

TS5MP645

SCDS385-JANUARY 2018

TS5MP645 4-Data Lane 2:1 MIPI Switch (10-Channel, 2:1 Analog Switch)

Features

- Supply Range of 1.65 V to 5.5 V
- 10-Channel 2:1 Switch
- Powered-Off Protection I/Os Hi-Z when $V_{DD} = 0 \text{ V}$
- Low R_{ON} of 2.45- Ω Typical
- Low Con of 1.5 pF
- Minimum bandwidth of 1.5 GHz
- Ultra Low Crosstalk of -40 dB
- Low Power Disable Mode
- 1.8-V Compatible Logic Inputs
- ESD Protection Exceeds JESD 22
 - 2000-V Human Body Model (HBM)

Applications

- Mobile Phones
- **Tablet**
- PC/Notebook
- Virtual Reality
- Augmented Reality

3 Description

The TS5MP645 is a four data lane MIPI switch. This device is an optimized 10 channel (5 differential) single-pole, double-throw switch for use in high speed applications. The TS5MP645 is designed to facilitate multiple MIPI compliant devices to connect to a single CSI/DSI, C-PHY/D-PHY module.

The device has excellent bandwidth, low channel to channel skew with little signal degradation, and wide margins to compensate for layout losses. The low current consumption meets the need of low power applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TS5MP645	DSBGA (YFP)	2.459 mm x 2.459 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Copyright © 2018, Texas Instruments Incorporated

SCDS385 – JANUARY 2018 www.ti.com

Table of Contents

1	Features 1		8.4 Device Functional Modes	19
2	Applications 1	9	Application and Implementation	20
3	Description 1		9.1 Application Information	20
4	Revision History2		9.2 Typical Application	20
5	Pin Configuration and Functions	10	Power Supply Recommendations	2′
6	Specifications5	11	Layout	22
•	6.1 Absolute Maximum Ratings		11.1 Layout Guidelines	22
	6.2 ESD Ratings		11.2 Layout Example	22
	6.3 Recommended Operating Conditions	12	Device and Documentation Support	23
	6.4 Thermal Information5		12.1 Documentation Support	23
	6.5 Electrical Characteristics 6		12.2 Receiving Notification of Documentation Updat	tes 2
	6.6 Typical Characteristics9		12.3 Community Resources	23
7	Parameter Measurement Information 10		12.4 Trademarks	2
8	Detailed Description		12.5 Electrostatic Discharge Caution	23
	8.1 Overview		12.6 Glossary	23
	8.2 Functional Block Diagram 16	13	Mechanical, Packaging, and Orderable Information	2
	8.3 Feature Description		information	2

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
January 2018	*	Initial release.

5 Pin Configuration and Functions

Pin Functions

P	PIN	1/0	DECODINE
NAME	NO.	I/O	DESCRIPTION
VDD	A1	PWR	Power supply input
GND	A2	GND	Device Ground
DA4N	А3	I/O	Differential I/O
DA4P	A4	I/O	Differential I/O
ŌĒ	A5	I	Output enable (Active Low)
SEL	A6	I	Channel Select
DB4N	B1	I/O	Differential I/O
DB4P	B2	I/O	Differential I/O
DA3N	В3	I/O	Differential I/O
DA3P	B4	I/O	Differential I/O
D4N	B5	I/O	Differential I/O
D4P	B6	I/O	Differential I/O
DB3N	C1	I/O	Differential I/O
DB3P	C2	I/O	Differential I/O
NC	C3	-	No connect
NC	C4	-	No connect
D3N	C5	I/O	Differential I/O
D3P	C6	I/O	Differential I/O
DB2N	D1	I/O	Differential I/O
DB2P	D2	I/O	Differential I/O
DA2N	D3	I/O	Differential I/O

Copyright © 2018, Texas Instruments Incorporated

Submit Documentation Feedback

Pin Functions (continued)

