MTH165

Unit 1 Linear Algebra

Matrix algebra has at least two advantages:

- Reduces complicated systems of equations to simple expressions
- Adaptable to systematic method of mathematical treatment and well suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or rectangular array enclosed by two brackets

$$\begin{bmatrix} 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 4 & 2 \\ -3 & 0 \end{bmatrix} \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Properties:

- A specified number of rows and a specified number of columns
- •Two numbers (rows x columns) describe the dimensions or size of the matrix.

Examples:

3x3 matrix
$$\begin{bmatrix} 1 & 2 & 4 \\ 4 & -1 & 5 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 & -3 \\ 0 & 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix}$$
1x2 matrix

A matrix is denoted by a bold capital letter and the elements within the matrix are denoted by lower case letters

e.g. matrix [A] with elements aii

$$\mathbf{A}_{\text{mxn}}^{\text{mxn}} = \begin{bmatrix} a_{11} & a_{12} \dots & a_{ij} & a_{in} \\ a_{21} & a_{22} \dots & a_{ij} & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{ij} & a_{mn} \end{bmatrix}$$

i goes from 1 to m

j goes from 1 to n

If
$$A = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 5 & 3 \end{bmatrix}$$
, the order of matrix A is a) 3×2 b) 2×3 c) 1×3 d) 3×1

TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of columns is always 1

$$\begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ -3 \end{bmatrix} \qquad \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$

TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row

$$\begin{bmatrix} 1 & 1 & 6 \end{bmatrix} \qquad \begin{bmatrix} 0 & 3 & 5 & 2 \end{bmatrix}$$

$$[a_{11} \quad a_{12} \quad a_{13} \cdots \quad a_{1n}]$$

TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows is not equal to the number of columns

$$\begin{bmatrix} 1 & 1 \\ 3 & 7 \\ 7 & -7 \\ 7 & 6 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 0 & 3 & 3 & 0 \end{bmatrix}$$

$$m \neq n$$

TYPES OF MATRICES

4. Square matrix

The number of rows is equal to the number of columns

(a square matrix \mathbf{A} has an order of \mathbf{m})

$$\begin{bmatrix} 1 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 9 & 9 & 0 \\ 6 & 6 & 1 \end{bmatrix}$$

The principal or main diagonal of a square matrix is composed of all elements a_{ii} for which i=j

TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on the main diagonal

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 9 \end{bmatrix}$$

i.e. $a_{ii} = 0$ for all i = /j $a_{ii} \neq 0$ for some or all i = j

TYPES OF MATRICES

6. Unit or Identity matrix - I

A diagonal matrix with ones on the main diagonal

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} a_{ij} & 0 \\ 0 & a_{ij} \end{bmatrix}$$

i.e. $a_{ij} = 0$ for all i = /j

 $a_{ii} = 1$ for some or all i = j

TYPES OF MATRICES

7. Null (zero) matrix - 0

All elements in the matrix are zero

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$a_{ij} = 0$$
 For all i,j

TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main diagonal are all zero

$\lceil 1 \rceil$	0	0	$\lceil 1$	0	0	$\lceil 1$	8	97
2	1	0	2	1	0	0	1	6
5	2	3	5	2	3	0	0	3

TYPES OF MATRICES

8a. Upper triangular matrix

A square matrix whose elements below the main diagonal are all zero

$$\begin{bmatrix} a_{ij} & a_{ij} & a_{ij} \\ 0 & a_{ij} & a_{ij} \\ 0 & 0 & a_{ij} \end{bmatrix} \begin{bmatrix} 1 & 8 & 7 \\ 0 & 1 & 8 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 7 & 4 & 4 \\ 0 & 1 & 7 & 4 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

i.e. $a_{ij} = 0$ for all i > j

TYPES OF MATRICES

8b. Lower triangular matrix

A square matrix whose elements above the main diagonal are all zero

$$\begin{bmatrix} a_{ij} & 0 & 0 \\ a_{ij} & a_{ij} & 0 \\ a_{ij} & a_{ij} & a_{ij} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 2 & 3 \end{bmatrix}$$

i.e.
$$a_{ij} = 0$$
 for all $i < j$

TYPES OF MATRICES

9. Scalar matrix

 $a_{ii} = a$ for all i = j

A diagonal matrix whose main diagonal elements are equal to the same scalar

A scalar is defined as a single number or constant

$$\begin{bmatrix} a_{ij} & 0 & 0 \\ 0 & a_{ij} & 0 \\ 0 & 0 & a_{ij} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 6 & 0 \end{bmatrix}$$
i.e. $a_{ij} = 0$ for all $i = j$

```
If A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, which type of the given matrix B?
```

- a) Unit matrix
- b) Row matrix
- c) Column matrix
- d) Square matrix

- 1. If a matrix has 6 elements, then number of possible orders of the matrix can be
- (a) 2
- (b) 4
- (c) 3
- (d) 6

