CS 3313 Foundations of Computing:

Deterministic Finite Automata (DFA)

http://gw-cs3313-2021.github.io

© slides based on material from Peter Linz book, Hopcroft, Narahari

1

Today.....

- Recap algorithmic thinking, and introduce DNA sequence matching problem
- Introduce Deterministic Finite Automata
 - First introduce the mathematical model and notations
 - Formally define "acceptance" by a DFA
 - Understand how the "machine" works
 - Apply algorithmic thinking to design solutions for problems that have to be solved using DFAs
 - "Code" the algorithm as a DFA
 - "simulate" the machine (i.e., DFA) using JFLAP
- Next topic will then introduce concept of Non-determinism

Our Approach to studying automata models: Algorithmic Thinking

To understand how each automata (machine) model works, we take the approach of developing "algorithms" that work on that machine

3

Computational Thinking and Algorithmic Thinking – an important skill for Computer Scientists!

- "Computational Thinking is the thought processes involved in formulating problems and their solutions so that the solutions are represented in a form that can be effectively carried out by an information-processing agent" – Cuny, Snyder, Wing, 2010
- Invaluable to methodically approach a complex (unknown)
 problem, break it down into smaller/easier problems and quickly
 build a robust solution
 - Not just in CS.....everyday tasks!!

Algorithmic Thinking

- 1. Understanding the problem
 - Define it "precisely"
 - o What are the inputs? What are the outputs? What constraints?
 - o Can you describe the problem
- 2. Devising a plan
 - Identify the level of problem solving..be methodical in your steps
 - Do you apply a known solution? Do you generate a new solution?
 - Create a series of steps to solve the problem
 - Each step is precise and unambiguous
 - Determine effectiveness (efficiency) of solution
- 3. Program the solution.....

5

Properties of Algorithms

Algorithm must have these properties if the "machine" is to execute it without human intervention:

- Input specified
 - Type of data expected: numbers? Strings? Letters? Alphabet?
- Output specified
 - Types of data forming the result
- Definiteness: be explicit about how to realize the computation
 - Unambiguous commands
- Effectiveness: reduce task to the primitive operations of the machine
 - Ex: machine code on a computer
- Finiteness must terminate

An important problem – DNA sequence detection

- Problem: Detect if a disease (captured by a DNA subsequence) appears in a patient's DNA
- Why discuss this example of algorithmic thinking and solution design using methods we currently know
- Start with a simple solution and then return to the problem next week to see if we can design a better solution by using other solutions – i.e., different way of constructing an algorithm

7

A Well-Known Problem

- Problem: Suppose a certain genetic disease D is characterized by the pattern p = ATCCTG presented in a strand of DNA sequence.
- NIH, Base Pair [https://www.genome.gov/
- p is consisted of M base pairs (bps) of 4 kinds.
 - For p = ATCCTG, M = 6 bps.
- Question: given a <u>DNA sequence sample</u>, does the patient have *D*?
 - Assume only need to find the pattern once.
 - DNA Sample: ... AACGACCAATCCTGGA ...
 - However, the DNA sample has a length of N bps, where N >> M.

Understanding the problem

- Input is a DNA sequence of patient and disease sequence
 - DNA sequence is a string of length N
 - Disease sequence D is a string of length M
 - Alphabet $\Sigma = \{A,C,G,T\}$
- Output = {Yes, No}
 - Yes if sequence contains the disease sequence else No
- At each step we read one symbol (character) from input sequence
 - Machine/computer capability: We can check if two characters are equal
 If (x == y) then {}
- Efficiency: how many steps, i.e., time complexity

9

How do we proceed? - Naïve

[1]: https://www.nature.com/articles/37

Naïve Method: for each* of the first (N-M+1) positions in the sample, try to identify
the pattern by checking the current and the next* (M-1) positions.

DNA Sample: A A C G A C C A A T C C T G G A ...

A T C C T G A T C C T G

- ✓ Does it work? Yes!!
- ❖ Is it efficient? Let's check!

DNA Sample: ... A T C C T C C A A T C C T G G A ...

