DPGLM: Simulation Study

1 DP-GLM

$$y_i \mid z_i, x_i \sim K(y_i \mid z_i, x_i) = K(y_i \mid z_i), \quad y_i, z_i \in \mathcal{Y}$$

$$\tag{1}$$

$$z_i \mid x_i = x, \widetilde{\theta}_x, \widetilde{\mu} \sim p_x(z_i) \propto \exp(\widetilde{\theta}_x z_i) \widetilde{\mu}(z_i)$$
 (2)

$$\widetilde{\theta}_x \mid \theta_x \sim p(\widetilde{\theta}_x \mid \theta_x), \text{ with } b'(\theta_x) = \int_{\mathcal{Y}} z \frac{\exp(\theta_x z)\widetilde{\mu}(z)}{\int_{\mathcal{Y}} \exp(\theta_x u)\widetilde{\mu}(u)du} dz = g^{-1}(x'\beta)$$
 (3)

$$\widetilde{\mu} \sim \text{gamma CRM}(\nu), \text{ with } \nu(dw, dm) = \alpha \frac{e^{-w}}{w} dw \cdot G_0(dm)$$
 (4)

$$\beta \sim \text{MVN}(\mu_{\beta}, \Sigma_{\beta}).$$
 (5)

1.1 Modeling fractional data

Here $\mathcal{Y} = [0, 1]$.

1.1.1 Hyper-and-tuning parameters

- $K(\cdot | z_i) = \text{Uniform}(z_i c_0, z_i + c_0)$. We use $c_0 = 0.025$
- We truncate the CRM at M=20, where the CRM is given by $\widetilde{\mu}(\cdot)=\alpha\sum_{h=1}^M w_h\delta_{m_h}(\cdot)$. So, all we need to do is to put priors on w_h and m_h . We take $m_h\sim G_0=$ Uniform(0,1) and $w_h\sim$ improper gamma dist with intensity $\rho(dw)=\alpha\frac{e^{-w}}{w}dw$, and the corresponding NRM prior: $\widetilde{\mu}_{nrm}(\cdot)=\alpha\sum_{h=1}^M w_h^{normed}\delta_{m_h}(\cdot)$, with $w_h^{normed}\sim$ Beta(1, α). We take $\alpha=1$.
- $g(\mu) = \ln(\frac{\mu}{1-\mu})$ [logit link]
- We take $\mu_{\beta} = 0$ and $\Sigma_{\beta} = \sigma_{\beta}^2 I_p$. We set $\sigma_{\beta}^2 = 1$.

1.1.2 How to get pdf and cdf?

The kernel $K(y \mid z) = \text{Uniform}(y; z - c_0, z + c_0), y \in [0, 1]$. The density of y given x is given by,

$$f(y \mid x) = \int_{z} K(y \mid z, x) p(z \mid x, \theta_{x}, \tilde{\mu}) dz = \sum_{\ell} \frac{1}{2c_{0}} 1_{\{z_{\ell} - c_{0}, z_{\ell} + c_{0}\}}(y) \frac{\exp(\theta_{x} z_{\ell}) J_{\ell}}{\sum_{\ell'} \exp(\theta_{x} z_{\ell'}) J_{\ell'}}$$

. Let's call $\frac{\exp(\theta_x z_\ell)J_\ell}{\sum_{\ell'}\exp(\theta_x z_{\ell'})J_{\ell'}} = \pi_\ell(\theta_x)$. So,

$$f(y \mid x) = \sum_{\ell} \pi_{\ell}(\theta_x) \frac{1}{2c_0} 1_{\{z_{\ell} - c_0, z_{\ell} + c_0\}}(y).$$

From here, we get $f_0(y)$ by replacing $\theta_x = 0$. Similarly, the CDF is given by,

$$F(y \mid x) = \int_0^y f(y' \mid x) dy' = \sum_{\ell} \pi_{\ell}(\theta_x) \left[\left(\frac{y - z_{\ell} + c_0}{2c_0} \right) 1_{\{z_{\ell} - c_0, z_{\ell} + c_0\}}(y) + \left(\frac{2c_0}{2c_0} \right) 1_{\{z_{\ell} + c_0 < y\}}(y) + 0 \cdot 1_{y < z_{\ell} - c_0}(y) \right].$$

From here, we similarly get $F_0(y)$ by replacing $\theta_x = 0$. IMPORTANT!! should we tilt f_0 to have mean μ_0 ? Then, should we do it for both — truth and estimates, when performing comparisons in simulation study?

