Programmazione e Strutture Dati (PR&SD)

I° ANNO – Informatica

Prof. V. Fuccella

Algoritmi Efficienti di Ordinamento

Merge Sort Quicksort

Il Problema dell'Ordinamento

- Elencare gli elementi di un insieme secondo una sequenza stabilita da una relazione d'ordine. Esempi:
 - 1. Ordinare una breve sequenza di numeri
 - 2. Mettere un elenco di nomi in ordine alfabetico
 - Ordinare i record degli studenti Unisa secondo la data di nascita
- Nel caso 3, dobbiamo ordinare dei record in base ad una chiave
 - La chiave può essere un singolo campo o la combinazione di più campi

Algoritmi di Ordinamento Proprietà

- Stabile: due elementi con la medesima chiave mantengono lo stesso ordine con cui si presentavano prima dell'ordinamento.
- In loco: in ogni dato istante al più è allocato un numero costante di variabili, oltre all'array da ordinare
- Adattivo: Il numero di operazioni effettuate dipende dall'input
- Interno vs esterno:
 - Interno: i dati sono contenuti nella memoria RAM.
 - Esterno: I dati sono residenti su disco o su nastro

Algoritmi Semplici e Avanzati

- Tutti gli algoritmi elencati in basso ordinano per confronti
- Algoritmi semplici. Numero di operazioni quadratico rispetto alla taglia dell'input: O(n²)
 - selection sort
 - insertion sort
 - bubble sort
- Algoritmi avanzati. Più efficienti.
 - Merge sort (von Neumann, 1945)
 - Numero di operazioni rispetto alla taglia dell'input: O(n log n)
 - Quicksort (Hoare, 1961)
 - O(n log n) nel caso medio
 - quadratico nel caso peggiore

Hoare, C. A. R. (1961): Partition: Algorithm 63, Quicksort: Algorithm 64, and Find: Algorithm 65., Comm. ACM 4, pp. 321–322

Algoritmi di Ordinamento

Nome	Migliore	Medio	Peggiore	Memoria	Stabile	In Loco
Selection Sort	O(n²)	O(n²)	O(n²)	0(1)	No	Sì
Insertion Sort	O(n)	O(n²)	O(n ²)	0(1)	Sì	Sì
Bubble Sort	O(n)	O(n²)	O(n²)	0(1)	Sì	Sì
Quicksort	O(nlogn)	O(nlogn)	$O(n^2)$	O(n)*	No	Sì
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)	Sì	No

^{*}Spazio aggiuntivo dovuto alla gestione della ricorsione

Divide et Impera

- Approccio per la risoluzione di problemi computazionali
 - Divide: si procede alla suddivisione dei problemi in problemi di dimensione minore;
 - Impera: i problemi vengono risolti in modo ricorsivo. Quando i sottoproblemi arrivano ad avere una dimensione sufficientemente piccola, essi vengono risolti direttamente tramite il caso base;
 - Combina: si ricombina l'output ottenuto dalle precedenti chiamate ricorsive al fine di ottenere il risultato finale.

Mergesort

- Inventato da von Neumann nel 1945
- Esempio del paradigma algoritmico del divide et impera
- E' facile implementare una versione stabile
- Richiede spazio ausiliario (O(N))
- E' implementato come algoritmo standard nelle librerie di alcuni linguaggi (Perl, Java)

Mergesort Progettazione

- Ricorsivo, "divide et impera"
- **■** Divide:
 - due sottovettori SX e DX rispetto al centro del vettore.

