

Heaven's Light is Our Guide

Department of Computer Science & Engineering Rajshahi University of Engineering & Technology, Bangladesh

Course Code: CSE 2203 Course Title: Digital Techniques

Date : 10.10.2017

Session: VI

Topic : Combinational Logic Circuits

Faculty: Dr. Boshir Ahmed

Professor

Department of CSE, RUET

E mail: boshir78@gmail.com

Circuit Simplification Methods

- Boolean algebra: greatly depends on inspiration and experience.
- Karnaugh map: systematic, step-by-step approach.

Algebraic Simplification

- Use the Boolean algebra theorems introduced in Lecture 4 to help simplify the expression for a logic circuit.
- Based on experience, often becomes a trial-and-error process.
- No easy way to tell whether a simplified expression is in its simplest form.

Two Essential Steps

- The original expression is put into the sum-of-products form by repeated application of DeMorgan's theorem and multiplication of terms.
- The product terms are checked for common factors, and factoring is performed whenever possible.

Examples 1-4

Original	Simplified
ABC+AB'(A'C')'	A(B'+C)
ABC+ABC'+AB'C	A(B+C)
A'C(A'BD)'+A'BC'D'+AB'C	B'C+A'D'(B+C)
(A'+B)(A+B+D)D'	BD'

Examples 5-6

- (A'+B)(A+B'): equivalent form A'B'+AB
- AB'C+A'BD+C'D': cannot be simplified further.

Analysis procedure

- To obtain the output Boolean functions from a logic diagram, proceed as follows:
- 1. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output.
- 2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.

Analysis procedure

- 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
- 4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Example $F_2 = AB + AC + BC; T_1 = A + B + C; T_2 = ABC; T_3 = F_2'T_1;$ $F_1 = T_3 + T_2$ $F_1 = T_3 + T_2 = F_2'T_1 + ABC = A'BC' + A'B'C + AB'C' + ABC$ $A = T_1$ $A = T_2$ $A = T_1$ $B = T_1$ $B = T_2$ $A = T_1$ $B = T_1$ $B = T_2$ $A = T_2$ $A = T_1$ $B = T_2$ $A = T_2$ $A = T_1$ $B = T_2$ $A = T_2$ $A = T_1$ $B = T_2$ $A = T_2$ $A = T_1$ $B = T_2$ $A = T_2$ $A = T_1$ $B = T_2$ $A = T_2$ $A = T_2$ $A = T_1$ $A = T_2$ $A = T_2$ $A = T_2$ $A = T_2$ $A = T_3$ $A = T_4$ $A = T_2$ $A = T_3$ $A = T_4$ $A = T_4$

Derive truth table from logic diagram

• We can derive the truth table in Table 4-1 by using the circuit of Fig.4-2.

Table 4-1

A	В	С	F ₂	F ₂	<i>T</i> ₁	T ₂	T ₃	F ₁
0	0	0	0	1	0	O	O	0
0	O	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	O	1	O	O	0
1	O	0	0	1	1	0	1	1
1	O	1	1	0	1	0	O	0
1	1	0	1	O	1	0	0	0

Design procedure

1. Table4-2 is a Code-Conversion example, first, we can list the relation of the BCD and Excess-3 codes in the truth table.

11

Designing Combinational Logic Circuits

- 1. Set up the truth table.
- 2. Write the AND term for each case where the output is a 1.
- 3. Write the sum-of-products expression for the output.
- 4. Simplify the output expression.
- 5. Implement the circuit for the final expression.

Example 7

 Design a logic circuit that is to produce a HIGH output when the voltage (represented by a four-bit binary number ABCD) is greater than 6V.

Example 8

- Four chairs A, B, C, and D are placed in a row. Each chair may be occupied ("1") or empty ("0"). A Boolean function F is ("1") if and only if there are two or more adjacent chairs that are empty.
 - a) Give the truth table defining the Boolean F.
 - b) Express F as a minterm expansion (standard sum of products).
 - c) Express F as a maxterm expansion (standard product of sums).
 - d) Simplify the minterm expansion of F.

Karnaugh Map Method

- A graphical device to simplify a logic expression.
- Generally work on examples with up to 4 input variables.
- From truth table to logic expression to K map.