2. If A = $[a_{ij}]$ is a 2 × 3 matrix, such that $a_{ij} = \frac{(-i+2j)^2}{5}$ then a_{23} is

(a) $\frac{1}{5}$

(c) $\frac{9}{5}$

(b) $\frac{2}{5}$ (d) $\frac{16}{5}$

EQUALITY OF MATRICES

Two matrices are said to be equal only when all corresponding elements are equal Therefore their size or dimensions are equal as well

ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, **A** and **B** of the same size yields a matrix **C** of the same size

$$c_{ij} = a_{ij} + b_{ij}$$

Matrices of different sizes cannot be added or subtracted

Commutative Law:

$$A + B = B + A$$

Associative Law:

$$A + (B + C) = (A + B) + C = A + B + C$$

$$\begin{bmatrix} 7 & 3 & -1 \\ 2 & -5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 5 & 6 \\ -4 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 8 & 5 \\ -2 & -7 & 9 \end{bmatrix}$$

$$A + 0 = 0 + A = A$$

 $\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$ (where $-\mathbf{A}$ is the matrix composed of $-\mathbf{a}_{ij}$ as elements)

$$\begin{bmatrix} 6 & 4 & 2 \\ 3 & 2 & 7 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$

SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single element)

Let k be a scalar quantity; then

$$kA = Ak$$

Ex. If
$$k=4$$
 and

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 1 \\ 2 & -3 \\ 4 & 1 \end{bmatrix}$$

$$4 \times \begin{bmatrix} 3 & -1 \\ 2 & 1 \\ 2 & -3 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \\ 2 & -3 \\ 4 & 1 \end{bmatrix} \times 4 = \begin{bmatrix} 12 & -4 \\ 8 & 4 \\ 8 & -12 \\ 16 & 4 \end{bmatrix}$$

Properties:

- k (A + B) = kA + kB
- $\bullet (k + g)A = kA + gA$
- k(AB) = (kA)B = A(k)B
- k(gA) = (kg)A

MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices **A** and **B** must be **conformable** for multiplication to be possible

i.e. the number of columns of **A** must equal the number of rows of **B**

Example.

$$A \times B = C$$
(1x3) (3x1) (1x1)

$$\mathbf{B} \times \mathbf{A} = \text{Not possible!}$$

$$(2x1) (4x2)$$

$$\mathbf{A} \times \mathbf{B} = \text{Not possible!}$$

$$(6x2) (6x3)$$

Example

$$A \times B = C$$
(2x3) (3x2) (2x2)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

$$(a_{11} \times b_{11}) + (a_{12} \times b_{21}) + (a_{13} \times b_{31}) = c_{11}$$

$$(a_{11} \times b_{12}) + (a_{12} \times b_{22}) + (a_{13} \times b_{32}) = c_{12}$$

$$(a_{21} \times b_{11}) + (a_{22} \times b_{21}) + (a_{23} \times b_{31}) = c_{21}$$

$$(a_{21} \times b_{12}) + (a_{22} \times b_{22}) + (a_{23} \times b_{32}) = c_{22}$$

Successive multiplication of row *i* of **A** with column *j* of **B** – row by column multiplication

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 7 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 6 & 2 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} (1 \times 4) + (2 \times 6) + (3 \times 5) & (1 \times 8) + (2 \times 2) + (3 \times 3) \\ (4 \times 4) + (2 \times 6) + (7 \times 5) & (4 \times 8) + (2 \times 2) + (7 \times 3) \end{bmatrix}$$

$$= \begin{bmatrix} 31 & 21 \\ 63 & 57 \end{bmatrix}$$

Remember also:

$$IA = A$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 31 & 21 \\ 63 & 57 \end{bmatrix} = \begin{bmatrix} 31 & 21 \\ 63 & 57 \end{bmatrix}$$

If
$$A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$
, then A^2 is

$$(a) \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}$$

$$(b) \begin{bmatrix} 4 & 0 \\ 4 & 0 \end{bmatrix}$$

$$(c)\begin{bmatrix}0&4\\0&4\end{bmatrix}$$

$$(d)\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

Assuming that matrices **A**, **B** and **C** are conformable for the operations indicated, the following are true:

- $1. \quad AI = IA = A$
- 2. A(BC) = (AB)C = ABC (associative law)
- 3. A(B+C) = AB + AC (first distributive law)
- 4. (A+B)C = AC + BC (second distributive law)

Caution!

