1. Calcolare l'area del triangolo di vertici A(1,1,1), B(1,0,0) e C(0,0,1).

Svolgimento. L'area del triangolo è

$$\frac{1}{2}|(A-C)\wedge(B-C)| = \frac{1}{2}|(\vec{i}+\vec{j})\wedge(\vec{i}-\vec{k})| = \frac{1}{2}|\vec{j}-\vec{k}-\vec{i}| = \frac{\sqrt{3}}{2}$$

2. Dati i punti A(2,1,1), B(1,2,1), C(1,1,2), verificare se il triangolo ABC è equilatero.

Svolgimento.

$$\begin{aligned} |(A-B)| &= & \sqrt{1^2 + (-1)^2 + 0^2} &= \sqrt{2} \\ |(B-C)| &= & \sqrt{0^2 + 1^2 + (-1)^2} &= \sqrt{2} \\ |(C-A)| &= & \sqrt{(-1)^2 + 0^2 + 1^2} &= \sqrt{2} \end{aligned}$$

Il triangolo è equilatero.

- 3. Siano \vec{u} e \vec{v} versori. Quali delle seguenti affermazioni sono corrette?
 - (a) $-1 \leq \vec{u} \cdot \vec{v} \leq 1$
 - (b) $\vec{u} + \vec{v}$ è un versore
 - (c) $\vec{u} \cdot \vec{v}$ è un versore
 - (d) $\vec{u} \wedge \vec{v}$ è un versore

Svolgimento.

- (a) Se α è l'angolo tra \vec{u} e \vec{v} , si ha che $\vec{u} \cdot \vec{v} = \cos \alpha$, quindi l'affermazione è corretta
- (b) $|\vec{i} + \vec{i}| = 2 \neq 1$, quindi l'affermazione non è corretta
- (c) $\vec{u} \cdot \vec{v}$ è un numero, non un vettore, quindi l'affermazione non è corretta
- (d) $\vec{i} \wedge \vec{i} = \vec{0}$, quindi l'affermazione non è corretta

4. Siano

$$\vec{u} = 2\vec{i} + 2\vec{j} - \vec{k}$$

$$\vec{v} = \vec{i} + \vec{j}$$

$$\vec{w} = \vec{u} \wedge \vec{v}$$

Stabilire per ognuna delle affermazioni seguenti se è vera o falsa:

- (a) \vec{w} è ortogonale a $3\vec{i} + 3\vec{j} \vec{k}$
- (b) \vec{w} è parallelo a $3\vec{i} 3\vec{j} + \vec{k}$
- (c) $|\vec{w}| = |\vec{u}||\vec{v}|$
- (d) \vec{w} forma un angolo ottuso con \vec{j}

Svolgimento.

- (a) Si ha $3\vec{i} + 3\vec{j} \vec{k} = \vec{u} + \vec{v}$; questo vettore è complanare con \vec{u} , \vec{v} ed è quindi ortogonale a \vec{w} . L'affermazione è vera.
- (b) $\vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 2 & -1 \\ 1 & 1 & 0 \end{vmatrix} = \vec{i} \vec{j}$ non è parallelo a $3\vec{i} 3\vec{j} + \vec{k}$.
 - L'affermazione è falsa.
- (c) $\vec{u} \cdot \vec{v} = 4 \neq 0$, quindi \vec{u}, \vec{v} non sono tra loro ortogonali; pertanto $|\vec{w}| \neq |\vec{u}||\vec{v}|$. L'affermazione è falsa.
- (d) Usando il calcolo fatto in (b), $\vec{v}\cdot\vec{j}=-1<0$. Quindi l'affermazione è vera.

5. Dati i vettori

$$\vec{u} = \vec{i} - h\vec{j}$$

$$\vec{v} = 2h\vec{j} - \vec{k}$$

Quali delle seguenti affermazioni sono corrette?

- (a) \vec{u} e \vec{v} non sono perpendicolari per alcun valore di $h \in \mathbb{R}$
- (b) \vec{u} e \vec{v} sono perpendicolari per ogni $h \in \mathbb{R}$
- (c) \vec{u} e \vec{v} sono paralleli se $h \neq 0$
- (d) \vec{u} e \vec{v} non sono paralleli per alcun $h \in \mathbb{R}$

Svolgimento. Si ha $\vec{u} \cdot \vec{v} = -2h^2$. Pertanto $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow h = 0$. Quindi le affermazioni (a) e (b) sono false.

