Вычислительная геометрия и геометрическое моделирование Индивидуальные задания к лабораторным занятиям (20 ч)

Общие требования:

- 1. Все задания должны быть выполнены в виде законченного работоспособного программного приложения с демонстрацией результатов расчета в графическом виде.
- 2. ОС любая, язык программирования произвольный. Для получения максимального доступа к вычислительным ресурсам и гибкого управления памятью настоятельно **рекомендуется использовать С++** (в любой редакции). В качестве GUI-платформы можно использовать библиотеку Qt.
- 3. Интерфейс пользователя должен позволять ввести размер и параметры задачи (число точек, отрезков и т. д.) или ввести эти данные с помощью интерактивного графического построения (например, задать прямоугольное окно с помощью мыши).
- 4. Для задач по вычислительной геометрии (темы 1, 3) для демонстрации производительности размер задачи должен быть большим: не менее 10⁵-10⁶. Для того, чтобы отображение результата не занимало больше времени, чем сам расчет, точки следует отображать просто пикселями (а не окружностями или эллипсами). Для динамических изображений перерисовку в окне следует выполнять только для изменяющейся части окна. Приложение необходимо запускать в конфигурации Release, в потоки std::cout и std::cerr ничего не выводить.
- 5. В задачах по компьютерной графике (тема 2) построенный 3D объект нужно демонстрировать в динамике, например, в виде простого предмета (куба, тетраэдра), вращающегося вокруг своей оси, или в виде статического объекта, вокруг которого движется камера.
- 6. В задачах по геометрическому моделированию (тема 4) построение кривой или поверхности необходимо производить интерактивно, задавая управляющие точки с помощью мыши.
- 7. В сумме по всем темам необходимо набрать **30 баллов**. По каждой теме нужно выполнить не менее одного задания. Задания одной темы разделены на группы и выделены цветом, выбранные задания из одной темы должны быть разных цветов.
- 8. В процессе защиты работы необходимо предъявить код программы и быть готовым ответить на вопросы по коду и алгоритму.

N₂	Баллы	Тема 1: Геометрический поиск и пересечения
1.	4	 Подсчет точек внутри заданного прямоугольного окна за O(log n). • число точек не менее 10⁶, создаются с помощью генератора случайных чисел; • окно задается с помощью мыши после генерации точек; • после построения окна его можно захватить мышью и перемещать; • при каждом перемещении в специальном окне отображается число точек в окне.
2.	4	Перечисление точек внутри заданного прямоугольника: метод сетки. • число точек не менее 10^6 , создаются с помощью генератора случайных чисел; • окно задается с помощью мыши после генерации точек; • после построения окна его можно захватить мышью и перемещать; • точки, попавшие в окно, выделяются цветом.
3.	5	Перечисление точек внутри заданного прямоугольника: квадратичное дерево (см. задачу 2).
4.	5	Перечисление точек внутри заданного прямоугольника: 2-d-дерево (см. задачу 2).
5.	6	Перечисление точек внутри заданного прямоугольника: адаптивное 2-d-дерево (см. задачу 2).
6.	4	 Принадлежность простому многоугольнику. ● многоугольник задается с помощью мыши; ● после построения многоугольника он окрашивается в какой-нибудь цвет, если указатель мыши находится внутри, и не окрашивается, если указатель находится снаружи.
7.	6	Принадлежность простому многоугольнику с использованием устойчивых предикатов Шевчука (см. задачу 6).
8.	6	Принадлежность звездному многоугольнику, с поиском внутренней точки (см. задачу 6).
9.	6	 Локализация точки на планарном разбиении: метод полос. в качестве планарного разбиения использовать прямоугольную сетку размера не менее 1000х1000, повёрнутую на небольшой угол (5-7 градусов); после построения и отображения сетки при движении курсора ячейка сетки под курсором выделяется цветом.
10.	10	Локализация точки на планарном разбиении: метод детализации триангуляции (см. задачу 9, размер сетки 100x100, ячейки сетки разбиваются на два треугольника).
11.	5	Пересечение выпуклых многоугольников, проверка выпуклости. • многоугольники задаются с помощью мыши; • проверка выпуклости выполняется с помощью устойчивых геометрических предикатов Шевчука.

12.	5	Пересечение ортогональных отрезков.
