SUPPLEMENTARY INFORMATION FOR

NMRlipids III: Lipid–Cholesterol Interactions in Atomistic Resolution Molecular Dynamics Simulations

Fernando Favela-Rosales, † Peter Heftberger, ‡ Matti Javanainen, *,¶,§ Jesper J. Madsen, $^{\parallel,\perp}$ Josef Melcr, ¶ Markus Miettinen, $^{\#}$ O. H. Samuli Ollila, *,¶,§ Georg Pabst, $^{\ddagger,@}$ and Thomas Piggot $^{\triangle,\nabla}$

†Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN,

Apartado Postal 14-740, 07000 México D.F., México

‡Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz,

Graz 8010, Austria

¶Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic

 $\S Institute\ of\ Biotechnology,\ University\ of\ Helsinki$

 $\|Department\ of\ Global\ Health,\ College\ of\ Public\ Health$

 $\perp University of South Florida$

#MPI

@BioTechMed-Graz, Graz 8010, Austria

 $\triangle School\ of\ Chemistry,\ University\ of\ Southamptaon,\ Southampton\ SO17\ 1BJ,\ United$ Kingdom

∇ Chemical Biological and Radiological Sciences, Defence Science and Technology Laboratory,

Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom

E-mail: matti.javanainen@helsinki.fi; samuli.ollila@helsinki.fi

Contents

S1	Simulation Details	S3
S2	Additional Results	S 6
	S2.1 Scattering Intensities	S6
	S2.2 Form Factors & Electron Density Profiles	S6
	S2.3 Order Parameters	S11
	S2.4 Dynamic Properties	S14
	S2.5 Finite-Size Effects	S16
	S2.6 Cholesterol Tilt	S18
Re	eferences	S19

S1 Simulation Details

The force field specific simulation parameters used for each force field are listed in Table S1. The parameter input files (.mdp) are provided in the Zenodo portal (links in the main text). For all simulations, we used an integration time step of 2 fs and the leap-frog integrator of GROMACS. The isothermal–isobaric (NPT) ensemble was used with a temperature of 298 K and a pressure of 1 bar. All simulations were 1 µs long, and trajectories were written every 1 ns. The P-LINCS constraint algorithm^{1,2} was used for the bonds noted in Table S1. NMRlipids databank³ ID numbers of simulations are given in table S2.

Table S1: Simulation parameters used for different force fields.

