TP d'Algo/Complexité/Calculabilité

CIMBE Pierre-Alexandre LAGNIEZ Jean-Marc LESNYAK Viktor RAFIK Ahmed

December 3, 2013

1 Partie théorique

1.1 Partie algorithmique

1.2 Partie complexité

1.2.1 Exercie 5

- 1. (a) SAT : Un problème SAT est un problème de décision visant à montrer l'existence d'une interprétation satisfaisant un ensemble de variable propositionnelle. (Formule logique CNF) 3-SAT : Cas particulier du problème SAT dans lequel les clauses sont toutes de taille 3.
 - (b) On dit qu'il existe une réduction d'un problème P à un problème P' s'il existe une fonction f telle que $x \in D(P) <=> f(x) \in D(P')$
 - (c) 3-SAT est un cas particulier de SAT, or SAT \in NP. Donc 3-SAT \in NP

 $SAT \in NP$ -Complet

Nous allons chercher à réduire un problème Sat à un problème 3-SAT :

Soit P une instance du problème SAT.

 $wohead{
m Soit}$ U= $l_1vl_2vl_3.....vl_k$ une clause de taille k >3

On la divise en 2 clause : \succ une clause de taille $\lfloor k/2 \rfloor + 1$ en complétant par une variable $x \notin U \succ$ une clause de taille $\lceil k/2 \rceil + 1$ en complétant par \overline{x} le complémentaire de x.

On applique ce principe récursivement jusqu'à obtenir des clauses de taille 3

-»Soit U= l_1vl_2 une clause de taille 2

On clone la clause U pour avoir 2 clauses U_1 et U_2 auxquelles on ajoute respectivement une variable x et son complémentaire \overline{x} on obtient : $U_1 = l_1 v l_2 v x$ $U_2 = l_1 v l_2 v \overline{x}$

 \twoheadrightarrow Soit U= l_1 une clause de taille 1 On force l_1 à vrai et on retire les clauses unitaire.

On obtient ainsi un problème P' de type 3-SAT.

Donc 3-SAT est NP-Complet.

(d) Soit $l_1,\,l_2,\,l_3,\,l_4$ une clause de taille 4

$$l_1, l_2, l_3, l_4 \begin{cases} l_1 v l_2 v u \\ l_3 v l_4 v \overline{u} \end{cases}$$

1.3 Partie calculabilité

1.3.1 Exercie 7

- 1. Comment enumérer les couples d'entiers?
- 2. Donner les fonctions de codage et de décodage $f\mathbf{1}\,\to\,\mathbf{x}$ et $f\mathbf{2}\,\to\,\mathbf{y}$
- 3. Montrer que l'on peut coder les triplets. Géneraliser aux k-uplets.
- 4. Pensez-vous que l'on peut coder les éléments de l'intervalle [0,1]. Justifier.
- 1. Soit $(x,y) \in \mathbb{N} * \mathbb{N}$, alors faire x + y et trié par ordre lexicographique
- 2. La fonction de codage est :

$$z = \frac{(x+y)(x+y+1)}{2} + y$$

Pour les fonction de décodage, posons t tel que

$$t = x + y$$

On va prendre t tel que si t augmente de 1 alors

$$\frac{t(t+1)}{2} > z$$

sinon on a

$$\frac{t(t+1)}{2} \le z$$

La fonction de décodage de y est:

$$z = \frac{t(t+1)}{2} + y$$

$$y = z - \frac{t(t+1)}{2}$$

La fonction de décodage de x est:

$$x = t - y$$

$$x = -z + t + \frac{t(t+1)}{2}$$

$$x = -z + \frac{t(t+3)}{2}$$

3. Pour coder les triplets, il suffit de coder deux entier et coder le résultat et le dernier entier.

$$h(x, y, z) = c(x, c(y, z))$$

On peut repeter se raisonement pour les k-uplets, ainsi on a

$$k(x_1, x_2...xk) = c(x_1, c(x_2, ...c(xk-1, xk)))$$

4. On ne peut pas coder les éléments de l'intervalle [0,1] car l'ensemble n'est pas dénombrable. On utilise la diagonal de cantor sur cette ensemble. Supposons que l'on puisse numeroter N → [0,1] et on en définie la suite S telle que tout éléments de [0,1] soit élément de la suite S. Et on définie un réel r tel que la partie entière est égal à 0 et que chaque décimal en position n est égal à sn(n)¹+1 si sn(n) est différent de 9 et sn(n)-1 si sn(n) est égal à 9.

