Accelerated Natural Language Processing Lecture 5 N-gram models, entropy

Sharon Goldwater (some slides based on those by Alex Lascarides and Philipp Koehn)

24 September 2019

Sharon Goldwater ANLP Lecture 5 24 September 2019

Example uses of language models

• Machine translation: reordering, word choice.

 P_{LM} (the house is small) > P_{LM} (small the is house) P_{LM} (I am going home) > P_{LM} (I am going house) P_{LM} (We'll start eating) > P_{LM} (We shall commence consuming)

• Speech recognition: word choice:

 P_{LM} (morphosyntactic analyses) > P_{LM} (more faux syntactic analyses) P_{LM} (I put it on today) > P_{LM} (I putted onto day)

But: How do systems use this information?

Recap: Language models

• Language models tell us $P(\vec{w}) = P(w_1 \dots w_n)$: How likely to occur is this sequence of words?

Roughly: Is this sequence of words a "good" one in my language?

Sharon Goldwater ANI P Lecture 5

Today's lecture:

- What is the Noisy Channel framework and what are some example uses?
- What is a language model?
- What is an n-gram model, what is it for, and what independence assumptions does it make?
- What are entropy and perplexity and what do they tell us?
- What's wrong with using MLE in n-gram models?

Sharon Goldwater ANLP Lecture 5 2 Sharon Goldwater ANLP Lecture 5 3

Noisy channel framework

- Concept from Information Theory, used widely in NLP
- We imagine that the observed data (output sequence) was generated as:

Sharon Goldwater ANLP Lecture 5 4

Example: spelling correction

- P(Y): Distribution over the words (sequences) the user intended to type. A language model.
- P(X|Y): Distribution describing what user is likely to type, given what they meant. Could incorporate information about common spelling errors, key positions, etc. Call it a noise model.
- P(X): Resulting distribution over what we actually see.
- Given some particular observation x (say, effert), we want to recover the most probable y that was intended.

Noisy channel framework

- Concept from Information Theory, used widely in NLP
- We imagine that the observed data (output sequence) was generated as:

Sharon Goldwater ANLP Lecture 5

Noisy channel as probabilistic inference

- \bullet Mathematically, what we want is $\operatorname{argmax}_y P(y|x).$
 - Read as "the y that maximizes P(y|x)"
- Rewrite using Bayes' Rule:

$$\underset{y}{\operatorname{argmax}} P(y|x) = \underset{y}{\operatorname{argmax}} \frac{P(x|y)P(y)}{P(x)}$$
$$= \underset{y}{\operatorname{argmax}} P(x|y)P(y)$$

Sharon Goldwater ANLP Lecture 5 6 Sharon Goldwater ANLP Lecture 5 7

Noisy channel as probabilistic inference

So to recover the best y, we will need

- a language model P(Y): relatively task-independent.
- ullet a **noise model** P(X|Y), which depends on the task.
 - acoustic model, translation model, misspelling model, etc.
 - won't discuss here; see courses on ASR, MT.

Both are normally trained on corpus data.

Sharon Goldwater ANLP Lecture 5

Estimating a language model

- Y is really a sequence of words $\vec{w} = w_1 \dots w_n$.
- So we want to know $P(w_1 \dots w_n)$ for big n (e.g., sentence).
- What will not work: try to directly estimate probability of each full sentence.
 - Say, using MLE (relative frequencies): $C(\vec{w})/(\text{tot } \# \text{ sentences})$.
 - For nearly all \vec{w} (grammatical or not), $C(\vec{w}) = 0$.
 - A sparse data problem: not enough observations to estimate probabilities well.

You may be wondering

If we can train P(X|Y), why can't we just train P(Y|X)? Who needs Bayes' Rule?

