Agents à base de connaissances

Thi-Bich-Hanh Dao

M1 Informatique - Université d'Orléans

Année 2012-2013

4D > 4A > 4E > 4E > 4 A 9 A 9 A

Thi-Bich-Hanh Dao (Univ. Orléans)

Motivation

- Jusqu'ici nous avons vu comment manipuler des symboles pour résoudre des problèmes en utilisant des méthodes de recherche
- Caractéristique des méthodes utilisées :
 - très générales
 - ▶ ne prennent pas en compte comment la connaissance est représentée
 - ▶ la connaissance est "cachée" dans les définitions des états et dans les fonctions heuristiques
- Questions :
 - ▶ comment représenter des faits du monde réel?
 - comment raisonner sur ces fait?
 - quelles représentations sont appropriées pour traiter le monde réel?

Aperçu

- Agents basés sur la connaissance
- 2 Raisonnement en logique propositionnelle
- Raisonnement en logique du premier ordre

4D + 4A + 4B + B + 990

Thi-Bich-Hanh Dao (Univ. Orléans)

La chasse au Wumpus

Situation de départ

Thi-Bich-Hanh Dao (Univ. Orléans)

◆□ ト ◆□ ト ◆ 亘 ト ◆ 亘 ・ 夕 Q ()・

Agents à base de connaissances

L'agent doit être capable de :

- Représenter des états, des actions, etc.
- Incorporer de nouvelles séquences perceptives
- Mettre à jour ses représentations internes du monde
- Déduire des propriétés cachées du monde
- Déduire les actions appropriées

◆□ト ◆圖ト ◆重ト ◆重ト

Thi-Bich-Hanh Dao (Univ. Orléans) IA - Agents logiques

Description PEAS du monde du Wumpus

- P (mesure de performance)
 - ► trouver l'or +1000
 - ▶ mort −1000
 - ▶ −1 par déplacement
 - ▶ −10 pour décocher la flèche
- E (environnement) inconnu à l'avance!
 - odeur désagréable dans les cases adjacentes au Wumpus
 - courant d'air dans les cases adjacentes aux puits
 - éclat dans la case contenant l'or
 - décocher la flèche tue le Wumpus si on lui fait face
- A (actions)
 - tourner à gauche, à droite, avancer
 - saisir le trésor, déposer le trésor
 - décocher la flèche
- S (sensors, capteurs)
 - courant d'air, éclat, odeur

◆□ ト ◆□ ト ◆ 亘 ト ◆ 亘 ・ り Q ()・

Thi-Bich-Hanh Dao (Univ. Orléans)

Explorer le monde du Wumpus

Thi-Bich-Hanh Dao (Univ. Orléans)

Explorer le monde du Wumpus B OK OK OK OK OK OK OK OK A Année 2012-2013 9 / 78

Explorer le monde du Wumpus

Thi-Bich-Hanh Dao (Univ. Orléans)

Thi-Bich-Hanh Dao (Univ. Orléans)

4D > 4A > 4E > 4E > 4 A 9 A 9 A

Explorer le monde du Wumpus

Explorer le monde du Wumpus

4D + 4A + 4B + B + 990

Quelques situations délicates

• Courant d'air en (1,2) et en $(2,1) \Rightarrow$ pas d'action sure

faire hypothèse que les puits sont uniformément distribués (2,2) a plus de probabilité d'avoir un puits que (1,2) et (2,1)

• Odeur en $(1,1) \Rightarrow$ impossible de décider

Α

utiliser la stratégie de force : décocher la flèche droit devant

- ▶ si le Wumpus était devant, il sera mort ⇒ sécurisé
- ▶ si le Wumpus n'y était pas ⇒ sécurisé

◆ロト ◆問 ト ◆恵 ト ◆恵 ト ・恵 ・ 釣 へ (*)

Propriété

- Dans chaque cas
 - l'agent déduit une conclusion à partir des informations disponibles
 - la conclusion doit être *correcte* si les informations sont correctes
- La correction est une propriété fondamentale du raisonnement en logique

4D> 4B> 4B> B 990

Thi-Bich-Hanh Dao (Univ. Orléans)

Domaines de systèmes experts

- Interprétation : former des conclusion de haut niveau à partir de données brutes
- Prédiction : trouver des conséguences probables des situations données
- Diagnostique : déterminer la cause du mal fonctionnement dans des situations complexes à partir des symptômes observables
- Configuration : construire une configuration des composants pour atteindre des objectifs de performance tout en satisfaisant des contraintes de configuration
- Planification : déterminer une suite d'actions pour arriver à un ensemble d'objectifs
- Surveillance : comparer des comportements d'un système par rapport au comportement souhaité
- Contrôle : contrôler le comportement d'un environnement complexe
- etc.

