Approximation von Ableitungen mittels finiter Differenzen

Marisa Breßler und Anne Jeschke

08.11.2019

Inhaltsverzeichnis

1	Einleitung	2
2	Theorie 2.1 Vom Differenzen- zum Differentialquotienten und umgekehrt	3 4 5
3	Experimente und Beobachtungen	7
4	Auswertung	13
5	Zusammenfassung und Ausblick	14
Lit	teratur	14

1 Einleitung

Im Gegensatz zur Analysis bietet die Numerik praktikable Näherungen an Real- bzw. Idealbilder. Die Güte dieser Näherung ist im Minimum abschätzbar, bleibt also unterhalb einer beweisbaren Toleranzgrenze.

Ableitungen von Funktionen spielen in der Praxis eine große Rolle. So dienen die erste und die zweite Ableitung in der Physik zum Beispiel der Untersuchung von Bewegungsabläufen, wo die Geschwindigkeit und Beschleunigung definiert werden als erste und zweite Ableitung des Weges nach der Zeit. Änderungsprozesse müssen in ganz unterschiedlichen Kontexten erfasst und/oder vorausgesagt werden. Dabei ist es in einer Vielzahl von Praxisbeispielen notwendig, Ableitungen zu approximieren. Unter Umständen ist eine Funktion zwar durch Formeln bekannt, doch das exakte Differenzieren gestaltet sich als aufwändig oder das Ermitteln von Funktionswerten als schwierig, weil die Ableitungsfunktion von sehr komplexer Natur ist. Das näherungsweise Differenzieren hat eines ihrer Hauptanwendungsgebiete bei der Verarbeitung von Messwerten. Hier ist die Funktion im Allgemeinen nicht explizit bekannt, das heißt sie liegt nicht in analytischer Form, sondern nur in Form von diskreten Punkten vor. Aufgrund der gegebenen lückenhaften Informationen ist die Ableitung mit analytischen Methoden der Differentialrechnung nicht exakt bestimmbar. An dieser Stelle werden numerische Verfahren verwendet, um die Ableitungen beziehungsweise die Werte der Ableitungen an bestimmten Stellen mit einer gewissen Genauigkeit näherungsweise zu ermitteln.

Numerik beantwortet die Frage: Was bleibt vom Ableitungsbegriff übrig, wenn alle Rechnungen in endlich vielen Schritten und mit endlich vielen Zahlen in endliche vielen Ziffern abgehandelt werden müssen?[2]

Numerisches Differenzieren ist zum Beispiel mit den sogenannten finiten Differenzen möglich. Diese stellen eine überschaubares Verfahren zum Approximieren von Ableitungen zur Verfügung. Auf welche Weise und wie gut, das heißt mit welcher Genauigkeit, das funktioniert, soll im Folgenden erläutert werden.

2 Theorie

Die Formeln der finiten Differenzen, auch Differenzenformeln genannt, lassen sich auf verschiedene Weisen herleiten. Im Folgenden wollen wir zwei Ansätze vorstellen: Zum einen ist das ein geometrischer Ansatz, der die Definition der Ableitung über den Differential-quotienten nutzt, d.h. den Anstieg der Tangente an der zu untersuchenden Funktion an der zu betrachtenden Stelle. Zum anderen ist es ein Ansatz, der sich die Eigenschaften der Taylorentwicklung zunutze macht.

2.1 Vom Differenzen- zum Differentialquotienten und umgekehrt

Der Ausgangspunkt unserer geometrischen Herleitung der Differenzenformeln bildet die Definition der Ableitung:

Eine Funktion $f: D \to \mathbb{R}$ (mit $D \subset \mathbb{R}$) heißt differenzierbar an der Stelle $x_0 \in D$, falls folgender Grenzwert existiert (mit $(x_0 + h) \in D$):

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Dieser Grenzwert heißt Differentialquotient / Ableitung von f nach x an der Stelle x_0 .