- 1. AB not generally equal to BA, BA may not be conformable
- 2. If AB = 0, neither A nor B necessarily = 0
- 3. If AB = AC, B not necessarily = C

AB not generally equal to BA, BA may not be conformable

$$T = \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix}$$

$$S = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix}$$

$$TS = \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 15 & 20 \end{bmatrix}$$

$$ST = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 23 & 6 \\ 10 & 0 \end{bmatrix}$$

If AB = 0, neither A nor B necessarily = 0

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

TRANSPOSE OF A MATRIX

If:

Then transpose of A, denoted A^T is:

$$A^{T} = {}_{2}A^{3^{T}} = \begin{bmatrix} 2 & 5 \\ 4 & 3 \\ 7 & 1 \end{bmatrix}$$

$$a_{ij} = a_{ji}^T$$
 For all i and j

To transpose:

Interchange rows and columns

The dimensions of A^T are the reverse of the dimensions of A

$$A = {}_{2}A^{3} = \begin{bmatrix} 2 & 4 & 7 \\ 5 & 3 & 1 \end{bmatrix}$$
 2 x 3

$$A^{T} = {}_{3}A^{T^{2}} = \begin{bmatrix} 2 & 5 \\ 4 & 3 \\ 7 & 1 \end{bmatrix}$$
3 x 2

Properties of transposed matrices:

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(AB)^T = B^T A^T$$

3.
$$(kA)^T = kA^T$$

4.
$$(A^T)^T = A$$

Matrices - Operations

1.
$$(A+B)^T = A^T + B^T$$

$$\begin{bmatrix} 7 & 3 & -1 \\ 2 & -5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 5 & 6 \\ -4 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 8 & 5 \\ -2 & -7 & 9 \end{bmatrix} \longrightarrow \begin{bmatrix} 8 & -2 \\ 8 & -7 \\ 5 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 \\ 3 & -5 \\ -1 & 6 \end{bmatrix} + \begin{bmatrix} 1 & -4 \\ 5 & -2 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 8 & -2 \\ 8 & -7 \\ 5 & 9 \end{bmatrix}$$

Matrices - Operations

$$(AB)^T = B^T A^T$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 8 \end{bmatrix}$$

Matrices - Operations

SYMMETRIC MATRICES

A Square matrix is symmetric if it is equal to its transpose:

$$\mathbf{A} = \mathbf{A}^{\mathsf{T}}$$

$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

$$A^T = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

SKEW SYMMETRIC MATRICES

A Square matrix is skew symmetric if it is equal to negative of its transpose:

For

$$B = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & -9 \\ 3 & 9 & 0 \end{bmatrix}$$

$$\mathsf{B}' = \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & 9 \\ -3 & -9 & 0 \end{bmatrix}$$

MCQ

If a matrix A is both symmetric and skew symmetric then matrix A is

- (a) a scalar matrix
- (b) a diagonal matrix
- (c) a zero matrix of order n × n
- (d) a rectangular matrix.

MCQ

The diagonal elements of a skew symmetric matrix are

- (a) all zeroes
- (b) are all equal to some scalar $k(\neq 0)$
- (c) can be any number
- (d) none of these

Rank of Matrix

The rank of a matrix is the order of the largest non-zero square submatrix.

REVISION MCQ

Rank of the matrix A =

```
\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 \\
4 & 2 & 3 & 0 \\
1 & 0 & 0 & 0 \\
4 & 0 & 3 & 0
\end{array}\right]
```

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3

Rank of Matrix Using Elementary Transformation

- "row-rank of a matrix" counts the max. number of linearly independent rows.
- "column-rank of a matrix" counts the max. number of linearly independent columns.
- One application: Given a large system of linear equations, count the number of essentially different equations.
 - The number of essentially different equations is just the row-rank of the augmented matrix.

Evaluating the row-rank by definition

Calculation of row-rank via RREF

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \end{bmatrix} \xrightarrow{\text{Row reductions}} \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Row-rank = 2

Row-rank = 2

Because row reductions do not affect the number of linearly independent rows

Theorem

Given any matrix, its row-rank and column-rank are equal.

In view of this property, we can just say the "rank of a matrix". It means either the row-rank or column-rank.

For each of the following matrices, find a row-equivalent matrix which is in reduced row echelon form. Then determine the rank of each matrix.

(a)
$$A = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$$
.
(b) $B = \begin{bmatrix} 2 & 6 & -2 \\ 3 & -2 & 8 \end{bmatrix}$.
(c) $C = \begin{bmatrix} 2 & -2 & 4 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix}$.
(d) $D = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$.
(e) $E = \begin{bmatrix} -2 & 3 & 1 \end{bmatrix}$.

