Data Mining

Support Vector Machines

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

Find hyperplane maximizes the margin => B1 is better than B2

SVM – Linear decision boundary

$$x_i = (x_{i1}, x_{i2}, \dots, x_{id})^T$$

$$y_i \in \{-1, 1\}$$

$$\boldsymbol{w}\cdot\boldsymbol{x}+\boldsymbol{b}=\mathbf{0}$$

Decision boundary

w is the normal direction of the hyperplaneb is a form of threshold.

02/17/2020

Support Vector Machines - Margin

Linear model:

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

- Learning the model is equivalent to determining the values of \vec{w} and b
 - How to find \vec{w} and \vec{b} from training data?

Linear model:

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

$$\vec{w} \cdot \vec{x} + b = 1$$

$$\vec{w} \cdot \vec{x} + b = -1$$

$$\vec{w} \cdot (x_1 - x_2) = 2$$

$$||w|| \times d = 2$$

Linear model:

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

$$\vec{w} \cdot \vec{x} + b = 1$$

$$\vec{w} \cdot \vec{x} + b = -1$$

$$\overrightarrow{w} \cdot (x_1 - x_2) = 2$$

$$||w|| \times d = 2$$

$$\therefore d = \frac{2}{\|w\|}$$

- Objective is to maximize: Margin = $\frac{2}{\|\vec{w}\|}$
 - Which is equivalent to minimizing: $L(\vec{w}) = \frac{||\vec{w}||^2}{2}$
 - Subject to the following constraints:

$$y_i = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \ge 1 \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + b \le -1 \end{cases}$$

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, \qquad i = 1, 2, \dots, N$$

- This is a constrained optimization problem
 - Solve it using Lagrange multiplier method

$$\min_{w,b} \frac{\|w\|^2}{2}$$
 subject to $y_i(w^T x_i + b) \ge 1$

$$\min_{w, b} \frac{\|w\|^2}{2}$$
subject to $y_i(w^T x_i + b) \ge 1$

$$L_P = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \Lambda_i (y_i (w^T x_i - b) - 1)$$

$$L_P = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \Lambda_i (y_i(w^T x_i - b) - 1)$$

$$\frac{\partial L_p}{\partial w} = w - \sum_{i=1}^n \Lambda_i y_i x_i = 0 \Rightarrow w = \sum_{i=1}^n \Lambda_i y_i x_i$$
$$\frac{\partial L_p}{\partial b} = \sum_{i=1}^n \Lambda_i y_i = 0$$

$$L_P = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \Lambda_i (y_i (w^T x_i - b) - 1)$$

$$\frac{\partial L_p}{\partial w} = 0 \Rightarrow w = \sum_{i=1}^n \Lambda_i y_i x_i$$
$$\frac{\partial L_p}{\partial b} = 0 \Rightarrow b = \sum_{i=1}^n \Lambda_i y_i$$
$$\Lambda_i [y_i (w^T x_i + b) - 1] = 0$$

$$\max_{\Lambda_i} \sum_{i=1}^n \Lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \Lambda_i \Lambda_j y_i y_j (x_i \cdot x_j)$$

Subject to $\sum_{i=1}^{n} \Lambda_i y_i = 0$, $\Lambda_i \geq 0$

Example of Linear SVM

Example of Linear SVM

x1	x2	у	λ
0.3858	0.4687	1	65.5261
0.4871	0.611	-1	65.5261
0.9218	0.4103	-1	0
0.7382	0.8936	-1	0
0.1763	0.0579	1	0
0.4057	0.3529	1	0
0.9355	0.8132	-1	0
0.2146	0.0099	1	0

$$w_1 = \sum_{i} \Lambda_i y_i x_{i1} = 65.5261 \ x \ 1 \ x \ 0.3858 + 65.5261 \ x \ -1 \ x \ 0.4871 = -6.6431$$

$$w_2 = \sum_{i} \Lambda_i y_i x_{i2} = 65.5261 \ x \ 1 \ x \ 0.4687 + 65.5261 \ x \ -1 \ x \ 0.611 = -9.3232$$