- What if the pattern is not there at all?
 - Have to check all (N-M+1) positions, & each time check M times.
 - ❖ In total, (MN-M²+M) times.
- **❖ Time Complexity**: O(MN)
- ❖ N ~ billions & M ~ millions bps long;
 - Lyme disease has 910,725 bps [1]

Summary – DNA sequence detection problem

- We designed an algorithm to detect if the disease sequence D occurs in a patient
 - D has length M and DNA sequence of patient has length N
- Algorithm efficiency (time complexity): O(NM)
 - N > M
- Next week's question: can we design a better solution using concepts we learn today (and next week).
 - Hint: yes, of course else why would we spend time on this !!
 - Use understanding of DFAs and apply algorithmic thinking to devise a more efficient solution

11

Deterministic Finite Automata aka Finite State Machines in Sequential Circuits

- Define Deterministic Finite Automata (DFA) Model
 - Formal definition
 - · Model as a graph
 - Acceptance by DFA
 - Examples
- Deterministic: at every step, and for every input, there is exactly one next state (i.e, one decision)
- Non-deterministic Automata
 - "choice" of moves the machine can make
 - View this as exploring several "parallel" options concurrently
 - Machine eventually follows one sequence of options/choices
 - Question: does adding non-determinism add to their "power"?

DFAs and Finite State Machines (FSM)

- How are they different ? Are they different ?...NO
 - DFAs are mathematical model of FSMs, but defined as "acceptors"
 - Final output is a "yes" or "no"
 - FSMs are an implementation of a DFA and can generate different outputs from each state
- Why DFAs (/FSMs)?
 - Control unit of a processor.....yes, they are DFAs!
 - Network protocols, switching circuits,
 - Search (in editors)...RegEx search
 - Sometimes an algorithm can be modeled as a DFA
 - Ex: searching for substrings
- Focus of this course = theoretical model of DFAs
 - We won't discuss the implementation of a DFA in hardware
 - You know this already!!

13

Recall Definitions and Notations:

- Alphabet: set of symbols, i.e. $\Sigma = \{a, b\}$
- String: finite sequence of symbols from Σ
 - Empty string: denoted λ or ε
- Operations on strings:Concatenation, Reverse, ...
- <u>Length of a string:</u> number of symbols
- Σ* = set of all strings formed by concatenating zero or more symbols in Σ
- Σ^+ = set of all non-empty strings formed by concatenating symbols in Σ , i.e., Σ^+ = Σ^* { λ }
- A formal language L is any subset of Σ^*
- Convention: we use w,x,y to denote strings and a,b,c to denote symbols from the alphabet

Recall: Automata Definition

- An <u>automaton</u> is an abstract model of a digital computing device
- An automaton consists of
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - Possibly, an output mechanism
- Control unit can be in any number of internal *states*, as determined by a *next-state* or *transition* function.
- There are a finite number of states

15

Illustration of a General Automaton Input file Control unit Storage Note: In DFA model, there is no storage device

Deterministic Finite Automata (Accepters)

- **Definition:** A *deterministic finite automaton (DFA)* is defined as $M = (Q, \Sigma, \delta, q_0, F)$ where:
 - 1. Q: a finite set of states
 - 2. Σ : a set of symbols called the *input alphabet*
 - 3. δ : a **transition function** from Q X Σ to Q
 - 4. q_0 : the **start (initial) state**
 - 5. F: a subset of Q representing the *final states*

Final state also called "accepting" state;

Start state also called "initial" state

Example dfa M:

$$Q = \{ q_0, q_1, q_2 \}$$

$$\Sigma = \{ 0, 1 \}$$

$$F = \{q_0 q_1\}$$

where the transition function is given by

$$\delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = q_1$$

$$\delta(q_1, 0) = q_0$$

$$\delta(q_1, 1) = q_2 \ \delta(q_2, 0) = q_2$$

$$\delta(q_2, 1) = q_2$$

17

The Transition Function δ

- Takes two arguments: a state and an input symbol.
- $\delta(q, a)$ = the state that the DFA goes to when it is in state q and input a is received.
- Note: always a next state add a trap state (also called dead state) if no transition
- Yes, this is the same as the 'next state' function that you saw in the design of finite state machines

Graph Representation of DFA's

- Nodes = states.
- Edges (arcs) represent transition function.
 - Edge from state p to state q labeled by all those input symbols that have transitions from p to q.
- Arrow labeled "Start" to the start state.
- Final states indicated by double circles.

