Data624 - Homework4

Amit Kapoor

2/28/2021

Contents

3.1

The UC Irvine Machine Learning Repository6 contains a data set related to glass identification. The data consist of 214 glass samples labeled as one of seven class categories. There are nine predictors, including the refractive index and percentages of eight elements: Na, Mg, Al, Si, K, Ca, Ba, and Fe.

The data can be accessed via:

\$ Fe : num 0 0 0 0 0 0.26 0 0 0 0.11 ...

```
data(Glass)
str(Glass)
  'data.frame':
                   214 obs. of 10 variables:
   $ RI : num 1.52 1.52 1.52 1.52 1.52 ...
   $ Na : num
               13.6 13.9 13.5 13.2 13.3 ...
                4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
         : num
                1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
   $ Al
         : num
         : num
                71.8 72.7 73 72.6 73.1 ...
                0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
   $ K
         : num
                8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
   $ Ca : num
##
                0 0 0 0 0 0 0 0 0 0 ...
   $ Ba
        : num
```

(a) Using visualizations, explore the predictor variables to understand their distributions as well as the relationships between predictors.

\$ Type: Factor w/ 6 levels "1","2","3","5",..: 1 1 1 1 1 1 1 1 1 1 ...


```
# scatterplot matrix
Glass %>%
  dplyr::select(-Type) %>%
  ggpairs(title = "Paiwise scatter plots") %>%
  print(progress = F)
```

Paiwise scatter plots

correlation
Glass %>%

dplyr::select(-Type) %>%
ggcorr(label = TRUE)

(b) Do there appear to be any outliers in the data? Are any predictors skewed?

describe(Glass)

```
##
                           sd median trimmed mad
         vars
                 n
                    mean
                                                      min
                                                            max range
                                                                        skew kurtosis
## RI
            1 214
                    1.52 0.00
                                         1.52 0.00
                                                     1.51
                                                                  0.02
                                 1.52
                                                            1.53
                                                                        1.60
                                                                                  4.72
## Na
            2 214 13.41 0.82
                                13.30
                                        13.38 0.64 10.73 17.38
                                                                  6.65
                                                                        0.45
                                                                                  2.90
            3 214
                    2.68 1.44
                                 3.48
                                         2.87 0.30
                                                    0.00
                                                           4.49
                                                                  4.49 -1.14
## Mg
                                                                                 -0.45
            4 214
                   1.44 0.50
                                 1.36
                                         1.41 0.31
                                                     0.29
                                                           3.50
                                                                  3.21
                                                                                  1.94
## Al
## Si
            5 214 72.65 0.77
                                72.79
                                        72.71 0.57 69.81 75.41
                                                                  5.60 -0.72
                                                                                  2.82
## K
            6 214
                   0.50 0.65
                                 0.56
                                         0.43 0.17
                                                     0.00
                                                           6.21
                                                                  6.21
                                                                        6.46
                                                                                 52.87
                                         8.74 0.66
            7 214
                    8.96 1.42
                                                     5.43 16.19 10.76
                                                                        2.02
## Ca
                                 8.60
                                                                                  6.41
                                         0.03 0.00
                                                     0.00
            8 214
                    0.18 0.50
                                 0.00
                                                           3.15
                                                                                 12.08
## Ba
                                                                  3.15
                                                                        3.37
            9 214
                    0.06 0.10
                                 0.00
                                         0.04 0.00
                                                     0.00
                                                           0.51
                                                                  0.51
                                                                                  2.52
## Fe
                                                                        1.73
                                                    1.00
                                                           6.00
## Type*
           10 214
                    2.54 1.71
                                 2.00
                                         2.31 1.48
                                                                 5.00
                                                                        1.04
                                                                                 -0.29
##
           se
         0.00
## RI
## Na
         0.06
## Mg
         0.10
## Al
         0.03
## Si
         0.05
## K
         0.04
## Ca
         0.10
## Ba
         0.03
## Fe
         0.01
## Type* 0.12
# function to get skewness and number of outliers
label <- function(var) {</pre>
```