Complete Simplification Process

- Step 1: Construct the K map and places 1s in those squares corresponding to the 1s in the truth table. Places 0s in the other squares.
- Step 2: Examine the map for adjacent 1s and loop those 1s which are not adjacent to any other 1s. (isolated 1s)
- Step 3: Look for those 1s which are adjacent to only one other 1. Loop any pair containing such a 1.
- Step 4: Loop any octet even when it contains some 1s that have already been looped.

Complete Simplification Process

- Step 5: Loop any quad that contains one or more 1s that have not already been looped, making sure to use the minimum number of loops.
- Step 6: Loop any pairs necessary to include any 1s have not already been looped, making sure to use the minimum number of loops.
- Step 7: Form the ORed sum of all the terms generated by each loop.

Filling K Map from Output Expression

- What to do when the desired output is presented as a Boolean expression instead of a truth table?
- Step 1: Convert the expression into SOP form.
- Step 2: For each product term in the SOP expression, place a 1 in each K-map square whose label contains the same combination of input values. Place a 0 in other squares.
- Example 9: y=C'(A'B'D'+D)+AB'C+D'

Don't-Care Conditions

- Some logic circuits can be designed so that there are certain input conditions for which there are no specified output levels.
- A circuit designer is free to make the output for any don't care condition either a 0 or a 1 in order to produce the simplest output expression.

Karnaugh map

2. For each symbol of the Excess-3 code, we use 1's to draw the map for simplifying Boolean function.

Circuit implementation

$$z = D'; y = CD + C'D' = CD + (C + D)'$$

 $x = B'C + B'D + BC'D' = B'(C + D) + B(C + D)'$
 $w = A + BC + BD = A + B(C + D)$

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

Binary Adder-Subtractor

- A combinational circuit that performs the addition of two bits is called a half adder.
- The truth table for the half adder is listed below:

 Table 4-3

 Half Adder
 x
 y
 C

 0
 0
 0
 0

 0
 1
 0
 0

 1
 0
 0
 0

 1
 1
 1
 1

$$S = x'y + xy'$$

 $C = xy$

S: Sum C: Carry

Implementation of Half-Adder

Fig. 4-5 Implementation of Half-Adder

23

Full-Adder

• One that performs the addition of three bits(two significant bits and a previous carry) is a full adder.

Table 4-4
Full Adder

x	y	Z	С	5
0	0	0	0	0
0	O	1	0	1
0	1	0	0	1
0	1	1	1	O
1	O	O	0	1
1	0	1	1	0
1	1	O	1	0
1	1	1	1	1

Simplified Expressions

Fig. 4-6 Maps for Full Adder

$$S = x'y'z + x'yz' + xy'z' + xyz$$
$$C = xy + xz + yz$$

2

Full adder implemented in SOP

Fig. 4-7 Implementation of Full Adder in Sum of Products

Another implementation

• Full-adder can also implemented with two half adders and one OR gate (Carry Look-Ahead adder).

$$S = z \oplus (x \oplus y)$$
= z'(xy' + x'y) + z(xy' + x'y)'
= xy'z' + x'yz' + xyz + x'y'z
$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Binary adder

 This is also called Ripple Carry Adder ,because of the construction with full adders are connected in cascade.

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_{i}
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

Fig. 4-9 4-Bit Adder

Carry Propagation

- Fig.4-9 causes a unstable factor on carry bit, and produces a longest propagation delay.
- The signal from C_i to the output carry C_{i+1}, propagates through an AND and OR gates, so, for an n-bit RCA, there are 2n gate levels for the carry to propagate from input to output.

29

Carry Propagation

- Because the propagation delay will affect the output signals on different time, so the signals are given enough time to get the precise and stable outputs.
- The most widely used technique employs the principle of carry look-ahead to improve the speed of the algorithm.

Fig. 4-10 Full Adder with P and G Shown

Boolean functions

 $P_i = A_i \oplus B_i$ steady state value

 $G_i = A_i B_i$ steady state value

Output sum and carry

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

G_i: carry generate P_i: carry propagate

 C_0 = input carry

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

C₃ does not have to wait for C₂ and C₁ to propagate.

3

Logic diagram of carry look-ahead generator

C₃ is propagated at the same time as C₂ and C₁.

