

Tour en fosse utilisé pour le reprofilage des roues ferroviaires – Asservissement du porte-outil- Corrigé

Concours Centrale Supelec - PSI 2018.

B2-07

C2-02

Modélisation du mouvement pour la commande

Question 1 Exprimer les fonctions $H_1(p)$, $H_2(p)$, $H_3(p)$ et $H_4(p)$ en fonction de K, λ , m_1 et m_2 .

Correction

D'après le schéma-blocs $Z_1(p)=H_2(p)$ ($F_m(p)+H_1(p)Z_2(p)$). D'après la première équation différentielle, on a : $m_1p^2Z_1(p)+\lambda pZ_1(p)+KZ_1(p)=\lambda pZ_2(p)+KZ_2(p)+F_m(p)\Leftrightarrow Z_1(p)$ ($m_1p^2+\lambda p+K$) = $Z_2(p)$ ($\lambda p+K$) + $F_m(p)\Leftrightarrow Z_1(p)=\frac{Z_2(p)$ ($\lambda p+K$) + $F_m(p)\Leftrightarrow Z_1(p)=\frac{Z_2(p)$ ($\lambda p+K$) + $F_m(p)$. On a donc par identification $H_2(p)=\frac{1}{m_1p^2+\lambda p+K}$ et $H_1(p)=\lambda p+K$. D'après le schéma-blocs $Z_2(p)=H_4(p)$ ($F_c(p)+H_3(p)Z_1(p)$). D'après la seconde équation différentielle, $m_2p^2Z_2(p)+\lambda pZ_2(p)+KZ_2(p)=\lambda pZ_1(p)+KZ_1(p)+F_C(p)\Leftrightarrow Z_2(p)$ ($m_2p^2+\lambda p+K$) = $Z_1(p)$ ($\lambda p+K$) + $F_C(p)\Leftrightarrow Z_2(p)=\frac{Z_1(p)$ ($\lambda p+K$) + $F_C(p)$ $\Leftrightarrow Z_2(p)$ ($m_2p^2+\lambda p+K$) = $Z_1(p)$ ($\lambda p+K$) + $Z_1(p)$ + $Z_1(p)$ ($\lambda p+K$) + $Z_1(p)$ + $Z_1(p)$ ($\lambda p+K$) + $Z_1(p)$ + Z

Question 2 Exprimer $N_1(p)$ et $N_2(p)$ en fonction de $H_1(p)$, $H_2(p)$, $H_3(p)$ et $H_4(p)$.

Correction

En utilisant le premier modèle, on avait : $\begin{cases} Z_1(p) = H_2(p) \left(F_m(p) + H_1(p) Z_2(p) \right) \\ Z_2(p) = H_4(p) \left(F_c(p) + H_3(p) Z_1(p) \right) \end{cases} .$ Ainsi, $Z_1(p) = H_2(p) \left(F_m(p) + H_1(p) \left(H_4(p) \left(F_c(p) + H_3(p) Z_1(p) \right) \right) \right)$ $= H_2(p) F_m(p) + H_1(p) H_2(p) H_4(p) F_c(p) + H_1(p) H_2(p) H_3(p) H_4(p) Z_1(p)$ $\Leftrightarrow Z_1(p) \left(1 - H_1(p) H_2(p) H_3(p) H_4(p) \right) = H_2(p) \left(F_m(p) + H_1(p) H_4(p) F_c(p) \right).$ En utilisant le schéma-blocs, $Z_1(p) = \left(F_c(p) N_1(p) + F_m(p) \right) N_2(p).$ Par identification, on obtient $N_1(p) = H_1(p) H_4(p)$ et $N_2(p) = \frac{H_2(p)}{1 - H_1(p) H_2(p) H_3(p) H_4(p)}.$

Question 3 Montrer que $N_2(p)$ peut s'écrire sous la forme $N_2(p) = A \frac{p^2 + 2\xi_1\omega_1p + \omega_1^2}{p^2(p^2 + 2\xi_2\omega_2p + \omega_2^2)}$. Exprimer ξ_1 , ξ_2 , ω_1 , ω_2 et A en fonction de m_1 n m_2 , λ et K.

