

Aprendizaje profundo

Ivan Vladimir Meza Ruiz, IIMAS, UNAM

@ivanvladimir

Escanear para acceder a las diapositivas

Link permanente

https://docs.google.com/presentation/d/1Jy69MOJltDGwMyFbjCvxKz_X46ewBTASk-Fr6wAlpwg/edit?usp=sharing

Nuestra primera red no es una red

Ejemplo

Registros médicos, determinar si está sano o no: miles, decenas de miles, cientos de miles, millones, decenas de millones

x ₁	x ₂	x ₃	 x _n	у	
3.4	1.0	2.1	 12.0	0	
6.0	1.0	22.0	 8.9	1	
8.5	0.0	11.9	 3.2	0	

Algunos experimentos mentales

Name	Plot	Equation	Derivative
Sigmoid	Sigmoid 12 1 03 08 08 09 100 100 100 100 100 1	$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$	f'(x) = f(x)(1-f(x))
Tanh	Tanh 15 1 03 03 03 30 10 11 13	$f(x)= anh(x)=rac{(e^x-e^{-x})}{(e^x+e^{-x})}$	$f'(x)=1-f(x)^2$
Rectified Linear Unit (relu)	Relu 13 10 2 100 100 100 100 100 10	$f(x) = egin{cases} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$
Leaky Rectified Linear Unit (Leaky relu)	Leaky Relu	$f(x) = egin{cases} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$

	Name	Plot	Equation	Derivative	
	Identity		f(x) = x	f'(x) = 1	
	Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$	
	Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))	
	TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$	
	ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$	
	Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	
	Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	
	Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	
·	SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$	

Si sigmoide, regresión logística

Con bias (sesgo)

 $y=f(w_1x_1+w_2x_2+...+w_nx_n+b)$

Como vectores

$$y = f(W/x + b)$$

$$[1X1] = [1Xm] [mX1] + [1X1]$$

Ahora multi capa

. . . .

MLP

Entrada Capa 1 Capa 2 Salida

• Entrada de dimensión del tipo $x \in \mathbb{R}^n$

 se conecta a la primera capa de m neuronas

esta conecta a la segunda capa de O neuronas

esta genera la salida y∈Rº

Entrada Capa 1 Capa 2 Salida

Primera capa

$$h^1 = f(W^1 x + b^1)$$

[mx1]=[mxn][nx1]+[mx1]

Segunda capa

$$y=f(W^2h^1+b^2)$$

$$[ox1]=[oxm][mx1]+[ox1]$$

Toda la red

$$h^1 = f(W^1x + b^1)$$

 $y = f(W^2h^1 + b^2)$

Más de una capa

$$h^{1}=f(W^{1}x+b^{1})$$

 $h^{2}=f(W^{2}h^{1}+b^{2})$
 $h^{3}=f(W^{3}h^{2}+b^{3})$

$$y=f(W^Lh^{L-1}+b^L)$$

Funcionamiento típico

Ejemplo diagnóstico médico

- Entrada, historia clínica como vector
- Salida, enfermo si y no

Llega un nuevo paciente

- Vectorizo al paciente
- Hago la cadena de operaciones, y veo la salida

¿Qué tengo? ¿Qué no tengo?

$$h^{1}=f(W^{1}x+b^{1})$$

 $h^{2}=f(W^{2}h^{1}+b^{2})$
 $h^{3}=f(W^{3}h^{2}+b^{3})$

 $y = f(W^L h^{L-1} + b^L)$

De dónde salen

los valores Ws y bs?

Calculo de Ws y bs

Intuición de cálculo de parámetros/modelo

- Alimentar un paciente vectorizado para el cual sé el diagnóstico
- Checar la predicción
- Calcular que tan diferente es la predicción con el valor real
- Cambiar la red proporcional a la diferencia
- Hacer esto para muchos pacientes, con la esperanza que la red se estabilice

Hasta ahora

Intuición

- 🔸 Alimentar un paciente vectorizado para el cual sé el diagnóstico 🗸
- Checar la predicción
- Calcular qué tan diferente es la predicción con el valor real X
- 🔸 Cambiar la red proporcional a la diferencia 🗶
- Hacer esto para muchos pacientes, con la esperanza que la red se estabilice

Cálculo del error

Para un datase

$$\sum_{i=0}^{n} E(a^L,y) = rac{1}{2n} \sum_{i=0}^{n} (a^L_i - y_i)^2 \, .$$

Donde

$$a^{L}=f(W/mh^{m-1}+b^{m})$$

Lo que queremos

Es que la cantidad E(a^L,y) se haga pequeña, si cero, significa que la red imita el comportamiento del dataset.

Lo que necesitamos es calcular una W y b nueva de forma iterativa para cada ejemplo que garantice reducir el error para ese ejemplo. Si llamamos θ =(W y b)

Algunos experimentos mentales

Entrada Capa 1 Capa 2 Salida

Entrada Capa 1 Capa 2 Salida

Entrada Capa 1 Capa 2 Salida ¿ pesos más grandes?

Entrada Capa 1 Capa 2 Salida

Entrada

Capa 1

Capa 2

Salida

¿cuándo esa suma es grande?

Entrada Capa 1 Capa 2 Salida

Entrada

Capa 1

Capa 2

Salida ¿Qué es lo que queremos?

