Отчёт по лабораторной работе 5

Модель эпидемии SIR

Наталья Андреевна Сидорова

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	21
Список литературы		22

Список иллюстраций

3.1	Установила скорости	./
3.2	Графическая модель	8
3.3	Установка доли	8
3.4	Время интегрирования	9
3.5	График эпидемии	9
3.6	Установила переменные	10
3.7	код	11
3.8	Графическая модель	12
3.9	График эпидемии	12
3.10	Код	13
3.11	Настройка времени	13
3.12	Идентичный график	14
3.13	Изменения уравнений	14
3.14	Эпидемия изменилась	15
3.15	Новая графическая модель	15
3.16	Задала переменные	16
3.17	′ Новый код	17
3.18	Новая модель	18
3.19	Графики	18
3.20	Графики	19
3.21	Графики	19
3.22	Графики	19
3.23	Графики	20
3.24	Графики	20

Список таблиц

1 Цель работы

Изучить модель эпидемии.

2 Задание

Разработать модель эпидемии в xcos, Modelica, OpenModelica.

3 Выполнение лабораторной работы

Я открыла xcos и в модели установила переменные - скорость заражения и скорость выздоровления (рис. 3.1).

Рис. 3.1: Установила скорости

Создала графическую модель эпидемии, описанной дифференциальными уравнениями (рис. 3.2).

Рис. 3.2: Графическая модель

Установила в интегралах изначальную долю здоровых и заболевших (рис. 3.3).

Рис. 3.3: Установка доли

Время интегрирования - 30 секунд (рис. 3.4).

Рис. 3.4: Время интегрирования

Получившийся график распространения эпидемии (рис. 3.5).

Рис. 3.5: График эпидемии

Установила переменные в блоке Modelica (рис. 3.6).

Рис. 3.6: Установила переменные

Написала код, который описывает дифференциальные уравнения и начальные параметры (рис. 3.7).

```
+ ×
            Ввод значения
Function definition in Modelica
Here is a skeleton of the functions which you should edit
class generic
////automatically generated ////
   //input variables
   Real beta,nu;
   //output variables
 // Real s,i,r;
 ////do not modif above this line ////
Real s(start=.999), i(start=.001), r(start=.0);
equation
   // exemple
   der(s)=-beta*s*i;
   der(i)=beta*s*i-nu*i;
   der(r)=nu*i;
end generic;
                                            Отменить
```

Рис. 3.7: код

Графическая модель Modelica (рис. 3.8).

Рис. 3.8: Графическая модель

В Modelica график получился аналогичный (рис. 3.9).

Рис. 3.9: График эпидемии

В OpenModelica не нужно строить графическую модель, все описывается кодом (рис. 3.10).

Рис. 3.10: Код

Настроила параметры (рис. 3.11).

Рис. 3.11: Настройка времени

График получился идентичный с предыдущими (рис. 3.12).

Рис. 3.12: Идентичный график

В задании для самостоятельного выполнения у нас добавились новые параметры - коэффициент рождаемости и смертности, соответственно изменились дифференциальные уравнения. Я изменила код в OpenModelica (рис. 3.13).

```
model Lb4
      parameter Real I_0 = 0.001;
      parameter Real R 0 = 0;
      parameter Real S 0 = 0.999;
      parameter Real N = 10900;
5
6
      parameter Real beta = 1;
      parameter Real nu = 0.3;
8
      parameter Real mu = 0.1;
9
10
      Real s(start=S 0);
      Real i(start=I_0);
11
12
      Real r(start=R_0);
13
14
    equation
15
      der(s) = -beta*s*i + mu*i + mu*r;
16
      der(i)=beta*s*i-nu*i - mu*i;
17
      der(r)=nu*i - mu*r;
18
    end Lb4;
```

Рис. 3.13: Изменения уравнений

Теперь у эпидемии нет порога (рис. 3.14).

Рис. 3.14: Эпидемия изменилась

Новую модель графически представила в хсоз (рис. 3.15).

Рис. 3.15: Новая графическая модель

Задала переменные в Modelica (рис. 3.16).

Рис. 3.16: Задала переменные

Модифицировала блок кода для новых условий (рис. 3.17).

Рис. 3.17: Новый код

Новая модель в Modelica (рис. 3.18).

Рис. 3.18: Новая модель

Получились разные графики при изменении кэ=оэффициента рождаемости и смертности (рис. 3.19).

Рис. 3.19: Графики

(рис. 3.20).

Рис. 3.20: Графики

(рис. 3.21).

Рис. 3.21: Графики

(рис. 3.22).

Рис. 3.22: Графики

(рис. 3.23).

Рис. 3.23: Графики

(рис. 3.24).

Рис. 3.24: Графики

4 Выводы

При увеличении коэффициента смертности и рождаемости люди гораздо меньше заболевают и большинство из них остаются здоровыми, эпидемия не преодолевает свой порог - состояние, после которого число здоровых стремится к 0, число заболевших стремится к 0, а число выздоровевших стремится к 100%.

Список литературы