Learning from Networks

Graph Clustering

Fabio Vandin

December 4th, 2024

Graph Clustering: Definition

Given: graph G = (V, E)

Goal: partition V into clusters so that *similar vertices* are in the same cluster and *different vertices* are in different clusters.

Graph Clustering: Definition (continue)

Intuition: the similarity between vertices are represented by the edges

Given: connected graph G = (V, E)

Goal: partition V so that there are many edges within each cluster and few edges between clusters.

Many different formalizations based on this intuition.

Note: sometimes clusters in a graph are called *communities*

Graph Clustering: Approaches

We will see different types of approaches for clustering:

- hierarchical clustering
- cost-based clustering
- (spectral clustering)

Hierarchical Clustering

The output is a **dendrogram**, representing the clustering structure of the whole graph G.

Two general approaches to hierarchical clustering:

- agglomerative approach: start with each node in a cluster, iteratively join clusters ⇒ Ravasz algorithm
- divisive approach: start with all nodes in a cluster, iteratively split clusters ⇒ Girvan-Newman algorithm

Ravasz Algorithm

Algorithm AgglomerativeClustering(G)

Input: connected graph G = (V, E)

Output: dendrogram whose leaves are the elements of V

```
1 assign each node u to its own cluster C_u;

2 for all pairs u, v \in V, u \neq v: compute their similarity sim(u, v)

3 repeat until all nodes are in a single cluster:

\begin{cases}
4 & \text{find the pair of clusters } C_1, C_2 \text{ with highest similarity} \\
sim(C_1, C_2) & \text{ties broken arbitrarily}
\end{cases}
5 merge clusters C_1, C_2 in a single cluster C'
6 compute similarity between C' and all other clusters
7 return the corresponding dendrogram
```

Different variants depending on the definition of $\underline{sim}(u, v)$ and the definition of $\underline{sim}(C_1, C_2)$.

Complexity? In general: $\Theta(|V|^2)$ computations of $\underline{sim}(u, v)$ and of $\underline{sim}(C_1, C_2)$

Ravasz Algorithm (continue)

Common choice for sim(u, v):

$$sim(u,v) = \frac{|\mathcal{N}(u) \cap \mathcal{N}(v)| + A_{uv}}{\min\{deg(u), deg(v)\} + 1 - A_{uv}}$$

where A is the adjacency matrix of G

Ravasz Algorithm (continue)

Common choices for $sim(C_1, C_2)$ define different types of *linkage clustering*:

- single linkage clustering: $sim(C_1, C_2) = \min_{u \in C_1, v \in C_2} sim(u, v)$
- average linkage clustering: $sim(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \sum_{u \in C_1, v \in C_2} sim(u, v)$
- complete linkage clustering: $sim(C_1, C_2) = \max_{u \in C_1, v \in C_2} sim(u, v)$

Example

Girvan-Newman Algorithm

Based on the idea of iteratively removing the most *central* edge in the graph G = (V, E).

Various definitions of *centrality* for edges, but the most common one is *link betweenness*.

Link betweenness

Let $\sigma_{s,t}$ be the number of shortest paths from node s to node t. Let $\sigma_{s,t}(e)$ be the number of shortest paths from node s to node t that pass through $edge\ e$.

Definition

Given a connected graph G = (V, E) and an edge $e \in E$, the link betweenness b(e, G) of e in G:

$$b(e,G) = \sum_{s,t \in V: s \neq t} \frac{\sigma_{s,t}(e)}{\sigma_{s,t}}$$

Complexity of computing b(e, G) for all edges $e \in E$? $\Theta(|V| \cdot |E|)$

Example

Girvan-Newman Algorithm (continue)

```
Algorithm GNClustering (G)
Input: connected graph G = (V, E)
Output: dendrogram whose leaves are the elements of V
  1 assign all nodes u to a single cluster C;
  2 repeat until all nodes are in different clusters:
       3 for each cluster C:
            4 for each edge e \in C: compute b(e, C)
       5 let e_{max} the edge of maximum betweenness, and let C(e) its
         cluster:
       6 remove e from C(e);
  7 report the corresponding dendrogram
Complexity? In general: \Theta(|E|^2|V|).
```

Hierarchical Clustering: Getting a Clustering

The output of hierarchical clustering is a dendrogram, not a clustering. How do we obtain a clustering?

By cutting the dendrogram at a given level.

How do we select where to cut?

Hierarchical Clustering: Getting a Clustering (continue)

How do we select where to cut?

- if we know the number k of clusters we want: pick a level resulting in k clusters
- if we do not know k: define a score for clusterings, and pick the clustering from the dendrogram of maximum score

Cost-based Clustering

Common approach in clustering (not only for graphs):

- define a cost function over possible partitions of the objects
- find the partition (=clustering) of minimal cost

Modularity

Idea:a cluster should contain more edges than expected in a random graph.

