Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente	
Analisi	Prof. A. Manzoni		
CdL Ingegneria Aerospaziale	Prof. S. Micheletti		
Appello			
13 febbraio 2020			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	EI	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	1

Parte I - Pre Test

1. (1 punto) Determinare il più piccolo numero (positivo) x_{min} rappresentabile nell'insieme $\mathbb{F}(2,4,-5,3)$; riportare il risultato in base decimale.

$$x_{min} = 2^{-6} = 0.015625$$

2. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 1 & 7 & 8 \\ 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Riportare i valori degli elementi $l_{32} = (L)_{32}$ e $u_{33} = (U)_{33}$ rispettivamente delle matrici triangolari inferiore L e superiore U.

$$l_{32} = \frac{13}{5} \qquad u_{33} = -3$$

3. (2 punti) Sia $A_{\alpha} = \begin{bmatrix} \frac{3}{2}\alpha & -\frac{\sqrt{5}}{4}\alpha \\ -\frac{\sqrt{5}}{4}\alpha & \frac{1}{2}\alpha \end{bmatrix}$ una matrice dipendente da un parametro $\alpha > 0$. Si riporti il valore del numero di condizionamento spettrale di A_{α} in termini di α , ovvero $K(A_{\alpha})$.

$$K(A_{\alpha}) = 7 \qquad \forall \alpha > 0$$

4. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 6 & -5 \\ -5 & 2 \end{bmatrix}$. Assegnato il vettore iniziale $\mathbf{x}^{(0)} = (1, 1)^T$ si riportino i valori approssimati $\lambda^{(0)}$ e $\lambda^{(1)}$ dell'autovalore ottenuti rispettivamente all'iterata iniziale e dopo l'applicazione di un'iterazione del metodo delle potenze (dirette).

$$\lambda^{(0)} = -1 = -1$$
 $\lambda^{(1)} = \frac{27}{5} = 5.4$

5. (1 punto) Si consideri la matrice $A = \begin{bmatrix} 3 & -7 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & -9 \end{bmatrix}$. Quale o quali dei suoi autovalori $\{\lambda_i(A)\}_{i=1}^3$ possono essere approssimati mediante il metodo delle iterazioni QR?

tutti,
$$\lambda_1(A) = -9, \ \lambda_2(A) = 3, \ \lambda_3(A) = 2$$

6. (1 punto) Si consideri la funzione $f(x) = 1 - e^{(x-8/7)}$ con un unico zero α e il metodo di bisezione per la sua approssimazione. Senza applicare esplicitamente il metodo, si *stimi* l'errore commesso dopo k = 6 iterazioni partendo dall'intervallo iniziale [-5,3].

$$|x^{(k)} - \alpha| \le 0.0625$$

7. (1 punto) Si consideri la funzione $f(x) = \sqrt{x} - 2$ e il metodo di Newton per l'approssimazione dello zero $\alpha = 4$. Qual è l'ordine convergenza p atteso dal metodo per lo zero α assumendo l'iterata iniziale $x^{(0)}$ "sufficientemente" vicino ad α ?

$$p = 2$$

Parte I - Esercizi

11 punti

ema lineare $A \mathbf{x} =$
ema lineare $A\mathbf{x}=$
ema lineare $A \mathbf{x} =$

(c)	(5 punti) Si implementi il metodo di Gauss-Seidel in forma matriciale in Matlab® nella funzione
	GaussSeidel.m (si usi il comando "back-slash" di Matlab® \ laddove necessario). Si utilizzi un
	(
	criterio d'arresto basato sul residuo normalizzato (detto anche residuo relativo). La struttura della
	funzione è:

Si considerino come *input*: A, la matrice assegnata; b, il termine noto assegnato; x0, l'iterata iniziale; nmax, il numero massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto. Si considerino come *output*: x, la soluzione approssimata; Nit, il numero di iterazioni effettuate.

Si utilizzi la funzione GaussSeidel.m per approssimare la soluzione del sistema lineare $A \mathbf{x} = \mathbf{b}$ con $\mathbf{b} = (2, 2, ..., 2)^T \in \mathbb{R}^{100}$ e $A \in \mathbb{R}^{100 \times 100}$ definita come

$$A = \text{tridiag}(-5, 11, -5);$$

si consideri l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$, la tolleranza $\mathtt{tol} = 10^{-3}$ e $\mathtt{nmax} = 1000$. Si riportino: il numero N di iterazioni effettuate, la seconda componente della soluzione approssimata $\mathbf{x}^{(N)}$, ossia $x_2^{(N)}$, e il valore del corrispondente residuo normalizzato $r_{rel}^{(N)}$.

Infine, utilizzando opportunamente la funzione GaussSeidel.m, si riportino i valori della seconda componente delle iterate $\mathbf{x}^{(1)}$ e $\mathbf{x}^{(2)}$, ossia $x_2^{(1)}$ e $x_2^{(2)}$.

$$x_2^{(1)} = \underline{\qquad \qquad 1,586\,777 \qquad \qquad } \qquad \qquad x_2^{(2)} = \underline{\qquad \qquad 1,416\,023}$$

(d) (3 punti) Si riporti l'algoritmo del metodo del gradiente per risolvere un sistema lineare generico $A\mathbf{x} = \mathbf{b}$ con A non singolare.

