Degrees of Relatedness

Andreas Nuyts

KU Leuven, Belgium

EUTypes 2018 Working Meeting Nijmegen, Netherlands January 24, 2018

- Parametricity is about relations,
- Objects are **related** \sim Specify to what **degree** i ($s \sim_i t$)
- The larger the type, the more degrees are eligible.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : (par $: X : \mathcal{U}$) \to Tree $X \to$ List X
 - ullet ad hoc polymorphism: lem : (hoc $:X:\mathcal{U}) o X \uplus (X o \mathsf{Empty})$
 - . irrelevance: $[]: (\operatorname{irr} : n : \mathbb{N}) \to \operatorname{List}_n A$
 - .. shape-irrelevance: λn .List_n $A: (\mathbf{shi} \mid n: \mathbb{N}) \to \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, ...

- Parametricity is about relations,
- Objects are related → Specify to what degree i (s ¬i t),
- The larger the type, the more degrees are eligible
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : (par $: X : \mathcal{U}$) \to Tree $X \to \text{List } X$
 - ullet ad hoc polymorphism: lem : (hoc $:X:\mathcal{U}) o X \uplus (X o \mathsf{Empty})$
 - . irrelevance: $[]:(\mathsf{irr} \mid n:\mathbb{N}) \to \mathsf{List}_n \ A$
 - .. shape-irrelevance: λn .List_n A: (shi $\mid n : \mathbb{N}$) $\rightarrow \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, ...

- Parametricity is about relations,
- Objects are **related** \sim Specify to what **degree** i ($s \sim_i t$),
- The larger the type, the more degrees are eligible,
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : (par $: X : \mathcal{U}$) \to Tree $X \to \text{List } X$
 - ad hoc polymorphism: lem : (hoc $: X : \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$
 - . irrelevance: $[]:(\mathsf{irr} \mid n:\mathbb{N}) \to \mathsf{List}_n \ A$
 - .. shape-irrelevance: λn .List_n A: (shi | n: \mathbb{N}) $\to \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, . . .

- Parametricity is about relations,
- Objects are related → Specify to what degree i (s ←i t),
- The larger the type, the more degrees are eligible,
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : (par $X:\mathcal{U}$) \to Tree $X\to$ List X
 - ad hoc polymorphism: lem : (hoc $: X : \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$
 - . irrelevance: $[]:(\mathsf{irr} : n : \mathbb{N}) \to \mathsf{List}_n \ A$
 - .. shape-irrelevance: λn .List_n A: (shi $\mid n : \mathbb{N}$) $\to \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, . . .

- Parametricity is about relations,
- Objects are **related** \sim Specify to what **degree** i ($s \sim_i t$),
- The larger the type, the more degrees are eligible,
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : $(par \mid X : \mathcal{U}) \rightarrow Tree X \rightarrow List X$
 - ad hoc polymorphism: lem : (hoc $: X : \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$
 - . irrelevance: [] : (irr $\mid n : \mathbb{N}$) \rightarrow List_n A
 - .. shape-irrelevance: λn .List_n A: (shi $\mid n : \mathbb{N}$) $\rightarrow \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, ...

- Parametricity is about relations,
- Objects are related → Specify to what degree i (s ←i t),
- The larger the type, the more degrees are eligible,
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : $(par \mid X : \mathcal{U}) \rightarrow Tree X \rightarrow List X$
 - ad hoc polymorphism: lem : (hoc $\mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$
 - . irrelevance: $[]: (irr \mid n : \mathbb{N}) \rightarrow List_n A$
 - .. shape-irrelevance: $\lambda n. \operatorname{List}_n A : (\operatorname{shi} \mid n : \mathbb{N}) \to \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, ...

- Parametricity is about relations,
- Objects are **related** \sim Specify to what **degree** i ($s \sim_i t$),
- The larger the type, the more degrees are eligible,
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : $(par \mid X : \mathcal{U}) \rightarrow Tree X \rightarrow List X$
 - ad hoc polymorphism: lem : (hoc $\mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$
 - . irrelevance: [] : (irr $: n : \mathbb{N}$) \rightarrow List_n A
 - .. shape-irrelevance: λn .List_n A: (shi $\mid n : \mathbb{N}$) $\rightarrow \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, ...

