

手中有利器,方为真英雄

STM32F0技术介绍及对比

STM32F0片上资源一览

STM32F0

模拟外设	计数器	通信端口	功能外设			
ADC DAC CMP	TIM WDG RTC	SPI I2C USART	TSC CRC CEC DMA			
基础、共用模块 Flash/SRAM、PWR、RCC、GPIO						
内核、架构						

STM32系列微控制器外设资源一览 3

	STM32F0	STM32F1	STM32F2	STM32F3	STM32F4	STM32L
内核	Cortex-M0	Cortex-M3	Cortex-M3	Cortex-M4	Cortex-M4	Cortex-M3
CPU频率 及架构	<u>48MHz</u>	72MHz	120MHz	72MHz	168MHz	32MHz
Flash & 预取指	<u>64 KB</u> <u>3*32位</u>	1 MB 128位	1 MB 128位	256 KB 128位	1 MB 128位	384 KB 128位
SRAM	<u>8 KB</u>	96 KB	128KB + 4KB	40 KB	192KB + 4KB	48 KB
工作电压 & 低功耗	<u>2.0~3.6V</u> <u>三种</u>	2.0~3.6V 三种	1.65~3.6V 三种	2.0~3.6V 三种	1.7~3.6V 三种	1.65~3.6V 五种
启动引脚	BOOT0	BOOT0、 BOOT1	BOOT0、 BOOT1	BOOT0、 BOOT1	BOOT0、 BOOT1	BOOT0、 BOOT1

STM32系列微控制器特性一览(续1)

	STM32F0	STM32F1	STM32F2	STM32F3	STM32F4	STM32L
读写保护	<u>三层</u>	两层	三层	三层	三层	三层
调试接口	<u>SWD</u>	JTAG、SWD	JTAG、SWD	JTAG、SWD	JTAG、SWD	JTAG、SWD
封装 引脚数 /GPIO数	32/27 48/39 64/55	36/26 48/37 64/51 100/80 144/112	64/51 100/82 144/114 176/140	48/37 64/52 100/84	64/51 100/82 144/114 176/140	48/37 64/51 100/83 132/109
A/D模块	<u>1</u>	3	3	4	3	1
D/A	<u>1</u>	2	2	3	2	2
比较器	<u>2</u>	0	0	7	0	2

STM32系列微控制器特性一览(续2)

资源数目	STM32F0	STM32F1	STM32F2	STM32F3	STM32F4	STM32L
TIM	<u>8</u>	14	14	14	14	9
WDG	<u>2</u>	2	2	2	2	2
RTC	<u>1</u> 硬件日历	1 32位计数器	1 硬件日历	1 硬件日历	1 硬件日历	1 硬件日历
SPI(于之 复用的I 2S)	2 (1)	3 (2)	3 (2)	3 (2)	3 (2)	3 (2)
I2C	<u>2</u>	2	3	2	3	2
USART	<u>2</u>	5	6	3	6	5
TSC	<u>1</u>	0	0	1	0	1
CRC	<u>1</u>	1	1	1	1	1
CEC	1	STM32F100	0	1	0	0
DMA	<u>1</u>	2	2	2	2	2

谢谢!

欢迎访问

www.st.com/stm32

内核

专注于8/16位 应用 代码及工具与Cortex-M家族系列全兼容

专为低成本低功耗应用设计

Cortex-M0 内核

	Cortex-M0
架构	V6M
指令集	Thumb, Thumb-2
总线接口	AHB Lite
中断数	1-32 + NMI
中断优先级	4
MPU	无
单周期乘法指令	有
硬件除法	无
BIT BANDING	无
CMSIS	支持

总线架构

片上闪存通用特性 19

• 片上闪存特性一瞥

- 容量高达64K字节
- •擦写次数: 10k次
- 半字写速度: 52.5µs(典型)
- 页擦除/全片擦除: 20ms(最小)/40ms(最大)

• 片上闪存组织架构

- 主存储区
- •信息块: 3K字节系统存储区 + 6个选项字节
 - 系统存储区用于出厂前存放启动代码
 - 选项字节用来控制读、写保护; 系统配置; 以及存放用户数据

片上闪存独有特性

•片上闪存接口集成预取指队列: 3*32位

片上SRAM ■1

- •带校验的片上SRAM,容量高达8K字节
 - 32位数据 + 4位校验位
 - 读SRAM时自动校验
 - 校验出错时:
 - 产生NMI, 并同时置位SRAM_PEF@SYSCFG寄存器
 - 如果设置了SRAM_PARITY_LOCK@SYSCFG, 还可和 TIM1的刹车输入相连

