Козловская И. С.

Курс лекций

Уравнения математической физики

1. КЛАССИФИКАЦИЯ УРАВНЕНИЙ

Уравнения с частными производными обобщают обыкновенные дифференциальные уравнения на случай функций со многими переменными. Практическое использование уравнений с частными производными привело к выделению из всего многообразия уравнений трех основных классов уравнений: гиперболических, параболических и эллиптических уравнений. Важнейшими представителями этих классов являются уравнения математической физики: уравнение колебаний струны, уравнение теплопроводности, уравнение Лапласа, которые могут быть использованы для построения социально-экономических моделей. Простейшие задачи, которые возникают в теории уравнений с частными производными, это задачи о преобразовании уравнений с помощью замены независимых переменных к некоторым каноническим уравнениям и задачи о нахождении решений уравнений в аналитическом виде.

[Лекция 1]

1.1. Основные понятия об уравнениях с частными производными

Уравнения с частными производными. Рассмотрим n-мерное евклидово пространство R^n . Точка $\vec{x} \in R^n$ имеет координаты $x_1, x_2, ..., x_n$, то есть $\vec{x} = (x_1, x_2, ..., x_n)$. Пусть $\Omega \subset R^n$ – область в пространстве R^n . Зададим функцию $u = u(x) = u(x_1, x_2, ..., x_n)$, зависящую от n независимых переменных $x_1, x_2, ..., x_n$ и определенную в каждой точке $\vec{x} \in \Omega$. Область Ω может совпадать со всем пространством R^n .

Частной производной первого порядка $\frac{\partial u(\vec{x})}{\partial x_i}$ от функции u по переменной x_i в фиксированной точке $\vec{x} \in \Omega$ называется предел

$$\frac{\partial u}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{u(x_1, ..., x_{i-1}, x_i + \Delta x_i, x_{i+1}, ..., x_n) - u(x_1, ..., x_i, ..., x_n)}{\Delta x_i}.$$

Если предел существует в каждой точке $\vec{x} \in \Omega$, то функция u называется дифференцируемой в области Ω по переменной x_i , а функция $\frac{\partial u(\vec{x})}{\partial x_i}$ является функцией, определенной в каждой точке $\vec{x} \in \Omega$.

Частные производные более высокого порядка определяются по индукции:

$$\frac{\partial^2 u}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial u}{\partial x_i} \right) - производные второго порядка;$$

$$\frac{\partial^3 u}{\partial x_k \partial x_j \partial x_i} = \frac{\partial}{\partial x_k} \left(\frac{\partial^2 u}{\partial x_j \partial x_i} \right) -$$
производные третьего порядка и т. д.

Определение 1.1. Множество функций $C^m(\Omega)$ называется пространством m раз непрерывно дифференцируемых функций в области Ω . Функция $u = u(\vec{x}) \in C^m(\Omega)$, если u определена и непрерывна в области Ω и существуют всевозможные частные производные

$$\frac{\partial u}{\partial x_i}$$
, $\frac{\partial^2 u}{\partial x_i \partial x_j}$,..., $\frac{\partial^m u}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} ... \partial x_n^{\alpha_n}}$

до порядка m включительно, которые определены и непрерывны в области Ω . $C^{\infty}(\Omega)$ -пространство любое число раз непрерывно дифференцируемых функций в области Ω .

Пространство $C^m(\Omega)$ линейное, так как для $\forall u_1, u_2 \in C^m(\Omega)$ функция $\alpha u_1 + \beta u_2 \in C^m(\Omega)$ для произвольных постоянных α , β .

В частном случае m=0 $C^0(\Omega)=C(\Omega)$ – пространство непрерывных функций.

Часто рассматривается более узкое пространство $C_b^m(\Omega)$ – пространство всех ограниченных непрерывных функций $u(\vec{x})$, имеющих ограниченные и непрерывные производные до порядка m включительно в области Ω .

Рассмотрим произвольную функцию $F(x_1,...,x_n;z_1,...,z_N) \in C(\mathbb{R}^{n+N})$, зависящую от n+N независимых переменных. Будем предполагать, что существуют непрерывные частные производные $\frac{\partial F}{\partial z_i}$, причем $\frac{\partial F}{\partial z_N} \neq 0$.

Определение 1.2. Дифференциальным уравнением с частными производными относительно неизвестной функции $u(\vec{x})$ называется отношение

$$F\left(\overline{x}; u, \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n}, \frac{\partial^2 u}{\partial x_1^2}, \dots, \frac{\partial^m u}{\partial x_n^m}\right) = 0. \blacksquare$$
 (1.1)

Введем сокращенное обозначение $L(u) \equiv F\left(\bar{x}; u, ..., \frac{\partial^m u}{\partial x_n^m}\right)$, где L –

дифференциальный оператор, действующий на функции $u(\vec{x}) \in C^m(\Omega)$ и преобразующий их в элементы пространства непрерывных функций, то есть $L: C^m(\Omega) \to C(\Omega)$.

Определение 1.3. Классическим решением уравнения (1.1) в области Ω называется функция $u(\vec{x}) \in C^m(\Omega)$, которая при подстановке в отношение (1.1) обращает его в тождество на множестве Ω .

Как видно, в уравнение (1.1) входит производная от функции u наибольшего порядка m. Целое число m называется порядком уравнения (1.1), то есть $\deg(L) = m$.

Уравнение вида

$$L(u) = f(\vec{x}), \qquad f(\vec{x}) \in C(\Omega),$$

называется линейным дифференциальным уравнением с частными производными, если для дифференциального оператора *L* выполнены условия линейности:

$$L(\alpha u) = \alpha L(u), \quad \forall \alpha = \text{const}, \quad \forall u \in C^m(\Omega),$$
 (1.2)

$$L(u_1 + u_2) = L(u_1) + L(u_2), \quad \forall u_1, u_2 \in C^m(\Omega).$$
 (1.3)

Утверждение 1.1. Любое линейное уравнение с частными производными порядка *т* имеет вид

$$L(u) \equiv \sum_{0 \le \alpha_1 + \dots + \alpha_n \le m} a_{\alpha_1 \alpha_2 \dots a_n} \left(\overline{x} \right) \frac{\partial^{\alpha_1 + \dots + \alpha_n} u}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} = f(\overline{x}), \tag{1.4}$$

где коэффициенты $a_{\alpha_1\alpha_2...\alpha_n}(x) \in C(\Omega)$.

Доказательство. Пусть уравнение (1.1) линейное, тогда выполняется условие (1.2), то есть

$$F\left(\overline{x};\alpha u,\alpha \frac{\partial u}{\partial x_1},...,\alpha \frac{\partial^m u}{\partial x_n^m}\right) = \alpha F\left(\overline{x};u,\frac{\partial u}{\partial x_1},...,\frac{\partial^m u}{\partial x_n^m}\right).$$

Продифференцируем это тождество по параметру α , тогда

$$F\left(x; u, \frac{\partial u}{\partial x_{1}}, ..., \frac{\partial^{m} u}{\partial x_{n}^{m}}\right) = \frac{\partial}{\partial z_{1}} F\left(x; \alpha u, \alpha \frac{\partial u}{\partial x_{1}}, ..., \alpha \frac{\partial^{m} u}{\partial x_{n}^{m}}\right) u + ... + \frac{\partial}{\partial z_{N}} F\left(x; \alpha u, \alpha \frac{\partial u}{\partial x_{1}}, ..., \alpha \frac{\partial^{m} u}{\partial x_{n}^{m}}\right) \frac{\partial^{m} u}{\partial x_{n}^{m}}.$$

Полагая $\alpha = 0$, получим выражение для линейного дифференциального оператора:

$$L(u) = \frac{\partial F(\overline{x}; \overline{0})}{\partial z_1} u + \frac{\partial F(\overline{x}; \overline{0})}{\partial z_2} \frac{\partial u}{\partial x_1} + \dots + \frac{\partial F(\overline{x}; \overline{0})}{\partial z_N} \frac{\partial^m u}{\partial x_n^m}.$$

Это означает, что линейное уравнение представляет собой сумму частных производных с непрерывными коэффициентами. Очевидно, что условие (1.3) также выполнено. ■

Если в уравнении (1.4) $f(\vec{x}) = 0$, то уравнение называется *однородным*, в противном случае – *неоднородным*.

Запишем уравнение (1.4) сокращенно, используя мультииндекс. *Мультииндекс* — это вектор $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$, где α_i — целые неотрицательные числа, $|\alpha| = \alpha_1 + \alpha_2 + ... + \alpha_n$. Обозначим дифференциальные операторы

$$D_i^{\alpha_i} = \frac{\partial^{\alpha_i}}{\partial x_i^{\alpha_i}}, \qquad D^{\alpha} = D_1^{\alpha_1} D_2^{\alpha_2} \dots D_n^{\alpha_n} = \frac{\partial^{\alpha_1 + \dots + \alpha_n}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}},$$

тогда уравнение (1.4) примет вид

$$\sum_{0 \le |\alpha| \le m} a_{\alpha}(\vec{x}) D^{\alpha} u = f(\vec{x}).$$

Производные от функции u порядка m, входящие в уравнение (1.4), называются cmapuumu npouзводнымu, остальные производные называются mnaduumu npouзводнымu.

Часть линейного уравнения

$$L_0(u) = \sum_{|\alpha|=m} a_{\alpha}(\vec{x}) D^{\alpha} u ,$$

содержащая все старшие производные, называется главной частью уравнения.

Как правило, на практике изучают более узкие классы линейных дифференциальных уравнений. Наиболее важным с точки зрения приложений является класс уравнений второго порядка (m = 2) с n независимыми переменными, которые можно записать в общем виде:

$$L(u) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \left(\vec{x} \right) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i} \left(\vec{x} \right) \frac{\partial u}{\partial x_{i}} + c \left(\vec{x} \right) u = f(x),$$

$$(1.5)$$

где коэффициенты $a_{ij}(\vec{x}), a_i(\vec{x}), c(\vec{x}), f(\vec{x}) \in C(\Omega)$.

В случае плоскости R^2 рассмотрим класс уравнений второго порядка (m=2) с двумя независимыми переменными (n=2). Введем специальные обозначения независимых переменных $x_1 = x, x_2 = y$, тогда

$$L(u) = a_{11}(x, y) \frac{\partial^2 u}{\partial x^2} + 2a_{12}(x, y) \frac{\partial^2 u}{\partial x \partial y} + a_{22}(x, y) \frac{\partial^2 u}{\partial y^2} + a_{23}(x, y) \frac{\partial^2$$

где $a_{11}, a_{12}, a_{22}, a, b, c, f$ – заданные функции двух переменных; u = u(x, y) – неизвестная функция.

Главная часть уравнения (1.6)

$$L_0(u) = a_{11} \frac{\partial^2 u}{\partial x^2} + 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2}. \tag{1.7}$$

Поставим в соответствие главной части (1.7) полином по переменным ξ_1, ξ_2 , используя правила соответствия

$$\frac{\partial u}{\partial x} \to \xi_1, \quad \frac{\partial u}{\partial y} \to \xi_2, \quad \frac{\partial^2 u}{\partial x^2} \to \xi_1^2, \quad \frac{\partial^2 u}{\partial x \partial y} \to \xi_1 \xi_2, \quad \frac{\partial^2 u}{\partial y^2} \to \xi_2^2,$$

тогда выражению (1.7) будет соответствовать полином

$$P(\vec{x}, \vec{\xi}) = a_{11}(x, y)\xi_1^2 + 2a_{12}(x, y)\xi_1\xi_2 + a_{22}(x, y)\xi_2^2,$$
(1.8)

где $x = (x, y); \xi = (\xi_1, \xi_2).$

Полином (1.8) называется *характеристическим полиномом* для уравнения (1.6). Характеристический полином используется для классификации уравнений.

Классификация линейных уравнений второго порядка с двумя независимыми переменными. Для классификации уравнений (1.6) построим вспомогательную функцию $D(x,y) = a_{12}^2(x,y) - a_{11}(x,y)a_{22}(x,y)$, называемую *дискриминантом* уравнения.

Определение 1.4. Тип уравнения определяется следующим образом.

- 1. Если D(x,y) > 0, то уравнение (1.6) называется уравнением гиперболического типа в точке (x,y).
- 2. Если D(x,y) < 0, то уравнение (1.6) называется уравнением эллиптического типа в точке (x,y).
- 3. Если D(x,y)=0, то уравнение (1.6) называется уравнением параболического типа в точке (x,y).

В случае, когда знак дискриминанта сохраняется во всех точках области Ω , то уравнение является соответственно гиперболическим, эллиптическим и параболическим во всей области Ω . Если $\Omega = \Omega_1 \cup \overline{\Omega}_0 \cup \Omega_2$, D > 0 в Ω_1 , D < 0 в Ω_2 , D = 0 в $\overline{\Omega}_0$, то уравнение (1.6) называется уравнением *смешанного типа* в области Ω .

Приведем примеры уравнений с частными производными, имеющих определенный физический смысл.

1) Уравнение колебаний струны (гиперболическое уравнение):

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t),$$

где $x = x_1$ – пространственная переменная, $t = x_2$ – временная переменная, a - const.

2) Уравнение Лапласа (эллиптическое уравнение):

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

где $x = x_1, y = x_2$ – пространственные переменные.

3) Уравнение теплопроводности (параболическое уравнение):

$$\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t).$$

4) Уравнение Кортевега-де Фриза (нелинейное уравнение):

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + a \frac{\partial^3 u}{\partial x^3} = 0.$$

Системы уравнений с частными производными. Рассмотрим k неизвестных функций $u_1(x_1,...,x_n)$, $u_2(x_1,...,x_n)$,..., $u_k(x_1,...,x_n)$ и k вспомогательных функций $F_1(x;z_1,...,z_{N_1})$, $F_2(x;z_1,...,z_{N_2})$,..., $F_k(x;z_1,...,z_{N_k})$, обладающих свойствами аналогичными свойствам функции F из соотношения (1.1).

Определение 1.5. Системой дифференциальных уравнений с частными производными относительно k неизвестных функций u_i (i = 1, 2, ..., k) называются k уравнений

$$F_{1}\left(\overline{x}; u_{1}, ..., u_{k}; \frac{\partial u_{1}}{\partial x_{1}}, ..., \frac{\partial u_{k}}{\partial x_{n}}, ..., \frac{\partial^{m_{1}} u_{k}}{\partial x_{n}^{m_{1}}}\right) = 0,$$

$$F_{2}\left(\overline{x}; u_{1}, ..., u_{k}; \frac{\partial u_{1}}{\partial x_{1}}, ..., \frac{\partial u_{k}}{\partial x_{n}}, ..., \frac{\partial^{m_{2}} u_{k}}{\partial x_{n}^{m_{2}}}\right) = 0,$$

$$\dots$$

$$(1.9)$$

 $F_k\left(\overline{x};u_1,...,u_k;\frac{\partial u_1}{\partial x_1},...,\frac{\partial u_k}{\partial x_n},...,\frac{\partial^{m_k} u_k}{\partial x_n^{m_k}}\right) = 0. \quad \blacksquare$

Система уравнений (1.9) линейная, если

$$F_i = \sum_{j=1}^k L_{ij} (u_j),$$

где L_{ij} – линейные дифференциальные операторы порядка $m_{ij} \left(\deg(L_{ij}) = m_{ij} \right)$.

Запишем линейную систему из двух уравнений, содержащих две неизвестные функции с двумя независимыми переменными, положив $x_1 = x$, $x_2 = y$, $u_1 = u(x, y)$, $u_2 = v(x, y)$. В случае уравнений первого порядка $(m_{ij} = 1)$ имеем систему

$$b_{11}\frac{\partial u}{\partial x} + b_{12}\frac{\partial u}{\partial y} + c_{11}\frac{\partial v}{\partial x} + c_{12}\frac{\partial v}{\partial y} + b_1 u + c_1 v = f_1,$$

$$b_{21}\frac{\partial u}{\partial x} + b_{22}\frac{\partial u}{\partial y} + c_{21}\frac{\partial v}{\partial x} + c_{22}\frac{\partial v}{\partial y} + b_2u + c_2v = f_2.$$
 (1.10)

В матричной записи система (1.10) принимает вид

$$\widehat{L}u=f$$
,

где матричный дифференциальный оператор

$$\hat{L} = \begin{pmatrix}
b_{11} \frac{\partial}{\partial x} + b_{12} \frac{\partial}{\partial y} + b_{1}, & c_{11} \frac{\partial}{\partial x} + c_{12} \frac{\partial}{\partial y} + c_{1} \\
b_{21} \frac{\partial}{\partial x} + b_{22} \frac{\partial}{\partial y} + b_{2}, & c_{21} \frac{\partial}{\partial x} + c_{22} \frac{\partial}{\partial y} + c_{2}
\end{pmatrix},$$

$$\vec{u} = \begin{pmatrix} u \\ v \end{pmatrix}, \quad \vec{f} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$
 – вектор-столбцы.

Для классификации систем (1.10) выделим главную часть системы:

$$\widehat{L}_{0}\overrightarrow{u} = \begin{pmatrix} b_{11}\frac{\partial}{\partial x} + b_{12}\frac{\partial}{\partial y}, & c_{11}\frac{\partial}{\partial x} + c_{12}\frac{\partial}{\partial y} \\ b_{21}\frac{\partial}{\partial x} + b_{22}\frac{\partial}{\partial y}, & c_{21}\frac{\partial}{\partial x} + c_{22}\frac{\partial}{\partial y} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

Далее сопоставим главной части *характеристическую матрицу*, сопоставив $\frac{\partial}{\partial x} \to \xi_1$, $\frac{\partial}{\partial y} \to \xi_2$:

$$\widehat{L}_{0}\overrightarrow{u} \to \widehat{A}(\overrightarrow{x}, \overrightarrow{\xi}) = \begin{pmatrix} b_{11}\xi_{1} + b_{12}\xi_{2}, c_{11}\xi_{1} + c_{12}\xi_{2} \\ b_{21}\xi_{1} + b_{22}\xi_{2}, c_{21}\xi_{1} + c_{22}\xi_{2} \end{pmatrix}.$$

Вычислим характеристический полином системы

$$P(\vec{x}, \vec{\xi}) = \det \hat{A}(\vec{x}, \vec{\xi}) = a_{11} \xi_1^2 + 2a_{12} \xi_1 \xi_2 + a_{22} \xi_2^2$$

ГДЕ
$$a_{11} = b_{11}c_{21} - b_{21}c_{11}$$
, $a_{22} = b_{12}c_{22} - b_{22}c_{12}$, $a_{12} = \frac{1}{2}(b_{12}c_{21} + b_{11}c_{22} - b_{22}c_{11} - b_{21}c_{12})$.

Классификация систем (1.10) производится с помощью дискриминанта $D = a_{12}^2 - a_{11}a_{22}$ характеристического полинома по аналогии с классификацией уравнений (1.6) (См. определение 1.4).

Пример 1.1. Приведем важную для теории аналитических функций комплексного переменного эллиптическую систему Коши-Римана.

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0,$$

$$\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = 0,$$
(1.11)

для которой характеристическая матрица $\widehat{A} = \begin{pmatrix} \xi_1, -\xi_2 \\ \xi_2, \xi_1 \end{pmatrix}$, характеристиче-

ский полином $P(\vec{x}, \vec{\xi}) = \xi_1^2 + \xi_2^2$, а дискриминант D = -1.

Пример 1.2. Рассмотрим систему двух уравнений с постоянными коэффициентами

$$b_{11}\frac{\partial u}{\partial x} + b_{12}\frac{\partial u}{\partial y} + c_{11}\frac{\partial v}{\partial x} + c_{12}\frac{\partial v}{\partial y} = 0,$$

$$b_{21}\frac{\partial u}{\partial x} + b_{22}\frac{\partial u}{\partial y} + c_{21}\frac{\partial v}{\partial x} + c_{22}\frac{\partial v}{\partial y} = 0.$$

Разрешим ее относительно производных $\frac{\partial \upsilon}{\partial x}$ и $\frac{\partial \upsilon}{\partial v}$, тогда

$$\frac{\partial v}{\partial x} = \frac{1}{\Delta} \left[\left(c_{12} b_{21} - c_{22} b_{11} \right) \frac{\partial u}{\partial x} + \left(c_{12} b_{22} - c_{22} b_{12} \right) \frac{\partial u}{\partial y} \right],$$

$$\frac{\partial v}{\partial y} = \frac{1}{\Delta} \left[(c_{21} b_{11} - c_{11} b_{21}) \frac{\partial u}{\partial x} + (c_{21} b_{12} - c_{11} b_{22}) \frac{\partial u}{\partial y} \right],$$

$$\Delta = c_{11} c_{22} - c_{12} c_{21} \neq 0.$$

Дифференцируя первое равенство по y, а второе по x, и вычитая из первого равенства второе, получим дифференциальное уравнение второго порядка для неизвестной функции u:

$$a_{11} \frac{\partial^2 u}{\partial x^2} + 2 a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} = 0,$$

где коэффициенты a_{11} , a_{12} , a_{22} совпадают с коэффициентами характеристического полинома системы уравнений. Аналогичное уравнение получим для функции υ . Отсюда следует, что тип уравнения для функции ι (или ι) совпадает с типом исходной системы уравнений.

[Лекция 2]

1.2. Замена независимых переменных в уравнениях второго порядка с двумя независимыми переменными

Рассмотрим в области $\Omega \subset R^2$ уравнение с частными производными второго порядка (1.6):

$$L(u) = a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + au_x + bu_y + cu = f,$$
 (1.12)

где для сокращения записи уравнения введены обозначения производных

$$\frac{\partial u}{\partial x} = u_x, \quad \frac{\partial u}{\partial y} = u_y, \quad \frac{\partial^2 u}{\partial x^2} = u_{xx}, \quad \frac{\partial^2 u}{\partial x \partial y} = u_{xy}, \quad \frac{\partial^2 u}{\partial y^2} = u_{yy}.$$

Будем считать, что коэффициенты a_{ij} уравнения (1.12) достаточно гладкие действительные функции, для определенности пусть $a_{ij} \in C^2(\Omega)$. Будем считать также, что $a_{11} \neq 0$ в области Ω .

Поставим задачу об упрощении уравнения (1.12). Одним из способов упрощения уравнений является замена независимых переменных. Перейдем в уравнении (1.12) от независимых переменных x, y к новым независимым переменным ξ, η с помощью невырожденного преобразования

$$\begin{cases} \xi = \varphi(x, y), \\ \eta = \psi(x, y), \end{cases} \tag{1.13}$$

где заданные действительные функции $\varphi, \psi \in C^2(\Omega)$.

Преобразование (1.13) невырожденное в области Ω , если определитель (якобиан), составленный из частных производных первого порядка,

$$J = \begin{vmatrix} \varphi_x & \varphi_y \\ \psi_x & \psi_y \end{vmatrix} \neq 0 \tag{1.14}$$

в любой точке $(x, y) \in \Omega$.

