# MULTI ATTRIBUTE DECISION MAKING – PENGGUNAAN METODE SAW DAN WPM DALAM PEMILIHAN PROPOSAL UMKM

Heri Sismoro<sup>1)</sup>, Hartatik<sup>2)</sup>

<sup>1)</sup> Manajemen Informatika STMIK AMIKOM Yogyakarta <sup>2)</sup>Teknik Informatika STMIK AMIKOM Yogyakarta email: herisismoro@amikom.ac.id<sup>1)</sup>, hartatikamikom@gmail.com<sup>2)</sup>

#### Abstraksi

Dinas Perindustrian Perdagangan dan Koperasi UMKM Kota Cirebon merupakan salah satu penyelenggaraan urusan pemerintahan dan pelayanan umum di bidang Perindustrian dan Perdagangan. Salah satu fungsi dan tugas pokok dinas ini adalah melakukan pembinaan dan pemberian bantuan untuk UMKM yang ada di Kota Cirebon berdasarkan proposal yang diajukan. Agar keputusan yang dihasilkan obyektif dibutuhkan suatu sistem yang dapat membantu dalam pengambilan suatu keputusan. Multi Attribute Decision Making (MADM) adalah suatu metode pengambilan keputusan untuk menetapkan alternatif terbaik dari sejumlah alternatif berdasarkan beberapa kriteria tertentu. Salah satu metode MADM yang digunakan dalam penelitian ini adalah SAW (Simple Additive Weighting Model) dan WPM (Weighted Product Model). Metode SAW dan WPM memiliki karakteristik yang berbeda. Perbedaan utama antara WPM dan SAW adalah WPM menggunakan cara perkalian sedangkan SAW menggunakan cara penjumlahan. Hasil perhitungan nilai preferensi relatif dari setiap alternatif (Vi) kedua metode ini akan digunakan untuk mencari tingkat ukuran ketepatan relatif, dengan menggunakan metode standar deviasi relatif (RSD).

Kata kunci : SPK, SAW, WPM, RSD

#### Pendahuluan

Pemecahan masalah merupakan suatu proses yang diawali dengan pengamatan perbedaan di antara keadaan aktual dengan keadaan yang diinginkan, untuk kemudian dilanjutkan dengan melakukan langkah untuk memperkecil atau menghilangkan perbedaan tersebut [1].

Pembuatan keputusan secara umum diasosiasikan dengan lima langkah pertama dalam pemecahan masalah yaitu pengenalan dan pendefinisian permasalahan, penentuan sejumlah solusi alternatif, penentuan kriteria yang akan digunakan dalam mengevaluasi solusi alternatif, evaluasi solusi alternatif dan pemilihan sebuah solusi alternatif [1].

Sistem pendukung keputusan (SPK) atau dikenal dengan *Decision Support System* (DSS) adalah bagian dari sistem informasi berbasis komputer termasuk sistem berbasis pengetahuan (manajemen pengetahuan) yang dipakai untuk mendukung pengambilan keputusan dalam suatu organisasi perusahaan atau lembaga pendidikan. Dapat juga dikatakan sebagai sistem informasi berbasis komputer yang membantu user dalam mengatasi masalah dengan menggunakan data dan model [3].

Kegiatan merancang sistem pendukung keputusan merupakan sebuah kegiatan untuk menemukan, mengembangkan dan menganalisis berbagai alternatif tindakan yang mungkin untuk dilakukan.

Tahap perancangan ini meliputi pengembangan dan mengevaluasi serangkaian kegiatan alternatif. Sedangkan kegiatan memilih dan menelaah ini digunakan untuk memilih satu rangkaian tindakan tertentu dari beberapa yang tersedia dan melakukan penilaian terhadap tindakan yang telah dipilih.