return(paste("skew=" , round(describe(var)\$skew,2) , "outliers=" , length(boxplot(var, plot=FALSE)\$o

```
}
par(mfrow=c(3,3))
for (i in 1:9){
  boxplot(
     Glass[i], color='green', horizontal = T,
     xlab = label(Glass[i])
}
            1.525
  1.515
                                             13
                                                   15
  skew= 1.6 outliers= 17
                                       skew= 0.45 outliers= 7
                                                                            skew= -1.14 outliers= 0
        1.5
                                      70 71 72 73 74 75
                                                                                  2
                                                                                     3
              2.5
 skew= 0.89 outliers= 18
                                      skew= -0.72 outliers= 12
                                                                             skew= 6.46 outliers= 7
     8 10 12 14 16
                                     0.0
                                            1.0
                                                   2.0
                                                          3.0
                                                                           0.0
                                                                                   0.2
                                                                                            0.4
 skew= 2.02 outliers= 26
                                       skew= 3.37 outliers= 38
                                                                            skew= 1.73 outliers= 12
```

(c) Are there any relevant transformations of one or more predictors that might improve the classification model?

```
glass_boxcox_t <- preProcess(Glass, method = c("BoxCox"))</pre>
glass_boxcox_t
## Created from 214 samples and 6 variables
##
## Pre-processing:
     - Box-Cox transformation (5)
##
##
     - ignored (1)
## Lambda estimates for Box-Cox transformation:
## -2, -0.1, 0.5, 2, -1.1
trans_boxcox <- predict(glass_boxcox_t, Glass)</pre>
plot_histogram(trans_boxcox,
               geom_histogram_args = list(bins = 30L),
               nrow = 3L,
               ncol = 3L)
```


Paiwise scatter plots

ncol = 3L)

```
RI
                Na
                                                                Ba
                        Mg
                                ΑI
                                                        Ca
                                                                         Fe
                                                                                Туре
                      Corr:
                              Corr:
                                       Corr:
                                               Corr:
                                                       Corr:
                                                               Corr:
                                                                       Corr:
               204* _0 121
                             0.419** 0.541** 0.291** 0.755*** -0.002 0.143*
                              Corr:
                                                                       Corr:
                      Corr:
                                      Corr:
                                               Corr:
                                                       Corr:
                                                               Corr:
                      0 245**
                                      0 102
                                       Corr:
                                               Corr:
                                                       Corr:
                                                               Corr:
                              Corr:
                                                                       Corr:
                              0 433**
                                      _0 170*
                                              0.005
                                                     0.358** 0.492**
                                                                       0.083
                                       Corr:
                                               Corr:
                                                               Corr:
                                                                       Corr:
                                                       Corr:
                                            0.309*** 0.310** 0.450*** -0.059
                                               Corr:
                                                       Corr:
                                                               Corr:
                                                                       Corr:
                                               N 191*
                                                              _0 099
                                                      -0 137*
                                                                      -0.094
                                                       Corr:
                                                               Corr:
                                                                       Corr:
                                                              _0.043 _0.008
                                                      0 408**
                                                               Corr:
                                                                       Corr:
                                                               n 2n7*
                                                                      0.134
                                                                       Corr:
                                                                       0.059
    252052072280000 2 4 6 0.708801804870 1 2 3 0.00.01.02.03.04.5 123567
glass_bcpca_t <- preProcess(Glass, method = c("BoxCox", "pca"))</pre>
glass bcpca t
## Created from 214 samples and 10 variables
##
## Pre-processing:
     - Box-Cox transformation (5)
##
     - centered (9)
##
     - ignored (1)
##
     - principal component signal extraction (9)
##
     - scaled (9)
##
##
## Lambda estimates for Box-Cox transformation:
## -2, -0.1, 0.5, 2, -1.1
## PCA needed 7 components to capture 95 percent of the variance
trans_bcpca <- predict(glass_bcpca_t, Glass)</pre>
plot_histogram(trans_bcpca,
               geom_histogram_args = list(bins = 30L),
               nrow = 3L,
```



```
# scatterplot matrix
trans_bcpca %>%
  #dplyr::select(-Type) %>%
  ggpairs(title = "Paiwise scatter plots") %>%
  print(progress = F)
```

Paiwise scatter plots

3.2

The soybean data can also be found at the UC Irvine Machine Learning Repository. Data were collected to predict disease in 683 soybeans. The 35 predictors are mostly categorical and include information on the environmental conditions (e.g., temperature, precipitation) and plant conditions (e.g., left spots, mold growth). The outcome labels consist of 19 distinct classes.

