Introduction to (Mathematical) Optimization

AJ Friend, Nick Henderson (w/ material from Stephen Boyd and Steven Diamond)

June 28, 2015

Optimization

Optimization finding a best (or good enough) choice among the set of options for a certain objective

Optimization

Optimization finding a best (or good enough) choice among the set of options for a certain objective

- system: mathematical model
- change: change to input variables (parameters)
- outcome: a measure of performance of the model, objective function

Mathematical optimization

Mathematical optimization problem has form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \end{array}$$

- $x \in \mathbb{R}^n$ is decision variable (to be found)
- f_0 is objective function; f_i are constraint functions
- lacktriangle problem data are hidden inside f_0,\ldots,f_m

The good news

Everything is an optimization problem

- choose parameters in model to fit data (minimize misfit or error on observed data)
- optimize actions (minimize cost or maximize profit)
- allocate resources over time (minimize cost, power; maximize utility)
- engineering design (trade off weight, power, speed, performance, lifetime)

The bad news

In full generality, optimization problems can be quite difficult

- ▶ generally NP-hard
- heuristics required, hand-tuning, luck, babysitting

The bad news

In full generality, optimization problems can be quite difficult

- generally NP-hard
- heuristics required, hand-tuning, luck, babysitting

But...

- we can do a lot by restricting to convex models (AJ's talk)
- we have good computational tools
 - modeling languages (CVX, CVXPY, JuMP, AMPL, GAMS) to write problems down
 - ▶ solvers (IPOPT, SNOPT, Gurobi, CPLEX, Sedumi, SDPT3, ...) to obtain solutions

Example: The Raptor Problem

See other slides

$$\text{minimize} \quad f(x) \in C^2: \mathbf{R} \to \mathbf{R}$$

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

ightharpoonup x is a real variable

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ightharpoonup x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ightharpoonup x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- ▶ Local optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x near x^*

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- ► x is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- Local optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x near x^*
- ▶ Global optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x in domain of interest

minimize
$$f(x) \in C^2 : \mathbf{R} \to \mathbf{R}$$

- $\triangleright x$ is a real variable
- ightharpoonup f(x) is the objective function, which returns a single real number
- Local optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x near x^*
- ▶ Global optimization: look for a point x^* such that $f(x^*) \leq f(x)$ for all points x in domain of interest
- When f(x) is twice continuously differentiable, then local optimization involves finding a point x^* such that $f'(x^*) = 0$ and $f''(x^*) > 0$

Optimization in one variable: definitions

Optimization in one variable: example objective function

Optimization in one variable: critical points, f'(x) = 0

Optimization in one variable: local optima

Optimization in one variable: local optima, f''(x) = ?

Optimization in one variable: unbounded below

Optimization in one variable: saddle point, f'(x) = 0 and f''(x) = 0

Optimization in one variable: convex objective

Key definitions

- domain: space for input variable x
- **range**: space for output of objective function f(x)
- critical point: f'(x) = 0
- ▶ local minimizer. f'(x) = 0 and f''(x) > 0
- ▶ local maximizer: f'(x) = 0 and f''(x) < 0
- ▶ saddle point: f'(x) = 0 and f''(x) = 0
- ▶ global minimizer: x^* such that $f(x^*) \leq f(x)$ for all x in domain

lacktriangle Start with an initial guess x_0

- ightharpoonup Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \dots \to x^*$$

- ightharpoonup Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \dots \rightarrow x^*$$

▶ Notation for sequence and convergence: $\{x_k\} \rightarrow x^*$

- ▶ Start with an initial guess x_0
- ► Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \dots \rightarrow x^*$$

- ▶ Notation for sequence and convergence: $\{x_k\} \rightarrow x^*$
- ▶ Key algorithm property: *descent condition*

$$f(x_{k+1}) < f(x_k)$$

- ▶ Start with an initial guess x_0
- ▶ Goal: generate sequence that converges to solution

$$x_0, x_1, x_2, x_3, \dots \rightarrow x^*$$

- ▶ Notation for sequence and convergence: $\{x_k\} \rightarrow x^*$
- ▶ Key algorithm property: *descent condition*

$$f(x_{k+1}) < f(x_k)$$

► Technical algorithm property: *convergence to solution*

$$|x_{k+1}-x_k| o 0$$
 if and only if $f'(x_k) o 0$ and $\lim_{k o \infty} f''(x_k) \ge 0$

Optimization in many variables

minimize
$$f(x) \in C^2 : \mathbb{R}^n \to \mathbb{R}$$

- x is an n-dimensional vector of real variables
- ightharpoonup f(x) is the objective function (twice continuously differentiable)
 - First derivative or gradient of f is written $\nabla f(x)$
 - Second derivate or Hessian of f is written $\nabla^2 f(x)$
- ▶ We are looking for a point x^* such that $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$. Note that this is a *local* optimizer
 - $lackbox{}
 abla^2 f(x) \succeq 0$ means that all the eigenvalues of $abla^2 f(x)$ are non-negative

The gradient $\nabla f(x)$ in 2 variables

Vector of variables:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Gradient of f:

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix}$$

The Hessian $\nabla^2 f(x)$ in 2 variables

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

Let's look at an example

The Rosenbrock function:

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

Rosenbrock contours

Basic optimization algorithm

Line search algorithms

- 1. compute a search direction p_k
 - for minimization, p_k must be a descent direction, that is $p_k^T g_k < 0$
- 2. select a step length α_k along p_k such that $f(x_k + \alpha_k p_k) < f(x_k)$
 - (we need more technical requirements here)
- 3. update the guess $x_{k+1} \leftarrow x_k + \alpha_k p_k$

Example line search algorithms

Algorithm:

$$x_{k+1} \leftarrow x_k + \alpha_k p_k$$

Gradient descent:

$$p_k = -g_k = -\nabla f(x_k)$$

Modified Newton's method:

$$p_k = -(H_k + \lambda_k I)^{-1} g_k = (\nabla^2 f(x_k) + \lambda_k I)^{-1} \nabla f(x_k)$$

Step length selection: backtracking

Goal: given p_k find α such that $f(x_k + \alpha p_k) < f(x_k)$.

Procedure: start with initial guess $\alpha>0$ (use $\alpha=1$ for Newton's method)

- 1. if $f(x_k + \alpha p_k) < f(x_k)$, then return α , otherwise continue
- 2. decrease α by some factor $0 < \delta < 1$: $\alpha \leftarrow \delta \alpha$
- 3. repeat

Optimization on rosenbrock function

Optimization on rosenbrock function

Optimization on rosenbrock function

Considerations in selecting optimization algorithms

- Computational cost/scale of objective function
- ► Computational cost of linear algebra associated with optimization algorithm
- Accuracy requirement in your application

Two very important optimization problems

- ► linear least squares
- ▶ non-linear least squares

Constraints

- ▶ basic idea of constraints
- work through example from multivariate calculus
- ▶ introduce idea of multipliers
- equality constraints
- ► inequality constraints
- ▶ linear constraints
- nonlinear constraints

Penalty and barrier methods

▶ introduce a penalty into the objective to penalize constraint violation

Linear programming

Discrete variables

- ► Mixed integer programming
- ► Scheduling problems

What's next

- ► Nonlinear programming
- ► Convex modelling
- ► Study of algorithms
- ► Modeling languages
- Automated differentiation