Zusammenfassung Kommutative Algebra

© M. Tim Baumann, http://timbaumann.info/uni-spicker

Ringe und Ideale

Def. Ein Ring ist ein Tupel $(A, +, \cdot, 0, 1)$ mit einer Menge A, Operationen $+, \cdot : A \times A \to A$ und Elementen $0, 1 \in A$, sodass

- (A, +, 0) eine abelsche Gruppe ist,
- $(A, \cdot, 1)$ ein Monoid ist und
- die Multiplikation distributiv über die Addition ist, d. h.

$$x(y+z) = xy + xz$$
 und $(y+z)x = yx + zx \quad \forall x, y, z \in A$.

Bspe. • \mathbb{Z} , • $K[x_1, ..., x_n]$, • **Nullring**: der Ring mit 0 = 1

Def. Sei $(A, +, \cdot)$ ein Ring. Eine Teilmenge $B \subseteq A$ heißt **Unterring**, falls $0, 1 \in B$ und B unter + und \cdot abgeschlossen ist.

Bspe. • $\mathbb{Z} \subset \mathbb{Q}$, • $K \subset K[X]$

Def. Ein Ringhomomorphismus $\phi: A \to B$ ist eine Abbildung, welche sowohl ein Gruppenhomomor. $(A, +_A, 0_A) \to (B, +_B, 0_B)$ als auch ein Ringhomomorphismus $(A, \cdot_A, 1_A) \to (B, \cdot_B, 1_B)$ ist.

Bem. Ringe und Ringhomomorphismen bilden eine Kategorie Ring.

Lem. Ein Ringhomomorphismus ist genau dann ein Isomorphismus (in dieser Kategorie), wenn er bijektiv ist.

Konvention. Seien Aim Folgenden Ringe und $\phi:A\to B$ ein Ringhomomorphismus.

Def. Eine Teilmenge $\mathfrak{a} \subseteq A$ heißt (beidseitiges) **Ideal** von A, falls

- $\mathfrak{a} \subseteq A$ eine Untergruppe ist und
- für alle $a \in A$ und $x \in \mathfrak{a}$ gilt: $ax, xa \in \mathfrak{a}$.

Lem. Der Schnitt von (beliebig vielen) Idealen ist selbst ein Ideal.

Def. Sei $M \subseteq A$ eine Teilmenge. Das von M **erzeugte Ideal** ist der Schnitt aller Ideale von A, die M umfassen.

Bem. Falls A kommutativ ist, so gilt

von
$$M$$
 erzeugtes Ideal = $\{\sum_{k=1}^{n} \lambda_k x_k \mid n \in \mathbb{N}, \lambda_k \in A, x_k \in M\}.$

Notation. $(x_1, \ldots, x_n) \subseteq A$ ist das von $\{x_1, \ldots, x_n\}$ erzeugte Ideal.

- Bem. Das Nullideal (0) ist das kleinste Ideal, denn (0) = $\{0\}$.
 - Das Einsideal (1) ist das größte Ideal, denn (1) = A.

Prop. • Sei $\mathfrak{b} \subseteq B$ ein Ideal. Dann ist auch $\phi^{-1}(\mathfrak{b}) \subseteq A$ ein Ideal.

• Sei $A' \subseteq A$ ein Unterring. Dann ist auch $\phi(A') \subseteq B$ ein Unterring.

Def. Das Ideal $\ker \phi := \phi^{-1}((0))$ heißt **Kern** von ϕ .

Bem. ϕ ist injektiv \iff ker $\phi = 0$

Prop. Sei $\phi:A\to B$ surjektiv, $\mathfrak{a}\subseteq A$ ein Ideal. Dann ist auch das Bild $\phi(A)\subseteq B$ ein Ideal.

Prop. Sei $\mathfrak{a} \subseteq A$ ein Ideal. Dann gibt es einen Ring A/\mathfrak{a} und einen Ringhomomor. $\pi:A\to A/\mathfrak{a}$ mit folgender universeller Eigenschaft: Für jeden Ring B und Ringhomomor. $\psi:A\to B$ mit $\mathfrak{a} \subseteq \ker \psi$ gibt es genau einen Ringhomomor. $\widetilde{\psi}:A/\mathfrak{a}\to B$ mit $\psi=\widetilde{\psi}\circ\pi$.

Konstr. Sei durch $x \sim y :\iff x - y \in \mathfrak{a}$ eine Äq'relation \sim auf A definiert. Setze $A/\mathfrak{a} := A/\sim$ und $\pi(x) := [x]$. Die Addition und Multiplikation auf A ind. die Addition bzw. Multiplikation auf A/\mathfrak{a} .

Def. A/\mathfrak{a} heißt Quotientenring von A nach \mathfrak{a} .

Notation. Man lässt häufig die Äquivalenzklammern weg, man schreibt also "x = y in A/\mathfrak{a} " anstatt "[x] = [y]".

Prop. Sei $\mathfrak{a} \subseteq A$ ein Ideal. Folgende Korresp. ist bij. und monoton:

Prop (Homomorphiesatz). Sei $\phi: A \to B$ ein Ringhomomor. Dann ist $\phi: A/\ker(\phi) \to \operatorname{im}(\phi), \ [x] \mapsto \phi(x)$ ein Ringisomorphismus.

Im Folgenden seien alle Ringe **kommutativ**, d. h. xy = yx f. a. x, y.

Def. Sei A ein kommutativer Ring. Ein Element $x \in A$ heißt

- regulär, falls $\forall y \in A : xy = 0 \implies y = 0$.
- Nullteiler, falls es nicht regulär ist, d.h. wenn ein $y \in A \setminus \{0\}$ mit xy = 0 existiert.

Def. Ein Ring A heißt **Integritätsbereich**, wenn $0 \in A$ der einzige Nullteiler in A ist.

Achtung. Die Null im Nullring ist regulär!

Bem. Ein Ring A ist genau dann ein Integritätsbereich, wenn

$$0 \neq 1$$
 in A und $\forall x, y \in : xy = 0 \implies x = 0 \lor y = 0$.

Beob. Sei $\phi:A\to B$ ein injektiver Ringhomomorphismus. Ist B ein Integritätsbereich, so auch A.

Def. Ein Ideal $\mathfrak{a} \subseteq A$ heißt **Hauptideal**, falls $\mathfrak{a} = (a)$ für ein $a \in A$. Ein Ring A heißt **Hauptidealbereich**, falls jedes Ideal in A ein Hauptideal ist.

Bspe. \bullet \mathbb{Z} , \bullet K[x]

Gegenbsp. • $K[x_1, \ldots, x_n]$ für $n \ge 2$

Def. Ein Element $x \in A$ heißt **nilpotent**, falls $\exists n \geq 0 : x^n = 0$.

Beob. Ist A ein Integritätsbereich, so ist $0 \in A$ das einzige nilpotente Element in A.

Def. Sei A ein Ring, nicht notwendigerweise kommutativ. Ein Element $x \in A$ heißt **Einheit**, falls ein $y \in A$ mit xy = yx = 1 existiert. $A^{\times} := \{$ Einheiten in A $\}$ heißt **Einheitengruppe**. Der Ring A heißt **Schiefkörper**, falls 0 die einzige Nicht-Einheit ist. Falls zusätzlich A kommutativ ist, so heißt A ein **Körper**.

Beob. • $x \in A$ ist eine Einheit \iff $(x) = (1) \iff A/(x) = 0$

• Einheiten sind regulär.

Prop. Sei A ein kommutativer Ring. Dann sind äquivalent:

- \bullet A ist ein Körper.
- A besitzt genau zwei Ideale (nämlich (0) und (1)).
- Ein Ringhomomorphismus $A \to B$ ist genau dann injektiv, wenn B nicht der Nullring ist.

Def. • Ein Ideal $\mathfrak{p} \subset A$ heißt **Primideal**, falls $1 \not\in \mathfrak{p}$ und $\forall a, b \in A : ab \in \mathfrak{p} \implies a \in \mathfrak{p} \lor b \in \mathfrak{p}$.

Ein Ideal m ⊂ A heißt maximal, falls für jedes Ideal p ⊆ a ⊆ A entweder p = a oder a = A (nicht beides!) gilt.

Bspe. • Jedes Ideal in \mathbb{Z} hat die Form (m) mit $m \in \mathbb{N}$. Das Ideal (m) ist genau dann prim, wenn m = 0 oder m eine Primzahl ist.

• Sei $f \in K[x_1, ..., x_n]$ ein irred. Polynom. Dann ist (f) prim.

 $\begin{array}{lll} \textbf{Lem.} & \mathfrak{p} \subseteq A \text{ ist prim} & \iff & A/\mathfrak{p} \text{ ist ein Integritätsbereich} \\ & \mathfrak{m} \subseteq A \text{ ist maximal} & \iff & A/\mathfrak{m} \text{ ist ein K\"{o}rper} \\ \end{array}$

Kor. Maximale Ideale sind prim.

Prop. Sei $\mathfrak{a} \subseteq A$ ein Ideal. Folgende Korresp. ist bij. und monoton:

```
 \{ \text{ Primideale } \mathfrak{p} \subset A \text{ mit } \mathfrak{p} \supseteq \mathfrak{a} \} \quad \leftrightarrow \quad \{ \text{ Primideale } \mathfrak{q} \subset A/\mathfrak{a} \} 
 \mathfrak{p} \quad \mapsto \quad \pi(\mathfrak{p}) 
 \pi^{-1}(\mathfrak{q}) \quad \longleftrightarrow \quad \mathfrak{q}
```

Genauso bekommt man eine bijektive, monotone Korrespondenz

 $\{ \text{ max. Ideale } \mathfrak{m} \subset A \text{ mit } \mathfrak{m} \supseteq \mathfrak{a} \} \quad \leftrightarrow \quad \{ \text{ max. Ideale } \mathfrak{n} \subset A/\mathfrak{a} \}$

Prop. Ein Ring besitzt genau dann ein maximales Ideal, wenn er nicht der Nullring ist.

Kor. • Sei $\mathfrak{a} \subseteq A$ ein Ideal. Dann gibt es genau dann ein maximales Ideal $\mathfrak{p} \subset A$ mit $\mathfrak{p} \supseteq \mathfrak{a}$, wenn $\mathfrak{a} \neq (1)$.

