Лекция 2

Ilya Yaroshevskiy

6 апреля 2021 г.

Содержание

1	Про	ризводящие функции	1
	1.1	Рекурентные соотношения	1
	1.2	Рекурента в рациональную П Φ	2

1 Производящие функции

Определение. Полином — степенныой ряд, у которого начиная с некоторого места n все коэффиценты 0.

Обозначение. $\deg p = n$

Определение. $rac{P(t)}{Q(t)}$ — дробно рациональная функция

1.1 Рекурентные соотношения

Определение.

$$m: a_0, a_1, \ldots, a_{m-1}$$

 $k \le m, n \ge m$

$$a_n = c_1 a_{n-1} + \dots + a_k a_{n-k}$$

, где c_1,\ldots,c_k — коэффиценты рекурентности

Пример.

- m = 2, k = 2
- $f_0 = f_1 = 1$
- $c_1 = c_2 = 1$

 $f_{n} = f_{n-1} + f_{n-2} -$ числа Фибоначи

Определение. Квазиполином

$$f(n) = \sum_{i=1}^{k} p_i(n) r_i^n$$

, где p_i — полином, r_i — числа

Теорема 1.1. • $a_0, a_1, \ldots, a_n, \ldots$

Тогда эквивалентны:

- 1. $A(t) = \frac{P(t)}{Q(t)}, P, Q$ полиномы, $q_0 \neq 0$
- 2. для $n \ge m$ a_n задается линейным рекурентным соотношением: $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, причем:
 - $Q(t) = 1 c_1 t c_2 t^2 \dots c_k t^k$
 - $\deg P \leq m-1$

3. a_n — квазиполином

$$a_n = \sum_{i=1}^k p_i(n)r_i^n \tag{1}$$

причем:

- r_i обратные величины корням Q(t)
- ullet k число различных его корней
- $\deg p_i = ($ кратность корня $(r_i^{-1}))-1$ (1 кроме $\leq m$ первых членов)

1.2 Рекурента в рациональную ПФ

$$A(t) = \frac{P(t)}{Q(t)}$$

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

$$m = \deg P + 1 \quad k = \deg Q$$

$$p_i = a_i - \sum_{j=1}^{\min(k,i)} a_{i-j} c_j$$

$$a_n = \frac{p_n - \sum_{i=1}^n a_{n-i} q_i}{q_0}$$

$$c_i = -q_i$$

$$a_n = \sum_{i=1}^{\min(n,k)} c_i a_{n-i} [+p \text{ если } n < m]$$