Из условия (1.14) следует, что $\operatorname{grad} \varphi \neq 0$, $\operatorname{grad} \psi \neq 0$ в любой точке области Ω . По определению $\operatorname{grad} \varphi = \frac{\partial \varphi}{\partial x}\vec{i} + \frac{\partial \varphi}{\partial v}\vec{j}$.

Запишем дифференциальное уравнение (1.12) в новых переменных ξ , η , вычисляя производные, входящие в уравнение

$$\frac{\partial u}{\partial x} = u_{\xi} \xi_{x} + u_{\eta} \eta_{x}, \qquad \frac{\partial u}{\partial y} = u_{\xi} \xi_{y} + u_{\eta} \eta_{y}, \qquad (1.15)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(u_{\xi} \xi_{x} + u_{\eta} \eta_{x} \right) = \frac{\partial u_{\xi}}{\partial x} \xi_{x} + u_{\xi} \xi_{xx} + \frac{\partial u_{\eta}}{\partial x} \eta_{x} + u_{\eta} \eta_{xx} =$$

$$= \left(u_{\xi\xi} \xi_{x} + u_{\xi\eta} \eta_{x} \right) \xi_{x} + \left(u_{\eta\xi} \xi_{x} + u_{\eta\eta} \eta_{x} \right) \eta_{x} + u_{\xi} \xi_{xx} + u_{\eta} \eta_{xx} =$$

$$= u_{\xi\xi} \xi_{x}^{2} + 2 u_{\xi\eta} \xi_{x} \eta_{x} + u_{\eta\eta} \eta_{x}^{2} + u_{\xi} \xi_{xx} + u_{\eta} \eta_{xx}.$$

Аналогично вычислим

$$\frac{\partial^2 u}{\partial y^2} = u_{\xi\xi} \xi_y^2 + 2u_{\xi\eta} \xi_y \eta_y + u_{\eta\eta} \eta_y^2 + u_{\xi} \xi_{yy} + u_{\eta} \eta_{yy},$$

$$\frac{\partial^2 u}{\partial x \partial y} = u_{\xi\xi} \xi_x \xi_y + u_{\xi\eta} \left(\xi_x \eta_y + \xi_y \eta_x \right) + u_{\eta\eta} \eta_x \eta_y + u_{\xi} \xi_{xy} + u_{\eta} \eta_{xy}.$$

Подставив найденные выражения в (1.12), получим уравнение с частными производными в новых переменных:

$$L(u) = \overline{a}_{11} u_{\xi\xi} + 2 \overline{a}_{12} u_{\xi\eta} + \overline{a}_{22} u_{\eta\eta} + \overline{a} u_{\xi} + \overline{b} u_{\eta} + \overline{c} u = \overline{f}, \qquad (1.16)$$

где новые коэффициенты уравнения рассматриваются как функции переменных ξ , η и определяются формулами

$$\overline{a}_{11} = a_{11}\xi_{x}^{2} + 2a_{12}\xi_{x}\xi_{y} + a_{22}\xi_{y}^{2}, \qquad \overline{a}_{22} = a_{11}\eta_{x}^{2} + 2a_{12}\eta_{x}\eta_{y} + a_{22}\eta_{y}^{2},
\overline{a}_{12} = a_{11}\xi_{x}\eta_{x} + a_{12}(\xi_{x}\eta_{y} + \xi_{y}\eta_{x}) + a_{22}\xi_{y}\eta_{y},
\overline{a} = L(\xi) - c\xi, \quad \overline{b} = L(\eta) - c\eta, \quad \overline{c} = c, \quad \overline{f} = f.$$
(1.17)

Утверждение 1.2. При невырожденном действительном преобразовании (1.13) тип уравнения (1.12) сохраняется.

Доказательство. Определим тип уравнения (1.16), вычислив дискриминант с учетом формул (1.17). Получим

$$\overline{D} = \overline{a}_{12}^2 - \overline{a}_{11}\overline{a}_{22} = J^2D, \quad J \neq 0.$$
 (1.18)

Таким образом, знак дискриминанта D уравнения (1.12) совпадает со знаком дискриминанта \overline{D} уравнения (1.16).

Поставим задачу о нахождении функций φ и ψ таких, чтобы преобразованное уравнение (1.16) приняло наиболее простой вид. С решением этой задачи тесно связано обыкновенное дифференциальное уравнение

$$\frac{dy}{dx} = \frac{a_{12}(x,y) \pm \sqrt{D(x,y)}}{a_{11}(x,y)},$$
(1.19)

называемое характеристическим уравнением исходного уравнения (1.12). Уравнение (1.16) упростится, если положить

$$\overline{a}_{11} = a_{11}\xi_x^2 + 2a_{12}\xi_x\xi_y + a_{22}\xi_y^2 = 0,$$

$$\overline{a}_{22} = a_{11}\eta_x^2 + 2a_{12}\eta_x\eta_y + a_{22}\eta_y^2 = 0.$$
(1.20)

Заметим, что соотношения (1.20) – это одно и то же уравнение, но записанное для функций φ и ψ . Поэтому рассмотрим в области Ω нелинейное уравнение с частными производными первого порядка

$$a_{11} \left(\frac{\partial z}{\partial x} \right)^2 + 2a_{12} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + a_{22} \left(\frac{\partial z}{\partial y} \right)^2 = 0, \qquad (1.21)$$

где z = z(x, y) – неизвестная функция.

Уравнение (1.21) называется уравнением характеристик.

Если удастся найти два решения уравнения (1.21) $z = \varphi(x, y)$ и $z = \psi(x, y)$, то тем самым будет найдено преобразование (1.13), упрощающее уравнение (1.16).

Определение 1.6. Функция $\varphi(x, y)$, $\varphi \in C^1(\Omega)$, grad $\varphi \neq 0$, называется первым интегралом в области Ω уравнения

$$\frac{dy}{dx} = \lambda(x, y), \tag{1.22}$$

если при любом решении y = y(x), $x \in U$, этого уравнения функция $\varphi(x,y)$ постоянна, то есть имеет место равенство

$$\varphi(x, y(x)) = C, (x, y(x)) \in \Omega,$$

где постоянные C могут различаться для разных решений уравнения (1.22). Первым интегралом также называют соотношение $\varphi(x,y) = C$.

Докажем некоторые утверждения, которые позволяют исследовать решения уравнения (1.21) и построить преобразование (1.13).

Лемма 1.1. Пусть $\varphi(x,y)$ – первый интеграл в области Ω одного из обыкновенных дифференциальных уравнений (1.19):

$$\frac{dy}{dx} = \lambda_1(x, y), \qquad \frac{dy}{dx} = \lambda_2(x, y), \qquad (1.23)$$

где

$$\lambda_1 = \frac{a_{12} + \sqrt{D}}{a_{11}}, \qquad \lambda_1 = \frac{a_{12} - \sqrt{D}}{a_{11}}, \qquad (1.24)$$

 $D = a_{12}^2 - a_{11}a_{22} \ge 0$ в области Ω . Тогда функция $z = \varphi(x, y)$ удовлетворяет уравнению с частными производными (1.21) в области Ω .

Доказательство. Зафиксируем точку $M_0 = (x_0, y_0) \in \Omega$ и построим решение y = y(x) соответствующего уравнения (1.23), удовлетворяющее начальному условию $y(x_0) = y_0$. На основании теоремы Пикара-Линделефа такое решение существует и единственно в некоторой окрестности U_{x_0} точки x_0 .

Вычислим производную $\frac{dy}{dx}$ в точке M_0 . Согласно определению первого интеграла, для решения y = y(x), имеем тождество

$$\varphi(x,y(x)) = C_0, \quad x \in U_{x_0},$$

где $C_0 = \varphi(x_0, y_0).$

Дифференцируя предыдущее равенство по x, получим

$$\left. \varphi_x + \varphi_y \frac{dy}{dx} \right|_{y=y(x)} = 0, \quad x \in U_{x_0}.$$

В частности, для точки $M_{\scriptscriptstyle 0}$ имеем

$$\left. \varphi_x + \varphi_y \frac{dy}{dx} \right|_{M_0} = 0. \tag{1.25}$$

Если $\varphi_y(M_0) = 0$, то из равенства (1.25) следует $\varphi_x(M_0) = 0$, что противоречит условию grad $\varphi \neq 0$, входящему в определение 1.6. Таким образом, $\varphi_y(M_0) \neq 0$. Откуда следует равенство

$$\frac{dy}{dx} = -\frac{\varphi_x}{\varphi_y} \tag{1.26}$$

в точке M_0 .

С другой стороны, имеет место очевидное тождество

$$a_{11} \left(\frac{dy}{dx} \right)^2 - 2 a_{12} \frac{dy}{dx} + a_{22} = a_{11} \left(\frac{dy}{dx} - \lambda_1 \right) \left(\frac{dy}{dx} - \lambda_2 \right),$$

где функции λ_1, λ_2 определяются формулами (1.24) и являются корнями квадратного трехчлена, стоящего слева.

Так как для функции y = y(x) в точке M_0 выполнено одно из уравнений (1.23), то

$$a_{11} \left(\frac{dy}{dx} \right)^2 - 2a_{12} \frac{dy}{dx} + a_{22} \bigg|_{M_2} = 0.$$
 (1.27)

Подставив формулу (1.26) в (1.27), получим требуемое равенство

$$a_{11}(\varphi_x)^2 + 2a_{12}\varphi_x\varphi_y + a_{22}(\varphi_y)^2\Big|_{M_2} = 0$$

в произвольной точке $M_0 \in \Omega$.

Таким образом, функция $z = \varphi(x, y)$ удовлетворяет уравнению (1.21).

Заметим, что имеет место также утверждение, обратное утверждению леммы 1.1

Далее приведем еще ряд утверждений, характеризующих решение уравнения характеристик (1.21).

Утверждение 1.3. Пусть функция $\varphi(x,y)$ в области D удовлетворяет уравнению

$$\varphi_x + \lambda_1 \varphi_y = 0, \qquad a_{11} \neq 0,$$
 (1.28)

тогда $z = \varphi(x, y)$ является решением уравнения характеристик (1.21) в области Ω . Аналогично, если функция $\psi(x, y)$ удовлетворяет уравнению

$$\psi_x + \lambda_2 \psi_y = 0, \tag{1.29}$$

тогда $z = \psi(x, y)$ также является решением уравнения (1.21).

Доказательство. Умножим равенство (1.28) на $a_{11}(\varphi_x + \lambda_2 \varphi_y)$, тогда

$$a_{11}(\varphi_x + \lambda_1 \varphi_y)(\varphi_x + \lambda_2 \varphi_y) = a_{11}\varphi_x^2 + 2a_{12}\varphi_x \varphi_y + a_{22}\varphi_y^2 = 0$$
,

то есть получим уравнение (1.21). Аналогично для функции ψ .

Утверждение 1.4. Пусть $z = \varphi(x, y) + i\psi(x, y)$ – комплексное решение уравнения характеристик (1.21) в области Ω , где $\varphi = \text{Re } z$, $\psi = \text{Im } z$; $\varphi, \psi \in C^1(\Omega)$, тогда преобразование (1.13) приводит уравнение (1.12) к уравнению (1.16) с коэффициентами

$$\bar{a}_{11} = \bar{a}_{22}, \quad \bar{a}_{12} = 0.$$
 (1.30)

Доказательство. Подставим комплексное решение в уравнение (1.21), тогда с учетом формул (1.17) получим равенства

$$a_{11}(\varphi_x + i\psi_x)^2 + 2a_{12}(\varphi_x + i\psi_x)(\varphi_y + i\psi_y) + a_{22}(\varphi_y + i\psi_y)^2 =$$

$$= \overline{a}_{11} - \overline{a}_{22} + 2i\overline{a}_{12} = 0.$$
(1.31)

Отсюда следуют формулы (1.30). ■

Утверждение 1.5. Если для $D = a_{12}^2 - a_{11}a_{22} < 0$ действительные функции $\varphi(x,y), \psi(x,y) \in C^1(\Omega)$ и удовлетворяют одной из двух систем уравнений с частными производными первого порядка [4]

$$a_{11}\varphi_{x} + a_{12}\varphi_{y} = \pm g \psi_{y},$$

$$a_{11}\psi_{x} + a_{12}\psi_{y} = \mp g \varphi_{y},$$
(1.32)

где $g = \sqrt{-D}$, знаки выбираются одновременно либо нижние либо верхние, тогда комплексная функция $z = \varphi + i \psi$ удовлетворяет уравнению характеристик (1.21) в области Ω .

Доказательство. Пусть выполнены уравнения (1.32). Перемножим эти уравнения, тогда

$$(a_{11}\varphi_x + a_{12}\varphi_y)(a_{11}\psi_x + a_{12}\psi_y) = (a_{12}^2 - a_{11}a_{22})\varphi_y\psi_y$$
.

Раскрывая скобки и учитывая формулы (1.17), получим $\overline{a}_{12}=0$. Далее возведем уравнения (1.32) в квадраты и вычтем, тогда с учетом формул (1.17) получим соотношение $\overline{a}_{11}=\overline{a}_{22}$. Используя цепочку равенств (1.31), заключаем, что функция $z=\varphi+i\psi$ удовлетворяет уравнению (1.21).

Отметим, что имеет место также утверждение, обратное утверждению 1.4.

Замечание 1.1. Существование решения системы уравнений (1.32) легко доказывается в случае аналитических коэффициентов a_{ij} . Для этого достаточно для системы (1.32) в окрестности точки $M_0 = (x_0, y_0)$ поставить задачу Коши с начальными условиями

$$\varphi|_{x=x_0} = f_1(y), \qquad \psi|_{x=x_0} = f_2(y),$$
 (1.33)

где $f_j(y)$ – произвольно выбранные аналитические функции.

Из теоремы Коши–Ковалевской (См. замечание 2.1) следует существование аналитического решения в некоторой окрестности точки M_0 . Накладывая на производные начальных функций (1.33) условия $f_1'(y_0) \neq 0$, $f_2'(y_0) \neq 0$, получаем решение системы (1.32), для которого $\varphi_y \neq 0$, $\psi_y \neq 0$ в некоторой окрестности точки M_0 .

При решении задач на практических занятиях, как правило, рассматриваются уравнения с аналитическими коэффициентами $a_{ij}(x,y)$. Более того, действительные коэффициенты уравнения могут быть продолжены в комплексную область и рассмотрены как аналитические функции $a_{ij}(x,\omega)$ комплексного переменного $\omega = y + i y'$ в области $\Omega' = \Omega \times (-\varepsilon < y' < \varepsilon)$. В этом случае для нахождения решений уравнения (1.21) может быть использована следующая лемма.

Лемма 1.2. Пусть дискриминант D(x,y) < 0, $a_{11}(x,y) \neq 0$ в области Ω и $\Phi(x,\omega)$ – первый интеграл в области Ω' характеристического уравнения (1.19):

$$\frac{d\omega}{dx} = \frac{a_{12}(x,\omega) + i\sqrt{-D(x,\omega)}}{a_{11}(x,\omega)} \equiv \lambda_1(x,\omega), \qquad (1.34)$$

где функция $\Phi(x,\omega) \in C^1(\Omega')$ и является аналитической функцией комплексной переменной ω в области Ω' .

Тогда функция

$$z = \Phi(x, y) = \Phi(x, \omega)|_{y'=0} = \varphi(x, y) + i\psi(x, y)$$
 (1.35)

является комплексным решением уравнения с частными производными (1.21) в области Ω .

Доказательство. Зафиксируем точку $M_0 = (x_0, y_0) \in \Omega$ и построим комплексное решение уравнения (1.34) $\omega = \omega(x)$, удовлетворяющее начальному условию $\omega(x_0) = y_0$.

Вычислим производную $\frac{d\,\omega}{d\,x}$ в точке M_0 . Согласно с определением первого интеграла, для решения $\omega = \omega(x)$, имеем тождество

$$\Phi(x,\omega(x)) = C_0, \qquad x \in U_{x_0},$$

где $C_0 = \Phi(x_0, y_0)$.

Дифференцируя предыдущее равенство по x, получаем

$$\Phi_x(x,\omega(x)) + \Phi_\omega(x,\omega(x)) \frac{d\omega}{dx} = 0, \qquad x \in U_{x_0}.$$

В частности, для точки $M_0(x = x_0, y = y_0, y' = 0)$ имеем

$$\Phi_x + \Phi_y \frac{d\omega}{dx}\bigg|_{M_0} = 0,$$

откуда следует

$$\frac{d\omega}{dx}\bigg|_{M_0} = -\frac{\Phi_x(M_0)}{\Phi_y(M_0)}.$$
(1.36)

Запишем очевидное тождество

$$a_{11}(x,\omega)\left(\frac{d\omega}{dx}\right)^2 - 2a_{12}(x,\omega)\frac{d\omega}{dx} + a_{22}(x,\omega) =$$

$$= a_{11}(x,\omega) \left(\frac{d\omega}{dx} - \lambda_1(x,\omega) \right) \left(\frac{d\omega}{dx} - \lambda_2(x,\omega) \right),$$

где λ_1 , λ_2 – корни квадратного трехчлена.

Так как для функции $\omega = \omega(x)$ в точке M_0 выполнено уравнение (1.34), то

$$a_{11} \left(\frac{d\omega}{dx} \right)^2 - 2 a_{12} \frac{d\omega}{dx} + a_{22} \bigg|_{M_0} = 0.$$
 (1.37)

После подстановки формулы (1.36) в уравнение (1.37) получим требуемое равенство

$$a_{11}(\Phi_x)^2 + 2a_{12}\Phi_x\Phi_y + a_{22}(\Phi_y)^2 = 0$$

в произвольной точке $M_{\scriptscriptstyle 0}$.

Таким образом, функция (1.35) удовлетворяет уравнению характеристик (1.21). ■

[Лекция 3]

1.3. Приведение к каноническому виду уравнений второго порядка с двумя независимыми переменными

Как было показано в предыдущем параграфе, уравнение с частными производными (1.12) может быть упрощено с помощью замены независимых переменных

$$\xi = \varphi(x, y), \qquad \eta = \psi(x, y). \tag{1.38}$$

Основную роль для отыскания функций φ и ψ играет характеристическое уравнение (1.19). В дальнейшем каждый тип уравнения (1.12) рассмотрим отдельно, предполагая, что в области Ω уравнение (1.12) является либо гиперболическим, либо параболическим, либо эллиптическим.

Гиперболические уравнения. Для гиперболических уравнений дискриминант $D = a_{12}^2 - a_{11}a_{22} > 0$ в области Ω . В результате имеем два характеристических уравнения:

$$\frac{dy}{dx} = \frac{a_{12} + \sqrt{D}}{a_{11}} \equiv \lambda_1(x, y), \qquad (1.39)$$

$$\frac{dy}{dx} = \frac{a_{12} - \sqrt{D}}{a_{11}} \equiv \lambda_2(x, y), \tag{1.40}$$

где предполагается, что $a_{11} \neq 0$ в области Ω .

Воспользуемся леммой 1.1. Пусть

$$\varphi(x,y) = C_1 \tag{1.41}$$

первый интеграл уравнения (1.39), а

$$\psi(x,y) = C_2 \tag{1.42}$$

первый интеграл уравнения (1.40) в области Ω , тогда функции φ и ψ удовлетворяют уравнениям характеристик (1.20). Если в качестве функций преобразования (1.38) выбрать первые интегралы φ и ψ , тогда в преобразованном уравнении (1.16) коэффициенты \overline{a}_{11} , \overline{a}_{22} равны нулю в области Ω .

Таким образом, получено уравнение

$$2\overline{a}_{12}u_{\xi\eta} + \overline{a}u_{\xi} + \overline{b}u_{\eta} + \overline{c}u = \overline{f}. \tag{1.43}$$

Замечание 1.2. Можно показать, что в случае аналитических коэффициентов a_{ij} уравнения (1.39), (1.40) имеют первые интегралы (по крайней мере локально), для которых производные $\varphi_y \neq 0$, $\psi_y \neq 0$.

Действительно, поставим для уравнения (1.28) задачу Коши в окрестности точки $M_0 = (x_0, y_0) \in \Omega$ с начальным условием

$$\varphi\big|_{x=x_0} = f(y), \qquad y_0 - \varepsilon < y < y_0 + \varepsilon,$$
 (1.44)

где f(y) – произвольно заданная аналитическая функция одной переменной в окрестности точки $y=y_0$, для которой производная $f'(y_0) \neq 0$ (следует $\varphi_v(M_0) \neq 0$).

На основании теоремы Коши–Ковалевской аналитическое решение $\varphi(x,y)$ задачи (1.28), (1.44) в окрестности точки M_0 всегда существует (См. замечание 2.1). Аналогично для ψ .

Отсюда легко показать, что преобразование (1.38) невырожденное. Действительно, умножая (1.28) на ψ_y , а (1.29) – на φ_y и вычитая, получаем выражение для якобиана:

$$J = (\lambda_2 - \lambda_1) \varphi_y \psi_y = -\frac{2\sqrt{D}}{a_{11}} \varphi_y \psi_y \neq 0.$$

Далее из тождества (1.18) заключаем

$$\overline{a}_{12}^2 = \overline{D} = J^2 D \neq 0.$$

Разделим уравнение (1.43) на $2\overline{a}_{12}$, получим *канонический вид ги- перболического уравнения* на плоскости

$$u_{\xi\eta} + Au_{\xi} + Bu_{\eta} + Cu = F. {(1.45)}$$

Разрешим уравнения (1.41), (1.42) относительно y и получим два семейства линий в области Ω :

$$y = f_1(x, C_1),$$
 $y = f_2(x, C_2),$ (1.46)

которые называются характеристиками или характеристическими линиями гиперболического уравнения (1.12).

Параболические уравнения. Для параболического уравнения дискриминант D=0 в области Ω . В результате имеем одно характеристическое уравнение

$$\frac{dy}{dx} = \frac{a_{12}}{a_{11}}. (1.47)$$

Выберем в качестве функции φ преобразования (1.38) функцию первого интеграла

$$\varphi(x,y) = C_1 \tag{1.48}$$

уравнения (1.47), а в качестве функции ψ – любую достаточно гладкую функцию, такую, что якобиан преобразования $J \neq 0$ в области Ω .

