

Nuevo modelo para el sistema de señalización de Sonic Hedgehog

Bartolomé Ortiz Viso

Tutor: Óscar Sánchez

Trabajo Fin de Máster Máster en Física y Matemáticas

14 Septiembre, 2018

Índice

Introducción

Motivación Biológica Modelado BEWARE Definición del problema

Modelo Lai-Saha

Definición del modelo Resultados

Modelo nuevo

Definición del modelo Resultados

Conclusiones y futuro trabajo

Motivación Biológica

Regulación génica y factores de transcripción

Figura: 1: ARN polimerasa, 2: represor, 3: promotor, 4: operador, 5: inhibidor del represor, 6-8: Genes

Calves del modelado BEWARE

Objetivo:

Extraer información sobre la regulación génica a partir de las secuencias de las regiones reguladoras y la unión medida o inferida de los factores de transcripción específicos.

Pasos comunes:

- Se enumeran todos los estados posibles del potenciador y se calcula un peso estadístico asignado a cada estado.
- Asignamos un nivel de expresión génica de cada estado.

Problema a estudiar

Variables: Gli y Ptc (a modelar por BEWARE), *Gli*₃ (FT activador), Gli3R (FT represor).

Figura: Proteína Shh

Figura: descripción del sistema

Modelo Lai-Saha (2004

Claves:

 Proteólisis de Gli₃ según señalización de Shh y activación de la red.

Claves BEWARE:

- Enfoque stimulated.
- Expresión génica proporcional a la suma de factores de transcripción.

$$\frac{dGli}{dt} = v_{max,G} Promoter + r_{bas,G} Basal - k_{deg} Gli$$

$$\frac{dGli_3}{dt} = \frac{r_{g3b}}{Ptc} - Gli_3k_{deg} - Gli_3\left(\frac{k_{g3rc}}{K_{g3rc} + Signal}\right).$$

$$\frac{\textit{dGli3R}}{\textit{dt}} = \textit{Gli}_3\left(\frac{\textit{k}_{\textit{g3rc}}}{\textit{K}_{\textit{g3rc}} + \textit{Signal}}\right) - \textit{k}_{\textit{deg}}\textit{Gli3R},$$

$$\frac{dPtc}{dt} = v_{max,P}Promoter + r_{bas,P}Basal - k_{degp}Ptc.$$

Universidad de Granada

Modelo Lai-Saha (2004)

Evolución temporal:

Bifurcaciones:

Nuevo Modelo (Enfoque Cambon-Sanchez 2017)

Claves:

 Proteólisis de Gli₃ según señalización de Shh y activación de la red.

Claves BEWARE:

- Enfoque recruitment.
- Expresión génica proporcional a la probabiliadd de unión de ARNp.

$$\frac{dGli_3}{dt} = newBEWARE - k_{deg}Gli$$

$$\frac{dGli_3}{dt} = \frac{r_{g3b}}{Ptc} - Gli_3 \left(k_{deg} + \frac{k_{g3rc}}{K_{g3rc} + Signal}\right)$$

$$\frac{dGli_3R}{dt} = Gli_3 \left(\frac{k_{g3rc}}{K_{g3rc} + Signal}\right) - k_{deg}Gli_3^2$$

Modelo nuevo (Enfoque Cambon-Sanchez 2017)

Evolución temporal.

Búsqueda de ceros.

Conclusiones y futuro trabajo

- Problema de gran complejidad.
- Nuevos comportamientos descritos.
- Elaboración del modelo.
- Motivar la profundización teórica.
- Orientar la investigación actual sentando un marco de referencia.