1.

a.
$$4^{-1} = 4^5 \mod 7 = 4 \times 2^2 \mod 7 = 2$$

b.
$$\Phi(12) = 4$$
, $5^3 \mod 12 = 5*1 \mod 12 = 5 \mod 12$

c.
$$6^{-1} = 6^{11} \mod 13 = 6^*10^5 \mod 13 = 6^*10^*9^2 \mod 13 = 6^*10^*3 \mod 13 = 11$$

2.
$$\Phi(6) = 2\{5, 1\}, \Phi(9) = 6\{8, 7, 5, 4, 2, 1\}$$

a.
$$a^2 = 1 \mod 6 \text{ for } \{1, 5\}.$$

i.
$$5*5 = 25 = 1 \mod 6$$
, $1*1 = 1 \mod 6$

b.
$$A^6 = 1 \mod 9 \text{ for } \{1, 2, 4, 5, 7, 8\}$$

i.
$$1^6=1 \mod 9$$
, $2^6=64=1 \mod 9$, $4^6=(2^6)^2=1 \mod 9$, $5^6=25^3=7*4=1 \mod 9$, $7^6=4^3=54=1 \mod 9$, $8^6=(2^6)^3=1 \mod 9$

3.
$$a^{-1} = a^{\Phi(26)-1} \mod 26 = a^{12-1} \mod 26 = a^{11} \mod 26$$

a.
$$39_{10} = 100111_2$$

b

step	Square	Mul	bit
1	1	39	1
2	39 ² =748		0
3	748 ² =625		0
4	625 ² =260	260*39=91	1
5	91 ² =551	551*39=618	1
6	618 ² =62	62*39 =99	1

5. result of 1234567^2345678 mod 3333337 is: 3078688

```
# -*- coding: utf-8 -*-
```

,,,,,,

Created on Mon Apr 1 17:16:23 2019

@author: Erikson

,,,,,

def sqAndMul(base, exp, mod):

result = 1

```
binlist = [int(x) for x in '{:b}'.format(exp)]
for x in binlist:
    result**=2
    result %=mod
    if x is 1:
        result *= base
        result %=mod
return result

def main():
    base = 1234567
    exp = 2345678
    mod = 3333337
    print("result of %s^%s mod %s is: %s"%(base, exp, mod, sqAndMul(base, exp, mod))))

if __name__ == "__main__":
    main()
```