- Un système expert utilise des connaissances spécifiques à un domaine pour fournir des conseils ou des solutions à des problèmes
- Des connaissances d'un domaine sont présentées dans une base de connaissances (par exemple base de règles)
- Simuler le raisonnement de l'expert humain : moteur d'inférence
- La performance d'un système expert dépend essentiellement de ses connaissances, moins du moteur d'inférence
- Un système expert doit être riche en connaissances : Knowledge is power.
- Comme un expert humain, un système expert
 - ▶ se spécialise dans un domaine
 - enrichit ses connaissances avec des expériences

4D + 4A + 4B + B + 990

Thi-Bich-Hanh Dao (Univ. Orléans)

Architecture des systèmes experts

- Base de connaissances :
 - les connaissances générales et spécifiques du domaine
 - ▶ connaissance sous forme de règle Si ... alors ... pour des systèmes à base de règles
 - des éditeurs à base de connaissances permet de représenter les connaissances sous une forme facile à accéder, modifier ou agrandir
- Moteur d'inférence :
 - effectuer le raisonnement pour tirer les conséquences impliquées par la connaissance incluse dans le système
- Interface d'utilisateur :
 - ▶ interface graphique, traitement de question/réponse (ex. en langage naturel), menus, etc.
 - ▶ interface pour une consultation du système expert
 - ▶ interface pour l'acquisition des connaissances, mettre à jour ou vérifier des connaissances

Exigences pour un système expert

- Raisonnement correct
- Raisonnement ouvert à l'inspection
- Capacité d'explication des choix et des décisions pris

Thi-Bich-Hanh Dao (Univ. Orléans) IA - Agents logiques

Construction d'un système expert

- Des modules pour la création et la gestion d'un système expert peuvent être fournis ou réutilisés
 - ► CLIPS de la NASA en C.
 - ▶ JESS en Java,
 - ► ILOG rules de IBM,
- Construction de la base de connaissances (acquisition, formulation, etc.) est plus importante et en général est plus difficile

4D + 4A + 4B + B + 990 Thi-Bich-Hanh Dao (Univ. Orléans)

Aperçu

- Agents basés sur la connaissance
- 2 Raisonnement en logique propositionnelle
- 3 Raisonnement en logique du premier ordre

Thi-Bich-Hanh Dao (Univ. Orléans)

Logique propositionnelle

- La logique des propositions permet d'exprimer
 - des faits sur le monde : "Jean aime Marie"
 - des négations : "Marie n'aime pas Jean"
 - des conjonctions et des disjonctions
 - ▶ des phrases avec "conséquence" logique : "Si Jean n'aime pas Marie, elle ne l'aime pas non plus"
- Une proposition est une expression (phrase) à propos du monde qui est soit vraie soit fausse
- Eléments de base :
 - ightharpoonup symboles de propositions : P, Q, \dots (phrases)
 - phrases spéciales : Vrai, Faux
 - ▶ opérateurs : \land (et), \lor (ou), \neg (non), \rightarrow (implique), \leftrightarrow (équivalent)

Thi-Bich-Hanh Dao (Univ. Orléans)

IA - Agents logique

Année 2012-201

25 / 78

Logique propositionnelle : Sémantique

- Dans une interprétation, un symbole propositionnelle peut s'évaluer à une valeur vraie ou fausse
- Règles d'évaluation de formules :
 - $ightharpoonup \neg P$ est vraie ssi P est fausse
 - \triangleright $P \land Q$ est vraie ssi P est vraie et Q est vraie
 - $ightharpoonup P \lor Q$ est vraie ssi P est vraie ou Q est vraie
 - P → Q est vraie ssi P est fausse ou Q est vraie
 ou bien P → Q est fausse ssi P est vraie et Q est fausse
 - $ightharpoonup P \leftrightarrow Q$ est vraie ssi P et Q sont tous deux vraies ou tous les deux fausses

Logique propositionnelle : Syntaxe

- Formules (phrases) :
 - ▶ les symboles de propositions P_1, P_2, \ldots sont des formules
 - ▶ si P et Q sont des formules alors $\neq P$, $P \land Q$, $P \lor Q$, $P \to Q$ et $P \leftrightarrow Q$ sont des formules
- Exemples : Soit C_{ij} = "courant d'air dans la case (i,j)", P = "un puits en case (i,j)". Comment représenter :
 - ▶ Si la case (2,3) a un puits alors il y a un courant d'air dans les cases adjacentes.
 - ▶ S'il y a du courant d'air dans la case (1,2) alors il doit y avoir un puits dans une cases adjacente.

←□ ト ←□ ト ← 亘 ト ← 亘 ・ りへで

Thi-Bich-Hanh Dao (Univ. Orléans)

IA - Agents logique

Année 2012-201

26 / 3

Base de connaissances du monde de Wumpus

- KB = l'ensemble de toutes les phrases (en logique propositionnelle) décrivant la connaissance actuelle du monde
- Soit P_{ij} vrai s'il y a un puit en (i,j). Soit B_{ij} vrai s'il y a du courant d'air en (i,j).
- Pas de puits en (1,1)

$$R_1 : \neg P_{11}$$

• Un puits crée du courant d'air dans les cases adjacentes

$$R_2: B_{11} \leftrightarrow (P_{12} \vee P_{21})$$

 $R_3: B_{21} \leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$

• Perception : 2 cases visitées

$$R_4 : \neg B_{11}$$

 $R_5 : B_{21}$

• Base $KB = \{R_1, R_2, R_3, R_4, R_5\}$

Déductions en logique propositionnelle

- Résolution : connaissances sous forme de clauses
- Chaînages avant et arrière : connaissances sous forme de clauses de Horn (règles)

