Clase 12: **Aplicaciones de la FFT**

Aplicaciones de la FFT

- Motivación en el marco de la materia
- Transformada de Fourier en datos
- Series temporales e imágenes
 - Análisis espectral
 - Filtros
 - Compresión
- STFT
- Bibliografía

Motivación en el marco de la materia

Transformada de Fourier

$$g(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt$$
 Interpretación Qué cambia? Discretización

$$\hat{f}(\omega) = \mathcal{F}(f(x)) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx.$$
 $\langle ------ \rangle$ $c_n = \frac{1}{T}\hat{f}\left(\frac{n}{T}\right)$

La transformada me da la composición espectral (frecuencia) de una señal

Análisis espectral

Para series temporales

- Filtros: transformar, reducir amplitud en banda de frecuencias, antitransformar
- De-correlacionar: transformar, agregar fase random, antitransformar

Análisis espectral

Para imágenes (campos 2D)

Análisis espectral

Para imágenes (campos 2D)

imágenes naturales

- Filtros: transformar, reducir amplitud en banda de frecuencias, antitransformar
- Comprimir

Short-Time Fourier Transform (STFT)

- La FFT me daba el espectro promedio de las componentes de frecuencia presentes en una señal completa: me responde el qué, pero no el cuando
- Podríamos querer saber no sólo cuáles son las componentes de frecuencia presentes, si no que también su evolución a lo largo del tiempo
- Este es el objetivo de la STFT, y conceptualmente lo hace separando en segmentos de la señal y calculando la FFT para cada segmento
- La implementación se hace en realidad aplicando un función de ventana con un corrimiento (análogo a convolución)

$$x_w(k) = x(k) \cdot w(k)$$

Short-Time Fourier Transform (STFT)

Bibliografía recomendada

Brunton & Kutz 2019

towards data science

