CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: **6.2.3**

Lecture: Orthogonality

Topic: Orthogonality

Concept: Orthogonal Sets & Orthogonal Basis

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Orthogonal Sets

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an **orthogonal set** if each pair of distinct vectors from the set is orthogonal, that is, if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.

EXAMPLE 1 Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set, where

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$

SOLUTION Consider the three possible pairs of distinct vectors, namely, $\{\mathbf{u}_1, \mathbf{u}_2\}$, $\{\mathbf{u}_1, \mathbf{u}_3\}$, and $\{\mathbf{u}_2, \mathbf{u}_3\}$.

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = 3(-1) + 1(2) + 1(1) = 0$$

 $\mathbf{u}_1 \cdot \mathbf{u}_3 = 3\left(-\frac{1}{2}\right) + 1(-2) + 1\left(\frac{7}{2}\right) = 0$
 $\mathbf{u}_2 \cdot \mathbf{u}_3 = -1\left(-\frac{1}{2}\right) + 2(-2) + 1\left(\frac{7}{2}\right) = 0$

Each pair of distinct vectors is orthogonal, and so $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set. See Fig. 1; the three line segments there are mutually perpendicular.

Standard basis for Rⁿ is an orthogonal set

Standard Basis

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

▲ Figure 3.2.2

Ref: https://mathworld.wolfram.com/StandardBasis.html

Orthogonal Sets and Orthogonal Basis

THEOREM 4 Note: $p \le n$

If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

PROOF If
$$\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$$
 for some scalars c_1, \dots, c_p , then
$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

$$= (c_1 \mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2 \mathbf{u}_2) \cdot \mathbf{u}_1 + \cdots + (c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

$$= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \cdots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1)$$

$$= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$. Since \mathbf{u}_1 is nonzero, $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero and so $c_1 = 0$. Similarly, c_2, \dots, c_p must be zero. Thus S is linearly independent.

DEFINITION

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Examples of orthogonal set of vectors in \mathbb{R}^3

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 3 & -1 & -1/2 \\ 1 & 2 & -2 \\ 1 & 1 & 7/2 \end{bmatrix}$$

$$S = \begin{bmatrix} \uparrow & \uparrow \\ u_1 & u_2 \\ \downarrow & \downarrow \end{bmatrix}_{3 \times 2} \quad S^T = \begin{bmatrix} \leftarrow & u_1^T & \rightarrow \\ \leftarrow & u_2^T & \rightarrow \end{bmatrix}_{2 \times 3} S^T \times S = \begin{bmatrix} ||u_1||^2 & u_1^T u_2 \\ u_2^T u_1 & ||u_2||^2 \end{bmatrix}_{2 \times 3}$$

Dot product between vectorsu₁ andu-

Projecting a vector onto a subspace (span by an orthogonal basis)

FIGURE 1

Given a vector \mathbf{y} and a subspace W in \mathbb{R}^n , there is a vector $\hat{\mathbf{y}}$ in W such that (1) $\hat{\mathbf{y}}$ is the unique vector in W for which $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to W, and (2) $\hat{\mathbf{y}}$ is the unique vector in W closest to \mathbf{y} . See Figure 1. These two properties of $\hat{\mathbf{y}}$ provide the key to finding least-squares solutions of linear systems, mentioned in the introductory example for this chapter.

To prepare for the first theorem, observe that whenever a vector \mathbf{y} is written as a linear combination of vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ in \mathbb{R}^n , the terms in the sum for \mathbf{y} can be grouped into two parts so that \mathbf{y} can be written as

$$\mathbf{y} = \mathbf{z}_1 + \mathbf{z}_2$$

where \mathbf{z}_1 is a linear combination of some of the \mathbf{u}_i and \mathbf{z}_2 is a linear combination of the rest of the \mathbf{u}_i . This idea is particularly useful when $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthogonal basis.

EXAMPLE 1 Let $\{\mathbf{u}_1, \dots, \mathbf{u}_5\}$ be an orthogonal basis for \mathbb{R}^5 and let

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_5 \mathbf{u}_5$$

Consider the subspace $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, and write \mathbf{y} as the sum of a vector \mathbf{z}_1 in W and a vector \mathbf{z}_2 in W^{\perp} .

SOLUTION Write

$$\mathbf{y} = \underbrace{c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2}_{\mathbf{Z}_1} + \underbrace{c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5}_{\mathbf{Z}_2}$$

where $\mathbf{z}_1 = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$ is in Span $\{\mathbf{u}_1, \mathbf{u}_2\}$ and $\mathbf{z}_2 = c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5$ is in Span $\{\mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$.