Entrada Capa 1 Capa 2 Salida

Entrada Capa 1 Capa 2 Salida

Entra a escena la derivada

Entra a escena la derivada

Reemplazando

$$\frac{\partial E}{\partial w_{ij}^l} = \frac{\partial \frac{1}{2} (a^L - y_i)^2}{\partial w_{ij}^l}$$

Pero a^L

$$= \frac{\partial \frac{1}{2} (f(W^{L}h^{L-1} + b^{L}) - y_{i})^{2}}{\partial w_{ij}^{l}}$$

$$\hat{ heta} = heta - k
abla E(a^L, y)$$

$$abla = (rac{\partial E}{\partial w_{jk}^l}, rac{\partial E}{\partial b_j^l})$$

Gradient descent

Símbolo auxiliar

Error en la neurona j de la capa l

$$\delta_j^l = rac{\partial E}{\partial h_j^l}$$

Última capa

$$\delta_j^L = rac{\partial E}{\partial a_j^L} f'^L(h_j^L)$$

$$rac{\partial E}{\partial a_j^L} = (a_j^L - y_j)$$

Rescribiendo

$$\delta^L = (a^L - y) igodotemor{O} f'^L(h^L)$$

Capa anterior

$$\delta^l = ((W^{l+1})^T \delta^{l+1}) igodotemode f'^l(h^l)$$

Error en el bias

$$rac{\partial E}{\partial b^l} = \delta^l$$

Error en bias

$$rac{\partial E}{\partial w_{j|k}^l} = a_k^{l-1} \delta_j^l$$

Back propagation

La aplicación de estas ecuaciones

Como grafo

Renombrando algunas cosas

C=E o L=E z=a^l x, y la contribución de un peso

Ccmo arafo "local gradient" $\frac{\partial L}{\partial z}$ gradients

MLP como grafo de cómpu

Forwar d

Forward con x

Padres

hijos

Forward con lost

hijos

Forward con lost

hijos

Backward

 $\frac{\partial L}{\partial z} \frac{\partial z}{\partial w}$

Otros mecanísmos de optimización

Vainilla

$$\hat{ heta} = heta - k
abla J(heta, x_i, y_i)$$

Minibatch

$$\hat{ heta} = heta - k
abla J(heta, x[i:i+n], y[i:i+n])$$

Momentum

$$v_t = \gamma v_{t-1} + k
abla J(heta)$$

$$\hat{ heta} = heta - v_t$$

Nesterov ε
$$v_t = \gamma v_{t-1} + k
abla J(heta - \gamma v_{t-1})$$
 $\hat{ heta} = heta - v_t$

Adagrad

$$heta_{t+1} = heta_t - rac{k}{\sqrt{G_t + \epsilon}} \odot g_t$$

$$E[g]_t = 0.9E[g^2]_{t-1} + 0.1g_t^2$$

$$heta_{t+1} = heta_t - rac{\kappa}{\sqrt{E[g^2]_t + \epsilon}} g_t$$

Manipular

https://losslandscape.com/explorer

Tres garantías

Tres garantías

- Las redes neuronales son aproximadores universales para funciones continuas: Funciones matemáticas
- 2. Las redes neuronales recurrentes son equivalentes a máquinas de Turing: **Algoritmos**
- 3. El algoritmo de backpropagation va encontrar una configuración de la red que imita el comportamiento de los datos

Redes recurrentes

Todo es un vector

7a metáfora

Ejemplo

Perros: [0.678641579074071, 0.4726267197424602, 0.6699618494116154, 0.6134727267440421, 0.7884295249570772, 0.3097356074817419, 0.4108834549045387, 0.9150959196458144, 0.04209167364154953, 0.714175609065853, 0.019089355554306242, 0.2342050958784716, 0.9540342968538216, 0.7729056436977116, 0.785877036975804, 0.9821768722685218, 0.7293579326768811, 0.2014321301972668, 0.349530343157317, 0.4917367171701048, 0.026563934882441687, 0.8914408953170919, 0.9767419151172713, 0.4722904439150507, 0.6541608174208771, 0.8889932058447243, 0.49292883438919444, 0.8985198063228953, 0.544002070266999, 0.7153381641713361, 0.9459279525823148, 0.4443207032842629]

parecen perros contra gatos

Aprendizaje profundo

Popularizado por

- Conducen carros
- Ganan en el juego de Go
- Reconocen objetos en imagenes
- Reconocen voz
- Traducen automáticamente

Output of neuron = Y= f(w1. X1 + w2.X2 + b)

Idea

Poner el vector resumen enfrente de la red neuronal Ejemplo, clasificar sentimientos de un *tuit*

Excelente para clasificación

- Sentimentos
- Ironía
- Detectar entidades
- ... muchas más

Pero teníamos una crítica de la suma

†: concatenación de dos vectores

Pero teníamos una crítica de la suma

Modelo recurrente

Ese nueva salida

Puede predecir una palabra

Importante

- Tenemos algo que hace un resumen dada palabras anteriores
- Tenemos algo que predice la palabra siguiente

Modelo seq2seq

seq2seq

Seq2seq se usa tareas de re-escritura

- Traducción automática
- Segmentación morfológica
- Normalización de textos
- Sistemas conversacionales
- Corrección gramatical

seq2seq

Estado del arte con Seq2seq

- Se usa con otros componentes: atención
- Arquitecturas transformers
- Herramientas múltiples: OpenNMT

En la práctica

Datos == Dataset

Desarrollo Prueba

2 diseñar red

Acc Pres Rec F1

iGracias!

Ivan Vladimir Meza Ruiz, IIMAS/UNAM ivanvladimir@turing.iimas.unam.mx @ivanvladimir