

AD-A088 937 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 13/10
EXPERIMENTAL DETERMINATION OF TWO COMPONENTS OF FIELD POINT VEL--ETC(U)
FEB 80 N SANTELLI, J LIBBY, M JEFFERS

UNCLASSIFIED DTNSRDC/SPD-0921-01

NL

1 of 2
40-
200835

EXPERIMENTAL DETERMINATION OF TWO COMPONENTS OF FIELD POINT VELOCITIES
AROUND A MODEL IN UNIFORM AND INCLINED FLOW

DTNSRDC/SPD/0921-01

LEVEL II

(12)

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

AD A 088937

EXPERIMENTAL DETERMINATION OF TWO COMPONENTS OF
FIELD POINT VELOCITIES AROUND A MODEL PROPELLER IN
UNIFORM AND INCLINED FLOW

by

N. Santelli, J. Libby

M. Jeffers

Approved for Public Release: Distribution Unlimited

DDC FILE COPY

FEBRUARY 1980

SHIP PERFORMANCE DEPARTMENT

STANDARD
DTIC
ELECTED
SEP 10 1980
A

DTNSRDC/SPD/0921-01

63 3 5 034

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

16 S0379SL
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 14 DTNSRDC/SPD-0921-01	2. GOVT ACCESSION NO. AD-A088937	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and subtitle) EXPERIMENTAL DETERMINATION OF TWO COMPONENTS OF FIELD POINT VELOCITIES AROUND A MODEL PROPELLER IN UNIFORM AND INCLINED FLOW.		5. TYPE OF REPORT & PERIOD COVERED Final rep.,
6. AUTHOR(s) N. SANTELLI J. LIBBY	M. JEFFERS	7. CONTRACT OR GRANT NUMBER(s)
8. PERFORMING ORGANIZATION NAME AND ADDRESS David W. Taylor Naval Ship R&D Center Bethesda, MD 20084		9. PROGRAM ELEMENT/PROJECT, TASK AREA & WORK UNIT NUMBERS NAVSEA 05R, S0379 SL001 Task 19977
11. CONTROLLING OFFICE NAME AND ADDRESS		10. REPORT DATE FEBRUARY 1980
14. MONITORING AGENCY NAME & ADDRESS if different from Controlling Office 12 160		12. NUMBER OF PAGES 158
15. SECURITY CLASS. (of this report) Unclassified		
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release: Distribution Unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) CONTROLLABLE PITCH, FIELD POINT VELOCITIES, LASER DOPPLER ANEMOMETRY		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Measurements of two component velocity profiles were taken around model propellers, utilizing a laser doppler anemometer. Measurements were made with the propeller shaft parallel to the flow and at 20 degrees to the incoming flow. Both time averaged and blade angular-position-dependent data are presented in a manner that will aid in the evaluation of the various predictive theories of field point velocities around propellers.		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-LF-014-6501

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
389694 LM1

TABLE OF CONTENTS

	Page
LIST OF FIGURES.....	iv
LIST OF TABLES.....	iv
NOTATION.....	v
LIST OF ABBREVIATIONS.....	vi
ABSTRACT.....	1
ADMINISTRATIVE INFORMATION.....	1
INTRODUCTION.....	1
EXPERIMENTAL COMPONENTS.....	2
THE LDA.....	2
EXPERIMENTAL FACILITY.....	4
PROPELLER MODELS.....	5
DATA PRESENTATION.....	8
DISCUSSION OF DATA.....	13
CONCLUDING REMARKS.....	14
APPENDIX A - THE DTNSRDC LDA SYSTEM.....	102
APPENDIX B - TABLES OF NUMERICAL DATA.....	108
REFERENCES.....	151

Accession For	
Library	<input checked="" type="checkbox"/>
Doc. Rep.	<input checked="" type="checkbox"/>
University	<input checked="" type="checkbox"/>
Journal Article	<input checked="" type="checkbox"/>
Other	<input type="checkbox"/>
Date Acquired	
Month	Year
Serial Number	
Classification Codes	
Approved by or Entered by Serial	

A

LIST OF FIGURES

	Page
1a- Sketch of Right Angle Drive.....	15
1b- Detail - Coordinate System.....	16
1c- Detail - Orientation of Data Reference Planes.....	16
2- Photograph of DTNSRDC Propellers 4710 and 4711.....	17
3- Schematic Drawing of CP Propellers on RV Athena (PG-84 Class); DTNSRDC Models 4710 and 4711.....	19
4-16 Computer Generated Graphs of Velocity vs. Blade Angular Position at Shaft Inclination of 20 Degrees..	20
17- Three Typical Velocity vs. Blade Angular Position Curves at 0.7, 0.8, and 0.9 Radii.....	45
18-28 Computer Generated Graphs of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System.....	46
29-30 Time Averaged Longitudinal Velocity and RMS Velocity Data at Shaft Inclination of 20 Degrees.....	67
31-46 Computer Generated Graphs of Longitudinal and Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees.....	69
47-50 Computer Generated Graphs of Tangential Velocity Component vs. Blade Angular Position.....	98
A1- Sketch of Optical Arrangement.....	107

LIST OF TABLES

1 - Characteristics of Controllable Pitch Propeller on RV Athena (PG-84 Class), DTNSRDC Models 4710 and 4711...	6
2 - Data Groupings at Shaft Inclination of 20 Degrees....	10
3 - Data Groupings at Shaft Inclination of Zero Degrees..	12
B1-B13 Computer Output of Velocity and RMS Velocity Data vs. Blade Angular Position at Shaft Inclination of 20 Degrees.....	109

	Page
B14-B24 Computer Output of Inclined Velocity Data Resolved Along Shaft Coordinate System.....	122
B25-B42 Computer Output of Velocity and RMS Velocity Data vs. Blade Angular Position at Shaft Inclination of Zero Degrees.....	133

NOTATION

<i>c</i>	Chord length at 0.7 radius
<i>D</i>	Propeller diameter
<i>D_n</i>	Hub diameter
<i>E_t</i>	Half-thickness ordinate of blade function
<i>f</i>	Meanline ordinate of blade function
<i>f_n</i>	Camber of propeller blade section
<i>J</i>	Advance coefficient,
<i>n</i>	Propeller revolutions per unit time
<i>R</i>	Radius of propeller
<i>Rn</i>	Reynolds number
<i>r</i>	Radial coordinate from propeller axis
<i>t</i>	Maximum thickness of propeller blade section
<i>V</i>	Velocity
<i>V_o</i>	Freestream velocity
<i>X, Y</i>	Coordinate axis
<i>Z</i>	Number of blades
<i>Z_R</i>	Rake of propeller blade section measured from the propeller plane to the generator line, positive aft

- θ_s Skew angle measured from spindle axis to projection of blade section midchord into propeller plane, positive toward trailing edge
- ν Kinematic viscosity of water
- ρ Mass density of water

LIST OF ABBREVIATIONS

CP	Controllable Pitch
DTNSRDC	David W. Taylor Naval Ship Research and Development Center
LDA	Laser Doppler Anemometer

ABSTRACT

Measurements of two component velocity profiles were taken around model propellers utilizing a laser doppler anemometer. Measurements were made with the propeller shaft parallel to the flow and at 20 degrees to the incoming flow. Both time average and blade angular-position dependent data are presented in a manner that will aid in the evaluation of the various predictive theories of field point velocities around propellers.

ADMINISTRATIVE INFORMATION

The investigation described herein was funded by the Naval Sea Systems Command (NAVSEA 05R), Task Area S0379-SL001, Task 19977. The work was performed under David W. Taylor Naval Ship Research and Development Center Work Unit No. 1-1544-296.

INTRODUCTION

A great deal of interest exists in the ability to accurately predict field point velocities around propellers in inclined flow. Several theories, including some rather sophisticated refinements of the basic lifting surface theory, exist. However, these theories consistently under-predict the unsteady and time average blade loads¹ in inclined flow. Until very recently, the ability to evaluate the various theories has been hindered by a lack of detailed experimental velocity field data. This is due to the severe limitations of conventional pressure and thermal measuring techniques. Laser Doppler Anemometry (LDA), while having some drawbacks, does overcome many of the limitations suffered

by conventional probes. A few investigators, notably Min,¹ have successfully used LDA to obtain field point velocities around propellers.

This report describes an experimental investigation of two components of field point velocities around two model propellers. The experiment was conducted in the DTNSRDC 24-inch variable pressure water tunnel utilizing LDA. (The DTNSRDC LDA and data collection system are described in some detail in Appendix A.)

The propellers are mirror-images of one another; DTNSRDC propeller model No. 4710 is right hand rotation and DTNSRDC model No. 4711 is left-hand rotation. Only one propeller was tested at a time, but for reasons explained later, the use of two propellers allowed a more complete mapping of the flow field. The longitudinal and vertical components of velocity vs. blade angular position and the respective RMS resultant velocity vs. blade angular position are presented in detail. Tabulated values of the velocity vs. blade angular position are included in Appendix B. A brief discussion of the models and facility is included.

No attempt is made here to exploit the LDA data presented. Correlations of the data with theoretical predictions will be done in a separate report.

EXPERIMENTAL COMPONENTS

THE LDA

The body of literature on LDA is extensive, with over one thousand papers and several books having been published on the subject in the last decade. For a general discussion of the LDA technique and its inherent

advantages and limitations, the reader is referred to Min², Yanta³, and Durst,⁴

The DTNSRDC LDA system was utilized to obtain field point velocities in the present investigation. Appendix A contains a detailed description of the DTNSRDC LDA system and the data collection system used in this investigation. This system has the capability of measuring the time dependent longitudinal and vertical velocity components as referenced to the tunnel test section (see Fig. 1a). A back scatter mode of operation was used to obtain time-average data, and a forward scatter mode was used to obtain time-dependent data (see Appendix A). Velocity profiles were taken upstream and downstream, above and below the propeller. Time dependent data could not be taken in the horizontal plane passing through the propeller shaft due to the blockage of the laser beams by the propeller shaft in the forward scatter mode.

Figure 1a is a schematic of the propeller in the inclined position. The coordinates of the data collection locations were referenced to the propeller center (X-Y axis). This data was later resolved along the shaft axis and perpendicular to the shaft axis (primed coordinates).

An LDA system was chosen for the velocity measurements because of its advantages over conventional thermal and pressure probes. Specifically, the LDA can be used to obtain time-dependent data while pressure probes, because of their very slow response to velocity fluctuations, cannot be used for such measurements. Unlike thermal probes the LDA can obtain data directly in front of the propeller

disk and does not require frequent recalibration. In addition, the LDA has better spatial resolution than two component thermal probes. Unfortunately, optical considerations, complexity, and high cost preclude the use of LDA in routine experimental investigations. A discussion of the accuracy of the DTNSRDC LDA system is included in Appendix A.

EXPERIMENTAL FACILITY

The experiment was conducted in the DTNSRDC 24 inch variable pressure water tunnel.⁵ This tunnel is a closed circuit tunnel equipped with a 60.96 cm (24 in) diameter open jet test section. The maximum water velocity through the test section is 18 m/sec (59 ft/sec), and the static pressure at the test section centerline can be varied from 5.85 to 99.58 kg/cm² (2 to 34 psi). Tunnel velocity was determined by a pitot tube suspended from the top of the test section slightly in front of the test position of the propeller. Both upstream and downstream shafts are available. For the 0-degree angle of attack portion of this experiment the downstream shaft was used. A right angle drive unit, mounted in the top of the tunnel test section was used for the inclined portion of the experiment. (Fig. 1a)

The tunnel has a filtration system which normally filters out particles larger than 25 microns; however, just prior to this experiment 3 micron filters were installed.

Figure 1a shows the orientation of the right angle drive and propeller model in the water tunnel. The propeller shaft is inclined 20 degrees to the mean flow. The longitudinal and vertical velocity

components were measured relative to the tunnel axis.

PROPELLER MODELS

DTNSRDC propellers No. 4710 and 4711 (Fig. 2) were selected for this investigation. These propellers are models of a four bladed controllable pitch propeller currently in use on the RV Athena (PG-84), and are 22.17 cm. (8.728 in.) in diameter. They are identical except that 4710 is right hand rotation and 4711 is left hand rotation. The models were manufactured of aluminum and are anodized black.

Table 1 gives the propeller characteristics. Figure 3 shows a schematic drawing of the propeller.

The use of two such propellers allowed a more complete mapping of the flow field while allowing the laser to remain on the same side of the water tunnel.

Prior to the experiment, thrust and torque measurements were made in the 24-inch tunnel and the results compared with open water data. These data are presented in Reference 1, which includes complete tunnel and open water data on these propeller models.

TABLE 1 - CHARACTERISTICS OF CP PROPELLERS ON R/V ATHENA (PG-84 CLASS);
DTNSRDC MODEL PROPELLERS 4710 AND 4711

Diameter, D: 6.0 feet (1.829 m)*	Expanded Area Ratio: 0.775
Number of Blades, Z: 4	Blade Thickness Fraction: 0.048
	Section Meanline: NACA 65
Hub-Diameter Ratio, D_h/D : 0.312	Section Thickness Distribution: NAVSEC Type I

r/R	c/D	P/D	θ_s (deg)	Z_R/D	t/D	f_M/c
0.312	0.2154	1.020	-0.57	0.00	0.0336	0.0059
0.4	0.2986	1.061	2.32	0.00	0.0264	0.0149
0.5	0.3867	1.090	4.76	0.00	0.0194	0.0198
0.6	0.4650	1.107	6.59	0.00	0.0140	0.0203
0.7	0.5383	1.111	8.00	0.00	0.0100	0.0183
0.8	0.5717	1.103	9.11	0.00	0.0072	0.0153
0.9	0.5333	1.081	10.01	0.00	0.0056	0.0108
0.95	0.4667	1.065	10.40	0.00	0.0049	0.0079
1.0	0.00	1.047	10.75	0.00	0.00	—

*For model propeller, $D = 0.7273$ feet (0.2217 m)

TABLE 1 Cont.

γ	f/f_m *	$2 E_t/t$ **
0.00	0.00	0.0654
0.0125	0.0494	0.2153
0.0250	0.0975	0.3010
0.05	0.19	0.4183
0.0750	0.2775	0.5053
0.10	0.36	0.5763
0.15	0.51	0.6890
0.20	0.64	0.7773
0.30	0.84	0.9030
0.40	0.96	0.9757
0.50	1.00	1.00
0.60	0.96	0.96
0.70	0.84	0.84
0.80	0.64	0.64
0.90	0.36	0.36
0.95	0.19	0.19
1.00	0.00	0.00

*NACA 65 meanline

**NAVSEC Type I Thickness Form

DATA PRESENTATION

During the investigation the advance ratio (J) was maintained at 0.86 for all of the time-dependent measurements and the tests were run at atmospheric pressure. The inclination of the right angle drive was 20 degrees to the mean flow for the initial portion of the experiment and 0-degrees for the remainder.

Figures 4 through 16 show the variation of the nondimensional, time dependent, longitudinal (x) and vertical (y) velocities with blade angular position for the inclined flow portion of the investigation. The velocities are nondimensionalized by the free stream tunnel velocity. These are computer generated graphs, where 'a' graphs show longitudinal velocity components and 'b' graphs show vertical velocity components. One example of an RMS velocity curve is given by Figure 4c. Positive longitudinal velocity is in the direction of the onset mean flow and positive vertical velocity is upward (see Figure 1b). All velocities and probe locations are referenced to the right-hand propeller model. The computer code automatically adjusts the scale of each graph to fit the data, so that the scale may change from figure to figure. All angular positions are referenced to 0 degrees at the leading edge of the blade at 0.7 radius. The leading edge at other radii occurs at a different degree mark and thus accounts for the slight offset in the velocity graphs from one radius to the next. The trailing edge at 0.7 radius occurs at 74-degrees.

For convenience Figure 17 shows three typical velocity curves, each in the same profile, but at a different radius. In the upper right hand corner of each figure, the term 0-, 90-, and 180-degrees refers to the position in the flow field from which a particular data set was obtained (refer to Figure 1c). For convenience, Table 2 groups the data sets according to measurement location and gives the table number in Appendix B of the corresponding numerical data table. The tare velocities, the average velocity obtained at the same position and free stream velocity, but with a dummy hub in place of the model propeller, are listed at the bottom of each numerical data table. The tare RMS velocities are also given; however, due to the accuracy limitations discussed in Appendix A, RMS readings of 0.013 or less cannot be considered reliable. Note that for the 90-degree positions (Figures 16 and 17) only axial data were obtained.

Figures 18 through 28 show the previously presented data resolved along the propeller shaft axis and in a radial direction, orthogonal to the shaft axis, (refer to Figure 1b). Tables B14 through B24 give the corresponding numerical data sets. Note that most of the above time-dependent data were taken above and below the propeller centerline (0-and 180-degrees). Only very limited time-dependent data could be taken in the horizontal plane of the propeller, specifically, only the longitudinal component at the 0.7 and 0.8 radii (Figures 15 and 16 respectively). However, additional longitudinal time-average data were taken at these positions in the backscatter mode of operation (see Appendix A). These data are presented in Figures 29 and 30.

TABLE 2 - DATA GROUPINGS AT SHAFT INCLINATION OF 20-DEGREES

Figure No.	Non-Dimensional Coordinates			Position in Propeller Disk (Degrees)	Table No. of Corresponding Numerical Data
	X	Y	Z		
4a & 4b	-.43	.7	.00	180	B1
5a & 5b	-.43	.7	.00	0	B2
6a & 6b	.21	.7	.00	180	B3
7a & 7b	-.39	.5	.00	180	B4
8a & 8b	-.39	.8	.00	180	B5
9a & 9b	-.39	.9	.00	180	B6
10a & 10b	-.39	.5	.00	0	B7
11a & 11b	-.39	.8	.00	0	B8
12a & 12b	.21	.7	.00	0	B9
13a & 13b	.21	.8	.00	0	B10
14a & 14b	.21	.9	.00	0	B11
15	-.39	.7	.00	90	B12
16	-.39	.8	.00	90	B13
18a & 18b	-.43	.7	.00	180	B14
19a & 19b	-.43	.7	.00	0	B15
20a & 20b	.21	.7	.00	180	B16
21a & 21b	-.39	.5	.00	180	B17
22a & 22b	-.39	.8	.00	180	B18
23a & 23b	-.39	.9	.00	180	B19
24a & 24b	-.39	.5	.00	0	B20
25a & 25b	-.39	.8	.00	0	B21
26a & 26b	.21	.7	.00	0	B22
27a & 27b	.21	.8	.00	0	B23
28a & 28b	.21	.9	.00	0	B24

Figures 31 through 46 are graphs of the nondimensional, time-dependent variation of velocity and RMS velocity with blade angular position for the 0-degree shaft inclination portion of the investigation. For this configuration the measured longitudinal (x) and vertical (y) velocity components are parallel to and radially outward from the propeller shaft. Table 3 groups these data sets into profiles and gives the table number of the corresponding numerical data table. NOTE: A temporary malfunction caused the shaft to go out of synchronization with the computer (see Appendix A). Therefore the leading edge on the model propeller at 0.7 radius is the 49th degree on the velocity graphs and the corresponding numerical data tables.

Since the flow field in the 0-degree shaft inclination portion of the investigation is periodic over each 90 degrees, for convenience most of the data were taken along the 180-degree plane. Several check runs in different planes were made. Figure 37 shows data for a typical check run taken at 0.7 R along the 0-degree plane. This corresponds to Figure 40 along the 180-degree plane. Figure 46 shows data taken farther downstream of the propeller (0.62 R) than the other profiles.

Near the end of the experiment, numerous attempts were made to obtain tangential velocity component data by taking vertical (y) data along the 270-degree line. For reasons mentioned above and in Appendix A, this was not possible. Some limited vertical velocity component data were taken as close to the 90-degree line as possible. These data are presented in Figures 47 through 50. For these runs the synchronization malfunction was corrected, ie the leading edge of the

TABLE 3 - DATA GROUPINGS AT SHAFT INCLINATION OF ZERO DEGREES

Figure No.	Non-Dimensional Coordinates			Position in Propeller Disk Degrees	Table No. of Corresponding Numerical Data
	X	Y	Z		
31a & 31b	-.39	.5	.00	180	B25
32a	-.39	.7	.00	180	B26
33a & 33b	-.39	.8	.00	180	B27
34a & 34b	-.39	.9	.00	180	B28
35a & 35b	-.39	1.0	.00	180	B29
36a & 36b	-.399	1.1	.00	180	B30
37a & 37b	.21	.7	.00	0	B31
38b	.21	.4	.00	180	B32
39a & 39b	.21	.5	.00	180	B33
40a & 40b	.21	.7	.00	180	B34
41a & 41b	.21	.8	.00	180	B35
42a & 42b	.21	.9	.00	180	B36
43a & 43b	.21	1.1	.00	180	B37
44a & 44b	.21	1.0	.00	180	B38
45a & 45b	.21	1.22	.00	180	B39
46	-.62	.7	.00	180	B40
47	.21	-.33	.6		B41
48	.21	-.33	.7		B41
49	-.39	-.35	.6		B42
50	-.39	-.35	.7		B42

blade at the 0.7 radius is at the 0-degree position given in the graphs and the corresponding data tables.

DISCUSSION OF DATA

The figures clearly show the generally anticipated variations of velocity with blade angular position. These variations are quite similar to those observed by Min.² The increase in velocity at the blade leading edge (0-degrees at 0.7 radius), the reaching of a velocity maximum, and the fall off in velocity towards the trailing edge (74-degrees at 0.7 radius), is obvious and requires no further comment. For various reasons, however, some of the data sets do warrant individual consideration.

Some graphs of the longitudinal velocity show a rise in velocity at the trailing edge, then a dip in velocity just before the leading edge. This is most noticeable in Figures 8a, 9a, 12a, 25a, 26a, 32a, and 39a. The existence of these small dips is not generally predicted by lifting line theory. These same dips were noted by Min for all three DTNSRDC propeller models used in his investigation of field point velocities. After lengthy analysis Min concluded that these dips are velocity defects due to the blade boundary layer and wake.

Figures 40b and 42b appear to have severe scatter, but as previously mentioned, the computer automatically adjusts the graph scale. The very small absolute values of the data for these runs caused the scale to be 'blown up', greatly exaggerating the actual scatter.

The data shown in figures 43 through 45 were taken beyond one propeller radius. This is outside the propeller slipstream and the longitudinal velocity has decreased. Velocity fluctuations induced by the tip vortices result in the relatively high scatter and RMS velocity levels for these runs.

CONCLUDING REMARKS

The map of the flow field as a function of blade angular position, while not complete, gives several field point velocity profiles. In locations where data as a function of blade angular position could not be obtained, time-average data were taken. The quantity and quality of the velocity information obtained should provide a useful data base with which to compare and evaluate various hydrodynamic theories.

LDA has proven to be an excellent method for obtaining field point velocities, although some problems remain to be overcome. As the state of the art progresses, obtaining two component field point velocities will become simpler and less costly. Eventually, it will be possible, in some water tunnel facilities, to obtain three component velocity data. When these advances are combined with further automation of the data collection process, particularly computer control of the laser alignment, it should become possible to map the entire time dependent flow field in the same amount of time as is required for taking a conventional wake survey with pressure or thermal probes. Excluding initial equipment expenditures, the costs will compare favorably.

Figure 1a - Sketch of Right Angle Drive

Figure 1b - Detail - Coordinate System

Figure 1c - Detail - Orientation of Data Reference Planes

Figure 2 - Photograph of DTNSRDC Propellers 4710 and 4711

19

PRECEDING PAGE BLANK-NOT FILMED

Figure 3 - Schematic Drawing of CP Propellers on R/V ATHENA (PG-84 Class);
DTNSRDC Model Propellers 4710 and 4711

4a - Computer Generated Graph of Velocity vs. Blade Angular Position

4b - Computer Generated Graph of Velocity vs. Blade Angular Position

Figure 4c - Computer Generated Graph of RMS Velocity vs. Blade Angular Position at Shaft Inclination of 20 Degrees

5a - Computer Generated Graph of Velocity vs. Blade Angular Position

5b - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X 0.21 R Y 0.78 R Z 0.66 R
LONGITUDINAL COMPONENT

180-Degree

6a - Computer Generated Graph of Velocity vs. Blade Angular Position

6b - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X -0.39 R Y 0.50 R Z 0.00 R
LONGITUDINAL COMPONENT

180-Degree

7a - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X -0.39 R Y 0.58 R Z 0.00 R
VERTICAL COMPONENT

180-Degree

AVERAGE VEL VS. BLADE POSITION (DEG)

0.00E+00

5.00E-01

7b - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X -0.39 R Y 0.00 R Z 0.00 R
LONGITUDINAL COMPONENT

180-Degree

8a - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X -0.39 R Y 8.88 R Z 8.88 R
VERTICAL COMPONENT

180-Degree

AVERAGE VEL VS. BLADE POSITION (DEG)
0.00E+00

5.88E-01

8b - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X -0.39 R Y 0.90 R Z 0.00 R
LONGITUDINAL COMPONENT

180-Degree

PROBE COORDINATES: X -0.39 R Y 8.98 R Z 8.00 R
VERTICAL COMPONENT

180-Degree

AVERAGE VEL VS. BLADE POSITION (DEG)
0.00E+00

5.60E-01

9b - Computer Generated Graph of Velocity vs. Blade Angular Position

10a - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X -0.39 R Y 0.58 R Z 0.88 R
VERTICAL COMPONENT

0-Degree

AVERAGE VEL VS. BLADE POSITION (DEG)

8.00E+00

5.00E-01

BLADE ANGULAR POSITION (DEGREES)

10b - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X -0.39 R Y 0.88 R Z 0.88 R
LONGITUDINAL COMPONENT

0-Degree

AVERAGE VEL VS. BLADE POSITION (DEG)
0.00E+00

2.00E+00

11a - Computer Generated Graph of Velocity vs. Blade Angular Position

11b - Computer Generated Graph of Velocity vs. Blade Angular Position

X Y Z
PROBE COORDINATES: 8.21 R 8.78 R 8.86 R
LONGITUDINAL COMPONENT

0-Degree

12a - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X 0.21 R Y 0.78 R Z 0.00 R
VERTICAL COMPONENT

0-Degree

AVERAGE VEL VS. BLADE POSITION (DEG)
0.00E+00

1.80E-01

12b - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X 0.21 R Y 0.00 R Z 0.00 R
LONGITUDINAL COMPONENT

0-Degree

13a - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X 0.21 R Y 0.88 R Z 0.00 R
VERTICAL COMPONENT

0-Degree

AVERAGE VEL VS. BLADE POSITION (DEG)
-5.00E-02

AVERAGE VEL
-5.00E-02

8.8E+08

5.80E-02

13b - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X 8.21 R Y 0.98 R Z 0.00 R
LONGITUDINAL COMPONENT

0-Degree

14a - Computer Generated Graph of Velocity vs. Blade Angular Position

14b - Computer Generated Graph of Velocity vs. Blade Angular Position

PROBE COORDINATES: X -0.39 R Y 0.78 R Z 0.00 R
LONGITUDINAL COMPONENT

90-Degree

15 - Computer Generated Graph of Velocity vs. Blade Angular Position

16 - Computer Generated Graph of Velocity vs. Blade Angular Position

Figure 17 - Three Typical Velocity vs. Blade Angular Position Curves at 0.7, 0.8, and 0.9 radii

Figure 18a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 18b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 19a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 19b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 20a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 20b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 2la - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 21b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 22a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 22b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 23a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 23b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 24a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 24b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 25a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 25b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

(c)

Figure 26a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 26b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 27a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 27b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 28a - Computer Generated Graph of Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 28b - Computer Generated Graph of RMS Velocity vs. Blade Angular Position Resolved Along Shaft Coordinate System

Figure 29 - Time Averaged Longitudinal Velocity and Rms Velocity Data at Shaft Inclination of 20 Degrees

Figure 30 - Time Averaged Longitudinal Velocity and Rms Velocity Data at Shaft Inclination of 20 Degrees

Figure 3la- Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 3lb - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 32a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 33a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 33b Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 34a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X -0.39 R Y 0.98 R Z 0.00 R
VERTICAL COMPONENT

AVERAGE VEL VS. BLADE POSITION (DEG)
-5.00E-01

0.0E+00

5.00E-01

Figure 34b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 35a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 35b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 36a - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 36b - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 37a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 37b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 38b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 39a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 39b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 8.21 R Y -8.78 R Z 0.00 R
LONGITUDINAL COMPONENT

AVERAGE VEL VS. BLADE POSITION (DEG)

Figure 40a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 40b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 0.21 R Y -0.99 R Z 0.00 R
LONGITUDINAL COMPONENT

AVERAGE VEL VS. BLADE POSITION (DEG)

7.50E-01

1.00E+00

1.25E+00

BLADE ANGULAR POSITION (DEGREES)

Figure 4la - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 4lb - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 42a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

AD-A088 937

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 13/10
EXPERIMENTAL DETERMINATION OF TWO COMPONENTS OF FIELD POINT VEL--ETC(U)
FEB 80 N SANTELLI, J LIBBY, M JEFFERS
DTNSRDC/SPD-0921-01

UNCLASSIFIED

NL

2 in 2
40
46 198 13"

END
DATE FILMED
10-80
DTIC

Figure 42b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 43a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 0.21 R Y -1.18 R Z 0.09 R
VERTICAL COMPONENT

AVERAGE VEL VS. BLADE POSITION (DEG)
8.00E+00

Figure 43b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 44a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 44b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 45a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 0.21 R Y -1.22 R Z 0.00 R
VERTICAL COMPONENT

AVERAGE VEL VS. BLADE POSITION (DEG)

Figure 45b - Computer Generated Graph of Vertical Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

Figure 46a - Computer Generated Graph of Longitudinal Velocity vs. Blade Angular Position at Shaft Inclination of Zero Degrees

SHIFT INCLINATION: 8 DEGREES

PROPE COORDINATES: X 8.21 R Y -0.33 R
AVERAGE VEL VS. BLADE POSITION (DEG)
-1.00E-01

Z
0.60R

0.8E+00

1.00E-01

Figure 47 - Computer Generated Graph of Tangential Velocity Component
vs. Blade Angular Postion

Figure 48 - Computer Generated Graph of Tangential Velocity Component vs. Blade Angular Position

CHNFT INCLINATION: 8 DEGREES

PLANE COORDINATES: X -0.39 R Y -0.35 R Z 0.60 R
WAVELET VEL VS. BLADE POSITION (DEG)
-2.5UE-81

0.00E+00

Figure 49 - Computer Generated Graph of Tangential Velocity Component
vs. Blade Angular Position

Figure 50 - Computer Generated Graph of Tangential Velocity Component vs. Blade Angular Position

APPENDIX A

THE DTNSRDC LDA SYSTEM

For this experiment, a dual beam fringe mode of laser operation was utilized. A Coherent Radiation, Inc. CR-3 argon-ion laser with etalon was adjusted to give an output wavelength of 514.5 nm (green). Before the experiment the laser output was checked with a Spectra-Physics model 110 A scanning optical spectrometer and Coherent Radiation model 410 power meter. As is the case with many argon lasers, the 514.5 nm line was found to be the most stable and most powerful line available from this laser.

