

TEE Boot Procedure with Crypto-accelerators in RISC-V Processors

Authors: Ckristian Duran, Trong-Thuc Hoang, Akira Tsukamoto, Kuniyasu Suzaki, and Cong-Kha Pham

Outline

- Motivation
- Hardware Structure for Trusted Execution Environments
- Boot Procedure with Crypto-accelerators
- Implementation Results
- Conclusions

Outline

- Motivation
- Hardware Structure for Trusted Execution Environments
- Boot Procedure with Crypto-accelerators
- Implementation Results
- Conclusions

The bootloader extracts Linux and executes it in **Supervisor-Mode**

Non-Protected Applications

Malicious applications can access and execute code arbitrarily. Some attacks are:

- Cache manipulation
- Privilege mode escalation
- Controlled power glitches

U-mode

Making a Secure Environment

Linux only executes the application if the signature is authenticated.

Making a Secure Environment

0x00000000 0x00000000 Debug PID 1 Once the signature **Execution** App 1 verification is performed, Memory Devices the *attack* can rewrite the Sign instructions of any application to execute App 2 unsigned code. Memory Sign PID 2 Unsigned **Execution** Linux **Execution** Code RAM **OxFFFFFFF** 0xFFFFFFF RISC-V Processor RISC-V Processor S-mode **U-mode**

Making the Trusted Execution Environment

RISC-V Lack of Crypto-Hardware

RISC-V Lack of Crypto-Hardware

Outline

- Motivation
- Hardware Structure for Trusted Execution Environment
- Boot Procedure with Crypto-accelerators
- Implementation Results
- Conclusions

SoC Architecture

Outline

- Motivation
- Hardware Structure for Trusted Execution Environments
- Boot Procedure with Crypto-accelerators
- Implementation Results
- Conclusions

SoC Memory Map

Outline

- Motivation
- Hardware Structure for Trusted Execution Environments
- Boot Procedure with Crypto-accelerators
- Implementation Results
- Conclusions

Implementation Results

 Table 1: Synthesis result on Stratix-IV GX Altera FPGA.

	SHA-3	RocketTile
ALUTs	8108	24332
FFs	2790	15325
RAM Bits	0	17680
DSP	0	32
Total	10898	57369
Logic Utilization	3.4%	12.4%
RAM Utilization	0%	1%
DSP Utilization	0%	2.4%

Implementation Results

Figure 1: Comparison between software and hardware with different bootloader sizes.

Table 2: Execution results for Ed25519 task.

2MB Bootloader	Software	HW SHA-3 with SW Ed25519
Ed25519 keypair (ms)	109.5	93.4
Ed25519 signature (ms)	231019	82.6

Outline

- Motivation
- Hardware Structure for Trusted Execution Environments
- Boot Procedure with Crypto-accelerators
- Implementation Results
- Conclusions

Conclusions

- We presented a system platform for trusted execution environments (TEEs) featuring the SHA-3 accelerator.
- ISC-V core with RV64IMAFDC ISA using the Rocket chip generator.
- The SHA-3 accelerator hashes data using a 64-bit register as input.
- The software authenticates the bootloader and utilizes the accelerators.
- The execution time drops significantly compared to software.

Questions?