Final Project Submission

Please fill out:

· Student name: Leshmi Jayakumar

· Student pace: Part time

Scheduled project review date/time: 12/02/2023

· Instructor name: Hardik Idnani

KING COUNTRY HOUSE DATA ANALYSIS

**Column Names and descriptions for Kings County Data Set

- · dateDate house was sold
- pricePrice is prediction target
- bedroomsNumber of Bedrooms/House
- bathroomsNumber of bathrooms/bedrooms
- sqft_livingsquare footage of the home
- sqft_lotsquare footage of the lot
- floorsTotal floors (levels) in house
- waterfront House which has a view to a waterfront
- · view Has been viewed
- condition How good the condition is (Overall)
- grade overall grade given to the housing unit, based on King County grading system
- sqft_above square footage of house apart from basement
- sqft_basement square footage of the basement
- yr_built Built Year
- yr_renovated Year when house was renovated
- · zipcode zip
- lat Latitude coordinate
- · long Longitude coordinate
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

Goal

The goal of this project is to create a relatively accurate prediction model for the prices that future houses sell for. We will explore how different factors affect the pricing the homes, given the data, and compile the most important feature.

In [1]:

```
# First, let's import the libraries we are going to use
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
# Ignores warnings
import warnings
warnings.filterwarnings('ignore')
# Used for working with the z-score
from scipy import stats
from scipy import interpolate
from itertools import combinations
#For OLS model
import statsmodels.api as sm
import statsmodels.formula.api as smf
import scipy.stats as stats
import statsmodels.stats.api as sms
from statsmodels.formula.api import ols
import pylab
# Used for Linear Regression model and Cross Validation model
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean squared error
from sklearn.metrics import mean_squared_error, make_scorer
from sklearn.model_selection import cross_val_score
from sklearn import metrics
# Used when showing normalization of data
from statsmodels.stats.diagnostic import normal_ad
# Used when creating bar plots and using median instead of mean
from numpy import median
```

```
In [2]: ▶
```

```
#Let's import our King's County housing data and take a Look
data_k=pd.read_csv('data/kc_house_data.csv')
```

In [3]: ▶

```
data_k.head()
```

Out[3]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterf
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	I
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

5 rows × 21 columns

```
←
```

In [4]: ▶

#Data information
data_k.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	float64
9	view	21534 non-null	float64
10	condition	21597 non-null	int64
11	grade	21597 non-null	int64
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtyp	es: float64(8),	int64(11), obje	ct(2)

memory usage: 3.5+ MB

In [5]: ▶

```
#Convert date to date time
data_k['date'] = pd.to_datetime(data_k['date'], format='%m/%d/%Y')
#Convert sqft_basement to float
data_k['sqft_basement'] = pd.to_numeric(data_k['sqft_basement'], errors="coerce")
#using errors='coerce' because sqft_basement contains '?' string values. These values will
```

In [6]: ▶

```
#after converting the dtype of sqft_basement and Date
data_k.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):
                  Non-Null Count Dtype
    Column
                  -----
0
    id
                  21597 non-null int64
1
    date
                  21597 non-null datetime64[ns]
                  21597 non-null float64
2
    price
3
    bedrooms
                 21597 non-null int64
4
    bathrooms
                21597 non-null float64
5
    sqft_living 21597 non-null int64
                  21597 non-null int64
6
    sqft_lot
7
    floors
                  21597 non-null float64
8
    waterfront
                 19221 non-null float64
                  21534 non-null float64
9
    view
                  21597 non-null int64
10 condition
                  21597 non-null int64
11 grade
12 sqft_above 21597 non-null int64
    sqft_basement 21143 non-null float64
13
14 yr_built
                  21597 non-null int64
15 yr renovated 17755 non-null float64
                  21597 non-null int64
16 zipcode
                  21597 non-null float64
17
    lat
18 long
                  21597 non-null float64
19
    sqft living15 21597 non-null int64
    sqft lot15
                  21597 non-null int64
dtypes: datetime64[ns](1), float64(9), int64(11)
memory usage: 3.5 MB
```

In [7]: ▶

```
# Handle the missing data.
print(data_k.isnull().sum())
print(data_k.shape)
```

```
id
                     0
date
                     0
price
                     0
bedrooms
                     0
bathrooms
                     0
sqft_living
                     0
                     0
saft lot
floors
                     0
waterfront
                  2376
view
                    63
condition
                     0
                     0
grade
sqft_above
                     0
                   454
sqft_basement
yr_built
                     0
yr_renovated
                  3842
zipcode
                     0
lat
                     0
long
                     0
sqft_living15
                     0
sqft_lot15
                     0
dtype: int64
(21597, 21)
```

In [8]: ▶

```
#For sqft_basement, waterfront and view, replace missing values with 0
data_k['sqft_basement'].fillna(0, inplace=True)
data_k['waterfront'].fillna(0, inplace=True)
data_k['view'].fillna(0, inplace=True)
#For yr_renovated, set yr_renovated to yr_built
data_k['yr_renovated'].fillna(data_k[data_k['yr_renovated'].isna()]['yr_built'], inplace=True)
```

In [9]: ▶

```
print(data_k.isnull().sum())
```

```
id
                 0
date
                 0
price
                 0
bedrooms
                 0
bathrooms
                 0
sqft_living
                 0
sqft_lot
                 0
floors
                 0
waterfront
                 0
                 0
view
condition
                 0
grade
                 0
sqft_above
                 0
sqft_basement
yr_built
                 0
yr_renovated
                 0
                 0
zipcode
lat
                 0
long
                 0
sqft_living15
                 0
sqft_lot15
dtype: int64
```

Questions

Will the price of the house positvely correlated with:

- * a)No:of bedrooms
- * b)Sqft_living
- * c)Condition
- * d)Grade
- * e)Zipcode

Baseline

In [10]: ▶

#Let's describe our data now that all our values have been cleaned up.
data_k.describe()

Out[10]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	
count	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04	2
mean	4.580474e+09	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04	
std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	
min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	
25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	
4							•

Looking at the information above we can see the following:

1) Our target variable, Price, has a mean value of roughly 540K. The lowest price is 78K and the highest price is over 7 million. We can also see that 50% of our data falls below the 500K price. 2) We can also see some outliers such as a home with 33 bedrooms and 8 bathrooms. 3) We also notice that some of our data is categorical, such as zipcode and waterfront.