Der Differentialquotient geht zurück auf die Sekantensteigung. Ist die Ableitung einer Funktion f an einer Stelle x_0 gesucht, wird wie eingangs erwähnt nach der Steigung der Tangente am Graphen von f im Punkt $(x_0 \mid f(x_0))$ gefragt. Die Tangentensteigung kann näherungsweise mit der Sekantensteigung durch die Punkte $(x_0 \mid f(x_0))$ und $(x_0 + \Delta x \mid f(x_0 + \Delta x))$ bestimmt werden. Die Formel der Sekantensteigung durch die Punkte $(x_0 \mid f(x_0))$ und $(x_0 + \Delta x \mid f(x_0 + \Delta x))$ ist der folgende Differenzenquotient:

$$\frac{f(x_0 + \Delta x) - f(\Delta x)}{(x_0 + \Delta x) - x_0} = \frac{f(x_0 + \Delta x) - f(\Delta x)}{\Delta x}$$

Setzt man $\Delta x =: h$ und lässt h gegen 0 laufen, erhält man die Formel für den Differentialquotienten, sprich für die Ableitung von f an der Stelle x_0 . Allerdings kann der Computer den Grenzübergang der sogenannten $Schrittweite\ h$ gegen 0 nicht leisten. Deswegen wählt man den Differenzenquotienten als Näherung der Ableitung. Werden Rundungsfehler vernachlässigt, die ein Computer immer aufgrund seiner begrenzten Genauigkeit in der Zahldarstellung verursacht, geht der numerische Wert des Differenzenquotienten gegen den exakten Wert der Ableitung. Aber auch in der Praxis gilt die Faustregel: Je kleiner die Schrittweite h gewählt wird, desto genauer ist die numerische Näherung. Der Differenzenquotient misst also die mittlere spezifische Änderung von f zwischen zwei Stellen. Man unterscheidet zwischen dem $rechtsseitigem\ Differenzenquotienten$, bei dem die Steigung der Sekante durch x und x+h berechnet wird, und dem $linksseitigen\ Differenzenquotienten$, bei dem wiederum die Steigung der Sekante durch x-h und x

berechnet wird. Allerdings ist die Nutzung des links- oder des rechtsseitigen Differenzenquotienten, einer finiten Differenz erster Ordnung suboptimal, vor allem für einseitig gekrümmte Funktionsgraphen, bei denen oft eine sehr hohe Abweichung zwischen Sekanten- und Tangentensteigung zu beobachten ist. Deshalb kann es unter Umständen sinnvoll sein, diesen Fehler durch Mittelung zu verkleinern und das arithmetische Mittel der beiden einseitigen (asymmetrischen) Differenzenquotienten zu betrachten, das heißt die Sekantensteigung zwischen x - h und x + h. Dies bezeichnet man als zentralen oder auch symmetrischen Differenzenquotienten erster Ordnung. Durch erneutes Anwenden der symmetrischen Differenzenformel für die erste Ableitung lässt sich eine symmetrische Differenzenformel zur Approximation der zweiten Ableitung gewinnen: der symmetrische Differenzenquotient zweiter Ordnung bzw. die zweite finite Differenz. Für höhere Ableitungen geht man analog vor. [5]

rechtsseitiger Differenzenquotient / finite Differenz erster Ordnung:

$$\frac{f(x+h) - f(x)}{h}$$

linkssseitiger Differenzenquotient / finite Differenz erster Ordnung:

$$\frac{f(x) - f(x - h)}{h}$$

symmetrischer Differenzenquotient erster Ordnung:

$$\frac{f(x+h) - f(x)}{h}$$

symmetrischer Differenzenquotient zweiter Ordnung / zweite finite Differenz:

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

2.2 Approximieren von Ableitungen via Taylorentwicklung

Auch mit Hilfe der Taylorentwicklung einer Funktion lassen sich Formeln zur Approximation der Ableitungen einer Funktion herleiten. Betrachtet man auf einem Intervall $[a,b] \in \mathbb{R}$ eine reelle Funktion $f \in C^{\infty}([a,b])$, so kann man die Ableitung an einer Stelle $x \in (a,b)$ annähernd bestimmen, indem man zusätzlich eine in der Nähe liegende Stelle $(x+h) \in [a,b]$ mit $0 < h \in \mathbb{R}$ betrachtet und den Funktionswert von f an dieser Stelle x+h mit Hilfe der Taylorentwicklung approximiert:

$$f(x+h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} h^n = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \dots$$

Wenn man diese Formel entsprechend äquivalent umformt, erhält man die Formel für die $erste\ finite\ Differenz\ von\ f$ an der Stelle x:

$$(D_h^{(1)}f)(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \sum_{n=2}^{\infty} \frac{f^{(n)}(x)}{n!} h^{n-1} = f'(x) + \mathcal{O}(h)$$

Die erste finite Differenz von f an der Stelle x entspricht also bis auf einen linearen Fehlerterm der ersten Ableitung von f an der Stelle x.

