Версия документа: 0.10

Процессорное ядро schoolMIPS

Руководство пользователя

Оглавление

1.	Благодарности	3
2.	Введение	3
3.	Уровень поддержки MIPS архитектуры	3
4.	Аппаратное и программное обеспечение	4
5.	Структура проекта	5
6.	Порядок развертывания	7
6.1.	Развертывание программного окружения	7
6.2.	Получение schoolMIPS	
7.	Порядок запуска	7
7.1.	Порядок сборки программы	
7.2.	Запуск в режиме симуляции	
7.3.	Синтез проекта и программирование ПЛИС Altera	
7.4.	Синтез проекта и программирование ПЛИС Xilinx	
7. 4 . 7.5.	Интерфейс пользователя	
8.	Миграция и добавление кода	
ПРИЛ	ПОЖЕНИЕ 1. Пример синтеза и конфигурации ПЛИС Altera	11
ПРИЛ	ПОЖЕНИЕ 2. Пример синтеза и конфигурации ПЛИС Xilinx	13
Спи	сок таблиц	
Таблі	ица 1. Поддерживаемые коды поля Opcode	3
Таблі	ица 2. Поддерживаемые коды поля Function	4
	ица 3. Программное окружение	
	ица 4. Текущий статус поддержки отладочных плат	
	ица 5. Структура каталогов проекта	
	ица 6. Типовая структура каталога тестовой программы	
	ица 7. Модульный состав проекта	
	ица 8. Интерфейсные сигналы основного модуля процессорного ядра (sm_cpu)	
	ица 9. Элементы управления отладочной платы	
Таблі	ица 10. Назначение и номера регистров MIPS	10

1. Благодарности

Этот проект появился на свет благодаря коллективу переводчиков учебника Дэвида Харриса и Сары Харрис «Цифровая схемотехника и архитектура компьютера», участникам конференции "Young Russian Chip Architects" (yrca@googlegroups.com), а также персонально:

Юрий Панчул, @yuri-panchul идея проекта, архитектура Станислав Жельнио, @zhelnio архитектура, кодирование

архитектура, поддержка Terasic MAX10 Neek, Terasic DE10-Standard, Марсоход 3 Александр Романов, @RomeoMe5

Oleg Lyovin, @olegartys багфикс, подержка Marsohod3b Dmitry Dluzhnevsky, @Dluzhnevsky поддержка RZ-EasyFPGA A2.1 @woodywitch поддержка RZ-EasyFPGA A2.1

2. Введение

schoolMIPS - это простейшее процессорное ядро, разработанное в рамках инициативы по преподаванию школьникам основ цифровой схемотехники, языков описания аппаратуры и использования Π ЛИС 1 .

Основные особенности:

- язык описания аппаратуры Verilog;
- подмножество архитектуры MIPS с памятью инструкций, с регистрами общего назначения, но без памяти данных;
- однотактовая микроархитектура;
- минимальный набор инструкций, первоначально достаточный для вычисления числа Фибоначчи и целочисленного квадратного корня итеративным способом;
- максимально упрощенная в целях преподавания микроархитектура;
- является упрощенной версией процессорного ядра MIPS написанного Сарой Харрис.

В состав schoolMIPS входят:

- исходные коды процессорного ядра;
- примеры запускаемых на выполнение программ (тестовые программы);
- проекты средств синтеза, необходимые для запуска schoolMIPS на отладочных платах;
- набор скриптов, осуществляющих компиляцию примеров, симуляцию и подготовку к синтезу;
- документация (включая настоящий документ).

Проект schoolMIPS доступен для загрузки по адресу: https://github.com/MIPSfpga/schoolMIPS

3. Уровень поддержки MIPS архитектуры

Поддерживаемы по состоянию на 01.07.2017 инструкции приведены в таблицах² ниже (отмечены цветом).

