

Scheduling: FIFO and SJF

CS 571: Operating Systems (Spring 2020) Lecture 4

Yue Cheng

Some material taken/derived from:

• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau. Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Outline

- Basic concept
- Scheduling criteria
- Scheduling algorithms
 - First In, First Out (FIFO)
 - Shortest Job First (SFJ)
 - Shortest Time-to-Completion First (STCF)
 - Round Robin (RR)
 - Priority
 - Multi-Level Feedback Queue (MLFQ)

Basic Concepts

- During its lifetime, a process goes through a sequence of CPU and I/O bursts
- The CPU scheduler (a.k.a. short-term scheduler) will select one of the processes in the ready queue for execution

- The CPU scheduler algorithm may have tremendous effects on the system performance
 - Interactive systems: Responsiveness
 - Real-time systems: Not missing the deadlines

Alternating Sequence of CPU and I/O Bursts

When to Schedule?

- Under the simple process state transition model, CPU scheduler can be potentially invoked at five different points:
 - 1. When a process switches from the new state to the ready state
 - 2. When a process switches from the running state to the waiting (or blocked) state
 - 3. When a process switches from the running state to the ready state
 - 4. When a process switches from the waiting state to the ready state
 - 5. When a process terminates

Process State Transitions

Process State Transitions

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper (previously saved) location in the user program to restart that program
- Scheduler → Policy: When and how to schedule
- Dispatcher

 Mechanism: Actuator following the commands of the scheduler

Scheduling Metrics

- To compare the performance of scheduling algorithms
 - CPU utilization percentage of time CPU is busy executing jobs
 - Throughput # of processes that complete their execution per time unit
 - Turnaround time amount of time to execute a particular process
 - Waiting time amount of time a process has been waiting in the ready queue
 - Response time amount of time it takes from when a request was submitted until the first response is produced, not the complete output

Optimization Goals

To maximize:

- Maximize the CPU utilization
- Maximize the throughput

• To minimize:

- Minimize the (average) turnaround time
- Minimize the (average) waiting time
- o Minimize the (average) response time

Waiting Time

Waiting time definition

$$T_{waiting} = T_{start} - T_{arrival}$$

• Average waiting time = $Sum(T_{waiting})$ / #processes

- For now, we assume
 - Average waiting time is the performance measure
 - •Only one CPU burst (e.g., in milliseconds or ms) per process
 - •Only CPU, No I/O
 - •All processes arrive at the same time
 - Once started, each process runs to completion

First In, First Out (FIFO)

$$\frac{\text{Process}}{P_1} \quad \frac{\text{Burst Time}}{24}$$

<u>Process</u>	Burst Time
P_1	24
P_2	3

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

Process	Burst Time
P_1	24
P_2	3
P_3	3

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: 17

- Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:

- Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:

- Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:

• Suppose that the processes arrive in order P_2 , P_3 , P_1

The Gantt chart for the schedule:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3

- Suppose that the processes arrive in order P_2 , P_3 , P_1
- The Gantt chart for the schedule:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Problems:
 - Convoy effect (short processes behind long processes)
 - Non-preemptive: Not suitable for time-sharing systems

Shortest Job First (SJF)

Shortest Job First (SJF)

- Associate with each process the length of its next CPU burst
- The CPU is assigned to the process with the smallest (next) CPU burst (run_time)

- Two schemes (modes):
 - Non-preemptive
 - Preemptive: Also known as the Shortest Time-to-Completion First (STCF)

<u>Process</u>	<u> Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle A}$	5.0	4

<u>Process</u>	<u> Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle A}$	5.0	4

<u>Process</u>	<u> Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle \mathcal{A}}$	5.0	4

<u>Process</u>	<u> Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle 4}$	5.0	4

<u>Process</u>	<u> Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle 4}$	5.0	4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

 $\frac{\text{Process}}{P_1} \quad \frac{\text{Arrival Time Burst Time Left Time}}{7}$

<u>Process</u>	<u> Arrival Tin</u>	<u>ne</u> <u>Burst Time</u>	Left Time
P_1	0.0	7	5
P_2	2.0	4	

<u>Process</u>	<u> Arrival Tim</u>	Left Time	
P_{1}	0.0	7	5
P_{2}	2.0	4	4

<u>Process</u>	<u> Arrival Tim</u>	<u>ne</u> <u>Burst Time</u>	Left Time
P_1	0.0	7	5
P_2	2.0	4	4
P_3	4.0	1	1

<u>Process</u>	Arrival Time Burst Time		Left Time
P_1	0.0	7	5
P_2	2.0	4	2
P_3	4.0	1	1

<u>Process</u>	<u> Arrival Tim</u>	Left Time	
P_1	0.0	7	5
P_2	2.0	4	2
P_3	4.0	1	1

<u>Process</u>	<u> Arrival Tim</u>	<u>ne Burst Time</u>	Left Time
P_1	0.0	7	5
P_2	2.0	4	2
P_3^-	4.0	1	0
P_{A}	5.0	4	4

<u>Process</u>	<u> Arrival Tin</u>	<u>ne</u> <u>Burst Time</u>	Left Time
P_1	0.0	7	5
P_2	2.0	4	2
P_3^-	4.0	1	0
P_{A}	5.0	4	4

<u>Process</u>	<u> Arrival Tim</u>	Left Time	
P_{1}	0.0	7	5
P_2	2.0	4	0
P_3	4.0	1	0
P_{λ}	5.0	4	4

<u>Process</u>	<u> Arrival Tin</u>	<u>ne Burst Time</u>	Left Time
P_1	0.0	7	5
P_2	2.0	4	0
P_3^-	4.0	1	0
P_{A}	5.0	4	0

<u>Process</u>	<u> Arrival Tim</u>	<u>ie Burst Time</u>	Left Time
$P_{\scriptscriptstyle 1}$	0.0	7	0
P_2	2.0	4	0
P_3^-	4.0	1	0
$P_{\scriptscriptstyle A}$	5.0	4	0

<u>Process</u>	<u> Arrival Tim</u>	<u>ie Burst Time</u>	Left Time
P_1	0.0	7	0
P_2	2.0	4	0
P_3	4.0	1	0
$P_{\scriptscriptstyle A}$	5.0	4	0

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 = 3