Generative adversarial network (GAN)

생성적 적대 신경망

"GANs are the most interesting idea in the last 10 years in ML"

- Yann LeCun

Director of AI Research at Facebook & Professor at NYU

GAN 이란?

- **GAN**(Generative Adversarial Networks)은 머신러닝의 **흥미로운 혁신적** 응용으로써, 기존의 다른 딥러닝 분야와 비교하<u>기가 어렵습니다.</u>
- GAN은 생성 모델입니다. GAN은 훈련 데이터와 유사한 새로운 데이터를 만듭니다. 즉, 초상화를 그리거나 교향곡을 작곡하는 것과 같이 작품을 만드는 것입니다. 볶禾 🔨
- 예를 들어, GAN은 얼굴이 실제 사람의 것이 아니더라도 사람 얼굴 사진처럼 보이는 이미지를 만들 수 있습니다. 다음의 이미지는 GAN에 의해 작성되었습니다

GAN은 무엇을 할 수 있습니까?

GAN 의 주요 목적은 이미지를 생성하는 것이었지만, 음악, 연설, 산문 등의 모든 영역에서의 다양한 생성이 수행되고 있습니다. 그 적용 범위는 매우 넓어, 아래 예에서 처럼 동영상의 일반 말에서 얼룩말을 생성하기도 하고, 스켓치로부터 실제와 같은 사진영상을 생성하기도 합니다.

Basic Idea of GAN: 생성적 신경망

Basic Idea of GAN: 생성적 신경망

[Images]
 output
(matrix)

G(z)

Basic Idea of GAN: 생성적 신경망

생성적 적대 신경망(Generative adversarial network)

생성적 적대 신경망(GAN)는 두 네트워크가 서로 경쟁을 하는 구조이기 때문에 적대적 (adversarial)이라는 의미가 이름에 포함된 심층 신경망의 일종입니다.

- 생성자(Generator)라는 신경망 G는 인공적인 객체(예: 이미지)를 생성.
- **감별자/판별자(Discriminator)**라는 신경망 **D**는 이미지가 진짜인지 아닌지를 파악.

이러한 겨루는 구조를 통해서 사실적인 이미지를 생성 할 수 있는 **생성자 G**를 훈련시킵니다.

Random noise
Random noise

Fake image

Generator

- 처음에 생성자 G는 랜덤 노이즈만 발생시킵니다. 개념적으로 GAN의 **감별자** D가 생성할 이미지에 대한 지침을 생성자 G에 제공하게 됩니다.
- GAN은 실제 이미지와 생성된 이미지를 학습함으로써, 어떤 특징들이 이미지가 실제인지를 감별하는데 사용되는지를 **감별자 D**가 학습되도록 합니다.
- 그런 다음 동일한 **감별자 D 가 생성자 G 에 피드백을 제공**하여 실제 이미지처럼 보이는 그림을 만들도록 해줍니다.

How to train D & G?

강별자는 실제 이미지(트레이닝 샘플)와 생성된 이미지를 입력으로 사용하여실제 인지 또는 생성된 것인지를 구별합니다. D(x)의 출력은 입력 x가 실제일확률, 즉 P(입력 = 실제 이미지)입니다. | ১৮০ 원 불업

우리는 심층신경망 분류기처럼 감별자를 일정 기간동안 훈련시킵니다. 입력이진짜라면 D(x) = 1 이 되도록, 생성된 것이면 0 이 되도록 훈련을 합니다. 이프로세스를 통해 감별자 D는 진짜 이미지 식별에 기여하는 특징들을 학습하게 됩니다.

How to train D & G?

반면에 생성자는 D(x) = 1 (진짜 이미지와 같은)로 이미지를 생성하기를 원합니다. 따라서 우리는 (훈련된 감별자를 고정하고) 이 목표 값을 다시 생성자로 역전파하여 생성자를 훈련시킬 수 있습니다. 즉, 우리는 생성자가 감별자가 진짜로 생각하는 것과 같은 이미지를 생성하도록 훈련시킵니다.

우리는 두 네트워크를 번갈아 가며 훈련시키고, 그들 스스로를 향상시키기 위해 '치열한 경쟁에 빠지게 합니다. 결국, 감별자는 진짜와 생성된 것 사이의 작은 차이를 식별하고, 생성자는 감별자가 차이를 말할 수 없는 이미지를 작성합니다. GAN 모델은 결국 수렴하여 자연스러운 모양의 이미지를 생성합니다.

