## Университет ИТМО Факультет программной инженерии и компьютерной техники

# Лабораторная работа №2

# «Вычислительная математика»

Выполнил:

Студент группы Р32102 Гулямов Т.И.

Преподаватель:

Рыбаков С.Д.

# Цель лабораторной работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

## Порядок выполнения работы

- 1. Вычислительная реализация задачи
  - а. Функция
  - b. График функции
  - с. Интервалы изоляции корней
  - d. Уточнение корня уравнения методом секущих
  - е. Уточнение корня уравнения методом половинного деления
  - f. Уточнение корня уравнения методом простой итерации
- 2. Программная реализация задачи

## Вычислительная реализация задачи

- 1. Функция:  $-1,38x^3-5,42x^2+2,57x+10,95$
- 2. График функции



- 3. Интервалы изоляции корней:
  - а. Крайний левый корень:  $a_{_1} = -4$ ,  $b_{_1} = -3$

b. Центральный корень:  $a_{_{2}}=-\,$  2,  $b_{_{2}}=-\,$  1

с. Крайний правый корень:  $a_{_{\! 3}}=$  1,  $b_{_{\! 3}}=$  2

## 4. Уточнение корня уравнения методом секущих

| №<br>итерации | $x_{k-1}$ | $x_k$   | $x_{k+1}$ | $f(x_{k+1})$ | $ x_k - x_{k+1} $ |
|---------------|-----------|---------|-----------|--------------|-------------------|
| 1             | -4        | -3.5    | -3.8495   | -0.53870     | 0.34952           |
| 2             | -3.5      | -3.8495 | -3.8893   | 0.15623      | 0.03978           |
| 3             | -3.8495   | -3.8893 | -3.8804   | -0.00293     | 0.00894           |

$$x^* = x_4 \approx -3.8804$$

## 5. Уточнение корня уравнения методом половинного деления

| № шага | а      | b      | x       | f(a)    | f(b)  | f(x)    | a-b     |
|--------|--------|--------|---------|---------|-------|---------|---------|
| 0      | -2     | -1     | -1.5    | -4.83   | 4.34  | -0.4425 | 1       |
| 1      | -1.5   | -1     | -1.25   | -0.4425 | 4.34  | 1.964   | 0.5     |
| 2      | -1.5   | -1.25  | -1.375  | -0.4425 | 1.964 | 0.757   | 0.25    |
| 3      | -1.5   | -1.375 | -1.438  | -0.4425 | 0.757 | 0.155   | 0.125   |
| 4      | -1.5   | -1.438 | -1.469  | -0.4425 | 0.155 | -0.144  | 0.0625  |
| 5      | -1.469 | -1.438 | -1.453  | -0.144  | 0.155 | 0.005   | 0.03125 |
| 6      | -1.469 | -1.453 | -1.461  | -0.144  | 0.005 | -0.07   | 0.01563 |
| 7      | -1.461 | -1.453 | -1.4609 | -0.07   | 0.005 | -0.07   | 0.00781 |

$$x^* = x_7 \approx -1.4609$$

## 6. Уточнение корня уравнения методом простой итерации

$$f(x) = 0$$

$$\lambda f(x) = 0$$

$$\lambda f(x) + x = x$$

$$\mathbf{\varphi}(x) = x + \lambda f(x)$$

$$\mathbf{\varphi}'(x) = 1 + \lambda f'(x)$$

Для высокой скорости сходимости:

$$q = max_{[a,b]}(\mathbf{\phi}'(x)) \approx 0 => \lambda =- 1/max_{[a,b]}(f'(x))$$

Найдем  $\lambda$ :

$$f'(x) = -4.14x^2 - 10.84x + 2.57$$

$$f'(1) = -12.41$$

```
f'(2) = -35.67
\lambda = 1/12.41 = 0.0806
```

$$\mathbf{\varphi}(x) = 0.882353 + 1.20709 x - 0.436745 x^{2} - 0.111201 x^{3}$$

| №<br>итерации | $x_k$   | $x_{k+1}$ | $\varphi(x_{k+1})$ | $f(x_{k+1})$ | $ x_k - x_{k+1} $ |
|---------------|---------|-----------|--------------------|--------------|-------------------|
| 0             | 1       | 1.5415    | 1.29796            | -3.02234     | 0.5415            |
| 1             | 1.5415  | 1.29796   | 1.47016            | 2.13707      | 0.24354           |
| 2             | 1.29796 | 1.47016   | 1.35965            | -1.37135     | 0.1722            |
| 3             | 1.47016 | 1.35965   | 1.43668            | 0.955978     | 0.11051           |
| 4             | 1.35965 | 1.43668   | 1.38534            | -0.637103    | 0.07703           |
| 5             | 1.43668 | 1.38534   | 1.42075            | 0.439435     | 0.05134           |
| 6             | 1.38534 | 1.42075   | 1.39684            | -0.29671     | 0.03541           |
| 7             | 1.42075 | 1.39684   | 1.41323            | 0.203445     | 0.02391           |
| 8             | 1.39684 | 1.41323   | 1.40211            | -0.138017    | 0.01639           |
| 9             | 1.41323 | 1.40211   | 1.40971            | 0.09431      | 0.01112           |
| 10            | 1.40211 | 1.40971   |                    | -0.0641738   | 0.0076            |

