Comparison of AN decoder

為了要觀察是否使用 barrett reduction 是否能夠有效降低硬體成本,做了這份報告。

前言

要先了解 coding style 對 synthesis 的影響有多大觀察以下兩個 code ,這兩種 code 計算結果相同,但硬體合成時,timing LUT 數量都顯著的不同

Case1	Case2
```C	"'C
q=x*12345>>45	q=x*12345
***	q=q>>45

	DSP	FF	LUT
Case1	5	331	244
Case2	0	0	89

相同計算,但僅僅只是換了行就能夠不使用 DSP。

## Barrett reduction/乘法餘數比較

下表為 A=29 時,使用

- 1. barrett reduction 當作 decoder 的硬體資源是 case1
- 2. barrett reduction 當作 decoder 的硬體資源是 case2
- 3. 使用乘法(*)和餘數(%)

	DSP	FF	LUT
1	5	331	244
2	0	0	89
3	3	188	219

### TCB 與乘法的比較

```
Test code
 Interval
 DSP
 LUT
 39
 void mul_5(int &a){
 a=a*5;
 1
 0
 0
 39
 void TCB_mul_5(int &a){
 a=(a<<2)+(a);
 24
 1
 195
 146
 void normal_mul(int *arr){
 for(int i=0;i<10;i++){</pre>
 (arr+i)=(arr+i)*weight[i];
 13
 0
 12
 322
void TCB_mul(int *arr){
 for(int i=0;i<10;i++){</pre>
 (arr+i)=TCBop((arr+i),weight[i]);
 int TCBop(int val,int weight){
 switch(weight){
 case 1:
9
 return(val);
3
1
 case 2:
2
 return(val<<1);</pre>
3
4
 case 3:
 return((val<<1)+(val));</pre>
 //int weight[]={1, 1, 7, 1, 4, 2, 4, 1, 9, 2};
 無法合
 void TCB_table(int *arr){
 成
 int temp=*(arr);
 *(arr)=temp;
 temp=*(arr+1);
 (arr+1)=(arr+1);
 temp=*(arr+2);
 *(arr+2)=(temp<<3)-temp:
```

# 討論

目前還在思考如何將 TCB 寫成 hls style 的 code,不太明白如何以高階語言寫成 TCB。或許可以更改.v 中的 code,但 verilog code 都被包成一層一層的硬體 IP,難以修改。