Scilab Textbook Companion for Basic Electrical Engineering by D. C. Kulshreshtha¹

Created by
Akhtar Ali Shah
B.E (EXTC)
Electronics Engineering
AI'S Kalsekar Technical Campus New Panvel
College Teacher
Mrs.chaya.s
Cross-Checked by
Chaitanya Potti

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Electrical Engineering

Author: D. C. Kulshreshtha

Publisher: Tata McGraw Hill, New Delhi

Edition: 1

Year: 2009

ISBN: 0-07-014100-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Ohms law	5
3	Network Analysis	19
4	Network Theorems	45
5	Electromagnetism	55
6	Magnetic Circuits	62
7	Self And Mutual Inductances	66
8	DC Transients	77
9	Alternating Voltage And Current	87
10	AC Circuits	100
11	Resonance in AC Circuits	108
12	Three Phase Circuits And System	117
13	Transformers	124
14	Alternators And Synchronous Motors	142
15	Induction Motors	151

16 DC Machines	160
17 Fractional Horse Power Motors	178
18 Electrical Measuring Instruments	183

List of Scilab Codes

Exa 2.1	Resistance	5
Exa 2.2	Resistance	6
Exa 2.3	Resistance	6
Exa 2.4	Voltage And Current	7
Exa 2.5	Resistance	8
Exa 2.6	Current	9
Exa 2.7	Current	10
Exa 2.8	Voltage	10
Exa 2.9	Resistance	11
Exa 2.10	Resistance	12
Exa 2.11	Resistance	13
Exa 2.12	Resistance	13
Exa 2.13	Cost	14
Exa 2.14	Rating	15
Exa 2.15	Resistance	15
Exa 2.16	Resistance	16
Exa 2.17	Resistance	17
Exa 2.18	Temperature	17
Exa 3.1	capacitor	19
Exa 3.2	Inductor	20
Exa 3.3	Inductor	21
Exa 3.4	Voltage	22
Exa 3.5	Voltage	23
Exa 3.6	Voltage And Energy	24
Exa 3.7	Capacitor	25
Exa 3.8	Voltage And Current	26
Exa 3.9	Voltage And Power	28
Eva 3 10	Current	29

Exa 3.13	Current And Power	30
Exa 3.14	Voltage	31
Exa 3.15	Voltage	31
Exa 3.16	Current	32
Exa 3.17	Resistance	34
Exa 3.18	Current	35
Exa 3.19	Voltage	35
Exa 3.20	Current	36
Exa 3.21	Current	37
Exa 3.22	Voltage	38
Exa 3.23	Current	39
Exa 3.24	Current	40
Exa 3.25	Voltage	41
Exa 2.26	Current	42
Exa 2.27	Current	43
Exa 4.1	Current	45
Exa 4.2	Current	46
Exa 4.3	Voltage	47
Exa 4.4	Current	48
Exa 4.5	Voltage	49
Exa 4.6	Voltage	50
Exa 4.7	Current	50
Exa 4.8	Power	51
Exa 4.9	Power	52
Exa 4.10	Voltage And Power	53
Exa 4.11		54
Exa 5.1	Current	55
Exa 5.2	Megnetic Field Strength	55
Exa 5.3	Force	56
Exa 5.4	Force	57
Exa 5.5	Voltage	58
Exa 5.6	Voltage	58
Exa 5.7	Voltage	59
Exa 5.8	Voltage Time And Force	60
Exa 6.1	· · · · · ·	62
Exa 6.2		63
Exa 6.3		63
Exa 6.4		64

Exa 7.1	Voltage	66
Exa 7.2	Inductor And Voltage	66
Exa 7.3	Inductor And Voltage	67
Exa 7.4	Inductor And Energy	68
Exa 7.5	Megnetic Field Strength And Voltage	68
Exa 7.6	Voltage	69
Exa 7.7	Inductor And Voltage	70
Exa 7.8	Inductor	71
Exa 7.9	Inductor	72
Exa 7.10	Inductor	73
Exa 7.11	Inductor	74
Exa 7.12	Inductor	75
Exa 8.1	Voltage	77
Exa 8.2	Current And Power	78
Exa 8.3	Current And Time	79
Exa 8.4	Current	80
Exa 8.5	Current	81
Exa 8.6	Voltage And Current	83
Exa 8.7	Voltage And Current	84
Exa 8.8	Current	85
Exa 9.1	Voltage And Angle	87
Exa 9.2	Voltage Time And Frequency	87
Exa 9.3	Voltage	88
Exa 9.4	Current And Time	89
Exa 9.5	Time	90
Exa 9.6	Power	91
Exa 9.7	Current	92
Exa 9.8	Current	92
Exa 9.9	Current	93
Exa 9.10	Current	94
Exa 9.11	Voltage	94
Exa 9.12	Voltage	95
Exa 9.13	Current And Power Factor	96
Exa 9.14	Voltage And Power Factor	97
Exa 9.15	Power And Power Factor	98
Exa 10.1		100
Exa 10.1		101
Exa 10.3		102

Exa 10.4	Resistance Power And Power Factor	103
Exa 10.5	Reluctance And Inductor	104
Exa 10.6	Resistance And Capacitor	105
Exa 10.7	Resistance Power And Power Factor	106
Exa 11.1	Frequence And Voltage	108
Exa 11.2	Capacitor Voltage And Q FActor	109
Exa 11.3	Inductor Current And Voltage	110
Exa 11.4	Capacitor Current And Enegy	111
Exa 11.5	Frequence And Q Factor	112
Exa 11.6	Frequence	113
Exa 11.7	Resistance Current And Capacitor	114
Exa 11.8	Frequence And Q Factor	115
Exa 12.1	Current	117
Exa 12.2	Current	118
Exa 12.3	Current	119
Exa 12.4	Current Power And Power Factor	120
Exa 12.5	Power And Power Factor	121
Exa 12.6	Current Power And Power Factor	122
Exa 13.1	Megnetic Flux And Voltage	124
Exa 13.2	Flux Density Current And Voltage	125
Exa 13.3	Turns Ratio	126
Exa 13.4	Current	126
Exa 13.5	Power	127
Exa 13.6	Turns	128
Exa 13.7	Current And Power Factor	129
Exa 13.8	Power	130
Exa 13.9	Current And Power Factor	131
Exa 13.10	Resistance And Power	132
Exa 13.11	Regulation	134
Exa 13.12	Efficiency And Power	135
Exa 13.13	Efficiency	137
Exa 13.14	Power	138
Exa 13.15	Voltage	139
Exa 13.16	Current And Resistance	140
Exa 14.1	Speed	142
Exa 14.2	Distribution Factor	143
Exa 14.3	Speed Emf And Voltage	143
Exa. 14.4	Voltage Regulation	144

Exa 14.5	Voltage Regulation	6
Exa 14.6	Emf And Angle	7
Exa 14.7	Emf	8
Exa 14.8	Emf	.9
Exa 14.9	Current Power And Torque	0
Exa 15.1	Speed And Frequency	1
Exa 15.2	Speed And Frequency	2
Exa 15.3	Speed	3
Exa 15.4	Speed And Frequency	3
Exa 15.5	Current	4
Exa 15.6	Power And Speed	6
Exa 15.7	Current Power And Speed	7
Exa 15.8	Resistance	9
Exa 16.1	Voltage Current And Power	0
Exa 16.2	Emf	i1
Exa 16.3	Emf	i2
Exa 16.4	Speed And increase in flux	i2
Exa 16.5	Voltage	3
Exa 16.6	Voltage And Current	i4
Exa 16.7	Emf	5
Exa 16.8	Voltage Efficiency And Power	6
Exa 16.9	Current And Resistance	7
Exa 16.10	Turns	8
Exa 16.11	Voltage	9
Exa 16.12	Speed	9
Exa 16.13	Speed	0
Exa 16.14	Speed And Torque	1
Exa 16.15	Power	2
Exa 16.16	Speed	2
Exa 16.17	Current	'3
Exa 16.18	Speed And Torque	4
Exa 16.19	Resistance	5
Exa 16.20	Speed	6
Exa 17.1	Slip And Efficiency	8
Exa 17.2	Current Phase Angle And Power Factor	9
Exa 17.3	Capacitor	0
Exa 17.4	Revolution Steps And Speed	1
Exa 17.5	No of Rotors And Stators	1

Exa 17.6	No of Rotors And Stators Theeth	182
Exa 18.1	Torque	183
Exa 18.2	Resistance	184
Exa 18.4	Resistance	184
Exa 18.5	Resistance And Multiplying Factor	185
Exa 18.6	Voltage And Error	186
Exa 18.7	Angle of Deflection	187
Exa 18.8	Deflection in the Torque	187
Exa 18.9	Angle of Deflection	188
Exa 18.10	Current	189

Chapter 2

Ohms law

Scilab code Exa 2.1 Resistance

```
1
 2
 3
                               // Example
                                              2.1
                             // Relative area of wire-A
 5 a1=\%pi*2^2/4;
 6 a2=\%pi*1/4;
                             // Relative area of wire-B
                             // Relative lenght of wire-B
 7 11=1;
                             // Relative length of wire-B
8 12=4;
9 R1 = 5;
                              // Resistance of wire
10 r=(12/a2)/(11/a1);
11 disp('The ratio of resistances (R2/R1) = '+string(r)
       + ' ohm');
12 R2=r*R1;
13 \operatorname{disp}('\operatorname{Resistance}(R2) = '+\operatorname{string}(R2) + ' \operatorname{ohm}');
14
15
16
17
18
19
                  // p 16
                                          2.1
```

Scilab code Exa 2.2 Resistance

```
1
                              // Example 2.2
2
3
4
                              // Relative area of wire-A
5 a1=\%pi*3/4;
                              // Relative area of wire-B
6 a2=\%pi*1/4;
                              // Relative lenght of wire-A
7 11=1;
                              // Relative lenght of wire-B
8 12=3;
                              // Resistance of wire
9 R1 = 10;
10 r=(12/a2)/(11/a1);
11 disp('The ratio of resistances (R2/R1) = '+string(r)
      + ' ohm');
12 R2=r*R1;
13 \operatorname{disp}('\operatorname{Resistance}(R2) = '+\operatorname{string}(R2) + ' \operatorname{ohm}');
14
15
16
17
18
19
20
                                          2.2
21
                   // p 16
```

Scilab code Exa 2.3 Resistance

Scilab code Exa 2.4 Voltage And Current

```
1
2
                           // Example 2.4
3
5 v=8.8*{2/(2+2.4)}; // by voltage divider rule
6 disp('Anknown Voltage across the R1 = '+string(v)+'
      volt');
7
8 v1=8.8*\{2.4/(2+2.4)\}; // by voltage divider rule
9 disp('Anknown Voltage across the R1 = '+string(v1)+
     ' volt');
                          // I=V/R
10 i=4.8/4;
11 disp(' Anknown Current I1 = '+string(i)+' Amp');
12 i1=4.8/6;
                          // I=V/R
13 disp('Anknown Current I2 = '+string(i1)+' Amp');
14
15
16
17
18
19
                     // p 20
                                 2.4
```

Scilab code Exa 2.5 Resistance

```
1
2
                           Example 2.5
3
4
                // From the diagram 2.14
                                     // Parallel
6 rp = (1/20) + (1/10) + (1/20);
      resistance
7 Rp=1/rp;
                                     // The resistance Rp
                                     // Series resistance
8 \text{ Rs} = 15;
  Rab = Rs + Rp;
                                     // Effective
      resistance between A & B
  disp('(a) Effective resistance between A & B for
      diagram (a) = '+string(Rab)+' Ohms');
11
12
               // for diagram (b) network above line AB
                   i \cdot e R1 = [(R+R) \mid R] + R
  R1 = 5/3;
                                     // Resistance of
13
      network
14 R2=R1;
                                     // The lower part is
      also same as R1
15 R12=5/6;
                                     // Combination of R1
     & R2
16 Rab1=(R12*1)/(R12+1);
                                     // Effective
      resistance between A & B for diagram (b)
  disp('(b) Effective resistance between A & B for
17
      diagram (b) = '+string(Rab1)+'R');
18
19
              // for diagram (c)
  r1=(3*6)/(3+6);
                                     // Parallel
      combination of 3 & 6 Ohms Resistance
21 Ri=r1+18;
                                     // series of r1 & 18
      Ohms Resistance
```

Scilab code Exa 2.6 Current

```
1
2
                            // Example 2.6
3
4 d=(1/12)+(1/20)+(1/30);
5 Reff=2+(1/d); // Effective Resistence
6 v = 100;
7 I=v/Reff;
                     // ( but 12 i1= 20i2= 30i3 )
                     // i2= 12/20 *i1 & i3= 12/30 *i1
9
                     // \text{ but } 10 = i1 + i2 + i3
10
                     // 0.6 i1 + 0.4 i1 + i1 = 10
11
                                           i.e i1=5
12 i1=5;
13 disp(' Current of I1 if = '+string(i1)+' Amp');
14 i2=0.6*i1;
15 disp(' Current of I2 if = '+string(i2)+' Amp');
16 i3=0.4*i1;
17 disp(' Current of I3 if = '+string(i3)+' Amp');
18
19
20
21
            // p 24
                           2.6
```

Scilab code Exa 2.7 Current

```
1
2
                            // Example 2.7
3
4
                // p=i1^2*Rl i.e i1=p/Rl
5
                        // Load resistance
6 \text{ Rl} = 5;
                         // Power
7 p=20;
  i1=p/R1;
              // i1 = i*(R/R+R1) i.e i = i1*(R+R1)/R
10 i=2*(10+5)/10;
11 disp(' Supply Current is = '+string(i)+' Amp');
12
13
14
              // p 25
                          2.7
```

Scilab code Exa 2.8 Voltage

```
1
                          // Example 2.8
2
3
                          // Supply voltage
4 v = 120;
5 p=60;
                          // Power
                          // Resistance
6 R=v^2/p;
7
          // the combination R of bulb B & C is Rbc
             =240/2
                      i.e Rbc=120
9
          // vb=vc
10
11 Rbc=240/2;
                         // R of each bulb
```

```
12 k = 240 + 120;
13 vc=Rbc*(120/k);
                         // volt across Vc & Vb {
      using Volt Divider Rule }
14 \text{ va} = 120 - 40;
                          // volt across Va
15 disp(' the Voltage across bulb A & B = '+string(vc)+
      ' Volt');
16 disp(' the Voltage across bulb C = '+string(va)+'
      Volt');
17 \text{ vb} = 40;
18 p=(va)^2/240+(vb)^2/240+(vc)^2/240;
                                               // p=pa+pb
     +pc total power
19
20 disp(' Totale Power Dissipated is = '+string(p)+'
      Watt');
21
22
23
                            2.8
         //
                p 25
```

Scilab code Exa 2.9 Resistance

```
1
                      // Example 2.9
2
3
               // From the diagram 2.18
4
               // Minimum value of Req is obtained if R
5
                  =0
               // Maximum value of Req is obtained if R
6
                  = Open ckt
                               // Given the value of R1
8 R1 = 30;
     & R1+R2=75
9 R2 = 75 - R1;
                               // The value of R2
10 disp(' The value of R1 is = '+string(R1)+' Ohms');
11 disp(' The value of R2 is = '+string(R2)+' Ohms');
12
```

```
13
               // From the diagram 2.19
14
                              // Required value of Req
15 Req= (30+75)/2;
      is Req= (30+75)/2
16 Rp=Req-R1;
                              // Hance the parallel
      combination of R2 & R
17 disp(' The value of Rp is = '+string(Rp)+' Ohms');
18 disp('The value of Rp is exactly half of R2= 45,
     hance the value of R should be '+string(R2)+'
     Ohms ');
19
20
21
22
                                                   2.9
23
                              // p 26
```

Scilab code Exa 2.10 Resistance

```
1
2
                              // Example
                                            2.10
3
                            // Rx=R+(R||2Rx)
// i.e 2*Rx^2-3R Rx-R^2 =0
4
5
6 R=1;
   Rx = {3*R + sqrt (9*R*R + 8*R*R)}/4; // Using Roots of
      codratic Equation
8
   disp(' Equivalent R is = '+string(Rx)+' R');
9
10
11
12
13
14
                     // p 26
                                    2.10
15
```

Scilab code Exa 2.11 Resistance

```
1
2
                          // Example 2.11
3
4
                // To convet Pi- Section in to T-
                   Section.
                // We have to Find Ra, Rb & Rc for T-
6
                   Section
                // Resistance of 9 Ohms
7 R2 = 9;
                // Resistance of 6 Ohms
8 R3 = 6;
9 R1 = 3;
                // Resistance of 3 Ohms
10
11 Ra=(R2*R3)/(R1+R2+R3);
12 disp(' Value of Ra is = '+string(Ra)+' Ohm');
13 Rb = (R1*R3)/(R1+R2+R3);
14 disp(' Value of Rc is = '+string(Rb)+' Ohm');
15 Rc = (R2*R1)/(R1+R2+R3);
16 disp(' Value of Rc is = '+string(Rc)+' Ohm');
17
18
19
               // p 26
20
                             2.11
```

Scilab code Exa 2.12 Resistance

```
1 2 3 // Example 2.12 4 5 Reff= 100/10; // Effective R
```

```
6
7
            // P=v^2/R i.e Power of coil
8 v = 100;
9 R = 600;
10 R1=v^2/R;
                              // 2 Coil are connected
11
                                 parallel
                              // Using parallel R
12 R2=(R1*10)/(R1-10);
     formula
13
14 disp(' Resistance of each coil = '+string(R2)+' Ohm'
     );
15
16
17
           // p 27
18
                           2.12
```

Scilab code Exa 2.13 Cost

```
1
2
3
                           // Example 2.13
4
                 // Voltage
6 v = 115;
                 // current
7 i=12;
                 // Time Required
8 t=6;
                 // Energy
9 \ w = v * i * t;
10 Rate=2.50;
11 Cost=w*Rate;
12 disp(' cost of boiler Operation is = '+string(Cost
      /1000) + Rs/kwh';
13
14
15
```

```
16
17
18 // p 27 2.13
```

Scilab code Exa 2.14 Rating

```
1
2
3
                           // Example
4
                                        2.14
5
6 v = 240;
                    //toaster reted at 1000 w
7 p=1000;
8 R=v^2/p;
                    // resistanc raring
                    // Current rating
9 Imax=p/v;
10 \text{ v1}=220;
                    // Current at 220 v
11 I=v1/R;
12 p1=v1*I;
13 disp(' Power rating is = '+string(p1)+' Watt');
14 disp(' there for the Power rating is less then
      original power. ');
15
16
17
18
19
20
                               2.14
                  p 28
           //
```

Scilab code Exa 2.15 Resistance

```
To find the Value of Resister
                // We Sghould know About Colour Code
5
6
                     // Yelow colour
7 Y = 4;
                     // Violet colour
8 V = 7;
9 0=10^3;
                     // Orenge colour
10 r = (10 * Y + V) * 0;
11 R=r*(5/100);
12 disp(' The value of Resistance is = '+string(R)+'
      ohm');
13
14
15
16
17
               // p 30
                              2.15
```

Scilab code Exa 2.16 Resistance

```
1
2
3
                           // Example 2.16
4
                       // To find the Value of Resister
5
                       // We Sghould know About Colour
6
                          Code
                       // Gray colour
7 \text{ Gr} = 8;
                       // Blue colour
8 B=6;
9 G=10^-1;
                       //Gold colour
10 r = (10*Gr+B)*G;
11 R=r*(5/100);
12 disp(' The value of Resistance is = '+string(R)+'
      ohm');
13
14
15
```

```
16
17 // p 30 2.16
```

Scilab code Exa 2.17 Resistance

```
1
2
                           // Example 2.17
3
4
                  // Resistance of 126 Ohms
5 R1 = 126;
                  // temperature at 126 ohms resistor
6 T1 = 20;
                  // Temperature ( -35 Digree)
7 T2 = -35;
8 \text{ ao} = 0.00426;
                  // By using Temprerature Formula i.e
                     R1/(1+aoT1) = R2/(1+aoT2)
10 z=(1+ao*T2)/(1+ao*T1);
11 R2=R1*z;
12 disp(' Resistance of the line (at T=-35) = '+string(
      R2)+' Ohm');
13
14
15
16
17
          // p 31
18
                          2.17
```

Scilab code Exa 2.18 Temperature

```
1 2 3 // Example 2.18 4 5 R1=3.42; // Resistance of 3.42 Ohms
```

```
// temperature at 3.42 ohms resistor
6 T1 = 20;
                     // Resistance R2
7 R2=4.22;
8 \text{ ao} = 0.00426;
9
         // By using Temprerature Formula \Longrightarrow i.e R1
10
            /(1+aoT1) = R2/(1+aoT2)
11
12 z=(R2/R1)*(1+ao*T1);
13 T2=(z-1)/ao;
14 T=T2-T1;
                   // Temperature Rise
15 disp(' The Temperature Rise is = '+string(T)+'
      Digree Celsius');
16
17
18
19
20
21
         // p 32
                         2.18
```

Chapter 3

Network Analysis

Scilab code Exa 3.1 capacitor

```
1
2
3
                                   // Examle 3.1
5 \quad A=0.113;
                                 // Area of parallel plate
6 eo=8.854*10^-12;
                                 // Permittivity of free
      space
7 \text{ er} = 10;
                                 // Relative Permittivity
8 d=0.1*10^-3;
                                 // Distance between 2
      Plate
9 C=(eo*er*A)/d;
                                 // The value of capacitor
       Using case-1
10 disp(' The value of capacitor Using case -1 = '+
      string(C*1000000)+' uF');
11
                                 // Energy stored
12 \quad w = 0.05;
                                 // Voltage
13 v = 100;
14 C1 = (2*w)/v^2;
                                 // The value of capacitor
       Using case -2
15 disp(' The value of capacitor Using case -2 = '+
      string(C1*1000000)+ 'uF');
```

```
16
17 i=5*10^{-3};
                                 // Current
                                 // Increase iv voltage
18 \, dv = 100;
                                 // Time required
19 dt=0.1;
                                 // The value of capacitor
20 C2=i/(dv/dt);
       Using case -3
21 disp(' The value of capacitor Using case -3 = '+
      string(C2*1000000)+' uF');
22
23
24
25
26
27
28
                   // p 53
                                 3.1
```

Scilab code Exa 3.2 Inductor

```
1
2
3
                                  // Examle 3.2
4
5 w = 0.2;
                                  // Energy stored
6 i = 0.2;
                                  // Current
7 L1=(2*w)/i^2;
                                  // The value of
      Inductor Using case -1
8 disp(' The value of Inductor Using case -1 = '+string
      (L1) + 'H');
9
                                  // Voltage
10 v = 10;
                                  // Increase current
11 di1=0.1;
                                  // Time required
12 dt1=0.2;
                                  // The value of
13 L2=v/(di1/dt1);
      Inductor Using case -2
14 disp(' The value of Inductor Using case -2 = '+string
```

```
(L2) + 'H';
15
16
17 p=2.5;
                                    // Power
18 \text{ di2=0.1};
                                    // Increase current
                                    // Time required
19 dt2=0.5;
20 L3=p/(di2*dt2);
                                    // The value of
      Inductor Using case -3
21 disp(' The value of Inductor Using case -3 = '+string
      (L3) + 'H');
22
23
24
25
26
                   // p 54
                                  3.2
```

Scilab code Exa 3.3 Inductor

```
1
2
                                 // Examle 3.3
3
4
                              // Given L1= 2L2
                              // From the Diagram Leq=
5
                                 0.5+ (L1*L2)/(L1+L2)
                              // there for (L1*L2)/(L1+
6
                                 L2) = 0.2 , (where Leq=
                                 0.7)
7
                              // i.e (2*L2*L2)/3L2=0.2;
8
                              // it means L2= 0.3 H
9
                              // Value of Inductor 1
10 L2=0.3;
                              // Value of Inductor 2
11 L1=2*L2;
12 disp(' Value of Inductors are L1= '+string(L1)+' H
            L2= '+string(L2)+' H');
13
```

```
14
15
16
17
18
19
// p 55 3.3
```

