5 We Claim:

10

15

 A compound of general formula (Ic), or a stereoisomer, optical isomer, pharmaceutically acceptable salt, or pharmaceutically acceptable solvate thereof

$$\begin{array}{c|c} R_4 & Z & R_5 \\ \hline R_5 & Q & R_4 \\ \hline R_6 & (Ic) & \end{array}$$

wherein

 R_1 is phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy,\ nitro,\ NR_9R_{10},\ SR_{11},\ trifluoromethyl,\ hydroxyl,\ cyano,\ carboxy,\ C_1\text{-}C_4\text{-}alkoxycarbonyl\ and\ -C_1\text{-}C_4\text{-}alkylenehydroxyl,\ or is a heterocycle, which is a saturated, partially unsaturated or aromatic ring containing 5 or 6 ring atoms of which 1, 2 or 3 are identical or different heteroatoms selected from: nitrogen, oxygen, sulfur, and phosphorus, and where the heterocycle is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, <math display="inline">C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy,\ nitro,\ NR_9R_{10},\ SR_{11},\ trifluoromethyl,\ hydroxyl ,\ cyano,\ carboxy,\ -C_1\text{-}C_4alkoxycarbonyl\ and} -C_1\text{-}C_4\text{-}alkylenehydroxyl ;}$

R₂ is hydrogen, C₁-C₆-alkyl, phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, nitro, NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄-alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl, OR₁₁, halogen, cyano, nitro, NR₉R₁₀ or SR₁₁:

5 R₃, R₄ and R₅ are each independently selected from: hydrogen, C₁-C₄.alkyl, halogen, OR₁₁, C₁-C₄.alkylcarbonyloxy, NR₉R₁₀, SO₂NR₉R₁₀, carboxyl, cyano and nitro:

Z is O or S:

10

15

20

25

A is a 5- or 6- membered ring; wherein:

 the 5-membered ring is saturated or unsaturated and represented by any one of the general structures (i) to (v);

wherein X_1 and X_2 are each independently selected from: a carbon atom and a heteroatom selected from: oxygen, sulfur, and nitrogen, provided that at least one of X_1 and X_2 is a heteroatom, and wherein the nitrogen atom is at least monosubstituted by R_{13} , wherein R_{13} is selected from: hydrogen, unsubstituted C_1 - C_6 -alkyl, or C_1 - C_6 -alkyl substituted by halogen, hydroxyl or carboxyl, C_2 - C_6 -alkenyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkylcarbonyl, toluenesulfonyl, cyano, SO_2R_{10} , $-CO(CH_2)_mR_{14}$ and phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and $-C_1$ - C_4 -alkylenehydroxyl; and

R6 is -C1-C4-alkyleneOR11:

30

(II) the 6-membered ring is saturated and of the general structure (vi):

1.5

wherein X_3 is an oxygen atom, a sulfur atom, or a nitrogen atom, wherein the nitrogen atom is at least monosubstituted by R_{13} , wherein R_{13} is selected from: hydrogen, unsubstituted C_1 - C_6 -alkyl, or C_1 - C_6 -alkyl substituted by halogen, hydroxyl, or carboxyl, C_2 - C_6 -alkenyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkylcarbonyl, toluenesulfonyl, cyano, SO_2R_{10} , $-CO(CH_2)_mR_{14}$ and phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and $-C_1$ - C_4 -alkylenehydroxyl;

R₆ is -C₁-C₄-alkyleneOR₁₁;

20 R₉ and R₁₀ are each independently selected from: hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkylcarbonyl, carboxamide and sulfonamide; or

R₉ and R₁₀, together with the nitrogen atom to which they are bonded, form a 3-, 4-, 2-5 or 6-membered heterocyclic ring which can have at least one further heteroatom selected from: nitrogen, oxygen and sulfur, which ring is saturated, partially unsaturated or aromatic, and either unsubstituted or substituted by at least one substituent selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₂-C₆-alkenyl, C₃-C₆-alkynyl, C₂-C₄-alkanoyl, nitro, NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄-alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl; R₁₁ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkanoyl, or C₁-C₄-alkoxycarbonyl;

 $\label{eq:R14} \mbox{$^{\circ}$} R_{14} \mbox{ is hydrogen, C_1-C_4-alkyl, hydroxyl, $-$ NR_9R_{10}$, halogen, $-$SH, or-$S-$C_1$-$C_4$-alkyl; and$

m is an integer of 0 to 6.

A compound of the general formula (Id), or a stereoisomer, optical isomer, pharmaceutically acceptable salt, or pharmaceutically acceptable solvate thereof

$$R_4$$
 R_5
 R_5
 R_6
 R_6
(Id)

wherein

10

15

20

 R_1 is phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy,\ nitro,\ }NR_9R_{10},\ SR_{11}$ trifluoromethyl, hydroxyl, cyano, carboxy, $C_1\text{-}C_4\text{-}alkoxycarbonyl$ and $-C_1\text{-}C_4\text{-}alkylenehydroxyl,\ or$ is a heterocycle, which is a saturated, partially unsaturated or aromatic ring containing 5 or 6 ring atoms of which 1, 2 or 3 are identical or different heteroatoms selected from: nitrogen, oxygen, sulfur, and phosphorus, and where the heterocycle is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy,\ nitro,\ }NR_9R_{10},\ SR_{11},\ trifluoromethyl,\ hydroxyl,\ cyano,\ carboxy,\ C_1\text{-}C_4alkoxycarbonyl\ and} - C_1\text{-}C_4\text{-}alkylenehydroxyl;}$

R₂ is hydrogen, C₁-C₆-alkyl, phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, nitro, NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄-alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl, OR₁₁, halogen, cyano, nitro, NR₉R₁₀ or SR₁₁;

