

Learning Shapes For Efficient Segmentation of 3D Medical Images using Point cloud

Mohammad Sadil Khan

Master Thesis Defence M.Sc in Machine Learning and Data Mining University Jean Monnet

Supervisors: Razmig Kéchichian, Sébastien Valette and Julie Digne

Contents

- Motivation
- Internship Task
- Data Preparation
 - Dataset
 - Point Cloud Extraction
- Model
 - RandLa-Net
 - Modified RandLa-Net with Feature Extractor
- Point Cloud Segmentation
 - Experiments and Results
- Voxel Segmentation

Motivation

• The goal of this internship to develop a novel approach to perform image segmentation of organs in 3D Medical Image using point clouds.

Internship Task

Fig 1: Framework of our current working model. The extracted point cloud has two colours for ease of visualization.

Internship Task - Point Cloud

Fig 2: Point cloud of left kidney

We used RandLa-Net, an attention based large-scale point cloud segmentation network for our task.

Data Preparation - Dataset

20 Contrast Enhanced CT Images from Visceral Dataset*. **Dataset**

Dimension $(512 \times 512 \times 450 \rightarrow 128 \times 128 \times 112)$ for faster training.

Fig 3: 2D slices of a visceral image from different views with ground truth segmentation mask

Data Preparation - Point Cloud Extraction

Model - RandLaNet

- RandLaNet: UNet-like architecture for large scale point cloud segmentation.
- It uses random downsampling method to learn features from small representative samples.
- It uses attention-based local feature aggregation(LFA) to counter the loss of points.

Fig 4: RandLaNet Architecture (Source*). RS is Random Sampling and US is UpSampling. For ease of visualisation, background points are removed from the point cloud.

RandLaNet - Encoder

Local Feature Aggregation (LFA)*

1. Sampling using KNN

2. Message Generation

$$f_i = MLP\left(p; p_i; (p - p_i); ||p - p_i||\right)$$

3. Message Passing

$$f = \sum_{i=1}^{6} \alpha_i f_i$$

RandLaNet - Encoder

Local Feature Aggregation (LFA)*

Fig 6: LFA Module

$$E = MLP\left(p_i; p_k^{(i)}; (p_i - p_k^{(i)}); ||p_i - p_k^{(i)}||\right)$$

Fig 7: Feature sharing in RandLa-Net

RandLaNet - Decoder

Upsampling

• In every encoder when a point is removed, it is stored as a reference. In the subsequent decoder we upsample the points to match the number of points equal with the connected encoder.

Fig 8: RandLaNet Architecture (Source*). RS is Random Sampling and US is UpSampling

Modified RandLaNet

RandLaNet + Feature Extractor (FE)

- Challenges: Model does not learn good local features.
- **Contribution**: A Feature Extractor layer to learn the *local spatial information* using the neighbourhood intensity values.

Modified RandLaNet

RandLaNet + Feature Extractor (FE)

Point Cloud Segmentation Result

Feature Extraction (Binary Segmentation)

$$Recall = \frac{TP}{TP + FN}$$

$$IoU = \frac{TP}{TP + FN + FP}$$

- Our proposed feature extraction layer learns local geometrical information for all the points.
- It performs better than original RandlaNet model.

Experiment	Rec	all	IoU		
	Background	Lungs	Background	Lungs	
RandLaNet	0.9568	0.7936	0.9348	0.5702	
RandLaNet+ FE	0.9844 (+2.8%)	0.8872 (+11.8%)	0.9722 (+4%)	0.7766 (+36.2%)	

Table 1: Effect of Feature Extractor on feature learning for lungs segmentation. Loss is CMCE. Blue is for better result.

Experiment	Rec	all	IoU			
	Background	Liver	Background	Liver		
RandLaNet	0.9830	0.6008	0.9730	0.3426		
RandLaNet+ FE	0.9924 (+1%)	0.76 (+26.5%)	0.9862 (+1.4%)	0.5652 (+65%)		

Table 2: Effect of Feature Extractor on feature learning for liver segmentation. Loss is CMCE. Blue is for better result.

Class Imbalance

- Dataset Problem: Class Imbalance
- Experiments: Three types of weighting in Cross Entropy Loss.