mu 6 u	CH	[ARMM36]	$\operatorname{Slipids}$	Lipid17	MacRog
Force switch 1.0–1.2 nm Force switch 1.0–1.2 nm Nosé–Hoover ^{6,7} I ps Lipids & water Parrinello–Rahman 9 pe (P) semi-isotropic ant (P) 5 ps Hity 4 5 ·10 ⁻⁵ 1 /bar Bonds with H	type ectrostatics	Verlet ⁴ PME	Verlet ⁴ PME	Verlet ⁴ PME	$\frac{\mathrm{Verlet}^4}{\mathrm{PME}}$
Force switch 1.0–1.2 nm out (T) $O(1)$ $O($		1.2 nm	1.4 nm	0.9 nm	1.0 nm
orrection $ \operatorname{Nosé-Hoover}^{6,7}$ $\operatorname{nt}(T)$ $1 \operatorname{ps}$ $\operatorname{Lipids} \& \operatorname{water}$ $\operatorname{pe}(P)$ $\operatorname{Semi-isotropic}$ $\operatorname{art}(P)$ $5 \operatorname{ps}$ Iity $4.5 \cdot 10^{-5} \ 1/\operatorname{bar}$ $\operatorname{Bonds with H}$ $\operatorname{CHARBMM CIII}$	Force sv	witch $1.0-1.2 \text{ nm}$	I	I	I
ant (T) In ps Lipids & water Parrinello-Rahman pe (P) semi-isotropic ant (P) Iity Bonds with H CHARBAM CIII	rrection	I	Energy & pressure ⁵	Energy & pressure ⁵	Energy & pressure ⁵
roups Lipids & water Parrinello-Rahman ⁹ ype (P) semi-isotropic ant (P) 5 ps ant (P) $4.5 \cdot 10^{-5} \text{ 1/bar}$ S Bonds with H lel TIPS3P ¹¹		sé–Hoover ^{6,7}	Stochastic rescaling ⁸	Nosé–Hoover ^{6,7}	Stochastic rescaling ⁸
ype (P) semi-isotropic sant (P) semi-isotropic 5 ps oility $4.5 \cdot 10^{-5} \text{ 1/bar}$ S Bonds with H lel TIPS3P 11		1 ps ids & water	0.5 ps Lipids & water	$\frac{1}{1}$ ps Lipids & water	Lipids & water
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		nello–Rahman ⁹	$\overline{\mathrm{Berendsen}}^{10}$	$Parrinello-Rahman^9$	$Parrinello-Rahman^9$
cant (P) 5 ps 4.5·10 ⁻⁵ 1/bar s Bonds with H lel TIPS3P ¹¹		mi-isotropic	semi-isotropic	semi-isotropic	semi-isotropic
pility $4.5 \cdot 10^{-5} \text{ 1/bar}$ S Bonds with H TIPS3P ¹¹ Let The ADMA CIII	t(P)	$_{\rm 5}$	10 ps	2 bs	4 ps
Bonds with H TIPS3P ¹¹ CHARMA CIII		$\cdot 10^{-5} \text{ 1/bar}$	$4.5 \cdot 10^{-5} \text{ 1/bar}$	$4.5 \cdot 10^{-5} \text{ 1/bar}$	$4.5 \cdot 10^{-5} \text{ 1/bar}$
$\begin{array}{ccc} & & \text{TIPS3P}^{11} \\ & & \text{CHABMM CIII} \end{array}$	Bo	nds with H	All bonds	Bonds with H	All bonds
		$\Gamma IPS3P^{11}$	$TIP3P^{12}$	$\mathrm{TIP}3\mathrm{P}^{12}$	$\mathrm{TIP3P^{12}}$
	CHT	CHARMM-GUI	CHARMM-GUI	CHARMM-GUI	Refs. 13 & 14
Parameter source CHARMM-GUI S)	ARMM-GUI	Slipids website	CHARMM-GUI	Refs. 13 & 14

Table S2: NMRlipids databank IDs of performed simulations.

		$\operatorname{Slipids}$		
CHARMM36		System	ID)
System	ID	Slipids_POPC_CHOL20_	L 691	— 1
1024POPC_128CHOL_57600SOL_298K	426	Slipids_POPC_CHOL47_		2
64POPC_3200SOL_298K	546	Slipids_POPC_CHOL29_	S 693	3
1024POPC_896CHOL_96000SOL_298K	543	$Slipids_POPC_CHOL20_$	S = 692	2
64POPC_40CHOL_5200SOL_298K	620	$Slipids_POPC_CHOL20_$	M 687	7
64POPC_56CHOL_6000SOL_298K	91	$Slipids_POPC_CHOL11_$	S = 672	2
1024POPC_416CHOL_72000SOL_298K	412	Slipids_POPC_CHOL11_	M 681	1
1024POPC_256CHOL_64000SOL_298K	88	$Slipids_POPC_L$	696	6
256POPC_64CHOL_16000SOL_298K	72	$Slipids_POPC_CHOL38_$	S 661	1
64POPC_8CHOL_3600SOL_298K	109	$Slipids_POPC_M$	708	8
256POPC_104CHOL_18000SOL_298K		Slipids_POPC_CHOL38_	L 670	0
64POPC_16CHOL_4000SOL_298K	525	$Slipids_POPC_S$	664	
64POPC_26CHOL_4500SOL_298K	393	$Slipids_POPC_CHOL29_$		
1024POPC_640CHOL_83200SOL_298K		Slipids_POPC_CHOL29_		
256POPC_160CHOL_20800SOL_298K		Slipids_POPC_CHOL11_		
256POPC_224CHOL_24000SOL_298K		Slipids_POPC_CHOL38_		
256POPC_32CHOL_14400SOL_298K	119	Slipids_POPC_CHOL47_		
		Slipids_POPC_CHOL47_	L 682	2
Lipid17		MacRog		
System ID		System	ID	
Lipid17_POPC_CHOL29_M 700	Ma	ucRog_POPC_CHOL38_S 7	716	
Lipid17_POPC_CHOL47_L 717	Ma	cRog_POPC_CHOL29_L 7	705	
Lipid17_POPC_CHOL11_L 663	Ma	cRog_POPC_CHOL47_M 6	699	
Lipid17_POPC_CHOL29_L 683	Ma	acRog_POPC_CHOL47_L 6	571	
Lipid17_POPC_CHOL20_S 662	Ma	acRog_POPC_CHOL20_L 6	577	
Lipid17_POPC_CHOL47_M 714		MacRog_POPC_S 6	574	

