

Algorithms & Data Structures

Lesson 6: Binary Search Trees

Marc Gaetano

Edition 2017-2018

Reminder: Tree terminology

Example Tree Calculations

Recall: Height of a tree is the maximum number of edges from the root to a leaf.

Height = 4

What is the height of this tree?

AHeight = 0

A Height = 1

B C C G G

What is the depth of node G? Depth = 2

What is the depth of node L? Depth = 4

Binary Trees

- Binary tree: Each node has at most 2 children (branching) factor 2)
- Binary tree is
 - A root (with data)
 - A left subtree (may be empty)
 - A right subtree (may be empty)
- Special Cases

Binary Search Tree (BST) Data Structure

Structure property (binary tree)

Each node has ≤ 2 children

Result: keeps operations simple

- Order property
 - All keys in left subtree smaller than node's key
 - All keys in right subtree larger than node's key
 - Result: easy to find any given key

A binary search tree is a type of binary tree (but not all binary trees are binary search trees!)

Are these BSTs?

Find in BST, Recursive


```
Data find(Key key, Node root) {
  if(root == null)
    return null;
  if(key < root.key)
    return find(key,root.left);
  if(key > root.key)
    return find(key,root.right);
  return root.data;
}
```

What is the running time?

Worst case running time is O(h)
O(n) happens if the tree is very lopsided (e.g. list)

Find in BST, Iterative


```
Data find(Key key, Node root) {
 while(root != null
       && root.key != key) {
  if (key < root.key)</pre>
    root = root.left;
  else(key > root.key)
    root = root.right;
 if(root == null)
    return null;
 return root.data;
```

Worst case running time is O(h)
O(n) happens if the tree is very lopsided (e.g. list)

Bonus: Other BST "Finding" Operations

- FindMin: Find minimum node
 - Left-most node

- FindMax: Find maximum node
 - Right-most node

Insert in BST

insert(13)
insert(8)
insert(31)

(New) insertions happen only at leaves – easy!

Again... worst case running time is O(h), which equals O(n) if the tree is not balanced.

Deletion in BST

Why might deletion be harder than insertion?

Removing an item may disrupt the tree structure!

Deletion in BST

- Basic idea: find the node to be removed, then "fix" the tree so that it is still a binary search tree
- Three potential cases to fix:
 - Node has no children (leaf)
 - Node has one child
 - Node has two children

Deletion - The Leaf Case

Deletion - The One Child Case

Deletion - The One Child Case

Deletion – The Two Child Case

What can we replace 5 with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- successor minimum node from right subtree
 findMin (node.right)
- predecessor maximum node from left subtree findMax (node.left)

Now delete the original node containing *successor* or *predecessor*

Success!!

BuildTree for BST

- Let's consider buildTree
 - Insert all, starting from an empty tree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for this kind of sorted input?
 - Is inserting in the reverse order any better?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What we if could somehow re-arrange them
 - median first, then left median, right median, etc.
 - 5, 3, 7, 2, 1, 4, 8, 6, 9
 - What tree does that give us?
 - What big-O runtime?

O(n log n), definitely better

So the order the values come in is important!

