Module 2 – Section 7

Measures of Agreement

Variables

- n observations rated by two judges
- Variable 1 = Rating from Judge 1
 - J categories
- Variable 2 = Rating from Judge 2
 - J categories
- Categories can be ordered (usually) or unordered and are the same for each judge

Data

Judge 1	Judge 2
Level 1	Level 2
Level 2	Level 1
Level 3	Level 3
:	•
:	•
Level 4	Level 3
Level 4	Level 4

Contingency Table

• Form a contingency table based on the ratings of the two judges on the n observations (sample).

Judge 2					
Judge 1	Level 1	Level 2	Level 3	Level 4	Total
Level 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	<i>Y</i> _{1.}
Level 2	<i>Y</i> ₂₁	Y_{22}	<i>Y</i> ₂₃	<i>Y</i> ₂₄	<i>Y</i> _{2.}
Level 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄	<i>Y</i> _{3.}
Level 4	Y_{41}	Y_{42}	<i>Y</i> ₄₃	Y_{44}	$Y_{4.}$
Total	<i>Y</i> _{.1}	Y _{.2}	<i>Y</i> _{.3}	Y _{.4}	n

- Agreement = both judges giving same rating to an observation.
- Study level of agreement between two judges

Population Proportions

Judg	2
Juuy	JC Z

Judge 1	Level 1	Level 2	Level 3	Level 4	Total
Level 1	p_{11}	p_{12}	p_{13}	p_{14}	$p_{1.}$
Level 2	p_{21}	p_{22}	p_{23}	p_{24}	$p_{2.}$
Level 3	p_{31}	p_{32}	p_{33}	p_{34}	$p_{3.}$
Level 4	p_{41}	p_{42}	p_{43}	p_{44}	$p_{4.}$
Total	$p_{.1}$	$p_{.2}$	$p_{.3}$	$p_{.4}$	1

Agreement between Judges

Probability the two judges are in agreement:

$$\sum_{j=1}^{J} p_{jj}$$

Perfect agreement = 1

Agreement between Judges

 If ratings are independent, the probability of agreement is

$$\sum_{j=1}^{J} p_{jj} = \sum_{j=1}^{J} p_{j.} p_{.j}$$

Cohen's Kappa

 Compare probability of agreement to what is expected if judges rate independently

$$\kappa = \frac{\sum_{j=1}^{J} p_{jj} - \sum_{j=1}^{J} p_{j.} p_{.j}}{1 - \sum_{j=1}^{J} p_{j.} p_{.j}}$$

Properties of κ

If there is perfect agreement

$$\kappa = \frac{\sum_{j=1}^{J} p_{jj} - \sum_{j=1}^{J} p_{j.} p_{.j}}{1 - \sum_{j=1}^{J} p_{j.} p_{.j}} = \frac{1 - \sum_{j=1}^{J} p_{j.} p_{.j}}{1 - \sum_{j=1}^{J} p_{j.} p_{.j}} = 1$$

If judges rate independently

$$\kappa = \frac{\sum_{j=1}^{J} p_{jj} - \sum_{j=1}^{J} p_{j.} p_{.j}}{1 - \sum_{j=1}^{J} p_{j.} p_{.j}} = \frac{\sum_{j=1}^{J} p_{j.} p_{.j} - \sum_{j=1}^{J} p_{j.} p_{.j}}{1 - \sum_{j=1}^{J} p_{j.} p_{.j}} = 0$$

Properties of κ

If there is no agreement

$$\kappa = \frac{\sum_{j=1}^{J} p_{jj} - \sum_{j=1}^{J} p_{j.} p_{.j}}{1 - \sum_{j=1}^{J} p_{j.} p_{.j}} = \frac{0 - \sum_{j=1}^{J} p_{j.} p_{.j}}{1 - \sum_{j=1}^{J} p_{j.} p_{.j}} = \frac{- \sum_{j=1}^{J} p_{j.} p_{.j}}{1 - \sum_{j=1}^{J} p_{j.} p_{.j}} < 0$$

- Usually bounded away from −1
- Not usually concerned with negative values of κ .

