Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки: 09.03.01 Информатика и вычислительная техника Дисциплина «Основы профессиональной деятельности»

Лабораторная работа №7

По дисциплине

«Основы профессиональной деятельности»

Вариант: 3175

Выполнил Колмаков Дмитрий Владимирович, Группа Р3131

> Преподаватель Перцев Тимофей Сергеевич

Оглавление

Задание	
Ход работы	3
Назначение программы	Error! Bookmark not defined.
одз	Error! Bookmark not defined.
Расположение данных в памяти	Error! Bookmark not defined.
Область представления	5
Код программы на ассемблере	Error! Bookmark not defined.
Вывод	8

Задание

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. ANDSP Логическое И двух верхних чисел на вершине стека, результат поместить на стек, установить признаки $N\!/Z$
- 2. Код операции 0F10
- 3. Тестовая программа должна начинаться с адреса 0427₁₆

Ход работы

Исходный код синтезируемой команды

Адрес	Микрокоманда	Описание	Комментарий			
E0	01 <u>80</u> 0090 <u>08</u>	$\underline{SP} \rightarrow \underline{AR}; MEM(AR) \rightarrow DR$	Попрад инала из атака д DD			
E1	00 <u>20</u> 0090 <u>01</u>	<u>DR</u> → <u>BR</u>	Первое число из стека $ ightarrow$ BR			
E2	01 <u>80</u> 0094 <u>08</u>	(SP+1) → AR ; MEM(AR) → DR	Второе число из стека $ ightarrow$ DR			
E3	00 <u>01</u> 809 <mark>8</mark> 21	$(BR \& DR) \rightarrow DR, N, Z$	Логическое И двух верхних чисел на			
			вершине стека, флаги N, Z			
E4	02 <u>88</u> 009 <u>208</u>	$(\underline{SP} + {\sim}0) \rightarrow \underline{SP}, \underline{AR}; DR \rightarrow MEM(AR)$	SP = SP - 1, результат операции на стек			
E5	80 <mark>C4<u>10</u>10<u>40</u></mark>	GOTO INT @ C4	Переход к циклу прерываний			

Текст тестовой программы

```
ORG 0x010
ARG1: WORD 0xFFFF
ARG2: WORD 0x0000
ARG3: WORD 0x1234
ARG4: WORD 0x1234
ARG5: WORD 0xF91A
ARG6: WORD 0x3C78
CHECK1: WORD 0x0
CHECK2: WORD 0x0
CHECK3: WORD 0x0
FINAL: WORD 0x0
RES1: WORD 0x0000
RES2: WORD 0x1234
RES3: WORD 0x3818
TESTRES1: WORD 0x0
TESTRES2: WORD 0x0
TESTRES3: WORD 0x0
START: CLA
  CALL TEST1
   CALL TEST2
  CALL TEST3
  LD #0x1
  AND CHECK1
  AND CHECK2
   AND CHECK3
   ST FINAL
STOP: HLT
TEST1: LD ARG1
  PUSH
   LD ARG2
  PUSH
   CLA
   WORD 0x0F10; ANDSP
   POP
   ST TESTRES1
   CMP RES1
   BEQ DONE1
ERROR1: POP
   POP
   CLA
  RET
```

```
DONE1: POP
  POP
  LD #0x1
  ST CHECK1
  CLA
TEST2: LD ARG3
  PUSH
  LD ARG4
  PUSH
  CLA
  WORD 0x0F10; ANDSP
  POP
  ST TESTRES2
  CMP RES2
  BEQ DONE2
ERROR2: POP
  POP
  CLA
  RET
DONE2: POP
  POP
 LD #0x1
 ST CHECK2
  CLA
  RET
TEST3: LD ARG5
  LD ARG6
  PUSH
  CLA
  WORD 0x0F10; ANDSP
  POP
  ST TESTRES3
  CMP RES3
   BEQ DONE3
ERROR3: POP
  POP
  CLA
  RET
DONE3: POP
  POP
  LD #0x1
  ST CHECK3
  CLA
   RET
```

Таблица трассировки МК

МР до	Содержимое памяти и регистров процессора после выборки микрокоманды									
выборки МК	MR	IP	AR	AR	DR	SP	BR	AC	NZVC	СчМК
EO	0180009008	04E	0F10	7FD	3C78	7FD	004D	0000	0100	E1
E1	0020009001	04E	0F10	7FD	3C78	7FD	3C78	0000	0100	E2
E2	0180009408	04E	0F10	7FE	F91A	7FD	3C78	0000	0100	E3
E3	0001809821	04E	0F10	7FE	3818	7FD	3C78	0000	0000	E4
E4	0288009208	04E	0F10	7FC	3818	7FC	3C78	0000	0000	E5
E5	80C4101040	04E	0F10	7FC	3818	7FC	3C78	0000	0000	C4
C4	80DE801040	04E	0F10	7FC	3818	7FC	3C78	0000	0000	C5
C5	8001401040	04E	0F10	7FC	3818	7FC	3C78	0000	0000	01

Методика проверки

- 1. Загрузить комплекс разработанных микропрограмм в микропрограммную память БЭВМ;
- 2. Загрузить тестовую программу в память базовой ЭВМ;
- 3. Запустить основную программу с адреса в режиме работа;
- 4. Дождаться останова;
- 5. Проверить результат в АС и флаги N, Z;
- 6. Нажать продолжить;
- 7. Перейти к шагу 4 еще два раза;
- 8. Проверить значение ячейки памяти FINAL с номером 0x019, если значение 0x0001 все тесты выполнены успешно.

Комментарии к методике

- Для проверки используется три пары значений: 0xFFFF и 0x0000, 0x1234 и 0x1234, 0xF91A и 0x3C78
- Данные значения показывают правильную работу программы логического умножения числа на ноль, числа на само число, двух разных ненулевых чисел
- В ходе проверки флаги N, Z выставляются корректно
- Результат каждого теста записывается в соответствующую ячейку TESTRES, значение ячейки RES 0x0001 означает успешное выполнение. 0x0000 ошибку при выполнении.
- При успешном выполнении всех тестов значение FINAL станет 0x0001, иначе 0x0000

Ячейка с		Первое число	Второе число	Теоретический	Полученный	
результатом				результат	результат	
TESTRES1	0x01D	0xFFFF (N=0, Z=1)	0x0000 (N=0, Z=1)	0x0000 (N=0, Z=1)	0x0000 (N=0, Z=1)	
TESTRES2	0x01E	0x1234 (N=0, Z=0)	0x1234 (N=0, Z=0)	0x1234 (N=0, Z=0)	0x1234 (N=0, Z=0)	
TESTRES3	0x01F	0xF91A (N=1, Z=0)	0x3C78 (N=0, Z=0)	0x3818 (N=0, Z=0)	0x3818 (N=0, Z=0)	

Вывод

В ходе выполнения лабораторной работы я изучил алгоритм синтеза собственной команды БЭВМ с помощью горизонтальных микрокоманд, обратился к знаниям из курса дискретной математики и реализовал на практике алгоритм умножения со сдвигом СЧП вправо, разработал методику проверки сделанной программы, а также получил полное понимание устройства БЭВМ и желание разработать новые команды и модули для уже существующей БЭВМ, либо создать свою с нуля.