Р	IN	1/0	DECORPORTOR
NAME	NO.	I/O	DESCRIPTION
DA2P	D4	I/O	Differential I/O
D2N	D5	I/O	Differential I/O
D2P	D6	I/O	Differential I/O
DB1N	E1	I/O	Differential I/O
DB1P	E2	I/O	Differential I/O
DA1N	E3	I/O	Differential I/O
DA1P	E4	I/O	Differential I/O
D1N	E5	I/O	Differential I/O
D1P	E6	I/O	Differential I/O
CLKBN	F1	I/O	Differential I/O
CLKBP	F2	I/O	Differential I/O
CLKAN	F3	I/O	Differential I/O
CLKAP	F4	I/O	Differential I/O
CLKN	F5	I/O	Differential I/O
CLKP	F6	I/O	Differential I/O

6 Specifications

www.ti.com

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1) (2)

		MIN	MAX	UNIT
V_{DD}	Supply Voltage	-0.5	6	V
V _{I/O}	Analog voltage range (DxN, CLKN, DxP, CLKP, DAxN, CLKAN, DAxP, CLKAP, DBxN, CLKBN, DBxP, CLKBP)	-0.5	4	V
V_{SEL} , $V_{\overline{OE}}$	Digital Input Voltage (SEL, OE)	-0.5	6	V
TJ	Junction temperature	-65	150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Rating* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Condition*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage are with respect to ground, unless otherwise specified

6.2 ESD Ratings

			VALUE	UNIT
V		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
V(ESD)	V _(ESD) Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{DD}	Supply Voltage	1.65	5.5	V
V _{I/O}	Analog voltage range (DxN, CLKN, DxP, CLKP, DAxN, CLKAN, DAxP, CLKAP, DBxN, CLKBN, DBxP, CLKBP)	0	3.6	V
$V_{SEL}, V_{\overline{OE}}$	Digital Input Voltage (SEL, OE)	0	5.5	V
I _{I/O}	Continuous I/O current	-35	35	mA
T _A	Operating ambient temperature	-40	85	°C
T_{J}	Junction temperature	-65	150	ů

