

เส้นทางสู่อนาคต

DATABASE

by P'Golf, P'Bank

DATABASE (ฐานข้อมูล)

ความหมายของข้อมูล

ข้อมูลคือ ข้อเท็จจริงที่มีการรวบรวมไว้และมีความหมาย อาจเกี่ยวข้อกับคน สิ่งของ หรือเหตุการณ์อื่นๆ

คุณสมบัติของข้อมูลที่ดี

ความถูกต้อง (Accuracy)

ข้อมูลที่ดีจะต้องมีความถูกต้อง เพื่อให้สามารถนำเอาไปใช้ประโยชน์ได้ ข้อมูลที่ไม่เป็นจริง และมีความ คลาดเคลื่อนอยู่มาก อาจก่อให้เกิดความเสียหายเมื่อนำข้อมูลนั้นมาใช้ ดั่งสำนวนที่ว่า " ใส่ขยะเข้าไปก็จะได้ขยะกลับออกมา (Garbage In Garbage Out : GIGO)"

มีความเป็นปัจจุบัน (Update)

เนื่องจากข้อมูลปกติเป็นข้อมูลที่คงที่ เว้นแต่ว่าจะมีการแก้ไขโดยผู้ใช้ อีกทั้งเหตุการณ์ต่างๆ มักเปลี่ยนแปลง หรือเกิดขึ้นใหม่อยู่ตลอดเวลาหากข้อมูลที่มีอยู่ล้าสมัย อาจจะทำให้ผลลัพธ์ผิดพลาดได้

ตรงตามความต้องการ (Relevance)

จะต้องมีการสำรวจขอบเขตของข้อมูลที่จะนำมาใช้ให้สอดคล้องตรงตามความต้องการให้มากที่สุด

ความสมบูรณ์ (Complete)

การนำเอาข้อมูลมาใช้ จะต้องมีความสมบูรณ์ของข้อมูลมากพอ จึงจะทำให้เกิดประโยชน์อย่างเต็มที่

สามารถตรวจสอบได้ (Verifiable)

ข้อมูลที่ได้มา อาจมาจากหลายแหล่งข้อมูล ดังนั้นหากข้อมูลที่ได้มาสามารถตรวจสอบแหล่งที่มา หรือมี หลักฐานอ้างอิงแล้ว จะทำให้ป้องกันข้อมูลที่ไม่เกิดประโยชน์ และอาจนำผลเสียมาให้

การแบ่งลำดับชั้นข้อมูล (Hierarchy)

เรียงจากหน่วยข้อมูลที่เล็กที่สุด ไปใหญ่ที่สุด

■ ___บิต (Bit : ___Binary Digit)

เป็นลำดับชั้นหน่วยข้อมูลที่เล็กที่สุด เป็นเลขฐานสองที่มีเพียงค่า 1 กับ 0 เท่านั้น

ไบต์ (Byte)

คือบิตที่มารวมกันหลายๆบิต

• ฟิลด์ หรือเขตของข้อมูล (Field)

ประกอบด้วยข้อมูลไบต์ตั้งแต่ 1 ตัวขึ้นไป

• <u>เรคอร์ด</u> (Record)

คือกลุ่มของฟิลด์ที่มีความสัมพันธ์กัน และนำมาจัดเก็บรวมกัน

• ไฟล์ หรือแฟ้มตารางข้อมูล (File)

คือการนำเอาข้อมูลหลายเรคอร์ดมารวมกัน

	id	Family - Code name	CPU Model	Native Frequency (GHz)	Core		
Г	0	i3 - Clarkdale	550	3.20	2		
H	1	i5 - Clarkdale	680	3.60	2		
-	2	i5 - Lynnfield	750	2.66	4		
H	3	i? - Lynnfield	880	3.06	4		
H	4	i7 - Bloomfield	980×	3.33	6		
F	Record Field						

จากตัวอย่างด้านบนแสดงข้อมูลซีพียู เห็นได้ว่าประกอบด้วยข้อมูลจำนวน ______ ฟิลด์ ด้วยกัน ชื่อของฟิลด์ ต่างๆ ได้แก่

- 1. _____(ฟิลด์ที่ 1)
- 2. Family-CodeName (ฟิลด์ที่ 2)
- CPU Model (ฟิลด์ที่ 3)
- 4. Native Frequency (ฟิลด์ที่ 4)
- 5. _____(ฟิลด์ที่ 5)

ซึ่งข้อมูลของซีพียูแต่ละตัวก็คือ <u>เรคอร์ด</u> นั่นเอง และในตารางนี้ก็มีทั้งหมด <u>5</u> เรคอร์ด

