```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.linear_model import LogisticRegression
import warnings
warnings.filterwarnings("ignore")
from \ sklearn.preprocessing \ import \ StandardScaler, \ OneHotEncoder
from sklearn.metrics import accuracy_score, precision_score,roc_auc_score,confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
data=pd.read csv("titanic train.csv")
df=data.copy()
```

EDA

df.head()

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
	4										•

df.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype -----0 PassengerId 891 non-null int64 Survived 891 non-null int64 1 891 non-null 2 Pclass int64 3 891 non-null object Name 4 Sex 891 non-null object 5 Age 714 non-null float64 SibSp 891 non-null int64 891 non-null int64 Ticket 891 non-null object Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null obiect dtypes: float64(2), int64(5), object(5)

df.isnull().sum()

→ PassengerId Survived Pclass Name 0 Sex 0 177 Age SibSp 0 Parch a Ticket 0 Fare 0 Cabin 687 Embarked dtype: int64

memory usage: 83.7+ KB

df.shape

```
→ (891, 12)
```

df.describe()

_ →		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fá
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.0000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.2042
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.6934
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.0000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.9104
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4542
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.0000
	may	891 000000	1 000000	3 000000	80 000000	8 000000	6 000000	512 3290

Data Visualization

1. Visualization with Seaborn

```
plt.figure(figsize=(15, 10))
# 1. Sex by Survived
plt.subplot(3, 3, 1)
sns.countplot(x='Sex', hue='Survived', data=df)
plt.title('Survival Count by Sex')
# 2. Pclass by Survived
plt.subplot(3, 3, 2)
sns.countplot(x='Pclass', hue='Survived', data=df)
plt.title('Survival Count by Pclass')
# 3. Age Distribution
plt.subplot(3, 3, 3)
sns.histplot(df['Age'], bins=20, kde=True)
plt.title('Distribution of Age')
# 4. Pclass by Fare
plt.subplot(3, 3, 4)
sns.boxplot(x='Pclass', y='Fare', data=df, hue='Survived')
plt.title('Fare Distribution by Pclass')
# 5. SibSp by Survived
plt.subplot(3, 3, 5)
sns.barplot(x='SibSp', y='Survived', data=df)
plt.title('Survival Rate by SibSp')
# 6. Parch by Survived
plt.subplot(3, 3, 6)
sns.barplot(x='Parch', y='Survived', data=df)
plt.title('Survival Rate by Parch')
# 7. Heatmap
plt.subplot(3, 3, 7)
corr_matrix = df[['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Heat Map')
# 8. Sex
plt.subplot(3, 3, 8)
sns.countplot(x='Sex', data=df)
plt.title('Count of Passengers by Sex')
# 9. Pclass
plt.subplot(3, 3, 9)
sns.countplot(x='Pclass', data=df)
plt.title('Count of Passengers by Pclass')
plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(8, 8))
# 1. Sex by Fare
plt.subplot(4, 1, 1)
sns.swarmplot(x='Sex', y='Fare', data=df, hue='Survived')
plt.title('Swarm Plot of Fare by Sex')
# 2. Sex by Survived
plt.subplot(4, 1, 2)
sns.countplot(x='Sex', hue='Survived', data=df, palette='Set1')
plt.title('Survival Count by Sex')
plt.xlabel('Sex')
plt.ylabel('Count')
plt.title('Count Plot of Sex by Survived')
# 3. Pclass by Age
plt.subplot(4, 1, 3)
sns.pointplot(x='Pclass', y='Age', data=df, hue='Survived')
plt.title('Point Plot of Age by Pclass')
# 4. Pclass by Age
plt.subplot(4, 1, 4)
sns.violinplot(x='Pclass', y='Age', data=df, hue='Survived', split=True)
plt.title('Violin Plot of Age by Pclass')
plt.show()
```


2. Visualization with matplotlib

```
survived_count = df['Survived'].value_counts()

# Defining Categories
categories = ['Not Survived', 'Survived']
values = [survived_count[0], survived_count[1]]

# Creating Bar plot
plt.bar(categories, values)

plt.xlabel('Survival')
plt.ylabel('Count')
plt.title('Survival Count in Titanic Dataset')
plt.show()

print(f"Number of who did not survive: {survived_count[0]}")
print(f"Number of survived: {survived_count[1]}")
```


₹

Survival

Number of who did not survive: 549 Number of survived: 342

sex_count = df['Sex'].value_counts()
plt.bar(sex_count.index, sex_count.values)
plt.xlabel('Sex')
plt.ylabel('Count')
plt.title('Sex Count in Titanic Dataset')

plt.show()
print(f"Number of Male: {sex_count['male']}")
print(f"Number of Female: {sex_count['female']}")

