Package 'wuepix'

January 8, 2019

Type Package

Title Using Computer Vision to Count Pedestrians

Version 1.0.3
Author Jeroen Staab
Maintainer Jeroen Staab < jstaab@posteo.de>
Description R-Package for using computer vision to count persons and other objects in webcam imagery. Wuepix is ment to aid geographers counting visitors of touristic destinations as natural reservers protected areas. The package is part of the authors master thesis.
License CC BY-SA 4.0
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, Rdpack
Imports tidyverse, dplyr, purrr, readr, stringi, foreach, doParallel, jpeg, SDMTools, git2r, magick
VignetteBuilder knitr
NeedsCompilation no
R topics documented:
CD_list 1 CD_single 2 fun_Aggregation 3 GTD_list 3 GTD_single 4 GTD_truePositives 4 hog_install 5 hog_list 5 JPEG_grayscale 6 JPEG_histStrecht 7 JPEG_plot 7

2 CD_single

ROI_draw																					8
ROI_hist																					8
yolo_install .																					9
yolo_list																					9
yolo_Read																					10
yolo_single .																					10
yolo_update .																					11

CD_list

Change Detection

Description

Detect changes using image differencing for a list of images. Includes parallel processing.

Usage

```
CD_list(img.list, ...)
```

Arguments

```
img.list file path to images.
```

. . . Arguments passed to CD_single().

Value

Classification result. Here work is in progess...

CD_single

Change Detection

Description

Change Detection

Detect changes between two images using image differencing

Usage

```
CD_single(file.now, file.old, Min = 0.2, Max = 1, predictions = NULL,
   extend = NULL, plot = FALSE, method = "diff")
```

fun_Aggregation 3

Arguments

Min Threshold for positive classification

Max Threshold for positive classification

predictions dir path to where to store prediction images

extend DEPECATED! Used to crop images. Has been moved to a seperate preprocess

step.

method Select change detection method. "ratio" Image Rationing. "diff" Image Differ-

encing, absolute changes in both directions. "diff+" Image Differencing, posi-

tive changes only.

now Path to first image old Path to second image

Value

Classification result. Here work is in progess...

fun_Aggregation Aggregate Time-series

Description

Aggregate Time-series

Usage

```
fun_Aggregation(Timestamp, Variable, T_scale = "hour")
```

Arguments

T_scale Timeinterval. See ?lubridate::floor_date()

Value

Dataframe including summed and mean variable per Timeinterval

GTD_single

 ${\tt GTD_list}$

Sample Ground Truth Data

Description

Manually asses number of persons in multiple images.

Usage

```
GTD_list(img.list)
```

Arguments

img.list

file path to image, also known as 'now'.

Value

numeric vector with number of persons.

GTD_single

Sample Ground Truth Data

Description

Manually asses number of persons in a single image.

Usage

```
GTD_single(img)
```

Arguments

img

file path to image, also known as 'now'.

Value

numeric vector with number of persons.

Author(s)

Jeroen Staab

GTD_truePositives 5

GTD_truePositives Benchmark Pedestrian Detection

Description

Accuracy Assesment for Object-Based Classifiers as in DALAL etal. 2005 p. 888

Usage

```
GTD_truePositives(GTD, PRD)
```

Arguments

GTD Numeric vector of Ground-Truth-Data, as returned by GTD_list()

PRD Numeric vector of prediction values, as returned by hog_list() and yolo_list()

Value

Returns datafram with following colums: FalseNegative, TruePositives, FalsePositive, MissRate, FalsePositivesPerWindow, correlation

hog_install

How to install HOG-Descriptor?

Description

 $hog_list()$ depends on a functional OpenCV installation. This is how I installed it on the LSFE workstation (Linux). OS-specific

OpenCV: sudo apt install python-opencv

Package Manager: sudo apt install python-pip

HOG Dependency: pip install imutils

CUDA GPU: sudo apt-get install nvidia-cuda-dev nvidia-cuda-toolkit nvidia-nsight

Usage

```
?hog_install()
```

See Also

 $http://docs.opencv.org/trunk/df/d65/tutorial_table_of_content_introduction.html$

6 hog_list

hog_list	Detect pedestrians using HOGDescriptor	

Description

Detect objects using HOG+SVM (implemented in OpenCV) in all Files/Images of 'path'

Usage

```
hog(img.folder)
```

Arguments

winStride	Window stride. It must be a multiple of block stride.
padding	Not implemented yet!
Mscale	Numeric. Allows multi-scale detection. Coefficient of the detection window increase.
resize	Numeric factor resizing image in integrated pre-processing step. E.g. 2 will double the image extent. People should be 100 pixels high.
predictions	dir path to where to store prediction images. Must end with "/".
img.folder	Path to (preprocessed) image archive

Details

Python and OpenCV have to be installed. Tested on Linux only.

Further ideas: [A] Add more 'hog.detectMultiScale' parameters: winStride=(4, 4), padding=(8, 8), scale=1.05) [B] Save predictions.png to a folder

Value

Numeric vector with number of detected persons.

