Package 'FIREVAT'

February 20, 2019

```
Type Package
Title FIREVAT, FInding REliable Variants without ArTifacts
Description FIREVAT is a variant filtering tool for cancer sequencing data,
     which uses mutational signatures to identify sequencing artifacts and
     low-quality variants.
Version 0.1.1
Authors Andy Jinseok Lee, Hyunbin Kim
Maintainer Andy Jinseok Lee <jinseok.lee@ncc.re.kr>, Hyunbin Kim <khb7840@ncc.re.kr>
Imports data.table,
     stringi,
     bedr,
     GA,
     jsonlite,
     yaml,
     MutationalPatterns,
     deconstructSigs,
     BSgenome. Hsapiens. UCSC. hg19,
     BSgenome. Hsapiens. UCSC. hg38,
     ggpubr,
     caTools,
     ggrepel,
     gridExtra,
     ggplot2,
     rmarkdown,
     gtable
URL https://github.com/cgab-ncc/FIREVAT
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr
VignetteBuilder knitr
```

R topics documented:

2

ComputeZScore
ComputeZScoreEquiValue
DecimalCeiling
DefaultFilterToBinary
EnumerateTriNucCounts
FilterVCF
GetCOSMICMutSigs
GetCOSMICMutSigsEtiologiesColors
GetCOSMICMutSigsNames
GetOptimizedSignatures
GetPCAWGMutSigs
GetPCAWGMutSigsEtiologiesColors
GetPCAWGMutSigsNames
InitializeVCF
MakeFilter
MutaliskParseVCFObj
ParameterToBits
ParseConfigFile
PCAWG.All.Sequencing.Artifact.Signatures
PCAWG.Known.Sequencing.Artifact.Signatures
PCAWG.Likely.Sequencing.Artifact.Signatures
PCAWG.Possible.Sequencing.Artifact.Signatures
PCAWG.Target.Mutational.Signatures
PlotMutaliskResults
PlotMutationTypes
PlotOptimizationIterations
PlotSignaturesContProbs
PlotTable
PlotTriNucSpectrum
PlotVCFStatsBoxPlots
PlotVCFStatsHistograms
PrepareArtifactualMutsOptimizationIterationsPlot
PrepareFilterCutoffsTable
PrepareGeneticAlgorithmParametersTable
PrepareIdentifiedSignaturesPlot
PrepareMLEReconstructedSpectrumsPlot
PrepareNucleotideSubstitutionTypesPlot
PrepareObservedSpectrumsPlot
PrepareOptimizationResultsTable
PrepareOptimizedVCFStatisticsPlot
<u>.</u>
PrepareResidualSpectrumsPlot
PrepareTrinucleotideSpectrumsTable
ReadOptimizationIterationReport
ReadVCF
ReportFIREVATResults

ComputeZScore 3

Comp	uteZScore	Comp	uteZSco	re													
Index																3	4
	WriteVCF				•	 •		 	•	•	•			•	•	. 3	3
	UpdateFilter							 								. 3	2
	TriNuc.Mutation	n.Type.Hex.	Colors					 								. 3	2
	RunMutaliskHe	lper						 								. 3	1
	RunMutalisk .							 								. 2	9
	RunFIREVAT .																

Description

Returns a z-score of x given a distribution of values

Usage

```
ComputeZScore(values, x)
```

Arguments

values a numeric vector x a numeric value

Value

a numeric value corresponding to the z-score of x

ComputeZScoreEquiValue

ComputeZScoreEquiValue

Description

Returns a numeric value that is equivalent to the specified z.score in the distribution of 'values'

Usage

```
ComputeZScoreEquiValue(z.score, values)
```

Arguments

z.score numeric value values numeric vector

Value

a numeric value corresponding to the specified z.score in the 'values' distribution

DefaultFilterToBinary

DecimalCeiling

DecimalCeiling

Description

Returns the ceiling of a decimal value e.g. value = 0.15, decimal = 0.1 returns 0.2

Usage

```
DecimalCeiling(value, decimal)
```

Arguments

value

numeric value (decimal)

decimal

numeric value (e.g. 0.1, 0.001)

Value

a numeric value

DefaultFilterToBinary Transform default filtering parameters to a binary vector

Description

This function transforms default filtering parameter to binary vector which can be used as a suggested solution in GA algorithm.

