homework

May 17, 2020

```
[164]: import numpy as np
    from scipy import signal
    import statsmodels.api
    import matplotlib.pyplot as plt
    from statsmodels.tsa.arima_model import ARMA
    import statsmodels.graphics.tsaplots as sgt
    from scipy.stats.distributions import chi2
    import pandas as pd

[162]: def llr_test2(L1, L2, DF=1):
        LR = 2*(L2-L1)
        return chi2.sf(LR, DF).round(3)
```

0.1 Write a function that generates ARMA(p,q) time series

```
[170]: def generate ARMA(c, ar, ma, nsample, x0):
           """ Generates ARMA time series
           Args:
               c (float) - constant
               ar (list) - list of parameters for AR model
               ma (list) - list of parameters for MA model
               nsamples (int) - numeber of points to generate including x0
               x0 (float) - initial point for time series.
           Returns
               x (list) - list of generated points
           np.random.seed(44)
           noise = np.random.normal(size=nsample)
           x = np.zeros(nsample)
           x[0] = c + x0 + noise[0]
           for i in range(1, nsample):
               loc_ar = ar[-i:]
               loc_ma = ma[-i:]
               reg = np.matmul(loc_ar, x[i-len(loc_ar):i])
               avrg = np.matmul(loc_ma, noise[i-len(loc_ma):i])
               x[i] = c + reg + avrg + noise[i]
```

```
return x
```

0.2 Generate several time series with different values of model's parameters. Plot ACF and PACF. Analyze the plots.

```
[175]: \# ARMA(2,2) \mod el
       ar1 = np.array([-.75, .25])
       ma1 = np.array([.65, .35])
       y1 = generate_ARMA(0.1, ar1, ma1, 250, 0)
       # ARMA(3,4) model
       ar2 = np.array([0.1, -.35, .9])
       ma2 = np.array([0.13, 0.22, .25, -.35])
       y2 = generate_ARMA(0.1, ar2, ma2, 250, 0)
       \# AR(1) \mod el
       ar3 = np.array([0.4])
       ma3 = np.array([])
       y3 = generate_ARMA(0.4, ar3, ma3, 250, 0)
       df = pd.DataFrame({"ARMA(2,2)":y1, "ARMA(3,4)": y2, "ARMA(1,0)": y3})
       df['ARMA(2,2)'].plot()
       plt.title("ARMA(2,2)")
       plt.show()
       df['ARMA(3,4)'].plot()
       plt.title("ARMA(3,4)")
       plt.show()
       df['ARMA(1,0)'].plot()
       plt.title("ARMA(1,0)")
       plt.show()
```



```
[177]: sgt.plot_acf(df['ARMA(2,2)'], lags=40, zero=False)
   plt.title("ACF for ARMA(2,2)", size=20)
   plt.show()
   sgt.plot_pacf(df['ARMA(2,2)'], lags=40, zero=False);
   plt.title("PACF for ARMA(2,2)", size=20)
   plt.show()
```



```
[178]: sgt.plot_acf(df['ARMA(3,4)'], lags=40, zero=False)
   plt.title("ACF for ARMA(3,4)", size=20)
   plt.show()
   sgt.plot_pacf(df['ARMA(3,4)'], lags=40, zero=False);
   plt.title("PACF for ARMA(3,4)", size=20)
   plt.show()
```



```
[179]: sgt.plot_acf(df['ARMA(1,0)'], lags=40, zero=False)
   plt.title("ACF for ARMA(1,0)", size=20)
   plt.show()
   sgt.plot_pacf(df['ARMA(1,0)'], lags=40, zero=False);
   plt.title("PACF for ARMA(1,0)", size=20)
   plt.show()
```


For AR models we should use the PACF graph to determine our best guess for the order of AR model.

For MA models we can use the number of nonzero coefficient from the ACF to approximate the order of MA model.

On the plots for ARMA(2,2) we see that we should look for order 5 for MA model and order $\approx 3,4$ for AR. However, this plots are only the guide for the values to check. They are not the actuall values. We need to more analyse to actually find the best values.

On the plots for ARMA(3,4) we see that ACF takes 4 nonzero values this means we should look for MA model of oreder 4, and that match our data. On the plot for PACF we see 3 non zero values, then we should look for order 3 for AR model, and this is also correct for the generated data.

On the plots for ARMA(1,0) we see that only one value is significant sot he order of model should be around 1.

