Chapter 11 Heteroscedasticity

남준우·허인 (2018), 제 9장

Gujarati/Porter (2018), Chapter 10

- 1. Sources, Nature (and Estimation)
- 2. Problems of Least Squares Estimator
- 3. Detecting Heteroscedasticity
- 4. Estimation
- 5. White's Heteroscedasticity-Autocorrelation Consistent Standard Errors (White's Robust Standard Errors)
- 6. Logarithms and Heteroscedasticity
- 7. Example

Homoscedasticity vs. Heteroscedasticity

$$V(\varepsilon_i) = \sigma^2 = V(\varepsilon_j)$$
 for $i \neq j$ vs. $V(\varepsilon_i) = \sigma_i^2 \neq \sigma_j^2 = V(\varepsilon_j)$ for $i \neq j$

1. Sources, Nature

- Conditional density function
- ► In general, as $x \uparrow$, $y \uparrow$ with variability of $y \uparrow$.
- ightharpoonup V(Y|X) increases as X increases.

☞(graph)

► Frequently encountered in cross-sectional models.

(Example)

- ① Income-Saving in low and high income group. (Discretion)
- ② Unit problem in long time series.
- ③ Small and large firms.
- 4 Learning by doing
- ⑤ Grouped data
- 6 Outlier

(Example) Data: UNIDO

- Relationship between value added in manufacturing(MANU) and GDP in cross-country data.
- Manufacturing output and GDP(millions of \$) for 28 countries in 1994.

$$MANU_i = \beta_1 + \beta_2 GDP_i + \varepsilon_i$$

- Likely to have heteroscedasticity.
- Rich countries will have larger errors than poor countries.

- 2. Consequences of Heteroscedasticity
- (1) Assumptions of classical regression model is violated.
- ► Gauss-Markov theorem does not hold.
- ► LS estimator is not BLUE.
- ► There may be better(more efficient) estimator ⇒ Generalized Least Squares Estimator.
- OLS is inefficient: There are other estimators that have lower variances.

(Note) Ordinary LS estimator vs. Generalized LS estimator

(2) Problem of OLS estimator in inferences

- OLS estimator: (b_2, S_{b_2})
- $ightharpoonup E(b_2) = \beta_2$.

$$V(b_2)\Big|_{\text{heteroscedasticity}} = \frac{\sum_{i=1}^{n} \sigma_i^2 (X_i - \overline{X})^2}{\left(\sum_{i=1}^{n} (X_i - \overline{X})^2\right)^2} \neq \frac{\sigma^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = V(b_2)\Big|_{\text{homoscedasticity}}.$$

► OLS estimator
$$s_{b_2}^2 = \frac{s^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$
, $E(s_{b_2}^2) \neq V(b_2) \Big|_{\text{heteroscedasticity}}$.

- So, inferences based on OLS is invalid.
- White's heteroscedasticity-(autocorrelaton)-corrected (HAC) estimator.

(Summary)

- OLS estimators still unbiased.
- ullet However, standard errors are wrong \Rightarrow use White's robust standard errors.
- Use $(b_2, White's robust standarderror)$ rather than (b_2, S_{b_2}) .

- 3. <u>Detecting Heteroscedasticity</u>
- (0) Graphical Method: residual plot (e_i^2 on X_i or \hat{y}_i).

(1) Goldfeld-Quandt Test

- Applicable under the assumption that the heteroscedastic variance σ_i^2 is monotonically related to one of the explanatory variables, $\sigma_i^2 = \sigma^2 X_i^2$.
- ① Order the sample by value of X.

$$X_i^{(1)} \le X_i^{(2)} \le \cdots \le X_i^{(n)}$$

- ② Drop the middle 10-15%(c) observations and take first n' and last n' observations(n'=(n-c)/2).
- ③ Run separate OLS on the two subsamples and get RSS1(from first n') and RSS2(from last n').

$$F = \frac{RSS_2}{RSS_1} \sim F(n'-k, n'-k) \text{ under } H_0.$$

If $F \ge F(n'-k, n'-k; \alpha)$, reject $H_0 \Rightarrow$ heteroscedasticity.

