Exame de Qualificação PPGC – Instituto de Informática – UFRGS 7 de dezembro de 2016

Profs. Marcus Ritt e Álvaro Moreira

Nome:	Alexandra L. Zimpeck	Nº: 241241
Responda apenas 2 questões da parte de Algoritmos e 2 questões da parte da Te		questões da parte da Teoria.

Algoritmos

- 1. (2,5 pts) Projete um algoritmo polinomial que decide se existe um caminho Hamiltoniano num grafo direcionado acíclico e retorna o caminho caso a resposta for "sim".
 - (2.) (2,5 pts) Temos duas sequências de números a_1,\ldots,a_n e b_1,\ldots,b_m . As sequências estão ordenadas de forma não-decrescente (i.e. $a_1 \leq a_2 \leq \cdots \leq a_n$ e $b_1 \leq b_2 \leq \cdots \leq b_m$). Projete um algoritmo em tempo $O(\log n + \log m)$ que encontre o k-ésimo menor número na união das duas sequências.
 - (3.) (2,5 pts) Dado uma sequência de números a_1,\ldots,a_n reais queremos descobrir o segmento $[i,j]\subseteq [1,n],\ i< j$ com a maior soma $\sum_{k\in [i,j]}a_k$. Projete um algoritmo que resolve o problema em tempo O(n).

Teoria

- 1. Disserte sobre o Problema da Parada. Na sua resposta deixe claro qual o papel da Tese de Church-Turing na prova de que ele é indecidível e também como a indecidibilidade do Problema da Parada pode ser usada na prova da indecidibilidade de outros problemas.
- (2,5 pts) Para cada uma das afirmações abaixo (i) diga se ela é verdadeira, falsa, ou se mais informação é necessária para concluir sobre o seu valor verdade, e (ii) justifique a
 - Ordenar uma lista de números em ordem ascendente é um problema em NP \lor
 - Se um problema é classificado como NP-Completo isso significa que ele é um problema cuja solução requer um tempo exponencial no tamanho da sua entrada
 - NP-Completo. Então isso equivale a afirmar que, na prática, é inviável determinar se um grafo muito grande possui ou não caminho Hamiltoniano
- $(2,5~{
 m pts})$ Seja ${
 m Subset}$ ${
 m Sum}$ o seguinte problema de decisão: dado um conjunto de inteiros positivos $S = \{v_1, \dots v_n\}$ e um número t determinar se existe um subconjunto de elementos de S cuja soma é igual a t
 - a) Explique porque SUBSET SUM está em NP
 - b) Sabendo que $3\mathrm{SAT}$ é NP-difícil (NP-Hard) e que $3\mathrm{SAT}$ pode ser reduzido em tempo polinomial para Subset Sum explique porque Subset Sum é NP-completo