Sillage d'un avion

On considère le vol d'un avion de chasse A se déplaçant dans le sens des x croissants, à une vitesse v sur une droite horizontale (y=0,z=h) alors qu'un observateur est situé au point O(0,0,0). L'avion émet un signal sonore de période T. On note $\theta = (\vec{Ox}, \vec{OA})$ l'inclinaison par rapport à l'horizontale de la direction observateur-avion. Cet angle est supposé varier peu pendant une période T.

o L'air a une masse volumique au repos ρ_0 et une compressibilité χ_s . Retrouver l'équation d'Alembert caractérisant la propagation des ondes sonores dans l'air, en explicitant la vitesse de propagation c des ondes.

On suppose dans un premier temps que l'avion se déplace à une vitesse subsonique, c'est-à-dire v < c.

- * On appelle t_1 et t_2 deux moments successifs où le signal sonore est émis (donc $t_2 t_1 = T$), et t_1' et t_2' les deux moments successifs où ces signaux sont reçus par l'observateur. Exprimer la période $T' = t_2' t_1'$ en fonction de h, c, $\theta_1 = \theta(t_1)$ et $\theta_2 = \theta(t_2)$.
- \star En déduire est la période T' du signal perçu par l'observateur en fonction de θ . Comment s'appelle ce phénomène ?

On suppose désormais que l'avion se déplace à une vitesse supersonique, c'est-à-dire v>c.

- ♦ Le son émis par l'avion à l'instant t est perçu par l'observateur à l'instant t' = f(t). Déterminer la fonction f si l'avion passe à l'instant t = 0 à la verticale de l'observateur. En s'appuyant sur les asymptôtes de t' dans les cas $t \longrightarrow \pm \infty$, représenter graphiquement f(t).
- \diamond Pourquoi le son perçu est-il particulièrement intense si dt'/dt = 0? Comment s'appelle ce phénomène?
- \diamond On donne $h=1000\mathrm{m}$; $v=500\mathrm{m.s^{-1}}$; $c=340\mathrm{m.s^{-1}}$. On note t_0' l'instant auquel le bang est perçu par l'observateur et t_0 l'instant auquel les sons perçus à l'instant t_0' ont été émis par l'avion. Déterminer t_0 , t_0' et les positions de l'avion à t_0 et t_0' .
- \diamond L'observateur entend-il l'avion avant d'entendre le bang ? Quelle est la durée Δt d'émission des sons perçus entre t'_0 et $t'_0 + \Delta t'$ (on pourra effectuer une développement limité de f(t)). Calculer Δt pour $\Delta t' = 0.1$ s et commenter.
- ♦ Quelle est la région de l'espace qui peut être atteinte à un instant donné par une onde sonore provenant de l'avion ?
- ♦ Estimer la vitesse de l'avion en photo ci-dessous.

Pavillon acoustique

Propagation du son dans l'air libre

L'air a une masse volumique au repos ρ_0 et une compressibilité χ_s . Les vibrations des ondes sonores sont caractérisées par des variations locales du champ de pression p, de masse volumique μ et de vitesse v.

- Qu'est-ce que l'approximation accoustique? On supposera qu'elle est toujours vérifée par la suite.
- Retrouver l'équation d'Alembert caractérisant la propagation des ondes sonores dans l'air, en explicitant la vitesse de propagation c des ondes.

Propagation du son dans un pavillon

On s'intéresse désormais à un pavillon acoustique, de symétrie de révolution autour de l'axe Ox, a une section S(x) à l'abscisse x, contenant de l'air de masse volumique ρ_0 et de compressibilité χ_s . Une onde s'y propage suivant Ox, mais contrairement à de l'air libre, les parois du pavillon imposent une contrainte sur la propagation du son. On note p(x,t) la surpression acoustique et $\Psi(x,t)$ le déplacement longitudinal de la tranche de fluide en x à l'instant t.

 \diamondsuit En reliant la compressibilité $\chi_s = -\frac{1}{V} \frac{\partial V}{\partial P}$ à la surpression p(x,t) et au déplacement $\Psi(x,t)$, démontrer la relation suivante :

$$p(x,t) = -\frac{1}{\chi_s} \left(\frac{\partial \Psi}{\partial x} + \Psi(x,t) \frac{\partial}{\partial x} \left[\ln S(x) \right] \right)$$

 \diamondsuit En utilisant la relation fondamentale de la dynamique, en déduire une relation similaire à une équation "d'onde" portant sur $\Psi(x,t)$.

Le pavillon a une allure exponentielle : $S(x) = S_0 \exp(ax)$. On suppose que l'onde est une onde plane, progressive et monochromatique : $p(x,t) = p_0 \exp(j[\omega t - kx])$. On notera la vitesse de déplacement $v(x,t) = \partial \Psi/\partial t$.

