UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores:

Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 3

1. Demuestre que si $e \in E$, entonces $c(G) \le c(G - e) \le c(G) + 1$.

Demostración: Dado que c corresponde a la función que devuelve la cantidad de componentes conexas, analicemos dos casos posibles:

- Si "e" no es un puente, entonces:

$$c(G - e) = c(G) \tag{1}$$

Esto pues sabemos que al borrarla una arista que no es puente, G no cambia en número de componentes conexas y así:

$$c(G) \le c(G - e) \tag{2}$$

De la dicotomia de \leq , sabemos que cumple con la igualdad. Luego, hacemos notar que:

$$c(G) < c(G) + 1 \tag{3}$$

$$\Rightarrow c(G) \le c(G) + 1 \tag{4}$$

De 1 y 4 se sigue que:

$$c(G - e) \le c(G) + 1 \tag{5}$$

De 2 y 5 tenemos que:

$$c(G) < c(G - e) < c(G) + 1$$

- Si "e" es un puente, entonces:

$$c(G) < c(G - e)$$
, por la definición de arista como puente (6)

Así, tenemos que:

$$c(G) \le c(G - e)$$
, pues de la dicotomia se cumple con $<$ (7)

Además, sabemos que el número de componentes conexas aumenta exactamente en 1 en G-e (porque estamos trabajando con gráficas simples). De esto, se sigue que:

c(G - e) = c(G) + 1

$$\Rightarrow c(G - e) \le c(G) + 1 \tag{9}$$

(8)

De 7 y 9 se sigue que:

$$c(G) \le c(G - e) \le c(G) + 1$$

De lo anterior, concluimos que $c(G) \le c(G - e) \le c(G) + 1$. QED

2. Una gráfica es escindible completa si su conjunto de vértices admite una partición (S, K) de tal forma que S es un conjunto independiente, K es un clan, y cada vértice en S es adyacente a cada vértice en K. Demuestre que una gráfica es escindible completa si y sólo si no contiene a C_4 ni a $\overline{P_3}$ como subgráfica inducida.

Demostración: Sea $C_4 = (x_0, x_1, x_2, x_3, x_0)$ y $\overline{P_3} = \{y_0, y_1, y_2\}$ tal que $y_0y_2 \in E_G$, $y_0y_1, y_1y_2 \notin E_G^{-1}$, con $x_i, y_j \in V_G$ $(0 \le i \le 3, 0 \le j \le 2)$. Nótese que los x_i 's, y_j 's no pueden estar contenidos en una misma parte. Es decir, C_4 y $\overline{P_3}$ no están contenidos en S (ya que ningún vértice en S es adyacente). De igual manera, no están contenidos en K (ya que para cualesquiera 3 o 4 vértices en K se tiene a K_3 o K_4).

Para este ejercicio analizaremos dos posibles casos:

- ⇒) Procedamos por reducción al absurdo.
 - ·) Si G es escendible completa, entonces C₄ es subgráfica inducida de G. Supongamos, sin pérdida de generalidad, que x₀ ∈ S y x₁ ∈ K (caso contrario, x₁ ∈ S y x₀ no sería adyacente a x₁!!). Luego, si x₂ ∈ S entonces x₃ ∈ K (caso contrario, x₃ ∈ S y x₂ no sería adyacente a x₃!!). Así por definición de K (clan), x₁x₃ ∈ E_G!! (ya que x₁, x₃ ∈ K). Si x₂ ∈ K, entonces x₃ ∈ S (caso contrario, x₃ ∈ K y x₁x₃ ∈ E_G!!). Pero x₀ no es adyacente a x₃!! (x₀, x₃ ∈ S). He aquí una contradicción de suponer a C₄ como subgráfica inducida de G. Por tanto, se concluye que C₄ no está contenida como subgráfica inducida en G.
 - ··) Si G es escendible completa, entonces $\overline{P_3}$ es subgráfica inducida de G. Supongamos, sin pérdida de generalidad, que $y_0 \in S$. Entonces: $y_1 \in S$ (pues $y_0y_1 \notin E_G$). Luego, $y_2 \in S!!$ (pues $y_1y_2 \notin E_G$). Pero no todos los y_i 's pueden estar en S. Si $y_0 \in K$, entonces $y_1 \in S$ o $y_1 \in K$ implican que y_0 es adyacente a $y_1!!$ Pero $y_0y_1 \notin E_G$ y he aquí una contradicción de suponer a $\overline{P_3}$ como subgráfica inducida de G. Por tanto, se concluye que $\overline{P_3}$ no está contenida como subgráfica inducida en G.
- \Leftarrow) Para este caso, analicemos a todas las gráficas no isomorfas que no son $\overline{P_3}$ con 3 vértices y no son C_4 con 4 vértices.

Con 3 vértices:

 $G_1 \circ \longrightarrow \circ \longrightarrow \circ \qquad G_2 \circ$

Propongamos la partición (S, K) en G.

