SC224: Tutorial Sheet 1

Problems based on Basic Counting Principle, and Permutation and Combination

- Pb 1) Eighteen workers are to be assigned to 18 different jobs, one to each job. How many different assignments are possible?
- Pb 2) How many 3-letter code words are possible using the first 8 letters of the alphabet if:
 - (a) No letter can be repeated?
- (b) Letters can be repeated?
- (c) Adjacent letters can not be alike.
- Pb 3) From a committee of 8 people, in how many ways can we choose a chair and a vice-chair, assuming one person can not hold more than one position?
- Pb 4) Serial numbers for a product are to be made using 2 letters followed by 3 numbers. If the letters are to be taken from the first 8 letters of the alphabet with no repeats and the numbers from the 10 digits 0 through 9 with no repeats, how many serial numbers are possible?
- Pb 5) In how many ways can r objects be selected from a set of n objects if the order of selection is also to be considered?
- Pb 6) In a cricket 11 is to be selected out of 14 players of whom 5 are bowlers. Find the number of ways in which this can be done so as to include at least 3 bowlers.
- Pb 7) How many triangles can be formed by joining the vertices of a hexagon?
- Pb 8) There are 10 points in a plane. No three points are in the same straight line excepting 4 points which are collinear. Find the number of straight lines obtained by joining the points?
- Pb 9) How many ways to form a 4-digit numbers from the set $\{0,1,2,3,4,5\}$ (repetition is not allowed)?

Problems based on Axioms of Probability, Conditional Probability and Baye's Theorem

- Pb 1) Let P be a probability function defined on the sample space Ω . Then
 - (i) $P(\phi) = 0$. (ii) $\forall E \subseteq \Omega, 0 \le P(E) \le 1 \text{ and } P(\overline{E}) = 1 P(E)$.
 - (iii) If $E_i \subseteq \Omega$, i = 1, 2, ..., n, and $E_i \cap E_j = \phi$, $i \neq j$, then $P\left(\bigcup_{i=1}^n E_i\right) = \sum_{i=1}^n P(E_i)$.
 - (iv) Let $E_1, E_2 \subseteq \Omega$ such that $E_1 \subseteq E_2$, then

$$P(E_2 - E_1) = P(E_2) - P(E_1)$$
 and $P(E_1) < P(E_2)$.

- (v) For $E_1, E_2 \subseteq \Omega$, we have $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2)$.
- (vi) (Bonferroni's Inequality) For $E_1, E_2 \subseteq \Omega$, $P(E_1 \cap E_2) \ge P(E_1) + P(E_2) 1$.
- Pb 2) (i) Let $B_1, B_2,, B_n$ be a partition of the Sample space Ω . Show that, for any $A \subset \Omega$, we have: $P(A) = \sum_{k=1}^{n} P(A \cap B_k)$. (By an partition of the sample space Ω , we mean a countable collection $\{B_i\}_{i \in \Lambda}$ of mutually exclusive events B_i in Ω such that $\bigcup_{i \in \Lambda} B_i = \Omega$).
 - (ii) Use (i) to show that for events A, B and C:

$$P(A) = P(A \cap B) + P(A \cap C) + P(A \cap B^c \cap C^c) - P(A \cap B \cap C).$$

Pb 3) For events $A_1, A_2, ..., A_n$ in the Sample space Ω , establish the following result:

$$P(A_1 \cap A_2 \cap \cap A_n) \ge P(A_1) + P(A_2) + + P(A_n) - (n-1).$$

- Pb 4) Two dice are thrown simultaneously. If a sum equal to five or seven is obtained, then a coin is tossed. Write down the sample space for this experiment. Given that the coin has been tossed, what is the probability that a "2" has been rolled with the second die?
- Pb 5) Consider four coding machines M_1 , M_2 , M_3 and M_4 producing binary codes 0 and 1. The machine M_1 produces codes 0 and 1 with respective probabilities $\frac{1}{4}$ and $\frac{3}{4}$. The code produced by machine M_k is fed into machine M_{k+1} (k=1,2,3) which may either leave the received code unchanged or may change it. Suppose that each of the machines M_2 , M_3 and M_4 change the received code with probability $\frac{3}{4}$. Given that the machine M_4 has produced code 1, find the conditional probability that the machine M_1 produced code 0.
- Pb 6) A communication system transmits three signals: s_1, s_2 and s_3 , with equal probability. The reception is sometimes erroneous, because of the "Noise". It was found, experimentally, that the probability p_{ij} of receiving the signal s_j , given that the signal s_i has been transmitted, is given by the following table:

		Reception		
		s_1	s_2	s_3
Transmission	s_1	0.8	0.1	0.1
	s_2	0.05	0.9	0.05
	s_3	0.02	$0.9 \\ 0.08$	0.90

- a) What is the probability that the signal s_1 has been transmitted, given that the signal s_2 has been received?
- b) If we assume that the transmissions are independent, what is the probability of receiving two consecutive s_3 signals?

- Pb 7) A locality has n houses numbered 1, 2, ..., n and a terrorist is hiding in one of these houses. Let H_j denote the event that the terrorist is hiding in house number j, j = 1, 2, ..., n and let $P(H_j) = p_j \in (0, 1), j = 1, 2, ..., n$. During a search operation, let F_j denote the event that search of the house number j will fail to nab the terrorist there and let $P(F_j|H_j) = r_j \in (0, 1), j = 1, 2, ..., n$. For each $i, j \in \{1, 2, ..., n\}, i \neq j$, show that H_j and F_j are negatively associated but H_i and F_j are positively associated. Interpret these findings.
- Pb 8) Give an example, which illustrates that, in general, pairwise independence of a collection of events may not imply their independence.