Zadanie 1.

• Zbadaj zbieżność szeregu:

$$-\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + \sqrt{n}} - \sqrt{n^2 - \sqrt{n}}}{\sqrt{n}},$$

$$-\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{n^2}},$$

$$-\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n+100}.$$

• Zbadaj zbieżność punktową i jednostajną szeregu $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}\sqrt{1+nx}}$ dla $x \geq 0.$

Zadanie 3.

• Funkcje $f(x)=\pi-x$ określoną na przedziale $(0,\pi)$ rozwinąć w szereg Fouriera samych sinusów.

Zadanie 1.

• Zbadaj zbieżność szeregu:

$$-\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}, \\ -\sum_{n=1}^{\infty} \frac{e^{1/n}}{n} \\ -\sum_{n=1}^{\infty} \frac{(-1)^n}{n+\sqrt{n}}.$$

• Zbadaj zbieżność punktową i jednostajną szeregu $\sum_{n=1}^{\infty} \frac{\ln(1+nx)}{nx^n}$ dla $x \geq 2.$

Zadanie 3.

• Funkcję $f(x)=\sin x$ określoną na przedziałe $[0,\pi]$ rozwinąć w szereg Fouriera samych cosinusów.

Zadanie 1.

• Zbadaj zbieżność szeregu:

$$-\sum_{n=1}^{\infty} \frac{1}{\ln^{n}(n+1)},$$

$$-\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n(n+1)(n+2)(n+3)}},$$

$$-\sum_{n=1}^{\infty} (-1)^{n} \frac{n+2}{n^{2}+3}.$$

• Zbadaj zbieżność punktową i jednostajną szeregu $\sum_{n=1}^{\infty} \frac{e^{-n^2 x^2}}{n^2}$ dla $x \in \mathbb{R}.$

Zadanie 3.

• Funkcję $f(x)=x^2$ określoną na przedziałe $(0,\pi)$ rozwinąć w szereg Fouriera samych sinusów.