Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/001044

International filing date: 02 February 2005 (02.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: EP

Number: 04003414.2

Filing date: 16 February 2004 (16.02.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

Europäisches Patentamt **European Patent Office**

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

04003414.2

EP/05/1044

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.:

04003414.2

Demande no:

Anmeldetag:

Date of filing:

16.02.04

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

catem DEVELEC GmbH Gewerbepark West 16 76863 Herxheim ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.

Si aucun titre n'est indiqué se referer à la description.)

Kraftfahrzeug-Bordnetz mit von der Batterie getrennter pufferung des Generatorstroms

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s) Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

H02J/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

 	, 	

GRÜNECKER KINKELDEY STOCKMAIR & SCHWANHÄUSSER

ANWALTSSOZIETÄT

EPO - Munich 3 1 6. Feb. 2004

GKS & S MAXIMILIANSTRASSE 58 D-80538 MÜNCHEN GERMANY

RECHTSANWÄLTE
LAWYERS
MÜNCHEN
DR. HELMUT EICHMANN
GERHARD BARTH
DR. ULRICH BLUMERRÖDER, LL. M.
CHRISTA NIKLAS-FALTER
DR. MAXIMILIAN KINKELDEY, LL. M.
DR. KARSTEN BRANDT
ANJA FRANKE, LL. M.
UTE STEPHANI
DR. BERRO ALLEKOTTE, LL. M.
DR. ELVIRA PFRANG, LL. M.
DR. ELVIRA PFRANG, LL. M.
KARIN LOCHNER
BABETT ERTLE
CHRISTINE NEUHIERL
SABINE PRÖCKNER

PATENTANWÄLTE
EUROPEAN PATENT ATTORNEYS
MÜNCHEN
DR. HERMANN KINKELDEY
PETER H. JAKOB
WOLFHARD MEISTER
HANS HILGERS
DR. HENNING MEYER-PLATH
ANNELIE EHNOLD
THOMAS SCHUSTER
DR. KLARA GOLDBACH
MARTIN AUFENANGER
GOTTFRIED KUITZSCH
DR. HEIKE VOGELSANG-WENKE
REINHARD KNAUER
DIETMAR KUHL
DR. FRANZ-JOSSE ZIMMER
BETTINA K. REICHELT
DR. ANTON K. PFAU
DR. LOD WEIGELT
RAINER BERTRAM
JENS KOCH, M. S. (U of PA) M. S.
BERNDR OTHAEMEL
DR. DANIELA KINKELDEY
THOMAS W. LAUBENTHAL
DR. ANDREAS KAYSER
DR. JENS HAMMER
DR. THOMAS EICKELKAMP
JOCHEN KILCHERT
DR. THOMAS EICKELKAMP
JOCHEN KILCHERT
DR. THOMAS FRIEDE

PATENTANWÄLTE
EUROPEAN PATENT ATTORNEYS
BERLIN
PROF. DR. MANFRED BÖNING
DR. PATRICK ERK, M.S. (MIT)
KÖLN
DR. MARTIN DROPMANN
CHEMNITZ
MANFRED SCHNEIDER

OF COUNSEL PATENTANWÄLTE

AUGUST GRÜNECKER DR. GUNTER BEZOLD

DR. WILFRIED STOCKMAIR

IHR ZEICHEN / YOUR REF.

UNSER ZEICHEN / OUR REF.

EP30010AKsch

DATUM / DATE

16.02.2004

CATEM DEVELEC GMBH

GEWERBEPARK WEST 16 76863 HERXHEIM

KRAFTFAHRZEUG-BORDNETZ MIT VON DER BATTERIE GETRENNTER PUFFERUNG DES GENERATORSTROMS

EP 30010

KRAFTFAHRZEUG-BORDNETZ MIT VON DER BATTERIE GETRENNTER PUFFERUNG DES GENERATORSTROMS

Die Erfindung betrifft ein verbessertes Kraftfahrzeug-Bordnetz. Insbesondere betrifft die Erfindung ein neuartiges Kraftfahrzeug-Bordnetz, bei der die herkömmlichen Batteriefunktionen voneinander entkoppelt sind.

Ein Kraftfahrzeugbordnetz versorgt eine Vielzahl von Steuergeräten und Signalkomponenten in einem Kraftfahrzeug mit Strom. Der Strom wird entweder einer Batterie als Energiespeicher oder, beim Betrieb des Kraftfahrzeugmotors, einem Generator entnommen. Über Relais oder einen elektronischen Stromverteiler mit Halbleiterschaltern kann eine Vielzahl einzelner Anwendungen über individuelle Laststromkreise mit Strom aus dem Kraftfahrzeug-Bordnetz versorgt werden.

Herkömmliche Bordnetze mit einer Spannung von 14 V basieren auf einer Batteriespannung von 12 Volt. Zukünftige Bordnetze sind mit einer 36 Volt-Batterie ausgestattet. Für eine Übergangszeit, in der eine Umstellung von einem 14 Volt auf ein 42 Volt-System stattfindet, werden beide Systeme parallel in einem Kraftfahrzeug eingesetzt.

Eine schematische Darstellung eines konventionell aufgebauten Kraftfahrzeug-Bordnetzes ist in Fig. 1 dargestellt. In dem abgebildeten Bordnetz 100 sind ein Generator 120, eine Batterie 150 und ein Starter 110 parallel geschaltet. Im Allgemeinen beträgt die Leitungslänge 130 zwischen dem Generator 120 und dem Starter 110 einerseits und der Batterie 150 andererseits jeweils etwa 1 m. Dabei sind Starter und Generator am Motorblock angeordnet und jeweils über ein kurzes Kabel miteinander verbunden. Aufgrund von Schwankungen des vom Generator bereitgestellten Stroms und zur Übertragung des Starterstroms beträgt der Leitungsquerschnitt in etwa 25 mm².

