Зміст

1	Me	гричні простори та інше	2
	1.1	Означення метричних просторів	2
	1.2	Відкриті та замкнені множини. Збіжні послідовності	3
	1.3	Замикання множин	6
	1.4	Повнота	7
	1.5	Неперервні відображення	11
	1.6	Компактність	12
	1.7	Теорема Стоуна-Ваєрштраса	15
2	Поч	наток функціонального аналізу	17
	2.1	Обмежені та неперервні лінійні оператори	17
	2.2	Продовження неперервних операторів	19

1 Метричні простори та інше

1.1 Означення метричних просторів

Definition 1.1.1 Задано X – множина та $\rho: X \to X \to \mathbb{R}$ – функція. Функція ρ називається **метрикою**, якщо вона задовольняє таким властивостям:

1)
$$\forall x, y \in X : \rho(x, y) \ge 0$$
, $\rho(x, y) = 0 \iff x = y$
2) $\forall x, y \in X : \rho(x, y) = \rho(y, x)$
3) $\forall x, y, z \in X : \rho(x, z) \le \rho(x, y) + \rho(y, z)$

Метрика описує **відстань** між елементами x, y.

Пара (X, ρ) з метрикою називається **метричним простором**.

Example 1.1.2 Розглянемо декілька прикладів:

- 1) $X = \mathbb{R}, \qquad \rho(x, y) = |x y|;$
- 2) $X=\mathbb{R}^n$, можна задати дві метрики:

$$\rho_1(\vec{x}, \vec{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}, \quad \rho_2(\vec{x}, \vec{y}) = |x_1 - y_1| + \dots + |x_n - y_n|;
3) \quad X = C([a, b]), \qquad \rho(f, g) = \max_{t \in [a, b]} |f(t) - g(t)|.$$

Example 1.1.3 Окремо розгляну даний приклад. Нехай X – будь-яка множина, ми визначимо так звану **дискретну метрику** $d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$. Тоді (X,d) задає **дикретний** метричний простір.

Definition 1.1.4 Задано (X, ρ) – метричний простір.

Пару $(Y, \tilde{\rho})$, де $Y \subset X$, назвемо метричним підпростором (X, ρ) , якщо

$$\forall x, y \in Y : \tilde{\rho}(x, y) = \rho(x, y).$$

При цьому метрика $\tilde{\rho}$, кажуть, **індукована в** Y **метрикою** ρ .

Proposition 1.1.5 Задано (X, ρ) – метричний простір та $(Y, \tilde{\rho})$ – підпростір. Для функції $\tilde{\rho}$ всі три аксіоми зберігаються. Тобто $(Y, \tilde{\rho})$ залишається метричним простором. Вправа: довести.

Example 1.1.6 Маємо X = F([a,b]) – множину обмежених функцій та $\rho(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|$. Тоді в Y = C([a,b]) маємо метрику $\tilde{\rho}(f,g) = \max_{t \in [a,b]} |f(t) - g(t)| = \sup_{t \in [a,b]} |f(t) - g(t)|$. Отже, C([a,b]) – метричний підпростір простору F([a,b]).

Definition 1.1.7 Задано L – лінійний простір над \mathbb{R} або \mathbb{C} .

Задамо функцію $\|\cdot\|:L\to\mathbb{R},$ що називається **нормою**, якщо виконуються умови:

1)
$$\forall x \in L: ||x|| \ge 0$$

2) $\forall x \in L: \forall \alpha \in \mathbb{R}$ aso $\mathbb{C}: ||\alpha x|| = |\alpha| ||x||$
3) $\forall x, y \in L: ||x + y|| \le ||x|| + ||y||$

Тоді пару $(L, \|\cdot\|)$ назвемо **нормованим простором**.

Corollary 1.1.8 Задано $(L, \|\cdot\|)$ – нормований простір. Тоді $\forall x, y \in L : \|x - y\| \ge |\|x\| - \|y\||$. Вказієка: $\|x\| = \|x + y - x\|$ та $\|y\| = \|y + x - y\|$.

Proposition 1.1.9 Задано $(L, \|\cdot\|)$ – нормований простір. Тоді L з метрикою $\rho(x, y) = \|x - y\|$ утворює метричний простір.

Вправа: перевірити три аксіоми.

Corollary 1.1.10 У такому разі справедливі додаткові властивості для заданої метрики:

- 1) $\forall x, y, z \in L : \rho(x+z, y+z) = \rho(x,y)$ (інваріантність по відношенню до эсуву);
- 2) $\forall x, y \in L, \forall \alpha \in \mathbb{R}$ або $\mathbb{C} : \rho(\alpha x, \alpha y) = |\alpha|\rho(x, y)$ (однорідність).

Example 1.1.11 Зокрема дані простори будуть нормованими:

1) \mathbb{R} , ||x|| = |x|;

2)
$$\mathbb{R}^n$$
, $\|\vec{x}\| = \sqrt{x_1^2 + \cdots + x_n^2}$ або навіть $\|\vec{x}\| = |x_1| + \cdots + |x_n|$; 3) $\mathbb{C}([a,b]), \qquad \|f\| = \max_{t \in [a,b]} |f(t)|$;

3)
$$\mathbb{C}([a,b]), \qquad ||f|| = \max_{t \in [a,b]} |f(t)|$$

4)
$$L_p(X,\lambda)$$
, $||f||_p = \left(\int_X |f|^p d\lambda\right)^{\frac{1}{p}}$.

Тому всі вони будуть автоматично метричними просторами із метрикою, що вище задана.

Example 1.1.12 Дискретний простір (X, d) – метричний, але не нормований.

Example 1.1.13 Задано $(E,(\cdot,\cdot))$ – евклідів простір. Ми можемо евклідів простір E перетворити в нормований простір $(E, \|\cdot\|)$ функцією $\|x\| = \sqrt{(x, x)}$.

Як наслідок, за твердженням вище, (E, ρ) - метричний простір з $\rho(x, y) = \|x - y\|$

Example 1.1.14 Нехай $\vec{a} = (a_1, a_2, \dots)$ – дійсна числова послідовність. Задамо простір $l_1 = \left\{ \vec{a} \mid \sum_{i=1}^{\infty} |a_i| < \infty \right\}$.

Задаються такі операції:

$$\vec{a} + \vec{b} = (a_1, a_2, \dots) + (b_1, b_2, \dots) = (a_1 + b_1, a_2 + b_2, \dots)$$

 $\alpha \vec{a} = (\alpha a_1, \alpha a_2, \dots)$

Неважко переконатися, що l_1 – лінійний простір над \mathbb{R} .

Важливе зауваження: $\vec{a}+\vec{b}, \alpha \vec{a} \in l_1$, тому що маємо $\sum_{n=1}^\infty a_n, \sum_{n=1}^\infty b_n$ – збіжні, а тому збіжним буде

$$\sum_{n=1}^{\infty}(a_n+b_n), \sum_{n=1}^{\infty}\alpha a_n.$$
 Тобто операції замкнені.

Можна задати нормований простір функцією $\|\vec{a}\| = \sum_{n=1}^{\infty} |a_n|$. А тому це — метричний простір з $\rho(\vec{a}, \vec{b}) = \|\vec{a} - \vec{b}\|.$

Узагальнення:
$$l_p = \left\{ \vec{a} \mid \sum_{n=1}^{\infty} |a_n|^p < \infty \right\}$$
, тут задається норма $\|\vec{a}\| = \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}}$.

Example 1.1.15 Тут ще є така множина: $l_{\infty} = \{\vec{a} \mid \vec{a}$ – обмежені $\}$. Задані такі самі операції, що вище. Задається норма $\|\vec{a}\| = \sup |a_n|$. Отже, l_∞ – метричний простір.

Відкриті та замкнені множини. Збіжні послідовності

Definition 1.2.1 Задано (X, ρ) – метричний простір та $a \in X$.

Відкритою кулею радіусом r з центром a називають таку множину:

$$B(a;r) = \{x \in X \mid \rho(a,x) < r\}$$

 $\ddot{\text{Г}}$ і ще називають r**-околом точки** a.

Замкненою кулею радіусом r з центром a називають таку множину:

$$B[a;r] = \{x \in X \mid \rho(a,x) \le r\}$$

Example 1.2.2 Розглянемо декілька прикладів:

1)
$$X = \mathbb{R}$$
, $\rho(x,y) = |x-y|$, $B(a;r) = \{x \in \mathbb{R} \mid |x-a| < r\} = (a-r,a+r);$
2) $X = \mathbb{R}^2$, $\rho(\vec{x},\vec{y}) = ||\vec{x} - \vec{y}||$, $B(0;1) = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}.$

2)
$$X = \mathbb{R}^2$$
, $\rho(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$, $B(0; 1) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$.

Definition 1.2.3 Задано $A \subset X$ та $a \in A$.

Точка a називається **внутрішньою** для A, якщо

$$\exists \varepsilon > 0 : B(a; \varepsilon) \subset A.$$

Definition 1.2.4 Множина A називається **відкритою**, якщо кожна точка множини A – внутрішня.

Example 1.2.5 Розглянемо такі приклади:

- 1) Маємо $X=\mathbb{R}, \rho(x,y)=|x-y|$ та множину A=[0,1). Точка $a=\frac{1}{2}$ внутрішня, оскільки $\exists \varepsilon=\frac{1}{4}: B\left(\frac{1}{2};\frac{1}{4}\right)\subset A,$ тобто $\left(\frac{1}{4},\frac{3}{4}\right)\subset [0,1).$ Водночає точка a=0 не внутрішня. Отже, A не відркита, бо знайшли не внутрішню точку.
- 2) Маємо $X=[0,1], \rho(x,y)=|x-y|$ та множину A=[0,1). У цьому випадку точка a=0 уже внутрішня (в попередньому прикладі ми могли ε -околом вийти за межі нуля ліворуч, а тут вже ні). Тут A тепер відкрита.
- 3) Маємо $X = \{0,1,2\}$ підпростір метричного простору $(\mathbb{R}, \rho(x,y) = |x-y|)$. Задамо множину $A = \{0,1\}$. Тут кожна точка внутрішня. Отже, A відкрита.

Definition 1.2.6 Задано $A \subset X$ та $x_0 \in X$.

Точка x_0 називається **граничною** для A, якщо

$$\forall \varepsilon > 0 : (B(x_0; \varepsilon) \setminus \{x_0\}) \cap A \neq \emptyset$$

Інколи ще множину $B(x_0;\varepsilon)\setminus\{x_0\}=\mathring{B}(x_0;\varepsilon)$ називають **проколеним околом точки** x_0 .

Definition 1.2.7 Множина A називається **замкненою**, якщо вона містить всі свої граничні точки.

Example 1.2.8 Розглянемо такі приклади:

- 1) Маємо $X=\mathbb{R}, \rho(x,y)=|x-y|$ та множину A=(0,1). Точки $x_0\in\left\{\frac{1}{2},0,1\right\}$ граничні. Водночас точка $x_0=\frac{3}{2}$ не гранична. Отже, A не замкнена, бо $x_0=1$ хоча й гранична для A, але $x_0\notin A$.
- 2) Маємо $X = \mathbb{R}$, $\rho(x,y) = |x-y|$. Задамо множину $A = \{0,1\}$. Тут жодна точка не гранична. Тим не менш, A замкнена. Бо нема жодної граничної точки в X для A, щоб порушити означення.
- 3) X, \emptyset замкнені в будь-якому метричному просторі.

Theorem 1.2.9 Задано $(X, \rho), A \subset X$.

Множина A – відкрита \iff множина A^c – замкнена

Proof.

 \Rightarrow Дано: A – відкрита.

!Припустимо, що A^c – не замкнена, тобто $\exists x_0 \in A : x_0$ – гранична для A^c , але $x_0 \notin A^c$. За умовою, оскільки $x_0 \in A$, то x_0 - внутрішня, тобто $\exists \varepsilon > 0 : B(x_0; \varepsilon) \subset A$. Отже, $B(x_0; \varepsilon) \cap A^c = \emptyset$ – суперечність!

 \sqsubseteq Дано: A^c – замкнена. Тоді вона містить всі граничні точки. Тоді $\forall x_0 \in A: x_0$ – не гранична для A^c , тобто $\exists \varepsilon > 0: B(x_0; \varepsilon) \cap A^c = \emptyset \implies B(x_0; \varepsilon) \subset A$. Отже, x_0 – внутрішня для A, а тому A – відкрита.

Theorem 1.2.10 Задано (X, ρ) – метричний простір. Тоді справедливо наступне:

- 1) Нехай $U_{\alpha}\subset X,\ \alpha\in I$ сім'я відкритих множин. Тоді $\bigcup_{\alpha\in I}U_{\alpha}$ відкрита множина;
- 2) Нехай $U_k\subset X, k=\overline{1,n}$ сім'я відкритих множин. Тоді $\bigcap_{k=1}^n U_k$ відкрита множина;
- 3) \emptyset, X відкриті множини.

Proof.

Доведемо кожний пункт окремо:

- 1) Задано множину $U=\bigcup_{\alpha\in I}U_{\alpha}$. Зафіксуємо $a\in U$. Тоді $\exists \alpha_0:a\in U_{\alpha_0}\implies a$ внутрішня для U_{α_0} \Rightarrow $\exists \varepsilon>0: B(a;\varepsilon)\subset U_{\alpha_0}\subset U$. Отже, U відкрита.
- 2) Задано множину $U=\bigcap_{k=1}^n U_k$. Зафіксуємо $a\in U$. Тоді $\forall k=\overline{1,n}:a\in U_k\Rightarrow a$ внутрішня для $U_k\implies\exists \varepsilon_k>0: B(a;\varepsilon_k)\subset U_k$. Задамо $\varepsilon=\min_{1\leq k\leq n}\varepsilon_k\implies B(a;\varepsilon)\subset U$. Отже, U відкрита.