Auch die zweite Ableitung von f an der Stelle x können wir auf ähnliche Weise mittels Funktionswerten von f approximieren. Dazu benötigen wir zusätzlich die Taylorentwicklung von f an der Stelle $(x - h) \in [a, b]$, die ebenfalls in der Nähe von x liegt:

$$f(x-h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (-h)^n = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 + \dots$$

Durch Aufsummieren der beiden Formel für die Taylorentwicklung um x + h und x - h und äquivalentes Umformen erhält man die Formel für die **zweite finite Differenz** von f an der Stelle x:

$$(D_h^{(2)}f)(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x) + \frac{f^{(4)}(x)h^2}{3 \cdot 4} + \dots = f''(x) + \mathcal{O}(h^2)$$

Diese entspricht wiederum der zweiten Ableitung von f an der Stelle x bis auf einen quadratischen Fehlerterm.[1]

2.3 Fehler und Schrittweite

Die Fehler numerischer Berechnungen gegenüber exakter analytischer setzen sich ganz allgemein zusammen aus Verfahrensfehlern und Rundungsfehlern.[5] Der Verfahrensfehler gibt den Unterschied zwischen dem exakten Wert der Ableitung an der Stelle x und dem exakten Wert des Differenzenquotienten an der Stelle x an. Rundungsfehler sind hingegen darauf zurückzuführen, dass der Computer aufgrund eines begrenzten Speichers Zahlen nur mit endlicher Genauigkeit darstellen und verarbeiten kann. Er verfügt lediglich über einen endlichen Vorrat an sogenannten Maschinenzahlen. Gibt der Benutzer eine Zahl in den Computer ein, die keine Maschinenzahl ist, wird sie zur nächstgelegenen Maschinenzahl gerundet. So kommt es insbesondere in dem Bereich der reellen Zahlen bereits bei der Übergabe von Zahlen an den Computer zu Rundungsfehlern. Aber auch nach jeder Operation rundet die Maschine und produziert damit weitere Rundungsfehler. Die Verstärkung der Rundungsfehler wird als Fehlerfortpflanzung bezeichnet. Wie problematisch diese Fehler sind, ist von den Zahlen, der Art und der Reihenfolge der

ausgeführten Operationen abhängig. In der Computerarithmetik sind Addition und Multiplikation zwar kommutativ, jedoch gelten Assoziativ- und Distributivgesetze im Allgemeinen nicht. Demnach können analytisch äquivalente Ausdrücke auf dem Computer zu erheblich unterschiedlichen Ergebnissen führen.[3]

Ein heikler Punkt bei der Approximation der Ableitungen mit Differenzenquotienten ist die Wahl der Schrittweite h. Ein zu großes h führt zu Verfahrensfehlern, ein zu kleines h birgt die Gefahr der Auslöschung. Die Subtraktion fast gleich großer Zahlen (die wir bei unseren Differenzenformeln für die erste und zweite Ableitung im Zählerterm finden) kann dazu führen, dass die Differenz zwischen den beiden Zahlen für den Computer nicht mehr erfassbar ist und signifikante Stellen ausgelöscht werden.[4] So wird der Approximationsfehler beim Vermindern der Schrittweite zunächst kleiner, da die Funktionalität des Verfahrens und damit die Genauigkeit der Näherung steigt. Allerdings macht sich im Laufe der Zeit die eben benannte Grenze bemerkbar. Bei sehr kleinen Schrittweiten muss mit Auslöschung gerechnet werden und damit wieder mit einer sinkenden Genauigkeit.[2] Ist das Ziel, möglichst genau zu approximieren, sollte man dieses "optimale" h ausfindig machen. Unter Umständen genügen aber bereits gröbere Näherungen und andere Faktoren spielen eine wichtigere Rolle.

