## Київський національний університет імені Т. Шевченка Факультет РЕКС

Звіт з лабораторної роботи №7 з курсу «Прикладна теорія цифрових автоматів» на тему «Синтез мікропрограмного (керуючого) автомата у вигляді автомата Мілі»

Роботу виконав студент 3 курсу

KI - CA

Кравченко В'ячеслав

Київ 2019

### Хід роботи

Мій варіант: 4131

| h10 | h9 | h8 | h7 | h6 | h5 | h4 | 3h | h2 | h1 |
|-----|----|----|----|----|----|----|----|----|----|
| 0   | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 1  |

#### Згідно варіанту задача:

- 1. Побудувати керуючий автомат, що **обчислює кількість парних елементів масивів** A(n),B(m).
- 2. Мікропроцесорний автомат необхідно реалізувати у вигляді автомата Мілі.
- 3. Оптимальну функціональну схему керуючих частин автомата синтезувати на елементах системи **I, AБO, HE.**
- 4. У якості пам'яті використати **D-тригери**, доповнюючи її необхідними по алгоритму функціональними схемами.

### Етапи проектування

### Змістовна схема алгоритму

До складу змістовної схеми алгоритму входять операційні та умовні вершини. Наш алгоритм виконує знаходження кількості парних елементів у двох одномірних масивах розмірністю [n] та [m], використовуючи при цьому чотири (4) умовні вершини і десять (10) операційних вершин. Перевірка елементів масивів виконується від стовпчика до стовпчика.



#### Таблиця кодування вершин

Деякі мікрооперації повторюються, тому, однакові вершини ми можемо закодувати одним кодом.

| Код             | Зміст         | Примітка                              |  |
|-----------------|---------------|---------------------------------------|--|
| $mY_1$          | i=0           | У програмуванні нумерація масивів з 0 |  |
| $mY_2$          | amount = 0    |                                       |  |
| $mY_3$          | A[i]          | Ввід А[і]                             |  |
| mY <sub>4</sub> | amount += 1   | Te саме, що й: amount = amount + 1    |  |
| $mY_5$          | i += 1        | $Te \ came, \ щo \ \ i = i + 1$       |  |
| mY <sub>6</sub> | B[i]          | Ввід В[і]                             |  |
| mY <sub>7</sub> | amount        | Вивід amount                          |  |
| $X_1$           | A[i] % 2 == 0 | так-1, ні-0                           |  |
| $X_2$           | i < n         | так-1, ні-0                           |  |
| X <sub>3</sub>  | B[i] % 2 == 0 | так-1, ні-0                           |  |
| X <sub>4</sub>  | i < m         | так-1, ні-0                           |  |

mYi – мікрооперації що виконує операційний автомат, Xj – сигнали, що видає операційний автомат керуючому автомату.

### Закодована мікроопераційна схема алгоритму

Об'єднання мікрооперацій mY1 та mY2 в одну операційну вершину можливо, бо обидві мікрооперації є незалежними одна від іншої (результати виконання одної мікрооперації не впливають на результати іншої) та можуть бути виконані за один такт одночасно. (схема зліва)

Також використавши правила синтезу автомата Мілі, побудував відмічену ГСА для автомата Мілі. У відміченій ГСА замінимо всі мікрооперації ту на відповідні керуючі сигнали Уј. Складаємо закодовану мікрокомандну схему алгоритму. (схема справа)



2. Закодована схема ГСА

4. Відмічена схема ГСА

#### Граф-схема переходів



3. Граф-схема переходів керуючого автомата

На підставі відміченої ГСА чи граф-схеми переходів керуючого автомата можна побудувати таблиці переходів-виходів. Для мікропрограмних автоматів таблиця переходів-виходів будується у вигляді списку і розрізняються пряма і зворотна таблиці.

У наведених таблицях ат - початковий стан, аs - стан переходу, X - умова (вхідний сигнал), що забезпечує перехід зі стану ат в стан as, Y - вихідний сигнал, що виробляється автоматом при переході з ат в as.

