PROBABILIDADE E PROCESSOS ESTOCÁSTICOS (CKP7366)

Prof. João Paulo Pordeus Gomes

VARIÁVEIS ALEATÓRIAS DISCRETAS (AULA 3)

Variáveis aleatórias discretas

- Distribuições condicionais
 - Esperança condicional
 - Teorema da esperança total
- Independência de v.a.
 - Propriedades da esperança e da variância
- Variância de uma v.a. Binomial

•
$$p_{X|A}(x) = P(X = x|A) \to p_{X|Y}(x|y) = P(X = x|Y = y)$$

•
$$p_{X|A}(x) = P(X = x|A) \to p_{X|Y}(x|y) = P(X = x|Y = y)$$

•
$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

•
$$p_{X|A}(x) = P(X = x|A) \to p_{X|Y}(x|y) = P(X = x|Y = y)$$

•
$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

•
$$p_{X|A}(x) = P(X = x|A) \to p_{X|Y}(x|y) = P(X = x|Y = y)$$

•
$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

•
$$p_{X|A}(x) = P(X = x|A) \to p_{X|Y}(x|y) = P(X = x|Y = y)$$

•
$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

у /				
4	1/20	2/20	2/20	
3	2/20	4/20	1/20	2/20
2		1/20	3/20	1/20
1		1/20		

•
$$p_Y(2) = ?$$

•
$$p_{X|A}(x) = P(X = x|A) \to p_{X|Y}(x|y) = P(X = x|Y = y)$$

•
$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

•
$$p_Y(2) = ?$$

•
$$p_{X|Y,Z}(x|y,z) = \frac{p_{X,Y,Z}(x,y,z)}{p_{Y,Z}(y,z)}$$

•
$$p_{X|Y,Z}(x|y,z) = \frac{p_{X,Y,Z}(x,y,z)}{p_{Y,Z}(y,z)}$$

•
$$p_{X,Y|Z}(x,y|z) = \frac{p_{X,Y,Z}(x,y,z)}{p_Z(z)}$$

•
$$p_{X|Y,Z}(x|y,z) = \frac{p_{X,Y,Z}(x,y,z)}{p_{Y,Z}(y,z)}$$

•
$$p_{X,Y|Z}(x,y|z) = \frac{p_{X,Y,Z}(x,y,z)}{p_Z(z)}$$

- Regra da multiplicação
 - $P(A \cap B \cap C) = P(A)P(B|A)P(C|B,A)$

•
$$p_{X|Y,Z}(x|y,z) = \frac{p_{X,Y,Z}(x,y,z)}{p_{Y,Z}(y,z)}$$

•
$$p_{X,Y|Z}(x,y|z) = \frac{p_{X,Y,Z}(x,y,z)}{p_Z(z)}$$

Regra da multiplicação

- $P(A \cap B \cap C) = P(A)P(B|A)P(C|B,A)$
- $A = \{X = x\}, B = \{Y = y\} \ e \ C = \{Z = z\}$
- $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

- $E[X] = \sum_{x} x p_X(x) \rightarrow E[X|A] = \sum_{x} x p_{X|A}(x)$
- $A = \{Y = y\}$

- $E[X] = \sum_{x} x p_X(x) \rightarrow E[X|A] = \sum_{x} x p_{X|A}(x)$
- $\bullet A = \{Y = y\}$
- $E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)$

- $E[X] = \sum_{x} x p_X(x) \rightarrow E[X|A] = \sum_{x} x p_{X|A}(x)$
- $\bullet A = \{Y = y\}$
- $E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)$
- Regra do valor esperado
 - $E[g(X)] = \sum_{x} g(x)p_X(x) \rightarrow E[g(X)|A] = \sum_{x} g(x)p_{X|A}(x)$

- $E[X] = \sum_{x} x p_X(x) \rightarrow E[X|A] = \sum_{x} x p_{X|A}(x)$
- $\bullet A = \{Y = y\}$
- $E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)$
- Regra do valor esperado
 - $E[g(X)] = \sum_{x} g(x)p_X(x) \rightarrow E[g(X)|A] = \sum_{x} g(x)p_{X|A}(x)$
 - $E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y)$

Teorema da Probabilidade Total

•
$$p_X(x) = P(A_1)p_{X|A_1}(x) + \dots + P(A_n)p_{X|A_n}(x)$$

• $A = \{Y = y\}$

Teorema da Probabilidade Total

- $p_X(x) = P(A_1)p_{X|A_1}(x) + \dots + P(A_n)p_{X|A_n}(x)$
 - $A = \{Y = y\}$
 - $p_X(x) = \sum_y p_Y(y) p_{X|Y}(x|y)$

Teorema da Esperança Total

• $E[x] = P(A_1)E[X|A_1] + \dots + P(A_n)E[X|A_n]$ • $A = \{Y = y\}$

Teorema da Esperança Total

- $E[x] = P(A_1)E[X|A_1] + \dots + P(A_n)E[X|A_n]$
 - $A = \{Y = y\}$
 - $E[x] = \sum_{y} p_Y(y) E[X|y = Y]$

Independência de v.a.