4 D > 4 D > 4 B > 4 B > B = 900

Thi-Bich-Hanh Dao (Univ. Orléans)

IA - Agents logiques

Année 2012-2013

29 / 78

9 / 78

Règle de résolution

- Littéral : variable ou sa négation
- Connaissances sous forme de clauses : disjonctions de littéraux

$$A \lor B$$
, $B \lor \neg C \lor \neg D$

- Base de connaissances : conjonction de clauses (forme normale conjonctive - CNF)
- Règle de déduction : règle résolution

$$\frac{C_1 \vee A, \qquad C_2 \vee \neg A}{C_1 \vee C_2}$$

où C_1 , C_2 sont des clauses

Résolution

- Exemple : on sait que
 - \blacktriangleright il y a un puits en case (1,3) ou en case (2,2):

$$P_{1,3} \vee P_{2,2}$$

▶ il n'y a pas de puits en case (2,2) :

$$\neg P_{2,2}$$

Le littéral $\neg P_{2,2}$ est résolu avec le littéral $P_{2,2}$ pour donner $P_{1,3}$, on conclut qu'il y a un puits en case (1,3).

$$\frac{P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}}{P_{1,3}}$$

Thi-Bich-Hanh Dao (Univ. Orléans)

IA - Agents logique

Année 2012-2013

30 /

Transformation en forme normale conjonctive

$$B_{1,1} \leftrightarrow (P_{1,2} \vee P_{2,1})$$

• Eliminer \leftrightarrow : remplacer $\alpha \leftrightarrow \beta$ par $(\alpha \to \beta) \land (\beta \to \alpha)$.

$$(B_{1,1} \to (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \to B_{1,1})$$

• Eliminer \rightarrow : remplacer $\alpha \rightarrow \beta$ par $\neg \alpha \lor \beta$

$$(\neg B_{1.1} \lor P_{1.2} \lor P_{2.1}) \land (\neg (P_{1.2} \lor P_{2.1}) \lor B_{1.1})$$

 \bullet Faire entrer \neg en utilisant la loi de de Morgan et double-négation

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

• Appliquer la règle de distribution (\vee sur \wedge)

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Algorithme de résolution

- Preuve $KB \models \alpha$ par contradiction : montrer que $KB \land \neg \alpha$ est insatisfaisable
 - $KB \land \neg \alpha$ est transformé en forme normale conjonctive
 - ► La règle de déduction s'applique sur chaque pair de clauses qui contiennent des littéraux complémentaires, produit une nouvelle clause, qui est ajoutée dans la base si elle n'y est pas encore
 - Le processus continue jusqu'à ce qu'un des cas suivants se produise :
 - * plus aucune nouvelle clause soit ajoutée à KB, en ce cas $KB \not\models \alpha$
 - * la résolution de deux clauses produit la clause vide (faux), en ce cas $\mathit{KB} \models \alpha$
- La résolution est correcte et complète en logique propositionnelle

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ◆ 9 へ ○

Thi-Bich-Hanh Dao (Univ Orléans)

IA - Agents logique

Année 2012-20

33 / 78

Propriété de la résolution

- La résolution est correcte :
 - si la résolution sur $KB \land \neg \alpha$ produit la clause vide, alors α est une vraie conséquence (sémantique, signification) des connaissances de la base KB
- La résolution en raisonnement sur des propositions est complète :
 - si α est une conséquence logique quelconque des connaissances de la base KB, alors la résolution sur $KB \wedge \neg \alpha$ se termine et produit la clause vide

ロト 4回 ト 4 重 ト 4 重 ト 3 重 のので

Thi-Bich-Hanh Dao (Univ. Orléans)

IA - Agents logiques

Année 2012-20

35 / 78

Exemple de résolution

- Base de connaissances KB :
 - ▶ si case (1,1) a du courant d'air alors un case adjacente doit avoir un puits : $B_{1,1} \leftrightarrow (P_{1,2} \lor P_{2,1})$
 - ▶ pas de courant d'air dans (1,1) : $\neg B_{1,1}$
- On veut prouver qu'il n'y a pas de puits en case (1,2), $\alpha: \neg P_{1,2}$
- *KB* mis en forme normale conjonctive $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}), (\neg P_{1,2} \lor B_{1,1}), (\neg P_{2,1} \lor B_{1,1}), \neg B_{1,1}$
- On ajoute $\neg \alpha$ dans la base KB et applique la règle de résolution :

• La résolution sur $KB \land \neg \alpha$ produit la clause vide, donc $KB \models \neg P_{1,2}$

Thi-Bich-Hanh Dao (Univ. Orléans)

IA - Agents logiques

Année 2012-2013

34 / 78