

集成电路原理与设计5.模拟基本单元

宋 美 shuangsonghz@zju.edu.cn

Commemorating Goldon Moore

1929.1.3~2023.3.24

Syllabus

课数	內容	课数	为客
1	导论	9	差分放大器
2	器件模型一	10	运算效大器
3	器件模型二	11	逻辑门
4	工艺流程	12	组合逻辑
5	模拟基本单元	13	村序逻辑
6	电流镜与基准	14	加法器/乘法器
7	单级放大器	15	集成电路专题讲座一
8	课堂测验	16	集成电路专题讲座二

集成电路原理与设计

Outline

- MOS Switch
- MOS Diode/Active Resistor
- Current Sinks and Sources

Outline

- MOS Switch
- MOS Diode/Active Resistor
- Current Sinks and Sources

MOS Devices used as SWITCH

- \square r_{ON} ON resistance
- \Box r_{OFF} OFF resistance
- \Box $V_{\rm OS}$ Voltage offset
- □ *I*_{OFF} Leakage current
- I_A I_B Leakage current
- Parasitic capacitors ...

Some English:

Open vs. Closed Switch off vs. Switched on

An N-Channel Transistor

ON State:

$$0 < V_{DS} \le V_{GS} - V_{TH}$$

$$i_{D} = \frac{K'W}{L} \left[(v_{GS} - V_{TH}) v_{DS} - \frac{v_{DS}^{2}}{2} \right]$$

$$r_{ON} = \frac{1}{\partial i_D / \partial v_{DS}} \bigg|_{Q} = \frac{L}{K'W(V_{GS} - V_{TH} - V_{DS})}$$

- (1) How to get r_{ON} with good linearity? (2) How to get a smaller r_{ON} ?

I-V characteristic of an NMOS operating as a switch

$$i_D = \frac{K'W}{L} \left[(v_{GS} - V_T)v_{DS} - \frac{v^2_{DS}}{2} \right]$$

$$r_{ON} = \frac{1}{\partial i_D / \partial v_{DS}} \bigg|_{Q} = \frac{L}{K'W(V_{GS} - V_{TH} - V_{DS})}$$

$$\begin{pmatrix}
v_{DS} \approx 0 \\
i_{D} \cong \frac{K'W}{L} (v_{GS} - V_{T}) v_{DS}
\end{pmatrix}$$

↑ Vgs

I-V Characteristic of an NMOS Operating as a Switch

$$r_{ON} = \frac{1}{\partial i_D / \partial v_{DS}} \Big|_{Q}$$

$$= \frac{L}{K'W(V_{GS} - V_{TH} - V_{DS})}$$

Source is A or B?

Why they are different?

ON Resistance: R_{ON}

$$r_{ON} = \frac{1}{\partial i_D / \partial v_{DS}} \Big|_{Q}$$

$$= \frac{L}{K'W(V_{GS} - V_{TH} - V_{DS})}$$

$$W/L\uparrow \rightarrow R_{ON}\downarrow$$

Trade-OFF!

C_{gs} vs. R_{on}

Using a Switch to Charge a Capacitor

the worst-case value for $r_{\rm ON}$ (the highest value): when $v_{\rm DS}$ =0 and $v_{\rm GS}$ = V_{ϕ} - $v_{\rm in}$

Example

The time V_{φ} is high is T=0.1 μ s and C=0.2 μ F, then r_{ON} must be less than 100 μ M if sufficient charge transfer occurs in **five time constants**.

Time Constant vs. Resolution

时间	1RC	2RC	3RC	4RC	5RC	6RC
分辨率	1.89b	3.07b	4.40b	5.80b	7.22b	8.66b
%	63.21	86.47	95.02	98.17	99.33	99.75

7RC	8RC	9RC	10RC	11RC	12RC	13RC
10.10b	11.54b	12.98b	14.43b	15.87b	17.31b	18.76b
99.91	99.97	99.99	99.995	99.998	99.999	99.999

Switch width vs. SNDR

Table 10 Simulated signal to total distortion ratio of the sampled signal for different switch sizes at sampling frequency of 2kHz

