1.6 - Funções Inversas e Logaritmos

1 Definição Uma função f é chamada **função injetora** se ela nunca assume o mesmo valor duas vezes; isto é,

$$f(x_1) \neq f(x_2)$$
 sempre que $x_1 \neq x_2$

Teste da Reta Horizontal Uma função é injetora se nenhuma reta horizontal intercepta seu gráfico em mais de um ponto.

2 Definição Seja f uma função injetora com domínio A e imagem B. Então, a sua **função inversa** f^{-1} tem domínio B e imagem A e é definida por

$$f^{-1}(y) = x \iff f(x) = y$$

para todo y em B.

domínio de f^{-1} = imagem de f imagem de f^{-1} = domínio de f

ATENÇÃO Não confunda o -1 em f^{-1} com um expoente. Assim,

$$f^{-1}(x)$$
 não significa que $\frac{1}{f(x)}$

Equações de cancelamento:

$$f^{-1}(f(x)) = x$$
 para todo $x \text{ em } A$

$$f(f^{-1}(x)) = x$$
 para todo $x \text{ em } B$

Por exemplo, se $f(x) = x^3$, então $f^{-1}(x) = x^{1/3}$ as equações de cancelamento ficam

$$f^{-1}(f(x)) = (x^3)^{1/3} = x$$

$$f(f^{-1}(x)) = (x^{1/3})^3 = x$$

lacksquare Como Achar a Função Inversa de uma Função f Injetora

Passo 1 Escreva y = f(x).

Passo 2 Isole *x* nessa equação, escrevendo-o em termos de *y* (se possível).

Passo 3 Para expressar f^{-1} como uma função de x, troque x por y. A equação resultante é $y = f^{-1}(x)$.

EXEMPLO 4 Encontre a função inversa $f(x) = x^3 + 2$.

$$y = x^3 + 2$$

$$x^3 = y - 2$$

$$x = \sqrt[3]{y - 2}$$

Finalmente, trocando *x* por *y*:

$$y = \sqrt[3]{x-2}$$

Portanto, a função inversa é $f^{-1}(x) = \sqrt[3]{x-2}$

Para cada ponto (a,b) no gráfico de f(x), então há o ponto (b,a) no gráfico de sua inversa. De fato,

se
$$y(a) = b$$
, então $y^{-1}(b) = a$.

O gráfico de f^{-1} é obtido refletindo-se o gráfico de f em torno da reta y = x.

EXEMPLO 5 Esboce os gráficos de $f(x) = \sqrt{-1 - x}$ e de sua função inversa usando o mesmo sistema de coordenadas.

$$f(x) = \sqrt{-1 - x} = \sqrt{-(x+1)}$$

Primeiro reflete em relação ao eixo Y

Depois desloca 1 para a esquerda

A transformação mais "perto" do 'x' é a realizada por último!

Existem funções cujo gráfico tem o mesmo formato do da sua inversa. São chamadas de Involuções. O exemplo mais simples é a função recíproca y=1/x.

Funções Logarítmicas

Observe que toda função exponencial passa no teste da reta horizontal, logo, possui uma função inversa. A inversa de uma exponencial de base 'a' é a função Logaritmo, também de base 'a'.

$$\log_a x = y \iff a^y = x$$

$$\log_a(a^x) = x$$
 para todo $x \in \mathbb{R}$ $a^{\log_a x} = x$ para todo $x > 0$

Propriedades de Logaritmos Se x e y forem números positivos, então

- $1. \quad \log_a(xy) = \log_a x + \log_a y$
- $2. \quad \log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$
- 3. $\log_a(x^r) = r \log_a x$ (onde r é qualquer número real)

Outras propriedades:

Mudança de base:

4.
$$\log_a 1 = 0$$

$$5. \quad \log_a a = 1$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

 $\log_e x = \ln x \longrightarrow \text{Logaritmo Natural ou Neperiano}$

 $\log_2 x = \lg x$ \longrightarrow Comum em livros de computação

 $\log x = \log_{10} x$ ou $\log_2 x$ ou $\log_e x$

A depender do livro ou linguagem programação.

EXEMPLO 8 Resolva a equação $e^{5-3x} = 10$.

$$\ln(e^{5-3x}) = \ln 10$$

$$5 - 3x = \ln 10$$

$$3x = 5 - \ln 10$$

$$x = \frac{1}{3}(5 - \ln 10)$$

EXEMPLO 9 Expresse $\ln a + \frac{1}{2} \ln b$ como um único logaritmo.

$$\ln a + \frac{1}{2} \ln b = \ln a + \ln b^{1/2}$$

$$= \ln a + \ln \sqrt{b}$$

$$=\ln(a\sqrt{b})$$

EXEMPLO 11 Esboce o gráfico da função $y = \ln(x - 2) - 1$.

Funções Trigonométricas Inversas

A função seno claramente não passa no teste da reta horizontal. Mas, sempre é possível restringir o domínio de uma função, de modo que a obter uma região onde a função é injetora.

Função Seno Inversa ou Função Arco-seno:

$$sen^{-1}x = y \iff sen y = x e -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$oldsymbol{o}$$
 $sen^{-1}x \neq \frac{1}{sen x}$

EXEMPLO 12 Calcule (a) $\operatorname{sen}^{-1}(\frac{1}{2})$ e (b) $\operatorname{tg}(\operatorname{arcsen} \frac{1}{3})$.

Seja $\theta = \arcsin \frac{1}{3}$, logo sen $\theta = \frac{1}{3}$.

$$x^2 + 1^2 = 3^2 \quad \Rightarrow \quad x = \sqrt{9 - 1} = \sqrt{8} = 2\sqrt{2}$$

Logo, $tg(arcsen \frac{1}{3}) = tg \theta = \frac{1}{2\sqrt{2}}.$

De forma similar, podem ser definidas funções inverças para as demais funções trigonométricas:

$$\cos^{-1} x = y \iff \cos y = x \text{ e } 0 \le y \le \pi$$

$$tg^{-1}x = y \iff tg \ y = x \quad e \quad -\frac{\pi}{2} < y < \frac{\pi}{2}$$

EXEMPLO 13 Simplifique a expressão $\cos(tg^{-1}x)$.

Se
$$y = tg^{-1}x$$
, então $tg y = x$,

$$\cos(tg^{-1}x) = \cos y = \frac{1}{\sqrt{1 + x^2}}$$

