Discussion of "Trade Shocks in Distorted Economies: Evidence from Firm-Level Import Data"

Rodrigo Adao, Ana Fernandes, Chang-Tai Hsieh, and Jose M. Quintero

Discussion by Kunal Sangani

June 2025

Ambitious Paper Bringing Importer-Level Data to Trade Liberalizations

- Firm-level data to measure importer firm concentration across 57 countries.
 - Importer firm concentration higher in poorer and smaller countries.

Ambitious Paper Bringing Importer-Level Data to Trade Liberalizations

- Firm-level data to measure importer firm concentration across 57 countries.
 - Importer firm concentration higher in **poorer** and **smaller** countries.
- Model mapping importer firm sales shares to markups.
 - Discipline Atkeson-Burstein model parameters using response of quantities to tariffs.

Ambitious Paper Bringing Importer-Level Data to Trade Liberalizations

- Firm-level data to measure importer firm concentration across 57 countries.
 - Importer firm concentration higher in poorer and smaller countries.
- Model mapping importer firm sales shares to markups.
 - Discipline Atkeson-Burstein model parameters using response of quantities to tariffs.
- \odot Efficiency gains from trade liberalization depend on markup dispersion + reallocations.
 - In liberalizations, tariffs fall by diff amts across goods/firms. (Different starting points?)
 - Reallocation to high-markup goods/firms increases allocative efficiency.
- Larger scope for gains in poor, small countries. Comparable to neoclassical channels!

Importer Firm Concentration

Figure 1: Distribution of the Import Share of the Largest Importer Firm in an HS6 Product

Importer firm concentration higher in poorer and smaller countries.

Importer Firm Concentration → Markups?

- Importer firm concentration higher in poorer and smaller countries.
- Nested CES model (Atkeson and Burstein 2008) maps market shares to markups.
 - Predicts that importer markups are higher and more dispersed in poor / small countries.
 - ullet \Rightarrow More scope for efficiency gains from reducing + equalizing tariffs.

Importer Firm Concentration → Markups?

- Importer firm concentration higher in poorer and smaller countries.
- Nested CES model (Atkeson and Burstein 2008) maps market shares to markups.
 - Predicts that importer markups are higher and more dispersed in poor / small countries.
 - ullet \Rightarrow More scope for efficiency gains from reducing + equalizing tariffs.
- Assumption is that market shares / concentration driven by exogenous variation in number of importers and relative productivities.
 - Number of firms, concentration, market shares are all endogenous industry outcomes.
 - Not so clear that mapping market shares to markups is without loss.

HHI and Markups: A Simple Model

• CES preferences over *N* symmetric importing firms, with total expenditures *E*.

$$\max U = \left[\sum_{i=1}^N q_i^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}. \quad \text{s.t.} \quad \sum_{i=1}^N p_i q_i = E.$$

Unit cost of imports normalized to one. Symmetric price is

$$ho = \mu = rac{arepsilon}{arepsilon - 1}, \qquad ext{where} \qquad arepsilon = \sigma \left(1 - rac{1}{N}
ight) + rac{1}{N}.$$

Number of firms N given by zero-profit condition, with fixed entry cost F:

$$\pi=(p-1)\frac{E}{pN}-F=0.$$

Assume F < E so more than one firm enters. Ignore integer constraints on N.

HHI and Markups: A Simple Model

- Comparative statics of HHI and markups in elasticity of substitution σ , expenditures E.
 - Expenditures E captures market size.
 - Elasticity of substitution σ captures effect of income on price sensitivity.
 (E.g., Harrod 1936, Alessandria and Kaboski 2011, Simonovska 2015, Auer et al. 2022, Sangani 2023)

HHI =
$$\sum_{i=1}^{N} (1/N)^2 = \frac{\sigma}{\sigma + (E/F - 1)}$$
.

$$\mu = \frac{\sigma}{\sigma - 1} \left[1 + \frac{1}{\sigma} \frac{1}{N - 1} \right] = \frac{\sigma}{\sigma - 1} \frac{E/F}{E/F - 1}$$
.