3) \emptyset — відкрита, бо нема внутрішніх точок, тому що там порожньо. Також X — відкрита, оскільки для $a \in X$, який б $\varepsilon > 0$ не обрав, $B(a; \varepsilon) \subset X$.

Всі твердження доведені.

Remark 1.2.11 Відповідь на питання, чому в другому лише скінченна кількість відкритих множин.

Розглянемо $X = \mathbb{R}$ із метрикою $\rho(x,y) = |x-y|$. Задана сім'я відкритих множин $U_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$,

причому $\forall n \geq 1$. Тоді зауважимо, що $\bigcap_{n=1}^{\infty} U_n = \{0\}$, але така множина вже не є відкритою.

Corollary 1.2.12 Задано (X, ρ) – метричний простір. Тоді справедливо наступне:

- 1) Нехай $U_{\alpha}\subset X,\ \alpha\in I$ сім'я замкнених множин. Тоді $\bigcap_{\alpha\in I}U_{\alpha}$ замкнена множина;
- 2) Нехай $U_k\subset X, k=\overline{1,n}$ сім'я замкнених множин. Тоді $\bigcup_{k=1}^n U_k$ замкнена множина;
- 3) \emptyset, X замкнені множини.

Вказівка: скористатися де Морганом та ТОДО: вставити референс.

Remark 1.2.13 Такі твердження не є правдивими:

A – не відкрита, а тому A – замкнена (наприклад, [0,1) в \mathbb{R});

A – відкрита, а тому A – не замкнена (наприклад, \emptyset в \mathbb{R}).

Proposition 1.2.14 Задано (X, ρ) – метричний простір, $a \in X, r > 0$. Тоді відкритий окіл B(a; r) – справді відкритий; замкнений окіл B[a; r] – справді замкнений.

Proof.

(про B(a;r)). Задамо точку $b \in B(a;r)$. Нехай $\varepsilon = r - \rho(a,b) > 0$. Тоді якщо $x \in B(b;\varepsilon)$, то тоді $\rho(x,a) \le \rho(x,b) + \rho(b,a) < \varepsilon + \rho(b,a) = r$. Отже, B(a;r) – відкрита.

(про B[a;r]). Для цього достатньо довести, що $B^c[a;r]=\{x|\rho(a,x)>r\}$ – відкрита. Якщо задати $\varepsilon=\rho(a,b)-r$ для точки $b\in B(a;r)$, то аналогічними міркуваннями отримаємо, що $B^c[a;r]$ – відкрита. Отже, B[a;r] – замкнена.

Definition 1.2.15 Задано (X, ρ) – метричний простір, послідовність $\{x_n, n \geq 1\} \subset X$ та $x_0 \in X$. Дана послідовність називається **збіжною** до x_0 , якщо

$$\rho(x_n, x_0) \to 0, n \to \infty$$

Позначення: $\lim_{n\to\infty} x_n = x_0$.

Theorem 1.2.16 Задано (X, ρ) — метричний простір, $A \subset X$ та $x_0 \in X$. Наступні твердження еквівалентні:

- 1) x_0 гранична точка для A;
- 2) $\forall \varepsilon > 0 : B(x_0; \varepsilon) \cap A$ нескінченна множина;
- 3) $\exists \{x_n, n \ge 1\} \subset A : \forall n \ge 1 : x_n \ne x_0 : x_n \to x_0.$

Proof.

 $|1) \Rightarrow 2$ Дано: x_0 - гранична для A.

Припустимо, що $\exists \varepsilon^* > 0 : B(x_0; \varepsilon) \cap A$ – скінченна множина, тобто маємо $x_1, \ldots, x_n \in B(x_0; \varepsilon^*)$. Тоді $\rho(x_0, x_1) < \varepsilon^*, \ldots, \rho(x_0, x_n)^* < \varepsilon$. Оберемо найменшу відстань та задамо $\varepsilon^*_{new} = \min_{1 \le i \le n} \rho(x_0, x_i)$.

Створимо $B(x_0; \varepsilon_{new}^*) \subset B(x_0; \varepsilon)$. У новому шару жодна точка $x_1, \ldots, x_n \in A$ більше сюди не потрапляє. Тоді $B((x_0; \varepsilon_{new}^*) \setminus \{x_0\}) \cap A = \emptyset$ - таке неможливо через те, що x_0 - гранична точка. Суперечність!

 $2)\Rightarrow 3$ Дано: $\forall \varepsilon>0$: $B(x_0;\varepsilon)\cap A$ - нескінченна множина. Встановимо $\varepsilon=\frac{1}{n}$. Тоді оскільки $\forall n\geq 1$: $B\left(x_0;\frac{1}{n}\right)\cap A$ - нескінченна, то $\forall n\geq 1$: $\exists x_n\in A: \rho(x_0,x_n)<\frac{1}{n}$. Якщо далі $n\to\infty$, тоді $\rho(x_0,x_n)\to 0$. Остаточно, $\exists \{x_n,n\geq 1\}\subset A: x_n\neq x_0: x_n\to x_0$.

$$3)\Rightarrow 1$$
 Дано: $\exists \{x_n,n\geq 1\}\subset A: x_n\neq x_0: x_n\to x_0$. Тобто $\forall \varepsilon>0:\exists N:\forall n\geq N: \rho(x_0,x_n)<\varepsilon$. Або, інакше кажучи, $\forall \varepsilon>0: x_N\in B(x_0;\varepsilon)\cap A$. Тоді $\forall \varepsilon>0: (B(x_0;\varepsilon)\setminus \{x_0\})\cap A\neq\emptyset$.

1.3 Замикання множин

Definition 1.3.1 Задано (X, ρ) – метричний простір, $A \subset X$ та A' - множина граничних точок A. Замиканням множини А називають таку множину

$$\bar{A} = A \cup A'$$

Часто ще позначають замикання за Cl(A).

Example 1.3.2 Маємо $X = \mathbb{R}$, $\rho(x,y) = |x-y|$ та множину A = (0,1). Тоді множина A' = [0,1]. Замикання $\bar{A} = A \cup A' = [0, 1]$.

Remark 1.3.3 Розглянемо зараз сукупність замкнених множин $A \subset A_{\alpha} \subset X$. Перетин $B = \bigcap A_{\alpha}$

— також замкнена, водночас $A\alpha\supset B\supset A$. Отже, B — найменша замкнена множина, що містить A.

Proposition 1.3.4 Задано \bar{A} – замикання. Тоді спредливе наступне:

- 1) \bar{A} найменша замкнена множина, що містить A;
- 2) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ $\overline{A \cap B} \subset \overline{A} \cap \overline{B};$
- 3) A замкнена $\iff A = \bar{A}$.

Proof.

Доведемо кожне твердження окремо.

1) !Припустимо, що \bar{A} не ϵ найменшою замненою, що містить A, тобто $\exists B \subset \bar{A} : B \supset A$ – замкнена. Зафіксуємо точку $x_0 \in \bar{A}$ – гранична, тоді $x_0 \in A' \cup A$.

Якщо $x_0 \in A'$, то тоді $x_0 \in B$, тому що B містить всі граничні т. A

Якщо $x_0 \in A$, то тоді $x_0 \in B$.

В обох випадках $\bar{A} \subset B$. Отже, $\bar{A} = B$. Суперечність!

2) $\overline{A \cup B} = (A \cup B)' \cup (A \cup B) =$

 $x_0 \in (A \cup B)' \iff x_0$ – гранична точка $A \cup B \iff \forall \varepsilon > 0$:

$$B(x_0;\varepsilon)\cap (A\cup B)=(B(x_0;\varepsilon)\cap A)\cup (B(x_0;\varepsilon)\cap B)\neq\emptyset$$
(без т. $x_0)\iff$

$$\begin{bmatrix} x_0-\text{гранична для }A\\ x_0-\text{гранична для }B \iff \begin{bmatrix} x_0\in A'\\ x_0\in B' \iff x_0\in A'\cup B' \end{bmatrix}$$

Ōтже, $(A \cup B)' = A' \cup B'$.

 $= A' \cup B' \cup A \cup B = \bar{A} \cup \bar{B}.$

$$\overline{A \cap B} = (A \cap B)' \cup (A \cap B) \subset$$

 $x_0 \in (A \cap B)' \iff x_0$ - гранична точка $A \cap B \iff \forall \varepsilon > 0$:

$$B(x_0;\varepsilon)\cap (A\cap B)=(B(x_0;\varepsilon)\cap A)\cap (B(x_0;\varepsilon)\cap B)\neq \emptyset$$
 (без т. $x_0)=(B(x_0;\varepsilon)\cap B)\neq \emptyset$ (без т. $x_0)=(B(x_0;\varepsilon)\cap B)\neq \emptyset$

$$B(x_0;\varepsilon)\cap (A\cap B)=(B(x_0;\varepsilon)\cap A)\cap (B(x_0;\varepsilon)\cap B)\neq\emptyset$$
 (без т. $x_0)\Longrightarrow$ $\begin{cases} x_0-\text{гранична для }A\\ x_0-\text{гранична для }B\end{cases}\Longleftrightarrow\begin{cases} x_0\in A'\\ x_0\in B'\end{cases}\Longleftrightarrow x_0\in A'\cap B'$

Отже, $(A \cap B)' \subset A' \cap B'$.

 $\subset (A' \cap B') \cup (A \cap B) = (TODO: обміркувати)$

- 3) Доведення в обидва боки.
- \Rightarrow Дано: A замкнена. Тоді A містить всі свої граничні точки. Так само A' містить граничні точки \overline{A} . Tomy $A = \overline{A}$.
- \models Дано: $A = \bar{A}$. Тобто A містить всі свої граничні точки. Отже, A замкнена.

Всі твердження доведені.

Definition 1.3.5 Задано (X, ρ) – метричний простір та $A \subset X$.

Множина A називається **щільною** в X, якщо

$$\bar{A} = X$$

Definition 1.3.6 Задано (X, ρ) – метричний простір.

Метричний простір називається сепарабельним, якщо

існує в даному просторі скінченна чи зліченна щільна підмножина.

Example 1.3.7 Розглянемо такі приклади:

1) $(\mathbb{R}, \rho(x, y) = |x - y|)$ – сепарабельний, тому що \mathbb{Q} – зліченна та щільна підмножина в \mathbb{R} .

2) Маємо простір
$$l_2 = \left\{ \vec{a} \mid \sum_{n=1}^{\infty} a_n^2 < \infty \right\}$$
 — нормований простір. Розглянемо множину

 $l_2O = \{ \vec{a} \in l_2 \mid \text{скінченна кількість членів не нуль} \}.$ Розглянемо $\vec{a} = \{a_1, a_2, \dots\} \in l_2$. Доведемо, що вона – гранична для l_2O .

Задамо послідовність $\{\vec{a}_n, n \geq 1\} \subset l_2O$, де кожний елемент задається таким чином:

$$ec{a}_n = \{a_1, \dots, a_n, 0, \dots\} \implies
ho(ec{a}, ec{a}_n) = \|ec{a} - ec{a}_n\| = \sum_{n=k+1}^{\infty} a_n^2 \to 0$$
, оскільки ряд збіжний, а тому хвіст

ряду прямує до нуля. Отже, $\vec{a}_n \to \vec{a}$, тож \vec{a}_n – гранична точка. Тоді можна ствердити, що l_2O – щільна в l_2 , або інакше $\overline{l_2O}=l_2$. А оскільки $l_2O\subset l_2$ та ще й нескінченна, то тоді l_2 – сепарабельний.

3) Простір C([a,b]) – сепарабельний.

Доведу пізніше, коли дізнаюсь про теорему Вейєрштрасса про наближення неперервної на відрізку функції многочленами.

- 4) А ось простір l_{∞} не сепарабельний. Доведу пізніше.
- 5) Підпростір сепарабельного метричного простору сепарабельний Доведу пізніше.

1.4 Повнота

Definition 1.4.1 Задано (X, ρ) - метричний простір.

Послідовність $\{x_n, n \geq 1\}$ називається фундаментальною, якщо

$$\forall \varepsilon > 0 : \exists N : \forall m, n \ge N : \rho(x_n, x_m) < \varepsilon$$

Remark 1.4.2 Це означення можна інакше переписати, більш коротким чином:

$$\rho(x_n, x_m) \stackrel{m, n \to \infty}{\longrightarrow} 0$$

Proposition 1.4.3 Будь-яка збіжна послідовність є фундаментальною.

Маємо $\{x_n, n \geq 1\}$ – збіжна, тобто $\rho(x_n, x) \stackrel{n \to \infty}{\longrightarrow} 0$. За нерівністю трикутника, маємо $\rho(x_n, x_m) \leq$ $ho(x_n,x)+
ho(x,x_m)$. Якщо спрямувати одночасно $m.n \to \infty$, то тоді $ho(x_n,x_m) \to 0$. Отже, $\{x_n,n \ge 1\}$ - фундаментальна.

Remark 1.4.4 Проте не кожна фундаментальна послідовність – збіжна.

Example 1.4.5 Маємо X=(0,1] — підпростір $\mathbb R$. Розглянемо послідовність $\left\{x_n=\frac{1}{n}, n\geq 1\right\}$, де $x_n \to 0$ при $n \to \infty$ – збіжна, проте $0 \notin X$. Тому така послідовність не має границі в X, але вона фундаментальна за твердженням.

Definition 1.4.6 Метричний простір (X, ρ) називається **повним**, якщо

будь-яка фундаментальна послідовність має границю.

Example 1.4.7 Зокрема маємо наступне:

1) $X = \mathbb{R}$ – повний за критерієм Коші із матану;

2) X = (0,1] – не повний, бо принаймні $\left\{x_n = \frac{1}{n}, n \geq 1\right\}$ – фундаментальна, проте не має границі.

7

Proposition 1.4.8 Задано (X, ρ) – повний метричний простір та (Y, ρ) – підпрострір. (Y, ρ) – повний $\iff Y$ – замкнена в X.