 Ein Element x ∈ A liegt genau dann in einem maximalen Ideal von A, wenn x keine Einheit ist.

Def. Ein lokaler Ring ist ein komm. Ring A mit genau einem max. Ideal \mathfrak{m} . Der Körper $F \coloneqq A/\mathfrak{m}$ heißt Restklassenkörper von A.

Notation. Man schreibt "Sei (A, \mathfrak{m}, F) ein lokaler Ring."

Def. Ein halblokaler Ring ist ein kommutativer Ring mit nur endlich vielen maximalen Idealen.

Lem. Sei $\mathfrak{m} \subset A$ ein Ideal mit $A \setminus \mathfrak{m} = A^{\times}$. Dann ist (A, \mathfrak{m}) ein lokaler Ring.

Prop. Sei $\mathfrak{m} \subset A$ ein maximales Ideal, sodass 1+x für alle $x \in \mathfrak{m}$ eine Einheit ist. Dann ist $A \setminus \mathfrak{m} = A^{\times}$, also (A, \mathfrak{m}) ein lokaler Ring.

Prop. Die Menge $\mathfrak{n} := \{ \text{ nilpotente Elemente } \} \subseteq A \text{ ist ein Ideal, das sogenannte Nilradikal.}$

Bem. Der Ring A/\mathfrak{n} hat außer 0 keine nilpotenten Elemente.

Prop. Das Nilradikal eines kommutativen Ringes ist der Schnitt aller seiner Primideale.

Def. Das Jacobsonsche Ideal $j \subset A$ ist der Schnitt aller maximalen Ideale von A.

Prop. Ein Element $x \in A$ liegt genau dann im Jacobsonschen Ideal j, wenn 1 - xy für alle $y \in A$ eine Einheit ist.

Def. Die Summe von Idealen $(\mathfrak{a}_i)_{i\in I}$ von A ist das Ideal

$$\sum_{i \in I} \mathfrak{a}_i \coloneqq \{\sum_{k=1}^n x_k \mid k \in \mathbb{N}, x_k \in \mathfrak{a}_{i_k}, i_k \in I\}.$$

Bem. $\sum_{i \in I} \mathfrak{a}_i$ ist das kleinste Ideal, das alle \mathfrak{a}_i umfasst.

Beob.
$$(x_1) + \ldots + (x_n) = (x_1, \ldots, x_n)$$

Bem. Ideale eines Ringes A bilden mit Schnitt und Summe einen vollständigen Verband bezüglich der Inklusionsordnung.

Def. Das Produkt zweier Ideale $\mathfrak{a}, \mathfrak{b} \subseteq A$ ist

 $\mathfrak{ab} := \text{von } \{ab \mid a \in \mathfrak{a}, b \in \mathfrak{b}\} \text{ erzeugtes Ideal.}$

Beob.
$$\bullet$$
 $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, \bullet $(x_1) \cdot \ldots \cdot (x_n) = (x_1 \cdot \ldots \cdot x_n)$

Bsp. In $A = \mathbb{Z}$ gilt für $m, n \in \mathbb{N}$

$$\bullet \ (m)+(n)=(m,n)=(\mathrm{ggT}(m,n)), \quad \bullet \ (m)\cap (n)=(\mathrm{kgV}(m,n)).$$

Beob. • Summe, Schnitt und Produkt von Idealen sind assoziativ.

- Summe und Schnitt sind kommutativ. Das Produkt von Idealen ist kommutativ, wenn der Ring kommutativ ist.
- Distributivgesetz: a(b + c) = ab + ac
- Modularitätsgesetz: Ist $\mathfrak{a} \supset \mathfrak{b}$ oder $\mathfrak{a} \supset \mathfrak{c}$, so folgt

$$\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = (\mathfrak{a} \cap \mathfrak{b}) + (\mathfrak{a} \cap \mathfrak{c}).$$

Def. Zwei Ideale $\mathfrak{a}, \mathfrak{b} \subseteq A$ heißen **koprim**, falls $\mathfrak{a} + \mathfrak{b} = (1)$.

Bsp. In $A = \mathbb{Z}$ gilt: (m), (n) sind koprim \iff ggT(m, n) = 1

Prop. Seien $\mathfrak{a}_1, \ldots \mathfrak{a}_n \subseteq A$ paarweise koprime Ideale. Dann gilt

$$\bigcap_{i=1}^n \mathfrak{a}_i = \prod_{i=1}^n \mathfrak{a}_i.$$

Def. Das direkte Produkt einer Familie $(A_i)_{i \in I}$ von Ringen ist der Ring $\prod A_i := \{(a_i \in A_i)_{i \in I}\}$ mit kmpnntnwsr Verknüpfung.

Bem. Das direkte Produkt ist das kategorienth. Produkt in **Ring**.

Prop. Seien $\mathfrak{a}_1, \ldots \mathfrak{a}_n \subseteq A$ Ideale. Dann ist

$$\phi: A \to \prod_{i=1}^{n} (A/\mathfrak{a}_i), \quad x \mapsto ([x], \dots, [x])$$

genau dann surjektiv, wenn die Ideale \mathfrak{a}_i paarweise koprim sind.

Bem. Der Ringhomomor. ϕ ist genau dann injektiv, wenn $\bigcap \, \mathfrak{a}_i = 0.$

Prop. Seien $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \subset A$ Primideale und $\mathfrak{a} \subseteq A$ ein Ideal. Gilt $\mathfrak{a} \subseteq \bigcup_{i=1}^{n} \mathfrak{p}_i$, so gibt es ein $j \in \{1, \ldots, n\}$ mit $\mathfrak{a} \subseteq \mathfrak{p}_j$.

Prop. Seien $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \subseteq A$ Ideale und $\mathfrak{p} \subseteq A$ ein Primideal. Gilt $\mathfrak{p} \supseteq \bigcap_{i=1}^{n} \mathfrak{a}_i$, so gibt es ein $j \in \{1, \ldots, n\}$ mit $\mathfrak{p} \supseteq \mathfrak{a}_j$.

Def. Seien $\mathfrak{a},\mathfrak{b}\subseteq A$ zwei Ideale. Der Idealquotient von \mathfrak{a} nach \mathfrak{b} ist das Ideal $(\mathfrak{a} : \mathfrak{b}) := \{x \in A \mid x\mathfrak{b} \subset \mathfrak{a}\}.$

Notation. •
$$(x : \mathfrak{b}) \coloneqq ((x) : \mathfrak{b}), \quad \bullet \ (\mathfrak{a} : y) \coloneqq (\mathfrak{a} : (y))$$

Def. Der Annulator eines Ideals $\mathfrak{b} \subseteq A$ ist $ann(\mathfrak{b}) := (0 : \mathfrak{b})$.

Def. Das Wurzelideal eines Ideals $\mathfrak{a} \subseteq A$ ist das Ideal

$$\sqrt{\mathfrak{a}} := \{ x \in A \mid \exists n \in \mathbb{N} : x^n \in \mathfrak{a} \}.$$

Bem. Das Nilradikal ist $\sqrt{(0)}$, das Wurzelideal des Nullideals. Es gilt $\sqrt{\mathfrak{a}} = \pi^{-1}(\sqrt{(0)})$ mit $\pi: A \to A/\mathfrak{a}, x \mapsto [x]$.

Lem. •
$$\sqrt{\mathfrak{a}} \supseteq \mathfrak{a}$$
 • $\sqrt{\mathfrak{a}^n} = \sqrt{\mathfrak{a}}$ für $n \ge 1$ • $\sqrt{\mathfrak{a}} = (1) \iff \mathfrak{a} = (1)$
• $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$ • $\sqrt{\mathfrak{ab}} = \sqrt{\mathfrak{a} \cap \mathfrak{b}} = \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$ • $\sqrt{\mathfrak{a} + \mathfrak{b}} = \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$

Def. Ein Ideal $\mathfrak{a} \subseteq A$ heißt Wurzelideal, falls $\mathfrak{a} = \sqrt{\mathfrak{a}}$.

Prop. Das Wurzelideal von $\sqrt{\mathfrak{a}}$ ist der Schnitt aller Primideale von A, die \mathfrak{a} enthalten.

Prop. { Nullteiler von
$$A$$
 } = $\bigcup_{x \in A \setminus \{0\}} \sqrt{\operatorname{ann}(x)}$

Lem. $\sqrt{\mathfrak{a}}$ und $\sqrt{\mathfrak{b}}$ koprim $\Longrightarrow \mathfrak{a}$ und \mathfrak{b} koprim

Def. Sei $\phi: A \to B$ ein Homomorphismus komm. Ringe. Die Kontraktion von $\mathfrak{b} \subseteq B$ (bzgl. ϕ) ist das Ideal $A \cap \mathfrak{b} := \phi^{-1}(\mathfrak{b})$.

Bem. Es wird also ϕ in der Notation unterdrückt. Falls ϕ die Inklusion eines Unterrings ist, so ist $A \cap \mathfrak{b}$ wörtlich zu verstehen.

Beob.
$$A \cap \mathfrak{b} = \ker(A \to B \to B/\mathfrak{b})$$

Lem. Ist $\mathfrak{q} \subset B$ ein Primideal, so auch $A \cap \mathfrak{q} \subset A$.

Achtung. Die Kontraktion max. Ideale ist i. A. nicht maximal!

Def. Sei $\phi: A \to B$ ein Homomorphismus komm. Ringe. Die Erweiterung von $\mathfrak{a} \subseteq A$ (bzgl. ϕ) ist das Ideal $B\mathfrak{a} := (\phi(\mathfrak{a}))$, das von $\phi(\mathfrak{a})$ erzeugte Ideal.

Bem. Ist ϕ die Inklusion eines Unterrings, so ist Ba tatsächlich die Menge der B-Linearkombinationen von Elementen in \mathfrak{a} .

Prop. Sei $\phi: A \to B$ ein Homomorphismus komm. Ringe. Die Erweiterung und Kontraktion von Idealen (bzgl. ϕ) bilden eine Galois-Verbindung, d. h. für Ideale $\mathfrak{a} \subseteq A$ und $\mathfrak{b} \subseteq B$ gilt

$$B\mathfrak{a}\subseteq\mathfrak{b}\iff\mathfrak{a}\subseteq A\cap\mathfrak{b}.$$

Äquivalent dazu sind Erw. und Kontraktion monoton und es gelten

$$\mathfrak{a} \subseteq A \cap (B\mathfrak{a})$$
 und $\mathfrak{b} \supset B(A \cap \mathfrak{b})$.

