

#6

SEQUENCE LISTING

<110> Takara Shuzo Co., Ltd.

<120> DNA POLYMERASES WITH ENHANCED LENGTH OF PRIMER EXTENSION

<130> TKR2050.1

<150> US 08/021,623

<151> 1993-02-19

<150> US 08/483,535

<151> 1995-06-07

<150> US 08/931,818

<151> 1997-09-16

<160> 29

<170> PatentIn version 3.0

<210> 1

<211> 36

<212> DNA

<213> Thermus aquaticus

<220>

<221> CDS

<222> (6)..(35)

<400> 1

gagcc atg ggc ctc ctc cac gag ttc ggc ctt ctg g
Met Gly Leu Leu His Glu Phe Gly Leu Leu

1 5 10

36

<210> 2

<211> 10

<212> PRT

<213> Thermus aquaticus

<400> 2

Met Gly Leu Leu His Glu Phe Gly Leu Leu
1 5 10

<210> 3

<211> 35

<212> DNA

<213> Thermus aquaticus

<220>

<221> CDS

<222> (2)..(34)

<400> 3

g gac tgg ctc tcc gcc aag gag tag taa gct tcg c	35
Asp Trp Leu Ser Ala Lys Glu	Ala Ser
1	5
<210> 4	
<211> 7	
<212> PRT	
<213> Thermus aquaticus	
<400> 4	
Asp Trp Leu Ser Ala Lys Glu	
1	5
<210> 5	
<211> 6714	
<212> DNA	
<213> Expression vector	
<220>	
<221> CDS	
<222> (1)..(1665)	
<400> 5	
atg ggc ctc ctc cac gag ttc ggc ctt ctg gaa agc ccc aag gcc ctg	48
Met Gly Leu Leu His Glu Phe Gly Leu Leu Glu Ser Pro Lys Ala Leu	
1	5
10	15
gag gag gcc ccc tgg ccc ccg ccg gaa ggg gcc ttc gtg ggc ttt gtg	96
Glu Glu Ala Pro Trp Pro Pro Glu Gly Ala Phe Val Gly Phe Val	
20	25
30	
ctt tcc cgc aag gag ccc atg tgg gcc gat ctt ctg gcc ctg gcc gcc	144
Leu Ser Arg Lys Glu Pro Met Trp Ala Asp Leu Leu Ala Leu Ala Ala	
35	40
45	
gcc agg ggg ggc cgg gtc cac cgg gcc ccc gag cct tat aaa gcc ctc	192
Ala Arg Gly Gly Arg Val His Arg Ala Pro Glu Pro Tyr Lys Ala Leu	
50	55
60	
agg gac ctg aag gag gcg cgg ggg ctt ctc gcc aaa gac ctg agc gtt	240
Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala Lys Asp Leu Ser Val	
65	70
75	80
ctg gcc ctg agg gaa ggc ctt ggc ctc ccg ccc ggc gac gac ccc atg	288
Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro Pro Gly Asp Asp Pro Met	
85	90
95	
ctc ctc gcc tac ctc ctg gac cct tcc aac acc acc ccc gag ggg gtg	336
Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly Val	
100	105
110	
gcc cgg cgc tac ggc ggg gag tgg acg gag gag ggc ggg gag cgg gcc	384
Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu Glu Ala Gly Glu Arg Ala	
115	120
125	

gcc ctt tcc gag agg ctc ttc gcc aac ctg tgg ggg agg ctt gag ggg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp Gly Arg Leu Glu Gly 130 135 140	432
gag gag agg ctc ctt tgg ctt tac cgg gag gtg gag agg ccc ctt tcc Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val Glu Arg Pro Leu Ser 145 150 155 160	480
gct gtc ctg gcc cac atg gag gcc acg ggg gtg cgc ctg gac gtg gcc Ala Val Leu Ala His Met Glu Ala Thr Gly Val Arg Leu Asp Val Ala 165 170 175	528
tat ctc agg gcc ttg tcc ctg gag gtg gcc gag gag atc gcc cgc ctc Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala Glu Glu Ile Ala Arg Leu 180 185 190	576
gag gcc gag gtc ttc cgc ctg gcc ggc cac ccc ttc aac ctc aac tcc Glu Ala Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu Asn Ser 195 200 205	624
cg ^g gac cag ctg gaa agg gtc ctc ttt gac gag cta ggg ctt ccc gcc Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Gly Leu Pro Ala 210 215 220	672
atc ggc aag acg gag aag acc ggc aag cgc tcc acc agc gcc gcc gtc Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser Thr Ser Ala Ala Val 225 230 235 240	720
ctg gag gcc ctc cgc gag gcc cac ccc atc gtg gag aag atc ctg cag Leu Glu Ala Leu Arg Glu Ala His Pro Ile Val Glu Lys Ile Leu Gln 245 250 255	768
tac cgg gag ctc acc aag ctg aag acg acc tac att gac ccc ttg ccg Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr Ile Asp Pro Leu Pro 260 265 270	816
gac ctc atc cac ccc agg acg ggc cgc ctc cac acc cgc ttc aac cag Asp Leu Ile His Pro Arg Thr Gly Arg Leu His Thr Arg Phe Asn Gln 275 280 285	864
acg gcc acg gcc acg ggc agg cta agt agc tcc gat ccc aac ctc cag Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser Asp Pro Asn Leu Gln 290 295 300	912
aac atc ccc gtc cgc acc ccg ctt ggg cag agg atc cgc cgg gcc ttc Asn Ile Pro Val Arg Thr Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe 305 310 315 320	960
atc gcc gag gag ggg tgg cta ttg gtg gcc ctg gac tat agc cag ata Ile Ala Glu Glu Gly Trp Leu Leu Val Ala Leu Asp Tyr Ser Gln Ile 325 330 335	1008
gag ctc agg gtg ctg gcc cac ctc tcc ggc gac gag aac ctg atc cgg Glu Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu Ile Arg 340 345 350	1056

