CC II

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. Convolutions

1. Démontrer que si $f, g \in L^1(\mathbb{R})$ alors f * g existe et est dans $L^1(\mathbb{R})$ avec $||f * g||_1 \le ||f||_1 ||g||_1$. (2pt)

On souhaite démontrer que

$$||f * g||_1 \le ||f||_1 ||g||_1. \tag{1}$$

En effet, on observe que l'on peut appliquer le Théorème de Fubini-Tonelli car la fonction $(x,y)\mapsto |f(y)g(x-y)|$ est positive :

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(y)g(x-y)| \, d\lambda_n(y) \right) d\lambda_n(x) = \int_{\mathbb{R}^n} |f(y)| \left(\underbrace{\int_{\mathbb{R}^n} |g(x-y)| \, d\lambda_n(x)}_{=||g||_1} \right) d\lambda_n(y)$$

$$= ||g||_1 \int_{\mathbb{R}^n} |f| \, d\lambda_n = ||f||_1 ||g||_1 < +\infty$$

Ainsi, l'application $x \mapsto \int_{\mathbb{R}^n} |f(y)g(x-y)| d\lambda_n(y)$ prend des valeurs finies λ_n -pp car son intégrale est finie. On en déduit par l'inégalité triangulaire que f * g est elle aussi bien définie λ_n -pp. Pour avoir le contrôle sur la norme, on utilise directement l'inégalité triangulaire et la majoration que l'on vient de montrer :

$$||f * g||_1 = \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(y)g(x-y) \right| d\lambda_n(y) d\lambda_n(x) \leqslant \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(y)g(x-y)| d\lambda_n(y) \right) d\lambda_n(x),$$

qui permet de montrer l'inégalité (1).

- 2. Donner la définition d'une suite régularisante de fonctions de $\mathbb{R} \to \mathbb{R}$. Donner un exemple explicite. Expliquer en deux phrases à quoi à servi, dans le cours, cette notion. (2pt)
 - Soit $\rho: \mathbb{R}^n \to \mathbb{R}_+$ une fonction de $C_c^{\infty}(\mathbb{R}^n)$ telle que $\rho \geqslant 0$, $\{x \in \mathbb{R}^n \mid \rho(x) \neq 0\} \subset \mathsf{B}(0,1)$ et $\int_{\mathbb{R}^n} \rho d\lambda_n = 1$. On appelle **famille régularisante** les fonctions définies pour tout s > 0 par

$$\rho_s: x \mapsto \frac{1}{s^n} \rho\left(\frac{x}{s}\right).$$

• Soit $\phi: \mathbb{R}^n \to \mathbb{R}_+$ définie par

$$\phi(x) = \begin{cases} \exp\left(-\frac{1}{1 - \|x\|^2}\right) & \text{si } \|x\| < 1\\ 0 & \text{sinon.} \end{cases}$$

Cette fonction est bien de classe $C^{\infty}(\mathbb{R}^n)$ comme composée de fonctions $C^{\infty}(\mathbb{R}^n)$, et à support compact. Dans la suite, on note $\rho: \mathbb{R}^n \to \mathbb{R}_+$ définie par

$$\rho(x) = \frac{\phi(x)}{\int_{\mathbb{R}^n} \phi d\lambda_n} \tag{2}$$

On a alors bien $\rho \in C_c^{\infty}(\mathbb{R}^n)$, $\rho \geqslant 0$, $\int_{\mathbb{R}^n} \rho d\lambda_n = 1$ et ρ a son support dans la boule de rayon 1.

- Les suites régularisantes sont utilisées pour approximer les fonctions de L^p avec des fonctions C^{∞} à support compact. Pour cela on utilise l'opération de convolution en faisant tendre le paramètre $s \to 0$.
- 3. Étant donné $\xi \in \mathbb{R}$, on pose $f_{\xi}(x) = e^{\xi x} \mathbb{1}_{[0,+\infty[}(x) \text{ pour tout } x \in \mathbb{R}$. Soit α et β deux nombres réels. Montrer l'existence et calculer le produit de convolution $f_{\alpha} * f_{\beta}$. (4pt)