Usage

```
DefaultFilterToBinary(vcf.filter, params.bit.len)
```

Arguments

```
vcf.filter A list generated in MakeFilter
```

params.bit.len A list with bit lengths of filtering parameters which is generated from ParameterToBits

Value

A binary vector

Enumerate Tri Nuc Counts 5

 ${\tt EnumerateTriNucCounts} \ \ \textit{EnumerateTriNucCounts}$

Description

Returns C>A, C>G, C>T, T>A, T>C, T>G counts

Usage

EnumerateTriNucCounts(spectrum)

Arguments

spectrum

a numeric vector with 96 numeric values

Details

Please note that this function assumes that 'spectrum' is sorted (i.e. $1:16 \rightarrow C>A$; $17:32 \rightarrow C>G$; $33:48 \rightarrow C>T$; $49:64 \rightarrow T>A$; $65:80 \rightarrow T>C$; $81:96 \rightarrow T>G$)

Value

a numeric vector of length 6 corresponding to the counts of each trinucleotide change (C>A, C>G, C>T, T>A, T>C, T>G)

FilterVCF

FilterVCF

Description

Filter vcf based on the filter Filtering parameters are saved in config.obj Split vcf.obj into vcf.obj.filtered & vcf.obj.artifact based on vcf.filter

Usage

```
FilterVCF(vcf.obj, vcf.filter, config.obj, verbose = TRUE)
```

Arguments

vcf.obj	A list from ReadVCF
vcf.filter	A list from MakeMuTect2Filter
config.obj	A list from ParseConfigFile
verbose	If true, provides process detail

Value

A list with the following elements

- 1) Mutations which passed filteringvcf.obj.filtered = vcf.obj (list with data, header, genome)
- 2) Mutations which did not pass filteringvcf.obj.artifact = vcf.obj (list with data, header, genome)

GetCOSMICMutSigs

GetCOSMICMutSigs

Description

Returns a data.frame of the COSMIC mutational signature reference file from the data directory

Usage

```
GetCOSMICMutSigs()
```

Value

a data.frame of the COSMIC reference mutational signatures

 ${\it GetCOSMICMutSigsEtiologiesColors} \\ {\it GetCOSMICMutSigsNames}$

Description

Returns all COSMIC mutational signature etiologies and colors

Usage

```
GetCOSMICMutSigsEtiologiesColors()
```

Value

data.frame with following columns: signature, group and color.

GetCOSMICMutSigsNames GetCOSMICMutSigsNames

Description

Returns all COSMIC mutational signature names

Usage

```
GetCOSMICMutSigsNames()
```

Value

a character vector

GetOptimizedSignatures

GetOptimizedSignatures

Description

This function fetches the last row from the optimization iteration log and returns the target and artifactual mutational signatures for the type of mutations ('refined' or 'artifactual')

Usage

```
GetOptimizedSignatures(data, mutations.type = "refined",
    signatures = "all")
```

Arguments

data A list of main data from RunFIREVAT
mutations.type A string for type of mutations ('refined' or 'artifact')

signatures A string ('all', 'target', 'artifact')

Value

A data.frame with the columns 'signature' and 'weight'

GetPCAWGMutSigs

GetPCAWGMutSigs

Description

Returns the PCAWG mutational signatures data

Usage

```
GetPCAWGMutSigs()
```

Value

a data.frame of the PCAWG mutatioanl signatures

 ${\tt GetPCAWGMutSigsEtiologiesColors}$

GetPCAWGMutSigsEtiologiesColors

Description

Returns the PCAWG mutational signatures etiologies and colors

Usage

```
GetPCAWGMutSigsEtiologiesColors()
```

Value

a data.frame with the columns 'signature', 'group', 'color'

 ${\tt GetPCAWGMutSigsNames} \quad \textit{GetPCAWGMutSigsNames}$

Description

Returns the PCAWG mutational signatures names

Usage

```
GetPCAWGMutSigsNames()
```

Value

a character vector of the PCAWG mutational signatures names

Initialize VCF 9

Description

Initialize VCF with FIREVAT config file This functions selects point mutations and appends filter values to vcf.obj\$data

Usage

```
InitializeVCF(vcf.obj, config.obj, verbose = TRUE)
```

Arguments

vcf.obj A list from ReadVCF
config.obj A list from ParseConfigFile
verbose If true, provides process detail

Value

A list with the following elements

- vcf.obj.filteredvcf.obj (high-quality vcf)
- vcf.obj.artifactvcf.obj (low-quality vcf)

MakeFilter	MakeFilter

Description

Creates a vcf filter from config.obj

Usage

```
MakeFilter(config.obj)
```

Arguments

config.obj A list from ParseConfigFile (any filter with "use_in_filter" value declared as FALSE is not considered)

Value

A list with the filter parameters

10 ParameterToBits

MutaliskParseVCFObj MutaliskParseVCFObj

Description

Parses a vcf.obj and prepares it to run Mutalisk.

