# AFRL-ML-TY-TR-2000-4575





# Bioventing and Natural Attenuation Technology Demonstration at Rhein-Main Air Base, Frankfurt, Germany

Julie Kramer, Chris Perry, Andrea Leeson, Lydia Coming and Mark Kelley

Battelle Memorial Institute 505 King Avenue Columbus, Ohio, 43201

Approved for Public Release; Distribution Unlimited

AIR FORCE RESEARCH LABORATORY MATERIALS & MANUFACTURING DIRECTORATE AIR EXPEDITIONARY FORCES TECHNOLOGIES DIVISION 139 BARNES DRIVE, STE 2 TYNDALL AFB FL 32403-5323



20001218 106

#### **NOTICES**

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

TIM WILEY, Lt Col, USAF

**Program Manager** 

THOMAS B. STAUFFER! PhD, DR-IV, DAF Chief, Weapons Systems Logistics Branch

RANDY L. GROSS, Col. USAF, BSC Chief, Air Expeditionary Forces Technologies Division

#### REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| 1. AGENCY USE ONLY (Leave blad    | nk) 2. REPORT DATE                     | 13. REPORT TYPE AND                       | DATES COVERED                                  |
|-----------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------------|
| 1. AGENCY USE ONLY (Leave black   | 10 September 1999                      |                                           | August 1995 - September 1999                   |
| 4. TITLE AND SUBTITLE             |                                        |                                           | 5. FUNDING NUMBERS                             |
| Bioventing and Natural Attenuati  | ion Technology Demonstration a         | nt Rhein-Main Air Base                    | C: F08637-95-C-6045                            |
| Frankfurt, Germany                |                                        |                                           | PE: 63716D                                     |
| Training, Commity                 |                                        | 1                                         | JON: 4332W403                                  |
| 6. AUTHOR(S)                      |                                        |                                           | 1332 W 103                                     |
| Kramer, Julie; Perry, Chris; Lee  |                                        |                                           |                                                |
| Kiamer, June, Perry, Chris, 200   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 120120), 17111111                         | <i>y</i> *                                     |
|                                   |                                        |                                           |                                                |
| 7. PERFORMING ORGANIZATION        | NAME(S) AND ADDDESS/ES)                |                                           | 8. PERFORMING ORGANIZATION                     |
| Battelle Memorial Institute       | MANIE(3) AND ADDRESS(ES)               |                                           | REPORT NUMBER                                  |
|                                   |                                        |                                           |                                                |
| 505 King Avenue                   |                                        |                                           | ;                                              |
| Columbus, Ohio 43201              |                                        |                                           |                                                |
|                                   |                                        |                                           |                                                |
|                                   |                                        |                                           | 40. ODONOODINO/BIONITODINO                     |
| 9. SPONSORING/MONITORING A        |                                        |                                           | 10. SPONSORING/MONITORING AGENCY REPORT NUMBER |
| Air Force Research Laboratory,    | Air Expeditionary Forces Tech          | nologies Division                         | ACERO FILE OIL ROMBER                          |
| (AFRL/MLQ)                        |                                        |                                           | AFRL-ML-TY-TR-2000-4575                        |
| 139 Barnes Drive, Suite 2         |                                        |                                           |                                                |
| Tyndall AFB FL 32403-5323         |                                        |                                           |                                                |
|                                   |                                        |                                           |                                                |
| 11. SUPPLEMENTARY NOTES           |                                        | D 1 . D . (6                              | :                                              |
| Funding provided by the Strategi  | ic Environmental Research and          | Development Program (S                    | SERDP)                                         |
|                                   |                                        |                                           |                                                |
|                                   |                                        |                                           |                                                |
| 12a. DISTRIBUTION AVAILABILITY    | STATEMENT                              | 1                                         | 12b. DISTRIBUTION CODE                         |
| Approved for Public Release       |                                        |                                           |                                                |
|                                   |                                        |                                           | Α                                              |
|                                   |                                        |                                           | A                                              |
| l                                 |                                        |                                           |                                                |
|                                   |                                        |                                           |                                                |
| 13. ABSTRACT (Maximum 200 wo      |                                        |                                           |                                                |
|                                   |                                        |                                           | tion of natural attenuation of a mixed         |
|                                   |                                        |                                           | ermany. Initially air was injected             |
|                                   |                                        |                                           | e blower was subsequently replaced             |
| with an oil-less air compressor d | elivering an equilibrium flow of       | 196 L/min (7 cfm) at a                    | pressure of 24 psi (165 kP). Data              |
|                                   |                                        |                                           | taminants at the site. It is calculated        |
| that 2,800 kg total hydrocarbon   |                                        |                                           |                                                |
| that 2,000 kg total hydrocarbon   | was femoved during the project.        |                                           | o bite appeared to the interest of             |
| Data was collected on the hydroc  |                                        | a site of the hinderedetic                | on A raduction in plume                        |
|                                   |                                        |                                           |                                                |
|                                   |                                        |                                           | mown that the plume source is being            |
|                                   |                                        |                                           | tion is occuring at this site was most         |
| strongly supported by the distrib | ution and spatial trend of contan      | ninant constituents, electi               | ron acceptors, and degradation                 |
| products upgradient and immedia   | ately downgradient of the source       | <ul> <li>Dissolved oxygen data</li> </ul> | a showed that aerobic conditions               |
| were clearly present upgradient   | from the source, and that the aq       | uifer became far less rich                | n in oxygen under the POL Yard.                |
|                                   |                                        |                                           | downgradient location. Metabolic               |
| byproducts were increasing from   |                                        |                                           |                                                |
| 14. SUBJECT TERMS                 | approximation to the t                 |                                           | 15. NUMBER OF PAGES                            |
| Bioremediation; bioventing, petr  | oleum hydrocarbon, natural atte        | nuation                                   | 419                                            |
| l                                 |                                        |                                           | 16. PRICE CODE                                 |
|                                   |                                        |                                           | 137711122 3322                                 |
| 17. SECURITY CLASSIFICATION       | 18. SECURITY CLASSIFICATION            | 19. SECURITY CLASSIFIC                    | ATION 20. LIMITATION OF ABSTRACT               |
| OF REPORT                         | OF THIS PAGE                           | OF ABSTRACT                               |                                                |
| Unclass                           | Unclass                                | Unclass                                   | \ UL                                           |

## **GENERAL INSTRUCTIONS FOR COMPLETING SF 298**

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to **stay within the lines** to meet **optical scanning requirements**.

- Block 1. Agency Use Only (Leave blank).
- **Block 2.** Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 30 Jun 88).
- Block 4. <u>Title and Subtitle</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- **Block 5.** Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract

PR - Project

G - Grant

TA - Task

PE - Program

WU - Work Unit

Element Accession No.

- **Block 6.** Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- **Block 7.** Performing Organization Name(s) and Address(es). Self-explanatory.
- Block 8. <u>Performing Organization Report Number</u>. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
- **Block 9.** Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- **Block 10**. Sponsoring/Monitoring Agency Report Number. (*If known*)
- Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with....; Trans. of....; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. <u>Distribution/Availability Statement.</u>
Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank.
NTIS - Leave blank.

- **Block 13.** Abstract. Include a brief (*Maximum 200 words*) factual summary of the most significant information contained in the report.
- **Block 14.** <u>Subject Terms</u>. Keywords or phrases identifying major subjects in the report.
- **Block 15.** <u>Number of Pages</u>. Enter the total number of pages.
- **Block 16.** Price Code. Enter appropriate price code (NTIS only).
- Blocks 17. 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.
- Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

# TABLE OF CONTENTS

| Section                      | Title                                                                                                                                                                                                                                                                                      | Page                                               |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| LICT OF TAI                  | nt EG                                                                                                                                                                                                                                                                                      |                                                    |
| LIST OF TAI                  | BLES                                                                                                                                                                                                                                                                                       | . 111                                              |
| LIST OF FIG                  | URES                                                                                                                                                                                                                                                                                       | . iii                                              |
| ACRONYMS                     | AND ABBREVIATIONS                                                                                                                                                                                                                                                                          | . vi                                               |
| EXECUTIVE                    | SUMMARY                                                                                                                                                                                                                                                                                    | viii                                               |
| SECTION I.<br>A.<br>B.<br>C. | INTRODUCTION AND BACKGROUND TECHNOLOGY NEED TECHNOLOGY OVERVIEW  1. Bioventing 2. Natural Attenuation SCOPE OF WORK 1. Bioventing 2. Natural Attenuation                                                                                                                                   | . 2<br>. 2<br>. 4<br>. 5                           |
| SECTION II.<br>A.<br>B.      | SITE DESCRIPTION                                                                                                                                                                                                                                                                           | . 7                                                |
| SECTION III.<br>A.           | SITE CHARACTERIZATION  1. Soil-Gas Survey                                                                                                                                                                                                                                                  |                                                    |
| В.                           | 4. Collection and Analysis of Soil Samples  INSTALLATION DETAILS  1. Construction Details of Vent Wells  2. Construction Details of Soil-Gas Monitoring Points  3. Construction Details of Groundwater Monitoring Wells  4. Background Area Soil-Gas Monitoring Point  5. System Operation | 24                                                 |
| C.                           | METHODS FOR FIELD TESTS AND SYSTEM MONITORING  1. Surface Emissions Testing  a. Dynamic Surface Emissions Sampling Methodology  b. Sampling Schedule  i. April 1996  ii. October 1996  iii. August 1998  c. Analytical Calculations  2. Soil-Gas Permeability Testing                      | 28<br>28<br>28<br>30<br>30<br>30<br>30<br>30<br>30 |
|                              | a Soil-Gas Permeability and Radius of Influence                                                                                                                                                                                                                                            | 32                                                 |

|              | b. Soil-Gas Permeability Test Procedures                                | 33<br>33 |
|--------------|-------------------------------------------------------------------------|----------|
|              | c. Radius of Influence Calculations                                     | 33<br>34 |
|              | 3. Soil-Gas and Temperature Measurements                                | 34       |
| -            | 4. In Situ Respiration Testing                                          | 34       |
| D.           | RESULTS AND DISCUSSION OF FIELD TESTS AND SYSTEM                        | 34       |
|              | MONITORING Building During Disputation                                  | 34       |
|              | 1. Verification of Low Surface Emissions During Bioventing              | 35       |
|              | 2. Soil-Gas Permeability and Radius of Influence Results and Discussion | 33<br>41 |
|              | 3. Results from Analytical Testing of Soil-Gas Samples                  | 41       |
|              | 4. Results from Monthly Soil-Gas Sampling                               | 41       |
|              | 5. In Situ Respiration Test Results                                     | 43       |
|              | 6. Results from Soil Sampling                                           | 43       |
|              | a. Initial                                                              | 58       |
| E.           | b. Final                                                                | 58       |
| SECTION IV   | NATURAL ATTENUATION DEMONSTRATION                                       | 76       |
| A.           | SITE SELECTION AND EVALUATION                                           | 76       |
| A.           | 1. Site History and Data Review                                         | 76       |
|              | 2. Soil-Gas Surveys                                                     | 76       |
|              | 3. On-Site Consultation                                                 | 77       |
|              | 4. Site Selection                                                       | 77       |
| В.           | SITE CHARACTERIZATION TO DEMONSTRATE NATURAL                            | •        |
| ъ.           | ATTENUATION                                                             | 79       |
|              | 1. Overview of On-Site Activities                                       | 80       |
|              | 2. Study Area Features and Plume Delineation                            | 80       |
|              | 3. Sampling Locations and Clearance                                     | 82       |
|              | 4. Groundwater Sampling and Analysis                                    | 82       |
|              | a. Probe Head Measurements                                              | 84       |
|              | b. Other On-Site Analyses                                               | 86       |
| C.           | RESULTS FROM GROUNDWATER ANALYSES                                       | 87       |
|              | 1. Summary of Groundwater Quality and Contamination                     | 87       |
|              | a. Contaminants: TPH and BTEX Distribution and Attenuation              | 105      |
|              | b. Metabolic Byproducts: Iron and Manganese Distribution                | 111      |
|              | c. Electron Acceptors: Dissolved Oxygen, Nitrate, and Sulfate           | 110      |
|              | Distribution                                                            | 112      |
|              | i. Dissolved Oxygen Distribution                                        |          |
|              | ii. Nitrate and Sulfate Distribution                                    | 112      |
|              | d. Other Field Parameters: Oxidation/Reduction Potential,               | 112      |
|              | Conductivity, Temperature, and pH Distribution                          | 113      |
|              | i. Oxidation/Reduction Potential Distribution                           | 113      |
|              | ii. Conductivity, Temperature, and pH Distribution                      |          |
| D ((         | 2. Conceptual Model of Contamination and Natural Attenuation            | 113      |
| D. CC        | ONCLUSIONS AND RECOMMENDATIONS                                          | 114      |
| SECTION V.   | REFERENCES                                                              | 116      |
| A DDENINIV A | · I ARODATORY ANALYTICAL RESULTS                                        | A-1      |

| APPENDIX B: | SOIL BORING LOGS B.                                                                                                   | -1         |
|-------------|-----------------------------------------------------------------------------------------------------------------------|------------|
| APPENDIX C  | SURFACE EMISSIONS SAMPLING RESULTS C                                                                                  | -1         |
| APPENDIX D  | : RESULTS FROM SOIL-GAS PERMEABILITY TESTING D                                                                        | -1         |
| APPENDIX E  | MONTHLY SOIL-GAS SAMPLING RESULTS                                                                                     | -1         |
| APPENDIX F  | RESULTS FROM IN SITU RESPIRATION TESTS F                                                                              | -1         |
| APPENDIX G  | : RESULTS FROM GROUNDWATER QUALITY SAMPLING G                                                                         | -1         |
| APPENDIX H  | : PHOTO OF ON-SITE FIELD ACTIVITIES                                                                                   | -1         |
|             | LIST OF TABLES                                                                                                        |            |
| Table 1.    | Results from the Initial Soil Gas Survey at the POL Yard                                                              | 13         |
| Table 2.    | Results from the December 1995 Soil Gas Survey at the POL Yard                                                        | 15         |
| Table 3.    | In Situ Respiration Rates at the POL Yard                                                                             | 19         |
| Table 4.    | Drilling and Completion Summary for Installations at the Bioventing Test                                              |            |
| Tuble       | Plot, POL Yard                                                                                                        | 25         |
| Table 5.    | Surface Emissions Sampling Results at the POL Yard Prior to Initiating                                                |            |
| Tuble 5.    | Bioventing: April 1996                                                                                                | 36         |
| Table 6.    | Surface Emissions Sampling Results at the POL Yard: October 1996                                                      | 37         |
| Table 7.    | Surface Emissions Sampling Results at the POL Yard: August 1998                                                       | 38         |
| Table 8.    | Radius of Influence Versus Depth at the Bioventing Test Plot, POL Yard                                                | 39         |
| Table 9.    | Baseline BTEX and TPH Concentrations in Soil Gas Samples at the POL                                                   |            |
| Table 3.    | Yard: May 1996                                                                                                        | 41         |
| Table 10.   |                                                                                                                       | 44         |
| Table 11.   | In Situ Respiration Results at the POL Yard: November 1996                                                            | 47         |
| Table 12.   | In Situ Respiration Results at the POL Yard: August 1998                                                              | <b>5</b> 0 |
| Table 13.   | Results of Inorganic Soil Analyses at the POL Yard                                                                    | 59         |
| Table 14.   | Particle Size Classification of Soils From the POL Yard                                                               | 60         |
|             | LIST OF FIGURES                                                                                                       |            |
| Figure 1.   | Schematic Diagram Showing Monitoring Well Locations at the POL Yard, Rhein-Main Air Base Germany                      | 8          |
| Figure 2.   | Water Table Fluctuations, 1972 through 1995, Approximately 2 km from the                                              | 9          |
| Figure 3.   | POL Yard Schematic Diagram Showing Locations of Soil-Gas Monitoring Points and Soil-Gas Survey Points at the POL Yard | 11         |
| Figure 4    | Schematic Diagram of Soil-Gas Monitoring Points Installed by the University                                           | - 1        |
| Figure 4.   | of Karlsruhe                                                                                                          | 12         |