감별자 D는 x가 실제 이미지일 가능성을 나타내는 값 D(x)를 출력합니다. 우리의 목표는 실제 이미지를 실제로, 생성된 이미지를 가짜로 인식 할 수 있는 확률을 최대화 하는 것입니다. 즉, 관찰된 데이터의 최대 가능성을 측정하기 위해 대부분의 딥 러닝에서와 같이 교차 엔트로피를 사용합니다. 따라서 감별자 D의 목표는 다음과 같습니다.

- 진짜 판별: **D(x)** 는 **1**에 가깝게 추정되고,
- 가짜 판별: **D(G(z))** 는 **0**에 가깝게 추정되도록

V(D,G)를 최대화시키려고 합니다. V: 비용 참수

$$\max_{D} \{ V(D, G) = \log D(x) + \log(1 - D(G(z))) \}$$

첫번째 항 log D(x)는 0부터 1까지의 값을 갖는 D(x)가 1일 때 가장 커지며, 두번째 항 log (1-D(G(z))) 는 0부터 1까지의 값을 갖는 D(G(z)) 가 0일 때 가장 커짐으로, V(D,G) 가 최대화 되도록, 실제 이미지 x 에 대한 결과는 1, 가짜이미지 10 대한 결과는 10 이 되도록 10를 학습시킨다.

생성자 G 측의 목적 함수는 모델이 감별자 D를 속여서, 1 에 가까운 가장 높은 D(G(z)) 값을 주는 이미지 G(z)를 생성하기를 원하므로, 목적함수의 두번째 항인 log(1-D(G(z)))가 또는 -log D(G(z)) 가 최소화 되도록, 주어진 D에 대하여, G 가학습되게 한다.

우리는 종종 GAN을 MIN-MAX 게임으로 정의하고, **G는** 전체 목적 함수 **V를 최소화**하고, **D는 V를 최대화**하는 MIN-MAX 최적화 문제를 푼다고 합니다.

$$\min_{G} \max_{D} \{ V(D, G) = \log D(x) + \log(1 - D(G(z))) \}$$

두 가지 목적 함수가 정의되면 교차 경사 하강에 의해 함께 학습됩니다.

- 1. 생성자 G가 임의의 수를 입력받아 생성한 이미지를 반환한다.
- 이렇게 생성된 이미지는 실제 이미지와 함께 감별자 D에 전달하여, 실제와 가짜를 구분하도록 감별자 D를 학습시킨다.
- 생성자가 새롭게 생성한 가짜 이미지를 실제로 가정하고, 일정 수준 학습된 감별자 D의 결과를 비용으로하여 생성자 G를 학습시킨다..

우리는 생성자가 좋은 품질의 이미지를 생성할 때까지 **두 네트워크를 교대로 단계적으로 훈련시킵니다**. 다음은 역전파알고리즘에 사용된 데이터 흐름 및 그라디언트를 요약합니다.

$$\mathbf{ascending} \Rightarrow \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right]$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments. of the 13 329

for number of training iterations do

- for k steps do 500 epoch
 - Sample minibatch of m noise samples $\{z^{(1)},\ldots,z^{(m)}\}$ from noise prior $p_g(z)$. • Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $\{x^{(m)}, \ldots, x^{(m)}\}$
 - $p_{\text{data}}(\boldsymbol{x})$.
 - Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)},\ldots,z^{(m)}\}$ from noise prior $p_g(z)$. Ay Azz in g• Update the generator by descending its stochastic gradient:

$$abla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

생성자(Generator)

다음은 생성자 네트워크에 가장 많이 사용되는 심층 컨볼루션 망을 활용한 GAN인, DCGAN (deep convolutional GAN)입니다. 이는 이미지 x를 생성하기위해 잠재적 특징(latent features) z 를 업-샘플링하기 위해 전치된(transposed) 컨볼루션을 수행합니다. 이를 거꾸로 된 컨볼루션 딥 러닝 분류기로 볼 수 있습니다

감별자(Discriminator)

감별자는 또한 보폭을 사용하여 안정성을 위해 **다운 샘플링** 및 **배치 정규화**를 수행합니다.