5 R₃, R₄ and R₅ are each independently selected from hydrogen, C₁-C₄-alkyl, C₁-C₄-alkylcarbonyloxy, NR₉R₁₀, SO₂NR₉R₁₀, carboxy, cyano and nitro;

A is a 5- or 6- membered ring; wherein:

 (I) the 5-membered ring is saturated or unsaturated and represented by any one of the general structures (i) to (iv);

15

20

wherein X_1 is either a carbon atom or a heteroatom selected from: oxygen, sulfur, and nitrogen, except that in structures (ii) and (iv) X_1 is either a carbon atom or a nitrogen atom, and wherein R_{13} is selected from: hydrogen, unsubstituted C_1 - C_6 -alkyl, or C_1 - C_6 -alkyl substituted by halogen, hydroxyl or carboxyl, C_2 - C_6 -alkenyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkylcarbonyl, toluenesulfonyl, cyano, SO_2R_{10} and — $CO(CH_2)_mR_{14}$, phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and $-C_1$ - C_4 -alkylenehydroxyl;

25

R6 is -C1-C4-alkyleneOR11;

(II) the 6-membered ring is saturated and represented by the general structure (vi):

10

wherein R_{13} is selected from: hydrogen, unsubstituted $C_1\text{-}C_6\text{-}alkyl$, or $C_1\text{-}C_6\text{-}alkyl$ substituted by halogen, hydroxyl, or carboxyl, $C_2\text{-}C_6\text{-}alkenyl$, hydroxyl, $C_1\text{-}C_6\text{-}alkyl$, or Carboxyl, $C_2\text{-}C_6\text{-}alkenyl$, hydroxyl, $C_1\text{-}C_6\text{-}alkyl$, cyano, SO_2R_{10} , $-CO(CH_2)_mR_{14}$, and phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, $C_1\text{-}C_4\text{-}alkyl$, $C_1\text{-}C_4\text{-}alkoxy$, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, $C_1\text{-}C_4\text{-}alkoxy$ carbonyl and $-C_1\text{-}C_4\text{-}alkyl$ enehydroxyl:

15 R₆ is -C₁-C₄-alkyleneOR₁₁;

 R_9 and R_{10} are each independently selected from: hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylcarbonyl, carboxamide and sulfonamide: or

20

25

 R_9 and R_{10} , together with the nitrogen atom to which they are bonded, form a 3-, 4-, 5- or 6-membered heterocyclic ring which can have at least one further heteroatom selected from: nitrogen, oxygen and sulfur, which ring is saturated, partially unsaturated or aromatic and either unsubstituted or substituted by at least one substituent selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_2 - C_6 -alkenyl, C_3 - C_6 -alkoyl, C_2 - C_6 -alkoyl, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and C_1 - C_4 -alkylenehydroxyl;

 $R_{11} \text{ is hydrogen, } C_1\text{-}C_4\text{-alkyl, } C_1\text{-}C_4\text{-alkanoyl, or } C_1\text{-}C_4\text{-alkoxycarbonyl;}$

30

 $R_{14} \ is \ hydrogen, C_1-C_4-alkyl, \ hydroxyl, \ -NR_9R_{10}, halogen, \ -SH, \ or-S-C_1-C_4-alkyl; \ and$

m is an integer of 0 to 6.

 A compound of the general formula (le), or a stereoisomer, optical isomer, pharmaceutically acceptable salt, or pharmaceutically acceptable solvate thereof

10

15

20

wherein

 R_1 is phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 – C_4 -alkyl, C_1 – C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 – C_4 -alkoxycarbonyl and – C_1 - C_4 -alkylenehydroxyl, or is a heterocycle, which is a saturated, partially unsaturated or aromatic ring containing 6 ring atoms of which 1, 2 or 3 are identical or different heteroatoms selected from: nitrogen, oxygen and sulfur, and where the heterocycle is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 – C_4 -alkyl, C_1 – C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 – C_4 alkoxycarbonyl and – C_1 – C_4 -alkylenehydroxyl;

R₂ and R₄ are hydrogen:

25 R₃ and R₅ are each independently selected from: hydroxyl, C₁-C₄-alkoxyl and C₁-C₄alkylcarbonyloxy;

10

15

20

25

A is a 5- or 6- membered ring; wherein:

(I) the 5-membered ring is saturated or unsaturated and represented by any one of the general structures (i) to (iv);

wherein X_1 is either a carbon atom or a heteroatom selected from: oxygen, sulfur, and nitrogen, except that in structures (ii) and (iv) X_1 is either a carbon atom or a nitrogen atom, and wherein R_{13} is selected from: hydrogen, unsubstituted C_1 - C_6 -alkyl, or C_1 - C_6 -alkyl substituted by halogen, hydroxyl, or carboxyl, C_2 - C_6 -alkoyl, hydroxyl, C_1 - C_6 -alkoyl, C_1 - C_4 -alkylcarbonyl, toluenesulfonyl, cyano, SO_2R_{10} , $CO(CH_2)_mR_{14}$ and phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_3R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and $-C_1$ - C_4 -alkylenehydroxyl:

R6 is -C1-C4-alkyleneOR11;

(II) the 6-membered ring is saturated and of the general structure (vi):

wherein R₁₃ is selected from: hydrogen, unsubstituted C₁-C₆-alkyl, or C₁-C₆-alkyl substituted by halogen, hydroxyl, or carboxyl, C₂-C₆-alkenyl, hydroxyl, C₁-C₆-alkoxy, C₁-C₄-alkylcarbonyl, toluenesulfonyl, cyano, SO₂R₁₀, ,-CO(CH₂)_mR₁₄, and phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, nitro, NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄-alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl;

