Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка алгоритма предварительной группировки данных

Выполнила:

Руководитель:

Консультанты:

Маркова Ангелина Викторовна, гр. 7383

Жукова Наталия Александровна, д.т.н., доцент

Заславский Марк Маркович, к.т.н., доцент

Семенов Виктор Павлович, д.э.н., профессор

Шевская Наталья Владимировна

Санкт-Петербург, 2021

Цель и задачи

Актуальность: данные о товарах и их продажах в современных торговых системах имеют сложную структуру, которая без предварительной группировки сложно поддается анализу

Цель:

разработать алгоритм предварительной группировки данных розничной торговли

Задачи:

- 1. обзор предметной области и сравнительный анализ существующих алгоритмов группировки данных;
- 2. реализация алгоритма предварительной группировки данных;
- 3. оценка качества разработанного алгоритма.

Обзор предметной области

Группировка

представляет собой метод разбиения исследуемой совокупности данных на однородные по изучаемым признакам группы

Группировка товаров для формирование ассортимента вендинговых автоматов

- осуществляется вручную и занимает слишком много времени;
- имеет низкую точность разбиения в связи с тем, что в них используется один параметр данных.

С точки зрения маркетинговых задач применяется

- для выявления товаров со схожей структурой спроса;
- для разбиения потребителей на близкие по особенности поведения группы;
- для анализа спроса в зависимости от набора входных показателей.

Определение критериев для сравнительного анализа

Регулирование количества получаемых групп

разбиение набора данных на фиксированное число групп позволит задавать ассортимент товаров для конкретного места, на котором находятся вендинговые автоматы

Возможность отнести элемент к более чем одной группе

необходима, так как одни и те же товары могут продаваться в нескольких местах одновременно

Возможность группировки по нескольким критериям

алгоритмы, которые поддерживают многокритериальность, спсобны учесть несколько факторов единовременно

Оптимальное значение вычислительной сложности

нужно, чтобы при увеличении размера входных данных алгоритм не расходовал дополнительные вычислительные ресурсы и время для анализа

Сравнительный анализ алгоритмов по выбранным критериям

Название алгоритма группировки Данных	Возможность регулирования количества групп	Возможность отнести элемент к более чем одной группе	Возможность группировки по нескольким критериям	Значение Вычислительной сложности
Алгоритм <i>k</i> -средних	+	-	-	$O(n \cdot k \cdot l)$, где n — число объектов
Алгоритм <i>с</i> -средних	+	+	-	в наборе, k – число групп, l –
<i>ЕМ</i> -алгоритм	+	-	-	число итераций
Алгоритмы иерархической кластеризации	-	-	-	$O(n^2)^{,}$ где n — число объектов в наборе
Самоорганизующаяся карта Кохонена	-	+	+	$O(N \cdot M \cdot n)$, где N — число нейроны выходного слоя, M — число векторов, n — размерность

Группировка на основе карты Кохонена

Структура самоорганизующейся карты Кохонена

Алгоритм обучения разделяется на следующие шаги:

- инициализация весов каждого узла;
- выбор случайного вектора из набора входных данных;
- процесс конкуренции;
- процесс кооперации;
- процесс адаптации.

Реализация алгоритма предварительной группировки данных

Шаг 1. Получение разбиения в Deductor Studio Academic 5.3

Реализация алгоритма предварительной группировки данных (2)

Результат алгоритма предварительной группировки данных

Промежуточные вычисления

	Автомат А	Автомат В	Автомат С
Кондитерские изделия	22	11	16
Мармелад и леденцы	17	14	15
Чипсы и сухарики	25	11	11
Орехи и семечки	16	7	22
Напитки	20	9	18
Шоколад	24	8	17
Итого	124	60	99

Результаты расчетов

Автомат А	Автомат В	Автомат С
17.74%	18.33%	16.16%
13.71%	23.33%	15.15%
20.16%	18.33%	11.11%
12.90%	11.67%	22.22%
16.13%	15.00%	18.18%
19.35%	13.33%	17.17%

Оценка качества разработанного алгоритма

Для определения корректности разбиения исходного множества на группы был использован АВС-анализ

Результат АВС-анализа

	Чипсы и сухарики	Шоколад	Кондитерские изделия	Напитки	Мармелад и леденцы	Орехи и семечки
Автомат А	Α	Α	Α	Α	В	С
Автомат В	Α	В	Α	Α	Α	С
Автомат С	С	Α	Α	Α	В	А

Схематическое представление работы алгоритма

Заключение

- Проведено сравнение существующих алгоритмов по назначенным критериям и выбран наиболее подходящий группировка с помощью самоорганизующихся карт Кохонена.
- Разработан алгоритм предварительной группировки данных с использованием карт Кохонена.
- Для оценки точности работы алгоритма был проведен ABC-анализ, результаты которого подтвердили правильность работы разработанного алгоритма. Время работы алгоритма на тестовом наборе данных заняло 6-10 сек.

Дальнейшие направления исследований включают в себя использование разработанного алгоритма группировки данных розничной торговли в рекомендательных системах, а также создание графического интерфейса пользователя.

Апробация работы

- Deryabina, P. S., Iolshina, V. M., Markova, A. V., Shevskaya, N. V., & Belov, V. (2021, January).
 Challenges and Perspectives of Recommender Systems in Vending Machines // 2021 IEEE
 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). –
 IEEE, 2021. C. 284-289.
- Репозиторий проекта https://github.com/AngelinaMarkova99/Processing-the-results-of-splitting-into-groups.

Запасные слайды

Пример обучения карты Кохонена

Исходный набор данных

Кондитерские изделия

Напитки

Шоколад

Α	В	С	Date	Product
10	6	2	01.01.2019	Кондитерские
10	0 2 01.01.2019	01.01.2010	изделия	
9	0	0	01.01.2019	Орехи и
3	U	U	01.01.2019	семечки
1	9	6	01.01.2019	Напитки
7	0	7	01.01.2019	Мармелад и
1		ı	01.01.2019	леденцы
2	0	1	01.01.2019	Чипсы и
_	U			сухарики
1	6	8	01.01.2019	Шоколад

• • •