2024S-T3 BDM 3035 - Big Data Capstone Project 01 (DSMM Group 1 & Group 3)

Milestone 2

AI Image Remastering

Guide Meysam Effati

Group E

Kuncheria Tom C0900973
Prince Thomas C0894907
Remya Kannan Kandari C0895293
Shanmuga Priyan Jeevanandam C0889053
Sravya Somala C0907007

.

Overview

In Milestone 2, our primary objective was to develop and test a deep learning model for super-resolution of images. Initially, we focused on training an Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) from scratch using our dataset. However, due to hardware limitations and unsatisfactory results, we shifted our focus to exploring pre-trained models for super-resolution tasks, specifically SRGAN and ESRGAN.

Task Breakdown

1. Model Implementation and Training:

- o **Implementation**: We implemented the ESRGAN architecture which includes a Generator and Discriminator. The Generator consists of an initial convolutional block, multiple residual blocks, and final output layers. The Discriminator follows a sequence of convolutional blocks with LeakyReLU activations.
- Training: The model was trained using BCEWithLogitsLoss for the GAN loss and L1Loss for content loss. Adam optimizer was used for both Generator and Discriminator with a learning rate of 1e-4. Training was conducted for 100 epochs.

2. **Data Handling**:

We created a custom ImageDataset class to handle low-resolution (LR) and high-resolution (HR) images. The dataset was split into training and validation sets with 684 images for training and 169 images for validation.

3. Challenges Encountered:

- o **Hardware Limitations**: Training the ESRGAN model on Google Colab with TPU and T4 GPU proved challenging. The TPU frequently crashed after 7-8 epochs with a batch size of 16. Moreover, training on T4 GPU was not feasible due to extended training times and resource constraints.
- Results: The generator model's output after the final epoch was significantly poor when evaluated using Peak Signal-to-Noise Ratio (PSNR) and visual inspection compared to simpler CNN models. This indicated a need for more training data and extended training duration, which was not possible given our hardware limitations.

4. Decision to Use Pre-trained Models:

o Given the hardware constraints and subpar results from our trained ESRGAN model, we decided to explore pre-trained models. We specifically focused on pre-trained models like SRGAN and ESRGAN, which are known for their efficiency and quality in single-image super-resolution tasks.

Next Steps

1. Explore Pre-trained Models:

 We plan to experiment with pre-trained models available for SRGAN and ESRGAN. These models are trained on extensive datasets and optimized for performance, which can potentially overcome the limitations faced with our custom model.

2. Model Evaluation:

 We will evaluate the performance of the pre-trained models on our dataset using PSNR and Structural Similarity Index (SSIM) metrics. Visual inspection will also be used to assess the quality of the generated high-resolution images.

3. Fine-tuning:

o If necessary, we will fine-tune the pre-trained models on our dataset to further enhance their performance and adapt them to our specific requirements.

Conclusion

Milestone 2 was pivotal in understanding the challenges associated with training deep learning models for image super-resolution given limited hardware resources. The shift towards using pre-trained models is a strategic move to achieve our project goals efficiently. We anticipate that leveraging pre-trained models will significantly improve the quality of super-resolution outputs, making our approach more feasible and effective.

Project GitHub Link: https://github.com/shanmugapriyan357/Big-Data-Capstone-Project-AI-Image-Remastering-/tree/Dev