S.FIROZA 19131A05M3 CSE-4

" Solve the recurrence relation an=an-1+n where ao=7 by substitution method.

Solf Given RR: an=an-1+n" and ao=7

for n=1; a=a0+U) =++1=8 for n=2; a2=a1+(2)=8+4=12=7+(1+4)

for n=3; a3=a2+(3)=&+12+9=21=7+(1+4+86)

 $a_n = a_0 + (i+2+5+...+n') = a_0 + (n)(n+1)(2n+1)$

.. The general solution of given recurrence is

an = 7+ r(n+1)(2n+1)

12) Find generating function for ar= the number of non-negative integral solutions of extent extent extent where of extents, 0× e2 <3, 2 < e3 <6, 2 < e4 <6, e5 is odd and 1 < e5 < e9.

Soli Given that,

0 (e, (3, then e,=0,1,2,3, A(x)=1+x+x+x3.

05e253, then e2=0,1,2,3, A2(x)=1+7+2+x3.

25 €3 (6 , then €3=213,415,6 , A3(x) = x+x3+x4+x5+x6.

2 (Eu (6, then e4=213,415,6, Ay(x)= x+x+x+x+x+x+x.

Thus the generating function we required is.

Acx)= A1(2). A2(2). A3(2). A4(2). A5(2)

A(x)= (1+x+x+なり(x+x+x4+x4x1)では+x+x+x+x1)

BI Find the coefficient of as in _1 - 5x+6.

Solit First we decompose the function into partial function. 2-5x+6 = 2-3x-2x+6 = (x-3)(x-2)

$$\frac{1}{x-5x+6} = \frac{1}{(x-3)(x-2)} = \frac{A}{(x-3)} + \frac{B}{(x-2)}.$$

$$1 = A(x-2) + B(x-3) \rightarrow (1)$$

$$A = 1 \cdot B = -1$$

$$\frac{1}{x-5x+6} = \frac{1}{x-3} - \frac{1}{x-2}$$

Now we want to find 25 coefficient in (2-3) (2-2).

$$=\frac{1}{(-2)\left(1-\frac{\alpha}{2}\right)}$$

$$=\frac{1}{2\left(1-\frac{\alpha}{2}\right)}$$

$$=\frac{1}{3\left(1-\frac{\alpha}{2}\right)}$$

$$=\frac{1}{3\left(1-\frac{\alpha}{2}\right)}$$

$$\frac{1}{2(1-\frac{\pi}{2})} - \frac{1}{3(1-\frac{\pi}{3})} = \frac{1}{2}\sum_{r=0}^{\infty} \left(\frac{\pi}{2}\right)^{r} - \frac{1}{3}\sum_{r=0}^{\infty} \left(\frac{\pi}{2}\right)^{r}$$
 (Take r=5)

$$12^{5}$$
 coefficient = $\frac{1}{2}(\frac{1}{25}) - \frac{1}{3}(\frac{1}{35}) = \frac{1}{26} - \frac{1}{36}$.

(A) Let G = S(ab): ab, c,der} and defined as A*B=A.B, WXIBEG than (G,+) is a monoid.

bit In order to prove (6,+) is a monoid it is enough to show' *' is a binary, associative and existence of identity.

Binary: - For this let us assume A = [a bi], B= [a bi] EG.

Now we have to show 'x' is binary operation. i.e., we have to show 'x' is a mapping from GXG > G.

Consider

A*B= A.B= [ai bi] [azb] = [alaz+bicz albz+bidz] = [ab] EG.

Hence * is a binary operation. Associative: - let A= [a, bi], B= [a, b2], C= [a, b3] £6. Now consider A*(B*c)= A*BC = A* (a2 b2) (a3 b3) = (a1 b1) (a2a3+b2c3 a2b3+b2c3)

(c1 d2) (c2a3+d2c3 C2b3+d2c3) = [a1a2a3+a1b2c3+b1c2a3+b1d2c3 a1a2b3+a1b2d3+b1c2b3+b1d2d3] [crazas+crb2c3+d1c2a3+d1d2c3 c1a2b3+c1b2d3+d1c2b3+d1d2d3] and (A*B)* C = AB* C = (a1 b1) [a2 b2] * C = [a192+b102 a162+b102] * [a2 b3] = [a1a2a3+a1b2c3+b1c2a3+b1d2c3 a1a2b3+a1b2d3+b1c2b3+b1d2d3]
La a2a3+ab2c3+d1c2a3+d1d2c3 a2b3+c1b2d3+d1c2b3+d1d2d3 . (A*B)*C = EA * (B*C). Hence "x" is associative. Existence of identity: - Let A= [a bi] EG. Let e= [0]. Axe=A.e= [a, b]. [o] = [a, b] = A.

