TreeFix-VP: Phylogenetic Error-Correction for Viral Transmission Network Inference

Sledzieski, Zhang, Mandoiu, Bansal

Department of Computer Science and Engineering, University of Connecticut, USA

October 16, 2018

- Background
 - Related Work
 - Our Approach
- 2 TreeFix-VP
 - Overview
 - Search and Cost
- 3 Experimental Design
 - Viral Outbreak Data
 - Simulation
 - Analysis Pipeline
- Results
 - Viral Outbreak Data
 - Phylogeny Inference
 - Transmission Network Inference
- Seferences

Viral Transmission Inference

Problem

Reconstruct transmission of disease

Given: Viral sequences from infected hosts

Goal: Network G(V, E) where V is the set of infected hosts, and each

edge in E represents a transmission of the disease

Bansal 2017

Phylogeny-Based Transmission Network Inference

- Label internal nodes of viral sequence phylogeny with hosts
- Didelot et. al 2014, Hall et. al 2015, Klinkengerg et al. 2017

Improved Phylogenetic Inference

Goals:

- Improve downstream transmission inference
- Improve scalability by reducing the need for MCMC or coestimation of phylogeny

Approach: Error correction for reconstruction of highly accurate viral phylogenies

Improved Phylogenetic Inference

Problem

Reconstruct viral phylogeny

Given: Viral sequences from infected hosts

Goal: Tree T representing evolutionary history of the virus, where leaves

are labeled with infected hosts

TreeFix-DTL

Improved gene tree error correction in the presence of horizontal gene transfer

Mukul S. Bansal^{1,2,*,†}, Yi-Chieh Wu^{1,†}, Eric J. Alm^{3,4}, and Manolis Kellis^{1,4,*}

¹Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, ²Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA and ³Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge and ⁴Broad Institute, Cambridge, MA, USA

^{*}To whom correspondence should be addressed.

¹The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as Joint First Authors. Associate Editor: David Posada

Search in Maximum Likelihood Neighborhood

Bansal and Wu et. al 2014

Multiple Sequences per Host

Bansal 2017

TreeFix-VP

Computational method for error correction of viral sequence phylogenies

- Accurate reconstruction of phylogenies
- Increased accuracy of outbreak and transmission inference
- Scalable analysis

TreeFix-VP

Input: Maximum likelihood phylogeny, multiple sequence alignment, sequence-host mapping

Output: Error-corrected viral phylogeny

Bansal 2017

TreeFix-VP

Approach: Use host information to select the best tree that is still well supported by sequence data.

Bansal 2017

Tree Score

Question: How to determine the "best" tree?

- Label leaves with associated hosts.
- Use Fitch's algorithm for the small parsimony problem to calculate the minimum number of required transmissions.
 - For a tree on n leaves and k hosts, complexity O(nk)
 - Biologically meaningful: edges with different hosts represent transmission (direct or indirect)

Outbreak Data

Dataset:

- 142 intra-host HCV populations from 33 outbreaks (provided by CDC)
- Outbreaks contain from 2 to 19 samples, and
- A few dozen to a few hundred sequences
- True transmission history known for 14 of the outbreaks

FAVITES (FrAmework for VIral Transmission and Evolution Simulation

Moshiri et al. 2018

Simulation Model

- Barabasi-Albert model for contact network generation
 - 1000 nodes
- Models of transmission
 - Used SEIR and SIR models
 - Transmission parameters chosen to evenly space transmissions
- Coalescent model with logistic growth rate for phylogeny generation
 - Coalescent parameters chosen to give even branch lengths
- GTR+Γ model of sequence evolution
 - Nucleotide frequencies and transmission rates estimated from real outbreak data

Simulation Model

Varied Parameters:

- Sequence Length
- Viruses per Host
- Mutation Rate

Analysis Pipeline

Analysis Pipeline

- RAxML: 25 bootstraps, GTRGAMMA model, rooted phylogeny
- TreeFix-VP: Run for 5000 iterations
- Tnet: Uses Sankoff's algorithm to label internal nodes of phylogeny and infer transmission edges
- Phyloscanner: Wymant and Hall et al. 2017
 - Also uses parsimony
 - Leaves some internal nodes unlabeled

Analysis Pipeline

Phyloscanner - Conservative estimation of transmissions

RAxML vs. TreeFix-VP Transmission Costs

Figure: Outbreak Transmission Cost

Figure: Outbreak Source Detection

Runtime (minutes) vs. Leaves

Figure: Outbreak Runtime

Simulation Parameters

Baseline

• SEIR model of transmission

• Sequence Length: 1000

• Viruses per Host: 10

• Mutation Rate: 0.25

Figure: Error Corrected Transmission Cost

Figure: Error Corrected Robinson-Foulds Distance

Figure: TreeFix-VP Runtime

Figure: All Runs

Figure: Varied Sequence Length

Figure: Varied Number of Viruses per Host

Figure: Varied Mutation Rate - SEIR

Figure: Varied Mutation Rate - SIR

Figure: SEIR Transmission Model

Figure: SIR Transmission Model

Figure: Varied Sequence Length

Figure: Varied Number of Viruses per Host

Figure: Varied Mutation Rate - SEIR

Figure: Varied Mutation Rate - SIR

Future Work

- Evaluate performance of TreeFix-VP compared to MCMC methods using a single sequence
- Evaluate effect of using multiple sequences per host on network inference
- Second Second

References

- Mukul S. Bansal, "Phylogenetic Error-Correction for Viral Transmission Network Inference. CAME 2017.
- Mukul S. Bansal*, Yi-Chieh Wu*, Eric J. Alm, and Manolis Kellis. "Improved Gene Tree Error Correction in the Presence of Horizontal Gene Transfer." Bioinformatics. 2015. doi: 10.1093/bioinformatics/btu806
- Didelot, Xavier, et al. "Genomic Infectious Disease Epidemiology in Partially Sampled and Ongoing Outbreaks." Molecular Biology and Evolution, 2017, doi:10.1093/molbev/msw275.
- Hall, Matthew, et al. "Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set." PLOS Computational Biology, vol. 11, no. 12, 2015, doi:10.1371/journal.pcbi.1004613.
- Niema Moshiri, Manon Ragonnet-Cronin, Joel O. Wertheim, Siavash Mirarab, "FAVITES: simultaneous simulation of transmission networks, phylogenetic trees, and sequences." bioRxiv 297267; doi:10.1101/297267

References

- Alexandros Stamatakis. RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 22(21):2688-2690, 2006
- Wymant C, Hall M, Ratmann O, Bonsall D, Golubchik T, de Cesare M, Gall A, Cornelissen M, Fraser C; STOP-HCV Consortium, The Maela Pneumococcal Collaboration, and The BEEHIVE Collaboration. "PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity." Mol Biol Evol. 2017 Nov 23. doi: 10.1093/molbev/msx304

Acknowledgements

Collaborators: Chengchen Zhang, Mukul Bansal, Ion Mandoiu, Alex

Zelikovsky, Pavel Skums, Yury Khudyakov

Funding: NSF award CCF 1618347

Questions?

Supplementary Figures - Branch Length Distribution

Figure: Sample Distribution of Branch Lengths