1. Explain Fuzzy logic with a suitable diagram and example.

- Fuzzy logic is a form of multi-valued logic that deals with reasoning that is approximate rather than fixed and exact.
- Unlike classical binary logic (which has only True/False values), fuzzy logic allows for a range of truth values between 0 and 1.

Key Characteristics of Fuzzy Logic:

- It allows for partial truth values.
- It is useful in situations where human reasoning is involved.
- It is widely used in control systems, decision-making, and AI.

Key Concepts in Fuzzy Logic

1. Fuzzy Sets: In classical set theory, an element either belongs to a set or does not. In fuzzy logic, an element can belong to a set to a certain degree, represented by a membership value between 0 and 1.

- 2. Membership Function: This function defines how each point in the input space is mapped to a membership value between 0 and 1. Common shapes for membership functions include triangular, trapezoidal, and Gaussian.
- 3. Linguistic Variables: These are variables whose values are words or sentences in a natural or artificial language. For example, "temperature" can be a linguistic variable with values like "cold," "warm," and "hot."
- 4. Fuzzy Rules: These are if-then rules that describe how the input variables are transformed into output variables. For example, "If the temperature is cold, then the heater should be on high."

Architecture of a Fuzzy Logic System

In the architecture of the Fuzzy Logic system, each component plays an important role. The architecture consists of the different four components which are given below.

- 1. Rule Base
- 2. Fuzzification
- 3. Inference Engine
- 4. Defuzzification

2. Find the power set and cardinality of the given set, $X = \{2,4,6,8,10,12\}$. Also, find the cardinality of the power set.

	RAISONI GROUP — a vision beyond —
2)	Power Set of Set X is the Set of all possible Subset of X, Dincluding Empty Set Dt X itself The Cardinality of a Set is a Number of Element in the Set.
	in the Set. b a set is a Numbu of element
	Ea) x = 22,4,6,8,10,123
	Step 1) Find Power Set of X.
	The power of Set X denoted as P(x) is set of all Subset of X, by a Set with n Elements, the powers of bay In Elements
	→ Since X has 6 Elements Pow (x) = 2(6) = 64 Subset → Thuse include
	1) The Empty & of: \$\text{P}\$ 11) All Single Element Subset: 223, 343, 363, 483, 3103, 363 111) All Two Element Subset: 12143, \$2.63, \$2.83, \$2.103, 12.123
	24,67,14,83,24,101,24,12]
100	18, 10], \$8, 125 10, 123 10, 123 10) All 3 Element Subset: 12,4,63, 12,4,103, \$2,4,123
	12,6,83, 12,6,105, 12,6,123 12,8,103, 12,8,123
	21.10.12] 24.6.83, 24.6,10]. 24.6,123
	\$4,8,10 \$4,8,12\} \$4,10,12\} \$6,8,10 \$6,8,12\}, \$6,10,12\} \$8,10,12\}

```
5) All four Element 8ubset: {2,4,6,8}, 22,4,6,103, 22,4,6,123
                     12,4,8,103, 52,4,8,123, 52,4,10,123
                     2216, 8110], {2,6,8,123, {2,6,10,123
22.8,10,123
6) All five Element > {2,3416,8,103, $2,4,6,8,123
                  {2,4,6,103123, {2,4,8,10,123
                  12,6,8,10,123, 14,6, 8,10,123
7) full 8 y x : $2,4,6,8,10,123
Step 2) (aidinality of x
 ie 1×1=6 X is no of Element in X
Step 3) (audinality of Power 84
 → Cardinality of power set P(x) = 2(x) = 2(6) = 64
```

3. Consider the given fuzzy set, $A = \{0.3/x1 + 0.7/x2 + 1/x3\}$ & $B = \{0.4/y1 + 0.9/y2\}$ Perform Cartesian product over these given fuzzy set.

