Semantic Analysis Typechecking in COOL

Lectures 10-13

Administration

- WA 1
 - check announcement to get back graded WA
- Midterm I
 - Monday, October 5, in class
 - Be here on time (we start at 1:10 pm sharp)
 - Syllabus includes lexing and parsing, no semantic analysis
 - 1 cheat sheet, front and back, handwritten, by you!

Outline

- · The role of semantic analysis in a compiler
 - A laundry list of tasks
- Scope
- Types

The Compiler So Far

- Lexical analysis
 - Detects inputs with illegal tokens
- Parsing
 - Detects inputs with ill-formed parse trees
- Semantic analysis
 - Last "front end" phase
 - Catches more errors

Errors

Example 1

let y: Int in
$$x + 3$$

• Example 2

let y: String
$$\leftarrow$$
 "abc" in y + 3

Why a Separate Semantic Analysis?

- Parsing cannot catch some errors
- Some language constructs are not contextfree
 - Example: All used variables must have been declared (i.e. scoping)
 - Example: A method must be invoked with arguments of proper type (i.e. typing)

What Does Semantic Analysis Do?

- · Checks of many kinds . . . coolc checks:
 - 1. All identifiers are declared
 - 2. Types
 - 3. Inheritance relationships
 - 4. Classes defined only once
 - 5. Methods in a class defined only once
 - 6. Reserved identifiers are not misused And others . . .
- The requirements depend on the language

Scope

- Matching identifier declarations with uses
 - Important semantic analysis step in most languages
 - Including COOL!

Scope (Cont.)

- The <u>scope</u> of an identifier is the portion of a program in which that identifier is accessible
- The same identifier may refer to different things in different parts of the program
 - Different scopes for same name don't overlap
- · An identifier may have restricted scope

Static vs. Dynamic Scope

- · Most languages have static scope
 - Scope depends only on the program text, not runtime behavior
 - Cool has static scope
- A few languages are <u>dynamically</u> scoped
 - Lisp, Perl
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program

Static Scoping Example

```
let x: Int <- 0 in
    {
          x;
          let x: Int <- 1 in
          x;
          x;
          x;
}</pre>
```

Static Scoping Example (Cont.)

Uses of x refer to closest enclosing definition

Scope in Cool

- · Cool identifier names are introduced by
 - Class declarations (introduce class names)
 - Method definitions (introduce method names)
 - Let expressions (introduce object id's)
 - Formal parameters (introduce object id's)
 - Attribute definitions in a class (introduce object id's)
 - Case expressions (introduce object id's)

Implementing the Most-Closely Nested Rule

- Much of semantic analysis can be expressed as a recursive descent of an AST
 - Process an AST node n
 - Process the children of n
 - Finish processing the AST node n

Implementing . . . (Cont.)

• Example: the scope of let bindings is one subtree

let x: Int \leftarrow 0 in e

• x can be used in subtree e

Symbol Tables

- Consider again: let x: Int ← 0 in e
- · Idea:
 - Before processing e, add definition of x to current definitions, overriding any other definition of x
 - After processing e, remove definition of x and restore old definition of x
- A symbol table is a data structure that tracks the current bindings of identifiers
 - We'll give you an implementation for the project

Scope in Cool (Cont.)

- Not all kinds of identifiers follow the mostclosely nested rule
- · For example, class definitions in Cool
 - Cannot be nested
 - Are globally visible throughout the program
- In other words, a class name can be used before it is defined

Example: Use Before Definition

```
Class Foo {
...let y: Bar in ...
};

Class Bar {
...
};
```

More Scope in Cool

Attribute names are global within the class in which they are defined

```
Class Foo {
    f(): Int { a };
    a: Int ← 0;
}
```

More Scope (Cont.)

Method and attribute names have complex rules

- A method need not be defined in the class in which it is used, but in some parent class
- Methods may also be redefined (overridden)

Class Definitions

- · Class names can be used before being defined
- We can't check this property
 - using a symbol table
 - or even in one pass
- Solution
 - Pass 1: Gather all class names
 - Pass 2: Do the checking
- Semantic analysis requires multiple passes
 - Probably more than two

Scopes - Summary

- Scoping rules match uses of identifiers with their declarations
 - Static scoping is the most common form
- Scoping rules can be implemented using symbol tables
 - In one or more passes over the AST

Types

- What is a type?
 - The notion varies from language to language
- · Consensus
 - A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Types and Operations

- Most operations are legal only for values of some types
 - It doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!
- Type systems provide a concise formalization of the semantic checking rules

What Can Types do For Us?

