

Linear Regression

House sizes and prices

$$f_{w,b}(x) = wx + b$$

Notations

size in feet²	price in \$1000's	
2104 1416 1534 852	400 232 315 178	
 3210	870	

Notation:

x ="input" variable feature

y = "output" variable "target" variable

m = number of training examples

(x, y) = single training example

$$(x^{(i)}, y^{(i)})$$

 $(x^{(i)}, y^{(i)}) = i^{th}$ training example
 $(1^{st}, 2^{nd}, 3^{rd} ...)$

Error and Cost Function

Error Function =
$$\left(\begin{array}{c} \hat{y}^{(i)} - y^{(i)} \end{array}\right)^2$$

Error and Cost Function

Cost Function

m = number of training examples

Error and Cost Function

Error and Cost Function - Finding the sweet spot

Error and Cost Function - Finding the sweet spot

$$w = w - \alpha + \frac{\partial}{\partial w} T(w,b)$$

$$\mathbf{w} = \mathbf{w} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},\mathbf{b}}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}^{(i)}$$

Gradient Descent - Derivation

```
loss = (y_pred - y)^2/n
loss = (y_pred^2 + y^2 - 2y*y_pred)/n
(expanding the whole square)
=>((x*w+b)^2 + y^2 - 2y*(x*w+b))/n
(substitute y_pred)
=> ((x*w+b)^2/n) + (y^2/n) +
((-2y(x*w+b))/n) (splitting the terms)
Let A = ((x*w+b)^2/n)
Let B = (y^2/n),
Let C = ((-2y(x*w+b))/n)
```

```
A = (x²w² + b² + 2xwb)/n (expanding)

∂A/∂w = (2x²w + 2xb)/n (differentiating)

∂B/∂w = 0 (differentiating)

C = (-2yxw - 2yb)/n

∂C/∂w = (-2yx)/n (differentiating)
```

So, ∂loss/∂w will be the addition of all these terms:

```
\partial \log x/\partial w = (2x^2w + wxb - 2yx)/n
=> (2x(x*w + b - y))/n
```


Multivariate Linear Regression

Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's
X1	X ₂	X ₃	X4	
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Multivariate Linear Regression

Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's
X1	X ₂	X ₃	X4	
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Previously: $f_{w,b}(x) = wx + b$

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$

example
 $f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$
for \$\frac{1}{2} \text{base} \text{price}

Multivariate Linear Regression

Previously:
$$f_{w,b}(x) = wx + b$$

$$f_{w,b}(x) = \omega_1 \chi_1 + \omega_2 \chi_2 + \omega_3 \chi_3 + \omega_4 \chi_4 + b$$
example
$$f_{w,b}(x) = 0.1 \chi_1 + 4 \chi_2 + 10 \chi_3 + -2 \chi_4 + 80$$

$$f_{w,b}(x) = 0.1 \chi_1 + 4 \chi_2 + 10 \chi_3 + -2 \chi_4 + 80$$
size #bedrooms #floors years price

Multivariate Linear Regression - Gradient Descent

$$\mathbf{w_1} = \mathbf{w_1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x_1}^{(i)}$$

$$w_n = w_n - \alpha \frac{1}{m} \sum_{i=1}^m \left(f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)} \right) \mathbf{x}_n^{(i)}$$

$$\mathbf{b} = \mathbf{b} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{\mathbf{w}}, \mathbf{b}}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})$$