Так как φ – первый интеграл, то на основании леммы 1.1 коэффициент преобразованного уравнения (1.16)

$$\overline{a}_{11} = a_{11}\varphi_x^2 + 2a_{12}\varphi_x\varphi_y + a_{22}\varphi_y^2 = 0.$$
 (1.49)

Из условия D=0 следует

$$a_{12} = \sqrt{a_{11}a_{22}} \ . \tag{1.50}$$

Подставив (1.50) в (1.49), получим полный квадрат

$$\overline{a}_{11} = \left(\sqrt{a_{11}}\varphi_x + \sqrt{a_{22}}\varphi_y\right)^2 = 0.$$

Вычислим коэффициент \bar{a}_{12} , используя формулы (1.17), (1.50). После разложения на множители имеем

$$\overline{a}_{12} = a_{11}\varphi_x\psi_x + a_{12}(\varphi_x\psi_y + \varphi_y\psi_x) + a_{22}\varphi_y\psi_y =$$

$$= (\sqrt{a_{11}}\varphi_x + \sqrt{a_{22}}\varphi_y)(\sqrt{a_{11}}\psi_x + \sqrt{a_{22}}\psi_y) = 0.$$

Таким образом, показано, что в преобразованном уравнении (1.16) $\overline{a}_{11}=0, \overline{a}_{12}=0$, то есть

$$\overline{a}_{22} u_{\eta\eta} + \overline{a} u_{\xi} + \overline{b} u_{\eta} + \overline{c} u = \overline{f}.$$

Коэффициенты $\bar{a}_{22} \neq 0$, так как порядок уравнения при невырожденном преобразовании сохраняется.

Разделив на \bar{a}_{22} , получим *канонический вид параболического уравнения* на плоскости

$$u_{\eta\eta} + A u_{\xi} + B u_{\eta} + C u = F. \qquad (1.51)$$

Разрешив уравнение (1.48) относительно y, получим семейство линий

$$y = f(x, C_1),$$
 (1.52)

называемых характеристиками параболического уравнения (1.12).

Эллиптические уравнения. Для эллиптического уравнения дискриминант D < 0 в области Ω . Характеристические уравнения (1.19) будут комплекснозначными уравнениями. Выберем одно из них:

$$\frac{dy}{dx} = \frac{a_{12} + i\sqrt{-D}}{a_{11}}. (1.53)$$

Для приведения эллиптического уравнения к каноническому виду воспользуемся леммой 1.2. Пусть $\Phi(x,y)$ – первый комплекснозначный интеграл характеристического уравнения (1.53), тогда функция Ф удовлетворяет уравнению характеристик (1.21). Для преобразования (1.38) выберем функции

$$\varphi = \operatorname{Re}\Phi$$
, $\psi = \operatorname{Im}\Phi$. (1.54)

Отметим, что преобразование (1. 38) в этом случае всегда может быть выбрано невырожденным. Действительно, воспользуемся утверждением 1.5. Умножая первое уравнение (1.32) на ψ_y , а второе – на φ_y и вычитая первое из второго, получаем формулу для якобиана:

$$J = \pm \frac{\sqrt{-D}}{a_{11}} (\varphi_y^2 + \psi_y^2).$$

На основании замечания 1.1 заключаем, что $J \neq 0$.

Из утверждения 1.4 следует, что в преобразованном уравнении (1.16) $\overline{a}_{11} = \overline{a}_{22}$, $\overline{a}_{12} = 0$, то есть

$$\overline{a}_{11}(u_{\xi\xi} + u_{\eta\eta}) + \overline{a} u_{\xi} + \overline{b} u_{\eta} + \overline{c} u = \overline{f}.$$

Коэффициенты $\overline{a}_{11} \neq 0$, так как из тождества (1.18) следует $\overline{a}_{11}^2 = -J^2D \neq 0$. Разделим на \overline{a}_{11} , получим канонический вид эллиптического уравнения на плоскости

$$u_{\xi\xi} + u_{\eta\eta} + Au_{\xi} + Bu_{\eta} + Cu = F.$$
 (1.55)

Заметим, что эллиптическое уравнение не имеет характеристических линий.

Подытоживая, можно сказать, что приведение уравнений к каноническому виду сводится к отысканию первых интегралов характеристического уравнения. Так как произвольная функция от первого интеграла также является первым интегралом, то уравнение может быть

приведено к каноническому виду с помощью различных преобразований переменных (1.38), то есть неоднозначно.

Существование первых интегралов в случае аналитических коэффициентов a_{ij} обосновывается на основании теоремы Ковалевской (см. замечания 1.1 и 1.2). Эта теорема гарантирует существование только локального решения уравнения характеристик, то есть в некоторой окрестности любой точки. Отсюда следует, что исходное уравнение (1.12) может быть приведено к каноническому виду, вообще говоря, только в некоторой достаточно малой окрестности каждой точки области Ω . Приведение уравнения к каноническому виду во всей области Ω требует дополнительных исследований.

1.4. Классификация и приведение к каноническому виду уравнений второго порядка со многими независимыми переменными

В предыдущих параграфах был разработан метод приведения уравнений второго порядка с двумя независимыми переменными к каноническому виду. Для уравнений второго порядка с *п* независимыми переменными ситуация усложняется. Привести такие уравнения к каноническому виду удается только лишь в случае уравнений с постоянными коэффициентами.

Уравнение характеристик. Рассмотрим класс линейных уравнений второго порядка с *n* независимыми переменными:

$$L(u) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \left(\vec{x} \right) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i} \left(\vec{x} \right) \frac{\partial u}{\partial x_{i}} + c \left(\vec{x} \right) u = f \left(\vec{x} \right), \tag{1.56}$$

где коэффициенты a_{ij}, a_i, c, f определены в области $\Omega \in \mathbb{R}^n$; $a_{ij} = a_{ji}$.

Выделим главную часть уравнения

$$L_0(u) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} \left(\vec{x} \right) \frac{\partial^2 u}{\partial x_i \partial x_j}. \tag{1.57}$$

Рассмотрим n числовых переменных $\xi_1, \xi_2, ..., \xi_n$ и поставим в соответствие производным функции u числовые выражения по следующему правилу

$$\frac{\partial u}{\partial x_i} \to \xi_i, \qquad \frac{\partial^2 u}{\partial x_i \partial x_j} \to \xi_i \, \xi_j,$$

тогда главной части (1.57) соответствует полином по переменным $\xi_1, \xi_2, ..., \xi_n$:

$$P(\overline{x}, \overline{\xi}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(\overline{x}) \xi_i \xi_j.$$
 (1.58)

Полином (1.58) по переменным ξ_i называется характеристическим полиномом.

Зафиксируем точку $\vec{x}_0 \in \Omega$, получим квадратичную форму с постоянными коэффициентами

$$P(\vec{\xi}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} (\vec{x}_0) \xi_i \xi_j.$$
 (1.59)

Рассмотрим поверхность Γ , принадлежащую области Ω , которую зададим уравнением

$$\varphi(x_1, x_2, ..., x_n) = 0, \qquad (1.60)$$

где $\varphi \in C^2(\Omega)$.

Положим в выражении (1.58) $\xi_i = \frac{\partial \varphi}{\partial x_i}$, то есть $\xi = \operatorname{grad} \varphi$.

Определение 1.7. Поверхность Γ , заданная уравнением (1.60), называется характеристикой или характеристической поверхностью уравнения (1.56), если во всех точках поверхности Γ для функции φ выполнено уравнение

$$P(x, \operatorname{grad}\varphi(x)) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x) \frac{\partial \varphi}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}} = 0.$$
 (1.61)

Уравнение (1.61) называется уравнением характеристик. ■

Заметим, что в случае плоскости n = 2 уравнение (1.61) совпадает с ранее определенным уравнением характеристик (1.21).

Классификация уравнений. Классификацию уравнений (1.56) в точке \vec{x}_0 осуществим с помощью квадратичной формы (1.59). Как известно, квадратичная форма может быть приведена к каноническому виду. Для этого перейдем от переменных $\xi_1, \xi_2, ..., \xi_n$ к новым переменным $\mu_1, \mu_2, ..., \mu_n$ с помощью невырожденного преобразования

$$\xi_i = \sum_{j=1}^n C_{ij} \,\mu_j,\tag{1.62}$$

где C_{ii} – невырожденная матрица.

Подставим (1.62) в квадратичную форму (1.59), положив

$$\xi_i = \sum_{k=1}^n C_{ik} \mu_k , \qquad \xi_j = \sum_{s=1}^n C_{js} \mu_s ,$$

тогда

$$P(\vec{\xi}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{s=1}^{n} a_{ij}(x_0) C_{ik} C_{js} \mu_k \mu_s.$$

Таким образом, получена новая квадратичная форма по переменным $\mu_1, \mu_2, ..., \mu_n$:

$$\overline{P}(\overrightarrow{\mu}) = \sum_{k=1}^{n} \sum_{s=1}^{n} A_{ks} \, \mu_k \mu_s \tag{1.63}$$

с коэффициентами

$$A_{ks} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} (\bar{x}_0) C_{ik} C_{js}.$$
 (1.64)

Из теории квадратичных форм известно, что существует такое невырожденное преобразование (1.62), для которого форма (1.63) принимает канонический вид

$$\overline{P}(\mu) = \sum_{i=1}^{n} \alpha_i \, \mu_i^2, \qquad \alpha_i = 0, 1, -1,$$
 (1.65)

то есть $A_{ks}=0$ при $k\neq s,\,A_{ii}=lpha_i.$

Известно также, что число нулей, единиц и минус-единиц квадратичной формы (1.65) не зависит от преобразования (1.62). Этот факт используется для классификации уравнений (1.56).

Определение 1.8.

- 1. Уравнение (1.56) называется эллиптическим в точке \vec{x}_0 , если в канонической квадратичной форме (1.65) все $\alpha_i = 1$ или все $\alpha_i = -1$.
- 2. Уравнение (1.56) называется гиперболическим в точке \vec{x}_0 , если в квадратичной форме (1.65) $\alpha_1 = 1$, $\alpha_i = -1$ при i = 2, 3, ..., n или $\alpha_1 = -1$, $\alpha_i = 1$ при i = 2, 3, ..., n.

3. Уравнение (1.56) называется параболическим в точке \vec{x}_0 , если в квадратичной форме (1.65) $\alpha_1=0$, $\alpha_i=1$ при i=2,3,...,n или $\alpha_1=0$, $\alpha_i=-1$ при i=2,3,...,n.

Как видно, данная классификация не исчерпывает все типы уравнений (1.56).

В случае n=2 приведенная классификация соответствует классификации с помощью дискриминанта D.

Приведение к каноническому виду уравнений с постоянными коэффициентами. Рассмотрим уравнение (1.56) с постоянными коэффициентами

$$L(u) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i} \frac{\partial u}{\partial x_{i}} + cu = f.$$
 (1.66)

Приведем его к каноническому виду с помощью замены независимых переменных. Для этого в уравнении (1.66) перейдем от переменных $x_1, x_2, ..., x_n$ к новым переменным $y_1, y_2, ..., y_n$, производя замену

$$y_i = \sum_{j=1}^n C_{ji} x_j, (1.67)$$

где матрица C_{ji} транспонированная по отношению к матрице преобразования (1.62).

Вычислим производные

$$\frac{\partial u}{\partial x_i} = \sum_{k=1}^n \frac{\partial u}{\partial y_k} \frac{\partial y_k}{\partial x_i} = \sum_{k=1}^n C_{ik} \frac{\partial u}{\partial y_k},$$

$$\frac{\partial^2 u}{\partial x_j \partial x_i} = \sum_{k=1}^n C_{ik} \frac{\partial}{\partial x_j} \left(\frac{\partial u}{\partial y_k} \right) = \sum_{k=1}^n \sum_{s=1}^n C_{ik} C_{js} \frac{\partial^2 u}{\partial y_s \partial y_k}.$$

После подстановки в (1.66) получим уравнение в новых переменных:

$$\overline{L}(u) \equiv \sum_{k=1}^{n} \sum_{s=1}^{n} A_{ks} \frac{\partial^{2} u}{\partial y_{s} \partial y_{k}} + \sum_{k=1}^{n} A_{k} \frac{\partial u}{\partial y_{k}} + cu = f,$$

где $A_k = \sum_{i=1}^n C_{ik} a_i$; $A_{ks} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} C_{ik} C_{js}$, то есть коэффициент A_{ks} совпадает с коэффициентом (1.64) квадратичной формы. Это означает, что если

квадратичная форма (1.59) с помощью преобразования (1.62) приводится к каноническому виду (1.65), тогда уравнение (1.66) с помощью преобразования (1.67) приводится к каноническому виду

$$\overline{L}(u) = \sum_{i=1}^{n} \alpha_i \frac{\partial^2 u}{\partial y_i^2} + \sum_{k=1}^{n} A_k \frac{\partial u}{\partial y_k} + cu = f.$$
 (1.68)

Приведем примеры уравнений в каноническом виде при n=3, предварительно сделав замену независимых переменных $y_1=x,\,y_2=y,\,y_3=z$.

Эллиптические уравнения

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + A_1 \frac{\partial u}{\partial x} + A_2 \frac{\partial u}{\partial y} + A_3 \frac{\partial u}{\partial z} + cu = f. \tag{1.69}$$

Гиперболические уравнения

$$\frac{\partial^2 u}{\partial z^2} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + A_1 \frac{\partial u}{\partial x} + A_2 \frac{\partial u}{\partial y} + A_3 \frac{\partial u}{\partial z} + cu = f.$$
 (1.70)

Параболические уравнения

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + A_1 \frac{\partial u}{\partial x} + A_2 \frac{\partial u}{\partial y} + A_3 \frac{\partial u}{\partial z} + cu = f, \quad A_3 \neq 0.$$
 (1.71)

Заметим, что в плоском случае (n=2) канонический вид (1.68) гиперболического уравнения отличается от канонического вида (1.45), поэтому (1.45) называется *первым каноническим видом*, а

$$\frac{\partial^2 u}{\partial y_1^2} - \frac{\partial^2 u}{\partial y_2^2} + A_1 \frac{\partial u}{\partial y_1} + A_2 \frac{\partial u}{\partial y_2} + cu = f$$

вторым каноническим видом гиперболического уравнения.

[Лекция 4]

1.5. Исключение в уравнениях младших производных

В предыдущих разделах производилось упрощение уравнений с помощью замены независимых переменных. Упрощение уравнений

может быть осуществлено также с помощью замены неизвестной функции, входящей в уравнение. Покажем это на примере уравнений второго порядка с двумя независимыми переменными, которые были приведены к каноническим уравнениям (1.45), (1.51), (1.55).

Гиперболические уравнения

$$u_{xy} + au_x + bu_y + cu = f. (1.72)$$

Параболические уравнения

$$u_{yy} + au_x + bu_y + cu = f.$$
 $a \neq 0.$ (1.73)

Эллиптические уравнения

$$u_{xx} + u_{yy} + au_x + bu_y + cu = f. (1.74)$$

Рассмотрим случай, когда коэффициенты a, b, c постоянные. Произведем дальнейшее упрощение уравнений (1.72) – (1.74), вводя вместо функции u новую неизвестную функцию v с помощью замены

$$u(x,y) = v(x,y)e^{\alpha x + \beta y}, \qquad (1.75)$$

где постоянные α , β будут определены в дальнейшем.

Вычислим производные:

$$u_{x} = (v_{x} + \alpha v)\Phi, \qquad u_{y} = (v_{y} + \beta v)\Phi,$$

$$u_{xx} = (v_{xx} + 2\alpha v_{x} + \alpha^{2} v)\Phi, \qquad u_{yy} = (v_{yy} + 2\beta v_{y} + \beta^{2} v),$$

$$u_{xy} = (v_{xy} + \alpha v_{y} + \beta v_{x} + \alpha \beta v)\Phi, \qquad \Phi = e^{\alpha x + \beta y}.$$

Подставив вычисленные производные в (1.72), получим

$$v_{xy} + (a+\beta)v_x + (b+\alpha)v_y + (\alpha\beta + \alpha\alpha + \beta b + c)v = \frac{f}{\Phi}$$
.

Полагая коэффициенты при первых производных равными нулю, определяем постоянные $\alpha = -b$, $\beta = -a$. В результате уравнение (1.72) преобразуется к виду

$$v_{yy} + \overline{c}v = \overline{f}, \tag{1.76}$$

где
$$\bar{c} = c - ab; \, \bar{f} = \frac{f}{\Phi}$$
.

Аналогично уравнение (1.73) преобразуется к виду

$$v_{yy} + av_x = \bar{f}, \tag{1.77}$$

где в преобразовании (1.75) $\alpha = \frac{b^2}{4a} - \frac{c}{a}$, $\beta = -\frac{b}{2}$.

Уравнение (1.74) преобразуется к виду

$$v_{xx} + v_{yy} + \bar{c}v = \bar{f}, \quad \bar{c} = c - \frac{1}{4}(a^2 + b^2),$$
 (1.78)

где в преобразовании (1.75) $\alpha = -\frac{a}{2}$, $\beta = -\frac{b}{2}$.

Таким образом, любое линейное уравнение с частными производными второго порядка с двумя независимыми переменными и постоянными коэффициентами может быть приведено к трем наиболее простым уравнениям (1.76), (1.77), (1.78) в зависимости от типа исходного уравнения.

1.6. Классические решения простейших уравнений с частными производными второго порядка

Одной из основных проблем уравнений с частными производными является нахождение решений уравнений. Для одних уравнений общее решение представляется в виде достаточно простых аналитических выражений, для других уравнений решения могут вообще не существовать.

Общее решение простейшего гиперболического уравнения на плоскости. Как было показано, гиперболическое уравнение второго порядка с двумя независимыми переменными (1.12) может быть при определенных условиях приведено к виду (1.76). Полагая $\bar{c} = 0$, получаем простейшее гиперболическое уравнение

$$\frac{\partial^2 u}{\partial x \partial y} = f(x, y). \tag{1.79}$$

Для определенности будем считать, что $f \in C(\mathbb{R}^2)$.

Найдем общее решение, интегрируя уравнение (1.79) по переменной x. Заметим, что при интегрировании уравнения с частными производными по одной из независимых переменных возникающие при интегрировании постоянные в общем случае зависят от остальных независимых переменных.

В результате

$$\frac{\partial u}{\partial y} = \int_{0}^{x} f(\xi, y) d\xi + C(y),$$

где C(y) – произвольная непрерывная функция переменной y. Полученное уравнение проинтегрируем по переменной y, тогда

$$u(x,y) = \int_{0}^{y} \int_{0}^{x} f(\xi,\eta) d\xi d\eta + \int_{0}^{y} C(\eta) d\eta + C_{1}(x).$$

В силу произвольности функции C(y) получим общее решение уравнения (1.79) вида

$$u(x,y) = C_1(x) + C_2(y) + \int_0^y \int_0^x f(\xi,\eta) d\xi d\eta, \qquad (1.80)$$

где $C_1(x)$, $C_2(y)$ – произвольные непрерывно дифференцируемые функции.

Для однородного уравнения

$$\frac{\partial^2 u}{\partial x \partial y} = 0 \tag{1.81}$$

общее решение определяется формулой

$$u(x, y) = C_1(x) + C_2(y).$$
 (1.82)

Нахождение решений эллиптического уравнения Лапласа. Отметим, что для эллиптических уравнений нет достаточно простых формул, определяющих общее решение. Как было показано, эллиптическое уравнение второго порядка с двумя независимыми переменными (1.12) при определенных условиях может быть преобразовано к виду (1.78).

Положим $\bar{c}=0,\,\bar{f}=0,\,$ тогда получим простейшее эллиптическое уравнение на плоскости

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad (1.83)$$

называемое уравнением Лапласа. Дифференциальный оператор уравнения (1.83) имеет специальное обозначение $\Delta \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ и называется оператором Лапласа. Для уравнения (1.83) легко могут быть построены частные решения с привлечением аналитических функций комплексного переменного. Пусть f(z) – произвольная аналитическая функция комплексного переменного z = x + iy в области Ω . Выделим действительную и мнимую части функции f(z), то есть представим

$$f(z) = u(x, y) + iv(x, y).$$

Для любой аналитической функции комплексного переменного выполнены уравнения Коши-Римана (1.11).

Дифференцируя первое уравнение (1.11) по x, а второе уравнение по y и складывая, получаем уравнение $\Delta u = 0$ для функции u. Аналогично для v имеем $\Delta v = 0$.

Таким образом, действительная и мнимая части аналитической функции комплексного переменного являются решениями эллиптического уравнения (1.83).

Пример 1.3. Рассмотрим аналитическую функцию $f(z) = e^z = e^{x+iy} = e^x (\cos y + i \sin y)$, тогда функции $u = e^x \cos y$, $v = e^x \sin y$ являются частными решениями уравнения (1.83) на плоскости R^2 .

Пример 1.4. Рассмотрим аналитическую функцию $f(z)=\ln\frac{1}{z-z_0}$, $z_0=x_0+iy_0-\mathrm{const}$. Запишем комплексное число $z-z_0$ в виде $z-z_0=re^{i\varphi}$, где $r=\sqrt{(x-x_0)^2+(y-y_0)^2}$, $\varphi=\mathrm{arctg}\,\frac{y-y_0}{x-x_0}$, тогда $f(z)=\ln\frac{1}{r}-i\arctan\frac{y-y_0}{x-x_0}$.

Получим частные решения уравнения (1.83):

$$u = \ln \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}}, \qquad v = \arctan \frac{y-y_0}{x-x_0}.$$

Умножив u на числовой множитель $\frac{1}{2\pi}$, получим решение

$$u(x,y) = G(M,M_0) = \frac{1}{2\pi} \ln \left(\frac{1}{R_{MM_0}}\right) = \frac{1}{2\pi} \ln \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}},$$
 (1.84)

которое называется ϕ ундаментальным решением уравнения Лапласа на плоскости R^2 .

Заметим, что функция (1.84) удовлетворяет уравнению (1.83) во всех точках плоскости за исключением точки $x = x_0$, $y = y_0$.

В случае трехмерного пространства R^3 для уравнения Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$
 (1.85)

решение вида

$$u(x,y,z) = G(M,M_0) \equiv \frac{1}{4\pi R_{MM_0}} = \frac{1}{4\pi \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}}, \quad (1.86)$$

где x_0, y_0, z_0 – координаты фиксированной точки M_0 , называется фундаментальным решением уравнения Лапласа в R^3 .

Для проверки вычислим производные

$$\frac{\partial^2}{\partial x^2} \left(\frac{1}{R_{MM_0}} \right) = -\frac{1}{R_{MM_0}^3} + \frac{3(x - x_0)^2}{R_{MM_0}^5} , \qquad \frac{\partial^2}{\partial y^2} \left(\frac{1}{R_{MM_0}} \right) = -\frac{1}{R_{MM_0}^3} + \frac{3(y - y_0)^2}{R_{MM_0}^5} ,$$

$$\frac{\partial^2}{\partial z^2} \left(\frac{1}{R_{MM_0}} \right) = -\frac{1}{R_{MM_0}^3} + \frac{3(z-z_0)^2}{R_{MM_0}^5} , \quad \text{где} \quad R_{MM_0} = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} .$$

После подстановки в уравнение (1.85) получим тождество. Заметим, что функция (1.86) удовлетворяет уравнению (1.85) во всех точках пространства R^3 за исключением точки $x=x_0,\ y=y_0,\ z=z_0$.

