FACULTATEA DE MATEMATICĂ

Str. Academiei nr. 14, tel. 314.35.08

Probe de concurs – pentru toate specializările – la alegere două din patru materii propuse:

- ➤ Algebră,
- Elemente de analiză matematică,
- ➤ Geometrie și Trigonometrie,
- Informatică.

Concurența în anii anteriori (toate specializările):

- ➤ 2006 2,41 candidați/loc (matematică); 6,456 candidați/loc (informatică)
- \geq 2005 4.615 candidati/loc
- \geq 2004 3,04 candidati/loc
- \geq 2003 3,29 candidati/loc
- \geq 2002 3,24 candidati/loc
- ➤ 2001 1,04 candidati/loc
- ➤ 2000 1,12 candidati/loc

Domeniul de licență "Matematică"

Prima medie/ultima medie:

- > 2006 9,97/5,05 (buget); 10,00/6,51 (taxă)
- > 2005 9,97/5,08 (buget); 9,92/6,05 (taxă); 10.00/7.37 (ID)
- ➤ 2004 9,93/8,83 (prima sesiune zi);7,48 (prima sesiune taxă); 9,23/6,78 (a doua sesiune)
- > 2003 9.87/6.66 (zi), 9.42/6.50 (taxă)
- \geq 2002 9,63/8,24
- \geq 2001 9,77/5,03
- > 2000 9,35/5,00

Domeniul de licență "Informatică"

Prima medie/ultima medie:

- > 2006 10.00/7.35 (buget); 9.84/5.13 (taxa)
- > 2005 10,00/5,74 (buget); 9,62/5,00 (taxă); 9,70/7,00 (ID)
- ➤ 2004 9,99/9,5 (prima sesiune zi); 8,98/5,36 (prima sesiune taxă); 9,87/5,28 (a doua sesiune)
- \geq 2003 9,61/7,54 (zi); 7,52/5,25 (taxă)
- > 2002 9,98/9,17
- \geq 2001 9,86/8,74
- \geq 2000 9,07/7,12

Domeniul de licență "Matematici aplicate"

Prima medie/ultima medie:

- > 2004 (nu mai există)
- \geq 2003 9,87/6,66 (zi); 9,42/6,50 (taxă)
- \geq 2002 9,10/8,23

Domeniul de licență "Matematică-Mecanică"

Prima medie/ultima medie:

- > 2004 (nu mai există)
- \geq 2003 9,87/6,66 (zi); 9,42/6,50 (taxă)
- \geq 2002 8.92/8.19
- \geq 2001 8,36/5,50
- \geq 2000 7,04/5,40

Domeniul de licență "Matematică-Informatică"

Prima medie/ultima medie:

- 2004 10/9,05 (prima sesiune zi);
 9,61/7,93 (prima sesiune taxă);
 9,28/5,57 (a doua sesiune)
- \geq 2003 9,76/7,02 (zi); 8,39/5,90 (taxă)
- > 2002 9,97/8,93
- > 2001 9,98/8,41
- > 2000 9,14/6,94

Domeniul de licentă Informatică

Timp de lucru: 3 ore

- **I. 1.** Fie polinomul $f = X^3 + mX^2 + X + 1 \in C[X]$
- a) Să se determine m, știind că rădăcinile sale x_1 , x_2 , x_3 satisfac relațiile $x_1^3 + x_2^3 + x_3^3 = -1$ și $x_1^4 + x_2^4 + x_3^4 = 4m 1$.
 - **b)** Pentru *m* determinant la punctul a), să se afle rădăcinile polinomului.

2. Fie matricea
$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
.

- a) Să se calculeze A^n , unde $n \in N^*$.
- **b)** Să se arate că A este inversabilă și să se calculeze inversa sa.
- c) Să se arate că mulțimea lui $G = \{A, A^2, A^3, A^4\}$, împreună cu operația de înmulțire a matricelor este un grup izomorf cu $(Z_3, +)$.
 - **II. 1.** Să se calculeze $\lim_{n\to\infty} x(\pi 2arctg \ x)$.

2. Fie
$$n \in N^*$$
. Să se calculeze $\int_0^1 \frac{x^n}{x^2 + 1} dx$.

- **III. 1.** Într-un plan raportat la un sistem de coordonate carteziene, se consideră punctele A(1,0) și B(2,1). Să se determine punctele C din plan cu proprietatea că triunghiul ABC este echilateral.
- 2. Să se demonstreze că dintre toate triunghiurile incluse în mulțimea formată dintr-un cerc dat, împreună cu interiorul său, cele de arie maximă sunt cele înscrise si echilaterale.
- IV. 1. Se cunosc numărul natural $n \ge 1$ și două tablouri $X = (x_1, x_2, ... x_n)$ și $Y = (y_1, y_2, ... y_n)$ cu elemente cifre în baza 10. Spunem că $X \le Y$ dacă $x_i \le y_i$ pentru orice i = 1, 2, ... n. Să se scrie proceduri/funcții care să afișeze:
 - a) 1 sau 0, după cum $X \le Y$ sau nu;
- **b)** toate tablourile Z cu elemente cifre în baza 10 astfel încât $X \le Z \le Y$, precum și numărul lor, în ipoteza că $X \le Y$.
- **2.** Şirul lui Fibonacci este definit prin $x_0 = x_1 = 1$ şi $x_k = x_{k-1} + x_{k-2}$, pentru orice $k \ge 2$. Se consideră date un număr natural P şi numerele naturale $a_1, a_2, \dots a_n (n \in N^*)$.

