CSC242: Introduction to Artificial Intelligence

Lecture 1.3

Please put away all electronic devices

Uninformed

Informed (Heuristic)

No additional information about states

Can identify "promising" states

Uninformed

	BFS	DFS (tree)	IDS Greedy		A*	IDA*	
Complete ?	1	X	X		√ †	√ †	
Optimal ?	\ *	X	\ *	X	√ †	√ *†	
Time	$O(\mathit{bd})$	$O(b^m)$	$O(\mathit{b}^\mathit{d})$	$O(b^m)$	$O(b^{\epsilon d})$	$O(b^{\epsilon d})$	
Space	$O(\mathit{b}^\mathit{d})$	O(bm)	O(bd)	$O(b^m)$	$O(\mathit{b}^\mathit{d})$	O(bd)	

^{*} If step costs are identical

[†] With an admissible heuristic

Uninformed Informed

	BFS	DFS (tree)	IDS Greedy		A*	IDA*	
Complete ?	1	X	√	✓ X		√ †	
Optimal ?	\ *	X	\ *	X	√ †	√ *†	
Time	$O(\mathit{bd})$	$O(b^m)$	$O(\mathit{b}^\mathit{d})$	$O(b^m)$	$O(b^{\epsilon d})$	$O(b^{\epsilon d})$	
Space	$O(\mathit{b}^\mathit{d})$	O(bm)	O(bd)	$O(b^m)$	$O(\mathit{b}^\mathit{d})$	O(bd)	

^{*} If step costs are identical

[†] With an admissible heuristic

Evaluation function

$$f(n) = g(n) + h(n)$$

True cost of path from start node to node n

Estimated cost of cheapest path from n to a goal node

Admissible Heuristic

Never overestimates the true cost of a solution

$$f(n) = g(n) + h_{SLD}(n)$$

Uninformed Informed

	BFS	DFS (tree)	IDS Greedy		A*	IDA*	
Complete ?	1	X	√	✓ X		√ †	
Optimal ?	\ *	X	\ *	X	√ †	√ *†	
Time	$O(\mathit{bd})$	$O(b^m)$	$O(\mathit{b}^\mathit{d})$	$O(b^m)$	$O(b^{\epsilon d})$	$O(b^{\epsilon d})$	
Space	$O(\mathit{b}^\mathit{d})$	O(bm)	O(bd)	$O(b^m)$	$O(\mathit{b}^\mathit{d})$	O(bd)	

^{*} If step costs are identical

[†] With an admissible heuristic

Adversarial Search

Battle of The Bulge 16-25 Dec 1944

Multi-Agent Environments

- Unpredictability of other agents => contingencies (strategies)
- Agents goals in conflict => competition

Games

Games

Games

- "Games require the ability to make some decision even when calculating the optimal decision is infeasible"
- "[Games] penalize inefficiency severely"

Games # Toy Problems

Games # Toy Problems

8-puzzle: 181,440

15-puzzle: ~1.3×10¹²

24-puzzle: ~10²⁵

Games ≠ Toy Problems

8-puzzle: 181,440

 $35^{100} = 10^{154}$

15-puzzle: ~1.3×10¹²

(only 10⁴⁰ distinct)

24-puzzle: ~10²⁵

Games # Toy Problems

8-puzzle: 181,440

 $35^{100} = 10^{154}$

 2×10^{170}

15-puzzle: ~1.3×10¹²

(only 1040 distinct)

24-puzzle: ~10²⁵

- Deterministic (no chance)
- Nondeterministic (dice, cards, etc.)

- Perfect information (fully observable)
- Imperfect information (partially observable)

- Zero-sum (total payoff the same in any game)
 - What's good for me is bad for you and vice-versa
- Arbitrary utility function

Types of Games

Deterministic (no chance) Nondeterministic (dice, cards, etc.)

Perfect information (fully observable)

Imperfect information (partially observable)

Zero-sum (total payoff the same in any game)

Arbitrary utility functions

Outline

- In deterministic, perfect information, zero-sum games:
 - How to find optimal moves
 - How to find good moves when time is limited
- Next time: nondeterministic
- Later: imperfect information, utilities

Terminal States

Next Player: O

X			X		X		0
		X		X			X
	0	O				0	

Deciding what to do in a game requires thinking about what the opponent will do, and having a strategy that takes that into account

Not simply a sequence of actions, but a contingency plan that specifies what to do depending on what state one finds oneself in (AIMA 4.3)

Minimax Algorithm

MINIMAX(s) =

UTILITY(s)

 $\max_{\mathbf{a} \in A_{\text{CTIONS}(s)}} Minimax(\text{Result}(s, a))$

 $\min_{a \in ACTIONS(s)} MINIMAX(RESULT(s, a))$

if TERMINAL-TEST(s)

if PLAYER(s) = MAX

if PLAYER(s) = MIN

Minimax Analysis

"for real games, the time cost is totally impractical"

Minimax Summary

- Computes the optimal move assuming opponent also plays optimally (i.e., worstcase outcome)
- Explores game tree depth-first all the way to terminal states (end of game)
- Backs up utility values through alternating MIN and MAX (what's best for me is worst for you, and vice-versa)

Minimax Code

AIMA 5.2.1 and Figure 5.3 (page 166)

Not bad, but...

A Problem for Minimax

- You can't search all the way to the terminal nodes
- You can't evaluate a node (state) unless you're at a terminal node
- Utility function is defined on terminal states

Imperfect Real-Time Decisions

MAX

MIN

MAX

Term. •••••••••••••••

Minimax Algorithm

MINIMAX(s) =

UTILITY(s)

 $\max_{\mathbf{a} \in A_{\text{CTIONS}(s)}} Minimax(\text{Result}(s, a))$

 $\min_{a \in ACTIONS(s)} MINIMAX(RESULT(s, a))$

if TERMINAL-TEST(s)

if PLAYER(s) = MAX

if PLAYER(s) = MIN

Heuristic Minimax

H-MINIMAX(s) =

h(s)

if CUTOFF-TEST(s)

 $\max_{a \in A_{CTIONS}(s)} MINIMAX(RESULT(s,a))$

if PLAYER(s) = MAX

 $\min_{\mathbf{a} \in A_{\text{CTIONS}(s)}} MINIMAX(\text{RESULT}(s, a))$

if PLAYER(s) = MIN

H-Minimax: Cutoff

- When to cutoff search?
 - Time
 - Depth
 - "Quiescence"
 - Can adjust dynamically
 - AIMA 5.4.2
- Combine with iterative deepening

H-Minimax: Heuristic

- How to evaluate non-terminal state?
 - AIMA 5.4.1
 - Chess example
 - Material value
 - Weighted sum
 - Strategic considerations
- Classic time-quality tradeoff

Heuristic Minimax

- Cutoff search before reaching terminal nodes (time, depth, "quiescence")
- Use heuristic evaluation function to estimate state utility
- Backs up utility values through alternating MIN and MAX (what's best for me is worst for you, and vice-versa)

Adversarial Search: MINIMAX

MINIMAX

- Searches to terminal nodes
- Uses utility function

H-MINIMAX

- Cuts off search before terminals
- Uses heuristic function

Backs up utility values through alternating MIN and MAX (zero-sum game)

For next time:

Chapter 5.3-5.4.2; 5.5-5.6; 5.7-5.9 fyi