DEVOIR À LA MAISON N° 14

Problème 1 —

Partie I -

Soit ℓ un réel. On note f l'application de \mathbb{R}_+ dans \mathbb{R} définie par $f(x) = \frac{\sin x}{x}$ si x > 0 et $f(0) = \ell$. Pour $n \in \mathbb{N}$, on note I_n l'intervalle $[n\pi, (n+1)\pi]$.

- 1. Quelle valeur faut-il donner à ℓ pour que f soit continue en 0? On suppose désormais que ℓ a cette valeur.
- 2. Montrez que f est de classe C^1 (c'est-à-dire : dérivable, et à dérivée continue) sur l'intervalle $[0, +\infty[$ et explicitez la dérivée de f en 0.
- 3. Soit $n \in \mathbb{N}^*$. Montrez que, dans l'intervalle I_n , l'équation $x \cos x = \sin x$ possède une et une seule solution, que l'on notera x_n .
- 4. Déterminez un équivalent très simple de x_n , lorsque n tend vers l'infini.
- **5.** Déterminez les variations de f dans l'intervalle I_0 , puis dans les intervalles I_{2n-1} et I_{2n} pour $n \in \mathbb{N}^*$.
- 6. Donnez l'allure de la courbe représentative de f sur l'intervalle $[0, 4\pi]$.

Partie II -

Il est clair que la restriction g de f à l'intervalle $]0, +\infty[$ est de classe \mathcal{C}^{∞} sur cet intervalle ; on pourrait d'ailleurs prouver que f est de classe \mathcal{C}^{∞} sur l'intervalle $[0, +\infty[$ mais ce n'est pas notre objectif.

On se propose simplement d'établir quelques résultats concernant la dérivée \mathfrak{n} -ième de \mathfrak{g} , notée $\mathfrak{g}^{(\mathfrak{n})}$. En particulier, $\mathfrak{g}^{(0)}$ désigne \mathfrak{g} elle-même.

On identifie un polynôme P et la fonction polynôme $x\mapsto P(x)$ qui lui est naturellement associée.

Chaque polynôme sera écrit selon les puissances décroissantes de X.

1. Explicitez g''(x) pour x > 0.

Au vu des expressions de g(x), g'(x) et g''(x), on se propose d'établir que l'assertion $\mathcal{A}(n)$ suivante est vraie pour tout $n \in \mathbb{N}$:

Il existe deux polynômes
$$P_n \text{ et } Q_n \text{ tels que, pour tout } x > 0 : \\ g^{(n)}(x) = \frac{P_n(x)\sin^{(n)}x + Q_n(x)\sin^{(n+1)}x}{x^{n+1}}$$

Dans les deux questions suivantes, vous allez raisonner par récurrence sur n.

- 2. Il est clair que $\mathcal{A}(n)$ est vraie pour $n \in \{0,1,2\}$; vous dresserez simplement un tableau donnant les expressions de P_n et Q_n pour ces valeurs de n.
- 3. On fixe $n \in \mathbb{N}$, et on suppose l'assertion $\mathcal{A}(n)$ acquise. Établissez l'assertion $\mathcal{A}(n+1)$; vous déterminerez des expressions de P_{n+1} et Q_{n+1} en fonction de P_n et Q_n .

Il résulte donc des questions II.2 et II.3 que l'assertion $\mathcal{A}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- 4. Montrez que P_n et Q_n ont tous leurs coefficients dans \mathbb{Z} ; précisez le degré, la parité, et le coefficient dominant de ces polynômes.
- 5. Utilisez les formules établies à la question II.3 pour expliciter P_3 et Q_3 .
- **6.** Deux polynômes U et V vérifient $U(x) \sin x + V(x) \cos x = 0$ pour tout x > 0. Montrez que U et V sont tous deux égaux au polynôme nul.
- 7. En partant de la relation $xg(x) = \sin x$ et en appliquant la formule de Leibniz, ainsi que le résultat de la question précédente, mettez en évidence deux nouvelles relations liant P_n , Q_n , P_{n+1} et Q_{n+1} .
- 8. Justifiez alors la relation $P'_n = Q_n$, et montrez que P_n est solution d'une équation différentielle du second ordre $très\ simple$, que l'on notera \mathcal{E}_n .
- 9. Il est clair que l'application $\Psi: T \mapsto T + T''$ est un endomorphisme du \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients réels.

Montrez que Ψ induit un automorphisme Ψ_n du sous-espace $\mathbb{R}_n[X]$ constitué des polynômes de degré n au plus.

Montrez ensuite que Ψ est un automorphisme de $\mathbb{R}[X]$.

Il résulte de ceci que P_n est l'unique solution polynomiale de l'équation différentielle \mathcal{E}_n .

10. $n \in \mathbb{N}$ est fixé, et p désigne la partie entière de $\frac{n}{2}$.

Justifiez l'existence d'une famille $(a_k)_{0 \leqslant k \leqslant p}$ de réels vérifiant $P_n = \sum_{k=0}^p a_k X^{n-2k}$ et déterminez une expres-

sion de a_k faisant intervenir des factorielles et/ou des puissances, mais débarrassée de tout signe \prod .

11. Soit $n \in \mathbb{N}$. Déterminez les solutions réelles de l'équation différentielle $y'' + y = x^n$.