Td 1 - Espaces vectoriels, applications linéaires

1 Sous-espaces vectoriels

Exercice 1 (Commutant d'une matrice)

:commutantTD1:

Soient les matrices : $A = \begin{bmatrix} -2 & 2 \\ -6 & 5 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, et $P = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.

On appelle **commutant** de D l'ensemble : $C_D = \{ M \in \mathcal{M}_2(\mathbb{R}) \text{ telles que } D \cdot M = M \cdot D \}.$

- **1.** Montrer que C_D est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- **2.** Pour une matrice quelconque $M = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$, résoudre l'équation : $D \cdot M M \cdot D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
- **3.** En déduire que, pour D_1 et D_2 matrices bien choisies, on peut écrire : $\mathcal{C}_D = \text{Vect}(D_1, D_2)$.

On s'intéresse maintenant au commutant de A, soit : $C_A = \{N \in \mathcal{M}_2(\mathbb{R}) \text{ tels que } A \cdot N = N \cdot A\}.$

- **4.** Comparer $P \cdot D$ et $A \cdot P$. En déduire la valeur de $P \cdot D \cdot P^{-1}$. (Naturellement, on aura **d'abord** vérifié que P est inversible!)
- **5.** En déduire la condition nécessaire et suffisante : $[P \cdot M \cdot P^{-1} \in \mathcal{C}_A \iff M \in \mathcal{C}_D]$
- **6.** Montrer que le sous-espace C_A s'écrit aussi sous la forme : $C_A = \text{Vect}(A_1, A_2)$.

(avec A_1 , A_2 deux matrices à préciser.)

Exercice 2 (Une équation différentielle linéaire)

:eqDifLin:

Soit $E = \mathcal{C}^1(\mathbb{R})$ l'espace vectoriel des fonctions de classe \mathcal{C}^1 .

On s'intéresse à l'ensemble : $S = \{ f \in C^1(\mathbb{R}), \text{ telles que } f'(x) = f(x) \}.$

- 1. Montrer que l'ensemble $\mathcal S$ est un sous-espace vectoriel de E.
- **2.** Pour quelle valeur de la constante $\lambda \in \mathbb{R}$, l'application $e_{\lambda} : x \mapsto e^{\lambda \cdot x}$ vérifie-t-elle $e_{\lambda} \in \mathcal{S}$? En déduire un sous-espace vectoriel non-nul de \mathcal{S} .
- **3.** Soit $f \in \mathcal{S}$. On note $g: x \mapsto f(x) \cdot e^{-x}$. Que peut-on alors dire de la fonction g? Conclure sur l'expression du sous-espace vectoriel \mathcal{S} .

Exercice 3 (Espace de suites linéaires récurrentes)

:suitLinRec:

Soit $E = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites de réels.

On note: $F = \{(u_n) \in E \text{ tels que } \forall n \in \mathbb{N}, \quad u_{n+2} = u_{n+1} + u_n\}.$

- **1.** Montrer que *F* est un sous-espace vectoriel de *E*.
- **2. Équation caractéristique** Soit $(g_n)_{n\in\mathbb{N}}=(q^n)_{n\in\mathbb{N}}$ une suite géométrique. (avec $q\in\mathbb{R}$)
 - a) Montrer que $g \in F$ ssi q est solution d'une certaine équation trinomiale du second degré à préciser.
 - **b**) En déduire quelles sont les suites géométriques contenues dans *F*.
- **3.** Soit $(u_n) \in F$ telle que $u_0 = u_1 = 0$. Montrer qu'alors, $\forall n \in \mathbb{N}$, on a : $u_n = 0$.
- **4.** Montrer qu'il existe une unique suite $(f_n) \in F$ telle que $f_0 = 0$ et $f_1 = 1$. Donner son expression comme une combinaison linéaire de deux suites géométriques.

2 Exemples d'applications linéaires

Exercice 4 (Une application linéaire entre des espaces de matrices)

:sevMatAplin:

Soient les ensembles de matrices $F = \left\{ \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}), \text{ où } a = d \right\}, \text{ et}$ $F = \left\{ \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}), \text{ où } a + b + c + d = 0 \right\}.$

1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$. Qu'en est-il de G?

On considère la matrice : $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.

- **2. a)** Montrer que si $M \in F$, alors $A \cdot M \in G$.
 - **b)** Montrer que l'application $f: M \mapsto A \cdot M$ définit une application linéaire $f: F \to G$.
- **3.** L'application f est-elle bijective? Si non, déterminer son noyau et son image.

Exercice 5 (Recherche d'une application linéaire)

:rechMatAplin:

Pour $A \in \mathcal{M}_2(\mathbb{R})$, on note $\varphi_A : \begin{cases} E \to E \\ M \mapsto A \cdot M, \end{cases}$ où E désigne l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$.

1. Montrer que l'application φ_A définit bien un endomorphisme de E.

Soient F et G les ensembles définis par : $F = \{ \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}), \text{ où } a = d \}, \text{ et } G = \{ \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}), \text{ où } a + d = 0 \}.$

On cherche les matrices A qui vérifient la propriété (\star) : $[\forall M \in F, \varphi_A(M) \in G]$.

- **2.** Justifier que les ensembles F et G sont des sous-espaces vectoriels de E.
- **3.** Montrer que l'ensemble H des matrices vérifiant la propriété (\star) est un sous-espace vectoriel de E.
- **4.** En considérant $\varphi_A(M)$ avec $M \in F$ judicieusement choisie, montrer que $H \subset G$.
- **5.** Montrer de même que si $\begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} \in H$, alors, on a : $\begin{bmatrix} \gamma & 0 \\ \delta & 0 \end{bmatrix} \in G$ et $\begin{bmatrix} 0 & \alpha \\ 0 & \beta \end{bmatrix} \in G$.
- **6.** Conclure: pour une certaine matrice *D* non-nulle que l'on précisera, on a : H = Vect(D).

