What is Deep Learning?

<u>Differences Between AI vs. Machine Learning vs. Deep Learning | Simplilearn</u>

Deep Learning (contd..)

- A neural network with three or more layers is "deep"
- This neural network mimic the way human brain works with neurons
- Types of Deep Neural Networks:
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
 - Generative Adversarial Network (GAN)

Why does deep learning have the name "deep"? (indiaai.gov.in)

Artificial Neural Network

• <u>Applied Deep Learning - Part 1: Artificial Neural Networks | by Arden Dertat | Towards Data Science</u>

Function of single neuron

- This weighted total is passed as an input to an "activation function" to produce the output.
- Activation functions choose whether the neuron should fire or not.

<u>Artificial Neural Network Tutorial – Javatpoint</u>
Activation Functions in Neural Networks [12 Types & Use Cases] (v7labs.com)

Fully Connected Artificial Neural Network

In fully connected neural network, each output is influenced by each of the input.

Convolutional Layers vs Fully Connected Layers | by Diego Unzueta | Towards Data Science

"Feed Forward" Neural Network and "BackPropagation" of Error

- "Feed Forward NN" is the simplest form of neural network as information is only processed in one direction.
- The initial weights are assigned randomly.
- Our job is to match the "predicted output" to the "desired output", with the given weights.
- If output is satisfactory, no changes to the weights are made.
- However, if the output does not match the desired output, then the weights need to be changed to reduce the error.
- This error is then propagated back within the whole network, one layer at a time
- The weights are updated according to the value that they contributed to the error.

Feed Forward Neural Network Definition | DeepAl

Supervised, Un-supervised and Reinforcement Learning

Supervised Learning:

- It functions with "data" + "labels"
- Used for classification and prediction functions
- Classification and Prediction can be pretty accurate and be learnt over time
- For "Robotic Arm", we are using supervised learning

Un-Supervised Learning:

- It functions with only the "data", labels are absent
- Used for finding hidden patterns in the data without human intervention
- Used for "Clustering" application
- It might give us inaccurate results, unless human intervention is done
- It is more closer to Artificial Intelligence

Supervised vs. Unsupervised Learning: What's the Difference? | IBM

Supervised, Un-supervised and Reinforcement Learning

- Reinforcement Learning
 - It can be expressed in "state-action-reward" framework
 - It can be used for "long term decision making" or "repeated decision making" problems
 - Example: Vehicle Path Finding in a given environment with obstacles

• https://developer.ibm.com/learningpaths/get-started-automated-ai-for-decision-making/

Concept of "Convolution" in Signal Processing

- Convolution is a formal mathematical operation just as "multiplication", "addition" and "integration"
- Addition takes two numbers and produces a third number, while convolution takes two signals and produces a third signal.
- Below is the notation of convolution
 - y[n] = x[n] * h[n]

Example - Convolution Calculation

References for Convolution

- https://uomustansiriyah.edu.iq/media/lectures/5/5 2021 11 27!10 35 40 AM.pdf
- The Scientist and Engineer's Guide to Digital Signal Processing Convolution (analog.com)
- What is the physical meaning of the convolution of two signals? Signal Processing Stack Exchange
- Understanding Convolutions colah's blog
- Week 4: Image Filtering and Edge Detection (sbme-tutorials.github.io)

Very interesting article - How images look after applying different kernels, especially edge detection

OverFitting and UnderFitting

- To understand overfitting and underfitting, we need to understand "bias" and "variance"
 - Bias is the error resulted from "training set". This error reduces the training accuracy
 - Variance is the error resulted from "testing set". This error reduces the testing accuracy

- https://medium.com/analytics-vidhya/elucidating-bias-variance-under-fitting-and-over-fitting-273846621622
- Bias and Variance in Machine Learning Javatpoint

Overfitting and Underfitting (Contd.)