R₆ is -C₁-C₄-alkyleneOR₁₁;

R₉ and R₁₀ are each independently selected from: hydrogen, C₁-C_{4-alkyl}, C₁-C₄

 R_9 and R_{10} , together with the nitrogen atom to which they are bonded, form a 3-, 4-, 5- or 6-membered heterocyclic ring which can have at least one further heteroatom selected from: nitrogen, oxygen and sulfur, which ring is saturated, partially unsaturated or aromatic and either unsubstituted or substituted by at least one substituent selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_2 - C_6 -alkonyl, C_3 - C_6 -alkonyl, C_2 - C_4 -alkoxyl, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and $-C_1$ - C_4 -alkylenehydroxyl;

25

20

R₁₁ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkanoyl, or C₁-C₄-alkoxycarbonyl;

 R_{14} is hydrogen, $C_1\text{--}C_4\text{--alkyl},\ hydroxyl,\ -\ NR_9R_{10},\ halogen,\ -SH,\ or-S-\ C_1\text{--}C_4\text{-alkyl};$ and

30 m is an integer of 0 to 6.

 A compound of the general formula (If), or a stereoisomer, optical isomer, pharmaceutically acceptable salt, or pharmaceutically acceptable solvate thereof

$$R_4$$
 R_5
 R_6
 R_{13}
 R_{13}

wherein

5

10

15

 R_1 is phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy,\ nitro,\ NR_9R_{10},\ SR_{11},\ trifluoromethyl,\ hydroxyl,\ cyano,\ carboxy,\ C_1\text{-}C_4\text{-}alkoxycarbonyl\ and\ -C_1\text{-}C_4\text{-}alkylenehydroxyl,\ or is\ a\ heterocycle,\ which is\ a\ saturated,\ partially\ unsaturated\ or\ aromatic\ ring\ containing\ 6\ ring\ atoms\ of\ which\ 1,\ 2\ or\ 3\ are\ identical\ or\ different\ heteroatoms\ selected\ from:\ nitrogen,\ oxygen\ and\ sulfur,\ and\ where\ the\ heterocycle\ is\ unsubstituted\ or\ substituted\ by\ 1,\ 2,\ or\ 3\ identical\ or\ different\ substituents\ selected\ from:\ halogen,\ C_1\text{-}C_4\text{-}alkoxy,\ nitro,\ NR_9R_{10},\ SR_{11},\ trifluoromethyl,\ hydroxyl,\ cyano,\ carboxy,\ C_1\text{-}C_4\text{-}alkoxycarbonyl\ and\ -C_1\text{-}C_4\text{-}alkylenehydroxyl\ };$

R₂ and R₄ are hydrogen;

20 R₃ and R₅ are each independently selected from: hydroxyl, C₁-C₄-alkoxyl and C₁-C₄-alkylcarbonyloxy;

R₆ is -C₁-C₄-alkylenehydroxyl;

25 R₉ and R₁₀ are each independently selected from: hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkylcarbonyl, carboxamide and sulfonamide: or

R₉ and R₁₀, together with the nitrogen atom to which they are bonded, are a 3-, 4-, 30 5- or 6-membered heterocyclic ring which can have at least one further heteroatom selected from: nitrogen, oxygen and sulfur, which ring is saturated,

- 5 partially unsaturated or unsaturated and either unsubstituted or substituted by at least one substituent selected from: halogen, C1-C4-alkvl, C1-C4-alkoxv, C2-C6alkenyl, C3-C6-alkynyl, C2-C4-alkanoyl, nitro, NR9R10, SR11 trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄-alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl;
- 10 R₁₁ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkanoyl, or C₁-C₄-alkoxycarbonyl; and

R₁₃ is hydrogen or C₁-C₄ -alkyl.

15 5. A compound of the general formula (Ig), or a stereoisomer, optical isomer, pharmaceutically acceptable salt, or pharmaceutically acceptable solvate thereof

$$\begin{array}{c|c}
R_3 & \overline{Z} \\
R_5 & O & R_1 \\
\hline
A & R_6 \\
(Ig)
\end{array}$$

20

30

wherein

R₁ is phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, nitro, NR₉R₁₀, SR₁₁ trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄alkoxycarbonyl and -C₁-C₄-25 alkylenehydroxyl, or is a heterocycle, which is a saturated, partially unsaturated or aromatic ring containing 5 or 6 ring atoms of which 1, 2 or 3 are identical or different heteroatoms selected from: nitrogen, oxygen, sulfur and phosphorus, and where the heterocycle is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C1-C4-alkyl, C1-C4-alkoxy, nitro. NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl;

5 R₂ is hydrogen, C₁-C₆-alkyl, phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, nitro, NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl, OR₁₁, halogen, cyano, nitro, NR₉R₁₀ or SR₁₁;

10

 R_3 , R_4 and R_5 are each independently selected from: hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkylcarbonyloxy, NR_9R_{10} , $SO_2NR_9R_{10}$, carboxyl, cyano and nitro;

15 Z is O or S;

A is a 5-membered saturated ring represented by any one of the general structures (i) to (v);

20

25

30

wherein X_1 and X_2 are each independently selected from: a carbon atom and a heteroatom selected from: oxygen, sulfur, and nitrogen, provided that at least one of X_1 and X_2 is a heteroatom, and wherein the nitrogen atom is at least monosubstituted by R_{13} , wherein R_{13} is selected from: hydrogen, unsubstituted C_1 - C_6 -alkyl, or C_1 - C_6 -alkyl substituted by halogen, hydroxyl, or carboxyl, C_2 - C_6 -alkenyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkylcarbonyl, toluenesulfonyl, SO_2R_{10} . — $CO(CH_2)_mR_{14}$, cyano, phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and $-C_1$ - C_4 -alkylenehydroxyl;

