

GRUPO: MEXERICA

PROBLEMA

ENCONTRAR PERFIS DE OLHOS

Encontrar os perfis de olhos baseado nas medidas AL, ACD, WTW, KI e K2 fornecidas pelo professor.

NORMALIZAÇÃO

PRIMEIROS PASSOS

ANÁLISE DOS **RESULTADOS**

DEFINIÇÃO DO K

ESCOLHA DO ALGORITMO K-MEANS

GRUPOS

PRIMEIRO ANALISAMOS CADA GRUPO...

Vimos a partir dos dados gerado com o valores de k sendo 3, 4 e 5

K SENDO 4

K SENDO 5

DIOPTRIA

$$D = (n - 1) * (1/R1 - 1/R2)$$

Sendo a curvatura C = I/R, equivalentes a KI = K2, e n = I.376, equivalente ao índice de refração da córnea. Assim, temos a seguinte equação para a dioptria do cristalino:

$$D = 0.376 * (K2 - KI)$$

DIOPTRIA COM K SENDO 3

DIOPTRIA COM K SENDO 4

DIOPTRIA COM K SENDO 5

CONCLUSÃO

NO FIM DAS CONTAS, CONCLUÍMOS QUE...

DUVIDAS?