Über einen herkömmlichen Stromverteilpunkt oder Stromverteiler 140 wird der Strom verschiedenen Laststromkreisen 160 im Bordnetz des Kraftfahrzeugs zugeführt. Jeder Laststromkreis 160 versorgt einen oder mehrere Verbraucher mit Strom. Bei einer Leitungslänge eines Laststromkreises von etwa 1 m können diese Leitungen einen geringeren Querschnitt als die Leitung 130 aufweisen, und zwar von ca. 5 mm².

Während der Starter 110 eine sehr hohe Stromaufnahme von bis zu 300A, kurzzeitig sogar bis zu 600A, aufweist, ist die Stromaufnahme aller anderen Verbraucher im Kraftfahrzeug-Bordnetz deutlich geringer. Typische Stromwerte von Verbrauchern im Kraftfahrzeug-Bordnetz reichen von etwa 1,5 A für Standlicht aller Leuchten, 3 A für das Bremslicht und Blinklicht, 8 A für den Scheibenwischer und 8,5 A für Nebel- und Fernscheinwerfer über 10 A für Abblendlicht und das Innenraumgebläse einer Klimaanlage, 18 A für die Motorsteuerung mit Kraftstoffpumpe und 20 A für die Sitzheizung bis hin zu einem elektrischen PTC-Zuheizer mit einer Stromaufnahme im Bereich von etwa 100 A.

Alle Lastkreise 160 sind durch eine Überstromschutzeinrichtung gegen einen Kurzschluss gesichert, so dass die Stromzufuhr zu dem jeweiligen Laststromkreis unterbrochen wird, sobald ein Kurzschluss auftritt. Dadurch wird eine thermische Überhitzung der Kabel- und Steckverbinder in dem jeweiligen Lastkreis verhindert.

Aufgabe der Erfindung ist es, ein verbessertes Kraftfahrzeug-Bordnetz anzugeben.

Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.

Erfindungsgemäß ist ein Kraftfahrzeug-Bordnetz angegeben, das einen Generator, eine Batterie, einen Kondensator hoher Kapazität und einen Stromverteiler zur steuerbaren Zuführung von Energie zu Lastkreisen des Kraftfahrzeugs aufweist. Der Generator, die Batterie und der Kondensator hoher Kapazität sind parallel zueinander geschaltet. Die elektrische Verbindungsleitung zwischen der Batterie und dem Stromverteiler weist einen Querschnitt kleiner als 10 mm² bei einer Leitungslänge kleiner als 2 m und einen Querschnitt kleiner als 40 mm² bei einer Leitungslänge größer als 2 m auf.

Es ist der besondere Ansatz der vorliegenden Erfindung, dass eine Glättung von Spannungsschwankungen des vom Generator gelieferten Stroms nicht, wie herkömmlich, von der Batterie, sondern von dem Kondensator hoher Kapazität ausgeglichen werden. Die Batterie muß deshalb nicht mehr zwischen dem Generator und den Verbrauchern des Bordnetzes angeordnet sein. Weiterhin liefert nicht mehr die Batterie sondern der Kondensator hoher Kapazität die Energie für den Startvorgang. In der Verbindungsleitung zwischen Batterie und Stromverteiler fließen keine hohen Ströme mehr; so dass geringere Leitungsquerschnitte möglich sind. Eine elektrische Verbindungsleitung zwischen der Batterie und dem Stromverteiler muss daher keine großen Ströme mehr bewältigen und kann mit deutlich geringeren Leitungsquerschnitten realisiert werden. Während herkömmlich Leitungsquerschnitte von 25 mm² bei Anordnung der Batterie im Motorraum und 95 mm² bei Anordnung der Batterie im Heck verwendet werden, können erfindungsgemäß Querschnitte kleiner als 10 mm² bei Anordnung der Batterie im Motorraum und kleiner als 40 mm² bei Anordnung der Batterie im Heck des Kraftfahrzeugs verwendet werden. Damit lassen sich Kraftfahrzeug-Bordnetze mit geringerem Gewicht und niedrigeren Kosten verwirklichen.

Vorzugsweise ist der Kondensator hoher Kapazität im Stromverteiler angeordnet. Es müssen dann nur die elektrischen Verbindungen zwischen Generator und dem

Kondensator bzw. dem Starter und dem Kondensator für eine höhere Strombelastung ausgelegt sein, während die Anordnung der Batterie im Kraftfahrzeug von den bisherigen Einschränkungen heutiger Bordnetze befreit ist und beliebig angeordnet werden kann.

Vorzugsweise weist die elektrische Verbindungsleitung zwischen dem Generator und dem Stromverteiler einen Querschnitt kleiner 10 mm², besonders bevorzugt von etwa 5 mm² auf.

Vorzugsweise weist die Verbindungsleitung zwischen Batterie und dem Stromverteiler einen Querschnitt von maximal etwa 5 mm² bei einer Leitungslänge von maximal 2 m, vorzugsweise 1 m auf. Bei diesen Leitungslängen lässt sich die Batterie im Motorraum des Kraftfahrzeugs anordnen, wobei ein besonders niedriger Leitungsquerschnitt verwendet werden kann.

