



Lecture 1: 简介

#### 赵培海

东华大学 计算机科学与技术学院

2023年9月6日



Zhao Pei-hai

2023年9月6日

人工智能





# 内容组织

- 1. 课程简介
- 2. 人工智能简介
  - 人工智能历史
- 3. 形式化表示
  - 知识表示
  - 特征表示





# 内容组织

- 1. 课程简介
- 2. 人工智能简介
- 3. 形式化表示



### 赵培海

- 东华大学计算机科学与技术学院,讲师
- 办公地址:松江校区 1号学院楼 245
- E-mail: peihaizhao@dhu.edu.cn

### 研究方向

- 人工智能,统计机器学习,随机过程,概率图模型
- 交易风控, 行为建模, 无人机





### 关于本课

#### 授课及评定:

• 授课方式:

讲授: 2课时 × 15 课外作业: 1-2次

• 成绩评定:

考勤 + 作业: 40% 期末考试: 60%

• 考试方式:

随堂、纸质开卷考试





## 关于本课

计算机学院 FTP: ftp://10.199.227.254/

• 课件及资料:

ftp://10.199.227.254//课件/赵培海/人工智能/

• 作业提交:

ftp://10.199.227.254//作业提交/赵培海/人工智能/

#### 参考教材:

- Artificial Intelligence: A Modern Approach, 3ed
- 人工智能及其应用 蔡自兴 (5ed) & 王万良 (3ed)
- Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6ed

#### 公开课:

- CMU: Artificial Intelligence: Representation and Problem Solving
- Stanford: Artificial Intelligence: Principles and Techniques
- MIT: Artificial Intelligence
- Coursera, Udacity, Edx, Mooc 学院, 等
- 期刊, 会议文章 (KDD, AAAI, ICML, ICDM, JMLR, ···)







### 课程资源

#### 机器学习:

- Foundations of Machine Learning, Mehryar Mohri, 2ed, 2018.
- Machine Learning: A Bayesian and Optimization Perspective, Sergios Theodoridis, 2ed, 2020
- The Elements of Statistical Learning, Trevor Hastie, 2ed, 2009

### 动手实践:

- Kaggle
- 阿里天池
- UCI Machine Learning Repository
- Aminer



### 编程语言

### 成熟框架:

- TensorFlow, Keras
- PyTorch
- MXNet
- PaddlePaddle

### 基础语言:

- Python (scikit-learn, Anaconda)
- C++ / Java
- R / Julia
- Matlab





### 课程目标

- 了解人工智能基本内容
- ② 了解人工智能研究范畴
- ③ 了解人工智能的发展态势
- 4 掌握人工智能基础模型
- 5 运用人工智能方法解决实际问题
- ⊙ 为下一步研究打好基础



### 涉及内容

- 确定性推理(搜索)
- ② 不确定性推理 (贝叶斯推理)
- ◎ 机器学习
- 深度学习
- 群体智能
- ◎ 强化学习





- 1. 课程简介
- 2. 人工智能简介
  - 人工智能历史
- 3. 形式化表示





#### 人工智能并不是新鲜事物

- 1997年, DeepBlue vs Kasparov
- ② 2011 年, IBM Watson 机器人参加 Jeopargy
- ③ 2016 年,李世乭 vs AlphaGo
- 4 2017 年,柯洁 vs AlphaGo
- 🧿 2019 年, Openai Five vs OG





• 为什么我们如此热衷于人机大战?



Zhao Pei-hai

2023年9月6日



- 为什么我们如此热衷于人机大战?
- 希望创造具有智能的机器





- 为什么我们如此热衷于人机大战?
- 希望创造具有智能的机器
- 机器胜出是智能还是算力的碾压?





- 为什么我们如此热衷于人机大战?
- 希望创造具有智能的机器
- 机器胜出是智能还是算力的碾压?
- 人工智能经历了什么?





用人工的方式去实现智能



### 人工智能

用人工的方式去实现智能什么是智能,如何定义它?



#### 什么是智能?

- 一种独立才能 or 一系列能力的总称?
- 后天学习的 or 先天存在的?
- 学习时发生了什么?
- 在生物体中,知识以何种形式表示?
- . . .

