Principles of Communication Systems Lab (303 P)

Lab-2 (Review of signals and systems)

(Due Date: 24-8-2021, Time: 1 pm)

Instructions:

- 1. NO PLAGIARISM. Your solution must be written in your words.
- 2. Please strictly follow the LaTex template for making lab reports. The template has been uploaded on LMS.
- 3. Please mention legends, axis labels, titles etc in your plot/subplot for better understanding and clarity.
- 4. For best quality, please add .eps format of simulation plot in the report. You can directly export .eps plot from MATLAB.
- 5. The report to be submitted must include MATLAB code and all observations pertaining to each plot below the same.
- 6. Kindly number your answers correctly.
- 7. Please feel free to ask any questions in class or via LMS..

Questions:

- 1. Consider a square wave with fundamental frequency 50 Hz with the maximum and minimum amplitude to be +1 and -1 respectively. Generate and plot (both continuous time and discrete time) 5 complete cycles of it with the following duty cycles.
 - (a) Duty cycle 50%
 - (b) Duty cycle 25%
 - (c) Duty cycle 75%

Note: Do not use inbuilt function 'square'! Take a large no. of samples to get a smooth curve. Plot all the sub-parts in the same plot using subplot.

- 2. Consider the signals $x_1[n] = 1$, for $n_{11} \le n \le n_{12}$, and $x_2[n] = 1$, for $n_{21} \le n \le n_{22}$ and perform the following operations
 - (a) Find and plot (both continuous time and discrete time) the convolution between $x_1[n]$ and $x_2[n]$ for $n_{11} = n_{21} = -2$ and $n_{12} = n_{22} = 2$. Do not use the inbuilt function 'conv'!

- (b) Find and plot (both continuous time and discrete time) the convolution between $x_1[n]$ and $x_2[n]$ for $n_{11} = -2$, $n_{12} = 2$, $n_{21} = 0$ and $n_{22} = 4$. Do not use the inbuilt function 'conv'!
- (c) Find and plot (both continuous time and discrete time) the convolution between $x_1[n]$ and $x_2[n]$ for $n_{11} = -5$, $n_{12} = 5$, $n_{21} = -1$ and $n_{22} = 6$. Do not use the inbuilt function 'conv'!
- (d) Verify and plot the above results using the inbuilt function 'conv'
- 3. Consider a single-tome signal $m_1(t) = A_1 \cos(2\pi f_1 t)$ and a multi-tone signal $m_2(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$ with $A_1 = 2$, $A_2 = 6$, $f_1 = 50$ and $f_2 = 100$.
 - (a) Plot $m_1(t)$ and $m_2(t)$
 - (b) Plot the frequency spectrum $m_1(t)$ and $m_2(t)$, and identify the tones
 - (c) Plot the phase spectrum of $m_1(t)$ and $m_2(t)$

Note: Take a large no. of samples to get a smooth curve. Plot all the sub-parts in the same plot using subplot.