МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Лабораторная работа

Свободные колебания в электрическом контуре

Выполнила: Карасёва Таисия Б02-001 **Цель работы:** исследование свободных колебаний в электрическом колебательном контуре **В работе используются**: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, электронный осциллограф, унивенровльный мост. **Описание установки**

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1~\mathrm{MOm}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

Теория

Свободные колебания

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I. Второе првило Кирхгофа:

$$\begin{array}{c|c}
\hline
 & I \\
U_c & C \\
 & R
\end{array}$$

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0. ag{1}$$

Вводя обозначения $\gamma = \frac{R}{2L}, \, \omega_0^2 = \frac{1}{LC}, \,$ получим уравнение

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0. \tag{2}$$

Его решение в общем виде:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t), \tag{3}$$

где $\kappa = \sqrt{\gamma^2 - \omega_0^2}, \, U_0 = U_C$ – начальное напряжение на конденсаторе. В случае $R \approx 0$

$$\ddot{I} + \omega_0^2 I = 0 \Rightarrow T = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC} \tag{4}$$

Затухающие колебания

В случае, когда $\gamma < \omega_0$, имеем $\kappa = i\omega$, где $\omega = \sqrt{\omega_0^2 - \gamma^2}$ – частоты свободных (собственных) колебаний. Тогда ток

$$I = -\frac{U_0}{L\omega}e^{-\gamma t}\sin(\omega t) \tag{5}$$

затухает и имеет колебательный характер. Величина γ определяет затухание колебаний: $\gamma=\frac{1}{\tau}$, где τ — время затухание амплитуды в e раз. Формулы для наряжение на кондесаторе и тока в цепи можно переписать иначе:

Рис. 1: Затухающие колебания.

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta),$$

$$I = -\frac{U_0}{L} e^{-\gamma t} \cos(\omega t - \theta).$$
(6)

Апериодические колебания

В случае $\gamma > \omega_0$, формулы для тока и напряжения на конденсаторе имеют следующий вид:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t),$$

$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t)\right).$$
a)
$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t)\right).$$

Процесс в этом случае не является колебательным, его называют апериодическим. Режим, соответствующий $\gamma = \omega_0$, называются *критическим*. В этом случае предельный переход $\omega \to 0$ в (5) даст

Рис. 2: Критический режим.

 $I = -\frac{U_0}{I} t e^{-\gamma t},$

$$U_C = U_0 e^{-\gamma t} (1 + \gamma t).$$

Сопротивление в этом случае

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}}\tag{7}$$

называется *критическим сопротивлением* контура. *Добротность* контура по определению

$$Q = 2\pi \frac{W}{\Delta W},$$

где W — запасённая энергия, ΔW — потери за период. Тогда

$$Q = 2\pi \frac{CU_0^2/2 \cdot e^{-2\gamma t}}{CU_0^2/2 \cdot (e^{-2\gamma t} - e^{-2\gamma (T+t)})} = \frac{\pi}{\gamma T} = \frac{1}{R} \sqrt{\frac{L}{C}}.$$
 (8)

Логарифмическим декрементом затухания называются число

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \ln e^{\gamma T} = \gamma T. \tag{9}$$

или

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}.$$
(10)

Ход работы

1. На генераторе устанавливаем длительность импульсов 5 мск, частоту повторения $\nu_0=100$ Гц. На магазине сопротивлений устанавливаем величину R=0 Ом, на магазине ёмкостей - C=0.02 мк Φ . Будем изменять емкость от 0.02 до 0.10 мк Φ , проводя измерения периода по формуле:

$$T_{exp} = T_0 \frac{x}{n} \tag{11}$$

где T_0 , с - цена деления развёртки, x - количество делений, которое заимают n периодов. Погрешность $\sigma_x=0.5, \sigma_{T_0}=0.01$ мс. Тогда

$$\sigma_{T_{exp}} = T_{exp} \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_{T_0}}{T_0}\right)^2} \tag{12}$$

Результаты сведем в таблицу 1 и построим график рис. 3.

Таблица 1: Зависимость Т(С).

C , мк Φ	0.002	0.005	0.007	0.010	0.020	0.030	0.040
T, мcВ	0.20	0.29	0.33	0.38	0.47	0.61	0.72
C , мк Φ	0.050	0.060	0.070	0.080	0.090	0.090	0.100
Т, мсВ	0.80	0.88	0.97	1.03	1.08	1.15	1.20

Рис. 3: Экспериментальная и теоретическая зависимости T(C).

2. Рассчитаем ёмкость, при котрой собственная частота колебаний контура составляет 5 кГц. C=3 нФ. Рассчитаем критическое сопротивление контура $R_{\rm kp,teor}=2\sqrt{L/C}=2.2\cdot 10^4$ Ом.

