

Three phase full Bridge

with Trench MOSFETs in DCB-isolated high-current package

= 100 V $V_{\rm DSS}$ = 190 A $R_{DSon typ.} = 1.7 \text{ m}\Omega$

Part number MTI145WX100GD

Surface Mount Device

Features / Advantages:

- MOSFETs in trench technology:
 - low R_{DSon}
 - optimized intrinsic reverse diode
- Package:
 - high level of integration
 - high current capability
 - aux. terminals for MOSFET control
 - terminals for soldering or welding connections
 - isolated DCB ceramic base plate with optimized heat transfer
- · Space and weight savings

Applications:

AC drives

- · in automobiles
 - electric power steering
 - starter generator
- · in industrial vehicles
 - propulsion drives
 - fork lift drives
- in battery supplied equipment

Package: ISOPLUS-DIL®

- · High level of integration
- RoHS compliant
- · High current capability
- Aux. Terminals for MOSFET control
- · Terminals for soldering or welding connections
- · Space and weight savings

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures

IXYS reserves the right to change limits, test conditions and dimensions.

MOSFET	's				Ratir	ngs	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
V _{DSS}	drain source breakdown voltage	$T_{VJ} = 25^{\circ}$	°C to 150°C			100	V
\mathbf{V}_{GS} \mathbf{V}_{GSM}	gate source voltage max. transient gate source voltage					±15 ±20	V
I _{D25} I _{D90}	continuous drain current		$T_C = 25^{\circ}C$ $T_C = 90^{\circ}C$			190 145	A A
R _{DS(on)} 1)	static drain source on resistance		$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		1.7 2.9	2.2	mΩ
$V_{GS(th)}$	gate threshold voltage	$I_D = 275 \ \mu A; V_{DS} = V_{GS}$	$T_{VJ} = 25^{\circ}C$	2.0	2.7	3.5	V
I _{DSS}	drain source leakage current		T _{vJ} = 25°C T _{vJ} = 125°C		10	1 100	μA μA
I _{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$				500	nA
R _G	gate resistance	on chip level			1.9	i i	Ω
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 50 \text{ V}; f = 1 \text{ Mhz}$			11.1 1.94 70	 	nF nF pF
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	total gate charge gate source charge gate drain (Miller) charge	$V_{GS} = 10 \text{ V}; V_{DS} = 50 \text{ V}; I_{D} = 100 \text{ A}$			155 48 27	1	nC nC nC
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \\ E_{rec(off)} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse turn-off reverse recovery losses	inductive load $V_{GS} = 10 \text{ V; } V_{DS} = 50 \text{ V}$ $I_{D} = 100 \text{ A; } R_{G} = 27 \Omega$	T _{vJ} = 125°C		135 75 600 40 200 600 36		ns ns ns ns µJ µJ
R _{thJC}	thermal resistance junction to case					0.85	K/W
R _{thJH}	thermal resistance junction to heatsink	with heat transfer paste (IXYS test	setup)		1.1	1.4	K/W
	·	¹⁾ $V_{DS} = I_{D} \cdot (R_{DS(on)} + 2 \cdot R_{Pin \text{ to Chip}})$				1	
Source-E	Drain Diode					1 1 1	
I _{F25} I _{F90}	forward current		$T_{\rm C} = 25^{\circ}\text{C}$ $T_{\rm C} = 90^{\circ}\text{C}$			180 105	A A
V _{SD}	source drain voltage	$I_F = 100 \text{ A}; V_{GS} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$		0.9	1.2	V
Q _{RM} I _{RM} t _{rr}	reverse recovery charge max. reverse recovery current reverse recovery time	$V_R = 50 \text{ V}; I_F = 100 \text{ A}$ $R_G = 27 \Omega \text{ (di/dt} = 1700 \text{ A/µs)}$	T _{vJ} = 125°C		2 54 60	 	μC A ns

Package	ISOPLUS-DIL®				Ratii	ngs	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per pin in main current paths (L1+L3+, L1L3-, L1L3) may be additionally limited by external connections (PCB tracks) 2 pins for output L1, L2, L3				75	А
T _{stg}	storage temperature			-55		125	°C
T _{op}	operation temperature			-55		150	°C
T_{VJ}	virtual junction temperature			-55		175	°C
Weight					13		g
F _c	mounting force with clip			50		250	N
	isolation voltage	t = 1 second	50/60 Hz. RMS. I _{ISOI} < 1 mA	1200			V
		t = 1 minute			V		
R _{pin-chip}	resistance terminal to chip	$V_{DS} = I_{D} \cdot (R_{DS(on)})$	$V_{DS} = I_{D^*}(R_{DS(on)} + 2 \cdot R_{pin \text{ to chip}})$		0.5		mΩ
C _P	coupling capacity	between shorted pins and back side metallization			160		pF

Part number

M = Module

T = Trench MOSFET

I = OPTIMOS

145 = Current Rating [A]
WX = 6-Pack with separated Phase Legs
100 = Reverse Voltage [V]
GD = ISOPLUS-DIL

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MTI145WX100GD-SMD	MTI145WX100GD	Blister	28	513435

contact pin:

- galv. tin plating, per pin side: Sn 10...25 μm, undercoating Ni 0,2...1 μm
- stamping edges may be free of tin
- puching burr: ≤ 0,05mm

IXYS reserves the right to change limits, test conditions and dimensions.

Fig.1 Drain source breakdown voltage V_{DSS} vs. junction temperature T_{VJ}

Fig. 2 Typ. transfer characteristics

Fig.5 Drain source on-state resistance $R_{\mathrm{DS(on)}}$ vs. junction temp. T_{VJ}

Fig. 4 Typ. output characteristics

Fig. 5 Typ. output characteristics

Fig. 6 Drain source on-state resistance RDS(on) versus ID

Fig.7 Typical turn on gate charge

Fig. 8 Drain current I_D versus case temperature T_C

Fig. 9 Typ. turn-on energy & switching times vs. drain current, inductive switching

Fig. 10 Typ. turn-off energy & switching times vs. drain-current, inductive switching

Fig. 11 Typ. reverse recovery characteristics

Fig. 12 Typ. turn-on energy & switching times vs. gate resistor, induktive switching

Fig. 13 Typ. turn-off energy & switching times vs. gate resistor, induktive switching

Fig. 14 Typ. reverse recovery characteristics

Fig.15 Source current I_s versus

Fig.16 Thermal response

IXYS reserves the right to change limits, test conditions and dimensions.

Fig. 13 Reverse recovery time t_{RM} of the body diode vs. di_{E}/dt

Fig.15 Source current I_s vs. source drain voltage $V_{\rm SD}$ (body diode)

Fig. 17 Definition of switching times

Fig. 14 Reverse recovery charge Q_{RM} of the body diode vs. di_{F}/dt

Fig. 16 Typ. thermal impedance junction to heatsink Z_{thJH} with heat transfer paste (IXYS test setup)