Scilab code Exa 3.4 Voltage

```
1
2
                                  // Examle 3.4
3
4 C1=0.05;
                                             // Capacitor
     1 (in Micro)
5 C2=0.1;
                                             // Capacitor
      2 ( in Micro )
6 \quad C3 = 0.2;
                                             // Capacitor
      3 (in Micro)
7 \quad C4 = 0.05;
                                             // Capacitor
      4 (in Micro)
8 C=(1/C1)+(1/C2)+(1/C3)+(1/C4);
                                             // Addition
      of capacitors
9 Cs=1/C;
                                             // Equivalent
       capacitor
10 disp(' Equivalent capacitor = '+string(Cs)+' uF');
11
12 V = 220;
                                             // Supply
      voltage
13 Q=Cs*V;
                                              // Charge
      transfer
14 V1 = Q/C1;
                                             // Voltage
      drop across capacitor 1
15 disp(' Voltage drop across capacitor 1 = '+string(V1
      )+' Volt');
16
```

```
// Voltage
17 V2=Q/C2;
     drop across capacitor 2
18 disp(' Voltage drop across capacitor 2 = '+string(V2
     )+' Volt');
19
20 V3 = Q/C3;
                                            // Voltage
      drop across capacitor 3
21 disp(' Voltage drop across capacitor 3 = '+string(V3
     )+' Volt');
22
                                            // Voltage
23 V4 = Q/C4;
     drop across capacitor 4
24 disp(' Voltage drop across capacitor 4 = '+string(V4
     )+' Volt');
25
26
27
28
                    // p 55
29
                                      3.4
```

Scilab code Exa 3.5 Voltage

```
1
2
                                   // Examle 3.5
3
                                // Value of capacitor -1
4 C1=2*10^-6;
5 C2=10*10^-6;
                                // Value of capacitor -2
6 \quad Q1 = 400 * 10^- - 6;
                                // Charge of capacitor -1
7 Q2=200*10^-6;
                                // Charge of capacitor -2
                                // Total Charge of
8 Q = Q1 + Q2;
      capacitors
9 C = C1 + C2;
                                // Equivalentss capacitor
10 V=Q/C;
                                // Voltage across the
      capacitor
11 disp(' Voltage across the capacitor = '+string(V)+'
```

```
Volt');

12
13
14
15
16
17
18
// p 55 3.5
```

Scilab code Exa 3.6 Voltage And Energy

```
1
2
                                 // Examle 3.6
3
                                             // Capacitor
4 C1=2*10^-6;
      1
                                             // Capacitor
5 C2=8*10^-6;
6 C = (C1*C2)/(C1+C2);
      Equivalentss capacitor
7 V = 300;
                                             // Supply
      voltage
8 Q = C * V;
                                             // Charge on
      each capacitor
9 disp('(a) Charge on each capacitor = '+string(Q
      *1000000) + uC';
10
                                             // Voltage
11 V1=Q/C1;
      drop across capacitor 1
12 disp('(b).1 Voltage drop across capacitor 1 = '+
      string(V1)+' Volt');
13
                                            // Voltage
14 V2=Q/C2;
      drop across capacitor 2
15 disp('(b).2 Voltage drop across capacitor 2 = '+
```

```
string(V2)+' Volt');
16
17 V1 = 240;
                                                   // Energy
18 w1=0.5*C1*V1^2;
      stored in capacitor -1
19 \operatorname{disp}('(c).1) Energy stored in capacitor -1 = '+\operatorname{string}'
       (w1*1000) + 'mJ');
20
21 \quad V2 = 60;
22 \quad w2=0.5*C2*V2^2;
                                                   // Energy
       stored in capacitor -2
23 disp('(c).2 Energy stored in capacitor -2 = '+string
       (w2*1000) + 'mJ');
24
25
26
27
28
29
                                                      3.6
30
                              //
                                    p 56
```

Scilab code Exa 3.7 Capacitor

```
1
2
3
                                  // Examle 3.7
4
                                // Given that Ceq= 1 uF
5
                                   between A & B
                                // By reducing the
6
                                   circuit will get 2
                                   capacitor.
7
                                // that is C & C13= 32/9
                                  uF
                                // there for (1/1) = 1/C +
8
```

```
9/32
                                 // Hance 1/C = 1-9/32
9
                                 // Value of Capacitor-C
10 C=1/\{1-(9/32)\};
11 disp(' Value of Capacitor C = '+string(C)+' uF');
12
13
14
15
16
17
18
19
                 // p 56
                               3.7
```

Scilab code Exa 3.8 Voltage And Current

```
1
2
                                  // Examle 3.8
3
                                 // for the extreme value
4
                                     of Rl voltage (Vl) &
                                     Current (II)
                                 // Supply voltage
5 E=3;
                                 // I/p Resistance
6 Ri=1;
                                 // Minimum load
7 R11 = 100;
      resistance
  Il1=E/(Rl1+Ri);
                                 // Current at minimum
     load Rl1
9 V11=E-(I11*Ri);
                                 // Voltage at minimum
     load Rl1
10
                                 // Maximum load
11 R12=1000;
      resistance
12 I12=E/(R12+Ri);
                                 // Current at maximum
      load Rl2
13 V12=E-(I12*Ri);
                                 // Voltage at maximum
```

```
load R12
14
15 Il={(Il1-Il2)/Il1}*100; // Change in current Il
16 disp(' The % chenge (a Decrease ) in Il = '+string(
      I1) + '\%';
17
18 Vl={(Vl1-Vl2)/Vl1}*100; // Change in voltage Vl
19 disp(' The % chenge (a Increase ) in Vl = '+string(-
     V1)+'%');
20
21 \text{ rl1=0.001};
                                   // Minimum load
     resistance (for 2nd case)
22 il1=E/(rl1+Ri);
                                   // Current at minimum
      load rl1
23 v11=E-(i11*Ri);
                                   // Voltage at minimum
     load rl1
24
                                   // Maximum load
25 rl2=0.01;
      resistance (for 2nd case)
26 i12=E/(r12+Ri);
                                   // Current at maximum
     load rl2
27 \text{ vl2=E-(il2*Ri)};
                                   // Voltage at maximum
     load rl2
28
29 il={(il1-il2)/il1}*100; // Change in current
30 disp(') The % chenge (a Decrease ) in II = '+string(
      il)+' % ');
31
32 \text{ vl} = \{(0.003-0.03)/0.003\}*100; // \text{Change in voltage}\}
      vl \implies (vl1 = 0.003 \& vl2 = 0.03)
33 disp(' The % chenge (a Increase ) in Vl = '+string(-
      v1)+'%');
34
35
36
37
38
```

Scilab code Exa 3.9 Voltage And Power

```
1
2
3
                                     // Examle 3.9
4
5 \text{ Is} = 3;
                                 // Source current
                                 // Source resistance
6 Rs=2;
                                 // Source voltage
7 Vs=Rs*Is;
                                 // Load resistance
8 R1 = 4;
9 R=(Rs*R1)/(Rs+R1);
                                 // Eqviualent resistance
                                // Load current in case -1
10 Il1=(Is*Rs)/(Rs+Rl);
11 disp(' Load current in case-1 = '+string(Il1)+' Amp'
      );
12
                                 // Load voltage in case -1
13 V11=1*R1;
14 disp(' Load voltage in case-1 = '+string(Vl1)+' Volt
      ');
15
                                 // Power delivered in case
16 Ps1=Is^2*R;
      -1
17 \operatorname{disp}(') Power delivered in \operatorname{case} -1 = '+\operatorname{string}(\operatorname{Ps1}) + '
      Watt');
18
19 I12=Vs/(Rs+R1);
                                 // Load current in case -2
20 disp(' Load current in case -2 = '+string(I12)+' Amp'
      );
21
22 V12=Vs*(R1/(R1+Rs));
                                 // Load voltage in case -2
23 disp(' Load voltage in case -2 = '+string(V12)+' Volt
      ');
24
25 \text{ Ps2=Vs^2/(Rs+R1)};
                                 // Power delivered in case
```

```
-2
26 disp(' Power delivered in case-2 = '+string(Ps2)+'
Watt');
27
28
29
30
31 // p 61 3.9
```

Scilab code Exa 3.10 Current

```
1
2
                                  // Examle 3.10
3
                                // Load resistance
5 R1 = 6;
                                // Source resistance
6 Rs=2;
                                // Source current
7 \text{ Is} = 16;
                                // Current through Rs
8 I2=Is*(R1/(R1+Rs));
9 disp ('Current through Rs (with Current as source )
     = '+string(I2)+' Amp');
10
                                // Current through Rl
11 I6=Is-I2;
12 disp(' Current through Rl (with Current as source )
     = '+string(I6)+' Amp');
13
                // After transforming the current source
14
                    in to voltage source
15
                                // Source voltage
16 \text{ Vs} = 32;
                                // Current through Rs
17 i2=Vs/(Rl+Rs);
                                // Current through Rl
18 i6=i2;
19 disp ('Current through Rs & Rl (with voltage as
      source ) = '+string(i2)+' Amp');
20
```

```
21
22
23
24
25 // p 62 3.10
```

Scilab code Exa 3.13 Current And Power

```
1
2
                                  // Examle 3.13
3
4
5
                               // From Diagram (3.26)
                                  Apply KVL to get 24-4I
                                  -2I + 18I = 0
                               // Current
6 I = (-24/12);
7 disp(' The value of Current = '+string(I)+' Amp');
9 V1 = 4 * I;
                              // Voltage across 4 Ohm
      Resistor
10 p = -(4.5*V1*I);
                              // Power absorbed
11 disp(' Power absorbed by dependent source = '+string
      (p)+' Watt');
12
                              // Independent voltage
13 V = 24;
      source
                              // Resistence Seen from
14 R=V/I;
      Independent source
15 disp(' Resistence Seen from Independent source = '+
     string(R) + 'Ohm');
16
17
18
19
                     //
20
                               p 67
                                         3.13
```

Scilab code Exa 3.14 Voltage

```
1
2
3
                                   // Examle 3.14
4
5
6
                                // From Diagram (3.28)
                                   Apply KVL to get 100-40
                                   I - 60I = 0
7 I = 100/100;
                                // Current
8 disp(' The value of Current = '+string(I)+' Amp');
9
10 R=60;
                                // Resistor
                                // Voltage across 60 ohm
11 V1 = I * R;
      resistor
12 disp(' Voltage across 60 ohm resistor = '+string(V1)
      + ' Volt');
13
14
                                // By using Voltage
                                   divider concept
                                // Voltage Vab
15 Vab = -10 + V1 + 0 * 10 + 30;
16 disp(' Voltage across open-circuit Vab = '+string(
      Vab)+' Volt');
17
18
19
20
                  //
                                          3.14
                         p 68
```

Scilab code Exa 3.15 Voltage

```
1
2
                                  // Examle 3.15
3
4
                                 // From Diagram (3.29)
                                     let us confirm that
                                     the given voltage
                                     satisfy KVL
                                  // 10-6-4= 0 , satisfy
5
                                    KVl
                    // From Diagram Apply KVL to right
6
                       loop get \{ -(-4)+4+Vx=0 \}
7
                                 // Voltage Vx
8 \quad Vx = -4 - 4;
9 disp(' Voltage across Vx = '+string(Vx)+' Volt');
10
11
                   // To find Vcd Stand a point d & walk
                       towards c i.e { Vcd=-4+6 }
12
                                 // Voltage Vcd
13 Vcd = -4+6;
14 disp(' Voltage across Vcd = '+string(Vcd)+' Volt');
15
16
17
18
19
20
                                   p 69
21
                           //
                                                  3.15
```

Scilab code Exa 3.16 Current

```
// Loop-1
                                5 Ix + 0 Iy - 10 I1 =
5
                     100....( i
                                7 Ix + 2 Iy - 2 I1 =
                  // Loop-2
6
                      -50....(ii
7
                  // \text{Loop} -3 3 \text{Ix} -5 \text{Iy} -3 \text{I1} =
                      -50\dots ( iii
8
                  // By using matrix form will get A*X =
9
                      В
                        formate
10
11 delta=[5 0 10 ; 7 2 -2 ; 3 -5 -3 ];
                                                       //
      value of A
12 d=det(delta);
                                                       //
      Determinant of A
13
14 delta1=[100 0 10 ; -50 2 -2 ; -50 -5 -3 ];
      value of A1 (when 1st colomn is replace by B)
15 d1=det(delta1);
                                                       //
      Determinant of A1
16
17 delta2=[5 100 10 ; 7 -50 -2 ; 3 -50 -3 ];
      value of A2 (when 2nd colomn is replace by B)
18 d2=det(delta2);
                                                       //
      Determinant of A2
19
20 \text{ Ix=d1/d};
      Current (Ix)
21 disp(' The value of Current (Ix) = '+string(Ix)+'
      Amp');
22
23 Iy=d2/d;
                                                       //
      Current (Iy)
24 disp(' The value of Current (Iy) = '+string(Iy)+'
     Amp');
25
26
27
28
```

Scilab code Exa 3.17 Resistance

```
1
2
                                  // Examle 3.17
3
4
                  // From the diagram (3.31) Apply KCL
                     to node B & C
                  // will get { I1+I2= 20 } & { I3-I2=
5
                      30 }
                  // Apply KVL to Bigger loop will get
6
                     i.e { I1-3I2-2I3=-100 }
7
                  // By solving All the 3 equation we
                     get
8
9 I1=10;
                              // Current in loop -1
10 disp(' The value of Current (I1) = '+string(I1)+'
     Amp');
11
12 I2 = 10;
                              // Current in loop -2
13 disp(' The value of Current (I2) = '+string(I2)+'
     Amp');
14
                              // Current in loop -3
15 \quad I3 = 40;
16 disp(' The value of Current (I3) = '+string(I3)+'
     Amp');
17
                  // For Resistors Apply KVL to loop-1 &
18
                     loop -3
                  // we get { -0.111-20R1+110=0 } & {
19
                      0.2 I3 - 120 + 30 R2 = 0
20
21 R1 = (110 - 0.1 * I1) / 20;
                            // Resistence (R1)
22 disp(' The value of Resistence (R1) = '+string(R1)+'
```

```
Ohm');

23

24 R2=(120-0.2*I3)/30; // Resistence (R2)

25 disp(' The value of Resistence (R2) = '+string(R2)+'
Ohm');

26

27

28

29

30 // p 71 3.17
```

Scilab code Exa 3.18 Current

```
1
2
3
                                   // Examle 3.18
4
                  // From the diagram (3.33a) Apply KVL
5
                      to Bigger loop i.e (For I1 )
6
                   // \text{ Will get } \{ 10-5(I1-2)-8I1= 0 \}
7
                   // Using loop-circuit analysis
8
                  // Current through 8 ohm resistor
9 I1 = 20/13;
10 disp(' Current through 8 ohm resistor (I1) = '+
      string(I1)+' Amp');
11
12
13
14
15
                                       3.18
                        p 74
```

Scilab code Exa 3.19 Voltage

```
1
2
3
                                  // Examle 3.19
4
5
6
                  // From the diagram (3.34a) Apply KVL
                     to loop -2 i.e (For I)
7
                  // Will get \{-2I-3I+6-1(I+5-4)=0\}
8
                  // Using loop-circuit analysis
9
                  // Current in loop -2
10 I = 5/6;
                  // Unknown voltage.
11 V = 3 * I;
  disp(' Unknown voltage V = '+string(V)+' Volt');
13
14
15
16
                  // p 74
                                      3.19
```

Scilab code Exa 3.20 Current

```
1
2
3
                                     // Examle 3.20
4
                   // From the diagram (3.38) Apply KVL
5
                      to all the 3 loop.
                   // Loop -1 19 I1 -12 I2 +0 I3 -=
6
                       60....( i
7
                   // Loop -2
                               -12I1 + 18I2 - 6I3 =
                       0 . . . . . . . . . . . . ( i i
                   // \text{Loop} -3 0I1-6I2+18I3=
8
                       0 . . . . . . . . . . . . . ( i i i
9
10
                   // By using matrix form will get A*X =
                       B formate
```

```
11
                                                      //
12 delta=[19 -12 0 ; -12 18 -6 ; 0 -6 18 ];
      value of A
                                                      //
13 d=det(delta);
      Determinant of A
14
15 delta1=[60 -12 0 ; 0 18 -6 ; 0 -6 18 ];
      value of A1 (when 1st colomn is replace by B)
16 d1=det(delta1);
                                                      //
      Determinant of A1
17
  Is=d1/d;
                                                      //
      Current drawn from source (Is=I1)
19 disp(' Current drawn from source (Is) = '+string(Is
      ) + ' Amp');
20
21
22
23
24
25
          //
               p 79
                         3.20
```

Scilab code Exa 3.21 Current

```
1
2
                                  // Examle 3.21
3
4
                  // From the diagram (3.39) Apply KVL
5
                     to all the 3 loop.
                  // \text{Loop} -1 7I1 - 4I2 + 0I3 =
6
                     67....( i
7
                             -4I1 + 15I2 - 6I3 =
                  // \text{Loop}-2
                     -152\ldots ( iii
8
                  // \text{Loop}-3
                             0I1 - 6I2 + 13I3 =
```

```
74....(iii
9
                 // By using matrix form will get A*X =
10
                    В
                       formate
11
12 delta=[7 -4 0 ; -4 15 -6 ; 0 -6 13 ];
                                                   //
     value of A
                                                   //
13 d=det(delta);
     Determinant of A
14
  delta1=[7 -4 67; -4 15 -152; 0 -6 74];
     value of A1 (when 3rd colomn is replace by B)
  d1=det(delta1);
     Determinant of A1
17
                                                   //
18
  I3=d1/d;
     Current through 7 ohm resistor (I3)
  disp(' Current through 7 ohm resistor = '+string(I3)
     + ' Amp');
20
21
22
23
24
25
          //
               p 79
                        3.21
```

Scilab code Exa 3.22 Voltage

```
// Similarly apply KCL at node b
6
                    // will get { (vb-va)/3+ vb-0)/4 = -6
7
                        } . . . . . . . . . . . ( 2
8
9
                    // After solving these 2 equation
                       will have
10
11
  Va=2.44;
                                   // Voltage at node a
                                   // Voltage at node b
12 Vb = -8.89;
                                   // Voltage across 3 ohm
13 Vab=Va-Vb;
       resistor
14 disp(' Voltage across 3 ohm resistor = '+string(Vab)
      + ' Volt');
15
16
17
18
                          //
                                             3.22
19
                                p 80
```

Scilab code Exa 3.23 Current

```
1
2
                                 // Examle 3.23
3
                  // From the diagram (3.41) Apply KCL
4
                     to node
                  // will get { (v1-0)/12+(v1-60)/3+(
5
                     v1-0)/4 = 5
                  // After solving above equation we
6
                     get V1= 18 V
7
                               // Voltage at node 1
8 V1=18;
9 I1=(V1-0)/12;
                               // Current through 12 ohm
      resistor (I1)
10 disp(' Current through 12 ohm resistor = '+string(I1
```

```
)+' Amp');

11
12
13
14
15
// p 81 3.23
```

Scilab code Exa 3.24 Current

```
1
2
                                    // Examle 3.24
3
4
                    // From the diagram (3.42) Node
5
                       voltages are
                    // Have { va-vb+0vc = 6
6
                        // Apply KCL at Super node
7
                    // will get \{0.33 va + 0.25 vb - 0.25 vc =
8
                       2 } . . . . . . (2
9
                    // Apply KCL at node c
10
                    // \text{ will get } \{ \text{ 0va} - 0.25 \text{ vb} + 4.5 \text{ vc} = -7 \}
                        } . . . . . . . . . (3
11
12
                   // By using matrix form will get A*X =
                       В
                          formate
13
14 \text{ delta} = [1 -1 0 ; 0.33 0.25 -0.25 ; 0 -0.25 0.45];
      // value of A
15 d=det(delta);
      // Determinant of A
16
17 delta1=[1 6 0 ; 0.33 2 -0.25 ; 0 -7 0.45];
      // value of A1 (when 2nd colomn is replace by B)
18 d1=det(delta1);
```

```
// Determinant of A1
19
20 \text{ delta2}=[1 -1 6 ; 0.33 0.25 2 ; 0 -0.25 -7];
      // value of A2 (when 3rd colomn is replace by B)
21 d2=det(delta2);
      // Determinant of A2
22
23 \text{ Vb=d1/d};
     // Voltage at node-b
24 \text{ Vc=d2/d};
      // Voltage at node-c
25
26
  I = (Vb - Vc)/4;
      // Current through 4 ohm resistor (I)
  disp(' Current through 4 ohm resistor = '+string(I)+
      ' Amp');
28
29
30
                                p 82
                                              3.24
31
```

Scilab code Exa 3.25 Voltage

```
1
2
                                  // Examle 3.25
3
                   // From the diagram (3.43b) Apply KCL
4
                       to node a
                   // will get { (va-6)/1+(va-0)/5 = 4-5
5
                       }
6
7
  Va=(6-1)/1.2;
                                   // Voltage at node a
8
9
                  // by using voltage divider rule
10
```

Scilab code Exa 2.26 Current

```
1
2
                                    // Examle 3.26
3
4
                   // Reffer Diagram (3.44a)
5
                   // First of all convert all resistor
6
                      in to conductor
7
                   // From the obtained diagram (3.44c)
                      Apply KCL to node 1 & 2
                   // \text{ Node} -1  0.7S1-0.2S2-=
8
                       3 . . . . . . . . . . . . . . . . ( i
                   // \text{ Node} -2 \qquad -0.2 \text{S1} -1.2 \text{S2} =
9
                       2....( ii
10
11
                   // By using matrix form will get A*X =
                       B formate
12
                                                // value of A
13 delta=[0.7 -0.2; -0.2 1.2];
   d=det(delta);
      Determinant of A
15
                                                // value of
16 delta1=[3 -0.2; 2 1.2];
```

```
A1 (when 1st colomn is replace by B)
17 d1=det(delta1);
      Determinant of A1
18
  delta2=[0.7 3; -0.2 2];
                                             // value of
     A2 (when 2nd colomn is replace by B)
20 d2=det(delta2);
      Determinant of A2
21
22 V1 = d1/d;
                                             // Voltage at
       node-1
23 V2=d2/d;
                                             // Voltage at
       node-2
24
  I = (V1 - V2) / 5;
                                             // Current
25
      through 5 ohm resistor (I)
26 disp(' Current through 5 ohm resistor = '+string(I)+
      ' Amp');
27
28
29
30
               p 84
31
          //
                          3.26
```

Scilab code Exa 2.27 Current

Chapter 4

Network Theorems

Scilab code Exa 4.1 Current

```
1
                                  // Examle 4.1
2
3
                   // Reffer the diagram (4.2a)
                   // Using Superpositon theorem
7 I = -0.5;
                                   // Source current
                                   // When 0.5-A Current
  I1=I*(0.3/(0.1+0.3));
      source is on { by voltage divider }
10 V = 80 * 10^{-3};
                                   // Voltage source
11 I2=(V/(0.1+0.3));
                                   // When 80-mV voltage
      source is on { by ohm's law }
12
13 i = I1 + I2;
                                   // Current in the
      circuit { by Superpositon theorem }
14 disp(' Current in the circuit = '+string(i)+' Amp');
15
16
17
18
```

```
19
20 // p 105 4.1
```

Scilab code Exa 4.2 Current

```
1
2
                                  // Examle 4.2
3
4
                   // Reffer the diagram (4.3)
5
                   // Using Superpositon theorem
6
7
8 V = 10;
                                    // Voltage source
                                   // When 10-V voltage
9 I1=(V/(50+150));
      source is on { by ohm's law }
10
11 i1=40;
                                    // Source current
                                   // When 40-A Current
12 \quad I2=i1*(150/(50+150));
      source is on { by current divider }
13
14 i2 = -120;
                                   // Source current
  I3=i2*(50/(50+150));
                                   // When (-120)-A
      Current source is on { by current divider }
16
17
                                    // Current in the
  I = I1 + I2 + I3;
      circuit { by Superpositon theorem }
   disp(' Current in the circuit = '+string(I)+' Amp');
20
21
22
23
24
25
                    p 106
                                     4.2
               //
```

