

### **Last class review**



#### **Last class review**

- **1** Three BS models in option pricing
  - **1** The original BS model
  - 2 BSM model
  - 3 Generalized BSM model

Use one sentence to summarize BS model:

\_

#### **Last class review**

- Three BS models in option pricing
  - **1** The original BS model
  - 2 BSM model
  - 3 Generalized BSM model

Use one sentence to summarize BS model:

All weighted changes w.r.t. t and S is the product of r and f

$$\frac{\partial f}{\partial t} + rS \frac{\partial f}{\partial S} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2 - rf = 0$$

① Weights:  $[1, rS, \frac{1}{2}\sigma S^2]$ 

2 Changes:  $\left[\frac{\partial f}{\partial t}, \frac{\partial f}{\partial S}, \frac{\partial^2 f}{\partial S^2}\right]$ 



#### **Last class review**

- Three BS models in option pricing
  - The original BS model
  - **BSM** model (2)
  - **Generalized BSM model**

#### Use one sentence to summarize BS model:

All weighted changes w.r.t. t and S is the product of r and f

$$\frac{\partial f}{\partial t} + rS\frac{\partial f}{\partial S} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2 - rf = 0$$

① Weights:  $[1, rS, \frac{1}{2}\sigma^2S^2]$ 

Changes:  $\left[\frac{\partial f}{\partial t}, \frac{\partial f}{\partial S}, \frac{\partial^2 f}{\partial S^2}\right]$ 

 $\frac{\partial f}{\partial t} + rS \frac{\partial f}{\partial S} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2 - rf = 0$   $e = Ke^{-rT} N(-d_2) - SN(-d_1)$   $d_1 = \frac{\ln(S/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$ 



### Last class review: BSM model

use r-q to replace r in the original BS: q=0 means the original BS.

$$\frac{\partial f}{\partial t} + (r - q)S\frac{\partial f}{\partial S} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2 - rf = 0$$

- ① Weights:  $[1, (r-q)S, \frac{1}{2}\sigma^2S^2]$
- 2 Changes:  $\left[\frac{\partial f}{\partial t}, \frac{\partial f}{\partial S}, \frac{\partial^2 f}{\partial S^2}\right]$

$$C = Se^{-qT}N(d_1) - Ke^{-rT}N(d_2)$$

$$P = Ke^{-rT}N(-d_2) - Se^{-qT}N(-d_1)$$

$$d_1 = \frac{\ln(S/K) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}}$$



### Last class review: generalized-BSM model

Use b to replace r-q in the original BSM model

- ① Weights:  $[1, bS, \frac{1}{2}\sigma^2S^2]$
- ② Changes:  $\left[\frac{\partial f}{\partial t}, \frac{\partial f}{\partial S}, \frac{\partial^2 f}{\partial S^2}\right]$

$$C = Se^{-(b-r)T}N(d_1) - Ke^{-rT}N(d_2)$$

$$P = Ke^{-rT}N(-d_2) - Se^{-(b-r)T}N(-d_1)$$

$$d_1 = \frac{\ln(S/K) + (b + \sigma^2/2)T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma \sqrt{T}$$



### **Last class review**

- Three BS models in option pricing
  - **1** The original BS model
  - 2 BSM model
  - 3 Generalized BSM model
- **2** Normal CDF calculation
  - **1** Hart algorithm
  - 2 norm.cdf(x, mu, sigma) (from Scipy)
- **3 Monte Carlo simulation in option pricing** 
  - Generate normal distribution data: random.standard\_normal(N) (from Numpy)



### Q1: Why do we need multi-threading programming?

A process is an execution instance of a program: it is an execution of a program.

A program is a blueprint: a process is its invocation.

A thread is the minimum unit of a process



### Q1: Why do we need multi-threading programming?

It is a parallel programming skill to enhance execution efficiency.



#### Q1: Why do we need multi-threading programming?

It is a parallel programming skill to enhance execution efficiency.

Executing a program consists of a set of threads say, load variables, generate random numbers, calculating payoffs...



