Análisis de Riesgos en proyectos de SW

Ing. Angel Baspineiro Valverde

Definiciones

- Existen varias definiciones de riesgo, en función al entorno en el cual son aplicables.
 - P.ej: Riesgo es una de las pocas cosas inevitables en la vida (asumir la realidad)
 - P.ej.Riesgo es la posiblidad de que una amenaza, proveche un vulnerabilidad en los controles y pueda ocasionar daño o pérdida en los activos de información (seguridad)
- Para nuestros fines, osea para el desarrollo de sw, será "cualquier evento que de ocurrir afectaría de manera negativa al logro de los objetivos del proyecto de software"
 - "Objetivos" relacionados por ejemplo con el tiempo, rendimiento o capacidades del sw, costos, calidad, etc.

Variables del análisis de riesgos

Es importante definir las variables que intervienen en el análisis de riesgos:

• Amenaza: Posible evento no deseado que de concretarse sería un riesgo • Probabilidad de ocurrencia: El grado de posibilidad de que la amenaza o evento no deseado ocurra

• Riesgo: La amenaza < concretada que tiene efecto negativo

■ Impacto: La consecuencia del riesgo una vez que ocurre y que puede ser medido en variables como tiempo de recuperación, costo adicional, esfuerzo adicional y otros.

• Controles: Acciones preventivas o reactivas (correctivas) para mitigar la ocurrencia o impacto del riesgo

• Prioridad : Concepto que categoriza los riesgos en función a su criticidad.

Por que existen los riesgos?

- Por que siempre existe la posibilidad de que algo no salga como esperamos
- Por el entorno cambiante en el cual nos encontramos.
 - Cambio de los requerimientos
 - Cambio de las tecnologías
 - Cambios de personal
 - Cambios de estrategias, políticas y otros
- Por que la planificación de actividades están bajo supuestos ideales de disponibilidad de recursos

Un proceso de análisis de riesgos

Clasificaciones de Riesgos

- Muchos autores tratan de ayudarnos sugiriendonos clasificaciones pre establecidas, sin embargo un administrador del riesgo podría crear o adaptar su propia clasificación:
- Clasificaciones mas genéricas
 - TIPO 1
 - Riesgos generales
 - Riesgos específicos del producto
 - Tipo 2 (Braude)
 - Riesgos evitables
 - Riesgos no evitables
 - Tipo 3
 - Riesgos Técnicos
 - Riesgos No técnicos

- Tipo 4
 - Riesgos del proyecto
 - Riesgos técnicos
 - Riesgos del negocio

Clasificaciones de Riesgos

- Clasificaciones más específicas
 - Tipo 1 (Jacobson)
 - Riesgos de paradigma
 - Riesgos de Proceso
 - Riesgos de Herramientas
 - Riesgos de Sistema
 - Riesgos de Organización
 - Tipo 2 (Yourdon)
 - Riesgos de costos beneficios
 - Riesgos del tiempo esperado
 - Riesgos de la funcionalidad esperada
 - Tipo 3 : Enfoque de gerencia del proyecto
 - Riesgos de costos
 - Riesgos del tiempo
 - Riesgos de la capacidad del producto
 - Riesgos de la calidad del producto

Clasificaciones de Riesgos

- Clasificaciones más específicas
 - Tipo 4 (Una visión de negocio que complementa a otras clasificaciones)
 - DE MERCADO: Desarrollar un producto que nadie quiere o necesita
 - ESTRATEGICO: Desarrollar un producto que no encaja dentro del plan estratégico de la compañía destino
 - DE COMERCIALIZACION: Desarrollar productos que no saben como venderlos.
 - DE DIRECCION: Pérdida de apoyo de gestión por cambios de objetivos o de personal
 - DE PRESUPUESTO: Perder el presupuesto o personal asignado
 - Tipo 5 (Boehm)
 - Riesgos de producto
 - Riesgos de proyecto
 - Riesgos de personal
 - Riesgos de plataforma

Identificación de riesgos

- El proceso de identificación de riesgos requiere:
 - Adoptar una <u>clasificación</u>
 - Mucha <u>experiencia</u> del equipo de desarrollo
 - Mucho <u>realismo</u> respecto a las capacidades y habilidades de grupo
 - Objetividad respecto a la estimación de tiempos, costos, recursos
 - Comprensión del alcance del proyecto
 - Conocimiento técnico

Muchos autores proponen preguntas que nos permiten encontrar nuevos riesgos

Identificación de riesgos

- Ej: siguiendo el enfoque gerencial
 - Riesgos de las capacidades del producto
 - Se entiende claramente la complejidad del producto?
 - El usuario tiene una idea clara de lo que precisa?
 - Está dispuesto a participar en la revisiones?
 - Se entiende las desventajas de la tecnología para el proyecto?
 - Estamos familiarizados con las herramientas a ser usadas?
 - Riesgos de Costos del Proyecto
 - Se tiene un proceso formal de división y estimación de costos documentado?
 - Se tiene medios para hacer seguimiento al presupuesto del proyecto?
 - Se tienen expectativas realistas para los gastos de un proyecto?
 - Riesgos de la calidad del proyecto
 - La administración del proyecto esta familiarizado con la administración de la calidad y aseguramiento de la calidad?
 - Se tienen procedimientos que garanticen la fiabilidad requerida
 - Es la mantenibilidad un área clave del desarrollo?
 - Se tienen planes de validación y verificación del proceso?

