

COIMBATORE INSTITUTE OF TECHNOLOGY

HOMEGENIE – ADAPTIVE SMART HOME ASSISTANT FOR PERSONALIZED LIVING

PROJECT GUIDE:

PRESENTED BY:

DR.N.RAMKUMAR

ASSISTANT PROFESSOR,

DEPARTMENT OF AI & DS,

COIMBATORE INSTITUTE OF TECHNOLOGY.

MITHRAJIT KATHIR.S - 71762208030

MUKILAN J - 71762208031

HARISH B - 71762308203

SANJAY S - 71762208047

PRESENTATION OUTLINE

- Ø PROJECT BACKGROUND
- Ø PROBLEM STATEMENT
- Ø PROJECT OBJECTIVE
- Ø EXISTING TECHNOLOGIES
- Ø SOLUTIONS
- Ø FUTURE WORKS
- Ø CONCLUSION

PROJECT BACKGROUND

- Rapid adoption of IoT-based smart home devices (lights, plugs, thermostats, cameras).
- Current assistants like Google Home, Alexa, and HomeKit are reactive and require explicit user commands.
- Lack of context-awareness, habit learning, and goal-oriented automation.
- Need for a cost-effective, intelligent, and adaptive software solution to unify and personalize smart home control

PROBLEM STATEMENT

Current smart home systems are siloed, reactive and require explicit user commands, lacking proactive intelligence and context-awareness. User desire cohesive, adaptive assistant that learns habits, plans multi – step actions, optimizes energy and integrates across devices and platforms seamlessly

OBJECTIVE

- Build a cost-effective smart home application with agentic Al capabilities.
- Develop a multi-agent system that learns user habits plans and executes tasks autonomously.
- Provide seamless integration with both simulated and real smart home devices (Google Home, Alexa, etc.) via APIs and middleware.

EXISTING TECHNOLOGIES

Google Home / Nest

- •Voice-controlled smart assistant integrated with lol devices.
- •Provides routines and scheduling, but still mostly reactive.

Apple HomeKit

- •Secure and privacy-focused ecosystem.
- •Smooth integration with Apple devices, but limited to certified vendors.

Amazon Alexa + Echo Devices

- •Widely adopted ecosystem with "Skills" for 3rd-party devices.
- •Strong device compatibility but cloud-dependent.

Home Assistant (Open Source)

- •Community-driven smart home hub supporting 1000+ devices.
- •Provides both simulation and real device integration.
- •Popular among researchers and hobbyists.

Samsung SmartThings

- •IoT hub supporting multiple standards (Zigbee, Z-Wave, WiFi).
- •Offers automation rules through its mobile app

OpenHAB (Open Source)

- •Framework for integrating diverse smart home technologies.
- •Focused on flexibility and cross-platform integration.

•

SOLUTIONS - ARCHITECTURE

SOLUTIONS - ARCHITECTURE

DEMONSTRATION

Smart Home Dashboard

Devices

Living Room Lights light - Living Room Status: off - 75%	Turn On
Main Thermostat thermostat • Living Room Status: off • 22°C	Turn On
Security System security • Entry Status: inactive • null	Turn On
Smart Speaker speaker • Kitchen Status: off • 60%	Turn On
Front Door Camera camera • Entry Status: inactive • null	Turn On
Smart Lock lock • Entry Status: off • null	Turn On
Routines	
Good Morning Turn on lights and adjust temperature Trigger: time (07:00)	Run
Leaving Home Secure home and save energy Trigger: manual	Run
Movie Night Dim lights and adjust temperature Trigger: manual	Run

DEMONSTRATION


```
(base) mithrajitkathir@Mithrajits-MacBook-Pro objective-outcomes-app-liwfyf % cd backend
 (base) mithrajitkathir@Mithrajits-MacBook-Pro backend % uvicorn main:app --reload
 INFO:
           Will watch for changes in these directories: ['/Users/mithrajitkathir/Documents/ho
 megenie/objective-outcomes-app-liwfyf/backend']
            Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to guit)
 INFO:
           Started reloader process [91324] using StatReload
 INFO:
           Started server process [91326]
 INFO:
 INFO:
           Waiting for application startup.
 INFO:
            Application startup complete.
 INFO:
           127.0.0.1:59588 - "GET /devices HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59589 - "GET /routines HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59592 - "POST /devices/6/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59842 - "POST /devices/1/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59842 - "POST /devices/1/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59870 - "POST /devices/1/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59870 - "POST /devices/2/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59878 - "POST /devices/3/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59878 - "POST /devices/4/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59878 - "POST /devices/5/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59878 - "POST /routines/1/run HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59883 - "POST /devices/1/toggle HTTP/1.1" 200 OK
           127.0.0.1:59883 - "POST /devices/2/toggle HTTP/1.1" 200 OK
 INFO:
 INFO:
           127.0.0.1:59883 - "POST /devices/3/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59883 - "POST /devices/4/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:59883 - "POST /devices/5/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:60019 - "POST /devices/1/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:60019 - "POST /devices/2/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:60019 - "POST /devices/3/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:60019 - "POST /devices/4/toggle HTTP/1.1" 200 OK
           127.0.0.1:60019 - "POST /devices/5/toggle HTTP/1.1" 200 OK
 INFO:
 INFO:
           127.0.0.1:60019 - "POST /devices/6/toggle HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:60019 - "POST /routines/1/run HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:60019 - "POST /routines/2/run HTTP/1.1" 200 OK
 INFO:
           127.0.0.1:60019 - "POST /routines/3/run HTTP/1.1" 200 OK
```


SOLUTIONS -TECH STACK

TOOLS
Flutter (Web & Mobile) / JavaScript
Python(FAST API)
MULTI AGENT Architecture (LangChain / Custom Agents)
Google STT & TTS
Home Assistant APIs,MQTT,Google Alexa APIs
Home Assistant with Virtual Devices
PostgreSQL / MongoDB

FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTS

FUNCTIONAL	NON FUNCTIONAL
REQUIREMENTS	REQUIREMENTS
User Interaction	Scalablity
Device Control and Monitoring	Security and Privacy
Multi-Agent AI System	Performance
Automation & Personalization	Reliability & Robustness
INTEGRATION LAYER	Home Assistant APIs,MQTT,Google Alexa APIs
Energy Optimization	Cost-effectiveness

FUTURE WORKS

Real Device Integration

Extend support to physical IoT devices (Google Home, Alexa, Zigbee, Z-Wave, Matter).

Advanced Learning

- Incorporate reinforcement learning for dynamic habit adaptation.
- Continuous improvement of task planning and personalization.

Energy Forecasting

Predict energy usage trends and suggest cost-saving strategies.

Expanded Ecosystem

- Multi-home or community-level automation and coordination.
- Integration with smart grid systems for energy-aware scheduling.

Enhanced Security & Privacy

Incorporate privacy-preserving techniques (edge computing, secure data sharing).

Scalability

Support a wide range of smart appliances and IoT protocols seamlessly.

CONCLUSION

- Current smart home solutions are fragmented, reactive, and vendor-dependent.
- HomeGenie introduces a proactive, agentic Al-driven, cost-effective software solution.
- Focused on simulation-first development → allows affordable testing and iteration.
- Multi-agent architecture ensures personalization, adaptability, and scalability.
- Paves the way for future integration with real devices and advanced AI features.
- In summary: Our system makes smart homes truly intelligent, adaptive, and user-centric.

THANK YOU!!!