SPK lebih ditujukan untuk mendukung manajemen dalam melakukan pekerjaan vang bersifat analitis dalam situasi yang kurang terstruktur dan dengan kriteria yang kurang jelas. SPK tidak dimaksudkan untuk mengotomatisasikan pengambilan keputusan tetapi memberikan perangkat interaktif yang memungkinkan pengambil keputusan untuk melakukan berbagai analisis menggunakan modelmodel yang tersedia seperti Multi Attribute Decision Making - salah satu modelnya yaitu SAW (Simple Additive Weighting model) dan WPM (Weighted Product Model) - yang akan penulis gunakan untuk menyelesaikan permasalahan pemilihan UMKM yang layak mendapatkan pelatihan di Dinas Perindustrian Perdagangan dan Koperasi Usaha Mikro Kecil Menengah Kota Cirebon.

Tujuan utama dari penelitian ini adalah membandingkan hasil perhitungan sistem pendukung keputusan perangkingan UMKM menggunakan dua metode MADM yaitu SAW dan WPM dalam pemilihan proposal UMKM di DISPERINDAG Kota Cirebon.

ISSN: 1411-3201

Sedangkan, permasalahan yang akan di bahas dalam penelitian ini adalah membandingkan tingkat ukuran ketepatan relatif pada hasil perhitungan preferensi relatif dari setiap alternatif (V<sub>i</sub>) masing-masing metode dalam kasus pemilihan proposal UMKM di DISPERINDAG kota Cirebon.

Metode yang digunakan dalam penelitian ini adalah studi literatur dan pengumpulan data, perancangan dan analisa hasil perhitungan. Tahap pertama dilakukan dengan mempelajari berbagai macam referensi, baik melalui jurnal penelitian, tesis, bukubuku teori, tutorial, dan sumber-sumber lain termasuk internet. Pada tahap ini juga dilakukan pengumpulan data yang dibutuhkan seperti ketentuan-ketentuan penilaian proposal yang diajukan oleh UMKM, data-data tentang jenis pelatihan, peserta pelatihan dan proses pelatihan diperoleh dari Dinas Perindustrian Perdagangan dan Koperasi UMKM Kota Cirebon. Pada tahap perancangan dilakukan penentuan kriteria-kriteria yang menjadi bahan pertimbangan dalam menentukan UMKM yang layak untuk mendapatkan pelatihan. Terakhir tahap analisa dilakukan dengan melakukan analisa hasil perhitungan kedua model tersebut untuk kemudian dibandingkan hasilnya.

# Tinjauan Pustaka

Sebagian besar pendekatan MADM dilakukan melalui 2 langkah, yaitu : pertama, melakukan agregasi terhadap keputusan-keputusan yang tanggap terhadap semua tujuan pada setiap alternatif. Sedangkan yang kedua, melakukan perangkingan alternatif-alternatif keputusan tersebut berdasarkan hasil agregasi keputusan [4].

Dengan demikian, bisa dikatakan bahwa, masalah Multi-Attribute Decision Making (MADM) adalah mengevaluasi m alternatif  $A_i$  (i=1,2,...,m) terhadap sekumpulan atribut atau kriteria  $C_j$  (j=1,2,...,n), dimana setiap atribut saling tidak bergantung satu dengan yang lainnya. Matriks keputusan setiap alternatif terhadap setiap atribut x, diberikan sebagai:

$$\mathbf{x} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}$$

Gambar 1. Matriks keputusan setiap alternatif (Zimermann dalam Kusumadewi dkk. (2006))

Dimana  $x_{ij}$  merupakan rating kinerja alternatif ke-i terhadap atribut ke-j. Nilai bobot yang menunjukkan tingkat kepentingan relatif setiap atribut, diberikan sebagai,  $w: w = \{ w_1, w_2, ...., w_n \}$ 

Rating kinerja (x), dan nilai bobot (w) merupakan nilai utama yang merepresentasikan preferensi absolut dari pengambil keputusan/masalah MADM diakhiri dengan proses perangkingan untuk mendapatkan alternatif terbaik yang diperoleh berdasarkan nilai keseluruhan preferensi yang diberikan (Yeh dalam Kusumadewi dkk. (2006)).

