Information-Acquisition-as-a-Service for Cyber-Physical Cloud Computing

Silviu Craciunas, Andreas Haas Christoph Kirsch, Hannes Payer Harald Röck, Andreas Rottmann Ana Sokolova, Rainer Trummer

Joshua Love Raja Sengupta

Universität Salzburg

UC Berkeley

HotCloud Workshop, Boston, June 2010

The JAviator

javiator.cs.uni-salzburg.at

Quad-Rotor Helicopter

- all carbon, titanium, aluminum design
- custom motors
- ~2.2kg weight
- +2kg payload
- ~40min (empty)
- ~ 10min (full)

Indoor Flight STARMAC Controller

Outdoor Flight Salzburg Controller

A Cyber-Physical Server

- IP address
- location
- capabilities
- motion

- IP address
- location
- capabilities
- motion

- IP address
- location
- capabilities
- motion

A Cyber-Physical Cloud

Goals

- Multi-provider (10s):
 - heterogeneous operations
- Multi-vehicle (100s):
 - heterogeneous systems
- Multi-task (1000s):
 - heterogeneous missions

© C. Kirsch 2010

Real Vehicle

- Real sensors:
 - Webcam, Laser, Ultrasonic, Gyro,
 Accelerometer, Magnetometer
- Real server (work-in-progress):
 - small form factor, less emphasis on I/O
 - > I Core, > I GHz, > I GB RAM, SSD, WiFi
- Real actuators:
 - Rotors (stabilized camera is future work)

Virtual Vehicle

- Virtual sensors (work-in-progress):
 - Webcam (w/ position, orientation)
- Virtual processors (work-in-progress):
 - EDF-vCPU, VVOS, scripting engine
- Virtual actuators (future work):
 - Pilot of <u>real</u> and <u>virtual</u> vehicles

Challenges

- Virtualization Infrastructure
 - Salzburg
- Collaborative Control
 - Berkeley
- Programming Language
 - Berkeley, Salzburg

Virtualization Infrastructure

Virtualization Infrastructure

Hybrid EDF-Credit Scheduler

SSD

Memory

Network

USB

CPU4

© C. Kirsch 2010

CPU1

CPU2

CPU3

Collaborative Control

- Read-only flight plans for <u>real</u> vehicles
 - Virtual-to-real vehicle allocation problem
 - Evaluation metrics: mission/vehicle flight (execution) <u>time</u>, <u>power</u> consumption
- Read-write flight plans for <u>real</u> vehicles
 - Real-to-virtual vehicle allocation problem

Programming Language

- Collaborative Sensing Language (CSL) [RTAS 2009]
- CSL specifies <u>dynamically</u> changing <u>missions</u> of virtual vehicles (work-in-progress)
- Key challenge is to handle concurrent and changing sets of real and virtual vehicles
- CSL programs compile into mission controllers (feedback loop: real vs. virtual vehicles)
- CSL runtime estimates state and allocates vehicles