Scilab code Exa 4.3 Voltage

```
1
2
3
                          Example 4.3
4
                // From the diagram 4.5
                // Using super position theorem
6
7
                // 4-A current source is active
8
9 i=4/\{1+(2+3)\};
                             // Current
                            // Rsistance of 3 Ohms
10 R=3;
                             // Voltage across 3 Ohms
11 V4 = i * R;
      resistance in Case-1
12
               // 5-A current source is active
13
14 i5=5;
                                 // 5-A current source
                                // Voltage across 3 Ohms
15 V5=(-i5)*{1/[1+(2+3)]*3};
       resistance in Case-2
16
                // 6-V voltage source is active
17
                                // 6-A current source
18 i6=6;
19 V6=i6*{3/[1+(2+3)]};
                                // Voltage across 3 Ohms
      resistance in Case-3
20
                                // Voltage across 3 Ohms
V = V4 + V5 + V6;
      resistance
  disp(' Voltage across 3 Ohms resistance is = '+
     string(V)+' Volt');
23
24
25
26
                    // p 106
                                            4.3
27
```

Scilab code Exa 4.4 Current

```
1
2
                                    // Examle 4.4
3
4
                    // From the diagram (4.6a)
5
                    // Using Superpositon theorem
6
  V = 10;
                                     // Voltage source
                                     // When 10-V voltage
  I1=(V/(2+4+6));
      source is on { by ohm's law }
10
11
                                     // we have to find Is=
                                     // When Is-A Current
12
                                        source is on
13
                                     // will have { I2=
                                        -(2/3) \text{ Is } 
                                     // given that I1+I2=0
14
                                     // there for 5/6 -
15
                                        (2/3) \text{ Is} = 0
                                     // Source current
16 Is=(5*3)/(6*2);
17 disp(' The value of source current (Is) = '+string(
      Is) + ' Amp');
18
19
20
21
22
23
                     p 108
                                      4.4
```

Scilab code Exa 4.5 Voltage

```
1
                                  // Examle 4.5
2
3
4
                   // From the diagram (4.8)
                   // Using thevenin's equivalent
5
                      theorem
  V1 = 50;
                                         // Voltage source
      V1
8 V2=10;
                                         // Voltage source
      V2
9 I1=(V1-V2)/(10+10+20);
                                        // Current
      through the ckt ( when Current source is off )
10
                                        // Current source
11 i=1.5;
12 I2=i*(10/(10+(10+20)));
                                        // Current through
       the ckt (when Current source is active)
                                        // Addition of I1
13 I=I1+I2;
     & I2
14 Vth= I*20;
                                        // Thevenin's
      voltage at 20 Ohms R
15
16 Rth = (20*(10+10))/(20+(10+10));
                                       // Thevenin's
      resistance
17
18 Vl = Vth * (5/(5+10));
                                       // Voltage across
      R1
19 disp(' Voltage across olad resistor (Rl) = '+string(
      V1)+' Volt');
20
21
22
23
24
25
```

26 // p 110 4.5

Scilab code Exa 4.6 Voltage

```
1
                                   // Examle 4.6
2
3
4
                   // From the diagram (3.24a)
                   // Using thevenin's equivalent
5
                      theorem
6
                                        // Thevenin's
7 Vth=5;
      voltage ==> { by Circuit reduction }
8
9 Rth=3;
                                        // Thevenin's
      resistance ==> { by Circuit reduction }
10
  V1 = Vth * (3/(3+3));
                                       // Voltage across
11
      R1
12 disp(' Voltage across olad resistor (Rl) = '+string(
      V1)+' Volt');
13
14
15
16
17
18
19
                         // p 111
                                           4.6
```

Scilab code Exa 4.7 Current

1 // Examle 4.7

```
3
4
                   // From the diagram (4.11a)
5
6
                                // Using Nortan's
                                   equivalent theorem
8 R1 = 5;
                                // Resistance R1
                                // Resistance R2
9 R2=10;
                                // Voltage source V1
10 V1 = 10;
                                // Current I1
11 I1=V1/R1;
12
13 V2=5;
                                // Voltage source V2
                                // Current I2
14 I2=V2/R2;
                                // Nortan's current
15 IN = I1 + I2;
16
17 RN = (R1*R2)/(R1+R2);
                                // Nortan's resistance
18
                                // Load resistance
19 R1=5;
                               // Load current
20 Il=IN*(RN/(RN+R1));
21 disp('Load current (II) = '+string(II)+' Amp');
22
23
24
25
                                 4.7
           // p 113
```

Scilab code Exa 4.8 Power

Scilab code Exa 4.9 Power

```
1
2
                                   // Examle 4.9
3
4 n=8;
                                 // No.Of dry cells
5 E=1.5;
                                 // Emf of cell
                                 // open-circuit Voltage
6 Voc=n*E;
      of battery
7 r=0.75;
                                 // Internal resistance
                                 // O/p resistance
8 \text{ Ro=r*n};
9
                  // \Longrightarrow \{ P=Vht^2/4Rth \}, but here Vth
10
                     = Voc & Rth= Ro
11
12 Pav1=Voc^2/(4*Ro); // Available power
13 disp(' Available power is = '+string(Pavl)+ ' Watt')
14
15
16
17
18
19
                     // p 115
                                             4.9
```

Scilab code Exa 4.10 Voltage And Power

```
1
2
                  // Examle 4.10
3
4
                 // From Diagram 4.12
5
                                         // Power
6 P = 25;
                                          // Load
7 R1 = 8;
      resistance
                                         // Thevenin's
  Vth=P*4*R1;
      equivalent voltage
9
10
               // If Load is Short-ckt (RL=0)
                                         // Voltage
11 Vo = 0;
                                         // load current
12 IL=1;
                                         // O/p power
13 Po1=Vo*IL;
14
15
               // If Load is Open-ckt ( RL=infinity )
16
  IL1=0;
                                         // Load current
                                         // Voltage
17 Vo1=1;
18 Po2=Vo1*IL1;
                                         // O/p power
19
20 x = [0 2 4 6 8 16 32];
                                         // Diffrent value
       of RL
21 y=[0 16 22.22 24.49 25 22.22 16] // Value of Power
22
23 \text{ plot2d}(x,y);
                                         // To plot graph
24 xlabel('RL (in Ohms )--->');
                                         // For X-Label
25 ylabel('Po (in W ---->')
                                         // For Y-Label
26
27
28
                 // View p 115
29
                                               4.10
```

Scilab code Exa 4.11 Current And Resistance

```
1
                                   // Examle 4.11
2
3
4
                    // From the diagram (4.14)
5
  Req = 2 + \{(12*4)/(12+4)\} + 4;
                                           // Equivalent
      resistance (for 4.14a)
  v = 36;
                                           // Voltage
      source
                                           // Current
  i=v/Req;
      supply by the voltage source
  I=i*(12/(12+4));
                                           // Current in
      branch B \Longrightarrow \{ \text{ by current divider } \}
10 disp(' Current in branch B = '+string(I)+' Amp');
11
12 Req1=3+\{(12*6)/(12+6)\}+1;
                                           // Equivalent
      resistance (for 4.14b)
                                           // Current
  i1=v/Req1;
      supply by the voltage source
14 \quad I1=i1*(12/(12+6));
                                           // Current in
      branch A ==> { by current divider }
15 disp(' Current in branch A = '+string(I1)+' Amp');
16
                                          // Transfer
17
  Rtr=v/I;
      resistance
  disp(' Transfer resistance from Branch A to B = '+
      string(Rtr)+' Ohm');
19
20
21
22
                           // p 117
                                              4.11
```

Chapter 5

Electromagnetism

Scilab code Exa 5.1 Current

Scilab code Exa 5.2 Megnetic Field Strength

1

```
2
3
4
                           // Example 5.2
5
6 1 = 4;
                       // Layers of Solenoid
7 w = 350;
                       // turns Winding
                       // Length of Solenoid
8 s = 0.5;
9 n=(1*w)/s;
                       // No.Of turns
                       // Current in the Solenoid
10 I = 6;
                       // Permeability of free Space
11 mo = 4 * \%pi * 10^-7;
                       // Formula for Megnetic Field at
12 B=mo*n*I;
      the centre
  disp('(a) Megnitude of field near the Centre of
      Solenoid = '+string(B)+' Tesla');
                       // Formula for Megnetic Field at
14 B1=B/2;
      the end
15 disp('(b) Megnitude of field at the end of Solenoid
     = '+string(B1)+' Tesla');
16 disp('(c) Megnetic Field outside the solenoid is
      Negligible');
17
18
19
20
           //
                  p 188
                              5.2
```

Scilab code Exa 5.3 Force

```
9
10 F=(mo*i1*i2)/(2*%pi*r);
11 disp(' Force between 2 wires = '+string(F)+' N/m');
12
13
14
15
16
17 // p 192 5.3
```

Scilab code Exa 5.4 Force

```
1
2
3
4
                           // Example 5.4
                         // Permeability of free Space
6 mo=4*\%pi*10^-7;
                         // Current in 1st Wire
7 i1=4;
                         // Current in 2nd Wire
8 i2=6;
9 r=0.03;
                         // Distance between 2 wires
10
11 F = (mo*i1*i2)/(2*\%pi*r);
                     // Section of wire
12 \quad 1=0.15;
13 Fnet=F*1;
14 disp(' Force on 15 cm of wire B is = '+string(Fnet)+
      ' N');
15
16
17
18
19
20
             // p 192
                              5.4
```

Scilab code Exa 5.5 Voltage

```
1
2
3
                            // Example
4
                                        5.5
                    // Megnetic Field
6 B = 0.5;
                    // Length of conductor
71=0.2;
                    // velocity Conductor
8 v = 5;
                    // Angle of Motion in case 1
9 \quad Q1 = 0;
                    // Angle of Motion in case 2
10 \quad Q2 = 90;
11 \quad Q3 = 30;
                    // Angle of Motion in case 3
12
13 \text{ e1=B*l*v*sind(Q1)};
14 disp(' emf of conductor when move Parallel to
      Megnetic field = '+string(e1)+' Volt');
15 \text{ e2=B*1*v*sind(Q2)};
16 disp(' emf of conductor when move Perpendicular to
      Megnetic field = '+string(e2)+' Volt');
  e3=B*1*v*sind(Q3);
17
18 disp(' emf of conductor when move at an Angle 30 to
      Megnetic field = '+string(e3)+' Volt');
19
20
21
22
23
             // p 198
24
                               5.5
```

Scilab code Exa 5.6 Voltage

```
1
2
3
4
5
                           // Example
                                        5.6
6
7 B=38*10^-6;
                             // Megnetic Field
                             // Length of conductor
8 1=52;
                             // Angle of Motion in case 1
9 Q = 90;
10 v = (1100*1000)/3600;
                             // velocity in m/s
                             // Formula of emf
11 e=B*l*v*sind(Q);
12 disp('emf Generated between wing-tips = '+string(e)
      + ' Volt');
13
14
15
16
17
18
             // p 198
                              5.6
```

Scilab code Exa 5.7 Voltage

```
1
2
3
4
5
6
                           // Example 5.7
7
8
                      // We know that Area of Ring is (A
                         =Pi*R*R)
                      // i.e A=\%pi*R*R*(Q/2%pi)=0.5*R*
9
                         R*Q;
10
                      // Hance by using Faraday's Law
                      // e = dQ/dt = d(BA)/dt.
11
```

Scilab code Exa 5.8 Voltage Time And Force

```
1
2
                          // Example 5.8
3
4
5
6 B = 0.5;
                                 // Megnetic Field
                                 // Length of conductor
711=0.03;
                                 // velocity in m/s
8 v = 0.01;
                                 // Formula of emf
9 e1=B*11*v;
10 disp('(a) The induced emf is = '+string(e1)+' Volt')
                                 // Length
11 12=0.1;
12 t1=12/v;
13 disp(' Time for which the induced Voltage lasts is =
       '+string(t1)+' Second');
14
15 \text{ e}2=B*12*v;
                                 // Formula of emf
16 disp('(b) The induced emf is = '+string(e2)+' Volt'
      );
17 t2=11/v;
```

```
18 disp(' Time for which the induced Voltage lasts is =
      '+string(t2)+' Second');
19 disp('(c) Because of the gap, No Current can flow.
     there for no force Required to Pull the coil.');
20 R = 0.001;
                              // Formula of Force
21 F1 = (B*B*11*11*v)/R;
22 disp(' (d.1) Force Required to pull the loop 1 = '+
     string(F1)+' N');
23 F2=(B*B*12*12*v)/R;
                             // Formula of Force
24 disp('(d.2)) Force Required to pull the loop 1 = '+
     string(F2)+' N');
25
26
            //
27
                    p 199
                               5.8
```

Chapter 6

Magnetic Circuits

Scilab code Exa 6.1 Megnetic Field Strength And Flux

```
1
2
                           // Example 6.1
3
                        // No.Of turns
4 N = 200;
                        // Current of a Coil
5 I = 4;
                        // circumference of Coil
61 = .06;
7 H = (N * I) / 1;
                        // Formula of Megnetic Field
      Strength
8 disp('(a) The Megnetic Field Strength = '+string(H)+
      ' A/m');
9 mo=4*%pi*10^-7; // Permeability of free Space
10 mr = 1;
                        //Permeability of coil
                       // Formula of Flux Density
11 B=mr*mo*H;
12 disp('(b) The Flux Density is = '+string(B)+' Tesla'
      );
13 A=500*10^-6;
                        // Area of Coil
                        // Total Flux
14 Q = B * A;
15 \operatorname{disp}('(c)) The total Flux is = '+string(Q)+' Wb');
16
17
18
```

Scilab code Exa 6.2 Megnetomotive Force

```
1
2
                          // Example 6.2
3
4
5 Q = 0.015;
                      // Flux
6 A = 200 * 10^{-4};
                      // Area of Conductor
7 mo=4*\%pi*10^-7; // Permeability of free Space
                      // Megnetic Flux Density
8 B=Q/A;
                     // Megnetic Field Strength
9 H=B/mo;
10 1=2.5*10^-3;
                     // Air Gap
                      // Formula of Magnetomotive Force
11 F = H * 1;
      (mmf)
12
  disp(' Magnetomotive Force (mmf) is = '+string(round
13
      (F))+ 'At');
14
15
16
17
18
                   // p 212
                                  6.2
```

Scilab code Exa 6.3 Reluctance And Current

```
// Area of Coil
7 A = 500 * 10^{-6};
8 mo=4*%pi*10^-7; // Permeability of free Space
                      // Permeability of of Coil
9 \text{ mr} = 380;
                      // circumference of Coil
10 \quad 1 = 0.4;
                      // Formula of Reluctance
11 R=1/(mr*mo*A);
12 disp(' Reluctance of Ring is = '+string(R)+' A/Wb');
                       // Formula of Magnetomotive Force
13 F = Q * R;
      (mmf)
14 N = 200;
                       // No.Of turns
                      // Formula of Magnetising Current
15 I=F/N;
16 disp(' Magnetising Current is = '+string(I)+' At');
17
18
19
20
                   // p 212
                                   6.3
```

Scilab code Exa 6.4 Current

```
1
2
3
                          // Example 6.4
4
5 B = 0.9;
                       // Megnetic Flux Density
                       // No.Of turns
6 N = 4000;
7 mo=4*\%pi*10^-7;
                       // Permeability of free Space
8 \text{ Hc} = 820;
                       // Megnetic Field Strength for
     Core
9 1c=0.22;
                       // Length of Circuit
10 Ac=50*10^-6;
                       // Area of Circuit
                       // Magnetomotive Force (mmf) for
11 Fc=Hc*lc;
      Core
12 lg=0.001;
                       // Length of Air Gap
                       // Area of Megnetic Circuit
13 Ag=50*10^-6;
                       // Megnetic Field Strength for
14 Hg=B/mo;
      Air Gap
```

```
// Magnetomotive Force (mmf) for
15 Fg=Hg*lg;
      Air Gap
16 \quad F = Fc + Fg;
                        // Total Magnetomotive Force (mmf
     )
17 I=F/N;
                       // Formula of Magnetising Current
18 disp(' Magnetising Current is = '+string(I)+' Amp');
19
20
21
22
23
            // p 215
                         6.4
```

Chapter 7

Self And Mutual Inductances

Scilab code Exa 7.1 Voltage

```
1
2
3
                           // Example 7.1
                           // Induction of a Coil
5 L=4;
6 \text{ di} = 10 - 4;
                           // Decrease in Current
7 dt = 0.1;
                           // time Required to Decrease
      Current
                           // Formula of Self induction
8 e=L*(di/dt);
  disp(' emf induced in a Coil is = '+string(e)+' Volt
      <sup>'</sup>);
10
11
12
13
           // p 228
                           7.1
```

Scilab code Exa 7.2 Inductor And Voltage

```
1
2
3
                          // Example 7.2
4
5
6 N = 150;
                            // turns of Coil
                           // Flux of Coil
7 \quad Q = 0.01;
8 I = 10;
                            // Current in Coil
                           // Induction of a Coil
9 L=N*(Q/I);
                           // Decrease in Current
10 di=10-(-10);
11 dt=0.01;
                            // time Required to Decrease
      Current
12 e=L*(di/dt);
                           // Formula of Self induction
13 disp(' Induction of a Coil = '+string(L)+' H');
14 disp(' emf induced in a Coil is = '+string(e)+' Volt
      <sup>'</sup>);
15
16
17
                          7.2
18
           // p 228
```

Scilab code Exa 7.3 Inductor And Voltage

```
1
2
3
4
5
                          // Example 7.3
6
7 N = 100;
                          // turns of Coil
                          // Flux of Coil
8 dQ = 0.4 - (-0.4);
9 di = 10 - (-10);
                          // Decrease in Current
10 L=N*(dQ/di)*10^-3;
                                  // Induction of a Coil
11 disp('(a) induction of a Coil is = '+string(L)+' H'
     );
```

Scilab code Exa 7.4 Inductor And Energy

```
1
2
3
                          // Example
                                        7.4
                        // Radius of Solenoid
5 r=0.75*10^-2;
                        // area of Solenoid
6 A=%pi*r*r;
                        // No, of turns
7 N = 900;
                        // Length of Solenoid
8 1 = 0.3;
                       // Permeability of free Space
9 mo = 4 * \%pi * 10^-7;
                        // Formula of Induction of a Coil
10 L = (N*N*mo*A)/1;
11 I=5;
                        // Current of Coil
12 disp(' Induction of a Coil = '+string(L)+' H');
13 \quad w = 0.5 * L * I * I;
                        // Energy Store
14 disp(' Energy Stored is = '+string(w)+' J');
15
16
17
18
           // p 229
                        7.4
```

Scilab code Exa 7.5 Megnetic Field Strength And Voltage

```
1
2
                         // Example 7.5
3
                        // Radius of rod
4 r=1*10^-2;
5 A=%pi*r*r;
                        // area of rod
6 N = 3000;
                        // No. of turns
                        // Current in the rod
7 I = 0.5;
                        // Diameter of rod
8 1 = 0.2;
                        // Megnetic Flux Density
9 B=1.2;
                        // Megnetic Field Strength
10 H = (N * I) / 1;
11 m=B/H;
                        // Permeability of rod
12 disp('(a) Permeability of iron = '+string(m)+' Tm/A
      ');
13 mo=4*\%pi*10^-7;
                        // Permeability of free Space
                        // relative Permeability
14 mr=m/mo;
15 disp('(b) Relative Permeability of iron = '+string(
      round(mr)));
                        // Flux
16 Q=B*A;
                        // Chenge in Flux
17 dQ=Q*0.9;
                        // Formula of Induction of a
18 L = (N * Q) / I;
      Coil
19 disp('(c) Induction of a Coil = '+string(L)+' H');
20 \, di = 0.01;
21 e=N*(dQ/di)
                       // Formula of emf (using Self
      induction)
  disp('(d) Voltage in a Coil = '+string(e)+' Volt');
22
23
24
25
26
         //
               p 229
                          7.5
```

Scilab code Exa 7.6 Voltage

1 2

```
// Example
                                     7.6
3
4
                             // Current in A Coil
5 i=1;
                             // R of Coil
6 R=3;
7 L=0.1*10^-3;
                             // Inductance of Coil
8 di=10000;
                             // Decrease in Current
                             // time Required to Decrease
9 dt = 1;
       Current
10 V = (i*R) + L*(di/dt);
                            // Formula Of Potential
      Diffrence
11 disp(' Potential Diffrence Across the Terminal is =
      '+string(V)+' Volt');
12
13
14
15
        // p 230
                      7.6
16
```

Scilab code Exa 7.7 Inductor And Voltage

```
1
                          // Example 7.7
2
3
                           // Constant
4 k=1;
                           // turns of Solenoid
5 \text{ N1} = 2000;
6 N2 = 500;
                           // turns of Coil
                           // Permeability of free Space
7 mo=4*\%pi*10^-7;
                           // Area of aCoil
8 A = 30 * 10^{-4};
                           // Length of Solenoid
9 1 = 0.7;
                           // alphabet for simplicity
10 z=k*N1*N2*mo*A;
                           // Formula of Mutual
11 M=z/1;
      Inductance
12 disp('(a) Mutual induction of a Coil = '+string(M)+'
      H');
13 dit=260;
                           // Rate of Chenge of Current
```

Scilab code Exa 7.8 Inductor

```
1
2
                         // Example
                                     7.8
4 N2 = 1700;
                              // turns of Coil 1
5 Q2=0.8*10^-3;
                              // total Megnetic Flux
                              // Current in A Coil 2
6 12=6;
                              // Formula for (Self
7 L2=N2*(Q2/I2);
     Inductance of Coil 1)
  disp('(a) Self Induction of a Coil 2 = '+string(L2)+
     'H');
                              // turns of Coil 2
9 N1 = 600;
                              // Formula for (Self
10 L1=L2*(N1^2/N2^2);
     Inductance of Coil 2)
11 disp('(b) Self Induction of a Coil 1 = '+string(L1)+
     'H');
                              // Megnetic Flux in 1st
12 Q21=0.5*10^-3;
      Coil
13 k = Q21/Q2;
                              // Constant
14 disp('(c) Perposnality Constant (k) = '+string(k));
15 M=k*sqrt(L1*L2);
                              // Mutual Inductance of
     Coil 1 & 2
16 disp('(d) Mutual induction of a Coil = '+string(M)+'
      H');
```

```
17
18
19
20 // p 233 7.8
```

Scilab code Exa 7.9 Inductor

```
1
2
3
                          // Example
                                      7.9
4
5 N2 = 800;
                               // turns of Coil 2
6 \text{ N1} = 1200;
                               // turns of Coil 1
                               // Megnetic Flux in Coil 2
7 Q2=0.15*10^-3;
                               // Megnetic Flux in Coil 1
8 Q1=0.25*10^-3;
                               // Current in A Coil 2
9 12=5;
10 I1=5;
                               // Current in A Coil 1
11
                               // Formula for (Self
12 L1=N1*(Q1/I1);
      Inductance of Coil 1)
  disp('(a) Self Induction of a Coil 1 = '+string(L1)+
      'H');
14
15 L2=N2*(Q2/I2);
                               // Formula for (Self
      Inductance of Coil 2)
16 disp('(b)) Self Induction of a Coil 2 = '+string(L2)+
      'H');
17
                               // Coefficient of Coupling
18 \text{ k=0.6};
       Constant
19 Q12=k*Q1;
                               // Formula for (Megnetic
      Flux in 2nd Coil)
                               // Formula for (Mutual
20 M=N2*(Q2/I1);
      Inductance of Coils)
21 disp('(c) Mutual induction of a Coil = '+string(M)+'
```

Scilab code Exa 7.10 Inductor

```
1
2
                         // Example 7.10
3
4
5 \text{ La}=1.4;
                          // Inductance of 2 Similar
     Coupled Coil in Series
6 Lo=0.6;
                          // Inductance of 2 Similar
     Coupled Coil in Opposing
  M=(La-Lo)/4;
                          // Formula for (Mutual
      Inductance of Coils)
  disp('(a) Mutual induction of a Coil = '+string(M)+'
      mH');
9
                       Since La= L1+L2+2M but (M=0.2)
10
                       mH)
11
                    // there for L1= L2= 5 mh
12
                                 // Self Inductance of
13 L1=0.5*10^-3;
      Coil 1
14 L2=0.5*10^-3;
                                 // Self Inductance of
      Coil 2
15 k=(M*10^-3)/sqrt(L1*L2);
                                 // Mutual Inductance of
```

```
Coil 1 & 2

16 disp('(b) Coefficient of Coupling between the Coils
= '+string(k));

17

18

19

20

21  // p136 7.10
```