### Q1: Why do we need multi-threading programming?

It is a parallel programming skill to enhance execution efficiency.

Executing a program consists of a set of threads say, load variables, generate random numbers, calculating payoffs...

Multi-threading programming can let these processes share CPUs and other resources in a parallel way to improve efficiency



### Q1: Why do we need multi-threading programming?

It is a parallel programming skill to enhance execution efficiency.

Executing a program consists of a set of threads say, load variables, generate random numbers, calculating payoffs...

Multi-threading programming can let these processes share CPUs and other resources in a parallel way to improve efficiency



### Type top in your terminal (for Mac/Linux/cygwin users), you will see all running processes in your machine

process=program code + its resulting states

Processes: 265 total, 11 running, 8 stuck, 246 sleeping, 1129 threads Load Avg: 9.32, 9.33, 9.47 CPU usage: 99.26% user, 0.73% sys, 0.0% idle SharedLibs: 128M resident, 12M data, 14M linkedit.

MemRegions: 45113 total, 2038M resident, 90M private, 799M shared.

PhysMem: 6469M used (1121M wired), 1716M unused.

VM: 710C vsize, 535M framework vsize, 37337(0) swapins, 49473(0) swapouts.

Networks: packets: 1388847/1224M in, 1191563/237M out.

Disks: 714039/33G read. 619187/19G written.

|   | DISKS | /14039/336   | read. | 61918//19 | JG Wri | tten. |       |       |      |       |      |      |          |
|---|-------|--------------|-------|-----------|--------|-------|-------|-------|------|-------|------|------|----------|
| 4 | PID   | COMMAND      | %CPU  | TIME      | #TH    | #WQ   | #PORT | MEM   | PURG | CMPRS | PGRP | PPID | STATE    |
| ı | 7229  | screencaptur | 0.1   | 00:00.15  | 6      | 4     | 58    | 2764K | 20K  | 0B    | 335  | 335  | sleeping |
| ı | 7225- | mdworker32   | 0.0   | 00:00.17  | 3      | 0     | 54    | 6400K | 0B   | 0B    | 7225 | 1    | sleeping |
| ı | 7224  | QuickLookSat | 0.0   | 00:00.18  | 9      | 0     | 97    | 11M   | 12K  | 0B    | 7224 | 1    | sleeping |
| ı | 7223  | quicklookd   | 0.0   | 00:00.11  | 4      | 0     | 91    | 6792K | 0B   | 0B    | 7223 | 1    | sleeping |
| ı | 7222  | top          | 2.3   | 00:20.50  | 1/1    | 0     | 25    | 3976K | 0B   | ØB    | 7222 | 7214 | running  |
| ı | 7220  | mdworker     | 0.0   | 00:00.32  | 4      | 0     | 48    | 9324K | 0B   | 0B    | 7220 | 1    | sleeping |
| ı | 7214  | bash         | 0.0   | 00:00.02  | 1      | 0     | 17    | 888K  | 0B   | 0B    | 7214 | 7213 | sleeping |
| ı | 7213  | login        | 0.0   | 00:00.29  | 2      | 0     | 28    | 1588K | 0B   | 0B    | 7213 | 471  | sleeping |
| ı | 7212  | Google Chrom | 0.0   | 00:06.56  | 15     | 0     | 141   | 96M   | 0B   | 0B    | 406  | 406  | sleeping |
| ı | 7176  | netbiosd     | 0.0   | 00:00.02  | 2      | 1     | 36    | 2748K | 0B   | 0B    | 7176 | 1    | sleeping |
| ı | 7174  | ocspd        | 0.0   | 00:00.40  | 4      | 0     | 65    | 2980K | 0B   | 0B    | 7174 | 1    | sleeping |
| ı | 7117  | helpd        | 0.0   | 00:00.01  | 2      | 0     | 42    | 1292K | 0B   | 0B    | 7117 | 1    | sleeping |
| ı | 7096  | applessdstat | 0.0   | 00:00.00  | 3      | 1     | 35    | 868K  | 0B   | 0B    | 7096 | 1    | stuck    |
| ı | 7070  | mdworker     | 0.0   | 00:00.88  | 4      | 0     | 48    | 9392K | 0B   | 0B    | 7070 | 1    | sleeping |
| ı | 7040  | mdworker     | 0.0   | 00:00.12  | 4      | 0     | 45    | 9092K | 0B   | 0B    | 7040 | 1    | sleeping |
| ı | 6874  | mdworker     | 0.0   | 00:00.81  | 4      | 0     | 48    | 11M   | 0B   | 0B    | 6874 | 1    | sleeping |
| ı | 6861  | SCIM         | 0.0   | 00:01.44  | 3      | 0     | 187   | 17M   | 0B   | 0B    | 6861 | 1    | sleeping |
| ı | 6860  | imklaunchage | 0.0   | 00:00.04  | 2      | 0     | 69    | 2316K | 0B   | 0B    | 6860 | 1    | sleeping |
| ı | 6805- | Microsoft Ex | 0.0   | 01:35.43  | 14     | 1     | 186   | 97M   | 0B   | 0B    | 6805 | 1    | sleeping |
| ı | 6797  | mdworker     | 0.0   | 00:01.38  | 4      | 0     | 48    | 11M   | 0B   | 0B    | 6797 | 1    | sleeping |
| ı | 6692  | periodic-wra | 0.0   | 00:00.00  | 2      | 1     | 28    | 576K  | 0B   | 0B    | 6692 | 1    | sleeping |
| ĺ | 6595  | aslmanager   | 0.0   | 00:00.01  | 2      | 1     | 27    | 1180K | 0B   | 0B    | 6595 | 1    | sleeping |
| ١ | 5784  | com.apple.ap | 0.0   | 00:00.01  | 2      | 1     | 27    | 556K  | 0B   | 496K  | 5784 | 1    | sleeping |
| ١ | 5778  | com.apple.hi | 0.0   | 00:00.02  | 2      | 0     | 32    | 736K  | 0B   | 404K  | 5778 | 1    | sleeping |
|   |       |              |       |           |        |       |       |       |      |       |      |      |          |



```
1 import threading
2 import time
                                                                     Will have a process
                                                                     to calculate harmonic series
3 def addHarmonicSeries(n):
      sum=0.0
(5)
     for i in range(1,n):
6)
        sum = sum + 1.0/i
        print('{:5d} {:12.6f}' format(i, sum))
8 start_time = time.clock()
9 no_thread = 100
for i in range(no_thread):
11 t = threading.Thread(target = addHarmonicSeries, args = (i,))
13 print("\n-->"+t.getName() + "\n")
      time.sleep(1)
                                                                 Function parameters
```

