Digital Systems Design and Laboratory [2. Boolean Algebra]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Introduction
 Basic Operation
 Boolean Expressions and Truth Tables
 Basic Theorems
 Commutative, Associative, Distributive, and DeMorgan's Laws
 Simplification Theorems
 Multiplying Out and Factoring
 Complementing Boolean Expressions

Introduction

- ☐ Boolean algebra
 - > Is the basic mathematics for logic design of digital systems
- ☐ History
 - ➤ George Boole developed Boolean algebra in 1847 and used it to solve problems in mathematical logic
 - ➤ Claude Shannon first applied Boolean algebra to the design of switching circuits in 1939
 - Master's thesis (21 years old)
- ☐ Switching devices we will use are essentially two-state devices
 - > Represent an input or output by a Boolean variable
 - ➤ 1/0 for High/Low or True/False or Yes/No or Closed/Open
 - Just symbols
 - No numeric value

□ Introduction
 □ Basic Operation
 □ Boolean Expressions and Truth Tables
 □ Basic Theorems
 □ Commutative, Associative, Distributive, and DeMorgan's Laws
 □ Simplification Theorems
 □ Multiplying Out and Factoring
 □ Complementing Boolean Expressions

Logic NOT

☐ Complement = Inverse = Negate = NOT ('; -; -; -)

$$> 0' = 1, 1' = 0$$

Symbol (NOT gate, inverter)

> Truth table

X (Input)	X' (Output)			
0	1			
1	0			

Logic AND

■ AND (• ; ∧ ; sometimes omitted)

$$\triangleright$$
 0 • 0 = 0, 0 • 1 = 0, 1 • 0 = 0, 1 • 1 = 1

➤ Symbol (AND gate)

> Truth table

Α	В	C = A • B		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

 $C = 1 \rightarrow \text{closed circuit between 1 and 2}$

Logic OR

$$\square$$
 OR (+; \vee)

$$\triangleright$$
 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1

> Symbol (OR gate)

> Truth table

Α	В	C = A + B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

 $C = 0 \rightarrow \text{open circuit between 1 and 2}$

 $C = 1 \rightarrow closed circuit between 1 and 2$

- ☐ Introduction
- ☐ Basic Operation
- Boolean Expressions and Truth Tables
- Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Boolean Expressions vs. Logic Gates

- ☐ A Boolean expression is formed by basic operations on constants or variables, e.g., 0, 1, X, Y'
- ☐ Realize a Boolean expression by a circuit of logic gates
 - \triangleright Perform operations in order: parentheses \rightarrow NOT \rightarrow AND \rightarrow OR

 \triangleright Example: [A(C + D)]' + BE

Boolean Expressions vs. Truth Tables

- ☐ A truth table specifies the output values of a Boolean expression for all possible combinations of input values
 - ➤ How to check the equivalence between two expressions?
 - \triangleright Example: AB' + C = (A + C)(B'+ C)

А	В	С	В'	AB'	LHS	A+C	B'+C	RHS
0	0	0	1	0	0	0	1	0
0	0	1	1	0	1	1	1	1
0	1	0	0	0	0	0	0	0
0	1	1	0	0	1	1	1	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	0	0	0	1	0	0
1	1	1	0	0	1	1	1	1

- ☐ Introduction
- ☐ Basic Operation
- ☐ Boolean Expressions and Truth Tables
- **☐** Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Basic Theorems

Operations with 0 and 1

$$> X + 0 = X$$

$$> X \bullet 1 = X$$

$$> X + 1 = 1$$

$$> X \bullet 0 = 0$$

☐ Idempotent laws

$$> X + X = X$$

$$\rightarrow$$
 X \bullet X = X

☐ Involution law

☐ Laws of complementarity

$$> X + X' = 1$$

$$> X \bullet X' = 0$$

- ☐ Introduction
- ☐ Basic Operation
- ☐ Boolean Expressions and Truth Tables
- Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Commutative and Associative Laws

☐ Commutative laws for AND and OR

- > XY = YX
- \rightarrow X + Y = Y + X

☐ Associative laws for AND and OR

- \rightarrow (XY)Z = X(YZ) = XYZ
- \rightarrow (X + Y) + Z = X + (Y + Z) = X + Y + Z

Distributive and DeMorgan's Laws

- ☐ Distributive laws
 - \triangleright Ordinary one : X(Y + Z) = XY + XZ
 - \triangleright Second one: X + YZ = (X + Y)(X + Z)

 - You can also use a truth table to prove it
- ☐ DeMorgan's laws
 - \rightarrow (X + Y)' = X'Y'
 - \triangleright (XY)' = X' + Y'

Duality (1/2)