Beberapa metode yang dapat digunakan untuk menyelesaikan masalah MADM, antara lain sebagai berikut:

- 1. Simple Additive Weighting Method (SAW)
- 2. Weighted Product Model (WPM)

#### **Metode SAW**

Dalam Kusumadewi dkk. (2006), Fishburn menyatakan bahwa, konsep dasar metode *Simple Additive Weighting Model* (SAW) yang biasa disebut juga *Weighted Sum Model* (WSM) adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut [4]. Metode SAW membutuhkan proses normalisasi matriks keputusan (x) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

$$x_{ij} = \begin{cases} \frac{x_{ij}}{\max_{i} x_{ij}} & \text{Jika j adalah atribut keuntungan} \\ \frac{\min_{i} x_{ij}}{x_{ij}} & \text{Jika j adalah atribut biaya} \end{cases}$$
(1)

 $r_{ij}$  adalah rating kinerja ternormalisasi dari alternatif  $A_i$  pada atribut  $C_j$  dimana  $i=1,2,\ldots,m$  dan  $j=1,2,\ldots,n$ . Nilai preferensi untuk setiap alternatif  $(V_i)$  diberikan sebagai :

$$Vi = \sum_{i=1}^{n} (w_i r_{ij})$$
 (2)

Nilai  $V_i$  yang lebih besar mengindikasikan bahwa alternatif  $A_i$  lebih terpilih.

#### **Metode WPM**

Dalam Kusumadewi dkk. (2006), Yoon mengatakan bahwa, WPM merupakan suatu metode yang menggunakan perkalian untuk menghubungkan rating atribut, dimana rating setiap atribut harus dipangkatkan dulu dengan bobot atribut yang bersangkutan [4]. Proses ini sama halnya dengan proses normalisasi. Preferensi untuk alternatif  $A_i$  (vektor S) diberikan dengan rumus 3.

$$S_i = \prod_{j=1}^{n} (x_{ij})^{W_j}$$
 dengan  $i = 1, 2, 3, ..., m$  (3)

Perhitungan diawali dengan memberikan nilai rating kinerja alternatif ke-i terhadap subkriteria ke-j  $(x_{ij})$ . Nilai rating kinerja ini selanjutnya dipangkatkan dengan nilai relatif bobot awal yang telah dihitung sebelumnya  $(w_j)$  dimana  $w_j$  akan bernilai positif untuk atribut benefit (keuntungan) dan bernilai negatif untuk atribut cost (biaya). Penjumlahan nilai  $w_j$  untuk setiap subkriteria pada kriteria yang sama akan bernilai  $1(\sum w_j = 1)$ . Perhitungan nilai  $w_j$  dilakukan dengan rumus 4.

$$w_j = \frac{w_0}{\sum w_0} \tag{4}$$

Setelah didapat nilai preferensi untuk alternatif A<sub>i</sub>, selanjutnya dilakukan perhitungan nilai preferensi relatif dari setiap alternatif (V<sub>i</sub>). Nilai preferensi relatif dari setiap alternatif dihitung dengan rumus 5.

$$V_{i} = \frac{\prod_{j=1}^{n} (x_{ij})}{\prod_{j=1}^{n} (x_{j}^{*})} w_{j}$$
 dengan  $i = 1, 2, 3, ..., m$  (5)

Alternatif terbaik dipilih jika nilainya lebih besar atau sama dengan alternatif yang lain.

#### Hasil dan Pembahasan

Metode SAW dan WPM memiliki langkah umum yang sama yaitu [2]:

- 1. Mendefinisikan tujuan yang relevan
- 2. Mendefinisikan alternatif yang akan dievaluasi
- 3. Mendefinisikan atribut yang relevan untuk mengevaluasi masing-masing alternatif serta menentukan nilai rating setiap atributnya.
- Mendefinisikan bobot (yang dinormalisasi) untuk atribut dalam urutan relatif yang terpenting hingga yang kurang penting
- 5. Memberi nilai setiap atribut dari setiap alternatif. Jika setiap alternatif dianggap sebagai vektor deskripsi pada masing-masing atribut, maka nilai setiap atribut dari setiap alternatif dapat ditulis  $j[1]; x_i = \langle x_{i,1}; x_{i,2}; ...; x_{i,n} \rangle$
- 6. Menghitung nilai utilitas multiatribut dari berbagai pilihan menggunakan bobot dan nilai  $x_{ij}$  yang telah diberikan sebelumnya.
- Melakukan evaluasi pasca-analisis, untuk kemudian memilih alternatif terbaik berdasarkan skor tertinggi.