### quiz 1? sum = 0 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{2}{3}\right)^n |$

Q2: What's wrong with the following student's codes in

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (\frac{2}{3})^n$$



## Q2: WHAT's wrong with the following student's codes in quiz 1?



### A little bit professional version: make sure your codes work for both python2 and python3 to

```
sum = 0.0

for n in range(1,1000000):

I = math.pow(-1.0, n+1)/n
    r = math.pow((2.0/3.0), n)
    sum = sum + I * r

print("\n sum: {:12.9f} ". format(sum) +"\n")
```

$$\textstyle\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\big(\frac{2}{3}\big)^n\!|$$



Q3: what are basic ideas of MC simulations?

## Q3: what are basic ideas of MC simulations?

Idea: try all possible cases for  $S_T$  through a large number of simulations to calculate an average option price!

### Q3: what are basic ideas of MC simulations?

- ① Generate a large number N numbers of random numbers from N(0,1)
- ② Compute all possible stock prices at T for each random number by using the result from BSM model:  $s_T = s_0 \exp\left(\left(r \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}z\right)$
- 3 Calculate all possible payoffs
- 4 Simulations: calculate the average of all payoffs and divided it by e^rT (r: interest rate)

## PANDAS→Python's data analytics toolkit: we always need to use in financial data analytics

http://pandas.pydata.org/pandas-docs/stable/

1600+ pages in 2015 2000+ pages in 2016

Visit OFTEN this webpage to get familiar with PANDAS

Quick start: http://pandas.pydata.org/pandas-docs/stable/10min.html

Python for financial data analytics just starts  $\rightarrow$  it is a great chance to follow the trend to become an expert!



