三角學

沈威宇

2025年6月29日

目錄

第一章 三角學(Trigonometry)		1
第一節 角(Angle)....................................		1
一、 (平面)角((plane) angle)		1
(一) 角度(degree)		1
(二) 弧度/弳(度)(radian, rad)		1
(三) 廣義角		1
(四) 同界角		1
(五) 斜角		1
二、 立體角(Solid angle)	:	2
(一) 球面度/立弳(steradian, or square radian, sr)	:	2
三、 三角測量	:	2
四、 極座標系(Polar Coordinate System)	:	2
五、 球座標系(Spherical Coordinate System)	:	2
(一) ISO 80000-2:2019/物理慣例(physics convention)/傾斜角、方位角的斑		
標系	:	2
(二) 方位角、高度角的球座標系		2
(三) 高度角、方位角的球座標系	;	3
第二節 三角比(Trigonometric Ratios)與三角函數(Trigonometric functions)	;	3
一、 銳角三角比	;	3
二、 廣義角(General angles)三角比/三角函數幾何定義		4
三、 特殊角三角函數值	!	5
四、 三角函數基本關係	(6
五、 奇變偶不變,正負看象限	(6
六、 正、餘弦函數級數形式		7
七、 三角函數指數形式		7

八、	三角函數微積分	. 8
第三節	與三角函數相關的函數	. 8
_ 、	反三角函數	. 8
= \	反三角函數定積分形式	. 9
三、	atan2 函數 9
四、	雙曲函數(Hyperbolic functions)	. 9
五、	反雙曲函數對數形式	. 10
第四節 2		. 10
— \		
(· 一/) 正切萬能公式	
,	二) 二倍角公式	
•		
,		
•		
(. 12
(七) 三角形內角正切公式	. 12
(八) 正餘弦函數疊合	. 12
(九) 和差化積公式	. 12
(十) 積化和差公式	. 12
(十一) 連加公式	. 12
(十二) 正餘切和等於正餘割積公式	. 13
(十三) 正餘弦四次方和公式	. 13
(十四) 正餘弦四次方差公式	. 13
(十五) 正餘弦六次方和公式	. 13
= \	正弦連乘、餘切連加、餘割平方級數與餘切平方級數公式	. 13
三、	三角形公式定理	. 14
(一) 勾股/畢氏/商高定理	. 15
(二) 三角形全等與 <i>SSA</i> 型性質	. 15
(三) 九點圓與歐拉線	. 16
(四) 正弦定理	. 16
(五) 凸四邊形面積公式	. 16
(· 六) 投影定理	. 16

(七) 餘弦定理
(八) 平行四邊形邊長與對角線長平方公式
(九) 三角形中線公式
(十) 三角形面積公式
(十一) 重心相關定理
(十二) 外心相關定理
(十三) 內心相關定理
(十四) 垂心相關定理
(十五) 西瓦定理(Ceva theorem)
(十六) 孟氏定理(Menelaus' theorem)
(十七) 角平分線定理
(十八) 角平分線長定理
(十九) 多邊形內角和公式
(二十) 四面體內接球半徑定理
(二十一) 正四面體各公式
(二十二) 圓內接四邊形對角線公式
(二十三) 球面餘弦定律

第一章 三角學(Trigonometry)

第一節 角(Angle)

一丶 (平面)角((plane) angle)

(一) 角度 (degree)

一個完整的圓被平分為 360°。作為單位或省略不寫。物理上無因次。

′稱角分,等於六十分之一°;″稱角秒,等於六十分之一′。

$$1^{\circ} = 60' = 3600''$$

(二) 弧度/弳(度) (radian, rad)

以 r 為半徑的圓的中心為頂點,若展開的角所對應的弧長為 r,該角的大小就是一弧度。物理上無因次。作為單位或省略不寫。

扇形的弧長等於其弧度乘以半徑;扇形的面積等於其弧度乘以半徑的平方除以二。

$$\frac{1\text{rad}}{1^{\circ}} = \frac{\pi}{180} \approx 57.3 \approx \frac{1}{0.0175}$$
$$\pi \approx 3.14159265, \quad \frac{1}{\pi} \approx 0.3183$$

(三) 廣義角

指將角從 $[0,2\pi)$ 擴展到任意實數。

(四) 同界角

$$\alpha \cdot \beta$$
 為同界角 $\iff \frac{\alpha - \beta}{2\pi} \in \mathbb{Z}$

(五) 斜角

平面上某曲線在某處的斜角指其在該處的切線與x軸的最小夾角。一直線之斜角之正切值為其斜率。

二丶 立體角(Solid angle)

(一) 球面度/立弳(steradian, or square radian, sr)

以 r 為半徑的球的中心為頂點,若展開的立體角所對應的球面表面積為 r^2 ,該立體角的大小就是一球面度。物理上無因次。

三、 三角測量

- 仰角 (angle of elevation): 仰視目標時,視線與水平線的夾角。
- 俯角 (angle of depression): 俯視目標時,視線與水平線的夾角。
- · 高度角(altitude angle):仰視目標時,即仰角;平視目標時,為零;俯視目標時,即負一乘以俯角。
- 天頂角(zenith angle)/傾(斜)角(inclination):90° 減去高度角。
- •方位角(azimuth or azimuthal angle)(地理):以正北為 0°,順時針為正。
- **象限角(reduced bearing)**(地理):以東南西北某一方位(通常為正北或正南)為基準,加上向相鄰方位轉向的度數與該相鄰方位,如北 35° 西 代表方位角 325°、南 30° 西代表方位角 210°。