	RAISONI GROUP — a vision beyond —
3)	Carturan Product A = \$0.3 + 0.7 + 1 } B = \$0.4 + 0.91
	Step) Identity Universe -> Universe of A: {x1, x2, x3} Universe & B: { y1, y2}
	Step 2) Compute C. Prod where Ead pan (xi, yi) has membershy Valu-
10/0/2	Maxe (x; y;) = min (Ma (xi), Me (yi))
	(a) for (2,4) = Unx (2,4) = min (03,0.4) = 0.3 (b) for (2,4) = Max (2,9) = min (0.3,0.9) = 0.3
A CONTRACTOR OF THE PARTY OF TH	@ for (7241) = Marg (7241) = min (0.7, 0.4) = 0.4
301270	@ for (x242) = MARR (x242) = min (0.7, 0.9) = 0.7
957831	(for (2341) = MAKB (2341) = min (1, 0.4) = 0.4
30000	Phos (2342) = MAXB(2342) = min (1,0.9) = 0.9.
	$\Rightarrow A \times B = \begin{cases} 0.3 + 0.3 + 0.4 + 0.7 + 0.4 + 0.9 \\ (214) (214) (224) (224) \\ (224) (224) (224) \end{cases}$
7 (9)	$\Rightarrow AXB = \begin{bmatrix} 03 & 0.3 \\ 0.4 & 0.2 \\ 0.4 & 0.9 \end{bmatrix}$
	formulae: (1) Onion -> llous (x) = max (llo(x), llo(x)) (2) Intersect -> llous (x) = min (llo(x), llo(x)) (3) Complement -> llo(x) = 1 - llo(x) (4) Difference -> llo-8 (x) = min (llo(x), llo(x))

4. Explain classical set with different operations performed on classical set with Venn diagram.

Classical Set:

- A classical set is a well-defined collection of distinct objects where each element either belongs to the set or does not.
- There is no ambiguity in membership.
- Classical sets are fundamental in mathematics and form the basis for more advanced concepts like fuzzy logic.

Operations on Classical Sets with Venn Diagrams

Venn diagrams are graphical representations of sets and their relationships. Below are the operations on classical sets with corresponding Venn diagrams.

1. Union (A∪B)

The union of two sets A and B includes all elements that are in A, in B, or in both.

Venn Diagram:

- Two overlapping circles represent sets A and B.
- The shaded area covers both circles.

2. Intersection $(A \cap B)$

The intersection of two sets A and B includes only the elements that are in both A and B.

Venn Diagram:

- Two overlapping circles represent sets A and B.
- The shaded area is the overlapping region.

3. Complement (A')

The complement of a set A includes all elements in the universe U that are not in A.

Venn Diagram:

- A rectangle represents the universe U.
- A circle inside the rectangle represents set A.
- The shaded area is everything outside the circle.

4. Difference (A-B)

The difference of two sets A and B includes all elements that are in A but not in B.

Venn Diagram:

- Two overlapping circles represent sets A and B.
- The shaded area is the part of A that does not overlap with B.

5. Symmetric Difference $(A\Delta B)$

The symmetric difference of two sets A and B includes all elements that are in A or B but not in both.

Venn Diagram:

- Two overlapping circles represent sets A and B.
- The shaded area is the non-overlapping parts of both circles.

5. Explain fuzzy set with different operations performed on fuzzy set with a suitable diagram.

- Fuzzy sets are an extension of classical sets where elements can have partial membership.
- In classical sets, an element either belongs to a set or does not, but in fuzzy sets, an element can belong to a set to a certain degree, represented by a membership value between 0 and 1.
- This makes fuzzy sets particularly useful for handling imprecise or subjective information.

Key Concepts in Fuzzy Sets

- 1. **Membership Function**: A function that defines how each element in the universe of discourse is mapped to a membership value between 0 and 1.
- 2. **Linguistic Variables**: Variables whose values are words or sentences in a natural or artificial language. For example, "temperature" can be a linguistic variable with values like "cold," "warm," and "hot."
- 3. Fuzzy Set Representation: A fuzzy set A is represented as:

A={
$$\mu$$
A(x1)/x1 + μ A(x2)/x2 + ···+ μ A(xn)/xn}
where μ A(xi) is the membership value of xi in A.

Operations on Fuzzy Sets

The operations on fuzzy sets are analogous to those on classical sets but are defined in terms of membership functions.

