above this index, both the an's and the bis over in (l-e, lte). Let no:= max 2 my, ng/. Then, +n>no: $le < a_n \le b_n \le c_n < le$ by assumption. So, we have shown that: F no∈N s.t. l-ε < bn < l+ε, i.e. |bn-l| < E. Since e was arbitrary, bn - I. Prop: Let (an) new, (bn) new be sequences in R. Suppose that: (i) an -0 and (ii) (bn) new bounded. Then, $a_n \cdot b_n \longrightarrow 0$. Proof: Let &>o. I am looking for noEN s.t.: +n>no, (bn)men is bounded => I M70 s.t.: +men, |bn/<M. Since $a_n \rightarrow 0$, there exists no $\left(=n_0\left(\frac{\varepsilon}{N}\right)\right) \in \mathbb{N}$, s.t.: $a^{\frac{\varepsilon}{N}} = a^{\frac{\varepsilon}{N}} = 0$, there exists no $\left(=n_0\left(\frac{\varepsilon}{N}\right)\right) \in \mathbb{N}$, s.t.: $a^{\frac{\varepsilon}{N}} = a^{\frac{\varepsilon}{N}} = 0$, $a^{\frac{\varepsilon}{N}} = 0$, $a^{\frac{\varepsilon}{N}}$

Then, for all n>no we have: $|a_n b_n| = |a_n| \cdot |b_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon$, i.e.: Hmznn, lanbon < E. Since & was arbitrary, the proof is complete. Prop.: Let E>0. I know that: an -a, so fn+N: +n>n1, lan-al < & $b_n \rightarrow b$, so $\exists n_a \in \mathbb{N} : \forall n \ge n_a$, $|b_n - b| < \frac{\varepsilon}{2}$ I define no:= max{n1,n2}; then, $4 n = n_0$, we simultaneously have $|a_n - a| < \frac{\varepsilon}{2}$ and $|b_n - b| < \frac{\varepsilon}{2}$, and thus $|(a_n+b_n)-(a+b)|=|(a_n-a)+(b_n-b)| \leq \frac{1}{n}$ < |an-a|+ |bn-b| < = + = = E. So, +n≥no: | (an+bm) - (a+b) < €.

Since & was arbitrary, we have anthy ->atb.

 \rightarrow Prop: If $a_n \rightarrow a$, then $a_n \cdot b_n \rightarrow a \cdot b$. Idea: if for large Proof: This is the first time we won't use
the E-definition of the limit, but
simply the algebra of limits we've so far
seen. If you want an E-proof, use this idea
together with the
that: n an is close to a, and for large or ba is close to b, then for large n and is close to a.b. I notice that: anbn-ab= anbn-abn + abn-ab= $= b_n \cdot (a_n - a) + a \cdot (b_n - b).$ Let's look at the sequence $(b_n \cdot (a_n - a))_{m \in \mathbb{N}}$. We have:

• $a_n - a \longrightarrow 0$, because $a_n \longrightarrow a$. · (bn) new is bounded, because it is convergent. S_0 , $b_n \cdot (a_n - a) \longrightarrow 0$. (*i) Similarly for a. (bn-b): • $b_n - b \rightarrow 0$, because $b_n \rightarrow b$. · (a) new is bounded, because it is a constant sequence $\underline{S_0}$, $a \cdot (b_n - b) \longrightarrow 0$. by a and b, $b_n(a_n-a)+a(b_n-b)\longrightarrow 0$,

i.e. anbn - a.b.

Gorollary: If $a_n \rightarrow e c$ as $n \rightarrow +\infty$ and $k \in \mathbb{N}$, then $a_n^k \rightarrow a^k$ as $n \rightarrow +\infty$.

Proof: By the previous proposition: $a_n^2 \rightarrow a_n^2$, $a_n^2 \cdot a_n \rightarrow a_n^2 \cdot a$, etc. $a_n \cdot a_n$ $a \cdot a_n$ a_n^3 a_n^3

ex: $\frac{1}{\eta^2} \rightarrow 0$, $\frac{1}{\eta^3} \rightarrow 0$, $\frac{1}{\eta^{10}} \rightarrow 0$.

