1 nalen

- א. שם-עצם. ב. תבנית לא אטומית שאינה פסוק. ג. תבנית אטומית שאינה פסוק.
 - ד. ביטוי לא תקין (הארגומנטים של פונקציה צריכים להיות שמות-עצם, וכאן אחד הארגומנטים הוא תבנית).
- ה. תבנית לא אטומית שאינה פסוק (ההופעה האחרונה של $x_{\rm l}$ בתבנית היא כמשתנה חפשי)
 - ו. ביטוי לא תקין (כמת, כגון $\forall x_1$, צריך לחול על תבנית ולא על שם-עצם).
 - ו. תבנית לא אטומית, שאינה פסוק (x_2) חפשי).
 - ח. תבנית לא אטומית שהיא פסוק.

2 nolen

 $\forall x R(x,x)$: רפלקסיבי

.
$$\forall x \forall y \Big((R(x,y) \land R(y,x)) \rightarrow A_1^2(x,y) \Big)$$
 : היחס R אנטי-סימטרי

.
$$\forall x \forall y \forall z \big((R(x,y) \land R(y,z)) \rightarrow R(x,z) \big)$$
 : היחס R היחס

. $\forall x \forall y (R(x,y) \lor R(y,x))$ בעולם: R משווה בין כל שני איברים בעולם: R

. אירוף ארבעת אלה בעזרת \wedge מביע את הטענה ש- R הוא סדר-מלא

ב. $\forall x_1 (R(a_1,x_1))$. שימו לב להבדל בין "קטן ביותר" לבין "מינימלי".

3 noien

$$\forall x \forall y \big(\big((\sim E(x,a)) \land (\sim E(y,a)) \big) \rightarrow \big((\sim E(f(x,y),x)) \land (\sim E(f(x,y),y)) \big) \big) \quad .$$

$$\exists z (E(x, f(y,z)))$$
 .

$$(\sim E(x,a)) \land \forall y \forall z \big((E(x,f(y,z)) \to (E(y,a) \lor E(z,a)) \big) \qquad . \lambda$$

.1 - כלומר $x \neq 1$ אחד מהם שווה ל- $x \neq 1$ וכל שני מספרים שמכפלתם שווה ל-

$$(\sim E(x,a)) \land \forall y \forall z \big((E(x,f(y,z)) \to (E(y,x) \lor E(z,x)) \big)$$
 אפשרות אחרת:

x -טווה שני מספרים שווה אחד מהם שווה אחד מספרים שמכפלתם ווה ל- $x \neq 1$

.יש עוד דרכים בשפה זו להביע את הטענה שx ראשוני

$$E(f(a,a),a) \wedge \forall x (E(f(x,x),x) \to E(x,a))$$
 .7

התבניות בסעיפים ב, ג **אינן** פסוקים, מכיוון שיש בהן משתנים חפשיים. הן מביעות טענות על המשתנים המופיעים בהן חפשיים.

התבניות בסעיפים א, ד הן פסוקים - אין בהם משתנים חפשיים.

בהתאם לכך, הן אינן אומרות משהו על x או על y אלא מביעות תכונה של העולם.

4 nalen

, $\{1,2\}$ אינטרפרטציה שעולמה הוא אינטרפרטציה J א. תהי

. "2 מתפרש כתכונה הלהיות שווה אור מתפרש בתכונה הלהיות שווה בה $A_1^1 -$ ו1 -יים שווה הלהיות מתפרש כתכונה הלהיות שווה אור מתפרש בה הלהיות שווה האור מתפרש בה הלהיות שווה הלהיות של הליות של הלהיות של הל

J -ם אמיתית אמיתית איבר הטענה ייקיים בעולם איבר השווה איקיים בעולם

-ש כך ($\sigma(x_1)=1$: ההשמה) ברט: קיימת תחת האינטרפרטציה שמה J השמה האינטרפרטציה נפרט: פרט

. (σ ההשמה תחת ב- J - אמיתית שומר: התבנית הזה אומר: הסימון הזה אומר: $J_{\sigma}(\psi)=\mathrm{T}$

J - אמיתי באנו השמה ב- J שתחתיה התבנית ψ אמיתית אמיתית שמה ב- J

J -בדומה, הטענה yיים בעולם איבר השווה zיי אמיתית ב-zו כלומר הפסוק

. J - אמיתי ב- $(\exists x_1 \psi) \land (\exists x_1 \varphi)$ אמיתי ב- לכן, לפי לוח האמת של ייוגםיי, הפסוק

לעומת זאת, אין בעולם הנייל איבר השווה בעת ובעונה אחת ל- 1 ול- 2.

 $\psi\wedge\phi$ במלים אחרות, לא קיימת באינטרפרטציה J השמה σ למשתנה באJ כך שהתבנית במלים אחרות, לא קיימת באינטרפרטציה $\exists x_1(\psi\wedge\phi)$ שקרי ב-

מצאנו אינטרפרטציה שבה הפסוק $\exists x_1(\psi \land \varphi) \land (\exists x_1\psi) \land (\exists x_1\varphi)$ שקרי, שקרי שבה היטוק אינו אינו גורר לוגית את השני, ובפרט הם אינם שקולים לוגית.

 $\exists x_1 \psi \land (\exists x_1 \varphi) \land (\exists x_1 \varphi)$ גורר לוגית את ב. $\exists x_1 (\psi \land \varphi)$

. אמיתי $\exists x_1(\psi \land \varphi)$ אמיתי שבה אינטרפרטציה שבה

. $J_{\sigma}(\psi \wedge \varphi) = T$ אמיתי: עבורה $\psi \wedge \varphi$ אבינטרפרטציה , σ השמה השמה משמע קיימת השמה

. $\boldsymbol{J}_{\sigma}(\psi) = \boldsymbol{J}_{\sigma}(\varphi) = \mathbf{T}$ ייוגם", של ייוגם מכאן, לפי לוח האמת של

J- אמיתי ב- אמיתי ב- מצאנו השמה ב- Jשבה התבנית ע אמיתית, לפיכך הפסוק $\exists x_1(\psi)$ אמיתי ב- $\exists x_1(\phi)$ אמיתי השמה ב- לפיכך שבה התבנית ע אמיתית ב- לפיכך הפסוק $\exists x_1(\phi)$ אמיתי ב- לכן, מהלוח של "וגם", גם הפסוק $(\exists x_1\psi) \wedge (\exists x_1\phi)$

. J - אמיתי שמההנחה ש- $\exists x_1 (\psi \land \varphi)$ אמיתי שהחנחה ש $\exists x_1 (\psi \land \varphi)$ אמיתי שמהעו משמע הפסוק הראשון גורר לוגית את השני.

, $A_2^1(x_1)$ ו- φ הוא φ הוא φ החוכחת סעיף ב לא הסתמכנו על הנתון ש- ψ מכילות משתנה חפשי אחד בלבד, שהוא φ , ע אלא רק על כך שהתבניות φ , φ מכילות משתנה חפשי אחד בלבד, שהוא (למעשה ניתן לוותר גם על ההנחה הזו, אבל לא נעשה זאת כאן). לכן הטענה בסעיף זה נכונה לכל φ , φ כאלה .

איתי הראבן