- \diamondsuit Montrer que l'équation "d'onde" vérifiée par $\Psi(x,t)$ est aussi vérifiée par p(x,t). On pourra donc injecter la solution en p(x,t) proposée dans l'équation "d'onde".
- \diamondsuit Trouver une équation entre k et ω . En déduire l'expression de k en fonction de ω . Distinguer deux cas.
- \Diamond Montrer qu'il ne peut pas y avoir de propagation de l'onde sonore en dessous d'une certaine pulsation de coupure ω_c .
- \Diamond Donner les expression de v(x,t), p(x,t), puis celle de l'énergie acoustique $\varepsilon(x,t)$ et du vecteur de densité de dourant d'énergie sonore $R_s(x,t)$.

Impédance acoustique

On considère une onde acoustique se propageant selon les x croissants dans un milieu 1 (x < 0) et atteignant le milieu 2 (x > 0) en x = 0. Les milieux 1 et 2 dans lesquels se propagent une onde sonore sont caractérisés respectivement par une masse volumique ρ_1 et ρ_2 et une célérité des ondes acoustiques c_1 et c_2 .

Échographie

 \spadesuit Retrouver l'équation d'Alembert vérifiée par la surpression p(x,t) et la vitesse v(x,t) dans un milieu homogène. Quelles sont les solutions générales dans ce cas unidimensionnel?

On suppose que les champs de vitesse et de surpression sont des ondes planes progressives monochromatique et s'écrivent (l'indice j représentant le milieu 1 ou 2) :

$$\vec{v}_j(x,t) = v_{0,j} \exp\left[i(\omega t \pm k_j x)\right] \vec{e}_x$$
$$p_j(x,t) = p_{0,j} \exp\left[i(\omega t \pm k_j x)\right]$$

- \spadesuit Quelle relation vérifient k_i et ω ? A quoi correspondent les signes \pm ?
- \spadesuit En déduire une relation entre l'amplitude des champs de vitesse $v_{0,j}$ et de pression $p_{0,j}$ pour une onde se déplaçant selon les x croissants, puis pour une propagation selon les x décroissants. On introduira la notion d'impédance acoustique.
- \spadesuit Écrire les relations que vérifient la vitesse et la surpression à l'interface en x=0. Justifier.
- \spadesuit Une onde incidente $v_{0,i} \exp \left[i(\omega t k_1 x)\right] \vec{e}_x$ arrive sur l'interface depuis le milieu 1. Pourquoi a t-on nécessairement l'apparition d'une onde réfléchie et d'une onde transmise à l'interface si les milieux 1 et 2 ne sont pas les mêmes ?
- \spadesuit Exprimer les coefficients de réflexion en vitesse $r_v = v_{0,r}/v_{0,i}$ et de transmission $t_v = v_{0,t}/v_{0,i}$, puis les coefficients de réflexion en pression $r_v = p_{0,r}/p_{0,i}$ et de transmission $t_v = p_{0,t}/p_{0,i}$
- \spadesuit En déduire les coefficients de réflexion R et de transmission T en intensité.
- Pourquoi dont-on mettre un gel sur entre la sonde et le corps durant une échographie ?

Isolation phonique

On suppose qu'il y a désormais une paroi de masse surfacique μ à l'interface entre les deux milieux, qui sont supposées être identiques ($\rho_1 = \rho_2$ et $c_1 = c_2$). Cette paroi se meut librement et sans frottement.

- \clubsuit Que deviennent les relations de passage précédentes ? En déduire le coefficient de transmission en vitesse t_v dans ce cas-là.
- ♣ Calculer $T = |t|^2$ et tracer l'allure de la courbe $G_{db} = 20 \log [T(\omega)]$ en fonction de $\log(\omega)$. Quelle est la fréquence de coupure ?
- ♣ Expliquer pourquoi les sons graves se transmettent mieux à travers les parois (un mur par exemple) que les sons aigus.

Impédance acoustique 2

On s'intéresse à la propagation d'une onde sonore dans un milieu ayant une masse volumique au repos ρ_0 et une compressibilité χ_s . Dans tout l'exercice, on considèrera que l'onde se propage unidimensionnellement selon l'axe \vec{e}_x . Les vibrations des ondes sonores sont caractérisées par des variations locales du champ de pression $P = P_0 + p(x,t)$, de masse volumique $\rho = \rho_0 + \mu(x,t)$ et de vitesse $\vec{v} = v(x,t)\vec{e}_x$.