Il vettore \vec{v} ha terza componente non nulla, mentre il vettore \vec{u} è non nullo e ha terza componente nulla. Quindi l'affermazione (d) è vera e, di conseguenza, l'affermazione (c) è falsa.

6. Il triangolo che ha come due dei suoi lati i vettori

$$\vec{u} = \vec{i} + \vec{j} - \vec{k}$$

$$\vec{v} = \vec{i} - \vec{j} + \vec{k}$$

- (a) è isoscele ma non equilatero
- (b) è equilatero
- (c) ha un angolo di $\frac{\pi}{3}$
- (d) ha i tre angoli tutti diversi

Svolgimento. Il terzo lato del triangolo è $\vec{u} - \vec{v} = 2\vec{j} - 2\vec{k}$. Poiché

$$|\vec{u}| = |\vec{v}| = \sqrt{3}, \qquad |\vec{u} - \vec{v}| = 2\sqrt{2}$$

l'affermazione (a) è vera e le affermazioni (b) e (d) sono false. Poiché un triangolo isoscele con un angolo di $\frac{\pi}{3}$ è equilatero, anche l'affermazione (c) è falsa.

7. Dati i vettori

$$\vec{u} = \vec{i} + \vec{j} - \vec{k}$$
$$\vec{v} = 2\vec{j} + 3\vec{k}$$

quali delle seguenti affermazioni sono vere?

- (a) $\vec{u} \wedge \vec{v}$ è ortogonale a $2\vec{i} 5\vec{j}$
- (b) $\vec{u} \wedge \vec{v}$ è parallelo a $-5\vec{i} 3\vec{j} 2\vec{k}$
- (c) $|\vec{u} \wedge \vec{v}| = \sqrt{39}$
- (d) $\vec{u} \wedge \vec{v}$ forma un angolo acuto con \vec{i}

Svolgimento.
$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & -1 \\ 0 & 2 & 3 \end{vmatrix} = 5\vec{i} - 3\vec{j} + 2\vec{k}$$
. Di conseguenza,

l'affermazione (b) è falsa. Poiché $\vec{u} \wedge \vec{v} \cdot (2\vec{i} - 5\vec{j}) = 25 \neq 0$, l'affermazione (a) è falsa. Si ha $|\vec{u} \wedge \vec{v}| = \sqrt{25 + 9 + 4} = \sqrt{38}$, quindi l'affermazione (c) è falsa. Poiché $\vec{u} \wedge \vec{v} \cdot \vec{i} + 5 > 0$, l'affermazione (d) è vera.

8. Dati i vettori

$$ec{u}$$
 di componenti $(t+2,-2t,2t+1)$ $ec{v}$ di componenti $(0,-1,1)$

determinare i valori di $t \in \mathbb{R}$ per cui $\vec{u} \cdot \vec{v} = 1$.

Svolgimento. $\vec{u} \cdot \vec{v} = 2t + 2t + 1 = 4t + 1$. Pertanto $\vec{u} \cdot \vec{v} = 1 \Leftrightarrow t = 0$.

Dato il vettore

$$\vec{u} = 2\vec{i} - \vec{j}$$

determinare i vettori \vec{v} che soddisfano alle equazioni

$$\begin{cases}
\vec{u} \wedge \vec{v} &= \vec{k} \\
|\vec{v}| &= \sqrt{13}
\end{cases}$$

Svolgimento. Sia
$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$
. Allora

Svolgimento. Sia
$$\vec{v} = v_x i + v_y j + v_z k$$
. Allora
$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 0 \\ v_x & v_y & v_z \end{vmatrix} = -v_z \vec{i} - 2v_z \vec{j} + (v_x + 2v_y) \vec{k}$$
. La condizioni sono

quindi equivalenti a $\begin{cases} v_z=0\\ v_x+2v_y=1\\ v_x^2+v_y^2=13 \end{cases}$. Si ha pertanto $v_x=1-2v_y$, da $v_x^2+v_y^2=13$

cui $(1 - 2v_y)^2 + v_y^2 = 5v_y^2 - 4v_y + 1 = 13$, cioè $5v_y^2 - 4v_y - 12 = 0$.

