Equation non linéaires

I-INTRODUCTION:

On considère tout d'abord une fonction $f:R\to R$ d'une seule variable réelle x et on cherche l'équation f(x)=0, c.à.d. trouver une valeur une approchée x d'un réel x^* vérifiant f(x)=0.

Pour "chaque" comparer les différentes méthodes ",On utilise ,"de résolution que l'on va considérer ,On utilise les notations suivantes de vitesse de convergence d'une suite.

5-1-1 : Définition :

Soit $(x)n \in N$ une suite convergente et x^* sa limite.

1-On dit que la convergence de $(x_n)_{n\in\mathbb{N}}$ est linéaire de facteur $k\in]0$, 1[s'il existe $n_0\in\mathbb{N}$ tel que pour $n\geq n_0$, $|x_{n+1}-x*|\leq k|x_{n+1}-x*|$.

2-On dit que la convergence de $(x_n)_{n\in \mathbb{N}}$ est supplémentaire d'ordre $p\in \mathbb{N}$, p>1 s'il existe $n_{\circ}\in \mathbb{N}$ "tel que pour tout k" et k>0 tel que pour tout $n\geq n_{\circ}$ $|x_{n+1}-x^*|\leq |x_n-x^*|^p$.

Si p = 2. On parle de convergence quadratique,

Si p = 3. On parle de convergence cubique.

On remarque que k n'est pas unique.

5-2 : Méthode de dichotomie.

La méthode de dichotomie est une méthode de localisation des racines d'une équation f(x) = 0 basée sur le théorème des valeurs intermédiaire.

" si $f:[a,b]\to R$ est continue et f(a).f(b)<0 , alors il existe $x*\in]a,b[$ tel que f(x*)=0"

L'idée est donc de scindé un intervalle [a,b] vérifiant la propriété f(a).f(b) < 0, en deux intervalles [a,c] et [c,b] avec $c=\frac{a+b}{2}$ et de tester les bornes des intervalles nouveaux $\{$ On calcule f(a).f(c) et f(c).f(b) $\}$ pour en trouver un $\{$ au mois $\}$ qui vérifie encore la propriété des valeurs intermédiaire $\}$

i.e,
$$f(a). f(c) < 0$$
 et /ou $f(c). f(b) < 0$

On itère ensuite ce procédé ce procédé un certain nombre d'itération de pendant de la précision que l'on sur la solution.

5-2-1 : Théorème :

Le nombre minimum d'itération de la méthode de dichotomie, nécessaire pour approcher x^* à un \mathcal{E} prés est :

$$E(\frac{\ln(b-a)-\ln 2}{\ln 2})$$

E(x) désigne la partie entière du réel x.

Preuve:

à la première itération, la longueur de l'intervalle de l'intervalle est $\frac{b-a}{2}$, à la nième itération la longueur de l'intervalle est $\frac{b-a}{2^n}$.

L'erreur commise à la n-ième itération à est donc majorée par $\frac{b-a}{2^n}$.

Le nombre n d'itération à effectue droit alors vérifier $\frac{b-a}{2^n} \le \mathcal{E}$ qui est équivalent à $n \ge \frac{\ln(b-a)-\ln(\mathcal{E})}{\ln 2}$

5-2-2- PROPOSITION:

La convergence de la méthode de dichotomie est linéaire d'un facteur $\frac{1}{2}$. (TD)

5-3- Méthode de point fixe :

La méthode itérative de pointe fixe que nous allons décrire et aussi appelée Méthode d'approximation successives.

5-3-1-Définition:

Soit $g: R \to R$. On dit que $x \in R$ est un point fixe de g si g(x) = x. Le principe de méthode de point fixe est d'associé à l'équation f(x) = 0 une équation de point fixe g(x) = x. de sorte que trouver un point fixe de . La technique pour approximer le point fixe de g est alors basé sur le résultat suivant.

5-3-2- Définition:

Soit $(x_n)_{n\in\mathbb{N}}$ la suite définie par $x_0\in\mathbb{R}$ donné et $x_{n+1}=g(x_n)$.

Si $(x_n)_{n\in\mathbb{N}}$ est convergente et g est continue, alors la limite de $(x_n)_{n\in\mathbb{N}}$ est un pointe de g.

Nous devons donc trouver les conditions sur g pour que la suite $(x_n)_{n\in\mathbb{N}}$ définie cidessus converge.

5-3-3- **Définition**:

Soit $g:\Omega\to R$. On dit que g est lipchitzienne sur Ω de constante de lipchitzienne γ pour tout $(x,y)\in\Omega^2$, On a $|g(x)-g(y)|\leq \gamma|x-y|$.

On dit que g est strictement contraction sur Ω si g est γ _lipchitzienne sur Ω avec $\gamma < 1$.

5-3-4-Théorème du point fixe :

Soit g une application strictement contraction sur un intervalle $[a,b] \subset R$ de constante de lipchitzienne $\gamma < 1$.

Supposons que l'intervalle [a,b] soit stable par g c.à.d. $g([a,b]) \subset [a,b]$ et la suite définie par $x_{n+1} = g(x_n)$ converge linéairement de facteur γ vers x^* pour point initial $x_o \in [a,b]$. De plus $\forall n \in \mathbb{N}$. $|x_n - x^*| \leq \frac{\gamma^n}{1-\gamma} |x_1 - x_o|$.

