parts by wei	ght) 1	2
Formulation		
EVA (VA Content: 19wt%)	100	50
HYBRAR™5127		50
Curing Agent	0.8	0.175
Foaming Agent	3	3
ZnO	2	2
Stearic Acid	1	1
TiO2	4	4
Physical Properties		***************************************
Specific Gravity	0.17	0.18
Hardness (ASTM D2240, TypeC, 14°C)	65	66
Compression Set (%	6) 65	48
Resilience (%	6) 40	19
Tensile Strength (MPa	a) 2.1	2.1
Elongation (%	6) 230	230

Mixing Condition: Kneader and Roll-mill at 100℃~130℃

Curing Condition: Press Molding at 145°C for 60min. with 14.7 MPa pressure



### KURARAY CO., LTD.

:Ote Center Bildg., 1-1-3 Otemachi, Chiyoda-Ku, Tokyo 100-8115 PHONE: +81-3-6701-1601, FACSIMILE: +81-3-6701-1645

#### KURARAY AMERICA, INC.

:11414 Choate Road, Pasadena, TX 77507 PHONE: +1-281-909-5850, FACSIMILE: +1-281-909-5851

#### KURARAY EUROPE GMBH

:Building F821, Hoechst Industrial Park, 65926 Frankfurt am Main PHONE: +49-69-305-35850, FACSIMILE: +49-69-305-35650

http://www.septon.info/en http://www.kuraray.co.jp/en