

PLANEJAMENTO DE CAPACIDADE, MODELAGEM E AVALIAÇÃO DE DESEMPENHO DE SISTEMAS COMPUTACIONAIS

MODELAGEM MATEMÁTICA DE SISTEMAS COMPUTACIONAIS

Equipe MAD

A modelagem matemática de Sistema Computacionais baseado na teoria das filas é fundamentada no fato de um sistema computacional, ao possuir velocidade finita, produz fila de espera.

A modelagem baseado na teoria das filas, pode modelar qualquer sistema em distintos níveis de abstração.

Dispositivos isolados:

Exemplo de Sistema Computacional:

Modelagem de sistemas interativos

Modelando o Sistema:

Considerando tempos médios,

$$\overline{Z} + tx + R + rx = M/Xo$$

Tipícamente: Z ≈ 7 s.

Como $tx \approx 0$, $rx \approx 0$, quando comparando com Z

$$Z + R = M/Xo$$

Tempo médio de resposta:

$$R = M/Xo - Z$$

Exemplo de aplicação:

Um sistema interativo foi observado durante 1 hora. Durante esse período de tempo foram atendidas 7200 requisições de usuários. Para um tempo de pensar de 7 s. Calcular o tempo médio de resposta (R) se o número de terminais é de 40.

To =
$$3600 \text{ s}$$
; Co = 7200 req. ; M = 40 ; Z = 7s

$$Xo = Co/To = 7200/3600 = 2 \text{ req./s}$$

Tempo médio de resposta:

$$R = M/Xo - Z = (40/2) - 7 = 13 \text{ s/req}$$

Melhorando o Desempenho do Sistema:

Para diminuir R↓ é possível:

$$R \downarrow = M \downarrow / Xo \uparrow - Z$$

a) <u>Diminuíndo o número de terminais (M):</u>

Supondo que 10 terminais são desligados:

M = 30 terminais

To =
$$3600 \text{ s}$$
; Co = 7200 req. ; Z = 7s

Tempo médio de resposta:

$$R = M/Xo - Z = (30/2) - 7 = 8 \text{ s/req}.$$

b) Propondo um tempo de resposta limite (LNS):

Para RsLA = 3 s/req

To = 3600 s; Co = 7200 req.; Z = 7s

Número de terminais:

M = Xo (R + Z) = 2 (3 + 7) = 20 terminais

c) Número minimo de terminais:

 $M_min = ?$

d) <u>Aumentando a taxa de processamento:</u>

Sendo:

$$Xo = M / (R + Z)$$

Para um Tempo médio de resposta de R

= 3 s/req.

$$Xo = 40 / (3 + 7) = 4 \text{ req/s}$$

Exercício:

Um sistema interativo foi observado durante 1 hora. Durante esse período de tempo chegarm 9600 requisições ao sistema. O sistema possui 60 terminais, dos quais 50 estão ativos. Para um tempo de pensar de 7 s.

- a) Calcular o tempo médio de resposta (R)
- b) Se R(SLA) = 5 s/req, determinar o máximo número de terminais que devem estar ativos
- c) Determinar a faixa de terminais que atendem ao limite do SLA

Exercício:

Um sistema interativo foi observado durante 1 hora. Durante esse período de tempo chegarm 9600 requisições ao sistema. O sistema possui 60 terminais, dos quais 50 estão ativos. Para um tempo de pensar de 7 s.

- a) Calcular o tempo médio de resposta (R)
- b) Se R(SLA) = 5 s/req, determinar o máximo número de terminais que devem estar ativos
- c) Determinar a faixa de terminais que atendem ao limite do SLA

b) Rsla=5 s/req. M max= Xo (R + Z) = 2.67 (5 + 7) = 32.04 (32) terminais

c) M min= Xo (Z) = 2.67*7 = 18.69 (18) terminais Faixa: 18<= M <=32

 $X_0 = ?$ Rsla = 5 s/reqM = 60 terminais Xo = M / (R + Z)Xo = 60/(5+7)Xo = 5 reg/s

Requisições e visitas por requisição:

Variáveis Básicas:

To: Tempo de observação [s.]

Ai: Visitas que chegam ao dispositivo "i", durante To [visitas]

Bi: Tempo de ocupação do dispositivo "i", durante To [s.]

Ci: Visitas atendidas pelo dispositivo "i", durante To [visitas]

Exemplo:
$$To = 10 \text{ s. Bi} = 8 \text{ s. Ai} = Ci = 10 \text{ v.}$$

Variáveis Derivadas:

$$\lambda$$
i: Carga de trabalho do dispositivo "i", [v/s]
 λ i = Ai/To = 10/10 = 1 v/s

Xi: Taxa de processamento do dispositivo "i", [v/s]
Xi = Ci/To =
$$10/10 = 1$$
 v/s

Exemplo:
$$To = 10 \text{ s. Bi} = 8 \text{ s. Ai} = Ci = 10 \text{ v.}$$

$$Udi = 1 - Ui = 1 - 0.80 = 0.20 => 20 \%$$

$$Si = Bi/Ci = 8/10 = 0.8 s/v$$

Ri: Tempo médio de resposta do dispositivo "i" [s/v]

$$Ri = Si/(1-Ui) = 0.8/(1-0.8) = 4 s/v$$

Wi: Tempo médio de espera do dispositivo "i" [s/v]

$$Wi = Ri - Si = 4.0 - 0.8 = 3.2 \text{ s/v}$$

Xi

Lei da Utilização:

Como:

λi

$$Ui = \frac{Bi}{To}$$

$$Ui = \frac{Bi}{To} x \frac{Ci}{Ci}$$

$$Ui = Si \times Xi$$

Wi

Ai Ci

Teorema da Utilização:

Pela hipótese do Equilíbrio de Fluxo:

$$Ai = Ci$$

Então:

$$\frac{Ai}{To} = \frac{Ci}{To}$$

Por tanto: $\lambda i = Xi$

Logo:
$$Ui = Si \times \lambda i$$

Aumentando a carga de trabalho em 10 % (mês 1)

$$\lambda i_novo = 1,10 \times \lambda i_atual$$

 $\lambda i_novo = 1,10 \times 1,0 = 1,10 \text{ v/s}$

$$Udi = 1 - Ui = 1 - 0.880 = 0.12 => 12 \%$$

$$Ri = Si/(1-Ui) = 0.8/(1-0.88) = 6.7 s/v$$

$$Wi = Ri - Si = 6,7 - 0,8 = 5,9 \text{ s/v}$$

Aumentando a carga mais trabalho em 10 % (mês 2)

$$\lambda i_novo = 1,10 \times \lambda i_novo = 1$$

$$\lambda i_novo = 1,10 \times 1,10 = 1,21 \text{ v/s}$$

$$Ui_novo = 0.80 \times 1.21 = 0.968 => 97 \%$$

$$Udi = 1 - Ui = 1 - 0.97 = 0.03 => 3 \%$$

$$Ri = Si/(1-Ui) = 0.8/(1-0.97) = 26.7 \text{ s/v}$$

$$Wi = Ri - Si = 26,7 - 0,8 = 25,9 \text{ s/v}$$

Aumentando a carga mais trabalho em 10 % (mês 3)

$$\lambda i_novo = 1,10 \times \lambda i_novo = 1$$

$$\lambda i_novo = 1,10 \times 1,21 = 1,31 \text{ v/s}$$

$$Udi = 1 - Ui = 1 - 1,06 => 0,0 \%$$

$$Ri = Si/(1-Ui) = 0.8/(1-0.99) = 80 s/v$$

$$Wi = Ri - Si = 80 - 0.8 = 79.2 \text{ s/v}$$

$$\lambda i_atual = 1.0 \text{ v/s} -> 60 \text{ v/min}$$

$$Ri_atual = 4 s/v$$

$$Ui_atual = 0.80$$

Mês 1:

$$\lambda i_1 = 1,10 \text{ v/s} -> 66 \text{ v/min}$$

$$Ri_1 = 6.7 \text{ s/v}$$

$$Ui_1 = 0.88$$

Mês 2:

$$\lambda i_2 = 1.21 \text{ v/s} -> 72.6 \text{ v/min}$$

$$Ri_2 = 26.7 \text{ s/v}$$

$$Ui_2 = 0.97$$

Troca de Dispositivo:

Considere a carga futura de 1,32 v/s e um tempo limite (LNS) para o tempo de resposta de 5 s/v. Determine as características do novo dispositivo

$$\lambda i = 1,32 \text{ v/s}; \text{Ri} = 5 \text{ s/v}; \text{Si} = ?$$

$$Si_novo = 5/(1+5x1,32) = 0.65 s/v$$

Como:

e

Como:
$$Si_ant = 0.80 \text{ s/v}$$

$$Ri = Si/(1-Ui)$$

Fator Velocidade = Si_antigo/Si_novo

 $Ui = Si \times \lambda i$ (teorema da utilização)

Fator=0.80/0.65 = 1.23 (23% mais rápido)

Substituíndo:

$$Ri = Si/(1-Ui) = Si/(1-Si \times \lambda i)$$

Então:

$$Si = Ri/(1+Ri \times \lambda i)$$

Exemplo:

Se processador atual faz 10^6 somas/s

-> 1230,000 somas/s

Se disco gasta 10 ms/IO

-> 7,7 ms/IO

Diagramas de Sequenciamento:

Exemplo:
$$To = 24 \text{ s. Bi} = 22 \text{ s. Ai} = Ci = 12 \text{ v.}$$

Variáveis Derivadas:

λi: Carga de trabalho do dispositivo "i", [v/s]

$$\lambda i = Ai/To = 12/24 = 0.5 \text{ v/s}$$

Xi: Taxa de processamento do dispositivo "i", [v/s]

$$Xi = Ci/To = 12/24 = 0.5 \text{ v/s}$$

Ui: Utilização do dispositivo "i", adim, [%]

$$Ui = Bi/To = 22/24 = 0.92 => 92 \%$$

Exemplo:
$$To = 24 \text{ s. Bi} = 22 \text{ s. Ai} = Ci = 12 \text{ v.}$$

Udi: Disponibilidade do dispositivo "i", adim, [%]

$$Udi = 1 - Ui = 1 - 0.92 = 0.08 => 8 \%$$

Si: Tempo médio de serviço do dispositivo "i", [s/v]

$$Si = Bi/Ci = 22/12 = 1,83 s/v$$

Ri: Tempo médio de resposta do dispositivo "i" [s/v]

$$Ri = Si/(1-Ui) = 1.83/(1-0.92) = 22.92 s/v$$

Wi: Tempo médio de espera do dispositivo "i" [s/v]

$$Wi = Ri - Si = 22,92 - 1,83 = 21,09 \text{ s/v}$$

1) Otimizando Código em 25 %

Mantendo a carga constante: $\lambda i = 0.5 \text{ v/s}$

Ui_novo = Si x
$$\lambda$$
i_novo (Teorema da Utilização)
Ui_novo = 1,37 x 0,50 = 0,68 => 68 %

$$Ri_novo = Si_novo/(1-Ui) = 1,37/(1-0,68) = 4,28 s/v$$

$$Wi = Ri - Si = 4,28 - 1,37 = 2,91 \text{ s/v}$$

2) Aumentando a Carga de trabalho em 10%

$$Ri_novo = Si_novo/(1-Ui) = 1,37/(1-0,75) = 5,48 s/v$$

$$Wi = Ri - Si = 5,48 - 1,37 = 5,11 s/v$$

EXERCÍCIO - Diagramas de Sequenciamento:

Exemplo:
$$To = 24 \text{ s. Bi} = 21 \text{ s. Ai} = 11 \text{v. Ci} = 12 \text{ v.}$$

Variáveis Derivadas:

λi: Carga de trabalho do dispositivo "i", [v/s]

$$\lambda i = Ai/To = 11/24 = 0.46 \text{ v/s}$$

Xi: Taxa de processamento do dispositivo "i", [v/s]

$$Xi = Ci/To = 12/24 = 0.50 \text{ v/s}$$

Ui: Utilização do dispositivo "i", adim, [%]

$$Ui = Bi/To = 21/24 = 0.875 (87\%)$$

Exemplo: To =
$$?$$
 s. Bi = $?$ s. Ai = Ci = $?$ v.

Udi: Disponibilidade do dispositivo "i", adim, [%]

$$Udi = 1 - Ui = 1 - 0.87 = 0.13$$

Si: Tempo médio de serviço do dispositivo "i", [s/v]

$$Si = Bi/Ci = 21/12 = 1,75 s/v$$

Ri: Tempo médio de resposta do dispositivo "i" [s/v]

$$Ri = Si/(1-Ui) = 1,75/0,13 = 13,46 s/v$$

Wi: Tempo médio de espera do dispositivo "i" [s/v]

$$Wi = Ri - Si = 13,46 - 1,75 = 11,71 \text{ s/v}$$

2) Aumentando a Carga de trabalho em 10% (1º mês)

$$\lambda i_novo = 1,10 \times \lambda i_novo = 1,10 \times 0,46 = 0,50 \text{ v/s}$$

$$Si = 1,75 \text{ s/v}$$

Ui_novo = Si x λ i_novo (Teorema da Utilização) = 1,75*0,50 = 0,875

$$Ri_novo = Si_novo/(1-Ui) = 1,75/(1-087)=1,75/0,13 = 13,46 s/v$$

$$Wi = Ri - Si = 3.5 - 1.75 = 11.71 \text{ s/v}$$

3) Aumentando a Carga de trabalho em 10% (2º mês)

$$\lambda i_novo = 1,10 \times \lambda i_novo = 1,10 \times 0,50 = 0,55$$

$$Si = 1,75 \text{ s/v}$$

Ui_novo = Si x λ i_novo (Teorema da Utilização) =1,75*0,55 = 0,96

$$Ri_novo = Si_novo/(1-Ui) = 1,75/(1-0,96) = 1,75/0,04 = 43,75 sv$$

$$Wi = Ri - Si = 43,75 - 1,75 = 42 sv$$

4) Aumentando a Carga de trabalho em 10% (mês)

$$Ri_atual = ? s/v$$

Mês 1:

$$\lambda i_1 = ? v/s \rightarrow ? v/min$$

$$Ri_1 = ? s/v$$

$$Ui_1 = ?$$

Mês 2:

$$\lambda i_2 = ? v/s \rightarrow ? v/min$$

$$Ri_2 = ? s/v$$

$$Ui_2 = ?$$

$$Ui = 1$$

$$\lambda i_atual = ? v/s -> ? v/min$$

$$Ri_atual = ? s/v$$

Mês 1:

$$\lambda i_1 = ? v/s \rightarrow ? v/min$$

$$Ri_1 = ? s/v$$

$$Ui_1 = ?$$

Mês 2:

$$\lambda i_2 = ? v/s \rightarrow ? v/min$$

$$Ri_2 = ? s/v$$

$$Ui_2 = ?$$

$$\lambda i_sat = 1/Si = ? v/s$$

$$\lambda i_sat = ? v/min$$

$$Ui = 1$$

5) Otimizando Código em 25 %

Mantendo a carga constante:

Ui_novo = Si x
$$\lambda$$
i_novo (Teorema da Utilização)=1,31*0,60 = 0,79

$$Ri_novo = Si_novo/(1-Ui) = 1,31/0,21=6,24 s/v$$

$$Wi = Ri - Si = 6.24 - 1.31 = 4.93 \text{ s/v}$$

6) Aumentando a Carga de trabalho em 10%

$$\lambda i_novo = 1,10 \times \lambda i_novo = 1,10*0,60=0,67$$

$$Si = 1,31 \text{ s/v}$$

Mantendo a carga constante:

$$Wi = Ri - Si = 10,92 - 1,31 = 10,61 \text{ s/v}$$

6) Aumentando a Carga de trabalho em 10%

$$\lambda i_novo = 1,10 \times \lambda i_novo = 1,10*0,67=0,73$$

Si = 1,31 s/v

Mantendo a carga constante:

7) Duplicando o disco

Definição da carga a considerar: λi=0,73

Ui_novo = Si x λ i (Teorema da Utilização)=1,31*(0,73/2)=0,47

 $Ri_novo(x disco) = Si/(1-Ui) = 1,31/0,53=2,27 s/v$

Ui_novo = Si x λ i (Teorema da Utilização)=1,31*(0,73/3)=0,30 Ri_novo(x disco) = Si/(1-Ui) =1,31/0,70=1,87 2,27 s/v

Modelagem de rede de dispositivos para compor um Servidor

Requisições e visitas por requisição:

Lei do tempo médio de resposta do sistema (R):

R = f (contribuição dos dispositivos iternos) [s/req.]