Usage

```
MutaliskParseVCFObj(vcf.obj)
```

Arguments

vcf.obj A list from ReadVCF

Value

A data.frame

ParameterToBits ParameterToBits

Description

Calculate the number of bits needed to conduct FIREVAT GA optimization.

Usage

```
ParameterToBits(vcf.obj, config.obj, vcf.filter, multiplier = 100)
```

Arguments

vcf.obj A list from ReadVCF
config.obj A list from ParseConfigFile
vcf.filter A list from MakeMuTect2Filter
multiplier A multiplier for convert fraction to integer (default = 100)

Details

vcf.obj\$data: if max(vcf.obj\$data[[param]]) < 1, then multiply multiplier to the vector

Value

A list with the elements 'params.bit.len' containing the bit lengths of each parameter 'vcf.obj' with updated data

ParseConfigFile 11

ParseConfigFile ParseConfigFile

Description

This function returns config.obj from JSON or YAML config file. - Check if the config file is in JSON format or YAML format - Return config.obj

Usage

```
ParseConfigFile(config.path, verbose = TRUE)
```

Arguments

config.path A string for config file path verbose If true, provides process detail

Value

```
config.obj: list of parameters
```

Examples

```
## Not run:
ParseConfigFile("example.variant.caller.json")
ParseConfigFile("example.variant.caller.json", verbose=False)
## End(Not run)
```

```
 \begin{array}{c} {\sf PCAWG.All.Sequencing.Artifact.Signatures} \\ {\it Constant} \end{array}
```

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

```
PCAWG.All.Sequencing.Artifact.Signatures
```

Format

An object of class character of length 17.

PCAWG.Known.Sequencing.Artifact.Signatures

Constant

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Known.Sequencing.Artifact.Signatures

Format

An object of class character of length 1.

PCAWG.Likely.Sequencing.Artifact.Signatures *Constant*

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Likely.Sequencing.Artifact.Signatures

Format

An object of class character of length 5.

 ${\it PCAWG. Possible. Sequencing. Artifact. Signatures} \\ {\it Constant}$

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Possible.Sequencing.Artifact.Signatures

Format

An object of class character of length 11.

```
{\tt PCAWG.Target.Mutational.Signatures} \\ {\tt Constant}
```

Description

PCAWG target mutational signatures reported to be unrelated to sequencing artifacts

Usage

```
PCAWG.Target.Mutational.Signatures
```

Format

An object of class character of length 49.

PlotMutaliskResults Plot

PlotMutaliskResults

Description

Plots Mutalisk results

Usage

```
PlotMutaliskResults(mutalisk.results, signatures, trinuc.max.y,
    trinuc.min.y, mut.type.max.y, title)
```

Arguments

mutalisk.results

A list obtained from RunMutalisk

signatures A character vector of mutational signatures names

trinuc.max.y A numeric value (maximum y-axis value)
trinuc.min.y A numeric value (minimum y-axis value)

mut.type.max.y A numeric value
title A string value

Value

A ggplot object

14 PlotMutationTypes

Examples

PlotMutationTypes

PlotMutationTypes

Description

Plots a horizontal barplot of mutation types

Usage

```
PlotMutationTypes(mutation.types = c("C>A", "C>G", "C>T", "T>A", "T>C",
    "T>G"), mutation.types.values, mutation.types.colors, max.y.val, title,
    convert.to.percentage = T, show.legend = T, font.size.small = 8,
    font.size.med = 14, plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

```
mutation.types Mutation types; Default = c("C>A", "C>G", "C>T", "T>A", "T>C", "T>G")
mutation.types.values
                 Mutation count for each mutation type
mutation.types.colors
                 A color vector for indicating mutation types
                 y axis maximum value
max.y.val
                 Plot title
title
convert.to.percentage
                 if True convert y values to percentage (x 100); Default = T
show.legend
                 If True, show legend; Default = T
font.size.small
                 Small font size; Default = 8
font.size.med
                 Medium font size; Default = 14
                 Margin vector for drawing plot; Default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
plot.margin
```

Value

A ggplot object

Examples

PlotOptimizationIterations

PlotOptimizationIterations

Description

Plots multiple scatter plots into one figure

Usage

