Introduction to Statistical Modelling

STAT2507A
Chapter 3
Describing Bivariate Data

BIVARIATE DATA

- ➤ Bivariate data results when two variables are measured on a single experimental unit
 - ➤ Each variable can be described individually and relationship between the two variables can be explored
 - ➢ Bivariate data can be described with graphs and numerical measures

16/09/2014 12:08:47 PM

GRAPHS FOR QUALITATIVE VARIABLES

➤ When at least one of the variables is qualitative, **comparative pie charts** or (sideby-side or stacked) **bar charts** can be used

	Full Pro \$ (%)	ofessor (count)	Associate \$ (%)	Professor (count)	Assistant \$ (%)	Professor (count)	Total (count) (%)
Arts	55.8 (16%)	(24)	42.2 (38%)	(57)	35.2 (46%)	(69)	(150) (100%)
Science	61.6 (24%)	(60)	43.3 (31.2%)	(78)	35.5 (44.8%)	(112)	(250) (100%)
Total		(84)		(135)		(181)	(400)

GRAPHS FOR QUALITATIVE VARIABLES

- Average salary of full, associate and assistant professors from Arts and Science to be compared. Side-by-side bar chart
- ➤ Are science professors paid more than professors in the faculty of Arts

16/09/2014 12:08:47 PM

SIDE-BY-SIDE BAR CHART

COMPARATIVE PIE CHART

GRAPHS FOR QUALITATIVE VARIABLES

➤ Stacked bar chart: comparing the numbers of different ranking of professors from Arts and

Science

Two Quantitative Variables

- ➤ When both of the variables are quantitative, one variable is called x and other y.
- A single measurement on a experimental unit is a pair of numbers (x, y) that can be plotted using a two-dimensional graph called a **scatter plot**.

TWO QUANTITATIVE VARIABLES

DESCRIBING THE RELATIONSHIP BETWEEN TWO VARIABLES

- > What **pattern** or **form** do you see?
 - ➤ Straight line upward or downward
 - Curve or no pattern at all
- ➤ How **strong** is the pattern?
 - > Strong, moderate, or weak
- ➤ Are there any unusual observations?
 - > Clusters or outliers

SCATTER PLOT EXAMPLES

16/09/2014 12:08:47 PM

NUMERICAL MEASURES: QUANTITATIVE BIVARIATE DATA

- Assume that the two variables x and y exhibit a **linear pattern** or **form**
- > Two numerical measures:
 - The **form** of the relationship: linear, curvilinear, clustered, randomly scattered.
 - The **strength** and **direction** of the relationship between x and y.

NUMERICAL MEASURES: QUANTITATIVE BIVARIATE DATA

- ➤ Assume that two variables x and y exhibit a linear pattern or form
 - ➤ Correlation coefficient, r: used to measure the strength and direction of the relationship between x and y

$$r = \frac{S_{xy}}{S_x S_y}$$

 \triangleright Where S_{xy} – covariance between x and y

FORMULAE

$$S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1} = \frac{\sum_{i=1}^{n} x_i y_i - \frac{\sum_{i=1}^{n} x_i}{n}}{n-1}$$

$$S_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}}$$

$$S_{y} = \sqrt{\frac{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{n-1}}$$

INTERPRETING R

-1≤ r ≤ +1	Sign of r indicates direction of the linear relationship
r ≈ 0	Weak relationship. Random scatter of points
r ≈ 1 or -1	Strong relationship; positive or negative
r = 1 or -1	All points fall exactly on a straight line

16/09/2014 12:08:47 PM

INTERPRETING R

THE REGRESSION LINE

Sometimes the two variables x and y are related in a particular way. i.e. The value of y depends on the value of x. Then

FALL 2014: STAT 2507D

- ➤Y dependent variable
- >X independent variable

16/09/2014 12:08:47 PM

THE REGRESSION LINE

Linear relationship between x and y can be described by fitting a line as best through the points

- \triangleright Linear regression line: y = a + bx
 - \triangleright a = y –intercept of the line
 - ➤b = slope of the line

THE REGRESSION LINE

THE REGRESSION LINE: FORMULA

To find the slope and y-intercept of the best fitting line, use

Slope:
$$b = r \frac{S_y}{S_x}$$

> Y-intercept:
$$a = \overline{y} - b\overline{x}$$

THE REGRESSION LINE: FORMULA AND EXAMPLE

➤ Example: Living area x and selling price y of five homes

Residence	1	2	3	4	5	Sum
X (Area in m ²)	126.3	134.7	137.5	144.0	148.6	691.1
Y (Price in \$ 1000s)	178.5	188.6	168.8	229.8	205.2	970.9
XY	22544.55	25404.42	23210.00	33091.20	30492.72	134742.89

16/09/2014 12:08:47 PM

EXAMPLE

- Calculate r, b, a
- ➤ Obtain fitted Regression line
- ➤ Predict the selling price for another residence with 140 m² of living area

16/09/2014 12:08:47 PM

PLOT

➤ The least-squares regression line

16/09/2014 12:08:48 PM

SUMMARY

FALL 2014: STAT 2507D

- Describing two qualitative variables
 - ➤ Side-by-side pie charts
 - ➤ Comparative bar charts
 - ➤ Side-by-side
 - **>** Stacked

16/09/2014 12:08:48 PM

SUMMARY

- > Describing two Quantitative variables
 - ➤ Scatter plots
 - ➤ Linear or non-linear
 - ➤ Strength of relationship
 - >Unusual observation: outliers
- Covariance and Correlation coefficient

16/09/2014 12:08:48 PM

SUMMARY

- > The best-fitting regression line
 - > Calculating slope and intercept
 - Graphing the line
 - Using the line for prediction

16/09/2014 12:08:48 PM