Penelitian ini menggunakan 30 UMKM yang ada di wilayah kota dan kabupaten Cirebon, serta 5 atribut yang akan dijadikan parameter dalam penilaian untuk memilih UMKM yang layak. Atribut, subatribut dan nilai bobot yang diberikan pada masing-masing atribut dapat dilihat pada tabel 1.

Tabel 1. Kriteria dan Subkriteria

| No. | Atribut  | Bobot<br>Kriteria | Subatribut | $\mathbf{W}_{0}$ | Sifat |
|-----|----------|-------------------|------------|------------------|-------|
|     |          | Kiiteiia          | Status     |                  |       |
|     |          |                   | usaha      | 5                | В     |
|     |          |                   | Kualitas   |                  |       |
|     |          |                   | fasilitas  |                  |       |
|     |          |                   | produksi   | 3                | В     |
|     |          |                   | Lama       |                  |       |
| 1.  | Produksi | 20%               | produksi   | 5                | В     |
| 1.  | Produksi | 20%               | Teknologi  | 3                | В     |
|     |          |                   | Mutu       |                  |       |
|     |          |                   | produksi   | 4                | В     |
|     |          |                   | Produksi   |                  |       |
|     |          |                   | optimum    | 4                | В     |
|     |          |                   | Sumber     |                  |       |
|     |          |                   | bahan baku | 4                | В     |

Tabel 1. Lanjutan

|     | Tabel 1. Lanjutan         |                  |               |   |           |
|-----|---------------------------|------------------|---------------|---|-----------|
| No. | Kriteria                  | Bobot<br>Atribut | Subatribut    | W | Sif<br>at |
|     |                           |                  | Data          |   |           |
|     |                           |                  | organisasi    |   |           |
|     |                           |                  | perusahaan    | 2 | В         |
|     |                           |                  | Akte          |   |           |
|     |                           |                  | pendirian     |   |           |
|     | Manajemen<br>dan          |                  | perusahaan    |   |           |
|     |                           |                  | dari notaris  | 2 | В         |
| 2.  | Sumber                    | 15%              | TDP (Tanda    |   |           |
| ۷.  | Daya                      | 1370             | Daftar        |   |           |
|     | Manusia                   |                  | Perusahaan)   | 3 | В         |
|     | Manusia                   |                  | Legalitas     |   |           |
|     |                           |                  | tempat        |   |           |
|     |                           |                  | usaha (lahan  |   |           |
|     |                           |                  | dan           |   |           |
|     |                           |                  | bangunan)     | 5 | В         |
|     |                           |                  | Tenaga kerja  | 2 | В         |
|     |                           |                  | Kredit biaya  |   |           |
|     |                           | 25%              | investasi     | 5 | C         |
|     |                           |                  | Biaya         |   |           |
|     |                           |                  | operasional   | 4 | C         |
| 3.  | Finansial                 |                  | Omset per     |   |           |
| ٥.  | 1 mansiai                 |                  | bulan         | 5 | В         |
|     |                           |                  | Status        |   |           |
|     |                           |                  | pinjaman      |   |           |
|     |                           |                  | pada          |   |           |
|     |                           |                  | bank/BUMN     | 5 | C         |
|     |                           |                  | Net Present   |   |           |
|     |                           |                  | Value         |   |           |
|     | 4. Kelayakan<br>investasi | 25%              | (NVP)         | 5 | В         |
|     |                           |                  | Internal      |   |           |
|     |                           |                  | Return Rate   | _ | _         |
| 4.  |                           |                  | (IRR)         | 5 | В         |
|     |                           | - / -            | Profitability |   | В         |
|     |                           |                  | index (Net    | _ |           |
|     |                           |                  | B/C Ratio)    | 5 |           |
|     |                           |                  | Payback       |   | В         |
|     |                           |                  | periods       | _ |           |
|     |                           |                  | (PBP)         | 5 | P         |
| 5.  | Pemasaran                 | 15%              | Keragaman     | _ | В         |
|     |                           |                  | Produk        | 5 |           |

|  | Merek   |   | В |
|--|---------|---|---|
|  | Produk  | 4 |   |
|  | Promosi | 4 | В |

