Engenharia de Computação ECM253 – Linguagens Formais, Autômatos e Compiladores Modelos de Computação – Linguagens e Gramáticas

Slides da disciplina ECM253 – Linguagens Formais, Autômatos e Compiladores Curso de Engenharía de Computação Instituto Mauá de Tecnologia Prof. Marco Antonio Furlan de Souza

Linguagens e computação

- Uma **linguagem** L é um **conjunto** (finito ou infinito) de **cadeias** sobre um alfabeto Σ , $L \subseteq \Sigma^*$;
- Para uma definição computacional de uma linguagem, pode-se especificar:
 - Um gerador da linguagem: que enumere os elementos da linguagem gramática ou
 - Um reconhecedor da linguagem: que decida se uma cadeia está ou não na linguagem, retornando V se estiver e F, caso contrário – autômato.

Linguagens

Exemplos de linguagens

- Seja $\Sigma = \{a, b\}$. $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$. São exemplos de linguagens sobre Σ : $\emptyset, \{\epsilon\}, \{a, b\}, \{\epsilon, a, aa, aaa, aaaa, aaaaa\}$.
- Quando presentes, todos os b's s\u00e3o precedidos por todos a's:

$$L = \{w \in \{a, b\}^* : \text{ quando presentes, a's precedem os b's em } w\}$$

= $\{\epsilon, a, aa, aabbb, bbb, ...\}$

Cadeias que terminam em a:

$$L = \{x : \exists y \in \{a, b\}^* (x = ya)\} = \{a, aa, bbaa, ba, ...\}$$

Linguagem vazia (não contém cadeia alguma):

$$L = \{\} = \emptyset$$

• Linguagem contendo apenas a cadeia vazia:

$$L = \{\epsilon\}$$

Linguagens

Exemplos de linguagens

Nenhum prefixo contém b:

```
L = \{w \in \{a, b\}^* : w \text{ não contenha b em seu prefixo}\}\
= \{\epsilon, a, aa, aaa, aaaa, aaaaa, aaaaaa, ...\}
```

Nenhum prefixo começa com b:

```
L = \{w \in \{a, b\}^* : o \text{ prefixo de } w \text{ não se inicie por b} \}
= \{\epsilon, a, aa, aba, aaabb, abbaa, abbbabaa, ...\}
```

Todo prefixo começa com b:

```
L = \{w \in \{a, b\}^* : \text{toda cadeia } w \in \{a, b\}^* \text{ possui prefixo iniciado por b} \}
= \emptyset
```

Linguagens

Exemplos de linguagens

Uso de replicação para definir uma linguagem:

$$L = \{a^n : n \ge 0\}$$

= $\{\epsilon, a, aa, aaa, aaaa, ...\}$

Exemplo já apresentado, reescrito:

$$L = \{a^m b^n : m, n \ge 0\}$$

= $\{\epsilon, a, aa, aabbb, bbb, \ldots\}$

Cardinalidade de uma linguagem

Teorema

Se $\Sigma \neq \emptyset$ então Σ^* é contavelmente infinita.

Demonstração.

Os elementos de Σ^* podem ser enumerados lexicograficamente pelo procedimento a seguir:

- Enumerar todas as cadeias de tamanho zero, depois de tamanho um, de tamanho dois etc.;
- Enumerar as cadeias de mesmo tamanho de acordo com a ordem de dicionário;

Esta enumeração é infinita pois não existe uma cadeia mais longa em Σ^* . Assim, trata-se de uma enumeração infinita. $\hfill\Box$

Quantas linguagens existem?

Teorema

Existe um número incontavelmente infinito de linguagens.

Demonstração.

O conjunto de linguagens definida por Σ é $\wp(\Sigma^*)$. Sabe-se que o conjunto Σ^* é contavelmente infinito, mas o conjunto $\wp(\Sigma^*)$ não é contavelmente infinito pois pode-se, a partir de uma tentativa de enumeração de $\wp(\Sigma^*)$, determinar um novo e inédito elemento não previsto anteriormente, e assim por diante, contradizendo a proposta de um conjunto enumerado. A técnica utilizada para esta prova é a **diagonalização de Cantor**.

