Aula 11 - IEEE 802.11

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula (I)...

- Enlaces sem fio: mais propensos a erros.
 - Sinais recebidos com baixa potência.
 - Altos níveis de ruído, interferência.
 - Múltiplos percursos de propagação.
 - Tudo isso colabora para queda no SNR.
 - Resulta em queda da BER.
 - Solução: adaptação automática entre múltiplas taxas.
 - Outros problemas: terminais escondidos.
- CDMA: outra técnica comum para acesso múltiplo.
 - Usuários podem transmitir ao mesmo tempo, na mesma frequência.
 - Códigos ortogonais garantem que não haverá colisão.

Na Última Aula (II)...

- IEEE 802.11: padrão para **redes locais sem fio** (WLANs).
 - Evolução através de **emendas**, taxas de transmissão mais altas.
 - CSMA/CA para acesso múltiplo.
 - Detecção de colisões é impossível.
 - Solução: tentar ao máximo evitá-las.
 - Utilizar acks para verificar se transmissão foi bem sucedida.
 - **Modos** infraestruturado e *ad hoc*.
 - Componentes da arquitetura:
 - **AP** = estação base.
 - **BSS** = área de cobertura do AP, célula.
 - Nem todos os canais são ortogonais.
 - Associação: entrada do host na rede.

Evitando Colisões (Mais): RTS/CTS

- Ideia: permitir que transmissor "reserve" o canal para transmitir **dados**.
 - Ao invés de acessar aleatoriamente.
 - Evita colisões de quadros longos.
- Transmissor começa enviando um quadro **pequeno** de request-to-send (RTS).
 - RTSs ainda podem colidir, mas são pequenos ("baratos" para retransmitir).
- AP envia (broadcast) um CTS como resposta.
 - Clear-to-send.
 - (Idealmente) ouvido por todos os nós.
 - Que passam a saber que o meio está reservado por determinado período.
 - Informado nos quadros RTS/CTS.
- Transmissor envia dados, enquanto outras estações aguardam.
- Sempre funciona?

Evitando Colisões: Troca de RTS/CTS

RTS/CTS: Falhas

- Várias possibilidades.
- Um exemplo:
 - Terminal oculto não ouve/compreende CTS:
 - Por exemplo, por interferência passsageira.
 - Enquanto estação transmite quadro de dados, terminal oculto começa sua transmissão.
 - Dados, RTS, ...
 - Colisão ocorre, mesmo com a "reserva" prévia do meio.

RTS/CTS: Overhead

- RTS/CTS pode reduzir colisões e seus impactos.
 - Principalmente em presença de terminais escondidos.
- Mas há um custo:
 - Gasta-se tempo transmitindo quadros RTS/CTS.
 - Aumenta latência total para transmissão de um quadro.
 - **Reduz vazão** efetiva.
- Geralmente, RTS/CTS n\u00e3o vale a pena para quadros "pequenos".
 - Mais barato transmiti-los e ver o que acontece.
 - Retransmitir, se necessário.
 - Limiar de RTS/CTS.

RTS/CTS: Vale a Pena?

- Mecanismo nem sempre efetivo.
- Mesmo quando efetivo, adiciona overhead.
- Vale a pena?
 - Depende!
 - Pode valer se:
 - Se rede sofre muito por colisões.
 - Se pacotes que colidem são tipicamente "grandes".
 - Se terminais ocultos s\(\tilde{a}\)o tipicamente causa das colis\(\tilde{o}\)es.
 - No entanto:
 - Equipamentos geralmente vêm, por padrão, com RTS/CTS "desabilitado".
 - *i.e.*, limiar do RTS/CTS > MTU do IP.

O Problema do Terminal Exposto (I)

- Cenário:
 - Dois APs, no raio de alcance um do outro.
 - Mas: cada AP está fora do raio de alcance do cliente do outro BSS.
- Suponha que ambos os APs tenham quadros para transmitir a seus clientes.
- Transmissões podem ocorrer simutaneamente?

O Problema do Terminal Exposto (II)

- Não: CSMA/CA (geralmente) não permite.
 - Suponha que o AP da esquerda comece sua transmissão primeiro.
 - Detecção de portadora fará AP da direita entrar em backoff.
- RTS/CTS também não resolve:
 - Ao receber o RTS do AP da esquerda, AP da direita também entra em backoff.

