# Mathematica Module for Graph Laplacians

MMGL User's Manual Version 1.2 30 June 2013

## by Yoshihiro MIZOGUCHI, Kyushu University.

Ver. 0.1 20 December 2010

Ver. 1.0 8 June 2012

Ver. 1.1 30 June 2013

# Table of Contents

| 1 | Intro    | duction 1                                                                                                                               |
|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Grap     | h Partitioning 2                                                                                                                        |
|   | 2.1 Fund | damental Functions                                                                                                                      |
|   | 2.1.1    | Distance 2                                                                                                                              |
|   | 2.1.2    | DistanceVector 2                                                                                                                        |
|   | 2.1.3    | LabeledFindClusters                                                                                                                     |
|   | 2.1.4    | DirectedtoUndirected2                                                                                                                   |
|   | 2.1.5    | DelaunayEdges 3                                                                                                                         |
|   | 2.1.6    | DelaunayGraph 3                                                                                                                         |
|   | 2.1.7    | CreateGraph 4                                                                                                                           |
|   | 2.1.8    | NVertices 4                                                                                                                             |
|   | 2.1.9    | SetVertices 5                                                                                                                           |
|   | 2.1.10   | NRandomGraph                                                                                                                            |
|   | 2.1.11   | CycleVertices 5                                                                                                                         |
|   | 2.1.12   | CycledGraph                                                                                                                             |
|   | 2.2 Nor  | malized Cut                                                                                                                             |
|   | 2.2.1    | DS 7                                                                                                                                    |
|   | 2.2.2    | FDS                                                                                                                                     |
|   | 2.2.3    | WnCut                                                                                                                                   |
|   | 2.2.4    | FindMinimumWnCut7                                                                                                                       |
|   | 2.2.5    | GDegree 8                                                                                                                               |
|   | 2.2.6    | GVol 8                                                                                                                                  |
|   | 2.2.7    | HG 9                                                                                                                                    |
|   | 2.2.8    | ${\tt FindMinimumHG} \dots \dots$ |
|   | 2.2.9    | Ncut9                                                                                                                                   |
|   | 2.2.10   | FindMinimumNcut                                                                                                                         |
|   | 2.3 Mat  | rix Operations                                                                                                                          |
|   | 2.3.1    | TruncateMatrix                                                                                                                          |
|   | 2.3.2    | TruncateUptoMatrix                                                                                                                      |
|   | 2.3.3    | NMatrixPower                                                                                                                            |
|   | 2.3.4    | MatrixT 11                                                                                                                              |
|   | 2.3.5    | Reordering                                                                                                                              |
|   | 2.3.6    | TransposeReordering                                                                                                                     |
|   | 2.4 Show | w Graphs                                                                                                                                |
|   | 2.4.1    | ColoringVertex         11                                                                                                               |
|   | 2.4.2    | Coloring                                                                                                                                |
|   | 2.4.3    | ClusterNumber         12                                                                                                                |
|   | 2.4.4    | ShowColoredGraphs                                                                                                                       |
|   | 2.4.5    | ColoringSubset                                                                                                                          |
|   | 2.5 Ran  | dom Walks                                                                                                                               |
|   | 2.5.1    | NaturalRandomWalkMatrix                                                                                                                 |
|   | 2.5.2    | MyStationaryDistribution                                                                                                                |

