hrv lan – interface gráfica para aquisição de vídeo e frequencia cardíaca em uma LAN

1. Introdução/Justificativa

O objetivo deste software é capturar vídeo de webcams de computadores conectados a uma LAN. Paralelamente à captura, o sinal de ECG do usuário também deve ser capturado.

As principais características do software são:

- 1 Possui janela do operador, onde se controla o início dacaptura.
- 2 Permite estabelecer a rotina de captura. tempo em NVNM etc.
- 3 Possui janelas para os subjects.
- 4 Deve ser capaz de exibir vídeos pre-gravados, vídeos de câmeras transmitidos via streaming e uma tela vazia com alguma cor.
- 5 Deve ser capaz de salvar o sinal de ECG.
- 6 Deve ser capaz consultar as cameras disponiveis no localhost e nos demais hosts da rede. Deve ser possível localizar automaticamente os servidores de câmeras na rede com uma determinada porta aberta.

2. Classes

2.1. Classe LanDevice

A classe LanDevice é uma camada que expõe as funcionalidades dos dispositivos de captura disponíveis na LAN. Os dispositivos em que estamos interessados são as câmeras e o sensor cardíaco Polar H10. Possui os seguintes métodos:

start server

Inicia o servidor que disponibiliza os dispositivos do localhost para a rede.

stop server

Interrompe o servidor.

list servers

Envia um sinal de broadcast para a rede para localizar todos os servidores ativos.

list devs local(dev type)

Lista os dispositivos do localhost, com valor de dev type em {CAM, POLAR}.

list devs host(dev type, ip addr)

Lista os dispositivos do host de IP especificado, com valor de dev type em {CAM, POLAR}.

list devs lan(dev type)

Lista os dispositivos da LAN, com valor de dev type em {CAM, POLAR}.

handle = stream start(dev type, dev id, ip addr)

Inicia streaming de vídeo ou de ECG do dispositivo especificada. Retorna um handle.

```
stream_show(dev_type, handle, window)
Exibe streaming de vídeo ou de ECG, com handle espeficidado, em window.
```

stream_save(dev_type, handle, filename) Salva streaming de vídeo ou de ECG com handle espeficidado para arquivo.

2.2. Classe Routine

A classe Routine lê os arquivos que controlam a rotina de captura e exibição de um experimento. Esses arquivos estão em formato CSV, com valores separados por ponto e vírgula. A primeira coluna contém o tempo em segundos que uma ação é executada, a segunda coluna contém a ação e as demais contém os parâmetros ou operandos. Linhas iniciadas com o caractere "#" são ignoradas.

Abaixo está um exemplo de arquivo de rotina de captura.

```
#No View No Motion
0.0; label; block1; NVNM
0.0; message; all; "Welcome!"
0.0; clear; all; #FFFF00
5.0; message; all; "Please watch this video"
5.0; play; all; "videos/instructions.mp4"
30.0; message; all; "No View No Motion"
#No View Motion
45.0; label; block1; NVM
45.0; message; all; "Please gesticulate."
#Spontaneous Imitation
60.0; label; block1; SI
60.0; message; all; "Please gesticulate. Imitate if you wish."
60.0; show; s1; c2
60.0; show; s2; c1
#Induced Imitation Imitator 1
90.0; label; block1; IImitator1
90.0; message; s1; "Please imitate your partner."
90.0; message; s2; "Please gesticulate."
120.0; message; all; "Please stop. Thank you!"
120.0; clear; all; #FFFF00
. . .
```

Abaixo está a lista de comandos suportados. Cada comando recebe dois operandos exceto stop.

Instrução	Op. 1	Op. 2	Comentário
message	User	String	Show message on screen
label	Block	Condition	Label for annotation purposes
show	User	Cam	Show camera content on video canvas
clear	User	Color	Clear video canvas and fill it with color
play	User	String	Play video and show on video canvas
stop			Stop the recording

Os Valores de que User, Cam, Block e Label podem assumir são

```
User = {s1, s2, all}
Cam = {c1, c2}
Block = {block1, block2}
Label = {NVNM, NVM, SI, IImitator1, IImitator2}
```

onde s1 corresponde à janela do subject 1, s2 corresponde à janela do subject 2, a11 corresponde a todas as jalenas dos subjects, c1 corresponde à câmera do subject 1 e c2 corresponde à câmera do subject 2.

2.3. Classe WinOp

A classe WinOp cria a janela usada pelo operador do sistema. Expõe as funcionalidades dos dispositivos, câmeras e sensores cardíacos, da LAN ao usuário, permite definir a rotina de captura, selecionar os dispositivos a serem usados e iniciar a rotina de captura. Para evitar atrasos de comunicação, é definido um intervalo de tempo t em segundos. O comando de iniciar a rotina agenda o início da rotina nos clientes em hora atual mais t segundos. Idealmente, todas as máquinas envolvidas devem ter seus relógios sincronizados.

