1.1.1 Grundlagen

Wireless Host (Drahtloser Teilnehmer): Endystem auf dem die Applikation läuft (stationär oder mobile), z.B. Smartphone, PC

Wireless Link (Drahtlose Verbindung): Verbindet Teilnehmer direkt oder per Basisstation (Abdeckung, Datenrate)

Basisstation (Base Station): Überträgt Datenpakete zwischen drahtgebundenem zu drahtlosem Netzwerk,

meist mit drahtgebundenem Netzwerk verbunden (WLAN Access Point, UMTS Basisstation)

Drahtloses Infrastruktur Netzwerk: Netzwerkteilnehmer sind über Basisstation mit dem Netz verbunden

Drahtloses Ad-Hoc Netzwerk: Keine Infrastruktur (Basisstationen), Teilnehme bilden das Netz selbst.

Nachteile: passive Teilnehmer haben trotzdem Stromverbrauch, eigene Daten landen auf fremden Mobiltelefonen und höhere Latenz

Single-Hop: Genau ein wireless Link

Multi-Hop: Übertragung geht über mehrere wireless Links in Folge

		Beispiele für Single und Multi-Hop				
Übliche Datenraten			Single Hop	Multiple Hops		
GSM (2G)	0.56 Mb/s 4 Mb/s	Infrastruktur	Host verbindet sich mit Basisstation	Host muss möglicherweise durc mehrere drahtlose Geräte um sich mit dem Internet zu verbinden: Mesh Net		
UMTS (3G)			(Wifi, zellulare Netzwerke) und diese dann mit dem Internet			
LTE (4G) und 802.11b 802.11ag 802.11n		Keine Infrastruktur	Keine Basisstation und auch keine Verbindung zu weiterem Internet (z.B. Bluetooth)	Keine Basisstation und auch keine Verbindung zu weiterem Internet. Muss durch mehrere drahtlose Geräte: MANET, VANET		

Herausforderungen bei drahtloser Übertragung

- Teilnehmer zeitweise nicht erreichbar (Funkloch)
- IP-Adresse ändert sich
- ullet Höhere Anzahl an Übertragungsfehlern durch Inteferenz (Störung durch andere Teilnehmer) oder Dämpfung ullet Bessere Fehlerbehandlung
- Kurzer Paketverlust führt bei TCP zu angeblicher Netzüberlastung (obwohl nur kurzzeitige Störung)
- Medium kann abgehört werden
- ullet Mehrwege-Ausbreitung: Signale werden an unterschiedlichsten Oberflächen reflektiert o Am Empfänger sowohl konstruktive als auch destruktive Überlagerung möglich

⇒ Funkkanal ist zeit- und ortsvariant!

Modulationsarten: Frequenz-, Amplituden- & Phasenmodulation, Quadraturamplitudenmodulation (QAM) \Rightarrow Kombination von Amplituden- und Phasenmodulation (QAM-8: 3 Bit pro Symbol, QAM-1024: 10 Bit pro Symbol).

Höhere Modulationsarten bieten höhere Übertragungsrate sind aber fehleranfälliger. Bei größerem Signal-Rausch-Abstand

(SNR - Stärke des Nutzsignals bezogen auf Störung) kann höhere Modulation eingesetzt werden da Kanal anscheinend nicht so stark gestört (QAM-16 = 4Mbps, QAM-256 = 8Mbps)

Bit-Error-Rate (BER): Wahrscheinlichkeit, dass ein fehlerhaftes Bit übertragen wird.

Hidden Terminal Problem: Teilnehmer A, B & C. A und B hören sich, B und C hören sich aber A und C hören sich nicht \rightarrow Bei Übertragung $A \rightarrow B$ und $C \rightarrow B$ stören sie sich unbewusst gegenseitig.

TODO: BEHEBUNG / VERMINDERUNG DURCH?

