

# 大学物理-基础实验 | 实验报告

姓名 王元叙

学号 PB22000195

班级 22 级少年班学院 5 班

日期 2023年5月22日

# 直流电源特性

# 1 实验目的

- 1. 掌握直流电源特性的测量方法。
- 2. 了解负载对电源输出特性的影响。
- 3. 掌握非线性内阻电源开路电压和短路电流的测量方法。

### 2 实验装置

信号发生器,示波器,数字电压器(直流电压档、交流电压档),电阻箱,面包板,整流二极管,电容,电阻,导线若干,电子检流计,滑线变阻器,微安表,电源,电池

### 3 实验原理

#### 3.1 纹波系数

直流稳态电源不可避免地在直流稳定量中带有一些交流成分,这种叠加在直流稳定量上的交流分量称为纹波。纹波系数是指负载上交流电压有效值与直流电压之比,是表征直流电源品质的一个重要参数。它除了与整流滤波的电路品质有关之外,与外电路的负载关系也很大。

#### 3.2 电源的开路电压和短路电流

开路电压是指电源在断路时的输出电压值,短路电流是指外电源短路时的最大电流。由于电压表的内阻不是无穷大,而电流表内阻也不可能为零,而且电源短路的时候容易烧毁电源,因此不能直接用电压表或电流表测量电源的开路电压和短路电流。

对于有些电源,比如干电池,因为具有非线性内阻,因此也不适用 U-I 曲线外推法进行测量。因此我们采用等效电路或补偿法来进行测量,电路图如下:



图 1: 等效电路法测量开路电压和短路电流的电路图

# 4 实验步骤

- 1. 测量负载功率曲线
  - (a) 将信号发生器调至频率为 500Hz, $U_{p-p}=10{\rm V}$ ,正弦交流信号,电容选用  $1{\rm \mu F}$ ,在面包板上连接型全波整流滤波电路。
  - (b) 负载端连接电阻箱,在  $20-2000\Omega$  范围内改变电阻箱电阻,用万用表测量负载上的直流电压,记录并计算负载功率。
- 2. 测量纹波系数曲线
  - (a) 同上述电路
  - (b) 负载端连接电阻箱,在  $20-2000\Omega$  范围内变化,用万用表测量负载上的直流电源和交流电压,记录并计算负载的纹波系数。
- 3. 改用单个 10pF 电容,连接全波整流滤波电路,重复上述实验内容
- 4. 测量电源的开路电压与短路电流
  - (a) 调零各电表,按图 1 左图所示连接电路。缓慢调节滑动变阻器直至电子检流计示数为 0,读出此时的电压表示数。
  - (b) 调零各电表,按图 1 右图所示连接电路。缓慢调节滑动变阻器直至电子检流计示数为 0,读出此时的电流表示数。
- 5. 电表改装与定标
  - (a) 测量  $100\mu A$  直流电流表的内阻,并将  $100\mu A$  直流电流表改装成 2.00V 量程的电压表,并标明元件数值。
  - (b) 对上述改装电表进行定标,比较与实际电压表的差异并进行分析。

### 5 实验数据与分析

### 5.1 1μF π 型全波整流滤波电路的负载功率测量

表 1 1μF π 型全波整流滤波电路的负载功率

| 负载/Ω | 直流电压/V | 功率/mW |
|------|--------|-------|
| 20   | 0.0523 | 0.137 |
| 200  | 0.4552 | 1.036 |
| 500  | 0.9509 | 1.808 |
| 800  | 1.3055 | 2.130 |
| 1100 | 1.577  | 2.261 |
| 1300 | 1.7256 | 2.290 |
| 1350 | 1.7595 | 2.293 |
| 1400 | 1.7951 | 2.302 |
| 1450 | 1.8225 | 2.290 |
| 1500 | 1.8546 | 2.293 |
| 1700 | 1.9664 | 2.275 |
| 2000 | 2.1114 | 2.229 |

根据上述数据绘制功率关于负载变化曲线如下:



图 2:  $1\mu$ F  $\pi$  型全波整流滤波电路 P-R 关系曲线

容易看出功率的最大值大约在  $1300-1500\Omega$  区间内取得,在这段区间内密集取点测量,绘制出放大后的图 线如下:



图 3:  $1\mu$ F  $\pi$  型全波整流滤波电路 P-R 关系曲线 (局部放大) 从中可以看出功率的最大值在  $R=1400\Omega$  处取得,最大功率约为  $P=2.302~\mathrm{mW}$ 

# 5.2 $1\mu F \pi$ 型全波整流滤波电路的纹波系数测量

表 2  $1\mu F \pi$  型全波整流滤波电路的纹波系数

| 负载/Ω | 直流电压/V | 交流电压/V | 纹波系数/% |
|------|--------|--------|--------|
| 20   | 0.0526 | 0.0096 | 18.251 |
| 50   | 0.1243 | 0.0215 | 17.297 |
| 100  | 0.2441 | 0.0351 | 14.379 |
| 200  | 0.4549 | 0.0476 | 10.464 |
| 300  | 0.6400 | 0.0514 | 8.031  |
| 500  | 0.9500 | 0.0512 | 5.389  |
| 800  | 1.3070 | 0.0470 | 3.596  |
| 1000 | 1.4954 | 0.0440 | 2.942  |
| 1200 | 1.6547 | 0.0414 | 2.502  |
| 1500 | 1.8560 | 0.0378 | 2.037  |
| 1800 | 2.0198 | 0.0347 | 1.718  |
| 2000 | 2.1136 | 0.0329 | 1.557  |

根据上述数据画出纹波系数随负载变化的曲线如下:



图 4:  $1\mu F$   $\pi$  型全波整流滤波电路纹波系数曲线 由图像知,纹波系数随负载阻值的增加而减小,且曲线逐渐趋于平缓。

#### 10μF π 型全波整流滤波电路的负载功率和纹波系数测量 5.3

表 3 10μF π 型全波整流滤波电路的负载功率和纹波系数

| 负载/Ω | 直流电压/V | 交流电压/V | 功率/mW | 纹波系数/% |
|------|--------|--------|-------|--------|
| 20   | 0.5315 | 0.2344 | 14.12 | 44.102 |
| 100  | 1.4431 | 0.2190 | 20.83 | 15.176 |
| 120  | 1.5976 | 0.2117 | 21.27 | 13.251 |
| 130  | 1.6545 | 0.2061 | 21.06 | 12.457 |
| 150  | 1.7595 | 0.1949 | 20.63 | 11.077 |
| 200  | 1.9792 | 0.1735 | 19.59 | 8.766  |
| 500  | 2.5705 | 0.1036 | 13.21 | 4.030  |
| 800  | 2.8156 | 0.0754 | 9.91  | 2.678  |
| 1100 | 2.9604 | 0.0598 | 7.97  | 2.020  |
| 1400 | 3.0406 | 0.0499 | 6.60  | 1.641  |
| 1700 | 3.1124 | 0.0430 | 5.70  | 1.382  |
| 2000 | 3.1675 | 0.0381 | 5.02  | 1.203  |

根据上述数据绘制功率关于负载变化曲线如下:



图 5:  $10\mu$ F  $\pi$  型全波整流滤波电路 P-R 关系曲线 容易看出功率的最大值大约在  $20-200\Omega$  区间内取得,在这段区间内密集取点测量,绘制出放大后的图线如下:



图 6:  $10\mu$ F  $\pi$  型全波整流滤波电路 P-R 关系曲线(局部放大)从中可以看出功率的最大值在  $R=120\Omega$  处取得,最大功率约为  $P=21.27~\mathrm{mW}$ 根据上述数据中的纹波系数,绘制纹波系数随负载变化的曲线如下:



图 7: 10µF π 型全波整流滤波电路纹波系数曲线

#### 对比上面两个实验:

- 1. 两个实验中,负载功率都随负载电阻大小先上升后下降,且上升速度较快,符合理论分析的结果。然而,单大电容滤波电路的负载功率峰值位置负载电阻远小于小电容  $\pi$  型滤波,这表明单大电容滤波的损失更小,具有更大的直流电压,因此峰值出现的更早。
- 2. 对比  $1\mu F \pi$  型全波整流滤波电路和  $10\mu F$  单电容全波整流电路的结果,在两个实验当中,纹波系数均随 负载阻值的增加而减小,且曲线逐渐趋于平缓。但是,在负载电阻较小( $\leq 100\Omega$ )时,小电容  $\pi$  型滤波纹波系数小于单大电容滤波,具有更好的如履效果;然而在负载电阻较大时,单大电容滤波的效果优于小电容  $\pi$  型滤波,但是差异并不显著。

