Textline segmentation datasets, papers and results

October 25, 2018

1 cBAD dataset

CBAD: ICDAR2017 Competition on Baseline Detection

Explanation: This competition contains two datasets, Simple Documents and Complex Documents. Only task is baseline detection.

Download dataset Download evaluator

		Simple			Complex	
Paper	P-Val	R-Val	F-Val	P-Val	R-Val	F-Val
dhSegment: A	0.943	0.939	0.941	0.826	0.924	0.872
generic deep-						
learning approach						
for document						
segmentation						
DMRZ	0.973	0.970	0.971	0.854	0.863	0.859
BYU	0.878	0.907	0.892	0.773	0.820	0.796
UPVLC	0.937	0.855	0.894	0.833	0.606	0.702
IRISA	0.883	0.877	0.880	0.692	0.772	0.730
LITIS	0.780	0.836	0.807	-	-	-

2 HisDoc dataset

ICDAR2017 Competition on Layout Analysis for Challenging Medieval Manuscripts

Explanation: This competition contains 3 datasets (CB55, CSG18, CSG865) and two tasks. Task 2 is baseline detection, Task 3 is bounding polygon detection.

Download dataset

Download evaluator for task 2

Download evaluator for task 3

		Task 2			Task 3	
Paper	CB55	CSG18	CSG863	CB55	CSG18	CSG863
	(F1-scr)	(F1-scr)	(F1-scr)	(PIU)	(PIU)	(PIU)
Baseline Detection	99.91	99.25	98.52	-	-	-
in Historical Docu-						
ments using Convo-						
lutional U-Nets						
System-8	98.96	98.53	97.16	93.75	94.47	90.81
System-2	95.97	98.79	98.79	80.23	75.31	93.68
System-7	95.34	87.34	97.51	-	-	-
System-6	30.53	54.52	46.09	-	-	-

3 ICDAR 2013 Textline Segmentation Contest

ICDAR2013 Handwriting Segmentation Contest

Explanation: Metrics are detection rate (DR), recognition accuracy (RA) and F measure (FM)

Download dataset

Download evaluator

Paper	DR	RA	FM
A Robust and Binarization-Free Approach for Text	96.75	96.21	96.48
Line Detection in Historical Documents			
Winner	98.68	98.64	98.66

4 ICFHR 2010 Handwriting Segmentation Contest

ICFHR 2010 Handwriting Segmentation Contest

Explanation: Metrics are detection rate (DR), recognition accuracy (RA) and F measure (FM)

Download dataset

Download evaluator

Paper	DR	RA	FM
A Robust and Binarization-Free Approach for Text	98.10	97.86	97.98
Line Detection in Historical Documents			
Text Line Detection for Heterogeneous Documents	97.18	96.94	97.06
Winner	97.54	97.72	97.63

5 ICDAR2009 Handwriting Segmentation Contest

ICDAR2009 Handwriting Segmentation Contest

Explanation: Metrics are detection rate (DR), recognition accuracy (RA) and F measure (FM).

Download dataset

Download evaluator

Paper	DR	RA	FM
A Robust and Binarization-Free Approach for Text	99.21	99.13	99.17
Line Detection in Historical Documents			
Text Line Detection for Heterogeneous Documents	98.59	98.59	98.59
Language-Independent Text-Line Extraction Algo-	99.60	99.63	99.62
rithm for Handwritten Documents			
Winner	99.55	99.50	99.53

6 Saint Gall dataset

Ground truth creation for handwriting recognition in historical documents

Explanation: Metrics are detection rate (DR), recognition accuracy (RA) and F measure (FM). Icdar 2009 contest evaluator can be used to measure these metrics.

Download dataset

Download evaluator

Paper	DR	RA	FM
Complete Text Line Extraction with Convolutional	96.39	96.52	96.46
Neural Networks and Watershed Transform			
Text Line Detection for Heterogeneous Documents	98.59	98.59	98.59
Language-Independent Text-Line Extraction Algo-	99.60	99.63	99.62
rithm for Handwritten Documents			

7 Parzival dataset

Ground truth creation for handwriting recognition in historical documents

Explanation: Metrics are detection rate (DR), recognition accuracy (RA) and F measure (FM). Icdar 2009 contest evaluator can be used to measure these metrics.

Download dataset

Download evaluator

Paper	DR	RA	FM
Complete Text Line Extraction with Convolutional	98.65	98.86	98.75
Neural Networks and Watershed Transform			