MATH 201: Coordinate Geometry and Vector Analysis

"Lecture 4"

Chapter: 11.8

Cylindrical and Spherical Coordinates

Faculty: Maliha Tasmiah Noushin

☐ Conversion formulas for coordinate systems

	CONVERSION		FORMULAS	RESTRICTIONS
•	Cylindrical to rectangular Rectangular to cylindrical	$(r, \theta, z) \rightarrow (x, y, z)$ $(x, y, z) \rightarrow (r, \theta, z)$	$x = r \cos \theta$, $y = r \sin \theta$, $z = z$ $r = \sqrt{x^2 + y^2}$, $\tan \theta = y/x$, $z = z$	
	Spherical to cylindrical Cylindrical to spherical	$(\rho, \theta, \phi) \rightarrow (r, \theta, z)$ $(r, \theta, z) \rightarrow (\rho, \theta, \phi)$	$r = \rho \sin \phi$, $\theta = \theta$, $z = \rho \cos \phi$ $\rho = \sqrt{r^2 + z^2}$, $\theta = \theta$, $\tan \phi = r/z$	$r \ge 0, \rho \ge 0$ $0 \le \theta < 2\pi$ $0 \le \phi \le \pi$
	Spherical to rectangular Rectangular to spherical	$(\rho, \theta, \phi) \rightarrow (x, y, z)$ $(x, y, z) \rightarrow (\rho, \theta, \phi)$	$x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$ $\rho = \sqrt{x^2 + y^2 + z^2}$, $\tan \theta = y/x$, $\cos \phi = z/\sqrt{x^2 + y^2 + z^2}$	

 \square Exercise -1: Convert $(4\sqrt{3}, 4, -4)$ from rectangular to cylindrical coordinates.

Exercise 1: a)
$$(x, y, z) = (AV3, A, -4)$$

 $(x, y, z) \rightarrow (r, 0, z)$
 $r = \sqrt{x^2 + y^2} = 8$
 $\tan \theta = \frac{y}{x} \Rightarrow \theta = \tan^{-1}(\frac{A}{AV3})$
 $= \frac{\pi}{6}$
 $2 = 2 = -4$
... $(r, 0, z) = (8, \frac{\pi}{6}, -4)$

 \square Exercise -3: Convert (8, $\frac{3\pi}{4}$, -2) from cylindrical to rectangular coordinates.

Exercise 3:6)
$$(r,0,2) = (8, \frac{3\pi}{4}, -2)$$

 $(r,0,2) \rightarrow (\pi,y,2)$
 $\pi = r\cos\theta = 8\cos\frac{3\pi}{4} = 8(-\frac{1}{\sqrt{2}})$
 $= -4\sqrt{2}$
 $\pi = r\sin\theta = 8\sin\frac{3\pi}{4} = 8(\frac{1}{\sqrt{2}}) = 4\sqrt{2}$
 $\pi = 2 = -2$
 $\pi = 2 = -2$

 \square Exercise -7: Convert $(2, \frac{3\pi}{2}, \frac{\pi}{2})$ from spherical to rectangular coordinates.

Exercise 7: (d)(
$$\rho$$
, θ , ϕ) = $(2, \frac{3\pi}{2}, \frac{\pi}{2})$
 $(\rho, \theta, \phi) \rightarrow (\pi, \gamma, 2)$
 $\chi = \rho \sin \phi \cos \theta = 2 \cdot \sin \frac{\pi}{2} \cos \frac{3\pi}{2}$
 $= 0$
 $\chi = \rho \sin \phi \sin \theta = 2 \cdot \sin \frac{\pi}{2} \sin \frac{3\pi}{2}$
 $= -2$
 $z = \rho \cos \phi = 2 \cos \frac{\pi}{2} = 0$
 $\therefore (\pi, \gamma, 2) = (0, -2, 0)$

 \square Exercise -11: Convert $(5, \frac{\pi}{4}, \frac{2\pi}{3})$ from spherical to cylindrical coordinates.

Exercise \$11: (a)
$$(\rho, \theta, \phi) = (s, \frac{\pi}{4}, \frac{2\pi}{3})$$

 $(\rho, \theta, \phi) \rightarrow (r, \theta, 2)$
 $r = \rho \sin \phi = S \sin \frac{2\pi}{3} = 5 \cdot \frac{\sqrt{3}}{2}$
 $\theta = \theta = \frac{\pi}{4}$
 $z = \rho \cos \phi = S \cos \frac{2\pi}{3} = 5 \cdot (-\frac{1}{2}) = -\frac{5}{2}$
 $(r, \theta, 2) = (\frac{5\sqrt{3}}{2}, \frac{\pi}{4}, -\frac{5}{2})$

