Експоненціальний закон

Задачі:

- 1. Дано постійну радіоактивного розпаду λ ядра. Визначіть:
 - вірогідність того, що воно розпадеться за час від 0 до t
 - ullet середній час його життя au
- 2. Радіоізотоп із постійною розпаду λ_1 перетворюється в інший радіоізотоп із постійною розпаду λ_2 . В нульовий момент часу препарат містив лише ядра першого ізотопу. Знайдіть:
 - відношення кількості ядер першого та другого ізотопів в залежності від часу
 - момент часу t, коли активність другого ізотопу буда максимальна
- 3. Препарат складається з радіоактивних T^3 ($T_{1/2}=12.3~{
 m poky}$) та N^{22} ($T_{1/2}=2.6~{
 m poky}$). 10 років тому активність препарату складала $30~{
 m mEK}$, а зараз складає $5~{
 m mEK}$. Знайдіть частку, яку займали відповідно водень та натрій $10~{
 m pokib}$ тому.
- 4. Яка частина молекул газу:
 - ullet пролітає без зіткнень середню відстань вільного пробігу λ
 - має довжини вільного пробігу від λ до 2λ
- 5. $a\ dt$ вірогідність того, що молекула зіткнеться з іншою молекулою за проміжок часу dt. Знайдіть середній час між зіткненнями та кількість зіткнень в 1 молі такого газу за секунду. 6. Моделюватимемо розповсюдження коронавірусу таким чином. N це кількість активних випадків. E кількість людей, інфікованих одним хворим за день. p вірогідність того, що інфікування буде направлене на здорову людину. Вважатимемо $p=1-\frac{N}{N_{\text{поп.}}}$, де $N_{\text{поп.}}$ це кількість популяції. Маємо такий приріст активних випадків dN=NEpdt. Для перших двох пунктів впливом фактору p знехтуємо.
 - Покладемо E=0.15 людей/добу. Скільки днів від початку інфеції знадобиться, щоб інфікувати перші 1000 людей?
 - 3 яким "випередженням" йшла Корея (6500 випадків) у порівнянні з Австралією (64 випадки)?
 - Якщо влада повністю бездіяльна, то через скільки днів, та з якою кількістю хворих можна буде заявити, що "кількість інфікувань за день почала зменшуватись"?
 - Додамо фактор системи охорони здоров'я. Включимо в dN доданок $-C\ dt$, де C деяка додатня константа. Порахуєте, з якою кількістю хворих ще можна втримати розповсюдження, або, якщо все ж таки стався прорив, яка кількість людей може врятуватися від інфікування?