| 2.5.3                            | FS                                                                                                                                                                             |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.6 Spec                         | ctral Clustering                                                                                                                                                               |
| 2.6.1                            | FirstEigenVector                                                                                                                                                               |
| 2.6.2                            | SecondSmallEigenVector                                                                                                                                                         |
| 2.6.3                            | ThirdSmallEigenVector                                                                                                                                                          |
| 2.6.4                            | ${\tt UndirectedLaplacian} \dots \dots$                                  |
| 2.6.5                            | ${\tt NormalClustering$                                                                                                                                                        |
| 2.6.6                            | ${\tt UndirectedSpectralVector} \ \dots \ 15$                                                                                                                                  |
| 2.6.7                            | ${\tt UndirectedSpectralClustering$                                                                                                                                            |
| 2.6.8                            | UndirectedSpectralVector2                                                                                                                                                      |
| 2.6.9                            | $\label{thm:condition} \mbox{UndirectedSpectralClustering2} \dots \dots$ |
| 2.6.10                           | UndirectedSpectralClusteringPlus                                                                                                                                               |
| 2.6.11                           | 8-8                                                                                                                                                                            |
| 2.6.12                           | PCA3Clustering                                                                                                                                                                 |
|                                  |                                                                                                                                                                                |
| 3 Speci                          | ial Graphs 19                                                                                                                                                                  |
| 3.1 Roa                          | ch Graph and Weighted Path                                                                                                                                                     |
| 3.1.1                            | RoachGraph                                                                                                                                                                     |
| 3.1.2                            | WeightedNormalizedLaplacian                                                                                                                                                    |
| 3.1.3                            | WeightedPath                                                                                                                                                                   |
| 3.1.4                            | WeightedPathUnion                                                                                                                                                              |
| 3.2 Loll                         | ipop, Tree, Tree cross Path                                                                                                                                                    |
|                                  | -pop, 1100, 1100 01000 1 doll                                                                                                                                                  |
| 3.2.1                            | LPG                                                                                                                                                                            |
| $3.2.1 \\ 3.2.2$                 |                                                                                                                                                                                |
| _                                | LPG                                                                                                                                                                            |
| 3.2.2                            | LPG                                                                                                                                                                            |
| 3.2.2<br>3.2.3                   | LPG       20         LPG2       21         DTG       21                                                                                                                        |
| 3.2.2<br>3.2.3<br>3.2.4          | LPG       20         LPG2       21         DTG       21         DTG2       22                                                                                                  |
| 3.2.2<br>3.2.3<br>3.2.4<br>3.2.5 | LPG       20         LPG2       21         DTG       21         DTG2       22         DTCPG       22                                                                           |

## 1 Introduction

This is a Mathematica Module for analysing graphs, especially using Laplacian Matrices of graphs. This module depends on the Mathematica modules "Combinatorica'" and "ComputationalGeometry'".

To use this package "Graph Laplacian'", users should set a directory where the modules is stored.

[Example]

```
SetDirectory[FileNameJoin[$HomeDirectory, "--- Some Folder ---"]];
<< GraphLaplacian';</pre>
```

This module was used and introduced in the followings:

- [1] K.K.K.R. Perera, Y. Mizoguchi, Bipartition of graphs based on the normalized cut and spectral methods, Part I: Minimum normalized cut, Journal of Mathfor-industory, Vol.5(2013A-8),pp.59-72.
- Y. Mizoguchi, Mathematical Aspects of Interpolation Technique for Computer Graphics, Forum "Math-for-Industry" 2012, Information Recovery and Discovery, 22 October 2022. http://fmi2012.imi.kyushu-u.ac.jp/

## 2 Graph Partitioning

#### 2.1 Fundamental Functions

```
2.1.1 Distance
```

```
Distance [x1,x2]
:: Distance between vertices x1 and x2.

x1, x2 vertices (2D vectors)

return length

[Example]

Distance [{3,0},{0,4}]

5
```

#### 2.1.2 DistanceVector

```
DistanceVector [x1,x2]
:: Distance between vertices x1 and x2.
x1, x2 vertices (vectors)

return length

[Example]

Distance[{3,0,0},{0,0,4}]

5
```

#### 2.1.3 LabeledFindClusters

```
LabeledFindClusters[set,n]
:: Divide set into n clusters using indices.

set set (list)

return clusterd index set (list of list)

[Example 1]

LabeledFindClusters[{1, 2, 3, 8, 9, 10}, 2]

{{1, 2, 3}, {4, 5, 6}}

[Example 2]

LabeledFindClusters[{1, 8, 2, 9, 3, 10}, 2]

{{1, 3, 5}, {2, 4, 6}}
```

#### 2.1.4 DirectedtoUndirected

```
DirectedToUndirected[graph]
:: Translate a directed graph (graph) into an undirected graph.

graph directed graph (Graph)
```

return undirected graph

[Example]
ToOrderedPairs[
DirectedToUndirected[FromOrderedPairs[{{1, 2}, {2, 3}}]]
{{2, 1}, {3, 2}, {1, 2}, {2, 3}}



#### 2.1.5 DelaunayEdges

DelaunayEdges[p1]

:: list of edges which construct a Delaunay triangulation of given points pl

pl list of points

return list of edges which construct a Delaunay triangulation of given points pl

[Example]

DelaunayEdges[Vertices[Cycle[5]]]