Außerdem folgt aus den Eigenschaften einer Galois-Verbindung, dass

$$B\mathfrak{a} = B(A \cap (B\mathfrak{a}))$$
 und $A \cap \mathfrak{b} = A \cap (B(A \cap \mathfrak{b})).$

Damit induzieren Erweiterung und Kontraktion eine bijektive ordnungserhaltende Korrespondenz zwischen den kontrahierten Idealen von A und den erweiterten Idealen von B.

Lem. Für Ideale $\mathfrak{a}, \mathfrak{a}_1, \mathfrak{a}_2 \subseteq A$ und $\mathfrak{b}, \mathfrak{b}_1, \mathfrak{b}_2 \subseteq B$ gilt

- $B\sqrt{\mathfrak{a}} \subset \sqrt{B\mathfrak{a}}$
 - $A \cap \sqrt{\mathfrak{b}} = \sqrt{A \cap \mathfrak{b}}$
- $B(\mathfrak{a}_1 \cap \mathfrak{a}_2) \subseteq B\mathfrak{a}_1 \cap B\mathfrak{a}_2$
- $B(\mathfrak{a}_1 + \mathfrak{a}_2) = B\mathfrak{a}_1 + B\mathfrak{a}_2$ $A \cap (\mathfrak{b}_1 + \mathfrak{b}_2) \supseteq A \cap \mathfrak{b}_1 + A \cap \mathfrak{b}_2$ $\bullet \ A \cap (\mathfrak{b}_1 \cap \mathfrak{b}_2) = (A \cap \mathfrak{b}_1) \cap (A \cap \mathfrak{b}_2)$
- $B(\mathfrak{a}_1\mathfrak{a}_2) = (B\mathfrak{a}_1)(B\mathfrak{a}_2)$
- $A \cap (\mathfrak{b}_1\mathfrak{b}_2) \supseteq (A \cap \mathfrak{b}_1)(A \cap \mathfrak{b}_2)$
- $B(\mathfrak{a}_1 : \mathfrak{a}_2) \subseteq (B\mathfrak{a}_1 : B\mathfrak{a}_2)$
- $A \cap (\mathfrak{b}_1 : \mathfrak{b}_2) \subseteq (A \cap \mathfrak{b}_1 : A \cap \mathfrak{b}_2)$

Bem. Die Erweiterung eines Primideals ist i. A. nicht mehr prim.

Moduln

Def. Sei A ein Ring. Ein A-(Links-)Modul ist eine abelsche Gruppe (M, +, 0) zusammen mit einer Abb. $: A \times M \to M$, sodass

- die Multiplikation eine Operation von $(A,\cdot,1)$ auf M ist, d. h. (ab)x=a(bx) und $1\cdot x=x$ für alle $a,b\in A$ und $x\in M$.
- die Multiplikation distributiv über die Addition ist, d. h. a(x+y)=ax+ay und (a+b)x=ax+bx f. a. $a,b\in A,\,x,y\in M.$

Achtung. Es heißt der Modul, nicht das Modul!

Bspe. \bullet Der Ring A ist selbst ein A-Modul.

- Jedes Ideal a ⊆ A ist (durch Einschränkung der Multiplikation) ein A-Modul.
- Ein K-Modul (K ein Körper) ist dasselbe wie ein K-VR.
- Ein Z-Modul ist dasselbe wie eine abelsche Gruppe.
- Ein K[x]-Modul ist dasselbe wie ein K-Vektorraum V zusammen mit einem Endomorphismus $V \to V$.
- ullet Sei G eine endliche Gruppe und

$$A := K[G] := \{ \sum_{g \in G} a_g \cdot g \, | \, g \in G, a_g \in K \}$$

die **Gruppenalgebra** von G über K. Ein A-Modul ist dasselbe wie ein K-VR V mit einer linearen Darstellung $G \to \operatorname{End}_K(V)$.

Def. Ein A-Modulhomomorphismus ist eine Abbildung $\phi: M \to N$ zwischen A-Moduln M und N, welche ein Gruppenhomomorphismus $(M, +_M, 0_M) \to (N, +_N, 0_N)$ und verträglich mit der Wirkung des multiplikativen Monoids von M und N ist, d. h. $\phi(ax) = a\phi(x)$ für alle $a \in A$ und $x \in M$.

Bem. A-Moduln und A-Modulhomomor, bilden eine Kat. A-Mod.

Lem. Ein A-Modulhomomorphismus ist genau dann ein Isomorphismus (in dieser Kategorie), wenn er bijektiv ist.

Def. Sei M ein A-Modul. Eine Teilmenge $M' \subseteq M$ heißt **Untermodul** von M, falls

- M' eine Untergruppe von (M, +, 0) ist und
- M' abgeschlossen unter Multiplikation mit Elementen aus A ist,
 d. h. ax ∈ M' für alle a ∈ A und x ∈ M'.

Bsp. Sei A kommutativ. Eine Teilmenge $\mathfrak{a} \subseteq A$ ist genau dann ein Ideal von A, wenn \mathfrak{a} ein Untermodul von A ist.

Def. Sei $\phi: M \to N$ eine A-Modulhomomorphismus. Der **Kern** v. ϕ ist der Untermodul ker $\phi := \{x \in M \mid \phi(x) = 0\} \subseteq M$. Das **Bild** von ϕ ist der Untermodul im $\phi := \phi(M) \subseteq N$.

Prop. Sei M ein A-Modul und $M' \subseteq M$ ein Untermodul. Dann gibt es ein A-Modul M/M' und einen Ringhomomor. $\pi: M \to M/M'$ mit folgender universeller Eigenschaft:

Für jeden A-Modul N und A-Modulhomomor. $\psi: M \to N$ mit $M' \subseteq \ker \psi$ gibt es genau einen A-Modulhomomor. $\widetilde{\psi}: M/M' \to N$ mit $\psi = \widetilde{\psi} \circ \pi$.

Konstr. $M/M' := M/\sim \text{ mit } x \sim y :\iff x - y \in M'$

Def. Der Modul M/M' heißt Quotientenmodul von M nach M'.

Prop. Sei M ein A-Modul und $M' \subseteq M$ ein Untermodul. Folgende Korrespondenz ist bijektiv und monoton:

Def. Der Kokern eines A-Modulhomomorphismus $\phi: M \to N$ ist

$$\operatorname{coker} \phi := N/\operatorname{im}(\phi).$$

 $Bem. \bullet \phi$ injektiv $\iff \ker \phi = 0 \quad \bullet \ \phi$ surjektiv $\iff \operatorname{coker} \phi = 0$

Prop (Homomorphiesatz). Sei $\phi: M \to N$ ein A-Modulhomom. Dann ist $\phi: M/\ker(\phi) \to \operatorname{im}(\phi), \ [x] \mapsto \phi(x)$ ein A-Modulisomor.

Def. Sei M ein A-Modul. Die **Summe** einer Familie $(M_i)_{i\in I}$ von Untermoduln von M ist

$$\sum_{i \in I} M_i := \{ \sum_{i \in I} x_i \, | \, x_i \in M_i \}$$

(Dabei ist $\sum\limits_{i\in I}x_i$ endlich, d. h. $x_i=0$ für alle bis auf endl. viele $i\in I.)$

Prop. Sei $(M_i)_{i \in I}$ eine Familie von Untermoduln von M. Dann ist auch der Schnitt $\bigcap_{i \in I} M_i$ ein Untermodul von M.

Bem. Untermoduln eines Moduls M bilden mit Schnitt und Summe einen vollständigen Verband bezüglich der Inklusionsordnung.

Prop (Isomorphiesätze). Sei A ein Ring.

1. Sei M ein A-Modul und $M_1, M_2 \subseteq M$ zwei Untermoduln. Dann existiert ein kanonischer A-Modulisomorphismus

$$(M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2).$$

2. Sei L ein A-Modul und $N \subseteq M \subseteq L$ Untermoduln. Dann existiert ein kanonischer A-Modulisomorphismus

$$(L/N)/(M/N) \cong L/M.$$

Def. Sei A kommutativ, M ein A-Modul und $\mathfrak{a} \subset A$ ein Ideal. Das **Produkt** von \mathfrak{a} und M ist $\mathfrak{a}M := \{ax \mid a \in \mathfrak{a}, x \in M\}$.

Notation. $aM := (a)M = \{ax \mid x \in M\}$ für $a \in A$

Def. Sei A komm. und N, P Untermoduln eines A-Moduls M. Das Ideal $(N:P) := \{a \in A \mid aP \subseteq N\} \subseteq A \text{ heißt } \mathbf{Quotient} \text{ von } N \text{ nach } P$.

Def. Das Ideal ann M := (0:M) heißt **Annulator** von M.

Bem. Ist $\mathfrak{a}\subseteq A$ ein Ideal mit $\mathfrak{a}\subseteq \operatorname{ann} M,$ so können wir M auch als $A/\mathfrak{a}\text{-}\mathrm{Modul}$ auffassen.

Def. Der A-Modul M heißt treu, falls ann M=0.

Lem. Sei A kommutativ, $N, P \subseteq M$ Untermoduln. Dann gilt

• $\operatorname{ann}(N+P) = \operatorname{ann}(N) + \operatorname{ann}(P)$ • $(N:P) = \operatorname{ann}((N+P)/N)$

Def. Sei M ein A-Modul, $X \subset M$ eine Teilmenge. Der von X erzeugte Untermodul ist

$$L(X) \coloneqq \sum_{x \in X} Ax = \sum_{x \in X} \{ax \mid a \in A\} = \{\sum_{x \in X} \lambda_x x \mid \lambda_x \in A\}.$$

Def. Eine Teilmenge $X \subset M$ heißt **Erzeugendensystem**, falls L(X) = M. Ein A-Modul M heißt **endlich erzeugt**, falls ein endliches Erzeugendensystem von M existiert.

Bem. Ein A-Modul M ist ganau dann endlich erzeugt, wenn ein $n\in\mathbb{N}$ und ein surj. A-Modulhomomorphismus $\phi:A^n\to M$ existiert.

Def. Das direkte Produkt einer Familie $(M_i)_{i \in I}$ von A-Moduln ist das A-Modul $\prod_{i \in I} M_i \coloneqq \{(x_i \in M_i)_{i \in I}\}$ mit kmpnntnwsr Verkn.