Aufteilen eines Mediums:

- TDMA (Time Division Multiple Access)
 - 1. synchron: Jeder Teilnehmer hat festen Zeitslot, nur in diesem kann er senden
 - 2. asynchron: keine festen Zeitslot, jeder nutzt aktuellen Zeitslot wenn er Daten hat Absender wird in Header geschrieben

- FDMA (Frequency Division Multiple Access)
 - 1. Teilnehmer nutzen unterschiedliche Frequenzen
- CDMA (Code Division Multiple Access)
 - 1. Teilnehmer nutzen unterschiedliche Spreizcodes, Vorteil: Störungsunempfindlicher, Nachteil: Mehr Datenübertragung
 - 2. Zu übertragende Daten werden vom Sender mit Spreizcode multipliziert, Ergebnisbits \Leftrightarrow Chips
 - 3. Empfänger multipliziert empfangende Daten mit Spreizcode des Senders
 - 4. Teilnehmer senden zur gleichen Zeit im gleichen Band, Daten werden beim Empfänger durch bitweise Multiplikation mit Code zurückgewonnen
 - 5. Andere Teilnehmer wirken als zusätzliches Rauschen (\Rightarrow Umso mehr Teilnehmer umso geringerer SNR \Rightarrow Sendeleistung erhöhen)

CDMA - Beispiel zur Kodierung

Sender hat Spreizcode (1,1,1,-1,1,-1,-1,-1) und versendet Daten $d_1=-1,d_0=1$. Nach Multiplikation der Daten mit Spreizcode: $Z_{1,m}=(-1,-1,-1,1,1,1,1), Z_{0,m}=(1,1,1,-1,1,-1,-1,-1)$. Der Empfänger dekodiert folgendermaßen: $\frac{\sum_{m=1}^{M}Z_{i,m}\cdot c_m}{M}$. Dabei ist M Länge des Spreizcodes (in diesem Beispiel 8), c_m Spreizfaktor an der Stelle m, $Z_{i,m}$ die gespreizten Daten, d.h:

$$d_1 = \frac{(-1)\cdot 1 + (-1)\cdot 1 + (-1)\cdot 1 + 1 \cdot (-1) + (-1)\cdot 1 + 1 \cdot (-1) + 1 \cdot (-1) + 1 \cdot (-1)}{M} = \frac{-8}{8} = -1$$

$$d_0 = \frac{1\cdot 1 + 1\cdot 1 + 1 \cdot 1 + (-1)\cdot (-1) + 1 \cdot 1 + (-1)\cdot (-1) + (-1)\cdot (-1) + (-1)\cdot (-1)}{M} = \frac{8}{8} = 1$$

Bei mehreren Sendern multipliziert der Empfänger das überlagerte Signal mit dem jeweiligen Spreizcode, da diese orthogonal zueinander sind, kommen die richtigen Daten des jeweiligen Senders wieder raus.

1.1.2 Wireless Local Area Networks

Protokollstack:

802.11: '97, FHSS/DSSS, 1-2MBit/s, 2.4 GHz

802.11b: '99, DSSS, 1 - 11MBit/s, 2.4 GHz

802.11n: '09, OFDM/MIMO, 6 - 600MBit/s, 2.4 oder 5 GHz

802.11ac: '14, MU-MIMO, bis zu 6.93 GBit/s, 5 GHz

802.11ay: '19, 20 - 40 GBit/s, 60GHz

Begriffe:

- Basic Service Set (BSS): Stationen die auf dem gleichen Übertragungskanal Daten austauschen
- Extended Service Set (ESS): Zusammenschluss mehrerer BSS zu Kommunikationsnetz, Roaming zwischen den BSS
- Service Service Set ID (SSID): Name des Netzwerkes
- Ad-Hoc Mode / Independent BSS (IBSS): Alle Stationen gleichberechtigt, kein Access Point
- Infrastructure BSS: Geräte kommunizieren über AP (=Übergang zu drahtgebundenem Netz)

Kanäle:

- \circ Bis zu 13 Kanäle mit je 5 MHz zwischen 2410 MHz 2483 MHz.
- Bei DSSS Kanalbreite = 22MHz, bei OFDM = 20 MHz / 40 MHz
 (ohne / mit Kanalbündelung). Störungsfreier Betrieb nur bei passendem
 Abstand (5 Kanäle bei DSSS).

Hierzu bitte auch das erste Übungsblatt vom Praktikum durchlesen!

Accesspoint sendet regelmäßig **Beacon Frames** mit SSID und MAC-Adresse. Wireless Stations scannen Kanäle nach diesen Frames, wählen verfügbaren AP (Einstellungen & Signalstärke) aus, führt Authentifizierung durch und erhält anschließend IP-Adresse per DHCP.