- Ways to reduce High Bias (Low training accuracy, low testing accuracy):
 - Increase the input features as the model is underfitted.
 - Decrease the regularization term.
 - Use more complex models, such as including some polynomial features.
- Ways to Reduce High Variance (High training accuracy, low testing accuracy):
 - Reduce the input features or number of parameters as a model is overfitted.
 - Do not use a much complex model.
 - Increase the training data.
 - Increase the Regularization term.

TensorFlow Conv1D Layer

How Convolutional Layers Work in Deep Learning Neural Networks? - Hong Jing (Jingles)
 (jinglescode.github.io)

- Conv1D
- Kernel
- Filters
- Padding
- Strides
- Epochs/Iterations: The number of times the input data is fed to the neural network, until the weights get stabilized and output accuracy reaches to expected value

Convolution Neural Network Layer

- Kernel Regularizer, Bias Regularizer, Activity (output of layer) Regularizer
 - Fine-tune the model
 - Introduce penalty, for the model to converge with minimal loss
 - Used to reduce overfitting
- Kernel Constraint min_max_norm
 - Applies for weight matrix of the kernel
 - If weights exceed the "given value", it scales the whole weight matrix by a factor that reduces the norm to "given value"

https://analyticsindiamag.com/kernel-regularizers-with-neural-networks/

Learning rate

• The "learning rate" is a tuning parameter in an optimization algorithm, that determines the step size at each iteration while moving toward a minimum of a loss function.

https://www.jeremyjordan.me/nn-learning-rate/ https://en.wikipedia.org/wiki/Learning_rate

- Loss Function/Cost Function
 - Cost functions are used to estimate how badly models are performing
 - A cost function is a measure of how wrong the model is in terms of its ability to estimate the relationship between X and y
 - This is typically expressed as a difference or distance between the predicted value and the actual value

https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220

- Activation Function
 - An Activation Function decides whether a neuron should be activated or not
 - This means that it will decide whether the neuron's input to the network is important or not, in the process of prediction
 - It is done using simpler mathematical operations

https://www.v7labs.com/blog/neural-networks-activation-functions

Activation Functions

• ReLU: It process all positive inputs through the neuron and suppresses all negative inputs to zero. The function looks like below.

https://www.nomidl.com/deep-learning/what-is-relu-and-sigmoid-activation-function/

Activation Functions

$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

• Softmax:

Suppose the value of Z21, Z22, Z23 comes out to be 2.33, -1.46, and 0.56 respectively. Now the SoftMax activation function is applied to each of these neurons and the following values are generated.

https://www.analyticsvidhya.com/blog/2021/04/introduction-to-softmax-for-neural-network/

- Optimizer: Algorithm which minimizes the cost/loss function and updates the attributes of the neural network (such as weights and biases) to achieve the minimization
- Network Convergence: It is a process to get minimum error/loss and maximum accuracy
- Early stopping: Stop the training of the neural network before the number of configured iterations/epochs is reached. This is done, when the expected accuracy or loss figure is reached
- Model Checkpoint: Checkpoint for expected accuracy or loss. The model attributes at this instant can be preserved for future use of prediction
- Batch size:
 - The batch size is a number of samples processed before the model is updated.
 - The size of a batch must be more than or equal to one and less than or equal to the number of samples in the training dataset.

Max Pooling Layer

MaxPooling1D

NOTE: The figure is around 2D signals (images). We need to apply it to 1D signals.

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/

Global Max Pooling Layer

GlobalMaxPooling1D

The difference of max-pooling and global max-pooling.

NOTE: The figure is around 2D signals (images). We need to apply it to 1D signals.

Average Pooling

AveragePooling1D

1. Code #2: Performing Average Pooling using keras

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/

Global Average Pooling Layer

• Imagine a diagram, similar to Global Max Pooling slide

Dropout Layer

- During usage of neural network with a large number of neurons, a scenario might be present where more than one neuron will extract similar features
- To avoid redundancy of features, we use Dropout
- In dropout, we randomly shut down some fraction of a layer's neurons at each training step by zeroing out the neuron values.
- The fraction of neurons to be zeroed out is known as the "dropout rate"
- Dropout reduces the size of neural network in every iteration and hence reduces overfitting

Dense Layer

• Dense Layer is simple layer of neurons in which each neuron receives input from all the neurons of previous layer, thus called as dense.