Now, let's run some graphics in order to better look at our data

In [11]:

#Scatter plot of the data
pd.plotting.scatter_matrix(data_k, figsize=(25,25));

Looking at our scatter matrix above, we can see interesting relationships in our data, but because the data is difficult to actually look at.

```
In [12]:
                                                                                           H
#checking the mean and standard deviation
price_mean = data_k['price'].mean()
price_std = data_k['price'].std()
price_mean, price_std
Out[12]:
(540296.5735055795, 367368.1401013945)
In [13]:
                                                                                           H
#checking the average price of the house according to the year built
avg_price_yr=data_k.groupby(['yr_built']).price.mean()
avg_price_yr.sort_index()
Out[13]:
yr_built
1900
        581536.632184
1901
        557108.344828
        673192.592593
1902
1903
        480958.195652
1904
        583867.755556
            . . .
2011
        544648.384615
        527436.982353
2012
2013
        678599.582090
2014
        683792.685152
2015
        759970.947368
Name: price, Length: 116, dtype: float64
```

In [14]:

```
#Data visulisation according to the price and year built
T=avg_price_yr.index
X=np.linspace(T.min(),T.max(),10000)
Y=avg_price_yr.values
spl=interpolate.make_interp_spline(T,Y,3)
test=spl(X)

fig,ax=plt.subplots(figsize=(30,15))
ax.plot(X,test)
# Interpolate to make more smooth(Interpolation in Python is a technique used to estimate u
```

Out[14]:

[<matplotlib.lines.Line2D at 0x2a49bb75880>]

In [299]: ▶

Answer:This figure shows that the year built doesnot affect the price and it also showsther

File "<ipython-input-299-622f73eb687e>", line 1
Answer:This figure shows that the year built doesnot affect the price

SyntaxError: invalid syntax

In [15]:

▶

```
fig, ax = plt.subplots(figsize=(12,12))
ax = sns.distplot(data_k['price'], label='Price Density')
plt.axvline(price_mean, color='red', label='Mean Price')
plt.legend()
```

Out[15]:

<matplotlib.legend.Legend at 0x2a4a589c580>

In [300]: ▶

data_k.corr()

Out[300]:

id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	vie
1.000000	-0.016772	0.001150	0.005162	-0.012241	-0.131911	0.018608	-0.003599	0.01177
-0.016772	1.000000	0.308787	0.525906	0.701917	0.089876	0.256804	0.264306	0.39349
0.001150	0.308787	1.000000	0.514508	0.578212	0.032471	0.177944	-0.002127	0.07835
0.005162	0.525906	0.514508	1.000000	0.755758	0.088373	0.502582	0.063629	0.18601
-0.012241	0.701917	0.578212	0.755758	1.000000	0.173453	0.353953	0.104637	0.28171
-0.131911	0.089876	0.032471	0.088373	0.173453	1.000000	-0.004814	0.021459	0.07505
0.018608	0.256804	0.177944	0.502582	0.353953	-0.004814	1.000000	0.020797	0.02841
-0.003599	0.264306	-0.002127	0.063629	0.104637	0.021459	0.020797	1.000000	0.38054
0.011772	0.393497	0.078354	0.186016	0.281715	0.075054	0.028414	0.380543	1.00000
-0.023803	0.036056	0.026496	-0.126479	-0.059445	-0.008830	-0.264075	0.016648	0.04562
0.008188	0.667951	0.356563	0.665838	0.762779	0.114731	0.458794	0.082818	0.24908
-0.010799	0.605368	0.479386	0.686668	0.876448	0.184139	0.523989	0.071778	0.16601
-0.004359	0.321108	0.297229	0.278485	0.428660	0.015031	-0.241866	0.083050	0.27062
0.021617	0.053953	0.155670	0.507173	0.318152	0.052946	0.489193	-0.024487	-0.05445
-0.007119	0.051588	-0.002292	0.012400	0.016479	-0.006170	-0.001467	0.031756	0.04483
-0.008211	-0.053402	-0.154092	-0.204786	-0.199802	-0.129586	-0.059541	0.028923	0.08505
-0.001798	0.306692	-0.009951	0.024280	0.052155	-0.085514	0.049239	-0.012157	0.00632
0.020672	0.022036	0.132054	0.224903	0.241214	0.230227	0.125943	-0.037628	-0.07770
-0.002701	0.585241	0.393406	0.569884	0.756402	0.144763	0.280102	0.083823	0.27892
-0.138557	0.082845	0.030690	0.088303	0.184342	0.718204	-0.010722	0.030658	0.07308
4								•

In [16]:

```
#checking the correlation using data visualization
plt.figure(figsize=(15,10))
sns.heatmap(data_k.corr().round(2),annot=True, cmap=('YlGnBu'))
```

Out[16]:

<AxesSubplot:>

But, even our heatmap is difficult to read. We are going to use a pairwise correlation in order to determine which values are highly correlated with our target (price) by using any value greater than 0.70.