The data can be loaded via:

```
data(Soybean)
str(Soybean)
   'data.frame':
                    683 obs. of 36 variables:
##
##
    $ Class
                     : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
    $ date
                     : Factor w/ 7 levels "0", "1", "2", "3", ...: 7 5 4 4 7 6 6 5 7 5 ...
##
                     : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
##
    $ plant.stand
##
    $ precip
                      : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
##
    $ temp
                      : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
                      : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 2 1 1 ...
##
    $ hail
                      : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
##
    $ crop.hist
                      : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
##
    $ area.dam
##
    $ sever
                      : Factor w/ 3 levels "0", "1", "2": 2 3 3 3 2 2 2 2 2 3 ...
                     : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
##
    $ seed.tmt
                     : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
##
     germ
##
    $ plant.growth
                     : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 ...
                      : Factor w/ 2 levels "0", "1": 2 2 2 2 2 2 2 2 2 2 ...
##
    $ leaves
    $ leaf.halo
                      : Factor w/ 3 levels "0", "1", "2": 1 1 1 1 1 1 1 1 1 1 ...
##
```

```
$ leaf.marg
                    : Factor w/ 3 levels "0", "1", "2": 3 3 3 3 3 3 3 3 3 3 ...
   $ leaf.size
##
                    : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
##
   $ leaf.shread : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
                   : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
  $ leaf.malf
                    : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ leaf.mild
##
  $ stem
                   : Factor w/ 2 levels "0", "1": 2 2 2 2 2 2 2 2 2 2 ...
                   : Factor w/ 2 levels "0"."1": 2 1 1 1 1 2 1 1 1 ...
  $ lodging
   $ stem.cankers : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
##
   $ canker.lesion : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
##
   $ fruiting.bodies: Factor w/ 2 levels "0", "1": 2 2 2 2 2 2 2 2 2 2 ...
## $ ext.decay
                   : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
                    : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ mycelium
   $ int.discolor : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ sclerotia
                  : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 ...
## $ fruit.pods
                   : Factor w/ 4 levels "0", "1", "2", "3": 1 1 1 1 1 1 1 1 1 1 ...
                    : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 ...
##
   $ fruit.spots
##
   $ seed
                    : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
                   : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
## $ mold.growth
## $ seed.discolor : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
                   : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.size
##
   $ shriveling
                   : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 ...
                    : Factor w/ 3 levels "0", "1", "2": 1 1 1 1 1 1 1 1 1 1 ...
  $ roots
```

(a) Investigate the frequency distributions for the categorical predictors. Are any of the distributions degenerate in the ways discussed earlier in this chapter?

```
dfSummary(Soybean, graph.col = F)
```

Data Frame Summary

Soybean

```
## Dimensions: 683 x 36
## Duplicates: 52
##
## -----
                      Stats / Values
      Variable
                                                  Freqs (% of Valid)
                                                                             Missing
## No
                                                                    Valid
  ## 1
                       1. 2-4-d-injury
                                                   16 ( 2.3%)
                                                                    683
                                                                             0
      Class
##
      [factor]
                       2. alternarialeaf-spot
                                                    91 (13.3%)
                                                                    (100.0\%)
                                                                              (0.0\%)
##
                       3. anthracnose
                                                   44 ( 6.4%)
##
                       4. bacterial-blight
                                                  20 (2.9%)
                                                   20 ( 2.9%)
##
                       5. bacterial-pustule
##
                       6. brown-spot
                                                   92 (13.5%)
##
                       7. brown-stem-rot
                                                   44 ( 6.4%)
##
                       8. charcoal-rot
                                                  20 (2.9%)
##
                       9. cyst-nematode
                                                   14 ( 2.0%)
                       10. diaporthe-pod-&-stem-blig
##
                                                   15 ( 2.2%)
##
                       [ 9 others ]
                                                   307 (44.9%)
##
                                                    26 (3.8%)
## 2
      date
                      1. 0
                                                                    682
                                                                              1
##
      [factor]
                       2. 1
                                                    75 (11.0%)
                                                                     (99.9\%)
                                                                              (0.1\%)
                       3. 2
                                                    93 (13.6%)
##
##
                      4.3
                                                   118 (17.3%)
##
                       5.4
                                                   131 (19.2%)
##
                       6. 5
                                                   149 (21.8%)
##
                       7.6
                                                    90 (13.2%)
```