| Figure 5.  | Schematic Diagram Showing Locations of the Bioventing Test Plot and         |    |
|------------|-----------------------------------------------------------------------------|----|
|            | Background Area at the POL Yard                                             | 21 |
| Figure 6.  | Plan View of the Bioventing Test Plot Showing Locations of Vent Wells,      |    |
|            | Soil-Gas Monitoring Points, and Groundwater Monitoring Wells                | 22 |
| Figure 7.  | Schematic Diagram Showing Cross Section of Vent Wells at the Bioventing     |    |
|            | Test Plot                                                                   | 23 |
| Figure 8.  | Schematic Diagram Showing Cross Sections of Soil Gas Monitoring Points in   |    |
|            | the Bioventing Test Plot                                                    | 26 |
| Figure 9.  | Schematic Diagram Showing Cross Section of Groundwater Monitoring Wells     |    |
|            | at the Bioventing Test Plot                                                 | 27 |
| Figure 10. | Schematic Diagram of the Surface Emissions Sampling System                  | 29 |
| Figure 11. | Locations for Surface Emissions Testing at the Bioventing Test Plot         | 31 |
| Figure 12. | Radius of Influence in the Bioventing Test Plot                             | 40 |
| Figure 13. | Average Oxygen Concentration Versus Time at Select Monitoring Points        | 42 |
| Figure 14. | In Situ Respiration Test Results at Monitoring Point MPB-2 m: August 1996   | 53 |
| Figure 15. | In Situ Respiration Test Results at Monitoring Point MPB-2 m: November      |    |
| 8          | 1996                                                                        | 54 |
| Figure 16. | Initial Average TPH Soil Concentrations by Depth                            | 55 |
| Figure 17. | Initial Average BTEX Soil Concentrations by Depth                           | 56 |
| Figure 18. | Cross Section Showing Site Geology and Contaminant Concentration by Depth . | 57 |
| Figure 19. | TPH Concentrations in Soil at MW1 Over Time                                 | 61 |
| Figure 20. | Benzene Concentrations in Soil at MW1 Over Time                             | 62 |
| Figure 21. | TPH Concentrations in Soil at VW1 Over Time                                 | 63 |
| Figure 22. | Benzene Concentrations in Soil at VW1 Over Time                             | 64 |
| Figure 23. | TPH Concentrations in Soil at VW2 Over Time                                 | 65 |
| Figure 24. | Benzene Concentrations in Soil at VW2 Over Time                             | 66 |
| Figure 25. | TPH Concentrations in Soil at VW3 Over Time                                 | 67 |
| Figure 25. |                                                                             |    |
| •          | Benzene Concentrations in Soil at VW3 Over Time                             | 68 |
| Figure 27. | TPH Concentrations in Soil at VW4 Over Time                                 | 69 |
| Figure 28. | Benzene Concentrations in Soil at VW4 Over Time                             | 70 |
| Figure 29. | TPH Concentrations in Soil Across the Site Over Time                        | 71 |
| Figure 30. | Benzene Concentrations in Soil Across the Site Over Time                    | 72 |
| Figure 31. | Cumulative Hydrocarbon Removal in the Bioventing Test Plot at Two Depth     |    |
| 77' 00     | Intervals                                                                   | 73 |
| Figure 32. | Water Table Contour Map                                                     | 78 |
| Figure 33. | Site Map Showing Phase 1 GeoProbe® Sampling Locations                       | 81 |
| Figure 34. | Site Map Showing Phase 2 GeoProbe® Sampling Locations                       | 83 |
| Figure 35. | Schematic Diagram Showing Details of the GeoProbe® Screen Point Sampler     | 85 |
| Figure 36. | TPH-Purgeable Distribution (mg/L) 1998                                      | 88 |
| Figure 37. | Benzene Distribution ( $\mu$ g/L); (a) 1996; (b) 1998                       | 89 |
| Figure 38. | Toluene Distribution ( $\mu$ g/L); (a) 1996; (b) 1998                       | 90 |
| Figure 39. | Ethylbenzene Distribution ( $\mu g/L$ ); (a) 1996; (b) 1998                 | 91 |
| Figure 40. | $m, p$ - Xylene Distribution ( $\mu g/L$ ); (a) 1996; (b) 1998              | 92 |
| Figure 41. | o-Xylene Distribution ( $\mu$ g/L); (a) 1996; (b) 1998                      | 93 |
| Figure 42. | Dissolved Oxygen Distribution (mg/L); (a) 1996; (b) 1998                    | 94 |
| Figure 43. | Oxidation/Reduction Potential Distribution (mV); (a) 1996; (b) 1998         | 95 |
| Figure 44. | Nitrate Distribution (mg/L); (a) 1996; (b) 1998                             | 96 |
| Figure 45. | Sulfate Distribution (mg/L); (a) 1996; (b) 1998                             | 97 |

| Figure 46. Iron Distribution (mg/L); (a) 1996; (b) 1998            | 99  |
|--------------------------------------------------------------------|-----|
|                                                                    |     |
| Figure 48. Sulfide Distribution (mg/L); (a) 1996; (b) 1998         |     |
| Figure 49. Conductivity Distribution (mV); (a) 1996; (b) 1998      | 101 |
| Figure 50. Temperature Distribution (°C); (a) 1996; (b) 1998       | 102 |
| Figure 51. pH Distribution; (a) 1996; (b) 1998                     | 103 |
| Figure 52. Transect for 1996 (Phase 1) Data Analysis               | 104 |
| Figure 53. Transect for 1998 (Phase 2) Data Analysis               | 104 |
| Figure 54. Contaminants Along Transect; (a) 1996; (b) 1998         |     |
| Figure 55. Metabolic Byproducts Along Transect; (a) 1996; (b) 1998 |     |
| Figure 56. Electron Acceptors Along Transect; (a) 1996; (b) 1998   | 108 |
| Figure 57. Field Parameters Along Transect; (a) 1996; (b) 1998     | 109 |

#### ACRONYMS AND ABBREVIATIONS

AFB Air Force Base

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

D/NETDP Department of Defense/National Environmental Technology Demonstration Program

DO dissolved oxygen

Eh oxidation/reduction potential

GC gas chromatography

GP Gasmeβstelle (soil-gas monitoring point)

GP GeoProbe®

GWM Grundwassermeβstelle (monitoring well)

I.D. inside diameter

LNAPL light, nonaqueous-phase liquid

ND not detected NS not sampled

MP monitoring point msl mean sea level MW monitoring well

NM not measured

O.D. outside diameter

POL petroleum, oils, and lubricants ppmv part per million by volume

PVC polyvinyl chloride

QA quality assurance QC quality control

RM Rhein-Main

SERDP Strategic Environmental Research Development Program

SGS soil-gas survey

TKN total Kjeldahl nitrogen total phosphorous

TPH total petroleum hydrocarbons

| U.S. EPA<br>UST<br>UXO | U.S. Environmental Protection Agency underground storage tank unexploded ordnance |
|------------------------|-----------------------------------------------------------------------------------|
| VOA<br>VOC<br>VW       | volatile organic analysis<br>volatile organic compound<br>vent well               |
| YSI                    | Yellow Springs International                                                      |

#### **EXECUTIVE SUMMARY**

This report describes activities conducted at Rhein-Main Air Base, Germany. This project was conducted by Battelle Memorial Institute for the Air Force Research Laboratory, Tyndall Air Force Base (AFB), Florida, and was funded by the Strategic Environmental Research Development Program (SERDP). This project involved the installation and operation of a bioventing system and the evaluation of natural attenuation of a mixed fuels spill at the Petroleum, Oils, and Lubricants (POL) Yard at Rhein-Main Air Base, Germany.

In 1997 it was learned that the scope of this project was to be reduced. Therefore, field activities were minimized until a new scope was defined. The bioventing system operations were continued; however, no field monitoring was conducted. In October 1997, the revised scope was received. A field maintenance trip was conducted in early December 1997 to ensure that the system was functioning properly. Minimal monitoring activities were conducted throughout 1998, and final soil and groundwater sampling activities took place in September and October 1998. This annual report provides a summary of all activities conducted from project initiation to the present time.

### **Bioventing Testing**

The bioventing test site is located at the POL Yard at Rhein-Main Air Base. Rhein-Main Air Base is an active air base located just outside Frankfurt, Germany. The 469th Air Base Squadron is Rhein-Main's host unit. The mission of the Base is to maintain an infrastructure ready for major airlift contingencies and to provide Base operating support.

The test site is in the POL Yard and is located near an underground pipeline that formerly was used to transfer fuel from underground storage tanks (USTs) to vehicles. The tanks contained primarily diesel fuel, although it is believed that they also periodically stored jet fuel. The pipeline and USTs have since been removed.

Site characterization activities included an initial soil-gas survey, an in situ respiration test, and initial soil and soil-gas analyses. Results from the soil-gas surveys indicated that both of the investigated areas were contaminated and contained high microbial activity. These results suggested that bioventing was likely to be a feasible remedial technology for this site.

Installations in the bioventing test plot included the following: four vent wells (VWs), four eight-level soil-gas monitoring points (MPs), and three 2-inch-diameter polyvinyl chloride (PVC) groundwater monitoring wells (MWs). The bioventing system consisted of a regenerative air blower plumbed to the air injection (vent) wells in the test plot. Operation of the bioventing system involved introducing oxygen into the vadose zone by injecting atmospheric air into the contaminated subsurface with the blower. Beginning in June 1996, air was injected at a rate of 350 L/min (12.5 cfm) into each vent well.

In December 1997, the regenerative air blower was replaced with an oil-less air compressor. A ¼-inch (0.64 cm) tube was placed in monitoring well MW1 at a depth of 8.8 m (29 ft) bgs and connected to the oil-less air compressor. The compressor was started and run until it reached equilibrium. The flowrate reached 196 L/min (7.0 cfm) at a pressure of 24 psi (165 kP). The pressure at the monitoring well was 0.35 bar.

The field tests conducted to date for this project consisted of (1) surface emissions testing; and (2) soil-gas permeability testing. System monitoring included regular field soil-gas sampling, soil temperature analysis, and in situ respiration tests. Based on the results from the study period, the following can be concluded:

- 1. The bioventing process is stimulating biodegradation. The average in situ respiration rate at a depth of 0 to 3 m was initially 1.8 mg/kg-day during the warm months and 0.42 mg/kg-day during colder months. At a depth of 3 to 6 m, the average in situ respiration rate during the warm months was initially 0.36 mg/kg-day and 0.18 mg/kg-day during colder months. During the final respiration test, conducted in a warm month, the average in situ respiration rate was 0.56 mg/kg-day at a depth of 0 to 3 m and 0.15 mg/kg-day at a depth of 3 to 6 m. Since the initiation of bioventing, these rates correspond to an estimated 2,800 kg total hydrocarbon removal.
- 2. Surface emissions at the site appear to be minimal. Surface emissions measured in October 1996 and again in August 1998 allowed for comparison of emissions with injection and without injection. Surface emissions measured in October 1996 were significantly lower than those measured during initial testing in April 1996. In most samples, no BTEX components could be detected. Very little difference could be detected between samples collected with injection and without injection. In the center of the test plot, no benzene, ethylbenzene, or xylenes were detected in any samples either with or without injection, and only trace amounts of toluene were detected during injection. In general, August 1998 surface emissions were significantly lower than those measured in April 1996, and were somewhat greater than those measured in October 1996. The average benzene concentrations in the center of the test plot both with and without injection were below the initial benzene concentrations in surface emissions prior to treatment. These data again show that operation of the blower does not seem to affect surface emission concentrations of benzene in the center of the test plot. Benzene concentrations in perimeter samples collected both with and without blower operation were less than benzene concentrations in initial surface emission samples at the site. These results indicate that, at the locations sampled, the bioventing system is not creating a pronounced level of increased emissions greater than natural surface emissions at the site.
- 3. Pressure changes were monitored at all depths during the soil-gas permeability tests. In general, the radius of influence was greater at the deeper depths, with values ranging from 4.6 m (15 ft) at a depth of 2 m (6.6 ft) up to 11 m (37 ft) at a depth of 4 m (13 ft). Based on the data for the POL Yard and assuming that most of the contamination generally is at deeper depths, a radius of influence of 9 m (30 ft) may be sufficient for site coverage. This radius would necessitate a well spacing of 18 m (60 ft). At the 18-m spacing, approximately 12 wells would be sufficient to treat more than 4,000 m<sup>2</sup> (~1 acre) of site surface area.
- 4. Results of soil-gas analyses generally agree with soil analyses, demonstrating that contaminant concentrations are heavier at distances closer to the old pipeline and at deeper depths. The exception is shown at monitoring point MPB, where significant contaminant concentrations are found at a shallower depth, and are believed to be the results of a surface spill.

distribution is known better. Additional vertical and lateral sampling should be performed at both existing and at new locations. It would also be helpful to learn more about the history of the spill.

- Verification of the water quality parameter measurements. To date, the results from the Hach® kits and GC have not been verified by independent laboratory analyses. Some of the data collected by the YSI instruments were verified by using another instrument that was available in the field, but that verification process was not rigorous. Verification of all instrument-derived data would increase confidence in the results and conclusions.
- Collection of additional background data. It would be very useful to collect background data at more than one location. These data would provide greater insight into ambient concentration for the various water quality parameters, and should be collected at locations that are upgradient and outside of the POL Yard.
- Develop and implement a groundwater monitoring plan. Once the plume has been fully delineated, a monitoring program should be planned and implemented to chart the progress of plume reduction and the trend of the relevant natural attenuation parameters. This plan should be presented to all stakeholders (local citizens, government regulators, and Base officials) to gain approval to implement a monitoring program that lasts at least two years, consisting of sample collection on a quarterly basis. A more extensive data set needs to present convincing and defensible evidence of natural attenuation.
- Development of a numerical model. This model would (1) represent all known site conditions, and (2) simulate and predict the rate of natural attenuation and its impact on the plume and overall groundwater quality with the progression of time.

#### FINAL REPORT

on

# BIOVENTING TECHNOLOGY DEMONSTRATION AT RHEIN-MAIN AIR BASE, FRANKFURT, GERMANY

## 10 September 1999

This report describes activities conducted at Rhein-Main Air Base, Germany. This project was conducted by Battelle Memorial Institute for the Air Force Research Laboratory, Tyndall Air Force Base (AFB) Florida. The project was funded by the Strategic Environmental Research Development Program (SERDP). This project involved the installation and operation of a bioventing system, and evaluation of natural attenuation of a mixed fuels spill at the Petroleum, Oils, and Lubricants (POL) Yard at Rhein-Main Air Base, Germany.

During 1997, it was learned that the scope of this project was to be reduced. Therefore, the field activity was minimized until a new scope was defined. The bioventing system continued to be operated; however, no field monitoring was conducted. In October 1997, the revised scope was received. A field maintenance trip was conducted in early December 1997 to ensure the system was functioning properly. Minimal monitoring activities were conducted throughout 1998, and final soil and groundwater sampling occurred in September and October 1998. This annual report provides a summary of all activities conducted at the POL Yard from project initiation to the present time.