Proof.

 \Rightarrow Дано: (Y, ρ) – повний.

Припустимо, що Y – не замкнена, тобто існує $x_0 \in X \setminus Y$ – гранична точка для Y. Тоді існує послідовність $\{y_n\} \subset Y$, для якої $y_n \to x_0$ та $y_n \neq x_0$. Зауважимо, що $\{y_n\} \subset X$ збіжна саме в просторі X, тому саме в просторі X послідовність $\{y_n\} \subset X$ – фундаментальна. Проте зрозумло цілком, що $\{y_n\} \subset Y$ буде фундаментальною в просторі Y, проте в силу повноти (Y, ρ) , матимемо збіжність саме в Y. Таким чином, $x_0 \in Y$ – суперечність!

 \sqsubseteq Дано: Y — замкнена в X. Візьмемо $\{y_n\}$ — Y — фундаментальна. Тоді в силу повноти X, вона — збіжна в просторі X. Скажімо, $y_n \to x_0$. Якщо точка $x_0 \in Y$, то тоді послідовність $\{y_n\}$ збіжна в Y. Інакше при $x_0 \in X \setminus Y$ зауважимо, що $y_n \neq x_0$, тому x_0 — гранична точка Y. У силу замкненості ми отримаємо $x_0 \in Y$ — послідовність $\{y_n\}$ знову збіжна в Y.

Definition 1.4.9 Повний нормований простір називається **банаховим**. Повний евклідів простір (відносно метрики, що породжена скалярним добутков) називається **гільбертовим**.

Proposition 1.4.10 Простір C([a,b]) зі стандартною нормою $\|x\| = \max_{t \in [a,b]} |x(t)|$ – банахів.

Proof.

Задамо фундаментальну послідовність $\{x_n, n \geq 1\}$ на множині C([a,b]). Тоді

 $\forall t_0 \in [a,b]: |x_n(t_0) - x_m(t_0)| \leq ||x_n - x_m|| = \max_{t \in [a,b]} |x_n(t) - x_m(t)|$. Із цієї нерівності випливає, що

 $\forall t_0 \in [a.b]: \{x_n(t_0), n \geq 1\}$ — фундаментальна.

За критерієм Коші (із матану), вона – збіжна, тобто $x_n(t_0) \stackrel{n \to \infty}{\to} y(t_0)$. Щойно показали поточкову збіжність $\{x_n, n \ge 1\}$ до функції y. Доведемо, що вона збігається рівномірно (тобто за нормою).

 $\{x_n,n\geq 1\}$ — фундаментальна, тобто $\forall \varepsilon>0:\exists N:\forall m,n\geq N:\|x_n(t)-x_m(t)\|<\varepsilon.$ Або $\forall t\in [a,b]:|x_n(t)-x_m(t)|<\varepsilon.$ Зафіксуємо деякі $t\in [a,b]$ та $n\geq N.$ А потім спрямуємо $m\to\infty.$ Тоді $|x_n(t)-y(t)|<\varepsilon.$ Це виконується $\forall t\in [a,b]$ та $n\geq N,$ або це записується інакше:

$$\forall n \geq N : ||x_n - y|| < \varepsilon. \text{ Отже, } x_n \to y.$$

Example 1.4.11 Задамо підпростір C([0,1]) із нормою із $L_2([0,1], \lambda_1)$, де λ_1 – міра Лебега. Доведемо, що в такому разі C([0,1]) уже не буде банаховим.

Розглянемо таку функціональну послідовність $\{x_n, n \geq 1\} \subset C([0,1])$, що задається таким чином:

$$x_n(t) \begin{cases} 0, & 0 \le x \le \frac{1}{2} - \frac{1}{n} \\ \frac{nx}{2} - \frac{n}{4} + \frac{1}{2}, & \frac{1}{2} - \frac{1}{n} \le x \le \frac{1}{2} + \frac{1}{n}. \\ 1, & \frac{1}{2} + \frac{1}{n} \le x \le 1 \end{cases}$$

1, $\frac{1}{2} + \frac{1}{n} \le x \le 1$ Це набір функцій, де похила частина зі збільшенням n перетворюється в вертикальну лінію. За-

уважимо, що якщо вязти поточкову границю, то отримаємо $x(t) = \begin{cases} 0, & 0 \le x \le \frac{1}{2} \\ 1, & \frac{1}{2} < x \le 1 \end{cases}$. При цьому

$$\|x_n-x\|_2^2=\int_{[0,1]}|x_n-x|^2\,d\lambda_1=\int_0^1|x_n(t)-x(t)|^2\,dt=\dots=rac{1}{6n} o 0$$
 при $n o\infty.$

Отже, $\{x_n\}$ в просторі C([0,1]) із нормою L_2 збігається до точки $x \notin C([0,1])$, але при цьому буде граничною для C([0,1]). Тобто C([0,1]) не буде замкненим, тож C([0,1]) – не повний, або не банахів.

Proposition 1.4.12 Евклідів простір l_2 – гільбертів.

Proof.

Задамо фундаментальну послідовність $\{\vec{x}_n, n \geq 1\}$ на множині l_2

Тобто $\forall \varepsilon > 0 : \exists N : \forall n, m \geq N : \|\vec{x}_n - \vec{x}_m\| < \varepsilon$

$$\Rightarrow \|\vec{x}_n - \vec{x}_m\|^2 = \sum_{k=1}^{\infty} (x_n^k - x_m^k)^2 < \varepsilon^2 \Rightarrow \forall k \ge 1 : |x_n^k - x_m^k| < \varepsilon$$

Тоді послідовність $\{x_n^k, n \geq 1\}$ - фундаментальна - тому (за матаном) збіжна, $x_n^k \to y^k$ Доведемо, що \vec{x} збігається до \vec{y} за нормою

Маємо
$$\sum_{k=1}^{\infty} (x_n^k - x_m^k)^2 < \varepsilon^2 \Rightarrow \forall K \ge 1 : \sum_{k=1}^K (x_n^k - x_m^k)^2 < \varepsilon^2$$

Спрямуємо
$$m \to \infty$$
, тоді $\sum_{k=1}^K (x_n^k - y^k)^2 < \varepsilon^2$

Звідки випливає збіжність ряду $\sum_{k=1}^{\infty}(x_n^k-y^k)^2$ та його оцінка

$$\sum_{k=1}^{\infty} (x_n^k - y^k)^2 < \varepsilon^2 \Rightarrow \|\vec{x}_n - \vec{y}\| < \varepsilon$$
 Отже, $\vec{x}_n \to \vec{y}$

Lemma 1.4.13 Задано $\{x_n, n \geq 1\}$ - фундаментальна та $\{x_{n_k}, k \geq 1\}$ - збіжна. Тоді $\{x_n, n \geq 1\}$ - збіжна

Proof.

Маємо $a_{n_k} \to a, \ k \to \infty$ $\Rightarrow \forall \varepsilon > 0: \exists K: \forall k \geq K: \rho(a_{n_k}, a) < \varepsilon$ Також відомо, що $\forall n, m \geq N: \rho(a_n, a_m) < \varepsilon$ Треба ще $n_k \geq N.$ Тоді для $n \geq n_K$ $\rho(a_n, a) \leq \rho(a_n, a_{n_K}) + \rho(a_{n_K}, a) < 2\varepsilon$ Отже, $a_n \to a_0$

Theorem 1.4.14 Критерій Кантора

Умова Кантора: для кожної послдовності $\{B[a_n;r_n],n\geq 1\}$ такої, що $B[a_1;r_1]\supset B[a_2;r_2]\supset\dots$ та $r_n\to 0$, перетин $\bigcap_{n=1}^\infty B[a_n;r_n]\neq\emptyset$ (це послідовність куль, що стягується). (X,ρ) – повний \iff виконується умова Кантора.

Перед доведенням треба зробити кілька зауважень.

І. Точка, що належить перетину, буде в цьому випадку єдиною.

!Припустимо, що це не так, тобто
$$\exists b^*, b^{**} \in \bigcap_{n=1}^{\infty} B[a_n; r_n]$$
. Тоді $\forall n \geq 1: \begin{cases} \rho(a_n, b^*) \leq r_n \\ \rho(a_n, b^{**}) \leq r_n \end{cases}$. $\Longrightarrow \rho(b^*, b^{**}) \leq \rho(b^*, a_n) + \rho(a_n, b^{**}) \leq r_n + r_n = 2r_n$. Спрямуємо $n \to \infty$, тоді $\rho(b^*, b^{**}) \leq 0 \Longrightarrow \rho(b^*, b^{**}) = 0 \Longrightarrow b^* = b^{**}$. Суперечність!

II. Покажемо, що $\{a_n, n \geq 1\}$ – послідовність центрів – фундаментальна. За умовою, $r_n \to 0 \implies \forall \varepsilon > 0: \exists N: \forall n \geq N: r_n < \varepsilon$. Достатньо взяти лише $r_N < \varepsilon$. Тоді $\forall n, m \geq N: a_m, a_n \in B[a_N, r_N] \implies \rho(a_m, a_N) < r_N$ та $\rho(a_n, a_N) < r_N$. $\implies \rho(a_n, a_m) \leq \rho(a_n, a_N) + \rho(a_N, a_m) < 2r_N < 2\varepsilon$. Отже, $\{a_n, n \geq 1\}$ - фундаментальна.

Proof.

 \Longrightarrow Дано: (X,ρ) - повний. Задамо послідовність куль $\{B[a_n;r_n],n\geq 1\}$, що стягується. Тоді послідовність $\{a_n,n\geq 1\}$ — фундаментальна. Оскільки X - повний, то тоді $\{a_n,n\geq 1\}$ — збіжна, тобто $a_n\to a_0$. Оскільки $B[a_n;r_n]$ — замкнені, то маємо, що $a_0\in B_n$. Звідси $a_0\in\bigcap_{n=1}^\infty B_n$.

 \sqsubseteq Дано: умова Кантора. Нехай $\{a_n, n \geq 1\}$ – фундаментальна послідовність. Нам достатньо буде у неї взяти збіжну підпослідовність. Нехай маємо $n_1 \in \mathbb{N}$, щоб $\forall n \geq n_1 : \rho(a_n, a_{n_1}) < \frac{1}{2}$.

Тоді
$$\exists n_2 > n_1 : \forall n \geq n_2 : \rho(a_n, a_{n_2}) < \frac{1}{4}$$

Тоді маємо послідовність $n_1 < n_2 < n_3 < \dots$ із властивістю $\forall n \geq n_k : \rho(a_n, a_{n_k}) < \frac{1}{2^k}$. Маємо тоді кулі $B\left[a_{n_k}; \frac{1}{2^{k-1}}\right]$, що вкладені. Дійсно, $x \in B\left[a_{n_{k+1}}; \frac{1}{2^k}\right] \Longrightarrow \rho(a_{n_k}, x) \leq \rho(a_{n_k}, a_{n_{k+1}}) + \rho(a_{n_{k+1}}, x) \leq \frac{1}{2^{k-1}} \Longrightarrow x \in B\left[a_{n_k}; \frac{1}{2^{k-1}}\right]$ Якщо a – спільна точка куль, то $a_{n_k} \to a$.

Definition 1.4.15 Задано (X, ρ) та $(Y, \tilde{\rho})$ – два різних метричних простори. Відображення $f \colon X \to Y$ називається **ізометрією**, якщо

$$\forall x_1, x_2 \in X : \tilde{\rho}(f(x_1), f(x_2)) = \rho(x_1, x_2)$$

Тобто суть ізометрії – це збереження відстаней.

Remark 1.4.16 Кожна ізометрія f – уже автоматично ін'єктивна.

Дійсно, припустимо, що $f(x_1) = f(x_2)$. За визначенням ізометрії, $\tilde{\rho}(f(x_1), f(x_2)) = \rho(x_1, x_2)$. Отримаємо $\rho(x_1, x_2) = 0$, тобто $x_1 = x_2$.

Definition 1.4.17 Метричні простори $(X, \rho), (Y, \tilde{\rho})$ називаються **ізометричними**, якщо

 $\exists f \colon X \to Y$ – бієктивна ізометрія

Example 1.4.18 Розглянемо $(\mathbb{R}, \tilde{\rho})$ та $\left(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \rho\right)$ – два метричних простори. У цьому випадку ρ – стандартна метрика та $\tilde{\rho}(x,y) = |\arctan y|$. Ці два простори – ізометричні. Дійсно, між ними існує ізометрія $\arctan x \in \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, що є бієктивною.

Proposition 1.4.19 Задані $(X, \rho), (Y, \tilde{\rho})$ — два ізоморфні метричні простори. (X, ρ) — повний $\iff (Y, \tilde{\rho})$ — повний.

Proof.

⇐ зеркальне доведення.

Definition 1.4.20 Задано Y – повний метричний простір.

Він буде називатися **поповненням** (completion) метричного простору X, якщо

X – ізометричний підпростір Y;

X – щільна в Y.

Theorem 1.4.21 Для кожного метричного простору (X, ρ) існує поповнення. Причому це поповнення єдине з точністю до ізометрії.

Proof.

І. Існування.

Позначимо F за множина фундаментальних послідовностей $\{x_n\}$ в X. Стаціонарні послідовності є фундаментальними, тож звідси X можна сприймати як підмножину F.

Розглянемо функцію $d(\{x_n\},\{y_n\}) = \lim_{n\to\infty} \rho(x_n,y_n)$, яка визначена на $F\times F$. Для коректності треба довести існування даної границі. Ми доведемо, що $\{\rho(x_n,y_n),n\geq 1\}$ – фундаментальна (це числова послідовність, тому цього буде достатньо).

