	CAMPUS, FEROZEPUR
S	SHAHEED BHAGAT SINGH STATE TECHNICAL CAMPUS, FEROZEPUR Total number of pages: 02
ROL	L No.:
Total	number of questions: 08 M.TechEE/ 1st Sem Digital Control System
	M.TechEE/ 1st Sem
	Digital Control System
	Subject Code: MTEE-104
	Paper ID:
Tim	e allowed: 3 Hrs Max Marks:100
	ant Instructions: Attempt all questions and each question carry equal marks.
Q. 1.	a) What are the state space representation forms? and Explain them in detail.b) Discuss steps involved for obtaining solution of state equation.
	OR
	 a) What is the state transition matrix and discuss its properties and prove them. b) What are the methods for computation of state transition matrix. Explain any one method?
Q. 2.	a) State and prove the sampling theorem. b) Explain the relation between the bilinear transformation and the w plane?
	OR
	List down the basic elements of a digital control system and show the block diagram CO1 representation of such a system and discuss briefly about functioning these
Q. 3.	elements. a) Obtain state equations and state model for the given transfer function $\frac{Y(s)}{V(s)} = \frac{K}{(s+1)(s+2)(s^2+1)}$ CO2
	b) Write short notes on Multi-variable digital control systems. OR
	Define controllability and observability. And find controllability and observability for
w.	$\frac{Y(s)}{U(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}$

Q. 4. Define stability of a digital control system and discuss how is Jury stability criterion applied for stability investigation for such systems. Find whether the given system is stable or not. Use Jury's method.

$$z^3 + 3.3z^2 + 4z + 0.8 = 0$$

OR

Discuss the stability analysis of discrete control system using (i) Routh stability CO3 criteria (ii) Bilinear transformation

- Q. 5. a) Discuss working of a Digital position, control system with a simplified block CO4 diagram.
 - b) Explain Design of state feedback controller. OR
 - a) Discuss the stepping motor-operation with control action included and disk CO4 drive system incorporated.
 - b) Short note on Digital Compensator design using root locus plots.