- Parametricity is about relations,
- Objects are related → Specify to what degree i (s ¬i t),
- The larger the type, the more degrees are eligible,
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : $(par \mid X : \mathcal{U}) \rightarrow Tree X \rightarrow List X$
 - ad hoc polymorphism: lem : (hoc $\mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$
 - . irrelevance: [] : (irr $: n : \mathbb{N}$) \rightarrow List_n A
 - .. shape-irrelevance: λn .List_n A: (shi $\mid n : \mathbb{N}$) $\rightarrow \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, ...

- Parametricity is about relations,
- Objects are related → Specify to what degree i (s ←i t),
- The larger the type, the more degrees are eligible,
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity: flatten : $(par \mid X : \mathcal{U}) \rightarrow Tree X \rightarrow List X$
 - ad hoc polymorphism: lem : $(hoc \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow Empty)$
 - . irrelevance: [] : (irr $: n : \mathbb{N}$) $\rightarrow \text{List}_n A$
 - .. shape-irrelevance: λn .List_n A: (shi $\mid n : \mathbb{N}$) $\rightarrow \mathcal{U}$
 - aspects of unions, intersections, algebra, Prop, ...

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

$$(\rightarrow)$$
 $h \mapsto \lambda X.\lambda r.h \circ r.$

$$(\leftarrow)$$
 $g \mapsto g \land A id.$

(tgt) Prove:
$$g \times r \times = g \wedge id(r \times)$$
.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

$$(\rightarrow)$$
 $h \mapsto \lambda X \cdot \lambda r \cdot h \circ r \cdot$

$$(\leftarrow)$$
 $g \mapsto g \land A id.$

(src) refl

(tgt) Prove:
$$g \times r \times = g \wedge id(r \times)$$
.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation } (X,r) \textit{ of } A \right)$$

Proof:

$$(\rightarrow)$$
 $h \mapsto \lambda X \cdot \lambda r \cdot h \circ r$.

$$(\leftarrow)$$
 $g \mapsto g \land a id.$

(src) refl

(tgt) Prove:
$$g \times r \times = g \wedge id(r \times)$$
.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

- (\rightarrow) $h \mapsto \lambda X \cdot \lambda r \cdot h \circ r$.
- (\leftarrow) $g \mapsto g \land A id.$
- (src) refl
- (tgt) Prove: $g \times r \times = g \wedge id(r \times)$.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

$$(\rightarrow)$$
 $h \mapsto \lambda X \cdot \lambda r \cdot h \circ r$.

$$(\leftarrow)$$
 $g \mapsto g \land A id.$

(src) refl

(tgt) Prove:
$$g \times r x = g \wedge id(r x)$$
.

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \operatorname{id} (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems Idea: **Related things map to related things.**

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A \operatorname{id} (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems.

Idea: Related things map to related things.

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A \operatorname{id} (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

 $X:*, r: X \rightarrow A, x: X \vdash g X r x: B$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A id (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: Related things map to related things.

$$X_0:*,$$

$$r_0: X_0 \to A$$

$$x_0 : X_0$$

$$\vdash$$

$$X_0:*, \qquad r_0:X_0\to A, \qquad x_0:X_0 \vdash gX_0 r_0 x_0:B$$

$$[r]:[X\rightarrow A]$$

$$X_1: *$$

$$r_1:X_1\to A$$

$$x_1 : X_1$$

$$\vdash$$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A id (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: Related things map to related things.

$$X_0:*,$$

$$r_0: X_0 \to A$$

$$x_0 : X_0$$

$$\vdash$$

$$X_0:*, \qquad r_0:X_0\to A, \qquad x_0:X_0 \vdash gX_0 r_0 x_0:B$$

$$[X]$$
: Rel, $[r]: [X \rightarrow A], [x]: [X] \vdash$

$$X_1: *$$

$$r_1:X_1\to A$$

$$x_1:X$$

$$\vdash$$

$$X_1:*, r_1:X_1\to A, x_1:X_1\vdash gX_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A \text{ id } (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: Related things map to related things.