Quadros do IEEE 802.11: Endereçamento (I)

do quadro

Quadros do IEEE 802.11: Endereçamento (II)

802.**11** frame

Quadros do IEEE 802.11 (Mais)

IEEE 802.11: Mobilidade Dentro da Mesma Sub-rede

- Padrão prevê *handoff* do cliente entre APs de uma mesma rede.
 - Mesmo ESSID.
 - Através de um quadro de reassociação.
 - "Estado do cliente" é transferido entre APs.
- H1 permanece na mesma sub-rede.
 - Endereço IP pode continuar o mesmo.
- Ponto de vista do switch: a qual AP H1 está associado?
 - Auto-aprendizado (Capítulo 5).
 - Switch recebe quadro originado em H1.
 - Armazena a informação da porta.
- Importante: decisão de mobilidade é do cliente!

Adaptação Automática de Taxa (I)

• Adaptação automática de taxa:

- Estação base e hosts dinamicamente alteram taxa de transmissão.
- Forma de compensar variações no SNR (e.g., devido a mobilidade).
- 1. SNR diminui e BER aumenta a medida que host se distancia do AP.
- 2. Quando o BER se torna muito alto, escolhe-se taxa mais baixa (mas com BER menor).

Adaptação Automática de Taxa (II)

- Na prática, mecanismos de adaptação de taxa não medem diretamente SNR.
- SNR é inferido indiretamente através de parâmetros como a perda de quadros.
 - Aumento na perda pode indicar redução no SNR.
 - (Mas nem sempre!)
- Exemplo de mecanismo comum: ARF.
 - Auto-Rate Fallback.
 - Dez quadros transmitidos com sucesso em sequência: aumente a taxa.
 - Dois quadros perdidos consecutivamente: reduza a taxa.

••••• QAM256 (8 Mbps)

– • QAM16 (4 Mbps)

BPSK (1 Mbps)

Economia de Energia no IEEE 802.11 (I)

- Por quê?
 - Dispositivos sem fio são (muitas vezes) alimentados por bateria.
 - Celulares, tables, laptops, ...
 - Baterias têm capacidade limitada.
 - Em certos dispositivos, interface sem fio é um dos componentes que mais consomem energia.
 - Mesmo quando apenas ouvindo o meio.
 - Logo, grande potencial de economia.
- IEEE 802.11 se preocupa com consumo energético em vários contextos.

Economia de Energia no IEEE 802.11 (II)

• Gerenciamento de Energia:

- Host informa ao AP: "vou dormir até o próximo beacon".
 - AP sabe que n\u00e3o deve transmitir quadros para o host.
 - Host acorda antes do próximo beacon.
- Quadro de beacon:
 - Contém lista de hosts para os quais AP possui dados a transmitir.
 - Nó permanece acordado se está na lista.
 - Caso contrário, pode voltar a dormir até próximo beacon.

Economia de Energia no IEEE 802.11 (III)

- Detecção Virtual de Portadora:
 - Objetivo: economizar energia durante a detecção de portadora.
 - NAV: Network Allocation Vector.
- Funcionamento:
 - Quadros contém campo de duração: tempo necessário para aquela transmissão (incluindo ack).
 - Sempre que estação recebe quadro, lê campo de duração.
 - Configura temporizador (NAV) para o valor adequado.
 - Durante aquele período, não há necessidade de realizar a detecção física da portadora.
- Também utilizado com RTS/CTS.

IEEE 802.11: Eficiência (I)

- O IEEE 802.11 prevê várias taxas.
 - Possivelmente, escolha de um algoritmo de adaptação de taxa.
- Suponha que uma taxa nominal de 11
 Mb/s tenha sido escolhida.
 - Qual é a vazão efetiva do enlace?
- Protocolo adiciona uma série de overheads:
 - Cabeçalhos, preâmbulos.
 - IFS, Acks, RTS/CTS.
- Taxa de transmissão líquida pode ser bem mais baixa.

IEEE 802.11: Eficiência (II)

- Outros fatores:
 - Perdas de quadros:
 - Uma parcela representativa das transmissões pode falhar.
 - Tempo de transmissão desperdiçado.
 - E completamente, já que não há detecção simultânea de colisões, por exemplo.
 - Pior: quanto maior o número de retransmissões de um quadro, **maiores** os tempos esperados de *backoff*.
 - Exponencialmente!

