Matemática Discreta - Listas de Exercícios

Jorge Augusto Salgado Salhani

Agosto, 2022

1 Lista 3 - Equivalências, Inferências, Demonstrações

1.1 Classifique em V ou F as sentenças abaixo. No caso de ser verdadeira, demonstre. Caso falsa, encontre um contra-exemplo.

(a)
$$(A \backslash B) \cup (A \cap B) = A$$

Para que seja válida a igualdade, as partes da igualdade devem ser equivalentes. Ou seja, X = Y implica que $X \subset Y$ e $X \supset Y$, ou também $X \Longrightarrow Y$ e $X \Longleftarrow Y$. Em ordem, usaremos X = Y.

Assim, supondo X, temos que

$$[x \in A \cap x \notin B] \cup [x \in A \cap x \in B] \implies$$
$$[x \in A] \cap [x \notin B \cup x \in B] \implies x \in A$$

Supondo Y

$$x \in A \implies [x \in A] \cap [x \notin B \cup x \in B] \implies$$
$$[x \in A \cap x \notin B] \cup [x \in A \cap x \in B]$$

Válido!

(b)
$$(A \backslash B) \subset (A \cup B)$$

Aqui, precisamos apenas da relação $X \implies Y$. Assim, supondo X

$$[x \in A \cap x \notin B] \implies [x \in A] \implies [x \in A \cup x \in B]$$

(c)
$$A \subset B \implies B^c \subset A^c$$

Supondo X,

$$[x \in A \implies x \in B] \implies [x \notin B \implies x \notin A]$$

Como $B^c\subset A^c$ representa $x\notin B\implies x\notin A$, a proposição é válida!

(d) $(A \backslash B) \subset B^c$

Suponto X

$$[x \in A \cap x \notin B] \implies x \notin B \implies x \in B^c$$

Como $x \notin B$ representa $x \in B^c$, vale a proposição.

(e)
$$(A \cup B)^c = A^c \cap B^c$$

Supondo X

$$x \notin (A \cup B) \implies [x \notin A \cap x \notin B] \implies [x \in A^c] \cap [x \in B^c]$$

Supondo Y

$$x \notin A \cap x \notin B \implies x \notin (A \cup B)$$

Vale a proposição.

(f)
$$\varnothing \cap \{\varnothing\} = \varnothing$$

Sejam A, B conjuntos quaisquer. Seja $B=\{A\}$. Assim, supondo $A\cap B$

$$A \cap B \implies x \in A \cap x \in B \implies x \in A$$

Supondo agora $A, x \in A$. Mas como $A \subset B$, então $x \in A \implies x \in B$. Logo $x \in A \cap x \in B$, equivalente a $A \cap B$.

Sendo $A = \emptyset$, vale a proposição.

(g)
$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

Sendo $\mathcal{P}(A) = \{x; x \in A\}$, então $x \in \mathcal{P}(A) \leftrightarrow x \in A \implies x \in A$, então supondo X

$$\mathcal{P}(A) \cap \mathcal{P}(B) \implies [x \in A] \cap [x \in B] \implies x \in A \cap x \in B \implies x \in (A \cap B)$$

Supondo Y

$$\mathcal{P}(A \cap B) \implies x \in A \cap x \in B \implies [x \subset A] \cap [x \subset B] \implies \mathcal{P}(A) \cap \mathcal{P}(B)$$

A proposição é válida.

(h)
$$\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$$

Supondo X

$$\mathcal{P}(A) \cup \mathcal{P}(B) \implies [x \subset A] \cup [x \subset B] \not\Longrightarrow x \in A \cup x \in B$$

Supondo Y

$$\mathcal{P}(A \cup B) \implies x \subset (A \cup B) \not\implies x \in A \cup x \in B$$

Seja $A = \{1\}, B = \{2\}, A \cup B = \{1, 2\}.$ Então $\mathcal{P}(A) = \{\varnothing, \{1\}\}, \mathcal{P}(B) = \{\varnothing, \{2\}\}, \mathcal{P}(A) \cup \mathcal{P}(B) = \{\varnothing, \{1\}, \{2\}\}.$ No entanto $\mathcal{P}(A \cup B) = \{\varnothing, \{1\}, \{2\}, \{1, 2\}\}$ contém o elemento $\{1, 2\}$. Inválido.

1.2 Demonstre por absurdo que

(a) se
$$A \cup B = A \setminus B$$
, então $B = \emptyset$

Supondo que $B \neq \emptyset$, logo existe x tal que $x \in B$. Por hipótese, vale a proposição.

Como X indica que $x \in (A \cup B) \implies x \in A \cup x \in B$ e Y indica que $x \in A \cap x \notin B$,

$$x \in A$$
: vale X e Y

 $x \in B$: vale X, não vale Y

Contradição. Logo $B = \emptyset$.

(b) se
$$(A \setminus B) \cup (B \setminus A) = A \cup B$$
, então $A \cap B = \emptyset$

Supondo $A \cap B \neq \emptyset$. Por hipótese, vale a proposição.

De X temos

$$[x \in A \cap x \notin B] \cup [x \in B \cap x \notin A] \implies$$

$$[x \in A \cup x \in B] \cap [x \in A \cup x \notin A] \cap [x \notin B \cup x \in B] \cap [x \notin B \cup x \notin A] \implies$$

$$[x \in A \cup x \in B] \cap [x \notin B \cup x \notin A]$$

Se existe x tal que $x \in (A \cap B) \leftrightarrow x \in A \cap x \in B$ e portanto $[x \notin B \cup x \notin A]$ é inválido. Logo $A \cap B = \emptyset$.