Taxa de visitação de cada dispositivo (Vi):

Vi = Ci/Co [visitas/requisição]

Onde: Ci: visitas que saíram do dispositivo "i" durante To

Co: requisições antendidas durante To

Exemplo:

Co = 10 req. Ccpu = 20 v CD1 = 15 v CD2 = 10 v CD3 = 5 v
$$V_{CD2} = 2 \text{ V/r}$$
 VD1 = 1,5 v/r VD2 = 1 v/r VD3 = 0,5 v/r

Tempo médio de resposta do sistema (R):

$$R = R_{cpu} * V_{cpu} + R_{D1} * V_{D1} + R_{D2} * V_{D2} + R_{D3} * V_{D3} + [s/req.]$$

De forma implícita:

$$R = \sum Ri * Vi$$

Como: Xi=
$$\frac{Ci}{To}*\frac{Co}{Co}$$
 = Vi * Xo Lei do Fluxo Forçado

Pela hipótese do Equlíbrio de fluxo: Ai ≈ Ci

fazendo Ai/To ≈ Ci/To, logo: λi ≈ Xi λi ≈ Vi * λο

Tempo médio de resposta do sistema (R):

$$R = \sum Ri * Vi$$

$$R = \sum \frac{Si}{1 - Ui} * Vi$$

Pelo teorema do Utilização: *Ui* ≈ *Si* * *λi*

$$R = \sum \frac{Si}{1 - Si * \lambda i} * Vi$$

Pelo teorema do fluxo forçado: $\lambda i \approx Vi * \lambda o$

$$R = \sum \frac{Si}{1 - Si * Vi * \lambda o} * Vi$$

Exemplo:

Considere um sistema de computação o qual recebe 300 req/min. (5 req/s) Por monitoramento foram coletados os seguintes dados:

$$S1 = 9 \text{ ms/v}$$
 $S2 = 40 \text{ ms/v}$ $S3 = 25 \text{ ms/v}$ $V1 = 6 \text{ v/r}$ $V2 = 1 \text{ v/r}$ $V3 = 4 \text{ v/r}$

Determinar o tempo médio de resposta do sistema interatvo:

$$R = R1 * V1 + R2 * V2 + R3 * V3$$

$$Ri = \frac{Si}{1 - Ui} = \frac{Si}{1 - Si * \lambda i} = \frac{Si}{1 - Si * Vi * \lambda o}$$

$$S1 = 9 \text{ ms/v}$$

Exemplo:
$$S1 = 9 \text{ ms/v}$$
 $S2 = 40 \text{ ms/v}$ $S3 = 25 \text{ ms/v}$

$$S3 = 25 \text{ ms/v}$$

$$V1 = 6 \text{ v/r}$$

$$V1 = 6 \text{ v/r}$$
 $V2 = 1 \text{ v/r}$ $V3 = 4 \text{ v/r}$

$$V3 = 4 \text{ v/r}$$

$$Ri = \frac{Si}{1 - Si * Vi * \lambda o}$$

$$R1 = \frac{0,009}{1 - 0.009 * 6 * 5} = 0,0123 \, s/v$$

$$R2 = \frac{0,040}{1 - 0.040 * 1 * 5} = 0,05 \, s/v$$

$$R3 = \frac{0,025}{1 - 0.025 * 4 * 5} = 0,05 \, s/v$$

$$R = R1 * V1 + R2 * V2 + R3 * V3 = 0,0123 * 6 + 0,05 * 1 + 0,05 * 4 = 0,324s/r$$

Se a carga aumentr 10% (1° mês)

Os seguintes valores permanecem constantes:

$$S1 = 9 \text{ ms/v}$$
 $S2 = 40 \text{ ms/v}$ $S3 = 25 \text{ ms/v}$ $V1 = 6 \text{ v/r}$ $V2 = 1 \text{ v/r}$ $V3 = 4 \text{ v/r}$

$$R1 = \frac{0,009}{1 - 0,27 * 1,10} = \frac{0,009}{0,71} = 0,0126 \, s/v$$

$$R2 = \frac{0,040}{1 - 0,20 * 1,10} = \frac{0,040}{0,78} = 0,051 \, s/v$$

$$R3 = \frac{0,025}{1 - 0,50 * 1,10} = \frac{0,025}{0,45} = 0,055 \, s/v$$

$$R = R1 * V1 + R2 * V2 + R3 * V3 = 0,0126 * 6 + 0,051 * 1 + 0,055 * 4$$

= 0,335 s/r

Se a carga aumentr 10% (2° mês)

Os seguintes valores permanecem constantes:

$$S1 = 9 \text{ ms/v}$$
 $S2 = 40 \text{ ms/v}$ $S3 = 25 \text{ ms/v}$ $V1 = 6 \text{ v/r}$ $V2 = 1 \text{ v/r}$ $V3 = 4 \text{ v/r}$

$$R1 = \frac{0,009}{1 - 0,29 * 1,10} = \frac{0,009}{1 - 0,32} = \frac{0,009}{0,68} = 0,0132 \, s/v$$

$$R2 = \frac{0,040}{1 - 0.22 * 1.10} = \frac{0,040}{1 - 0.24} = \frac{0,040}{0.76} = 0,052 \text{ s/v}$$

$$R3 = \frac{0,025}{1 - 0,55 * 1,10} = \frac{0,025}{1 - 0,60} = \frac{0,025}{0,40} = 0,062 \, s/v$$

$$R = R1 * V1 + R2 * V2 + R3 * V3 = 0,0132 * 6 + 0,052 * 1 + 0,062 * 4$$

= 0,38 s/r

Exercício:

Considere um sistema de computação o qual recebe 300 req/min. (5 req/s) Por monitoramento foram coletados os seguintes dados:

$$S1 = 10 \text{ ms/v}$$
 $S2 = 50 \text{ ms/v}$ $S3 = 40 \text{ ms/v}$

$$V1 = 5 \text{ v/r}$$
 $V2 = 4 \text{ v/r}$ $V3 = 2 \text{ v/r}$

Determinar o tempo médio de resposta do sistema interatvo:

Exercício:

Considere um sistema de computação o qual recebe 300 req/min. (5 req/s) Por monitoramento foram coletados os seguintes dados:

$$S1 = 10 \text{ ms/v}$$
 $S2 = 50 \text{ ms/v}$ $S3 = 40 \text{ ms/v}$ $V1 = 5 \text{ v/r}$ $V2 = 4 \text{ v/r}$ $V3 = 2 \text{ v/r}$

Determinar o tempo médio de resposta do sistema interatvo:

$$R = R1 * V1 + R2 * V2 + R3 * V3$$

$$Ri = \frac{Si}{1 - Ui} = \frac{Si}{1 - Si * \lambda i} = \frac{Si}{1 - Si * Vi * \lambda o}$$

$$S1 = 10 \text{ ms/v}$$

Exemplo:
$$S1 = 10 \text{ ms/v}$$
 $S2 = 50 \text{ ms/v}$ $S3 = 40 \text{ ms/v}$

$$S3 = 40 \text{ ms/v}$$

$$V1 = 5 \text{ v/r}$$
 $V2 = 4 \text{ v/r}$ $V3 = 2 \text{ v/r}$

$$V3 = 2 \text{ v/r}$$

$$Ri = \frac{Si}{1 - Si * Vi * \lambda o}$$

$$R1 = \frac{0,010}{1 - 0,010 * 5 * 5} = \frac{0,010}{1 - 0,25} = 0,013 \text{ s/v}$$

$$R2 = \frac{0,050}{1 - 0,050 * 4 * 5} = \frac{0,050}{1 - 1,0} = 5,0 \text{ s/v}$$

$$R3 = \frac{0,040}{1 - 0.040 * 2 * 5} = \frac{0,040}{1 - 0.4} = 0,067 \text{ s/v}$$

$$R = R1 * V1 + R2 * V2 + R3 * V3 = 0,013 * 5 + 5 * 4 + 0,067 * 2 = 20,199s/r$$

$$S1 = 10 \text{ ms/v}$$

Exemplo:
$$S1 = 10 \text{ ms/v}$$
 $S2 = 50 \text{ ms/v}$ $S3 = 40 \text{ ms/v}$

$$S3 = 40 \text{ ms/v}$$

$$V1 = 5 \text{ v/r}$$
 $V2 = 4 \text{ v/r}$ $V3 = 2 \text{ v/r}$

$$V3 = 2 v/r$$

$$R1 = \frac{0,010}{1 - 0.010 * 5 * 5} = \frac{0,010}{1 - 0.25} = 0,013 \text{ s/v}$$