The laser beam was directed via mirrors through a TSI, Inc. model 901 polarization rotator, and a model 910 beam splitter. When measuring the longitudinal velocity in the water tunnel, the split beams went directly to a TSI model 991 zoom lens system. When measuring the vertical component, a TSI model 980 frequency shifter was also utilized. The optical arrangement is shown in Figure A1.

Initially the configuration of the water tunnel permitted only backscatter measurements to be taken. Both direct backscatter and slightly off-axis backscatter were tried. The off-axis configuration was found to give a higher signal-to-noise ratio. A TSI collecting lens focused the backscattered radiation onto a TSI model 965 photomultiplier (P-M tube).

The signal from the P-M tube was band pass filtered through an Ortec model 402H active filter and fed into a frequency tracker. Both the Disa, Inc. model 55L20 tracker and the TSI model 1090 tracker were

used. The analog output from the tracker was brought into an Interdata Inc. model 7-32 mini-computer via an Analogic model AN 5800 analog to digital converter.

In this configuration, the data rates were too low to obtain time dependent data. A computer code was used to analyze the data and obtain the mean and RMS velocities. After minor tunnel modifications, which allowed forward scatter, only time-dependent measurements were made.

The forward scattered laser signals were picked up by the P-M tube, which mounted on a small, in-house manufactured optical bench. The signal from the P-M tube was band-pass filtered through a TSI 1094-1 filter module and fed into a TSI model 1090 Frequency Tracker. The analog output of the tracker was again brought into the minicomputer, where another computer code analyzed the data. 200 individual data points were taken for each degree of blade position. Thus each graph represents 18,000 data points. Data rates from the frequency tracker were often quite high (about 10,000 points per second), but the computer code allowed a maximum of 2 data points per degree per revolution into memory. This was done so that the data would be "spread out" over many successive propeller revolutions. At the conclusion of a run, the velocities vs. blade angular position were tabulated and graphed by the computer.

Longitudinal and vertical velocity profiles were taken in the vertical and horizontal planes at four different locations along the propeller axis. Vertical and longitudinal horizontal movement was provided by a traverse system manufactured in-house. This system moved the entire optics table, including the laser, as a unit. On-axis horizontal

movement was provided by the zoom lens system. This lens maintains constant beam crossing angle, f number, number of fringes, and measuring volume size. Thus no change in the calibration factors in the computer code is required as the focal length changes. Also, no refocusing of the receiving optics is required while in the direct back scatter mode. However, when using off-axis back scatter, realignment and refocusing is necessary for each change in the measuring volume location in the on-axis direction. When in the forward scatter mode, realignment of the receiving optics was required for each measuring volume position change.

A Quality, Inc. model 500 optical measuring system was used to keep track of the measuring volume relative to the propeller center. The manufacturer gives this instrument an accuracy of ± 0.005 in. During the experimental set up this accuracy was independently confirmed.

The accuracy of the data obtained from a given LDA system is dependent on many factors. These include particle concentration in the fluid, variations in fluid velocity across the measuring volume, multiple particle signals, shot noise (from the P-M tube), brownian motion, extraneous reflected light, frequency shifter noise, accuracy of laser wavelength, accuracy of beam crossing angle, optical noise, signal processor noise and accuracy of the data collection system.* For measurements in turbulent flow, all of the above limitations are interrelated and precise quantitative error analysis is, in practical terms,

* Maya, W.T., "Ocean Laser Velocimeter System: Signal Processing Accuracy by Simulation," Proceedings of The Third International Workshop on Laser Velocimetry, Hemisphere Publishing Corporation, Purdue University (July 1978).

impossible. However, if precautions are taken in the experimental setup to exclude extraneous light sources, for mean velocity measurements the major sources of error are reduced to the following:

1. Accuracy of laser wavelength
2. Accuracy of beam crossing angle
3. Accuracy of frequency shifting system
4. Precision of laser signal processor

As previously mentioned number 1 was measured prior to the investigation. The manufacturer specifications were used to determine the other error ranges. They are 0.01%, 0.1%, 0.02%, and 0.4% for items 1, 2, 3, and 4 respectively.* Therefore the accuracy of mean velocity measurements can be expected to be within 1%.

The RMS velocities are calculated by the mini-computer from the variation of the mean data points (200) for each degree. Since these are relatively small numbers, an additional error results from round-off errors in the calculations. Study of RMS results based upon precisely known simulated laser processor signals fed into the computer indicate an error range of 10% for non-dimensional RMS velocities higher than 0.013. RMS velocities of 0.013 or below cannot be considered reliable, since actual RMS values lower than 0.013 will be calculated as 0.013 by the computer.

While preparing for the experiment, it was suspected that obtaining optimum scattering particles would be a major problem. This was in fact the case for the back-scatter portion of the investigation.

* Laser Anemometer Systems Catalog, TSI, Inc. (1978).

Analysis of water samples from DTNSRDC water tunnels showed the typical exponential size distribution, ie. large numbers of particles significantly smaller than the fringe spacing (5.2 microns). This seriously degraded the signal-to-noise (S-N) ratio in the backscatter mode. Filtering down to 3 microns and adding artifical seed in the optimum size range (10 to 20 microns) helped considerably. However, the particles below 3 microns still kept the signal-to-noise ratio less than optimum. Fortunately, the large power reserve of our laser in the forward scatter mode, allowed a sufficiently large signal-to-noise ratio and thus data rate, to permit time dependent measurements.

As more efficient filters come onto the market (0.5 micron filters should be commercially available for the DTNSRDC water tunnels within a year) still better signal-to-noise ratios will be attainable.

Figure A1 - Sketch of Optical Arrangement

APPENDIX B

TABLES OF NUMERICAL DATA

PROBE COORDINATES: -0.43 R Y Z			0.78 R 0.00 R			VERTICAL COMPONENT		180-Degree	
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS				
0	1.089	0.136	0	-0.000	0.072				
1	1.187	0.139	1	-0.187	0.091				
2	1.164	0.114	2	-0.094	0.107				
3	1.195	0.098	3	-0.091	0.115				
4	1.228	0.058	4	-0.034	0.116				
5	1.238	0.035	5	0.057	0.100				
6	1.258	0.032	6	0.148	0.104				
7	1.266	0.029	7	0.194	0.078				
8	1.262	0.025	8	0.210	0.042				
9	1.269	0.040	9	0.231	0.034				
10	1.297	0.031	10	0.223	0.052				
11	1.299	0.035	11	0.232	0.029				
12	1.368	0.039	12	0.244	0.034				
13	1.293	0.039	13	0.256	0.031				
14	1.278	0.035	14	0.274	0.040				
15	1.271	0.036	15	0.288	0.046				
16	1.268	0.034	16	0.294	0.044				
17	1.242	0.033	17	0.315	0.043				
18	1.233	0.036	18	0.327	0.053				
19	1.200	0.029	19	0.344	0.047				
20	1.268	0.038	20	0.354	0.047				
21	1.165	0.027	21	0.351	0.046				
22	1.179	0.025	22	0.362	0.045				
23	1.169	0.025	23	0.368	0.050				
24	1.157	0.025	24	0.364	0.047				
25	1.154	0.025	25	0.355	0.044				
26	1.142	0.021	26	0.347	0.045				
27	1.143	0.022	27	0.343	0.043				
28	1.137	0.021	28	0.351	0.043				
29	1.132	0.021	29	0.326	0.043				
30	1.128	0.021	30	0.319	0.046				
31	1.119	0.020	31	0.318	0.046				
32	1.122	0.019	32	0.315	0.041				
33	1.128	0.019	33	0.303	0.041				
34	1.118	0.019	34	0.291	0.035				
35	1.113	0.026	35	0.284	0.037				
36	1.115	0.018	36	0.282	0.035				
37	1.113	0.018	37	0.276	0.035				
38	1.106	0.028	38	0.270	0.034				
39	1.105	0.020	39	0.253	0.029				
40	1.106	0.019	40	0.246	0.033				
41	1.110	0.017	41	0.241	0.030				
42	1.187	0.010	42	0.234	0.049				
43	1.185	0.016	43	0.233	0.039				
44	1.188	0.017	44	0.230	0.026				
45	1.186	0.018	45	0.223	0.026				
46	1.184	0.017	46	0.215	0.030				
47	1.186	0.019	47	0.218	0.028				
48	1.182	0.016	48	0.202	0.027				
49	1.181	0.018	49	0.199	0.025				
50	1.182	0.017	50	0.191	0.020				
51	1.183	0.019	51	0.188	0.025				
52	1.186	0.020	52	0.184	0.026				
53	1.189	0.019	53	0.173	0.025				
54	1.188	0.019	54	0.169	0.025				
55	1.186	0.016	55	0.161	0.027				
56	1.114	0.019	56	0.162	0.024				
57	1.109	0.017	57	0.153	0.026				
58	1.106	0.018	58	0.148	0.026				
59	1.106	0.018	59	0.142	0.026				
60	1.107	0.018	60	0.138	0.024				
61	1.111	0.017	61	0.138	0.023				
62	1.114	0.016	62	0.128	0.024				
63	1.116	0.018	63	0.121	0.024				
64	1.115	0.017	64	0.116	0.023				
65	1.117	0.017	65	0.115	0.027				
66	1.119	0.016	66	0.108	0.025				
67	1.128	0.017	67	0.101	0.023				
68	1.119	0.016	68	0.094	0.026				
69	1.128	0.018	69	0.089	0.026				
70	1.128	0.017	70	0.085	0.029				
71	1.134	0.017	71	0.079	0.027				
72	1.135	0.016	72	0.074	0.027				
73	1.137	0.016	73	0.066	0.026				
74	1.139	0.017	74	0.059	0.026				
75	1.148	0.017	75	0.053	0.029				
76	1.149	0.017	76	0.043	0.028				
77	1.156	0.016	77	0.037	0.022				
78	1.159	0.017	78	0.026	0.024				
79	1.166	0.017	79	0.021	0.024				
80	1.165	0.016	80	0.017	0.024				
81	1.162	0.016	81	0.016	0.025				
82	1.173	0.023	82	0.016	0.030				
83	1.177	0.022	83	0.018	0.030				
84	1.183	0.026	84	0.018	0.030				
85	1.173	0.059	85	0.018	0.030				
86	1.137	0.100	86	0.017	0.030				
87	1.194	0.117	87	0.017	0.043				
88	1.067	0.113	88	0.017	0.043				
Avg	1.155	0.010	Avg	0.165	0.040				
Tare	0.988	0.016	Tare	0.062	0.033				

Table B1 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: -0.43 R Y Z			VERTICAL COMPONENT			0-Degree	
LONGITUDINAL COMPONENT			DEGREE	Avg Vel	RMS		RMS
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS		RMS
1.148	0.125		0	0.419	0.184		
1.155	0.146		1	0.397	0.186		
1.197	0.174		2	0.358	0.098		
1.211	0.193		3	0.327	0.077		
1.276	0.196		4	0.319	0.056		
1.324	0.172		5	0.306	0.061		
1.364	0.146		6	0.301	0.059		
1.367	0.134		7	0.298	0.056		
1.389	0.104		8	0.308	0.051		
1.399	0.083		9	0.293	0.047		
1.412	0.059		10	0.295	0.044		
1.413	0.046		11	0.295	0.049		
1.417	0.033		12	0.291	0.050		
1.421	0.031		13	0.296	0.043		
1.426	0.027		14	0.301	0.051		
1.421	0.020		15	0.292	0.048		
1.422	0.019		16	0.292	0.050		
1.423	0.022		17	0.293	0.048		
1.426	0.021		18	0.288	0.049		
1.429	0.021		19	0.283	0.048		
1.438	0.021		20	0.284	0.046		
1.433	0.023		21	0.286	0.048		
1.433	0.027		22	0.281	0.042		
1.434	0.025		23	0.288	0.041		
1.434	0.027		24	0.280	0.039		
1.439	0.029		25	0.272	0.041		
1.443	0.031		26	0.257	0.033		
1.445	0.035		27	0.251	0.035		
1.445	0.037		28	0.249	0.031		
1.458	0.036		29	0.248	0.027		
1.458	0.039		30	0.236	0.031		
1.448	0.038		31	0.228	0.026		
1.449	0.037		32	0.215	0.042		
1.447	0.036		33	0.203	0.028		
1.447	0.037		34	0.193	0.028		
1.441	0.034		35	0.197	0.041		
1.439	0.035		36	0.192	0.027		
1.439	0.035		37	0.184	0.028		
1.435	0.034		38	0.177	0.029		
1.432	0.034		39	0.166	0.031		
1.426	0.038		40	0.159	0.031		
1.421	0.028		41	0.156	0.032		
1.412	0.026		42	0.156	0.047		
1.406	0.024		43	0.145	0.027		
1.399	0.026		44	0.149	0.032		
1.394	0.022		45	0.144	0.030		
1.384	0.021		46	0.143	0.029		
1.380	0.021		47	0.158	0.031		
1.373	0.028		48	0.148	0.033		
1.362	0.019		49	0.152	0.028		
1.360	0.019		50	0.162	0.031		
1.354	0.019		51	0.155	0.029		
1.347	0.028		52	0.143	0.029		
1.339	0.017		53	0.148	0.030		
1.333	0.017		54	0.158	0.033		
1.333	0.017		55	0.152	0.028		
1.328	0.017		56	0.162	0.031		
1.317	0.016		57	0.155	0.029		
1.313	0.019		58	0.172	0.027		
1.306	0.017		59	0.171	0.029		
1.301	0.019		60	0.181	0.029		
1.300	0.018		61	0.193	0.028		
1.295	0.018		62	0.197	0.028		
1.294	0.028		63	0.194	0.029		
1.290	0.019		64	0.197	0.030		
1.287	0.020		65	0.218	0.027		
1.284	0.021		66	0.212	0.026		
1.231	0.023		67	0.217	0.027		
1.279	0.022		68	0.227	0.026		
1.276	0.024		69	0.228	0.028		
1.277	0.023		70	0.238	0.031		
1.276	0.024		71	0.248	0.030		
1.274	0.026		72	0.256	0.032		
1.274	0.026		73	0.265	0.034		
1.272	0.025		74	0.276	0.035		
1.275	0.018		75	0.286	0.036		
1.274	0.031		76	0.295	0.041		
1.277	0.033		77	0.312	0.045		
1.278	0.033		78	0.341	0.056		
1.272	0.040		79	0.373	0.058		
1.281	0.045		80	0.423	0.057		
1.281	0.055		81	0.434	0.054		
1.286	0.061		82	0.472	0.051		
1.241	0.066		83	0.478	0.049		
1.219	0.076		84	0.445	0.042		
1.174	0.100		85	0.251	0.044		
1.151	0.111		86	0.070	0.049		
Avg	1.329	0.014	Avg	0.251	0.044		
TARE	0.950	0.035	TARE	0.070	0.049		

Table B2 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: LONGITUDINAL COMPONENT			X 0.21 R	Y 0.70 R	Z 0.00 R	VERTICAL COMPONENT			180-Degree		
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS
0	0.955	0.064	0	0.091	0.058	0	0.066	0.051	0	0.061	0.056
1	0.982	0.029	1	0.012	0.055	1	0.055	0.055	1	0.059	0.043
2	1.010	0.015	2	0.016	0.066	2	0.064	0.058	2	0.064	0.058
3	1.025	0.012	3	0.009	0.067	3	0.067	0.057	3	0.067	0.057
4	1.040	0.010	4	0.009	0.083	4	0.083	0.083	4	0.083	0.083
5	1.049	0.009	5	0.009	0.084	5	0.084	0.084	5	0.084	0.084
6	1.055	0.009	6	0.009	0.085	6	0.085	0.085	6	0.085	0.085
7	1.063	0.009	7	0.009	0.086	7	0.086	0.086	7	0.086	0.086
8	1.069	0.010	8	0.010	0.087	8	0.087	0.087	8	0.087	0.087
9	1.079	0.010	9	0.010	0.088	9	0.088	0.088	9	0.088	0.088
10	1.085	0.011	10	0.011	0.089	10	0.089	0.089	10	0.089	0.089
11	1.087	0.010	11	0.011	0.090	11	0.090	0.090	11	0.090	0.090
12	1.092	0.011	12	0.011	0.091	12	0.091	0.091	12	0.091	0.091
13	1.096	0.010	13	0.011	0.092	13	0.092	0.092	13	0.092	0.092
14	1.099	0.011	14	0.011	0.093	14	0.093	0.093	14	0.093	0.093
15	1.105	0.012	15	0.011	0.094	15	0.094	0.094	15	0.094	0.094
16	1.104	0.010	16	0.010	0.095	16	0.095	0.095	16	0.095	0.095
17	1.108	0.012	17	0.011	0.096	17	0.096	0.096	17	0.096	0.096
18	1.113	0.011	18	0.011	0.097	18	0.097	0.097	18	0.097	0.097
19	1.119	0.013	19	0.013	0.098	19	0.098	0.098	19	0.098	0.098
20	1.128	0.013	20	0.013	0.099	20	0.099	0.099	20	0.099	0.099
21	1.122	0.011	21	0.011	0.100	21	0.100	0.100	21	0.100	0.100
22	1.123	0.011	22	0.011	0.101	22	0.101	0.101	22	0.101	0.101
23	1.125	0.011	23	0.011	0.102	23	0.102	0.102	23	0.102	0.102
24	1.126	0.011	24	0.012	0.103	24	0.103	0.103	24	0.103	0.103
25	1.127	0.012	25	0.012	0.104	25	0.104	0.104	25	0.104	0.104
26	1.126	0.011	26	0.012	0.105	26	0.105	0.105	26	0.105	0.105
27	1.126	0.012	27	0.012	0.106	27	0.106	0.106	27	0.106	0.106
28	1.129	0.012	28	0.012	0.107	28	0.107	0.107	28	0.107	0.107
29	1.135	0.012	29	0.012	0.108	29	0.108	0.108	29	0.108	0.108
30	1.133	0.012	30	0.012	0.109	30	0.109	0.109	30	0.109	0.109
31	1.136	0.011	31	0.011	0.110	31	0.110	0.110	31	0.110	0.110
32	1.137	0.012	32	0.012	0.111	32	0.111	0.111	32	0.111	0.111
33	1.139	0.012	33	0.012	0.112	33	0.112	0.112	33	0.112	0.112
34	1.141	0.013	34	0.013	0.113	34	0.113	0.113	34	0.113	0.113
35	1.138	0.013	35	0.013	0.114	35	0.114	0.114	35	0.114	0.114
36	1.139	0.013	36	0.013	0.115	36	0.115	0.115	36	0.115	0.115
37	1.141	0.014	37	0.014	0.116	37	0.116	0.116	37	0.116	0.116
38	1.141	0.014	38	0.014	0.117	38	0.117	0.117	38	0.117	0.117
39	1.148	0.014	39	0.014	0.118	39	0.118	0.118	39	0.118	0.118
40	1.143	0.014	40	0.014	0.119	40	0.119	0.119	40	0.119	0.119
41	1.138	0.015	41	0.015	0.120	41	0.120	0.120	41	0.120	0.120
42	1.131	0.012	42	0.012	0.121	42	0.121	0.121	42	0.121	0.121
43	1.134	0.011	43	0.011	0.122	43	0.122	0.122	43	0.122	0.122
44	1.141	0.012	44	0.012	0.123	44	0.123	0.123	44	0.123	0.123
45	1.140	0.013	45	0.013	0.124	45	0.124	0.124	45	0.124	0.124
46	1.143	0.013	46	0.013	0.125	46	0.125	0.125	46	0.125	0.125
47	1.139	0.013	47	0.013	0.126	47	0.126	0.126	47	0.126	0.126
48	1.139	0.014	48	0.014	0.127	48	0.127	0.127	48	0.127	0.127
49	1.143	0.014	49	0.014	0.128	49	0.128	0.128	49	0.128	0.128
50	1.144	0.013	50	0.013	0.129	50	0.129	0.129	50	0.129	0.129
51	1.142	0.013	51	0.013	0.130	51	0.130	0.130	51	0.130	0.130
52	1.148	0.013	52	0.013	0.131	52	0.131	0.131	52	0.131	0.131
53	1.143	0.017	53	0.017	0.132	53	0.132	0.132	53	0.132	0.132
54	1.142	0.014	54	0.014	0.133	54	0.133	0.133	54	0.133	0.133
55	1.143	0.013	55	0.013	0.134	55	0.134	0.134	55	0.134	0.134
56	1.147	0.013	56	0.013	0.135	56	0.135	0.135	56	0.135	0.135
57	1.147	0.013	57	0.013	0.136	57	0.136	0.136	57	0.136	0.136
58	1.147	0.013	58	0.013	0.137	58	0.137	0.137	58	0.137	0.137
59	1.144	0.014	59	0.014	0.138	59	0.138	0.138	59	0.138	0.138
60	1.145	0.013	60	0.013	0.139	60	0.139	0.139	60	0.139	0.139
61	1.144	0.013	61	0.013	0.140	61	0.140	0.140	61	0.140	0.140
62	1.145	0.012	62	0.012	0.141	62	0.141	0.141	62	0.141	0.141
63	1.148	0.015	63	0.015	0.142	63	0.142	0.142	63	0.142	0.142
64	1.136	0.012	64	0.012	0.143	64	0.143	0.143	64	0.143	0.143
65	1.132	0.013	65	0.013	0.144	65	0.144	0.144	65	0.144	0.144
66	1.140	0.015	66	0.015	0.145	66	0.145	0.145	66	0.145	0.145
67	1.134	0.015	67	0.015	0.146	67	0.146	0.146	67	0.146	0.146
68	1.127	0.017	68	0.017	0.147	68	0.147	0.147	68	0.147	0.147
69	1.116	0.019	69	0.019	0.148	69	0.148	0.148	69	0.148	0.148
70	----	----	70	0.019	0.149	70	0.149	0.149	70	0.149	0.149
71	----	----	71	0.019	0.150	71	0.150	0.150	71	0.150	0.150
72	1.117	0.020	72	0.020	0.151	72	0.151	0.151	72	0.151	0.151
73	1.119	0.020	73	0.020	0.152	73	0.152	0.152	73	0.152	0.152
74	1.121	0.020	74	0.020	0.153	74	0.153	0.153	74	0.153	0.153
75	1.112	0.020	75	0.020	0.154	75	0.154	0.154	75	0.154	0.154
76	1.119	0.020	76	0.020	0.155	76	0.155	0.155	76	0.155	0.155
77	1.119	0.020	77	0.020	0.156	77	0.156	0.156	77	0.156	0.156
78	1.122	0.020	78	0.020	0.157	78	0.157	0.157	78	0.157	0.157
79	1.119	0.020	79	0.020	0.158	79	0.158	0.158	79	0.158	0.158
80	1.125	0.020	80	0.020	0.159	80	0.159	0.159	80	0.159	0.159
81	1.113	0.020	81	0.020	0.160	81	0.160	0.160	81	0.160	0.160
82	1.139	0.015	82	0.015	0.161	82	0.161	0.161	82	0.161	0.161
83	1.118	0.021	83	0.021	0.162	83	0.162	0.162	83	0.162	0.162
84	1.129	0.021	84	0.021	0.163	84	0.163	0.163	84	0.163	0.163
85	1.126	0.020	85	0.020	0.164	85	0.164	0.164	85	0.164	0.164
86	1.123	0.018	86	0.018	0.165	86	0.165	0.165	86	0.165	0.165
87	1.115	0.014	87	0.014	0.166	87	0.166	0.166	87	0.166	0.166
88	1.107	0.009	88	0.009	0.167	88	0.167	0.167	88	0.167	0.167
Avg	1.116	0.019	TARE	1.002	0.022	Avg	0.126	0.041	TARE	0.048	0.038

