STUDY GUIDE NOTES - PART 2 (CH.11-CH.17)

CHAPTER 11: ENDPOINT SECURITY

OPERATING SYSTEM VULNERABILITIES:

- OS vulnerabilities
- Default passwords
- Configurations
- Misconfigurations

HARDWARE VULNERABILITIES:

- Firmware (many pathways)
- EOL (end of life) AKA End of sales, End of support, legacy

PROTECTING ENDPOINTS:

- Endpoint: any device at the endpoint of a network (very broad)
- HSM (Hardware Security Modules): for multiple systems, external devices for creating, storing, and managing digital keys for cryptographic functions
 - FIPS 140 (Federal Information Processing Standards) or Common Criteria (ISO/IEC 15408)
- KMS (Key Management Systems): store and manage keys and certificates while enforcing policies
- TPMs: system security
- Hardware root of trust options:
 - 1. UEFI (Unified Extensible Firmware Interface) does secure boot from OEM (original equipment manufacture)
 - replaced originally BIOS (Basic Input/Output System)
 - 2. Measured boot: TPM (Trusted Platform Module) stores hashed value of secured boot state and compares it to hashed values
- TPM functions: provides built-in encryption on computer chips
 - Remote attestation
 - Binding —> encrypts data
 - Sealing -> encrypts data + sets state of TPM chip before decryption
- Alternatives to TPM:
 - Serial Numbers that cannot be modified
 - PUFs (Physically inclinable functions): specific hardware devices
 - Secure Enclave: Apple's system on a chip (SoC) modules —> isolated from main CPU

Example: Google's Titan M, Samsung's TrustZone

ENDPOINT SECURITY TOOLS:

- AV (antivirus): AKA antimalware tools
 - Can be installed on any endpoint device
 - Enterprise commonly deploy more than one
- Signature-based detection: hash or pattern-based detection
- Heuristic (behavior) based detection
- AI/ML
- Sandboxing: isolate, test, and document malicious code
- Allow and Deny Lists (AKA whitelist, block list, blacklist): controls what applications can or cannot be installed
 - Allow list stronger than a deny list
 - Takes too much effort for enterprise
- EDR (Endpoint Detection and Response): look for IoCs (Indicators of Compromise) and manual investigation —> useful took for large enterprises
- XDR (Extended Detection and Response): broader than just endpoints —> cloud, security, email, tech stack
- DLP (Data Loss Prevention): classifies data, data labeling/tagging, policy enforcement, monitoring
 - Some encrypt data automatically when its sent outside
 - Tracks sus behavior
- Network Defenses:
 - Host-based firewalls: simple block or allow function on most OSs
 - NIPS: Network-based IPS —> monitors the entire network
 - HIPS (host-based intrusion prevention system): monitors a single host for malicious activity, analyzes traffic before host processes it —> can potentially block legit traffic
 - HIDS (Host-based intrusion detection system): cannot block, only detect, for real-time security, wont cause issues\$

HARDENING TECHNIQUES:

- Hardening: changing settings to increase overall security
 - Disabling ports and protocols: reduces attack surface

- Example: Windows Services.msc, Linux is service—status-all,
 Ubuntu is update-rc.d script, RedHat is chkconfig
- VLAN for network hardening
- Change default passwords
- Remove unnecessary software
- CIS (Center for Internet Security) benchmarks for hardening Windows:
 - Setting password history to remember 24 or more passwords
 - Setting maximum password age to "365 days or fewer but not 0"
 - Setting minimum password length
 - Requiring password complexity
 - Disable storage of passwords
- Hardening Windows Registry: configuring permissions, limiting access
- Windows GPO (Group Policy Objects) Hardening: system and domain controls via policy
 - Example: SCT (Security Compliance Toolkit): security baseline config
- Hardening SELinux (Security-Enhanced Linux): SELinux is a linux kernel based security module that provides more capabilities than a traditional Linux
- Configuration Management: make sure they have the right security settings
 - Examples: Jamf Pro (Mac), Configuration Manager (Windows),
 CFEngine (Open Source)
 - 1. Baseline Configurations: ideal starting place
 - 1. Establish baseline
 - 2. Deploy
 - 3. Maintain
 - 2. Configuration Enforcement: monitors and makes changes as needed
- Patch Management:
 - Example: Microsoft's Configuration Manager
 - Most orgs delay installation of a patch a few days after its release
 - Key features of patch management: reporting, ability to choose and block an update
- Encryption:
 - FDE (full disk encryption)
 - Volume encryption (AKA filesystem-level encryption)
 - SED (self-encryption drive): encryption implemented in hardware/ firmware
 - Weakness: find a logged-in system or sleep mode. If password is lost, hard to brute force
 - Transparent encryption (AKA on-the-fly, real-time encryption): drive appears unencrypted to user

SECURING EMBEDDED SYSTEMS:

- Embedded system: computers built into other devices (ex: Industrial, appliances, cars, watch)
- RTOS (real-time operating systems)
 - CAN messages: messages with the car
- ICS (Industrial controls systems): industrial automation
- SCADA (supervisory control and data acquisition): large industrial systems
- RTU (remote telemetry units): microprocessors collecting data for SCADA
- Assessing embedded systems:
 - Identity supply chain
 - Trace network activity
 - Identify its services
 - Firmware
 - Document risk plan
 - Document research findings
- Common embedded systems:
 - Medical devices
 - Smart meters
 - Vehicles: cars (controller area network CAN buses), aircrafts, ships
 - Drones and AVs (autonomous vehicles)
 - VoIP
 - MFPs (multifunctions printers): act as reflectors, amplifiers, and pivot points for attackers
 - Surveillance systems
- SCADA and ICS:

SECURING IOT:

- Enumeration: scanning to identify assets
- IoT leverage AI/ML, cloud services to provide "smart services"
- IoT Security Concerns:
 - Poor security practice
 - Short support lifespans -> no patches

- Vendor data-handling
- Example: US banned fitness trackers in war zones and sensitive facilities
- Communication Security for IoT:
 - Cellular connectivity: LTE & 5G
 - SIM (Subscriber Identity Module): SIM cloning, physically removing
 - Zigbee: radio frequency
- Security Constraints for Embedded Systems:
 - Low CPU, memory —> no security tools
 - No internet —> inability to patch, secured as independent unit
 - No authentication
 - Hard to replace
 - Embedded systems rely on Implied Trust —> must be reviewed before deploying
- Asset Management Life Cycle:
 - 1. Inventory
 - 2. Tracking
 - 3. Decomissioning: removing device/system from service + inventory + no sensitive data left via sanitizing drives
 - DBAN (Darik's Boot and Nuke): performs multiple passes over a disk
 - FDE and then discard encryption key
 - Certification: certifies proper destruction
 - Banning hand-me-downs
 - Retention: legal or business hold