- ullet Answer 1: sometimes we do train P(Y|X) directly. Stay tuned...
- Answer 2: training P(X|Y) or P(Y|X) requires **input/output** pairs, which are often limited:
 - Misspelled words with their corrections; transcribed speech; translated text

But LMs can be trained on huge unannotated corpora: a better model. Can help improve overall performance.

Sharon Goldwater ANLP Lecture 5

A first attempt to solve the problem

Perhaps the simplest model of sentence probabilities: a **unigram** model.

• Generative process: choose each word in sentence independently.

• Resulting model:
$$\hat{P}(\vec{w}) = \prod_{i=1}^{n} P(w_i)$$

Sharon Goldwater ANLP Lecture 5 10 Sharon Goldwater ANLP Lecture 5 11

A first attempt to solve the problem

Perhaps the simplest model of sentence probabilities: a unigram model.

- Generative process: choose each word in sentence independently.
- Resulting model: $\hat{P}(\vec{w}) = \prod_{i=1}^{n} P(w_i)$
- So, P(the cat slept quietly) = P(the quietly cat slept)

Sharon Goldwater ANLP Lecture 5 12

MLE for unigrams

- How to estimate P(w), e.g., P(the)?
- Remember that MLE is just relative frequencies:

$$P_{\mathrm{ML}}(w) = \frac{C(w)}{W}$$

- -C(w) is the token count of w in a large corpus
- $W = \sum_{x'} C(x')$ is the total number of word tokens in the corpus.

A first attempt to solve the problem

Perhaps the simplest model of sentence probabilities: a **unigram** model.

- Generative process: choose each word in sentence independently.
- ullet Resulting model: $\hat{P}(ec{w}) = \prod_{i=1}^n P(w_i)$
- So, P(the cat slept quietly) = P(the quietly cat slept)
- Not a good model, but still a model.
- Of course, $P(w_i)$ also needs to be estimated!

Sharon Goldwater ANLP Lecture 5 13

Unigram models in practice

- Seems like a pretty bad model of language: probability of word obviously does depend on context.
- Yet unigram (or bag-of-words) models are surprisingly useful for some applications.
- Can model "aboutness": topic of a document, semantic usage of a word
- Applications: lexical semantics (disambiguation), information retrieval, text classification. (See later in this course)
- But, for now we will focus on models that capture at least some syntactic information.

Sharon Goldwater ANLP Lecture 5 14 Sharon Goldwater ANLP Lecture 5 15

General N-gram language models

Step 1: rewrite using chain rule:

$$P(\vec{w}) = P(w_1 \dots w_n)$$

= $P(w_n | w_1, w_2, \dots, w_{n-1}) P(w_{n-1} | w_1, w_2, \dots, w_{n-2}) \dots P(w_1)$

• Example: $\vec{w} =$ the cat slept quietly yesterday.

```
\begin{split} &P(\mathsf{the, cat, slept, quietly, yesterday}) = \\ &P(\mathsf{yesterday}|\mathsf{the, cat, slept, quietly}) \cdot P(\mathsf{quietly}|\mathsf{the, cat, slept}) \cdot \\ &P(\mathsf{slept}|\mathsf{the, cat}) \cdot P(\mathsf{cat}|\mathsf{the}) \cdot P(\mathsf{the}) \end{split}
```

 But for long sequences, many of the conditional probs are also too sparse!

Sharon Goldwater ANLP Lecture 5 16

Trigram independence assumption

- Put another way, a trigram model assumes these are all equal:
 - -P(slept|the cat)
 - P(slept|after lunch the cat)
 - P(slept|the dog chased the cat)
 - -P(slept|except for the cat)

because all are estimated as P(slept|the cat)

 Not always a good assumption! But it does reduce the sparse data problem.

