

SDS 384 11: Theoretical Statistics

Lecture 3: Concentration inequalities

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

www.cs.cmu.edu/~psarkar/teaching

Remember Markov's inequality?

Theorem

For $X \ge 0$, $E[X] \le \infty$, t > 0, we have:

$$P(X \ge t) \le \frac{E[X]}{t}$$

Use total expectation theorem.

$$E[X] = E[X|X \ge t]P(X \ge t) + E[X|X < t]P(X < t)$$

Remember Markov's inequality?

Theorem

For $X \ge 0$, $E[X] \le \infty$, t > 0, we have:

$$P(X \ge t) \le \frac{E[X]}{t}$$

Use total expectation theorem.

$$E[X] = E[X|X \ge t]P(X \ge t) + E[X|X < t]P(X < t)$$

$$\ge E[X|X \ge t]P(X \ge t)$$

Remember Markov's inequality?

Theorem

For $X \ge 0$, $E[X] \le \infty$, t > 0, we have:

$$P(X \ge t) \le \frac{E[X]}{t}$$

Use total expectation theorem.

$$E[X] = E[X|X \ge t]P(X \ge t) + E[X|X < t]P(X < t)$$

$$\ge E[X|X \ge t]P(X \ge t)$$

$$\ge tP(X \ge t)$$

$$P(X \ge t) \le \frac{E[X]}{t}$$

Higher order moments

Theorem (Chebyshev's)

For t > 0

$$P(|X - \mu| \ge t) = P((X - \mu)^2 \ge t^2) \le \frac{E[(X - \mu)^2]}{t^2} = \frac{var(X)}{t^2}$$

Theorem (Higher order markov)

For t > 0

$$P(|X - \mu| \ge t) = P((X - \mu)^k \ge t^k) \le \frac{E[(X - \mu)^k]}{t^k}$$

Chernoff bound

Theorem (Chernoff bound for Bernoullis)

Let $X_i \in \{0,1\}$ be independent random variables with $E[X_i] = p_i$. Let $X := \sum_i X_i, \mu := \sum_i p_i$. For $0 < \delta < 1$,

$$P(X \ge \mu(1+\delta)) \le e^{-\delta^2 \mu/3}$$
 $P(X \le \mu(1-\delta)) \le e^{-\delta^2 \mu/2}$

Proof.

$$P(X \ge \mu(1+\delta)) = \inf_{\lambda \ge 0} P(e^{\lambda X} \ge e^{\lambda \mu(1+\delta)}) \le \inf_{\lambda \ge 0} e^{-\lambda \mu(1+\delta)} \underbrace{E\left[e^{\lambda X}\right]}_{\mathsf{MGF of X}}$$

Chernoff continued

$$\begin{split} \inf_{\lambda \geq 0} \mathrm{e}^{-\lambda \mu (1+\delta)} E\left[\mathrm{e}^{\lambda X}\right] &= \inf_{\lambda \geq 0} \mathrm{e}^{-\lambda \mu (1+\delta)} \prod_{i} E\left[\mathrm{e}^{\lambda X_{i}}\right] \\ &= \inf_{\lambda \geq 0} \mathrm{e}^{-\lambda \mu (1+\delta)} \prod_{i} (\mathrm{e}^{\lambda} p_{i} + 1 - p_{i}) \\ \text{(Since } 1 + x \leq \mathrm{e}^{x} \text{ for } x \geq 0) \leq \inf_{\lambda \geq 0} \mathrm{e}^{-\lambda \mu (1+\delta)} \prod_{i} \mathrm{e}^{p_{i} (\mathrm{e}^{\lambda} - 1)} \\ &= \inf_{\lambda \geq 0} \mathrm{e}^{-\lambda \mu (1+\delta) + \mu (\mathrm{e}^{\lambda} - 1)} \\ \text{(minimized at } \lambda = \log(1+\delta)) = \mathrm{e}^{\mu (\delta - (1+\delta) \log(1+\delta))} \\ \text{(} (1+\delta) \log(1+\delta) \geq \delta + \delta^{2}/3, \text{ for } \delta < 1) \leq \mathrm{e}^{-\mu \delta^{2}/3} \end{split}$$

Is it tight?

