

Car security system has two antennas improves code unit location and security

Patent number: DE10032936
Publication date: 2002-02-07
Inventor: BUCHNER REINER (DE)
Applicant: SIEMENS AG (DE)
Classification:
 - International: B60R25/00; E05B65/12; B60R25/04; G08B13/00
 - European: B60R25/00; G07C9/00E4
Application number: DE20001032936 20000706
Priority number(s): DE20001032936 20000706

[Report a data error here](#)

Abstract of DE10032936

A car security system has transponder (1) and code unit (2) with antennas (3,4) to transmit separate low frequency characteristic signals and recognition processor (5) to evaluate a response from the code unit that includes a power measurement to select door or steering unlocking.

Data supplied from the esp@cenet database - Worldwide

⑩ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑫ Offenlegungsschrift ⑬ DE 100 32 936 A 1

⑪ Int. Cl. 7:
B 60 R 25/00
B 60 R 25/04
G 08 B 13/00
E 05 B 65/12

⑭ Aktenzeichen: 100 32 936.5
⑮ Anmeldetag: 6. 7. 2000
⑯ Offenlegungstag: 7. 2. 2002

DE 100 32 936 A 1

⑰ Anmelder:
Siemens AG, 80333 München, DE

⑰ Erfinder:
Buchner, Reiner, 93161 Sinzing, DE

⑱ Entgegenhaltungen:

DE 198 38 957 C1
DE 197 18 764 C1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑲ Vorrichtung und Verfahren zum Steuern einer Zugangsberechtigung und/oder einer elektronischen Wegfahrsperre für ein Kraftfahrzeug

⑳ Eine Vorrichtung weist eine fahrzeugseitig angeordnete Sende- und Empfangseinheit (1) und einen Codegeber (2) auf. Über kraftfahrzeugseitig angeordneten Antennen (3, 4) werden Fragesignale ausgesendet. Ein Kennengeber (5) ordnet jeder Antenne (3, 4) eine charakteristische Kennung zu, die dem Fragesignal hinzugefügt wird. Die Leistungen der Fragesignale werden von einer codegeberseitigen Messeinheit (9) gemessen. Eine Zuordnungseinheit (10) weist dem Wert der gemessenen Leistung zusammen mit der empfangenen Kennung einem Antwortsignal zu und sendet es an die Sende-Empfangseinheit (1) zurück. Die Auswerteeinheit (6) ermittelt aus der Sendeleistung und der gemessenen Empfangsleistung sowie der Kennung die Abstände zu den Antennen (3, 4) und ermittelt daraus die Position des Codegebers (2).

DE 100 32 936 A 1

DE 100 32 936 A 1

1

2

Beschreibung

[0001] Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Steuern einer Zugangsberechtigung und/oder einer elektronischen Wegfahrsperre für ein Kraftfahrzeug.

[0002] Eine bekannte Vorrichtung (DE 198 27 586 A1) weist eine kraftfahrzeugsitig angeordnete Sende- und Empfangseinheit, mehrere kraftfahrzeugsitig angeordnete Niederfrequenz (NF)-Sender und einen tragbaren Codegeber auf. Die Sende- und Empfangseinheit und der Codegeber weisen zusätzlich je eine Sende- und Empfangseinheit für Hochfrequenz (HF)-Signale auf. Mit Hilfe von getrennten NF- und HF-Kommunikationskanälen werden Signale zwischen der Sende- und Empfangseinheit und dem Codegeber ausgetauscht. Dies wird als Frage-Antwort-Dialog bezeichnet. Die NF-Sender senden zyklisch und zeitversetzt zueinander ein NF-Signal aus, mit dessen Reichweite ein Fangbereich begrenzt wird. Über den HF-Kommunikationskanal wird ein den NF-Sender identifizierendes HF-Signal gesendet. Wenn sich ein Codegeber in Reichweite eines NF-Senders befindet, kann er das NF-Signal und das HF-Signal empfangen. Nur dann, wenn der Codegeber beide Signale empfangen hat, sendet der Codegeber ein Antwortsignal, in dem das empfangene NF-Signal und das HF-Signal (NF-Sender-Identität) enthalten ist. Befindet sich der Codegeber außerhalb der Reichweite eines NF-Senders, so empfängt er das Fragesignal nicht und es wird kein Antwortsignal bezüglich dieses NF-Senders vom Codegeber ausgesendet. Durch Auswerten mehrerer aufeinanderfolgender Antwortsignale, die von der kraftfahrzeugsitigen HF-Sende- und Empfangseinheit empfangen werden, kann die Position des Codegebers festgestellt werden. Weisen die ausgewerteten Antwortsignale alle die gleiche NF-Senderidentität auf, kann daraus geschlossen werden, dass sich der Codegeber außerhalb des Kraftfahrzeugs an der diesem NF-Sender zugeordneten Kraftfahrzeugsseite befindet.