```
PlotOptimizationIterations(df, columns.to.plot, x.axis.var, x.axis.title,
    x.max, save.file, title, y.axis.title = "", y.max = 1,
    point.size = 1, connect.dots = T, plot.legend = T,
    legend.ncol = 1, font.size.med = 14, font.size.large = 16,
    plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

```
df
                  A data.frame (from reading "FIREVAT_Optimization_Logs.tsv")
columns.to.plot
                  A character vector (of column names to plot)
x.axis.var
                  x axis variable
x.axis.title
                  x axis title
                  x axis maximum value
x.max
save.file
                  Filename (including full path) to which the plot will be saved
title
                  Plot title
                  y axis title; Default = ""
y.axis.title
```

y axis maximum value; Default = 1y.max Point size; Default = 1point.size If True draws dots for each iteration; Default = True connect.dots plot.legend If True write legend of plot; Default = T legend.ncol legend.n Default = 1font.size.med Medium font size; Default = 14 font.size.large

Large font size; Default = 16

Margin vector for plot; Default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))plot.margin

Value

A ggplot object

PlotSignaturesContProbs

PlotSignaturesContProbs

Description

Plots a horizontal barplot of identified mutational signatures

Usage

```
PlotSignaturesContProbs(df.identified.mut.sigs, df.ref.sigs.groups.colors,
  title, convert.to.percentage = T, font.size.small = 8,
  font.size.med = 14, plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

df.identified.mut.sigs

A data.frame of identified mutational signatures

df.ref.sigs.groups.colors

A data.frame with 'signature', 'group', and 'color' columns

Plot title title convert.to.percentage

If true, convert y values to percentage (x 100); Default = T,

font.size.small

Small font size; Default = 8,

font.size.med Medium font size; Default = 14,

Margin vector for drawing plot; Default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))plot.margin

Value

A ggplot object

PlotTable 17

Examples

```
## Not run:
    g <- PlotSignaturesContProbs(sigs = c(mutalisk.results$identified.mut.sigs),
    sigs.probs = c(mutalisk.results$identified.mut.sigs.probs),
    df.ref.sigs.groups.colors = GetPCAWGMutSigsEtiologiesColors())
    print(g)
## End(Not run)</pre>
```

PlotTable

PlotTable

Description

Plots basic statistics table

Usage

```
PlotTable(df, padding = 20, font.size = 14)
```

Arguments

df = A data.frame where the first column is header and the second column is data

value

padding Padding size; Default = 20 font.size Font size; Default = 14

Value

A plot

PlotTriNucSpectrum

PlotTriNucSpectrum

Description

Plots the spectrum of 96 trinucleotide distribution (C>A, C>G, C>T, T>A, T>C, T>G) Please note that this function assumes that both sub.types and spectrum are sorted in the following order: C>A, C>G, C>T, T>A, T>C, T>G

Usage

```
PlotTriNucSpectrum(sub.types, spectrum, max.y.val, min.y.val, y.axis.title,
  draw.top.strip = T, draw.x.axis.labels = T, draw.y.axis.labels = T,
  draw.y.axis.title = T, font.size.small = 8, font.size.med = 14,
  plot.margin.top = 0.5, plot.margin.bottom = 0.5,
  plot.margin.left = 0.5, plot.margin.right = 0.5, title)
```

18 PlotVCFStatsBoxPlots

Arguments

```
A character vector (types of 96 trinucleotide substitutions)
sub.types
                  A numeric vector (96 elements)
spectrum
                  y axis maximum value
max.y.val
min.y.val
                 y axis minimum value
y.axis.title
                  y axis title
draw.top.strip If True then draws top strip; Default = T
draw.x.axis.labels
                  If True then draws x axis labels; Default = T
draw.y.axis.labels
                  If True then draws y axis labels; Default = T
draw.y.axis.title
                  If True then draws y axis title; Default = T
font.size.small
                  Small font size; Default = 8
font.size.med
                 Medium font size; Default = 14
plot.margin.top
                  Top margin; Default = 0.5
plot.margin.bottom
                  Bottom margin; Default = 0.5
plot.margin.left
                 Left margin; Default = 0.5
plot.margin.right
                 Right margin; Default = 0.5
title
                  Plot title
```

Value

A ggplot object

PlotVCFStatsBoxPlots PlotVCFStatsBoxPlots

Description

Plots multiple (original, refined, artifact vcf) boxplots for single filter parameter

Usage