Segue che $v_y=rac{2\pm\sqrt{4+60}}{5}=rac{2\pm8}{5}.$ I vettori cercati sono quindi

$$-\frac{7}{5}\vec{i} - \frac{6}{5}\vec{j}$$
 e $-19\vec{i} + 10\vec{j}$

10. Dati i vettori

$$\vec{u}$$
 di componenti $(1,0,1)$
 \vec{v} di componenti $(2,1,-1)$
 \vec{w} di componenti $(-1,2,-h)$

determinare $h \in \mathbb{R}$ in modo che

$$|(\vec{u} + \vec{v}) \wedge \vec{w}| = \sqrt{89}$$

Svolgimento.
$$|(\vec{u} + \vec{v}) \wedge w|^2 = |(3\vec{i} + \vec{j}) \wedge (-\vec{i} + 2\vec{j} - h\vec{k})|^2 =$$

$$\begin{vmatrix} |\vec{i} & \vec{j} & \vec{k} \\ 3 & 1 & 0 \\ |-1 & 2 & -h \end{vmatrix}^2 = |-h\vec{i} + 3h\vec{j} + 7\vec{k}|^2 = h^2 + 9h^2 + 49 = 10h^2 + 49.$$

I valori di h cercati sono quelli per cui $10h^2 + 49 = 89$, cioè $h = \pm 2$.

11. Dati i vettori

$$\vec{u}$$
 di componenti $(2,1,0)$
 \vec{v} di componenti $(1,0,1)$
 \vec{w} di componenti $(1,1,1)$

determinare il vettore \vec{x} in modo che valgano le equazioni

$$\left\{ \begin{array}{lcl} \vec{x} \cdot \vec{u} & = & 1 \\ \vec{x} \cdot \vec{v} & = & -1 \\ \vec{x} \cdot \vec{w} & = & 3 \end{array} \right.$$

Svolgimento. Sia $\vec{x}=a\vec{i}+b\vec{j}+c\vec{k}$. Le condizioni sono equivalenti al sistema $\begin{cases} 2a & +b & =1\\ a & +c & =-1. \text{ La seconda equazione fornisce}\\ a & +b & +c & =3 \end{cases}$ c=-1-a. Allora dalla terza si ha che b=4, dalla prima $a=-\frac{3}{2}$, e finalmente $c=\frac{1}{2}$. Quindi $\vec{x}=-\frac{3}{2}\vec{i}+4\vec{j}+\frac{1}{2}\vec{k}$.

12. Dati i vettori

 \vec{u} di componenti (1,0,0)

 $ec{v}$ di componenti $(2, \frac{1}{2}, -1)$

 \vec{w} di componenti (5,1,-2)

determinare per quali valori di $m \in \mathbb{R}$ il sistema di equazioni

$$\begin{cases} \vec{x} \cdot \vec{u} &= 1 \\ \vec{x} \cdot \vec{v} &= -1 \\ \vec{x} \cdot \vec{w} &= m \end{cases}$$

ha soluzione. Per tali valori, calcolare \vec{x} .

Svolgimento. Sia
$$\vec{x} = a\vec{i} + b\vec{j} + c\vec{k}$$
. Il sistema di equazioni risulta
$$\begin{cases} a = 1 \\ 2a + \frac{1}{2}b - c = -1 \\ 5a + b - 2c = m \end{cases}$$
, ovvero
$$\begin{cases} a = 1 \\ b - 2c = -6 \\ b - 2c = m - 5 \end{cases}$$
 risolubile se e solo se $m - 5 = -6$, cioè $m = -1$. In tal caso risulta
$$\begin{cases} a = 1 \\ b = 2c - 6 \end{cases}$$
. Le soluzioni sono quindi i vettori $\vec{x} = \vec{i} + (2c - 6)\vec{j} + c\vec{k}$, per $c \in \mathbb{R}$.

13. Dati i vettori

$$\vec{u}$$
 di componenti $(1,-1,2)$
 \vec{v} di componenti $(-2,1,-1)$
 \vec{w} di componenti $(-1,-1,4)$

esprimere \vec{w} come combinazione lineare di \vec{u}, \vec{v} .

Svolgimento. Si devono trovare, se esistono, $\lambda_1, \lambda_2 \in \mathbb{R}$ tali che

$$\vec{w} = \lambda_1 \vec{u} + \lambda_2 \vec{v} \text{, cioè} \left\{ \begin{array}{l} \lambda_1 - 2\lambda_2 = -1 \\ -\lambda_1 + \lambda_2 = -1 \\ 2\lambda_1 - \lambda_2 = 4 \end{array} \right. \text{. Dalla seconda equazione si}$$

ottiene $\lambda_1=\lambda_2+1$, che sostituito nella prima fornisce $\lambda_2+1-2\lambda_2=-1$, quindi i valori $\lambda_2=2, \lambda_1=3$, che soddisfano anche la terza equazione. Pertanto $\vec{w}=3\vec{u}+2\vec{v}$.