Bem. Das direkte Produkt ist das kategorienth. Produkt in A-Mod.

Def. Die direkte Summe einer Familie $(M_i)_{i \in I}$ von A-Moduln ist

$$\bigoplus_{i \in I} M_i \coloneqq \{(x_i \in M_i)_{i \in I} \, | \, x_i = 0 \text{ für alle bis auf endl. viele } i \in I\}$$

$$\subseteq \prod_{i \in I} M_i.$$

Bem. Die dir. Summe ist das kategorienth. Koprodukt in A-Mod. Ist I endlich, so gilt $\bigoplus_{i \in I} M_i \cong \prod_{i \in I} M_i$.

Bsp (Direkte Summenzerlegung). Sei $A = \prod_{i=1}^{n} A_i$ ein endl. direktes Produkt komm. Ringe. Dann gilt $A \cong \mathfrak{a}_1 \oplus \ldots \oplus \mathfrak{a}_n$ als A-Modul mit $\mathfrak{a}_i := \{(x_i)_{i=1}^n \mid x_j = 0 \text{ für } j \neq i\}.$

Def. Ein A-Modul M heißt frei, falls eine Menge I existiert, sodass $M \cong \bigoplus_{i \in I}$ als A-Modul.

Bem. Ein endlicher freier Modul ist ein Modul, der zu $A^n := A \oplus \ldots \oplus A$ für ein $n \in \mathbb{N}$ isomorph ist.

Prop. Sei A ein Ring. Ein A-Modul M ist genau dann endl. erzeugt, wenn M der Quotient eines A-Moduls der Form A^n für ein $n \in \mathbb{N}$ ist.

Prop. Sei A ein komm. Ring, M ein endlich erzeugter A-Modul und $\mathfrak{a} \subseteq A$ ein Ideal. Sei $\phi \in \operatorname{End}_A(M)$ mit im $\phi \subseteq \mathfrak{a}M$. Dann erfüllt ϕ eine Gleichung der Form $\phi^n + a_1\phi^{n-1} + \ldots + a_n = 0$ mit $a_i \in \mathfrak{a}$.

Kor. Sei $\mathfrak{a}\subseteq A$ ein Ideal und M ein A-Modul mit $\mathfrak{a}M=M$. Dann existiert ein $x\in A$ mit x=1 modulo \mathfrak{a} und xM=0.

Lem (Nakayama). Sei $\mathfrak a$ ein Ideal von A, welches im Jacobsonschen Radikal j von A enthalten ist. Dann folgt aus $\mathfrak aM=M$ schon M=0.

Kor. Sei $N \subseteq M$ ein Untermodul und $\mathfrak{a} \subseteq A$ ein Ideal, welches im Jacobsonschen Ideal j enthalten ist. Dann folgt aus $M = \mathfrak{a}M + N$ schon M = N.

Def. Sei (A, \mathfrak{m}, F) ein lokaler Ring. Sei M ein endlich erz. A-Modul. Setze $M(\mathfrak{m}) := M/\mathfrak{m}M$. Wegen $\mathfrak{m} \subseteq \mathrm{ann}(M(\mathfrak{m}))$ ist $M(\mathfrak{m})$ in natürl. Art ein (endlich-dim.) F-Vektorraum, die **spezielle Faser** von M. Das Bild eines Elements $x \in M$ in $M(\mathfrak{m})$ wird **Wert des Schnittes** x in der speziellen Faser genannt.

Prop. Sei (A, \mathfrak{m}, F) ein lokaler Ring, M ein endlich erz. A-Modul. Seien x_1, \ldots, x_n Schnitte von M, deren Werte in $M(\mathfrak{m})$ eine Basis bilden. Dann erzeugen x_1, \ldots, x_n den A-Modul M.

Exakte Sequenzen

 $\mathbf{Def.}$ Sei A ein Ring. Eine Sequenz

$$\dots \to M^{i-1} \xrightarrow{\phi^{i-1}} M^i \xrightarrow{\phi^i} M^{i+1} \to \dots$$

von A-Modul
n und A-Modulhomomorphismen heißt **exakt** bei M^i , falls i
m $\phi^{i-1} = \ker \phi^i$. Die Sequenz heißt **exakt**, falls sie exakt bei jedem M^i ist.

Bsp. Sei $\phi: M \to N$ ein A-Modulhomomorphismus. Dann gilt

$$\begin{array}{ll} \phi \text{ ist injektiv} & \Longleftrightarrow & 0 \to M \xrightarrow{\phi} N \text{ ist exakt} \\ \phi \text{ ist surjektiv} & \Longleftrightarrow & M \xrightarrow{\phi} N \to 0 \text{ ist exakt} \end{array}$$

Def. Eine kurze exakte Sequenz k. e. S. von A-Moduln ist eine exakte Sequenz der Form $0 \to M' \to M \to M'' \to 0$.

Bem. Jede lange exakte Sequenz $\ldots \to M^{i-1} \to M^i \to M^{i+1} \to \ldots$ zerfällt in kurze exakte Sequenzen: Mit $N^i = \operatorname{im} \phi^{i-1} = \ker \phi^i$ haben wir kurze exakte Sequenzen $0 \to N^i \to M^i \to N^{i+1} \to 0.$ Andersherum kann man solche kurzen exakten Sequenzen zu einer langen exakten Sequenz zusammenkleben.

Lem. Sei A ein komm. Ring. Eine Seq. $E: M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$ ist genau dann exakt, wenn für alle A-Moduln N die Sequenz

 $\operatorname{Hom}(E,N): 0 \to \operatorname{Hom}(M'',N) \xrightarrow{\psi^*} \operatorname{Hom}(M,N) \xrightarrow{\phi^*} \operatorname{Hom}(M',N).$ exakt ist.

Lem. Sei A ein kommutativer Ring.

• Eine Sequenz $E: M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$ ist genau dann exakt, wenn für alle A-Moduln N folgende induzierte Sequenz exakt ist:

$$\operatorname{Hom}(E,N): 0 \to \operatorname{Hom}(M'',N) \xrightarrow{\psi^*} \operatorname{Hom}(M,N) \xrightarrow{\phi^*} \operatorname{Hom}(M',N).$$

• Eine Sequenz $F: 0 \to N' \xrightarrow{\phi} N \xrightarrow{\psi} N''$ ist genau dann exakt, wenn für alle A-Moduln M folgende induzierte Sequenz exakt ist:

$$\operatorname{Hom}(M,F):\operatorname{Hom}(M,N')\xrightarrow{\phi_*}\operatorname{Hom}(M,N)\xrightarrow{\psi_*}\operatorname{Hom}(M,N'')\to 0.$$

Lem (Schlangenlemma). Sei A ein Ring. Sei folgendes komm. Diagramm von A-Moduln mit exakten Zeilen gegeben:

$$\begin{array}{cccc}
M' & \longrightarrow M & \longrightarrow M'' & \longrightarrow 0 \\
\downarrow \phi' & & \downarrow \phi & & \downarrow \phi'' \\
0 & \longrightarrow N' & \longrightarrow N & \longrightarrow N''
\end{array}$$

Dann gibt es einen Verbindungshomomorphismus δ : ker $\phi'' \to \operatorname{coker} \phi'$, mit dem folgende Sequenz exakt ist:

$$\ker \phi' \to \ker \phi \to \ker \phi'' \xrightarrow{\delta} \operatorname{coker} \phi' \to \operatorname{coker} \phi \to \operatorname{coker} \phi''.$$

Def. Sei A ein Ring und $\mathfrak C$ eine Klasse von A-Moduln. Eine Abb. $\lambda:\mathfrak C\to G$ in eine ab. Gruppe heißt **additive Funktion**, falls für alle kurzen exakten Seq. $0\to C'\to C\to C''\to 0$ von Moduln aus $\mathfrak C$ gilt, dass $\lambda(C)=\lambda(C')+\lambda(C'')$.

Bsp. Sei K ein Körper und $\mathfrak C$ die Klasse der endlich-dim. VR über K. Dann ist dim : $\mathfrak C \to \mathbb Z$ eine additive Funktion.

Prop. Sei A ein Ring, $\mathfrak C$ eine Klasse von A-Moduln und $\lambda:\mathfrak C\to G$ eine additive Funktion. Sei

$$0 \to M^0 \xrightarrow{\phi^0} M^1 \to \ldots \to M^{n-1} \xrightarrow{\phi^{n-1}} M^n \to 0$$

eine exakte Sequenz von Moduln in \mathfrak{C} , sodass auch die Kerne der ϕ^i in \mathfrak{C} liegen. Dann gilt $\sum_{i=0}^n (-1)^i \lambda(M^i) = 0$.

Tensorprodukt

Def. Seien M,N und P drei A-Moduln. Eine Abbildung $\beta: M \times N \to P$ heißt A-bilinear, falls für alle $x \in M$ die Abbildung $\beta(x,-)$ und für alle $y \in N$ die Abbildung $\beta(-,y)$ ein A-Modulhomomorphismus ist.

Bsp. Die Multiplikation $\cdot: A \times A \to A$ ist A-bilinear.

Prop. Seien M und N zwei A-Moduln. Dann existiert ein A-Modul $M \otimes_A N$ und eine bilineare Abbildung $\gamma : M \times N \to M \otimes_A N$ mit folgender universellen Eigenschaft:

Für jeden A-Modul P und für jede bilineare Abbildung $\beta: M \times N \to P$ gibt es genau einen A-Modulhomomorphismus $\beta: M \otimes_A N \to P$ mit $\beta = \beta \circ \gamma$.

Def. $M \otimes_A N$ heißt **Tensorprodukt** von M und N über A.

Konstr. • Sei C der freie A-Modul A^I mit $I := M \times N$. Elemente von C haben die Form $\sum_{i=1}^{n} \lambda_i(x_i, y_i)$ mit $\lambda_i \in A$, $x_i \in M$, $y_i \in N$.

• Sei $D \subset C$ der von allen Elementen der Form

$$(x + x', y) - (x, y) - (x', y),$$
 $(ax, y) - a(x, y),$
 $(x, y + y') - (x, y) - (x, y'),$ $(x, ay) - a(x, y)$

mit $x, x' \in M$, $y, y' \in N$ und $a \in A$ erzeugte Untermodul.

