Due before lecture on Wednesday, September 9, 2019

- 1. Consider the expression $4\begin{bmatrix} 1 \\ -3 \end{bmatrix} 2\begin{bmatrix} 3 \\ 5 \end{bmatrix}$.
 - (a) Sketch a graphical representation of this expression using vectors.
 - (b) Describe in words what the scalars 4 and -2 represent in the sketch.
- 2. Vectors \vec{v}_1 , \vec{v}_2 , and \vec{w} are given in the picture below. Use graphical method only (drawing pictures), without any numerical calculation, to determine whether \vec{w} a linear combination of \vec{v}_1 and \vec{v}_2 . If not, why not? If yes, estimate the value of the scalars in front of \vec{v}_1 and \vec{v}_2 respectively.

- 3. Find the amount of gas used by each of the two cars. The first car gets 30 miles/gallon and the second car gets 21 miles/gallon. The total amount of gas used by both cars is 600 gallons and the total distance traveled by both cars is 16200 miles.
- 4. Is it still possible to reach Old Man Gauss if you are given each of the following modes of transportation in stead of the hover board and magic carpet? Write a convincing argument that justify your conclusion. Use sentences, calculations, pictures, and anything that helps support your justification.
 - (a) only the hover board with velocity $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ miles/hour.
 - (b) only the magic carpet with velocity $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ miles/hour.
 - (c) a hover board with velocity $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ miles/hour and a super hover board with with velocity $\begin{bmatrix} 6 \\ 2 \end{bmatrix}$ miles/hour.
 - (d) a hover board with velocity $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ miles/hour, a magic carpet with velocity $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ miles/hour, and a broomstick with velocity $\begin{bmatrix} 2 \\ 7 \end{bmatrix}$ miles/hour.
- 5. Determine whether the vector $\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$. Detail your reasons.