Power Management Reference Design Cookbook III

Power Management Products from Texas Instruments

TI provides a broad portfolio of high-performance power management products ranging from standard linear regulators to plug-in and integrated power solutions. Together with superior applications knowledge, extensive local technical support and easy to use design tools, TI can help you differentiate your designs and get to market faster.

Introducing TTs Reference Design Cookbook III

Welcome to TI's latest Power Management Cookbook, the third in the series. This is a collection of complete power solutions and design documentation from TI's extensive library of reference designs and evaluation modules (EVMs) available to our customers. For hundreds of other TI reference designs, visit:

www.ti.com/powerreferencedesigns. This website is frequently updated with new circuits.

Also, if you would like copies of the first and second issues of the Reference Design Cookbook, please download them at the URL referenced above, or request copies by calling: **972-644-5580 and mention Lit # SLUB009 (I)** or **SLUB012 (II)**.

TI hopes you enjoy these latest "recipes", and that this Cookbook will help you simplify and streamline your power supply designs.

Device Quick Search Tool

Table of Contents

				Inside	9
Converter Design Topology	$ m V_{IN}$	V _{out}	I _{OUT} (A)	Part Number	Page
Synchronous Buck	12	5	6	TPS40190	4
Synchronous Buck	12	3.3	10	TPS40195	6
Synchronous Buck Dual	5 or 3.3	2.5/1.2	2 / 4	TPS40140	8
Synchronous Buck Dual	5 or 3.3	.6 to V _{IN}	.400/.600	TPS62400	10
Synchronous Buck Three Phase	12	1.8	60	TPS40180	12
Synchronous Buck Digital Dual Phase	12	1	40	UCD9112	14
Non-Synchronous Buck Dual	5	3/1.3	3	TPS54386	16
Non-Synchronous Buck to Drive LEDs	50	20/45	.520	TPS40200	18
Synchronous Boost	15	22	1	TPS40210	20
Synchronous Boost	1	3.3	.100	TPS61200	22
Non-Synchronous Boost	2.5	12.1	.443	TPS61081	24
Synchronous Buck Boost	3	_	.700/.350	TPS63000	26
Synchronous Buck Boost	5	-5.2	2	TPS54550	28
Inverting Buck Boost	12 or 15	-5	2.25	TPS5430	30
Non-Isolated Non-Synchronous SEPIC	3 to 32	5	.300	UCC3807	32
Isolated Synchronous Flyback	37 to 57	1.2	1	TPS23750	34
Isolated Synchronous Flyback	36 to 75	3.3	5	UCC3809	36
Green-Mode AC Input Flyback	85 to 265 (AC)	12	5	UCC28600	38
PMU with 2 Buck Converters and 4 LDOs	Multiple	Multiple	Multiple	TPS65050	40
Battery Charger Front-End Protection Circuit	4.5 to 26	4.5 to 5.85	1	bq24314	42

TI has many other reference designs that may be found at:

www.ti.com/powerreferencedesigns

6-A Synchronous Buck Converter with Minimal External Components

Description

The TPS40190 controller is a cost-optimized synchronous controller that operates from 4.5 V to 15 V nominally, and implements a fixed frequency voltage mode power supply. The controller uses an adaptive anti-cross conduction scheme to prevent both the high-side and the rectifier MOSFET to be turned on at the same time, preventing shoot through current in the two MOSFETs. The controller also provides a short circuit protection threshold that is user selectable among one of three values. When the controller senses an output short circuit, both MOSFETs are turned off and a timeout period is observed before attempting to restart. This provides limited power dissipation in the event of a sustained fault.

Additionally, the chip features a 591-mV reference with 1% accuracy over temperature.

The TPS40190 provides strong drivers to minimize switching losses in the power stage, reducing heat build up in the MOSFETs and allowing larger MOSFETs to be used without undue switching time penalty.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS40190

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		10.8	12	13.2	Volts
Output Voltage	0 < I _{OUT} , < 6 A	5.05	5.05	5.05	Volts
Output Ripple				12	mV_{P-P}
Output Current		0		6	Amps
Switching Frequency			300		kHz
Efficiency	0.5 A < I _{OUT} , < 6 A	90.5	95	96	%

PMP2942 Schematic

6-A Synchronous Buck Converter with Minimal External Components

Control Loop (Gain and Phase)

Output Ripple Voltage (5 V)

Efficiency (5 V Output)

Startup (5 V)

Load/Line Regulation (5 V Output)

Load Transient (5 V)

High-Frequency Synchronous Buck Converter for Optimized Efficiency

Description

The TPS40195 controller is used in high-frequency, synchronous buck power supplies. It is intended for input voltages between 4.5 and 20 V and load currents up to 20 A. It can operate at switching frequencies between 100 and 600 kHz allowing the circuit designer the option of optimizing for efficiency and higher power at the lower frequency or smaller size and lower cost at the high frequency. This chip uses voltage mode control for lower mid-frequency source impedance and quicker recovery from load transients.

This circuit uses the TPS40195 in the synchronous buck configuration. A synchronous buck is typically used when the output voltage is always lower than the input voltage and at currents where a catch diode would dissipate too much heat. This design switches at 600 kHz which allows the use of a small inductor and ceramic output capacitors. With this high switching frequency, the control loop can be closed at a high frequency with good gain (> 10 dB) and good phase margin (> 45 degrees).

