

What are proteins?

Proteins

- Responsible for a vast number of functions within all living organism
- Proteins consist of amino acid sequences that fold into 3D structures

20 different amino acids; each amino acid is a small molecule

Folding into

3D structure

Protein folding

Every protein is made up of a sequence of amino acids bonded together These amino acids interact locally to form shapes like helices and sheets

These shapes fold up on larger scales to form the full three-dimensional protein structure

Primary structure

Amino acids

Secondary structure

Alpha helix

Pleated sheet

Pleated sheet

Alpha helix

Protein production and folding

 Ribosomes are macromolecules that produce the protein amino acid sequence stored in the genetic code of the cell

Protein structure space

Protein functions – Enzymes

- Enzymes are proteins that catalyze chemical reactions
- Lactase is an enzyme that converts lactose, the milk sugar, into smaller sugars, glucose and galactose

Substrate(s)

Some main classes of proteins

Enzymes

Transport Proteins

Regulatory Proteins

Structural Proteins

Sequence representations of proteins

- Proteins can be represented through their amino acid sequence
- The amino acid sequence is readily available for most proteins (UniProt.org)

Alanine - A
Arginine - R
Asparagine - N
Aspartic acid - D
Cysteine - C
Glutamine - Q
Glutamic acid - E
Glycine - G
Histidine - H
Isoleucine - I

Leucine - L
Lysine - K
Methionine - M
Phenylalanine - F
Proline - P
Serine - S
Threonine - T
Tryptophan - W
Tyrosine - Y
Valine - V

FASTA files

- Protein amino acid sequences are typically stores in FASTA files
 - FASTA format is a text-based format
 - An entry begins with a greater-than character (">") followed by a description of the sequence (the same line)
 - Following lines contain protein sequence
- Example:

>SEOUENCE 1

MTEITAAMVKELRESTGAGMMDCKNALSETNGDFDKAVQLLREKGLGKAAKKADRLAAEG LVSVKVSDDFTIAAMRPSYLSYEDLDMTFVENEYKALVAELEKENEERRRLKDPNKPEHK IPQFASRKQLSDAILKEAEEKIKEELKAQGKPEKIWDNIIPGKMNSFIADNSQLDSKLTL MGQFYVMDDKKTVEQVIAEKEKEFGGKIKIVEFICFEVGEGLEKKTEDFAAEVAAQL >SEQUENCE_2

SATVSEINSETDFVAKNDQFIALTKDTTAHIQSNSLQSVEELHSSTINGVKFEEYLKSQI ATIGENLVVRRFATLKAGANGVVNGYIHTNGRVGVVIAAACDSAEVASKSRDLLRQICMH

3D-Representations of proteins

- Representing protein 3D structures: The PDB (Protein Data Bank) format
 - is a text file
 - includes spatial coordinates for each atom in the molecule

MOTA	1	N	VAL A	1	19.323	29.727	42.781
MOTA	2	CA	VAL A	1	20.141	30.469	42.414
MOTA	3	C	VAL A	1	21.664	29.857	42.548
MOTA	4	0	VAL A	1	21.985	29.541	43.704
MOTA	5	CB	VAL A	1	19.887	31.918	43.524
MOTA	6	CG1	VAL A	1	20.656	32.850	42.999
MOTA	7	CG2	VAL A	1	18.692	31.583	43.506
				•••			