$$X_0:*,$$

$$r_0: X_0 \to A$$

$$x_0 : X_0$$

$$\vdash$$

$$X_0:*, \qquad r_0:X_0\to A, \qquad x_0:X_0 \vdash gX_0 r_0 x_0:B$$

$$[X]$$
: Rel, $[r]: [X \rightarrow A]$,

$$X_1:*,$$

$$r_1:X_1\to A$$

$$X_1 : X_1$$

$$\vdash$$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1 r_1 x_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, \qquad r_0:X_0\to A, \qquad x_0:X_0 \qquad \vdash \qquad g\ X_0\ r_0\ x_0:B$$

$$[X]$$
: Rel, $[r]$: $[X \rightarrow A]$, $[x]$: $[X]$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1 r_1x_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g \land id (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, \qquad r_0:X_0\to A, \qquad x_0:X_0 \vdash gX_0 r_0 x_0:B$$

$$[X]$$
: Rel, $[r]$: $[X o A]$, $[x]$: $[X]$ \vdash $[g imes r imes r]$: $[B]$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1 r_1 x_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

 $X_0:*, r_0:X_0\to A,$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$[X]: \text{Rel}, \quad [r]: [X \rightarrow A], \quad [x]: [X] \vdash =$$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1 r_1x_1:B$$

IDENTITY EXTENSION LEMMA (IEL)

 $x_0: X_0 \vdash g X_0 r_0 x_0: B$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

 $X_0:*, r_0:X_0\to A,$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$[X]$$
: Rel, $[r]$: $[X \rightarrow A]$, $[x]$: $[X]$ \vdash

$$A:*$$
, id: $A \rightarrow A$, $r_0 x_0: A \vdash g A \text{ id } (r_0 x_0): B$

IDENTITY EXTENSION LEMMA (IEL)

 $x_0: X_0 \vdash g X_0 r_0 x_0: B$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, \qquad r_0:X_0 \to A, \qquad x_0:X_0 \vdash g X_0 r_0 x_0:B$$

$$/r_0/: \text{Rel}, \qquad [r]: \setminus \sqcup \circ r_0 \setminus, \qquad [x]: /r_0/ \vdash \qquad =$$

$$A:*, \qquad \text{id}:A \to A, \qquad r_0 x_0:A \vdash g A \text{ id} (r_0 x_0):B$$

IDENTITY EXTENSION LEMMA (IEL)

Lemma

If
$$g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$$

then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, \qquad r_0:X_0 \to A, \qquad x_0:X_0 \qquad \vdash \qquad g \ X_0 \ r_0 \ x_0:B$$

$$/r_0/: \operatorname{Rel}, \qquad \operatorname{refl}: \backslash \sqcup \circ r_0 \backslash, \qquad \operatorname{refl}: /r_0/ \qquad \vdash \qquad =$$

$$A:*, \qquad \operatorname{id}:A \to A, \qquad r_0 \ x_0:A \qquad \vdash \qquad g \ A \operatorname{id} \left(r_0 \ x_0\right):B$$

IDENTITY EXTENSION LEMMA (IEL)

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

$$leak: \Pi(X:\mathcal{U}).(X\to A)\to (X\to \mathcal{U})$$

leak
$$X r x = X$$
.

Representation type is returned as data!

But think of $Leak \ X \ r \ x = X$ as a dependent type We're just ignoring arguments

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

$$leak: \Pi(X:\mathcal{U}).(X \to A) \to (X \to \mathcal{U})$$

leak X r x = X.

Representation type is returned as data!

But think of Leak X r x = X as a dependent type We're just ignoring arguments

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

leak :
$$\Pi(X : \mathcal{U}).(X \to A) \to (X \to \mathcal{U})$$

leak
$$X r x = X$$
.

