P.8-22 A uniform sinusoidal plane wave in air with the following phasor expression for electric intensity

$$\mathbf{E}_{i}(x, z) = \mathbf{a}_{v} 10e^{-j(6x+8z)}$$
 (V/m)

is incident on a perfectly conducting plane at z = 0.

- a) Find the frequency and wavelength of the wave.
- b) Write the instantaneous expressions for $E_i(x, z; t)$ and $H_i(x, z; t)$, using a cosine reference.
- c) Determine the angle of incidence.
- d) Find $E_r(x, z)$ and $H_r(x, z)$ of the reflected wave.
- e) Find $E_1(x, z)$ and $H_1(x, z)$ of the total field.

P.8-29 Consider the situation of normal incidence at a lossless dielectric slab of thickness d in air, as shown in Fig. 8-15 with

$$\epsilon_1 = \epsilon_3 = \epsilon_0$$
 and $\mu_1 = \mu_3 = \mu_0$.

- a) Find E_{r0} , E_2^+ , E_2^- , and E_{t0} in terms of E_{t0} , d, ϵ_2 , and μ_2 .
- b) Will there be reflection at interface z = 0 if $d = \lambda_2/4$? If $d = \lambda_2/2$? Explain.

FIGURE 8-15
Normal incidence at multiple dielectric interfaces

- **P.8-33** A uniform plane wave with $E_i(z) = \mathbf{a}_x E_{i0} e^{-j\beta_0 z}$ in air propagates normally through a thin copper sheet of thickness d, as shown in Fig. 8-23. Neglecting multiple reflections within the copper sheets, find
- a) E_2^+ , H_2^+ b) E_2^- , H_2^- c) E_{30} , H_{30} d) $(\mathscr{P}_{av})_3/(\mathscr{P}_{av})_i$ Calculate $(\mathscr{P}_{av})_3/(\mathscr{P}_{av})_i$ for a thickness d that equals one skin depth at 10 (MHz). (Note that this pertains to the shielding effectiveness of the thin copper sheet.)

FIGURE 8-23 Plane wave propagating through a thin copper sheet (Problem P.8-33).

P.8–37 A uniform plane wave with perpendicular polarization represented by Eqs. (8-196) and (8-197) is incident on a plane interface at z=0, as shown in Fig. 8-16. Assuming

 $\epsilon_2 < \epsilon_1$ and $\theta_i > \theta_c$, (a) obtain the phasor expressions for the transmitted field (E_t, H_t), and (b) verify that the average power transmitted into medium 2 vanishes.

$$\mathbf{E}_{i}(x, z) = \mathbf{a}_{y} E_{i0} e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}$$
 (8-196)

$$\mathbf{H}_{i}(x,z) = \frac{E_{i0}}{\eta_{1}} \left(-\mathbf{a}_{x} \cos \theta_{i} + \mathbf{a}_{z} \sin \theta_{i} \right) e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}. \tag{8-197}$$

FIGURE 8-16
Uniform plane wave incident obliquely on a plane dielectric boundary.

P.8-40 Glass isosceles triangular prisms shown in Fig. 8-25 are used in optical instruments. Assuming $\epsilon_r = 4$ for glass, calculate the percentage of the incident light power reflected back by the prism.

FIGURE 8-25 Light reflection by a right isosceles triangular prism (Problem P.8-40).

P.8–45 By using Snell's law of refraction, (a) express Γ and τ in terms of ϵ_{r1} , ϵ_{r2} , and θ_i ; and (b) plot Γ and τ versus θ_i for $\epsilon_{r1}/\epsilon_{r2}=2.25$ for both perpendicular and parallel polarizations.