If $F < F(n'-k, n'-k; \alpha)$, do not reject $H_0 \Rightarrow$ homoscedasticity.

(2) Breusch - Pagan Test

- ► More general test
- Looks for any kind of association between σ_i^2 and independent variables, not just proportionality.
- Specified variables cause variation in the disturbances across observations.
- Model: $y_i = \beta_1 + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \varepsilon_i$,

$$\sigma_i^2 = \alpha_1 + \alpha_2 Z_{i2} + \dots + \alpha_p Z_{ip} + v_i$$

$$H_0: \alpha_2 = \cdots = \alpha_p = 0$$
 (homoscedasticity). $H_1: \text{ not } H_0$ (heteroscedasticity).

- ① LS regression of y on 1, X_2 , \cdots , X_k and get residual e_i .
- ② Run the following auxiliary regression and get R^2 : $e_i^2 = a_1 + a_2 Z_{i2} + \cdots + a_p Z_{ip} + \hat{v}_i$

③ Compute $n \cdot R^2$.

If
$$n \cdot R^2 \ge \chi^2(p-1;\alpha)$$
, reject H_0 . \Rightarrow heteroscedasticity.

If $n \cdot R^2 < \chi^2(p-1;\alpha)$, do not reject H_0 . \Rightarrow homoscedasticity.

(3) White test

• Model: $y_i = \beta_1 + \beta_2 X_i + \beta_3 Z_i + \varepsilon_i$

$$H_0: \sigma_i^2 = \sigma^2$$
 for all i , $H_1: \text{not } H_0$.

$$\sigma_i^2 = f(X_i, Z_i, X_i^2, Z_i^2, X_i Z_i) + v_i$$

$$\Rightarrow \sigma_i^2 = a_1 + a_2 X_i + a_3 Z_i + a_4 X_i^2 + a_5 Z_i^2 + a_6 X_i Z_i + v_i$$

- ① LS regression of y on 1, X, Z and get residual e_i .
- ② Run the following auxiliary regression and get R^2 :

$$e_i^2 = a_1 + a_2 X_i + a_3 Z_i + a_4 X_i^2 + a_5 Z_i^2 + a_6 X_i Z_i + \hat{v}_i$$

③ Compute $n \cdot R^2$.

If
$$n \cdot R^2 \ge \chi^2(5; \alpha)$$
, reject H_0 . \Rightarrow heteroscedasticity.

If
$$n \cdot R^2 < \chi^2(5; \alpha)$$
, do not reject H_0 . \Rightarrow homoscedasticity.

► Can extend to k-independent variables.

4. Estimation

(1) Generalized Least Squares Estimator: $V(\varepsilon_i) = \sigma_i^2$ is known

$$y_i = \beta_1 + \beta_2 X_i + \varepsilon_i, \quad V(\varepsilon_i) = \sigma_i^2$$

$$\Rightarrow \frac{y_i}{\sigma_i} = \beta_1 \frac{1}{\sigma_i} + \beta_2 \frac{X_i}{\sigma_i} + \frac{\varepsilon_i}{\sigma_i}$$

$$\Rightarrow y_i^* = \beta_1 Z_i^* + \beta_2 X_i^* + \varepsilon_i^* \quad \text{with } V(\varepsilon_i^*) = 1$$

• Since this new model is homoscedastic, OLS estimators will be efficient.

So, OLS of
$$\frac{y_i}{\sigma_i}$$
 on $\frac{1}{\sigma_i}$, $\frac{X_i}{\sigma_i}$ \Rightarrow GLS estimation.