General N-gram language models

Step 2: make an independence assumption:

$$P(\vec{w}) = P(w_1 \dots w_n)$$

$$= P(w_n | w_1, w_2, \dots, w_{n-1}) P(w_{n-1} | w_1, w_2, \dots, w_{n-2}) \dots P(w_1)$$

$$\approx P(w_n | w_{n-2}, w_{n-1}) P(w_{n-1} | w_{n-3}, w_{n-2}) \dots P(w_1)$$

- Markov assumption: only a finite history matters.
- Here, two word history (trigram model): w_i is cond. indep. of $w_1 \dots w_{i-3}$ given w_{i-1}, w_{i-2} . $P(\text{the, cat, slept, quietly, yesterday}) \approx P(\text{yesterday}|\text{slept, quietly}) \cdot P(\text{quietly}|\text{cat, slept}) \cdot P(\text{slept}|\text{the, cat}) \cdot P(\text{cat}|\text{the}) \cdot P(\text{the})$

Sharon Goldwater ANLP Lecture 5 17

Another example: bigram model

• Bigram model assumes one word history:

$$P(\vec{w}) = P(w_1) \prod_{i=2}^{n} P(w_i | w_{i-1})$$

• But consider these sentences:

$$\begin{array}{cccccc} & w_1 & w_2 & w_3 & w_4 \\ (1) & \text{the} & \text{cats} & \text{slept} & \text{quietly} \\ (2) & \text{feeds} & \text{cats} & \text{slept} & \text{quietly} \\ (3) & \text{the} & \text{cats} & \text{slept} & \text{on} \end{array}$$

• What's wrong with (2) and (3)? Does the model capture these problems?

Sharon Goldwater ANLP Lecture 5 18 Sharon Goldwater ANLP Lecture 5 19

Example: bigram model

 To capture behaviour at beginning/end of sentence, we need to augment the input:

• That is, assume $w_0 = \langle s \rangle$ and $w_{n+1} = \langle /s \rangle$ so we have:

$$P(\vec{w}) = P(w_0) \prod_{i=1}^{n+1} P(w_i|w_{i-1}) = \prod_{i=1}^{n+1} P(w_i|w_{i-1})$$

Sharon Goldwater ANLP Lecture 5 20

Estimating N-Gram Probabilities

• Similarly for trigrams:

$$P_{\text{ML}}(w_3|w_1, w_2) = \frac{C(w_1, w_2, w_3)}{C(w_1, w_2)}$$

- Collect counts over a large text corpus
 - Millions to billions of words are usually easy to get
 - (trillions of English words available on the web)

Estimating N-Gram Probabilities

- Maximum likelihood (relative frequency) estimation for bigrams:
- How many times we saw w_2 following w_1 , out of all the times we saw *anything* following w_1 :

$$P_{\text{ML}}(w_2|w_1) = \frac{C(w_1, w_2)}{C(w_1, \cdot)}$$

= $\frac{C(w_1, w_2)}{C(w_1)}$

Sharon Goldwater ANLP Lecture 5 21

Evaluating a language model

- Intuitively, trigram model captures more context than bigram model, so should be a "better" model.
- That is, more accurately predict the probabilities of sentences.
- But how can we measure this?

Entropy

• Definition of the **entropy** of a random variable X:

$$H(X) = \sum_{x} -P(x) \log_2 P(x)$$

- Intuitively: a measure of uncertainty/disorder
- Also: the expected value of $-\log_2 P(X)$

Sharon Goldwater ANLP Lecture 5 24

Entropy Example

One event (outcome)

$$P(a) = 1$$

$$H(X) = -1 \log_2 1$$

$$= 0$$

Reminder: logarithms

Sharon Goldwater ANLP Lecture 5 2

Entropy Example

2 equally likely events:

$$P(a) = 0.5$$
 $H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5$ $P(b) = 0.5$ $= -\log_2 0.5$ $= 1$

Entropy Example

4 equally likely events:

$$P(a) = 0.25$$

 $P(b) = 0.25$
 $P(c) = 0.25$
 $P(d) = 0.25$

$$\begin{split} H(X) &= -0.25 \log_2 0.25 - 0.25 \log_2 0.25 \\ &- 0.25 \log_2 0.25 - 0.25 \log_2 0.25 \\ &= -\log_2 0.25 \\ &= 2 \end{split}$$