GAN 트레이닝 팁

GAN의 두 개의 네트워크를 트레이닝 하다 보면, 다음과 같은 문제가 생길수 있다.

- **감별자가 너무 뛰어나면 0** 이나 1 에 매우 가까운 gradient 값을 반환하게 되어, 생성자가 gradient 값을 제대로 반영하기 어렵게 된다.
- **생성자가 너무 뛰어나면** 감별자가 진짜 데이터를 가짜 데이터로 판단할 확률이 높아진다.

이러한 문제는 두 신경망의 학습률(learning rates)을 각각 설정하여 완화할 수 있다. 두 개의 신경망은 항상 비슷한 "학습 수준"을 유지해야 한다. 일반적으로 GAN을 트레이닝하는데는 오랜 시간이 걸린다. 하나의 GPU에서는 몇 시간이 걸릴 수도, CPU에서는 하루 이상이 걸릴 수도 있다.

Handwritten digits generation using dcGAN (Example)

이 튜토리얼은 <u>심층 합성곱 생성적 적대 신경망</u> (Deep Convolutional Generative Adversarial Networks, DCGAN)을 이용하여, 손으로 쓴 숫자들을 어떻게 생성할 수 있는지 보여줍니다. 이 코드는 <u>케라스</u> Sequential API와 **tf.GradientTape** 훈련 루프를 사용하여 작성됐습니다.

생성적 적대 신경망(GANs)은 무엇인가요?

생성적 적대 신경망 (Generative Adversarial Networks, GANs)은 요즘 컴퓨터 과학에서 가장흥미로운 아이디어 중 하나입니다. 두개의모델이 적대적인 과정을 통해 동시에훈련됩니다. 생성자 ("예술가")는 진짜처럼보이는 이미지를 생성하도록 배우는 와중에, 감별자 ("예술비평가")는 가짜의 이미지로부터진짜를 구별하게 되는 것을 배우게 됩니다.

훈련과정 동안 생성자는 점차 실제같은 이미지를 더 잘 생성하게 되고, 감별자는 점차 진짜와 가짜를 더 잘 구별하게됩니다. 이 과정은 감별자가 가짜 이미지에서 진짜 이미지를 더이상 구별하지 못하게 된때 평형상태에 도달하게 된니다

이 노트북은 이 과정을 MNIST 데이터를 이용하여 보여줍니다. 왼쪽의 애니메이션은 50 에포크(epoch)동안 훈련한 생성자가 생성해 낸 연속된 이미지들을 보여줍니다. 이미지들은 랜덤한 잡음으로부터 시작되었고, 점차 시간이 지남에 따라 손으로 쓴 숫자들을 닮아가게 됩니다.

텐서플로와 다른 라이브러리 불러오기

```
%tensorflow version 2.x
import tensorflow as tf
!pip install imageio # GIF를 만들기위해 설치합니다.
import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time

from IPython import display
```

데이터셋 로딩 및 준비

생성자와 감별자를 훈련하기위해 MNIST 데이터셋을 사용할 것입니다. 생성자는 손글씨 숫자데이터를 닮은 숫자들을 생성할 것입니다.

```
mnist = tf.keras.datasets.mnist
(train_images, train_labels), ( , _) = mnist.load_data()
train_images = train_images.reshape(train_images.shape[ 0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # 이미지를 [-1, 1]로 정규화합니다.

BUFFER_SIZE = 60000
BATCH_SIZE = 256
# 데이터 배치를 만들고 섞습니다.
train_dataset =
tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

모델 마들기
```

생성자와 감별자는 <u>케라스 Sequential API</u>를 이용해 정의됩니다.