(Note)

• OLS of
$$\frac{y_i}{\sigma_i}$$
 on $\frac{1}{\sigma_i}$, $\frac{X_i}{\sigma_i}$ == GLS of y_i on $(1, X_i)$ with weight $\frac{1}{\sigma_i}$; Weighted LS (WLS)

$$\min \sum_{i=1}^{n} (y_{i} * -\beta_{1} Z_{i} * -\beta_{2} X_{i} *)^{2}$$

$$= \min \sum_{i=1}^{n} \left(\frac{y_{i}}{\sigma_{i}} - \beta_{1} \frac{1}{\sigma_{i}} - \beta_{2} \frac{X_{i}}{\sigma_{i}} \right)^{2} .$$

$$= \min \sum_{i=1}^{n} \left\{ \frac{1}{\sigma_{i}} (y_{i} - \beta_{1} - \beta_{2} X_{i}) \right\}^{2}$$

- By weighting the observations by a factor $1/\sigma_i$, we are attaching greater importance to the observations with low σ_i .
- ⇒ Weighted Least Squares(WLS) estimator.

(Note) No constant term in the weighted regression.

- (2) Feasible Generalized Least Squares Estimator(FGLS)
- ① Proportional Heteroscedasticity:

$$y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$
, Assume $V(\varepsilon_i) = \sigma_i^2 = \sigma^2 X_i$

To make model with homoscedastic errors,

$$\frac{y_i}{\sqrt{X_i}} = \beta_1 \frac{1}{\sqrt{X_i}} + \beta_2 \sqrt{X_i} + \frac{\varepsilon_i}{\sqrt{X_i}} \quad \text{with } V\left(\frac{\varepsilon_i}{\sqrt{X_i}}\right) = \sigma^2$$

• Since this new model is homoscedastic, OLS estimators will be efficient.

So, LS of
$$\frac{y_i}{\sqrt{X_i}}$$
 on $\frac{1}{\sqrt{X_i}}$, $\sqrt{X_i}$. \Rightarrow FGLS estimation.

(Example) What if we assume $V(\varepsilon_i) = \sigma_i^2 = \sigma^2 X_i^2$?

② White's Estimator

• Model:
$$y_i = \beta_1 + \beta_2 X_i + \beta_3 Z_i + \varepsilon_i$$
, $\sigma_i^2 = \alpha_1 + \alpha_2 X_i + \alpha_3 Z_i + \alpha_4 X_i^2 + \alpha_5 Z_i^2 + \alpha_6 X_i Z_i + v_i$

- (a) LS regression of y on 1, X, Z and get residual e_i .
- (b) Run the following auxiliary regression $e_i^2 = a_1 + a_2 X_i + a_3 Z_i + a_4 X_i^2 + a_5 Z_i^2 + a_6 X_i Z_i + \hat{v}_i$ and get $\hat{\sigma}_i^2 \equiv \widehat{e_i^2} = a_1 + a_2 X_i + \dots + a_6 X_i Z_i$.
- (c) To make model with homoscedastic errors, take $\hat{\sigma}_i \equiv \sqrt{\hat{e_i}^2}$

$$\frac{y_i}{\hat{\sigma}_i} = \beta_1 \frac{1}{\hat{\sigma}_i} + \beta_2 \frac{X_i}{\hat{\sigma}_i} + \beta_3 \frac{Z_i}{\hat{\sigma}_i} + \varepsilon_i *.$$

• Since this new model is homoscedastic, OLS estimators will be efficient.

So, OLS of model $(c) \Rightarrow FGLS$ estimation.

(Note)

① In getting $\hat{\sigma}_i$ in step (b), (c),

$$\hat{\sigma}_i = \sqrt{\hat{\sigma}_i^2} = \sqrt{\hat{e}_i^2}$$
, NOT $\hat{\sigma}_i = \hat{e}_i$

② Sometimes, in step (b),

 $\hat{\sigma}_i^2 < 0$ is possible, so $\sigma_i = \sqrt{\hat{\sigma}_i^2}$ cannot be defined.