- 5. During August 1996, in situ respiration rates were greatest at depths of 3 m and less in the vicinity of monitoring points MPA and MPB. The lowest rates were found in the area of monitoring point MPD. These results correlate with soil and soil-gas analyses, which demonstrated that the highest levels of contaminants exist in the region of monitoring points MPA and MPB, with little contamination in the region of monitoring point MPD. Higher contaminant levels will result in higher in situ respiration rates. Soil sample results also demonstrated the presence of significant contaminant concentrations at a depth of 7 to 8 m bgs; however, these soils are saturated, preventing the use of in situ respiration testing. In situ respiration rates measured during November 1996 were significantly lower than August 1996 rates, most likely the result of significantly lower soil temperatures. In situ respiration rates measured in August 1998 also were lower than August 1996 rates even at similar soil temperatures, indicating a reduction in contaminant concentrations in soil.
- In general, the highest initial soil contaminant levels were found at deeper depths, 6. close to the location of the former pipeline. Total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) also were high at shallower depths near the southeastern portion of the test plot. POL Yard personnel reported that there was a large surface spill in this area that probably resulted in the contamination in the test plot at these depths. TPH concentrations ranged from below detection limits to approximately 2,000 mg/kg, and BTEX concentrations ranged from below detection limits up to approximately 20 mg/kg. The total mass of TPH initially in soil is estimated to be 1,920 kg, a number based on average TPH concentrations in soil by depth prior to the initiation of bioventing. All values of the inorganic parameters fell within ranges observed at successful bioventing sites. Results of final soil sampling indicate a significant reduction in contaminant concentration in soil with the exception of several depths below the water table level. In general, the highest final TPH and benzene concentrations were found in vent wells VW-1 and VW-3 at deeper depths that are saturated during part or all of the year. TPH and BTEX also remained slightly elevated at several shallower depths, possibly associated with the surface spill mentioned above. However, concentrations at these locations were significantly lower in the final sampling event in comparison to concentrations measured in the initial sampling event.

#### **Natural Attenuation Study**

Site characterization activities conducted as part of the natural attenuation study were patterned on those recommended in the U.S. Air Force Protocol for natural attenuation studies (Wiedemeier et al., 1995). The site characterization was designed to evaluate the nature and extent of petroleum contamination in groundwater as well as to determine if evidence of natural attenuation, and specifically intrinsic biodegradation, is present. Intrinsic biodegradation is the most important of several natural processes at play within a plume that is undergoing natural attenuation. It is most important because it is the only one of several natural attenuation processes that transforms contaminants into innocuous byproducts and reduces the total mass of contaminants in the subsurface.

A reduction in plume concentration is generally considered evidence of natural attenuation, provided that it is known that the plume source is being removed and that the plume is not increasing in size. Evidence of intrinsic biodegradation is found by collecting groundwater quality data from

points scattered across the area of the plume, from points within the source area, and from nonimpacted upgradient locations.

Site characterization activities focused on collecting two temporal data sets to (1) determine the nature and extent of a plume caused by a release of petroleum-related contamination and (2) collect specific water quality parameters directly related to the intrinsic biodegradation of the plume. The second data set was collected two years after the first to determine if the levels of contamination were dropping over that two-year time period and if water quality parameters and concentrations of compounds related to intrinsic biodegradation concurrently were following anticipated trends.

The GeoProbe®-based groundwater sampling and analysis performed downgradient of the known fuel leak in the POL Yard indicated that a dissolved-phase plume had been created in the water table aquifer. This plume contains TPH and BTEX constituents that have moved in the direction of groundwater flow (northwest) toward the Base boundary. Sampling and analysis indicates that TPH is present at concentrations as high as 1 mg/L at least 220 m northwest of the POL Yard, and benzene is present at concentrations as high as 5  $\mu$ g/L at least 330 m northwest of the POL Yard. The vertical extent of the plume has not been fully defined.

The limited amount of data collected during the two field surveys— spatial distributions of contamination, degradation byproducts, electron acceptors, and relevant field parameters— generally indicated that intrinsic biodegradation is taking place within the plume. The trends of key parameters, especially across the source area from the upgradient to the first of the downgradient sampling locations, reflected conditions that are present when a hydrocarbon plume is undergoing intrinsic biodegradation, (the most significant natural process).

There are erratic distributions of many of the key parameters. This can be attributed to aquifer heterogeneity (both laterally and vertically within the aquifer), the presence of other potential downgradient sources, and operator and instrument error during data collection and analysis.

The conclusion that natural attenuation is occurring was most strongly supported by the distribution and spatial trend of contaminant constituents, electron acceptors, and degradation products upgradient and immediately downgradient of the source. Dissolved oxygen data showed that aerobic conditions were clearly present upgradient from the source, and that the aquifer becomes far less rich in oxygen under the POL Yard. The aquifer remained relatively low in oxygen at most downgradient locations where measurements were collected. There was clearly a reduction of electron acceptors under the POL Yard and at location GP-2, the first downgradient location. Conversely, metabolic byproducts were increasing from the upgradient location, across the POL Yard, and downgradient to location GP-1. Together, these trends suggest that intrinsic biodegradation processes are acting on the hydrocarbon contaminants in the groundwater.

The collection of a more extensive data set is needed to determine which specific biodegradation processes are present at this site, and then to calculate the rate of degradation. This data set should include the following:

• Better characterization of the hydrocarbon plume. Specifically, greater knowledge of the distribution of TPH and BTEX is needed. More meaningful conclusions can be drawn from concentrations of electron acceptors and degradation products if the plume

# SECTION I INTRODUCTION AND BACKGROUND

This section introduces the bioventing technology demonstration conducted at Rhein-Main Air Base, Germany. The introduction includes a discussion of the general need for innovative technologies, a brief description of bioventing and natural attenuation, and a presentation of the scope of work for the technology demonstration.

#### A. TECHNOLOGY NEED

Historic handling practices and past spills and leaks have caused petroleum releases to the environment to occur at most industrial and government fuels-handling facilities. When a fuel release occurs, the contaminants may be present in any or all of three phases in the geologic media: adsorbed to the soils in the vadose zone, floating on the water table in free-phase form, and/or in solution phase dissolved in the groundwater. Of the three phases, dissolved petroleum contaminants in the groundwater are considered to be of greatest concern due to the risk of human exposure through drinking water. However, the liquid- and adsorbed-phase hydrocarbons act as feedstocks for groundwater contamination, so any remedial technology aimed at reducing groundwater contamination must address these contaminant sources.

Petroleum distillate fuel hydrocarbons such as diesel fuel are generally biodegradable if naturally occurring microorganisms are provided an adequate supply of oxygen and basic nutrients. Natural biodegradation does occur and, at many sites, eventually may mineralize most fuel contamination. However, due to heavy contamination in source zones, an acceleration or enhancement of the natural biodegradation process may prove the most effective remediation for these areas.

To date, bioventing and natural attenuation have been demonstrated as effective remedial technologies in the United States. However, they have yet to be widely demonstrated in Germany and must be proven effective remedial technologies to German environmental regulatory agencies in order for bioventing and natural attenuation to be applied at U.S. military installations in Germany. The present study is a demonstration of bioventing and natural attenuation conducted in a manner satisfying the mission and goals of the Department of Defense/National Environmental Technology Demonstration Program (D/NETDP).

#### B. TECHNOLOGY OVERVIEW

Bioventing and natural attenuation are being demonstrated in a combined process for remediation of source zone and groundwater contamination. Bioventing is being demonstrated as a source zone remediation technology, while natural attenuation is being demonstrated as a groundwater remediation alternative.

#### 1. Bioventing

Bioventing is a process designed to deliver adequate supplies of oxygen to the subsurface environment to support aerobic biodegradation of target contaminants. Oxygen is delivered through induced air movement either by applying a vacuum and withdrawing soil gas or by air injection.

When air is the oxygen source, the minimum stoichiometric ratio of air to hydrocarbon on a mass basis is approximately 13 to 1. This ratio is in contrast to a water to hydrocarbon ratio of more than 10,000 to 1 for a conventional waterborne-enhanced bioreclamation process. An additional advantage of using an airborne process is that gases have greater diffusivity than liquids. At many sites, geologic heterogeneities present a problem for a waterborne oxygen source because fluid pumped through the formation is channeled into the more permeable pathways. For example, in an alluvial soil with interbedded sand and clay, initially all of the fluid flow will take place in the sand. As a result, oxygen must be delivered to the less-permeable clay lenses through diffusion. In a gaseous system (as is found in unsaturated soils), this diffusion can be expected to take place at a rate several orders of magnitude greater than in a liquid system (as is found in saturated soils). Although it is not realistic to expect diffusion to aid significantly in water-based bioreclamation, in an air-based application, diffusion may be a significant mechanism for oxygen delivery to less-permeable zones.

Bioventing has been demonstrated to be effective at any site that is contaminated with biodegradable compounds and at which the microbial populations are present that can degrade the target contaminants. This includes sites contaminated with diesel or JP-4 jet fuel and other jet fuels as well as fire protection training areas that are contaminated with a wide range of petroleum-based contaminants.

The use of an air-based oxygen supply to enhance biodegradation relies on air flow through hydrocarbon-contaminated soils at rates and configurations that will both ensure adequate oxygenation for aerobic biodegradation and minimize or eliminate the production of a hydrocarbon-contaminated off-gas. The addition of nutrients and moisture may be desirable to increase biodegradation rates; however, field research to date does not support this (Dupont et al., 1991; Miller et al., 1991). Dewatering may be necessary at times, depending on the distribution of contaminants relative to the water table. However, because dewatering is already required at many fuel hydrocarbon-contaminated sites, this is not likely to present a problem. A key feature of bioventing is the narrowly screened soil-gas monitoring points that sample only a short vertical section of the soil. These points are required to determine local oxygen concentrations, because the oxygen levels measured in the vent well are not representative of local conditions.

A bioventing system may be configured in one of two different ways to enhance biodegradation: air extraction or air injection. The optimal configuration for any given site will depend on site-specific conditions and remedial objectives.

Air injection is the configuration of choice for bioventing at the POL Yard. Air injection is the lowest cost configuration, but careful consideration must be given to the fate of injected air. The objective is to degrade hydrocarbons, resulting in carbon dioxide emissions at some distance from the injection point. If a building or subsurface structure exists within the radius of influence, hydrocarbon vapors may be forced into that structure. Therefore, protection of subsurface structures may be required.

Alternatively, a system may be constructed in which air is injected (the injection may be by passive wells) into the contaminated zone and withdrawn from clean soils. This configuration allows the more volatile hydrocarbons to degrade prior to being withdrawn, thereby eliminating contaminated off-gases.

A configuration that may alleviate the threat to subsurface structures while achieving the same effect as air injection alone would involve extracting soil gas near the structure of concern and reinjecting it at a safe distance. If necessary, make-up air can be added before injection.

The significant features of the bioventing technology include the following:

- Optimizing air flow to reduce volatilization while maintaining aerobic conditions for biodegradation.
- Monitoring local soil-gas conditions to ensure aerobic conditions, not just monitoring vent gas composition.
- Manipulating the water table as required for air/contaminant contact.

#### 2. Natural Attenuation

Intrinsic biodegradation, also known as natural attenuation, is a passive remediation method that can effectively reduce petroleum contamination in soil and groundwater to levels that do not pose a risk to human health or the environment. Intrinsic biodegradation results from the combined effects of several natural processes, including biodegradation, dilution, sorption, dispersion, and volatilization. For petroleum hydrocarbons, biodegradation is the most important process because it transforms contaminants into innocuous byproducts such as water and carbon dioxide, and reduces the total mass of the contaminants in the subsurface. The other processes lower the concentration of contaminants in the environment but do not reduce their mass.

In intrinsic biodegradation, no actions are taken to enhance the biodegradation of contaminants beyond the existing capacity of the system. Intrinsic biodegradation is implemented by demonstrating that the native microbial populations have the potential to reduce contaminant levels to meet remediation goals and monitoring to confirm that contaminants do not reach areas of potential concern at unacceptable concentrations. Site owners interested in accomplishing cost-effective remediation should consider intrinsic biodegradation before investing in more aggressive alternatives that may be unnecessary for the site.

Intrinsic biodegradation has several advantages over conventional remediation methods for petroleum contaminants:

- It is less costly than conventional engineered technologies such as pump and treat the maximum cost for intrinsic biodegradation is expected to be around \$200,000 for most sites, whereas the cost of pump and treat can easily reach several million dollars.
- Minimal technical issues require resolution compared to conventional aboveground treatment requiring, for example, disposal of treated groundwater, compliance with stringent effluent guidelines, or removal of nontoxic compounds from the groundwater that interfere with treatment.
- It is nonintrusive, does not interfere with ongoing site operations, and can be used in inaccessible locations (e.g., below buildings).

- Remediation takes place in situ (i.e., in place), reducing the potential for exposing site workers to contamination.
- With no operations and maintenance requirements other than monitoring, there are no limitations such as equipment failure.
- It can be used in conjunction with conventional remedial technologies such as pump and treat.
- Microorganisms ultimately reduce petroleum contaminants to harmless byproducts, whereas some technologies transfer contaminants to other locations or other phases in the environment.

The principal limitations of intrinsic biodegradation are as follows:

- Prevailing site conditions must be suitable to support sufficient microbial activity so
  that contaminant concentrations are reduced to acceptable levels before potential
  receptors are affected.
- It may not be an appropriate stand-alone remediation option when exposure pathways are already completed or receptors are already impacted.
- Site remediation to regulatory standards generally cannot be accomplished in very short time frames.

#### C. SCOPE OF WORK

The scope of work for this project is presented below for the bioventing and natural attenuation portions of this study.

#### 1. Bioventing

The scope of work for bioventing included predemonstration site characterization, implementation of the technology demonstration, and demobilization from the site. The major tasks in completing the current scope of work are listed below:

- Task I involved site characterization and included measurement of initial depths to groundwater and free product, initial soil sampling, soil-gas sampling, and in situ respiration testing.
- Task II involved system installation and immediately followed Task I.
- Task III consisted of the determination of a mass balance on the bioventing test site and was conducted during Task IV.
- Task IV included system operation and maintenance.

### 2. Natural Attenuation

The original scope of work for natural attenuation included preliminary data evaluation and implementation of the natural attenuation study. The major tasks for completing the original scope of work are listed below. Due to the scope reduction in 1997, tasks IV and V were eliminated. Rather than implementing natural attenuation, a preliminary evaluation was performed to determine if natural attenuation would be an effective remedial technology at this site. Based on the preliminary evaluation, recommendations are made concerning the implementation of natural attenuation.

- Task I involved review of existing site data to determine the potential feasibility of natural attenuation.
- Task II involved development of a preliminary conceptual model to better assess the
  potential for natural attenuation and to evaluate the potential for the plume to enter
  exposure pathways or to exceed regulatory guidelines.
- Task III involved a site characterization.
- Task IV would have involved refinement of the conceptual model, pre-modeling calculations, and numerical modeling of natural attenuation.
- Task V would have involved development and implementation of a long-term monitoring program.

## SECTION II SITE DESCRIPTION

This section presents information on the test site located at Rhein-Main Air Base. The information presented here includes the current understanding of site geology, hydrogeology, and contaminant distribution at the Petroleum, Oil, and Lubricants (POL) Yard located at Rhein-Main Air Base, Germany.

#### A. SITE LOCATION AND HISTORY

The bioventing test site was located at the POL Yard at Rhein-Main Air Base (Figure 1). Rhein-Main Air Base is an active air base located just outside Frankfurt, Germany. The 469th Air Base Squadron is Rhein-Main's host unit. Its mission is to maintain an infrastructure ready for major airlift contingencies and to provide Base operating support.

The test site is in a POL Yard and is located near an underground pipeline that was used to transfer fuel from underground storage tanks (USTs) to vehicles. The tanks have contained primarily diesel fuel, although it is believed that jet fuel also was stored in them periodically. The pipeline and USTs have since been removed.

#### B. HYDROGEOLOGIC CHARACTERISTICS

The surficial geology in the vicinity of the Rhein-Main Air Base consists primarily of Quaternary sands and gravels with interbedded layers of silt. These deposits form a surficial aquifer that has been contaminated by fuel products in the POL Yard of Rhein-Main Air Base.

The primary surface water body in the area is the Main River, located approximately 5.4 km (3.3 miles) downgradient from the POL Yard. No major surface water features are present in the immediate vicinity of Rhein-Main Air Base. Consequently, there is little to no surface runoff. The annual precipitation for the time period 1891 through 1955 ranged between 590 to 660 mm/year (23 to 26 inches/year). Evaporation rates for the same time period were approximately 430 to 450 mm/year (17 to 18 inches/year). Consequently, an annual recharge rate of 160 to 210 mm/year (6.3 to 8.3 inches/year) can be expected for this area (Hessiches Landesamt für Bodenforschung, 1980).