```
PlotVCFStatsBoxPlots(original.vcf.stat.values, refined.vcf.stat.values,
  artifact.vcf.stat.values, xlab, axis.font.size = 10,
  label.font.size = 10, title.font.size = 12)
```

Arguments

```
original.vcf.stat.values

A numeric vector corresponding to the original vcf.obj values of single filter parameter

refined.vcf.stat.values

A numeric vector corresponding to the refined vcf.obj values of single filter parameter

artifact.vcf.stat.values

A numeric vector corresponding to the artifact vcf.obj values of single filter parameter

xlab

A string value (x-axis label)

axis.font.size

An integer value (axis font size)

title.font.size

title.font.size
```

Value

A ggboxplot

PlotVCFStatsHistograms

PlotVCFStatsHistograms

An integer value (title font size)

Description

Plots multiple VCF stats histograms into one figure

Usage

```
PlotVCFStatsHistograms(plot.values, x.axis.labels, stat.y.max.vals,
    stat.x.max.vals, sample.id, save.file, title, cutoff.values,
    plot.boxplot = F, plot.cutoff.line.color = "#D4012E",
    plot.cutoff.value.lines = F, bin.width = 1, ncol = 4, nrow = 3,
    font.size.med = 10, font.size.large = 12, plot.margin = unit(c(0.5,
    0.5, 0.5, 0.5), "cm"))
```

Arguments

```
plot.values A list of multiple numeric vectors x.axis.labels A character vector of x axis labels stat.y.max.vals
```

A numeric vector of max y-axis values

stat.x.max.vals

A numeric vector of max x-axis values

sample.id A string value of sample ID

save.file A string value of file to which the resulting plot will be saved

title A string value of plot title

cutoff.values A numeric vector of cutoff values plot.boxplot A boolean value (default = False)

plot.cutoff.line.color

A hex string value (default = "#D4012E")

plot.cutoff.value.lines

A boolean value (default = False)

bin.width An integer value (default = 1; histogram bin width)
ncol An integer value (default = 4; ggarrange ncol)
nrow An integer value (default = 3; ggarrange nrow)

font.size.med An integer value (default = 10)

font.size.large

An integer value (default = 12)

plot.margin A list (default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))

Value

A list with the following elements

- f = A ggarrange object
- graphs = A list of length 3; each element is a ggplot histogram

 $\label{prepareArtifactualMutsOptimizationIterationsPlot} Prepare Artifactual MutsOptimization Iterations Plot$

 $\label{lem:prepareArtifactualMutsOptimizationIterationsPlot} PrepareArtifactual MutsOptimizationIterationsPlot$

Description

Prepares artifactual mutations optimization iterations plot

Usage

PrepareArtifactualMutsOptimizationIterationsPlot(data)

Arguments

data A list of elements returned from RunFIREVAT

Value

A ggplot object

 ${\tt PrepareFilterCutoffsTable}$

Prepare Filter Cutoffs Table

Description

Prepares filter cutoffs table for reporting

Usage

PrepareFilterCutoffsTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

 ${\tt Prepare Genetic Algorithm Parameters Table}$

Prepare Genetic Algorithm Parameters Table

Description

Prepares Genetic Algorithm parameters table

Usage

 ${\tt Prepare Genetic Algorithm Parameters Table (data)}$

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

 ${\tt PrepareIdentifiedSignaturesPlot}$

Prepare Identified Signatures Plot

Description

Prepares identified signatures plot for reporting

Usage

PrepareIdentifiedSignaturesPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A ggarrange object

 ${\tt Prepare MLERe constructed Spectrums Plot}$

Prepare MLER e constructed Spectrums Plot

Description

Prepares MLE reconstructed spectrums plot

Usage

PrepareMLEReconstructedSpectrumsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

 ${\tt Prepare Nucleotide Substitution Types Plot}$

Prepare Nucleotide Substitution Types Plot

Description

Prepares nucleotide substitution types plot

Usage

PrepareNucleotideSubstitutionTypesPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A ggarrange object

 ${\tt Prepare Observed Spectrums Plot}$

PrepareObservedSpectrumsPlot

Description

Prepares observed spectrums plot

Usage

PrepareObservedSpectrumsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

PrepareOptimizationResultsTable

 ${\it Prepare Optimization Results Table}$

Description

Prepares optimization results table

Usage

PrepareOptimizationResultsTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

PrepareOptimizedVCFStatisticsPlot

Prepare Optimized VCF Statistics Plot

Description

Prepares optimized VCF statistics plot

Usage

PrepareOptimizedVCFStatisticsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

 $\label{prepareRefinedMutsOptimizationIterationsPlot} PrepareRefined \texttt{MutsOptimizationIterationsPlot}$

Prepare Refined Muts Optimization Iterations Plot

Description

Prepares refined mutations optimization iterations plot

Usage

PrepareRefinedMutsOptimizationIterationsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A ggplot object

 ${\tt PrepareResidualSpectrumsPlot}$

Prepare Residual Spectrums Plot

Description

Prepares residual spectrums plot

Usage

PrepareResidualSpectrumsPlot(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

 ${\tt PrepareTrinucleotideSpectrumsTable}$

Prepare Trinucle ot ide Spectrums Table

Description

Prepares trinucleotide spectrums table

Usage

PrepareTrinucleotideSpectrumsTable(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame

 ${\tt ReadOptimizationIterationReport}$

ReadOptimizationIterationReport

Description

Read optimization iteration report

Usage

ReadOptimizationIterationReport(data)

Arguments

data

A list of elements returned from RunFIREVAT

Value

A data.frame of FIREVAT optimization logs

ReadVCF 27

ReadVCF

ReadVCF

Description

Reads a .vcf file

Usage

