EMC TEST REPORT

Report No.: Q190505S004-FCC-E

Supersede Report No: N/A

Applicant	3Dconnexion			
Product Name	CADMOUSE PRO WIRELESS			
Model No.	3DX-600065	3DX-600065		
Serial No.	3DX-700078	3DX-700078		
Test Standard	FCC Part 15	FCC Part 15 Subpart B Class B, ANSI C63.4: 2014		
Test Date	May 06~June 12, 2019			
Issue Date	June 13, 2019			
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
mas. He		David	Huang	
Evans He Test Engineer			d Huang cked By	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	Q190505S004-FCC-E
Page	2 of 22

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

	<u> </u>
Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	Q190505S004-FCC-E
Page	3 of 22

This page has been left blank intentionally.

Test Report	Q190505S004-FCC-E
Page	4 of 22

CONTENTS

1	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	7
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1 <i>.</i>	AC POWER LINE CONDUCTED EMISSIONS	8
6.2	RADIATED EMISSIONS	12
ANN	NEX A. TEST INSTRUMENT	17
ANN	NEX B. TEST SETUP AND SUPPORTING EQUIPMENT	18
ANN	NEX C. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	21
ΔΝΙΝ	JEY D. DECLARATION OF SIMILARITY	22

Test Report	Q190505S004-FCC-E
Page	5 of 22

1. Report Revision History

Report No.	Report Version	Description	Issue Date
Q190505S004-FCC-E	NONE	Original	June 13, 2019

2. Customer information

Applicant Name	3Dconnexion
Applicant Add	7, Boulevard du Jardin Exotique, 98000 Monaco
Manufacturer	3Dconnexion
Manufacturer Add	7, Boulevard du Jardin Exotique, 98000 Monaco

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES		
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park		
Lab Address	South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China		
	518108		
FCC Test Site No.	535293		
IC Test Site No.	4842E-1		
Test Software of	EZ-EMC(ver.lcp-03A1)		
Radiated Emission			
Test Software of	E7 FMC(varior 0244)		
Conducted Emission	EZ-EMC(ver.lcp-03A1)		

Test Report	Q190505S004-FCC-E
Page	6 of 22

4. Equipment under Test (EUT) Information

Description of EUT:	CADMOUSE PRO WIRELESS

Main Model: 3DX-600065

Serial Model: 3DX-700078

Antenna Gain:

BLE: 0.5dBi
2.4G: 0.5dBi

Antenna Type:

BLE: CERAMIC Antenna
2.4G: CERAMIC Antenna

Equipment Category: JBP

Type of Modulation:

BLE: GFSK

2.4G: GFSK

RF Operating Frequency (ies):

BLE: 2402-2480 MHz
2.4G: 2404-2477MHz

Number of Channels: BLE: 40CH 2.4G: 5CH

Battery:

Input Power: Model: 603450

Spec: DC 3.7V 1100mAh 4.07Wh

Port: Please refer to the user's manual

Trade Name : 3Dconnexion

FCC ID: 2AAHQ-CMPW

Date EUT received: May 05, 2019

Test Date(s): May 06~June 12, 2019

Test Report	Q190505S004-FCC-E
Page	7 of 22

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance

Measurement Uncertainty

Parameter	Uncertainty	
AC Power Line Conducted Emissions	±2.70dB	
(150kHz~30MHz)		
Radiated Emission(30MHz~1GHz)	±3.74dB	
Radiated Emission(1GHz~18GHz)	±4.66dB	

Test Report	Q190505S004-FCC-E
Page	8 of 22

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1016mbar
Test date :	June 06, 2019
Tested By :	Evans He

Requirement(s):

Spec	Item	Requirement Applicable					
47CFR§15.	a)	For Low-power radio-freconnected to the public voltage that is conducted frequency or frequencied not exceed the limits in [mu] H/50 ohms line implies at the second context of the limit applies at the the limit app	e utility (AC) power line ed back onto the AC poses, within the band 150 the following table, as apedance stabilization in	the radio frequency ower line on any kHz to 30 MHz, shall measured using a 50 network (LISN). The	₹		
107		Frequency ranges	Limit (
		(MHz)	QP	Average			
		0.15 ~ 0.5	66 – 56	56 – 46			
		0.5 ~ 5	56	46			
		5 ~ 30	60	50			
Test Setup	Vertical Ground Reference Plane EUT Horizontal Ground Reference Plane						
	Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.						
Procedure	 The EUT and supporting equipment were set up in accordance with the return the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50Ω /50mH EUT LISN, filtered mains. 						

Test Report	Q190505S004-FCC-E
Page	9 of 22

	3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss							
	coaxial cable.							
	4. All other supporting equipment were powered separately from another main supply.							
	5. The EUT was switched on and allowed to warm up to its normal operating condition.							
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)							
	over the required frequency range using an EMI test receiver.							
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the							
	selected frequencies and the necessary measurements made with a receiver bandwidth							
	setting of 10 kHz.							
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).							
Remark								
Result	Pass Fail N/A							
V								
Test Data	Yes N/A							
Test Plot	Yes (See below) N/A							
Test Mode 1:	Charging by Adapter							
Test Mode 2:	Test Mode 2: Charging by Laptop							

Note: All modes were investigated, the results below show only the worst case(Charging by Laptop mode).