Prop: If $b_n \neq 0 \forall n \in \mathbb{N}$, then $\frac{1}{b_n} \rightarrow \frac{1}{b}$.

Proof: Idea: We notice that $\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b-b_n|}{|b_n b|} = \frac{|b_n - b|}{|b_n b|}$ = $\frac{|b_n - b|}{|b_n b|}$. If I show that this quantity is small for large n, I am done. I notice that if the denominator is larger than some constant, then the fraction is at most $|b_n - b|$ (times a constant), which is small. So, I just need to bound the denominator from below.

Let
$$\varepsilon > 0$$
. I want to show that there exists some $n \in \mathbb{N}$, s.t.: $\forall n \ge n_0$, $\left| \frac{1}{bn} - \frac{1}{b} \right| \times \varepsilon$

I know that bn >b; so, Ibn | -> 161. By the

definition of limit for the meighbourhood (16), 3161 of 14

(i.e., for
$$\epsilon = \frac{|b|}{2}$$
),

there exists some $\eta \in \mathbb{N}$ s.t.: $\forall n \ge n_1$, $|b_n| \in (\frac{|b|}{2}, \frac{3|b|}{2})$.

In particular: $|b_n| > \frac{|b|}{2}$, $\forall n > n_1$.

for the E>O I originally picked, I ng EN s.t.:

H n > ng, | bn-b| < \frac{\xi \cdot 1 b1^2}{9} \left 2.

I now combine of and so:

$$\left|\frac{1}{b_{n}} - \frac{1}{b}\right| < \frac{2}{|b|^{2}} |b_{n} - b|, \quad \forall n \ge n_{1}, \quad \Rightarrow$$
and
$$\left|b_{n} - b\right| < \frac{\varepsilon \cdot |b|^{2}}{2}, \quad \forall m \ge n_{2}$$

for $n \ge m_0$: $= \max \{ n_1, n_2 \}$, we simultaneously have that $\left| \frac{1}{bn} - \frac{1}{b} \right| < \frac{2}{|b|^2} |bn-b|$ and thus

Since ε was arbitrary, $\frac{1}{b_n} \rightarrow \frac{1}{b}$.

Gorollary: If $bn \neq 0$ then, $an \rightarrow a$, then $an \rightarrow a$ and $bn \rightarrow b$

Proof:
$$\frac{a_n}{b_n} = \frac{1}{a_n} \cdot \frac{1}{b_n} \rightarrow a \cdot \frac{1}{b} = \frac{a}{b}$$

7

Prop.: Let $(a_m)_{n \in \mathbb{N}}$ be a sequence with non-negative terms, and $k \ge 2$.

I magine kto be fixed here

(such as 2,3,10...).

be a sequence with non-negative with non-negative $k \ge 2$.

Which will $k \ge 0$ since an >0 thresh

Case 1: a=0. I.e., an $\rightarrow 0$, and we want to show that $\sqrt[4]{a_n} \rightarrow 0$. Let $\varepsilon > 0$.

Since an $\rightarrow 0$, by the definition of limit for $\varepsilon' = \varepsilon'$ show this $\sqrt[4]{a_n}$ there exists $m \in \mathbb{N}$ s.t.: $\forall m \geq m_0$, $|a_m| < \varepsilon' \in \sqrt[4]{a_m} < \varepsilon \in \mathbb{N}$

(8) → I Van / < ε. Since ε was arbitrary, Van - 0 Case 2 a>0. We have: an-a= (Van - Va) · (Van K-1 Kan Va + -.. + Van Va + Va $\leq \frac{|\alpha_n - \alpha|}{\sqrt[n]{a^{\kappa-1}}} \Rightarrow \alpha \text{ constant.}$

We can by the sandwich lemma, Van - Va >0 - Van - Va

use the edefinition of limit instead

 $\stackrel{\text{ex:}}{=} \frac{1}{\sqrt{n!}} \rightarrow 0, \quad \left(\frac{1}{n}\right)^{\frac{1}{10}} \rightarrow 0$