Checking outliers

```
In [17]:
plt.figure(figsize=(12,8))
sns.boxplot(x='bedrooms',y='price',data=data_k)

Out[17]:
<AxesSubplot:xlabel='bedrooms', ylabel='price'>

8
6
7
6
5
9
4
3
```

```
In [18]: 
▶
```

```
plt.figure(figsize=(12,8))
sns.boxplot(x='bathrooms',y='price',data=data_k)
```

Out[18]:

<AxesSubplot:xlabel='bathrooms', ylabel='price'>

In [19]: ▶

```
sns.distplot(data_k.sqft_living)
```

Out[19]:

<AxesSubplot:xlabel='sqft_living', ylabel='Density'>


```
In [20]:
plt.figure(figsize=(12,8))
sns.boxplot(x='floors',y='price',data=data_k)
Out[20]:
<AxesSubplot:xlabel='floors', ylabel='price'>
  8
  7
  6
  5
  3
In [21]:
plt.figure(figsize=(10,7))
sns.scatterplot(data_k['condition'], data_k['price'])
plt.title('House Condition and price', fontsize=15, fontname='silom')
Out[21]:
Text(0.5, 1.0, 'House Condition and price')
findfont: Font family ['silom'] not found. Falling back to DejaVu Sans.
```

The house condition is not affecting the price according to this figure

In [22]: ▶

```
plt.figure(figsize=(10,7))
sns.scatterplot(data_k['condition'], data_k['grade'])
plt.title('House Condition and Grade', fontsize=15, fontname='silom')
```

Out[22]:

Text(0.5, 1.0, 'House Condition and Grade')

In []: ▶

In this figure the condition of the house doenot affect the grade

In this figure the house price increase with increase in grade

In []:

```
In [23]:
                                                                                                                                                                             H
fig = plt.figure(figsize = (20,15))
ax = fig.gca()
data_k.hist(ax = ax);
  3000
                                                                                                               8000
                                     15000
                                                                                                               4000
  1000
                0.4 0.6
sqft_living
                                                                   8
1e6
                                                     sqft_lot
                                                                                                                             waterfront
 10000
                                                                         10000
                                                                                                              20000
                                     15000
                                                                                                              15000
  6000
                                                                          6000
  4000
                                                                          4000
  2000
                                                    condition
                                                                                          grade
                                                                                                                             sqft_above
 20000
                                     12500
15000
                                     10000
                                                                                                               6000
                                      7500
 10000
                                                                          4000
                                                                                                               4000
                                      5000
                                                                                                               2000
              sqft_basement
15000
                                                                                                               4000
                                      3000
                                                                                                               3000
```

We can see from the box plots and histograms above that many of our continuos data have out

H

```
In [303]:
                                                                                                             H
 outcome = 'price'
 x_cols = data_k.drop('price',axis=1)
 predictors = '+'.join(x_cols)
 formula = outcome + '~' + predictors
 model = ols(formula=formula, data=data_k).fit()
model.summary()
 Out[303]:
 OLS Regression Results
      Dep. Variable:
                               price
                                           R-squared:
                                                             0.707
            Model:
                               OLS
                                       Adj. R-squared:
                                                             0.702
           Method:
                       Least Squares
                                           F-statistic:
                                                             131.8
             Date: Sun, 12 Feb 2023 Prob (F-statistic):
                                                              0.00
                            22:07:35
                                       Log-Likelihood: -2.9412e+05
             Time:
  No. Observations:
                              21597
                                                 AIC:
                                                        5.890e+05
      Df Residuals:
                              21207
                                                 BIC:
                                                        5.921e+05
         Df Model:
                                389
  Covariance Type:
                           nonrobust
 In [307]:
                                                                                                             M
 new_data= data_k.drop(['id','view','date',], axis=1)
 new_data
 Out[307]:
                           bathrooms sqft_living sqft_lot floors waterfront condition grade
         price
               bedrooms
   0 221900.0
                        3
                                 1.00
                                            1180
                                                     5650
                                                                         0.0
                                                                                     3
                                                                                            7
                                                              1.0
   1 538000.0
                        3
                                 2.25
                                            2570
                                                     7242
                                                              2.0
                                                                         0.0
                                                                                     3
                                                                                            7
     180000.0
                        2
                                 1.00
                                             770
                                                    10000
                                                              1.0
                                                                         0.0
                                                                                     3
                                                                                            6
      604000.0
                                                     5000
                                                                                            7
   3
                        4
                                 3.00
                                            1960
                                                              1.0
                                                                         0.0
                                                                                     5
      510000.0
                                 2.00
                                                     8080
                                                                                     3
                                                                                            8
                        3
                                            1680
                                                              1.0
                                                                         0.0
1592
      360000.0
                        3
                                 2.50
                                            1530
                                                     1131
                                                              3.0
                                                                         0.0
                                                                                     3
                                                                                            8
1593
     400000.0
                                 2.50
                                            2310
                                                     5813
                                                              2.0
                                                                         0.0
                                                                                     3
                                                                                            8
```

1594

1595

1596

402101.0

400000.0

325000.0

597 rows × 18 columns

2

3

2

0.75

2.50

0.75

1020

1600

1020

1350

2388

1076

2.0

2.0

2.0

0.0

0.0

0.0

3

3

3

7

8

7

```
In [309]:
                                                                                           H
new_data['waterfront'].fillna(0, inplace=True)
In [310]:
                                                                                           H
#Now, let's place our continuous and categorical data into a separate features
cont_data = new_data[['price', 'sqft_living', 'sqft_lot', 'sqft_basement', 'yr_built', 'lat
cat_data = new_data[['bedrooms','bathrooms','floors','waterfront', 'condition', 'grade', 'z
Remove outliners
In [311]:
                                                                                           H
count = 0
bath_outliers = []
mean = np.mean(cat_data['bathrooms'])
max_distance = np.std(cat_data['bathrooms']) * 3
for idx, row in cat_data['bathrooms'].T.iteritems():
    if abs(row-mean) >= max_distance:
        count += 1
        cat_data.drop(idx, inplace=True)
count
Out[311]:
187
                                                                                           M
In [312]:
count = 0
bed_outliers = []
mean = np.mean(cat_data['bedrooms'])
max_distance = np.std(cat_data['bedrooms']) * 3
for idx, row in cat_data['bedrooms'].T.iteritems():
    if abs(row-mean) >= max_distance:
        count += 1
        cat_data.drop(idx,inplace=True)
count
Out[312]:
47
                                                                                           H
In [313]:
cont data.shape
Out[313]:
(21597, 11)
```

```
H
In [314]:
z_cont=np.abs(stats.zscore(cont_data))
In [315]:
                                                                                                                                              H
cont_data1 = cont_data[(z_cont < 3).all(axis=1)]</pre>
In [316]:
                                                                                                                                              H
cont_data1.shape
Out[316]:
(20135, 11)
In [317]:
                                                                                                                                              H
# Analysising data with histogram
cont_data.hist(figsize=(20,20));
                                                            sqft_living
                                                                                                        sqft_lot
17500
                                                                                     17500
15000
                                            8000
                                                                                     15000
                                                                                     10000
 7500
                                            4000
 5000
                                                                                      2500
                                                                                                       0.75
                                                                                                           1.00
                                                                                                               1.25
                sqft_basement
                                                                                                         lat
16000
                                                                                      4000
14000
                                                                                      3500
                                                                                      3000
10000
 8000
                                                                                      2000
                                            1500
 6000
 4000
                                                                                      1000
                                                                                                          47.5
                   long
                                                            sqft_above
                                                                                                     yr_renovated
                                                                                     16000
                                                                                     12000
                                                                                      8000
 4000
                                                                                      6000
                                                                                      4000
                                           2000
        -122.4 -122.2 -122.0 -121.8 -121.6 -121.4
                 sqft_living15
                                                            sqft_lot15
                                           20000
                                           15000
 5000
                                           12500
 4000
                                           7500
                                           5000
```