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS40195

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		10	12	20	Volts
Output Voltage	0 < I _{OUT} < 10 A	3.15	3.3	3.45	Volts
Output Ripple				50	mV_{P-P}
Output Current		0		10	Amps
Switching Frequency			600		kHz
Efficiency	2 A < I _{OUT} < 10 A	90			%

PMP3080 Schematic

High-Frequency Synchronous Buck Converter for Optimized Efficiency

Control Loop (Gain and Phase), 40 KHz Crossover, 45° Phase Margin

Output Ripple Voltage, Vertical: 10 mV/DIV, Horizontal: 1 µS/DIV

Efficiency

Startup, Vertical: 500 mV/DIV, Horizontal: 200 µs/DIV

Regulation

Transient Load Response, Upper Vertical: 100 mV/DIV, Lower Vertical: 2 A/DIV,Horizontal: 10 μ s/DIV

Dual Synchronous Buck Converter Stackable Up to 16 Phases

Description

The TPS40140 is a dual synchronous buck controller that can be used for a two-phase single output or for two independent outputs. The controller has an input voltage rating of 4.5 to 15 V for the chip V_{CC} and 2 to 40 V for the power stage. It will work in many applications with 5, 12 and 24 V inputs. The controller can also accept input voltages from two different sources. Current mode control uses the inductor DCR to minimize impacts on the efficiency. A current sense resistor could be used for improved accuracy. Additionally, the chip features a 700-mV reference with better than 1% accuracy over temperature.

This circuit uses the TPS40140 in the dual synchronous buck configuration. A buck is typically used when the output voltage is always lower than the input voltage. Key considerations for this design are low output noise and synchronized switching. The TPS40140 provides a CLKIO pin that can be connected between devices to create up to 16 phases that are optimally shifted. The converter in this case is 5 V to 2.5 V @ 2 A and 3.3 V to 1.2 V @ 4 A.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS40140

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		4.5/3.0	5/3.3	5.5/3.6	Volts
Output Voltage		2.43/1.17	2.5/1.2	2.57/1.23	Volts
Output Ripple				10	mV_{P-P}
Output Current		0		2/4	Amps
Switching Frequency			750		kHz

PMP2942 Schematic

Dual Synchronous Buck Converter Stackable Up to 16 Phases

Control Loop (Gain and Phase), 30 KHz Cross Over

Switch Node

Output Ripple Voltage, 1.2 V (5 V_{IN} , 4 A Load, Ripple < 10 mV)

Turn On

Output Ripple Voltage, 2.5 V (3.3 V_{IN} , 2 A Load, Ripple < 10 mv)

Load Step (1.2 V)

Dual Converter with High Efficiency and Few External Components

Description

The TPS6240x converter series provides two low voltage outputs, one up to 400 mA and the other up to 600 mA with high efficiency, small size and very few external parts. Input range covers the popular 5 V and 3. 3 V logic levels and the full range of the Lithium Ion battery range. To keep the size of external components small, switching frequency is set to 2.25 MHz. This allows chokes to be 2.2 μ Hy and input/output caps to be 10 μ F. Topology is synchronous buck with both the high side and low side FETs inside the TPS6240x.

There are three fixed voltage versions and an "EasyScale™" serial interface that avoid voltage sense resistors. With the EasyScale interface, outputs can be changed while running. The TPS62400 itself is the adjustable version allowing output voltages to be set with resistors.

The specific design provides for all the TPS6240x versions and for adjustment with resistors or the EasyScale interface. Each output also has its own enable pin.

The TPS6240x allows for rapid provision for the low output voltages, freeing the designers to focus on other parts of the system.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS6240x

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		2.5		6	Volts
Output Voltage	TPS62400	0.6		V_{IN}	Volts
Output Current		0		400/600	mA
Ripple Voltage	PWM Mode		< 10		mV_{P-P}
Switching Frequency			2.25		MHz
Efficiency	1.8 V Output		> 90		%
Step Load Response Time	PWM Mode				
	PFM Mode		10 µs		
			50 µs		

TPS62400EVM-167 Schematic

Dual Converter with High Efficiency and Few External Components

Efficiency ($V_{OUT} 2 = 1.8 \text{ V}$)

V_{OUT} 1 Change with EasyScale™

Time Base - 100 µs/Div

Regulation: PFM and PWM Modes

Output Ripple Voltage: PWM/PFM Mode Transition

Internal Switching Waveforms

Time Base - 100 ns/Div

Step Load Response: PWM Mode

60-A Three-Phase Synchronous Buck Converter

Description

The TPS40180 is a single synchronous buck controller that can be stacked for a multiphase output. The controller has an input voltage rating of 4.5 to 15 V for the chip V_{CC} and 2 to 40 V for the power stage. It will work in many applications with 5, 12 and 24 V inputs. The controller can be used to make single output systems up to 8 phases. Current mode control uses the inductor DCR to minimize impacts on the efficiency. A current sense resistor could be used for improved accuracy. Additionally, the chip features a 700 mV-reference with better than 1% accuracy over temperature.