6.4 Thermal Information

		TS5MP645	
	THERMAL METRIC ⁽¹⁾	YFP	UNIT
		36	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	57.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	0.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	12.6	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	12.7	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUP	PLY					
I _{DD}	Active Supply Current	V _{DD} = 1.65 V to 5.5 V OE = 0 V SEL = 0 V to 5.5 V Dn, CLKn = 0 V	0	30	60	μΑ
I _{DD_PD}	Power-down Supply current	$rac{V_{DD}}{OE} = 1.65 \text{ V to } 5.5 \text{ V} \\ OE = V_{DD} \\ SEL = 0 \text{ V to } 5.5 \text{ V} \\ Dn, CLKn = 0 \text{ V} \\ \end{tabular}$	0	0.1	1	μΑ
I _{DD_PD_1.8}	Power-down Supply current	VDD = 1.65 V to 5.5 V OE = 1.8 V SEL = 0 V to 5.5 V Dn, CLKn = 0 V	0	0.1	10	μΑ
DC CHARAC	TERISTICS					
R _{ON_HS}	On-state resistance	V _{DD} = 1.65 V to 5.5 V OE = 0 V Dn,CLKn = -8 mA, 0.2V DAn, DBn, CLKAn, CLKBn = 0.2 V, -8 mA		2.45	5.5	Ω
R _{ON_LP}	On-state resistance	V _{DD} = 1.65 V to 5.5 V OE = 0 V Dn, CLKn = -8 mA, 1.2V DAn, DBn, CLKAn, CLKBn = 1.2 V, -8 mA		2.65	6.5	Ω
R _{ON_flat_HS}	On-state resistance flatness	V _{DD} = 1.65 V to 5.5 V OE = 0 V Dn, CLKn = -8 mA, 0 V to 0.3 V DAn, DBn, CLKAn, CLKBn = 0 V to 0.3 V,-8 mA		0.1		Ω
R _{ON_flat_LP}	On-state resistance flatness	V _{DD} = 1.65 V to 5.5 V OE = 0 V Dn, CLKn = -8 mA, 0 V to 1.3 V DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V, -8 mA		0.9		Ω
Δ_{RON_HS}	On-state resistance match between+and - paths	V _{DD} = 1.65 V to 5.5 V OE = 0 V Dn, CLKn = -8 mA, 0.2 V DAn, DBn, CLKAn, CLKBn = 0.2 V, -8 mA		0.1		Ω
Δ_{RON_LP}	On-state resistance match between+and - paths	V _{DD} = 1.65 V to 5.5 V OE = 0 V Dn, CLKn = -8 mA, 1.2 V DAn, DBn, CLKAn, CLKBn = 1.2 V, -8 mA		0.1		Ω
l _{OFF}	Switch off leakage current	V _{DD} = 1.65 V to 5.5 V OE = 0 V to 5.5 V SEL= 0 V to 5.5 V Dn, CLKn = 0 V to 1.3 V DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V	-0.5		0.5	μА
I _{ON}	Switch on leakage current	V _{DD} = 1.65 V to 5.5 V $\overline{\text{OE}}$ = 0 V SEL= 0 V to 5.5 V Dn, CLKn = 0 V to 1.3 V DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V	-0.5		0.5	μА
DYNAMIC CH	IARACTERISTICS					
t _{SWITCH}	Switching time between channels	$\begin{split} &\frac{V_{DD}}{OE} = 1.65 \text{ V to } 5.5 \text{ V} \\ &\overline{OE} = 0 \text{ V} \\ &\text{Dn, CLKn} = 0.6 \text{ V} \\ &\text{DAn, DBn, CLKAn, CLKBn: } R_L = 50 \ \Omega, \ C_L = 5 \text{ pF} \end{split}$			1.5	μs
f _{SEL_MAX}	Maximum toggling frequency for the SEL line	V_{DD} = 1.65 V to 5.5 V Dn, CLKn = 0.6 V DAn, DBn, CLKAn, CLKBn: R_L = 50 Ω , C_L =1 pF			100	kHz
t _{on_oe}	Device enable time $\overline{\sf OE}$ to switch on	V_{DD} = 1.65 V to 5.5 V Dn, CLKn = 0.6 V DAn, DBn, CLKAn, CLKBn: R_L = 50 Ω , C_L = 1 pF		50	300	μs
t _{ON_VDD}	Device enable time V _{DD} to switch on	V_{DD} = 0 V to 1.65 V Dn, CLKn = 0.6 V DAn, DBn, CLKAn, CLKBn: R_L = 50 Ω , C_L = 1 pF		50	300	μs