Size fsignal	62.5Hz	250Hz	1kHz
2μm/0.2μm	119.1dB (19.5bit)	109.7dB (17.9bit)	97.5dB (15.9bit)
4μm/0.2μm	116.8dB (19.1bit)	113.8dB (18.6bit)	103.3dB (16.9bit)
8μm/0.2μm	110.9 dB (18.1bit)	110.3dB (18.0bit)	105.8dB (17.3bit)
16μm/0.2μm	104.2 dB (17.0bit)	103.6dB (16.9bit)	100.8dB (16.4bit)

☐ Use wider switches for fast signals

Clock Feedthrough

Clock feedthrough:

Negative feedthrough: (sampling) the change of V_{C1} during Φ_1 decreased from $V_{in}+V_T$ to zero.

$$\Delta V_{C_1} = \left(\frac{C_{gs}}{C_1 + C_{gs}}\right) (V_{in} + V_T)$$

Clock Feedthrough

- □ Using "dummy transistor" can alleviate the clock feedthrough.(different clock rising/falling time)
- Meanwhile, "dummy transistor" also alleviates the effect of "channel charge".
- When Φ is high, the channel of MOS transistor is negatively charged; when Φ is low, the negative charge will be transferred to C1, which changes V_{C1}

集成电路原理与设计

OFF-State

- \square $V_{GS} \leq V_{TH}$ r_{OFF}
 - Drain-bulk current
 - Source-bulk current (light/temp. sensitive!)
 - Leakage current of PN junction

Applications of a MOS Switch

The influence of *l*_{OFF} in a sample-and-hold circuit

If C_H is not large enough, then in the hold mode where the MOS switch is OFF the **leakage current** can **charge or discharge** C_H a **significant amount**.

Range of Voltages on the MOS Switch Terminals

- N-MOS: V_G must be larger than V_D or V_S
- P-MOS: V_G must be less than V_D or V_S

Application of an n-channel transistor as a switch with typical terminal voltages indicated

CMOS Switch

Transmission Gate

- Advantages:
 - Feedthrough somewhat diminished
 - Larger dynamic range
 - Lower ON resistance
- Disadvantages:
 - Requires a **complementary clock**
 - Requires more area

Trade-OFF!

CMOS Switch

Bootstrapped Switches

■ Constant Overdrive Voltage

Outline

- MOS Switch
- MOS Diode/Active Resistor
- Current Sinks and Sources

MOS Diode/Active Resistor

Active resistor: (a) n-Channel; (b) p-Channel; (c) I-V characteristics for n-channel case; (d) Small signal model.

I-V characteristics

$$I = I_D = \left(\frac{K'W}{2L}\right) \left[(V_{GS} - V_{TH})^2 \right] = \frac{\beta}{2} (V_{GS} - V_{TH})^2$$
$$V = V_{GS} = V_{DS} = V_{TH} + \sqrt{2I_D/\beta}$$

I-V Characteristics

$$g = \frac{\partial I}{\partial V} = \left(\frac{2IK'W}{L}\right)^{\frac{1}{2}} = \frac{K'W}{L}(V - V_{TH})$$

$$r_{OUT} = \frac{1}{g_m + g_{mbs} + g_{ds}} \cong \frac{1}{g_m}$$

I-V Characteristics

$$V_1 = -V$$

$$V_{ps} = -V$$

MOS-diode circuit and its small signal equivalent circuit when considering body effect.

- (a) MOS diode when considering body effect;
- (b) Small signal equivalent circuit of (a)

$$(g_m + g_{mb})V + \frac{V}{r_0} = I$$

$$\frac{V}{I} = \frac{1}{g_m + g_{mb} + 1/r_0} = \frac{1}{g_m + g_{mb}} / / r_0$$

Voltage Division using Active Resistors

If Vdd =5V, Vss =-5V , Vout=0V , I=8uA , calculate the W/L of M1 and M2. (Using the model parameter values in TABLE 3.1)