Remarquons d'abord que l'existence du produit de convolution de ces deux fonctions ne résulte pas immédiatement des théorèmes du cours. En effet, si α et β sont strictement positifs, alors les deux fonctions ne sont dans aucun L^p pour $p \geqslant 1$. Elles sont dans L^1_{loc} , et aucune des deux n'est à support compact. Ainsi, pour démontrer l'existence du produit de convolution, il faut montrer que, pour tout $x \in \mathbb{R}$, la fonction $y \mapsto e^{\alpha(x-y)} \mathbbm{1}_{[0,+\infty[}(x-y)e^{\beta y}\mathbbm{1}_{[0,+\infty[}(y)$ est intégrable. Mais comme cette fonction est positive, il suffit de faire le calcul sans les valeurs absolues. On a alors :

$$f \star g(x) = \int_{\mathbb{R}} e^{\alpha(x-y)} \mathbb{1}_{[0,+\infty[}(x-y)e^{\beta y} \mathbb{1}_{[0,+\infty[}(y)dy)$$
$$= e^{\alpha x} \int_{0}^{+\infty} e^{-\alpha y} \mathbb{1}_{[0,+\infty[}(x-y)e^{\beta y}dy$$

Or, $x - y \in [0, +\infty[\iff x \geqslant y]$. Il en résulte que, si $x \leqslant 0$, on a $f \star g(x) = 0$. D'autre part, si $x \geqslant 0$, on a :

$$f \star g(x) = e^{\alpha x} \int_0^x e^{(\beta - \alpha)y} dy$$
$$= \begin{cases} \frac{1}{\beta - \alpha} \left(e^{\beta x} - e^{\alpha x} \right) & \text{si } \beta \neq \alpha \\ x e^{\alpha x} & \text{sinon.} \end{cases}$$

Exercice 2. Soient $\alpha, \beta > 0$. On définit le domaine

$$D_{\alpha,\beta} = \{(x,y) \in \mathbb{R}^2 \mid y^2 - \alpha x \le 0 \text{ et } x^2 - \beta y \le 0\}.$$

1. Représenter le domaine $D_{\alpha,\beta}$ sur un dessin et déterminer les points d'intersection des courbes introduites dans le domaine. (2pt)

La courbe d'équation $y^2 - \alpha x \le 0$ est une parabole de sommet l'origine et d'axe de symétrie la demi-droite (Oy) alors que la courbe d'équation $x^2 - \beta y \le 0$ est une parabole de sommet l'origine et d'axe de symétrie la demi-droite (Ox). Les points d'intersections de ces paraboles sont (x,y)=(0,0) et $(x,y)=(\alpha^{1/3}\beta^{2/3},\alpha^{2/3}\beta^{1/3})$. En effet en combinant les inégalités, on déduit $y^4=\alpha^2x^2=\alpha^2\beta y$ donc y=0 ou $y^3=\alpha^2\beta$ soit $y=\alpha^{2/3}\beta^{1/3}$. Si y=0 alors x=0 et si $y=\alpha^{2/3}\beta^{1/3}$ alors $x=y^2\alpha=\alpha^{1/3}\beta^{2/3}$.

2. Justifier que $G:(u,v)\to (u^2v,uv^2)$ est un C^1 difféomorphisme de $\mathbb{R}_+^*\times\mathbb{R}_+^*$ dans lui-même. (2pt)

Le système d'équations

$$x = u^2 v, \quad y = uv^2, \quad u > 0, \quad v > 0$$

admet l'unique solution suivante où x > 0 et y > 0

$$u = x^{2/3}y^{-1/3}, \quad v = y^{2/3}v^{-1/3}.$$

Les fonctions

$$(u,v) \to (u^2v, uv^2), \quad (x,y) \to (x^{2/3}y^{-1/3}, y^{2/3}x^{-1/3})$$

sont toutes les deux de classe C^{∞} sur $(\mathbb{R}_{+}^{*})^{2}$ et inverse l'une de l'autre donc G est bien un C^{1} difféomorphisme de \mathbb{R}_{+}^{*} dans lui-même.

