Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie Katedra Automatyki i Inżynierii Biomedycznej LABORATORIUM Aparatury Automatyzacji

Ćwiczenie 6: Asynchroniczny	v eilnib blatbouw z	falownibiom
Cwiczenie o. Asynchi oniczn	y siinik kiaikowy z	jaiownikiem

Wyo	dz. EAIiIB kie	r. AiR rok II	Wt	torek 11:00		Zespół 1
Lp.	Imię	i nazwisko		Ocena		Data zaliczenia
1.	Adria	n Jałoszewski				
2.	Toma	asz Kotowski				
3.	Rados	sław Gromek				
	wykonania viczenia:	19.04.2016	3	Podpis	:	

1 Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z konfiguracją i uruchomieniem silnika elektrycznego z falownikiem przy pomocy oprogramowania SINAMICS 4.4 STARTER.

2 Schemat stanowiska

Stanowisko składa się z komputera klasy PC z konwerterem USB-RS232 oraz oprogramowaniem konfiguracyjnym, falownika, silnika indukcyjnego, zespołu przełączników z potencjometrem do sterowania ręcznego oraz ręcznego laserowego czujnika prędkości obrotowej.

3 Przebieg ćwiczenia

Ćwiczenie rozpoczęliśmy od uruchomienia oprogramowania służącego do sterowania silnikiem przy pomocy falownika. Następnie skonfigurowaliśmy połączenie pomiędzy środowiskiem konfiguracyjnym i falownikiem korzystając z Wizarda. Następnie ustaliliśmy parametry układu oraz załadowaliśmy obiekt do targetu. Po dokonaniu tego zdefiniowaliśmy tabelę do monitorowania

zmiennych, w której uwzględniliśmy częstotliwość, prędkość obrotową, napięcie na wejściu analogowym oraz napięcie stałe na wejściu falownika.

Następnie otworzyliśmy panel sterujący, odblokowując możliwość uruchomienia napędu i zaznaczyliśmy możliwość zadania częstotliwości bazowej. Następnie dla sprawdzenia działania napędu sprawdziliśmy cztery ustawienia - odpowiednio -50, -25, 25 oraz 50 Hz. Zgodnie z przewidywaniami dla częstotliwości ujemnych silnik kręcił się przeciwnie niż robił to dla częstotliwości dodatnich, a dla częstotliwości o większym module kręcił się szybciej niż dla częstotliwości o mniejszej wartości bezwzględnej.

3.1 Prędkość od zadanej częstotliwości, $\frac{V}{f} = const$

W pierwszej serii pomiarów mieliśmy zbadać charakterystykę statyczną dla silnika zmieniając częstotliwość w zakresie od 5 do 50 Hz co 5 Hz. Pomiar miał być dokonany poprzez odczyt z czujnika laserowego trzymanego w ręce oraz z panelu.

f[Hz]	Czujnik[rpm]	Panel[rpm]	Różnica
5	148,8	149,963	1,163
10	298,3	299,926	1,626
15	447,8	449,981	2,181
20	597,4	599,945	2,545
25	747,3	750	2,7
30	897	899,963	2,963
35	1046	1049,927	3,927
40	1196	1199,982	3,982
45	1346	1349,945	3,945
50	1496	1500	4

Poniższy wykres przedstawia tę zależność dla pomiarów odczytanych z panelu:

Różnice pomiędzy odczytem z panelu oraz z czujnika biorą się stąd, że mamy do czynienia z wartością chwilową w przypadku czujnika, a nie z uśrednieniem wielu próbek tak jak w odczycie z panelu. Dodatkowo całość jest zaburzona lekkimi drganiami ręki osoby dokonującej pomiarów oraz możliwością dokonania pomiarów pod niewielkim kątem.

3.2 Charakterystyka liniowa

Do wykonania tej charakterystyki musieliśmy najpierw wyjść z panelu sterującego i uruchomić falownik przełącznikiem start/stop.

$U_{adc}[V]$	Czujnik[rpm]	Panel[rpm]	Napięcie[V]
0	148,8	150	34,114
1,036	302,2	303,9	54,631
1,994	447,7	449,1	74,78
2,991	596	598,608	96,219
4,027	751	755,146	119,285
5,024	900	903,662	141,161
6,031	1049	1053,475	163,605
7,028	1200	1203,815	186,118
7,986	1346	1349,03	207,591
9,012	1496	1500	228,031
10	1496	1500	226,765

Poniższy wykres przedstawia tę zależność dla pomiarów odczytanych z panelu:

3.3 Charakterystyka paraboliczna

Wykonanie tej części ćwiczenia musieliśmy rozpocząć od ponownego skonfigurowania falownika, tak aby dawał nam na wyjściu napięcie proporcjonalne do kwadratu częstotliwości $\frac{V}{f^2} = const.$ Następnie wgraliśmy nową konfigurację, pozostawiając pozostałe parametry przy tej samej wartości.

$U_{adc}[V]$	Czujnik[rpm]	Panel[rpm]	Napięcie[V]
0	148,5	150	18,89
1,026	304,2	306,21	29,98
2,04	453	454,58	$45,\!28$
3,02	601	603,54	64,34
4,027	751,5	752,83	86,72
4,985	895,5	898,32	110,79
6,031	1051	1054,32	138,54
7,038	1200	1204,23	167,41
8,01	1350	1353,73	198,25
9,012	1496	1500	227,71
10	1496	1500	228,031

Poniższy wykres przedstawia tę zależność dla pomiarów odczytanych z panelu:

4 Wnioski

Ćwiczenie te pozwoliło nam na zapoznanie się z metodami sterowania silnikami indukcyjnymi oraz pozwoliło nam poznać ich zachowania dla różnych sterowań falownikiem - jak mamy napięcie proporcjonalne do kwadratu częstotliwości oraz jak mamy napięcie proporcjonalne do częstotliwości.

Zdecydowanie bardziej stabilne wyniki z panelu pokazały nam wygodę korzystania z tego typu narzędzi. Pomiary dokonywane przy pomocy miernika ręcznego szwankowały zdecydowanie bardziej oraz były trudniejsze w odczycie, gdyż musieliśmy trzymać miernik obrócony, aby otrzymać jak najdokładniejsze wyniki.

Mieliśmy w trakcie tych zajęć również możliwość zweryfikowania naszej wiedzy z zajęć z silników elektrycznych, gdyż nie mieliśmy tam okazji dokonania pomiarów dla charakterystyki parabolicznej.

Zobaczyliśmy również jak szybko silnik klatkowy reaguje na zmiany zadanego sterowania. Na

podstawie tych obserwacji stwierdziliśmy, że jest to czas zdecydowanie zbyt długi do wielu aplikacji wymagających precyzyjnej i szybkiej zmiany prędkości obrotowej silnika. Jednak dla wielu zastosowań jest to wystarczająco mały przedział czasu.

Szczególnie pouczająca była obserwacja czasu reakcji silnika pomiędzy dwoma skrajnymi ustawieniami częstotliwości zasilania. Zobaczyliśmy w ten sposób czas jaki musiał upłynąć zanim układ osiągnął stan ustalony.