Nilai bobot (w) digunakan untuk menunjukkan tingkat kepentingan relatif dari setiap subatribut. Sifat yang dimiliki oleh nilai bobot dibagi menjadi 2 yaitu benefit (B) dan cost (C). Untuk mencapai solusi ideal, subatribut yang memiliki sifat *benefit* nilainya akan dimaksimumkan (bernilai positif) sedangkan subatribut yang memiliki sifat *cost* nilainya akan diminimumkan (bernilai negatif).

Tingkat kepentingan setiap subatribut dinilai dari range 1 sampai 5, yaitu:

1 : tidak penting

2 : tidak terlalu penting

3 : cukup penting

4 : penting

5 : sangat penting

# Perhitungan Menggunakan Metode SAW

Metode SAW tidak melakukan normalisasi pada nilai bobot yang diberikan pada masing-masing subatribut. Berbeda halnya dengan metode WPM

Langkah pertama yang dilakukan pada metode SAW adalah menghitung nilai rating kinerja ternormalisasi dari alternatif  $A_i$  pada atribut  $C_j$  menggunakan rumus 1. Nilai ini selanjutnya dimasukkan dalam rumus 2 guna mendapatkan nilai preferensi untuk setiap alternatif  $(V_i)$ . Nilai  $V_i$  ini kemudian diurutkan secara *ascending*. Nilai  $V_i$  yang lebih besar mengindikasikan bahwa alternatif  $A_i$  lebih terpilih. Nilai  $V_i$  yang dihitung menggunakan metode SAW dapat dilihat pada tabel 2.

Tabel 2. Nilai V<sub>i</sub> Pada Metode SAW

| Nilai V <sub>i</sub> |
|----------------------|
| 2018.405229          |
| 2001.152338          |
| 1992.715574          |
| 1984.743464          |
| 1970.386616          |
| 1966.724233          |
| 1963.893791          |
| 1955.677807          |
| 1937.993464          |
| 1917.430116          |
| 1903.381016          |
| 1879.485671          |
| 1870.722689          |
| 1849.8338            |
| 1842.215574          |
| 1840.905229          |
|                      |
| 1820.485671          |
|                      |

| Larangan Jaya      | 1816.433498 |
|--------------------|-------------|
| Abdul Itik         | 1802.981618 |
| Miska Itik         | 1802.197172 |
| Andi Itik          | 1795.319005 |
| Akid Itik          | 1787.981618 |
| Rambon Sejati      | 1785.632353 |
| Mutiara Baru       | 1777.500004 |
| UD. Hikmah         | 1757.360963 |
| CV. Mitra Sukses   | 1745.913043 |
| Warto Itik         | 1714.477124 |
| Darojat Itik       | 1694.882365 |
| Karya Binangkit    | 1606.31087  |
| NN. Hatcherry itik | 1588.948025 |
|                    |             |

# Perhitungan Menggunakan Metode WPM

Pada metode WPM, nilai bobot dinormalisasi menggunakan rumus 4 untuk mencari nilai relatif bobot awal. Hasil perhitungan nilai relatif bobot awal (w<sub>i</sub>) ada pada tabel 3.

