Lengueges y compiladorer - Guía3

Repaso. Se recomienda no utilizar más de 15 minutos en esto.

- (1) Explicar conceptualmente el error cometido en cada una de las siguientes sustituciones. Sea $p = \exists r. (0 \le r < y) \land (x = y * z + r).$
 - (a) $p/(id \mid y: 3 + r) = (\exists r.(0 \le r < 3 + r) \land (x = y * z + r))$
 - (b) $p/(id \mid y: 3+r) = (\exists t.(0 \le t < 3+r) \land (x = 3+r*z+t))$
 - (c) $p/(id \mid r: 3 + w) = (\exists t. (0 \le 3 + w < y) \land (x = y * z + 3 + w))$
- (a) Se captura la variable libre ry se liga al worthficador
- (b) Se sustitue la variable y wando 8 habla sobre la metavariable y
- (c) la nostifición solo naplica avariables libres, y la ren Br(OEVKY) eda' ligada.
- (°) P/(°° | ' · ° | · ·) (20.(° 2 ° | · · · × J) / · (× · J · · · · ·))
- (2) Decida si las siguientes afirmacions son ciertas o no; justifique.
 - (a) Para toda frase p y toda sustitución δ , se cumple $FV(p) \subseteq FV(p/\delta)$.
 - (b) Para toda frase p y toda sustitución δ , se cumple

$$FV(p/\delta) \subseteq FV(p) \cup \bigcup_{v \in FV(p)} FV(\delta v)$$

(a) falso

(b) Correcto, à wes una variable libre en py no hay sustitución para

w entones
$$\delta \omega = \omega$$
 y $FV(9/8) \subseteq FV(p)$

w entones $\delta w = \omega$ y $FV(p/\delta) \subseteq FV(p)$ Ahora si para w hay una sustitución como no se debe capturar la variable y ligara entones las variables de la sustitución exquiran siendo libre, lugo $FV(p/\delta) \subseteq FV(p) \cup U FV(\delta \omega)$

WE FU(P)

(3) Dada una frase p, una sustitución δ y un estado σ , definir un estado σ' tal que $\llbracket p/\delta \rrbracket \sigma = \llbracket p \rrbracket \sigma'$.

500
$$p = x \cdot y$$
 $5 \cdot w = 4$
 $5 \cdot z = 2$
 $5 \cdot z = 2$

(4) Dé un ejemplo concreto en su lenguaje de programación preferido que evidencie el teorema de renombre. Ayuda: piense en qué contexto hay variables ligadas.

(3) Indique el menor elemento para cada dominio de los ejercicios 1 y 2.

$$f_0: N^{\infty} \rightarrow N^{\infty}$$

$$f_{\times} = 0$$

(4) Calcule, en caso de existir, el supremo de los siguientes conjuntos:

(a)
$$\mathcal{A} = \{n \in \mathbb{N} : n \text{ es par}\}\$$
, en \mathbb{N}_{\perp} (b) $\mathcal{A} = \{n \in \mathbb{N} : n \text{ es par}\}\$, en \mathbb{N}^{∞}

(c)
$$\mathcal{A}=\{n\in\mathbb{N}:n\text{ es primo}\}$$
 , en \mathbb{N}^{∞} (d) $\mathcal{A}=\{V,F\}$, en \mathbb{B}_{\perp}

(e)
$$\mathcal{F} = \{f_n : n \in \mathbb{N}\} \text{ en } \mathbb{N} \to \mathbb{N}_{\perp}, \text{ donde}$$

$$f_n x = \begin{cases} 1 & \text{si } x | n \\ \bot & \text{en caso contrario} \end{cases}$$

(f*)
$$\mathcal{F} = \{f_n : n \in \mathbb{N}\}\ \text{en } \mathbb{N} \to \mathbb{N}_{\perp},\ \text{donde}$$

$$f_n x = \begin{cases} x & \text{si } |x - 10| < log(n+1) \\ \bot & \text{en caso contrario} \end{cases}$$

