

In the Claims:

Claims 1 to 48 (canceled).

1 **49.** (previously presented) An organic electroluminescent device
2 having a luminescent material containing layer interposed
3 between a positive electrode and a negative electrode for
4 supplying electrical energy to said luminescent material
5 for emitting light upon receipt of said electrical energy,
6 said negative electrode containing f-, p-, and d-elements
7 wherein:

8 said f-element is at least one element selected from
9 the group consisting of Be, Ti, V, Cr, Mn, Zr, Nb, La, Ce,
10 Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, Hf and Ta;

11 said p-element is Sb, and

12 said d-element is at least one element selected from
13 the group consisting of Cu, Ag, Au, and Al.

1 **50.** (previously presented) The organic electroluminescent
2 device of claim 49, wherein said luminescent material
3 containing layer comprises at least a host, as a principal
4 component, and a fluorescent dopant, and wherein a molar
5 mass ratio of a molecule of said dopant to a molecule of
6 said host (dopant/host) is in the range of 0.344 to 2.90.

1 **51.** (previously presented) The organic electroluminescent
2 device of claim 49, wherein said f-element is at least one

3 element selected from the group consisting of La, Ce, Pr,
4 Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu.

1 52. (previously presented) The organic electroluminescent
2 device of claim 49, wherein said f-element is at least one
3 element selected from the group consisting of La, Ce, Pr,
4 Nd, Sm, Gd, Tb, Dy, Ho, and Er.

1 53. (previously presented) The organic electroluminescent
2 device of claim 49, wherein said f-element is at least one
3 element selected from the group consisting of La, Ce,
4 and Pr.

1 54. (previously presented) The organic electroluminescent
2 device of claim 49, wherein said f-element is at least one
3 element selected from the group consisting of Ce, Pr, Nd,
4 Gd, Tb, Dy, Ho, Er and Lu.

1 55. (previously presented) The organic electroluminescent
2 device of claim 49, wherein said f-element is at least one
3 element selected from the group consisting of Sm and Tm.

1 56. (previously presented) The organic electroluminescent
2 device of claim 49, wherein said f-element is at least one
3 element selected from the group consisting of Ce, Pr, Nd,
4 Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu.

Claims 57 to 60 (previously canceled).

1 61. (previously presented) The organic electroluminescent
2 device of claim 49, wherein a mean electronegativity value
3 E_{ave} of said negative electrode is in the range of
4 1.50 - 1.91, relative to an electronegativity value of 1.15
5 of a lanthanoid element, wherein said mean
6 electronegativity value is calculated by weighting an
7 electronegativity value of each negative electrode
8 constituting f- and p-element by a proportion of a number
9 of atoms of the respective f- and p-element present in the
10 negative electrode.

1 62. (previously presented) The organic electroluminescent
2 device of claim 61, wherein said lanthanoid element is Ce.

1 63. (previously presented) The organic electroluminescent
2 device of claim 49, wherein said device has an emission
3 efficiency of at least 10.0 cd/A when said device is
4 operated by a flow of a DC current to emit light with a
5 controlled luminance of 100 cd/m², said emission efficiency
6 being calculated by dividing said luminance by a current
7 density.

1 64. (previously presented) An organic electroluminescent device
2 having a luminescent material-containing layer interposed
3 between a positive electrode and a negative electrode for
4 supplying an electrical energy to said luminescent material
5 for emitting light upon receipt of said electrical energy,

6 said negative electrode containing f- and p- elements
7 wherein:

8 said f-element is at least one element selected from
9 the group consisting of La, Ce, Eu and Yb; wherein

10 said p-element is at least one element selected from
11 the group consisting of Zn, Al, Sn and Sb, and wherein

12 said negative electrode comprises a first layer
13 closest to said luminescent material-containing layer, a
14 second layer overlying said first layer and a third layer
15 overlying said second layer, and wherein said first layer
16 is made of at least one of said f-element, wherein said
17 second layer is made of a mixture or compound of at least
18 one each of said f- and p-elements and said third layer is
19 made of at least one of said p-element.

1 65. (previously presented) The organic electroluminescent
2 device of claim 64, wherein said f-element is Ce and said
3 p-element is Al.

1 66. (previously presented) The organic electroluminescent
2 device of claim 64, wherein said second layer has such a
3 composition gradient in its thickness direction toward its
4 interface with the third layer from its interface with the
5 first layer, that a content of said f-element in said
6 second layer decreases while a content of said p-element
7 increases in said thickness direction of said second layer.

1 67. (previously presented) The organic electroluminescent
2 device of claim 64, wherein at least one of said first,
3 second and third layers of said negative electrode contain
4 an additional element different from the constituent
5 element thereof.

1 68. (previously presented) An organic electroluminescent device
2 having a luminescent material-containing layer interposed
3 between a positive electrode and a negative electrode for
4 supplying an electrical energy to the luminescent material
5 for emitting light upon receipt of said electrical energy,
6 said negative electrode containing f- and p-elements
7 wherein:

8 said f-element is at least one element selected from
9 the group consisting of elements having electronegativity
10 values higher than that of calcium and equal to or lower
11 than that of vanadium; and

12 said p-element is at least one element selected from
13 the group consisting of elements having electronegativity
14 values equal to or higher than that of aluminum; and

15 wherein said negative electrode comprises a first
16 layer closest to said luminescent material-containing
17 layer, a second layer overlying said first layer and a
18 third layer overlying said second layer, and wherein said
19 first layer is made of at least one of said f-element, said
20 second layer is made of a mixture or compound of at least
21 one each of said f- and p-elements and said third layer is
22 made of at least one of said p-element.

1 69. (previously presented) The organic electroluminescent
2 device of claim 68, wherein said second layer has such a
3 composition gradient in its thickness direction toward its
4 interface with the third layer from its interface with the
5 first layer, that a content of said f-element in said
6 second layer decreases while a content of said p-element
7 increases in said thickness direction of said second layer.

1 70. (previously presented) The organic electroluminescent
2 device of claim 68, wherein at least one of said first,
3 second and third layers of said negative electrode contain
4 an additional element different from the constituent
5 element thereof.

1 71. (currently amended) An organic electroluminescent device
2 having a luminescent material containing layer interposed
3 between a positive electrode and a negative electrode for
4 supplying electrical energy to said luminescent material
5 for emitting light upon receipt of said electrical energy,
6 said negative electrode containing f-, p-, and d-elements
7 wherein:

8 said f-element is at least one element selected from
9 the group consisting of Be, ~~Ti, V, Cr, Mn, Zr, Nb, La, Ce,~~
10 ~~Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, Hf and Ta;~~

11 said p-element is at least one element selected from
12 the group consisting of H, B, C, N, O, F, Al, Si, P, S, Cl,
13 ~~Ge, Ge, As, Se, Br, In, Sb, Te, I, Tl, Zn, Cd and Hg, and~~

14 said d-element is at least one element selected from
15 the group consisting of Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd,
16 Pt, Cu, Au, Hg, Tl, Si, Ge, P, As, Sb, Se and Te and
17 wherein said d-element is excluded from the selection of
18 said f- or p-element.

[RESPONSE CONTINUES ON NEXT PAGE]