This circuit uses three TPS40180s to create a three-phase synchronous buck. A buck is typically used when the output voltage is always lower than the input voltage. Key considerations for this design are high output current and synchronized switching. The TPS40180 provides a CLKIO pin that can be connected between devices to create up to 8 phases that are optimally shifted. The converter in this case is 12 V to 1.8 V @ 60 A.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS40180

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		10.8	12	13.2	Volts
Output Voltage		1.75	1.8	1.85	Volts
Output Ripple				20	mV_{P-P}
Output Current		0		60	Amps
Switching Frequency			300		kHz/Phase

PMP2277 Master Phase Schematic

60-A Three-Phase Synchronous Buck Converter

PMP2277 Slave Phase Schematic

Control Loop (Gain and Phase), Cross Over 37 KHz

Transient Response

Efficiency vs. Load Current (12 VIN)

Switch Node

40-A Digital-Power Synchronous Buck Converter

Description

The UCD9112 is a dual-phase synchronous buck digital PWM controller designed for point-of-load power applications. This device integrates dedicated circuitry for DC/DC digital control loop with a microcontroller core, flash memory and a PMBus™ interface to support configurability, monitoring and management of a point of load. The UCD9112 evaluation module comes with the Fusion Digital Power™ Designer graphical user interface (GUI). This GUI allows the designer to configure the operating parameters and non-linear loop response of the power-supply controller. This configuration can then be stored to the devices on chip non-volatile memory.

The UCD7230 synchronous buck driver has been designed to work with the UCD9112 controller to provide a highly integrated digital power solution. In addition to 4-A output drive capability, the driver integrates current limit, short circuit protection as well as under-voltage lockout protection. The UCD7230 also has a 3.3-V, 10-mA linear regulator that provides the supply current for the controller.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: UCD9112

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	$I_{OUT} = 30 \text{ A, } V_{OUT} = 1 \text{ V}$	5	12	14	Volts
Output Voltage Range	$V_{IN} = 12 \text{ V}, I_{OUT} = 20 \text{ A}$	0.4	1.0	4	Volts
Output Current	V_{IN} = 12 V, V_{OUT} = 1 V	0		40	Amps
Output Voltage Ripple	V_{IN} = 12 V, BW = 20 KHz, I_{OUT} = 30 A		±10		mV
Undershoot/Overshoot	V_{OUT} = 1 V, V_{IN} = 12 V, 50% Step Load		±30		mV
Load Regulation	V_{IN} = 12 V, V_{OUT} = 1 V, I_{OUT} from 0 A to 40 A		±5		mV
Efficiency	$V_{IN} = 12 \text{ V}, V_{OUT} = 1 \text{ V}, I_{OUT} = 30 \text{ A}, F_{SW} = 500 \text{ kHz}$		85		%

UCD9112EVM Schematic

40-A Digital-Power Synchronous Buck Converter

Load Regulation ($V_{IN} = 12 \text{ V}, \triangle \text{ V} = 1 \text{ mV}$)

Output Voltage Ripple ($V_{P-P} = 5.2 \text{ mV}$)

Load Regulation (V_{IN} = 12 V, V_{OUT} = 3.3 V, Δ V = 2 mV)

Load Transient (V_{P-P} = 53.2 mV @ 50% Step Load)

Efficiency vs. I_{OUT} ($V_{OUT} = 1 V$, $V_{IN} = 10 V$)

3-A, 600-kHz Dual Wide-Input Buck Converter

Description

The TPS54386 is a dual-output, non-synchronous buck converter capable of supporting 3-A output applications that operate from a 4.5-V to 28-V input supply voltage, and require output voltages between 0.8 V and 90% of the input voltage.

With an internally-determined operating frequency, soft start time, and control loop compensation, the converter provides many features with a minimum of external components. Channel 1 over-current protection is set at 4.5 A, while Channel 2 over-current protection level is selectable. The setting levels are used to allow for scaling of external components for applications that do not need the full load capability of both outputs.

The outputs may be enabled independently, or may be configured to allow either ratiometric or sequential startup sequencing. Additionally, the two outputs may be powered from different sources.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS54386

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		5	5.6	6	Volts
Output 1 Voltage	0 < I _{OUT} , < 1.8 A	3.58	3.64	3.68	Volts
Output 2 Voltage	0 < I _{OUT} , < 3 A	1.303	1.305	1.307	Volts
Output 1 Ripple				12	mV_{P-P}
Output 2 Ripple				5	mV_{P-P}
Output Current		0		3	Amps
Switching Frequency			600		kHz
Efficiency	0.5 A < I _{OUT} < 3 A	80	85	87	%

PMP2808 Schematic

3-A, 600-kHz Dual Wide-Input Buck Converter

Startup (V_{IN} 5.6 V, with No Load On the Output) Channel 1: $V_{OUT}/$ Channel 2: V_{IN}

Load Regulation (1.3-VCD Output)

Efficiency (3.3 V_{OUT}/1.3 V_{OUT})

Loop Response (Gain and Phase), 90 KHz Cross Over (3.3 V Output with a 5.6 V Input and a 1.8 A Load)

Load Regulation (3.3-VCD Output)

Loop Response (Gain and Phase), 94° Cross Over, 1.3 V Output with a 5.6 V Input and a 3 A Load))

Buck Converter with Minimum Component Count to Drive LEDs

Description

The TPS40200 controller can be used as a low-cost LED driver. With an input voltage rating of 4.5 to 52 V, it can power LED strings with regulated current and up to a 45-V drop across the string. Current is sensed across a resistor between the cathode of the string and ground and is compared against a 696-mV reference to provide regulated current. Because the driver is a buck and not a boost or flyback, an open string will not produce voltages above the input voltage and over-voltage protection is not needed.