3 Experimente und Beobachtungen

Wir betrachten zunächst die Funktion $g_1: [\pi, 3\pi] \to \mathbb{R}$ mit $g_1(x) = \sin(x)/x$. Mit Hilfe eines in Python verfassten Programmes lassen wir folgende Graphen zeichnen: Den von g_1 , den der exakten ersten und zweiten Ableitung g_1' und g_1'' , die wir nach den analytischen Methoden der Differentialrechnung ermittelt haben, sowie den der ersten finiten Differenz $D_h^{(1)}g$ und den der zweiten $D_h^{(2)}g$. Für die Auswertung der genannten Funktionen durch den Computer unterteilen wir den Definitionsbereich $[\pi, 3\pi]$ in p=1000 äquidistante Intervalle; nur an den Intervallgrenzen soll ausgewertet werden. Nun wollen wir die exakte und die approximierte erste und zweite Ableitung von g_1 für die Schrittweiten $h=\pi/3$, $h=\pi/4$, $h=\pi/5$ und $h=\pi/10$ graphisch vergleichen.

Abbildung 1: Funktionsplots für g_1 zu unterschiedlichen Schrittweiten.

Allgemein ist folgender Zusammenhang erkennbar: Je kleiner die Schrittweite, desto besser die Approximation. Darüber hinaus fällt auf, dass für alle h die Näherung der jeweiligen Ableitung mittels zweiter finiter Differenz besser als die mittels erster finiter Differenz. Bereits mit der gröbsten Schrittweite $h=\pi/3$ ist die Approximation der zweiten Ableitung gut. Eine vergleichbar gute Approximation der ersten Ableitung erhalten wir erst mit der feinsten Schrittweite $h=\pi/10$. Bei dieser Schrittweite liegt der Graph der approximierten zweiten Ableitung bereits so gut wie auf dem Graphen der

exakten.

Um das Konvergenzverhalten der Finite-Differenzen-Verfahren erster und zweiter Ordnung graphisch zu untersuchen, lassen wir bei gleich bleibenden Parametern $(g_1, 3\pi]$, p = 1000) die maximalen absoluten Fehler in Abhängigkeit von der Schrittweite h in einem Fehlerplot ausgeben, wobei die Referenzwerte die exakten Ableitungen zur Verfügung stellen. Dabei bezeichne $e_g^{(1)}$ den Fehler bei der ersten finiten Differenz und $e_g^{(2)}$ den Fehler bei der zweitem finiten Differenz. Wir betrachten die Approximationsfehler in der Maximumnorm mit der Formel (wobei die x_i 's die Intervallgrenzen unserer äquidistanten Unterteilen sind):

$$e_f^{(k)}(h) := \max_{i=0...p} \left| f^{(k)}(x_i) - (D_h^{(k)}f)(x_i) \right|, k \in \{1, 2\}$$

Folgende Werte für h sollen ausgewertet werden: 10^{-10} , $5\cdot 10^{-10}$, 10^{-9} , $5\cdot 10^{-9}$, ..., 10^{-1} , $5\cdot 10^{-1}$, 1, 5, 10. Um in der Grafik erkennen zu können, mit welcher Geschwindigkeit sich die maximalen Approximationsfehler ändern, lassen wir zudem die Graphen von $h\mapsto h$, $h\mapsto h^2$ und $h\mapsto h^3$ zeichnen und wählen die Darstellung in einem doppeltlogarithmischen Plot.

Abbildung 2: Fehlerplot für g_1 .

Es lässt sich beobachten, dass sowohl der maximale Fehler der ersten finiten Differenz als auch der der zweiten finiten Differenz in einer Größenordnung von etwa 0.5 starten (für eine sehr grobe Schrittweite $h \approx 5$). Mit zunehmend kleinem h nimmt auch der Approximationsfehler ab. Dabei wird der Fehler bezüglich der ersten Ableitung linear kleiner und bezüglich der zweiten Ableitung quadratisch. Jedoch nimmt er ab einer gewissen Schrittweite h wieder zu. Für die erste finite Differenz ist das ab $h = 5 \cdot 10^{-8}$ ($e_q(h) \approx 5 \cdot 10^{-9}$),

für die zweite finite Differenz ist das bereits ab $h = 5 \cdot 10^{-4}$ der Fall $(e_g(h) \approx 5 \cdot 10^{-9})$. Nun nimmt der Fehler mit ähnlicher Geschwindigkeit zu, wie er vormals abgenommen hat. Mit der feinsten Schrittweite von $h = 10^{-10}$ liegt der maximale Fehler der erstem finiten Differenz immer noch gut bei $5 \cdot 10^{-7}$, während der maximale Fehler der zweiten finiten Differenz mit einer Größenordnung von 10^4 sehr stark angewachsen ist.