(c)
$$C = \begin{bmatrix} 2 & -2 & 4 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 4 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1 & -1 & 2 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix} \xrightarrow{R_2 - 4R_1} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 5 & -10 \\ 0 & 5 & -10 \end{bmatrix}$$

$$egin{aligned} & R_{3}-R_{2} \ \longrightarrow \ egin{bmatrix} 1 & -1 & 2 \ 0 & 5 & -10 \ 0 & 0 & 0 \end{bmatrix} & rac{rac{1}{5}R_{2}}{5} & egin{bmatrix} 1 & -1 & 2 \ 0 & 1 & -2 \ 0 & 0 & 0 \end{bmatrix} & rac{R_{1}+R_{2}}{5} & egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 0 \end{bmatrix}. \end{aligned}$$

The matrix C has rank 2

MCQ

Find the rank of the matrix A=
$$\begin{bmatrix} 1 & 3 & 5 \\ 4 & 6 & 7 \\ 1 & 2 & 2 \end{bmatrix}.$$

- a) 3
- b) 2
- c) 1
- d) 0

LINEAR INDEPENDENT AND DEPENDENT OF VECTORS

In the theory of vector spaces, a set of vectors is said to be linearly dependent if at least one of the vectors in the set can be defined as a linear combination of the others; if no vector in the set can be written in this way, then the vectors are said to be linearly independent

Linear Dependence and Independence:-

A finite set of vector of a vector space is said to be Linearly Dependent(LD) if there exists a set of scalars k₁, k₂,, k_n not all zero such that,
 k₁u₁ + k₂u₂ +.....+k_nu_n= ō

 A finite set of vector of a vector space is said to be Linearly Independent(LI) if there exists scalars k₁, k₂,, k_n such that,

$$k_1u_1 + k_2u_2 + \dots + k_nu_n = \bar{o} => k_1 = k_2 = \dots = k_n = 0$$

Properties For LI - LD

- Property 1: Any subset of a vector space is either L.D. or L.I.
- Property 2: A set of containing only ō vector that is {ō} is L.D.
- Property 3: A set is containing the single non zero vector is L.I.
- Property 4: A set having one of the vector as zero vector is L.D.

EXAMPLES

- Consider the set of vectors to check LI or LD {(1,0,0),(0,1,0),(0,0,1)} in R³.
 - Solution :-

Let
$$k_1, k_2, k_3$$
 belongs to R such that,
 $k_1(1,0,0)+k_2(0,1,0)+k_3(0,0,1)=(0,0,0)$
 $(k_1,k_2,k_3)=(0,0,0)$
 $\Rightarrow k_1=0,k_2=0,k_3=0$

Therefore, the set {i,j,k} is LI.

Determine whether the vectors are LI in R^3 (1-,2,1),(2,1,-1),(7,-4,1).

Solution: Let k₁,k₂,k₃ belongs to R such that,
 k₁(1,-2,1)+k₂(2,1,-1)+k₃(7,-4,1)=(0,0,0)

$$k_1+2k_2+7k_3=0$$
 $-2k_1+1k_2-4k_3=0$
 $k_1-k_2+k_3=0$

MCQ

What is the determinant of the equivalent matrix if you have the following two equations:

$$x + y = 0$$

$$2x - 3y = 0$$

- a. -5
- b. -1
- **c.** 0
- d. 2

$$|A| = \begin{vmatrix} 1 & 2 & 7 \\ -2 & 1 & -4 \\ 1 & -1 & 1 \end{vmatrix}$$

$$|A| = 1[(1)(1)-(-4)(-1)]$$

$$-2[(-2)(1)-(-4)(1)]$$

$$+7[(-2)(-1)-(1)(1)]$$

$$|A| = -3-4+7$$

$$|A| = 0$$

Since the determinant of the system is zero, the system of these equations has a nontrivial solution. That is at least one of k₁,k₂,k₃ is nonzero. Thus the vectors are LD.

1.) Which of the following sets of polynomials in P_2 are dependent?

i.
$$2-x+4x^2$$
, $3+6x+2x^2$, $2+10x-4x^2$.

ii.
$$2+x+x^2$$
, $x+2x^2$, $2+2x+3x^2$.

Solution:-

i.)
$$2-x+4x^2$$
, $3+6x+2x^2$, $2+10x-4x^2$
Let,
 $k_1p_1+k_2p_2+k_3p_3=0$
 $=>k_1(2-x+4x^2)+k_2(3+6x+2x^2)+k_3(2+10x-4x^2)=0$
 $2k_1+3k_2+2k_3=0$
 $-k_1+6k_2+10k_3=0$
 $4k_1+2k_2-4k_3=0$

$$^{\sim}|A| = \begin{bmatrix} 2 & 3 & 2 \\ -1 & 6 & 10 \\ 4 & 2 & -4 \end{bmatrix}$$

$$\sim A = \begin{vmatrix} 2 & 3 & 2 \\ -1 & 6 & 10 \\ 4 & 2 & -4 \end{vmatrix}$$

$$= 2(-24-20)-3(4-40)+2(-2-24)$$

$$= -88 + 108 - 52$$

$$|A| = -32 \pm 0$$

Therefore the system has unique solution
The given vectors are not L.D(i.e they are L.I).