- Can detect certain kinds of errors
- Memory errors:
 - Reading from an invalid pointer, etc.
- Violation of abstraction boundaries:

```
class FileSystem {
  open(x : String) : File {
      f(fs : FileSystem) {
      File fdesc <- fs.open("foo")
      ...
  }
}
-- f cannot see inside fdesc!
}</pre>
```

Type Checking Overview

- Three kinds of languages:
 - Statically typed: All or almost all checking of types is done as part of compilation (C, Java, Cool)
 - Dynamically typed: Almost all checking of types is done as part of program execution (Scheme)
 - Untyped: No type checking (machine code)

The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks
- · Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping easier in a dynamic type system

The Type Wars (Cont.)

- In practice, most code is written in statically typed languages with an "escape" mechanism
 - Unsafe casts in C, native methods in Java, unsafe modules in Modula-3

Type Checking in Cool

Outline

- Type concepts in COOL
- Notation for type rules
 - Logical rules of inference
- COOL type rules
- General properties of type systems

Cool Types

- The types are:
 - Class names
 - SELF_TYPE
 - Note: there are no base types (as int in Java)
- · The user declares types for all identifiers
- The compiler infers types for expressions
 - Infers a type for every sub-expression

Type Inference

- Type Checking is the process of checking that the program obeys the type system
- Often involves inferring types for parts of the program
 - Some people call the process <u>type inference</u> when inference is necessary

Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions (for the lexer)
 - Context-free grammars (for the parser)
- The appropriate formalism for type checking is logical rules of inference

Why Rules of Inference?

- Inference rules have the form

 If Hypothesis is true, then Conclusion is true
- Type checking computes via reasoning If E_1 and E_2 have certain types, then E_3 has a certain type
- Rules of inference are a compact notation for "If-Then" statements

From English to an Inference Rule

- The notation is easy to read (with practice)
- Start with a simplified system and gradually add features
- Building blocks
 - Symbol A is "and"
 - Symbol ⇒ is "if-then"
 - x:T is "x has type T"

From English to an Inference Rule (2)

If e_1 has type Int and e_2 has type Int, then $e_1 + e_2$ has type Int

From English to an Inference Rule (2)

```
If e_1 has type Int and e_2 has type Int,
then e_1 + e_2 has type Int
```

```
(e<sub>1</sub> has type Int \wedge e<sub>2</sub> has type Int) \Rightarrow e<sub>3</sub> + e<sub>2</sub> has type Int
```

From English to an Inference Rule (2)

```
If e_1 has type Int and e_2 has type Int,
then e_1 + e_2 has type Int
```

(e₁ has type Int
$$\wedge$$
 e₂ has type Int) \Rightarrow e₁ + e₂ has type Int

$$(e_1: Int \land e_2: Int) \Rightarrow e_1 + e_2: Int$$

From English to an Inference Rule (3)

The statement

$$(e_1: Int \land e_2: Int) \Rightarrow e_1 + e_2: Int$$
 is a special case of
$$(Hypothesis_1 \land \ldots \land Hypothesis_n) \Rightarrow Conclusion$$

This is an inference rule

Notation for Inference Rules

· By tradition inference rules are written

```
\vdash Hypothesis<sub>1</sub> ... \vdash Hypothesis<sub>n</sub> \vdash Conclusion
```

 Cool type rules have hypotheses and conclusions of the form:

→ means "we can prove that . . . "

Two Rules

Two Rules

$$\frac{1}{|i|}$$
 [Int] (i is an integer constant)

$$\begin{array}{c}
\vdash e_1 : Int \\
\vdash e_2 : Int \\
\hline
\vdash e_1 + e_2 : Int
\end{array}$$
[Add]

Two Rules (Cont.)