Entropy Example

3 equally likely events and one more likely than the others:

$$P(a) = 0.7$$

 $P(b) = 0.1$
 $P(c) = 0.1$
 $P(d) = 0.1$

$$\begin{split} H(X) &= -0.7 \log_2 0.7 - 0.1 \log_2 0.1 \\ &- 0.1 \log_2 0.1 - 0.1 \log_2 0.1 \\ &= -0.7 \log_2 0.7 - 0.3 \log_2 0.1 \\ &= -(0.7)(-0.5146) - (0.3)(-3.3219) \\ &= 0.36020 + 0.99658 \end{split}$$

Sharon Goldwater

ANLP Lecture 5

Sharon Goldwater

ANLP Lecture 5

=1.35678

Entropy Example

3 equally likely events and one much more likely than the others:

$$P(a) = 0.97$$

 $P(b) = 0.01$
 $P(c) = 0.01$
 $P(d) = 0.01$

 $H(X) = -0.97 \log_2 0.97 - 0.01 \log_2 0.01$ $-0.01 \log_2 0.01 - 0.01 \log_2 0.01$ $= -0.97 \log_2 0.97 - 0.03 \log_2 0.01$ = -(0.97)(-0.04394) - (0.03)(-6.64)= 0.04262 + 0.19932= 0.24194

Entropy take-aways

Entropy of a **uniform distribution** over N outcomes is $\log_2 N$:

H(X) = 1

H(X) = 2

$$H(X) = 0$$

H(X) = 3

$$H(X) = 2.585$$

Entropy take-aways

Any **non-uniform** distribution over N outcomes has **lower** entropy than the corresponding uniform distribution:

$$H(X) = 2$$

$$H(X) = 1.35678$$

$$H(X) = 0.24194$$

Sharon Goldwater

ANLP Lecture 5

32

Sharon Goldwater

outcome?

ANLP Lecture 5

Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the

 Other cases: entropy is the average number of questions per outcome in a (very) long sequence of outcomes, where questions

• Uniform distribution with 2^n outcomes: n g's.

can consider multiple outcomes at once.

Entropy as encoding sequences

- ullet Assume that we want to encode a sequence of events X
- Each event is encoded by a sequence of bits
- For example
 - Coin flip: heads = 0, tails = 1
 - 4 equally likely events: a = 00, b = 01, c = 10, d = 11
 - 3 events, one more likely than others: a = 0, b = 10, c = 11 $\,$
 - Morse code: e has shorter code than q
- ullet Average number of bits needed to encode $X \ge$ entropy of X

The Entropy of English

- Given the start of a text, can we guess the next word?
- Humans do pretty well: the entropy is only about 1.3.
- \bullet But what about $N\text{-}\mathsf{gram}$ models?
- Ideal language model would match the true entropy of English.
- The closer we get to that, the better the model.
- Put another way, a good model assigns high prob to real sentences (and low prob to everything else).

Sharon Goldwater ANLP Lecture 5 34 Sharon Gold

Sharon Goldwater ANLP Lecture 5

How good is the LM?

- ullet Cross entropy measures how well model M predicts the data.
- For data $w_1 \dots w_n$ with large n, well approximated by:

$$H_M(w_1 \dots w_n) = -\frac{1}{n} \log_2 P_M(w_1 \dots w_n)$$

- Avg neg log prob our model assigns to each word we saw
- Or, perplexity:

$$\mathsf{PP}_M(\vec{w}) = 2^{H_M(\vec{w})}$$

Sharon Goldwater ANLP Lecture 5

Example: trigram (Europarl)