Частное решение *уравнения Пуассона* $\Delta u = -f(M)$ в области $D \subset \mathbb{R}^3$ выражается через фундаментальное решение (1.86) в виде интеграла [1, с. 346]

$$u(M) = \iiint_D f(Q)G(M,Q)dV_Q, \quad f \in C^1(D) \cap C(\overline{D}),$$

называемого *объемным потенциалом*. В R^2 используется фундаментальное решение (1.84).

Фундаментальное решение параболического уравнения. Рассмотрим однородное параболическое уравнение с постоянными коэффициентами α , β , γ и с двумя независимыми переменными x, t:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + \beta \frac{\partial u}{\partial x} + \gamma u, \qquad \alpha > 0.$$
 (1.87)

Легко проверить, что функция

$$u(x,t) = G^{+}(x,t) = \frac{e^{\gamma t}}{\sqrt{t}} \Phi(x,t),$$
 (1.88)

где
$$\Phi(x,t) = \frac{1}{\sqrt{4\pi\alpha}} \exp\left\{-\frac{(x+\beta t)^2}{4\alpha t}\right\},$$

удовлетворяет уравнению (1.87) в области $D^+ = (0 < t < \infty) \times (-\infty < x < \infty)$. Действительно, вычислим производные

$$\frac{\partial u}{\partial t} = \left(\gamma - \frac{1}{2t} - \frac{\beta (x + \beta t)}{2\alpha t} + \frac{(x + \beta t)^2}{4\alpha t^2} \right) \frac{e^{\gamma t}}{\sqrt{t}} \Phi(x, t),$$

$$\frac{\partial u}{\partial x} = -\frac{(x + \beta t)}{2\alpha t} \frac{e^{\gamma t}}{\sqrt{t}} \Phi(x, t), \qquad \frac{\partial^2 u}{\partial x^2} = \left(-\frac{1}{2\alpha t} + \frac{(x + \beta t)^2}{4\alpha^2 t^2} \right) \frac{e^{\gamma t}}{\sqrt{t}} \Phi(x, t).$$
(1.89)

Подставив вычисленные производные в уравнение (1.87), получим тождество.

Доопределим функцию (1.88) в области $D^- = (-\infty < t < 0) \times (-\infty < x < \infty) \cup (t = 0) \times (|x| > 0)$ функцией $G^-(x,t) \equiv 0$, то есть нулем.

Структура вычисленных производных (1.89) показывает, что любая производная $\frac{\partial^{\alpha_1+\alpha_2}G^+}{\partial t^{\alpha_1}\partial x^{\alpha_2}}$ выражается через сумму слагаемых вида

$$\frac{\left(x+\beta t\right)^{s}}{t^{\nu}}\Phi(x,t).$$

Легко показать, что при $x \neq 0$

$$\lim_{t\to 0} \frac{(x+\beta t)^s}{t^{\nu}} \Phi(x,t) = 0.$$

В результате заключим, что

$$\lim_{t\to 0} \frac{\partial^{\alpha_1+\alpha_2}G^+}{\partial t^{\alpha_1}\partial x^{\alpha_2}} = \frac{\partial^{\alpha_1+\alpha_2}G^-}{\partial t^{\alpha_1}\partial x^{\alpha_2}}\bigg|_{t=0} = 0 \quad \text{при } x\neq 0.$$

Это означает, что функции G^+, G^- гладко сопрягаются на оси t=0 при $x\neq 0$ и образуют функцию $G=G^+\cup G^-$, любое число раз дифференцируемую в R^2 кроме точки $x=0,\ t=0$. Так как коэффициенты уравнения (1.87) постоянные, то функция $G(x-x_0,\ t-t_0)$, где x_0,t_0 – const , также является решением уравнения (1.87). Построенное решение

$$u(x,t) = G(x-x_0, t-t_0) = \begin{cases} \frac{e^{\gamma(t-t_0)}}{\sqrt{4\pi \alpha (t-t_0)}} \exp\left\{-\frac{(x-x_0+\beta (t-t_0))^2}{4\alpha (t-t_0)}\right\}, & t > t_0 \\ 0, & t < t_0, \\ 0, & t = t_0, x \neq x_0 \end{cases}$$
(1.90)

называется ϕ ундаментальным решением параболического уравнения (1.87).

Приведенные в этом параграфе специальные решения некоторых уравнений, называемые фундаментальными решениями, используются для исследования различных свойств уравнений. Их важность для приложений будет показана в дальнейшем.

Определение 1.9. Уравнение (1.5) называется *гипоэллиптическим* в R^n , если любое его классическое решение $u \in C^2(\Omega)$ в любой области $\Omega \in R^n$ является бесконечно дифференцируемым, то есть $u \in C^{\infty}(\Omega)$.

Заметим, что эллиптические уравнения (1.83), (1.85) и параболическое уравнение (1.87) являются гипоэллиптическими уравнениями, а гиперболическое уравнение (1.81) таковым не является.

1.7. Общее решение уравнений с частными производными первого порядка

Рассмотрим линейное уравнение с частными производными первого порядка с двумя независимыми переменными:

$$a(x,y)\frac{\partial u}{\partial x} + b(x,y)\frac{\partial u}{\partial y} + c(x,y)u = f(x,y), \tag{1.91}$$

где для определенности $a \neq 0$ в области Ω ; $a, b, c, f \in C^1(\Omega)$.

Для нахождения общего решения уравнения (1.91) составим характеристическое уравнение

$$\frac{dy}{dx} = \frac{b(x,y)}{a(x,y)}. (1.92)$$

Утверждение 1.6. Пусть $\varphi(x,y)$ – первый интеграл обыкновенного дифференциального уравнения (1.92) в области Ω , $\varphi \in C^1(\Omega)$, тогда функция $\varphi(x,y)$ удовлетворяет уравнению

$$a\,\varphi_x + b\varphi_y = 0\tag{1.93}$$

в области Ω.

Доказательство. Рассмотрим произвольную точку $M_0 = (x_0, y_0) \in \Omega$. Построим решение y = y(x) уравнения (1.92) при условии $y(x_0) = y_0$. Такое решение, по крайней мере локально, существует. Тогда, согласно с определением первого интеграла, выполнено тождество $\varphi(x,y(x)) = C$, $C = \mathrm{const.}$ После дифференцирования по x имеем

$$\varphi_x(x, y(x)) + \varphi_y(x, y(x)) \frac{dy}{dx} = 0.$$

Учитывая (1.92), получим требуемое равенство (1.93) для произвольной точки $M_{\scriptscriptstyle 0}$. \blacksquare

Далее произведем в уравнении (1.91) замену переменных (1.38), где в качестве функции φ выберем первый интеграл уравнения (1.92)

с условием $\varphi_y \neq 0$, а в качестве функции ψ – любую гладкую функцию $\psi \in C^1(\Omega)$, такую, что якобиан преобразования $J \neq 0$ в Ω .

Учитывая (1.93), получим уравнение

$$u_{\eta} + P(x, y)u = F(x, y), \qquad P = \frac{c}{a\psi_x + b\psi_y}, \qquad F = \frac{f}{a\psi_x + b\psi_y}.$$

Найдем для преобразования (1.38) обратное преобразование $x = \varphi_1(\xi, \eta), y = \psi_1(\xi, \eta)$, тогда

$$u_n + p(\xi, \eta)u = \Phi(\xi, \eta), \tag{1.94}$$

где
$$p(\xi,\eta) = P(\varphi_1(\xi,\eta), \psi_1(\xi,\eta)), \ \Phi(\xi,\eta) = F(\varphi_1(\xi,\eta), \psi_1(\xi,\eta)).$$

Проинтегрируем обыкновенное дифференциальное уравнение (1.94) по переменной η , рассматривая ξ как параметр. Тогда

$$u = \frac{1}{K(\xi, \eta)} \left(C(\xi) + \int_{\eta_0}^{\eta} \Phi(\xi, \tau) K(\xi, \tau) d\tau \right), \text{ где } K(\xi, \eta) = \exp \left(\int_{\eta_0}^{\eta} p(\xi, t) dt \right).$$

Возвращаясь к старым переменным x, y, получим общее решение уравнения (1.91) (по крайней мере локальное):

$$u(x,y) = \frac{1}{K(\varphi(x,y),\psi(x,y))} \left(C(\varphi(x,y)) + \int_{\eta_0}^{\psi(x,y)} \Phi(\varphi(x,y),\tau) K(\varphi(x,y),\tau) d\tau \right), \quad (1.95)$$

где $\eta_0 = \psi(x_0, y_0)$ – const ; C(.) – произвольная непрерывно дифференцируемая функция.

Уравнение $\varphi(x,y) = C$, C - const, задает в области Ω семейство линий, которые называются *характеристическими линиями* исходного уравнения (1.91), а рассмотренный метод нахождения общего решения уравнения (1.91) называется *методом характеристик*.

2. ЗАДАЧА КОШИ

Уравнение с частными производными, как правило, имеет бесчисленное множество решений. При постановке прикладных задач требуется найти не любое, а конкретное решение уравнения, которое удовлетворяет некоторым дополнительным требованиям (условиям). Вид

этих условий может быть самым разнообразным. Наиболее распространенное условие состоит в том, что искомая функция должна принимать заданные значения на выделенной поверхности. В зависимости от характера накладываемых условий возникают различные задачи. В дальнейшем будет сформулирована одна из основных задач — задача Коши и исследованы свойства решений этой задачи для некоторых простейших уравнений с частными производными, возникающих в приложениях.

[Лекция 5]

2.1. Постановка задачи Коши. Теорема Ковалевской

Рассмотрим n-мерное евклидово пространство R^n . Пусть D - связная область в пространстве R^n , точка $\overline{x} = (x_1, x_2, ..., x_n) \in D$. В области D зададим уравнение с частными производными второго порядка

$$L(u) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \left(\vec{x} \right) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i} \left(\vec{x} \right) \frac{\partial u}{\partial x_{i}} + a \left(\vec{x} \right) u = f \left(\vec{x} \right)$$

$$(2.1)$$

с достаточно гладкими коэффициентами. Тип уравнения (2.1) может быть любым.

В пространстве \mathbb{R}^n зададим незамкнутую без самопересечений поверхность Γ_0 с помощью уравнения

$$g(x_1, x_2, ..., x_n) = 0,$$
 (2.2)

где функция g является дважды непрерывно дифференцируемой функцией, то есть $g \in C^2(D)$, а $\operatorname{grad} g \neq 0$ в любой точке $x_0 \in D$.

Обозначим через $\Gamma = \Gamma_0 \cap D$ часть поверхности, лежащей внутри области D. Будем предполагать, что область D представима в виде $D = D^+ \cup \Gamma \cup D^-$, где $D^+ \cap D^- = 0$, а подобласти D^+ , D^- не имеют общих точек с поверхностью Γ (см. рис. 2.1).

Рис. 2.1

На поверхности Γ зададим два условия на неизвестную функцию u:

$$u|_{\vec{x}\in\Gamma} = \varphi_0(\vec{x}), \qquad \frac{\partial u(x)}{\partial n_x}|_{\vec{x}\in\Gamma} = \varphi_1(x),$$
 (2.3)

где $\varphi_0(\vec{x})$, $\varphi_1(\vec{x})$ – заданные функции на поверхности Γ ; $\vec{n}_x = (n_1, n_2, ..., n_n)$ – единичная нормаль к поверхности Γ в точке \vec{x} ; $\frac{\partial u}{\partial \vec{n}_x}$ – производная по направлению нормали \vec{n}_x , которая определяется выражением

$$\frac{\partial u(\overline{x})}{\partial n_x} = (\operatorname{grad} u, \overline{n}_x) = \sum_{i=1}^n \frac{\partial u}{\partial x_i} n_i,$$

$$n_i = \frac{1}{|\operatorname{grad} g|} \frac{\partial g}{\partial x_i}, \qquad |\operatorname{grad} g| = \left(\sum_{i=1}^n \left(\frac{\partial g}{\partial x_i}\right)^2\right)^{\frac{1}{2}}.$$
(2.4)

Условия (2.3) называются *начальными условиями*. **Задача Коши 1.**

$$L(u) = f$$
 в области D , (2.5)

$$u|_{\Gamma} = \varphi_0(\vec{x}), \qquad \frac{\partial u}{\partial \vec{n}|_{\Gamma}} = \varphi_1(\vec{x}).$$
 (2.6)

Требуется найти функцию $u \in C^2(D)$, которая удовлетворяет уравнению (2.5) в области D и начальным условиям (2.6) на поверхности Γ .

Функция u, которая удовлетворяет указанным требованиям, называется *классическим решением задачи Коши*. Очевидно, что не для любых функций φ_0 , φ_1 такое решение найдется.

В простейшем случае, когда поверхность Γ_0 является плоскостью $x_n = 0$, постановка задачи (2.5), (2.6) упрощается:

$$L(u) = f(\overrightarrow{x}) \qquad \text{в области } D,$$

$$u|_{x_n=0} = \psi_0(\overrightarrow{x'}), \qquad \frac{\partial u}{\partial x_n}|_{x_n=0} = \psi_1(\overrightarrow{x'}),$$

$$(2.7)$$

где $\overline{x'} = (x_1, x_2, ..., x_{n-1}) \in \Gamma$; Γ – сечение области D плоскостью $x_n = 0$, $\Gamma = \Gamma_0 \cap D \subset R^{n-1}$.

Возможны и другие разновидности задачи Коши. Для иллюстрации выделим область D^+ , расположенную по одну сторону от поверхности Γ , и обозначим $D^+_{\Gamma} = D^+ \cup \Gamma$. Для области D^+_{Γ} сформулируем следующую задачу.

Задача Коши 2.

$$L(u) = f(\vec{x})$$
 в подобласти D^+ , (2.8)

$$u|_{\Gamma} = \varphi_0(\vec{x}), \qquad \frac{\partial u}{\partial \vec{n}}|_{\Gamma} = \varphi_1(\vec{x}).$$
 (2.9)

Требуется найти функцию $u \in C^2(D^+) \cap C^1(D_\Gamma^+)$, которая удовлетворяет уравнению (2.8) в подобласти D^+ и начальным условиям (2.9) на поверхности Γ , примыкающей к подобласти D^+ .

Возвратимся к задаче Коши (2.5), (2.6) и преобразуем ее. Для этого зафиксируем точку $\vec{x}_0 \in \Gamma$. По условиям на функцию g вектор $grad g = \left(\frac{\partial g}{\partial x_1}, \frac{\partial g}{\partial x_2}, ..., \frac{\partial g}{\partial x_n}\right) \neq 0$ на поверхности Γ , поэтому одна из произ-

водных $\frac{\partial g}{\partial x_i} \neq 0$ в точке x_0 . Для определенности будем считать, что $\frac{\partial g}{\partial x_n} \neq 0$ в точке \vec{x}_0 , тогда на основании теоремы о неявной функции [6, с.207] существует окрестность U_{x_0} точки \vec{x}_0 , в которой уравнение (2.2) однозначно разрешимо относительно переменной x_n , то есть поверхность Γ в окрестности U_{x_0} представима в виде уравнения

$$x_n = F(x_1, x_2, ..., x_{n-1}) \equiv F(\vec{x}').$$
 (2.10)

В дальнейшем для простоты будем считать, что окрестность U_{x_0} совпадает со всей областью D .

Определение 2.1. В пространстве R^n рассмотрим поверхность Γ размерности n-1. Пусть для \forall точки $x_0 \in \Gamma$ существует окрестность $U_{x_0} \in R^n$, внутри которой поверхность задается однозначным уравнением (2.10) в некоторой локальной декартовой системе координат. Поверхность Γ называется k раз непрерывно дифференцируемой или класса $C^k\left(\Gamma \in C^k\right)$, если для $\forall x_0 \in \Gamma$ существует окрестность $U_{x_0} \subset R^{n-1}$, внутри которой функция $F(x') \in C^k\left(U_{x_0}\right)$. Число k определяет гладкость поверхности Γ . Далее, пусть для $\forall x_1', x_2' \in U_{x_0'}$ и любой производной $D^\alpha F$ порядка $|\alpha| = k$ выполнено неравенство $|D^\alpha F(x_2') - D^\alpha F(x_1')| < C|x_2' - x_1'|^\nu$, где $C, \nu - const$, то есть производные $D^\alpha F$ являются гельдеровскими функциями с показателем $\nu(0 < \nu < 1)$. Тогда поверхность $\Gamma \in C^{k+\nu}$. \blacksquare

Запишем задачу (2.5), (2.6) с учетом (2.10):

$$L(u) = f(\vec{x}) \quad \mathbf{B} \ D, \quad u|_{x_n = F(\vec{x'})} = \psi_0(\vec{x}'), \qquad \frac{\partial u}{\partial n}|_{x_n = F(\vec{x}')} = \psi_1(\vec{x}'), \tag{2.11}$$

где $\psi_j(x') = \varphi_j(x_1, x_2, ..., x_{n-1}, F(x_1, x_2, ..., x_{n-1})).$

Далее преобразуем задачу (2.11), вводя вместо переменных $x_1, x_2, ..., x_n$ новые независимые переменные $y_1, y_2, ..., y_{n-1}, t$ с помощью невырожденного преобразования

$$y_1 = x_1, \ y_2 = x_2, ..., y_{n-1} = x_{n-1}, \ t = g(x_1, x_2, ..., x_n).$$
 (2.12)

Преобразование невырожденное, так как якобиан $J = \frac{\partial g}{\partial x_n} \neq 0$.

Вычислим производные, входящие в уравнение (2.1):

$$\frac{\partial u}{\partial x_{i}} = \sum_{j=1}^{n-1} \frac{\partial u}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x_{i}} = \frac{\partial u}{\partial y_{i}} + \frac{\partial u}{\partial t} \frac{\partial g}{\partial x_{i}}, \quad i \neq n,$$

$$\frac{\partial u}{\partial x_{n}} = \frac{\partial u}{\partial t} \frac{\partial g}{\partial x_{n}}.$$
(2.13)

Для вторых производных имеем

$$\begin{split} &\frac{\partial^{2} u}{\partial x_{j} \partial x_{i}} = \frac{\partial}{\partial x_{j}} \left(\frac{\partial u}{\partial y_{i}} + \frac{\partial u}{\partial t} \frac{\partial g}{\partial x_{i}} \right) = \frac{\partial}{\partial x_{j}} \left(\frac{\partial u}{\partial y_{i}} \right) + \frac{\partial}{\partial x_{j}} \left(\frac{\partial u}{\partial t} \right) \frac{\partial g}{\partial x_{i}} + \frac{\partial u}{\partial t} \frac{\partial^{2} g}{\partial x_{j} \partial x_{i}} = \\ &= \frac{\partial^{2} u}{\partial y_{j} \partial y_{i}} + \frac{\partial^{2} u}{\partial t \partial y_{i}} \frac{\partial g}{\partial x_{j}} + \left(\frac{\partial^{2} u}{\partial t \partial y_{j}} + \frac{\partial^{2} u}{\partial t^{2}} \frac{\partial g}{\partial x_{j}} \right) \frac{\partial g}{\partial x_{i}} + \frac{\partial u}{\partial t} \frac{\partial^{2} g}{\partial x_{j} \partial x_{i}}, \quad j \neq n, i \neq n, \\ &\frac{\partial^{2} u}{\partial x_{n} \partial x_{i}} = \frac{\partial^{2} u}{\partial t \partial y_{i}} \frac{\partial g}{\partial x_{n}} + \frac{\partial^{2} u}{\partial t^{2}} \frac{\partial g}{\partial x_{n}} \frac{\partial g}{\partial x_{i}} + \frac{\partial u}{\partial t} \frac{\partial^{2} g}{\partial x_{n} \partial x_{i}}, \quad i \neq n, \\ &\frac{\partial^{2} u}{\partial x_{n}^{2}} = \frac{\partial^{2} u}{\partial t^{2}} \left(\frac{\partial g}{\partial x_{n}} \right)^{2} + \frac{\partial u}{\partial t} \frac{\partial^{2} g}{\partial x_{n}^{2}}. \end{split}$$

После подстановки этих формул в уравнение (2.1) получим уравнение в новых переменных:

$$\overline{L}(u) = \alpha \frac{\partial^2 u}{\partial t^2} + B_0 \frac{\partial u}{\partial t} + \sum_{i=1}^{n-1} B_i \frac{\partial^2 u}{\partial y_i \partial t} + L_y(u) = F(\vec{y}, t), \qquad (2.14)$$

где $L_y = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} B_{ij} (\vec{y}, t) \frac{\partial^2}{\partial y_i \partial y_j} + \sum_{i=1}^{n-1} C_i (\vec{y}, t) \frac{\partial}{\partial y_i} + C(\vec{y}, t)$ – дифференциальный оператор второго порядка по переменным $y = (y_1, y_2, ..., y_{n-1}),$ $G(y, t) = G(x_1, ..., x_{n-1}, g(x_1, ..., x_n)) = f(x).$ Коэффициент α определяется формулой

$$\alpha(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x) \frac{\partial g}{\partial x_{i}} \frac{\partial g}{\partial x_{j}} \equiv P(x, \operatorname{grad} g). \tag{2.15}$$

Если $\alpha(\vec{x}) \neq 0$ в области D, то разделив (2.14) на α , получим уравнение *типа Ковалевской* с выделенной переменной t:

$$\frac{\partial^2 u}{\partial t^2} + b_0 \frac{\partial u}{\partial t} + \sum_{i=1}^{n-1} b_i \frac{\partial^2 u}{\partial y_i \partial t} + \overline{L}_y(u) = f(\vec{y}, t). \tag{2.16}$$

Преобразуем начальные условия (2.11). Уравнение поверхности Γ (2.2) с учетом замены (2.12) примет вид t = 0, поэтому первое начальное условие (2.11) можно записать как

$$u|_{t=0} = \psi_0(\vec{y}), \qquad y = (y_1, y_2, ..., y_{n-1}).$$
 (2.17)

Преобразуем второе начальное условие, вычислив нормальную производную (2.4). После подстановки формул (2.13), получим

$$\left. \frac{du}{dn} \right|_{t=0} = \left(\left| \operatorname{grad} g \right| \frac{\partial u}{\partial t} + \frac{1}{\left| \operatorname{grad} g \right|} \sum_{i=1}^{n-1} \frac{\partial u}{\partial y_i} \frac{\partial g}{\partial x_i} \right) \right|_{t=0} = \psi_1(y),$$

откуда следует, что

$$\left. \frac{du}{dt} \right|_{t=0} = \frac{1}{|\operatorname{grad} g|} \left\{ \psi_1(\overline{y}) - \frac{1}{|\operatorname{grad} g|} \sum_{i=1}^{n-1} \frac{\partial \psi_0}{\partial y_i} \frac{\partial g}{\partial x_i} \right\}_{t=0} \equiv \Psi_1(\overline{y}). \tag{2.18}$$

Добавив условия (2.17), (2.18) к уравнению (2.16), получим постановку задачи Коши (2.5), (2.6) в новых переменных:

$$\frac{\partial^{2} u}{\partial t^{2}} + b_{0} \frac{\partial u}{\partial t} + \sum_{i=1}^{n-1} b_{i} \frac{\partial^{2} u}{\partial y_{i} \partial t} + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} b_{ij} \frac{\partial^{2} u}{\partial y_{i} \partial y_{j}} + \sum_{i=1}^{n-1} c_{i} \frac{\partial u}{\partial y_{i}} + cu = f \quad \mathbf{B} \quad \Omega, \quad (2.19)$$

$$u|_{t=0} = \psi_{0}(\vec{y}), \qquad \frac{\partial u}{\partial t}|_{t=0} = \Psi_{1}(\vec{y}),$$
 (2.20)

где с помощью преобразования (2.12) область D преобразована в область Ω в пространстве $R_{y,t}^n$ переменных $y_1, y_2, ..., y_{n-1}, t$. При этом поверхность Γ представляет собой плоское многообразие γ в области Ω (см. рис. 2.2). Коэффициенты и правая часть уравнения (2.19) являются функциями переменных y, t.