Gemäß einer anderen Ausführungsform der vorliegenden Erfindung beträgt die Leitungslänge zwischen Stromverteiler und Batterie maximal 4 m bei einem Leitungsquerschnitt von maximal etwa 25 mm². Die Batterie kann bei dieser Leitungslänge überall einem Fahrzeug, insbesondere im Heck, angeordnet werden, wobei im Vergleich zu einem herkömmlichen Leitungsquerschnitt von etwa 95 mm² nur ein Leitungsquerschnitt von maximal etwa 25 mm² erforderlich ist.

Weitere vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.

Im Folgenden wird die vorliegende Erfindung anhand bevorzugter Ausführungsformen im Zusammenhang mit den beiliegenden Zeichnungen erläutert. Dabei zeigen die Zeichnungen im Einzelnen:

Fig. 1 den Aufbau eines herkömmlichen Kraftfahrzeug-Bordnetzes;

- Fig. 2 den Aufbau eines erfindungsgemäßen Kraftfahrzeug-Bordnetzes;
- Fig. 3 einen detaillierten Aufbau eines erfindungsgemäßen Kraftfahrzeug-Bordnetzes gemäß der vorliegenden Erfindung und
- Fig. 4 eine elektrische Ersatzschaltung für eine herkömmliche Autobatterie.

Fig. 2 zeigt in schematischer Weise den Aufbau eines erfindungsgemäßen Kraftfahrzeug-Bordnetzes. Ein Starter 110 und ein Generator 120 sind über separate Zuleitungen 120 mit einem elektronischen Stromverteiler 210 verbunden. Mit dem elektronischen Stromverteiler ist ebenfalls eine Batterie 150 über eine Zuleitung 240 verbunden. Während der Generator 120 während des Betriebs des Kraftfahrzeugmotors elektrischen Strom dem Kraftfahrzeug-Bordnetz 200 bereitstellt, speichert die Batterie 150 während des Betriebs des Motors die von dem Generator 120 bereitgestellte Energie. Um den Motor in Betrieb zu setzen, wird über eine chemische Reaktion in der Batterie 150 elektrische Energie erzeugt und dem Starter 110 zugeführt.

Der Stromverteiler 210 schaltet steuerbar einzelne Laststromkreise 230 an das Kraftfahrzeug-Bordnetz.

Anders als bei herkömmlichen Kraftfahrzeug-Bordnetzen 100 kann die Batterie 150 in dem erfindungsgemäßen Bordnetz 200 beliebig im Kraftfahrzeug positioniert werden, ohne dass Leitungsverbindungen mit großen Leitungsquerschnitten verwendet werden müssen. Während bei einem herkömmlichen Bordnetz 100 gemäß Fig. 1 eine Zuleitung 130 mit einer Länge Lzul1 von etwa 1 m einen Querschnitt von 25 mm² aufweist, weisen die erfindungsgemäßen Zuleitungen 220 bei gleicher Länge nur noch eine Querschnittsfläche von in etwa 5 mm² auf. Die von dem Stromverteilpunkt ausgehenden Laststromkreise weisen bei einer Länge Lzul2 von etwa 1 m einen Querschnitt von 5 mm² auf.

Bei Anordnung der Batterie 150 in der Nähe des Stromverteilpunkts 140 im Motorraum weist auch die elektrische Verbindung der Batterie mit dem Stromverteilpunkt einen Querschnitt von etwa 5 mm² bei einer Länge L_{Zul3} von maximal etwa 1 m auf.

Alternativ ist die Batterie mit dem Stromverteilpunkt im Heck eines Kraftfahrzeugs angeordnet. Bei dieser Anordnung sind in einem herkömmlichen Bordnetz 100 alle Verbindungsleitungen zu und von dem Stromverteilpunkt 140 bzw. der Batterie 150 erheblich länger. Gleichzeitig müssen die Leitungsquerschnitte erhöht werden, um bei größerer Leitungslänge mit einem entsprechend höheren Widerstand eine Wärmeentwicklung in den Leitungen zu vermeiden. Aus diesem Grund vergrößert sich herkömmlicher Weise der Querschnitt der Leitungen 130 bei einer Länge Lzul1 von ca. 4 m auf ungefähr 95mm² und der Leitungsquerschnitt der Leitungen der Lastkreise 160 bei einer Länge Lzul2 von bis etwa 5 m auf ungefähr 25 mm².

Erfindungsgemäß können diese Querschnitte erheblich vermindert werden. Zu diesem Zweck werden der elektronische Stromverteiler 210 und die Batterie 150 räumlich voneinander getrennt angeordnet. Gleichzeitig wird die von einer herkömmlichen Batterie ausgeübte Pufferfunktion zum Ausgleich von Spannungsschwankungen des Generators 120 in den elektronischen Stromverteiler 210 verlagert. Bei dieser Anordnung können alle Leitungen bei einer Länge von maximal etwa 1 m einen Querschnitt in der Größenordnung von 5 mm² aufweisen. Nur bei einer Anordnung der Batterie 150 im Heck eines Kraftfahrzeugs, wobei der elektronische Stromverteiler 210 im Motorraum des Kraftfahrzeugs belassen wird, ist eine längere Leitungsverbindung zwischen elektronischem Stromverteiler 210 und der Batterie 150 erforderlich. Bis zu einer Länge Lzul3 von etwa von etwa 4 m beträgt der Leitungsquerschnitt etwa 25 mm².