Scilab code Exa 7.11 Inductor

```
1
2
                          // Example
3
                                      7.11
4
5
                  // Net Induction When in Same
                     Direction i.e 1.8 = L1+L2+2M
                  // Net Induction When in Opposite i.e
6
                      0.8 = L1 + L2 - 2M
7
                  // by Solving 2 equation we get M=
                     0.25
8 \text{ k=0.6};
9 M = 0.25;
10 disp('(a) Mutual induction of a Coil = '+string(M)+'
      H');
11
                        // by Adding Eq 1 & 2 will get L1
                          +L2 = 1.3 \text{ H}
12
                        // we know that k = M/(L1*L2)
13 L1L2=M^2/k^2;
                        // using above Formula
                        // By using L1L2 & L1+L2
14
15 L12=1.3;
                        // L1+L2
16 L1_L2=sqrt(L12^2-4*L1L2);
                               // Value of L1–L2
17
18
                 // by using L1+L2 & L1-L2 will get
19
```

Scilab code Exa 7.12 Inductor

```
1
2
                        // Example 7.12
3
4
                               // Coefficient of
5 k=0.433;
     Coupling Constant
                               //Self Inductance of
6 L1=8;
     Coil 1
7 L2=6;
                               // Self Inductance of
     Coil 2
8 M=k*sqrt(L1*L2);
                               // Mutual Inductance of
     Coil 1 & 2
10 Lpa=(L1*L2-M^2)/(L1+L2-2*M); // Mutual Induction
      assists Self Induction
11 disp('(a) Mutual Induction assists Self Induction =
       '+string(Lpa)+' H');
12
13 Lpo=(L1*L2-M^2)/(L1+L2+2*M); // Mutual Induction
      Opposes Self Induction
14 disp('(b) Mutual Induction Opposes Self Induction =
       '+string(Lpo)+' H');
```

```
15
16
17
18
19
20 // p 239 7.12
```

Chapter 8

DC Transients

Scilab code Exa 8.1 Voltage

```
1
                     // Example 8.1
2
3
            // From diagram 8.3
4
5
             // Equivalent resistance i.e Req= 20+
                (20 | | 10)
8 Req= 20+\{(20*10)/(20+10)\};
                                        // Equivalent
      resistance
9 V = 24;
                                        // Supply voltage
10 I=V/Req;
                                        // Supply current
                                        // Resistance
11 R=20;
12 R1 = 20 + 10;
                                        // Total
      Resistance [ from Fig 8.3b ]
                                        // Current through
13 I1=I*{20/(20+10)};
       inductor
                                        // Open-ckt
14 io=I1;
      current
15 disp('Open-ckt current = '+string(io)+' Amp');
16
```

```
// Voltage across
17 Vr = -io *R;
      20 Ohms resistor
18 disp(' Voltage across 20 Ohms resistor = '+string(Vr
      )+' Volt');
19
             // Voltage across inductor is given by i.e
20
                e=L*\{io*(R/L)\}
             // that is [ e= io*R ]
21
22
                                        // Voltage across
23 \text{ e=io*R1};
      inductor
  disp(' Voltage across inductor = '+string(e)+' Volt'
25
26
27
28
29
                 // p 276
                                       8.1
```

Scilab code Exa 8.2 Current And Power

```
1
2
                     Example 8.2
3
4
                         // Resistance
5 R=0.8;
6 L=1.6;
                         // Inductor
7 t1=L/R;
                         // Time
8
               // Instantaneous current is ( it= Io*e(-
9
                  t/2)
10
11 Io=20/exp (0.5); // The current ( at t=-1 \& i=
      20A)
12 disp(' The value of current at t=0 i(0) = '+string(
```

```
Io)+' Amp');
13
14 i1=Io*exp (-0.5); // Current through inductor at
     t = 1S
15 i=7.36;
                        // i1=7.357 we have taken as (
     i = 7.36
                        // Power absorbed by Resistor
16 p1=i*i*R;
17 disp(' Power absorbed by inductor at t = 1S P(1) = '+
     string(-p1)+' Watt');
18
               // We know that w=0.5*L*it^2; w=100 J
19
20
21 it=sqrt(200/1.6);
                       // Flow of current
22 t = log (Io/it) *2;
                       // Time required to store
     Energy 100J
  disp(' Time required to store Energy 100J = '+string
     (t)+' Second');
24
25
26
27
                   //
                            p 277
                                              8.2
```

Scilab code Exa 8.3 Current And Time

```
1
2
3
                      Example 8.3
4
5 R = 10;
                                  // Resistance
                                  // Inductor
6 L=14;
                                  // Time
7 t1=L/R;
                                  // Voltage
9 V = 140;
                                  // Steady State current
10 Io=V/R;
11 t2=0.4;
                                  // Time
```

```
12 i=Io*(1-exp(-t2/t1)); // Value of current at t
      = 0.4
13 disp(' Value of current at (t=0.4) = '+string(i)+'
      Amp');
14
                  // \Longrightarrow We have formula it=Io*exp (-t/
15
                                  // Current of 8 Amp
16 \text{ it=8};
17 t = -\log(it/14) * t1;
                                  // Time taken to rech at
       i=8 A
18 disp('Time taken to rech at i=8 A = '+string(t)+'
      Second');
19
20
21
22
                     // p 279
23
                                          8.3
```

Scilab code Exa 8.4 Current

```
1
                      Example 8.4
2
3
4
             // From the diagram 4.5
5
                                            // Source
  V1 = 20;
      voltage
                                            // Series
7 R=80;
      resistance
  io1=V1/R;
                                            // Steay state
       current
  disp(' Steay state current (at t=0- ) = '+string(io1
      )+' Amp');
10
            // Because current in inducor can't charge
11
```

instantaneously

```
12
13 disp('Steay state current (at t=0+) = '+string(io1
      ) + ' Amp');
14
                                             // Source
15
  V2 = 40;
      voltage
                                             // Steay state
16 \text{ Io2} = (V1 + V2) / R;
       current at t= infinity
  disp(' Steay state current (at t= infinity ) = '+
      string(Io2)+' Amp');
18
19 L=40*10^-3;
                                             // Inductor
20 t1=L/R;
                                              // Time
      COnstant
21 t=0.001;
                                             // Time of 1
      ms
22
             // By the formula \Longrightarrow i(1 ms)= io1*(io1-
                Io2)*(1-e-(t/t1))
23
  Ims=io1+(Io2-io1)*(1-exp (-t/t1)); // Steay state
       current (at t=1ms)
  disp(' Steay state current (at t= 1ms) = '+string(
25
      Ims) + ' Amp');
26
27
28
29
                    p 279
                                          8.4
```

Scilab code Exa 8.5 Current

```
5
                                // Source Voltage
6 V = 20;
                                // Current iL(0-)
7 Io=V/(25+5);
8 disp('Current iL(0-) is = '+string(Io)+' Amp');
9
10 R1=30;
                                // Resistance of 30 Ohms
                                // Current i2(0-)
11 i2=V/R1;
12 disp('Current i2(0-) is = '+string(i2)+' Amp');
13
           // Because current in inducor can't charge
14
              instantaneously.
15 disp('Current iL(0+) is = '+string(i2)+' Amp');
16
17 R12=60;
                                  // Resistance of 60
     Ohms
  R3 = 30;
                                  // Resistance of 30
     Ohms
19 R45=30;
                                  // Resistance of 30
     Ohms
20 Req=R45+[(R12*R3)/(R12+R3)]; // Equivalent
      Resistance
                                  // Inductor
21 L=2;
22 t=L/Req;
                                  // Time constant
                                  // Current of 20 mA
23 \text{ t1=0.02};
24 I1=0.667*\exp(-t1/t);
                                     // Inductor current
     (iL(t) = Io*e-t1/t)
  disp('Inductor current iL(t) is = '+string(I1)+' Amp
      ');
26
            // => [ By using Current divider ]
27
  I2=-I1*(R12/(R12+R3)); // Inductor current at(
      t=20 \text{ mA}
  disp('Inductor current at(t=20 mA) is = '+string(I2
     ) + ' Amp');
30
31
32
                                       8.5
                  // p 280
```

Scilab code Exa 8.6 Voltage And Current

```
1
2
3
4
                                   // Examle 8.6
6 Vo=3;
                             // Supply voltage
                             // Voltage at V(o+) {
7 \text{ vo} = 0;
      Because instantly capacitor can't charge }
8 disp(' Voltage across capacitor at V(o+) = '+string(
      vo)+' Volt');
10 R = 1500;
                             // Resistance
                             // Current of capacitor
11 Io=Vo/R;
                             // Current of capacitor at i
12 io=Io;
      (o+)
13 disp(' Current across capacitor at i(o+) = '+string(
      io)+' Amp');
14
                             // Capacitor
15 C=5*10^-6;
                             // Time constant
16 t=R*C;
17 disp(' Time constant = '+string(t)+' Second');
18
19 t1=15*10^-3;
                             // Time instant
                                                      ==> {
       v=Vo*(1-e-(t1/t))
                             // Voltage at Time t1
20 \quad v = Vo * (1 - 0.135);
       e - (t1/t) = 0.135
21 disp(') Voltage across capacitor at (t=15 \text{ mS}) = '+
      string(v)+' Volt');
22
23 i = Io *0.135;
                            // Current at Time t1
      \{ i = Io *e - (t1/t) \}
24 disp(' Current of capacitor at ( t=15 \text{ mS} ) = '+
```

Scilab code Exa 8.7 Voltage And Current

```
1
2
3
                                   // Examle 8.7
                             // Supply voltage
5 Vo = 3;
                             // Voltage at V(o+)
6 \text{ vo=Vo};
                             // Voltage at V(o-)
7 vio=Vo;
8 disp(' Voltage across capacitor at V(o+) = '+string(
      vo)+' Volt');
9
10 R = 100;
                             // Resistance
                             // Current of capacitor
11 Io=Vo/R;
12 io=-Io;
                             // Current of capacitor at i
     (o+)
13 disp(' Current across capacitor at i(o+) = '+string(
      io)+' Amp');
14
15 C=5*10^-6;
                             // Capacitor
                             // Time constant
16 t=R*C;
17 disp(' Time constant = '+string(t)+' Second');
18
19 t1=1.2*10^-3;
                             // Time instant
       v = Vo * e - (t1/t) }
                             // Voltage at Time t1
20 \quad v = Vo * 0.0907;
```

```
e - (t1/t) = 0.0907
21 disp(' Voltage across capacitor at ( t=1.2 \text{ mS} ) = '+
      string(v)+' Volt');
22
                                // Current at Time t1 \Longrightarrow {
23 i = -Io * 0.0907;
       i = -Io *e - (t1/t)
24 disp(' Current of capacitor at ( t=1.2 \text{ mS} ) = '+
       string(i)+' Amp');
25
26
27
28
29
30
                                                  8.7
31
                               // p 285
```

Scilab code Exa 8.8 Current

```
1
2
                       Example 8.8
3
             // From the diagram 8.15
4
                                       // Resistance of 1
6 R1 = 1000;
      kilo-Ohms
7 R2 = 10000;
                                       // Resistance of 10
       kilo –Ohms
8 R3 = 1000;
                                       // Resistance of 1
      kilo-Ohms
9 Rth=[(R1+R2)*R3]/(R1+R2+R3);
                                       // Equivalent
      resistance
                                       // capacitor
10 C=10*10^-6;
                                       // Time constant
11 t=Rth*C;
12 V = 30;
                                       // Source voltage
                                       // Voltage across
13 Vc = V * (R1/(R1+R2));
```

```
the capacitor
14
15
               // Apply KVL to outer loop
               // we get 30-Io*R1-15=0
16
  Io=15/R1;
17
                                       // Current in the
      outer loop
   Iin=V/(R1+R2+R3);
                                       // Open=ckt current
18
19
20
               // We know that \Longrightarrow it=Iin+[Io-Iin]*e(-
                  t1/t)
                                       // Assume t1=1 mS
21 t1=0.001;
                                       // Current i(t)
22 it=Iin+[Io-Iin]*\exp(-t1/t);
23 disp('Current i(t) is = '+string(it)+' Amp oR i(
      t = 2.5 + (15 - 2.5) * e(-t/9.17 ms) mA';
24
25
26
27
28
                          // p 287
                                                 8.8
```

Chapter 9

Alternating Voltage And Current

Scilab code Exa 9.1 Voltage And Angle

```
1
                         // Example
2
                                    9.1
3
4
                        // Given v= 20 sinwt
5 Q = asind(10/20);
                        // Angle
6 disp('(a) The Angle at which (v=10v) is = '+string(Q
     )+' Digree');
7 disp('(b.1) The maximum value is (Vm)= 20 Volt');
  disp('(b.2) This Occurs twice in acycle i.e at (wt =
       90 or 270)');
9
10
11
12
             // p 305
                             9.1
```

Scilab code Exa 9.2 Voltage Time And Frequency

```
1
2
                          // Example 9.2
3
4
                              // Given v=0.04 \sin(2000 t)
                                 +60)V
                              // Angular Velocity
6 \quad w = 2000;
7 disp(' The Angular Velocity is = '+string(w)+' rad/s
      ');
8
                              // frequency
9 f=w/(2*%pi);
10 disp(' Frequency is = '+string(f)+' Hz');
11
12 v=0.04*sind(2000*160*10^-6*(180/%pi)+60);
                                                      //
      Voltage at (t=160 us)
13 disp(' Voltage at (t=160 us) = '+string(v*1000)+' mV
      <sup>'</sup>);
14
                              // Time Period
15 T=1/f;
                              // Time represent y 60
16 t = (60/360) *T;
      phase Angle
17 disp(' Time represent y 60 phase Angle = '+string(t
      *1000) + 'mS');
18
19
20
21
22
23
               // p 305
                            9.2
24
```

Scilab code Exa 9.3 Voltage

1 2

```
3
                           // Example
                                         9.3
4
                          // Maximum value of Voltage
5 \text{ vm} = 20/2;
                          // Timwe Period
6 T=2*5*10^-3;
                          // Frequency
7 f = 1/T;
8 w = 2 * \%pi * f;
                          // Angular Frequency
9 disp('Angular Frequency is = '+string(w)+' rad/s');
10 disp('instantaneous value of Voltage is v= 10 sin
      (628.3 t+Q)');
11
               // at (t=0 v= -3.6 V) i.e v=10sinQ
12
13
                     // Angle at (t=0) (\Longrightarrow) in Book
14 Q = asind(-0.36);
      Q=-158.9 given Which is wrong)
15 v= 10*sind(628.3*0.012*(180/\%pi)-Q);
  disp('the Voltage at (t=12 \text{ mS}) = \text{'+string}(-v) + \text{'Volt}
      ');
17
18
19
20
21
          // p306
                      9.3
```

Scilab code Exa 9.4 Current And Time

```
10
11 i = 12*sind(377*(1/360)*(180/\%pi)); // Formula of
      Current
12 disp(' The Value of Current After (t=1/360 \text{ s}) = '+
      string(i)+' Amp');
13
                                            // Current
14 i1=9.6;
15 t=\{asind(i1/12)*\%pi\}/(377*180);
                                            // formula of
      Time Derived from Current Eq.
  disp(' Time Required to Rech at (t=9.6) = '+string(t)
      *1000) + ' mS');
17
18
19
20
           // p306
21
                          9.4
```

Scilab code Exa 9.5 Time

```
1
2
                          // Example
                                        9.5
3
                         // Given I1=4 \sin(100*pi*t+30)
4
                         // Given I2= 6 sin (100*pi*t)
5
6 \text{ f=50};
                                // Frequency
7 w=2*\%pi*f;
                                // Angular Frequency
8 T = 1/f;
                                // Time Period
9 t=20*10^{-3}*(30/360);
                                   Time for 30 Digree
      Revolution
10 disp('Time for 30 Digree Revolution = '+string(t
      *1000) + 'mS');
11 disp('The Phasor i1 Leads the Phasor i2 by 30 Digree
        or (t=1.67 \text{ mS})');
12
13
```

```
14
15
16 // p 312 9.5
```

Scilab code Exa 9.6 Power

```
1
2
3
                         // Example
                                    9.6
4
                     // Resistance
5 R=10;
                     // Current
6 i=4+\%i*3;
7 I=sqrt(4^2+3^2); // Absolute Value of Current
                     // Real Component of Current
8 \text{ Ir}=4;
                     // Imaginary Component of Current
9 Ii = 3;
                    // Phase Angle
10 Q = atand(3/4);
11 Pr=Ir^2*R; // Power Due to Real Component
12 disp('Power Due to Real Component is = '+string(Pr)+
      ' Watt');
13
14 Pi=Ii^2*R;
                    // Power Due to Imaginary
     Component
15 disp('Power Due to Imaginary Component is = '+string
     (Pi)+' Watt');
16
17 P=I^2*R;
                     // total PowerConsumed
18 disp('total Power Consumed is = '+string(P)+' Watt')
19
20
21
22
              // p 316
                              9.6
```

Scilab code Exa 9.7 Current

```
1
2
3
                         // Example 9.7
                                    // Sinusoidal Current
  I1=10+\%i*0;
       I 1
  I2=10+(\%i*10*sqrt(3));
                                        Sinusoidal Current
                                    // Resultant Current
7 I = I1 + I2;
8 disp(' resultant Current is = '+string(I)+' Amp OR
      ('+string(abs(I))+' <'+string(atand(imag(I),real
      (I)))+' Amp )');
9
10
11
12
13
14
           // p 318 9.7
```

Scilab code Exa 9.8 Current

```
1
2
                         // Example 9.8
3
4
 I1=10+\%i*0;
                             // Current i1=14.14 sin (wt
     ) A
 I2=10+\%i*17.32;
                             // Current i2=28.28 \sin (wt)
     +60) A
                             // Summation of 2 Current
7 I = I1 + I2;
8 disp('Summation of 2 Current is = '+string(I)+' Amp
           37.42 < 40.9 ');
9
```

```
// I= 20+i17.32 i.e I= 37.42<40.9
10
11
12 disp(' Expration for Sum of 2 Current i= 37.42 Sin(
      wt + 40.9)A';
  Im = 37.42;
                             // Absolute Value of I
13
14 i=Im/sqrt(2);
                             // RMS value I
  disp(' Rms Value of sum is = '+string(i)+' Amp');
16
17
18
19
20
              // p 318
                            9.8
```

Scilab code Exa 9.9 Current

```
1
2
                         // Example
                                      9.9
                                  // Rectangular form RMS
4 I1=3.535+\%i*0;
       of I1 i.e I1= 5/1.14 < 0
  I2=3.061+\%i*1.768;
                                  // Rectangular form RMS
       of I2 i.e I2= 5/1.14 < 30
6 I3=-1.768-\%i*3.061;
                                  // Rectangular form RMS
       of I3 i.e I3= 5/1.14 < -120
                                  // Resultant of Current
7 I = I1 + I2 + I3;
8 disp(' Resultant Rms Value of Cuttent = '+string(I)+
       Amp OR ('+string(abs(I))+' <'+string(atand(
      imag(I),real(I)))+' Amp )');
9
10
11
12
13
14
           // p 318
                        9.9
```

Scilab code Exa 9.10 Current

```
1
2
                          // Example
3
                                       9.10
4
5
                            // Given i = 10 + 10 \sin Q A
6
7
                            // Since it is Unsymetrical
                               waveform
                            // Average can be found over
8
                               1 cycle
9
                            // i.e Average Value of
                               Current is i= 10 Amp
10 I1=10;
                            // Dc Current 10 Amp
11 I2=10/1.414;
                            // Sinusoidal Current 10/root
      (2)
12 Irms=sqrt(I1^2+I2^2); // Rms Value of resultant
      Current
13 disp(' Average value of Resultant Current = '+string
      (I1) + 'Amp');
14 disp(' Rms value of Resultant Current = '+string(
      Irms) + ' Amp');
15
16
17
18
19
20
                            9.10
             // p 319
```

Scilab code Exa 9.11 Voltage

```
1
2
                           // Example
3
                                        9.11
4
5 T=8*10^-3;
                                  // Time period
6 A01=10*10^{-3};
                                  // Area between t=0-1
                                  // Area between t=1-3
7 A13 = -5 * 2 * 10^{-3};
                                  // Area between t=3-4
8 \quad A34 = 20 * 10^{-3};
                                  // Area between t= 4-5
9 A45=0*10^{-3};
                                  // Area between t = 5-8
10 A58=5*3*10^-3;
                                  // Total Area of waveform
11 A = A01 + A13 + A34 + A45 + A58;
12 V = A/T;
                                  // Average value of
      waveform
13 disp(' Average value of waveform = '+string(V)+'
      Volt');
14
15
16
17
18
19
20
             // p 230
                            9.11
```

Scilab code Exa 9.12 Voltage

```
1
2
3
                           // Example
                                       9.12
4
                                    // Time period
5 T=20*10^{-3};
6 A0_10=40*100*10^-3;
                                    // Area between t = 0 - 10
7 A10_20=100*10*10^-3;
                                    // Area between t=
     10 - 20
8 \quad A = A0_10 + A10_20;
                                    // Total Area of
     waveform
```

```
9 V = A / T;
                                   // Average value of
      waveform
10 disp(' Average value of waveform = '+string(V)+'
      Volt');
11
                                  // Rms value
12 \quad v = sqrt(V);
13 disp(' Rms value of waveform = '+string(v)+' Volt');
14
15
16
17
18
19
             // p 230
                           9.12
```

Scilab code Exa 9.13 Current And Power Factor

```
1
2
                         // Example 9.13
3
4 T=3;
                         // Time period
5 \quad A1 = 10;
                         //Current under Area between t=
      0 - 2
6 \quad A2 = 0;
                         //Current under Area between t=
      2 - 3
8 Irms=sqrt((A1*A1*2+A2*A2)/3);
                                          // Rms value
9 disp(' Rms value of waveform = '+string(Irms)+' Amp'
      );
10
11 Iav = (A1*2+A2*1)/3;
                                         // Average Value
12 disp(' Average value of waveform = '+string(Iav)+'
     Amp');
13
14 F=Irms/Iav;
                                         // Form Factor
15 disp(' Form Factor of waveform = '+string(F));
```

```
16
17
18
19 // p 321 9.13
```

Scilab code Exa 9.14 Voltage And Power Factor

```
1
2
3
                         // Example
                                      9.14
4
6 T=5*10^-3;
                             // Time period
7 \text{ Vm} = 10;
                             // Peak Value
9 Vav=Vm/2;
                             // Average Value
10 disp(' Average value of waveform = '+string(Vav)+'
      Volt');
11
12 Vrms=Vm/sqrt(3);
                             // Rms value of Saw-tooth
     waveform
13 disp('Rms value of waveform = '+string(Vrms)+' Volt
      ');
14
15 F=Vrms/Vav;
                             // Form Factor
16 disp(' Form Factor of waveform = '+string(F));
17
18 Pf=Vm/Vrms;
                             // Peak Factor
19 disp(' Peak Factor of waveform = '+string(Pf));
20
21
22
23
24
          // p 321
                        9.14
```

Scilab code Exa 9.15 Power And Power Factor

```
1
2
                           // Example 9.15
3
4
                          // Given v= 55 Sin(wt)V
                                                     & i=
                             6.1 \operatorname{Sin} (\operatorname{wt-pi} / 5) A
5 Q=%pi/5;
                                    // Phase Angle
                                    // Peak Value of
6 \text{ Vm} = 55;
      Voltage
  Im = 6.1;
                                    // Peak Value of
      Current
                                    // Rms value of Voltage
8 V=Vm/sqrt(2);
9 I=Im/sqrt(2);
                                    // Rms value of Current
10
11 Pav=V*I*cos(Q);
                                    // Average Value of
      power
12 disp(' Average value of Power = '+string(Pav)+' Watt
      <sup>'</sup>);
13
                                    // Apparent Value of
14 Pa=V*I;
      power
15 disp('Apparent value of Power = '+string(Pa)+' VA')
16
17 P=Pav-(V*I*cos(0.6-Q)); // Instant Power at (wt
      = 0.3)
  disp(' Instant Power at (wt= 0.3) = '+string(P)+' VA
      ');
19
                                    // Power Factor
20 pf = cos(Q);
21 disp(' Power Factor = '+string(pf*100)+' \%');
22
23
```