prediction	$P_{ m ML}$	$-\log_2 P_{ m ML}$
$P_{\rm ML}(i)$	0.109	3.197
$P_{\rm ML}({\rm would} <{\rm s}>{\rm i})$	0.144	2.791
$P_{\rm ML}({ m like} { m i~would})$	0.489	1.031
P _{ML} (to would like)	0.905	0.144
$P_{\rm ML}({\rm commend} { m like \ to})$	0.002	8.794
$P_{\mathrm{ML}}(\mathrm{the} \mathrm{to}\;\mathrm{commend})$	0.472	1.084
$P_{\rm ML}$ (rapporteur commend the)	0.147	2.763
$P_{\rm ML}({ m on} { m the\ rapporteur})$	0.056	4.150
P _{ML} (his rapporteur on)	0.194	2.367
P _{ML} (work on his)	0.089	3.498
$P_{\mathrm{ML}}(. \mathrm{his\ work})$	0.290	1.785
$P_{\rm ML}(work .)$	0.99999	0.000014
	average	2.634

Perplexity

• On paper, there's a simpler expression for perplexity:

$$\begin{array}{rcl} \mathsf{PP}_{M}(\vec{w}) & = & 2^{H_{M}(\vec{w})} \\ & = & 2^{-\frac{1}{n}\log_{2}P_{M}(w_{1}...w_{n})} \\ & = & 2^{\log_{2}P_{M}(w_{1}...w_{n})^{-\frac{1}{n}}} \\ & = & P_{M}(w_{1}...w_{n})^{-\frac{1}{n}} \end{array}$$

- 1 over the geometric average of the probabilities of each w_i .
- But in practice, when computing perplexity for long sequences, we use the version with logs (see week 3 lab for reasons...)

Sharon Goldwater ANLP Lecture 5 37

Comparison: 1-4-Gram

word	unigram	bigram	trigram	4-gram
i	6.684	3.197	3.197	3.197
would	8.342	2.884	2.791	2.791
like	9.129	2.026	1.031	1.290
to	5.081	0.402	0.144	0.113
commend	15.487	12.335	8.794	8.633
the	3.885	1.402	1.084	0.880
rapporteur	10.840	7.319	2.763	2.350
on	6.765	4.140	4.150	1.862
his	10.678	7.316	2.367	1.978
work	9.993	4.816	3.498	2.394
	4.896	3.020	1.785	1.510
	4.828	0.005	0.000	0.000
average	8.051	4.072	2.634	2.251
perplexity	265.136	16.817	6.206	4.758

Unseen N-Grams

- What happens when I try to compute P(consuming|shall commence)?
 - Assume we have seen shall commence in our corpus
 - But we have never seen shall commence consuming in our corpus

Sharon Goldwater ANLP Lecture 5 4

The problem with MLE

- MLE estimates probabilities that make the observed data maximally probable
- by assuming anything unseen cannot happen (and also assigning too much probability to low-frequency observed events).
- It over-fits the training data.
- We tried to avoid zero-probability sentences by modelling with smaller chunks (n-grams), but even these will sometimes have zero prob under MLE.

Next time: **smoothing** methods, which reassign probability mass from observed to unobserved events, to avoid overfitting/zero probs.

Unseen N-Grams

- What happens when I try to compute P(consuming|shall commence)?
- Assume we have seen shall commence in our corpus
- But we have never seen shall commence consuming in our corpus
- $\rightarrow P(\text{consuming}|\text{shall commence}) = 0$
- Any sentence with shall commence consuming will be assigned probability 0

The guests shall commence consuming supper Green inked shall commence consuming garden the

Sharon Goldwater ANLP Lecture 5 41

Questions for review:

- What is the Noisy Channel framework and what are some example uses?
- What is a language model?
- What is an n-gram model, what is it for, and what independence assumptions does it make?
- What are entropy and perplexity and what do they tell us?
- What's wrong with using MLE in n-gram models?

Sharon Goldwater ANLP Lecture 5 42 Sharon Goldwater ANLP Lecture 5 43