Properties of κ

- Value depends on marginal distributions
- Small example:

	Jud		
Judge 1	Level 1	Level 2	Total
Level 1	0.40	0.09	0.49
Level 2	0.06	0.45	0.51
Total	0.46	0.54	1

	Jud		
Judge 1	Level 1 Level 2		Total
Level 1	0.80	0.10	0.90
Level 2	0.05	0.05	0.10
Total	0.85	0.15	1

$$p_{11} + p_{22} = 0.85$$
 $p_{11} + p_{22} = 0.85$ $\kappa = 0.32$

Estimate of Cohen's Kappa

Contingency Table

Judge 2					
Judge 1	Level 1	Level 2	Level 3	Level 4	Total
Level 1	Y ₁₁	Y ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	<i>Y</i> _{1.}
Level 2	<i>Y</i> ₂₁	Y ₂₂	Y ₂₃	Y ₂₄	<i>Y</i> _{2.}
Level 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	Y ₃₃	Y ₃₄	<i>Y</i> _{3.}
Level 4	<i>Y</i> ₄₁	<i>Y</i> ₄₂	<i>Y</i> ₄₃	Y ₄₄	Y _{4.}
Total	<i>Y</i> _{.1}	Y _{.2}	Y _{.3}	Y _{.4}	n

Estimate of Cohen's Kappa

$$\hat{\kappa} = \frac{\sum_{j=1}^{J} \frac{Y_{jj}}{n} - \sum_{j=1}^{J} \frac{Y_{j}.Y_{.j}}{n^2}}{1 - \sum_{j=1}^{J} \frac{Y_{j}.Y_{.j}}{n^2}} = \frac{n \sum_{j=1}^{J} Y_{jj} - \sum_{j=1}^{J} Y_{j}.Y_{.j}}{n^2 - \sum_{j=1}^{J} Y_{j}.Y_{.j}}$$

Example

- Rating of Student Teachers by 2 Supervisors
- Rating choices
 - Authoritarian (A)
 - Democratic (D)
 - Permissive (P)

Ex. Data

Judge 1	Judge 2
Α	Α
Α	Α
Α	Α
:	•
:	•
Р	Р
Р	Р

Ex. Judges Rating

	Judge 2 Rating					
Judge 1 Rating	Α	D	Р	Total		
Α	17	4	8	29		
D	5	12	0	17		
Р	10	3	13	26		
Total	32	19	21	72		

Ex. Estimate of Cohen's Kappa

$$\hat{\kappa} = \frac{72(17 + 12 + 13) - (29(32) + 19(17) + 21(26))}{72^2 - (29(32) + 19(17) + 21(26))}$$

= 0.361

Interpretation: Estimate of Cohen's Kappa

Table 3.

Interpretation of Cohen's kappa.

Value of Kappa	Level of Agreement	% of Data that are Reliable
020	None	0-4%
.2139	Minimal	4–15%
.4059	Weak	15-35%
.60–.79	Moderate	35-63%
.8090	Strong	64-81%
Above.90	Almost Perfect	82-100%

 There is minimal agreement between the two judges on the ratings of the student teachers.

Weighted Cohen's Kappa

- \mathbf{k} only measures absolute agreement.
- Degree of agreement measured by observations in off diagonal cells is not captured.

Population Proportions

	Judge 2				
Judge 1	Level 1	Level 2	Level 3	Level 4	Total
Level 1	p_{11}	p_{12}	p_{13}	p_{14}	$p_{1.}$
Level 2	p_{21}	p_{22}	p_{23}	p_{24}	$p_{2.}$
Level 3	p_{31}	p_{32}	p_{33}	p_{34}	$p_{3.}$
Level 4	p_{41}	p_{42}	p_{43}	p_{44}	$p_{4.}$
Total	$p_{.1}$	$p_{.2}$	$p_{.3}$	$p_{.4}$	1

Population Proportions

- Darkest Cells Agreement
- Medium Cells Ratings are 1 cell off from agreement.
- Lightest Cells Ratings are 2 cells off from agreement.
- White Cells Ratings are 3 cells off from agreement.

Weighted Cohen's Kappa

- Takes into account "distance" from agreement in the table.
- Each cell is weighted according to this distance.
- Many different weights are possible.
 - We will use "squared" weights.

Weighted Cohen's Kappa

$$\kappa_{w} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} p_{ij} - \sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} p_{i.} p_{.j}}{1 - \sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} p_{i.} p_{.j}}$$

$$w_{ij} = 1 - \frac{(i-j)^2}{(J-1)^2}$$

Estimated Weighted Cohen's Kappa

$$\hat{\kappa}_{w} = \frac{n \sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} Y_{ij} - \sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} Y_{i.} Y_{.j}}{n^{2} - \sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} Y_{i.} Y_{.j}}$$

$$w_{ij} = 1 - \frac{(i-j)^2}{(J-1)^2}$$

Ex. Judges Rating

$$w_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0.25 & \text{if } |i - j| = 1 \\ 0 & \text{if } |i - j| = 2 \end{cases}$$

- $\hat{\kappa}_w = 0.2156$
- There is minimal agreement between the two judges on the ratings of the student teachers.