#### 难于实现普适的智能系统





### 图灵测试

### 给出了一个客观的智能概念

- 根据对一系列特定问题的反应 来确定是否是智能体的行为
- 为判断智能提供一个标准,避 免有关智能"真正"特征的讨 论

#### 免于受到目前无法回答的问 题的牵制

如,计算机是否真的意识到其 动作?

### 完全图灵测试



图: 图灵测试





要实现智能,不一定是人类智能 正如要飞行,不一定要长翅膀



# 从其它角度

#### 表: 智能

| 像人一样思考的系统                                                                                | 理性地思考的系统                                                                                            |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 要使计算机能思考有头脑的机器 (Haugeland, 1985)<br>[使之自动化] 与人类的思维相关的活动, 诸如决策、问题求解、学习等活动 (Bellman, 1978) | 通过对计算模型的使用来进行心智能力的研究 (Charniak & McDe-<br>montt, 1985)<br>对使得知觉、推理和行动成为可能<br>的计算的研究 (Winston, 1992) |
| 像人一样行动的系统                                                                                | 理性地行动的系统                                                                                            |
| 创造机器来执行人需要智能才能完成的功能 (Kurzweil, 1990) 研究如何让计算机能够做到那些目前人比计算机做得更好的事情 (Rich & Knight, 1991)  | 计算智能是对设计智能化智能体的研究 (Poole et al., 1998)<br>AI 关心的是人工制品中的智能行为<br>(Nilsson, 1998)                      |





### 从其它角度

#### 表: 智能

| 像人一样思考的系统                                                                               | 理性地思考的系统                                                                                        |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 要使计算机能思考有头脑的机器 (Haugeland, 1985)<br>[使之自动化] 与人类的思维相关的活动,诸如决策、问题求解、学习等活动 (Bellman, 1978) | 通过对计算模型的使用来进行心智能力的研究 (Charniak & McDe-<br>montt, 1985)<br>对使得知觉、推理和行动成为可能的计算的研究 (Winston, 1992) |
| 像人一样行动的系统                                                                               | 理性地行动的系统                                                                                        |
| 创造机器来执行人需要智能才能完成的功能 (Kurzweil, 1990) 研究如何让计算机能够做到那些目前人比计算机做得更好的事情(Rich & Knight, 1991)  | 计算智能是对设计智能化智能体的研究 (Poole et al., 1998)<br>AI 关心的是人工制品中的智能行为<br>(Nilsson, 1998)                  |

借助于计算机, AI 为智能理论探索提供了方法与验证环境.



Zhao Pei-hai

2023年9月6日

人工智能



↓ 智能是关于: 思维感知行动 智人、哲学





- ↓智能是关于:思维感知行动智人、哲学
- ↓ 将其形式化:建立目标模型 工程、计算机





- ↓ 智能是关于: 思维感知行动 智人、哲学
- ↓ 将其形式化:建立目标模型 工程、计算机
- ↓ 形式化要求: 合适的表示数学、表示方法





- ↓ 智能是关于: 思维感知行动 智人、哲学
- ↓ 将其形式化:建立目标模型 工程、计算机
- ↓ 形式化要求: 合适的表示 数学、表示方法
- ↓ 外界的限制: 在约束条件下 约束优化、规划、运筹学



↓ 智能是关于: 思维感知行动 智人、哲学

↓ 将其形式化:建立目标模型 工程、计算机

↓ 形式化要求: 合适的表示数学、表示方法

↓ 外界的限制:在约束条件下 约束优化、规划、运筹学

↓ 计算机实现:编写算法

程序设计、数据结构、算法、分布式、数据库



AI 使得一些课程变得"有用"了!



AI 使得一些课程变得"有用"了! 大家都在说人工智能,但所在的角度可能大相径庭

#### 哲学贡献:

- 形式化规则能用来抽取合理的结论吗?
- ② 精神的意识是如何从物质的大脑产生出来的?
- ③ 知识是从哪里来的?
- 4 知识是如何导致行动的?

#### 数学贡献:

- 如何抽取形式化规则来得到合理结论?
- ② 什么可以被计算?
- 如何用不确定的知识进行推理?
- 形式化工具:逻辑、概率、线性代数等等

#### 经济学贡献:

- 如何决策以获得最大收益?
- ② 在他人不合作的情况下如何做到这点?
- 查 在收益遥遥无期的情况下如何做到这点?