Exercice 6 (Un endomorphisme matriciel (inspiré de EmLyon 2014))

:endomMat2014Mini:

On considère l'espace $\mathcal{M}_2(\mathbb{R})$ des matrices d'ordre 2 à coefficients réels.

On définit : $\mathcal{F} = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}, (a,b,c) \in \mathbb{R}^3 \right\}$ l'ensemble des matrices triangulaires supérieures.

- **1. a)** Montrer que \mathcal{F} est un espace vectoriel.
 - **b)** Établir que \mathcal{F} est stable par multiplication, c'est à dire : $\forall (M,N) \in \mathcal{F}^2$, $M \cdot N \in \mathcal{F}$.
 - c) Montrer que, pour toute matrice M de \mathcal{F} , si M est inversible alors $M^{-1} \in \mathcal{F}$.

Soit la matrice $T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Pour toute matrice M de \mathcal{F} , on note f(M) = TMT.

- **2.** Montrer que f est un endomorphisme de \mathcal{F} .
- **3.** Vérifier que T est inversible et démontrer que f est un automorphisme de \mathcal{F} .
- **4.** a) Montrer que $(f \text{Id})^2 = 0$. (on dit que $P(X) = (X 1)^2$ est un polynôme annulateur de f.)
 - **b)** En déduire que l'automorphisme f a pour inverse est $f^{-1} = 2\operatorname{Id} f$.
 - c) Calculer Ker(f Id). (ce noyau est un sous-espace propre de f.)

3 Manipulations formelles (polynômes d'endomorphisme)

On a parfois pu rencontrer des exercices du type des deux suivants, même s'ils ne sont pas très typiques des épreuves ECE

Exercice 7 (Manipulation formelle d'endomorphismes: projections) : projections Formelles:

Soit E un espace vectoriel. On note Id l'endomorphisme identité de E.

Soit $p \in \text{End}(E)$ un endomorphisme tel que $p \circ p = p$.

- **1.** Montrer que l'endomorphisme q défini par : $\forall x \in E$, q(x) = x p(x) vérifie aussi $q^2 = q$.
- **2.** Montrer que $\forall x \in E$, on a : p(q(x)) = q(p(x)) = 0. En déduire que $\operatorname{Im}(p) \subset \operatorname{Ker}(q)$.
- **3.** Réciproquement, montrer que si q(x) = 0, alors il existe $x' \in E$ tel que x = p(x'). En déduire l'égalité des sous-espaces vectoriels : Ker(q) = Im(p).
- **4.** Montrer que si p(x) = q(x), alors x = 0. En déduire que $Ker(p) \cap Ker(q) = \{\vec{0}\}$.

Exercice 8 (Manipulation formelle d'endomorphismes: involution) : involutions Formelles:

Soit E un espace vectoriel. On note Id l'endomorphisme identité de E.

Soit $s \in \text{End}(E)$ un endomorphisme tel que $s \circ s = \text{Id}$.

On note p et q les endomorphismes définis par : $\forall x \in E$, $p(x) = \frac{1}{2}(x + s(x))$,

$$q(x) = \frac{1}{2}(x - s(x)).$$

- **1.** Reconnaître les endomorphismes p + q et p q, ainsi que p^2 et q^2 .
- **2.** Calculer les compositions : $p \circ q$, $s \circ p$.
- **3.** Montrer que la transposition $\tau \in \operatorname{End}(\mathcal{M}_n(\mathbb{R}))$ définie par : $\tau(M) = {}^tM$ vérifie $\tau^2 = \operatorname{Id}$. Quels sont les endomorphismes p et q associés?
- **4.** Montrer que l'endomorphisme $r \in \operatorname{End}(\mathbb{R}[X])$ défini par : r(P(X)) = P(-X) vérifie $r^2 = \operatorname{Id}$. Quels sont les endomorphismes p et q associés?

4 Applications linéaires

Exercice 9 (Crochet de deux endomorphismes sur les polynômes)

:crochetPoly:

Soit $E = \mathbb{R}[X]$, et d,m les applications $E \to E$ définies pour $P \in E$, par : d(P) = P',

$$M(P) = X \cdot P$$
.

- **1. a)** Montrer que d,m sont deux endomorphismes de E.
 - **b)** Déterminer le noyau de d et celui de m.
 - c) Les applications d et m sont-elles surjectives?
- **2.** On note: $f = d \circ m$ et $g = m \circ d$.
 - a) Montrer que pour $P \in E$, on a : $f(P) = X \cdot P'(X) + P(X)$.
 - **b)** En déduire une expression simple de l'endomorphisme $d \circ m m \circ d$.

Exercice 10 (Une équation différentielle linéaire)

:eqDifLinApplin:

Soit $E = \mathcal{C}^{\infty}(\mathbb{R})$ l'espace vectoriel des fonctions dérivables « autant de fois qu'on veut ». Pour $f \in E$, on note $\varphi_f : x \mapsto f'(x) + f(x)$, et on considère φ l'application $\varphi : f \mapsto \varphi_f$.

