Отчет по лабораторной работе №5

Модель хищник-жертва - вариант 2

Ярметов Кямран Расул оглы НФИбд-02-18

Содержание

4	Выводы	11
3	Выполнение лабораторной работы 3.1 Теоретические сведения	6 6 7
2	Задание	5
1	Цель работы	4

List of Figures

3.1	График численности хищников от времени	9
3.2	График численности жертв от времени	10
3.3	График численности хишников от численности жертв	10

1 Цель работы

Изучить модель хищник-жертва

2 Задание

- 1. Построить график зависимости x от y и графики функций x(t), y(t)
- 2. Найти стационарное состояние системы

3 Выполнение лабораторной работы

3.1 Теоретические сведения

В данной лабораторной работе рассматривается математическая модель системы «Хищник-жертва».

Рассмотрим базисные компоненты системы. Пусть система имеет X хищников и Y жертв. И пусть для этой системы выполняются следующие предположения: (Модель Лотки-Вольтерра) 1. Численность популяции жертв и хищников зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории) 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными 4. Эффект насыщения численности обеих популяций не учитывается 5. Скорость роста численности жертв уменьшается пропорционально численности хищников:

$$\begin{cases} \frac{dx}{dt} = (-ax(t) + by(t)x(t)) \\ \frac{dy}{dt} = (cy(t) - dy(t)x(t)) \end{cases}$$

Параметр a определяет коэффициент смертности хищников, b – коэффициент ент естественного прироста хищников, c – коэффициент прироста жертв и d – коэффициент смертности жертв

В зависимости от этих параметрах система и будет изменяться. Однако следует выделить одно важное состояние системы, при котором не происходит

никаких изменений как со стороны хищников, так и со стороны жертв. Это, так называемое, стационарное состояние системы. При нем, как уже было отмечено, изменение численности популяции равно нулю. Следовательно, при отсутствии изменений в системе $\frac{dx}{dt}=0, \frac{dy}{dt}=0$

Пусть по условию есть хотя бы один хищник и хотя бы одна жертва: x>0, y>0 Тогда стационарное состояние системы определяется следующим образом:

$$x_0 = \frac{a}{b}, y_0 = \frac{c}{d}$$

3.2 Задача

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = (-0.13x(t) + 0.042y(t)x(t)) \\ \frac{dy}{dt} = (0.33y(t) - 0.03y(t)x(t)) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=12, y_0=7$ Найдите стационарное состояние системы

import numpy as np
from scipy. integrate import odeint
import matplotlib.pyplot as plt
import math

a = 0.13

b = 0.042

c = 0.33

d = 0.03

```
y0 = [7, 12]
def syst2(y, t):
    y1, y2 = y
    return [-a*y1 + b*y1*y2, c*y2 - d*y1*y2]
t = np.arange(0, 200, 0.1)
y = odeint(syst2, y0, t)
y11 = y[:,0]
y21 = y[:,1]
fig = plt.figure(facecolor='white')
plt.plot(t, y11, linewidth=2)
plt.ylabel("x")
plt.xlabel("t")
plt.grid(True)
plt.show()
fig.savefig('01.png', dpi = 600)
fig2 = plt.figure(facecolor='white')
plt.plot(t, y21, linewidth=2)
plt.ylabel("y")
plt.xlabel("t")
plt.grid(True)
plt.show()
fig2.savefig('02.png', dpi = 600)
fig3 = plt.figure(facecolor='white')
plt.plot(y11, y21, linewidth=2)
```

```
plt.ylabel("y")
plt.xlabel("x")
plt.grid(True)
plt.show()
fig3.savefig('03.png', dpi = 600)

print("XcT = ", a/b)
print("YcT = ", c/d)
```


Figure 3.1: График численности хищников от времени

Figure 3.2: График численности жертв от времени

Figure 3.3: График численности хищников от численности жертв

Стационарное состояние $x_0 = 3.095, y_0 = 11$

4 Выводы

В ходе выполнения лабораторной работы была изучена модель хищник-жертва и построены графики.