

Initiation à la programmation des systèmes embarqués

Découverte de la programmation des cartes Arduino

Courte Présentation

Une carte Arduino, pour quoi faire?

... pour réaliser des (mini ?) projets

Harpe laser http://makezine.com/projects/laser-harp/

Joute robotique http://makezine.com/video/ready-set-joust/

Réveil http://makezine.com/video/ne ver-forget-to-set-an-alarmbecause-this-alarm-clock-setsitself/

La carte Arduino Uno

- Microcontroller :ATmega328
- Operating Voltage: 5V
- ▶ Input Voltage (recommended) : 7-12V
- ▶ Input Voltage (limits) : 6-20V
- Digital I/O Pins: 14 (of which 6 provide PWM output)
- Analog Input Pins : 6
- DC Current per I/O Pin: 40 mA
- DC Current for 3.3V Pin: 50 mA
- Flash Memory: 32 KB (ATmega328) of which 0.5 KB used by bootloader
- > SRAM: 2 KB (ATmega328)
- ▶ EEPROM : I KB (ATmega328)
- Clock Speed: 16 MHz
- Length: 68.6 mm
- Width: 53.4 mm
- Weight: 25 g

fritzing

Programmation par le logiciel Arduino

THE programme de base : Faire clignoter la LED

Processus de réalisation du programme

- Programmation en utilisant le logiciel Arduino
- Compilation du programme
- Téléversement du programme dans la carte
- Fonctionnement du programme sur la carte en mode autonome

Interface du logiciel Arduino

Allumer et éteindre une Led par période de 1 seconde

- A la différence de Python, il faut déclarer les variables et leur type.
- Les lignes doivent se terminer par des «;»
- Void désigne la déclaration d'une fonction
- Pour réaliser un commentaire il faut faire précéder le commentaire de //

int led = 13;	Déclaration de la variable entière led et affectation du nombre 13 à la variable led. 13 correspond à une sortie de la carte Arduino possédant une led.
<pre>void setup() { pinMode(led, OUTPUT); }</pre>	Setup : configuration du matériel. Lancée après avoir appuyé sur Reset. La broche led est déclarée comme une sortie
<pre>void loop() { digitalWrite(led, HIGH); delay(1000);</pre>	La boucle loop est lancée un nombre infini de fois.
<pre>delay(1000); digitalWrite(led, LOW); delay(1000); }</pre>	Cette séquence permet d'allumer et d'éteindre la led toutes les secondes.

La partinière

Travail à réaliser

- Activité I : clignotement de la LED
 - Situer la carte sur la led.
 - 2. Saisir le code de la page précédente sur le logiciel Arduino .
 - 3. Lancer la vérification.
 - 4. Implanter le programme sur la carte.
 - Vérifier son bon fonctionnement.
 - 6. Modifier le programme pour modifier le temps d'allumage et d'extinction.
- ▶ Activité 2 : clignotement de la LED Affichage sur la console série (La console série permet d'afficher des informations à destination de l'utilisateur.
 - Modifier le code de l'activité précédente en utilisant le code ci-contre.
 - Pour afficher les messages :
 - Menu outil
 - 2. Console série

```
int led = 13;
void setup() {
    pinMode(led, OUTPUT);
    Serial.begin(57600);
}
void loop() {
    digitalWrite(led, HIGH);
    Serial.print("JOUR \n");
    delay(1000);
    digitalWrite(led, LOW);
    Serial.print("NUIT \n");
    delay(1000);
}
```

Another LED but the same code! (ou presque)

Objectifs & Matériel

Objectif:

Réaliser le câblage d'une LED sur la planche à pain (bread board)

Matériel :

- I carte Arduino;
- I résistances de 4,7 kΩ;
- I led en série avec une résistance de I kΩ.

Activité 3

Activité 3:

- Câbler le montage
- Adapter le programme précédent pour faire clignoter la LED.
- Expliquer le câblage (et le rôle de la résistance)

Après la LED, le bouton poussoir

Acquisition du signal d'un bouton poussoir

Travail à réaliser

La Martinière

Activité 4 :

- Réaliser le câblage (résistance de 10kΩ par exemple).
- Afficher sur la console l'état de l'interrupteur (on utilisera la fonction digitalRead pour lire l'état d'une broche.
- Expliquer le câblage (et le rôle de la résistance) (difficile!)

Activité 5 :

- En utilisant l'ensemble des activités précédentes, allumer une LED en appuyant sur le bouton et l'éteindre en relâchant.
- Éteindre une LED en appuyant sur le bouton et l'allumer en relâchant.
- Difficulté supplémentaire :
 - Allumer la led en appuyant sur le bouton
 - Eteindre la led en appuyant sur le bouton

OUVRIR LE COFFRE!

Rappel:

- On s'intéresse à un coffre-fort de banque dont on donne le principe de fonctionnement.
- Seuls 4 responsables (notés A, B, C et D) qui possèdent un ensemble code d'accès + clef à serrure peuvent avoir accès au coffre. Le responsable A possède l'ensemble code d'accès et une clef notée a. Le responsable B possède l'ensemble code d'accès et une clef notée b. Le responsable C possède l'ensemble code d'accès et une clef notée c. Le responsable D possède l'ensemble code d'accès et une clef notée d.
- Le responsable A ne peut ouvrir le coffre qu'avec le responsable B ou .
- les responsables R C et D ne peuvent ouvrir le coffre qu'en
- On montre que le coffre s'ouvre si on a :
- $S = b \cdot c \cdot d + a \cdot c + a \cdot b$

Découverte de la programmation des cartes Arduino