#### 5.4 非线性内阻电源开路电压和短路电流的测定

依实验步骤,按照图 1 分别连接两种电路,测量得到:

表 4 电源的开路电压和短路电流的测定

| 开路电压/V | 短路电流/mA | 电源内阻/Ω |
|--------|---------|--------|
| 1.5959 | 5.437   | 293.53 |

测量得到开路电压  $U=1.5959~\mathrm{V}$  ,短路电流  $I=5.437~\mathrm{mA}$  ,计算得到

$$r = \frac{U}{I} = \frac{1.5959}{5.437 \times 10^{-3}} = 293.53\Omega$$

#### 5.5 电表改装

#### 5.5.1 等效替代法测量电流表内阻

本部分实验步骤:

- 1. 如图 8 连接好电路;
- 2. 拨动单刀双掷开关,将待测的  $100\mu A$  电流表接入电路,记下辅助电流表示数 I;
- 3. 拨动单刀双掷开关,断开待测电流表,将电阻箱接入电路,调节电阻箱使辅助电流表的示数仍为 I,则此时电阻箱的阻值即为待测电流表的内阻。



图 8: 测量 100µA 电流表内阻的电路图

测得 100μA 电流表的内阻  $r = 1150\Omega$ 。

#### 5.5.2 将电流表改装为电压表



图 9: 电流表改装电压表电路图

要将  $100\mu$ A 的电流表改装成 2V 电压表,只需要串联一个电阻 R , 其中:

 $R = 18850\Omega$ 

#### 5.5.3 改装电表的定标



图 10: 改装电压表的定标电路图

如图接电路,移动滑动变阻器至不同阻值处,同时读出标准电压表和电流表的读数即可。

| 电流表读数/mA | 改装电压表/V | 标准电压表/V | 相对误差/% |
|----------|---------|---------|--------|
| 60.5     | 1.210   | 1.2266  | 1.35   |
| 51.2     | 1.024   | 1.0245  | 0.05   |
| 46.3     | 0.926   | 0.9307  | 0.50   |
| 40.9     | 0.818   | 0.8189  | 0.11   |
| 31.2     | 0.624   | 0.6255  | 0.24   |

表 5 改装电表的定标

由表 5 的数据可以看出,改装电压表的测量误差较小。

# 6 思考题

- 1. 简述单大电容和小电容 π 型滤波的优劣。
  - (a) 单大电容滤波电路适用于频率较低、负载阻值较小的情况,此时负载的直流电压大,功率大,纹波系数小,滤波效果好;同时,单大电容滤波电路设计简单,成本低廉,易于实现。然而它不能对高频信号进行有效滤波,而且对于低频信号的滤波效果也有限。
  - (b) 小电容 π 型滤波电路适用于频率较高、负载阻值较大的情况,此时纹波系数小,滤波效果好。相比于单大电容滤波电路,它具有更好的滤波特性和频率选择性,可以实现更陡峭的滤波曲线和更高的抑制效果。然而它的设计更为复杂,成本也更高。

综上所述, 小电容  $\pi$  型滤波适合滤波效果要求高的应用场景, 大单电容滤波适用于简单的应用场景, 实际电路设计过程中, 应当权衡多种因素加以考虑。

2. 为什么测量电流表内阻时不采用半偏法?



图 11: 半偏法测量电流表内阻电路图

如图为半偏法测量电流表内阻电路图, 其中

$$R_1 = \frac{E}{I_g} - R_g \approx \frac{1.6}{100 \times 10^{-6}} - 1150 = 14850\Omega$$

在这种条件下  $R_1\approx 13R_g$  ,并无法实现  $R_1\gg R_g$  。原因是本实验中电源电动势较低,调节后得到的  $R_1$  阻值较小。