Таблица 1. Поддерживаемые коды поля Opcode

op	code	bits 2826							
		0	1	2	3	4	5	6	7
bits	3129	000	001	010	011	100	101	110	111
0	000	Special	RegImm	J	JAL	BEQ	BNE	BLEZ	BGTZ
1	001	ADDI	ADDIU	SLTI	SLTIU	ANDI	ORI	XORI	LUI
2	010	COP0	β	COP2	β	BEQL	BNEL	BLEZL	BGTZL
3	011	α	α	α	α	Special2	3ΑΛΞ	α	Σπεχιαλ3
4	100	LB	LH	LWL	LW	LBU	LHU	LWR	α
5	101	SB	SH	SWL	SW	α	α	SWR	CACHE
6	110	LL	β	LWC2	PREF	α	β	α	α
7	111	SC	β	SWC2	α	α	β	α	α

¹ https://geektimes.ru/post/289827/

² Таблицы приведены в соответствии с документом: MIPS32 microAptiv UP Processor Core Family Software User's Manual

Таблица 2. Поддерживаемые коды поля Function

fun	ction	bits 20							
		0	1	2	3	4	5	6	7
bit	s 53	000	001	010	011	100	101	110	111
0	000	SLL	β	SRL/	SRA	SLLV	α	SRLV/	SRAV
				ROTR				ROTRV	
1	001	JR	JALR	MOVZ	MOVN	SYSCALL	BREAK	α	SYNC
2	010	MFHI	MTHI	MFLO	MTLO	α	α	α	α
3	011	MULT	MULTU	DIV	DIVU	α	α	α	α
4	100	ADD	ADDU	SUB	SUBU	AND	OR	XOR	NOR
5	101	α	α	SLT	SLTU	α	α	α	α
6	110	TGE	TGEU	TLT	TLTU	TEQ	α	TNE	α
7	111	α	α	α	α	α	α	α	α

4. Аппаратное и программное обеспечение

Минимально необходимый для работы со schoolMIPS набор аппаратного и программного обеспечения, который позволит изучить работу процессорного ядра в режиме симуляции включает:

- компьютер и операционная система;
- средства симуляции;
- средства сборки программ;
- редактор кода

Для того, чтобы развернуть schoolMIPS на ПЛИС и изучить его работу "на железе" дополнительно потребуется:

- отладочная плата ПЛИС;
- средства синтеза

Перечень поддерживаемого аппаратного и программного обеспечения приведен в таблицах ниже.

Таблица 3. Программное окружение

Nº п/п	Наименование	Версия	Примечание		
1	2	3	4		
Опер	ационные системы	•			
1.	OC Windows	7	Работа на других версиях ОС - не тестировалась		
2.	OC Ubuntu Linux	16.10	Необходимо выполнить замену *.bat скриптов в каталогах проекта на их *.sh аналоги. (подробнее - в Разделе "Развертывание программного окружения")		
Инст	рументы синтеза				
3.	Quartus Prime	16.1	Используется для синтеза и последующего запуска на отладочных платах с ПЛИС Altera (Intel)		
4.	Xilinx Vivado	2017.2	Используется для синтеза и последующего запуска на отладочных платах с ПЛИС Xilinx		
Сред	ства симуляции				
5.	ModelSim	10.5b	Используется для запуска в режиме симуляции. Задействована версия INTEL FPGA STARTER EDITION (Revision: 2016.10), входящая в состав Quartus Prime		
6.	Icarus Verilog	10.1.1	Используется для запуска в режиме симуляции		
Сред	ства сборки ПО				
7.	Codescape MIPS SDK	1.4.1.07	Используется для компиляции примеров программ и формирования hex-образов памяти инструкций		
Реда	Редактор кода				
8.	Visual Studio Code	1.13.1	Рекомендуется к использованию для навигации по каталогам проекта, а также в качестве текстового редактора разработчиков (обучаемых). Перечень рекомендуемых расширений: "Git History(git log)", "C/C++", "hexdump for VSCode", "MIPS Support", "SystemVerilog", "TCL", "VerilogHDLs"		