- V_{DD} : 2.0 ~ 3.6 V
- V_{DDA}: 2.0 ~ 3.6 V
 ADC、DAC工作时
 V_{DDA}最低电压2.4V
- V_{BAT}: 1.65 ~ 3.6 V
- POR监控V_{DD}
- PDR监控V_{DD}和V_{DDA}
- PVD监控V_{DD}

电源管理

低功耗模式 13

- 实现了三种低功耗模式
 - 睡眠 (SLEEP) 、停止 (STOP) 和待机 (STANDBY)

模式	IDD / IDDA
<mark>运行(RUN)模式</mark>	22.9 / 0.166
HSE旁路 8MHz x 6 PLL = 48MHz / 代码从FLASH运行 / 打开所有外设时钟	(mA)
<mark>运行(RUN)模式</mark>	11.7 / 0.088
HSE旁路 8MHz x 3 PLL = 24MHz / 代码从FLASH运行 / 打开所有外设时钟	(mA)
运行(RUN)模式	4.15 / 0.079
HSI 8MHz / 代码从FLASH运行 / 打开所有外设时钟	(mA)
睡眠(SLEEP)模式	12.9 / 0.243
HSI 8MHz / 2 x 12 PLL = 48MHz / 打开所有外设时钟	(mA)
停止(STOP)模式	3.6 / 1.34
电压变换器工作在低功耗模式/关闭所有晶体/关闭监控VDDA的PDR	(μA)
待机(STANDBY)模式	1.1 / 1.21
关闭LSI和IWWDG / 关闭 监控VDDA的PDR	(μA)

启动模式选择				
选项字节中的 BOOT1位域	BOOTO引脚	启动模式	说明	
X	0	从用户闪存启动	用户代码区映射到逻辑0地址	
0	1	从系统闪存启动	系统存储区映射到逻辑0地址	
1	1	从片上SRAM启动	内置SRAM区映射到逻辑0地址	

- 系统存储区启动
 - 出厂前内置Bootloader代码
 - 使得用户可以通过USART1或USART2烧录片上用户闪存
- 用户可通过MEM_MODE[1:0]动态修改逻辑0地址映射
 - 复位时MEM_MODE的值由BOOT设置决定
 - 程序运行时,用户可修改MEM_MODE的值
 - 用于IAP (Cortex-MO内核没有向量表重定位寄存器)

读写保护

- •提供3级读保护选择
 - LEVO(不保护)、LEV1(一级读保护)、LEV2(二级读保护)
 - LEV2的设置不可逆

		用户代码执行			调试 / 从RAM启动 / 从系统闪 存启动		
	级观	读操作	写操作	擦除	读操作	写操作	擦除
用户	LEV 1	允许	允许	允许	不允许	不允许	不允许
存储区	LEV 2	允许	允许	允许	无意义	无意义	无意义
系统	LEV 1	允许	不允许	不允许	允许	不允许	不允许
存储区	LEV 2	允许	不允许	不允许	无意义	无意义	无意义
选项字节	LEV 1	允许	允许	允许	允许	允许	允许
	LEV 2	允许	允许	不允许	无意义	无意义	无意义
备份	LEV 1	允许	允许	无意义	不允许	不允许	无意义
寄存器	LEV 2	允许	允许	无意义	无意义	无意义	无意义

- 仅支持SWD单线调试模式
 - SWDIO内置了上拉电阻
 - SWCLK内置了下拉电阻
 - 提供数据断点和程序断点功能
 - 支持低功耗模式下的调试
 - 支持对定时器、看门狗和I2C(SMBUS模式)的调试

STM32F0 Vs. STM32F1引脚兼容 ■18

STM32F1系列			STM32F0系列			
QFP48	QFP64	引脚定义	QFP48	QFP64	引脚定义	
5	5	PD0 - OSC_IN	5	5	PH0 - OSC_IN	
6	6	PD1 - OSC_OUT	6	6	PH1 - OSC_OUT	
	18	VSS_4		18	PF4	
	19	VDD_4		19	PF5	
35	47	VSS_2	35	47	PF6	
36	48	VDD_2	36	48	PF7	
20	28	Boot1/PB2	20	28	PB2	

GPIO的通用特性

- 最大64引脚封装上,多达55个双向GPIO
 - 全部都可配置成外部中断来把系统从停止模式唤醒
 - 输出可配置
 - 来自片上外设或输出数据寄存器的开漏或推挽输出,输出上下拉可配置
 - 输入可配置
 - 输入到片上外设或输入数据寄存器,输入上下拉可配置
- 作为AHB总线上的外设,最高翻转速率可达12MHz
- 可通过寄存器对单个引脚做置位和复位的原子操作
- 每个引脚通过复用开关和多个外设相连, 避免外设间的冲突
- GPIO的配置可锁定,直到下次系统复位
- 除ADC、DAC和电池备份域引脚,其余GPIO都是5V容忍