Number of Male: 577 Number of Female: 314

```
survived_count = df[df['Survived'] == 1]['Pclass'].value_counts()
not_survived_count = df[df['Survived'] == 0]['Pclass'].value_counts()
categories = ['1', '2', '3']
#Shows count of survivors for each passenger class, assigning a default value of 0 if there are no survivors in that class.
values = [survived_count[1], survived_count[2], survived_count[3]]
not_survived_values = [not_survived_count[1], not_survived_count[2], not_survived_count[3]]
plt.bar(categories, values, color=['blue', 'red', 'green'])
plt.xlabel('Class')
plt.ylabel('Survived Count')
plt.title('Survival Count by Class in Titanic Dataset')
plt.show()
print(f"Number \ of \ Survived \ in \ first \ Class: \ \{values[0]\}")
print(f"Number of Survived in second Class: {values[1]}")
print(f"Number of Survived in third Class: {values[2]}")
plt.bar(categories, not_survived_values, color=['blue', 'red', 'green'])
plt.xlabel('Class')
plt.ylabel('Not Survived Count')
plt.title('Not Survived Count by Class in Titanic Dataset')
plt.show()
print(f"Number of Not Survived in first Class: {not_survived_values[0]}")
print(f"Number of Not Survived in second Class: {not_survived_values[1]}")
print(f"Number of Not Survived in third Class: {not_survived_values[2]}")
```


Number of Survived in first Class: 136 Number of Survived in second Class: 87 Number of Survived in third Class: 119

Number of Not Survived in first Class: 80 Number of Not Survived in second Class: 97 Number of Not Survived in third Class: 372

Preprocessing

#checking for missing values
df.isnull().sum()

_	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	Cabin	687
	Embarked	2
	dtype: int64	

df[df["Embarked"].isnull()]

df.boxplot(column="Fare",by = "Embarked")
plt.show()

Drop rows where 'Embarked' is missing
df = df.dropna(subset=['Embarked'])

```
# List of columns to drop
columns to drop = ['Cabin', 'Ticket'] # Example columns; adjust based on your analysis
# Drop the specified columns
df = df.drop(columns=columns to drop)
# Separate features and target variable
X = df.drop('Survived', axis=1)
Y = df['Survived']
# Define numerical and categorical columns
numerical_cols = ['Age', 'Fare']
categorical_cols = ['Pclass', 'Sex', 'Embarked']
# Preprocessing for numerical data: impute missing values and scale features
numerical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())
])
# Preprocessing for categorical data: impute missing values and apply one-hot encoding
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
])
# Combine preprocessing steps
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numerical_transformer, numerical_cols),
        ('cat', categorical_transformer, categorical_cols)
    ])
# Apply preprocessing
X_preprocessed = preprocessor.fit_transform(X)
# Split the preprocessed dataset into training and testing sets
X_train, X_test, Y_train, Y_test = train_test_split(X_preprocessed, Y, test_size=0.3, random_state=101)
# Output the shapes of the splits to verify
print("Training set features shape:", X train.shape)
print("Test set features shape:", X_test.shape)
print("Training set labels shape:", Y_train.shape)
print("Test set labels shape:", Y_test.shape)
Training set features shape: (622, 10)
     Test set features shape: (267, 10)
     Training set labels shape: (622,)
     Test set labels shape: (267,)
```

Logistic Regression

```
logreg = LogisticRegression()
# Train the model
logreg.fit(X_train, Y_train)
# Make predictions
y_pred_logreg = logreg.predict(X_test)
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, confusion_matrix, classification_report, ConfusionMa
# Calculate accuracy
accuracy_logreg = accuracy_score(Y_test, y_pred_logreg)
print(f'Logistic Regression Accuracy: {accuracy_logreg:.4f}')
# Calculate recall
recall_logreg = recall_score(Y_test, y_pred_logreg)
print(f'Logistic Regression Recall: {recall_logreg:.4f}')
# Calculate precision
precision_logreg = precision_score(Y_test, y_pred_logreg)
print(f'Logistic Regression Precision: {precision_logreg:.4f}')
# Calculate F1 score
f1_logreg = f1_score(Y_test, y_pred_logreg)
print(f'Logistic Regression F1 Score: {f1_logreg:.4f}')
```

```
# Calculate confusion matrix
conf_matrix = confusion_matrix(Y_test, y_pred_logreg)
print(\texttt{f'Logistic Regression Confusion Matrix:} \\ \land \texttt{(conf\_matrix)')}
# For a detailed classification report
report = classification_report(Y_test, y_pred_logreg)
print(f'Logistic Regression Classification Report:\n{report}')
→ Logistic Regression Accuracy: 0.8052
     Logistic Regression Recall: 0.6731
     Logistic Regression Precision: 0.7955
     Logistic Regression F1 Score: 0.7292
     Logistic Regression Confusion Matrix:
     [[145 18]
[ 34 70]]
     Logistic Regression Classification Report:
                    precision
                                 recall f1-score
                                                      support
                 0
                         0.81
                                    0.89
                                               0.85
                                                          163
                         0.80
                                    0.67
                                               0.73
                                                          104
         accuracy
                                               0.81
                                                          267
        macro avg
                         0.80
                                    0.78
                                               0.79
                                                          267
     weighted avg
                         0.80
                                    0.81
                                              0.80
                                                          267
```

cmd=ConfusionMatrixDisplay(conf_matrix)
cmd.plot()
plt.show()