gtc ttc cag gag ggg cg ^g gac atc cac acg gag acc gcc agc tgg atg Val Phe Gln Glu Gly Arg Asp Ile His Thr Glu Thr Ala Ser Trp Met 355 360 365	1104
ttc ggc gtc ccc cg ^g gag gcc gtg gac ccc ctg atg cgc cg ^g gcc g ^{cc} Phe Gly Val Pro Arg Glu Ala Val Asp Pro Leu Met Arg Arg Ala Ala 370 375 380	1152
aag acc atc aac ttc ggg gtc ctc tac ggc atg tcg gcc cac cgc ctc Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly Met Ser Ala His Arg Leu 385 390 395 400	1200
tcc cag gag cta gcc atc cct tac gag gag gcc cag gcc ttc att gag Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Gln Ala Phe Ile Glu 405 410 415	1248
cgc tac ttt cag agc ttc ccc aag gtg cg ^g gcc tgg att gag aag acc Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala Trp Ile Glu Lys Thr 420 425 430	1296
ctg gag gag ggc agg agg cg ^g ggg tac gtg gag acc ctc ttc ggc cg ^c Leu Glu Glu Gly Arg Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg 435 440 445	1344
cgc cgc tac gtg cca gac cta gag gcc cg ^g gtg aag agc gtg cg ^g gag Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg Val Lys Ser Val Arg Glu 450 455 460	1392
gc ^g gcc gag cg ^c atg gcc ttc aac atg ccc gtc cag ggc acc gcc g ^{cc} Ala Ala Glu Arg Met Ala Phe Asn Met Pro Val Gln Gly Thr Ala Ala 465 470 475 480	1440
gac ctc atg aag ctg gct atg gtg aag ctc ttc ccc agg ctg gag gaa Asp Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu Glu Glu 485 490 495	1488
atg ggg gcc agg atg ctc ctt cag gtc cac gac gag ctg gtc ctc gag Met Gly Ala Arg Met Leu Leu Gln Val His Asp Glu Leu Val Leu Glu 500 505 510	1536
gcc cca aaa gag agg gc ^g gag gcc gtg gcc cg ^g ctg gcc aag gag gtc Ala Pro Lys Glu Arg Ala Glu Ala Val Ala Arg Leu Ala Lys Glu Val 515 520 525	1584
atg gag ggg gtg tat ccc ctg gcc gtg ccc ctg gag gtg gag gtg ggg Met Glu Gly Val Tyr Pro Leu Ala Val Pro Leu Glu Val Glu Val Gly 530 535 540	1632
ata ggg gag gac tgg ctc tcc gcc aag gag tag taagcttatac gatgataa ^{gc} Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 545 550	1685
tgtcaa ^{ac} at gagaatt ^{ac} gc ccgccta ^{at} gc agcgggctt ttttaattc ttgaagacga	1745
aaggccctcg tgatacgcct attttatag gttaatgtca tgataataat ggtttcttag	1805
cgtcaa ^{ac} ga accatag ^{tc} ac gcgcctgt ^a ta gcggcgcatt aagcgcgc ^{cc} ggtgtgg ^{tt} gg	1865

ttacgcgcag cgtgaccgct acacttgcca gcgccttagc gcccgtcct ttcgctttct 1925
tcccttcctt tctcgccacg ttccggcgt ttccccgtca agctctaaat cgggggctcc 1985
ctttagggtt ccgatttagt gcttacggc acctcgaccc caaaaaactt gatttgggtg 2045
atggttcacg tagtgggcca tcgcccgtat agacggttt tcgcccgtt acgttggagt 2105
ccacgttctt taatagtgga ctcttgcgtcc aaacttgaac aacactcaac cctatctcg 2165
gctattctt tgatttataa gggatttgc cgatttcggc ctattggta aaaaatgagc 2225
tgatttaaca aaaatttaac gcbaatttta acaaaatatt aacgtttaca atttcaggtg 2285
gcactttcg gggaaatgtg cgccggaccc ctattgttt attttctaa atacattcaa 2345
atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga 2405
agagtagttag tattcaacat ttccgtgtcg cccttattcc ctttttgcg gcattttgcc 2465
ttcctgttt tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg 2525
gtgcacgagt gggttacatc gaactggatc tcaacagcg 2585
gccccgaaga acgtttcca atgatgagca cttaaaatgt tctgctatgt ggcgcggat 2645
tatccgtgt tgacgcccgg caagagcaac tcggcgccg catacactat tctcagaatg 2705
acttgggtga gtactcacca gtcacagaaa agcatcttac ggatggcatg acagtaagag 2765
aattatgcag tgctgccata accatgagtg ataacactgc ggccaactta cttctgacaa 2825
cgatcggagg accgaaggag ctaaccgctt tttgcacaa catggggat catgtaactc 2885
gccttgcgtcg ttgggaaccg gagctgaatg aagccatacc aaacgacgag cgtgacacca 2945
cgatgcctgc agcaatggca acaacgttgc gcaaactatt aactggcgaa ctacttactc 3005
tagcttcccg gcaacaatta atagactgga tggaggcgga taaagttgca ggaccactc 3065
tgcgctcgcc cttccggct ggctggttt tgctgataa atctggagcc ggtgagcgtg 3125
ggtctcgccg ttcattgca gcactgggc cagatggtaa gcccctccgt atcgttagtt 3185
tctacacgac gggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 3245
gtgcctcaact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 3305
ttgatttaaa acttcatttt taatttaaaa ggatcttagt gaagatcctt tttgataatc 3365
tcatgaccaa aatcccttaa cgtgagttt cggtccactg agcgtcagac cccgtagaaa 3425
agatcaaagg atcttcttgc gatccctttt ttctgcgcgt aatctgctgc ttgcaaaca 3485
aaaaaccacc gctaccagcg gtgggttggtt tgccggatca agagctacca actcttttc 3545