GPIO的功能框图

ADC的通用特性

- 单ADC模块,16个外部通道、3个内部通道
 - 内部通道: 温度传感器、内部参考电压, 电池电量
- 工作电压范围: 2.4V ~ 3.6V
- 支持对某个通道的单次或一组通道的扫描转换
- 支持单次、连续转换模式、间隔转换模式
- 转换精度可配置
 - 6位、8位、10位、12位,可选
- 12位精度情况下,转换速度可高达每秒1M次采样
- 模拟看门狗可对单个或所有通道的转换值进行监测,并在超出设定门限时产生中断

ADC的独有特性

- •ADC模块时钟可配置:使用片上14MHz振荡器时
 - 系统时钟可独立于ADC模块时钟
 - 可以开启自动节电模式
- 更多中断和事件,便于用户管理
 - 采样阶段结束
 - 转换结束、转换序列结束
 - 溢出错误

ADC的独有特性(2)

- ADC低功耗特性
 - 自动延迟转换
 - 自动节电模式

ADC的功能框图

DAC的通用特性

- ·单DAC模块
- •工作电压范围: 2.4V~3.6V
- 输出精度可配置
 - 8位、12位,可选
- 具有DMA功能
- •输出通道可使能内部缓冲,以提高驱动电流

DAC的功能框图

比较器的通用特性

- 2个比较器模块
- 工作电压范围: 2.0V~3.6V
- 比较器输入、输出可灵活配置
 - 输入有多个选择: I/O引脚、DAC输出引脚、内部参考电压及其分压
 - 输出设置: I/O引脚、定时器、内部中断线
- 比较器速度、功耗以及滞回都可配置
- 2个比较器可组合成窗口比较器
- 睡眠模式、停止模式下比较器仍可工作,并使用内部中断线唤醒系统
- 安全性: 比较器配置寄存器具有写保护特性, 避免被意外修改其配置

比较器的功能框图

定时器的通用特性

- 1个基本定时器
 - 常用于基本定时,或驱动DAC
- •6个通用定时器
 - 1个32位计数器、5个16位计数器
 - 多个通道,可用于输入捕获、输出比较、PWM产生、单脉冲输出等
- 1个用于马达控制的高级定时器
 - 死区时间可控制
 - 刹车输入
 - 重复计数器使得在可设置的定时器周期后才更新定时器配置寄存器
 - 所有通用定时器拥有的特性
- 定时器可被外部信号同步也可定时器之间彼此同步(级联)

定时器的功能框图

定时器的功能比较

	计数器位数 和方向	比较捕获+ 互补输出	分频因子、 最大时钟	DMA特性	同步模块	外部触发	刹车输入	重复 计数器
TIM1	16 位 向上向下	4+3		有	有	有	有	有
TIM2	32 位 向上向下	4+0		有	有	有	无	无
TIM3	16位 向上向下	4+0		有	有	有	无	无
TIM6	16 位 向上	0	16位分 频因子	有	有	无	无	无
TIM14	16 位 向上	1+0	48MHz	无	无	测量内外 部时钟	无	无
TIM15	16 位 向上	2+1		有	有	无	有	有
TIM16	16 位 向上	1+1		有	无	无	有	有
TIM17	16 位 向上	1+1		有	无	无	有	有

看门狗的特性和框图

- 两个看门狗都有"窗口"特性
- 独立窗口看门狗
 - LSI作为12位计数器驱动时钟,低功耗模式仍可工作
 - 设置选项字节,可硬件开启独立窗口看门狗
- 窗口看门狗
 - SYSCLK作为7位计数器驱动时钟,低功耗模式下停止工作
 - EWI中断可用于喂狗失败造成系统即将复位之前,做紧急处理工作

合理使用低功耗模式+独立看门狗

• 前提: 独立看门狗是由软件使能的, 上电时默认关闭

RTC的通用特性

- 亚秒级别的硬件日历模块
 - 闹钟的年、月、日、时、分、秒可独立配置
- 多种方法提高日历精度
 - 数字精确校准
 - 使用已有50或60Hz信号调整日历精度
 - 和远程已知时钟同步调整日历精度
- 可输出闹钟标志和校准时钟信号
- •包含20字节备份寄存器
- ·小于1uA的超低功耗

