

Low Power IoT Architectures

"Mesures et analyse des consommations énergétiques d'une architecture IoT très faible puissance" P.Bakowski, B.Parrein, A.Bitaillou

1

loT : Direct & Remote Terminals

IP-Thing: Direct Terminal connected to INET via WiFi/4G/5G link

non-IP-Thing Remote Terminal connected to INET via LoRa link and loT gateway

<u>loT Sockets : @IP:port:channel</u>

IoT socket => IP address: Service port:Channel number-fields

Direct Terminals know: IP address:Service port:Channel number

Gateways know: IP address:Service port

Remote Terminals know only: Channel number (identifier)

Direct Terminals and IoT Sockets

Direct Terminals know: IP address:Service port:Channel number

plus: write and optionally read key

A channel contains fields (max.8) that may be interpreted as IoT data streams to be "compressed".

Remote Terminals and IoT Sockets

Gateways know IP address: Service port
Remote Terminals know only Channel number (identifier)

From IoT SoC to IoT Platform

ARM-M0 SX1262 Bus I/O,...

EEPROM USB, solar Converters, Bus I/O, ...

UART,I2C,SPI sensors/actuators solar panel, battery supercapacitors, ...

IoT Platform
Hardware/Firmware/Software
micro-python, C/C++
libraries, packages, modules

RISC-V,Xtensa: LX6,LX7 ESP32C3 ESP32C6 ESP32S6 WiFi/BLE Bus I/O,... EEPROM USB, Converters, Bus I/O, ...

UART,I2C,SPI sensors/actuators, modems, solar panel, battery supercapacitors, ...

IoT Soc ESP32C6: low power features

IoT SoC / Board / DevKiT / Platform

Low and Very Low Power consumption

Example of average current (power) consumption:
deepsleep mode for
low_power stage: 10µA and
100s
normal mode for

high_power stage: 40mA and 0.5s

low_power charge + high_power charge= $10\mu A*100s + 40~000\mu A*0.5s = 1000\mu C+20000\mu C= 21mC$

average_current = charge/time = $21mC/100.5s = 0.21mA = 210\mu A$ (LP)

Let us calculate the same for low_power stage duration of 600s.

average_current = charge/time = $26mC/600.5s = 0.043mA = 43\mu A$ (VLP)

Terminals: Operational modes

high average current

delta (δ) parameter defines required precision-difference

"sporadic cycle" – activated by an interruption (level change) signal

low average current

high_power stage - phases

transmission phase

processing phase

11

Power Profiler Kit II: connection

Power Profiler with source mode

Power Profiler Kit II - windows

DevKit: HL cycle operation with sensors

two sensors to capture
the temperature,
the humidity, and
the luminosity or brightness
values:

BH1750 (L) - luminosity

SHT31 (T/H) - temperature/humidity

Attention:

All these components communicate over the same (shared) I2C bus!

HL cycle operation: sensors, WiFi, delta

delta: the max difference between the last sent and current sensor value

high_power stage time << low_power stage time
delta as big as possible : example 0.01C° => 1.0C°

operational cycle frequency (16.6 mHz) >> transmission cycle frequency (278 μHz)

HL cycle operation: sensors, WiFi, delta

Ratio hp_sp/hp_spt:
the number of high_power
cycles without transmission
to
the number of high_power
cycles with transmission

operational cycle frequency

The use of delta parameter may be considered as "loT data temporal compression"

COMPAS 2024

Long Range (LoRa) & Remote Terminals

Remote Terminals or Lora-WiFi Gateway

RT - Power consumption with LoRa link

low_power stage - 146.05μA

transmission time: SF=9, CR=4/8, BW=125KHz => 314 ms transmission charge (avc.145mA) =>45mC

Power consumption with LoRa link: 146µA?

Ratio hp_sp/hp_spt:
the number of high_power
cycles without transmission
to
the number of high_power
cycles with transmission

No VLP solution! (for this board!)

Problem: low_power stage - 146.05µA (much to high!)

RT - Power consumption with LoRa link

low_power stage = 24μA

RT - Power consumption with LoRa link

CubeCell

ARM-M0+SX1262

low_power stage = 32µA

Some conclusions

Direct
Terminals - WiFi

Very High transmission "cost" (variable: ~150-300mC)
Usage of delta parameter ("compression") very efficient

Remote
Terminals – LoRa

High transmission "cost" (fixed: ~60mC)
Usage of delta parameter ("compression") quite efficient

Implementation & test platform (s)

Merci de votre attention!

