CLAIMS

1	1. A method for limiting error propagation due to scrambler seed value
2	transmission errors in a wireless communication network comprising at least one
3	transmitting device 1 and at least one receiving device 2, wherein each transmitting
4	device 1 has an associated transmitting address and each receiving device 2 has at
5	least one associated receiving address, wherein each transmitting device 1 applies a
6	forward error correction code to transmitted messages followed by scrambling of the
7	message, and the scrambling is generated from a seed value, and each transmitted
8	message is structured in such a manner that said seed value can be inferred at a
9	receiving device 2 in the case of an error-free received message, the method
0	comprising the steps of:
1	-providing state information at the transmitting device 1 for each message
12	transmitted from said transmitting device 1 in such a manner that the transmitting
13	device 1 can generate a sequence of seed values associated with each receiving
14	address,
15	-providing state information at the receiving device 2 for each received
16	message in such a manner that the receiving device 2 can generate sequences of seed
17	values, each sequence associated with a unique combination of a transmitting address
18	and a receiving address,
19	-the transmitting device 1 attempting to retrieve state information regarding a
20	receiving address associated with the receiving device 2,
21	-if no state information is retrievable by said transmitting device 1 such state
22	information is generated by an arbitrary method in order to generate a new seed value
23	for a message to be transmitted,
24	-if state information is retrievable by said transmitting device 1, this

information is utilized to initialize a first seed-generating algorithm in order to

generate a new seed value for the message to be transmitted, and is updated by said

algorithm,

25

26

27

- -applying a scrambling algorithm initialized by the new seed value to said message to be transmitted, thereby creating a scrambled message,
- -transmitting the scrambled message from said transmitting device 1,
- -receiving and descrambling the scrambled message at said receiving device 2,
- 32 based on the seed value deduced from the received message,
- -checking the received descrambled message for errors that are not corrected by the forward error correction code,
- -using received messages that are free from errors to synchronize a second seed-generating algorithm in said receiving device 2 with said first seed-generating algorithm in said transmitting device 1,
- -using a current local seed value in said receiving device 2 to attempt to correct errors in the descrambled message caused by an incorrect received seed.
- 1 2. A method according to claim 1, wherein said receiving device 2 performing a
- 2 search of some or all of the current local seed values of each seed sequence at the
- 3 receiving device 2 and using each such seed value from the search in an attempt to
- 4 correctly receive the message.
- 1 3. A method according to claim 1, wherein using said current local seed value in
- 2 said receiving device 2 to synchronize said second seed-generating algorithm in the
- 3 receiving device 2 with said first seed-generating algorithm in said transmitting device
- 4 1, if the message is free from errors following the attempt to correct errors in the
- 5 descrambled message caused by an incorrect received seed.
- 1 4. A method according to claim 1, wherein said first seed-generating algorithm at
- 2 the transmitting device 1 generating the same sequence of seed value as said second
- 3 seed-generating algorithm at the receiving device 2, when correctly synchronized.
- 1 5. A method according to claim 1, further comprising the step of determining the
- 2 next seed value in said sequence of seed values at the transmitting device 1 from at
- 3 least the current seed value.

- 1 6. A method according to claim 1, further comprising the step of causing said
- 2 first seed-generating algorithm at said transmitting device 1 to move to the next seed
- 3 value in said sequence of seed values at the transmitting device 1 and update the state
- 4 information for said receiving address for each transmitted message.
- 1 7. A method according to claim 1, further comprising the step of causing said
- 2 second seed-generating algorithm at said receiving device 2 to move to the next seed
- 3 value in said sequence of seed values at the receiving device 2 and update the state
- 4 information for said transmitting and receiving addresses for each correctly received
- 5 message.

6

12

13

14

1	8. A method for limiting error propagation due to scrambler seed value
2	transmission errors in a wireless communication network the method comprising the
3	steps of:
4	-providing state information at a transmitting device for each message
5	transmitted from said transmitting device,

- -providing state information at a receiving device for each received message,
- -attempting to retrieve state information by the transmitting device regarding a 8 receiving address associated with the receiving device,
- -if no state information is retrievable by said transmitting device such state information is generated by an arbitrary method in order to generate a new seed value for a message to be transmitted,
 - -if state information is retrievable by said transmitting device, this information is utilized to initialize a first seed-generating algorithm in order to generate a new seed value for the message to be transmitted, and is updated by said algorithm,
- -applying a scrambling algorithm initialized by the new seed value to said message to be transmitted, thereby creating a scrambled message,
- -transmitting the scrambled message from said transmitting device,
- -receiving and descrambling the scrambled message at said receiving device, based on the seed value deduced from the received message,
- -checking the received descrambled message for errors that are not corrected by a forward error correction code.
- 1 9. A method according to claim 8, further comprising the steps of
- -using received messages that are free from errors to synchronize a second seed-generating algorithm in said receiving device with said first seed-generating algorithm in said transmitting device,
- -using a current local seed value in said receiving device to attempt to correct 6 errors in the descrambled message caused by an incorrect received seed.

- 1 10. A method according to claim 9, wherein said receiving device performing a
- 2 search of some or all of the current local seed values of each seed sequence at the
- 3 receiving device and using each such seed value from the search in an attempt to
- 4 correctly receive the message.
- 1 11. A method according to claim 9, wherein using said current local seed value in
- 2 said receiving device to synchronize said second seed-generating algorithm in the
- 3 receiving device with said first seed-generating algorithm in said transmitting device,
- 4 if the message is free from errors following the attempt to correct errors in the
- 5 descrambled message caused by an incorrect received seed.
- 1 12. A method according to claim 9, wherein said first seed-generating algorithm at
- 2 the transmitting device generating the same sequence of seed value as said second
- 3 seed-generating algorithm at the receiving device, when correctly synchronized.
- 1 13. A method according to claim 9, further comprising the step of determining the
- 2 next seed value in said sequence of seed values at the transmitting device 1 from at
- 3 least the current seed value.
- 1 14. A method according to claim 9, further comprising the step of causing said
- 2 first seed-generating algorithm at said transmitting device 1 to move to the next seed
- 3 value in said sequence of seed values at the transmitting device 1 and update the state
- 4 information for said receiving address for each transmitted message.
- 1 15. A method according to claim 9, further comprising the step of causing said
- 2 second seed-generating algorithm at said receiving device 2 to move to the next seed
- 3 value in said sequence of seed values at the receiving device 2 and update the state
- 4 information for said transmitting and receiving addresses for each correctly received
- 5 message.