### 多学科交叉知识结构



图: 多学科交叉知识结构



Zhao Pei-hai

2023年9月6日

人工智能





#### 图: 人工智能方法及领域发展1

<sup>1</sup>Aminer: Al History

Zhao Pei-hai







### 形式化大致的发展阶段:

- 符号/逻辑推理
- ② 确定性推理
- 不确定性推理、统计推理
- 群体智能
- 机器学习、随机过程
- 深度学习





## 人工智能应用

- 风控系统
- 推荐系统
- 自然语言理解
- 自动推理和定理证明
- 图像/视频处理
- 机器人
- 自动控制
- <u>.</u> . .







内容组织

- 1. 课程简介
- 2. 人工智能简介
- 3. 形式化表示
  - 知识表示
  - 特征表示



### 表示很重要!!!:

- 表示决定了后续的推理分析过程;
- 好的知识表示,提高系统推理能力;
- 好的特征表示, 优化模型效率;



### 表示很重要!!!:

- 表示决定了后续的推理分析过程;
- 好的知识表示,提高系统推理能力;
- 好的特征表示, 优化模型效率;

在实际应用中不要无脑深度学习,很多问题通过良好表示,简单模型就可达到效果;





## 表示系统

表示系统: 所有表示模式的功能都是要捕捉(或抽取)问题域中的本质 特征并使这一信息能够被问题求解过程所访问. 抽象 (abstraction) 是 处理复杂性的一种关键工具, 也是保证最终程序计算高效性的一个重 要因素.

- 表现力 (特征抽取结果) 和效率 (特征抽取算法的计算复杂度) 是 评价知识表示语言的主要尺度
- 有时,为了提高效率必须牺牲表现力.但这是以不限制捕捉关键的 问题求解知识的表示能力为前提的
- 如,浮点数表示
- 如,罗马数字、阿拉伯数字表示





## 什么是知识

### 知识:

- 在长期的生活及社会实践中、在科学研究及实验中积累起来的对客 观世界的认识与经验;
- 把有关信息关联在一起所形成的信息结构;
- 反映了客观世界中事物之间的关系,不同事物或者相同事物间的不同关系形成了不同的知识:





## 什么是知识

## 知识就是力量:

- 知识和创新是推动人类发展的动力;
- 人类个体比其他动物没有多大 优势,掌握了符号语言,人类 社会的结构发生了突变,有了 一个连接在一起的集体大脑;



图: 猩球崛起



## 什么是知识

### 知识的种类:

● 事实性知识:采用直接表示的形式

如:凡是猴子都有尾巴

② 过程性知识:描述做某件事的过程

如: 电视使用说明书

类比性知识:既不给出外延,也不给出内涵,只给出他与其他事物的某些相似之处

如: 比喻、谜语

4 ...





## 知识的表示

### 知识的形式化表示方法:

- 命题/谓词表示
- ② 产生式
- ◎ 状态空间表示
- 语义网络表示
- 框架表示
- ∮ 其它, 如 Petri Net 表示







A proposition is the non-linguistic bearer of truth or falsity which makes any sentence that expresses it either true or false.

-Wikipedia



## 命题表示

A proposition is the non-linguistic bearer of truth or falsity which makes any sentence that expresses it either true or false.

-Wikipedia

### 命题表示:

- 明确定义的形式语义 (formal semantics)
- 可靠 (sound) 和完备 (complete) 的推理规则

### 命题演算:

- 为命题语句赋真值被称为解释 (Interpretation)
- 1956 年, 逻辑理论家 (Logic Theorist)





## 命题逻辑

## 命题的简单推理: 交换律, 结合律, 分配律, 真值表

| P | Q | ¬P | ¬P∨Q | P⇒Q | $(\neg P_V Q) = (P \Rightarrow Q)$ |
|---|---|----|------|-----|------------------------------------|
| Т | Т | F  | Т    | Т   | Т                                  |
| Т | F | F  | F    | F   | Т                                  |
| F | Η | Т  | Т    | Т   | Т                                  |
| F | F | Т  | Т    | Т   | Т                                  |