Designing voltage division using active resistors

From TABLE 3.1 we get

$$K'_{N} = 17.0 \pm 10\% \,\mu A/V^{2}$$
 $K'_{P} = 8.0 \pm 10\% \,\mu A/V^{2}$
 $V_{TN0} = 1 \pm 0.2V, V_{TP0} = -1 \pm 0.2V$

then
$$I = I_D = \left(\frac{K'W}{2L}\right) \left[\left(V_{GS} - V_{TH}\right)^2\right] = \frac{\beta}{2} \left(V_{GS} - V_{TH}\right)^2$$

$$8 \times 10^{-6} = \frac{1}{2} K' \frac{W}{L} (5 - 1)^2$$

so
$$K = K' \frac{W}{L} = 1 \mu A / V^2$$

(W/L)1=1/17, (W/L)2=1/8.

NMOS is better!

TABLE 5.1

符号	模型参数	典型的核 NMOS	型参数值 PMOS	单位
$V_{ m T0}$	$V_{ m BS}$ =0时的阈值电压	1±0.2	-1 ± 0.2	V
<i>K</i> ′ (饱和)	跨导参数(在饱和 区)	17.0±10%	8.0 ± 10%	$\mu A/V^2$
K ' (非饱和)	跨导参数(在非饱和 区)	25.0±10%	10.0±10%	$\mu A/V^2$
γ	体效应因子	1.3	0.6	(V) ^{1/2}
λ	沟道长度调制系数	0.01 (L=10μm) 0.004(L=20μm)	0.02 (L=10μm) 0.008(L=20μm)	(V) ⁻¹
$2 \Phi_{_{ m F}} $	强反型时表面势	0.7	0.6	(V)

Area Issue

Active resistors are always limited by area:

Example 3.1. W1/L1=1/17, if we choose W1 as the unit length, then L1 is 17 units long, and the active area is 17 units. For M2, choose W2 as the unit length, then L2 is 8 units long, and the active area is 8 units.

M1: W1/L1=1/17

M2: W2/L2=1/8

Reducing the area of active resistors

M1A=M1B, M2B=M2A, ignore the body effect of M1A and M2A, calculate the W/L of M1 and M2 and the consumed area with the same condition of example 3.1.

A practical circuit with the same function but consuming smaller area

Reducing the area of active resistors

The supply voltage is divided equally by M1 and M2, the gate source voltage of both are 2.5V. Therefore, $\beta 1 = \beta 2 = 64/9 \text{uA/V}^2$. So W1/L1 is 64/153 and W2/L2 is 8/9.

$$\frac{K_1}{2}(5-1)^2 = \frac{K_{1_{NEW}}}{2}(2.5-1)^2$$

$$\frac{K_1}{2} \cdot 16 = \frac{K_{1_{NEW}}}{2} \cdot 2.25 \Rightarrow \frac{K_{1_{NEW}}}{K_1} = \frac{64}{9}$$

$$K_1 = 1\mu A/V^2, K_{1_{NEW}} = 64/9 \mu A/V^2$$

$$\frac{K_{1}}{2}(5-1)^{2} = \frac{K_{1_{NEW}}}{2}(2.5-1)^{2}$$

$$K_{1}\frac{W_{1}}{L_{1}}\Big|_{NEW} = \frac{64}{9}, \frac{W_{1}}{L_{1}}\Big|_{NEW} = \frac{64}{9} \frac{1}{17} = \frac{64}{153}$$

$$\frac{K_{1}}{2} \cdot 16 = \frac{K_{1_{NEW}}}{2} \cdot 2.25 \Rightarrow \frac{K_{1_{NEW}}}{K_{1}} = \frac{64}{9}$$

$$K_{1} = \frac{1}{4}\frac{A}{V^{2}} = \frac{64}{9}\frac{A}{V^{2}} = \frac{64}{9}\frac{A}{V^{2}}$$

Choose W1 as the unit length, then L1 is 153/64, and the active area of M1A and M1B is $2 \times (153/64) = 4.781$ units square.

Similarly, the active area of M2A and M2B is $2\times(9/8)=2.25$ units square.

The total area consumed by the four devices is only 7.03 units square.

Floating Active Resistor using a Single MOS

Floating active resistor using a single MOS transistor.