4-bit adder with carry lookahead

• Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

Fig. 4-12 4-Bit Adder with Carry Lookahead

33

Binary subtractor

 $M = 1 \rightarrow subtractor$; $M = 0 \rightarrow adder$

Fig. 4-13 4-Bit Adder Subtractor

Rules of BCD adder

- When the binary sum is greater than 1001, we obtain a non-valid BCD representation.
- The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required.
- To distinguish them from binary 1000 and 1001, which also have a 1 in position Z₈, we specify further that either Z₄ or Z₂ must have a 1.

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

35

Implementation of BCD adder

- A decimal parallel adder that adds n decimal digits needs n BCD adder stages.
- The output carry from one stage must be connected to the input carry of the next higher-order stage.

Binary multiplier

 Usually there are more bits in the partial products and it is necessary to use full adders to produce the sum of the partial products.

4-bit by 3-bit binary multiplier

- For J multiplier bits and K multiplicand bits we need (J X K) AND gates and (J – 1) K-bit adders to produce a product of J+K bits.
- K=4 and J=3, we need 12 AND gates and two 4-bit adders.

Decoders

- The decoder is called n-to-m-line decoder, where $m \le 2^n$.
- the decoder is also used in conjunction with other code converters such as a BCD-to-seven_segment decoder.
- 3-to-8 line decoder: For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1.

Decoder with enable input

- Some decoders are constructed with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form.
- As indicated by the truth table, only one output can be equal to 0 at any given time, all other outputs are equal to 1.

Demultiplexer

- A decoder with an enable input is referred to as a decoder/demultiplexer.
- The truth table of demultiplexer is the same with decoder.

3-to-8 decoder with enable implement the 4-to-16 decoder

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

Implementation of a Full Adder with a Decoder

 From table 4-4, we obtain the functions for the combinational circuit in sum of minterms:

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

Fig. 4-21 Implementation of a Full Adder with a Decoder

Encoders

- An encoder is the inverse operation of a decoder.
- We can derive the Boolean functions by table 4-7

$$z = D_1 + D_3 + D_5 + D_7$$

 $y = D_2 + D_3 + D_6 + D_7$
 $x = D_4 + D_5 + D_6 + D_7$

Table 4-7Truth Table of Octal-to-Binary Encoder

Inp	nputs					Outputs				
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	x	У	z
1	0	0	0	O	0	0	0	0	0	(
0	1	0	0	0	0	0	0	0	O	1
0	0	1	0	O	0	O	O	0	1	(
0	0	0	1	0	0	0	O	0	1	1
0	0	0	0	1	O	O	O	1	O	(
0	0	0	0	O	1	0	O	1	O	1
0	0	0	0	0	O	1	O	1	1	(
0	0	0	0	0	0	0	1	1	1	1

Priority encoder

- If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.
- Another ambiguity in the octal-to-binary encoder is that an output with all 0's is generated when all the inputs are 0; the output is the same as when D₀ is equal to 1.
- The discrepancy tables on Table 4-7 and Table 4-8 can resolve aforesaid condition by providing one more output to indicate that at least one input is equal to 1.

Priority encoder

V=0→no valid inputs V=1→valid inputs

X's in output columns represent don't-care conditions
X's in the input columns are useful for representing a truth table in condensed form.
Instead of listing all 16 minterms of four variables.

Table 4-8Truth Table of a Priority Encoder

Inputs			(Output	5	
D ₀	D ₁	D ₂	D ₃	x	у	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

47

4-input priority encoder

 Implementation of table 4-8

$$x = D_2 + D_3$$

 $y = D_3 + D_1D_2'$
 $V = D_0 + D_1 + D_2 + D_3$

 D_3 D_2 D_1 VFig. 4-23 4-Input Priority Encoder

Fig. 4-22 Maps for a Priority Encoder

Quadruple 2-to-1 Line Multiplexer

• Multiplexer circuits can be combined with common selection inputs to provide multiple-bit selection logic. Compare with Fig4-24.

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

51

Boolean function implementation

• A more efficient method for implementing a Boolean function of n variables with a multiplexer that has n-1 selection inputs.

$$F(x, y, z) = \Sigma(1,2,6,7)$$

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

4-input function with a multiplexer $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

Thank You

Next topic