Submit Documentation Feedback

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{OFF_OE}	Device disable time $\overline{\sf OE}$ to switch off	V_{DD} = 1.65 V to 5.5 V Dn, CLKn = 0.6 V DAn, DBn, CLKAn, CLKBn: R_L = 50 Ω , C_L = 1 pF		0.5	1	μs
t _{OFF_VDD}	Device disable time V _{DD} to switch off	V_{DD} = 5 V to 0 V VDD ramp rate = 250 μs Dn, CLKn = 0.6 V DAn, DBn, CLKAn, CLKBn: R _L = 50 Ω, C _L = 1pF		0.5	1	ms
t _{MIN_OE}	Minimum pulse width for $\overline{\text{OE}}$	V_{DD} = 1.65 V to 5.5 V Dn, CLKn = 0.6 V DAn, DBn, CLKAn, CLKBn: R_L = 50 Ω , C_L = 1 pF	500			ns
t _{BBM}	Break before make time	$\begin{array}{c} V_{DD} = 1.65 \text{ V to } 5.5 \text{ V} \\ \overline{\text{OE}} = 0 \text{ V} \\ \text{Dn, CLKn} = R_L = 50 \ \Omega, C_L = 1 \text{ pF} \\ \text{DAn, DBn, CLKAn, CLKBn: } 0.6 \text{ V} \end{array}$	50			ns
t _{SKEW}	Intrapair skew	$\begin{split} &V_{DD}=1.65 \text{ V to } 5.5 \text{ V} \\ &\overline{\text{OE}}=0 \text{ V} \\ &\text{Dn, CLKn}=0.3 \text{ V} \\ &\text{DAn, DBn, CLKAn, CLKBn: } \text{R}_{\text{L}}=50 \Omega, \text{C}_{\text{L}}=1 \text{ pF} \end{split}$		1		ps
t _{SKEW}	Interpair Skew	$\begin{split} &\frac{V_{DD}}{OE} = 1.65 \text{ V to } 5.5 \text{ V} \\ &\overline{OE} = 0 \text{ V} \\ &\text{Dn, CLKn} = 0.3 \text{ V} \\ &\text{DAn, DBn, CLKAn, CLKBn: } R_L = 50 \ \Omega, C_L = 1 \text{ pF} \end{split}$		4		ps
t _{PD}	Propagation delay with 100 ps rise time	$\begin{aligned} & \frac{V_{DD}}{OE} = 1.65 \text{ V to } 5.5 \text{ V} \\ & \overline{OE} = 0 \text{ V} \\ & Dn, \text{ CLKn} = 0.6 \text{ V} \\ & DAn, \text{ DBn, CLKAn, CLKBn: } R_L = 50 \ \Omega, C_L = 1 \text{ pF} \\ & t_{RISE} = 100 \text{ ps} \end{aligned}$		40		ps
O _{ISO}	Differential off isolation	$\begin{split} & \frac{V_{DD}}{\text{OE}} = 1.65 \text{ V} \\ & \overline{\text{OE}} = 0 \text{ V}, \text{ V}_{DD} \\ & \text{SEL} = 0 \text{ V}, \text{ V}_{DD} \\ & \text{Dn, CLKn, DAn, DBn, CLKAn, CLKBn: R}_{S} = 50 \Omega, \\ & \text{R}_{L} = 50 \Omega, \text{ C}_{L} = 1 \text{ pF} \\ & \text{V}_{I/O} = 200 \text{ mV} + 200 \text{ mV}_{PP} \text{ (differential)} \\ & \text{f} = 1250 \text{ MHz} \end{split}$		-20		dB
X _{TALK}	Differential channel to channel crosstalk	$\begin{split} &V_{DD}=1.65 \text{ V to } 5.5 \text{ V} \\ &\overline{\text{OE}}=0 \text{ V, V}_{DD} \\ &\text{SEL}=0 \text{ V, V}_{DD} \\ &\text{Dn, CLKn, DAn, DBn, CLKAn, CLKBn: R}_{S}=50 \Omega, \\ &R_{L}=50 \Omega, C_{L}=1 \text{ pF} \\ &V_{I/O}=200 \text{ mV} + 200 \text{ mV}_{PP} \text{ (differential)} \\ &f=1250 \text{ MHz} \end{split}$		-40		dB
BW	Differential Bandwidth	$\begin{split} &V_{DD}=1.65 \text{ V to } 5.5 \text{ V} \\ &\overline{\text{OE}}=0 \text{ V} \\ &\text{SEL}=0 \text{ V, V}_{DD} \\ &\text{Dn, CLKn, DAn, DBn, CLKAn, CLKBn: R}_{S}=50 \Omega, \\ &R_{L}=50 \Omega, C_{L}=1 \text{ pF} \\ &V_{VO}=200 \text{ mV } +200 \text{ mV}_{PP} \text{ (differential)} \end{split}$	1.5	2		GHz
I _{LOSS}	Insertion Loss	$\begin{split} & \frac{V_{DD}}{OE} = 1.65 \text{ V to } 5.5 \text{ V} \\ & \frac{D}{OE} = 0 \text{ V} \\ & \text{SEL} = 0 \text{ V, V}_{DD} \\ & \text{Dn, CLKn, DAn, DBn, CLKAn, CLKBn: R}_S = 50 \Omega, \\ & \text{R}_L = 50 \Omega, \text{ C}_L = 1 \text{ pF} \\ & \text{V}_{VO} = 200 \text{ mV} + 200 \text{ mV}_{PP} \text{ (differential)} \\ & \text{f} = 100 \text{ kHz} \end{split}$	-0.4			dB
C _{OFF}	Off capacitance	$\begin{split} &V_{DD} = 1.65 \text{ V to } 5.5 \text{ V} \\ \hline \text{OE} = 0 \text{ V, V}_{DD} \\ \text{SEL} = 0 \text{ V, V}_{DD} \\ \text{Dn, CLKn, DAn, DBn, CLKAn, CLKBn} = 0 \text{ V , } 0.2 \text{ V} \\ \text{f} = 1250 \text{ MHz} \end{split}$		1.5		pF
C _{ON}	On capacitance	$\begin{split} &V_{DD} = 1.65 \text{ V to } 5.5 \text{ V} \\ &\overline{\text{OE}} = V_{DD} \\ &\text{SEL} = 0 \text{ V, } V_{DD} \\ &\text{Dn, CLKn, DAn, DBn, CLKAn, CLKBn} = 0 \text{ V , } 0.2 \text{ V} \\ &\text{f} = 1250 \text{ MHz} \end{split}$		1.5		pF