Representation type is returned as data!

But think of $Leak \ X \ r \ x = X$ as a dependent type We're just ignoring arguments

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

leak :
$$\Pi(X : \mathcal{U}).(X \to A) \to (X \to \mathcal{U})$$

leak
$$X r x = X$$
.

Representation type is returned as data!

But think of Leak X r x = X as a dependent type We're just ignoring arguments

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

leak :
$$\Pi(X : \mathcal{U}).(X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

leak
$$X r x = X$$
.

Representation type is returned as data!

But think of Leak X r x = X as a dependent type

We're just ignoring arguments

DTT: formal type/data boundary disappears

Difference in expectation remains

System F

Values can be related:

$$(s:S) \frown (t:T)$$

IEL: if $(s:A) \frown (t:A)$ then s=t (heterogeneous equality)

Types can be related:

$$S \frown T$$

which gives meaning to

$$(s:S) \frown (t:T)$$

Dependent types

Things can be 0-related

$$(s:S) \frown_{\mathbf{0}} (t:T)$$

IEL: if $(s:A) \frown_0 (t:A)$ then s=t (heterogeneous equality)

Things can be 1-related:

$$(s:K) \frown_1 (t:L)$$

where $(S:\mathcal{U}) \frown_1 (T:\mathcal{U})$ gives meaning to

$$(s:S) \frown_0 (t:T)$$

System F

Values can be related:

$$(s:S) \frown (t:T)$$

IEL: if $(s:A) \frown (t:A)$ then s=t (heterogeneous equality)

Types can be related:

$$S \cap T$$

which gives meaning to

$$(s:S) \frown (t:T)$$

Dependent types

Things can be 0-related

$$(s:S) \frown_{\mathbf{0}} (t:T)$$

IEL: if $(s:A) \frown_0 (t:A)$ then s=t (heterogeneous equality)

Things can be 1-related:

$$(s:K) \frown_1 (t:L)$$

where $(S:\mathcal{U}) \frown_1 (T:\mathcal{U})$ gives meaning to

$$(s:S) \frown_{\mathbf{0}} (t:T)$$

System F

Values can be related:

$$(s:S) \frown (t:T)$$

IEL: if $(s:A) \frown (t:A)$ then s=t (heterogeneous equality)

Types can be related:

$$S \cap T$$

which gives meaning to

$$(s:S) \frown (t:T)$$

Dependent types

Things can be 0-related:

$$(s:S) \frown_{\mathbf{0}} (t:T)$$

IEL: if $(s:A) \frown_0 (t:A)$ then s = t (heterogeneous equality)

Things can be 1-related:

$$(s:K) \frown_1 (t:L)$$

where $(S:\mathcal{U}) \frown_1 (T:\mathcal{U})$ gives meaning to

$$(s:S) \frown_{\mathbf{0}} (t:T)$$

Let's have two relations

System F

Values can be related:

$$(s:S) \frown (t:T)$$

IEL: if $(s:A) \frown (t:A)$ then s=t (heterogeneous equality)

Types can be related:

$$S \cap T$$

which gives meaning to

$$(s:S) \frown (t:T)$$

Dependent types

Things can be 0-related:

$$(s:S) \frown_{\mathbf{0}} (t:T)$$

IEL: if $(s:A) \frown_0 (t:A)$ then s = t (heterogeneous equality)

Things can be 1-related:

$$(s:K) \frown_1 (t:L)$$

where $(S:\mathcal{U}) \frown_1 (T:\mathcal{U})$ gives meaning to

$$(s:S) \frown_{\mathbf{0}} (t:T)$$

0-relatedness:

- $\bullet (2+5:\mathbb{N}) \frown_0 (7:\mathbb{N})$
- (flatten Bool : Tree Bool \to List Bool) \curvearrowright_0 (flatten \mathbb{N} : Tree $\mathbb{N} \to \mathrm{List} \ \mathbb{N}$) for any proof of Bool $\curvearrowright_1 \mathbb{N}$