Test Report	Q190505S004-FCC-E
Page	10 of 22

Test Mode 2: Charging by Laptop

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.1851	42.78	QP	10.03	52.81	64.25	-11.44
2	L1	0.1851	27.13	AVG	10.03	37.16	54.25	-17.09
3	L1	0.2046	42.84	QP	10.03	52.87	63.42	-10.55
4	L1	0.2046	28.32	AVG	10.03	38.35	53.42	-15.07
5	L1	0.2475	36.22	QP	10.03	46.25	61.84	-15.59
6	L1	0.2475	24.54	AVG	10.03	34.57	51.84	-17.27
7	L1	0.4971	30.66	QP	10.03	40.69	56.05	-15.36
8	L1	0.4971	23.34	AVG	10.03	33.37	46.05	-12.68
9	L1	1.0470	29.20	QP	10.03	39.23	56.00	-16.77
10	L1	1.0470	21.95	AVG	10.03	31.98	46.00	-14.02
11	L1	4.1193	29.24	QP	10.07	39.31	56.00	-16.69
12	L1	4.1193	19.42	AVG	10.07	29.49	46.00	-16.51

Test Report	Q190505S004-FCC-E
Page	11 of 22

Test Mode 2: Charging by Laptop

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1500	42.79	QP	10.02	52.81	66.00	-13.19
2	N	0.1500	31.38	AVG	10.02	41.40	56.00	-14.60
3	N	0.2046	37.44	QP	10.02	47.46	63.42	-15.96
4	N	0.2046	27.56	AVG	10.02	37.58	53.42	-15.84
5	N	0.5049	30.66	QP	10.02	40.68	56.00	-15.32
6	N	0.5049	22.67	AVG	10.02	32.69	46.00	-13.31
7	Ν	1.0470	28.97	QP	10.03	39.00	56.00	-17.00
8	Ζ	1.0470	21.72	AVG	10.03	31.75	46.00	-14.25
9	Ζ	2.6928	24.97	QP	10.05	35.02	56.00	-20.98
10	Ν	2.6928	18.94	AVG	10.05	28.99	46.00	-17.01
11	N	4.2012	28.72	QP	10.06	38.78	56.00	-17.22
12	N	4.2012	18.60	AVG	10.06	28.66	46.00	-17.34

Test Report	Q190505S004-FCC-E
Page	12 of 22

6.2 Radiated Emissions

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1016mbar
Test date :	June 06, 2019
Tested By :	Evans He

Requirement(s):

Spec	Item	Requirement Applicable						
47CFR§15.	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spe the level of any unwanted emission the fundamental emission. The tigh edges	(
109(d)	,	Frequency range (MHz)	Field Strength (μV/m)					
		30 - 88	100					
		88 – 216	150					
		216 - 960	200					
		Above 960	500					
Test Setup		Ant. Tower Support Units Turn Table Ground Plane Test Receiver						
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarization (whichever gave the higher emission level 							

Test Report	Q190505S004-FCC-E
Page	13 of 22

			over a full rotation of the EUT) was chosen.
		b.	The EUT was then rotated to the direction that gave the maximum
			emission.
		C.	Finally, the antenna height was adjusted to the height that gave the maximum
			emission.
	3.	The res	solution bandwidth and video bandwidth of test receiver/spectrum analyzer is
		120 kH:	z for Quasiy Peak detection at frequency below 1GHz.
	4.	The reso	plution bandwidth of test receiver/spectrum analyzer is 1MHz and video
		bandwi	dth is 3MHz with Peak detection for Peak measurement at frequency above
		1GHz.	
		The re	solution bandwidth of test receiver/spectrum analyzer is 1MHz and the video
		bandw	ridth with Peak detection for Average Measurement as below at frequency
		above	1GHz.
		■ 1 kH	lz (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%)
	5.	Steps 2	and 3 were repeated for the next frequency point, until all selected frequency
		points v	vere measured.
Remark			
Remark			
Result	☑ Pa	ass	Fail
	7		
Test Data	Yes		└ N/A
Test Plot	Yes (S	See belo	w) N/A

Test Report	Q190505S004-FCC-E
Page	14 of 22

Test Mode : Normal Working Mode

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	I	139.3613	45.54	11.24	22.41	1.20	35.57	43.50	-7.93	200	147
2	Н	153.7385	47.20	10.94	22.31	1.29	37.12	43.50	-6.38	100	185
3	Η	185.7882	44.19	11.33	22.29	1.49	34.72	43.50	-8.78	100	166
4	Н	519.0649	35.52	19.08	21.77	2.18	35.01	46.00	-10.99	100	78
5	Н	687.1507	30.84	20.99	21.39	2.40	32.84	46.00	-13.16	100	118
6	Н	948.7610	25.17	23.69	20.79	2.70	30.77	46.00	-15.23	100	276