- 1. Montrer que l'application φ définit un endomorphisme de E.
- **2.** Pour quelle valeur de la constante $\lambda \in \mathbb{R}$, l'application $e_{\lambda} : x \mapsto e^{\lambda \cdot x}$ vérifie-t-elle $\varphi(e_{\lambda}) = 0$? En déduire un sous-espace vectoriel non-nul de $\operatorname{Ker}(\varphi)$.
- **3.** Soit $f \in \text{Ker}(\varphi)$. On note $g : x \mapsto f(x) \cdot e^x$. Que peut-on alors dire de la fonction g? Conclure sur l'expression du sous-espace vectoriel $\text{Ker}(\varphi)$.

Exercice 11 (Dérivation et primivation)

:crochetDerPrim:

- 1. Montrer que les applications δ et σ sont des endomorphismes de E.
- **2.** Calculer les composées $\delta \circ \sigma$ et $\sigma \circ \delta$.
- **3.** Soit $f \in E$. Que peut-on dire de la fonction $g = \delta \circ \sigma(f) \sigma \circ \delta(f)$?

Exercice 12 (Décalage et sommes partielles)

:decalageSommesPartielles:

- 1. Montrer que les applications δ et σ sont des endomorphismes de E.
- **2.** Montrer que, pour $(u_n) \in E$, la suite (x_n) définie par : $x = (\delta \circ \sigma \sigma \circ \delta)(u)$ est constante.
- **3.** Calculer la composée $\delta \circ \sigma$ et en déduire la composée $\sigma \circ \delta$.

Exercice 13 (Autre point de vue sur les suites linéaires récurrentes)

:suitLinRecAutrePdV:

Soit $E = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites de réels. On s'intéresse à l'application $\varphi : E \to E$ définie pour $(u_n) \in E$, par : $\varphi((u_n)) = (v_n)$ où $\forall n \in \mathbb{N}$, $v_n = u_{n+2} - u_{n+1} + 6u_n$.

1. Montrer que l'application φ est un endomorphisme de E.

On note $F = \text{Ker}(\varphi)$.

2. Pour $q \in \mathbb{R}$, calculer la suite $\varphi((q^n)_{n \in \mathbb{N}})$. (on l'écrira comme une suite géométrique.) Pour quelles valeurs de q a-t-on $(q^n) \in F$?

Notons δ l'endomorphisme de E défini par $\delta((u_n)) = (v_n)$ avec $\forall n \in \mathbb{N}$: $v_n = u_{n+1}$. On considère les deux endomorphismes ψ_1, ψ_2 définis par : $\psi_1 = \delta - 3 \cdot \text{Id}$ et $\psi_2 = \delta + 2 \cdot \text{Id}$.

- a) Expliciter l'image d'une suite (u_n) par les endomorphismes ψ_1 et ψ_2 .
 - **b)** Déterminer le noyau de ψ_1 et ψ_2 .
- a) Montrer que l'on a $\varphi = \psi_1 \circ \psi_2$.
 - **b)** En déduire que $\forall u \in E$, on a l'équivalence : $u \in F \iff \psi_2(u) \in \text{Ker}(\psi_1)$.
 - **c)** Résoudre l'équation $\psi_2(u) \in \text{Ker}(\psi_1)$.
- **5.** En déduire que le sous-espace *F* est engendré par deux suites géométriques.

Application linéaires d'ordre supérieur (impliquant elles-mêmes des app.lin.)

Exercice 14 (Deux applications linéaires d'ordre supérieur sur $\mathcal{M}_2(\mathbb{R})$)

:endomMultMat:

Soit $E = \mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées 2×2 .

Notons End(E) l'ensemble des endomorphismes de E. (L'ensemble End(E) est un espace vectoriel.)

Pour toute matrice $A \in E$, on note $m_A: \{E \rightarrow E\}$

 $M \mapsto A \cdot M$.

On considère alors l'application $m: (E \rightarrow \text{End}(E))$ $A \mapsto m_A$.

- 1. Montrer que l'application m est linéaire.
- **2.** On note $I_2 \in \mathcal{M}_2(\mathbb{R}) = E$ la matrice identité.

Déterminer l'endomorphisme $m(I_2)$.

Pour $\varphi \in \text{End}(E)$ (un endomorphisme), et toujours avec $I_2 \in E$, on note : $u_{\varphi} = \varphi(I_2)$.

On considere l'application $u: \int End(E) \to E$

 $\varphi \mapsto u_{\varphi} = \varphi(I_2)$

3. Montrer que l'application u est linéaire.

Déterminer la matrice $u(Id_E)$.

- **4.** Pour $\tau \in \text{End}(E)$ endomorphisme de transposition, calculer $u(\tau)$. $(où \forall M \in E, \tau(M) = {}^tM.)$
- **5.** Montrer l'identité sur la composée : $u \circ m = \mathrm{Id}_E$.
- **6.** En déduire que *u* est surjective, et que *m* est injective.
- 7. L'application *u* est-elle injective? L'application *m* est-elle surjective?

Exercice 15 (Deux applications linéaires d'ordre supérieur sur $\mathbb{R}[X]$)

:endomMultPol:

Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes.

Pour tout polynôme
$$P \in E$$
, on note $m_P : \begin{cases} E \to E \\ Q(X) \mapsto P(X) \cdot Q(X). \end{cases}$

On considère alors l'application
$$m: \begin{cases} E \to \text{End}(E) \\ P \mapsto m_P. \end{cases}$$

- 1. Montrer que l'application m est linéaire.
- **2.** On note $1 \in \mathbb{R}[X] = E$ le polynôme constant $\equiv 1$. Déterminer l'endomorphisme m(1).

Pour $\varphi \in \text{End}(E)$ (un endomorphisme), et toujours avec $1 \in E$, on note : $u_{\varphi} = \varphi(1)$.