$$R2 = \frac{0,050}{1 - 0,050 * 4 * 5} = \frac{0,050}{1 - 0,5} = 0,10 \text{ s/v}$$

$$R2 *= \frac{0,050}{1 - 0,050 * 4 * 5} = \frac{0,050}{1 - 0,50} = 0,10 \ s/v$$

$$R3 = \frac{0,040}{1 - 0,040 * 2 * 5} = \frac{0,040}{1 - 0,4} = 0,067 \text{ s/v}$$

$$R = R1 * V1 + R2 * V2 + R2 * V2 + R3 * V3$$

= 0,013 * 5 + 0,10 * 4 + 0,10 * 4 + 0,067 * 2 = 1,00s/r

Exemplo: Aumentando a carga 10%

$$R1 = \frac{0,010}{1 - 0.010 * 5 * 5} = \frac{0,010}{1 - 0.27} = 0,013 \text{ s/v}$$

$$R2 = \frac{0,050}{1 - 0.050 * 4 * 5} = \frac{0,050}{1 - 0.55} = 0,11 \, s/v$$

$$R2 *= \frac{0,050}{1 - 0,050 * 4 * 5} = \frac{0,050}{1 - 0,55} = 0,11 \, s/v$$

$$R3 = \frac{0,040}{1 - 0,040 * 2 * 5} = \frac{0,040}{1 - 0,44} = 0,071 \, s/v$$

$$R = R1 * V1 + R2 * V2 + R2 * V2 + R3 * V3 = 0,013 * 5 + 0,11 * 4 + 0,11 * 4 + 0,071 * 2 = 1,09 (1,00s/r)$$

Exemplo: Qual é a carga de saturaria o sistema

$$R1 = \frac{0,010}{1 - 0.010 * 5 * 5} = \frac{0,010}{1 - 0.27} = 0,013 \, s/v$$

$$R2 = \frac{0,050}{1 - 0.050 * 4 * 5} = \frac{0,050}{1 - 0.55} = 0,11 \, s/v$$

$$R2 *= \frac{0,050}{1 - 0,050 * 4 * 5} = \frac{0,050}{1 - 0,55} = 0,11 \, s/v$$

$$R3 = \frac{0,040}{1 - 0,040 * 2 * 5} = \frac{0,040}{1 - 0,44} = 0,071 \, s/v$$

$$Ri = \frac{Si}{1 - Si * Vi * \lambda O}$$

$$\lambda o = 1/(Si*Vi)$$

Exemplo:

Qual é a carga que garante que o sistema operaria com 60 % de disponibilidade

$$R1 = \frac{0,010}{1 - 0,010 * 5 * 5} = \frac{0,010}{1 - 0,27} = 0,013 \, s/v$$

$$R2 = \frac{0,050}{1 - 0.050 * 4 * 5} = \frac{0,050}{1 - 0.55} = 0,11 \, s/v$$

$$R2 *= \frac{0,050}{1 - 0.050 * 4 * 5} = \frac{0,050}{1 - 0.55} = 0,11 s/v$$

$$R3 = \frac{0,040}{1 - 0,040 * 2 * 5} = \frac{0,040}{1 - 0,44} = 0,071 \, s/v$$

$$Ri = \frac{Si}{1 - Si * Vi * \lambda o}$$

Exemplo 2:

Considere um sistema de computação o qual recebeu 120 requisições durante o tempo de observação de 24 s. Por monitoramento foram coletados os seguintes dados por meio dos diagramas de sequenciamento. Calcular R do sistema:

CPU:

$$To = 24 s$$

$$Bi = 20 s.$$

$$Ai = 12 v$$
.

$$Ci = 12 v.$$

Disco 1:

$$To = 24 s$$

$$Bi = 22 s.$$

$$Ai = 13 v.$$

$$Ci = 13 v.$$

Disco 2:

$$To = 24 s$$

$$Bi = 23 s.$$

$$Ai = 11 v.$$

$$Ci = 11 v.$$

$$R = \sum Ri * Vi$$

$$R = \sum \frac{Si}{1 - Si * Vi * \lambda o} * Vi; \quad R = \sum \frac{Bi/Ci}{1 - (Bi/Ci) * (Ci/Co) * \lambda o} * (Ci/Co)$$

$$R1 * V1 = \frac{20/12}{1 - (20/12) * (12/120) * 5} * (12/120)$$

$$R2 * V2 = \frac{22/13}{1 - (22/13)*(13/120)*5} * (13/120)$$

R3 * V3 =
$$\frac{23/11}{1-(23/11)*(11/120)*5}*(11/120)$$

CPU:

To = 24 s

Bi = 20 s.

Ai = 12 v.

Ci = 12 v.

Disco 1:

To = 24 s

Bi = 22 s.

Ai = 13 v.

Ci = 13 v.

Considere um sistema de computação o qual recebe 300 req/min. (5 req/s). Chegaram 120 requisições durante o tempo de observação. Por monitoramento foram coletados os seguintes dados por meio dos diagramas de sequenciamento. Calcular R do sistema:

Disco 2:

 $T_0 = 24 s$

Bi = 23 s.

Ai = 11 v.

Ci = 11 v.

$$R1 * V1 = \frac{1,67}{1-0,83} * (0,1)=0,98$$

$$R2 * V2 = \frac{1,69}{1-0,92} * (0,11)=2,32$$

R3 * V3 =
$$\frac{2,09}{1-0.96}$$
 * (0,09)=4,70

$$RTotal = 0.98 + 2.32 + 4.70 = 8.00$$

Se a carga aumentar 10%

R1 * V1 =
$$\frac{1,67}{1-0.83*1.10}$$
 * (0,1)= $\frac{1,67}{1-0.91}$ * (0,1) = 1,85 s/v

R2 * V2 =
$$\frac{1,69}{1-0,92*1,10}$$
 * (0,11) = $\frac{1,69}{1-1,02}$ * (0,11) => $\frac{1,69}{1-0,99}$ * (0,11)=18,60 s/v

R3 * V3 =
$$\frac{2,09}{1-0,961,10}$$
 * $(0,09) = \frac{2,09}{1-1,05}$ * $(0,09) = \frac{2,09}{1-0,99}$ * $(0,09) = 18,81 \text{ s/v}$

$$RTotal = 1,85 + 18,60 + 18,81 = 39,26 \text{ s/v s/v}$$

Duplicando os discos D1 e D2 (Objetivo SLA = 2,5 s/req):

$$R1 * V1 = \frac{1,67}{1-0.91} * (0,1) = 1,85 \text{ s/v}$$

R2 * V2 =
$$\frac{1,69}{1-0,99/2}$$
 * (0,11)= $\frac{1,69}{1-0,50}$ * (0,11)= 0,37 s/v

R3 * V3 =
$$\frac{2,09}{1 - \frac{0,99}{2}}$$
 * (0,09) = $\frac{2,09}{1 - 0,50}$ * (0,09) = 0,37 s/v

$$RTotal = 1,85 + 0,37 + 0,37 + 0,37 + 0,37 = 3,33 \text{ s/v s/v}$$

Duplicando SERVIDOR (Objetivo SLA = 2,5 s/req):

R1 * V1=
$$\frac{1,67}{1-0,91/2}$$
 * (0,1) = 0,30 s/v

$$R2 * V2 = \frac{1.69}{1 - 0.50/2} * (0.11) = 0.25 \text{ s/v}$$

$$R2 * V2 = \frac{1,69}{1-0,50/2} * (0,11) = 0,25 \text{ s/v}$$

R3 * V3 =
$$\frac{2,09}{1 - 0,50/2}$$
 * (0,09) = 0,25 s/v

R3 * V3 =
$$\frac{2,09}{1 - \frac{0,50}{2}}$$
 * (0,09) = 0,25 s/v

$$RTotal = 0.30 + 0.25 + 0.25 + 0.25 + 0.25 = 1.30 \text{ s/v s/v}$$

Tempo médio total de uma requisição:

Di: tempo médio total que uma requisição gasta para ser atendida pelo dispositivo "i" em todas as suas visitas ao mesmo [s/req.]