Рис. 2.2

Заметим, если переменную t интерпретировать как время, то условия (2.20) являются условиями в начальный момент времени t=0. Отсюда становится понятным, почему условия (2.6) получили название начальных условий.

Таким образом, если функция (2.15) $\alpha(\vec{x}) \neq 0$ в области D, то задача Коши (2.5), (2.6) преобразуется к задаче Коши вида (2.19), (2.20).

Рассмотрим случай, когда $\alpha(\vec{x})=0$ во всей области D или в отдельных точках поверхности Γ . В этом случае деление уравнения на α невозможно, так как в коэффициентах уравнения (2.16) возникают особенности. Уравнение (2.14) выполняется во всех точках области D, в частности и в точках поверхности Γ , так как каждая точка поверхности Γ является внутренней для области D.

В связи с этим рассмотрим уравнение (2.14) на поверхности Γ , то есть при t=0:

$$\overline{L}(u)\Big|_{\Gamma} = \overline{L}(u)\Big|_{t=0} = \alpha\Big|_{\Gamma} \frac{\partial^2 u}{\partial t^2} + B_0 \frac{\partial u}{\partial t}\Big|_{t=0} + \sum_{i=1}^{n-1} B_i \frac{\partial^2 u}{\partial y_i \partial t}\Big|_{t=0} + L_y(u)\Big|_{t=0} = G(y,0).$$

Учитывая соотношение

$$\alpha\Big|_{\Gamma} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \left(\vec{x}\right) \frac{\partial g}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}\Big|_{\Gamma} = 0$$
 (2.21)

и условия (2.20), получаем необходимое условие разрешимости задачи Коши (2.5), (2.6):

$$B_0(\overline{y},0)\Psi_1(\overline{y}) + \sum_{i=1}^{n-1} B_i(\overline{y},0) \frac{\partial \Psi_1(y)}{\partial y_i} + L_y(\psi_0(\overline{y})) = G(\overline{y},0). \tag{2.22}$$

Если соотношение (2.22), связывающее начальные функции ψ_0 , Ψ_1 из начальных условий (2.20) не выполнено, то задача Коши (2.5), (2.6) заведомо неразрешима.

Как видно, условие (2.21) совпадает с уравнением характеристических поверхностей (1.61). Поэтому выполнение условия (2.21) означает, что поверхность Γ , задаваемая уравнением (2.2), является характеристической поверхностью уравнения (2.1).

Если условие (2.21) выполняется в отдельных точках поверхности Γ , то это означает, что поверхность Γ в этих точках касается некоторой характеристической поверхности уравнения (2.1). Суммируя приведенные рассуждения, заключаем, что если поверхность Γ , на которой заданы начальные условия (2.6), совпадает с характеристической поверхностью исходного уравнения (2.1) или касается ее, то задача Коши (2.5), (2.6) требует учета дополнительных условий разрешимости (2.22).

Определение 2.2. Функция $f(x_1, x_2, ..., x_n)$, определенная в области $D \in R^n$, называется аналитической функцией в окрестности точки $x_0 = (x_1^0, x_2^0, ..., x_n^0) \in D$, если существует окрестность U_{x_0} точки \vec{x}_0 , внутри которой функция $f(\vec{x})$ представима в виде ряда Тейлора

$$f(x) = \sum_{m=0}^{\infty} \sum_{|\alpha|=m} f_{\alpha} (x_1 - x_1^0)^{\alpha_1} (x_2 - x_2^0)^{\alpha_2} \dots (x_n - x_n^0)^{\alpha_n},$$

который сходится абсолютно в области U_{x_0} . Функция называется аналитической в области D, если она аналитична в окрестности любой точки области. Обозначим через $C^A(D)$ линейное пространство всех функций аналитических в области D.

Обратимся к задаче Коши (2.19), (2.20) для уравнения типа Ковалевской и сформулируем теорему единственности и локальной разрешимости. **Теорема 2.1. Теорема Ковалевской.** Если коэффициенты уравнения (2.19) b_{ij} , b_0 , b_i , c_i , c, $f \in C^A(\Omega)$, то есть являются аналитическими функциями по переменным $y_1, y_2, ..., y_{n-1}, t$, а начальные функции ψ_0 , $\Psi_1 \in C^A(\gamma)$, то есть являются аналитическими функциями по переменным $y_1, y_2, ..., y_{n-1}$, тогда для любой точки $\vec{y}_0 \in \gamma$ существует окрестность $\Omega_{y_0} \subset \Omega$, в которой решение задачи Коши (2.19), (2.20) существует, притом единственное в пространстве аналитических функций, то есть $u \in C^A(\Omega_{y_0})$.

Заметим, что теорема Ковалевской гарантирует существование локального решения задачи в достаточно малой окрестности поверхности γ . Вопрос существования глобального решения во всей наперед заданной области Ω остается открытым и требует дополнительных исследований.

Замечание 2.1. Теорема Ковалевской справедлива также для задачи Коши для уравнения первого порядка:

$$\frac{\partial u}{\partial t} + \sum_{i=1}^{n-1} a_i \frac{\partial u}{\partial y_i} + au = f \qquad \text{ в области } \Omega \,,$$

$$u\big|_{t=0} = \psi_0\Big(\overrightarrow{y}\Big),$$

и для задачи Коши для систем уравнений первого порядка:

$$\begin{split} \frac{\partial u}{\partial t} + \sum_{i=1}^{n-1} a_i^{(1)} \frac{\partial u}{\partial y_i} + \sum_{i=1}^{n-1} b_i^{(1)} \frac{\partial v}{\partial y_i} + c_1^{(1)} u + c_2^{(1)} v = f_1, \\ \frac{\partial v}{\partial t} + \sum_{i=1}^{n-1} a_i^{(2)} \frac{\partial u}{\partial y_i} + \sum_{i=1}^{n-1} b_i^{(2)} \frac{\partial v}{\partial y_i} + c_1^{(2)} u + c_2^{(2)} v = f_2, \\ u|_{t=0} = \psi_1(\vec{y}), \qquad v|_{t=0} = \psi_2(\vec{y}), \end{split}$$

и для более сложных систем.

С доказательством теоремы Ковалевской можно ознакомиться в книге [7, с.54].

[Лекция 6]

2.2. О корректной постановке задачи Коши

Учитывая общую постановку задачи Коши в виде (2.5), (2.6), сформулируем задачу Коши для уравнения второго порядка с двумя независимыми переменными, то есть в пространстве R^2 :

$$L(u) = a_{11} \frac{\partial^2 u}{\partial x^2} + 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} + cu = f \quad \mathbf{B} \quad D, \quad (2.23)$$

$$u|_{(x,y)\in\Gamma} = \varphi(x,y), \qquad \frac{\partial u}{\partial n}|_{(x,y)\in\Gamma} = \psi(x,y),$$
 (2.24)

где D – плоская область в R^2 ; Γ – линия внутри области D, $\Gamma \in C^2$; φ, ψ заданные функции на линии Γ (см. рис. 2.3).

Puc. 2.3

Для строгой математической постановки задачи (2.23), (2.24) необходимо ввести следующие пространства функций: $V_1(\Gamma)$ – пространство начальных функций φ ; $V_2(\Gamma)$ – пространство начальных функций ψ ; V(D) – пространство функций u, в котором отыскивается решение задачи (2.23), (2.24). Для классических решений $V(D) \subset C^2(D)$.

Будем предполагать, что пространства V_1, V_2, V являются метрическими пространствами, то есть наделены расстояниями $\rho_1(\varphi_1, \varphi_2), \quad \rho_2(\psi_1, \psi_2), \quad \rho(u_1, u_2)$ между двумя функциями соответственно в V_1, V_2, V . В случае нормированных линейных пространств $\rho_1(\varphi_1, \varphi_2) = \|\varphi_1 - \varphi_2\|_{V_1}, \quad \rho_2(\psi_1, \psi_2) = \|\psi_1 - \psi_2\|_{V_2}, \quad \rho(u_1, u_2) = \|u_1 - u_2\|_{V}, \quad \text{где } \|f\|_{W}$ норма в нормированном пространстве W.

Определение 2.3. Рассмотрим две задачи Коши с различными начальными функциями:

$$L(u_i) = f$$
,
$$u_i|_{\Gamma} = \varphi_i, \qquad \frac{\partial u_i}{\partial \vec{n}}|_{\Gamma} = \psi_i, \qquad i = 1, 2.$$

Решение задачи Коши (2.23), (2.24) непрерывно зависит в пространстве V от начальных функций $\varphi \in V_1$, $\psi \in V_2$, если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что из неравенств $\rho_1(\varphi_1, \varphi_2) < \delta$, $\rho_2(\psi_1, \psi_2) < \delta$ следует неравенство $\rho(u_1, u_2) < \varepsilon$.

Определение 2.4. Задача Коши (2.23), (2.24) поставлена корректно в пространствах V_1, V_2, V , если выполнены три условия корректности:

- 1) для любых начальных функций $\varphi \in V_1$, $\psi \in V_2$ существует решение задачи $u \in V$;
- 2) для любых начальных функций $\varphi \in V_1$, $\psi \in V_2$ решение единственно в пространстве V;
- 3) решение задачи $u \in V$ непрерывно зависит от начальных функций $\varphi \in V_1, \ \psi \in V_2$.

Если не выполнено хотя бы одно из условий корректности, то задача называется *некорректно* поставленной. Если же не выполнено третье условие корректности, то задача Коши называется *неустойчивой* по начальным данным.

2.3. Примеры некорректно поставленных задач Коши

Задача Коши для гиперболического уравнения с начальными условиями на характеристике. На плоскости R^2 рассмотрим простейшее гиперболическое уравнение (1.79), для которого два семейства координатных прямых линий $x = C_1$, $y = C_2$ являются характеристи-

ками. Выберем характеристическую линию $\Gamma(y=0)$ и поставим для нее задачу Коши в области $D=R^2$:

$$\frac{\partial^2 u}{\partial x \partial y} = f(x, y)$$
 в области R^2 , (2.25)

$$u\big|_{y=0} = \varphi(x), \quad \frac{\partial u}{\partial y}\Big|_{y=0} = \psi(x), \quad -\infty < x < \infty,$$
 (2.26)

где $f(x,y) \in C(R^2)$; $\varphi(x), \psi(x) \in C^1(R^1)$.

Предположим, что задача (2.25), (2.26) имеет решение u, обладающее непрерывной смешанной производной u_{xy} в области R^2 . Так как линия y=0 принадлежит области, то уравнение (2.25) должно выполняться и на линии Γ , то есть

$$\left. \frac{\partial^2 u}{\partial x \partial y} \right|_{v=0} = f(x, 0).$$

Учитывая второе начальное условие (2.26), получаем необходимое условие разрешимости задачи

$$\frac{d\psi(x)}{dx} = f(x,0). \tag{2.27}$$

Если условие (2.27) не выполнено, то задача (2.25), (2.26) не имеет решений.

Построим решение задачи (2.25), (2.26), предполагая, что условие (2.27) выполнено. Воспользуемся общим решением (1.80) уравнения (2.25), где функции $C_1(x)$, $C_2(y)$ определим из начальных условий.

Удовлетворим первому начальному условию (2.26), тогда

$$u|_{v=0} = C_1(x) + C_2(0) = \varphi(x).$$

Положим $C_1(x) = \varphi(x)$, $C_2(0) = 0$.

Удовлетворим второму начальному условию (2.26), тогда

$$\left. \frac{\partial u}{\partial y} \right|_{y=0} = C_2'(0) + \int_0^x f(\xi,0) d\xi = \psi(x).$$

Учитывая соотношение (2.27), получим соотношение $C_2'(0) = \psi(0)$. Таким образом, произвольная функция $C_2(y)$ удовлетворяет условиям $C_2(0) = 0$, $C_2'(0) = \psi(0)$.

Общий вид такой функции

$$C_2(y) = y(\psi(y) + C(y)),$$

где произвольная функция $C(y) \in C^1(R^1)$, C(0) = 0.

Таким образом, получено решение задачи (2.25), (2.26)

$$u(x,y) = \varphi(x) + y(\psi(y) + C(y)) + \int_0^y \int_0^x f(\xi,\eta)d\xi d\eta,$$

которое не единственно в силу произвольности функции C(y).

Рассмотренный пример показывает, что задача Коши с начальными условиями на характеристике поставлена некорректно, так как не выполняется первое или второе условие корректности из определения 2.4.

Задача Коши для параболического уравнения с начальными условиями на характеристике. На плоскости R^2 с координатами (x,t) рассмотрим параболическое уравнение (1.73) канонического вида $u_t = \alpha u_{xx} + \beta u_x + \gamma u + f$, для которого координатные линии t = C являются характеристиками. Выберем характеристическую линию $\Gamma(t = 0)$ и поставим для нее задачу Коши в области R^2 :

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + \beta \frac{\partial u}{\partial x} + \gamma u + f \quad \text{в области } R^2, \qquad (2.28)$$

$$u\big|_{t=0} = \varphi(x), \qquad \frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \quad -\infty < x < \infty.$$
 (2.29)

Предположим, что классическое решение задачи (2.28), (2.29) существует для области R^2 . Так как линия t=0 принадлежит области, то уравнение (2.28) должно выполняться и на линии Γ , то есть

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = \left(\alpha \frac{\partial^2 u}{\partial x^2} + \beta \frac{\partial u}{\partial x} + \gamma u + f \right) \Big|_{t=0}.$$

Учитывая начальные условия (2.29), получаем соотношение

$$\psi(x) = \alpha(x,0)\varphi''(x) + \beta(x,0)\varphi'(x) + \gamma(x,0)\varphi(x) + f(x,0).$$

Это условие показывает, что начальная функция ψ выражается через функцию φ и коэффициенты уравнения (2.28), то есть функция не может быть произвольной. Это означает, что второе начальное условие (2.29) – лишнее.

В результате приходим к постановке задачи Коши для параболического уравнения с одним начальным условием на характеристике:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + \beta \frac{\partial u}{\partial x} + \gamma u + f,$$

$$u|_{t=0} = \varphi(x),$$
(2.30)

в то время как задача Коши в постановке (2.28), (2.29) некорректно поставлена в случае произвольной функции ψ .

Пример Адамара задачи Коши для эллиптического уравнения. На плоскости R^2 рассмотрим эллиптическое уравнение Лапласа (1.83), для которого поставим задачу Коши с начальными условиями на линии $\Gamma(y=0)$:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{в области } D = \left\{ -\infty < x < \infty, |y| < T \right\}, \quad (2.31)$$

$$u\big|_{y=0} = \varphi(x), \qquad \frac{\partial u}{\partial y}\Big|_{y=0} = \psi(x), \qquad -\infty < x < \infty.$$
 (2.32)

Уравнение (2.31) является уравнением типа Ковалевской, поэтому в случае аналитических функций φ и ψ на основании теоремы Ковалевской заключаем, что задача (2.31), (2.32) имеет единственное аналитическое решение в некоторой достаточно малой окрестности линии Γ . Таким образом, первые два условия корректности выполнены (по крайней мере, локально). Исследуем третье условие корректности, то есть условие о непрерывной зависимости от начальных функций. Для этого рассмотрим две задачи Коши с различными начальными условиями специального вида:

$$\frac{\partial^2 u_1}{\partial x^2} + \frac{\partial^2 u_1}{\partial y^2} = 0, \qquad \frac{\partial^2 u_2}{\partial x^2} + \frac{\partial^2 u_2}{\partial y^2} = 0,
 u_1|_{y=0} = \varphi_1 = 0, \qquad u_2|_{y=0} = \varphi_2 = 0,
 \frac{\partial u_1}{\partial y}|_{y=0} = \psi_1 = 0, \qquad \frac{\partial u_2}{\partial y}|_{y=0} = \psi_2 = e^{-\sqrt{n}} \cos(nx),$$
(2.33)

где *п* – фиксированный положительный параметр.

Решения данных задач определяются выражениями

$$u_1 = 0$$
, $u_2 = \frac{1}{n}e^{-\sqrt{n}}\cos(nx)\sinh(ny)$.

Введем пространства функций $V_1 = V_2 = C_0^A(R^1)$, $V = C_0^A(D)$, где $C_0^A -$ пространство ограниченных аналитических функций с соответствующими метрическими расстояниями:

$$\rho_{1}(\varphi_{1}, \varphi_{2}) = \rho_{2}(\varphi_{1}, \varphi_{2}) = \|\varphi_{1} - \varphi_{2}\|_{C} = \sup_{-\infty < x < \infty} |\varphi_{1}(x) - \varphi_{2}(x)|,$$

$$\rho(u_{1}, u_{2}) = \|u_{1} - u_{2}\|_{C} = \sup_{(x, y) \in D} |u_{1}(x, y) - u_{2}(x, y)|.$$
(2.34)

Согласно определению 2.3, применительно к задачам (2.33), по $\forall \varepsilon > 0 \quad \exists \delta > 0$, что если $\rho_1(\varphi_1, \varphi_2) = 0 < \delta$ и $\rho_2(\psi_1, \psi_2) = e^{-\sqrt{n}} < \delta$ (при $n > (\ln \delta)^2$), тогда должно выполняться неравенство

$$\rho(u_1, u_2) = \frac{1}{n} e^{-\sqrt{n}} \operatorname{sh}(nT) < \varepsilon.$$
 (2.35)

Очевидно, что неравенство (2.35) не выполнено при достаточно больших значениях параметра n, так как $\lim_{n\to\infty} \frac{1}{n} e^{-\sqrt{n}} \operatorname{sh}(nT) = \infty$.

Таким образом, задача Коши для эллиптического уравнения (2.31), (2.32) поставлена некорректно, так как не выполнено третье условие корректности из определения (2.4).

2.4. Задача Коши для уравнения колебаний струны

Физическая интерпретация. Поставим задачу Коши для однородного уравнения поперечных колебаний струны

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0 \quad \mathbf{B} \quad D = \left\{ -\infty < x < \infty, |t| < T \right\}, \tag{2.36}$$

$$u\big|_{t=0} = \varphi(x), \qquad -\infty < x < \infty, \qquad (2.37)$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \qquad -\infty < x < \infty,$$
 (2.38)

где $a=\sqrt{\frac{N}{\rho}}-{\rm const}$; N – натяжение струны; ρ – линейная плотность струны; $\varphi(x)\in V_1=C^2(R^1)$; $\psi(x)\in V_2=C^1(R^1)$; классическое решение задачи $u(x,t)\in V=C^2(D),\ t$ – временная переменная, x – пространственная переменная.

Задача (2.36) — (2.38) используется для математического моделирования процесса малых колебаний бесконечной струны, натянутой вдоль оси Ox. Струна считается идеально тонкой, график которой в момент времени t описывается уравнением u = u(x, t), то есть u(x, t) — отклонение точки струны с координатой x от оси Ox (см. рис. 2.4). Начальное условие (2.37) $u = \varphi(x)$ задает график струны в начальный момент времени t = 0, а функция $\psi(x)$ из условия (2.38) задает начальную скорость струны в точке с координатой x.

Рис. 2.4

Понятно, что с изменением временного параметра t график струны изменяется, то есть наблюдается процесс колебаний.

Формула Даламбера. Для отыскания решения задачи (2.36) — (2.38) применим метод характеристик. Метод состоит в приведении исходного уравнения (2.36) к каноническому виду и нахождении общего решения. Для гиперболического уравнения (2.36) на основании характеристических уравнений (1.39), (1.40), найдем два семейства характеристик на плоскости *Oxt*:

$$x + at = C_1, x - at = C_2.$$

Производя замену переменных

$$\xi = x + at$$
, $\eta = x - at$,

приведем уравнение (2.36) к каноническому виду $u_{\xi\eta}=0$. Из общего решения (1.82) имеем $u=C_1(\xi)+C_2(\eta)$. Откуда общее решение однородного уравнения колебаний струны (2.36)

$$u = C_1(x+at) + C_2(x-at). (2.39)$$

Определим неизвестные функции $C_1(\cdot)$, $C_2(\cdot)$ из начальных условий. Подставив (2.39) в условие (2.37), получим соотношение

$$C_1(x) + C_2(x) = \varphi(x).$$
 (2.40)

Аналогично, подставляя (2.39) в условие (2.38), получаем

$$\frac{\partial u}{\partial t}\Big|_{t=0} = aC_1'(x) - aC_2'(x) = \psi(x), \qquad (2.41)$$

где $C'_{1,2}(x)$ – производные по переменной x.

Интегрируя равенство (2.41) по отрезку (x_0, x) , получаем второе соотношение:

$$C_1(x) - C_2(x) = \frac{1}{a} \int_{x_0}^x \psi(\tau) d\tau + \dot{C}.$$
 (2.42)

Разрешим систему алгебраических уравнений (2.40), (2.42), тогда

$$C_1(x) = \frac{1}{2} \left(\varphi(x) + \frac{1}{a} \int_{x_0}^x \psi(\tau) d\tau + C \right),$$

$$C_2(x) = \frac{1}{2} \left(\varphi(x) - \frac{1}{a} \int_{x_0}^x \psi(\tau) d\tau - C \right).$$

После подстановки найденных функций в (2.39) получим формулу Даламбера для решения исходной задачи Коши:

$$u(x,t) = \frac{1}{2} (\varphi(x+at) + \varphi(x-at)) + \frac{1}{2a} \int_{x=at}^{x+at} \psi(\tau) d\tau.$$
 (2.43)

Заметим, что найденное решение является классическим, так как $u \in C^2(D)$ для $\forall \varphi \in V_1, \psi \in V_2$.