ฟิลด์ที่ไม่มีข้อมูลซ้ำกันเลยจะเรียกว่า <u>คีย์ฟิลด์</u> (<u>key field</u>) ซึ่งจะใช้เป็นตัวอ้างอิงแต่ละเรคอร์ด จากตัวอย่างดังกล่าว มีคีย์ฟิลด์คือ <u>id</u> ซึ่งไม่มีข้อมูลซ้ำกันเลย ตรงข้ามกับฟิลด์สามารถมีข้อมูลที่ซ้ำกันได้

ฐานข้อมูล (Database)

ฐานข้อมูลเกิดจากการรวบรวมเอาแฟ้มตารางข้อมูลหลายๆแฟ้มที่มีความสัมพันธ์กันมาเก็บรวบรวมกันไว้ที่ เดียว โดยจะมีการเก็บคำอธิบายเกี่ยวกับโครงสร้างฐานข้อมูลเรียกว่า <u>พจนานุกรมข้อมูล</u> (data dictionary)

อ้างอิงจากตารางซีพียูที่กล่าวมาข้างต้น

การจัดโครงสร้างของแฟ้มข้อมูล (File Organization)

โครงสร้างแฟ้ม	ข้อดี	ข้อเสีย	สื่อ ที่ใช้เก็บ
แบบเรียงลำดับ	- เสียค่าใช้จ่ายน้อย	- เสียเวลาหาข้อมูล	เทปแม่เหล็ก
(sequential file)	- ใช้งานได้ง่าย	- ข้อมูลที่ใช้ต้องมีการจัดเรียก	(magnetic tape)
	 หมาะกับงานประมวลผลที่มี 	ก่อนเสมอ	
	การอ่านข้อมูลแบบเรียงลำดับ	- ไม่เหมาะสมกับงานที่ต้องแก้ไข	
	และมีปริมาณมาก	เพิ่ม ลบข้อมูลเป็นประจำ	
	 สื่อที่ใช้เก็บมีราคาถูก 		
แบบสุ่ม	- ทำงานได้รวดเร็ว	- ไม่เหมาะกับงานประมวลผลที่มี	จานแม่เหล็ก
(random file)	- เหมาะกับงานที่แก้ไข เพิ่ม ลบ	ปริมาณมาก	(magnetic disk)
	เป็นประจำ	- การเขียนโปรแกรมเพื่อค้นหา	
		ข้อมูลจะซับซ้อน	
		- ไม่สามารถเข้าถึงข้อมูลแบบ	
		เรียงลำดับได้	
แบบลำดับดรรชนี	- รอบรับการประมวลผลสองแบบ	- สิ้นเปลืองเนื้อที่ในการจัดเก็บ	จานแม่เหล็ก
(indexed	คือแบบลำดับ และแบบสุ่ม	- การเขียนโปรแกรมเพื่อค้นหา	(magnetic disk)
sequential file)	- เหมาะกับงานที่แก้ไข เพิ่ม ลบ	ข้อมูลจะซับซ้อน	
	เป็นประจำ	- การทำงานซ้ากว่าแบบสุ่ม	
		- มีค่าใช้จ่ายสูง	

แนวคิดของการใช้ฐานข้อมูล

- ลดความซ้ำซ้อนกันของข้อมูล (Reduced data redundancy)
- ลดความขัดแย้งของข้อมูล (Reduced data inconsistency)
- การรักษาความคงสภาพของข้อมูล (improved data integrity)
- ใช้ข้อมูลร่วมกันได้ (Shared data)
- ง่ายต่อการเข้าถึงข้อมูล (Easier access)
- ลดระยะเวลาการพัฒนาระบบงาน (Reduced development time)
 นอกจากนี้ฐานข้อมูลยังช่วยในเรื่องการรักษาความปลอดภัยของข้อมูลได้ด้วย

เครื่องมือสำหรับจัดการฐานข้อมูล (DBMS)

การจัดการฐานข้อมูลด้วยคอมพิวเตอร์โดยปกตินั้นจะโปรแกรมที่เรียกว่า ระบบการจัดการฐานข้อมูล (DBMS : Database Management System) ที่นิยมใช้งานกันในปัจจุบันได้แก่

- Oracle
- Sybase
- ➤ Microsoft SQL Server
- Microsoft Access
- > MySQL
- ➤ DB2

- Cache'
- PostgreSQL
- > Interbase
- > Firebird
- Pervasive SQL
- > SAP DB

ลักษณะของ DBMS

ระบบจัดการฐานข้อมูล

- สร้างฐานข้อมูล (Create Database)
- เพิ่ม เปลี่ยนแปลง แก้ไข และลบข้อมูล
 - (Add ,Change and Delete Data)
- → จัดเรียงและค้นหาข้อมูล (Sort and Retrieve data)
- สร้างพ่อร่ม และรายงาน (Create Forms and Reports)