GET 201 2015/2016

2015/2016 HARMATTAN SEMESTER EXAMINATIONS
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
GET 201: APPLIED ELECTRICITY I

SATURDAY, NOVEMBER 28, 2015

EXAMINATION TIME: 08:30A.M - 11.00AM

TIME ALLOWED: $2\frac{1}{2}$. HOURS

INSTRUCTIONS: Answer any TWO questions in each section. Each section is to be answered on separate booklet.

OU ARE REQUIRED TO FILL IN YOUR PARTICULARS HERE AND ON THE ANSWER BOOKLET)
ATRICULATION NUMBER: 150 67 CE 162
COLLEGE:
EPARTMENT:
GREE PROGRAMME:

PLEASE TURN OVER ONLY WHEN INSTRUCTED TO START BY THE INVIGILATOR

SECTION A

1. (a.) State Kirchhoff's Voltage and current laws.

- (b.) Briefly explain the term permittivity of free space, which is represented as ϵ_0 . (3 Marks)
- (c.) Determine the current in 8Ω resistor in Figure Q1 below, using (i) Thevenin's theorem and
- (ii) Norton's theorem

2. (a.) An insulant is called a

(2 Marks)

(b.) Define the time constant of a circuit that includes a resistor and capacitor connected in series.

· (2 Marks) (c.) A capacitor in Figure Q2 below consists of two metal plates, each 600 × 600 mm, spaced 10 mm apart. The space between the metal plates is filled with a glass plate 8 mm thick and a layer of paper 2 mm thick. The relative permittivities of the glass and paper are 8 and 2 respectively. Calculate

(i.) the capacitance, neglecting any fringing flux, and

(4 Marks)

(ii.) the electric field strength in each dielectric in kilovolts per millimetre due to a p.d. of 10ky between the metal plates. (7 Marks)

Fig. Q2

(a.) Figure Q3a below shows that the capacitor charge and discharged through a resistor, prove that the instantaneous charging current will be $i = I e^{-t/RC}$.

Where I is the initial value of current, C is the capacitor, R is the resistor and t is the time taken.

(b.) Calculate the current in each resistor of the network shown in Figure Q3b below using Kirchhoff's current law and Kirchhoff's voltage law.

Fig. Q3b (10 Mark

Y		
ECT	ONT	b

•		
4. (a.) Ans	swer the following;	
i.	The reciprocal of impedance is called	
ii.	is a complementary measure that shows how much a current to flow.	a circuit allows
· iii.	What is a transducer?	- -
(b.) A	coil having a resistance of 7Ω and an inductance of 31.8mH is connected.	(4 marks)
supply.	Calculate; (i) The circuit current (ii) Phase angle (iii) Power factor	or (iv) Post
consume	ed (v) Apparent power	(5 marks)
(c.) In a	a Wheatstone bridge PQRS, a galvanometer is connected between Q a	nd S and a voltage
source b	etween P and R. An unknown resistor Rx is connected between P and (Q. When the bridge
is balanc	ced, the resistance between Q and R is 200Ω , that between R and	S is 10Ω and that
between	S and P is 150Ω . Draw the circuit and calculate the value of Rx.	(6 marks)
5. (a.) Ans	wer the following;	
i.	The symbol for conductance is	
ii.	Write the expression for conductance in terms of resistance and read	ctance.
iii.	Show the various inputs of a transducer and their relationship with	
	simple diagram.	(3 marks)
(b.) A 200	OV, 50Hz, inductive circuit takes a current of 10A, lagging 30°. Find	•
(i.) The res	sistance (ii.) Reactance (iii.) Inductance of the coil (iv.) Real power	
(v.) Reacti	ve power	(5 marks)
(c.) A Max	well bridge circuit ABCD has the following arm impedances: AB	, 250Ω resistance;
	apacitor in parallel with a 10 k Ω resistor; CD, 400 Ω resistor; DA	
	etance L and resistance R. Draw the circuit, and determine the va	
	bridge is balanced.	(7 marks)
C		(, mm 42)

6. (a.) Answer the following;

- i. If a circuit's total admittance <u>increases</u> while the source voltage is held constant, then the circuit's total current
- ii. State the use of AC bridges
- iii. Write what the following transducers measure.

Linear Voltage Displacement Transducer (LVDT)

Piezoelectric

Thermocouple

Tachometer

Potentiometer-

·(7 marks)

- (b.) A capacitor of capacitance $79.5\mu F$ is connected in series with a non-inductive resistance of 30Ω across a 100V, 50Hz supply. Find; (i.) Impedance (ii.) Current (iii.) Phase angle
- (iv.) Equation for the instantaneous value of current (v.) Apparent power (5 marks)
- (c.) For the a c. bridge shown in Figure Q6c below, determine the values of the inductance and resistance of the coil when $R1 = R2 = 400\Omega$, $R3 = 5 \text{ k}\Omega$ and $C = 7.5 \mu\text{F}$

Fig. Q6c

(3 marks