The driver can operate in either the continuous or discontinuous mode. For output voltages above 35 V, the discontinuous mode is needed due to duty cycle limitation above 35 V. The circuit shown has a pulse width modulator (PWM) input for dimming purposes. Targeted current can be set with jumpers.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS40200

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		48	50	52	Volts
Output Voltage	Targeted LED Current	20		45	Volts
Output Current		234		520	mA
Ripple Current			120		mA_{P-P}
Switching Frequency			210		kHz
Efficiency	Targeted LED Current		> 90		%
PWM Response Time			100		μs

PMP2493-LED Schematic

Buck Converter with Minimum Component Count to Drive LEDs

Control Loop (Gain and Phase), Cross Over = 7.9 KHz and 17.5 KHz

Ripple, LED 50 V_{IN} with actual LEDs: 12 Blue LEDs with 380 mA Average Current

Note: 3.3 μF across LEDs and 4.7 μF across sense resistors C4 = 6800 pF

PWM Response, LED 50 $V_{\mbox{\footnotesize{IN}}}$ with actual LEDs: 12 Green LEDs with $\sim 430~\mbox{\footnotesize{mA}}$

Internal Waveform, 50V_{IN}, 506 mA_{OUT}, 94% Efficiency

Note: C4 = 6800 pF, R6 = 2 k, C8 = 100 pF \sim 100 μsec turn on delay < 50 μsec turn off delay

Note: Discontinuous mode

Startup, 50 V_{IN} 407 mA_{IN}, 35.3 V_{OUT} 520 mA_{OUT}

Efficiency Graph

Note 90% efficiency Startup $V_{I\!N}$ applied

Boost Converter Provides 22 Vout at 1 A from 15-V Bus

Description

The TPS40210 controller can be used for boost, SEPIC and flyback configurations as it can drive a low side N-channel MOSFET. With an input voltage rating of 4.5 to 52 V, it will find many applications in 5, 12 and 24 V systems. Current mode control with a 150-mV sense voltage provides good dynamic line response with minimal efficiency impact. Over-current protection is by hiccup with automatic restart. Additionally, the chip features a 700-mV reference with 2% accuracy over temperature.

This circuit uses the TPS40210 in the boost configuration. A boost is typically used when the output voltage is always higher than the input voltage. In considering the boost, the designer most also consider the ramifications of a short on the output of the power supply as there is a direct path from the input source through the boost inductor and diode. The boost can not provide short circuit protection by itself.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS40210

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		10	15	18	Volts
Output Voltage	0 < I _{OUT} , < 1 A	21, 25	22	22.75	Volts
Output Ripple				200	mV_{P-P}
Output Current		0		1	Amps
Switching Frequency			250		kHz
Efficiency	0.1 A < I _{OUT} , < 1 A	90			%

PMP2942 Schematic

Boost Converter Provides 22 Vout at 1 A from 15-V Bus

Control Loop (Gain and Phase), 30 KHz Cross Over, 45° Phase Margin

Output Ripple Voltage, Vertical: 100 mV/DIV, Horizontal: 1us/DIV

Efficiency

Startup Vertical: 5 V/DIV, Horizontal: 10 ms/DIV

Regulation

Transient Load Response, Upper Vertical: 500 mV/DIV, Lower Vertical: 0.5 A/DIV, Horizontal: 10 µs/DIV

Small Boost Converter for Ultra-Low Input Voltage Battery Applications

Description

The TPS61200 step-up converter is ideal for small-size, ultra-low input voltage applications. With an input voltage range of 0.3 to 5.5 V, it will work in many applications operating from 1-AA, 2-AA and Li-lon battery inputs. Additionally, the TPS61200 starts up into a full load from inputs as low as 0.5 V. This low input voltage allows the TPS61200 to be used in "energy harvesting" applications such as single solar cells (0.5 V) and fuel cells (0.6 V). Average current mode control and internal compensations significantly simplify design and provide good dynamic line and load response with efficiency up to 90%. The load-disconnect during shutdown allows for current limiting. During an over-current event, the output is disconnected from the input, eliminating the DC conduction path that exists in typical boost converters circuits.

