BBRL foundations

Olivier Sigaud

Sorbonne Université http://www.isir.upmc.fr/personnel/sigaud

Outline

- ▶ Part 1: a standard RL model: Stable Baselines 3 (SB3)
- ▶ Limitations of the SB3 model
- ▶ Part 2: the BBRL model (inherited from SaLiNa)
- Overview of the main choices

The gym interaction loop

```
# Retrieve first observation
obs = env.reset()
done = False
total reward = \theta
while not done:
 # The agent predicts the action to take given the observation
 action, = agent.predict(obs, deterministic)
 # Check that predict is properly used: we use discrete actions,
 # therefore 'action' should be an int here
 assert env.action space.contains(action)
 # The environment performs a step and produces the next state, the reward
 # and whether the episode is over. The info return is a placeholder for
 # any supplementary information that one may need.
 obs, reward, done, info = env.step(action)
 # The total reward over the episode is the sum of rewards at each step
 # no discount here, discount is used in the reinforcement learning process
 total reward += reward
return total reward
```

- ► The gym interaction loop is central to evo and RL libraries
- It can be deep inside these libraries, we don't want users to add code into this core
- Two options:
 - From the environment side: wrappers
 - From the outside: callbacks
- Video presenting these SB3 aspects: https://www.youtube.com/watch?v=I8bskJul9qU (in french)
- And the corresponding colab: https://colab.research.google.com/drive/1sBZLs-GaM8Xx7MsF6sUH7Lli6GwCq5VW?usp=sharing

Gym env wrappers

- Similar to the **Decorator** pattern
- ► Makes it possible to do additional (hidden) things when interacting with the environment (e.g. RewardScalingWrapper)
- Or to modify the interactions with the environment
- Main interest: the main loop is unaffected

Callbacks

```
# Retrieve first observation
   obs = env.reset()
   done - False
   total reward = 0
   while not done:
    # The agent predicts the action to take given the observation
     action, = agent.predict(obs, deterministic)
     assert env.action_space.contains(action)
     # The environment performs a step and produces the next state, the reward
     # and whether the episode is over
     obs, recard, done, info = env.step(action)
    _callback. on step()
     # The total reward over the episode is the sum of rewards at each step
     total reward += reward
   return total reward
def train_with_callbacks(
   agent: BaseAlgorithm
   env: gyn.Env.
   nb episodes: int.
   deterministic: bool - False.
   callback: BaseCallback
)-> float: #T000 check type
     In SB3, training consists of several rollouts. Here we simplified this
    callback, on training start()
     Cward buffer - no.zerostnb episodes)
       and buffer[i] - evaluate agent with callbacks(agent, env, deterministic, callback)
     callback. on rollout end()
     allback, on training end(
```

- Similar to the Visitor pattern
- Some objects deriving from the Callback class are registered
- One callback is the CallbackList (if we need several)
- Example callback: the eval callback
- Good practice: separate evaluation from training

イロト (部) (を) (を)

Data collection: separating evaluation from training

- ► Training curve: what do we evaluate?
- Dimension everything in time steps

Wrappers vs Callbacks

- ► Callbacks require additional code (wrappers don't)
- ► Callbacks cannot get data from the main loop (no parameters)
- Better to do things unrelated to the training loop (e.g. eval)

Buffers

- On-policy algorithms use the RolloutBuffer
- Off-policy algorithms use the ReplayBuffer
- ► REINFORCE uses the EpisodicBuffer
- ▶ Need to store data from the main loop

Limitations of the SB3 model

- ▶ The main loop must be equipped with callback-related code
- Needs storing into buffers (unnecessary in evolutionary methods)
- Possible alternative: move data collection into dedicated wrappers (large refactoring)
- ▶ SB3 does not support training from multiple environments at a time
- ► It supports evaluating from several environments at a time (VecEnv)
- SB3 is not appropriate for teaching RL: too many things "under the hood", large code, hard to dig in
- ▶ Best for using RL as a non-expert (black box approach)

BBRL overview

- BBRL stands for "BlackBoard RL"
- ▶ It is a derivation from SaLinA, all properties come from there
- ▶ The workspace is a black board where all agents read and write temporal data
- Everything else is an agent
- Agents are pytorch nn.Modules: easy to move to CPU/GPU, to distribute, etc.
- ▶ Data is organized into temporal tensors which facilitate gradient processing

RI in BBRI

- By contrast to SaLinA, BBRL is limited to RL
- One agent is the Gym environment: NoAutoResetGymAgent or AutoResetGymAgent
- ► Other agents are RL agents
- ► There might be additional agents (e.g. PrintAgent for debug)
- GymAgents support training and evaluating over several environments

Why NoAutoReset and AutoReset?