Таблица 4. Текущий статус поддержки отладочных плат

Nº п/п	Наименование платы	плис	Статус
1	2	3	4
1.	Terasic DE10-Lite	Altera MAX10	Поддерживается в полном объеме
2.	Terasic DE1-SoC	Altera Cyclone V SoC	Поддерживается в полном объеме
3.	Terasic MAX10 Neek	Altera MAX10	Поддерживается в полном объеме
4.	Марсоход 3	Altera MAX10	На плате отсутствуют НЕХ-индикаторы и переключатели.
5.	Terasic DE10-Standard	Altera Cyclone V SoC	Поддерживается в полном объеме
6.	Terasic DE0	Altera Cyclone III	Поддерживается в полном объеме
7.	Terasic DE10-Nano	Altera Cyclone V SoC	На плате отсутствуют НЕХ-индикаторы
8.	Terasic DE0-CV	Altera Cyclone V	Поддерживается в полном объеме
9.	Digilent Nexys4	Xilinx Artix-7	Поддерживается в полном объеме
10.	Digilent Nexys4-DDR	Xilinx Artix-7	Поддерживается в полном объеме
11.	RZ-EasyFPGA A2.1	Altera Cyclone IV	На плате отсутствуют НЕХ-индикаторы

5. Структура проекта

Структура каталогов проекта, его модульный состав, типовая структура каталога тестовой программы (program / <имя программы> / *) с описанием вложенных каталогов, файлов, их назначения и отдельных особенностей использования, а также перечень интерфейсных сигналов основного модуля приведены в таблицах ниже.

Таблица 5. Структура каталогов проекта

Nº п/п	Наименование каталога	Описание
1	2	3
1.	doc	Документация проекта, включая настоящий документ
2.	src	Платформонезависимый исходный код процессорного ядра schoolMIPS
3.	board	Платформозависимый исходный код. Проекты средств синтеза (Quartus) и модули верхнего уровня специфические для отладочных плат
4.	board / program	Нех-файлы памяти программ, используемые при синтезе для последующей инициализации блоков памяти ПЛИС
5.	<u>board</u> / <наименование платы>	Проект средства синтеза (Quartus), включая модуль верхнего уровня специфический для конкретной отладочной платы ПЛИС
6.	program	Примеры программ (тестовые программы), включая исходные коды, скрипты компиляции и симуляции. Работа каждого примера проверена в режиме симуляции и подтверждена на отладочной плате
7.	program / 00_counter	Простейший инкрементальный счетчик
8.	program / 01 fibonacci	Вычисление последовательности чисел Фибоначчи
9.	program / 02 sqrt	Вычисление квадратного корня итеративным способом
10.	<u>testbench</u>	Verilog модули для тестирования. Используются только в режиме симуляции
11.	<u>scripts</u>	Служебные скрипты и утилиты

Таблица 6. Типовая структура каталога тестовой программы

Nº п/п	Р МИ	Описание
1	2	4
1.	main.S	Файл с исходным кодом тестовой программы
2.	program.elf	Бинарный файл тестовой программы. Формируется компилятором в результате выполнения скрипта 01_compile_and_link.bat
3.	program.hex	Текстовый файл памяти инструкций тестовой программы. Используется для инициализации памяти при симуляции и синтезе. Является результатом работы скрипта 03_generate_verilog_readmemh_file.bat
4.	program.ld	Скрипт компоновщика, определяющий состав program.elf. Используется скриптом 01_compile_and_link.bat
5.	program.dis	Результат дисассемблирования program.elf. Является результатом работы скрипта 02_disassemble.bat
6.	modelsim_script.tcl	Скрипт, задающий конфигурацию ModelSim и обеспечивающий запуск тестового примера в режиме симуляции. Используется скриптом