On considère l'application
$$u: \begin{cases} \operatorname{End}(E) \to E \\ \varphi \mapsto u_{\varphi} = \varphi(1) \end{cases}$$

- **3.** Montrer que l'application u est linéaire. Déterminer le polynôme $u(\mathrm{Id}_E)$.
- **4.** Calculer u(d), pour $d \in \text{End}(E)$ l'endomorphisme de dérivation. $(c-\grave{a}-d: \forall P \in E, d(P) = P'.)$
- **5.** Montrer l'identité sur la composée : $u \circ m = \mathrm{Id}_E$.
- **6.** En déduire que u est surjective, et que m est injective.
- 7. L'application u est-elle injective? L'application m est-elle surjective?

6 Corrections

Corrigé Ex ?? (Un sous-espace vectoriel matriciel)

:sevCorrec:

Soit $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. On s'intéresse aux matrices M vérifiant l'équation (\star) : $A \cdot M = M \cdot A$. On considère l'ensemble \mathcal{C}_A des matrices $M \in \mathcal{M}_2(\mathbb{R})$ qui vérifient l'équation (\star) .

- **1.** Montrer que C_A est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
 - ▶ Vérifions que l'ensemble est non-vide : $\mathcal{C}_A \neq \emptyset$ La matrice nulle $0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ est clairement solution de l'équation (\star). Ainsi $0 \in \mathcal{C}_A$, donc $\mathcal{C}_A \neq \emptyset$.
 - ▶ Stabilité par combinaison linéaire Soient $\lambda_1, \lambda_2 \in \mathbb{R}$ et $M_1, M_2 \in \mathcal{C}_A$.

On a donc $A \cdot M_1 = M_1 \cdot A$ (idem pour M_2).

Vérifions que la matrice $M' = \lambda_1 \cdot M_1 + \lambda_2 \cdot M_2 \in \mathcal{C}_A$, c'est-à-dire $A \cdot M' = M' \cdot A$.

On développe : $A \cdot M' = A \cdot (\lambda_1 \cdot M_1 + \lambda_2 \cdot M_2) = \lambda_1 \cdot A \cdot M_1 + \lambda_2 \cdot A \cdot M_2$ = $\lambda_1 \cdot M_1 \cdot A + \lambda_2 \cdot M_2 \cdot A$ (car M_1, M_2 vérifient (\star).)

En regroupant, on a vérifié : $A \cdot M' = M' \cdot A$, dont $M' = \lambda_1 \cdot M_1 + \lambda_2 \cdot M_2 \in \mathcal{C}_A$. Ainsi \mathcal{C}_A est stable par combinaisons linéaires.

Ainsi C_A est bien un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.

2. À quelle condition sur les coeffs $a,b,c,d \in \mathbb{R}$, la matrice $M = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ est-elle solution de (\star) ?

On calcule: $A \cdot M = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} b & d \\ 0 & 0 \end{bmatrix}$ $M \cdot A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$

Ainsi l'équation (*) est vérifiée $ssi\begin{bmatrix} b & d \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$ soit : $\begin{cases} b = 0 & a = d \\ 0 = 0 & b = 0 \end{cases}$

3. Grâce aux équations trouvées en **2.**, montrer que toute $M \in F$ s'écrit $M = a \cdot E_1 + c \cdot E_2$.

On résout les équations et on substitue : $M = \begin{bmatrix} a & c \\ 0 & a \end{bmatrix}$.

Ainsi la matrice M est solution de (\star) ssi elle s'écrit : $M = a \cdot I_2 + c \cdot A$.

4. *En déduire que le sous-espace vectoriel F s'écrit comme F* = $Vect(E_1, E_2)$.

Les solutions de l'équation (\star) sont les combinaisons linéaires de I_2 et A.

On a ainsi : $F = Vect(I_2, A)$.

Corrigé Ex 5 (Recherche d'une application linéaire)

:rechMatAplin:

Pour $A \in \mathcal{M}_2(\mathbb{R})$, on note $\varphi_A : \begin{cases} E \to E \\ M \mapsto A \cdot M, \end{cases}$ où E désigne l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$.

- **1.** Montrer que l'application φ_A définit bien un endomorphisme de E.
 - ▶ **Stabilité** Si $M \in E = \mathcal{M}_2(\mathbb{R})$, alors on a bien $\varphi_A(M) = A \cdot M \in E$.
 - Linéarité Par distributivité à droite du produit matriciel, l'application φ_A est bien linéaire.

Soient F et G les ensembles définis par : $F = \left\{ \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}), \text{ où } a = d \right\}, \text{ et }$ $F = \left\{ \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}), \text{ où } a + d = 0 \right\}.$

On cherche les matrices A qui vérifient la propriété (\star) : $[\forall M \in F, \varphi_A(M) \in G]$.

2. Justifier que les ensembles F et G sont des sous-espaces vectoriels de E.

Les applications suivantes sont linéaires : $f: \begin{cases} \mathcal{M}_2(\mathbb{R}) \to \mathbb{R} \\ \left[\begin{smallmatrix} a & c \\ b & d \end{smallmatrix} \right] \mapsto a - d \end{cases}$, $g: \begin{cases} \mathcal{M}_2(\mathbb{R}) \to \mathbb{R} \\ \left[\begin{smallmatrix} a & c \\ b & d \end{smallmatrix} \right] \mapsto a + d \end{cases}$

Les ensembles F = Ker(f) et G = Ker(g) sont donc des sous-espaces vectoriels de $\mathcal{M}_2(\mathbb{R})$.

On peut aussi remarquer que : $F = \text{Vect}\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right)$ et $G = \text{Vect}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right)$.