 These rules give templates describing how to type integers and + expressions

 By filling in the templates, we can produce complete typings for expressions

• Example: 1+2

Example: 1 + 2

 \vdash 1 + 2 : Int

Soundness

- · A type system is sound if
 - Whenever ⊢e: T
 - Then e evaluates to a value of type T
- · We only want sound rules
 - But some sound rules are better than others:

```
_____(i is an integer constant)

-------(i is an integer constant)
```

Type Checking Proofs

- Type checking proves facts e: T
 - One type rule is used for each kind of expression
- In the type rule used for a node e:
 - The hypotheses are the proofs of types of e's subexpressions
 - The conclusion is the proof of type of e

Rules for Constants

Rule for New

new T produces an object of type T

- Ignore SELF_TYPE for now . . .

Two More Rules

$$\vdash e_1 : Bool$$
 $\vdash e_2 : T$
 $\vdash while e_1 loop e_2 pool : Object$
[Loop]

Typing: Example

Typing for while not false loop 1 + 2 * 3 pool

Typing Derivations

The typing reasoning can be expressed as an inverted tree:

```
\vdash false : Bool \vdash 1 : Int \vdash 2 : Int \vdash 3 : Int \vdash not false : Bool \vdash 1 + 2 * 3 : Int \vdash while not false loop 1 + 2 * 3 : Object
```

- · The root of the tree is the whole expression
- · Each node is an instance of a typing rule
- · Leaves are the rules with no hypotheses

A Problem

What is the type of a variable reference?

$$\frac{}{\vdash x:?}$$
 [Var] (x is an identifier)

A Problem

What is the type of a variable reference?

$$\frac{}{\vdash x:?} \quad [Var] \quad (x \text{ is an} \\ identifier)$$

- This rules does not have enough information to give a type.
 - We need a hypothesis of the form "we are in the scope of a declaration of x with type T")

A Solution: Put more information in the rules!

- A type environment gives types for free variables
 - A <u>type environment</u> is a mapping from ObjectIdentifiers to Types
 - A variable is <u>free</u> in an expression if:
 - The expression contains an occurrence of the variable that refers to a declaration outside the expression
 - E.g. in the expression "x", the variable "x" is free
 - E.g. in "let x : Int in x + y" only "y" is free
 - E.g. in " \underline{x} + let x: Int in $x + \underline{y}$ " both " \underline{x} " and " \underline{y} " are free

 Prof. Sen CS 164

 55

Type Environments

Let 0 be a function from ObjectIdentifiers to Types

The sentence $O \vdash e : T$

is read: Under the assumption that variables in the current scope have the types given by O, it is provable that the expression e has the type T

Modified Rules

The type environment is added to the earlier rules:

$$O \vdash e_1 : Int$$

$$O \vdash e_2 : Int$$

$$O \vdash e_1 + e_2 : Int$$

$$Add$$

New Rules

And we can write new rules:

$$\frac{(O(x) = T)}{O \vdash x : T} \quad [Var]$$

Let

$$\frac{O[T_0/x] \vdash e_1 : T_1}{O \vdash let x : T_0 \text{ in } e_1 : T_1} \qquad [Let-No-Init]$$

 $O[T_0/x]$ means "O modified to map x to T_0 and behaving as O on all other arguments":

$$O[T_0/x](x) = T_0$$

 $O[T_0/x](y) = O(y)$

Let. Example.

· Consider the Cool expression

```
let x : T_0 in (let y : T_1 in E_{x,y}) + (let x : T_2 in F_{x,y}) (where E_{x,y} and F_{x,y} are some Cool expression that contain occurrences of "x" and "y")
```

- Scope
 - of "y" is $E_{x,y}$
 - of outer "x" is $E_{x,y}$
 - of inner "x" is $F_{x,y}$
- This is captured precisely in the typing rule.

Let. Example.

Notes

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Let with Initialization

Now consider let with initialization:

$$O \vdash e_0 : T_0$$

$$O[T_0/x] \vdash e_1 : T_1$$

$$O \vdash let x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$$
[Let-Init]

This rule is weak. Why?

Let with Initialization

Consider the example:

```
class C inherits P \{ ... \}
...
let x : P \leftarrow \text{new C in } ...
```

- · The previous let rule does not allow this code
 - We say that the rule is too weak

Subtyping

- - An object of type X could be used when one of type Y is acceptable, or equivalently
 - X conforms with Y
 - In Cool this means that X is a subclass of Y
- Define a relation ≤ on classes

```
X \le X

X \le Y if X inherits from Y

X \le Z if X \le Y and Y \le Z
```

Let with Initialization (Again)

$$\begin{aligned} O \vdash e_0 : T \\ T \leq T_0 \\ O[T_0/x] \vdash e_1 : T_1 \\ \hline O \vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1 \end{aligned} \text{[Let-Init]}$$

- Both rules for let are sound
- But more programs type check with the latter

Let with Subtyping. Notes.