- \spadesuit Etablir deux équations différentielles couplées entre $\vec{v}(x,t)$ et p(x,t).
- \spadesuit En déduire l'équation d'Alembert vérifiée par la surpression p(x,t) et la vitesse $\vec{v}(x,t)$ dans un milieu homogène. Quelles sont les solutions générales dans ce cas unidimensionnel ?

Échographie

On s'intéresse désormais au cas où le milieu de propagation n'est plus homogène, mais est constitué de deux milieux 1 et 2, caractérisés par leur masse volumique ρ_1 et ρ_2 . Le demi-espace x < 0 est constitué du milieu 1, et le demi-espace x > 0 est constitué du milieu 2. On écrit les solutions des champs de vitesse et de surpression de l'équation d'Alembert comme :

$$v_j(x,t) = v_j^+ \left(t - \frac{x}{c_j} \right) + v_j^- \left(t + \frac{x}{c_j} \right)$$
$$p_j(x,t) = p_j^+ \left(t - \frac{x}{c_j} \right) + p_j^- \left(t + \frac{x}{c_j} \right)$$

où l'indice j représente le milieu 1 ou 2. Pour simplifier, on a supposé que le vecteur vitesse $\vec{v}_j(x,t) = v_j(x,t)\vec{e}_x$ n'a de composante que sur x pour s'affranchir de la notation vectorielle.

- \spadesuit Donner la signification physique des champs v_j^+ et v_j^- . Trouver deux relations, une entre v_j^+ et p_j^+ et une autre entre v_j^- et p_j^- . On fera intervenir l'impédance acoustique du milieu $Z_j = c_j \rho_j$.
- \spadesuit Quelle relations que vérifient la vitesse et la surpression à l'interface en x=0? Justifier.
- \spadesuit Quelqu'un génère une onde depuis les x < 0, qui arrive sur l'interface depuis le milieu 1. Pourquoi a t-on nécessairement l'apparition d'une onde réfléchie et d'une onde transmise à l'interface si les milieux 1 et 2 ne sont pas les mêmes ?
- \spadesuit Exprimer les coefficients de réflexion en vitesse $r_v = v_1^-(t)/v_1^+(t)$ et de transmission $t_v = v_2^+(t)/v_1^+(t)$, puis les coefficients de réflexion en pression r_p et de transmission t_p
- \spadesuit En déduire les coefficients de réflexion R et de transmission T en intensité.
- 🌲 Pourquoi dont-on mettre un gel sur entre la sonde et le corps durant une échographie?

Isolation phonique

On suppose qu'il y a désormais une paroi de masse surfacique μ à l'interface entre les deux milieux, qui sont supposées être identiques ($\rho_1 = \rho_2$ et $c_1 = c_2$). Cette paroi se meut librement et sans frottement.

- \clubsuit Que deviennent les relations de passage précédentes ? En déduire le coefficient de transmission en vitesse t_v dans ce cas-là.
- ♣ Calculer $T = |t|^2$ et tracer l'allure de la courbe $G_{db} = 20 \log [T(\omega)]$ en fonction de $\log(\omega)$. Quelle est la fréquence de coupure ?
- A Expliquer pourquoi les sons graves se transmettent mieux à travers les parois (un mur par exemple) que les sons aigus.

Silencieux de ligne d'échappement

On étudie la réflexion et la transmission d'ondes sonores planes dans un fluide homogène au niveau d'un raccordement de deux conduites de sections S_1 et S_2 .

- \spadesuit Retrouver l'équation d'Alembert vérifiée par la surpression p(x,t) et la vitesse v(x,t) dans chaque milieu homogène 1 ou 2. Quelles sont les solutions générales à cette équation ?
- \spadesuit Qu'appelle t-on les ondes planes progressives monochromatiques? On suppose que ce modèle d'onde permet de décrire les champs de surpression p(x,t) et la vitesse v(x,t) dans notre cas. Proposer une expression pour ces champs dans le milieu 1 et 2.
- \spadesuit Écrire les relations que vérifient la vitesse et la surpression à l'interface en x=0. Justifier.
- \spadesuit Que se passe t-il lorsqu'une onde plane progressive arrive de par la gauche sur l'interface $1 \longrightarrow 2$ pour que ces relations soient vérifiées ?
- \spadesuit En déduire les coefficients de réflexion $r = v_r/v_i$ et de transmission $t = v_t/v_i$, où v_i , v_r et v_t sont respectivement l'amplitude du champ de vitesse de l'onde incidente, réfléchie et transmise. Expliciter une impédance "acoustique" dont dépend les coefficients de réflexion et de transmission.
- \spadesuit Commenter les cas $S_2 = \infty$ et $S_2 = 0$.