생성자

생성자는 시드값 (seed; 랜덤한 잡음)으로부터 이미지를 생성하기 위해, tf.keras.layers.Conv2DTranspose (업샘플링) 층을 이용합니다. 처음 Dense층은 이 시드값을 입력으로 받습니다. 그 다음 원하는 사이즈 28x28x1의 이미지가 나오도록 업샘플링을 여러번합니다. tanh를 사용하는 마지막 층을 제외한 나머지 각 층마다 활성함수로 tf.keras.layers.LeakyReLU을 사용하고 있음을 주목합시다.

```
def make generator model():
   model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use bias=False, input shape=(100,)))
   model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
   model.add(layers.Reshape((7, 7, 256)))
    assert model.output shape == (None, 7, 7, 256) # 주목: 배치사이즈로 None이 주어집니다.
   model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use bias=False))
    assert model.output shape == (None, 7, 7, 128)
   model.add(layers.BatchNormalization())
   model.add(layers.LeakyReLU())
   model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use bias=False))
    assert model.output shape == (None, 14, 14, 64)
   model.add(layers.BatchNormalization())
   model.add(layers.LeakyReLU())
   model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use bias=False,
activation='tanh'))
    assert model.output shape == (None, 28, 28, 1)
```

return model

(아직 훈련이 되지않은) 생성자를 이용해 이미지를 생성해봅시다.

```
generator = make_generator_model()

noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)

plt.imshow(generated_image[0, :, :, 0], cmap='gray')
```


감별자

감별자는 합성곱 신경망(Convolutional Neural Network, CNN) 기반의 이미지 분류기입니다.

```
def make_discriminator_model():
    model = tf.keras.Sequential()
    model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))
    ( model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

model.add(layers.LeakyReLU())
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

model.add(layers.Flatten())
    model.add(layers.Dense(1))
    return model
```

(아직까지 훈련이 되지 않은) 감별자를 사용하여, 생성된 이미지가 진짜인지 가짜인지 판별합니다. 모델은 진짜 이미지에는 양수의 값 (positive values)을, 가짜 이미지에는 음수의 값 (negative values)을 출력하도록 훈련되어집니다.

```
discriminator = make_discriminator_model()
decision = discriminator(generated_image)
print (decision)
```

tf.Tensor([[-0.00074848]], shape=(1, 1), dtype=float32)

손실함수와 옵티마이저 정의

두 모델의 손실함수와 옵티마이저를 정의합니다.

```
# 이 메서드는 크로스 엔트로피 손실함수 (cross entropy loss)를 계산하기 위해 헬퍼 (helper) 함수를 반환합니다. cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
```

감별자 손실함수

이 메서드는 감별자가 가짜 이미지에서 얼마나 진짜 이미지를 잘 판별하는지 수치화합니다. 진짜 이미지에 대한 감별자의 예측과 1로 이루어진 행렬을 비교하고, 가짜 (생성된) 이미지에 대한 감별자의 예측과 0으로 이루어진 행렬을 비교합니다.

```
def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss
```

생성자 손실함수

생성자의 손실함수는 감별자를 얼마나 잘 속였는지에 대해 수치화를 합니다. 직관적으로 생성자가 원활히 수행되고 있다면, 감별자는 가짜 이미지를 진짜 (또는 1)로 분류를 할 것입니다. 여기서 우리는 생성된 이미지에 대한 감별자의 결정을 1로 이루어진 행렬과 비교를 할 것입니다.

```
def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)
```

감별자와 생성자는 따로 훈련되기 때문에, 감별자와 생성자의 옵티마이저는 다릅니다.

```
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
```

체크포인트 저장

이 노트북은 오랫동안 진행되는 훈련이 방해되는 경우에 유용하게 쓰일 수 있는 모델의 저장방법과 복구방법을 보여줍니다.

훈련 루프 정의하기

```
EPOCHS = 50
noise_dim = 100 생각
num_examples_to_generate = 16 생각되지- (
# 이 시드를 시간이 지나도 재활용하겠습니다.
# (GIF 애니메이션에서 진전 내용을 시각화하는데 쉽기 때문입니다.)
seed = tf.random.normal([num_examples_to_generate, noise_dim])
```

