TAUTOLOGY INNOVATION SCHOOL

facebook/tautologyai www.tautology.live

Regression Tree

Introduction

What is Regression Tree?

Pros & Cons

Data for Regression Tree

Real World Application

Regression Tree เป็นหนึ่งใน algorithm ประเภท supervised

learning ที่ใช้สำหรับแก้ปัญหา regression โดยมีหลักการทำงานคือ

การสร้างชุดของกฎเพื่อประมาณค่าตัวแปรตาม

area	price
120	2.0
150	2.0
250	3.5
280	3.5
500	20.0
550	20.0

area <= 390

area <= 200

price = 2.0

=> If area <= 390 and area <= 200, then price=2.0

area > 200

price = 3.5

=> If area <= 390 and area > 200, then price=3.5

area > 390

price = 20.0

=> If area > 390, then price=20.0

Introduction

What is Regression Tree?

Pros & Cons

Data for Regression Tree

Real World Application

Data for Regression Tree

ตัวอย่างของข้อมูลที่เหมาะกับ Regression Tree

Data for Regression Tree

ตัวอย่างของข้อมูลที่ไม่เหมาะกับ Regression Tree

Introduction

What is Regression Tree?

Pros & Cons

Data for Regression Tree

Real World Application

Pros & Cons

ข้อดี

- หลักการของ algorithm เรียบง่าย & ง่ายต่อการทำความเข้าใจ
- สามารถตีความผลลัพธ์ได้ของ model ได้ง่าย (model อยู่ในรูปของกฎ)

ข้อเสีย

- ง่ายต่อการเกิด overfitting
- การเปลี่ยนแปลงข้อมูลเพียงเล็กน้อยใน training อาจส่งผลให้ model เปลี่ยนแปลงอย่างมาก

ข้อจำกัด

• ค่าพยากรณ์ที่ได้จะเป็นค่าเฉลี่ยของข้อมูลที่อยู่ในกฎเดียวกัน

Introduction

What is Regression Tree?

Pros & Cons

Data for Regression Tree

Real World Application

Real World Application

โดยพิจารณาจากราคา open high low close

Real World Application

การทำนายราคาตั๋วเครื่องบิน

โดยพิจารณาจากสายการบิน วันที่ การเดินทาง เวลาเดินทาง ระยะเวลา เดินทาง จำนวนจุดพัก เป็นต้น

อ้างอิง : [2020, Joshi et al.] Airline Prices Analysis and Prediction Using Decision Tree Regressor

Introduction

What is Regression Tree?

Pros & Cons

Data for Regression Tree

Real World Application

Regression Tree

Regression Tree

Regression Tree เป็นหนึ่งใน algorithm ประเภท supervised learning

Concept of Supervised Learning

Data ⇒ **Model** ⇒ **Prediction**

Model Creation

Assumption

How to Create Model (Math)

Real Face of the Model

How to Create Model (Code)

Assumption

No Missing Features

Model Creation

Assumption

How to Create Model (Math)

Real Face of the Model

How to Create Model (Code)

Real Face of the Model

Regression Tree คือ ชุดของกฎเพื่อประมาณค่าตัวแปรตาม

Model Creation

Assumption

How to Create Model (Math)

Real Face of the Model

- ☐ Step 1: พิจารณา unique values ของ feature ทุกตัวใน dataset
- ☐ Step 2 : ตั้งคำถามจาก unique values
- ☐ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ regression tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น ภายใต้เงื่อนไขที่กำหนด

<u>ตัวอย่างการคำนวณ Regression Tree</u>

area	price
120	2.0
150	2.0
250	3.5
280	3.5
500	20
550	20

ตารางแสดงข้อมูลพื้นที่และราคาของบ้าน

Step 1: พิจารณา unique values ของ feature ทุกตัวใน dataset

area	price
120	2.0
150	2.0
250	3.5
280	3.5
500	20
550	20

unqiue_values(area) = {140, 150, 250, 280, 500, 550}

✓ Step 2 : ตั้งคำถามจาก unique values

unqiue_values(area)

= {120, 150, 250, 280, 500, 550}

Question1: area <= 135?

Question2: area <= 200?

Question3 : area <= 265 ?

Question4: area <= 390?

Question5: area <= 525?