Table B3 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

180-Degree

PROBE COORDINATES: -0.39 R 0.30 R 0.00 R
LONGITUDINAL COMPONENT

DEGREE AVG VEL RMS

0	0.959	0.036
1	0.945	0.038
2	0.943	0.046
3	0.981	0.066
4	0.992	0.070
5	1.015	0.075
6	1.035	0.083
7	1.046	0.087
8	1.057	0.072
9	1.071	0.072
10	1.070	0.073
11	1.087	0.081
12	1.076	0.058
13	1.080	0.056
14	1.076	0.051
15	1.085	0.052
16	1.083	0.050
17	1.085	0.046
18	1.079	0.037
19	1.082	0.037
20	1.084	0.040
21	1.085	0.036
22	1.083	0.033
23	1.083	0.033
24	1.086	0.026
25	---	---
26	---	---
27	---	---
28	---	---
29	---	---
30	---	---
31	---	---
32	1.081	0.026
33	1.085	0.026
34	1.079	0.025
35	1.075	0.025
36	1.075	0.025
37	1.074	0.026
38	1.069	0.024
39	1.066	0.022
40	1.067	0.020
41	1.066	0.020
42	1.059	0.023
43	1.063	0.021
44	1.056	0.019
45	1.056	0.023
46	1.055	0.022
47	1.056	0.022
48	1.050	0.023
49	1.045	0.023
50	1.047	0.019
51	1.046	0.020
52	1.040	0.020
53	1.039	0.021
54	---	---
55	---	---
56	---	---
57	1.038	0.020
58	1.037	0.021
59	1.034	0.022
60	1.034	0.020
61	1.030	0.021
62	1.027	0.023
63	1.022	0.021
64	---	---
65	---	---
66	1.022	0.020
67	1.021	0.021
68	---	---
69	1.014	0.070
70	1.012	0.070
71	1.010	0.024
72	1.011	0.023
73	1.008	0.021
74	1.010	0.019
75	1.005	0.022
76	1.004	0.022
77	1.003	0.023
78	0.998	0.024
79	0.919	0.074
80	0.997	0.022
81	0.989	0.024
82	---	---
83	0.986	0.024
84	0.982	0.011
85	0.976	0.023
86	0.975	0.010
87	0.971	0.014
88	0.974	0.014
89	0.967	0.014
Avg	1.017	0.011
TARE	1.004	0.019

VERTICAL COMPONENT

DEGREE	AVG VEL	RMS
0	0.376	0.038
1	0.389	0.032
2	0.358	0.038
3	0.355	0.033
4	0.408	0.034
5	0.412	0.034
6	0.409	0.041
7	0.411	0.041
8	0.404	0.058
9	0.391	0.068
10	0.385	0.091
11	0.352	0.119
12	0.323	0.141
13	0.297	0.151
14	0.203	0.147
15	0.192	0.168
16	0.150	0.142
17	0.123	0.134
18	0.168	0.115
19	0.096	0.113
20	0.184	0.114
21	0.897	0.080
22	0.897	0.049
23	0.899	0.061
24	0.108	0.059
25	0.112	0.062
26	0.115	0.054
27	0.136	0.064
28	0.158	0.033
29	0.138	0.048
30	0.135	0.044
31	0.138	0.046
32	0.134	0.034
33	0.142	0.047
34	0.151	0.039
35	0.158	0.049
36	0.159	0.035
37	0.155	0.051
38	0.163	0.051
39	0.155	0.043
40	0.154	0.029
41	0.158	0.033
42	0.162	0.032
43	0.160	0.035
44	0.160	0.030
45	0.160	0.032
46	0.163	0.034
47	0.163	0.035
48	0.163	0.035
49	0.163	0.031
50	0.163	0.037
51	0.164	0.032
52	0.160	0.030
53	0.160	0.029
54	0.161	0.032
55	0.161	0.033
56	0.161	0.033
57	0.161	0.032
58	0.161	0.033
59	0.161	0.033
60	0.161	0.033
61	0.161	0.033
62	0.161	0.033
63	0.161	0.024
64	0.233	0.033
65	0.235	0.029
66	0.247	0.028
67	0.249	0.031
68	0.255	0.027
69	0.256	0.025
70	0.264	0.027
71	0.262	0.029
72	0.261	0.033
73	0.267	0.036
74	0.295	0.036
75	0.302	0.024
76	0.308	0.127
77	0.319	0.032
78	0.322	0.025
79	0.329	0.131
80	0.336	0.031
81	0.343	0.026
82	0.355	0.036
83	0.358	0.034
84	0.366	0.032
85	0.374	0.031
Avg	0.234	0.029
TARE	0.111	0.029

Table B4 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: -6.39 R 8.88 R 8.88 R
LONGITUDINAL COMPONENT

DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS
0	1.278	0.115	8	8.181	0.127
1	1.282	0.096	9	8.154	0.137
2	1.266	0.066	10	8.203	0.147
3	1.268	0.052	11	8.225	0.129
4	1.261	0.051	12	8.247	0.114
5	1.277	0.049	13	8.278	0.059
6	1.273	0.046	14	8.287	0.043
7	1.269	0.045	15	8.288	0.034
8	1.264	0.043	16	8.278	0.029
9	1.261	0.041	17	8.259	0.030
10	1.255	0.038	18	8.263	0.029
11	1.252	0.038	19	8.264	0.030
12	1.258	0.037	20	8.266	0.038
13	1.246	0.037	21	8.261	0.038
14	1.244	0.035	22	8.254	0.031
15	1.240	0.036	23	8.255	0.027
16	1.237	0.035	24	8.243	0.030
17	1.233	0.034	25	8.246	0.030
18	1.232	0.033	26	8.245	0.029
19	1.228	0.033	27	8.243	0.028
20	1.228	0.031	28	8.242	0.028
21	1.222	0.030	29	8.241	0.026
22	1.224	0.032	30	8.239	0.029
23	1.222	0.030	31	8.237	0.030
24	1.217	0.029	32	8.238	0.029
25	1.218	0.026	33	8.233	0.039
26	1.215	0.028	34	8.229	0.025
27	1.212	0.025	35	8.227	0.027
28	1.211	0.026	36	8.226	0.027
29	1.207	0.023	37	8.228	0.030
30	1.207	0.026	38	8.228	0.030
31	1.208	0.023	39	8.221	0.028
32	1.206	0.024	40	8.227	0.029
33	1.204	0.022	41	8.228	0.030
34	1.201	0.022	42	8.228	0.030
35	1.202	0.023	43	8.221	0.028
36	1.208	0.020	44	8.214	0.029
37	1.199	0.020	45	8.211	0.027
38	1.197	0.019	46	8.213	0.029
39	1.199	0.021	47	8.211	0.025
40	1.194	0.020	48	8.209	0.027
41	1.190	0.019	49	8.204	0.025
42	1.195	0.019	50	8.209	0.027
43	1.195	0.019	51	8.207	0.029
44	1.196	0.018	52	8.206	0.030
45	1.196	0.018	53	8.200	0.029
46	1.198	0.015	54	8.204	0.027
47	1.194	0.017	55	8.199	0.024
48	1.195	0.014	56	8.201	0.026
49	1.197	0.015	57	8.205	0.029
50	1.199	0.015	58	8.195	0.027
51	1.199	0.015	59	8.193	0.032
52	1.292	0.016	60	8.198	0.028
53	1.203	0.016	61	8.193	0.029
54	1.285	0.015	62	8.190	0.028
55	1.294	0.014	63	8.191	0.026
56	1.207	0.016	64	8.189	0.026
57	1.269	0.015	65	8.186	0.026
58	1.212	0.016	66	8.186	0.026
59	1.213	0.017	67	8.182	0.027
60	1.218	0.015	68	8.185	0.023
61	1.220	0.017	69	8.184	0.028
62	1.221	0.016	70	8.183	0.028
63	1.222	0.016	71	8.183	0.026
64	1.222	0.019	72	8.179	0.028
65	1.227	0.020	73	8.183	0.027
66	1.228	0.020	74	8.182	0.027
67	1.230	0.022	75	8.175	0.026
68	-----	-----	76	8.175	0.026
69	-----	-----	77	8.177	0.026
70	-----	-----	78	8.173	0.028
71	-----	-----	79	8.175	0.028
72	-----	-----	80	8.175	0.025
73	1.262	0.079	81	8.175	0.025
74	1.279	0.083	82	8.175	0.024
75	1.279	0.046	83	8.176	0.026
76	1.292	0.050	84	8.178	0.027
77	1.292	0.054	85	8.178	0.025
78	1.362	0.075	86	8.179	0.025
79	1.303	0.060	87	8.179	0.025
80	1.315	0.167	88	8.179	0.025
81	1.326	0.073	89	8.179	0.025
82	1.315	0.069	90	8.179	0.025
83	1.282	0.192	91	8.179	0.027
84	1.262	0.122	92	8.179	0.031
85	1.231	0.124	93	8.177	0.035
86	1.254	0.123	94	8.167	0.039
87	1.272	0.111	95	8.162	0.077
88	1.263	0.146	96	8.129	0.101
89	-----	-----	97	8.129	0.124
90	-----	-----	98	-----	-----
Avg	1.274	0.123	Avg	8.205	0.057
TARE	0.985	0.015	TARE	0.062	0.033

Table B5 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: -0.39 R X LONGITUDINAL COMPONENT			180-Degree		
DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS
0	1.232	0.101	0	0.819	0.145
1	1.269	0.098	1	0.098	0.139
2	1.274	0.064	2	0.168	0.149
3	1.275	0.040	3	0.272	0.122
4	1.267	0.043	4	0.264	0.182
5	1.265	0.026	5	0.280	0.091
6	1.263	0.032	6	0.287	0.078
7	1.257	0.032	7	0.286	0.076
8	1.254	0.034	8	0.283	0.073
9	1.251	0.033	9	0.263	0.062
10	1.248	0.035	10	0.278	0.059
11	1.246	0.035	11	0.291	0.055
12	1.246	0.030	12	0.276	0.043
13	1.248	0.034	13	0.278	0.049
14	1.241	0.035	14	0.271	0.049
15	1.237	0.034	15	0.279	0.042
16	1.233	0.035	16	0.269	0.039
17	1.231	0.035	17	0.262	0.045
18	1.228	0.034	18	0.267	0.033
19	1.224	0.032	19	0.266	0.048
20	1.223	0.032	20	0.256	0.036
21	1.219	0.029	21	0.253	0.034
22	1.216	0.038	22	0.257	0.036
23	1.216	0.038	23	0.259	0.035
24	1.209	0.030	24	0.258	0.033
25	1.209	0.030	25	0.250	0.035
26	1.204	0.028	26	0.247	0.033
27	1.200	0.029	27	0.247	0.037
28	1.197	0.026	28	0.244	0.035
29	1.197	0.027	29	0.245	0.037
30	1.196	0.025	30	0.243	0.032
31	1.193	0.025	31	0.237	0.034
32	1.191	0.023	32	0.236	0.036
33	1.189	0.023	33	0.235	0.033
34	1.186	0.025	34	0.228	0.032
35	1.185	0.021	35	0.220	0.026
36	1.182	0.022	36	0.223	0.033
37	1.182	0.020	37	0.222	0.033
38	1.181	0.021	38	0.222	0.034
39	1.178	0.020	39	0.211	0.033
40	1.176	0.020	40	0.210	0.034
41	1.175	0.019	41	0.204	0.033
42	1.176	0.019	42	0.206	0.033
43	1.177	0.019	43	0.199	0.033
44	1.173	0.018	44	0.196	0.035
45	1.174	0.015	45	0.192	0.033
46	1.175	0.015	46	0.193	0.035
47	1.178	0.017	47	0.187	0.034
48	1.178	0.016	48	0.186	0.033
49	1.179	0.014	49	0.178	0.033
50	1.177	0.013	50	0.179	0.035
51	1.177	0.014	51	0.173	0.030
52	1.178	0.015	52	0.169	0.033
53	1.178	0.015	53	0.168	0.031
54	1.181	0.013	54	0.164	0.032
55	1.180	0.014	55	0.161	0.031
56	1.177	0.015	56	0.159	0.033
57	1.179	0.014	57	0.151	0.032
58	1.182	0.015	58	0.146	0.032
59	1.185	0.015	59	0.143	0.031
60	1.186	0.015	60	0.144	0.030
61	1.189	0.017	61	0.137	0.030
62	1.191	0.017	62	0.129	0.031
63	1.193	0.016	63	0.124	0.032
64	1.195	0.016	64	0.123	0.030
65	1.200	0.017	65	0.121	0.030
66	1.202	0.017	66	0.117	0.030
67	1.204	0.020	67	0.111	0.030
68	1.205	0.023	68	0.110	0.030
69	1.209	0.021	69	0.106	0.029
70	1.217	0.025	70	0.101	0.029
71	1.221	0.025	71	0.096	0.028
72	1.226	0.025	72	0.095	0.028
73	1.233	0.025	73	0.093	0.028
74	1.238	0.026	74	0.090	0.028
75	1.246	0.020	75	0.088	0.028
76	1.250	0.031	76	0.087	0.028
77	1.258	0.031	77	0.087	0.028
78	1.269	0.034	78	0.085	0.028
79	1.276	0.035	79	0.085	0.028
80	1.293	0.036	80	0.083	0.028
81	1.280	0.037	81	0.083	0.028
82	1.298	0.040	82	0.085	0.028
83	1.319	0.046	83	0.085	0.027
84	1.313	0.053	84	0.088	0.027
85	1.294	0.075	85	0.088	0.026
86	1.268	0.108	86	0.085	0.026
87	1.216	0.132	87	0.082	0.026
88	1.178	0.126	88	0.082	0.026
89	1.121	0.150	89	0.079	0.026
Avg	1.217	0.032	Avg	0.179	0.040
Tare	0.986	0.018	Tare	0.060	0.031

Table B6 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: -8.39 R			Y 0.58 R	Z 8.06 R	VERTICAL COMPONENT		0-Degree			
LONGITUDINAL COMPONENT					DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS
0	1.269	0.111			0	0.309	0.026			
1	1.312	0.056			1	0.301	0.029			
2	1.323	0.037			2	0.296	0.028			
3	1.326	0.025			3	0.290	0.029			
4	1.328	0.020			4	0.285	0.026			
5	1.315	0.020			5	0.282	0.026			
6	1.314	0.016			6	0.279	0.027			
7	1.311	0.015			7	0.277	0.025			
8	1.306	0.018			8	0.274	0.026			
9	1.302	0.015			9	0.267	0.026			
10	1.298	0.015			10	0.263	0.024			
11	1.296	0.015			11	0.260	0.024			
12	1.291	0.016			12	0.258	0.026			
13	1.290	0.016			13	0.255	0.025			
14	1.289	0.017			14	0.254	0.027			
15	1.284	0.015			15	0.243	0.024			
16	1.281	0.014			16	0.244	0.024			
17	1.281	0.016			17	0.244	0.023			
18	1.276	0.016			18	0.239	0.024			
19	1.272	0.018			19	0.238	0.025			
20	1.271	0.016			20	0.232	0.024			
21	1.267	0.015			21	0.230	0.025			
22	1.265	0.017			22	0.227	0.025			
23	1.263	0.018			23	0.223	0.024			
24	1.257	0.019			24	0.220	0.024			
25	1.255	0.017			25	0.217	0.025			
26	1.258	0.017			26	0.213	0.025			
27	1.249	0.016			27	0.213	0.024			
28	1.247	0.017			28	0.208	0.024			
29	1.242	0.017			29	0.206	0.025			
30	1.241	0.019			30	0.204	0.025			
31	1.240	0.018			31	0.203	0.025			
32	1.235	0.018			32	0.195	0.025			
33	1.232	0.017			33	0.198	0.023			
34	1.230	0.018			34	0.189	0.023			
35	1.230	0.018			35	0.184	0.023			
36	1.228	0.018			36	0.182	0.024			
37	1.224	0.017			37	0.181	0.022			
38	1.223	0.019			38	0.178	0.023			
39	1.220	0.018			39	0.177	0.023			
40	1.217	0.019			40	0.174	0.024			
41	1.215	0.018			41	0.171	0.023			
42	1.211	0.019			42	0.169	0.023			
43	1.209	0.020			43	0.165	0.022			
44	1.205	0.018			44	0.168	0.022			
45	1.201	0.018			45	0.155	0.025			
46	1.200	0.016			46	0.153	0.022			
47	1.195	0.016			47	0.148	0.022			
48	1.196	0.016			48	0.143	0.023			
49	1.194	0.015			49	0.140	0.022			
50	1.192	0.015			50	0.138	0.021			
51	1.193	0.019			51	0.136	0.021			
52	1.198	0.018			52	0.131	0.023			
53	1.189	0.016			53	0.129	0.020			
54	1.187	0.015			54	0.127	0.023			
55	1.187	0.017			55	0.125	0.019			
56	1.187	0.018			56	0.118	0.022			
57	1.184	0.016			57	0.128	0.022			
58	1.185	0.016			58	0.116	0.022			
59	1.183	0.016			59	0.112	0.022			
60	1.181	0.016			60	0.110	0.021			
61	1.180	0.017			61	0.108	0.021			
62	1.183	0.018			62	0.104	0.021			
63	1.182	0.019			63	0.093	0.023			
64	1.185	0.017			64	0.093	0.021			
65	1.180	0.018			65	0.092	0.021			
66	1.180	0.017			66	0.090	0.021			
67	1.182	0.019			67	0.089	0.023			
68	1.185	0.019			68	0.086	0.025			
69	1.184	0.017			69	0.083	0.023			
70	1.186	0.019			70	0.080	0.025			
71	1.185	0.016			71	0.076	0.024			
72	1.189	0.018			72	0.071	0.025			
73	1.188	0.018			73	0.072	0.024			
74	1.193	0.020			74	0.073	0.024			
75	1.198	0.018			75	0.072	0.026			
76	1.196	0.019			76	0.071	0.027			
77	1.194	0.021			77	0.062	0.027			
78	1.195	0.020			78	0.063	0.027			
79	1.197	0.025			79	0.062	0.027			
80	1.198	0.038			80	0.061	0.026			
81	1.195	0.057			81	0.063	0.026			
82	1.167	0.076			82	0.122	0.124			
83	1.123	0.083			83	0.159	0.136			
84	1.082	0.120			84	0.310	0.271			
85	1.073	0.136			85	0.331	0.261			
86	1.117	0.104			86	0.522	0.464			
87	1.088	0.172			87	0.311	0.268			
88	1.227	0.154			88	0.311	0.255			
Avg	1.223	0.029			Avg	2.183	0.230			
TARE	0.91	0.015			TARE	0.095	0.044			

Table B7 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

0-Degree

PROBE COORDINATES: LONGITUDINAL COMPONENT			X -.39 R	Y 0.80 R	Z 0.00	VERTICAL COMPONENT		
DEGREE	Avg Vel	RMS	DEGREES	Avg Vel	RMS			
0	1.241	0.241	0	0.215	0.107			
1	1.307	0.230	1	0.172	0.047			
2	1.355	0.192	2	0.160	0.051			
3	1.368	0.196	3	0.159	0.056			
4	1.374	0.186	4	0.161	0.051			
5	1.417	0.122	5	0.160	0.041			
6	1.420	0.102	6	0.156	0.039			
7	1.430	0.091	7	0.163	0.037			
8	1.442	0.076	8	0.161	0.034			
9	1.455	0.070	9	0.149	0.033			
10	1.457	0.073	10	0.149	0.035			
11	1.476	0.068	11	0.137	0.035			
12	1.479	0.067	12	1.127	0.036			
13	1.489	0.068	13	0.111	0.033			
14	1.498	0.061	14	0.099	0.033			
15	1.501	0.061	15	0.080	0.033			
16	1.506	0.062	16	0.068	0.035			
17	1.500	0.062	17	0.053	0.036			
18	1.499	0.062	18	0.035	0.048			
19	1.500	0.062	19	0.014	0.033			
20	1.491	0.060	20	0.007	0.033			
21	1.493	0.061	21	-0.019	0.032			
22	1.474	0.059	22	-0.025	0.031			
23	1.445	0.058	23	-0.040	0.031			
24	1.449	0.060	24	-0.051	0.029			
25	1.446	0.060	25	-0.051	0.052			
26	1.427	0.040	26	-0.057	0.033			
27	1.411	0.051	27	-0.064	0.013			
28	1.392	0.058	28	-0.063	0.030			
29	1.383	0.037	29	-0.061	0.036			
30	1.368	0.051	30	-0.063	0.030			
31	1.353	0.051	31	-0.063	0.029			
32	1.341	0.050	32	-0.061	0.031			
33	1.336	0.048	33	-0.055	0.032			
34	1.317	0.047	34	-0.055	0.031			
35	1.311	0.046	35	-0.051	0.032			
36	1.300	0.046	36	-0.046	0.034			
37	1.290	0.041	37	-0.041	0.031			
38	1.278	0.038	38	-0.033	0.036			
39	1.271	0.037	39	-0.029	0.035			
40	1.262	0.034	40	-0.027	0.037			
41	1.255	0.033	41	-0.017	0.037			
42	1.249	0.032	42	-0.009	0.037			
43	1.240	0.031	43	-0.010	0.036			
44	1.233	0.028	44	0.002	0.033			
45	1.229	0.027	45	0.003	0.039			
46	1.221	0.026	46	0.006	0.036			
47	1.221	0.024	47	0.017	0.020			
48	1.213	0.022	48	0.022	0.017			
49	1.211	0.020	49	0.032	0.011			
50	1.206	0.019	50	0.035	0.035			
51	1.203	0.010	51	0.041	0.037			
52	1.201	0.019	52	0.043	0.017			
53	1.190	0.017	53	0.035	0.035			
54	1.193	0.010	54	0.066	0.033			
55	1.189	0.017	55	0.060	0.034			
56	1.188	0.015	56	0.079	0.031			
57	1.186	0.015	57	0.045	0.031			
58	1.185	0.014	58	0.096	0.034			
59	1.184	0.018	59	0.096	0.011			
60	1.180	0.015	60	0.103	0.011			
61	1.181	0.015	61	0.110	0.011			
62	1.181	0.016	62	0.123	0.034			
63	1.180	0.015	63	0.135	0.011			
64	1.178	0.017	64	0.139	0.012			
65	1.175	0.017	65	0.150	0.032			
66	1.172	0.020	66	0.162	0.012			
67	1.173	0.022	67	0.166	0.012			
68	1.176	0.021	68	0.175	0.011			
69	1.175	0.021	69	0.189	0.012			
70	1.173	0.127	70	0.197	0.031			
71	1.176	0.010	71	0.200	0.031			
72	1.180	0.011	72	0.219	0.011			
73	1.183	0.013	73	0.216	0.016			
74	1.186	0.012	74	0.244	0.016			
75	1.190	0.017	75	0.260	0.030			
76	1.195	0.011	76	0.275	0.039			
77	1.198	0.043	77	0.285	0.011			
78	1.199	0.063	78	0.314	0.010			
79	1.207	0.045	79	0.337	0.048			
80	1.204	0.045	80	0.351	0.051			
81	1.213	0.055	81	0.363	0.051			
82	1.204	0.048	82	0.356	0.040			
83	1.206	0.069	83	0.372	0.110			
84	1.174	0.081	84	0.331	0.131			
85	1.133	0.075	85	0.303	0.131			
86	1.112	0.115	86	0.345	0.142			
87	1.116	0.112	87	0.371	0.140			
88	1.126	0.176	88	0.277	0.134			
89	1.187	0.214	89	0.222	0.114			
Avg	1.244	0.094	Avg	0.104	0.011			
TARE	0.950	0.035	TARE	0.070	0.049			

Table B8 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: X 0.21 R Y 0.70 R Z 0.00 R			0-Degree		
LONGITUDINAL COMPONENT			VERTICAL COMPONENT		
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS
0	0.090	0.032	0	0.054	0.036
1	0.069	0.034	1	0.054	0.031
2	0.079	0.034	2	0.053	0.032
3	0.048	0.048	3	0.053	0.031
4	0.055	0.066	4	0.054	0.029
5	0.068	0.047	5	0.056	0.035
6	0.022	0.022	6	0.058	0.032
7	0.022	0.022	7	0.058	0.029
8	0.065	0.065	8	0.057	0.030
9	0.078	0.078	9	0.056	0.029
10	0.028	0.028	10	0.054	0.030
11	0.023	0.023	11	0.056	0.029
12	0.026	0.026	12	0.058	0.032
13	0.023	0.023	13	0.065	0.033
14	0.023	0.023	14	0.059	0.032
15	0.021	0.021	15	0.061	0.031
16	0.021	0.021	16	0.056	0.032
17	0.022	0.022	17	0.061	0.029
18	0.021	0.021	18	0.059	0.030
19	0.023	0.023	19	0.057	0.028
20	0.020	0.020	20	0.056	0.038
21	0.022	0.022	21	0.061	0.032
22	0.022	0.022	22	0.059	0.032
23	0.021	0.021	23	0.055	0.030
24	0.019	0.019	24	0.056	0.030
25	0.020	0.020	25	0.060	0.030
26	0.022	0.022	26	0.057	0.034
27	0.019	0.019	27	0.058	0.032
28	0.020	0.020	28	0.055	0.029
29	0.022	0.022	29	0.058	0.029
30	0.020	0.020	30	0.061	0.038
31	0.021	0.021	31	0.059	0.032
32	0.019	0.019	32	0.053	0.032
33	0.019	0.019	33	0.055	0.032
34	0.019	0.019	34	0.054	0.033
35	0.022	0.022	35	0.051	0.032
36	0.021	0.021	36	0.055	0.035
37	0.019	0.019	37	0.048	0.035
38	0.020	0.020	38	0.042	0.036
39	0.019	0.019	39	0.042	0.036
40	0.019	0.019	40	0.059	0.038
41	0.021	0.021	41	0.027	0.037
42	0.020	0.020	42	0.016	0.041
43	0.019	0.019	43	0.014	0.043
44	0.019	0.019	44	0.004	0.048
45	0.019	0.019	45	0.008	0.041
46	0.019	0.019	46	0.018	0.043
47	0.019	0.019	47	0.015	0.041
48	0.018	0.018	48	0.013	0.039
49	0.017	0.017	49	0.018	0.032
50	0.017	0.017	50	0.017	0.034
51	0.017	0.017	51	0.020	0.036
52	0.019	0.019	52	0.024	0.037
53	0.019	0.019	53	0.028	0.032
54	0.019	0.019	54	0.028	0.033
55	0.019	0.019	55	0.026	0.034
56	0.016	0.016	56	0.024	0.032
57	0.017	0.017	57	0.028	0.032
58	0.016	0.016	58	0.028	0.033
59	0.016	0.016	59	0.028	0.028
60	0.018	0.018	60	0.054	0.033
61	0.018	0.018	61	0.031	0.030
62	0.018	0.018	62	0.036	0.033
63	0.018	0.018	63	0.031	0.030
64	0.018	0.018	64	0.037	0.034
65	0.018	0.018	65	0.038	0.033
66	0.017	0.017	66	0.039	0.031
67	0.016	0.016	67	0.043	0.039
68	0.017	0.017	68	0.039	0.039
69	0.019	0.019	69	0.043	0.040
70	0.018	0.018	70	0.043	0.044
71	0.021	0.021	71	0.046	0.044
72	0.020	0.020	72	0.041	0.043
73	0.019	0.019	73	0.043	0.041
74	0.019	0.019	74	0.044	0.045
75	0.021	0.021	75	0.045	0.049
76	0.021	0.021	76	0.043	0.045
77	0.023	0.023	77	0.050	0.053
78	0.023	0.023	78	0.043	0.051
79	0.029	0.029	79	0.043	0.051
80	0.028	0.028	80	0.043	0.051
81	0.035	0.035	81	0.042	0.052
82	0.039	0.039	82	0.042	0.051
83	0.042	0.042	83	0.054	0.051
84	0.038	0.038	84	0.049	0.053
85	0.038	0.038	85	0.048	0.052
86	0.033	0.033	86	0.041	0.049
87	0.032	0.032	87	0.052	0.053
88	0.032	0.032	88	0.042	0.050
89	0.034	0.034	89	0.054	0.051
90	0.034	0.034	90	0.053	0.051
Avg	1.056	0.034	Avg	0.244	0.023
Tare	0.952	0.022	Tare	0.080	0.041