Operações de conjuntos aplicadas às linguagens

 Como uma linguagem é um conjunto, todas as operações sobre conjuntos aplicam-se às linguagens. Seja, por exemplo:

```
\Sigma = \{a, b\}
     L_1 = \{ \text{cadeias com um número par de a's} \}
     L_2 = \{ cadeias sem b's \}
Então:
          L_1 \cup L_2 = \{\text{todas as cadeias com apenas a's e cadeias}\}
                     contendo b's com um número par de a's}
          L_1 \cap L_2 = \{\epsilon, aa, aaaa, aaaaaa, \ldots\}
         L_2 - L_1 = \{a, aaa, aaaaa, \ldots\}
     \neg(L_2-L_1) = \{ \text{cadeias com no mínimo um b} \} \cup
                     {cadeias com número par de a's}
```


Concatenação de linguagens

• Sejam L_1 e L_2 duas linguagens definidas sobre algum alfabeto Σ . Sua **concatenação**, L_1L_2 é:

$$L_1L_2 = \{ w \in \Sigma^* : \exists s \in L_1(\exists t \in L_2(w = st)) \}$$

Exemplo:

```
L_1 = \{\texttt{cat}, \texttt{dog}, \texttt{mouse}, \texttt{bird}\} L_2 = \{\texttt{bone}, \texttt{food}\} L_1 L_2 = \{\texttt{catbone}, \texttt{catfood}, \texttt{dogbone}, \texttt{dogfood}, \texttt{mousebone}, \texttt{mousefood}, \texttt{birdbone}, \texttt{birdfood}\}
```


■ Fecho de Kleene

Seja L uma linguagem sobre algum alfabeto Σ. O fecho de Kleene de L, L* é:

$$L^* = \{\epsilon\} \cup \{w \in \Sigma^* : \exists k \ge 1(\exists w_1, w_2, \dots, w_k \in L(w = w_1 w_2 \dots w_k))\}\$$

• Exemplo:

```
\begin{split} L = & \{ \texttt{cat}, \texttt{dog}, \texttt{fish} \} \\ L^* = & \{ \epsilon, \texttt{dog}, \texttt{cat}, \texttt{fish}, \texttt{dogdog}, \texttt{dogcat}, \dots, \\ & \texttt{fishdog}, \dots, \texttt{fishcatfish}, \texttt{fishdogfishcat}, \dots \} \end{split}
```

- L^* sempre conterá um **número infinito de cadeias** desde que L não seja igual à \emptyset ou $\{\epsilon\}$;
- Se L^* deve conter pelo menos um elemento de L, define-se: $L^+ = LL^*$.

Inversa de uma linguagem

• Seja L uma linguagem sobre algum alfabeto Σ . A **inversa** de L, L^R é:

$$L^R = \{ w \in \Sigma^* : w = x^R \text{ para algum } x \in L \}$$

Basta inverter as cadeias de L.

Teorema

Se L_1 e L_2 são linguagens, então $(L_1L_2)^R = L_2^RL_1^R$.

Demonstração.

$$(L_1 L_2)^R = \{(xy)^R : x \in L_1 \land y \in L_2\}$$

= \{y^R x^R : x \in L_1 \land y \in L_2\}
= L_2^R L_1^R

Gramáticas

Conceitos

- Uma gramática formal G é uma forma matemática precisa e compacta de definição de uma linguagem L;
- Assim, dispensa a listagem de todas as cadeias legais de uma linguagem;
- Implica em um algoritmo que permite gerar todas as cadeias legais da linguagem, comumente de modo recursivo;
- Uma forma conhecida para descrever gramáticas recursivamente é a gramática de estrutura frasal, elaborada por Noam Chomsky na década de 1950.

Gramáticas

Gramática de estrutura frasal

Definição

Uma gramática de estrutura frasal, $G = (V, \Sigma, R, S)$ é uma quádrupla na qual:

- V é o alfabeto (ou vocabulário) da linguagem e contém símbolos (metasímbolos) que são utilizados apenas na definição da linguagem denominados de não-terminais (ou variáveis da gramática) e também símbolos terminais, que aparecem apenas nas cadeias da linguagem;
- Σ é o conjunto de **símbolos terminais**, $\Sigma \subset V$;
- R é um **conjunto** não vazio **de regras de produção** ou **regras de reescrita**, assim definido: $R \subset (V^* \times (V \Sigma) \times V^*) \times V^*$, cujos pares (α, β) são escritos como $\alpha \to \beta$;
- S é o símbolo não-terminal **de partida** ou **inicial**, $S \in V \Sigma$.

