Clothing Item Generation using GANs

Charlie Brayton (014559415)

Department of Software Engineering

San José State University

San José, California

charles.brayton@sjsu.edu

Mohit Patel (014501461)

Department of Software Engineering

San José State University

San José, California

mohit.patel@sjsu.edu

Andrew Selvia (014547273)

Department of Software Engineering

San José State University

San José, California

andrew.selvia@sjsu.edu

Dylan Zhang (013073437)

Department of Software Engineering

San José State University

San José, California

dylan.zhang@sjsu.edu

Abstract—The primary objective of this research is to classify and generate images of clothing items. The work is a compilation of three distinct efforts: (1) to classify fashion-mnist images and, inversely, fool it with adversarial noise; (2) to generate novel images which emulate the true fashion-mnist images; (3) to infuse the grayscale images with life-like colors. Together, these endeavours pushed the team to explore topics at the forefront of modern machine learning, most notably generative adversarial networks (GANs).

Index Terms—machine learning, computer vision, neural networks, generative adversarial networks

I. Introduction

The diverse branches of this project were made possible by the careful selection of a dataset. The fashion-mnist dataset was chosen specifically for its prevalence as a benchmark in recent research into neural networks. Its size, labels, and compatibility (with the long-established MNIST dataset) make it an ideal choice for evaluating deep neural networks (NNs) and GANs. Rather than attempt to introduce a truly groundbreaking NN architecture given the authors' limited experience, this project aims for breadth.

Each subproject explores a unique research area with industrial applications which may answer the associated questions:

- 1) Classification: Can we quickly identify an item of clothing to automate sorting and retrieval? Supposing such an automated system existed, how susceptible might it be to failure?
- 2) Generation: Can the product development lifecycle for clothing be accelerated by avoiding physical prototyping?
- 3) Colorization: Can grayscale clothing imagery be augmented with colors to enable A/B testing of styles to increase customer satisfaction?

To aid comprehension, each subproject is explored independently.

II. DATA

The fashion-mnist dataset is composed of 60,000 training images and 10,000 testing images. In keeping with the legacy

Fig. 1: ACGAN Learning to Generate Clothing Images

of the traditional MNIST, fashion-mnist images are 28x28 grayscale pixels. Each image is labeled as one of the ten classes enumerated below:

- 0) T-shirt/top
- 1) Trouser
- 2) Pullover
- 3) Dress
- 4) Coat
- 5) Sandal
- 6) Shirt
- 7) Sneaker
- 8) Bag

III. IMPLEMENTATION

- A. Classification
- B. Generation

https://github.com/AndrewSelviaSJSU/pytorch-generative-model-collections

C. Colorization

IV. RESULTS

- A. Classification
- B. Generation
- C. Colorization

Here is an example of how we should cite our references [1]. Here is another example of citing a reference [2].

Fig. 2: Loss and Accuracy

Here is an example of how we should reference our figures Figure 2.

Here is an example with multiple images Figure 1

V. CONCLUSION

REFERENCES

- [1] C. Brayton, M. Patel, A. Selvia, and D. Zhang, "e-in-style," 2020. https://github.com/AndrewSelviaSJSU/e-in-style.
- [2] C. Brayton, M. Patel, A. Selvia, and D. Zhang, "pytorch-generative-model-collections," 2020. https://github.com/AndrewSelviaSJSU/pytorch-generative-model-collections.