In weiterführenden Experimenten wollen wir die Funktion $g_j:[\pi,3\pi]\to\mathbb{R}$ mit $g_j(x)=\sin(j\cdot x)/x$ zunächst für j<1 und anschließend für j>1 betrachten $(j\in\mathbb{R}^+)$. Im Vergleich zu j=1 bewirken kleinere j's eine Streckung des ursprünglichen Graphen in x-Richtung. Größere j's bewirken das Gegenteil, eine Stauchung des ursprünglichen Graphen in x-Richtung. Während immer kleinere j's die Frequenz von g_j verringern, kommt es bei immer größeren j's zum Erhöhen der Frequenz. Das heißt, dass sich die Funktionswerte von g_j auf demselben Intervall bei kleineren j's langsamer und bei größeren j's schneller ändern. Die folgenden Funktionenplots sollen die Veränderungen verdeutlichen.

Abbildung 3: g_1 für j < 1.

Abbildung 4: g_1 für j > 1.

Auch bei den Fehlerplots lässt sich jeweils gegenteiliges Verhalten beobachten. Während die Größenordnung des Approximationsfehlers bei immer kleineren j's für die dargestellten Schrittweiten abnimmt, nimmt sie bei immer größeren j's zu. Zudem verschiebt sich die Stelle, ab der der Fehler nicht weiter kleiner wird und die lineare bzw. quadratische Konvergenzgeschwindigkeit nicht mehr erkennbar ist: Bei immer kleineren j's verschiebt sie sich nach rechts, d.h. ab immer gröberem h. Bei immer größeren j's verschiebt sie sich nach links, d.h. ab immer feinerem h. Ebenso ist hier erkennbar, dass sich der Beginn des h-Intervalls nach links verschiebt. Durch dieses Verschieben verschwindet zunehmend der

Bereich, in dem man die jeweilige Konvergenzgeschwindigkeit erkennen kann. Ins Blickfeld rückt bei immer kleineren j's der Bereich links davon und bei immer größeren j's der Bereich rechts davon.

Abbildung 5: Entwicklung der Fehler für j < 1.

Abbildung 6: Entwicklung der Fehler für j>1.

4 Auswertung

Für die Funktion $g_1: [\pi, 3\pi] \to \mathbb{R}$ mit $g_1(x) = \sin(x)/x$ war zu beobachten, dass für eine kleinere Schrittweite h die Approximation der Ableitungen immer genauer wurde. Dies lässt sich so erklären, da die Stelle x+h sich so immer weiter der zu untersuchenden Stelle x nähert. Die Approximation mittels einer Sekantensteigung ähnelt also immer mehr der geunauen Tangentensteigung. Die zweite finite Differenz nähert sich dabei schneller der analytischen zweiten Ableitung, als die erste finite Differenz der analytischen ersten Ableitung. Dies ist in der Theorie darauf zurückzuführen, dass der Fehler der ersten finiten Differenz linear von h abhängt un der Fehler der zweiten finiten Differenz quadratisch von h abhängt. Da wir im Allgemeinen mit h < 1 rechnen, konvergiert die zweite finite Differenz also schneller gegen die analytische Ableitung.

