Introduction

Goal:

- obtain a transcription of the content of an audio signal
 - which notes? which chords? which instruments?
 - equivalent to Automatic Speech Recognition
- difficulty:
 - all instruments are super-imposed in the audio signal
- sub-tasks:
 - only transcribe the notes / f0 (in Hz)
 - only transcribe the dominant melody

– How can we do that ?

- many methods proposed in the past : sinusoidal model, NMF, PLCA, ...,
- large improvement since 2017 using ... deep learning

Introduction

Learning a "Saliency" Representation

Using Convolutional Neural Network

- Inputs :
 - magnitude spectrogram with depth (Harmonic CQT)
- Outputs:
 - image of the same size of input but with only saliency information

Input Representation: a Harmonic CQT

$Multiple-f_0$ Estimation

Multiple- f_0 Estimation: Results

Dominant Melody Estimation

Dominant Melody Estimation: Results

Introduction

- Traditional way of training a neural network
 - Supervised training (compare prediction to ground-truth)

cross-entropy annotated dataset

Our goal:

- train a neural network for pitch estimation without ground-truth annotations
- = Self-Supervised-Learning (SSL)

predicted pitch distribution y

Self-Supervised-Learning

- Siamese Network, SimCLR,
 - given two views x, x' (augmented versions) of the same data x trains a neural network such that the corresponding outputs y, y' are similar \Rightarrow feature learning
 - can we make the output equivariant instead of invariant?

2019 → SPICE: Self-supervised Pitch Estimation

equivariance loss

$$e_{t} = |(y_{t,1} - y_{t,2}) - \sigma(k_{t,1} - k_{t,2})|$$
 with

$$\mathcal{L}_{pitch} = \frac{1}{T} \sum_{t} h(e_{t})$$

$$h(x) = x^{2}/2 \text{ if } |x| \le \tau$$

$$h(x) = \tau^{2}/2 + \tau(|x| - \tau) \text{ if } |x| \le \tau$$

$$\sigma = \frac{1}{B[\log_{2}(f_{max}/f_{min})]}$$

reconstruction loss

$$\mathcal{L}_{recon} = \frac{1}{T} \sum_{t} ||x_{t,1} - \hat{x}_{t,1}||_{2}^{2} + ||x_{t,2} - \hat{x}_{t,2}||_{2}^{2}$$

total loss

$$\mathcal{L} = w_{pitch} \mathcal{L}_{pitch} + w_{recon} \mathcal{L}_{recon}$$

2022 → Equivariant Self-Supervision for Tempo Estimation

$$\mathcal{L} = \left| \frac{z_i}{z_j} - \frac{\alpha_i}{\alpha_j} \right|$$

Self-Supervised-Learning

- Our proposal: Class-based equivariance loss
 - scalar product between the softmax output by a geometric series α

- Define $\mathbf{a} = (\alpha, \alpha^2, \dots, \alpha^d)^{\top}, \alpha > 0$
- Compute the scalar products a⊤y and a⊤y'
- If y and y' are equal up to a shift of k, then

$$\mathbf{a}^{\mathsf{T}}\mathbf{y}' = \alpha^{k}\mathbf{a}^{\mathsf{T}}\mathbf{y}$$

 $\alpha^3(\alpha^{-2}\alpha^{-1}\alpha^0\alpha^1\alpha^2\alpha^3\alpha^4\alpha^5)$

Equivariance loss:

$$\mathcal{L}_{\mathsf{equiv}}(\mathbf{y}, \mathbf{y}', \frac{\mathbf{k}}{\mathbf{k}}) = \left\| \frac{\mathbf{a}^{\top} \mathbf{y}'}{\mathbf{a}^{\top} \mathbf{y}} - \alpha^{\mathbf{k}} \right\|$$

• translation of k between y and y'? equivariance loss = 0

Lightweight architecture

Training data

From relative pitch to absolute pitch

Evaluation

			Raw Pitch Accuracy	
Model	# params	Trained on	MIR-1K	MDB-stem-synth
SPICE [19]	2.38M	private data	90.6%	89.1%
DDSP-inv [45]	-	MIR-1K / MDB-stem-synth	91.8%	88.5%
PESTO (ours)	28.9k	MIR-1K	96.1%	94.6%
PESTO (ours)	28.9k	MDB-stem-synth	93.5%	95.5%
CREPE [16]	22.2M	many (supervised)	97.8%	96.7%

- → SOTA in self-supervised pitch estimation
- → Strong generalization performances
- → Extremely lightweight model