Să se scrie proceduri/funcții care să afișeze:

- a) 1 sau 0, după cum P este sau nu un termen al șirului lui Fibonacci;
- **b)** 1 sau 0, după cum $a_1, a_2, ... a_n$ sunt, într-o ordine convenabilă, termeni consecutivi ai șirului lui Fibonacci. La fiecare problemă, cel puțin una dintre proceduri/funcții va fi scrisă în Pascal, C sau C++, iar celelalte în pseudocod.

Notă: Timp de lucru 3 ore.

Barem de corectare

I. ALGEBRĂ

1. Oficiu
a)
$$x_1^3 + x_2^3 + x_3^3 = -m^3 + 3m - 3$$
 2 p
 $\left(m^4 - 4m^2 + 4m + 2\right)$

$$x_{1}^{4} + x_{2}^{4} + x_{3}^{4} = \begin{cases} m^{4} - 4m^{2} + 4m + 2 \\ sau \\ -m^{2} + 2m + 2, dacă se foloseste pe \\ parcurs ca x_{1}^{3} + x_{2}^{3} + x_{3}^{3} = -1 \end{cases}$$

$$m = 1$$
 3 p
b) $x_1 = -1, x_2 = i, x_3 = -i$ 2 p
2. Oficiu 1 p

a) calculează A^2 , A^3 , $A^4 = I_A$	3 p
$A^{4k} = I_A, A^{4k+1} = A, A^{4k+2} = A^2, A^{4k+3} = A^3$	2 p
b) $A^{-1} = A^3$	_
c) G grup	1 p
	1 p
descrierea lui $(Z_4,+)$	1 p
izomorfismul	1 p
II. ANALIZĂ MATEMATICĂ	1
1. Officiu	1 p
observație nedeterminare $\infty \cdot 0$	3 p
aducere la cazul $\frac{0}{0} \left(\frac{u(x)}{v(x)} \right)$	2 p
u'(x)	
calcul $\frac{u'(x)}{v'(x)}$ (L'Hospital)	2 p
finalizare (L'Hospital)	2 p
2. Oficiu	1 p
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	1
calculul integralei $\int_{0}^{x} \frac{1}{x^2 + 1} dx$	1 p
1	
calculul integralei $\int_{0}^{1} \frac{x}{x^2 + 1} dx$	1 p
$\frac{1}{0}$ $x + 1$	
calculul integralei $\int_{0}^{1} \frac{x^{n}}{x^{2}+1} dx \ (n \in \mathbb{N}, n \ge 2)$ în funcție de $\int_{0}^{1} \frac{x^{k}}{x^{2}+1} dx \ (k < n)$	3 p
0	2
cazul n par	2 p
cazul <i>n</i> impar III. GEOMETRIE	2 p
1. Oficiu	1 p
Figura	2 p
Condiții pentru triunghi echilateral	3 p
Finalizare	4 p
2. Oficiu	1 p
Figura	2 p
Triunghiuri înscrise	3 p
Triunghiuri echilaterale	4 p
IV. INFORMATICĂ	1
1. Officiu	1 p
Cunoştinţe pseudocod	1 p
a) b) afişare tablouri	2 p
număr tablouri	3 p p
cunoștințe limbaj	р 2 р
2. Oficiu	1 p
cunoștințe pseudocod	1 p
a) , , , ,	2 p
b) sortare şir	2 p
verificare	2 p
cunoștințe limbaj	2 p
NOTĂ: La cele două subiecte tratate din subiectele I, II, III, IV se va acorda câte o notă ∈	{2, 3, 4

NOTĂ: La cele două subiecte tratate din subiectele I, II, III, IV se va acorda câte o notă $\in \{2, 3, 4, ..., 20\}$. Nota finală se obține adunând cele două note de mai sus și împărțind rezultatul la 4.

Domeniul de licență Matematică

Timp de lucru: 3 ore

- I. 1. Fie polinomul cu coeficienți reali $f = X^4 2X^3 + X^2 + nX + p$. a) Să se determine n și p astfel încât $X^2 + 1$ să dividă pe f.

b) Dacă g este câtul împărțirii lui f la $X^2 + 1$, să se calculeze g(1) + g(2) + ... + g(n).