Example of Linear SVM

x1	x2	У	λ
0.3858	0.4687	1	65.5261
0.4871	0.611	-1	65.5261
0.9218	0.4103	-1	0
0.7382	0.8936	-1	0
0.1763	0.0579	1	0
0.4057	0.3529	1	0
0.9355	0.8132	-1	0
0.2146	0.0099	1	0

$$w_1 = \sum_{i} \Lambda_i y_i x_{i1} = 65.5261 \ x \ 1 \ x \ 0.3858 + 65.5261 \ x \ -1 \ x \ 0.4871 = -6.6431$$

$$w_2 = \sum_{i} \Lambda_i y_i x_{i2} = 65.5261 \ x \ 1 \ x \ 0.4687 + 65.5261 \ x \ -1 \ x \ 0.611 = -9.3232$$

$$b^{(1)} = 1 - w \cdot x_1 = 1 - (-6.64)x \ 0.3858 - (-9.32)0.4687 = 7.93$$

$$b^{(2)} = -1 - w \cdot x_2 = 1 - (-6.64)x \ 0.4871 - (-9.32)0.611 = 7.9289$$

- Decision boundary depends only on support vectors
 - If you have data set with same support vectors, decision boundary will not change
 - How to classify using SVM once w and b are found? Given a test record, x_i

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

What if the problem is not linearly separable?

Find the hyperplane that optimizes both factors

$$y_i(w^Tx_i + b) \ge 1 - \varepsilon_i$$

$$\min_{w,b,\varepsilon_i} \frac{\|w\|^2}{2} + C \sum_{i=1}^n \varepsilon_i$$

subject to
$$y_i(w^Tx_i + b) \ge 1 - \varepsilon_{i,w,b,\varepsilon_i}$$

 $\varepsilon_i \ge 0.$

NON-LINEAR SVM

Nonlinear Support Vector Machines

What if decision boundary is not linear?

$$y(x_1, x_2) = \begin{cases} 1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2 \\ -1 & \text{otherwise} \end{cases}$$

$$y = \begin{cases} 1 & if \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2\\ -1 & otherwise \end{cases}$$

$$y = \begin{cases} 1 & if \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2\\ -1 & otherwise \end{cases}$$

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

$$y = \begin{cases} 1 & if \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2\\ -1 & otherwise \end{cases}$$

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46$$

$$y = \begin{cases} 1 & if \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2\\ -1 & otherwise \end{cases}$$

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46$$

$$\varphi: (x_1, x_2) \to (x_1^2 - x_1, x_2^2 - x_2)$$

$$y = \begin{cases} 1 & if \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2\\ -1 & otherwise \end{cases}$$

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 0.2$$

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46$$

$$\varphi: (x_1, x_2) \to (x_1^2 - x_1, x_2^2 - x_2)$$

$$\vec{w} \bullet \Phi(\vec{x}) + b = 0$$

Learning Nonlinear SVM

Optimization problem:

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$
subject to $y_i(\mathbf{w} \cdot \Phi(\mathbf{x}_i) + b) \ge 1, \ \forall \{(\mathbf{x}_i, y_i)\}$

 Which leads to the same set of equations (but involve Φ(x) instead of x)

$$\begin{split} L_D &= \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j) \qquad \mathbf{w} = \sum_i \lambda_i y_i \Phi(\mathbf{x}_i) \\ & \lambda_i \{ y_i (\sum_j \lambda_j y_j \Phi(\mathbf{x}_j) \cdot \Phi(\mathbf{x}_i) + b) - 1 \} = 0, \end{split}$$

$$f(\mathbf{z}) = sign(\mathbf{w} \cdot \Phi(\mathbf{z}) + b) = sign(\sum_{i=1}^{n} \lambda_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{z}) + b).$$

Learning Nonlinear SVM

- Kernel Trick:
 - $\Phi(\mathsf{x}_{\mathsf{i}}) \bullet \Phi(\mathsf{x}_{\mathsf{i}}) = \mathsf{K}(\mathsf{x}_{\mathsf{i}}, \, \mathsf{x}_{\mathsf{i}})$
 - K(x_i, x_j) is a kernel function (expressed in terms of the coordinates in the original space)
 - Examples:

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + 1)^{p}$$

$$K(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x} - \mathbf{y}\|^{2}/(2\sigma^{2})}$$

$$K(\mathbf{x}, \mathbf{y}) = \tanh(k\mathbf{x} \cdot \mathbf{y} - \delta)$$

Learning Nonlinear SVM

- Advantages of using kernel:
 - Don't have to know the mapping function Φ
 - Computing dot product $\Phi(x_i) \bullet \Phi(x_j)$ in the original space avoids curse of dimensionality
- Not all functions can be kernels
 - Must make sure there is a corresponding Φ in some high-dimensional space
 - Mercer's theorem (see textbook)

Characteristics of SVM

- The learning problem is formulated as a convex optimization problem
 - Efficient algorithms are available to find the global minima
 - Many of the other methods use greedy approaches and find locally optimal solutions
 - High computational complexity for building the model
- Robust to noise
- Overfitting is handled by maximizing the margin of the decision boundary,
- SVM can handle irrelevant and redundant better than many other techniques
- The user needs to provide the type of kernel function and cost function
- Difficult to handle missing values
- What about categorical variables?