Chiraag Kaushik

Website: chiraagk7.github.io Email: ckaushik7@gatech.edu LinkedIn: chiraag-kaushik

Research Interests

- Generalization, robustness, and interpretability in modern representation learning
- Mathematical foundations of machine learning and statistical signal processing
- Design and application of ML systems to gain insight in imaging, health, and the natural sciences

EDUCATION

Georgia Institute of Technology

Atlanta, GA

Ph.D. Electrical and Computer Engineering, M.S. Mathematics

August 2021 - May 2026 (expected)

- Advisors: Vidya Muthukumar and Justin Romberg
- Concentration: Digital Signal Processing and Machine Learning

Rice University Houston, TX

B.S. Electrical and Computer Engineering, summa cum laude, research distinction

August 2017 - May 2021

- Concentration: Signal Processing and Data Science

PUBLICATIONS

Conference articles and preprints

- 1. Brighton Ancelin, Yenho Chen, Alex Saad-Falcon, Peimeng Guan, C. Kaushik, Nakul Singh, Belen Martin-Urcelay: "MANGO: Disentangled Image Transformation Manifolds with Grouped Operators," at *Sampling Theory and Applications (SampTA)*, 2025.
- 2. C. Kaushik, Justin Romberg, Vidya Muthukumar: "Precise asymptotics of reweighted least-squares algorithms for linear diagonal networks," at Neural Information Processing Systems (NeurIPS), 2024.
- 3. C. Kaushik*, Ran Liu*, Chi-Heng Lin, Amrit Khera, Matthew Jin, Wenrui Ma, Vidya Muthukumar, Eva L. Dyer: "Balanced Data, Imbalanced Spectra: Unveiling Class Disparities with Spectral Imbalance," at *International Conference on Machine Learning (ICML)*, 2024.
- 4. C. Kaushik, T.M. Roddenberry, Santiago Segarra: "Network topology change-point detection from graph signals with prior spectral signatures," at *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)* 2021.

Journal articles

- 1. Chi-Heng Lin, C. Kaushik, Eva L. Dyer and Vidya Muthukumar: "The good, bad and ugly sides of data augmentation: An implicit spectral regularization perspective," in *Journal of Machine Learning Research (JMLR)*, 2024.
- 2. C. Kaushik, Andrew McRae, Mark Davenport and Vidya Muthukumar: "New equivalences between interpolation and SVMs: Kernels and structured features," in SIAM Journal on Mathematics of Data Science (SIMODS), 2024.

Professional Experience

Dolby Laboratories

San Francisco, CA

PhD Research Intern - Machine Perception and Reasoning team

May 2025 - August 2025

 Designed an improved sparse autoencoder (SAE) architecture for interpretability and steering of multimodal models.

- Applied proposed model to audio/text embeddings and showed improved semanticity and modality alignment compared to standard SAEs.
- Work in preparation for conference submission.

Samsung Austin Semiconductor (Samsung Electronics)

Austin, TX

Infrastructure Innovation Intern

May 2019 - August 2019

 Led development of a new internal application for data tracking and visualization during maintenance day in the semiconductor fab, leading to minimized downtime of the plant. Nominated by Samsung executives for a high-impact intern project award.

Scalable Health/Computational Imaging Labs

Houston, TX

Undergraduate Researcher

January 2018 - December 2019

- Developed image processing algorithms to improve the robustness of photoplethysmography (PPG) detection in wearable devices.
- Designed the illumination system for a wearable implementation of FlatCam (a lensless camera designed at Rice University based on compressive measurements) for use in health imaging applications

RESEARCH EXPERIENCE

Georgia Institute of Technology

Interpretable representation learning for generative image transformations

2024

- Proposed and tested a novel autoencoder-based model which jointly learns latent image representations and a set of operators that can be used to generate transformed images in an interpretable way.

Metrics for class bias in modern pre-trained models

2023-2024

- Identified the concept of "spectral imbalance" as an important contributor to performance gaps in modern classification models. Proved corresponding generalization bounds in the high-dimensional regime.
- Helped conduct empirical investigations of this phenomenon for 11 real-world encoders for vision data, and developed a metric to predict the bias of a given pre-trained model without any additional downstream training.