Identificación de riesgos

- Riesgos relacionados con el tiempo de entrega
 - Se tiene un proceso formal de división y estimación de tiempos documentado?
 - Se tiene medios para hacer seguimiento y determinar desvíos del calendario del proyecto?
 - Se tienen expectativas realistas para los tiempos o agenda de un proyecto?

Evaluación del riesgo

- Osea estimar las consecuencias y posibilidad de ocurrencia del riesgo.
- Para esto consideramos básicamente
 - P: Probabilidad de Ocurrencia
 - I : Impacto del riesgo.
- Por tanto P x I nos dará una medición del impacto total del riesgo.
- Se puede dar escalas a P como a I y luego asociarlas a variables mas objetivas
- P: escala de muy bajo a muy alto
- I: escala de despreciable a catastrófico

Matriz de riesgos

I P	Despreciabl e	Marginal	Nominal	Crítico	Catastrófico
Muy Alto					
Alto					
Promedio					
Bajo					
Muy Bajo					

Evaluación de riesgo

Luego las escalas pueden asociarse a reglas concretas. Por ejm.

Р	Tipo 1	Tipo 2	I	Desprecia ble	Margin al	Nominal	Crítico	Catastrófic o
Muy alta	81% a 100%	10	\$	0-100	100 a 500	500 a 1000	1000 a 2000	+2000
Alta	60 a 80%	7	Tiempo perdido	Medio día u hrs	1 día	3 dias	1 semana	Mas de 1 semana
Promedi o	50%	5	Esfuerzo perdido	0 a 2 hrs	2 a 4 hrs	4 a 8 hrs	8 a 16 hras	+16 horas de trabajo
Bajo	21 – 49%	3	Nro	1	3	5	7	10
Muy Bajo	1- 20%	1	Personali zada	1/2PH	+1PH	+3PH	+5PH	+8PH

Evaluación de riesgo

Riesgo	Descripcion amenaza	Р	I	total P x I
R1	No se entiende claramente la complejidad del producto	3	7	21
R2	El usuario no tiene una idea clara de lo que precisa	5	10	50
R3	No hay disposición del cliente a participar en las revisiones	7	10	70
R4	No se conoce a fondo las desventajas de la tecnología usada para el proyecto	5	7	35
R5	No tenemos integrado el trabajo en equipo en función a un ciclo de vida	1	7	7

Priorización de riesgos

- Como vimos antes lo podemos hacer en base al impacto total tomando primero el mayor
- Tomando en cuenta la matriz de riesgos, viendo en que zonas caen y atendiendo primero la zona roja.
- Tambien existe el criterio de atender primero el que me cuesta menos en recuperación o mitigación. (11-P x 11-I x C)

Р	I	С	total 11-P x 11- I x C		Prioridad
3	7	1000	11-3 x 11-7 x 1000	32000	30
5	10	2500	11-5 x 11-10 x 2500	15000	20
7	10	2100	4 x 1 x 2100	8400	10
5	7	1500	6 x 4 x 1500	36000	40
1	7	1800	10 x 4 x 1800	72000	50

Niveles de Referencia para la evaluación de riesgos

Gestionar, controlar, mitigar el riesgo

- Básicamente hay 3 enfoques para mitigar los riesgos (evitar que ocurran o bien minimizar el impacto)
 - Retirar conquistando retirar evitando (riesgos evitables)
 - Conquistando: demostrar que es posible enfrentarlo
 - Evitando : simplemente cambio de política y no me enfrento al riesgo.
 - Proactivo Reactivo
 - Proactivo : prevenir la ocurrencia de riesgos evitables
 - Reactivo : reaccionar positivamente ante riesgos no evitables con planes de contingencia
 - Preventivo Detectivo Correctivo
 - Preventivo : preveer los controles necesarios para evitar que ocurra un riesgo
 - Detectivo : preveer los controles necesarios para detectar la ocurrencia del riesgo lo mas pronto posible
 - Correctivo : plan de contingencia para minimizar el impacto.