Par construction, r n'est pas dans S sinon on aurait un Sn tel que

$$Sn(n) = r(n) = Sn(n) + 1$$

ou

$$Sn(n) = r(n) = Sn(n) - 1$$

C'est absurbe, ainsi ce n'est pas dénombrable.

1.3.2 Exercice 8

1. Les fonctions primitives récursives sont toutes les fonctions que l'on peut construire à partir des fonctions de base pas composition et récursion primitive.

Exemple

Soit les fonctions primitives: $O \in \mathbb{N}^0$, $\pi_i^k \in \mathbb{N}^k$ et SUC \mathbb{N}^1

$$O() = 0$$

 $\pi_i^k(x_1, x_2..., x_k) = x_i$

 $^{^1 \, \}mathrm{la}$ nème décimal du nème élément de S

$$SUC(x_1) = x_1 + 1$$

Soit la fonction qu'on utilise pour la récursion primitive: $g\in\mathbb{N}^1$

$$g() = SUC(O())$$

Soit la fonction recursive primitive: $f\in\mathbb{N}^1$

$$f(0) = g()$$

$$f(SUC(n)) = \pi_1^2(f(n), n)$$

- 2. yolooooooo je ne sais pas
- 3. (a) Soit la fonction somme défini ainsi: Sum $\in \mathbb{N}^2$

$$Sum(0,y) = \pi_1^1(y) = y$$

$$Sum(Suc(x), y) = \pi_2^3(x, Sum(x, y), y)$$

(b) Soit la fonction Mult défini ainsi: Mult $\in \mathbb{N}^2$

$$\begin{aligned} Mult(O,y) &= 0() = 0 \\ Mult(1,y) &= \pi_1^1(y) = y \\ Mult(Suc(x),y) &= \pi_2^3(x,Sum(Mult(x,y),y),y) \end{aligned}$$

(c) Soit la fonction puissance défini aisni: $X^Y \in \mathbb{N}^2$

$$X^{Y}(x,0) = Suc(0()) = 1$$
$$X^{Y}(x, Suc(y)) = \pi_{2}^{3}(x, Mult(X^{Y}(x, y), x), y)$$

(d) Soit la fonction prédecesseurs tel que: $\operatorname{Pred} \in \mathbb{N}^1$

$$Pred(0) = O() = 0$$

$$Pred(Suc(x)) = \pi_1^2(x, Pred(x))$$

(e) Soit la fonction sous traction tel que: X-Y $\in \mathbb{N}^2$

$$X - Y(0, y) = 0() = 0$$

$$X - Y(x, 0) = \pi_1^1(x) = x$$

$$X - Y(x, y) = \pi_2^3(x, X - Y(Pred(x), Pred(y)), y))$$

(f) Soit la fonction sg tel que: $sg \in \mathbb{N}^1$

$$sg(0) = 0() = 0$$

 $sg(Suc(x)) = \pi_1^2(1, Suc(x))$

(g) Soit la fonction X>Y tel que : $X{>}Y\in\mathbb{N}^2$

$$X > Y(0, y) = 0$$

$$X > Y(x, 0) = 1$$

$$X > Y(x,y) = \pi_2^3(x, X > Y(Pred(x), Pred(y)), y)$$

Soit la fonction $X \ge Y$ tel que :

$$X{\ge}Y\in\mathbb{N}^2$$

$$X \ge Y(0,0) = 1$$

$$X \ge Y(0, y) = 0$$

$$X \ge Y(x,0) = 1$$

$$X \geq Y(x,y) = \pi_2^3(x,X > Y(Pred(x),Pred(y)),y)$$

4. (a) Voici la fonction d'Ackerman pour $0 \le m \le 3$ et $0 \le n \le 4$

m/n	0	1	2	3	4
0	1	2	3	4	5
1	2	3	4	5	6
2	3	5	7	9	11
3	5	13	28	58	118

(b) Fesons une preuve par récurrence

$$A_0(n) = Suc(n) = n+1$$

Hypothèse: $A_m(n)$ est primitive récursive Montrons que $A_{m+1}(n)$ est primitive récursive

Si n=0, on a que $A_{m+1}(n)=A_m(1)$. D'après l'hypothèse de réccurence, on a que $A_m(n)$ est primitive récursive. Donc $A_{m+1}(n)$ est primitf recursive

Si n > 0, on a que $A_{m+1}(n) = A_m(A_{m+1}(n))$.