RTC的独有特性

- 更精确的数字电路校准
 - 可动态校准,无需停止日历运行
- •入侵检测和时间戳功能
 - 2个引脚可用于入侵检测
 - 带滤波并提供基准电压的入侵检测
 - 支持电平和边沿检测
 - 入侵事件可以同时触发时间戳记录
- •PC13/14/15可配置成在待机模式仍保持输出电平
- 日历、闹钟具有亚秒级别的时间信息

life.augmented

RTC的校准比较

		STM32F4/ STM32L大容量	STM32F2/ STM32L中容量	STM32F1	STM32F0
平滑校准	精度 (ppm)	±1.91 ±0.95 ±0.48	± 0.95 ± 0.48 没有		±1.91 ±0.95 ±0.48
	范围 (ppm)	-480 ~ +480	平滑校准	0~120	-480 ~+480
异步分频	位数	7	7	没有	7
和四个子学术	精度 (ppm)	-2 and +4	-2 and +4	粗略校准 和	没有
粗略校准	范围 (ppm)	-63 ~ +126	-63 ~ +126	异步分频	粗略校准
同步分频	位数	15	13	20	15

计数外设

RTC的功能框图

SPI的通用特性

- •最高通信速率可达18M比特/秒
- 支持全双工、单线单工、单线半双工等通信模式
- •时钟极性、相位以及数据位序可灵活配置
- 片选信号可由硬件或软件管理
 - 可动态地在主设备模式、从设备模式之间切换
- 集成硬件CRC模块
 - 只支持8位、16位数据帧
- •SPI1模块和I2S复用

SPI的独有特性

- 数据帧长度可灵活配置
 - 4位~16位
- 片选信号支持多种模式
 - NSS脉冲模式、TI片选模式
- •发送方和接收方各拥有4字节FIFO,并可触发DMA
 - 支持数据pack,以减小CPU负载

SPI的功能框图

I2C的通用特性

- 支持100K的标准速度总线和400K的快速总线
- 支持多主抢占总线下的仲裁
- 支持7位和10位从地址寻址
- 支持广播地址模式
- 从设备模式下时钟延展特性可配置
- •能触发DMA请求,并带1字节缓冲

I2C的独有特性

- 支持1MHz的Fast+ I2C总线速度
- •作为从设备可被多个7位地址寻址
- 发送方可对数据建立和保持时间灵活配置
- •时钟和数据线上滤波可配置
- 从设备可对每个接收到的字节进行应答控制
- 模块拥有双时钟域
 - 被寻址时可把系统从低功耗模式唤醒
 - 总线速度可以和PCLK独立

I2C的功能框图

USART的通用特性

- •最高通信率可达6M比特/秒
- 数据帧可灵活配置
 - 数据位、停止位长度; 校验位; 波特率
- 收、发模块各自独立的使能控制
- 支持多处理器通信模式
 - 未被寻址的节点可处于静默状态
- 支持单线半双工通信模式
- 具有多种扩展模式
- **▲ LIN、IrDA SIR、**智能卡、ModBus通信

USART的独有特性

- 支持同步通信主设备模式,数据位序可配置
- 时钟过采样位数可配置: 8倍或16倍
- 支持自动波特率检测
- 收、发引脚可软件交换
- 支持对Modem和RS485收发器的硬件流控
 - RTS、CTS、DE
- 模块拥有双时钟域
 - 可把系统从停止模式唤醒
 - 波特率重新设置时不影响PCLK(外设总线时钟)

功能外设 TSC (触摸感应)的特性

- 基于表面电荷转移原理的电容感应式触摸按键
- 可同时测量6通道,支持最多18个通道
- 电荷转移全过程由硬件完成,无需CPU参与
- 可实现非接触式、按键、线性和旋转的感应

模拟I/O组	不同封装的芯片		
	STM32F051Rx (64引脚)	STM32F051Cx (48引脚)	STM32F051Kx (32引脚)
G1 + G2 + G4 + G5	3 + 3 + 3 + 3	3 + 3 + 3 + 3	3 + 3 + 3 + 3
G3	3	<u>2</u>	<u>2</u>
G6	3	3	<u>0</u>
能够测量的通道个数	18	17	14

功能外设

CRC的特性

- 可用于验证传输数据和存储数据的完整性
- 采用32位CRC以太网多项式
- 输入数据宽度可配置
- 基于AHB总线的CRC计算速度更快
- •输入输出位序可反转
- CRC初值可配置

功能外设

DMA的特性

- 支持5个通道
 - 每个通道连接多个外设请求
 - 外设请求可重映射到2个不同通道上
 - 各DMA请求拥有4级可配置的软件优先级和由自身序号决定的硬件优先级
- 支持外设和存储器之间、外设之间、和存储器之间的传输
- 传输源和目的端的数据 宽度可独立配置,以模 拟pack和unpack
- 支持循环模式

谢谢!

欢迎访问

www.st.com/stm32

