Colle 16 - lundi 26 janvier 2015 - Colleur : Isenmann - MPSI .. - Groupe ..

Planche 1.

Question de cours. Montrer que K[X] est intègre.

Exercice 1. Soit un entier $n \geq 3$, quelle est la multiplicité de 1 pour le polynôme $X^n - X^{n-1} - X + 1$?

Exercice 2. Calculer le reste de la division euclidienne de X^n par $X^2 - X - 2$ pour $n \ge 2$.

Planche 2.

Question de cours. Montrer qu'un polynôme $P \in K[X]$ a au plus deg(P) racines.

Exercice 1. Factoriser $X^4 + X^2 + 1$ dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Exercice 2. Quels sont les polynômes P qui vérifient :

$$XP' = P$$

Planche 3.

Question de cours. Quels sont les inversibles de K[X]?

Exercice 1. Calculer le pgcd de $X^4 + X + 1$ et $X^2 - 1$.

Exercice 2. Quels sont les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{Q}) \subset \mathbb{Q}$?

Solutions - Planche 1.

Question de cours. Soit P et Q deux polynômes de K[X] tels que PQ = 0. Supposons que P et Q soient non nuls. Alors on note $P(X) = \sum_{k=0}^{n} a_k X^k$ où n est le degré de P et $Q(X) = \sum_{k=0}^{m} b_k X^k$ où m est le degré de Q et $a_k \in K$, $b_k \in K$. Par définition du degré, $a_n \neq 0$ et $b_m \neq 0$. Donc comme PQ = 0, alors le coefficient dominant de PQ est nul. Donc $a_n b_m = 0$. Par intégrité de K, $a_n = 0$ ou $b_m = 0$. C'est impossible. Donc un des deux polynômes est nul. K[X] est donc intègre.

Exercice 1. On pose $P_n(X) = X^n - X^{n-1} - X + 1$. Vérifions tout d'abord que 1 est racine de P_n :

$$P_n(1) = 1 - 1 - 1 + 1 = 0$$

Donc 1 est racine de P_n . Pour connaître sa multiplicité il faut regarder la valeur des dérivées de P_n en 1. Or $P'_n(X) = nX^{n-1} - (n-1)X^{n-2} - 1$. Donc

$$P'_n(1) = n - (n-1) - 1 = 0$$

Donc 1 est au moins de mulitplicité 2. Continuons : $P_n''(X) = n(n-1)X^{n-2} - (n-1)(n-2)X^{n-3}$. Donc

$$P_n''(1) = n(n-1) - (n-1)(n-2) = (n-1)(n-n+2) = 2(n-1) \neq 0$$

Donc 1 est exactement de mulitplicité 2.

Exercice 2. Par division euclidienne, il existe Q et R des polynômes tels que:

$$X^n = (X^2 - X - 2)Q + R$$

avec deg(R) < 2. Donc R s'écrit : R(X) = aX + b avec $a, b \in K$. Comment obtenir des informations sur a et b? Et bien en évaluant la relation $X^n = (X^2 - X - 2)Q + R$ en certaines valeurs bien choisies. L'autre inconnue étant Q, il faut évaluer en un point qui ne fait pas apparaître de Q(x). Pour cela on va évaluer aux racines de $X^2 - X - 2$ qui sont 2 et -1. On obtient alors :

$$\begin{cases} (-1)^n = -a + b \\ 2^n = 2a + b \end{cases}$$

On résout ce système linéaire de deux équations à deux inconnues et on obtient :

$$a = \frac{2^n - (-1)^n}{3}$$
 et $b = \frac{2^n + 2(-1)^n}{3}$

Donc
$$R(X) = \frac{2^n - (-1)^n}{3}X + \frac{2^n + 2(-1)^n}{3}$$
.

Solutions - Planche 2.

Question de cours. On va montrer l'assertion par récurrence sur le degré n de P. Si P est constant non nul, alors P n'a pas de racines. Donc l'assertion est bien vérifiée pour n=0. Supposons l'assertion vraie au rang n pour $n\geq 0$. Alors soit P un polynôme de degré n+1. Si P n'a pas de racines alors c'est bon P a moins de n+1 racines. Sinon, P a une racine a. Donc il existe Q de degré n-1 tel que P=(X-a)Q. Si P admet une autre racine $b\neq a$, alors 0=(b-a)Q(b). Donc Q(b)=0 et b est une racine de Q. Or par récurrence Q admet au plus p racines. Donc p admet au plus p autres racines. Finalement, p admet au plus p admet

Exercice 1. Trouvons les racines dans \mathbb{C} d'abord. Soit x une racine, alors $x^4 + x^2 + 1 = 0$. On a des formules pour les polynômes de degré 2, est ce qu'on peut s'y ramener? Oui, il suffit de poser $y = x^2$. Alors y vérifie $y^2 + y + 1 = 0$. Donc $y = x^2$ est racine de $X^2 + X + 1$. Et pour ce polynôme on connaît les racines qui sont $j = e^{i2\pi/3}$ et \bar{j} .