Eine weitere Reduzierung der Leitungsquerschnitte ist in Abhängigkeit von der jeweiligen Anwendung dadurch möglich, dass erfindungsgemäß eine aktive Stromüberwachung zur Steuerung des Sicherungsverhaltens im Stromverteiler 210 durchgeführt wird. Die aktive Überwachung des in einen Lastkreis 230 fließenden Stromes erlaubt, bei einem bestimmten Zeitverhalten, insbesondere bei einer schnellen Zunahme über einen vorbestimmen Wert, den Lastkreis abzuschalten.

Im Gegensatz dazu wird der Querschnitt herkömmlicher Leitungen regelmäßig auf den doppelten Nennstrom ausgelegt, um kurze Stromspitzen im Lastkreis ohne thermische Überlastung der Leitungen verkraften zu können. Die erfindungsgemäße Stromüberwachung mit Hilfe einer mikroprozessorgesteuerten Steuereinheit erlaubt, den Überlastschutz exakter an kurzen Überlastspitzen und das Kurzschlussverhalten anzupassen. Damit kann in einfacher Weise der Querschnitt und damit das Gewicht und die Kosten des Kraftfahrzeug-Bordnetzes reduziert werden.

Weitere Details des erfindungsgemäßen Bordnetzes sind in Fig. 3 dargestellt. Bei der in Fig. 3 dargestellten Ausführungsform ist die Batterie 150 vorzugsweise im Heck des Fahrzeugs angeordnet.

Der elektronische Stromverteiler 210 enthält eine Mehrzahl von Halbleiterschaltern 410, die die einzelnen Lastkreise 412 steuerbar mit dem Kraftfahrzeug-Bordnetz verbinden, d.h. eine Stromzufuhr zu den einzelnen Lastkreisen zu- oder abschalten. Für solche Halbleiterschalter werden insbesondere Halbleiterschalter mit einer Smart-Power-Control verwendet. Ein solcher Halbleiterschalter, beispielsweise der Baustein 98 0268 der Firma "International I.R. Rectifier" misst den in den zugeschalteten Lastkreis fließenden Strom. Bei dem angegebenen Halbleiterbaustein wird ein dem gemessenen Strom proportionaler Strom über einen separaten Anschluss ausgegeben. Der von jedem Halbleiterschalter 410 gemessene Strom wird einer Steuerung 440 des elektronischen Stromverteilers zugeführt. Diese Steuerung, die entweder innerhalb des elektronischen Stromverteilers 210 oder separat davon angeordnet ist, überwacht für jeden Lastkreis individuell den zulässigen Strom.

Der für jeden Lastkreis zulässige Stromwert ist vorzugsweise für jeden Lastkreis 412 separat in der Steuerung 440 einstellbar. Gemäß einer bevorzugten Ausführungsform sind in der Steuerung 440 unterschiedliche Stromhöhen und unterschiedliche "Auslöse"-Charakteristika vorgesehen, die für jeden Lastkreis 412 separat auswählbar sind. Sobald der für einen Lastkreis 412 gemessene Strom den für ihn festgelegten Maximalwert unter Berücksichtigung eines zulässigen Überstroms überschreitet, veranlasst die Steuerung 440, dass der Halbleiterschalter 410 die elektrische Verbindung unterbricht.

Mit einem solchen Hableiterschalter ist ein reversibler Abschaltvorgang möglich, bei dem der Lastkreis ohne Austausch beispielsweise einer Schmelzsicherung wieder in Betrieb genommen werden kann. Außerdem ermöglicht die aktive Stromüberwachung ein schnelles Ansprechen im Kurzschussfall. Sehr hohe Kurzschlussströme fließen daher nur für wenige Millisekunden. Deshalb müssen die Leitungen und Steckverbinder des jeweiligen Lastkreises nicht auf einen Kurzschlussfall ausgelegt werden, bei dem für eine deutlich längere Zeit ein hoher Strom fließt.

Die "intelligente" Überwachung des jeweiligen Laststroms in der Steuerung 440 erlaubt, kurze Überströme zuzulassen, ohne dass die elektrische Verbindung zur Stromzuführung zu dem Lastkreis unterbrochen wird. Das Ansprechverhalten kann dadurch individuell gestaltet werden, insbesondere an die Funktion und den Strombedarf (und kurzzeitigen Überstrombedarf) des jeweiligen Lastkreises angepasst werden. Dabei müssen kurze Überströme beim Anlauf eines Motors oder beim Einschalten von Lampen, Zuheizern usw. berücksichtigt werden.

Die Schutzfunktion soll verhindern, dass Überströme bzw. Kurzschlüsse in den Laststromkreisen auftreten und zu einer thermischen Überlastung der Leitungen und Steckverbinder führen. Die thermische Überlastung wird durch die umgesetzte Energie bewirkt, d.h. Stromhöhe multipliziert mit der Zeit, für die der Überstrom anliegt. Es kann durchaus zulässig sein, für eine Sekunde den zehnfachen Nennstrom in einen Lastkreis fließen zu lassen, ohne dass eine Beschädigung auftritt. Ein sol-

cher Überstrom muss von der Steuerung 440 als unproblematisch erkannt werden. Eine Schmelzsicherung dagegen würde bei einem solchen Überstrom eine Unterbrechung herbeiführen und den Strom irreversibel (bis zum Austausch der Sicherung) unterbrechen.