$$\begin{split} N_2(p) &= \frac{H_2(p)}{1 - H_1(p)H_2(p)H_3(p)H_4(p)} = \frac{\frac{1}{m_1p^2 + \lambda p + K}}{1 - (\lambda p + K)\frac{1}{m_1p^2 + \lambda p + K}} \\ &= \frac{1}{(m_1p^2 + \lambda p + K) - \frac{(\lambda p + K)^2}{m_2p^2 + \lambda p + K}} = \frac{\frac{m_2p^2 + \lambda p + K}{(m_1p^2 + \lambda p + K) (m_2p^2 + \lambda p + K) - (\lambda p + K)^2}}{\frac{m_2p^2 + \lambda p + K}{(m_1p^2 + \lambda p + K) (m_2p^2 + \lambda p + K) - (\lambda p + K)^2}} \\ &= \frac{m_2p^2 + \lambda p + K}{m_2m_1p^4 + \lambda m_1p^3 + Km_1p^2 + \lambda m_2p^3 + \lambda^2p^2 + \lambda pK + Km_2p^2 + K\lambda p + K^2 - \lambda^2p^2 - K^2 - 2\lambda pK} \\ &= \frac{m_2p^2 + \lambda p + K}{m_2m_1p^4 + \lambda m_1p^3 + Km_1p^2 + \lambda m_2p^3 + Km_2p^2} = \frac{m_2p^2 + \lambda p + K}{p^2 (m_1m_2p^2 + (m_1 + m_2)\lambda p + K (m_1 + m_2))} \\ &= \frac{m_2(p^2 + \frac{\lambda}{m_2}p + \frac{K}{m_2})}{p^2m_1m_2\left(p^2 + \frac{m_1 + m_2}{m_1m_2}\lambda p + K\frac{m_1 + m_2}{m_1m_2}\right)}. \\ &\text{Par identification, on a : } A = \frac{1}{m_1}, \ \omega_1^2 = \frac{K}{m_2}, \ 2\xi_1\omega_1 = \frac{\lambda}{m_2} \text{ et } \xi_1 = \frac{\lambda}{2\omega_1m_2} = \frac{\lambda}{2\sqrt{Km_2}} = , \\ \omega_2^2 = K\frac{m_1 + m_2}{m_1m_2}, \ 2\xi_2\omega_2 = \lambda\frac{m_1 + m_2}{m_1m_2} \text{ et } \xi_2 = \frac{\lambda}{2}\sqrt{\frac{m_1 + m_2}{m_1m_2}K}}. \\ &\text{On a donc } \xi_1 = \frac{\lambda}{2\sqrt{m_2K}} \text{ et } \xi_2 = \lambda\frac{\sqrt{m_1 + m_2}}{2\sqrt{Km_1m_2}}. \end{split}$$

Le diagramme de Bode associé à la fonction de transfert $N_2(p)$ est représenté ci-contre.

Question 4 Compléter ce diagramme par les tracés asymptotiques en module et en phase, et conclure sur la cohérence du diagramme donné.

Correction

D'après le diagramme asymptotique donné, on a nécessairement $\omega_1 < \omega_2$. On peut dresser un tableau des variations à partir de la fonction de transfert $N_2(p)$.

	ú	o_1 α	ω_1	
$\frac{A}{p^2}$	-40 dB/dec	-40 dB/dec	-40 dB/dec	
$p^2 + 2\xi_1\omega_1p + \omega_1^2$	0 dB/dec	40 dB/dec	40 dB/dec	
$\frac{1}{p^2 + 2\xi_2\omega_2p + \omega_2^2}$	0 dB/dec	0 dB/dec	-40 dB/dec	
$20\log N_2(p) $	-40 dB/dec	0 dB/dec	-40 dB/dec	
$Arg(N_2(p))$	-180°	0°	-180°	

Question 5 Au regard des valeurs numériques, montrer que la fonction de transfert $N_2(p)$ peut être approchée par la fonction $N_{\rm 2app}(p)=\frac{A}{p^2}$. En utilisant une couleur différente, tracer le diagramme de Bode associé à la fonction de transfert $N_{\rm 2app}(p)$ sur le document réponse et conclure sur la validité de ce modèle approché.

Correction

Si le système n'est pas sollicité par des pulsations comprises entre 150 et 250 rad s⁻¹, on peut modéliser $N_2(p)$ par un double intégrateur. Le gain dB est donc $20 \log A - 20 \log \omega^2$. Pour $\omega = 500 \, \text{rad s}^{-1}$ on a $20 \log A - 20 \log 500^2 = -182$, $5 \Rightarrow \log A = \frac{20 \log 500^2 - 182}{20}$ et $A = 1,87 \cdot 10^{-4}$.

Question 6 Justifier qu'une correction proportionnelle ne permet pas de respecter l'ensemble des critères du diagramme des exigences de la **??**.

Correction

Dans le cas, la FTBO est de classe 2.

- req 1.1 : $M\varphi = 60^{\circ}$: impossible à respecter la phase sera toujours de -180° .
- ► req 1.2 : $\omega_{0 \text{ dB}} = 200 \text{ rad s}^{-1}$: critère non respecté (cf diagramme de Bode).
- ▶ req 1.4 : erreur en régime permanent : $\Delta c < 40 \,\mu\text{m}$ pour un échelon d'amplitude $f_{c0} = 1 \,\text{kN}$: critère non respecté (pas d'intégrateur avant la perturbation).
- ▶ req 1.5 : défaut de la roue $\Delta u < 30 \,\mu\mathrm{m}$ lorsque la perturbation est sinusoïdale.