In [107]:

```
# Analysising data with histogram
cat_data.hist(figsize=(20,10));
```


In [289]: ▶

```
plt.figure(figsize=(12,8))
sns.boxplot(x='sqft_living',y='price',data=cont_data)
```

```
Out[289]:
```

<AxesSubplot:xlabel='sqft_living', ylabel='price'>

In [318]: ▶

```
#Let's make a continuous data feature and a feature for our target variable
target = cont_data['price']
cont_feat = cont_data.drop('price', axis=1)
```

In [319]:

```
cont_feat.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 10 columns):
#
    Column
                   Non-Null Count
                                   Dtype
                   -----
    sqft_living
                   21597 non-null
                                   int64
0
1
    sqft lot
                   21597 non-null int64
2
    sqft_basement 21597 non-null float64
3
    yr built
                   21597 non-null
                                   int64
4
                                  float64
    lat
                   21597 non-null
5
    long
                   21597 non-null
                                   float64
6
    sqft_above
                                  int64
                   21597 non-null
7
    yr renovated
                   21597 non-null
                                   float64
8
    sqft_living15 21597 non-null int64
    sqft lot15
                   21597 non-null
                                  int64
dtypes: float64(4), int64(6)
```

In [320]:

```
target
```

Out[320]:

In [321]:

memory usage: 1.6 MB

```
221900.0
1
         538000.0
2
         180000.0
3
         604000.0
4
         510000.0
21592
         360000.0
21593
         400000.0
         402101.0
21594
21595
         400000.0
         325000.0
21596
Name: price, Length: 21597, dtype: float64
```

```
dummy_1= pd.get_dummies(data=cat_data, columns=['bedrooms'],prefix='bed', drop_first=True)
dummy_2= pd.get_dummies(data=cat_data, columns=['condition'],prefix='condi', drop_first=Tru
dummy_3= pd.get_dummies(data=cat_data, columns=['grade'],prefix='grd', drop_first=True)
dummy_4= pd.get_dummies(data=cat_data, columns=['zipcode'],prefix='zip_c', drop_first=True)
#dummy_5= pd.get_dummies(data=cat_data, columns=['waterfront'],prefix='wf', drop_first=True)
#dummy_6= pd.get_dummies(data=cat_data, columns=['floors'],prefix='flr', drop_first=True)
#dummy_7= pd.get_dummies(data=cat_data, columns=['bathrooms'],prefix='bath', drop_first=Tru
```

H

In [322]: ▶

```
#Let's create one feature containing all of our dummies
cat_dummies = pd.concat([dummy_1,dummy_2,dummy_3,dummy_4],axis=1)
cat_dummies
```

	bathrooms	floors	waterfront	condition	grade	zipcode	bed_2	bed_3	bed_4	bed_5	 zip_c_981 🔺
0	1.00	1.0	0.0	3	7	98178	0	1	0	0	
1	2.25	2.0	0.0	3	7	98125	0	1	0	0	
2	1.00	1.0	0.0	3	6	98028	1	0	0	0	
3	3.00	1.0	0.0	5	7	98136	0	0	1	0	 _
4	2.00	1.0	0.0	3	8	98074	0	1	0	0	
21592	2.50	3.0	0.0	3	8	98103	0	1	0	0	
21593	2.50	2.0	0.0	3	8	98146	0	0	1	0	
21594	0.75	2.0	0.0	3	7	98144	1	0	0	0	
21595	2.50	2.0	0.0	3	8	98027	0	1	0	0	
21596	0.75	2.0	0.0	3	7	98144	1	0	0	0	 •
4)

In [323]:

d1= pd.concat([target,cont_feat,cat_dummies], axis=1)
d1.dropna(how='any',inplace=True)

In [324]:

```
outcome = 'price'
x_cols = d1.drop('price',axis=1)
predictors = '+'.join(x_cols)
formula = outcome + '~' + predictors
model = ols(formula=formula, data=d1).fit()
model.summary()
```

Out[324]:

OLS Regression Results

Covariance Type:

Dep. Variable: 0.822 price R-squared: Model: OLS Adj. R-squared: 0.821 Method: F-statistic: 969.6 Least Squares Date: Sun, 12 Feb 2023 Prob (F-statistic): 0.00 Time: 22:17:30 Log-Likelihood: -2.8333e+05 No. Observations: 21363 AIC: 5.669e+05 **Df Residuals:** 21261 BIC: 5.677e+05

nonrobust

Df Model: 101

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.11e+04	827.588	-13.414	0.000	-1.27e+04	-9478.875
sqft_living	92.5485	13.153	7.036	0.000	66.768	118.329
sqft_lot	0.2927	0.034	8.699	0.000	0.227	0.359
sqft_basement	24.3504	13.028	1.869	0.062	-1.185	49.886
yr_built	-645.8462	55.246	-11.690	0.000	-754.132	-537.560
lat	1.414e+05	5.54e+04	2.553	0.011	3.28e+04	2.5e+05
long	-1.861e+05	3.98e+04	-4.673	0.000	-2.64e+05	-1.08e+05
sqft_above	53.1626	13.180	4.034	0.000	27.329	78.996
yr_renovated	6.9696	1.200	5.809	0.000	4.618	9.321
sqft_living15	38.7259	2.565	15.098	0.000	33.699	43.753
sqft_lot15	-0.0845	0.054	-1.568	0.117	-0.190	0.021
bathrooms[0]	6819.1897	597.974	11.404	0.000	5647.115	7991.265
bathrooms[1]	6819.1897	597.974	11.404	0.000	5647.115	7991.265
bathrooms[2]	6819.1897	597.974	11.404	0.000	5647.115	7991.265
bathrooms[3]	6819.1897	597.974	11.404	0.000	5647.115	7991.265
floors[0]	-5276.1961	703.622	-7.499	0.000	-6655.348	-3897.044
floors[1]	-5276.1961	703.622	-7.499	0.000	-6655.348	-3897.044
floors[2]	-5276.1961	703.622	-7.499	0.000	-6655.348	-3897.044
floors[3]	-5276.1961	703.622	-7.499	0.000	-6655.348	-3897.044
waterfront[0]	1.824e+05	3149.220	57.905	0.000	1.76e+05	1.89e+05

waterfront[1]	1.824e+05	3149.220	57.905	0.000	1.76e+05	1.89e+05
waterfront[2]	1.824e+05	3149.220	57.905	0.000	1.76e+05	1.89e+05
waterfront[3]	1.824e+05	3149.220	57.905	0.000	1.76e+05	1.89e+05
condition[0]	1.374e+04	2884.312	4.762	0.000	8082.786	1.94e+04
condition[1]	1.374e+04	2884.312	4.762	0.000	8082.786	1.94e+04
condition[2]	1.374e+04	2884.312	4.762	0.000	8082.786	1.94e+04
grade[0]	1.729e+04	6704.427	2.579	0.010	4146.463	3.04e+04
grade[1]	1.729e+04	6704.427	2.579	0.010	4146.463	3.04e+04
grade[2]	1.729e+04	6704.427	2.579	0.010	4146.463	3.04e+04
zipcode[0]	-96.6712	18.290	-5.286	0.000	-132.520	-60.822
zipcode[1]	-96.6712	18.290	-5.286	0.000	-132.520	-60.822
zipcode[2]	-96.6712	18.290	-5.286	0.000	-132.520	-60.822
bed_2	1.102e+04	7955.804	1.385	0.166	-4573.723	2.66e+04
bed_3	1.912e+04	5269.881	3.628	0.000	8791.674	2.95e+04
bed_4	6408.2021	3608.259	1.776	0.076	-664.258	1.35e+04
bed_5	866.7682	4297.550	0.202	0.840	-7556.754	9290.290
bed_6	-1.265e+04	6417.575	-1.972	0.049	-2.52e+04	-74.548
bedrooms[0]	-2414.4030	1015.512	-2.378	0.017	-4404.884	-423.922
bedrooms[1]	-2414.4030	1015.512	-2.378	0.017	-4404.884	-423.922
bedrooms[2]	-2414.4030	1015.512	-2.378	0.017	-4404.884	-423.922
condi_2	3.659e+04	2.03e+04	1.800	0.072	-3248.890	7.64e+04
condi_3	1.269e+04	9132.466	1.390	0.165	-5206.924	3.06e+04
condi_4	-5780.6609	2222.139	-2.601	0.009	-1.01e+04	-1425.101
condi_5	-4948.6116	8659.385	-0.571	0.568	-2.19e+04	1.2e+04
grd_4	-1.475e+05	1.23e+05	-1.199	0.231	-3.89e+05	9.36e+04
grd_5	-2.439e+05	1.01e+05	-2.425	0.015	-4.41e+05	-4.68e+04
grd_6	-2.99e+05	8.04e+04	-3.718	0.000	-4.57e+05	-1.41e+05
grd_7	-3.424e+05	6.06e+04	-5.649	0.000	-4.61e+05	-2.24e+05
grd_8	-3.592e+05	4.11e+04	-8.735	0.000	-4.4e+05	-2.79e+05
grd_9	-3.234e+05	2.27e+04	-14.231	0.000	-3.68e+05	-2.79e+05
grd_10	-2.499e+05	1.24e+04	-20.138	0.000	-2.74e+05	-2.26e+05
grd_11	-9.688e+04	2.48e+04	-3.901	0.000	-1.46e+05	-4.82e+04
grd_12	1.869e+05	4.48e+04	4.174	0.000	9.91e+04	2.75e+05
grd_13	7.532e+05	7.59e+04	9.923	0.000	6.04e+05	9.02e+05
zip_c_98002	2.355e+04	1.26e+04	1.862	0.063	-1242.622	4.83e+04
zip_c_98003	-9671.8789	1.12e+04	-0.860	0.390	-3.17e+04	1.24e+04
zip_c_98004	7.013e+05	2.05e+04	34.175	0.000	6.61e+05	7.42e+05
zip_c_98005	2.666e+05	2.19e+04	12.181	0.000	2.24e+05	3.09e+05
zip_c_98006	2.429e+05	1.79e+04	13.538	0.000	2.08e+05	2.78e+05
zip_c_98007	2.203e+05	2.26e+04	9.731	0.000	1.76e+05	2.65e+05