Kurzzeitige Überströme mit einem mehrfachen Wert des Nennstroms treten beispielsweise beim Einschalten eines Elektromotors auf. Beim Anfahren eines Elektromotors kann der Rotor anfänglich etwas schwergängig sein oder klemmen, insbesondere bei tiefen Umgebungstemperaturen. Ein Überstrom, der einem Mehrfachen des Nennstroms entspricht, tritt für einige 100 ms auf. Auch bei elektrischen PTC-Zuheizern, die zur Erwärmung der in den Kraftfahrzeuginnenraum geblasenen Luft verwendet werden, können beim Einschalten innerhalb eines Zeitintervalls von ca. 10 Sekunden Ströme auftreten, die dem Doppelten des Nennstroms entsprechen. Aufgrund des extrem kurzzeitigen Auftretens solcher Überströme sind diese für die Leitungen und Steckverbinder unproblematisch.

Eine herkömmliche Schmelzsicherung ist in der Regel auf einen Ansprechstrom eingestellt, der größer als das Doppelte des Nennstroms ist. Eine solche herkömmliche Sicherung würde aber auch einen dauernden Überstrom akzeptieren, der dem 1,8-fachen des Nennstroms entspricht. Im Gegensatz dazu kann eine elektronische Absicherung gemäß der vorliegenden Erfindung einen derartigen Überstrom erkennen und nach Überschreiten des Zeitkriteriums, beispielsweise 10 Sekunden, die elektrische Verbindung unterbrechen. Der jeweilige Laststromkreis kann daher in seiner Dimensionierung auf den tatsächlichen Nennstrom ausgelegt werden, so dass die Leitungsquerschnitte und der Steckverbinder nicht auf Dauer den doppelten Nennstrom aushalten können müssen.

Die erfindungsgemäße Steuerung 440 lässt sich auch mit Hilfe eines zusätzlichen Temperatursensors an die aktuelle Umgebungstemperatur anpassen. Bei niedrigen Umgebungstemperaturen können aufgrund der verbesserten Kühlung höhere Ströme zugelassen werden. Die Überstromerkennung und Abschaltung eines Lastkrei-

ses erfolgt daher vorzugsweise temperaturabhängig, und zwar gemäß einer bevorzugten Ausführungsform über eine vorbestimmte Abhängigkeit zwischen der anzuwendenden Stromobergrenze und der ermittelten Umgebungstemperatur.

Gemäß einer weiter vorteilhaften Ausführungsform kann die Steuerung einen Lastkreis 412 auch in Abhängigkeit von einem externen Signal abschalten. Beispielsweise können Störungen in einem Verbraucher eines Lastkreises über separate Sensoren erkannt und die von diesen ausgehenden Gefahr für das Kraftfahrzeug vorzeitig gebannt werden.

In Fig. 3 sind nur beispielhaft ein PTC-Zuheizer 510 und ein dezentraler Stromverteiler 520 als Verbraucher dargestellt. Der dezentrale Stromverteiler 520 kann über eine Mehrzahl von Halbleiterschaltern 525 ebenfalls untergeordnete Lastkreise zu- und abschalten. Diese Lastkreise sind nur beispielhaft. Für den Fachmann ist es selbstverständlich, dass jeder elektrische Verbraucher eines Kraftfahrzeugs über einen solchen Lastkreis 412 direkt, oder indirekt über einen dezentralen Stromverteiler 520, ansteuerbar ist.

In dem elektrischen Stromverteiler 510 ist erfindungsgemäß ein Kondensator 400 hoher Kapazität vorgesehen, der parallel zum Generator 120 und der Batterie 150 geschaltet ist. Der Kondensator 400 besitzt hohe Kapazitätswerte bei geringem Bauvolumen. Für ein Kraftfahrzeug werden vorzugsweise Kapazitäten im Bereich von 450 bis 600 F verwendet. Heutzutage können Doppelschichtkondensatoren sogar Kapazitäten bis zu mehreren tausend F erreichen.

Doppelschichtkondensatoren erreichen eine um ein Vielfaches höhere Energiedichte als Aluminium-Elektrolytkondensatoren und eine mehrfach höhere Leistungsdichte als Bleibatterien. Während in Batterien die elektrische Energie elektrochemisch gespeichert wird, wird die elektrische Energie in einem Kondensator direkt in Form von positiven oder negativen Ladungen auf den Platten des Kondensators gespeichert. Dabei ist keine chemische Reaktion an den Elektrodenoberflächen

erforderlich. Solche Doppelschichtkondensatoren, beispielsweise Doppelschicht-kondensatoren der Firma EPCOS mit der Bezeichnung "UltraCap" speichern elektrische Energie und geben sie mit hohem Wirkungsgrad wieder ab. Im Unterschied zu Batterien können sie mit sehr hohen Strömen verschleißfrei geladen und entladen werden. Zudem ermöglichen sie eine sichere Funktion auch bei sehr niedrigen Temperaturen und niedrigen Spannungswerten. Sie geben hohe Leistungen verzögerungsfrei und sehr verlustarm bei Entladeströmen mit bis zu 400 A ab.

Durch die Parallelschaltung eines Kondensators 400 mit hoher Kapazität zu dem Generator 120 und der Starterbatterie 51 lassen sich mehrere Vorteile erreichen. Für den Startvorgang ist nicht mehr die Batterie 150 zuständig, sondern der Hochleistungskondensator 400. Der Kondensator 400 wird vor Ausführung des Startvorgangs von der Batterie 150 aufgeladen. Anschließend gibt der Kondensator 400 die gespeicherte Energie an den Starter 110 ab. Der Startvorgang kann damit sicherer ausgestaltet werden, da der Kondensator in der Lage ist, hohe Energiemengen auch kurzzeitig bei niedrigen Temperaturen abzugeben. Im Gegensatz dazu haben herkömmliche Kraftfahrzeuge bei niedrigen Temperaturen häufig Startprobleme, da die in der Batterie 150 ablaufenden chemischen Reaktionen keine großen Ströme zulassen.