 $\{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}$ 



## 2.1.6 DelaunayGraph

DelaunayGraph[p1]

:: construct a graph using Delaunay triangulation of given points pl

pl list of points

return graph using Delaunay triangulation of given points pl

[Example] ShowLabeledGraph[DelaunayGraph[Vertices[Cycle[6]]]]



## 2.1.7 CreateGraph

CreateGraph[v1,e1]

:: constract a graph using a list of coordinate of vertices vl and edges el

vllist of coordinate of vertices

ellist of connected edges (pairs of vertices)

return graph

[Example]

ShowLabeledGraph[CreateGraph[Vertices[Cycle[5]], Edges[Cycle[5]]]]



#### 2.1.8 NVertices

```
NVertices[n]
```

:: list of n random coordinates

number of coordinates n

returnlist of n random coordinates

[Example]

NVertices[5]

 $\{\{0.702154, 0.314688\}, \{0.214506, -0.316029\}, \{0.121768, -0.0316586\},$ 

 $\{-0.0175943, -0.198242\}, \{0.144589, 0.577006\}\}$ 

#### 2.1.9 SetVertices

SetVertices [g, v]

:: Force to be coordinates of vertices v in a graph g

g graph

v list of coordinates of vertices

return graph

[Example]

ShowLabeledGraph[SetVertices[Cycle[5],

 $\{\{0, 0\}, \{1, 0\}, \{2, 0\}, \{2, 1\}, \{0, 1\}\}\}]$ 



#### 2.1.10 NRandomGraph

NRandomGraph[n,p]

:: Construct a \$varn vertex graph adding random edges with a proberbility p.

n number of vertices

p existing proberbility of edges

return \$\sqrt{\text{syarn vertex graph adding random edges with a proberbility } p.

[Example]

ShowLabeledGraph[NRandomGraph[20, 0.5]]



#### 2.1.11 CycleVertices

CycleVertices[n,s]

:: list of coordinates of n vertices rotated s radian.

n number of coordinates

s rotation (radian)

return list of coordinates of n vertices rotated s radian.

$$\left(\cos\left(\frac{2k\pi}{n}+s\right),\sin\left(\frac{2k\pi}{n}+s\right)\right) \quad (k=1,\ldots,n)$$

[Example]

CycleVertices[4, Pi/2]

### 2.1.12 CycledGraph

CycledGraph[n,s]

:: Cycle graph which vertices are roted s radian

n number of vertices

s rotation (radian)

return graph

[Example]

ShowLabeledGraph[Cycle[5]]



ShowLabeledGraph[CycledGraph[5, 2 Pi/5]]



#### 2.2 Normalized Cut

```
2.2.1 DS
DS[s,g]
           :: Set of edges between a vertex set s and its complement.
           a subset of the vertex set of a graph g
           a graph
g
return
           set of edges between s and the complement of s
      [Example]
      DS[{1,2},Cycle[4]]
      {{2,3},{1,4}}
2.2.2 FDS
FDS[s,g] :: Transition probability between a vertex set s and its complement.
           a subset of the vertex set of a graph g
           a graph
           Transition probability between s and the complement of s
return
      [Example 1]
      FDS[{1,2},Cycle[4]]
      1/4
      [Example 2]
      FDS[{1,2},CompleteGraph[4]]
      1/3
2.2.3 WnCut
WnCut[s,g]
           :: Normalized cut value of a vertex set s of a graph g.
           a subset of the vertex set of a graph g
S
           a graph
g
return
           Normalized cut value of a vertex set s of a graph g.
      [Example 1]
      WnCut[{1,2},Cycle[4]]
      [Example 2]
```

#### 2.2.4 FindMinimumWnCut

WnCut[{1,2},CompleteGraph[4]]

FindMinimumWnCut[g]