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ regression tree มี
ความสามารถในการพยากรณ์มากยิ่งขึ้น

Root Node

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ regression tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น

Root Node

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ regression tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ regression tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น

Secondary Node

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ regression tree มี
ความสามารถในการพยากรณ์มากยิ่งขึ้น

Secondary Node

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ regression tree มี
ความสามารถในการพยากรณ์มากยิ่งขึ้น

Secondary Node

How to Create Model (Math)

☑ Step 3 : ในแต่ละชั้น, ตั้งคำถามที่ทำให้ regression tree มี ความสามารถในการพยากรณ์มากยิ่งขึ้น

Model Creation

Assumption

How to Create Model (Math)

Real Face of the Model

How to Create Model (Code)

<u>ตัวอย่าง Code สำหรับ Regression Tree</u>

area	price	
120	2.0	
150	2.0	
250	3.5	
280	3.5	
500	20	
550	20	

ตารางแสดงข้อมูลพื้นที่และราคาของบ้าน

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 120 \\ 150 \\ 250 \\ 280 \\ 500 \\ 550 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 2 \\ 2 \\ 3.5 \\ 3.5 \\ 20 \\ 20 \end{bmatrix}$$

```
1 reg = DecisionTreeRegressor()
```

2 reg.fit(X, y)

DecisionTreeRegressor()


```
1 r = export_text(reg, feature_names=list(X.columns))
```

```
1 print(r)
|--- area <= 390.00
| |--- area <= 200.00
| | |--- value: [2.00]
| |--- area > 200.00
| | |--- value: [3.50]
|--- area > 390.00
| |--- value: [20.00]
```


Code for this section

Open File

Model Creation.ipynb

Model Creation

Assumption

How to Create Model (Math)

Real Face of the Model

Regression Tree

Regression Tree คือ ชุดของกฎเพื่อประมาณค่าตัวแปรตาม

```
area <= 390

area <= 200

price = 2.0 => If area <= 390 and area <= 200, then price=2.0

area > 200

price = 3.5 => If area <= 390 and area > 200, then price=3.5

area > 390

price = 20.0 => If area > 390, then price=20.0
```


If area <= 390 and area <= 200, then price=2.0

If area <= 390 and area > 200, then price=3.5

If area > 390, then price=20.0

1-Sample

Multi-Sample

Code

1-Sample

<u>ตัวอย่างการคำนวณ \widehat{y} </u>

area 100

 ŷ

 ?

1-Sample

area 100

If sex <= 0.5 and BMI <= 27, then 'diabetes'

If sex <= 0.5 and BMI > 27, then 'normal'

If sex > 0.5 and BMI <= 27, then 'normal'

If sex > 0.5 and BMI > 27, then 'diabetes'

1-Sample

Multi-Sample

Code

Multi-Sample

<u>ตัวอย่างการคำนวณ $\hat{\mathbf{y}}$ </u>

area	
160	
220	
300	
480	
310 (1) (1)	77

ÿ
?
?
?
?

Multi-Sample

If area <= 390 and area <= 200, then price=2.0

If area <= 390 and area > 200, then price=3.5

If area > 390, then price=20.0

Multi-Sample

area
160
220
300
480

ŷ
2.0
3.5
3.5
20.0

1-Sample

Code

ตัวอย่าง code สำหรับการคำนวณ $\hat{\mathbf{y}}$

area	
160	
220	
300	
480	
20110	111

y
?
?
?
?

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 0 & 29 \\ 0 & 26 \\ 1 & 30 \\ 1 & 28 \end{bmatrix}$$

1 reg.predict(X)

array([2. , 3.5, 3.5, 20.])

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

area	
160	
220	
300	
480	
	4.41

$\widehat{\mathbf{y}}$
2.0
3.5
3.5
20.0

Code for this section

Open File

Model Creation.ipynb

1-Sample

Regression Tree

AI in Civil Engineering

- Abstract
- Why this project important?
- Who this project for?
- Concrete Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อประเมินความแข็งแรงของคอนกรีต โดย feature ที่นำมาใช้ คือ ข้อมูล ส่วนผสมของคอนกรีตนั้น ๆ เช่น

- ปริมาณซีเมนต์
- ปริมาณน้ำ
- อายุของคอนกรีต

Why this project important?

- สามารถสร้างระบบประเมินคุณภาพของ
 สิ่งก่อสร้างที่ทำงานได้ 24 ชั่วโมง
- สามารถต่อยอดกับการการทดสอบความ
 แข็งแรงของวัสดุประเภทอื่น ๆ เช่น เหล็ก

Who this project is for?

- + วิศวกรโยธา
- → ผู้ตรวจสอบคุณภาพสิ่งก่อสร้าง
- 🛨 นักวิเคราะห์ข้อมูล

Concrete Dataset

https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength

Concrete Dataset

Feature

- Cement ซีเมนต์
- Blast Furnace Slag ตะกรันเตาหลอม
- Fly Ash เถ้าลอย
- Water น้ำ
- Superplasticizer สารลดน้ำประเภทพิเศษ
- Coarse Aggregate มวลรวมหยาย
- Fine Aggregate มวลรวมละเอียด
- Age อายุของสิ่งก่อสร้าง

Target

• Concrete compressive strength - ความแข็งแรงของคอนกรีต

What we learn from this project?

Data Preparation

File

01. CONCRETE STRENGTH

Regression Tree