Table B9 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: LONGITUDINAL COMPONENT			X 8.21 R	Y 8.80 R	Z 8.80 R	VERTICAL COMPONENT		0-Degree
DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS			
0	0.965	0.816	0	-0.815	0.030			
1	0.966	0.819	1	-0.828	0.025			
2	0.974	0.822	2	-0.827	0.033			
3	0.995	0.824	3	-0.834	0.028			
4	0.996	0.826	4	-0.838	0.029			
5	1.012	0.824	5	-0.838	0.038			
6	1.026	0.834	6	-0.843	0.035			
7	1.039	0.832	7	-0.842	0.038			
8	1.047	0.832	8	-0.841	0.038			
9	1.059	0.830	9	-0.840	0.037			
10	1.066	0.830	10	-0.839	0.028			
11	1.072	0.828	11	-0.841	0.026			
12	1.082	0.818	12	-0.841	0.023			
13	1.088	0.820	13	-0.836	0.029			
14	1.090	0.818	14	-0.835	0.027			
15	1.095	0.819	15	-0.834	0.025			
16	1.099	0.818	16	-0.831	0.027			
17	1.184	0.810	17	-0.826	0.039			
18	1.186	0.819	18	-0.827	0.032			
19	1.189	0.819	19	-0.826	0.032			
20	1.107	0.819	20	-0.826	0.029			
21	1.114	0.819	21	-0.824	0.027			
22	1.116	0.819	22	-0.824	0.029			
23	1.119	0.819	23	-0.825	0.026			
24	1.122	0.816	24	-0.826	0.026			
25	1.118	0.819	25	-0.823	0.024			
26	1.117	0.815	26	-0.817	0.027			
27	1.115	0.819	27	-0.821	0.023			
28	1.116	0.818	28	-0.817	0.029			
29	1.117	0.816	29	-0.817	0.027			
30	1.118	0.818	30	-0.816	0.026			
31	1.117	0.816	31	-0.813	0.027			
32	1.116	0.817	32	-0.819	0.024			
33	1.116	0.816	33	-0.813	0.029			
34	1.119	0.815	34	-0.812	0.028			
35	1.123	0.817	35	-0.812	0.026			
36	1.123	0.817	36	-0.814	0.029			
37	1.117	0.817	37	-0.816	0.026			
38	1.117	0.816	38	-0.809	0.028			
39	1.118	0.817	39	-0.809	0.026			
40	1.119	0.814	40	-0.809	0.026			
41	1.119	0.816	41	-0.806	0.028			
42	1.117	0.815	42	-0.805	0.024			
43	1.114	0.817	43	-0.804	0.025			
44	1.108	0.815	44	-0.804	0.025			
45	1.109	0.817	45	-0.804	0.025			
46	1.109	0.815	46	-0.801	0.030			
47	1.189	0.815	47	-0.801	0.026			
48	1.188	0.817	48	-0.800	0.029			
49	1.112	0.817	49	-0.801	0.027			
50	1.107	0.815	50	-0.801	0.026			
51	1.108	0.816	51	-0.802	0.026			
52	1.108	0.816	52	-0.802	0.029			
53	1.104	0.815	53	-0.802	0.029			
54	1.108	0.816	54	-0.803	0.023			
55	1.108	0.816	55	-0.803	0.023			
56	1.093	0.818	56	-0.806	0.023			
57	1.092	0.816	57	-0.807	0.026			
58	1.092	0.815	58	-0.806	0.029			
59	1.089	0.815	59	-0.811	0.029			
60	1.098	0.814	60	-0.810	0.027			
61	1.098	0.816	61	-0.810	0.027			
62	1.098	0.816	62	-0.810	0.027			
63	1.099	0.816	63	-0.810	0.027			
64	1.075	0.814	64	-0.811	0.027			
65	1.075	0.816	65	-0.810	0.027			
66	1.073	0.815	66	-0.807	0.026			
67	1.057	0.815	67	-0.807	0.026			
68	1.063	0.816	68	-0.815	0.029			
69	1.061	0.814	69	-0.810	0.026			
70	1.061	0.815	70	-0.807	0.027			
71	1.056	0.814	71	-0.812	0.027			
72	1.049	0.814	72	-0.814	0.026			
73	1.040	0.814	73	-0.812	0.026			
74	1.005	0.814	74	-0.814	0.026			
75	1.030	0.814	75	-0.813	0.026			
76	1.036	0.815	76	-0.811	0.026			
77	1.031	0.816	77	-0.812	0.026			
78	1.034	0.814	78	-0.810	0.026			
79	1.022	0.815	79	-0.810	0.026			
80	1.018	0.817	80	-0.811	0.026			
81	1.011	0.815	81	-0.811	0.026			
82	1.002	0.815	82	-0.810	0.026			
83	0.995	0.814	83	-0.810	0.026			
84	0.987	0.814	84	-0.810	0.026			
85	0.987	0.815	85	-0.810	0.026			
86	0.979	0.811	86	-0.803	0.026			
87	0.962	0.811	87	-0.803	0.026			
Avg	1.075	0.817	Tare	-0.809	0.027			
Tare	0.968	0.026		0.068	0.048			

Table B10 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: X 0.21 R Y 0.98 R Z 0.88 R			VERTICAL COMPONENT			0-Degree	
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS		
0	0.997	0.015	0	-0.819	0.833		
1	0.995	0.019	1	-0.820	0.835		
2	0.996	0.019	2	-0.822	0.835		
3	0.992	0.021	3	-0.825	0.839		
4	0.991	0.022	4	-0.825	0.837		
5	0.999	0.020	5	-0.828	0.843		
6	0.997	0.021	6	-0.834	0.836		
7	1.007	0.021	7	-0.841	0.841		
8	1.011	0.024	8	-0.846	0.828		
9	1.028	0.024	9	-0.841	0.839		
10	1.027	0.024	10	-0.853	0.836		
11	1.033	0.021	11	-0.854	0.837		
12	1.048	0.020	12	-0.857	0.836		
13	1.049	0.020	13	-0.861	0.838		
14	1.053	0.019	14	-0.858	0.838		
15	1.054	0.023	15	-0.855	0.836		
16	1.060	0.021	16	-0.855	0.834		
17	1.063	0.021	17	-0.861	0.833		
18	1.066	0.021	18	-0.859	0.832		
19	1.069	0.017	19	-0.850	0.833		
20	1.072	0.020	20	-0.855	0.834		
21	1.076	0.028	21	-0.856	0.834		
22	1.075	0.018	22	-0.860	0.835		
23	1.083	0.022	23	-0.853	0.831		
24	1.083	0.020	24	-0.854	0.835		
25	1.085	0.021	25	-0.852	0.838		
26	1.089	0.019	26	-0.849	0.833		
27	1.085	0.021	27	-0.851	0.836		
28	1.088	0.019	28	-0.848	0.831		
29	1.091	0.020	29	-0.849	0.839		
30	1.090	0.019	30	-0.845	0.836		
31	1.093	0.019	31	-0.842	0.828		
32	1.092	0.019	32	-0.849	0.831		
33	1.093	0.020	33	-0.844	0.835		
34	1.096	0.019	34	-0.842	0.833		
35	1.096	0.019	35	-0.846	0.834		
36	1.091	0.017	36	-0.844	0.833		
37	1.090	0.019	37	-0.844	0.833		
38	1.091	0.019	38	-0.842	0.833		
39	1.094	0.020	39	-0.840	0.838		
40	1.093	0.020	40	-0.837	0.838		
41	1.096	0.021	41	-0.848	0.833		
42	1.096	0.020	42	-0.841	0.829		
43	1.092	0.020	43	-0.842	0.830		
44	1.095	0.018	44	-0.838	0.834		
45	1.093	0.019	45	-0.831	0.831		
46	1.094	0.020	46	-0.833	0.833		
47	1.093	0.018	47	-0.838	0.834		
48	1.096	0.018	48	-0.833	0.832		
49	1.096	0.019	49	-0.829	0.833		
50	1.098	0.018	50	-0.827	0.832		
51	1.065	0.018	51	-0.831	0.833		
52	1.068	0.019	52	-0.826	0.833		
53	1.067	0.017	53	-0.825	0.832		
54	1.067	0.018	54	-0.823	0.833		
55	1.069	0.020	55	-0.824	0.832		
56	1.093	0.017	56	-0.828	0.832		
57	1.081	0.019	57	-0.821	0.830		
58	1.081	0.020	58	-0.819	0.829		
59	1.079	0.019	59	-0.816	0.833		
60	1.075	0.018	60	-0.816	0.833		
61	1.072	0.017	61	-0.820	0.830		
62	1.073	0.018	62	-0.821	0.820		
63	1.069	0.017	63	-0.817	0.839		
64	1.072	0.019	64	-0.817	0.833		
65	1.069	0.019	65	-0.814	0.833		
66	1.065	0.017	66	-0.816	0.833		
67	1.068	0.019	67	-0.814	0.836		
68	1.063	0.019	68	-0.812	0.835		
69	1.059	0.019	69	-0.816	0.830		
70	1.056	0.017	70	-0.811	0.834		
71	1.054	0.019	71	-0.813	0.832		
72	1.053	0.017	72	-0.809	0.831		
73	1.050	0.019	73	-0.810	0.833		
74	1.052	0.018	74	-0.805	0.837		
75	1.044	0.019	75	-0.810	0.826		
76	1.044	0.017	76	-0.805	0.831		
77	1.041	0.017	77	-0.804	0.826		
78	1.036	0.015	78	-0.806	0.834		
79	1.024	0.016	79	-0.817	0.833		
80	1.020	0.017	80	-0.813	0.833		
81	1.022	0.019	81	-0.814	0.830		
82	1.022	0.017	82	-0.817	0.831		
83	1.017	0.013	83	-0.812	0.829		
84	1.012	0.013	84	-0.815	0.834		
85	1.006	0.017	85	-0.819	0.836		
86	1.005	0.019	86	-0.809	0.832		
87	1.005	0.017	87	-0.816	0.831		
88	1.001	0.019	88	-0.819	0.831		
89	1.001	0.019	89	-0.819	0.831		
Avg	1.059	0.019	Avg	-0.831	0.833		
TARE	0.978	0.021	TARE	0.057	0.039		

Table B11 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: -0.39 R 0.78 R 0.00 R
CONGITAL COMPONENT

90-Degree

DEGREE	Avg Vel	RMS
0	1.226	0.128
1	1.256	0.118
2	1.252	0.107
3	1.256	0.109
4	1.257	0.092
5	1.252	0.087
6	1.249	0.099
7	1.250	0.095
8	1.260	0.097
9	1.243	0.099
10	1.244	0.097
11	1.242	0.094
12	1.252	0.099
13	1.240	0.098
14	1.239	0.092
15	1.227	0.059
16	1.233	0.054
17	1.237	0.055
18	1.231	0.061
19	1.218	0.059
20	1.213	0.059
21	1.226	0.057
22	1.214	0.046
23	1.219	0.043
24	1.206	0.036
25	1.216	0.041
26	1.204	0.034
27	1.212	0.057
28	1.205	0.049
29	1.194	0.038
30	1.193	0.045
31	1.192	0.038
32	1.189	0.048
33	1.183	0.033
34	1.181	0.033
35	1.179	0.034
36	1.175	0.043
37	1.174	0.037
38	1.172	0.028
39	1.171	0.037
40	1.168	0.037
41	1.166	0.035
42	1.173	0.039
43	1.171	0.049
44	1.167	0.033
45	1.164	0.034
46	1.154	0.034
47	1.163	0.029
48	1.160	0.042
49	1.159	0.033
50	1.167	0.039
51	1.157	0.031
52	1.153	0.044
53	1.150	0.053
54	1.148	0.040
55	1.150	0.028
56	1.159	0.032
57	1.157	0.034
58	1.154	0.043
59	1.157	0.039
60	1.154	0.045
61	1.153	0.044
62	1.153	0.040
63	1.168	0.034
64	1.173	0.036
65	1.172	0.043
66	1.170	0.040
67	1.163	0.044
68	1.160	0.041
69	1.159	0.044
70	1.158	0.043
71	1.161	0.040
72	1.154	0.031
73	1.155	0.045
74	1.155	0.062
75	1.154	0.053
76	1.153	0.040
77	1.168	0.034
78	1.173	0.036
79	1.172	0.043
80	1.170	0.040
81	1.163	0.044
82	1.160	0.041
83	1.159	0.044
84	1.158	0.043
85	1.158	0.039
86	1.159	0.035
87	1.164	0.042
88	1.162	0.043
89	1.162	0.042
Avg	1.150	0.051
Tare	0.999	0.027

Table B12 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: -0.39 R 0.00 R 0.00 R
LONGITUDINAL COMPONENT

90-Degree

DEGREE	Avg Vel	RMS
1.172		0.089
1.206		0.184
1.202		0.182
1.234		0.097
1.248		0.111
1.268		0.071
1.247		0.087
1.289		0.073
1.286		0.056
1.319		0.066
1.310		0.059
1.333		0.062
1.360		0.082
1.353		0.061
1.337		0.071
1.355		0.057
1.317		0.049
1.307		0.055
1.306		0.064
1.266		0.051
1.264		0.058
1.234		0.038
1.233		0.041
1.219		0.039
1.203		0.037
1.191		0.035
1.195		0.043
1.196		0.047
1.184		0.044
1.176		0.029
1.178		0.056
1.162		0.038
1.149		0.034
1.157		0.033
1.146		0.038
1.146		0.028
1.143		0.032
1.144		0.031
1.143		0.029
1.136		0.036
1.148		0.032
1.133		0.036
1.149		0.043
1.136		0.055
1.136		0.037
1.129		0.050
1.148		0.041
1.128		0.029
1.133		0.034
1.138		0.042
1.127		0.031
1.141		0.028
1.123		0.026
1.128		0.031
1.131		0.027
1.149		0.073
1.138		0.050
1.129		0.033
1.142		0.046
1.133		0.049
1.152		0.055
1.147		0.055
1.148		0.045
1.135		0.020
1.135		0.046
1.126		0.028
1.144		0.046
1.143		0.029
1.129		0.035
1.134		0.025
1.141		0.037
1.148		0.025
1.149		0.036
1.141		0.037
1.154		0.036
1.151		0.033
1.157		0.034
1.160		0.035
1.162		0.027
1.152		0.030
1.154		0.032
1.161		0.041
1.152		0.035
1.164		0.049
1.153		0.056
1.154		0.036
Avg	1.184	0.046
Tare	0.998	0.025

Table B13 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of 20 Degrees

PROBE COORDINATES: LONGITUDINAL COMPONENT		X -8.43 R	Y 0.78 R	Z 0.00 R	RADIAL COMPONENT	180-Degree
DEGREE	Avg Vel.				DEGREE	Avg Vel.
0	0.993				0	-0.457
1	1.004				1	-0.479
2	1.061				2	-0.497
3	1.092				3	-0.494
4	1.135				4	-0.449
5	1.102				5	-0.370
6	1.225				6	-0.208
7	1.256				7	-0.251
8	1.267				8	-0.237
9	1.298				9	-0.224
10	1.295				10	-0.234
11	1.300				11	-0.227
12	1.313				12	-0.218
13	1.302				13	-0.201
14	1.295				14	-0.198
15	1.293				15	-0.164
16	1.285				16	-0.155
17	1.274				17	-0.129
18	1.271				18	-0.114
19	1.253				19	-0.098
20	1.248				20	-0.078
21	1.233				21	-0.075
22	1.232				22	-0.063
23	1.223				23	-0.062
24	1.212				24	-0.053
25	1.206				25	-0.062
26	1.197				26	-0.067
27	1.191				27	-0.069
28	1.181				28	-0.070
29	1.175				29	-0.081
30	1.169				30	-0.096
31	1.158				31	-0.091
32	1.162				32	-0.088
33	1.156				33	-0.098
34	1.158				34	-0.109
35	1.143				35	-0.113
36	1.144				36	-0.116
37	1.148				37	-0.121
38	1.131				38	-0.125
39	1.125				39	-0.143
40	1.123				40	-0.147
41	1.126				41	-0.153
42	1.128				42	-0.158
43	1.118				43	-0.159
44	1.128				44	-0.163
45	1.116				45	-0.168
46	1.111				46	-0.176
47	1.111				47	-0.181
48	1.105				48	-0.187
49	1.102				49	-0.189
50	1.101				50	-0.197
51	1.101				51	-0.200
52	1.104				52	-0.206
53	1.101				53	-0.217
54	1.099				54	-0.220
55	1.095				55	-0.227
56	1.099				56	-0.228
57	1.099				57	-0.237
58	1.093				58	-0.248
59	1.098				59	-0.245
60	1.000				60	-0.249
61	1.099				61	-0.250
62	1.091				62	-0.260
63	1.091				63	-0.268
64	1.091				64	-0.272
65	1.093				65	-0.274
66	1.093				66	-0.283
67	1.097				67	-0.208
68	1.094				68	-0.235
69	1.091				69	-0.383
70	1.099				70	-0.303
71	1.091				71	-0.313
72	1.091				72	-0.319
73	1.091				73	-0.326
74	1.099				74	-0.334
75	1.099				75	-0.348
76	1.093				76	-0.353
77	1.092				77	-0.350
78	1.095				78	-0.371
79	1.095				79	-0.377
80	1.090				80	-0.391
81	1.095				81	-0.396
82	1.095				82	-0.403
83	1.096				83	-0.410
84	1.099				84	-0.422
85	1.099				85	-0.430
86	1.092				86	-0.442
87	1.099				87	-0.444
88	1.094				88	-0.441
89	1.097				89	-0.437
Avg	1.140				Avg	-0.239

Table B14 - Computer Output of Inclined Velocity Data
Resolved Along Shaft Coordinate System

PROBE COORDINATES: -8.43 R Y 8.78 R Z 8.80 R
LONGITUDINAL COMPONENT

RADIAL COMPONENT

0-Degree

DEGREE	Avg Vel	DEGREE	Avg Vel
0	1.222	0	0.001
1	1.222	1	-0.022
2	1.251	2	-0.063
3	1.250	3	-0.137
4	1.308	4	-0.166
5	1.348	5	-0.179
6	1.396	6	-0.185
7	1.398	7	-0.195
8	1.407	8	-0.197
9	1.417	9	-0.200
10	1.427	10	-0.207
11	1.429	11	-0.209
12	1.433	12	-0.213
13	1.435	13	-0.208
14	1.436	14	-0.203
15	1.439	15	-0.212
16	1.436	16	-0.213
17	1.437	17	-0.213
18	1.448	18	-0.218
19	1.441	19	-0.223
20	1.441	20	-0.222
21	1.443	21	-0.221
22	1.444	22	-0.227
23	1.443	23	-0.225
24	1.444	24	-0.228
25	1.443	25	-0.229
26	1.447	26	-0.238
27	1.449	27	-0.252
28	1.444	28	-0.258
29	1.444	29	-0.261
30	1.443	30	-0.278
31	1.444	31	-0.275
32	1.443	32	-0.289
33	1.436	33	-0.304
34	1.429	34	-0.313
35	1.422	35	-0.308
36	1.422	36	-0.312
37	1.418	37	-0.328
38	1.415	38	-0.324
39	1.415	39	-0.334
40	1.409	40	-0.338
41	1.402	41	-0.348
42	1.394	42	-0.342
43	1.398	43	-0.335
44	1.378	44	-0.342
45	1.375	45	-0.342
46	1.365	46	-0.342
47	1.376	47	-0.333
48	1.351	48	-0.337
49	1.346	49	-0.334
50	1.339	50	-0.331
51	1.324	51	-0.328
52	1.327	52	-0.326
53	1.323	53	-0.322
54	1.317	54	-0.319
55	1.309	55	-0.317
56	1.303	56	-0.313
57	1.304	57	-0.309
58	1.305	58	-0.302
59	1.293	59	-0.296
60	1.298	60	-0.294
61	1.266	61	-0.235
62	1.281	62	-0.265
63	1.283	63	-0.275
64	1.208	64	-0.271
65	1.279	65	-0.267
66	1.276	66	-0.259
67	1.276	67	-0.255
68	1.278	68	-0.242
69	1.276	69	-0.239
70	1.276	70	-0.234
71	1.277	71	-0.232
72	1.278	72	-0.230
73	1.281	73	-0.213
74	1.292	74	-0.193
75	1.294	75	-0.196
76	1.295	76	-0.198
77	1.291	77	-0.183
78	1.292	78	-0.176
79	1.297	79	-0.169
80	1.301	80	-0.160
81	1.307	81	-0.144
82	1.307	82	-0.137
83	1.315	83	-0.110
84	1.323	84	-0.099
85	1.331	85	-0.084
86	1.332	86	-0.077
87	1.314	87	0.026
88	1.267	88	0.049
89	1.234	89	0.025
Avg	1.355	Avg	-0.226

Table B15 - Computer Output of Inclined Velocity Data
Resolved Along Shaft Coordinate System

PROBE COORDINATES:		X 0.21 R	Y 0.79 R	Z 0.96 R	RADIAL COMPONENT	180-Degree
DEGREE	Avg Vel			DEGREE	Avg Vel	
8	0.929			8	-0.241	
9	0.945			9	-0.274	
10	0.978			10	-0.288	
11	0.982			11	-0.299	
12	0.997			12	-0.308	
13	1.008			13	-0.296	
14	1.013			14	-0.308	
15	1.032			15	-0.301	
16	1.033			16	-0.298	
17	1.041			17	-0.295	
18	1.047			18	-0.296	
19	1.051			19	-0.291	
20	1.057			20	-0.209	
21	1.063			21	-0.286	
22	1.064			22	-0.209	
23	1.071			23	-0.287	
24	1.074			24	-0.279	
25	1.077			25	-0.282	
26	1.083			26	-0.277	
27	1.089			27	-0.284	
28	1.098			28	-0.281	
29	1.093			29	-0.277	
30	1.094			30	-0.277	
31	1.096			31	-0.299	
32	1.098			32	-0.274	
33	1.101			33	-0.270	
34	1.101			34	-0.268	
35	1.100			35	-0.272	
36	1.103			36	-0.267	
37	1.111			37	-0.259	
38	1.112			38	-0.267	
39	1.112			39	-0.268	
40	1.117			40	-0.261	
41	1.118			41	-0.270	
42	1.119			42	-0.256	
43	1.119			43	-0.254	
44	1.120			44	-0.264	
45	1.120			45	-0.257	
46	1.120			46	-0.257	
47	1.122			47	-0.261	
48	1.122			48	-0.257	
49	1.117			49	-0.256	
50	1.118			50	-0.255	
51	1.118			51	-0.253	
52	1.124			52	-0.254	
53	1.124			53	-0.254	
54	1.125			54	-0.244	
55	1.125			55	-0.254	
56	1.125			56	-0.248	
57	1.125			57	-0.252	
58	1.125			58	-0.252	
59	1.125			59	-0.253	
60	1.127			60	-0.256	
61	1.127			61	-0.243	
62	1.127			62	-0.259	
63	1.127			63	-0.250	
64	1.125			64	-0.256	
65	1.123			65	-0.249	
66	1.118			66	-0.250	
67	1.114			67	-0.249	
68	1.120			68	-0.253	
69	1.118			69	-0.244	
70	1.119			70	-0.245	
71	1.101			71	-0.238	
72	1.101			72	-0.241	
73	1.101			73	-0.245	
74	1.103			74	-0.240	
75	1.095			75	-0.244	
76	1.100			76	-0.243	
77	1.101			77	-0.249	
78	1.102			78	-0.252	
79	1.100			79	-0.250	
80	1.104			80	-0.255	
81	1.093			81	-0.251	
82	1.110			82	-0.250	
83	1.095			83	-0.268	
84	1.105			84	-0.266	
85	1.099			85	-0.263	
86	1.099			86	-0.263	
87	1.093			87	-0.265	
88	1.043			88	-0.265	
89	0.960			89	-0.268	
Avg	1.091			Avg	-0.260	

Table B16 - Computer Output of Inclined Velocity Data Resolved Along Shaft Coordinate System

PROBE COORDINATES: -0.39 R		X 0.50 R	Y 0.00 R	Z
LONGITUDINAL COMPONENT				
DEGREE	Avg VEL	RADIAL COMPONENT		
0	1.030			
1	1.046			
2	1.058			
3	1.057			
4	1.069			
5	1.094			
6	1.113			
7	1.122			
8	1.132			
9	1.140			
10	1.148			
11	1.137			
12	1.142			
13	1.123			
14	1.117			
15	1.088			
16	1.085			
17	1.069			
18	1.062			
19	1.051			
20	1.045			
21	1.044			
22	1.081			
23	1.051			
24	1.051			
25	1.054			
26	-----			
27	-----			
28	-----			
29	-----			
30	-----			
31	-----			
32	-----			
33	-----			
34	-----			
35	-----			
36	-----			
37	-----			
38	-----			
39	-----			
40	-----			
41	-----			
42	-----			
43	-----			
44	-----			
45	-----			
46	-----			
47	-----			
48	-----			
49	-----			
50	-----			
51	-----			
52	-----			
53	-----			
54	-----			
55	-----			
56	-----			
57	-----			
58	-----			
59	-----			
60	-----			
61	-----			
62	-----			
63	-----			
64	-----			
65	-----			
66	-----			
67	-----			
68	-----			
69	-----			
70	-----			
71	-----			
72	-----			
73	-----			
74	-----			
75	-----			
76	-----			
77	-----			
78	-----			
79	-----			
80	-----			
81	-----			
82	-----			
83	-----			
84	-----			
85	-----			
86	-----			
87	-----			
88	-----			
89	-----			
Avg	1.059			
		Avg	-0.170	

180-Degree

Table B17 - Computer Output of Inclined Velocity Data Resolved Along Shaft Coordinate System