		04_simulate_with_modelsim.bat
7.	sim	 Временный каталог, внутри которого запускается ModelSim для последующей симуляции. Создается скриптом 04_simulate_with_modelsim.bat
8.	00_clean_all.bat	Скрипт. Выполняет удаление временных файлов и каталогов.
9.	01_compile_and_link.bat	Скрипт. Осуществляет сборку программы main.S и формирование program.elf. В своей работе использует program.ld
10.	02_disassemble.bat	Скрипт. Выполняет дизассемблирование program.elf, результатом работы является program.dis
11.	03_generate_verilog_readmemh_file.bat	Скрипт. Выполняет формирование program.hex из program.elf
12.	04_simulate_with_modelsim.bat	Скрипт. Осуществляет запуск тестовой программы в симуляторе ModelSim. В своей работе использует modelsim_script.tcl и создает временный каталог sim
13.	05_copy_program_to_board.bat	Скрипт. Выполняет копирование program.hex в каталог <u>board</u> / <u>program</u> для его последующего использования при синтезе
14.	06_simulate_with_icarus.bat	Скрипт Осуществляет запуск тестовой программы в симуляторе Icarus Verilog

Таблица 7. Модульный состав проекта

Nº n/n	Наименование модуля	Описание			
п/п 1	2	3			
	-	3			
катал	юг <u>src</u>				
1.	sm_cpu	Основной модуль процессорного ядра			
2.	sm_control	Процессорное ядро. Устройство управления			
3.	sm_alu	Процессорное ядро. Арифметико-логическое устройство			
4.	sm_register_file	Процессорное ядро. Регистры общего назначения			
5.	sm_rom	Процессорное ядро. Память инструкций			
6.	sm_register	32-битный регистр			
7.	sm_register_we	32-битный регистр с вводом разрешения записи			
8.	sm_hex_display	Адаптер вывода числа на HEX индикатор			
9.	sm_clk_divider	Делитель тактовой частоты			
10.	sm_top	Основной платформонезависимый модуль верхнего уровня			
11.	sm_metafilter	Фильтр входных сигналов			
Ката <i>і</i>	or <u>testbench</u>				
12.	sm_testbench	Основной модуль запуска в режиме симуляции			
Ката <i>і</i>	Каталог <u>board</u> / <наименование платы>				
13.	<top></top>	Модуль верхнего уровня, специфический для отладочной платы. Имя не регламентируется			

Таблица 8. Интерфейсные сигналы основного модуля процессорного ядра (sm_cpu)

Nº п/п	Наименование сигнала	Направление	Описание
1	2	3	4
1.	clk	input	Тактовый сигнал
2.	rst_n	input	Сигнал системного сброса
3.	regAddr [4:0]	input	Номер регистра MIPS32, значение которого необходимо вывести в regData. Вывод осуществляется в этом же такте
4.	regData [31:0]	output	Значение регистра, номер которого задан на regAddr

6. Порядок развертывания

6.1. Развертывание программного окружения

При установке программных пакетов для корректного функционирования скриптов необходимо добавить в переменную системного окружения \$PATH следующие каталоги (на примере Windows):

- <Codescape MIPS SDK>\Toolchains\mips-mti-elf\2016.05-03\bin
- <Quartus или Modelsim>\modelsim ase\win32aloem)
- <lcarus Verilog>\bin и <lcarus Verilog>\gtkwave\bin

Критерием успешного изменения настроек является доступность для запуска в командной строке вне зависимости от текущего каталога следующих утилит: mips-mti-elf-gcc (компилятор, входящий в состав Codescape MIPS SDK), vsim (симулятор Modelsim), iverilog и gtkwave (симулятор Icarus Verilog).

6.2. Получение schoolMIPS

Развертывание schoolMIPS может быть выполнено:

- путем загрузки архива с текущей версией по адресу: https://github.com/MIPSfpga/schoolMIPS
- средствами системы контроля версией git

git clone https://github.com/MIPSfpga/schoolMIPS.git

В случае, если для работы используется Linux, после развертывания необходимо выполнить замену *.bat скриптов в каталогах проекта на их *.sh аналоги. Для этого используется scripts/init_linux.sh

7. Порядок запуска

В последующих раздела приведено описание порядка сборки программы, а также ее запуска на schoolMIPS в режиме симуляции и на отладочной плате ПЛИС. Имена скриптов приведены в их Windows варианте (*.bat), для Linux порядок действий остается таким же, при этом используются скрипты (*.sh).