Tabel 3. Nilai Relatif Bobot Awal

| No. | Kriteria  | Subkriteria     | $W_{i}$ |
|-----|-----------|-----------------|---------|
|     |           | Status usaha    | 0,1786  |
|     |           | Kualitas        |         |
|     |           | fasilitas       |         |
|     |           | produksi        | 0,1071  |
|     |           | Lama produksi   | 0,1786  |
| 1.  | Produksi  | Teknologi       | 0,1071  |
|     |           | Mutu produksi   | 0,1429  |
|     |           | Produksi        |         |
|     |           | optimum         | 0,1429  |
|     |           | Sumber bahan    |         |
|     |           | baku            | 0,1429  |
|     |           | Data organisasi |         |
|     |           | perusahaan      | 0,1429  |
|     |           | Akte pendirian  |         |
|     |           | perusahaan dari |         |
|     | Manajemen | notaris         | 0,1429  |
|     | dan       | TDP (Tanda      |         |
| 2.  | Sumber    | Daftar          |         |
|     | Daya      | Perusahaan)     | 0,2143  |
|     | Manusia   | Legalitas       |         |
|     |           | tempat usaha    |         |
|     |           | (lahan dan      |         |
|     |           | bangunan)       | 0,3571  |
|     |           | Tenaga kerja    | 0,1429  |
|     |           | Kredit biaya    | -       |
|     |           | investasi       | 0,2632  |
|     |           | Biaya           | -       |
|     |           | operasional     | 0,2105  |
| 3.  | Finansial | Omset per       |         |
|     |           | bulan           | 0,2632  |
|     |           | Status pinjaman |         |
|     |           | pada            | -       |
|     |           | bank/BUMN       | 0,2632  |

Tabel 3. Lanjutan

|    |                        | Net Present<br>Value (NVP)    | 0,2500 |
|----|------------------------|-------------------------------|--------|
|    |                        | Internal Return<br>Rate (IRR) | 0,2500 |
| 4. | Kelayakan<br>investasi | Profitability                 | 0,2300 |
|    | investasi              | index (Net B/C                |        |
|    |                        | Ratio)                        | 0,2500 |
|    |                        | Payback periods               |        |
|    |                        | (PBP)                         | 0,2500 |
|    |                        | Keragaman                     |        |
| 5. | Pemasaran              | Produk                        | 0,3846 |
| ٥. | Femasaran              | Merek Produk                  | 0,3077 |
|    |                        | Promosi                       | 0,3077 |

Langkah selanjutnya adalah menghitung nilai preferensi untuk alternatif  $A_i$  (vektor S) menggunakan rumus 3. Nilai vektor S ini kemudian digunakan untuk menghitung nilai preferensi relatif dari setiap alternatif  $(V_i)$ .

Sama halnya seperti metode SAW, nilai  $V_i$  ini kemudian dilakukan pengurutan secara ascending. Nilai  $V_i$  yang lebih besar mengindikasikan bahwa alternatif  $A_i$  lebih terpilih. Nilai  $V_i$  yang dihitung menggunakan metode WPM dapat dilihat pada tabel 3.

Tabel 4. Nilai V<sub>i</sub> pada metode WPM

| UMKM             | Nilai            |
|------------------|------------------|
|                  | $\mathbf{V_{i}}$ |
| Sumber Pangan    | 0.0390           |
| Trisula          | 0.0381           |
| Tigan Mekar      | 0.0366           |
| Zamrud Egg       | 0.0365           |
| Candra Kirana    | 0.0364           |
| Jambul Putih     | 0.0362           |
| Koharudin Itik   | 0.0359           |
| Telur Asin Mutia | 0.0357           |
| Pambanatol       | 0.0355           |
| Abdul Itik       | 0.0354           |
| Adem Ayem        | 0.0354           |
| Sari Sejahtera   | 0.0352           |
| Maju Jaya        | 0.0350           |
| Akid Itik        | 0.0349           |
| Eko Itik         | 0.0348           |
| Mulya Sari       | 0.0346           |
| Miska Itik       | 0.0344           |
| UD. Himah        | 0.0341           |
| HTM Jaya         | 0.0341           |
| Branjangan Putih |                  |
| Muda             | 0.0340           |
| Andi Itik        | 0.0338           |
| Rambon Sejati    | 0.0336           |
| CV. Mitra Sukses | 0.0333           |

| Bebek Jaya         | 0.0332 |
|--------------------|--------|
| Warto Itik         | 0.0318 |
| Darojat Itik       | 0.0269 |
| Mutiara Baru       | 0.0262 |
| Larangan Jaya      | 0.0251 |
| Karya Binangkit    | 0.0226 |
| NN. Hatcherry Itik | 0.0215 |