KNN

```
from sklearn.neighbors import KNeighborsClassifier
# Instantiate the KNN model with a chosen number of neighbors (e.g., 5)
knn = KNeighborsClassifier(n_neighbors=5)
# Train the model
knn.fit(X_train, Y_train)

T KNeighborsClassifier
KNeighborsClassifier()

# Make predictions on the test set
y_pred_knn = knn.predict(X_test)
```

```
# Calculate accuracy
accuracy_knn = accuracy_score(Y_test, y_pred_knn)
print(f'KNN Accuracy: {accuracy_knn:.4f}')
# Calculate recall
recall_knn = recall_score(Y_test, y_pred_knn)
print(f'KNN Recall: {recall_knn:.4f}')
# Calculate precision
precision_knn = precision_score(Y_test, y_pred_knn)
print(f'KNN Precision: {precision_knn:.4f}')
# Calculate F1 score
f1_knn = f1_score(Y_test, y_pred_knn)
print(f'KNN F1 Score: {f1_knn:.4f}')
# Calculate confusion matrix
conf matrix knn = confusion_matrix(Y_test, y_pred_knn)
print(f'KNN Confusion Matrix:\n{conf_matrix_knn}')
# For a detailed classification report
report_knn = classification_report(Y_test, y_pred_knn)
print(f'KNN Classification Report:\n{report_knn}')
★ KNN Accuracy: 0.8315
     KNN Recall: 0.7981
     KNN Precision: 0.7757
     KNN F1 Score: 0.7867
     KNN Confusion Matrix:
     [[139 24]
      [ 21 83]]
     KNN Classification Report:
                   precision
                                recall f1-score
                                                   support
                0
                        0.87
                                  0.85
                                            0.86
                                                        163
                1
                        0.78
                                  0.80
                                            0.79
                                                        104
                                            0.83
                                                        267
         accuracy
                        0.82
                                  0.83
                                            0.82
                                                       267
        macro avg
                                            0.83
                                                       267
     weighted avg
                        0.83
                                  0.83
```

cmd=ConfusionMatrixDisplay(conf_matrix_knn)
cmd.plot()
plt.show()


```
# Convert the classification report to a DataFrame for plotting
report_knn_df = pd.DataFrame(classification_report(Y_test, y_pred_knn, output_dict=True)).transpose()

# Plot the classification report
plt.figure(figsize=(10, 8))
sns.heatmap(report_knn_df[['precision', 'recall', 'f1-score']], annot=True, cmap='Blues', fmt='.2f', cbar=True)
plt.title('KNN Classification Report')
plt.show()
```


Naive Bayes

from sklearn.naive_bayes import GaussianNB

- # Instantiate the Naive Bayes model
 nb = GaussianNB()
- # Train the model
 nb.fit(X_train, Y_train)

Make predictions on the test set
y_pred_nb = nb.predict(X_test)

```
# Calculate accuracy
accuracy nb = accuracy score(Y test, y pred nb)
print(f'Naive Bayes Accuracy: {accuracy_nb:.4f}')
# Calculate recall
recall_nb = recall_score(Y_test, y_pred_nb)
print(f'Naive Bayes Recall: {recall_nb:.4f}')
# Calculate precision
precision_nb = precision_score(Y_test, y_pred_nb)
print(f'Naive Bayes Precision: {precision_nb:.4f}')
# Calculate F1 score
f1_nb = f1_score(Y_test, y_pred_nb)
print(f'Naive Bayes F1 Score: {f1_nb:.4f}')
# Calculate confusion matrix
conf_matrix_nb = confusion_matrix(Y_test, y_pred_nb)
print(f'Naive Bayes Confusion Matrix:\n{conf_matrix_nb}')
# For a detailed classification report
report_nb = classification_report(Y_test, y_pred_nb)
print(f'Naive Bayes Classification Report:\n{report_nb}')
Naive Bayes Accuracy: 0.7865
     Naive Bayes Recall: 0.7115
     Naive Bayes Precision: 0.7327
     Naive Bayes F1 Score: 0.7220
     Naive Bayes Confusion Matrix:
     [[136 27]
      [ 30 74]]
     Naive Bayes Classification Report:
                               recall f1-score
                   precision
                                                   support
                0
                        0.82
                                  0.83
                                            0.83
                                                       163
                1
                        0.73
                                  0.71
                                            0.72
                                                       104
                                            0.79
                                                       267
         accuracy
                        0.78
                                  0.77
                                            0.77
                                                       267
        macro avg
                                            0.79
                                                       267
     weighted avg
                        0.79
                                  0.79
```

cmd=ConfusionMatrixDisplay(conf_matrix_nb)
cmd.plot()
plt.show()


```
# Convert the classification report to a DataFrame for plotting
report_nb_df = pd.DataFrame(classification_report(Y_test, y_pred_nb, output_dict=True)).transpose()

# Plot the classification report
plt.figure(figsize=(10, 8))
sns.heatmap(report_nb_df[['precision', 'recall', 'f1-score']], annot=True, cmap='Blues', fmt='.2f', cbar=True)
plt.title('Naive Bayes Classification Report')
plt.show()
```

