Package 'hdcrt'

May 2, 2024

Type Package			
itle Hypothesis testing in high-dimensional censored-transformation models			
Version 0.1.0			
Author Xiao Zhang [aut,cre], Xiangyong Tan [aut], Runze Li [aut], Xu Liu [aut]			
Maintainer Xiao Zhang <zhangxiao1994@cuhk.edu.cn></zhangxiao1994@cuhk.edu.cn>			
Description We provide an efficient censored rank-based test statistic for hypothesis testing in high-dimensional censored-transformation models. Both global test and partial test are supported.			
License GPL (>= 2)			
Imports Matrix			
Repository github			
Encoding UTF-8			
LazyData true			
LazyDataCompression xz			
URL https://github.com/XiaoZhangryy/hscrt			
BugReports https://github.com/XiaoZhangryy/hscrt/issues			
RoxygenNote 7.3.1			
NeedsCompilation yes			
R topics documented:			
hdcrpt			
Index			

2 hdcrpt

hdcrpt

High dimensional censored rank partial test

Description

High dimensional censored rank partial test

Usage

```
hdcrpt(
    x,
    y,
    status,
    z,
    smooth = c("sigmoid", "gaussian"),
    h = NULL,
    covariate_dependence = TRUE
)
```

Arguments

x The design matrix.

y The survival outcome.

status The right censoring indicator.

z The control vector, which is the control factors multiplied by the estimated coefficients.

smooth The smooth function used. "sigmoid" represents the sigmoid prime kernel function and "gaussian" represents the gaussian kernel function.

h The bandwidth of the control vector. The default value is the standard deviation of z divided by the square root of sample size n.

covariate_dependence

An indicator of whether the censoring mechanism is dependent on covariates.

Value

A list.

- ts Test statistic.
- pval p value.

See Also

```
hdcrt, hdcrt_dc
```

hdert 3

Examples

```
set.seed(0)
n <- 150
p <- 550
x \leftarrow matrix(rnorm(n * p), n, p)
u \leftarrow matrix(rnorm(n * p), n, p)
alpha <- c(rep(1, 5), rep(0, p - 5))
beta <- c(rep(1, 5), rep(0, p - 5))
y \leftarrow u \% \% alpha + x \% \% beta + rnorm(n)
status <- sample(c(0, 1), n, replace = TRUE, prob = c(0.2, 0.8))
fit <- sprfabs(y, u, status)</pre>
alphahat <- fit$opttheta
z <- u %*% alphahat
test_result_sigmoid <- hdcrpt(x, y, status, z, "sigmoid")</pre>
print(test_result_sigmoid)
test_result_gaussian <- hdcrpt(x, y, status, z, "gaussian")</pre>
print(test_result_gaussian)
```

hdcrt

High dimensional censored rank test

Description

High dimensional censored rank test

Usage

```
hdcrt(x, y, status, covariate_dependence = TRUE)
```

Arguments

x The design matrix.

y The survival outcome.

status The right censoring indicator.

covariate_dependence

An indicator of whether the censoring mechanism is dependent on covariates.

Value

A list.

- ts Test statistic.
- pval p value.

See Also

```
hdcrpt, hdcrt_dc
```

4 hdcrt_dc

Examples

```
set.seed(0)
n <- 150
p <- 550
x <- matrix(rnorm(n * p), n, p)
beta <- c(rep(1, 5), rep(0, p - 5))
y <- x %*% beta + rnorm(n)
status <- sample(c(0, 1), n, replace = TRUE, prob = c(0.2, 0.8))
test_result <- hdcrt(x, y, status)
print(test_result)</pre>
```

hdcrt_dc

High dimensional censored rank test with double censored

Description

High dimensional censored rank test with double censored

Usage

```
hdcrt_dc(x, y, status_left, status_right)
```

Arguments

```
    x The design matrix.
    y The survival outcome.
    status_left The left censoring indicator.
    status_right The right censoring indicator.
```

Value

A list.

- ts Test statistic.
- pval p value.

See Also

hdcrpt, hdcrt

Examples

```
set.seed(0)
n <- 150
p <- 550
x <- matrix(rnorm(n * p), n, p)
beta <- c(rep(1, 5), rep(0, p - 5))
y <- x %*% beta + rnorm(n)
status_left <- y >= qnorm(0.1) * sqrt(6)
status_right <- y <= qnorm(0.9) * sqrt(6)
test_result <- hdcrt_dc(x, y, status_left, status_right)
print(test_result)</pre>
```

sprfabs 5

sprfabs A forward and backward stagewise algorithm for high-dimensional spr problem.	l
--	---

Description

A forward and backward stagewise algorithm for high-dimensional spr problem.

Usage

```
sprfabs(
  y,
  x,
  status,
  eps = 0.01,
  xi = 1e-10,
  maxIter = 3000,
  sigma = NULL,
  weight = NULL,
  nmax = NULL,
  lam_m = NULL,
  message = TRUE
)
```

Arguments

У	The response.
X	The design matrix.
status	The right censoring indicator.
eps	The step size for updating coefficients. Default is eps = 0.01 .
xi	The threshold for qfabs. Default is $xi = 1e-10$.
maxIter	The maximum number of outer-loop iterations allowed. Default is $maxIter = 3000$.
sigma	The tuning parameter in the Sigmoid function. Default is NULL.
weight	An optional weights. Default is 1 for each observation.
nmax	Limit the maximum number of variables in the model. When exceed this limit, program will early stopped. Default is NULL.
lam_m	The ratio of the minumum lambda and the maximum lambda. Default is NULL.
message	An indicator of whether print warning messages.

Value

A list.

- theta The estimation of covariates.
- opttheta The optimal estimation of covariates.
- lambda lambda sequence.

6 sprfabs

- direction direction sequence.
- iter Iterations.
- bic The EBIC for each solution.
- loss loss for each solution.
- df Number of nonzero coefficients.
- opt Position of the optimal lambda based on EBIC.

Examples

```
set.seed(0)
n <- 150
p <- 550
x <- matrix(rnorm(n * p), n, p)
alpha <- c(rep(1, 5), rep(0, p - 5))
y <- x %*% alpha + rnorm(n)
status <- sample(c(0, 1), n, replace = TRUE, prob = c(0.2, 0.8))
fit <- sprfabs(y, x, status)
alphahat <- as.vector(fit$opttheta)
print(which(alphahat != 0))
print(alphahat[alphahat != 0])</pre>
```

Index

```
hdcrpt, 2, 3, 4
hdcrt, 2, 3, 4
hdcrt_dc, 2, 3, 4
sprfabs, 5
```