```
ReadVCF(vcf.file, genome = "hg19")
```

Arguments

```
vcf.file (full path of a .vcf file)
genome ('hg19' or 'hg38')
```

Value

A list with elements 'data', 'header', 'genome'

 ${\tt ReportFIREVATResults} \quad \textit{ReportFIREVATResults}$

Description

Reports FIREVAT results in html format (generated from Rmd)

Usage

```
ReportFIREVATResults(data)
```

Arguments

data

A list of main data from RunFIREVAT

Value

An updated data list

28 RunFIREVAT

RunFIREVAT

RunFIREVAT

Description

Runs FIREVAT using configuration data. Filters point mutations in the specified vcf. file based on mutational signature decomposition and outputs the refined and artifact vcf as well as metadata related to the refinement process.

Usage

```
RunFIREVAT(vcf.file, vcf.file.genome, config.file, df.ref.mut.sigs,
  target.mut.sigs, sequencing.artifact.mut.sigs, num.cores, output.dir,
  mode = "ga", use.suggested.soln = TRUE, ga.pop.size = 200,
  ga.max.iter = 200, ga.run = 50, ga.pmutation = 0.25,
  mutalisk.method = "random.sampling",
  mutalisk.random.sampling.count = 20,
  mutalisk.random.sampling.max.iter = 10, report.format = "html",
  verbose = TRUE)
```

Arguments

vcf.file String value corresponding to input .vcf file. Please provide the full path.

vcf.file.genome

Genome assembly of the input .vcf file. The value should be eitehr 'hg19' or 'hg38'

11630

String value corresponding to input configuration file. For more details please refer to ...

df.ref.mut.sigs

config.file

A data.frame of the reference mutational signatures

target.mut.sigs

A character vector of the target mutational signatures from reference mutational signatures.

sequencing.artifact.mut.sigs

A character vector of the sequencing artifact mutational signatures from reference mutational signatures.

num.cores

Number of cores to allocate

output.dir

String value of the desired output directory

mode

String value. The value should be either 'ga' or 'manual'.

use.suggested.soln

Boolean value. If TRUE, then FIREVAT passes the default values of filter variables declared as 'use_in_filter' in the config file to the 'suggestions' parameter of the Genetic Algorithm package. If FALSE, then FIREVAT supplies NULL to the GA package 'suggestions' parameter.

RunMutalisk 29

ga.pop.size	Integer value of the Genetic Algorithm 'population size' parameter. Default: 200. This value should be set based on the number of filter parameters. Recommendation: 40 per filter parameter.							
ga.max.iter	Integer value of the Genetic Algorithm 'maximum iterations' parameter. Dde-fault: 200. This value should be set based on the number of filter parameters Recommendation: same as 'ga.pop.size'.							
ga.run Integer value of the Genetic Algorithm 'run' parameter. Default: 50. This v should be set based on the 'ga.max.iter' parameter. Recommendation: 25 cent of 'ga.max.iter'.								
ga.pmutation	Float value of the Genetic Algorithm 'mutation probability' parameter. Default: 0.25.							
mutalisk.method								
	Mutalisk signature identification method. Default: 'random.sampling'. The value can be either 'all' or 'random.sampling'. 'all' uses all target.mut.sigs to identify mutational signatures. 'random.sampling' randomly samples from target.mut.sigs to identify mutational signatures.							
mutalisk.random	n.sampling.count							
	Mutalisk random sampling count. Default: 20. The number of signatures to sample from target.mut.sigs							
mutalisk.random	n.sampling.max.iter							
	Mutalisk random sampling maximum iteration. Default: 10. The number of times Mutalisk randomly samples from target.mut.sigs before determining the candidate signatures.							
report.format	The format of FIREVAT report. We currently only support 'html'.							

Value

verbose

A list with the following elements

- f = A ggarrange object
- graphs = A list of length 3; each element is a ggplot histogram

RunMutalisk	RunMutalisk			
-------------	-------------	--	--	--

If TRUE, provides process detail. Default: TRUE.

Description

Identifies mutational signatures using Mutalisk

Usage