В случае неоднородного уравнения колебаний струны решение задачи Коши

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t),$$

$$u\big|_{t=0} = \varphi(x), \quad \frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x)$$

определяется формулой

$$u(x,t) = \frac{1}{2} (\varphi(x+at) + \varphi(x-at)) + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\tau) d\tau + \frac{1}{2a} \int_{0}^{t} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) d\xi d\tau,$$

где
$$\frac{\partial f(x,t)}{\partial x} \in C(\mathbb{R}^2)$$
.

Корректность задачи Коши. Процедура построения решения задачи (2.36) - (2.38) показывает, что любое классическое решение задачи Коши для уравнения колебаний струны представимо формулой Даламбера (2.43). Отсюда следует существование и единственность решения задачи в пространстве V.

Утверждение 2.1. Решение задачи Коши (2.36) – (2.38) в пространстве V с метрикой (2.34) непрерывно зависит от начальных функций $\varphi \in V_1$, $\psi \in V_2$.

Доказательство. Рассмотрим две задачи (2.36)-(2.38) с различными начальными условиями:

$$\frac{\partial^2 u_i}{\partial t^2} - a^2 \frac{\partial^2 u_i}{\partial x^2} = 0, \ u_i \Big|_{t=0} = \varphi_i, \ \frac{\partial u_i}{\partial t} \Big|_{t=0} = \psi_i.$$

Пусть начальные функции мало различаются, то есть

$$|\varphi_1(x) - \varphi_2(x)| < \delta, \qquad |\psi_1(x) - \psi_2(x)| < \delta.$$
 (2.44)

Оценим разность решений $u_1 - u_2$ в области D. Представляя решения задач формулой Даламбера (2.43) и учитывая (2.44), получаем оценку

$$|u_1 - u_2| \le \frac{1}{2} |\varphi_1(x + at) - \varphi_2(x + at)| + \frac{1}{2} |\varphi_1(x - at) - \varphi_2(x - at)| + \frac{1}{2} |\varphi_1(x - at)| + \frac{1}{2} |\varphi_1$$

$$+\frac{1}{2a}\int_{x-a|t|}^{x+a|t|} |\psi_1(\tau)-\psi_2(\tau)|d\tau \leq \frac{1}{2}\delta + \frac{\delta}{2a}\int_{x-a|t|}^{x+a|t|} d\tau = \delta(1+|t|) \leq \delta(1+T).$$

Выберем δ из интервала $0 < \delta < \frac{\varepsilon}{1+T}$, тогда $|u_1 - u_2| < \varepsilon$ в области D.

Таким образом, для $\forall \varepsilon > 0$ найдено $\delta > 0$ $\left(0 < \delta < \frac{\varepsilon}{1+T}\right)$ такое, что если $\rho_1(\varphi_1, \varphi_2) < \delta$, $\rho_2(\psi_1, \psi_2) < \delta$, тогда $\rho(u_1, u_2) < \varepsilon$.

Показано, что задача Коши для уравнения колебаний струны поставлена корректно в соответствии с определением 2.4.

[Лекция 7]

2.5. Метод интегральных преобразований для задачи Коши

Интегральные преобразования. Рассмотрим пару линейных функциональных пространств H_1 и H_2 . Пусть A – линейный оператор, преобразующий функции f, принадлежащие пространству H_1 , в функции \hat{f} , принадлежащие пространству H_2 , то есть $A: H_1 \to H_2$. Имеем соотношения $\hat{f} = A(f), f = A^{-1}(\hat{f}),$ где A^{-1} – обратный оператор. В случае, если операторы A и A^{-1} являются интегральными, тогда оператор A называется интегральным преобразованием, оператор A^{-1} – обратным интегральным преобразованием, а функция \hat{f} называется интегральным преобразованием функции f.

Приведем примеры интегральных преобразований.

Преобразование Фурье. Пусть $f(x) \in H_1 = L_2(R^1)$, где $L_2(R^1)$ – пространство функций, для которых $\int\limits_{-\infty}^{\infty} |f(x)|^2 dx < \infty$.

Интегральное преобразование Фурье определяется формулой

$$\hat{f}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{i\lambda x} dx , \quad \hat{f}(\lambda) \in H_2 = L_2(R^1), \quad -\infty < \lambda < \infty, \quad i = \sqrt{-1} . \quad (2.45)$$

Имеет место обратное преобразование:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\lambda) e^{-i\lambda x} d\lambda, \quad f(x) \in L_2(\mathbb{R}^1), \quad -\infty < x < \infty.$$

Косинус-преобразование Фурье.

$$\hat{f}_c(\lambda) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(\lambda x) dx, \quad \hat{f}_c(\lambda) \in L_2(\mathbb{R}^1_+), \quad 0 \le \lambda \le \infty,$$

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{c}(\lambda) \cos(\lambda x) d\lambda, \quad f(x) \in L_{2}(\mathbb{R}^{1}_{+}), \quad 0 \leq x \leq \infty.$$

Синус-преобразование Фурье.

$$\hat{f}_s(\lambda) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin(\lambda x) dx$$
, $\hat{f}_s(\lambda) \in L_2(R_+^1)$, $0 \le \lambda \le \infty$,

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{s}(\lambda) \sin(\lambda x) d\lambda, \quad f(x) \in L_{2}(\mathbb{R}^{1}_{+}), \quad 0 \le x \le \infty.$$

Двумерное преобразование Фурье.

$$\hat{f}(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{i(\alpha x + \beta y)} dx dy, \qquad f(x,y) \in L_2(\mathbb{R}^2),$$

$$f(x,y) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} \hat{f}(\alpha,\beta) e^{-i(\alpha x + \beta y)} d\alpha d\beta, \qquad \hat{f}(\alpha,\beta) \in L_2(\mathbb{R}^2).$$
(2.46)

Решение задачи Коши для параболического уравнения. Рассмотрим задачу Коши (2.30) для однородного параболического уравнения с постоянными коэффициентами α , β , γ :

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + \beta \frac{\partial u}{\partial x} + \gamma u \qquad \mathbf{B} \quad D^+ = (0 < t < \infty) \times (-\infty < x < \infty), \tag{2.47}$$

$$u\big|_{t=0} = \varphi(x), \qquad -\infty < x < \infty, \tag{2.48}$$

где $\varphi(x) \in V_1 = C_o(R^1)$, $C_o(R^1)$ – пространство ограниченных непрерывных функций на R^1 ; $u(x,t) \in V = C^2(D^+) \cap C(\overline{D}^+)$, $C(\overline{D}^+)$ – пространство непрерывных функций на полуплоскости \overline{D}^+ .

Задачу (2.47), (2.48) решим методом интегральных преобразований.

Применим преобразование Фурье (2.45) к функции u(x,t) по переменной $x \in \mathbb{R}^1$, получим функцию по переменной λ :

$$\hat{u}(\lambda,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,t) e^{i\lambda x} dx, \qquad -\infty < \lambda < \infty.$$
 (2.49)

Имеет место обратное преобразование Фурье:

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{u}(\lambda,t) e^{-i\lambda x} d\lambda, \qquad -\infty < x < \infty.$$
 (2.50)

Далее применим преобразование Фурье к уравнению (2.47), умножая его на ядро преобразования $\frac{1}{\sqrt{2\pi}}e^{i\lambda x}$ и интегрируя по переменной x. В результате

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial u}{\partial t} e^{i\lambda x} dx - \frac{\beta}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial u}{\partial x} e^{i\lambda x} dx - \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial^2 u}{\partial x^2} e^{i\lambda x} dx - \frac{\gamma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u e^{i\lambda x} dx = 0.$$
(2.51)

Используя (2.49), получаем

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{\partial u}{\partial t}e^{i\lambda x}dx=\frac{\partial \hat{u}(\lambda,t)}{\partial t}.$$

Второе и третье слагаемые интегрируем по частям:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial u}{\partial x} e^{i\lambda x} dx = \frac{1}{\sqrt{2\pi}} u(x,t) e^{i\lambda x} \Big|_{x=-\infty}^{x=\infty} -i\lambda \hat{u}(\lambda,t),$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial^2 u}{\partial x^2} e^{i\lambda x} dx = \frac{1}{\sqrt{2\pi}} \left(\frac{\partial u(x,t)}{\partial x} - i\lambda u(x,t) \right) e^{i\lambda x} \Big|_{x=-\infty}^{x=\infty} -\lambda^2 \hat{u}(\lambda,t).$$

Естественно предположить, что при $x \to \pm \infty$ функция u(x,t) и производная $\frac{\partial u(x,t)}{\partial x}$ стремятся к нулю. В результате получим формулы

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{\partial u}{\partial x}e^{i\lambda x}dx=-i\,\lambda\,\hat{u}(\lambda,t),$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial^2 u}{\partial x^2} e^{i\lambda x} dx = -\lambda^2 \, \hat{u}(\lambda, t) \,.$$

Равенство (2.51) преобразуется к обыкновенному дифференциальному уравнению для функции $\hat{u}(x,t)$:

$$\frac{\partial \hat{u}}{\partial t} + (\alpha \lambda^2 + i\lambda \beta - \gamma)\hat{u} = 0. \tag{2.52}$$

Применим преобразование Фурье к начальному условию (2.48), умножая его на ядро и интегрируя по переменной x. В результате получим начальное условие

$$\hat{u}\big|_{t=0} = \hat{\varphi}(\lambda), \tag{2.53}$$

$$\hat{\varphi}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi(y) e^{i\lambda y} dy. \qquad (2.54)$$

Задача (2.52), (2.53) представляет собой задачу Коши для обыкновенного дифференциального уравнения. Запишем решение этой задачи в виде

$$\hat{u}(\lambda,t) = \hat{\varphi}(\lambda)e^{-(\alpha\lambda^2 + i\beta\lambda - \gamma)t}.$$

Применив обратное преобразование Фурье (2.50), вычислим искомую функцию u(x,t):

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{\varphi}(\lambda) \exp(-\alpha \lambda^2 t - i\beta \lambda t - i\lambda x + \gamma t) d\lambda. \qquad (2.55)$$

Подставим выражение (2.54) в (2.55) и поменяем порядок интегралов, тогда

$$u(x,t) = \int_{-\infty}^{\infty} \varphi(y) \left[\frac{e^{\gamma t}}{2\pi} \int_{-\infty}^{\infty} \exp(-\alpha \lambda^2 t - i\beta \lambda t - i\lambda x + i\lambda y) d\lambda \right] dy.$$

Вычислим внутренний интеграл

$$G(x-y,t) = \frac{e^{\gamma t}}{2\pi} \int_{-\infty}^{\infty} \exp(-\alpha \lambda^2 t - i\beta \lambda t - i\lambda x + i\lambda y) d\lambda =$$

$$= \frac{e^{\gamma t}}{2\pi} \int_{-\infty}^{\infty} \exp(-\alpha t \lambda^2) \cos \lambda (x-y+\beta t) d\lambda = \frac{e^{\gamma t}}{\sqrt{4\pi\alpha t}} \exp\left\{-\frac{(x-y+\beta t)^2}{4\alpha t}\right\}.$$

Таким образом, решение задачи (2.47), (2.48) представлено в виде интеграла

$$u(x,t) = \int_{-\infty}^{\infty} \varphi(y)G(x-y,t)dy.$$
 (2.56)

где G(x-y,t) – фундаментальное решение (1.90) уравнения (1.87).

2.6. Принцип максимума и минимума для уравнения теплопроводности

На плоскости *Oxt* рассмотрим открытую ограниченную прямоугольную область $\Omega = (0 < t < T) \times (y_1 < x < y_2)$, область $\widetilde{\Omega} = (0 < t \le T) \times (y_1 < x < y_2)$ и замкнутую область $\overline{\Omega} = (0 \le t \le T) \times (y_1 \le x \le y_2)$ (см. рис. 2.5). Угловые точки прямоугольника обозначим буквами A, B, E, F и рассмотрим ломаную линию $l = EA \cup AB \cup BF$, состоящую из трех отрезков прямых линий, включающих угловые точки, $\overline{\Omega} = \overline{\Omega} \cup l$.

Рис. 2.5

В области $\widetilde{\Omega}$ зададим уравнение теплопроводности

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}.$$
 (2.57)

Оказывается, что решения уравнения теплопроводности обладают экстремальными свойствами, вытекающими из следующей теоремы.

Теорема 2.2. Принцип максимума и минимума. Если функция $u(x,t) \in C^2(\widetilde{\Omega}) \cap C(\overline{\Omega})$ и удовлетворяет уравнению теплопроводности (2.57) в области $\widetilde{\Omega}$, тогда функция u достигает максимального и минимального значений на линии l, то есть

$$\min_{(x,t)\in l} u(x,t) \le u(x,t) \le \max_{(x,t)\in \Omega} u(x,t). \tag{2.58}$$

Доказательство. Доказательство проведем от противного для максимума. Предположим, что максимум достигается в точке $M_0 = (x_0, t_0) \in \widetilde{\Omega}$. Обозначим $m = \max_{(x,y) \in I} u(x,t)$, тогда $u(x_0, t_0) = m + \varepsilon$, где $\varepsilon > 0$.

Построим вспомогательную функцию

$$v(x,t) = u(x,t) + k(t_0 - t), \qquad (2.59)$$

где k – const, $0 < k < \frac{\varepsilon}{2T}$.

Вычислим

$$v(x_0,t_0) = u(x_0,t_0) = m + \varepsilon$$
.

Оценим

$$\max_{(x,t) \in l} v \leq \max_{(x,t) \in l} u + k \max_{(x,t) \in l} \left| t_0 - t \right| < m + \frac{\varepsilon}{2},$$

так как $|t_0 - t| \le T$.

Эти соотношения означают, что функция v достигает максимума в некоторой точке $M_1 = (x_1, t_1) \in \widetilde{\Omega}$, то есть при $y_1 < x_1 < y_2$, $0 < t_1 \le T$.

Рассмотрим различные случаи расположения точки M_1 :

1)
$$M_1 \in \Omega = (y_1 < x_1 < y_2, 0 < t_1 < T).$$

Из теории экстремума для внутренней точки максимума следует, что

$$\frac{\partial v(M_1)}{\partial t} = 0, \qquad \frac{\partial^2 v(M_1)}{\partial x^2} \le 0; \qquad (2.60)$$

2)
$$M_1 \in EF(y_1 < x_1 < y_2, t = T)$$
.

Так как точка максимума M_1 граничная, то

$$\frac{\partial v(M_1)}{\partial t} \ge 0, \qquad \frac{\partial^2 v(M_1)}{\partial x^2} \le 0. \tag{2.61}$$

Вычислим производные функции (2.59) в точке M_1 и воспользуемся неравенствами (2.60), (2.61), тогда

$$\frac{\partial v(M_1)}{\partial t} = \frac{\partial u(M_1)}{\partial t} - k \ge 0 \quad \Rightarrow \quad \frac{\partial u(M_1)}{\partial t} \ge k > 0 ,$$

$$\frac{\partial^2 v(M_1)}{\partial x^2} = \frac{\partial^2 u(M_1)}{\partial x^2} \le 0 .$$

По условию теоремы в точке M_1 для функции u выполнено уравнение (2.57). С другой стороны, левая часть уравнения (2.57) строго больше нуля, а правая часть меньше или равна нулю. Получено про-

тиворечие. Таким образом, максимум функции u достигается на линии l. Для минимума теорема доказывается аналогично после замены функции u на функцию -u.

Приведем некоторые следствия из принципа максимума и минимума.

Следствие 2.1. Пусть функции $u_1,u_2\in C^2\big(\widetilde{\Omega}\big)\cap C\big(\overline{\Omega}\big)$ и удовлетворяют уравнению теплопроводности (2.57) в области $\widetilde{\Omega}$. Если $u_2(x,t)\geq u_1(x,t)$ для любой точки $(x,t)\in I$, то $u_2(x,t)\geq u_1(x,t)$ для любой точки $(x,t)\in \overline{\Omega}$.

Доказательство. Построим вспомогательную функцию $u = u_2 - u_1$, которая удовлетворяет всем условиям теоремы 2.2, тогда из левого неравенства (2.58) имеем

$$u(x,t) \ge \min_{(x,t)\in\Omega} u(x,t) \ge 0$$
,

так как $u(x,t) \ge 0$ для точки $(x,t) \in l$.

Таким образом, $u_2(x,t)-u_1(x,t)\geq 0$ для любой точки $(x,t)\in\overline{\Omega}$.

Легко доказать следующие следствия.

Следствие 2.2. Пусть функции $u_1, u_2, u_3 \in C^2(\widetilde{\Omega}) \cap C(\overline{\Omega})$ и удовлетворяют уравнению (2.57) в области $\widetilde{\Omega}$. Если $u_3(x,t) \ge u_2(x,t) \ge u_1(x,t)$, $\forall (x,t) \in I$, то $u_3(x,t) \ge u_2(x,t) \ge u_1(x,t)$, $\forall (x,t) \in \overline{\Omega}$.

Следствие 2.3. Пусть функции $u, v \in C^2(\widetilde{\Omega}) \cap C(\overline{\Omega})$ и удовлетворяют уравнению (2.57) в области $\widetilde{\Omega}$. Если $|u(x,t)| \le v(x,t)$, $\forall (x,t) \in I$, то $|u(x,t)| \le v(x,t)$, $\forall (x,t) \in \overline{\Omega}$.

Следствие 2.4. Пусть функция $u \in C^2(\widetilde{\Omega}) \cap C(\overline{\Omega})$ и удовлетворяет уравнению (2.57) в области $\widetilde{\Omega}$. Если $|u(x,t)| \leq \varepsilon$, $\forall (x,t) \in l$, $\varepsilon - const$, то $|u(x,t)| \leq \varepsilon$, $\forall (x,t) \in \overline{\Omega}$.

2.7. Корректность задачи Коши для уравнения теплопроводности

Физическая интерпретация. Рассмотрим задачу (2.47), (2.48) в частном случае, когда $\alpha = a^2$, $\beta = 0$, $\gamma = 0$. Получим классическую задачу Коши для уравнения теплопроводности в стержне:

$$L(u) = \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = 0 \quad \mathbf{B} \quad D^+, \tag{2.62}$$

$$u|_{t=0} = \varphi(x), \qquad -\infty < x < \infty, \tag{2.63}$$

где $a^2 = \frac{k}{c \, \rho}$; k – коэффициент теплопроводности; c – удельная тепло-

емкость; ρ – плотность материала стержня; t – временная переменная; x – пространственная переменная; $\varphi(x) \in V_1 = C_o(R^1)$; классическое решение задачи $u(x,t) \in V = C^2(D^+) \cap C_o(\overline{D}^+)$, $C_o(\overline{D}^+)$ – пространство ограниченных непрерывных функций на полуплоскости \overline{D}^+ .

Задача (2.62), (2.63) описывает изменение температуры тонкого бесконечного стержня, который расположен вдоль оси Ox (см. рис. 2.6).

При этом функция u(x,t) задает температуру стержня в сечении x в момент времени t. Начальное условие (2.63) означает, что температура в начальный момент времени t=0 известна в каждом сечении стержня x и равна $\varphi(x)$.

Рис. 2.6

Для корректности поставленной задачи должны быть выполнены следующие требования: существование решения, единственность решения и непрерывная зависимость решения от начальной функции φ в выбранных пространствах V_1 и V.

Существование решения. Решение задачи (2.62), (2.63) для $\forall \varphi \in V_1$ определяется интегралом вида (2.56):

$$u(x,t) = \int_{-\infty}^{\infty} \varphi(y)G(x-y,t)dy,$$
 (2.64)

где
$$G(x-y,t) = \frac{1}{\sqrt{\pi} D} \exp\left(-\frac{(x-y)^2}{D^2}\right); D = 2a\sqrt{t}.$$

Интеграл (2.64) называется интегралом Пуассона.

Необходимо провести обоснование решения (2.64), то есть показать, что функция (2.64) принадлежит пространству V, удовлетворяет

уравнению (2.62) и удовлетворяет начальному условию (2.63), которое выполняется в предельном смысле, то есть

$$\lim_{t \to 0} u(x,t) = \varphi(x). \tag{2.65}$$

Легко показать, что функция G(x-y,t) удовлетворяет уравнению теплопроводности (2.62) (См. формулы (1.89)), а функция (2.64) любое число раз дифференцируема под знаком интеграла в подобласти D^+ [1]. Для функции G подробные выкладки проделаны для общего параболического уравнения с постоянными коэффициентами (1.87). В результате

$$L(u(x,t)) = \int_{-\infty}^{\infty} \varphi(y) L(G(x-y,t)) dy = 0.$$

Заметим, что решение вида (2.64) является ограниченным. Действительно, в силу ограниченности функции $\varphi(x)$ ($|\varphi(x)| < C$) следует

$$|u(x,t)| \le \int_{-\infty}^{\infty} |\varphi(y)| G(x-y,t) dy \le C \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi} D} e^{-\frac{(x-y)^2}{D^2}} dy =$$

$$= \left[\frac{x-y}{D} = \xi \right] = \frac{C}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\xi^2} d\xi = C.$$

Подробное обоснование решения можно посмотреть в книге [1, с.227].

Единственность решения.

Теорема 2.3. Если существует ограниченное классическое решение задачи Коши для уравнения теплопроводности (2.62), (2.63), то есть $u \in V$, тогда решение u единственно в пространстве V.

Доказательство. Доказательство проведем от противного. Пусть существуют два решения $u_1,u_2\in V$. В силу ограниченности решений $\left|u_j\right|\leq C_j$ в области D^+ , где C_j —const. Образуем вспомогательную функцию $w=u_2-u_1$, которая удовлетворяет следующим условиям:

$$\frac{\partial w}{\partial t} - a^2 \frac{\partial^2 w}{\partial x^2} = 0 \quad \mathbf{B} \quad D^+, \tag{2.66}$$

$$w|_{t=0} = 0. (2.67)$$

Функция w ограничена, так как $|w| \le |u_1| + |u_2| \le C_1 + C_2 = C$.

Построим вспомогательную функцию $v(x,t) = \frac{2C}{b^2} \left(\frac{x^2}{2} + a^2 t \right)$, b - const, b > 0, являющуюся решением уравнения (2.66).

Сравним функции w и v в области $\overline{\Omega}_b = (0 \le t \le T) \times (-b \le x \le b)$. В силу условия (2.67) $|w| \le v$ при t = 0. Сравним функции w и v на линиях $x = \pm b$. С одной стороны $|w| \le C$, а с другой $-v|_{x=\pm b} = C\left(1 + 2\frac{a^2t}{b^2}\right) \ge C$. В результате $|w| \le v$ при $x = \pm b$. Таким образом, $|w| \le v$ на линии t, определенной в теореме 2.2.