This circuit uses the TPS61200 in a 1-AA application. It produces a 3.3-V output over the entire 1-AA range and supplies 100-mA loads with input voltages between 0.9 V and 1.5 V. Additionally, the UVLO circuit halts operation when the input falls to 0.9 V to prevent damage to the input source. Power save mode is enabled for the highest efficiency for this battery-powered application.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS61200

Specifications								
Parameter	Test Conditions	Min	Тур	Max	Unit			
Input Voltage		0.9	1	1.5	Volts			
Output Voltage	0 < I _{OUT} , < 100 mA	3.27	3.30	3.33	Volts			
Output Ripple				40	mV_{P-P}			
Output Current		0		100	mAmp			
Switching Frequency		1.25	1.50	1.65	MHz			

TPS61200 Reference Design Schematic

Small Boost Converter for Ultra-Low Input Voltage Battery Applications

Control Loop (Gain and Phase), 4 KHz Cross Over, 45° Phase

Output Ripple Voltage, I Load = 100 mA 10 mV/DIV

Efficiency vs. Load Current (V_{IN} = 1 V)

Output Voltage vs. Load Current (V_{IN} = 1 V)

Startup Waveforms

Load Transient

Fixed-Frequency Boost Converter with Multiple Protection Features

Description

The TPS61080/1 is a 1.2-MHz/600-kHz fixed-frequency boost regulator that integrates a power switch, an input/output isolation switch and a power diode. When a short-circuit condition is detected, the isolation switch opens up to disconnect the output from the input. As a result, the IC protects itself and the input source from any pin, except V_{IN} , from being shorted to ground. The isolation switch also disconnects the output from input during shutdown to prevent any leakage current. Other provisions for protection include 0.5-A/1.3-A peak-to-peak over-current protection, programmable soft start (SS), over-voltage protection (OVP), thermal shutdown and under-voltage lockout (UVLO).

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS61080 and TPS61081

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		2.5 V	5	6.0	Volts
Output Voltage	$V_{IN} = 5 \text{ V, } 1 \text{ mA} < I_{OUT} < 0.4 \text{ A}$		12.1		Volts
Output Ripple				10	$mV_{P\text{-}P}$
Output Current	$V_{IN} = 5 V$	1.0		440	mA
Switching Frequency			1.2	1.5	MHz
Efficiency	V_{IN} = 5 V, I_{OUT} = 100 mA		85		%

TPS61081EVM-147 Schematic

Fixed-Frequency Boost Converter with Multiple Protection Features

Control Loop (Gain and Phase), Cross Over 21.7 KHz, V_{IN} = 5 V, I_{O} = 100 mA

Output Ripple Voltage with I_{O} = 50 mA, V_{IN} = 5V

Efficiency with $V_{\mbox{\footnotesize{IN}}}$ = 5 V and L1= VLCF502UT-4R7N1e7-1 (L1 is the inductor)

Startup Response with $I_0 = 50$ mA, $V_{IN} = 5V$

Load Regulation with $V_{IN} = 5 \text{ V}$

Load Transient Response with V_{IN} = 5 V

Battery Powered Buck-Boost Converter Regulates the Current in White LEDs

Description

The TPS63000 is a single-inductor (non-inverting) buck-boost converter with 1.8-A internal switches. It can be powered from either a two-cell or three-cell alkaline, NiCd or NiMH battery, or a one-cell Li-lon or Li-polymer battery. Output currents can go as high as 1200 mA while using a single-cell Li-lon or Li-polymer battery, and discharge it down to 2.5 V or lower. The buck-boost is based on a fixed-frequency, pulse-width-modulation (PWM) controller using synchronous rectification to obtain maximum efficiency. At low load currents, the converter enters Power Save mode to maintain high efficiency over a wide load current range. The Power Save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum average current in the switches is limited to a typical value of 1800 mA. The output voltage is programmable using an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is disconnected from the battery.

This circuit uses the TPS63000 to regulate the current in a white LED to either of two fixed current levels, selectable by switch S2. When S2 is closed, the LED current is regulated to 0.7 A and when open the current is 0.35-A. D2 provides a 2.048-V reference voltage to lower the current sense resistor dc operating point. R2 sets a fixed current between the 2.048-V reference voltage and the 0.5-V FB pin voltage. This current must flow through R5, R6 and R3/R4 to ground. The voltage drop across R5 and R6 subtracts from the fixed regulation voltage at the FB pin, effectively lowering the dc regulation voltage across current sense resistors R3/R4. The current sense voltage across R3/R4 will be regulated to 0.106 V, which is much less than the FB voltage of 0.5 V. This reduces power dissipation and greatly improves efficiency.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS63000

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		2.0	3.0	4.5	Volts
Output Current	S2 Closed	0.56	0.70	0.83	Amps
Output Current	S2 Open	0.28	0.35	0.42	Amps
Switching Frequency		1.25	1.375	1.5	MHz
Efficiency	$V_{IN} = 3 V$				
	$I_{OUT} = 0.35 A$		91		%

PMP2809 REVA Schematic

Battery Powered Buck-Boost Converter Regulates the Current in White LEDs

Control Loop (Gain and 67° Phase) ($I_0 = 0.35$ A) Cross Over 12 KHz

LED Ripple Current ($V_{IN} = 4 V$)

Efficiency

Output Current Turn On Response (V_{IN} vs LED Current, I_O = 0.7 A)

LED Current Regulation vs Input Voltage

Synchronous Buck Controller Doubles as a 2-A Buck Boost Inverter

Description

The TPS54550 is a medium output current synchronous buck PWM converter with an integrated high-side MOSFET and a gate driver for a low-side external MOSFET. Features include a high-performance voltage error amplifier that enables maximum performance under transient conditions and flexibility in choosing the output filter inductors and capacitors. The TPS54550 has an under-voltage lockout circuit to prevent start-up until the input voltage reaches 4.5 V; a slow-start circuit to limit in-rush currents; and a power good output to indicate valid output conditions. The synchronization feature is configurable as either an input or an output for easy 180° out-of-phase synchronization.