• What if we assume $\sigma_i^2 = \sigma^2 \cdot \exp(a_1 X_i + a_2 Z_i + a_3 X_i^2 + a_4 Z_i^2 + a_5 X_i Z_i + v_i)$?

Then,
$$\widehat{\ln \sigma_i^2} = a_0 + a_1 X_i + a_2 Z_i + a_3 X_i^2 + a_4 Z_i^2 + a_5 X_i Z_i$$
,

get
$$\hat{\sigma}_i^2 = \exp(\widehat{\ln \sigma_i^2})$$
.

Then, go to step (c).

- (3) White's Heteroscedasticity-Corrected Standard Errors (White's Robust Standard Errors)
- FGLS is efficient when we are confident about the form of heteroscedasticity.
 What if we do not know the form of heteroscedasticity?
- One method: Use OLS after correcting the variance term ⇒ White's Robust Standard Errors
 Some econometricians say that OLS with White's robust standard error is superior to FGLS.
- For simple regression, since $V(b_2) = \frac{\displaystyle\sum_{i=1}^n (X_i \overline{X})^2 V(\varepsilon_i)}{\displaystyle\left(\displaystyle\sum_{i=1}^n (X_i \overline{X})^2\right)^2} = \frac{\displaystyle\sum_{i=1}^n (X_i \overline{X})^2 \sigma_i^2}{\displaystyle\left(\displaystyle\sum_{i=1}^n (X_i \overline{X})^2\right)^2}$,

use
$$\hat{V}(b_2) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 e_i^2}{\left(\sum_{i=1}^{n} (X_i - \bar{X})^2\right)^2}$$
 as estimated variance or standard errors.

⇒ White's HAC (Heteroscedasticity and autocorrelation consistent (or corrected)) estimator.

5. Logarithms and Heteroscedasticity

- Sometimes, taking logarithm of dependent variable reduce the degree of heteroscedasticity.
- However, semilog specification would impose a particular shape; thus misspecification.

(Example 1)

File name: UNIDO

Source: UNIDO Yearbook 1997

Note:

MANU: value added in manufacturing (US\$ million)

GDP: gross domestic product (US\$ million)

POP: population(million)

(1) OLS

Model 1: OLS, using observations 1-28 Dependent variable: MANU

	Coefficient	Std. E	rror	t-ratio	p-value	
const	603.953	5699	.67	0.1060	0.9164	
GDP	0.193693	0.013	3428	14.52	< 0.0001	***
Mean dependent var	5259	05.05	S.D.	dependent var	694	472.47
Sum squared resid	1.43	e+10	S.E. o	of regression	234	461.93
R-squared	0.89	0172	Adjus	sted R-squared	0.8	85948
F(1, 26)	210.	7346	P-val	ue(F)	5.5	53e-14
Log-likelihood	−320 .	4605	Akail	ke criterion	644	4.9211
Schwarz criterion	647.	5855	Hann	an-Quinn	643	5.7356

(2) White's test for heteroscedasticity

► (1)의 결과에서 Tests ⇒ Heteroscedasticity Tests ⇒ White's Test 를 선택

White's test for heteroskedasticity

OLS, using observations 1-28

Dependent variable: uhat^2

	coefficient	std. error	t-ratio	p-value
const	-4.21382e+08	4.51255e+08	-0.9338	0.3593
GDP	6271.89	2758.25	2.274	0.0318 **
sq_GDP	-0.00411546	0.00226259	-1.819	0.0809 *

Unadjusted R-squared = 0.211391

Test statistic: TR² = 5.918939,

with p-value = P(Chi-square(2) > 5.918939) = 0.051846

(3) White's robust standard error: HAC estimator

Model / OLS Estimation 창 아래 왼쪽 Robust standard errors 항을 체크한다.

