- Choose the false statement in the following four statements (
- If A is a 2×2 matrix with a zero determinant, then one column of A (A) is a multiple of the other.
- If two rows of a 3×3 matrix A are the same, then det A = 0. (B)
- If A is $n \times n$ and det A = 2, then $det A^3 = 8$. (C)
- If A is a 2×2 matrix, then det 5A = 5 det A.
- 2. Let $A=(\alpha_1,\alpha_2,\alpha_3)$ be a 3×3 matrix, where $\alpha_1,\alpha_2,\alpha_3$ are column vectors of
- A. If det A = 2 and $B = (\alpha_2, \alpha_1 + \alpha_2, 2\alpha_3)$, then det B = 0
- (B) 2
- (C) 4
- 3. Choose an orthogonal set in the following four sets of vectors ().
 - (A) $\begin{bmatrix} -1\\4\\-3 \end{bmatrix}$, $\begin{bmatrix} 5\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\-4\\-7 \end{bmatrix}$

- (B) $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -5 \\ -2 \\ 1 \end{bmatrix}$
- (C) $\begin{bmatrix} 2 \\ -7 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -6 \\ -3 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$ (D) $\begin{bmatrix} 2 \\ -5 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix}$
- 4. Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$. The dimensions of ColA, RowA, NulA are (
- (A) 1, 1, 2 (B) 2, 1, 2 (C) 2, 2, 1

- 5. Let $A=\begin{bmatrix}1 & -2\\1 & a\end{bmatrix}$ and $B=\begin{bmatrix}2 & 0\\0 & 3\end{bmatrix}$. If A and B are similar, then a is
 - (B) 4 (C) 2 (D) 3
- 6. Let A be a matrix such that $A\alpha=2\alpha$, where α is an eigenvector of 2. Then $A^2\alpha = \underline{\hspace{1cm}} \alpha$, $A^3\alpha = \underline{\hspace{1cm}} \alpha$, and $(A + A^3 + 2010I)\alpha = \underline{\hspace{1cm}} \alpha$.
- Let the quadratic form $Q(x)=4x_1^2+8x_1x_2+3x_2^2+6x_1x_3+2x_2x_3+3x_3^2$ and the symmetric matrix A satisfy $Q(x) = x^T A x$. Then $A = \underline{\hspace{1cm}}$.
- 8. Let $\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ 0 \\ a \end{bmatrix}$, and $\alpha_3 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ be linearly dependent, then $a = \underline{\hspace{1cm}}$.
 - 9. Let $u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $v = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$. The inner product $u \cdot v = \underline{\hspace{1cm}}$, the length
- 10. Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$. Then $\det A = \underline{\hspace{1cm}}$.
 - Ξ . Let $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2 \end{bmatrix}$.
 - Compute the cofactors C_{21}, C_{22}, C_{23} . (2) Compute det A.
- (3) Compute $C_{21}-C_{22}+C_{23}$ and $C_{21}+4C_{22}-2C_{23}$.

四. Let
$$A = \begin{bmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{bmatrix}$$
.

- (1) Please give an Echelon form of A.
- (2) Please find bases for the row space RowA, the column space ColA, the null space NulA.
- (3) Please find dimensions of RowA, ColA, NulA.
- 五. Use Cramer's rule to solve the solutions of the system:

$$x_1 + 3x_2 + x_3 = 4$$

$$-x_1 + x_3 = 2$$

$$2x_1 + 2x_2 = 2$$

- \dot{R} . Let $P = \{f(x) : f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n\}$ be the set of all the polynomials. The sum of two elements of P is defined as the sum of two polynomials. The scalar multiple cf(x) is defined as the multiplication of a real number c and a polynomial f(x). Then P is a vector space over R.
- (1) Prove that $V = \{f(x) : f(x) = a_0 + a_1x + a_2x^2\}$ is a subspace of P.
- (2) Prove that $1, x 1, (x 1)^2$ is a basis of V.
- (3) Write $2x^2$ as a linear combination of the basis $1, x 1, (x 1)^2$.
- $oldsymbol{\pm}$. Let $lpha_1, lpha_2, lpha_3$ be three vectors in a linear space V over R. Vectors $lpha_1, lpha_2, lpha_3$ are linearly independent. Let $eta_1 = lpha_1 + lpha_2$, $eta_2 = lpha_2 + lpha_3$, and $eta_3 = lpha_1 + lpha_3$. Determine if eta_1, eta_2, eta_3 are linearly dependent or linearly independent.

$$\text{Λ. Let $\beta_1=\begin{bmatrix}-1\\8\end{bmatrix}$, $\beta_2=\begin{bmatrix}1\\-7\end{bmatrix}$, $\alpha_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\alpha_2=\begin{bmatrix}1\\1\end{bmatrix}$, $u=\begin{bmatrix}3\\2\end{bmatrix}$. }$$

- (1) Please verify that $\{\beta_1, \beta_2\}$ is a basis of \mathbb{R}^2 and $\{\alpha_1, \alpha_2\}$ is another basis of \mathbb{R}^2 .
 - (2) Please write β_1 as a linear combination of α_1 and α_2 ; write β_2 as a linear combination of α_1 and α_2 .
 - (3) Please find a matrix A such that $(\beta_1, \beta_2) = (\alpha_1, \alpha_2)A$; find a matrix B such that $(\alpha_1, \alpha_2) = (\beta_1, \beta_2)B$.
 - (4) Please find a, b such that $u = a\alpha_1 + b\alpha_2$.

九. Let
$$A = \begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$
.

- (1) Verify that $det(A-\lambda I)=-(\lambda-1)^2(\lambda-5)$ and eigenvalues of A are 1,1,5.
- (2) Please give three linearly independent eigenvectors of A. Diagonalize the matrix A. Please give an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

+. Let
$$Q(x) = 4x_1^2 + 3x_2^2 + 2x_2x_3 + 3x_3^2$$

- (1) Write the symmetric matrix A such that $Q(x) = x^T A x$.
- (2) Compute all the eigenvalues of A.

- (3) Determine if A is positive definite or not.
- (4) Please give three linearly independent eigenvectors of A.
- (5) Use the Gram-Schmidt process and give an orthonormal basis from eigenvectors

in (4).