Theorem (Chernoff bound for Gaussians)

Let $X_i \sim N(\mu, \sigma^2)$ be independent random variables. Let $X := \sum_i X_i$.

$$P(X/n - \mu \ge t) \le e^{-\frac{nt^2}{2\sigma^2}}$$

Proof.

Following in the same lines:

$$\begin{split} P(X/n - \mu \geq t) \inf_{\lambda \geq 0} \mathrm{e}^{-n\lambda t} E\left[\mathrm{e}^{\lambda(X - n\mu)}\right] &= \inf_{\lambda \geq 0} \mathrm{e}^{-n\lambda t} \prod_{i} E\left[\mathrm{e}^{\lambda(X_{i} - \mu)}\right] \\ & \quad \text{(Since } E[\mathrm{e}^{\lambda X}] = \mathrm{e}^{\lambda\mu + \sigma^{2}\lambda^{2}/2}) &= \inf_{\lambda \geq 0} \mathrm{e}^{-n\lambda t + n\sigma^{2}\lambda^{2}/2} \\ & \quad \text{(Since } \lambda = t/\sigma^{2} \text{ minimizes this)} &= \mathrm{e}^{-\frac{nt^{2}}{2\sigma^{2}}} \end{split}$$

Г

Is it tight?

• Let $Z \sim N(0,1)$. We can show that for z > 0,

$$\phi(z)\left(\frac{1}{z}-\frac{1}{z^3}\right) \leq P(Z \geq z) \leq \phi(z)\left(\frac{1}{z}-\frac{1}{z^3}+\frac{3}{z^5}\right),$$

where $\phi(z)$ is the density of a standard normal.

- Since $\bar{X}_n \sim N(\mu, \sigma^2/n)$, $\lim_{n \to \infty} \log P(\bar{X}_n \mu \ge t)/n = -\frac{t^2}{2\sigma^2}$
- So the Chernoff bound is asymptotically tight.

Hoeffding's lemma

Theorem

For a random variable $X \in [a, b]$ with $E[X] = \mu$ and $\lambda \in \mathbb{R}$,

$$M_{X-\mu}(\lambda) \le e^{\frac{\lambda^2(b-a)^2}{8}}$$

• In comparison, for a Gaussian random variable $X \sim N(\mu, \sigma^2)$,

$$M_{X-\mu}(\lambda) \le e^{\frac{\lambda^2 \sigma^2}{2}}$$

• For a bounded random variable $X \in [a, b]$, $var(X) \le (b - a)^2/4$ from Popoviciu's inequality.

Hoeffding's lemma

Theorem

For a random variable $X \in [a, b]$ with $E[X] = \mu$ and $\lambda \in \mathbb{R}$,

$$M_{X-\mu}(\lambda) \le e^{\frac{\lambda^2(b-a)^2}{8}}$$

• In comparison, for a Gaussian random variable $X \sim N(\mu, \sigma^2)$,

$$M_{X-\mu}(\lambda) \le e^{\frac{\lambda^2 \sigma^2}{2}}$$

- For a bounded random variable $X \in [a, b]$, $var(X) \le (b a)^2/4$ from Popoviciu's inequality.
 - Recall that $E[(X-t)^2]$ is minimized at t=E[X].

Hoeffding's lemma

Theorem

For a random variable $X \in [a, b]$ with $E[X] = \mu$ and $\lambda \in \mathbb{R}$,

$$M_{X-\mu}(\lambda) \le e^{\frac{\lambda^2(b-a)^2}{8}}$$

• In comparison, for a Gaussian random variable $X \sim N(\mu, \sigma^2)$,

$$M_{X-\mu}(\lambda) \le e^{\frac{\lambda^2 \sigma^2}{2}}$$

- For a bounded random variable $X \in [a, b]$, $var(X) \le (b a)^2/4$ from Popoviciu's inequality.
 - Recall that $E[(X-t)^2]$ is minimized at t=E[X].
 - So $var(X) \le E[(X (a+b)/2)^2] \le \frac{(b-a)^2}{4}$