1-relatedness:

- (List₄ Bool : \mathcal{U}) \frown_1 (List₇ Bool : \mathcal{U})
- (Bool : \mathcal{U}) \frown_1 (\mathbb{N} : \mathcal{U}) non-canonically (e.g. by setting true \frown_0 5 and false \frown_0 2k+1)

2-relatedness:

• (Monoid : \mathcal{U}) \curvearrowright_2 (Group : \mathcal{U}) by setting (M : Monoid) \curvearrowright_1 (G : Group) whenever (M : Monoid) \curvearrowright_1 (asMonoid G : Monoid)

- (ロ) (部) (注) (注) 注 り(G

0-relatedness:

- $(2+5:\mathbb{N}) \frown_0 (7:\mathbb{N})$
- (flatten Bool : Tree Bool \rightarrow List Bool) \frown_0 (flatten \mathbb{N} : Tree \mathbb{N} \rightarrow List \mathbb{N}) for any proof of Bool $\frown_1 \mathbb{N}$

1-relatedness:

- (List₄ Bool : \mathcal{U}) \frown_1 (List₇ Bool : \mathcal{U})
- (Bool : \mathcal{U}) \frown_1 (\mathbb{N} : \mathcal{U}) non-canonically (e.g. by setting true \frown_0 5 and false \frown_0 2k+1)

2-relatedness:

• (Monoid : \mathcal{U}) \curvearrowright_2 (Group : \mathcal{U}) by setting (M : Monoid) \curvearrowright_1 (G : Group) whenever (M : Monoid) \curvearrowright_1 (asMonoid G : Monoid)

0-relatedness:

- $\bullet (2+5:\mathbb{N}) \frown_0 (7:\mathbb{N})$
- (flatten Bool : Tree Bool \rightarrow List Bool) \frown_0 (flatten \mathbb{N} : Tree $\mathbb{N} \rightarrow$ List \mathbb{N}) for any proof of Bool $\frown_1 \mathbb{N}$

1-relatedness:

- (List₄ Bool : \mathcal{U}) \frown_1 (List₇ Bool : \mathcal{U})
- (Bool : \mathcal{U}) \frown_1 (\mathbb{N} : \mathcal{U}) non-canonically (e.g. by setting true \frown_0 5 and false \frown_0 2k+1)

2-relatedness:

• (Monoid: \mathcal{U}) \curvearrowright_2 (Group: \mathcal{U}) by setting (M: Monoid) \curvearrowright_1 (G: Group) whenever (M: Monoid) \curvearrowright_1 (asMonoid G: Monoid).

0-relatedness:

- $\bullet (2+5:\mathbb{N}) \frown_0 (7:\mathbb{N})$
- (flatten Bool : Tree Bool \rightarrow List Bool) \frown_0 (flatten \mathbb{N} : Tree $\mathbb{N} \rightarrow$ List \mathbb{N}) for any proof of Bool $\frown_1 \mathbb{N}$

1-relatedness:

- (List₄ Bool : \mathcal{U}) \sim_1 (List₇ Bool : \mathcal{U})
- (Bool : \mathcal{U}) \frown_1 (\mathbb{N} : \mathcal{U}) non-canonically (e.g. by setting true \frown_0 5 and false \frown_0 2k+1)

2-relatedness:

• (Monoid: \mathcal{U}) \curvearrowright_2 (Group: \mathcal{U}) by setting (M: Monoid) \curvearrowright_1 (G: Group) whenever (M: Monoid) \curvearrowright_1 (asMonoid G: Monoid).