 R_6 is hydrogen, $C_1\text{-}C_4\text{-alkyl}$, $-C_1\text{-}C_4\text{-alkanoyl}$, hydroxyl, $C_1\text{-}C_4\text{-alkoxyl}$, $-C_1\text{-}C_4$ alkoxycarbonyl, $-C_1\text{-}C_4\text{-alkyleneOR}_{11}$, $-C_1\text{-}C_4\text{-alkylenehalo}$, $-C_1\text{-}C_4\text{-alkyleneNR}_9R_{10}$, $C_1\text{-}C_4\text{-alkyleneC(O)OR}_9$, phenoxy, $-NR_9R_{10}$, SR_{12} , $S(O)_nR_{12}$, $-C(O)R_{12}$ or $-C(S)R_{12}$;

10

 R_9 and R_{10} are each independently selected from: hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkanoyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylcarbonyl, carboxamide and sulfonamide: or

15 R₉ and R_{10,} together with the nitrogen atom to which they are bonded, form a 3-, 4-, 5- or 6-membered heterocyclic ring which can have at least one further heteroatom selected from: nitrogen, oxygen and sulfur, which ring is saturated, partially unsaturated or aromatic and either unsubstituted or substituted by at least one substituent selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₂-C₆-alkenyl, C₂-C₆-alkenyl, C₁-C₄-alkoxyl, C₂-C₆-alkenyl, nitro, NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄-alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl;

R₁₁ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkanoyl, or C₁-C₄-alkoxycarbonyl;

25 R₁₂ is hydrogen, halogen, C₁-C₄-alkyl, -NR₉R₁₀, or OR₉;

R₁₄ is hydrogen, C₁-C₄-alkyl, hydroxyl, -NR₉R₁₀, halogen, -SH, or-S- C₁-C₄-alkyl;

m is an integer of 0 to 6; and

30

n is an integer of 1 or 2.

 A compound of the general formula (Ig) as claimed in claim 5, wherein X₁ is carbon and X₂ is nitrogen substituted by R₁₃, wherein R₁₃ is as defined. A compound of general formula (Ih), or a stereoisomer, optical isomer, pharmaceutically acceptable salt, or pharmaceutically acceptable solvate thereof

10 wherein

15

20

 R_1 is phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and - C_1 - C_4 -alkylenehydroxyl, or is a heterocycle, which is a saturated, partially unsaturated or aromatic ring containing 6 ring atoms of which 1, 2 or 3 are identical or different heteroatoms selected from: nitrogen, oxygen and sulfur, and where the heterocycle is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and - C_1 - C_4 -alkylenehydroxyl;

R₂ and R₄ are hydrogen;

R₃ and R₅ are each independently selected from: hydroxyl, C₁-C₄-alkoxyl and C₁25 C₄-alkylcarbonyloxy;

5 A is a 5-membered saturated ring represented by any one of the general structures (i) to (v);

10

15

20

wherein X_1 and X_2 are each independently selected from: a carbon atom and a heteroatom selected from: oxygen, sulfur, and nitrogen, provided that at least one of X_1 and X_2 is a heteroatom, and wherein the nitrogen atom is at least monosubstituted by R_{13} , wherein R_{13} is selected from: hydrogen, unsubstituted C_1 - C_6 -alkyl, or C_1 - C_6 -alkyl substituted by halogen, hydroxyl, or carboxyl, C_2 - C_6 -alkenyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkylcarbonyl, toluenesulfonyl, cyano, SO_2R_{10} ,— $CO(CH_2)_mR_{14}$ and phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and $-C_1$ - C_4 -alkylenehydroxyl;

 R_{δ} is hydrogen, $C_1\text{-}C_4\text{-}alkyl,$ $-C_1\text{-}C_4\text{-}alkanoyl,$ hydroxyl, $C_1\text{-}C_4\text{-}alkoxyl,$ $-C_1\text{-}C_4$ -alkoxycarbonyl, $-C_1\text{-}C_4\text{-}alkyleneOR_{11},$ $-C_1\text{-}C_4\text{-}alkylenehalo,}$ $-C_1\text{-}C_4\text{-}alkyleneNR_9R_{10}$, $-C_1\text{-}C_4\text{-}alkyleneC(O)OR_{9}$, phenoxy, $-NR_9R_{10}$, SR_{12} , $S(O)_nR_{12}$, $-C(O)R_{12}$ or -C(S) R_{12} :

 $R_9 \ and \ R_{10} \ are \ each \ independently \ selected \ from: \ hydrogen, \ C_1-C_4.alkyl, \ C_1-C_4.$

30

sulfonamide: or

25

 $R_{\rm 9}$ and $R_{\rm 10}$, together with the nitrogen atom to which they are bonded, form a 3-, 4-, 5- or 6-membered heterocyclic ring which can have at least one further

5 heteroatom selected from: nitrogen, oxygen and sulfur, which ring is saturated, partially unsaturated or aromatic, and either unsubstituted or substituted by at least one substituent selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₂-C₆-alkenyl, C₃-C₆-alkynyl, C₂-C₄-alkanoyl, nitro, NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄-alkoxycarbonyl and -C₁-C₄-alkylenehydroxyl;

10
R₁₁ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkanoyl or C₁-C₄-alkoxycarbonyl;

R₁₂ is hydrogen, halogen, C₁-C₄-alkyl, - NR₉R₁₀, or OR₉;

15 R₁₄ is hydrogen, C₁-C₄-alkyl, hydroxyl, - NR₉R₁₀, halogen, -SH, or-S- C₁-C₄-alkyl;

m is an integer of 0 to 6; and

n is an integer of 1 or 2.