$$R = \sum Ri * Vi$$

$$Ri = \frac{Si}{1 - Ui}$$

Pelo teorema do Utilização: Ui ≈ Si * λi

Pelo teorema do fluxo forçado: $\lambda i \approx Vi * \lambda o$

$$R = \sum \frac{Si}{1 - Si * Vi * \lambda o} * Vi$$

$$R = \sum \frac{Bi/Ci}{1 - (Bi/Ci) * (Ci/Co) * \lambda o} * (Ci/Co)$$

Tem-se que: $R = \sum Ri * Vi$

ou
$$R = \sum \frac{Si}{1 - Ui} * Vi$$

Como: Di = Si * Vi

$$R = \sum \frac{Di}{1 - Ui}$$

Como: Di = Si * Vi e Ui = Si * Xi

então: Di = Ui/Xi * Vi

Como: $Di = \frac{Ui}{Ci/To} * \frac{Ci}{Co}$ então: $Di = \frac{Ui*To}{Co}$

Finalmente: Di = Ui/Xo

Logo: $R = \sum \frac{Ui/Xo}{1-Ui}$

Exemplo de Modelo:

To = 1 hora

Co = 7200 req. Concluídas

Ucpu = 60% Como:
$$D_i = \frac{Ui}{XO}$$
 e $X_O = \frac{CO}{TO}$

$$Ud1 = 50\%$$

$$Ud2 = 80\%$$

$$Ud3 = 90\%$$

$$Xo = Co/To = 2 req./s$$

$$R = \frac{0,60/2}{1 - 0,60} + \frac{0,50/2}{1 - 0,50} + \frac{0,80/2}{1 - 0,80} + \frac{0,90/2}{1 - 0,90}$$

$$R = \frac{0,30}{0,40} + \frac{0,25}{0,50} + \frac{0,40}{0,20} + \frac{0,45}{0,10}$$

$$R = 0.75 + 0.50 + 2.00 + 4.50$$

$$R = 7,75 \text{ s/req.}$$

Aumentando a carga em 10%

$$R = \frac{0,30}{1 - 0,66} + \frac{0,25}{1 - 0,55} + \frac{0,40}{1 - 0,88} + \frac{0,45}{1 - 0,99}$$

$$R = \frac{0,30}{0,34} + \frac{0,25}{0,45} + \frac{0,40}{0,12} + \frac{0,45}{0,01}$$

$$R = 0.88 + 0.55 + 3.33 + 45.0$$

$$R = 49,76 \text{ s/req.}$$

Melhorando o código em 10%

$$R = \frac{0,30}{1 - 0,66} + \frac{0,25}{1 - 0,55} + \frac{0,40}{1 - 0,88} + \frac{0,45}{1 - 0,99}$$

$$R = \frac{0,30}{1 - 0,66} + \frac{0,25}{1 - 0,55} + \frac{0,40}{1 - 0,88} + \frac{0,45}{1 - 0,99}$$

$$R = \frac{0,30 * 0,90}{1 - 0,66 * 0,90} + \frac{0,25}{1 - 0,55} + \frac{0,40}{1 - 0,88} + \frac{0,45}{1 - 0,99}$$

$$R = 0,66 + 0,55 + 3,33 + 45,0$$

$$R = 49,54 \text{ s/req}.$$

Aumentando o storage

$$R = \frac{0,27}{0,41} + \frac{0,25}{0,45} + \frac{0,40}{0,12} + \frac{0,45}{1 - 0,99}$$

$$R = \frac{0,27}{0,41} + \frac{0,25}{0,45} + \frac{0,40}{0,12} + \frac{0,45}{1 - 0,50} + \frac{0,45}{1 - 0,50}$$

$$R = 0.66 + 0.55 + 3.33 + 0.90 + 0.90$$

$$R = 6.34 \text{ s/req.}$$

Tempo mínimo= 1,82 s/req.

Duplicando o servidor

$$R = \frac{0,27}{1 - 0,59/2} + \frac{0,25}{1 - 0,55/2} + \frac{0,40}{1 - 0,88/2} + \frac{0,45}{1 - 0,50/2} + \frac{0,45}{1 - 0,50/2}$$

$$R = \frac{0,27}{1 - 0,29} + \frac{0,25}{1 - 0,28} + \frac{0,40}{1 - 0,44} + \frac{0,45}{1 - 0,25} + \frac{0,45}{1 - 0,25}$$

$$R = \frac{0,27}{0,71} + \frac{0,25}{0,72} + \frac{0,40}{0,56} + \frac{0,45}{0,75} + \frac{0,45}{0,75}$$

$$R = 0,38 + 0,35 + 0,71 + 0,60 + 0,60$$

$$R = 2,64 \text{ s/req}.$$

Tempo mínimo = 1,82 s/req. Para cada servidor

Critério para definir o SLA: Considerando um ambiente em Nuvem: Ui=40%

$$R = \frac{0,27}{1 - 0,40} + \frac{0,25}{1 - 0,40} + \frac{0,40}{1 - 0,40} + \frac{0,45}{1 - 0,40} + \frac{0,45}{1 - 0,40}$$

$$R = \frac{0.27}{0.60} + \frac{0.25}{0.60} + \frac{0.40}{0.60} + \frac{0.45}{0.60} + \frac{0.45}{0.60}$$

$$RSLA = \frac{1,82}{0.60} = 3,03 \text{ s/req, } 60$$

Tempo mínimo = 1,82 s/req. Para cada servidor

Exercício:

```
To = 1 hora
Co = 5400 req. Concluídas
                                       D_i = \frac{Ui}{Y_o} \mathbf{e} \ X_o = \frac{Co}{T_o}
Ucpu = 40% Como:
Ud1 = 80\%
Ud2 = 80\%
                                                      Xo = Co/To = 1.5 req./s
Ud3 = 90\%
                      R = \frac{0,40/1,5}{1-0.40} + \frac{0,80/1,5}{1-0.80} + \frac{0,80/1,5}{1-0.80} + \frac{0,90/1,5}{1-0.90}
                                   R = \frac{0.27}{0.60} + \frac{0.53}{0.20} + \frac{0.53}{0.20} + \frac{0.60}{0.10}
                                    R = 0.45 + 2.65 + 2.65 + 6.00
                                               R = 11.75 \text{ s/reg.}
```

Aumentando a carga em 10%

$$R = \frac{0,40/1,5}{1-0,44} + \frac{0,80/1,5}{1-0,88} + \frac{0,80/1,5}{1-0,88} + \frac{0,90/1,5}{1-0,99}$$

$$R = \frac{0,27}{0,56} + \frac{0,53}{0,12} + \frac{0,53}{0,12} + \frac{0,60}{0,01}$$

$$R = 0,48 + 4,42 + 4,42 + 60,00$$

R = 69.32 s/req.

Aumentando o storage

$$R = \frac{0.27}{1 - 0.44} + \frac{0.53}{1 - 0.88} + \frac{0.53}{1 - 0.88} + \frac{0.60}{1 - 0.50} + \frac{0.60}{1 - 0.50}$$

$$R = 0.48 + 4.42 + 4.42 + 1.20 + 1.20$$

$$R = 11,72 \text{ s/req.}$$

Tempo mínimo que pode ser alcançado:

$$R = 0.27 + 0.53 + 0.53 + 0.60 + 0.60$$

$$R = 2,53 \text{ s/req.}$$

Duplicando servidor Cada Servidor:

$$R = \frac{0.27}{1 - 0.44/2} + \frac{0.53}{1 - 0.88/2} + \frac{0.53}{1 - 0.88/2} + \frac{0.60}{1 - 0.50/2} + \frac{0.60}{1 - 0.50/2}$$

$$R = \frac{0.27}{1 - 0.22} + \frac{0.53}{1 - 0.44} + \frac{0.53}{1 - 0.44} + \frac{0.60}{1 - 0.25} + \frac{0.60}{1 - 0.25}$$

$$R = \frac{0.27}{0.78} + \frac{0.53}{0.56} + \frac{0.53}{0.56} + \frac{0.60}{0.75} + \frac{0.60}{0.75}$$

$$R = 0.34 + 0.95 + 0.95 + 0.80 + 0.80$$

R = 3.84 s/req. Limite: 2,53 s/req.

