Important Equations in Physics for IGCSE course

General Physics:

	ierai Priysics.							
1	For constant motion:	$v = \frac{s}{t}$	'v' is the velocity in m/s, 's' is the distance or displacement in meters and 't' is the time in sec					
2	For acceleration 'a'	$a = \frac{v - u}{t}$	u is the initial velocity, v is the final velocity and t is the time					
3	Graph: in velocity-time graph the area under the graph is the total distance covered		aped graph = base × height d graph = ½ × base × height					
4	Weight is the force of gravity and mass is the amount of matter	$w = m \times g$	w is the weight in newton (N), m is the mass in kg and g is acceleration due to gravity = 10 m/s^2					
5	Density ' ρ ' in kg/m ³ (ρ is the rhoo)	$ \rho = \frac{m}{V} $	m is the mass and V is the volume					
6	Force F in newtons (N)	$F = m \times a$	m is the mass and a is acceleration					
7	Terminal Velocity: falling with air resistance	Weight of an object(downwo implies no net force, therefore no a	ard) = air resistance (upwards)					
8	Hooke's Law	$F = k \times x$	F is the force, x is the extension in meters and k is the spring constant					
9	Moment of a force in N.m (also turning effect)	$moment\ of\ force = F \times d$	d is the perpendicular distance from the pivot and F is the force					
10	Law of moment or equilibrium		total anticlockwise moment $d_1 = F_2 \times d_2$					
11	Conditions of Equilibrium	Net force on x-axis=zero, net force on y-axis=zero, net moment=zero						
11	Work done W joules (J)	$W = F \times d$	F is the force and d is the distance covered by an object same direction					
12	Kinetic Energy E_k in joules (J)	$E_k = \frac{1}{2} \times m \times v^2$	m is the mass(kg) and v is the velocity (m/s)					
13	Potential Energy ΔE_p in joules (J)	$\Delta E_p = m \times g \times \Delta h$	m is mass (kg) and g is gravity and Δh is the height from the ground					
14	Law of conservation of energy:	Loss of $E_p = gain \ of \ E_k$ $m \times g \times h = \frac{1}{2} \times m \times v^2$						
15	Power in watts (W)	$P = rac{work}{time} rac{done}{taken}$ $P = rac{Energy}{time} rac{taken}{taken}$	Power is the rate of doing work or rate of transferring the energy from one form to another					
16	Efficiency:	$Efficiency = \frac{usefu}{tota}$	$\frac{l}{l \ energy \ input} \times 100$					
17	Pressure p in pascal (Pa)	$p = \frac{F}{A}$	F is the force in newton (N) and A is the area in m^2					
18	Pressure p due to liquid	$p = \rho \times g \times h$	ρ is the density in kg/m ³ , h is the height or depth of liquid in meters and g is the gravity					
19	Atmospheric pressure	P = 760mmHg = 76cm Hg = 1.01x10						
20	Energy source	renewable can be reused Hydroelectric eg dam, waterfall Geothermal eg from earth's rock Solar eg with solar cell	non-renewable cannot be reused Chemical energy eg petrol, gas Nuclear fission eg from uranium					
		Wind energy eg wind power station Tidal/wave energy eg tide in ocean	,					

Thermal Physics:

1	Boyle's law: Pressure and volume	pV=constant		p_1 and p_2 are the two pressures in Pa				
	are inversely proportional $p \propto V$	$p_1 \times V_1 = p_2 \times$		and V_1 and V_2 are the two volumes in m^3				
2	Thermal Expansion (Linear)	$\Delta L = \alpha \times L_o \times \Delta \theta$						
		L_o is the original length in meters,						
		$\Delta\theta$ is the change in temperature in ${}^{\circ}C$,						
		ΔL is the change in length in meters (L_1 - L_o) and						
		lpha is the linear expansivity of the material						
3	Thermal Expansion (Cubical)	$\Delta V = \gamma \ Vo \ \Delta \theta$	V_o is	the original volume in m^3 ,				
				the change in temperature in ${}^{\circ}C, \Delta V$ is				
		$\gamma = 3\alpha$	the c	hange in volume in m^3 (V_1 - V_o) and				
				he cubical expansivity of the material.				
4	Charle's Law:	$\frac{V}{-} = constant$		the volume in m^3 and T is the temperature				
	Volume is directly proportional to	$\frac{1}{T} = constant$	in ke	lvin (K).				
	absolute temperature	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$						
	$V \propto T$	T_1 T_2		1				
5	Pressure Law:	$\frac{p}{T} = constant$		he pressure in Pa and T is the				
	Pressure of gas is directly		temp	erature in Kelvin (K).				
	proportional to the absolute	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$						
6	temperature $p \propto T$ Gas Law (combining above laws)	$n_1 V_1$ $n_2 V_2$	In th	ermal physics the symbol θ is used for				
		$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$		us scale and T is used for kelvin scale.				
	$\frac{pV}{T} = constant$	I_1 I_2	ccisii	as searce and I is used for nervin searc.				
7	Specific Heat Capacity:	Q	c is th	he specific heat capacity in $J/(kg^{\circ}C)$,				
	Amount of heat energy required to	$c = \frac{Q}{m \times \Delta \theta}$ c is the specific heat capacity in J/(kg °C), Q is the heat energy supplied in joules (J),						
	raise the temperature of 1 kg mass	m is the mass in kg and $\Delta\theta$ is the change in						
	by 1°C.			erature				
8	Thermal Capacity: amount of heat	Thermal capacity=		The unit of thermal capacity is $J/^{\circ}C$.				
	require to raise the temperature of	Thermal capacit	$v = \frac{Q}{Q}$					
	a substance of any mass by 1°C							
9	Specific latent heat of fusion	$L_f = \frac{Q}{m} \begin{vmatrix} L_f \text{ is the} \\ Q \text{ is the} \end{vmatrix}$	specifi	c latent heat of fusion in J/kg or J/g,				
	(from solid to liquid)							
10	Specific latent heat of vaporization	m is the mass of liquid change from solid in kg or g . Q L_v is the specific latent heat of vaporization in J/kg or						
10	(from liquid to vapour)			tal heat in joules (J), m is the mass of				
	Grom tiquia to vapour)	yanour o		from liquid in kg or g.				
11	Thermal or heat transfer	In solid = conducti		J. 2 114 118 01 8.				
	,			ection and also convection current				
				up and cold matter comes down)				
		In vacuum = radia						
12	Emitters and Radiators	_	_	d emitter, good radiator, bad reflector				
		Bright shiny surface = poor emitter, poor radiator, good reflector						
13	Another name for heat radiation	Infrared radiation or radiant heat						
14	Melting point	Change solid into liquid, energy weaken the molecular bond, no						
1.5	D 17	change in temperature, molecules move around each other						
15	Boiling point	Change liquid into gas, energy break molecular bond and						
		molecules escape the liquid, average kinetic energy increase, no change in temperature, molecule are free to move						
16	Condensation							
16	Condensation			rgy release, bonds become stronger				
17	Solidification	Change liquid to solid, energy release bonds become very strong Change liquid to gas at any temperature, temperature of liquid						
18	Evaporation	0 1						
		decreases, happens	oniy a	u ine surjace				

Waves, light and sound:

1	Wave motion		Transfer of energy from one place to another											
2	Frequency f		Number of cycle or waves in one second, unit hertz (Hz)											
3	Wavelength λ		Length of one complete waves, unit, meters (m)											
4	Amplitude a		Maximum displacement of medium from its mean position, meters											
5	wavefront		A line on which the disturbance of all the particles are at same point from							ne point from				
6	Ways sayation 1	tn	the central position eg a crest of a wave is a wavefront $v = f \times \lambda \qquad v \text{ is the speed of wave in m/s, f is the frequency in}$											
0	Wave equation 1		v = f	×λ								-		
7	Wave equation 2			1		Thertz) Hz, λ is the wavelength in meters T is the time period of wave in seconds								
	Wave equation 2		f =	$=\frac{-}{T}$		i is inc	is the time period of wave in seconds							
8	Movement of particles	Lo	ongitudi	nal w	aves=	> back	and forth	para	illel to	the dir	ectio	on of the waves		
	of the medium	Ti	ransvers	se wai	ves=>	perpen	dicular to	the	directio	on of th	ie wa	ives		
9	Law of reflection				Angl	e of inc	idence i =	= ang	gel of re	eflectio	on			
							gle i° =							
10	Refraction						→ light be							
11	D.C.						→ light be	nd a	way fro	m the n	orme	al		
11	Refractive index n	n_{ala}	$ass = \frac{si}{s}$	1ι ∠ι _a	ir or va	<u>cuum</u>	n_{alass} :	= <u>sp</u>	ееи ој	ugnt	ın a	ir or vacuum t in glass		
	(Refractive index has not units)	9.0		sın	$\angle r_{glas}$	S	91433		spee	ed of l	ight	in glass		
12	Diffraction	Ron	ding of	wave	S Aroun	d the o	dges of a	hard	surfac	ρ				
13	Dispersion										uenc	y for example		
10	Dispersion	_	ising pri		ereni i	rares a	ccorums	10 00	, iours c	n jreqi	nerre.	y jor example		
14	Image from a plane m				right, s	ame siz	e and late	rall	y invert	ed and	sam	ne distance from		
			the mi							0		J		
15	Image from a convex	ens	When	close	: virtu	al, enla	rge, uprig	ht						
			When	far: 1	real, sn	ıall, up	side dowr	ı	\sim	/				
16	Image from a concave	lens			right, s				10					
17	Critical angle						ser to lig is 90°, is					ent angle at		
18	Total internal reflection (TIR)	on					ser to lig alled (TL				efra	cted ray bend		
19	Electromagnetic Spec	trum:						_	_		lds			
	$\leftarrow \lambda$ (decrease) and f											$(rease) \rightarrow$		
	Gammas X-Ray	S	Ulra vi	olet	Vis	ible	Infrare		Micro			Radio waves		
	rays		rays) rays	rays		wa					
20	Gamma rays: for killi	ng car	ncer cel	ls								ns one colour		
	X-rays: in medicine				-					-		ular pain		
	UV rays: for sun tan a		erīlīzatie	on								mobile phones		
21	of medical instrument. Colours of visible ligh		Violet	In		<u>Blue</u>	: radio ar			Orai		Red		
21	VIBGYO R wavelength		<u>v</u> 101e1 1×10 ⁻⁷ m	<u> </u>	ligo	<u>Б</u> иие	$e \mid \underline{G}reen \mid \underline{Y}ellow$		\ \frac{Orar}{}	ige	<u>к</u> еа 7×10 ⁻⁷ т			
22	Speed of light waves of	15	In air:	1 3×11	$0^8 m/\mathfrak{s}$		In water: In glass:							
~~	electromagnetic wave		m un.	5/10	υ 114 B		2.25×10^{-10}					< 10 ⁸ m/s		
23	Light wave		Transverse electromagnetic waves											
24	Sound wave are		particles of the medium come close to each other \rightarrow compression							ession				
	longitudinal waves		particles of the medium move away \rightarrow rarefaction											
25	Echo		$v = \frac{2 \times d}{t}$ $v = \frac{2 \times d}{t}$ $v = \frac{1}{t}$ $v = \frac{2 \times d}{t}$ $v = \frac{1}{t}$ $v = \frac{2 \times d}{t}$ $v = \frac{1}{t}$											
		\perp	reflection surface and t is the time for echo							or echo				
26	Properties of sound		<u>Pitch</u> is similar to the frequency of the wave <u>Loudness</u> is similar to the amplitude of the wave											
27	waves	<u> I</u>			milar t							G. I		
27	Speed of sound waves			Air :	/s		Water: Concrete:				Steel:			
			330-340 m/s			14	400 m/s 5000 m/			/s 6000–7000 m/s				

Electricity and magnetism:

	tricity and magnetism:										
1	Ferrous Materials	Attracted by magnet and can be		iron, steel, nickel and cobalt							
		magnetized		(iron temporary and steel permanent)							
2	Non-ferrous materials	Not attracted by magn	et and	copper, silver, a	luminum, wood, glass						
_		cannot be magnetized									
3	Electric field	The space or region ar									
		Direction is outward fr									
4	Electric field intensity	Amount force exerted l		-	field intensity in N/C						
		charge on a unit charg	ge (q) placea		$E = \frac{F}{T}$						
_	G (I) D C G	at a point in the field		q							
5	Current (I): Rate of flow	$I = \frac{Q}{t}$		I is the current in amperes (A), Q is the charge in coulombs (C)							
	of charges in conductor	t		Q is the charge i t is the time in se	, .						
6	Current	In circuits the current			econas (s)						
7	Ohms law	Voltage across the rest		ne eastest pain V is the voltage t	in volts (V)						
/	Onms taw	directly proportional to			n amperes (A) and						
		V × I provided if the ph		R is me currem n R is resistance in							
				n is resistance in	n Onnis (52)						
		conditions remains sar	1								
8	Voltage (potential	Energy per unit charge		q is the charge in							
	difference)	$V = \frac{Ene \ \boldsymbol{g}y}{cha\boldsymbol{r} \ e}$	$=\frac{E}{}$	V is the voltage							
_				Energy is in joul							
9	E.M.F.	E.M.F. = lost volts ins	ide the power so	ource + terminal	l potential difference						
1.0	Electromotive force	EMF=Ir+IR		DI I							
10	Resistance and resistivity	$R = \rho \frac{L}{A}$		R is the resistan							
		ρ is the resistivity of resistor in Ω .m A is the area of cross-section of a resistor in m^2									
11	Circuit	In sarias circuit the	aga dividas								
11	Circuii	In series circuit \rightarrow the current stays the same and voltage divides In parallel circuit \rightarrow the voltage stays the same and current divides									
12	Resistance in series										
13	Resistance in parallel	$R = R_1 + R_2$ 1 1 1	1	R , R_1 , R_2 and R_3 are resistances of							
10	Tresissence in parente.	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	$+{R_{o}}$	resi	stors in ohms						
14	Potential divider or	V_1 R_1	rig								
	potentiometer	$\frac{1}{2} = \frac{1}{2}$									
15	Potential divider	$V_{2} = \left(\frac{R_{2}}{R_{1} + R}\right)$ $P = I \times V P = I^{2} \times V$ $P = \frac{Ener}{tim}$ Semiconductor device.			R_1 .						
13	1 otenna arraer	$V_2 = \left(\frac{2}{R_1 + R_2}\right)$	<u>−</u>) × <i>V</i>	$V_1 =$	$\left(\frac{1}{R_{+} + R_{-}}\right) \times V$						
16	Power	N ₁ + N	V^2	P is the nower	$\frac{\kappa_1 + \kappa_2}{m_1 + \kappa_2}$						
10	Tower	$P = I \times V \mid P = I^2 \times I$	$R = \frac{V}{D}$	1 is the power	in waiis (W)						
17	Power	_ Ener	gy	The unit of ene	ergy is ioules (J)						
-	• •	$P = \frac{1}{tim}$	<u>е</u>		ω/ ··· J · ··· · · · · · · · · · · · · · · · ·						
18	Diode	Semiconductor device.	current pass o	only in one direc	tion, rectifier						
19	Transistor	Semiconductor device	works as a swite	ch , collector, ba	ise, emitter						
20	Light dependent resistor	LED resistor depend upon light, brightness increases the resistance decrease									
21	Thermistor	Resistor depend upon temperature, temperature increase resistance decrease									
22	Capacitor	Parallel conductor with insulator in between to store charges									
23	Relay	Electromagnetic switching device									
24	Fleming's RH or LH rule	thu <u>M</u> b	se <u>C</u> ond finger								
		Direction of motion	Direction of current								
25	Transformer	$\frac{p}{p} = \frac{p}{p}$			$nd n_s$ are the no of turns						
		$\frac{p}{\mathbf{V}_{S}} = \frac{p}{\mathbf{n}_{S}}$	n primary and s	econdary coils							

26	Transformer	$P_p P_s$													
		$I_p \times V_p = I_s \times V_s$			I_p and I_s the currents in primary and secondary coil										
		$\frac{p}{V_s} = \frac{1}{I_p}$													
27	E.M induction	Emf or current is induced in a conductor when it cuts the magnetic field lines													
28	a.c. generator	Produce current, use Fleming's right hand rule													
29	d.c. motor	Consume current, use Fleming's left hand rule													
30	Logic Gates	AN	VD G	ate	0	R Ga	te	NOT Gate		NAND Gate		fate	NOR Gate		
		1	2	out	1	2	out	in	out	1	2	out	1	2	out
		0	0	0	0	0	0	0	1	0	0	1	0	0	1
		0	1	0	0	1	1	1	0	0	1	1	0	1	0
		1	0	0	1	0	1			1	0	1	1	0	0
		1	1	1	1	1	1			1	1	0	1	1	0
31	Cathode rays	Stream of electrons emitted from heated metal (cathode). This process is													
		called thermionic emission.													
32	CRO	Horizontal or y-plates for vertical movement of electron beam													
		Timebase or x-plates for horizontal movement													

Atomic Physics:

1	Alpha particles	Double positive charge	
1	α-particles	Helium nucleus	
	or per reces	Stopped by paper	
		Highest ionization potential	
		in Steel telliquite perelinati	,0
2	Beta-particles	Single negative charge	
	β -particles	Fast moving electrons	0
		Stopped by aluminum	
		Less ionization potential	
3	Gamma-particles	No charge	
	γ-rays	Electromagnetic radiation	
		Only stopped by thick a sheet of lead	
		Least ionization potential	
4	Half-life	Time in which the activity or mass of substance be	ecomes half
5	Atomic symbol	Av	A is the total no of
		$\frac{1}{7}X$	protons and neutrons
			Z is the total no of protons
6	Isotopes	Same number of protons but different number of	
		neutrons	

Downloaded from : Gcecompilation.com