Mergesort **Progettazione**

- Impera
 - merge sort su sottovettore SX
 - merge sort su sottovettore DX
 - Condizione di terminazione: con 1 (p=r) o 0 (p>r) elementi è ordinato
- Combing
 - Usa *merge* per fondere i due sottovettori ordinati in un vettore ordinato.
 - Si estrae ripetutamente il minimo dei due sottovettori e lo si pone nella sequenza in uscita

Merge

Analisi

 Dati di ingresso: Array a1 di n1 elementi, a2 di n2 elementi

 Precondizione: ∀ 1<i<n1 a1[i-1] <= a1[i]; ∀ 1<j<n2 a2[j-1] <= a2[j]
</p>

 Dati di uscita: Array a di n1+n2 elementi

• Postcondizione: \forall el1 \in g1: el1 \in g AND \forall el2 \in g2: el2 \in g

∀ 1<i<n1+n2: a[i-1] <= a[i]

	<i>Identificatore</i>	Tipo	Descrizione
<u>Dizionario</u> dei dati	a1,a2 n1, n2 a l, j	array intero array intero	array di interi in input # di elementi negli array a1, a2 array di interi in output usati per indicizzare i vettori

Merge Progettazione

- Scorriamo i due vettori a1 e a2 utilizzando due indici i e j, rispettivamente
- ► Confrontiamo a1[i] e a2[j] finché i<n1 e j<n2
 - ► Se a1[i] <= a2[i]: Inseriamo a1[i] in a e incrementiamo i;
 - Altrimenti: inseriamo a2[j] in a e incrementiamo j;
- Riversiamo tutti gli elementi restanti in a1 o in a2 in a

Mergesort costo

► Equazione alle ricorrenze:

$$T(n) = 2T(n/2) + \Theta(n)$$
 n≥2
 $T(1) = 1$

■ Soluzione:

$$T(n) = \Theta(n \log n)$$

Ricorsione e valutazione della complessità

1. Lavoro di combinazione costante

20

- a) $T(n) = a_1 T(n-1) + a_2 T(n-2) + ... a_h T(n-h) + b per n > h$
 - Esponenziale con n: se sono presenti almeno 2 termini (l'algoritmo contiene almeno 2 chiamate ricorsive)
 - <u>Lineare con n</u>: se è presente un solo termine (singola chiamata ricorsiva)
- b) T(n) = a T(n/p) + b per n > 1
 - log n se a = 1 (singola chiamata ricorsiva)
 - nlog_p a se a > 1 (più chiamate ricorsive)
- 2. Lavoro di combinazione lineare
 - a) T(n) = T(n-h) + b n + d per n > hQuadratico con n
 - b) T(n) = a T(n/p) + b n + d
 - Lineare con n se a < p
 - n log n se a = p
 - n^{log}p a se a > p

Programmazione e Strutture Dati (PR&SD)
I° ANNO – Informatica
Prof. V. Fuccella

Algoritmi Efficienti di
Ordinamento

Merge Sort
Quicksort

Quicksort Ricorsivo, "divide et impera" In loco Non stabile Idea di base per ordinare un array: Partition scegli un elemento (detto pivot) metti a sinistra gli elementi ≤ pivot metti a destra gli elementi ≥ pivot

Quicksort

- Divide: partiziona il vettore A[p..r] in due sottovettori SX e DX rispetto ad un pivot x Il pivot si troverà in posizione q.
- ■Impera:
 - quicksort su sottovettore SX A[p..q]
 - quicksort su sottovettore DX A[q+1..r]
 - ■Base della ricorsione: se il vettore ha 1 elemento è ordinato

Quicksort

Esempio: dobbiamo ordinare

se prendiamo come pivot 19, otteniamo

Analisi

- Trattandosi di un algoritmo di ordinamento basato sui confronti, analizziamo il numero di confronti in funzione del numero n di oggetti da ordinare
- tutti i confronti sono eseguiti nella procedura PARTITION.
- quando PARTITION è eseguita su un sottoarray di lunghezza m vengono eseguiti m confronti (ogni elemento è confrontato una volta con il pivot).

Analisi

Se l'array da ordinare viene partizionato in due array di dimensione r e n-r abbiamo che il numero di confronti T(n) soddisfa alla ricorrenza:

$$T(n) = \begin{cases} 0 & \text{se } n = 1 \\ T(r) + T(n-r) + n & \text{se } n > 1 \end{cases}$$

- Questa ricorrenza non è del tipo che si può ricondurre ai casi presentati (anche perché il parametro r cambia ad ogni chiamata della procedura!)
- Studieremo il caso peggiore e il caso migliore, e cercheremo di farci un'idea del caso medio.

