Leam name: Kurzschluss 2000 Maximilian Müller 6245870 Silja Kasper 6078546

CNS Sheet No. 5 17.11.2023 - 23.11.2023

Matrix

credits: Problem 5-1 1 point

Problem 5-2 1 point

Problem 5-1 Matrix Operations

a. Consider the following matrices and vectors:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ -1 & -1 & 0 \\ 2 & 0 & 2 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ -3 \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}$$

Calculate $\mathbf{A}\mathbf{B}^{\mathsf{T}}$, $\mathbf{A}^{\mathsf{T}}\mathbf{B}$, $\mathbf{v}\mathbf{w}^{\mathsf{T}}$, and $\mathbf{v}^{\mathsf{T}}\mathbf{w}$.

Note: The upper index \top denotes "transposition" of the matrix, i.e. exchanging rows and columns. The 4×3 -matrix \mathbf{A} is transposed into the 3×4 -matrix \mathbf{A}^{\top} etc. \mathbf{v} and \mathbf{w} are treated here as 4×1 matrices but can also be considered as column vectors. In this case, $\mathbf{v}^{\top}\mathbf{w}$ and $\mathbf{v}\mathbf{w}^{\top}$ are the inner and outer products of the two vectors.

b. Let

$$\mathbf{M} = \left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array}\right).$$

Show that $\mathbf{e}_1 = (1,1)^{\top}$ and $\mathbf{e}_2 = (1,-1)^{\top}$ are eigenvectors of \mathbf{M} , i.e. that they satisfy the equations $\mathbf{M}\mathbf{e}_1 = \lambda_1\mathbf{e}_1$ and $\mathbf{M}\mathbf{e}_2 = \lambda_2\mathbf{e}_2$. Calculate the eigenvalues λ_1 and λ_2 .

$$AB^{T} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 4 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -1 & 2 \\ 2 & 3 & -1 & 0 \\ 3 & 4 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 6 & -1 & 4 \\ 3 & 4 & -1 & -2 \\ 6 & 8 & 0 & 4 \end{pmatrix}$$

$$A^{T}B = \begin{pmatrix} 1 & -1 & 1 & 6 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ -1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -2 & -2 & -1 \\ 3 & 5 & 8 \\ 4 & 1 & 2 \end{pmatrix}$$

$$V\omega^{T} = \begin{pmatrix} 1 \\ 0 \\ \frac{2}{3} \end{pmatrix} \cdot \begin{pmatrix} 4321 \end{pmatrix} = \begin{pmatrix} 4321 \\ 0000 \\ 8642 \\ -12-9-6-3 \end{pmatrix}$$

$$V^{T}\omega = \begin{pmatrix} 102-3 \end{pmatrix} \cdot \begin{pmatrix} 4321 \\ \frac{3}{2} \end{pmatrix} = 4+4-3=5$$

$$\begin{pmatrix}
3 & 1 \\
1 & 3
\end{pmatrix} \cdot \begin{pmatrix}
1 \\
1
\end{pmatrix} = 4 \cdot \begin{pmatrix}
1 \\
1
\end{pmatrix} - 7e_1 e_1 e_2 e_3$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 — Re reigenvector of M

M er M er

5–2 SHEET 5. MATRIX

Problem 5-2 Principal Components

a. Consider again the matrix

$$\mathbf{M} = \left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array}\right).$$

Assume now that it is the covariance matrix of the pair of data vectors $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ with zero mean $(\hat{\mathbf{x}} = \hat{\mathbf{y}} = 0)$. I.e., we have $\text{var}(\mathbf{x}) = \text{var}(\mathbf{y}) = 3$ and $\text{cov}(\mathbf{x}, \mathbf{y}) = 1$.

Calculate the variance of the combined random variables $\mathbf{z} = \mathbf{x} + \mathbf{y}$ and $\mathbf{z}' = \mathbf{x} - \mathbf{y}$ and the covariance $\text{cov}(\mathbf{z}, \mathbf{z}')$

Hint: since all variables are zero mean, we have $var(\mathbf{x}) = \frac{1}{n} \sum x_i^2$ etc.

b. Consider projections of the vectors $\mathbf{s}_i = (x_i, y_i)$ on a unit projection vector in direction φ , $\mathbf{p} = (\cos \varphi, \sin \varphi)^{\top}$:

$$z_{\varphi,i} = (\mathbf{s}_i \cdot \mathbf{p});$$
 $\mathbf{z}_{\varphi} = \mathbf{x} \cos \varphi + \mathbf{y} \sin \varphi.$

Show that the variances of these projections are given as

$$var(\mathbf{z}_{\varphi}) = \mathbf{p}^{\top} \mathbf{M} \mathbf{p}$$

$$= \cos^{2} \varphi \ var(\mathbf{x}) + 2\cos \varphi \sin \varphi \ cov(\mathbf{x}, \mathbf{y}) + \sin^{2} \varphi \ var(\mathbf{y})$$

$$= 3 + 2\cos \varphi \sin \varphi$$

and that they are maximal (minimal) for $\varphi = 45^{\circ}$ ($\varphi = -45^{\circ}$), i.e. for the projection vectors $\mathbf{p}_{\pm 45^{\circ}}^{\top} = (\cos 45^{\circ}, \pm \sin 45^{\circ}) = (1, \pm 1)/\sqrt{2}$.

c. Sketch a scatter-plot of the data-points (x_i, y_i) and mark the variances $var(\mathbf{x})$, $var(\mathbf{y})$, $var(\mathbf{z}_{45})$, $var(\mathbf{z}_{-45})$ and the projection vectors $(1, 1)/\sqrt{2}$ and $(1, -1)/\sqrt{2}$. Observe that the maximal and minimal variances are obtained for projections on the eigenvectors of M.

coverience 2 21.

$$= \frac{1 \cdot 3 - 8 - 4}{5} = 0$$

$$= \frac{1 \cdot 3 - 8 - 4}{5} = 0$$

$$= \frac{1 \cdot 3 - 8 - 4}{5} = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

$$= \frac{1}{5} \cdot 3 - 8 - 4 = 0$$

-8 sin (-45°)cos (-45°)= 4