Wheel Suspension System

Figure 1 shows the wheel suspension system for a car. The wheel follows the road given by the position $x_0(t)$.

Figure 1: Wheel suspension system

- a) Apply Newton's laws to each of the two masses to derive the equations for the vertical motion of the wheel and the car, using the symbols in Figure 1.
- b) Use the values $M_1 = 40 \, kg$, $M_2 = 250 \, kg$, $B = 500 \, Ns \, / m$, $K_1 = 20 \, 000 \, N \, / m$ and $K_2 = 10 \, 000 \, N \, / m$, and write the equations on numerical form, separating x_1 and x_2 .
- c) Derive the transfer function from the road position $x_0(t)$ to the car motion $x_2(t)$,

$$h(s) = \frac{x_{2(t)}}{x_{0(t)}}$$

- d) You can now tune the different parameters to obtain your perfect driving experience. Write a simulation diagram for the model. Analyse the model in Simulink.
- e) Introduce the states $z_1 = x_1$, $z_2 = \dot{x}_1$, $z_3 = x_2$, $z_4 = \dot{x}_2$, and $u = x_0$. Write the equations derived above as four first order differential equations. With $x_0(t)$ as input to the system and wheel position x_1 and car position x_2 as measurements, introduce the state space model.