Функции w, v удовлетворяют уравнению теплопроводности (2.66), поэтому, используя следствие 2.3 из принципа максимума, получаем неравенство

$$|w(x,t)| \le v(x,t) = \frac{2C}{b^2} \left(\frac{x^2}{2} + a^2t\right), \quad \forall (x,t) \in \overline{\Omega}_b.$$

В неравенстве перейдем к пределу при $b \to \infty$, тогда |w(x,t)| = 0. Таким образом, $u_1 \equiv u_2$.

Непрерывная зависимость решения. Рассмотрим две задачи (2.62), (2.63) с различными начальными функциями: $L(u_j) = 0$, $u_j|_{t=0} = \varphi_j(x)$. Пусть начальные функции мало различаются, то есть $|\varphi_2(x) - \varphi_1(x)| \leq \varepsilon$.

Представим решения задач с помощью формулы Пуассона (2.64) и оценим разность решений:

$$|u_2 - u_1| \le \int_{-\infty}^{\infty} |\varphi_2(y) - \varphi_1(y)| G(x - y, t) dy \le \varepsilon \int_{-\infty}^{\infty} G(x - y, t) dy = \varepsilon.$$

Таким образом, решения также мало различаются, то есть $|u_2 - u_1| \le \varepsilon$ в подобласти D^+ , что доказывает непрерывную зависимость решения задачи от начального условия (2. 63) в метрике (2.34).

Получено, что задача Коши для уравнения теплопроводности поставлена корректно в паре пространств V_1 , V.

[Лекция 8]

2.8. Обобщенные функции

Дифференциальное исчисление и теория дифференциальных уравнений базируются на понятии производной, которая первоначально вводится в классическом смысле. При этом не всякая функция дифференцируема в каждой точке. Например, любая монотонно неубывающая функция имеет не более чем счетное число точек разрыва первого рода, в которых функция заведомо не дифференцируема в классическом смысле. В физике и разделах математики: в дифференциальных уравнениях и теории вероятностей возникает потребность расширить понятие производной, вводя обобщенную производную, с помощью которой функция, имеющая разрывы первого рода, становится дифференцируемой в точках разрыва. Как результат дифференцирования в обобщенном смысле разрывных функций возникают обобщенные функции.

Основные функции. Рассмотрим n-мерное евклидово пространство R^n . Пусть $\vec{x} \in R^n$. Зададим на пространстве R^n финитную функцию $\varphi = \varphi(\vec{x}) = \varphi(x_1, x_2, ..., x_n) \in C^\infty(R^n)$. Функция $\varphi(\vec{x})$ — финитная, если существует ограниченное открытое множество $U \subset R^n$, для которого $\varphi(\vec{x}) \neq 0$ при $\vec{x} \in U$, $\varphi(\vec{x}) = 0$ при $\vec{x} \in R^n \setminus U$.

Замкнутое множество $\overline{U} = Supp \varphi$ называется носителем финитной функции $\varphi(\overrightarrow{x})$. Обозначим линейное пространство всех финитных функций через $D(R^n)$. В пространстве $D(R^n)$ введем сходимость последовательности финитных функций $\varphi_k(\overrightarrow{x}), k=1,2....$

Определение 2.5. Последовательность $\varphi_k(\overrightarrow{x})$ сходится к финитной функции $\varphi(\overrightarrow{x})$, то есть $\varphi_k(\overrightarrow{x}) \xrightarrow[k \to \infty]{} \varphi(\overrightarrow{x})$, если выполнены следующие условия:

1)
$$\varphi_k \begin{pmatrix} \overrightarrow{x} \end{pmatrix} \longrightarrow \varphi \begin{pmatrix} \overrightarrow{x} \end{pmatrix}$$
 равномерно;

2)
$$D^{\alpha}\varphi_{k}(\overrightarrow{x}) \xrightarrow[k \to \infty]{} D^{\alpha}\varphi(\overrightarrow{x})$$
 равномерно, где $D^{\alpha} = \frac{\partial^{\alpha_{1}+\alpha_{2}+...+\alpha_{n}}}{\partial x_{1}^{\alpha_{1}}\partial x_{2}^{\alpha_{2}}...\partial x_{n}^{\alpha_{n}}};$

3) существует ограниченное замкнутое множество $G \subset R^n$, такое что $\operatorname{Supp} \varphi_k \subset G$, $\operatorname{Supp} \varphi \subset G$.

Пространство $D(R^n)$ с указанной сходимостью будем называть пространством основных функций.

На пространстве $D(R^n)$ рассмотрим линейный функционал f, действующий на функции $\varphi \in D(R^n)$, то есть $(f, \varphi) \to R^1$.

Функционал f линейный, если

$$(f,\alpha_1\varphi_1 + \alpha_2\varphi_2) = \alpha_1(f,\varphi_1) + \alpha_2(f,\varphi_2)$$
(2.68)

для $\forall \varphi_1, \varphi_2 \in D(R^n)$, $\alpha_1, \alpha_2 - \text{const}$.

Определение 2.6. Обобщенной функцией называется линейный непрерывный функционал f на пространстве $D(R^n)$ [5]. Функционал f непрерывный, если для \forall последовательности финитных функций φ_k , сходящейся к финитной функции φ , выполнено условие

$$\lim_{k \to \infty} (f, \varphi_k) = (f, \varphi). \quad \blacksquare \tag{2.69}$$

Линейное пространство всех обобщенных функций обозначим через $D'(R^n)$.

Регулярные обобщенные функции. Рассмотрим произвольную локально суммируемую (в частном случае непрерывную) функцию $g(x) = g(x_1, x_2, ..., x_n)$, заданную на R^n . С помощью обычной функции $g(\vec{x})$ построим линейный функционал $g \in D'(R^n)$, определив его с помощью формулы

$$(g,\varphi) = \int_{\mathbb{R}^n} g(\overrightarrow{x}) \varphi(\overrightarrow{x}) d\overrightarrow{x} = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g(x_1, \dots, x_n) \varphi(x_1, \dots, x_n) dx_1 \dots dx_n.$$

Проверим условие непрерывности (2.69):

$$\lim_{k \to \infty} (g, \varphi_k) = \lim_{k \to \infty} \int_{\mathbb{R}^n} g \begin{pmatrix} \overrightarrow{x} \\ \overrightarrow{x} \end{pmatrix} \varphi_k \begin{pmatrix} \overrightarrow{x} \\ \overrightarrow{x} \end{pmatrix} d \stackrel{\rightarrow}{x} = \int_{G} g \begin{pmatrix} \overrightarrow{x} \\ \overrightarrow{x} \end{pmatrix} \lim_{k \to \infty} \varphi_k \begin{pmatrix} \overrightarrow{x} \\ \overrightarrow{x} \end{pmatrix} d \stackrel{\rightarrow}{x} =$$

$$= \int_{G} g \begin{pmatrix} \overrightarrow{x} \\ \overrightarrow{x} \end{pmatrix} \varphi \begin{pmatrix} \overrightarrow{x} \\ \overrightarrow{x} \end{pmatrix} d \stackrel{\rightarrow}{x} = (g, \varphi).$$

Переход к пределу под знаком интеграла законен в силу равномерной сходимости последовательности функций $\varphi_k(\vec{x})$. Таким образом, любую обычную функцию $g(\vec{x})$ можно рассматривать как обобщенную функцию $g \in D'(R^n)$. Такие обобщенные функции будем называть регулярными обобщенными функциями. Все остальные обобщенные функции – сингулярные обобщенные функции.

δ-Функция Дирака. В качестве примера сингулярной обобщенной функции рассмотрим функционал

$$\delta_{x^0} = \delta(\vec{x} - \vec{x^0}) = \delta(x_1 - x_1^0, x_2 - x_2^0, ... x_n - x_n^0) \in D'(R^n), \qquad (2.70)$$

где фиксированная точка $\overrightarrow{x^0} \in R^n$. Функционал δ_{x^0} действует на функцию $\varphi(\overrightarrow{x}) \in D(R^n)$ следующим образом:

$$\left(\delta_{x^{0}}, \varphi\right) = \int_{\mathbb{R}^{n}} \delta\left(\overrightarrow{x} - \overrightarrow{x^{0}}\right) \varphi\left(\overrightarrow{x}\right) d\overrightarrow{x} = \varphi\left(\overrightarrow{x^{0}}\right). \tag{2.71}$$

При $\vec{x^0} = \vec{0}$ для обобщенной функции $\delta_0 = \delta = \delta (\vec{x})$ имеем

$$(\delta, \varphi) = \int_{\mathbb{R}^n} \delta \left(\overrightarrow{x} \right) \varphi \left(\overrightarrow{x} \right) d\overrightarrow{x} = \varphi(0). \tag{2.72}$$

Легко показать, что функционал (2.71) линейный и непрерывный, то есть является обобщенной функцией. Обобщенная функция (2.70) называется δ -функцией Дирака.

Рассмотрим открытое множество $\Omega \subset R^n$. Будем говорить, что обобщенная функция f равна 0 на множестве Ω , если для $\forall \varphi \in D(R^n)$ с носителем $Supp \varphi \in \Omega$ выполнено условие $(f,\varphi) = 0$.

Обозначим через Ω_{\max} наибольшее открытое множество, на котором обобщенная функция f равна нулю. Носителем обобщенной функции f называется замкнутое множество $Supp\ f = R^n \setminus \Omega_{\max}$.

Очевидно, что Supp $\delta \begin{pmatrix} \overrightarrow{x} - \overrightarrow{x^0} \end{pmatrix} = \begin{Bmatrix} \overrightarrow{x^0} \end{Bmatrix}$, то есть состоит из одной точки

 $\vec{x^0} \in R^n$. Вне этой точки δ – функция Дирака равна нулю. При $\vec{x^0} = 0$ δ – функция (2.72) сосредоточена в начале координат.

Рассмотрим обобщенную функцию вида

$$\delta\left(\overrightarrow{Ax}\right),$$
 (2.73)

где А – невырожденная матрица.

Применим функционал (2.73) к функции $\varphi(x)$:

$$\left(\delta\left(\overrightarrow{Ax}\right),\varphi\left(\overrightarrow{x}\right)\right) = \int_{\mathbb{R}^n} \delta\left(\overrightarrow{Ax}\right)\varphi\left(\overrightarrow{x}\right)d\overrightarrow{x}.$$
 (2.74)

В интеграле перейдем от переменных интегрирования $x_1, x_2, ..., x_n$ к переменным $y_1, y_2, ..., y_n$ с помощью преобразования y = Ax, тогда

$$\left(\delta\left(\overrightarrow{A}\overrightarrow{x}\right),\varphi\left(\overrightarrow{x}\right)\right) = \int_{\mathbb{R}^n} \delta\left(\overrightarrow{y}\right)\varphi\left(\overrightarrow{A}^{-1}\overrightarrow{y}\right) |J| d\overrightarrow{y} = |J|\varphi(0), \qquad (2.75)$$

 Γ де $|J| = |\det A^{-1}| = |\det A|^{-1}$.

Сравнив (2.75) и (2.72), получим формулу [5, с. 33]:

$$\delta\left(\overrightarrow{Ax}\right) = \frac{1}{|\det A|}\delta\left(\overrightarrow{x}\right). \tag{2.76}$$

Дифференцирование обобщенных функций. Определим производную любого порядка от обобщенной функции $f \in D'(R^n)$. Производная $D^{\alpha} f \in D'(R^n)$ определяется с помощью соотношения

$$(D^{\alpha}f,\varphi) = (-1)^{|\alpha|} (f, D^{\alpha}\varphi), \qquad (2.77)$$

где

$$\forall \varphi \left(\overrightarrow{x} \right) \in D(R^n), \qquad |\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n.$$

Очевидно, что правая часть формулы (2.77) определена, а значит, определен непрерывный функционал $D^{\alpha}f$ в левой части формулы.

Формула (2.77) позволяет определить, производную от любой обычной функции.

Определение 2.7. Пространство Соболева $W_p^m(\Omega), \Omega \subset \mathbb{R}^n, 1 \leq p < \infty$. Функция $u(x) = u(x_1, x_2, ..., x_n) \in W_p^m(\Omega)$, если $u(x) \in L_p(\Omega)$, то есть $\int_{\Omega} |u(x)|^p dx < \infty$, и всевозможные обобщенные производные $D^{\alpha}u(x) \in L_p(\Omega), 0 < |\alpha| \leq m$, [7, c. 256].

Пример 2.1. Рассмотрим кусочно непрерывно дифференцируемую функцию с единственной точкой разрыва первого рода x_0 :

$$g(x) = \begin{cases} g_1(x), & -\infty < x < x_0, \\ g_2(x), & x_0 < x < \infty. \end{cases}$$
 (2.78)

где $g_1(x) \in C^1(-\infty < x \le x_0)$, $g_2(x) \in C^1(x_0 \le x < \infty)$.

Вычислим обычную производную функции (2.78):

$$\frac{dg(x)}{dx} = \begin{cases} g_1'(x), & -\infty < x < x_0, \\ g_2'(x), & x_0 < x < \infty. \end{cases}$$
 (2.79)

В точке x_0 функция (2.79) не определена, так как производная функции g(x) в точке x_0 не существует. Доопределим ее в точке x_0 нулем.

Вычислим обобщенную производную D_x от функции g, рассматривая ее как регулярную обобщенную функцию и используя определение (2.77).

В результате

$$(D_x g, \varphi) = -(g, D_x \varphi) = -\int_{-\infty}^{\infty} g(x) D_x (\varphi(x)) dx = -\int_{-\infty}^{x_0} g_1(x) \varphi'(x) dx - \int_{x_0}^{\infty} g_2(x) \varphi'(x) dx.$$

Интегрируя по частям, получаем

$$(D_x g, \varphi) = \int_{-\infty}^{\infty} \frac{dg(x)}{dx} \varphi(x) dx + [g](x_0) \varphi(x_0),$$

где $[g](x_0) = g_2(x_0) - g_1(x_0)$ – скачок функции в точке разрыва x_0 . Учитывая определение δ -функции (2.71) на R^1 , получаем

$$(D_x g, \varphi) = \int_{-\infty}^{\infty} \left(\frac{dg(x)}{dx} + [g](x_0) \delta(x - x_0) \right) \varphi(x) dx.$$

Отсюда

$$D_{x}(g) = \frac{dg(x)}{dx} + [g](x_0)\delta(x - x_0)$$

- обобщенная производная разрывной функции g.

2.9. Фундаментальные решения дифференциальных уравнений

Рассмотрим произвольное уравнение порядка т

$$L(u) = \sum_{0 \le |\alpha| \le m} a_{\alpha} D^{\alpha} u = f, \qquad (2.80)$$

где $a_{\alpha} = a_{\alpha_1 \alpha_2 \dots \alpha_n} (\stackrel{\rightarrow}{x}) \in C^{\infty} (\mathbb{R}^n).$

Определение 2.8. Обобщенная функция $u \in D'(\mathbb{R}^n)$ называется обобщенным решением уравнения (2.80), если выполнено тождество

$$(u, L^*(\varphi)) = (f, \varphi)$$

для $\forall \varphi (\overrightarrow{x}) \in D(R^n)$. Здесь $L^*(\varphi) = \sum_{0 \le |\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} \left(a_{\alpha} (\overrightarrow{x}) \varphi(x) \right) -$ сопряженный

дифференциальный оператор для оператора L.

В качестве правой части уравнения (2.80) рассмотрим δ – функцию Дирака:

$$\sum_{0 \le |\alpha| \le m} a_{\alpha} \begin{pmatrix} \overrightarrow{x} \\ \overrightarrow{x} \end{pmatrix} D^{\alpha} u = \delta \begin{pmatrix} \overrightarrow{x} - \overrightarrow{x}^{0} \\ \overrightarrow{x} - \overrightarrow{x}^{0} \end{pmatrix}. \tag{2.81}$$

Любое обобщенное решение $u(\vec{x}, \vec{x}^0) \in D'(R^n)$ уравнения (2.81) называется фундаментальной функцией оператора L(u).

Очевидно, что фундаментальная функция определяется неоднозначно. Учитывая специфику решаемой прикладной задачи, на фундаментальную функцию накладывают дополнительные условия нормировки, которые выделяют единственную фундаментальную функцию $u\begin{pmatrix} \overrightarrow{x}, \overrightarrow{x^0} \end{pmatrix} = G\begin{pmatrix} \overrightarrow{x}, \overrightarrow{x^0} \end{pmatrix}$, которая называется фундаментальным решением уравнения (2.81), [7, с. 348].

Фундаментальное решение уравнения Колмогорова. В теории вероятностей и стохастических процессов важную роль играет уравнение Колмогорова. Рассмотрим неоднородное уравнение Колмогорова с δ -функцией в правой части, то есть рассмотрим уравнение вида (2.81):

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (c(x,t)u) - \frac{1}{2} \frac{\partial^2}{\partial x^2} (b(x,t)u) = \delta(x - x_0, t - t_0), \tag{2.82}$$

которое определено на пространстве R^2 с координатами $x_1 = x$, $x_2 = t$. Рассмотрим частный случай уравнения [9, с. 226] когда c, b – постоянные:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} - \frac{1}{2} b \frac{\partial^2 u}{\partial x^2} = \delta(x - x_0, t - t_0). \tag{2.83}$$

Не нарушая общности, положим $x_0 = 0, t_0 = 0$. Получим уравнение

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} - \frac{1}{2} b \frac{\partial^2 u}{\partial x^2} = \delta(x, t), \qquad (2.84)$$

для которого найдем фундаментальное решение, накладывая условие на бесконечности

$$u(x,t) \to 0$$
 при $\sqrt{x^2 + t^2} \to \infty$. (2.85)

В уравнении (2.84) перейдем к новым переменным \bar{x} , \bar{t} с помощью преобразования

$$\begin{cases} x = \overline{x} + c\overline{t}, \\ t = \overline{t}. \end{cases}$$
 (2.86)

Тогда
$$\frac{\partial u}{\partial \bar{t}} - \frac{1}{2} b \frac{\partial^2 u}{\partial r^2} = \delta(\bar{x} + c\bar{t}, \bar{t}).$$

На основании формулы (2.76): $\delta(\bar{x} + c\bar{t}, \bar{t}) = \delta(\bar{x}, \bar{t})$, получим уравнение

$$\frac{\partial}{\partial \bar{t}} u(\bar{x}, \bar{t}) - \frac{1}{2} b \frac{\partial^2}{\partial \bar{r}^2} u(\bar{x}, \bar{t}) = \delta(\bar{x}, \bar{t}). \tag{2.87}$$

Произведем еще одну замену переменных $\bar{x} = k\bar{x}$, $\bar{t} = k^2\bar{t}$, где k – постоянная, тогда

$$\frac{\partial}{\partial t}u\left(kx,k^{2}t\right)-\frac{1}{2}b\frac{\partial^{2}}{\partial x}u\left(kx,k^{2}t\right)=k^{2}\delta\left(kx,k^{2}t\right).$$

Используем формулу (2.76) и представим правую часть уравнения в виде

$$\delta(kx,k^2t) = k^{-3}\delta(x,t).$$

В результате, заменив $\stackrel{=}{x} \rightarrow \stackrel{=}{x}, \stackrel{=}{t}$, получим уравнение

$$\frac{\partial}{\partial \bar{t}} ku(k\bar{x}, k^2\bar{t}) - \frac{1}{2}b\frac{\partial^2}{\partial \bar{x}^2} ku(k\bar{x}, k^2\bar{t}) = \delta(\bar{x}, \bar{t}). \tag{2.88}$$

Уравнения (2.87) и (2.88) представляют собой одно и тоже уравнение, решением которого при соответствующем условии на бесконечности (2.85) является фундаментальное решение. В силу единственности фундаментального решения отождествим решения уравнений (2.87) и (2.88). В результате получим, что функциональное соотношение $u(\bar{x},\bar{t})=ku(k\bar{x},k^2\bar{t})$ справедливо при любом k.

Выберем $k = \frac{1}{\sqrt{t}}$, тогда

$$u(\bar{x}, \bar{t}) = \frac{1}{\sqrt{\bar{t}}} u(\bar{x}, 1).$$

Введем новую переменную $z = \frac{x}{t}^{-2}$, получим представление

$$u(\bar{x},\bar{t}) = \frac{1}{\sqrt{t}}W(z), \qquad (2.89)$$

где $W(z) = u(\sqrt{z},1)$.

Подставив функцию (2.89) в уравнение (2.87), получим обыкновенное дифференциальное уравнение для определения W(z):

$$2bz\frac{d^2w}{dz^2} + (z+b)\frac{dw}{dz} + \frac{1}{2}w = -(\bar{t})^{\frac{3}{2}}\delta(\bar{x},\bar{t}).$$

Так как δ -функция при $\bar{t} > 0$ тождественно равна нулю, то

$$2bz \frac{d^2w}{dz^2} + (z+b)\frac{dw}{dz} + \frac{1}{2}w = 0$$

при z > 0.

Для наших целей пригодным является решение этого уравнения $W(z) = Ce^{-\frac{z}{2b}}$, где постоянная нормировки $C = \frac{1}{\sqrt{2\pi b}}$, откуда

$$u(\bar{x},\bar{t}) = \frac{1}{\sqrt{2\pi b\bar{t}}} e^{-\frac{\bar{x}^2}{2b\bar{t}}}.$$

Возвратившись к старым переменным x, t (2.86), получим фундаментальное решение уравнения (2.84):

$$u = G(x,t) = \frac{1}{\sqrt{2\pi bt}} e^{-\frac{(x-ct)^2}{2bt}}, \qquad t > 0,$$
 (2.90)

которое при t < 0 доопределим нулем.

Производим сдвиг координат x, t на величины x_0, t_0 и получим фундаментальное решение уравнения (2.83), которое совпадает с функцией (1.90) при $\alpha = \frac{1}{2}b$, $\beta = -c$, $\gamma = 0$. Сравнение с формулой (5.14) (см. главу 5) показывает, что фундаментальное решение уравнения Колмогорова совпадает с переходной функцией плотности вероятностей марковского процесса $\rho(y, s; x, t)$, то есть $\rho(y, s; x, t) = G(x - y, t - s)$ при t > s.

Фундаментальное решение оператора Лапласа. Рассмотрим неоднородное уравнение Лапласа в трехмерном пространстве R^3 с δ – функцией в правой части:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = -\delta(x - x_0, y - y_0, z - z_0). \tag{2.91}$$

Можно показать, что обобщенным решением уравнения (2.91) является фундаментальное решение (1.86). В двухмерном случае R^2 обобщенным решением уравнения

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\delta(x - x_0, y - y_0)$$

является фундаментальное решение (1.84).

3. СМЕШАННЫЕ ЗАДАЧИ ДЛЯ ГИПЕРБОЛИЧЕСКИХ И ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ

В предыдущей главе была поставлена и изучена задача Коши для уравнений с частными производными. Рассмотрим еще один класс задач для гиперболических и параболических уравнений, называемых смешанными. С учетом физического смысла смешанные задачи называются также начально-краевыми. Это связано с тем, что при рассмотрении физических задач одна из независимых переменных исходного уравнения интерпретируется как временная переменная t, а остальные переменные — как пространственные переменные.