20

8. A compound of general formula (li), or a stereoisomer, optical isomer, pharmaceutically acceptable salt, or pharmaceutically acceptable solvate thereof

25

30

wherein

 R_1 is phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 alkoxycarbonyl and - C_1 - C_4 -alkylenehydroxyl, or is a heterocycle, which is a saturated, partially unsaturated or aromatic ring containing 6 ring atoms of which 1, 2 or 3 are identical or different

5 heteroatoms selected from: nitrogen, oxygen and sulfur, and where the heterocycle is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, nitro, NR₉R₁₀, SR₁₁, trifluoromethyl, hydroxyl, cyano, carboxy, C₁-C₄alkoxycarbonyl and -C₁-C₄alkylenehydroxyl;

10

R₂ and R₄ are hydrogen;

 R_3 and R_5 are each independently selected from: hydroxyl, C_1 - C_4 -alkoxyl and C_4 - C_4 -alkylcarbonyloxy;

15

A is a 5-membered saturated ring represented by any one of the general structures (i) to (iv);

20

25

30

wherein X_1 is either a carbon atom or a heteroatom selected from: oxygen, sulphur, and nitrogen, except that in structures (ii) and (iv) X_1 is either a carbon atom or a nitrogen atom, and wherein R_{13} is selected from: hydrogen, unsubstituted C_1 - C_6 -alkyl, or C_1 - C_6 -alkyl substituted by halogen, hydroxyl, or carboxyl, C_2 - C_6 -alkenyl, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkylcarbonyl, toluenesulfonyl, cyano, SO_2R_{10} , $-CO(CH_2)_mR_{14}$ and phenyl, which is unsubstituted or substituted by 1, 2, or 3 identical or different substituents selected from: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, NR_9R_{10} , SR_{11} , trifluoromethyl, hydroxyl, cyano, carboxy, C_1 - C_4 -alkoxycarbonyl and $-C_1$ - C_4 -alkylenehydroxyl;

5 R_6 is hydrogen, C_1 - C_4 -alkyl, $-C_1$ - C_4 -alkanoyl, hydroxyl, C_1 - C_4 -alkoxyl, $-C_1$ - C_4 -alkyleneOR $_9$ R $_{10}$, $-C_1$ - C_4 -alkyleneOR $_9$ R $_{10}$, $-C_1$ - C_4 -alkyleneC(O)OR $_9$, phenoxy $-NR_9R_{10}$, SR_{12} , $S(O)_nR_{12}$, $-C(O)R_{12}$ or $-C(S)R_{12}$.

10 R₉ and R₁₀ are each independently selected from: hydrogen, C₁-C₄-alkyl, C₁-C₄. alkanoyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkylcarbonyl, carboxamide and sulfonamide; or

 R_{θ} and R_{10} , together with the nitrogen atom to which they are bonded, form a 3-, 4-, 5- or 6-membered heterocyclic ring which can have at least one further heteroatom selected from: nitrogen, oxygen and sulfur, which ring is saturated, partially unsaturated or aromatic and either unsubstituted or substituted by at least one substituent selected from: halogen, $C_1\text{-}C_4\text{-alky}$, $C_1\text{-}C_4\text{-alkoxy}$, $C_2\text{-}C_6\text{-alkeny}$, $C_3\text{-}C_6\text{-alkeny}$, $C_3\text{-}C_6\text{-alkeny}$, $C_3\text{-}C_6\text{-alkeny}$, and $C_1\text{-}C_4\text{-alkoxy}$, $C_2\text{-}C_6\text{-alkeny}$, and $C_1\text{-}C_4\text{-alkoxy}$, $C_2\text{-}C_6\text{-alkeny}$, and $C_1\text{-}C_4\text{-alkoxy}$, cyano, carboxy, $C_1\text{-}C_4\text{-alkoxy}$ and $C_1\text{-}C_4\text{-alkoy}$, and $C_1\text{-}C_4\text{-alkoy}$.

R₁₁ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkanoyl, or C₁-C₄-alkoxycarbonyl;

R₁₂ is hydrogen, halogen, C₁-C₄-alkyl, -NR₉R₁₀ or OR₉;

25

35

15

20

R₁₄ is hydrogen, C₁-C₄-alkyl, hydroxyl, -NR₉R₁₀, halogen, -SH, or-S- C₁-C₄.alkyl;

m is an integer of 0 to 6; and

30 n is an integer of 1 or 2.

9. A compound as claimed in claim 1, wherein R_1 is phenyl or pyridinyl, substituted by 1, 2 or 3 identical or different substituents selected from: halogen and nitro, R_2 and R_4 are hydrogen, R_3 and R_5 are hydroxyl, A is a saturated 5-membered ring represented by any one of the general structures (i) to (v), wherein X_1 , X_2 , R_5 and R_{13} are as defined.