PROBE COORDINATES: X -0.39 R Y 0.88 R Z 0.00 R		180-Degree	
LONGITUDINAL COMPONENT		RADIAL COMPONENT	
DEGREE	Avg Vel	DEGREE	Avg Vel
0	1.235	0	-0.343
1	1.257		-----
2	1.278		-0.230
3	1.298		-0.206
4	1.299		-0.175
5	1.295		-0.166
6	1.294		-0.164
7	1.291		-0.171
8	1.283		-0.173
9	1.277		-0.102
10	1.278		-0.100
11	1.267		-0.177
12	1.265		-0.191
13	1.268		-0.197
14	1.256		-0.195
15	1.252		-0.195
16	1.247		-0.195
17	1.243		-0.195
18	1.241		-0.191
19	1.237		-0.191
20	1.237		-0.193
21	1.231		-0.192
22	1.232		-0.194
23	1.229		-0.195
24	1.225		-0.197
25	1.224		-0.190
26	1.221		-0.191
27	1.216		-0.191
28	1.216		-0.193
29	1.211		-0.198
30	1.211		-0.203
31	1.213		-0.204
32	1.208		-0.200
33	1.207		-0.205
34	1.204		-0.205
35	1.203		-0.203
36	1.208		-0.210
37	1.209		-0.212
38	1.197		-0.210
39	1.198		-0.211
40	1.192		-0.213
41	1.197		-0.217
42	1.194		-0.213
43	1.194		-0.215
44	1.192		-0.215
45	1.194		-0.221
46	1.196		-0.217
47	1.191		-0.219
48	1.193		-0.228
49	1.192		-0.216
50	1.194		-0.226
51	1.193		-0.226
52	1.194		-0.229
53	1.196		-0.235
54	1.197		-0.238
55	1.198		-0.233
56	1.201		-0.232
57	1.201		-0.236
58	1.203		-0.236
59	1.208		-0.243
60	1.211		-0.241
61	1.218		-0.244
62	1.212		-0.244
63	1.218		-0.243
64	1.216		-0.246
65	1.216		-0.246
66	1.217		-0.243
67	-----		-0.254
68	-----		-----
69	-----		-----
70	-----		-----
71	-----		-----
72	-----		-----
73	-----		-----
74	1.246		-0.239
75	1.253		-0.209
76	1.263		-0.278
77	1.266		-0.274
78	1.270		-0.281
79	1.283		-0.290
80	1.294		-0.292
81	1.297		-0.292
82	1.306		-0.292
83	1.297		-0.293
84	1.265		-0.263
85	1.246		-0.273
86	1.214		-0.267
87	1.233		-0.264
88	1.230		-0.279
89	1.218		-0.317
Avg	1.231	Avg	-0.201

Table B18 - Computer Output of Inclined Velocity Data
Resolved Along Shaft Coordinate System

PROBE COORDINATES: -0.39 R 0.98 R 0.98 R		RADIAL COMPONENT		180-Degree	
DEGREE	Avg Vel	DEGREE	Avg Vel	DEGREE	Avg Vel
0	1.164	0	-0.483	0	-0.483
1	1.226	1	-0.342	1	-0.342
2	1.252	2	-0.285	2	-0.285
3	1.278	3	-0.218	3	-0.218
4	1.291	4	-0.195	4	-0.195
5	1.295	5	-0.169	5	-0.169
6	1.295	6	-0.161	6	-0.161
7	1.274	7	-0.165	7	-0.165
8	1.274	8	-0.166	8	-0.166
9	1.268	9	-0.162	9	-0.162
10	1.267	10	-0.167	10	-0.167
11	1.265	11	-0.163	11	-0.163
12	1.260	12	-0.170	12	-0.170
13	1.259	13	-0.169	13	-0.169
14	1.255	14	-0.169	14	-0.169
15	1.251	15	-0.175	15	-0.175
16	1.246	16	-0.170	16	-0.170
17	1.246	17	-0.171	17	-0.171
18	1.241	18	-0.177	18	-0.177
19	1.240	19	-0.178	19	-0.178
20	1.236	20	-0.177	20	-0.177
21	1.239	21	-0.168	21	-0.168
22	1.239	22	-0.174	22	-0.174
23	1.235	23	-0.175	23	-0.175
24	1.225	24	-0.170	24	-0.170
25	1.224	25	-0.171	25	-0.171
26	1.212	26	-0.177	26	-0.177
27	1.209	27	-0.179	27	-0.179
28	1.208	28	-0.180	28	-0.180
29	1.207	29	-0.179	29	-0.179
30	1.204	30	-0.179	30	-0.179
31	1.201	31	-0.179	31	-0.179
32	1.198	32	-0.184	32	-0.184
33	1.195	33	-0.185	33	-0.185
34	1.191	34	-0.184	34	-0.184
35	1.189	35	-0.191	35	-0.191
36	1.188	36	-0.190	36	-0.190
37	1.186	37	-0.193	37	-0.193
38	1.183	38	-0.196	38	-0.196
39	1.177	39	-0.194	39	-0.194
40	1.175	40	-0.204	40	-0.204
41	1.175	41	-0.205	41	-0.205
42	1.177	42	-0.209	42	-0.209
43	1.171	43	-0.214	43	-0.214
44	1.178	44	-0.217	44	-0.217
45	1.178	45	-0.221	45	-0.221
46	1.171	46	-0.228	46	-0.228
47	1.171	47	-0.233	47	-0.233
48	1.167	48	-0.236	48	-0.236
49	1.166	49	-0.241	49	-0.241
50	1.165	50	-0.244	50	-0.244
51	1.167	51	-0.246	51	-0.246
52	1.161	52	-0.250	52	-0.250
53	1.163	53	-0.254	53	-0.254
54	1.162	54	-0.262	54	-0.262
55	1.165	55	-0.264	55	-0.264
56	1.164	56	-0.269	56	-0.269
57	1.156	57	-0.273	57	-0.273
58	1.169	58	-0.272	58	-0.272
59	1.169	59	-0.280	59	-0.280
60	1.167	60	-0.298	60	-0.298
61	1.170	61	-0.294	61	-0.294
62	1.171	62	-0.295	62	-0.295
63	1.173	63	-0.293	63	-0.293
64	1.172	64	-0.302	64	-0.302
65	1.174	65	-0.309	65	-0.309
66	1.181	66	-0.313	66	-0.313
67	1.183	67	-0.317	67	-0.317
68	1.187	68	-0.324	68	-0.324
69	1.191	69	-0.331	69	-0.331
70	1.196	70	-0.334	70	-0.334
71	1.201	71	-0.345	71	-0.345
72	1.204	72	-0.347	72	-0.347
73	1.211	73	-0.355	73	-0.355
74	1.218	74	-0.364	74	-0.364
75	1.224	75	-0.366	75	-0.366
76	1.230	76	-0.370	76	-0.370
77	1.232	77	-0.381	77	-0.381
78	1.241	78	-0.305	78	-0.305
79	1.249	79	-0.326	79	-0.326
80	1.253	80	-0.344	80	-0.344
81	1.254	81	-0.353	81	-0.353
82	1.254	82	-0.351	82	-0.351
83	1.249	83	-0.351	83	-0.351
84	1.241	84	-0.351	84	-0.351
85	1.234	85	-0.351	85	-0.351
86	1.287	86	-0.351	86	-0.351
87	1.153	87	-0.351	87	-0.351
88	1.114	88	-0.351	88	-0.351
89	1.126	89	-0.351	89	-0.351
90	1.205	90	-0.340	90	-0.340
		Avg			

Table B19 - Computer Output of Inclined Velocity Data Resolved Along Shaft Coordinate System

PROBE COORDINATES: X -0.39 R Y 0.50 R Z 0.80 R LONGITUDINAL COMPONENT		RADIAL COMPONENT		0-Degree
DEGREE	AVG VEL	DEGREE	AVG VEL	
0	1.316	0	-0.151	
1	1.336	1	-0.166	
2	1.344	2	-0.175	
3	1.345	3	-0.181	
4	1.358	4	-0.184	
5	1.332	5	-0.184	
6	1.339	6	-0.199	
7	1.326	7	-0.199	
8	1.321	8	-0.198	
9	1.315	9	-0.195	
10	1.318	10	-0.197	
11	1.397	11	-0.199	
12	1.501	12	-0.199	
13	1.299	13	-0.201	
14	1.298	14	-0.202	
15	1.291	15	-0.206	
16	1.287	16	-0.209	
17	1.208	17	-0.209	
18	1.200	18	-0.212	
19	1.277	19	-0.211	
20	1.274	20	-0.216	
21	1.269	21	-0.217	
22	1.267	22	-0.219	
23	1.263	23	-0.222	
24	1.256	24	-0.223	
25	1.253	25	-0.225	
26	1.247	26	-0.227	
27	1.246	27	-0.227	
28	1.243	28	-0.231	
29	1.237	29	-0.233	
30	1.235	30	-0.233	
31	1.235	31	-0.239	
32	1.227	32	-0.239	
33	1.223	33	-0.243	
34	1.221	34	-0.243	
35	1.219	35	-0.248	
36	1.216	36	-0.249	
37	1.212	37	-0.249	
38	1.218	38	-0.251	
39	1.207	39	-0.251	
40	1.204	40	-0.253	
41	1.208	41	-0.255	
42	1.195	42	-0.256	
43	1.192	43	-0.259	
44	1.197	44	-0.262	
45	1.183	45	-0.265	
46	1.181	46	-0.264	
47	1.181	47	-0.265	
48	1.176	48	-0.278	
49	1.175	49	-0.273	
50	1.171	50	-0.273	
51	1.169	51	-0.273	
52	1.170	52	-0.275	
53	1.166	53	-0.277	
54	1.164	54	-0.279	
55	1.162	55	-0.283	
56	1.161	56	-0.284	
57	1.159	57	-0.295	
58	1.156	58	-0.297	
59	1.156	59	-0.294	
60	1.152	60	-0.291	
61	1.151	61	-0.295	
62	1.150	62	-0.299	
63	1.140	63	-0.301	
64	1.145	64	-0.302	
65	1.146	65	-0.302	
66	1.147	66	-0.307	
67	1.145	67	-0.312	
68	1.146	68	-0.315	
69	1.145	69	-0.318	
70	1.147	70	-0.322	
71	1.143	71	-0.326	
72	1.144	72	-0.330	
73	1.143	73	-0.334	
74	1.146	74	-0.349	
75	1.149	75	-0.347	
76	1.152	76	-0.345	
77	1.150	77	-0.353	
78	1.156	78	-0.362	
79	1.156	79	-0.355	
80	1.158	80	-0.357	
81	1.166	81	-0.326	
82	1.165	82	-----	
83	1.164	83	-----	
84	1.164	84	-----	
85	1.123	85	-0.070	
86	1.121	86	-0.050	
87	1.155	87	-0.481	
88	1.176	88	-0.894	
89	1.259	89	-0.128	
Avg	1.212	Avg	-0.247	

Table B20 - Computer Output of Inclined Velocity Data
Resolved Along Shaft Coordinate System

PROBE COORDINATES: -8.35 R		X Y Z	8.88 R 8.88 R	0-Degree RADIAL COMPONENT	
DEGREE	Avg Vel			DEGREE	Avg Vel
0	1.240			0	-0.222
1	1.266			1	-0.205
2	1.331			2	-0.305
3	1.359			3	-0.319
4	1.346			4	-0.319
5	1.306			5	-0.335
6	1.307			6	-0.339
7	1.407			7	-0.339
8	1.410			8	-0.341
9	1.418			9	-0.356
10	1.428			10	-0.358
11	1.432			11	-0.375
12	1.433			12	-0.396
13	1.437			13	-0.485
14	1.441			14	-0.420
15	1.438			15	-0.439
16	1.439			16	-0.452
17	1.428			17	-0.454
18	1.421			18	-0.408
19	1.415			19	-0.588
20	1.402			20	-0.508
21	1.397			21	-0.525
22	1.376			22	-0.528
23	1.363			23	-0.539
24	1.344			24	-0.544
25	1.339			25	-0.542
26	1.322			26	-0.542
27	1.304			27	-0.542
28	1.286			28	-0.535
29	1.279			29	-0.531
30	1.264			30	-0.527
31	1.258			31	-0.522
32	1.239			32	-0.516
33	1.234			33	-0.508
34	1.219			34	-0.502
35	1.214			35	-0.496
36	1.206			36	-0.496
37	1.199			37	-0.479
38	1.190			38	-0.468
39	1.184			39	-0.462
40	1.177			40	-0.477
41	1.174			41	-0.446
42	1.171			42	-0.434
43	1.162			43	-0.428
44	1.159			44	-0.412
45	1.156			45	-0.406
46	1.158			46	-0.394
47	1.152			47	-0.384
48	1.147			48	-0.384
49	1.149			49	-0.390
50	1.145			50	-0.373
51	1.144			51	-0.368
52	1.143			52	-0.358
53	1.144			53	-0.346
54	1.140			54	-0.343
55	1.143			55	-0.332
56	1.143			56	-0.325
57	1.147			57	-0.315
58	1.146			58	-0.315
59	1.144			59	-0.306
60	1.150			60	-0.293
61	1.152			61	-0.288
62	1.155			62	-0.277
63	1.154			63	-0.272
64	1.156			64	-0.268
65	1.157			65	-0.249
66	1.159			66	-0.246
67	1.163			67	-0.237
68	1.169			68	-0.224
69	1.169			69	-0.216
70	1.176			70	-0.207
71	1.184			71	-0.199
72	1.192			72	-0.103
73	1.199			73	-0.173
74	1.200			74	-0.163
75	1.217			75	-0.151
76	1.224			76	-0.141
77	1.231			77	-0.125
78	1.240			78	-0.104
79	1.243			79	-0.096
80	1.256			80	-0.077
81	1.253			81	-0.073
82	1.260			82	-0.074
83	1.237			83	-0.069
84	1.237			84	-0.063
85	1.282			85	-0.060
86	1.163			86	-0.120
87	1.159			87	-0.137
88	1.153			88	-0.130
89	1.191			89	-0.340
Avg	1.347			Avg	

Table B21 - Computer Output of Inclined Velocity Data
Resolved Along Shaft Coordinate System

PROBE COORDINATES: X 0.21 R Y 0.70 R Z 0.00 R		0-Degree RADIAL COMPONENT	
DEGREE	Avg Vel	DEGREE	Avg Vel
0	0.855	0	-0.254
1	0.854	1	-0.253
2	0.991	2	-0.267
3	1.046	3	-0.325
4	1.010	4	-0.310
5	1.015	5	-0.309
6	1.068	6	-0.327
7	1.061	7	-0.324
8	0.976	8	-0.295
9	1.028	9	-0.315
10	1.069	10	-0.331
11	1.070	11	-0.330
12	1.071	12	-0.320
13	1.070	13	-0.321
14	1.072	14	-0.327
15	1.074	15	-0.326
16	1.072	16	-0.330
17	1.078	17	-0.320
18	1.074	18	-0.328
19	1.075	19	-0.330
20	1.075	20	-0.331
21	1.074	21	-0.326
22	1.076	22	-0.329
23	1.075	23	-0.333
24	1.079	24	-0.338
25	1.079	25	-0.338
26	1.073	26	-0.327
27	1.066	27	-0.331
28	1.070	28	-0.331
29	1.072	29	-0.329
30	1.074	30	-0.326
31	1.072	31	-0.327
32	1.068	32	-0.332
33	1.059	33	-0.331
34	1.066	34	-0.334
35	1.069	35	-0.334
36	1.067	36	-0.334
37	1.064	37	-0.333
38	1.062	38	-0.335
39	1.059	39	-0.340
40	1.059	40	-0.341
41	1.059	41	-0.345
42	1.053	42	-0.354
43	1.044	43	-0.356
44	1.043	44	-0.362
45	1.039	45	-0.363
46	1.036	46	-0.367
47	1.035	47	-0.368
48	1.035	48	-0.366
49	1.036	49	-0.361
50	1.034	50	-0.363
51	1.030	51	-0.355
52	1.026	52	-0.355
53	1.024	53	-0.352
54	1.019	54	-0.345
55	1.021	55	-0.345
56	1.010	56	-0.341
57	1.015	57	-0.339
58	1.011	58	-0.339
59	1.009	59	-0.331
60	1.003	60	-0.332
61	0.999	61	-0.325
62	0.995	62	-0.329
63	0.993	63	-0.328
64	0.993	64	-0.317
65	0.993	65	-0.315
66	0.979	66	-0.312
67	0.990	67	-0.313
68	0.975	68	-0.308
69	0.967	69	-0.306
70	0.963	70	-0.305
71	0.954	71	-0.305
72	0.944	72	-0.297
73	0.930	73	-0.296
74	0.938	74	-0.292
75	0.921	75	-0.298
76	0.911	76	-0.295
77	0.907	77	-0.277
78	0.929	78	-0.282
79	0.919	79	-0.276
80	0.899	80	-0.279
81	0.967	81	-0.296
82	0.963	82	-0.297
83	0.945	83	-0.292
84	----	84	-0.294
85	0.849	85	-0.259
86	0.847	86	-0.263
87	0.849	87	-0.262
88	0.853	88	-0.255
89	0.843	89	-0.263
Avg:	1.007	Avg	-0.319

Table B22 - Computer Output of Inclined Velocity Data
Resolved Along Shaft Coordinate System

PROBE COORDINATES: X 8.21 R Y 8.98 R Z 8.98 R		RADIAL COMPONENT		0-Degree	
DEGREE	Avg Vel	DEGREE	Avg Vel	DEGREE	Avg Vel
0	0.982	0	-0.344		
1	0.900	1	-0.357		
2	0.906	2	-0.359		
3	0.913	3	-0.369		
4	0.923	4	-0.377		
5	0.930	5	-0.381		
6	0.938	6	-0.392		
7	0.958	7	-0.395		
8	0.962	8	-0.396		
9	0.978	9	-0.401		
10	0.981	10	-0.403		
11	0.990	11	-0.402		
12	0.995	12	-0.409		
13	1.003	13	-0.406		
14	1.011	14	-0.406		
15	1.013	15	-0.407		
16	1.017	16	-0.405		
17	1.022	17	-0.402		
18	1.029	18	-0.403		
19	1.028	19	-0.404		
20	1.033	20	-0.403		
21	1.031	21	-0.404		
22	1.038	22	-0.404		
23	1.048	23	-0.405		
24	1.042	24	-0.407		
25	1.042	25	-0.406		
26	1.046	26	-0.398		
27	1.042	27	-0.401		
28	1.042	28	-0.397		
29	1.043	29	-0.398		
30	1.044	30	-0.397		
31	1.046	31	-0.395		
32	1.044	32	-0.400		
33	1.045	33	-0.394		
34	1.047	34	-0.394		
35	1.051	35	-0.395		
36	1.051	36	-0.394		
37	1.045	37	-0.395		
38	1.047	38	-0.391		
39	1.047	39	-0.391		
40	1.049	40	-0.391		
41	1.049	41	-0.391		
42	1.058	42	-0.389		
43	1.047	43	-0.386		
44	1.045	44	-0.386		
45	1.040	45	-0.383		
46	1.040	46	-0.383		
47	1.042	47	-0.380		
48	1.042	48	-0.380		
49	1.041	49	-0.379		
50	1.045	50	-0.300		
51	1.048	51	-0.379		
52	1.042	52	-0.377		
53	1.042	53	-0.377		
54	1.048	54	-0.372		
55	1.035	55	-0.373		
56	1.034	56	-0.371		
57	1.029	57	-0.370		
58	1.029	58	-0.367		
59	1.029	59	-0.366		
60	1.028	60	-0.368		
61	1.027	61	-0.362		
62	1.027	62	-0.363		
63	1.026	63	-0.363		
64	1.025	64	-0.363		
65	1.019	65	-0.360		
66	1.013	66	-0.361		
67	1.012	67	-0.361		
68	1.010	68	-0.361		
69	1.006	69	-0.355		
70	1.002	70	-0.357		
71	1.001	71	-0.352		
72	1.001	72	-0.350		
73	0.997	73	-0.350		
74	0.998	74	-0.343		
75	0.998	75	-0.345		
76	0.997	76	-0.345		
77	0.999	77	-0.345		
78	0.977	78	-0.343		
79	0.972	79	-0.344		
80	0.966	80	-0.341		
81	0.964	81	-0.339		
82	0.960	82	-0.330		
83	0.953	83	-0.330		
84	0.945	84	-0.337		
85	0.939	85	-0.335		
86	0.938	86	-0.332		
87	0.922	87	-0.333		
88	0.910	88	-0.335		
89	0.901	89	-0.337		
Avg	1.007	Avg	-0.376		

Table B23 - Computer Output of Inclined Velocity Data
Resolved Along Shaft Coordinate System

PROBE COORDINATES: 8.21 R		X 8.98 R	Y 8.00 R	Z 8.00 R	RADIAL COMPONENT	
DEGREE	Avg Vel				DEGREE	Avg Vel
0	0.931				0	-0.359
1	0.929				1	-0.359
2	0.928				2	-0.362
3	0.924				3	-0.363
4	0.923				4	-0.362
5	0.922				5	-0.355
6	0.927				6	-0.374
7	0.932				7	-0.303
8	0.934				8	-0.399
9	0.934				9	-0.307
10	0.947				10	-0.401
11	0.952				11	-0.404
12	0.958				12	-0.409
13	0.965				13	-0.416
14	0.969				14	-0.415
15	0.971				15	-0.412
16	0.977				16	-0.414
17	0.978				17	-0.421
18	0.981				18	-0.420
19	0.985				19	-0.420
20	0.989				20	-0.418
21	0.992				21	-0.420
22	0.990				22	-0.424
23	1.000				23	-0.420
24	0.999				24	-0.421
25	1.002				25	-0.428
26	1.007				26	-0.419
27	1.002				27	-0.419
28	1.006				28	-0.417
29	1.089				29	-0.420
30	1.088				30	-0.415
31	1.012				31	-0.413
32	1.018				32	-0.420
33	1.012				33	-0.415
34	1.010				34	-0.413
35	1.008				35	-0.416
36	1.018				36	-0.414
37	1.018				37	-0.414
38	1.018				38	-0.413
39	1.014				39	-0.412
40	1.019				40	-0.410
41	1.017				41	-0.413
42	1.016				42	-0.413
43	1.013				43	-0.411
44	1.015				44	-0.414
45	1.017				45	-0.403
46	1.013				46	-0.402
47	1.008				47	-0.402
48	1.004				48	-0.398
49	1.011				49	-0.404
50	1.015				50	-0.400
51	1.011				51	-0.397
52	1.012				52	-0.401
53	1.012				53	-0.397
54	1.013				54	-0.395
55	1.013				55	-0.394
56	1.009				56	-0.393
57	1.009				57	-0.399
58	1.009				58	-0.399
59	1.007				59	-0.397
60	1.005				60	-0.393
61	1.002				61	-0.392
62	1.001				62	-0.396
63	0.997				63	-0.395
64	1.002				64	-0.393
65	1.000				65	-0.379
66	0.995				66	-0.379
67	0.991				67	-0.376
68	0.990				68	-0.373
69	0.989				69	-0.379
70	0.938				70	-0.371
71	0.936				71	-0.372
72	0.937				72	-0.369
73	0.933				73	-0.369
74	0.936				74	-0.366
75	0.970				75	-0.366
76	0.979				76	-0.362
77	0.977				77	-0.360
78	0.971				78	-0.361
79	0.966				79	-0.359
80	0.959				80	-0.357
81	0.960				81	-0.352
82	0.959				82	-0.354
83	0.959				83	-0.337
84	0.953				84	-0.339
85	0.950				85	-0.360
86	0.943				86	-0.351
87	0.942				87	-0.351
88	0.941				88	-0.353
89	0.934				89	-0.360
Avg	0.934				Avg	-0.391

Table B24 - Computer Output of Inclined Velocity Data
Resolved Along Shaft Coordinate System

PROBE COORDINATES: -8.39 R		X	-0.50 R	Y	Z	8.00 P	VERTICAL COMPONENT		
DEGREE	LONGITUDINAL COMPONENT	Avg Vel	RMS	DEGREE	Avg Vel	RMS			
0		1.162	0.034	0	0.164	0.027			
1	1.178	0.079		1	0.171	0.028			
2	1.193	0.082		2	0.175	0.027			
3	1.214	0.071		3	0.179	0.031			
4	1.232	0.076		4	0.192	0.028			
5	1.235	0.073		5	0.208	0.032			
6	1.251	0.063		6	0.209	0.028			
7	1.252	0.064		7	0.214	0.036			
8	1.249	0.055		8	0.216	0.049			
9	1.257	0.057		9	0.216	0.048			
10	1.261	0.052		10	0.214	0.062			
11	1.258	0.048		11	0.204	0.054			
12	1.261	0.048		12	0.218	0.054			
13	1.260	0.049		13	0.194	0.059			
14	1.268	0.050		14	0.202	0.057			
15	1.257	0.050		15	0.203	0.051			
16	1.264	0.050		16	0.201	0.058			
17	1.258	0.050		17	0.204	0.053			
18	1.254	0.032		18	0.210	0.059			
19	1.256	0.029		19	0.013	0.070			
20	1.255	0.029		20	0.007	0.077			
21	1.255	0.032		21	-0.012	0.066			
22	1.249	0.030		22	0.020	0.045			
23	1.249	0.027		23	0.004	0.024			
24	1.249	0.029		24	-0.002	0.054			
25	1.246	0.033		25	-0.008	0.054			
26	1.245	0.029		26	-0.012	0.045			
27	1.248	0.038		27	-0.003	0.059			
28	1.242	0.039		28	0.007	0.059			
29	1.241	0.031		29	0.018	0.052			
30	1.236	0.027		30	0.013	0.044			
31	1.229	0.029		31	0.003	0.026			
32	1.229	0.031		32	0.014	0.025			
33	1.232	0.030		33	0.014	0.025			
34	1.221	0.030		34	0.006	0.029			
35	1.225	0.051		35	0.012	0.037			
36	1.221	0.026		36	0.016	0.028			
37	1.221	0.027		37	0.017	0.032			
38	1.223	0.028		38	0.019	0.027			
39	1.220	0.028		39	0.024	0.033			
40	1.222	0.031		40	0.026	0.025			
41	1.218	0.028		41	0.029	0.027			
42	1.216	0.027		42	0.030	0.033			
43	1.214	0.025		43	0.031	0.027			
44	1.212	0.038		44	0.011	0.034			
45	1.212	0.038		45	0.011	0.027			
46	1.208	0.029		46	0.013	0.027			
47	1.204	0.029		47	0.028	0.036			
48	1.204	0.029		48	0.020	0.039			
49	1.202	0.032		49	0.023	0.035			
50	1.201	0.030		50	0.032	0.034			
51	1.202	0.029		51	0.029	0.025			
52	1.198	0.028		52	0.026	0.027			
53	1.197	0.030		53	0.031	0.034			
54	1.196	0.032		54	0.033	0.037			
55	1.195	0.027		55	0.037	0.036			
56	1.193	0.023		56	0.044	0.027			
57	1.193	0.023		57	0.048	0.042			
58	1.186	0.025		58	0.044	0.050			
59	1.182	0.038		59	0.043	0.056			
60	1.188	0.026		60	0.049	0.050			
61	1.187	0.032		61	0.052	0.025			
62	1.189	0.030		62	0.055	0.032			
63	1.185	0.033		63	0.053	0.035			
64	1.185	0.029		64	0.061	0.027			
65	1.185	0.038		65	0.055	0.029			
66	1.185	0.038		66	0.058	0.025			
67	1.185	0.030		67	0.066	0.024			
68	1.189	0.033		68	0.072	0.032			
69	1.186	0.038		69	0.076	0.024			
70	1.186	0.038		70	0.079	0.031			
71	1.188	0.030		71	0.088	0.025			
72	1.183	0.032		72	0.087	0.031			
73	1.195	0.031		73	0.088	0.025			
74	1.195	0.031		74	0.093	0.028			
75	1.187	0.027		75	0.108	0.029			
76	1.184	0.031		76	0.099	0.025			
77	1.186	0.033		77	0.100	0.027			
78	1.196	0.033		78	0.106	0.025			
79	1.193	0.033		79	0.110	0.023			
80	1.190	0.034		80	0.117	0.027			
81	1.203	0.033		81	0.116	0.026			
82	1.193	0.036		82	0.124	0.025			
83	1.205	0.042		83	0.132	0.026			
84	1.205	0.039		84	0.139	0.024			
85	1.213	0.045		85	0.143	0.030			
86	1.205	0.047		86	0.146	0.027			
87	1.204	0.050		87	0.154	0.030			
88	1.197	0.066		88	0.157	0.026			
89	1.188	0.075		89	0.160				
Avg	Tare	1.215	0.037	Avg	0.000	0.039			
		1.004	0.016	Tare	0.034	0.013			