四、 極座標系(Polar Coordinate System)

極座標系是由一參考點,稱極點(pole)或原點(origin),與一始於極點的射線,稱極軸(polar axis),定義的二維座標系。令一個點在以極點為原點、極軸為 x 軸正向的二維右手笛卡爾座標系中有座標 $(r\cos\theta,r\sin\theta)$ 使得 $r\geq 0 \land \theta \in [0,2\pi)$,則該點在此極座標系中有極座標 $(r;\theta)$,其中 r 稱徑向距離(radial distance or radius),即與原點的距離, θ 稱極角(polar angle),即相對於 x 軸、逆時針增加的角位置。

五、 球座標系 (Spherical Coordinate System)

(一) ISO 80000-2:2019/物理慣例(physics convention)/傾斜角、方位角的球座標系

ISO 80000-2:2019/物理慣例/傾斜角、方位角的球座標系是由一參考點,稱原點(origin),一始於原點的射線,稱極軸(polar axis),與一包含極軸的平面,稱初始子午面(initial meridian plane),定義的三維座標系。令一個點在以原點為原點、極軸為 z 軸正向、初始子午面為 xz 平面的三維右手笛卡爾座標系中有座標 $(r\sin\theta\cos\varphi,r\sin\theta\sin\varphi,r\cos\theta)$ 使得 $r\geq 0 \land \theta\in [0,\pi] \land \varphi\in [0,2\pi)$,則該點在此球座標系中有球座標 $(r;\theta;\varphi)$,其中 r 稱徑向距離(radial distance or radius),即與原點的距離, θ 稱傾(斜)角(inclination)、極角(polar angle)或天頂角(zenith angle),即與 z 軸正向的夾角, φ 稱方位角(azimuth or azimuthal angle),即在 xy 平面正射影相對於 x 軸、逆時針增加的角位置。

(二) 方位角、高度角的球座標系

方位角、高度角的球座標系是由一參考點,稱原點(origin),一始於原點的射線,稱極軸(polar axis),與一包含極軸的平面,稱初始子午面(initial meridian plane),定義的三維座標系。令一個點在以原點為原點、極軸為z軸正向、初始子午面為xz平面的三維右手笛卡爾座標系中有座標

 $(r\cos\varphi\cos\theta,r\cos\varphi\sin\theta,r\sin\varphi)$ 使得 $r\geq 0$ \land $\theta\in[0,2\pi)$ \land $\varphi\in(-\frac{\pi}{2},\frac{\pi}{2})$,則該點在此球座標系中有球座標 $(r;\theta;\varphi)$,其中 r 稱徑向距離(radial distance or radius),即與原點的距離, θ 稱方位角 (azimuth or azimuthal angle),即在 xy 平面正射影相對於 x 軸、逆時針增加的角位置, φ 稱高度角 (altitude angle)或仰角(angle of elevation),即相對於在 xy 平面正射影、逆時針增加的角位置,即 $\frac{\pi}{2}$ 減去高度角。

(三) 高度角、方位角的球座標系

高度角、方位角的球座標系是由一參考點,稱原點(origin),一始於原點的射線,稱極軸(polar axis),與一包含極軸的平面,稱初始子午面(initial meridian plane),定義的三維座標系。令一個點在以原點為原點、極軸為 z 軸正向、初始子午面為 xz 平面的三維右手笛卡爾座標系中有座標 $(r\cos\theta\cos\varphi,r\cos\theta\sin\varphi,r\sin\theta)$ 使得 $r\geq 0\land\theta\in (-\frac{\pi}{2},\frac{\pi}{2})\land\varphi\in [0,2\pi)$,則該點在此球座標系中有球座標 $(r;\theta;\varphi)$,其中 r 稱徑向距離(radial distance or radius),即與原點的距離, θ 稱高度角(altitude angle)或仰角(angle of elevation),即相對於在 xy 平面正射影、逆時針增加的角位置,即 $\frac{\pi}{2}$ 減去高度角, φ 稱方位角(azimuth or azimuthal angle),即在 xy 平面正射影相對於 x 軸、逆時針增加的角位置。

第二節 三角比 (Trigonometric Ratios) 與三角函數 (Trigonometric functions)

一、 銳角三角比

• 正弦(Sine, sin):正弦值是對應角的對邊與斜邊之比,即:

$$\sin \theta = \frac{\text{對邊}}{\text{斜邊}}$$

餘弦(Cosine, cos):餘弦值是對應角的鄰邊與斜邊之比,即:

• 正切(Tangent, tan):正切值是對應角的對邊與鄰邊之比,即:

$$\tan \theta = \frac{\overline{3}}{\overline{3}}$$

• 餘切(Cotangent, cot):

$$\cot \theta = \frac{1}{\tan \theta}$$

• 正割 (Secant, sec):

$$\sec\theta = \frac{1}{\cos\theta}$$

餘割(Cosecant, csc):

$$\csc \theta = \frac{1}{\sin \theta}$$

二、 廣義角(General angles)三角比/三角函數幾何定義

在單位圓中,令角度的測量方式是從正 x 軸開始,逆時針方向為正角,順時針方向為負角,且角度數值可以是任何實數。任意角度的三角函數值可以表示為:

• 正弦(Sine, sin):角 θ 的正弦值是單位圓上 對應點的 y 坐標,即:

$$\sin \theta = y$$

- 。為奇函數,定義域 \mathbb{R} ,值域 [-1,1],週期 2π ,振幅 1,線對稱於 $x = \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}$,點對稱於 $((n\pi, n \in \mathbb{Z}), 0)$ 。
- 餘弦(Cosine, cos):角 θ 的餘弦值是單位圓 上對應點的 x 坐標,即:

$$\cos \theta = x$$

- 。為偶函數,定義 域 \mathbb{R} ,值域 [-1,1],週期 2π ,振幅 1,線對稱於 $x = n\pi, n \in \mathbb{Z}$,點對稱於 $\left(\left(\left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}\right), 0\right)$, $\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$ 。
- 正切(Tangent, tan):角 θ 的正切值是正弦值與餘弦值的比,即:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$$

- 。為奇函數,定義域 $\left\{x\in\mathbb{R}\left|\pi\nmid\left(x-\frac{\pi}{2}\right)\right.\right\}$,值域 \mathbb{R} ,週期 π ,點對稱於 $\left(\left(\frac{n}{2}\pi,n\in\mathbb{Z}\right),0\right)$ 。
- 餘切 (Cotangent, cot):

$$\cot \theta = \frac{1}{\tan \theta}$$

- 。為奇函數,定義域 $\{x \in \mathbb{R} \mid \pi \nmid x\}$,值域 \mathbb{R} ,週期 π ,點對稱於 $\left(\left(\frac{n}{2}\pi, n \in \mathbb{Z}\right), 0\right)$, $\cot(x) = -\tan\left(x + \frac{\pi}{2}\right)$ 。
- 正割 (Secant, sec):

$$\sec \theta = \frac{1}{\cos \theta}$$

- 。 為偶函數,定義域 $\left\{x\in\mathbb{R}\left|\pi\nmid\left(x-\frac{\pi}{2}\right)\right.\right\}$,值域 $\left\{y\in\mathbb{R}\left|-1\leq y\vee y\leq 1\right.\right\}$,週期 π ,線對稱於 $\left(\left(n\pi,n\in\mathbb{Z}\right),0\right)$,點對稱於 $x=\left(n+\frac{1}{2}\right)\pi,n\in\mathbb{Z}$ 。
- 餘割(Cosecant, csc):

$$\csc\theta = \frac{1}{\sin\theta}$$

。為奇函數,定義域 $\{x \in \mathbb{R} \mid \pi \nmid x\}$,值域 $\{y \in \mathbb{R} \mid -1 \le y \lor y \le 1\}$,週期 π ,線對稱於 $x = \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}$,點對稱於 $((n\pi, n \in \mathbb{Z}), 0)$, $\csc(x) = \sec\left(x - \frac{\pi}{2}\right)$ 。

三、 特殊角三角函數值

Radian	Angle	sin	cos	tan
0	0°	0	1	0
$\frac{\pi}{2}$	90°	1	0	
π	180°	0	-1	0
$\frac{3\pi}{2}$	270°	-1	0	
$\frac{3\pi}{2}$ $\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{3\pi}{4}$	135°	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	$ \frac{\sqrt{2}}{2} $ $ -\frac{\sqrt{2}}{2} $ $ \frac{\sqrt{3}}{2} $	-1
$\frac{3\pi}{4}$ $\frac{\pi}{6}$	30°	$ \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} $ $ \frac{\sqrt{3}}{2} $	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
	60 °	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{2\pi}{3}$	120°	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
$ \frac{\frac{\pi}{3}}{\frac{2\pi}{3}} $ $ \frac{5\pi}{6} $ $ \frac{\pi}{12} $	150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$
$\frac{\pi}{12}$	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$2-\sqrt{3}$
$\frac{5\pi}{12}$	75°	$\frac{\sqrt[2]{6} - \sqrt{2}}{4}$ $\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2 - \sqrt{3}$ $2 + \sqrt{3}$
$\frac{\pi}{10}$	18°	$\frac{4}{\sqrt{5}-1}$	$ \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} $ $ \frac{\sqrt{6} + \sqrt{2}}{4} $ $ \frac{\sqrt{6} - \sqrt{2}}{4} $ $ \frac{\sqrt{10 + 2\sqrt{5}}}{4} $	$\frac{\sqrt{5} - 1}{\sqrt{10 + 2\sqrt{5}}}$ $\sqrt{10 - 2\sqrt{5}}$
$\frac{2\pi}{10}$	36°	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$
$\frac{3\pi}{10}$	54°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\sqrt{5} + 1$
$\frac{4\pi}{10}$	72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$ \frac{\sqrt{10 - 2\sqrt{5}}}{\sqrt{10 + 2\sqrt{5}}} $ $ \frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{5} - 1} $