- · There is a tension between
 - Flexible rules that do not constrain programming
 - Restrictive rules that ensure safety of execution

Expressiveness of Static Type Systems

- A static type system enables a compiler to detect many common programming errors
- The cost is that some correct programs are disallowed
 - Some argue for dynamic type checking instead
 - Others argue for more expressive static type checking
- But more expressive type systems are also more complex

Dynamic And Static Types

- The <u>dynamic type</u> of an object is the class C that is used in the "new C" expression that creates the object
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type
- The <u>static type</u> of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion

Dynamic and Static Types. (Cont.)

- In early type systems the set of static types correspond directly with the dynamic types
- Soundness theorem: for all expressions E

(in all executions, E evaluates to values of the type inferred by the compiler)

This gets more complicated in advanced type systems

Dynamic and Static Types in COOL

```
class A \{ ... \}
class B inherits A \{ ... \}
class Main \{
x has static

A \times C = NEW A;
A \times C = NEW B;
A \times C = NEW B
```

• A variable of static type A can hold values of static type B, if $B \le A$

Dynamic and Static Types

Soundness theorem for the Cool type system:

 $\forall E. dynamic_type(E) \leq static_type(E)$

Dynamic and Static Types

Soundness theorem for the Cool type system:

 $\forall E. dynamic_type(E) \leq static_type(E)$

Why is this Ok?

- For E, compiler uses static_type(E) (call it C)
- All operations that can be used on an object of type C can also be used on an object of type $C' \leq C$
 - Such as fetching the value of an attribute
 - · Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!

Let. Examples.

Consider the following Cool class definitions

```
Class A { a() : Int { 0 }; }
Class B inherits A { b() : Int { 1 }; }
```

- An instance of B has methods "a" and "b"
- An instance of A has method "a"
 - A type error occurs if we try to invoke method "b" on an instance of A

Example of Wrong Let Rule (1)

Now consider a hypothetical let rule:

$$O \vdash e_0 : T$$
 $T \leq T_0$ $O \vdash e_1 : T_1$
 $O \vdash let x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

· How is it different from the correct rule?

Example of Wrong Let Rule (1)

Now consider a hypothetical let rule:

$$O \vdash e_0 : T$$
 $T \leq T_0$ $O \vdash e_1 : T_1$
 $O \vdash let x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

- How is it different from the correct rule?
- The following good program does not typecheck

let x: Int
$$\leftarrow$$
 0 in x + 1

And some bad programs do typecheck

foo(x : B) : Int { let x : A
$$\leftarrow$$
 new A in A.b() }

Prof. Sen CS 164

76

Example of Wrong Let Rule (2)

Now consider another hypothetical let rule:

$$O \vdash e_0 : T$$
 $T_0 \le T$ $O[T_0/x] \vdash e_1 : T_1$
 $O \vdash let x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

· How is it different from the correct rule?

Example of Wrong Let Rule (2)

Now consider another hypothetical let rule:

$$O \vdash e_0 : T$$
 $T_0 \leq T$ $O[T_0/x] \vdash e_1 : T_1$
 $O \vdash let x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

- How is it different from the correct rule?
- The following bad program is well typed

let
$$x : B \leftarrow \text{new } A \text{ in } x.b()$$

Why is this program bad?

Example of Wrong Let Rule (3)

Now consider another hypothetical let rule:

$$O \vdash e_0 : T$$
 $T \leq T_0$ $O[T/x] \vdash e_1 : T_1$
 $O \vdash let x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

· How is it different from the correct rule?

Example of Wrong Let Rule (3)

Now consider another hypothetical let rule:

$$O \vdash e_0 : T$$
 $T \leq T_0$ $O[T/x] \vdash e_1 : T_1$
 $O \vdash let x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

- How is it different from the correct rule?
- The following good program is not well typed let x : A ← new B in {... x ← new A; x.a(); }
- Why is this program not well typed?