19

Processing Input with a DFA

- lacktriangle A DFA starts by processing the leftmost input symbol with its control in state q_0 . The transition function determines the next state, based on current state and input symbol
- The DFA continues processing input symbols until the end of the input string is reached
- The input string is accepted if the automaton is in a final state after the last symbol is processed. Otherwise, the string is rejected.
- For example, the dfa in example accepts the string 100 but rejects the string 110

Alternative Representation: Transition Table

21

Transition Table vs Truth Table

Yes, transition table is similar to a truth table for next state function

Recall: for truth table all entries are binary need to encode each state in binary using two bits $s_1 \, s_0$ q_0 encoded as 00, q_1 is 01, q_2 is 10

	0	1	
q_0	q_0	q_1	
q_1	q_0	q_2	
q_2	q_2	q_2	

Input	s_1	s_0	s ₁ *	s ₀ *
0	0	0	0	0
1	0	0	0	1
0	0	1	0	0
1	0	1	1	0
0	1	0	1	0
1	1	0	1	0

22

States in a DFA – what do they convey?

- Finite number of states Q
- What does a state denote i.e., design process
 - State summarizes a finite amount of information
 - Summary based on past events
 - In DFA, the past events are inputs read by the automaton until this point in time
 - Ex: input= bbaabb
 - After reading bb, DFA is in some state p and then reads a
 - The current state p depends on the input bb
 - The next state q depends on current state p and the input a
- In context of "algorithm design": think of a state as a specific "step" or point in the program

23

Example: A Vending Machine

- · Accept user input (coins) when total is at least 50 cents
 - Real machine: dispense output (candy) when total is 50 or more
- Input valid coins: alphabet = { 5,10,25}
 - Q (25cents) D (10) or N (5)
- What should it keep track of?
 - current total
- When it reaches 50 or more: Final state
 - · Generate output
- States of the machine?
 - · What should each state capture?
 - How many states?

Example 1: Strings With no consecutive 1's (no 11 in input)

String so far has no 11, does not end in 1. String so far has no 11, but ends in a single 1.

Consecutive 1's have been seen.

25

25

Extended Transition Function

- The machine/DFA reads an input string of n symbols, therefore need to describe the effect of entire input string on a DFA by extending δ to a state and a string.
- Intuition: Extended δ is computed for state q and inputs $a_1a_2...a_n$ by following a path in the transition graph, starting at q and selecting the arcs with labels $a_1, a_2,..., a_n$ in turn.
- Notation: we start by denoting the extended function as δ* and will drop the * after we define it

Inductive Definition of δ^* - Extended δ

- Induction on length of string.
- Basis: $\delta^*(q, \epsilon) = q$
- Induction: $\delta^*(q,wa) = \delta(\delta(q,w),a)$
 - Remember: w is a string; a is an input symbol, by convention.

27

27

Example: Extended Delta

$$\begin{array}{c|cccc} & 0 & 1 \\ q_0 & q_0 & q_1 \\ q_1 & q_1 & q_2 \\ q_2 & q_2 & q_2 \end{array}$$

$$\delta(q_1,011) = \delta(\delta(q_1,01),1) = \delta(\delta(\delta(q_1,0),1),1) =$$

$$\delta(\delta(q_0,1),1) = \delta(q_1,1) = q_2$$

Example1: String accepted by DFA M

A string w is "accepted" by the DFA if the machine is in a final state after reading w

String 101 is in the language of the DFA below.

Starts at q_0

Ends in state q_1 which is a final state.

29

29

Definition: Language accepted by a DFA

- If M is an automaton/machine, L(M) is its language: set of input strings accepted by the machine.
 - L(M) is the set of strings that take the machine from the start state to a final state
- Formally:

L(M) = the set of strings w such that $\delta(q_0, w)$ is in F.

$$L(M) = \{ w \mid \delta(q_0, w) \in F \}$$

• In terms of the graph: string w is accepted by DFA M if there is a path labelled w from node q_0 to some node q which is a final state

