حل التمرين الأول : (10 نقاط)

1. التحول الكيميائي الحادث هو تحول بطيء لأنه استغرق دقائق لبلوغ حالته النهائية.

$$(Ni^{2+}/Ni)$$
 : حیث $Ni(s) = Ni^{2+}(aq) + 2e^{-}$

$$(H_3O^+/H_2)$$
 : $= 2H_3O^+(aq) + 2e^- = H_2(g) + 2H_2O(l)$

هناك انتقال للإلكترونات من مرجع ثنائية إلى مؤكسد ثنائية أخرى، فالتفاعل هو تفاعل أكسدة وإرجاع.

3. جدول تقدم التفاعل الحادث:

المعادلة		$Ni(s) + 2H_3O^+(aq) = Ni^{2+}(aq) + H_2(g) + 2H_2O(l)$				
all <u></u>	التقدم	كمية المادة ب mol				
ح إ	0	n_{01}	n_{02}	0	0	
ح إن	х	$n_{01} - x$	$n_{02} - 2x$	х	x	بوفرة
ح ن	x_f	$n_{01}-x_f$	$n_{02} - 2x_f$	x_f	x_f	

σ_0 عبارة ،4

$$\sigma_0 = c.(\lambda_{H_3O^+} + \lambda_{Cl^-})$$
 : و منه $\sigma_0 = [H_3O^+]_0.\lambda_{H_3O^+} + [Cl^-]_0.\lambda_{Cl^-}$

قيمة التركيز المولى لحمض كلور الماء:

$$c=rac{\sigma_0}{\lambda_{H_3O^+}+\lambda_{Cl^-}}$$
 : و بالتالي $\sigma_0=c.(\lambda_{H_3O^+}+\lambda_{Cl^-})$: من العلاقة السابقة لدينا

$$c=0,1mol\ /L$$
 : و بالتالي $c=\frac{4,25}{(35+7,5)\times 10^{-3}}=100mol\ m^{-3}$: و بالتالي و بالتالي

$$\sigma(t) = 4,25-6,01 imes 10^{-2} \left[Ni^{2+} \right] (t)$$
 : إثبات العلاقة: .5

$$\sigma(t) = \lambda_{H_3O^+} \Big[H_3O^+ \Big](t) + \lambda_{Cl^-} \Big[Cl^- \Big](t) + \lambda_{Ni^{\,2+}} \Big[Ni^{\,2+} \Big](t) \; :$$
 انطلاقا من قانون کولوروش

$$\left[Ni^{2+}\right](t) = \frac{x(t)}{V} : \text{ و بالتالي } : \quad \sigma(t) = \lambda_{H_{30^{+}}} \cdot (c - 2\frac{x(t)}{V} + \lambda_{Cl^{-}} c + \lambda_{Ni^{2+}} \left[Ni^{2+}\right](t) : \text{ و بالتالي } :$$

$$\sigma(t) = \lambda_{H_3O^+} c - 2\lambda_{H_3O^+} . \left[Ni^{2+} \right](t) + \lambda_{Cl^-} c + \lambda_{Ni^{2+}} \left[Ni^{2+} \right](t) : \text{ also } t = 0$$

$$\sigma(t) = \sigma_{0} + (\lambda_{Ni^{2+}}^{2+} - 2\lambda_{H_{3}O^{+}}^{2+}) [Ni^{2+}](t)$$
 : و منه

$$\sigma(t) = 4,25 + (9,9-2\times35)\times10^{-3} [Ni^{2+}](t)$$
 : و بالتالي

$$\sigma(t) = 4,25 - 6,01 \times 10^{-2} [Ni^{2+}](t)$$
 : و نحصل على

0,5

0,5

0,5

0,5

0.25

0,5

0,5

ı

ة ثانوي	ثالثة	للسنة	، الأول	الفصل	اختبار	تصديد
---------	-------	-------	---------	-------	--------	-------

