

Triangles Ex 4.6 Q6

Answer:

Given: The area of two similar triangles is 25cm² and 36cm² respectively. If the altitude of first triangle is 2.4cm

To find: The altitude of the other triangle

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.

$$\frac{ar(\text{triangle1})}{ar(\text{triangle2})} = \left(\frac{\text{altitude1}}{\text{altitude2}}\right)^2$$

$$\frac{25}{36} = \left(\frac{2.4}{\text{altitude2}}\right)^2$$

Taking square root on both sides, we get

$$\begin{split} \frac{5}{6} &= \frac{2.4}{\text{altitude 2}} \\ &\Rightarrow \text{altitude 2} = 2.88 \text{ cm} \end{split}$$

Hence, the corresponding altitude of the other is 2.88 cm.

Triangles Ex 4.6 Q7

Answer:

Given: The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. To find: Ratio of areas of triangle.

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.

$$\frac{ar(\text{triangle1})}{ar(\text{triangle2})} = \left(\frac{\text{altitude1}}{\text{altitude2}}\right)^2$$

$$\frac{ar(\text{triangle1})}{ar(\text{triangle2})} = \left(\frac{6}{9}\right)^2$$

$$\frac{ar(\text{triangle1})}{ar(\text{triangle2})} = \frac{4}{9}$$

$$ar(\text{triangle1}) : ar(\text{triangle2}) = 4:9$$

Hence, the ratio of areas of two triangles is 4:9.

Triangles Ex 4.6 Q8

Answer:

Given: In \triangle ABC, \angle A = 90°, AN \perp BC , BC = 12cm and AC = 5cm.

TO FIND: Ratio of the triangles $\triangle ANC$ and $\triangle ABC$.

In $\triangle ANC$ and $\triangle ABC$,

$$\angle ACN = \angle ACB$$
 (Common)

$$\angle A = \angle ANC$$
 (90° each)

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

******* END *******