UFR IM2AG

Planche d'exercices "Calcul différentiel"

Exercice 1. 1. En utilisant la définition de la différentielle d'une fonction en un point, calculer la différentielle en (0,0) des applications de \mathbb{R}^j (j=2,3) dans \mathbb{R} définies par :

$$f(x, y, z) = 2 + 3z + xy + z\sin(x^2 + y^2), \quad g(x, y) = 1 + \sqrt{y^2 + 2}.$$

2. Calculer les dérivées partielles de la fonction q et montrer qu'elles sont continues.

Exercice 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\begin{cases} f(x,y) = \frac{xy^2}{x^2 + y^2} \text{ pour } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

- **1.** L'application f est-elle continue sur \mathbb{R}^2 ?
- 2. Calculez les dérivées partielles de f. Sont-elles continues ?
- **3.** Pour tout A:(a,b) et tout H:(h,k) de \mathbb{R}^2 , calculez directement $f'(A;H) = \lim_{t\to 0, t\neq 0} \frac{f(A+tH)-f(A)}{t}$. L'application $H\mapsto f'(A;H)$ est-elle linéaire en H?

Exercice 3. On considère l'application f de \mathbb{R}^2 dans \mathbb{R} définie par

$$\begin{cases} f(x,y) &= \frac{xy}{2x^2 + 3y^2} \text{ si } (x,y) \neq (0,0), \\ f(0,0) &= 0. \end{cases}$$

Montrez que les dérivées partielles $D_1 f(x, y)$ et $D_2 f(x, y)$ existent pour tout $(x, y) \in \mathbb{R}^2$, y compris à l'origine. La fonction f est-elle continue à l'origine?

Exercice 4. Montrez que l'application q de \mathbb{R}^2 dans \mathbb{R} définie par

$$\begin{cases} g(x,y) = \frac{5x^3y}{2x^2 + 3y^2} + \frac{x^2|y|^{3/2}}{2x^2 + 3y^2} & \text{si } (x,y) \neq (0,0), \\ g(0,0) = 0 \end{cases}$$

est différentiable en (0,0).

Exercice 5. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable sur \mathbb{R}^2 . Pour tout $t \in \mathbb{R}$, on pose

$$\varphi(t) = f(t, f(t, f(t, t))).$$

Calculer $\varphi'(t)$ en fonction des dérivées partielles de f. Traiter l'exemple $f(t,s)=ts^2$.

Exercice 6. Soit $a \in \mathbb{R}^n \setminus \{0\}$ et soit f la fonction définie sur \mathbb{R}^n par :

$$f(x) = (a|x) \exp(-\|x\|^2).$$

1. Montrer que f est de classe \mathcal{C}^1 et montrer que la différentielle de f en $x \in \mathbb{R}^n$ est donnée par :

$$\forall h \in \mathbb{R}^n, Df(x).h = [(a|h) - 2(a|x)(x|h)] \exp(-\|x\|^2).$$

Ici $(\cdot|\cdot)$ désigne le produit scalaire usuel de \mathbb{R}^n .

- 2. Déterminer les points critiques de f, c'est-à-dire les points x de \mathbb{R}^n tels que Df(x) = 0.
- 3. Déterminer les éventuels maxima et minima de f.

Exercice 7. Soit U l'ouvert de \mathbb{R}^n défini par $U=(]0,+\infty[)^n$ et f l'application de U dans \mathbb{R} définie par :

$$f(x_1, ..., x_n) = x_1 \cdots x_n + \alpha^{n+1} \left(\frac{1}{x_1} + \cdots + \frac{1}{x_n} \right)$$

où α est un réel strictement positif fixé.

- 1. Montrer que f est de classe \mathcal{C}^1 sur U (on calculera les dérivées partielles de f).
- 2. Déterminer le point critique de f et préciser si c'est un maximum, un minimum, un point col (ou selle).

Exercice 8. Pour b > 0, on définit la fonction h_b dans le demi-plan $H = \{(x, y) \in \mathbb{R}^2 : x > 0\}$ par :

$$h_b(x,y) = \frac{\pi}{2} + \arctan\left(\frac{y-b}{x}\right).$$

- **1.** Calculer, pour tout $x \in \mathbb{R} \setminus \{0\}$, $\arctan(x) + \arctan(1/x)$.
- **2.** Montrer que h_b se prolonge continûment au demi-plan $\{(x,y) \in \mathbb{R}^2 : x \geq 0\}$ privé du point (0,b) et expliciter ce prolongement.
- **3.** Montrer que $\lim_{x \to 0^+} \frac{h_b(x,0)}{x} = \frac{1}{b}$.