cgaaaggtaac tggcttcagc agagcgcaga taccaaatac tgccttcta gtgtagccgt 3605
agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaattcc 3665
tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 3725
gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 3785
gcttggagcg aacgacctac accgaactga gataacctaca gcgtgagcta tgagaaagcg 3845
ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggAACAG 3905
gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 3965
ttcgccaccc ctgacttgag cgtcgatttt tgtgatgctc gtcaggggggg cggagcctat 4025
ggaaaaacgc cagcaacgcg gccttttac ggccctggc ctttgcgtgg cctttgctc 4085
acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gccttgagt 4145
gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag 4205
cggaagagcg cctgatgcgg tattttctcc ttacgcattt gtgcggatt tcacaccgca 4265
tatggtgcac tctcagtaca atctgctctg atgccgcata gttaaGCCAG tatacactcc 4325
gctatcgcta cgtgactggg tcatggctgc gccccacac ccgccaacac ccgctgacgc 4385
gcctgacgg gcttgcgtgc tcccggcatc cgcttacaga caagctgtga ccgtctccgg 4445
gagctgcattt tgtcagaggt ttcaccgtc atcaccggaa cgcgcgaggc agaacgcatt 4505
caaaaataat tcgcgtctgg ccttcctgtta gccagcttcc atcaacattt aatgtgagcg 4565
agtaacaacc cgctggattt tccgtggaa caaacggcg attgaccgtt atggatagg 4625
ttacgttgggt gtagatgggc gcatcgtaac cgtgcatttgc ccagtttgc gggacgcacga 4685
cagtatcgcc ctcaggaaga tcgcactcca gccagcttcc cggcaccgct tctggtgccg 4745
gaaaccaggc aaagcgccat tcgccattca ggctgcgcaa ctgttggaa gggcgatcg 4805
tgcgggcctc ttcgcttattt cgccagctgg cgaaaggggg atgtgctgca aggcgattaa 4865
gttggtaac gccagggttt tcccagtcac gacgttgcata aacgacggcc agtgaatccg 4925
taatcatggt catagctgtt tcctgtgtga aattgttattc cgctcacaat tccacacaac 4985
atacgagccg gaagcataaa gtgtaaagcc tggggtgccct aatgagttagt ctaactcaca 5045
ttaattgcgt tgcgctact gcccgtttc cagtcggaa acctgtcgtt ccagctgcatt 5105
taatgaatcg gccaacgcgc ggggagagggc ggtttgcgtt ttgggcgcga ggggtgtttt 5165
tctttcacc agtgagacgg gcaacagctg attgccttc accgcctggc cctgagagag 5225
ttgcagcaag cggtccacgc tggttgccc cagcaggcgaa aatcctgtt tggatgggtt 5285

tgacggcggg atataacatg agctgtcttc ggtatcgctg tatcccacta ccgagatatac 5345
cgcaccaacg cgcaagccgg actcggtaat ggcgccgtt ggcgcgcatt gcgcccagcg ccatctgatc 5405
gttggcaacc agcatcgcaag tggttgcgttggaaacgtatggccatttgcagcattttgca 5465
aaaacccggac atggcactcc agtcgccttc ccgttccgct atcggtgaa tttgattgct 5525
agttagatat ttatgccagc cagccagacg cagacgcgc gagaacagaac ttaatggcc 5585
cgctaacagc gcgatttgct ggtgacccaa tgccgaccaga tgctccacgc ccagtcgcgt 5645
accgtcttca tgggagaaaa taatactgtt gatgggtgtc tggtcagaga catcaagaaa 5705
taacgcccga acattagtgc aggcagcttc cacagcaatg gcattctgtt catccagcgg 5765
atagttatg atcagccac tgacgcgttg cgcgagaaga ttgtgcacccg ccgctttaca 5825
ggcttcgacg ccgcttcgtt ctaccatcga caccaccacg ctggcaccctt gttgatcggc 5885
gcgagattt atcgccgcga caatttgcga cggcgcgtgc agggccagac tggaggtggc 5945
aacgccaatc agcaacgact gtttgcgc cagttgtgtt gccacgcgtt tggaaatgtt 6005
attcagctcc gccatcgccg ctccacttt ttcccggtt ttccgacaaa cgtggctggc 6065
ctggttcacc acgcggaaa cggtctgata agagacaccg gcatactctg cgacatcgta 6125
taacgttact ggttcacat tcaccaccctt gaattgactc tcttccggc gctatcatgc 6185
cataccgcga aaggtttgc gccattcgat ggtgtcccg tgaatccgtt atcatggta 6245
tagctgttcc ctgtgtgaaa ttgttatccg ctcacaattt cacacattt acgagccgg 6305
agcataaaatgtt gtaaaggcctg ggggcctaa tgagtggactt aactcacattt aattgcgtt 6365
cgctcactgc ccgcttcga gtcggaaac ctgtcggttcc agctgcattt atgaatcgga 6425
gcttactccc catccccctt ttgacaattt atcatcggtt cgtataatgtt gtggaaattgtt 6485
gagcggataa caatttcaca caggaaacag gatcgatcca gcttactccc catccccctt 6545
ttgacaattt atcatcggtt cgtataatgtt gtggaaattgtt gagcggataa caatttcaca 6605
caggaaacag gatctggcc ctccgaaattt aatacgactc actataggga gaccacaacg 6665
gtttcccttcc agaaataatt ttgtttaact ttaagaagga gatataatcc 6714

<210> 6
<211> 554
<212> PRT
<213> Expression vector

<400> 6

Met Gly Leu Leu His Glu Phe Gly Leu Leu Glu Ser Pro Lys Ala Leu
1 5 10 15

Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly Ala Phe Val Gly Phe Val
20 25 30

Leu Ser Arg Lys Glu Pro Met Trp Ala Asp Leu Leu Ala Leu Ala Ala
35 40 45

Ala Arg Gly Gly Arg Val His Arg Ala Pro Glu Pro Tyr Lys Ala Leu
50 55 60

Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala Lys Asp Leu Ser Val
65 70 75 80

Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro Pro Gly Asp Asp Pro Met
85 90 95

Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly Val
100 105 110

Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu Glu Ala Gly Glu Arg Ala
115 120 125

Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp Gly Arg Leu Glu Gly
130 135 140

Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val Glu Arg Pro Leu Ser
145 150 155 160

Ala Val Leu Ala His Met Glu Ala Thr Gly Val Arg Leu Asp Val Ala
165 170 175

Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala Glu Glu Ile Ala Arg Leu
180 185 190

Glu Ala Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu Asn Ser
195 200 205

Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Gly Leu Pro Ala
210 215 220

Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser Thr Ser Ala Ala Val

225	230	235	240
Leu Glu Ala Leu Arg Glu Ala His Pro Ile Val Glu Lys Ile Leu Gln			
245	250		255
Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr Ile Asp Pro Leu Pro			
260	265		270
Asp Leu Ile His Pro Arg Thr Gly Arg Leu His Thr Arg Phe Asn Gln			
275	280		285
Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser Ser Asp Pro Asn Leu Gln			
290	295		300
Asn Ile Pro Val Arg Thr Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe			
305	310		320
Ile Ala Glu Glu Gly Trp Leu Leu Val Ala Leu Asp Tyr Ser Gln Ile			
325	330		335
Glu Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu Ile Arg			
340	345		350
Val Phe Gln Glu Gly Arg Asp Ile His Thr Glu Thr Ala Ser Trp Met			
355	360		365
Phe Gly Val Pro Arg Glu Ala Val Asp Pro Leu Met Arg Arg Ala Ala			
370	375		380
Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly Met Ser Ala His Arg Leu			
385	390		400
Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Gln Ala Phe Ile Glu			
405	410		415
Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala Trp Ile Glu Lys Thr			
420	425		430
Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg			
435	440		445
Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg Val Lys Ser Val Arg Glu			
450	455		460

Ala Ala Glu Arg Met Ala Phe Asn Met Pro Val Gln Gly Thr Ala Ala
465 470 475 480

Asp Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu Glu Glu
485 490 495

Met Gly Ala Arg Met Leu Leu Gln Val His Asp Glu Leu Val Leu Glu
500 505 510

Ala Pro Lys Glu Arg Ala Glu Ala Val Ala Arg Leu Ala Lys Glu Val
515 520 525

Met Glu Gly Val Tyr Pro Leu Ala Val Pro Leu Glu Val Glu Val Gly
530 535 540

Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu
545 550

<210> 7
<211> 27
<212> DNA
<213> Bacteriophage lambda

<400> 7
gcttatctgc ttctcataga gtcttgc

27

<210> 8
<211> 27
<212> DNA
<213> Bacteriophage lambda

<400> 8
ataacgatca tatacatggc tctctcc

27

<210> 9
<211> 27
<212> DNA
<213> Bacteriophage lambda

<400> 9
ttttgctggg tcaggttgtt cttagg

27

<210> 10
<211> 28
<212> DNA
<213> Escherichia coli

<400> 10
ggaagcttat tttgacacc agaccaac 28

<210> 11
<211> 37
<212> DNA
<213> Zea mays

<400> 11
gtgatggatc cttcagcttc ccgagttcag caggcgg 37

<210> 12
<211> 37
<212> DNA
<213> Zea mays

<400> 12
ggctcgagc gaagcttccc tatacgtttgcgaagag 37

<210> 13
<211> 37
<212> DNA
<213> Thermus aquaticus

<400> 13
gagccatggc caacctgtgg gggaggcttg agggggga 37

<210> 14
<211> 36
<212> DNA
<213> Thermus aquaticus

<400> 14
agtttggcag cctcctccac gagttcgcc ttctgg 36

<210> 15
<211> 32
<212> DNA
<213> Thermus aquaticus

<400> 15
ggactggctc tccgccaagg agtgataccca cc 32

<210> 16
<211> 36
<212> DNA
<213> Thermus flavis

<400> 16
agtttggaaag cctcctccac gagttcgcc ttctgg 36

<210> 17
<211> 35
<212> DNA
<213> *Thermus flavis*

<400> 17
ggactggctc tccgccaagg agtagggggg tcctg 35

<210> 18
<211> 39
<212> DNA
<213> *Bacillus thuringiensis*

<400> 18
gcgaagcttc tcgagttacg ctcaatatgg agttgcttc 39

<210> 19
<211> 43
<212> DNA
<213> *Bacillus thuringiensis*

<400> 19
ccgagatctc catggatcca aagaatcaag ataagcatca aag 43

<210> 20
<211> 36
<212> DNA
<213> *Bacteriophage lambda*

<400> 20
ggcgccgac ctcgcgggtt ttgcgtatgg atgaaa 36

<210> 21
<211> 33
<212> DNA
<213> *Escherichia coli*

<400> 21
cgacggccag tgaatccgta atcatggtca tag 33

<210> 22
<211> 33
<212> DNA
<213> *Escherichia coli*

<400> 22
accagccatc gccatctgct gcacgcccggaa gaa 33

<210> 23

<211> 36
<212> DNA
<213> Escherichia coli

<400> 23
ctatgaccat gattacggat tcactggccg tcgttt 36

<210> 24
<211> 33
<212> DNA
<213> Bacteriophage lambda

<400> 24
gcaagactct atgagaagca gataagcgat aag 33

<210> 25
<211> 33
<212> DNA
<213> Bacteriophage lambda

<400> 25
atcattattt gatttcaatt ttgtcccact ccc 33

<210> 26
<211> 33
<212> DNA
<213> Bacteriophage lambda

<400> 26
ggagagaacc atgtatatga tcgttatctg ggt 33

<210> 27
<211> 33
<212> DNA
<213> Bacteriophage lambda

<400> 27
gcgcacaaaaa ccatagattt ctcttctgtt agg 33

<210> 28
<211> 33
<212> DNA
<213> Escherichia coli

<400> 28
cccggttattt attattttt acaccagacc aac 33

<210> 29
<211> 36
<212> DNA
<213> Bacteriophage lambda

<400> 29

aggtcgcccgc cccgttaacct gtcggatcac cgaaaa

36

SEQUENCE LISTING

<110> Takara Shuzo Co., Ltd.

