Lecture 4

- Measurement of small voltages
 - Measurement of resistance

MEASUREMENT OF SMALL VOLTAGES

- voltage has to be amplified before being measured
- input impedance has to be increased in some particular case

For example

THERMOCOUPLE

$$V_T = k \cdot \Delta T = 42 \mu V/K \cdot (60-20) = 1.68 mV$$

Problem n. I: we MUST amplify the voltage

Problem n. 2: we must increase R_V as much as possible

OPERATIONAL AMPLIFIER

The opamp set the output voltage V_{OUT} to a value which assures the following conditions are fullfilled

$$| | | = 0$$

$$| | | = 0$$

3)
$$v = 0$$

INVERTING AMPLIFIER

$$V_2 = -V_1 \cdot \frac{R_2}{R_1}$$

INVERTING AMPLIFIER

1)
$$I_1 = \frac{V_1}{R_1}$$

2) $V_2 = R_2 \cdot I_2$

$$V_2 = R_2 \cdot I_2$$

$$V_2 = -V_1 \cdot \frac{R_2}{R_1}$$

$$I_2 = -I_1$$

INVERTING AMPLIFIER

$$I_1 = \frac{V_1}{R_1}$$

2)
$$I_2 = I_1$$

3)
$$V_2 = R_2 \cdot I_2 + V_1$$

$$V_2 = \left(1 + \frac{R_2}{R_1}\right) \cdot V_1$$

VOLTAGE FOLLOWER

Input resistance ∞

Output resistance 0

IDEAL OPAMP

REAL OPAMP 1) Bias currents

IDEAL OPAMP

REAL OPAMP 2) offset voltage

- effect of IP R_2 R_1 ideal **I**P real

$$V_2 = 0$$

I_P has no effect on V₂

- effect of IN R_2 R_1 ideal I_N real

The current in R_1 is 0 because R_1 is short-circuited

$$V_2 = R_2 \cdot I_N$$

$$I_1 = \frac{V_{OS}}{R_1}$$
; $I_2 = I_1$; $V_2 = \frac{V_{OS}}{R_1} \cdot R_2 + V_{OS}$

Taking all the contributions into account

$$V_2 = -\frac{R_2}{R_1} \cdot V_1 \pm R_2 \cdot I_N \pm V_{OS} \left(I + \frac{R_2}{R_1} \right)$$

The input voltage will recalculated as:

$$V_1 = -\frac{R_1}{R_2} \cdot V_2 \mp R_1 \cdot I_N \mp V_{OS} \left(I + \frac{R_1}{R_2} \right)$$

UNCERTAINTY: IDEAL INVERTING AMPLIFIER

$$V_1 = -\frac{R_1}{R_2} \cdot V_2$$

derivates to all variables

$$\frac{dV_{1}}{dV_{2}} = -\frac{R_{1}}{R_{2}} \qquad \frac{dV_{1}}{dR_{1}} = -\frac{V_{2}}{R_{2}} \qquad \frac{dV_{1}}{dR_{2}} = \frac{R_{1}}{R_{2}^{2}} \cdot V_{2}$$

$$|u_{V_{1}}|_{id} = \sqrt{\left(-\frac{R_{1}}{R_{2}} \cdot u_{V_{2}}\right)^{2} + \left(-\frac{V_{2}}{R_{2}} \cdot u_{R_{1}}\right)^{2} + \left(\frac{R_{1}}{R_{2}^{2}} \cdot V_{2} \cdot u_{R_{2}}\right)^{2}}$$

UNCERTAINTY: REAL INVERTING AMPLIFIER

$$V_1 = -\frac{R_1}{R_2} \cdot V_2 \mp R_1 \cdot I_N \mp V_{OS} \left(I + \frac{R_1}{R_2} \right)$$

ideal

additional sources of uncertainty

$$\left.u_{V_{I}}\right|_{real} = \sqrt{\left.u_{V_{I}}\right|_{id}^{2} \mp \left(\frac{R_{I} \cdot I_{N}}{\sqrt{3}}\right)^{2}} + \left(\frac{V_{OS}\left(I + \frac{R_{I}}{R_{2}}\right)}{\sqrt{3}}\right)^{2}$$

- effect of IP R_2 ideal **I**P real

 I_P has no effect on V_2

$$V_2 = 0$$

- effect of IN R_2 ideal R_1 real

The current in R_1 is 0 because R_1 is short-circuited

$$V_2 = R_2 \cdot I_N$$

$$V_2 = \left(1 + \frac{R_2}{R_1}\right) V_{OS}$$

Taking all the contributions into account

$$V_2 = \left(1 + \frac{R_2}{R_1}\right)V_1 \pm I_N \cdot R_2 \pm \left(1 + \frac{R_2}{R_1}\right)V_{OS}$$

The input voltage will recalculated as:

$$V_1 = \left(\frac{R_1}{R_1 + R_2}\right) V_2 \mp I_N \cdot R_2 \left(\frac{R_1}{R_1 + R_2}\right) \mp V_{OS}$$

...but it drifts!

AUTOMATICALLY NULLED AMPLIFIER

AUTOMATICALLY NULLED AMPLIFIER

MEASUREMENT OF RESISTANCE

V-A method

(aka the simplest way to measure a resistance)

$$R=V_m/I_m$$

MEASUREMENT OF RESISTANCE

V-A method Uncertainty

Function to derivate $R(V_m,I_m) = V_m / I_m$

$$R(V_m,I_m) = V_m / I_m$$

Derivates:

$$\frac{dR}{dV_m} = \frac{I}{I_m}$$

$$\frac{dR}{dI_m} = -\frac{V_m}{I_m^2}$$

Uncertainty of Resistance

$$\begin{aligned} u_{R} &= \sqrt{\left(\frac{dR}{dV_{m}} \cdot u_{V_{m}}\right)^{2} + \left(\frac{dR}{dI_{m}} \cdot u_{I_{m}}\right)^{2}} \\ &= \sqrt{\left(\frac{I}{I_{m}} \cdot u_{V_{m}}\right)^{2} + \left(-\frac{V_{m}}{I_{m}^{2}} \cdot u_{I_{m}}\right)^{2}} \end{aligned}$$

Let's check if units are correct:

$$u_{R} = \sqrt{\left(\frac{1}{I_{m}} \cdot u_{V_{m}}\right)^{2} + \left(-\frac{V_{m}}{I_{m}^{2}} \cdot u_{I_{m}}\right)^{2}}$$

$$u_{R} = \sqrt{\left(\frac{1}{[A]} \cdot [V]\right)^{2} + \left(-\frac{[V]}{[A]^{2}} \cdot [A]\right)^{2}}$$

$$u_R = \sqrt{([\Omega])^2 + ([\Omega])^2} = [\Omega]$$

Problem: non-ideal instruments

Correction of measured value

$$R = \frac{V_m}{I_m} - R_I$$

Problem: non-ideal instruments

Correction of measured value

$$R = \frac{V_m}{I_m - I_V} = \frac{V_m}{I_m - \frac{V_V}{R_V}}$$

MEASUREMENT OF LOW RESISTANCE

Resistance of cables and contacts

We actually measure $V_m/I_m = R + 2R_W$

$$V_m/I_m = R + 2R_W$$

MEASUREMENT OF LOW RESISTANCE

Four wire method

In this case we measure

$$V_m/I_m = R$$

MEASUREMENT OF LOW RESISTANCE

Four wire method

What about the cables of the voltmeter?

The voltage drop on R_W is negligible because $l_V \approx 0$

MEASUREMENT OF LOW RESISTANCE

Two wire method

Four wire method

What if the resistance is very, very low?

We should use large current to obtain an acceptable voltage. Often, it's a problem to measure a large current

By using COMPARISON METHOD we do not need to measure the current anymore

COMPARISON METHOD

 $V_N = R_N \cdot I$ $V_R = R \cdot I$ both resistor share the same current

$$\frac{V_R}{V_N} = \frac{R \cdot I}{R_N \cdot I} = \frac{R}{R_N}$$

$$R = \frac{V_R}{V_N} \cdot R_N$$

COMPARISON METHOD

$$R = \frac{V_R}{V_N} \cdot R_N$$

Sources of uncertainty are only the measured voltages and the standard resistor

STANDARD RESISTORS

PRIMARY standards

SECONDARY standards

Quantum Hall effect

Wire (>1 Ω) of sheet (<1 Ω) of alloy with low temperature coefficient

For AC: quadrifilar resistors

SECONDARY STANDARDS

Two connectors per terminal

QUADRIFILAR STANDARDS

PRIMARY STANDARDS

Hall resistance

 $R_H = V / I = k \cdot B$ Linear to B

PRIMARY STANDARDS

Quantum Hall effect

- very low temperature
- very high magnetic field

The Hall resistance is not linear to B but quantized

Steps of resistance at:

$$R_H = \frac{I}{i} \cdot \frac{h}{e^2}$$

$$R_{H} = \frac{I}{i} \cdot 25812.8\Omega$$

MEASUREMENT OF LARGE RESISTANCE

Resistance of insulation might bias pAmmeter

MEASUREMENT OF LARGE RESISTANCE

The current flows through the shield instead of loading the pAmmeter

RESISTANCE TO VOLTAGE CONVERTER

Both V_1 and R_N are constant, so the output V_2 depends only on R

$$R = -\frac{V_2}{V_1} \cdot R_N = k \cdot V_2$$

RESISTANCE TO VOLTAGE CONVERTER

$$R = -\frac{V_2}{V_1} \cdot R_N$$
 Sources of uncertainty: V_1, V_2, R_N

Derivates to all variables

$$V_{1}: \frac{dR}{dV_{1}} = -\frac{V_{2}}{V_{1}^{2}} \cdot R_{N}$$

$$V_{2}: \frac{dR}{dV_{2}} = -\frac{I}{V_{1}} \cdot R_{N}$$

$$R_{N}: \frac{dR}{dR_{N}} = -\frac{V_{2}}{V_{1}}$$

$$U_{R} = \sqrt{\left(-\frac{V_{2}}{V_{1}^{2}} \cdot R_{N} \cdot U_{V_{1}}\right)^{2} + \left(-\frac{I}{V_{1}} \cdot R_{N} \cdot U_{V_{2}}\right)^{2} + \left(-\frac{V_{2}}{V_{1}} \cdot U_{R_{N}}\right)^{2}}$$

R to V converter for LOW RESISTANCE

MEASUREMENT OF RESISTANCE with large idle value and little changing value

Strain gage

If you use a 5 digit ohmmeter you will have only I digit resolution, whereas the first 4 digits are "wasted"

We must get rid of 120 Ω and measure only 0.05 Ω

We cannot amplify! Because the big idle value would saturate the instruments. First we must remove 120 Ω , then we can amplify.

Solution:

WHEATSTONE BRIDGE

WHEATSTONE BRIDGE

$$R_2 \cdot R_3 = R_1 \cdot R_4$$

10,000 \cdot 400 = 200 \cdot 20,000

WHEATSTONE BRIDGE Unbalanced bridge

Linear only for $\Delta R << R_0$

WHEATSTONE BRIDGE Controlled bridge

Then, R_4 - which is known - equals $R_3+\Delta R$