四、 三角函數基本關係

- 名稱:左側三者為正;右側三者為餘;上面二者為弦;中間二者為切;下面二者為割。
- 餘角關係:以鉛直軸為對稱軸,位於線對稱位置的三角比為餘角關系,即對於銳角 θ ,左 $(\theta)=$ 右 $\left(\frac{\pi}{2}-\theta\right)$ 。
- 倒數關係:三條通過中心點的連線為倒數關係,其兩端之三角比互為倒數,相乘為 1。
- 商數關係:六邊形周上,連續三個頂點形成的連線,其兩端之三角比相乘等於中間之三角比。
- 平方關係:圖中有三個倒正三角形,其在上方兩頂點之二者之平方和等於在下方頂點者。

五、 奇變偶不變,正負看象限

今有函數 f,已知其為 $\sin \cdot \cos \cdot \tan \cdot \sec \cdot \csc \cdot \cot$ 之一,且已知 $f(\theta)$ 。欲求 $f(\phi)$,其中 $\phi = \pm \theta \pm n \frac{\pi}{2}$,其中 $n \in \mathbb{Z}$ 。

- 判斷方法:奇變偶不變,正負看象限。
- 上句:奇偶指 n 之奇偶,變指倒數,即:若 n 為奇數則令 $g(\theta) = \frac{1}{f(\theta)}$,否則令 $g(\theta) = f(\theta)$,則 $|f(\phi)| = |g(\theta)|$ 。
- 下句:象限指假設 $[r,\theta]$ 在第一象限時, $[r,\phi]$ 之象限。令該象限中任意角度為 ω 。令 $k=\frac{f(\phi)}{g(\theta)}$ 。則 $k=\frac{f(\omega)}{|f((\omega)|}$,即:

象限	_	_	Ξ	四
sin	+	+	-	-
cos	+	-	-	+
tan	+	-	+	-
CSC	+	+	-	-
sec	+	-	-	+
cot	+	-	+	-

六、 正、餘弦函數級數形式

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

七、 三角函數指數形式

根據歐拉/尤拉公式:

$$e^{i\theta}=\cos\theta+i\sin\theta$$

三角函數可寫為:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\tan x = -i\frac{e^{2ix} - 1}{e^{2ix} + 1}, \quad x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

$$\cot x = i\frac{e^{2ix} + 1}{e^{2ix} - 1}, \quad x \neq k\pi, k \in \mathbb{Z}$$

$$\sec x = \frac{2e^{ix}}{e^{2ix} + 1}, \quad x \neq \pi + 2k\pi, k \in \mathbb{Z}$$

$$\csc x = i\frac{2e^{ix}}{e^{2ix} - 1}, \quad x \neq 2k\pi, k \in \mathbb{Z}$$

八、 三角函數微積分

f(x)	f'(x)	$\int f(x) d x$
sin x	cosx	$-\cos x + C$
cos x	$-\sin x$	$\sin x + C$
tan x	$\sec^2 x$	$\ln \sec x + C$
CSC X	$-\csc x \cot x$	$\ln \csc x - \cot x + C$
sec x	sec x tan x	$\ln \sec x + \tan x + C$
cot x	$-\csc^2 x$	$\ln \sin x + C$

第三節 與三角函數相關的函數

一、 反三角函數

名稱	常用符號	定義	定義域	值域
反正弦	$y = \arcsin x$	$x = \sin y$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
反餘弦	$y = \arccos x$	$x = \cos y$	[-1,1]	$[0,\pi]$
反正切	$y = \arctan x$	$x = \tan y$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
反餘切	$y = \operatorname{arccot} x$	$x = \cot y$	R	$(0,\pi)$
反正割	$y = \operatorname{arcsec} x$	$x = \sec y$	$(-\infty, -1] \cup [1, +\infty)$	$[0,\frac{\pi}{2}) \cup (\frac{\pi}{2},\pi]$
反餘割	$y = \operatorname{arccsc} x$	$x = \csc y$	$(-\infty, -1] \cup [1, +\infty)$	$[-\frac{\pi}{2},0)\cup(0,\frac{\pi}{2}]$

二、 反三角函數定積分形式

$$\arcsin x = \int_0^x \frac{1}{\sqrt{1 - z^2}} dz, \qquad |x| \le 1$$

$$\arccos x = \int_x^1 \frac{1}{\sqrt{1 - z^2}} dz, \qquad |x| \le 1$$

$$\arctan x = \int_0^x \frac{1}{z^2 + 1} dz,$$

$$\operatorname{arccot} x = \int_x^\infty \frac{1}{z^2 + 1} dz,$$

$$\operatorname{arcsec} x = \int_1^x \frac{1}{z\sqrt{z^2 - 1}} dz, \qquad x \ge 1$$

$$\operatorname{arccsc} x = \int_x^\infty \frac{1}{z\sqrt{z^2 - 1}} dz, \qquad x \ge 1$$

三、 atan2 函數

atan2(y, x) 在 x > 0 時返還 $\tan(\theta) = \frac{y}{x}$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 中的解,在 $x < 0 \cdot y \ge 0$ 時返還 $\tan(\theta) = \frac{y}{x}$ 在 $(\frac{\pi}{2}, \pi)$ 中的解,在 $x < 0 \cdot y < 0$ 時返還 $\tan(\theta) = \frac{y}{x}$ 在 $(-\pi, -\frac{\pi}{2})$ 中的解,在 $x = 0 \cdot y \ne 0$ 時返還 $\frac{y}{|y|} \frac{\pi}{2}$,在 x = y = 0 時返還值未定義。

四、 雙曲函數(Hyperbolic functions)