Copyright © 2018, Texas Instruments Incorporated

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL CHA	ARACTERISTICS					
V _{IH}	Input logic high (SEL, OE)	$V_{I/O} = 0.6 \text{ V}, R_L = 50 \Omega, C_L = 5 \text{ pF}$	1.425		5.5	V
V _{IL}	Input logic low (SEL, OE)	$V_{I/O}$ = 0.6 V, R_L = 50 Ω , C_L = 5 pF	0		0.5	V
I _{IH}	Input high leakage current (SEL, OE)	$V_{I/O}$ = 0.6 V, R_L = 50 Ω , C_L = 5 pF	-5		5	μA
I _{IL}	Input low leakage current (SEL, OE)	$V_{I/O} = 0.6 \text{ V}, \text{ R}_L = 50 \Omega, C_L = 5 \text{ pF}$	-5		5	μΑ
R _{PD}	Internal pull-down resistance on digital input pins	$V_{I/O} = 0.6 \text{ V}, R_L = 50 \Omega, C_L = 5 \text{ pF}$		6		$M\Omega$
C _{SEL} , C _{OE}	Digital Input capacitance (SEL, OE)	f = 1 MHz		5		pF

6.6 Typical Characteristics

TEXAS INSTRUMENTS

7 Parameter Measurement Information

Copyright © 2018, Texas Instruments Incorporated

Figure 7. On Resistance

Figure 8. Off Leakage

Figure 9. On Leakage

Copyright © 2018, Texas Instruments Incorporated

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_r = 3~ns$, $t_f = 3~ns$.
- (2) C_L includes probe and jig capacitance.

Figure 10. t_{SWITCH} timing

Parameter Measurement Information (continued)

Copyright © 2018, Texas Instruments Incorporated

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_r = 3~ns$, $t_f = 3~ns$.
- (2) C_L includes probe and jig capacitance.

Figure 11. t_{ON} and t_{OFF} Timing for \overline{OE}

Copyright © 2018, Texas Instruments Incorporated

Figure 12. Off Isolation

Parameter Measurement Information (continued)

Copyright © 2018, Texas Instruments Incorporated

Figure 13. Crosstalk

Copyright © 2017, Texas Instruments Incorporated

Figure 14. BW and Insertion Loss

Product Folder Links: TS5MP645

Submit Documentation Feedback

Parameter Measurement Information (continued)

Figure 15. t_{PD} , $t_{SKEW(INTRA)}$ and t_{SKEW} Setup

Product Folder Links: TS5MP645

orated Submit Documentation Feedback

SCDS385 – JANUARY 2018 www.ti.com

TEXAS INSTRUMENTS

Parameter Measurement Information (continued)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$, $t_r = 100$ ps, $t_f = 100$ ps.
- (2) C_L includes probe and jig capacitance.

Figure 16. t_{PD}

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$, $t_r = 100$ ps, $t_f = 100$ ps.
- (2) C_L includes probe and jig capacitance.

Figure 17. t_{SKEW}

Parameter Measurement Information (continued)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$, $t_r = 100$ ps, $t_f = 100$ ps.
- (2) C_L includes probe and jig capacitance.
- (3) t_{SK(INTER)} is the max skew between all channels. Diagram exaggerates t_{SK(INTER)} to show measurement technique

Figure 18. t_{SKEW}

Copyright © 2017, Texas Instruments Incorporated

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_r = 3~ns$, $t_f = 3~ns$.
- (2) C_L includes probe and jig capacitance.

