

DRUHOVÁ BOHATOST A EKOLOGICKÁ SPECIALIZACE ROSTLIN

David Zelený

Ústav botaniky a zoologie, Přírodovědecká fakulta Masarykova univerzita, Brno

KLÍČOVÁ SLOVA

dynamika zdroje a propadu (source-sink dynamic)

ekologická nika druhu (species niche)

druhová bohatost (diversity)

heterogenita krajiny (landscape heterogeneity)

funkční vlastnosti rostlin (plant functional traits)

o potenciál druhu k šíření (dispersability)

Dynamika zdroje a propadu (*source-sink dynamic*) S*patial mass effect, vicinism*

optimální stanoviště (zdroj, source)

druh vytváří životaschopnou populaci a je schopný reprodukce a šíření (mortalita ≤ natalita)

nevhodné stanoviště (propad, sink)

druh zde sice roste, ale bez přísunu diaspor ze zdrojového stanoviště není schopen vytvořit trvalou populaci (mortalita > natalita)

KONCEPT EKOLOGICKÉ NIKY

A. Grinellian Niche

C. Source-Sink Dynamics

B. Hutchinsonian Realized Niche

D. Dispersal Limitation

Vysvětlivky:

druh se na stanovišti

- + vyskytuje
- O nevyskytuje

e₁, e₂ – ekologické gradienty

(Pulliam 2000)

ZÁKLADNÍ (FUNDAMENTÁLNÍ) VS. REALIZOVANÁ NIKA

základní nika druhu

realizovaná nika druhu

Míra specializace druhu vyjádřená šířkou niky podél ekologického gradientu

specialista

=

druh s **úzkou** nikou generalista

=

druh s **širokou** nikou

Míra specializace druhu vyjádřená rozmanitostí Stanovišť, na kterých se druh vyskytuje

specialista – vyskytuje se na podobných stanovištích s podobným druhovým složením

generalista – vyskytuje se na **různých** stanovištích s **různým** druhovým složením

ZÁSADNÍ ROZDÍL MEZI OBĚMA TYPY VYJÁDŘENÍ NIKY

Míra specializace druhu vyjádřená šířkou niky Podél ekologického gradientu

Míra specializace druhu vyjádřená rozmanitostí stanovišť, na kterých se druh vyskytuje

přímo odráží 1 (nebo několik) měřených ekologických gradientů

odráží komplexní působení ekologických gradientů na druhy daných stanovišť

Test Fridleyho metody na simulovaných datech

Význam dynamiky zdroje a propadu pro alfa diverzitu

... stanoviště bude tímto procesem obohacováno o

Druhová bohatost, heterogenita krajiny a Ekologická specializace druhů

- druhová bohatost = alfa diverzita
- heterogenita = topografická heterogenita
- o ekologická specializace vypočtená Fridleyho metodou

rostoucí topografická heterogenita krajiny

rostoucí stanovištní různorodost a fragmentace

Zelený D. , Li Ch.-F. & Chytrý M. (submitted): Pattern of plant species richness along the gradient of landscape topographic heterogeneity: result of spatial mass effect or environmental shift?

Topografická heterogenita v rámci České republiky (v rozmezí 250-480 m n.m.)

2551 snímků lesní vegetace (Česká národní fytocenologická databáze)

2551 snímků lesní vegetace (Česká národní fytocenologická databáze)

Druhová bohatost vs. heterogenita

- 1. acidofilní doubravy
- 2. teplomilné doubravy
- 3. dubohabřiny

Poměr generalistů ve vegetačních typech

- 4. suťové lesy
- 5. bučiny
- 6. lužní lesy

Půdní reakce vs. heterogenita

Obsah živin vs. heterogenita

Diverzita dubových lesů na gradientu krajinné Heterogenity

Diverzita dubových lesů na gradientu krajinné Heterogenity

100 trvalých ploch (JZ Morava)

Vztah mezi ekologickou specializací druhů a jejich Šiřitelností

 Je velikost realizované niky dána ekologickými nároky druhu, nebo dynamikou zdroje a propadu?

Odpověď druhu na gradient prostředí

Potenciál druhu k šíření

Odpověď druhu na gradient prostředí

Potenciál druhu k šíření

Odpověď druhu na gradient prostředí

Potenciál druhu k šíření

Odpověď druhu na gradient prostředí

Potenciál druhu k šíření

simulovana.

DRUHY BYLINNÉHO PATRA V LESE

Potenciál druhu k šíření odráží:

- hmotnost semen
- rychlost pádu semen (terminal velocity)
- počet semen na rostlinu
- typ šíření (anemo-, myrmekochorie etc.)

EKOLOGICKÁ SPECIALIZACE DRUHŮ A NÁROKY NA SVĚTLO

stínomilné bylinné druhy v podrostu lesa jsou specialisti, světlomilné druhy jsou generalisti (neplatí pro druhy s optimem výskytu v nelesní vegetaci)

EKOLOGICKÁ SPECIALIZACE DRUHŮ A NÁROKY NA SVĚTLO

stínomilné bylinné druhy v podrostu lesa jsou specialisti, světlomilné druhy jsou generalisti (neplatí pro druhy s optimem výskytu v nelesní vegetaci)

POKUS O SHRNUTÍ

- lokální druhová bohatost (alfa diverzita) souvisí s heterogenitou okolní krajiny
 - vysvětlení: dynamika zdroje a propadu + fragmentace biotopů, nebo posun ekologických poměrů (pH a živin), případně obojí
- o šířka ekologické niky souvisí se schopností druhu šířit se
 - vysvětlení: znovu dynamika zdroje a propadu

555

 jak významný je vliv dynamiky zdroje a propadu na druhovou bohatost a druhové složení různých vegetačních typů?
 (lesních, nelesních, oligotrofních, eutrofních) a jak to zjistit?