

Vilniaus universitetas Matematikos ir informatikos fakultetas Informatikos katedra

Dirbtiniai neuroniniai tinklai sistemoje WEKA

prof. dr. Olga Kurasova
Olga.Kurasova@mii.vu.lt
2018

- Šiuo metu yra **sukurta programinių sistemų**, skirtų tik neuroniniams tinklams.
- Yra duomenų tyrybos sistemų, kuriose be kitų metodų yra įgyvendinti ir neuroniniai tinklai.
- **WEKA** tai viena populiariausių duomenų tyrybos sistemų (<u>www.cs.waikato.ac.nz/ml/weka/</u>).
- Tai atviro kodo nemokama sistema, turinti plačias duomenų tyrybos funkcijas.

- Sistemoje duomenų tyrybos algoritmus galima taikyti standartiniu būdu arba sukūrus vadinamąsias mokslinio darbo sekas.
- Mokslinio darbo seka tai sujungtų
 komponenčių junginys, kur kiekviena
 komponentė atitinka tam tikrą duomenų įkėlimo,
 apdorojimo ar tyrybos algoritmą, taip pat
 rezultatų peržiūrą.
- Tai patogus įrankis, kai norima tokiu pat būdu analizuoti kitus duomenis, ar tirti juos, pakeitus algoritmų valdymo parametrų reikšmes.

Sistema WEKA (2)

Norint pradėti **kurti mokslinio darbo seką**, reikia paspausti mygtuką *KnowledgeFlow*.

Sistema WEKA (3)

Sistema WEKA (4)

- Sistemoje WEKA galima įkelti kelių formatų duomenis, tačiau rekomenduojama naudoti pačios sistemos arff formatą.
- Įdiegiant sistemą, į kompiuterį įrašomi kelių duomenų failų, pavyzdžiai. Pvz., C:\Program Files\Weka-3-6\data
- Failus arff formatu galima atverti ir redaguoti paprastu tekstiniu redaktoriumi.

Duomenys arff formatu

@RELATION iris

```
@ATTRIBUTE sepallength REAL
@ATTRIBUTE sepalwidth REAL
@ATTRIBUTE petallength REAL
@ATTRIBUTE petalwidth REAL
@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}
(adata
5.1,3.5,1.4,0.2, Iris-setosa
4.9.3.0.1.4.0.2.Iris-setosa
4.7,3.2,1.3,0.2, Iris-setosa
4.6,3.1,1.5,0.2, Iris-setosa
5.0,3.6,1.4,0.2, Iris-setosa
5.4,3.9,1.7,0.4, Iris-setosa
4.6,3.4,1.4,0.3, Iris-setosa
5.0,3.4,1.5,0.2, Iris-setosa
4.4,2.9,1.4,0.2, Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
```

Duomenų įkėlimas sistemoje WEKA

- Norint įkelti duomenis arff formatu, reikia iš kortelės DataSources rinktis komponentę Arff Loader (nepamiršti spustelti sekos formavimo srityje).
- Du kartus ją spustelėti ir atsiradusiame l nurodyti norimą failą.
- Be to, jei bus sprendžiamas klasifikavimo uždavinys, reikia nurodyti, kuris duomenų požymis yra klasė. Tam skirta Evaluation kortelėje esanti komponentė Class Assigner. Ją du kartus paspaudus, reikia nurodyti tą požymį.

Duomenų įkėlimas sistemoje WEKA

- Dabar belieka sujungti šias dvi komponentes.
- Tai atliekama tokiu būdu:
 - ant pirmosios komponentės paspaudžiamas dešinysis pelės mygtukas,
 - išsirenkama dataSet
 - ir **paspaudžiama** ant kitos komponentės.

Kryžminė patikra

- WEKA sistemoje kryžminei patikrai atlikti skirta kortelėje Evaluation esanti komponentė CrossValidation FoldMaker.
- Du kartus ją spustelėjus, atsiradusiame lange galima nurodyti norimą blokų skaičių (folds), pagal kurį bus suskaidoma duomenų aibė į mokymo ir testavimo duomenis.

- Daugiasluoksnio perceptrono komponentės, skirta klasifikavimo uždaviniams spręsti, yra kortelėje Classifiers ir vadinasi Multilayer Perceptron.
- Ši komponentė turi būti sujungta su komponente CrossValidation FoldMaker.
- Įkėlus šią komponentę, ją du kartus spustelėjus pelyte, atsiranda **parametrų nustatymo langas**.

MLP pagrindiniai parametrai

- GUI: True bus rodoma tinklo struktūra.
- hiddenLayers kableliais atskirti neuronų skaičiai paslėptuose sluoksniuose.
- learningRate mokymo greičio parametras η .
- Momentum tinklo mokymo taisyklėje naudojama reikšmė.
- Seed atsitiktinių skaičių generavimo "sėkla".

Klasifikavimo tikslumo nustatymas

- Norint pamatyti klasifikavimo rezultatų tikslumą, reikia prie komponentės Multilayer Perceptron prijungti kortelėje Evaluation esančią komponentę Classifier PerformanceEvaluator.
- O prie šios komponentės prijungti kortelėje
 Visualization esančią komponentę TextViewer.
- Tuomet reikia ant komponentės paspausti dešinį pelės mygtuką ir pasirinkti Show Results.

Perceptrono svoriai

- Norint pamatyti, kokie gauti išmokyto perceptrono svoriai, reikia prie komponentės Multilayer Perceptron prijungti komponentę TextViewer.
- Tuomet reikia ant komponentės paspausti dešinį pelės mygtuką ir pasirinkti Show Results.

