ECE637 Digital Image Processing I Laboratory work 5: Eigen-decomposition of Images

Boris Diner

March 4, 2021

2 Multivariate Gaussian Distributions and Whitening

In this section, we generated independent Gaussian random vectors X_i having the following covariance

$$R_x = \left[\begin{array}{cc} 2 & -1.2 \\ -1.2 & 1 \end{array} \right]$$

The results are presented in Figures 1-3.

Then we used these generated samples of X_i to whiten them. The results of whitening along with numerical listings of the covariance estimates \hat{R}_X and \hat{R}_W are given in chapter Covariance Estimation and Whitening.

2.1 Generating Gaussian random vectors

Figure 1: The scatter plot for W

Figure 2: The scatter plot for \tilde{X}

Figure 3: The scatter plot for X

2.2 Covariance Estimation and Whitening

2.2.1 The theoretical value of R_x

$$R_x = \begin{bmatrix} 2 & -1.2 \\ -1.2 & 1 \end{bmatrix} \tag{1}$$

2.2.2 The estimated value of \hat{R}_x

$$\hat{R}_x = \begin{bmatrix} 1.95 & -1.17 \\ -1.17 & 0.97 \end{bmatrix}$$
 (2)

2.2.3 Scatter Plots for \tilde{X}_i and W_i

Figure 4: The scatter plot for \tilde{X}_i

Figure 5: The scatter plot for W_i

2.2.4 Numerical Listing of the Covariance Estimate \tilde{R}_W

$$\hat{R}_W = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

4 Eigenimages, PCA, and Data Reduction

In this part of the laboratory work, we designed a lower dimensional representation of images from the set *training_data* by means of SVD.

The eigenimages associated with the 12 largest eigenvalues are shown in Figure 6. The first 10 projection coefficients for the first 4 images in the set *training_data* are depicted in Figure 7.

Finally, the result of synthesizing the original image X[:,0] (shown in Figure 8) using the first m eigenvectors is demonstrated in Figure 9

4.1 The first 12 eigenimages

Figure 6: The first 12 eigenimages

4.2 The plots of projection coefficients vs. eigenvector number

Figure 7: Projection coefficients vs. eigenvector numbers

4.3 The original image, and its 6 resynthesized versions

Figure 8: The original image X[:,0]

Figure 9: 6 versions of the original image resynthesized from first m eigenvectors

5 Image Classification

In this section, we classified images of the text characters from the set $test_data$. Different classifiers were used. The results are presented in chapter Classification and PCA

5.1 Classification and PCA

5.1.1 Classification errors for R_k

Input character	Output from the classifier
d	a
j	У
1	i
n	V
p	е
q	a
u	a
У	V

5.1.2 Classification errors for $B_k = \Lambda_k$

Input character	Output from the classifier
i	1
u	V

5.1.3 Classification errors for $B_k = R_{wc}$

Input character	Output from the classifier
g	q
У	V

5.1.4 Classification errors for $B_k = \Lambda$

Input character	Output from the classifier
f	t
У	V

5.1.5 Classification errors for $B_k = I$

Input character	Output from the classifier
f	t
g	q
У	V

5.2 Answers to questions

- 1. The best results are observed for 3 classifiers, $B_k = \Lambda_k$, $B_k = R_{wc}$, and $B_k = \Lambda$. For all the listed classifiers, there were 2 misclassified inputs.
- 2. In constraining the covariance, it can be concluded from the results that the higher is the complexity (accuracy) of the model, the poorer is the accuracy of the estimates.