2. Fie mulțimea
$$G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in Z \right\}.$$

- a) Să se arate că G, împreună cu operația de înmulțire a matricelor este grup.
- **b)** Este G grup comutativ? Justificare.
- **II. 1.** Să se determine $a \ge 0$ astfel încât $\lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+a} \sqrt{n} \right) = 1$.

2. Fie
$$f: R \setminus \{1\} \to R$$
, $f(x) = \frac{x^2 + x + 2}{x - 1}$.

- a) Să se verifice că $f(x) = x + 2 + \frac{4}{x 1}$ pentru orice $x \in R \setminus \{1\}$.
- **b)** Pentru A > 2, să se calculeze $F(A) = \int_{2}^{A} f(x) dx$.
- c) Să se calculeze $\lim_{\stackrel{\lim}{A \to -\infty}} \frac{F(A)}{A^{\frac{1}{2}}}.$
- **III. 1.** Fie ABC un triunghi și $M \in (BC)$. Bisectoarele unghiurilor $A\hat{M}B$ și $A\hat{M}C$ intersectează laturile AB și BC în P și respectiv Q. Să se arate că PQ este paralelă cu BC dacă și numai dacă M este mijlocul laturei BC.
- **2.** Fie ABCD un tetraedru cu $AC \perp BD$. Printr-un punct $M \in (AB)$ ducem un plan paralel cu AC și BD care intersectează BC în N, CD în P și $_{AD}$ in Q.
 - a) Să se demonstreze că MNPQ este dreptunghi.
 - b) Presupunând că MNPQ este pătrat, să se determine latura sa în funcție de lungimile laturilor lui ABCD.
- **IV. 1.** Se consideră numărul natural n > 1 și tabloul $P = (P_1, P_2, ..., P_n)$ cu elemente din $\{1, 2, ...n\}$. Să se scrie proceduri/funcții care să afișeze:
 - a) valoarea 1 sau valoarea 0, după cum P este sau nu o permutare a mulțimii $\{1, 2, ...n\}$;
 - **b)** numărul de perechi (i, j) care verifică $1 \le i < j \le n$ și $P_1 > P_j$.
- **2.** Se cunosc numărul natural $n \ge 1$, coeficienții reali ai polinomului $P = a_0 + a_1 X + ... + a_n X^n$, precum și numărul real b. Să se scrie proceduri/funcții care să afișeze:
 - a) valorile P(-1) și P(1);
- **b)** valoarea 1 sau valoarea 0, după cum P se divide sau nu prin X-b. Cel puțin una dintre proceduri/funcții va fi scrisă în Pascal, C sau C++, iar celelalte în pseudocod.

Notă: Timp de lucru 3 ore.

Barem de corectare

I. ALGEBRĂ 1. Oficiu 1 p a) n = -2, p = 04 p **b)** $g = X^2 - 2X$ (câtul nu depinde de n și p) 1 p $1+2+3+...+n=\frac{n(n+1)}{2}$ 1 p $1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}$ 2 p 2. Oficiu 1 p a) parte stabilă 2pasociativitate 1 p element neutru I_3 1 p

element simetric $ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -a & -b + ac \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix} $	
element simetric $\begin{bmatrix} 0 & 1 & c \\ \end{bmatrix} = \begin{bmatrix} 0 & 1 & -c \\ \end{bmatrix}$	2 p
	2 P
$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	
b) nu este comutativ	3 p
(dacă se scrie ce înseamnă necomutativitatea	1 p
II. ANALIZĂ MATEMATICĂ	
1. Oficiu	1 p
Amplicaficare cu $\sqrt{n+a} + \sqrt{n}$	4 p
Calcul limită	4 p
a = 2	1 p
2. Oficiu	1 p
a)	3 p
b) Calcul $F(A)$	4 p
c) limita = $1/2$	2 p
II. GEOMETRIE	2 P
1. Oficiu	1 p
Figura	2 p
Aplicarea teoremei bisectoarei	3 p
M mijloc $\Rightarrow PQ$ paralela	2 p
Implicația reciprocă	2 p
2. Oficiu	1 p
Figura	3 p
a)	5 p
b)	1 p
IV. INFORMATICĂ	•
1. Oficiu	1 p
Cunoștințe pseudocod	1 p
1 a)	3 p
1 b)	3 p
Cunoștințe limbaj	2 p
2. Oficiu	1 p
Cunoștințe pseudocod	1 p
2 a)	3 p
2 b) Consistint a limbai	3 p
Cunoștințe limbaj	2 p

Cunoștințe limbaj 2pNOTĂ: La cele două subiecte tratate din subiectele I, II, III, IV se va acorda câte o notă $\in \{2, 3, 4, ..., 20\}$. Nota finală se obține adunând cele două note de mai sus și împărțind rezultatul la 4.