Soit Σ un alphabet possédant au moins 2 lettres. Pour L un langage sur Σ et k>1 on pose

$$L^{(k)} = \{ w^k \mid w \in L \} \text{ et } L^{1/k} = \{ w \mid w^k \in L \}$$

- Calculer $L^{1/2}$ pour L reconnu par l'expression régulière $ab(\Sigma\Sigma)^*$ 1 Question 0
- $\begin{array}{ll} 2 \ \textbf{Question 1} & \text{Pour } k,l \geq 1 \text{, montrer que} \\ \bullet \ \left(L^{(k)}\right)^{(l)} = L^{(kl)} \\ \bullet \ \left(L^{1/k}\right)^{1/l} = L^{1/kl} \\ \bullet \ \left(L^{1/k}\right)^{(k)} \subseteq L \end{array}$

- Donner un langage rationnel L tel que $\forall k \geq 2, L^{(k)}$ n'est pas rationnel 1 Question 2
- Montrer que pour L reconnu par un automate $A=(\Sigma,Q,q_i,\delta,F)$, on a 1 Question 3

$$w \in L^{1/2} \Leftrightarrow \exists q \in Q, \begin{cases} \delta(q_i, w) = q \\ \delta(q, w) \in F \end{cases}$$

- Montrer que si L rationnel, alors $L^{1/2}$ aussi. 2 Question 4
- Montrer que soit $k \in \mathbb{N}$, si L est rationnel, alors $L^{1/k}$ aussi. 3 Question 5
- Si L est rationnel, est-ce forcément aussi le cas de $\bigcup_{k>1} L^{1/k}$? 1 Question 6
- Donner un algorithme qui détermine si un langage rationnel L respecte L=4 Question 7 $(L^{1/2})^{(2)}$
- Montrer que si L est rationnel, alors $\mathrm{Root}(L)=\left\{w\in\Sigma^*:w^{|w|}\in L\right\}$ l'est aussi. 4 Question 8