Model 3: OLS, using observations 1-28

Dependent variable: MANU

Heteroskedasticity-robust standard errors, variant HC1

	Coefficient	Std. Er	ror	t-ratio	p-value	
const	603.953	3542	39	0.1705	0.8659	
GDP	0.193693	<mark>0.0179</mark> :	<mark>541</mark>	10.79	< 0.0001	***
Mean dependent var	5259	5.05	S.D. de	ependent var	694	472.47
Sum squared resid	1.436	e+10	S.E. of	regression	234	461.93
R-squared	0.890	0172	Adjuste	ed R-squared	0.8	85948
F(1, 26)	116.3	3853	P-value	e(F)	4.2	27e-11
Log-likelihood	-320.4	4605	Akaike	criterion	644	4.9211
Schwarz criterion	647.5	5855	Hannar	n-Quinn	643	5.7356

(4)변수의 변환

Manupop=manu/pop

Gdppop=gdp/pop

Invconst=1/pop

WLS: Per capita data

► Manupop를 Invconst, Gdppop에 회귀분석

Model 1: OLS, using observations 1-28
Dependent variable: manupop

	Coefficient	Std. E	rror	t-ratio	p-value	
invconst	612.275	1370	.51	0.4468	0.6588	
gdppop	0.182253	0.0155	5108	11.75	< 0.0001	***
Mean dependent var	2.82	5215	S.D.	dependent var	1.9	61627
Sum squared resid	31.0	0287	S.E. o	of regression	1.0	91979
Uncentered R-square	d 0.90	5302	Cente	ered R-squared	0.7	01596
F(2, 26)	124.	2786	P-val	ue(F)	4.9	93e-14
Log-likelihood	-41.1	5653	Akail	ce criterion	86.	31306
Schwarz criterion	88.9	7747	Hann	an-Quinn	87.	12760

(Example 2) data: USEDCAR

변수명	변 수 설 명	비 고
ABSEQ	ABS장치의 유무 여부	ABS 장치가 없으면=0
		ABS 장치가 있으면=1
AIRBAG	에어백 개수	에어백이 없는 경우=0
		운전석에만 있는 경우=1
		운전석과 조수석에 모두 있는 경우=2
AUTO	자동변속기 유무 여부	자동변속기=1, 기타=0
CC	배기량	단위: cc
CVT	무단변속기 유무 여부	무단변속기=1, 기타=0
DIESEL	디젤 엔진 여부	디젤엔진의 경우=1, 기타=0
GAS	휘발유 사용 여부	휘발유 엔진의 경우=1, 기타=0
LPG	LPG연료 사용 여부	LPG엔진의 경우=1, 기타=0
MILEAGE	주행거리	단위: km
PERIOD	출고후 경과기간	단위: 개월
PRICE	중고차 (매매 완료) 가격	단위: 만원
DWOO	제조회사	대우차=1, 기타=0
HYUN	제조회사	현대차=1, 기타=0
KIA	제조회사	기아차=1, 기타=0
SSANG	제조회사	쌍용차=1, 기타=0

2002년 말 현재 여러 인터넷 중고차 매매 사이트의 정보를 통해 실제 판매된 145개 중고 차량을 대상으로 조사한 자료.

Model: $log(price_i) = \beta_1 + \beta_2 CC_i + \beta_3 Period_i + \beta_4 Airbag_i + \varepsilon_i$

(1) OLS estimation

Model 1: OLS, using observations 1-145
Dependent variable: 1_PRICE

	Coefficient	Std. E	rror	t-ratio	p-value	
const	6.09645	0.0763	3532	79.85	< 0.0001	***
AIRBAG	0.186334	0.0309	9484	6.021	< 0.0001	***
CC	0.000518743	3.38428	8e-05	15.33	< 0.0001	***
PERIOD	-%S	0.00083	38089	−%#.4g	< 0.0001	***
Mean dependent va	r 6.85	6559	S.D.	dependent var	0.5	76598
Sum squared resid	9.10	8667	S.E. o	of regression	0.2	54166
R-squared	0.80	9741	Adjus	sted R-squared	0.8	05693
F(3, 141)	200.	0312	P-val	ue(F)	1.3	34e-50
Log-likelihood	-5.10	1803	Akail	ce criterion	18.	20361
Schwarz criterion	30.1	1054	Hann	an-Quinn	23.	04180

