Chapter 3 keywords.
Non-linear program, Convex Function, Epipraph, Subgraduents,
Non-linear program, Convex Function, Epipraph, Subgradients, Supporting halfspace, Karush-Kuhn-Tucker Theorem, KKT,
Interior point
Convex Functions:
Recall that a function $f: \mathbb{R}^n - \mathbb{R}$ is convex iff $\forall x_1, x_2,$
and XELO,11,
$f(\lambda x_1 + (1-\lambda) x_2) \leq \lambda f(x_1) + (1-\lambda) f(x_2)$
Convex:
\times_{l}
Non Convex:
x,
D Epigraph:
the epigroph of a flunction is epicf) = \(\gamma_{\mu} \times) \in \mathbb{P}^{n+1} : \(\pi \times = \mu^2 \) or, the set of all points strictly above f.
or, the set of all points strictly above f.
Df is comox iff epicf) is convex.
D Level sert:
Let $g:\mathbb{R}^n \to \mathbb{R}$ be a convex function and let $\beta \in \mathbb{R}$. We call the set $f \times \mathbb{R}^n: g \times \mathbb{R}^n: g \times \mathbb{R}^n$ the level set of function g at g
Basically, the level set is the set of points above & and below B.
Diffic comex then its level set is a convex set,

The feasible region of a connex NLP is a connex part.

Dubpradient: Let g:Rh > R he convex and let = ERh. SERh is a subgradient of f at \(\) if \(\tau \in \mathbb{R}^n \), the following holds; $h(x) = f(\bar{x}) + s^{7}(x - \bar{x}) \leq f(x)$ Note that h(x) = f(x) The subgradient provides a lower bound of the function of out point Supporting Halfspaces: let C be a convex per. REC. The halfspace F = fxERn; 87x = B} is a supporting. halfspace of Cat x if 1. CSF 2.8^T $\bar{\chi} = \beta$, or $\bar{\chi}$ is on the boundary of the halfspace D Let $g: \mathbb{R}^n \to \mathbb{R}$ be a convex function, let $\bar{\chi} \in \mathbb{R}^n$ such that $g(\bar{\chi}) = 0$ and let $S \in \mathbb{R}^n$ be a subgradient of f at \overline{x} . Let c be the level set, $f \times \in \mathbb{R}^n : g(x) \leq 0$ and \overline{f} be the half-space $f \times \in \mathbb{R}^n : g(x) + s^T(x-\overline{x}) \leq 0$. Then Fisa supporting halfspace of Cat ?.

Det NLP be minffer: gierso, i 691-mil. Let ? be afeasible solution, and let gi (x) so is tight for some iefi, -, m3. If pi is when with subgradient 8 at x, then the NLP obtained by replacing gives by STX = STX-gia) is a relaxation of the original NLP.

For min scTx, giaseo, i esi, ..., mg, if gi one comex, x is feasible, and $\forall i \in J(x), J(x) = i : j(x) = 0$ (tight constraint), use have a subpradient Si out 7. If -c & conefsicieJa), x is optimal. Let $f: \mathbb{R}^h \to \mathbb{R}$ be comen, let $x \in \mathbb{R}^n$. If Tf(x) exists, it is a subgradient of f at \overline{x} .

> KKT Theorem:

Let NLP be min $\{f(x):g(x) \ge 0, i \in g_1, ..., m_2\}$, where all g are connex. Let there be a stater point where $g(x) \ne i$. Let x be a feasible solution to NLP, and assume that f(g) are differentiable. Then x is optimal for NLP iff $-\nabla f(x) \in cone i \nabla g(x)$: $i \in J(x)$? (4)

or $-\nabla f(\vec{x})$ is in the cone of tight constraints at \vec{x} . (x) can also be replaced with $\exists y \in \mathbb{R}_{+}^{m}$

$$-\nabla f(\bar{x}) = \sum_{i=1}^{m} \bar{y}_{i} \nabla f_{i}(\bar{x})$$

