Chapter 2: Overview of Supervise Learning

Junrui Di

Contents

0. Notations
1. Types of variables
2. Two simple approaches to prediction: least squares and nearst neighbors $\dots \dots \dots \dots$
3 Statistical decision theory
4. Function approximation
5. Restricted estimators
6. Model selection and the Bias-variance tradeoff
Notations We work to be the set of the second seco

0.

- Use upper case letters X, Y, G for generic variables
 - Input variable X with jth component denoted as X_j
 - Quantitative output Y
 - Qualitative output G
- Observed values in lowercase
 - ith observation of X is x_i (a scalar or a vector)
- Matrices are represented in bold uppercase letters
 - A set of N input p-vectors x_i , i=1...N will be $\mathbf{X} \in \mathbb{R}^{N \times p}$
 - p-vector of input x_i for the ith observation v.s. the N-vector \mathbf{x}_i for all the observations on variable
 - All vectors are assumed to be column vectors, the *i*th row of **X** is x_i^T .

1. Types of variables

- Qualitative variables, factors, categorical or discrete variables \rightarrow Classification
- Quantitative measurements \rightarrow **Regression**
- Ordered qualitative variables

2. Two simple approaches to prediction: least squares and nearst neighbors

2.1 Linear models and least squares

- Linear model
- Input: $X^T = (X_1, X_2, ..., X_p)$, Outcome: Y
- Model: $\hat{Y} = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j$ or $\hat{Y} = X^T \hat{\beta}$
- Least Square
- To minimize $RSS(\beta) = \sum_{i=1}^{N} (y_i x_i^T \beta)^2$ or $RSS(\beta) = (\mathbf{y} \mathbf{X}\beta)^T (\mathbf{y} \mathbf{X}\beta)$
- Differentiate w.r.t. β gives $\mathbf{X}^T(\mathbf{y} \mathbf{X}\beta) = 0$
- Solves to $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- Fitted value at the *i*th input x_i is $\hat{y}_i = x_i^T \hat{\beta}$

2.2 Nearest neighbor methods

The k-nearest neighbor fit for \hat{Y} : $\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$, where $N_k(x)$ is the neighborhood of x as the k closest points x_i in the training set.

For k-nearest neighbor fit, the error on the training data should be approximately an increasing function of k, and 0 for k = 1. We cannot use sum of squared errors as training criterion for picking k.

There is only one parameter in the fit, which is k. But the effective number of parameters is N/k, because there would be N/k neighbors and we need that many means for each of the neighborhood.

2.3 From least square to nearst neighbors

Least square: smooth linear decision boundary and stable to fit, but heavily rely on assumption of linear decision boundary. Low variance but high bias.

knn: no strong assumption and can adapt to any situation, but unstable (depend on a handful of input points and their positions). **High variance but low bias**.

3 Statistical decision theory

[1.] Quantitative output framework:

- Output $Y \in \mathbb{R}$, and input $X \in \mathbb{R}^p$
- Joint distribution Pr(X,Y)
- Goal: find a function f(X) to predict Y.
- Loss L(Y, f(X)), e.g. a squared error loss L(Y, f(X))

The expected squared prediction value is

$$\begin{split} EPE(f) &= E(Y - f(X))^2 \\ &= E_X E_{Y|X}([Y - f(X)]^2 | X) \quad \text{conditioning on X} \end{split}$$

which can be minimized by $f(x) = \operatorname{argmin}_c E_{Y|X}([Y-c]^2|X)$, which can be solved by f(x) = E(Y|X=x), also known as the regression function. The best prediction of Y at any point X=x is the conditional mean when best is measured by average squared error.

knn mimics this framework, by $\hat{f}(x) = \text{Ave}(y_i|x_i \in N_k(x))$ with two approximations

- expectation is approximated by averaging over sample data;
- conditioning at a point is relaxed to conditioning on some region close to the target point

Least square also mimics this framework, with the assumption that the regression function f(x) is approximately linear in its argument, i.e. $f(x) \approx x^T \beta$. Therefore, β can be solved by $\beta = [E(XX^T)]^{-1}E(XY)$. That is not to condition on X, rather we used our knowlege of the functional relationship to pool over values of X. Least square estimates replace $E(\cdot)$ by averaging over the training data.

