Упражнение 4

Атанас Груев

14.10.2019

Това упражнение е въведение в теорията, свързана с понятието за *числовите реди-* ua от вида $\{a_n\}_{n=1}^{\infty}$. Ще дадем някои дефиниции и свойства без доказателства, които ще допълним с разписани задачи.

1 Кратка теория

1.1 Числови редици

• Числова редица - определя се от изображение:

$$f:\mathbb{N}\to\mathbb{R}$$
 - Задава съпоставяне от вида: $n\mapsto a_n$

Числовите редици означаваме с $\{a_n\}_{n=1}^{\infty}$, а понякога и с $\{a_n\}$ за краткост.

- Точка на сгъстяване казваме, че $a \in \mathbb{R}$ е точка на сгъстяване за редицата $\{a_n\}_{n=1}^{\infty}$, ако във всяка околност U на a от вида $(a-\varepsilon,a+\varepsilon)$ за положително $\varepsilon>0$ има безброй много елементи на редицата.
- Граница казваме, че $\{a_n\}_{n=1}^{\infty}$ има граница $a \in \mathbb{R}$ (т.е. $\{a_n\}_{n=1}^{\infty}$ е сходяща с граница a), ако $\{a_n\}_{n=1}^{\infty}$ е ограничена (т.е. $\exists\, M>0: |a_n|< M\;\forall\, n\in\mathbb{N}$) и има единствена точка на сгъстяване, която е точно a.
- N.B. Дефиниция на Коши за сходимост на редица $\{a_n\}_{n=1}^{\infty}$ Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ има граница $a\in\mathbb{R}$, ако е в сила:

$$\forall \varepsilon > 0 \ \exists \ n_0 \in \mathbb{N} \ \forall \ n \ge n_0 : |a_n - a| < \varepsilon$$

Интуитивно, дефиницията на Коши казва, че за всяко положително ε , колкото и да е малко, можем да намерим индекс n_0 такъв, че за всеки индекс n след него членовете на редицата a_n и границата a са по-близо от ε . С други думи, от известно място натататък всички членове на $\{a_n\}_{n=1}^{\infty}$ стават "близки" до границата a, разстоянието между тях е по-малко ε .

Използваме означенията:

$$\lim_{n\to\infty} a_n = a$$
 или $a_n \xrightarrow[n\to\infty]{} a$

Да отбележим, че $|a_n - a| < \varepsilon$ е еквиваленто на $a - \varepsilon < a_n < a + \varepsilon$ за някое $n \in \mathbb{N}$. Могат да се дадат много еквивалентни дефиниции за понятията точка на сгостяване и граница с множества, напр.

 $a\in\mathbb{R}$ е т. на сгъстяване на $\{a_n\}_{n=1}^\infty\iff \forall\, \varepsilon>0: \{n\in\mathbb{N}: |a_n-a|<\varepsilon\}$ е кофинитно

1.2 Свойства

Навсякъде по-долу $\{a_n\}_{n=1}^{\infty}$ и $\{b_n\}_{n=1}^{\infty}$ са числови редици и $a_n \xrightarrow[n \to \infty]{} a, b_n \xrightarrow[n \to \infty]{} b$, освен ако не е упоменато иначе.

1. Граница на сбор е сбор от границите:

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = a + b$$

2. Граница от произведение е произведение от границите:

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n = a \cdot b$$

3. Ако $b \neq 0$ и $b_n \neq 0$ за достатъчно големи $n \in \mathbb{N}$, в сила е:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$$

- 4. Ако $a_n \leq b_n$, то $a \leq b$.
- 5. Лема за двамата полицаи ако $a_n \xrightarrow[n \to \infty]{} a$ и $b_n \xrightarrow[n \to \infty]{} a$ и ако $\{c_n\}_{n=1}^{\infty}$ е числова редица, която изпълнява $a_n \le c_n \le b_n$, то е в сила:

$$a_n \le c_n \le b_n \Longrightarrow c_n \xrightarrow[n \to \infty]{} a$$

6. Ако C е произволна константа, то е изпълнено:

$$\lim_{n\to\infty} C \cdot a_n = C \cdot \lim_{n\to\infty} a_n = C \cdot a$$

2 Задачи

Разписаните тук задачи са от Ръководстовото на Любенова, Недевски и др - Глава 1, Параграф 1. Самостоятелно решавайте задачи от Ръководството на Проданов, Хаджииванов и Чобанов за самоподготовка - подходящо място е Глава 4, първите няколко параграфа (от стр. 47 в прикаченото сканирано издание).

• Задача 1.6 в), г) С дефиницията на Коши да покажем границите:

$$\lim_{n\to\infty}\frac{1}{n^k}=0\ (k\in\mathbb{N}) \quad \text{ in } \quad \lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$$

Да се заемем с първата. Нека $\varepsilon > 0$ е произволно. Искаме да покажем, че съществува $n_0 \in \mathbb{N}$, така че за всяко $n > n_0$ да е в сила:

$$\left| \frac{1}{n^k} - 0 \right| < \varepsilon \iff \left| \frac{1}{n^k} \right| < \varepsilon \iff \frac{1}{n^k} < \varepsilon$$

Очевидно горните неравенства се удовлетворяват, ако:

$$\sqrt[k]{\frac{1}{\varepsilon}} < n$$

Да изберем $n_0 = \lfloor 1 + \sqrt[k]{\frac{1}{\varepsilon}} \rfloor$. Тогава, за $n > n_0$ е изпълнено:

$$n > n_0 = \lfloor 1 + \sqrt[k]{\frac{1}{\varepsilon}} \rfloor > \sqrt[k]{\frac{1}{\varepsilon}} \Longrightarrow n > \sqrt[k]{\frac{1}{\varepsilon}}$$

Това е точно неравенството, което искаме. Показахме, че можем да намерим естествено n_0 , за което дефиницията на Коши е в сила.