(a) is un conjunto infinito creciente, no tiene supremo
(b) El supremo es os
(a) is in conjunto infinito creciente, no tiene supremo (b) El supremo is os (c) el supremo es os
(d) El supiemo es V
(d) El supremo es V (e) El supremo es
f= 1 (f) La punción identidad es el suprema
(5) Para cada uno de los siguientes espacios de funciones, dar ejemplos de: (a) funciones monótonas y no continuas; (b) funciones continuas; y (c) funciones continuas y estrictas.
(a) de \mathbb{B}_{\perp} en \mathbb{B}_{\perp} (b) de \mathbb{N}_{\perp} en \mathbb{N}_{\perp} (c) de \mathbb{N}^{∞} en \mathbb{N}^{∞} (d) de \mathbb{N}^{∞} en \mathbb{N}^{∞}
(c) de 14 en 14_ (d) de 14 en 14
(a) f: 1131 - 1131
No hay junctiones monotonas y no continuas o por la menor na prede
envontrar
untinua estóla identidad, que es continua y estricta.
continua estó la identidad, que es continua y estrictu. continua y no estricta es la constante a Vo F.
,
(P) INT - INT
La función identidad es monotona y no continua (las cadenas intererentes no
tionen supremo). Las punciones unitantes son continuos y la unitante a + estilate.
(c) M _∞ ~ INT
monotona y $f_{x=}$ $\begin{cases} 2 & \text{si } x \neq \infty \\ 1 & \text{c.c.} \end{cases}$
no watinua (L c.c
doda la cudena infinitu 1224
$\sup \{ \{(1), \{(1),\} = \sup \{ 2, 3, 1,\} = 1$
$f \sup \{ 1, 2, \dots, \} = f \infty = \bot$

proción fx = 5 (walquier pración constante sirve)

continua

pración fx = 1

writinua estreta (d) IN ~ ~ IN ~ monotona y $f_x = \begin{cases} 2 & \text{si } x \neq \infty \\ \infty & \text{si } x = \infty \end{cases}$ dada la cadena înj. 1626... f sup { 3,2,...} = f > = 00

Se repite el sjempto de la función identidad como untima estrata y walquier sonstante como vontima (6) En cada uno de los casos del ejercicio 5 caracterizar todas las funciones continuas.

	7)	$\mathbf{F}_{\mathbf{r}}$	anda	11110	ا ما	00	00000	اما	oion	oioio	6	indicar	au álac	con	octrictor r	y cuáles no.	
(()	$\mathbf{E}\mathbf{n}$	cada	uno	ae i	os	casos	aeı	ejer	CICIO	О	ındıcar	cuares	son	estrictas v	y cuaies no.	

(8) Para cada una de las siguientes funciones caracterizar los puntos fijos; decidir si existe un menor punto fijo. Si no existe, explicar por qué.

$$\begin{split} f \colon \mathbb{N} &\to \mathbb{N} \\ f \, n &= n \\ g \colon \langle \mathrm{intexp} \rangle &\to \langle \mathrm{intexp} \rangle \\ g \, e &= e \end{split}$$

$$h: \mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$$

$$h n = n + 1$$

$$k: \mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$$

$$k n = \begin{cases} n+1 & \text{si } n < 8\\ n & \text{caso contrario} \end{cases}$$

f punto fipo =
$$\{0,1,2,...\}$$

menor punto fipo = 0.

(9) Considere las siguientes
$$F \in (\mathbb{N} \to \mathbb{N}_{\perp}) \to (\mathbb{N} \to \mathbb{N}_{\perp}), \quad \text{for any laptices}$$

$$F \ f \ = \begin{cases} f & \text{si } f \text{ es una función total} \\ \bot_{\mathbb{N} \to \mathbb{N}_{\perp}} & \text{en caso contrario} \end{cases}$$

$$F f n = \begin{cases} 0 & n = 0\\ f(n-2) & \text{en caso contrario} \end{cases}$$

- (a) Determine si F es continua.
- (b) Calcule $F^{(i)} \perp_{\mathbb{N} \to \mathbb{N}_{\perp}}$, para i = 0, 1, 2.

(a) Veamos ni son monotonas

$$5$$
? $n=0$ entonues $Ffn=0 \le 0 = Fgn$

o
$$g \times f \times$$

Luego $F f = f = g = F g$

Ahora en el naundo caso, sen $f g \in IN^{-p}IN1$ y $n \in INI$.

Supongamo $f \in g$
 $f = 0 = 0 = 0 = F g n$
 $f = 0 = 0 = f g n$
 $f = 0 = 0 = f g n$

