Acoustic multi-source full waveform inversion with deblurring

Zhan, G., Dai, W., Boonyasiriwat, C., Schuster, G.T.

Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, United States

Abstract

The theory of preconditioned multi-source full waveform inversion (FWI) is presented where many shot gathers are simultaneously back-propagated to form the multi-source gradient of the misfit function. Synthetic tests on the 2D Marmousi data set show that multi-source full waveform inversion using an encoded multi-source deblurring filter as a preconditioner can provide an accurate velocity model at 1/100 the computational cost of conventional FWI. © 2013 Geophysical Press Ltd.

accuracy assessment back propagation data inversion seismic data seismic velocity
accuracy assessment back propagation data inversion seismic data seismic velocity
accuracy assessment back propagation data inversion seismic data seismic velocity
theoretical study two-dimensional modeling waveform analysis

References

1) Aoki, N., Schuster, G.T.

Fast least-squares migration with a deblurring filter

(2009) Geophysics, 74 (6), pp. WCA83-WCA93. Cited 30 times.

DOI: 10.1190/1.3155162

2) Dai, W., Wang, X., Schuster, G.T.

Least-squares migration of multisource data with a deblurring filter

(2011) Geophysics, 76 (5), pp. R135-R146. Cited 66 times.

DOI: 10.1190/geo2010-0159.1

3) Gardner, G.H.F., Gardner, L.W., Gregory, A.R.

FORMATION VELOCITY AND DENSITY - THE DIAGNOSTIC BASICS FOR STRATIGRAPHIC TRAPS.

(1974) Geophysics, 39 (6), pp. 770-780. Cited 961 times.

4) Hu, J., Schuster, G.T., Valasek, P.A.

Poststack migration deconvolution

(2001) Geophysics, 66 (3), pp. 939-952. Cited 63 times.

5) Lailly, P.

The seismic inverse problem as a sequence of before stack migrations

(1983) Conference on Inverse Scattering: Theory and Application, pp. 206-220. Cited 374 times.

6) Martin, G.S., Wiley, R., Marfurt, K.J.

Marmousi2: An elastic upgrade for Marmousi

(2006) Leading Edge (Tulsa, OK), 25 (2), pp. 156-166. Cited 130 times.

DOI: 10.1190/1.2172306

7) Morton, S.A., Ober, C.C.

Faster shot-record depth migrations using phase encoding

(1998) 68th Ann. Internat. Mtg, Soc. of Expl. Geophys., pp. 1131-1134. Cited 41 times.

8) Romero, L.A., Ghiglia, D.C., Ober, C.C., Morton, S.A.

Phase encoding of shot records in prestack migration

(2000) Geophysics, 65 (2), pp. 426-436. Cited 168 times.

9) Schuster, G.T., Wang, X., Huang, Y., Dai, W., Boonyasiriwat, C.

Theory of multisource crosstalk reduction by phase-encoded statics

(2011) Geophysical Journal International, 184 (3), pp. 1289-1303. Cited 46 times.

DOI: 10.1111/j.1365-246X.2010.04906.x

10) Tarantola, Albert

INVERSION OF SEISMIC REFLECTION DATA IN THE ACOUSTIC APPROXIMATION.

(1984) Geophysics, 49 (8), pp. 1259-1266. Cited 1328 times.

11) Vigh, D., Starr, E.W., Kapoor, J.

Developing Earth models with full waveform inversion

(2009) Leading Edge (Tulsa, OK), 28 (4), pp. 432-435. Cited 42 times.

DOI: 10.1190/1.3112760

Scopus

12) Zhan, G., Dai, W., Boonyasiriwat, C., Schuster, G.T. Acoustic multi-source waveform inversion with deblurring (2010) Extended Abstr., 72nd EAGE Conf., pp. G002. Cited 1 time.

488