• Setze $M \otimes_A N := C/D$.

Notation. $x \otimes y := \gamma(x, y)$

Bem. Jedes Element in $M \otimes_A N$ lässt sich als $\sum_{i=1}^n x_i \otimes y_i$ mit $x_i \in M, y_i \in N$ schreiben. In $M \otimes_A N$ gelten folgende Rechenregeln:

$$x \otimes (ay) = a(x \otimes y) = (ax) \otimes y$$
$$(x + x') \otimes (y + y') = x \otimes y + x' \otimes y + x \otimes y' + x' \otimes y'$$

Lem. Das Tensorprodukt induziert einen Bifunktor

$$\otimes_A : A\operatorname{-Mod} \times A\operatorname{-Mod} \to A\operatorname{-Mod}.$$

Lem. Sei A ein komm. Ring, M und N zwei A-Moduln, $x_i \in M$ und $y_i \in N$ mit $\sum_{i=1}^n x_i \otimes y_i = 0$ in $M \otimes_A N$. Dann gibt es endlich erzeugte Untermoduln $M_0 \subseteq M$ und $N_0 \subseteq N$ mit $x_1, \ldots, x_n \in M_0$, $y_1, \ldots, y_n \in N_0$ und $\sum_{i=1}^n x_i \otimes y_i = 0$ in $M_0 \otimes_A N_0$

Def. Sei A ein komm. Ring, M_1,\ldots,M_r und P A-Moduln. Eine Abbildung $\mu:M_1\times\ldots\times M_r\to P$ heißt A-multilinear, falls sie linear in jedem Argument ist.

Prop. Sei A ein komm. Ring, M_1,\ldots,M_r A-Moduln. Es existiert ein A-Modul $M_1\otimes_A\ldots\otimes_A M_r$ und eine multilineare Abbildung $\gamma:M_1\times\ldots\times M_r\to M_1\otimes_A\ldots\otimes_A M_r$ mit der univ. Eigenschaft Für jeden A-Modul P und für jede multilineare Abbildung $\mu:M_1\times\ldots\times M_r\to P$ gibt es genau einen A-Modulhomomorphismus $\underline{\mu}:M_1\otimes_A\ldots\otimes_A M_r\to P$ mit $\mu=\underline{\mu}\circ\gamma.$

Konstr. $M_1 \otimes_A \ldots \otimes_A M_r := M_1 \otimes_A (M_2 \otimes_A (\ldots \otimes_A M_r))$

Prop. Sei A ein komm. Ring und M, N und P drei A-Moduln. Es existieren kanonische Isomorphismen

$$M \otimes_A N \cong N \otimes_A M$$
, $(M \otimes_A N) \otimes_A P \cong M \otimes_A (N \otimes_A P)$, $(M \oplus N) \otimes_A P \cong (M \otimes_A P) \oplus (N \otimes_A P)$, $A \otimes_A M \cong M$.

Def. Seien A und B zwei komm. Ringe. Ein (A,B)-Bimodul ist eine abelsche Gruppe, welche sowohl ein A- als auch ein B-Modul ist, sodass die Modulstrukturen miteinander verträglich sind, d. h. für alle $a \in A$, $b \in B$ und $x \in N$ gilt a(bx) = b(ax).

Lem. Sei M ein A-Modul, P ein B-Modul und N ein (A, B)-Bi-modul. Dann gibt es einen kanon. Isomorphismus abelscher Gruppen

$$(M \otimes_A N) \otimes_B P \cong M \otimes_A (N \otimes_B P).$$

Def. Sei $\phi: A \to B$ ein Morphismus kommutativer Ringe.

- Die Skalareinschränkung eines B-Moduls N (vermöge φ) ist der A-Modul N^A, der als Menge und ab. Gruppe N ist und dessen Skalarmult. durch a · x := φ(a) · x definiert ist.
- Die Skalarerweiterung eines A-Moduls M (vermöge ϕ) ist der B-Modul $M_B := B^A \otimes_A M$ mit der Skalarmultiplikation definiert durch $b(b' \otimes x) := (bb') \otimes x$.

Prop. Sei $\phi: A \to B$ ein Morphismus kommutativer Ringe.

- • Sei N ein B-Modul. Ist B^A als A-Modul endlich erzeugt und N als B-Modul endlich erzeugt, so ist N^A als A-Modul endlich erzeugt.
- Sei M ein A-Modul. Ist m als A-Modul endlich erzeugt, so ist M_B als B-Modul endlich erzeugt.

Lem. Sei M ein A-Modul und N ein B-Modul. Dann existiert ein kanonischer Isomorphismus $N\otimes_B M_B\cong N^A\otimes_A M$ von B-Moduln.

Prop. Sei A ein komm. Ring und M, N und P drei A-Moduln. Dann ist folgende Abbildung ein A-Modulisomorphismus:

$$\operatorname{Hom}_A(M \otimes_A N, P) \to \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P)),$$

 $\beta \mapsto (x \mapsto (y \mapsto \beta(x \otimes y))).$

Bem. Mit anderen Worten: Es ex. eine Adj. $-\otimes_A N \dashv \operatorname{Hom}_A(N,-)$

Prop. Sei A ein komm. Ring. Das Tensorprodukt ist rechtsexakt, d. h. ist $E: M' \to M \to M'' \to 0$ eine exakte Sequenz von A-Moduln und N ein weiterer A-Modul, so ist auch die induzierte Sequenz

$$E \otimes_A N : M' \otimes_A N \to M \otimes_A N \to M'' \otimes_A N \to 0$$
 exakt.

Bem. Dies folgt daraus, dass das Tensorprodukt als Linksadjungierter Kolimiten erhält.

Achtung. Das Tensorprodukt ist i. A. nicht exakt. Insbesondere erhält es keine injektiven Abbildungen.

 $\mathbf{Def.}\,$ Sei Aein kommutativer Ring. Ein $A\text{-}\mathrm{Modul}\,\,M$ heißt flach, falls $(-\otimes_A M)$ exakt ist, d. h. falls für jede (lange) exakte Sequenz E auch $E \otimes_A M$ exakt ist.

Prop. Sei A komm. und M ein A-Modul. Es sind äquivalent:

- \bullet Der A-Modul M ist flach.
- Für jede kurze exakte Sequenz $E: 0 \to N' \to N \to N'' \to 0$ ist die tensorierte Sequenz $E \otimes_A M$ exakt.
- Für jede injektive A-lineare Abbildung $\phi: N \to N'$ ist auch $\phi \otimes \mathrm{id}_M : N \otimes_A M \to N' \otimes_A M$ injektiv.
- Für jede inj. A-lineare Abb. $\phi: N \to N'$ zw. endl. erzeugten A-Moduln ist auch $\phi \otimes id_M : N \otimes_A M \to N' \otimes_A M$ injektiv.

Prop. Sei $\phi: A \to B$ ein Homomorphismus kommutativer Ringe. Ist M ein flacher A-Modul, so ist M_B ein flacher B-Modul.

Algebren

Def. Eine kommutative A-Algebra B ist ein kommutativer Ring B zusammen mit einem Ringhomomorphismus $\phi: A \to B$, dem Strukturmorphismus der Algebra.

Bem. Ist $a \in A$ und $b \in B$, so definieren wir $ab := \phi(a)b$ (wie bei der Skalareinschränkung).

- **Bspe.** \bullet Sei K ein Körper. Eine nichttriviale K-Algebra ist dasselbe wie ein Ring, der K als Unterring enthält.
- Jeder Ring ist auf genau eine Weise eine Z-Algebra.

Def. Ein Homomorphismus von A-Algebren B und C ist ein Ringhomomorphismus $\chi: B \to C$, welcher einen Homomorphismus $\chi: B^A \to C^A$ von A-Moduln induziert.

Bem. Ein Ringhomomorphismus $\chi: B \to C$ ist also genau dann ein A-Algebrenhomomor., wenn $\chi(ab) = a\chi(b)$ für alle $a \in A$ und $b \in B$.

Bem. A-Algebren und ihre Homomor. bilden eine Kategorie A-Alg.

Def. Sei A ein komm. Ring. Eine komm. A-Algebra B heißt eine . .

- ... endliche A-Algebra, falls B^A als A-Modul endlich erzeugt ist, d. h. falls endlich viele Elemente $b_1, \ldots, b_n \in B$ existieren, sodass jedes Element aus B als A-Linearkombination der b_i geschrieben werden kann.
- ... A-Algebra endlichen Typs, falls endlich viele Elemente $b_1, \ldots, b_n \in B$ existieren, sodass jedes andere Element von B als Polynom in den b_i mit Koeffizienten aus A geschrieben werden kann.

Def. Ein kommutativer Ring heißt endlich erzeugt, falls er eine Z-Algebra endlichen Typs ist.

Def. Sei A ein kommutativer Ring. Seien $\phi: A \to B$ und $\psi: A \to C$ Bem. Damit ist der gerichtete Limes ein Funktor die Strukturabbildungen zweier A-Algebren B und C. Dann ist auf $D := B^A \otimes_A C^A$ eine Multiplikation durch

$$\mu: D \times D \to D, \quad (b \otimes c, b' \otimes c') \mapsto (bb') \otimes (cc')$$

definiert. Der Ring D wird mit der Strukturabbildung

$$\rho: A \to D, \quad a \mapsto \phi(a) \otimes 1 = 1 \otimes \psi(A)$$

zu einer A-Algebra. Diese heißt Tensorprodukt $B \otimes_A C$ der kommutativen Algebren B und C.

Gerichtete Limiten

Def. Eine gerichtete Menge ist eine nichtleere teilweise geordnete Menge (I, \leq) , sodass $\forall i, j \in I : \exists k \in I : i \leq k \land j \leq k$.

Bem. Eine teilweise geordnete Menge (I, \leq) ist genau dann gerichtet, wenn in I, aufgefasst als Präordnungskategorie, jedes endliche Diagramm einen Kokegel besitzt.

Def. Sei (I, \leq) eine gerichtete Menge und A ein Ring. Ein gerichtetes System M_{\bullet} von A-Moduln über I ist ein Funktor

$$M_{\bullet}: I \to A\text{-}\mathbf{Mod}, \quad i \mapsto M_i, \quad (i \le j) \mapsto \mu^i_j: M_i \to M_j,$$

wobei wir I als Präordnungskategorie auffassen.