Нам відомо, що $\{x_n\}, \{y_n\}$ фундаментальні, тобто $\exists N_1, N_2$, для яких $\rho(x_n, x_m) < \varepsilon, \rho(y_n, y_m) < \varepsilon$ для всіх $n, m \geq N_1, m, n \geq N_2$. Тоді при $N = \max\{N_1, N_2\}$ справедлива оцінка:

 $|\rho(x_n, y_n) - \rho(x_m, y_m)| \le \rho(x_n, y_n) + \rho(x_m, y_m) \le (\rho(x_n, x_m) + \rho(x_m, y_m) + \rho(y_m, y_n)) - \rho(x_m, y_m) < 2\varepsilon$. Отже, функція d визначена коректно. Вона майже метрика, оскільки (легко перевірити) виконуються всі властивості. На жаль, $d(\{x_n\}, \{y_n\}) = 0 \implies \{x_n\} = \{y_n\}$ (приклад буде нижче).

ться всі властивості. На жаль, $d(\{x_n\}, \{y_n\}) = 0 \implies \{x_n\} = \{y_n\}$ (приклад буде нижче). Створимо відношення еквівалентності $\{x_n\} \sim \{y_n\} \iff d(\{x_n\}, \{y_n\}) = 0$. Утвориться фактормножина $F/_{\sim} = \hat{F}$. Елементи з \hat{F} позначатимемо за $\overline{\{x_n\}}$. Наша мета буде довести, що саме \hat{F} буде поповненням X.

На фактормножині покладемо $\tilde{\rho}\left(\overline{\{x_n\}},\overline{\{y_n\}}\right)=d(\{x_n\},\{y_n\})$. Варто пересвідчитися, що воно визначено коректно.

Нехай $\{x_n\} \sim \{x_n'\}$ та $\{y_n\} \sim \{y_n'\}$. Тобто $d(\{x_n\}, \{x_n'\}) = 0$ та $d(\{y_n\}, \{y_n'\}) = 0$. Тоді $d(\{x_n\}, \{y_n\}) = \lim_{n \to \infty} \rho(x_n, y_n) \leq \lim_{n \to \infty} \rho(x_n, x_n') + \lim_{n \to \infty} \rho(x_n', y_n') + \lim_{n \to \infty} \rho(y_n', y_n) = d(\{x_n'\}, \{y_n'\})$. Аналогічно отримаємо $d(\{x_n'\}, \{y_n'\}) \leq d(\{x_n\}, \{y_n\})$. Отже, $d(\{x_n'\}, \{y_n'\}) = d(\{x_n\}, \{y_n\})$, тобто $\tilde{\rho}$

визначилося коректним чином.

Поставимо відображення $f: X \to \hat{F}$ таким чином: $f(x) = \overline{\{x\}}$. Це буде ізометрією, тому що $\tilde{\rho}(f(x_1), f(x_2)) = \tilde{\rho}(\overline{\{x_1\}}, \overline{\{x_2\}}) = d(\{x_1\}, \{x_2\}) = \lim_{n \to \infty} \rho(x_1, x_2) = \rho(x_1, x_2)$. Відображення f зобов'язане бути сюр'єктивним, оскільки повертається клас еквівалентності. Тобто f — бієктивна ізометрія, а тому $(X, \rho), (\hat{F}, \tilde{\rho})$ — ізометричні.

Покажемо, що $(\hat{F}, \tilde{\rho})$ – повний метричний простір. (TODO: обміркувати).

II. Единість.

Розглянемо два поповнення $(Y_1, \tilde{\rho}_1), (Y_2, \tilde{\rho}_2)$ простору (X, ρ) . Тобто, за означенням, маємо $Y_1 \supset X_1 \sim X \sim X_2 \subset Y_2$, а також $\overline{X_1} = Y_1, \overline{X_2} = Y_2$. Під \sim мається на увазі ізометричність. Із цього X_1 ізометричний до X_2 , нехай g — відповідна ізометрія.

Побудуємо $f: Y_1 \to Y_2$ за таким правилом: для кожного $y \in Y_1$ беремо таку послідовність $\{x_n\} \subset X_1$, щоб $x_n \to y$ – тоді $f(y) = \lim_{n \to \infty} g(x_n)$. Треба пересвідчитися, що визначення коректне. Дійсно, нехай $\{x_n\}, \{x_n'\}$ – такі дві послідовності, що $x_n \to y, x_n' \to y$. Тоді звідси вилпиває наступне: $\tilde{g}_{\Sigma}(g(x_n), g(x'))$ ізометричність $\tilde{g}_{\Sigma}(x_n, x') \leq \tilde{g}_{\Sigma}(x_n, x') + \tilde{g}_{\Sigma}(x_n, x') \to 0$ при $x \to \infty$

 $ildе{
ho}_2(g(x_n),g(x_n'))^{\text{ ізометричність}} = ildе{
ho}_1(x_n,x_n') \leq ildе{
ho}_1(x_n,y) + ildе{
ho}_2(y,x_n') \to 0$ при $n \to \infty$. Таким чином, $\lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} g(x_n')$, а тому значення функцій коректно визначено. (ТОDO: подумати над тим, чи правильно я все це розписав).

Example 1.4.22 Беремо стандартний метричний простір \mathbb{R} , послідовності $\{x_n\} = \{0.9, 0.99, 0.999, \dots\}$ та $\{y_n\} = \{1, 1, 1, \dots\}$. Зауважимо, що $d(\{x_n\}, \{y_n\}) = \lim_{n \to \infty} \rho(x_n, y_n) = \lim_{n \to \infty} 0.00 \dots 01 = 0$. При цьому зрозуміло, що $\{x_n\} \neq \{y_n\}$.

1.5 Неперервні відображення

Definition 1.5.1 Задані $(X, \rho), (Y, \tilde{\rho})$ – два метричних простори. Відображення $f: X \to Y$ називається **неперервним у точці** x_0 , якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in X : \rho(x, x_0) < \delta \implies \tilde{\rho}(f(x), f(y)) < \varepsilon$$

Remark 1.5.2 Дане означення можна записати більш компактним чином. Маємо $f: X \to Y$. f – неперервне в точці $x_0 \in X \iff \forall \varepsilon > 0: \exists \delta > 0: f(B(x_0; \delta)) \subset B(f(x_0); \varepsilon)$.

Proposition 1.5.3 Задані $(X, \rho), (Y, \tilde{\rho})$ – два метричних простори та $f: X \to Y$. f – неперервне в точці $x_0 \in X \iff \forall \{x_n\} \subset X: x_n \to x_0$ в $X \implies f(x_n) \to f(x_0)$ в Y. Bnpasa: довести.

Theorem 1.5.4 Задані $(X, \rho), (Y, \tilde{\rho})$ – два метричних простори та $f: X \to Y$. f – неперервне (на множині $X) \iff \forall V$ – замкнена в $Y: f^{-1}(U)$ – замкнена в X.

Proof.

 \implies Дано: f – неперервне. Нехай V – замкнена в Y. Зафіксуємо $x_n \in f^{-1}(V)$ таким чином, що $x_n \to x_0$. Але за неперервністю, $f(x_n) \to f(x_0)$, та додатково $f(x_n) \in V$. Значить, за замкненістю V, точка $f(x_0) \in V \implies x_0 \in f^{-1}(V)$. Отже, $f^{-1}(V)$ – замкнена.

 \sqsubseteq Дано: $\forall V$ – замкнена в Y : $f^{-1}(U)$ – замкнена в X. Оберемо $x_n \to x_0$. !Припустимо, що $f(x_n) \not\to f(x_0)$, тобто існує шар $B(f(x_0); \varepsilon)$, поза яким знаходиться підпослідовність $\{f(x_{n_k})\}$. Якщо V – замикання множини $\{f(x_{n_k})\}$, то звідси $x_{n_k} \in f^{-1}(V)$; $f(x_0) \notin V$. Тоді звідси $x_0 \notin f^{-1}(V)$, проте $x_{n_k} \to x_0$ та x_0 є граничною точкою для $f^{-1}(A)$. Суперечність! ■

Corollary 1.5.5 f – неперервне $\iff \forall U$ – відкрита в $Y: f^{-1}(U)$ – відкрита в X. Вказівка: застосувати попередню теорему та рівність $f^{-1}(A^c) = (f^{-1}(A))^c$.

Proposition 1.5.6 Задані X, Y, Z – метричні простори та $f: X \to Y, g: Y \to Z$. Нехай f – неперервне в точці $x_0 \in X$ та g – неперервне в точці $f(x_0) \in Y$. Тоді $g \circ f$ – неперервне в точці $x_0 \in X$. Вправа: довести.

Proposition 1.5.7 Задано (X, ρ) – метричний простір та зафіксуємо $x_0 \in X$. Тоді функція $f(x) = \rho(x, x_0)$, де $f: X \to \mathbb{R}$, – неперервна на X.

Proof.

Дійсно, нехай $y_0 \in X$. Припустимо, що $\{y_n\}$ така, що $y_n \to y_0$. Хочемо $f(y_n) \to f(y_0)$. Справді, $|f(y_n) - f(y_0)| = |\rho(y_n, x_0) - \rho(y_0, x_0)| \le |\rho(y_n, y_0)| \to 0.$ Для $\mathbb R$ береться стандартна метрика, якщо нічого іншого не вказується зазвичай.

Corollary 1.5.8 Задано $(L, \|\cdot\|)$ – нормований простір. Тоді норма $\|\cdot\|$: $L \to \mathbb{R}$ – неперервна. Вказівка: оскільки $\rho(x,y) = ||x-y||$, то звідси $||x|| = \rho(x,0)$.

Corollary 1.5.9 Задано $(E, (\cdot, \cdot))$ – евклідів простір. Тоді при фіксованому $x_0 \in E$ маємо (x, x_0) – неперервне відображення.

Proof.

Нехай
$$\{y_n\}$$
 задана так, що $y_n \to y_0$. Хочемо довести, що $(y_n, x_0) \to (y_0, x_0)$. $|(y_n, x_0) - (y_0, x_0)| = |(y - y_0, x_0)| \le \sqrt{\|y - y_0\|} \sqrt{\|x_0\|} \to 0$, оскільки $\|\cdot\|$ – неперервне.

Definition 1.5.10 Задано (X, ρ) – метричний простір та $f: X \to X$. Дане відображення називається стиском, якщо

$$\exists q \in (0,1) : \forall x, y \in X : \rho(f(x), f(y)) \le q \cdot \rho(x, y)$$

Remark 1.5.11 Стискаючі відображення – неперервні.

Вказівка: обрати $\delta = \frac{q}{\varepsilon}$ при всіх $\varepsilon > 0$.

Theorem 1.5.12 Теорема Банаха

Задано (X, ρ) – повний метричний просторі та $f: X \to X$ – стискаюче відображення. Тоді існує єдина точка нерухома точка, тобто $\exists ! x \in X : f(x) = x$.

Proof.

І. Існивання.

Нехай $x_0 \in X$ – довільна точка. Зробимо позначення: $x_1 = f(x_0), \ x_2 = f(x_1), \dots, x_n = f(x_{n-1}), \dots$ Покажемо, що послідовність $\{x_n, n \geq 0\}$ — фундаментальна. Дійсно, для $m \leq n$ маємо: $\rho(x_m, x_n) = \rho(f(x_{m-1}), f(x_{n-1})) \le q \cdot \rho(x_{m-1}, x_{n-1}) \le \dots \le q^m \rho(x_0, x_{n-m}).$ $\rho(x_0, x_{n-m}) \le \rho(x_0, x_1) + \rho(x_1, x_2) + \dots + \rho(x_{n-m-1}, x_{n-m}) \le \rho(x_0, x_1)(1 + q + \dots + q^{n-m-1}) \le 1$ $\leq \rho(x_0, x_1) \frac{1}{1 - q}.$

Разом отримаємо $\rho(x_m,x_n) \leq \frac{q^m}{1-q} \rho(x_0,x_1) \to 0, n,m \to \infty.$ Оскільки (X,ρ) – повний, то $\{x_n\}$ – збіжна, позначимо $a=\lim_{n\to\infty} x_n.$ Зважаючи на неперервність стиска, отримаємо $f(a) = f\left(\lim_{n\to\infty} x_n\right) = \lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} x_{n+1} = a$. Тобто a – це наша шукана нерухома точка.

II. *Єдиність*.

!Припустимо, що f має дві різні нерухомі точки a, b. Буде суперечність! Дійсно, $0 < \rho(a, b) = \rho(f(a), f(b)) \le q \cdot \rho(a, b) < \rho(a, b).$

Remark 1.5.13 Насправді, в теоремі Банаха достатньо вимагати, щоб саме $f^n \stackrel{\text{def.}}{=} f \circ \cdots \circ f$ було правів стиском, а не відображення f.

Дійсно, за теоремою Банаха, f^n матиме єдину нерухому точку a, тобто $f^n(a) = a$. Тоді точка f(a)буде теж нерухомою для f^n , оскільки $f^n(f(a)) = f(f^n(a)) = f(a)$. Але за єдиністю, f(a) = a – дві нерухомі мають збігатися. Єдиність нерухомої точки для f доводиться неважко.

1.6 Компактність

Definition 1.6.1 Задано (X, ρ) – метричний простір та $A \subset X$. Множина A називається **компактом**, якщо

$$\forall \{x_n, n \geq 1\} \subset A : \exists \{x_{n_k}, k \geq 1\} : x_{n_k} \to x_0, k \to \infty, \text{ причому } x_0 \in A$$

Якщо прибрати умову $x_0 \in A$, то тоді A називається **передкомпактом**.

Proposition 1.6.2 Задано (X, ρ) – метричний простір та $A \subset X$.

A – компакт $\iff \forall B \subset A$, де B – нескінченна множина, існує $x_0 \in A$ – гранична точка B. Якщо прибрати умову $x_0 \in A$, то вже мова буде йти про передкомпакт.

Proof.

