

Assignment -2 MC-303 Stochastic Processes 2K20/MC/08 Ahrichek Kumar $p = \frac{1}{2}$ $q = \frac{1}{3}$ 1-p-g= Here let $r_1 \rightarrow no$, of +ue steps $r_2 \rightarrow no$, of -ve steps $n-r_1-r_2 \rightarrow no$, of 0 length steps 7 4-r1-r2 V1 0- 12 = 1. (1,0) (2,1)So, $P(X(u) = +1) = \underbrace{u!}_{(1)! \ 0! \ 3!} \cdot \left(\frac{1}{2}\right)! \cdot \left(\frac{1}{3}\right)! \left(\frac{1}{6}\right)^3$ $+\frac{4!}{2! \cdot 1! \cdot 1!} \cdot \left(\frac{1}{2}\right)^{2} \cdot \left(\frac{1}{3}\right) \cdot \left(\frac{1}{6}\right)$ = X + XX3 32 X28 XZ1 Z X X X X X 6 = 1 + 1 = 9 + 719 18 = 12 = 18 + 108(2007) non-homogeneous markovian chain

An example of non-homogeneous Markovian chain

.

would be the motion of random walk entirited by an electron which can move in a step of ± 14m in a linear direction in a pool of protons whose density varies throughout the pool.

e⁺0 0 0 b a 000 X

Consider the figure, here the handom walk by the electron has a probability towards moint left or moving eight.

In the figure, if the election is at a, i.e. equidistant feron both clusters of protons, the polosability of moving towards eight would be higher as the cluster is more dense there.

But if it is st 'b', then the propability of moving towards left would be higher as the cluster is closer there.

En Also, since the motion probability / transition probability is only dependent on its location, the probabilities are dependent upon present only.

So, this is an example of non-nonogeneous Masko.

11) Monogeneous Markovian Chain.

An example of Monogeneous Markovian chain would be uncestruted evandom walk. Here, Throughout the length of the process, the transition probabilities of +1 step & -1 step remains the same.

P[$X_0 = 1$] = P[$X_0 = 2$] = P[$X_0 = 0$] = Y_3 .

O 1 2

O 0.75 0.25 O Transition Probabilities

1 0.25 0.50 0.25 matrix

2 0 0.75 0.25

$$P[X_3=1, X_2=2, X_0=2] = P[X_3=1, X_2=2, X_1=0, X_0=2]$$

+ $P[X_3=1, X_2=2, X_1=1, X_0=2]$
+ $P[X_3=1, X_2=2, X_1=2, X_0=2]$

 $= P(X_3=1 \mid X_2=2) + P(X_2=2 \mid X_1=0).$ $P(X_1=0 \mid X_2=2), P(X_2=2)$

+
$$P(X_3=1 \mid X_2=2)$$
. $P(X_2=21 \mid X_1=1)$. $P(X_1=11 \mid X_0=2)$.

+ $P(X_3=1|X_2=2)$, $P(X_2=2|X_1=2)$, $P(X_1=2|X_0=2)$, $P(X_0=2)$ = $P(X_3=1|X_2=2)$, $P(X_0=0)$ ($\sum_{i=0}^{2}$ $P(X_{2}=2|X_{1}=i)$).

$$= 0.75 \times 0.33. \left(0 \times 0.25 \times 0.75 + 0.25 \times 0.25 \right)$$

 $= \frac{8 \times 1}{u} \left(\frac{3 \times 1 + 1 \times 1}{u} \right) - \frac{4}{64} = 16$

classmate 0 1/2 1/2 P5Az 1/2 /2 1/2 /2 $\frac{1}{7} = \frac{1}{2} \frac{1}{2}$ a) The required probability P(Xs=0/X0=0) b) The required probability is P(X5 = 0) = P(X5=0|X0=0) P(X0=0) + P (Xs=0 | Xo=1) P(Xo=1) Also, given that $P(X_0 = 0) = P(X_0 = 1) = 1/2$. $P(X_{5}=0)=\frac{1}{2}\frac{X_{1}}{2}+\frac{1}{2}\frac{X_{1}}{2}$ $= \frac{1}{u} + \frac{1}{u} = \frac{1}{2}$ Let R -> Raining & NR -> Not Raining And let a describle the state se to be Q647

conseculine

the weather of two days.