各雙曲函數之名稱均以對應之三角函數之名稱前加雙曲(hyperbolic),代號則為對應之三角函數代號後加 h。

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

$$\tanh x = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\coth x = \frac{e^{2x} + 1}{e^{2x} - 1}, \quad x \neq 0$$

$$\operatorname{sech} x = \frac{2e^{x}}{e^{2x} + 1}$$

$$\operatorname{csch} x = \frac{2e^{x}}{e^{2x} - 1}, \quad x \neq 0$$

五、 反雙曲函數對數形式

$$\begin{aligned} & \operatorname{arcsinh} = \ln \left(x + \sqrt{x^2 + 1} \right) \\ & \operatorname{arccosh} = \ln \left(x + \sqrt{x^2 - 1} \right), \quad x \ge 1 \\ & \operatorname{arctanh} = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right), \quad |x| < 1 \\ & \operatorname{arccoth} = \frac{1}{2} \ln \left(\frac{x + 1}{x - 1} \right), \quad |x| > 1 \\ & \operatorname{arcsech} = \ln \left(\frac{1}{x} + \frac{\sqrt{1 - x^2}}{x} \right), \quad 0 < x \le 1 \\ & \operatorname{arccsch} = \ln \left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|} \right), \quad x \ne 0 \end{aligned}$$

第四節 公式定理

一、 三角函數公式

(一) 正切萬能公式

$$\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$

$$\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$

$$\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$$

(二) 二倍角公式

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos 2\theta = 1 - 2 \sin^2 \theta$$

$$= 2 \cos^2 \theta - 1$$

$$= \cos^2 \theta - \sin^2 \theta$$

(三) 半角公式與平方化倍角公式

$$\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2}$$

$$\cos^2 \frac{\theta}{2} = \frac{1 + \cos \theta}{2}$$

$$\tan^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{1 + \cos \theta}$$

$$\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta}$$

$$= \frac{1 - \cos \theta}{\sin \theta}$$

$$= \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta}$$

$$= \csc \theta - \cot \theta$$

(四) 三倍角公式

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

$$\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

(五) 和差角公式

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$$

$$\cot(\alpha + \beta) = \frac{\cot\alpha \cot\beta - 1}{\cot\alpha + \cot\beta}$$

$$\cot(\alpha - \beta) = \frac{\cot\alpha \cot\beta + 1}{-\cot\alpha + \cot\beta}$$

$$\sec(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{-\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\sec(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta - \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta - \csc\alpha \csc\beta}{\sec\alpha \sec\beta - \csc\alpha \csc\beta}$$

(六) 平方關係

$$\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta} = 1 - \cos^2 \theta$$
$$\cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = 1 - \sin^2 \theta$$
$$\tan^2 \theta = \frac{1 - \cos^2 \theta}{\cos^2 \theta} = \frac{\sin^2 \theta}{1 - \sin^2 \theta}$$

(七) 三角形內角正切公式

 $\alpha + \beta + \gamma = \pi \iff \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \cdot \tan \beta \cdot \tan \gamma$

(八) 正餘弦函數疊合

$$(a\sin\theta + b\cos\theta)^2 \le a^2 + b^2, \quad a, b \in \mathbb{R}$$

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin\left(x + \tan^{-1}\left(\frac{b}{a}\right)\right)$$

$$= \sqrt{a^2 + b^2}\cos\left(x - \tan^{-1}\left(\frac{a}{b}\right)\right)$$

(九) 和差化積公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

(十) 積化和差公式

$$2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

$$2\cos\alpha\sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$

$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$2\sin\alpha\sin\beta = -\cos(\alpha + \beta) + \cos(\alpha - \beta)$$

(十一) 連加公式

$$\sum_{k=1}^{n} \sin(k\theta) = \frac{\sin\left(\frac{n\theta}{2}\right) \sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}.$$
$$\sum_{k=1}^{n} \cos(k\theta) = \frac{\sin\left(\frac{n\theta}{2}\right) \cdot \cos\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}.$$

(十二) 正餘切和等於正餘割積公式

$$\tan \theta + \cot \theta = \sec \theta \csc \theta$$

(十三) 正餘弦四次方和公式

$$\sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \cos^2 \theta = 1 - \frac{1}{2}\sin^2(2\theta)$$

(十四) 正餘弦四次方差公式

$$\sin^4 \theta - \cos^4 \theta = \sin^2 \theta - \cos^2 \theta = -\cos(2\theta)$$

(十五) 正餘弦六次方和公式

$$\sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \cos^2 \theta = 1 - \frac{3}{4}\sin^2(2\theta)$$

二、 正弦連乘、餘切連加、餘割平方級數與餘切平方級數公式

$$\prod_{k=0}^{n-1} \sin\left(x + \frac{\pi k}{n}\right) = 2^{1-n} \sin(nx)$$

$$\sum_{k=0}^{n-1} \cot\left(x + \frac{\pi k}{n}\right) = n \cot(nx)$$

$$\sum_{k=0}^{n-1} \csc^2\left(x + \frac{\pi k}{n}\right) = n^2 \csc^2(nx)$$

$$\sum_{k=1}^{n-1} \csc^2\frac{\pi k}{n} = \frac{(n-1)(n+1)}{3}$$

$$\sum_{k=1}^{n-1} \cot^2\frac{\pi k}{n} = \frac{(n-1)(n-2)}{3}$$

Proof.

