Термодинамика

Внутренняя энергия - это суммарная энергия хаотического движения и взаимодействия микрочастиц системы (молекул). $U = \sum E_{\text{кин i}} + \sum E_{\text{пот i}}$

$$U=rac{3}{2}rac{{
m m}}{{
m M}}RT=rac{3}{2}\ {
m V}RT=rac{3}{2}pV$$
 — для идеального или одноатомного газа $U=rac{5}{2}rac{{
m m}}{{
m M}}RT=rac{5}{2}vRT=rac{5}{2}pV$ — для двухатомного газа.

$$U = \frac{5}{2} \frac{\text{m}}{\text{M}} RT = \frac{5}{2} vRT = \frac{5}{2} pV -$$
 для двухатомного газа.

∆ U - изменение внутренней энергии тела, сопровождается изменением температуры или агрегатного состояния тела.

$$\Delta U = \frac{3}{2} \frac{\text{m}}{\text{M}} R \Delta T = \frac{3}{2} \text{ vR} \Delta T$$
, $\Delta U = \frac{3}{2} \Delta pV \text{ npu V} = \text{const unu } \Delta U = \frac{3}{2} p \Delta V \text{ npu p} = \text{const}$

<u>Два способа изменения U</u>

Для газа

1. А - работа газа или над газом.

$$A = p\Delta V = p(V_2 - V_1)$$
 npu $p = const$, $A = \frac{m}{V}R\Delta T = vR\Delta T$

Работа газа (расширение) $U\downarrow T\downarrow$ на графике переход $1\rightarrow a\rightarrow 2$

Работа над газом (сжатие) $U\uparrow$, $T\uparrow$ на графике переход $2\rightarrow \delta\rightarrow 1$

Геометрический способ нахождения работы

A = S площади фигуры между графиком и осью V (процесс не замкнут)

Для циклического процесса

$$1 \rightarrow a \rightarrow 2 \rightarrow \delta \rightarrow 1$$

 $A = S_{\text{цикл}}$ площади фигуры внутри графика

2. Q – теплопередача.

$$\Delta U = -A_{2a3a} \pm Q$$

Для любого тела

1. Теплопередача

- → 1. Теплопроводность *(от молекулы к молекуле)*
- → 2. Конвекция (потоками вещества)
- → 3. Излучение (инфракрасные лучи)
- 1) $Q = cm\Delta T$ нагрев, охлаждение, где c удельная теплоемкость тела $(\frac{Дж}{K\Gamma\cdot C})$
- 2) $\mathbf{Q} = \lambda \mathbf{m} n$ лавление, кристаллизация, где λ удельная теплота плавления $(\frac{\mathcal{L}^{\mathsf{x}}}{\kappa})$
- 3) Q = Lm-парообразование, конденсация, где L-удельная теплота парообразования $(\frac{Дж}{\kappa})$
- 4) Q = qm cгорание топлива, где q yдельная теплота сгорания топлива $(\frac{Дж}{\kappa})$
 - 2. Совершение работы внешних сил

$$\Delta U = A_{\theta HeWH.c.} \pm Q$$

<u>Первый закон термодинамики</u> - изменение внутренней энергии системы происходит за счет совершения работы(газом или над газом) и теплопередачи.

 $Q = \Delta U + A$

<u>Пример:</u> —

 $\Delta U \longrightarrow \Delta U = Q - A$

Второй закон термодинамики - невозможен процесс, единственным результатом которого была бы передача энергии от холодного тела к горячему (сформулировал этот закон Р. Клаузиус).

I закон термодинамики для изопроцессов.

(Термодинамика изопроцессов).

(Гермооинамика изопроцессов).		
Процесс	Работа газа при расширении	Закон сохранения энергии
Изотермический, $T = \text{const}, \Delta T = 0$	$ \begin{array}{c c} & P \\ & A' > 0 \\ & V_1 & V_2 \end{array} $	$ \Delta \mathbf{U} = 0 \\ \mathbf{Q} = \mathbf{A} $
Изохорный $V = \text{const}, \Delta V = 0$	$ \begin{array}{c c} p \\ \hline A' = 0 \\ \hline V \end{array} $	$A = 0$ $Q = \Delta U$
Изобарный, P = const	$p_1 - A_{ra3a} = p_1(V_2 - V_1)$ $0 V_1 \qquad V_2 \qquad V$	$\Delta \mathbf{U} = \mathbf{Q} + \mathbf{A}$ $\mathbf{Q} = \Delta \mathbf{U} + \mathbf{A}_{\mathbf{ra3a}}$
Адиабатный, Q = 0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{Q} = 0$ $\mathbf{\Delta U} = -\mathbf{A}_{\mathbf{ra3a}}$

Тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Тепловые двигатели

Принцип работы.

Идея: превращение внутренней энергии топлива в работу. I.

КПД тепловых двигателей.

КПД реальной тепловой машины

$$A = Q_H - Q_X$$

$$\eta = \frac{A_{\text{полезн.}}}{Q_{\text{rr}}} \cdot 100\%$$

$$\eta = \frac{Q_{H-} Q_{X}}{Q_{T-}} \cdot 100\%$$

$$A = Q_{\rm H} - Q_{\rm X}$$
 $\eta = \frac{A_{\rm полезн.}}{Q_{\rm H}} \cdot 100\%$ $\eta = \frac{Q_{\rm H} - Q_{\rm X}}{Q_{\rm H}} \cdot 100\%$ $\eta = 1 - \frac{Q_{\rm x}}{Q_{\rm H}} \cdot 100\%$

Аполезн. – работа, совершаемая рабочим телом,

 $Q_{\mbox{\tiny H}}$ – количество теплоты, полученное рабочим телом от нагревателя,

 Q_{x} – количество теплоты, отданное рабочим телом холодильнику.

КПД идеальной тепловой машины (рабочее тело – идеальный газ)

$$\eta_{\text{max}} = \frac{T_{\scriptscriptstyle H} - T_{\scriptscriptstyle X}}{T_{\scriptscriptstyle H}} \cdot 100\%$$