2020——2021 第一学期《图论》期末考试

命题人: 金应烈

2020年12月23日

─.	(15 分) 选择题	
	1. (3分)给定顶点集和边集判断是否为强连通图。	
	2. (3分)利用握手定理求顶点数和边数。	
	3. (3 分) 完全 m 叉树顶点数、内点、叶子数目关系。	
	4. (3分)给定编码集合,找出哪个不是前缀码。	
	5. (3分)不存在完美匹配的是(奇圈)。	
二.	(15 分) 填空题	
	1. 由三个顶点组成的不同构的无向图有	个。
	2. 已知平面图有 6 个顶点,每个顶点的度为 4,则此平面图有	
	3. 对于完全二部图 $K_{m,n}$, $\gamma(K_{m,n}) =$, $\chi^{'}(K_{m,n}) =$ 。	
三.	(46 分) 证明题	
	1. $(8 $	

- 2. $(8 \ f)$ 设平面连通图 G 中没有长为 f 的圈,证明:f(1) f(1) f(1) f(1) f(2) f(2) f(2) f(3) f
 - (2) $\delta(G) \leq 3$.

3. (10 分) 设 $\chi(G)$ 为图 G 的色数,证明 $\chi(G) \leq \Delta(G) + 1$ 。

4. $(10 \ \text{分})$ 证明: (1) 若 $\delta(G) \ge 2$, 则 G 中含有圈。 (2) 树至多只有一个完美匹配。

5. $(10\ \mathcal{H})$ 平面上的 n 个点被一些圆盘覆盖,且每个圆盘至少覆盖住 $\left[\frac{n}{2}\right]+1$ 个点,证明对于任意两个点,总存在连接两点的曲线,使这条曲线完全被圆盘覆盖。(其中 $\left[x\right]$ 为取整函数) (提示:构造图 G,顶点为圆盘,两个顶点相邻当且仅当有同一个点被圆盘覆盖,证明 G 为连通图。)

- 四. (24 分) 简答题
 - 1. (10 分) 对于圈 C_n , 求 $\alpha(G),\beta(G),\alpha'(G),\beta'(G),\gamma(G)$ 。

- 2. (7 分) 设顶点的权分别为 2,3,5,7,8。
 - (1) 构造最优二叉树 T, 并计算 $\omega(T)$ 。
 - (2) 写出每个顶点对应的前缀码。

3. $(7 \, \mathcal{G})$ 指出边色数和匹配数之间的关系,并说明理由。(提示: $\chi^{'}(G)\alpha^{'}(G) \geq |\epsilon(G)|$)

(17 物理, 雨濠回忆)