This circuit uses the TPS54550 in a buck-boost configuration. A buck-boost (often called a negative flyback) provides a negative output voltage. During the on-time of the internal top FET, the input voltage is applied across the inductor. When the top FET turns off and the bottom FET on, the inductor's voltage reverses, which pulls the output voltage negative. The sum of the input and output voltage is applied across the control circuit's V_{IN} to GND pins since it is referenced to the negative output voltage rail. Care must be taken not to exceed the maximum V_{IN} rating. This circuit operates at approximately 50% duty cycle.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS54550

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		4.5	5	5.5	Volts
Output Voltage	0 < I _{OUT} < 2 A	-5.356	-5.2	-5.044	Volts
Output Ripple			50	75	mV_{P-P}
Output Current		0		2	Amps
Switching Frequency			250		kHz
Efficiency	0.5 A < I _{OUT} < 2 A	88			%

PMP2933 Schematic

Synchronous Buck Controller Doubles as a 2-A Buck Boost Inverter

Control Loop (Gain and 55° Phase) Cross Over 12 KHz

Output Ripple Voltage

Efficiency

Output Voltage Turn On Response (V_{IN} vs V_{OUT})

Output Voltage Load Regulation (V_{IN} = 5 V)

Load Step (V_{OUT} vs I_{OUT})

Inverting Buck Boost Provides -5 V at 2.25 A from a 12-V or 15-V Bus

Description

The wide input voltage range SWIFT™ DC/DC converters are typically used as step- down converters where the derived output is a positive voltage less than the input voltage source. In some cases it may be required to generate a negative voltage from the input voltage source. In such instances it is possible to configure the TPS5430/20/10 devices in an inverting buck-boost topology, where the output voltage is negative with respect to ground.

In this design, the TPS5430 is designed as an inverting buck-boost converter with a 15-V input voltage and a -5-V output voltage. To implement the buck-boost topology, the ground pin of the device is now the output while what would normally be the output is ground. The TPS5430 is nominally rated for 3-A continuous output. However, when used as a buck-boost converter, the output current must be derated by a factor of 1-D. The duty cycle is given by D = V_{OUT} / (V_{OUT} $-V_{IN}$). For this design the duty cycle is .25 and the maximum output current is 2.25 A. The TPS5430 is an internally compensated, voltage mode control device. It includes a precision 1.221 V reference voltage, overcurrent and over-voltage protection.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS5430

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		10.8	12 or 15	19.8	Volts
Output Voltage	0 < I _{OUT} , < 2.25 A	-5.15	- 5	-4.85	Volts
Output Ripple			200		mV_{P-P}
Output Current		0		2.25	Amps
Switching Frequency			500		kHz
Efficiency	0.2A < I _{OUT} , < 2.25 A			87	%

PR705 Schematic

Inverting Buck Boost Provides -5 V at 2.25 A from a 12-V or 15-V Bus

Startup Wave Form, $V_{IN} = 0$ to 12 V Step at No Load

Output Ripple Voltage, I_{OUT} = 2 A, V_{IN} = 12 V

Efficiency vs Output Current, $V_{IN} = 15 \text{ V}$

Load Regulation vs. Output Current

Load Transient Response, V_{IN} = 12 V

Control Loop (Gain and Phase), Cross Over 11.21 KHz

SEPIC Converter for a 24-V Industrial Bus with Battery Backup

Description

The UCC3807 is a family of high-speed, low-power PWM controllers that contain all of the control and drive circuitry for fixed-frequency off-line and DC/DC current-mode converters. These devices feature programmable maximum duty cycle, internal soft-start, and leading edge blanking of the current sense signal. UVLO levels are offered for off-line converters, DC/DC converters, and battery powered systems.

This circuit uses the UCC3807-3 to implement a non-isolated, non-synchronous, SEPIC converter for an industrial control application. The input is a 3 to 32 VDC, derived from a 24-V industrial bus with battery backup. The minimum start-up voltage is 6 V, but can drop to 3 V after startup. The output is 5 V at 300 mA and is shown with an optional 3.3-V output from and LDO. The operating frequency selected to be 500 KHz to minimize component size. The ENABLE circuit limits the off state current to less than 2 mA, reducing battery drain.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: UCC3807

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		3	24	32	Volts
Output Voltage	0 < I _{OUT} , < 1 A	4.85	5.0	5.15	Volts
Output Ripple				50	mV_{P-P}
Output Current		0		300	mAmp
Switching Frequency			500		kHz
Efficiency	12-VDC Input		82		%
I _{OUT} = 0.3 A, No LDO	24-VDC Input		76		%

PMP2289 Schematic

SEPIC Converter for a 24-V Industrial Bus with Battery Backup

Control Loop (Gain and Phase) (24 V_{IN} , Min/Max Load), Cross Over 1 KHz for Min Load and 5 KHz for Max Load

5 V Output Ripple, 24 V_{IN}, 300 mA Load, (20 mV/DIV, 2µs/DIV)

Efficiency vs 5 V Output Current (12 V_{IN} and 24 V_{IN} , No LDO

Turn On with 24 V_{IN} , 3.3 V/250 mA, 5 V/50 mA (1 V/DIV, 5 ms/DIV)

Efficiency vs 3.3 V Output Current (LDO) (5 V/50 mA)

Transient Response (24 V_{IN})

Isolated Flyback Converter for Power-over-Ethernet PD Applications

Description

The TPS23750 integrates the functionality of the TPS2375 PoE PD controller with a primary-side DC/DC PWM controller. The designer can create a front-end solution for PoE PD applications with a minimum of external components. The PoE front-end has all the necessary IEEE802.3af functions including detection, classification, UVLO and inrush control. The PoE input switch is integrated within the TPS23750. The DC/DC controller section is designed to support flyback, forward and non-synchronous low-side switch-buck topologies.

