

#### МИНОБРНАУКИ РОССИИ

# федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

**ИНСТИТУТ** информационных систем и технологий

**Кафедра** информационных систем

#### КУРСОВОЙ ПРОЕКТ

по дисциплине «**Проектирование информационных систем**» на тему: Разработка интегрированной автоматизированной системы управления отелем.

Направление 09.03.02 Информационные системы и технологии

| Студент<br>группы ИДБ-16-07    | подпись Сергеев А.С. |
|--------------------------------|----------------------|
| Руководитель ст. преподаватель | Овчинников П.Е       |

## ОГЛАВЛЕНИЕ

| Введение                               | 3  |
|----------------------------------------|----|
| Глава 1. Функциональная модель (IDEF0) | 4  |
| Глава 2. Модель потоков данных (DFD)   | 8  |
| Глава 3. Диаграммы классов (ERD)       | 13 |
| Заключение                             | 14 |

#### **ВВЕДЕНИЕ**

Системы автоматизированного управления отелем необходимы для оптимизации процессов управления и работы отеля.

Программное обеспечение состоит из графического интерфейса, обработчика событий и СУБД. Необходимо для решения следующих задач:

- 1. Работа с посетителями в отеле;
- 2. Поиск информации по номерам;
- 3. Управления отелем.

Объектом исследования является производство радиоэлектронных приборов.

Исследования выполняются путем построения следующих моделей:

- 1. функциональной (IDEF0);
- 2. потоков данных (DFD);
- 3. реляционной базы данных (ERD).

Функциональная модель разрабатывается для точки зрения администратора на ресепшен.

Целью моделирования является определение процессов, на основе которых будут созданы средства информационной поддержки.

### ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)

Внешними входными информационными потоками процесса являются:

- 1. новый посетитель;
- 2. техническое задание к системе отеля;

Внешним выходным потоком процесса является выселенный постоялец.

Внешними управляющими потоками процесса являются:

1. устав отеля;

Основными управляющими механизмами процесса являются:

- 1. системный администратор;
- 2. программист;
- 3. администратор.

На рисунках 1.1-1.3 представлены IDEF0-диаграммы для данной модели.



Рис. 1.1. Управление отелем



Рис. 1.2. Декомпозиция управление отелем



Рис. 1.3. Автоматизированный блок управления отелем

### ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)

Основным средством автоматизации является автоматизированная система. Все данные хранятся в базе данных в связаннных таблицах. На рисунках 2.1-2.5 представлены DFD-диаграммы для данной модели.



Рис. 2.1. Бронирование номеров



Рис. 2.2. Сохранение данных посетителя



Рис. 2.3. Обслуживание постояльцев



Рис. 2.4. Расчет постояльца



Рис. 2.5. Контроль багов

# Определение числовых показателей для цели потенциального проекта автоматизации

Проектируемая система следует паттерну «автоматизация снижает время обслуживания (ожидания).

Данный паттерн прямо следует из понятия "мура" (неравномерность) и связан, как правило, с совершенствованием процессов диспетчерского управления, т.е. с качеством распределения потоков поступающих заданий на выполнение определенных операций по исполнителям.

Средства информационной поддержки позволяют пользователю наиболее удобным образом получать нужную информацию и оперативно получать ответы на вопросы и оформлять заявку на услуги и товары

Таблица 2.1. Сравнение времени поиска информации

|                      | Без системы            | С помощью системы     |
|----------------------|------------------------|-----------------------|
| Поиск информации о   | Затрачивается время    | Система мгновенно     |
| номерах и услугах    | чтобы найти и          | передает информацию   |
|                      | просмотреть            | (максимум 5 сек).     |
|                      | соответствующие        |                       |
|                      | документы о номерах и  |                       |
|                      | услугах (минимум 5     |                       |
|                      | мин).                  |                       |
| Работа с посетителем | Затрачивается время на | Администратор         |
|                      | то, чтобы найти        | находит постояльца в  |
|                      | информацию о           | системе, система сама |
|                      | проживании постояльца  | рассчитывает          |
|                      | отеля в бумажных       | стоимость проживания  |
|                      | носителях, а так же    | (Максимум 3 минуты)   |
|                      | ручной расчет          |                       |
|                      | стоимости проживания   |                       |
|                      | (может занять 15       |                       |
|                      | минут)                 |                       |

Если изначально в среднем на обработку одной заявки до автоматизации занимало 15 минут, а после — 3 минут, т. е. время выполнения сократилось в 5 раза. Количество рабочего времени, затрачиваемого на процессы работы с посетителем, сократилось в 5 раза и вместо 8 часов стало равно 1 часа 36 минут (~1,6 часа). Расчет долгосрочной экономии времени от реализации проекта: при количестве сотрудников 20 человек, при работе в одну смену продолжительностью 8 часов, ежемесячная экономия времени составит 1,6/8 \* 20 = 4 чел/мес. При этом время, затрачиваемое на работу с посетителем сократилось в 5 раз, поэтому появилось 6,4 «свободных» часов. За это время каждый сотрудник успеет проделать ту же процедуру еще 128 раз, поэтому для всех сотрудников

предприятия получается 20 \* 128 = 2560 циклов повторения процедуры. Возникает возможность сократить штат сотрудников с учетом сохранения трудоемкости до 5 человек. Можно сделать вывод, что внедрение данной системы позволяет сократить количество рабочего персонала с сохранением времени, затрачиваемого на логистические процессы

# Определение числовых показателей для трудозатрат на разработку программных средств

Таблица 2.2. Определение числа и сложности функциональных точек для модулей и хранилищ

| Номер | Наименование       | Форм | Данных | UFP |
|-------|--------------------|------|--------|-----|
| A0    | Управление отелем  |      |        |     |
|       | Автоматизированн   |      |        |     |
|       | ый блок            |      |        |     |
| A1    | управления отелем  | 7    | 5      | 63  |
| A2    | Заезд посетителя   | 0    | 0      | 0   |
|       | Регистрация        |      |        |     |
|       | постояльца в       |      |        |     |
| A3    | системе            | 0    | 0      | 0   |
|       | Проживание         |      |        |     |
| A4    | постояльца в отеле | 0    | 0      | 0   |
| A5    | Выезд из отеля     | 0    | 0      | 0   |
|       |                    |      |        | 63  |

Таблица 2.3. Расчет сложности разработки методом FPA/IFPUG.

| VAF:  | 0,99 |
|-------|------|
| UFP:  | 63   |
| DFP:  | 62   |
| SLOC: | 3119 |
| KLOC: | 3    |

Таблица 2.4.

Расчет трудозатрат на разработку «с нуля» методом СОСОМО II.

| SF:   | 12,33   |
|-------|---------|
| E:    | 1,03    |
| EM:   | 0,7     |
| PM:   | 7 ч/мес |
| TDEV: | 6 мес   |

## ГЛАВА 3. ДИАГРАММЫ КЛАССОВ (ERD)



Рис. 3.1. Диаграмма потоков



Рис. 3.2. Диаграмма ролей



Рис. 3.3. Диаграмма модулей

#### ЗАКЛЮЧЕНИЕ

В ходе данной работы была исследована система автоматизации управления отелем, а также были построены модели потоков данных и диаграммы классов.

Определены показатели для поставленной цели моделирования и для цели потенциального проекта автоматизации.

Были определены числовые показатели для трудозатрат на разработку программных средств, а именно: определены число и сложность функциональных точек для модулей и хранилищ, рассчитана сложность разработки методом FPA/IFPUG, рассчитаны трудозатраты на разработку «с нуля» методом СОСОМО II.