Wiederholung

· Áquivalent relationer, ÄR

R,S,T

- M Menge, N ÄR => M/N = { ExJn | x ∈ M}

- { N ÄR auf M}

bijehtir

Partition von M

P Partion Non M}

$$R_{f}: \times R_{f} \times' : \Leftrightarrow f(x) = f(x')$$

$$\bar{f}(x)_{R_{f}}) := f(x)$$

$$\bar{f} \text{ int injection}$$

$$f = \bar{f} \circ \partial e$$

M Glasperla, N Farba

f(x) := Farbe von x

M/R_f Menge der Ferbhlame

RAT · Ordnunge R T Präordning RAT mit: fin alle x, y & M; x = y oder y = x Totalordning: Praordrung =: X SY : (=) X = Y und Y = X Z.B. Z, I teilbarhait · - x minimal (maseinal): (= Ordning out M) Y = X => Y = X $\left(X \le Y = \right)$ X = Y- x bleinter Element (grøfte) x = y fin alle y ∈ M (y = x fin alle y ∈ M) - x kleinster & größter / =) x minimal (maximal / - Falls kleinster (grøjster) Element ex.: min Ma (max M)

Algebraische Strukturen

Verknüpfungen

Motivation

Rechenregeln in \mathbb{N}_0

Für alle $x, y, z \in \mathbb{N}_0$ gilt:

$$> x + (y + z) = (x + y) + z$$

$$\triangleright$$
 0 + x = x

$$\triangleright x + y = y + x$$

▶
$$1 \cdot x = x$$

$$\triangleright x \cdot y = y \cdot x$$

Die Operationen + und · sind Beispiele für Verknüpfungnen.

Definition

M Menge

Verknüpfung auf M: Abbildung \bullet : $M \times M \rightarrow M$

Notation:

▶ für $x, y \in M$: $x \bullet y := \bullet(x, y)$

Beispiele

- ▶ auf \mathbb{N}_0 : $+: \mathbb{N}_c \times \mathbb{N}_c \longrightarrow \mathbb{N}_c$, $(x,y) \longmapsto x+y$,
- ▶ auf ℤ: +, ', -: (x, 4) → x-y
- ▶ auf Q: +, ·, -
- ϕ and $Q : \{0\}:$: getailt durch $(x,y) \mapsto x:y = \frac{x}{y}$

Definition

M Menge, ● Verknüpfung auf M

▶ • assoziativ: für alle $x, y, z \in M$:

$$x \bullet (y \bullet z) = (x \bullet y) \bullet z$$

▶ • *kommutativ*: für alle $x, y \in M$:

$$x \bullet y = y \bullet x$$

Definition

M Menge, ● Verknüpfung auf M

neutrales Element bzgl. •: $e \in M$ so, dass für $x \in M$:

$$e \bullet x = x \bullet e = x$$

Bemerkung

M Menge, • Verknüpfung auf M

es gibt höchstens ein neutrales Element bzgl. • Bewein: Seien e, e' neutrale Elemente bzgl. •

Definition

M Menge, \bullet Verknüpfung auf M, e neutrales Element bzgl. \bullet $x \in M$

▶ *linksinverses Element* zu x bzgl. •: $y \in M$ mit

$$y \bullet x = e$$

▶ rechtsinverses Element zu x bzgl. •: $y \in M$ mit

$$x \bullet y = e$$

▶ inverses Element zu x bzgl. •: $y \in M$ mit

$$y \bullet x = e = x \bullet y$$

Bemerkung

M Menge

• assoziative Verknüpfung auf M, e neutrales Element bzgl. • $x \in M$

es gibt höchstens ein inverses Element zu x bzgl. •

=)
$$x' = x' \cdot e = x' \cdot (x \cdot x'') = (x' \cdot x) \cdot x'' = e \cdot x'' = x''$$
.

Monoide

Definition

► Monoid: besteht aus

 (M, \bullet)

- ► *M* Menge
- assoziative Verknüpfung auf M
- ▶ e, neutrales Element bezgl. •

Missbrauch von Notation: notiere Monoid wieder als M

Terminologie und Notationen:

► *Multiplikation* von *M*: Notation:

- Verknüpfungszeichen weggelassen

► M Monoid

M heißt abelsch (oder kommutativ): · ist kommutativ

Axiome in Standardnotation

► Monoid *M*:

► für
$$x, y, z \in M$$
:
► es ex. $e \in M$ so, dass für $x \in M$:
 $ex = e = xe$.
 $ex = x = x \in ME$
 $ex = x = x \in ME$

► Abelsches Monoid *M*:

Zusätzlich:

• für
$$x, y \in M$$
: $xy = yx$

Wir sagen auch: M ist multiplikativ geschrieben.

Bei multiplikativer Schreibweise benutzt man oft das Zeichen 1 für das neutrale Element e. Für $x \in M$ und $n \in \mathbb{N}$ schreibt man auch $x^n := x \cdot x \cdot \cdots \cdot x$ (n Faktoren).

Bei einem abelschen Monoid M benutzt man oft das Zeichen + für die Verknüpfung.

Wir sagen auch: M ist additiv geschrieben.

In diesem Fall schreibt man meistens 0 für das neutrale Element. Für $x \in M$ und $n \in \mathbb{N}$ schreibt man auch $nx := x + x + \cdots + x$ (n Summanden).