Triplicando servidor Cada Servidor:

$$R = \frac{0.27}{1 - 0.44/3} + \frac{0.53}{1 - 0.88/3} + \frac{0.53}{1 - 0.88/3} + \frac{0.60}{1 - 0.50/3} + \frac{0.60}{1 - 0.50/3}$$

$$R = \frac{0.27}{1 - 0.15} + \frac{0.53}{1 - 0.30} + \frac{0.53}{1 - 0.30} + \frac{0.60}{1 - 0.17} + \frac{0.60}{1 - 0.17}$$

$$R = \frac{0.27}{0.85} + \frac{0.53}{0.70} + \frac{0.53}{0.70} + \frac{0.60}{0.83} + \frac{0.60}{0.83}$$

$$R = 0.32 + 0.75 + 0.75 + 0.72 + 0.72$$

Exercício em aula:

To = 1 horaCo = 7200 req. Concluídas

Ud2 = 80%

Ud3 = 90%

Ucpu = 80% Como:
$$D_i = \frac{Ui}{Xo}$$
 e $X_o = \frac{Co}{To}$

$$Xo = Co/To = 2.0 req./s$$

$$R = \frac{0,80/2,0}{1-0.80} + \frac{0,80/2,0}{1-0.80} + \frac{0,80/2,0}{1-0.80} + \frac{0,90/2,0}{1-0.90}$$

$$R = \frac{0.4}{1 - 0.80} + \frac{0.4}{1 - 0.80} + \frac{0.40}{1 - 0.80} + \frac{0.45}{1 - 0.90}$$

$$R = \frac{0.40}{0,20} + \frac{0,40}{0,20} + \frac{0,40}{0,20} + \frac{0,45}{0,10}$$

$$R = 2 + 2 + 2 + 4,5$$

$$R = 10,5 \text{ s/req}.$$

Aumentando a carga em 10%

$$R = \frac{0.4}{1 - 0.88} + \frac{0.4}{1 - 0.88} + \frac{0.40}{1 - 0.88} + \frac{0.45}{1 - 0.99}$$

$$R = \frac{0.40}{0.12} + \frac{0.40}{0.12} + \frac{0.40}{0.12} + \frac{0.45}{0.01}$$

$$R = 3.33 + 3.33 + 3.33 + 45$$

$$R = 55 \text{ s/req.}$$

Aumentando o storage

$$R = \frac{0.4}{1 - 0.88} + \frac{0.4}{1 - 0.88/2} + \frac{0.40}{1 - 0.88/2} + \frac{0.4}{1 - 0.88/2} + \frac{0.4}{1 - 0.88/2} + \frac{0.45}{1 - 0.99/2} + \frac{0.45}{1 - 0.99/2} + \frac{0.45}{1 - 0.99/2}$$

$$R = \frac{0.40}{0.12} + \frac{0.40}{0.56} + \frac{0.40}{0.56} + \frac{0.40}{0.56} + \frac{0.45}{0.50} + \frac{0.45}{0.50} + \frac{0.45}{0.50}$$

$$R = 3.33 + 0.71 + 0.71 + 0.71 + 0.71 + 0.90 + 0.90$$

$$R = 7.97 \text{ s/req.}$$

Tempo mínimo que pode ser alcançado: 3 s/req.

Duplicando servidor Cada Servidor:

$$R = \frac{0.4}{1 - 0.88/2} + \frac{0.4}{1 - 0.44/2} + \frac{0.40}{1 - 0.44/2} + \frac{0.4}{1 - 0.44/2} + \frac{0.4}{1 - 0.44/2} + \frac{0.45}{1 - 0.50/2} + \frac{0.45}{1 - 0.50/2}$$

$$R = \frac{0.40}{0.56} + \frac{0.40}{0.78} + \frac{0.40}{0.78} + \frac{0.40}{0.78} + \frac{0.40}{0.78} + \frac{0.45}{0.75} + \frac{0.45}{0.75}$$

$$R = 0.71 + 0.51 + 0.51 + 0.51 + 0.51 + 0.60 + 0.60$$

$$R = 3.95 \text{ s/req.}$$

Triplicando servidor Cada Servidor:

$$R = \frac{0.4}{1 - 0.88/3} + \frac{0.4}{1 - 0.44/3} + \frac{0.40}{1 - 0.44/3} + \frac{0.4}{1 - 0.44/3} + \frac{0.4}{1 - 0.44/3} + \frac{0.45}{1 - 0.50/3} + \frac{0.45}{1 - 0.50/3}$$

$$R = \frac{0.40}{0.71} + \frac{0.40}{0.85} + \frac{0.40}{0.85} + \frac{0.40}{0.85} + \frac{0.45}{0.85} + \frac{0.45}{0.83} + \frac{0.45}{0.83}$$

$$R = 0.56 + 0.47 + 0.47 + 0.47 + 0.47 + 0.54 + 0.54$$

$$R = 3.52 (3.95) \text{ s/req.}$$

Determinar o SLA para uma disponibiliade de 40%

$$R = \frac{0.40}{0.40} + \frac{0.40}{0.40} + \frac{0.40}{0.40} + \frac{0.40}{0.40} + \frac{0.40}{0.40} + \frac{0.45}{0.40} + \frac{0.45}{0.40}$$

$$R = 7.25 \text{ s/req.}$$

Modelos Multi-carga

Seja o modelo do sistema considerando que todas as requisições são da mesma natureza:

$$R = \frac{D_{CPU}}{1 - U_{CPU}} + \frac{D_{D1}}{1 - U_{D1}} + \frac{D_{D2}}{1 - U_{D2}} + \frac{D_{D3}}{1 - U_{D3}} + \dots +$$

R: Tempo médio de resposta por requisição [s/req.]

Ui: Utilização do dispositivo "i"

Di: Tempo médio total gasto por uma requisição no dispositivo "i", sem considerar tempo de espera.

Com:

$$D_{cpu} = D_{cpu}^{A} + D_{cpu}^{B} + D_{cpu}^{C} + \cdots$$
$$D_{D1} = D_{D1}^{A} + D_{D1}^{B} + D_{D1}^{C} + \cdots$$

Generalizando:

$$D_i = D_i^A + D_i^B + D_i^C + \cdots$$

Seja o modelo do sistema considerando que todas as requisições são da mesma natureza:

$$R = \frac{D_{cpu}^{A} + D_{cpu}^{B}}{1 - U_{cpu}} + \frac{D_{D1}^{A} + D_{D1}^{B}}{1 - U_{D1}} + \frac{D_{D2}^{A} + D_{D2}^{B}}{1 - U_{D2}} + \cdots$$

Separando as requisições:

$$R_A = \frac{D_{cpu}^A}{1 - U_{CPU}} + \frac{D_{D1}^A}{1 - U_{D1}} + \frac{D_{D2}^A}{1 - U_{D2}} + \cdots$$

$$R_B = \frac{D_{cpu}^B}{1 - U_{cpu}} + \frac{D_{D1}^B}{1 - U_{D1}} + \frac{D_{D2}^B}{1 - U_{D2}} + \cdots$$

Exemplo: Considere um sistema multi-carga observado durante To = 1 h. Os seguintes dados foram coletados durante To:

Co -req. atendidas	Α	В
	3600	7200

Ui – Utilização	Α	В	Total
CPU	40%	30%	70%
D1	40%	40%	80%
D2	20%	30%	50%

Avaliar o sistema:

Exemplo:

Xo = Co /To	Α	В
Req/s.	3600/3600 = 1	7200/3600 = 2

Di=Ui/Xo	Α	В
CPU	0,40/1=0,40	0,30/2=0,15
D1	0,40/1=0,40	0,40/2=0,20
D2	0,20/1=0,20	0,30/2=0,15

Di/1-Ui	Α	В
CPU	0,40/1-0,70 = 0,40/0,30 = 1,33	0,15/1-0,70 = 0,15/0,30 = 0,50
D1	0,40/1-0,80 = 0,40/0,20 = 2	0,20/1-0,80 = 0,20/0,20 = 1
D2	0,20/1-0,50 = 0,20/0,50 = 0,40	0,15/1-0,50 = 0,15/0,50 = 0,30
TOTAL	Ra = 3,73 s/r	Rb = 1.80 s/r

Aumentando a carga A 10%:

Ui - Utilização	Α	В	Total
CPU	44%	30%	74%
D1	44%	40%	84%
D2	22%	30%	52 %

Di são constantes:

Di/1-Ui	A	В
CPU	0,40/1-0,74 = 0,40/0,26 = 1,53	0,15/1-0,74 = 0,15/0,26 = 0,57
D1	0,40/1-0,84 = 0,40/0,16 = 2,5	0,20/1-0,84 = 0,20/0,16 = 1,25
D2	0,20/1-0,52 = 0,20/0,48 = 0,41	0,15/1-0,52 = 0,15/0,48 = 0,31
TOTAL	Ra = 4,44 s/r (19%+)	Rb = 2,13 s/r (18%+)