Prop. Sei M_{\bullet} ein gerichtetes System von A-Moduln. Dann existiert der Kolimes $\varinjlim_{i \in I} M_i$ von M_{\bullet} .

Def. Dieser Kolimes wird gerichteter Limes von M_{\bullet} genannt.

Konstr. • Sei
$$C := \bigoplus_{i \in I} M_i$$
.

- ullet Sei $D\subseteq C$ der Untermodul, der von allen Elementen der Form $x_i - \mu_i^i(x_i)$ mit $i \leq j$ und $x_i \in M_i$ erzeugt wird.
- Dann erfüllt M := C/D die geforderte universelle Eigenschaft.

Bem. • Jedes $x \in \lim M_i$ wird durch ein $x_i \in M_i$ repräsentiert.

• Ein Element $x_i \in M_i$ repräsentiert dabei genau dann das Nullelement, falls ein $j \in I$ mit $i \leq j$ existiert, sodass $\mu_i^i(x_i) = 0$.

Lem. Jeder A-Modul ist der gerichtete Limes seiner endlich erzeugten Untermoduln.

Def. Sei (I, <) eine gerichtete Menge. Ein Homomorphismus von gerichteten Systemen M_{\bullet} und N_{\bullet} von A-Moduln über I ist eine natürliche Transformation $\phi_{\bullet}: M_{\bullet} \to N_{\bullet}$.

 $Bem.\ {\it Damit}$ bilden gerichtete Systeme von A-Moduln über Izusammen mit ihren Homomorphismen eine Kategorie [I, A-Mod].

Prop. Sei $\phi_{\bullet}: M_{\bullet} \to N_{\bullet}$ ein Morphismus zwischen gerichtete Systeme von A-Moduln über $I, M \coloneqq \varinjlim_{i \in I} M_i$ und $N \coloneqq \varinjlim_{i \in I} N_i$. Dann gibt es genau einen Morphismus $\phi \coloneqq \varinjlim_{i \in I} \phi_i : M \to N$ mit

$$(M_i \to M \xrightarrow{\phi} N) = (M_i \xrightarrow{\phi_i} N_i \to N)$$
 für alle $i \in I$.

$$\underset{i \in I}{\varinjlim} : [I, A\text{-}\mathbf{Mod}] \to A\text{-}\mathbf{Mod}.$$

Def. Eine Sequenz $M_{\bullet} \xrightarrow{\phi_{\bullet}} N_{\bullet} \xrightarrow{\psi_{\bullet}} P_{\bullet}$ von gerichteten Systemen von A-Moduln über I heißt exakt, falls für alle $i \in I$ die Sequenz $M_i \xrightarrow{\phi_i} N_i \xrightarrow{\psi_i} P_i$ exakt ist.

Prop. Der Gerichteter-Limes-Funktor ist exakt:

Sei $M_{\bullet} \xrightarrow{\phi_{\bullet}} N_{\bullet} \xrightarrow{\psi_{\bullet}} P_{\bullet}$ eine exakte Sequenz gerichteter Systeme von A-Moduln über I. Dann ist die induzierte Sequenz

$$\varinjlim_{i \in I} M_i \xrightarrow{\lim_{i \in I} \phi_i} \varinjlim_{i \in I} N_i \xrightarrow{\lim_{i \in I} \psi_i} \varinjlim_{i \in I} P_i \quad \text{ auch exakt.}$$

Prop. Sei M_{\bullet} ein gerichtes System von A-Moduln über I und N ein A-Modul. Dann gibt es einen kanonischen Isomorphismus

$$\varinjlim_{i\in I} (M_i \otimes_A N) \cong (\varinjlim_{i\in I} M_i) \otimes_A N.$$

Prop. Sei A_{\bullet} ein gerichtetes System von Ringen und Ringhomomorphismen. Fasse A_{\bullet} als gerichtetes System von ab. Gruppen (d. h. \mathbb{Z} -Moduln) auf. Dann gibt es $A := \lim_{i \to \infty} A_i$ eine Multiplikation, sodass

Aein Ring ist und die Gruppenhomomorphismen $A_i \to A$ sogar Ringhomomorphismen sind.

Prop. Ist $\lim_{i \to I} A_i = 0$, so gibt es ein $i \in I$ mit $A_i = 0$.

Def. Sei $(B_i)_{i \in I}$ eine Familie kommutativer A-Algebren. Für eine endliche Teilmenge $J \subset I$ setzen wir $B_J := \bigotimes B_i$.

Dann ist B_{\bullet} ein gerichtetes System über $(\mathcal{P}(I)_{\mathrm{fin}},\subseteq)$. Der Limes $\bigotimes B_i := \varinjlim B_J$ heißt **Tensorprodukt** über die Familie $(B_i)_{i \in I}$.

Lokalisierung

Def. Sei A ein Ring. Eine multiplikativ abgeschl. Teilmenge von A ist eine Teilmenge $S \subseteq A$ mit $1 \in S$ und $xy \in S$ für alle $x, y \in S$.

Bspe. • Ein Ring A ist genau dann ein Integritätsbereich, wenn $A \setminus \{0\}$ multiplikativ abgeschlossen ist.

• Sei $\mathfrak{a} \subseteq A$ ein Ideal. Dann ist $1 + \mathfrak{a}$ mult, abgeschlossen.

Prop. Sei A ein komm. Ring und $S \subseteq A$ mult. abgeschlossen. Dann gibt es einen komm. Ring $S^{-1}A$ und einen Ringhomomor. $\iota: A \to S^{-1}A$ mit folgender universeller Eigenschaft:

Für jeden Ring B und Ringhomomor. $\phi: A \to B$ mit $\phi(S) \subseteq B^{\times}$ gibt es genau einen Ringhomomor. $\psi: S^{-1}A \to B$ mit $\phi=\psi \circ \iota$.

 $\mathit{Konstr}.$ \bullet Führe auf der Menge der Paare $(a,s) \in A \times S$ eine Äquivalenz relation ein durch

$$(a,s) \sim (b,t) : \iff \exists u \in S : u(at-bs) = 0.$$

- Setze $S^{-1}A := (A \times S)/\sim$.
- Wir schreiben $\frac{a}{s}$ für die Äquivalenzklasse von (a, s) in $S^{-1}A$.
- Auf $S^{-1}A$ sind Addition und Mult. (wohl!) definiert durch

$$\frac{a}{s} + \frac{b}{t} := \frac{at + bs}{st}, \quad \frac{a}{s} \cdot \frac{b}{t} := \frac{ab}{st}.$$

• Der Ringhomomorphismus ist gegeben durch $\iota(a) := \frac{a}{1}$.

Def. Der kommutative Ring $S^{-1}A$ heißt **Lokalisierung** von A nach S und $\iota: A \to S^{-1}A$ ihr Strukturhomomorphismus.

Prop. Sei A komm. und $S \subseteq A$ mult. abgeschlossen. Dann gilt:

- Für alle $s \in S$ ist $\iota(s)$ eine Einheit in $S^{-1}A$.
- Ist $a \in A$ mit $\iota(a) = 0$, so gibt es ein $s \in S$ mit as = 0 in A.
- Jedes Element in $S^{-1}A$ hat die Form $\iota(a)\iota(s)^{-1}$ für ein $a\in A$ und ein $s\in S$.

Bem. Diese drei Eigenschaften charakterisieren die Lokalisierung eindeutig: Ist $\phi:A\to B$ ein Ringhomomorphismus, der die drei Eigenschaften von ι aus der letzten Prop. erfüllt, so gilt $B\cong S^{-1}A.$

Def. Sei A ein komm. Ring und $\mathfrak{p} \subset A$ ein Primideal. Dann ist $A \setminus \mathfrak{p}$ multiplikativ abgeschlossen. Der komm. Ring $A_{\mathfrak{p}} := (A \setminus \mathfrak{p})^{-1}A$ heißt **Lokalisierung** von A bei \mathfrak{p} oder **Halm** von A an \mathfrak{p} .

Bem. An ist ein lokaler Ring mit maximalem Ideal

$$\mathfrak{m} := A_{\mathfrak{p}}\mathfrak{p} = \{ \tfrac{a}{s} \mid a \in \mathfrak{p}, s \in A \setminus \mathfrak{p} \}.$$

Def. Sei A ein Integritätsbereich. Dann ist $S := A \setminus \{0\}$ mult. abgeschlossen. Die Lokal. $S^{-1}A$ heißt **Quotientenkörper** von A.

Bem. Der Strukturhomomorphismus $A\to S^{-1}A$ ist in diesem Fall injektiv, wir können daher Aals Unterring von $S^{-1}A$ ansehen. Der Körper $S^{-1}A$ ist der kleinste Körper, der Aals Unterring enthält.

Bsp. \mathbb{Q} ist der Quotientenkörper von \mathbb{Z}

Bsp.
$$S^{-1}A = 0 \iff 0 \in S$$

Def. Sei A ein komm. Ring, $f \in A$. Dann ist $S \coloneqq \{f^n \mid n \ge 0\}$ mult. abgeschlossen. Die Lokalisierung $A[f^{-1}] \coloneqq S^{-1}A$ heißt **Lokalisierung** von A außerhalb von f.

Konstr. Sei A ein kommutativer Ring, $S \subseteq A$ multiplikativ abgeschlossen und M ein A-Modul.

$$(m,s) \sim (m',s') : \iff \exists u \in S : u(ms'-m's) = 0.$$

- Wir schreiben $\frac{m}{s}$ für die Äquivalenzklasse von (m, s).
- Vermöge der Addition und der Skalarmultiplikation

$$\frac{m}{s} + \frac{n}{t} := \frac{mt + ns}{st}$$
 bzw. $\frac{a}{s} \cdot \frac{m}{t} := \frac{am}{st}$

wird $S^{-1}M := (M \times S)/\sim$ zu einem $S^{-1}A$ -Modul.

Def. Der $S^{-1}A$ -Modul $S^{-1}M$ heißt **Lokalisierung** von M nach S und $\iota: M \to (S^{-1}M)^A$, $m \mapsto \frac{m}{1}$ sein Strukturhomomorphismus.

Def. Sei $\mathfrak{p} \subset A$ ein Primideal. Der $A_{\mathfrak{p}}$ -Modul $M_{\mathfrak{p}} := (A \setminus \mathfrak{p})^{-1}M$ heißt *Lokalisierung* von M bei \mathfrak{p} oder Halm von M an \mathfrak{p} . Das Bild von $m \in M$ in $M_{\mathfrak{p}}$ heißt **Keim** von m an \mathfrak{p} .

