星型八面体を任意の平面で切る

hsjoihs

1. 問題

1 辺の長さが 2 である立方体を考える。この立方体の 8 つの頂点のうち隣り合わない 4 頂点を結んで得られる正四面体と、残りの 4 頂点を結んで得られる正四面体との和集合を考える。これは星型八面体 (stella octangula) と呼ばれる立体になるが、これを任意の平面で切ったときの断面積を求めよ。

2. 座標設定

問題文のシンプルさに反しておそろしく凶悪な問題である。 我々には 3 次元立体の直観など 生えていないのだなぁということを思い知らせてくれる。

なにはともあれ、座標を設定してパラメータをとって数式で殴るところから始める。立方体の頂点を $(X,Y,Z)=(\pm 1,\pm 1,\pm 1)$ とすれば、片方の正四面体は

$$X + Y + Z \ge -1 \ \land \ X - Y - Z \ge -1 \ \land \ -X + Y - Z \ge -1 \ \land \ -X - Y + Z \ge -1$$

を満たす点の集合であって、もう片方が

$$X + Y - Z \ge -1 \ \land \ X - Y + Z \ge -1 \ \land \ -X + Y + Z \ge -1 \ \land \ -X - Y - Z \ge -1$$

を満たす点の集合である。切る平面の法線ベクトルのひとつを $\left(\sin T\cos P,\sin T\sin P,\cos T\right)$ と してやると、平面と原点との符号付き距離を z_0 としたとき $X\sin T\cos P+Y\sin T\sin P+Z\cos T=z_0$ が 平面の式になる。

ここで
$$\begin{pmatrix} \sin T \cos P \\ \sin T \sin P \\ \cos T \end{pmatrix}$$
, $\begin{pmatrix} -\cos T \cos P \\ -\cos T \sin P \\ \sin T \end{pmatrix}$, $\begin{pmatrix} \sin P \\ -\cos P \\ 0 \end{pmatrix}$ が正規直交基底を成すことから、

図 1 星型八面体 (stella octangula)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\cos T \cos P & -\cos T \sin P & \sin T \\ \sin P & -\cos P & 0 \\ \sin T \cos P & \sin T \sin P & \cos T \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

という座標系でものごとを考えれば、切断平面の式が $z=z_0$ であり扱いやすくなる。

直交行列であるから逆変換を求めるのは簡単であり、

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} -\cos T \cos P & \sin P & \sin T \cos P \\ -\cos T \sin P & -\cos P & \sin T \sin P \\ \sin T & 0 & \cos T \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

ということで、 正四面体に属する条件を xyz 座標系で書き直して $z=z_0$ と固定することで断面を xy 平面上に得ることができる。

3. 切る

まずは片方の正四面体

$$X + Y + Z \ge -1 \ \land \ X - Y - Z \ge -1 \ \land \ -X + Y - Z \ge -1 \ \land \ -X - Y + Z \ge -1$$

を扱う。 そのためには頂点候補が要る。 それぞれの不等号を等号に変えて得られる条件を ppp, pnn, npn, nnp と書くことにすると、全然難しくはないがやたら手間のかかる計算により、

ppp ∧ pnn (図の赤) は

$$(x,y) = \left(\frac{-z_0 \sin P \cos T - \cos P - z_0 \sin T}{\sin P \sin T - \cos T}, \frac{-\sin T + \sin P \cos T - z_0 \cos P}{\sin P \sin T - \cos T}\right)$$

 $npn \wedge ppp$ (図の紫) は

$$(x,y) = \left(\frac{-\sin P - z_0 \sin T - z_0 \cos P \cos T}{\cos P \sin T - \cos T}, \frac{\sin T - \cos P \cos T + z_0 \sin P}{\cos P \sin T - \cos T}\right)$$

 $pnn \wedge npn$ (図のオレンジ) は

$$(x,y) = \left(\frac{1 - z_0 \cos T}{\sin T}, \frac{(\cos P - \sin P)(\cos T - z_0)}{(\sin P + \cos P)\sin T}\right)$$

 $ppp \wedge nnp$ (図の緑) は

$$(x,y) = \left(\frac{-1 - z_0 \cos T}{\sin T}, -\frac{(z_0 + \cos T)(\cos P + \sin P)}{\sin T(\sin P - \cos P)}\right)$$

 $npn \wedge nnp$ (図の黒) は

$$(x,y) = \left(-\frac{\left(\cos P + z_0 \sin P \cos T - z_0 \sin T\right)}{\cos T + \sin P \sin T}, \frac{\cos T \sin P + \sin T - z_0 \cos P}{\cos T + \sin P \sin T}\right)$$

 $pnn \wedge nnp$ (図の青) は

$$(x,y) = \left(-\frac{z_0 \cos P \cos T + \sin P - z_0 \sin T}{\cos T + \cos P \sin T}, \frac{-\cos P \cos T - \sin T + z \sin P}{\cos T + \cos P \sin T}\right)$$

 \boxtimes 2 $T=0.423, P=0.257, z_0=0.22$ https://www.desmos.com/calculator/7hnbfebsp4