Aumentando a carga B 10%:

Ui - Utilização	Α	В	Total
CPU	44%	33%	77%
D1	44%	44%	88%
D2	22%	33%	55%

Di são constantes:

Di/1-Ui	A	В
CPU	0,40/1-0,77 = 0,40/0,23 = 1,73	0,15/1-0,77 = 0,15/0,23 = 0,65
D1	0,40/1-0,88 = 0,40/0,12 = 3,33	0,20/1-0,88 = 0,20/0,12 = 1,66
D2	0,20/1-0,55 = 0,20/0,45 = 0,44	0,15/1-0,55 = 0,15/0,45 = 0,33
TOTAL	Ra = 5,50 s/r (25%+)	Rb = 2,64 s/r (24%+)

Se as cargas A e B aumentam em 10%:

Ui - Utilização	Α	В	Total
CPU	48%	36%	84%
D1	48%	48%	96%
D2	24%	36%	60%

Di são constantes:

Di/1-Ui	A	В
CPU	0,40/1-0,84 = 0,40/0,16 = 2,5	0,15/1-0,84 = 0,15/0,16 = 0,93
D1	0,40/1-0,96 = 0,40/0,04 = 10,0	0,20/1-0,96 = 0,20/0,04 = 5,0
D2	0,20/1-0,60 = 0,20/0,40 = 0,50	0,15/1-0,60 = 0,15/0,40 = 0,37
TOTAL	Ra = 13,00 s/r (136%+)	Rb = 6.30 s/r (142% +)

Duplicando o disco D1:

Ui – Utilização	A	В	Total
CPU	48%	36%	84%
D1 (original)	24%	24%	48%
D1 (espelhado)	24%	24%	48%
D2	24%	36%	60%

Di/1-Ui	Α	В
CPU	0,40/1-0,84 = 0,40/0,16 = 2,5	0,15/1-0,84 = 0,15/0,16 = 0,93
D1 (original)	0,40/1-0,48 = 0,40/0,52 = 0,77	0,20/1-0,48 = 0,20/0,52 = 0,38
D1 (espelhado)	0,40/1-0,48 = 0,40/0,52 = 0,77	0,20/1-0,48 = 0,20/0,52 = 0,38
D2	0,20/1-0,60 = 0,20/0,40 = 0,50	0,15/1-0,60 = 0,15/0,40 = 0,37
TOTAL	Ra = 4,54 s/r	Rb = 2,06 s/r

Duplicado o disco D1 e aumentando as cargas A e B em 10%:

Ui – Utilização	Α	В	Total
CPU	48% (52%)	36% (40%)	84% (92%)
D1	24% (26%)	24% (26%)	48% (52%)
D1 (espelhado)	24% (26%)	24% (26%)	48% (52%)
D2	24% (26%)	36% (40%)	60% (66%)

Di/1-Ui	A	В
CPU	0,40/1-0,92 = 0,40/0,08 = 5,00	0,15/1-0,92 = 0,15/0,08 = 1,87
D1	0,40/1-0,52 = 0,40/0,48 = 0,83	0,20/1-0,52 = 0,20/0,48 = 0,42
D1 (espelhado)	0,40/1-0,52 = 0,40/0,48 = 0,83	0,20/1-0,52 = 0,20/0,48 = 0,42
D2	0,20/1-0,66 = 0,20/0,34 = 0,59	0,15/1-0,66 = 0,15/0,34 = 0,44
TOTAL	Ra = 7,25 s/r	Rb = 3,15 s/r

Duplicando o disco D1 e aumentando as cargas A e B em

mais 10%:

Ui – Utilização	Α	В	Total
CPU	52%	40%	92% (1,02%)
D1	26%	26%	52% (57%)
D1 (espelhado)	26%	26%	52% (57%)
D2	26%	40%	66% (73%)

Di/1-Ui	A	В
CPU	0,40/1-0,99 = 0,40/0,01 = 40,00	0,15/1-0,99 = 0,15/0,01 = 15
D1	0,40/1-0,57 = 0,40/0,43 = 0,93	0,20/1-0,57 = 0,20/0,43 = 0,46
D1 (espelhado)	0,40/1-0,57 = 0,40/0,43 = 0,93	0,20/1-0,57 = 0,20/0,43 = 0,46
D2	0,20/1-0,73 = 0,20/0,27 = 0,74	0,15/1-0,73 = 0,15/0,27 = 0,56
TOTAL	Ra = 42,6 s/r	Rb = 16,48 s/r

Melhorando o código de CPU em 10%:

Di/1-Ui	Α	В
CPU	(0.90*0.40)/(1-0.99*0.90) = 0.36/(1-0.89) = 0.36/0.11 = 3.27	(0.90*0.15)/(1-0.99*0.90) = 0.13/(1-0.89) = 0.13/0.11 = 1.18
D1	0,40/1-0,57 = 0,40/0,43 = 0,93	0,20/1-0,57 = 0,20/0,43 = 0,46
D1 (espelhado)	0,40/1-0,57 = 0,40/0,43 = 0,93	0,20/1-0,57 = 0,20/0,43 = 0,46
D2	0,20/1-0,73 = 0,20/0,27 = 0,74	0,15/1-0,73 = 0,15/0,27 = 0,56
TOTAL	Ra = 5,87 s/r	Rb = 2,66 s/r

Duplicando o servidor:

Ui – Utilização	Total
CPU	89% (44%)
D1	57% (<mark>27%</mark>)
D1 (espelhado)	57% (<mark>27</mark> %)
D2	73% (36%)

Di/1-Ui	Α	В
CPU	0,36/1-0,44 = 0,36/0,56 = 0,64	0,13/1-0,44 = 0,13/0,56 = 0,23
D1	0,40/1-0,27 = 0,40/0,73 = 0,55	0,20/1-0,27 = 0,20/0,73 = 0,27
D1 (espelhado)	0,40/1-0,27 = 0,40/0,73 = 0,55	0,20/1-0,27 = 0,20/0,73 = 0,27
D2	0,20/1-0,36 = 0,20/0,64 = 0,31	0,15/1-0,36 = 0,15/0,64 = 0,23
TOTAL	Ra = 2,05 s/r	Rb = 1,00 s/r

Triplicando o servidor:

Ui – Utilização	Total
CPU	89% (30%)
D1	57% (19%)
D1 (espelhado)	57% (19%)
D2	73% (24%)

Di/1-Ui	Α	В
CPU	0,36/1-0,30 = 0,36/0,70 = 0,51	0,13/1-0,30 = 0,13/0,70 =0,18
D1	0,40/1-0,19 = 0,40/0,81 = 0,49	0,20/1-0,19 = 0,20/0,81 = 0,25
D1 (espelhado)	0,40/1-0,19 = 0,40/0,81 = 0,49	0,20/1-0,19 = 0,20/0,81 = 0,25
D2	0,20/1-0,24 = 0,20/0,76 = 0,26	0,15/1-0,24 = 0,15/0,76 = 0,20
TOTAL	Ra = 1,76 s/r	Rb = 0.88 s/r

Tempo de resposta mínimo possível: Ra = 1,36 s/r Rb = 0,68 s/r

ETAPA 10: PROPOSTA DE NOVA CONFIGURAÇÃO

Considerando os modelos de carga de trabalho e do sistema computacional, o próximo passo é ajustar uma configuração que atenda requisitos como:

- -Vida útil do sistema
- -Disponibilidade do Sistema
- -Limites de QoS SLA

Exempl	0:
--------	----

Ui	Total
CPU	80%
D1	80%
D2	50%

Disco	1	=	BD1,	BD2
Disco	2	=	BD3,	BD4

	A	В
# de req. processadas	6000	3000
Consumo de CPU	Consumo de CPU 1500 s	
	# de Operações de I/O em dis	sco
BD1	10000	15000
BD2	5000	0
BD3	20000	2000
BD4	0	4000

Ui	Total
CPU	80%
D1	80%
D2	50%

Disco 1 = BD1, BD2 Disco 2 = BD3, BD4

	A	В		
# de req. processadas	6000	3000		
Consumo de CPU	1500 s	600 s		
# (# de Operações de I/O em disco			
BD1	10000	15000		
BD2	5000	0		
BD3	20000	2000		
BD4	0	4000		