3. Установим на магазине соответсвующую ёмкость. Увеличивая сопротивление от 0 до $R_{\rm kp,teor}$, будем наблюдать картину затухающих колебаний. Зафиксируем сопротивление, при котором колебательный режим переходит в апериодический $R_{\rm kp,exp}=1.7\cdot 10^4$ Ом.

Будем менть значения сопротивления от $0.1R_{\rm kp,exp}$ до $0.3R_{\rm kp,exp}$. Измеряя амлитуды для разных колебаний, опеределим логарифмический декремент затухания по формуле (10) и его погрешность.

$$\sigma_{\Theta} = \frac{1}{n} \sqrt{\frac{\sigma_{U_{k+n}}^2}{U_{k+n}^2} + \frac{\sigma_{U_k}^2}{U_k^2}}$$

$$\sigma_{U_{k+n}} = \sigma_{U_k} = 10 \text{ MB}$$

Таблица 2: Определение зависимости $\Theta(R)$

R, Om	1700	2000	2300	3500	4000	4500	5000
R_{Σ} , Om	1743			3543	4043	4543	5043
n	4	4	2	2	2	2	1
U_0 , B	2.8	2.8	2.8	2.8	2.8	2.8	2.8
U_n , B	0.30	0.20	0.70	0.30	0.20	0.16	0.54
Θ	0.56	0.66	0.69	1.12	1.32	1.43	1.65
σ_{Θ}	0.02	0.03	0.03	0.03	0.05	0.06	0.04

Измерив на универсальном мосте сопротивление катушки $R_L=43$ Ом при нашей частоте 5 к Γ ц, добавим его к сопротивлению магазина, получив сопротивление контура R_{Σ}

Построим график $\frac{1}{\Theta^2}=f\left(\frac{1}{R_{\Sigma}^2}\right)$ и рассчитаем $R_{\mathrm{\kappa p}}$ по его наклону.

Теоретическая зависимость имеет вид

$$\frac{1}{\Theta^2} = \frac{R_{\rm kp}^2}{4\pi^2} \frac{1}{R_{\Sigma}^2} - \frac{1}{4\pi^2}$$
$$\sigma_{\frac{1}{\Theta^2}} = \frac{2\sigma_{\Theta}}{\Theta^3}$$

Получим значения $R_{\rm kp}=19700$ Ом и $\sigma_{R_{\rm kp}}\approx 500$ Ом с помощью МНК.

Полученное значение отстоит от теоретического $R_{\rm kp,teor}=2\sqrt{L/C}=2.2\cdot 10^4$ на $\sim 10\%$

Рис. 4: Зависимость $\frac{1}{\Theta^2} \left(\frac{1}{R^2} \right)$

4. Рассчитаем добротность контура Q и его погрешнгсть для максимального и минимального значений Θ

$$Q_{exp} = \frac{\pi}{\Theta}; \ \sigma_{Q_{exp}} = \frac{\pi \sigma_{\Theta}}{\Theta^2}$$

сравним полученные значения с $Q_{teor} = \frac{1}{R} \sqrt{\frac{L}{C}}$

Таблица 3: Добротность контура

Θ	Q_{exp}	$\sigma_{Q_{exp}}$	Q_{teor}
0.56	5.6	0.2	6.5
1.65	1.9	0.05	2.3

5. Рассчитаем доботность по спирали на фазовой плоскости, измеряя максимумы отклонения витков спирали по одной из координат для для максимального и минимального значений R

для
$$R_{min}=1.7\cdot 10^3$$
 получаем $\Theta=\frac{1}{3}\ln\frac{1.3}{0.24}=0.56\pm 0.03$

для
$$R_{max}=5.0\cdot 10^3$$
 получаем $\Theta=\frac{1}{1}\ln\frac{0.4}{0.08}=1.61\pm 0.09$

Вывод

(а) была подтверждена теоретическая зависимость периода колебаний от ёммкости конденсатора. Некоторое отклонение от теоретической кривой может быть объяснено

- ограниченностью точности измерения количества делений, которые занимает один период.
- (b) тремя способами был вычислен логарифмический декремент затухания. Двумя экспериментальными по зависимости напряжения от времени и по фазовой траектории колебаний. Результаты обоих методов совпадают в пределах погрешности и имеют относительную погрешность не более 5%. Третий метод теоретический. Его результаты отличаются от результатов экспериментов на $\sim 15\%$
- (c) была изучена зависимость логарифмического декремента затухания от споротивления контура и подтверждена линейная зависимость обратного квадрата декремента затухания от обратного квадрата споротивления контура
- (d) Тремя способами было определено критическое сопротивление контура теоретический, прямое измерение, как коэффициент в линейной зависимости. Все 3 результата отличаются друг от друга на $\sim 10\%$