System	11)	Dystelli	11)
Lipid17_POPC_CHOL29_M	700	MacRog_POPC_CHOL38_S	716
Lipid17_POPC_CHOL47_L	717	$MacRog_POPC_CHOL29_L$	705
Lipid17_POPC_CHOL11_L	663	MacRog_POPC_CHOL47_M	699
Lipid17_POPC_CHOL29_L	683	$MacRog_POPC_CHOL47_L$	671
Lipid17_POPC_CHOL20_S	662	$MacRog_POPC_CHOL20_L$	677
Lipid17_POPC_CHOL47_M	714	$MacRog_POPC_S$	674
Lipid17_POPC_CHOL38_S	688	$MacRog_POPC_CHOL20_M$	706
Lipid17_POPC_L	684	$MacRog_POPC_CHOL38_L$	698
Lipid17_POPC_S	715	$MacRog_POPC_CHOL38_M$	679
Lipid17_POPC_CHOL20_M	666	$MacRog_POPC_M$	675
Lipid17_POPC_M	657	${\it MacRog_POPC_L}$	658
Lipid17_POPC_CHOL29_S	686	$MacRog_POPC_CHOL29_M$	655
Lipid17_POPC_CHOL38_L	673	${\it MacRog_POPC_CHOL11_L}$	660
Lipid17_POPC_CHOL47_S	707	$MacRog_POPC_CHOL11_S$	665
Lipid17_POPC_CHOL11_S	680	$MacRog_POPC_CHOL29_S$	690
Lipid17_POPC_CHOL20_L	667	$MacRog_POPC_CHOL11_M$	695
Lipid17_POPC_CHOL38_M	694	$MacRog_POPC_CHOL47_S$	704
Lipid17_POPC_CHOL11_M	689	${\it MacRog_POPC_CHOL20_S}$	702

- S2 Additional Results
- S2.1 Scattering Intensities
- S2.2 Form Factors & Electron Density Profiles

Figure S1: Scattering intensities from X-ray scattering experiments with various concentrations of cholesterol. More data are shown in the next figure.

Figure S2: Scattering intensities from X-ray scattering experiments with various concentrations of cholesterol. More data are shown in the previous figure.

Figure S3: Scattering intensities as a function of scattering vector from experiments and simulations. Each of the profiles is shifted vertically with respect to the previous one, by 1 for the experimental profiles and by 50 for the computational ones. The minima are marked by filled circles to guide the eye.

Figure S4: Effect of CHOL on the location of the first two minima in the form factor. The minima are extracted from the form factors interpolated to all CHOL concentrations (Fig. S3) from experiment and simulation with the findpeaks function in Matlab.

Figure S5: **Electron density profiles.** Each of the profiles is shifted vertically with respect to the previous one by 100 units.

S2.3 Order Parameters

Figure S6: Effect of cholesterol on the acyl chain order parameters of the POPC sn-1 (palmitate) chain. The legend at the top corresponds to all simulations, and the one at the bottom to the experiments.

Figure S7: Effect of cholesterol on the acyl chain order parameters of the POPC sn-2 (oleate) chain. The legend at the top corresponds to all simulations, and the one at the bottom to the experiments. Since the order parameters measured for the two hydrogens bound to the C2 carbon differ, they are both shown in the plots.

Figure S8: The deviation of POPC head group parameters from experimental values as a function of CHOL concentration.