- When running an agent in several environments, some environments may finish sooner than others (e.g. CartPole, when the pole falls)
- ► What shall we do?
- ▶ Wait until all environments end? → NoAutoResetGymAgent
- ► This is simpler, but a waste of time
- ▶ Restart each environment when it finishes? → AutoResetGymAgent
- Raises additional difficulties...

Gym environments: NoAutoReset

Finished environments repeat their data until the end of all episodes

This facilitates checking all is finished and collecting results in the end

Env_1	done: cumulated reward:	False 0.8	False 1.2	2.4	False 3.8	True 3.8	True 3.8		True 3.8
Env_2	done : cumulated reward:	False 1.2	False 3.8		True 5.1	True 5.1	True 5.1		True 5.1
Env_3	done : cumulated reward:		False 4.0		False 5.1	False 6.3		False 9.2	True 9.2

- use stop_variable="env/done"
- ▶ Perfect for evaluating an agent over N episodes
- ► The N episodes are run in parallel

Gym environments: AutoReset

If all environments restart, we may specify blocks of arbitrary duration reset

▶ This will make it possible to learn after each block, more often than with long episodes

This will raise other difficulties...

AutoReset: collecting blocks of data

▶ When collecting blocks of data, one should not loose the inter-block

transition

missing transition

► Solution: copy the last data of the previous block

```
\begin{array}{c} \text{epoch k} \\ \text{state} : S_0 \quad S_1 \quad \cdots \quad S_n \quad S_{n+1} \\ \text{action} : \text{None} \quad a_0 \quad \cdots \quad a_{n-1} \quad a_n \\ \text{reward} : \quad r_0 \quad r_1 \quad \cdots \quad r_n \quad r_{n+1} \\ \text{done} : \text{False} \quad \text{False} \quad \text{False} \quad \text{False} \quad \text{False} \quad \text{False} \quad \text{False} \\ \end{array}
```

Avoiding learning from inter-episode transitions

- Some transitions correspond to the last data from an episode and the first data of the next
- ► The agent should not learn from such transitions (it is teleported)
- SaLinA had bugs with this case
- Solution: reorganize data and remove these transitions

$$\begin{bmatrix} \operatorname{step}_0 \\ \operatorname{step}_1 \\ \operatorname{step}_2 \end{bmatrix} = > \begin{bmatrix} \operatorname{step}_0, \operatorname{step}_1 \\ \operatorname{step}_1, \operatorname{step}_2 \\ \operatorname{step}_2, \operatorname{step}_3 \\ \operatorname{step}_3, \operatorname{step}_4 \end{bmatrix} = > \begin{bmatrix} \operatorname{step}_0, \operatorname{step}_1 \\ \operatorname{step}_1, \operatorname{step}_2 \\ \operatorname{step}_3, \operatorname{step}_4 \end{bmatrix}$$

▶ In practice, call worskspace.get_transitions()

get_transitions(): more details

- ▶ If n_env > 1, before get_transitions(): $[step_0^1 step_0^1 ... step_0^{n_env}]$
- ► After get_transitions(), the vector is broken into pieces:
- Each key of the returned workspace has dimensions [2, n_transitions, key_dim]
- ▶ $key[0][0], key[1][0] = (step_1, step_2) \# for \ env \ 1$ $key[0][1], key[1][1] = (step_1, step_2) \# for \ env \ 2$ $key[0][2], key[1][2] = (step_2, step_3) \# for \ env \ 1$ $key[0][3], key[1][3] = (step_2, step_3) \# for \ env \ 2$

...

Standard or Sutton&Barto's notation?

- Most often (as in my slides), one writes transitions $\langle s_t, a_t, r_t, s_{t+1} \rangle$
- I.e. the reward is at the same time step than the action taken, but not the next state
- It would make more sense to write $\langle s_t, a_t, r_{t+1}, s_{t+1} \rangle$ (that's what Sutton&Barto do, cf. footnote 3 page 54 of the 2018 edition)
- BBRL offers both options:

- ► Use bbrl.agents.gymb and bbrl.utils.functionalb instead of bbrl.agents.gyma and bbrl.utils.functional to use the standard notation
- Change the reward index accordingly...

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