¹Sin pérdida de generalidad.

Notemos que H_2 , H_3 , H_4 , H_5 , H_6 , y H_8 contienen como subgráficas inducidas a $\overline{P_3}$. Luego, sólo H_1 , H_7 , H_9 , y H_{10} junto a G_1 , G_2 , y G_3 son subgráficas inducidas de G y podemos hacer el siguiente análisis:

- 1) G_2 y H_1 están contenidas como subgráficas inducidas en S.
- 2) G_1 tiene los 2 vértices de grado 1 en S y el único vértice de grado 2 está en K.
- 3) G_3 y H_{10} están en K.
- 4) H_7 tiene a su único vértice de grado 3 en K y el resto de sus vértices está en S.
- 5) H_9 tiene a sus 2 vértices de grado 2 en S y al resto en K.

Con base a lo anterior, podemos sugerir que K es un clan y S es independiente y ambos subconjuntos de V_G . Con esto tenemos que G es escindible.

Por (2), (4) y (5), vemos que es necesario que haya aristas entre vértices de S y K. Como (1) y (3) no restringen la condición anterior, entonces se puede considerar a escindible completa.

De los casos anteriores, concluimos que una gráfica es escindible completa si y sólo si no contiene a C_4 ni a $\overline{P_3}$ como subgráfica inducida. QED

3. (a) Demuestre que si $|E| > {|V|-1 \choose 2}$, entonces G es conexa.

Demostración: Si $|E_G| = {|V|-1 \choose 2}$, entonces hay dos posibilidades:

- Si G es conexa, entonces G+e (con $e\in E_G$) cumple que:

$$|E_{G+e}| = {|V|-1 \choose 2} + 1$$

 $> {|V|-1 \choose 2}$

Además, e no es ni lazo ni arista multiple, pues sabemos de resultados vistos en clase que una gráfica es completa si $|E| = {|V| \choose 2}$ y como

$$\binom{|V|}{2} \neq \binom{|V|-1}{2}$$

ya que

$$\binom{|V|}{2} = \frac{n \cdot (n-1)}{2}$$

у

$$\binom{|V|-1}{2} = \frac{(n-1)\cdot(n-2)}{2}$$

Luego,

y de hecho

$$\binom{|V|}{2} > \binom{|V|-1}{2}$$

Así, se justifica que e no sea ni lazo ni arista multiple.

De lo anterior, se sigue que G+e es una gráfica simple que además es conexa, pues G ya es conexa.

- Si G no es conexa, entonces existe un vértice aislado x, ya que:

Sabemos por resultados vistos en clases que hay $\binom{|V_G|}{2}$ aristas en una gráfica completa y un vértice puede relacionarse a lo más con $|V_G| - 1$ vértices (pues estamos trabajando con gráficas simples).

Nótese que de la anterior se infiere que $G - \{x\}$ es conexa ² y así G + e (con $e \in E_G$)

$$|E_{G+e}| = {|V|-1 \choose 2} + 1$$

 $> {|V|-1 \choose 2}$

es conexa, pues no hay lazos y no hay aristas múltiples en G.

Entonces, tenemos que la nueva arista está comprendida entre x y algún otro vértice en $V_{G-\{x\}}$. Por lo que habrá una xy-trayectoria para $y \in E_G$.

De lo anterior, concluimos que $|E_G| > {|V|-1 \choose 2} \Rightarrow G$ es conexa. QED

(b) Para |V| > 1 encuentre una gráfica inconexa con $|E| = {|V|-1 \choose 2}$.

Solución:

Si $|V_G| = 2$, como $2 > 1 \Rightarrow |V_G| > 1$.

Luego la gráfica que tiene como vértices a u y v y además:

$$|E_G| = {2-1 \choose 2}$$

$$= {(2-1) \cdot (2-2) \over 2}$$

$$= 0$$

A continuación se muestra la gráfica mencionada:

Así, observemos que la gráfica anterior es inconexa.

²Esto ya que $|E_{G-\{x\}}| = {|V_G| \choose 2}$.

4. (a) Demuestre que si $\delta > \lfloor \frac{|V|}{2} \rfloor - 1$, entonces G es conexa.

Demostración: Para este inciso procedemos por inducción sobre V_G . Sea G una gráfica con $|V_G|=1$. Así, $\delta=\lfloor\frac{1}{2}\rfloor=0,\ i.e.,$

donde $E_G = \emptyset$.

Luego, supongamos como hipótesis inductiva que para una cantidad n de vértices, el que se cumpla $\delta = \lfloor \frac{|V|}{2} \rfloor$ implica que G es conexa.

A continuación veamos qué pasa con $G+\{x\}$, donde $x\in V_{G+\{x\}}$. Así, G cumple con $\delta=\lfloor\frac{|V|}{2}\rfloor$.

