Engenharia de Ontologias Trabalho BFO

Haroldo Rojas de Souza Silva Matrícula 00315933 hrssilva at inf.ufrgs.br Rafael Humann Petry Matrícula 00314280 rhpetry at inf.ufrgs.br

I. VISÃO GERAL

A. Descrição do domínio

O presente trabalho trata de um processo de produção de soluções de nutrientes para o cultivo de plantas hidropônicas. O processo químico conta com tanques, válvulas, bombas e compressores de ar ligados em cadeia para realizar a mistura dessa solução nutritiva para as plantas. Além disso, sensores de nível, pH e condutividade elétrica são posicionados nos tanques para efetuar o controle e monitoramento desse processo.

Os sensores e atuadores da planta se comunicam diretamente com dispositivos IoT, que precisam interagir entre si para realizar diversas funções. A questão é que esses dispositivos IoT raramente são homogêneos, havendo potencial divergência nos protocolos suportados por cada um. Para lidar com isso, se utiliza um dispositivo denominado gateway, que media a comunicação entre dois dispositivos IoT e desempenha a função de tradutor entre os diferentes protocolos.

Neste contexto, o objetivo deste trabalho é fornecer uma ontologia de domínio em BFO que abranja os diversos dispositivos e seus protocolos de comunicação.

B. Questões de competência

- Tipologia de dispositivos
- Relações entre dispositivos
- Estrutura de dados de cada dispositivo
- Protocolos associados
- Tipologia dos protocolos
- Tipologia dos assets industriais
- Configuração física
- Unidades de medida

II. ENTIDADES MODELADAS

Dentro do contexto descrito na seção I, foram identificadas diversas classes para o modelo, descritas na tabela I.

TABLE I Universais do domínio

Entidade	Classe BFO
Digital Liquid Level Sensor	Object
Sensor	Object
Analog Level Sensor	Object
PH Sensor	Object
Digital Level Sensor	Object
Analog Level Sensor	Object
EC Sensor	Object
Actuator	Object
Valve	Object
Pump	Object
Compressor	Object
IoT Device	Object
Network Device	Object
Gateway Device	Object
Network	Object Aggregate
Nutritional Solution Module	Object Aggregate
Communication Protocol	Directive Information Entity
Receiver	Role
Sender	Role
Link	Role
Communication Role	Role
Digital Level Sensor Role	Role
Low Level Sensor Role	Role
High Level Sensor Role	Role
Messaging Event	Planned Process
Sender-To-Link Partial Messaging	Planned Process
Link-To-Reciever Partial Messaging	Planned Process
Message	Information Content Entity

Além disso, também foram identificadas relações estruturantes para a ontologia de domínio (tabela II).

TABLE II RELAÇÕES ESTRUTURANTES

Relação
Communicates With Deployed At Deployed At Upper Half Deployed At Lower Half Reads From Writes To Supports Protocol

III. VISÃO GERAL DO MODELO NA BFO

A ontologia, chamada Ontology Of IoT Devices (OID), é baseada na ontologia de topo BFO¹, na ontologia de relações

¹Disponívle em: https://raw.githubusercontent.com/BFO-ontology/BFO/v2019-08-26/bfo_classes_only.owl

não temporais da ${\rm BFO^2}$ e na ontologia de artefatos informacionais ${\rm (IAO)^3}.$

Abaixo podemos ver as entidades independentes (Figura 3), genericamente dependentes (Figura 2), especificamente dependentes (Figura 1) e ocorrentes (Figura 4).

Fig. 1. Entidades específicamente dependentes

Fig. 2. Entidades genéricamente dependentes

Fig. 3. Entidades independentes continuantes

Fig. 4. Ocorrentes

IV. DISPONIBILIDADE

A Ontology Of IoT Devices (OID) foi gerada utilizando a ferramenta Protégé ⁴, e está disponível no github⁵ em formato OWL/XML⁶.

V. RACIOCINADOR

Para a tarefa de raciocínio e verificação de consistência, utilizamos o raciocinador Hermit⁷. Na figura 5, podemos observar uma mensagem no Protegé indicando que o modelo é consistente.

 $^{^2} Dispon \'{i} vel em: https://raw.githubusercontent.com/BFO-ontology/BFO-2020/master/src/owl/profiles/atemporal/bfo-2020-without-some-all-times.owl$

 $^{^3} Disponível$ em: https://raw.githubusercontent.com/information-artifactontology/IAO/v2022-11-07/iao.owl

⁴Disponível em: https://protege.stanford.edu

⁵Disponível em: https://github.com/hrssilva/OID

⁶Mais informações em: https://www.w3.org/TR/owl-xmlsyntax/

⁷Mais informações em: http://www.hermit-reasoner.com/

Fig. 5. Teste de consistência com Hermit

VI. CONSULTAS

Em bases de conhecimento que utilizam o OID, podemos fazer diversos tipos de perguntas, como:

- Qual o tipo de dado (analógico ou digital) de um sensor de nível?
- Quais sensores podem ser lidos por IoT Device?
- Quais atuadores podem ser manipulados por um IoT Device?
- Que sensores, atuadores e tanques compreendem um Nutritional Solution Module?
- Quais IoT Devices comunicam com quais Gateways e quais os protocolos usados nessas comunicações?
- Quais dispositivos fazem parte de uma rede?
- Quantas trocas de mensagem foram realizadas entre dois dispositivos?