as "Homotopies" operations. Can be formalized
as "Homotophis" operations. K Note: Haylee's
Defn: A homotopy is a family of maps & X Note: Haylee's
P(X,t)= fx(X) (Marshall Howe
Two maps vare Homotopic if there is a homotopy
$F: X \times I \rightarrow Y \omega /$ $F(x,0) = f(x)$ $F(x,1) = f(x) = g(x)$
So we can <u>Continuously</u> deform one function to the other.
Sept 2 12 Recall the definition of a homotopy of maps
Defin A retraction is a map $\Gamma: X \to X$ s.t. $\Gamma(X) = A$ and $\Lambda \neq X \neq X \neq X$
Note retractions are much weaker than deformation retractions. Every space retracts to a point via the constant map.
We can extend the notion of homotopy to relative homotopy;
Defn A Homotopy F: XXI > X is a homotopy rel. ASX
if $f_t(a)$ is constant w.r.t. t .

 $E \times / X = \mathbb{R}^2 \setminus \{0\}$ and S^2 $F: X \times I \rightarrow X : (\overrightarrow{X}, t) \mapsto t \cdot |\overrightarrow{X}| + (|-t|) |\overrightarrow{X}|$ JIL WARRANT Note: for EIdx 7/2/5 $\mathcal{F}'(\vec{x}) = \frac{x}{\|x\|}$ and for $\vec{X} \in S^1$, $||\vec{X}|| = 1$, so $F(x,t) = t \cdot \vec{x} + (1-t)\vec{x} = \vec{x}$ So F is a (linear) homotopy rel 52. Homotopy Equivalence: A mucha weaker notion of equivalence than a homeomorphism: Defn: f: X >> Y is a homotopy equivalence if ∃g:Y→X s.t. gof=Idx and fog=Idy. If such a map f exists, X & Y are Homotopy equivalent.

Compare w/ homeo.

Contractibility: If X is homotopy equivalent to a point, then X is called Contractible.

Let's Compare this to a deformation retract to a point:
If $\exists F: X \times I \rightarrow X$ a deformation retract to a point, then $\Longrightarrow f_0 = I dx$ and $f_1(x) = P$ with $f(P) = P$ always.
So $f: X \rightarrow P$ and $g: P \hookrightarrow X$, $f = Id_P$ and $g \circ f = f = f_0$.
Peformation ret -> pt -> contractible.
What about the other way?
Consider X=[0,1] × {0} U
This space is contractible, but not a def retract.

$Y^n = X^{n-1} \coprod \coprod \mathbb{D}_{\alpha}^n$. Then X^n is the quotien
space $X^n = Y^n/N$, where $X \in X^n$ and $y \in \mathbb{D}_{\alpha}^n$ are equivalent iff $e_{\alpha}^n(y) = X$.
e', e'z e'z 2
3) You can either iterate this process for finite n and Let X=X" sor continue indefinitely, and let X=X". In the infinite case, A=X is open if Anx" is open for each n
Building @ Throws 5": Take a point Pa = X°
Let $X' = X' = X^2 = = X^{n-1}$
$e_{\alpha}^{n}:\partial D^{n}=S^{n-1}\longrightarrow P_{\alpha}$
This gives S^n $Ex/S^1=X$ $X^0=P$ $X'=QAA$
$e_{x}(-1)=e_{x}(1)=P$ e_{x
$e^{2} = 3D^{2} = 5^{1} \rightarrow P o e^{2}$
2 ways 5 ⁿ⁻¹ my 5 ⁿ

Building a graph: $X^0 = \{P_i \mid P_i \text{ a vertice}\}$ $X' = X^0 \cup \{[0,i]_{i,j} \mid P_{oi} - P_j \text{ an edge}\}$ P_2