De lo anterior, se sigue que x es vecino de al menos $\lfloor \frac{|V|}{2} \rfloor$ vértices en G (notemos que G es, de hecho, una subgráfica inducida por vértices de $G + \{x\}$). Como G es conexa, por hipótesis inductiva se sigue que $G + \{x\}$ es conexa. QED

(b) Para |V| par encuentre una gráfica ($\lfloor \frac{|V|}{2} \rfloor - 1)$ -regular e inconexa.

Solución:

Con |V| = 4, tenemos que:

$$\lfloor \frac{4}{2} \rfloor - 1 = 2 - 1$$
$$= 1$$

G

Así, la gráfica es 1-regular e inconexa.

5. Demuestre que si D no tiene lazos y $\delta^+ \geq 1$, entonces D contiene un ciclo dirigido de longitud al menos $\delta^+ + 1$.

Demostración: Para este ejercicio procedamos por inducción en V. Así, cuando $\delta^+=1$ y |V|=2 tendremos que:

Ahora, supongamos que hay un ciclo C de al menos longitud $\delta^+ + 1$ con $\delta^+ > 1$, para n(n > 1) vértices en D y además D no tiene lazos.

Luego, para $|V_D| = n + 1$ donde llamaremos x al vértice extra.

Analicemos dos casos extremos:

- Si x tiene una sóla incidencia, entonces $\delta^+=1$ y como $\mathcal{L}(C)>1$, tenemos que existe un ciclo de al menos δ^++1 . En este caso, tenemos que es estrictamente mayor. De lo anterior, terminamos.
- Si para cada vértice $u_i(1 < i \ge |V_D| 1)$ en G hay una arista que "salga" de u_i e incida en x, tenemos que δ^+ no se modifica.

Ahora notemos que, en partícular, hay al menos u_i, u_{i+1} tales que existe una $u_i u_{i+1}$ -trayectoria en C (notemos que u_i y u_{i+1} son vecinos). Luego, como existe $e_1 = u_i x$ y $e_2 = u_{i+1} x$, con e_1 y e_2 en E_D , tenemos un nuevo ciclo que es de al menos $\mathcal{L}(C) + 1$ de longitud. Así, como $\mathcal{L}(C) \geq \delta^+ + 1$, tenemos que el nuevo ciclo es de al menos longitud $\delta^+ + 1$.

Del análisis anterior, concluimos que el enunciado se cumple.

QED

Puntos Extra

1. Demuestre que el número de $v_i v_j$ -caminos de longitud k en G es $(A^k)_{ij}$ donde A es la matriz de adyacencia de G.

Demostración: Procedemos por Inducción.

Paso base: (n = 1).

Si $v_i v_j$ son adyacentes, entonces $A_{ij} = 1$ y en caso de que no sean adyacentes, $A_{ij} = 0$. Lo que implica que el número de caminos de longitud 1 entre $v_i v_j = A_{ij} = A_{ij}^1$.

Hipótesis de Inducción: (n = k).

Supongamos que el número de $v_i v_i$ -caminos de longitud k en G es:

$$(A^k)_{ij}$$

Paso inductivo: (n = k + 1).

Demostraremos que el número de $v_i v_j$ -caminos de longitud k+1 en G es:

$$(A^{(k+1)})_{ij}$$

Sabemos que $A^{(k+1)} = A^k \cdot A$ (por definición de multiplicación de matrices). Sean " t_{ij} " los elementos de la matriz A^k y " a_{ij} " lo elementos de la matriz A. Entonces: $A^k \cdot A = \sum_{r=1}^n t_{pr} a_{rq}$, para toda A_{pq} que pertenece a $A^{(k+1)}$.

Así,
$$(A^{(k+1)})_{ij} = (A^k \cdot A)_{ij} = \sum_{r=1}^n t_{ir} a_{rj}$$
.

Notemos que $(A^{(k+1))_{ij}}$ es la multiplicación de un renglón i de A^k y una columna j de A.

Si $a_{rj} = 0$, entonces v_r y v_j no son advacentes y, por **Hipótesis de Inducción**, t_{ir} es el número de caminos que existen de longitud k de v_i a v_r .

- Caso 1) $a_{rj} = 0$. Si $a_{rj} = 0$, entonces $(t_{ir} \cdot a_{rj} = 0)$ y por tanto, existen 0 caminos de longitud n+1.
- Caso 2) $a_{rj} = 1$. Si $a_{rj} = 1$, entonces $(t_{ir} \cdot a_{rj} = t_{ir})$ y por tanto, existe 1 camino de longitud n+1 que recorre de $v_i v_j$.

De lo anterior se sigue que (independientemente de si $a_{rj} = 0$ o $a_{rj} = 1$) $\sum_{r=1}^{n} t_{ir} a_{rj}$ nos dará el número de caminos de longitud n+1 que existen entre $v_i v_j$.

QED

2. Sea G una gráfica bipartita de grado máximo k. Demuestre que existe una gráfica bipartita k-regular, H, que contiene a G como subgráfica inducida.