To show that \mathbf{z}_2 is in W^{\perp} , it suffices to show that \mathbf{z}_2 is orthogonal to the vectors in the basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ for W. (See Section 6.1.) Using properties of the inner product, compute

$$\mathbf{z}_2 \cdot \mathbf{u}_1 = (c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5) \cdot \mathbf{u}_1$$
$$= c_3 \mathbf{u}_3 \cdot \mathbf{u}_1 + c_4 \mathbf{u}_4 \cdot \mathbf{u}_1 + c_5 \mathbf{u}_5 \cdot \mathbf{u}_1$$
$$= 0$$

because \mathbf{u}_1 is orthogonal to \mathbf{u}_3 , \mathbf{u}_4 , and \mathbf{u}_5 . A similar calculation shows that $\mathbf{z}_2 \cdot \mathbf{u}_2 = 0$. Thus \mathbf{z}_2 is in W^{\perp} .

Orthogonal Sets and Orthogonal Basis

The next theorem suggests why an orthogonal basis is much nicer than other bases. The weights in a linear combination can be computed easily.

THEOREM 5

Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \qquad (j = 1, \dots, p)$$

PROOF As in the preceding proof, the orthogonality of $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ shows that

$$\mathbf{y} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1)$$

Since $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero, the equation above can be solved for c_1 . To find c_j for j = 2, ..., p, compute $\mathbf{y} \cdot \mathbf{u}_j$ and solve for c_j .

THEOREM 8

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
 (2)

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ in (1) is called the **orthogonal projection of y onto** W and often is written as $\operatorname{proj}_W \mathbf{y}$. See Figure 2. When W is a one-dimensional subspace, the formula for $\hat{\mathbf{y}}$ matches the formula given in Section 6.2.

FIGURE 2 The orthogonal projection of y onto W.

Proof later: ch 6.2.5

Example

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Decompose
$$y = \begin{bmatrix} 6 \\ 1 \\ 8 \end{bmatrix}$$
 using the standard basis.

$$\begin{bmatrix} 6 \\ 1 \\ 8 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + (8) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

EXAMPLE 1 Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set, where

FIGURE 1

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$

SOLUTION Consider the three possible pairs of distinct vectors, namely, $\{\mathbf{u}_1, \mathbf{u}_2\}$, $\{\mathbf{u}_1, \mathbf{u}_3\}$, and $\{\mathbf{u}_2, \mathbf{u}_3\}$.

$$\mathbf{u}_{1} \cdot \mathbf{u}_{2} = 3(-1) + 1(2) + 1(1) = 0$$

$$\mathbf{u}_{1} \cdot \mathbf{u}_{3} = 3\left(-\frac{1}{2}\right) + 1(-2) + 1\left(\frac{7}{2}\right) = 0$$

$$\mathbf{u}_{2} \cdot \mathbf{u}_{3} = -1\left(-\frac{1}{2}\right) + 2(-2) + 1\left(\frac{7}{2}\right) = 0$$

Each pair of distinct vectors is orthogonal, and so $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set. See Figure 1; the three line segments there are mutually perpendicular.

EXAMPLE 2 The set $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ in Example 1 is an orthogonal basis for \mathbb{R}^3 .

Express the vector
$$\mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$$
 as a linear combination of the vectors in S .

SOLUTION Compute

$$\mathbf{y} \cdot \mathbf{u}_1 = 11, \qquad \mathbf{y} \cdot \mathbf{u}_2 = -12, \qquad \mathbf{y} \cdot \mathbf{u}_3 = -33$$

 $\mathbf{u}_1 \cdot \mathbf{u}_1 = 11, \qquad \mathbf{u}_2 \cdot \mathbf{u}_2 = 6, \qquad \mathbf{u}_3 \cdot \mathbf{u}_3 = 33/2$

By Theorem 5,

$$\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3$$
$$= \frac{11}{11} \mathbf{u}_1 + \frac{-12}{6} \mathbf{u}_2 + \frac{-33}{33/2} \mathbf{u}_3$$
$$= \mathbf{u}_1 - 2\mathbf{u}_2 - 2\mathbf{u}_3$$

Notice how easy it is to compute the weights needed to build y from an orthogonal basis. If the basis were not orthogonal, it would be necessary to solve a system of linear equations in order to find the weights, as in Chapter 1.