

- Актуальность
- Спасательные операции с участием людей дорогостоящи, не слишком результативны и подвергают риску жизни самих спасателей. И с задачей поиска людей человек справляется с куда меньшей эффективностью, чем высокотехнологичное вычислительное устройство. А благодаря улучшению качества поиска с использованием нейронных сетей, задача нахождения людей с БПЛА становится практически тривиальной.

• Характерной особенностью мест, где человек может потеряться, является низкая картографированность, отсутствие карты дорог и ориентиров.

Цели и задачи Цели:

Повышение эффективности работы БПЛА, предназначенных для мониторинга объектов живой природы

Задачи:

- Анализировать изображения, поступающие из внешнего источника и с помощью разработанной и предобученной нейронной сети сегментировать на данных изображениях людей и вести их подсчет
- Считывать с изображения метаинформацию с геопозицией, преобразовывать их в стандартные широту и долготу
- Получать с помощью координат изображения спутниковый снимок местности
- С помощью предобученной нейронной сети сегментировать на спутниковом снимке любые виды дорог
- Находить по координатам с изображения ближайшие населенные пункты
- Вычислять по найденным дорогам кратчайший путь от координат изображения до ближайшей дороги и от ближайшей дороги до ближайших населенных пунктов
- Предоставлять графический интерфейс для использования вышеозначенного функционала

Модель обучения

- Добавлены слои Batch normalization
- Функция активации LeakyReLU
 вместо ReLU для смягчения
 проблемы исчезающего градиента
- Были добавлены слои Dropout
- EfficientNetB4 в качестве энкодера для людей
- Resnet50 в качестве энкодера для дорог

TernausNetV2

 $LeakyReLU(x) = \max(0, x) + negative_slope * \min(0, x)$

 $\text{LeakyReLU}(x) = \begin{cases} x, & \text{if } x \geq 0 \\ \text{negative_slope} \times x, & \text{otherwise} \end{cases}$

Обоснование модели

		F_1			
Task	Model	NADIR	OFF	VOFF	Avg.
Seg	TernausNet	0.62	0.43	0.22	0.43
Seg	U-Net	0.39	0.27	0.08	0.24
Seg	Mask R-CNN	0.47	0.34	0.07	0.29
Det	Mask R-CNN	0.40	0.30	0.07	0.25
Det	YOLT	0.49	0.37	0.20	0.36

Метрики

Коэффициент Dice

- Учитывает пространственную структуру изображений и поощряет прогнозы, которые имеют большое совпадение с истинными масками.
- Учитывает дисбаланс между пикселями переднего и заднего плана, поскольку придает равный вес обоим классам.

Binary cross-entropy

Уверенные и неверные прогнозы наказываются сильнее, чем неуверенные и неверные прогнозы.

Она выпуклая, что означает, что у нее есть один глобальный минимум и нет локальных минимумов.

Оптимизатор

В качестве оптимизатора выбран Adam

Методы и инструменты разработки

Folium

Трансформации данных

- Поворот
- Размытие
- Изменение масштаба
- Разделение изображения на патчи (512х512)

Original mask

Scaling

Flipping

Method	Aug	mIoU (%)
ECN	×	82.2
FCN	✓	85.5
II Not	×	84.6
U-Net	 ✓	87.2
PSPNet	×	86.3
PSPINEL	✓	89.1
Doord oh V2	×	87.1
DeepLab V3	✓	89.7

CutOut

CutMix

Датасеты

Дороги

- SpaceNet Road Detection and Routing Challenge (4 датасета, geojson)
- Massachusetts Roads Dataset (csv)

Люди

- Lacmus Drone Dataset (LaDD) это набор данных для поиска пропавших людей (xml)
- NTUT 4K Drone Photo Dataset for Human Detection (csv)

Особенности датасета SpaceNet

```
roads_processing > sn3_AOI_3_Paris > sn3_SN3_roads_train_AOI_3_Paris_PS-RGB_img6-labels > {} labels.geojson >
         "type": "FeatureCollection",
         "crs": {
           "type": "name",
           "properties": {
              "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
         "features": [
              "type": "Feature",
              "properties": {
                "heading": "0",
                "lane_number": "2",
                "one way ty": "2",
                "paved": "1",
                "road id": 684,
                "road type": "2",
                "origarea": 0,
                "origlen": 0.002674811893701301,
                "partialDec": 1,
                "truncated": 0,
                "bridge type": "2",
                "inferred speed mph": 45,
                "inferred speed mps": 20.1168
              "geometry": {
                "type": "LineString",
                "coordinates": [
                    2.18844690648,
                    49.05026271976
```


Получение датасетов

- Генерация датасета from dataframe slices -> shuffle -> create borders -> make patches -> augmentation -> dataset from generator
- Создание train, test и val с помощью take и skip

Работа с моделью

- Определение метрик
- Определение оптимизатора
- Количество эпох и скорость обучения
- Callbacks сохранение весов по лучшей функции потерь и адаптивная скорость обучения

```
Total params: 15,856,360
Trainable params: 15,801,809
Non-trainable params: 54,551
```

Результаты обучения

Test loss: 0.20348656177520752 Test accuracy: 0.6930459141731262

Работа с геометкой

- Считывание геопозиции в GPS формате
- Преобразование к широте и долготе
- Получение списка ближайших населенных пунктов

```
GPS_cord_lat = , (56.0, 1.0, 5.0185) lat_ref = N
GPS_cord_lon = , (37.0, 56.0, 21.7463) lon_ref = E
Latitude: 56.01806069444444, Longitude: 37.93937397222222
```

```
Found 3 nearby cities and villages.
{'name': 'Zagorskie Dali', 'address': 'Zagorskie Dali, Moscow Oblast, Russia, 141367', 'lat': 56.3935451, 'lng': 37.9920535}
{'name': 'Zagorskiye Dali', 'address': "141367, Сергиев Посад, Moskovskaya oblast', Russia, 141367", 'lat': 56.41197990000001, 'lng': 37.9751161}
{'name': "Alfer'evo", 'address': "Alfer'evo, Moscow Oblast, Russia, 141355", 'lat': 56.3804189, 'lng': 37.9233798}
```

Работа с картой

- Получение карты с помощью Folium
- Опциональная расстановка маркеров объектов
- Открытие карты и получение скриншота с помощью Selenium
- Сглаживание карты для распознавания при помощи k-means

Обработка карты и маски

- Получение координат на изображении по широте и долготе (расчет коэффициентов преобразования)
- Расстановка маркеров
- Выделение населенных пунктов

Нахождение путей

- Нахождение кратчайшего пути до ближайшей дороги

 вычисление всех расстояний и выбор
 минимального
- Нахождение кратчайшего пути между точками по графу с помощью Дейкстры, для создания ребра допустимы небольшие разрывы

Графическое приложение – распознавание и подсчет людей

Графическое приложение – распознавание

дорог

Aerial human segmentation

Графическое приложение – нахождение пути

Дополнительные примеры работы