Figure 19. t_{BBM}

SCDS385 – JANUARY 2018 www.ti.com

INSTRUMENTS

8 Detailed Description

8.1 Overview

The TS5MP645 is a high-speed 4 Data lane 2:1 MIPI Switch. The device includes 10 channels (5 differential) with 4 differential data lanes and 1 differential clock lane for D-PHY, CSI or DSI. The switch allows a single MIPI port to interface between two MIPI modules, expanding the number of potential MIPI devices that can be used within a system that is MIPI port limited.

8.2 Functional Block Diagram

Copyright © 2018, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Powered-Off Protection

When the TS5MP645 is powered off (VDD = 0 V) the I/Os and digital logic pins of the device will remain in a high impedance state. The crosstalk, off-isolation, and leakage remains within the electrical specifications. This prevents errant voltages from reaching the rest of the system and maintains isolation when the system is powering up.

Figure 20 shows an example system containing a switch without powered-off protection with the following system level scenario

- 1. Subsystem A powers up and starts sending information to Subsystem B that remains unpowered.
- 2. The I/O voltage back powers the supply rail in Subsystem B.
- 3. The digital logic is back powered and turns on the switch. The signal is transmitted to Subsystem B before it is powered and damages it.

Figure 20. System Without Powered-Off Protection

With powered-off protection, the switch prevents back powering the supply and the switch remains high-impedance. Subsystem B remains protected.

Figure 21. System With Powered-Off Protection

This features has the following system level benefits.

- Protects the system from damage.
- Prevents data from being transmitted unintentionally
- Eliminates the need for power sequencing solutions reducing BOM count and cost, simplifying system design and improving reliability.

SCDS385 – JANUARY 2018 www.ti.com

TEXAS INSTRUMENTS

Feature Description (continued)

8.3.2 1.8 V Logic Compatible Inputs

The TS5MP645 has 1.8 V logic compatible digital inputs for switch control. Regardless of the V_{DD} voltage the digital input thresholds remained fixed, allowing a 1.8 V processor GPIO to control the TS5MP645 without the need for an external translator. This saves both space and BOM cost.

An example setup for a system without a 1.8 V logic compatible input is shown in Figure 22. Here the supply mismatch between the process and its GPIO output and the supply to the switch require a translator.

Figure 22. System Without 1.8 V Logic Compatible Inputs

With the 1.8 V logic compatibility in the TS5MP645, the translator is built in to the device so that the external components are no longer needed, simplifying the system design and overall cost.

Figure 23. System With 1.8 V Logic Compatible Inputs

8.3.3 Low Power Disable Mode

The TS5MP645 has a low power mode that places all the signal paths in a high impedance state and lowers the current consumption while the device is not in use. To put the device in low power mode and disable the switch, the output enable pin $\overline{\text{OE}}$ must be supplied with a logic high signal.

8.4 Device Functional Modes

8.4.1 Pin Functions

SEL and $\overline{\text{OE}}$ have weak 6-M Ω pulldown resistors to prevent floating input logic.

Table 1. Function Table

ŌĒ	SEL	Function		
Н	X	I/O pins High-Impedance		
L	_	CLK(P/N) = CLKA(P/N)		
	L	Dn(P/N) = DAn(P/N)		
L	11	CLK(P/N) = CLKB(P/N)		
	п	Dn(P/N) = DBn(P/N)		

8.4.2 Low Power Mode

While the output enable pin \overline{OE} is supplied with a logic high the device remains in low power state. This reduces the current consumption substantially and the switches are be high impedance. The SEL pin is ignored while the \overline{OE} remains high. Upon exiting low power mode, the switch status reflects the SEL pin as seen in Table 1.

8.4.3 Switch Enabled Mode

While the output enable pin \overline{OE} is supplied with a logic low the device will remain in switch enabled mode.

