

Espaços Vetoriais I

Espaços

Vetoriais I

- \circ Espaço \mathbb{R}^n
- Espaços Vetoriais
- Subespaços Vetoriais

Espaço \mathbb{R}^n

Definição

O espaço \mathbb{R}^n é o conjunto das **n-uplas** ordenadas de números reais.

Exemplos:

$$\checkmark$$
 (1,2,3) $\in \mathbb{R}^3$

$$\checkmark\left(\frac{5}{6},\frac{1}{2},\frac{1}{3},7\right) \in \mathbb{R}^4$$

$$\checkmark (1,2) \neq (2,1) \in \mathbb{R}^2$$

$$\checkmark (x_1, x_2, x_3, \dots, x_n) \in \mathbb{R}^n$$

Adição

Sejam $u=(u_1,u_2,u_3,...,u_n)$ e $v=(v_1,v,v_3,...,v_n)$, elementos do \mathbb{R}^n , temos:

$$u + v = (u_1, u_2, u_3, ..., u_n) + (v_1, v_2, v_3, ..., v_n)$$

$$u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3, ..., u_n + v_n)$$

Exemplos:

$$✓$$
 u = (2,3) e v = (-1,4), temos u + v = (2,3) + (-1,4) = (2 + (-1),3 + 4) = (1,7).

$$\checkmark u = (\frac{1}{2}, \frac{3}{4}, \frac{2}{5}) e v = (\frac{2}{3}, \frac{1}{4}, \frac{1}{7}), \text{ temos } u + v = (\frac{1}{2}, \frac{3}{4}, \frac{2}{5}) + (\frac{2}{3}, \frac{1}{4}, \frac{1}{7}) = (\frac{7}{6}, 1, \frac{19}{35}).$$

Propriedades da Adição em \mathbb{R}^n : Sejam $u, v \in \mathbb{R}^n$.

- \square Comutatividade: u + v = v + u.
- Associatividade: (u + v) + w = u + (v + w).
- Elemento neutro: 2 0 tal que u + 0 = 0 + u = u.
- Inverso aditivo: dado u, \mathbb{Z} $\mathbb{Z}u$ tal que $u + (\mathbb{Z}u) = 0$.

Multiplicação por Escalar

Consideremos $u = (u_1, u_2, ..., u_n) \in \mathbb{R}^n \in \alpha \in \mathbb{R}$.

$$\alpha u = \alpha(u_1, u_2, ..., u_n) = (\alpha u_1, \alpha u_2, ..., \alpha u_n)$$

Exemplos:

$$\checkmark u = (2,3) \ e \ \alpha = 5$$
, temos $\alpha u = 5 \cdot (2,3) = (5 \cdot 2,5 \cdot 3) = (10,15)$.

$$\sqrt{u} = \left(\frac{1}{2}, \frac{3}{4}, \frac{2}{5}\right) e \quad \alpha = -10 , \text{ temos } \alpha u = -10 \cdot \left(\frac{1}{2}, \frac{3}{4}, \frac{2}{5}\right) = \left(-10 \cdot \frac{1}{2}, -10 \cdot \frac{3}{4}, -10 \cdot \frac{2}{5}\right) = \left(-5, \frac{-15}{2}, -4\right).$$

Propriedades da Multiplicação por escalar em \mathbb{R}^n : Sejam $u \in \mathbb{R}^n$ e $\alpha, \beta \in \mathbb{R}$.

- \Box (??) u = ?(?u).
- \square Elemento neutro: 1u = u, $\square u$.

Propriedades Distributivas da Multiplicação de \mathbb{R}^n : Sejam $u, v \in \mathbb{R}^n$ e $\alpha, \beta \in \mathbb{R}$.

ESPAÇOS VETORIAIS

Espaço Vetorial

Definição:

Conjunto (de vetores) no qual estão definidos uma soma vetorial e uma multiplicação por escalar.

Escalar é um elemento de um conjunto de números no qual estão bem definidas as operações de soma, subtração, multiplicação e divisão. Em nosso caso, como já foi dito, o escalar sempre será um número real.

Espaço Vetorial

Exemplos:

- \square \mathbb{R}^n
- \square Polinômios de grau menor ou igual a n: $\sum_{i=0}^{n} (a_i x^i) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$
- \checkmark Adição de polinômios: $\left[\sum_{i=0}^{n} (a_i x^i)\right] + \left[\sum_{i=0}^{n} (b_i x^i)\right] = \sum_{i=0}^{n} (a_i + b_i) x^i$.
- ✓ Multiplicação de um polinômio por um escalar: $\alpha[\sum_{i=0}^{n} (a_i x^i)] = \sum_{i=0}^{n} (\alpha a_i) x^i$.
- ✓ Observação: $0(x) = \sum_{i=0}^{n} 0x^{i}$.

SUBESPAÇOS VETORIAIS

Subespaço Vetorial

Definição:

O subconjunto de um espaço vetorial que também é espaço vetorial. H 🛚 V é subespaço vetorial se:

- □ 0 ? H;
- ☐ H é fechado para a soma vetorial;
- H é fechado para a multiplicação por escalar.

Subespaço Vetorial

Exemplos:

- \square $V \subset V$ é subespaço vetorial de V.
- \square {0} \subset *V* é subespaço vetorial de *V*.

Os subespaços vetoriais acima são denominados subespaços vetoriais triviais.