La correction proportionnelle ne permet donc pas de respecter tous les critères du cahier des charges.

Analyse de l'influence d'un paramètre

On a d'une part $Q(p) = Q_c(p) - Z_2(p)H_r(p)$.

D'un point de vue numérique, $K_f = 1.5 \times 10^9 \mathrm{N \, m^{-2}}$ et $\tau = 1 \, \mathrm{s}$.

D'autre part, la quantité de matière enlevée est donnée par $q(t) = q_c(t) - z_2(t) + z_2(t - \tau)$ où τ est la durée nécessaire à la roue pour effectuer un tour complet.

Question 7 Déterminer $H_r(p)$ en fonction de τ .

Correction

D'après le schéma-blocs, $Q(p) = Q_c(p) - Z_2(p)H_r(p)$. D'après les équations données et en utilisant le théorème du retard, on a $Q(p) = Q_c(p) - Z_2(p) + Z_2(p)e^{-\tau p} = Q_c(p) Z_2(p)(1 - e^{-\tau p})$. En conséquence, $H_r(p) = 1 - e^{-\tau p}$.

Le schéma-blocs retenu est donné ci-contre.

Question 8 Préciser l'expression de la fonction de transfert en boucle ouverte de la figure 16 puis vérifier la cohérence du diagramme de Bode de la ?? en analysant les « zéros de transmission ».

Correction

$$\begin{aligned} & \text{FTBO}(p) = bK_f S(p) H_r(p) = \frac{bK_f}{K + \lambda p + m_2 p^2} \left(1 - e^{-\tau p} \right) = H_2(p) \cdot H_r(p). \\ & \text{On a } G_{\text{dB}}(\omega) = G_{\text{dB2}}(\omega) + G_{\text{dBr}}(\omega). \\ & G_{\text{dBr}}(\omega) = 20 \log \left| 1 - e^{-j\tau \omega} \right| = 20 \log \sqrt{(1 - \cos{(-\tau \omega)})^2 + (\sin{(-\tau \omega)})^2} = 20 \log \sqrt{2 - 2\cos{(\tau \omega)}}. \\ & \text{On a donc:} \end{aligned}$$

▶ pour
$$\omega = \frac{k2\pi}{\tau}$$
 avec $k \in \mathbb{Z}^*$ et $G_{\mathrm{dBr}}(\omega) \to -\infty$;
▶ pour $\omega = \frac{\pi + k2\pi}{\tau}$ avec $k \in \mathbb{Z}^*$ et $G_{\mathrm{dBr}}(\omega) = 20 \log 2$.

▶ pour
$$\omega = \frac{\pi + k2\pi}{\tau}$$
 avec $k \in \mathbb{Z}^*$ et $G_{\mathrm{dBr}}(\omega) = 20 \log 2$

Le diagramme en gain montre alors l'addition d'un gain du second ordre et d'un gain périodique. Les « zéros de transmission » correspondent aux pulsations $\omega = \frac{k2\pi}{r}$ Pour la phase, $\varphi_{BO}(\omega) = \varphi_2(\omega) + \arg(1 - \cos(-\tau\omega) - j\sin(-\tau\omega))$. Or $1 - \cos(-\tau\omega) = \frac{\tau}{2}$

$$1 - \cos(\tau \omega) \ge 0$$
. On a donc $\varphi_{BO} = \varphi_2(\omega) + \arctan\left(\frac{\sin(\tau \omega)}{1 - \cos(\tau \omega)}\right)$. Le diagramme de phase est la somme d'une phase d'un système du second ordre et d'un

signal $\frac{2\pi}{\tau}$ périodique.

Question 9 Déterminer un ordre de grandeur du paramètre *b* permettant de conserver la stabilité du système en boucle fermée. Conclure sur la compatibilité de cette valeur maximale avec un bon amortissement de l'asservissement.

Correction

Pour garantir la stabilité en BF, il faut assurer un gain négatif en BO. D'après le diagramme de gain, le gain maximal relevé est de $45\,\mathrm{dB}$. Il faudrait donc ajouter un gain supplémentaire b' tel que $20 \log b' = 45$ soit $b' = 10^{45/20} = 177$. Au bilan, on aurait donc $b_{\text{lim}} = b'b = 10^{45/20}$ $177 \times \frac{5 \cdot 10^{-2}}{\pi} = 2,83 \,\mathrm{mm \, rad^{-1}}.$

Il faudrait déterminer si une augmentation de b réduit l'amortissement de l'asservissement.