Uno veamo n'son continuas

$$F\left(\sup\{f:|ie|N\}\right)_{n} = \begin{cases} 0 & n=0\\ \sup\{f:|ie|N\}\left(n-2\right) & c,c \end{cases}$$

$$F_{f:n=} \begin{cases} 0 & n=0 \\ f_{i}(n-1) & c.c \end{cases}$$

si n=0
$$F(\sup\{f: l:eiN\})_{n=0} = 0 = \sup\{f: l:eiN\} = \sup\{f: n:eiN\}$$

 $Si n \neq 0$ $F(\sup\{f: l:eiN\})_{n=1} = \sup\{f: l:eiN\}(n-2)$

```
La siguida F es continua
         Ahora veames la primera
Supongames f = sup {f; i eIN} y f es total
entonus F(sup lf; i eIN)} = F(f) = f
                                                          sy { FficeIN} = sup { fifific. ] = f.
                 Ahora supongames I no es total

Contonues F(sup(ficeIN3)= F(f)= INNI

(1) F(f)
                                                                                                     sup { FficieIN } = sup { Innows, F(fs), F(fs), }
                                                                    Si sup Et NOINI, F(Ps), F(Ps), If I worms no se comple la designal d'ad
                                           (Por ejemplo si el supremo en la función identidad)
                                               La primera F no es continua
(b) F^{0} \perp_{N-nN} = \sum_{N-nN} \sum_{N=0}^{N-n} \sum_{N=0}^{N-n

\begin{cases}
F^{2} \sum_{i,N} - n_{N} \sum_{i} (n-1) & n \neq 0 \\
0 & s_{i}^{2} & n \neq 0 \\
1 & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} \\
1 & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} \\
1 & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} & s_{i}^{2} \\
1 & s_{i}^{2} \\
1 & s_{i}^{2} \\
1 & s_{i}^{2} & s_{i}
```

1 c.c

$$F^{2} + || \mathbf{1} || \mathbf$$

(10) Calcular la menor
$$f \in \mathbb{Z} \to \mathbb{Z}_{\perp}$$
 que satisface la siguiente ecuación
$$f n = \begin{cases} 1 & \text{si } n = 0 \\ n * f \ (n-1) & \text{si } n \neq 0 \end{cases}$$

Notar que n corre sobre todo \mathbb{Z} . Asumir que la multiplicación y la suma son estrictas.

$$Ffn = \begin{cases} 2 & \text{si } n = 0 \\ n + f(n-1) & \text{si } n \neq 0 \end{cases}$$

Si F es continua basta con encontrar el menor porto fjo de F, es deur sup { F _ Lu-21_1; cIN}

$$Sin \neq 0$$
 $Ffn = n + f(n-1)$ $Fgn = n + g(n-1)$
 $Como$ $f \in g = D$ $f(n-1) \in g(n-1)$

$$F(\sup\{f:|ieIN\}) = \begin{cases} 1 & n=0 \\ n \neq \sup\{f:|ieIN\}(n-1) & n\neq 0 \end{cases}$$

$$Ff: n = \begin{cases} 1 & n=0 \\ n \neq f:(n-1) & n\neq 0 \end{cases}$$

```
Si n=0 F (sup { filieIN}) 0 = 1 = sup { 1, 1, 1, ... } = sup { F fin | icin} = sup { filieIN} n
Si n \neq 0  F(\sup\{f?|i\in IN\}) = n * \sup\{f?|i\in IN\}(n-1)\}
= \sup\{n * f:(n-1)\} : EIN\}  habria que probar esto
                                       = Sup { F finlicN}
                                      = sup { f ; | ; e | N } n
   lugo F & continua.
     F_{1} = \begin{cases} 1 & n=0 \\ n \cdot (F^{2} + 2 - 2 + 2) & n \end{cases}
= \begin{cases} 1 & n=0 \\ n \cdot (F^{2} + 2 - 2 + 2) & n \neq 0 \end{cases}

\begin{pmatrix}
1 & n=0 \\
n & n\neq 0 \\
n & n=1=0 \\
n & n=3=1
\end{pmatrix}

                                             n to 1 n-1 to 1 n-1 12
```

$$\begin{cases}
F^{i} \perp_{2 \rightarrow 2, 1} n = \begin{cases}
n! & \text{ne } \{0, \dots, i-1\} \\
\perp & \text{c.c.}
\end{cases}$$

Claramente mientrus i creu se acurca a 2^t Obviamo la prveba por inducción de Filzrazin.

Proponemos a g como mínima solución obviamos la procha de que $g = \sup \{F^i 1z - nz 1\} i \in IN \}$.

(11)	Caracterizar	las	funciones	que	satisfacen	la	ecuación
					$\int f(n-1)$		$\sin n <$

$$f n = \begin{cases} f(n-1) & \text{si } n < 0 \\ 1 & \text{si } n = 0 \\ n * f(n-1) & \text{si } n > 0 \end{cases}$$

Comparar esta ecuación con la ecuación del ejercicio 10. ¿Tienen las mismas soluciones?