人工智能

实验2-深度学习实现花卉识别

郑海刚 772343931@qq.com

实验内容

基于给定的数据集训练神经网络模型实现花卉识别,具体要求:

- (1) 本地分别用TensorFlow、MindSpore、Pytorch三种框架实现;
- (2) 在 (1) 的基础上,移植到云端ModelArts完成训练,并测试模型;

本地预测

第 1 朵花预测:bromelia

第 2 朵花预测:blackberry

ModelArts在线预测

数据集

类别	数量
Bee balm (蜂香薄荷)	66
Blackberry lily (黑莓	48
百合花)	
Blanket flower (天人菊)	49
Bougainvillea (叶子花)	128
Bromelia (凤梨花)	63
Foxglove (毛地黄)	162

允许对数据集进行扩充、各种预处理

模型要求

可以参考经典网络alexnet,vggnet, resnet实现,必须自己一层层实现模型定义,不可只做fine-tune,以下两种方式都会扣分。

模型在测试集上的精度非唯一评分标准,更注重模型设计、理解、实现。

```
from tensorflow.keras.applications import VGG16, VGG19 # 學入VGG16
model_vgg16 = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
for layer in model_vgg16.layers:
    layer.trainable = False

model = Sequential([
    model_vgg16,
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.5),
    layers.Dense(32, activation='relu'),
    layers.BatchNormalization(),
    layers.Bropout(0.5),
    layers.Dropout(0.5),
    layers.Dropout(0.5),
    layers.Dense(num_classes, activation='softmax')
])
```

```
net = models.alexnet()
net.classifier = nn.Sequential(
    nn.Dropout(),
    nn.Linear(256 * 6 * 6, 4096)
    nn.ReLU(inplace=True),
    nn.Dropout(),
    nn.Linear(4096, 4096),
    nn.ReLU(inplace=True),
    nn.Linear(4096, 6),
```

TensorFlow

- 谷歌于2015年开源的端到端深度学习框架,在工业界应用广泛,有1.x和2.x两个大版本
- ➤ 官网地址: https://tensorflow.google.cn/
- jupyter: lab2_flower_classify.ipynb

Pytorch

- ➤ Facebook 2017年开源,上手快,社区资源多,在学术界广泛使用
- ➤ 官网地址: https://pytorch.org
- https://pytorch.apachecn.org/#/docs/1.7/06
- ▶ 《动手学深度学习-pytorch版本》https://zh.d2l.ai/index.html

Mindspore (昇思)

- > 华为于2020年正式开源,最佳匹配昇腾芯片的全场景深度学习框
- ➤ 官网地址: https://www.mindspore.cn/
- https://gitee.com/mindspore/course/blob/master/flowers_classification/flowers_classification.ipynb

ModelArts

- ➤ 云端面向AI开发者的一站式开发平台
- > 支持多种框架

ModelArts: 预置算法

- 只需上传数据集,给数据打上标签,自动训练、一键部署,无需写任何代码
- ▶ 鼓励体验,实验不做要求

ModelArts: 自定义算法

- ▶ 训练: 在本地训练代码修改数据集和模型存储的路径获取方式
- 推理:根据平台规范部署为在线应用,难度较大;下载到本地推理测试。

华为云代金券

◆ 课前确认账号是否有代金券,有代金券再进行ModelArts操作。

◆ 不用的计算、存储资源及时删除,避免一直计费!!

实验报告

◆ 报告内容及格式要求见指导书。

实验报告与提交

- ◆ 单独完成实验报告,只需写自己完成的部分,代码提交小组最终完整版,严禁抄袭。每种框架的实现分目录保存(不需要提交模型结构和参数文件),模型精度非唯一评分标准。
- ◆ 提交截止时间答辩前一天,具体见作业提交系统
- ◆ 最后一次课小组答辩