zip_c_98008	2.5e+05	2.15e+04	11.646	0.000	2.08e+05	2.92e+05
zip_c_98010	1.126e+05	1.95e+04	5.780	0.000	7.44e+04	1.51e+05
zip_c_98011	7.668e+04	2.78e+04	2.758	0.006	2.22e+04	1.31e+05
zip_c_98014	1.226e+05	3.09e+04	3.966	0.000	6.2e+04	1.83e+05
zip_c_98019	9.223e+04	3.03e+04	3.042	0.002	3.28e+04	1.52e+05
zip_c_98022	8.253e+04	1.75e+04	4.707	0.000	4.82e+04	1.17e+05
zip_c_98023	-4.345e+04	1e+04	-4.323	0.000	-6.31e+04	-2.37e+04
zip_c_98024	1.843e+05	2.75e+04	6.703	0.000	1.3e+05	2.38e+05
zip_c_98027	1.758e+05	1.87e+04	9.409	0.000	1.39e+05	2.12e+05
zip_c_98028	7.822e+04	2.67e+04	2.934	0.003	2.6e+04	1.3e+05
zip_c_98029	2.362e+05	2.13e+04	11.069	0.000	1.94e+05	2.78e+05
zip_c_98030	1.705e+04	1.27e+04	1.347	0.178	-7759.708	4.19e+04
zip_c_98031	2.181e+04	1.31e+04	1.665	0.096	-3871.639	4.75e+04
zip_c_98032	638.5251	1.48e+04	0.043	0.966	-2.85e+04	2.97e+04
zip_c_98033	3.278e+05	2.29e+04	14.292	0.000	2.83e+05	3.73e+05
zip_c_98034	1.651e+05	2.45e+04	6.739	0.000	1.17e+05	2.13e+05
zip_c_98038	7.731e+04	1.5e+04	5.144	0.000	4.79e+04	1.07e+05
zip_c_98039	1.061e+06	2.9e+04	36.561	0.000	1e+06	1.12e+06
zip_c_98040	4.739e+05	1.78e+04	26.551	0.000	4.39e+05	5.09e+05
zip_c_98042	3.576e+04	1.28e+04	2.793	0.005	1.07e+04	6.09e+04
zip_c_98045	1.887e+05	2.71e+04	6.953	0.000	1.35e+05	2.42e+05
zip_c_98052	2.176e+05	2.35e+04	9.245	0.000	1.72e+05	2.64e+05
zip_c_98053	2.131e+05	2.56e+04	8.312	0.000	1.63e+05	2.63e+05
zip_c_98055	4.886e+04	1.44e+04	3.382	0.001	2.05e+04	7.72e+04
zip_c_98056	9.577e+04	1.56e+04	6.144	0.000	6.52e+04	1.26e+05
zip_c_98058	4.578e+04	1.42e+04	3.227	0.001	1.8e+04	7.36e+04
zip_c_98059	9.06e+04	1.57e+04	5.765	0.000	5.98e+04	1.21e+05
zip_c_98065	1.62e+05	2.53e+04	6.408	0.000	1.12e+05	2.12e+05
zip_c_98070	8584.9938	1.64e+04	0.523	0.601	-2.36e+04	4.08e+04
zip_c_98072	1.294e+05	2.73e+04	4.741	0.000	7.59e+04	1.83e+05
zip_c_98074	1.815e+05	2.3e+04	7.903	0.000	1.36e+05	2.26e+05
zip_c_98075	1.905e+05	2.24e+04	8.495	0.000	1.47e+05	2.34e+05
zip_c_98077	9.471e+04	2.88e+04	3.286	0.001	3.82e+04	1.51e+05
zip_c_98092	1.762e+04	1.37e+04	1.283	0.200	-9302.858	4.46e+04
zip_c_98102	4.238e+05	2.26e+04	18.767	0.000	3.8e+05	4.68e+05
zip_c_98103	3.053e+05	2.04e+04	14.986	0.000	2.65e+05	3.45e+05
zip_c_98105	4.448e+05	2.16e+04	20.587	0.000	4.02e+05	4.87e+05
zip_c_98106	1.132e+05	1.47e+04	7.692	0.000	8.44e+04	1.42e+05
zip_c_98107	3.039e+05	2.08e+04	14.589	0.000	2.63e+05	3.45e+05
zip_c_98108	1.075e+05	1.71e+04	6.284	0.000	7.4e+04	1.41e+05

zip_c_98109	4.667e+05	2.2e+04	21.177	0.000	4.24e+05	5.1e+05
zip_c_98112	5.745e+05	1.97e+04	29.138	0.000	5.36e+05	6.13e+05
zip_c_98115	3.118e+05	2.1e+04	14.851	0.000	2.71e+05	3.53e+05
zip_c_98116	2.898e+05	1.6e+04	18.125	0.000	2.58e+05	3.21e+05
zip_c_98117	2.811e+05	2.05e+04	13.732	0.000	2.41e+05	3.21e+05
zip_c_98118	1.695e+05	1.53e+04	11.068	0.000	1.39e+05	1.99e+05
zip_c_98119	4.552e+05	2.03e+04	22.399	0.000	4.15e+05	4.95e+05
zip_c_98122	3.344e+05	1.86e+04	17.986	0.000	2.98e+05	3.71e+05
zip_c_98125	1.836e+05	2.27e+04	8.097	0.000	1.39e+05	2.28e+05
zip_c_98126	1.899e+05	1.47e+04	12.956	0.000	1.61e+05	2.19e+05
zip_c_98133	1.273e+05	2.29e+04	5.563	0.000	8.24e+04	1.72e+05
zip_c_98136	2.596e+05	1.49e+04	17.391	0.000	2.3e+05	2.89e+05
zip_c_98144	2.884e+05	1.72e+04	16.734	0.000	2.55e+05	3.22e+05
zip_c_98146	1.176e+05	1.37e+04	8.580	0.000	9.08e+04	1.45e+05
zip_c_98148	8.107e+04	2.09e+04	3.886	0.000	4.02e+04	1.22e+05
zip_c_98155	1.215e+05	2.41e+04	5.037	0.000	7.42e+04	1.69e+05
zip_c_98166	9.899e+04	1.33e+04	7.469	0.000	7.3e+04	1.25e+05
zip_c_98168	7.003e+04	1.46e+04	4.806	0.000	4.15e+04	9.86e+04
zip_c_98177	2.2e+05	2.33e+04	9.446	0.000	1.74e+05	2.66e+05
zip_c_98178	7.61e+04	1.64e+04	4.644	0.000	4.4e+04	1.08e+05
zip_c_98188	7.111e+04	1.7e+04	4.173	0.000	3.77e+04	1.05e+05
zip_c_98198	6.279e+04	1.38e+04	4.566	0.000	3.58e+04	8.98e+04
zip_c_98199	3.825e+05	1.83e+04	20.856	0.000	3.47e+05	4.18e+05
Omnibus:	12606.338	Durbin-Watson:		1	.978	
Prob(Omnibus):	0.000	Jarque-Be	era (JB):	398788.018		
Skew:	2.296	Prob(JB):		0.00		