3. En utilisant le changement de variable induit par G, calculer

$$\int_{D_{\alpha,\beta}} \exp\left(-\frac{x^3 + y^3}{xy}\right) d\lambda_2(x,y).$$

(3pt)

Le nouveau domaine d'intégration est $G^{-1}(D_{\alpha,\beta})$ et est décrit par les conditions

$$(y^2 = u^2 v^4 \leqslant \alpha x = \alpha u^2 v) \Leftrightarrow 0 < v \leqslant \alpha^{1/3}$$

et

$$(x^2 = u^4 v^2 \leqslant \beta y = \beta u v^2) \Leftrightarrow 0 < u \leqslant \beta^{1/3}.$$

Le déterminant de la matrice jacobienne de G vaut

$$\begin{vmatrix} 2uv & u^2 \\ v^2 & 2uv \end{vmatrix} = 3u^2v^2 > 0.$$

Les hypothèses de la formule de changement de variable sont remplies. En appliquant la formule suivie du Théorème de Fubini-Tonelli à notre fonction mesurable positive ainsi qu'en utilisant l'intégrale de Riemann car la fonction est continue, on obtient

$$\int_{D_{\alpha,\beta}} \exp\left(-\frac{x^3 + y^3}{xy}\right) d\lambda_2(x,y) = 3 \int_{G^{-1}(D_{\alpha,\beta})} \exp\left(-u^3 - v^3\right) u^2 v^2 d\lambda_2(x,y)$$

$$= 3 \int_0^{\beta^{1/3}} \exp(-u^3) u^2 du \int_0^{\alpha^{1/3}} \exp(-v^3) v^2 du$$

$$= 3 \left[-\frac{\exp(-u^3)}{3} \right]_0^{\beta^{1/3}} \left[-\frac{\exp(-v^3)}{3} \right]_0^{\alpha^{1/3}}$$

$$= \frac{(1 - e^{-\alpha})(1 - e^{-\beta})}{3}.$$

Exercice 3. Cosinus et Sinus hyperbolique On rappelle que les fonction sinus et cosinus hyperbolique sont définies, pour tout $x \in \mathbb{R}$, par $\sinh x = \frac{e^x - e^{-x}}{2}$ et $\cosh x = \frac{e^x + e^{-x}}{2}$.

On considère $h: \mathbb{R}_+^* \to \mathbb{R}$ définie par $h(x) = \int_0^{+\infty} e^{-x \cosh t} dt$.

1. Montrer que h est monotone. Calculer $\lim_{x\to +\infty} h(x)$ et $\lim_{x\to 0} h(x)$. (3pt)

La fonction h est décroissante. En effet, x > x' entraı̂ne que $e^{-x\cosh t} < e^{-x'\cosh t}$ pour tout $t \in \mathbb{R}_+$. La croissance de l'intégrale permet de conclure.

Pour le calcul des limites :

• en $x \to +\infty$, on peut appliquer convergence dominée. On se donne une suite $(x_n)_{n \in \mathbb{N}}$ qui tend vers $+\infty$ quand $n \to +\infty$. On a (à partir d'un certain rang) $e^{-x \cosh t} \leqslant e^{-\cosh t}$ pour tout x et qui est intégrable. Cela donne

$$\lim_{x \to +\infty} h(x) = \int_0^{+\infty} \lim_{x \to +\infty} e^{-x \cosh t} dt = 0.$$

• en $x \to 0$, on peut appliquer convergence monotone. On se donne une suite $(x_n)_{n \in \mathbb{N}}$ qui tend vers 0 quand $n \to +\infty$. La remarque précédente implique que la suite de fonctions $h_n = e^{-x_n \cosh t}$ est croissante et on a

$$\lim_{x \to 0} h(x) = \int_0^{+\infty} \lim_{n \to +\infty} e^{-x_n \cosh t} dt = \int_0^{+\infty} 1 dt = +\infty.$$

2. Calculer $\int_0^{+\infty} h(x)dx$ (On pourra commencer par montrer que $\int_{\mathbb{R}} \frac{ds}{\cosh s} = \pi$.) (2.5pt)

En ce qui concerne l'indication, on utilise la formule de changement de variable :

$$\int_{\mathbb{R}} \frac{ds}{\cosh s} = 2 \int_{\mathbb{R}} \frac{e^s ds}{1 + e^{2s}} = 2 \int_{\mathbb{R}_+} \frac{du}{1 + u^2} = 2 \left[\arctan(u)\right]_0^{\infty} = \pi.$$

Le Théorème de Fubini-Tonelli appliqué à $(x,t)=e^{-x\cosh t}$ permet d'écrire :

$$\int_0^{+\infty} h(x)dx = \int_0^{+\infty} \left(\int_0^{+\infty} e^{-x\cosh t} dx \right) dt = \int_0^{+\infty} \left[-\frac{e^{-x\cosh t}}{\cosh t} \right]_{x=0}^{+\infty} dt$$
$$= \int_0^{+\infty} \frac{dt}{\cosh t} = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{dt}{\cosh t} = \frac{\pi}{2}.$$

où l'on a utilisé la parité du cosinus hyperbolique.

