CODE

Table 22.7.4.1(a)—Threshold torsion for solid cross sections

Type of member	T _{th}	
Nonprestressed member	$egin{equation} 0.083 \ \lambda \sqrt{f_c'} igg(rac{A_{cp}^2}{p_{cp}}igg) \end{gathered}$	(a)
Prestressed member	$0.083 \lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}}\right) \sqrt{1 + \frac{f_{pc}}{0.33\lambda \sqrt{f_c'}}}$	(b)
Nonprestressed member subjected to axial force	$0.083 \lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}}\right) \sqrt{1 + \frac{N_u}{0.33 A_g \lambda \sqrt{f_c'}}}$	(c)

Table 22.7.4.1(b)—Threshold torsion for hollow cross sections

Type of member	T _{th}	
Nonprestressed member	$0.083 \lambda \sqrt{f_c'} \left(\frac{A_g^2}{p_{cp}} \right)$	(a)
Prestressed member	$0.083 \lambda \sqrt{f_c'} \left(\frac{A_g^2}{p_{cp}}\right) \sqrt{1 + \frac{f_{pc}}{0.33\lambda \sqrt{f_c'}}}$	(b)
Nonprestressed member subjected to axial force	$0.083 \lambda \sqrt{f_c'} \left(\frac{A_g^2}{p_{cp}}\right) \sqrt{1 + \frac{N_u}{0.33 A_g \lambda \sqrt{f_c'}}}$	(c)

22.7.5 Cracking torsion

22.7.5.1 Cracking torsion T_{cr} shall be calculated in accordance with Table 22.7.5.1 for solid and hollow cross sections, where N_u is positive for compression and negative for tension.

Table 22.7.5.1—Cracking torsion

Type of member	T _{cr}	
Nonprestressed member	$0.33\lambda\sqrt{f_c'}\left(\frac{A_{cp}^2}{p_{cp}}\right)$	(a)
Prestressed member	$0.33\lambda\sqrt{f_c'}\left(\frac{A_{cp}^2}{p_{cp}}\right)\sqrt{1+\frac{f_{pc}}{0.33\lambda\sqrt{f_c'}}}$	(b)
Nonprestressed member subjected to axial force	$0.33\lambda\sqrt{f_c'}\left(\frac{A_{cp}^2}{p_{cp}}\right)\sqrt{1+\frac{N_u}{0.33A_g\lambda\sqrt{f_c'}}}$	(c)

COMMENTARY

sections with large voids. For a straight-line interaction, a torsional moment of T_{th} would cause a reduction in the inclined cracking shear of approximately 25 percent, which was considered to be significant. Therefore, the expressions for solid sections are modified by the factor $(A_g/A_{cp})^2$ to develop the expressions for hollow sections. Tests of solid and hollow beams (Hsu 1968) indicate that the cracking torsional moment of a hollow section is approximately (A_g/A_{cp}) times the cracking torsional moment of a solid section with the same outside dimensions. An additional multiplier of (A_g/A_{cp}) reflects the transition from the circular interaction between the inclined cracking loads in shear and torsion for solid members, to the approximately linear interaction for thin-walled hollow sections.

R22.7.5 Cracking torsion

The cracking torsional moment under pure torsion, T_{cr} , is derived by replacing the actual section with an equivalent thin-walled tube with a wall thickness t prior to cracking of $0.75A_{cp}/p_{cp}$ and an area enclosed by the wall centerline A_o equal to $2A_{cp}/3$. Cracking is assumed to occur when the principal tensile stress reaches $0.33\lambda\sqrt{f_c'}$. The stress at cracking, $0.33\lambda\sqrt{f_c'}$, has purposely been taken as a lower bound value. In a nonprestressed beam loaded with torsion alone, the principal tensile stress is equated to the torsional shear stress, $\tau = T/(2A_o t)$. Thus, cracking occurs when τ reaches $0.33\lambda\sqrt{f_c'}$, giving the cracking torsional moment T_{cr} as defined by expression (a) in Table 22.7.5.1.

For prestressed members, the torsional cracking load is increased by the prestress given by expression (b) in Table 22.7.5.1. A Mohr's Circle analysis based on average stresses indicates the torsional moment required to cause a principal tensile stress equal to $0.33\lambda\sqrt{f_c'}$ is $\sqrt{1+f_{pc}}/(0.33\lambda\sqrt{f_c'})$ times the corresponding torsional cracking moment in a nonprestressed beam. A similar modification is made in expression (c) in Table 22.7.5.1 for members subjected to axial force and torsion.

If the factored torsional moment exceeds ϕT_{cr} in a statically indeterminate structure, a maximum factored torsional moment equal to ϕT_{cr} may be assumed to occur at critical sections near the faces of the supports. This limit has been