```
RunMutalisk(vcf.obj, df.ref.mut.sigs, target.mut.sigs,
  random.sampling.candidate.mut.sigs = c(), method = "random.sampling",
  n.sample = 20, n.iter = 10, verbose = TRUE)
```

30 RunMutalisk

Arguments

vcf.obj A list (from firevat_vcf::ReadVCF)

df.ref.mut.sigs

A data.frame of reference mutational signatures

target.mut.sigs

A character vector of target mutational signatures names to identify from

random.sampling.candidate.mut.sigs

A character vector of mutational signatures names that gets appended to the list

of candidate mutational signatures so that these are always considered.

method A string value (must be either 'random.sampling' or 'all'). The method 'ran-

dom.sampling' samples (without replacement) 'n.sample' number of signatures 'n.iter' number of times and runs the candidate signatures one last time. The

method 'all' uses all target.mut.sigs

n.sample An integer value ('random.sampling' method parameter) Number of signatures

to choose for each iteration of random sampling).

n.iter An integer value ('random.sampling' method parameter). Number of iterations

to perform random sampling.

verbose If true, provides process details

Value

A list with the following elements

- num.point.mutationsAn integer value count of total point mutations
- sub.typesA character vector of length 96
- sub.types.spectrumA numeric vector of length 96
- num.mut.sigsAn integer value (count of unique mutational signatures identified)
- · identified.mut.sigsA character vector where each element is a mutational signature identified
- identified.mut.sigs.probsA numeric vector where each element is the weight of mutational signature identified. The ordering follows identified.mut.sigs
- identified.mut.sigs.spectrumA numeric vector of length 96
- · residualsA numeric vector of length 96
- rssA numeric value (residual sum of squares)
- cos.sim.scoreA numeric value (cosine similarity score between observed mutational spectrum and reconstructed mutational signatures)
- all.models.sigsA list where each element is a model; a model is a list of signatures identified)
- all.models.sigs.probsA list where each element is a model; a model is a list of contribution probabilities
- all.models.cos.sim.scoresA list where each element is a model; a model is a list of cosine similarity socres

RunMutaliskHelper 31

RunMutaliskHelper

RunMutaliskHelper

Description

Helper function for RunMutalisk

Usage

```
RunMutaliskHelper(vcf.trinucleotide.data, df.ref.mut.sigs, target.mut.sigs)
```

Arguments

```
vcf.trinucleotide.data
A data.frame (from firevat_mutalisk::MutaliskParseVCFObj)

df.ref.mut.sigs
A data.frame of reference mutational signatures

target.mut.sigs
A character vector of target mutational signatures names
```

Value

A list with the following elements

- num.point.mutationsAn integer value count of total point mutations
- sub.typesA character vector of length 96
- sub.types.spectrumA numeric vector of length 96
- num.mut.sigsAn integer value (count of unique mutational signatures identified)
- · identified.mut.sigsA character vector where each element is a mutational signature identified
- identified.mut.sigs.probsA numeric vector where each element is the weight of mutational signature identified. The ordering follows identified.mut.sigs
- identified.mut.sigs.spectrumA numeric vector of length 96
- residualsA numeric vector of length 96
- rssA numeric value (residual sum of squares)
- cos.sim.scoreA numeric value (cosine similarity score between observed mutational spectrum and reconstructed mutational signatures)
- all.models.sigsA list where each element is a model; a model is a list of signatures identified)
- all.models.sigs.probsA list where each element is a model; a model is a list of contribution probabilities
- all.models.cos.sim.scoresA list where each element is a model; a model is a list of cosine similarity socres

32 UpdateFilter