An unconfined aquifer exists at approximately 7.5 to 8.0 m (25 to 26 ft) below ground surface (bgs) at the site. The saturated thickness of the aquifer is approximately 40 m (130 ft). The direction of groundwater flow in the vicinity of the POL Yard is to the northwest, toward the Main River. Groundwater flows at a rate of approximately 0.12 m/day (0.39 ft/day), with a hydraulic gradient of approximately 0.0017. The aquifer materials are highly permeable with an average representative hydraulic conductivity of approximately  $2 \times 10^{-4}$  m/s (6.6  $\times 10^{-4}$  ft/s).

Depth to groundwater has fluctuated significantly during the past 20 years due to changes in local water usage (Figure 2). In 1972, the depth to groundwater was measured at approximately 8.7 m (29 ft) bgs and dropped to approximately 10 m (33 ft) bgs in 1977. Recent measurements have shown groundwater at a depth of approximately 6.2 m (20 ft).



Figure 1. Schematic Diagram Showing Monitoring Well Locations at the POL Yard, Rhein-Main Air Base Germany



Figure 2. Water Table Fluctuations, 1972 through 1995, Approximately 2 km from the POL Yard

# SECTION III BIOVENTING DEMONSTRATION

This section details the activities associated with the bioventing demonstration. Included in this section is a discussion of site characterization activities, installation details, and results of field tests.

## A. SITE CHARACTERIZATION

This section details the initial site characterization conducted at the bioventing test plot. Site characterization activities included an initial soil-gas survey, an in situ respiration test, and initial soil and soil-gas analyses. The results of these activities are described in the following subsections.

### 1. Soil-Gas Survey

A two-part soil-gas survey was conducted during November and December 1995. The first survey was conducted by collecting soil-gas samples from existing soil-gas monitoring points installed by the University of Karlsruhe earlier in 1995 (Figure 3). A schematic diagram showing construction details of a soil-gas monitoring point is provided in Figure 4. The second part of the soil-gas survey was conducted in December 1995 at a location east of the permanent soil-gas monitoring points, as shown in Figure 3. These soil gas samples were collected using the soil gas survey techniques described in Downey and Hall (1994). Soil-gas concentrations of oxygen and carbon dioxide were measured using a GasTech O<sub>2</sub>/CO<sub>2</sub> meter Model 32520X, and total petroleum hydrocarbon (TPH) concentrations were measured using a GasTech TraceTechtor Vapor Analyzer.

Oxygen, carbon dioxide, and TPH concentrations measured during the initial soil-gas survey are shown in Table 1. Oxygen limitation was observed at nearly all depths, with oxygen concentrations generally decreasing with depth. Low oxygen concentrations correlated with high carbon dioxide and elevated levels of TPH. The highest contaminant levels were detected in soil-gas monitoring points located on the University of Karlsruhe test plot. Soil-gas samples could not be collected from depths below 6.1 m (19 ft), because these monitoring points were at or below the groundwater table. A background, uncontaminated area also was identified during the initial soil-gas survey and was located approximately 17.7 m (58.07 ft) east of the northeast corner of Building 329 outside of the POL Yard. The uncontaminated area was characterized by relatively high oxygen, low carbon dioxide, and little to no TPH in soil gas.

The second soil-gas survey was conducted further east of the permanent soil-gas monitoring points in an attempt to locate a contaminated area for the bioventing system beyond the radius of influence of the University of Karlsruhe test plot. Eight soil-gas survey points were located in a grid-like fashion, and one point was located in the median (Figure 3). Stainless steel soil-gas probes (KV Associates) were driven to several depths at each location, and a volume of soil gas was collected with a vacuum pump from each depth for analysis. The samples were analyzed for oxygen, carbon dioxide, and TPH concentrations.

Soil-gas samples were collected approximately every meter (3.3 ft) to a depth of approximately 5 m (16 ft). Results from the second soil-gas survey (SGS) are shown in Table 2. Oxygen limitation was most pronounced in the areas of soil-gas survey points SGS2, SGS4, SGS5,



Figure 3. Schematic Diagram Showing Locations of Soil-Gas Monitoring Points and Soil-Gas Survey Points at the POL Yard



Figure 4. Schematic Diagram of Soil-Gas Monitoring Points Installed by the University of Karlsruhe

Table 1. Results from the Initial Soil Gas Survey at the POL Yard

| Soil Gas Monitoring Point | Depth (m) | Oxygen (%) | Carbon Dioxide (%) | TPH (ppmv) |
|---------------------------|-----------|------------|--------------------|------------|
| GP1                       | 1.8       | 7.0        | 9.2                | 440        |
|                           | 3.25      | 1.0        | 14                 | 560        |
|                           | 4.8       | 0.5        | 14                 | 1,080      |
|                           | 6.3       | NS         | NS                 | NS         |
| GP2                       | 2.5       | 6.0        | 10.5               | 420        |
|                           | 3.25      | 0.5        | 14                 | 1,400      |
|                           | 4.95      | 0.5        | 15                 | 2,400      |
|                           | 6.55      | NS         | NS                 | NS         |
| GP3                       | 2.0       | 6.0        | 13                 | 380        |
|                           | 3.5       | 4.0        | 12                 | 420        |
|                           | 4.95      | 2.0        | 10                 | 420        |
|                           | 6.5       | NS         | NS                 | NS         |
| GP4                       | 2.0       | 16         | 4.5                | 320        |
|                           | 3.5       | 5.0        | 12                 | 460        |
|                           | 5.0       | 4.0        | 12.6               | 480        |
|                           | 6.5       | NS         | NS                 | NS         |
| GP5                       | 1.85      | 15         | 5.0                | 320        |
|                           | 3.4       | 6.0        | 12                 | 440        |
|                           | 4.75      | 6.0        | 11                 | 400        |
|                           | 6.1       | 5.0        | 12.2               | 2,200      |

Table 1. Results from the Initial Soil Gas Survey at the POL Yard (continued)

| Soil Gas Monitoring Point | Depth (m) | Oxygen (%) | Carbon Dioxide (%) | TPH (ppmv) |
|---------------------------|-----------|------------|--------------------|------------|
| GP6                       | 2.0       | 1.5        | 13                 | >10,000    |
|                           | 3.5       | 2.8        | 13                 | >10,000    |
|                           | 5.0       | 2.8        | 10                 | >10,000    |
|                           | 6.6       | NS         | NS                 | NS         |
| GP7                       | 2.0       | 10         | 9.1                | 1,080      |
|                           | 3.5       | 2.0        | 13                 | 2,000      |
|                           | 5.0       | 2.0        | 5.2                | 16,400     |
|                           | 6.5       | NS         | NS                 | NS         |
| GP8                       | 2.0       | 7.0        | 9.2                | 440        |
|                           | 3.5       | 1.0        | 14                 | 560        |
|                           | 5.0       | 0.5        | 14                 | 1,080      |
|                           | 6.5       | NS         | NS                 | NS         |
| GP9                       | 2.0       | 2.0        | 12.2               | 640        |
|                           | 3.5       | 2.2        | 4.8                | >10,000    |
|                           | 5.0       | 3.2        | 3.8                | >10,000    |
|                           | 6.4       | NS         | NS                 | NS         |

NS = Not sampled. Soil gas monitoring points were located at or just below the water table, preventing collection of soil gas samples.

ppmv = parts per million by volume.

TPH = Total petroleum hydrocarbons.

Table 2. Results from the December 1995 Soil Gas Survey at the POL Yard

| Soil Gas Monitoring Point | Depth (m) | Oxygen (%) | Carbon Dioxide (%) | TPH (ppmv) |
|---------------------------|-----------|------------|--------------------|------------|
| SGS1                      | 0.90      | 8.3        | 7.7                | 120        |
|                           | 1.66      | 6.7        | 10                 | 120        |
|                           | 2.42      | 7.4        | 9.1                | 80         |
|                           | 3.18      | 7.9        | 8.3                | 80         |
|                           | 3.94      | 2.5        | 11.9               | 160        |
|                           | 4.70      | 4.1        | 11.8               | 760        |
| SGS2                      | 0.90      | 1.0        | 12.5               | 720        |
|                           | 1.66      | 0.9        | 12.6               | 760        |
|                           | 2.42      | 0.8        | 12.9               | 760        |
|                           | 3.18      | 0.9        | 12.6               | 1,000      |
|                           | 3.94      | 1.0        | 12.2               | 1,120      |
|                           | 4.70      | 1.2        | 12.6               | 1,440      |
| SGS3                      | 0.90      | 1.6        | 13.3               | 400        |
|                           | 1.66      | 1.5        | 13.3               | 400        |
|                           | 2.42      | 2.1        | 12.9               | 500        |
|                           | 3.18      | 1.9        | 13.3               | 640        |
|                           | 3.94      | 1.1        | 13.7               | 800        |
|                           | 4.70      | 1.1        | 13.7               | 960        |

Table 2. Results from the December 1995 Soil Gas Survey at the POL Yard (continued)

| Soil Gas Monitoring Point | Depth (m) | Oxygen (%) | Carbon Dioxide (%) | TPH (ppmv) |
|---------------------------|-----------|------------|--------------------|------------|
| SGS4                      | 0.90      | 1.0        | 12.8               | 2,000      |
|                           | 1.66      | 0.8        | 12.2               | 2,360      |
|                           | 2.42      | 1.0        | 12.5               | 2,520      |
|                           | 3.18      | 1.0        | 12.9               | 2,760      |
|                           | 3.94      | 1.0        | 13.3               | 2,880      |
|                           | 4.70      | 1.1        | 13.3               | 3,000      |
| SGS5                      | 0.90      | 2.2        | 13.7               | 120        |
|                           | 1.66      | 0.7        | 14.5               | 120        |
|                           | 2.42      | 0.6        | 14.9               | 160        |
|                           | 3.18      | 0.6        | 15.3               | 160        |
|                           | 3.94      | 0.6        | 15.7               | 520        |
|                           | 4.70      | 0.6        | 15.3               | 1,120      |
| SGS6                      | 0.90      | 1.6        | 12.1               | 1,240      |
|                           | 1.66      | 1.3        | 12.6               | 1,440      |
|                           | 2.42      | 1.2        | 12.9               | 1,360      |
|                           | 3.18      | 1.2        | 12.9               | 1,720      |
|                           | 3.94      | 1.1        | 12.9               | 1,920      |
|                           | 4.70      | 0.9        | 13.7               | 2,200      |

Table 2. Results from the December 1995 Soil Gas Survey at the POL Yard (continued)

| Soil Gas Monitoring Point | Depth (m) | Oxygen (%) | Carbon Dioxide (%) | TPH (ppmv) |
|---------------------------|-----------|------------|--------------------|------------|
| SGS7                      | 0.90      | 8.5        | 8.1                | 40         |
|                           | 1.66      | 8.2        | 8.8                | 40         |
|                           | 2.42      | 6.4        | 10.5               | 0          |
|                           | 3.18      | 5.2        | 11.7               | 0          |
|                           | 3.94      | 4.0        | 12.9               | 0          |
|                           | 4.70      | 2.9        | 14.1               | 0          |
| SGS8                      | 0.90      | 4.3        | 11.2               | 40         |
|                           | 1.66      | 3.1        | 12.5               | 40         |
|                           | 2.42      | 2.7        | 13.3               | 40         |
|                           | 3.18      | 2.2        | 14.1               | 40         |
|                           | 3.94      | 2.5        | 14.1               | 40         |
|                           | 4.70      | 1.2        | 14.9               | 120        |
| SGS9                      | 0.90      | 17.5       | 2.3                | 20         |
|                           | 1.66      | 17.5       | 2.3                | 20         |
|                           | 2.42      | 17.1       | 2.8                | 0          |
|                           | 3.18      | 16.4       | 3.2                | 0          |
|                           | 3.94      | 16.5       | 3.5                | 20         |
|                           | 4.30      | 15.9       | 3.8                | 20         |

and SGS6, where areas of low oxygen corresponded to areas of high carbon dioxide and elevated levels of TPH.

Results from the two soil gas surveys indicated that both areas investigated were contaminated and contained high microbial activity. These results suggest that bioventing is likely to be a feasible remedial technology for this site.

#### 2. In Situ Respiration Testing

An initial in situ respiration test was conducted in November 1995 to characterize microbial activity at the site. In situ respiration tests were conducted at three of the permanent soil-gas monitoring points in the tentative bioventing test location and at two permanent soil-gas monitoring points on the University of Karlsruhe test plot. Specific monitoring points selected were GP2-3.25, GP2-4.95, and GP3-4.95 in the bioventing test plot and GP6-5.0 and GP9-5.0 in the University of Karlsruhe test plot. The in situ respiration test was conducted as described in Hinchee and Ong (1992).

The initial in situ respiration test consisted of venting the soil-gas monitoring points with an air/helium mixture over time prior to startup of the bioventing system. A mixture of approximately 2% helium in air was injected into the bioventing test site monitoring points beginning on November 14, 1995. A mixture of approximately 3% helium in air was injected into the University of Karlsruhe test plot monitoring points beginning on November 16, 1995. A ½-horsepower diaphragm pump was used to saturate a zone of soil around each soil-gas monitoring point with air (flowrate of approximately 0.028 to 0.048 m³/min [1.0 to 1.7 ft³/min]) for 20 hours to create an aerobic environment.

After air/helium injection was completed, soil gas was measured for oxygen, carbon dioxide, helium, and TPH. Soil gas was collected periodically for 5 days, at which point the experiment was terminated. The oxygen consumption and carbon dioxide evolution measurements were used to determine the biodegradation rates.

To compare data from one site to another, a stoichiometric relationship of the oxidation of the hydrocarbon was assumed. Hexane was used as the representative hydrocarbon for the organic contaminant. The stoichiometric relationship is given by:

$$C_6H_{14} + 9.5O_2 - 6CO_2 + 7H_2O$$
 (1)

Based on the oxygen utilization rates (%/day), the biodegradation rates in terms of mg as a hexane equivalent per kg of soil per day were computed using the equation below by assuming a soil porosity of 0.3 and a bulk density of 1,440 kg/m<sup>3</sup>.

$$K_{\beta} = \frac{-K_o A \rho_o C}{100}$$
 (2)

where:  $K_{\beta}$  = biodegradation rate (mg/kg-day)  $K_{o}$  = oxygen utilization rate (%/day) A = volume of air per kg of soil, in this case 300/1,440 = 0.21  $\rho_0$  = density of oxygen gas (mg/L), assumed to be 1,330 mg/L C = mass ratio of hydrocarbon to oxygen required for mineralization, assumed to be 1:3.5 from the above stoichiometric equation.

Results from the in situ respiration test are shown in Table 3. As expected, in situ respiration rates were higher in the University of Karlsruhe test plot than in the bioventing test plot due to higher contamination levels. Oxygen utilization rates in the bioventing test plot ranged from 0.79 to 2.1%/day, while in the University of Karlsruhe test plot the rates ranged from 2.9 to 3.4%/day. Although these rates tend to be relatively low, they still fall within the typical range of respiration rates observed at petroleum-contaminated sites.