[0003] Die Positionsbestimmung des Codegebers kann mit einem Frage-Antwort-Dialog kombiniert werden, der entsprechend dem Frage-Antwort-Dialog für die Positionsbestimmung des Codegebers abläuft und mittels dem eine Zugangsberechtigung festgestellt oder eine elektronische Wegfahrsperre gelöst oder andere Betriebsfunktionen gesteuert werden.

[0004] Eine weitere Vorrichtung zum Steuern einer Zugangsberechtigung für ein Kraftfahrzeug ist aus der Patentschrift DE 198 39 355 C1 bekannt. Bei dieser Vorrichtung wird zunächst über ein Auslöselement ein Identifizierungsvorgang eingeleitet, durch den die Berechtigung des anfordenden Benutzers festgestellt wird. Dazu ist es erforderlich, dass sich ein für dieses Fahrzeug berechtigter Codegeber innerhalb einer Reichweite befindet. Die Reichweiten sind durch entsprechende Strahlungscharakteristiken und Sendeleistungen der Antennensignale der einzelnen fahrzeugsitig angeordneten Antennen geeignet gewählt. Über die Antennen werden niederfrequente Signale, deren Reichweiten relativ gering sind, ausgesendet. Falls sich der Codegeber innerhalb eines Fangbereichs befindet und ein Signal empfangen hat, sendet er ein hochfrequentes Signal aus, das von einer kraftfahrzeugsitig angeordneten Steuereinheit empfangen und ausgewertet wird. In der Steuereinheit wird für jede kraftfahrzeugsitig angeordnete Antenne einzeln geprüft, ob ein entsprechender Frage-Antwort-Dialog mit einem berechtigten Codegeber abläuft. Das Auswerten erfolgt dahingehend, ob sich der Codegeber im Fahrzeugaßenraum oder im Fahrzeuginnenraum befindet. Bei Berechtigung wird eine gewünschte Funktion für einen Fahrzeugzugang gesteuert oder eine elektronische Wegfahrsperre gelöst.

[0005] Bei den bekannten Vorrichtungen ist die genaue Lokalisierung des Codegebers problematisch. Die Geometrie der Antennen und ihre Anordnung werden dort derart ausgeführt, dass ihre Abstrahleistung variiert wird oder die von ihnen ausgesendeten Felder sich nicht überlagern. Es findet also keine exakte Abgrenzung der Richtcharakteristiken auf den Fahrzeugaßen- oder -innenbereich statt und es kann bei einer Überlagerung der Felder nicht mehr festgestellt werden, von welcher Antenne ein Signal kommt. So mit kann der Codegeber in seiner Position nicht einwandfrei identifiziert werden, wodurch eine exakte Abgrenzung zwischen Fahrzeuginnenraum und -außenraum nicht mehr gegeben ist.

[0006] Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren zum Steuern einer Zugangsberechtigung und/oder einer elektronischen Wegfahrsperre für ein Kraftfahrzeug zu schaffen, bei der bzw. bei dem die Bestimmung der Position des Codegebers mit großer Genauigkeit ausführbar ist und die bzw. das sich daher durch eine erhöhte Sicherheit gegenüber unberechtigter Benutzung auszeichnet.