- **3.** Montrer que l'ensemble H des matrices vérifiant la propriété (*) est un sous-espace vectoriel de E.
 - ▶ **l'ensemble** H **est non-vide** On montre que $0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in H$. Si A = 0, alors l'application φ_A est nulle : $\forall M \in E$, on a : $\varphi_A(M) = 0$. En particulier, si $M \in F$, alors $\varphi_A(M) = 0 \in G$, donc $A = 0 \in H$.
 - Stabilité par combinaison linéaire Soient $\lambda, \mu \in \mathbb{R}$ et $A, B \in H$. Vérifions que $\lambda A + \mu B \in H$. Soit $M \in F$. Comme $A, B \in H$, on a : $\varphi_A(M) = A \cdot M \in G$, et $\varphi_B(M) = B \cdot M \in G$. Ainsi, comme G est un s-e.v., on a aussi : $\lambda A \cdot M + \mu B \cdot M = \underbrace{(\lambda A + \mu B) \cdot M}_{=\varphi_{\lambda A + \mu B}(M)} \in G$

(Ceci étant vrai $\forall M \in F$,) Ainsi : $\lambda A + \mu B \in H$.

L'ensemble *H* est donc bien un sous-espace vectoriel de *E*.

4. En considérant $\varphi_A(M)$ avec $M \in F$ judicieusement choisie, montrer que $H \subset G$.

On a $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in F$.

Ainsi, si $A \in H$, on a en particulier $\varphi_A(I_2) \in G$, c'est-à-dire : $A \in G$.

On a donc bien : $H \subset G$.

5. Montrer de même que si $\begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} \in H$, alors, on $a: \begin{bmatrix} \gamma & 0 \\ \delta & 0 \end{bmatrix} \in G$ et $\begin{bmatrix} 0 & \alpha \\ 0 & \beta \end{bmatrix} \in G$.

Même principe, mais pour les deux autres matrices de la base trouvée de F

Si
$$A = \begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} \in F$$
, alors : $A \cdot \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \gamma & 0 \\ \delta & 0 \end{bmatrix} \in G$
 $A \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \alpha \\ 0 & \beta \end{bmatrix} \in G$

6. Conclure: pour une certaine matrice D non-nulle que l'on précisera, on a: H = Vect(D).

Soit $A = \begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} \in H$.

On a d'après les questions précédentes : $\begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} \in G, \begin{bmatrix} \gamma & 0 \\ \delta & 0 \end{bmatrix} \in G \text{ et } \begin{bmatrix} 0 & \alpha \\ 0 & \beta \end{bmatrix} \in G$ D'après l'équation a+d=0 de G pour ces trois matrices, on trouve les relations : $\begin{cases} \alpha+\delta=0 \\ \gamma=0 \end{cases}$ Ainsi la matrice A doit s'écrire : $A=\alpha \cdot \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ soit : } A \in \text{Vect}(D).$

On vérifie que la réciproque est vraie : $D \in H$.

Ainsi, on a bien : H = Vect(D).

Corrigé Ex 7 (Manipulation formelle d'endomorphismes : projections)

:projectionsFormelles:

Soit E un espace vectoriel. On note Id l'endomorphisme identité de E. Soit $p \in \operatorname{End}(E)$ un endomorphisme tel que $p \circ p = p$.

1. Montrer que l'endomorphisme q défini par : $\forall x \in E$, q(x) = x - p(x) vérifie aussi $q^2 = q$.

Soit
$$x \in E$$
. On calcule: $q^2(x) = q(q(x)) = q(x) - p(q(x))$
= $x - p(x) + p(p(x)) - p(x)$

Or, on a $p \circ p = p$. Il reste donc : $q^2(x) = x - p(x) = q(x)$.

On a donc bien obtenu : $q^2 = q$.

Remarque: par la formule du binôme de Newton

Les endomorphismes Id et *p* commutant, on peut développer par la formule du binôme.

Il vient :
$$q^2 = (Id - p)^2 = Id - 2p + p^2$$
.

Comme $p^2 = p$, on trouve bien : $q^2 = \operatorname{Id} - p = q$.

- **2.** Montrer que $\forall x \in E$, on a: p(q(x)) = q(p(x)) = 0. En déduire que $\text{Im}(p) \subset \text{Ker}(q)$.
 - ► Calcul de la composée $p \circ q$ On développe : $p \circ q = p \circ (\mathrm{Id} p) = p p^2$.

Or $p^2 = p$, donc il reste : $p \circ q = p - p = 0$.

- ► Calcul de la composée $q \circ p$ De même, on trouve : $q \circ p = (\mathrm{Id} p) \circ p = p p^2 = 0$.
- ► **Inclusion** $\operatorname{Im}(p) \subset \operatorname{Ker}(q)$ Soit $y \in \operatorname{Im}(p)$. Par définition, il existe $x \in E$ tel que : y = p(x). Par le résultat précédent, on a donc : q(y) = q(p(x)) = 0. Ainsi : $y \in \operatorname{Ker}(q)$. On a ainsi vérifié l'inclusion : $\operatorname{Im}(p) \subset \operatorname{Ker}(q)$.
- **3.** Réciproquement, montrer que si q(x) = 0, alors il existe $x' \in E$ tel que x = p(x').

En déduire l'égalité des sous-espaces vectoriels : Ker(q) = Im(p).

Soit x tel que q(x) = 0. On développe, et il vient : x - p(x) = 0.

Ainsi x = p(x). La formule est donc établie pour x' = x.

- **4.** Montrer que si p(x) = q(x), alors x = 0. En déduire que $Ker(p) \cap Ker(q) = \{\vec{0}\}$.
 - ▶ **Nullité de** x Soit $x \in E$. On a x = p(x) + q(x).

