Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2053 − Introdução à Estatística − 1º sem. 2014 Professor: Dr. José Ricardo G. Mendonça

2ª Prova — Data: 23 jul. 2014

1. [4 pontos] Em uma granja foi observada a seguinte distribuição de frangos em relação às suas massas ("pesos"):

Massas (g)	n		
960 ⊢ 980	30		
980 ⊢ 1000	80		
1000 ⊢ 1020	140		
1020 ⊢ 1040	130		
1040 ⊢ 1060	80		
1060 ⊢ 1080	40		

- (a) Qual é a média da distribuição de massas dos frangos?
- (b) Qual é a variância da distribuição de massas dos frangos?
- (c) Construa o histograma para a distribuição de massas dos frangos.
- (d) Queremos dividir os frangos em 4 categorias de acordo com suas massas: os 20% mais leves são de categoria D, os 30% seguintes são de categoria C, os 30% seguintes são de categoria B e os 20% com maiores massas são de categoria A. Dê os limites de massa entre as categorias A, B, C e D.
- 2. [2 pontos] Qual deve ser o tamanho de uma amostra cujo desvio padrão é 10 para que a diferença da média amostral para a média da população, em valor absoluto, seja menor que 1 com coeficiente de confiança igual a (a) 95% e (b) 99%?
- 3. [4 pontos] Uma máquina empacotadeira produz pacotes com massas ("pesos") distribuídas normalmente com média μ e desvio padrão $10\,\mathrm{g}$.
 - (a) Quanto deve valer μ para que apenas 10% dos pacotes tenham menos do que 500 g?
 - (b) Para o valor de μ encontrado no item (a), qual é a probabilidade de que a massa total de 4 pacotes escolhidos ao acaso seja inferior a 2 kg?

A título de controle de qualidade, de hora em hora é retirada da produção uma amostra de 4 pacotes. Se a média da massa da amostra for inferior a 495 g ou superior a 520 g a produção é parada para reajustar a empacotadeira.

- (c) Qual é a probabilidade de se efetuar uma parada desnecessária da produção?
- (d) Se o valor de μ da empacotadeira se desregulou para 500 g, qual é a probabilidade de continuar a produção fora dos padrões desejados?

Formulário

Transformação entre distribuições cumulativas normais

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right), \qquad \Phi(-z) = 1 - \Phi(z),$$

onde $F_X(x)$ é a c. d. f. de uma variável aleatória $X \sim N(\mu; \sigma^2)$ e $\Phi(x)$ é a c. d. f. de uma variável aleatória padrão $X \sim N(0; 1)$. Esta última função é tabelada.

	z.	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
	0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
	0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
	0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
	0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
	0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
	0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
	0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
	0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
	1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
	1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
	1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
	1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
	1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
eo reseren de	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
	1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
70£ 80 (3 m)	1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
C. Ashronia	2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
	2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
	2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
	2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
	2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
ID STATE OF DEPARTMENT	2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952

Média, desvio padrão e coeficiente de correlação entre duas variáveis aleatórias X e Y

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad s_X^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \left[\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right], \qquad \operatorname{corr}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_X} \right) \left(\frac{y_i - \overline{y}}{s_Y} \right).$$

sees on account attacking a some and differ above to the state of it to average in the law of the first field (ii)

Determinação do tamanho de uma amostra

Para determinar o tamanho n de uma amostra tal que $P(|\overline{X} - \mu| \le \varepsilon) \ge \gamma$ devemos tomar:

Distribuição normal:
$$n \simeq \frac{\sigma^2 z_\gamma^2}{\varepsilon^2}$$
, Proporção: $n \simeq \frac{p(1-p)z_\gamma^2}{\varepsilon^2} \simeq \frac{z_\gamma^2}{4\varepsilon^2}$