Full Name: Punyaja Mishra Student Number: 0660001

TOTAL POINTS: /30

Trent University MATH 2600 - Discrete Structures Instructor: Aras Erzurumluo glu

TAKE-HOME FINAL EXAM (due 11:00 am on April 15th)

READ ME: You may use any course material and the internet for reference, but you are required to solve the problems independently and follow the principles of academic integrity as stated within the university policies.

Show all your work. Explain your solutions when appropriate.

0) (0 points): Prove something.

	Punyaja 0660001				Date / /
		MATH-2600 Final Exc		7-1-	
Broble	mo) I So, we all be How?w	it activ	ally 17	1= 0	reind on
C	ne t one	now 	<u> </u>	=) the e	qual to sight
				wind o	w o.

1) (3 points): On the Island of Knights and Knaves we have two people A and B.

A says: B is a knight. B says: I am a knight or we are both knaves.

Is A a knight? Is B a knight? Show all your work. (The problem may have a single solution, multiple solutions, or no solution at all.)

Buobler	n1) A says i B is a knight
	B says! I am a knight or we are
	both knaves.
	P'. A is a Knight
	q: B is a knight
	A: a
	B: 9 (~P ^ ~ 2)
	P 9 NP NP NNQ PENNAD
_	P G G G G G G G G G G G G G G G G G G G
	TOFF
	FUTFF
	TEFTE
	FIFIT T (T)
	let's assume A is a knowe, that mean
	Bis not a Knight.

	OH5 Page No.
Da	ate / /
If B is knowe, then he is lyin	q.
But he says, either B is a knight of A &	BLOH
B is a knight OR A que	· Ichaus
since A and B are indeed language	es this means
Hat B is telling the Buth	u ce one con
now, which makes B & a	lenight,
. Both A and B are long	

2) (2 points): Consider the following relation on the set A = {1,2,3,4}: R = {(1,1),(2,2),(2,3),(3,2),(3,3),(4,1)} What properties does the relation R possess? Circle the correct responses.

R is reflexive. T F

R is symmetric. T F

R is antisymmetric. T F

R is transitive. T F

Pso	ol em s	2)	A = 21, 2, 3 R = 2(1, 1), 0 (3, 3), 0	(2,2), (2,37, (3,2), (3,4), (4,1) ²	
	R	is	symmetric antisymmetric transitive	-False -False -False -False	

3) (3 points): Let A = {-4,-3,0,1,6,9,10}, and define an equivalence relation R on A as follows: xRy ⇔ x ≡ y (mod 5). Find the partition of A into equivalence classes with respect to R. (You need to find the equivalence classes of A, and then determine which elements in A belong to which equivalence classes.)

	DOM5 Page No.
	Date /
-hli	am 3) A=2-4,-3,0,1,6,9,103
	2Ry (=> 2=y (Mod 5)
	V
	Ris a congerne modulo
	R is a conquience modulo
	the paulvalence relation is reflexive, symmetric
	& bransitive.
	to prove Ris equivalence
	ORG/lexive
	$\chi R_{\chi} \Rightarrow \chi \equiv \chi \pmod{5}$
	≥)x=9€1.5
	This is always bue
	R is reflexive
	(2)
	2) symmetric 2 Ry 2 Ry
	$x = y^{2} - 5$ $y = x^{2} - 5$
	(1=2) always as x & y y . 5 will always be same for same x & y .
	always be same for same x Ey.
	(3) transitive
	(3) transition Let sky Egglz be hime 2 = y 15 y = z 1.5 2 = y 1.5 = z 1.5
-	2=y = 4/5 4/5 = Z-1 5
-	2 x 1 5 = y 1 5 = 2 y 1 5
-	7 6 8 (2)
	21.5 - 2.7 5
1	N = 2 7.6
	⇒ 2R ₂
	Ris hausting.

	DOH5 Page No.
	Date / /
	1. Ris on equivalence relation
	Possible equivalence classes for a congruence
	modulo 5.
-	
	ColR = [5]R
	LIJR - L6JR
	[2]R = [7]R
-	Γ31 · Γ01
-	F. 7 . [67 And SO OH
	A LOUNG AIM VARIANT
	They are equal because and E0, 1, 2, 3, 4 9
	cour have a residence
-	or just repitition.
-	: equivalence classes are
	ToJR, CiJR, CiJR, CiJR, CijR.
	USR, USR, USB
	now for elements of A
	$-4 = -5 + 1 = 1 \pmod{5}$
	$-3 = -5 + 2 = 2 \pmod{5}$
	0 = 0 × 5 = 0 (mod 5)
	$1 = 0 + 1 = 1 \pmod{5}$
	6 = 5+1=1 (mod 5)
	9 = 5+4 = 4 (mod 5)
	10 = 5 x 2 = 0 (mod 5)
	1 1010 = 30,109
	[0] = 20, 10)
	$ \begin{array}{c} L_1 J_R = \frac{9}{9} - 4, 1, 63 \\ L_2 J_R = \frac{9}{9} - 39 \end{array} $
	C37 = 9 mill set 3
	[3] - 3 9 ?
	[4] = 2 9 3

4) (4 points): Let $f : R \rightarrow R \times Z$ be a function defined by f(x) = (x-3,4).