Notes:

Kurtosis:

23.662

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

7.20e+18

Cond. No.

[2] The smallest eigenvalue is 1.21e-23. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

In [325]:

```
# Q-Q plot and Regression plot
model=smf.ols(formula,data=d1).fit()
fig = sm.graphics.qqplot(model.resid, line='45',fit=True);
#fig.savefig('Basic_model_qqplot')
sm.graphics.plot_regress_exog(model, 'sqft_living', fig=plt.figure(figsize=(12,8)));
```


Conclusion:

The base model shows that sqft_living(independent variable) has high correlation with price(dependent variable). In Basic linear model high R-squared value (0.82) and low P-value(0) shows there is a relationship between variables. Q-Q data plot is not normally distributed and scatter plots are very homoscedastic.

Iteration1

Log transformation

In [326]:
▶

n.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21597 entries, 0 to 21596
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	bedrooms	21363 non-null	float64
1	bathrooms	21363 non-null	float64
2	floors	21363 non-null	float64
3	waterfront	21363 non-null	float64
4	condition	21363 non-null	float64
5	grade	21363 non-null	float64
6	zipcode	21363 non-null	float64
7	price	21597 non-null	float64
8	sqft_living	21597 non-null	int64
9	sqft_lot	21597 non-null	int64
10	yr_built	21597 non-null	int64
11	lat	21597 non-null	float64
12	long	21597 non-null	float64

dtypes: float64(10), int64(3)

memory usage: 2.9 MB

In [346]:

```
data_log = pd.DataFrame([])
data_log['logsqft_living'] = np.log(d1['sqft_living'])
data_log['logsqft_lot'] = np.log(d1['sqft_lot'])
#data_log['logsqft_basement'] = np.log(d1['sqft_basement'])
data_log['loglat'] = np.log(d1['lat'])
#data_log['loglong'] = np.log(d1['long'])
data_log.hist(figsize = [15,10]);
```


In [347]:

```
pp = d1['price']
logliving = np.log(d1['sqft_lot'])
loglot = np.log(d1['lat'])
loglat = np.log(d1['long'])

scaled_pp = (pp-min(pp))/(max(pp)-min(pp))
scaled_lot = (loglot-np.mean(loglot))/np.sqrt(np.var(loglot))
scaled_lat = (loglat-np.mean(loglat))/(max(loglat)-min(loglat))
scaled_living=(logliving-np.mean(logliving))/np.sqrt(np.var(logliving))

data_fin = pd.DataFrame([])
data_fin['pp'] = scaled_pp
data_fin['lot'] = scaled_lat
data_fin['lat'] = scaled_lat
data_fin['living'] = scaled_living
```

In [348]: ▶

data_fin

Out[348]:

	рр	lot	lat	living
0	0.032616	-0.382321	-0.077514	-1.126726
1	0.104261	-0.105936	0.258885	0.746830
2	0.023119	0.253334	0.285919	-2.154206
3	0.119220	-0.518395	-0.062088	0.094637
4	0.097915	0.015972	0.091993	-0.276397
21592	0.063917	-2.173235	0.224160	-0.501510
21593	0.072983	-0.350656	-0.078317	0.490108
21594	0.073459	-1.976166	0.056069	-1.477448
21595	0.072983	-1.341154	-0.040081	-0.393833
21596	0.055984	-2.228739	0.055588	-1.477448

21363 rows × 4 columns

In [349]: ▶

```
outcome = 'pp'
x_cols = data_fin.drop('pp',axis=1)
predictors = '+'.join(x_cols)
formula = outcome + '~' + predictors
model = ols(formula=formula, data=data_fin).fit()
model.summary()
```

Out[349]:

OLS Regression Results

Dep. \	/ariable:		рр		R-squa	red:	0.4	469
	Model:		OLS	Adj	. R-squa	red:	0.4	469
	Method:	Leas	st Squares		F-statis	stic:	62	92.
	Date:	Sun, 12	Feb 2023	Prob	(F-statis	tic):	0	.00
	Time:		22:23:01	Log	-Likeliho	ood:	318	74.
No. Obser	vations:		21363		1	AIC:	-6.374e	⊦04
Df Re	siduals:		21359		I	BIC:	-6.371e	⊦ 04
D	f Model:		3					
Covarian	ce Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.97	'5]	
Intercept	0.1023	0.000	274.582	0.000	0.102	0.1	03	
lot	0.0003	0.000	0.872	0.383	-0.000	0.0	01	
lat	0.1044	0.002	61.560	0.000	0.101	0.1	80	
living	0.0447	0.000	113.442	0.000	0.044	0.0	45	
Om	nibus:	15259.012	2 Durb	in-Wats	on:	1.	985	
Prob(Omr	ibus):	0.000	Jarque	-Bera (J	IB): 39	6659.	314	
	Skew:	3.13	7	Prob(J	IB):	(0.00	
Ku	rtosis:	23.156	6	Cond.	No.	5	5.23	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [350]:
▶

```
r_lot = data_fin.drop('lot',axis=1)
r_lot
```

Out[350]:

	рр	lat	living
0	0.032616	-0.077514	-1.126726
1	0.104261	0.258885	0.746830
2	0.023119	0.285919	-2.154206
3	0.119220	-0.062088	0.094637
4	0.097915	0.091993	-0.276397
21592	0.063917	0.224160	-0.501510
21593	0.072983	-0.078317	0.490108
21594	0.073459	0.056069	-1.477448
21595	0.072983	-0.040081	-0.393833
21596	0.055984	0.055588	-1.477448

21363 rows × 3 columns

In [351]:

```
outcome = 'pp'
x_cols = r_lot.drop('pp',axis=1)
predictors = '+'.join(x_cols)
formula = outcome + '~' + predictors
model = ols(formula=formula, data=r_lot).fit()
model.summary()
```

Out[351]:

OLS Regression Results

Dep. Variable: 0.469 R-squared: pp Model: OLS Adj. R-squared: 0.469 Method: F-statistic: 9437. Least Squares Date: Sun, 12 Feb 2023 Prob (F-statistic): 0.00 Time: 22:26:31 Log-Likelihood: 31873. No. Observations: 21363 AIC: -6.374e+04 **Df Residuals:** 21360 BIC: -6.372e+04 **Df Model:** 2 **Covariance Type:** nonrobust

In [353]:

```
# Q-Q plot and Regression plot
model=smf.ols(formula,data=r_lot).fit()
fig = sm.graphics.qqplot(model.resid, line='45',fit=True);
#fig.savefig('Basic_model_qqplot')
sm.graphics.plot_regress_exog(model, 'living', fig=plt.figure(figsize=(12,8)));
```


The Iteration 1 shows that sqft_living(independent variable) has high correlation with price(dependent variable). In this model high R-squared value (0.40) and low P-value(0) shows there is a relationship between variables. Q-Q data plot is not normally distributed and scatter plots are very heteroscedastic.

```
In [354]:
                                                                                                      H
data_pred = data_fin.iloc[:,0:15]
data_pred
Out[354]:
             pp
                       lot
                                 lat
                                        living
    0 0.032616 -0.382321 -0.077514 -1.126726
    1 0.104261 -0.105936
                           0.258885
                                     0.746830
    2 0.023119
                 0.253334
                           0.285919 -2.154206
                           -0.062088
    3 0.119220 -0.518395
                                     0.094637
    4 0.097915
                 0.015972
                           0.091993 -0.276397
21592 0.063917 -2.173235
                           0.224160 -0.501510
21593 0.072983 -0.350656
                           -0.078317
                                     0.490108
21594 0.073459 -1.976166
                           0.056069 -1.477448
21595 0.072983 -1.341154 -0.040081 -0.393833
In [355]:
data_pred.corr()
```

Out[355]:

	рр	lot	lat	living
pp	1.000000	0.146261	0.331163	0.610355
lot	0.146261	1.000000	-0.152340	0.316015
lat	0.331163	-0.152340	1.000000	0.033681
living	0.610355	0.316015	0.033681	1.000000

```
In [356]:
abs(data_pred.corr()) > 0.5
```

Out[356]:

	рр	lot	lat	living
pp	True	False	False	True
lot	False	True	False	False
lat	False	False	True	False
livina	True	False	False	True

In [357]: ▶

```
plt.figure(figsize=(15,10))
sns.heatmap(data_fin.corr().round(2),annot=True)
```

Out[357]:

<AxesSubplot:>

In []:

N

Conclusion:

The price and sqft living is 61% correlated and showing normal distribution. the r2 and adjust r2 is 45%

Iteration 2-Model evaluation

Train-test split

```
In [335]:
```

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import FunctionTransformer, OneHotEncoder
from sklearn.linear_model import LinearRegression
```

```
In [336]:
                                                                                           H
X = cont_data.drop("price", axis=1)
y = cont_data["price"]
In [337]:
                                                                                           M
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=101)
In [338]:
                                                                                           H
lm=LinearRegression()
lm.fit(X_train,y_train)
Out[338]:
LinearRegression()
                                                                                           H
In [339]:
rootMeanSquareError = np.sqrt(meanSquareError).round(3)
rootMeanSquareError
Out[339]:
228036.996
In [340]:
                                                                                           H
y_predict= lm.predict(X_train)
In [341]:
                                                                                           H
y_predict
Out[341]:
array([765179.34565939, 288045.7561236, 694204.53102167, ...,
       412681.85528234, 357586.28744134, 294053.1575178 ])
```

In [342]:

```
#model evaluation
print('R^2:',metrics.r2_score(y_train, y_predict))
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_predict))*(len(y_train)-1)/(len(y_print('MAE:',metrics.mean_absolute_error(y_train, y_predict))
print('MSE:',metrics.mean_squared_error(y_train, y_predict))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_train, y_predict)))
```

R^2: 0.6003850414249247

Adjusted R^2: 0.6001205008724455

MAE: 148100.68136135113 MSE: 54323037409.31655 RMSE: 233073.030205806

In [343]: ▶

```
import matplotlib.pyplot as plt

plt.scatter(y_train,y_predict)
plt.title("Prices vs Predicted prices")
plt.show()
```


In [344]: ▶

```
#linear regression for ols

y_test_pred=lm.predict(X_test)

acc_linreg=metrics.r2_score(y_test,y_test_pred)
print('R^2:',acc_linreg)
print('Adjusted R^2:', 1- (1-metrics.r2_score(y_test,y_test_pred))*(len(y_test)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(len(y_text)-1)/(
```

R^2: 0.6166708534334627

Adjusted R^2: 0.6160782902141606

MAE: 143292.99656191687 MSE: 50835736790.27583 RMSE: 225467.81763763056

In [345]: ▶

```
import matplotlib.pyplot as plt

plt.scatter(y_test,y_test_pred)
plt.title("Prices vs Predicted prices")
plt.show()
```


Conclusion:

This model shows that MSE value is higher for x-test than for x-train. R-squared value (0.60) for X-train and R-squared value (0.61) for X-test. The scatter plot is showing non linear effect.

In []:
▶