[2.] Qualitative output framework:

- Suppose there are K classes in G.
- Loss function can be represented by a $K \times K$ matrix **L**, where each position L(k, l) is the loss for misclassifying G_k as G_l . Most commonly we can use the zero_one loss, that is the set the loss as 1.

The expected prediction error is

$$\begin{aligned} \text{EPE} &= E[L(G, \hat{G}(X))] \\ &= E_X \sum_{k=1}^K L[G_k, \hat{G}(X)] Pr(G_k|X) \end{aligned}$$

which can be minimized by

$$\hat{G}(x) = \operatorname{argmin}_{g \in G} \sum_{k=1}^{K} L[G_k, g] Pr(G_k | X = x)$$

$$= \operatorname{argmin}_{g \in G} [1 - Pr(g | X = x)]$$

$$= \max Pr(g | X = x)$$

This is known as the *Bayes Classifier*, such that we classify to the most probably class, using the conditional distribution Pr(G|X).

knn directly approximates this solution using majority vote in a nearest neighborhood, except that conditional probability at a point is relaxed to conditional probability within a neighborhood of a point and probability are approximated by training sample proportions.

4. Function approximation

Data $\{x_i, y_i\}$ are considered to be from a p+1 dimensional Euclidean space. The function f(x) has domain equal to a p-dimensional subspace. Data and function are related via the model $y_i = f(x_i) + \epsilon_i$. The goal for learning is to find an approximation to f(x) in \mathbb{R}^p given the representation in the domain of data which is \mathbb{R}^{p+1}

The question is to find a set of parameters θ for the function $f_{\theta}(x)$ with following criterion

[1.] Least square

To minimize the RSS $(\theta) = \sum_{i=1}^{N} (y_i - f_{\theta}(x_i))^2$

[2.] Maximum likelihood estimation

If we have a random sample y_i , i = 1...N from a density $Pr_{\theta}(y)$. The log-probability of the observed sample is $L(\theta) = \sum_i \log Pr_{\theta}(y_i)$. The most reasonable values for θ are those for which the probability of the observed sample is the largest.

5. Restricted estimators

Minimizing the RSS leads to many solution, because any function \hat{f} that passing through the training points is a solution. Therefore, we need to add complexity restrictions, that is, for all input points x sufficiently close to each other in some metirc, \hat{f} exhibits osme specical structure such as nearly constant, linear, or low-order polynomial behavior.

5.1 Roughness penalty and Baysian methods

$$PRSS(f; \lambda) = RSS(f) + \lambda J(f)$$

with penalty $J(\cdot)$. E.g. cubic smoothing splines penalizes on large values of second order derivative.

5.2 Kernal methods and local regression

Kernel methods control the nature of the local neighborhood, using a kernel function $K_{\lambda}(x_0, x)$, which put weights to points x in a region near x_0 (λ controls the width of the neighborhood).

A local regression estimate of $f(x_0)$ as $f_{\hat{\theta}}(x_0)$ where $\hat{\theta}$ minimizes $RSS(f_{\theta}, 0) = \sum_i K_{\lambda}(x_0, x_i)(y_i - f_{\theta}(x_i))^2$.

5.3 Basis functions and dictionary methods

$$f_{\theta}(x) = \sum_{m=1}^{M} \theta_m h_m(x)$$

6. Model selection and the Bias-variance tradeoff

Figure 1: Model Complexity v.s. Prediction Errors

Data
$$\{x_i, y_i\}$$
, model $y = f(x) + \epsilon$, where $E(\epsilon) = 0$, $var(\epsilon) = \sigma^2$

$$E[(y - \hat{f}(x))^2] = (\text{Bias}[\hat{f}(x)])^2 + Var[\hat{f}(x)] + \sigma^2$$

- * Bias $[\hat{f}(x)] = E[\hat{f}(x)] f(x)$: error caused by simplifying assumptions build into the method
 - $Var[\hat{f}(x)] = E[(E[\hat{f}(x)] \hat{f}(x))^2]$: variance of the learning method
 - irreducible error σ^2 due to the new test target.