### **Python Data Analysis Library: Pandas**

- 1 It is combined with the IPython toolkit built on top of NumPy, SciPy, matplotlib.
- ② The number 1 tool for data analytics!
- 3 It handles financial time series data very well.

A general misconception that students hold: If I can call some commands in Pandas, then I can do data analytics

To become a professional data anayticist, you MUST do serious coding as well.



## Pandas has two basic data structures: series and dataFrame

- Series: is like an ordered dictionary that permits duplicates
- 2 What's dictionary data structure in python (I assume students know python)?



## Pandas has two basic data structures: series and dataFrame

- Series: is like an ordered dictionary that permits duplicates (a labeled one-dimensional array)
- What's dictionary data structure in python?
- 3 Dictionary: a key:value pair structure (like a phonebook)

General signature: pandas.Series(data, index)



#### A series is a dictionary: A series is a labeled array

- 1 import pandas as pd
- ② contacts2 = pd.Series([1235678, 2568833, 3338733, 5903333],\
  ③ index=['alex', 'bill', 'tom', 'david'])
- 4 print("\n a series-->"+str(contacts2) + "\n")
- $\bigcirc$  x=range(10)
- **6** a=pd.Series([math.sin(x[2]), 5, math.pow(2, x[9]), 11, 29])
- 7 print(a)
- 8 a.mean()
- 9 a.std()
- 10 a.sum()
- 11 a.quantile(0.95)
- 12 a.cumsum()
- 13 a.sort()
- 14 print(a)



## Dataframe: a labeled matrix (a spreadsheet)!

```
In [6]: goog.head()
Out[6]:

Open High Low Close Volume

Date
2010-06-01 239.97 245.28 239.82 240.94 NaN
2010-06-02 243.10 246.69 240.49 246.44 NaN
2010-06-03 247.31 253.75 247.10 252.55 NaN
2010-06-04 249.61 254.37 248.10 249.11 NaN
2010-06-07 249.28 250.20 241.33 242.52 NaN
```

Top 5 lines of Google stock data starting 06/01/2010 retrieved from web by using Pandas.io.data



## **Dataframe: a labeled matrix (a spreadsheet)!**

```
In [6]: goog.head()
Out[6]:

Open High Low Close Volume

Date
2010-06-01 239.97 245.28 239.82 240.94 NaN
2010-06-02 243.10 246.69 240.49 246.44 NaN
2010-06-03 247.31 253.75 247.10 252.55 NaN
2010-06-04 249.61 254.37 248.10 249.11 NaN
2010-06-07 249.28 250.20 241.33 242.52 NaN
```

Top 5 lines of Google stock data starting 06/01/2010 retrieved from web by using Pandas.io.data Each row in a dataframe is a series

It is still called data frame in R, but in Matlab, it is called data.matrix



## Let's start financial data analytics by using Pandas

We need to retrieve the real data from Internet at first!

I want to get all Google Stock information in recent 5 years: 6/1/2010—6/1/2015

How can I do it?

We need to use <u>pandas.io.data</u> and <u>pandas.io.ga</u> to extra data from Internet sources such as Google Finance, Yahoo Finance

- 1. <a href="https://www.google.com/finance">https://www.google.com/finance</a>
- 2. https://finance.yahoo.com/



```
import numpy as np
import pandas as pd
import pandas.io.data as web
# Retrive all google stock from the s_date to the end_date
s_date='6/1/2010' # start date
e_date='6/1/2015' # end date
# Retrieve google stock ( 'GOOG') from google finance
goog = web.DataReader('GOOG', data_source='google', start=s_date, end=e_date)
# print all google stock
print(goog)
# show time index for stock: here time is the key
g_idx=goog.index
print(g_idx)
# First 5 business days of stock
g_head=goog.head()
# Last 5 business days of stock
g_tail=goog.tail()
```

```
print(g_tail)
Open High Low Close Volume
Date
2015-05-26 538.12 539.00 529.88 532.32 2406512
2015-05-27 532.80 540.55 531.71 539.79 1525019
2015-05-28 538.01 540.61 536.25 539.78 1029849
2015-05-29 537.37 538.63 531.45 532.11 2597407
2015-06-01 536.79 536.79 529.76 533.99 1904332

Want to access the 'High' and 'Open' column data?

print(g_tail[['Open', 'High']])
print(g_tail[['Open', 'High']])
```