MGF of Rademacher variables

A Rademacher random variable ϵ takes values in $\{-1,1\}$ equiprobable.

$$E[e^{\lambda \epsilon}] = \frac{e^{\lambda} + e^{-\lambda}}{2}$$
$$= \sum_{i} \frac{\lambda^{2i}}{(2i)!}$$
$$\leq \sum_{i} \frac{\lambda^{2i}}{2^{i}i!}$$
$$= e^{\lambda^{2}/2}$$

Hoeffding's Lemma: weaker version

Theorem

For a random variable $X \in [a,b]$ with $E[X] = \mu$ and $\lambda \in \mathbb{R}$,

$$M_{X-\mu}(\lambda) \le e^{\frac{\lambda^2(b-a)^2}{2}}$$

Hoeffding's Lemma: weaker version

Theorem

For a random variable $X \in [a,b]$ with $E[X] = \mu$ and $\lambda \in \mathbb{R}$,

$$M_{X-\mu}(\lambda) \le e^{\frac{\lambda^2(b-a)^2}{2}}$$

• Consider an iid copy X' of X. Also consider a Radamacher random variable ϵ .

$$\begin{split} E[e^{\lambda(X-E[X])}] &= E[e^{\lambda(X-E_{X'}[X'])}] = E_X[e^{\lambda E_{X'}(X-X')}] \\ &\leq E_{X,X'}e^{\lambda(X-X')} = E_{X,X'}E_{\epsilon}e^{\epsilon\lambda(X-X')} \\ &\leq E_{X,X'}e^{\frac{\lambda^2(X-X')^2}{2}} \leq e^{\frac{\lambda^2(b-a)^2}{2}} \end{split}$$

Hoeffding's inequality

Theorem

Consider i.i.d
$$X_i \in [a_i, b_i]$$
. Let $X = \sum_i X_i$.

$$P(X - E[X] \ge t) \le e^{-\frac{2t^2}{\sum_i (b_i - a_i)^2}}$$

Proof.

$$P(X - E[X] \ge t) \le \inf_{\lambda \ge 0} e^{-\lambda t} E[e^{\lambda(X - E[X])}]$$

$$\le \inf_{\lambda \ge 0} e^{-\lambda t} \prod_{i} E\left[e^{\lambda(X_{i} - E[X_{i}])}\right]$$

$$\le \inf_{\lambda \ge 0} e^{-\lambda t} + \frac{\lambda^{2} \sum_{i} (b_{i} - a_{i})^{2}}{8} = e^{-\frac{2t^{2}}{\sum_{i} (b_{i} - a_{i})^{2}}}$$

How do we use this?

Consider n fair coins $X_i \in \{0,1\}$. The Hoeffding inequality gives us

$$P(|\sum_{i} X_{i} - n/2| \ge t) \le 2e^{-2t^{2}/n}$$

- How to pick t?
- Set the failure probability at δ .
- So $t = \sqrt{\frac{n}{2} \log(1/\delta)}$, i.e. we can also write the bound as

$$P\left(\left|\sum_{i} X_{i} - n/2\right| \ge \sqrt{\frac{n}{2}\log(1/\delta)}\right) \le \delta$$

Sub Gaussian random variables

Definition

X is sub-gaussian with parameter σ^2 if, for all $\lambda \in \mathbb{R}$,

$$\log M_{X-\mu}(\lambda) \le \frac{\lambda^2 \sigma^2}{2}$$

Sub Gaussian random variables

Definition

X is sub-gaussian with parameter σ^2 if, for all $\lambda \in \mathbb{R}$,

$$\log M_{X-\mu}(\lambda) \le \frac{\lambda^2 \sigma^2}{2}$$

• Gaussian random variables are also sub-gaussian.

