Math 470 Assignment 23

Arnold Jiadong Yu

April 8, 2018

- 10.1.4. a) Let $a \in X$. Prove that if $x_n = a$ for every $n \in \mathbb{N}$, then x_n converges. What does it converge to?
- b) Let $X = \mathbf{R}$ with the discrete metric. Prove that $x_n \to a$ as $n \to \infty$ if and only if $x_n = a$ for large n.
- proof: a) Let $a \in X$ and $x_n = a$ for every $n \in \mathbb{N}$. Let $\epsilon > 0$, there exists an $N \in \mathbb{N}$, s.t $n \geq N$ implies $d(x_n, a) = 0 < \epsilon$ by positive definite. Therefore, x_n converges to a be definition.
- b) (\Rightarrow)Let $X = \mathbf{R}$ with the discrete metric and $x_n \to a$ as $n \to \infty$. Let $\epsilon > 0$, there exists an $N \in \mathbb{N}$, s.t $n \ge N$ implies $d(x_n, a) < \epsilon$. Choose $\epsilon = 1$, then $d(x_n, a) < 1$. Since X is discrete metric, then $d(x_n, a) = 0$. Hence $x_n = a$ by positive definite.
- (\Leftarrow)Let $X = \mathbf{R}$ with the discrete metric and $x_n = a$ for large n. Let $\epsilon > 0$, there exists an $N \in \mathbb{N}$, s.t $n \geq N$ implies $d(x_n, a) = 0 < \epsilon$ by positive definite. Therefore, $x_n \to a$ as $n \to \infty$.
- 10.1.6. Let x_n be Cauchy in X. Prove that x_n converges if and only if at least one of its subsequences converges.
- proof: (\Rightarrow) Let x_n be Cauchy in X and converges, then it has at least one of its subsequences converges by Theorem 10.14 (ii).
- (\Leftarrow) Let x_n be Cauchy in X and its subsequence denoted as x_{n_k} converges to a as $k \to \infty$. Let $\epsilon > 0$, then there exists an $N \in \mathbb{N}$, s.t $n, k \ge N$ implies $d(x_n, x_{n_k}) < \frac{\epsilon}{2}$ (Cauchy). Moreover, for $k \ge N$, $d(x_{n_k}, a) < \frac{\epsilon}{2}$ (Subsequence converges). Hence $d(x_n, a) \le d(x_n, x_{n_k}) + d(x_{n_k}, a) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. By definition, $x_n \to a$ as $n \to \infty$.

10.1.7. Prove that the discrete space \mathbf{R} is complete.

proof: Suppose x_n is a cauchy sequence in the discrete space \mathbf{R} . Let $\epsilon > 0$, there exists $N \in \mathbb{N}$, s.t. for any $n, m \geq N$ implies $d(x_n, x_m) < \epsilon$. Since the metric space is discrete, then $d(x_n, x_m) = 0$. This implies $x_n = x_m := a$ for all $n, m \geq N$. By example 10.1.4 a), $x_n \to a$ as $n \to \infty$. Since $a = x_n = x_m$ inside the discrete space. It is complete by definition.

10.1.8. a) Prove that the metric space C[a, b] in Example 10.6 is complete. c) Prove that the metric space C[a, b] defined in part b) is not complete.

proof: a) Suppose f_n is a cauchy sequence of continuous function in the metric space $\mathcal{C}[a,b]$. Let $\epsilon>0$, there exists $N\in\mathbb{N}$, s.t. for any $n,m\geq N$ implies $|f_n(x)-f_m(x)|\leq \sup_{x\in[a,b]}|f_n(x)-f_m(x)|=||f_n-f_m||<\epsilon$ for $\forall x\in[a,b]$. Then by Uniform Cauchy Criterion, f_n converges uniformly on $\mathcal{C}[a,b]$. Moreover, $f_n\to f$ as $n\to\infty$ and $f\in\mathcal{C}[a,b]$. Hence it is complete by definition.

c) Let a=0 and b=1, $f_n=x^n$ be sequences of functions in the metric space $\mathcal{C}[0,1]$. Then $||f_n||_1=\int_0^1 x^n dx=\frac{x^{n+1}}{n+1}|_0^1=\frac{1}{n+1}\to 0$ as $n\to\infty$. Then there exists $N\in\mathbb{N}$, and $n,m\geq N$ s.t $||f_n-f_m||_1\to 0<\epsilon$. It is a converges cauchy sequence, let it converges to f. But f may not be continuous function. f(x)=1 when x=1 and f(x)=0 when $0\leq x<1$. Therefore, it is not in the metric space. Hence, it is not complete.