Comments

- The typing rules use very concise notation
- They are very carefully constructed
- · Virtually any change in a rule either:
 - Makes the type system unsound (bad programs are accepted as well typed)
 - Or, makes the type system less usable (good programs are rejected)
- · But some good programs will be rejected anyway
 - The notion of a good program is undecidable

Notation for Inference Rules

· By tradition inference rules are written

```
\vdash Hypothesis<sub>1</sub> ... \vdash Hypothesis<sub>n</sub> \vdash Conclusion
```

 Cool type rules have hypotheses and conclusions of the form:

→ means "we can prove that . . . "

Assignment

More uses of subtyping:

$$O(id) = T_0$$

$$O \vdash e_1 : T_1$$

$$T_1 \leq T_0$$

$$O \vdash id \leftarrow e_1 : T_1$$
[Assign]

Initialized Attributes

- Let $O_c(x) = T$ for all attributes x:T in class C
 - $O_{\mathcal{C}}$ represents the class-wide scope
- Attribute initialization is similar to let, except for the scope of names

$$O_{C}(id) = T_{0}$$

$$O_{C} \vdash e_{1} : T_{1}$$

$$T_{1} \leq T_{0}$$

$$O_{C} \vdash id : T_{0} \leftarrow e_{1};$$
[Attr-Init]

If-Then-Else

· Consider:

if
$$e_0$$
 then e_1 else e_2 fi

- The result can be either e_1 or e_2
- The dynamic type is either e_1 's or e_2 's type
- The best we can do statically is the smallest supertype larger than the type of e_1 and e_2

If-Then-Else example

· Consider the class hierarchy

· ... and the expression

if ... then new A else new B fi

- Its type should allow for the dynamic type to be both A or B
 - Smallest supertype is P

Least Upper Bounds

- lub(X,Y), the least upper bound of X and Y, is Z if
 - $X \le Z \land Y \le Z$ Z is an upper bound
 - $X \le Z' \land Y \le Z' \Rightarrow Z \le Z'$ Z is least among upper bounds
- In COOL, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited

```
O \vdash e_0 : Bool
O \vdash e_1 : T_1
O \vdash e_2 : T_2
O \vdash if e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi } : \text{ lub}(T_1, T_2)
[If-Then-Else]
```

Case

 The rule for case expressions takes a lub over all branches

$$\begin{array}{c} O \vdash e_0 : T_0 \\ O[T_1/x_1] \vdash e_1 : T_1 \\ & ... \\ O[T_n/x_n] \vdash e_n : T_n \\ \\ O \vdash \mathsf{case} \ e_0 \ \mathsf{of} \ x_1 : T_1 \Rightarrow e_1 ; \, ... ; \, x_n : T_n \Rightarrow e_n ; \, \mathsf{esac} : \mathsf{lub}(T_1 ' \, , \, ... , T_n ') \end{array}$$

Next

- Type checking method dispatch
- Type checking with SELF_TYPE in COOL

Method Dispatch

 There is a problem with type checking method calls:

$$O \vdash e_0 : T_0$$
 $O \vdash e_1 : T_1$

...
 $O \vdash e_n : T_n$
 $O \vdash e_0 . f(e_1, ..., e_n) : ?$

[Dispatch]

 We need information about the formal parameters and return type of f

Notes on Dispatch

- In Cool, method and object identifiers live in different name spaces
 - A method foo and an object foo can coexist in the same scope
- In the type rules, this is reflected by a separate mapping M for method signatures

$$M(C,f) = (T_1,...T_n,T_{n+1})$$

means in class C there is a method f

$$f(x_1:T_1,\ldots,x_n:T_n):T_{n+1}$$

An Extended Typing Judgment

- Now we have two environments O and M
- · The form of the typing judgment is

 $O, M \vdash e : T$

read as: "with the assumption that the object identifiers have types as given by O and the method identifiers have signatures as given by M, the expression e has type T"

The Method Environment

- The method environment must be added to all rules
- In most cases, M is passed down but not actually used
 - Example of a rule that does not use M:

$$O, M \vdash e_1 : T_1$$

 $O, M \vdash e_2 : T_2$ [Add]
 $O, M \vdash e_1 + e_2 : Int$

- Only the dispatch rules use M

The Dispatch Rule Revisited

$$O, M \vdash e_0 : T_0$$
 $O, M \vdash e_1 : T_1$
...
 $O, M \vdash e_n : T_n$
 $M(T_0, f) = (T_1', ..., T_n', T_{n+1}')$ [Dispatch]
 $T_i \leq T_i'$ (for $1 \leq i \leq n$)
 $O, M \vdash e_0.f(e_1, ..., e_n) : T_{n+1}'$