Ui – Utilização	Α	В	Total
CPU	0,8*1500/2100=0,57	0,80*600/2100=0,23	80%
D1	0,80*15000/30000=0,40	0,80*15000/30000=0,40	80%
D2	0,50*20000/26000=0,38	0,50*6000/26000=0,12	50%

Ui - Utilização	A	В	Total
CPU	0,57	0,23	80%
D1	0,40	0,40	80%
D2	0,38	0,12	50%

Xo = Co /To	Α	В
Req/s.	6000/3600 = 1,67	3000/3600 = 0,83

Di=Ui/Xo	Α	В
CPU	0,57/1,67=0,34	0,23/0,83=0,28
D1	0,40/1,67=0,24	0,40/0,83=0,48
D2	0,38/1,67=0,23	0,12/0,83=0,14

Ui – Utilização	Α	В	Total
CPU	0,57	0,23	80%
D1	0,40	0,40	80%
D2	0,38	0,12	50%

Di=Ui/Xo	Α	В
CPU	0,57/1,67=0,34	0,23/0,83=0,28
D1	0,40/1,67=0,24	0,40/0,83=0,48
D2	0,38/1,67=0,23	0,12/0,83=0,14

Di/1-Ui	A	В
CPU	0.34/1-0.80 = 0.34/0.20 = 1.70	0,28/1-0,80 = 0,28/0,20 = 1,4
D1	0,24/1-0,80 = 0,24/0,20 = 1,2	0,48/1-0,80 = 0,48/0,20 = 2,4
D2	0,23/1-0,50 = 0,23/0,50 = 0,46	0,14/1-0,50 = 0,14/0,50 = 0,28
TOTAL	Ra = 3,36 s/r	Rb = 4.08 s/r

Aumentando a carga A em 10%:

Ui - Utilização	Α	В	Total
CPU	0,62	0,23	85%
D1	0,44	0,40	84%
D2	0,42	0,12	54%

Di/1-Ui	Α	В
CPU	0,34/1-0,85 = 0,34/0,15 = 2,27	0,28/1-0,85 = 0,28/0,15 = 1,87
D1	0,24/1-0,84 = 0,24/0,16 = 1,5	0,48/1-0,84 = 0,48/0,16 = 3,0
D2	0,23/1-0,54 = 0,23/0,46 = 0,5	0,14/1-0,54 = 0,14/046 = 0,30
TOTAL	Ra = 4,27 s/r	Rb = 5,17 s/r

Aumentando a carga B em 20%:

Ui - Utilização	Α	В	Total
CPU	0,62	0,28	90%
D1	0,44	0,48	92%
D2	0,42	0,14	56%

Di/1-Ui	Α	В
CPU	0,34/1-0,90 = 0,34/0,10 = 3,40	0,28/1-0,90 = 0,28/0,10 = 2,8
D1	0,24/1-092 = 0,24/0,08 = 3,0	0,48/1-0,92 = 0,48/0,08 = 6,0
D2	0,23/1-0,56 = 0,23/0,44 = 0,52	0,14/1-0,56 = 0,14/0,44 = 0,32
TOTAL	Ra = 6,92 s/r	Rb = 9,12 s/r

Duplicando Servidor:

Ui - Utilização	Α	В	Total
CPU	0,62	0,28	90%/2=0,45
D1	0,44	0,48	92%/2=0,46
D2	0,42	0,14	56%/2=0,28

Di/1-Ui	Α	В
CPU	0,34/1-0,45 = 0,34/0,55 = 0,62	0,28/1-0,45 = 0,28/0,55 = 0,51
D1	0,24/1-0,46 = 0,24/0,54 = 0,44	0,48/1-0,46 = 0,48/0,54 = 0,89
D2	0,23/1-0,28 = 0,23/0,72 = 0,32	0,14/1-0,28 = 0,14/0,72 = 0,2
TOTAL	Ra = (6,92) 1,38 s/r	Rb = (9,12) 1,6 s/r

Tempo mínimo: A) 0,81 s/req B) 0,90 s/req.

Exercícios diversos:

$$Ucpu = 80\%$$
 Como:

$$Ud1 = 80\%$$

$$Ud2 = 40\%$$

$$Ud3 = 50\%$$

$$D_i = \frac{Ui}{Xo}$$
 e $X_o = \frac{Co}{To}$

$$Xo = Co/To = 2.5 \text{ req./s}$$

$$R = \frac{0,80/2,5}{1-0,80} + \frac{0,80/2,5}{1-0,80} + \frac{0,40/2,5}{1-0,80} + \frac{0,50/2,5}{1-0,90}$$

$$R = \frac{0,32}{1 - 0,80} + \frac{0,32}{1 - 0,80} + \frac{0,16}{1 - 0,40} + \frac{0,20}{1 - 0,50}$$

$$R = \frac{0.32}{0.20} + \frac{0.32}{0.20} + \frac{0.16}{0.60} + \frac{0.20}{0.50}$$

$$R = 1.6 + 1.6 + 0.26 + 0.40$$

$$R = 3.86 \text{ s/req}.$$

Aumentando a carga em 10%

$$R = \frac{0.32}{1 - 0.88} + \frac{0.32}{1 - 0.88} + \frac{0.16}{1 - 0.44} + \frac{0.20}{1 - 0.55}$$

$$R = \frac{0.32}{0.12} + \frac{0.32}{0.12} + \frac{0.16}{0.56} + \frac{0.20}{0.45}$$

$$R = 2.6 + 2.6 + 0.28 + 0.44$$

$$R = 6.06 \text{ s/req.}$$

Duplicando servidor

Cada Servidor:

$$R1,2 = \frac{0,32}{1 - 0,88/2} + \frac{0,32}{1 - 0,88/2} + \frac{0,16}{1 - 0,44/2} + \frac{0,20}{1 - 0,55/2}$$

$$R1,2 = \frac{0,32}{1 - 0,44} + \frac{0,32}{1 - 0,44} + \frac{0,16}{1 - 0,22} + \frac{0,20}{1 - 0,27}$$

$$R = \frac{0.32}{0,56} + \frac{0,32}{0,56} + \frac{0,16}{0,78} + \frac{0,20}{0,73}$$

$$R = 0,57 + 0,57 + 0,20 + 0,27$$

$$R = 1,6 \text{ s/req.}$$

Triplicando servidor

Cada Servidor:

$$R1,2,3 = \frac{0,32}{1 - 0,88/3} + \frac{0,32}{1 - 0,88/3} + \frac{0,16}{1 - 0,44/3} + \frac{0,20}{1 - 0,55/3}$$

$$R1,2 = \frac{0,32}{1 - 0,29} + \frac{0,32}{1 - 0,29} + \frac{0,16}{1 - 0,14} + \frac{0,20}{1 - 0,18}$$

$$R = \frac{0.32}{0,71} + \frac{0,32}{0,71} + \frac{0,16}{0,86} + \frac{0,20}{0,82}$$

$$R = 0,45 + 0,45 + 0,18 + 0,24$$

$$R = 1,32 \text{ s/req (1,6 s/req)}.$$

Mínimo = 0.32+0.32+0.16+0.20 = 1.0 s/req

Comprando 10 servidores

Cada Servidor:

R1,2,3 =
$$\frac{0,32}{1 - 0,88/10} + \frac{0,32}{1 - 0,88/10} + \frac{0,16}{1 - 0,44/10} + \frac{0,20}{1 - 0,55/10}$$

R1,2 = $\frac{0,32}{1 - 0,09} + \frac{0,32}{1 - 0,09} + \frac{0,16}{1 - 0,04} + \frac{0,20}{1 - 0,05}$
R = $\frac{0.32}{0,91} + \frac{0,32}{0,91} + \frac{0,16}{0,96} + \frac{0,20}{0,95}$
R = 0,35 + 0,35 + 0,16 + 0,21

R = 1,07 s/req (1,32 s/req (1,6 s/req)). Não compesa!!

$$Minimo = 0.32+0.32+0.16+0.20 = 1.0$$
s/req

Determinar o SLA para uma disponibiliade de 40%

$$R1,2 = \frac{0,32}{1 - 0,60} + \frac{0,32}{1 - 0,60} + \frac{0,16}{1 - 0,60} + \frac{0,20}{1 - 0,60}$$

$$R1,2 = \frac{0,32}{0,40} + \frac{0,32}{0,40} + \frac{0,16}{0,40} + \frac{0,20}{0,40}$$

$$R = 0.80 + 0.80 + 0.40 + 0.50$$

 $R = 2.5 \text{ s/reg.}$