Pour montrer x = 0, il suffit donc de montrer que : p(x) = q(x) = 0.

Supposons que p(x) = q(x). Alors : p(p(x)) = p(q(x)).

On développe par les relations connues. Il reste : p(x) = 0.

Il vient donc bien p(x) = q(x) = 0, d'où x = 0.

▶ Calcul de $Ker(p) \cap Ker(q)$

Soit
$$x \in \text{Ker}(p) \cap \text{Ker}(q)$$
. On a donc : $x \in \text{Ker}(p)$, donc $p(x) = 0$,

$$x \in \text{Ker}(q)$$
, donc $q(x) = 0$.

Comme p(x) = q(x), le résultat précédent donne : x = 0.

Ainsi, on a bien montré : $Ker(p) \cap Ker(q) = \{\vec{0}\}.$

Corrigé Ex 8 (Manipulation formelle d'endomorphismes : involution)

:involutionsFormelles:

Soit E un espace vectoriel. On note Id l'endomorphisme identité de E.

Soit $s \in \text{End}(E)$ un endomorphisme tel que $s \circ s = \text{Id}$.

On note p et q les endomorphismes définis par : $\forall x \in E$, $\Rightarrow p(x) = \frac{1}{2}(x + s(x))$,

$$q(x) = \frac{1}{2}(x - s(x)).$$

- **1.** Reconnaître les endomorphismes p + q et p q, ainsi que p^2 et q^2 .
 - Écriture de p,q On a: $p = \frac{1}{2} \cdot (\operatorname{Id} + s)$, et $q = \frac{1}{2} \cdot (\operatorname{Id} s)$.
 - ▶ **Détermination de** p + q, p q Ainsi : p + q = Id, et p q = s.
 - ▶ **Détermination de** p^2 **et** q^2 Les endomorphismes Id et s commutent.

On peut donc développer par la formule du binôme.

Il vient : $p^2 = \left[\frac{1}{2} \cdot (\text{Id} + s)\right]^2 = \frac{1}{4} \cdot [\text{Id}^2 + 2s + s^2] = \text{Id} \frac{1}{4} \cdot [\text{Id} + 2s + \text{Id}] = \frac{1}{2} \cdot (\text{Id} + s).$

Ainsi, on trouve : $p^2 = p$.

De même, on obtient : $q^2 = q$.

2. Calculer les compositions : $p \circ q$, $s \circ p$.

On développe : $p \circ q = \frac{1}{2} \cdot (\operatorname{Id} + s) \circ \frac{1}{2} \cdot (\operatorname{Id} - s) = \frac{1}{4} \cdot (\operatorname{Id}^2 - s^2) = 0.$

On développe : $s \circ p = s \circ \frac{1}{2} \cdot (\text{Id} + s) = \frac{1}{2} \cdot (s + s^2) = \frac{1}{2} \cdot (s + \text{Id}) = p$.

On trouve de même : $s \circ q = -q$.

- **3.** Montrer que la transposition $\tau \in \operatorname{End}(\mathcal{M}_n(\mathbb{R}))$ définie par : $\tau(M) = {}^tM$ vérifie $\tau^2 = \operatorname{Id}$. Quels sont les endomorphismes p et q associés?
 - **Vérification de** $\tau^2 = \text{Id}$ Soit $M = (m_{i,j})_{i,j \in [\![1,n]\!]} \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

La transposée s'écrit : $\tau(M) = {}^{t}M = (m_{i,i}).$

Si on transpose deux fois, on retrouve $M: \tau(\tau(M)) = t(tM) = (m_{i,j}) = M$.

Ainsi, on a bien : $\tau^2 = Id$.

► **Interprétation de** p, q. On pose : $p = \frac{1}{2} \cdot (\operatorname{Id} + \tau)$

Pour $M \in \mathcal{M}_n(\mathbb{R})$, on a donc : $p(M) = \frac{1}{2} \cdot (M + {}^tM)$

Cette matrice est symétrique : ${}^tp(M) = p(M)$.

 $q(M) = \frac{1}{2} \cdot (M - {}^tM)$

Elle est antisymétrique : ${}^tq(M) = -q(M)$.

On a M = p(M) + q(M). On dit que : p(M) est la **partie symétrique** de M,

ightharpoonup q(M) est sa partie antisymétrique.

- **4.** Montrer que l'endomorphisme $r \in \operatorname{End}(\mathbb{R}[X])$ défini par : r(P(X)) = P(-X) vérifie $r^2 = \operatorname{Id}$. Quels sont les endomorphismes p et q associés?
 - ▶ **Vérification de** r^2 = Id On a bien $r^2(P) = r(r(P)) = r(P(-X)) = P(X)$.
 - ► Interprétation de p, q. On pose : $p = \frac{1}{2} \cdot (\operatorname{Id} + r)$

Pour $P \in \mathbb{R}[X]$, on a donc : $p(P) = \frac{1}{2} \cdot (P(X) + P(-X))$ Ce polynôme est pair : p(P)(-X) = p(P)(X). $p(P) = \frac{1}{2} \cdot (P(X) - P(-X))$ Ce polynôme est impair : q(P)(-X) = -q(P)(X).

On a P = p(P) + q(P). On dit que : p(P) est la **partie paire** de P, q(P) est sa **partie impaire**.

