

So we have PPE3, E2 E, A = U However, we can do the fremmation, that is, intudanging the rows altogether at first, and then do the Gaussian Elimination. - why and how? - This requires a broof.
- we will see this later it lime kermits. So we obtain an LU-dromposition of the permuted matrix of A, that is toward of permutadion watries Known as permuted LU-desompositions we have mentioned that A = (0') dorsn't have LU-decomposition but P,2 A = I - 1. I - LU-duamposition But note A - may not have LU-duompositions lout to solve equation A z = b, it is enough to have berunted LU - decomposition. Remark: Is permeted LU-duomposition is always
possible? Ans: NO (In genul, PAQ = LU). YES, when you have A is invulible (we dis cuss)

Altogether, only	one of the	lus possibilities
one possible:		
(i) Non-singula	w case:	
There is	a permutal	Too matrix P
that readers	the sons	of A to avoid
zeros in the	pirot positi	and Az=h
case PA = LU has a unique	re solution.	
(ii) Singular cas	e:	
	P forodne	
	elinivation	fails.
4		
24+20+2W=2	(=) a	+ v + w = 1
3u + 3v + 4 w =	4 without	\ \sigma = 1 \
OR (with bern	berun	
SK-Court Born		1
u + v + w =	1	1+0+0=1
3u + 3v + 4w =		0 = 0
24+20+20	= 2)	
- Bnt i	t does not	boodnee full
set of	+ PIVOTS.	

Non we formally introduce A (addition & multiplication)

— definition

— natural,

mest operation) horo to calculti - Ganss-Jordan mettrod molivated by the Gauss
elimination method · Given an nxn matrix, if there exists an n×n matrix B such that AB=BA=I, then we say that A is involvible. Qn: Is such a Bonique? Claim: 9f 3 B and C such that AB=BA=I and AC = CA = I, then B = C. Proof: B = B I = B (A C) = (BA) C = I · C = C We define such a B as "the inverse" of A and is directed by AT. Exc. Verify G, F, E, are actually inverses of G, F, E is this sense Remark: Note in the proof, we have showed that if BA = I = AC, Thun B = C.

In other words, one can't have two condidates eiten side of A fondneing I. Questions: Can we have two candidatios on same side of A fordneing I? (In other words, can we have B, C-non melicis with B # C, such that AB = I and AC = I?) One can check vitts determinants Ans: NO or vanle-nullilis etem both of which we leave as ve foragress.