#### Basic and derived argument forms [edit]

| Name                   | Sequent                                                                                              | Description                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Modus Ponens           | $((p  ightarrow q) \wedge p) \vdash q$                                                               | If $p$ then $q; p$ ; therefore $q$                                                            |
| Modus Tollens          | $((p  ightarrow q) \land \neg q) \vdash \neg p$                                                      | If $p$ then $q$ ; not $q$ ; therefore not $p$                                                 |
| Hypothetical Syllogism | $((p  ightarrow q) \wedge (q  ightarrow r)) dash (p  ightarrow r)$                                   | If $p$ then $q$ ; if $q$ then $r$ ; therefore, if $p$ then $r$                                |
| Disjunctive Syllogism  | $((p \lor q) \land \neg p) \vdash q$                                                                 | Either $p$ or $q$ , or both; not $p$ ; therefore, $q$                                         |
| Constructive Dilemma   | $((p \rightarrow q) \land (r \rightarrow s) \land (p \lor r)) \vdash (q \lor s)$                     | If $p$ then $q$ ; and if $r$ then $s$ ; but $p$ or $r$ ; therefore $q$ or $s$                 |
| Destructive Dilemma    | $((p \rightarrow q) \land (r \rightarrow s) \land (\neg q \lor \neg s)) \vdash (\neg p \lor \neg r)$ | If $p$ then $q$ ; and if $r$ then $s$ ; but not $q$ or not $s$ ; therefore not $p$ or not $r$ |
| Bidirectional Dilemma  | $((p \rightarrow q) \land (r \rightarrow s) \land (p \lor \neg s)) \vdash (q \lor \neg r)$           | If $p$ then $q$ ; and if $r$ then $s$ ; but $p$ or not $s$ ; therefore $q$ or not $r$         |
| Simplification         | $(p \land q) \vdash p$                                                                               | p and $q$ are true; therefore $p$ is true                                                     |
| Conjunction            | $p,q \vdash (p \land q)$                                                                             | p and $q$ are true separately; therefore they are true conjointly                             |
| Addition               | $p \vdash (p \lor q)$                                                                                | p is true; therefore the disjunction $(p  or  q)$ is true                                     |
| Composition            | $((p  ightarrow q) \wedge (p  ightarrow r)) dash (p  ightarrow (q \wedge r))$                        | If $p$ then $q$ , and if $p$ then $r$ , therefore if $p$ is true then $q$ and $r$ are true    |



## 命题逻辑

### 命题的简单推理: 交换律, 结合律, 分配律, 真值表

| P | Q | ¬P | ¬P∨Q | P⇒Q | $(\neg P_V Q) = (P \Rightarrow Q)$ |
|---|---|----|------|-----|------------------------------------|
| Т | Т | F  | Т    | Т   | Т                                  |
| Т | F | F  | F    | F   | Т                                  |
| F | Т | Т  | Т    | Т   | Т                                  |
| F | F | Т  | Т    | Т   | Т                                  |

Basic and derived argument forms [edit]

| 0                      |                                                                                                      |                                                                                               |  |
|------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Name                   | Sequent                                                                                              | Description                                                                                   |  |
| Modus Ponens           | $((p \to q) \land p) \vdash q$                                                                       | If $p$ then $q, p$ , therefore $q$                                                            |  |
| Modus Tollens          | $((p  ightarrow q) \land \neg q) \vdash \neg p$                                                      | If $p$ then $q$ ; not $q$ ; therefore not $p$                                                 |  |
| Hypothetical Syllogism | $((p  ightarrow q) \wedge (q  ightarrow r)) dash (p  ightarrow r)$                                   | If $p$ then $q$ ; if $q$ then $r$ ; therefore, if $p$ then $r$                                |  |
| Disjunctive Syllogism  | $((p \lor q) \land \neg p) \vdash q$                                                                 | Either $p$ or $q$ , or both; not $p$ ; therefore, $q$                                         |  |
| Constructive Dilemma   | $((p \rightarrow q) \land (r \rightarrow s) \land (p \lor r)) \vdash (q \lor s)$                     | If $p$ then $q$ ; and if $r$ then $s$ ; but $p$ or $r$ ; therefore $q$ or $s$                 |  |
| Destructive Dilemma    | $((p \rightarrow q) \land (r \rightarrow s) \land (\neg q \lor \neg s)) \vdash (\neg p \lor \neg r)$ | If $p$ then $q$ , and if $r$ then $s$ ; but not $q$ or not $s$ ; therefore not $p$ or not $r$ |  |
| Bidirectional Dilemma  | $((p \rightarrow q) \land (r \rightarrow s) \land (p \lor \neg s)) \vdash (q \lor \neg r)$           | If $p$ then $q$ ; and if $r$ then $s$ ; but $p$ or not $s$ ; therefore $q$ or not $r$         |  |
| Simplification         | $(p \land q) \vdash p$                                                                               | p and $q$ are true; therefore $p$ is true                                                     |  |
| Conjunction            | $p, q \vdash (p \land q)$                                                                            | p and $q$ are true separately; therefore they are true conjointly                             |  |
| Addition               | $p \vdash (p \lor q)$                                                                                | p is true; therefore the disjunction $(p  or  q)$ is true                                     |  |
| Composition            | $((p  ightarrow q) \wedge (p  ightarrow r)) dash (p  ightarrow (q \wedge r))$                        | If $p$ then $q$ , and if $p$ then $r$ , therefore if $p$ is true then $q$ and $r$ are true    |  |

