

SCIENCE LEARNING OUTSIDE THECLASSROOM

OBSERVATION MAPPER: DIY ELECTRONICS FOR INFORMAL SCIENCE LEARNING

Christian Voigt (ZSI)

SySTEM 2020 has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 788317

Agenda

- Project Context & the challenge of traditional science literacies
- 2. Creating a story and designing the data collection (Ljubljana & Dublin)
- 3. Building the device
- 4. Making sense through visualization

** questions & sharing ** after each section ... feel free to use chat any time

Interacting through annotations

Weather today is like

When do you start working normally?

6

Materials

- System2020 resources
 https://system2020.education/resources/
- 'Observation Mapper' Report
 https://zenodo.org/record/4575325#.YNh2ABMzZUQ
- Programming the gadget using the Arduino IDE <u>https://github.com/chrvoigt/observation-gadget</u>
- Casing model for 3D Printing <u>https://wikifactory.com/@chrvoigt/mapper-casing/files</u>
- Visualizing the data in Python Notebooks or Streamlit Platform https://github.com/chrvoigt/observation-viz
- Blogging some personal reflections <u>https://innodesign.io/tag/mapping/</u>

Disclaimer

The following ideas are based on experiences from multiple projects, some I made myself and others I got to know from project partners.

What could we gain from a mapping device? Project Context

Objectives of the observation mapper

In the context of the System2020 project, the observation mapper aimed to promote

- self-organised learning, retaining critical agency
- self-evaluation, detecting gaps during imlementation
- self-efficacy, confidence in own abilities

Why should we care?

Equitable science learning needs a broader set of 'science literacies'. *

e.g.

- analysing my own situation,
- tinkering & dealing with uncertainty,
- communicating my needs,
- collaborating with peers

First story Knotweed in Ljubljana

Mapping invasive plants

ED EOB

- workshop concept:
 4 workshops around the topic of transforming an invasive plant (i.e. Japanese knotweed) into paper
- mapping idea: state of plant for harvesting
- offline implementation under Covid19: facilitator plus one pair of youth collected data
- online implementation: data viz
- offline building the gadget

The mapping part

- mapping idea: state of plant for harvesting
- offline implementation under Covid19: facilitator plus one pair of youth collected data (Feb 2021)
- online implementation: data viz (Python notebooks)
- offline building the gadget (at least the first bits and pieces)

Frequency of Categories

Heatmap of Categories

Mapping over Time

Signal Precision

The gadget

Functions:

- C Categorizing a point
- Quality / Num. of Satellites
- Path tracking (ON / OFF)
- Data statistics / Points mapped
- W Web output (ON / OFF)
- Serial output

... to be chosen after 'C'

Screen interaction

Second story

Dublin and Covid19 in the public space

How does Covid19 show in what you observe?

SHARE

- v 💡 1 BAD

 - 93 GOOD
 - Q4 EXCELLENT

Observation Mapper Data

- v 🦞 1
 - **9** 2
 - 93
 - **9** 4

https://public.tableau.com/profile/chri stian6183#!/vizhome/LjubljanaKnotwe ed/Piechartversion?publish=yes

Made with Google My Maps

Revisiting the objectives

Scientific literacy:

Scientific interpretation of data and evidence

- the meaning of categories
- implications of data quality
- visualization at different levels

- Self-organised learning, retaining critical agency
 ... planning your own experiment
- Self-efficacy:

I made it / I programmed it / I know what it is doing ... successful trouble shooting experiences *

- Self-evaluation, detecting gaps
 - ... how far did I get, what further skills do I need

* broken charger and rescuing data from a corrupted file system

Building the 'observation mapper'

Materials

- MPR121 Capacitive Touch Sensor \approx 3 €
- Wemos D1 (ESP8266) ≈ 5 €
- OLED Shield ≈ 5 €
- Battery charger ≈ 6 €
- PCB Prototyping shield ≈ 1 €
- NEO-6M GPS ≈ 20 €
- LiPo Battery = 5 €

Feb 2021, Total ≈ 45 €

Fritzing

Designing electronic systems:
 2 x 4 connections

Extensibility

D8

Not recommend **

15

Wrapping it up ...

Making Sense through visualizing

Direct access through Laptop or Smartphone

Careful planning

Available time

Participant / facilitator ratio

Existing knowledge (participant & facilitators)

Heterogeneity of group

Robustness of tools

Tools

Excel

Google Maps

 Individual notebooks / Google Collab (mapping through IPyLeaflet, or Kepler.gl)*

Platforming the result ...

https://streamlit.io/ or https://www.heroku.com/

^{*} both tools are described on https://innodesign.io/tag/mapping/

Platform example

Observation Mapping

Go to

- Data Exploration
- Ljubljana Example
- About

This bar chart shows the usage frequency per category.

This bar chart indicates the quality of your GPS coordinates. 5+ is good.

http://mapper.innodesign.education/

Facilitating programming

- The PRIMM* model:
- □ Predict what code will do
- ☐ Run the code to test predictions
- ☐ Investigate the structure of code
- ☐ Modify the code to add functionality
- Make a new program using the same/modified structures.

^{*} Sentance, S., Waite, J., & Kallia, M. (2019). Teachers' Experiences of using PRIMM to Teach Programming in School. *Proceedings of the 50th ACM Technical Symposium on Computer Science Education*, 476–482.

3 4

Which part would you like to try?

Design your own data collection	Build your own mapper	Visualize your data	Try out DIY electronics

Thanks

EBB3 EBB3

- ECSITE: Andrew Whittington

DOIT Project: Tamer Aslan ...

Contact

e: voigt.cm@gmail.com

w: https://www.zsi.at/users/156

t: https://twitter.com/chrvoigt

I: https://www.linkedin.com/in/chrvoigt/

r: https://bit.ly/research_voigt

b: https://innodesign.io