0-relatedness:

- $\bullet (2+5:\mathbb{N}) \frown_0 (7:\mathbb{N})$
- (flatten Bool : Tree Bool \rightarrow List Bool) \frown_0 (flatten \mathbb{N} : Tree $\mathbb{N} \rightarrow$ List \mathbb{N}) for any proof of Bool $\frown_1 \mathbb{N}$

1-relatedness:

- (List₄ Bool : \mathcal{U}) \sim_1 (List₇ Bool : \mathcal{U})
- (Bool : \mathcal{U}) \frown_1 (\mathbb{N} : \mathcal{U}) non-canonically (e.g. by setting true \frown_0 5 and false \frown_0 2k+1)

2-relatedness:

• (Monoid : \mathcal{U}) \curvearrowright_2 (Group : \mathcal{U}) by setting (M : Monoid) \curvearrowright_1 (G : Group) whenever (M : Monoid) \curvearrowright_1 (asMonoid G : Monoid)

0-relatedness:

- $(2+5:\mathbb{N}) \sim_0 (7:\mathbb{N})$
- (flatten Bool : Tree Bool \rightarrow List Bool) \frown_0 (flatten \mathbb{N} : Tree $\mathbb{N} \to \mathsf{List} \ \mathbb{N}$) for any proof of Bool $\sim_1 \mathbb{N}$

1-relatedness:

- (List₄ Bool : \mathcal{U}) \sim_1 (List₇ Bool : \mathcal{U})
- (Bool: \mathcal{U}) \sim_1 (\mathbb{N} : \mathcal{U}) non-canonically (e.g. by setting true $\sim_0 5$ and false $\sim_0 2k+1$)

2-relatedness:

• (Monoid: \mathcal{U}) \sim_2 (Group: \mathcal{U}) by setting $(M : Monoid) \sim_1 (G : Group)$ whenever $(M : Monoid) \sim_1 (asMonoid G : Monoid)$.

. . .

- Depth -1: Unit, Empty, $P \lor Q$, ...
- Depth 0 (only equality): Bool, \mathbb{N} , List_n Bool, \mathcal{U}^{-1} , ... $a \curvearrowright_0 b \Rightarrow \top$
- Depth 1: \mathcal{U}^0 , $\mathcal{U}^0 \to \mathcal{U}^0$, Group, Monoid, ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow \top$
- Depth 2: \mathcal{U}^1 , ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow a \curvearrowright_2 b \Rightarrow \top$
- ...

- Depth -1: Unit, Empty, $P \lor Q$, ...
- Depth 0 (only equality): Bool, \mathbb{N} , List_n Bool, \mathcal{U}^{-1} , ... $a \curvearrowright_0 b \Rightarrow \top$
- Depth 1: \mathcal{U}^0 , $\mathcal{U}^0 \to \mathcal{U}^0$, Group, Monoid, ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow \top$
- Depth 2: \mathcal{U}^1 , ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow a \curvearrowright_2 b \Rightarrow \top$
- ...

- Depth -1: Unit, Empty, $P \lor Q$, ...
- Depth 0 (only equality): Bool, \mathbb{N} , List_n Bool, \mathcal{U}^{-1} , ... $a \curvearrowright_0 b \Rightarrow \top$
- Depth 1: \mathcal{U}^0 , $\mathcal{U}^0 \to \mathcal{U}^0$, Group, Monoid, ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow \top$
- Depth 2: \mathcal{U}^1 , ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow a \curvearrowright_2 b \Rightarrow \top$
- ...

- Depth -1: Unit, Empty, $P \lor Q$, ...
- Depth 0 (only equality): Bool, \mathbb{N} , List_n Bool, \mathcal{U}^{-1} , ... $a \curvearrowright_0 b \Rightarrow \top$
- Depth 1: \mathcal{U}^0 , $\mathcal{U}^0 \to \mathcal{U}^0$, Group, Monoid, ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow \top$
- Depth 2: \mathcal{U}^1 , ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow a \curvearrowright_2 b \Rightarrow \top$
- ...

- Depth -1: Unit, Empty, $P \lor Q$, ...
- Depth 0 (only equality): Bool, \mathbb{N} , List_n Bool, \mathcal{U}^{-1} , ... $a \curvearrowright_0 b \Rightarrow \top$
- Depth 1: \mathcal{U}^0 , $\mathcal{U}^0 \to \mathcal{U}^0$, Group, Monoid, ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow \top$
- Depth 2: \mathcal{U}^1 , ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow a \curvearrowright_2 b \Rightarrow \top$
- ...