Analisi

- Efficienza legata al bilanciamento delle partizioni
- A ogni passo PARTITION ritorna:
 - caso peggiore un vettore da 1 elemento e l'altro da n-1
 - caso migliore due vettori da n/2 elementi
 - caso medio due vettori di dimensioni diverse.
- Bilanciamento legato alla scelta del pivot.

Caso Peggiore

- Caso peggiore: pivot =minimo o massimo
- Sfortunatamente, con la nostra scelta del pivot il caso peggiore si presenta quando l'array è già ordinato (sia in ordine crescente che decrescente).
- Equazione di ricorrenza:

$$T(n) = T(n-1) + n$$
 $n \ge 2$
 $T(1) = 1$
 $T(n) = \Theta(n^2)$

Ricorsione e valutazione della complessità

- 1. Lavoro di combinazione costante
 - a) $T(n) = a_1 T(n-1) + a_2 T(n-2) + ... a_h T(n-h) + b per n > h$
 - Esponenziale con n: se sono presenti almeno 2 termini (l'algoritmo contiene almeno 2 chiamate ricorsive)
 - Lineare con n: se è presente un solo termine (singola chiamata ricorsiva)
 - b) T(n) = a T(n/p) + b per n > 1
 - log n se a = 1 (singola chiamata ricorsiva)
 - n^{log} a se a > 1 (più chiamate ricorsive)
 - Lavoro di combinazione lineare
 - a) T(n) = T(n-h) + b + d per n > hQuadratico con n
 - b) T(n) = a T(n/p) + b n + d
 - Lineare con n se a < p
 - n log n se a = p

Caso Migliore

Il caso migliore si verifica quando ad ogni passo l'array viene partizionato in due regioni uguali. Abbiamo allora:

$$T(n) = 2T(n/2) + n$$
 $n \ge 2$

$$T(1) = 1$$

$$T(n) = \Theta(n \log n)$$

Caso Medio

- Ancora una volta il caso peggiore e il caso migliore risultano molto diversi tra loro.
- ▶ È naturale chiedersi se dobbiamo aspettarci più di frequente un tempo $\Theta(n^2)$ o un tempo $\Theta(n \log n)$ o qualcosa di intermedio.
- Per farci un'idea sul caso medio studiamo il caso (altamente improbabile) che la procedura
 PARTITION crei sempre due regioni di cui una sia 9 volte più grande dell'altra.

- Studiamo ora il caso in cui si alternano una partizione cattiva e una buona.
- Nei livelli dispari il problema viene spezzato in [1,n-1], nei livelli pari in [n/2,n/2].

- Per scendere di un livello nell'albero il costo è ⊖(n).
- L'altezza dell'albero è circa 2log n quindi il costo complessivo è ⊖(nlog n).

Riassumendo

- Se le partizioni sono spesso molto sbilanciate, il costo può risultare molto alto.
- Se le partizioni non sono "troppo sbilanciate" si ha un costo ⊖(n log n) cioè asintoticamente uguale al caso ottimo.

Random pivoting

- Elemento a caso: genera un numero casuale i con p ≤i ≤r, poi scambia A[1] e A[i], usando come pivot A[1]
- Si può dimostrare matematicamente che il tempo di esecuzione di Quicksort con <u>pivot casuale</u> è ⊖(n log n) con probabilità molto vicina ad 1.
- In altre parole, devo essere "molto sfortunato" per avere un tempo di esecuzione asintoticamente superiore a ⊖(n log n).

Pivot "medio di 3"

- La generazione dei numeri casuali rallenta la procedura PARTITION e quindi tutto l'algoritmo Quicksort.
- Per questo motivo sono state proposte altre strategie di selezione del pivot che in pratica risultano leggermente più veloci.

Pivot "medio di 3"

► La strategia "medio di 3" consiste nel considerare gli elementi che sono nella prima e ultima posizione dell'array, e l'elemento che si trova in posizione mediana. Esempio:

39 15 34 21 38 18 47 22 13 27 31

 Di questi tre valori viene preso quello intermedio (nell'esempio qui sopra 31).