Нека сега $\varepsilon > 0$ и се занимаем с втората граница. Търсим n_0 - естествено, за което $\forall n > n_0$ е изпълнено:

$$\left| \frac{1}{\sqrt{n}} - 0 \right| < \varepsilon \iff \left| \frac{1}{\sqrt{n}} \right| < \varepsilon \iff \frac{1}{\sqrt{n}} < \varepsilon$$

Очевидно горните неравенства са в сила точно когато е в сила и:

$$\frac{1}{\varepsilon^2} < n$$

Да изберем $n_0 = \lfloor 1 + \frac{1}{\varepsilon^2} \rfloor$. По аналогия:

$$n > n_0 = \lfloor 1 + \frac{1}{\varepsilon^2} \rfloor > \frac{1}{\varepsilon^2} \Longrightarrow n > \frac{1}{\varepsilon^2}$$

Точно такова n_0 искахме да намерим.

• Задача 1.9 в) - да се намери границата на редицата с общ член:

$$a_n = \frac{\arcsin\frac{1}{n}}{n}$$

Преди всичко съобразяваме, че функцията arcsin приема аргументи в интервала $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ и връща стойности в интервала $\left[-1,1\right]$. Ясно е, че $\frac{1}{n}$ за естествено n винаги попада в домейна на arcsin, така че това не създава проблеми и функцията е добре дефинирана. От друга страна, вярно е:

$$-1 \le \arcsin x \le 1 \quad \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Rightarrow$$

 $\Rightarrow -1 \le \arcsin \frac{1}{n} \le 1$

Следователно можем да запишем:

$$\lim_{n \to \infty} \frac{-1}{n} \le \lim_{n \to \infty} \frac{\arcsin \frac{1}{n}}{n} \le \lim_{n \to \infty} \frac{1}{n}$$

Проверихме, че $\frac{1}{n} \xrightarrow[n \to \infty]{} 0$, откъдето с прилагане на свойство 6) лесно се вижда, че $-\frac{1}{n} \xrightarrow[n \to \infty]{} 0$. Остава да приложим лемата за двамата полицаи:

$$\underbrace{\lim_{n \to \infty} \frac{-1}{n}}_{n \to \infty} \le \lim_{n \to \infty} \frac{\arcsin \frac{1}{n}}{n} \le \underbrace{\lim_{n \to \infty} \frac{1}{n}}_{n \to \infty} \Longrightarrow \lim_{n \to \infty} \frac{\arcsin \frac{1}{n}}{n} = 0$$

• Задача 1.11 б) - да се намери границата на редицата с общ член:

$$x_n = \frac{n^3 + n + 1}{n^3 - n + 2}$$

Ще разпишем решението, въпреки че крайният отговор е очевиден.

$$\lim_{n \to \infty} \frac{n^3 + n + 1}{n^3 - n + 2} = \lim_{n \to \infty} \frac{\cancel{n^3} \left(1 + \frac{1}{n^2} + \frac{1}{n^3}\right)}{\cancel{n^3} \left(1 - \frac{1}{n^2} + \frac{2}{n^3}\right)} = \lim_{n \to \infty} \frac{1 + \frac{1}{n^2} + \frac{1}{n^3}}{1 - \frac{1}{n^2} + \frac{2}{n^3}}$$

Можем да запишем:

$$\frac{\lim_{n\to\infty} 1 + \lim_{n\to\infty} \frac{1}{n^2} + \lim_{n\to\infty} \frac{1}{n^3}}{\lim_{n\to\infty} 1 - \lim_{n\to\infty} \frac{1}{n^2} + \lim_{n\to\infty} \frac{2}{n^3}} = \frac{1+0+0}{1+0+0} = 1$$

• Задача 1.16 б) - да се намери границата за $n \to \infty$ на редицата с общ член:

$$a_n = \frac{1^2}{n^3} + \frac{2^2}{n^3} + \dots + \frac{n^2}{n^3} = \sum_{k=1}^n \frac{k^2}{n^3}$$

Забележете, че знаменателят n^3 може да бъде изкаран извън сумата, тъй като не се влияе от сумационния индекс, т.е. търсим границата:

$$\lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^{n} k^2$$

С индукция по $n \in \mathbb{N}$ се доказва, че:

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Формули от този вид могат да се обобщават и притежават полезни приложения. 1 И така, да заместим в нашата граница:

$$\lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^{n} k^2 = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = \lim_{n \to \infty} \frac{2n^3 + 3n^2 + n}{6n^3} = \frac{1}{3}$$

Можем да заключим, че търсената граница е $\frac{1}{3}$.

 $^{^1}$ Тук любознателните биха намерили повече информация - https://brilliant.org/wiki/sum-of-n-n2-or-n3/