# VII - Calcul matriciel

## À Savoir

**Opérations sur les matrices.** Addition, Multiplication par un nombre, Multiplication de matrices.

- $*A \times (B+C) = A \times B + A \times C.$
- \*  $\lambda(A \times B) = (\lambda A) \times B = A \times (\lambda B)$ .
- \* A + 0 = 0 + A = A.
- \* A + (-A) = (-A) + A = 0.
- $* A \times I = I \times A = A.$

**Attention.** En général,  $AB \neq BA$ .

## Exemple 1

Soit A une matrice carrée.

$$A^{3} + 2A^{2} + 3A = A \times A^{2} + 2A \times A + 3A \times I = A(A^{2} + 2A + 3I).$$

## À Savoir

Systèmes linéaires. Traduire un système linéaire en équation matricielle et réciproquement.

Utilisation en lien avec :

- \* la résolution de systèmes.
- \* les suites définies par récurrence.
- \* la formule des probabilités totales.

# $\overline{\text{Exemple 2}}$

On pose 
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
,  $U_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$  et  $A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ -1 & 0 & 2 \end{pmatrix}$ . Alors,

$$\begin{cases} x - y + 2z &= 0 \\ 3y + z &= 0 \Leftrightarrow AX = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{cases}$$

$$\begin{cases} u_{n+1} = u_n - v_n + 2w_n \\ v_{n+1} = 3v_n + w_n & \Leftrightarrow U_{n+1} = AU_n \\ w_{n+1} = -u_n + 2w_n \end{cases}$$

### À Savoir

$$\begin{cases} A^0 &= I, \\ A^n &= \underbrace{A \times \cdots \times A}_{n \text{ facteurs}}. \end{cases}$$

Caluls de puissances :

34

- \* formule donnée et démonstration par récurrence.
- \* puissance des matrices diagonales (par récurrence).
- \* formule du binôme de Newton. Si  $A \times B = B \times A$ , alors  $(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}.$

Utile surtout si  $A^k = 0$  pour k assez grand.

\* si  $A = PDP^{-1}$ , alors  $A^n = PD^nP^{-1}$  (par récurrence).

Chapitre VII - Calcul matriciel ECT 2

35

# À Savoir

**Définition de l'inverse.** Il existe B telle que AB = I. Alors,  $A^{-1} = B$  et BA = I.

Existence d'un inverse :

- \* donnée d'une matrice B telle que AB = I.
- \* donnée d'une relation telle que  $a_k A^k + \cdots + a_1 A + a_0 I = 0$ .
- \* matrice d'ordre 2 et  $ad bc \neq 0 + Calcul$ .
- \* matrice diagonale & tous les coefficients diagonaux non nul<br/>s+Calcul.
- \* matrice triangulaire & tous les coefficients diagonaux non nuls.
- \* calcul par inversion d'un système linéaire ou méthode du pivot sur l'identité.

### Exemple 3

Si A est une matrice telle que  $A^3 + 2A^2 + A + 5I = 0$ . Alors,

$$A\left(A^{2}+2A+I\right)=-5I$$

$$A\times\left(-\frac{1}{5}\left(A^{2}+2A+I\right)\right)=I.$$

Ainsi, A est inversible et  $A^{-1} = -\frac{1}{5} (A^2 + 2A + I)$ .

**Non-inversibilité.** Utiliser une relation AB = AC (ou AB = 0 ou ...). Supposer par l'absurde que A est inversible et en déduire B = C (ou B = 0 ou ...). Obtenir une contradiction.