1. Union (AUBAUB)

The union of two fuzzy sets A and B is a fuzzy set whose membership function is the maximum of the membership functions of A and B:

$$\mu A \cup B(x) = max(\mu A(x), \mu B(x))$$

Example:

Let

$$A = \{0.3/x1 + 0.7/x2\}$$
 and $B = \{0.6/x1 + 0.4/x2\}$

Then:

 $A \cup B = \{ \max(0.3, 0.6) / x1 + \max(0.7, 0.4) / x2 \} = \{ 0.6x1 + 0.7x2 \}$

2. Intersection $(A \cap B)$

The intersection of two fuzzy sets A and B is a fuzzy set whose membership function is the minimum of the membership functions of A and B:

$$\mu A \cap B(x) = \min(\mu A(x), \mu B(x))$$

Example:

Using the same

$$A \cap B = \{\min(0.3, 0.6)/x1 + \min(0.7, 0.4)/x2\} = \{0.3/x1 + 0.4/x2\}$$

3. Complement (A')

The complement of a fuzzy set A is a fuzzy set whose membership function is:

$$\mu A'(x)=1-\mu A(x)$$

Example:

For

$$A = \{0.3/x1 + 0.7/x2\}$$

$$A' = \{1 - 0.3/x1 + 1 - 0.7/x2\} = \{0.7/x1 + 0.3/x2\}$$

4. Difference (A-B)

The difference of two fuzzy sets A and B is a fuzzy set whose membership function is:

$$\mu A - B(x) = \min(\mu A(x), 1 - \mu B(x))$$

Example:

Using the same

as above:

$$A-B=\{\min(0.3,1-0.6)/x1+\min(0.7,1-0.4)/x2\}=\{0.3x1+0.6x2\}$$

6. Perform Union, Intersection, Difference, and Complement for given fuzzy sets

(a)
$$A = \begin{cases} \frac{1}{2} + \frac{0.3}{4} + \frac{0.5}{6} + \frac{0.2}{3} \end{cases}$$
, $8 = \begin{cases} \frac{0.5}{2} + \frac{0.4}{4} + \frac{0.1}{6} + \frac{1}{3} \end{cases}$

(b) $A \cup B = \max \text{ of their membulip Value} = \max \text{ (Ua (pi), Ua (pi)}$

(i) for $x = 2 \Rightarrow$ $U \text{ avg} = \max \text{ (0.3, 0.4)} = 0.4$

(ii) for $x = 4 \Rightarrow$ $U \text{ avg} = \max \text{ (0.5, 0.1)} = 0.5$

(iv) for $x = 6 \Rightarrow$ $U \text{ avg} = \max \text{ (0.5, 0.1)} = 0.5$

(iv) for $x = 3 \Rightarrow$ $U \text{ avg} = \max \text{ (0.2, 0.1)} = 0.5$

(c) $A \cap B \Rightarrow \min \text{ of mem Value} = \min \text{ (Ua (x, Ua (x))}$

(d) for $x = 2 \Rightarrow 0.5$

(e) for $x = 4 \Rightarrow 0.5$

(for $x = 2 \Rightarrow 0.5$

(g) for $x = 4 \Rightarrow 0.5$

(h) for $x = 4 \Rightarrow 0.5$

(h) for $x = 6 \Rightarrow 0.1$

(h) for $x = 6 \Rightarrow 0.1$

(h) for $x = 2 \Rightarrow 0.5$

(h) for $x = 6 \Rightarrow 0.1$

(h) for $x = 2 \Rightarrow 0.5$

(h) for $x = 6 \Rightarrow 0.1$

(h) for $x = 6$

7,8. Two fuzzy relations are given by Obtain fuzzy relation T as composition between the fuzzy relations using 1.max-min product composition. 2.max product composition

Two fuzzy relation are given by

$$R = \begin{bmatrix} 91 & 92 \\ 0.6 & 0.3 \\ 0.2 & 0.9 \end{bmatrix}$$

and

$$S = egin{bmatrix} z_1 & z_2 & z_3 \ 1 & 0.5 & 0.3 \ 0.8 & 0.4 & 0.7 \end{bmatrix}$$