Axiome in Standardnotation

Fire
$$x, y, z \in M$$
: $x + (y + z) = (x + y) + z$ AG

▶ es ex.
$$0 \in M$$
 so, dass für $x \in M$: $0 + x = x = x + 0$

• für
$$x, y \in M$$
: $x + y = y + x$

Beispiele

[Halbgrappe]

alle abelid

- ▶ N mit üblicher Addition: Kein Monoid, da kein NE begl. +
 - ► N mit üblicher Multiplikation: Monoi'd
- ► N₀ mit üblicher Addition: Monoid
 - ► No mit üblicher Multiplikation: Monoid
- w & I mit übliche Addition: "

Beispiel

nicht-kommutatives Monoid mit genau drei Elementen:

Multiplikationstatel x.y Zeile zu x, Spalle zu y

Für AG: Berunte cnix = Cn V x EM, cz. Y = Cz Y EM.

Wortmonoid

Definition

Alphabet 2.B. {a,b, --, 2}

A Menge

▶ Für $n \in \mathbb{N}$ und $a_1, \ldots, a_n \in A$ nennen wir

 $a_1 a_2 \cdots a_n$ emil

ein Wort der Länge n über A. Läuge 0: E leenen Worf

- ▶ $A^* := \{ w \mid w \text{ ist Wort der Länge } n \text{ über } A, n \in \mathbb{N}_0 \}.$ A^* enthält das Wort ϵ der Länge 0.
- Für zwei Wörter $v:=a_1\cdots a_n$ und $w:=b_1\cdots b_m$ über A sei

$$v * w := a_1 \cdots a_n b_1 \cdots b_m$$

die Verkettung oder Konkatenation von v und w.

▶ $(A^*, *)$ ist ein Monoid mit neutralem Element ϵ , das Wortmonoid über A.

Abbildungsmonoid

Bemerkung

M Menge

 $\mathrm{Abb}(M,M)$ ist Monoid mit Verknüpfung $(g,f)\mapsto g\circ f$ und neutralem Element id_M . Nach früheren Regeln für \circ

Bemerkung

Sei M Menge und $f \in Abb(M, M)$.

- ▶ f besitzt Rechtsinverses $\Leftrightarrow f$ ist surjektiv.
- ▶ f besitzt Linksinverses $\Leftrightarrow f$ ist injektiv.
- ▶ f besitzt Inverses $\Leftrightarrow f$ ist bijektiv.

f hat Rechtsinverses =) f surjektiv Ben: Sei ge Abb (M,M) nut glille Alder fog = idM Sei y & M. $Y = id_{M}(Y) = (f \circ g)(Y) = f(g(Y)). =) g(Y) int Urbilel von Y unter f.$ f benitet Linksinvener => f injektiv Sei ge Abb(M,M) mit gof = idm. Seien $x_1x' \in M$ mit f(x) = f(x'). Zu reigen: x = x! Haben: $x = nid_{M}(x) = (g \circ f)(x) = g(f(x)) = g(f(x')) = (g \circ f)(x') = id_{M}(x') = x'.$

Invertierbare Elemente

Definition

- ▶ M Monoid, $x \in M$
 - ► x invertierbar in M: es gibt ein inverses Element zu x bzgl. ·
 - ► x invertierbar

Inverse zu x in M: das zu x inverse Element y bzgl. Notation:

► Menge der invertierbaren Elemente in M:

$$M^{\times} = \{x \in M \mid x \text{ invertierbar}\}$$
 $M \text{ multiplihative geoderichen, } x \text{ invertierbar: } x^{-1} \text{ den Inverse von } x$
 $M \text{ additive } -" - | x | v | :-x | -x | -x | x$

Invertierbare Elemente (Forts.)

Beispiel

- ▶ 0 einziges invertierbare Element in \mathbb{N}_0 $(N_0, +)^{\times} = 10$
- ▶ A Menge: $(A^*)^{\times} = \{\epsilon\}$

Proposition

M Monoid

- ▶ für $x, y \in M^{\times}$: $xy \in M^{\times}$ mit $(xy)^{-1} = y^{-1}x^{-1}$
- $1 \in M^{\times} \quad \mathsf{mit} \ 1^{-1} \qquad = 1$
- für $x \in M^{\times}$: $x^{-1} \in M^{\times}$ mit $(x^{-1})^{-1} = x$

Bervein: - $(xy) \cdot (y^{-1}x^{-1}) = xyy^{-1}x^{-1} = x1x^{-1} = x \cdot x^{-1} = 1$. $(y^{-1}x^{-1})(xy) = y^{-1}x^{-1} = y^{-1}1y^{-1} = yy^{-1} = 1$. - $x \cdot x^{-1} = x^{-1}x = 1 = x^{-1}$ int inverties be and $(x^{-1})^{-2} = x$

Gruppen

Definition

- ► *Gruppe*: Monoid, in dem jedes Eleament invertierbar ist.
- ► Abelsche Gruppe: abelsches Monoid, in dem jedes Element invertierbar ist.

In einer Gruppe Gigilt also: (1 NE)

Zu jeden $x \in G$ ex. $y \in G$ mit xy = yx = 1.

Gruppen (Forts.)

Beispiel

► Z mit üblicher Addition: Abelsche Gruppe

► Z mit üblicher Multiplikation: Keine Gruppe, z. B. int O midht invertierbas

▶ • Q mit üblicher Addition: Abelsche Gruppe

▶ Q mit üblicher Multiplikation: Keine Gruppe, da O micht in vertierba

- (Q1505,.) Abelsche Gruppe

 \mathbb{R} $(\mathbb{R}_{>0}, \cdot)$

Gruppen (Forts.)

Definition

A abelsche Gruppe

Subtraktion von A: Verknüpfung $(x, y) \mapsto x + (-y)$ auf A

Notation: —

$$x + (-y) = : x - y$$

$$0 - (1 - 1) + (0 - 1) - 1$$