Author(s)

Jeroen Staab

JPEG_grayscale 7

JPEG_grayscale

Convert RGB to Grayscale

Description

Convert RGB img to Grayscale. Default is mixing the three bands equaly. Use camera specific weights if possible. Stardot red=0.3 green=0.59 blue=0.11

Usage

```
JPEG\_grayscale(img, red = 1/3, green = 1/3, blue = 1/3)
```

Arguments

img	Three layered raster object.
red	Calibration weight for red.
green	Calibration weight for green.
blue	Calibration weight for blue.

Value

Singe layer raster object.

JPEG_histStrecht Histogram Stretching

Description

Stretch values between 0 and 1 as in JPEG convention. Attention, use this function for plotting only (highlights contrast). But further processing (i.e. Change Detection) may be limited due altered values.

Usage

```
JPEG_histStrecht(img)
```

Arguments

img

A raster object.

Value

same as input, but ranged between 0 and 1 (nummeric).

8 ROI_draw

JPEG_plot

Plot a JPEG

Description

Simply plot an image.

Usage

```
JPEG_plot(img, main = NULL)
```

Arguments

img A raster object.

main Optional. An overall title for the plot.

Details

Images can be loaded as raster object using 'JPEG::readJPEG()'.

Author(s)

Jeroen Staab

ROI_draw

Inspect a Region of Interest

Description

Draw a region of interest.

Usage

```
ROI_draw(img)
```

Arguments

img

A raster object.

Details

Insepct a region of interest by drawing a polygone. See OS-specific ?locator() for how to finish drawing. Minimum three vertex points are required.

```
roi <- InspectROI(jpeg::readJPEG("../Testbild.jpg")) \\
```

To visualize roi use histROI() or get it's stats with summary().

histROI(roi)

ROI_hist

Value

numeric dataframe with digital numbers of selected pixels.

See Also

histROI

ROI_hist

Inspect a Region of Interest

Description

Ggplot histogramm of a region of interest.

Usage

```
ROI_hist(roi)
```

Arguments

roi

A numeric dataframe as returned by InspectROI().

yolo_install

Install YOLO Automatically

Usage

```
yolo_install(yolo.inst)
```

Arguments

yolo.inst directory for installation. Will be created

Details

this function wrapped the install procedure (1-3) while renaming the directory from 'darknet' to 'basename(yolo.inst)' and additional run a test to check whether installation succeeded.

- 1. 'git clone https://github.com/pjreddie/darknet'
- 2. 'cd darknet'
- 3. 'make'

during installation 'Makefile' will be opened, to finetune the installation, eg. multithreading (OPENMP=1) or GPU processing (GPU=1), off by default..

after successfull installation it will place 'yolo.inst' in 'paste0(system.file(package = "wuepix"), "/exec/yolo_inst.txt")'

10 yolo_Read

yolo_list

Object Detection using YOLO

Description

detect people using YOLO+CNN (Linux C++), in multiple images. Unfortunately it is not possible to store the predictions here, but it is significant faster on large image archives.

Usage

```
yolo_list(img.list, logfile = "yolo_detections.txt", thresh = 0.25)
```

Arguments

img.list file path to images.

logfile file path to where to store detailed list of classification results.

thresh numeric threshold value.

Value

numeric number of detected persons.

See Also

```
yolo_single
```

yolo_Read

Read YOLO Output File

Description

Read and clean YOLO output file, as saved to working directory by yolo_list()

Usage

```
yolo_Read(file = "yolo_detections.txt")
```

Arguments

file path to output "yolo_detections.txt" file.

yolo_single 11

yolo_single Object	ct Detection using YOLO
--------------------	-------------------------

Description

detect people using YOLO+CNN (Linux C++), in a single image.

Usage

```
yolo_single(img, logfile = "yolo_detections.txt",
   predictions = "YOLO_Predictions/", thresh = 0.25)
```

Arguments

img file path to image, also known as 'now'.

logfile file path to where to store detailed list of classification results.

predictions dir path to where to store prediction images

thresh numeric threshold value.

Details

depends on a working YOLO installation! See 'yolo_install()' and rerun 'yolo_update()' after updating this package (Places yolo.inst in package directory)

single processing allows storing 'predictions' (images with bounding boxes). Since these can be very insightful, you might want to 'sapply()' this function instead of 'yolo_list()'. However because then the wights have to be loaded repetitively (~10 seconds) this slows down processing.

it's recommended avoid spaces in the paths (also in working directory).

an idea for further work on this package would be to actually wrap YOLO into R (e.g. using Rccp).

Value

numeric number of detected persons.

Author(s)

Jeroen Staab

References

\insertRefredmon2016yolo9000wuepix https://pjreddie.com/darknet/yolo/

Examples

```
yolo_single(img)
sapply(img.list, yolo_single)
```

12 yolo_update

yolo_update

Update YOLO

Description

Update YOLO

Usage

```
yolo_update(yolo.inst)
```

Arguments

yolo.inst directory of YOLO installation.

Details

since YOLO is under active development this function wraps the update procedure (1-2) and test it.

- 1. 'git pull'
- 2. 'make'

during installation 'Makefile' will be opened, to fine tune the installation, e.g. turning on multi-threading or GPU processing.

 $after\ successfull\ update\ it\ will\ place\ `yolo.inst'\ in\ `pasteO(system.file(package = "wuepix"),\ "/exec/yolo_inst.txt")`$