Taxas de transmissão básicas:

- Geralmente baixas.
- Usadas para transmissão de quadros de controle, gerência.
 - Associação, beacons, probes, ..., RTS, CTS, muitas vezes Acks.
- Estes quadros são pequenos, mas transmitidos a taxas baixas.
 - Ou seja, consomem muito tempo!
- Corolário: quanto mais alta a taxa de transmissão selecionada, menos eficiente é o padrão!

Redes Wi-Fi Densas (I)

- Múltiplos APs espalhados por um ambiente.
 - Conectados por um **sistema de distribuição**.
 - Aumentam capacidade da rede.
 - Planejamento com canais ortogonais.

Redes Wi-Fi Densas (II)

- Idealmente, clientes se espalhariam de maneira uniforme.
 - Número de clientes associados a cada AP seria relativamente equilibrado.
 - Balanceamento de carga.

Redes Wi-Fi Densas (III)

Mas na prática...

- Decisão de associação é **prerrogativa do cliente**.
- Associações ocorrem de forma **descoordenada**, desbalanceada.
- Alguns APs quase sem carga, outros **sobrecarregados**.

Redes Wi-Fi Densas: Outras Questões

- Além do balanceamento de carga:
 - Seleção (possivelmente dinâmica) de canais.
 - Como atribuir canais ortogonais aos APs vizinhos?
 - Considerando ainda que:
 - Há geralmente outras redes próximas não controladas.
 - Redes diferentes ocupam canais de formas diferentes.
 - Possível uso de um **controlador**.
 - Uso de micro-células.
 - Propositalmente reduzir alcance do AP.
 - Diminuindo potência de transmissão.
 - Aumenta o reuso espacial.
 - Mais APs não interferentes em uma mesma região.
 - Maior capacidade.
- Instabilidade na associação dos clientes.
 - Problema do "ping-pong" [Balbi et al. 2016].

Redes Wi-Fi Densas: Ping-Pong (I)

- Cliente pode estar na região de alcance de **múltiplos** APs.
- Critério de seleção do "melhor" AP **não é padronizado**.
 - Deixado a cargo da implementação.

Redes Wi-Fi Densas: Ping-Pong (II)

- Mesmo associado, cliente continua avaliando alternativas.
 - Através de beacons, anúncios dos APs.
- Meio sem fio sofre de alta variabilidade.
 - "Melhor AP" pode variar com o tempo \Rightarrow handoff.

Redes Wi-Fi Densas: Ping-Pong (III)

- Processo continua, novas trocas podem ocorrer.
- Devido à variabilidade, pode haver **alternância frequente** de associações.
 - e.g., handoffs a cada 30 segundos.

Redes Wi-Fi Densas: Ping-Pong (IV)

• Dependendo do cenário, pode envolver mais que dois APs.

Resumo da Aula (I)...

- Resumo da Aula (II)...
 Nem sempre efetivo.
 - Introduz overheads.
 - Limiar de RTS/CTS.
 - Problema do terminal exposto:
 - IEEE 1802 Missõcié simultâneas que não
 - vausariamteglisão são suprimidas
 - Effeiencia mais baixa para taxas mais altas.
 - Pérdes de vipla de la Rando en Sontribuem.
 - Redes densas:
 - Muitos clientes, muitos APs.
 - Balanceamento de carga.
 - Escolha dinâmica de canais.
 - Planejamento.
 - Micro-células.
 - Instabilidade de associação.

um mesmo ESSID.

- Decisão do cliente.
- Adaptação automática de taxa.
 - Geralmente baseada em quadros perdidos.
 - Reduz taxas para enlaces "piores".
- IEEE 802.11: economia de energia.
 - Detecção virtual de portadora.
 - Duty cycle entre beacons.

Leitura e Exercícios Sugeridos

- IEEE 802.11:
 - Páginas 385 a 399 do Kurose (Seção 6.3).
 - Exercícios de fixação 5 a 10 do capítulo 6 do Kurose.
 - Problemas 6 e 7 do Kurose.

Próxima Aula...

- Mudaremos o foco da nossa discussão para as redes sem fio de múltiplos saltos.
- Veremos alguns tipos e aplicações destas redes:
 - Redes ad hoc móveis
 - Redes em malha sem fio.
 - Redes de sensores.
 - Redes Veiculares.
- Também falaremos brevemente sobre alguns desafios nestas redes:
 - Roteamento.
 - Economia de energia.