$$\begin{split} \prod_{k=0}^{n-1} \sin\left(x + \frac{\pi k}{n}\right) \\ &= \prod_{k=0}^{n-1} \frac{i}{2} \left(e^{-i\left(x + \frac{\pi k}{n}\right)} - e^{i\left(x + \frac{\pi k}{n}\right)} \right) \\ &= i^n 2^{-n} \prod_{k=0}^{n-1} e^{-i\left(x + \frac{\pi k}{n}\right)} \prod_{k=0}^{n-1} (1 - e^{2i\left(x + \frac{\pi k}{n}\right)}) \\ &= i^n 2^{-n} e^{-inx} e^{-i\pi \left(\frac{n-1}{2}\right)} \prod_{k=0}^{n-1} (1 - e^{2i\left(x + \frac{\pi k}{n}\right)}) \\ &= i^n 2^{-n} e^{-inx} i^{1-n} \prod_{k=0}^{n-1} (1 - e^{2i\left(x + \frac{\pi k}{n}\right)}) \end{split}$$

考慮:

$$f(t) = t^n - e^{2inx}$$

f(t) = 0 的根為:

$$t = e^{2i\left(x + \frac{\pi k}{n}\right)}, \quad k \in \mathbb{N}_0 \land k < n$$

故:

$$f(t) = \prod_{k=0}^{n-1} (t - e^{2i\left(x + \frac{\pi k}{n}\right)})$$

$$\prod_{k=0}^{n-1} (1 - e^{2i\left(x + \frac{\pi k}{n}\right)}) = 1 - e^{2inx}$$

代回:

$$\prod_{k=0}^{n-1} \sin\left(x + \frac{\pi k}{n}\right)$$

$$= i^n 2^{-n} e^{-inx} i^{1-n} (1 - e^{2inx})$$

$$= 2^{-n} i (e^{-inx} - e^{inx})$$

$$= 2^{1-n} \sin(nx)$$

$$\sum_{k=0}^{n-1} \ln \left| \sin \left(x + \frac{\pi k}{n} \right) \right| = (1-n) \ln(2) + \ln \left| \sin \left(nx \right) \right|$$

微分兩次:

$$\sum_{k=0}^{n-1} \cot\left(x + \frac{\pi k}{n}\right) = n \cot(nx)$$

$$\sum_{k=0}^{n-1}\csc^2\left(x + \frac{\pi k}{n}\right) = n^2\csc^2(nx)$$

$$\sum_{k=1}^{n-1} \csc^2\left(x + \frac{\pi k}{n}\right) = n^2 \csc^2(nx) - \csc^2(x)$$

$$\sum_{k=0}^{n-1} \csc^2\left(\frac{\pi k}{n}\right) = \lim_{x \to 0} n^2 \csc^2(nx) - \csc^2(x) = \frac{(n-1)(n+1)}{3}$$

$$\cot^2(x) = \csc^2(x) - 1$$

$$\sum_{k=1}^{n-1} \cot^2 \frac{\pi k}{n} = \sum_{k=1}^{n-1} \csc^2 \frac{\pi k}{n} - n + 1 = \frac{n^2 - 3n + 2}{3}$$

三、 三角形公式定理

令圖形體積(或面積、長度)之代號同其自身。今有一三角形 $\triangle ABC$,其中: $\angle A \land \angle B \land \angle C$ 的對邊長分別為 $a \land b \land c$; $\angle A \land \angle B \land \angle C$ 又記作 $A \land B \land C$;外接圓 O 圓心 O 即外心(Circumcenter)、半徑 R;內接圓 I 圓心 I 即內心(Incenter)、半徑 r;重心(Centroid)G;垂心(Orthocenter) H; $\angle A \land \angle B \land \angle C$ 的對邊中點分別為 $M_a \land M_b \land M_c$;A 在 \overrightarrow{BC} 的垂足為 $h_a \land B$ 在 \overrightarrow{CA} 的垂足為 $h_b \land C$

在 \overrightarrow{AB} 的垂足為 h_c ; $s=\frac{1}{2}(a+b+c)$; $\angle A \times \angle B \times \angle C$ 的角平分線與對邊之交點分別為 $\mathcal{B}_a \times \mathcal{B}_b \times \mathcal{B}_c$;九點圓 \mathcal{O} 圓心 \mathcal{O} 、半徑 \mathcal{R} ;與 $A \times B \times C$ 的兩鄰邊延長線與對邊皆相切的旁切圓分別為 $E_a \times E_b \times E_c$,其圓心(旁心)各同其圓名。

(一) 勾股/畢氏/商高定理

$$(\angle C = 90^{\circ}) \iff (a^2 + b^2 = c^2)$$

Proof.

