High Dimension Probability - On Concentration Inequalities

Bipin Koirala

March 2023

1 Gaussian Concentration Inequality

Let, $X \sim \mathcal{N}(0, I_d) \in \mathbb{R}^d$ and $f: \mathbb{R}^d \to \mathbb{R}$ a Lipschitz function i.e. $|f(X) - f(y)| \leq L ||x - y||$. Then;

$$\mathbb{P}\{|f(X) - \mathbb{E}f(X)| \ge t\} \le 2 \exp(-t^2/2L^2) \; ; \forall t > 0$$

Remark

• $f(x) = \langle w, x \rangle$ then L = ||w||. If $X \sim \mathcal{N}(0, I_d)$ then $f(x) = \langle w, x \rangle \sim \mathcal{N}(0, ||w||^2)$ and $\mathbb{P}\{f(X) \geq t\} = \mathbb{P}\{f(X) - \mathbb{E}f(X) \geq t\} = 1 - \Phi\left(\frac{t}{||w||}\right) \text{ if Median or } \mathbb{E}f(X) = 0$ where; $\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-y^2/2} dy$ and $1 - \Phi(t) \leq \frac{1}{2} e^{-t^2/2}$. $\rightarrow \mathbb{P}\{|f(X) - \text{Med } f(X)| \geq t\} \leq 2\left[1 - \Phi\left(\frac{t}{L}\right)\right] = \int_{0}^{\infty} e^{-t^2/2L^2} dt = \sqrt{\frac{\pi}{2}}L$ $\rightarrow \mathbb{P}\{|f(X) - \text{Med } f(X)| \geq tL\} \leq 2\left[1 - \Phi(t)\right] \implies \mathbb{P}\{|f(X) - \mathbb{E}f(X)| \geq (t + \sqrt{\frac{\pi}{2}})L\} \leq 2(1 - \Phi(t))$

• If $X \sim \mathcal{N}(0, \Sigma)$ then $X = \Sigma^{1/2}Z$ where $Z \sim \mathcal{N}(0, I_d)$ then;

$$\mathbb{P}\{|f(X) - \mathbb{E}f(X)| \ge t\} \le 2 \exp\left(-\frac{t^2}{2L^2||\Sigma||}\right)$$

2 Gaussian Concentration and Isoperimetry

Among all subsets of same surface area; sphere(ball) has the largest volume. Among all subsets of same surface volume; Euclidean ball has the smallest surface area.

Isoperimetry for Gaussian Measure $\gamma(A) := \int_A \frac{1}{(2\pi)^d/2} e^{-|x|^2/2} dx$; $A \subset \mathbb{R}^d$ is a Borel set. i.e. γ is the standard Gaussian measure on Borel σ algebra in \mathbb{R}^d . γ is the distribution of $X \sim \mathcal{N}(0, I_d)$.

$$\gamma(A) = \mathbb{P}(X \in A)$$

Let; $A, H \subset \mathbb{R}^d$ be Borel subsets with $H = \{x \in \mathbb{R}^d : \langle w, x \rangle \leq c\}$ with ||w|| = 1 and $c \in \mathbb{R}$ then;

$$\gamma(A) = \gamma(H) \implies \gamma(A_{\epsilon}) \ge \gamma(H_{\epsilon}) \; ; \; \forall \; \epsilon > 0$$

$$\gamma(H_{\epsilon}) = \gamma(H_{w,c+\epsilon}) = \Phi(c+\epsilon).$$

$$\Phi^{-1}(\gamma(A_\epsilon)) \ge \Phi^{-1}(\gamma(A)) + \epsilon$$

Suppose; $\gamma(A) \geq 1/2$. Then $\Phi^{-1}(\gamma(A)) \geq \Phi^{-1}(1/2) = 0$ i.e. $\Phi^{-1}(\gamma(A)) \geq 0$ so $\gamma(A\epsilon) \geq \Phi(\epsilon)$

$$\gamma((A_{\epsilon})^c) = 1 - \gamma(A_{\epsilon}) \le 1 - \Phi(\epsilon)$$

$$\gamma((A_t)^c) = 1 - \gamma(A_t) \le \frac{1}{2}e^{-t^2/2}$$

3 Application of Gaussian Concentration

3.1 Gaussian Stochastic Processes

Note:We're interested in concentration of $\sup_{t \in \tau} |X(t)| := ||X||_{\tau}$

Let; X(t) s.t. $t \in \tau$ be a centered Gaussian Process. Suppose that $\sup_{t \in \tau} |X(t)| < +\infty$. Let M be a median of R.V. $\sup_{t \in \tau} |X(t)|$. Denote: $\sigma^2 := \sup_{t \in \tau} \mathbb{E}[X^2(t)]$. Then following are true:

i
$$\mathbb{P}\{\sup_{t\in\tau}|X(t)|\geq M+u\}\leq 1-\Phi(u/\sigma)$$

ii
$$\mathbb{P}\{\sup_{t\in\tau}|X(t)|\leq M-u\}\leq 1-\Phi(u/\sigma)$$

iii
$$\mathbb{P}\{\left|\sup_{t\in\tau}|X(t)|-M\right|\geq u\}\leq 2(1-\Phi(u/\sigma)); \quad \forall \ u\geq 0$$