		10,
_	$ \underline{\Theta}: \left(\frac{1}{2}\right)^{\frac{1}{n}} \longrightarrow 1, 3^{\frac{1}{n}} \longrightarrow 1, 1000^{\frac{1}{n}} \longrightarrow 1. $	//
→	$\sqrt[n]{n} \longrightarrow 1$ as $n \longrightarrow +\infty$.	
	Proof: Let's try to work as for Va!:	
	We want: $\sqrt{n} \rightarrow 1 \implies \sqrt{n-1} \rightarrow 0$.	
	We have $\frac{\partial n}{\partial n} > 0$, $\frac{\partial n}{\partial n} = \frac{\partial n}{\partial n} > 0$	1).
	However, if we apply Bernoulli's inequality for then we get $(1+\partial n)^n \ge 1+n\cdot\partial n$, i.e.	∂_n ,
Though	Ats $\sqrt[n]{n}$ $\sqrt[n]{n} \leq \frac{n-1}{n} = \frac{n}{n}$	1-1/n) -
	So, Bernoulli's inequality doesn't provide an upper bound for $(T_m)_{n\in\mathbb{N}}$ good enough for to work; we need an every sandwich lemma to work; we need an every	the en
3	better upper bound for (On) which will converge to 0. We get this from the bin expansion of (1+th)n (which, notice, implied Bernoulli's inequality for the or (rather than	l actually omial es also
	5	0

(11)

We have:
$$\forall n \in \mathbb{N}$$
, $n = 2$:
$$(4+\theta_n)^n = \sum_{k=0}^n {n \choose k} \cdot \hat{\theta}_n \frac{n \cdot (n-1)}{2}$$

$$= 1 + n \vartheta_n + \binom{n}{2} \cdot \vartheta_n^2 + \binom{n}{3} \cdot \vartheta_n^3 + \dots + \binom{n}{n-4} \vartheta_n^{n-4} + \binom{n}{n} \vartheta_n^n$$

$$\geq 0, \quad \alpha \leq \vartheta_n \geq 0 \quad \forall n \in \mathbb{N}.$$

$$\frac{n \cdot (n-1)}{2} \cdot \Im_{n}^{2} \leq n \qquad \lim_{n \to \infty} \Im_{n}^{2} \leq \frac{2n}{n(n-1)} = \frac{2}{n-1}$$

$$\Im_{n \to \infty} = 2$$

$$0 \le \theta_n \le \sqrt{\frac{2}{n-4}}$$
, this is by the algebra of limits on this is by the algebra of limits we have proved so far:

By the sandwich lemma, $n \rightarrow 0$. So, $n \rightarrow 1$.

$$\frac{1}{n} \rightarrow 0 \rightarrow \frac{1}{n-1} \rightarrow 0 \rightarrow$$

$$\frac{2}{n-1} \rightarrow 2 \cdot 0 = 0 \rightarrow \sqrt{\frac{2}{n-1}} \rightarrow 0$$

 \triangle Observe that, in the proof of $\sqrt[n]{-1}$,

the problem that made things harder than for Va -1 is that (1+2n) = n, rather than a constant.

So, 1+non, which is also linear in n, cannot help us. We need to use something like $(1+9_n)^m > n^k \cdot \theta_n^k$, for some fixed $k \ge 1$ in (or something like that), so that so that nk grows foster than n

to demonstrate how truly small on is (indeed, notice that the above implies that $\frac{1}{2} = \frac{1}{2} = \frac{1}$

That's why we chose $\binom{n}{2} \cdot \partial_n^2$ as the appropriate lower bound for $(1+\partial_n)=n$; $\binom{n}{2}=\frac{n\cdot(n-1)}{2}$,

which should "behave like" nº for n large; whatever that means.

Notice that, instead of (n) 2, we could have used $\binom{n}{3} \binom{n}{n}$, or $\binom{n}{4} \binom{n}{n}$, ..., or $\binom{n}{k} \binom{n}{n}$, for explicit KED independent of n. (of course with K<n).