

JINJA JOINT EXAMINATIONS BOARD JJEB MARKING GUIDE, 2019 545/4 CHEMISTRY Paper 4 July/August, 2019

1. (b) Results.

Volume of pipette used: 25.00 / 25.0 /25cm3

Final burette reading (cm³)	25.00	25.80	26.80
Initial burette reading(cm³)	1.00	2.00	3.00
Volume of BA4 used (cm³)	24.00	23.80	23.80

Titre values used for calculating average volume of **BA4**: 23.80, 23.80 cm³

Average volume of **BA4** used:
$$\frac{23.80 + 23.80}{2} = 23.80 \pm 0.1 c \text{ m}^{3}$$

$$\pm 0.2$$

$$\pm 0.3$$

$$\pm 0.4$$

$$\pm 0.5$$

(c)
$$H_{(aq)}^+ + \overline{O}H_{(aq)} \rightarrow H_2O_{(l)}$$

(d) (i)
$$1000$$
cm³ of **BA4** contain 0.1 moles of HCl

$$\therefore 23.8$$
cm³ of **BA4** contain $\frac{0.1 \times 23.80}{1000}$ moles of HCl

$$= 2.38 \times 10^{-3}$$
 moles of HCl

(ii) Mole ratio of
$$H^+$$
: $\bar{O}H = 1:1$
Moles of $\bar{O}H$ that reacted = $1 \times 2.38 \times 10^{-3}$
= 2.38×10^{-3} moles

(iii) 25 cm³ of **BA3** contain
$$2.38 \times 10^{-3}$$
 moles of $\bar{0}H$
 1000 cm³ of **BA3** contain $2.38 \times 10^{-3} \times \frac{1000}{25}$ moles of $\bar{0}H$
 $= 0.095 \text{ moles of } \bar{0}H$
2 moles of aqueous $\bar{0}H$ are produced by 1 mole of $\mathbf{M}(\mathbf{0}H)_2$
 $0.095 \text{ moles of } \bar{0}H$ are produced by $\frac{0.095 \times 1}{2}$ moles of $\mathbf{M}(\mathbf{0}H)_2$
 $= 0.0475 \text{ moles of } \mathbf{M}(\mathbf{0}H)_2$

(iv) 0.0475 moles of
$$M(OH)_2$$
 weigh 3.8g
:1 mole of $M(OH)_2$ weighs $\frac{3.8 \times 1}{0.0475}$ g
= 80g
RFM of $M(OH)_2$ is 80a

RFM of
$$M(OH)_2$$
 is 80g.
 $M + 2(16 + 1) = 80$
 $M + 34 = 80$
 $M = 80 - 34 = 46$

Total Marks =

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Heat a spatula endful of Y in strongly in a dry hard glass tube.	Colorless vapor or líquid turns anhydrous CuSO ₄ from white to blue.	Hydrated salt Or water of crystallization.
	Colourless gas turns moist blue litmus red and acidified K ₂ Cr ₂ O ₇ orange to green White solid.	SO_2 produced; $: SO_4^{2-}$ present.
(b)Dissolve three spatula endfuls of Y in a boiling tube, add about 5cm? of distilled water and shake. Divide the resultant solution into five parts.	Dissolves (soluble) forming a colourless solution.	Al ³⁺ or Zn ²⁺ or Pb ²⁺ or Mg ²⁺ probably present.
(i) To the first part of the solution, add dilute sodium hydroxide solution drop-wise until in excess.	White precipitate soluble in excess forming a colourless solution.	Al^{3+} or Zn^{2+} or Pb^{2+} probably present.
(ii) To the second part of the solution, add dilute ammonia solution drop-wise until in excess.	White precipitate insoluble in excess.	Al ³⁺ or Pb ²⁺ probably present.
(iii) To the third part of the solution, add 2 - 3 drops of potassium iodide solution.	No yellow precipitate or No observable change.	Pb ²⁺ absent.
(iv) To the fourth part of the solution, add 2 - 3 drops of lead (II) nitrate solution then followed by dilute nitric acid.	White precipitate.	:: Al ³⁺ present SO ₄ ²⁻ or Cl ⁻ probably present
(c) To the fifth part of the solution, add Barium nitrate solution drop wise until in excess. Filter and divide the filtrate	White precipitate. White residue.	SO ₄ ²⁻ present
into two portions. (i) To the first portion of the filtrate, add an equal volume of lead (II) nitrate then followed by 2 - 3 drops of dilute nitric acid. Boil and cool under tap water.	Colourless filtrate. White precipitate, soluble on boiling and reforms/recrystallizes on cooling.	Cl ⁻ confirmed.
(ii) To the second portion of the filtrate, add 2 - 3 drops of silver nitrate solution followed by dilute ammonia drop-wise until in excess.	White precipitate soluble in excess ammonia.	Cl ⁻ confirmed.

(d) (i) Anions in Y: SO_4^{2-} (c) and Cl^- c(i) or c(ii) (ii) Cation in Y: Al^{3+} b(iii) or b(ii)

Total Marks=