25 // p 323 9.15

Chapter 10

AC Circuits

Scilab code Exa 10.1 Current Power And Power Factor

```
1
2
                 // Example 10.1
3
           // From Diagram 10.2a
4
                               // Peak value of Voltage
6 Vm = 141 + \%i *0;
7 V = Vm/1.414;
                               // Rms value of Voltage
8 v = 100 + \%i * 0;
                               // Here will have V=99.70,
      but we took v=100
9 R=3;
                               // Resistance
                                        // Reactance
10 wL = 0.0127*100*\%pi;
11 Z=R+\%i*wL;
                               // Impedence
                               // Current
12 I=v/Z;
13 disp(' The value of current = '+string(I)+' Amp
          '+string(abs(I))+'<'+string(atand(imag(I),real
      (I)))+' Amp');
14
15
           // Study state current is I=20A \& Q=53.1
              Lagging.
16 disp(' Expression for instantaneous current ==> [
      28.28 \sin (100\% \text{pi}*t - 53.1) \text{A} ');
```

Scilab code Exa 10.2 Current Power And Power Factor

```
1
2
                        // Example 10.2
3
4
                          // Rated Power
5 P = 750;
                         // Supply Voltage
6 V = 230;
                         // Frequency
7 f = 50;
                          // Rated Voltage
8 \ Vr = 100
                         // Rated Current
9 I=P/Vr;
                         // Voltage across Capacitor
10 Vc=sqrt(V^2-Vr^2);
                         // Capacitve Reactance
11 Xc = Vc/I;
                         // Capacitance
12 C=1/(2*\%pi*f*Xc);
13 disp(' Required Capacitance = '+string(C)+' F');
14
15 Q=acosd(Vr/V); // Phase Angle
16 disp(' Phase Angle = '+string(Q)+' Didree');
17
18 pf=cosd(Q); // Power Fector
19 disp(' Power Factor = '+string(pf)+' Leading');
20
```

Scilab code Exa 10.3 Resistance Voltage And Power

```
1
2
                          // Example 10.3
3
4
5 R = 120;
                                 // Resistance
                                 // Capacitve Reactance
6 \text{ Xc} = 250;
7 \quad Q = -64.4;
                                 // Phase Angle
                                 // Current
8 I=0.9+\%i*0;
                                 // Impedance
9 Z=R-\%i*Xc;
10 disp(' The Impedance is = '+string(Z)+' or ('+
      string(abs(Z))+' <'+string(atand(imag(Z),real(Z))</pre>
      ) + ' Amp ) ');
11
12 pf = cosd(Q);
                                // Power Fector
13 disp(' Power Factor = '+string(pf)+' Leading');
14
                                // Supply Voltage
15 V = I * Z;
16 disp('Supply Voltage = '+string(V)+' or ('+string
      (abs(V))+' <'+string(atand(imag(V),real(V)))+'
     Amp ) ');
17 \quad v = 249.6;
                                // Peak value of Voltage
18
```

```
// Voltage at Resistor
19 Vr = I * R;
20 disp(' Voltage across Resistor = '+string(Vr)+' Volt
      ');
21
22 Vc = I * Xc;
                                // Voltage across
      Capacitor
23 disp(' Voltage across Capacitor = '+string(Vc)+' or
        ('+string(abs(Vc))+' < -90 \text{ Amp})');
24 \text{ Pa=v*I};
                               // Apparent power
25 disp(' Apparent value of Power = '+string(Pa)+' VA')
26
                               // Active Power
27 \text{ Pac=v*I*cosd(Q)};
28 disp(' Active Power = '+string(Pac)+' Watt');
29
30 \text{ Pr=v*I*sind(Q)};
                               // Reactive Power
31 disp(' Reactive Power = '+string(-Pr)+' VAR');
32
33
34
           // p 345
                            10.3
35
```

Scilab code Exa 10.4 Resistance Power And Power Factor

```
1
2
3
                          // Example 10.4
4
                           // Given V= 160+i120 & I= -4+
5
                              i 10
                           // Sinusoidal Voltage i.e
6 Vi = 160 + \%i * 120;
     200 < 36.87
7 Ii= -4+\%i*10;
                           // Sinusoidal Current i.e
     10.77 < 111.8
8 \quad Z=Vi/Ii;
                              // Impedance
```

```
// Phase Angle
9 Q = -74.93;
                        // peak Value of Voltage
10 V = 200;
11 I = 10.77;
                        // peak Value of Current
12 disp('Impedance = '+string(Z)+' Ohms');
13
14 pf = cosd(Q);
                       // Power Fector
15 disp(' Power Factor = '+string(pf)+' Leading');
16 disp(' the Circuit is Capacitive , Becuase Imaginary
      part of impedance is negative .');
17
18 Pa=V*I*cosd(Q); // Active Power
19 disp(' Active Power = '+string(Pa)+' Watt');
20
21 Pr=V*I*sind(Q); // Reactive Power
22 disp(' Reactive Power = '+string(-Pr)+' VAR');
23
24
25
26
27
28
          //
              p 348 10.4
```

Scilab code Exa 10.5 Reluctance And Inductor

```
1
2
                        // Example 10.5
3
4
                      /// Given Z=R+iXl; i.e Z= 10+i10
5
6 R = 10;
                             // Resistance
7 X1 = 10;
                             // Inductance
                            // Frequency
8 f = 50;
                            // Value of Inductor
9 L=X1/(2*%pi*f);
10 disp(' The Value of Resistor is = '+string(R)+' Ohm'
     );
```

Scilab code Exa 10.6 Resistance And Capacitor

```
1
2
                          // Example 10.6
3
                    // Given Z=R+iX; i.e Z= 10-i10
4
5
6 R1 = 10;
                              // Resistance
                              // Inductance
7 X1 = 10;
                              // Frequency
8 f = 50;
                              // Impedance
9 \quad Z = 10 - \%i * 10;
                              // Admitance
10 Y = 1/Z;
11 disp(' The Admitance of Circuit is = '+string(Y)+' S
      ');
12 G=0.05;
                              // here G=1/R
                              // here B= 1/C
13 B=0.05;
14 R=1/G;
                              // Resistance
15 disp(' The Resistance of Circuit is = '+string(R)+'
     Ohm');
16
17 C=B/(2*\%pi*f);
                             // Capacitance
18 disp(' The Capacitance of Circuit is = '+string(C)+'
       F');
19
20
21
22
         // p 348
                          10.6
```

Scilab code Exa 10.7 Resistance Power And Power Factor

```
1
2
                          // Example 10.7
3
4
5 L=0.15;
                                    // Inductance
                                    // Angular Frequency
6 \text{ w=} 100 * \% \text{pi};
7 C=100*10^-6;
                                    // Capacitance
8 R = 12;
                                    // Resistance
                                    // Voltage
9 V = 100;
10 Xl = w * L;
                                    // Indctive reactance
11 Xc=1/(w*C);
                                    // capacitive
      reactance
12 Z=R+\%i*(Xl-Xc);
                                    // Impedance
13 disp(' The Value of Impedance is = '+string(Z)+'
        ('+string(abs(Z))+' <'+string(atand(imag(Z),
      real(Z)))+' Amp )');
14 r = 12;
                                    // peak Value of
      impedance
15
                                    // Current
16 \quad I = V/Z;
17 disp(' The Value of Current is = '+string(I)+' or
      ('+string(abs(I))+' <'+string(atand(imag(I),real(
      I)))+' Amp )');
18 i=5.15;
                                    // peak Value of
      Current
19
20 Q=atand(15.3/12);
                                    // Phase Angle
21 disp(' Phase Angle = '+string(-Q)+' Didree');
22
23 Vr=i*r;
                                    // Voltage at Vr
24 disp(' Voltage at Vr = '+string(Vr)+' Volt');
25
```

```
// Voltage at Vc
26 \text{ Vc=i*Xc};
27 disp(' Voltage at Vc = '+string(Vc)+' Volt');
28
                                      //Voltage at Vl
29 V1 = i * X1;
30 \operatorname{disp}(') Voltage at Vl = '+\operatorname{string}(Vl)+' Volt');
31
32 pf=cosd(Q);
                                      // Power Fector
33 disp(' Power Factor = '+string(pf)+' Lagging');
34
35 \text{ Pa=V*i};
                                      // Apparent power
36 disp('Apparent value of Power = '+string(Pa)+' VA')
37
                                     // Average Value of
38 \text{ Pav=V*i*pf};
      power
39 disp(' Average value of Power = '+string(Pav)+' Watt
      ');
40
41
42
43
            // p 349 10.7
44
```

Chapter 11

Resonance in AC Circuits

Scilab code Exa 11.1 Frequence And Voltage

```
1
2
               // Example 11.1
3
4 L=0.15;
                               // Inductor
                              // Capacitor
5 C=100*10^-6;
6 fo=1/{2*%pi*sqrt(L*C)}; // Resonance frequency
7 disp(' Resonance frequency (fo) = '+string(fo)+' Hz'
     );
8
9 R = 12;
                               // Circuit resistance
10 V = 100;
                               // Source voltage
11 Io=V/R;
                               // Maximum current by
12 disp(' Maximum current by source = '+string(Io)+'
     Amp');
13
                                  // for easy
14 r1=R^2/(2*L^2);
      calculation
                                  // for easy
15 r2=(1/(L*C));
      calculation
16 fc=(1/6.28)*sqrt(r2-r1); // Frequency for
```

```
maximum capacitor voltage
17 disp(' Frequency for maximum capacitor voltage = '+
      string(fc)+' Hz');
18
19
                                    // for easy
20 r3=(R^2*C^2)/2;
      calculation
                                   // Frequency for
21 fl=1/{2*\%pi*sqrt((L*C)-r3)};
      maximum capacitor voltage
22 disp(' Frequency for maximum capacitor voltage = '+
      string(fo)+' Hz');
23
24 X1 = 2 * \%pi * fo * L;
                                     // Inductive
      reactance
25 disp('Inductive reactance = '+string(X1)+' Ohms');
26
                                   // Inductive reactance
27 \text{ Xc}=1/(2*\%pi*fo*C);
28 disp(' Capacitive reactance = '+string(Xc)+' Ohms');
29
30 \quad Q=X1/R;
                                    // Quality factor
31 disp(' Quality factor = '+string(Q));
32
                                   // Voltage drop across
33 VLC = Q * V;
       the elements
34 disp(' Voltage drop across the elements = '+string(
      VLC) + ' Volt');
35
36
37
                       // p 378
38
                                            11.1
```

Scilab code Exa 11.2 Capacitor Voltage And Q FActor

```
1 // Example 11.2
```

```
3
4 L=0.5;
                                 // Inductance
5 V = 100;
                                 // Supply Voltage
6 R = 4;
                                 // Resistance
7 f = 50;
                                 // Frequency
8 C=1/(4*\%pi^2*f^2*L);
                                 // Capacitance
9 disp('Capacitance is = '+string(C*10^6)+' uF');
10
11 I=V/R;
                                 // Current at Resonance
      Frequency
12 disp(' Current at Resonance Frequency = '+string(I)+
      ' Amp');
13
14 \text{ wo}=2*\%\text{pi}*f;
                                 // Angular Frequency
                                 // Indctive Reactance
15 \text{ X1} = 157;
16 Vc = I * X1;
                                 // Voltage across
      Capacitor
17 disp(' Voltage across Capacitor = '+string(Vc)+'
      Volt');
18
19 Vl=Vc;
                                 // Voltage across
      Inductance
20 disp(' Voltage across Inductance = '+string(V1)+'
      Volt');
21
22
23 Q = (wo*L)/R;
                                 // Q-Factor
24 disp('Q-Factor is = '+string(Q));
25
26
27
28
29
                                11.2
30
                    p 378
```

Scilab code Exa 11.3 Inductor Current And Voltage

```
1
                         // Example
2
                                     11.3
3
5 V = 0.85;
                                  // Supply Voltage
6 f=175*10^3;
                                  // Frequency
7 C=320*10^-12;
                                  // Capacitance
9 L=1/(4*3.14^2*f^2*C);
                                 // Inductance
10 disp('Inductance is = '+string(L*10^3)+' mH');
11
12 X1 = 2 * 3.14 * f * L;
                                  // Indctive reactance
                                 // Q-Factor
13 Q = 50;
                                  // Resistance
14 R=X1/Q;
15
16 I=V/R;
                                 // circuit current
17 disp(' Circuit current is = '+string(I*1000)+' mA');
18
19 Vc = Q * V;
                                  // Voltage across
      Capacitor
  disp(' Voltage across Capacitor = '+string(Vc)+'
      Volt');
21
22
23
24
25
          //
                p379
                           11.3
```

Scilab code Exa 11.4 Capacitor Current And Enegy

```
4 L=1*10^-3;
                                // Inductance
                                // Supply Voltage
5 V = 120;
                                // Resistance
6 R=2;
                                // Frequency
7 f = 5 * 10^3;
8 C=1/(4*\%pi^2*f^2*L);
                                // Capacitance
9 disp('Capacitance is = '+string(C*10^9)+' nF');
10
                                // Current at Resonance
11 I=V/R;
      Frequency
  disp(' Current at Resonance Frequency = '+string(I)+
      ' Amp');
13
14 Emax=L*I^2;
                                // Maximum Instantaneous
      Energy
15 disp(' The Maximum Instantaneous Energy = '+string(
      Emax) + 'J';
16
17
18
19
20
21
           //
                  p 379
                                11.4
```

Scilab code Exa 11.5 Frequence And Q Factor

```
1
2
3
                           // Example
                                        11.5
4
5 R1 = 0.51;
                                      // Resistance -1
6 R2=1.3;
                                      // Resistance -2
7 R3 = 0.24;
                                      // Resistance -3
8 \text{ Req} = R1 + R2 + R3;
                                      // Eqviualent
     Resistance
9 L1=32*10^-3;
                                      // Inductance -1
```

```
10 L2=15*10^-3;
                                  // Inductance -2
11 Leq=L1+L2;
                                  // Eqviualent
     Inductance
12 C1 = 62 * 10^{-6};
                                  // Capacitance -1
13 C2=25*10^-6;
                                  // Capacitance -2
14 Ceq = (C1*C2)/(C1+C2);
                                  // Eqviualent
      Capacitance
15
16 fo=1/(2*%pi*sqrt(Leq*Ceq)); // Resonance
      Frequency
17 disp(' Resonance Frequency is = '+string(round(fo))+
      ' Hz');
18
                                         // Over all Q-
19 Q=(1/Req)*sqrt(Leq/Ceq);
      Factor
20 disp('Over all Q-Factor is = '+string(round(Q)));
21
22 \text{ wo=} 2 * \% \text{pi*fo};
23 Q1=(wo*L1)/R1;
                                        // Q-Factor of
      Coil-1
24 disp('Q-Factor of Coil-1 is = '+string(Q1));
25
                                       // Q-Factor of Coil
26 \quad Q2 = (wo*L2)/R2;
      -2
  disp(' Q-Factor of Coil-2 is = '+string(Q2));
27
28
29
30
31
32
                     // p 380
                                   11.5
```

Scilab code Exa 11.6 Frequence

```
1 // Example 11.6
```

```
3
4 f=150*10<sup>3</sup>;
                                   // Frequency
                                   // Band width
5 Bw=75*10^3;
                                   // Q-Factor
6 \quad Q=f/Bw;
7 disp('Q-Factor is = '+string(Q));
                    // since Q < 10 there for we need
                       to solve by Equation
                    // 75= f2-f1 & 150= root (f1*f2)
9
                    // will get Eq ( f1^2 + 75f1 - 22500 = 0
10
                       ) by Eliminating f2
                    // by factorization we have f1=(
11
                       117.1 \,\text{kHz} or -192.1 \,\text{kHz} )
12 f1=117.1;
13 f2=75+f1;
14 disp(' The half Power Frequencies are f1= '+string(
      f1)+' kHz & f2='+string(f2)+' kHz');
15
16
17
18
          //
               p 382
                           11.6
```

Scilab code Exa 11.7 Resistance Current And Capacitor

```
1
2
                         // Example 11.7
4 V = 230;
                                    // Supply Voltage
5 L=200*10^-6;
                                    // Inductance
6 R = 20;
                                    // Resistance
                                    // Frequency
7 f=1*10^6;
8 X1=2*%pi*f*L;
                                    // Indctive reactance
                                    // Capacitance
9 C=1/(4*\%pi^2*f^2*L);
10 disp(' Required Capacitance = '+string(C*10^12)+' pF
      ');
11
```

```
// Q-Factor
12 Q=X1/R;
13 disp('Q-Factor is = '+string(Q));
14
                                      // dynamic Impedance
15 Zo=L/(C*R);
16 disp(' Dynamic Impedance is = '+string(Zo)+' Ohm');
                                      // Soures Resistance
17 \text{ Zs} = 8000;
                                      // Total Resistance
18 \quad Z = Zo + Zs;
19
20 \quad I = V/Z;
                                      // Total Line Current
21 disp(' Total Line Current is = '+string(I*1000)+' mA
      ');
22
23
24
25
                           р 388
                                              11.7
```

Scilab code Exa 11.8 Frequence And Q Factor

```
1
2
3
                         // Example 11.8
4
5 L=0.24;
                               // Inductance
                              // Capacitance
// Resistance
6 C=3*10^-6;
7 R=150;
8 f=1/(2*%pi*sqrt(L*C)); // Frequency
                             // Resonance Frequency
9 fo=f*sqrt(1-R^2*(C/L));
10 disp(' Resonance Frequency = '+string(fo)+' Hz');
11
12 X1=2*\%pi*fo*L;
                               // Indctive reactance
                               // Q-Factor
13 Q = X1/R;
14 disp('Q-Factor is = '+string(Q));
15
16 Bw=fo/Q;
                             // Band width
17 disp(' Band width is = '+string(Bw)+' Hz');
```

```
18
19
20
21
22
// p 387
11.8
```

Chapter 12

Three Phase Circuits And System

Scilab code Exa 12.1 Current

```
1
2
                        // Example
                                    12.1
3
                          // Given Z= 32+i24
4
5 R = 32;
                          // Real Part of Z
6 X = 24;
                          // Imaginary Part of Z
7 z=R+\%i*X;
                          // Impedance
                          // Absolute value of Z
8 \quad Z = abs(z);
9 V1 = 400;
                          // Supply Voltage
                          // Voltage in Y-Connection
10 Vph1=V1/1.732;
                          // Current in Y-Connection
11 Iph1=Vph1/Z;
12 Il1=Iph1;
                          // Load Current in Y-
      Connection
13 disp(' Current Drawn ( for Y-Connection ) = '+string
      (Il1)+' Amp');
14 Vph2=V1;
                          // Voltage in Delta-Connection
15 Iph2=Vph2/Z;
                          // Current in Delta-Connection
16 I12=1.732*Iph2;
                          // Load Current in Delta-
      Connection
```

Scilab code Exa 12.2 Current

```
1
2
3
                       // Example 12.2
4
5 V1 = 415;
                       // Supply Voltage
                      // Phase Voltage
6 Vph=Vl/sqrt(3);
                      // Load of 10-kW
7 p1=10000;
                       // Load of 8-kW
8 p2=8000;
                       // Load of 5-kW
9 p3=5000;
10
                       //Current by ( 10-kW Load )
11 IR=p1/Vph;
12 disp(' Current by ( 10-kW Load ) = '+string(IR)+'
     Amp');
13
                       // Current by ( 8-kW Load )
14 IY=p2/Vph;
15 disp(' Current by ( 8-kW Load ) = '+string(IY)+' Amp
     ');
16
17 IB=p3/Vph;
                       // nCurrent by (5-kW Load )
18 disp(' Current by ( 5-kW Load ) = '+string(IB)+' Amp
19
20 IH=IY*cosd(30)-IB*cosd(30);
                                       // Horizontal
     Current
21 IV=IR-IY*sind(30)-IB*sind(30);
                                       // Vertical
```

```
Current

22 IN=sqrt(IH^2+IV^2); // Current in

Neutral Conductor

23 disp(' Current in Neutral Conductor = '+string(IN)+'

Amp');

24
25
26
27
28 // p 410 12.2
```

Scilab code Exa 12.3 Current

```
1
2
                // Example 12.3
3
4 Z1 = 100;
                          // Impedence Z1 in Delta-
      connection load
                          // Resistance R2 in Delta-
  R2 = 20;
      connection load
6 	ext{ f=50};
                          // Frequency
                          // Inductance
7 L2=0.191;
8 X2=2*\%pi*f*L2;
                          // Reactance X2 in Delta-
      connection load
  Z2 = sqrt(R2^2 + X2^2);
                          // Impedence Z2 in Delta-
      connection load
                          // Phase angle
10 Q2=atand(60/20);
                          // Capacitor
11 C3=30*10^-6;
12 Z3=1/(2*\%pi*f*C3);
                          // Impedence Z3 in Delta-
      connection load
13 Q3=90;
                          // Leading phase angle
                          // Phase current I1 in loads RY
14 I1 = 415/Z1;
15 disp(' Phase current I1 in loads RY = '+string(I1)+'
      Amp');
16
```

```
17 I2=415/Z2;
                         // Phase current I2 in loads YB
18 disp(' Phase current I2 in loads YB = '+string(I2)+'
      Amp');
19
20 \quad I3 = 415/Z3;
                         // Phase current I3 in loads BR
21 disp(' Phase current I3 in loads BR = '+string(I3)+'
      Amp');
22
23 IR = sqrt(I1^2 + I3^2 + (2*I1*I3*cosd(30)));
      Current in the liner conductor R
24 disp(' Current in the liner conductor R = '+string(
      IR) + ' Amp');
25
26 \quad QY = Q2 - 60;
                          // Phase diffrence between I2-
     I1
27 IY=sqrt(I1^2+I2^2+(2*I1*I2*cosd(QY)));
      Current in the liner conductor Y
28 disp(' Current in the liner conductor Y = '+string(
      IY) + ' Amp');
29
30 \quad QB = 180 - QY - 30;
                          // Phase diffrence between I2-
31 IB = sqrt(I2^2 + I3^2 + (2*I2*I3*cosd(QB)));
                                                   //
      Current in the liner conductor B
32 disp(' Current in the liner conductor B = '+string(
      IB) + ' Amp');
33
34
35
36
37
                                         12.3
                   // p 411
```

Scilab code Exa 12.4 Current Power And Power Factor

1

```
2
                 // Example 12.4
3
               // \Longrightarrow For star-connection
4
5 disp('
           ** For star-connection ** ');
6 V1 = 400;
                          // Voltage at load
7 Vph=V1/1.732;
                          // Phase voltage
8 Zph=sqrt(20^2+15^2); // Impedence per phase
                          // Line current
9 Il=Vph/Zph;
10 disp(' The line current (II) = '+string(II)+' Amp');
11
12 Rph = 20;
                          // Resistance per phase
                          // Power factor
13 CosQ=Rph/Zph;
14 disp(' Power factor = '+string(CosQ)+' Lagging');
15
16 P=1.732*V1*I1*CosQ; // Total active power
17 disp(' Total active power = '+string(P/1000)+' kW');
18
19
                // ==> For Delta-connection
            ** For Delta-connection ** ');
20 disp('
21 Vph1=V1;
                          // Phase voltage
                          // Phase current
22 Iph=Vph1/Zph;
                          // Load current
23 IL=1.732*Iph;
24 disp(' The Load current (IL) = '+string(IL)+' Amp');
25
26 disp(' Power factor = '+string(CosQ)+' Lagging');
27
28 P1=1.732*V1*IL*CosQ; // Total active power
  disp(' Total active power = '+string(P1/1000)+' kW')
30
31
32
                  // p 412
                                          12.4
```