Note: il est fortement utile de se souvenir de la relation $\frac{x^n-1}{x-1}=1+x+\cdots+x^{n-1}$. Avec cette formule on retrouve très vite que j est racine $1+X+X^2$ (car j est différent de 1!).

Du coup les racines de X^4+X^2+1 sont les racines carrées de j et \bar{j} qui sont $e^{2i\pi/6}$, $-e^{2i\pi/6}=\bar{j}$ pour j et $e^{-2i\pi/6}$, $-e^{-2i\pi/6}=j$ pour \bar{j} . Finalement, comme X^4+X^2+1 est de degré 4 on a toutes les racines donc la décomposition dans $\mathbb{C}[X]$ est :

$$X^{4} + X^{2} + 1 = (X - j)(X - e^{2i\pi/6})(X - \bar{j})(X - e^{-2i\pi/6})$$

Pour obtenir la décomposition dans \mathbb{R} , on remarque que $X^4 + X^2 + 1$ n'a pas de racines réelles donc il ne se décompose qu'en facteurs irréductibles de degré 2. Or dans un facteur irréductible les racines sont conjuguées donc il faut associer j et \bar{j} ensemble et $e^{2i\pi/6}$ et $e^{-2i\pi/6}$ ensemble. On obtient après calculs :

$$X^4 + X^2 + 1 = (X^2 + X + 1)(X^2 - X + 1)$$

Exercice 2. Procédons par analyse et synthèse. Soit un polynôme P vérifiant XP'=P. Il faut une expression permettant de manier P. On pose alors $P(X) = \sum_{k=0}^{n} a_k X^k$ où $n \geq 0$ est le degré de P (on suppose donc P non nul car on sait que P=0 est solution). Insérons cette expression dans l'équation :

$$X \sum_{k=1}^{n} k a_k X^{k-1} = \sum_{k=1}^{n} k a_k X^k = \sum_{k=0}^{n} a_k X^k$$

On en déduit que $ka_k = a_k$ pour tout $k \in [|0, n|]$. Donc pour tout $k \neq 1$, $a_k = 0$. Donc P est un polynôme de degré 1 sans coefficient constant : P(X) = aX.

Synthèse : si P est nul, alors P est solution. Si P(X) = aX , alors : XP'(X) = Xa = P(X). Donc P est aussi solution. Donc les polynômes qui vérifient l'équation sont les aX avec $a \in K$.

Solutions - Planche 3.

Question de cours. Soit P un polynôme inversible. Alors il existe Q un polynôme tel que PQ = 1. Par égalité des degrés, P est de degré 0 donc constant non nul. Un tel polynôme convient. Donc les inversibles de K[X] sont les constantes non nuls.

Exercice 1. Pour calculer le pgcd on fait des divisions succesives :

$$X^4 + X^3 + X^2 = (X^3 - 1)(X + 1) + X^2 + X + 1$$

Puis

$$X^3 - 1 = (X^2 + X + 1)(X - 1) + 0$$

Donc
$$pgcd(X^4 + X^3 + X^2, X^3 - 1) = X^2 + X + 1$$
.

Exercice 2. Soit un polynôme P tel que $P(\mathbb{Q}) \subset \mathbb{Q}$. L'idée principale est qu'un polynôme est déterminée par ses valeurs en n+1 points si P est de degré n. Or ces valeurs sont dans \mathbb{Q} si on les points sont dans \mathbb{Q} . Donc par l'interpolation de Lagrange $P \in \mathbb{Q}[X]$:

On pose donc n le degré de P. Si P est nul, $P \in \mathbb{Q}[X]$. Donc on peut supposer $n \geq 0$. On pose donc $a_0 = 0, a_1 = 1, \ldots, a_n = n$. Alors $P(a_k) = P(k) \in \mathbb{Q}$ pour tout k. Les polynômes interpolateurs de Lagrange sont pour tout $i \in [0, n]$:

$$L_i(X) = \prod_{k=0, k \neq i}^{n} \frac{X - a_k}{a_i - a_k}$$

Donc les $L_i(X)$ sont de degré n et sont dans $\mathbb{Q}[X]$ car les a_k sont des rationnels. Or :

$$P(X) = \sum_{i=0}^{n} P(a_i)L_i(X)$$

Or les $P(a_i)$ sont des rationnels donc $P \in \mathbb{Q}[X]$ (car c'est un anneau).

Finalement, les polynômes de $\mathbb{C}[X]$ tels que $P(\mathbb{Q}) \subset \mathbb{Q}$ sont les polynômes à coefficients rationnels