Assumendo ora la matrice A e il vettore \mathbf{b} assegnati al punto (c) e l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$, si calcoli il valore del parametro α_0 associato a $\mathbf{x}^{(0)}$ da utilizzarsi per determinare $\mathbf{x}^{(1)}$. Infine, si riportino anche la prima e seconda componente dell'iterata $\mathbf{x}^{(1)}$ corrispondente, ovvero $x_1^{(1)}$ e $x_2^{(1)}$.

$$\alpha_0 = \underline{0,090\,909}$$

$$x_1^{(1)} = \underline{1,090909}$$

otata del punto fisso a) <i>(2 punti)</i> Si ripor	$\alpha \in [a,b].$ ti l'algoritmo del metod	do di punto fisso	o per la ricerca	a nell'intervallo $[a,b] \subseteq \mathbb{R}$ del punto fisso α di $\phi(x)$
utilizzando il citer	rio d'arresto basato sull	la differenza tra	iterate successi	ve.
	-			
	•)			iniziale $x^{(0)} = 4$, si appli
	azioni di punto fisso. Si cimali per indicare il ris		i delle iterate x^0	$(1), x^{(2)} e x^{(N)}$ (utilizzando
$x^{(1)} = _{\underline{}}$ 3,63	3796 $x^{(2)} =$	3,310 987	$x^{(N)}$	$a^{(1)} = \underline{\qquad 2,110397}$
) (4 punti) Dopo av rapporti:	er risolto il punto (b) e	e sapendo che α	= 2, si calcolino	o e si riportino i valori de
$x^{(N)} - \alpha$	=0,690727		$\frac{x^{(N-1)} - \alpha}{x^{(N-2)} - \alpha} =$	0 69977
$x^{(N-1)} - \alpha$	- 0,000 121		$x^{(N-2)} - \alpha$	0.00011
punto fisso applica	ato al punto (b) per la r	icerca di α . Infi	ne, si giustifichi	metodo delle iterazioni di la valore di p determinate iterazioni di punto fisso
	p =	=1		

11 punti

(2 punti) Si consideri tro $\theta \in \mathbb{R}$. Per quale iniziale $x^{(0)}$ "sufficien	valore di θ il m	netodo delle	iterazioni di	punto fisso o	converge per	ogni ite
data.		$\theta = $	1			
(1 punto) Si consider Newton per la sua a punto fisso? Come?						

Parte II - Pre Test

1. (2 punti) Siano assegnati i nodi equispaziati x_0, x_1, \ldots, x_6 nell'intervallo [0,6] e i corrispondenti valori $y_i = 2 \left[\sqrt{x_i} + \sin(\pi x_i) \right]$ per $i = 0, 1, \ldots, 6$. Si consideri il polinomio di Lagrange $\Pi_6(x)$ interpolante tali dati ai precedenti nodi e si riporti il valore di $\Pi_6(2.5)$.

$$\Pi_6(2.5) = 3{,}157\,354$$

2. (2 punti) Assegnati i nodi equispaziati $x_0, x_1, \dots x_5$ nell'intervallo [0,10] e la funzione $f(x) = (x-1)^3$, si consideri l'interpolante composito lineare $\Pi_1^H f(x)$ della funzione f(x) nei precedenti nodi. Si riporti il valore di $\Pi_1^H f(3)$.

$$\Pi_1^H f(3) = 14$$

3. (1 punto) Assegnati i nodi $x_0 = 0$, $x_1 = 1$ $x_2 = 2$, $x_3 = 3$ e $x_4 = 4$ e i dati corrispondenti valori $y_0 = 3$, $y_1 = 0$, $y_2 = 3$, $y_3 = 3$ e $y_4 = 9$, si determini l'espressione della retta di regressione r(x) approssimante tali dati nel senso dei minimi quadrati.

$$r(x) = 1.5 x + 0.6$$

4. (1 punto) Sia $f(x) = x^3$; si approssimi f'(1) mediante la formula delle differenze finite all'indietro utilizzando il passo h = 0.1; si riporti il valore $\delta_- f(1)$ di tale approssimazione.

$$\delta_{-}f(1) = 2.71$$

5. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -3y(t) + 9 [1 + \sin(t)] \sqrt{t} & t \in (0,9), \\ y(0) = 8. \end{cases}$$

Utilizzando il metodo di Eulero in avanti (Eulero esplicito) con passo h = 1/4 e $u_0 = y_0 = 8$, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = 2 = 2$$

6. (2 punti) Si consideri il seguente problema differenziale di diffusione–reazione:

$$\begin{cases} -u''(x) + 3u(x) = \sin(\pi x) & x \in (0,1), \\ u(0) = 0, & u(1) = 6. \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h=1/2 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per N=1. Si risolva il problema e si riporti il valore della soluzione numerica u_1 , ovvero l'approssimazione di $u(x_1)$.