### How to access each row?

Similar to dictionary, we use a date as a key to access data goog.loc['20100601']

```
[In [225]: goog.loc['20100601']
Out[225]:
Open 239.97
High 245.28
Low 239.82
Close 240.94
Volume NaN
Name: 2010-06-01 00:00:00, dtype: float64
```

.loc[] a way to do index in pandas: loc can be understood as "location"



### How to access each row Cont'd?

```
goog.loc['20100601']
```

```
[In [225]: goog.loc['20100601']
Out[225]:
Open    239.97
High    245.28
Low    239.82
Close    240.94
Volume    NaN
Name: 2010-06-01 00:00:00, dtype: float64
```

#### Same meaning: goog[0:1] (1st raw of data)

```
[In [225]: goog.loc['20100601']
Out[225]:
Open 239.97
High 245.28
Low 239.82
Close 240.94
Volume NaN
Name: 2010-06-01 00:00:00, dtype: float64
```



#### Data from the 1001th to 1010th row

```
[In [234]: goog[1000:1010]
Out [234]:
                                   Low Close
                                                   Volume
                0pen
                        High
2014-05-21 532.90 539.18 531.91 538.94
2014-05-22 541.13 547.60 540.78 545.06
                                                  1193389
                                                  1611837
2014-05-23
              547.26
                       553.64
                                543.70
                                         552.70
                                                  1929632
2014-05-27
                       566.00
567.84
                                         565.95
561.68
              556.00
                                554.35
                                                  2100298
2014-05-28
              564.57
                                561.00
                                                  1647717
2014-05-29
              563.35
                       564.00
                                558.71
                                         560.08
                                                  1350657
2014-05-30
              560.80 561.35
                                555.91
                                         559.89
                                                  1766794
2014-06-02 560.70 560.90
                               545.73
                                         553.93
                                                  1434989
2014-06-03 550.99 552.34 542.55 544.94
2014-06-04 541.50 548.61 538.75 544.66
                                                  1861921
                                                  1812084
```



### Want to save your data in Excel?

Use to\_excel(...) function

```
# save it as an excel file
filename='google_stock_data.xlsx'
goog.to_excel(filename, sheet_name='sheet1', index=False)
## check if the file exists
import os.path
if (os.path.isfile(filename)==True):
    print("\n "+filename + " is saved!\n")
```

You can type 'Is' in Ipython to see the file.



# Q4: How to know the risk of stock?

An important measure is volatility  $\rightarrow$  it can viewed as standard deviation (variance) of the stock

The higher the volatility, the riskier the security



How to compute the volatility of a security (Stock data)?

## How to compute the volatility of a security (stock data)?

We can use history data!

In other words, we can look back to calculate its volatility.

Note: it does not mean its future volatility will follow the value you get!!

### **Details of volatility computing**

Given n+1 number of observations (e.g., daily observation): 0,
 1,2,...,n;



### **Details of volatility computing, Cont'd**

- Given n+1 number of observations (e.g., daily observation): 0, 1,2,...,n;
- We use Si to represent the stock price (close price) at the end of ith interval: [i-1, i]



#### Details of volatility computing, Cont'd

- Given n+1 number of observations (e.g., daily observation): 0,
   1,2,...,n;
- We use Si to represent the stock price (close price) at the end of ith interval: [i-1, i]
- 3 Let  $\tau$  represent the length of time interval in years (e.g.,1/252: 252 total trading days), then the volatility can be estimated as