Corrigé Ex 2 (Une équation différentielle linéaire)

:eqDifLin:

Soit $E=\mathcal{C}^1(\mathbb{R})$ l'espace vectoriel des fonctions de classe $\mathcal{C}^1.$

On s'intéresse à l'ensemble : $S = \{ f \in C^1(\mathbb{R}), \text{ telles que } f'(x) = f(x) \}.$

- 1. Montrer que l'ensemble S est un sous-espace vectoriel de E.
- **2.** Pour quelle valeur de la constante $\lambda \in \mathbb{R}$, l'application $e_{\lambda} : x \mapsto e^{\lambda \cdot x}$ vérifie-t-elle $e_{\lambda} \in S$? En déduire un sous-espace vectoriel non-nul de S.
 - ► Recherche des valeurs de λ Pour $\lambda \in \mathbb{R}$, on a : $\forall x \in \mathbb{R}$: $e_{\lambda}(x) = e^{\lambda x}$ $e'_{\lambda}(x) = \lambda \cdot e^{\lambda x}$ Ainsi, on a l'équivalence : $e_{\lambda} \in \mathcal{S} \iff \forall x \in \mathbb{R}$, $e^{\lambda x} = \lambda \cdot e^{\lambda x} \iff 1 = \lambda$.
 - ▶ **Sous-espace de** S Comme on a $e_1 \in S$, on a le sous-espace vectoriel Vect(e_1) $\subset S$.
- **3.** Soit $f \in S$. On note $g: x \mapsto f(x) \cdot e^{-x}$. Que peut-on alors dire de la fonction g? Conclure sur l'expression du sous-espace vectoriel S.
 - Étude de g On dérive : $\forall x \in \mathbb{R}$, $g(x) = f(x) \cdot e^{-x}$ $g'(x) = f'(x) \cdot e^{-x} - f(x) \cdot e^{-x} = \underbrace{(f'(x) - f(x)) \cdot e^{-x}}_{=0 \text{ car } f \in \mathcal{S}}$

Ainsi, pour $f \in \mathcal{S}$, on a g' = 0, donc $g = \operatorname{cst} = g(0) = f(0)$. On trouve donc $\forall x \in \mathbb{R}$, $g(x) = e^{-x} \cdot f(x) = f(0)$, donc $f(x) = f(0) \cdot e^{x}$. On a donc montré que si $f \in \mathcal{S}$, alors $f = \lambda \cdot e_1$ (avec $\lambda = f(0)$), soit $f \in \operatorname{Vect}(e_1)$.

► **Conclusion** Ainsi : $F = Vect(e_1)$ par double inclusion.

Corrigé Ex 1 (Commutant d'une matrice)

:commutantTD1:

Soient les matrices : $A = \begin{bmatrix} -2 & 2 \\ -6 & 5 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, et $P = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.

On appelle **commutant** de D l'ensemble : $C_D = \{ M \in \mathcal{M}_2(\mathbb{R}) \text{ telles que } D \cdot M = M \cdot D \}.$

- **1.** Montrer que C_D est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- **2.** Pour une matrice quelconque $M = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$, résoudre l'équation : $D \cdot M M \cdot D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
- **3.** En déduire que, pour D_1 et D_2 matrices bien choisies, on peut écrire : $C_D = \text{Vect}(D_1, D_2)$.

► **Une base** On a: $D \cdot M = \begin{pmatrix} 2a & c \\ 2h & d \end{pmatrix}$ et $M \cdot D = \begin{pmatrix} 2a & 2c \\ h & d \end{pmatrix}$.

Ces deux matrices sont égales ssi b = c = 0.

Ainsi, les matrices de \mathcal{C}_D sont les matrices diagonales : $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$.

Une base de \mathcal{C}_D est donc $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$

On s'intéresse maintenant au commutant de A, soit : $C_A = \{N \in \mathcal{M}_2(\mathbb{R}) \text{ tels que } A \cdot N = N \cdot A\}.$

4. Comparer $P \cdot D$ et $A \cdot P$.

En déduire la valeur de $P \cdot D \cdot P^{-1}$. (*Naturellement, on aura d'abord vérifié que P est inversible!*)

5. En déduire la condition nécessaire et suffisante : $[P \cdot M \cdot P^{-1} \in C_A \iff M \in C_D]$ On trouve $P^{-1} = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$. On vérifie que $A = P \cdot D \cdot P^{-1}$.

On peut aussi vérifier que l'on a $A \cdot P = P \cdot D$, d'où $A = P \cdot D \cdot P^{-1}$.

6. Montrer que le sous-espace C_A s'écrit aussi sous la forme : C_A = Vect (A_1, A_2) .

(avec A_1, A_2 deux matrices à préciser.)

Soient $M \in \mathcal{M}_2(\mathbb{R})$ et $N = P \cdot M \cdot P^{-1}$.

On montre l'équivalence : $[M \in \mathcal{C}_D] \iff [N \in \mathcal{C}_A]$.

En effet :
$$N \cdot A - A \cdot N = (P \cdot M \cdot P^{-1}) \cdot (P \cdot D \cdot P^{-1}) - (P \cdot D \cdot P^{-1}) \cdot (P \cdot M \cdot P^{-1})$$

= $P \cdot M \cdot D \cdot P^{-1} - P \cdot D \cdot M \cdot P^{-1} = P \cdot (M \cdot D - D \cdot M) \cdot P^{-1}$.

Ainsi: $[N \cdot A = A \cdot N] \iff [M \cdot D = D \cdot M]$.

Une base de C_A s'obtient grâce à celle de C_D en conjuguant par P.

On obtient donc : $C_A = \text{Vect}(P \cdot D_1 \cdot P^{-1}, P \cdot D_2 \cdot P^{-1}).$

Corrigé Ex 3 (Espace de suites linéaires récurrentes)

:suitLinRec:

Soit $E = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites de réels.