Gemäß einer besonders vorteilhaften Ausführungsform der Erfindung lässt sich das Startverhalten weiter verbessern, indem ohne Erhöhung der Kapazität des Kondensators die in ihm gespeicherte Energie erhöht wird. Zu diesem Zweck wird erfindungsgemäß zur Vorbereitung eines Startvorgangs ein Spannungswandler 310 zwischen die Batterie 150 und den Kondensator 400 geschaltet. Der Spannungswandler 310 setzt die von der Batterie gelieferte Spannung 150 in eine höhere Spannung um. Damit kann der Kondensator bei gleicher Kapazität eine sehr viel größere Energiemenge aufnehmen. Die in dem Kondensator gespeicherte Energiemenge lässt sich gemäß der nachfolgenden Gleichung bestimmen:

$$E = 1/2 \cdot C \cdot U^2.$$

Gleichzeitig ist parallel zu dem Spannungswandler 310 in die elektrische Verbindung zwischen der Batterie 150 und dem Kondensator 400 ein Unterbrecher 320 geschaltet. Der Unterbrecher trennt die direkte elektrische Verbindung zwischen der Batterie und dem Kondensator auf, so dass dem Kondensator eine sehr viel höhere Spannung zugeführt werden kann.

Durch die erfindungsgemäße Vorrichtung 300 mit einem Spannungswandler und einem Unterbrecher kann die für einen Startvorgang zur Verfügung stehende Energie in einfacher Weise deutlich erhöht werden. Ein sicheres Starten des Kraftfahrzeugs ist dann auch bei schwacher Batterie mit nur noch geringen Energiereserven weiterhin möglich.

Nachfolgend wird beispielhaft ein Startvorgang beschrieben, bei dem der erfindungsgemäße Spannungswandler verwendet wird.

Bei Stillstand des Kraftfahrzeugs, d.h. Motor und Zündung sind ausgeschaltet, ist der Spannungswandler (DC/DC-Wandler) 310 ausgeschaltet und die elektrische Verbindung zwischen dem elektrischen Stromverteiler 210 und der Batterie 150 wird durch den Schalter 320 hergestellt. Der Kondensator 400 ist damit parallel zur Batterie 150 geschaltet und auf die Batteriespannung U_{BATT} aufgeladen. Bei herkömmlichen Bordnetzen auf eine Spannung von etwa 12,5 V, bei zukünftigen Bordnetzen auf etwa 42 V.

Vor dem Startvorgang des Verbrennungsmotors wird der Spannungswandler 310 aktiviert und gleichzeitig der Schalter 320 geöffnet. Vorzugsweise werden, wenn erforderlich, über den elektronischen Stromverteiler 210 einzelne Lastkreise abgeschaltet. Insbesondere werden solche Lastkreise 412 abgeschaltet, die einen hohen Strombedarf besitzen. Die Abschaltung kann gemäß einer besonderen Ausführungsform über die Steuerung 440 auch in Abhängigkeit von der Höhe der Batterie-

spannung vorgenommen werden, um bei schwacher Batterie ein sicheres Starten zu gewährleisten.

Der Spannungswandler erzeugt nun eine Ausgangsspannung, die an den Kondensator angelegt ist, wobei die Ausgangsspannung oberhalb der Batteriespannung liegt. Bei einer Batteriespannung von 12,5 V beträgt die erhöhte Ausgangsspannung beispielsweise 16 V. Die Spannung liegt damit um 3,5 V oberhalb der Batteriespannung und lädt den Kondensator entsprechend höher auf. Damit ist auch die in dem Kondenstor gespeicherte Energie um etwa 60 % höher als bei einer herkömmlichen Ladespannung von 12,5 V.

Damit stehen auch bei einer schwachen Batterie mit einer Batteriespannung die unterhalb von 12,5 V liegt, ausreichend Energiereserven für den Startvorgang zur Verfügung. Wenn der Spannungswandler den Kondensator 400 immer mit einer Spannung von 16 V auflädt, steht für den Startvorgang immer die gleiche Energiemenge zur Verfügung, unabhängig von der Leistungsfähigkeit der Batterie.

Der durch den Spannungswandler erzielte Vorteil lässt sich entweder in erhöhte Energiereserven für den Startvorgang umsetzen oder zur Reduzierung der Kapazität des Kondensators. Bei gleicher gespeicherter Energiemenge ist dann eine geringe Kapazität des Kondensators 400 für einen sicheren Startvorgang ausreichend.

Eine weitere Erhöhung der Energiemenge im Kondensator 400 lässt sich durch eine weitere Erhöhung der Ladespannung höher als 16 V in herkömmlichen Bordnetzen erreichen. Eine Beschränkung auf eine Ladespannung von 16 V besitzt den Vorteil, dass diese Erhöhung keine weiteren Komplikationen mit anderen elektrischen Komponenten des Bordnetzes nach sich zieht. Heutzutage sind alle elektrischen und elektronischen Komponenten eines Kraftfahrzeug-Bordnetzes auf eine Betriebsspannung von maximal 16 V ausgelegt. Die Ladespannung des Kondensators 400 ist daher vorzugsweise an der Auslegung der elektrischen Komponenten des Bordnetzes und der Spannungsfestigkeit des Kondensators selbst orientiert. Bei

zukünftigen Bordnetzen mit einer Systemspannung von 42 V lässt sich der Kondensator auf eine deutlich höhere Spannung aufladen, soweit eine kurzzeitige Spannungserhöhung von den anderen elektrischen Komponenten ohne Probleme verkraftet wird.