Table B25 — Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X -0.39 R Y 0.78 R Z 0.00 R					
LONGITUDINAL COMPONENT					
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS
0	1.249	0.028	0	0.283	0.054
1	1.249	0.031	1	0.094	0.044
2	1.244	0.027	2	0.082	0.052
3	1.241	0.031	3	0.076	0.042
4	1.241	0.030	4	0.078	0.043
5	1.238	0.029	5	0.087	0.051
6	1.241	0.031	6	0.082	0.044
7	1.238	0.029	7	0.075	0.043
8	1.243	0.032	8	0.077	0.045
9	1.248	0.026	9	0.076	0.043
10	1.238	0.032	10	0.075	0.046
11	1.240	0.032	11	0.077	0.054
12	1.235	0.031	12	0.078	0.054
13	1.234	0.027	13	0.079	0.051
14	1.237	0.029	14	0.084	0.058
15	1.227	0.023	15	0.074	0.050
16	1.234	0.031	16	0.075	0.047
17	1.237	0.029	17	0.078	0.053
18	1.233	0.030	18	0.073	0.053
19	1.239	0.030	19	0.078	0.055
20	1.234	0.033	20	0.065	0.045
21	1.242	0.029	21	0.062	0.049
22	1.237	0.027	22	0.061	0.049
23	1.241	0.031	23	0.063	0.051
24	1.240	0.030	24	0.061	0.049
25	1.241	0.027	25	0.057	0.051
26	1.244	0.030	26	0.064	0.050
27	1.241	0.036	27	0.065	0.050
28	1.241	0.036	28	0.062	0.049
29	1.247	0.031	29	0.063	0.053
30	1.249	0.032	30	0.061	0.051
31	1.252	0.033	31	0.059	0.050
32	1.257	0.032	32	0.064	0.050
33	1.261	0.034	33	0.065	0.050
34	1.263	0.033	34	0.065	0.050
35	1.265	0.034	35	0.065	0.050
36	1.273	0.042	36	0.066	0.056
37	1.278	0.042	37	0.066	0.053
38	1.298	0.045	38	0.066	0.053
39	1.292	0.052	39	0.066	0.053
40	1.312	0.059	40	0.059	0.054
41	1.315	0.075	41	0.058	0.053
42	1.322	0.074	42	0.058	0.056
43	1.312	0.074	43	0.057	0.053
44	1.301	0.064	44	0.066	0.056
45	1.277	0.092	45	0.052	0.053
46	1.271	0.100	46	0.045	0.123
47	1.261	0.117	47	0.025	0.187
48	1.256	0.124	48	0.033	0.183
49	1.252	0.126	49	0.053	0.051
50	1.269	0.120	50	0.032	0.058
51	1.276	0.137	51	0.059	0.053
52	1.315	0.099	52	0.069	0.053
53	1.328	0.085	53	0.066	0.045
54	1.337	0.073	54	0.059	0.046
55	1.341	0.065	55	0.076	0.047
56	1.340	0.065	56	0.073	0.041
57	1.339	0.065	57	0.067	0.041
58	1.334	0.065	58	0.073	0.045
TARE	1.272	0.042	TARE	0.076	0.041
	1.001	0.013		0.026	0.013

PROBE COORDINATES: -0.39 R 0.68 R 0.68 R			VERTICAL COMPONENT		
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS
0	1.232	0.037	0	0.096	0.247
1	1.230	0.027	1	0.086	0.041
2	1.225	0.039	2	0.094	0.043
3	1.225	0.037	3	0.088	0.043
4	1.225	0.031	4	0.098	0.047
5	1.222	0.033	5	0.088	0.043
6	1.219	0.025	6	0.078	0.041
7	1.223	0.035	7	0.069	0.040
8	1.218	0.029	8	0.065	0.040
9	1.217	0.027	9	0.071	0.040
10	1.213	0.029	10	0.065	0.041
11	1.212	0.033	11	0.060	0.043
12	1.216	0.033	12	0.059	0.052
13	1.209	0.029	13	0.058	0.042
14	1.212	0.027	14	0.051	0.048
15	1.214	0.027	15	0.047	0.047
16	1.216	0.030	16	0.043	0.045
17	1.215	0.031	17	0.037	0.037
18	1.211	0.033	18	0.038	0.038
19	1.215	0.030	19	0.032	0.039
20	1.214	0.030	20	0.032	0.039
21	1.213	0.036	21	0.021	0.039
22	1.214	0.031	22	0.016	0.046
23	1.217	0.027	23	0.015	0.046
24	1.215	0.033	24	0.006	0.043
25	1.213	0.028	25	0.001	0.049
26	1.218	0.029	26	0.001	0.051
27	1.223	0.039	27	-0.001	0.048
28	1.224	0.039	28	-0.008	0.056
29	1.228	0.033	29	-0.010	0.050
30	1.227	0.033	30	-0.010	0.047
31	1.229	0.033	31	-0.021	0.044
32	1.231	0.033	32	-0.030	0.046
33	1.233	0.035	33	-0.032	0.047
34	1.239	0.034	34	-0.038	0.047
35	1.241	0.034	35	-0.047	0.041
36	1.243	0.033	36	-0.053	0.046
37	1.235	0.037	37	-0.058	0.052
38	1.262	0.040	38	-0.059	0.053
39	1.264	0.035	39	-0.067	0.053
40	1.274	0.041	40	-0.072	0.059
41	1.286	0.053	41	-0.089	0.053
42	1.294	0.052	42	-0.089	0.051
43	1.303	0.057	43	-0.089	0.055
44	1.298	0.052	44	-0.089	0.053
45	1.295	0.074	45	-0.084	0.053
46	1.267	0.056	46	-0.104	0.167
47	1.253	0.091	47	-0.126	0.125
48	1.219	0.117	48	-0.129	0.129
49	1.203	0.119	49	-0.094	0.138
50	1.183	0.129	50	-0.042	0.135
51	1.191	0.164	51	0.026	0.135
52	1.251	0.143	52	0.077	0.101
53	1.294	0.129	53	0.119	0.068
54	1.333	0.092	54	0.122	0.045
55	1.339	0.077	55	0.121	0.044
56	1.353	0.056	56	0.120	0.044
57	1.351	0.045	57	0.116	0.039
58	1.346	0.037	58	0.121	0.046
59	1.344	0.039	59	0.115	0.047
60	1.341	0.036	60	0.113	0.039
61	1.339	0.035	61	0.118	0.036
62	1.336	0.035	62	0.119	0.036
63	1.329	0.037	63	0.115	0.036
64	1.326	0.035	64	0.113	0.045
65	1.325	0.035	65	0.112	0.048
66	1.323	0.036	66	0.113	0.044
67	1.319	0.032	67	0.116	0.044
68	1.314	0.031	68	0.119	0.043
69	1.315	0.034	69	0.127	0.052
70	1.312	0.037	70	0.115	0.044
71	1.324	0.036	71	0.114	0.046
72	1.293	0.031	72	0.123	0.043
73	1.299	0.035	73	0.119	0.043
74	1.243	0.044	74	0.114	0.039
75	1.269	0.035	75	0.103	0.035
76	1.294	0.034	76	0.113	0.043
77	1.292	0.033	77	0.113	0.042
78	1.277	0.034	78	0.114	0.040
79	1.274	0.038	79	0.114	0.040
80	1.278	0.032	80	0.116	0.046
81	1.262	0.236	81	0.123	0.046
82	1.299	0.034	82	0.109	0.048
83	1.255	0.116	83	0.118	0.042
84	1.253	0.036	84	0.115	0.044
85	1.246	0.036	85	0.110	0.043
86	1.246	0.036	86	0.089	0.039
87	1.239	0.028	87	0.100	0.043
88	1.234	0.010	88	0.098	0.045
89	1.225	0.032	89	0.095	0.044
TARE	1.259	0.043	TARE	0.050	0.051
	1.000	0.016		0.024	0.013

Table B27 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

Table B28 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

LONGITUDINAL COMPONENT			VERTICAL COMPONENT		
DEGREE	Z	Y	DEGREE	Avg Vel	RMS
PROBE COORDINATES: -0.39 E 0.00 S	-0.90 E	0.00 S			
0	1.155	0.025	6	0.128	0.039
1	1.149	0.025	7	0.110	0.039
2	1.149	0.026	8	0.114	0.039
3	1.146	0.028	9	0.111	0.039
4	1.140	0.025	10	0.103	0.039
5	1.136	0.027	11	0.091	0.039
6	1.135	0.025	12	0.097	0.039
7	1.130	0.025	13	0.085	0.039
8	1.141	0.028	14	0.075	0.039
9	1.141	0.029	15	0.073	0.039
10	1.143	0.025	16	0.073	0.039
11	1.138	0.025	17	0.056	0.039
12	1.141	0.025	18	0.049	0.039
13	1.139	0.028	19	0.051	0.039
14	1.135	0.025	20	0.035	0.039
15	1.137	0.025	21	0.035	0.039
16	1.137	0.025	22	0.033	0.039
17	1.137	0.027	23	0.024	0.039
18	1.138	0.025	24	0.024	0.039
19	1.138	0.027	25	0.026	0.039
20	1.135	0.026	26	0.020	0.039
21	1.134	0.028	27	0.058	0.044
22	1.135	0.028	28	0.052	0.044
23	1.131	0.027	29	0.057	0.044
24	1.131	0.023	30	0.073	0.044
25	1.132	0.024	31	0.073	0.044
26	1.133	0.027	32	0.099	0.044
27	1.138	0.027	33	0.103	0.044
28	1.138	0.026	34	0.105	0.044
29	1.135	0.031	35	0.111	0.043
30	1.135	0.023	36	0.119	0.043
31	1.136	0.023	37	0.151	0.043
32	1.138	0.026	38	0.151	0.043
33	1.139	0.028	39	0.153	0.044
34	1.141	0.031	40	0.156	0.044
35	1.149	0.026	41	0.160	0.044
36	1.169	0.029	42	0.206	0.051
37	1.150	0.025	43	0.213	0.051
38	1.146	0.026	44	0.225	0.051
39	1.145	0.028	45	0.247	0.051
40	1.148	0.027	46	0.249	0.051
41	1.154	0.029	47	0.256	0.051
42	1.153	0.031	48	0.256	0.051
43	1.155	0.033	49	0.266	0.051
44	1.159	0.031	50	0.273	0.051
45	1.156	0.036	51	0.277	0.051
46	1.156	0.035	52	0.280	0.051
47	1.153	0.035	53	0.285	0.051
48	1.142	0.031	54	0.295	0.051
49	1.143	0.041	55	0.312	0.051
50	1.144	0.076	56	0.312	0.051
51	1.079	0.096	57	0.352	0.051
52	1.057	0.130	58	0.352	0.051
53	1.083	0.166	59	0.316	0.051
54	1.122	0.161	60	0.343	0.051
55	1.217	0.152	61	0.356	0.051
56	1.251	0.143	62	0.117	0.051
57	1.287	0.136	63	0.137	0.051
58	1.306	0.098	64	0.111	0.051
59	1.381	0.119	65	0.162	0.051
60	1.421	0.108	66	0.166	0.051
61	1.463	0.100	67	0.225	0.051
62	1.498	0.111	68	0.271	0.051
63	1.522	0.090	69	0.321	0.051
64	1.519	0.089	70	0.323	0.051
65	1.525	0.085	71	0.312	0.051
66	1.534	0.083	72	0.362	0.051
67	1.510	0.085	73	0.362	0.051
68	1.507	0.090	74	0.391	0.051
69	1.473	0.089	75	0.267	0.049
70	1.433	0.075	76	0.271	0.049
71	1.368	0.018	77	0.267	0.046
72	1.363	0.017	78	0.292	0.043
73	1.353	0.015	79	0.291	0.043
74	1.302	0.015	80	0.243	0.047
75	1.241	0.015	81	0.246	0.048
76	1.230	0.014	82	0.214	0.042
77	1.216	0.010	83	0.197	0.043
78	1.219	0.010	84	0.195	0.043
79	1.219	0.011	85	0.186	0.043
80	1.207	0.011	86	0.171	0.041
81	1.195	0.011	87	0.169	0.041
82	1.185	0.019	88	0.166	0.041
83	1.178	0.010	89	0.166	0.041
84	1.171	0.017			
85	1.164	0.014			
86	1.166	0.011			
87	1.160	0.017			
88	1.160	0.025			
89	1.156	0.024			
Avg	1.204	0.014			
TARE	0.999	0.016			
			Avg	0.246	0.036
			TARE	-----	-----

PROBE COORDINATES: -0.39 R 1.00 R 0.00 R
LONGITUDINAL COMPONENT

DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS
0	1.024	0.024	0	-0.077	0.046
1	1.029	0.023	1	-0.077	0.047
2	1.023	0.020	2	-0.082	0.041
3	1.024	0.022	3	-0.067	0.053
4	1.029	0.021	4	-0.056	0.043
5	1.030	0.028	5	-0.059	0.046
6	1.037	0.023	6	-0.039	0.048
7	1.039	0.028	7	-0.027	0.052
8	1.044	0.029	8	0.008	0.048
9	1.045	0.026	9	0.027	0.050
10	1.043	0.023	10	0.054	0.057
11	1.044	0.023	11	0.067	0.060
12	1.045	0.021	12	0.092	0.050
13	1.046	0.023	13	0.122	0.055
14	1.047	0.021	14	0.142	0.062
15	1.045	0.021	15	0.134	0.049
16	1.039	0.028	16	0.120	0.049
17	1.047	0.021	17	0.188	0.047
18	1.045	0.022	18	0.184	0.049
19	1.045	0.020	19	0.195	0.050
20	1.044	0.019	20	0.198	0.044
21	1.049	0.020	21	0.200	0.049
22	1.047	0.019	22	0.202	0.050
23	1.046	0.020	23	0.205	0.045
24	1.045	0.023	24	0.197	0.046
25	1.044	0.020	25	0.193	0.047
26	1.045	0.019	26	0.195	0.051
27	1.046	0.017	27	0.177	0.047
28	1.042	0.019	28	0.179	0.042
29	1.042	0.019	29	0.173	0.041
30	1.054	0.021	30	0.164	0.045
31	1.029	0.021	31	0.166	0.048
32	1.024	0.021	32	0.170	0.048
33	1.021	0.020	33	0.159	0.056
34	1.023	0.020	34	0.155	0.043
35	1.026	0.018	35	0.145	0.049
36	1.029	0.019	36	0.146	0.047
37	1.024	0.020	37	0.141	0.046
38	1.024	0.019	38	0.138	0.040
39	1.016	0.021	39	0.132	0.044
40	1.018	0.021	40	0.137	0.060
41	1.004	0.022	41	0.127	0.052
42	0.939	0.028	42	0.116	0.055
43	0.991	0.028	43	0.122	0.063
44	0.993	0.022	44	0.123	0.054
45	0.993	0.022	45	0.111	0.055
46	0.993	0.022	46	0.107	0.054
47	0.979	0.024	47	0.100	0.051
48	0.968	0.024	48	0.092	0.058
49	0.955	0.025	49	0.091	0.056
50	0.955	0.025	50	0.089	0.055
51	0.955	0.025	51	0.081	0.060
52	0.945	0.027	52	0.080	0.069
53	0.937	0.030	53	0.073	0.051
54	0.937	0.021	54	0.063	0.055
55	0.907	0.034	55	0.066	0.055
56	0.895	0.040	56	0.055	0.053
57	0.885	0.036	57	0.054	0.049
58	0.871	0.041	58	0.061	0.052
59	0.857	0.047	59	0.043	0.057
60	0.836	0.043	60	0.062	0.052
61	0.821	0.043	61	0.034	0.065
62	0.811	0.041	62	0.032	0.052
63	0.803	0.049	63	0.028	0.051
64	0.791	0.055	64	0.022	0.064
65	0.784	0.051	65	0.012	0.056
66	0.765	0.051	66	0.002	0.051
67	0.758	0.059	67	-0.004	0.048
68	0.758	0.059	68	-0.006	0.056
69	0.771	0.061	69	-0.007	0.059
70	0.777	0.053	70	-0.018	0.054
71	0.811	0.041	71	-0.027	0.054
72	0.814	0.046	72	-0.033	0.051
73	0.827	0.056	73	-0.033	0.051
74	0.849	0.058	74	-0.029	0.059
75	0.849	0.056	75	-----	-----
76	0.856	0.056	76	-----	-----
77	0.856	0.053	77	-0.041	0.051
78	0.879	0.045	78	-0.031	0.051
79	0.896	0.043	79	-0.032	0.051
80	0.907	0.041	80	-0.058	0.050
81	0.922	0.037	81	-0.065	0.049
82	0.935	0.032	82	-0.072	0.043
83	0.939	0.036	83	-0.076	0.034
84	0.953	0.036	84	-0.073	0.049
85	0.966	0.031	85	-0.084	0.041
86	0.966	0.021	86	-0.085	0.063
87	0.967	0.027	87	-0.093	0.040
88	0.965	0.027	88	-0.080	0.047
89	0.977	0.020	89	-0.083	0.041
90	0.994	0.024	Avg	0.040	0.051
91	0.995	0.027	Tare	-----	-----
92	0.986	0.026			
93	0.911	0.023			
94	0.914	0.023			
95	0.819	0.025			
96	0.824	0.022			
97	0.827	0.022			
98	0.966	0.036			
99	-----	-----			
TARE	-----	-----			

Table B29 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: -0.39 R 1.18 R 0.00 R					
LONGITUDINAL COMPONENT					
DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS
0	0.998	0.021	0	0.859	0.042
1	0.995	0.021	1	0.059	0.034
2	0.998	0.022	2	0.054	0.041
3	0.997	0.023	3	0.052	0.039
4	0.994	0.020	4	0.053	0.044
5	0.995	0.020	5	0.054	0.043
6	0.991	0.022	6	0.054	0.046
7	0.990	0.022	7	0.049	0.039
8	0.995	0.020	8	0.048	0.039
9	0.996	0.020	9	0.048	0.039
10	0.999	0.021	10	0.045	0.039
11	0.993	0.019	11	0.038	0.042
12	0.996	0.021	12	0.043	0.046
13	1.000	0.021	13	0.039	0.050
14	1.004	0.019	14	0.037	0.047
15	1.003	0.023	15	0.036	0.043
16	1.007	0.019	16	0.029	0.045
17	1.002	0.019	17	0.030	0.039
18	1.001	0.022	18	0.028	0.038
19	0.996	0.018	19	0.027	0.039
20	1.000	0.021	20	0.021	0.042
21	0.994	0.021	21	0.016	0.041
22	1.000	0.019	22	0.017	0.041
23	0.999	0.020	23	0.012	0.045
24	0.995	0.022	24	0.013	0.041
25	0.998	0.023	25	0.009	0.041
26	0.991	0.023	26	0.017	0.041
27	0.902	0.022	27	0.007	0.037
28	0.960	0.024	28	0.015	0.043
29	0.974	0.021	29	0.009	0.040
30	0.976	0.022	30	0.009	0.042
31	0.988	0.023	31	0.003	0.048
32	0.991	0.023	32	-0.001	0.043
33	0.986	0.020	33	0.001	0.039
34	0.979	0.020	34	0.002	0.047
35	0.973	0.022	35	0.039	0.043
36	0.974	0.020	36	0.001	0.043
37	0.977	0.022	37	0.004	0.041
38	0.975	0.023	38	0.001	0.040
39	0.976	0.022	39	0.001	0.040
40	0.971	0.023	40	0.001	0.040
41	0.964	0.023	41	-0.003	0.039
42	0.963	0.023	42	-0.004	0.041
43	0.960	0.021	43	0.002	0.039
44	0.959	0.021	44	0.005	0.046
45	0.953	0.026	45	0.003	0.042
46	0.953	0.026	46	0.029	0.042
47	0.954	0.024	47	0.006	0.048
48	0.952	0.024	48	0.001	0.047
49	0.953	0.027	49	-0.001	0.039
50	0.953	0.024	50	0.002	0.047
51	0.950	0.021	51	0.039	0.047
52	0.949	0.027	52	0.001	0.043
53	0.953	0.026	53	0.001	0.043
54	0.949	0.026	54	0.017	0.043
55	0.945	0.024	55	0.016	0.042
56	0.947	0.023	56	0.016	0.042
57	0.946	0.024	57	0.017	0.042
58	0.944	0.026	58	0.016	0.042
59	0.943	0.021	59	0.016	0.042
60	0.945	0.027	60	0.026	0.042
61	0.943	0.027	61	0.041	0.041
62	0.947	0.023	62	0.045	0.041
63	0.942	0.024	63	0.045	0.039
64	0.941	0.025	64	0.053	0.046
65	0.940	0.025	65	0.032	0.047
66	0.952	0.027	66	0.026	0.044
67	0.954	0.026	67	0.042	0.043
68	0.959	0.023	68	0.036	0.039
69	0.958	0.026	69	0.041	0.041
70	0.953	0.026	70	0.045	0.041
71	0.953	0.026	71	0.053	0.046
72	0.956	0.025	72	0.032	0.042
73	0.961	0.025	73	0.058	0.044
74	0.963	0.026	74	0.058	0.046
75	0.966	0.024	75	0.066	0.041
76	0.974	0.025	76	0.074	0.041
77	0.972	0.024	77	0.073	0.041
78	0.973	0.021	78	0.069	0.036
79	0.971	0.023	79	0.073	0.037
80	0.977	0.023	80	0.078	0.042
81	0.970	0.026	81	0.067	0.038
82	0.982	0.024	82	0.066	0.042
83	0.962	0.022	83	0.071	0.044
84	0.969	0.022	84	0.066	0.037
85	0.951	0.020	85	0.067	0.040
86	0.995	0.021	86	0.064	0.039
87	0.992	0.024	87	0.061	0.043
88	0.991	0.022	88	0.066	0.040
89	0.991	0.022	89	0.056	0.035
90	0.976	0.023	90	0.035	0.042
TARE	0.997	0.015	TARE	0.013	0.013

Table B30 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: 0.21 R 0.70 R 0.68 R			VERTICAL COMPONENT		
DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS
0	0.150	0.020	0	-0.017	0.033
1	0.148	0.021	1	-0.019	0.044
2	0.149	0.021	2	-0.015	0.037
3	0.151	0.021	3	-0.023	0.044
4	0.151	0.021	4	-0.016	0.036
5	0.147	0.023	5	-0.020	0.039
6	0.148	0.021	6	-0.017	0.033
7	0.154	0.019	7	-0.019	0.039
8	0.152	0.019	8	-0.025	0.033
9	0.147	0.018	9	-0.017	0.038
10	0.148	0.020	10	-0.016	0.036
11	0.150	0.020	11	-0.019	0.034
12	0.145	0.017	12	-0.015	0.033
13	0.148	0.019	13	-0.015	0.035
14	0.148	0.020	14	-0.015	0.045
15	0.149	0.018	15	-0.019	0.035
16	0.146	0.018	16	-0.020	0.034
17	0.147	0.017	17	-0.015	0.034
18	0.143	0.018	18	-0.017	0.031
19	0.143	0.022	19	-0.017	0.034
20	0.143	0.020	20	-0.015	0.034
21	0.140	0.021	21	-0.017	0.031
22	0.139	0.020	22	-0.017	0.034
23	0.139	0.021	23	-0.017	0.031
24	0.135	0.019	24	-0.017	0.034
25	0.128	0.021	25	-0.020	0.031
26	0.135	0.021	26	-0.013	0.033
27	0.129	0.022	27	-0.011	0.033
28	0.133	0.023	28	-0.018	0.038
29	0.125	0.023	29	-0.012	0.036
30	0.124	0.025	30	-0.013	0.031
31	0.120	0.025	31	-0.014	0.031
32	0.124	0.024	32	-0.015	0.034
33	0.119	0.023	33	-0.011	0.034
34	0.121	0.027	34	-0.008	0.036
35	0.121	0.026	35	-0.009	0.035
36	0.115	0.026	36	-0.010	0.034
37	0.114	0.024	37	-0.002	0.036
38	0.103	0.023	38	-0.016	0.037
39	0.100	0.027	39	-0.011	0.037
40	0.093	0.026	40	-0.008	0.036
41	0.094	0.030	41	-0.004	0.034
42	0.085	0.027	42	-0.006	0.034
43	0.076	0.022	43	-0.004	0.036
44	0.058	0.031	44	-0.006	0.041
45	0.044	0.048	45	-0.002	0.049
46	0.017	0.052	46	-0.009	0.049
47	0.017	0.057	47	-0.018	0.052
48	0.014	0.057	48	-0.014	0.052
49	0.014	0.056	49	-0.019	0.054
50	0.014	0.056	50	-0.019	0.048
51	0.014	0.053	51	-0.019	0.048
52	0.014	0.053	52	-0.019	0.048
53	0.021	0.053	53	-0.024	0.048
54	0.016	0.058	54	-0.024	0.048
55	0.021	0.055	55	-0.019	0.057
56	0.024	0.050	56	-0.018	0.056
57	0.020	0.050	57	-0.015	0.047
58	0.021	0.050	58	-0.017	0.047
59	0.016	0.049	59	-0.015	0.047
60	0.017	0.047	60	-0.009	0.047
61	0.018	0.047	61	-0.010	0.047
62	0.018	0.049	62	-0.010	0.047
63	0.018	0.049	63	-0.010	0.047
64	0.018	0.049	64	-0.010	0.047
65	0.018	0.049	65	-0.010	0.047
66	0.018	0.049	66	-0.004	0.047
67	0.018	0.049	67	-0.003	0.047
68	0.018	0.049	68	-0.005	0.047
69	0.018	0.049	69	-0.004	0.047
70	0.018	0.049	70	-0.003	0.047
71	0.021	0.049	71	-0.005	0.047
72	0.020	0.049	72	-0.006	0.047
73	0.018	0.049	73	-0.012	0.047
74	0.018	0.049	74	-0.012	0.038
75	0.019	0.049	75	-0.012	0.037
76	0.019	0.049	76	-0.005	0.037
77	0.019	0.049	77	-0.004	0.037
78	0.019	0.049	78	-0.006	0.037
79	0.019	0.049	79	-0.013	0.034
80	0.019	0.049	80	-0.013	0.032
81	0.019	0.049	81	-0.019	0.032
82	0.021	0.049	82	-0.012	0.032
83	0.021	0.049	83	-0.012	0.037
84	0.021	0.049	84	-0.016	0.035
85	0.017	0.049	85	-0.013	0.036
86	0.019	0.049	86	-0.016	0.036
87	0.019	0.049	87	-0.017	0.035
88	0.020	0.049	88	-0.014	0.036
TARE	0.021	0.049	TARE	-0.017	0.037
TARE	0.000	0.013	Avg	-0.007	0.034

Table B31 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 0.21 R Y -0.49 R Z 0.60 R
VERTICAL COMPONENT