- ☐ The dual of a Boolean expression is obtained by
 - Interchanging the constants 0 and 1
 - ➤ Interchanging the operations of AND and OR
 - Leaving variables and complements unchanged
- ☐ Given a Boolean identity, another identity can be obtained by taking the dual of both sides of the identity

Duality (2/2)

Laws of Boolean algebra

- Operations with 0 and 1
- > Idempotent laws
- > Involution law
- Laws of complementarity
- Commutative laws
- Associative laws
- Distributive laws
- ➤ DeMorgan's laws

$$[1] X + 0 = X$$

 $[1D] X \bullet 1 = X$

[2D] $X \bullet 0 = 0$

[3D] $X \bullet X = X$

[2]
$$X + 1 = 1$$

[3]
$$X + X = X$$

$$[4] (X')' = X$$

[5]
$$X + X' = 1$$
 [5D] $X \cdot X' = 0$

[6]
$$X + Y = Y + X$$

[6]
$$X + Y = Y + X$$
 [6D] $XY = YX$

[7]
$$(X + Y) + Z = X + (Y + Z) = X + Y + Z$$

[7D]
$$(XY)Z = X(YZ) = XYZ$$

[8]
$$X(Y + Z) = XY + XZ$$

[8D]
$$X + YZ = (X + Y)(X + Z)$$

[9]
$$(X + Y)' = X'Y'$$

$$[9D] (XY)' = X' + Y'$$

- ☐ Introduction
- ☐ Basic Operation
- Boolean Expressions and Truth Tables
- ☐ Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- **☐** Simplification Theorems
- Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Simplification Theorems

Uniting

- > XY + XY' = X
- \rightarrow (X + Y)(X + Y') = X

■ Absorption

- > X + XY = X
- > X(X + Y) = X

□ Elimination

- > X + X'Y = X + Y
- > X (X' + Y) = XY

Consensus

- \rightarrow XY + X'Z + YZ = XY + X'Z
- \rightarrow (X + Y)(X' + Z)(Y + Z) = (X + Y)(X' + Z)

Simplification Practices

- \square Simplify Z = A'BC + A'
- \square Simplify Z = [A + B'C + D + EF][A + B'C + (D + EF)']
- \square Simplify Z = (AB + C)(B'D + C'E') + (AB + C)'

- ☐ Introduction
- ☐ Basic Operation
- ☐ Boolean Expressions and Truth Tables
- Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- **☐** Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Multiplying Out

- Use the distributive laws to multiply out an expression to obtain a **sum-of-products** (SOP) form
 - Ordinary distributive law: X(Y + Z) = XY + XZ
 - \triangleright Second distributive law: X + YZ = (X + Y)(X + Z)
- \square Example: multiply out (A + BC)(A + D + E)
 - Use the ordinary distributive law

```
• (A + BC)(A + D + E) = A + AD + AE + ABC + BCD + BCE
= A(1 + D + E + BC) + BCD + BCE
= A + BCD + BCE
```

> Use the second distributive law

```
• (A + BC)(A + D + E) = A + BC(D + E) = A + BCD + BCE
```

SOP vs. Logic Gates

☐ Realize SOPs by two-level circuits (AND-OR)

$$A + B' + C + D'E$$

Factoring

☐ Use the second distributive law to factor an expression to obtain a **product-of-sums** (POS) form

$$\triangleright \underline{X} + YZ = (X + Y)(X + Z)$$

- ☐ Example: factor A + B'CD
- ☐ Example: factor AB'+ C'D
- ☐ Example: factor C'D + C'E' + G'H

POS vs. Logic Gates

☐ Realize POSs by two-level circuits (OR-AND)

$$\rightarrow$$
 (A + B')(C + D' + E)(A + C' + E')

 \rightarrow AB'C(D' + E)

- ☐ Introduction
- ☐ Basic Operation
- ☐ Boolean Expressions and Truth Tables
- Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- Multiplying Out and Factoring
- **☐** Complementing Boolean Expressions

Complementing Boolean Expressions

☐ DeMorgan's laws with n variables

```
(X_1 + X_2 + ... + X_n)' = X_1'X_2' ... X_n'

(X_1X_2 ... X_n)' = X_1' + X_2' + ... + X_n'
```

- ☐ Complement an expression by iteratively applying DeMorgan's laws
 - ➤ Example: complement (AB' + C)D' + E so that NOT is applied only to single variables

```
• [(A \bullet B' + C) \bullet D' + E]' = [(A \bullet B' + C) \bullet D']' \bullet E'
= [(A \bullet B' + C)' + D] \bullet E'
= [(A \bullet B')' \bullet C' + D] \bullet E'
= [(A'+B) \bullet C' + D] \bullet E'
```

Q&A