This circuit uses the TPS23750 to implement an isolated flyback converter. PoE applications such as security cameras require a 12-V rail. Since the input to the PD is limited to 12.95 W by IEEE802.3af, synchronous rectification is used to reduce losses, providing maximum power at the output. The output of this converter can be scaled to provide lower voltages, such as 3.3 V or 5 V.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS23750

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		37	48	57	Volts
Output Voltage	0 < I _{OUT} , < 1 A	11.64	12	12.36	Volts
Output Ripple				60	mV_{P-P}
Output Current		0		1	Amps
Switching Frequency			250		kHz
Efficiency	I _{OUT} = 1 A		89.5		%

PMP2459 Schematic

Isolated Flyback Converter for Power-over-Ethernet PD Applications

Control Loop (Gain and Phase), 48 V_{IN} , 1 A Load, 4 KHz Cross Over

Output Ripple Voltage, 48 V_{IN},1 A Load (20 mV/DIV, 2µs/DIV)

Efficiency vs Output Current, 48 V_{IN}

Turn On, 48 V_{IN},1 A Load, 2 V/DIV, 5 ms/DIV

Transient Response

Isolated Flyback Converter — Primary Side Controller

Description

This reference design uses the UCC3809, a current-mode-controlled synchronous flyback converter that can deliver 5 A of continuous output current at 3.3 V from an input range of 36 to 75 V_{DC}. The UCC3809 provides all necessary functions for the control of isolated offline and DC/DC power converters. This design results in a highly efficient, small, cost-effective solution for low-power isolated applications. Peak efficiency using the UCC3809 and synchronous rectification is greater than 88%.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: UCC3809

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		36	48	75	Volts
Output Voltage		3.0	3.3	3.6	Volts
Load Current		0		5	Amps
Switching Frequency			100		kHz
Output Ripple Voltage	$V_{IN} = 48 \text{ V}; I_O = 5 \text{ A}$		50		mV_{P-P}
Efficiency	$V_{1N} = 48 \text{ V; } I_{O} = 5 \text{ A}$		85		%

PMP665 Schematic

Isolated Flyback Converter — Primary Side Controller

Control Loop (Gain and Phase), Cross Over 4 KHz ($V_{IN} = 5 \text{ V}; I_O = 15 \text{ A}$)

Output Ripple Voltage ($V_{IN} = 48 \text{ V}; I_0 = 5 \text{ A}$)

Efficiency

Turn On $(V_{IN} = 48 \text{ V}; \text{ No Load})$

Transient Response, Top Trace: V_0 at 100 mV/DIV Bottom Trace: I_0 at 2 A/DIV

Green-Mode AC Input Flyback Converter

Description

The UCC28600 is a PWM controller with advanced energy features to meet stringent worldwide energy efficiency requirements. UCC28600 integrates built-in advanced energy saving features with high protection level features to provide cost effective solutions for energy efficient power supplies. UCC28600 incorporates frequency fold-back and green-mode operation to reduce the operation frequency at light-load and no-load operations.

This circuit uses the UCC28600 in a universal AC input flyback converter. A single output of 12 V/60 W is generated. The efficiency at maximum load is 86%, and the no load losses are less than 1/4 Watt. At light loads, energy is conserved by transferring energy in bursts of 40-kHz pulses. A 130-kHz maximum switching frequency is imposed by the UCC28600 during operation at heavier loads.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: UCC28600

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		85		265	AC Volts
Output Voltage	0 < I _{OUT} < 5 A	11.71	12.08	12.44	Volts
Output Ripple				150	mV_{P-P}
Output Current		0		5	Amps
Switching Frequency		40		130	kHz
Efficiency	310 VDC _{IN} I _{OUT} = 5A		86		%
No Load Loss	155 VDC _{IN}		129		
	310 VDC _{IN}		223		mW

PMP2828 Schematic

Green-Mode AC Input Flyback Converter

Light Load Ripple (155 VDC_{IN}, 0.1 A Load)

Efficiency

Full Load Ripple 30 mV_{P-P} (155 VDC_{IN}, 5 A Load)

Turn On 110 VAC, No Load'

Load Step,155 VDC_{IN}, 2 A to 5 A Step

Power Management Unit for Portable Applications

Description

The TPS65050 is a Power Management Unit (PMU) with two step-down converters and four low-input voltage LDOs. This PMU is ideal for handheld devices such as cell phones, smart-phones, PDAs and portable media players.

Each step-down converter is capable of delivering 600 mA of continuous current at an output voltage range of 0.6 V up to the input voltage (6 V maximum). The output voltage for each DC/DC converter is set using an external resistor divider connected to the feedback input.

