Ricerca Operativa 5/6/25

Esercizio 1. Un'azienda produce due finestre utilizzando resina, pvc e alluminio. La disponibilita' di materie prime e le quantita' utilizzate per ciascuna delle finestre sono indicate in tabella insieme al ricavo da massimizzare.

	Finestra A	Finestra B	Disponibilita'
Resina	7	4	900
PVC	4	10	700
alluminio	5	9	700
Ricavo (unitario)	100	80	

- Fare un passo del simplesso per il rilassato continuo, partendo dalla soluzione con sola produzione di tipo A.
- Calcolare il primo taglio di Gomory. Utilizzando tale taglio siamo arrivati all'ottimo?

Esercizio 2. Si vuole caricare un container massimizzando il valore dei beni inseriti.

Beni	1	2	3	4	5	6	7
Valori	11	12	16	17	21	22	6
Volumi	12	55	417	69	426	48	349

- Risolvere il caso binario con capienza 555 mediante l'algoritmo del "Branch and Bound".
- Trovare le valutazioni nel caso intero non binario con capienza 2000 e costruire un piano di taglio di Gomory.
- Costruire un esempio numerico in cui la soluzione ottima del binario e dell'intero coincidono.

Esercizio 3. Su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

- Fare due passi dell'algoritmo del simplesso partendo del flusso dato dall'albero di copertura formato dagli archi (1,4) (1,5) (2,4) (3,4) (5,6) e l'arco (4,5) in U.
- Determinare l'albero dei cammini minimi di radice 1 tramite l'algoritmo di Dijkstra e la soluzione ottima in termini di flusso su reti.
- Trovare, tramite l'algoritmo FFEK, il taglio da 1 a 6 di capacitá minima.

Esercizio 4.

- Sia $f(x_1, x_2) = (x_1 1)^2 + x_2^2$ su $\{x \in \mathbb{R}^2 : x_1 x_2^2 = 0\}$. I punti stazionari sono $\left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{1}{2}, -\frac{\sqrt{2}}{2}\right), (0, 0)$. Catalogarli calcolando i moltiplicatori.
- Sia $f(x_1, x_2) = x_1^2 + x_2^2 16x_1 12x_2$ su $\{x \in \mathbb{R}^2 : -2x_1 + 3x_2 \le 12, 2x_1 + 3x_2 \le 24, 0 \le x_1 \le 6, x_2 \ge 0\}$. Fare un passo del gradiente proiettato ed uno di Frank-Wolfe a partire da (6, 1) per la minimizzazione.

SOLUZIONI

Esercizio 1.

$$\begin{cases} \max (100x_1 + 80x_2) \\ 7x_1 + 4x_2 \le 900 \\ 4x_1 + 10x_2 \le 700 \\ 5x_1 + 9x_2 \le 700 \\ x_i \ge 0, \ i = 1, 2, 3, \quad x \in \mathbb{Z}^3 \end{cases}$$

La soluzione ottima del rilassato continuo é: $(x_A, x_B) = (5300/43, 400/43)$.

La soluzione ottima del problema é $(x_A, x_B) = (124, 8)$.

Vertice di partenza: (900/7,0) con base $B = \{1,5\}$. y = (100/7,0,0,0,-160/7), h = 5, e $W^5 = \begin{pmatrix} -4/7 & 1 \end{pmatrix}^T$, r = (650/27,400/43,225), k = 3. Per calcolare il piano di taglio r = 1 la prima riga di \tilde{A} è (9/43,-4/43) ed il taglio è $9x_3 + 39x_5 \ge 11$.

Esercizio 2.

sol. ammissibile = (1, 1, 0, 1, 0, 1, 1) e $v_I(P) = 68$ sol. rilassato = (1, 1, 0, 1, 371/426, 1, 0) e $v_I(P) = 80$ soluzione ottima = (1, 0, 0, 1, 1, 1, 0) e valore ottimo = 71

sol. ammissibile = (166,0,0,0,0,0,0) e $v_I(P) = 1826$ sol. ottima del rilassamento = (166.67,0,0,0,0) e $v_S(P) = 1833$ piano di taglio: $7x_2 + 9x_3 + 9x_4 + 6x_5 + x_7 + x_8 \ge 8$

Esercizio 3.

	iter 1	iter 2		
Archi di T	(1,4) (1,5) (2,4) (3,4) (5,6)	(1,5) (2,4) (3,4) (4,6) (5,6)		
Archi di U	(4,5)	(1,4) (4,5)		
x	(0, 6, 2, 0, 5, 2, 8, 0, 4)	(0, 6, 2, 0, 5, 2, 8, 0, 4)		
π	(0, -4, -3, 3, 6, 12)	(0, -1, 0, 6, 6, 12)		
arco entrante	(4,6)	(4,5)		
ϑ^+ (archi concordi)	0	6		
ϑ^- (archi discordi)	2	4		
arco uscente	(1,4)	(5,6)		

L'albero dei cammini minimi come flusso è x=(2,2,1,1,0,0,0,1,0). I cammini aumentanti sono 1-4-6; 1-5-6 con $\delta=(6,8)$ con flusso ottimo $x=(0,6,8,0,0,0,0,6,8),\ N_t=\{6\}.$

Esercizio 4.

Soluzioni del sistema LKKT		Massimo		Minimo		Sella	
x	μ	λ	globale	locale	globale	locale	
$\left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$	1		NO	NO	SI	SI	NO
$\left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$	1		NO	NO	SI	SI	NO
(0,0)	2		NO	SI	NO	NO	NO

matrice M	(1,0)		
matrice H	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$		
direzione	(0,10)		
max spostamento	9		
possibile	$\frac{3}{10}$		
lungo la direzione			
passo	$\frac{3}{10}$		
1	(C 1)		

Linearizzato	$-4x_1 - 10x_2$
ottimo linearizzato	(3,6)
direzione	(-3,5)
restrizione	$34t^2 - 38t$
passo	$\frac{19}{34}$
x^1	$\left(\frac{147}{34}, \frac{129}{34}\right)$