[0007] Diese Aufgabe wird erfindungsgemäß durch die Vorrichtung mit den Merkmalen des Patentanspruchs 1 und durch ein Verfahren, das die Schritte nach Patentanspruch 5 aufweist, gelöst.

[0008] Über fahrzeugsitig angeordnete Antennen, die mit einer fahrzeugsitigen Sende- und Empfangseinheit elektrisch verbunden sind, werden Fragesignale zeitlich aufeinanderfolgend gesendet und Antwortsignale empfangen. Die Anzahl (zumindest zwei) der Antennen kann je nach Fahrzeugtyp unterschiedlich sein. Falls ein Fragesignal über einen Empfänger eines tragbaren Codegebers empfangen wird, wird mittels eines codegeberseitig angeordneten Senders ein Antwortsignal ausgesendet, das von der Sende- und Empfangseinheit empfangen und durch eine fahrzeugsitig angeordnete Auswerteeinheit ausgewertet wird.

[0009] Erfindungsgemäß wird jeder Antenne eine charakteristische Kennung mittels eines kraftfahrzeugsitig angeordneten Kennungsgebers zugeordnet. Diese Kennung wird mit dem Fragesignal ausgesendet. Die Zuordnung kann zeitlich vor, nach oder gleichzeitig mit dem Aussenden des Fragesignals erfolgen. Wird das Fragesignal mit der charakteristischen Kennung von dem codegeberseitigen Empfänger empfangen, wird über eine codegeberseitige Messeinrichtung die Leistung des Fragesignals gemessen.

[0010] Mittels einer codegeberseitigen Zuordnungseinheit wird die gemessene Leistung zusammen mit der empfangenen Kennung als Wert dem Antwortsignal hinzugefügt und das Antwortsignal über den Sender ausgesendet. Ebenso werden die gemessenen Leistungen der anderen Antennen und deren Kennungen als Antwortsignale gesendet.

[0011] Eine kraftfahrzeugsitig angeordnete Auswerteeinheitwertet die empfangenen Antwortsignale aus. Mit den in den Antwortsignalen enthaltenen Informationen kann die Position des Codegebers genau festgestellt werden.

[0012] Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.

[0013] Es kann vorgesehen sein, die empfangenen Fragesignale mit den charakteristischen Kennungen nicht als einzelne Antwortsignale auszusenden, sondern im Codegeber zu speichern und in einem gemeinsamen Antwortsignal auszusenden.

[0014] Weiter ist die Möglichkeit vorgesehen, über die fahrzeugsitig angeordnete Sende- und Empfangseinheit das Aussenden des Fragesignals über einzelne Antennen zu wiederholen um die Richtigkeit der empfangenen Werte zu überprüfen oder unvollständige oder fehlerhafte Werte korrigiert zu empfangen.