7.1. Порядок сборки программы

Для сборки программы и формирования дампа памяти программ необходимо:

- запустить интерпретатор командной строки (cmd.exe). При использовании Visual Studio Code это можно сделать с помощью комбинации клавиш Ctrl+`.
- перейти в каталог с тестовой программой (на примере программы 00 counter)

cd program\00_counter

– выполнить удаление временных файлов, оставшихся от предыдущего запуска (при необходимости)

00_clean_all.bat

выполнить сборку тестовой программы

01_compile_and_link.bat

выполнить дисассемблирование полученного бинарного файла (при необходимости)

03_generate_verilog_readmemh_file.bat

7.2.Запуск в режиме симуляции

Для запуска в режиме симуляции необходимо:

– при использовании ModelSim:

04_simulate_with_modelsim.bat

при использовании Icarus Verilog:

06_simulate_with_icarus.bat

7.3. Синтез проекта и программирование ПЛИС Altera

Пример синтеза конфигурации ПЛИС и ее программирования (со скриншотами интерфейса) приведен в Приложении 1. В общем случае для синтеза конфигурации ПЛИС Altera и ее программирования необходимо:

- выполнить сборку программы и формирование дампа памяти программ;
- скопировать текстовый файл памяти инструкций в каталог board \ program

05_copy_program_to_board.bat

– перейти в каталог с файлами, специфическими для отладочной платы (на примере DE10-Lite):

cd ..\..\board\de10_lite

сформировать каталог с проектом синтеза

make_project.bat

- запустить программный пакет для синтеза: Quartus Prime 16.1
- открыть в запущенном пакете проект board\de10_lite\project\de10_lite.qpf. Для этого можно использовать пункт меню File -> Open Project;
- выполнить компиляцию проекта: Processing -> Start Compilation;
- подключить отладочную плату к рабочей станции;
- запустить интерфейс программатора: Tools -> Programmer;
- в интерфейсе программатора при необходимости выполнить настройку подключения платы (кнопка Hardware Setup), после чего осуществить программирование ПЛИС (кнопка Start).

7.4. Синтез проекта и программирование ПЛИС Xilinx

Пример синтеза конфигурации ПЛИС и ее программирования (со скриншотами интерфейса) приведен в Приложении 2. В общем случае для синтеза конфигурации ПЛИС Xilinx и ее программирования необходимо:

- выполнить сборку программы и формирование дампа памяти программ;
- скопировать текстовый файл памяти инструкций в каталог board \ program

```
05_copy_program_to_board.bat
```

— перейти в каталог с файлами, специфическими для отладочной платы (на примере Nexys4):

```
cd ..\..\board\nexys4
```

– сформировать каталог для проекта синтеза

```
make_project.bat
```

- запустить программный пакет для синтеза: Vivado 2017.2
- создать проект: Quick Start -> Create Project

дальнейшие действия выполняются в мастере создания проекта

раздел Project Name:

имя: nexys4

путь: <Путь к schoolMIPS>\board\nexys4\project

снять отметку Create Subdirectory

- раздел Project Type, выбрать RTL-project
- раздел Add Sources:

Add Directories -> <Путь к schoolMIPS>\board\nexys4

Add Directories -> <Путь к schoolMIPS>\src

Add Files -> <Путь к schoolMIPS>\board\program\program.hex

раздел Add Constraints

Add Files -> <Путь к schoolMIPS>\board\nexys4\nexys4.xdc

- раздел Default Part

Family: Artix-7
Package: csg324
Speed Grade: -1

Part: xc7a100tcsg324-1

- после завершения работы мастера создания проекта установить для файла program. hex тип "Memory Initialization Files"
- выполнить сборку проекта: Run Synthesis, Run Implementation, Generate Bitstream
- выполнить программирование ПЛИС