 \Rightarrow Дано: A – компакт. Нехай $B\subset A$ – нескінченна множина. Оберемо послідовність $\{x_n,n\geq 1\}\subset A$ $\overline{B}\subset A$, де всі вони між собою різні. Тоді за умовою компактності, існує підпослідовність $x_{n_k}\to x_0,$ причому $x_0 \in A$. Зауважимо, що всі $x_{n_k} \neq x_0$, тож x_0 – гранична точка A.

Якби існували $k \in \mathbb{N}$, для яких $x_{n_k} = x_0$, то тоді ми би сформували підпослідовність $\{x_{n_{k_m}}\}$ без цих елементів, причому $x_{n_{k_m}} \to x_0$, а тепер $x_{n_{k_m}} \neq x_0$. Тож все одно x_0 залишається граничною точкою A.

 $\vdash \sqsubseteq$ Дано: $\forall B \subset A$, де B – нескінченна множина, існує $x_0 \in A$ – гранична точка B. Отже, нехай $\{x_n, n \ge 1\} \subset A$ – довільна послідовність. У нас є два варіанти:

I. Множина значень $\{x_n\}$ – скінченна. Тоді можна відокремити стаціонарну підпослідовність.

II. Множина значень $\{x_n\}$ – нескінченна, всі ці значення покладемо в множину $B\subset A$. Тоді за умовою, існує $x_0 \in A$ – гранична точка B. Отже, $B \cap B(x_0; \varepsilon)$ містить нескінченне число точок для всіх $\varepsilon > 0$. Зокрема:

 $\varepsilon=1\implies B\cap B(x_0;1)$ має нескінченну множину. Там існує елемент $y_1\in B\cap B(x_0;1)$, тобто це

одне зі значень послідовності. Тобто $y_1=x_{n_1}$. $\varepsilon=\frac{1}{2} \implies B\cap B\left(x_0;\frac{1}{2}\right)$ має нескінченну множину. Там існує елемент $y_2\in B\cap B\left(x_0;\frac{1}{2}\right)$, тобто це одне зі значень послідовності. Тобто $y_2=x_{n_2}$. Причому можна обрати $x_{n_2}>x_{n_1}$. Якби так не було можливо, то $B \cap B\left(x_0; \frac{1}{2}\right)$ була б скінченною множиною, що не наше випадок.

Побудували підпослідовність $\{x_{n_k}, k \geq 1\}$, причому $\rho(x_0, x_k) < \frac{1}{k}$. Тож при $k \to \infty$ матимемо $x_{n_k} \to x_0 \in A$. Отже, A – компакт.

Випадок передкомпакту повторюється майже все слово в слово.

Proposition 1.6.3 Задано (X, ρ) – компактний метричний простір. Тоді (X, ρ) – повний.

Proof.

Дійсно, нехай $\{x_n\}\subset X$ – фундаментальна. Оскільки X – компакт, то існує збіжна підпослідовність $\{x_{n_k}\}$, де $x_{n_k} \to x, x \in X$. Ми вже знаємо, що тоді й сама послідовність $\{x_n\} \to x$ буде збіжною. Отже, (X, ρ) – повний метричний простір.

Definition 1.6.4 Задано (X, ρ) – метричний простір та $A \subset X$. Множина A називається **обмеженою**, якщо

$$\exists R > 0 : A \subset B(a; R)$$

Definition 1.6.5 Задано (X, ρ) – метричний простір та $A \subset X$.

Множина A називається **цілком обмеженою**, якщо

$$\forall \varepsilon > 0 : \exists C_{\varepsilon} = \{x_1, x_2, \dots, x_n\} : A \subset \bigcup_{x \in C_{\varepsilon}} B(x; \varepsilon)$$

До речі, C_{ε} , для якої виконана $A\subset\bigcup_{x\in C_{\varepsilon}}B(x;\varepsilon)$, називається **скінченною** ε -сіткою.

Тобто A – цілком обмежена, коли вона має скінченну ε -сітку для всіх $\varepsilon > 0$.

Proposition 1.6.6 Задано (X, ρ) – метричний простір та A – цілком обмежена множина. Тоді A – обмежена.

Proof.

Для множини A існує 1-сітка, тобто $C_1=\{x_1,\ldots,x_n\}$, для якої $A\subset\bigcup_{x\in C_1}B(x;1)$. Зафіксуємо $y\in X$ та оберемо $R=1+\max_{x\in C_1}\rho(x,y)$. Тоді хочемо довести, що $A\subset B(y;R)$.

Нехай $a \in A$, тоді вже $a \in B(x;1)$ при деякому $x \in C_1$, а також $\rho(a;x) < 1$. Звідси $\rho(a; y) \le \rho(a; x) + \rho(x; y) < 1 + \max_{x \in C_1} \rho(x; y) = R.$

Отже, A – обмежена.

 \mathbf{Remark} 1.6.7 Не обов'язково вимагати, щоб A була цілком обмежена. Подивившись на це доведення, ми можемо лише вимагати, щоб A мала хоча б одну ε -сітку — тоді буде обмеженість A.

Theorem 1.6.8 Критерій Фреше-Хаусдорфа

Нехай (X, ρ) – повний метричний простір та $A \subset X$.

A – цілком обмежена \iff A – передкомпакт.

Remark 1.6.9 Під час доведення 🗲 нам не потрібна буде умова повноти метричного простору.

 \Rightarrow Дано: A — цілком обмежена. Нехай $\{a_n, n \geq 1\} \subset A$ — довільна послідовність.

Оберемо 1-сітку C_1 , де $A\subset\bigcup_{x\in C_1}B(x;1)$. В одному з цих шарів нескінченне число членів послідовності, той шар позначу за $B(y_1;1)$; маємо підпослідовність $\{a_{n_k},k\geq 1\}\subset B(y_1;1)$.

Оберемо $\frac{1}{2}$ -сітку $C_{\frac{1}{2}}$, де $A\subset\bigcup_{x\in C_{\frac{1}{2}}}B\left(x;\frac{1}{2}\right)$. В одному з цих шарів нескінченне число членів підпо-

слідовності, той шар позначу за $B\left(y_2;\frac{1}{2}\right)$; маємо підпідпослідовність $\{a_{n_{k_m}},k\geq 1\}\subset B\left(y_2;\frac{1}{2}\right)$.

Отримали послідовність центрів $\{y_n, n \geq 1\}$, доведемо її фундаментальність. $\rho(y_n, y_m) \leq \rho(y_n, a_*) + \rho(a_*, y_m) < \frac{1}{n} + \frac{1}{m} \to 0$ при $n, m \to \infty$. У даному випадку ми підібрали елемент $a_* \in B\left(\frac{1}{n}; y_n\right) \cap B\left(\frac{1}{m}; y_m\right)$.

Тепер розглянемо підпослідовність $\{a_{n_p}, p \ge 1\}$, яка будується таким чином: беремо перший елемент з $\{a_{n_k}\}$ (це наше a_{n_1}), потім перший елемент з $\{a_{n_{k_m}}\}$ (це наше a_{n_2}), . . . Доведемо, що $\{a_{n_p}, p \ge 1\}$ – фундаментальна. Дійсно,

 $ho(a_{n_p},a_{n_t}) \leq
ho(a_{n_p},y_p) +
ho(y_p,y_t) +
ho(y_t,a_{n_t}) < \frac{1}{p} + \frac{1}{t} +
ho(y_p,y_t) \to 0, t, p \to \infty$ Оскільки (X,ρ) – повний, то звідси $\{a_{n_p},n\geq 1\}$ – збіжна підпослідовність. Довели, що A – перед-

Припустимо, що A – це є цілком обмеженою. Тобто для деякого $\varepsilon > 0$ не існує ε -сітки. Нехай $x_1 \in A$. Тоді існує $x_2 \in A$, для якої $\rho(x_1, x_2) \ge \varepsilon$ (інакше якби для кожної $x_2 \in A$ була б $\rho(x_1, x_2) < \varepsilon$, то ми си знайшли ε -сітку $\{x_1\}$, що суперечить умові).

Далі існує $x_3 \in A$, для якої $\rho(x_1, x_3) \ge \varepsilon$ та $\rho(x_2, x_3) \ge \varepsilon$ (аналогічно якби для кожної $x_3 \in A$ ці два нерівності не виконувалися би, то ми би знайшли один з трьох ε -сіток: $\{x_1\}$ або $\{x_2\}$ або $\{x_1, x_2\}$).

Побудували послідовність $\{x_n, n \geq 1\} \subset A$, для якої справедлива $\rho(x_n, x_m) \geq \varepsilon$ при всіх $n \neq m$. За умовою передкомпактності, існує $\{x_{n_k}, n \geq 1\}$, для якої $x_{n_k} \to x_0$. Водночає звідси ми отримаємо, що існують номери K_1,K_2 , для яких $\rho(x_{n_{K_1}},x_{n_{K_2}}) \leq \rho(x_{n_{K_1}},x_0) + \rho(x_0,x_{n_{K_2}}) < \varepsilon$. Суперечність! Отже, А все ж таки має бути цілком обмеженою.

Theorem 1.6.10 Задано (X, ρ) – метричний простір та $A \subset X$.

A – компакт \iff для кожного відкритого покриття A можна виділити скінченне підпокриття.

Proof.

 \Rightarrow Дано: A – компакт.

!Припустимо, що існує відрките покриття $\{U_{\alpha}\}$ множини A, від якої не можна відокремити скінченне підпокриття. Оскільки A – компакт, то A – цілком обмежена. Значить, існує 1-сітка C_1 (причому можна підібрати так, щоб $C_1\subset A$), для якої $A\subset\bigcup_{x\in C_1}B(x;1)$, або можна переписати як

 $A\subset\bigcup_{x\in C_1}A\cap B(x;1)$. Серед множин $A\cap B(x;1)$ існує одна з них, яка не покривається скінченним

чином множинами $\{U_{\alpha}\}$. Дану множину позначу за A'.

Сама множина A' — також цілком обмежена, тож існує $\frac{1}{2}$ -сітка $C_{\frac{1}{2}}$ (знову підберемо так, щоб $C_{\frac{1}{2}}\subset A'$), для якої виконано $A'\subset\bigcup_{x\in C_{\frac{1}{2}}}A'\cap B\left(x;\frac{1}{2}\right)$. Знову ж таки, серед $A'\cap B\left(x;\frac{1}{2}\right)$ існує одна

з них, що не покривається скінченним чином множинами $\{U_{\alpha}\}$. Дану множину позначу за A''.

. Продовжуючи процедуру, отримаємо набір куль $B_n = B\left(x_n; \frac{1}{n}\right)$, де центр $x_n \in B_{n-1} \cap A$. Позначимо $\overline{B_n \cap A} = K_n$ та зауважимо, що K_n – це замкнена куля в метричному підпросторі A, де $R = \frac{1}{2^n}$ та центр $y_n \in K_{n-1}$.

Подвоїмо радіуси кожної з цих куль. Тоді отримаємо послідовність вкладених куль, які стягуються. Оскільки A — компакт, то (A, ρ_A) — повний метричний простір, тож за теоремою Кантора, існує $a \in A$ — спільна точка цих куль. Зважаючи на покриття множини A, отримаємо $a \in U_{\alpha_0}$ при деякому α_0 . Оскільки U_{α_0} — відкрита, то існує куля $B(z,\delta) \subset U_{\alpha_0}$. Ми можемо підібрати завжди такий $N \in \mathbb{N}$, щоб було виконано $\frac{1}{N} < \frac{\delta}{2}$, тоді звідси $K_n \subset B(z;\delta) \subset U_{\alpha_0}$. Таким чином, K_n була покрита лише однією множиною із $\{U_{\alpha}\}$, проте ми обирали такі кулі (на початку), які не допускали скінченне підпокриття. Суперечність!

 \leftarrow Дано: кожне покриття A має скінченне підпокриття.

Припустимо, що A – не компакт, тобто існує послідовність $\{x_n, n \geq 1\} \subset A$, що не має часткових границь. Тоді кожний відкритий окіл $U_a, a \in A$, містить скінченну кількість членів послідовності $\{x_n\}$ (якби існував окіл U_a із нескінченним числом членів послідовності, то a стала би граничною точкою, що неможливо). Набір $\{U_a, a \in A\}$ – відкрите покриття множини A. За умовою, існує скінченне підпокриття $\{U_{a_1}, \ldots, U_{a_n}\}$ множини A, але тоді $A \subset \bigcup_{i=1}^n U_{a_i}$, де праворуч – скінченна множина; ліворуч – нескінченна в силу нескінченності послідовності $\{x_n\}$ – суперечність!

Corollary 1.6.11 Задано $(X, \rho), (Y, \tilde{\rho})$ – два метричних простори та $f: X \to Y$ – неперервне відображення. Відомо, що X – компакт. Тоді f(X) – компакт.

Proof.

Маємо $\{U_{\alpha}\}$ — відкрите покриття f(X). Тоді $\{f^{-1}(U_{\alpha})\}$ — відкрите покриття X, але за компактністю, можна виділити скінченне підпокриття $\{f^{-1}(U_1),\ldots,f^{-1}(U_m)\}$, тоді звідси $\{U_1,\ldots,U_m\}$ буде скінченним підпокриттям f(X).

Corollary 1.6.12 Задано (X, ρ) – метричний простір та $f: X \to \mathbb{R}$ – числова неперервна функція. Відомо, що X – компакт. Тоді f – обмежена та досягає найбільшого та найменшого значень.

Theorem 1.6.13 Задано $(X, \rho), (Y, \tilde{\rho})$ — два метричних простори та $f: X \to Y$ — неперервне, причому X — компакт. Тоді f — рівномірно неперервне.

Proof.