 $x^* = x_{11} \approx 1.40971$ 

# Листинг программы

#### Метод Ньютона

```
struct Newton {
  let function: Function
  let firstDerivative: Function
  let secondDerivative: Function
  let interval: Interval
  let tolerance: Double

func run() throws -> Output {
    guard self.function(self.interval.from) *
        self.function(self.interval.to) < 0 else {
        throw Error.incorrectRootsCount
    }
    let x = self.function(self.interval.from) *
        self.secondDerivative(self.interval.from) > 0
    ? self.interval.from
    : self.interval.to
    return try self.run(x: x, iterationsCount: 0)
}
```

```
private func run(x: Double, iterationsCount: Int) throws -> Output {
  let y = self.function(x)
  guard abs(y) > self.tolerance else {
    return Output(root: x, valueInRoot: y, iterationsCount: iterationsCount)
 let dy = self.firstDerivative(x)
  guard abs(dy) > .ulpOfOne else {
    throw Error.derivativeIsZero
 let nextX = x - y / dy
  guard abs(nextX - x) > self.tolerance else {
    let valueInRoot = self.function(nextX)
    return Output(
      root: x,
      valueInRoot: valueInRoot,
      iterationsCount: iterationsCount + 1)
 return try self.run(x: nextX, iterationsCount: iterationsCount + 1)
}
```

#### Метод хорд

```
struct Secant {
 let function: Function
 let interval: Interval
 let tolerance: Double
 func run() throws -> Output {
    guard self.function(self.interval.from) *
          self.function(self.interval.to) < 0 else {</pre>
     throw Error.incorrectRootsCount
   return self.run(
     from: self.interval.from,
      to: self.interval.to,
     iterationsCount: 0
    )
 }
  private func run(from: Double, to: Double, iterationsCount: Int) -> Output {
   let fromY = self.function(from)
   let toY = self.function(to)
   let nextX = (from * toY - to * fromY) / (toY - fromY)
   let y = self.function(nextX)
    guard abs(y) > self.tolerance else {
     return Output(root: nextX, valueInRoot: y, iterationsCount: iterationsCount)
    guard abs(nextX - from) > self.tolerance, abs(nextX - to) > self.tolerance else {
     return Output(root: nextX, valueInRoot: y, iterationsCount: iterationsCount + 1)
   return self.run(
     from: fromY * y < 0 ? from : nextX,</pre>
     to: toY * y < 0 ? to : nextX,
      iterationsCount: iterationsCount + 1
```

```
)
}
}
```

#### Метод простой итерации

```
struct SimpleIteration {
  let function: Function
  let derivative: Function
  let interval: Interval
  let tolerance: Double
  func run() throws -> Output {
    guard self.function(self.interval.from) *
          self.function(self.interval.to) < 0 else {</pre>
      throw Error.incorrectRootsCount
   let lambda = -1 / max(
      self.derivative(self.interval.from),
      self.derivative(self.interval.to)
   let phi = { x in
      x + lambda * self.function(x)
   let phiDerivative = { x in
      1 + lambda * self.derivative(x)
    guard max(
      phiDerivative(self.interval.from),
      phiDerivative(self.interval.to)
    ) < 1 else {
      throw Error.phiDerivativeNotLessOne
    return self.run(x: self.interval.from, iterationsCount: 0, phi: phi)
  }
  private func run(x: Double, iterationsCount: Int, phi: Function) -> Output {
   let nextX = phi(x)
    guard abs(nextX - x) > self.tolerance else {
      let valueInRoot = self.function(nextX)
      return Output(
        root: x,
        valueInRoot: valueInRoot,
        iterationsCount: iterationsCount + 1)
    return self.run(x: nextX, iterationsCount: iterationsCount + 1, phi: phi)
  }
}
```

#### Метод простой итерации (система)

```
struct SystemSimpleIteration {
  let function1: Function2
  let function2: Function2

let phiFunction1: Function2
```

```
let phiFunction2: Function2
  let phiDerivative11: Function2
  let phiDerivative12: Function2
  let phiDerivative21: Function2
  let phiDerivative22: Function2
  let interval1: Interval
  let interval2: Interval
  let tolerance: Double
  func run() throws -> SystemOutput {
    try self.run(
      x1: self.interval1.to,
      x2: self.interval2.to,
      iterationsCount: 0
    )
  }
  private func run(
    x1: Double,
    x2: Double,
    iterationsCount: Int
  ) throws -> SystemOutput {
    guard self.phiDerivative11(x1, x2) + self.phiDerivative12(x1, x2) < 1,
          self.phiDerivative21(x1, x2) + self.phiDerivative22(x1, x2) < 1 else {
      throw Error.common
    let nextX1 = self.phiFunction1(x1, x2)
    let nextX2 = self.phiFunction2(x1, x2)
    let errorX1 = abs(nextX1 - x1)
    let errorX2 = abs(nextX2 - x2)
    guard errorX1 < self.tolerance, errorX2 < self.tolerance else {</pre>
      return try self.run(
        x1: nextX1,
        x2: nextX2,
        iterationsCount: iterationsCount + 1
      )
    }
    return .init(
      roots: (nextX1, nextX2),
      valuesInRoots: (
        self.function1(nextX1, nextX2),
        self.function2(nextX1, nextX2)
      errors: (errorX1, errorX2),
      iterationsCount: iterationsCount
    )
 }
}
```

# Результаты выполнения программы









## Вывод

Во время выполнения лабораторной работы познакомился с численными методами решения нелинейных уравнений и систем. Научился использовать и реализовывать программно некоторые популярные методы. Получил ценные знания, которые несомненно пригодятся в будущем.