- 5 10. A compound as claimed in claim 1, wherein R₁ is phenyl or pyridinyl, substituted by 1, 2 or 3 identical or different substituents selected from: halogen and nitro, R₂ and R₄ are hydrogen, R₃ and R₅ are hydroxyl, A is a saturated 5-membered ring represented by any one of the general structures (i) to (v), wherein X₁ is carbon, X₂ is nitrogen, R₆ is -C₁-C₄-alkylenehydroxyl, and R₁₃ is C₁-C₄-alkyl.
- A compound of the general formula (lg) as claimed in claim 5, which is:
 (+/-)-trans-2-(2-Chloro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one:
 - (+)-trans-2-(2-Chloro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-
- 15 dimethoxy-chromen-4-one;

- (+)-trans-2-(2-Chloro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- (-)-trans-2-(2-Chloro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
- (-)-trans-2-(2-Chloro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methylpyrrolidin-3-yl)-chromen-4-one;
 - $\label{eq:continuous} (+)-\textit{trans}-2-(2-Bromo-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;$
 - (+)-trans-2- (2-Bromo-phenyl)-5, 7-dihydroxy-8-(2-hydroxymethyl-1-meth
- 25 pyrrolidin-3-yl)-chromen-4-one;
 - (+)-trans-2-(4-Bromo-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(4-Bromo-phenyl)-5-hydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-7-methoxy-chromen-4-one;
- 30 (+)-trans-2-(4-Bromo-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+)-trans-2-(3-Chloro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(3-Chloro-phenyl)-5-hydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-
- 35 yl)-7-methoxy-chromen-4-one;
 - (+)-trans-2-(3-Chloro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;

- 5 (+)-trans-8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-(2-iodo-phenyl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-(2-iodo-phenyl)-chromen-4-one;
 - (+)-trans-2-(2-Fluoro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-
- 10 dimethoxy-chromen-4-one;
 - (+)-trans-2-(2-Fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+)-trans-2-(3-Fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- 15 (+)-trans-2-(3-Fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+)-trans-2-(2,6-Difluoro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(2,6-Difluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-m
- 20 pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-4-[8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-4-oxo-4H-chromen-2-yl]-benzonitrile;
 - (+/-)-trans-4-[5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-yl]-benzonitrile;
- 25 (+)-trans-4-[8-(2-Hydroxymethyl-1-methyl-pyrrollidin-3-yl)-5,7-dimethoxy-4-oxo-4H-chromen-2-yl]-benzonitrile;
 - (+)-trans-4-[5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-yl]-benzonitrile;
 - (+/-)-trans-8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-2-(4-
- 30 trifluoromethyl-phenyl)-chromen-4-one;
 - (+/-)-trans-5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-(4-trifluoromethyl-phenyl)-chromen-4-one;
 - (+)-trans-8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-2-(4-trifluoromethyl-phenyl)-chromen-4-one:
- 35 (+)-trans-5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-(4-trifluoromethyl-phenyl)-chromen-4-one;

- (-)-trans-8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-2-(4-trifluoromethyl-phenyl)-chromen-4-one;
 - (-)-trans-5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-(4-trifluoromethyl-phenyl)-chromen-4-one;
 - $(+) \textit{trans} 8 (2 Hydroxymethyl 1 methyl pyrrolidin 3 yl) 5, \\ 7 dimethoxy 2 phenyl 1, \\ 7 dimethoxy 2 phe$
- 10 chromen-4-one:
 - (+)-trans-5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-phenyl-chromen-4-one;
 - (+)-trans-8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-2-thiophen-2-yl-chromen-4-one;
- 15 (+)-trans-5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-thiophen-2-yl-chromen-4-one;
 - (+)-trans-4-[5,7-Dihydroxy-8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-yl]-3-methyl-benzonitrile;
 - (+)-trans-4-[8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-5,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-5,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethoxy-4-oxo-4H-dimethyl-pyrrolidin-3-yl)-6,7-dimethyl-pyrrolidin-3-yl)-6,7-dimethyl-pyrrolidin-3-yl-qimethyl-pyrrolidin-3-yl-qimethyl-pyrrolidin-3-yl-qimethyl-pyrrolidin-3-yl-qimethyl-pyrrolidin-3-yl-qimethyl-pyrrolidin-3-yl-qimethy
- 20 chromen-2-yl]-3-methyl-benzonitrile;
 - (+/-)-trans-2-(2-Bromo-5-methoxy-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin 3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-2-(2-Bromo-5-methoxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- 25 (+)-trans-2-(2-Bromo-5-methoxy-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(2-Bromo-5-methoxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-(2-Bromo-5-hydroxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-
- 30 methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+)-trans-2-(2-Bromo-5-hydroxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-[(3,5-Bis-trifluoromethyl)-phenyl]-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
- 35 (+/-)-trans-2-[(3,5-Bis-trifluoromethyl)-phenyl]-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;

- 5 (+)-trans-2-(2-Chloro-5-methyl-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(2-Chloro-5-methyl-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+)-trans-2-(2-Bromo-5-nitro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-3-(2-hydroxymethyl-pyrrolidin-3-yl)-3-(2-hydroxymethyl-pyrrolidin-3-y
- 10 5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-2-(2-Bromo-5-nitro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dihydroxy-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-pyridin-3-yl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5.7-dimethoxy-chromen-4-one:
- 15 (+/-)-trans-2-(2-Chloro-pyridin-3-yl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-(2-Bromo-5-nitrophenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dihydroxy-chromen-4-one;
 - (+)-trans-2-(2-Chloro-pyridin-3-yl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-
- 20 pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-2-(4-nitrophenyl)-4H-chromen-4-one;
 - (+/-)-trans-5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-(4-nitrophenyl)-chromen-4-one;
- 25 (+/-)-trans-2-(4-Aminophenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-8-(2-Hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-2-(2-methoxy-phenyl)-chromen-4-one;
 - (+/-)-trans-5,7-Dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-2-(2-
- 30 hydroxy-phenyl)-chromen-4-one;
 - (+)-trans-3-Chloro-4-[8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-4-oxo-4H-chromen-2-yl|-benzonitrile;
 - (+)-trans-3-Chloro-4-[5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-yl]-benzonitrile;
- 35 (+)-trans-2-(4-Bromo-2-chloro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;