Posons $n'=A_{m+1}(n)$. Donc on a $A_m(n')$. D'après l'hypothèse de réccurence, on a que $A_m(n)$ est primitive récursive pour tous $n\in\mathbb{N}$. Donc $A_{m+1}(n)$ est primitif recursive.

(c) Fesons une preuve par récurrence

$$A_0(n) = n + 1$$

 $n{+}1>n$ donc c'est vrai au premier rang Hypothèse: $A_{\tt m}(n)>n$ Montrons que $A_{\tt m+1}(n)>n$

Maitenant, on applique une récurrence sur n

$$n = 0$$
: $A_{m+1}(1) > 1 > 0$ Hypothèse: $A_{m+1}(n) > n$

Montrons que: $A_{m+1}(n+1) > n+1$

On utilise les deux hypothèse de réccurence:

$$Am + 1(n + 1) = Am(Am + 1(n)) > Am + 1(n) > n$$

Ainsi

$$Am + 1(n) > n + 1$$

Donc

$$Am + 1(n+1) > n+1$$

On peux donc conclure que $A_m(n) > n$

(d) Il faut montrer que $A_{m+1}(n)$ - $A_m(n) \geq 0$ Fesons une preuve par récurrence sur m

$$A_0(n+1) - A_0(n) = n+1-n = 1$$

Hypothèse: $A_m(n+1)$ - $A_m(n) > 0$

Montrons que $A_{m+1}(n+1) - A_{m+1}(n) > 0$

$$A_{m+1}(n+1) = A_m(A_{m+1}(n)) > A_m(n)$$

On peut conclure que

$$A_m(n+1)$$
 - $A_m(n) > 0$

(e) Pour n=0: $A_{m+1}(0)=A_m(1)$. De plus, d'après la question précédente, on a que $A_m(1)>A_m(0)$

Pour n>0: $A_{m+1}(n)=A_m(A_{m+1}(n-1))$. De plus on a que $A_m(n-1)$

 $1)\,>\,n\,\text{-}\,1\,\to\,A_{\scriptscriptstyle m}(\text{n-}1)\,\geq\,n$

Comme la fonction est strictement croissante, on a que $A_m(A_m(n-1)) \ge A_m(n)$

On peux en conclure que

$$A_{m+1}(n) = A_m(A_{m+1}(n-1)) \ge A_m(n)$$

- (f) D'après les question précédente, on a montré que $A_{m+1}(n) \geq A_m(n)$ et que $A_m(n+1) > A_m(n)$. Ceci prouve que A_m^k est strictement croissante.
- (g) Fesons une preuve pas récurrence sur k.

Au cas de base, on a bien $A_{m+1}(n) \ge A_m(n)$

Hypothèse: $A_{m+1}(\mathbf{n} + \mathbf{k}) \ge A_m^k(\mathbf{n})$

Montrons que : $A_{m+1}(n + k + 1) \ge A_m^{k+1}(n)$

D'après l'hypothèse de réccurence, on a

$$A_m^{k+1} = A_m(A_m^k(n)) \le A_m(A_{m+1}(n+k))$$

De plus:

$$A_{m+1}(n+k+1) = A_m(A_{m+1}(n+k))$$

On peut conclure que:

$$A_m^{k+1} = A_m(A_m^k(n)) \le A_{m+1}(n+k+1)$$

(h) Fesons une preuve par l'absurbe, soit la fonction d'Ackermann primitive récursive.

Sois la fonction

$$f: \mathbb{N} \to \mathbb{N}: n \to A(n, 2n)$$

Comme la fonction d'Ackerman est primitive récursive alors f est primitive récursive.