Problems: Domian, Range and Graphs

Atanu Saha atanu.saha@flame.edu.in

FLAME University, Pune School of Computing and Data Sciences

September 30, 2025

Domain using Wavy Curve Method

Problem

Find the domain of

$$f(x) = \sqrt{(x-2)(x+3)}.$$

Domain using Wavy Curve Method

Problem

Find the domain of

$$f(x) = \sqrt{(x-2)(x+3)}.$$

Solution

Condition:

$$(x-2)(x+3) \ge 0$$

Critical points: x = -3, 2.

Domain using Wavy Curve Method

Result

Keep intervals where product ≥ 0 :

$$Domain = (-\infty, -3] \cup [2, \infty).$$

Problem Find the domain and range of

$$f(x) = \sqrt{4 - x^2}$$

Problem Find the domain and range of

$$f(x) = \sqrt{4 - x^2}$$

Domain:
$$4 - x^2 \ge 0 \implies (2 - x)(2 + x) \ge 0 \implies -2 \le x \le 2$$
.

$$Domain = [-2, 2]$$

Problem Find the domain and range of

$$f(x) = \sqrt{4 - x^2}$$

Domain: $4 - x^2 \ge 0 \implies (2 - x)(2 + x) \ge 0 \implies -2 \le x \le 2$.

$$Domain = [-2, 2]$$

Range: Let y = f(x).

$$y = \sqrt{4 - x^2}$$

Again, since it's a square root, $y \ge 0$. Square both sides:

$$y^2 = 4 - x^2$$

Rearrange to solve for x^2 :

$$x^2 = 4 - y^2$$

For x^2 to be a real number, it must be non-negative:

$$x^2 \ge 0 \Rightarrow 4 - y^2 \ge 0$$

$$4 \ge y^2 \Rightarrow -2 \le y \le 2$$

Combining with $y \ge 0$, the range is [0, 2].

$$Range=[0,2]$$

Cubic Polynomial (Vanishing Method)

Problem

Sketch the graph of

$$f(x) = x^3 - 2x^2 - 5x + 6.$$

Finding factors

Try integer values: $x = -3, -2, -1, 0, 1, 2, 3, \dots$

$$f(1) = 1^3 - 2(1)^2 - 5(1) + 6 = 1 - 2 - 5 + 6 = 0$$

Therefore, (x-1) is a factor of f(x).

Cubic Polynomial (Vanishing Method)

<u>Factorisation</u>

$$f(x) = x^3 - 2x^2 - 5x + 6 = x^2(x-1) - x(x-1) - 6(x-1)$$

$$f(x) = (x-1)(x^2 - x - 6).$$

Factor the quadratic:

$$x^2 - x - 6 = (x - 3)(x + 2).$$

So,

$$f(x) = (x-1)(x-3)(x+2).$$

Zeros: x = -2, 1, 3.

Cubic graph

Note

You can decide the sign of f(x) in each interval using the **wavy curve method**, or by checking the value of f(x) at a test point in every interval.

Quadratic Polynomial (Middle-term Splitting)

Example

Sketch the graph of

$$f(x) = x^2 + 5x + 6.$$

Factorisation: (x+2)(x+3).

Quadratic Polynomial (Middle-term Splitting)

Example

Sketch the graph of

$$f(x) = x^2 + 5x + 6.$$

Factorisation: (x+2)(x+3).

Quadratic Polynomial (Completing the Square)

Problem

Sketch the graph of

$$f(x) = x^2 + 4x + 5.$$

Completing square:

$$f(x) = x^2 + 4x + 5 = (x^2 + 2x * 2 + 2^2) + 1 = (x+2)^2 + 1$$

Draw x^2 then vertical shift 1, horizontal shift -2. Vertex: (-2,1)

Graphical Problems: Quadratic Cubic

Questions:

- Sketch the graph of $y = x^2 4x + 5$ and determine the number of real roots.
- ② Sketch the graph of $y = -x^2 + 2x + 3$ and find the points where it intersects the x-axis.
- 3 Sketch the graph of $y = x^3 3x^2 + 2x$ and determine the number of real roots.
- ① Sketch the graph of $y = x^3 + x^2 x 1$ and find where it crosses the x-axis.

Solutions: Quadratic Cubic Graphs

Solutions:

- $y = x^2 4x + 5$ Discriminant: $D = (-4)^2 - 4(1)(5) = 16 - 20 = -4 < 0 \Rightarrow \text{No real roots},$ parabola lies above x-axis.
- ② $y = -x^2 + 2x + 3$ Discriminant: $D = 2^2 - 4(-1)(3) = 4 + 12 = 16 > 0$ Roots: x = -1, 3
- **3** $y = x^3 3x^2 + 2x = x(x-1)(x-2)$ Roots: x = 0, 1, 2 (3 real roots)
- ① $y = x^3 + x^2 x 1 = (x^2 1)(x + 1) = (x 1)(x + 1)^2$ Roots: x = 1, -1 (x = -1 is repeated)