DE 100 32 936 A 1

3

4

- [0015] Vorteilhaft ist ferner, die Position des Codegebers über ein optisches Anzeigeelement anzugezeigen.
- [0016] Eine weitere vorteilhafte Ausgestaltung ist, die beschriebene Vorrichtung und das Verfahren zum Bestimmen der Position eines Codegebers mit einem zusätzlichen Frage-Antwort-Dialog zwischen der fahrzeugseitigen Sende- und Empfangseinheit und dem tragbaren Codegeber zu kombinieren. Gleichzeitig oder zeitversetzt zur Positionsbestimmung kann dann beispielsweise eine Zugangsbe-rechtigung überprüft und/oder eine elektronische Wegfahrsperre gelöst werden.
- [0017] Eine Ausführung der Erfindung wird im Folgenden anhand der schematischen Zeichnungen näher beschrieben. Es zeigen:
- [0018] Fig. 1 ein Blockschaltbild einer erfindungsgemä-
ßen Vorrichtung und
- [0019] Fig. 2 eine schematische Darstellung einer Anordnung von Antennen im Kraftfahrzeug und Strahlungscha-
rakteristiken.
- [0020] Eine Vorrichtung zum Steuern einer Zugangsbe-
rechtigung und/oder einer elektronischen Wegfahrsperre el-
ektrisch Kraftfahrzeugs weist eine kraftfahrzeugseitig angeord-
nete Sende- und Empfangseinheit 1 (Fig. 1) und einen trag-
baren Codegeber 2 auf. Die Sende- und Empfangseinheit 1,
die typischerweise einen Mikroprozessor enthält, ist mit
kraftfahrzeugseitig angeordneten Antennen 3, 4 elektrisch
verbunden. Die erste Antenne 3 ist dabei der Fahrerseite und
die zweite Antenne 4 der Beifahrerseite des Kraftfahrzeugs
zugeordnet.
- [0021] Zwischen der Sende- und Empfangseinheit 1 und
dem Codegeber 2 wird ein Frage-Antwort-Dialog durchge-
führt. Über die Antennen 3, 4 werden niederfrequente Fra-
gesignale ausgesendet. Durch entsprechende Gestaltung der
Antennen 3, 4 ist es möglich beim Aussenden von niederfre-
quenten Signalen fast ausschließlich das Magnetfeld des
elektromagnetischen Feldes zu verwenden, welches von
Fahrzeugteilen relativ wenig gedämpft wird. Die magne-
tische Feldstärke niederfrequenter Signale fällt abhängig
von der Entfernung relativ schnell ab. Mit der relativ kurzen
Reichweite der niederfrequenten Signale werden zulässige
Bereiche außerhalb und/oder innerhalb des Kraftfahrzeugs
festgelegt. Weiter weist die Sende- und Empfangseinheit 1
einen Kennungsgeber 5 auf, der jeder Antenne 3, 4 eine cha-
rakteristische Kennung zuordnet. Die eine Kennung charak-
terisierenden Informationsbits können dabei an beliebiger
Position des digitalen Fragesignals sein.
- [0022] Über die Antennen 3, 4 werden hochfrequente Ant-
wortsignale empfangen, die Informationen enthalten, um ge-
gebenenfalls Funktionen im Kraftfahrzeug auszuführen
oder einzuleiten. Eine kraftfahrzeugseitig angeordnete Aus-
werteeinheit 6 wertet die empfangenen Antwortsignale aus.
- [0023] Der Codegeber 2 dient zum Empfangen und Sen-
den von Signalen über einen Empfänger 7 bzw. über einen
Sender 8. Der Empfänger 7 ist mit einer Messeinrichtung 9
verbunden, die die Leistungen der empfangenen Fragesig-
nale misst. Die zugeordneten Kennungen werden durch
Demodulieren und Auswerten des Fragesignals gewonnen.
Mittels einer Zuordnungseinheit 10 die mit der Messeinrich-
tung 9 und dem Sender 8 verbunden ist, wird der Wert der
gemessenen Signalleistung und die zugeordnete Kennung
einem Antwortsignal hinzugefügt und über den Sender 8
ausgesendet.
- [0024] Die Trägerfrequenz der niederfrequenten Signale
liegt vorzugsweise bei etwa 125 kHz. Die Trägerfrequenz
der hochfrequenten Signale liegt vorzugsweise bei etwa
433 MHz oder etwa 868 MHz die in Deutschland und Eu-
ropa zugelassen sind. Für Japan und die USA ist eine Trä-
gerfrequenz bei etwa 315 MHz für die hochfrequenten Si-