Non-saturation region:

$$r_{ds} = \frac{L}{K'W(V_{GS} - V_T)}$$

Calculation of the resistance of an active resistor

The floating active resistor is to be used to design a $1k\Omega$ resistance. The dc value of $V_{A,B}=2V$. Use the device parameters in TABLE 3.2 and assume the active resistor is an n-channel transistor with the gate voltage at 5 V. Assume that $V_{DS}=0.0$. Calculate the required W/L to achieve $1k\Omega$ resistance. The bulk terminal is 0.0V.

Floating active resistor using a single MOS transistor.

Calculation of the resistance of an active resistor

The floating active resistor is to be used to design a $1k\Omega$ resistance. The dc value of $V_{A,B}=2V$. Use the device parameters in TABLE 3.2 and assume the active resistor is an n-channel transistor with the gate voltage at 5 V. Assume that $V_{DS}=0.0$. Calculate the required W/L to achieve $1k\Omega$ resistance. The bulk terminal is 0.0V.

Solution:

Before applying Eq. (2), it is necessary to calculate the <u>new threshold voltage</u>, V_T , due to V_{BS} not being zero (VBS | =2V). From Eq. (1) the new V_T is found to be 1.022V. Equating Eq. (2) to 1000 Ω gives a W/L of 4.597 \approx 4.6

$$V_T = V_{T0} + \gamma \left(\sqrt{2|\phi_F| + \nu_{SB}} - \sqrt{2|\phi_F|} \right)$$
 (1)

$$r_{ds} = \frac{L}{K'W(V_{GS} - V_T)} \tag{2}$$

Calculation of the resistance of an active resistor

TABLE 3.2 Model Parameters for a Typical COMS Bulk Process Suitable for Hand Calculations Using the Simple Model with Values Based on a 0.8µm Silicon-Gate Bulk CMOS n- Well Process

Parameter Symbol	Parameter Description	Typical Para		
		n-Channel	p-Channel	Units
$V_{ m T0}$	Threshold voltage $(V_{BS}=0)$	0.7 ± 0.15	-0.7 ± 0.15	V
<i>K</i> '	Transconductance parameter (in saturation)	110.0±10%	$50.0 \pm 10\%$	$\mu A/V^2$
γ	Bulk threshold parameter	0.4	0.57	V ^{1/2}
λ	Channel length modulation parameter	0.04 (L=1μm) 0.01 (L=2μm)	0.05 (L=1μm) 0.01 (L=2μm)	V ⁻¹
$2 \Phi_{_{ m F}} $	Surface potential at strong inversion	0.7	0.8	V

Application of diode resistor (1)

■ Low gain amplifier

$$Gain = G_{m1}/G_{m2}$$

Application of diode resistor (2)

□ Current mirror

Voltage bias vs. current bias

Difference between Sw. & Diode

MOS Switch

- linear region resistor
- work dynamically -> charge feedthrough etc.
- MOS Diode/Active Resistor
 - saturation region resistor
 - work continuously -> Gain/Bandwidth etc.

Outline

- MOS Switch
- MOS Diode/Active Resistor
- Current Sinks and Sources

Op-AMP: Hierarchy

The Basic Block of all Complicate Systems

Op-AMP:Example

Noise

Bandwidth

Driving

Current Sinks and Sources

- Two terminal components
- Ideal current sink and current source:
 - Current constant
 - Independent of the voltage
 - -> high output resistance

why aforementioned **MOS Switch** and **MOS Diode/Active Resistor** cannot be current source?

Current Sinks

(a) Current sink; (b) Current-voltage characteristics of (a)

$$v_{OUT} \ge V_{GG} - V_{T0}$$
 $r_{Out} = \frac{1 + \lambda V_{DS}}{\lambda I_D} \cong \frac{1}{\lambda I_D}$

Current Sources

(a) Current source; (b) Current-voltage characteristics of (a)

$$v_{OUT} \le V_{GG} + |V_{T0}|$$
 $r_{Out} = \frac{1 + \lambda V_{DS}}{\lambda I_D} \cong \frac{1}{\lambda I_D}$

Improvement of Current Sink and Source

- Increase the small-signal output resistance
 - lacktriangle more constant current over the range of v_{OUT}
- \square Reduce the value of V_{MIN}
 - lacksquare a large range of v_{OUT} over which the current sink/source works

Increasing the Output Resistance of a Resistor R

Use control loop to derive the output resistance!

