Sinais e Sistemas Electrónicos

Capítulo 8: O transistor MOS

(parte 2)

Sinais e Sistemas Electrónicos - 2021/2022

Sumário

- MOSFET como amplificador;
- MOSFET como interruptor electrónico;
- Aplicações do MOSFET como interruptor:
 - Interruptor de potência;
 - Interruptor analógico;
 - Circuitos digitais;
- Capacidades intrínsecas do MOSFET.

Modelo de pequeno sinal do MOSFET

• Usando a relação exponencial i_{DS} / v_{GS} do MOSFET na região de saturação: $i_{DS}=k(v_{GS}-V_T)^2$

e a aproximação de pequeno sinal: $v_{gs} << 2(V_{GS} - V_T)$

é possível mostrar que $g_m = 2k(V_{GS} - V_T)$ ou $g_m = 2\sqrt{kI_{DS}}$

• Em que r_o surge pelo facto da fonte de corrente não ser, na realidade, ideal (V_A é uma constante).

E. Martins, DET Universidade de Aveiro

8.2-3

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação do modelo de pequeno sinal

Na análise de um amplificador com MOSFET separamos os cálculos da polarização daqueles que dizem respeito ao comportamento com sinal:

- 1) Determinar as tensões de polarização e a corrente de dreno;
- 2) Calcular os valores dos parâmetros do modelo: g_m e r_o .
- 3) Eliminar as fontes de tensão DC, substituindo-as por curtocircuitos (*Princípio da Sobreposição*);
- 4) Substituir o(s) transístor(es) pelo circuito do modelo de pequeno sinal;
- 5) Usar as técnicas adequadas de análise de circuitos para obter ganho, resistência de entrada, etc.

Exemplo 2

Sabendo que os parâmetros do MOSFET são $V_T = 1.5V$, $k = 0.125mA/V^2$, e $V_A = 50V$ calcular o ganho de tensão, $A_v = v_o/v_i$, e a resistência de entrada, R_{in} , do amplificador.

E. Martins, DET Universidade de Aveiro

Notar que:

- MOSFET é polarizado pelas resistências R_D e R_G;
- Os condensadores de acoplamento são de capacidade suficientemente elevada para que a sua impedância possa ser considerada nula para as frequências de interesse.
- R_L representa a carga onde o amplificador vai ser ligado;

8.2-5

Sinais e Sistemas Electrónicos - 2021/2022

Note-se que

como $I_G = \theta$, então $V_G = V_D$ ou seja, $V_{GD} = \theta < V_T$, pelo que o MOSFET está necessariamente na região de saturação como é suposto.

A corrente de dreno é dada por

$$I_{DS} = k(V_G - V_T)^2$$

= 0.125 $(V_D - 1.5)^2$

Por outro lado sabemos que

$$V_D = 15 - R_D I_{DS} = 15 - 10 I_{DS}$$

Substituindo I_{DS} na primeira equação obtém-se:

$$V_D = 4.4V \quad \lor \quad V_D = -2.2V$$

A solução é portanto

$$V_D = 4.4V$$

O correspondente valor de I_{DS} é:

$$I_{DS} = 1.06 mA$$

Com os valores obtidos calculamos os parâmetros do modelo de pequeno sinal

$$g_{m} = 2k(V_{GS} - V_{T})$$

$$= 2(0.125)(4.4 - 1.5) = 0.725 mA/V$$

$$r_{o} = \frac{|V_{A}|}{I_{TS}} = \frac{50}{1.06} = 47k\Omega$$

E agora, o modelo de pequeno sinal...

Notar que:

- Condensadores foram curto-circuitados;
- Tensão de alimentação substituída por curto-circuito.

E. Martins, DET Universidade de Aveiro

8.2-7

Sinais e Sistemas Electrónicos - 2021/2022

como R_G é muito maior que as restantes resistências, podemos ignorar a corrente que a atravessa, pelo que,

$$v_o \approx -g_m v_{gs} (r_o // R_D // R_L) = -0.725 v_i (47 // 10 // 10) = -3.3 v_i$$

Portanto o valor de A_{ν} é, $A_{\nu} \equiv \frac{v_o}{v_c} = -3.3$

Vejamos agora a resistência de entrada R_{in} :

$$i_i = \frac{v_i - v_o}{R_G} = \frac{v_i}{R_G} \left(1 - \frac{v_o}{v_i} \right) = \frac{v_i}{R_G} \left(1 - A_v \right)$$

$$R_{in}$$
 é: $R_{in} \equiv \frac{v_i}{i_i} = \frac{R_G}{(1 - A_v)} = \frac{10M}{(1 - (-3.3))} = 2.33M\Omega$

MOSFET como interruptor

E. Martins, DET Universidade de Aveiro

8.2-9

Sinais e Sistemas Electrónicos - 2021/2022

MOSFET como interruptor

• Neste modo de funcionamento o MOSFET funciona como um interruptor controlado por tensão;