##							
	2		1 0	254	(54.7%)	647	36
##	3	plant.stand	1. 0		(54.7%)	647	
##		[ordered, factor]	2. 1	293	(45.3%)	(94.7%)	(5.3%)
##							
##	4	precip	1. 0	74	(11.5%)	645	38
##		[ordered, factor]	2. 1	112	(17.4%)	(94.4%)	(5.6%)
##			3. 2	459	(71.2%)		
##							
##	5	temp	1. 0	80	(12.3%)	653	30
##	J	[ordered, factor]	2. 1		(57.3%)	(95.6%)	(4.4%)
		[Ordered, Tactor]				(95.0%)	(4.4%)
##			3. 2	199	(30.5%)		
##							
##	6	hail	1. 0	435	(77.4%)	562	121
##		[factor]	2. 1	127	(22.6%)	(82.3%)	(17.7%)
##							
##	7	crop.hist	1. 0	65	(9.7%)	667	16
##		[factor]	2. 1		(24.7%)	(97.7%)	(2.3%)
##		[146001]	3. 2		(32.8%)	(01.170)	(2.0%)
##			4. 3				
			4. 3	218	(32.7%)		
##	_				4		
##	8	area.dam	1. 0		(18.0%)	682	1
##		[factor]	2. 1	227	(33.3%)	(99.9%)	(0.1%)
##			3. 2	145	(21.3%)		
##			4. 3	187	(27.4%)		
##							
##	9	sever	1. 0	195	(34.7%)	562	121
##		[factor]	2. 1		(57.3%)	(82.3%)	(17.7%)
##			3. 2		(8.0%)	(===,-,,,	(=:::////
##			J. Z	40	(0.0%)		
	10	1 ++	1 0	205	([4 2 9])	F.C.O.	101
##	10	seed.tmt	1. 0		(54.3%)	562	121
##		[factor]	2. 1		(39.5%)	(82.3%)	(17.7%)
##			3. 2	35	(6.2%)		
##							
##	11	germ	1. 0	165	(28.9%)	571	112
##		[ordered, factor]	2. 1	213	(37.3%)	(83.6%)	(16.4%)
##			3. 2	193	(33.8%)		
##							
##	12	plant.growth	1. 0	441	(66.1%)	667	16
##		[factor]	2. 1		(33.9%)	(97.7%)	(2.3%)
##				220	(=0.0707	(0 /0/	/0/
##	12	leaves	1. 0	77	(11.3%)	683	0
	13					(100.0%)	
##		[factor]	2. 1	606	(88.7%)	(100.0%)	(0.0%)
##				004	(0.0 01/)	500	0.4
##	14	leaf.halo	1. 0		(36.9%)	599	84
##		[factor]	2. 1		(6.0%)	(87.7%)	(12.3%)
##			3. 2	342	(57.1%)		
##							
##	15	leaf.marg	1. 0	357	(59.6%)	599	84
##		[factor]	2. 1		(3.5%)	(87.7%)	(12.3%)
##		-	3. 2		(36.9%)		
##					0 . 0 /0/		
##	16	leaf.size	1. 0	51	(8.5%)	599	84
##	10	[ordered, factor]	2. 1		(54.6%)	(87.7%)	(12.3%)
		[ordered, lactor]				(01.1%)	(12.0%)
##			3. 2	221	(36.9%)		