- gnale zugelassen und vorteilhaft.
- [0025] Eine Vorrichtung gemäß der Fig. 1 funktioniert fol-
gendermaßen:
- [0026] Über ein nicht näher beschriebenes Auslöseele-
ment 11, beispielsweise einen elektrischen Schalter an ei-
nem Fahrzeugtürgriß, wird durch manuelles Betätigen des
Türgriffs ein Triggersignal ausgelöst. Erkennt die Sende-
und Empfangseinheit 1 das Triggersignal, leitet die Sende-
und Empfangseinheit 1 einen nachfolgend näher erläuterten
Frage-Antwort-Dialog ein.
- [0027] Die Sende- und Empfangseinheit 1 sendet je ein
Fragesignal über die fahrzeugseitigen Antennen 3, 4 aus.
Das Aussenden über die Antennen 3, 4 erfolgt zeitlich auf-
einanderfolgend. Beispielsweise kann das Fragesignal zu-
erst über die Antenne ausgesendet werden, auf deren Fahr-
zeugseite der Türgriff betätigt wurde. Anschließend wird
das Fragesignal von der anderen Antenne ausgesendet. Vor,
nach oder gleichzeitig mit dem Aussenden eines Fragesig-
nals über eine Antenne 3, 4 ordnet der Kennungsgeber 5 je-
der Antenne 3, 4 eine charakteristische Kennung zu, die dem
Fragesignal hinzugefügt wird. Jedes ausgesendete Fragesig-
nal ist mit der Kennung somit eindeutig dabingehend cha-
rakterisiert, von welcher Antenne 3, 4 das Fragesignal ge-
sendet wurde.
- [0028] Werden nun die Fragesignale und die charakteristi-
schen Kennungen über den Empfänger 7 des Codegebers 2
empfangen, werden die Leistungen der empfangenen Frage-
signale über die codegeberseitige Messeinrichtung 9 gemes-
sen und die zugehörigen Kennungen durch Auswerten der
demodulierten Fragesignale gewonnen.
- [0029] Die Werte der gemessenen Leistungen der empfan-
genen Fragesignale und deren zugehörige Kennungen wer-
den mittels der Zuordnungseinheit 10 jeweils einem Ant-
wortsignal hinzugefügt und die Antwortsignale werden über
den codegeberseitigen Sender 8 ausgesendet. Die von der
fahrzeugseitigen Sende- und Empfangseinheit 1 empfan-
gten Antwortsignale werden an die Auswerteeinheit 6 wei-
tergeleitet.
- [0030] Die Auswerteeinheit 6 wartet die Antwortsignale
bezüglich der Sendeleistung und der zugeordneten Kennun-
gen der Antennen 3, 4 aus.
- [0031] Bekannt ist die Sendeleistung der Antennen 3, 4 und
die Dämpfung der abgestrahlten Leistung über den Weg. Aus den Antwortsignalen werden die vom Codegeber
empfangenen Leistungen erhalten und mit den zugehörigen
Kennungen festgestellt, von welcher Antenne 3, 4 die vom
Codegeber empfangene Leistung stammt. Da die Orte der
Antennen 3, 4 bekannt sind, wird aus der Sendeleistung, der
Empfangsleistung und dem daraus abgeleiteten Abstand zur
jeweiligen Antenne 3, 4 der Ort des Aussendens festgestellt.
Aus den Werten der Sendeleistung der Antennen 3, 4 und
den Werten der Empfangsleistung werden Abstände zu den
Antennen 3, 4 ermittelt und daraus die Position des Codege-
bers 2 bestimmt.
- [0032] Die Position des Codegebers 2, kann nun über eine
optische Anzeige angezeigt werden.
- [0033] Wird der Codegeber in einem zulässigen Positions-
bereich identifiziert, wird ein Frage-Antwort-Dialog zwis-
chen der Sende- und Empfangseinheit 1 und dem Codege-
ber 2 eingeleitet. Bei Übereinstimmung empfangener Code-
informationen mit in der Auswerteeinheit 6 gespeicherten
Codeinformationen wird eine Berechtigung nachgewiesen
und eine gewünschte Funktion ausgelöst oder eingeleitet.
- [0034] In Fig. 2 sind schematisch die Richtcharakteristi-
ken der Antennen 3, 4 dargestellt. Die Richtcharakteristik 12
bezieht sich dabei auf die fahrerseitig angeordnete Antenne
3, die Richtcharakteristik 13 auf die beifahrerseitig angeord-
nete Antenne 4. Die Magnetfelder der fahrer- und der bei-