$R = \begin{bmatrix} 0.6 & 0.8 \\ 0.2 & 0.9 \end{bmatrix} 48 = \begin{bmatrix} 1 & 0.8 & 0.3 \\ 0.8 & 0.4 & 0.9 \end{bmatrix}$ RAISONI GROUP a vision beyond
8) Mox Min Product Composition.
-> It is defined as Tij = maxx (min (Rix, Sxi))
agine as in the second
Calwlation
1) Ti = max (min (0.6, 1), min (0.3,08)) = max (0.6,0.3) = 1
2) $T_{12} = max (min (0.6, 0.5), min (0.3, 0.4)) = max (0.503) = 0.5$
3) Tis = max (min (0.6, 0.3), min (0.8, 0.7)) = max (0.3, 0.8) = 0.3 4) Tz1 = max (min (0.2, 1), min (0.9, 0.8)) max = (0.2, 0.8) = 0.8
5) T22 = max (min (0.2, 0.5), min (0.9, 0.4)) = mox (0.2, 0.4) = 0.4
6) T23 = max (min (02, 0.3), min (0.4, 0.7) = max (0.2, 0.7) = 0.7
T [01 05 03]
a) Max Broduct Composition => Tij = mox (Rix. 8xi)
$ \sqrt{11} = \max(0.6 \times 1, 0.3 \times 0.8) = \max(0.6, 0.20) = 6.6 $
2) Tre= max (0.6 x 0.5, 0.8 x 0.4) = max (0.3, 0.12) = 0.3 3) Trs = max (0.6 x 0.3, 0.3 x 0.7) = max (0.18, 0.21) = 0.21
4) T21 = max (0.2x1, 0.9x0.8) = max [0.2, 0.72) = 0.72
5) Tzz = max (0.2 x 0.5, 0.9 x 0.4) = max (0.1, 0.36) = 0.36
6) T23 = max (0.2 x 0.3, 0.9 x 0.7) = max (0.06, 0.63) = 0.63
T= 0.6 0.3 0.21]
0.72 0.36 0.63

9. Illustrate composition with suitable example

Composition of fuzzy relations is a way to combine two fuzzy relations to form a new fuzzy relation. There are two common types of composition:

- 1. Max-Min Composition -- T=max(min(Rik,Skj))
- 2. Max-Product Composition -- t = max(Rik . Skj)

give example of question 8,9

10. Binary Relation and Relation Matrix - Detailed Explanation

1. What is a Binary Relation?

A **binary relation** R between two setsA and Bis a subset of their Cartesian productA×B. It defines a relationship between elements of these two sets.

Example of a Binary Relation:

Let

$$A=\{1,2,3\}$$
 and $B=\{a,b,c\}$

A binary relation

R can be defined as:

$$R = \{(1,a),(2,b),(3,c),(1,c)\}$$

This means:

- Element 1 in Ais related to a and c in BBB.
- Element 2 in Ais related tob in BBB.
- Element 3 in Ais related toc in BBB.

Relation matrix

A **relation matrix** is a matrix that represents a binary relation. If X has m elements and Y has n elements, the relation matrix M_R is an $m \times n$ matrix where:

$$M_R[i,j] = egin{cases} 1 & ext{if } (x_i,y_j) \in R \ 0 & ext{otherwise} \end{cases}$$

Example:

Using the same sets $X=\{1,2,3\}$ and $Y=\{a,b,c\}$, and the relation $R=\{(1,a),(1,b),(2,b),(3,c)\}$, the relation matrix M_R is:

$$M_R = egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Here:

- ullet The rows correspond to elements of X: 1, 2, 3.
- st The columns correspond to elements of Y: a,b,c.

Interpretation:

- $M_R[1,1]=1$ because $(1,a)\in R$.
- $M_R[1,2]=1$ because $(1,b)\in R$.
- $M_R[2,2]=1$ because $(2,b)\in R$.
- $M_R[3,3]=1$ because $(3,c)\in R$.

Real-Life Example of a Binary Relation

4. Real-Life Example of a Binary Relation

Example: Friendship Network

- Let $A=\{P1,P2,P3\}$ be people in a social network.
- $\bullet \quad \operatorname{Let} B = \{P1, P2, P3\}.$
- ullet If a person is friends with another, we write $(P_i,P_j)\in R$.

$$R = egin{bmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{bmatrix}$$

This matrix shows:

- P1 is friends with P2 but not P3.
- ullet P2 is friends with everyone.
- P3 is friends with P2 but not P1.

Since R(i,j) = R(j,i), this relation is symmetric.