### **Details of volatility computing, Cont'd**

- Given n+1 number of observations (e.g., daily observation): 0,
   1,2,...,n;
- We use Si to represent the stock price (close price) at the end of ith interval: [i-1, i]
- 3 Let  $\tau$  represent the length of time interval in years (e.g.,1/252: 252 total trading days), then the volatility can be estimated as

 $\hat{\sigma} = \frac{s}{\sqrt{\tau}} \qquad \text{A normalized standard deviation w.r.t time}$  s is the estimation of standard deviation of  $u_i = \ln(\frac{S_i}{S_{i-1}})$  which can be estimated as

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} u_i^2 - \frac{1}{n(n-1)} (\sum_{i=1}^{n} u_i)^2}$$

The standard error of such estimate is about  $\hat{\sigma}/\sqrt{2n}$ 



### How can we use Pandas to do it?

- We need to calculate  $u_i = \ln(\frac{S_i}{S_{i-1}})$  first, where  $S_i$  is the close price of each transaction day
- We need to calculate the standard deviation s of the sequence  $u_i = \ln(\frac{S_i}{S_{i-1}})$
- We need to estimate the volatility as  $\hat{\sigma} = \frac{s}{\sqrt{\tau}}$  we choose  $\tau = 1/252$



### What do we need to do?

We have a dataFrame: goog that has stock from 06/01/2010 to 06/01/2015

We need to

calculate the sequence u: log of the ratio of two neighbor close prices

```
S_i = goog['Close'] # close price
S_i_minus_1 = goog['Close'].shift(1) # move/shift the original one one slot
```



```
0. Bookkeeping
                        = goog['Close']
                                                            # close price
② S_i_minus_1 = goog['Close'].shift(1) # move/shift the original one one slot
3 S_i[0:10]
4 S_i_minus_1[0:10]
              [S_i[0:10]]
                                                                                        S_i_minus_1[0:10]
                       240.94
246.44
252.55
249.11
242.52
242.15
                                                                           2010-06-01

2010-06-02

2010-06-03

2010-06-04

2010-06-07
                                                                                               240.94
246.44
252.55
249.11
242.52
242.15
236.77
  2010-06-10
2010-06-11
                       243.26
244.01
                                                                                                243.26
244.01
                                                                           2010-06-14
       ne: Close, dtype: float64]
                                                                             ame: Close, dtype: float64
```

```
1. Create U_sequence
 ① goog['U_sequence'] = np.log(S_i/S_i_minus_1)
 ② U_sequence = goog['U_sequence']
 [In [297]: U_sequence[0:10]
 Out[297]:
Date
  2010-06-01
                 0.022571
0.024491
  2010-06-02
2010-06-03
  2010-06-04
               -0.013715
               -0.026810
-0.001527
-0.022468
  2010-06-07
2010-06-08
  2010-06-09
  2010-06-10
                 0.027042
0.003078
  2010-06-11
  2010-06-14 -0.010961
  Name: U_sequence, dtype: float64
```

2. compute s: we need to compute the standard deviation of the U sequence (n is the number of observations we have)

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} u_i^2 - \frac{1}{n(n-1)} (\sum_{i=1}^{n} u_i)^2}$$

### We can code it directly

#### We can use a method in Pandas to do this better: roll\_std()

- 1 s=pd.rolling\_std(goog['U\_sequence'], window=252)
- > The U-sequence data we get is a time series data.
- For time series data, Pandas has a series of functions to calculate its statistics: they call start from rolling: e.g.: "rolling\_std"
- http://pandas.pydata.org/pandas-docs/stable/computation.html



## 3. Compute the volatility

① goog['Volatility'] = pd.rolling\_std(U\_sequence, window=252) \* np.sqrt(252)



## Why \*np.sqrt(252) here?

① goog['Volatility'] = pd.rolling\_std(U\_sequence, window=252) \* np.sqrt(252)



## 4. plot the volatility by using matplotlib

- # invoke the matplotlib
- 2 %matplotlib
- goog[['Close', 'Volatility']].plot(subplots=True, color='red',figsize=(8, 6));





Lab: Compute the volatility of AAPL from 06/01/2008—09/01/2016