•
$$\mathbb{RP}^n$$
: Space of lines in \mathbb{R}^{n+1}

$$= \mathbb{R}^{n+1} \setminus \{0\} / \sim \overrightarrow{X} \sim \overrightarrow{y} \iff \lambda \in \mathbb{R}$$

$$= S^{n+1} / \sim \overrightarrow{X} \sim -\overrightarrow{X}$$

We can view it as follows:
SD identified to itself by antipodal map.
IRPN-1 w IRPn by attaching on n-cell
$e_{\alpha}^{n}: SD^{n} \rightarrow \mathbb{R}P^{n-1}$ Notes $\mathbb{R}P^{n} = \mathcal{L} = abtach \mathbb{R}P^{n} = abtac$
Sept 27 Operations on Spaces subcomplex
So far we Have Subspace, Product, Quotient Topologies for any space. Let's add a few More!
I Suspension of a space X:
$S(X)$ or $XXSX=XXI/\sim$
where $(x,1) \sim (y,1) \in \forall x,y \in X$ $(x,0) \sim (y,0)$

Example:
$$S^2 = 5(5^1)$$

$$S^{2} = \{x^{2} + y^{2} + z^{2} = 1\} \leq \mathbb{R}^{3}$$

$$If \quad x \neq \pm 1, \text{ then } |-x^{2}| = r^{2} \text{ for some } r > 0$$

$$\{x \neq (\pm 1, 0, 0)\} \quad \{x \neq z^{2} = r^{2} = 1 - x^{2}\}$$

$$y^{2} + z^{2} = r^{2} = 1 - x^{2}$$

In general, $S(S^n) = S^{n+1}$.

One Can also form the Cone over a space X by

$$CX = (x,1)\sim(y,1) \forall x,y \in X$$

5x = cx ucx

Join of 2 Spaces: One can do better. Of as all the line segments from
X to an exterior point (or 2).
Take 2 Spaces X & Y. We can form the space
$J(X,Y) = X \times Y \times I / \sim$
$(x,y,0) \sim (x,y_z,0) \forall y_1,y_2 \in (x_1,y,0) \sim (x_2,y,0) \forall x_1,x_2 \in (x_1,y_2,0) $
XXXY Y Y
Ex: N*R
All lines from XXY to X and Y preserving idx and idy.

Wedge Sum: Take XieXx. We can form $V_{\alpha} \times_{\alpha} = \prod_{\alpha} X_{\alpha} + 1/\sim \times_{\alpha} \times_{\beta} V_{\alpha}$ From Cell Complexes, Avera Xn/Xn-1 has the structure of V~ 5" a runs through the n-cells of a complex (smash product? XXY/XVY) EX3XY XXX

Sept 29 Homotopy Extension Property [HEP]
Defn: A pair (X, A) with A = X a subspace
is said to have the homotopy extension property if for every for XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Folkat F _A (a,0) Then 7 F: XXI > Y extending Farks.
$F(a,t) = F_{A}(a,t)$ x_{105} x_{205} $A \times x_{205}$
X × {0} U A X I SId
Extends to a retraction
XXI -> XX \{O}U XXI
Thus, if (X,A) has the homotopy extn prop so does (XxZ,AxZ).

Prop. 16: If (X,A) is a CW pair, then
(X,A) has the homotopy extension property
Pf: First let's show our building blocks behave as desired:
Lemma: $\exists r_t : xD^n \times I \rightarrow D^n \times I$ a deformation retraction of $D^n \times I$ to $D^n \times \{0\} \cup SD^n \times I$
Pf: In
(A) (1-t) Id + t· (
So, it suffice to show a more general result:
Prop: Xxxo3uAXI is a def. ret. of XXI
Pf: Note X ⁿ xI is obtained from X ⁿ xO v (X ⁿ vA) xI by attaching D ⁿ xI to it along SD ⁿ xI.
Lemma shows we can sentimate f retract each of these so we do each in a subinterval of I.
Prop .17: If (X,A) has HEP, and A is contractible, then X - X/A is a homotopy eq.
The Prospects for Commutative Algebra OSAKA 2017

$$A \xrightarrow{\text{First}} X = X \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{First}} X = X \xrightarrow{\text{Gas}} X / A$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} X / A \qquad \text{sends } A \text{ fo}$$

$$A \xrightarrow{\text{Gas}} A \rightarrow X \text{ operator}$$

$$A \xrightarrow{\text{Gas}} A \rightarrow X \text{ oper$$