!Припустимо, що $\exists \varepsilon > 0: \forall \delta > 0: \exists x,y \in X: \rho(x,y) < \delta$, але $\tilde{\rho}(f(x),f(y)) \geq \varepsilon$. Оберемо $\delta = \frac{1}{n}, n \in \mathbb{N}$, тоді утвориться послідовність $\{x_n\}, \{y_n\} \subset X$. Оскільки X – компакт, то відокремимо збіжні підпослідовності $\{x_{n_k}\}, \{y_{n_k}\}$. Але оскільки $\rho(x_{n_k},y_{n_k}) < \frac{1}{n_k}$, то звідси випливає $\lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} x_{n_k}$. Із іншого боку, $\lim_{k \to \infty} f(x_{n_k}) \neq \lim_{k \to \infty} f(y_{n_k})$, оскільки виконана нерівність $\tilde{\rho}(f(x_{n_k}),f(y_{n_k}) \geq \varepsilon$. Суперечність!

1.7 Теорема Стоуна-Ваєрштраса

Надалі будемо розглядати компактний метричний простір (X, ρ) та метричний простір $(C(X), \sigma)$ простір неперервних функцій із метрикою $\sigma(f, g) = \max_{x \in X} \|f(x) - g(x)\|$. Причому даний метричний простір теж повний (це аналогічно доводиться).

Definition 1.7.1 Множина $A \subset C(X)$ називається **алгеброю**, якщо $\forall f,g \in A, \forall \alpha \in \mathbb{R}$:

$$\alpha f, f + g, f \cdot g \in A$$

Definition 1.7.2 Нехай $A \subset C(X)$ – алгебра.

Алгебра A відділяє точки множини X, якщо

$$\forall x, y \in X : x \neq y : \exists f \in A : f(x) \neq f(y)$$

Theorem 1.7.3 Теорема Стоуна-Ваєрштраса

Задано (X, ρ) – компактний метричний простір та $(C(X), \sigma)$ – простір неперервних дійсних функцій, заданий вище. Маємо $A \subset C(X)$. Про неї відомо, що

- 1) A алгебра, яка віддаляє точки множини X;
- 2) функція f, яка визначена як $f(x) = 1, \forall x \in X$, належить A.

Тоді множина A скрізь щільна в $(C(X), \sigma)$.

Proof.

Ми хочемо довести, що $\bar{A} = C(X)$.

Нехай $f \in A$. Хочемо довести, що $|f| \in \bar{A}$. У курсі мат. аналізу ми доводили теорему Ваєрштраса про наближення функції многочленом. Зокрема для функції $q(t) = \sqrt{t}, t \in [0,1]$ маємо, що $\forall \varepsilon > 0 : \exists P_{\varepsilon}$

– многочлен від
$$t: |\sqrt{t} - P_{\varepsilon}(t)| < \varepsilon$$
. Тоді $\forall x \in X:$
$$\left| \frac{|f(x)|}{\|f\|} - P_{\varepsilon} \left(\frac{f^2(x)}{\|f\|^2} \right) \right| = \left| \sqrt{\frac{|f(x)|^2}{\|f\|^2}} - P_{\varepsilon} \left(\frac{f^2(x)}{\|f\|^2} \right) \right| < \varepsilon.$$

Оскільки $f \in A$, то в силу алгебри $\frac{f^2}{\|f\|} \in A$. Оскільки P_{ε} – многочлен, то $P_{\varepsilon} \circ \frac{f^2}{\|f\|} \in A$. Ми знайшли

$$P_{\varepsilon} \circ \frac{f^2}{\|f\|^2} \in A,$$
 для якої $\left\| \frac{|f|}{\|f\|} - P_{\varepsilon} \circ \frac{f^2}{\|f\|^2} \right\| < \varepsilon.$ Отже, $\frac{|f|}{\|f\|}$ — гранична точка, тобто $\frac{|f|}{\|f\|} \in \bar{A}$. Відомо знову з мат. аналізу, що для всіх $a,b \in \mathbb{R}$ ми маємо такі рівності:
$$\max\{a,b\} = \frac{1}{2} \left(a+b+|a-b|\right) \qquad \min\{a,b\} = \frac{1}{2} \left(a+b-|a-b|\right).$$

$$\max\{a,b\} = \frac{1}{2}(a+b+|a-b|) \qquad \min\{a,b\} = \frac{1}{2}(a+b-|a-b|)$$

Значить, маючи $f,g\in A$ та маючи результат вище, отримаємо $\max\{f,g\}, \min\{f,g\}\in \bar{A}.$

Оберемо $x,y\in X$ так, що $x\neq y$. Тоді існує функція $g\in A$, для якої $g(x)\neq g(y)$. Далі покладемо нову функцію $f(z)=\alpha+\dfrac{\beta-\alpha}{g(y)-g(x)}(g(z)-g(x)), z\in X, \ \alpha,\beta\in\mathbb{R}.$ Тоді звідси $f\in A$ (ми тут користуємося пунктом 2), щоб це показати), причому $f(x) = \alpha, \ f(y) = \beta.$

Отже, що ми довели щойно: $\forall x,y \in X: x \neq y, \forall \alpha,\beta \in \mathbb{R}: \exists f \in A: f(x) = \alpha, \ f(y) = \beta.$

Нехай $f \in C(X)$ та $\varepsilon > 0$. Зафіксуємо $x \in X$, для $z \in X$ покладемо $\alpha = f(x), \beta = f(z)$. Тоді за щойно доведеним, існує $h_z \in A$, для якої $h_z(x) = \alpha = f(x)$ та $h_z(z) = \beta = f(z)$.

Оскільки $h_z-f\in C(X)$, то за означенням, $\exists \delta_z>0: \forall y\in B(z,\delta_z): h_z(y)-f(y)<\varepsilon.$ Сім'я множин $\{B(z,\delta_z) \mid z \in X\}$ – відкрите покриття компактної множини X. Отже, ми можемо взяти скінченне підпокриття $\{B(z_k, \delta_{z_k}) \mid k = \overline{1, n}\}.$

Визначимо функцію $g_x(y)=\min_{1\leq k\leq n}\{h_{z_k}(y))\},y\in X.$ Зауважимо, що по-перше, $g_x\in \bar{A};$ по-друге, $g_x(x) = f(x)$; по-третє, $\forall y \in X : g_x(y) - f(y) < \varepsilon$.

Оскільки $g_x-f\in C(X)$, то за означенням, $\exists \delta_x>0: \forall y\in B(x,\delta_x): g_x(y)-f(y)>-\varepsilon.$ Сім'я множин $\{B(x,\delta_x) \mid x \in X\}$ – відкрите покриття компактної множини X. Отже ми можемо взяти скінченне підпокриття $\{B(x_k, \delta_{x_k} \mid k = \overline{1, m}\}.$

Визначимо функцію $h(y)=\max_{1\leq k\leq m}g_{x_k}(y),y\in X.$ Тоді $h\in \bar{A}$, причому також $\forall y\in X:$

 $f(y)-arepsilon \leq h(y) \leq f(y)+arepsilon$. Для будь-якої функції $f\in C(X)$ ми знайшли $h\in A$, для якої $\|h-f\|<arepsilon$. Отже, $\bar{A}=C(X)$.

$\mathbf{2}$ Початок функціонального аналізу

2.1Обмежені та неперервні лінійні оператори

Definition 2.1.1 Задано $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ – нормовані простори. Лінійний оператор $A: X \to Y$ називають **обмеженим**, якщо

$$\exists C > 0 : \forall x \in X : ||Ax||_Y \le C||x||_X$$

Надалі ми пі норми розрізняти не будемо, бо буде з контексту зрозуміло.

Remark 2.1.2 Маємо обмежений оператор A. Зауважимо, що множина всіх констант, які обмежують оператор, тобто множина $\{C>0\mid \forall x\in X: \|Ax\|\leq C\|x\|\}$, буде непорожньою (можна взяти $C = \frac{\|Ax\|}{\|x\|} > 0$) та обмеженою знизу числом 0. Значить, існує $\inf\{C > 0 \mid \forall x \in X : \|Ax\| \le C\|x\|\}$.

Definition 2.1.3 Задано X, Y – нормовані простори. орегаtors **Нормою** лінійного оператора A називається величина

$$||A|| = \inf\{C > 0 \mid \forall x \in X : ||Ax|| \le C||x||\}$$

Remark 2.1.4 Зауважимо, що для всіх $x \in X$ виконується $||Ax|| \le ||A|| \cdot ||x||$.

Дійсно, для кожного $\varepsilon>0$ існус стала $C_{\varepsilon}>0$, для якої $C_{\varepsilon}<\|A\|+\varepsilon$. Тож для всіх $x\in X$ справедлива нерівність $||Ax|| \le C_{\varepsilon} ||x|| < (||A|| + \varepsilon) ||x||$. Тому ця нерівність виконуватиметься також при $\varepsilon \to 0+0$. Таким чином, $||A|| \in \{C>0 \mid \forall x \in X : ||Ax|| \le C||x||\}$, тобто інфімум досягається. Отже, норма ||A|| – це найменше число, що обмежує лінійний оператор A.

Theorem 2.1.5 Задано X,Y – нормовані простори та $A\colon X\to Y$ – обмежений оператор. Тоді $||A|| = \sup_{x \in X \setminus \{0\}} \frac{||Ax||}{||x||}$

Спочатку доведемо, що $\|A\| = \sup_{x \in X \setminus \{0\}} \frac{\|Ax\|}{\|x\|}$. Уже відомо, що $\forall x \in X : \|Ax\| \le \|A\| \|x\|$, тоді звідси $\forall x \in X \setminus \{0\} : \frac{\|Ax\|}{\|x\|} \le \|A\|$, таким чином $\sup_{x \in X \setminus \{0\}} \frac{\|Ax\|}{\|x\|} \le \|A\|$. Залишилося довести, що строга політийня на почати н

!Припустимо, що $\sup_{x \in X \setminus \{0\}} \frac{\|Ax\|}{\|x\|} < \|A\|$, тобто існує $\varepsilon > 0$, для якого $\sup_{x \in X \setminus \{0\}} \frac{\|Ax\|}{\|x\|} = \|A\| - \varepsilon$. Тоді звідси випливає, що $\forall x \in X \setminus \{0\} : \frac{\|Ax\|}{\|x\|} \le \|A\| - \varepsilon \implies \forall x \in X : \|Ax\| \le (\|A\| - \varepsilon)\|x\|$. Таким чином, $||A|| - \varepsilon$ — це константа, яка обмежує оператор, тоді за означенням норми, $||A|| - \varepsilon \ge ||A||$ суперечність!

суперечність: Отже, ми довели рівність, тобто $\|A\| = \sup_{x \in X \setminus \{0\}} \frac{\|Ax\|}{\|x\|}.$

Theorem 2.1.6 Задано X, Y – нормовані простори та $A: X \to Y$ – обмежений оператор. Тоді $||A|| = \sup ||Ax|| = \sup ||Ax||.$ $||x|| \le 1$ ||x||=1

Proof.

Proof. Ми доведемо ось такий ланцюг нерівностей: $\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \ge \sup_{\|x\| \le 1} \|Ax\| \ge \sup_{\|x\| = 1} \|Ax\| \ge \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$. Оберемо такий $x \neq 0$, щоб $\|x\| \le 1$. Тоді виконується нерівність $\frac{\|Ax\|}{\|x\|} \ge \|Ax\|$. Таким чином,

$$\sup_{\|x\| \leq 1} \|Ax\| \leq \sup_{\substack{\|x\| \leq 1 \\ x \neq 0}} \frac{\|Ax\|}{\|x\|} \leq \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \|A\|.$$

Зрозуміло, що виконується нерівність $\sup_{\|x\|=1} \|Ax\| \le \sup_{\|x\| \le 1} \|Ax\|.$

Залишилося довести, що $\sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \leq \sup_{\|x\|=1} \|Ax\|$. Дана нерівність є наслідком того, що для кожного

$$x \neq 0$$
 число $\frac{\|Ax\|}{\|x\|} = \left\|A\left(\frac{x}{\|x\|}\right)\right\|$ належить множині $\{\|Ax\| \mid \|x\| = 1\}.$

Example 2.1.7 Задано лінійний оператор $A\colon l_2\to l_2$ таким чином: $A(x_1,x_2,\dots)=(x_2,x_3,\dots)$. Довести, що A – обмежений оператор та знайду норму.

Вести, що
$$A$$
 — сомежении оператор та знаиду норму. Згадаемо, що норма $\|(x_1,x_2,\dots)\|=\sqrt{|x_1|^2+|x_2|^2+\dots}$ Оцінимо оператор: $\|A(x_1,x_2,\dots)\|=\|(x_2,x_3,\dots)\|=\sqrt{|x_2|^2+|x_3|^2+\dots}\leq \sqrt{|x_1|^2+|x_2|^2+|x_3|^2+\dots}=1\cdot\|(x_1,x_2,\dots)\|.$ Отже, A — обмежений оператор, бо знайшли константу $C=1$, що обмежуе. $\|A\|=\sup_{\|(x_1,x_2,\dots)\|=1}\|A(x_1,x_2,\dots)\|=\sup_{\|(x_1,x_2,\dots)\|=1}\sqrt{|x_2|^2+|x_3|^2+\dots}=\sup_{\|(x_1,x_2,\dots)\|=1}\sqrt{1-\|x_1\|^2}=1.$

Example 2.1.8 Задано лінійний оператор $A: C([0,1]) \to C([0,1])$, таким чином: $(Ax)(t) = \int_{a}^{b} \tau x(\tau) d\tau$.

Довести, що A – обмежений оператор та знайти норму.

Конкретно в цьому випадку розглядатиметься норма $||f|| = \max_{t \in [0,1]} |f(t)|$.

$$\begin{split} \|Ax\| &= \max_{t \in [0,1]} \left| \int_0^t \tau x(\tau) \, d\tau \right| \leq \max_{t \in [0,1]} \int_0^t |\tau| |x(\tau)| \, d\tau = \int_0^1 |\tau| |x(\tau)| \, d\tau \leq \int_0^1 |\tau| \max_{\tau \in [0,1]} |x(\tau)| \, d\tau = \\ &= \int_0^1 \tau \|x\| \, d\tau = \|x\| \frac{\tau^2}{2} \Big|_0^1 = \frac{1}{2} \|x\|. \end{split}$$

Отже, A – обмежений оператор. Залишилося знайти норму.