Sub Gaussian random variables

Definition

X is sub-gaussian with parameter σ^2 if, for all $\lambda \in \mathbb{R}$,

$$\log M_{X-\mu}(\lambda) \le \frac{\lambda^2 \sigma^2}{2}$$

- Gaussian random variables are also sub-gaussian.
- X is sub-gaussian iff -X is also sub-gaussian

Sub-Gaussian random variables

- X is sub-gaussian implies that
 - $P(X \mu \ge t) \le e^{-t^2/2\sigma^2}$
 - $P(X \mu \le -t) \le e^{-t^2/2\sigma^2}$
 - $P(|X \mu| \ge t) \le 2e^{-t^2/2\sigma^2}$

Sub-gaussian r.v.'s – some properties

Consider a R.V. X such that

$$E[\exp(\lambda X)] \le \exp(\lambda \mu + \lambda^2 \sigma^2/2)$$

- $E[X] = \mu$
- $var(X) \leq \sigma^2$
- If the smallest value of σ that satisfies the above equation is chosen, is it true that that will equal the variance?
 - Consider $X = 1/2\epsilon + 1/2N(0,2)$, where ϵ is a Rademacher r.v.
 - So $E[\exp(\lambda X)] \le 1/2 \exp(\lambda^2/2) + 1/2 \exp(\lambda^2) \le \exp(\lambda^2)$ and $E[X^2] = 3/2$
 - Smallest σ value is 2, but variance is 3/2.

Proof of $E[X] = \mu$

- Let $f(\lambda) = E[e^{\lambda X}]$ and let $g(\lambda) = e^{\lambda^2 \sigma^2/2 + \lambda \mu}$.
- We have f(0) = g(0).

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \le \lim_{h \to 0} \frac{g(h) - g(0)}{h} = g'(0)$$

But we also have:

$$f'(0) = \lim_{h \to 0} \frac{f(0) - f(-h)}{h} \ge \lim_{h \to 0} \frac{g(0) - g(-h)}{h} = g'(0)$$

• So f'(0) = g'(0). So we have $E[X] = \mu$.

Proof of var(X) $\leq \sigma^2$

First note that we have:

$$P(|X| > t) \le 2\exp(-t^2/2\sigma^2)$$

$$E[|X|^{k}] \le \int_{0}^{\infty} P(|X| \ge t^{1/k}) dt \le 2 \int_{0}^{\infty} e^{-\frac{t^{2/k}}{2\sigma^{2}}} dt$$
$$= (2\sigma^{2})^{k/2} k \int_{0}^{\infty} e^{-u} u^{k/2 - 1} du = (2\sigma^{2})^{k/2} k \Gamma(k/2) \le (C\sigma\sqrt{k})^{k}$$

Now using the above and Stirling's approximation we have:

$$f(\lambda) = 1 + \lambda^2 \text{var}(X)/2 + \sum_{k>2} \lambda^k E[X^k]/k! = 1 + \lambda^2 \text{var}(X)/2 + o(\lambda^2).$$

So we have for $\lambda \to 0$:

$$1 + \lambda^2 \text{var}(X)/2 \le 1 + \lambda^2 \sigma^2/2 + o(\lambda^2)$$

Subtracting 1 from both sides and dividing both sides by λ^2 , and then taking $\lambda \to 0$ shows that $\text{var}(X) \le \sigma^2$.

Sub-Gaussian random variables

• Let X_1 , X_2 be independent sub-gaussian random variables with parameters σ_1 and σ_2 . Then $aX_1 + bX_2$ is sub-gaussian with parameter $a^2\sigma_1^2 + b^2\sigma_2^2$.

Sub-Gaussian random variables

• Let X_1 , X_2 be independent sub-gaussian random variables with parameters σ_1 and σ_2 . Then $aX_1 + bX_2$ is sub-gaussian with parameter $a^2\sigma_1^2 + b^2\sigma_2^2$.

$$\begin{split} M_{a(X_1 - \mu_1) + b(X_2 - \mu_2)}(\lambda) &= E[e^{\lambda(a(X_1 - \mu_1) + b(X_2 - \mu_2))}] \\ &= E[e^{\lambda a(X_1 - \mu_1)}] E[e^{\lambda b(X_2 - \mu_2)}] \\ &\leq e^{\frac{\lambda^2(a^2 \sigma_1^2 + b^2 \sigma_2^2)}{2}} \end{split}$$