Data augmentation in overparameterized models

2021-2023

- Developed generalization bounds for overparameterized models trained with various common stochastic data augmentations, including Gaussian noise injection and random mask.
- Designed new ensembled augmentation procedures to help mitigate robustness failures during neural network training, including for vision-transformer and ResNet-based image encoders.

Rice University

Network topology change-point detection from graph-supported data

2020-2021

- Developed a novel sequential change-point detection algorithm to predict changes in underlying graph topology by using spectral information obtained from data.
- Implemented algorithm on synthetic and real world (social network) datasets, demonstrating favorable performance in terms of average run length.

Early detection of cardiac electrical instability (with Texas Children's Hospital)

2020-2021

- Designed and implemented an online anomaly detection algorithm (based on a novel Wasserstein-CUSUM statistic derived from a personalized autoencoder model) for early detection of electrical instability from cardiac signals in post-operation pediatric patients.
- Voted 1st place at Rice Data Science Showcase by a panel of industry executives and professors

AWARDS

• Herbert P. Haley Fellowship	2024-2025
• NSF Graduate Research Fellowship	2021-2026
• Georgia Tech President's Fellowship	2021-2026
• Simons Institute Deep Learning Theory Workshop travel award	2022
• 1^{st} place - Rice Data Science Showcase	2021
• Rice Engineering Alumni (REA) Outstanding Senior Award	2021
	2024
• Phi Beta Kappa, member	2021 –present
 Phi Beta Kappa, member Eta Kappa Nu, member 	2021 –present 2020 –present
	•
• Eta Kappa Nu, member	2020 –present
 Eta Kappa Nu, member NUS Faculty of Engineering Annual Prize 	2020 –present 2020

Leadership and Teaching

• Innovation Ecosystem Coordinator

August 2019 - January 2020

Student leader for the NSF PATHS-UP (Precise Advanced Technologies and Health Systems for Underserved Populations) Engineering Research Center

• Teaching Assistant

Fall 2020

Signals, Systems, and Learning (ELEC 301 at Rice)

• Teaching Assistant

Fall 2025

Machine Learning Theory (CS 7545 at Georgia Tech)

Posters and Presentations

- 1. C. Kaushik*, Ran Liu*, Chi-Heng Lin, Amrit Khera, Matthew Jin, Wenrui Ma, Vidya Muthukumar, Eva L. Dyer: "Balanced Data, Imbalanced Spectra: Unveiling Class Disparities with Spectral Imbalance," poster presented at ML@GT Conference, Atlanta, GA. Aug. 2024.
- 2. **C. Kaushik**, Justin Romberg, and Vidya Muthukumar: "Precise asymptotics of reweighted least-squares algorithms for linear diagonal networks," poster presented at *IEEE Symposium on Information Theory (ISIT)*, Athens, Greece. July 2024.
- 3. Chi-Heng Lin, C. Kaushik, Eva L. Dyer, and Vidya Muthukumar: "The good, bad and ugly sides of data augmentation: An implicit spectral regularization perspective," poster presented at *DeepMath* conference, San Diego, CA. Nov. 2022.
- 4. C. Kaushik, B. Songong, V. Boominathan, A. Veeraraghavan, and A. Sabharwal, "Optical Design for Motion Compensation in Wearable Devices," poster presented at ECE Corporate Affiliates Day, Houston, TX. Apr. 2019.
- B. Songong, C. Kaushik, V. Boominathan, A. Veeraraghavan, and A. Sabharwal, "Optical Design for Motion Compensation in Wearable Devices," poster presented at NSF Site Visit for PATHS-UP consortium, Texas A&M University, TX. Mar. 2019.

SKILLS

- Technical skills: Python, PyTorch, Numpy, Scikit-Learn, CVXPY, Matlab, IATEX
- Languages: Spanish, Portuguese, Hindi