Derivation

Derivation [edit]

The derivation of the bias-variance decomposition for squared error proceeds as follows. [9][10] For notational convenience, we abbreviate f = f(x), $\hat{f} = \hat{f}(x; D)$ and we drop the D subscript on our expectation operator recall that, by definition, for any random variable X, we have

$$Var[X] = E[X^2] - (E[X])^2.$$

Rearranging, we get:

$$\mathrm{E}[X^2] = \mathrm{Var}[X] + \left(\mathrm{E}[X]\right)^2.$$

Since f is deterministic, i.e. independent of D,

$$E[f] = f$$
.

Thus, given $y=f+\varepsilon$ and $\mathrm{E}[\varepsilon]=0$ (because ε is noise), implies $\mathrm{E}[y]=\mathrm{E}[f+\varepsilon]=\mathrm{E}[f]=f.$

Also, since $\mathrm{Var}[arepsilon] = \sigma^2$,

$$\operatorname{Var}[y] = \operatorname{E}[(y - \operatorname{E}[y])^2] = \operatorname{E}[(y - f)^2] = \operatorname{E}[(f - \varepsilon - f)^2] = \operatorname{E}[\varepsilon^2] = \operatorname{Var}[\varepsilon] + \left(\operatorname{E}[\varepsilon]\right)^2 = \sigma^2 + 0^2 = \sigma^2.$$

Thus, since arepsilon and \hat{f} are independent, we can write

$$\begin{split} \mathbf{E} \left[(y - \hat{f})^2 \right] &= \mathbf{E} \left[(f + \varepsilon - \hat{f})^2 \right] \\ &= \mathbf{E} \left[(f + \varepsilon - \hat{f} + \mathbf{E}[\hat{f}] - \mathbf{E}[\hat{f}])^2 \right] \\ &= \mathbf{E} \left[(f - \mathbf{E}[\hat{f}])^2 \right] + \mathbf{E}[\varepsilon^2] + \mathbf{E} \left[(\mathbf{E}[\hat{f}] - \hat{f})^2 \right] + 2 \mathbf{E} \left[(f - \mathbf{E}[\hat{f}])\varepsilon \right] + 2 \mathbf{E} \left[\varepsilon(\mathbf{E}[\hat{f}] - \hat{f}) \right] + 2 \mathbf{E} \left[(\mathbf{E}[\hat{f}] - \hat{f}) (f - \mathbf{E}[\hat{f}]) \right] \\ &= (f - \mathbf{E}[\hat{f}])^2 + \mathbf{E}[\varepsilon^2] + \mathbf{E} \left[(\mathbf{E}[\hat{f}] - \hat{f})^2 \right] + 2 (f - \mathbf{E}[\hat{f}]) \mathbf{E}[\varepsilon] + 2 \mathbf{E}[\varepsilon] \mathbf{E} \left[\mathbf{E}[\hat{f}] - \hat{f} \right] + 2 \mathbf{E} \left[\mathbf{E}[\hat{f}] - \hat{f} \right] (f - \mathbf{E}[\hat{f}]) \\ &= (f - \mathbf{E}[\hat{f}])^2 + \mathbf{E}[\varepsilon^2] + \mathbf{E} \left[(\mathbf{E}[\hat{f}] - \hat{f})^2 \right] \\ &= (f - \mathbf{E}[\hat{f}])^2 + \mathbf{Var}[\varepsilon] + \mathbf{Var} \left[\hat{f} \right] \\ &= \mathbf{Bias}[\hat{f}]^2 + \mathbf{Var}[\varepsilon] + \mathbf{Var} \left[\hat{f} \right] \\ &= \mathbf{Bias}[\hat{f}]^2 + \sigma^2 + \mathbf{Var} \left[\hat{f} \right]. \end{split}$$

Finally, MSE loss function (or negative log-likelihood) is obtained by taking the expectation value over $x \sim P$:

$$ext{MSE} = ext{E}_x \left\{ ext{Bias}_D[\hat{f}\left(x;D
ight)]^2 + ext{Var}_D\left[\hat{f}\left(x;D
ight)
ight]
ight\} + \sigma^2.$$

Figure 2: Bias-Variance Tradeoff