Static Dispatch

- Static dispatch is a variation on normal dispatch
- The method is found in the class explicitly named by the programmer
- The inferred type of the dispatch expression must conform to the specified type

Static Dispatch (Cont.)

$$\begin{array}{c} \textit{O, M} \vdash e_0 : \mathsf{T}_0 \\ \textit{O, M} \vdash e_1 : \mathsf{T}_1 \\ & \cdots \\ \textit{O, M} \vdash e_n : \mathsf{T}_n \\ & \mathsf{T}_0 \leq \mathsf{T} \\ \textit{M(T, f)} = (\mathsf{T}_1', ..., \mathsf{T}_n', \mathsf{T}_{n+1}') \\ & \mathsf{T}_i \leq \mathsf{T}_i' \quad (\text{for } 1 \leq i \leq n) \\ \hline \textit{O, M} \vdash e_0 @ \mathsf{T.f}(e_1, ..., e_n) : \mathsf{T}_{n+1}' \end{array}$$

Handling the SELF_TYPE

Flexibility vs. Soundness

- Recall that type systems have two conflicting goals:
 - Give flexibility to the programmer
 - Prevent valid programs to "go wrong"
 - · Milner, 1981: "Well-typed programs do not go wrong"
- An active line of research is in the area of inventing more flexible type systems while preserving soundness

Dynamic And Static Types. Review.

- The <u>dynamic type</u> of an object is the class C that is used in the "new C" expression that created it
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type
- The <u>static type</u> of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion

Dynamic and Static Types. Review

Soundness theorem for the Cool type system:

 $\forall E. dynamic_type(E) \leq static_type(E)$

Why is this Ok?

- All operations that can be used on an object of type C can also be used on an object of type $C' \leq C$
 - Such as fetching the value of an attribute
 - · Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!

Attributes and Methods

$$O_{\mathcal{C}}(\mathsf{id}) = \mathsf{T}_0$$
 $O_{\mathcal{C}} \vdash e_1 : \mathsf{T}_1$
 $\mathsf{T}_1 \leq \mathsf{T}_0$

$$O_{\mathcal{C}} \vdash \mathsf{id} : \mathsf{T}_0 \leftarrow e_1;$$
 $O_{\mathcal{C}} \vdash \mathsf{id} : \mathsf{T}_0 \leftarrow e_1;$

$$M(C, f) = (T_1, ..., T_n, T_0)$$

$$O_c[SELF_TYPE/self][T_1/x_1]...[T_n/x_n], M, C \vdash e : T_0$$

$$O_{c},M,C \vdash f(x_{1}:T_{1},...,x_{n}:T_{n}) : T_{0} \{ e \}$$

[Method]

Prof. Sen CS 164

An Example

```
class Count {
    i : int ← 0;
    inc () : Count {
        {
            i ← i + 1;
            self;
        }
    };
};
```

- Class Count incorporates a counter
- The inc method works for any subclass
- But there is disaster lurking in the type system

An Example (Cont.)

Consider a subclass Stock of Count

```
class Stock inherits Count {
  name() : String { ...}; -- name of item
};
```

And the following use of Stock:

```
class Main {
  a : Stock ← (new Stock).inc (); Type checking error!
  ... a.name() ...
};
```

What Went Wrong?

- (new Stock).inc() has dynamic type Stock
- So it is legitimate to write

```
a : Stock ← (new Stock).inc ()
```

But this is not well-typed

```
(new Stock).inc() has static type Count
```

- · The type checker "looses" type information
- · This makes inheriting inc useless
 - So, we must redefine inc for each of the subclasses,
 with a specialized return type

SELF_TYPE to the Rescue

- We will extend the type system
- Insight:
 - inc returns "self"
 - Therefore the return value has same type as "self"
 - Which could be Count or any subtype of Count!
 - In the case of (new Stock).inc () the type is Stock
- We introduce the keyword SELF_TYPE to use for the return value of such functions
 - We will also need to modify the typing rules to handle SELF_TYPE

SELF_TYPE to the Rescue (Cont.)