(2) White's test

White's test for heteroskedasticity

OLS, using observations 1-145

Dependent variable: uhat^2

	coefficient	std. error	t-ratio	p-value	
const	-0.0736790	0.0780381	-0.9441	0.3468	
AIRBAG	-0.0781653	0.0780761	-1.001	0.3185	
СС	0.000126545	7.60720e-05	1.663	0.0985 *	
PERIOD	0.000955978	0.00164686	0.5805	0.5626	
sq_AIRBAG	0.0110297	0.0175151	0.6297	0.5299	
X2_X3	1.45754e-05	2.84971e-05	0.5115	0.6099	
X2_X4	0.000339351	0.000641647	0.5289	0.5978	
sq_CC	-2.25646e-08	1.98339e-08	-1.138	0.2573	
X3_X4	-1.68336e-06	6.64106e-07	-2.535	0.0124 **	
sq_PERIOD	4.36323e-05	9.00784e-06	4.844	3.44e-06 **	*

Unadjusted R-squared = 0.423644

Test statistic: TR^2 = 61.428373,

with p-value = P(Chi-square(9) > 61.428373) = 0.000000

(3) White Robust Standard Error: HAC estimator

Model 2: OLS, using observations 1-145

Dependent variable: l_PRICE

Heteroskedasticity-robust standard errors, variant HC1

	Coefficient	Std. E	rror	t-ratio	p-value	
const	6.09645	0.0813	3171	74.97	< 0.0001	***
AIRBAG	0.186334	0.0264	1546	7.044	< 0.0001	***
CC	0.000518743	3.0780	5e-05	16.85	< 0.0001	***
PERIOD	-%S	0.0014	9739	−%#.4g	< 0.0001	***
Mean dependent va	r 6.85	6559	S.D. o	lependent var	0.5	76598
Sum squared resid	9.10	8667	S.E. c	of regression	0.2	54166
R-squared	0.80	9741	Adjus	sted R-squared	0.8	05693
F(3, 141)	168.	0053	P-valu	ue(F)	2.3	35e-46
Log-likelihood	-5.10	1803	Akaik	e criterion	18.	20361
Schwarz criterion	30.1	1054	Hanna	an-Quinn	23.	04180

(4) Weighted Least Squares

- ① OLS estimation에서 구한 $e_i^{\ 2}$ 을 White's test에 사용된 변수에 회귀분석하여 $\widehat{e_i^{\ 2}}$ 을 구하여 save한다.
- ② |Mode| / |Other linear mode| / |VLS|에서 $|\widehat{e_i}|^2$ 을 weight로 지정함.

Model 8: WLS, using observations 1-145

Dependent variable: l_PRICE

Variable used as weight: weight

	Coefficient	Sta. Error	t-ratio	p-value	
const	6.01642	0.0633770	94.93	< 0.0001	***
AIRBAG	0.210118	0.0257631	8.156	< 0.0001	***
CC	0.000508055	2.82205e-05	18.00	< 0.0001	***
PERIOD	-%S	0.00111600	−%#.4g	< 0.0001	***

Statistics based on the weighted data:

Sum squared resid	177.3833	S.E. of regression	1.121623
R-squared	0.789884	Adjusted R-squared	0.785413
F(3, 141)	176.6860	P-value(F)	1.45e-47
Log-likelihood	-220.3606	Akaike criterion	448.7212
Schwarz criterion	460.6281	Hannan-Quinn	453.5593

Statistics based on the original data:

Mean dependent var	6.856559	S.D. dependent var	0.576598
Sum squared resid	9.571608	S.E. of regression	0.260545