Def. Sei $f \in A$. Dann heißt $M[f^{-1}] := \{f^n \mid n \ge 0\}^{-1}M$ die Lokalisierung von M außerhalb von f. Das Bild von $m \in M$ in $M[f^{-1}]$ heißt Einschränkung von m außerhalb von f.

Bem. Sei A ein kommutativer Ring und $S\subseteq A$ mult. abgeschlossen. Die Lokalisierung von A-Moduln nach S stiftet einen Funktor A-Mod $\to (S^{-1}A)$ -Mod: Für einen Morphismus $\phi: M \to N$ ist

$$S^{-1}\phi: S^{-1}M \to S^{-1}N, \quad \frac{m}{s} \mapsto \frac{\phi(m)}{s}$$

Prop. Die Lokalisierung ist exakt: Sei A ein komm. Ring und $S\subseteq A$ mult. abgeschlossen. Ist $M'\xrightarrow{\phi} M\xrightarrow{\psi} M''$ exakt, so ist auch $S^{-1}M'\xrightarrow{S^{-1}\phi} S^{-1}M\xrightarrow{S^{-1}\psi} S^{-1}M''$ exakt.

Prop. Sei A ein kommutativer Ring und $S\subseteq A$ mult. abgeschlossen. Sei M ein A-Modul und $P,N\subseteq M$ Untermoduln. Dann gilt:

- $S^{-1}(N+P) = S^{-1}N + S^{-1}P \subseteq S^{-1}M$
- $S^{-1}(M/N) \cong S^{-1}M/S^{-1}N$ als $S^{-1}A$ -Moduln
- $S^{-1}(N \cap P) = S^{-1}N \cap S^{-1}P \subseteq S^{-1}M$

Prop. Sei A ein komm. Ring und $S \subseteq A$ mult. abgeschlossen. Sei M ein A-Modul. Dann ist folgende Abb. ein Iso von $S^{-1}A$ -Moduln:

$$\phi: S^{-1}A \otimes_A M \to S^{-1}M, \ \frac{a}{s} \otimes m \mapsto \frac{am}{s}$$

Kor. Sei Aein komm. Ring und $S\subseteq A$ mult. abgeschlossen. Dann ist $S^{-1}A$ eine flache A-Algebra.

Prop. Sei A ein kommutativer Ring und $S \subseteq A$ mult. abgeschlossen. Seien M und N zwei A-Moduln. Dann ist folgende Abbildung ein Isomorphismus von $S^{-1}A$ -Moduln:

$$\phi: S^{-1}M \otimes_{S^{-1}A} S^{-1}N \to S^{-1}(M \otimes N), \quad \tfrac{m}{s} \otimes \tfrac{n}{t} \mapsto \tfrac{m \otimes n}{st}$$

Bsp. Sei $\mathfrak{p} \subset A$ ein Primideal. Dann gilt $M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}} \cong (M \otimes_{A} N)_{\mathfrak{p}}$.

Lokale Eigenschaften

Sprechweise. Eine Eigenschaft kommutativer Ringe (oder Moduln über einem solchen) heißt lokal, falls gilt:

Ein Ring A (bzw. Modul M) besitzt die Eigenschaft genau dann, wenn all seine Halme A_n (bzw. M_n) die Eigenschaft besitzen.

Prop. Sei A ein kommutativer Ring und M ein A-Modul. Dann sind äquivalent:

- M = 0
- $M_{\mathfrak{p}} = 0$ für alle Primideale $\mathfrak{p} \subset A$
- $M_{\mathfrak{m}} = 0$ für alle max. Ideale $\mathfrak{m} \subset A$

Mit der Exaktheit der Lokalisierung folgt:

Kor. Sei A ein kommutativer Ring und $\phi: M \to N$ ein Homomorphismus von A-Moduln.

- Es sind äquivalent:
 - $-\phi:M\to N$ ist injektiv.
 - $-\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ ist injektiv für alle Primideale $\mathfrak{p} \subset A$.
 - $-\phi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ ist injektiv für alle max. Ideale $\mathfrak{m} \subset A$.
- Es sind äquivalent:
 - $-\phi:M\to N$ ist surjektiv.
 - $-\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ ist surjektiv für alle Primideale $\mathfrak{p} \subset A$.
 - $-\phi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ ist surjektiv für alle max. Ideale $\mathfrak{m} \subset A$.

Prop. Sei A ein kommutativer Ring und M ein A-Modul. Dann sind äquivalent:

- \bullet M ist ein flacher A-Modul.
- $M_{\mathfrak{p}}$ ist ein flacher $A_{\mathfrak{p}}$ -Modul für alle Primideale $\mathfrak{p} \subset A$.
- $M_{\mathfrak{p}}$ ist ein flacher $A_{\mathfrak{m}}$ -Modul für alle max. Ideale $\mathfrak{m} \subset A$.

Ideale in Lokalisierungen

Notation. Sei A ein komm. Ring und $S \subseteq A$ mult. abgeschlossen. Für ein Ideal $\mathfrak{a} \subseteq A$ schreiben wir $S^{-1}\mathfrak{a} := (S^{-1}A)\mathfrak{a}$.

Bem. Dies ist gerechtfertigt, denn jedes Element in $(S^{-1}A)\mathfrak{a}$ hat die Form $\sum_i \frac{a_i}{s_i}$ und diese Terme können wir auf einen gemeinsamen Nenner bringen.

Prop. Alle Ideale in $S^{-1}A$ sind erweiterte Ideale, d. h. von der Form $S^{-1}\mathfrak{a}$ für ein Ideal $\mathfrak{a} \subseteq A$.

Prop.
$$A \cap (S^{-1}\mathfrak{a}) = \bigcup_{s \in S} (\mathfrak{a} : s)$$

Bsp.
$$S^{-1}\mathfrak{a} = (1) \iff \mathfrak{a} \cap S \neq \emptyset$$

Prop. Sei A ein komm. Ring und $S \subseteq A$ mult. abgeschlossen. Ein Ideal $\mathfrak{a} \subset A$ ist genau dann ein kontrahiertes Ideal bezüglich $A \to S^{-1}A$, wenn kein Element von S ein Nullteiler in A/\mathfrak{a} ist.

Prop. Sei A ein komm. Ring. Die Lokalisierung nach einer mult. abg. Teilmenge $S\subseteq A$ vertauscht mit folgenden Ideal-Operationen: endl. Summen, endl. Produkte, endl. Schnitte und Wurzeln. Das heißt, für zwei Ideale $\mathfrak{a},\mathfrak{b}\subseteq A$ gilt:

$$\begin{array}{lll} \bullet & S^{-1}(\mathfrak{a}+\mathfrak{b}) = S^{-1}\mathfrak{a} + S^{-1}\mathfrak{b} & \bullet & S^{-1}(\mathfrak{a}\cdot\mathfrak{b}) = S^{-1}\mathfrak{a}\cdot S^{-1}\mathfrak{b} \\ \bullet & S^{-1}(\mathfrak{a}\cap\mathfrak{b}) = S^{-1}\mathfrak{a}\cap S^{-1}\mathfrak{b} & \bullet & S^{-1}\sqrt{\mathfrak{a}} = \sqrt{S^{-1}\mathfrak{a}} \end{array}$$

Kor.
$$\sqrt{(0)} = S^{-1}\sqrt{(0)} \subset S^{-1}A$$

Prop. Sei A ein komm. Ring und $S \subseteq A$ mult. abgeschlossen. Folgende Korrespondenz ist bijektiv und monoton:

$$\{ \text{ Primideale } \mathfrak{p} \subset A \text{ mit } \mathfrak{p} \cap S = \emptyset \ \} \quad \leftrightarrow \quad \{ \text{ Primideale } \mathfrak{q} \subset S^{-1}A \ \}$$

$$\mathfrak{p} \quad \mapsto \quad S^{-1}\mathfrak{p} = (S^{-1}A)\mathfrak{p}$$

$$A \cap \mathfrak{q} \quad \leftrightarrow \quad \mathfrak{q}$$

Kor. Für ein Primideal $\mathfrak{r}\subset A$ liefert dies eine Korrespondenz

$$\{ \text{ Primideale } \mathfrak{p} \subset A \text{ mit } \mathfrak{p} \subseteq \mathfrak{r} \ \} \quad \leftrightarrow \quad \{ \text{ Primideale } \mathfrak{q} \subset A_{\mathfrak{r}} \ \}$$

Bem. Sei $\mathfrak{p} \subset A$ ein Primideal und $\mathfrak{q} \subseteq \mathfrak{p}$ ein weiteres Primideal. Lokalisieren bei \mathfrak{p} schneidet alle Primideale heraus, die nicht in \mathfrak{p} enthalten sind. Der Wechsel nach A/\mathfrak{q} schneidet alle Primideale heraus außer denen, die \mathfrak{q} enthalten. Somit enthält $A_{\mathfrak{p}}/(A_{\mathfrak{p}}\mathfrak{q}) = (A/\mathfrak{q})_{\mathfrak{p}}$ nur Primideale zwischen \mathfrak{q} und \mathfrak{p} .

Def. Sei A ein komm. Ring und $\mathfrak{p} \subset A$ ein Primideal. Der Körper $A(\mathfrak{p}) := A_{\mathfrak{p}}/(A_{\mathfrak{p}}\mathfrak{q}) = (A/\mathfrak{q})_{\mathfrak{p}}$ heißt **Restklassenkörper** von A an \mathfrak{p} .

Prop. Sei $\phi: A \to B$ ein Homomorphismus kommutativer Ringe. Dann ist ein Primideal $\mathfrak{p} \subset A$ genau dann eine Kontraktion eines Primideals in B, falls $A \cap (B\mathfrak{p}) = \mathfrak{p}$.

Prop. Sei A ein komm. Ring, $S \subseteq A$ mult. abgeschlossen und M ein endlich erzeugter A-Modul. Dann ist S^{-1} ann $(M) = \text{ann}(S^{-1}M)$.

Kor. Sei A ein komm. Ring, $S \subseteq A$ mult. abgeschlossen, M ein A-Modul und $N, P \subseteq M$ zwei Untermoduln. Ist P endlich erzeugt, so gilt $S^{-1}(N:P) = (S^{-1}N:S^{-1}P)$.