<120> DNA POLYMERASES WITH ENHANCED LENGTH OF PRIMER EXTENSION

<130> TKR2050.1

<150> US 08/021,623

<151> 1993-02-19

<150> US 08/483,535

<151> 1995-06-07

<150> US 08/931,818

<151> 1997-09-16

<160> 29

<170> PatentIn version 3.0

<210> 1

<211> 36

<212> DNA

<213> *Thermus aquaticus*

<220>

<221> CDS

<222> (6)..(35)

<400> 1

gagcc atg ggc ctc ctc cac gag ttc ggc ctt ctg g
Met Gly Leu Leu His Glu Phe Gly Leu Leu
1 5 10

36

<210> 2

<211> 10

<212> PRT

<213> *Thermus aquaticus*

<400> 2

Met Gly Leu Leu His Glu Phe Gly Leu Leu
1 5 10

<210> 3

<211> 35

<212> DNA

<213> *Thermus aquaticus*

<220>

<221> CDS

<222> (2)..(34)

<400> 3

g gac tgg ctc tcc gcc aag gag tag taa gct tcg c	35
Asp Trp Leu Ser Ala Lys Glu	
1	5
<210> 4	
<211> 7	
<212> PRT	
<213> Thermus aquaticus	
<400> 4	
Asp Trp Leu Ser Ala Lys Glu	
1	5
<210> 5	
<211> 6714	
<212> DNA	
<213> Expression vector	
<220>	
<221> CDS	
<222> (1)..(1665)	
<400> 5	
atg ggc ctc ctc cac gag ttc ggc ctt ctg gaa agc ccc aag gcc ctg	48
Met Gly Leu Leu His Glu Phe Gly Leu Leu Glu Ser Pro Lys Ala Leu	
1	5
10	15
gag gag gcc ccc tgg ccc ccg ccg gaa ggg gcc ttc gtg ggc ttt gtg	96
Glu Glu Ala Pro Trp Pro Pro Glu Gly Ala Phe Val Gly Phe Val	
20	25
30	
ctt tcc cgc aag gag ccc atg tgg gcc gat ctt ctg gcc ctg gcc gcc	144
Leu Ser Arg Lys Glu Pro Met Trp Ala Asp Leu Leu Ala Leu Ala Ala	
35	40
45	
gcc agg ggg ggc cgg gtc cac ccg gcc ccc gag cct tat aaa gcc ctc	192
Ala Arg Gly Gly Arg Val His Arg Ala Pro Glu Pro Tyr Lys Ala Leu	
50	55
60	
agg gac ctg aag gag gcg cgg ggg ctt ctc gcc aaa gac ctg agc gtt	240
Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala Lys Asp Leu Ser Val	
65	70
75	80
ctg gcc ctg agg gaa ggc ctt ggc ctc ccg ccc ggc gac gac ccc atg	288
Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro Pro Gly Asp Asp Pro Met	
85	90
95	
ctc ctc gcc tac ctc ctg gac cct tcc aac acc acc ccc gag ggg gtg	336
Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly Val	
100	105
110	
gcc cgg cgc tac ggc ggg gag tgg acg gag gag ggc ggg gag cgg gcc	384
Ala Arg Arg Tyr Gly Gly Trp Thr Glu Glu Ala Gly Glu Arg Ala	
115	120
125	

gcc ctt tcc gag agg ctc ttc gcc aac ctg tgg ggg agg ctt gag ggg Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp Gly Arg Leu Glu Gly 130 135 140	432
gag gag agg ctc ctt tgg ctt tac cgg gag gtg gag agg ccc ctt tcc Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val Glu Arg Pro Leu Ser 145 150 155 160	480
gct gtc ctg gcc cac atg gag gcc acg ggg gtg cgc ctg gac gtg gcc Ala Val Leu Ala His Met Glu Ala Thr Gly Val Arg Leu Asp Val Ala 165 170 175	528
tat ctc agg gcc ttg tcc ctg gag gtg gcc gag gag atc gcc cgc ctc Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala Glu Glu Ile Ala Arg Leu 180 185 190	576
gag gcc gag gtc ttc cgc ctg gcc ggc cac ccc ttc aac ctc aac tcc Glu Ala Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu Asn Ser 195 200 205	624
cgg gac cag ctg gaa agg gtc ctc ttt gac gag cta ggg ctt ccc gcc Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Gly Leu Pro Ala 210 215 220	672
atc ggc aag acg gag aag acc ggc aag cgc tcc acc agc gcc gcc gtc Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser Thr Ser Ala Ala Val 225 230 235 240	720
ctg gag gcc ctc cgc gag gcc cac ccc atc gtg gag aag atc ctg cag Leu Glu Ala Leu Arg Glu Ala His Pro Ile Val Glu Lys Ile Leu Gln 245 250 255	768
tac cgg gag ctc acc aag ctg aag agc acc tac att gac ccc ttg ccg Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr Ile Asp Pro Leu Pro 260 265 270	816
gac ctc atc cac ccc agg acg ggc cgc ctc cac acc cgc ttc aac cag Asp Leu Ile His Pro Arg Thr Gly Arg Leu His Thr Arg Phe Asn Gln 275 280 285	864
acg gcc acg gcc acg ggc agg cta agt agc tcc gat ccc aac ctc cag Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser Asp Pro Asn Leu Gln 290 295 300	912
aac atc ccc gtc cgc acc ccg ctt ggg cag agg atc cgc cgg gcc ttc Asn Ile Pro Val Arg Thr Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe 305 310 315 320	960
atc gcc gag gag ggg tgg cta ttg gtg gcc ctg gac tat agc cag ata Ile Ala Glu Glu Gly Trp Leu Leu Val Ala Leu Asp Tyr Ser Gln Ile 325 330 335	1008
gag ctc agg gtg ctg gcc cac ctc tcc ggc gac gag aac ctg atc cgg Glu Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu Ile Arg 340 345 350	1056

