DBV-Projekt:

Strukturanalyse von Halbleiterelementen Ergebnisse + Demonstration

André Betz

Inhalt:

- Aufgabenstellung
- Funktionen
- Prozesskette: Linien
- Prozesskette: Kreise
- Demonstration
- Fazit

Aufgabenstellung:

- Strukturanalyse
- verrauschtes Bild,evtl. verursacht durchRauschen des CCD-Sensors
- dunkle Aufnahmen

Galerie:

André Betz, 26.6.2001 Seite 4

Funktionen:

Skalierungs-Operator

Ausdehnung: x,y

Spreiz-Operator

Schwelle: z

Schwellenwert-Operator

Schwelle: z

Gauß-Operator

Größe: z

Sobel-Operator

Schwelle: z

Laplace-Operator

Linien-Operator

Auflösung Winkel: a

Auflösung Abstand: b

Schwelle: z

Löschradius: d

Linienzahl: L

Kreis-Operator

Radius: r

Toleranz Radius: a

Toleranz Winkel: b

Auflösung Winkel: z

Prozesskette: Linien

Prozesskette: Kreise

DBV-Projekt: Strukturanalyse von Halbleiterelementen mit der Hough-Transformation

Beispiele I:

Screen01.bmp

(Aprel)

Screen08.bmp

Kreis:

- Scale: 100 x 100

- Spreiz: 10

- Schwelle: Average

- Sobel: 7

- Kreis II

Linien:

- Scale: 100 x 100

- Spreiz: 10

- Schwelle: Average

- Sobel: 7

- Lines: 90 Grad, Thresh 0

Kreis:

- Scale: 100 x 100

- **Spreiz: 10**

- Gauß: 5

- Sobel: 7

- Kreis I: Rad. 15, Tol. 3, Aufl. 10

André Betz, 26.6.2001 Seite 8

Beispiele II:

Screen32.bmp

Screen48.bmp

Kreis:

- Scale: 100 x 100

- Spreiz: 10

- Schwelle: Average

- Sobel: 7

- Kreis II

Kreis:

- Scale: 100 x 100

- Gauß: 5

- Spreiz: 10

- Sobel: 7

- Kreis II:

Linien:

- Scale: 100 x 100

- Gauß: 5

- Spreiz: 10

- Schwelle: Average

- Laplace

- Lines: Thr. 20, Del. 20, Lines 10

Galerie des Schreckens:

Fazit:

- Ergebnis hängt stark von den Einstellungen ab

- Kein allgemeiner Weg führt zu optimalen Ergebnissen

- Rauschentfernung unterdrückt feine Strukturen