

Boghosian

squared (χ^2) distribution

Numerics, plots, tables

Summary

Small-Sample Statistics

The Chi-Squared (χ^2) Distribution

Bruce M. Boghosian

Department of Mathematics

Tufts University

1 The chi squared (χ^2) distribution

Numerics, plots, tables

Summary

Tufts The chi squared (χ^2) distribution

squared (χ^2) distribution

- **Thm.:** If $U = \sum_{i=1}^{n} Z_i^2$ where Z_i are iid standard normal,
- Then U is gamma-distributed with r = n/2 df and $\lambda = 1/2$,

$$f_U(u) = \frac{\left(\frac{1}{2}\right)^{n/2}}{\Gamma\left(\frac{n}{2}\right)} u^{(n/2)-1} e^{-u/2}$$
 where $u > 0$

■ **Pf.:** First take n=1. For all u>0,

$$F_{Z^2}(u) = P(Z^2 \leq u) = P\left(-\sqrt{u} \leq Z \leq +\sqrt{u}\right) = 2P(0 \leq Z \leq \sqrt{u}).$$

or

$$F_{Z^2}(u) = \frac{2}{\sqrt{2\pi}} \int_0^{\sqrt{u}} dz \ e^{-z^2/2}$$

Tufts The chi squared (χ^2) distribution (continued)

squared (χ^2) distribution

Pf. (continued): We have

$$F_{Z^2}(u) = \frac{2}{\sqrt{2\pi}} \int_0^{\sqrt{u}} dz \ e^{-z^2/2}$$

 Differentiate to find that Z is gamma-distributed with parameters r=1/2 and $\lambda=1/2$,

$$f_{Z^2}(u) = \frac{2}{\sqrt{2\pi}} e^{-u/2} \frac{1}{2\sqrt{u}} = \frac{\left(\frac{1}{2}\right)^{1/2}}{\Gamma\left(\frac{1}{2}\right)} u^{(1/2)-1} e^{-u/2}$$

■ Hence, if $U = \sum_{i=1}^{n} Z_i^2$, it must be that U is gamma-distributed with parameters r = n/2 and $\lambda = 1/2$.

Tufts The chi squared (χ^2) distribution (continued)

squared (χ^2) distribution

Def.: The pdf of $U = \sum_{i=1}^{n} Z_i^2$, where Z_i are iid standard normal, is called the *chi squared* (χ^2) distribution with n degrees of freedom.

$$f_{Z^2}(u) = \frac{\left(\frac{n}{2}\right)^{1/2}}{\Gamma\left(\frac{1}{2}\right)} u^{(n/2)-1} e^{-u/2}$$

- The χ^2 distribution is a special case of the gamma distribution with parameters n/2 and 1/2.
- As such, note that the sum of a χ^2 random variable with m df and another with n df will also be χ^2 with m + n df.

Tufts Tables in the appendices

Numerics. plots, tables

- You are now in a position to understand another table in the back of the book.
- Table A.1 tabulates Z distributions for various α .
- Table A.3 tabulates χ^2 distributions for various α and n df.

Tufts Plots and properties of the χ^2 distribution

Numerics. plots, tables

- Mean: E(Z) = n
- Mean square: $E(Z^2) = n(n+2)$
- Variance: Var(Z) = 2n

Tufts Summary

- We learned about the χ^2 distribution.
- We noted that the sum of two χ^2 r.v.s is likewise χ^2 .
- We learned about tables and plots for χ^2 pdfs.