Corollary:

If;
$$\left\{ \left| \sup_{t \in \tau} |X(t)| - M \right| \ge u \right\} \le e^{-u^2/(2\sigma^2)}$$

 $\implies \mathbb{E} \left| \sup_{t \in \tau} |X(t)| - M \right| \le \int_0^\infty e^{-u^2/(2\sigma^2)} du = \sqrt{\frac{\pi}{2}}\sigma$
 $\implies \mathbb{E} \sup_{t \in \tau} |X(t)| \le M + \sqrt{\frac{\pi}{2}}\sigma \le +\infty$

Furthermore; $\mathbb{E} \exp \{\lambda \sup_{t \in \tau} |X(t)|^2\} < \infty; \quad \lambda < \frac{1}{2\sigma^2}$

3.2 Concentration Inequalities for norms of Gaussian R.V in Banach Spaces

E is a Banach Space and E^* is its dual space which consists of all bounded linear functionals on E. A bounded linear functional is a linear transformation that does not "blow up" the size of vectors in the vector space it is defined on. $||T(x)|| \leq M||x||$.

Let; $U \in E^* \Leftrightarrow X \in E \to \langle x, u \rangle \in \mathbb{R}$.

$$||U|| = \sup_{||x|| \le 1} \langle x, u \rangle < +\infty$$

Suppose, $M \subset \{U \in E^* : ||U|| \leq 1\}$. X is Gaussian $\sim \mathcal{N}(\mu, \Sigma) \Leftrightarrow \forall U \in E^*$; $\langle x, u \rangle$ is a normal R.V. (stochastic). Σ is covariance operator of X and

$$\langle \Sigma u, v \rangle = \text{Cov} \left(\langle x, u \rangle, \langle x, u \rangle \right) \; ; \; U, V \in E^*$$

We are interested in concentration inequalities for

$$||X|| = \sup_{U \in M} |\langle x, u \rangle|$$

Assume that X is centered and $\sigma^2 := \sup_{U \in M} \mathbb{E}\langle x, u \rangle^2 \le ||\Sigma||$. Let M be the median of X. Then following are true;

i
$$\mathbb{P}\{||X|| \ge M + U\} \le 1 - \Phi(U/\sigma)$$

ii
$$\mathbb{P}\{||X|| \le M - U\} \le 1 - \Phi(U/\sigma)$$

iii
$$\mathbb{P}\{||X|| - M| > U\} \le 2(1 - \Phi(U/\sigma))$$
; $\forall U \ge 0$

For all centered Gaussian R.V. $X \in E$;

$$\mathbb{E}||X|| < +\infty$$

$$\mathbb{E} \exp \{\lambda ||X||^2\} < \infty \ ; \lambda < 1/(2\sigma^2)$$

3.3 Concentration of Lipschitz functions on the Sphere in \mathbb{R}^n

Let; $X \sim \text{Unif}(\sqrt{n}S^{n-1})$ and Lipshitz $f: \sqrt{n}S^{n-1} \to \mathbb{R}$. Then, $||f(X) - \mathbb{E}f(X)||_{\psi_2} \leq \frac{||f||_{Lip}}{\sqrt{n}}$ Furthermore, $\mathbb{P}\{|f(X) - \mathbb{E}f(X)| \geq t\} \leq 2 \exp\left(-\frac{ct^2}{||f||_{Lip}^2}\right)$

4 Johnson-Lindenstrauss Lemma

Let $F = \{x_1, ..., x_n\}$ be a finite set of points in \mathbb{R}^n . With probability at least $1 - 2\exp(-c\epsilon^2 m)$, a linear operator $A : \mathbb{R}^n \to \mathbb{R}^m$ is an ϵ -isometry $(\epsilon \in (0, 1))$ from F into \mathbb{R}^m iff

$$(1 - \epsilon)||x - y||_2 \le ||Ax - Ay||_2 \le (1 + \epsilon)||x - y||_2 \text{ for all } x, y \in F$$

where $A = \sqrt{\frac{n}{m}} P_L$, P_L is an orthonormal projection onto a random m-dimensional subspace $L \subset \mathbb{R}^n$ and $m \geq (C\epsilon^2) \log N$.

5 Concentration of Functions of Independent R.V.

Suppose, $X_1,, X_n$ are independent R.V. with values in some spaces $S_1,, S_n$. Let, $f: S_1 \times \times S_n \to \mathbb{R}$ and let $Z:=f(X_1,....X_n)$. We're interested in the concentration of Z around its expectation (or median).