DE 100 32 936 A 1

5

fahrersaitig angeordneten Antennen 3, 4 weisen nicht nur im Fahrzeuginnenraum einen Überlagerungsbereich auf, sondern überlagern sich auch in bestimmten Bereichen außerhalb des Fahrzeugs.

[0035] Anhand von Fig. 2 wird ein Vermelden eines unberechtigten Fahrzeugzugangs beispielsweise erläutert. Es sei angenommen, dass sich ein berechtigter Fahrzeognutzer 14 auf der Fahrerseite und ein unberechtigter Fahrzeognutzer 15 auf der Beifahrerseite befinden. Der nichtberechtigte Fahrzeognutzer 15 löst auf der Beifahrerseite über ein Ziehen am Türgriff eine Prüfung einer Zugangsberechtigung aus. Obwohl sich der Fahrzeognutzer 15, ebenso wie Fahrzeognutzer 14, in Reichweite des über die fahrersaitig angeordnete Antenne 3 ausgesendeten Signals befinden, wird keine Entriegelung der Beifahrertür ausgelöst. Der gemessene Wert der Leistung die von der Antenne 4, von deren Fahrzeugseite aus die Triggersauslösung erfolgt, ausgesendet wird und die vom Codegeber 2 empfangen und an die Sende- und Empfangseinheit 1 zurückgesendet wird, hat einen Wert, aus dem ein Abstand zur Antenne errechnet wird. Der ermittelte Abstand des Codegebers zur Antenne 4 wird als zu groß erkannt und es wird kein Frage-Antwort-Dialog für eine Zugangsberechtigung eingelaufen und kein Entriegeln der Beifahrertür ausgelöst.

[0036] Ist eine Übermittlung eines Antwortsignals oder einzelner Leistungswerte unvollständig oder fehlerhaft oder soll die Richtigkeit der empfangenen Informationen überprüft werden, kann die Auswerteeinheit 6 das wiederholte Aussenden des Fragesignals und der charakteristischen Kennung über einzelne Antennen 3, 4 steuern.

[0037] Das Aussenden von niederfrequenten Fragesignalen und das Empfangen von hochfrequenten Antwortsignalen wird in der Regel über verschiedene Antennen durchgeführt. Gemessen wird nur die Sendeleistung der Antenne über die die niederfrequenten Signale ausgesendet werden.

[0038] Wird das Verfahren nacheinander mit drei an verschiedenen Orten angeordneten Antennen durchgeführt, so ist mit einer Triangulationsmethode eine genauere Positionsbestimmung möglich. Die drei Antennen werden so angeordnet, dass sie nicht alle auf einer Verbindungsgeraden liegen. Beispielsweise ist es möglich die Position des Codegebers 2 im Heckbereich eindeutig festzustellen wenn eine dritte Antenne an der Heckklappe eines Fahrzeugs angebracht ist. Zusätzlich kann ein Ver- oder Entriegeln der Heckklappe und/oder einer oder mehrerer Fahrzeugtüren gesteuert werden.

[0039] Bevorzugt ist darüber hinaus vorgesehen, die Steuerung der Zugangsberechtigung mit einer elektronischen Wegfahrsperre 16 zu kombinieren. Zum Lösen der Wegfahrsperre 16 wird ein Zündschalter als Auslöselement betätigt. Daraufhin wird ein Frage-Antwort-Dialog durchgeführt, der entsprechend dem Frage-Antwort-Dialog für die Positionsbestimmung abläuft. Befindet sich der Codegeber 2 im Fahrgastraum und wird eine überprüfte Codeinformation als berechtigt erkannt wird die elektronische Wegfahrsperre 16 gelöst.

[0040] Es ist auch möglich, die empfangenen Fragesignale und die zugehörigen Kennungen im Codegeber 2 zu speichern und als ein Antwortsignal an die Sende- und Empfangseinheit 1 zu senden. Das empfangene Antwortsignal wird dann von der Auswerteeinheit auf die vom Codegeber empfangenen Leistungen und der zugehörigen Kennungen hin ausgewertet und die Position des Codegebers bestimmt.