CHAPTER 12: NETWORK SECURITY

DESIGNING SECURE NETWORKS:

- DID (Defense-in-depth): multiple controls to prevent a SPOF
- OSI (Open Systems Interconnection) model: conceptual model on how devices and software operate via networks
 - L1: Physical layer
 - L2: Data link layer
 - L3: Network layer (firewalls, IPSec)
 - L4: Transport layer
 - L5: Session Layer
 - L6: Presentation Layer
 - L7: Application layer

- ZTA (Zero Trust Architecture): control plane + data plane
 - Policy Engine —> Policy Administrator —> Policy Engine

- Policy Engines: makes policy decisions
- Policy Administrator: establish or remove communication between subjects and resources
- Policy Enforcement Points: communicate with policy admins to forward requests between subjects and receive instructions
- Subjects: users
- Control Plane:
 - 1. Adaptive Identity (adaptive authentication): leverages context, may request additional info
 - 2. Threat scope reduction (AKA limited blast radius)
 - 3. Policy-driven access control
 - 4. The Policy Administrator
- Data Plane:
 - 1. Implicit trust zones: allow movement once authenticated
 - 2. Subject/system
 - 3. Policy Enforcement Points
- NAC (Network Access Controls): determines whether or not a system or device should be allowed to connect to a network
 - Agent vs Agentless (agent is better)
 - Pre admission vs post admission
- 802.1X: standard for authenticating devices to wired and wireless networks —> connecting to ports must have 802.1X supplicant
- CAM (content-addressable memory)
- Infrastructure Considerations:
 - Attack surface
 - Device placement: placing them on the correct network/segment
 - Security zones: virtual network segments
 - Connectivity considerations: redundant connections, how fast, what type of connectivity
 - Failure modes: fail-closed vs fail-open
 - Network taps: active or passive
- Network Design Concepts:
 - Physical isolation (AKA air-gapped) —> can be overcome by

removable drives copying itself (ex: Student malware attack)

- Logical segmentation: done via software/settings
 - Example: VLANs
- HA (high availability)
- Implementation of secure protocols: HTTPS (TLS), SSH.
 - Using other obscure ports are not the answer
- Transport method: choosing secure protocols like TLS
- Reputation services: tracks and blocks hosts that engage in malicious activity
- SDN (Software-Defined Networking)
- SD-WAN (software-defined wide area network): virtual wide area network design that combines many services for organizations
 - Examples: MPLS (Multi-protocol Label Switching) —> SD-WAN,
 4G, 5G
- SASE (Secure Access Service Edge): private networks + SD-WAN + firewalls + CASBs + zero trust networks —> secure access for devices regardless of location

NETWORK SEGMENTATION:

- Network Segmentation: dividing network into logical or physical groupings
 - Example: VLAN (segmented at L2)
 - Broadcast domain: a way to "broadcast" to all machines on the network tho
- Types of Network Segmentation:
 - 1. DMZ (demilitarized zones) also called screened subnets: less trusted zones
 - 2. Intranet: internal network, usually protected from external access
 - 3. Extranets: external network between partner and customer
 - 4. ZTA (Zero Trust Architecture): each action is validated when requested
- Port Security: limits # of MAC addresses on a single port
 - Prevents: MAC address spoofing, CAM (content-addressable memory) table overflows
 - Originally invented by Cisco. Used by many other vendors now too
 - Also prevents: Loop prevention, Broadcast storm prevention (AKA storm control)
 - BPDU (Bridge Protocol Data Unit): protects STP from sending messages it should not
 - DHCP (Dynamic Host Configuration Protocol) snooping: prevents rogue DHCP server from handing out IP addresses

VPNS:

- VPN (Virtual Private Network): virtual network link across a public network
- Types of VPN Technology:
 - 1. IPSec VPNs (OSI L3): site-to-site VPNs and for VPNs that need more than web and app traffic
 - Tunnel: entire packet sent to other VPN
 - Transport: IP header not protected but IP payload is
 - 2. SSL VPNs (technically TLS):
 - Portal-based (HTML 5)
 - Tunnel mode (like IPSec VPN)
 - No client installation required
- VPN Decision Points:
 - Full-tunnel VPNs: secure network between two channels, always on
 - Site-to-site VPNs: as needed, for remote work
 - Tunneling: Split-tunnel VPN vs full-tunnel VPN
 - Split-tunnel VPN: sends only needed data, less bandwidth
 - Full-tunnel VPN: sends all data

NETWORK APPLIANCES AND SECURITY TOOLS:

- Jump Servers (AKA jump boxes): securely operate in two different security zones via SSH or RDP
- Load Balancing: distribute traffic to multiple systems, provide redundancy, ease of upgrade/patching via VIP (Virtual IP)
- NGFW (next gen firewalls): interact with traffic at OSI L4 and L7 but need more CPU + memory
- Proxy Servers: accept and forward requests
 - Forward proxies: between client —> servers, cancel identity of original client
 - Reverse proxies: between client and servers for load balancing and caching of content
- Web Filters (AKA content filters): centralized proxy servers allowing or blocking traffic based on content rules
- URL (Uniform Resource Locator) scanning: allow or deny lists as well content rules
 - Centralized proxy on a hardware device
 - Content categorization: adult/business/child-friendly —> block rules
- Stateless Firewalls (AKA packet filers): most basic firewall, filters every packet's header
- Stateful Firewalls (AKA dynamic packet filers): track packets, make smart

decisions

- NGFW (Next gen firewalls): all-in-one-network security devices (deep packet inspection, IDS/IPS, AV) —> faster than UTMs because focused but more config time
- UTM (unified threat management): firewall, IDS/IPS, AV, URL/email filtering, DLP, analytics —> "out of the box" solution
 - Deployed at boundaries
 - Many UTMs at once
- WAFs (web application firewalls): database queries, APIs, and other web app tools —> firewall + IPS, blocks attacks in real time
- Screen subnets: connect to Internet, create secured area, create public area (DMZ)
- ACLs (Access Control Lists): allow or deny lists
 - Time-based ACLs
 - Dynamic ACLs

- Network Considerations:

- Hardware: purpose-built, high-speed traffic
- Software: virtual machines easily deployed and scaled
- Cloud appliances: dynamically created, scaled, and used as needed
- Network Security Configuration decisions:
 - Inline: network traffic pass directly through them (fail-open vs fail-close)
 - Taps: replicate traffic for inspection —> monitoring/analysis/security
 - 1. Active: requires power, direct path
 - 2. Passive: no power, direct path
 - 3. SPAN port or mirror port: less secure

- Load Balancer Modes:

- Active/active: sends to multiple systems at the same time —> ensures a single node won't be overwhelmed
- Active/passive: brings backups online when active systems fail —> for DRP

- Load Balancing Algorithms:

- Round-robin
- Least connection: sends traffic to the server with fewest active connections
- Agent-based: adaptive balancing
- Source IP Hashing: randomization
- Persistent sessions: client and server communicate throughout the duration of a session

- Weighted Algorithms:

- Weighted Least connection

- Fixed weighted
- Weighted response
- IDS + IPS: active vs passive (passive IPS is basically an IDS)
 - Signature-based
 - Anomaly-based AKA behaviors

- Firewall rules:
 - Source: IP, hostnames, or domains
 - Ports and protocols
 - Allow or deny statements
 - Destination IP addresses
 - Host or hosts
 - Domain with ports and protocols
- Types of Deception/Disruption tools:
 - 1. Honeypots
 - 2. Honeyfiles
 - 3. Honeytokens
 - 4. Honeynets

NETWORK SECURITY, SERVICES, AND MANAGEMENT:

- Out of band management: remotely access and manage devices and infrastructure
- DNS (domain-name system): only tells WHERE to send traffic —> not inherently secure
- DNSSEC (DNS System Security Extensions): provides authentications of DNS data
- DNS filtering: blocks malicious domains via lists
- DKIM (DomainKeys Identified Mail): signature header to verify email sender
- SPF (Sender Policy Framework): allow list for email domains. If not on the list —> rejected
- DMARC (Domain-based Message Authentication Reporting and Conformance): determine whether you should refuse or accept email message
- Email Security Gateways: phishing protecting, email encryption, attaching sandboxing to counter malware, randomware protection, URL analysis
- Ephemeral Keys: perfect forward key secrecy —> even if key exchange is

compromised, communication will not

- IPv6: relies heavily on ICMP
- SNMP (Simple Network Management Protocol): monitor and manage network devices
 - MIB (management information base): where an MIB is listed
 - SNMP trap (message when device encounters an error) —> SNMP agent —> SNMP manager
- File Integrity monitor: detects changes in files and either reports or restores them
 - Example: Tripwire —> creates digital signature and tracks changes
- Monitoring Systems:
 - Is service port open?
 - What should a valid response look like?
 - Likely failures?
- Hardening Network Devices:
 - CIS (Center for Internet security): provides network device hardening guides for switches and routers
 - Protect management console —> isolated VLAN, jump server, VPN
 - Physical security

USING SECURE PROTOCOLS:

- Insecure protocols: DHCP, NTP, BGP
- Voice, Video, & Videoconferencing:
 - HTTPS
 - SIPS (Session Initiation Protocol [Secured])
 - SRTP ([Secure] Real-time Transport Protocol)
- NTP (Network Time Protocol) —> NTS, relies on TLS, does not protect time data but focuses on authentication
- Email and web:
 - SMTP
 - HTTPS
 - IMAPS
 - POPS
 - DMARC, DKIM, SPF
- FTP has been replaced by HTTPS and SFTP or FTPS
- LDAP —> LDAPS
- Remove access technologies:
 - Telnet -> SSH
 - Microsoft's RDP
- DNS: still a big security issue

- DNSSEC: digital signatures to provide integrity not confidentiality
- DNS filtering/reputation lists
- Routing and Switching:
 - BGP (Border Gateway Protocol): lacks built-in features —> susceptible to BGP hijacking
- Network address allocation:
 - DHCPL not secure -> need detection and response
- Subscription services: HTTPS

SECURE PROTOCOLS TO REMEMBER FOR EXAM:

- DNSSEC (Domain Name System Security Extension): provides integrity via digital signatures, not confidentiality
- SNMPv3 (Simple Network Management Protocol version 3): authenticating message sources, message integrity validation, and confidentiality
- SSH (Secure Shell): protocol for remote console access to devices, also a tunneling protocol, also supports other applications, also SSH keys
- HTTPS (Hypertext Transfer Protocol Secure): relies on TLS to provide security
- SRTP (Secure Real-Time Protocol): provides audio and video streams via networks, encryption and authentication
- LDAPS (Secure Lightweight Directory Access Protocols): provides confidentiality and integrity to LDAP
- S/MIME (Secure/Multipurpose Internet Mail Extensions): secure email attachments while providing authentication, integrity, nonrepudiation and confidentiality to S/MIME messages
 - Less frequently used due to needing CA
- FTPS (File Transfer Protocol via TLS)
- SFTP (File Transfer Protocol via SSH): easier to penetrate
- IPSec (Internet Protocol Security): entire suite of security protocols —> used for VPNs
 - AH (Authentication Header): hashing + shared secret key = IP payload is secured
 - ESP (Encapsulating Security Payload): tunnel mode entire packet secured, transport mode - only payload secured
 - SAs (Security Associations): provides parameters for ESP & AH to operate
 - IKE (Internet Key Exchange): setup using X.509 certificates
 - ISAKMP (Internet Security Association and Key Management Protocol)

- MITM (man in the middle): on-path attacks
- MITB/MIB (man in the browser): browser-based on-path attack
- Amplified DoS Attack: taking advantage of small query —> large result (ex: DNS query)
- Reflected DoS Attack: spoofing IP address to conduct an attack
- On-Path Attacks (MITM): attacker intercepts traffic
 - SSL Stripping: user sends an HTTP request to a server, attacker responds through communications they control allowing them to take control (common via wireless networks)
 - Normal HTTP request: user sends HTTP request, server responds with HTTPS version, user sends HTTPS request
 - Can be prevented by a CA
 - HSTS (HTTP Strict Transport Security) forces all connections to be HTTPS but only after you visit at least once
 - Browser-based attack (MITB): trojan inserted into browser
- Domain Name System Attacks:
 - Domain Hijacking: changes the registration for a domain
 - DNS poisoning: via on-path attacks, via poisoning cache
 - URL redirection: via inserting alternate IP address
 - DNSSEC + Domain reputation (trusted domain?) = protection
- Malicious code via networks: worms, backdoors via network, viruses,
 Trojans, ransomware
- Credential Replay Attack: network attack capturing data —> modify, resend hashes, re-use session IDs
- DDoS Attacks:
 - Network DDoS:
 - UDP floods
 - ICMP Floods (AKA ping floods)
 - SYN floods: attempting handshake but never respond back —>
 TCP stack resources exhausted
 - Ping of death: ping packet too large to handle
 - Smurf attacks: spoofed sender address via ICMP broadcast messages

CHAPTER 13: WIRELESS AND MOBILE SECURITY

BUILDING SECURE WIRELESS NETWORKS:

• BYOD (Bring your own device)