Gerencia de Riesgos IEEE 1540-2001

- 1. Resumen
 - 1.1 Alcance
 - 1.2 Proposito
 - 1.3 Campo de Aplicación
 - 1.3.1 Application with IEEE/EIA 12207 series
 - 1.3.2 Application independently of IEEE/EIA series
 - 1.4 Conformidad
 - 1.5 Disclaimer
- 2. Referencias
- 3. Definiciones
- 4. Aplicación del estándar
- 5. Gestión de Riesgos en el CV del Software
 - Proceso de Gestión de Riesgos
 - 5.1.1 Plan e implementación de la gestión de riesgos
 - 5.1.2 Administración del perfil de riesgos del proyecto
 - 5.1.3 análisis de Riesgos
 - 5.1.4 Tratamiento o control del riesgo
 - 5.1.5 Monitoreo
 - 5.1.6 Evaluación del proceso de gestión de riesgos
- 6. Anexos

Síntesis

- El análisis de riesgos comprende la identificación. evaluación, y mitigación de riesgos.
- La mitigación trata de evitar la ocurrencia o bien minimizar el impacto de un riesgo
- Pese a enfatizar en la objetividad de la fase de evaluación del riesgo, esta sigue siendo un tanto subjetiva al asignar escalas o valores a las mismas.
- Es fácil cuantificar lo tangible, sin embargo para cosas intangibles se debe acudir al criterio experto mas que a nada.
- No asumir el análisis de riesgos como parte de todo desarrollo de sw, significa no asumir la realidad

Anexo

PATRONES DE RIESGOS GENERICOS DE UN PROYECTO DE SOFTWARE

- PATRON : CREACION DE LA AGENDA DE ACTIVIDADES O PLAN DE DESARROLLO
 - Agenda optimista mas basada en el "mejor caso" que realista, osea basada en "caso esperado"
 - Agenda omite tareas necesarias
 - El plan de desarrollo se baso en miembros del equipo específicos, pero ahora estos miembros no están disponibles.
 - No se puede desarrollar un producto del tamaño especificado en el tiempo asignado.
 - Un atraso en una tarea causa atrasos en cascada en tareas dependientes
 - El producto es en realidad mas grande que el estimado (ya sea en SLOC, PF, o porcentaje de tamaño de proyectos anteriores)

- PATRON : ORGANIZACIÓN Y GESTION
 - Proyecto pierde financiador importante
 - Estructura de equipo ineficiente reduce la productividad del mismo
 - El ciclo de revision/decision de la gestión es mas lento que el esperado
 - El cliente tiene expectativas para un rápido desarrollo que los desarrolladores no pueden cumplir.

PATRON: PROVEEDORES

- Proveedores contratados no entregan los componentes previstos en el tiempo acordado
- Proveedores contratados entregan componentes de baja calidad y por tanto se debe adicionar tiempo para mejorar esta.
- Proveedores no estan comprometidos con el proyecto y consecuentemente no entregan en nivel de rendimiento requerido

PATRON: REQUERIMIENTOS

- Requerimientos ya revisados continuan cambiando
- Se adicionan requerimientos nuevos
- Requerimientos pobremente definidos, lo que provoca que mas adelante su definición mas detallada ampliará el alcance del proyecto.
- Areas o partes del producto que fueron vagamente especificadas consumen mas tiempo que el esperado

PATRON: PRODUCTO

- Desarrollo de funciones incorrectas requieren rediseño e implementación
- Desarrollo de una interfaz incorrecta resulta en rediseño e implementación
- Desarrollo de funciones extras del software que en realidad no son requeridas (mas pinta que otra cosa) amplian el tiempo del proyecto.
- Requerimientos de compatibilidad con otros sistemas existentes requieren mas prueba, diseño, e implementación que el esperado
- Utilización de entorno de software de desarrollo no probado y poco familar causa problemas inesperados
- Utilización de entorno de hardware no probado y poco familar causa problemas inesperados

PATRON: ENTORNO

- El producto depende de regulaciones del estado, que cambian inesperadamente
- El producto depende de standares tecnicos aun en revision que cambian inesperadamente

PATRON: PERSONAL

- El empleo de personal toma mas tiempo del esperado
- Relaciones ineficaces o deficientes entre desarrolladores y lideres de gestion producen un bajo nivel de decision y seguimiento al proyecto
- Baja motivación y moral reduce la productividad
- La falta de especialización incrementa los defectos y extiende el re-trabajo
- El personal necesita tiempo extra para aprender a utilizar un entorno o herramientas de desarrollo poco conocidas
- El personal necesita tiempo extra para aprender a utilizar un entorno de hardware poco conocido
- El personal necesita tiempo extra para aprender a utilizar un lenguaje de desarrollo poco conocido.
- Conflictos entre miembros del equipo resultan en una pobre comunicación, deficientes diseños, errores de interfase, y trabajo extra adicional.
- El personal trabaja mas lento de lo esperado
- Las tareas asignadas a las personas no coinciden con sus fortalezas o destrezas.