Alternativ kann bei besonders hohen Ausgangsspannungen des Spannungswandlers kann über ein Abschalten aller Lastkreise bzw. Verbraucher über die Halbleiterschalter 410 jede Komplikation mit anderen Bordnetz-Komponenten ausgeschlossen und ein besonderes sicherer Startvorgang realisiert werden.

Die Aufladung des Kondensators erfolgt rechtzeitig vor Beginn des Startvorgangs. Zur Einleitung des Aufladevorgangs des Kondensators 400 können mehrere Auslöser herangezogen werden. Beispielsweise kann der Fahrer die Aufladung starten, wenn der Zündschlüssel eingesteckt wird oder das Zündschloss in die Stellung "Zündung EIN" gebracht wird. Alternativ kann der Aufladevorgang durch Öffnen einer Fahrzeugtür ausgelöst werden. Dabei kann das Öffnen einer beliebigen Fahrzeugtür als auch das Öffnen der Fahrer-Fahrzeugtür erfasst und als Auslösesignal für die Aufladung verwendet werden. Wenn die Fahrzeugtür als auslösendes Ereignis für den Beginn des Aufladevorgangs verwendet wird, steht mehr Zeit als bei Erfassung der Zündschlüsselstellung zur Verfügung.

Mit der Zündschlüsselstellung "Starten" wird der Spannungswandler ausgeschaltet. Solange der Startvorgang läuft, bleibt der Unterbrecher 320 geöffnet. Sobald der Verbrennungsmotor selbsttätig läuft, wird der Unterbrecher 320 geschlossen und das Bordnetz wieder auf eine Spannung von ca. 12, 5 V gesetzt.

Der Kondensator 400 ermöglicht nicht nur eine Verbesserung des Startvorgangs, sondern kann außerdem die Pufferwirkung der herkömmlichen Batterie 150 übernehmen. Ein Ersatzschaltbild einer herkömmlichen Batterie 150 ist in Fig. 4 dargestellt.

Das Ersatzschaltbild 600 der Batterie 150 zeigt, dass die Batterie nicht nur die Funktion eines chemischen Energiespeichers 610, sondern auch die Funktion eines Pufferkondensator 620 besitzt. Diese Kondensatorwirkung ergibt sich aus dem inneren Aufbau der Bleibatterie.

Die Kondensatorwirkung einer herkömmlichen Batterie wird bisher dazu verwendet, vom Generator 120 herrührende Spannungsschwankungen zu glätten.

Der Generator 120 erzeugt bei laufendem Kraftfahrzeugmotor einen Drehstrom, der mit Hilfe von Dioden gleichgerichtet wird. In heutigen Kraftfahrzeugbordnetzen ist die Batterie 150 räumlich so angeordnet, dass sie zwischen dem Generator 150 und den Verbrauchern in den Lastkreisen 412 liegt. Vor allem wird aus der Kombination der Batteriekapazität C_{Batt} und dem Zuleitungswiderstand der elektrischen Verbindungsleitung zwischen dem Generator 120 und der Batterie 150 R_{Zul1} ein Tiefpass gebildet. Der Tiefpass bewirkt eine Glättung der Spannungsschwankungen des vom Generator erzeugten Stroms.

Erfindungsgemäß wird diese Funktion von dem Kondensator 400 mit hoher Kapazität übernommen.

Während herkömmliche Bordnetze so ausgebildet sind, dass auf den elektrischen Verbindungsleitungen zwischen Generator und Batterie hohe Ströme zum Ausgleich der Spannungsschwankungen fließen können, wird erfindungsgemäß die Funktion der Energiespeicherung und Energiepufferung von getrennten Baueinheiten in dem Kraftfahrzeug-Bordnetz wahrgenommen. Während der Kondensator 400 die Pufferung von Spannungsschwankungen übernimmt, stellt die Batterie 150 die Energie für den Startvorgang bereit. Damit lässt sich die Batterie in einfacher Weise entfernt von dem Generator und dem Stromverteiler positionieren, ohne dass der herkömmliche Aufwand für eine elektrische Leitungsverbindung 240 mit der Batterie erforderlich ist. Im Gegenteil, die Querschnitte können, wie beispielhaft im Zusam-

menhang mit Fig. 2 beschrieben, auf deutlich kleinere Werte reduziert werden. Damit werden Kraftfahrzeugbordnetze leichter und preisgünstiger.

Die Pufferfunktion wird durch die Anordnungsfolge Generator - Batterie - Stromverteiler - Verbraucher in Verbindung mit dem sich einstellenden Tiefpaß erreicht. Der Tiefpaß wird aus dem Zuleitungswiderstand R_{Zul1} zwischen dem Generator und der Batterie einerseits und der Kapazität C_{Batt} der Batterie andererseits gebildet. Ein geringerer Leitungsquerschnitt bewirkt zudem einen höheren Zuleitungswiderstand R_{Zul1} und verbessert damit die Tiefpasswirkung aufgrund der Gleichung für die Zeitkonstante Tau des Tiefpasses:

$$Tau = R_{Zull} \cdot C_{Batt}$$

Zusammenfassend hat das erfindungsgemäße neue Kraftfahrzeug-Bordnetz eine Vielzahl von Vorteilen gegenüber herkömmlichen Bordnetzen. Die Starterbatterie übernimmt nicht mehr die Startfunktion, ist einer geringeren Impuls- und Strombelastung ausgesetzt, muss nur noch reduzierte Anforderungen hinsichtlich des Tieftemperaturverhaltens erfüllen und kann eine Batterie mit reduzierter Speicherkapazität sein. Mit Hilfe eines Spannungswandlers lässt sich die Energie und damit die Startsicherheit erhöhen. Die Leitungen weisen nur noch einen geringeren Querschnitt auf, so dass Kosten und Gewichtsvorteile erzielt werden, insbesondere bei der Anordnung der Batterie im Heck des Kraftfahrzeugs.

