- 1. Context
- 2. Definitions
- 3. Classifications of Ontology Matching Techniques
- 4. Basic Techniques
- 5. Matching Strategies

Context

- We have to deal with heterogeneity
- Different models are based on different domains of knowledge and use different tools, at different detail levels
- Distributed nature of ontology development has lead to different ontologies in the same or overlapping domains

The need for ontology matching

- Creating global ontologies from local ontologies
- Reuse information between ontologies
- Dealing with heterogeneity
- Queries across multiple distributed resources
- Data transformation
- The same term in two ontologies may mean different.
- Different Organizations may use different ontologies for same domain, resulting different terms representing same concept; problems arise when they try to communicate with each other – "interoperability problem"

What is ontology matching?

- It is the process of finding relationships or correspondences between entities of different ontologies.
- Try to find relationships between each pair of concepts used in two different ontologies.

Relationships between entities - classes, instances, properties or formulas

```
For example,
```

Equivalent, Subclass_Of, Superclass_Of, Siblings, Similar (how much similar?),

Different (how much different?)

Other terms used

Ontology Alignment

Two ontologies may be related in a more general fashion, namely by means of relations instead of functions.

Ontology Alignment the task of establishing acollection of binary relations between the vocabularies of two ontologies.

Ontology Merging

Ontology merging is the process of generating a single, coherent ontology from two or more existing and different ontologies related to the same subject.

Ontology Integration

The matching process

resources

Ontologies o and o'
Alignment A
Parameters
Resources

A parameters

matching

A

Ontology matching example

Classifying ontology matching in regard to the use

- Matching local ontologies to global ontologies
- Matching ontologies of complementary domains
- Merging two ontologies of the same domain

Categories of Ontology Mapping

- Category 1 :Mapping between an integrated global ontology and local ontologies
- Category 2 : Mapping between local ontologies
- Category 3: Mapping on ontology merging and alignment

Category1

Tools and Systems:

- LSD (Learning Source Description)
- MOMIS (Mediator Environment for Multiple Information Sources)
- A Framework for OIS (Ontology Integration System

Application Areas:

- Semantic Web
- Enterprise
 Knowledge
 management
- Data/Information Integration

Category2

Tools and Systems:

- Context OWL (Contextualizing Ontologies)
- CTXMATCH
- GLUE
- MAFRA (Ontology MAapping FRAmework for distributed ontologies in the Semantic Web)
- LOM (Lexicon-based Ontology Mapping)
- QOM (Quick Ontology Mapping)
- ONION (Ontology compositION system)
- OKMS (Ontology-based knowledge management system)
- OMEN (Ontology Mapping Enhancer)
- P2P ontology mapping

Application Area: Semantic Web

Category3

Tools and Systems:

- SMART
- PROMPT
- OntoMorph
- HICAL
- AnchorPROMPT
- CMS (CROSI Mapping System)
- FCA-Merge
- CHIMAERA

Application Areas:

Standard Search

 Government Intelligence

Medicine