Figura 1 – Janela WinOp

A janela possui duas áreas principais. À direita está o canvas onde o conteúdo das câmeras selecionadas é exibido. À esquerda está o menu com as funcionalidades disponíveis.

O primeiro botão, *Search network cameras*, localiza os servidores rodando na LAN e povoa os menus para seleção de câmeras. Os menus *dropdown* permitem a seleção das câmeras, que começam a enviar o streaming assim que são selecionadas. O segundo botão faz o mesmo mas com os sensores cardíacos.

O terceiro botão, Select routine file, abre uma caixa de diálogo para que o operador selecione o arquivo contendo a rotina de captura.

Abaixo há uma caixa de texto para que o operador selecione um intervalo de tempo t em segundos. Ao clicar no botão *Schedule routine start*, é enviada a rotina de captura e o horário atual mais t segundos que a rotina deve ser iniciada. A janela deve possuir ao menos o menu abaixo.

- Devices

- List cameras in localhost
- List cameras in LAN
- List cameras at IP
- List Polar H10 in localhost
- List Polar H10 in LAN
- List Polar H10 at IP

2.4. Classe WinSubj

A classe WinSubj cria a janela usada pelo subject participante do experimento. É controlada por comandos enviados por WinOp via socket, mesmo que ambos os processos Descanse as mãos e aguardeestejam no mesmo host. Exibe o conteúdo de alguma câmera da rede, mostra vídeos e mostra mensagens com instruções.

A janela deve possuir ao menos o menu abaixo.

- Devices
 - List cameras in localhost
 - List Polar H10 in localhost

Figura 2 – Janela WinSubj

3. Arquitetura

A Figura 2 mostra as camadas do sistema. A Figura 3 mostra como as janelas são distribuídas entre os hosts e como se comunicam pela rede.

Figura 3 - Package diagram: deployment layers

Figura 4 – Deployment diagram

4. Protocolo de comunicação

A janela WinOp envia comandos e consultas às janelas WinSubj rodando na LAN. Os comandos são

query servers

Sinal de broadcast para encontrar os servidores ativos.

query server cams

Consulta as câmeras disponíveis de um certo servidor

query server polars

Consulta os sensores cardíacos disponíveis de um certo servidor

select cam

Envia para servidor o id da câmera selecionada e atribui um rótulo em {c1, c2}. Inicia o streaming imediatamente para o canvas Cam1 ou Cam2.

select polar

Envia para servidor o id do sensor cardíaco selecionada e atribui um rótulo em {p1, p2}. Inicia o streaming imediatamente para o canvas Polar1 ou Polar2.

schedule routine

Envia para servidor o arquivo de rotina a ser executado e agenda o início da captura para algum horário nos próximos segundos.

5. Análise dos dados

Os dados de cada experimento ficam salvos na pasta data. Cada captura recebe um número inteiro, zero-padded, a partir de 001. Abaixo está a lista de arquivos gerados em cada captura.

log.txt	Log de eventos
routine.txt	Rotina usada no experimento
subj1_ecg.tsv	ECG do subject 1 em formato TSV (tab separated values)
subj1_rr.tsv	HR (heart rate) e intervalo RR do subject 1 em formato TSV
subj1.mp4	Vídeo do subject 1
subj2_ecg.tsv	ECG do subject 2 em formato TSV (tab separated values)
subj2_rr.tsv	HR (heart rate) e intervalo RR do subject 2 em formato TSV
subj2.mp4	Vídeo do subject 2

O par de vídeos é anotado usando o software ELAN, que salva a anotação em formato XML. Na anotação serão considerados os rótulos abaixo.

IsSync	Indica se há ou não sincronia. {0/NSync, 1/Sync}
IsImit	Indica se há ou não imitação. { O/NIm, 1/Im}
Role1	Indica o papel do sujeito 1 nos períodos onde $IsImit = 1$.
Role2	Indica o papel do sujeito 2 nos períodos onde $IsImit = 1$.
	Ambos assumem valores no conjunto {Imitator, Model}

O primeiro passo da análise é um pré-processamento dos arquivos de ECG, RR, anotação em XML e rotina para gerar um arquivo em formato TSV contendo uma linha para cada segundo de captura.

Cada linha contém

- Índice inteiro do segundo
- Rótulo obtido dos comandos label do arquivo routine.txt
- HR interpolado a partir dos arquivos subj* rr.tsv
- HR estimado a partir dos intervalos RR dos arquivos subj*_ecg.tsv
- Rótulos obtidos da anotação feita no ELAN obtidos do arquivo XML: IsSync, IsImit, Role1, Role2.

A exibição em gráfico dos valores de HR deve ser analisada em busca de erros de sincronia.