risk is			
(R,R)	(R, NR)	(NR,R)	(NR, NR)
0.7	0,3	0	0
Onde	0	0.4	0.6
0.5	0.5	0	0
0	0	0.2	0.8
	(R,R)	0.7 0.3 0.da 0	(R,R) (R,NR) $(NR,R)0.7$ 0.3 00.4 0 0.4

The above matrix describes the transition probability of (Weather yesterday, Weather today) to (Weather today, Weather tomorrow) as in single step transition.

Now, for the required probability of (Rain Monday,
No Rain Tuesday) to (No Rain Wednesday, Rain Thursday)
& (Rain Wednesday, Rain Thursday) as in & two
steps.

50, lue & required probability = $P(R,NR) \rightarrow (NR,R) + (R,R)$ = 0.6 × 0.2 + 0.4 × 0.5

= 0.12 + 0.2 = 0.32

97A, Communication relation is the relation between two states of the readom variable which are accessible to earn other, i.e.:

R: x -> x (x,y) ERight x (>) y

To snow it is equivalence, me have: a) symmetry: Let $(x, y) \in \mathbb{R}$, $\Rightarrow x \in y$.

So, we can go from x = xy to y $(x \Rightarrow y)$.

And we can go from y to x $(x \in y)$. $x \leftarrow y \Rightarrow y \rightarrow x \rightarrow x \rightarrow y \Rightarrow y \leftarrow x$ yon & y < x y y > x x (y, x) ER So, + (x,y) ER, (y,x) ER & R is symmetrice b) Transitive: Let $(x,y) \in \mathbb{R}$ & $(y,z) \in \mathbb{R}$.

A $x \leftrightarrow y$ & $y \leftrightarrow z$ A $y \leftrightarrow z$ B $y \leftrightarrow z$ A $y \leftrightarrow z$ A $y \leftrightarrow z$ B $y \leftrightarrow z$ A $y \leftrightarrow z$ A $y \leftrightarrow z$ B $y \leftrightarrow z$ A $y \leftrightarrow z$ A $y \leftrightarrow z$ B $y \leftrightarrow z$ B $y \leftrightarrow z$ A $y \leftrightarrow z$ B $y \leftrightarrow z$ B Mar > par > pay · pyz >0 n n→z (i.l. we can go from 2 to 2 Similarly, we'll get pzx > pzy. pyx >0 for Mence, (x,z) ER. Therefore \forall (x,y) $(y,z) \in \mathbb{R}$ we have $(x,z) \in \mathbb{R}$. R is transitive.

c) Reflexivity:

We know from symmetry proof that if (x,y) ER

then.(y, x) ER.

And from transitive proof that if $(x,y)&(y,z)\in R$. Then $(x,z)\in R$.

50, if we take z = x.

we have, $(x,y) & (y,x) \in R$.

And by transitivity, $(x,x) \in R$.

So, $(x,x) \in \mathbb{R} \quad \forall x \in \mathbb{X}$.

i. R is symmo reflexive.

So. Thus, R is an equivalence relation from X to X.

Let the period of i be d(i) & the period of j be &d(j).

Now, let K>0 & E>0 such that $P_{ij} > 0 \times P_{ji} > 0$

7 Pii > pij. pji > 0

So, d(i) divides k + l.

Now, let d(j)=m 70 such that >jj >0.

So, Pii 7 pij. pji >0.

7 Pii > 0

	Page
	o d(i) divides k+ m.d o d(i) divides m.
· Andrews	So, d(j) > d(i)
E 31	Similarly, exchanging the moles of i & j, we'd do get $d(i) \ge d(j)$
	From DQD: d(i)=d(j).
	Here, proved.
	the contraction of the second
A STATE OF THE STA	
Olympia.	