- 5 (+)-trans-2-(4-Bromo-2-chloro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-4-dimethylamino-phenyl)-8-(2-hydroxymethyl-1-methylpyπolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-4-methylamino-phenyl)-5,7-dihydroxy-8-(2-hydroxy
- 10 methyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-4-methoxy-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-4-hydroxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- 15 (+/-)-trans-2-(2-Chloro-5-fluoro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-5-fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - $(+\slashed{likelihood}) 8 (2 \text{Chloro-}5 \text{methoxy-phenyl}) 8 (2 \text{hydroxymethyl-}1 \text{methyl-pyrrolidin-}1) (2 \text{hydroxymethyl-}1 \text{hydroxymethyl-}1) (2 \text{hydroxymethyl-}1 \text{hydroxymethyl-}1 \text{hydroxymethyl-}1) (2 \text{hydroxymethyl-}1 \text{hydroxymethyl-}1) (2 \text{hydrox$
- 20 3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-5-hydroxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-5-methoxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- 25 (+/-)-trans-8-(2-Azidomethyl-1-methyl-pyrrolidin-3-yl)-2-(2-chloro-phenyl)-5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-8-(2-Aminomethyl-1-methyl-pyrrolidin-3-yl)-2-(2-chloro-phenyl)-5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-8-(2-Aminomethyl-1-methyl-pyrrolidin-3-yl)-2-(2-chloro-phenyl)-5,7-
- 30 dihydroxy-chromen-4-one;
 - (+/-)-trans-3-{[2-(2-Chloro-phenyl)-5,7-dimethoxy-4-oxo-4H-chromen-8-yl]-1-methyl-pyrrolidin-2-yl}-acetonitrile:
 - (+/-)-trans-{3-[2-(2-Chloro-phenyl)-5,7-dihydroxy-4-oxo-4H-chromen-8-yl]-1-methyl-pyrrolidin-2-vl]-acetonitrile:
- 35 (+/-)-trans-2-(2-Chloro-phenyl)-8-(2-imidazol-1-ylmethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;

- 5 (+/-)-trans-2-(2-Chloro-phenyl)-5,7-dihydroxy-8-(2-imidazol-1-ylmethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-[2-Chloro-phenyl-8-(2-mercaptomethyl-1-methyl-pyrrolidin-3-yl)]-5,7-dimethoxy-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-phenyl)-5, 7-dihydroxy-8-(2-mercaptomethyl-1-meth
- 10 pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans- Acetic acid 3-[2-(2-chloro-phenyl)-5,7-dimethoxy-4-oxo-4H-chromen-8-yl]-1-(4-methoxy-phenyl)-pyrrolidin-2-ylmethyl ester;
 - (+/-)-trans-2-(2-Chloro-phenyl)-8-[2-hydroxymethyl-1-(4-methoxy-phenyl)-pyrrolidin-3-yl]-5,7-dimethoxy-chromen-4-one;
- 15 (+/-)-trans-2-(2-Chloro-phenyl)-5,7-dihydroxy-8-[2-hydroxymethyl-1-(4-methoxy-phenyl)-pyrrolidin-3-yl]-chromen-4-one;
 - (+/-)-trans-Acetic acid-3-[2-(2-chloro-phenyl)-5,7-dimethoxy-4-oxo-4H-chromen-8-yl]-1-propyl-pyrrolidin-2-ylmethyl ester;
- 20 dimethoxy-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-propyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-(2-Chloro-4-nitro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-v))-chromen-4-one;
- 25 (+/-)-trans-2-(2-Bromo-4-nitro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-3-Chloro-4-[5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-yll-benzoic acid;
 - (+/-)-trans-3-Bromo-4-[5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-
- 30 4-oxo-4H-chromen-2-yl]-benzoic acid;
 - (+/-)-trans-2-(2-Chloro-4-fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-2-(4-Amino-2-chloro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-ovrrolidin-3-vl)-chromen-4-one:
- 35 (+/-)-trans-2-(2-Bromo-4-fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;

- 5 (+/-)-trans-2-(4-Amino-2-bromo-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+/-)-trans-4-Chloro-3-[5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H- chromen-2-yll-benzoic acid;
 - $(+\slashed{likelihood} -1-\slashed{likelihood} -1-\slashed{likelihoodd} -1-\slashed{likelih$
- 10 4-oxo-4H-chromen-2-yl]-benzoic acid;
 - (+/-)-trans-4-Bromo-3-[5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-vll-N-hydroxy-benzamide:
 - (+/-)-trans-4-Chloro-3-[5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-yl|-N-hydroxy-benzamide;
- 15 (+/-)-trans-3-Chloro-4-[5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-yll-N-hydroxy-benzamide;
 - (+/-)-trans-3-Bromo-4-[5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-4-oxo-4H-chromen-2-yl]-N-hydroxy-benzamide; or
 - (+/-)-trans-2-(2,4-Difluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-vl)-chromen-4-one:
 - (+)-trans-2-(2-Chloro-3-fluoro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one:
 - (+)-trans-2-(2-Chloro-3-fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- 25 (+)-trans-2-(2-Bromo-3-fluoro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(2-Bromo-3-fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+)-trans-2-(2-Bromo-5-fluoro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-
- 30 yl)-5,7-dimethoxy-chromen-4-one;

2.0

- (+)-trans-2-(2-Bromo-5-fluoro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- (+)-trans-2-(2-Chloro-5-iodo-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
- 35 (+)-trans-2-(2-Chloro-5-iodo-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;