Primärzerlegung

Def. Ein Ideal $\mathfrak{q} \subset A$ heißt **primä**r, falls $1 \not\in \mathfrak{q}$ und falls aus $xy \in \mathfrak{q}$ schon $x \in \mathfrak{q}$ oder $\exists n \in \mathbb{N} : y^n \in \mathfrak{q}$ folgt.

Lem. $\mathfrak{q} \subsetneq A$ ist primär \iff { Nullteiler } = $\sqrt{(0)}$ in A/\mathfrak{q}

Bspe. • Primideale sind primär.

• Sei $\phi: A \to B$ ein Homomorphismus kommutativer Ringe. Ist $\mathfrak{b} \subset B$ primär, so auch $A \cap \mathfrak{b} \subset A$.

Lem. Sei \mathfrak{q} primär. Dann ist $\sqrt{\mathfrak{q}}$ das kleinste Primideal mit $\mathfrak{p} \supseteq \mathfrak{q}$.

Def. Sei $\mathfrak{q} \subset A$ ein primäres Ideal und $\mathfrak{p} \coloneqq \sqrt{\mathfrak{q}}$. Dann heißt \mathfrak{q} ein $\mathfrak{p}\text{-primäres}$ Ideal.

 $\begin{array}{cccc} \textit{Bem.} & \text{Primzahlen} & \hat{=} & \text{Primideale} \\ & \text{Primzahlpotenzen} & \hat{=} & \text{primäre Ideale} \end{array}$

Bsp. Die primären Ideale in $\mathbb Z$ sind die Ideale der Form (0) und (p^n) für eine Primzahl p.

Achtung. Im Allgemeinen ist ein primäres Ideal keine Potenz eines Primideals! Andersherum ist die Potenz eines Primideals auch nicht notwendigerweise primär. Analoges gilt aber für max. Ideale:

Prop. Sei $\mathfrak{a}\subset A$ ein Ideal. Ist $\mathfrak{m}:=\sqrt{\mathfrak{a}}$ ein maximales Ideal, so ist \mathfrak{a} ein \mathfrak{m} -primäres Ideal.

Kor. Ist \mathfrak{m} ein max. Ideal, so sind \mathfrak{m}^n mit $n \geq 1$ alle \mathfrak{m} -primär.

Def. Sei A ein komm. Ring und $\mathfrak{a} \subseteq A$ ein Ideal. Eine Darstellung von \mathfrak{a} als Schnitt $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$ endlich vieler primärer Ideale \mathfrak{q}_i heißt **Primärzerlegung** von \mathfrak{a} . Sind die $\sqrt{\mathfrak{q}_i}$ paarweise verschieden und gilt $\mathfrak{q}_i \not\supseteq \bigcap_{i \neq j} \mathfrak{q}_j$ für alle i, so heißt die Primärzerlegung **minimal**.

Def. Ein Ideal $\mathfrak{a} \subseteq A$ heißt **zerlegbar**, wenn es eine Primärzerlegung besitzt.

Lem. Sei $\mathfrak{p} \subset A$ ein Primideal und $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$ alle \mathfrak{p} -primär. Dann ist auch $(\mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n)$ wieder \mathfrak{p} -primär.

Kor. Man kann eine Primärzerlegung eines Ideals zu einer minimalen Primärzerlegung reduzieren.

Lem. Sei $\mathfrak{p} \subset A$ prim, \mathfrak{q} ein \mathfrak{p} -primäres Ideal und $x \in A$. Dann gilt:

- Ist $x \in \mathfrak{q}$, so gilt $(\mathfrak{q} : x) = (1)$.
- Ist $x \notin \mathfrak{q}$, so ist $(\mathfrak{q} : x)$ ein \mathfrak{p} -primäres Ideal.
- Ist $x \notin \mathfrak{p}$, so ist $(\mathfrak{q} : x) = \mathfrak{q}$.

Satz (erster Eindeutigkeitssatz). Sei A ein komm. Ring und $\mathfrak{a} \subseteq A$ ein Ideal mit minimaler Primärzerlegung $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$. Sei $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$. Dann sind die Ideale \mathfrak{p}_i genau die Ideale, die von der Form $\sqrt{(\mathfrak{a}:x)}$ mit $x \in A$ sind.

Bem. Insb. sind die Ideale \mathfrak{p}_i unabh. von der Primärzerlegung.

Def. Die Ideale \mathfrak{p}_i heißen die zu \mathfrak{a} assozierten Primideale.

Lem. Sei $\mathfrak p$ ein zu $\mathfrak a$ assoziiertes Primideal. Dann gibt es ein $x \in A$, sodass $(\mathfrak a : x)$ ein $\mathfrak p$ -primäres Ideal ist.

Def. Sei A ein komm. Ring und $\mathfrak{a} \subseteq A$ ein Ideal mit minimaler Primärzerlegung $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$. Sei $\mathfrak{p}_i := \sqrt{\mathfrak{q}_i}$. Die minimalen Elemente der Menge der zu \mathfrak{a} assoz. Primideale heißen isolierte **Primideale**, alle anderen zu \mathfrak{a} assoz. Primideale **eingebettete Primideale**. Ein primäres Ideal \mathfrak{q}_i heißt isolierte / eingebettete **Primärkomponente** von \mathfrak{a} , wenn \mathfrak{p}_i isoliert / eingebettet ist.

Prop. Sei $\mathfrak{a} \subseteq A$ ein zerlegbares Primideal.

Jedes Primideal $\mathfrak p$ mit $\mathfrak p\supseteq \mathfrak a$ enthält ein assoziiertes (und damit auch ein isoliertes) Primideal zu $\mathfrak a$.

Kor. Die isolierten Primideale zu \mathfrak{a} sind genau die min. Elemente von $\{ \text{ Primideale } \mathfrak{p} \subset A \text{ mit } \mathfrak{p} \supset \mathfrak{a} \} \cong \{ \text{ Primideale in } A/\mathfrak{a} \}.$

Prop. Sei $\mathfrak{a} \subseteq A$ ein Ideal mit min. Primärzerl. $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$. Sei $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$. Dann gilt $\bigcup_{i=1}^n \mathfrak{p}_i = \{x \in A \mid (a:x) \neq \mathfrak{a}\}$.

Prop. Sei A ein komm. Ring, in dem (0) zerlegbar ist. Dann gilt:

- Die Menge D der Nullteiler in A ist die Vereinigung der zu (0) assoziierten Primideale.
- Die Menge der nilpotenten Elemente ist der Schnitt aller (isolierten) Primideale, die zu (0) assoziiert sind.

Prop. Sei $\mathfrak{p} \subset A$ ein Primideal, \mathfrak{q} ein \mathfrak{p} -primäres Ideal und $S \subseteq A$ multiplikativ abgeschlossen. Dann gilt:

- Ist $S \cap \mathfrak{p} \neq \emptyset$, so folgt $S^{-1}\mathfrak{q} = (1)$.
- Ist $S \cap \mathfrak{p} = \emptyset$, so ist $S^{-1}\mathfrak{q}$ ein $S^{-1}\mathfrak{p}$ -primäres Ideal und es gilt $A \cap S^{-1}\mathfrak{q} = \mathfrak{q}$.

Kor. Sei A ein komm. Ring und $S \subseteq A$ multiplikativ abgeschlossen. Dann ist folgende Korrespondenz bijektiv und monoton:

$$\left\{ \begin{array}{lcl} \mathfrak{q} \subset A \text{ primär mit } \sqrt{\mathfrak{q}} \cap S = \emptyset \end{array} \right\} & \leftrightarrow & \left\{ \begin{array}{lcl} \mathfrak{r} \subset S^{-1}A \text{ primär } \right\} \\ \mathfrak{q} & \mapsto & S^{-1}\mathfrak{q} \\ A \cap \mathfrak{r} & \leftrightarrow & \mathfrak{r} \end{array}$$

Def. Sei A ein komm. Ring und $S \subseteq A$ mult. abgeschlossen. Die **Sättigung** eines Ideals $\mathfrak{a} \subseteq A$ bzgl. S ist das Ideal $S(\mathfrak{a}) := A \cap S^{-1}\mathfrak{a}$.

Prop. Sei A ein komm. Ring und $S \subseteq A$ mult. abgeschlossen. Sei $\mathfrak{a} \subseteq A$ ein Ideal mit minimaler Primärzerlegung $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$. Sei $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$. Seien die \mathfrak{q}_i so sortiert, dass ein m existiert mit $S \cap \mathfrak{p}_i = \emptyset \iff i \leq m$. Dann sind $S^{-1}\mathfrak{a} = S^{-1}\mathfrak{q}_1 \cap \ldots \cap S^{-1}\mathfrak{q}_m$ und $S(\mathfrak{a}) = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$ minimale Primärzerlegungen.

Def. Sei $\mathfrak{a} \subseteq A$ ein zerlegbares Ideal in einem kommutativen Ring. Eine Menge \mathfrak{S} von zu \mathfrak{a} assoz. Primidealen heißt **isoliert**, falls gilt:

$$\mathfrak{p}'\subseteq\mathfrak{p}\in\mathfrak{S}\implies\mathfrak{p}'\in\mathfrak{S}\quad\text{für zu \mathfrak{a} assoz. Ideale $\mathfrak{p},\mathfrak{p}'$}.$$

Prop. Sei $\mathfrak S$ eine isolierte Menge von zu $\mathfrak a$ assoziierten Primidealen. Dann ist $S \coloneqq A \setminus \bigcup_{\mathfrak p \in \mathfrak S} \mathfrak p$ multiplikativ abgeschlossen und für jedes an

 \mathfrak{a} assoziierte Primideal \mathfrak{p}' gilt: $\mathfrak{p}' \in \mathfrak{S} \iff \mathfrak{p}' \cap S = \emptyset$.

Satz (zweiter Eindeutigkeitssatz). Sei $\mathfrak{a} \subseteq A$ ein Ideal mit minimaler Primärzerlegung $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$. Sei $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$. Ist $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_m\}$ eine isolierte Menge von zu \mathfrak{a} assoziierten Primidealen, so ist $\mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_m$ unabhängig von der Zerlegung.

Für m=1 folgt:

Kor. Die isolierten Primärkomp, von a sind eindeutig bestimmt.