## MATH 601 HOMEWORK (DUE 9/4)

## HIDENORI SHINOHARA

**Exercise.** (2.1) Show that the function  $g: \mathbb{R} \to S^1$ ,  $g(r) = \exp(2\pi i r)$ , where  $i^2 = -1$ , satisfies the property that g(r) = g(r') if and only if  $r \sim r'$ . Use this to explicitly construct a bijective map from the orbit space of the action to  $S^1$ ,  $g: \mathbb{R}/\sim = \mathbb{Z}\backslash\mathbb{R} \to S^1$ .

Proof.

• Let  $r, r' \in \mathbb{R}$  such that  $r \sim r'$ . Let  $k \in \mathbb{Z}$  such that k \* r' = r. Therefore, k + r' = r.

$$g(r) = \exp(2\pi i r)$$

$$= \exp(2\pi i (k + r'))$$

$$= \exp(2\pi i k + 2\pi i r')$$

$$= \exp(2\pi i k) \exp(2\pi i r')$$

$$= \exp(2\pi i r')$$

$$= g(r').$$

• Let  $r, r' \in \mathbb{R}$  such that g(r) = g(r').

$$\exp(2\pi i r) = \exp(2\pi i r') \implies \exp(2\pi i (r - r')) = 1$$

$$\implies \cos(2\pi (r - r')) + i \sin(2\pi (r - r')) = 1$$

$$\implies \sin(2\pi (r - r')) = 0$$

$$\implies r - r' \in \mathbb{Z}$$

$$\implies \exists k \in \mathbb{Z}, r = k * r'$$

$$\implies r \sim r'$$

Let  $g: \mathbb{Z} \setminus \mathbb{R} \to S^1$  be defined such that g([r]) = g(r) for each  $[r] \in \mathbb{Z} \setminus \mathbb{R}$ .

- Well-defined? Let  $[r] = [r'] \in \mathbb{Z} \setminus \mathbb{R}$ . Then  $r \sim r'$ . We showed that g(r) = g(r') if  $r \sim r'$  earlier. Therefore, g is indeed well-defined.
- Injective? Let  $[r], [r'] \in \mathbb{Z} \setminus \mathbb{R}$ . Suppose g([r]) = g([r']). Then g(r) = g(r'). We showed earlier that this implies  $r \sim r'$ . In other words, [r] = [r']. Therefore, g is injective.

• Surjective? Let  $z \in S^1$ . Express z as  $re^{i\theta}$  where  $r, \theta \in \mathbb{R}$ . Since |z| = 1, we can assume that r = 1 without loss of generality. (If r = -1, then  $e^{i\pi} = -1$ , so  $\theta$  can be redefined as  $\theta + \pi$ .)

Then  $[\theta/2\pi]$  is an element in  $\mathbb{Z}\backslash\mathbb{R}$ , and  $g([\theta/2\pi]) = g(\theta/2\pi) = \exp(2\pi i \cdot \theta/2\pi) = \exp(i\theta) = z$ . Therefore, g is indeed surjective.

**Exercise.** (2.2) Let  $*: G \times S \to S$  be a left action of G. Show that  $s \star g = g^{-1} * s$  defines a right action of G on S.

*Proof.* Let  $s \in S, g, h \in G$  be given.

$$(s \star g) \star h = h^{-1} * (s \star g)$$

$$= h^{-1} * (g^{-1} * s)$$

$$= (h^{-1}g^{-1}) * s$$

$$= (gh)^{-1} * s$$

$$= s \star (gh).$$

Let  $e \in G$  denote the identity element and let  $s \in S$  be given.

$$s \star e = e^{-1} * s$$
$$= e * s$$
$$= s.$$

Therefore,  $\star$  is indeed a right action of G on S.

## Exercise. (2.3)

- (1) Let  $h, h' \in G$  lie in the same conjugacy class. Show that h and h' have the same order.
- (2) Give an example of a group and two elements of the same order which do not line in the same conjugacy class.
- Proof. (1) Since h and h' lie in the same conjugacy class, there must exist an element  $g \in G$  such that h = g \* h'. In other words,  $h = g \cdot h' \cdot g^{-1}$ . We will show that  $h^n = g \cdot (h')^n \cdot g^{-1}$  for all  $n \in \mathbb{N}$  using mathematical induction.
  - When n=1, the statement is true.

• Suppose 
$$h^n = g \cdot (h')^n \cdot g^{-1}$$
 for some  $n \in \mathbb{N}$ .  
 $h^{n+1} = h^n \cdot h$   
 $= (g \cdot (h')^n \cdot g^{-1}) \cdot (g \cdot h' \cdot g^{-1})$   
 $= g \cdot (h')^n \cdot (g^{-1} \cdot g) \cdot h' \cdot g^{-1}$   
 $= g \cdot (h')^n \cdot h' \cdot g^{-1}$   
 $= g \cdot (h')^{n+1} \cdot g^{-1}$ .

Therefore,  $h^n = g \cdot (h')^n \cdot g^{-1}$  for all  $n \in \mathbb{N}$ .

For any  $n \in \mathbb{N}$ , if  $h^n = e$ , then  $g \cdot (h')^n \cdot g^{-1} = e$ , so  $(h')^n = g^{-1}g = e$ . For any  $n \in \mathbb{N}$ , If  $(h')^n = e$ , then  $h^n = geg^{-1} = e$ . Therefore,  $\forall n \in \mathbb{N}, h^n = e \iff (h')^n = e$ .

This implies that if the order of one of h or h' is infinite, the other has to be infinite as well. On the other hand, if the order of one of h or h' is finite, the other has to be finite as well. Suppose that the orders of h and h' are finite and let n denote the order of h. Then  $h^n = e$  and  $h^m \neq e$  for each natural number m < n. Then  $(h')^n = e$  and  $(h')^m \neq e$  for each natural number m < n. Therefore, the order of h' is n as well.

We showed that, regardless of whether the order is finite, h and h' have the same order.

(2) We will consider the Klein 4-group K = e, a, b, c. Since  $a^2 = b^2 = e, a$  and b have the order 2. Suppose that a and b lie in the same conjugacy class. Then there must exist a  $g \in K$  such that  $a = gbg^{-1}$ . Since K is abelian,  $a = gbg^{-1} = gg^{-1}b = eb = b$ . This is a contradiction, so there a and b do not lie in the same conjugacy class. Thus we found two elements of the same order which do not lie in the same conjugacy class.