趙爽勾股圓方圖證明法:

其中四個三角形的短股為 a、長股為 b、斜邊為 c。

$$4\frac{ab}{2} + (b-a)^2 = c$$
$$a^2 + b^2 = c^2$$

(二) 三角形全等與 SSA 型性質

令:已知兩三角形一對應位置之邊長相等稱 S,已知兩三角形一對應位置之角之角度相等稱 A,S 相鄰表示鄰邊,A 相鄰表示鄰角,S 與 A 相鄰表示邊與其一側的角,當 A 為直角得稱 R,R 之鄰邊 得稱 H。

三角形的全等性質有 SSS imes SAS imes AAS imes ASA imes RHS,當兩三角形符合以上任一條件時,知兩三角形全等。

SSA 型的討論:若已知 $a \cdot b \cdot \angle A$:

- $\angle A$ 為銳角,因 C 到 \overrightarrow{AB} 的距離為 $b \sin A$:
 - *a* < *b* sin *A*: 無解
 - $-a=b\sin A$: 唯一解
 - $-a>b\sin A$: 兩解
- ∠A 為鈍角,則:
 - *a* ≤ *b*: 無解
 - a > b: 唯一解

(三) 九點圓與歐拉線

- $M_a, M_b, M_c, h_a, h_b, h_c, \frac{A+H}{2}, \frac{B+H}{2}, \frac{B+H}{2}$ 必共圓,該圓稱九點圓。
- 九點圓圓周 ∅ 與圓心 ∅ 均符合:

$$\mathcal{O} = \frac{O + H}{2}$$

- 歐拉線:∅, O, G, H 共線, 該線稱歐拉線。
- $\triangle ABC$ 是等腰三角形 $\iff I$ 在歐拉線上。
- 費爾巴哈定理(Feuerbach's theorem): 九點圓與三個旁切圓均外切,與內切圓內切(內切圓 在內)。

$$\mathcal{O} = \frac{O}{2}$$

(四) 正弦定理

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

Proof.

$$\sin A = \frac{\overline{Ch_c}}{a}$$

$$\sin B = \frac{\overline{Ch_c}}{b}$$

 $2R \sin A = a$

Proof.

作 $O \circ$ 若 $\triangle ABC$ 為直角三角形,觀察可證。若 $\triangle ABC$ 非直角三角形,以 BC 為一股,令斜邊在 \overrightarrow{BO} 上,作一直角三角形 BCD,其中 D=2O-B。若 $\triangle ABC$ 為銳角三角形,根據圓周定理可知, $\angle D=\angle BAC$,得證。若 $\triangle ABC$ 為鈍角三角形,根據根據圓內接四邊形對角互補定理可知, $\angle D=\pi-\angle A$,得證。

(五) 凸四邊形面積公式

凸四邊形面積 $=\frac{1}{2}$ 對角線相乘 \times sin 兩對角線夾角

(六) 投影定理

 $a = b \cos C + c \cos B$

(七) 餘弦定理

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Proof.

根據投影定理:

$$c = a \cos B + b \cos A$$

兩邊同乘 c:

$$c^2 = ac \cos B + bc \cos A$$

同理:

$$a^{2} = ac \cos B + ab \cos C$$

$$c^{2} = bc \cos A + ab \cos C$$

 $c^{2} = a^{2} - ab\cos C + b^{2} - ab\cos C = a^{2} + b^{2} - 2ab\cos C$

(八) 平行四邊形邊長與對角線長平方公式

平行四邊形四邊長平方和等於兩對角線長平方和

(九) 三角形中線公式

$$\overline{AB}^2 + \overline{AC}^2 = 2\left(\overline{AM_a}^2 + \overline{BM_a}^2\right)$$

(十) 三角形面積公式

$$\begin{split} \Delta ABC &= \frac{1}{2}a \cdot \overline{Ah_a} \\ &= \frac{1}{2}ab \sin C \\ &= \sqrt{s(s-a)(s-b)(s-c)} \quad (海龍 \text{ (Heron) } 公式) \\ &= \frac{abc}{4R} \\ &= rs \\ &= \frac{1}{\sqrt{\left(\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}\right)\left(-\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}\right)\left(\frac{1}{h_a} - \frac{1}{h_b} + \frac{1}{h_c}\right)\left(\frac{1}{h_a} + \frac{1}{h_b} - \frac{1}{h_c}\right)} \\ &= \frac{2}{3}\overline{BM_b} \cdot \overline{CM_c} \sqrt{\frac{1 - \left(\overline{AM_a}^2 + \overline{BM_b}^2 + \overline{CM_c}^2\right)^2}{4\overline{BM_b}^2 \overline{CM_c}^2}} \\ &= \frac{1}{2}\sqrt{\overline{AB^2}\overline{AC^2} - \left(\overline{AB} \cdot \overline{AC}\right)^2} \\ &= \frac{1}{2}\left|\left|\overline{AB} \times \overline{AC}\right|\right| \end{split}$$

(十一) 重心相關定理

$$G$$
 為三中線交點
$$\overrightarrow{AG} = 2\overrightarrow{GM_A}$$

$$G = \frac{A+B+C}{3}$$

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$

$$\Delta GAB = \Delta GAC = \Delta GBC$$

(十二) 外心相關定理

$$\overline{OA} = \overline{OB} = \overline{OC} = R$$

$$O = \frac{a^2A + b^2B + c^2C}{a^2 + b^2 + c^2}$$

$$O$$
 為三邊中垂線交點

$$\Delta OAB$$
: ΔOBC : $\Delta OCA = \sin 2C$: $\sin 2A$: $\sin 2B$

$$\overrightarrow{AO} \cdot \overrightarrow{AB} = \frac{1}{2} \overrightarrow{AB}^2$$