		 отрезки создаются автоматически с помощью генератора случайных чисел; положение и длина генерируются отдельно, при этом средняя длина должна быть намного меньше области, занимаемой отрезками; после построения отрезков поиск пересечений запускается отдельной командой (кнопкой); пары пересекающихся отрезков выделяются цветом.
13.	5	Идентификация пересечения отрезков.
14.	6	 Пересечение отрезков (алгоритм Бентли-Оттмана). см. задачу 12. факт пересечения отрезков проверять с помощью устойчивых предикатов Шевчука. точки пересечения вычислять с помощью обычной (неточной) арифметики.
15.	10	 Пересечение отрезков (алгоритм Бентли-Оттмана) с использованием точной арифметики (библиотека GMP). см. задачу 12. факт пересечения отрезков проверять с помощью устойчивых предикатов Шевчука. при формировании приоритетной очереди критических точек использовать библиотеку точной арифметики (GMP).
		Тема 2: Плоские проекции
1.	5	Построение изометрии.
2.	5	Построение проекции Cavalier.
3.	5	Построение проекции Cabinet.
4.	5	Построение одноточечной центральной проекции.
5.	5	Построение двухточечной центральной проекции.
6.	5	Построение произвольной центральной проекции по заданному центру проекции и фокусу (нормаль к картинной плоскости направлена на объект, вектор вертикали - вверх).
7.	5	Построение произвольной центральной проекции по заданным центру проекции, фокусу и вектору вертикали (нормаль к картинной плоскости направлена на объект).
		Тема 3: Выпуклые оболочки, задачи геометрической близости
1.	4	Выпуклая оболочка: метод Джарвиса. • число точек не менее 10^5 , создаются с помощью генератора случайных чисел;

 • построенная оболочка выделяется цветом. Выпуклая оболочка: мстод Джарвиса, устойчивый. • см. задачу 1; • поиск каждой следующей точки выполнять с помощью устойчивых предикатов Шевнука. 4. Выпуклая оболочка: метод Грехэма (см. задачу 1). 4. Выпуклая оболочка: метод Грехэма, устойчивый. • см. задачу 1; • при сортировке и обходе Грэхема использовать устойчивые предикаты Шевчука. 5. 4 Выпуклая оболочка: «быстрый» метод (см. задачу 1). 6. 6 Выпуклая оболочка: «быстрый» метод, устойчивый. • см. задачу 1; • использовать устойчивые предикаты Шевчука. 7. 6 Выпуклая оболочка: метод «разделяй и властвуй». • см. задачу 1; • использовать устойчивые предикаты Шевчука. 8. 4 Аппроксимация выпуклой оболочки (см. задачу 1). 9. 6 Выпуклая оболочка простого многоугольника. • см. задачу 1; • использовать устойчивые предикаты Шевчука. 10. 6 Триангуляция Грэхсма. • число точек не менее 500, создаются с помощью генератора случайных чисея для разных типов распределений; • после генерации точек вычисление запускается отдельной командой (кнопкой); • использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делопе: бір-алгоритм (см. задачу 11). 12. 6 Триангуляция Делопе: метод «разделяй и властвуй». • число точек не метод «разделяй и вл			
 2. 6 Выпуклая оболочка: метод Джарвиса, устойчивый. м. адачу 1; понек каждой следующей точки выполнять с помощью устойчивых предикатов Шевчука. 3. 4 Выпуклая оболочка: метод Грехэма (см. задачу 1). 4. 6 Выпуклая оболочка: метод Грехэма, устойчивый. м. см. задачу 1; при сортировке и обходе Грэхема использовать устойчивые предикаты Шевчука. 5. 4 Выпуклая оболочка: «быстрый» метод (см. задачу 1). 6. 6 Выпуклая оболочка: «быстрый» метод, устойчивый. 			