2024 - 2023	الدراسي	الموسم
-------------	---------	--------

	: X _{max} إيجاد قيمة .6			
0,5	من البيان لدينا : $[Ni^{ ext{2+}}]_{_f}=3,3 imes10^{-2}mol$ و من جدول تقدم التفاعل عند الحالة النهائية نستنتج			
۵,۵	$x_{ m max} = 9.9 imes 10^{-3} mol$: و منه $x_{ m max} = \left[Ni^{2+} \right]_{\!f} V = 3.3 imes 10^{-2} imes 0.3 : 10^{-2}$			
	- استنتاج المتفاعل المحد :			
	: من جدول تقدم التفاعل لدينا $n_f (H_3 O^+) : n_f (H_3 O^+)$			
0,75	$n_f(H_3O^+) = n_{02} - 2x_{\text{max}} = cV - 2x_{\text{max}} = 0.1 \times 0.3 - 2 \times 9.9 \times 10^{-3} = 0.01 \text{mol}$			
	بما أن $0: 0 eq n_f (H_3 O^+) = n_f (H_3 O^+)$ و التفاعل تام فإن $n_f (H_3 O^+) = 0$ بما أن			
	و استنتاج قیمهٔ $t_{\scriptscriptstyle 1/2}$ و استنتاج قیمهٔ $t_{\scriptscriptstyle 1/2}$ بیانیا. σ			
	$\sigma(t) = 4,25 - 6,01 \times 10^{-2} \left[Ni^{2+} \right](t) = 4,25 - 6,01 \times 10^{-2} \frac{x(t)}{V}$			
0,25	$\sigma(t_{_{1/2}}) = 4,25 - 6,01 \times 10^{-2} \frac{x_{_{\max}}}{2V} = 4,25 - \frac{6,01 \times 10^{-2} \times 9,9 \times 10^{-3}}{2 \times 0,3 \times 10^{-3}}$: و بالتالي			
0,5	$t_{_{1/2}}$ =18min : بالإسقاط على البيان نجد $\sigma(t_{_{1/2}})$ =3,26S / m : و منه			
0,25	$v_{vol}=rac{1}{V}.rac{dx}{dt}$: السرعة الحجمية هي سرعة التفاعل في وحدة الحجوم و تعطى بالعلاقة $V_{vol}=rac{1}{V}.rac{dx}{dt}$			
	$\sigma(t) = 4,25 - 6,01 \times 10^{-2} \frac{x(t)}{0,3 \times 10^{-3}} = 4,25 - 200,33x(t)$ - لدينا -			
0,5	$\frac{dx}{dt} = -\frac{1}{200,33} \frac{d\sigma}{dt}$: أي $\frac{d\sigma}{dt} = -200,33 \frac{dx}{dt}$: و بالتالي :			
	$v_{_{vol}}=-1,66 imes10^{-2}rac{d\sigma}{dt}$: و عليه $v_{_{vol}}=-rac{1}{0,3} imesrac{1}{200,33}rac{d\sigma}{dt}$: و عليه			
0,5	$v_{vol}(0) = 1,24 \times 10^{-3} mol.L^{-1}.min^{-1}$: و منه $v_{vol}(0) = -1,66 \times 10^{-2} \frac{4,25-2}{0-30}$: $v_{vol}(0) = -1,66 \times 10^{-2} \frac{4,25-2}{0-30}$: $v_{vol}(0) = -1,66 \times 10^{-2} \frac{4,25-2}{0-30}$			
	$m_{\scriptscriptstyle 0}(Ni)$: النيكل $m_{\scriptscriptstyle 0}(Ni)$			
1	$m_{_0}(Ni)$ = $x_{_{ m max}}$. $M(Ni)$: وعليه $m_{_0}(Ni)$ = $m_{_0}(Ni)$ عا أن Ni هو المتفاعل المحد فإن			
	$m_{_0}(Ni) = 0.58g$: و منه $m_{_0}(Ni) = 9.9 imes 10^{-3} imes 58,7$: ت.ع			
0,5	$\frac{m_{_0}(Ni)}{m} imes 100 = \frac{0.58}{1.9} imes 100 = 30.52\%$ - استنتاج النسبة المئوية الكتلية للنيكل في القطعة المعدنية :			
0,5	10. بما أن النسبة المئوية الكتلية للنيكل في القطعة المعدنية : %30,52 فإن القطعة مأخوذة من برغي جهاز			
,	کمبیوتر.			
	مع تمنيات أساتذتكم بالنجاح و التوفيق			