14. Dati i vettori

$$\vec{u} = \vec{i} + \vec{j} + 2\vec{k}$$

$$\vec{v} = 5\vec{i} - \vec{j} + \vec{k}$$

$$\vec{w} = \vec{j} + \vec{k}$$

esprimere il vettore

$$\vec{a} = \vec{u} \wedge (\vec{v} - \vec{w})$$

come combinazione lineare di $\vec{u}, \vec{v}, \vec{w}$.

Svolgimento. Si cercano $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tali che $\vec{a} = \lambda_1 \vec{u} + \lambda_2 \vec{v} + \lambda_3 \vec{w}$.

Si ha
$$\vec{a} = (\vec{i} + \vec{j} + 2\vec{k}) \wedge (5\vec{i} - 2\vec{j}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 2 \\ 5 & -2 & 0 \end{vmatrix} = 4\vec{i} + 10\vec{j} - 7\vec{k}.$$

Dunque si cercano $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tali che $\left\{\begin{array}{l} \lambda_1+5\lambda_2=4\\ \lambda_1-\lambda_2+\lambda_3=10\\ 2\lambda_1+\lambda_2+\lambda_3=-7 \end{array}\right.$. La

prima equazione fornisce $\lambda_1=4-5\lambda_2$, che sostituito nella seconda dà $4-5\lambda_2-\lambda_2+\lambda_3=10$, cioè $\lambda_3=6\lambda_2+6$. Rimpiazzando questi valori nella terza equazione si ottiene $8-10\lambda_2+\lambda_2+6\lambda_2+6=-7$, da cui $\lambda_2=7, \lambda_1=-31, \lambda_3=48$.

Quindi $\vec{a} = -31\vec{u} + 7\vec{v} + 48\vec{w}$.

15. Dati i vettori

```
\vec{u} di componenti (1,0,1)
\vec{v} di componenti (2,1,1)
\vec{w} di componenti (-1,3,-1)
```

- ightharpoonup ricavare l'espressione di \vec{i} come combinazione lineare di $\vec{u}, \vec{v}, \vec{w}$
- Trovare l'angolo α tra i vettori \vec{w} e $\vec{w}' = \vec{u} \wedge \vec{w}$

Svolgimento.

- Si cercano $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tali che $\vec{i}=\lambda_1\vec{u}+\lambda_2\vec{v}+\lambda_3\vec{w}$, cioè $\left\{\begin{array}{l} \lambda_1+2\lambda_2-\lambda_3=1\\ \lambda_2+3\lambda_3=0\\ \lambda_1+\lambda_2-\lambda_3=0 \end{array}\right.$ Dalla differenza tra la prima e la terza $\left\{\begin{array}{l} \lambda_1+\lambda_2-\lambda_3=0\\ \text{equazione si ottiene }\lambda_2=1\text{, da cui }\lambda_3=-\frac{1}{3},\lambda_1=-\frac{4}{3}. \end{array}\right.$ Pertanto $\vec{i}=-\frac{4}{3}\vec{u}+\vec{v}-\frac{1}{3}\vec{w}.$
- ▶ Il vettore \vec{w}' è ortogonale a \vec{w} , quindi $\alpha = \frac{\pi}{2}$.

16. Dati i vettori

$$\vec{u}$$
 di componenti $(1, -1, 1)$
 \vec{v} di componenti $(1, 1, 0)$
 \vec{w} di componenti $(2, -2, 1)$

trovare le componenti del vettore \vec{a} tale che

$$\begin{cases}
\vec{u} \wedge \vec{a} = \vec{v} \\
\vec{w} \cdot \vec{a} = 6
\end{cases}$$

Svolgimento. Sia
$$\vec{a}=a\vec{i}+b\vec{j}+c\vec{k}$$
. Il sistema è
$$\begin{cases} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 1 \\ a & b & c \end{vmatrix} = \vec{i}+\vec{j} & \text{, equivalente a} \\ (2\vec{i}-2\vec{j}+\vec{k}) \cdot (a\vec{i}+b\vec{j}+c\vec{k}) = 6 \\ \begin{cases} -b-c=1 \\ a-c=1 \\ a+b=0 \end{cases} & \text{. La terza equazione fornisce } a=-b, \text{ quindi le} \\ 2a-2b+c=6 \\ \text{prime due danno } b=-c-1, \text{ sicché dall'ultima si ottiene} \\ 2c+2+2c+2+c=6, \text{ ovvero } c=\frac{2}{5} \text{ e di conseguenza } b=-\frac{7}{5}, a=\frac{7}{5}. \end{cases}$$
 Si ottiene quindi che le componenti di \vec{a} sono $\left(\frac{7}{5},-\frac{7}{5},\frac{2}{5}\right)$.