Patentansprüche

65

1. Vorrichtung zum Steuern einer Zugangsberechtigung und/oder einer elektronischen Wegfahrsperre ei-

6

nes Objekts, insbesondere für ein Kraftfahrzeug, mit einer objektseitig angeordneten Sende- und Empfangseinheit (1), mit zumindest zwei objektseitig angeordneten Antennen (3, 4), die mit der Sende- und Empfangseinheit (1) elektrisch verbunden sind, über die ein Fragesignal gesendet und ein Antwortsignal empfangen wird, mit einem Kennungsgeber (5), der jeder Antenne eine charakteristische Kennung zuordnet und die Kennung jeweils dem Fragesignal hinzufügt, und mit einer objektseitig angeordneten Auswerteeinheit (6), die ein empfangenes Antwortsignal auswertet und abhängig von einer Signalleistung und der Kennung die Position des Codegebers feststellt,

mit einem tragbaren Codegeber (2), der aufweist,

- einen Empfänger (7), der das Fragesignal mit der charakteristischen Kennung empfängt,
- eine Meßeinrichtung (9), die die Leistung des empfangenen Fragesignals mißt,
- eine Zuordnungseinheit (10), die die gemessene Leistung des Fragesignals zusammen mit der empfangenen Kennung dem Antwortsignal als Wert hinzufügt, und
- einen Sender (8), der das Antwortsignal sendet,

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Codegeber (2) die gemessenen Signalleistungen mit den zugeordneten Kennungen speichert und dem Antwortsignal hinzufügt sowie die objektseitige Auswerteeinheit (6) das Antwortsignal auswertet und abhängig von den gemessenen Leistungen und den Kennungen die Position des Codegebers (2) ermittelt.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trägerfrequenz des Fragesignals im Niederfrequenzbereich liegt und die Trägerfrequenz des Antwortsignals im Hochfrequenzbereich liegt.

4. Vorrichtung nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass eine Anzeigeeinheit im Kraftfahrzeug angeordnet ist, welche die ermittelte Position des Codegebers anzeigt.

5. Verfahren zum Steuern einer Zugangsberechtigung und/oder einer elektronischen Wegfahrsperre eines Objekts, insbesondere eines Kraftfahrzeugs, das folgende Schritte aufweist:

- aufeinanderfolgendes Aussenden von Fragesignalen über zumindest zwei objektseitig angeordnete Antennen (3, 4),
- Zuordnen einer charakteristischen Kennung der objektseitig angeordneten Antennen (3, 4) zu den Fragesignalen,
- Messen der von den Antennen (3, 4) empfangenen Leistungen der Fragesignale mittels einer codegeberseitigen Meßeinrichtung (9),
- Hinzufügen der Werte der empfangenen Leistungen der Fragesignale und der charakteristischen Kennungen zu einem Antwortsignal,
- Senden des Antwortsignals,
- Empfangen des Antwortsignals mittels der objektseitigen Sende- und Empfangseinheit (1) und Feststellen der Position des Codegebers (2) in Abhängigkeit von der empfangenen Leistung des Fragesignals,

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Signalleistungen von mehreren Fragesignalen gemessen und zusammen mit den jeweiligen Kennungen gespeichert sowie einem gemeinsamen

DE 100 32 936 A 1

7

8

Antwortsignal hinzugefügt werden.

Hierzu 2 Seite(n) Zeichnungen

5

10

15

20

25

30

35

40

45

50

55

60

65

- Leerseite -

ZEICHNUNGEN SEITE 1

Nummer:
Int. Cl.?:
Offenlegungstag:

DE 100 32 836 A1
B 60 R 25/00
7. Februar 2002

FIG 1

ZEICHNUNGEN SEITE 2

Nummer:
Int. Cl. 7;
Offenlegungstag:

DE 100 32 936 A1
B 60 R 25/00
7. Februar 2002

FIG 2

