Nome	Cognome		Numero di matricola	

Appello Autunnale di Fisica del 06/09/2023.

Istruzioni per la consegna: Consegnare il presente foglio compilato, marcando le risposte corrette; per lo svolgimento, usare solo fogli bianchi forniti dai docenti; scrivere solo su un lato di ogni foglio; scrivere il proprio nome su ogni foglio consegnato; indicare chiaramente a quale domanda si riferisce ogni parte dello svolgimento; motivare i passaggi svolti.

Costanti numeriche: intensità dell'accelerazione gravitazionale in prossimità della superficie terrestre: $g = 10.0 \text{ m/s}^2$.

Problema 1: Due punti materiali di masse m_1 ed m_2 , che all'istante t=0 sono in quiete e separati da una distanza d, esercitano uno sull'altro una forza costante di intensità F, diretta lungo la retta che li congiunge, e collidono con un urto totalmente anelastico producendo un nuovo punto materiale di massa $m_1 + m_2$. Si utilizzino i seguenti valori numerici: $m_1 = 1.30$ kg, $m_2 = 1.80$ kg, d = 6.40 m, $F_0 = 0.150$ N.

Determinare:

1.1) il tempo t_c al quale collidono; A 13.4 **X** 8.03 C 15.8 D 5.45 E 6.14 $t_{\rm c}$ [s] =

1.2) il modulo del momento angolare del punto materiale di massa m_1 , un istante prima dell'urto, rispetto ad un polo O posto ad una distanza d dalle posizioni iniziali dei due punti;

 $L_{O} [kg m^{2}/s] =$ **X** 6.67 C 6.18 D 10.6

1.3) il modulo v della velocità del punto materiale prodotto dall'urto. A 0.777 B 1.07 **X** 0.00 D 0.297 E 1.34

Problema 2: Un punto materiale di massa m sale lungo un piano inclinato con angolo di inclinazione α e coefficienti di attrito statico e dinamico μ_s e μ_d . Il punto materiale ha una velocità iniziale v_0 e si ferma dopo aver percorso una distanza ℓ_1 lungo il piano inclinato. In seguito, il piano inclinato viene reso liscio (ad esempio versando un lubrificante) e il punto materiale: scivola percorrendo una distanza ℓ_2 lungo il piano inclinato; incontra l'estremo di una molla ideale senza massa di costante elastica k, disposta parallela al piano e il cui altro estremo è fissato; la comprime di una lunghezza Δx , fino a fermarsi. Si utilizzino i seguenti valori numerici: m=1.50 kg, $\alpha=0.330$ rad, $\mu_{\rm d}=0.450$, $\nu_0=15.0$ m/s, $\ell_2=19.0$ m, k=5.60 N/m.

Determinare:

2.1) la distanza ℓ_1 percorsa dal punto materiale; C 10.6 **X** 15.0 D 20.5 A 31.5

2.2) il minimo valore del coefficiente di attrito statico μ_s tra punto materiale e piano inclinato;

A 0.592 C 0.773 D 0.686 **X** 0.343

2.3) la compressione Δx della molla.

 Δx [m] = A 5.08 B 21.9 C 5.36 **X** 6.68

Problema 3: Una banderuola di massa M è costituita da una sottile lamina quadrata di lato 3L, libera di ruotare attorno ad un proprio lato. Nella banderuola c'è un foro quadrato, di lato L, il cui centro coincide con il centro della banderuola e i cui lati sono paralleli a quelli maggiori. La legge oraria della velocità angolare di rotazione della banderuola è $\omega(t) = \omega_0 e^{-\gamma t}$. Se ne consideri il moto all'istante t_1 . Si utilizzino i seguenti valori numerici: M=3.70 kg, L=0.250 m, $\omega_0=0.250$ rad/s, $\gamma=0.0210$ s⁻¹, $t_1 = 42.0 \text{ s}.$

Determinare:

3.1) la densità superficiale di massa σ della banderuola; $\sigma [kg/m^2] =$ A 8.76 B 10.2 C 14.9 E 21.6

3.2) il momento di inerzia assiale I_L della banderuola rispetto al proprio lato; $I_{\rm L} \, [{\rm kg} \, {\rm m}^2] =$ A 0.797 **X** 0.713 C | 1.72 E 0.499

3.3) il modulo L_L del momento angolare della banderuola, rispetto al proprio lato, al tempo t_1 ; $L_{\rm L} [10^3 \, {\rm kg \, m^2/s}] =$ A 146 **X** 73.8 E 95.2 C 79.3

3.4) il modulo M_L del momento risultante delle forze agenti sulla banderuola, rispetto al proprio lato, al tempo t_1 .

 $M_{\rm L} [10^{-3} \, {\rm N \, m}] =$ A 2.81 B 2.16 C 2.05 1.55 E 1.65