Definition

Given a graph G = (V, E) with |V| = n, |E| = m the modularity M(S) of a subset $S \subseteq V$ of the vertices of G is

$$M(S) = \frac{1}{2m} \sum_{u,v \in S} \left(A_{uv} - \frac{\deg(u)\deg(v)}{2m} \right)$$

Intuition: measures the difference between the number of edges within each cluster with the *expected* number of edges under the Chung-Lu model for random graphs.

Modularity (continue)

The modularity of a clustering of *G* is the sum of the modularity of each cluster.

Definition

Given a clustering $\mathcal{C} = C_1, C_2, \ldots$ of graph G = (V, E) with |V| = n, |E| = m, the modularity $M(\mathcal{C})$ of \mathcal{C} is:

$$M(C) = \sum_{C \in C} M(C)$$

$$= \frac{1}{2m} \sum_{C \in C} \sum_{u,v \in C} \left(A_{uv} - \frac{deg(u)deg(v)}{2m} \right)$$

Modularity (continue)

Proposition

Given a clustering $\mathcal{C} = C_1, C_2, \ldots$ of graph G = (V, E) with |V| = n, |E| = m, the modularity $M(\mathcal{C})$ of \mathcal{C} is equal to

$$M(C) = \sum_{C \in C} \left(\frac{|E(C)|}{m} - \left(\frac{\sum_{u \in C} deg(u)}{2m} \right)^2 \right)$$

where E(C) are the edges between nodes in cluster C: $E(C) = \{(u, v) \in E : u \in C, v \in C\}$

Proof

Example

Modularity-Based Clustering

Input: graph G = (V, E)

Goal: find the clustering $C = C_1, C_2, \ldots$ that maximizes the

modularity

$$M(\mathcal{C}) = \sum_{C \in \mathcal{C}} \left(\frac{|E(C)|}{m} - \left(\frac{\sum_{u \in C} deg(u)}{2m} \right)^2 \right)$$

Equivalent formulation: since the cost of clustering \mathcal{C} is $-M(\mathcal{C})$, the following formulation is equivalent:

Input: graph G = (V, E)

Goal: find the clustering $C = C_1, C_2, \ldots$ of minimum cost -M(C).

Modularity-Based Clustering: Complexity

Informal: finding a clustering of maximum modularity is hard!

Problem (Modularity Clustering Problem)

Given a graph G and a value K, is there a clustering C of G such that $M(C) \geq K$?

Proposition

The Modularity Clustering Problem is NP-complete.

So? (Greedy) agglomerative algorithm

Modularity-Based Clustering: Greedy Agglomerative Approach

Algorithm GreedyModularityClustering(G)

Input: connected graph G = (V, E)

Output: clustering of the elements of *V*

- 1 $C_1 \leftarrow$ clustering where each node u is assigned to its own cluster C_u ; $i \leftarrow 1$;
- 2 repeat until all nodes are in a single cluster:
 - 3 for each pair of clusters C_1 , C_2 such that there exists one edge between C_1 and C_2 : compute
 - $\delta(C_i, C_1, C_2) = M(C_i C_1 C_2 + (C_1 \cup C_2)) M(C_i);$
 - 4 find C', C'' that maximize $\delta(C_i, C', C'')$
 - 5 $C_{i+1} \leftarrow C_i C' C'' + (C' \cup C''); i \leftarrow i+1;$
- 6 return the clustering C^* , across iterations, of maximum modularity: $C^* = \arg \max_{C_i, i=1,2,...} M(C_i)$

Complexity? In general: $O(|E| \cdot |V|)$ computations of $\delta(C_i, C_1, C_2)$

Modularity-Based Clustering: Efficient Computation

Proposition

Let $E(C_1, C_2)$ be the edges between cluster C_1 and cluster C_2 : $E(C_1, C_2) = \{(u, v) \in E : u \in C_1, v \in C_2\}$. Then

$$\delta(C_i, C_1, C_2) = \frac{|E(C_1, C_2)|}{m} - \frac{\left(\sum_{u \in C_1} deg(u)\right) \left(\sum_{v \in C_2} deg(v)\right)}{2m^2}$$

Modularity-Based Clustering: Efficient Computation (continue)

Proposition

In every iteration of the repeat-until loop, the values $|E(C_1, C_2)|$ for all $C_1, C_2 \in \mathcal{C}$ and $\sum_{u \in \mathcal{C}} deg(u)$ for all $C \in \mathcal{C}$ can be efficiently updated in total time O(|E|).

Example