3. On considère les intégrales suivantes :

$$I = \int_{(\mathbb{R}_+)^2} \frac{dsdt}{\cosh s + \cosh t}, \quad J = \int_{\mathbb{R}^2} \frac{dsdt}{\cosh s + \cosh t} \quad \text{et} \quad K = \int_{\mathbb{R}^2} \frac{dudv}{\cosh u \cosh v}$$

(a) En faisant le changement de variable (s,t)=(u-v,u+v), montrer que J=K. (1.5pt)

Le changement de variable est linéaire, de matrice $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Le déterminant du Jacobien est donc constant et égale à 2. On a

$$\begin{split} J &= \int_{\mathbb{R}^2} \frac{dsdt}{\cosh s + \cosh t} = 2 \int_{\mathbb{R}^2} \frac{dudv}{\cosh(u - v) + \cosh(u + v)} \\ &= 4 \int_{\mathbb{R}^2} \frac{dudv}{e^{u - v} + e^{-u + v} + e^{u + v} + e^{-u - v}} \\ &= 4 \int_{\mathbb{R}^2} \frac{dudv}{(e^u + e^{-u})(e^v + e^{-v})} = K. \end{split}$$

(b) Montrer que J = 4I et en déduire I. (1.5pt)

Encore une fois, on peut appliquer le Théorème de Fubini-Tonelli car les fonctions en jeu sont positives. Il suffira alors d'utiliser la parité (resp. imparité) de cosh (resp. sinh)

$$J = \int_{\mathbb{R}^2} \frac{dsdt}{\cosh s + \cosh t} = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \frac{ds}{\cosh s + \cosh t} \right) dt$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}_-} \frac{ds}{\cosh s + \cosh t} + \int_{\mathbb{R}_+} \frac{ds}{\cosh s + \cosh t} \right) dt$$

$$= 2 \int_{\mathbb{R}} \left(\int_{\mathbb{R}_+} \frac{ds}{\cosh s + \cosh t} \right) dt = 2 \int_{\mathbb{R}_+} \left(\int_{\mathbb{R}} \frac{dt}{\cosh s + \cosh t} \right) ds$$

$$= 4 \int_{\mathbb{R}_+} \left(\int_{\mathbb{R}_+} \frac{ds}{\cosh s + \cosh t} \right) dt = 4 \int_{(\mathbb{R}_+)^2} \frac{dsdt}{\cosh s + \cosh t} = 4I.$$

Maintenant on a d'après ce qui précède et le Théorème de Fubini-Tonelli (car l'intégrante de K est scindable)

$$I = \frac{K}{4} = \frac{1}{4} \int_{\mathbb{R}^2} \frac{dudv}{\cosh u \cosh v} = \frac{1}{4} \left(\int_{\mathbb{R}} \frac{du}{\cosh u} \right)^2 = \frac{\pi^2}{4}.$$

(c) Calculer $\int_0^{+\infty} h(x)^2 dx$. (2pt)

Remarquons que

$$h(x)^{2} = \left(\int_{\mathbb{R}_{+}} e^{-x \cosh t} dt \right) \left(\int_{\mathbb{R}_{+}} e^{-x \cosh s} ds \right)$$
$$= \int_{\mathbb{R}_{+}} \left(\int_{\mathbb{R}_{+}} e^{-x (\cosh s + \cosh t)} dt \right) ds$$
$$= \int_{(\mathbb{R}_{+})^{2}} e^{-x (\cosh s + \cosh t)} ds dt.$$

On peut maintenant calculer en appliquant le Théorème de Fubini-Tonelli

$$\int_0^{+\infty} h(x)^2 dx = \int_0^{+\infty} \left(\int_{(\mathbb{R}_+)^2} e^{-x(\cosh s + \cosh t)} ds dt \right) dx$$

$$= \int_{(\mathbb{R}_+)^2} \left(\int_0^{+\infty} e^{-x(\cosh s + \cosh t)} dx \right) ds dt = \int_{(\mathbb{R}_+)^2} \left[-\frac{e^{-x(\cosh s + \cosh t)}}{\cosh s + \cosh t} \right]_{x=0}^{+\infty} ds dt$$

$$= \int_{(\mathbb{R}_+)^2} \frac{ds dt}{\cosh s + \cosh t} = I = \frac{\pi^2}{4}.$$