Which of the following statements about f are true? If you claim the statement is true, prove it; otherwise, give a concrete counterexample.

f is injective. T F Justification (proof or counterexample): f is surjective. T F Justification (proof or counterexample):

Paddom	$R \longrightarrow R \times Z$ $f(x) = (x-3, 4)$
	f(x) = (x-3, 4)
*	f & injective = terre
	let's suppose 24 and 72 ER and x1 72
	let's suppose 24 and 22 ER and 21 722 assuming f is not injective.
	=> f(x1) = f(x2)
	=) (x1-3,4) = (x2-3,4)
	: 46% and is a constant
	⇒ 2,-3= N2-3

STERIOC -	Date / /
this contradicts our assumption	1
R + le sujective false	
f(x) = (x-3, 4)	1
there is no x ER, for	which
Thus not all yez are	a result of fr
V	
- '. t is not sujective.	

5) (4 points): Use Mathematical Induction to prove that 2n+2+32n+1 is divisible by 7 for all integers $n \ge 0$. Clearly state the proposition to be proved. Express the basis of induction, the induction hypothesis and the induction step. Indicate where the induction hypothesis is used in your proof.

Problem 5) 2ⁿ⁺² + 3ⁿ⁺¹ is divisible by 7, n>0

P(n) = 2ⁿ⁺² + 3ⁿ⁺¹ is divisible by 7, n>0

BI: Show P(no) = P(o) Ps true
P(no) = P(o) = 2ⁿ⁺² + 3^{2(o)+1}
P(no) = P(o) = 2ⁿ⁺³ + 3ⁿ⁺³
= 4+3
= 7 = 7-707 = 0

we know 7 is divisible by 7.

BI is completed as P(no) = Plotishue

Ts: let's assume / suppose P(k) is hue for k>0

and show that P(k+1) follows.

So we suppose
P(x) = 2^{x+1} + 3^{x+1} is divisible by 7.

P(K+1) = 2 +3 is divisible by7 - P(K+1) is bue IS is complet P(n)-Henre prove

6) (3 points): Solve the recurrence relation an = 8an-1-16an-2 ($n \ge 2$) with the initial conditions a0 = 3 and a1 = 14. Show all your work.

7) (3 points): Does a simple graph with 8 vertices exist with degree sequence (2,2,4, 4,5,5,7,7)? If yes, then draw an example of such a graph; otherwise explain why it cannot exist.

0 11 27
Problem 7) degree sequene (2,2,4,4,5,5,7,7)
let V1=2 V3=4 V5=5 V7=7
degrees be $V_2=2$ $V_3=4$ $V_5=5$ $V_7=7$ $V_9=7$ $V_9=7$
anere V, , V2, V3, V4, V5, V6, V7, V8
are degrees of the respective
verties.
degrees & = 7
and total no. of varices = 8 all other vertices.
and total no. of vartices - all other
vestices.
Since degree of V. & V2=2
and V2 and V8 are adjacent to All
and there appropriation to Va and Va
=>15EV1 age adjacent to V2 and V8 and thus completing their degree of adjacent.
Sinclarly V3, V4, V5, V6 are adjacent
Thus Va and Vs.
Thus V3 and V4 can be adjacent to only 2 more vertices: their degree is
4 and they are adjacent to by and be
So. 4-2=2

8) (3 points): What is the coefficient of x^3y^7 in the expansion of $(3x-4y)^{10}$? Show all your work.

9) (3 points): Draw an example of a connected bipartite simple graph with 9 vertices and 10 edges that has an Euler tour. Verify that your graph has these properties.

Peroblem 9) connected bipartite simple graph
9 vertices (Euler tour
10 edges
9 vertices (Euler to un 10 edges) we can split 9 vertices as (4 + 5) as in a bipartite simple graph
(4+5) as in a bipartite
simple graph
Since the graph has culer tour, thus every vertex should have an even degree

10) (2 points): In how many ways can you arrange all letters in NOGOJIWANONG?

Date Page M
Puoblem 10) NOGOJIWANONG
repeated letters are N,0,67 repeatitition N=3
0=3
total no. Of lettus = 12
no. of ways to avange all letter
313121