		•	
			ŧ.
			1
			3
	-		
	-		
			Ä
			Į.
			i
	 		ent a
			-
			1
			-
			-
			-

PATENTANSPRÜCHE

EPO-Munich 3 16. Feb. 2014

Kraftfahrzeug-Bordnetz mit einem Generator (120), einer Batterie (150), einem Kondensator (400) hoher Kapazität und einem Stromverteiler (210) zur steuerbaren Zuführung von Energie zu einzelnen Lastkreisen (230) des Kraftfahrzeugs,

dadurch gekennzeichnet, dass

der Generator (120), die Batterie (150) und der Kondensator (400) hoher Kapazität parallel geschaltet sind und

die elektrische Verbindungsleitung (240) zwischen der Batterie (150) und dem Stromverteiler (210) einen Querschnitt kleiner 10 mm² bei einer Leitungslänge (L_{Zul3}) kleiner als 2 m und einen Querschnitt kleiner 40 mm² bei einer Leitungslänge (L_{Zul3}) größer als 2 m aufweist.

- Kraftfahrzeug-Bordnetz nach Anspruch 1, wobei der Kondensator hoher Kapazität (400) benachbart zum Stromverteiler (210) angeordnet ist.
- Kraftfahrzeug-Bordnetz nach Anspruch 1, wobei der Kondensator (400) hoher Kapazität innerhalb des Stromverteilers (210) angeordnet ist.

- 4. Kraftfahrzeug-Bordnetz nach Anspruch 1 oder 2, wobei die elektrische Verbindungsleitung (220) zwischen dem Generator (120) und dem Stromverteiler (210) einen Querschnitt kleiner 10 mm² aufweist.
- Kraftfahrzeug-Bordnetz nach einem der Ansprüche 1 bis 4, wobei die elektrische Verbindungsleitung (220) zwischen dem Generator (120) und dem Stromverteiler (210) einen Querschnitt von etwa 5 mm² aufweist.
- 6. Kraftfahrzeug-Bordnetz nach einem der Ansprüche 1 bis 5, wobei die elektrische Verbindungsleitung (220) zwischen dem Generator (120) und dem Stromverteiler (210) eine Leitungslänge (L_{Zul1}) kleiner 2 m, vorzugsweise kleiner 1,5 m aufweist.
- 7. Kraftfahrzeug-Bordnetz nach Anspruch 6, wobei die elektrische Verbindungsleitung (220) zwischen dem Generator (120) und dem Stromverteiler (210) eine maximale Leitungslänge (L_{Zul1}) von etwa 1 m aufweist.
- 8. Kraftfahrzeug-Bordnetz nach einem der Ansprüche 1 bis 7, wobei die elektrische Verbindungsleitung (240) zwischen der Batterie (150) und dem Stromverteiler (210) einen Querschnitt von maximal etwa 5 mm² bei einer Leitungslänge (L_{Zul3}) von maximal etwa 2 m aufweist.
- 9. Kraftfahrzeug-Bordnetz nach Anspruch 8, wobei die Batterie (150) und der Stromverteiler (210) im Motorraum des Kraftfahrzeugs angeordnet sind.

- 10. Kraftfahrzeug-Bordnetz nach einem der Ansprüche 1 bis 6, wobei die elektrische Verbindungsleitung (240) zwischen der Batterie (150) und dem Stromverteiler (210) einen Querschnitt von maximal etwa 25 mm² bei einer Leitungslänge (L_{Zul3}) von maximal etwa 4 m aufweist.
- Kraftfahrzeug-Bordnetz nach Anspruch 10, wobei die Batterie (150) im Heck und der Stromverteiler (210) im Motorraum des Kraftfahrzeugs angeordnet ist.
- Kraftfahrzeug-Bordnetz nach einem der Ansprüche 1 bis 11, wobei der Kondensator (400) hoher Kapazität zwischen den Generator (120) und den Stromverteiler (210) geschaltet ist.

		•
,		,

EPO - Munici 3 1 6. Feb. 2004

ZUSAMMENFASSUNG

Die vorliegende Erfindung betrifft einen Kraftfahrzeug-Bordnetz mit einem Generator, einer Batterie, einem Kondensator hoher Kapazität und einem Stromverteiler zur steuerbaren Zuführung von Energie zu einzelnen Lastkreisen des Kraftfahrzeugs. Der Generator, die Batterie und der Kondensator hoher Kapazität sind parallel geschaltet sind. Die elektrische Verbindungsleitung zwischen der Batterie und dem Stromverteiler weist einen Querschnitt kleiner 10 mm² bei einer Leitungslänge kleiner als 2 m und einen Querschnitt kleiner 40 mm² bei einer Leitungslänge größer als 2 m auf.

1/4

3/4

Fig. 3

GRÜNECKER, KINKELDEY, STOCKMAIR & SCHWANHÄUSSER

4/4

GRÜNECKER, KINKELDEY, STOCKMAIR & SCHWANHÄUSSER