7	الموسم الدراسي 2023 - 2024	تصحيح اختبار الفصل الأول للسنة ثالثة ثانوي		
	. $\theta_2 = 35^{\circ}C$ خرارة	بيان تغيرات قيمة الناقلية النوعية $\sigma(t)$ بدلالة الزمن عند درجة $\sigma(t)$		
		$\sigma(S\cdot m^{-1})$		
0,5	(θ_1 t (min)		
	والتي تزداد قيمتها برفع درجة الحرارة	نتعلق قيمة الناقلية النوعية $\sigma(t)$ بالناقلية النوعية المولية الشاردية λ و		
	مامل حركي فإن سرعة التفاعل تزداد.	ومنه تزداد قیمة كل من $\sigma_{_{\!f}}$ و كذلك بما أن درجة الحرارة ع		
		حل التمرين الثاني : (10 نقاط)		
		I- 1. تحديد مرجع الدراسة و توضيح سبب اعتباره عطاليا (غاليليا):		
0,75	ن مدة الحركة (السقوط) صغيرة جدا	- مرجع الدراسة هو المرجع السطحي الأرضي الذي نعتبره عطاليا لأ		
		أمام مدة دوران الأرض حول محورها.		
0,5		f: f كابة العبارة الشعاعية لقوة الاحتكاك f		
,		$\vec{f} = -k \cdot \vec{v}$		
		2.2. حساب v_{lim} التي تبلغها الكرية:		
0,5		$v_{lim} = \frac{4}{0.8} = 5 m \cdot s^{-1} : $ ت ع $v_{lim} = \frac{d}{\Delta t}$		
		: عيين بيانيا $f_{\it lim}$ القيمة الحدية لشدة قوة الاحتكاك $f_{\it lim}$		

 $f_{lim} = 5 \times 2 \times 10^{-2} = 0.1N$ من البيان نجد:

 $\cdot k$ استنتاج قيمة معامل الاحتكاك -

 $k = \frac{0.1}{5} = 2 \times 10^{-2} \ kg \cdot s^{-1} :$ کدینا: $k = \frac{f_{lim}}{v_{lim}}$ و منه: $k = \frac{f_{lim}}{v_{lim}}$

t = 0 عند اللحظة: t = 0 عند اللحظة: t = 0

 $\frac{df}{dt}(t=0) = \frac{0.1-0}{0.5-0} = 0.2N \cdot s^{-1} = 0.2kg \cdot m \cdot s^{-3}$

مع تمنيات أساتذتكم بالنجاح و التوفيق

0,5

0,5

0,5	$a_0 = \frac{\frac{df}{dt}(t=0)}{k}$: نجد: $\frac{df}{dt} = k \cdot a$ إذن: $\frac{df}{dt} = k \cdot \frac{dv}{dt}$ الدينا: $f = k \cdot v$
	$a_0 = \frac{0.2}{2 \times 10^{-2}} = 10 m \cdot s^{-2}$:

- 4. استنتاج أن دافعة أرخميدس مهملة أمام قوة الثقل:
- بما أنّ : g = g فإنّ دافعة أرخميدس مهملة أمام قوة الثقل.
- t=3s و t=1s و عطالة الكرية عند اللحظتين t=1s و t=3st = 3s

$$\overrightarrow{P} \downarrow \qquad \qquad \overrightarrow{P} \downarrow \qquad \qquad |\overrightarrow{f}| < |\overrightarrow{P}|$$

$$df \quad 1$$

0,5

0,5

0,5

0,5

1

0,5

0,25

- $: \frac{df}{dt} + \frac{1}{\pi} \cdot f = k \cdot g :$ تبيان أنّ المعادلة التفاضلية لتطور شدة قوة الاحتكاك تكتب على الشكل. بتطبيق القانون الثاني لنيوتن على الجملة (كرية) في المرجع السطحى الأرضى المزوّد بالمعلم الشاقولي (Oz) الموجه
 - $\vec{P} + \vec{f} = m \cdot \vec{a}$ إذن: $\sum \vec{F}_{ext} = m \cdot \vec{a}$ غو الأسفل نجد:
 - $P-f=m\cdot a$:بالإسقاط على محور الحركة (Oz) نجد

 τ ایجاد قیمه τ :

نعلم أنّ: $\frac{df}{dt} = \frac{1}{dt} \cdot \frac{df}{dt}$ نعوض في العبارة السابقة نجد:

$$rac{df}{dt} + rac{k}{m}.f = k.g$$
 بقسمة الطرفين على $rac{m}{k}$ التبسيط نجد: $m \cdot g - f = m \cdot rac{1}{k} \cdot rac{df}{dt}$

- بالمطابقة مع العبارة المعطاة نجد: $\frac{1}{m} = \frac{k}{m}$ إذن: $\tau = \frac{m}{L}$ إذن. $\tau = \frac{m}{L}$
- الطريقة (1) بيانيا: المماس للبيان عند t=0 يقطع المستقيم المقارب الأفقى ذو المعادلة $f=f_{
 m lim}$ في $t = \tau = 0.5s$ نقطة فاصلتها
 - $au = \frac{5}{10} = 0.5s$ و ت ع: $au = \frac{v_{\text{lim}}}{a}$ الطريقة (2) حسابيا : لدينا:

مع تمنيات أساتذتكم بالنجاح و التوفيق

ï	تصحيح اختبار الفصل الأول للسنة ثالثة ثانوي العوسم الدراسي 2023 – 2024
	: m استنتاج كتلة الكرية -
0,5	$m=0.5 imes2 imes10^{-2}=10^{-2}~kg$ ت ع $m= au\cdot k$ ت ع $\tau=rac{m}{k}$ لدينا
	II – 1. تحديد نوع السقوط الشاقولي للمزهرية مع التعليل:
0,75	$a = \frac{dv}{dt} = \frac{5-0}{0,5-0} = 10m \cdot s^{-2}$ معامل توجیه البیان = تسارع حرکة مرکز عطالة المزهریة ومنه
J, 13	تسارع الحركة ثابت و يساوي تسارع الجاذبية الأرضية فحركة سقوط المزهرية هي سقوط حر.
	2. حساب قيمة الارتفاع h الذي سقطت منه المزهرية:
0,5	الارتفاع يساوي المسافة المقطوعة بين اللحظتين $0=t=0$ و $t=2s$ إذن يساوي مساحة المثلث المحصور بين
د,ن	$h=rac{2 imes20}{2}$ البيان و محور الأزمنة و المستقيمين ذوا المعادلة $t=0$ و $t=2$
	3. شرح العبارة:
	$\sum \overrightarrow{F}_{ext} = m' \cdot \overrightarrow{a}$:خضع المزهرة فقط لقوة ثقلها، إذن بتطبيق القانون الثاني لنيوتن على المزهرية نجد
0,75	$a=g$. إذن: $\overrightarrow{P}=m'\cdot\overrightarrow{a}$ بالإسقاط على محور الحركة (Oz) نجد: $P=m'\cdot\overrightarrow{a}$ و بالتالي:
	في السقوط الحر تسارع الحركة مستقل عن كتلة الأجسام (لا يتعلق بكتلة الأجسام) ، إذن لا يمكن إيجاد
	كتلة المزهرية في هذه التجربة.

مع تمنيات أساتذتكم بالنجاح و التوفيق