Оскільки $\|Ax\| \leq \frac{1}{2}\|x\|$, то звідси випливає $\|A\| = \sup_{\|x\|=1} \|Ax\| \leq \frac{1}{2}$. Із іншого боку, оберемо функцію

$$x(t)=1$$
, для якої $\|x\|=1$. Тоді отримаємо, що $\|Ax\|=\max_{t\in[0,1]}\left|\int_0^{\tau} \tau\,d\tau\right|=\max_{t\in[0,1]}\frac{t^2}{2}=\frac{1}{2}.$

Таким чином, отримаємо $||A|| = \frac{1}{2}$.

Proposition 2.1.9 Задано X,Y – нормовані простори та $\dim X < \infty$ та $A\colon X o Y$ – лінійний оператор. Тоді A – обмежений.

Внаслідок цього, всі оператори між скінченновимірними векторними просторами – обмежені.

Дійсно, нехай $\{e_1,\ldots,e_n\}$ – базис X, нехай на неї стоїть норма $\|x\|_2$, тоді маємо наступне: $||Ax|| = ||A(x_1e_1 + \dots + x_ne_n)|| = ||x_1Ae_1 + \dots + x_nAe_n|| \le |x_1|||Ae_1|| + \dots + |x_n|||Ae_n|| \le \sqrt{|x_1|^2 + \dots + |x_n|^2} \sqrt{||Ae_1||^2 + \dots + ||Ae_n||^2} = C||x||_2.$

Якби була би інша норма $\|\cdot\|$, то вона еквівалентна $\|\cdot\|_2$, а тому обмеженість зберігається.

Theorem 2.1.10 Задано X, Y – нормовані простори та $A: X \to Y$ – лінійний оператор. A – обмежений \iff A – неперервний в точці 0.

Proof.

 \Rightarrow Дано: A – обмежений. Оберемо послідовність $\{x_n\}\subset X$ так, щоб $x_n o 0$. Звідси отримаємо $\overline{\|Ax_n - A0\|} = \|Ax_n\| \le \|A\| \|x_n\| \to 0$. Отже, $Ax_n \to A0$ при $n \to \infty$, що підтверджує неперервність.

 \leftarrow Дано: A – неперервний в точці 0.

!Припустимо, що A – необмежений оператор. Тоді для кожного $n \in \mathbb{N}$ існує точка $x_n \in X$, для якої $\|Ax_n\| > n\|x_n\|$ (ясно, що $x_n \neq 0$). Таким чином, $\frac{\|Ax_n\|}{\|x_n\|} = \left\|A\left(\frac{x_n}{\|x_n\|}\right)\right\| > n$. Для зручності позначу $w_n = \frac{x_n}{\|x_n\|} \in X$, тобто ми вже маємо $\|Aw_n\| > n$. Оскільки відображення A – неперервне в нулі, то для послідовності $\left\{\frac{1}{n}w_n, n \ge 1\right\}$, для якої $\frac{1}{n}w_n \to 0$ виконується $A\frac{w_n}{n} \to A0 = 0$ – суперечність в силу нерівності! Бо в нас $\left\|A\frac{w_n}{n}\right\| > 1$.

Remark 2.1.11 Насправді, A – неперервний в точці $0 \iff A$ – неперервний на X.

Сторона \models зрозуміла. По стороні \models маємо $x_0 \in X$ та припустимо, що $\{x_n\}$ – довільна послідовність, $\overline{\text{де }}x_n \to x_0$. Тоді цілком зрозуміло, що $x_n - x_0 \to 0$, але за неперервністю в нулі, маємо $A(x_n-x_0)=Ax_n-Ax_0\to A0=0$. Таким чином, $Ax_n\to Ax_0$.

Theorem 2.1.12 Множина $\mathcal{B}(X,Y)$ – множина всіх обмежених лінійних операторів – буде підпростором $\mathcal{L}(X,Y)$, а також буде нормованим простором із заданою нормою за означенням вище.

Proof.

Дійсно, нехай $A, B \in \mathcal{B}(X,Y)$, тобто вони обмежені. Хочемо довести, що $A+B, \alpha A \in \mathcal{B}(X,Y)$, тобто вони теж обмежені. Дійсно, справедливі наступні оцінки:

$$||(A+B)x|| = ||Ax+Bx|| \le ||Ax|| + ||Bx|| \le ||A|| ||x|| + ||B|| ||x|| = (||A|| + ||B||) ||x||.$$

$$||(\alpha A)x|| = |\alpha|||Ax|| \le |\alpha|||A|| ||x||.$$

Отже, дійсно $A + B, \alpha A \in \mathcal{B}(X,Y)$. Тепер доведемо, що вищезгадана норма лінійного обмеженого оператора – дійсно норма.

 $||A|| \ge 0$ – зрозуміло. Також якщо ||A|| = 0, то звідси $||Ax|| \le ||A|| ||x|| = 0$, тобто Ax = 0, причому для всіх $x \in X$; або A = O. Навпаки, якщо A = O, тобто $\|A\| = \sup_{\|x\| = 1} \|Ax\| = \sup_{\|x\| = 1} \{0\} = 0$.

Ми вже маємо оцінку $\|\alpha Ax\| \leq |\alpha| \|A\| \|x\|$ при всіх $x \in X$, тому й при всіх x з умовою $\|x\| = 1$. Таким чином, $\|\alpha A\|=\sup \|\alpha Ax\| \leq |\alpha| \|A\|$. Із цієї оцінки випливає, що $\|A\|=\|\alpha^{-1}\alpha A\|\leq |\alpha^{-1}| \|\alpha A\|\implies$

 $\|\alpha A\| \ge |\alpha| \|A\|$. Таким чином, $\|\alpha A\| = |\alpha| \|A\|$ (у тому числі при $\alpha = 0$).

Ми вже маємо оцінку $\|(A+B)x\| \le (\|A\|+\|B\|)\|x\|$ при всіх $x \in X$, тому й при всіх x з умовою ||x|| = 1. Таким чином, $||A + B|| = \sup ||(A + B)x|| \le ||A|| + ||B||$ – третя властивість норми.

Theorem 2.1.13 Простір $\mathcal{B}(X,Y)$ буде повним, якщо Y – повний.

Proof.

Нехай $\{A_n, n \geq 1\} \subset \mathcal{B}(X,Y)$ — фундаментальна послідовність. Зауважимо, що $\{A_nx, n \geq 1\} \subset Y$ – фундаментальна також при всіх $x \in X$. Із фундаментальності $\{A_n\}$ маємо, що $\forall \varepsilon > 0: \exists N:$ $\forall n,m\geq N:\|A_n-A_m\|<arepsilon,$ але тоді $\forall x\in X:\|(A_n-A_m)x\|\leq \|A_n-A_m\|\|x\|<arepsilon\|x\|,$ звідси й випливає фундаментальність.

Тоді при кожному $x\in X$ існує $\lim_{n\to\infty}A_nx=z_x.$ Ми можемо визначити як раз новий оператор $A\colon X\to$ Y, де $x \mapsto z_x$ (границя єдина, тому визначення адекватне). Залишилися три етапи доведення. І. Лінійність. Дійсно, нехай $x,y\in X$ та $\alpha,\beta\in\mathbb{R}$, тоді маємо

 $A(\alpha x + \beta y) = \lim_{n \to \infty} A_n(\alpha x + \beta y) = \lim_{n \to \infty} (\alpha A_n x + \beta A_n y) = \alpha \lim_{n \to \infty} A_n x + \beta \lim_{n \to \infty} A_n y = \alpha A x + \beta A y.$ II. Обмеженість. Оскільки $\{A_n\}$ — фундаментальна, то $\{A_n\}$ — обмежена: $\exists C > 0 : \forall n \ge 1 : \|A_n\| \le C$. Тоді в силу неперервності норми матимемо $\|Ax\| = \lim_{n \to \infty} \|A_n x\| \le C\|x\|$. III. $A_n \to A$. Згадаємо нерівність $\|(A_n - A_m)x\| < \varepsilon \|x\|$ при всіх $x \in X$, при всіх $\varepsilon > 0$ та $n, m \ge N$.

Спрямуємо $m \to \infty$, тоді отримаємо $\|(A_n - A)x\| \le \varepsilon \|x\|$, тому й $\|A_n - A\| \le \varepsilon < 2\varepsilon$.

2.2Продовження неперервних операторів

Задані X,Y – нормовані простори, $X_0\subset X$ та $A\colon X_0\to Y$ – обмежений оператор. Питання полягає в тому, чи існує розширення $\tilde{A}\colon X\to Y$ таким чином, що $\tilde{A}|_{X_0}=A.$ Причому нас буде цікавити таке розширення, що $\|\tilde{A}\| = \|A\|$.

Remark 2.2.1 Просто якщо таке розширення допустиме, то звідси $\|\tilde{A}\| \geq \|A\|$. Дійсно,

$$\|\tilde{A}\| = \sup_{x \in X \backslash \{0\}} \frac{\|\tilde{A}x\|}{\|x\|} \geq \sup_{x \in X_0 \backslash \{0\}} \frac{\|\tilde{A}x\|}{\|x\|} = \sup_{x \in X_0 \backslash \{0\}} \frac{\|Ax\|}{\|x\|} = \|A\|.$$

Proposition 2.2.2 Задані X,Y — відповідно нормований та банахів простори та $X_0\subset X$ — щільний підпростір. Тоді для кожного обмеженого оператору $A\colon X_0 \to Y$ існує єдиний розширений обмежений оператор $\tilde{A}\colon X\to Y$, для якого $\tilde{A}|_{X_0}=A$ та при цьому $\|\tilde{A}\|=\|A\|$.

Proof.

Нехай є послідовність $\{x_n\} \subset X_0$, де $x_n \to x \in X$. Зауважимо, що тоді в цьому випадку $\{Ax_n\}$ — фундаментальна. У силу банаховості $\{Ax_n\}$ буде збіжним. Тож визначимо оператор $\tilde{A}x = \lim_{n \to \infty} Ax_n$.

 $I. \ A$ визначений коректно.

Нехай є дві послідовності
$$\{x_n\}, \{y_n\},$$
 для яких $x_n \to x, \ y_n \to x.$ Значить, тоді $\|Ax_n - Ay_n\| = \|A(x_n - y_n)\| \le \|A\| \|x_n - y_n\| \to 0 \implies \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Ay_n.$

 $II. \tilde{A}$ розширює оператор A.

Справді, нехай $x \in X_0$. Оберемо стаціонарну послідовність $\{x\} \subset X_0$, де $x \to x$. Тоді $\tilde{A}x = \lim_{x \to \infty} Ax = \lim_{x \to \infty}$ Ax. Отже, звідси $\tilde{A}|_{X_0} = A$.

III. \hat{A} лінійний оператор.

Нехай $x,y\in E$ та $\alpha,\beta\in\mathbb{R}$. Тоді звідси

$$A(\alpha x + \beta y) = \lim_{n \to \infty} A(\alpha x_n + \beta y_n) = \alpha \lim_{n \to \infty} Ax_n + \beta \lim_{n \to \infty} Ay_n = \alpha Ax + \beta Ay.$$

IV.
$$||\tilde{A}|| = ||A||$$

Оберемо $X_0 \ni x_n \to x \in X$. Оскільки A – обмежений, то $\|Ax_n\| \le \|A\| \|x_n\|$. Спрямовуючи $n \to \infty$, ми отримаємо $\|\tilde{A}x\| \leq \|A\| \|x\|$. Автоматично довели, що \tilde{A} – обмежений оператор. Раз це виконується для всіх $x \in E$, то отримаємо $\|\tilde{A}\| = \sup_{\|x\|=1} \|\tilde{A}x\| \le \sup_{\|x\|=1} \|A\| \|x\| = \|A\|$. Тобто звідси $\|\tilde{A}\| \le \|A\|$.

Зважаючи на зауваження вище, маємо ||A|| = ||A||.

V. \tilde{A} – $\epsilon \partial u$ не розширення.

! Припустимо, що існує інший оператор $\tilde{A},$ яке також є розширення
мAз усіма умовами, що задані в твердженні. Маємо $x \in X$, тож існує послідовність $\{x_n\} \subset X_0, x_n \to x$. Тоді

$$\tilde{\tilde{A}}x\stackrel{\tilde{\tilde{A}}-\text{ обмежений}}{=}\lim_{n\to\infty}\tilde{\tilde{A}}x_n=\lim_{n\to\infty}Ax_n\stackrel{\text{def. }\tilde{A}}{=}\tilde{A}x.$$
 Суперечність!

Theorem 2.2.3 Теорема Гана-Банаха

Задано E – нормований простір та $G \subset E$ – підпростір. Тоді для кожного обмеженого функціонала $l: G \to \mathbb{R}$ існує продовження $\tilde{l}: E \to \mathbb{R}$ так, що $\tilde{l}|_G = l, ||\tilde{l}|| = ||l||$.

Proof.

- 1. Обмежимось випадком, коли E дісний та сепарабельний простір.
- I. Доведемо, що l можна продовжити на деякий підпростір $E\supset F\supsetneq G$.

Нехай G – підпростір E та $G \neq E$. Зафіксуємо $y \notin G$ та розглянемо підпростір $F = \operatorname{span}\{G \cup \{y\}\}$. Тобто кожний елемент $x \in F$ записується як $x = g + \lambda y$ при $g \in G, \lambda \in \mathbb{R}$. Визначимо оператор $l(x) = l(g) + \lambda c$, де c = l(y). За побудовою, такий оператор – лінійний.

