Parametric Analysis

Jibei Zheng jz3425

Data Prep

```
lung_df = lung %>%
  mutate_at(c(1, 3, 5, 6), .funs = ~as.factor(.))
lung_df2 = lung_df %>% na.omit()
```

Model Checking

From the KM plot, we assume the survival data follow the Weibull distribution, with non-constant hazard rate.

Use plots to check if the lung data, by sex, follows the exponential distribution or the Weibull distribution.

Plot $-log\hat{S}(t)$

Negative Log of Estimated Survival Functions

The curve for males is close to a straight line, while the curve for females is obviously non-linear, indicating a better choice of the Weibull distribution.

Plot log(-logS(t))

Log of Negative Log of Estimated Survival Functions

The slope of the male curve is close to 1, while the slope of the female curve is larger than 1, also indicating a Weibull distribution.

Fit exponential and Weilbull distributions

```
#parametric survival function
fit_exp_m = flexsurvreg(Surv(time, status == 2) ~ 1,
                        data = subset(lung_df, sex == 1), dist = "exp")
fit_exp_f = flexsurvreg(Surv(time, status == 2) ~ 1,
                        data = subset(lung_df, sex == 2), dist = "exp")
fit_weib_m = flexsurvreg(Surv(time, status == 2) ~ 1,
                         data = subset(lung_df, sex == 1), dist = "weibull")
fit_weib_f = flexsurvreg(Surv(time, status == 2) ~ 1,
                         data = subset(lung_df, sex == 2), dist = "weibull")
#plot km, exp fitted and weib fitted
plot(fit_exp_m, conf.int = FALSE, ci = FALSE, col = "red", col.obs = "pink", lty = "longdash", xlim = c
par(new = TRUE)
plot(fit_exp_f, conf.int = FALSE, ci = FALSE, col = "blue", col.obs = "skyblue", lty = "longdash", xlim
plot(fit_weib_m, add = TRUE, ci = FALSE, col = "brown4")
plot(fit_weib_f, add = TRUE, ci = FALSE, col = "blue4")
legend("topright", legend = c("Obs M", "Obs F", "Exp M", "Exp F", "Weib M", "Weib F"),
```

```
col = c("pink", "skyblue", "red", "blue", "brown4", "blue4"),
lty = c("solid", "solid", "longdash", "longdash", "solid", "solid"),
lwd = c(1,1,2,2,2,2))
```


From the plot we can see that fitting a Weibull distribution is actually more precise than an exponential distribution.

Parametric Regression Models

Parametric PH Models

```
data = lung_df2, dist = "weibull")
summary(fit_ph1)
#remove meal.cal
fit_ph2 = phreg(Surv(time, status == 2) ~ age + sex + ph.ecog + ph.karno + pat.karno + wt.loss,
                data = lung_df2, dist = "weibull")
summary(fit_ph2)
#remove age
fit_ph3 = phreg(Surv(time, status == 2) ~ sex + ph.ecog + ph.karno + pat.karno + wt.loss,
                data = lung_df2, dist = "weibull")
summary(fit_ph3)
#remove pat.karno
fit_ph4 = phreg(Surv(time, status == 2) ~ sex + ph.ecog + ph.karno + wt.loss,
               data = lung_df2, dist = "weibull")
summary(fit_ph4)
#remove wt.loss
fit_ph5 = phreg(Surv(time, status == 2) ~ sex + ph.ecog + ph.karno,
                data = lung_df2, dist = "weibull")
summary(fit_ph5)
#remove ph.karno
#final model
fit_ph6 = phreg(Surv(time, status == 2) ~ sex + ph.ecog,
                data = lung_df2, dist = "weibull")
summary(fit_ph6)
## Covariate
                                             Rel.Risk
                                                        S.E.
                         Mean
                                    Coef
                                                                LR p
                                                                0.0087
## sex
                         0.579
##
                  1
                                             1 (reference)
##
                  2
                         0.421
                                  -0.504
                                             0.604
                                                       0.197
                                                                0.0023
## ph.ecog
                  0
                         0.309
##
                                   0
                                             1 (reference)
##
                  1
                         0.520
                                   0.290
                                             1.337
                                                       0.233
##
                  2
                         0.169
                                   0.925
                                             2.523
                                                       0.260
##
                  3
                         0.002
                                   1.944
                                             6.986
                                                       1.028
##
## Events
                             120
## Total time at risk
                             51759
## Max. log. likelihood
                             -830.69
## LR test statistic
                             20.75
## Degrees of freedom
## Overall p-value
                             0.000354567
#compare the estimated baseline hazards with a non-parametric ph model
fit_cox = coxreg(Surv(time, status == 2) ~ sex + ph.ecog, data = lung_df2)
check.dist(fit_ph6, fit_cox)
```

Weibull

The fit of the Weibull baseline function is very close to the non-parametric one. For a Weibull distribution, the AFT model is also a PH model.