- Dois eventos
 - $P(A \cap B) = P(A)P(B)$
 - P(A|B) = P(A)

Independência de v.a.

- Dois eventos
 - $P(A \cap B) = P(A)P(B)$
 - P(A|B) = P(A)
- Uma v.a. e um evento
 - $P(X = x \cap A) = P(X = x)P(A)$
 - $P(X = x | A) = P(X = x) \to p_{X|A}(x | A) = p_X(x)$

Independência de v.a.

- Dois eventos
 - $P(A \cap B) = P(A)P(B)$
 - P(A|B) = P(A)
- Uma v.a. e um evento
 - $P(X = x \cap A) = P(X = x)P(A)$
 - $P(X = x | A) = P(X = x) \to p_{X|A}(x | A) = p_X(x)$
- Duas v.a.
 - $P(X = x \cap Y = y) = P(X = x)P(Y = y) \to p_{X,Y}(x,y) = p_X(x)p_Y(y)$
 - $P(X = x | Y = y) = P(X = x) \to p_{X|Y}(x|y) = p_X(x)$

Exercícios

- Suponha que X, Y e Z são independentes. Mostre que X e Y são independentes.
- Suponha que X, Y e Z são independentes. Mostre que o par (X Y) é independente de Z.

X e Y são independentes ?

- X e Y são independentes ?
 - $p_{X|Y}(x|y) = p_X(x)$

- Condicionando a $X \le 2 e Y \ge 3$
 - X e Y são independentes?

- Condicionando a $X \le 2 e Y \ge 3$
 - X e Y são independentes?

- Condicionando a $X \le 2 e Y \ge 3$
 - X e Y são independentes?

1/9	2/9
2/9	4/9

- Condicionando a $X \le 2 e Y \ge 3$
 - X e Y são independentes?

У					
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
		2	2	1	X

- $\bullet E[X+Y] = E[X] + E[Y]$
- $\cdot E[aX + b] = a E[X] + b$

- $\bullet E[X+Y] = E[X] + E[Y]$
- $\bullet \ E[aX + b] = a \ E[X] + b$
- Quando X e Y são independentes
 - E[XY] = E[X]E[Y]

- $\bullet E[X+Y] = E[X] + E[Y]$
- $\bullet E[aX + b] = a E[X] + b$
- Quando X e Y são independentes
 - E[XY] = E[X]E[Y]
 - $E[XY] = \sum_{x} \sum_{y} xy \ p_{X,Y}(x,y)$
 - $E[XY] = \sum_{x} \sum_{y} xy \ p_X(x) \ p_Y(y)$
 - E[XY] = E[X]E[Y]

- $\bullet E[X+Y] = E[X] + E[Y]$
- $\bullet E[aX + b] = a E[X] + b$
- Quando X e Y são independentes
 - E[XY] = E[X]E[Y]
 - $E[XY] = \sum_{x} \sum_{y} xy \ p_{X,Y}(x,y)$
 - $E[XY] = \sum_{x} \sum_{y} xy \ p_X(x) \ p_Y(y)$
 - E[XY] = E[X]E[Y]
- g(X) e h(Y) também são independentes

Independência e Variâncias

- $var(aX) = a^2 var(X)$
- var(X + b) = var(X)
- Quando X e Y são independentes
 - var(X + Y) = var(X) + var(Y)
 - $var(X + Y) = E[(X \mu + Y \nu)^2]$
 - Exemplos
 - Se X=Y : var(X+Y)
 - Se X = -Y: var(X+Y)
 - Se X e Y são independentes: var(X-3Y)

Variância de uma v.a. Binomial

- X: Binomial com parâmetros n,p
 - Número de sucessos em n jogadas

Variância de uma v.a. Binomial

- X: Binomial com parâmetros n,p
 - Número de sucessos em n jogadas
- Usando uma variável indicadora

•
$$X = X_1 + X_2 + \dots + X_n$$

•
$$E[X_1] = E[(X - p)^2]$$

•
$$E[X_1] = E[X^2 - 2Xp + p^2]$$

•
$$E[X_1] = E[X^2] - 2E[X]p + p^2$$

•
$$E[X_1] = p - 2p^2 + p^2 = p(1-p)$$

•
$$E[X] = np(1-p)$$

Problema dos chapéus

- N pessoas colocam o seu chapéu em uma caixa e cada um pega um chapéu aleatoriamente
- X: número de pessoal que pegam o seu próprio chapéu
 - Encontre E[X]
 - Encontre var[X]

DÚVIDAS?