Operators on Real Vector Spaces neal $T_{\epsilon}\chi(v) \longrightarrow T_{\epsilon}\epsilon\chi(v_{\epsilon})$ Complexification TEXIV). V real vector space Lecture 27 $T \rightarrow T_c \in \mathcal{L}(V_c)$ Dept. of Math., SUSTech $\epsilon \chi(V)$ 2023.05

Complexification

- Complexification of a Vector Space
- Complexification of an Operator
- The Minimal Polynomial of the Complexification
- Eigenvalues of the Complexification
- 5 Characteristic Polynomial of the Complexification
- 6 Homework Assignment 27

Introduction

As we will soon see:

- a real vector space V can be embedded, in a natural way, in a complex vector space called the complexification of V.
- Each operator on V can be extended to an operator on the complexification of V.
- Our results about operators on complex vector spaces can then be translated to information about operators on real vector spaces.

We begin by defining the complexification of a real vector space.

Complexification of a Vector Space

V real vector space F=1R <u>Vc</u> U, V ∈ V U+1V

9.2 **Definition** complexification of V, V_C

Suppose V is a real vector space.

- The *complexification* of V, denoted $V_{\mathbb{C}}$, equals $V \times V$. An element of $V_{\mathbb{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we will write this as u + iv.
- Addition on $V_{\mathbf{C}}$ is defined by

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

for $u_1, v_1, u_2, v_2 \in V$.

ullet Complex scalar multiplication on $V_{\mathbf{C}}$ is defined by

$$(a+bi)(u+iv) = (au-bv) + i(av+bu)$$

for $a, b \in \mathbf{R}$ and $u, v \in V$.

To Gol (VC) To (utiv) = \(\lambda \text{utiv} \)

Basis

We think of V as a subset of $V_{\mathbb{C}}$ by identifying $u \in V$ with u+i0. The construction of $V_{\mathbb{C}}$ from V can be thought of as generalizing the construction of \mathbb{C}^n from \mathbb{R}^n .

9.3 $V_{\rm C}$ is a complex vector space.

Suppose V is a real vector space. Then with the definitions of addition and scalar multiplication as above, $V_{\mathbf{C}}$ is a complex vector space.

The proof of the result above is left as an exercise for the reader.

Basis

Probably everything that you think should work concerning compexification does work, usually with a straightforward verification, as illustrated by the next result.

9.4 Basis of V is basis of $V_{\rm C}$

Suppose V is a real vector space.

- If v_1, \ldots, v_n is a basis of V (as a real vector space), then v_1, \ldots, v_n (a) is a basis of $V_{\mathbb{C}}$ (as a complex vector space). $\lambda V_{\mathbb{C}} + \lambda V_{\mathbb{C}} = 0$
- (b) The dimension of $V_{\rm C}$ (as a complex vector space) equals the dimension of V (as a real vector space).

To prove (a), suppose v_1, v_2, \cdots, v_n is a basis of the real vector space V. Then $\mathrm{span}(v_1, v_2, \cdots, v_n)$ in the complex vector space $V_{\mathbb{C}}$ contains all the vectors $v_1, v_2, \cdots, v_n, iv_1, iv_2, \cdots, iv_n$. Thus v_1, v_2, \cdots, v_n spans the complex vector space $V_{\mathbb{C}}$.

To show that v_1, v_2, \cdots, v_n is linearly independent in the complex vector space $V_{\mathbb{C}}$, suppose $\lambda_1, \lambda_2, \cdots, \lambda_n \in \mathbb{C}$ and

$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n = 0.$$

Then the equation above and our definitions imply that

$$(Re \lambda_1)v_1 + \cdots + (Re \lambda_n)v_n = 0$$
 and $(Im \lambda_1)v_1 + \cdots + (Im \lambda_n)v_n = 0$.

Because v_1, v_2, \cdots, v_n is linearly independent in V, the equations above imply $\operatorname{Re} \lambda_1 = \cdots = \operatorname{Re} \lambda_n = 0$ and $\operatorname{Im} \lambda_1 = \cdots = \operatorname{Im} \lambda_n = 0$. Thus we have $\lambda_1 = \cdots = \lambda_n = 0$. Hence v_1, v_2, \cdots, v_n is linearly independent in $V_{\mathbb{C}}$, completing the proof of (a).

Clearly (b) follows immediately from (a).

Complexification of an Operator

Now we can define the complexification of an operator.

9.5 **Definition** complexification of T, T_C

Suppose V is a real vector space and $T \in \mathcal{L}(V)$. The *complexification* of T, denoted $T_{\mathbf{C}}$, is the operator $T_{\mathbf{C}} \in \mathcal{L}(V_{\mathbf{C}})$ defined by

$$T_{\mathbf{C}}(u+iv) = Tu + iTv$$

for $u, v \in V$.

