Fiche résumé mécanique

5. Champ gravitationnel

 $\vec{G}(M)$: champ gravitationnel rayonné en un point M. Par construction, ne dépend que de sa source et non de l'objet situé en M.

C'est un champ de gradient \Rightarrow existence d'un champ scalaire, le potentiel gravitationnel VPour une masse ponctuelle m située en M où règne un champ gravitationnel :

$$\begin{cases} \vec{F} = m\vec{G} \\ E_p = mV \end{cases} \Leftrightarrow \begin{cases} \vec{F} = -\overrightarrow{\text{grad}}(E_p) \\ \vec{G} = -\overrightarrow{\text{grad}}(V) \end{cases}$$

Théorème de Gauss

Soit S une surface fermée quelconque et M_{int} la masse totale contenue dedans :

$$\iint_{S} \vec{G} \cdot d\vec{S} = -4\pi \mathcal{G} M_{\text{int}}$$

Universellement vrai, quelle que soit la forme de S. Mais réellement pratique pour calculer \vec{G} seulement dans les cas « riches en symétries », typiquement quand on peut ramener $\vec{G}(M)$ à un vecteur à une seule composante et ne dépendant que d'une seule variable.

- 1. Analyse des invariances et des symétries pour simplifier l'expression de $\vec{G}(M)$.
- 2. Choix de la surface de Gauss pour que $\vec{G}.d\vec{S}$ soit trivial à calculer (\vec{G} et $d\vec{S}$ colinéaires ou perpendiculaires entre eux).
- 3. Calcul du flux de \vec{G} à travers *S*.
- 4. Calcul de la masse intérieure, contenue dans S.
- 5. Application du théorème de Gauss pour en déduire \vec{G} .

Potentiel gravitationnel

Une fois \vec{G} calculé, on en déduit V en inversant le gradient. Les constantes apparaissant lors des primitivations sont fixées si possible par :

- annulation du potentiel à grande distance de la source,
- raccordement par continuité du potentiel