(a) Technique for increasing the output resistance of a resistor r. (b) Small. signal model for the circuit in (a).

$$v_{out} = i_{out}r + i_{out}r_{ds2} + i_{out}r_{ds2} \left(g_{m2} + g_{mbs2}\right)r$$

$$v_{gs2} = -v_{s2}$$

$$v_{bs2} = -v_{s2}$$

$$v_{bs2} = -v_{s2}$$

where
$$g_{m2}r_{ds2}>>1$$
 and $g_{m2}>g_{mbs2}$

Circuit for increasing Rout of a Current Sink

(a) Circuit for increasing rout of a current sink. (b) Small-signal model for the circuit in (a).

$$i_{out} + g_{m2}v_1 + g_{mbs} v_1 = g_{ds}(v_{out} - v_1)$$

$$r_{out} = \frac{v_{out}}{i_{out}} = r_{ds2}(1 + g_{m2}r_{ds1} + g_{mbs}2r_{ds1} + g_{ds2}r_{ds1}) = r_{ds1} + r_{ds2} + g_{m2}r_{ds1}r_{ds2}(1 + \eta_2)$$

$$r_{out} \cong (g_{m2} \cdot r_{ds2}) r_{ds1}$$

Cascode vs Cascade

共源共栅级 Cascode

级联型 Cascaded Amplifier

A Cascade from sightseeing...

The Grand Cascade St Petersburg, Russia

Example 5.4

Calculation of output resistance for a current sink

Use the model parameters of Table to calculate:

- (a) the small-signal output resistance for the simple current sink of Fig.(left) if I_{OUT} =100 μ A;
- (b) the small-signal output resistance if the simple current sink of Fig.(left) is inserted into the cascode current-sink configuration of Fig.(right). Assume that W1/Ll=W2/L2=1.

Example 5.4

Calculation of output resistance for a current sink

Table 5.1-2

Parameter	Parameter Description	Typical Parameter Value					
Symbol		n-Channel	p-Channel	Units			
$V_{ ext{T0}}$	Threshold voltage $(V_{BS}=0)$	0.7 ± 0.15	-0.7 ± 0.15	V			
<i>K</i> '	Transconductance parameter (in saturation)	110.0 ± 10%	50.0±10%	μ A/V ²			
γ	Bulk threshold parameter	0.4	0.57	V ^{1/2}			
λ	Channel length modulation parameter	0.04 (L=1μm) 0.01 (L=2μm)	0.05 (L=1μm) 0.01 (L=2μm)	V ⁻¹			
$2 \Phi_{_{ m F}} $	Surface potential at strong inversion	0.7	0.8	v			

Solution:

(a) Using $\lambda = 0.04$ and $I_{OUT} = 100 \mu A$ gives a small-signal output resistance of $250 k\Omega$.

$$r_{out} \cong 1/\lambda I_D$$

(b) The body-effect term, $g_{\text{mbs}2}$, can be ignored with little error in the result. Eq. (1) gives $g_{\text{m1}} = g_{\text{m2}} = 148 \mu \text{A/V}$. Substituting these values into Eq.(2), gives the small-signal output resistance of the cascode current sink as $9.25 \text{ M}\Omega$.