$$\frac{1}{2} \angle AOB = \angle C \lor \pi - \angle C$$

(十三) 內心相關定理

$$I$$
 與三邊均相切
$$I$$
 為三角角平分線交點
$$I = \frac{aA + bB + cC}{a + b + c}$$

$$a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}$$

(十四) 垂心相關定理

$$H \triangleq \frac{\tan A \cdot A + \tan B \cdot B + \tan C \cdot C}{\tan A + \tan B + \tan C}$$

$$\overrightarrow{AH} \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(\overrightarrow{AC^2} + \overrightarrow{AB^2} - \overrightarrow{BC^2} \right)$$
在複數平面上:
$$\det \begin{pmatrix} 1 & A & A^2 & \overline{A} \\ 1 & B & B^2 & \overline{B} \\ 1 & C & C^2 & \overline{C} \\ 1 & H & H^2 & \overline{H} \end{pmatrix} = 0$$

$$\frac{\overline{Hh_a}}{\overline{Ah_a}} + \frac{\overline{Hh_b}}{\overline{Bh_b}} + \frac{\overline{Hh_c}}{\overline{Ch_c}} = 1$$

(十五) 西瓦定理(Ceva theorem)

令西瓦線段指各頂點與其對邊或對邊延長線連接而成的直線段。

三角形 $\triangle ABC$ 的西瓦線段 $\overrightarrow{AD} \setminus \overrightarrow{BE} \setminus \overrightarrow{CF}$:

$$\overrightarrow{AD}$$
、 \overrightarrow{BE} 、 \overrightarrow{CF} 交於一點 $\iff \frac{\overrightarrow{BD}}{\overrightarrow{DC}} \cdot \frac{\overrightarrow{CE}}{\overrightarrow{EA}} \cdot \frac{\overrightarrow{AF}}{\overrightarrow{FB}} = 1 \implies D \cdot E \cdot F$ 中有零或二個點不在 ΔABC 邊上

口訣:頂分頂分頂分頂

(十六) 孟氏定理 (Menelaus' theorem)

一直線與 $\triangle ABC$ 的邊 $BC \cdot CA \cdot AB$ 或其延長線分別交於 $L \cdot M \cdot N$:

$$\iff \frac{\overline{AN}}{\overline{NB}} \cdot \frac{\overline{BL}}{\overline{LC}} \cdot \frac{\overline{CM}}{\overline{MA}} = 1 \implies L \cdot M \cdot N$$
中有一或三數個點不在 ΔABC 邊上

口訣:頂分頂分頂分頂

(十七) 角平分線定理

已知: $\triangle ABC$ 中 $\angle B < \angle C$; D 在 \overline{BC} 上; E 在 \overline{BC} 上且不在 \overline{BC} 上。

內角平分線定理及逆定理:

$$\angle BAD = \angle DAC \Leftrightarrow \frac{DB}{DC} = \frac{AB}{AC}$$

外角平分線定理及逆定理:

$$\angle CAE = \pi - \angle BAE \Leftrightarrow \frac{EB}{EC} = \frac{AB}{AC}$$

(十八) 角平分線長定理

$$\overline{A\mathscr{B}_a} = \frac{bc \sin A}{(b+c) \sin \left(\frac{A}{2}\right)}$$

(十九) 多邊形內角和公式

任二邊不相交於該二邊之頂點(如有)以外之處的 n 邊形,其內角和為 $(n-2)\pi$ 。

(二十) 四面體內接球半徑定理

內接球半徑 =
$$\frac{3 \cdot 體積}{$$
表面積

(二十一) 正四面體各公式

正四面體 A-BCD 邊長 a,高 h,表面積 A,體積 V,外接球半徑 R,內接球半徑 r, \overrightarrow{AB} 與 \overrightarrow{CD} 距離 s,重心 $\frac{A+B+C+D}{4}$ 與 A 的距離 g:

$$h = \frac{\sqrt{6}}{3}a$$

$$A = \sqrt{3}a^2$$

$$V = \frac{\sqrt{2}}{12}a^3$$

$$R = \frac{\sqrt{6}}{4}a$$

$$r = \frac{\sqrt{6}}{12}a$$

$$s = \frac{\sqrt{2}}{2}a$$

$$g = \frac{\sqrt{6}}{4}a$$

(二十二) 圓內接四邊形對角線公式

一圓內接四邊形 ABCD, $\overline{AB} = a \setminus \overline{BC} = c \setminus \overline{CD} = c \setminus \overline{DA} = d$:

$$\overline{AC}^{2} = \frac{(ac + bd)(ad + bc)}{ab + cd}$$

$$\overline{BD}^{2} = \frac{(ac + bd)(ad + cd)}{ad + bc}$$

$$\overline{AC} \cdot \overline{BD} = ac + bd$$

(二十三) 球面餘弦定律

空間中與一定點 O 距離為 R>0 的所有點 P 所形成的圖形稱一球面,其中 O 稱為球心, R 稱為半 徑。

令球面上有球面三角形 ABC, $\angle A$ 之對邊弧長除以球面之半徑等於 a, $\angle B$ 之對邊弧長除以球面之半徑等於 b, $\angle C$ 之對邊弧長除以球面之半徑等於 c。

第一球面餘弦定律:

 $\cos c = \cos a \cos b + \sin a \sin b \cos C$

第二球面餘弦定律/角度餘弦定律:

 $\cos C = -\cos A \cos B + \sin A \sin B \cos c$