ECE/CS 559 - Fall 2019 - Midterm #1.

Full Name: James Bond

ID Number: *007*

Q1 (10 pts). Consider applying the k-means algorithm to the set of vectors $C = \{\begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}\}$ with initial centers $\begin{bmatrix} 0.5 \\ 1 \end{bmatrix}, \begin{bmatrix} -0.5 \\ -1 \end{bmatrix}$. What are the resulting centers after the algorithm converges? Recall that, given S is the input (training set), and c_i are the centers, the k-means algorithm relies on the update $c_i \leftarrow \frac{1}{|V_i|} \sum_{x \in V_i} x$, where $V_i = \{x \in S : ||x - c_i|| \le ||x - c_j||, \forall j\}$, and $|V_i|$ is the number of elements in V_i .

Q2 (30 pts). Let u be the step activation function with u(x) = 1 if $x \ge 0$, and u(x) = 0, otherwise. Consider the perceptron $y = u(w_0 + w_1x_1 + w_2x_2)$, where w_1 and w_2 are the weights for inputs x_1 and x_2 , respectively, w_0 is the perceptron bias, and y is the perceptron output. Let $C_0 = \{ \begin{bmatrix} 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 0 \end{bmatrix} \}$, and $C_1 = \{ \begin{bmatrix} 1 & 1 \end{bmatrix} \}$. The desired output for class C_0 is 0, and the desired output for class C_1 is 1. Correspondingly, let $d(\mathbf{x}) = 0$ if $\mathbf{x} \in C_0$, and otherwise, let $d(\mathbf{x}) = 1$ if $\mathbf{x} \in C_1$.

(a) (10 pts) If possible, find w_0, w_1, w_2 that can separate C_0 and C_1 (i.e., provide the desired output for all 4 possible input vectors). Otherwise, prove that no choice of weights can separate the two classes.

(b) (10 pts) Recall that the perceptron training algorithm relies on the update $\mathbf{w} \leftarrow \mathbf{w} + \eta(d(\mathbf{x}) - \mathbf{w})$ y) $[1 ext{ x}]$, where $\mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix}$ is the weight vector. Let $\eta = 1$ and the initial weight vector be given by $\mathbf{w} = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$. Calculate the updated weights after one epoch of training.

with extended notation (biases)
$$C_0 = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\}, C_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Feed
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
. $y = u \begin{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \end{pmatrix} = 0 = desired$ output So, no update.

Feed
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $y = u \begin{pmatrix} -1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 0 = desired$
So, again, no update.

Feed
$$\begin{pmatrix} 1\\2\\2 \end{pmatrix}$$
, $y = u \begin{pmatrix} -1\\0 \end{pmatrix} T \begin{pmatrix} 1\\1 \end{pmatrix} = 0 \neq desired$

So update
$$w \leftarrow \begin{pmatrix} -1 \\ 0 \end{pmatrix} + 1 \cdot (1-0) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

... Find weights after one epoch of training

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

(c) (10 pts) Will the weights provided by the algorithm (as setup in (b)) eventually converge after a sufficiently larger number of epochs? Justify your answer.

No. Come If converges => In to separate the two classes. However, the classes are not linearly separable.

- Q3 (40 pts): Consider a single-neuron network with input-output relationship $y = f(b + \mathbf{w}^T \mathbf{x})$, where y is the network output, f is some activation function, b is the bias term, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ are the synaptic weights, and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the network input.
- (a) (10 pts): Let $E = (d-y)^2$, where d is a constant (a generic desired output). Write down the delta-learning rule (the gradient-descent update equations) for b, w_1, w_2 given learning parameter $\eta = \frac{1}{2}$.

Simple chain rule yields:
$$\begin{pmatrix} b \\ w_1 \\ w_2 \end{pmatrix} \leftarrow \begin{pmatrix} b \\ w_1 \\ w_2 \end{pmatrix} + (d-y)f'(b+w^Tx)\begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix}.$$

(b) (15 pts): Consider the same delta-learning setup as in (a) with the activation function

$$f(v) = \left\{ \begin{array}{ll} v, & v \ge 0, \\ 0, & v < 0. \end{array} \right.$$

This is also known as the rectified linear unit (ReLU). Consider the training vectors $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, with desired outputs $d_1 = -1$, $d_2 = 2$, respectively. Find the updated bias and the updated weights after 2019 epochs of online learning given initial conditions b = 0, $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Show (1). Local field
$$v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^T \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -1$$

$$y = f(v) = 0$$
According to the update rule in (a), we obtain $f(v)$

$$\begin{pmatrix} b \\ w_1 \end{pmatrix} \leftarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 - 0 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1$$
Since $f'(-1) = 0$, we have no update.

Show $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Local field $v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$ $y = f(1) = 1$

$$\begin{pmatrix} b \\ w_1 \\ w_2 \end{pmatrix} \leftarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 - 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Show
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
. $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}^{T} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -1 \implies \text{no update.}$

Show $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}^{T} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 3$, $y = f(v) = 3$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}^{T} \begin{pmatrix} 1 \\ 2 \end{pmatrix}^{T}$$

At the end of epoch 2, we end up with the same weights we began with. So after even numbered epochs, the weights are (2), and after odd-numbered epochs, the weights are (2) and after odd-numbered epochs, we get (3). In particular, after 2019 epochs, we get (2).

(c) (15 pts) Consider now a multi-layer network as shown below.

Consider again a general f, as in (a). Let $E = (d - y)^4$. Find the gradient-descent update equations for b, w_1, w_2, w_3 given $\eta = \frac{1}{4}$.

$$y = f(1 + W_3 f(b + w_1 x_1 + w_2 x_2)). \quad So, by chain rule.$$

$$W_3 \leftarrow W_3 + (d - y)^3 f'(1 + w_3 f(b + w_1 x_1 + w_2 x_2))$$

$$\times f(b + w_1 x_1 + w_2 x_2).$$

$$\begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix} \leftarrow \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix} + (d - y)^3 f'(1 + w_3 f(b + w_1 x_1 + w_2 x_2))$$

$$\times w_3 f'(b + w_1 x_1 + w_2 x_2) \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}.$$

Q4 (20 pts). Let $f(x,y) = x^2 + xy + y^2$. Consider Newton's method given by the update rule $\begin{bmatrix} x \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x \\ y \end{bmatrix} - H^{-1}g$, where the gradient and the Hessian are given by $g = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$ and $H = \begin{bmatrix} \frac{\partial f^2}{\partial x \partial x} & \frac{\partial f^2}{\partial x \partial y} \\ \frac{\partial f^2}{\partial y \partial x} & \frac{\partial f^2}{\partial y \partial y} \end{bmatrix}$, respectively.

(a) (10 pts) Calculate g and H.

$$g = \begin{bmatrix} 2x + y \\ 2y + \mathbf{n}x \end{bmatrix} \qquad H = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

(b) (10 pts) Consider the initial point x = 2019, y = 2020. Find the next point after one update with Newton's method.

$$H^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}. \text{ So, } H^{-1}g = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and any mittal point $\begin{bmatrix} x \\ y \end{bmatrix}$ will end up at
$$\begin{bmatrix} x \\ y \end{bmatrix} - H^{-1}g = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ after one update with }$$
 Newton's method. This is also the ghobal minimum.