RES and Electricity market

RES production in Italy: winter 2005

DIAGRAMMA ORARIO DEL FABBISOGNO E RELATIVA COPERTURA DEL: 26-01-2005

Largest contribution due to thermal plants RES production limited to hydro plants

RES production in Italy: summer 2005

DIAGRAMMA ORARIO DEL FABBISOGNO E RELATIVA COPERTURA DEL: 20-07-2005

More or less the same fuel mix as in winter

RES production in Italy: winter 2013

Large contribution from wind and solar plants; improvement also in hydro plants

RES production in Italy: summer 2012

Solar impact on demand - Sundays

Netting the solar effect, minimum load occurs in daily hours.

It might seem a nonsense, but it is the real situation

RES and the market

Plants remuneration has to cover the production cost plus a margin

For RES:

- Variable cost is usually quite lower
 - Primary source is free
 - Only ordinary maintenance and employee costs are taken into account (low impact on plants greater than 1 MW)
- Fixed cost is quite high
 - Installation cost (PV panels, wind turbine, river flows and turbines)
 - Capital remuneration (i.e. the margin for the producer)
 - Utilization hours quite reduce

Total RES production cost is usually higher than thermal one due to high fixed costs In a market environment RES have to be incentivized

RES remuneration

- Two level
 - Commercial energy sold within the energy market
 - Incentives: granted to the energy produced

Can RES and market interact? That is the question!

The clearing process in the spot market

Supply curve and market clearing

Without RES the price is given by peak thermal plants

RES and supply curve

- Not programmable RES:
 - The goal is to fully exploit the primary source, without wasting anything.
 - All the production has to be dispatched: in a market environment this means to offer at a very low price
 - Not programmable RES usually bid at 0 €/MWh to be sure to be selected
 - They act as a price taker
- Programmable RES
 - The production is planned ex-ante in order to try to get the highest market prices
 - When planned, the plant has to be on, i.e. it has to be dispatched
 - Even programmable RES bids at 0 €/MWh
 - Due to RES presence, supply curve moves rightward
- Market clearing price is modified

Supply curve and market clearing with low penetration on RES

Peak plants are still used, but with a reduced volume

Supply curve and market clearing with high penetration on RES

Peak plants are not dispatched: market price is reduced

Supply curve and market clearing with high penetration on RES

Due to reduced working hours, peak plants bids may be increased: market prices may become even higher

A RES paradox: prices might increase, at least in some hours

The Italian case

The year 2008: low RES penetration

The year 2008: high RES penetration

Wind and competitive market

Zone: Italy (Unconstrained)

Hour

- Wind theoretically can reduce competitive market in all the hours.
- The effect is nonetheless not predictable due to the intermittency

Solar effect

Zone: Italy (Unconstrained)

- Solar can reduce competitive only in day hours.
- The effect is nonetheless not predictable due the intermittency

Energy price in 2008

- Double peaks: morning and evening
- Generally, price correlated tot eh volumes

Energy price in 2012

Only evening peaks: price not so far correlated with the volumes

RES and MSD

Reserve margin

- Minimum tertiary reserve margin is a combination of:
 - Tripping of the largest thermal unit on service
 - Maximum error for load and RES production forecast (99.7 percentile)
- Secondary reserve band
 - Dependent on load
 - Computed according to UCTE policy
- RES increase the reserve margin
 - The larger is the solar and wind production, the more reserve margin is required in order to deal with the intermittency
 - No problem arises with reservoir or pumping storage plants

Congestions

- RES plants significantly affect the distribution of power flows within the transmission network
- In some areas specific congestions may arise:
 - Main problem is with wind production concentrated in small areas with limited network capability

Balancing

- Real time dispatching orders compensate the volatility of load and RES production with respect to the forecast
- RES production may increase this volatility, requiring the activation of larger balancing resources
- The larger is the solar and wind production, the larger are the balancing resources to deal with intermittency
 - No problem arise with reservoir and pumping storage plants (on the contrary they are precious balancing resources)

RES and MSD markets: a summary

- Only programmable RES plants take part with MSD
- Other RES plants are not allowed to MSD, nonetheless they have a strong impact on this market
 - Reserve margin and balancing resources are increased to deal with intermittent solar and wind production
 - Congestions may arise if RES production is concentrated in small areas

RES induces an extra cost in MSD: this is a critical issue correlated to the integration of RES in the energy market.

A problem arises: who pays for this extra cost?

RES production curtailment

- As told before, Terna may issue a dispatching order also for plants not admitted to MSD
 - Not programmable RES may be affected by this issue
 - So far the problem is correlated mainly with wind production due to congestions
- Wind relevant units (>10MVA)
 - The producers rebuys the energy sold in the day-ahead market at day-ahead price: in other words, he gives back all the income received in the energy market
 - A compensation for lost production is granted
- Wind not relevant units (<=10MVA)
 - Plants are settled in an aggregated manner
 - Energy cut leads to a negative unbalance settled at unbalance price
 - A compensation for lost production is granted

Over generation risk (August Sunday and bank holidays)

Over generation risk (August Sunday and bank holidays)

- At minimum load, not dispatchable generation might be greater than dispatchable one
- Measures should be adopted:
 - Import reduction
 - Res production curtailment
 - Reduction of thermal plants needed to grant system security

This is dramatically changing the operating of electrical system