- Depth -1: Unit, Empty, $P \lor Q$, ...
- Depth 0 (only equality): Bool, \mathbb{N} , List_n Bool, \mathcal{U}^{-1} , ... $a \curvearrowright_0 b \Rightarrow \top$
- Depth 1: \mathcal{U}^0 , $\mathcal{U}^0 \to \mathcal{U}^0$, Group, Monoid, ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow \top$
- Depth 2: \mathcal{U}^1 , ... $a \curvearrowright_0 b \Rightarrow a \curvearrowright_1 b \Rightarrow a \curvearrowright_2 b \Rightarrow \top$
- ...

$$T: \mathcal{U}^0 \to \mathcal{U}^0$$
$$T X = \mathsf{Bool} \to X \to X \to X$$

par : $1 \rightarrow 0$

$$if: (\mathbf{par} \mid X : \mathcal{U}^0) \rightarrow$$

Bool $\to X \to X \to X$

$$X \curvearrowright_0 Y$$
 if $X \curvearrowright_0$ if Y

$$X \curvearrowright_1 Y$$

$$T$$

cnt : $1 \rightarrow 1$

$$T: \mathcal{U}^0 \to \mathcal{U}^0$$
 $T : X = \mathsf{Bool} \to X \to X \to X$

$$\begin{array}{cccc}
X \curvearrowright_0 Y \Longrightarrow T X \curvearrowright_0 T Y \\
\downarrow & & \downarrow \\
X \curvearrowright_1 Y \Longrightarrow T X \curvearrowright_1 T Y \\
\downarrow & & \downarrow \\
\top \Longrightarrow \top
\end{array}$$

if $(List_n A) b as []_n$ Irrelevant in n?

Yes if $par \circ shi = irr : 0 \rightarrow 0$


```
if (List<sub>n</sub> A) b as []_n
Irrelevant in n?
Yes if \mathbf{par} \circ \mathbf{shi} = \mathbf{irr} : 0 \to 0
```


if (List_n A) b as
$$[]_n$$

Irrelevant in n ?
Yes if $\mathbf{par} \circ \mathbf{shi} = \mathbf{irr} : 0 \to 0$


```
if (List<sub>n</sub> A) b as []_n
Irrelevant in n?
Yes if \mathbf{par} \circ \mathbf{shi} = \mathbf{irr} : 0 \to 0
```


- Unified framework (type system + presheaf model) for:
 - parametricity
 - ad hoc polymorphism
 - irrelevance
 - .. shape-irrelevance
 - aspects of unions, intersections, algebra, Prop, ...

- Depth explains which modalities apply given the types
 See Licata et al. (2016, 2017) for multi-mode type theory
- Type-checking time erasure of irrelevant subterms

- Unified framework (type system + presheaf model) for:
 - parametricity
 - ad hoc polymorphism
 - irrelevance
 - .. shape-irrelevance
 - aspects of unions, intersections, algebra, Prop, ...

- Depth explains which modalities apply given the types
 See Licata et al. (2016, 2017) for multi-mode type theory
- Type-checking time erasure of irrelevant subterms

- Unified framework (type system + presheaf model) for:
 - parametricity
 - ad hoc polymorphism
 - irrelevance
 - .. shape-irrelevance
 - aspects of unions, intersections, algebra, Prop, ...

- Depth explains which modalities apply given the types
 See Licata et al. (2016, 2017) for multi-mode type theory
- Type-checking time erasure of irrelevant subterms

- Unified framework (type system + presheaf model) for:
 - parametricity
 - ad hoc polymorphism
 - irrelevance
 - .. shape-irrelevance
 - aspects of unions, intersections, algebra, Prop, ...

- Depth explains which modalities apply given the types
 See Licata et al. (2016, 2017) for multi-mode type theory
- Type-checking time erasure of irrelevant subterms

Thanks!

Questions?