	2.	6	
 4 Выпуклая оболочка: метод Грехэма (см. задачу 1). 6 Выпуклая оболочка: метод Грехэма, устойчивый. см. задачу 1; при сортировке и обходе Грэхема использовать устойчивые предикаты Шевчука. 5. 4 Выпуклая оболочка: «быстрый» метод (см. задачу 1). 6. 6 Выпуклая оболочка: «быстрый» метод, устойчивый. см. задачу 1; использовать устойчивые предикаты Шевчука. 7. 6 Выпуклая оболочка: метод «разделяй и властвуй». см. задачу 1; использовать устойчивые предикаты Шевчука. 8. 4 Аппроксимация выпуклой оболочки (см. задачу 1). 9. 6 Выпуклая оболочка простого многоугольника. см. задачу 1; использовать устойчивые предикаты Шевчука. 10. 6 Триангуляция Грэхема. число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). Тема 4: Геометрическое моделирование 			
 4. 6 Выпуклая оболочка: метод Грехэма, устойчивый. см. задачу 1; при сортировке и обходе Грэхема использовать устойчивые предикаты Шевчука. 5. 4 Выпуклая оболочка: «быстрый» метод (см. задачу 1). 6. 6 Выпуклая оболочка: «быстрый» метод, устойчивый. см. задачу 1; использовать устойчивые предикаты Шевчука. 7. 6 Выпуклая оболочка: метод «разделяй и властвуй». см. задачу 1; использовать устойчивые предикаты Шевчука. 8. 4 Аппроксимация выпуклой оболочки (см. задачу 1). 9. 6 Выпуклая оболочка простого многоугольника. см. задачу 1; использовать устойчивые предикаты Шевчука. 10. 6 Триангуляция Грэхема. число точек пе менее 500, создаются е помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: бір-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй», число точек пе менее 500, создаются с помощью геператора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кпопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). Тема 4: Геометрическое моделирование Тема 4: Геометрическое моделирование Тема 4: Геометрическое моделирование			предикатов Шевчука.
	3.	4	Выпуклая оболочка: метод Грехэма (см. задачу 1).
 при сортировке и обходе Грэхема использовать устойчивые предикаты Шевчука. Выпуклая оболочка: «быстрый» метод (см. задачу 1). см. задачу 1;	4.	6	
Невчука. Выпуклая оболочка: «быстрый» метод (см. задачу 1).			
 5. 4 Выпуклая оболочка: «быстрый» метод, (см. задачу 1). 6. 6 Выпуклая оболочка: «быстрый» метод, устойчивый. • см. задачу 1; • использовать устойчивые предикаты Шевчука. 7. 6 Выпуклая оболочка: метод «разделяй и властвуй». • см. задачу 1; • использовать устойчивые предикаты Шевчука. 8. 4 Аппроксимация выпуклой оболочки (см. задачу 1). 9. 6 Выпуклая оболочка простого многоугольника. • см. задачу 1; • использовать устойчивые предикаты Шевчука. 10. 6 Триангуляция Грэхема. • число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; • после генерации точек вычисление запускается отдельной командой (кнопкой); • использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй», O(n log n) см. задачу 11). 14. 10 Диаграмма Вороного: метод кразделяй и властвуй». • число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; • после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). 16 Тема 4: Геометрическое моделирование 			
 6. Выпуклая оболочка: «быстрый» метод, устойчивый. см. задачу 1; использовать устойчивые предикаты Шевчука. 7. Выпуклая оболочка: метод «разделяй и властвуй». см. задачу 1; использовать устойчивые предикаты Шевчука. 8. 4 Аппроксимация выпуклой оболочки (см. задачу 1). 9. Выпуклая оболочка простого многоугольника. см. задачу 1; использовать устойчивые предикаты Шевчука. 10. 6 Триангуляция Грэхема. число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование	5.	4	
см. задачу 1; использовать устойчивые предикаты Шевчука. 7. 6 Выпуклая оболочка: метод «разделяй и властвуй». см. задачу 1; использовать устойчивые предикаты Шевчука. 8. 4 Аппроксимация выпуклой оболочки (см. задачу 1). 9. 6 Выпуклая оболочка простого многоугольника. см. задачу 1; использовать устойчивые предикаты Шевчука. 10. 6 Триангуляция Грэхема. число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). 16. Тема 4: Геометрическое моделирование			
	0.	O	ž ž
			• использовать устойчивые предикаты Шевчука.
использовать устойчивые предикаты Шевчука. Аппроксимация выпуклой оболочки (см. задачу 1). Выпуклая оболочка простого многоугольника. см. задачу 1; использовать устойчивые предикаты Шевчука. Триангуляция Грэхема. число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. Триангуляция Делоне: flip-алгоритм (см. задачу 11). Диаграмма Вороного: метод «разделяй и властвуй», O(n log n) (см. задачу 11). Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). Диаграмма Вороного: метод Fortune (см. задачу 13). Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование	7.	6	Выпуклая оболочка: метод «разделяй и властвуй».
