NAIL062 V&P Logika: 3. cvičení

Témata: Syntaxe a sémantika výrokové logiky. Převod do CNF a DNF. Univerzálnost logických spojek.

Příklad 1. Mějme teorii $T = \{ \neg q \to (\neg p \lor q), \ \neg p \to q, \ r \to q \}$ v jazyce $\{p, q, r\}$.

- (a) Uveďte příklad následujícího: výrok pravdivý v T, lživý v T, nezávislý v T, splnitelný v T, a dvojice T-ekvivalentních výroků.
- (b) Které z následujících výroků jsou pravdivé, lživé, nezávislé, splnitelné v T? T-ekvivalentní?

$$p, \neg q, \neg p \lor q, p \to r, \neg q \to r, p \lor q \lor r$$

Příklad 2. Uvažme nekonečnou výrokovou teorii $T = \{p_i \to p_{i+1} \mid i \in \mathbb{N}\}$ nad var(T).

- (a) Které výroky ve tvaru $p_i \to p_j$ jsou důsledky T?
- (b) Určete všechny modely T.

Příklad 3. Určete množinu modelů dané formule. Využijte toho, že je v DNF resp. v CNF.

- (a) $(\neg p_1 \land \neg p_2) \lor (\neg p_1 \land p_2) \lor (p_1 \land \neg p_2) \lor (p_2 \land \neg p_3)$
- (b) $(\neg p_1 \lor \neg p_2) \land (\neg p_1 \lor p_2) \land (p_1 \lor \neg p_2) \land (p_2 \lor \neg p_3)$
- (c) $(p_1 \wedge \neg p_2 \wedge p_3 \wedge \neg p_4) \vee (p_2 \wedge p_3 \wedge \neg p_4) \vee (\neg p_3) \vee (p_2 \wedge p_4) \vee (p_1 \wedge p_3 \wedge p_5)$
- (d) $(p_1 \vee \neg p_2 \vee p_3 \vee \neg p_4) \wedge (p_2 \vee p_3 \vee \neg p_4) \wedge (\neg p_3) \wedge (p_2 \vee p_4) \wedge (p_1 \vee p_3 \vee p_5)$

Příklad 4. Převedte následující výroky do CNF a DNF

- (a) $(\neg p \lor q) \to (\neg q \land r)$,
- (b) $(\neg p \to (\neg q \to r)) \to p$,

Provedte to:

- (I) sémanticky (pomocí pravdivostní tabulky),
- (II) ekvivalentními úpravami.

Příklad 5. Najděte (co nejkratší) CNF a DNF reprezentace Booleovské funkce maj : $^32 \rightarrow 2$, která vrací převládající hodnotu mezi 3 vstupy.

Příklad 6. Najděte CNF a DNF reprezentaci n-ární parity, tj. Booleovské funkce par : $^{n}2 \rightarrow 2$, která vrací XOR všech vstupních hodnot:

$$par(x_1, \dots, x_n) = (x_1 + \dots + x_n) \mod 2$$

Zkuste to pro malé hodnoty n.

Příklad 7. Buď ℙ spočetně nekonečná množina prvovýroků.

- Ukažte, že již neplatí, že každou $K\subseteq M_{\mathbb{P}}$ lze axiomatizovat výrokem v CNF i výrokem v DNF.
- \bullet Uveďte příklad množiny modelů K, kterou nelze axiomatizovat ani výrokem v CNF, ani výrokem v DNF.

Příklad 8. Ukažte, že \wedge a \vee nestačí k definování všech Booleovských operátorů, tj. že $\{\wedge,\vee\}$ není univerzální množina logických spojek.

Příklad 9. Jsou následující množiny logických spojek univerzální? Zdůvodněte.

- (a) $\{\downarrow\}$ kde \downarrow je Peirce arrow (NOR),
- (b) $\{\uparrow\}$ kde \uparrow je Sheffer stroke (NAND),
- (c) $\{\vee, \rightarrow, \leftrightarrow\}$,
- (d) $\{\vee, \wedge, \rightarrow\}$.

Příklad 10. Uvažte ternární Booleovský operátor IFTE(p, q, r) definovaný jako 'if p then q else r'.

- (a) Zkonstruujte pravdivostní tabulku.
- (b) Ukažte, že všechny základní Booleovské operátory $(\neg, \rightarrow, \land, \lor, ...)$ lze vyjádřit pomocí IFTE a konstant TRUE a FALSE.