Test Report	Q190505S004-FCC-E
Page	15 of 22

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	V	31.6202	22.93	19.06	22.27	0.14	19.86	40.00	-20.14	100	235
2	٧	155.9101	33.87	10.97	22.30	1.30	23.84	43.50	-19.66	100	327
3	٧	232.5318	33.50	11.55	22.32	1.59	24.32	46.00	-21.68	100	198
4	٧	333.6867	27.81	14.37	22.20	1.81	21.79	46.00	-24.21	100	195
5	V	515.4374	29.81	19.01	21.77	2.17	29.22	46.00	-16.78	100	35
6	٧	687.1507	30.39	20.99	21.39	2.40	32.39	46.00	-13.61	100	159

Test Report	Q190505S004-FCC-E
Page	16 of 22

Above 1GHz

Frequency	Read_level	A =ima utla	Height	Polarity	Factors	Level	Limit	Margin	Detector
(MHz)	(dBµV/m)	Azimuth	(cm)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(PK/AV)
1154.6	68.07	62	100	V	-19.38	48.69	74	-25.31	PK
1254.3	63.48	218	100	V	-15.96	47.52	74	-26.48	PK
1333.9	63.41	195	100	V	-14.18	49.23	74	-24.77	PK
1445.2	66.04	235	100	Н	-18.52	47.52	74	-26.48	PK
1999.6	59.96	168	100	Н	-13.68	46.28	74	-27.72	PK
2112.5	63.34	305	100	Н	-16.75	46.59	74	-27.41	PK

Note1: The highest frequency of the EUT is 2480 MHz, so the testing has been conformed to 5*2480MHz=12,400MHz.

Note2: The frequency that above 3GHz is mainly from the environment noise.

 $Note 3:\ The\ AV\ measurement\ performed,\ more\ than\ 20dB\ below\ limit\ so\ AV\ test\ data\ was\ not\ presented.$

Test Report	Q190505S004-FCC-E
Page	17 of 22

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due
AC Line Conducted Emissions				
EMI test receiver	ESCS30	8471241027	01/04/2019	01/03/2020
Artificial Mains Network	8127	8127713	01/04/2019	01/03/2020
ISN	ISN T800	34373	01/04/2019	01/03/2020
Radiated Emissions				
ENAL to at your six on	ESL6	1300.5001K06-	01/04/2019	01/03/2020
EMI test receiver		100262-eQ		
Active Antenna	AL-130	121031	02/07/2019	02/06/2020
3m Semi-anechoic Chamber	9m*6m*6m	N/A	10/18/2018	10/17/2019
Signal Amplifier	8447E	443008	01/24/2019	01/23/2020
MXA signal analyzer	N9020A	MY49100060	01/04/2019	01/03/2020
Horn Antenna	HAH-118	71259	01/25/2019	01/24/2020
Horn Antenna	HAH-118	71283	02/01/2019	01/31/2020
AMPLIFIER	EM01G26G	60613	01/24/2019	01/23/2020
AMPLIFIER	Emc012645	980077	01/04/2019	01/03/2020
Bilog Antenna (30MHz~6GHz)	JB6	A110712	02/07/2019	02/06/2020

Test Report	Q190505S004-FCC-E
Page	18 of 22

Annex B. TEST SETUP AND SUPPORTING EQUIPMENT

Annex B.i. TEST SET UP BLOCK

Block Configuration Diagram for Conducted Emissions

Test Report	Q190505S004-FCC-E
Page	19 of 22

Block Configuration Diagram for Radiated Emissions

Test Report	Q190505S004-FCC-E
Page	20 of 22

Annex B. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting equipment:

Manufacturer	Equipment Description	Model	Serial No
Lenovo	Laptop	E40	LR-1EHRX

Supporting Cable:

NO.	DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	AC Line: Unshielded, Detachable 2.8m USB Line: Unshielded, Detachable 0.8m

Test Report	Q190505S004-FCC-E
Page	21 of 22

Annex C. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Test Report	Q190505S004-FCC-E
Page	22 of 22

Annex D. DECLARATION OF SIMILARITY

3D Connexion

To: SIEMIC.INC

775 Montague Expressway Mlpitas, CA 95035, USA

Declaration Letter

Dear Sir,

For our business issue and marketing requirement, we would like to list serial model numbers on the reports, as following:

Model No: 3DX-600065,

Serial Model No: 3DX-700078

We declare that : all models the same PCB, accessories ,the difference of these is listed as below

Thank you very much.

Main Model No	Serial Model No	Difference
3DX-600065,	3DX-700078	3DX-600065 is Product model 3DX-700078 is Market model

Sincerely,

Client's signature:

Second Party

Address: 33, Rue du Portier, 98000 Monaco Name of Corporation: 3Dconnexion.

Name: Xiaobing Lin Date: 2019-6-18