Exercice 9. Pour une fonction H de classe \mathcal{C}^2 définie sur une partie ouverte de \mathbb{R}^2 on note :

$$\Delta H = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Soit U une partie ouverte non vide de \mathbb{R}^2 et soit f une fonction de classe \mathcal{C}^2 sur U, à valeurs réelles. On suppose que $\Delta G(x,y) > 0$ pour tout $(x,y) \in U$.

Montrer que G ne peut pas avoir de maximum sur U (on pourra raisonner par l'absurde en considérant un point (x_0, y_0) de U où un maximum serait atteint et introduire les fonctions $g_1 : t \mapsto g(x_0 + t, y_0)$ et $g_2 : t \mapsto g(x_0, y_0 + t)$).

Exercice 10. Notons $E = \mathcal{C}([0,1],\mathbb{R})$ muni de la norme $\|\varphi\| = \sup |\varphi|$.

(a) On considère la fonction F de E dans E définie par $F(\varphi) = \varphi^2$). Montrez que F est différentiable et explicitez la différentiable $DF(\varphi)$ de F au point $\varphi \in E$.

Explicitez ensuite l'application différentielle $DF: E \to E$.

- (b) Traitez la même question avec $F(\varphi) = \varphi^3$.
- (c) Traitez la même question avec $F(\varphi) = f \circ \varphi$ où f est une fonction donnée de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} .

Exercice 11. On note $M_n(\mathbb{C})$ l'algèbre des matrices carrées $n \times n$ à coefficients complexes.

- (a) On considère l'application Φ de $M_n(\mathbb{C})$ dans $M_n(\mathbb{C})$ définie par : $\Phi(M) = M^2$. Montrez que Φ est différentiable sur $M_n(\mathbb{C})$ et explicitez l'application différentielle $D\Phi$. Pourquoi ne précise t-on pas la norme choisie sur $M_n(\mathbb{C})$?
- (b) Même question avec l'application Ψ définie par $\Psi(M) = M^3$.

Exercice 12. On considère la fonction f de \mathbb{R} dans \mathbb{R} définie par

$$\begin{cases} f(x) = x + 2x^2 \sin\left(\frac{1}{x}\right), & \text{si } x \neq 0 \\ f(0) = 0. \end{cases}$$

- (a) Montrez que f est dérivable sur \mathbb{R} et que f'(0) = 1. Montrez que Df(0) est un isomorphisme de \mathbb{R} dans \mathbb{R} .
- (b) Montrez que f n'est injective sur aucun voisinage de 0.
- (c) Pourquoi le théorème d'inversion locale ne s'applique-t-il pas?

Exercice 13. On considère l'application f de \mathbb{R}^2 dans \mathbb{R}^2 définie par

$$f(x,y) = (e^x \cos y, e^x \sin y).$$

- (a) Déterminez l'image de \mathbb{R}^2 par f.
- (b) Montrez que f définit un diiféomorphisme local au voisinage de tout point de \mathbb{R}^2 .
- (c) Montrez que f n'est pas un difféomorphisme de \mathbb{R}^2 sur $f(\mathbb{R}^2)$.
- (d) Mêmes questions avec l'application $g:(x,y)\mapsto (x^2-y^2,2xy)$.

Exercice 14. On note S l'espace des matrices carrées symétriques $n \times n$ à coefficients réels. Etant donnée $A_0 \in S$ on appelle Φ l'application de $\mathcal{M}_n(\mathbb{R})$ dans S définie par $\Phi(M) = {}^t M A_0 M$.

- (a) Montrez que Φ est de classe C^1 et calculez $D\Phi(Id)$.
- (b) Déterminez le noyau et l'image de $D\Phi(Id)$.
- (c) On note E l'espace des matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $A_0M \in S$ et l'on note $\overline{\Phi}$ l'application Φ restreinte à E. Quel est le noyau et l'image de $D\overline{\Phi}$?
- (d) Montrez qu'il existe un voisinage \mathcal{U} de A_0 dans S tel que toute matrice $A \in \mathcal{U}$ s'écrit sous la forme $A = {}^t M A_0 M$, pour une matrice M dans $\mathcal{M}_n(\mathbb{R})$, et que l'on peut choisir M dépendant de manière \mathcal{C}^1 de la matrice A dans \mathcal{U} (c'est-à-dire qu'il existe une application Ψ de \mathcal{U} dans $\mathcal{M}_n(\mathbb{R})$ telle que $M = \Psi(A)$, pour tout $A \in \mathcal{U}$).