.. A *e=e*A=A.

= e=[10] is the identity.

Hence, KG, *> is amonoid.

it . Define and give example Compute the inverse of each element in It using Fermat's theorem. Given that 27 = 8011,2,3,4,5,63. "o" has no inverse, since inverse exists for non-zero elements. Inverse of remaining: 17-1=1(mod7)=>16=1(mod7)=>1.15=1(mod4)=>15=1 is the inverse of 1. 2 = \$ (mod 7) => 26= 1 (mod 7)=> 2.25= 1 (mod 7)=> 25=2.2.2=1 (mod 7) =) 11.2=4 is inverse of 2. 3==1(moda)=>36=1(mod6)=>3.35=1(moda)=>35=3.3.3.3=1(moda) > 8.2.2=12 = 5 is inverse of 3. 4 = 1 (moda) =>46=1 (moda)=>4.15=1 (moda)=>45=4.4.4.4=1 (moda) => 4.2.2=16=2 is inverse = 4. 5#7= 1 (moda) => 56=1 (moda) => 5.5=1 (moda) => 5=5.5.5=1 (moda) =)5.4.4=80=3 is inverse of 5. 67-1=1(mod7)=>66=1(mod7)=>65=1(mod7)=>65=6.66.6=1(mod7) =) 6.1.1=6 is inverse of 1.

Districted Spirit Street Spiriters and	
(ম)	Define and give examples of (i) Bipartite Graph.
	Define and give examples of (i) Bipartite Graph. (ii) K-regular graph (iii) Complete Bipartite Graph.
Shir	i) Bipartite Graph: A non-directed graph G= <v,e> is said to be a bipartite graph of 'V' can be partitioned into two sets' V' and 'V' in such a way that every edge of G' joins a vertex in V, to a vertex in V2.</v,e>
	We in such a way that every edge of G' joins a vertex in Vito
	a vertex in v2.
	Exist VI
	I non-directed graph G= (V,E) is a bi-partite graph if V'can be partitioned into two vertices V and V2 (2 sets).
	V= 54, 1/2, 1/43, 1/43, 1/2= 51/2, 1/43.
	degree (Bay) K; then we say that G is a K-regular graph,
	Exp V4 V3
	2-regular graph. Not 3-regular graph.
	said to be complete iff every vertex of VI is adjacent to every vertex of VI is adjacent to
	said to be complete iff every vertex of VI is adjacent to
	Co:- V1= 2V1, V2, V33, V2= EV4, V5, V63.
	The graph is partitioned into sets ViseV2. Every vertex of Vi is adjacent to every vertex of V2.
	VEIN "1" "2"

	The graph contains 5 vertices. So, the minimum spanning
	The graph contains & vertices. So, the minimum spanning tree formed will be having (5-1) = 4 edges.
	Sorted list of edges: - Weight Src Dest.
	$\frac{1}{2} - \frac{1}{2} - \frac{2}{3}$
	3 - 0 - 1 3 - 4
	4 1 3
	$\frac{4}{8} - \frac{0}{0} - \frac{3}{4}$
	Pickall edges one by one from Sorted list of edges.
	Pickall edges one by one from Sorted list of edges. ii) Edge 1-2:-No cycle is formed , so include it D:
	(ii) Edge 2-3:= No cycle is formed so include it Q
-	(3) 2
	Lin For Della Ala contais
	(iii) Edge 0-1:- No cycle is civ) Edge 3-4:- No cycle is formed, so include it
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Since the notof edges included equals (5-1)=4, the algorathm stops here.
1	- other stops here.
	The obtained minimum spanning tree is
	The obtained minimum spanning tree is
(9)	Use BFS (Breadth First Search) Technique and find a stan-
	Use BFS (Breadth First Search) Technique and find a span- ning tree for the following graph.
a	4
Ž.	(3)
	(c)

Q.