7.5.Интерфейс пользователя

Основные элементы управления и их назначение при работе с schoolMIPS приведены ниже (на примере платы DE10-Lite):

Рисунок 1. Отладочная плата DE10-Lite

Таблица 9. Элементы управления отладочной платы

№ на схеме	Обозначение на плате	Тип	Назначение
1	2	3	4
1.	HEX5-HEX0	HEX-индикатор	Отображение значения текущего выбранного регистра (младшие разряды)
2.	LED9-LED1	LED-индикаторы	Отображение значения текущего выбранного регистра (младшие разряды)
3.	SW9	переключатель	Разрешить выполнение программы. При включенном переключателе сигнал с делителя тактового сигнала поступает в процессорное ядро
4.	SW8- SW5	переключатели	Группа переключателей настройки делителя тактового сигнала. Для плат с недостаточным количеством переключателей данная настройка может задаваться в коде специфического для платы модуля верхнего уровня
5.	KEY0	кнопка	Сигнал системного сброса
6.	KEY1	кнопка	Разрешить выполнение программы. При нажатой кнопке сигнал с делителя тактового сигнала поступает в процессорное ядро
7.	LED0	LED-индикатор	Индикатор тактового сигнала
8.	SW4- SW0	переключатели	Группа переключателей выбора текущего регистра общего назначения (0-31). Значение, хранящиеся выбранном регистре, выводится на НЕХ и LED-индикаторы. При выборе 0 - отображается значение счетчика команд

Например, для того, чтобы вывести значение, хранящиеся в регистре \$v0 необходимо установить на переключателях SW4- SW0 значение двоичного числа 5'b00010 (SW1 - в верхнем положении, SW4- SW2,SW0 - в нижнем). Что будет соответствовать 2 - порядковому номеру регистра \$v0. Перечень регистров MIPS с указанием их номеров и назначения приведен ниже.

Таблица 10. Назначение и номера регистров MIPS

Имя	Номер	Использование
\$0	0	Регистр нуля (всегда возвращает 0)
\$at	1	Временный регистр для нужд ассемблера
\$v0-\$v1	2-3	Возвращаемые функциями значения
\$a0-\$a3	4-7	Аргументы функций
\$t0-\$t7	8-15	Временные переменные
\$s0-\$s7	16-23	Сохраняемые (локальные) переменные
\$t8-\$t9	24-25	Временные переменные
\$k0-\$k1	26-27	Временные переменные ОС
\$gp	28	Глобальный указатель
\$sp	29	Указатель стека
\$fp	30	Указатель кадра стека
\$ra	31	Адрес возврата из функции

8. Миграция и добавление кода

Проект открыт для добавления Вашего кода, вместе с тем, его использование в образовательном процессе накладывает определенные ограничения, выраженные в следующих принципах:

- простота и очевидность используемых языковых и архитектурных конструкций;
- бережное оформление кода и осмысленный подход к именованию сущностей;
- сохранение простора для самостоятельной работы обучаемых;
- разделение платформозависимого и платформонезависмого кода;
- предпочтение кода на Verilog графическому проектированию.

ПРИЛОЖЕНИЕ 1. Пример синтеза и конфигурации ПЛИС Altera

Открытие проекта

2. Запуск синтеза

3. Запуск программатора

4. Настройка программатора

5. Выбор конфигурации для программирования ПЛИС, запуск процедуры

6. Процедура завершена

ПРИЛОЖЕНИЕ 2. Пример синтеза и конфигурации ПЛИС Xilinx

1. Создание проекта

2. Установка имени и расположения

3. Установка типа проекта

4. Настройка расположения файлов с исходным кодом

5. Настройка ограничений

6. Настройка используемой ПЛИС

7. Установка типа для файла с дампом памяти

8. Запуск процедуры синтеза

9. Запуск процедуры программирования ПЛИС