 8. 4 Аппроксимация выпуклой оболочки (см. задачу 1). 9. 6 Выпуклая оболочка простого многоугольника. см. задачу 1; использовать устойчивые предикаты Шевчука. 10. 6 Триангуляция Грэхема. число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование			
 9. 6 Выпуклая оболочка простого многоугольника. см. задачу 1; использовать устойчивые предикаты Шевчука. 10. 6 Триангуляция Грэхема. число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование			• использовать устойчивые предикаты Шевчука.
	8.	4	Аппроксимация выпуклой оболочки (см. задачу 1).
после генерации Делоне: метод «разделяй и властвуй». Приангуляция Делоне: метод «разделяй и властвуй». После генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. б Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. б Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». использовать устойчивые предикаты Шевчука. 14. 10 Диаграмма Вороного: метод «разделяй и властвуй». после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13).	9.	6	
 10. 6 Триангуляция Грэхема. число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 			
 число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 		_	
чисел для разных типов распределений; • после генерации точек вычисление запускается отдельной командой (кнопкой); • использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». • число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; • после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование	10.	6	
после генерации точек вычисление запускается отдельной командой (кнопкой); использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». испол точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование			
 • использовать устойчивые предикаты Шевчука. 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». • число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; • после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 			
 11. 6 Триангуляция Делоне: flip-алгоритм (см. задачу 11). 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 			
 12. 6 Триангуляция Делоне: метод «разделяй и властвуй», O(n log n) (см. задачу 11). 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 			
 13. 10 Диаграмма Вороного: метод «разделяй и властвуй». число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 		6	
 число точек не менее 500, создаются с помощью генератора случайных чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 	12.	6	Триангуляция Делоне: метод «разделяй и властвуй», $O(n \log n)$ (см. задачу 11).
 чисел для разных типов распределений; после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 	13.	10	
 после генерации точек вычисление запускается отдельной командой (кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование 			· · · ·
(кнопкой). 14. 10 Диаграмма Вороного: метод Fortune (см. задачу 13). 15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование			
15. 10 Триангуляция сгущения, алгоритм Ruppert (см. задачу 13). Тема 4: Геометрическое моделирование			± • • • • • • • • • • • • • • • • • • •
Тема 4: Геометрическое моделирование	14.	10	Диаграмма Вороного: метод Fortune (см. задачу 13).
	15.	10	Триангуляция сгущения, алгоритм Ruppert (см. задачу 13).
1. 4 Алгоритм Кастельжо для кривых Безье.			Тема 4: Геометрическое моделирование
	1.	4	Алгоритм Кастельжо для кривых Безье.

		 управляющие точки задаются с помощью мыши, по мере появления новых точек строится кривая; должна быть возможность переместить управляющую точку в любой
		момент, вслед за ней меняется форма кривой.
2.	4	Кубические кривые Эрмита (см. задачу 1).
3.	5	Полиномы Эрмита пятой степени (см. задачу 1).
4.	5	Составные кубические кривые в форме Безье (см. задачу 1).
5.	5	Аппроксимационные В-сплайны 3-го порядка (см. задачу 1).
6.	5	Интерполяционные В-сплайны 3-го порядка (см. задачу 1).
7.	5	 Кубическая поверхность Безье. управляющие точки создаются автоматически, по умолчанию лежащими в одной плоскости и образующими прямоугольную область; должна быть возможность переместить управляющую точку, вслед за ней меняется форма поверхности. поверхность отображается в ортогональной проекции (Z = 0) в виде сетки.
8.	5	 Кубическая поверхность Эрмита. управляющие точки, вектора касательных и нормали создаются автоматически (точки лежат в одной плоскости и образуют прямоугольную область); должна быть возможность переместить управляющую точку и изменить направление векторов в вершинах, вслед за ней меняется форма поверхности. поверхность отображается в ортогональной проекции (Z = 0) в виде сетки.
9.	6	Составные кубические поверхности Безье с гладкой сшивкой на границе (см. задачу 7).
10.	6	Составные кубические поверхности Эрмита с гладкой сшивкой на границе (см. задачу 7).
11.	6	 Линейные куски Кунса. граничные кривые по умолчанию создаются как кубические кривые Безье или Эрмита, образующие замкнутый 4-угольный контур; изменение формы кривой меняет форму поверхности. поверхность отображается в ортогональной проекции (Z = 0) в виде сетки.
12.	10	Кубические поверхности Кунса, гладкая сшивка по общей границе (см. задачу 10).