What is claimed is:

1	1. A cryogenic medical system comprising:
2 ·	a medical device;
3	a console including accessories, the console connectable to the medical device
4	at a connection point, the console controlling temperature of the medical device, and
5	the console including
6	a first cooling system directing coolant to the medical device at a first
7	temperature along a coolant supply line; and
8	a second cooling system chilling the coolant within the coolant supply
9 4	line to a temperature below the first temperature before the coolant reaches the
0	connection point.
1	2. The system of claim 1, wherein the medical device includes a catheter.
1	3. The system of claim 2, wherein the first cooling system includes a coolant
2	return line leading from the medical device, and wherein the first cooling system and
3	the medical device comprise a substantially closed-loop.
1	4. The system of claim 3, wherein the first cooling system includes:
2	a first compressor in fluid communication with a first condenser outputting
3	coolant into the coolant supply line; and
4	a vacuum pump in fluid communication with the first compressor that
5	establishes a pressure within the coolant return line that is below ambient atmospheric
6	pressure.
	P. Cooding Co.
1 .	5. The system of claim 3, wherein the second cooling system includes an
2	enclosure having an inlet and an outlet; the enclosure defining a fluid path from the
3	inlet to the outlet, and the enclosure enveloping a portion of the coolant supply line.

6. The system of claim 5, further comprising a second compressor in fluid communication with a second condenser outputting coolant to the inlet of the enclosure and receiving coolant from the outlet of the enclosure.

- 7. The system of claim 2, wherein the first cooling system includes a coolant return line leading from the catheter to a coolant scavenging system, and wherein the first cooling system and the catheter comprise a substantially open-loop.
- 8. The system of claim 7, wherein the first cooling system includes:
 a coolant reservoir in fluid communication with the fluid supply line; and
 a vacuum pump interposed between the catheter and the coolant collection
 tank.
- 9. The system of claim 8, wherein the vacuum pump creates a pressure within the catheter that is below ambient atmospheric pressure.
- 10. The system of claim 7, wherein the second cooling system includes an enclosure having an inlet and an outlet; the enclosure defining a fluid path from the inlet to the outlet, and the enclosure enveloping a portion of the coolant supply line.
- 11. The system of claim 10, further comprising a compressor in fluid communication with a condenser outputting coolant to the inlet of the enclosure and receiving coolant from the outlet of the enclosure.

1		12.	The system of claim 10, further comprising:			
2			a coolant reservoir in fluid communication with the fluid supply line;			
3			a second fluid supply line in fluid communication with the coolant reservoir			
4 a:		and th	and the inlet of the enclosure.			
1		13.	The system of claim 12, further comprising:			
2			a temperature sensor for measuring the temperature within the enclosure; and			
3			a coolant flow regulator responsive to the temperature sensor for controlling			
4		fluid	flow from the second fluid supply line into the enclosure.			
1		14.	The system of claim 12, further comprising a temperature sensor for			
2		meası	aring the temperature within the fluid supply line; and			
3			a coolant flow regulator responsive to the temperature sensor for controlling			
4		fluid	flow from the second fluid supply line into the enclosure.			

1		15. A cryogenic medical system comprising:
2.		a catheter;
3		a console including accessories, the console connectable to the catheter at a
4		connection point, the console controlling temperature of the catheter, and the console
5		including
6		a first cooling system including
7		a coolant supply line leading to the catheter,
8	ì	a coolant return line leading from the catheter,
9		a first compressor in fluid communication with a first condenser
0		outputting coolant into the coolant supply line, and
1		a vacuum pump in fluid communication with the first
12		compressor that establishes a pressure within the coolant return line that is below
13		ambient atmospheric pressure; and
14		a second cooling system including
15		an enclosure having an inlet and an outlet, wherein the
16		enclosure defines a fluid path from the inlet to the outlet, and the enclosure envelops a
17		portion of the coolant supply line of the first cooling system; and
18		a second compressor in fluid communication with a second
19		condenser outputting coolant to the inlet of the enclosure and receiving coolant from
20	-	the outlet of the enclosure