

Art of Problem Solving

1998 Iran MO (2nd round)

National Math Olympiad (Second Round) 1998

Day 1

If $a_1 < a_2 < \cdots < a_n$ be real numbers, prove that:

$$a_1 a_2^4 + a_2 a_3^4 + \dots + a_{n-1} a_n^4 + a_n a_1^4 \ge a_2 a_1^4 + a_3 a_2^4 + \dots + a_n a_{n-1}^4 + a_1 a_n^4.$$

- Let ABC be a triangle. I is the incenter of $\triangle ABC$ and D is the meet point of AI and the circumcircle of $\triangle ABC$. Let E, F be on BD, CD, respectively such that IE, IF are perpendicular to BD, CD, respectively. If $IE + IF = \frac{AD}{2}$, find the value of $\angle BAC$.
- Let n be a positive integer. We call (a_1, a_2, \dots, a_n) a $good\ n$ -tuple if $\sum_{i=1}^n a_i = 2n$ and there doesn't exist a set of a_i s such that the sum of them is equal to n. Find all $good\ n$ -tuple. (For instance, (1, 1, 4) is a $good\ 3$ -tuple, but (1, 2, 1, 2, 4) is not a $good\ 5$ -tuple.)

Day 2

Let the positive integer n have at least for positive divisors and $0 < d_1 < d_2 < d_3 < d_4$ be its least positive divisors. Find all positive integers n such that:

$$n = d_1^2 + d_2^2 + d_3^2 + d_4^2.$$

Let ABC be a triangle and AB < AC < BC. Let D, E be points on the side BC and the line AB, respectively (A is between B, E) such that BD = BE = AC. The circumcircle of ΔBED meets the side AC at P and BP meets the circumcircle of ΔABC at Q. Prove that:

$$AQ + CQ = BP.$$

If $A=(a_1,\cdots,a_n)$, $B=(b_1,\cdots,b_n)$ be 2 n-tuple that $a_i,b_i=0$ or 1 for $i=1,2,\cdots,n$, we define f(A,B) the number of $1\leq i\leq n$ that $a_i\neq b_i$. For instance, if A=(0,1,1), B=(1,1,0), then f(A,B)=2.

www.artofproblemsolving.com/community/c3882

Contributors: sororak

Art of Problem Solving

1998 Iran MO (2nd round)

Now, let $A=(a_1,\cdots,a_n)$, $B=(b_1,\cdots,b_n)$, $C=(c_1,\cdots,c_n)$ be 3 n-tuple, such that for $i=1,2,\cdots,n,\ a_i,b_i,c_i=0$ or 1 and f(A,B)=f(A,C)=f(B,C)=d. a) Prove that d is even. b) Prove that there exists a n-tuple $D=(d_1,\cdots,d_n)$ that $d_i=0$ or 1 for $i=1,2,\cdots,n$, such that $f(A,D)=f(B,D)=f(C,D)=\frac{d}{2}$.

www.artofproblemsolving.com/community/c3882

Contributors: sororak