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} = \sqrt{(2K'W/L)|I_{D}|(1+\lambda V_{DS})} \cong \sqrt{2K'W/L|I_{D}|}$$

$$r_{out} \cong (g_{m2}r_{ds2})r_{ds1}$$
(2)

$$r_{out} \cong (g_{m2}r_{ds2})r_{ds1} \tag{2}$$

Three-stage Cascode Current Source

The triple cascode current source

Reduce the Value of V_{MIN}

$$V_{GS} = V_{ON} + V_{TH}$$

$$V_{GS} = V_{ON} + V_{TH} \qquad \qquad i_D = \frac{K'W}{2L} (V_{ON})^2$$

the minimum value of v_{DS} when the device remain in saturation:

$$v_{DS}(sat) = V_{GS} - V_{TH} = V_{ON}$$

■ If currents are equal (in series):

$$\frac{K_1'W_1}{2L_1}(V_{ON1})^2 = \frac{K_2'W_2}{2L_2}(V_{ON2})^2$$

$$\frac{W_1}{L_1}(V_{ON1})^2 = \frac{W_2}{L_2}(V_{ON2})^2 \quad \text{or} \quad \frac{(W_1/L_1)}{(W_2/L_2)} = \frac{(V_{ON2})^2}{(V_{ON1})^2}$$

$$\frac{(W_1/L_1)}{(W_2/L_2)} = \frac{(V_{ON2})^2}{(V_{ON1})^2}$$

☐ If V_Gs are equal

$$i_{D1} \left(\frac{W_2}{L_2}\right) = i_{D2} \left(\frac{W_1}{L_1}\right)$$
 or $\frac{i_{D1}}{i_{D2}} = \frac{(W_1/L_1)}{(W_2/L_2)}$

$$\frac{i_{D1}}{i_{D2}} = \frac{(W_1/L_1)}{(W_2/L_2)}$$

Standard Cascode Current Sink

(a) standard cascode current sink; (b) output characteristics of circuit in (a)

$$v_{\mathrm{D}} \geq V_{\mathrm{G}} - V_{\mathrm{T}}$$

$$V_{\rm D2}({\rm min})=V_{\rm MIN}=V_{\rm T}+2V_{\rm ON}$$

High-Swing Cascode

(a) High-swing cascode; (b) Output characteristics of circuit in (a)

High-Swing Cascode

$$I_{REF} = i_{D3} = i_{D4}$$

$$\frac{W_1}{L_1} = \frac{W_3}{L_3} \qquad i_{D1} = i_{D3}$$

$$i_{D1} = i_{D3}$$

∴
$$i_{D1} = i_{D4}$$

$$\frac{W_1}{L_1} (V_{ON1})^2 = \frac{W_4}{L_4} (V_{ON4})^2$$

$$\frac{\left(\frac{W_1}{L_1}\right)}{\left(\frac{W_4}{L_4}\right)} = \frac{\left(V_{ON4}\right)^2}{\left(V_{ON1}\right)^2}$$

$$\frac{\left(\frac{W_1}{L_1}\right)}{\left(\frac{W_4}{L_4}\right)} = 4$$

$$V_{G4} = V_{TH} + V_{ON4} = V_{TH} + 2V_{ON1}$$

$$V_{D2}(\min) = V_{G2} - V_{TH}$$

$$V_{D2}(\min) = V_{MIN} = 2V_{ON}$$

Designing the cascode Example 5.5 current sink for a given V_{MIN}

Use the cascode current-sink configuration to design a current sink of 100 μ A and a V_{MIN} of 1V.

V' _	(1100	±10%		1 /2
K' = 0	(110.0	±10%	<i>Ι</i> μΑ / .	V^{-}

	Parameter Symbol	Parameter Description	Typical Parameter Value		
			n-Channel	p-Channel	Units
	$_{-}$ $V_{{\scriptscriptstyle { m T}0}}$	Threshold voltage $(V_{\rm BS} = 0)$	0.7 ± 0.15	-0.7 ± 0.15	V
-	K [']	Transconductance parameter (in saturation)	110.0±10%	50.0±10%	μ A/V ²
	γ	Bulk threshold parameter	0.4	0.57	$V^{1/2}$
	λ	Channel length modulation parameter	0.04 (L=1μm) 0.01 (L=2μm)	0.05 (L=1μm) 0.01 (L=2μm)	V ⁻¹
	$2 \Phi_{_{ m F}} $	Surface potential at strong inversion	0.7	0.8	V

Solution:

Use the cascode current-sink configuration to design a current sink of $100\mu\text{A}$ and a V_{MIN} of 1V.

