EP16: Missing Values in Clinical Research: Multiple Imputation

13. Imputation of Survival Data

Nicole Erler

Department of Biostatistics, Erasmus Medical Center

✓ n.erler@erasmusmc.nl

Results from the Literature

In a previous Section, we saw that the correct conditional distribution for an incomplete covariate \boldsymbol{x} in a proportional hazards model would be

$$\log p(x \mid T, D, z) = \log p(x \mid z) + D(\beta_x x + \beta_z z) - H_0(T) \exp(\beta_x x + \beta_z z) + const.$$

White and Royston (2009) derived versions of this model for different settings and investigated how to best approximate it.

They found that using

- \triangleright Z, D and $H_0(T)$, and
- possibly an interaction term

as predictor variables may work satisfactorily if

covariate effects and cumulative incidences are rather small.

Results from the Literature

Problem: in practice $H_0(T)$ is unspecified.

Two main ideas:

- ▶ If covariate effects β_X and β_Z are small, $H_0(t) \approx H(t)$, which can be approximated by the **Nelson-Aalen estimator**.
- ▶ Estimate $H_0(T)$ in an additional step inside the MICE procedure by fitting a Cox model on the imputed data.

Neither of these approaches takes into account uncertainty about $H_0(t)$ (but the impact is likely to be small).

Results from the Literature

Problem: in practice $H_0(T)$ is unspecified.

Two main ideas:

- ▶ If covariate effects β_X and β_Z are small, $H_0(t) \approx H(t)$, which can be approximated by the **Nelson-Aalen estimator**.
- ▶ Estimate $H_0(T)$ in an additional step inside the MICE procedure by fitting a Cox model on the imputed data.

Neither of these approaches takes into account uncertainty about $H_0(t)$ (but the impact is likely to be small).

Based on results from their simulation study, White et al. conclude that **using** Z, D **and the Nelson-Aalen estimator** $\hat{H}(T)$ as predictors for the imputation of X worked best.

However, some **bias towards the null** should be expected when covariates have large effects.

Imputation with mice

In **mice**, nelsonaalen() can be used to **calculate the Nelson-Aalen estimator**, to use it as covariate in the imputation.

```
survdat$H0 <- nelsonaalen(survdat, timevar = Time, statusvar = event)</pre>
```

Then, we can prepare the imputation using the same steps as in previous examples:

```
# setup run
imp0 <- mice(survdat, maxit = 0)
meth <- imp0$method
pred <- imp0$predictorMatrix

# specify normal imputation for continuous covariates
meth[c("x1", "x3")] <- "norm"

# remove event time from predictor (high correlation with HO)
pred[, "Time"] <- 0</pre>
```

Imputation with mcie

With the modified arguments method and predictorMatrix we run the imputation:

To obtain the pooled results, we first fit the model of interest

```
library(survival)
cox_mice <- with(survimp, coxph(Surv(Time, event) ~ x1 + x2 + x3))</pre>
```

and pool and summarize the results.

```
res_mice_surv <- summary(pool(cox_mice, dfcom = 99999), conf.int = TRUE)</pre>
```

The warning message refers to the way the degrees of freedom for the formulas we saw in Part I (slide ??) are calculated and can be ignored.

Imputation with JointAl

JointAI has implemented two models for right-censored survival data. The Cox PH model and a parametric Weibull model.

The Cox model is implemented in counting process notation and may take longer to calculate when there are many event times.

Comparison of the Results

The naive mice approach, and mice using the Nelson-Aalen estimator give very biased results for the effects of x1 and x2, but performed acceptably well for x3.

Comparison of the Results

Your Turn!

Practical

Imputation of Survival Data html

8

References

White, Ian R, and Patrick Royston. 2009. "Imputing Missing Covariate Values for the Cox Model." *Statistics in Medicine* 28 (15): 1982–98.