Salary Prediction using Simple Linear Regression

Aim: Salary Prediction using Simple Linear Regression

Experiment no.: 7

```
In [1]: #Name:Swapnil Rahul Wankhade
        #Roll no.: 73
        #Class: 3rd Year
        #Sec:B
In [2]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
In [3]: import os
In [4]: os.getcwd()
Out[4]: 'C:\\Users\\hp\\Desktop\\DSS Practicals'
In [5]: | os.chdir("C:\\Users\\hp\\Desktop")
In [6]: df=pd.read_csv("Salary_Data.csv")
In [7]: | df.head()
Out[7]:
            YearsExperience
                            Salary
                       1.1 39343.0
         0
         1
                       1.3 46205.0
                       1.5 37731.0
         2
                      2.0 43525.0
                      2.2 39891.0
```

In [8]: df.tail()

Out[8]:		YearsExperience	Salary
	25	9.0	105582.0
	26	9.5	116969.0
	27	9.6	112635.0
	28	10.3	122391.0
	29	10.5	121872.0

In [9]: df.head(30)

_			
Δ	+-	ıa	١.
υu	ı	12	ι.

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

In [10]: df[5:15] Out[10]: YearsExperience Salary 5 2.9 56642.0 6 3.0 60150.0 7 3.2 54445.0 8 3.2 64445.0 9 3.7 57189.0 10 3.9 63218.0 4.0 55794.0 11 4.0 56957.0 12 4.1 57081.0 13 14 4.5 61111.0 In [11]: | df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 30 entries, 0 to 29 Data columns (total 2 columns): # Column Non-Null Count Dtype 0 YearsExperience 30 non-null float64 Salary 30 non-null 1 float64 dtypes: float64(2) memory usage: 612.0 bytes In [12]: df.describe() Out[12]: YearsExperience Salary 30.000000 30.000000 count 5.313333 76003.000000 mean std 2.837888 27414.429785 min 1.100000 37731.000000 25% 3.200000 56720.750000 50% 4.700000 65237.000000 75% 100544.750000 7.700000 max 10.500000 122391.000000 In [13]: df.shape

Out[13]: (30, 2)

```
In [14]: df.size
Out[14]: 60
In [15]: df.ndim
Out[15]: 2
In [16]: df.columns
Out[16]: Index(['YearsExperience', 'Salary'], dtype='object')
```

In [17]: df.isnull()

Out[17]:	YearsExperience	Salary
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False
16	False	False
17	False	False
18	False	False
19	False	False
20	False	False
21	False	False
22	False	False
23	False	False
24	False	False
25	False	False
26	False	False
27	False	False
28	False	False
29	False	False

```
In [18]: df.isnull().sum()
```

Out[18]: YearsExperience 0 Salary 0

dtype: int64

```
In [19]: #Assiging values in X & Y
         X = df.iloc[:, :-1].values
         y = df.iloc[:, -1].values
         #X = df['YearsExperience']
         #y = df['Salary']
In [20]: print(X)
         [[1.1]
          [ 1.3]
          [ 1.5]
          [ 2. ]
          [ 2.2]
          [2.9]
          [ 3. ]
          [ 3.2]
          [ 3.2]
          [ 3.7]
          [ 3.9]
          [ 4. ]
          [4.]
          [4.1]
          [4.5]
          [ 4.9]
          [ 5.1]
          [5.3]
          [5.9]
          [ 6. ]
          [6.8]
          [7.1]
          [7.9]
          [ 8.2]
          [ 8.7]
          [ 9. ]
          [ 9.5]
          [ 9.6]
          [10.3]
          [10.5]]
In [21]: print(y)
         [ 39343.
                   46205.
                           37731.
                                    43525.
                                            39891.
                                                    56642.
                                                            60150.
                                                                     54445.
                                                                             64445.
                                    56957.
           57189.
                   63218.
                            55794.
                                            57081.
                                                    61111.
                                                            67938.
                                                                    66029.
                                                                             83088.
                                    98273. 101302. 113812. 109431. 105582. 116969.
           81363.
                  93940.
                           91738.
          112635. 122391. 121872.]
In [22]: #Splitting testdata into X_train, X_test, y_train, y_test
         from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=.3,random_state
```

```
In [23]: print(X_train)
         [[1.1]
          [ 2.2]
          [5.1]
          [2.9]
          [4.1]
          [ 4. ]
          [7.9]
          [ 1.3]
          [1.5]
          [ 9. ]
          [ 2. ]
          [7.1]
          [ 9.5]
          [5.9]
          [10.5]
          [6.8]
          [ 3.2]
          [ 3.9]
          [ 4.5]
          [ 6. ]
          [ 3. ]]
In [24]: print(X_test)
         [[9.6]
          [4.9]
          [ 8.2]
          [5.3]
          [ 3.2]
          [ 3.7]
          [10.3]
          [ 8.7]
          [ 4. ]]
In [25]: print(y_train)
         [ 39343.
                   39891.
                            66029.
                                    56642.
                                            57081. 55794. 101302.
                                                                    46205.
                                                                            37731.
          105582. 43525. 98273. 116969. 81363. 121872. 91738. 54445.
                                                                            63218.
           61111. 93940. 60150.]
In [26]: print (y_test)
         [112635. 67938. 113812. 83088. 64445. 57189. 122391. 109431.
                                                                            56957.]
In [27]: from sklearn.linear_model import LinearRegression
         lr = LinearRegression()
         lr.fit(X_train, y_train)
Out[27]: LinearRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust
```

the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.