1.

Tabela 1:

1	4	6	3	-1
9	7	10	9	-7
4	5	11	7	-4
8	7	8	5	-5

0	3	5	2
2	0	3	2
0	1	7	3
3	2	3	0

0	3	2	2
2	0	0	2
0	1	4	3
3	2	0	θ

-0 -0 -3 -0

3 riscos < 4

Valor mínimo das entradas não riscadas = 1, subtraia dessas entradas, para entradas cobertas por dois riscos adicione esse valor.

0*	2	1	1
3	0	0*	2
0	0*	3	2
4	2	0	0*

Valor da solução: 1 + 10 + 5 + 5 = 21

Tabela 2:

10000	37000	15000	18000	11000
8000	30000	119000	21000	9000
12000	32000	14000	20000	9000
15000	35000	4000	22000	10000
0	0	0	0	0

-10000 -8000 -9000 -4000 -0

0	27000	5000	8000	1000
0	22000	111000	13000	1000
3000	23000	5000	11000	Ф
11000	31000	0	18000	6000
0	0	0	0	0

4 riscos < 5

Valor mínimo das entradas não riscadas = 8000, subtraia dessas entradas, para entradas cobertas por dois riscos adicione esse valor.

0	19000	5000	0*	1000
0*	14000	111000	5000	1000
3000	15000	5000	3000	0*
11000	23000	0*	10000	6000
8000	0*	8000	0	8000

Valor da solução: 8000 + 0 + 4000 + 18000 + 9000 = 39000

2.

Grafo 1

a. Número de independência: 4

b. Número clique: 2

c. Número de dominação: 5

Grafo 2

a. Número de independência: 7

b. Número clique: 2

c. Número de dominação: 5

- **3.** Os vértices seriam os postos de vacinação e as arestas indicariam os postos que podem ser atendidos pelo vértice que o liga. É um problema de conjunto dominante mínimo, pois o problema pede a quantidade mínima de postos de coordenação para atender todos os postos, ou seja, a menor cardinalidade de vértices dominantes.
- **4.** Os vértices representam as disciplinas e as arestas representam conflito entre disciplinas, isto é, se tiver aluno em comum os vértices são adjacentes. É um problema que pode ser resolvido com coloração de vértices, encontrando o número cromático, temos o número mínimo de dias de exames necessários para que nenhum aluno tenha que fazer mais de um exame por dia.
- **5.** Podemos modelar esse problema como um grafo de interferência, onde os vértices represem cada criança e uma aresta as conecta caso elas estejam na creche no mesmo momento. Podemos resolver com coloração de vértices, encontrando o número cromático temos a quantidade de escaninhos necessários para que cada criança tenha um escaninho individual.
- **6.** Considerando arestas como experimentos e as arestas entre eles significa que eles podem ser colocados juntos no refrigerador, podemos resolver como conjunto independente. O conjunto independente máximo nos daria os experimentos que não podem ser colocados juntos, logo o número de refrigeradores necessários.

7.

 $\{1, 7, 8\} - 1$ fica verde; 7 e 8 fica vermelho $\{1, 3\} - 1$ fica azul; 3 fica verde V pode ser verde

8.

Grafo 1

a. Número cromático: 2

Grafo 2

a. Número cromático: 2

9. Se G e H são isomorfos, a relação de adjacência entre os vértices será preservada entre um grafo e o outro, com isso o número cromático de ambos será o mesmo.