##								
##	17	leaf.shread	1.	0	107	(83.5%)	583	100
	17							
##		[factor]	2.	1	96	(16.5%)	(85.4%)	(14.6%)
##								
##	18	leaf.malf	1.			(92.5%)	599	84
##		[factor]	2.	1	45	(7.5%)	(87.7%)	(12.3%)
##								
##	19	<pre>leaf.mild</pre>	1.	0	535	(93.0%)	575	108
##		[factor]	2.	1	20	(3.5%)	(84.2%)	(15.8%)
##			3.	2	20	(3.5%)		
##								
##	20	stem	1.	0	296	(44.4%)	667	16
##		[factor]	2.			(55.6%)	(97.7%)	(2.3%)
##		[Idouoi]	۷.	-	011	(00.0%)	(31.176)	(2.0%)
##	01	ladminm	1	0	E20	(92.5%)	562	121
	21	lodging	1.					
##		[factor]	2.	1	42	(7.5%)	(82.3%)	(17.7%)
##						4 443		
##	22	stem.cankers	1.			(58.8%)	645	38
##		[factor]	2.			(6.0%)	(94.4%)	(5.6%)
##				2		(5.6%)		
##			4.	3	191	(29.6%)		
##								
##	23	canker.lesion	1.	0	320	(49.6%)	645	38
##		[factor]	2.	1		(12.9%)	(94.4%)	(5.6%)
##		-		2		(27.4%)	,,,	
##			4.			(10.1%)		
##					00	(10.1/0)		
##	24	fruiting.bodies	1.	0	173	(82.0%)	577	106
##	24	[factor]	2.			(18.0%)	(84.5%)	
		[Iactor]	۷.	1	104	(10.0%)	(04.5%)	(15.5%)
##	0.5				407	(77 40)	0.45	00
##	25	ext.decay	1.			(77.1%)	645	38
##		[factor]	2.			(20.9%)	(94.4%)	(5.6%)
##			3.	2	13	(2.0%)		
##								
##	26	mycelium	1.			(99.1%)	645	38
##		[factor]	2.	1	6	(0.9%)	(94.4%)	(5.6%)
##								
##	27	int.discolor	1.	0	581	(90.1%)	645	38
##		[factor]	2.	1	44	(6.8%)	(94.4%)	(5.6%)
##			3.	2		(3.1%)		
##								
##	28	sclerotia	1.	0	625	(96.9%)	645	38
##	20	[factor]		1		(3.1%)	(94.4%)	(5.6%)
##		[Idctol]	۷.	1	20	(0.1/6/	(34.4%)	(0.0%)
##	20	fruit.pods	1.	0	407	(67.9%)	599	84
	23	[factor]		1			599 (87.7%)	(12.3%)
##		[Taccol]				(21.7%)	(01.1%)	(12.3%)
##				2		(2.3%)		
##			4.	3	48	(8.0%)		
##					_	4 443		
##	30	fruit.spots	1.			(59.8%)	577	106
##		[factor]	2.			(13.0%)	(84.5%)	(15.5%)
##			3.	2		(9.9%)		
##			4.	4	100	(17.3%)		
##								

## 31	seed	1. 0	476	(80.5%)	591	92
##	[factor]	2. 1	115	(19.5%)	(86.5%)	(13.5%)
##						
## 32	mold.growth	1. 0	524	(88.7%)	591	92
##	[factor]	2. 1	67	(11.3%)	(86.5%)	(13.5%)
##						
## 33	seed.discolor	1. 0	513	(88.9%)	577	106
##	[factor]	2. 1	64	(11.1%)	(84.5%)	(15.5%)
##						
## 34	seed.size	1. 0	532	(90.0%)	591	92
##	[factor]	2. 1	59	(10.0%)	(86.5%)	(13.5%)
##						
## 35	shriveling	1. 0	539	(93.4%)	577	106
##	[factor]	2. 1	38	(6.6%)	(84.5%)	(15.5%)
##						
## 36	roots	1. 0	551	(84.5%)	652	31
##	[factor]	2. 1		(13.2%)	(95.5%)	(4.5%)
##		3. 2	15	(2.3%)		
##						

(b) Roughly 18% of the data are missing. Are there particular predictors that are more likely to be missing? Is the pattern of missing data related to the classes?

(c) Develop a strategy for handling missing data, either by eliminating predictors or imputation.