

Amendments to the Specification:

Please replace pages 2 and 2a, in their entirety, with the following pages 2 and

2a:

the sole source of carbon and nitrogen. The reaction proceeds via two initial intermediates, hydroxylaminobenzene and *ortho*-aminophenol. The enzymes involved in catalyzing the initial steps are a nitroreductase and a hydroxylaminobenzene mutase. On first inspection the reaction seems similar to the nonenzymatic Bamberger rearrangement. The mechanism of the reactions and the stereochemistry of the products are distinctively different, however. The nitroreductase from strain JS45 has been purified and characterized as a flavoprotein requiring NADPH as an electron donor. Two genes expressing hydroxylaminobenzene (*HAB*) mutase activity, *HabA* (SEQ ID NO 1) and *HabB* (SEQ ID NO 2), have been cloned from strain JS45 and expressed in *E. coli* (J. K. Davis et al, Appl. Environ. Microbiol., Vol. 66, No. 7, 2965-2971, 2000), and one mutase enzyme, *HabB* (Z. He et al, Eur. J. Biochem., Vol. 267, 1110-1116, 2000), has been partially purified. JS45 was deposited in the American Type Culture Collection Patent Deposit in January, 2002, Patent Deposit Designation PTA-3972. Other reports have demonstrated that bacteria, such as *Clostridium acetobutylicum*, *Ralstonia eutrophus* JMP134, *Pseudomonas putida*, *Pseudomonas putida* HS12, strain LW1 of the *Comamonadaceae* family, and *Pseudomonas putida* 2NP8, synthesize nitroreductases and hydroxylaminoarene mutases that transform a wide range of nitroaromatic compounds to the corresponding aminophenols. The metabolic degradation processes in the above strains are comparable to that described for *P. pseudoalcaligenes* strain JS45. It should be noted that these studies have been directed to biodegradation, i.e., the breakdown of organic compounds into more cell biomass and less complex compounds, and ultimately to water, and either carbon dioxide or methane. The

above-described intermediates have been proposed or noted as intermediates in the biodegradation process(es), and have not been seen as end-products per se.

After page 14 and before the listing of claims, replace the following pages:

SEQUENCE LISTING

<210> SEQ ID NO 1

<211> LENGTH: 135

<212> TYPE: PRT

<213> ORGANISM: *Pseudomonas pseudoalcaligenes* strain JS45

<400> SEQUENCE: 1

Met	Gln	Thr	Tyr	Leu	Phe	Ala	Ser	Gly	Leu	Val	Leu	Phe	Leu	Leu	Gly
1				5					10				15		

Leu	Val	Thr	Gly	Leu	Leu	Val	Pro	Val	Ser	Lys	Asn	Pro	Arg	Met	Gly
				20				25				30			

Val	Ala	Gly	His	Leu	Gln	Gly	Met	Thr	Asn	Gly	Pro	Leu	Leu	Ile	Ile
				35			40				45				

Ala	Gly	Leu	Leu	Trp	Pro	Tyr	Leu	Glu	Leu	Pro	Asp	Ala	Trp	Gln	Leu
				50		55			60						

Ala	Thr	Phe	Trp	Leu	Leu	Ile	Tyr	Gly	Thr	Tyr	Ala	Asn	Trp	Leu	Gly
65				70			75			80					

Val	Gln	Leu	Ala	Ala	Leu	Trp	Gly	Ala	Gly	Ala	Lys	Leu	Ala	Pro	Ile
				85				90			95				

Ala	Ala	Gly	Glu	His	Arg	Ser	Thr	Pro	Leu	Lys	Glu	Arg	Val	Val	Thr
				100			105				110				

Phe	Leu	Leu	Phe	Ser	Leu	Ile	Pro	Ala	Met	Phe	Ala	Ala	Pro	Ile	Ile
				115		120			125						

Leu	Leu	Ile	Gly	Ile	Leu	Arg
				130		135

<210> SEQ ID NO 2

<211> LENGTH: 164

<212> TYPE: PRT

<213> ORGANISM: *Pseudomonas pseudoalcaligenes* strain JS45

<400> SEQUENCE: 2

Met	Thr	Leu	His	Thr	Pro	Ser	Thr	Asp	Ala	Pro	Leu	Ala	Arg	Arg	Leu
1				5				10				15			

Leu	Gln	Leu	Gly	Ile	Ala	Leu	Phe	Leu	Leu	Gly	Leu	Leu	Thr	Gly	Phe
				20				25				30			

Leu	Leu	Pro	Met	Met	Ala	Asn	Pro	Arg	Val	Gly	Leu	Ser	Ser	His	Leu
				35			40			45					

Glu	Gly	Val	Leu	Asn	Gly	Met	Phe	Leu	Leu	Ala	Leu	Gly	Leu	Met	Trp
				50		55			60						

Pro	Gln	Leu	Ser	Leu	Gly	Thr	Gly	Ala	Arg	Lys	Ala	Ala	Phe	Gly	Phe
65				70			75			80					

Ala	Val	Tyr	Gly	Thr	Tyr	Ala	Asn	Trp	Leu	Ala	Thr	Leu	Leu	Ala	Gly
				85			90			95					

Phe Trp Gly Ala Gly Gly Arg Met Met Pro Ile Ala Ala Gly Gly His
100 105 110

Thr Gly Thr Ala Ala Gln Glu Gly Leu Ile Ala Phe Ala Leu Ile Ser
115 120 125

Leu Ser Leu Ser Met Leu Val Val Cys Ala Leu Ala Leu Trp Gly Leu
130 135 140

Arg Ser Ala Pro Ala Arg Arg Asn Thr Asp Ala Pro Ala Ala Gly Pro
145 150 155 160

Gln Pro Ala Ala