S2.4 Dynamic Properties

Figure S9: Dependence of lateral diffusion coefficients on simulation box size. The values calculated for the lipid centres of mass with gmx msd after eliminating leaflet drift. The values for the three system sizes are shown as markers together with fits of Eq. (??). The values extrapolated to infinite system sizes are also shown in the separate column.

Figure S10: Dependence of lateral diffusion coefficients on cholesterol concentration. Data are shown for all system sizes; small (S), medium (M), and large (L). The values extrapolated to infinity are shown as well (∞). Experimental measured at two hydration levels, 30 m-% and 55-% of water. ^{15,16}

S2.5 Finite-Size Effects

Figure S11: **Dependence of area per lipid on simulation box size.** Area per lipid is calculated by dividing the membrane area by the number of lipids in one leaflet. Error bars show standard error extracted using block averaging in gmx analyze.

Figure S12: Effect of system size on the density profiles. Membrane undulations are larger in the larger systems, which leads to the smearing of the electron density profiles. Here, data are shown for CHARMM36 in the large (1024 POPC in total), medium (256 POPC in total), or small (64 POPC in total) systems. The experimental electron density profile is shown for comparison.

S2.6 Cholesterol Tilt

Figure S13: Effect of cholesterol concentration on the tilt of the cholesterol molecules. The tilt is defined as the angle between the vector connecting the C3 and C17 carbons at the two ends of the rigid ring structure of cholesterol. The hydroxyl group is bound to C3 and the hydrocarbon chain to C17. The tilt distributions were gathered from the two leaflets, fitted with a Gamma distribution, and the mean values and standard deviations were extracted and shown here as the value and error estimate, respectively. The cholesterol concentration was identical between the simulations, but the points are horizontally slightly shifted for clarity.

References

- (1) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular dynamics simulations. *J. Comput. Chem.* **1997**, *18*, 1463–1472.
- (2) Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. *J. Chem. Theory Comput.* **2008**, *4*, 116–122.
- (3) Kiirikki, A. M.; Antila, H. S.; Bort, L.; Buslaev, P.; Favela, F.; Ferreira, T. M.; Fuchs, P. F.; Garcia-Fandino, R.; Gushchin, I.; Kav, B. et al. NMRlipids Databank: Making data-driven analyses of membrane properties accessible for all. 2023; https://doi.org/10.26434/chemrxiv-2023-jrpwm.
- (4) Páll, S.; Hess, B. A flexible algorithm for calculating pair interactions on SIMD architectures. *Computer Physics Communications* **2013**, *184*, 2641–2650.
- (5) Shirts, M. R.; Mobley, D. L.; Chodera, J. D.; Pande, V. S. Accurate and efficient corrections for missing dispersion interactions in molecular simulations. *The journal of physical chemistry B* **2007**, *111*, 13052–13063.
- (6) Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.
- (7) Nose, S. A molecular dynamics method for simulations in the canonical ensemble. *Mol. Phys.* **1984**, *52*, 255–268.
- (8) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. *J. Chem. Phys.* **2007**, *126*.
- (9) Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. *Journal of Applied physics* **1981**, *52*, 7182–7190.

- (10) Berendsen, H. J.; Postma, J. v.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. *The Journal of chemical physics* **1984**, *81*, 3684–3690.
- (11) Durell, S. R.; Brooks, B. R.; Ben-Naim, A. Solvent-induced forces between two hydrophilic groups. *The Journal of Physical Chemistry* **1994**, *98*, 2198–2202.
- (12) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.
- (13) Kulig, W.; Pasenkiewicz-Gierula, M.; Róg, T. Cis and trans unsaturated phosphatidyl-choline bilayers: a molecular dynamics simulation study. *Chemistry and physics of lipids* **2016**, 195, 12–20.
- (14) Milan Rodriguez, P.; Fuchs, P. F. MacRog pure POPC MD simulation (300 K 500ns 1 bar). 2020; https://doi.org/10.5281/zenodo.3741793.
- (15) Filippov, A.; Orädd, G.; Lindblom, G. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. *Biophysical journal* **2003**, *84*, 3079–3086.
- (16) Filippov, A.; Orädd, G.; Lindblom, G. Influence of cholesterol and water content on phospholipid lateral diffusion in bilayers. *Langmuir* **2003**, *19*, 6397–6400.