With VMIN of 1V, choose VoN=0.5V. Using the saturation model, the W/L ratio of M1 through M3 can be found from

$$\frac{W}{L} = \frac{2iout}{K'V^{2}oN} = \frac{2 \times 100 \times 10^{-6}}{110 \times 10^{-6} \times 0.25} = 7.27$$

The W/L ratio of M4 will be one-quarter this value or 1.82.

Improved High-swing Cascode

Improved High-swing Cascode

Improved High-swing Cascode

$$I_{1} = \frac{K'W}{2} \left(V_{GS1} - V_{TH} \right)^{2} = \frac{K'W}{2} \frac{W}{L} V_{ON}^{2}$$

$$\frac{K'}{2} \left(\frac{1W}{L} \right) (V_{CS1} - V_{TH})^{2} = \frac{K'W}{L} V_{ON}^{2}$$

:
$$I_1 = I_5$$
 $\frac{K'}{2} \left(\frac{1}{4} \frac{W}{L}\right) (V_{ON5})^2 = \frac{K'}{2} \frac{W}{L} (V_{ON1})^2$

$$\frac{1}{4} (V_{ON5})^2 = (V_{ON1})^2$$
2ΔV+VTHN

$$V_{ON5} = 2V_{ON1} = 2V_{ON}$$

so
$$V_{GS5} = V_{TH} + 2V_{ON} = V_{G3}$$

:: $I_1 = I_3$ and M1, M3 have the same sizes

$$I_{3} = \frac{1}{2} K' \frac{W}{L} (V_{GS3} - V_{TH})^{2} = \frac{1}{2} K' \frac{W}{L} (V_{G3} - V_{S3} - V_{TH})^{2}$$

$$= \frac{1}{2} K' \frac{W}{L} (V_{TH} + 2V_{ON} - V_{S3} - V_{TH})^{2}$$

$$= \frac{1}{2} K' \frac{W}{L} (2V_{ON} - V_{S3})^{2}$$

$$= I_{1} = \frac{1}{2} K' \frac{W}{L} V_{ON}^{2}$$

That means
$$2V_{ON} - V_{S3} = V_{ON}$$

 $\therefore V_{S3} = V_{ON}$
and also $V_{S4} = V_{ON}$

Designing the self-biased high-swing Example 5.6 cascode current sink for a given V_{MIN}

Design a current sink of 250 μ A and a V_{MIN} of 0.5 V. (what? W/L and R) Assume the device parameters of Table 5.1-2.

Self-biased high-swing cascode current

Solution:

With $V_{\rm MIN}$ of 0.5 V, choose $V_{\rm ON}$ =0.25V. Using the saturation model, the $\it W/L$ ratio of M1 and M3 can be found from

$$\frac{W}{L} = \frac{2iouT}{K'V^{2}oN} = \frac{2 \times 250 \times 10^{-6}}{110 \times 10^{-6} \times 0.0626} = 72.73$$

The back-gate bias on M2 and M4 is -0.25 V. Therefore, the **threshold** voltage for M2 and M4 is calculated to be

$$V_{TH} = 0.7 + 0.4 \left(\sqrt{0.25 + 0.7} - \sqrt{0.7} \right) = 0.755$$

Taking into account the increased value of the threshold voltage, the gate voltage of M4 and M2 is

$$V_{G4} = 0.755 + 0.25 + 0.25 = 1.255$$

The gate voltage of M1 and. M3 is

$$V_{G1}$$
=0.70+0.25=0.95

Both terminals of the resistor are now defined so that the required resistance value is easily calculated to be

$$R = \frac{V_{G4} - V_{G1}}{250 \times 10^{-6}} = \frac{1.255 - 0.95}{250 \times 10^{-6}} = 1220\Omega$$

Summary

Today's Summary

- MOS Switch & Charge Feedthrough
- MOS Diode/Active ResistorGain = gm * rop//ron
- ☐ Current Sinks and SourcesCascode -> ro = (gm1 * ron1) ro2

集成电路原理与设计5.模拟基本单元

宋 美 shuangsonghz@zju.edu.cn