Passives Scannen

PC ist passiv, hört Kanal ab

APs senden Beacons

PC sendet Association Request an ausgewählten AP

AP sendet Association Response an PC

Aktives Scannen

PC sendet Probe Request

APs senden Probe Response

PC sendet Association Request an ausgewählten AP

AP sendet Association Response an PC

Keine Kollisionserkennung (Collision Detection (CD)) möglich \Rightarrow ACKs auf Schicht 2

- \circ Sender wartet Zeitspanne DIFS (Distributed Coordination Function Interframe Spacing) während der Medium frei sein muss
- o Sender überträgt Daten (kein Collision Detection)
- \circ Empfänger prüft CRC
- \circ Empfänger sendet ACK falls CRC korrekt nach Wartezeit SIFS (Short Interframe Spacing) (SIFS < DIFS) um Senden eines normalen Frames dazwischen zu verhindern außerdem Umschalten von Empfangen auf Senden

Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA):

- Sender lauscht (Carrier Sense) ob Medium frei (Dauer: 1 DIFS)
- Falls frei: random backoff im aktuellen Contention Window würfeln wenn mehrere Stationen gleiches DIFS abgewartet haben und es sonst zu Kollision käme. Nach Ablauf des random backoffs Daten übertragen
- Falls nicht frei: Warten bis Kanal frei, wenn Kanal länger als 1 DIFS frei, dann random backoff verringern & anschließend Daten senden
- Falls kein ACK erfolgt: Contention Window verdoppeln und Daten erneut senden
- Empfänger sendet ACK nach Ablauf eines SIFS bei korrekt erhaltenen Daten

Nachteile CSMA/CA: Senden dauert lange, Kollision wird nicht erkannt - ist sehr zeitaufwändig und sollte daher vermieden werden Besser eine Kollision bei kurzen Kontrollpaketen als bei langen Datenpaketen \Rightarrow RTS/CTS-Verfahren

WLAN Rahmenformat

(bridge)

Ablauf:

- o Sender reserviert Kanal mit kurzem **Request-To-Send (RTS)**-Paket, Kollisionen möglich aber weniger schlimm da nur kleines Paket welches günstig erneut gesendet werden kann
- o Empfänger antwortet mit Clear-To-Send (CTS)
- \circ Sender sendet Datenpaket
- ⇒ Andere Stationen empfangen RTS & CTS und berücksichtigen belegten Kanal
- \Rightarrow Funktioniert auch bei $Hidden\ Terminal\ da\ CTS\ empfangen\ wird$

	2	2	6	6	6	2	6	0 - 2312	4	
	frame control	duration	address 1	address 2	address 3	seq contro	address 4	payload	CRC	
F	unktion	ToDS	Fi	romDS	Add. 1	ı A	Add. 2	Add. 3	Add. 4	
IB	SS	0	0		destinat	tion s	source	BSSID	unused	
To	AP	1	0		BSSID	s	source	destination	unused	
Fr	om AP	0	1		destinat	tion E	BSSID	source	Unused	
W	DS	1	1		receive	r tı	ransmitter	destination	source	

- \circ Max. 2313 Bytes an Nutzdaten
- o 3. Adresse erlaubt Umsetzung auf Ethernet-Rahmen
- WLAN-Reichweitenvergrößerung durch überlappende BSSs, IP-Adresse bleibt gleich da identisches Subnetz - nur AP ändert sich
- \Rightarrow Switch ändert Port \leftrightarrow IP-Zuordnung wenn sich Teilnehmer vom neuen AP meldet

Unterschied CSMA/CA \leftrightarrow CSMA/CD: CSMA/CD bei Ethernet sendet JAM-Signal, CSMA/CA erkennt keine Kollision (versucht nur zu verhindern)

1.1.3 Personal Area Networks (PAN)

Drahtlos oder drahtgebundenes (Ad Hoc) Netzwerk von Kleingeräten, oft nur wenige Meter Reichweite.