Preuve :[Admet pour ce cours]

Remarque:

On peut montrer aussi que $\forall n \in N$

$$|x_n - x *| \le \frac{\gamma^n}{1 - \gamma} |x_1 - x_0|$$

Si $\gamma \leq \frac{1}{2}$ Alors $|x_n - x_n *| \leq |x_n - x_{n+1}|$. Dans ce cas on pour a utiliser le est d'arrêt $|x_n - x_{n+1}| < \varepsilon$. qui certifiera une précision sur le résultat.

Revenant maintenant à note problème initial ou on cherche à résoudre l'équation (x) = 0, posons $g(x) = x - \lambda f(x)$; ou $\lambda \in R$ normal λ arbitraire.

$$g(x) = x = x - \lambda f(x)$$

 $\Leftrightarrow \lambda f(x) = 0 \quad \text{avec } \lambda \neq 0$
 $\Leftrightarrow f(x) = 0$

D'après le théorème du point fixe $\{5-3-4\}$, une combien suffisante pour que g admette un pinte fixe dans l'intervalle [a,b], est que [a,b] est stable par g ,est que g soit strictement contractante sur [a,b] avec une constante de $Lipchitz \gamma < 1$.

On a alors comme conséquence directe de la définition de contractante :

$$\forall x \in [a,b] \ |g'(x) < \gamma| \Leftrightarrow |1-f'(x)| < \gamma < 1$$

Ce que implique en particulier que f'ne change pas de signe sur [a,b] et que λ de même signe que f' géométriquement , on constant le suite des itères : $x_{n+1} = x_n - \lambda f(x_n)$

En remarquant que la droit de pende μ et passant par $(x_n, f(x_n))$ a pour équation $y = f(x_n) - \mu(x_n - x)$.et couple l'axe des abscisses en $= x_n - \frac{f(x_n)}{\mu}$.

On voit que x_{n+1} l'obtient comme point d'intersection de la droite de la pente $\frac{1}{\gamma}$ et passant par $(x_n, f(x_n))$ avec l'axe des abscisses.

5-3-6. Proposition:

On considère l'équation g(x) = x ou g et une fonction au mois (p + 1) fois dérivable avec $p \ge 1$.supposons que les hypothèse de théorème (5-3-4)(point fixe)

Soient vérifiées de lette santé que g admette un point fixe $x * \in [a, b]$.

Si on suppose que $g'(x*)=g''(x*)=\cdots=g^{(p)}(x)=0$ et $g^{(p+1)}(x*)\neq 0$ alors la convergence de la méthode est d'ordre p+1

Preuve :(TD)

5-3-7.Proposition:

Soit g une fonction dérivable sur l'intervalle [a, b].

Si sa dérivée g' vérifie max|g'(x)|=L<1, Alor est strictement contractante sur [a,b] de constante de Lipchitz $L.\{pour la d »montrer , il suffit d'utiliser FAF\}.$

5-4.Méthode de Newton :

La méthode de Newton consiste à de remplacer λ pour une suite $(\lambda_n)_{n\in \mathbb{N}}$ telle que $\lambda_n=\frac{1}{f'(x_n)}$ ce qui s'interprète comme suit $:x_{n+1}=x_n-\frac{f(x)}{f'(x_n)}$

5-4-1.Définition:

La fonction d'itération de Newton associé à l'équation f(x)=0 sur [a,b] est :

$$N:[a,b]\to R$$

$$x \to N(x) = x - \frac{f(x)}{f'(x_n)}$$

Celle-ci est définie pour f dérivable sur [a, b] et telle que f s'annule pas sur [a, b].

Géométriquement, la suite des itérés de Newton construit comme suit .

Étant donnée $x_0 \in [a, b]$, on cherche à construire x_n tel que $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

En espérant le raisonnement développé dans la section précédente on voit que x_{n+1} . S'obtient comme l'intersection de la droite tangente au graphe de f en $(x_n, f(x_n))$

Avec l'axe des abscisses.

5-4-2.Exemple:

On considère la fonction $f(x) = x^2 - 2$ sur l'intervalle [a,b].

Il est claire que f admette une racine sur [1,2].

On choisi
$$x_0 = 1$$
. $f(x_0) = -1$
$$x_1 = 1 - \frac{-1}{2} = 1,5 \qquad f(x_1) = \frac{1}{4}$$

$$x_2 = 1,5 - \frac{0,25}{3} \approx 1,4167$$

$$x_3 = 1,4167 - \frac{0,0069}{2,8333} \approx 1,4142$$

$$x_4 = 1,4142 - \frac{0,000006}{2,8284} \approx 1,4142.$$

5-4-3.Théorème :

On suppose que:

- 1. f est de classe C^2 sur [a, b]
- 2. f(a).f(b) < 0
- 3. $f' \neq 0 sur[a, b]$
- **4.** f'' > 0 [a, b]

Alors si x_0 vérfie f(x) > 0.la suite des itérés de Newton converge vers l'unique solution l de l'équation f(x) = 0 sur [a, b]

Preuve : Admis pour ce cours.