Solit	Consider the ordering of the vertices "1,2,3,4,5,6"
7.	Select 1' as the first vertex for the spanning tree T' and
	Select 'I' as the first vertex for the spanning-tree T' and designate it as the root of 'T'.
	Set V= \$13 T: 0
	Select all those edges \$1,23 where x' runs from 2,6.
	in that order-that do not form a cycle in 1.
	21,23, 21,33 are added to T T: 12
	Set 1252,33.
	First examine, edges incident at 2.
	At 2, include \$2,43 as a tree edge T: (2)
	It forms a cycle. But include \$3,53 Now. set $V = \S4,53$.
	Now. set V= 24,53.
	At 4, include the edge \$4,63. To
	At 4, include the edge \$4,63. T. D. G. G. Set V=\$63.
	Set V=863.
ĺ	Set V=\$63. But no edges can be added from 6. so, algorithm stops here.
	here.
	Set V=263. But no edges can be added from 6. So, algorithm stops here. The obtained Spanning tree for the given graph is 3 5
	G-G
(10)	Solve the recurrence relation an-7an++wan-2=0 1732, a0=10
	Solve the recurrence relation an-7an++wan-2=0 1,732, a0=10, a1=41, using generating function method.
A	Given recurrence relation, an-family 10 anz =0 for n > 2,
	2 11 2 12 10 an - Tan-1+10 an-2 -0 101 11/121

Multiplying the above equation with a both sides and ta-

```
-king summation from n=2 to 00, we get
   =) = (anx) -7 = an-1x +10 = an-2x=0,
   =) (a2x+a3x+a4x+++---) -==(a1x++a2x++a3x+---) +10(a0x+a1x+
                                                      12x4---)=0.
   =) (A(x)-a0-a1x)-7(x(A(x)-a0))+10x-A(x)=0.
    =)(A(x)-10-41x) = 7 (2 (A(x)-10)+10x (A(x))=0.
    =)-A(x)(1-7x+10x)-10+29x=0.
           \frac{10-29x}{(1-7x+10x)} = \frac{10-29x}{(5x-1)(2x+1)} = \frac{A}{(5x-1)} + \frac{B}{(2x-1)}
                 A(x) = \frac{-7}{100} + \frac{(-3)}{(5x+1)}
                                              \left(\frac{1}{1-ax}\right) = \frac{8}{5}a^{2}x^{2}
              A(x) = \frac{7}{(1-5x)} + \frac{8}{(1-2x)}
         Equating or coefficient on both eides.
                    an=7543.24.
(11) Find the coefficient of x in (1+x5+x9)".
Soli \alpha^{32} coefficient \rightarrow (1+x^5+x^9)^{10}.
                      Consider (29)3, (25) then, nz=1, nz=3.
                                  then n=10-1-3=6.
       -1. (1)6. (25). (29)3 (sefficient in (1+25+29)6 is n! 10! niln2[m3] 1/3/6!
```

(2) Solve-the recurrence relation an=4an-1+5an-21, n>2, ao=2, a= 6 using characteristic roots method. Solt Given RR: an= 4and -5an-2=0 . for n=12 ->01) Substitute and ck" in equi. ckn-4ckn-1-5ckn-2=0. ckn-2 (K-4K-5)=0. K-KK-5=0 >(2) is characteristic equation of (1). En solving (2), we get K=1,5 (real & distinct).

General Solution of (1) is an = (1(-1))+(2(5)) -> (3). $a_0 = 2$. $a_1 = 6$ $a_1 = 6$ Given, ao = 2. G=4, G=2. . fan= (-1) (4) + (5) (3) is the particular solution. (13) Find the coefficient of x20 in (23+x4+x5+...)5. Solit Given that (2+x4+x5+...)5. =(x3(1+x+x+...))5. = 215 (1+2+2+1)5-= x15((1-x)-1)5 = x15(1-x)-5 = 215 (1-2)5) = 25 \$ 4+7(227 for res, we get 20 coefficient. = 905 = 0(9,5), : 20 coefficient in (23+x4+x5+..) = 9C5.