Definition: Regular Languages

- DFAs accept a family of languages collectively known as regular languages.
- A language L is regular if and only if there is a DFA M that accepts L.
 - Therefore, to show that a language is regular, one must construct a DFA to accept it, i.e., L=L(M) for some DFA A.
- Regular languages have wide applicability in problems that involve scanning input strings in search of specific patterns.
- Some languages are not regular, i.e., there is no DFA M that accepts the language
 - Intuitively, regular languages cannot "count" to arbitrarily high integers.
 - To show that a language is not regular we need to prove that there is no DFA M that accepts the language

31

Designing DFAs...and applying algorithmic thinking

- Recall properties of an "algorithm" sequence of steps, each step can be carried out by the primitive operations of the machine,...
- In DFA: each step reads symbol from input and transition function determines next state
- DFA "accepts" (i.e., output = "Yes") if it ends up in a final state
- Each state summarizes events that have taken place thus far
 - It captures some property of the string that has been read thus far
 - Ex: 0110110 after reading 0110 it is in state p, now reads 1

Example 2:

- L = { w | w is a string in {0,1}* and w contains the substring 101}
 - Input is binary string, and DFA M is in final state if input contains 101.
- What should the states keep track of?
 - Pattern of the input read 'thus far'
 - All of the input or the relevant part, i.e., the properties of the substring?
- Algorithm: reads input, one input symbol at a time, determines next state/step
- Properties/constraints:
 - If we read 0 then this cannot be end or beginning of the substring
 - It can only be after a 1 was read in the previous step
 - If we read a 1 then it could be the start of the substring OR it could be end of substring if previous two inputs were 10
 - Once you read 101, then continue reading all inputs and stay in final state

33

Example 2: Algorithm

- L = { w | w is a string in {0,1}* and w contains the substring 101}
- 1. (Start) If (input ==0), i.e., read 0, stay in step 1 because this is the first 0 or is a 0 with no 1 before it.
 - else If (input == 1) then go to step 2 this could be the first symbol in the substring 101
- 2. If (input ==0) then go to step 3 this means we read 10 as last two inputs.
 - else If (input ==1) then stay in step 2 this recent 1 is start of substring
- 3. IF (input==1) then go to step 4 we have seen substring 101
- else if (input ==0) then go to step 1 we have to start all over again since 100 cannot be part of the substring 101
- 4. IF (input==0) or (input==1) stay in step 4.
 - If no input then halt and accept the input string.

Example 2: Encoding the states

- From the algorithm, identifying the states is reasonably straightforward (in this example):
- q₀ start state, corresponds to step 1 of algorithm
 - State summarizes "machine has not seen the first symbol of the substring 101"
- q₁ –step 2
 - State summary: last input was 1, so we just read first symbol of 101
- q₂ –step 3
 - State summary: last two inputs are 10 which is substring of 101
- q₃ step 4...final state
 - Machine has read 101 in the input string
- Next write out the formal DFA (the "machine language")

35

Example 2: DFA that recognizes Substring 101

- q0: not read first 1 in substring 101
- q1: last input read was a 1, could be start of substring 101
- q2: last two inputs read were 10 which is part of substring 101
- q3: last three inputs read were 101 which means substring 101 is in input

Transition Table:

	0	1		
q_0	q_0	q_1		
q_1	q_2	q_1		
q_2	q_0	q_3		
q_3	q_3	q_3		

37

Trap States

- Typical convention is to define transition function for "valid" moves of the machine – implication is that undefined moves will take the machine to a trap state
 - In trap state, machine keeps reading input symbols till end of input
 - Assumption: If transition $\delta(q,w)$ is not defined then it goes to Trap state
- Example: L = { w | w {0,1}* and w has one or more 0's followed by pne or more 1's}

Exercise DFA 1: Groups

- L = { w | w is a string in {0,1}* and w has an even number (at least
 2) of 1's followed by an odd number of 0's}
 - Ex: 11000 is in L
 - Ex: 11100 is not in L
- Algorithm?
 - Hint: the conditions that the algo should check are (a) 1's followed by 0's and (b) 1's should be even and 0's should be odd
 - From start state (step 1), read the input string one symbol at a time
 - At each state "capture" if we have even 1's or odd 1's or after you have finished reading only 1's check even 0's/odd 0's (

39

Summary and Next....