DEGREE	AVG VEL	RMS
0	-0.057	0.056
1	-0.055	0.048
2	-0.056	0.050
3	-0.058	0.043
4	---	---
5	-0.060	0.047
6	-0.052	0.051
7	-0.054	0.049
8	-0.059	0.043
9	-0.055	0.041
10	-0.050	0.051
11	-0.054	0.044
12	-0.055	0.047
13	-0.050	0.039
14	-0.043	0.037
15	-0.056	0.042
16	-0.047	0.055
17	-0.050	0.034
18	-0.049	0.045
19	-0.051	0.040
20	-0.047	0.047
21	-0.047	0.035
22	-0.052	0.034
23	-0.047	0.035
24	-0.049	0.037
25	-0.045	0.034
26	-0.040	0.041
27	-0.044	0.033
28	-0.043	0.036
29	-0.038	0.034
30	-0.059	0.038
31	-0.059	0.042
32	-0.031	0.039
33	-0.036	0.039
34	-0.035	0.031
35	-0.034	0.039
36	-0.036	0.039
37	-0.031	0.039
38	-0.035	0.039
39	-0.030	0.041
40	-0.035	0.039
41	-0.030	0.039
42	-0.035	0.039
43	-0.030	0.039
44	-0.035	0.039
45	-0.030	0.039
46	-0.035	0.039
47	-0.030	0.039
48	-0.035	0.039
49	-0.030	0.039
50	-0.035	0.039
51	-0.030	0.039
52	-0.035	0.039
53	-0.030	0.039
54	-0.035	0.039
55	-0.030	0.039
56	-0.035	0.039
57	-0.030	0.039
58	-0.035	0.039
59	-0.030	0.039
60	-0.035	0.039
61	-0.030	0.039
62	-0.035	0.039
63	-0.030	0.039
64	-0.035	0.039
65	-0.030	0.039
66	-0.035	0.039
67	-0.030	0.039
68	-0.035	0.039
69	-0.030	0.039
70	-0.035	0.039
71	-0.030	0.039
72	-0.035	0.039
73	-0.030	0.039
74	-0.035	0.039
75	-0.030	0.039
76	-0.035	0.039
77	-0.030	0.039
78	-0.035	0.039
79	-0.030	0.039
80	-0.035	0.039
81	-0.030	0.039
82	-0.035	0.039
83	-0.030	0.039
84	-0.035	0.039
85	-0.030	0.039
86	-0.035	0.039
87	-0.030	0.039
88	-0.035	0.039
89	-0.030	0.039
90	-0.035	0.039
91	-0.030	0.039
92	-0.035	0.039
93	-0.030	0.039
94	-0.035	0.039
95	-0.030	0.039
96	-0.035	0.039
97	-0.030	0.039
98	-0.035	0.039
99	-0.030	0.039
100	-0.035	0.039
TARE	---	---

Table B32 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 0.21 R Y -0.50 R Z 0.00 R
LONGITUDINAL COMPONENT

DEGREE	Avg Vel	RMS	Vertical Component		
			DEGREES	Avg Vel	RMS
0	0.959	0.078	0	-0.056	0.024
1	0.829	0.054	1	-0.055	0.011
2	0.667	0.055	2	-0.058	0.030
3	0.623	0.079	3	-0.058	0.014
4	1.043	0.053	4	-0.041	0.029
5	1.061	0.070	5	-0.040	0.013
6	1.069	0.034	6	-0.060	0.028
7	1.068	0.024	7	-0.057	0.027
8	1.107	0.057	8	-0.044	0.025
9	1.116	0.037	9	-0.056	0.034
10	1.167	0.097	10	-0.059	0.030
11	1.131	0.053	11	-0.055	0.011
12	1.145	0.024	12	-0.054	0.010
13	1.152	0.026	13	-0.060	0.013
14	1.156	0.029	14	-0.059	0.026
15	1.161	0.022	15	-0.055	0.011
16	1.167	0.023	16	-0.050	0.030
17	1.162	0.024	17	-0.057	0.028
18	1.164	0.022	18	-0.056	0.012
19	1.163	0.024	19	-0.048	0.013
20	1.157	0.019	20	-0.054	0.016
21	1.157	0.021	21	-0.047	0.019
22	1.157	0.022	22	-0.048	0.011
23	1.157	0.025	23	-0.045	0.011
24	1.153	0.021	24	-0.046	0.016
25	1.152	0.023	25	-0.044	0.014
26	1.150	0.023	26	-0.047	0.012
27	1.151	0.022	27	-0.042	0.013
28	1.146	0.021	28	-0.043	0.028
29	1.147	0.025	29	-0.044	0.011
30	1.143	0.020	30	-0.044	0.016
31	1.144	0.021	31	-0.038	0.016
32	1.145	0.022	32	-0.040	0.016
33	1.140	0.024	33	-0.041	0.029
34	1.157	0.023	34	-0.047	0.011
35	1.154	0.020	35	-0.048	0.013
36	1.151	0.021	36	-0.041	0.027
37	1.154	0.020	37	-0.043	0.011
38	1.151	0.021	38	-0.043	0.010
39	1.125	0.021	39	-0.041	0.016
40	1.126	0.024	40	-0.049	0.011
41	1.122	0.024	41	-0.040	0.011
42	1.115	0.023	42	-0.041	0.012
43	1.109	0.024	43	-0.044	0.015
44	1.108	0.026	44	-0.043	0.015
45	1.186	0.024	45	-0.035	0.011
46	1.181	0.027	46	-0.031	0.026
47	1.091	0.033	47	-0.035	0.012
48	1.080	0.028	48	-0.035	0.029
49	1.068	0.038	49	-0.031	0.015
50	1.049	0.047	50	-0.034	0.029
51	1.036	0.054	51	-0.034	0.011
52	0.951	0.039	52	-0.038	0.027
53	0.952	0.109	53	-0.031	0.010
54	0.913	0.143	54	-0.039	0.028
55	0.914	0.111	55	-0.036	0.031
56	0.912	0.079	56	-0.032	0.030
57	0.947	0.056	57	-0.031	0.013
58	0.987	0.071	58	-0.039	0.032
59	0.977	0.043	59	-0.033	0.025
60	0.997	0.033	60	-0.036	0.027
61	1.287	0.033	61	-0.031	0.027
62	1.826	0.056	62	-0.033	0.029
63	1.029	0.045	63	-0.031	0.033
64	1.025	0.046	64	-0.039	0.032
65	1.030	0.044	65	-0.031	0.032
66	1.036	0.045	66	-0.036	0.028
67	1.030	0.054	67	-0.033	0.025
68	1.029	0.055	68	-0.034	0.027
69	1.029	0.055	69	-0.034	0.027
70	1.026	0.055	70	-0.031	0.029
71	1.026	0.055	71	-0.026	0.030
72	1.029	0.063	72	-0.025	0.029
73	1.241	0.062	73	-0.026	0.010
74	1.055	0.268	74	-0.024	0.011
75	1.036	0.072	75	-0.027	0.014
76	1.013	0.071	76	-0.024	0.016
77	1.034	0.071	77	-0.013	0.011
78	1.066	0.071	78	-0.018	0.016
79	1.066	0.074	79	-0.015	0.018
80	1.020	0.266	80	-0.008	0.017
81	1.036	0.072	81	-0.016	0.014
82	0.996	0.096	82	-0.022	0.017
83	1.019	0.067	83	-0.019	0.016
84	0.973	0.035	84	-0.011	0.016
85	0.900	0.034	85	-0.011	0.012
86	0.970	0.032	86	-0.013	0.014
87	0.968	0.028	87	-0.013	0.017
88	0.946	0.024	88	-0.010	0.014
89	0.957	0.013	89	-0.008	0.010
90	0.932	0.036	Avg	-0.041	0.031
91	0.966	0.041	Tare	-0.009	0.013
92	0.966	0.049			
93	0.988	0.055			
94	0.950	0.055			
95	1.157	0.244			
96	1.036	0.018			

Table B33 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: 8.21 R -8.70 R 8.00 R			VERTICAL COMPONENT			
DEGREE	X	Y	Z	DEGREE	Avg Vel	RMS
0	8.21	-8.70	8.00	0	0.039	0.052
1	8.21	-8.70	8.00	1	0.036	0.041
2	8.21	-8.70	8.00	2	0.037	0.036
3	8.21	-8.70	8.00	3	0.032	0.033
4	8.21	-8.70	8.00	4	0.036	0.033
5	8.21	-8.70	8.00	5	0.035	0.030
6	8.21	-8.70	8.00	6	0.033	0.037
7	8.21	-8.70	8.00	7	0.036	0.036
8	8.21	-8.70	8.00	8	0.031	0.039
9	8.21	-8.70	8.00	9	0.035	0.035
10	8.21	-8.70	8.00	10	0.036	0.036
11	8.21	-8.70	8.00	11	0.035	0.035
12	8.21	-8.70	8.00	12	0.036	0.036
13	8.21	-8.70	8.00	13	0.035	0.035
14	8.21	-8.70	8.00	14	0.036	0.036
15	8.21	-8.70	8.00	15	0.035	0.035
16	8.21	-8.70	8.00	16	0.036	0.036
17	8.21	-8.70	8.00	17	0.035	0.035
18	8.21	-8.70	8.00	18	0.036	0.036
19	8.21	-8.70	8.00	19	0.035	0.035
20	8.21	-8.70	8.00	20	0.036	0.036
21	8.21	-8.70	8.00	21	0.035	0.035
22	8.21	-8.70	8.00	22	0.036	0.036
23	8.21	-8.70	8.00	23	0.035	0.035
24	8.21	-8.70	8.00	24	0.036	0.036
25	8.21	-8.70	8.00	25	0.035	0.035
26	8.21	-8.70	8.00	26	0.036	0.036
27	8.21	-8.70	8.00	27	0.035	0.035
28	8.21	-8.70	8.00	28	0.036	0.036
29	8.21	-8.70	8.00	29	0.035	0.035
30	8.21	-8.70	8.00	30	0.036	0.036
31	8.21	-8.70	8.00	31	0.035	0.035
32	8.21	-8.70	8.00	32	0.036	0.036
33	8.21	-8.70	8.00	33	0.035	0.035
34	8.21	-8.70	8.00	34	0.036	0.036
35	8.21	-8.70	8.00	35	0.035	0.035
36	8.21	-8.70	8.00	36	0.036	0.036
37	8.21	-8.70	8.00	37	0.035	0.035
38	8.21	-8.70	8.00	38	0.036	0.036
39	8.21	-8.70	8.00	39	0.035	0.035
40	8.21	-8.70	8.00	40	0.036	0.036
41	8.21	-8.70	8.00	41	0.035	0.035
42	8.21	-8.70	8.00	42	0.036	0.036
43	8.21	-8.70	8.00	43	0.035	0.035
44	8.21	-8.70	8.00	44	0.036	0.036
45	8.21	-8.70	8.00	45	0.035	0.035
46	8.21	-8.70	8.00	46	0.036	0.036
47	8.21	-8.70	8.00	47	0.035	0.035
48	8.21	-8.70	8.00	48	0.036	0.036
49	8.21	-8.70	8.00	49	0.035	0.035
50	8.21	-8.70	8.00	50	0.036	0.036
51	8.21	-8.70	8.00	51	0.035	0.035
52	8.21	-8.70	8.00	52	0.036	0.036
53	8.21	-8.70	8.00	53	0.035	0.035
54	8.21	-8.70	8.00	54	0.036	0.036
55	8.21	-8.70	8.00	55	0.035	0.035
56	8.21	-8.70	8.00	56	0.036	0.036
57	8.21	-8.70	8.00	57	0.035	0.035
58	8.21	-8.70	8.00	58	0.036	0.036
59	8.21	-8.70	8.00	59	0.035	0.035
60	8.21	-8.70	8.00	60	0.036	0.036
61	8.21	-8.70	8.00	61	0.035	0.035
62	8.21	-8.70	8.00	62	0.036	0.036
63	8.21	-8.70	8.00	63	0.035	0.035
64	8.21	-8.70	8.00	64	0.036	0.036
65	8.21	-8.70	8.00	65	0.035	0.035
66	8.21	-8.70	8.00	66	0.036	0.036
67	8.21	-8.70	8.00	67	0.035	0.035
68	8.21	-8.70	8.00	68	0.036	0.036
69	8.21	-8.70	8.00	69	0.035	0.035
70	8.21	-8.70	8.00	70	0.036	0.036
71	8.21	-8.70	8.00	71	0.035	0.035
72	8.21	-8.70	8.00	72	0.036	0.036
73	8.21	-8.70	8.00	73	0.035	0.035
74	8.21	-8.70	8.00	74	0.036	0.036
75	8.21	-8.70	8.00	75	0.035	0.035
76	8.21	-8.70	8.00	76	0.036	0.036
77	8.21	-8.70	8.00	77	0.035	0.035
78	8.21	-8.70	8.00	78	0.036	0.036
79	8.21	-8.70	8.00	79	0.035	0.035
80	8.21	-8.70	8.00	80	0.036	0.036
81	8.21	-8.70	8.00	81	0.035	0.035
82	8.21	-8.70	8.00	82	0.036	0.036
83	8.21	-8.70	8.00	83	0.035	0.035
84	8.21	-8.70	8.00	84	0.036	0.036
85	8.21	-8.70	8.00	85	0.035	0.035
86	8.21	-8.70	8.00	86	0.036	0.036
87	8.21	-8.70	8.00	87	0.035	0.035
88	8.21	-8.70	8.00	88	0.036	0.036
89	8.21	-8.70	8.00	89	0.035	0.035
90	8.21	-8.70	8.00	90	0.036	0.036
TARE	8.21	-8.70	8.00	TARE	0.004	0.013

Table B34 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 0.21 R Y -0.80 R Z 0.00 R			VERTICAL COMPONENT		
LONGITUDINAL COMPONENT					
DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS
0	1.123	0.020	0	0.043	0.043
1	1.125	0.021	1	0.039	0.039
2	1.119	0.018	2	0.045	0.046
3	1.120	0.020	3	0.046	0.045
4	1.121	0.016	4	0.053	0.056
5	1.122	0.021	5	0.038	0.039
6	1.116	0.018	6	0.041	0.054
7	1.117	0.023	7	0.045	0.056
8	1.120	0.019	8	0.039	0.039
9	1.124	0.018	9	0.039	0.043
10	1.121	0.018	10	0.045	0.045
11	1.120	0.019	11	0.044	0.061
12	1.121	0.021	12	0.034	0.047
13	1.121	0.016	13	0.031	0.049
14	1.114	0.019	14	0.033	0.038
15	1.116	0.003	15	0.039	0.038
16	1.116	0.013	16	0.032	0.040
17	1.115	0.030	17	0.031	0.044
18	1.111	0.021	18	0.036	0.058
19	1.112	0.018	19	0.035	0.043
20	1.112	0.020	20	0.034	0.052
21	1.111	0.018	21	0.038	0.054
22	1.106	0.021	22	0.039	0.056
23	1.106	0.020	23	0.022	0.045
24	1.106	0.019	24	0.029	0.045
25	1.104	0.020	25	0.039	0.043
26	1.104	0.019	26	0.038	0.051
27	1.103	0.021	27	0.038	0.052
28	1.059	0.019	28	0.034	0.041
29	1.058	0.017	29	0.026	0.041
30	1.094	0.020	30	0.037	0.045
31	1.090	0.019	31	0.034	0.049
32	1.087	0.020	32	0.023	0.041
33	1.087	0.017	33	0.019	0.041
34	1.029	0.018	34	0.035	0.054
35	1.084	0.021	35	0.038	0.047
36	1.085	0.021	36	0.033	0.044
37	1.078	0.015	37	0.019	0.041
38	1.078	0.019	38	0.015	0.043
39	1.076	0.019	39	0.018	0.047
40	1.077	0.019	40	0.002	0.041
41	1.073	0.022	41	0.011	0.047
42	1.071	0.020	42	0.003	0.049
43	1.057	0.021	43	0.011	0.047
44	1.053	0.020	44	0.007	0.054
45	1.052	0.024	45	0.018	0.053
46	1.049	0.023	46	0.013	0.055
47	1.050	0.026	47	0.028	0.053
48	1.011	0.023	48	0.031	0.041
49	0.054	0.019	49	0.030	0.055
50	0.073	0.015	50	0.008	0.050
51	0.076	0.015	51	0.003	0.059
52	0.078	0.015	52	0.011	0.054
53	0.076	0.015	53	0.027	0.053
54	1.034	0.035	54	0.017	0.053
55	1.021	0.020	55	0.038	0.041
56	1.032	0.024	56	0.027	0.043
57	1.039	0.023	57	0.035	0.041
58	1.054	0.024	58	0.029	0.043
59	1.056	0.026	59	0.031	0.045
60	1.053	0.025	60	0.030	0.043
61	1.073	0.019	61	0.031	0.043
62	1.074	0.023	62	0.027	0.042
63	1.080	0.023	63	0.037	0.046
64	1.084	0.023	64	0.033	0.041
65	1.088	0.015	65	0.043	0.053
66	1.087	0.021	66	0.034	0.044
67	1.021	0.021	67	0.034	0.043
68	1.043	0.019	68	0.043	0.043
69	1.095	0.020	69	0.031	0.044
70	1.093	0.021	70	0.037	0.045
71	1.085	0.021	71	0.042	0.043
72	1.099	0.019	72	0.058	0.046
73	1.085	0.018	73	0.026	0.043
74	1.085	0.022	74	0.041	0.043
75	1.086	0.023	75	0.037	0.038
76	1.111	0.023	76	0.041	0.036
77	1.112	0.022	77	0.039	0.048
78	1.115	0.021	78	0.038	0.045
79	1.116	0.021	79	0.030	0.038
80	1.115	0.021	80	0.034	0.039
81	1.115	0.021	81	0.045	0.044
82	1.117	0.021	82	0.043	0.056
83	1.116	0.021	83	0.041	0.054
84	1.122	0.019	84	0.039	0.044
85	1.123	0.021	85	0.046	0.044
86	1.124	0.021	86	0.046	0.046
87	1.121	0.019	87	0.043	0.039
88	1.124	0.020	88	0.041	0.046
89	1.121	0.019			
Avg	1.088	0.021	Avg	0.028	0.046
Tare	1.007	0.013	Tare	-0.007	0.015

Table B35 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 0.21 R Y -0.90 R Z 0.63 R			VERTICAL COMPONENT LONGITUDINAL COMPONENT		
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS
0	1.079	0.019	0	0.057	0.056
1	1.077	0.019		0.054	0.053
2	1.075	0.023		0.051	0.051
3	1.078	0.017		0.057	0.057
4	1.063	0.019		0.060	0.060
5	1.065	0.018		0.061	0.061
6	1.085	0.020		0.062	0.060
7	1.087	0.019		0.059	0.059
8	1.088	0.019		0.056	0.056
9	1.086	0.018		0.055	0.055
10	1.086	0.018		0.053	0.053
11	1.089	0.021		0.052	0.052
12	1.090	0.018		0.053	0.053
13	1.088	0.019		0.057	0.057
14	1.085	0.017		0.059	0.059
15	1.086	0.019		0.054	0.054
16	1.085	0.021		0.074	0.071
17	1.081	0.020		0.062	0.062
18	1.082	0.015		0.069	0.069
19	1.084	0.018		0.062	0.062
20	1.082	0.017		0.057	0.057
21	1.076	0.019		0.052	0.052
22	1.081	0.019		0.053	0.053
23	1.088	0.018		0.055	0.055
24	1.089	0.019		0.060	0.060
25	1.081	0.018		0.063	0.061
26	1.082	0.018		0.060	0.061
27	1.077	0.019		0.067	0.067
28	1.071	0.018		0.049	0.049
29	1.073	0.019		0.066	0.066
30	1.071	0.019		0.056	0.056
31	1.074	0.016		0.053	0.053
32	1.073	0.020		0.058	0.058
33	1.073	0.017		0.057	0.054
34	1.071	0.018		0.054	0.053
35	1.068	0.019		0.056	0.051
36	1.066	0.019		0.056	0.048
37	1.065	0.020		0.042	0.049
38	1.063	0.018		0.045	0.045
39	1.065	0.018		0.046	0.047
40	1.059	0.016		0.042	0.042
41	1.053	0.017		0.048	0.047
42	1.052	0.019		0.043	0.043
43	1.051	0.017		0.044	0.044
44	1.049	0.017		0.046	0.046
45	1.045	0.016		0.040	0.040
46	1.046	0.018		0.039	0.039
47	1.038	0.019		0.038	0.038
48	1.033	0.016		0.038	0.038
49	1.026	0.017		0.034	0.034
50	1.018	0.019		0.034	0.034
51	1.015	0.016		0.038	0.038
52	1.013	0.020		0.036	0.036
53	1.008	0.019		0.031	0.031
54	1.004	0.022		0.037	0.037
55	1.006	0.024		0.031	0.031
56	1.014	0.020		0.033	0.033
57	1.013	0.021		0.031	0.031
58	1.023	0.023		0.033	0.033
59	1.022	0.022		0.036	0.036
60	1.024	0.023		0.036	0.036
61	1.031	0.017		0.037	0.037
62	1.041	0.020		0.034	0.034
63	1.041	0.013		0.038	0.038
64	1.046	0.019		0.036	0.036
65	1.051	0.029		0.031	0.031
66	1.054	0.019		0.034	0.034
67	1.057	0.026		0.037	0.037
68	1.061	0.019		0.047	0.047
69	1.058	0.019		0.043	0.043
70	1.059	0.020		0.043	0.043
71	1.070	0.016		0.043	0.043
72	1.071	0.021		0.045	0.045
73	1.070	0.019		0.045	0.045
74	1.070	0.019		0.044	0.044
75	1.072	0.028		0.049	0.049
76	1.074	0.019		0.049	0.049
77	1.077	0.017		0.042	0.042
78	1.078	0.018		0.041	0.041
79	1.077	0.020		0.043	0.043
80	1.077	0.020		0.046	0.046
81	1.068	0.015		0.048	0.048
82	1.091	0.021		0.047	0.047
83	1.084	0.019		0.049	0.049
84	1.082	0.017		0.041	0.041
85	1.085	0.019		0.048	0.048
86	1.096	0.017		0.048	0.048
87	1.083	0.022		0.042	0.042
88	1.071	0.016		0.046	0.046
89	1.076	0.020		0.045	0.045
90	1.064	0.019	Avg	0.070	0.059
TARE	1.001	0.015	TARE	-0.011	0.017

Table B36 - Computer Output of Velocity and RMS Velocity Data vs. Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X 0.21 R Y -1.10 R Z 0.00 R			VERTICAL COMPONENT		
DEGREE	AVG VEL	RMS	DEGREE	AVG VEL	RMS
0	1.021	0.015	0	0.064	0.010
1	1.021	0.013	1	0.067	0.031
2	1.023	0.016	2	0.055	0.035
3	1.026	0.014	3	0.065	0.033
4	1.029	0.014	4	0.067	0.037
5	1.031	0.016	5	0.069	0.036
6	1.032	0.017	6	0.063	0.034
7	1.030	0.013	7	0.066	0.035
8	1.027	0.016	8	0.067	0.036
9	1.026	0.014	9	0.068	0.036
10	1.028	0.013	10	0.065	0.036
11	1.026	0.016	11	0.066	0.036
12	1.023	0.014	12	0.065	0.036
13	1.024	0.017	13	0.065	0.036
14	1.028	0.015	14	0.066	0.036
15	1.026	0.015	15	0.066	0.036
16	1.029	0.014	16	0.063	0.036
17	1.033	0.017	17	0.067	0.036
18	1.028	0.015	18	0.059	0.036
19	1.029	0.017	19	0.063	0.036
20	1.030	0.016	20	0.061	0.036
21	1.027	0.014	21	0.061	0.036
22	1.026	0.014	22	0.060	0.036
23	1.028	0.016	23	0.059	0.036
24	1.026	0.015	24	0.055	0.036
25	1.028	0.015	25	0.059	0.036
26	1.028	0.017	26	0.055	0.036
27	1.030	0.016	27	0.057	0.036
28	1.031	0.013	28	0.059	0.036
29	1.033	0.016	29	0.064	0.036
30	1.033	0.015	30	0.061	0.036
31	1.030	0.014	31	0.053	0.036
32	1.028	0.016	32	0.053	0.036
33	1.029	0.016	33	0.054	0.036
34	1.027	0.017	34	0.059	0.036
35	1.023	0.015	35	0.058	0.036
36	1.021	0.015	36	0.052	0.036
37	1.022	0.015	37	0.049	0.036
38	1.024	0.013	38	0.050	0.036
39	1.026	0.016	39	0.056	0.036
40	1.027	0.016	40	0.056	0.036
41	1.028	0.013	41	0.056	0.036
42	1.029	0.015	42	0.051	0.036
43	1.026	0.017	43	0.043	0.036
44	1.021	0.016	44	0.043	0.036
45	1.023	0.014	45	0.048	0.036
46	1.021	0.014	46	0.047	0.036
47	1.017	0.017	47	0.044	0.036
48	1.019	0.016	48	0.040	0.036
49	1.022	0.016	49	0.041	0.036
50	1.021	0.015	50	0.043	0.036
51	1.022	0.014	51	0.039	0.036
52	1.022	0.017	52	0.042	0.036
53	1.024	0.017	53	0.041	0.036
54	1.015	0.015	54	0.042	0.036
55	1.015	0.016	55	0.044	0.036
56	1.015	0.015	56	0.035	0.036
57	1.015	0.015	57	0.043	0.036
58	1.011	0.017	58	0.041	0.036
59	1.010	0.016	59	0.042	0.036
60	1.023	0.016	60	0.039	0.036
61	1.019	0.017	61	0.041	0.036
62	1.011	0.017	62	0.042	0.036
63	1.009	0.015	63	0.042	0.036
64	1.009	0.015	64	0.043	0.036
65	1.012	0.012	65	0.046	0.036
66	1.011	0.015	66	0.043	0.036
67	1.015	0.013	67	0.045	0.036
68	1.015	0.017	68	0.044	0.036
69	1.015	0.017	69	0.050	0.036
70	1.009	0.015	70	0.057	0.036
71	1.011	0.015	71	0.052	0.036
72	1.010	0.016	72	0.057	0.036
73	1.010	0.016	73	0.057	0.036
74	1.012	0.014	74	0.058	0.036
75	1.014	0.014	75	0.063	0.036
76	1.014	0.017	76	0.056	0.036
77	1.017	0.015	77	0.056	0.036
78	1.020	0.015	78	0.059	0.036
79	1.021	0.017	79	0.067	0.036
80	1.019	0.015	80	0.061	0.036
81	1.020	0.014	81	0.065	0.036
82	1.020	0.017	82	0.065	0.036
83	1.032	0.015	83	0.062	0.036
84	1.017	0.018	84	0.062	0.036
85	1.019	0.017	85	0.068	0.036
86	1.004	0.013	86	0.062	0.036
87	1.007	0.015	87	0.062	0.036
88	1.016	0.014	88	0.062	0.036
89	1.023	0.013	89	0.067	0.036
WG	1.61	0.015	Ave	0.056	0.034
TARE	1.000	0.013	TARE	-----	-----