'gtc ttc cag gag ggg cg ^g gac atc cac acg gag acc gcc agc tgg atg Val Phe Gln Glu Gly Arg Asp Ile His Thr Glu Thr Ala Ser Trp Met 355 360 365	1104
ttc ggc gtc ccc cg ^g gag gcc gtg gac ccc ctg atg cgc cg ^g gcc g ^g c Phe Gly Val Pro Arg Glu Ala Val Asp Pro Leu Met Arg Arg Ala Ala 370 375 380	1152
aag acc atc aac ttc ggg gtc ctc tac ggc atg tcg gcc cac cgc ctc Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly Met Ser Ala His Arg Leu 385 390 395 400	1200
tcc cag gag cta gcc atc cct tac gag gag gcc cag gcc ttc att gag Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Gln Ala Phe Ile Glu 405 410 415	1248
cgc tac ttt cag agc ttc ccc aag gtg cg ^g gcc tgg att gag aag acc Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala Trp Ile Glu Lys Thr 420 425 430	1296
ctg gag gag ggc agg agg cg ^g ggg tac gtg gag acc ctc ttc ggc cgc Leu Glu Glu Gly Arg Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg 435 440 445	1344
cgc cgc tac gtg cca gac cta gag gcc cg ^g gtg aag agc gtg cg ^g gag Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg Val Lys Ser Val Arg Glu 450 455 460	1392
gc ^g gcc gag cg ^g atg gcc ttc aac atg ccc gtc cag ggc acc gcc g ^g Ala Ala Glu Arg Met Ala Phe Asn Met Pro Val Gln Gly Thr Ala Ala 465 470 475 480	1440
gac ctc atg aag ctg gct atg gtg aag ctc ttc ccc agg ctg gag gaa Asp Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu Glu Glu 485 490 495	1488
atg ggg gcc agg atg ctc ctt cag gtc cac gac gag ctg gtc ctc gag Met Gly Ala Arg Met Leu Leu Gln Val His Asp Glu Leu Val Leu Glu 500 505 510	1536
gc ^g cca aaa gag agg gc ^g gag gcc gtg gcc cg ^g ctg gcc aag gag gtc Ala Pro Lys Glu Arg Ala Glu Ala Val Ala Arg Leu Ala Lys Glu Val 515 520 525	1584
atg gag ggg gtg tat ccc ctg gcc gtg ccc ctg gag gtg gag gtg ggg Met Glu Gly Val Tyr Pro Leu Ala Val Pro Leu Glu Val Glu Val Gly 530 535 540	1632
ata ggg gag gac tgg ctc tcc gcc aag gag tag taagcttatac gatgataagc Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu 545 550	1685
tgtcaaacat gagaatttagc ccgcctaattg agcgggcttt ttttaattc ttgaagacga	1745
aagggcctcg tgatacgcct attttatag gttaatgtca tgataataat ggtttcttag	1805
cgtcaaagca accatagtagc gcgcctgtta gcggcgcatt aagcgcgcgg ggtgtgggg	1865

ttacgcgcag cgtgaccgct acacttgcca gcgccttagc gcccgccttcttcccttcctt tctcgccacg ttgcgcggct ttccccgtca agctctaaat cgggggctcc 1925
ctttagggtt ccgatttagt gctttacggc acctcgaccc caaaaaactt gatttgggtg 2045
atggttcacg tagtgggcc a tcgcccgtat agacggttt tcgccccttg acgttggagt 2105
ccacgttctt taatagtggc ctcttggcc aaacttgaac aacactcaac cctatctcg 2165
gctattctt tgatttataa gggattttgc cgatttcggc ctattggta aaaaatgagc 2225
tgatttaaca aaaatttaac gcgaatttta acaaaatatt aacgtttaca atttcaggtg 2285
gcactttcg gggaaatgtg cgccggAACCC ctatttgc tttttctaa atacattcaa 2345
atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga 2405
agagtatgag tattcaacat ttccgtgtcg cccttattcc ctttttgcg gcattttgcc 2465
ttcctgttt tgctcacccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg 2525
gtgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt gagagtttc 2585
gcccgagaaga acgtttcca atgatgagca cttttaaagt tctgctatgt ggcgcggat 2645
tatcccgtgt tgacgcccggg caagagcaac tcggcgccg catacactat tctcagaatg 2705
acttgggtga gtactcacca gtcacagaaaa agcatttac ggatggcatg acagtaagag 2765
aattatgcag tgctgccata accatgagtg ataacactgc gccaactta cttctgacaa 2825
cgatcggagg accgaaggag ctaaccgctt tttgcacaa catggggat catgtactc 2885
gccttgcgtcg ttggaaaccg gagctgaatg aagccatacc aaacgacgag cgtgacacca 2945
cgatgcctgc agcaatggca acaacgttgc gcaaactatt aactggcgaa ctacttactc 3005
tagcttcccg gcaacaatta atagactgga tggaggcgga taaagttgca ggaccacttc 3065
tgcgctcgcc cttccggct ggctggtttta ttgctgataa atctggagcc ggtgagcgtg 3125
ggtctcgccg tatcattgca gcaactgggc cagatggtaa gcccctccgt atcgtatgtt 3185
tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc gctgagatag 3245
gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat atactttaga 3305
ttgatttaaa acttcatttt taatttaaaa ggatcttagt gaagatccctt tttgataatc 3365
tcatgaccaa aatcccttaa cgtgagttt cgttccactg agcgtcagac cccgtagaaaa 3425
agatcaaagg atcttcttga gatcctttt ttctgcgcgt aatctgctgc ttgcaaacaa 3485
aaaaaccacc gctaccagcg gtggttgtt tgccggatca agagctacca actcttttc 3545

cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 3605
agttaggcc acaattcaag aactctgtag caccgcctac atacctcgct ctgctaattcc 3665
tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 3725
gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 3785
gcttgagcg aacgacctac accgaactga gataacctaca gcgtgagcta tgagaaagcg 3845
ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 3905
gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcggt 3965
ttcggccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cgagacctat 4025
ggaaaaacgc cagcaacgcg gccttttac ggttcctggc ctttgcgtt cctttgctc 4085
acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gccttgagt 4145
gagctgatac cgctcgccgc agccgaacga ccgagcgcag cgagtcagtg agcgaggaag 4205
cggaagagcg cctgatgcgg tattttctcc ttacgcattt gtgcggattt tcacaccgca 4265
tatggtgcac tctcagtaca atctgctctg atgcccata gttaaagccag tatacactcc 4325
gctatcgcta cgtgactggg tcatggctgc gccccacac ccgccaacac ccgctgacgc 4385
gccctgacgg gcttgcgtc tcccggcattt cgcttacaga caagctgtga ccgtctccgg 4445
gagctgcattt tgtagatgggc gcatcgtaac cgtgcatttgc ccagttttag gggacgacga 4505
caaaaataat tcgcgtctgg ctttcgtta gccagcttca atcaacattt aatgtgagcg 4565
agtaacaacc cgtcggattt tccgtggaa caaacggcg attgaccgtt atggatagg 4625
ttacgttgggt gtagatgggc gcatcgtaac cgtgcatttgc ccagttttag gggacgacga 4685
cagtatcgcc ctcaggaaga tcgcactcca gccagcttca ccgcaccgtt tctggcgcc 4745
gaaaccaggg aaagcgccat tcgcccattca ggctgcgcaaa ctgttggaa gggcgatcg 4805
tgcgggcctt ttgcatttgc cggcagctgg cgaaaggggg atgtgcttca aggcgattaa 4865
gttgggttac gccagggttt tcccagtcac gacgttgcattt aacgacggcc agtgaatccg 4925
taatcatggt catagctgtt tcctgtgttca aattgttattt cgttcataat tccacacaac 4985
atacgagccg gaagcataaa gtgtaaagcc tgggggtgcct aatgagttagt gtaactcaca 5045
ttaattgcgt tgcgttactt gcccgcattt cagtcggaa acctgtcgat ccagctgcattt 5105
taatgaatcg gccaacgcgc ggggagagggc gggttgcgttca ttggggcgcca ggggtgggtttt 5165
tcttttaccat agttagacgg gcaacagcttgc attgccttca accgcctggc cctgagagag 5225
ttgcagcaag cggtccacgc tggtttgcggc cagcaggcgaa aatcctgtt tgatgggtttt 5285

tgacggcggg atataacatg agctgtctc ggtatcgtcg tatcccacta ccgagatatc	5345
cgcaccaacg cgccagccgg actcggtaat ggccgcatt gcgcggcaggccatctgatc	5405
gttggcaacc agcatcgca gggaaacgt gcccattc agcatttgcg tggtttgg	5465
aaaaccggac atggcactcc agtcgccttc ccgtccgct atcggtgaa tttgattg	5525
agtgagatat ttatgccagc cagccagacg cagacgcgcg gagacagaac ttaatggcc	5585
cgctaacagc gcgatttgct ggtgacccaa tgccaccaga tgctccacgc ccagtcgcgt	5645
accgtcttca tgggagaaaa taatactgtt gatgggtgtc tggcagaga catcaagaaa	5705
taacgcccga acattagtgc aggcagcttc cacagcaatg gcattctgtt catccagcgg	5765
atagttaatg atcagcccac tgacgcgttg cgcgagaaga ttgtgcaccc cgcttaca	5825
ggcttcgacg ccgcttcgtt ctaccatcga caccaccacg ctggcaccctt gttgatcggc	5885
gcgagattta atcgccgcga caatttgcga cggcgcgtgc agggccagac tggaggtggc	5945
aacgccaatc agcaacgact gtttgcgc cagttgtgt gccacgcgtt tggaaatgt	6005
attcagctcc gccatcgccg ctccacttt ttccgcgtt ttcgcagaaa cgtggctggc	6065
ctggttcacc acgcggaaa cggtctgata agagacaccg gcatactctg cgacatcgta	6125
taacgttact ggttacat tcaccaccctt gaattgactc tctccgggc gctatcatgc	6185
cataccgcga aaggtttgc gccattcgat ggtgtcccg tgaatccgtt atcatggta	6245
tagctgttcc ctgtgtgaaa ttgttatccg ctcacaattt cacacattt acgagccgg	6305
agcataaaatgt gtaaagcctg ggggcctaa tgagtggact aactcacatt aattgcgtt	6365
cgctcaactgc ccgcttcga gtcggaaaac ctgtcgcc agctgcattt atgaatcgga	6425
gcttactccc catccccctg ttgacaattt atcatcggtt cgtataatgt gtggattgt	6485
gagcggataa caatttcaca cagggaaacag gatcgatcca gcttactccc catccccctg	6545
ttgacaattt atcatcggtt cgtataatgt gtggattgtt gagcggataa caatttcaca	6605
cagggaaacag gatctggcc ctccgaaattt aatacgactc actataggga gaccacaacg	6665
gtttccctctt agaaataatt ttgtttaact ttaagaagga gatataatcc	6714

<210> 6
 <211> 554
 <212> PRT
 <213> Expression vector
 <400> 6

Met Gly Leu Leu His Glu Phe Gly Leu Leu Glu Ser Pro Lys Ala Leu
1 5 10 15

Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly Ala Phe Val Gly Phe Val
20 25 30

Leu Ser Arg Lys Glu Pro Met Trp Ala Asp Leu Leu Ala Leu Ala Ala
35 40 45

Ala Arg Gly Gly Arg Val His Arg Ala Pro Glu Pro Tyr Lys Ala Leu
50 55 60

Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala Lys Asp Leu Ser Val
65 70 75 80

Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro Pro Gly Asp Asp Pro Met
85 90 95

Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly Val
100 105 110

Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu Glu Ala Gly Glu Arg Ala
115 120 125

Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp Gly Arg Leu Glu Gly
130 135 140

Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val Glu Arg Pro Leu Ser
145 150 155 160

Ala Val Leu Ala His Met Glu Ala Thr Gly Val Arg Leu Asp Val Ala
165 170 175

Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala Glu Glu Ile Ala Arg Leu
180 185 190

Glu Ala Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu Asn Ser
195 200 205

Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Gly Leu Pro Ala
210 215 220

Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser Thr Ser Ala Ala Val

225

230

235

240

Leu Glu Ala Leu Arg Glu Ala His Pro Ile Val Glu Lys Ile Leu Gln
245 250 255

Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr Ile Asp Pro Leu Pro
260 265 270

Asp Leu Ile His Pro Arg Thr Gly Arg Leu His Thr Arg Phe Asn Gln
275 280 285

Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser Ser Asp Pro Asn Leu Gln
290 295 300

Asn Ile Pro Val Arg Thr Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe
305 310 315 320

Ile Ala Glu Glu Gly Trp Leu Leu Val Ala Leu Asp Tyr Ser Gln Ile
325 330 335

Glu Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu Ile Arg
340 345 350

Val Phe Gln Glu Gly Arg Asp Ile His Thr Glu Thr Ala Ser Trp Met
355 360 365

Phe Gly Val Pro Arg Glu Ala Val Asp Pro Leu Met Arg Arg Ala Ala
370 375 380

Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly Met Ser Ala His Arg Leu
385 390 395 400

Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Gln Ala Phe Ile Glu
405 410 415

Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala Trp Ile Glu Lys Thr
420 425 430

Leu Glu Glu Gly Arg Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg
435 440 445

Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg Val Lys Ser Val Arg Glu
450 455 460

Ala Ala Glu Arg Met Ala Phe Asn Met Pro Val Gln Gly Thr Ala Ala
465 470 475 480

Asp Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu Glu Glu
485 490 495

Met Gly Ala Arg Met Leu Leu Gln Val His Asp Glu Leu Val Leu Glu
500 505 510

Ala Pro Lys Glu Arg Ala Glu Ala Val Ala Arg Leu Ala Lys Glu Val
515 520 525

Met Glu Gly Val Tyr Pro Leu Ala Val Pro Leu Glu Val Glu Val Gly
530 535 540

Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu
545 550

<210> 7
<211> 27
<212> DNA
<213> Bacteriophage lambda

<400> 7
gcttatctgc ttctcataga gtcttgc

27

<210> 8
<211> 27
<212> DNA
<213> Bacteriophage lambda

<400> 8
ataacgatca tatacatggc tctctcc

27

<210> 9
<211> 27
<212> DNA
<213> Bacteriophage lambda

<400> 9
tttgctggg tcaggttgtt cttagg

27

<210> 10
<211> 28
<212> DNA
<213> Escherichia coli

<400> 10
ggaagcttat ttttgacacc agaccaac

28

<210> 11
<211> 37
<212> DNA
<213> Zea mays

<400> 11
gtgatggatc cttcagcttc ccgagttcag caggcgg

37

<210> 12
<211> 37
<212> DNA
<213> Zea mays

<400> 12
ggctcgagc gaagcttccc tatacgtttgc gaaagag

37

<210> 13
<211> 37
<212> DNA
<213> Thermus aquaticus

<400> 13
gagccatggc caacctgtgg gggaggcttg agggggga

37

<210> 14
<211> 36
<212> DNA
<213> Thermus aquaticus

<400> 14
agtttggcag cctcctccac gagttcggcc ttctgg

36

<210> 15
<211> 32
<212> DNA
<213> Thermus aquaticus

<400> 15
ggactggctc tccgccaagg agtgataccca cc

32

<210> 16
<211> 36
<212> DNA
<213> Thermus flavis

<400> 16
agtttggaaag cctcctccac gagttcggcc tcctgg

36

<210> 17
<211> 35
<212> DNA
<213> *Thermus flavis*

<400> 17
ggactggctc tccgccaagg agtagggggg tcctg 35

<210> 18
<211> 39
<212> DNA
<213> *Bacillus thuringiensis*

<400> 18
gcgaagcttc tcgagttacg ctcaatatgg agttgcttc 39

<210> 19
<211> 43
<212> DNA
<213> *Bacillus thuringiensis*

<400> 19
ccgagatctc catggatcca aagaatcaag ataagcatca aag 43

<210> 20
<211> 36
<212> DNA
<213> *Bacteriophage lambda*

<400> 20
ggcgccgac ctcgccccgtt ttgcgtatgg atgaaa 36

<210> 21
<211> 33
<212> DNA
<213> *Escherichia coli*

<400> 21
cgacggccag tgaatccgta atcatggtca tag 33

<210> 22
<211> 33
<212> DNA
<213> *Escherichia coli*

<400> 22
accagccatc gccatctgct gcacgcggaa gaa 33

<210> 23

<211> 36
<212> DNA
<213> Escherichia coli

<400> 23
ctatgaccat gattacggat tcactggccg tcgttt 36

<210> 24
<211> 33
<212> DNA
<213> Bacteriophage lambda

<400> 24
gcaagactct atgagaagca gataagcgat aag 33

<210> 25
<211> 33
<212> DNA
<213> Bacteriophage lambda

<400> 25
atcattattt gatttcaatt ttgtcccact ccc 33

<210> 26
<211> 33
<212> DNA
<213> Bacteriophage lambda

<400> 26
ggagagaaacc atgtatatga tcgttatctg ggt 33

<210> 27
<211> 33
<212> DNA
<213> Bacteriophage lambda

<400> 27
gcgcacaaaa ccatagattt ctcttctgtt aac 33

<210> 28
<211> 33
<212> DNA
<213> Escherichia coli

<400> 28
cccggttattt attattttt acaccagacc aac 33

<210> 29
<211> 36
<212> DNA
<213> Bacteriophage lambda

<400> 29

aggtcgcccgc cccgttaacct gtcggatcac cgaaaa

36