- Machine M specified as a 5-tuple
 - Alphabet, Set of States Q, Final states F, Start State , Transition function $\boldsymbol{\delta}$
- Language accepted by M is set of strings that take M from start to final state: $L(M) = \{ w \mid \delta(q_0, w) \in F \}$
- State: summarizes events that have taken place thus far
 - Until current input is read
- Next question: How do we show that a DFA M accepts exactly a language L?
- Your to-do list: Install JFLAP, read notes/text
- Next week labs will go over examples using JFLAP

Deterministic Finite Automata - Summary

- **Definition:** A <u>deterministic finite automaton (DFA)</u> is defined as $M = (Q, \Sigma, \delta, q_0, F)$ where:
 - 1. Q: a finite set of **states**
 - 2. Σ : a set of symbols called the *input alphabet*
 - 3. δ : a **transition function** from Q X Σ to Q can be represented as a graph
 - 4. q_0 : the *start (initial) state*
 - 5. F: a subset of Q representing the *final (/accepting) states* "Algorithm" model for the machine:
- At each step: M reads one symbol from input and goes to next state – a state summarizes events that have occurred thus far
- If at end of input, M is in final state it accepts

41

Example DFA 3

- Give a DFA for the language
 - $L_3 = \{ w \mid w \in \{0, 1\}^* \text{ and } w \text{ has an odd number of } 0 \text{ 's and an odd number of } 1 \text{ 's } \}$
 - Ex: 010110 is in L₃ 1010 is not in L₃
- For any binary string, we have n 0's and m 1's
- What are the cases we can have:
 - a) Both even
 - b) Even number of 0's and Odd 1's
 - c) Odd 0's and Even 1's
 - d) Odd 0's and Odd 1's
- Question: If M has read a substring v thus far and has case (b) even 0 and odd 1 then if it reads 0 next, what is the next case/state?

Example DFA 3

q₀: even 0 and even 1 q₁: odd 0 and even 1 q₂: odd 0 and odd 1 q₃: even 0 and odd 1

43

Exercise 2: Work in breakout groups and submit

- Provide a DFA for L = { w | w is a string in {0,1}* and w contains (a) the substring 101 or (b) substring 010 }
 - Ex: 0<u>010</u>1011 is in L, <u>101</u>10 is in L,
 - Ex:1110 is not in L, 0001100 is not in L

Next: Proving Correctness of your DFA

If M is an automaton/machine, L(M) is its language: set of input strings accepted by the machine.

L(M) = the set of strings w such that $\delta(q_0,w)$ is in F.

$$L(M) = \{ w \mid \delta(q_0, w) \in F \}$$

• If you are designing a DFA M to accept a language L, then how do we show that your design is correct?

Prove
$$L(M) = L$$

45

45

Example – Proving Property of language accepted by DFA Example 1

■ The language of our example DFA is:

 $\{w\mid w \text{ is in }\{0,1\}^* \text{ and } w \text{ does not have }$

two consecutive 1's}

These conditions about w are true.

46

Proofs of Set Equivalence

- Often, we need to prove that two descriptions of sets are in fact the same set.
- Here, one set is "the language of this DFA," and the other is "the set of strings of 0's and 1's with no consecutive 1's."

47

47

Proofs – **(2)**

- In general, to prove S = T, we need to prove two parts:
 - $S \subseteq T$ and $T \subseteq S$. That is:
 - 1. If w is in S, then w is in T.
 - 2. If w is in T, then w is in S.
- Here, S = the language of our running DFA, and T = "no consecutive 1's."

48

Part 1: S ⊆ **T**

- To prove: if w is accepted by DFA M then
 w has no consecutive 1's.
- Proof is an induction on length of w.
- Important trick: Expand the inductive hypothesis to be more detailed than the statement you are trying to prove.

49

49

The Inductive Hypothesis

- 1. If $\delta(q_0,\,w)=q_0$, then w has no consecutive 1's and does not end in 1.
- 2. If $\delta(q_0, w) = q_1$, then w has no consecutive 1's and ends in a single 1.
- Basis: $|\mathbf{w}| = 0$; i.e., $\mathbf{w} = \varepsilon$.
 - (1) holds since € has no 1's at all.
 - (2) holds *vacuously*, since $\delta(q_0, \epsilon)$ is not q_1 .

"length of"

Important concept:

If the "if" part of "if..then" is false,
the statement is true.