- SELF_TYPE allows the return type of inc to change when inc is inherited
- Modify the declaration of inc to read

```
inc() : SELF_TYPE { ... }
```

The type checker can now prove:

```
O, M ⊢ (new Count).inc() : Count
O, M ⊢ (new Stock).inc() : Stock
```

The program from before is now well typed

Notes About SELF_TYPE

- SELF_TYPE is not a dynamic type
- It is a static type
- It helps the type checker to keep better track of types
- It enables the type checker to accept more correct programs
- In short, having SELF_TYPE increases the expressive power of the type system

SELF_TYPE and Dynamic Types (Example)

- What can be the dynamic type of the object returned by inc?
 - Answer: whatever could be the type of "self"

```
class A inherits Count { };
class B inherits Count { };
class C inherits Count { };
(inc could be invoked through any of these classes)
```

- Answer: Count or any subtype of Count

SELF_TYPE and Dynamic Types (Example)

 In general, if SELF_TYPE appears textually in the class C as the declared type of E then it denotes the dynamic type of the "self" expression:

```
dynamic_type(E) = dynamic_type(self) \le C
```

- Note: The meaning of SELF_TYPE depends on where it appears
 - We write $SELF_TYPE_c$ to refer to an occurrence of $SELF_TYPE$ in the body of C

Type Checking

This suggests a typing rule:

$$SELF_TYPE_C \leq C$$

- This rule has an important consequence:
 - In type checking it is always safe to replace SELF_TYPE, by C
- This suggests one way to handle SELF_TYPE:
 - Replace all occurrences of SELF_TYPE $_c$ by c
- This would be correct but it is like not having SELF_TYPE at all

Operations on SELF_TYPE

- Recall the operations on types
 - $T_1 \le T_2$ T_1 is a subtype of T_2
 - $lub(T_1, T_2)$ the least-upper bound of T_1 and T_2
- We must extend these operations to handle SELF TYPE

Extending ≤

Let T and T' be any types but $SELF_TYPE$ There are four cases in the definition of \leq

- 1. SELF_TYPE_C \leq T if $C \leq$ T
 - SELF_TYPE $_c$ can be any subtype of C
 - This includes C itself
 - Thus this is the most flexible rule we can allow
- 2. $SELF_TYPE_C \leq SELF_TYPE_C$
 - SELF_TYPE $_c$ is the type of the "self" expression
 - In Cool we never need to compare SELF_TYPEs coming from different classes

Extending \leq (Cont.)

- 3. $T \leq SELF_TYPE_c$ always false Note: $SELF_TYPE_c$ can denote any subtype of C.
- 4. $T \le T'$ (according to the rules from before)

Based on these rules we can extend lub ...

Extending lub(T,T')

Let T and T' be any types but SELF_TYPE Again there are four cases:

- 1. $lub(SELF_TYPE_c, SELF_TYPE_c) = SELF_TYPE_c$
- 2. $lub(SELF_TYPE_C, T) = lub(C, T)$ This is the best we can do because $SELF_TYPE_C \le C$
- 3. $lub(T, SELF_TYPE_c) = lub(C, T)$
- 4. lub(T, T') defined as before

Where Can SELF_TYPE Appear in COOL?

- The parser checks that SELF_TYPE appears only where a type is expected
- But SELF_TYPE is not allowed everywhere a type can appear:
- 1. class T inherits T' {...}
 - T, T' cannot be SELF_TYPE
 - Because SELF_TYPE is never a dynamic type
- 2. x: T
 - T can be SELF_TYPE
 - An attribute whose type is $SELF_TYPE_c$

Where Can SELF_TYPE Appear in COOL?

3. let x : T in E

- T can be SELF_TYPE
- x has type SELF_TYPE_c

4. new T

- T can be SELF_TYPE
- Creates an object of the same type as self

5. $m@T(E_1,...,E_n)$

T cannot be SELF_TYPE

Typing Rules for SELF_TYPE

- Since occurrences of SELF_TYPE depend on the enclosing class we need to carry more context during type checking
- New form of the typing judgment:

(An expression e occurring in the body of C has static type T given a variable type environment O and method signatures M)

Type Checking Rules

- The next step is to design type rules using SELF_TYPE for each language construct
- Most of the rules remain the same except that ≤ and lub are the new ones
- Example:

$$O(id) = T_0$$
 $O, M, C \vdash e_1 : T_1$

$$T_1 \leq T_0$$
 $O, M, C \vdash id \leftarrow e_1 : T_1$

What's Different?