- CYOD (Choose your own device)
- COPE (corporate-owned, personally enabled)
- Cellular: divides geographic areas into "cells"
 - LTE (long-term evolution) current is 4G & 5G
- Wi-Fi (wireless fidelity): 2.4 GHz and 5 GHz
 - WPA2/WPA3: encryption options, protection for network frames, authentication options
- Bluetooth: 2.4 GHz, 5-30 meters, point-to-point pairing, no encryption but has PIN
 - Security Mode 1: No-security
 - Security Mode 2: service-level enforced security
 - Security Mode 3: Link-level enforced security
 - Security Mode 4: Standard pairing with Security Simple Pairing (SSP)
- RFID (Radio frequency identification): uses a tag and receiver —> active tags vs. Sem-active tags vs. passive tags
 - Low frequency RFIDs: short-range, low power
 - High frequency RFIDs: longer readable range —> used for NFCs
 - Ultra-high frequencies: fastest to read + longest range
- GPS (Global Positioning System): uses satellite network (ex: U.S. GPS system, Russian GLONASS) —> used for Geolocation authentication, geofencing
- NFC (near-field communication): very short-range communication (4 inches) between devices (ex: Apply Pay, Google Pay)
- IR (Infrared): only work in line-of-sight (speeds from 115 Kbit/s to 1 Gbit/s)
- Other types of wireless networks: Bluetooth, Cellular, Zigabee
- Wireless Network Models:
 - Point-to-point: connects two nodes
 - Point-to-multipoint: Wi-Fi, many nodes receiving information sent by a single node
 - Mesh
 - Broadcast: send out information and do not care about receiving a response (ex: GPS, radio)

WI-FI STANDARD	GENERATION	MAXIMUM	FREQUENCIES
	NAME	SPEED	
802.11b		11 Mbit/s	2.4 GHz
802.11a		54 Mbit/s	5 GHz
802.11g		54 Mbit/s	2.4 GHz

802.11n	Wi-Fi 4	600 Mbit/s	2.4 GHz and 5 GHz
802.11ac	Wi-Fi 5	6.9 Gbit/s	5 GHz
802.11ax	Wi-Fi 6 and Wi-Fi 6E	9.6 Gbit/s	2.4 GHz, 5 GHz, 6 GHz
802.11be	Wi-Fi 7	40+ Gbit/s	2.4 GHz, 5 GHz, 6 GHz

ATTACKS AGAINST WIRELESS NETWORKS AND DEVICES:

- Evil twin: malicious access point trying to appear legitimate
- Rogue access points: Ads added to network either intentionally or unintentionally
- Disassociation: device disconnects from access point by sending an AP a deauthentication frame by spoofing victim's MAC address
 - Wi-Fi deauthers: sneds deauthentication frames
- Jamming: block traffic in range or frequency
 - Jammers: drown out signal
- Sideloading: process of transferring files to a mobile device via USB connection/MicroSD card/Bluetooth OUTSIDE of App Store
- Jailbreaking: privilege escalation, root access, installing apps/custom elements to OS
- Bluetooth Attacks: best security is to turn off bluetooth
 - Bluejacking: sending unsolicited messages
 - Bluesnarfing: unauthorized access to a bluetooth device to gather info
 - BIA (Bluetooth Impersonation attacks): exploit mutual authentication

DESIGNING A NETWORK:

- Careful WAP placement
- Site Surveys
- Heatmap: how strong a signal is
- WLAN (Wireless local area network): manage access points and the organization's wireless network
 - Hardware/cloud service/virtual machine/software package
 - Advanced WLAN features: security features, threat intelligence, intrusion prevention
- RADIUS (Remote Authentication Dial-In User Service): allows servers to be federated
 - Example: Eduroam is a federated higher education institution

- 2.4 GHz Band:

- Each channel is 20 MHz wide
- 5 MHz space in between
- 11 channels in 2.4 GHz Wi-Fi deployment

- WPA2:

- WPA2-Personal (WPA2-PSK): pre-shared key, allows client to authenticate with a server infrastructure
- WPA2-Enterprise: relies on RADIUS as part of 802.1X
- CCMP (Counter Mode Cipher Block Chaining Message Authentication Code Protocol): uses AES to provide confidentiality
 - Provides authentication for user and access control capabilities
- WPA3: replacement fro WPA2 since 2020
 - SAE (Simultaneous Authentication of Equals): requires client/network to validate both sides
 - Perfect forward secrecy: changes encryption keys on ongoing basis, ensures traffic is secure even if keys change
 - Optional 192-bit security mode
 - Continues to use RADIUS
 - OWE (Opportunistic wireless encryption): provide encrypted Wi-Fi on open networks when possible

WIRELESS AUTHENTICATION:

- 802.1X: IEEE standard for access control for wired/wireless networks
 - Captive Portal: redirects traffic to a website/registration before allowing access (ex: airport, hotel wifi)
 - 802.1X integrated with RADIUS servers —> allows enterprise to authenticate and gain access to network
 - Wireless enterprise networks relies on IEEE 802.1X + EAP when

authenticating to RADIUS server

- EAP variants:
 - PEAP (protected EAP): authenticates servers using certificates and wraps EAP using TLS tunnel
 - EAP-FAST (Flexible Authentication via Secure Tunneling): improves on vulnerabilities in LEAP. FAST provides faster authentication while roaming
 - EAP-TLS (Transport Layer Security): implements certificate-based authentication as well as mutual authentication
 - Used less frequently
 - EAP-TTLS (Tunneled Transport Layer Security): does not require client devices have a certificate to create a secure session bye requiring software

MANAGING SECURE MOBILE DEVICES:

- BYOD (bring your own device)
- CYOD (choose your own device)
- COPE (Corporate owned personally enabled): allows for reasonable personal use since users dont want to carry two phones
- COBO (Corporate Owned Business Only):
- Corporate-owned
- VDI
- Containerization
- Hardening Mobile Devices: patching OS, enabling remote wipe, requiring passcodes, setting automatic screen lock
 - CIS (Center for Internet Security): has benchmarks for iOS and Android hardening
- MDM (Mobile Device Management):
 - Example: DOD bans cell phone use with cameras automatically in their facilities
 - Example 2: Limiting SMS, MMS, or RCS (rich communication services), On-the-go (OTG)
 - UEM (Unified Endpoint Management): combines mobile, devices, desktops, laptops
 - MAM (Mobile Application Management)
 - VPN may be used for BYOD devices
 - Application management: limiting apps, remotely adding, removing, changing applications, monitoring applications
 - Content management (MCM): document/media on mobile devices
 - Remote-wipe capabilities: used when a device is lost/stolen/owner is no longer employed by organization

- Geolocation & geofencing
- Screen locks, passwords, PINs
- Containerization
- Storage segmentation
- FDE (Full-device encryption)
- Push notifications
- OTA (over-the-air)

CHAPTER 14: MONITORING AND INCIDENT RESPONSE

INCIDENT RESPONSE:

- IR (Incident Response): plan, process, team, technology, skills, and training to respond appropriately (ongoing process)
- Incident: violation of organizations policies
- Events: observable occurrence
- Incident Response Process (by SANS): PICERL
 - 1. Preparation: build the tools, processes, procedures to an incident
 - 2. Identification: IoC, log analysis, security monitoring capabilities
 - 3. Containment: Quarantine, placing system/device in an isolated network zone
 - 4. Eradication: removing artifacts from the incident
 - 5. Recovery: restoration to normal
 - 6. Lessons Learned
- Incident Response Process (by NIST):
 - 1. Preparation
 - 2. Detection and Analysis
 - 3. Containment, Eradication, and Recovery
 - 4. Post-incident Activity
- Incident Response Team:
 - Management or leadership
 - Info sec staff are the core
 - Technical experts (sys admin, devs, etc)
 - PR team for internal and external communication
 - Legal and HR
 - Law enforcement
- Exercises:
 - Tabletop exercises
 - Simulations

- Building Incident Response Subplots:
 - Communications plans
 - Stakeholder management plan
 - BC (Business Continuity) plans: making sure business can continue despite the incident, important for larger incidents
 - DR (Disaster Recovery): focuses on natural and human-made disasters that destroys facilities/infrastructure

TRAINING:

- CISA (Cybersecurity & Infrastructure Security Agency): offers IR training for preventing attacks, IoC, managing logs
- IoCs (Indicators of Compromise)
- MITRE ATT&CK: Adversarial Tactics, Techniques, and Common Knowledge (MITRE is a corporation)
 - Pre-attack
 - Enterprise
 - Data sources
 - Threat actor groups/software/host

- Common loCs:

- Account lockout: due to brute-force login attempts
- Concurrent session usage: two locations at once
- Blocked Content: DNS filter prohibits domains, IP addresses trigger it
- Impossible travel
- Resource consumption
- Resource inaccessibility
- Out-of-cycle logging: logging in at 2am
- Missing logs: someone trying to hide their actions
- Published/documented: IoC that has been published/documented

SIEM:

- SIEM (Security Information and Event Management): the central security monitoring tool.
 - o Collects and aggregates log data —> correlation and analysis
 - Review user behavior
 - Older versions: SIM and SEM
- NetFlow Protocol (AKA sFlow): collect IP traffic as it enters or exits interface, developed by Cisco in 1996 —> tracks bandwidth utilization
 - IPFIX: another example of NetFlow v9
 - May lose some resolution in the detail of the flow analysis
- Syslog: logs all activity on a system
- SIEM Dashboards: shows most critical information (ex: AlienVault SIEM)
 - Sensor activity
 - Alarms
 - Events trend

- Correlation engines and rules
- Sensitivity
- Sensors: can be software agents, virtual machine, or dedicated device
 - Location: where unique data is being generated (big decision)
 - Must be secured like anything else
- Sensitivity and Thresholds: alerts only activate after a certain amount of times
- Trends: new problem cropping up, detected frequently
- Alerts & Alarms: malware beaconing, infection
 - Alert tuning: modifying alerts to only alarm on important events
 - Alert fatigue: BIGGEST threat to SIEM
- Log Aggregation, Correlation, and Analysis
- Rules: SIEM vendors have default rules but also allow custom-built rules for organizations
 - Follow data for entire life cycle
- Integrations: built-in services like Google, ServiceNow, Office 365, Okta,
 Sophos
- Log Files: target for attacks, IR watch to make sure log files haven't been tampered
 - Firewall logs: blocked or allowed traffic (NGFW, UTM, IDS/IPS)
 - Application logs: IIS (Internet Information Services) track web server and related events —> helps identify SQL injection
 - Endpoint logs: application logs, system/service logs, endpoint devices
 - OS-specific security logs: failed/successful logins,
- IDS/IPS logs: insight into traffic that was detected/blocked
- Network logs: routers, switches, traffic information, network flows, packet analyzers like Wireshark
- Bandwidth usage
- Logging Protocols and Tools:
 - syslog —> replaced rsyslog (rocket-fast system for log processing)
 - Syslog-ng: enhanced filtering
 - NXLog: open source log system
 - Systemd's Journal in Linux: journlctl —> display journal entries, initrd
 —> messages
- Retention: logs kept for 30-180 days depending
- Metadata Types:
 - Email metadata: sender, recipient, date/time, attachment, systems, antispam
 - Mobile metadata: call logs, SMS, data usage, GPS location tracking, cellular tower
 - Web metadata: metatarsi, headers, cookies, website functionality
 - File metadata: creation date, how it was created, modified, GPS

location

- Example: ExifTool —> shows all metadata about photos
- Other data sources:
 - Agents
 - Vulnerability scans
 - Automated reports
 - Dashboards
- Benchmarks and Logging: requires central logging, configuration logs, alerting levels
- Reporting and archiving:
 - Reporting: identifying trends, providing visibility
 - Archiving logs: data retention life cycle

MITIGATION AND RECOVERY:

- SOAR (Security Orchestration, Automation, And Response): quick assess attack surface, state of systems, where issues are
- RCA (Root Cause Analysis):
 - Ask five why's
 - Event analysis
 - Diagramming cause and effect
- Mitigation techniques:
 - Application allow lists (AKA whitelisting): application or files that are allowed on the system
 - Application deny lists (AKA blacklists): application or files not allowed on a system
 - Isolation or Quarantine
 - Monitoring
- Configuration Changes: common remediation technique
 - Firewall rule changes
 - MDM changes
 - DLP tool changes
 - Content/URL filtering
 - Updating or revoking certificates
- Incident Response actions:
 - Isolation
 - Containment: leaves system in place but prevents further actions
 - Segmentation

DIGITAL FORENSIC CONCEPTS:

- DFIR (Digital Forensics and Incident Response): finding evidence, removing attacker, assessing damage, lessons learned
 - Computer Forensics is a subfield of Digital Forensics
- Artifacts: pieces of evidence that point to an activity on a system
- E-discovery: electronic discovery
- Legal hold: notice that informs organizations that they preserve data and records
- Spoliation of evidence: intentionally, recklessly, or negligently altering/ destroying/fabricating/hiding/withholding evidence

- DFIR Tools:

- Eric Zimmerman's Tools
- KAPE (Knoll Artifact Parser and Extractor): automates artifact collection, creates timeline
- Autopsy: open source forensic platform
- Volatility: memory analysis
- Redline: collecting forensic information
- Velociraptor: open-source advanced endpoint-monitoring, forensics, and response platform
- Elements Digital Forensics:
 - Acquiring and analyzing digital forensic data
 - Documenting the process
 - Human side interview with individuals
 - Example: Google's Vault
- EDRM (Electronic Discovery Reference Model) Reference Model:
 - 1. Information governance to scope and control data provided
 - 2. Identification of electronically stored information
 - 3. Preservation
 - 4. Collection
 - 5. Processing of data to remove unwanted information
 - 6. Review data to contain only what its supposed to
 - 7. Analysis of key elements
 - 8. Production of data
 - 9. Presentation of data