Тепер залишилося підібрати таке $c \in \mathbb{R}$, щоб виконувалося $\|\tilde{l}\| = \|l\|$ – тим самим ми й обмеженість доведемо автоматично. Але згідно зі зауваження, нам треба підібрати $c \in \mathbb{R}$, щоб $\|\bar{l}\| \le \|l\|$.

Обмежимося поки що $\lambda > 0$. Нехай зафіксовано $h_1, h_2 \in G$ та зауважимо, що справедлива нерівність:

 $l(h_2) - l(h_1) = l(h_2 - h_1) \le |l(h_2 - h_1)| \le ||l|| ||h_2 - h_1|| = ||h|| ||(h_2 + y) - (y + h_1)|| \le ||l|| ||h_1 + y|| + ||l|| ||h_2 + y||.$

Звідси випливає, що $-\|l\|\|h_1+y\|-l(h_1)\leq \|l\|\|h_2+y\|-l(h_2)$. Оскільки це $\forall h_1,h_2\in G$, то тоді $\sup_{h_1\in G}(-\|l\|\|h_1+y\|-l(h_1))\leq \inf_{h_2\in G}(\|l\|\|h_2+y\|-l(h_2))$.

Для зручності супремум позначу за a_1 та інфімум за a_2 . Оберемо число $c \in \mathbb{R}$ так, щоб $a_1 \le c \le a_2$. Звідси справедлива така нерівність:

$$\forall h \in G: -\|l\|\|h + v\| - l(h) < c < \|l\|\|h + v\| - l(h).$$

 $\forall h \in G: -\|l\|\|h+y\|-l(h) \le c \le \|l\|\|h+y\|-l(h).$ Тепер покладемо елемент $h=\lambda^{-1}g$ та домножимо обидві частини нерівності на λ . Оскільки ми домовилися $\lambda > 0$, то знаки нерівностей зберігаються. Коротше, отримаємо:

- $-\|l\|\|g + \lambda y\| l(g) \le \lambda c \le \|l\|\|g + \lambda y\| l(g).$
- $-||l|||g + \lambda y|| \le l(g) + \lambda c \le ||l|||g + \lambda y||.$

$$|\tilde{l}(x)| = |l(g) + \lambda c| \le ||l|| ||g + \lambda y|| = ||l|| ||x||.$$

Власне, далі аналогічними міркуваннями (як в попередньому твердженні) отримаємо $\|\tilde{l}\| \leq \|l\|$. Тепер що робити при $\lambda < 0$. Перепишемо $x = -(-g + (-\lambda)y)$. У нас тепер $-\lambda > 0$ та -x = t = $-g + (-\lambda)y$, звідси отримаємо

$$|\tilde{l}(t)| \le ||l|| ||t|| \implies |\tilde{l}(x)| \le ||l|| ||x||.$$

II. Тепер доведемо, що продовежния на нашому конкретному E існує.

Оскільки E – сепарабельний, то існує (ми оберемо зліченну) множина $A = \{x_1, x_2, \dots\}$, яка є щільною підмножиною E. Також ми досі маємо $G \subset E$ – підпростір.

Позначимо $x_{n_1} \in A$ – перший з елементів, де $x_{n_1} \notin G$. За кроком І, існує l_1 – продовження l на $G_1 = \text{span}\{G \cup \{x_{n_1}\}\}.$

Позначимо $x_{n_2} \in A$ – перший з елементів, де $x_{n_2} \notin G_1$. За кроком І, існує l_2 – продовження l_1 на $G_2 = \operatorname{span}\{G_1 \cup \{x_{n_2}\}\}.$

Отримаємо ланцюг підпросторів $G \subset G_1 \subset G_2 \subset \dots$ та набір функціоналів $l_1, l_2, \dots,$ для яких: $\forall n \geq 1:$ $l_n: G_n \to \mathbb{R}$ – обмежена; $l_n|_G = l;$ $||l_n|| = ||l||.$

Покладемо множину $M=\bigcup_{n=0}^\infty G_n$, яка є лінійною. Визначимо функціонал $L_0\colon M\to\mathbb{R}$ таким чином: $x \in M \implies x \in G_N \implies L_0(x) = l_N(x)$. Зрозуміло цілком, що L_0 – лінійний, а також $||L_0|| = ||l||$. Оскільки $M \supset A$ та A всюди щільна, то M – всюди щільна. Отже, за попереднім твердженням,

існує продовження $L \colon E \to \mathbb{R}$, для якого $||L|| = ||L_0|| = ||l||$. Висновок: ми довели теорему Гана-Банаха для випадку, коли E – дійсний сепарабельний.

2. Тепер будемо доводити теорему для E – довільний дійсний нормований простір. Все ще $G \subset E$. Позначимо за l_p – продовження l зі збереженням норми на множині $P\supset G$. Таке продовження існує див (1. та І.). Позначимо X – множина всіх таких продовжень. На ній введемо відношення \preceq таким чином:

$$l_p \preceq l_q \iff P \subset Q \text{ Ta } l_Q(x) = l_P(x), \forall x \in P.$$

Зрозуміло, що \leq задає відношення порядку, внаслідок чого X – частково впорядкована. Зафіксуємо $Y=\{l_{P_{\alpha}}\mid \alpha\in A\}$ – будь-яку лінійно впорядкувану підмножину X. Знайдемо верхню грань.

Для цього покладемо $P_*=\bigcup_{\alpha\in A}P_\alpha$ та на множині P_* задамо функціонал l_* таким чином: $x\in P_*\implies x\in P_{\alpha_0}\implies l_*(x)=l_{\alpha_0}(x).$

$$x \in P_* \implies x \in P_{\alpha_0} \implies l_*(x) = l_{\alpha_0}(x).$$

Зрозуміло, що l_* – лінійний, причому $\|l_*\| = \|l\|$. На множині \bar{P}_* продовжимо функціонал, як було в твердженні – отримаємо функціонал $l_{\bar{P}_*}$, причому $\|l_{\bar{P}_*}\| = \|l_*\| = \|l\|$. Даний функціонал $l_{\bar{P}_*}$ на $ar{P}_*$ буде верхньою гранню Y. Отже, за лемою Цорна, існує максимальний елемент X. Це буде функціонал L, який визначений на E (у протилежному випадку його можна було би ще продовжити та він не був би максимальним елементом).

Висновок: ми довели теорему Гана-Банаха для випадку, коли E – дійсний (не обов'язково сепарабельний) нормований простір.

Насправді, на цьому теорема Гана-Банаха ще не закінчена. Ми можемо її довести на випадок, коли нормований простір E – комплексний. Спершу кілька деталей.

Нехайй E – комплексний лінійний нормований простір. Розглянемо одночасно $E_{\mathbb{R}}$ – асоційований з E дійсний нормований простір; тобто під час множення на скаляр ми допускаємо лише дійсні коефіцієнти. Зауважимо, що $E_{\mathbb{R}} = E$ як множини, утім не як простори.

Розглянемо довільний функціонал $l\colon E\to\mathbb{C}$. Раз $l(x)\in\mathbb{C}$, то для кожного $x\in E$ можна записати функціонал як l(x) = m(x) + in(x). У цьому випадку $m(x) = \operatorname{Re} l(x)$, $n(x) = \operatorname{Im} l(x)$.

Proposition 2.2.4 Нехай $l\colon E\to \mathbb{C}$ – лінійний та обмежений функціонал. Тоді $m,n\colon E_\mathbb{R}\to \mathbb{R}$ задають лінійний обмежений функціонал.

Proof.

Нехай $\alpha, \beta \in \mathbb{R}$ та $x, y \in E$. Тоді ми отримаємо наступне:

 $l(\alpha x + \beta y) = m(\alpha x + \beta y) + in(\alpha x + \beta y)$ (з одного боку)

$$l(\alpha x + \beta y) = \alpha l(x) + \beta l(y) = \alpha (m(x) + in(x)) + \beta (m(y) + in(y)) = (\alpha m(x) + \beta m(y)) + i(\alpha n(x) + \beta n(y))$$
 (з іншого боку).

Знаючи, що комплексне число рівне тоді й лише тоді, коли дійсні та уявні частини збігаються, отримаємо

$$m(\alpha x + \beta y) = \alpha m(x) + \beta m(y)$$
 $n(\alpha x + \beta y) = \alpha n(x) + \beta n(y).$

Отже, m, n – лінійний функціонали.

Обмеженість m (аналогічно з n) випливає з такго ланцюга нерівностей:

$$|m(x)| \le |m(x) + in(x)| = |l(x)| \le ||l|| ||x||.$$

Proposition 2.2.5 n(x) = -m(ix).

Іншими словами, ми можемо функціонал l відновити повністю, знаючи функціонал m.

$$m(ix) + in(ix) = l(ix) = il(x) = i(m(x) + in(x)) = -n(x) + im(x).$$

$$\implies n(x) = -m(ix).$$

$$l(x) = m(x) - im(ix).$$

Повернімось назад до теореми Гана-Банаха. Доб'ємо її на випадок, коли E – комплексний нормований простір.

Proof.

Маємо $E\supset G$ — два комплексних простори та $E_{\mathbb{R}},G_{\mathbb{R}}$ — асоційовані простори. Маємо функціонал $l\colon G\to \mathbb{C},$ який визначається дійсним функціоналом $m\colon G_{\mathbb{R}}\to \mathbb{R}.$ Оскільки це дійсний функціонал, ми можемо продовжити до $M\colon E_{\mathbb{R}}\to \mathbb{R}$ зі збереженням норми.

Покладемо L(x)=M(x)-iM(ix). Неважко буде довести, що L – комплексний лінійний функціонал. Залишилося довести, що $\|L\|=\|l\|$. Знову ж таки, достатньо довести $\|L\|\leq \|l\|$. Запишемо $L(x)=|L(x)|e^{i\varphi}$, де $\varphi=\arg L(x)$. Тоді

 $|L(x)|=e^{-i\varphi}L(x)=L(e^{-i\varphi}x)=M(e^{-i\varphi}x)=|M(e^{-i\varphi}x)|\leq \|M\|\|e^{-i\varphi}x\|=\|m\|\|x\|\leq \|l\|\|x\|.$ Отже, $\|L\|$. Ми тут юзали той факт, що L(y)=M(y) при $L(y)\in\mathbb{R}.$

Remark 2.2.6 Зауважимо, що якщо G – лінійна множина (але не підпростір), то теорема Гана-Банаха все одно виконується.

У цьому випадку \bar{G} буде підпростором E. Функціонал l продовжується неперервним чином на \tilde{G} , а далі застосовується доведена теорема.

Твердження, які потім вставлю в необхідне місце

Proof.

Достатньо довести, що всі норми еквівалентні до $\|\cdot\|_2$.

Нехай $\{\vec{e}_1,\ldots,\vec{e}_d\}$ — стандартний базис \mathbb{R}^d , тоді звідси $\vec{x}=\sum_{i=1}^d x_i \vec{e}_i$.

$$\left\| \sum_{i=1}^{d} x_{i} \vec{e_{i}} \right\| \leq \sum_{i=1}^{d} \|x_{i} e_{i}\| = \sum_{i=1}^{d} |x_{i}| \|e_{i}\| = \sqrt{\left(\sum_{i=1}^{d} |x_{i}| \|\vec{e_{i}}\|\right)^{2}} \stackrel{\text{K-B}}{\leq} \sqrt{\sum_{i=1}^{d} \|e_{i}\|^{2}} \sqrt{\sum_{j=1}^{d} |x_{j}|^{2}} \leq \sqrt{\sum_{i=1}^{d} \|e_{i}\|^{2}} \sqrt{\sum_{j=1}^{d} |x_{j}|^{2}} \leq \sqrt{\sum_{i=1}^{d} \|e_{i}\|^{2}} \sqrt{\sum_{j=1}^{d} \|e_{i}\|^{2}} \sqrt{\sum_{j=1}^{d} \|e_{i}\|^{2}} \sqrt{\sum_{j=1}^{d} \|e_{i}\|^{2}} \sqrt{\sum_{j=1}^{d} \|e_{i}\|^{2}} = M \|\vec{x}\|_{2}.$$

Зауважимо, що $M \in \mathbb{R}_{\geq 0}$ та не залежить від \vec{x} . Отже, $\|\vec{x}\| \leq M \|\vec{x}\|_2$.

Розглянемо тепер S – одинична сфера на $(\mathbb{R}^d, \|\cdot\|_2)$. Відомо, що S – замкнена множина та обмежена. Тож за лемою Гейне-Бореля, S – компактна множина. Відомо, що відображення $\|\cdot\|: S \to \mathbb{R}_{\geq 0}$ – неперервне відображення, тож вона досягає найменшого значення m для деякого $\vec{y} \in S$.

Припустимо m=0, тоді звідси $\|\vec{y}\|=0 \Longrightarrow \vec{y}=\vec{0} \Longrightarrow \vec{y}\notin S$ – неможливо. Отже, m>0.

Значить, $\forall \vec{y} \in \mathbb{R}^d: \|\vec{y}\|_2 = 1: \|y\| \geq m$. Треба довести те саме для інших векторів.

Якщо $\vec{x}=\vec{0}$, то це виконано. Тому $\vec{x}\neq\vec{0}$. Покладемо вектор $\vec{y}=\frac{\vec{x}}{\|\vec{x}\|_2}$, причому $\|\vec{y}\|_2=1$. Із цього випливає, що $\|\vec{y}\|_2\leq m\implies m\|\vec{x}\|_2\leq \|\vec{x}\|$.

Всі інші норми будуть еквівалентними в силу транзитивності.

Definition 2.2.7 Задано X, Y – нормовані простори.

Вони називаються **ізоморфними**, якщо існує бієктивний лінійний оператор $A\colon X\to Y$, для якого

$$\forall x \in X : \|Ax\|_Y = \|x\|_X$$

Водночас такий оператор A називають **ізоморфізмом**.

Позначення: $X \cong Y$