- 5 (+)-trans-2-(2-Bromo-5-chloro-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(2-Bromo-5-chloro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - $(+\slashed{l-l-1}-trans-2-(2-Chloro-phenyl)-5, 7-dihydroxy-8-(2-hydroxymethyl-1-methyl-1-oxy-1-methyl-1-methyl-1-oxy-1-methyl-1-methyl-1-methyl-1-oxy-1-methyl-1-me$
- pyrrolidin-3-yl)-chromen-4-one;
 (+)-trans-2-(2-Bromo-4-nitro-phenyl)-8-(2-hydroxymethyl-1-methylpyrrolidin-3-yl)-
 - 5,7-dimethoxy-chromen-4-one;
 - (+)-trans- 2-(2-Bromo-4-nitro-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- 15 (+)-trans-2-(4-Amino-2-bromo-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(4-Amino-2-bromo-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
 - (+)-trans-2-(2-Bromo-4-methoxy-phenyl)-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one;
 - (+)-trans-2-(2-Bromo-4-methoxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one:

30

- (+)-trans-2-(2-Bromo-4-hydroxy-phenyl)-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one;
- 25 (+)-trans -Acetic acid 8-(2-acetoxymethyl-1-methyl-pyrrolidin-3-yl)-5-hydroxy-2-(4-nitro-phenyl)-4-oxo-4H-chromen-7-yl ester;
 - (+)-trans-2-(2,4-Dichloro-5-fluoro-phenyl)-8-(2-hydroxymethyl-1- methyl-pyrrolidin-3-yl)-5,7-dimethoxy-chromen-4-one; or
 - (+)-trans-2-(2,4-Dichloro-5-fluoro-phenyl-5,7-dihydroxy-8-(2-hydroxymethyl-1-methyl-pyrrolidin-3-yl)-chromen-4-one.
 - 12. A pharmaceutical composition, comprising a therapeutically effective amount of a compound of general formula (Ic) as claimed in claim 1, or a pharmacologically acceptable salt thereof, and a pharmaceutically acceptable carrier.

13. A pharmaceutical composition, comprising a therapeutically effective amount of a compound of general formula (Ic) as claimed in claim 1, or a pharmacologically acceptable salt thereof, and at least one further pharmaceutically active compound, together with a pharmaceutically acceptable carrier.

10

15

20

- 14. A method of inhibiting cyclin-dependent kinases, comprising administering an effective amount of a compound of the formula (Ic) as claimed in claim 1.
- 15. A method for the treatment or prevention of disorders associated with excessive cell proliferation in a mammal, comprising administering to said mammal a therapeutically effective amount of the pharmaceutical composition as claimed in claim 12.
- 16. A method for the treatment or prevention of disorders associated with excessive cell proliferation in a mammal, comprising administering to said mammal a therapeutically effective amount of the compound of the formula (Ic) as claimed in claim 1, or a pharmaceutically acceptable salt thereof.
- 17. A method for the treatment or prevention of disorders associated with excessive cell proliferation in a mammal, comprising administering either sequentially or simultaneously to said mammal a therapeutically effective amount of the compound of the formula (Ic) as claimed in claim 1, or a pharmaceutically acceptable sait thereof, and at least one other pharmaceutically active compound.
 - 18. A method for the treatment or prevention of disorders associated with dedifferentiation of a differentiated cell population in a mammal, comprising administering to said mammal a therapeutically effective amount of the compound of the formula (Ic) as claimed in claim 1, or a pharmaceutically acceptable salt thereof.

35

30

19. A method for the treatment or prevention of cancer in a mammal which comprises administering to said mammal a therapeutically effective amount of the

- 5 compound of the formula (Ic) as claimed in claim 1, or a pharmaceutically acceptable salt thereof.
 - 20. A process for the preparation of a compound of general formula (Ic), as claimed in claim 1, or a pharmaceutically acceptable salt thereof:

$$R_4$$
 R_5
 R_5
 R_6
 R_6
(Ic)

wherein

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and A are as defined, which process comprises reacting a compound of formula (XA):

$$R_4$$
 R_5
 R_6
 R_6
 R_6

15

or a compound of formula (XIIA):

wherein in each case R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and A are as defined, with an organic or inorganic base, subsequently adding an acid to the reaction mixture capable of effecting cyclization, then adding an organic or inorganic base, and, if appropriate, converting the compound of formula (Ic) into a pharmaceutically acceptable salt.

21. A process according to claim 20, wherein the compound of formula (XIIA) is obtained by reacting a compound of formula (XIA)

$$R_4$$
 R_5 O R_2 R_6 O

XIA

wherein R_2 , R_3 , R_4 , R_5 , R_6 and A are as defined above, with a carboxylic acid ester, an acid halide, or an activated ester in the presence of an organic or inorganic base in organic or inorganic solvent.

22. A process for the preparation of a compound of formula (XIIIA) or a pharmaceutically acceptable salt thereof:

15

20

5

wherein R_1 , R_2 , R_3 , R_4 , R_5 and R_{13} are as defined in claim 1, comprising reacting a compound of formula (VIIA)

- wherein R₁, R₂, R₃, R₄ , R₅ and R₁₃ are as defined in claim 1, with a reagent suitable to effect replacement of the –OH group on the piperidino ring by a leaving group, in the presence of an organic or inorganic base, followed by adding a suitable organic base in the presence of a suitable organic solvent to effect contraction of the piperidino ring, and, if appropriate, converting the resultant compound of formula (XIII) into a pharmaceutically acceptable salt.
 - 23. A process for the resolution of a compound of general formula (VIII A) or a pharmaceutically acceptable salt thereof:

VIII A

wherein R_3 , R_4 , R_5 , R_6 and A are as defined in claim 1, which process comprises reacting the racemic compound(VIIIA) with a chiral auxiliary in the presence of a solvent, crystallising out the required diastereomeric salt and subsequently treating with a base to obtain the desired enantiomer of compound of formula (VIII A).

10