Routing 3: Vehicle Routing

- Constraints turn a single TSP tour into several routes
- When a potential route violates a constraint, e.g.,
 - Total route distance
 - Total route time
 - Vehicle capacity
 - Delivery/pickup time windows
- Its cost can be set to infinity so that it is never selected

Vehicle Routing Problem

- VRP = TSP + vehicle constraints
- Constraints:
 - Capacity (weight, cube, etc.)
 - Maximum TC (HOS: 11 hr max)
 - Time windows (with/without delay at customer)
 - VRP uses absolute windows that can be checked by simple scanning
 - Project scheduling uses relative windows solved by shortest path with negative arcs
 - Maximum number of routes/vehicles (hard)
- Criteria:
 - 1. Number of routes/vehicles
 - TC (time or distance)
- VRP solution can be one time or periodic
 - One time (operational) VRP minimizes TC
 - Periodic (tactical) VRP minimizes TLC (sometimes called a "milk run")

Clark-Wright (Offline) Savings Procedure

- First (1964), and still best, offline routing procedure if only have vehicle capacity constraints
- Pairs of shipments ordered in terms of their decreasing (positive) pairwise savings
- Given savings pair *i-j*, without exceeding capacity constraint, either:
 - 1. Create new route if i and j not in any existing route
 - 2. Add i to route only if j at beginning or end of route
 - 3. Combine routes only if i and j are endpoints of each route

Ex: Clark-Wright Savings Procedure

- Node 1 is depot, nodes 2-6 customers
- Customer demands 8, 3, 4, 7, 6, resp.
- Vehicle capacity is 15
- Symmetric costs

i	j	S_{ij}
$\overline{2}$	3	40 + 48 - 87 = 1
2	4	40 + 38 - 46 = 32
2	5	8
2	6	13
3	4	19
3	5	40
3	6	49
4	5	1
4	6	52
5	6	12

	1	2	3	4	5	6
1	0	40 0 87 46 65 75	48	38	33	48
2	40	0	87	46	65	75
3	48	87	0	67	41	47
4	38	46	67	0	70	34
5	33	65	41	70	0	69
6	48	75	47	34	69	0

Ex: VRP with Time Windows

[0,24] hr; Loading/unloading time = 0; Capacity = ∞ ; LB = $\frac{5}{10}$ hr

Earliest Finish – Latest Start = 18 - 10 = 8 hr = 5 travel + 3 delay

Ex: VRP with Time Windows

Tactical Routing

- Most routing procedures are for operational decisions
 - Given actual demands, determine actual route
 - For tactical decisions, can only estimate routing cost

(a) Multi-stop deliveries from a single DC.

(b) Point-to-point deliveries from several DCs.

Figure 3. Multi-stop versus point-to-point delivery for the same set of customers (DC shown as yellow squares).

Expected Route Distance

Given m customers in an area a, the density is s = m/a, and the expected distance between customers is $s^{-0.5} = \sqrt{a/m}$, resulting in an estimated total route distance that is proportional to $\varphi m \sqrt{a/m}$. Use known route distance for m = 2 to determine φ :

For
$$a = \pi$$
 and $m = 2$, $\varphi 2\sqrt{\frac{\pi}{2}} = \frac{2}{3}(2 + \sqrt{2}) \Rightarrow \varphi = \frac{2(\sqrt{2} + 1)}{3\sqrt{\pi}} \approx 0.9$, so that

 $\left|\hat{d}_{m}^{TSP}\right| = 0.9 \sqrt{ma}$, for routes passing through the center (DC) of a circular region.

:	m	Simulated	Estimate	
-:-				
1:	2	2.26	2.26	
2:	5	3.79	3.57	
3:	10	5.20	5.04	
4:	20	7.02	7.13	
5:	50	10.95	11.28	
6:	100	15.50	15.95	
7:	200	22.09	22.56	
8:	500	35.07	35.67	
9:	1,000	49.87	50.44	

Ex: Estimate Number of Deliveries

 Assuming that, on average, a vehicle travels at 30 mph (including stops at red lights) and, after reaching a customer, it takes two minutes to drop off a delivery. If the service area is fifty square miles, estimate the number of deliveries that the vehicle can make in eight hours assuming that it has no capacity constraints.

$$\varphi = 0.9$$
, $a = 50 \text{ mi}^2$, $u = \frac{2}{60} \text{ hr}$, $t = 8 \text{ hr}$, $v = 30 \text{ mph}$

$$um + \frac{\varphi\sqrt{ma}}{v} = t \Rightarrow m = \frac{a\varphi^2 + 2tuv^2 - \sqrt{a\varphi^2\left(a\varphi^2 + 4tuv^2\right)}}{2u^2v^2} = 159.6018$$

$$dTSP = @ (m,a) 0.9*sqrt (m*a);$$

$$m = fminsearch (@ (m) abs (u*m + dTSP(m,a)/v - t), 1) % m0 = 1$$

$$m = \frac{159.6018}{\text{Question: Should the estimate be 159 or 160 deliveries?}}$$

Note: Rounding to 160 (closest integer) results in total time > 8 hrs

258