Table 3. In Situ Respiration Rates at the POL Yard

| Soil Gas Monitoring Point | Depth (m) | Oxygen Utilization Rate<br>(%/day) | Biodegradation Rate<br>(mg/kg-day) |
|---------------------------|-----------|------------------------------------|------------------------------------|
| GP2                       | 3.5       | 1.2                                | 0.82                               |
|                           | 5.0       | 2.1                                | 1.4                                |
| GP3                       | 5.0       | 0.79                               | 0.54                               |
| GP6                       | 5.0       | 3.4                                | 2.3                                |
| GP9                       | 5.0       | 2.9                                | 2.0                                |

Helium concentrations were measured during the in situ respiration test to quantify helium leakage to or from the surface around the monitoring points. Helium loss over time is attributed to either diffusion or leakage. A rapid drop in helium concentration followed by a leveling off is an indication of leakage. A gradual loss of helium along with an apparent first-order curve is an indicator of diffusion. As a rough estimate, the diffusion of gas molecules is inversely proportional to the square root of the molecular weight of the gas. Based on molecular weights of 4 for helium and 32 for oxygen, helium gas diffuses about 2.8 times faster than does oxygen, or the diffusion of oxygen is 0.35 times the rate of helium diffusion. In general, if helium concentrations are at least 50 to 60% of the initial levels at test completion, measured oxygen uptake rates are representative. Greater helium loss indicates a problem, and oxygen utilization rates are not considered representative. Helium concentrations during these tests remained relatively constant, indicating that oxygen depletion was attributable to microbial activity.

# 3. Collection and Laboratory Analysis of Soil-Gas Samples

Soil-gas samples were collected from the bioventing test plot prior to initiating bioventing. Samples were collected from the following monitoring points: MPA-6m, MPB-2m, MPC-6m, and MPD-6m. Soil gas samples were collected in canisters prepared by Air Toxics, Inc. Each soil-gas sample was labeled according to the location and depth of the sample. The time, date sampled, and

sampler's initials were recorded on the sample label. Samples were recorded on a chain-of-custody sheet and shipped on ice to Air Toxics, Inc. for analysis. Soil-gas samples were analyzed by gas chromatography (GC) for petroleum contamination using U.S. EPA Method TO-3. The specific compounds measured were TPH, benzene, toluene, ethylbenzene, and xylenes (BTEX). Raw data from these analyses are presented in Appendix A.

# 4. Collection and Analysis of Soil Samples

Initial soil sampling activities were conducted in April/May 1996. One soil boring was sampled only for inorganic analyses. Five soil borings in the bioventing test plot were sampled continuously using a 2-ft-long split spoon sampler. Typically, two soil samples from each split spoon were collected for chemical analyses (sleeves 0.5 to 1.0 ft and 1.5 to 2.0 ft from the bottom of the sampler). The remaining two samples were used for boring logs. Sample sleeves being saved for analysis were capped with plastic end covers and sealed with electrical tape. Each soil sample was labeled according to boring number and sample depth. The time, date sampled, and sampler's initials were all recorded on the sample label. Samples were recorded on a chain-of-custody sheet and shipped on ice to Alpha Analytical for analysis. Soil samples were analyzed by GC for petroleum contamination using U.S. EPA Method 8015. The specific compounds measured were TPH and BTEX. Analytical results are presented in Appendix A. Boring logs are presented in Appendix B.

Approximately seven soil samples, each from a different depth, were analyzed from each test plot and the background area to determine soil characteristics. The analyses conducted included alkalinity, iron, moisture content, particle size, pH, total Kjeldahl nitrogen (TKN), total phosphorus (TP), total sulfate, and sulfide.

#### **B.** INSTALLATION DETAILS

Installations took place in the test plot and at a background area at Rhein-Main Air Base. A schematic diagram of the entire site is shown in Figure 5. The test site was installed with the northern portion over an area where a subsurface petroleum line had been located. The petroleum line was used to fill underground storage tanks. The tanks and lines were removed several years ago. The most highly contaminated area is located under the excavated tanks; however, this area could not be used for the demonstration, because it is already being used for the University of Karlsruhe's demonstration.

Brief descriptions of the construction details of each installation in the test plot are given in the following subsections. A schematic diagram showing a plan view of the test plot is shown in Figure 6.

#### 1. Construction Details of Vent Wells

Four vent wells were installed in the bioventing test plot. A schematic diagram showing a cross section of the vent wells is shown in Figure 7. All vent wells were installed with a solid-stem auger. Once the water table was reached, a gravel pump was used to advance the borehole. A casing was advanced to the desired depth, and the vent well was installed inside the casing. The casing was removed from the borehole as the vent well was completed (i.e., once the sand pack was in place). The 2-inch-diameter vent wells were installed to a depth of approximately 10 m (33 ft) with approximately 6 m (20 ft) of 10-slot schedule 40 polyvinyl chloride (PVC) screen and 4.5 m (15 ft)



Figure 5. Schematic Diagram Showing Locations of the Bioventing Test Plot and Background Area at the POL Yard



CD6/Leeson/61-1

Figure 6. Plan View of the Bioventing Test Plot Showing Locations of Vent Wells, Soil-Gas Monitoring Points, and Groundwater Monitoring Wells



Figure 7. Schematic Diagram Showing Cross Section of Vent Wells at the Bioventing Test Plot

of PVC casing finished 0.5 m (1.6 ft) above grade. Specific construction details are shown in Table 4. A medium-grade silica and filter pack was installed across the screened interval, and bentonite chips were used to fill the remaining annular space to grade.

### 2. Construction Details of Soil-Gas Monitoring Points

Four eight-level soil gas monitoring points were installed using a truck-mounted drill rig equipped with a 6-inch inside diameter solid-stem auger. Below the water table, the borehole was advanced as described in Section III.B.1. The monitoring points consisted of several ¼-inch-diameter polyvinyl tubes to the specified depth attached to a screen approximately 6 inches long and 1 inch in diameter. All screened intervals were placed in the same borehole in the center of a sand filter pack. A bentonite chip vapor barrier was used to fill the remaining space between the screened intervals. Screened intervals were installed at each monitoring point with the bottom of the screen located at the following depths: 1, 2, 3, 4, 5, 6, 7, and 8 m. All screened intervals were color-coded, with colored polyvinyl tubing associated with a specific depth, as follows: clear = 1 m; black = 2 m; brown = 3 m; green = 4 m; orange = 5 m; red = 6 m; yellow = 7 m; and blue = 8 m. A schematic diagram depicting cross sections of all monitoring points is shown in Figure 8.

Type K thermocouples were installed with monitoring points MPB, MPC, and MPD. Thermocouples were installed with all screened intervals at monitoring point MPB; at depths of 2, 4, 6, and 8 m at monitoring point MPC; and at depths of 1, 4, and 6 m at monitoring point MPD.

### 3. Construction Details of Groundwater Monitoring Wells

A schematic diagram depicting a cross section of the groundwater monitoring wells is shown in Figure 9. Three 2-inch-diameter PVC groundwater monitoring wells were installed using a truck-mounted drill rig with a solid-stem auger. Below the water table, the borehole was advanced as described in Section III.B.1. Monitoring well MW1 was installed to a depth of 10.5 m (34 ft) with 1 m (3.3 ft) of 10-slot screen and 10 m (3 ft) of schedule 40 PVC casing. Monitoring wells MW2 and MW3 were installed to a total depth of 9.5 m (31 ft) with 1 m (3.3 ft) of 10-slot screen and 9.0 m (30 ft) of casing. The annular space outside the screened interval of the monitoring wells was filled with a medium-grade silica sand filter pack. The remaining annular space was sealed to the surface with a bentonite plug. Specific construction details for each monitoring well are shown in Table 4.

### 4. Background Area Soil-Gas Monitoring Point

An uncontaminated area was located approximately 300 ft northeast of the bioventing test site. One soil-gas monitoring point was installed to a depth of 8 m with 8 screened intervals. The monitoring point was constructed as described in Section III.B.2, with the bottom of the screened intervals at depths of 1, 2, 3, 4, 5, 6, 7, and 8 m. Screened intervals were color-coded as described in Section III.B.2.

#### 5. System Operation

The bioventing system consists of a regenerative air blower plumbed to the air injection (vent) wells in the test plot. Operation of the bioventing system involved introducing oxygen into the vadose zone by injecting atmospheric air into the contaminated subsurface with the blower. Air was injected at a rate of 350 L/min (12.5 cfm) into each vent well beginning in June 1996.

Table 4. Drilling and Completion Summary for Installations at the Bioventing Test Plot, POL Yard

| Well Name | Date Drilled | Date Completed | Total Depth (m) | Screen Interval (m) |
|-----------|--------------|----------------|-----------------|---------------------|
| VW-1      | 04/02/96     | 04/03/96       | 10.10           | 4.1-10.1            |
| VW-2      | 04/09/96     | 04/10/96       | 9.80            | 3.8-9.8             |
| VW-3      | 04/01/96     | 04/02/96       | 9.00            | 4.0-9.0             |
| VW-4      | 04/04/96     | 04/05/96       | 9.50            | 4.5-9.5             |
| MPA       | 04/12/96     | 04/12/96       | 10.00           | 1-8 <sup>a</sup>    |
| MPB       | 04/15/96     | 04/16/96       | 10.00           | 1-8 <sup>a</sup>    |
| MPC       | 04/16/96     | 04/17/96       | 10.00           | 1-8 <sup>a</sup>    |
| MPD       | 04/17/96     | 04/18/96       | 10.00           | 1-8ª                |
| MW1       | 04/10/96     | 04/11/96       | 10.50           | 9.5-10.5            |
| MW2       | 04/18/96     | 04/19/96       | 9.50            | 8.5-9.5             |
| MW3       | 04/22/96     | 04/23/96       | 9.50            | 8.5-9.5             |
| MP-Bkgd   | 04/23/96     | 04/24/96       | 10.00           | 1-8ª                |

<sup>&</sup>lt;sup>a</sup> Screened intervals were installed every meter.



Figure 8. Schematic Diagram Showing Cross Section of Soil-Gas Monitoring Points in the Bioventing Test Plot



Figure 9. Schematic Diagram Showing Cross Section of Groundwater Monitoring Wells at the Bioventing Test Plot

In December 1997, the regenerative air blower was replaced with an oil-less air compressor. A ¼-inch (0.64 cm) tube was placed in monitoring well MW1 at a depth of 8.8 m (29 ft) bgs and connected to the oil-less air compressor. The compressor was started and ran until it reached equilibrium. The flowrate reached 196 L/min (7.0 cfm) at a pressure of 24 psi (165 kP). The pressure at the monitoring well was 0.35 bar.

## C. METHODS FOR FIELD TESTS AND SYSTEM MONITORING

The field tests conducted for this project to date consisted of (1) surface emissions testing; and (2) soil-gas permeability testing. System monitoring included regular field soil-gas sampling, soil temperature analysis, and in situ respiration tests. Methods used for the field tests and system monitoring are described in the following subsections.

### 1. Surface Emissions Testing

One of the concerns about bioventing as a means of soil remediation is the possibility of transferring soil contaminants to the atmosphere through air-stripping of organics. To determine if there is any significant release of volatile organic compounds (VOCs) to the atmosphere during bioventing, surface emissions testing was performed. The sampling and analytical methodologies for these tests are presented in the following subsections.

## a. Dynamic Surface Emissions Sampling Methodology

A dynamic surface emissions sampling methodology was used at Rhein-Main Air Base. This method involved enclosing an area of soil under an inert box designed to allow the purging of the enclosure with high-purity air (Dupont, 1987). The box was purged for two hours to remove ambient air from the region above the soil and to allow an equilibrium to be established between the hydrocarbons emitted from the soil and the organic-free air. The air stream was then sampled by drawing a known volume of the hydrocarbon/pure air mixture through a tube packed with sorbent materials. The sorbents retained any organics associated with surface emissions. The sample tube was thermally desorbed, and the organics were resolved and quantified by GC. These measured concentrations were then used to calculate the emission rates for the hydrocarbons from the soil to the atmosphere.

A schematic diagram of the surface emissions sampling system is shown in Figure 10. The system consisted of a square Teflon® box that covered a surface area of 0.45 m². The box was fitted with inlet and outlet ports for the entry and exit of high-purity air. Inside the box was a manifold that delivered the air supply uniformly across the soil surface. The same type of manifold was fitted to the exit port of the box. This configuration delivered an even flow of air across the entire soil surface under the box so that a representative sample was being generated. To collect the sample, the air exiting the box was pulled through a sorbent tube by an SKC personal monitoring pump, Model #224-PCXR7.

In all cases, a totally inert system was employed. Teflon® tubing and stainless steel fittings assured that there was no contribution to or removal of organics from the air stream. The pump was located on the back side of the sorbent trap so that it was not in a position to contaminate the sample flow.



Figure 10. Schematic Diagram of the Surface Emissions Sampling System

Sample results and analytical precision are presented in Appendix C.

## b. Sampling Schedule

Two surface emission sampling events were performed at the bioventing site at Rhein-Main Air Base during 1996, and a final surface emission sampling event was performed in 1998. Sampling conditions for each of the sampling events are described in the following subsections.

i. April 1996. The April sampling event was the first time that the dynamic surface emissions methodology was used at Rhein-Main Air Base. This sampling event was used to generate an initial data set for surface emissions prior to initiating bioventing. General sampling locations at the center and perimeter of the test plot, as well as at a background location, were identified (Figure 11). Air was pulled through the sorbent tube at a flowrate of 50 mL/minute over a 6-minute interval, resulting in a 300-mL sample volume.

Samples were collected at the center and perimeter of the test plot as well as at a background location prior to air injection. Triplicate samples were collected at the center and perimeter locations. At the background location, duplicate samples were collected from the area east of Building 329. In addition, one ambient air sample, one cylinder air sample, and one trip blank were analyzed. During this sampling period, the Teflon® box was positioned directly upon the soil surface.

- the center and perimeter of the test plot both with and without air injection and also from the background location. Similar to the April sampling event, a flowrate of 50-mL/minute for 6 minutes was used to produce a 300-mL sample volume. Duplicate samples were collected at each location. A sample of the high-grade air also was collected to verify the cleanliness of the purge gas. A trip blank was reserved to identify any background artifacts from the sorbent materials. During this sampling period, the Teflon® box was positioned directly upon the soil surface.
- methodology was used at Rhein-Main Air Base to perform a final sampling event. Samples were taken from the center and perimeter of the test plot both with and without air injection and also from the background location. Similar to previous sampling events, a flowrate of 50-mL/minute for 6 minutes was used to produce a 300-mL sample volume. Duplicate samples were collected at each location. A sample of the ambient air and a trip blank were included in the sampling protocol for the reasons identified in the description of the October 1996 sampling event. Unlike the May 1996 and October 1996 sampling events, a stainless steel box rather than a Teflon® box was used for surface emission testing. Both stainless steel and Teflon® are inert materials, therefore sample results should not be affected by the various construction materials of the surface emission testing box.

#### c. Analytical Calculations

The complete analytical data results from the surface emissions sampling at Rhein-Main Air Base are presented in Appendix C. These data are presented temporally, reflecting the two sampling events at the site. For each of these events, the following data were generated:



CD6/Leeson/61-2

Figure 11. Locations for Surface Emissions Testing at the Bioventing Test Plot

- Flux values in  $\mu$ g compound emitted into the atmosphere per 0.45 m<sup>2</sup> per minute. These data reflect the mass of each of the BTEX compounds that were emitted from the soil during the bioventing activities.
- Results from the analysis of the sorbent tubes that were used as trip blanks, purge air blanks, and ambient air samples. The trip blanks were used to identify artifact occurrences that could have led to elevated values for the BTEX compounds and the TPH values. The cylinder air blank samples were used to confirm the quality of the purge gas and to show that this air source was not affecting the reported values for the BTEX species. The ambient air samples were collected as reference concentrations of the emission levels to the existing air quality.
- GC calibration data so that the precision of the sampling/analytical method and the instrument itself could be determined.

To calculate the actual emission rates of organic compounds from the soil surface into the atmosphere, the following formula for dynamic enclosure techniques was employed (McVeety, 1991):

$$\mathbf{F} = \frac{\mathbf{CV_r}}{\mathbf{S}} \tag{3}$$

where: F = flux in mass-area/time ( $\mu g \cdot m^2/min$ )

C = the concentration of the gas in units of mass/volume ( $\mu$ g/m<sup>3</sup>)

V<sub>r</sub> = volumetric flowrate of sweep gas (m<sup>3</sup>/min) S = soil surface covered by enclosure (m<sup>2</sup>)

## 2. Soil-Gas Permeability Testing

## a. Soil-Gas Permeability and Radius of Influence

Soil-gas permeability, or intrinsic permeability, can be defined as a soil's capacity for fluid flow, and varies according to grain size, soil uniformity, porosity, and moisture content. The soil-gas permeability value is a physical property of the soil; it does not change with different extraction/injection rates or different pressure levels. Soil-gas permeability generally is expressed in the units cm<sup>2</sup> or darcy (1 darcy =  $1 \times 10^{-8}$  cm<sup>2</sup>). As with hydraulic conductivity, soil-gas permeability may vary by more than 1 order of magnitude on the same site due to soil variability.