4/3

:: Find a vertex set which minimize normalized cut values.

```
a graph
g
            list of normalized cut values for all subsets of the vertex set of g \setminus t the list is
return
            sorted by the order of normalized cut values
FindMinimumWnCut[g,1]
            :: Find a vertex set in l which minimize normalized cut values
            a graph
g
1
            list of vertex sets
            list of normalized cut values for subsets in I \setminus I the list is sorted by the order of
return
            normalized cut values
      [Example 1]
      FindMinimumWnCut[Cycle[4]]
      \{\{1., \{1, 2\}\}, \{1., \{1, 4\}\}, \{1., \{2, 3\}\}, \{1., \{3,4\}\},
      \{1.33333, \{1\}\}, \{1.33333, \{2\}\}, \{1.33333, \{3\}\}, \{1.33333, \{4\}\},
      \{1.33333, \{1, 2, 3\}\}, \{1.33333, \{1, 2, 4\}\}, \{1.33333, \{1, 3, 4\}\},
      \{1.33333, \{2, 3, 4\}\}, \{2., \{1, 3\}\}, \{2., \{2, 4\}\}\}
      [Example 2]
      FindMinimumWnCut[Cycle[4], {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}]
      {{1., {1, 2}}, {1.33333, {1}}, {1.33333, {1, 2, 3}}}
2.2.5 GDegree
GDegree[g,x]
            :: degree of a vertex x of a graph g
            graph
g
            vertex
X
            degree of a vertex x of a graph g
return
      [Example]
      Degree [Cycle [4], 1]
      2
2.2.6 GVol
GVol[g,s]
            :: volume of a vertex subset s of a graph g
            graph
g
S
            subset of the vertex set of a graph g
            volume of a vertex subset s of a graph g
return
            :: volume of a vertex subset s of a graph g
GVol[g]
            graph
            volume of the all vertex subset of a graph g
return
```

```
[Example 1]
      GVol[Cycle[4], 1, 2]
      [Example 2]
      GVol[Cycle[4]]
2.2.7 HG
HG[s,g]
            :: HG cut value of a vertex set s of a graph g.
            subset of the vertex set of a graph g
g
            graph
return
            HG cut value of a vertex set s of a graph g.
      [Example 1]
      HG[{1,2},Cycle[4]]
      1/2
      [Example 2]
      HG[{1,2},CompleteGraph[4]]
      2/3
2.2.8 FindMinimumHG
FindMinimumHG[g]
            :: Find a vertex set which minimize HG cut values.
            graph
g
return
            list of HG cut values for all subsets of the vertex set of g \setminus the list is sorted by
            the order of normalized cut values
      [Example]
      FindMinimumHG[Cycle[4]]
      \{\{0.5, \{1, 2\}\}, \{0.5, \{1, 4\}\}, \{0.5, \{2, 3\}\},
      \{0.5, \{3, 4\}\}, \{1., \{1\}\}, \{1., \{2\}\}, \{1., \{3\}\},
      \{1., \{4\}\}, \{1., \{1, 3\}\}, \{1., \{2, 4\}\}, \{1., \{1, 2, 3\}\},
      \{1., \{1, 2, 4\}\}, \{1., \{1, 3, 4\}\}, \{1., \{2, 3, 4\}\}\}
2.2.9 Ncut
Ncut[s,g]
            :: Normalized cut value of a vertex set s of a graph g.
            subset of the vertex set of a graph g
g
            Normalized cut value of a vertex set s of a graph g.
return
      [Example]
      Ncut[{1},Cycle[4]]
      4/3
```

#### 2.2.10 FindMinimumNcut

#### FindMinimumNcut[g]

:: Find a vertex set which minimize HG cut values.

g graph

return list of normalized cut values for all subsets of the vertex set of  $g \setminus b$  the list is sorted by the order of normalized cut values

#### [Example]

FindMinimumNcut[Cycle[4]]

```
{{1., {1, 2}}, {1., {1, 4}}, {1., {2, 3}}, {1., {3, 4}}, {1.33333, {1}}, {1.33333, {2}}, {1.33333, {3}}, {1.33333, {4}}, {1.33333, {1, 2, 3}}, {1.33333, {1, 2, 4}}, {1.33333, {1, 3, 4}},
```

 $\{1.33333, \{2, 3, 4\}\}, \{2., \{1, 3\}\}, \{2., \{2, 4\}\}\}$ 

#### 2.3 Matrix Operations

#### 2.3.1 TruncateMatrix

TruncateMatrix[m,n]

:: Force to be zero row vectors except the row n in a matrix m

m matrix

n row number

return Force to be zero row vectors except the row n in a matrix m

[Example]

#### 2.3.2 TruncateUptoMatrix

TruncateUptoMatrix

:: Force to be zero row vectors except the row up to n in a matrix m

m matrix

n row number

return Force to be zero row vectors except the row up to n in a matrix m

[Example]

```
TruncateUptoMatrix[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 2] {{1, 2, 3}, {4, 5, 6}, {0, 0, 0}}
```