# Perhitungan Nilai Relative Standard Deviation (RSD)

Berdasarkan hasil perhitungan yang ada di tabel 2 dan tabel 4 terdapat perbedaan nilai preferensi relatif dari setiap alternatif (V<sub>i</sub>) pada metode SAW dan metode WPM. Hal ini dikarenakan WPM menggunakan cara perkalian sedangkan SAW menggunakan cara penjumlahan. Dari 30 alternatif yang dirangking, hanya terdapat 3 alternatif yang memiliki posisi urutan yang sama yaitu Sumber Pangan, Andi Itik dan NN. Hatcherry Itik. Selebihnya berbeda dalam urutan peringkatnya.

Hasil perhitungan nilai  $V_i$  pada metode SAW dan WPM dapat dibandingkan menggunakan metode Standar deviasi relatif (RSD). Standar deviasi relatif (RSD) merupakan ukuran ketepatan relatif dan umumnya dinyatakan dalam persen. Standar deviasi relatif (SDR) dapat digunakan untuk melihat tingkat ketelitian suatu metode [5]. Rumus yang digunakan untuk menghitung nilai RSD adalah rumus 6.

$$RSD = \frac{SD}{X} x 100\%$$
 (6)

Nilai standar deviasi relatif didapatkan dengan melakukan pembagian nilai standar deviasi preferensi relatif dari setiap alternatif (V<sub>i</sub>) masing-masing metode dibagi dengan nilai rata-ratanya, untuk kemudian dikalikan 100%. Berdasarkan perhitungan, didapatkan nilai standar deviasi relatif pada metode SAW adalah 6,12% Sedangkan nilai standar deviasi relatif pada metode WPM adalah 13,08%.

# Kesimpulan dan Saran

penelitian ini, kami mencoba membandingkan dua metode MADM yaitu SAW dan WPM dalam proses pemilihan proposal UMKM yang masuk di Dinas Perindustrian dan Perdagangan Kota Cirebon. Dari hasil perhitungan menggunakan kedua metode tersebut didapatkan perbedaan nilai rangking yang cukup signifikan. Dari 30 alternatif yang dirangking, hanya terdapat 3 alternatif yang menempati posisi urutan yang sama. Untuk mengetahui tingkat ukuran ketepatan relatif dari 2 metode tersebut digunakan metode standar deviasi relatif. Dari hasil perhitungan, didapatkan nilai standar deviasi relatif pada metode SAW adalah 6,12% sedangkan nilai standar deviasi relatif pada metode WPM adalah 13,08%. Berdasarkan hasil perhitungan nilai standar deviasi relatif bisa

RNAL DASI ISSN: 1411-3201

disimpulkan nilai yang diberikan oleh metode WPM lebih baik dibandingkan nilai yang diberikan oleh metode SAW.

# **Daftar Pustaka**

- Anderson, James, E., 1994. Public Policy Making An Introduction (second edition), Texas A & M University.
- [2] Azar, Fred., 2000, Multiattribute Decision-Making:
  Use of Three Scoring Methods to Compare the
  Performance of Imaging Techniques for Breast
  Cancer Detection, University of Pennsylvania,
  Philadelphia (PA) Dept. of BioEngineering VAST
  LAB, Dept. of Computer Science.
- [3] Chen, Xiaohong., Takahara, Yasuhiko., 2000, A DSS Theori From Problem Solving Paradigm, Information and Management Science Volume 11 Number 3, pp.57-70, Case Western Reserve University U.S.A.
- [4] Kusumadewi, S., Hartati, S., Harjoko A., Wardoyo R., 2006, Fuzzy Multi-Attribute Decision Making (Fuzzy MADM), Graha Ilmu, Yogyakarta.
- [5] Savitha, K., Chandrasekar, C., 2011, Vertical Handover decision schemes using SAW and WPM for Network selection in Heterogeneous Wireless Networks, Global Journal of Computer Science and Technology Volume 11, Global Journals Inc. (USA).