При формулировке смешанных задач на искомую функцию u по временной переменной накладываются *начальные условия*, а на некоторых поверхностях или линиях по пространственным переменным – *краевые* (*граничные*) условия различного рода. В дальнейшем будут поставлены и изучены начально-краевые задачи для уравнения колебаний струны и для уравнения теплопроводности.

[Лекция 9]

3.1. Постановка смешанных задач для уравнения колебаний струны

На плоскости R^2 с координатами x,t выделим область $D = (0 < x < l) \times (0 < t < \infty)$, представляющую собой полубесконечную полосу (см. рис.3.1).

Puc. 3.1

В области *D* рассмотрим уравнение колебаний струны

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), \tag{3.1}$$

где u = u(x, t) – искомая функция в области D; f(x, t) – заданная функция.

Для гиперболического уравнения (3.1) в области D (рис. 3.1) поставим ряд смешанных задач, наложив на функцию u начальные условия на нижнем основании t=0 и граничные условия на боковых сторонах x=0, x=l полуполосы D.

Первая смешанная задача.

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) \quad \text{в области } \overline{D},$$
 (3.2)

$$u\big|_{t=0} = \varphi(x), \qquad \frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \qquad 0 \le x \le l,$$
 (3.3)

$$u\big|_{x=0} = \mu_1(t), \qquad u\big|_{x=l} = \mu_2(t), \qquad t \ge 0.$$
 (3.4)

При заданных функциях $f_{xx}^{"} \in C(\overline{D})$, $\varphi \in C^2(0 \le x \le l)$, $\psi \in C^1(0 \le x \le l)$, $\mu_i \in C^2(0 \le t \le \infty)$ требуется найти функцию $u \in C^2(\overline{D})$, которая удовлетворяет уравнению (3.2) в области \overline{D} , начальным условиям (3.3) и граничным условиям первого рода (3.4).

Задача (3.2)–(3.4) описывает процесс колебаний однородной струны длины l, натянутой вдоль отрезка $0 \le x \le l$. Граничные условия (3.4) означают, что струна в концевых точках x = 0, x = l закреплена соответственно на высоте $\mu_1(t), \mu_2(t)$. Так как эти величины зависят от времени t, то это означает, что высота закрепления изменяется заданным образом с течением времени. Первое начальное условие (3.3) задает график $u = \varphi(x)$ струны в начальный момент времени t = 0, а величина $\psi(x)$ из второго начального условия (3.3) задает начальную скорость струны в точке с координатой x. На рис. 3.2 изображен вид струны в момент времени t.

Рис. 3.2

Заметим, что при постановке задачи (3.2)–(3.4) на заданные функции φ , ψ , μ _i должны быть наложены некоторые ограничения. В частности, в угловых точках области \overline{D} должны быть выполнены *условия согласования*:

$$\varphi(0) = \mu_1(0), \quad \varphi(l) = \mu_2(0), \quad \mu'_1(0) = \psi(0), \quad \mu'_2(0) = \psi(l).$$
 (3.5)

Эти условия являются необходимыми условиями непрерывной дифференцируемости решения u(x,t) в замкнутой области \overline{D} . Так как решение $u \in C^2(\overline{D})$, то, помимо условий (3.5), должны быть выполнены условия второго порядка:

$$\mu_1''(0) - a^2 \varphi''(0) = f(0,0), \qquad \mu_2''(0) - a^2 \varphi''(l) = f(l,0).$$
 (3.6)

Действительно, продифференцируем условия (3.4) дважды по t, а первое условие (3.3) дважды по x, тогда

$$\frac{\left.\frac{\partial^2 u}{\partial t^2}\right|_{x=0}}{\left.\frac{\partial^2 u}{\partial t^2}\right|_{t=0}} = \mu_1''(0), \qquad \frac{\left.\frac{\partial^2 u}{\partial t^2}\right|_{x=l}}{\left.\frac{\partial^2 u}{\partial t^2}\right|_{t=0}} = \mu_2''(0), \qquad \frac{\left.\frac{\partial^2 u}{\partial x^2}\right|_{t=0}}{\left.\frac{\partial^2 u}{\partial x^2}\right|_{x=l}} = \varphi''(0), \qquad \frac{\left.\frac{\partial^2 u}{\partial x^2}\right|_{t=0}}{\left.\frac{\partial^2 u}{\partial x^2}\right|_{x=l}} = \varphi''(0).$$

Подставив значения производных в соответствующих точках в уравнение (3.2), получим требуемые условия (3.6).

Укажем, что на начальные и граничные функции и на правую часть уравнения необходимо накладывать некоторые дополнительные условия, обеспечивающие существование классического решения задачи, в частном случае смотрите [9, с. 81].

Вторая смешанная краевая задача.

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) \quad \text{в области } \overline{D},$$
 (3.7)

$$u\big|_{t=0} = \varphi(x), \qquad \frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \qquad 0 \le x \le l,$$
 (3.8)

$$\frac{\partial u}{\partial x}\Big|_{x=0} = v_1(t), \qquad \frac{\partial u}{\partial x}\Big|_{x=l} = v_2(t), \qquad t \ge 0.$$
 (3.9)

При заданных функциях $f_{xx}^{"} \in C(\overline{D}), \ \varphi \in C^2(0 \le x \le l), \ \psi \in C^1(0 \le x \le l), \ v_i(t) \in C^1(0 \le t < \infty)$ требуется найти функцию $u \in C^2(\overline{D})$, которая удовлетворяет уравнению (3.7) в области \overline{D} , начальным условиям (3.8) и граничным условиям второго рода (3.9).

Граничные условия (3.9) означают, что на струну в концевых точках x = 0, x = l действуют заданные силы, направленные ортогонально оси Ox.

Необходимые условия согласования в угловых точках области \overline{D} , обеспечивающие принадлежность решения u к пространству $C^2(\overline{D})$, имеют вид

$$\varphi'(0) = v_1(0), \qquad \varphi'(l) = v_2(0), \qquad \psi'(0) = v_1'(0), \qquad \psi'(l) = v_2'(0).$$

Третья смешанная задача.

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) \quad \text{в области } \overline{D},$$
 (3.10)

$$u\Big|_{t=0} = \varphi(x), \qquad \frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \qquad 0 \le x \le l,$$
 (3.11)

$$\left. \left(\frac{\partial u}{\partial x} - h_1(t) u \right) \right|_{x=0} = \delta_1(t), \qquad \left(\frac{\partial u}{\partial x} + h_2(t) u \right) \right|_{x=0} = \delta_2(t), \quad t \ge 0. \tag{3.12}$$

При заданных функциях $f_{xx}^{"} \in C(\overline{D}), \ \varphi \in C^2(0 \le x \le l), \ \psi \in C^1(0 \le x \le l), \ \delta_i(t) \in C^1(t \ge 0), \ h_i \in C^1(t \ge 0), \ h_i > 0$, требуется найти функцию $u \in C^2(\overline{D})$,

которая удовлетворяет уравнению (3.10) в области \overline{D} , начальным условиям (3.11) и граничным условиям третьего рода (3.12).

Граничные условия (3.12) означают, что на струну в концевых точках x = 0, x = l действуют заданные упругие силы, направленные ортогонально оси Ox.

Необходимые условия согласования в угловых точках области \overline{D} , обеспечивающие принадлежность решения u к пространству $C^2(\overline{D})$, определяются соотношениями

$$\varphi'(0) - h_1(0)\varphi(0) = \delta_1(0), \qquad \varphi'(l) + h_2(0)\varphi(l) = \delta_2(0),$$

$$\psi'(0) - h_1'(0)\varphi(0) - h_1(0)\psi(0) = \delta_1'(0), \qquad \psi'(l) + h_2'(0)\varphi(l) + h_2(0)\psi(l) = \delta_2'(0).$$

В случае, когда функции $\mu_i \equiv 0$, $\nu_i \equiv 0$, $\delta_i \equiv 0$, граничные условия (3.4), (3.9), (3.12) называются однородными граничными условиями.

Смешанная задача для обобщенного уравнения колебаний струны.

$$\rho(x)\frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x}\left(k(x)\frac{\partial u}{\partial x}\right) + q(x)u = f(x,t) \quad \mathbf{B} \quad \overline{D},$$
 (3.13)

$$u\big|_{t=0} = \varphi(x), \qquad \frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \qquad 0 \le x \le l,$$
 (3.14)

$$\left(\alpha_1 \frac{\partial u}{\partial x} - \beta_1 u\right)\Big|_{x=0} = \gamma_1(t), \qquad \left(\alpha_2 \frac{\partial u}{\partial x} + \beta_2 u\right)\Big|_{x=l} = \gamma_2(t), \ t \ge 0. \quad (3.15)$$

Требуется найти функцию $u \in C^2(\overline{D})$, которая удовлетворяет уравнению (3.13) в области \overline{D} , начальным условиям (3.14) и граничным условиям (3.15).

Заметим, что уравнение (3.13) описывает процесс колебаний неоднородной струны, а граничные условия (3.15) содержат граничные условия первого, второго и третьего рода в зависимости от параметров α_i , β_i .

3.2. Постановка смешанных задач для уравнения теплопроводности в стержне

На плоскости R^2 с координатами x, t выделим область $D = (0 < x < l) \times (0 < t < \infty)$, (см. рис. 3.1). В области D рассмотрим уравнение теплопроводности

$$\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), \tag{3.16}$$

где u = u(x,t) – искомая функция в области D.

Уравнение (3.16) называется также одномерным уравнением теплопроводности.

Для параболического уравнения (3.16) поставим смешанные задачи первого, второго и третьего рода, наложив на функцию u одно начальное условие на нижнем основании t=0 и граничные условия на боковых сторонах x=0, x=l полуполосы D.

Первая смешанная задача.

$$\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) \quad \text{в области } D, \tag{3.17}$$

$$u|_{t=0} = \varphi(x), , \quad 0 \le x \le l,$$
 (3.18)

$$u\big|_{x=0} = \mu_1(t), \qquad u\big|_{x=1} = \mu_2(t), \qquad t \ge 0.$$
 (3.19)

При заданных функциях $f \in C^1(\overline{D})$, $\varphi \in C(0 \le x \le l)$, $\mu_i \in C(t \ge 0)$ требуется найти функцию $u \in C^{2,1}_{x,t}(D) \cap C(\overline{D})$, которая удовлетворяет уравнению (3.17) в области D, начальному условию (3.18) и *граничным условиям первого рода* (3.19). Функции $u \in C^{2,1}_{x,t}(D)$, если $u, u_x^{'}, u_{xx}^{''}, u_t^{'} \in C(D)$.

Условия согласования: $\varphi(0) = \mu_1(0)$, $\varphi(l) = \mu_2(0)$.

Задача (3.17)–(3.19) описывает процесс распространения тепла в тонком стержне длины l, расположенном вдоль отрезка $0 \le x \le l$ (см. рис. 3.3) Функция u(x,t) задает температуру стержня в сечении x в момент времени t. Граничные условия (3.19) означают, что в торцах стержня x = 0, x = l поддерживается заданная температура $\mu_1(t)$, $\mu_2(t)$.

Функция $\varphi(x)$ в начальном условии (3.18) задает температуру стержня в каждом сечении x в начальный момент времени t=0.

Рис. 3.3

Вторая смешанная задача.

$$\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) \quad \text{в области } D,$$
 (3.20)

$$u|_{t=0} = \varphi(x), \qquad 0 \le x \le l,$$
 (3.21)

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = v_1(t), \quad \left. \frac{\partial u}{\partial x} \right|_{x=l} = v_2(t), \quad t \ge 0.$$
 (3.22)

При заданных функциях $f \in C^1(\overline{D})$, $\varphi \in C^1(0 \le x \le l)$, $v_i \in C(t \ge 0)$ требуется найти функцию $u \in C^{2,1}_{x,t}(D) \cap C^1(\overline{D})$, которая удовлетворяет уравнению (3.20) в области D, начальному условию (3.21) и *граничным* условиям второго рода (3.22).

Условия согласования: $\varphi'(0) = v_1(0)$, $\varphi'(l) = v_2(0)$.

Граничные условия (3.22) означают, что в торцах стержня x = 0, x = l задан тепловой поток.

Третья смешанная задача.

$$\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t)$$
 в области D , (3.23)

$$u|_{t=0} = \varphi(x), \qquad , \qquad 0 \le x \le l,$$
 (3.24)

$$\left. \left(\frac{\partial u}{\partial x} - h_1(t) u \right) \right|_{x=0} = \delta_1(t), \qquad \left(\frac{\partial u}{\partial x} + h_2(t) u \right) \right|_{x=1} = \delta_2(t), \quad t \ge 0. \tag{3.25}$$

При заданных функциях $f \in C^1(\overline{D}), \ \varphi \in C^1(0 \le x \le l), \ \delta_i(t) \in C(t \ge 0),$ $h_i \in C(t \ge 0)$ требуется найти функцию $u \in C^{2,1}_{x,t}(D) \cap C^1(\overline{D}),$ которая удов-

летворяет уравнению (3.23) в области D, начальному условию (3.24) и граничным условиям третьего рода (3.25).

Условия согласования: $\varphi'(0) - h_1(0)\varphi(0) = \delta_1(0)$, $\varphi'(l) + h_2(0)\varphi(l) = \delta_2(0)$.

Граничные условия (3.25) моделируют теплообмен стержня через торцы x = 0, x = l с окружающей средой.

Заметим, что для существования классических решений сформулированных задач необходимо на начальные и граничные функции и на правую часть уравнения теплопроводности накладывать некоторые дополнительные условия, в частном случае смотрите [9, стр. 137].

3.3. Постановка смешанных задач для уравнения теплопроводности в пластине

На плоскости Oxy расположена тонкая ограниченная пластина Ω с границей $\gamma = \partial \Omega$. Функция u = u(x, y, t) задает температуру пластины в точке (x, y) в момент времени t (см. рис. 3.4)

Рис. 3.4

В трехмерном пространстве R^3 с координатами x, y, t выделим область $D = \Omega \times (0 < t < \infty)$, представляющую собой полубесконечный цилиндр (см. рис. 3.5).

В области *D* рассмотрим двумерное уравнение теплопроводности

$$\frac{\partial u}{\partial t} - a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = f(x, y, t), \tag{3.26}$$

где u = u(x, y, t) искомая функция в области D.

Puc. 3.5

Для параболического уравнения (3.26) сформулируем ряд смешанных задач, наложив на функцию u начальное условие на нижнем основании $\Omega(t=0)$ и граничное условие на боковой поверхности $\Gamma_{\delta} = \gamma \times (0 \le t < \infty)$ полуцилиндра D.

Первая смешанная задача.

$$\frac{\partial u}{\partial t} - a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = f(x, y, t) \quad \text{в области } D, \quad (3.27)$$

$$u\big|_{t=0} = \varphi(x,y), \qquad (x,y) \in \overline{\Omega},$$
 (3.28)

$$u|_{(x,y)\in\mathcal{Y}} = \mu(x,y,t), \qquad t \ge 0.$$
 (3.29)

При заданных функциях $f \in C(\overline{D})$, $\varphi \in C(\overline{\Omega})$, $\mu \in C(\Gamma_{\delta})$ требуется найти функцию $u \in C^2(D) \cap C(\overline{D})$, которая удовлетворяет уравнению (3.27) в области D, начальному условию (3.28) и граничному условию первого рода (3.29).

Условие согласования: $\phi|_{(x,y)\in\gamma} = \mu(x,y,0)$.

Граничное условие (3.29) означает, что на ребре пластины γ задана температура μ . Функция $\varphi(x,y)$ в начальном условии (3.28) задает температуру пластины в каждой точке с координатами (x,y) в момент времени t=0.

Вторая смешанная задача.

$$\frac{\partial u}{\partial t} - a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = f(x, y, t) \quad \text{ в области } D,$$

$$u|_{t=0} = \varphi(x, y), \qquad (x, y) \in \overline{\Omega},$$

$$\frac{\partial u}{\partial n}|_{(x, y) \in \gamma} = v(x, y, t), \qquad t \ge 0,$$

где $\vec{n} = (n_1, n_2)$ – единичная внешняя нормаль к контуру γ ; $\frac{\partial u}{\partial \vec{n}} = \frac{\partial u}{\partial x} n_1 + \frac{\partial u}{\partial y} n_2$ – производная по нормали.

Условие согласования:
$$\frac{\partial \varphi}{\partial n}\Big|_{(x,y)\in\gamma} = \nu(x,y,0).$$

Третья смешанная задача.

$$\frac{\partial u}{\partial t} - a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = f(x, y, t) \quad \text{в области } D,$$

$$u\Big|_{t=0} = \varphi(x, y), \qquad (x, y) \in \overline{\Omega},$$

$$\left(\frac{\partial u}{\partial n} + h(x, y, t) u \right)\Big|_{(x, y) \in \gamma} = \delta(x, y, t), \qquad t \ge 0. \blacksquare$$

Условие согласования:

$$\left. \left(\frac{\partial \varphi}{\partial n} + h(x, y, 0) \varphi \right) \right|_{(x, y) \in \gamma} = \delta(x, y, 0).$$

В дальнейшем будут поставлены смешанные задачи и для других параболических уравнений, в частности для уравнений денежных накоплений, которые имеют социально-экономическую интерпретацию.

ЛИТЕРАТУРА

- 1. *Тихонов А. Н., Самарский А А.* Уравнения математической физики. М.: Наука, 1977.
- 2. Самарский А. А., Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры. М.: Наука, 1997.
- 3. Смирнов В. И. Курс высшей математики. М.: Наука, Т. 2, 1974; Т. 4, ч.2,1981.
- 4. *Петровский И. Г.* Лекции об уравнениях с частными производными. М.: ГИФМЛ., 1961.
- *Владимиров В. С.* Обобщенные функции в математической физике. М.: Наука, 1976.
- 6. Кудрявцев Л. Д. Курс математического анализа. М.: Высш. шк., 1988. Т. 2.
- 7. *Масленникова В. Н.* Дифференциальные уравнения в частных производных. М.: Изд-во РУДН, 1997.
- 8. *Волков И. К., Зуев С. М., Цветкова Г. М.* Случайные процессы. М.: Изд-во МГТУ, 1999.
- 9. Уроев В. М. Уравнения математической физики. М.: ИФ «Яуза», 1998.
- 10. *Ватанабэ С., Икэда Н.* Стохастические дифференциальные уравнения и диффузионные процессы. М.: Наука, 1986.
- 11. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1976.
- 12. *Ерофеенко В. Т., Козловская И. С.* Лекции по теме «Математическое модели рование в экономике с использованием уравнений с частными производны ми». Минск: Изд-во БГУ, 1999. Ч.1; 2000. Ч. 2.
- 13. Розанов Ю. А. Случайные процессы. М.: Наука, 1979.
- 14. Ширяев А. Н. Основы стохастической финансовой математики. М.: Фазис, 1998. Т.1, 2.
- 15. *Чернавский Д. С., Попков Ю. С., Рахимов А. Х.* Математические модели типологии семейных накоплений. // Экономика и математические методы. 1994. Т.30. Вып.2. С. 98–106.
- 16. Колмогоров А. Н. Теория вероятностей и математическая статистика. М.: Наука, 1986.
- 17. Ашманов С. А. Математические модели и методы в экономике. М.: Изд-во МГУ,1980.
- 18. *Black F., Scholes M.* The Pricing of Options and Corporate Liabilities // J. Political Economy. 1973. Vol.81. P. 637–654.

ОГЛАВЛЕНИЕ

Предисловие

1.	1. Классификация уравнений					
	1.1.	Основные понятия об уравнениях с частными производными	4			
	1.2.	Замена независимых переменных в уравнениях второго порядка	a c			
		двумя независимыми переменными	16			
	1.3.	Приведение к каноническому виду уравнений второго				
		1 2 2 2 1	22			
	1.4.	Классификация и приведение к каноническому виду уравне-				
		ний второго порядка со многими независимыми переменными				
	1.5.	· · · · · · · · · · · · · · · · · · ·				
	1.6.	Классические решения простейших уравнений с частны				
		1 1 11	32			
	1.7.	Общее решение уравнений с частными производными перво	ОГО			
		порядка	38			
•	20	Dawaya Mayyy				
Z.	3 адач 2.1.	Задача Коши				
	2.1.	Постановка задачи Коши. Теорема Ковалевской	40 49			
	2.2.	О корректной постановке задачи Коши	50			
		Примеры некорректно поставленных задач Коши				
	2.4. 2.5.	Задача Коши для уравнения колебаний струны	55 59			
		Метод интегральных преобразований для задачи Коши Принцип максимума и минимума для уравнения теплопроводн				
	2.6.		62			
	2.7.	СТИ Vannayayaan aayayy Vayyy нид упарууаууд дагуагтара нусалуу	65			
	2.7.		69			
	2.8. 2.9.	Обобщенные функции	74			
	2.7.	Фундаментальные решения дифференциальных уравнении	/ -			
3.	Смешанные задачи для гиперболических и параболических ур					
	ний					
	3.1.	Постановка смешанных задач для уравнения колебаний струны				
	3.2.	Постановка смешанных задач для уравнения теплопроводности	1 B			
		1	83			
	3.3.	Постановка смешанных задач для уравнения теплопроводности	1 B			
			85			
	3.4.	Задача Штурма-Лиувилля	88			
	3.5.	Схема метода разделения переменных для решения смешан-				
		ных задач	93			
	3.6.	Решение методом разделения переменных первой смешанно	ой			
		71 71 71 71 71	97			
	3.7.	Сведение смешанной задачи с неоднородными граничными				
	3.8.	условиями к задаче с однородными граничными условиями	100			
	3.9.	Метод разделения переменных для решения смешанных задач	c			
		неоднородным уравнением	103			

	3.10.	Решение методом разделения переменных первой смешанной				
		задачи для однородного уравнения теплопроводности в стерж 106	кне			
	3.11.	Корректность первой смешанной задачи для уравнения тепло водности	-			
	3.12.	Решение методом разделения переменных первой смешанно	эй			
		задачи для однородного уравнения теплопроводности в плас 112	тине			
4.	Краевые задачи для эллиптических уравнений					
	4.1.	Формулы Грина для оператора Лапласа	116			
	4.2.	Интегральная формула Грина	118			
	4.3.	Свойства гармонических функций	121			
	4.4.	Принцип максимума и минимума для гармонических функт 123	ций			
	4.5.	Задача Дирихле для уравнения Пуассона	125			
	4.6.	Задача Неймана для уравнения Пуассона	128			
	4.7.	Решение задачи Дирихле для круга методом разделения перем ных 131				