CONDUCTING DIGITAL FORENSICS:

- Venue: location where a case is heard
- Nexus: concept of connection
- Evidence Preservation: since forensic analysis containments evidence, evidence is first collected and then write-protected
- Chain-of-custody: documentation if the forensic case may result in legal case
- FTK Imager: free forensic image tool
- WinHex: disk editing tool —> directly reading/modifying data, memory,
 RAID arrays, and other filesystems
- Logical copy: simply copying a file/folder/drive
- Forensic Copies: bit-by-bit
- Checksum: small-sized block of data derived from another block of data data for there purpose of detecting errors
- Provenance: chronology of the ownership
- Write blocker: allows a read to read & accessed by not written to
- Order of Volatility: prioritize preserving RAM before hard drive
- Order of Volatility: what data is most likely to be lost to due normal processes
 - CPU cache and registers
 - Ephemera data: kernel statistics, ARP cache, process table
 - System memory RAM
 - Temporary files and swap space
 - Data on the disk
 - OS
 - Devices, IoT devices
 - Firmware
 - Snapshots from VMs
 - Remote logs
 - Backups
- FTK Imager: free forensic image tool —> physical/logical/image/CD/DVD all supported by FTK Imager
 - supports raw (dd)-style format
 - SMART (ASR Data's format for their SMART forensic tool)

- E01 (EnCase)
- AFF (Advanced Forensics Format)
- Can capture live memory on a system too
- Cloud Forensics:
 - Right-to-audit clauses: ability to directly audit cloud or use thirdparty
 - Regulatory and jurisdiction concerns
 - Data breach notification laws: vary location to location
- Forensics tools missing from Sec+ Exam:
 - EnCase
 - SANS SIFT distribution
- Acquiring Network Forensic Data:
 - Capturing logs (firewalls, IDS/IPS, email server, authentication logs)
 - Wireshark for packet analyzing
 - Taps and ports aren't as useful -> too much info
- Acquiring Forensic Information from Other Sources:
 - VMs: snapshots. Cannot remove hardware
 - Containers: hard to do forensics -> requires additional planning
- Validating Forensic Data Integrity:
 - Hashing original and copy verifies their identity (MD5/SHA1) —> hash values are part of chain of custody

DATA RECOVERY:

- Wear Leveling: extends life of SSDs by moving data from less worn cells as needed
 - Can still use FDE
- Forensic Suites: complete forensic solutions
- Deleting Data:
 - Deleting files doesn't erase data -> removes its index for re-use
 - Same for quick formatting —> affects the index
- Recovery Tools:
 - Search for matching file headers/metadata to locate deleted data
 - Partial overwrites: still can recover some
 - Data stored in blocks —> not all blocks erased at once
 - Example: if 100MB is deleted by a 25MB file, 75MB is still recoverable
- Anti-forensic techniques: delete securely and overwrite
- Forensic Suites:
 - FTK: major Commerical option
 - EnCase: major Commerical option
 - Autopsy: open source forensic suite

REPORTING:

- Forensic Report includes:
 - Summary of findings
 - Outline of process
 - Sections
 - Conclusion/recommendations
- Digital Forensic Use Cases:
 - Legal cases
 - Internal investigations
 - Incident response
 - Learning/gaining intel
- 1. C
- 2. C
- 3. A
- 4. B? D?
- 5. C
- 6. B
- 7. C? D?
- 8. D
- 9. CB -> INCORRECT TIME ZONE
- 10. C
- 11. ? B? A -> MEMORY FORENSIC TECHNIQUES
- 12. A C -> INTERVIEW FIRST
- 13. B
- 14. D? B —> QUICK FORMATTING REMOVES FILE INDEXES BUT LEAVES FILE CONTENT ON DRIVE
- 15. C? B -> FORENSICALLY EXAMINE DRIVES IS NOT USUALLY INCLUDED
- 16. C? D —> CHAIN OF CUSTODY DOES NOT INCLUDE HOW THE ITEMS WERE TRANSPORTED
- 17. C?
- 18. C
- 19. C
- 20. A?

Dd?

PED address

CHAPTER 16: SECURITY GOVERNANCE AND COMPLIANCE

SECURITY GOVERNANCE:

- Governance programs: set of procedures and controls put in place to allow an organization to effectively direct its work
- GRC: Governance, risk, and compliance
- Public Corporate Governance: Shareholders —> Board of Directors —>
 CEO —> management
 - SEC has min requirement for independent directors on board
- Private Corporate Governance: "self-perpetuating" model --> current board elects new members
 - CEO can also be board member
- Types of Governance Structures:
 - Centralized governance models: top-down approach
 - Decentralized governance models: bottom-up approach —> individual units are delegated authority
 - SMEs (Subject Matter Experts)
 - Government entities
 - Regulatory agencies

UNDERSTANDING POLICY DOCUMENTS:

- Information Security Policy Framework: series of documents designed to describe the organizations cybersecurity program
 - Policies: high-level statements of management intent. Compliance is mandatory
 - Standards: mandatory requirement for how an organization will carry out its information security policies
 - Procedures: step-by-step process that individuals and organizations must follow
 - Guidelines: best practices and recommendations related to a concept or task

- Policies contain:

- State of importance of cybersecurity
- Requirement of staff to protect CIA
- Statement of ownership by org
- Designation of the CISO for security issues
- Delegating CISO to create standards, procedures, and guidelines for company

- Security Policy Library:
 - Information security policy
 - Incident response policy
 - AUP (Acceptable use policy)
 - Business continuity and disaster recovery policies
 - SDLC (Software development life cycle)
 - Change management and change control policies

- Standards:

- Password standards: password length, complexity, reuse, similar issues
- Access control standards: amount of life cycle from provisioning through active use and decommissioning
- Physical security standards: guidelines for securing physical premises and assets of organization
- Encryption standards: transit and at rest

- Procedures:

- Example #1: Payment Card Industry Forensic Investigator (PFIs):
 - Engage a PFI within 5 business days
 - Provide Visa with the initial forensics within in 10 days
 - Provide Visa with final forensic report
- Example #2: policy frameworks
 - Change management procedures: how organization will perform change management
 - Onboarding and off boarding procedures: how will add and remove accounts
 - Playbooks: describe IR response

- Guidelines:

EXCEPTIONS AND COMPENSATING CONTROLS:

- Compensating Controls: internal control that can be used in place of a recommended security control
 - Balances the fact that it isn't possible to implement every possible security control
 - Ex: PCI DSS
- Change Management: ensuring changes do not cause outages
 - Weighs usability against risk of weakening security
- Impact analysis
- Maintenance Window: preplanned and announced times when all nonemergency changes will take place
- Version Control: ensures developers and users have the latest version of software