#### 2.3.3 NMatrixPower

NMatrixPower[A,t]

:: t-th power of a matrix A

A matrix

t real number

```
return
           t-th power of a matrix A
  It is computed using Typer expansion.
      [Example]
     NMatrixPower[{{1, -1}, {1, 1}}, 3]
     \{\{-2., -2.\}, \{2., -2.\}\}
2.3.4 MatrixT
MatrixTA.tl
           :: t-th power of a matrix A
A
           matrix
           real number
return
           t-th power of a matrix A
  It is computed using the diagonalization of a matrix.
     [Example]
     MatrixT[{{1, -1}, {1, 1}}, 3]
     \{\{-2., -2.\}, \{2., -2.\}\}
2.3.5 Reordering
Reordering [S, T]
           :: Arrange the row vectors of T to maximize inner products to the corresponding
           row vectors of S
S. T
           matrices
return
           arranged matrix
2.3.6 TransposeReordering
TransposeReordering[S, T]
           :: Arrange the row vectors of T to maximize inner products to the corresponding
           row vectors of S
S, T
           matrices
return
           arranged matrix
2.4 Show Graphs
2.4.1 ColoringVertex
ColoringVertex[1]
           :: Create an option formula for coloring vertices
1
           clustered list
           an option formula for coloring vertices
return
      [Example]
     ColoringVertex[\{\{1, 2, 3\}, \{4, 5\}\}]
     {{1, 2, 3, VertexColor -> RGBColor[1, 0, 0]},
```

{4, 5, VertexColor -> RGBColor[0, 0, 1]}}

#### 2.4.2 Coloring

Coloring[g]

:: Coloring vertices of a graph g

g graph

return colored graph

[Example]

ShowGraph[Coloring[Cycle[4]]]



#### 2.4.3 ClusterNumber

ClusterNumber[n,c1]

:: rerutn the position number of the cluster which includes \varn

n element

cl cluster list

return the position number of the cluster which includes \varn

[Example]

ClusterNumber[3, 1, 2, 3, 4, 5, 6]

2

### 2.4.4 ShowColoredGraphs

ShowColoredGraphs[gl,cl]

:: Show colored graphs in gl using a list cl

gl list of graphs

cl clustered numbers

return Show colored graphs in gl using a list cl

If a graph is in n-th cluster then it is colored by n-th color. The color list is (Red, Green, Orange, Cyan, Purple, Black).

[Example]

ShowColoredGraphs[Table[Cycle[3], {5}], {{1, 3, 5}, {2, 4}}]



## 2.4.5 ColoringSubset

ColoringSubset[g,a]

:: Coloring vertices in a subset a of the vertex set of a graph g.

g graph

a subset of the vertex set of a graph g

return Colored graph

[Example]

ShowLabeledGraph[ColoringSubset[Cycle[6], {1, 2}]]



### 2.5 Random Walks

#### 2.5.1 NaturalRandomWalkMatrix

```
NaturalRandomWalkMatrix[g]
```

:: Natural random walk matrix of a graph g

graph

return natural random walk matrix of a graph g

[Example]

NaturalRandomWalkMatrix[Cycle[5]]

 $\{\{0, 1/2, 0, 0, 1/2\}, \{1/2, 0, 1/2, 0, 0\}, \{0, 1/2, 0, 1/2, 0\},$ 

 $\{0, 0, 1/2, 0, 1/2\}, \{1/2, 0, 0, 1/2, 0\}\}$ 

#### 2.5.2 MyStationaryDistribution

```
MyStationaryDistribution[g]
```

:: Stationary distribution of the natural random walk of a graph g

g graph

return stationary distribution of the natural random walk of a graph g

[Example]

MyStationaryDistribution[Path[5]]

{1/8, 1/4, 1/4, 1/4, 1/8}

#### 2.5.3 FS

FS[s,g] :: Sum of stationary ditribution probabilities for a subset g

subset of the vertex set of a graph g

g argtype

return sum of stationary ditribution probabilities for a subset g

[Example]

FS[1, 2, Path[5]]

3/8

## 2.6 Spectral Clustering

#### 2.6.1 FirstEigenVector

FirstEigenVector[M]

:: The first eigen vector of a matrix m.

M matrix

return The first eigen vector of a matrix m.