# Пряма таблиця переходів-виходів автомата Мілі

| a <sub>m</sub> | $\mathbf{a}_{\mathrm{s}}$ | X      | Y              |
|----------------|---------------------------|--------|----------------|
| $a_0$          | $a_1$                     | 1      | $Y_1,Y_2$      |
| $a_1$          | $a_2$                     | 1      | Y <sub>3</sub> |
| $a_2$          | a <sub>3</sub>            | $X_1$  | $Y_4$          |
|                | a <sub>3</sub>            | $!X_1$ | _              |
| a <sub>3</sub> | $a_4$                     | 1      | Y <sub>5</sub> |
| $a_4$          | $a_1$                     | $X_2$  | _              |
|                | a <sub>5</sub>            | $!X_2$ | $Y_1$          |
| a <sub>5</sub> | $a_6$                     | 1      | $Y_6$          |
| $a_6$          | $a_7$                     | $X_3$  | $Y_4$          |
|                | a <sub>7</sub>            | $!X_3$ | _              |
| a <sub>7</sub> | a <sub>8</sub>            | 1      | Y <sub>5</sub> |
| $a_8$          | $a_0$                     | $!X_4$ | $Y_7$          |
|                | $a_5$                     | $X_4$  | _              |

# Зворотня таблиця переходів-виходів автомата Мілі:

| a <sub>m</sub> | $\mathbf{a}_{\mathbf{s}}$ | X                     | Y              |
|----------------|---------------------------|-----------------------|----------------|
| $a_8$          | $a_0$                     | !X <sub>4</sub>       | Y <sub>7</sub> |
| $a_0$          | $a_1$                     | 1                     | $Y_1, Y_2$     |
| $a_4$          |                           | $X_2$                 | _              |
| $a_1$          | $a_2$                     | 1                     | Y <sub>3</sub> |
| $a_2$          | $a_3$                     | $X_1$                 | Y <sub>4</sub> |
| $a_2$          |                           | $!X_1$                | _              |
| $a_3$          | $a_4$                     | 1                     | $Y_5$          |
| $a_4$          | $a_5$                     | $!X_2$                | $Y_1$          |
| $a_8$          |                           | $X_4$                 | _              |
| $a_5$          | $a_6$                     | 1                     | $Y_6$          |
| $a_6$          | a <sub>7</sub>            | <b>X</b> <sub>3</sub> | $Y_4$          |
| $a_6$          |                           | $!X_3$                | _              |
| $a_7$          | $a_8$                     | 1                     | Y <sub>5</sub> |

У вихідному автоматі кількість станів M = 9, отже, число елементів пам'яті:  $m = \log_2 M = \log_2 9 = 4$ .

Для синтезу використовую згідно варіанту D-тригери.

Кодуємо внутрішні стани автомата, використовуючи для цього карти Карно методом сусіднього кодування.

Кодування станів автомата

|                   | 220090         | *************************************** | 0.070.00       |    |
|-------------------|----------------|-----------------------------------------|----------------|----|
| $Q_1Q_2$ $Q_3Q_4$ | 00             | 01                                      | 11             | 10 |
| 00                | $a_0$          | $a_1$                                   | $a_2$          |    |
| 01                |                | a <sub>4</sub>                          | a <sub>3</sub> |    |
| 11                | $a_6$          | a <sub>5</sub>                          |                |    |
| 10                | a <sub>7</sub> | a <sub>8</sub>                          |                |    |

| Стан           | Кодування | У десятковій системі |
|----------------|-----------|----------------------|
| $a_0$          | 0000      | 0                    |
| $a_1$          | 0001      | 1                    |
| $a_2$          | 0011      | 3                    |
| a <sub>3</sub> | 0111      | 7                    |
| a <sub>4</sub> | 0101      | 5                    |
| a <sub>5</sub> | 1101      | 13                   |
| a <sub>6</sub> | 1100      | 12                   |
| a <sub>7</sub> | 1000      | 8                    |
| a <sub>8</sub> | 1001      | 9                    |

Будуємо пряму структурну таблицю переходів-виходів автомата Мілі. У даній таблиці у стовпцях К(am) і К(as) вказується код вихідного стану та стану переходу відповідно. У стовпці функцій збудження F вказується ті значення функцій збудження, які на