On note: $F = \{(u_n) \in E \text{ tels que } \forall n \in \mathbb{N}, \quad u_{n+2} = u_{n+1} + u_n\}.$

- **1.** *Montrer que F est un sous-espace vectoriel de E.*
 - ▶ *F* non-vide? On vérifie que la suite nulle $(z_n) = 0 \in F$.

On a $\forall n \in \mathbb{N}$: $z_n = 0$. En particulier, $\forall n \in \mathbb{N}$, on a: $z_{n+2} = z_{n+1} + z_n$, donc $z \in F$.

Stabilité par combinaisons linéaires

Soient $\lambda, \mu \in \mathbb{R}$, et $u, v \in F$. Montrons que $w = \lambda \cdot u + \mu \cdot v \in F$.

Pour
$$n \in \mathbb{N}$$
, on a $w_{n+2} = \lambda \cdot u_{n+2} + \mu \cdot v_{n+2}$
= $\lambda \cdot (u_{n+1} + u_n) + \mu \cdot (v_{n+1} + v_n)$, car $u, v \in F$
= $\lambda \cdot (u_{n+1} + u_n) + \mu \cdot (v_{n+1} + v_n)$
= $(\lambda \cdot u_{n+1} + \mu \cdot v_{n+1}) + (\lambda \cdot u_n + \mu \cdot v_n)$

Ainsi $w \in F$, et F est donc stable par combinaison linéaire.

L'ensemble F est donc un sous-espace vectoriel de $E = \mathbb{R}^{\mathbb{N}}$.

2. Équation caractéristique Soit $(g_n)_{n \in \mathbb{N}} = (q^n)_{n \in \mathbb{N}}$ une suite géométrique. (avec $q \in \mathbb{R}$)

a) Montrer que $g \in F$ ssi q est solution d'une certaine équation trinomiale du second degré à préciser.

On a
$$g \in F \iff \forall n \in \mathbb{N}$$
, $g_{n+2} = g_{n+1} + g_n$
 $\iff \forall n \in \mathbb{N}$, $q^{n+2} = q^{n+1} + q^n$
 $\iff \forall n \in \mathbb{N}$, $q^2 \cdot q^n = q \cdot q^n + q^n$
 $\iff \forall n \in \mathbb{N}$, $(q^2 - q - 1) \cdot q^n = 0$
 $\iff q^2 - q - 1 = 0$

b) En déduire quelles sont les suites géométriques contenues dans F.

On résout l'équation trinomiale $q^2 - q - 1 = 0$.

- ▶ **Discriminant** $\Delta = (-1)^2 4 \times 1 \times (-1) = 5 > 0$
- ► **Solutions** Il y a donc 2 racines : $x_{\pm} = \frac{1}{2} \cdot (1 \pm \sqrt{5})$. On note $\varphi = \frac{1+\sqrt{5}}{2}$ (nombre d'or) et $\psi = \frac{1-\sqrt{5}}{2} < 0$.
- Conclusion

Les suites géométriques $(\not\equiv 0)$ qui appartiennent à F sont celles de raison φ ou ψ .

3. Soit $(u_n) \in F$ telle que $u_0 = u_1 = 0$. Montrer qu'alors, $\forall n \in \mathbb{N}$, on a: $u_n = 0$.

Démonstration par récurrence sans difficulté (vraiment ennuyeuse, en fait!)

4. Montrer qu'il existe une unique suite $(f_n) \in F$ telle que $f_0 = 0$ et $f_1 = 1$.

Donner son expression comme une combinaison linéaire de deux suites géométriques.

Existence

Les deux suites géométriques $(a_n) = (\varphi^n)_{n \in \mathbb{N}}$ et $(b_n) = (\psi^n)_{n \in \mathbb{N}}$ appartiennent à F.

Ainsi l'espace vectoriel F contient aussi $Vect((a_n),(b_n))$.

On cherche une solution $(f_n) \in F$ telle que $f_0 = 0$ et $f_1 = 1$ qui s'écrit comme $f = \lambda a + \mu b$.

On résout donc:
$$\begin{cases} f_0 = 0 \iff \begin{cases} a\varphi^0 + b\psi^0 = 0 \iff \\ a\varphi^1 + b\psi^1 = 1 \end{cases} \begin{cases} a+b=0 \iff \begin{cases} b=0 \\ a\varphi + b\psi = 1 \end{cases} \end{cases}$$

On trouve pour unique solution $a = -b = \frac{1}{\varphi - \psi} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$, donc $\forall n \in \mathbb{N}$, $f_n = \frac{\varphi^n - \psi^n}{\varphi - \psi}$.

Unicité

Soit (f_n) une solution. La suite $\epsilon = \left(f_n - \frac{\varphi^n - \psi^n}{\sqrt{5}}\right) \in F$ vérifie $\epsilon_0 = \epsilon_1 = 0$.

Par la question précédente, la suite ϵ est donc nulle et on a donc $\forall n \in \mathbb{N}$, $f_n = \frac{\varphi^n - \psi^n}{\sqrt{5}}$.

Conclusion

Il existe une unique suite (f_n) qui vérifie $\forall n \in \mathbb{N}, f_{n+2} = f_{n+1} + f_n$ avec $f_0 = 0$ et $f_1 = 1$. C'est la suite de Fibonacci. Elle s'écrit $\forall n \in \mathbb{N}, \quad f_n = \frac{\varphi^n - \psi^n}{\sqrt{5}}$.

$$(avec \ \varphi = \frac{1+\sqrt{5}}{2} \ et \ \psi = \frac{1-\sqrt{5}}{2}.)$$