The radius of influence, is defined as the maximum distance from the air extraction or injection well where measurable vacuum or pressure (soil-gas movement) occurs. The radius of influence is a function of soil properties, but also is dependent on the configuration of the venting well and extraction or injection flowrates, and is altered by soil stratification. On sites with shallow contamination, the radius of influence can be increased by impermeable surface barriers such as asphalt or concrete. These paved surfaces may or may not act as vapor barriers. Without a tight seal to the native soil surface, the pavement will not significantly impact soil-gas flow.

The bioventing research project being performed is concentrated in a small area to demonstrate the bioventing technology. Therefore, a relatively small radius of influence was

estimated for placement of vent wells. Although the conservative rationale used for placing the vent wells was sufficient for conducting the demonstration, a more cost-efficient, systematic approach must be taken when designing a full-scale bioventing system. The soil gas permeability testing described below was conducted at the POL Yard to calculate the radius of influence to help characterize the optimum well placement configuration for the design of a full-scale bioventing system.

### b. Soil-Gas Permeability Test Procedures

The procedures for conducting soil-gas permeability testing are discussed in detail in the U.S. Air Force-sponsored document, *Soil Bioventing: Principles and Practice* (Leeson and Hinchee, 1996). The general procedures used are presented within this section.

A single vent well was used for the soil-gas permeability test. All other wells in the test plot were closed. Soil-gas permeability testing was conducted in air injection mode.

Soil-gas permeability testing was conducted using the bioventing system blower. Air was injected into the single vent well. Changes in soil-gas pressure were monitored over time using a Magnehelic® gauge at the soil-gas monitoring points located at different radii from the bioventing well. The tests were discontinued when no significant pressure change could be observed in any of the monitoring points.

#### c. Radius of Influence Calculations

At a bioventing site, the radius of influence is defined as the maximum distance from the air extraction or injection well where a sufficient supply of oxygen for microbial respiration can be delivered. We will call the radius of influence measured by increased oxygen the "oxygen radius of influence." In practice, we frequently estimate this radius by measuring a pressure radius of influence. A description of how that is done follows.

At a bioventing site, the oxygen radius of influence is the true radius of influence; however, for design purposes, we frequently use the pressure radius of influence. The pressure radius of influence is the maximum distance from a vent well where vacuum (in extraction mode) or pressure (in injection mode) can be measured. In practice, we usually use 0.1 inches of water as the cut-off pressure. In highly permeable soils, 0.01 inches of water is a better cut-off, if it can be reliably measured. There is a connection between the pressure radius of influence and the oxygen radius of influence; however, there are many variables which are not fully understood. In practice, it has been our experience that when our design procedures are followed, the oxygen radius of influence is larger than the measured pressure radius of influence, making the pressure radius of influence a reasonably conservative, rapid method for estimating the true radius of influence. The oxygen radius of influence may be determined directly by measuring the distance from the vent well at which a change in oxygen concentration can be detected. However, it may take several days to weeks for equilibrium to be reached and an accurate oxygen radius of influence to be measured. In addition, oxygen utilization rates may change, increasing or reducing the oxygen radius of influence. Therefore, if possible, it is best to measure the oxygen radius of influence at times of peak microbial activity. Alternatively, the pressure radius of influence may be determined very quickly, generally within 2 to 4 hours. Therefore, the pressure radius of influence typically is used to design bioventing systems.

The pressure radius of influence may be estimated by determining pressure change versus distance from the vent well. The log of the pressure is plotted versus the distance from the vent well. The radius of influence is that distance at which the curve intersects a pressure of 0.1 inches  $H_2O$  (25 Pa). This value was determined empirically from U.S. Air Force Bioventing Initiative sites. The raw data from the soil-gas permeability test is provided in Appendix D.

## 3. Soil-Gas and Temperature Measurements

The soil gas sampling was conducted approximately monthly and analyzed in the field for oxygen, carbon dioxide, and TPH. Occasionally, the soil moisture content prevented sampling from some soil-gas monitoring points; however, adequate samples could be collected from the majority of the monitoring points. Raw data from these analyses are presented in Appendix D.

## 4. In Situ Respiration Testing

In situ respiration tests were conducted in August 1996, November 1996, and November 1998. These tests are based on the method described by Hinchee and Ong (1992).

The in situ respiration testing consisted of monitoring soil-gas oxygen and carbon dioxide concentrations during air injection, then turning off the air injection and monitoring the oxygen and carbon dioxide concentrations periodically over time. From these measurements, oxygen consumption and carbon dioxide production were determined. The experiment usually was terminated when either the oxygen concentration of the soil gas fell below 5% or after 5 to 7 days, whichever occurred sooner. Carbon dioxide and oxygen concentrations were measured using a GasTechtor® Model 32520X. Oxygen utilization rates typically were calculated as zero order, based on the initial linear portion of the decay curve. The methods used to calculate biodegradation rates from the in situ respiration rates are described in Section III.A.2.

Oxygen and carbon dioxide concentrations measured during the in situ respiration tests are presented in Appendix F.

## D. RESULTS AND DISCUSSION OF FIELD TESTS AND SYSTEM MONITORING

This section provides a presentation and discussion of the results from the various field tests that were conducted during this study, as well as a discussion of results from the system monitoring. Major conclusions from these studies are discussed in this section and are summarized in Section E.

# 1. Verification of Low Surface Emissions During Bioventing

One of the concerns over the implementation of bioventing as a means of soil remediation is the possibility of transferring soil contaminants to the atmosphere through air-stripping of organics. To determine if there was significant atmospheric loading of volatile petroleum contaminants during bioventing, surface emissions testing was performed.

The results from the surface emissions tests are shown in Tables 5, 6, and 7. In these tables, the emissions levels at the sampling locations from the bioventing wells have been extrapolated to reflect atmospheric loadings in kg/m²-day and in pounds/acre-day. These extrapolations depict a

worst-case scenario, because an emissions measurement for a 0.45-m<sup>2</sup> surface area is being projected over a 1-acre plot.

Surface emissions of BTEX and TPH at the bioventing test plot prior to initiating bioventing were comparable to surface emissions measured just outside of the test plot and at the uncontaminated area (Table 5). The average emissions rate of benzene in the center of the test plot was 2.6E-08 kg/m²-day (0.00023 lb/acre-day) as compared to 2.0E-08 kg/m²-day (0.00018 lb/acre-day) just outside of the test plot and 9.8 E-09 kg/m²-day (0.00080 lb/acre-day) at the background area. The average emissions rate for TPH in the center of the test plot was 3.6E-06 kg/m²-day (0.032 lb/acre-day) compared to 3.0E-06 kg/m²-day (0.027 lb/acre-day) just outside of the test plot and 3.8E-06 kg/m²-day (0.034 lb/acre-day) at the background area.

Surface emissions measured during October 1996 allowed for comparison of emissions during injection and without injection. Surface emissions measured at this time were significantly lower than those measured during April 1996 (Table 5). In most samples, none of the BTEX components could be detected. Very little difference could be detected between samples collected during injection and without injection. In the center of the test plot no benzene, ethylbenzene, or xylenes were detected in any samples either during or without injection and only trace amounts of toluene were detected during injection. These results indicate that, at the locations sampled, the bioventing system is not creating a pronounced level of increased emissions over natural surface emissions at the site.

Surface emissions measured during the August 1998 sampling event were compared to the previous two sampling events. In general, August 1998 surface emissions were significantly lower than those measured in April 1996 (Table 5) and somewhat greater than those measured in October 1996 (Table 6). The average benzene concentrations in the center of the test plot both with and without air injection were 1.4 E-08 kg/m<sup>2</sup>-day (0.00012 lb/acre-day) and 1.5E-08 kg/m<sup>2</sup>-day (0.00013 lb/acre-day), respectively, which are below the initial benzene concentrations in surface emissions prior to treatment. These data also show that operation of the blower does not seem to affect surface emission concentrations of benzene in the center of the test plot. The 1998 sampling event also revealed benzene concentrations in perimeter samples collected both with and without blower operation to be less than benzene concentrations in initial surface emission samples at the site. The TPH concentrations in the center of the test plot with the blower on and off also were less than initial TPH concentrations in April 1996. The average TPH concentration of 1.8E-07 kg/m<sup>2</sup>-day (0.00016 lb/acre-day) detected in the perimeter sample with the blower operational was considerably less than the TPH concentration of 6.0E-06 kg/m<sup>2</sup>-day (0.053 lb/acre-day) detected at the same location without the blower operational. Although duplicate samples were collected during each sampling condition, one set of duplicate samples was adversely impacted in the laboratory. For this reason, only results for a single sorbent tube at each location are being reported. The samples collected during air injection at the center and perimeter of the test plot were analyzed twice for quality assurance purposes, since a duplicate sample was not available. Both sets of results are presented in Table 7. Concentrations detected in the trip blank sample are associated with loose fittings found on the sorbent tube upon arrival in the laboratory.

#### 2. Soil-Gas Permeability and Radius of Influence Results and Discussion

Estimates of the soil's permeability to fluid flow and the radius of influence of venting wells provide important inputs to a full-scale bioventing design. On-site testing provides the most accurate estimate of soil-gas permeability. On-site testing also can be used to determine the radius of influence

Table 5. Surface Emissions Sampling Results at the POL Yard Prior to Initiating Bioventing: April 1996

|                  |                        | Flux Rates (kg/m²-day [lb/acre/day]) |                        |                                   |                        |                     |  |
|------------------|------------------------|--------------------------------------|------------------------|-----------------------------------|------------------------|---------------------|--|
| Sample           | Benzene                | Toluene                              | Ethylbenzene           | <i>m</i> - & <i>p</i> -<br>xylene | o-Xylene               | TPH as<br>hexane    |  |
| RM1-Center-1     | 2.6E-08<br>[0.00023]   | 3.8E-08<br>[0.00034]                 | <1.3E-08<br>[<0.00011] | 1.6E-08<br>[0.00014]              | <1.3E-08<br>[<0.00011] | 7.8E-07<br>[0.0069] |  |
| RM1-Center-2     | 2.9E-08<br>[0.00026]   | 5.8E-08<br>[0.00051]                 | <1.3E-08<br>[<0.00011] | 2.2E-08<br>[0.00020]              | <1.3E-08<br>[<0.00011] | 4.9E-06<br>[0.043]  |  |
| RM1-Center-3     | 2.2E-08<br>[0.00020]   | 2.6E-08<br>[0.00023]                 | <1.3E-08<br>[<0.00011] | <1.3E-08<br>[<0.00011]            | <1.3E-08<br>[<0.00011] | 5.1E-06<br>[0.045]  |  |
| RM1-Perimeter-1  | 2.6E-08<br>[0.00023]   | 6.7E-08<br>[0.00060]                 | <1.3E-08<br>[<0.00011] | 2.6E-08<br>[0.00023]              | ND                     | 7.6E-06<br>[0.067]  |  |
| RM1-Perimeter-2  | 2.2E-08<br>[0.00020]   | 1.9E-08<br>[0.00017]                 | <1.3E-08<br>[<0.00011] | <1.3E-08<br>[<0.00011]            | <1.3E-08<br>[<0.00011] | 9.0E-07<br>[0.0079] |  |
| RM1-Perimeter-3  | 1.3E-08<br>[0.00011]   | 1.3E-08<br>[0.00011]                 | <1.3E-08<br>[<0.00011] | <1.3E-08<br>[<0.00011]            | <1.3E-08<br>[<0.00011] | 5.9E-07<br>[0.0052] |  |
| RM1-Background-1 | <1.3E-08<br>[<0.00011] | 1.6E-08<br>[0.00014]                 | <1.3E-08<br>[<0.00011] | <1.3E-08<br>[<0.00011]            | ND                     | 6.8E-06<br>[0.060]  |  |
| RM1-Background-2 | 1.3E-08<br>[0.00011]   | 1.6E-08<br>[0.00014]                 | <1.3E-08<br>[<0.00011] | <1.3E-08<br>[<0.00011]            | ND                     | 8.1E-07<br>[0.0072] |  |
| RM1-Atmosphere   | 3.2E-08<br>[0.00028]   | 6.7E-08<br>[0.00060]                 | ND                     | 1.6E-08<br>[0.00014]              | <1.3E-08<br>[<0.00011] | 5.0E-06<br>[0.044]  |  |
| RM1-Cylinder     | 1.3E-08<br>[0.00011]   | <1.3E-08<br>[<0.00011]               | ND                     | <1.3E-08<br>[<0.00011]            | ND                     | 5.4E-07<br>[0.0048] |  |
| RM1-Trip Blank   | <1.3E-08<br>[<0.00011] | <1.3E-08<br>[<0.00011]               | ND                     | <1.3E-08<br>[<0.00011]            | ND                     | 3.2E-07<br>[0.0029] |  |

ND = Not detected. No trace of compound was detected. Values reported as less than detection limit were detected, but in concentrations below detection limit.

RM = Rhein-Main.

Table 6. Surface Emissions Sampling Results at the POL Yard: October 1996

|                                      |                        | Flux Rates (kg/m²-day [lb/acre/day]) |              |                   |          |                      |  |
|--------------------------------------|------------------------|--------------------------------------|--------------|-------------------|----------|----------------------|--|
| Sample                               | Benzene                | Toluene                              | Ethylbenzene | m- & p-<br>xylene | o-Xylene | TPH as hexane        |  |
| RM1-Center-1<br>During Injection     | ND                     | 1.6E-08<br>[0.00014]                 | ND           | ND                | ND       | 2.1E-07<br>[0.0019]  |  |
| RM1-Center-2<br>During Injection     | ND                     | <1.6E-08<br>[0.00014]                | ND           | ND                | ND       | 1.2E-07<br>[0.0010]  |  |
| RM1-Perimeter-1<br>During Injection  | 1.6E-08<br>[0.00014]   | 1.6E-08<br>[0.00014]                 | ND           | ND                | ND       | 4.8E-08<br>[0.00050] |  |
| RM1-Perimeter-2<br>During Injection  | ND                     | <1.6E-08<br>[<0.00014]               | ND           | ND                | ND       | 1.3E-07<br>[0.0010]  |  |
| RM1-Background-1                     | 1.6E-08<br>[0.00014]   | ND                                   | ND           | ND                | ND       | 9.9E-08<br>[0.00090] |  |
| RM1-Background-2                     | <1.6E-08<br>[<0.00014] | ND                                   | ND           | ND                | ND       | 3.5E-08<br>[0.00030] |  |
| RM1-Center-3<br>Without Injection    | ND                     | ND                                   | ND           | ND                | ND       | 5.1E-07<br>[0.0050]  |  |
| RM1-Center-4<br>Without Injection    | ND                     | ND                                   | ND           | ND                | ND       | 6.7E-08<br>[0.00060] |  |
| RM1-Perimeter-3<br>Without Injection | ND                     | ND                                   | ND           | ND                | ND       | 1.7E-06<br>[0.015]   |  |
| RM1-Perimeter-4<br>Without Injection | ND                     | ND                                   | ND           | ND                | ND       | 3.2E-07<br>[0.0029]  |  |
| RM1-Cylinder                         | ND                     | 3.0E-07<br>[0.00026]                 | ND           | ND                | ND       | 1.2E-06<br>[0.011]   |  |
| RM1-Trip Blank                       | ND                     | ND                                   | ND           | ND                | ND       | 5.9E-07<br>[0.0053]  |  |

ND = Not detected. No trace of compound was detected. Values reported as less than detection limit were detected, but in concentrations below detection limit.