2 Simulation Studies

We proceed with simulation studies to evaluate the frequentist operating characteristics of the DP-GLM model. Our investigation addresses the following key questions:

- (Q1) How does the model perform in terms of predictive accuracy when estimating the baseline density, $f_{\widetilde{\mu}}(y)$, under various scenarios?
- (Q2) Do the credible intervals for $f_{\tilde{u}}(y)$ achieve coverage rates close to their nominal levels?
- (Q3) In scenarios where the response is independent of predictors, does $\theta_{x;n} := [\theta_x \mid \mathcal{D}_n]$ converge in probability to a constant (in x), or alternatively, do the credible intervals for θ_x attain nominal coverage rates?
- (Q4) Do the credible intervals for β_j parameters attain nominal coverage? How is their predictive accuracy?

We consider a data generating mechanism where the response y is sampled from the Speech Intelligibility dataset.

3 Simulation Setting I: Null Case

Let $f_{\widetilde{\mu}}^{(kde)}$ denote the kernel density estimate based on the response data from Speech Intelligibility dataset (ignoring the covariates). We consider $f_{\widetilde{\mu}}^{(kde)}$ as the simulation truth for the baseline density $f_{\widetilde{\mu}}$. Covariates are generated as: $x_{0i} = 1, x_{1i} \sim \text{Normal}(\mu_1, \sigma_1), x_{2i} \sim \text{Normal}(\mu_2, \sigma_2)$, where we take $\mu_1 = 1, \sigma_1 = 0.5, \mu_2 = 2, \sigma_2 = 1$. We sample y independent of x i.e, $y_i \sim f_{\widetilde{\mu}}^{(kde)}$. We use \mathcal{D}_n to refer the observed data $\{x_i, y_i\}_{i=1}^n$. This setting aims to address Q1-Q3.

3.1 Analysis

We get f_0 and its cdf F_0 by replacing $\theta_x = 0$ in the expressions in Section 1.1.2. Similarly we get the estimates.

4 Simulation Setting II: Point masses

Let $f_{\widetilde{\mu}}^{(Beta)}$ denote the Beta(a,b) density estimate based on the response data from Speech Intelligibility dataset (ignoring the covariates). We consider $f_{\widetilde{\mu}}^{(Beta)}$ as the simulation truth for $f_{\widetilde{\mu}}$, with additional point masses p_0 and p_1 respectively at y=0 and y=1. We take $p_0=0.1$ and $p_1=0.4$. The rest is same as in Setting I. Apart from Q1-Q3, the primary objective here is to assess whether the model accurately estimates the point masses.

4.1 Analysis

We get f_0 and its cdf F_0 as follows — by replacing $\theta_x = 0$ in the expressions in Section 1.1.2 for $y \in (0,1)$, and let's call it $F_0^{\star}(y)$. Then, our cdf would be: $F_0(0) = p_0$ and $F_0(y) = p_0 + (1 - p_0 - p_1) \cdot F_0^{\star}(y)$, $y \in (0,1)$, and $F_0(1) = 1$. Similarly we get the estimates.

5 Simulation Setting III: Regression

We consider the same framework as in Setting I, with one modification: the sampling y is now dependent on $x=(x_1,x_2)$. Specifically, we sample $y_i \sim p(y_i \mid x_i) \propto \exp(\theta_{x_i}y_i) f_{\widetilde{\mu}}^{(kde)}(y_i)$, where $\theta_x \sim \text{Normal}(\widetilde{\theta}_x,\sigma_{\theta}^2)$, with $\sigma_{\theta}=0.001$. Here, $\widetilde{\theta}_x=b'^{-1}(g^{-1}(\eta_x))$, with $\eta_x=\beta_0+x^T\beta$. We set $\beta_0=-0.7, \beta^T=(0.2,-0.1)$. This setting aims to address Q1, Q2 and Q4.