- Exception Process:
 - Standard/requirement that requires exception
 - Reasons for noncompliance with requirement
 - Business and/or technical justification for the execution
 - Scope, duration of the exception
 - Risks associated with the exception
 - Description of any supplemental controls that mitigate the risk of the exception
 - Plan for achieving compliance
 - Identification of any unmitigated risks
- Five Criteria for a compensating control:
 - 1. Control must meet intent and rigor of original requirement
 - 2. Control must provide similar level of dense as original requirement
 - 3. Control must be above and beyond other PCI DSS requirements
 - Control must address additional risk imposed by not adhering to PCI DSS requirement
 - 5. Control must address the requirement currently and in the future
- Change Management Processes and Controls:
 - 1. Request the change: usually internal logs that allow anyone to see
 - 2. Review the change: may require a formal CAB (change review board)
 - 3. Approve/reject the change
 - 4. Test the change
 - 5. Schedule and implement the change: have a blackout plan though
 - 6. Document the change
 - Always must document before closing out change management

PERSONNEL MANAGEMENT:

- Least privilege: individuals only granted minimum set of permissions necessary to carry out their job functions
- Privilege creep: when employee moves from to job and accumulates privileges
- Separate of duties: no single person may have the privileges required to perform both tasks
- Two-person control: requires the participation of two people to perform a single sensitive action
- Job rotation: moves employees with sensitive roles to another position in the organization
- Mandatory vacations: forcing employees to take a vacation and revoking their permissions during that time
- Clean Desk policies: limit amount of paper left exposed on unattended employees desk to protect confidentiality

- Onboarding and off boarding: standard operating procedures, should include background checks
- NDA (Nondisclosure agreements): new employees should sign

THIRD-PARTY RISK MANAGEMENT (TPRM):

- Due diligence: vetting potential vendors to ensure they meet the organization's standards
- Conflicts of interest: when a vendor has a competing interest that could influence their behavior
- Vendor assessment: after initial selection process, organizations continuously assess chosen vendors
 - Penetration testing: simulated attacks carried out to identify vulnerabilities
 - Right-to-audit clause: allows customers to audit vendor's operations
 - ISO 27001 or SOC reports: independent 3rd-party experts to evaluate a vendor
 - Supply chain analysis: risks of vendor's supply chain
 - Questionnaires: collecting information on vendor's practices and performance regularly
- Vendor monitoring: includes security monitoring, vendor's security posture, data breaches, compliance, financial monitoring (important for long-term contracts)
- Rules of engagement: rules that define the boundaries which vendors should operate
- KPIs (key performance indicators): quantitative measurements of the vendor's performance

Vendor Agreements:

- MSAs (Master Service Agreements): umbrella contract for the work that a vendor does
- WO (work order) or SOW (statement of work): project-specific details and references to MSAs
- SLAs (Service level agreements): contracts that specify conditions of service will be provided by vendor
- MOU (Memorandum of Understanding): informal document laying out relationship with vendor
- MOA (memorandum of agreement): formal document outlining the terms between parties, establishing roles and responsibilities. More detailed than MOUs
- BPAs (Business partner agreements): when two organizations agree to do business together, could potentially specify responsibilities and division of profits

- Winding Down:
 - EOL (end of life)
 - EOSL (end of service life)

COMPLYING WITH LAWS AND REGULATIONS:

- HIPAA (Health Insurance Portability and Accountability Act): privacy rules for medical industry in US
- PCI DSS (Payment Card Industry Data Security Standard): not a law but contractual obligation with merchants
- GLBA (Gramm-Leach-Bliley Act): US financial institutions must have security program
- SOX (Sarbanes-Oxley) Act: strong security for publicly traded companies' financials records
- GDPR (General Data Protection Regulation): security and privacy requirements for PII in the EU
- FERPA (Family Educational Rights and Privacy Act): US student educational records privacy
- Due diligence: continuously researching and understanding the legal and regulatory requirements that pertain to the organization
- Due care: ongoing efforts to ensure implemented policies and controls are effective and continuously maintained
- Acknowledgment: ensuring employees and business partners are aware of compliance requirements
- Attestation: aware of requirements and have confirmed they are practicing these policies
- Internal monitoring: internal audits, review, and checks to ensure meeting legal requirements
- External monitoring: third-party audits and assessments
- Compliance Reporting:
 - Internal compliance reporting: regular reports to management or board about state of compliance
 - External compliance reporting: mandated by regulatory or contractual obligations, must submit documentation
- Consequences of noncompliance:
 - Fines/sanctions (ex: GPDR is 4% of revenue or 20million, whichever is higher)
 - Restrictions on business operations
 - Reputational damage
 - Loss of business: contract termination

ADOPTING STANDARD FRAMEWORKS:

- CSF (Cybersecurity Framework): broad structure for cybersecurity controls
 - Commonly used in private sector
- RMF (Risk Management Framework): formal process for implementing security controls and authorizing system use
- ISO (International Organization for Standardization) Standards:
 - ISO 27001: Information security management systems
 - ISO 27002: controls implemented to meet cybersecurity objectives
 - o ISO 27701: standard guidance for managing *privacy* controls
 - o ISO 31000: guidelines for risk management
- NIST Cybersecurity Framework: CSF (Cybersecurity Framework) version
 1.1 released in 2018. New framework coming in 2024
 - 1. Describe current cybersecurity posture
 - 2. Describe target state for cybersecurity
 - 3. Identify and prioritize opportunities for improvement in a repeatable process
 - 4. Asses progress towards the target state
 - 5. Communicate among internal and external stakeholders
- NIST Framework Components:
 - 1. The Framework Core: set of five security functions that apply across all industries and sectors

- 1. Identify
- 2. Protect
- 3. Detect
- 4. Respond
- 5. Recover
- 2. The Framework Implementation Tiers: assessing how an organization is positioned to meet cybersecurity objectives.
 - Maturity Model: describes the current and desired positioning of an organization along a continuum of progress
- 3. The Framework Profile: describe its current state and separate profile into described future state
- NIST Cybersecurity Framework Implementation tiers:
 - Tier 1: Partial
 - Tier 2: Risk Informed
 - Tier 3: Repeatable
 - Tier 4: Adaptive
- NIST Risk Management Framework
- ISO 27001:
 - 1. Information security policies
 - 2. Organization of information security
 - 3. Human resource security
 - 4. Asset management
 - 5. Access control
 - 6. Cryptography
 - 7. Physical and environmental security
 - 8. Operations security
 - 9. Communications security
 - 10. System acquisition, development, and maintenance
 - 11. Supplier relationships
 - 12. Information security incident management
 - 13. Information security aspects of business continuity management
 - 14. Compliance with internal requirements
- ISO 27002:
 - 1. Select information security controls
 - 2. Implement information security controls
 - 3. Develop informations Security management guidelines
- ISO 27701: ISO 27001 + ISO 27002

SECURITY AWARENESS AND TRAINING:

• CBT (Computer Based Training): part of a diversity of a strong security training program

- Role-Based Training
- Phishing simulations: sending users fake phishing messages to test their skills
- Anomalous behavior recognition: employees should recognize risk, unexpected, or unintended behavior takes place
 - I.E.: Insider Threat
- Security Awareness: less formal efforts designed to remind employees about the security lessons they've learned
- User Guidance and Training:
 - Security Policies and Handbooks
 - Situational Awareness
 - Insider Threats
 - Password Management
 - Removable Media and Cables
 - Social Engineering
 - Operational Security
 - Hybrid/Remote Work Environments
- User Training Considerations:
 - Training Frequency: whenever someone joins + annual training
 - Development and Execution: assessing org's security landscape,
 IDing risks, include real-world examples, workshops, e-learning,
 simulations
 - Reporting and Monitoring: collect feedback from employees, provide management with reports, keep content relevant
- 1. B
- 2. A
- 3. C
- 4. B
- 5. C
- 6. D
- 7. C
- 8. B?
- 9. C
- 10. B
- 11. C
- 12. B
- 13. D
- 14. B
- 15. B? D -> MANDATORY VACATIONS DESINGED TO LET FRAUD ACTIIVITES COME TO LIGHT

16. D

17. A

18. B

19. D

20. C

CIS?

CHAPTER 17: RISK MANAGEMENT AND PRIVACY

ANALYZING RISK:

- Risk management: seeks to bring order to the process of identifying and addressing risks
- ERM (Enterprise Risk Management): formal org approach to risk analysis. Identify risks, determine severity
- Threats: any possible event that might have a negative effect on CIA triad
- Vulnerabilities: weaknesses that can be exploited
- Risks: threat + vulnerability
- Risk severity: likelihood * impact (ex: PII data breach in the EU gets a huge fine)
- Risk analysis: formalized approach to conduct their review in a structured manner
- AV (asset value): express in dollars
- RAO (annualized rate of occurrence): ARO 2.0 means 2x per year
- EF (Exposure Factor): percentage of expected damage (ex: EF 90%)
- SLE (Single loss expectancy): AV * EF, amount of financial damage expected each time a risk materializes

- Example: AV \$3,000 * EF 90% = SLE of \$2,700
- ALE (annualized loss expectancy): SLE * ARO amount of damage expected each year
- Examples of Risk:
 - External risk
 - Internal risk
 - Multiparty risks: impacts more than one org
 - Legacy systems
 - Intellectual Property (IP) theft
 - Software compliance/licensing risks: software licensing that runs afoul
- Risk Assessments:
 - One-time risk assessments: current risk state at a specific point in time
 - Ad hoc risk assessments: in response to something (ex: new event, technology implementation, significant change)
 - Recurring risk assessment: regular intervals (ex: annually, quarterly)
 - Continuous risk assessment: ongoing monitoring and analysis of risks (ex: automated)
- Supply Chain Assessment:
 - 3rd Party and supply chain have high risks
- Risk Assessments methods: repeated for each vulnerability/risk
 - 1. Quantitative risk analysis
 - 2. Qualitative risk analysis
- Quantitative Risk Analysis:
 - 1. Determine the asset value (AV) of the asset affect by the risk
 - 2. Determine the likelihood that the risk will occur
 - 3. Determine the amount of damage that will occur to the asset if the materializes
 - 4. Calculate the single loss expectancy
 - 5. Calculate the annualized loss expectancy
- Qualitative Risk Analysis: used in conjunction with quantitive risk

MANAGING RISK:

- Risk management: systematically addressing the risks facing an organization
- Risk mitigation: applying security controls to reduce the probability and/ or magnitude of risk
 - Ex: tamperproof tags, DDoS prevention
- Risk avoidance: completely eliminate the potential risk completely
- Risk transference: shifts the impact of a risk to another entity

- Ex: cyber insurance
- Risk acceptance: purposely accepting risk to continue operations
 - Exception: acknowledging the risk but accepting it
 - Exemptions: higher lever of approval, often short-term

RISK TRACKING:

- Inherent risks: original level of risk before implementing any controls
- Residual risks: risk that remains after implementing controls
- Risk appetite: level of risk will to accept
 - Expansionary risk appetites: high risk, high reward mentality
 - Neutral risk appetites
 - Conservative risk appetites: focused on maintaining
- Risk threshold: specific level at which risk becomes unacceptable —> will trigger some action
- Risk tolerance: withstand risks and continue operations without any significant impact
- KRIs (Key Risk Indicators): metrics used to measure and provide early warning signals of risk
- Risk owner: entity responsible for managing and monitoring risks
- Risk register: tool for tracking risks
 - Risk owner
 - Risk threshold
 - KRIs
- Risk matrix (AKA heat map): quick summary of risk register
- Risk reporting: communicating status and evolution of risk to stakeholders
- DRP (disaster recovery planning): developing plans to recover as quickly as possible
- BIA (Business impact analysis): identifying the mission-essential functions and the critical system that support those functions

- MTBF (Mean time between failures): expected time between failures, measures reliability of a system
- MTTR (mean time to repair): average amount of time to restore
- RTO (Recovery Time objective): amount of time an organization can tolerate being down
- RPO (recovery point objective): amount of data an org can tolerate losing during an outage
- Types of risk reporting:
 - Regular updates: routine
 - Dashboard Reporting: dashboard that updates in real-time
 - Ad Hoc Reports: produced as needed
 - Risk Trend Analysis: using historical data
 - Risk Event Reports: documenting specific risks

PRIVACY:

- PII (personal identifiable information)
- PHI (protected health information): subject to HIPAA
- Data subjects: individuals whose personal data is being processed
- Data controllers: entity determines the reason for processing personal information
- Data stewards: individuals who carry out the intent of data controller
- Data custodians: only responsible for safeguarding information
- Data processors: service providers who process PII on behalf of data controller
- DPO (data protection officer): formal role required by GDPR, called Chief Privacy Officer in US
- Data minimization: collecting the smallest possible amount of information necessary
 - Purpose limitation: data should only be used by org for the exact purpose it was collected for
- Right to be forgotten (AKA right to erasure): allows user to request deletion of personal data via GPDR
- Deidentification: removes ability to link data back to an individual
- Data Obfuscation: obscuring data
 - Hashing: one-way function
 - o Tokenization: unique identifier using a lookup table
 - Data masking: hides sensitive information
- Types of data: whether binary or human-readable
 - PII
 - Protected health information

- Financial information
- Intellectual property
- Legal information
- Regulated information
- Information classification:
 - Top secret: highest degree of protection, could cause grave damage to NS
 - Secret: substantial degree of protection, serious damage to NS
 - Confidential: some protection, damage to NS
 - Unclassified: still not publicly released without authorization
- Business classifications:
 - Highly sensitive
 - Sensitive
 - Internal
 - Public