Table B37 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X LONGITUDINAL COMPONENT		Y	Z	VERTICAL COMPONENT		
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS	
0	1.041	0.017	0	0.050	0.034	
1	1.029	0.017	1	0.059	0.036	
2	1.048	0.016	2	0.060	0.033	
3	1.043	0.016	3	0.059	0.034	
4	1.047	0.020	4	0.056	0.035	
5	1.045	0.019	5	0.059	0.036	
6	1.045	0.019	6	0.068	0.036	
7	1.045	0.018	7	0.057	0.036	
8	1.044	0.020	8	0.060	0.036	
9	1.049	0.017	9	0.052	0.034	
10	1.051	0.017	10	0.055	0.035	
11	1.053	0.019	11	0.057	0.036	
12	1.053	0.018	12	0.051	0.037	
13	1.053	0.018	13	0.050	0.036	
14	1.053	0.017	14	0.051	0.036	
15	1.050	0.017	15	0.051	0.036	
16	1.053	0.020	16	0.050	0.035	
17	1.053	0.018	17	0.050	0.035	
18	1.054	0.020	18	0.053	0.036	
19	1.052	0.018	19	0.053	0.036	
20	1.050	0.016	20	0.050	0.035	
21	1.049	0.017	21	0.047	0.034	
22	1.045	0.017	22	0.044	0.034	
23	1.045	0.017	23	0.041	0.034	
24	1.043	0.020	24	0.041	0.034	
25	1.049	0.017	25	0.040	0.034	
26	1.044	0.016	26	0.040	0.034	
27	1.045	0.016	27	0.040	0.034	
28	1.045	0.016	28	0.038	0.034	
29	1.045	0.019	29	0.042	0.035	
30	1.049	0.016	30	0.042	0.035	
31	1.048	0.016	31	0.039	0.035	
32	1.047	0.016	32	0.037	0.035	
33	1.037	0.018	33	0.035	0.035	
34	1.039	0.019	34	0.036	0.037	
35	1.043	0.018	35	0.037	0.037	
36	1.045	0.017	36	0.035	0.037	
37	1.046	0.016	37	0.035	0.037	
38	1.043	0.019	38	0.034	0.037	
39	1.039	0.015	39	0.035	0.037	
40	1.040	0.010	40	0.036	0.037	
41	1.036	0.020	41	0.024	0.034	
42	1.035	0.019	42	0.023	0.034	
43	1.038	0.017	43	0.024	0.034	
44	1.029	0.016	44	0.021	0.034	
45	1.020	0.010	45	0.020	0.034	
46	1.024	0.017	46	0.021	0.034	
47	1.023	0.018	47	0.021	0.034	
48	1.028	0.014	48	0.021	0.034	
49	1.025	0.016	49	0.019	0.031	
50	1.025	0.016	50	0.019	0.031	
51	1.021	0.017	51	0.015	0.031	
52	1.019	0.017	52	0.015	0.031	
53	1.019	0.017	53	0.015	0.031	
54	1.014	0.017	54	0.014	0.031	
55	1.009	0.018	55	0.016	0.031	
56	1.013	0.018	56	0.016	0.031	
57	1.015	0.020	57	0.015	0.031	
58	1.016	0.020	58	0.015	0.031	
59	1.009	0.017	59	0.015	0.031	
60	1.010	0.016	60	0.015	0.031	
61	1.012	0.016	61	0.015	0.031	
62	1.013	0.020	62	0.015	0.031	
63	1.017	0.022	63	0.015	0.031	
64	1.015	0.017	64	0.015	0.031	
65	1.015	0.019	65	0.015	0.031	
66	1.015	0.019	66	0.014	0.031	
67	1.014	0.019	67	0.014	0.031	
68	1.014	0.019	68	0.014	0.031	
69	1.014	0.019	69	0.014	0.031	
70	1.014	0.019	70	0.014	0.031	
71	1.012	0.017	71	0.014	0.031	
72	1.017	0.018	72	0.014	0.031	
73	1.021	0.018	73	0.014	0.031	
74	1.023	0.022	74	0.014	0.031	
75	1.026	0.016	75	0.014	0.031	
76	1.029	0.016	76	0.014	0.031	
77	1.030	0.017	77	0.014	0.031	
78	1.032	0.019	78	0.014	0.031	
79	1.032	0.017	79	0.014	0.031	
80	1.031	0.022	80	0.014	0.031	
81	1.029	0.016	81	0.014	0.031	
82	1.031	0.017	82	0.014	0.031	
83	1.031	0.017	83	0.014	0.031	
84	1.033	0.016	84	0.014	0.031	
85	1.033	0.016	85	0.014	0.031	
86	1.034	0.017	86	0.014	0.031	
87	1.034	0.017	87	0.014	0.031	
88	1.034	0.017	88	0.014	0.031	
89	1.034	0.017	89	0.014	0.031	
90	1.034	0.017	90	0.014	0.031	
Avg	1.034	0.018				
TARE	0.999	0.012				
			TARE			

Table B38 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: X .21 R Y -1.22 R Z .00 R		VERTICAL COMPONENT			
DEGREE	Avg Vel	RMS	DEGREE	Avg Vel	RMS
0	1.018	0.020	0	0.049	0.020
1	1.024	0.025	1	0.050	0.035
2	1.019	0.020	2	0.053	0.033
3	1.019	0.023	3	0.059	0.038
4	1.015	0.019	4	0.053	0.032
5	1.021	0.023	5	0.056	0.034
6	1.022	0.020	6	0.053	0.035
7	1.018	0.026	7	0.058	0.037
8	1.018	0.026	8	0.051	0.034
9	1.031	0.030	9	0.053	0.036
10	1.034	0.034	10	0.046	0.031
11	1.038	0.031	11	0.053	0.031
12	1.020	0.026	12	0.057	0.032
13	1.021	0.023	13	0.063	0.033
14	1.026	0.022	14	0.051	0.031
15	1.023	0.021	15	0.053	0.029
16	1.023	0.022	16	0.052	0.035
17	1.025	0.023	17	0.053	0.029
18	1.024	0.023	18	0.059	0.035
19	1.020	0.024	19	0.056	0.034
20	1.019	0.027	20	0.051	0.032
21	1.021	0.026	21	0.058	0.032
22	1.021	0.021	22	0.053	0.030
23	1.023	0.022	23	0.046	0.036
24	1.026	0.029	24	0.054	0.036
25	1.027	0.020	25	0.056	0.036
26	1.025	0.021	26	0.056	0.034
27	1.025	0.024	27	0.056	0.032
28	1.025	0.024	28	0.056	0.033
29	1.027	0.026	29	0.054	0.032
30	1.016	0.026	30	0.058	0.033
31	1.017	0.020	31	0.050	0.033
32	1.025	0.019	32	0.049	0.033
33	1.025	0.021	33	0.053	0.033
34	1.026	0.022	34	0.053	0.033
35	1.025	0.022	35	0.053	0.033
36	1.022	0.021	36	0.052	0.032
37	1.022	0.023	37	0.052	0.032
38	1.024	0.021	38	0.052	0.032
39	1.022	0.022	39	0.054	0.032
40	1.024	0.020	40	0.053	0.032
41	1.022	0.022	41	0.053	0.032
42	1.024	0.020	42	0.053	0.032
43	1.025	0.023	43	0.053	0.032
44	1.023	0.019	44	0.053	0.032
45	1.022	0.023	45	0.052	0.032
46	1.022	0.023	46	0.052	0.032
47	1.021	0.019	47	0.052	0.032
48	1.021	0.023	48	0.052	0.032
49	1.013	0.020	49	0.054	0.032
50	1.020	0.019	50	0.047	0.031
51	1.020	0.023	51	0.047	0.031
52	1.020	0.018	52	0.048	0.031
53	1.022	0.021	53	0.047	0.031
54	1.022	0.023	54	0.047	0.031
55	1.021	0.019	55	0.049	0.031
56	1.015	0.019	56	0.049	0.031
57	1.017	0.023	57	0.049	0.031
58	1.019	0.026	58	0.049	0.031
59	1.012	0.022	59	0.047	0.031
60	1.013	0.024	60	0.047	0.031
61	1.014	0.023	61	0.047	0.031
62	1.019	0.024	62	0.047	0.031
63	1.026	0.019	63	0.044	0.030
64	1.011	0.020	64	0.044	0.030
65	1.012	0.022	65	0.044	0.030
66	1.017	0.024	66	0.045	0.030
67	1.015	0.022	67	0.043	0.030
68	1.015	0.024	68	0.044	0.030
69	1.019	0.022	69	0.044	0.030
70	1.017	0.021	70	0.045	0.030
71	1.018	0.022	71	0.046	0.030
72	1.015	0.024	72	0.041	0.030
73	1.013	0.015	73	0.046	0.030
74	1.012	0.025	74	0.046	0.030
75	1.012	0.025	75	0.046	0.030
76	1.017	0.022	76	0.046	0.030
77	1.017	0.021	77	0.047	0.030
78	1.012	0.024	78	0.046	0.030
79	1.013	0.023	79	0.046	0.030
80	1.009	0.024	80	0.046	0.030
81	1.012	0.021	81	0.047	0.030
82	1.015	0.021	82	0.048	0.030
83	1.016	0.022	83	0.048	0.030
84	1.012	0.022	84	0.046	0.030
85	1.017	0.022	85	0.046	0.030
86	1.022	0.021	86	0.051	0.035
87	1.022	0.027	87	0.051	0.035
88	1.017	0.027	88	0.051	0.035
89	1.022	0.022	89	0.054	0.035
TARE	-----	-----	TARE	-----	-----
A.C.	1.019	0.022	A.C.	0.045	0.034

Table B39 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

PROBE COORDINATES: -0.62 R -0.70 R 0.00 R
LONGITUDINAL COMPONENT

DEGREE	Avg Vel	RMS
0	1.265	0.025
1	1.266	0.025
2	1.264	0.024
3	1.265	0.026
4	1.263	0.025
5	1.260	0.026
6	1.259	0.026
7	1.259	0.028
8	1.255	0.024
9	1.255	0.027
10	1.255	0.025
11	1.257	0.026
12	1.253	0.025
13	1.252	0.024
14	1.251	0.024
15	1.253	0.020
16	1.250	0.023
17	1.254	0.026
18	1.255	0.026
19	1.255	0.025
20	1.253	0.029
21	1.250	0.027
22	1.251	0.030
23	1.253	0.026
24	1.256	0.027
25	1.256	0.027
26	1.260	0.027
27	1.262	0.029
28	1.266	0.029
29	1.267	0.026
30	1.267	0.027
31	1.270	0.029
32	1.274	0.032
33	1.274	0.030
34	1.276	0.029
35	1.279	0.029
36	1.284	0.033
37	1.284	0.032
38	1.283	0.033
39	1.295	0.039
40	1.299	0.030
41	1.296	0.031
42	1.295	0.033
43	1.291	0.037
44	1.268	0.067
45	1.256	0.092
46	1.251	0.109
47	1.233	0.101
48	1.234	0.106
49	1.253	0.112
50	1.270	0.110
51	1.269	0.120
52	1.305	0.079
53	1.315	0.039
54	1.324	0.060
55	1.323	0.035
56	1.323	0.033
57	1.326	0.041
58	1.320	0.041
59	1.321	0.041
60	1.314	0.023
61	1.315	0.034
62	1.315	0.031
63	1.313	0.038
64	1.307	0.025
65	1.303	0.029
66	1.303	0.023
67	1.301	0.036
68	1.303	0.026
69	1.302	0.025
70	1.293	0.027
71	1.293	0.028
72	1.292	0.026
73	1.292	0.024
74	1.286	0.025
75	1.287	0.020
76	1.287	0.026
77	1.283	0.026
78	1.223	0.027
79	1.287	0.027
80	1.279	0.022
81	1.278	0.026
82	1.275	0.030
83	1.275	0.024
84	1.278	0.034
85	1.273	0.026
86	1.279	0.026
87	1.269	0.020
88	1.277	0.036
TARE	-----	-----

Table B40 - Computer Output of Velocity and RMS Velocity Data vs.
Blade Angular Position at Shaft Inclination of Zero Degrees

SHAFT INCLINATION: 0 DEGREES					
PROBE COORDINATES: DEGREE	X AVG VEL	Y RMS	Z 2.60 R	PROBE COORDINATES: DEGREE	X AVG VEL
0	-0.048	0.029		0	0.003
1	-0.028	0.034		1	0.018
2	-0.044	0.032		2	0.012
3	0.021	0.031		3	0.013
4	0.029	0.025		4	0.016
5	0.034	0.024		5	0.013
6	0.047	0.025		6	0.023
7	0.059	0.029		7	0.024
8	0.056	0.024		8	0.015
9	0.055	0.029		9	0.022
10	0.062	0.027		10	0.017
11	0.059	0.026		11	0.019
12	0.053	0.026		12	0.018
13	0.063	0.025		13	0.021
14	0.069	0.023		14	0.017
15	0.067	0.023		15	0.027
16	0.067	0.020		16	0.014
17	0.072	0.020		17	0.013
18	0.063	0.038		18	0.016
19	0.066	0.029		19	0.013
20	0.064	0.025		20	0.013
21	0.064	0.031		21	0.013
22	0.065	0.026		22	0.014
23	0.062	0.027		23	0.012
24	0.060	0.027		24	0.012
25	0.058	0.027		25	0.016
26	0.054	0.026		26	0.016
27	0.058	0.015		27	0.014
28	0.057	0.027		28	0.011
29	0.052	0.025		29	0.018
30	0.055	0.026		30	0.013
31	0.057	0.028		31	0.013
32	0.068	0.030		32	0.014
33	0.057	0.028		33	0.018
34	0.059	0.027		34	0.013
35	0.052	0.028		35	0.018
36	0.052	0.029		36	0.017
37	0.045	0.028		37	0.016
38	0.050	0.029		38	0.017
39	0.041	0.027		39	0.018
40	0.043	0.024		40	0.014
41	0.047	0.024		41	0.012
42	0.043	0.038		42	0.017
43	0.040	0.025		43	0.016
44	0.039	0.027		44	0.014
45	0.042	0.024		45	0.016
46	0.045	0.019		46	0.017
47	0.037	0.016		47	0.017
48	0.040	0.023		48	0.018
49	0.037	0.029		49	0.014
50	0.032	0.028		50	0.018
51	0.032	0.027		51	0.016
52	0.028	0.039		52	0.017
53	0.024	0.026		53	0.018
54	0.021	0.028		54	0.016
55	0.033	0.026		55	0.013
56	0.022	0.027		56	0.018
57	0.019	0.025		57	0.016
58	0.023	0.022		58	0.018
59	0.018	0.026		59	0.016
60	0.021	0.031		60	0.011
61	0.022	0.029		61	0.017
62	0.019	0.028		62	0.015
63	0.018	0.029		63	0.016
64	0.007	0.020		64	0.012
65	0.013	0.027		65	0.011
66	0.015	0.028		66	0.010
67	0.012	0.034		67	0.010
68	0.007	0.027		68	0.016
69	0.007	0.029		69	0.015
70	0.001	0.029		70	0.008
71	0.002	0.027		71	0.015
72	-0.008	0.032		72	0.009
73	-0.002	0.029		73	0.010
74	-0.003	0.031		74	0.007
75	-0.010	0.024		75	0.004
76	-0.015	0.025		76	0.005
77	-0.007	0.026		77	0.004
78	-0.019	0.031		78	0.001
79	-0.020	0.029		79	0.006
80	-0.024	0.028		80	0.003
81	-0.021	0.020		81	0.005
82	-0.025	0.028		82	0.004
83	-0.026	0.029		83	0.004
84	-0.019	0.026		84	0.008
85	-0.017	0.028		85	0.006
86	-0.044	0.029		86	0.002
87	-0.047	0.031		87	0.011
88	-0.050	0.031		88	0.003
89	-0.060	0.031		89	0.006
Avg	0.026	0.028		Avg	0.035
					0.029

Table B41 - Computer Output of Velocity and RMS Velocity
Data vs. Blade Angular Position

Table B42 - Computer Output of Velocity and RMS Velocity
Data vs. Blade Angular Position

SHAFT INCLINATION: 0 DEGREES				SHAFT INCLINATION: 0 DEGREES			
	X	Y	Z		X	Y	Z
PROBE COORDINATES: DEGREE	-0.35 R AVG VEL	-0.35 R RMS	0.50 R	PROBE COORDINATES: DEGREE	-0.35 R AVG VEL	-0.35 R RMS	0.50 R
0	-0.073	0.076		8	-0.031	0.035	
1	-0.004	0.075		9	-0.124	0.078	
2	-0.186	0.052		10	-0.130	0.043	
3	-0.053	0.043		11	-0.123	0.040	
4	-0.160	0.018		12	-0.141	0.039	
5	-0.055	0.114		13	-0.046	0.037	
6	-0.055	0.029		14	-0.141	0.037	
7	-0.056	0.031		15	-0.152	0.039	
8	-0.153	0.012		16	-0.157	0.037	
9	-0.055	0.031		17	-0.155	0.039	
10	-0.055	0.104		18	-0.153	0.045	
11	-0.040	0.012		19	-0.103	0.055	
12	-0.044	0.016		20	-0.153	0.048	
13	-0.045	0.026		21	-0.060	0.076	
14	-0.043	0.020		22	-0.108	0.066	
15	-0.016	0.025		23	-0.087	0.110	
16	-0.037	0.023		24	-0.147	0.115	
17	-0.040	0.033		25	-0.053	0.112	
18	-0.010	0.032		26	-0.096	0.133	
19	-0.028	0.013		27	-0.010	0.181	
20	-0.037	0.035		28	-0.71	0.864	
21	-0.035	0.034		29	-0.029	0.077	
22	-0.026	0.035		30	-0.014	0.078	
23	-0.037	0.034		31	0.010	0.072	
24	-0.033	0.032		32	0.041	0.072	
25	-0.026	0.031		33	0.079	0.076	
26	-0.045	0.034		34	0.034	0.061	
27	-0.038	0.032		35	0.194	0.355	
28	-0.035	0.032		36	0.197	0.353	
29	-0.035	0.031		37	0.104	0.345	
30	-0.025	0.034		38	0.114	0.351	
31	-0.020	0.035		39	0.094	0.346	
32	-0.026	0.033		40	0.101	0.337	
33	-0.013	0.031		41	0.059	0.339	
34	-0.029	0.030		42	0.042	0.343	
35	-0.024	0.026		43	0.034	0.343	
36	-0.025	0.023		44	0.032	0.342	
37	-0.021	0.017		45	0.036	0.341	
38	-0.020	0.015		46	0.035	0.334	
39	-0.022	0.016		47	0.035	0.338	
40	-0.018	0.016		48	0.036	0.335	
41	-0.019	0.025		49	0.036	0.337	
42	-0.026	0.023		50	0.033	0.334	
43	-0.017	0.040		51	0.033	0.339	
44	-0.016	0.034		52	0.030	0.333	
45	-0.021	0.037		53	0.037	0.334	
46	-0.013	0.036		54	0.030	0.335	
47	-0.026	0.036		55	0.037	0.333	
48	-0.031	0.035		56	0.035	0.333	
49	-0.019	0.036		57	0.035	0.332	
50	-0.026	0.023		58	0.015	0.332	
51	-0.024	0.034		59	0.032	0.335	
52	-0.035	0.037		60	0.033	0.334	
53	-0.031	0.038		61	0.030	0.334	
54	-0.016	0.037		62	0.017	0.335	
55	-0.038	0.033		63	0.016	0.333	
56	-0.042	0.038		64	0.018	0.337	
57	-0.045	0.035		65	0.015	0.332	
58	-0.043	0.032		66	0.018	0.335	
59	-0.046	0.043		67	0.019	0.334	
60	-0.041	0.038		68	0.019	0.334	
61	-0.045	0.038		69	0.019	0.336	
62	-0.046	0.039		70	0.013	0.332	
63	-0.049	0.032		71	0.013	0.332	
64	-0.031	0.031		72	0.018	0.333	
65	-0.033	0.029		73	0.011	0.340	
66	-0.058	0.023		74	0.011	0.337	
67	-0.058	0.036		75	0.013	0.339	
68	-0.062	0.038		76	0.014	0.348	
69	-0.066	0.039		77	0.022	0.334	
70	-0.066	0.039		78	0.017	0.331	
71	-0.086	0.038		79	0.011	0.333	
72	-0.076	0.041		80	0.018	0.338	
73	-0.077	0.033		81	0.011	0.343	
74	-0.065	0.035		82	0.011	0.340	
75	-0.087	0.037		83	0.018	0.333	
76	-0.089	0.044		84	0.001	0.331	
77	-0.105	0.038		85	0.000	0.331	
78	-0.105	0.039		86	0.023	0.333	
79	-0.107	0.039		87	0.004	0.332	
80	-0.112	0.039		88	0.004	0.342	
81	-0.111	0.040		89	0.001	0.334	
82	-0.111	0.041		90	0.009	0.336	
83	-0.124	0.036		91	0.013	0.333	
84	-0.114	0.039		92	0.011	0.326	
85	-0.115	0.043		93	0.013	0.337	
86	-0.125	0.059		94	0.018	0.338	
87	-0.115	0.068		95	0.014	0.336	
88	-0.081	0.078		96	0.019	0.343	
89	-0.064	0.054		97	0.008	0.346	
Avg	-0.054	0.038					
				Avg	0.008	0.008	

REFERENCES

1. Jessup, S. D., "Experimental Unsteady and Time Average Loads on the Blades of the CP Propeller on a Model of the DD-963 Class Destroyer for Simulated Modes of Operation", DTNSRDC Report No. 77-0110 (Dec 1977).
2. Min, Keh-Sik, "Numerical and Experimental Methods for the Prediction of Field Point Velocities Around Propeller Blades", MIT Report No. 78-12, (June 1978).
3. Yanta, W.J., "Turbulence Measurements with a Laser Doppler Velocimeter," Naval Ordnance Laboratory NOLTR-73-94 (1973).
4. Durst, F. et el., "Principles and Practices of Laser-Doppler Anemometry," Academic Press, (1976).
5. "Research Facilities at the David Taylor Model Basin," TMB Report No. 1913 (Oct 1964).

INITIAL DISTRIBUTION

Copies	Copies
12 NAVSEA	1 CATHOLIC U
1 NAVSEA 032	1 COLORADO STATE U/ALBERTSON
1 NAVSEA 0321	1 U CONNECTICUT/SCOTTRON
2 NAVSEA 03D	1 FLORIDA ATLANTIC U OE LIB
1 NAVSEA 052	2 HARVARD U
1 NAVSEA 0521	1 MCKAY LIB
1 NAVSEA 0524	1 BIRKHOFF
5 NAVSEA 05R	1 U HAWAII/BRETSCHNEIDER
2 CHRON	3 U IOWA
1 Code 438	1 ROUSE
1 LIB	1 IHR/KENNEDY
1 NRL	2 JOHNS HOPKINS U
1 ONR Boston	1 PHILLIPS
1 ONR CHICAGO	1 INST COOP RES
1 ONR LONDON, ENGLAND	1 U KANSAS CIV ENGR LIB
1 ONR PASADENA	1 KANSAS ST U ENGR EXP/LIB
1 USNA	1 U MARYLAND/GLEN MARTIN INST
1 LIB	7 MIT
1 NAVPGSCHOL LIB	1 OCEAN ENGR/LIB
1 NROTC & NAVADMINU, MIT	1 OCEAN ENGR/KERWIN
1 NADC	1 OCEAN ENGR/LEEHEY
1 NOSC/LIB	1 OCEAN ENGR/LYON
1 NWC	1 OCEAN ENGR/NEWMAN
12 DTIC	1 PARSONS LAB/IPPEN
1 BUSTAND/KLEBANOFF	1 OCEAN ENGR/CARMICHAEL
1 HQS COGARD	7 U MICHIGAN
1 US COAST GUARD (C-ENE-4A)	1 LIB
1 LC/SCI & TECH DIV	1 NAME/COUCH
1 MARAD/LIB	1 DEPT/HAMMITT
2 NASA STIF	1 NAME/OGILVIE
1 DIR RES	1 WILLOW RUN LABS
1 LIB	1 NAME/VORUS
1 NSF ENGR DIV LIB	1 NAME/STERN
1 DOT LIB	3 U MINNESOTA SAFHL
1 U BRIDGEPORT/URAM	1 KILLEEN
2 U CAL BERKELEY	1 SONG
1 LIB	1 WETZEL
1 WEHAUSEN	2 STATE U MARITIME COLL
1 U CAL SAN DIEGO/ELLIS	1 ENGR DEPT
2 UC SCRIPPS	1 INST MATH SCI
1 POLLACK	1 PENN STATE U ARL
1 SILVERMAN	3 SWRI
2 CIT	1 APPLIED MECH REVIEW
1 ACOSTA	1 ABRAMSON
1 WU	1 BURNSIDE

Copies

1 STANFORD RES INST LIB
 1 SIT DAVIDSON LAB
 1 LIB
 1 TEXAS U ARL LIB
 1 UTAH STATE U/JEPPSON
 1 U WASHINGTON APL LIB
 2 WEBB INST
 1 LEWIS
 1 WARD
 1 WHOI OCEAN ENGR DEPT
 1 WPI ALDEN HYDR LAB LIB
 1 ASME/RES COMM INFO
 1 ASNE
 1 SNAME
 1 AERO JET -GENERAL/BECKWITH
 1 ALLIS CHALMERS, YORK, PA
 1 ARCTEC, INC/NELKA
 1 AVCO LYCOMING
 1 BAKER MANUFACTURING
 2 BATH IRON WORKS CORP
 1 HANSEN
 1 FFG PROJECT OFFICE
 1 BETHLEHAM STEEL NY/DE LUCE
 2 BIRD-JOHNSON CO
 1 CASE
 1 RIDLEY
 1 BOEING ADV MAR SYS DIV
 2 BOLT BERANEK & NEWMAN
 1 BROWN
 1 JACKSON

1 BREWER ENGR LAB
 1 CALSPAN, INC/RITTER
 1 EASTERN RES GROUP
 2 EXXON DES DIV
 1 LIB
 1 FITZGERALD
 1 FRIEDE & GOLDMAN/MICHEL
 1 GEN DYN CONVAIR
 1 ASW-MARINE SCIENCES
 1 GEN DYN ELEC BOAT/BOATWRIGHT
 2 GIBBS & COX
 1 TECH LIB
 1 OLSON
 1 GRUMMAN AEROSPACE/CARL

Copies

2 HYDRONAUTICS
 1 SCHERER
 1 LIB
 1 INGALLS SHIPBUILDING
 1 INST FOR DEFENSE ANAL
 1 ITEK VIDYA
 1 LIPS INC
 2 DOUGLAS AIRCRAFT
 1 TECH LIB
 1 SMITH
 2 ORI, INC
 1 SCHNEIDER
 1 KIM
 1 NATIONAL STEEL & SHIPBLDG
 1 NEWPORT NEWS SHIPBLDG LIB
 1 NIELSEN ENGR/SPANGLER
 1 NAR SPACE/UJIHARA
 1 PROPULSION DYNAMICS, INC
 1 PROPULSION SYSTEMS, INC
 1 K. E. SCHOENHERR
 1 GEORGE G. SHARP
 1 SPERR SYS MGMT LIB/SHAPIRO
 2 SUN SHIPBUILDING
 1 PAVLIK
 1 LIBRARY
 1 ROBERT TAGGART
 1 TETARA TECH PASADENA/CHAPKIS
 1 TRACOR

CENTER DISTRIBUTION

Copies Code

1	11	Ellsworth
1	1102.1	Nakonechny
1	15	Morgan
1	1509	Pollard
1	152	Lin
1	1521	Pien
1	1524	
2	1524	Day
1	1524	Roddy
1	15	

Copies	Code	
6	1544	Boswell
1	1544	Jessup
1	1552	McCarthy
1	1552	Huang
1	1552	Santelli
1	1552	Libby
1	1556	Santore
2	1556	Jeffers
1	156	Hagen
1	5221	Library (C)
1	5222	Library (A)

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.**
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.**
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.**

DAN
FILMI