#### 2.6.2 SecondSmallEigenVector

SecondSmallEigenVector[M]

:: The second smallest eigen vector of a matrix m.

M matrix

return The second smallest eigen vector of a matrix m.

#### 2.6.3 ThirdSmallEigenVector

ThirdSmallEigenVector[M]

:: The third smallest eigen vector of a matrix m.

M matrix

return The third smallest eigen vector of a matrix m.

#### 2.6.4 UndirectedLaplacian

```
UndirectedLaplacian[g]
```

:: Laplacian matrix of the adjacency matrix of a graph g

g graph

return Laplacian matrix of the adjacency matrix of a graph g

[Example]

UndirectedLaplacian[Path[3]]

{{1, -(1/Sqrt[2]), 0}, {-(1/Sqrt[2]), 1, -(1/Sqrt[2])}, {0, -(1/Sqrt[2]), 1}}

#### 2.6.5 NormalClustering

#### NormalClustering[g,n]

:: Clustering using a build in Mahtematica function.

g graph

return Clustered colored graph using a build in Mahtematica function.

[Example]

ShowLabeledGraph[NormalClustering[Path[10], 3]]



## 2.6.6 UndirectedSpectralVector

#### UndirectedSpectralVector[g]

:: A second eigenvector of the Laplacian matrix of a graph g.

g graph

return A second eigenvector of the Laplacian matrix of a graph g.

## 2.6.7 UndirectedSpectralClustering

#### ${\tt UndirectedSpectralClustering[g,n]}$

:: Spectoral clustering of a graph g

g graph

n number of clusters

return colored graph clustered by spectral clustering method.

[Example] ShowLabeledGraph[UndirectedSpectralClustering[ExactRandomGraph[10, 15], 2]]



#### 2.6.8 UndirectedSpectralVector2

#### UndirectedSpectralVector2[g]

:: A pair of a second eigen vector and a third eigen vector of the Laplacian matrix of a graph g.

g graph

return pair of a second eigen vector and a third eigen vector of the Laplacian matrix of a graph g

## ${\bf 2.6.9} \ {\tt UndirectedSpectralClustering2}$

#### UndirectedSpectralClustering2

:: Spectoral clustering of a graph g

g graph

return spectoral clustering of a graph g

This method use a second and third eigen vectors of the Lapalacian matrix of a graph g.

g = ExactRandomGraph[10, 15];

{ShowLabeledGraph[UndirectedSpectralClustering[g, 3]], ShowLabeledGraph[UndirectedSpectralClustering2[g, 3]]}



#### 2.6.10 UndirectedSpectralClusteringPlus

UndirectedSpectralClusteringPlus[g]

:: Spectoral clustering of a graph g

g graph

return return value

This method use a sorted second eigen vector of the Lapalacian matrix of a graph g.

#### 2.6.11 UndirectedSpectralClusteringSign

UndirectedSpectralClusteringSign[g]

:: Spectoral clustering of a graph g

g graph

return return value

This method use a sign of a second eigen vector of the Lapalacian matrix of a graph g.

[Example]

g = ExactRandomGraph[10, 15];

{ShowLabeledGraph[UndirectedSpectralClusteringPlus[g]], ShowLabeledGraph[UndirectedSpectralClusteringSign[g]]}



#### 2.6.12 PCA3Clustering

PCA3Clustering[m,n]

:: Clustering data m to n clusters using PCA methods

m data vectors

n number of clusters

return Clustering data m to n clusters using PCA methods

[Example]

gv = Table[RandomInteger[5], RandomInteger[5], 10] {{5, 3}, {2, 5}, {0, 1}, {2, 0}, {0, 4}, {1, 1}, {3, 2}, {4, 4}, {3, 2}, {1, 3}}

ShowLabeledGraph[SetGraphOptions[CreateGraph[gv, {}],

## ColoringVertex[PCA3Clustering[gv, 2]]]]



## 3 Special Graphs

## 3.1 Roach Graph and Weighted Path

#### 3.1.1 RoachGraph

RoachGraph[n,k]

:: Roach type Graph with size n and k

n, k size

return Roach type graph

[Example]

ShowLabeledGraph[RoachGraph[3, 2]]



#### 3.1.2 WeightedNormalizedLaplacian

WeightedNormalizedLaplacian[M]

:: Weighted Laplacian matrix of a weighted adjacency matrix.

