Final Project

Submissions

Each group must submit

- Project topic submission 4/3
- Project submission (.rmd and .html) 4/25

In lieu of a final exam we will have a team-based final project that will allow you to further practice the concepts and methods learned in this class on a real-world dataset. Additionally, this project will help build your portfolio which has become a common request among employers.

Project

The goal of this project is to apply the data wrangling, exploration and forecasting methodologies learned in class on a real-world time series dataset.

For this project you will be submitting an R markdown file and HTML report of the file. The code should be executable from anyone's computer so don't load data from your local hard drive.

Sections:

- Project setup
 - Install and load required libraries
 - Import dataset
- Introduction
 - Describe the dataset, where it's from, who created it, the index, keys and variables (what are the forecast variable and predictor variables (if applicable)).
 - O Why did you choose this dataset?
 - O How can forecast on this data be leveraged to make smarter decisions?
- Data wrangling
 - Convert to tsibble
 - Deal with missing data
 - Create new variables to aid in forecasting
 - Aggregate time series to desired format for forecasting
- Exploratory analysis and visualization for the dataset
 - Visualize the dataset and comment on characteristics of time series
 - Comment on the any anomalies in the data
 - Describe trend/seasonality/cycles with supporting charts
- Model fitting
 - Split dataset into training and test sets
 - Why did you choose to split where you did?
 - Fit TSLM, ETS and ARIMA model(s)
 - Use AICc to select within model families
 - Evaluate the residuals

- If there are predictor variables fit a TSLM with predictor variables, Regression with ARIMA errors
 - Use AICc to select within model families
 - Evaluate the residuals
- Fit benchmark methods
- Extra credit a NNETAR model or Prophet model (FPP3 Ch 12)
- Accuracy
 - Compare model performance using accuracy measures of your choice on the test dataset
 - O Why did you select those metrics for assessing accuracy?
 - Select a final model why did you select this model?
- Forecast
 - Produce a forecast for the future
 - o How many steps into the future are you forecasting? Why?
 - o Considerations or watchouts when putting forecast into production?

Time series data

Requirements

- Time series data not from fpp3 or tsibbledata
- Time series should have sufficient amount of data
 - Seasonal data should have at least 4 seasons of data
 - Remember lecture 1 the smaller the dataset the harder the forecast will be to produce

Encouraged

• Dataset should be of interest to group!

Suggestions

FRED

- https://fred.stlouisfed.org
- TONS of datasets available

http://www.timeseriesclassification.com

https://archive.ics.uci.edu/ml/datasets.php?format=&task=&area=&numAtt=&numIns=&type=ts&sort=nameUp&view=table

Kaggle

https://www.kaggle.com/c/walmart-recruiting-sales-in-stormy-weather/data

Google's dataset search engine

https://datasetsearch.research.google.com

Bureau of Economic Analysis

- GDP, Personal Income and Real Personal Income, Consumer Spending and Real Consumer Spending, Employment
- https://www.bea.gov/data/by-place-states-territories

Sports websites

- Attendance
- https://www.pro-football-reference.com/years/2018/attendance.htm

Misc repositories:

- https://data.world/datasets/time-series
 - o Crime data, airport delays, public debt/gov finance data, air pollution, taxi

Rubric:

Section	Standard	Points Possible	EC
Section	1.1 - are all required libraries installed/loaded?	POINTS POSSIBLE	LC
Duciost	·		
Project	1.2 - can dataset be imported to local R session	20	
Setup	1.3 - is entire .rmd executable without errors?	30	
	2.1 - describe the dataset		
	2.2 - did team explain why dataset was chosen?		
Introduction	2.3 - how can forecast be used?	20	
	3.1 - conversion to tsibble object		
Data	3.2 - properly dealing with missing data		
Wrangling	3.3 - explanation of any data manipulation steps	20	
	4.1 - plot of time series or sample of series, seasonality,		
	components, autocorrelation		
Exploratory	4.2 - observations from plots		
Analysis	4.3 - anomalies within the dataset that should be omitted?	30	
	5.1 - split of dataset into train and test, or CV stated		
	5.2 - fitting of TSLM, ETS, ARIMA (ARIMA errors with		
	regression if predictors)		
	5.3 - AICc compared within model families		
Model	5.4 - Residuals evaluated for top model within family		
Fitting	5.5 - Extra credit option for additional methods	50	20
	6.1 - Compare model performance using accuracy measures		
	of your choice on the test dataset		
	6.2 - Why did you select those metrics for assessing accuracy?		
Accuracy	6.3 - Selection of final model with rational	25	
	7.1 - Produce a forecast for the future		
	7.2 - How many steps into the future are you forecasting?		
	Why?		
	7.3 - Considerations or watchouts when putting forecast into		
Forecast	production?	25	
Total		200	220