You should verify that if V is a real vector space and $T \in \mathcal{L}(V)$, then $T_{\mathbb{C}}$ is indeed in $\mathcal{L}(V_{\mathbb{C}})$. The key point here is that our definition of complex scalar multiplication can be used to show that that

$$T_{\mathbb{C}}(\lambda(u+iv)) = \lambda T_{\mathbb{C}}(u+iv)$$

for all $u, v \in V$ and all complex numbers λ .

Complexification of an Operator

The next result makes sense because 9.4 tells us that a basis of a real vector space is also a basis of its complexification. The proof of the next result follows immediately from the definitions.

9.7 Matrix of $T_{\mathbb{C}}$ equals matrix of T

Suppose V is a real vector space with basis v_1, \ldots, v_n and $T \in \mathcal{L}(V)$. Then $\mathcal{M}(T) = \mathcal{M}(T_C)$, where both matrices are with respect to the basis v_1, \ldots, v_n .

Every operator has an invariant subspace of dimension 1 or 2

We now show that every operator has an invariant subspace of dimension 1 or 2.

Existence of imariant subspace of dimension 1 or 2

Every operator on a nonzero finite-dimensional vector space has an invariant subspace of dimension 1 or 2. $V = U \oplus U^{\perp} \text{ (induction)}$

Proof. Every operator on a nonzero finite-dimensional complex vector space has an eigenvalue (5.21) and thus has a 1-dimensional invariant subspace.

Hence assume V is a real vector space and $T \in \mathcal{L}(V)$. The complexification $T_{\mathbb{C}}$ has an eigenvalue a+bi(by 5.21), where $a,b \in \mathbb{R}$. Thus there exist $u,v \in V$, not both 0, such that $T_{\mathbb{C}}(u+iv)=(a+bi)(u+iv)$. Using definition of $T_{\mathbb{C}}$, the last equation can be rewritten as

$$Tu + iTv = (au - bv) + (av + bu)i.$$

Thus

$$U = \text{span}(U_1V)$$

$$Tu = au - bv \text{ and } Tv = av + bu. \text{ invariant under } \top$$

Let U equal the span in V of the list u,v. Then U is a subspace of V with dimension 1 or 2. The equations above show that U is invariant under T, completing the proof.

The Minimal Polynomial of the Complexification

Suppose V is a real vector space and $T \in \mathscr{L}(V)$. Repeated application of the definition of $T_{\mathbb{C}}$ shows that

$$(T_{\mathbb{C}})^{n}(u+iv) = T^{n}u + iT^{n}v$$

for every positive integer n and all $u, v \in V$.

Notice that the next result implies that the minimal polynomial of $T_{\mathbb{C}}$ has real coefficients.

9.10 Minimal polynomial of $T_{\mathbb{C}}$ equals minimal polynomial of T

Suppose V is a real vector space and $T \in \mathcal{L}(V)$. Then the minimal polynomial of $T_{\mathbf{C}}$ equals the minimal polynomial of T.

Eigenvalues of the Complexification

Now we turn to questions about the eigenvalues of the complexification of an operator. Again, everything that we expect to work indeed works easily.

9.11 Real eigenvalues of $T_{\rm C}$

Suppose V is a real vector space, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{R}$. Then λ is an eigenvalue of $T_{\mathbf{C}}$ if and only if λ is an eigenvalue of T.

Our next result shows that $T_{\mathbb{C}}$ behaves symmetrically with respect to an eigenvalue λ and its complex conjugate $\bar{\lambda}$.

9.12 $T_{\mathbf{C}} - \lambda I$ and $T_{\mathbf{C}} - \bar{\lambda} I$

Suppose V is a real vector space, $T \in \mathcal{L}(V)$, $\lambda \in \mathbb{C}$, j is a nonnegative integer, and $u, v \in V$. Then

$$(T_{\mathbf{C}} - \lambda I)^j (u + iv) = 0$$
 if and only if $(T_{\mathbf{C}} - \bar{\lambda}I)^j (u - iv) = 0$.

We will prove this result by induction on j. To get started, note that if j=0 then (because an operator raised to the power 0 equals the identity operator) the result claims that u+iv=0 if and only if u-iv=0, which is clearly true.