```
\label{total:colors} TriNuc. \texttt{Mutation.Type.Hex.Colors} \\ \textit{Constant}
```

Description

Hex codes for the mutation types (for plotting purposes)

Usage

```
TriNuc.Mutation.Type.Hex.Colors
```

Format

An object of class character of length 6.

UpdateFilter

UpdateFilter

Description

Update filter based on optim parameter values

Usage

```
UpdateFilter(vcf.filter, param.values)
```

Arguments

vcf.filter A list from MakeFilterFromConfig

 $param. \ values \qquad A \ numeric \ vector \ contains \ filtering \ value \ (same \ length \ with \ length (vcf.config.filter))$

Value

Updated vcf.filter (list)

Write VCF 33

WriteVCF WriteVCF

Description

Writes a vcf.obj to a .vcf file

Usage

```
WriteVCF(vcf.obj, save.file)
```

Arguments

```
vcf.obj (from the function ReadVCF) save.file (full path including filename)
```

Index

```
*Topic datasets
                                                PCAWG.Known.Sequencing.Artifact.Signatures,
    PCAWG.All.Sequencing.Artifact.Signatures,
                                                PCAWG.Likely.Sequencing.Artifact.Signatures,
    PCAWG.Known.Sequencing.Artifact.Signatures,
                                                PCAWG.Possible.Sequencing.Artifact.Signatures,
    PCAWG.Likely.Sequencing.Artifact.Signatures,
                                                        12
                                                PCAWG. Target. Mutational. Signatures, 13
    PCAWG.Possible.Sequencing.Artifact.Signat@resMutaliskResults, 13
                                                PlotMutationTypes, 14
    PCAWG. Target. Mutational. Signatures,
                                                PlotOptimizationIterations, 15
                                                PlotSignaturesContProbs, 16
    TriNuc.Mutation.Type.Hex.Colors,
                                                PlotTable, 17
        32
                                                PlotTriNucSpectrum, 17
                                                PlotVCFStatsBoxPlots, 18
ComputeZScore, 3
                                                PlotVCFStatsHistograms, 19
ComputeZScoreEquiValue, 3
                                                {\tt Prepare Artifactual Muts Optimization Iterations Plot},
DecimalCeiling, 4
                                                PrepareFilterCutoffsTable, 21
DefaultFilterToBinary, 4
                                                PrepareGeneticAlgorithmParametersTable,
EnumerateTriNucCounts, 5
                                                PrepareIdentifiedSignaturesPlot, 22
FilterVCF, 5
                                                PrepareMLEReconstructedSpectrumsPlot,
GetCOSMICMutSigs, 6
                                                PrepareNucleotideSubstitutionTypesPlot,
GetCOSMICMutSigsEtiologiesColors, 6
GetCOSMICMutSigsNames, 7
                                                PrepareObservedSpectrumsPlot, 23
GetOptimizedSignatures, 7
                                                PrepareOptimizationResultsTable, 24
GetPCAWGMutSigs, 8
                                                PrepareOptimizedVCFStatisticsPlot, 24
GetPCAWGMutSigsEtiologiesColors, 8
                                                PrepareRefinedMutsOptimizationIterationsPlot,
GetPCAWGMutSigsNames, 8
                                                PrepareResidualSpectrumsPlot, 25
InitializeVCF, 9
                                                PrepareTrinucleotideSpectrumsTable, 26
MakeFilter, 4, 9
                                                {\tt ReadOptimizationIterationReport, } \textcolor{red}{26}
MutaliskParseVCFObj, 10
                                                ReadVCF, 27
                                                ReportFIREVATResults, 27
ParameterToBits, 4, 10
ParseConfigFile, 11
                                                RunFIREVAT, 7, 20–27, 28
PCAWG.All.Sequencing.Artifact.Signatures,
                                                RunMutalisk, 13, 29
        11
                                                RunMutaliskHelper, 31
```

INDEX 35

```
TriNuc.Mutation.Type.Hex.Colors, 32
UpdateFilter, 32
WriteVCF, 33
```