ИСПИТ ПО ОСНОВИ НА ЕЛЕКТРОТЕХНИКА

4.2.2019

I група задачи (испитот трае 150 минути)

1. (13 поени) Дадени се два плочести кондензатори и со површина на електродите S и растојание меѓу нив d. Кондензаторот (a) е целиот исполнет со воздух (слика

горе). Кондензаторот (б) до половина е исполнет со диелектрик со релативна диелектрична константа $\mathcal{E}_{\text{г}}$ а останатиот простор е воздух (слика долу). Познато е дека векторот на електрично поместување во точката M кај двата кондензатори има иста вредност D_M (точката M се наоѓа на растојание d/2, кај кондензаторот (б) во воздух веднаш до граничната површина).

I) За кондензаторот (δ) да се напишат граничните услови на разделната површина воздух/диелектрик и од тука да се определи векторот на електрично поместување во диелектриот. За двата кондензатори да се определат: векторот на јачина на електричното поле, векторот на електрично поместување, оптоварувањето, напонот, капацитивноста и енергијата, и да сите се изразат преку вредноста D_{M} . II) Да се направи споредба и да се објаснат добиените резултати за двата кондензатори.

2. (10 поени) Да се определи бројот на равенки и непознати за решавање на електричното коло со примена на методата на независни потенцијали во јазли. Да се постави и реши системот равенки и да се определат потенцијалите во јазлите. Потоа да се определат моќностите на струјниот извор $I_{\rm S}$ и напонскиот извор $E_{\rm 2}$.

$R_1 = 20\Omega$	$R_2=40\Omega$
$R_3=10\Omega$	$R_4=10\Omega$
$R_5=20\Omega$	$R_6=15\Omega$
$E_1=20V$	$E_2=40V$
$I_S=2A$	

3. (14 поени) Кога преклопката Π е во положба 1 напонот на отпорникот R_7 изнесува U_7 =10V. Да се определи вредноста на отпорникот R_7 и моќноста P_{R7} што се развива на него. Потоа преклопката Π се префрлува во положба 2. Познато е дека отпорникот R_8 има отпорност при што на него се развива максимална моќност. Да се определи вредноста на R_8 и максималната моќност P_{R8} што се развива на него.

 $R_1=2 \Omega, R_2=10 \Omega, R_3=3 \Omega,$ $R_4=20 \Omega, R_5=5 \Omega, R_6=6 \Omega,$ $E_1=10 V, E_2=6 V,$ $I_{S1}=1 A, I_{S2}=2 A$

4. (13 поени) Неограничен тенок спроводник кој води константна струја I лежи во рамнината на цртежот. Во истата рамнина се наоѓаат два тенки спроводници во

форма на латинична буква L, првиот A_1 -B- C_1 и вторниот A_2 -D- C_2 кои се движат транслаторно надолу со иста константна брзина v (димензиите се прикажани на сликата).

- a) Да се определат напоните меѓу точките A_1 и C_1 , и A_2 и C_2 во двата спроводници. Потоа двата спроводници се спојуваат и формираат правоаголна контура A-B-C-D која исто така се движи транслаторно надолу со истата константна брзина v (како на сликата).
- б) Според Фарадеевиот закон да се пресмета индуцираната ЕМС во контурата.
- вредноста на индуцираната EMC во контурата е еднаква на алгебарскиот збир од напоните на двата свиткани спроводници.

ИСПИТ ПО ОСНОВИ НА ЕЛЕКТРОТЕХНИКА

4.2.2019

II група задачи (испитот трае 150 минути)

1. (13 поени) Дадени се два плочести кондензатори и со површина на електродите S и растојание меѓу нив d. Кондензаторот (a) е целиот исполнет со диелектрик

исполнет со диелектрик со релативна диелектрична константа $\varepsilon_{\rm r}$ (слика горе). Кондензаторот (δ) до половина е исполнет со диелектрик со релативна диелектрична константа $\varepsilon_{\rm r}$ а останатиот простор е воздух (слика долу). Познато е дека векторот на електрично поместување во точката N кај двата кондензатори има иста вредност D_N (точката N се наоѓа на растојание d/2, кај кондензаторот (δ) во лиелектрикот велнаш до граничната површина).

2. (10 поени) Да се определи бројот на равенки и непознати за решавање на електричното коло со примена на методата на независни потенцијали во јазли. Да се постави и реши системот равенки и да се определат потенцијалите во јазлите. Потоа да се определат моќностите на струјниот извор $I_{\rm S}$ и напонскиот извор $E_{\rm 2}$.

$R_1=20\Omega$	$R_2=40\Omega$
$R_3=10\Omega$	$R_4=10\Omega$
$R_5=20\Omega$	$R_6=5\Omega$
$E_1=20V$	$E_2=40V$
$I_S=2A$	

резултати за двата кондензатори.

3. (14 поени) Кога преклопката Π е во положба 1 напонот на отпорникот R_7 изнесува U_7 =20V. Да се определи вредноста на отпорникот R_7 и моќноста P_{R7} што се развива на него. Потоа преклопката Π се префрлува во положба 2. Познато е дека отпорникот R_8 има отпорност при што на него се развива максимална моќност. Да се определи вредноста на R_8 и максималната моќност P_{R8} што се развива на него. Која од двете моќности има поголема вредност?

$$R_1$$
=2 Ω , R_2 =10 Ω , R_3 =3 Ω ,
 R_4 =20 Ω , R_5 =5 Ω , R_6 =6 Ω ,
 R_7 =15 Ω ,
 E_1 =10 V, E_2 =6 V,
 I_{S1} =1 A, I_{S2} =2 A

4.~(13~noehu) Неограничен тенок спроводник кој води константна струја I лежи во рамнината на цртежот. Во истата рамнина се наоѓаат два тенки спроводници во

форма на латинична буква L, првиот D_1 -A- B_1 и вторниот D_2 -C- B_2 , кои се движат транслаторно надолу со иста константна брзина v (димензиите се прикажани на сликата).

- a) Да се определат напоните меѓу точките D_1 и B_1 , и D_2 и B_2 во двата спроводници. Потоа двата спроводници се спојуваат и формираат правоаголна контура A-B-C-D која исто така се движи транслаторно надолу со истата константна брзина ν (како на сликата).
- б) Според Фарадеевиот закон да се пресмета индуцираната ЕМС во контурата.
- в) Од добиените резултати да се докаже дека вредноста на индуцираната ЕМС во контурата е еднаква на алгебарскиот збир од напоните на двата свиткани спроводници.