Thus assume by induction that $j \ge 1$ and the desired result holds for j-1. Suppose $(T_{\mathbb C}-\lambda I)^j(u+iv)=0$. Then

$$(T_{\mathbb{C}}-\lambda I)^{j-1}(T_{\mathbb{C}}-\lambda I)(u+iv)=0.$$

Writing $\lambda = a + ib$, where $a, b \in \mathbb{R}$, we have

$$(T_{\mathbb{C}} - \lambda I)(u + iv) = (Tu - au + bv) + i(Tv - av - bu)$$

and

$$(T_{\mathbb{C}} - \overline{\lambda}I)(u - iv) = (Tu - au + bv) - i(Tv - av - bu)$$

Our induction hypothesis, 9.13 , and 9.14 imply that $(T_{\mathbb{C}}-\overline{\lambda}I)^{j-1}((Tu-au+bv)-i(Tv-av-bu))=0. \text{ Now this equation and the equation above imply that } (T_{\mathbb{C}}-\overline{\lambda}I)^{j}(u-iv)=0, \text{ completing the proof in one direction.}$ The other direction is proved by replacing λ with $\overline{\lambda}$, replacing v with v, and then using the first direction.

Nonreal eigenvalues come in pairs

An important consequence of the result above is the next result, which states that if a number is an eigenvalue of $T_{\mathbb{C}}$, then its complex conjugate is also an eigenvalue of $T_{\mathbb{C}}$.

9.16 Nonreal eigenvalues of $T_{\rm C}$ come in pairs

Suppose V is a real vector space, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{C}$. Then λ is an eigenvalue of $T_{\mathbb{C}}$ if and only if $\bar{\lambda}$ is an eigenvalue of $T_{\mathbb{C}}$.

Characteristic Polynomial of the Complexification

The next result states that the multiplicity of an eigenvalue of a complexification equals the multiplicity of its complex conjugate.

9.17 Multiplicity of λ equals multiplicity of $\bar{\lambda}$

Suppose V is a real vector space, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{C}$ is an eigenvalue of $T_{\mathbb{C}}$. Then the multiplicity of λ as an eigenvalue of $T_{\mathbb{C}}$ equals the multiplicity of $\bar{\lambda}$ as an eigenvalue of $T_{\mathbb{C}}$.

Existence of Eigenvalues

We have seen an example [5.8(a)] of an operator on \mathbb{R}^2 with no eigenvalues. The next result shows that no such example exists on \mathbb{R}^3 .

9.19 Operator on odd-dimensional vector space has eigenvalue Every operator on an odd-dimensional real vector space has an eigenvalue.

Characteristic polynomial of $T_{\mathbb{C}}$

In the previous chapter we defined the characteristic polynomial of an operator on a finite-dimensional complex vector space (see 8.34). The next result is a key step toward defining the characteristic polynomial for operators on finite-dimensional real vector spaces.

9.20 Characteristic polynomial of $T_{\rm C}$

Suppose V is a real vector space and $T \in \mathcal{L}(V)$. Then the coefficients of the characteristic polynomial of $T_{\mathbb{C}}$ are all real.

Characteristic polynomial

Now we can define the characteristic polynomial of an operator on a finite-dimensional of its compelxification.

9.21 **Definition** Characteristic polynomial

Suppose V is a real vector space and $T \in \mathcal{L}(V)$. Then the *characteristic polynomial* of T is defined to be the characteristic polynomial of $T_{\mathbb{C}}$.

$$\lambda$$
 and $\overline{\lambda}$ in pairs + same multiplicity

Eigenvalues

In the next result, the eigenvalues of T are all real (because T is an operator on a real vector space).

9.23 Degree and zeros of characteristic polynomial

Suppose V is a real vector space and $T \in \mathcal{L}(V)$. Then

- (a) the coefficients of the characteristic polynomial of T are all real;
- (b) the characteristic polynomial of T has degree dim V;
- (c) the eigenvalues of T are precisely the real zeros of the characteristic polynomial of T.

Cayley-Hamilton Theorem

In the previous chapter, we proved the Cayley-Hamilton Theorem (8.37) from complex vector spaces. Now we can also prove it for real vector spaces.

9.24 Cayley-Hamilton Theorem

Suppose $T \in \mathcal{L}(V)$. Let q denote the characteristic polynomial of T. Then q(T) = 0.

Characteristic polynomial is a multiple of minimal polynomial

We can now prove another result that we previously knew only in the complex case.

9.26 Characteristic polynomial is a multiple of minimal polynomial Suppose $T \in \mathcal{L}(V)$. Then

- (a) the degree of the minimal polynomial of T is at most dim V;
- (b) the characteristic polynomial of T is a polynomial multiple of the minimal polynomial of T.

Homework Assignment 27

9.A: 6, 8, 9, 10, 12, 15, 16, 18.