

Chapter. 21

많다고 좋은게 아니다: 차원의 저주 문제

문제 정의 및 해결 방안

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승

l 문제 정의

• 차원이 증가함에 따라 필요한 데이터의 양과 시간 복잡도가 기하급수적으로 증가하는 문제를 의미함

1차원을 줄여야 하는 이유

- 차원이 증가함에 따라 모델 학습 시간이 정비례하게 증가함
- 차원이 증가하면 각 결정 공간에 포함되는 샘플 수가 적어져, 과적합으로 이어져 성능 저하가 발생할 수 있음

Chapter 21

많다고 좋은게 아니다: 차원의 저주 문제

|특징 선택

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승

l개요

- 분류 및 예측에 효과적인 특징만 선택하여 차원을 축소하는 방법
- n개의 특징으로 구성된 특징 집합 $\{x_1, x_2, ..., x_n\}$ 에서 $m \ll n$ 개의 특징을 선택하여, 새로운 특징 집합 $\{x_1', x_2', ..., x_m'\} \subset \{x_1, x_2, ..., x_n\}$ 을 구성하는 방법

x_1	x_2	x_3	x_4	у
$x_1^{(1)}$	$x_2^{(1)}$	$x_3^{(1)}$	$x_4^{(1)}$	y ⁽¹⁾
$x_1^{(2)}$	$x_2^{(2)}$	$x_3^{(2)}$	$x_4^{(2)}$	y ⁽²⁾
$x_1^{(3)}$	$x_2^{(3)}$	$x_3^{(3)}$	$x_4^{(3)}$	y ⁽³⁾
$x_1^{(3)}$	$x_2^{(4)}$	$x_3^{(4)}$	$x_4^{(4)}$	y ⁽⁴⁾
:	:	:	:	:
$x_1^{(N)}$	$x_2^{(N)}$	$x_3^{(N)}$	$x_4^{(N)}$	$y^{(N)}$

x_1	x_3	у
$x_1^{(1)}$	$x_3^{(1)}$	y ⁽¹⁾
$x_1^{(2)}$	$x_3^{(2)}$	y ⁽²⁾
$x_1^{(3)}$	$x_3^{(3)}$	y ⁽³⁾
$x_1^{(3)}$	$x_3^{(4)}$	y ⁽⁴⁾
:	•••	:
$x_1^{(N)}$	$x_3^{(N)}$	$y^{(N)}$

Ⅰ적용 대상

- 특징 선택은 특징이 많은 데이터에만 적용해야 한다? 그렇지 않다!
- (예제) 특징이 7개인 데이터에 대해, 모든 특징 집합을 비교해보기
 - 모든 특징을 사용했을 때의 성능 (f1-score): 0.3333
 - ▶ 특징을 두 개만 쓰는 경우에 가장 좋은 성능을 보였음 ({At1, At6}: 0.5714)

모든 특징을 썼을 때보다 성능이 좋았던 특징 집합의 비율

Ⅰ주먹구구식 특징 선택

- 선택 가능한 모든 특징 집합을 비교/평가하여 가장 좋은 특징 집합을 선택하는 방법
- 그러나 특징 개수가 n개라면, $2^n 1$ 번의 모형 학습이 필요하므로, 현실적으로 적용 불가능함
 - ▶ 1초에 1억 번의 모형을 학습할 수 있는 슈퍼 컴퓨터가, 1000개의 특징이 있는 데이터에 대해, 이 방법을 적용하여 가장 좋은 특징 집합을 선택하는데 소요되는 시간은 400조년

Ⅰ 필터링 기반의 특징 선택

• 특징과 라벨이 얼마나 관련이 있는지를 나타내는 <mark>클래스 관련성이 높은 특징</mark>을 우선 선택하는 방법

특징
x_1
x_2
x_3
x_4
x_5
x_6
x_7

클래스 관련성
$R(x_1) = 1.2$
$R(x_2) = 1.4$
$R(x_3) = 0.6$
$R(x_4) = 0.9$
$R(x_5) = 2.3$
$R(x_6) = 4.1$
$R(x_7) = 3.3$

선택된 특징
x_6
x_7
x_5
x_2

Ⅰ클래스 관련성

- 클래스 관련성 (class relevance)란, 한 특징이 클래스를 얼마나 잘 설명하는지를 나타내는 척도로, 상관계수, 카이제곱 통계량, 상호정보량 등의 특징과 라벨 간 독립성을 나타내는 통계량을 사용하여 측정
- 즉, 클래스 관련성이 높은 특징은 분류 및 예측에 도움이 되는 특징이며, 그렇지 않은 특징은 도움이 되지 않는 특징임
- (예시) 범주형 특징 분류

클래스 관련성이 높은 이진형 특징 x_1

 $x_1 = 1인 샘플의 클래스 변수의 분포$

 $x_1 = 0$ 인 샘플의 클래스 변수의 분포 클래스 관련성이 낮은 이진형 특징 x_2

 $x_2 = 1인 샘플의 클래스 변수의 분포$

 $x_2 = 0$ 인 샘플의 클래스 변수의 분포

l 클래스 관련성 척도 예시: F - 통계량

• F – 통계량은 ANOVA에서 사용하는 통계량으로, <mark>집단 간 평균 차이</mark>가 있는지를 측정하기 위한 통계량

- 지도학습에서 집단이란 특징 값 혹은 클래스 값을 기준으로 나뉜 샘플 집합을 의미
- $> x_1$ 의 값에 따라 y 분류가 어느정도 가능하지만, x_2 는 그렇지 않음

Ⅰ클래스 관련성 척도 분류

• 클래스 관련성 척도는 특징과 라벨의 유형에 따라 선택함

통계량	특징 유형	라벨 유형	관련 함수
카이제곱 통계량	이진형	이진형 (분류)	chi2
상호 정보량	이진형	이지형 (브린)	mountaine aloosif
	연속형	이진형 (분류)	mutual_info_classif
	이진형	연소성 (에ᄎ)	mutual_info_regression
	연속형	연속형 (예측)	
F – 통계량	연속형	이진형 (분류)	f_classif
	연속형	연속형 (예측)	f_regression

□ 관련 함수: sklearn.feature_selection.SelectKBest

- 주요 입력
 - ▶ scoring_func: 클래스 관련성 측정 함수 (예: chi2, mutual_info_classif, f_regression 등)
 - ▶ k: 선택하는 특징 개수
- 주요 메서드
 - ▶ .fit, .transform, .fit_transform: 특징을 선택하는데 사용하는 메서드
 - > .get_support(): 선택된 특징의 인덱스를 반환
- 주요 속성: scoring_func(X, Y)의 결과물과 같음
 - > scores_: scoring_func으로 측정한 특징별 점수
 - ▶ pvalues_: scoring_func으로 측정한 특징별 p-value (1에 가까울수록 독립적이며, 0에 가까울수록 관련성이 높음)

Chapter.

많다고 좋은게 아니다: 차원의 저주 문제

감사합니다

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승