RM = Rhein-Main.

Table 7. Surface Emissions Sampling Results at the POL Yard: August 1998

|                               | Flux Rates (kg/m²-day [lb/acre/day]) |                       |              |                       |                      |                     |
|-------------------------------|--------------------------------------|-----------------------|--------------|-----------------------|----------------------|---------------------|
| Sample                        | Benzene                              | Toluene               | Ethylbenzene | <i>m</i> - & p-Xylene | o-Xylene             | TPH as<br>Hexane    |
| Center<br>During Injection    | 1.2E-08<br>[0.00011]                 | 5.6E-08<br>[0.00050]  | ND           | ND                    | 1.5E-08<br>[0.00013] | 1.4E-06<br>[0.013]  |
| Center<br>During Injection    | 1.5E-08<br>[0.00013]                 | 6.0E-08<br>[0.00053]  | ND           | ND                    | ND                   | 1.4E-06<br>[0.012]  |
| Perimeter<br>During Injection | ND                                   | 8.0E-09<br>[0.000071] | ND           | ND                    | ND                   | 1.7E-07<br>[0.0015] |
| Perimeter<br>During Injection | 9.3E-09<br>[0.000083]                | ND                    | ND           | ND                    | ND                   | 1.9E-07<br>[0.0017] |
| Background                    | 1.1E-08<br>[0.00010]                 | 3.1E-07<br>[0.0028]   | ND           | 1.1E-08<br>[0.000095] | ND                   | 6.4E-06<br>[0.057]  |
| Center<br>W/O Injection       | 1.5E-08<br>[0.00013]                 | 3.5E-08<br>[0.00032]  | ND           | ND                    | ND                   | 6.0E-07<br>[0.0053] |
| Perimeter<br>W/O Injection    | 1.7E-08<br>[0.00015]                 | 3.3E-07<br>[0.0029]   | ND           | 1.1E-08<br>[0.000097] | ND                   | 6.0E-06<br>[0.053]  |
| Ambient Air                   | 1.3E-08<br>[0.00012]                 | 2.0E-07<br>[0.0018]   | ND           | ND                    | ND                   | 5.0E-06<br>[0.044]  |
| Trip Blank                    | 8.5E-09<br>[0.000076]                | 2.5E-07<br>[0.0023]   | ND           | ND                    | ND                   | 3.2E-06<br>[0.029]  |

ND = Not detected. No trace of compound was detected. Values reported as less than detection limit were detected, but in concentrations below detection limit.

that can be achieved for a given well configuration and its flowrate and air pressure. These data are used to design full-scale systems, specifically to space venting wells, to size blower equipment, and to ensure that the entire site receives a supply of oxygen-rich air to sustain in situ biodegradation. Results from the soil-gas permeability testing conducted during this study are presented in the following discussion.

The radius of influence at a particular site is a function of soil properties, but also is dependent on vent well configuration and the extraction or injection flowrates. For this study, radius of influence was defined as the radial distance from the vent well where a change of 0.1-inch water pressure could be observed. The radius of influence observed for the test plot was approximately 24 ft. The estimation of the radius of influence at the bioventing test plot is shown in Figure 12.

Pressure changes were monitored at all depths during the soil-gas permeability tests. As was expected, the values for radius of influence generally are greater at the deeper depths. This difference occurs in part because, at the shallower depths, short-circuiting of air flow to the surface can occur more rapidly. In general, the radius of influence was greater at the deeper depths, with values ranging from 4.6 m (15 ft) at a depth of 2 m (6.6 ft) up to 11 m (37 ft) at a depth of 4 m (13 ft) (Table 8).

Table 8. Radius of Influence Versus Depth at the Bioventing Test Plot, POL Yard

| Depth (m) | Radius of Influence (m) |
|-----------|-------------------------|
| 1         | 7.0                     |
| 2         | 4.6                     |
| 3         | 6.1                     |
| 4         | 11                      |
| 5         | 9.1                     |
| 6         | 9.1                     |

Radius of influence is just one factor in locating bioventing wells for optimum site coverage. Other site conditions that must be considered include location and depth of underground structures that could act as barriers or conduits to fluid flow, proximity of adjacent buildings, surface structures, and surface activities. Based on the data for the POL Yard and assuming that, in general, most of the contamination is at the deeper depths, a radius of influence of 9 m (30 ft) may be sufficient for site coverage. This would necessitate a well spacing of 18 m (60 ft). At the 18-m spacing, approximately 12 wells would be sufficient to treat more than 4,000 m<sup>2</sup> (~1 acre) of site surface area.



Figure 12. Radius of Influence in the Bioventing Test Plot

### 3. Results from Analytical Testing of Soil-Gas Samples

Results of initial soil-gas analyses are shown in Table 9. Results of soil-gas analyses generally agree with soil analyses, showing heavier contamination closer to the old pipeline and at deeper depths. The exception is shown at monitoring point MPB, where significant contamination is found at a shallower depth. This is believed to be due to a surface spill. These results cannot be used as a direct indication of contaminant removal due to various physical/chemical processes. Thus, any future decrease in soil hydrocarbon concentration must be confirmed with soil sampling.

Table 9. Baseline BTEX and TPH Concentrations in Soil Gas Samples at the POL Yard: May 1996

|                 |         | Concentration (ppmv) |         |         |  |  |
|-----------------|---------|----------------------|---------|---------|--|--|
| Parameter       | MPA-6 m | MPB-2 m              | MPC-6 m | MPD-6 m |  |  |
| TPH as jet fuel | 4,600   | 8,000                | 220     | 0.40    |  |  |
| Benzene         | 7.5     | 25                   | 0.98    | < 0.002 |  |  |
| Toluene         | 7.0     | 16                   | 1.1     | < 0.002 |  |  |
| Ethylbenzene    | 13      | 11                   | 3.9     | < 0.002 |  |  |
| Xylenes         | 321     | 25                   | 14      | < 0.002 |  |  |

Reported value may be biased due to apparent matrix interferences.

In practice, at equilibrium the concentration of most petroleum hydrocarbon compounds of interest in the aqueous or gaseous phase is driven by the immiscible phase, if present, and the sorbed phase, if the immiscible phase is not present. If no immiscible phase is present, and all sorption sites on the solid soil matrix are not occupied, the vapor- or aqueous-phase concentration is a function of the sorbed concentration. This relationship typically follows a Langmuir-type curve. If the soil concentration is in excess of the sorption capacity of the soil, the aqueous-phase and gaseous-phase concentrations are Raoult's law-driven and are independent of the hydrocarbon concentration in the soil. This is an important concept in attempting to interpret soil-gas or groundwater data. For example, in a sandy site at which free product has been detected, the highest soil hydrocarbon concentrations may exceed 25,000 mg/kg. Yet 99% remediation to 250 mg/kg may not affect the equilibrium soil-gas or groundwater hydrocarbon concentrations.

#### 4. Results from Monthly Soil-Gas Sampling

Relatively low concentrations of oxygen were found in soil-gas monitoring points sampled before initiation of air injection on August 22, 1991, with oxygen concentrations ranging from 0% to 18%, although most oxygen levels were less than 10% (Figure 13). Carbon dioxide and total hydrocarbon concentrations were correspondingly high, with many sampling points containing greater



Figure 13. Average Oxygen Concentration Versus Time at Select Monitoring Points

than 10% carbon dioxide and greater than 5,000 ppm total hydrocarbon. Once air injection was initiated, oxygen concentrations increased with a corresponding drop in hydrocarbon concentration in most soil-gas monitoring points.

### 5. In Situ Respiration Test Results

Oxygen utilization rates measured in the bioventing test plot during August and November 1996 and August 1998 are shown in Tables 10, 11, and 12, respectively. During the August 1996 in situ respiration test, rates were highest at depths of 3 m and less in the vicinity of monitoring points MPA and MPB. The lowest rates were found in the area of monitoring point MPD. These results correlate with soil and soil-gas analyses, which demonstrated the highest contamination in the region of monitoring points MPA and MPB, with little contamination in the region of monitoring point MPD. Higher contamination levels will result in higher in situ respiration rates. Soil sample results also showed significant contamination at a depth of 7 to 8 m bgs; however, these soils are saturated, preventing the use of in situ respiration testing. Figure 14 illustrates the oxygen utilization curve at monitoring point MPB-2 m during August 1996.

In situ respiration rates during November 1996 (Table 11) were considerably lower than those measured during August 1996 (Table 10). Soil temperatures during November had dropped considerably, from approximately 20°C during August at the shallow depths, down to 8 to 12°C during November. This will have a significant impact on in situ respiration rates. Figure 15 illustrates the oxygen utilization curve at monitoring point MPB-2 m during the November 1996 testing.

In situ respiration rates during August 1998 (Table 12) were similar to those measured in November 1996, although soil temperatures were considerably higher during the August event. Soil temperatures were approximately 17 to 20°C at shallow depths in August 1998, which is comparable to temperatures during the August 1996 testing event. The in situ respiration rates were highest at depths of 2 to 3 m in the vicinity of monitoring points MPA and MPB, which is consistent with the results of previous tests. Overall, the 1998 rates were considerably lower than the 1996 respiration rates. These results are indicative of lower microbial activity due to lower contaminant levels.

## 6. Results from Soil Sampling

#### a. Initial

In general, the highest initial contaminant levels were found at the deeper depths close to the location of the former pipeline. TPH and BTEX also were high at shallower depths near the southeastern portion of the test plot. POL Yard personnel reported that there was a large surface spill in this area that probably resulted in the contamination in the test plot at these depths. Average BTEX and TPH concentrations by depth are shown in Figures 16 and 17. TPH concentrations ranged from below detection limits up to approximately 2,000 mg/kg, while BTEX concentrations ranged from below detection limits up to approximately 20 mg/kg. The total mass of TPH in soil is estimated to be 1,920 kg. This number is based on average TPH concentrations from the initial soil sampling event conducted prior to the initiation of bioventing. A cross section showing site geology and contaminant concentration by depth is shown in Figure 18.

Table 10. In Situ Respiration Results at the POL Yard: August 1996

| Monitoring Point | Depth (m) | Oxygen Utilization Rate<br>(%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| MPA              | 1         | 3.7                                | 2.5                                |
|                  | 2         | 2.3                                | 1.5                                |
|                  | 3         | 1.6                                | 1.1                                |
|                  | 4         | 1.1                                | 0.74                               |
|                  | 5         | 0.59                               | 0.40                               |
|                  | 6         | 0.29                               | 0.20                               |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| МРВ              | 1         | 2.7                                | 1.8                                |
|                  | 2         | 3.2                                | 2.2                                |
|                  | 3         | 2.5                                | 1.7                                |
|                  | 4         | 0.98                               | 0.67                               |
|                  | 5         | 0.61                               | 0.42                               |
|                  | 6         | 0.38                               | 0.26                               |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| MPC              | 1         | 0.19                               | 0.13                               |
|                  | 2         | 0.55                               | 0.38                               |
|                  | 3         | 0.58                               | 0.39                               |
|                  | 4         | 0.30                               | 0.21                               |
|                  | 5         | 0.19                               | 0.13                               |
|                  | 6         | 0.082                              | 0.056                              |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |

Table 10. In Situ Respiration Results at the POL Yard: August 1996 (continued)

| Monitoring Point | Depth (m) | Oxygen Utilization Rate<br>(%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| MPD              | 1         | 0.10                               | 0.070                              |
|                  | 2         | 0.081                              | 0.055                              |
|                  | 3         | 0                                  | 0                                  |
|                  | 4         | 0                                  | 0                                  |
|                  | 5         | 0                                  | 0                                  |
|                  | 6         | 0                                  | 0                                  |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| Background       | 1         | 0.029                              | 0.020                              |
|                  | 2         | 0.030                              | 0.021                              |
|                  | 3         | 0.0090                             | 0.0060                             |
|                  | 4         | 0.051                              | 0.034                              |
|                  | 5         | 0.031                              | 0.021                              |
|                  | 6         | 0.081                              | 0.055                              |
|                  | 7         | 0.060                              | 0.041                              |
|                  | 8         | NS                                 | NS                                 |
| GP1              | 1.8       | 0.59                               | 0.40                               |
|                  | 3.25      | 1.2                                | 0.79                               |
|                  | 4.8       | 0.46                               | 0.32                               |
|                  | 6.3       | 0.26                               | 0.18                               |

Table 10. In Situ Respiration Results at the POL Yard: August 1996 (continued)

| Monitoring Point | Depth (m) | Oxygen Utilization Rate<br>(%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| GP2              | 2.5       | 0.26                               | 0.18                               |
|                  | 3.25      | 0.29                               | 0.19                               |
|                  | 4.95      | 0.13                               | 0.090                              |
|                  | 6.55      | NS                                 | NS                                 |
| GP3              | 2.0       | 0.16                               | 0.11                               |
|                  | 3.5       | 0.011                              | 0.0070                             |
|                  | 4.95      | 0.040                              | 0.028                              |
|                  | 6.5       | NS                                 | NS                                 |
| GP4              | 2.0       | 0.11                               | 0.075                              |
|                  | 3.5       | 0                                  | 0                                  |
|                  | 5.0       | 0                                  | 0                                  |
|                  | 6.5       | NS                                 | NS                                 |
| GP5              | 1.85      | 0.19                               | 0.13                               |
|                  | 3.4       | 0                                  | 0                                  |
|                  | 4.75      | 0                                  | 0                                  |
|                  | 6.1       | 0                                  | 0                                  |
| GP8              | 2.0       | 0.39                               | 0.27                               |
|                  | 3.5       | 0.12                               | 0.082                              |
|                  | 5.0       | 0.039                              | 0.027                              |
|                  | 6.5       | 0                                  | 0                                  |

NS = Not sampled. Samples could not be collected because screened interval was below water table.

Table 11. In Situ Respiration Results at the POL Yard: November 1996

| Monitoring Point | Depth (m) | Oxygen Utilization Rate<br>(%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| MPA              | 1         | 0.66                               | 0.45                               |
|                  | 2         | 0.70                               | 0.48                               |
|                  | 3         | 0.52                               | 0.35                               |
|                  | 4         | 0.40                               | 0.27                               |
|                  | 5         | 0.41                               | 0.28                               |
|                  | 6         | 0.15                               | 0.10                               |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| MPB              | 1         | 0.47                               | 0.32                               |
|                  | 2         | 0.62                               | 0.42                               |
|                  | 3         | 0.74                               | 0.50                               |
|                  | 4         | 0.47                               | 0.32                               |
|                  | 5         | 0.43                               | 0.29                               |
|                  | 6         | 0.36                               | 0.25                               |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| MPC              | 1         | 0.058                              | 0.039                              |
|                  | 2         | 0.19                               | 0.13                               |
|                  | 3         | 0.27                               | 0.19                               |
|                  | 4         | 0.25                               | 0.17                               |
|                  | 5         | 0.11                               | 0.073                              |
|                  | 6         | 0.068                              | 0.046                              |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |

Table 11. In Situ Respiration Results at the POL Yard: November 1996 (continued)

| Monitoring Point | Depth (m) | Oxygen Utilization Rate<br>(%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| MPD              | 1         | 0.068                              | 0.046                              |
|                  | 2         | 0.087                              | 0.059                              |
|                  | 3         | 0.058                              | 0.039                              |
|                  | 4         | 0.019                              | 0.013                              |
|                  | 5         | 0.058                              | 0.039                              |
|                  | 6         | 0.058                              | 0.039                              |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| Background       | 1         | 0                                  | 0                                  |
|                  | 2         | 0                                  | 0                                  |
|                  | 3         | 0                                  | 0                                  |
|                  | 4         | 0                                  | 0                                  |
|                  | 5         | 0                                  | 0                                  |
|                  | 6         | 0                                  | 0 .                                |
|                  | 7         | 0                                  | 0                                  |
|                  | 8         | NS                                 | NS                                 |
| GP1              | 1.8       | 0.14                               | 0.10                               |
|                  | 3.25      | 0.20                               | 0.13                               |
|                  | 4.8       | 0.068                              | 0.047                              |
|                  | 6.3       | 0                                  | 0                                  |

Table 11. In Situ Respiration Results at the POL Yard: November 1996 (continued)

| Monitoring Point | Depth (m) | Oxygen Utilization Rate<br>(%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| GP2              | 2.5       | 0.037                              | 0.025                              |
|                  | 3.25      | 0.067                              | 0.046                              |
|                  | 4.95      | 0.11                               | 0.073                              |
|                  | 6.55      | 0.018                              | 0.012                              |
| GP3              | 2.0       | 0.030                              | 0.020                              |
|                  | 3.5       | 0.019                              | 0.013                              |
|                  | 4.95      | 0                                  | 0                                  |
|                  | 6.5       | NS                                 | NS                                 |
| GP4              | 2.0       | 0.087                              | 0.059                              |
|                  | 3.5       | 0.019                              | 0.013                              |
|                  | 5.0       | 0.019                              | 0.013                              |
|                  | 6.5       | 0.019                              | 0.013                              |
| GP5              | 1.85      | 0                                  | 0                                  |
|                  | 3.4       | 0.029                              | 0.020                              |
|                  | 4.75      | 0                                  | 0                                  |
|                  | 6.1       | 0                                  | 0                                  |
| GP8              | 2.0       | 0.029                              | 0.020                              |
|                  | 3.5       | 0.039                              | 0.027                              |
|                  | 5.0       | 0                                  | 0                                  |
|                  | 6.5       | 0                                  | 0                                  |

NS = Not sampled. Samples could not be collected because screened interval was below water table.