となる。

4. 条件分岐

先ほどの雑な計算は全て 0 除算のリスクを孕んでいる。とはいえ実際のところこれは当たり前であり、むしろないとおかしい。というのも、ppp,pnn,npn,nnp それぞれの条件は「正四面体を構成する面上にあるかどうか」 なので、 たとえば $ppp \land pnn$ (図の赤) が 0 除算を起こす条件というのは 「『ppp かつ pnn』、 つまり 『(X,Y,Z)=(-1,-1,1) と (X,Y,Z)=(-1,1,1) を結ぶ直線』が切断平面と平行であるとき」のはずである。そのような状況は存在するはずであり、したがって 0 除算リスクも存在しなければならない。

せっかくなので代数的にも確認しよう。 赤の 0 除算条件は $\sin P\sin T=\cos T$ であり、これは法線ベクトルが XYZ 座標系で $\left(\pm\sqrt{1-2a^2},a,a\right)$ という形であることを意味する。 $\mathbb{F}(X,Y,Z)=\left(-1,-1,1\right)$ と $\left(X,Y,Z\right)=\left(-1,1,-1\right)$ を結ぶ直線』の方向ベクトルの一つは $\left(X,Y,Z\right)=\left(0,-2,2\right)$ であって、これは切断平面の法線ベクトルと明らかに直交する。

とまあ 0 除算条件という等式条件は幾何学的考察が簡単なのでよいが、問題は不等式条件である。これはつらいので、少しでも条件を削るべく対称性を用いる。具体的には、 $z_0 \geq 0$ として、球面の 8 分の 1、 $0 \leq T \leq \pi, 0 \leq P \leq \frac{\pi}{4}$ で片方の正四面体だけを考える。これが解ければ球面の 16 分の 1、 $0 \leq T \leq \frac{\pi}{2}, 0 \leq P \leq \frac{\pi}{4}$ での星型八面体と平面との交わりを求めるこ

とができる。

試しに P=0.2 で相図を書いてみる。そこから相図を予想する。とりあえず「赤紫 \Leftrightarrow 橙」「紫緑 \Leftrightarrow 黒」「緑青 \Leftrightarrow 赤」「青橙 \Leftrightarrow 黒」「青黒 \Leftrightarrow 橙」「赤青 \Leftrightarrow 緑」の 6 本の境界はありそう。

まず「赤紫 ⇔ 橙」。 これは $X+Y+Z \geq -1$ を橙が満たしているかどうかによる分岐であり、条件は $1+\frac{2(z_0-\cos T)}{(\sin P+\cos P)\sin T} \geq -1$ である。この分岐は $0\leq P\leq \frac{\pi}{4}$ の条件のもとで常に所望の範囲を二分し、その境界は $(z_0,T)=(1,0)$ と $(z_0,T)=(0,\cot^{-1}(\sin P+\cos P))$ を通過する曲線である。

次に「紫緑 \Leftrightarrow 黒」と「青橙 \Leftrightarrow 黒」。 これはそれぞれ $X+Y+Z\geq -1$ と $X-Y-Z\geq -1$ を 悪が満たしているかどうかによる分岐であり、条件は $1+\frac{2(z_0-\sin T\cos P)}{\cos T+\sin P\sin T}\geq -1$ かつ $1-\frac{2(z_0-\sin T\cos P)}{\cos T+\sin P\sin T}\geq -1$ である。

一見 $\cos T + \sin P \sin T$ の符号が途中で変わるために $T = \cot^{-1}(-\sin P)$ あたりで面倒に見え、実際片方の条件のみではそうなるが、図から分かるように 2 つの条件を合わせればこの境界は実際には効いてこない。

次。「緑青 \Leftrightarrow 赤」。 これは $-X-Y+Z \geq -1$ を赤が満たしているかどうかによる分岐であり、条件は $1+\frac{-2(z_0+\cos P\sin T)}{\sin P\sin T-\cos T} \geq -1$ である。 だが、 この条件で書くと 0 除算条件よりやっぱり横線が入って面倒なので、 $-X+Y-Z \geq -1$ を赤が満たしているかどうかの分岐も入れてみる。 すると追加で $1+\frac{2(z_0+\cos P\sin T)}{\sin P\sin T-\cos T} \geq -1$ を要求することとなり、かつこの境界はさっき橙でやったやつと一致してくれる。

ということで、相図の境界を定めるのは4本の正弦波

$$z_0 = \cos T \pm (\sin P + \cos P) \sin T$$

$$z_0 = -\cos T \pm (\sin P - \cos P) \sin T$$

であることがわかった。答えだけ見るとかなり簡単だな。いい感じの幾何的考察でサクッと 出せそう。

図 3P = 0.2 における相図 (実測)

図 4P = 0.2 における相図 (予想)。緑青橙紫と \emptyset との境界は線ではなく点かも。

ということで、 $z_0 \geq 0$ で $0 \leq T \leq \pi, 0 \leq P \leq \frac{\pi}{4}$ において相は 7 つ。

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

図5赤紫⇔橙(図の橙)

図6紫緑⇔黒、青橙⇔黒(図の黒)

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

図 7 紫緑 ⇔ 黒のみ

図8緑青⇔赤と追加の【橙紫⇔赤】

図 9 最終的な相図

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a