Otimizando o tempo de execução no processamento de imagens

Henrique Miyamoto e Thiago Benites

I. CONTEXTUALIZAÇÃO

Apresentamos uma comparação entre diferentes métodos para aplicação de brilho em nossa linguagem voltada para o processamento de imagens. A mesma função foi implementada de quatro diferentes maneiras: usando múltiplas *threadas*, usando multiprocessos, em uma única linha de execução, varrendo a matriz por linhas e por colunas. O objetivo desse trabalho é comparar e discutir os desempenhos de cada método. Para isso, foi medido o tempo de execução de cada implementação.

A tabela I apresenta as sintaxes para os diferentes métodos de aplicação de brilho usados em nosso programa.

TABLE I Sintaxe da linguagem de programação para diferentes métodos

Funcionalidade	Sintaxe	
Alterar brilho usando multithreadas	destino.jpg = origem.jpg * float THR	
Alterar brilho usando multiprocessos	destino.jpg = origem.jpg * float PRC	
Alterar brilho com varredura por linhas	destino.jpg = origem.jpg * float LIN	
Alterar brilho com varredura por colunas	destino.ipg = origem.ipg * float COL	

Neste caso, a implementação simples se dá pela varredura, pixel a pixel, da matriz que representa a imagem. Já a implementação com *multithreads*, faz com que as operações de alteração do brilho sejam feitas em grupos de pixel e de forma paralela.

II. DEMONSTRAÇÃO

Para medição dos tempos de execução foi usada a biblioteca *time.h.* A tabela II indica os tempos de processamento para a aplicação da mesma intensidade de brilho em imagens de diferentes tamanhos. Também alterou-se a quantidade de pixels que são tratados em cada *thread* executada.

Implementação	Tamanho	Tempo
Simples	48x48	0,046 ms
Multithread (10 pixels)	48x48	3,31 ms
Multithread (48 pixels)	48x48	0,45 ms
Simples	2592x1944	136,63 ms
Multithread (600 pixels)	2592x1944	69,87 ms
Multithread (2592 pixels)	2592x1944	14,99 ms

^{*} Os códigos do projeto estão disponíveis em https://github.com/miyamotohk/linguagem-processamento-imagem.

III. ANÁLISE

Observa-se que a execução da função de brilho através de *multithreading* não apresenta desempenho estritamente superior ao com varredura simples. Para imagens pequenas, o processamento simples é mais rápido que com *multithread*. Por outro lado, quando as imagens são grandes, usar *multithreads* aumenta consideravelmente a velocidade de execução da função. Em ambos os casos, aumentar a quantidade de pixels tratados em cada *thread* melhora o desempenho.

REFERÊNCIAS

 MERNIK, M., HEERIN, J., SLOANE, A. M. When and how to develop domain-specific languages. In: ACM Computing Surveys (CSUR). Nova York, vol. 37, ed. 4, p. 316-344, dez. 2005.