MOSFET como interruptor

 Na posição de fechado o 'interruptor' deve ter a menor resistência possível, portanto o MOSFET deve estar a funcionar na Região Linear;

MOSFET na Região Linear

MOSFET

Resistência

E. Martins, DET Universidade de Aveiro

8.2-11

Sinais e Sistemas Electrónicos - 2021/2022

MOSFET como interruptor

Consideremos um MOSFET que funciona como interruptor para uma resistência de carga, $R_L = 10 K \Omega$ Admitamos para o MOSFET: $V_T = 1V$ e $k = 100 \mu A/V^2$

- Para $V_i < V_T$ o MOSFET fica cortado, pelo que $I_{DS} = 0$;
- Se $V_i = V_{DD}$ o MOSFET conduz. Será que fica na região linear?... Vejamos:

$$I_{DS} = k \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^{2} \right] = k \left[2(V_{DD} - V_T)V_{DS} - V_{DS}^{2} \right]$$

 \bullet Além disso sabemos que: $V_{DS}=V_{DD}-R_LI_{DS}$ Substituindo aqui a equação de I_{DS} e resolvendo, obtemos: $V_{DS}=0.6V$

• Como $V_{GD} = V_i - V_{DS} = 4.4V > V_T$ o que confirma a região linear!

Aplicação 1: Interruptor de potência

Transístor é usado para controlar o estado on/off de uma carga

Como a corrente de porta é nula, o MOSFET pode ser controlado por um microcontrolador;

> • Quando anoitece, R_F aumenta, aumentando V_G . O transistor conduz, actuando no relé que liga o circuito de iluminação.

E. Martins, DET Universidade de Aveiro

8.2-13

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação 2: Interruptor analógico

 Transístor é usado como um interruptor que bloqueia ou dá passagem a um sinal analógico;

 $V_G = -15V$: sinal V_S é bloqueado; 1 ensao em κ_L e uv; $V_G = +15V$: sinal V_S passa para R_L .

- Tensões de controlo da porta (neste caso, -15 e +15V) devem exceder a gama do sinal analógico V_s (neste caso, -10 e +10V);
- MOSFET pode ser usado com interruptor bidireccional.

Aplicação 3: Circuitos digitais

 Transístor é usado também como interruptor mas os sinais são considerados binários (digitais);

E. Martins, DET Universidade de Aveiro

8.2-15

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação 3: Circuitos digitais

Porta lógica NOR

Aplicação 3: Circuitos digitais

• Inversor (NOT) com transistor PMOS

E. Martins, DET Universidade de Aveiro

8.2-17

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação 3: Circuitos digitais

- Inversor (NOT) CMOS ou *Complementary MOS*: usa um transístor NMOS e um PMOS;
- Tecnologia dominante em CIs digitais desde meados dos anos 80.

Aplicação 3: Circuitos digitais

Porta lógica NAND em CMOS

Tabela de verdade

A	В	MNA	MNB	MPA	MPB	F
0	0	off	off	on	on	1
0	1	off	on	on	off	1
1	0	on	off	off	on	1
1	1	on	on	off	off	0

 $F = \overline{A.B}$

E. Martins, DET Universidade de Aveiro

8.2-19

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação 3: Circuitos digitais

- Célula de memória dinâmica (DRAM);
- Um transístor + um condensador por cada bit;
- O valor lógico de cada bit expresso pela tensão em C_S :
 - $\triangleright V_{DD}$ - V_T para '1'
 - > 0V para '0'
- Na leitura, o sentido da variação da tensão em BL indica o valor lido:
 - $\triangleright \Delta V_{RL} > 0 \Rightarrow 1'$
 - $\triangleright \Delta V_{RL} < 0 \Rightarrow '0'$

Capacidades intrínsecas do MOSFET

E. Martins, DET Universidade de Aveiro

8.2-21

Sinais e Sistemas Electrónicos - 2021/2022

Capacidades do MOSFET

- Nos circuitos digitais o MOSFET funciona como um interruptor controlado por tensão;
- A velocidade com que o "interruptor" liga/desliga depende do tempo necessário para carregar e descarregar as capacidades...
 - de carga;
 - > intrínsecas ao dispositivo.

- MOSFET apresenta 2 tipos principais de capacidades intrínsecas:
 - a do canal de inversão;
 - > as das junções pn SB e DB.

Capacidade do canal

• Estrutura física do MOSFET forma um condensador que é essencial ao funcionamento do dispositivo;

- Responsável pela carga de portadores induzida no canal;
- ... no entanto é um condensador, e como tal precisa de ser carregado e descarregado sempre que a tensão na porta muda e isso leva tempo!

E. Martins, DET Universidade de Aveiro

8.2-23

Sinais e Sistemas Electrónicos - 2021/2022

Capacidades de depleção das junções SB e DB

• Junções *pn* fonte-substrato (SB) e dreno-substrato (DB) funcionam inversamente polarizadas;

• As regiões de depleção funcionam como o dieléctrico de um condensador altamente não-linear... que também atrasa a comutação do 'interruptor'.