Scilab code Exa 12.5 Power And Power Factor

```
1
2
                        // Example
                                    12.5
3
4 p1 = 3000;
                                          // Load of 3-kW
5 p2=1500;
                                          // Load of 1.5-
     kW
                                          // Total Load
6 P = p1 + p2;
7 disp(' Total Power Consumed = '+string(P)+' Watt');
9 Q=atand(1.732*(p1-p2)/(p1+p2));
                                         // Power Factor
      Angle
10 pf = cosd(Q);
                                          // Power Factor
11 disp(' Power Factor is = '+string(pf));
12
13
14
15
          // p 417
                            12.5
16
```

Scilab code Exa 12.6 Current Power And Power Factor

```
1
2
                        // Example
                                   12.6
3
4 V1=415
                                        // Supply
     Voltage
5 p1=5200;
                                        // Load of 5.2-
     kW
6 p2 = -1700;
                                        // Load of 1.7-
     kW
8 P=p1+p2;
                                        // Total Load
9 disp(' Total Power Consumed = '+string(P)+' Watt');
10
11 Q=atand(1.732*(p1-p2)/(p1+p2));
                                        // Power Factor
```

```
Angle
12
13 pf=cosd(Q);
                                         // Power Factor
14 disp(' Power Factor is = '+string(pf));
15
                                         // P = root(3) * V1
16
                                            *Il*Cos(Q)
17 Il=P/(1.732*Vl*pf);
18 disp(' Line Current is = '+string(I1)+' Amp');
19
20
21
22
          // p 417
                           12.6
23
```

Chapter 13

Transformers

Scilab code Exa 13.1 Megnetic Flux And Voltage

```
1
2
                        // Example
3
                                    13.1
5 E=6400;
                                        // Supply Voltage
6 f = 50;
                                        // Frequency
7 N1 = 480;
                                        // No.Of turns in
       Primary Coil
                                        // No.Of turns in
8 N2 = 20;
       Secondary Coil
9
10 Qm=E/(4.44*f*N1);
                                        // The Peak Value
       of Flux
11 disp(' The Peak Value of Flux = '+string(Qm)+' Wb');
12
13 E1=4.44*f*N2*Qm;
                                        // Voltage
      induced in Secondary winding
14 disp(' Voltage induced in Secondary winding = '+
     string(E1)+' Volt');
15
16
```

```
17
18
19
20
21 // p 487 13.1
```

Scilab code Exa 13.2 Flux Density Current And Voltage

```
1
2
                        // Example
                                     13.2
                                          // Supply Voltage
4 E1 = 230;
5 f = 50;
                                          // Frequency
6 \text{ N1} = 30;
                                          // No.Of turns in
       Primary Coil
                                          // No.Of turns in
  N2 = 350;
       Secondary Coil
  A = 250 * 10^{-4};
                                          // Area of the
      Core
9
10 Qm = E1/(4.44*f*N1);
                                          // The Peak Value
       of Flux
11 Bm = Qm/A;
                                          // The Peak Value
       of Flux Density
12 disp(' The Peak Value of Flux Density = '+string(Bm)
      + ' Tesla');
13
14 E2=E1*(N2/N1);
                                          // Voltage
      induced in Secondary winding
15 disp(' Voltage induced in Secondary winding = '+
      string(E2/1000) + ' kV');
16
17 I2=100;
                                          // Current in
      Secondary Coil
18 I1=I2*(N2/N1);
                                          // Primary
```

Scilab code Exa 13.3 Turns Ratio

```
1
2
3
                       // Example 13.3
4
                              // Load Resistance
5 R1=800;
                              // O/P Resistance
6 Req=50;
                              // Ratio Constant
7 K=sqrt(R1/Req);
                              // urns ratio of
8 N21=K;
      Transformer
9 disp(' Turns ratio of Transformer (N2/N1) = '+string
      (N21));
10
11
12
13
14
                  // p 490
15
                                 13.3
```

Scilab code Exa 13.4 Current

```
1 // Example 13.4 '
132
```

```
3
4
                          // From the circuit Diagram Ip=
                              30 < 0/\{20 + i20 + 2^2 * (2 - i10)\}
5
6 Ip= 30/{20+%i*20+2^2*(2-%i*10)}; // Phase Current
8 I1=2*Ip;
                                         // Load current
9 disp(' The Load current is Il = '+string(Il)+' Amp
          ('+string(abs(I1))+' <'+string(atand(imag(I1)
      ,real(I1)))+' Amp )');
10
11
12
13
14
15
16
17
             // p 491
                           13.4
```

Scilab code Exa 13.5 Power

```
1
2
                         // Example
                                       13.5
3
                                           // Frequency
4 f=50;
5 \text{ N1} = 30;
                                           // No.Of turns in
       Primary Coil
6 N2 = 66;
                                           // No.Of turns in
       Secondary Coil
  A = 0.015;
                                           // Area of the
      Core
8 \ Z1=4;
                                           // Load Impedance
9 Bm=1.1;
                                           // The Peak Value
       of Flux Density
10 Qm = Bm * A;
                                           // The Peak Value
```

```
of Flux
11
                                         // O/P Voltage
12 V2=4.44*f*N2*Qm;
                                         // O/P current
13 I2=V2/Z1;
14 Ova=V2*I2;
                                         // Output Volt-
      Amperes
15 disp('Output Volt-Amperes is = '+string(Ova/1000)+'
      kVA');
16
17
18
19
20
21
                     p 491
                                 13.5
```

Scilab code Exa 13.6 Turns

```
1
2
                            // Example 13.6
3
4 f=50;
                                         // Frequency
                                         // Area of the
5 A = 9 * 10^{-4};
      Core
6 Bm = 1;
                                         // The Peak Value
       of Flux Density
7 Qm = Bm * A;
                                         // The Peak Value
       of Flux
9 E3=6;
                                         // Voltage in
      Tertiary winding
10 N3=E3/(4.44*f*Qm);
                                         // No.Of Turns in
       Tertiary winding
11 disp(' No. Of Turns in Tertiary winding = '+string(
      round(N3*2)) + ' turns');
12
```

```
13
14 E1=230;
                                              // Voltage in
      Primary winding
15 N03=round(N3);
                                              // Round figure
16 \text{ N1} = (\text{NO3} * \text{E1}) / \text{E3};
                                              // No.Of Turns
      in Primary winding
17 disp(' No. Of Turns in Primary winding = '+string(
      round(N1)) + ' turns');
18
19
20 E1 = 230;
21 E2=110;
                                              // Voltage in
      Secondary winding
22 N2 = (N03 * E2) / E3;
                                              // No.Of Turns
      in Secondary winding
   disp(' No. Of Turns in Secondary winding = '+string(
      round(N2)) + ' turns');
24
25
26
27
28
                   p 491
29
                                 13.6
```

Scilab code Exa 13.7 Current And Power Factor

```
no load
10
                           // Pi= V1*Io*CosQ
                           // Power factor
11 pf=Pi/VA;
12 disp(' Power factor at no laod = '+string(pf));
13
14 Iw=Io*pf;
                           // Loss component of no-load
      Current
15 disp(' Loss component of no-load Current = '+string(
     Iw) + ' Amp');
16
  Im=sqrt(Io^2-Iw^2);  // Magnetising component of
     no-load Current
  disp(' Magnetising component of no-load Current = '+
      string(Im)+' Amp');
19
20
21
22
                      //
                                       13.7
                           p 493
```

Scilab code Exa 13.8 Power

```
1
2
                            // Example 13.8
3
4
                             // We Know that Pi= Ph+ Pe=(
5
                                 Af+ Bf^2
6
                             // there for at 60Hz
                                                       100 =
                                60A + 3600B
7
                                            at 40Hz
                                                       60 =
                                40A+ 1600B
                             // After Solving Equation We
                                 have
9 \quad A = 1.167;
                             // Alphabet for Simlicity
                             // Alphabet for Simlicity
10 B=0.00834;
```

```
// Frequency
11 f = 50;
12 Ph = A * f;
                              // Hysteresis Loss
13 disp('Hysteresis Loss ( at 50 Hz ) = '+string(Ph)+'
      Watt');
14
15 Pe=B*f^2;
                              // Eddy-Current Loss
16 disp('Eddy-Current Loss ( at 50 Hz ) = '+string(Pe)+
      ' Watt');
17
18
19
20
21
22
                       //
23
                             p 495
                                          13.8
```

Scilab code Exa 13.9 Current And Power Factor

```
1
2
                            // Example
                                       13.9
3
4 pf1=0.2;
                           // Power factor at 5 A
                           // Power factor at 120 A
5 pf2=0.8;
6 Q1=acosd(pf1);
                           // Angle for 0.2 Power factor
                           // Angle for 0.8 Power factor
7 Q2=acosd(pf2);
                           // Voltage in Secondary
8 V2 = 110;
      winding
9 V1 = 440;
                            // Voltage in Primary winding
10 k = V2/V1;
                           // Ratio Constant
                           // Current in Secondary
11 I2=120;
      winding
                           // Current in primary winding
12 i1=k*I2;
                           // No load Current
13 io = 5;
14 I1=23.99-\%i*18;
                           // Current in primary winding
       in complex form
```

```
15 Io=1-\%i*4.899;
                           // No load Current in complex
       form
16
17 I = I1 + Io;
                           // Primary Current
18 disp(' Primary Current = '+string(I)+' Amp or '+
      string(abs(I))+'<'+string(atand(imag(I),real(I)))</pre>
     + ' Amp');
19
20 pf=cosd(-42.49); // Primary Power factor
21 disp(' Primary Power factor = '+string(pf));
22
23
24
25
26
            /// p 498
                            13.9
```

Scilab code Exa 13.10 Resistance And Power

```
1
2
                            // Example 13.10
3
4 \text{ kVA} = 50000;
                            // Single Phase supply
                            // Voltage in primary winding
5 V1 = 4400;
                            // Voltage in Secondary
6 V2 = 220;
      winding
7 R1 = 3.45;
                            // primary Resistance
                            // Secondary Resistance
8 R2 = 0.009;
                            // primary Reactance
9 X1 = 5.2;
10 X2=0.015;
                            // Secondary Reactance
                            // primary Current
11 I1=kVA/V1;
                            // Secondary Current
12 I2=kVA/V2;
                            // Turns constant
13 k = V2/V1;
14
15 Re1=R1+(R2/k^2);
                                 // Equivalent Resistance
      referred to Primary
```

```
16 disp(' Equivalent Resistance referred to Primary = '
      +string(Re1) + 'Ohm');
17
18 Re2=k^2*R1+R2;
                               // Equivalent Resistance
      referred to Secondary
19 disp (' Equivalent Resistance referred to Secondary =
       '+string(Re2)+' Ohm');
20
                              // Equivalent Impedance
21 Xe1=X1+(X2/k^2);
      referred to Primary
22 disp(' Equivalent Impedance referred to Primary = '+
      string(Xe1)+' Ohm');
23
24 \text{ Xe2=k^2*X1+X2};
                              // Equivalent Reactance
      referred to Secondary
  disp(' Equivalent Reactance referred to Secondary =
      '+string(Xe2)+' Ohm');
26
27 Ze1=sqrt(Re1^2+Xe1^2); // Equivalent Impedance
      referred to Primary
28 disp(' Equivalent Impedance referred to Primary = '+
     string(Ze1)+' Ohm');
29
30 Ze2 = sqrt(Re2^2 + Xe2^2);
                             // Equivalent Impedance
      referred to Secondary
31 disp(' Equivalent Impedance referred to Secondary =
      '+string(Ze2)+' Ohm');
32
33 i2 = 227.27;
                              // Round off value of I2
                              // Round off value of I1
34 i1=11.36;
                              // Round off value of R1
35 \text{ r1} = 3.45;
36 \text{ r2=0.009};
                              // Round off value of R2
37
38 P=i1^2*r1+round(i2)^2*r2; // Total Copper loss
39 disp(' Total Copper loss = '+string(round(P))+' Watt
      ');
40
                              // Round off value of Re1
41 re1=7.05;
```

```
42 P1=i1^2*re1;
                              // Total Copper loss By
      Equivalent Re1
43 disp(' Total Copper loss By Equivalent Re1 = '+
      string(P1)+' Watt');
44
45
  re2=0.0176;
                              // Round off value of Re2
                              // Total Copper loss By
46 P2=i2^2*re2;
      Equivalent Re2
  disp(' Total Copper loss By Equivalent Re2 = '+
47
      string(round(P2))+' Watt');
48
49
50
            // p 503
51
                              13.10
```

Scilab code Exa 13.11 Regulation

```
1
2
                     // Example 13.11
3
4 R1 = 10;
                                      // Resistance of 10
      Ohms
5 R2 = 0.02;
                                      // Resistance of 0.02
       Ohms
6 \text{ Xe} = 35
                                         Reactance of
      primary coil
                                      // No.Of turns in
7 n1 = 250;
      Primary coil
8 n2 = 6600;
                                      // No.Of turns in 2ry
       coil
                                      // Turns ratio
9 k=n1/n2;
10 P = 40000;
                                      // Single-Phase power
                                      // Full-load current
11 I2=P/n1;
12 Re2=k^2*R1+R2;
                                         Resistance Re2
13 Xe2=k^2*Xe;
                                      // Reactance Xe2
```

```
14 SinQ=0;
                                         // \sin Q = 0
                                         // Power factor
15 \quad \text{CosQ=1};
16 Reg=\{(I2*Re2*CosQ)+(I2*Xe2*SinQ)\}/n1;
      % Regulation.
  disp('\% Regulation (pf=1) = '+string(Reg*100) + '\%')
18
  CosQ1=0.8;
                                         // Leading Power
19
       factor
  SinQ1=sqrt(1-CosQ1^2);
                                         // \sin Q = 0.6 + ve
20
21
  Reg1 = {(I2*Re2*CosQ1) + (I2*Xe2*SinQ1)}/n1;
      % Regulation.
  disp(' % Regulation (pf=0.8) = '+string(Reg1*100)+'
      %');
24
25 \operatorname{SinQ2} = -\operatorname{sqrt}(1 - \operatorname{CosQ1}^2);
                                         // \sin Q = 0.6 - ve
26
  Reg2 = {(I2*0.0343*CosQ1) + (I2*Xe2*SinQ2)}/n1;
27
      // % Regulation.
   disp('\% Regulation for (pf=0.8) = '+string(Reg2)
      *100)+' %');
29
30
31
32
                // p 506
                                                13.11
```

Scilab code Exa 13.12 Efficiency And Power

```
7 f = 50;
                                        // Frequency
                                        // Voltage
8 E2 = 250;
9 N2=E2/(4.44*f*Qm);
                                        // No.Of of turns in 2
      ry coil
10 disp('No.Of turns (N2) = '+string(round(N2))+'
       turns');
11
                                        // Voltage
12 E1 = 5000;
                                        // No.Of turns in 1ry
13 N1 = (E1/E2) * 19;
       coil
14 \operatorname{disp}(' \operatorname{No.Of turns}(\operatorname{N1}) = '+\operatorname{string}(\operatorname{N1}) + ' \operatorname{turns}');
16 \text{ kVA} = 150 * 10^3;
                                              // kVA Rating
17 pf=1;
                                        // Power factor
                                        // O/p power
18 Po = 0.5 * kVA * pf;
                                        // Full-load Copper
19 Cfl=1800;
       losses
20 \text{ Pc=0.5*0.5*Cfl};
                                        // Copper losses
                                        // Iron losses
21 Pi=1500;
                                        // Efficiency
22 n=Po/(Po+Pc+Pi);
23 disp(' Efficiency at half kVA = '+string(n*100)+' %'
      );
24
25 \text{ pf1=0.8};
                                        // Power factor
26 Po1=kVA*pf1;
                                        // O/p power
                                        // Copper losses
27 \text{ Pc1} = 1800;
                                         // Efficiency
28 n1 = Po1/(Po1 + Pc1 + Pi);
29 disp(' Efficiency at Full-load & at(pf=0.8) = '+
       string(n1*100)+'\%');
30
                  // We know that x^2 \times 1800 = 1500
31
32 \text{ x=sqrt} (1500/1800);
                                        // Value of x
33 kVA1=kVA*x;
                                        // kVA Load for
      Maximum efficiency
34 disp('kVA Load for Maximum efficiency = '+string(
      round(kVA1/1000))+' kVA');
35
36
```

37 // p 509 13.12

Scilab code Exa 13.13 Efficiency

```
1
2
                   // Example 13.13
3
4
                  // For 80-kW load at pf=1 (for 6 hours)
5 t=6;
                               // Time in Hours
6 p = 80;
                               // Power in kW
                               // O/p energy
7 Eo=p*t;
                               // Power factor
8 pf=1;
                               // kVA rating
9 \text{ kVA=p/pf};
10 kVAo=200;
                               // kNA at full-load
11 Pcl=3.02;
                               // Copper losses at full-
      load
12 Pc = (kVA/kVAo)^2 * Pc1;
                               // Copper losses
                               // Iron losses
13 Pi=1.6;
                               // Total losses
14 \text{ Pl=Pc+Pi};
15 Tloss=Pl*6;
                               // Total losses in 6 hours
16
17
                  // For 160-kW load at pf=0.8 (for 8)
                    hours)
                                 // Power in kW
18 p1 = 160;
19 E1=p1*8;
                                 // O/p energy
20 pf1=0.8;
                                 // Power factor
21 \text{ kVA1=p/pf};
                                 // kVA rating
22 Pcl1=3.02;
                                 // Copper losses at full-
      load
23 Pc1=Pc11;
                                     Copper losses
                                     Total losses
24 Pl1=Pc1+Pi;
  Tloss1=Pl1*8;
                                 // Total losses in 6
      hours
26
27
                 // For No-load (for 10 hours)
```

```
28 E2=0;
                                    // O/p Energy
                                    // Copper losses
29 \text{ Pc2=0};
                                    // Total losses
30 \text{ Pl2=Pc2+Pi};
                                    // Total losses in 10
31 Tloss2=Pl2*10;
      hours
32 \text{ Wo} = \text{Eo} + \text{E1} + \text{E2};
                                    // Total O/P energy
                                   // Total energy losses
33 W1=Tloss+Tloss1+Tloss2;
                                    // All-Day efficiency
34 \quad n=Wo/(Wo+W1);
35 disp('All-Day efficiency = '+string(n*100)+' \%');
36
37
                        //
                                p 510
                                                 13.13
38
39
                   // For 160-kW load at pf=1 (for
40
                                 // Time in Hours
41 t=6;
```

Scilab code Exa 13.14 Power

```
1
2
                            // Example 13.14
3
4
                           // Single Phase supply
5 \text{ kVA} = 12000;
                           // Voltage in primary winding
6 V1 = 120;
                           // Currnet in Secondary
7 I2=kVA/V1;
      winding
8 I1=I2;
                           // Current in primary winding
                           // Voltage in Secondary
9 V2 = 240;
      winding
10 Pi=V2*I2;
                           // I/p apparent power
11 disp(' I/p apparent power = '+string(Pi/1000)+' kVA'
      );
12
13 Po=V1*I1*2;
                           // O/p apparent power
14 disp('O/p apparent power = '+string(Po/1000)+' kVA'
```

```
);
15
16
17
18
19
20
// p 511 13.14
```

Scilab code Exa 13.15 Voltage

```
1
2
3
                           // Example 13.15
4
5 V11=3300;
                             // The supply voltage
                             // Primary phase voltage
6 Vph1=Vl1/1.732;
                             // No. Of Turns in Primary
7 N1 = 840;
      winding
  N2 = 72;
                             // No. Of Turns in secondary
       winding
9 Vph2=Vph1*(N2/N1);
                             // Secondary phase voltage
10 V12=Vph2;
                             // Secondary line voltage
11 disp(' Secondary line voltage on No load for (star/
      delta) = '+string(V12)+' Volt');
12
                             // Primary phase voltage
13 vph1=V11;
                             // Secondary phase voltage
14 vph2=vph1*(N2/N1);
                             // Secondary line voltage
15 v12=vph2*1.732;
16 disp(' Secondary line voltage on No load for (delta/
      star) = '+string(round(v12))+' Volt');
17
18
19
20
21
```

```
22
23
24  // p 514  13.15
```

Scilab code Exa 13.16 Current And Resistance

```
1
2
                     // Example 13.16
3
                            // Supply voltage
4 V1 = 200;
                           // Wattmeter reading
5 \text{ Wo} = 120;
                            // Core loss current
6 Iw=Wo/V1;
7 disp(' Core-loss current (Iw) = '+string(Iw)+' Amp')
9 Io=1.3;
                           // Open-ckt current
10 Im=sqrt(Io^2-Iw^2); // Megnetising current
11 disp(' Megnetising current (Im) = '+string(Im)+' Amp
      <sup>'</sup>);
12
13 Ro=V1/Iw;
                                // Resistance
                                // Reactance
14 Xo = V1/1.15;
15 disp(' Equivalent resistance of exciting circuit = '
      +string(round(Ro))+' Ohms');
  disp(' Equivalent reactance of low voltage winding =
       '+string(round(Xo))+' Ohms');
17
18 \quad V2 = 400;
                                // Supply voltage
                                // Transformation Ratio
19 k = V1/V2;
                                // kVA rating
20 \text{ kVA} = 12000;
21 Ifl=kVA/V2;
                                // Full-load current
22 \text{ Wsc} = 200;
                                // Short-ckt power
23 Re1=Wsc/If1^2;
                                // Equivalent resistance
      at full-load
24 \ Vsc = 22;
                                // Short-ckt voltage
```

```
// Equivalent impedeance
25 \text{ Ze1=Vsc/If1};
      at full-load
                               // Short-ckt reactance
26 Xe1=sqrt(Ze1^2-Re1^2);
                               // Equivalent resistance
27 \text{ Re2=k^2*Re1};
      of low voltage winding
28 disp(' Equivalent resistance of low voltage winding
     = '+string(Re2)+' Ohms');
29
30 \text{ Xe2=k^2*Xe1};
                               // Equivalent ractance of
      low voltage winding
31 disp(' Equivalent reactance of low voltage winding =
       '+string(Xe2)+' Ohms');
32
33
                     //
                                             13.16
34
                          p 516
```

Chapter 14

Alternators And Synchronous Motors

Scilab code Exa 14.1 Speed

```
1
                        // Example
2
                                    14.1
3
                      // Frequency
4 F = 60;
                      // No.Of poles
5 P=6;
                      // Speed Of rotation
6 ns = (120*F)/P;
7 disp('Speed Of rotation Is = '+string(ns)+' Rpm');
                      // Decreased frequency
8 F1=20;
9 P1 = (120*F1)/ns;
                      // Number Of poles
10 disp('Number Of poles = '+string(P1));
11
12
13
14
15
16
              // p 546
                           Ex14.1
```

Scilab code Exa 14.2 Distribution Factor

```
1
2
                         // Example 14.2
3
4 alfa=20;
                              // Slot angle
                              // No.Of slots for group p
5 q1=120/20;
6 \text{ sa=sind}((q1*alfa)/2);
7 sb=sind(alfa/2);
8 \text{ kd1=sa/(q1*sb)};
                             // Three phase Winding (with
       120 phase group)
  disp('(a) A Three phase Winding (with 120 phase
      group) = '+string(kd1));
10 q2=60/20;
                             // No. Of slots for group q
11 sa1=sind((q2*alfa)/2);
12 \text{ kd2=sa1/(q2*sb)};
                             // TThree phase Winding (
      with 60 phase group)
13 disp('(b) A Three phase Winding (with 60 phase group
      = '+string(kd2));
14
15
16
17
18
           //
                 p 554
                           Ex 14.2
```

Scilab code Exa 14.3 Speed Emf And Voltage

```
8 p1=180/20;
                              // No.Of slots per pole
                              // Slot angle
9 Q=180/p1;
                              // No.Of slots per pole
10 q1=p1/3;
     for group q
11 sa=sind((q1*Q)/2);
12 sb=sind(Q/2);
                  // Generated emf per phase
13 kd=sa/(q1*sb);
14 disp('(b) Generated emf per phase = '+string(kd)+'
     Volt');
15
16 \text{ g=0.025};
                              // Flux per poles
                              // No.Of turns per phase
17 T = 240;
18 kp=1;
19 E=(4.44*f*g*kp*T*0.96); // Rms value of emf per
     phase
                              // Line emf
20 \quad El = sqrt(3) * E;
21 disp('(b) Generated emf per phase = '+string(E)+'
     Volt');
  disp('(c) Line emf = '+string(El)+' Volt');
23
24
              p 554
25
                           14.3
```