Bluetooth

- o Mehrfachzugriff mit TDMA, Frequenzsprungverfahren (Kanalwechsel nach jedem Zeitslot ⇒ Robustheit gegen Störer)
- o Class 1: 100mW 100m Reichweite, o Class 2: 2.5mW 10m Reichweite, o Class 3: 1mW 1m Reichweite
- \circ '
99: Einführung, 732,2kbit/s \circ '04: v2.0 mit bis 2.1Mbit/s
 \circ '16: v5.0 mit IoT Erweiterungen
- \circ Ad Hoc Netzwerk (keine Infrastruktur nötig) $\circ \le 8$ aktive & ≤ 255 geparkte Geräte \circ Master gibt Zeit vor, gewährt Slaves, aktiviert geparkte

Bluetooth Profile

Profil spezifiziert Anwendung von Bluetooth für bestimmten Zweck

- o AT Kommando: Kommando zur Modemsteuerung
- o Baseband: Basisband, Paketformate
- o L2CAP: Logical Link Control and Adaptation Protocl: Bietet verbindunsorientierte- und lose Dienste zwischen Baseband und höheren Schichten
- o MCAP: Multi-Channel Adaptation Protocol Stellt Kontrollkanal MCL und Datenkanäle MDL bereit
- o RFCOMM: Virtuelle, serielle Verbindungen, Emulation serieller Ports o Geräte im HealthCare Bereich ursprünglich per RFCOMM angebunden
- ⇒'08 Verabschiedung von standardisiertem Health Device Profile

Zwei Rollen: Source = Datenquelle, Sink = Empfänger (Smartphone) Verbindungsauf- und abbau, Wiederaufbau abgebrochener Verbindungen

Sensoren (z.B. Pulsmesser, Thermometer) sollen lange Laufzeit (⇒ geringer Stromverbrauch) aufweisen. Bluetooth 4.0 beinhaltet Bluetooth Smart (Low-Energy Profil auf Basis von einem Generic Attribute Profile (GATT)).

ZigBee

- o Ziel: Drahtlose Übertragung bei geringem Stromverbrauch (geringe Datenraten: 20 250kbit/s, selten aktiv (low duty-cycle)).
- o Übertragen von Sensordaten, Heim- und Gebäudeautomatisierung
- o Endgerät: Reduced Function Device RFD nur Teil des ZigBee Protokolls implementiert (geringere Kosten)
- o Router: Full Function Device FDD, kann Daten weiterleiten o Koordinator: Gibt zusätzliche Parameter vor, koordiniert das PAN

1.1.4 Zellulare Netzwerke

- \circ 1G: Analog (A/B/C-Netz) \circ 2G: GSM ab '92, 2.5G = GPRS, 2.75G = EDGE \circ 3G: UMTS ab '03 \circ 4G: ab '14 LTE \circ 5G ab '21, Latent < 1ms
- \circ Mobilfunkzelle: Von Base Transceiver Station(BTS) abgedeckter Bereich \circ Air-Interface: Untere 2 Netzwerkschichten Mobile Station \Leftrightarrow BTS

Ressourcenzuteilung in der Zelle:

- o GSM: Kombination aus FDMA & TDMA, Spektrum wird in einzelne Frequenzkanäle, jeder Kanal wiederum in Zeitschlitze aufgeteilt
- \circ UMTS: CDMA Verfahren Unterschiedlicher Code für unterschiedliche Nutzer

2G Netzwerkarchitektur (GSM):

- \circ Base Station Controller (BSC): übernimmt Ressourcenzuweisung und Mobilitätsmanagement in einem Base Station Subsystem (BSS)
- o Mobile Switching Center (MSC): Anrufauf- und Abbau, Verbindung ins Festnetz, Mobilitätsmanagement
- \circ Gateway-MSC: Vermittlungsfunktionen, Verbindung zu anderen Netzen

- verwendet bereits bestehende BTS mit

- o Packet Control Unit (PCU): Kommuniziert über den BSC mit Endgerät und auch mit der SGSN, überwacht und verwaltet Datenpakete, Ressourcenverteilung
 - o Serving GPRS Support Node (SGSN): Übernimmt Vermittlung der Datenpakete und die Funktion des VLR

o Mit GPRS-Komponenten erstmals paketvermittelte Datendienste

- o Gateway GPRS Support Node (GGSN): Ist der Router, der das Mobilfunknetz mit dem Internet verbindet und die IP-Adresse zur Verfügung stellt o Sprachdaten laufen über $BTS \Leftrightarrow BSC \Leftrightarrow MSC \Leftrightarrow G-MSC \Leftrightarrow Festnetz$
- o Paketdaten laufen über $BTS \Leftrightarrow BSC \Leftrightarrow PCU \Leftrightarrow SGSN \Leftrightarrow GGSN \Leftrightarrow Internet$

Mobilitätsmanagement: