Johannes Herrmann 3935819 Tabet Ehsainieh 4363468

30. Oktober 2017

Lösungen zum Übungsblatt Nr. 3

Aufgabe 1

$$\sum_{k=0}^{9} \binom{9}{k} = 1 + 9 + 36 + 84 + 126 + 126 + 84 + 36 + 9 + 1 = 512$$

Es gibt eine leere Instanz, 9 mögliche Instanzen mit einer Zeile, 36 mögliche Instanzen mit zwei Zeilen, 84 mit drei Zeilen, usw.

Also gibt es insgesamt 512 mögliche Instanzen.

✓ c) (i) Es gibt unendlich viele.

(ii)
1. Stimmt, da Instanzen immer endlich sind.

 \checkmark 2. Stimmt, da $dom(A) = \mathbb{N}$ also Attribut A kann auf unendlich viele verschiedene Werte abgebildet werden.

Aufgabe 2

$$\sqrt{a}$$
 a) $\pi[AB](r)$:

A	В
1	2
4	2
4	5

$$\int_{\mathbf{b}) \ \sigma[C > 2](r):$$

$$\int_{c)} r \bowtie r$$
:

A	В	\mathbf{C}
1	2	3
1	2	6
4	2	2
4	5	6

$$\int_{\mathrm{d})\ r\bowtie s:}$$

$$\int_{e} r \div t_1$$
:

$$\begin{array}{c|c} A & B \\ \hline 1 & 2 \end{array}$$

$$\int_{\mathbf{f}} \mathbf{f} \cdot \mathbf{r} \div t_2$$

$$\sqrt{\mathbf{g}} \quad r \div t_1 \text{ mit Basisoperatoren:}$$

$$r \div t_1 = \pi[\{A, B\}]r - \pi[\{A, B\}](((\pi[\{A, B\}]r) \bowtie t_1) - r)$$

$$\pi[\{A, B\}]r:$$

$$(\pi[\{A, B\}]r) \bowtie t_1:$$

A	В	\mathbf{C}
1	2	3
1	2	6
4	2	3
4	2	6
4	5	3
4	5	6

Seite 2

A	В
1	2
4	2
4	5

 $((\pi[\{A,B\}]r)\bowtie t_1)-r:$

A	В	\mathbf{C}
4	2	3
4	2	6
4	5	3

- Sehr gut!

 $\pi[\{A, B\}](((\pi[\{A, B\}]r) \bowtie t_1) - r):$

 $\pi[\{A,B\}]r - \pi[\{A,B\}](((\pi[\{A,B\}]r) \bowtie t_1) - r):$

$$\begin{array}{c|c} A & B \\ \hline 1 & 2 \end{array}$$

Aufgabe 3

- ✓a) Der Verbund enthält 8 Tupel:
 - $\{A_1 \to 0, A_2 \to a\}$
 - $\{A_1 \rightarrow 0, A_2 \rightarrow b\}$
 - $\{A_1 \to 1, A_2 \to a\}$
 - $\{A_1 \rightarrow 1, A_2 \rightarrow b\}$
 - $\{A_1 \rightarrow a, A_2 \rightarrow 0\}$
 - $\{A_1 \rightarrow a, A_2 \rightarrow 1\}$
 - $\{A_1 \to b, A_2 \to 0\}$
 - $\{A_1 \rightarrow b, A_2 \rightarrow 1\}$
- √ b) Hier ist der Verbund leer, da bei jedem Tupel das man bilden kann ein Attribut nicht passt.

 $\sqrt{\ c)}$ (i). Zu zeigen: Für n=4 enthält der Verbund 32 Tupel.

Seien $v, w \in \{0, 1, a, b\}$ gegeben durch $R_1(A_1, A_2)$ mit $\mu(A1) = v$, $\mu(A2) = w$. Aus der Definition des Verbunds folgt, dass aus $R_2(A_2, A_3)$ nur die Tupel mit $\mu(A_2) = w$ in Frage kommen. Bei der gegeben Konfiguration der Tabellen gibt es 2 Möglichkeiten für $\mu(A_3)$: wenn w ein Buchstabe ist: $\{a, b\}$, wenn w eine Zahl ist: $\{1, 2\}$. Nennen wir ab hier die beiden Möglichkeiten x_1, x_2 .

Ähnlich gibt es in $R_3(A_3, A_4)$ wieder zwei Möglichkeiten: wenn w eine Zahl ist, ist x_i $(i \in \{1, 2\})$ ein Buchstabe, also ist $\mu(A_4) \in \{0, 1\}$. Entsprechend ist $\mu(A_4) \in \{a, b\}$ wenn w ein Buchstabe ist. Nennen wir diese Möglichkeiten y_1, y_2 . In $R_4(A_4, A_1)$ muss das Tupel für den Verbund so gewählt werden, dass $\{A_4 \to y_i, A_1 \to v\}$, es gibt hier also nur noch eine Möglichkeit.

Für jedes Tupel in R_1 ergeben sich somit 4 neue Tupel im Verbund:

A_1	A_2	A_3	A_4
V	w	x_1	y_1
V	w	x_1	y_2
V	w	x_2	y_1
\mathbf{v}	w	x_2	y_2

Es gibt 8 Tupel in Tabelle R_1 , für jedes davon gibt es 4 Tupel im Verbund also insgesamt $8 \cdot 4 = 32$

 \Rightarrow Der Verbund enthält 32 Tupel.

 \int (ii) Zu zeigen: Für $n \geq 4$ enthält der Verbund $8 \cdot 2^{n-2}$ Tupel.

Wir nehmen an, dass die Aussage $\forall n \in \mathbb{N}$ Wahr ist.

Nun möchten wir die Aussage für n=5 prüfen.

Es gilt, dass das Ergebnis (wie in (i) erklärt wurde) zu jedem Tupel in (A1, A5)-Attribute entweder eine Zahl oder ein Buchstabe steht.

Das Ergebnis enthält allerdings 0 Tupel weil es kein Tupel in der Instanz r5 gibt, das solchen Verbundenpartner hat, und damit Widerspruch.