даному переході обов'язково рівні 1.

| Перехід           | D |
|-------------------|---|
| $0 \rightarrow 0$ | 0 |
| $0 \rightarrow 1$ | 1 |
| $1 \rightarrow 0$ | 0 |
| 1→1               | 1 |

### Структура таблиця переходів-виходів автомата Мілі

| a <sub>m</sub> | K(a <sub>m</sub> ) | $\mathbf{a}_{\mathrm{s}}$              | K(a <sub>s</sub> ) | X                              | Y                | Ф3                                                                                                   |
|----------------|--------------------|----------------------------------------|--------------------|--------------------------------|------------------|------------------------------------------------------------------------------------------------------|
| $a_0$          | 0000               | $a_1$                                  | 0001               | 1                              | $Y_1, Y_2$       | D <sub>4</sub>                                                                                       |
| $a_1$          | 0001               | $a_2$                                  | 0011               | 1                              | Y <sub>3</sub>   | D <sub>3</sub> , D <sub>4</sub>                                                                      |
| $a_2$          | 0011               | a <sub>3</sub><br>a <sub>3</sub>       | 0111<br>0111       | X <sub>1</sub> !X <sub>1</sub> | Y <sub>4</sub>   | D <sub>2</sub> , D <sub>3</sub> , D <sub>4</sub><br>D <sub>2</sub> , D <sub>3</sub> , D <sub>4</sub> |
|                | 0111               |                                        |                    | 1                              | V                | , , ,                                                                                                |
| a <sub>3</sub> | 0111               | <b>a</b> <sub>4</sub>                  | 0101               |                                | Y <sub>5</sub>   | $D_2, D_4$                                                                                           |
| $a_4$          | 0101               | $a_1$ $a_5$                            | 0001<br>1101       | $X_2$ $!X_2$                   | $\mathbf{Y}_{1}$ | $\begin{array}{c c} D_4 \\ D_1, D_2, D_4 \end{array}$                                                |
| a <sub>5</sub> | 1101               | $a_6$                                  | 1100               | 1                              | Y <sub>6</sub>   | $D_1, D_2$                                                                                           |
| $a_6$          | 1100               | a <sub>7</sub><br>a <sub>7</sub>       | 1000<br>1000       | X <sub>3</sub> !X <sub>3</sub> | Y <sub>4</sub>   | $egin{array}{c} D_1 \ D_1 \end{array}$                                                               |
| a <sub>7</sub> | 1000               | $a_8$                                  | 1001               | 1                              | Y <sub>5</sub>   | $D_1, D_4$                                                                                           |
| a <sub>8</sub> | 1001               | $egin{array}{c} a_0 \ a_5 \end{array}$ | 0000<br>1101       | $X_4$ $X_4$                    | Y <sub>7</sub>   | $D_1, D_2, D_4$                                                                                      |

### Система рівнянь переходів:

$$D_1 = \underline{a_4! X_2} \vee a_5 \vee a_6 \vee a_7 \vee a_8 X4$$

$$D_2 = \underline{a_4! X_2} \vee \ a_2 \vee \ a_3 \vee \ a_5 \vee \ a_8 X4$$

$$D_3 = a_1 \vee a_2$$

$$D_4 = a_0 \vee a_1 \vee \ a_2 \vee \ a_3 \vee \ a_4 \vee \ a_7 \vee \ a_8$$

## Система рівнянь виходів:

$$Y_1 = a_0 \lor a_4 \underline{!X_2}$$

$$Y_2 = a_0$$

$$Y_3 = a_1$$

$$Y_4 = a_2 X_1 \ \mathsf{V} \ a_6 X_4$$

$$Y_5 = a_3 \vee a_7$$

$$Y_6 = a_5$$

$$Y_7 = a_8!X_4$$

### Функціональна схема автомата Мілі





#### Висновок

У ході виконання даної лабораторної роботи отримав навички синтезу скінченного цифрового автомату Мілі за певним алгоритмом:

- побудова блок-схеми
- ΓCA
- таблиця переходів-виходів
- структурна таблиця автомата

на основі яких визначено систему рівнянь переходів та побудувано функціональну схему автомата.