統計学I

早稲田大学政治経済学術院 西郷 浩

本日の目標

- 回帰分析の発展
 - -変数変換の利用
 - 対数変換
 - -複数(2つ)の説明変数
 - ・平面の当てはめ
- PC実習

曲線的な関係(1)

- ・ 都道府県別学習塾数と売上高
 - -y = (都道府県別学習塾売上高 100万円)(平成28年)
 - -x = (都道府県別学習塾事業所数)(平成28年)
 - 秋田県・鳥取県の売上高:Xと書いてある。
 - ・ 県内に事業所が少ない。→ 秘匿処置
 - これらの県のおおよその売上高を推定する。

曲線的な関係(2)

資料:総務省・経済産業省「平成28年 経済センサス-活動調査」

曲線的な関係(3)

- ・散布図からの所見
 - 正の相関がある。
 - x が小さいところに観察点が集中している。
 - x が大きくなるにつれて y 軸方向のばらつきも拡大する傾向がある。
 - 最小二乗法による回帰式
 - y = -3867.5 + 51.6 x, $R^2 = 0.97$
 - 秋田県 $x = 52 \rightarrow \hat{y} = -1186$ (負の売上高?)
 - 鳥取県 $x = 81 \rightarrow \hat{y} = 309$ (xが同じ宮崎県の3149より小さい)

曲線的な関係(4)

- ・直線を当てはめるに無理がある。
 - 曲線的な傾向がある。
 - そのまま最小二乗法を適用するのは危険である。

変数変換の利用(1)

- もともとの関係が、直線ではない(曲線である)可能性がある。
 - 直線による近似に無理がある。
- 曲線的な関係をどのようにあつかうか。
 - 変数変換によって直線化する。
 - 常用対数変換: $y' = \log_{10} y$
 - 逆数変換: y' = 1/y
 - ・ベキ乗変換: $y' = y^p$

変数変換の利用(2)

- なかでも、対数変換がよく使われる。
 - 理由:解釈がしやすい。
 - 説明:
 - *x* が1%増加すると、*y* が*b*%変化する。
 - $乗法モデル y = a x^b$ » b は弾力性とよばれる。
 - 通常のモデルは加法のモデルと呼ばれる。 y = a + bx(x)が1単位増加するとyがb単位変化)

変数変換の利用(3)

対数の性質をもちいると、

$$-y = ax^{b}$$

$$\Leftrightarrow \log_{10} y = \log_{10} a + b \log_{10} x$$

- $-y' = \log_{10} y, x' = \log_{10} x, a' = \log_{10} a$ とすれ ば、y' = a' + bx'
 - »「対数変換してほぼ直線関係で近似できれば、変化率の間の関係が安定的である」ことを意味する。

変数変換の利用(4)

資料:総務省・経済産業省「平成28年 経済センサス-活動調査」

変数変換の利用(5)

- ・ 対数変換したデータに最小二乗法を適用
 - 推定結果

•
$$\log_{10} \hat{y} = 1.21 + 1.14 \log_{10} x$$
 $R^2 = 0.97$

- 推定結果を以下のように書き換える。
 - $\hat{y} = 10^{1.21} x^{1.14}$
- 秋田県と鳥取県の売上高の推定値
 - 秋田県 $\hat{y} = 10^{1.21} \times 52^{1.14} \approx 1449$
 - 鳥取県 $\hat{y} = 10^{1.21} \times 81^{1.14} \approx 2402$

変数変換の利用(6)

- 弾力性=1.14 > 1
 - y の変化率(増加率) > x の変化率(増加率)
 - → 散布図が尻上がり形状
 - 「y が x に対して弾力的である」という。
- 弾力性=(yの変化率)/(xの変化率)
 - 弾力性 > 1: 弾力的(尻上がり)
 - 弾力性 = 1: 比例関係
 - -0<弾力性<1: 非弾力的(頭打ち)

変数変換の利用(7)

- -加法モデルと乗法モデル
 - どちらを用いるかは経験的に(実際に当てはめて)判断する場合が多い。
- 対数以外の変数変換も利用される。
 - -対数変換は係数の解釈(弾力性と解される)がしやすいので多用される。

2つ説明変数 (1)

- ・ 都道府県別の住宅地の価格
 - 決定要因
 - ・ 宅地を求める人の数 → 人口密度
 - ・ 所得水準 → 一人当たり県民所得
 - 両者は異なる側面を捉えている。
 - ・2つの変数が異なる影響をもつので、同時に説明要因に取り入れたい。

2つ説明変数 (2)

資料:総務省(2018)『第68回日本統計年鑑』表20-11、表2-3、表3-10

2つ説明変数 (3)

- ・2つの説明要因をもつ回帰式
 - $-\log y_i = a + b \log x_i + c \log z_i$
 - y: 住宅地平均価格 (2017年7月1日、円/m²)
 - x:人口密度 (2015年10月1日,人/km²)
 - z:一人当たり県民所得 (2014年度,1000円/人)
 - -どのように回帰係数 a, b, c を求めるか。

最小二乗法(1)

- 回帰係数 a, b, c をどう決めるか?
 - ⇔回帰平面の位置をどう決めるか?
 - 当てはまりがもっともよくなるように。
 - \Leftrightarrow

説明変数で説明できない部分(残差)が全体としてもっとも小さくなるように。

 \Leftrightarrow

最小二乗法の考え方が使える。

最小二乗法(2)

以下の説明では、 $\log y_i$ などをあらためて y_i などと表記している。

最小二乗法

$$\min \sum_{i=1}^{N} d_i^2 \Leftrightarrow \min \sum_{i=1}^{N} (y_i - a - b x_i - c z_i)^2$$

この最小化問題の解⇔下の正規方程式の解

$$\begin{cases} N a + (\sum_{i} x_{i})b + (\sum_{i} z_{i})c = (\sum_{i} y_{i}) \\ (\sum_{i} x_{i})a + (\sum_{i} x_{i}^{2})b + (\sum_{i} x_{i}z_{i})c = (\sum_{i} x_{i}y_{i}) \\ (\sum_{i} z_{i})a + (\sum_{i} z_{i}x_{i})b + (\sum_{i} z_{i}^{2})c = (\sum_{i} z_{i}y_{i}) \end{cases}$$

最小二乗法(3)

-平方和の分解も成り立つ。

$$\sum_{i=1}^{N} (y_i - \overline{y})^2 = \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{N} d_i^2$$

$$SS_T \qquad SS_R \qquad SS_E$$

$$7 \in \text{TEL}, \quad \hat{y}_i = a + bx_i + cz_i$$

-したがって、 $R^2 = SS_R/SS_T$ も計算でき、意味も以前と同じである。

回帰平面の推定(1)

- 平面の当てはめの結果
 - $-\log \hat{y}_i = 0.22 + 0.53 \log x_i + 0.88 \log z_i \ R^2 = 0.84$
 - -係数の符号は常識に合う結果である。
 - x(人口密度)の係数>0
 - -人口密度が高い⇒住宅地価格は高い。
 - ▼ Z(一人当たり県民所得)の係数 > 0
 - 所得水準が高い⇒住宅地価格は高い。

回帰平面の推定(2)

図5:人口密度(対数変換)の残差プロット

回帰平面の推定(3)

図6:一人当たり県民所得(対数変換)の残差プロット

回帰平面の推定(4)

PC実習

- 変数変換
 - 散布図における対数変換
 - 変数変換を利用した回帰分析
- ・ 分析ツールを利用した回帰式の推定
 - 散布図の描画(省略)
 - 回帰係数の推定
 - 残差プロットの描画(省略)