Im Fehlerplot von g_1 zeigt sich wiederum, dass die Fehler erst wie erwartet bei kleiner werdendem h linear bzw. quadratisch konvergiert, jedoch ab einer bestimmten Grenze wieder größer wird. Dies lässt sich mit der Auslöschung erklären, die auftritt, wenn man zwei Maschinenzahlen subtrahiert, die sehr nah beieinander liegen. Rechnet der Computer also mit der gegebenen Formel $(D_h^{(1)}g_1)(x) = \frac{g_1(x+h)-g_1(x)}{h}$ die erste finite Differenz aus und liegt $g_1(x+h)$ genügend nah an $g_1(x)$, dann reicht die Genauigkeit der Maschinenzahlen mit 52 Bit Mantisse nicht mehr aus, um den Unterschied zwischen beiden beliebig genau zu berechnen und die Genauigkeit der Rechnung sinkt wieder. Den gleichen Auslöschungseffekt sieht man auch bei der Formel $(D_h^{(2)}f)(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$, mit der wir die zweite finite Differenz berechnen. Da wir hier durch h^2 teilen, wächst der Fehler hier quadratisch wieder an, während er bei der ersten finiten Differenz nur linear wieder wächst.

Betrachten wir nun die Funktionen $g_j: [\pi, 3\pi] \to \mathbb{R}$ mit $g_j(x) = \sin(j \cdot x)/x$. Da wir bei kleiner werdenden j's auch mit immer kleiner werdenden Zahlen rechnen, werden auch die Größenordungen der absoluten Fehler immer kleiner. Die Funktion g_i wird bei kleinerem j immer weiter in x-Richtung gestaucht, weshalb auch ihre Steigung immer weiter gegen 0 geht und damit auch ihre zweite Ableitung. Bei kleiner werdenden j's befindet sich das "optimale" h, bei dem die Fehler am geringsten sind schon weiter rechts. Man braucht wegen der geringen Steigung kein sehr kleines h, um eine "optimale" Abschätzung zu erzielen. Da wir hier mit immer kleineren Zahlen hantieren, tritt die Auslöschung außerdem schon früher ein. Analog werden die absoluten Fehler bei größer werdenden j's immer größer. Die Frequenz der Funktion steigt hier stark an und damit wirken sich auch bestimmte Verfahrensfehler mehr aus. So kann es sich zum Beispiel viel stärker auswirken an welchen Stellen die Funktion ausgewertet wird. Wählt man eine ungünstige Intervalllänge p, so kann es unter Umständen dazu kommen, dass man die Funktion immer genau da auswertet, wo ihre Steigung gerade denselben Wert hat. Man braucht also mehr Auswertungspunkte, um einen genaueren Plot zu zeichnen und ein kleineres h, um einen möglichst kleinen Fehler zu erzielen, der Wert für das "optimale" h verschiebt sich also nach links.

Bei sehr kleinen Werten von j kann man beobachten, dass der

5 Zusammenfassung und Ausblick

Die Taylorentwicklung stellt überschaubare und leicht anwendbare Formeln bereit, um die Ableitungen einer Funktion zu approximieren. Mit linearer bis quadradratischer Konvergenz können hier unter Umständen sehr genaue Abschätzungen geliefert werden. Die Schwierigkeit ist hierbei einen Wert für h zu finden, der weder zu groß ist, um eine genaue Approximation zu liefern, noch so klein, dass es bei der Subtraktion zu Auslöschungen kommt. So ist das Verfahren nicht geeignet für sehr kleine Zahlen und Schrittweiten.

- Vorteile: sehr überschaubare, leicht anwendbare Formel, einfaches Verfahren mit quadratischer Konvergenzgeschwindigkeit (zentrale Differenzenquotienten)
- Nachteile: sehr kleine Zahlen und Schrittweiten problematisch
- Aufwand und Nutzen ins rechte Verhältnis bringen!
- noch interessant: Experimente mit zentralen Differenzenquotienten, Stichwort Effizienz > Wie viel Zeit benötigt Rechner zum Bereitstellen einer passablen Lösung?, Stichwort Genauigkeit > Könnten wir die Formel analytisch so äquivalent umstellen, dass genauere Ergebnisse geliefert werden?

Literatur

- [1] Hella Rabus. Projektpraktikum I, 2019.
- [2] H.R. Schneebeli. Ableitungen, analytisch und numerisch, 2016.
- [3] Caren Tischendorf. Vorlesung Numerische Lineare Algebra I, 2019.
- [4] Hella Rabus und Frank Ebert. Vorlesung Angewandte Mathematik I/II, 2019.
- [5] Thomas Westermann. Numerisches Differenzieren und Integrieren, 2018.