Scilab code Exa 14.4 Voltage Regulation

```
1
2
                          // Example 14.4 '
3
4
                                    // Phase current
5 I = 15.7;
6 Vt = 22 * 10^3 / sqrt(3);
                                    // Phase voltage
7 \text{ Zs} = 0.16;
                                    // Impedance
                                    // Terminal Voltage per
8 V = 12.7;
      phase on full load
9 Vz=I*Zs;
                                    // Voltage drop per
```

```
phase on full load
10 \quad OC = 0.014;
                                    // Star winding
      resistence
11 OG=0.16;
                                    // Synchronous
      impedance
12 \quad Q = a \cos d (OC/OG);
                                    // Phase angle
                                    // Lagging power factor
13 pf1=0.8;
14 q1=acosd(pf1);
                                    // Lagging angle
15 \text{ alfa1=Q-q1};
                                    // Resultant angle
16 Cos1=cosd(alfa1);
                                    // power factor for
      Resultant
17 E1=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos1));
18 Er1 = (E1 - V) / V;
                                       // the Voltage
      Regulation (0.8 Lagging)
19 disp('(a) the Voltage Regulation (0.8 Lagging) is =
      '+string(Er1*100)+' per Cent');
20
21 \text{ pf2=1};
                                    // Leading power factor
22 q2=acosd(pf2);
                                    // Leading angle
                                    // Resultant angle
23 \text{ alfa2=Q-q2};
24 Cos2=cosd(alfa2);
                                    // power factor for
      Resultant
25 E2=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos2));
26 \text{ Er2} = (E2 - V) / V;
                                    // the Voltage
      Regulation (1 Lagging)
27 disp('(b) the Voltage Regulation (1 Lagging) is = '+
      string(Er2*100) + ' per Cent');
28
                                    // Resultant angle
29 \text{ alfa3=Q+q1};
30 Cos3=cosd(alfa3);
                                    // power factor for
      Resultant
31 E3=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos3));
32 \text{ Er3} = (E3 - V) / V;
                                    // the Voltage
      Regulation (0.8 Leading)
33 disp('(c)) the Voltage Regulation (0.8 Leading) is =
      '+string(Er3*100)+' per Cent');
34
                 // p 560
                                   14.4
35
```

Scilab code Exa 14.5 Voltage Regulation

```
1
2
                         // Example
3
                                     14.5
4
5 I = 100;
                                     // Full-rated short-
      circuit current
6 V=3.3*10^3/sqrt(3);
                                     // Three phase
      voltage
7 R = 0.9;
                                     // Remature
      resistance
8 \text{ Zs} = 5.196;
                                     // Impedance
9 Vz=I*Zs;
                                     // Voltage drop per
      phase on full load
10 Q=acosd(R/Zs);
                                     // Phase angle
                                     // Lagging power
11 pf1=0.8;
      factor
12 q1=acosd(pf1);
                                     // Lagging angle
13 alfa1=Q-q1;
                                     // Resultant angle
14 Cos1=cosd(alfa1);
                                     // power factor for
      Resultant
15 E1 = (sqrt(V*V+Vz*Vz+2*V*Vz*Cos1));
16 Er1 = (E1 - V) / V;
                                     // the Voltage
      Regulation (0.8 Lagging)
17 disp('(a)) the Voltage Regulation (0.8 Lagging) is =
      '+string(Er1*100)+' per Cent');
18 alfa3=Q+q1;
                                     // Resultant angle
19 Cos3=cosd(alfa3);
                                     // power factor for
      Resultant
20 E3=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos3));
21 Er3 = (E3 - V) / V;
                                     // the Voltage
      Regulation (0.8 Leading)
22 disp('(b)) the Voltage Regulation (0.8 Leading) is =
```

Scilab code Exa 14.6 Emf And Angle

```
1
2
                         // Example
3
                                      14.6
                                         // O/p power
5 po = 9000;
6 n = 0.9;
                                         // Efficiency of
      motor
7 pi=po/n;
                                         // I/p power
8 X = 3;
                                         // Reactance
                                         // Phase voltage
9 V1 = 400;
10 R = 0.4;
                                         // Resistance
                                         // Leading power
11 Cos1=0.8;
      factor
12 I=pi/(sqrt(3)*V1*Cos1);
                                         // I/p current per
       phase
13 q1 = acosd(0.8);
                                         // Leading angle
                                         // Impedance
14 Zs = sqrt(R*R+X*X);
                                         // Phase angle
15 Q=atand(X/R);
16 \ V=400/sqrt(3);
                                         // Supply voltage
      per phase
17 Er=I*Zs;
                                         // Voltage drop
      per phase across the synchronous impedance
18
19 E = (sqrt(V*V+Er*Er+2*V*Er*cosd(180-Q-q1)));
20 \quad El = sqrt(3) * E;
                                         // Exitation emf
21 disp(' Exitation emf = '+string(El)+' volt');
```

Scilab code Exa 14.7 Emf

```
1
2
3
                         // Example 14.7
4
  Zph = 24*(12/3);
                                  // The No. Of conductors
      in series
6 T = Zph/2;
                                  // No. Of turns per phase
7 p1 = 24/4;
                                  // No.Of slots/pole
                                  // Slot angle
8 Q=180/p1;
                                  // No.Of slots/pole for
9 q1=p1/3;
      group q
10 sa=sind((q1*Q)/2);
                                  // Distribution factor (
      Numerator part )
11 sb=sind(Q/2);
                                  // Distribution factor (
      denominator part )
12 \text{ kd=sa/(q1*sb)};
                                  // Distribution factor
                                  // No.Of poles
13 p=4;
14 \, \text{Ns} = 1500;
                                  // Speed
                                  // Flux per pole
15 g=0.1;
                                  // Pitch factor
16 f = (p*Ns)/120;
                                  // Constant
17 kp=1;
18 E=(4.44*f*g*kp*T*kd);
                                  // Generated emf per
      phase
19 El=sqrt(3)*E;
                                  // line emf (at
      alternator 1500 rpm)
```

Scilab code Exa 14.8 Emf

```
1
2
                         // Example 14.8
3
4 Q = 30;
                                 // Angle between 2 slots
                                 // No.Of coils
5 q1=6;
6 sa=sind((q1*Q)/2);
                                 // Distribution factor (
      Numerator part )
  sb=sind(Q/2);
                                 // Distribution factor (
      denominator part )
8 \text{ kd=sa/(q1*sb)};
                                 // Distribution factor
9 Vc = 6 * 10;
                                 // Voltage induced in 6
      coils
10 Er=kd*Vc;
                                 // Net emf induced in
      Six coils
11 disp(' Net emf induced in Six coils = '+string(Er)+'
       Volt');
12
13
14
15
16
17
                                      14.8
                 // p 573
```

Scilab code Exa 14.9 Current Power And Torque

```
1
2
                         // Example 11.9
3
4
                                // Frequency
5 f = 50;
                                // Speed
6 N = 120;
                                // Number Of poles
7 p = (120*f)/N;
8 disp('(a) The No. of Poles = '+string(p));
9
                                // Power fector
10 Pf=1;
                                // VA-Rating
11 Va=100*10^6;
                                // kW-Rating
12 Rt=Va*Pf;
13 disp('(b) The kW rating = '+string(Rt)+' Watt');
14
15 Vl=11*10<sup>3</sup>;
                                // Star-connected voltage
16 Il=Va/(sqrt(3)*V1);
                                // Current rating (II)
17 disp('(c) The Current rating (Il) = '+string(round(
      I1))+' Amp');
18
                                 // Power
19 po=100*10^6;
                                 // Efficiency of motor
20 n = 0.97;
                                 // I/P Power (Pi)
21 \text{ Pi=po/n};
22 disp('(d) The I/P Power (Pi) = '+string(Pi)+' Watt')
23
24 t=Pi/(2*3.14*N*0.0166); // Prime Torque
25 disp('(e) The Prime Torque = '+string(t)+' Nm');
26
27
28
29
         // p 573
                        14.9
```

Chapter 15

Induction Motors

Scilab code Exa 15.1 Speed And Frequency

```
1
2
3
                       // Examle 15.1
4
5 p=6;
                                 // No. Of poles
                                 // Frequency
6 	ext{ f=50};
                                 // Synchronous speed
7 \text{ Ns} = (120*f)/p;
8 disp('(a) The Synchronous Speed (Ns) = '+string(Ns)+
      ' rpm');
9
                                 // Slip (s=1 %)
10 \text{ s1=0.01};
                                 // he No Load Speed (N)
11 N1 = Ns * (1 - s1);
12 disp('(b)) The No Load Speed (N) = '+string(N1)+' rpm
      <sup>'</sup>);
13
                                 // Slip (s=3 %)
14 	 s2 = 0.03;
                                 // The Full Load Speed
15 N2=Ns*(1-s2);
16 disp('(c)) The Full Load Speed (N) = '+string(N2)+'
      rpm');
17
                                 // Slip (s=100 \%)
18 s=1;
```

```
19 fr1=s*f;
                               // The Frequence of Rotor
      (at s=1)
20 disp('(d)) The Frequence of Rotor (at s=1) = '+
      string(fr1)+' Hz');
21
22 \text{ fr2=s2*f};
                               // The Frequence of Rotor
      (at s = 0.03)
23 disp('(e) The Frequence of Rotor (at s=0.03) = '+
      string(fr2)+' Hz');
24
25
26
27
           // p 593
28
                          15.1
```

Scilab code Exa 15.2 Speed And Frequency

```
1
2
                      // Examle 15.2
3
4 p=12;
                                // No. Of poles
                                // Frequency
5 f = 50;
                                // Synchronous speed
6 Ns = (120*f)/p;
7 disp(' The Synchronous Speed (Ns) = '+string(Ns)+'
      rpm');
8
                                // Speed of Motor
9 N = 485;
                                // Slip
10 s = (Ns - N) / Ns;
11 fr=s*f;
                                // The Frequence of Rotor
      (fr)
12 disp(' The Frequence of Rotor (fr) = '+string(fr)+'
      Hz');
13
14
15
```

```
16
17 // p 593 15.2
```

Scilab code Exa 15.3 Speed

```
1
2
3
                     // Examle 15.3
4
                               // No.Of poles
5 p=6;
                               // Frequency
6 f = 50;
                               // Synchronous speed
7 Ns = (120*f)/p;
8 disp(' The Synchronous Speed (Ns) = '+string(Ns)+'
     rpm ');
9
                               // Frequency of rotor at
10 fr=2;
      full-load
11 s=fr/f;
                               // Slip at full-load
12 disp(' the Full Load Slip (s) = '+string(s*100)+' \%'
      );
13
                               // The Speed of Rotor (fr)
14 N = Ns * (1-s);
15 disp(' The Speed of Rotor (fr) = '+string(N)+' rpm')
16
17
18
19
20
                        p 594
                                 15.3
```

Scilab code Exa 15.4 Speed And Frequency

1

```
2
3
                        // Examle 15.4
4
5 p=4;
                                 // No.Of poles
6 f = 50;
                                 // Frequency
7 Ns = (120*f)/p;
                                 // Synchronous speed
8 disp(' The Synchronous Speed (Ns) = '+string(Ns)+'
      rpm');
9
                                 // Slip
10 \text{ s1=0.04};
                                 // The Speed of Rotor
11 N1 = Ns * (1-s1);
12 disp('(b) The Speed of Rotor (at s=0.04) = '+string(
      N1)+' rpm');
13
                                 // Speed Of rotation
14 N = 600;
                                 // When speed is (600 rmp
15 s=(Ns-N)/Ns;
      ) Then Slip
16 fr=s*f;
                                 // The Frequence of Rotor
       (fr)
17 disp('(d) The Frequence of Rotor (fr) = '+string(fr)
      + ' Hz');
18
19
20
21
22
                 // p 594
                                    15.4
```

Scilab code Exa 15.5 Current

```
// Standstill reactance
7 X20=0.1;
                                   // Voltage
8 El = 100;
9 E20=E1/1.732;
                                   // Induced emf per
      phase
10 Z2=sqrt(R2^2+(s*X20)^2);
                                   // Impedance
11 E2=s*E20;
                                   // Emf with (s= 0.04)
12
13 I2=E2/Z2;
                                   // Rotor current for (s
      =0.04)
14 disp(' Rotor current for (s=0.04) = '+string(round(
      I2))+' Amp');
15
16 \quad \text{CosQ2=E2/Z2};
                                   // \cos Q2 = E2/Z2 = 0.998
      \Longrightarrow , here take (0.99)
                                   // Phase diffrence for
17 Q2=acosd(0.99);
      (s = 0.04)
18 disp(' Phase diffrence between rotor voltage &
      current for (s=0.04) = '+string(Q2)+' Digree');
19
20 \text{ s1=1};
21 \quad E21=s1*E20;
                                   // Induced emf per
      phase for s=1
22 \quad Z21 = sqrt(R2^2 + (s1 * X20)^2);
                                   // Impedance
                                                        Z21
      = 57.73 , but take (57.5)
23 I21=57.5/Z21;
                                   // Rotor current for (s
      =1)
24 disp(' Rotor current for (s=1) = '+string(round(I21))
      ) + ' Amp');
25
                                   // Rotor current for (s
26 Q21=acosd(R2/Z21);
      =1)
  disp(' Phase diffrence between rotor voltage &
27
      current for (s=1) = '+string(Q21)+' Digree');
28
29
30
31
              // p 597 15.5
32
```

Scilab code Exa 15.6 Power And Speed

```
1
2
                                  // Examle 15.6
                          // O/p power
4 po=5*746;
                          // Efficiency of motor at no
5 n=0.875;
     load
                         // I/p power
6 pin=round(po/n);
                          // Total losses
7 p1=pin-po;
                         // Mechanical losses
8 \text{ pm} = 0.05 * p1;
                         // Electrical losses
9 pe=p1-pm;
                         // Devlopment power
10 \text{ pd=po+pm};
11 disp(' Devlopment power = '+string(pd)+' Watt');
12
13 f = 50;
                          // Frequency
                          // No.Of poles
14 p=4;
15 Ns = (120*f)/p;
                          // Synchronous speed
                          // No.Of Revolution in rmp
16 N = 1470;
                          // The Slip
17 s=(Ns-N)/Ns;
18
19 pg=pd/(1-s);
                         // Air-gap power
20 disp('Air-gap power = '+string(pg)+' Watt');
21
                          // Rotor copper loss
22 \text{ pr=s*pg};
23 disp(' Rotor copper loss = '+string(pr)+' Watt');
24
25 ps=pin-pg;
                         // Stator loss
26 disp('Stator loss = '+string(ps)+' Watt');
27
28
29
                 // p 598
30
                               15.6
```

Scilab code Exa 15.7 Current Power And Speed

```
1
2
                                       // Examle 15.7
3
                                                        // Phase
5 v1 = 400/1.732;
      voltage
                                                        // Slip
6 s = 0.02;
7 p=4;
                                                        // No. Of
      poles
8 f = 50;
      Frequency
9 R2=0.332;
      Resistance R2
10 \quad X2 = 0.464;
      Reactance X2
11 Ns = (120*f)/p;
      Synchronous speed
12 N = Ns * (1-s);
                                                        // Rotor
      speed
13 disp(' The rotor speed is = '+string(N)+' rmp');
14
                                                        // Supply
15 V1 = 231 + \%i *0;
        voltage
16 \text{ Xg} = 26.3;
      Reactance Xg
17 X1 = 1.106;
      Reactance X1
18 R1=0.641;
      Resistance R1
19 Vth = {V1 * (\%i * Xg)}/(R1 + \%i * (X1 + Xg));
                                                        //
      Thevenin's voltage
20 Zth = {\%i * Xg * (R1 + \%i * X1)}/(R1 + \%i * (X1 + Xg));
```

```
Thevenin's impedance
                                                  //
21 R1 = {(1-s)/s}*R2;
      Mechanical load
22
23 I1=Vth/(Zth+R2+%i*X2+R1);
                                                 // stator
      current
24 disp('Stator current = '+string(I1)+' Amp or ('+
      string(abs(I1))+' <'+string(atand(imag(I1),real(</pre>
      I1)))+' Amp )');
25
26
27 Q=atand(imag(I1),real(I1));
                                                 // Power
      factor angle
                                                 // Power
28 \text{ pf} = \text{cosd}(Q);
      factor
  disp(' Power factor is = '+string(pf)+' Lagging');
30
31 RL=340;
      Rotational losses
                                                 // O/p
32 po=(3*12.84^2*R1)-RL;
      power \Longrightarrow ( taken I1=12.84 )
33 disp('O/p power = '+string(abs(po))+' Watt');
34
35 pin=3*V1*12.82*0.998;
      power \implies ( taken I1=12.82 & pf= 0.998)
36 disp(' I/p power = '+string(abs(pin))+' Watt');
37
38 n=po/pin;
                                                 //
      Efficiency of motor
39 disp(' Efficiency of motor = '+string(abs(n*100))+'
     %');
40
41
42
43
44
                  // p 603
                                   15.7
45
```

Scilab code Exa 15.8 Resistance

```
1
2
                                   // Examle 15.8
3
4
5 f = 50;
                           // Frequency
                           // No.Of poles
6 p=6;
                           // Synchronous speed
7 \text{ Ns} = (120*f)/p;
                          // No.Of Revolution in rmp
8 N = 940;
9
                          // The Slip
10 s = (Ns - N) / Ns;
11 disp(' The Slip is = '+string(s));
12
                          // Rotor resistance per phase
13 R2=0.1;
                          // Standing rotor reactance
14 \text{ X20=R2/s};
15 disp(' Standing rotor reactance = '+string(X20)+'
      Ohm');
16
17
18
19
20
              // p 608
21
                                 15.8
```

Chapter 16

DC Machines

Scilab code Exa 16.1 Voltage Current And Power

```
1
                        // Example 16.1
2
3
4
                     When Lap-wound .
  disp('* With the Armature Lap-wound, & Parallel
     pahts A=8 ');
7 Z=480;
                      // No.Of conductor
8 \quad A = 8;
                      // No.Of poles
                      // Average emf in each conductor
9 e = 2.1;
                      // Terminal voltage on No load
10 E=e*(Z/A);
11 disp('
          Terminal voltage on No load = '+string(E)+'
      Volt');
12 If = 200;
                      // Full-load current per conductor
                     // O/p current on full-load
13 Il = If *A;
14 disp(' O/p current on full-load = '+string(I1)+'
     Amp');
15 Po=I1*E;
                      // Total power on full-load
16 disp(' Total power generated on full-load = '+
      string(Po/1000) + ' kW');
17
```

```
// \Longrightarrow When Wave—wound .
18
19
20 disp('* With the Armature Wave-wound, & Parallel
      pahts A=2 ');
21 \quad A1 = 2;
                        // No.Of poles
22 E1=e*(Z/A1);
                        // Terminal voltage on No load
23 disp(' Terminal voltage on No load = '+string(E1)+'
       Volt');
24 Il1 = If * A1;
                        // O/p current on full-load
25 disp(' O/p current on full-load = '+string(Il1)+'
     Amp');
26 Po1=Il1*E1;
                         // Total power on full-load
27 disp(' Total power generated on full-load = '+
      string(Po1/1000) + ' kW');
28
29
30
31
32
          // p 631
                     16.1
```

Scilab code Exa 16.2 Emf

```
1
                          // Example 16.2
2
3
4 s = 65;
                              // No.Of slots
                              // Couductor per slot
5 \text{ nc} = 12;
6 z=s*nc;
                              // Impedance
7 p=4;
                               // No.Of poles
                              // Megnetic flux
8 \quad Q = 0.02;
                              // Speed of motor
9 N = 1200;
                              // Total emf Induced
10 E=(Q*z*N*p)/(60*p);
11 disp('Total emf Induced = '+string(E)+' Volt');
12
13
```

```
14
15 // p 633 16.2
```

Scilab code Exa 16.3 Emf

```
1
2
                         // Examle 16.3
3
4
5 E1 = 180;
                                 // Induced emf
6 \text{ N1} = 500;
                                 // Speed of mechine N1=500
7 N2 = 600;
                                 // Speed of mechine N1=600
  E2 = (N2/N1) * E1;
                                 // Emf When Machine runs at
       (600 \text{ rpm})
  disp('Emf When Machine runs at (600 rpm)= '+string(
      E2)+' Volt');
10
11
12
13
                            633
                                       16.3
```

Scilab code Exa 16.4 Speed And increase in flux

```
8 disp('Speed at Constant emf = '+string(round(N2))+'
      rpm');
9
                   // Using formula { Q2/Q1=E2/E1 \times N1/
10
                      N2
11
12 e = (E2 * N1);
                             // Numerator of above
      formula
                             // Dinominator of above
13 n = (E1 * 600);
      formula { by taking N2= 600 }
14 E=e/n;
                             // Induced emf
                            // % incriment in Flux
15 inc=(E-1.00)*100;
16 disp(' % incriment in Flux = '+string(round(inc))+'
     %');
17
18
19
20
21
22
                   //
                        p 633
                                       16.4
```

Scilab code Exa 16.5 Voltage

```
1
2
                    // Examle 16.5
3
4
5 V = 440;
                         // Supply Voltage
6 Rsh=110;
                         // Resistance of Shunt field
                         // Current through Shunt field
7 Ish=V/Rsh;
                         // Resistance of Armature
8 Ra=0.02;
     winding
9 I1=496;
                         // Generator current
                         // Armeture Current (Ia)
10 Ia=Il+Ish;
11 disp('Armeture Current (Ia) = '+string(Ia)+' Amp');
```

Scilab code Exa 16.6 Voltage And Current

```
1
2
                    // Examle 16.6
3
4 p=60;
                          // Power supply
                          // supply voltage
5 v = 200;
                          // current through each lamp
6 I1=p/v;
                          // Shunt field Current (II)
7 Il = 100 * I1;
8 disp('Shunt field Current (II) = '+string(II)+' Amp'
     );
9
10 Rsh=50;
                          // Resistance
                          // Shunt field Current
11 Ish=v/Rsh;
                         // Armature Current (Ia)
12 Ia=Il+Ish;
13 disp('Armature Current (Ia) = '+string(Ia)+' Amp');
14
                          // No.Of paraller path
15 \ a=4;
                         // Current per path (Ic)
16 Ic=Ia/a;
17 disp(' Current per path (Ic) = '+string(Ic)+' Amp');
18
19 Ra=0.2;
                          // Armature resistance
                          // Brush-drop
20 \text{ dro}=2;
                        // Generated emf (Eg)
21 Eg=v+(Ia*Ra)+dro;
22 disp('generated emf (Eg) = '+string(Eg)+' Volt');
23
24
```

```
25
26 // 638 16.6
```

Scilab code Exa 16.7 Emf

```
1
2
                    // Examle 16.7
3
4 Il=100;
                             // Series field current
5 Rse=0.1;
                             // Resistance series field
                             // Voltage drop across
6 Vse=Rse*I1;
      series field (Vse)
7 disp('Voltage drop across series field (Vse) = '+
      string(Vse)+' Volt');
                             // Supply voltage
9 V = 250;
                             // Voltage drop across
10 Vsh=V+Vse;
      Shunt field (Vsh)
11 disp('Voltage drop across Shunt field (Vsh) = '+
      string(Vsh)+' Volt');
12
13 Rsh=130;
                             // Resistance
                             // Shunt field Current (Ish
  Ish=Vsh/Rsh;
  disp(' Shunt field Current (Ish) = '+string(Ish)+'
15
     Amp');
16
17 Ia=Il+Ish;
                             // Armature Current (Ia)
18 disp('Armature Current (Ia) = '+string(Ia)+' Amp');
19
20 Ra=0.1;
                             // Armature resistance
                             // Brush-drop
21 \text{ dro}=2;
                             // Generated emf (Eg)
22 Eg=V+Vse+(Ia*Ra)+dro;
23 disp('Generated emf (Eg) = '+string(Eg)+' Volt');
24
```

```
25
26
27  // p 638  16.7
```