Gramáticas

■ **Exemplo**. A gramática $G = (V, \Sigma, R, S)$, a seguir, gera uma linguagem de identificadores de uma linguagem de programação:

$$\begin{split} V = & \{S, I, L, D, \text{a}, \text{b}, \text{c}, \text{d}, \text{e}, \text{f}, \text{g}, \text{h}, \text{i}, \text{j}, \text{k}, \text{1}, \text{m}, \text{n}, \text{o}, \text{p}, \text{q}, \text{r}, \text{s}, \text{t}, \\ & \text{u}, \text{v}, \text{w}, \text{x}, \text{y}, \text{z}, \text{0}, \text{1}, \text{2}, \text{3}, \text{4}, \text{5}, \text{6}, \text{7}, \text{8}, 9\} \\ \Sigma = & \{\text{a}, \text{b}, \text{c}, \text{d}, \text{e}, \text{f}, \text{g}, \text{h}, \text{i}, \text{j}, \text{k}, \text{1}, \text{m}, \text{n}, \text{o}, \text{p}, \text{q}, \text{r}, \text{s}, \text{t}, \\ & \text{u}, \text{v}, \text{w}, \text{x}, \text{y}, \text{z}, \text{0}, \text{1}, \text{2}, \text{3}, \text{4}, \text{5}, \text{6}, \text{7}, \text{8}, 9\} \\ R = & \{S \to I, I \to L, I \to IL, I \to ID, \\ & L \to \text{a}, L \to \text{b}, \dots, L \to \text{z}, \\ & D \to \text{0}, D \to \text{1}, \dots, D \to \text{9} \} \end{split}$$

Derivação

Derivação direta

Definição

Seja $G=(V,\Sigma,R,S)$ uma gramática. Para $\sigma,\psi\in V^*,\,\sigma$ é dito **diretamente derivável** de ψ , escrito como $\psi\Rightarrow\sigma$, se existem cadeias ϕ_1 e ϕ_2 (incluindo cadeias vazias) tais que $\psi=\phi_1\alpha\phi_2$ e $\sigma=\phi_1\beta\phi_2$ e $\alpha\to\beta$ é uma produção de G. Quando $\psi\Rightarrow\sigma$ diz-se que ψ produz diretamente σ ou ainda que σ reduz-se diretamente à ψ .

Derivação de cadeia

Definição

Seja $G=(V,\Sigma,R,S)$ uma gramática. A cadeia ψ **produz** σ (ou σ reduz-se à ψ), escrita como $\psi \stackrel{*}{\Rightarrow} \sigma$ se existem cadeias $\phi_0,\phi_1,\ldots,\phi_n$, com $n \geq 0$, tais que $\psi = \phi_0 \Rightarrow \phi_1,\phi_1 \Rightarrow \phi_2,\ldots,\phi_{n-1} \Rightarrow \phi_n = \sigma$. A relação $\stackrel{*}{\Rightarrow}$ é o fecho transitivo reflexivo da relação \Rightarrow .

Derivação

Exemplo

- Na gramática apresentada anteriormente, o símbolo de início é S. É a partir de uma produção em que ele aparece do lado esquerdo que se começa qualquer derivação;
- Assim, uma derivação de cadeia válida é a seguinte:

$$S \Rightarrow I \Rightarrow ID \Rightarrow IDD \Rightarrow LDD \Rightarrow aDD \Rightarrow a1D \Rightarrow a13$$

- Então, $S \stackrel{*}{\Rightarrow} a13$.
- Esta gramática permite derivar 23q? e r2d2?

Linguagem gerada por uma gramática

- Processo de geração de uma linguagem
 - Uma **forma sentencial** é qualquer cadeia derivada a partir do não-terminal *S*;
 - A linguagem L gerada por uma gramática G é o conjunto de todas as formas sentenciais cujos símbolos são terminais:

$$L(G) = \{ \sigma : S \stackrel{*}{\Rightarrow} \sigma(\sigma \in \Sigma^*) \}$$

• Em outras palavras: uma linguagem é um subconjunto do conjunto de todas as cadeias (sentenças) terminais sobre Σ^* .

Teste seus conhecimentos

- (1) Elaborar uma gramática de estrutura frasal que gere cadeias para a linguagem $L = (11)^*0$, o conjunto de todas as cadeias consistindo de algum número de concatenações de 11 com ele próprio, seguido finalmente por 0.
- (2) Elaborar uma gramática de estrutura frasal que gere a linguagem $L = \{0^n 1^n : n \in \mathbb{N}\}.$
- (3) Seja $V = \{S, A, B, a, b\}$ e $\Sigma = \{a, b\}$. Descobrir a linguagem gerada pela gramática $G = (V, \Sigma, R, S)$ quando:
 - a) $R = \{S \rightarrow AB, A \rightarrow ab, B \rightarrow bb\}.$
 - b) $R = \{S \rightarrow AB, S \rightarrow AA, A \rightarrow aB, A \rightarrow ab, B \rightarrow b\}.$
 - c) $R = \{S \rightarrow AB, A \rightarrow aBb, B \rightarrow bBa, A \rightarrow \epsilon, B \rightarrow \epsilon\}.$