SCDS385 – JANUARY 2018 www.ti.com

TEXAS INSTRUMENTS

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.2 Typical Application

Figure 24 represents a typical application of the TS5MP645 MIPI switch. The TS5MP645 is used to switch signals between multiple MIPI modules and a single MIPI port on a processor. This expands the capabilities of a single port to handle multiple MIPI modules.

Figure 24. Typical TS5MP645 Application

9.2.1 Design Requirements

Design requirements of the MIPI standard being used must be followed. Supply pin decoupling capacitors of 2.2 μF and 100 nF are recommended for best performance. The TS5MP645 has internal 6-M Ω pulldown resistors on SEL and \overline{OE} . The pulldown on these pins ensure that the digital remains in a non-floating state during system power-up to prevent shoot through current spikes and an unknown switch status. By default the switch will power up enabled and with the A path selected until driven externally by the processor.

9.2.2 Detailed Design Procedure

The TS5MP645 can be properly operated without any external components. However, TI recommends that unused I/O signal pins be connected to ground through a 50 Ω resistor to prevent signal reflections and maintain device performance. The NC pins of the device do not require any external connections or terminations and have no connection to the rest of the device internally.

The clock and data lanes can be interchanged as necessary to facilitate the best layout possible for the application. For example the clock can be placed on the D1 channel and a data lane can be used on the CLK channel if this improves the layout. In addition the signal lines of the TS5MP645 are routed single ended on the chip die. This makes the device suitable for both differential and single-ended high-speed systems.

Typical Application (continued)

9.2.3 Application Curves

Figure 25. Differential Bandwidth

10 Power Supply Recommendations

When the TS5MP645 is powered off (V_{DD} = 0 V), the I/Os of the device remains in a high-Z state. The crosstalk, off-isolation, and leakage remain within the electrical *Specifications*. Power to the device is supplied through the VDD pin. Decoupling capacitors of 100 nF and 2.2 μ F are recommended on the supply.

SCDS385 – JANUARY 2018 www.ti.com

TEXAS INSTRUMENTS

11 Layout

11.1 Layout Guidelines

Place the supply de-coupling capacitors as close to the VDD and GND pin as possible. The spacing between the power traces, supply and ground, and the signal I/O lines, clock and data, should be a minimum of three times the race width of the signal I/O lines to maintain signal integrity.

The characteristic impedance of the trace(s) must match that of the receiver and transmitter to maintain signal integrity. Route the high-speed traces using a minimum amount of vias and corners. This will reduce the amount of impedance changes.

When it becomes necessary to make the traces turn 90°, use two 45° turns or an arc instead of making a single 90° turn.

Do not route high-speed traces near crystals, oscillators, external clock signals, switching regulators, mounting holes or magnetic devices.

Avoid stubs on the signal lines.

All I/O signal traces should be routed over a continuous ground plane with no interruptions. The minimum width from the edge of the trace to any break in the ground plane must be 3 times the trace width. When routing on PCB inner signal layers, the high speed traces should be between two ground planes and maintain characteristic impedance.

High speed signal traces must be length matched as much as possible to minimize skew between data and clock lines.

11.2 Layout Example

Figure 26. Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

YFP0036

PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.

SCDS385-JANUARY 2018 www.ti.com

EXAMPLE BOARD LAYOUT

YFP0036

NSTRUMENTS

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

EXAMPLE STENCIL DESIGN

YFP0036

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

PACKAGE OPTION ADDENDUM

3-Feb-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TS5MP645NYFPR	PREVIEW	DSBGA	YFP	36	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TS5MP645	
TS5MP645YFPR	ACTIVE	DSBGA	YFP	36	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TS5MP645	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

3-Feb-2018

PACKAGE MATERIALS INFORMATION

www.ti.com 22-Feb-2018

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5MP645NYFPR	DSBGA	YFP	36	3000	180.0	8.4	2.58	2.58	0.62	4.0	8.0	Q1
TS5MP645YFPR	DSBGA	YFP	36	3000	330.0	12.4	2.58	2.58	0.62	8.0	12.0	Q1

www.ti.com 22-Feb-2018

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5MP645NYFPR	DSBGA	YFP	36	3000	182.0	182.0	20.0
TS5MP645YFPR	DSBGA	YFP	36	3000	367.0	367.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.