Gauta mokslinio darbo seka

Norint **įvykdyti** sukurtą seką reikia ant **ArffLoader** komponentės paspaudus dešinįjį pelės mygtuką, pasirinkti **Start Loading**.

Klasifikavimo rezultatai

=== Evaluation result ===

Scheme: MultilayerPerceptron

Options: -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H "2, 3" -G -R

Relation: iris

8	Correctly Classified Instances	148	98.6667 🕏
	Incorrectly Classified Instances	2	1.3333 %
	Kappa statistic	0.98	
	Mean absolute error	0.0273	
	Root mean squared error	0.0894	
	Relative absolute error	6.1343 %	
	Root relative squared error	18.9712 %	
	Total Number of Instances	150	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	1	0	1	1	1	1	Iris-setosa
	0.98	0.01	0.98	0.98	0.98	0.999	Iris-versicolor
	0.98	0.01	0.98	0.98	0.98	0.999	Iris-virginica
Weighted Avg.	0.987	0.007	0.987	0.987	0.987	0.999	

=== Confusion Matrix ===

```
a b c <-- classified as

50 0 0 | a = Iris-setosa

0 49 1 | b = Iris-versicolor

0 1 49 | c = Iris-virginica
```

Gauti perceptrono svoriai

Threshold

```
=== Classifier model ===
          MultilayerPerceptron
 Scheme:
Relation: iris
Sigmoid Node 0
   Inputs
             Weights
   Threshold
                4.86297276124753
   Node 5 -3.8660908414801503
   Node 6 -4.705134898782587
   Node 7
             -9.11213313626472
Sigmoid Node 1
   Inputs
             Weights
   Threshold -4.667974263875816
   Node 5 -7.907836952620307
   Node 6 -4.191198923452797
             9.397064982396241
   Node 7
Sigmoid Node 2
   Inputs
             Weights
   Threshold
                -7.139047124741141
   Node 5 6.407314719993383
   Node 6 4.953708835603616
   Node 7 2.148788678109934
Sigmoid Node 3
   Inputs
             Weights
   Threshold
                5.97182308582669
   Attrib sepallength 1.2928052580000988
   Attrib sepalwidth 2.6852736928332734
   Attrib petallength -7.953115255023941
   Attrib petalwidth
                       -9.316709649525436
Sigmoid Node 4
   Inputs
             Weights
```

0.7370366149205487

Sukurto klasifikatoriaus išsaugojimas

- Neuroninis tinklas mokomas tam, kad vėliau galėtų nežinomų klasių duomenis priskirti vienai iš klasių.
- Tam reikia išsaugoti sukurto klasifikatoriaus rezultatus, DNT atveju – svorių reikšmes.
- Paspaudus ant Multilayer Perceptron komponentės, reikia pasirinkti Save Model ir nurodyti saugojimo vietą bei failo vardą.

Duomenų išskaidymas į mokymo ir testavimo

- Mokant neuroninį tinklą, galima naudoti ne tik kryžminės patikros būdą, bet patiems pradžioje išskaidyti į mokymo ir testavimo aibes.
- Tam sistemoje WEKA yra įgyvendinti keli būdai:
 - Naudoti vieną duomenų failą, tačiau komponentės
 TrainTest SplitMaker pagalba duomenis išskaidyti į mokymo ir testavimo.
 - Naudoti du duomenų failus, vieną komponentės
 Training SetMaker pagalba priskirti mokymo
 duomenis, kitą komponentės TestSet Maker
 pagalba testavimo.

- Neuroninis tinklas mokomas tam, kad vėliau galėtų nežinomų klasių duomenis priskirti vienai iš klasių.
- Jei duomenų **klasė nėra žinoma**, tai arff faile prie vietoj klasių **įrašomas klaustukas**.
- Tuomet reikia įkelti dar vieną ArffLoader komponentę, nurodyti tą arff failą, kuriame yra nauji duomenys (su nežinomomis klasėmis).
- Taip pat įkelti ir sujungti komponentes ClassAssigner, TestSet Maker, Multilayer Perceptron.

- Paspaudus ant komponentės Multilayer Perceptron dešinį pelės mygtuką, pasirinkti Load Model ir nurodyti anksčiau išsaugotą klasifikatoriaus rezultatus (modelį).
- Tuomet prie šios komponentės reikia prijungti Evaluation kortelėje esančią komponentę Prediction Appender, o prie jos – Text Viewer.
- Paspaudus du kartus Prediction Appender galima nurodyti, ar bus rodomos klasių priskyrimo tikimybės (TRUE) ar ne (FALSE).
- Paspaudus dešinį palės mygtuką ant komponentės Text
 Viewer ir pasirinkus Show results, matomi naujų duomenų klasifikavimo rezultatai.
- Prijungus kortelėje **DataSinks** esančią komponentę **Arff Saver**, klasifikavimo rezultatai bus **išsaugoti** nurodytame faile. (22)

Gautos mokslinio darbo sekos

Duomenų vizualizavimas

- Sistemoje WEKA yra duomenų vizualizavimo komponentės, leidžiančios pamatyti analizuojamų duomenų struktūrą.
- Kortelėje Visualization pasirinkus komponentę Scatter PlotMatrix ir ją prijungus prie komponentės Class Assigner, galima pamatyti duomenų išsidėstymą Dekarto koordinačių sistemoje (imant požymių poras).