Teste seus conhecimentos

- (4) Elaborar uma uma gramática de estrutura frasal para todas as cadeias binárias contendo o símbolo 1 seguido de um número impar de 0's.
- (5) Elaborar uma uma gramática de estrutura frasal para todas as cadeias binárias contendo um número de símbolos 1's diferente do número de símbolos 0's.
- (6) Elaborar uma uma gramática de estrutura frasal que gere todos os palíndromos sobre $\Sigma = \{0, 1\}$.

Hierarquia das linguagens

Classificação da gramáticas

• Tipo 0

- ♦ São as denominadas gramáticas irrestritas ou gramáticas de estrutura frasal;
- ♦ A única restrição imposta por esta gramática é que as produções devem ser da forma $\alpha \to \beta$ onde α dever ter pelo menos um símbolo não terminal: $\alpha \in V^* \times (V \Sigma) \times V^*$ e $\beta \in V^*$;
- Geram linguagens reconhecidas por Máquinas de Turing.

Tipo 1

- São as denominadas gramáticas sensíveis ao contexto. As produções deste tipo de gramática devem ser da forma α → β onde |α| ≤ |β| e α ∈ V* × (V − Σ) × V* e β ∈ V*;
- ♦ **Outro modo** de descrever este tipo de gramática é **representar** as **produções** do tipo $\alpha \to \beta$ com $\alpha = \phi_1 A \phi_2$ e $\beta = \phi_1 \psi \phi_2$ (ϕ_1 e ϕ_2 possivelmente vazios) e com ψ não vazio;
- \diamond Assim, A é **reescrito** como ψ no **contexto** de ϕ_1 e ϕ_2 , daí o nome "sensível ao contexto" da gramática;
- Geram linguagens reconhecidas por Autômatos Linearmente Limitados (tipo de Máquina de Turing não determinística).

Hierarquia das linguagens

Classificação da gramáticas

Tipo 2

- São as denominadas gramáticas livres de contexto. É o tipo mais utilizado na descrição das linguagens de programação;
- As produções são da forma α → β onde α ∈ V − Σ e β ∈ V*, o que torna a gramática livre de contexto;
- Geram linguagens reconhecidas por Autômatos de Pilha.

Tipo 3

- São as denominadas gramáticas regulares ou lineares. Geram as mesmas cadeias que expressões regulares – uma notação compacta que é empregada no reconhecimento de cadeias em compiladores, interpretadores, mecanismos de busca etc;
- \diamond As produções são da **forma** $\alpha \to \beta$, $\alpha \in V \Sigma$ e β possui a forma aB ou a, onde a $\in \Sigma$ e $B \in V \Sigma$;
- Geram linguagens reconhecidas por Autômatos Finitos Determinísticos.

Hierarquia das linguagens

Hierarquia

Teste seus conhecimentos

- (1) Seja $V = \{S, A, B, a, b\}$. Determinar se $G = (V, \Sigma, R, S)$ é do tipo 0 (mas não do tipo 1), tipo 1 (mas não do tipo 2), tipo 2 (mas não do tipo 3) ou tipo 3, se R é um conjunto de produções como:
 - a) $R = \{S \rightarrow aAB, A \rightarrow Bb, B \rightarrow \epsilon\}.$
 - b) $R = \{S \rightarrow aA, aA \rightarrow B, B \rightarrow aA, A \rightarrow b\}$
 - c) $R = \{S \rightarrow aA, A \rightarrow bB, B \rightarrow b, B \rightarrow \epsilon\}$

Referências bibliográficas

- [1] GERSTING, J. Fundamentos Matemáticos para a Ciência da Computação: um Tratamento Moderno de Matemática Discreta. [S.I.]: Livros Técnicos e Científicos. ISBN 9788521614227.
- [2] RICH, E. Automata, Computability and Complexity: Theory and Applications. [S.I.]: Pearson Prentice Hall, 2008.
- [3] ROSEN, K. **Discrete Mathematics and Its Applications**. New York: McGraw-Hill, 2003. (McGraw-Hill higher education).
- [4] TAYLOR, R. G. **Models of computation and formal languages**. New York: Oxford University Press, 1998.