المتتاليات التمرين 1

<u> تمرین</u>

$$\begin{cases} u_0=2\\ u_{n+1}=\frac{3}{8}u_n+\frac{5}{8} & (n\in\mathbb{N}) \end{cases}$$
: نعتبر المتتالية العددية (u_n) المعرفة بما يلي

$$u_{n+1}-1=\frac{3}{8}(u_n-1)$$
 : $\mathbb N$ من n لكل الكل (1

$$u_n > 1$$
 : \mathbb{N} من n (2

3) بین أن
$$(u_n)$$
 تناقصیة قطعا ثم استنتج أنها متقاربة

$$v_n = u_n - 1$$
: N نضع لكل n نضع لكل (4

أ. باستعمال السؤال 1) بين أن
$$(v_n)$$
 هندسية محددا أساسها و حدها الأول

$$n$$
 بدلالة u_n بدلالة v_n بدلالة ب

$$\lim_{n\to+\infty} u_n \xrightarrow{} \lim_{n\to+\infty} u_n$$

 $n \in \mathbb{N}$ ليكن (1

$$u_{n+1} - 1 = \frac{3}{8}u_n + \frac{5}{8} - 1$$
$$= \frac{3}{8}u_n + \frac{5 - 8}{8}$$
$$= \frac{3}{8}u_n - \frac{3}{8}$$
$$= \frac{3}{8}(u_n - 1)$$

$$u_{n+1} - 1 = \frac{3}{8}(u_n - 1)$$
 : $\mathbb N$ من n ذن نستنتج : لكل n من

1/3 Math.ma - 3/2017

(2

$$u_0 > 1$$
 اذن $u_0 = 2$ ادینا $n = 0$ من أجل

$$n\in\mathbb{N}$$
 ليكن

$$u_n > 1$$
: نفترض أن

$$u_{n+1} > 1$$
: و نبين أن

$$u_{n+1}-1=\frac{3}{8}(u_n-1)$$
 : لدينا (1) لدينا

$$u_n > 1$$
 و حسب الإفتراض ، لدينا

$$u_n - 1 > 0$$
 إذن

$$\frac{3}{8}(u_n-1) > 0$$
 إذن

$$u_{n+1} > 1$$
 و منه $u_{n+1} - 1 > 0$

$$u_n > 1$$
: \mathbb{N} من n

(3

$$n \in \mathbb{N}$$
 ليكن \blacksquare

$$u_{n+1} - u_n = \frac{3}{8}u_n + \frac{5}{8} - u_n$$

$$= \frac{3-8}{8}u_n + \frac{5}{8}$$

$$= \frac{-5}{8}u_n + \frac{5}{8}$$

$$= \frac{-5}{8}(u_n - 1)$$

$$\frac{-5}{8}(u_n-1)<0$$
 و منه $u_n-1>0$ اذن $u_n>1$: لدينا (2 لدينا

$$u_{n+1}-u_n<0$$
 : $\mathbb N$ من n لكل و بالتالي لكل

نستنتج أن :
$$(u_n)$$
 تناقصية قطعا

• بما أن
$$(u_n)$$
 تناقصية و مصغورة (بالعدد 1) فإن (u_n) متقاربة.

2/3

 $n \in \mathbb{N}$ أ. ليكن (4

$$v_{n+1} = u_{n+1} - 1$$
$$= \frac{3}{8} (u_n - 1)$$
$$= \frac{3}{8} \times v_n$$

$$v_{n+1} = \frac{3}{8} \times v_n$$
 : \mathbb{N} من n

$$v_0 = u_0 - 1 = 2 - 1 = 1$$
 : و منه المتتالية $\left(v_n\right)$ هندسية أساسها $q = \frac{3}{8}$ و حده الأول و منه المتتالية

 $n \in \mathbb{N}$ ب. ليكن

$$v_n = v_0 \times q^n = 1 \times \left(\frac{3}{8}\right)^n$$

$$v_n = \left(\frac{3}{8}\right)^n$$
 : \mathbb{N} من n إذن لكل n

$$u_n = v_n + 1$$
 الذن $v_n = u_n - 1$: دينا

$$u_n = \left(\frac{3}{8}\right)^n + 1 : \mathbb{N}$$
 و منه لکل n من اکل و

$$\lim_{n \to +\infty} \left(\frac{3}{8} \right)^n = 0 \quad فإن \quad -1 < \frac{3}{8} < 1$$
 ج. بما أن 1 < $\frac{3}{8} < 1$

$$\lim_{n\to+\infty} \left(\frac{3}{8}\right)^n + 1 = 1$$
 إِذْنِ

$$\lim_{n\to+\infty}v_n=1$$

3/3 Math.ma – 3/2017