Scilab code Exa 16.8 Voltage Efficiency And Power

```
1
2
                    // Examle 16.8
3
                       // o/p power
4 po=30000;
                       // Voltage
5 v = 200;
                       // Load Current (II)
6 \text{ Il=po/v};
7 disp('Load Current (II) = '+string(II)+' Amp');
8
9 Rsh=50;
                                  // Shunt field
      resistance R1
                                  // Shunt field Current
10 Ish=v/Rsh;
11 Ia=Il+Ish;
                                  // Armature Current (Ia
      )
12 Ra=0.05;
                                  // Shunt field
     resistance R2
13 Eg=v+(Ia*Ra);
                                  // Generated emf (Eg)
14 disp('Generated emf (Eg) = '+string(Eg)+' Volt');
15
                                  // The copper Losses (
  Cu=Ish^2*Rsh+Ia^2*Ra;
16
     Cu)
  disp('The copper Losses (Cu) = '+string(Cu)+' W');
17
18
19 e = po*100/(1000 + po + Cu);
                                  // The Efficiency (e)
20 disp('The Efficiency (e) = '+string (e)+' \%');
21
22
23
24
                 // p 641
                               16.8
```

Scilab code Exa 16.9 Current And Resistance

```
1
2
                   // Examle 16.9
3
4
5 Vo = 210;
                     // Supply voltage
                     // Full-load current
6 Il=195;
7 Po=Vo*I1;
                     // O/p power
8 n = 0.9;
                     // Efficiency
                     // I/p power
9 Pin=Po/n;
                     // Total loss
10 Tl=Pin-Po;
                    // Shunt field resistance
11 Rsh=52.5;
                    // Shunt field current
12 Ish=Vo/Rsh;
                    // Armeture Current (Ia)
13 Ia=Il+Ish;
14 Cl=Ish^2*Rsh;
                    // Shunt field copper loss
                     // Stray losses
15 Hl=710;
16 CL=C1+H1
                    // Constant loss
                    // Armature copper loss
17 Al = 4550 - CL;
18 Ra=Al/Ia^2;
                     // Armature resistance
19 disp('Armature resistance = '+string(Ra)+' Ohms');
20
             // \Longrightarrow for maximum effciency (Ia^2*RA= Pc
21
                 = 1550
22
23 Ia1=sqrt(CL/0.0757); // Armeture Current for
     maximum efficiency ==>\{Ra=0.0757557, but here we
     have Ra = 0.0757
24 disp(' Armeture Current = '+string(Ia1)+' Amp');
25
26 IL=Ia1-Ish;
                     // Load current
27 disp('Load current (IL) = '+string(IL)+' Amp');
28
29
```

```
30
31 // p 642 16.9
```

Scilab code Exa 16.10 Turns

```
1
2
                    // Examle 16.10
3
4 i1=4;
                               // No load current
5 i2=6;
                               // Full-load current
                               // No.Of turns per poles
6 n = 1500;
                               // Amper Turns per pole on
7 At1=i1*n;
      No Load
8 disp(' Amper Turns per pole on No Load = '+string(
      At1) + At');
9
10 At2=i2*n;
                               // Amper Turns per pole on
       Full Load
11 disp(' Amper Turns per pole on Full Load = '+string(
      At2) + At');
12
                              // Amper Turns per pole of
13 At = At 2 - At 1;
       seires winding
14 disp(' Amper Turns per pole of seires winding = '+
      string(At)+' At');
15
16 Nse=At/100;
                              // Full Load Current
  disp(' Full Load Current = '+string(Nse));
18
19
20
21
22
23
                       p 647
                                  16.10
```

Scilab code Exa 16.11 Voltage

```
1
2
                         // Examle 16.11
3
4
5 V = 250;
                           // Supply voltage
                           // Field winding resistance
6 Rsh=250;
  Ish=V/Rsh;
                           // The shunt field current (
     Ish)
  disp(' The Shunt field current (Ish) = '+string(Ish)
     + ' Amp');
9 Il=41;
                           // Full-load current
                           // Armature current
10 Ia=Il-Ish;
11 disp(' The Armature current current (Ia) = '+string(
     Ia) + ' Amp');
12 Ra=0.1;
                           // Armature resistance
13 Eb=V-(Ia*Ra);
                           // back emf
14 disp(' The back emf (Eb) = '+string(Eb)+' Volt');
15
16
17
18
                 // p 649
19
                                   16.11
```

Scilab code Exa 16.12 Speed

```
6 Ia=50;
                                 // Armature currernt
                                 // Armature resistance
7 \text{ Ra} = 0.28;
8 a=2;
                                  // No. Of paraller path
                                 // Megnetic flux per pole
9 \quad Q = 0.023;
10 z = 888;
                                  // Impedence
                                  // No.Of poles
11 p=4;
12 Eb=V-(Ia*Ra);
                                 // Back emf (Eb)
13 disp(' Back emf (Eb) = '+string(Eb)+' Volt');
14
                            // Speed of the moter
15 N = (60*a*Eb)/(Q*z*p);
16 disp(' Speed of the moter = '+string(round(N))+' rms
      <sup>'</sup>);
17
18
19
20
              // p 649
21
                                16.12
```

Scilab code Exa 16.13 Speed

```
1
2
                     // Examle 16.13
3
4 At = 900;
                               // Speed of motor
                               // Supply voltage
5 V = 460;
                               // Orignal Flux
6 \text{ kQ=V/At};
7 disp(' Orignal Flux = '+string(kQ));
9 V1 = 200;
                               // Chenged Supply voltage
10 N = V1/(0.7 * kQ);
                               // Speed of Motor When
      Supply (200 V)
11 disp(' Speed of Motor When Supply (200 V) = '+string
      (round(N))+' rpm');
12
13
```

```
14
15
16
17 // p 649 16.13
```

Scilab code Exa 16.14 Speed And Torque

```
1
2
                     // Examle 16.14
3
4 V = 480;
5 Ia=110;
                               // Armature currernt
6 Ra=0.2;
                               // Armature resistance
7 a=6;
                               // No. Of paraller path
                               // No.Of poles
8 p=6;
9 \quad Q = 0.05;
                               // Megnetic flux per pole
10 z = 864;
                               // Impedence
                               // Generated emf (Eb)
11 Eb=V-(Ia*Ra);
12 disp('Generated emf (Eb) = '+string(Eb)+' Volt');
13
                            // Speed of the moter
14 N=(60*a*Eb)/(Q*z*p);
15 disp(' Speed of the moter = '+string(round(N))+' rms
      <sup>'</sup>);
16
            // \implies Using Formula \{ td = Qz/2TT x(p/A) \}
17
               xIa }
18
19 x=(Q*z)/(2*\%pi);
                               // for simlicity
20 td=(p/a)*Ia*(x);
                               // Total Torque (Td)
21 disp(' Total Torque (Td) = '+string (round(td))+' Nm
      <sup>'</sup>);
22
23
24
25
```

```
26
27 // p 650 16.14
```

Scilab code Exa 16.15 Power

```
1
2
3
                    // Examle 16.15
4
5 t = 2000;
                            // Torque
                            // Speed
6 N = 900;
                            // Power loss
7 Ploss=8000;
                           // Input Power (Pin)
8 Pin=(2*%pi*t*N)/60;
9 disp('Input Power (Pin) '+string(Pin/1000)+' kW');
10
11 Pd=Pin-Ploss;
                            // Power Generated in
     Armature (Pd)
12 disp(' Power Generated in Armature (Pd) = '+string(
     Pd/1000) + kW';
13
14
15
16
                                 16.15
               //
                    p 651
```

Scilab code Exa 16.16 Speed

```
8 E1=V-Ia*(Ra+Rse); // Emf Generated
9
               // But for the Given machine (E1= QZNP
10
                  /60A = kQ1N1)
11
12 N1 = 600;
                          // No.Of turns
                         // Megnetic flux
13 Q1=0.024;
14 k=E1/(Q1*N1);
                         // Constant
15
                         // Current of 50A
16 Ia1=50;
17 E2=V-[Ia1*(Ra+Rse)]; // Emf Generated
18
19
               // We know that E2=k*Q2*N2
20
21 \quad Q2 = 0.016;
                         // Megnetic flux
                         // New speed
22 N2=E2/(k*Q2);
23 disp(' The new speed is = '+string(round(N2))+' rpm'
     );
24
25
26
27
28
                 // p 653
                                   16.16
```

Scilab code Exa 16.17 Current

```
string(Ia) + ' Amp');
9
10 Eb1 = 200;
                          // Voltage at Eb=200
                          // Current drawn by the
11 Ia1=(V-Eb1)/Ra;
      machine at Eb=200
12 disp(' Current drawn by the machine at (Eb=200) = '+
      string(Ia1)+' Amp');
13
                          // Voltage at Eb=250
14 Eb2=250;
                          // Current drawn by the
  Ia2=(V-Eb2)/Ra;
      machine at Eb=250
16 disp(' Current drawn by the machine at (Eb=250) = '+
      string(Ia2)+' Amp');
17
                           // Voltage at Eb=-250
18 Eb3=-250;
  Ia3=(V-Eb3)/Ra;
                           // Current drawn by the
      machine at Eb=-250
  disp(' Current drawn by the machine at (Eb=-250) ='
      +string(Ia3)+' Amp');
21
22
23
24
25
                        // p 653
26
                                             16.17
```

Scilab code Exa 16.18 Speed And Torque

```
1
2
    // Examle 16.18
3
4 V=480;    // Supply voltage
5 Ia=110;    // Armature currernt
6 Ra=0.18;    // Series field
resistance R1
```

```
// Series field
7 Rse=0.02;
      resistance R2
                                // Generated emf
8 Eb=V-Ia*(Ra+Rse);
9 disp(' Generated emf = '+string(Eb)+' Voltage');
10
11 a=6;
                                 // No.Of paraller path
                                 // Megnetic flux
12 \quad Q = 0.05;
13 z = 864;
                                 // Conductor
                                // No.Of poles
14 p=6;
                                // Speed of a Motor
15 N = (60*a*Eb)/(Q*z*p);
16 disp('Speed of a Motor = '+string(round(N))+' rpm')
17
18 Td = (60*Eb*Ia)/(2*\%pi*N); // The Torque Develop by
      Armeture
19 disp(' The Torque Develop by Armeture = '+string(
     round(Td))+' Nm');
20
21
22
23
                    // p 654 16.18
```

Scilab code Exa 16.19 Resistance

```
1
2
3
                         // Examle 16.19
4
5 V = 220;
                              // Supply voltage
6 Ia = 22;
                              // Armature currernt
7 \text{ Ra} = 0.45;
                              // Armature resistance
                              // Generated emf
8 E1=V-(Ia*Ra);
9 disp(' Generated emf = '+string(E1)+' Voltage');
10
11 N1 = 700;
                              // Speed of motor in Shunt
```

```
12 N2 = 450;
                           // Speed of motor in Series
                          // Emf of Shunt motor
13 E2=(N2*E1)/N1;
14 disp(' Emf of Shunt motor = '+string(E2)+' voltage')
15
                           // Armature voltage
16 \text{ Va=Ia*Ra};
17 R=(V-(E2+Va))/Ia;
                          // Resistance with Armature
18 disp(' Resistance with Armature = '+string(R)+' ohms
     ');
19
20
21
22
                           // p 654
                                        16.19
```

Scilab code Exa 16.20 Speed

```
1
2
                          // Examle 16.20
3
4
5 V = 230;
                                 // Supplt voltage
                                 // Armature currernt Ia1
6 Ia1=40;
                                 // Armature resistance
7 \text{ Ra} = 0.2;
                                 // Series field resistance
8 \text{ Rse} = 0.1;
                                 // Back emfat (24 A)
9 E1=V-Ia1*(Ra+Rse);
10 disp(' Back emfat (24 \text{ A}) = '+\text{string}(E1)+' \text{ Voltage'});
11
12 Ia2=20;
                                 // Armature currernt Ia2
13 E2=V-Ia2*(Ra+Rse);
                                // Back emfat (20 A)
14 disp(' Back emfat (20 \text{ A}) = \text{'+string(E2)+'} \text{ Voltage'});
15
16 \text{ N1} = 1000;
                                 // Speed of a Motor at I=
      40A
17 N2=(E2*N1)/(E1*0.6); // Speed of a Motor
18 disp(' Speed of a Motor = '+string(round(N2))+' rpm'
```

```
);
19
20
21
22
23
// p 654
16.20
```

Chapter 17

Fractional Horse Power Motors

Scilab code Exa 17.1 Slip And Efficiency

```
1
 2
                                   // Examle 17.1
 3
                           // Frequency
4 f = 50;
                           // No.Of poles
5 p=4;
6 Ns = (120*f)/p;
                        // Synchronous speed
7 N = 1410;
                          // No.Of Revolution in rmp
                          // I/p current
8 I = 2.9;
9 V = 230;
                          // Supply voltage
                          // Power factor
10 \cos Q = 0.71;
11 s=(Ns-N)/Ns;
                          // The Slip
12 disp(' The Slip is = '+string(s*100)+' \%');
13
14 \text{ po} = 375;
                           // O/p power
15 pin=V*I*CosQ;
16 eff=po/pin;
                           // I/p power
                          // Efficiency
17 disp(' The efficiency is = '+string(eff*100)+' \%');
18
19
20
21
```

```
22
23
24  // p 683  17.1
```

Scilab code Exa 17.2 Current Phase Angle And Power Factor

```
1
                          // Examle 17.2
2
3
                              // Impedence of main-
  zm = (5 + \%i * 12);
      Winding
6 za=(12+\%i*5);
                              // Impedence of starting -
      Winding
7 V = 230 + \%i *0;
                              // Supply voltage
                              // Current in main-Winding
8 \text{ Im}=V/zm;
9 disp(' The Current in main-Winding = '+string(Im)+'
     Amp or ('+string(abs(Im))+' <'+string(atand(
      imag(Im),real(Im)))+' Amp )');
10
11
  Ia=V/za;
                              // Current in starting-
      Winding
12 disp(' The Current in starting-Winding = '+string(Ia
                   ('+string(abs(Ia))+' <'+string(atand
      ) + ' Amp or
      (imag(Ia),real(Ia)))+' Amp )');
13
                              // The line Current
14 Il=Im+Ia;
15 disp(' The line Current = '+string(I1)+' Amp or
      +string(abs(I1))+' <'+string(atand(imag(I1),real(
      I1)))+' Amp )');
16
17 Qa = -22.62;
                              // Phase angle of starting -
      winding
18 Qm = -67.38;
                              // Phase angle of main-
      winding
```

```
// The phase displacement (
19 Q=Qa-Qm;
     Q
20 disp(' The phase displacement (Q) = '+string(Q)+' i
     .e = '+string(round(Q))+' Digree');
21
22 pf=cosd(round(Q));
                            // The Power factor
23 disp(' The Power factor is = '+string(pf)+' lagging'
     );
24
25
26
                                   17.2
27
                  // p 683
```

Scilab code Exa 17.3 Capacitor

```
1
2
                        Examle 17.3
3
4 \text{ Xm} = 20;
                                 // Inductive reactance of
      Main-winding
5 \text{ Rm} = 2;
                                 // Main-winding resistance
6 Ra=25;
                                 // Auxilliary-winding
      resistance
                                 // Frequency
7 f = 50;
                                 // Inductive reactance of
8 \text{ Xa=5};
      Auxilliary - winding
9 Qm=atand(Xm/Rm);
                                 // Angle of Main-winding
10 Qa = Qm - 90;
                                 // Angle of Auxilliary-
      winding
                                // Capacitive reactance
11 Xc=Xa-(tand(Qa)*Ra);
                               // Capacitor (C) \implies \{ Xc \}
12 C=1/(2*\%pi*f*7.495);
      = 7.5, but taking Xc= 7.495}
13 disp('The value of Capacitor (C) = '+string(C)+' F')
14
```

```
15
16
17
18 // p 684 17.3
```

Scilab code Exa 17.4 Revolution Steps And Speed

```
1
                    // Examle 17.4
2
3
                        // Step Angle
4 b=2.5;
                        // Resolution (r)
5 r = 360/b;
6 disp('Resolution (r) = '+string(r)+' steps per
      revolution');
7
8 n=r*25;
                        // No. Of step Required for (25)
     Rev)
9 disp('No.Of step Required for (25 Rev) = '+string(n)
      );
10
11 s=(b*n)/360;
                        // Shaft Speed (s)
12 disp('Shaft Speed (s) = '+string(s)+' rps');
13
14
15
16
17
                p 689
                            17.4
```

Scilab code Exa 17.5 No of Rotors And Stators

```
1
2
3
// Examle 17.5
```

```
// Step Angle
4 b=15;
                                     // No.Oh phase
5 m=3;
                                     // Number of rotors
6 Nr = 360/(m*b);
7 disp('No.Of Rotors = '+string(abs(Nr)));
  Ns1 = (Nr * 360) / ((b*Nr) - 360); // No. Of Stator When
       (Ns > Nr)
10 disp('No.Of Stator When (Ns > Nr) = '+string(abs(Ns1))
     )));
11
12 Ns2=(Nr*360)/((b*Nr)+360); // No. Of Stator When
       (Ns < Nr)
  disp('No.Of Stator When (Ns < Nr) = '+string(Ns2));</pre>
13
14
15
16
17
                 // p 690
                               17.5
```

Scilab code Exa 17.6 No of Rotors And Stators Theeth

```
1
2
3
                     // Examle 17.6
4
           // => Given 4 Stack VR stepper motor
5
6
7 m=4;
                        // No.Oh phase
                        // Step Angle
8 b=1.8;
9 \text{ Nr} = 360/(b*m);
                        // Number of rotors
10 disp('Number of rotors = '+string(Nr));
11
12
13
14
                   p 692
                               17.6
```

Chapter 18

Electrical Measuring Instruments

Scilab code Exa 18.1 Torque

```
1
2
                    // Examle 18.1
3
4 I = 0.015;
                              // Current in a coil
                              // Megnetic flux density
5 B = 0.2;
6 1 = 0.02;
                              // Length of megnetic field
7 n1 = 42;
                              // No.Of turns N1
                              // radius of coil
8 r=0.0125;
9 n2=43;
                              // No.Of turns N2
10 F1=I*B*l*n1;
                              // The force on (42-
      Conductors)
11 disp('The force on(42-Conductors) = '+string(F1)+' N
      ');
12
                              // The force on (43-
13 F2=I*B*1*n2;
      Conductors)
14 disp('The force on(43-Conductors) = '+string(F2)+' N
      ');
15
```

Scilab code Exa 18.2 Resistance

```
1
2
                    // Examle 18.2
4 Ifs=10*10^-3;
                               // Maximum current
                               // Full-scale diflection
  Im = 100 * 10^{-6};
      current
6 \text{ Rm} = 100;
                               // Internal resistance
                              // Shunt Current (Ish)
7 Ish=Ifs-Im;
8 disp('Shunt Current (Ish) = '+ string(Ish)+' Amp');
9
10 Rsh = (Im*Rm)/Ish;
                              // Shunt Current (Rsh)
11 disp('Shunt Current (Rsh) = '+ string(Rsh)+' ohms');
12
13
14
15
                    p 762
                                18.2
```

Scilab code Exa 18.4 Resistance

```
// Internal resistance
5 \text{ Rm} = 100;
                                     // volt-meter range
6 \text{ Vf} = 50;
                                     // The Value of Resister
7 Rs = (Vf/Im) - Rm;
       (Rs)
   disp ('The Value of Resister (Rs) = '+string(Rs
      /1000) + 'kilo -ohms');
9
10
11
12
                    // p 767
13
                                   18.4
```

Scilab code Exa 18.5 Resistance And Multiplying Factor

```
1
2
                     // Examle 18.5
3
4 Im = 50 * 10^{-6};
                                 // Current sensitivity
                                 // Internal resistance
5 \text{ Rm} = 1000;
                                // volt-meter range
6 Vf = 50;
                                 // The Value of Resister (
7 Rs = (Vf/Im) - Rm;
      Rs)
8 disp ('The Value of Resister (Rs) = '+string(Rs
      /1000) + ' kilo - ohms');
9
10 n=Vf/(Im*Rm);
                               // The Voltage Multiplying
      Factor (N)
11
   disp('The Voltage Multiplying Factor (N) = '+string(
      n));
12
13
14
                   // p 767
15
                                18.5
```

Scilab code Exa 18.6 Voltage And Error

```
1
2
                          // Examle 18.6
3
4 s = 1000;
                                      // Sensitivity of
      Volt-meter A
5 r = 50;
                                      // Load resistance
                                      // Range of volt-
6 Vt = 50;
      meter
                                      // Internal
  Ri1=s*r;
      resistance of Volt-meter A
  V1=150*{25000/(100000+25000)};
                                     // Voltage in Ist
      Meter
9 disp('Voltage in Ist Meter (V) = '+string(V1)+' Volt
      ');
10
11 s1 = 20000;
                                      // Sensitivity of
      Volt-meter B
12 Ri2=s1*r;
                                      // Internal
      resistance of Volt-meter B
13 V2=150*{47600/(100000+47600)};
                                     // Voltage in 2nd
      Meter
14 disp('Voltage in 2nd Meter (V) = '+string(V2)+' Volt
      <sup>'</sup>);
15
                                      // % Error in Ist
16 Er1 = (Vt - V1) * 100 / Vt;
      meter
17 disp('% Error in Ist meter = '+string(Er1)+' %');
19 Er2=(Vt-48.36)*100/Vt;
                                       // % Error in 2nd
      meter \implies { V2=48.3739, but taking V2=48.36 }
20 disp('% Error in 2nd meter = '+string(Er2)+' %');
21
```

```
22
23
24
25  // p 770  18.6
```

Scilab code Exa 18.7 Angle of Deflection

```
1
2
                         // Examle 18.7
3
                              // Derived from { Q= k x I
4 k=60/20;
5 i=12;
                              // Current
                              // Diflection for Spring-
6 Q1=k*i;
      Control Current
7 disp('Diffection for Spring-Control Current = '+
     string(Q1)+' Digree');
                              // Derived from { SinQ= k x
9 \text{ k1=sind}(60)/20;
       I }
                              // Diflection for Gravity-
10 Q2=asind(k1*12);
      Control Current
11 disp('Diffection for Gravity-Control Current = '+
      string(Q2)+' Digree');
12
13
14
15
                 // 775
                              18.7
```

Scilab code Exa 18.8 Deflection in the Torque

1 2

```
3
                          // Examle 18.8
4
                                // Controling weigth
5 w = 0.005;
                                // Distance
61=0.024;
                                // Deflecting torque
7 td=1.05*10^-4;
                                // Diflection in Digree (
8 \text{ k=asind(td/(w*l))};
     @)
  disp('Diflection
                      in Digree (@) = '+string(round(k))
      +' Digree');
10
11
12
13
               p 776
                              18.8
```

Scilab code Exa 18.9 Angle of Deflection

```
1
2
                         // Examle 18.9
3
4 i1=10;
                                     // Current I1
                                     // Current I2
5 i2=5;
                                     // Deflection due to
6 Q = 90;
       10 Amp
7 Q1=(i2/i1)^2*Q;
                                     // Diflection for
      Spring-Control Current
  disp('Diffection for Spring-Control Current = '+
     string(Q1)+' Digree');
9
10
           // Using formula \Longrightarrow { Q2= Sin[(i2/i1)^2*
              \sin(Q)
11
12 Q2=asind((i2/i1)^2*sind(Q));
                                  // Diflection for
      Gravity-Control Current
13 disp('Diffection for Gravity-Control Current = '+
     string(Q2)+' Digree');
```

Scilab code Exa 18.10 Current

```
1
2
                         // Examle 18.10
3
4
                          // width of the coil
5 w = 0.004;
6 1 = 0.005;
                          // Length of the coil
                          // Area of the coil
7 A = w * 1;
                          // Megnetic flux density
8 B=0.1;
                          // No.Of turns
9 n = 80;
                          // Controling torque
10 tc=0.5*60*10^-6;
                          // Deflecting torque
11 td=3*10^-3;
                          // Current
12 I=tc/(B*n*A);
13 disp('Current (I) = '+string(I)+' Amp');
14
15
16
17
        // p 777
                            18.10
```