$$u_1 = \frac{25}{11} = 2,272727$$

$\begin{cases} -u''(x) + 60 u'(x) = 0 & x \in (0,1), \\ u(0) = 0, & u(1) = 5, \end{cases}$
si consideri (senza applicarla) la sua approssimazione numerica mediante il metodo delle differenze finite centrate con passo di discretizzazione $h > 0$. Qual è la condizione sul passo di discretizzazione h che garantisce l'assenza di oscillazioni (instabilità) numeriche per la soluzione approssimata del problema?
$0 < h < \frac{1}{30} = 0.0333333$
Parte II - Esercizi
ESERCIZIO 1. a) (2 punti) Si descriva la formula di quadratura del punto medio composita per l'approssimazione dell'integrale $I(f) = \int_a^b f(x)dx$; si definisca tutta la notazione utilizzata e si fornisca l'interpretazione grafica della formula.
o) (3 $punti$) Si definiscano l'ordine di accuratezza p e il grado di esattezza r di una $generica$ formula di quadratura (composita).

 ${\bf 7.}~(1~punto)$ Dato il seguente problema differenziale di diffusione—trasporto:

	Inoltre, per la formula di quadratura del $punto\ medio\ composita$, si riportino i valori di p e r ; si giustifichino con precisione le risposte date.
(c)	(2 punti) Si ricavi l'espressione dell'errore della formula di quadratura del punto medio semplice.
(d)	$(3~punti)$ Si utilizzino opportuni comandi Matlab $^{\circledR}$ per approssimare il seguente integrale:
	$I(f) = \int_0^1 5(1 - x^4 + 3x^2) dx$
	mediante la formula di quadratura del punto medio composita con $M \geq 1$ sottointervalli equispaziati di [0,1]. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita).
	$I_1(f) = \underline{\qquad 8,4375} \qquad \qquad I_{10}(f) = \underline{\qquad 8,995819}$
	Per il caso $M=10$ si riporti il valore dell'errore <i>stimato</i> , ovvero $\widetilde{E}_{10}(f)$.

Versione n. 1 – Soluzioni – Pag. 9

 $\widetilde{E}_{10}(f) \le \underline{\frac{1}{80} = 0.0125}$

(e)	(2 punti) Si consideri ora la formula di quadratura di Gauss-Legendre (semplice) con $n+1$ nodi per approssimare l'integrale $I(f)$ di cui al punto (d); si indichi con $I_n^G(f)$ il valore approssimato dell'integrale corrispondente. Si usi tale formula nel caso $n=1$ sapendo che nell'intervallo di riferimento $\widehat{I}=[-1,1]$ i nodi di quadratura sono $\widehat{y}_0=-\frac{1}{\sqrt{3}}$ e $\widehat{y}_1=+\frac{1}{\sqrt{3}}$, mentre i pesi di quadratura sono $\widehat{\alpha}_0=\widehat{\alpha}_1=1$. Si riporti il valore dell'integrale così approssimato, ovvero $I_1^G(f)$.	
	$I_1^G(f) = \underline{\qquad 9,027778}$	
	Qual è il grado di esattezza r di tale formula?	
Es	SERCIZIO 2. Si consideri il problema di Cauchy:	
	$\begin{cases} y'(t) = f(t,y) & t \in (0,t_f], \\ y(0) = y_0, \end{cases} $ (1)	10 punti
	$t_f > 0$ e il dato iniziale y_0 assegnati. (2 punti) Si considerino il problema di Cauchy (1) e la sua approssimazione mediante il metodo di Crank-Nicolson. Si riporti l'algoritmo del metodo (non in stretto linguaggio Matlab®) definendo con precisione tutta la notazione utilizzata.	
(b)	(2 punti) Posti per il problema di Cauchy (1) $f(t,y) = \lambda y$, con $\lambda \in \mathbb{R}$ e $\lambda < 0$, e $t_f = +\infty$, si definisca l'assoluta stabilità per il metodo di Crank-Nicolson. Se ne discutano inoltre, motivandole, le proprietà di assoluta stabilità.	

e) (3 punti) Si consideri il e $y_0 = 8$. Si utilizzino o				
metodo di <i>Crank-Nicolso</i> riportino i valori della so dei precedenti valori di <i>l</i>	on con diversi passi t luzione approssimata	temporali $h_1 = 1, h_2$ a $u_{N_{h,i}}$ corrisponden	$h=0.5,h_3=0.25$ e h te all'istante finale t_f	$a_4 = 0.125.$
$u_{N_{b-1}} = $	8,083 388	$u_{N_{h,2}} = $	8,169 314	
$u_{N_{h,3}} = $	8,083 388 8,190 704	$u_{N_{h}}{}_{4} = $	8,196 046	
per ciascun valore di h_i esponenziale). $E_{h_1} = \underline{\hspace{1cm}}$	$\frac{11,4438 \cdot 10^{-2}}{7,122 \cdot 10^{-3}}$			n m mana
$E_{h_3} = $ Si utilizzino tali risultat Nicolson. Si motivi la ri nuto.	i per stimare grafica	<i>amente</i> l'ordine di c	onvergenza del meto	
Il risultato è in accordo	con la teoria? Perch	é?		
Il risultato è in accordo	con la teoria? Perch	é?		