M weighted adjacency matrix of a graph

return Weighted Laplacian matrix of a weighted adjacency matrix.

#### 3.1.3 WeightedPath

WeightedPath[n,k]

:: Weighted adjacency matrix of a path which have n+k vertices and n vertices have weight 2 and k vertices have weight 1.

n, k size

return weighted adjacency matrix of a path

ShowLabeledGraph[FromAdjacencyMatrix[WeightedPath[3, 2]]]



## 3.1.4 WeightedPathUnion

WeightedPathUnion[n,k]

:: Disjoint union graph of Path[n] and Path[k]

n, k size

return disjoint union graph of Path[n] and Path[k]

[Example]

ShowLabeledGraph[FromAdjacencyMatrix[WeightedPathUnion[3, 2]]]



## 3.2 Lollipop, Tree, Tree cross Path

#### 3.2.1 LPG

 $\mathtt{LPG[n,m]}$  :: Lollipop graph with size n and m.

n, m size

return Lollipop graph with size n and m.

[Example]

ShowLabeledGraph[LPG[5, 3]]



### 3.2.2 LPG2

LPG2[n,m]

:: Modified Lollipop graph with size n and m.

n, m size

return Modified Lollipop graph with size n and m.

[Example] ShowLabeledGraph[LPG2[5, 3]]



## 3.2.3 DTG

 $\mathtt{DTG[n]}$  :: Tree graph with depth n

n depth

return Tree graph with depth n

[Example]
DTG[5]



#### 3.2.4 DTG2

 $\mathtt{DTG2[n]}$  :: Double tree graph with depth n

n depth

return Double tree graph with depth n

[Example] DTG2[5]



#### 3.2.5 DTCPG

DTCPG[n,k]

:: Tree (depth n) cross Path (length k) Graph

n depth of tree

k length of path

return Tree (depth n) cross Path (length k) Graph

[Example]
DTCPG[3,5]



## 3.2.6 DTCPG2

## DTCPG2[n,k]

:: Doubl tree (depth n) cross Path (length k) Graph

n depth of double tree

k length of path

return Double tree (depth n) cross Path (length k) Graph

[Example]
DTCPG2[3,2]



Index 24

# Index

| $\mathbf{C}$                                                                                                                                                                                           | MyStationaryDistribution 14                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ClusterNumber       12         Coloring       12         ColoringSubset       13         ColoringVertex       11         CreateGraph       4         CycledGraph       6         CycleVertices       5 | NaturalRandomWalkMatrix       13         Ncut       9         NMatrixPower       10         NormalClustering       15         NRandomGraph       5         NVertices       4                                                                         |
| D                                                                                                                                                                                                      | Weltices                                                                                                                                                                                                                                             |
| DelaunayEdges                                                                                                                                                                                          | PCA3Clustering                                                                                                                                                                                                                                       |
| Distance       2         DistanceVector       2         DS       7         DTCPG       22         DTCPG2       23         DTG       21         DTG2       22                                           | Reordering. 11 RoachGraph. 19                                                                                                                                                                                                                        |
| FDS       7         FindMinimumHG       9         FindMinimumNcut       10         FindMinimumWnCut       7         FirstEigenVector       14         FS       14                                      | SecondSmallEigenVector       14         SetVertices       5         ShowColoredGraphs       12         T       ThirdSmallEigenVector       14         TransposeReordering       11         TruncateMatrix       10                                   |
| G                                                                                                                                                                                                      | TruncateUptoMatrix10                                                                                                                                                                                                                                 |
| GDegree                                                                                                                                                                                                | f U UndirectedLaplacian                                                                                                                                                                                                                              |
| <b>H</b> HG9                                                                                                                                                                                           | UndirectedSpectralClustering         15           UndirectedSpectralClustering2         16           UndirectedSpectralClusteringPlus         17           UndirectedSpectralClusteringSign         17           UndirectedSpectralVector         15 |
| L                                                                                                                                                                                                      | UndirectedSpectralVector2                                                                                                                                                                                                                            |
| LabeledFindClusters         2           LPG         20           LPG2         21                                                                                                                       | $\mathbf{W}$                                                                                                                                                                                                                                         |
| MatrixT11                                                                                                                                                                                              | WeightedNormalizedLaplacian         19           WeightedPath         19           WeightedPathUnion         20           WnCut         7                                                                                                            |