· Recall the old rule for dispatch

$$O,M,C \vdash e_0 : T_0$$
 ... $O,M,C \vdash e_n : T_n$ $M(T_0, f) = (T_1',...,T_n',T_{n+1}')$ $T_{n+1}' \neq SELF_TYPE$ $T_i \leq T_i'$ $1 \leq i \leq n$ $O,M,C \vdash e_0.f(e_1,...,e_n) : T_{n+1}'$

What's Different?

 If the return type of the method is SELF_TYPE then the type of the dispatch is the type of the dispatch expression:

$$O,M,C \vdash e_0 : T_0$$
 $O,M,C \vdash e_n : T_n$ $M(T_0, f) = (T_1',...,T_n', SELF_TYPE)$ $T_i \leq T_i'$ $1 \leq i \leq n$ $O,M,C \vdash e_0.f(e_1,...,e_n) : T_0$ Prof. Sen CS 164

121

What's Different?

- This rule handles the Stock example
- Formal parameters cannot be SELF_TYPE
- Actual arguments can be SELF_TYPE
 - The extended ≤ relation handles this case
- The type T_0 of the dispatch expression could be SELF_TYPE
 - Which class is used to find the declaration of f?
 - Answer: it is safe to use the class where the dispatch appears

Static Dispatch

Recall the original rule for static dispatch

$$O,M,C \vdash e_0 : T_0$$
...

 $O,M,C \vdash e_n : T_n$
 $T_0 \leq T$
 $M(T, f) = (T_1',...,T_n',T_{n+1}')$
 $T_{n+1}' \neq SELF_TYPE$
 $T_i \leq T_i'$
 $1 \leq i \leq n$
 $O,M,C \vdash e_0@T.f(e_1,...,e_n) : T_{n+1}'$

Prof. Sen. CS 164

Static Dispatch

 If the return type of the method is SELF_TYPE we have:

$$O,M,C \vdash e_0 : T_0$$
 ... $O,M,C \vdash e_n : T_n$ $T_0 \leq T$ $M(T, f) = (T_1',...,T_n',SELF_TYPE)$ $T_i \leq T_i'$ $1 \leq i \leq n$ $O,M,C \vdash e_0@T.f(e_1,...,e_n) : T_0$

Static Dispatch

- Why is this rule correct?
- If we dispatch a method returning SELF_TYPE in class T, don't we get back a T?
- No. SELF_TYPE is the type of the self parameter, which may be a subtype of the class in which the method appears
- The static dispatch class cannot be SELF_TYPE

New Rules

There are two new rules using SELF_TYPE

 There are a number of other places where SELF_TYPE is used

Where SELF_TYPE Cannot Appear in COOL?

```
m(x : T) : T' \{ ... \}

    Only T' can be SELF_TYPE!

What could go wrong if T were SELF_TYPE?
 class A { comp(x : SELF_TYPE) : Bool {...}; };
 class B inherits A {
     b(): int { ... };
     comp(y : SELF_TYPE) : Bool { ... y.b() ...}; };
  let x : A \leftarrow \text{new B in } \dots x.\text{comp(new A); } \dots
                         Prof. Sen CS 164
                                                       127
```

Summary of SELF_TYPE

- The extended

 and lub operations can do a lot of the work. Implement them to handle SELF_TYPE
- SELF_TYPE can be used only in a few places.
 Be sure it isn't used anywhere else.
- A use of SELF_TYPE always refers to any subtype in the current class
 - The exception is the type checking of dispatch.
 - SELF_TYPE as the return type in an invoked method might have nothing to do with the current class

 Prof. Sen. CS 164

Why Cover SELF_TYPE?

- SELF_TYPE is a research idea
 - It adds more expressiveness to the type system
- SELF_TYPE is itself not so important
 - except for the project
- Rather, SELF_TYPE is meant to illustrate that type checking can be quite subtle
- In practice, there should be a balance between the complexity of the type system and its expressiveness

Type Systems

- The rules in these lecture were COOL-specific
 - Other languages have very different rules
- · General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment
- Types are a play between flexibility and safety