훈련 루프는 생성자가 입력으로 랜덤시드를 받는 것으로부터 시작됩니다. 그 시드값을 사용하여 이미지를 생성합니다. 감별자를 사용하여 (훈련 세트에서 갖고온) 진짜 이미지와 (생성자가 생성해낸) 가짜이미지를 분류합니다. 각 모델의 손실을 계산하고, 그래디언트 (gradients)를 사용해 생성자와 감별자를 업데이트합니다.

```
# `tf.function`이 어떻게 사용되는지 주목해 주세요.
# 이 데코레이터는 함수를 "컴파일"합니다.
@tf.function
def train step(images):
    noise = tf.random.normal([BATCH SIZE, noise dim])
    with tf.GradientTape() as gen tape, tf.GradientTape() as disc tape:
      real output = discriminator(images, training\u00e4rue)
fake output = discriminator(generated images, training\u00e4rue)
      gen loss = generator loss(fake output) G Julo E disc_loss = discriminator_loss(real_output, fake_output) D Julo E
    gradients of generator = gen tape.gradient(gen loss, generator.trainable_variables) \frac{1}{9}
   gradients of generator - gen tape.gradient(disc_loss, parallelent)
discriminator.trainable variables)
    generator optimizer.apply gradients tip (gradients of generator,
generator.trainable variables))
```

discriminator optimizer.apply gradients tip(gradients_of_discriminator,

discriminator.trainable variables))

```
def train(dataset, epochs):
 for epoch in range (epochs):
   start = time.time()
   for image batch in dataset:
     train step(image batch)
   # GIF를 위한 이미지를 바로 생성합니다.
   generate and save images (generator, epoch +1, seed)
   # 15 에포크가 지날 때마다 모델을 저장합니다.
   if (epoch + 1) % 15 == 0:
     checkpoint.save(file prefix = checkpoint prefix)
   # print (' 에포크 {} 에서 걸린 시간은 {} 초 입니다'.format(epoch +1, time.time()-start))
   print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
 # 마지막 에포크가 끝난 후 생성합니다.
 display.clear output(wait\#\rue)
 generate and save images (generator, epochs, seed)
```

이미지 생성 및 저장

```
def generate and save images(model, epoch, test input):
 # `training`이 False로 맞춰진 것을 주목하세요.
 # 이렇게 하면 (배치정규화를 포함하여) 모든 충들이 추론 모드로 실행됩니다.
 predictions = model(test input, trainingFalse)
 fig = plt.figure(figsize=(4,4))
 for i in range(predictions.shape[0]):
     plt.subplot (4, 4, i+1)
     plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
     plt.axis('off')
 plt.savefig('image at epoch {:04d}.png'.format(epoch))
 plt.show()
```

모델 훈련

위에 정의된 train() 메서드를 생성자와 감별자를 동시에 훈련하기 위해 호출합니다. 생성적 적대 신경망을학습하는 것은 매우 까다로울 수 있습니다. 생성자와 감별자가 서로를 제압하지 않는 것이 중요합니다. (예를 들어 학습률이 비슷하면 한쪽이 우세해집니다.) 훈련 초반부에는 생성된 이미지는 랜덤한 노이즈처럼 보입니다. 훈련이 진행될수록, 생성된 숫자는 점차 진짜처럼 보일 것입니다. 약 50 에포크가 지난 후, MNIST 숫자와 닮은 이미지가 생성됩니다. 코랩에서 기본 설정으로 실행하면, 에포크마다 1분정도 소요될 것입니다.

%%time

train(train_dataset, EPOCHS)

有地

CPU times: user 2min 14s, sys: 26.4 s, total: 2min 40s

Wall time: 9min 30s

마지막 체크포인트를 복구합니다.

checkpoint.restore(tf.train.latest checkpoint(checkpoint dir))

GIF 생성

```
# 에포크 숫자를 사용하여 하나의 이미지를 보여줍니다.

def display_image(epoch_no):
    return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no))

display_image(EPOCHS)
```


imageio로 훈련 중에 저장된 이미지를 사용해 GIF 애니메이션을 만듭니다.

```
anim file = 'dcgan.gif'
with imageio.get writer(anim file, mode='I') as writer:
  filenames = glob.glob('image*.png')
 filenames = sorted(filenames)
 last = -1
  for i, filename in enumerate(filenames):
   frame = 2*(i**0.5)
   if round(frame) > round(last):
     last = frame
    else:
     continue
    image = imageio.imread(filename)
    writer.append data(image)
  image = imageio.imread(filename)
 writer.append data(image)
import IPython
if IPython.version info > (6,2,0,"):
  display.Image(filename=anim file)
```

코랩에서 작업하고 있다면, 아래의 코드에서 애니메이션을 다운로드 받을 수 있습니다:


```
try:
   from google.colab import files
except ImportError:
   pass
else:
   files.download(anim_file)
```