0.3 Explain the process of fittingARMA(p,q)model to the generated data.

Let's create the model of the same order as the generated data and compare it with different model, we will do this for data generated for ARMA(2,2)

```
[181]: model_AR2_MA2 = ARMA(df['ARMA(2,2)'], (2, 2)).fit()
model_AR2_MA2.summary()
```

[181]: <class 'statsmodels.iolib.summary.Summary'>

ARMA	Model	Results
------	-------	---------

Dep. Variable:	ARMA(2,2)	No. Observations:	250
Model:	ARMA(2, 2)	Log Likelihood	-359.632
Method:	css-mle	S.D. of innovations	1.016
Date:	Sun, 17 May 2020	AIC	731.264
Time:	20:37:06	BIC	752.392
Sample:	0	HQIC	739.767

==========	=======	=======	=======	=======	========	
===						
	coef	std err	Z	P> z	[0.025	
0.975]						
const	0.0096	0.084	0.115	0.909	-0.155	
0.174						
ar.L1.ARMA(2,2)	0.3123	0.062	5.049	0.000	0.191	
0.434	0.0120	0.002	0.010	0.000	0.101	
	0.0004	0.045	45 500			
ar.L2.ARMA(2,2)	-0.8061	0.045	-17.780	0.000	-0.895	
-0.717						
ma.L1.ARMA(2,2)	0.2876	0.074	3.889	0.000	0.143	
0.433						
	0.0005	0 074	0.075	0.000	0 546	
$\mathtt{ma.L2.ARMA}(2,2)$	0.6605	0.074	8.975	0.000	0.516	

0.805

Roo	ts
-----	----

	Real	Imaginary	Modulus	Frequency
AR.1	0.1937	-1.0968j	1.1138	-0.2222
AR.2	0.1937	+1.0968j	1.1138	0.2222
MA.1	-0.2177	-1.2111j	1.2305	-0.2783
MA.2	-0.2177	+1.2111j	1.2305	0.2783

" " "

We see that all 4 parameters are statistically significant, and the values of them are really close the the ones we provided for generation. Note that the order of parameter is inverted. Now let's create smaller model - ARMA(1,2) and compare it.

```
[182]: model_AR1_MA2 = ARMA(df['ARMA(2,2)'], (1, 2)).fit()
model_AR1_MA2.summary()
```

[182]: <class 'statsmodels.iolib.summary.Summary'>

ARMA Model Results						
Dep. Variable: Model: Method: Date: Time: Sample:	AI		Log Likelihood S.D. of innovations AIC BIC		250 -401.781 1.199 813.561 831.169 820.648	
0.975]	coef	std err	Z	P> z	[0.025	
const 0.039 ar.L1.ARMA(2,2) 0.908 ma.L1.ARMA(2,2) -0.324 ma.L2.ARMA(2,2) -0.491	0.0202 0.8350 -0.4180 -0.5820	0.009 0.037 0.048 0.047		0.032 0.000 0.000 0.000	0.002 0.762 -0.512 -0.673	
==========	Real	Imagina	======= ary	Modulus	Frequency	

AR.1	1.1976	+0.0000j	1.1976	0.0000
MA.1	1.0000	+0.0000j	1.0000	0.0000
MA.2	-1.7182	+0.0000j	1.7182	0.5000
11 11 11				

```
[183]: llr_test2(model_AR1_MA2.llf, model_AR2_MA2.llf, DF=1)
```

[183]: 0.0

We see that ARMA(2,2) is better for this data, the loglikelihood value is greater and the llr test passed for the higher order model. Let's see how about more complex model then (2,2).

```
[184]: model_AR3_MA3 = ARMA(df['ARMA(2,2)'], (3, 3)).fit()
model_AR3_MA3.summary()
```

[184]: <class 'statsmodels.iolib.summary.Summary'>

ARMA Model Results

Dep. Variable: Model: Method: Date: Time: Sample:	AI	RMA(3, 3)		ood	250 -358.762 1.012 733.523 761.695 744.861
0.975]	coef	std err	z	P> z	[0.025
1.486	0.0102 0.5207	0.075 0.492	0.136 1.057	0.891	-0.137 -0.444
ar.L2.ARMA(2,2) -0.505 ar.L3.ARMA(2,2) 0.945	-0.8377 0.1476	0.170	-4.933 0.363	0.000	-1.171 -0.650
ma.L1.ARMA(2,2) 0.981	0.0311	0.485	0.064	0.949	-0.919
ma.L2.ARMA(2,2) 0.835 ma.L3.ARMA(2,2)	0.5529	0.144	3.841	0.000	0.271 -0.855
ma.L3.ARMA(2,2)	-0.2104	0.325	-0.072	0.501	-0.000

0.418 Roots

=======	Real Imaginary		Modulus	Frequency
AR.1	0.2131	-1.1159j	1.1361	-0.2200
AR.2	0.2131	+1.1159j	1.1361	0.2200
AR.3	5.2484	-0.0000j	5.2484	-0.0000
MA.1	-0.2669	-1.1927j	1.2222	-0.2850
MA.2	-0.2669	+1.1927j	1.2222	0.2850
MA.3	3.0656	-0.0000j	3.0656	-0.0000

[185]: llr_test2(model_AR2_MA2.llf, model_AR3_MA3.llf, DF=2)

[185]: 0.419

11 11 11

As we see in the ARMA model (3,3) the last values for the parameters are not statistically significant. And the preformed test, show that the (3,3) model isn't better then the (2,2). So far the best model is (2,2) - it is the same model we used for generating the data. To be more sure we could create matrix and compare more complex models.