Inductive Step

- Assume (1) and (2) are true for strings shorter than w, where |w| is at least 1.
- Because w is not empty, we can write w = xa, where a is the last symbol of w, and x is the string that precedes.
- IH is true for x.

51

51

Inductive Step – (2)

- Need to prove (1) and (2) for w = xa.
- (1) for w is: If $\delta(q_0, w) = q_0$, then w has no consecutive 1's and does not end in 1.
- Since $\delta(q_0, w) = q_0$, $\delta(q_0, x)$ must be q_0 or q_1 , and a must be 0 (look at the DFA).
- By the IH, x has no 11's.
- Thus, w has no 11's and does not end in 1.

Inductive Step – (3)

- Now, prove (2) for w = xa: If $\delta(q_0, w) = q_1$, then w has no 11's and ends in 1.
- Since $\delta(q_0, w) = q_1$, $\delta(q_0, x)$ must be q_0 , and a must be 1 (look at the DFA).
- By the IH, x has no 11's and does not end in 1.
- Thus, w has no 11's and ends in 1.

53

53

Part 2: T ⊆ S

- Now, we must prove: if w has no 11's, then w is accepted by DFA M
- Contrapositive: If w is not accepted by M then string w has 11

Key idea: contrapositive of "if X then Y" is the equivalent statement "if not Y then not X."

54

Using the Contrapositive

- Because there is a unique transition from every state on every input symbol, each w gets the DFA to exactly one state.
- The only way w is not accepted is if it gets to q₂.

55

55

Using the Contrapositive – (2)

- The only way to get to q_2 [formally: $\delta(q_0, w) = q_2$] is if w = xIy, and x gets to q_1 , and y is the tail of w that follows what gets to q_2 for the first time.
- If $\delta(q_0,x) = q_1$ then surely x = zI for some z.
- Thus, w = zIIy and has 11.

56

Summary: Language accepted by a DFA M

• In general, to prove the correctness of your design (of a DFA M to accept a language L):

Prove they are equal!

- Typically: prove "property" of each state (or at least the state that is connected to a final state)
 - This is essentially proving the correctness of your algorithm !!
- Proving correctness of an algorithm is an important step in the design of algorithms

57

Question

- I have a DFA M₁ and another DFA M₂, and want to check if L(M₁)=L(M₂)
- How ?...
 - A proof like we just provided?
- Why ask this question.....Algorithmic thinking !!!!
 - Will return to this question when we discuss "Decision Properties" for Regular Languages/DFAs

DFAs - Summary

- Simple model of machines
 - Finite number of states
 - Transition from one state to another based only on the input symbol
- Algorithms using DFA Model:
 - Write out steps, each step machine is in a state and reads an input and computes next state
 - This can be implemented as a DFA or can be implemented as a program!

59

Next.....Non-determinism

- We want to add features to the base machine (DFA) in an attempt to increase its "power"
 - Power = more problems it can solve ? Or is it efficiency (time) ?
- Next topic: non-deterministic machines and non-deterministic finite automaton
 - Non-determinism adds more expressive power to the algorithm
 - Can be viewed as machine executing several parallel paths
- Now on to another exercise....

Exercise 3 - Recall: DNA Sequence Matching Problem

- Problem: Suppose a certain genetic disease D is characterized by the pattern p = ATCCTG presented in a strand of DNA sequence.
- p is consisted of M base pairs (bps) of 4 kinds.
 - For p = ATCCTG, M = 6 bps.

- [https://www.genome.gov/ genetics-glossary/Base-Pair]
- Question: given a <u>DNA sequence sample</u>, does the patient have D?
 - · Assume only need to find the pattern once.
 - DNA Sample: ... AACGACCAATCCTGGA ...
 - However, the DNA sample has a length of N bps, where N >> M.
- Naïve Algorithm: Given sequence of length N and disease sequence of length M, we have an O(MN) algorithm.

61

Exercise 3: Apply DFA Algorithmic thinking to the DNA sequence matching problem

- Why study DFA model of 'computing' (processing)?
- Now that you know how a DFA works, can you construct a more efficient solution for the DNA sequence matching problem?
 - Design an algorithm that works like a DFA
 - What is the time complexity of your solution?
- Work in groups and submit.....