Seja H = {v ? V ? v = ?u, ? ? IR}. 0 ? H.

$$\mathbf{v}_1 = \alpha_1 \mathbf{u}, \mathbf{v}_2 = \alpha_2 \mathbf{u} \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 = (\alpha_1 + \alpha_2) \mathbf{u} \in \mathbf{H}.$$

$$v = \alpha u, \beta \in IR \implies \beta v = (\beta \alpha)u \in H.$$

Seja H = $\{v ? V ? v = ?u, ? ? IR\}$. 0 ? H.

$$\mathbf{v}_1 = \alpha_1 \mathbf{u}, \mathbf{v}_2 = \alpha_2 \mathbf{u} \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 = (\alpha_1 + \alpha_2) \mathbf{u} \in \mathbf{H}.$$

$$v = \alpha u, \beta \in IR \implies \beta v = (\beta \alpha)u \in H.$$

Seja H = $\{v ? V ? v = ?u, ? ? IR\}$. 0 ? H.

$$\mathbf{v}_1 = \alpha_1 \mathbf{u}, \mathbf{v}_2 = \alpha_2 \mathbf{u} \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 = (\alpha_1 + \alpha_2) \mathbf{u} \in \mathbf{H}.$$

$$v = \alpha u, \beta \in IR \implies \beta v = (\beta \alpha)u \in H.$$

Seja H = {v ? V ? v = ?u, ? ? IR}. 0 ? H.

$$\mathbf{v}_1 = \alpha_1 \mathbf{u}, \mathbf{v}_2 = \alpha_2 \mathbf{u} \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 = (\alpha_1 + \alpha_2) \mathbf{u} \in \mathbf{H}.$$

$$v = \alpha u, \beta \in IR \implies \beta v = (\beta \alpha)u \in H.$$

0 PH.

Sejam

$$(x_1, y_1, 0), (x_2, y_2, 0) \in H.$$

$$(x, y, 0) + (x_2, y_2, 0) = (x_1 + x_2, y_1 + y_2, 0) \in H.$$
Então
$$(x, y, 0) \in H \ e \ \alpha \in IR.$$

$$\alpha(x,y,0) = (\alpha x, \alpha y, 0) \in H.$$

✓ 0 ② H.

Sejam

$$(x_1, y_1, 0), (x_2, y_2, 0) \in H.$$

$$\alpha(x,y,0) = (\alpha x, \alpha y, 0) \in H.$$

✓ 0 ② H.

✓ Sejam

$$(x_1, y_1, 0), (x_2, y_2, 0) \in H.$$

$$(x_1, y_1, 0) + (x_2, y_2, 0) = (x_1 + x_2, y_1 + y_2, 0) \in H.$$
Então
$$(x, y, 0) \in H \ e \ \alpha \in IR.$$

$$\alpha(x,y,0) = (\alpha x, \alpha y, 0) \in H.$$

✓ 0 ② H.

✓ Sejam

$$(x_1, y_1, 0), (x_2, y_2, 0) \in H.$$

$$(x_1, y_1, 0) + (x_2, y_2, 0) = (x_1 + x_2, y_1 + y_2, 0) \in H.$$
Então
$$(x, y, 0) \in H \ e \ \alpha \in IR.$$

$$\alpha(x,y,0) = (\alpha x, \alpha y, 0) \in H.$$

(0,0,0) \mathbb{P} \mathbb{H} .

Sejam

Então

$$(x_1, y_1, 1), (x_2, y_2, 1) \in H.$$

$$(x_1, y_1, 1) + (x_2, y_2, 1) = (x_1 + x_2, y_1 + y_2, 2) \notin H.$$

$$(x, y, 1) \in H \ e \ \alpha \in IR.$$

$$\alpha(x, y, 1) = (\alpha x, \alpha y, \alpha) \notin H$$
, se $\alpha \neq 1$.

Subespaço Vetorial – contraexemplo, x, y PIR PIR PIR I IR 3.

⁽²⁾ (0,0,0) [□] H.

Sejam

Então

$$(x_1, y_1, 1), (x_2, y_2, 1) \in H.$$

$$(x_1, y_1, 1) + (x_2, y_2, 1) = (x_1 + x_2, y_1 + y_2, 2) \notin H.$$

$$(x, y, 1) \in H \ e \ \alpha \in IR.$$

$$\alpha(x,y,1) = (\alpha x, \alpha y, \alpha) \notin H$$
, se $\alpha \neq 1$.

(0,0,0) PH.

🙁 Sejam

Então

$$(x_1, y_1, 1), (x_2, y_2, 1) \in H.$$

$$(x_1, y_1, 1) + (x_2, y_2, 1) = (x_1 + x_2, y_1 + y_2, 2) \notin H.$$

$$(x, y, 1) \in H \ e \ \alpha \in IR.$$

 $\alpha(x, y, 1) = (\alpha x, \alpha y, \alpha) \notin H, \text{ se } \alpha \neq 1.$

(0,0,0) \mathbb{P} H.

🙁 Sejam

Então

$$(x_1, y_1, 1), (x_2, y_2, 1) \in H.$$

$$(x_1, y_1, 1) + (x_2, y_2, 1) = (x_1 + x_2, y_1 + y_2, 2) \notin H.$$

$$(x, y, 1) \in H \ e \ \alpha \in IR.$$

$$\alpha(x,y,1) = (\alpha x, \alpha y, \alpha) \notin H$$
, se $\alpha \neq 1$.