17. Dati i vettori

$$\vec{a} = \vec{i} + 2\vec{j} + \vec{k}$$
$$\vec{b} = -\vec{i} + \vec{k}$$

- determinare il vettore di modulo 3, perpendicolare ad \vec{a} e a \vec{b} , e formante un angolo acuto con \vec{i}
- ightharpoonup determinare la proiezione ortogonale di \vec{b} lungo $\vec{a} + \vec{b}$

Svolgimento.

Sia $\alpha \vec{i} + \beta \vec{j} + \gamma \vec{k}$ un vettore. Le condizioni date sono espresse sulle componenti da $\begin{cases} \alpha + 2\beta + \gamma = 0 \\ -\alpha + \gamma = 0 \\ \alpha^2 + \beta^2 + \gamma^2 = 9 \end{cases}$ Le prime due equazioni $\alpha > 0$ equivalgono a $\alpha = \gamma = -\beta$, e la terza fornisce quindi $3\alpha^2 = 9$, cioè

equivalgono a $\alpha=\gamma=-\beta$, e la terza fornisce quindi $3\alpha^2=9$, cioè $\alpha=\gamma=\pm\sqrt{3}, \beta=\mp\sqrt{3}$. Dall'ultima condizione si ottiene $\alpha=\gamma=\sqrt{3}, \beta=-\sqrt{3}$. Il vettore cercato è quindi $\sqrt{3}\vec{i}-\sqrt{3}\vec{j}+\sqrt{3}\vec{k}$.

La proiezione cercata è il vettore $\frac{\vec{b} \cdot (\vec{a} + \vec{b})}{|\vec{a} + \vec{b}|^2} (\vec{a} + \vec{b}) = \frac{(-\vec{i} + \vec{k}) \cdot (2\vec{j} + 2\vec{k})}{8} (2\vec{j} + 2\vec{k}) = \frac{1}{2}\vec{j} + \frac{1}{2}\vec{k}.$

- 18. A quale condizione devono soddisfare i vettori \vec{u} e \vec{v} affinché
 - $\vec{u} + \vec{v}$ sia perpendicolare a $\vec{u} \vec{v}$?
 - $|\vec{u} + \vec{v}| = |\vec{u}| + |\vec{v}|$?

Svolgimento.

- ▶ I vettori $\vec{u} + \vec{v}$, $\vec{u} \vec{v}$ sono le due diagonali del parallelogramma (eventualmente degenere) di lati \vec{u} , \vec{v} . Queste diagonali sono tra loro perpendicolari se e solo se il parallelogramma è un rombo, cioè se e solo se $|\vec{u}| = |\vec{v}|$.
- Applicato nel punto d'applicazione di \vec{u} , il vettore $\vec{u} + \vec{v}$ è il terzo lato del triangolo (eventualmente degenere) che ha come lati:
 - ightharpoonup il vettore \vec{u}
 - ightharpoonup il vettore \vec{v} applicato nel secondo estremo di \vec{u}

pertanto $|\vec{u} + \vec{v}| = |\vec{u}| + |\vec{v}|$ se e solo se \vec{u}, \vec{v} sono paralleli e concordi.

19. Dati vettori \vec{u} , \vec{v} e \vec{w} tali che

$$|\vec{u}| = 2, \quad |\vec{v}| = 3, \quad |\vec{w}| = 5$$

 $\vec{u} + \vec{v} + \vec{w} = \vec{0}$

calcolare $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}$.

Svolgimento. Le condizioni sui vettori implicano che \vec{u} , \vec{v} sono paralleli e concordi, e $\vec{w}=-(\vec{u}+\vec{v})$, in particolare \vec{w} è parallelo e discorde con \vec{u} , \vec{v} . Pertanto

$$\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} = |\vec{u}||\vec{v}| - |\vec{v}||\vec{w}| - |\vec{w}||\vec{u}| = 6 - 10 - 15 = -19.$$