What is "Tensor" in python?

- A tensor can be described as a n-dimensional numerical array.
- A tensor can be called a generalized matrix.
- It could be a 0-D matrix (a single number), 1-D matrix (a vector), 2-D matrix or any higher dimensional structure.
- A tensor is identified by three parameters viz., rank, shape and type.

https://www.geeksforgeeks.org/python-creating-tensors-using-different-functions-in-tensorflow/

Convolution Neural Network - Architecture

- Convolution Layer
- Pooling Layer
- Normalization Layer
- Fully Connected Layer
- Activation Function

https://www.upgrad.com/blog/basic-cnn-architecture/

What are "Features" when it comes to Machine Learning?

- A feature is an individual measurable property or characteristic of a phenomenon
- Choosing "informative", "discriminating" and "independent" features is a crucial element of effective algorithms in pattern recognition, classification and regression
- Briefly, "feature" is input and "label" is output
- A feature is one column of the data in your input set
- Robotic arm has 32000 features and 1 label

Regularization

- "Regularization" refers to techniques that are used to calibrate machine learning models, in order to minimize the adjusted loss function and prevent overfitting or underfitting.
- Regularization can be implemented using a "Dropout" layer
- It can also be implemented using L1 or L2 regularization parameter while configuring Convolution Neural Network layer

https://www.simplilearn.com/tutorials/machine-learning-tutorial/regularization-in-machine-learning

Current model of Robotic Arm

Layer (type)	Output Shape	Param #
conv1d (Conv1D)	(None, 248, 75) 24075
max_pooling1d (Ma	xPooling1D (None,	82, 75) 0
global_average_pooling		5) 0
dense (Dense)	(None, 32)	2432
dropout (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 3)	99
	, , ,	

https://learnopencv.com/number-of-parametersand-tensor-sizes-in-convolutional-neural-network/ Let's define,

 W_c = Number of weights of the Conv Layer.

 B_c = Number of biases of the Conv Layer.

 P_c = Number of parameters of the Conv Layer.

K = Size (width) of kernels used in the Conv Layer.

N = Number of kernels.

C = Number of channels of the input image.

$$W_c = K^2 \times C \times N$$
$$B_c = N$$
$$P_c = W_c + B_c$$

In a Conv Layer, the depth of every kernel is always equal to the number of channels in the input image. So every kernel has $K^2 \times C$ parameters, and there are N such kernels. That's how we come up with the above formula.

NOTE: The above formula for parameter calculation is for Conv2D. For Conv1D, DO NOT calculate the square of the kernel size. Just keep the kernel size as it is.

Introduction to LSTM (Long Short Term Memory)

- It is used in the field of Deep Learning
- These neural networks have memory
- They are capable of learning long term dependencies
- They are used especially in "sequence prediction" problems
- Some Applications
 - Handwriting Recognition
 - Video-to-text conversion

https://intellipaat.com/blog/what-is-lstm/

Tips and Tricks

- Number of samples should be at least equal to the number of features, to create a good model
- If the data samples are less, don't go for a more complex model
- Learning rate should be at least 10 times less than the weights and the regularization term
- Start with Python "defaults" for each parameter and then vary them, based on the output
- To begin with, adjust the "kernel size" and "learning rate" first, to see the "accuracy" and "loss" figures fall within expected limits
- GlobalMaxPooling or GlobalAveragePooling or Flatten layer is required before using Dense layers in the model
- Take a look at other models available on internet for solving different problems
- Take a look at the Tensorflow/Keras functions to find more fine-tuning parameters

Automated Model Paramters

• Need to give an introduction of "Automated Model Parameters" file to save time