HHI and Markups: A Simple Model

- Comparative statics of HHI and markups in elasticity of substitution σ , expenditures E.
 - Expenditures E captures market size.
 - Elasticity of substitution σ captures effect of income on price sensitivity.
 (E.g., Harrod 1936, Alessandria and Kaboski 2011, Simonovska 2015, Auer et al. 2022, Sangani 2023)

$$HHI = \sum_{i=1}^{N} (1/N)^2 = \frac{\sigma}{\sigma + (E/F - 1)}.$$

$$\mu = \frac{\sigma}{\sigma - 1} \left[1 + \frac{1}{\sigma} \frac{1}{N - 1} \right] = \frac{\sigma}{\sigma - 1} \frac{E/F}{E/F - 1}.$$

- Importer firm HHI decreases with market size ($\uparrow E$) and with income ($\downarrow \sigma$).
- Markups decrease with market size ($\uparrow E$), but they increase with income ($\downarrow \sigma$).

An Example of Why We May Worry

• Whether ↑ HHI leads to ↑ markups depends on source of variation (income vs. size).

An Example of Why We May Worry

- Whether ↑ HHI leads to ↑ markups depends on source of variation (income vs. size).
- E.g., across U.S. cities, retail markups negatively correlated with HHI.

An Example of Why We May Worry

- As for importers, retailer market concentration is higher in **poorer** and **smaller** cities.
- But we would be wrong to associate this with higher markups!

	Retailer HHI		Log Agg. Retail Markup		
	(1)	(2)	(3)	(4)	(5)
Log Income / Capita	-0.163**	-0.048**	0.110**	0.095**	
	(0.018)	(0.015)	(0.016)	(0.020)	
Log Population		-0.020**		0.003	
		(0.002)		(0.003)	
Retailer HHI					-0.266**
					(0.048)
N	881	881	881	881	881
R^2	0.26	0.38	0.27	0.28	0.17

Note: Unit of observation is a CBSA. Retailer HHI and retail markups from Sangani (2023). Robust SEs.

- With heterogeneous firms, elasticity of firm f in market g is $\varepsilon_{gf} = \sigma_g (1 m_{gf}) + m_{gf}$.
 - Within market, higher market share $m_{af} \Rightarrow$ lower elasticity, higher markups.
 - But across markets, low income \Rightarrow higher σ_q , higher market shares, lower markups.
- In regression of the form:

$$\Delta \log q_{gf} = \beta(m_{gf})\Delta \log p_{gf} + \phi_g + \varepsilon_{gf},$$

 $\beta(m_{gf})$ captures *within-market* effect of market share on elasticity.

- With heterogeneous firms, elasticity of firm f in market g is $\varepsilon_{gf} = \sigma_g (1 m_{gf}) + m_{gf}$.
 - Within market, higher market share $m_{af} \Rightarrow$ lower elasticity, higher markups.
 - But across markets, low income \Rightarrow higher σ_q , higher market shares, lower markups.
- In regression of the form:

$$\Delta \log q_{gf} = \beta(m_{gf})\Delta \log p_{gf} + \phi_g + \varepsilon_{gf},$$

 $\beta(m_{gf})$ captures within-market effect of market share on elasticity.

- Empirically, $\beta(m_{gf})$ decreasing, means within-good results go the right way.
- But different σ_g across markets absorbed in $\phi_g \Rightarrow$ worry about **cross-good** results, **cross-country** comparisons.
 - Different HHI across goods can likewise be due to differences in consumer price-sensitivity.

ullet One solution: Measure missing intercept. E.g., for market characteristics X_g , estimate

$$\Delta \log q_{gf} = \beta(m_{gf}; X_g) \Delta \log p_{gf} + \phi_g + \varepsilon_{gf},$$

Conclusion

- Ambitious paper with a wealth of new importer-level data and stylized facts.
- Brings efficiency gains from micro-reallocations to center focus.
- Reallocations across firms may be as important as neoclassical channels!
- Mapping from importer market shares to markups not innocuous.
 - Many papers make this leap with Atkeson and Burstein (2008) model.

- Alessandria, G. and J. P. Kaboski (2011). Pricing-to-market and the failure of absolute PPP. *American Economic Journal: Macroeconomics* 3(1), 91–127.
- Atkeson, A. and A. Burstein (2008). Pricing-to-market, trade costs, and international relative prices. *American Economic Review 98*(5), 1998–2031.
- Auer, R. A., A. Burstein, S. Lein, and J. Vogel (2022). Unequal expenditure switching: Evidence from Switzerland. Technical Report 29757, National Bureau of Economic Research.
- Harrod, R. F. (1936). Trade Cycle. An essay. London: Oxford University Press.
- Sangani, K. (2023). Markups across the income distribution: Measurement and implications. Working paper.
- Simonovska, I. (2015). Income differences and prices of tradables: Insights from an online retailer. *The Review of Economic Studies 82*(4), 1612–1656.