#### Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**



#### The winner of protein design with *Remodeler*:







Week 7, Lecture 1

# From structure to function

#### Learning Objectives

- 1. Describe main advances in design of function
- 2. Identify areas of challenge in de novo design of function
- 3. Identify areas of strength in de novo design of function
- 4. Critically evaluate literature on de novo design



#### De novo design of structure has expanded the universe of existing protein shapes





### De novo design of structure has expanded the universe of existing protein shapes





#### What do we mean by *FUNCTION*?

Examples of functions of interest:

- Enzyme
- Binders
- Assemblies and materials



## Challenges of designing functions as a computational problem

Criteria for a *good* computational problem:



## Challenges of designing functions as a computational problem

Criteria for a *good* computational problem:

Describable, solvable, tractable, non-trivial, testable



#### In class activity:

It's all about asking the right question







New enzyme: incorporating Mn-porphyrin into helical bundles

De Novo
Design

Binding

Structure Function



New fluorescent protein: incorporating fluorophores into beta barrels 110 amino acids



#### New binders:

incorporating binding motifs into designed scaffolds







#### In class activity:

**Motif Grafting** 





#### New binders:

Docking scaffolds onto de novo placed hotspot residues









New enzymes/small molecule binders:
Assembling structures around a known motif





#### New binders:

Assembling idealized secondary structures around a known motif





#### New binders:

Assembling idealized secondary structures around a known motif









#### New sensors:

Building ideal scaffold around known motifs





Ion channels

Design of membranous helical bundles with given diameters





Protein cages
Safe assembling cages built from native/de novo scaffolds





#### Protein cages

Can be used for antigen representation and vaccine generation





Protein cages

Can be used for antigen representation and vaccine generation





Movement can be achieved by destabilizing the interactions between protein domains



### Movement can be achieved by destabilizing the interactions between protein domains

Biological switches Key-LOCKR system





### Movement can be achieved by destabilizing the interactions between protein domains

Rotating molecules

Design of rotating molecules





How will you design movement into the system?



#### For the next lecture:

- 1. Submit updated specific aims page
- 2. Post-class assignment
  The one from W6L2 due next lecture



#### Next lecture:

The protein structure prediction challenge