### 命题演算无法分析断言的各个部分;







## 谓词表示

### 谓词演算:

- 允许表达式中含有变量
- 允许使用对象的函数
- 量词: ∀.∃
- 谓词语义

```
likes(george,kate)
likes(george, susie)
likes(george,sarah,tuesday)
friends(bill,george)
helps(bill,george)
```

likes(X,george) likes(X,X) friends(bill,richard) friends(father\_of(david),father\_of(andrew)) helps(richard.bill)





## 产生式表示

### 确定性规则产生式

- 基本形式: IF P THEN Q
- 或者: P → Q
- 如:

Rule: IF 动物会飞 AND 会下蛋 THEN 该动物是鸟

### 不确定性规则产生式

- 基本形式: IF P THEN Q (置信度)
- 或者: P → Q (置信度)
- 如:

Rule: IF 发烧 THEN 感冒 (0.6)



## 状态空间表示

### 一个状态用一个节点表示, 如: 拼图游戏 (8-Puzzle)



图: 一个状态节点



图: 初始与目标状态节点



## 语义网络表示

### 语义网络:

- 表示形式 (采用网络形式表示人类的知识)
- 语义网络一般由一些最基本的语义单元组成.可用如下三元组来表示:(结点1,弧,结点2)每一个要表达的事实用一个节点表示,事实之间的关系用有向弧表示
- 当把多个语义基元用相应的语义联系关联在一起的时候,就形成了一个语义网络

### 例如"香蕉是黄色的"







## 语义网络表示

### 知识图谱:

- 旨在描述真实世界中存在的各种实体或概念及其关系,一般用三元组表示
- 可被看作是一张巨大的图,节点表示实体或概念,边则由属性或关系构成





## 语义网络表示

### Google



找到約 1.270.000.000 条结果 (用財 0.58 秒)

### zh.wikipedia.org > zh-hans > 北京市 \*

北京市-维基百科,自由的百科全书 北京市,通称北京 (汉语拼音: Běijīng; 邮政式拼音: Peking) ,简称"京",是中華人民共和國的 首都及直辖市、是中國的政治、文化、科技和国际交往中心、是 ...

- 市长 陈吉宁 最大区县: 孝元区 市樹: 側拍 国梅 - 陳原: /km²

东城区·通州区·中华人民共和国省级行政区土地 ... · 北京市交通

baike.baidu.com > item > 北京 \*

#### 北京(中华人民共和国首都) 百度百科

北京市、简称"京"、古称蒸京、北平、是中华人民共和国的首都、省级行政区、直辖市、国家中心 城市、超大城市、国务院批复确定的中国政治中心、文化中心、...

面 积: 16410.54 km² 她理位置:中国华北地区,华北平原北部 人口数量: 2153.6万人(2019年常住人口) 地区生产总值: 35371.3亿元 (2019年)

故宫、北京大学、朱刚演唱歌曲、恭京

#### www.beijing.gov.cn \*

#### 首都之窗 北京市人民政府门户网站

首都之御是北京市国家机关在互联网上统一建立的网站群,包括北京市人民政府门户网站、市级 各部门、各区政府和各级国家机关网站。首都之窗网站由北京市人民...

www.bi.xinhuanet.com \*

新华网北京频道 北京新闻 首都



北京市、通稲北京、館稲「京」、是中華人民共和國的首都及直轄 市,是中國的政治、文化、科技和國際交往中心,是世界人口第三多 的城市和人口最多的首都,具有重要的國際影響力。北京位於華北平 原的西北邊緣,背靠蒸山,有永定河流經老城西南,毗鄰天津市、河 北省, 為京津韓城市群的重要組成部分。 维基百科

面积: 6,490 mi<sup>2</sup>

天气: 26°C, 风向东南, 风速 6 公里/时, 湿度 49%

人口: 2154万(2018年) 当時財间・足期一下午1:34

市樹: 倒拍 関稿 市林: 日季 菊花

人口 (2017): 2170.7萬

### 图: Google 搜索引擎





## 知识 → 特征

有时一些知识或概念无法形式化描述,就需要再往下一层,寻找表示方法,如:



图: 手写数字识别



## 知识 → 特征

有时一些知识或概念无法形式化描述,就需要再往下一层,寻找表示方法,如:



图: 手写数字识别

特征提取与表示, 是机器学习模型的基石.







### 西瓜特征提取与表示

回头看第一段话,我们会发现这里涉及很多基于经验做出的预判.例如,为什么看到微湿路面、感到和风、看到晚霞,就认为明天是好天呢?这是因为在我们的生活经验中已经遇见过很多类似情况,头一天观察到上述特征后,第二天天气通常会很好.为什么色泽青绿、根蒂蜷缩、敲声浊响,就能判断出是正熟的好瓜?因为我们吃过、看过很多西瓜,所以基于色泽、根蒂、敲声这几个特征我们就可以做出相当好的判断.类似的,我们从以往的学习经验知道,下足了工夫、弄清了概念、做好了作业,自然会取得好成绩.可以看出,我们能做出有效的预判,是因为我们已经积累了许多经验,而通过对经验的利用,就能对新情况做出有效的决策.

图: 机器学习, 周志华



## 特征 → 知识

从特征提取知识的过程就是一个学习的过程,用计算机通过批量数据来实现这一过程,就是机器学习.



## 特征 → 知识

从特征提取知识的过程就是一个学习的过程,用计算机通过批量数据来实现这一过程,就是机器学习.

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

- Tom M. Mitchell





样本空间与特征空间



47 / 53

Zhao Pei-hai 2023 年 9 月 6 日 人工智能



样本空间与特征空间

One-Hot 表示

• 离散表示, 局部表示





样本空间与特征空间

One-Hot 表示

• 离散表示, 局部表示

分布式 (distributed) 表示

- 压缩、低维、稠密向量
- 用 O(N) 个参数表示  $O(2^k)$  区间





# 分布式表示

### 分布式表示的实例: 颜色

| 颜色  | 局部表示               | 分布式表示                                                  |
|-----|--------------------|--------------------------------------------------------|
| 琥珀色 | $[1, 0, 0, 0]^{T}$ | $[1.00, 0.75, 0.00]^{T}$                               |
| 天蓝色 | $[0, 1, 0, 0]^{T}$ | $[0.00,\ 0.5,\ 1.00]^{\mathrm{T}}$                     |
| 中国红 | $[0, 0, 1, 0]^{T}$ | $[0.67,\ 0.22,\ 0.12]^{\scriptscriptstyle \mathrm{T}}$ |
| 咖啡色 | $[0, 0, 0, 1]^{T}$ | $[0.44,\ 0.31\ 0.22]^{\rm \scriptscriptstyle T}$       |





## 分布式表示

### 嵌入 (Embedding): 词嵌入, 节点嵌入, 图嵌入等







## 特征表示的研究

### 特征抽取:

• 特征抽取与特征提取



## 特征表示的研究

### 特征抽取:

• 特征抽取与特征提取

### 传统特征抽取方式:

- 线性投影 (子空间): PCA, LDA (Linear Discriminant Analysis)
- 非线性嵌入: LLE, Isomap, 谱方法
- 自编码器







### 表示学习:

- 通过学习产生分布式特征向量
- 优点: 不用手动构建特征向量
- 难点: 没有明确定义什么是"好"







## 特征表示的研究

### 表示学习:

- 诵讨学习产生分布式特征向量
- 优点:不用手动构建特征向量
- 难点: 没有明确定义什么是"好"

### 特征抽取 vs. 表示学习:

- 特征抽取:基于任务或先验对去除无用特征
- 表示学习:通讨深度模型学习高层语义特征



## 人工智能系统的设计





Zhao Pei-hai 2023 年 9 月 6 日



## Question & Answer