Two of the four LDOs are rated at 400 mA while the other two are rated at 200 mA. The output voltage range of each LDO is set using four discrete inputs as shown in the following table.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS65050

pecifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		2.5	5	6	Volts
Output Voltage	DC/DC1		3.3		Volts
	DC/DC2		1.3		Volts
Output Ripple	DC/DC1		2.0		mV_{P-P}
	DC/DC2		2.0		mV_{P-P}
Switching Frequency	DC/DC1	2.025	2.25	2.475	MHz
Efficiency	DC/DC1		90		
	DC/DC2		80		%

TPS65050EVM-195 Schematic

Power Management Unit for Portable Applications

DC/DC1 Converter Efficiency

DC/DC1 Converter Efficiency

DC/DC2 Converter Efficiency

DC/DC2 Converter Efficiency

Complete Front-End Protection and Charger Module for Li-Ion Batteries

Description

The bq24314/6 protects the charging system against three types of failures: input over voltage when the AC adapter fails to regulate its voltage or due to adapter hot plug-in; load over current when failures such as a short circuit occur in the charging system; and battery over charge.

This circuit uses the bq24314 and bq24080 devices as a complete charge module for charger front-end (CFE) protection and charging a single-cell Li-lon battery. The CFE over-current protection set point is 1000 mA by 24.9-k $_{\Omega}$ resistor R3 while the fast charge current is set to 700 mA by 1.13-k $_{\Omega}$ resistor R8. The CFE input over-voltage protection set point is internally set to 5.85 V and battery over-voltage set point is internally set to 4.35 V. Three 1- μ F capacitors are used as the input and output decoupling capacitors. All enable pins are connected to ground to enable the ICs all the time. Three LEDs give status of charge IC. 100-k $_{\Omega}$ resistor R4 isolates battery for battery protection if the CFE chip fails. CFE/FAULT pin is pulled up to 5 V through 100-k $_{\Omega}$ resistor R2. R1 and D1 generate the 5-V pull up voltage.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: bq24314 and bq24316

Specifications						
Parameter	Test Conditions	Min	Тур	Max	Unit	
Input Voltage		4.5	5	26	Volts	
Input Current		0	0.7	1	Amps	
Input OVP	V _{IN} from 5 V to 7.5 V	5.71	5.85	6.00	Volts	
Input OCP	RILIM = $25K_{\Omega}$	0.93	1	1.07	Amps	
Battery OVP	$V_{IN} > 4.4 \text{ V}$	4.30	4.35	4.40	Volts	

bq24314EVM Schematic

Complete Front-End Protection and Charger Module for Li-Ion Batteries

 V_{IN} = 5 to 10 V, V_{OUT} = 5.85 to 0 V, Inverted Fault = 5 V to 0 V

Current 0 to 1 A, V_{OUT} = 4.5 to 0 V, Inverted Fault = 4 V to 0 V

 V_{IN} = 0 to 4.5 V, Current = 0 to 1 A, V_{OUT} = 0 V, Inverted Fault = 0 to 4 V

 $V_{BAT} = 0$ to 4.4 V, $V_{OLIT} = 4.5$ V to 0 V, Inverted Fault = 4 to 0 V

 $V_{IN} = 0$ to 5 V, $V_{OLIT} = 0$ to 5 V, Inverted Fault = 0 to 4,5 V

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page

support.ti.com

TI Semiconductor KnowledgeBase Home Page support.ti.com/sc/knowledgebase

Support.ti.com/sc/knowicugebase

Product Information Centers Americas

Phone +1(972) 644-5580 Fax +1(972)927-6377

Internet support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone

European Free Call 00800-ASK-TEXAS (00800 275 83927)

International +49 (0) 8161 80 2121 Russian Support +7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax +49 (0) 8161 80 2045

Internet support.ti.com/sc/pic/euro.htm

Japan

Fax

International +81-3-3344-5317 Domestic 0120-81-0036

Internet

International support.ti.com/sc/pic/japan.htm

Domestic www.tij.co.jp/pic

Asia

Phone

800-820-8682 China 800-96-5941 Hong Kong India 1-800-425-7888 001-803-8861-1006 Indonesia 080-551-2804 Korea 1-800-80-3973 Malaysia New Zealand 0800-446-934 Philippines 1-800-765-7404 Singapore 800-886-1028 Taiwan 0800-006800 Thailand 001-800-886-0010

Fax +886-2-2378-6808

Email tiasia@ti.com or ti-china@ti.com Internet support.ti.com/sc/pic/asia.htm

D010208

Safe Harbor Statement

This publication may contain forward-looking statements that involve a number of risks and uncertainties. These "forwardlooking statements" are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management "believes," "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forwardlooking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

The platform bar, EasyScale, Fusion Digital Power and SWIFT are trademark of Texas Instruments. All other trademarks are the property of their respective owners.

© 2008 Texas Instruments Incorporated
Printed in U.S.A. by (Printer, City, State), on recycled paper

Texas Instruments Incorporated

14950 FAA Blvd. Ft. Worth, Texas 76155-9950

Address service requested

PRSRT STD U.S. POSTAGE PAID DALLAS, TEXAS PERMIT NO. 2758