- . ComboLoss where $w=\alpha_1+\frac{\alpha_2}{r+0.02}+\frac{\alpha_3}{r}$, r=ratio. $\sum_{i=1}^3 \alpha_i=1.$
- . Challenges with Frequency based weight(w=-): High misclassification rates in background classes for <u>lower</u> weights of background compared to minority organs.

Fig 11: Point Cloud Dataset Class Distribution

Cost Matrix Cross Entropy loss function

Fig 12: Motivation behind CMCE loss.

Fig 13: Cost Matrix with prediction cost. Weights are calculated using ComboLoss.

Result: Loss Function (Multi-Class Segmentation)

Figure 14: Confusion Matrix for Multi-Class Segmentation with RandLa-Net+FE before applying CMCE.

After CMCE

Figure 15: Confusion Matrix for Multi-Class Segmentation with RandLa-Net+FE <u>after applying CMCE</u>.

Result: Loss Function (Binary Segmentation)

Experiment	Rec	all	IoU			
Ехреппен	Background	Lungs	Background	Lungs		
RandLaNet+FE+ CE(No Weights)	0.99	0.88	0.9776	0.806		
RandLaNet+ FE+ComboLoss	0.9642	0.979	0.9620	0.7372		
RandLaNet+FE+ CE(CMCE)	0.9844	0.8872	0.9722	0.7766		

Table 3: Results of Lungs Segmentation for different weights in CE Loss

Experiment	Rec	all	IoU			
LAPEIIIICIIC	Background	Liver	Background	Liver		
RandLaNet+FE+ CE(No Weights)	0.996	0.6918	0.9878	0.5748		
RandLaNet+FE+ CE(Frequency Weights)	0.9706	0.9562	0.9692	0.4210		
RandLaNet+FE+ CE(CMCE)	0.9924	0.76	0.9862	0.5652		

Table 4: Results of Liver Segmentation for different weights in CE Loss

$$Recall = \frac{TP}{TP + FN}$$

$$IoU = \frac{TP}{TP + FN + FP}$$

Multi Class Segmentation Results

Index	Model	Metric	Backgroun d	Liver	Lungs	Bladder	Right Kidney	Left Kidney	Mean
1	RandLaNet + CE(w=1/ratio)	Recall	0.486	0.803	0.832	0.235	0.973	0.654	0.523
		IoU	0.482	0.12	0.271	0.024	0.035	0.104	0.173
2 Random	RandLaNet+FE(7,7,7)+CMCE+	Recall	0.9446	0.8112	0.9118	0.4564	0.7924	0.852	0.795
	Random Downsampling Rate(2)	IoU	0.9282 (+93%)	0.4964 (+314%)	0.7488 (+176%)	0.2266 (+844%)	0.4006 (+1044%)	0.3978 (+283%)	0.533 (+208%)

Table 5: Final improvement of result for multi-class segmentation with all the modifications.

Voxel Segmentation

One-to-one mapping

- Our final task is to segment all the voxels in the original $128 \times 128 \times 112$ image in Visceral dataset.
- Every classifier has a decision boundary. The decision boundary of RandLaNet is the shape of the organ.

Voxel Segmentation

Results for Lungs

Figure 17: Voxel
Segmentation for Lungs

Future Work

- Learnable weights for weighted cross entropy*.
- Signed Distance Function for <u>smooth shape prior information</u> to reduce oversegmentation**.
- Use loss function to constraint the latent vector. (Reduce variance in intra-class and increase distance between inter-class latent vectors)***.

^{**} Shape-Aware Organ Segmentation by Predicting Signed Distance Maps

Thank You

Appendix Experiment: Latent Vector

- Since all the weighting based CE methods didn't improve the Intersection Over Union Results(IoU) much for multi-class segmentation.
- So we wanted to verify if the latent vectors leant in the network are discriminative for different classes.
- The downsampling step reduces the number of points in latent space. Hence the global features for an organ is influenced by only a small number of points.
- So we plotted inter-class and intra-class difference of the latent vectors for lungs.

Appendix Latent Vector Difference Calculation

How the difference is calculated

Mean Embedding Lungs

Lungs Embedding

Lungs Embedding

Lungs Embedding

Lungs Embedding

Background Embedding

Lungs Embedding

Liver Embedding

Bladder Embedding

Appendix

Reference Space

Voxel Space (i, j, k)

Object Space f(i, j, k)