Table 12. In Situ Respiration Results at the POL Yard: August 1998

| Monitoring Point | Depth (m) | Oxygen Utilization<br>Rate (%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| MPA              | 1         | 0                                  | 0                                  |
|                  | 2         | 0.83                               | 0.56                               |
|                  | 3         | 0.63                               | 0.43                               |
|                  | 4         | 0.39                               | 0.27                               |
|                  | 5         | 0.25                               | 0.17                               |
| Γ                | 6         | 0.21                               | 0.14                               |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| МРВ              | 1         | 0.48                               | 0.33                               |
|                  | 2         | 1.69                               | 1.1                                |
| Γ                | 3         | 1.34                               | 0.91                               |
|                  | 4         | 0.29                               | 0.20                               |
|                  | 5         | 0.080                              | 0.054                              |
|                  | 6         | 0.080                              | 0.054                              |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| MPC              | 1         | 1.0                                | 0.70                               |
|                  | 2         | 0                                  | 0                                  |
|                  | 3         | 0                                  | 0                                  |
|                  | 4         | 0                                  | 0                                  |
|                  | 5         | 0.15                               | 0.10                               |
|                  | 6         | 0.13                               | 0.088                              |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |

Table 12. In Situ Respiration Results at the POL Yard: August 1998 (continued)

| Monitoring Point | Depth (m) | Oxygen Utilization<br>Rate (%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| MPD              | 1         | 0.070                              | 0.048                              |
|                  | 2         | 0.17                               | 0.12                               |
|                  | 3         | 0.080                              | 0.054                              |
|                  | 4         | 0.13                               | 0.088                              |
|                  | 5         | 0.21                               | 0.14                               |
|                  | 6         | 0.15                               | 0.10                               |
|                  | 7         | NS                                 | NS                                 |
|                  | 8         | NS                                 | NS                                 |
| Background       | 1         | 0.050                              | 0.034                              |
|                  | 2         | 0                                  | 0                                  |
|                  | 3         | 0                                  | 0                                  |
|                  | 4         | 0.11                               | 0.075                              |
|                  | 5         | 0.080                              | 0.054                              |
|                  | 6         | 0.050                              | 0.034                              |
|                  | 7         | 0.017                              | 0.012                              |
|                  | 8         | NS                                 | NS                                 |
| GP1              | 1.8       | 0                                  | 0                                  |
|                  | 3.25      | 0.66                               | 0.45                               |
|                  | 4.8       | 0.070                              | 0.048                              |
|                  | 6.3       | 0                                  | 0                                  |

Table 12. In Situ Respiration Results at the POL Yard: August 1998 (continued)

| Monitoring Point | Depth (m) | Oxygen Utilization<br>Rate (%/day) | Biodegradation Rate<br>(mg/kg-day) |
|------------------|-----------|------------------------------------|------------------------------------|
| GP2              | 2.5       | 0.11                               | 0.075                              |
|                  | 3.25      | 0                                  | 0                                  |
|                  | 4.95      | 0.16                               | 0.11                               |
|                  | 6.55      | 0.077                              | 0.052                              |
| GP3              | 2.0       | 0                                  | 0                                  |
|                  | 3.5       | 0.019                              | 0.013                              |
|                  | 4.95      | 0                                  | 0                                  |
|                  | 6.5       | NS                                 | NS                                 |
| GP4              | 2.0       | 0                                  | 0                                  |
|                  | 3.5       | 0                                  | 0                                  |
|                  | 5.0       | 0                                  | 0                                  |
|                  | 6.5       | 0                                  | 0                                  |
| GP5              | 1.85      | 0                                  | 0                                  |
|                  | 3.4       | 0                                  | 0                                  |
|                  | 4.75      | 0                                  | 0                                  |
|                  | 6.1       | 0                                  | 0                                  |
| GP8              | 2.0       | 0                                  | 0                                  |
|                  | 3.5       | 0                                  | 0                                  |
|                  | 5.0       | 0                                  | 0                                  |
|                  | 6.5       | 0.10                               | 0.068                              |

NS = Not sampled. Samples could not be collected because screened interval was below water table.



Figure 14. In Situ Respiration Test Results at Monitoring Point MPB-2 m: August 1996



Figure 15. In Situ Respiration Test Results at Monitoring Point MPB-2 m: November 1996



Figure 16. Initial Average TPH Soil Concentrations by Depth



Figure 17. Initial Average BTEX Soil Concentrations by Depth



Figure 18. Cross Section Showing Site Geology and Contaminant Concentration by Depth

Seven soil samples, each from a different depth, were analyzed to determine soil characteristics (Tables 13 and 14). All values of the inorganic parameters fall within ranges observed at successful bioventing sites (Leeson and Hinchee, 1996).

#### b. Final

Final soil sampling was performed with a Geoprobe® unit at locations adjacent to respective vent wells and monitoring points that were sampled during the initial installation. Continuous sampling was not performed as was done during the initial sampling round, rather depths showing the highest contaminant concentrations in the initial round were resampled for comparison purposes. Figures 19 through 28 compare TPH and BTEX concentrations from initial and final soil sampling according to depth for each of the four vent wells and one monitoring well. Results indicate a significant reduction in contaminant concentration in soil with the exception of several depths below the water table level. This type of behavior is expected, since bioventing would not effectively treat soil contamination located in the saturated zone unless the water table was actively drawn down to expose these soils. The water table was at approximately 22 ft bgs at the time of final soil sampling.

In general, the highest final contaminant levels were found in VW-1 and VW-3 at deeper depths that are saturated during parts or all of the year. TPH and BTEX also remained slightly elevated at several shallower depths, possibly associated with the surface spill indicated above. However, concentrations at these locations were significantly lower in the final sampling event as compared to the initial sampling event. Average BTEX and TPH concentrations by depth across the entire site for the final sampling event are shown in Figures 29 and 30. Note that these figures represent only depths that were sampled during the final sampling event due to elevated concentrations in the initial event. They do not represent a continuous soil profile of wells across the entire site.

# E. SUMMARY AND CONCLUSIONS

Based on the results from the study period, the following can be concluded:

- 1. The bioventing process is stimulating biodegradation. The average in situ respiration rate at a depth of 0 to 3 m was initially 1.8 mg/kg-day during the warm months and 0.42 mg/kg-day during colder months. At a depth of 3 to 6 m, the average in situ respiration rate during the warm months was initially 0.36 mg/kg-day and 0.18 mg/kg-day during colder months. During the final respiration test conducted in a warm month, the average in situ respiration rate at a depth of 0 to 3 m was 0.56 mg/kg-day and 0.15 mg/kg-day at a depth of 3 to 6 m. Since the initiation of bioventing, these rates correspond to an estimated 2,800 kg total hydrocarbon removal. Cumulative hydrocarbon removal at the two depth intervals is shown in Figure 31.
- 2. Surface emissions at the site appear to be minimal. Surface emissions measured during October 1996 and August 1998 allowed for comparison of emissions during injection and without injection. Surface emissions measured in October 1996 were significantly lower than those measured during initial testing in April 1996. In most samples, none of the BTEX components could be detected. Very little difference could be detected between samples collected during injection and without injection. In

Table 13. Results of Inorganic Soil Analyses at the POL Yard

| Sample            | Alkalinity<br>(mg/kg) | Iron<br>(mg/kg) | Moisture<br>Content<br>(%) | Hd   | TKN<br>(mg/kg) | TP<br>(mg/kg) | Total<br>Sulfate<br>(mg/kg) | Soluble<br>Sulfate<br>(mg/kg) | Sulfide<br>(mg/kg) |
|-------------------|-----------------------|-----------------|----------------------------|------|----------------|---------------|-----------------------------|-------------------------------|--------------------|
| RM1-VW4-1.5-1.66  | 70                    | 8,300           | 6.4                        | 7.37 | 490            | 26            | NM                          | NM                            | NM                 |
| RM1-VW4-1.66-1.82 | NM                    | NM              | NM                         | NM   | NM             | NM            | 460                         | 26                            | 130                |
| RM1-VW4-3.05-3.21 | 120                   | 2,700           | 10                         | 8.24 | <100           | 43            | NM                          | NM                            | NM                 |
| RM1-VW4-3.21-3.38 | NM                    | NM              | NM                         | NM   | NM             | NM            | 150                         | 28                            | 20                 |
| RM1-VW4-4.87-5.04 | 210                   | 2,500           | 5.7                        | 8.22 | 630            | 94            | NM                          | NM                            | NM                 |
| RM1-VW4-5.04-5.20 | NM                    | NM              | NM                         | NM   | NM             | NM            | 180                         | 11                            | 80                 |
| RM1-VW4-5.79-5.96 | 06                    | 250             | 4.5                        | 7.94 | < 100          | 25            | NM                          | NM                            | NM                 |
| RM1-VW4-5.96-6.12 | NM                    | NM              | NM                         | NM   | NM             | NM            | 180                         | 17                            | 20                 |
| RM1-VW4-6.44-6.60 | 400                   | 2,100           | 5.4                        | 60.6 | 160            | 83            | NM                          | NM                            | NM                 |
| RM1-VW4-6.60-6.76 | NM                    | NM              | NM                         | NM   | NM             | NM            | 150                         | 32                            | 10                 |
| RM1-VW4-7.09-7.25 | 80                    | 270             | 12.8                       | 8.19 | 6,300          | 14            | NM                          | NM                            | NM                 |
| RM1-VW4-7.25-7.41 | NM                    | NM              | NM                         | NM   | NM             | NM            | 150                         | 40                            | 09                 |
| RM1-VW4-8.06-8.22 | 70                    | 900             | 12.7                       | 8.57 | <100           | 13            | NM                          | NM                            | NM                 |
| RM1-VW4-9.02-9.18 | NM                    | NM              | NM                         | NM   | NM             | NM            | 30                          | 50                            | 10                 |

NM = Not measured.

Table 14. Particle Size Classification of Soils from the POL Yard

|                   | Particle Size (%) |      |           |
|-------------------|-------------------|------|-----------|
| Sample            | Gravel            | Sand | Silt/Clay |
| RM1-1.82-2.15     | 37                | 62   | <1.0      |
| RM1-3.38-3.0      | 54                | 45   | <1.0      |
| RM1-5.20-5.52     | 46                | 53   | <1.0      |
| RM1-6.12-6.44     | 36                | 64   | 0         |
| RM1-6.76-7.09     | 16                | 84   | 0         |
| RM1-7.57-7.90     | 11                | 89   | 0         |
| RM1-VW4-8.39-8.78 | 57                | 43   | 0         |
| RM1-VW4-8.78-8.95 | 59                | 41   | 0         |
| RM1-VW4-9.34-9.66 | 48                | 52   | 0         |



Figure 19. TPH Concentrations in Soil at MW1 Over Time



Figure 20. Benzene Concentrations in Soil at MW1 Over Time



Figure 21. TPH Concentrations in Soil at VW1 Over Time



Figure 22. Benzene Concentrations in Soil at VW1 Over Time



Figure 23. TPH Concentrations in Soil at VW2 Over Time



Figure 24. Benzene Concentrations in Soil at VW2 Over Time



Figure 25. TPH Concentrations in Soil at VW3 Over Time



Figure 26. Benzene Concentrations in Soil at VW3 Over Time



Figure 27. TPH Concentrations in Soil at VW4 Over Time



Figure 28. Benzene Concentrations in Soil at VW4 Over Time



Figure 29. TPH Concentrations in Soil Across the Site Over Time



Figure 30. Benzene Concentrations in Soil Across the Site Over Time



Figure 31. Cumulative Hydrocarbon Removal in the Bioventing Test Plot at Two Depth Intervals

the center of the test plot no benzene, ethylbenzene, or xylenes were detected in any samples either during or without injection and only trace amounts of toluene were detected during injection. In general, August 1998 surface emissions were significantly lower than those measured in April 1996 and somewhat greater than those measured in October 1996. The average benzene concentrations in the center of the test plot both with and without injection were below the initial benzene concentrations in surface emissions prior to treatment. These data again show that operation of the blower does not seem to affect surface emission concentrations of benzene in the center of the test plot. Benzene concentrations in perimeter samples collected both with and without blower operation were less than benzene concentrations in initial surface emission samples at the site. These results indicate that, at the locations sampled, the bioventing system is not creating a pronounced level of increased emissions over natural surface emissions at the site.

- 3. Pressure changes were monitored at all depths during the soil-gas permeability tests. In general, the radius of influence was greater at the deeper depths, with values ranging from 4.6 m (15 ft) at a depth of 2 m (6.6 ft) up to 11 m (37 ft) at a depth of 4 m (13 ft). Based on the data for the POL Yard and assuming that in general, most of the contamination is at the deeper depths, a radius of influence of 9 m (30 ft) may be sufficient for site coverage. This would necessitate a well spacing of 18 m (60 ft). At the 18-m spacing, approximately 12 wells would be sufficient to treat more than 4,000 m<sup>2</sup> (~1 acre) of site surface area.
- 4. Results of soil-gas analyses generally agree with soil analyses, showing heavier contamination closer to the old pipeline and at deeper depths. The exception is shown at monitoring point MPB, where significant contamination is found at a shallower depth. This is believed to be due to a surface spill.
- 5. During August 1996, in situ respiration rates were highest at depths of 3 m and less in the vicinity of monitoring points MPA and MPB. The lowest rates were found in the area of monitoring point MPD. These results correlate with soil and soil-gas analyses, which demonstrated the highest contamination in the region of monitoring points MPA and MPB, with little contamination in the region of monitoring point MPD. Higher contamination levels will result in higher in situ respiration rates. Soil sample results also showed significant contamination at a depth of 7 to 8 m bgs; however, these soils are saturated, preventing the use of in situ respiration testing. In situ respiration rates measured during November 1996 were significantly lower, most likely due to significantly lower soil temperatures. In situ respiration rates measured in August 1998 also were lower than August 1996 rates even at similar soil temperatures, indicating a reduction in contaminant concentrations in soil.
- 6. In general, the highest initial soil contaminant levels were found at the deeper depths close to the location of the former pipeline. TPH and BTEX also were high at shallower depths near the southeastern portion of the test plot. POL Yard personnel reported that there was a large surface spill in this area that probably resulted in the contamination in the test plot at these depths. TPH concentrations ranged from below detection limits up to approximately 2,000 mg/kg, while BTEX concentrations ranged from below detection limits up to approximately 20 mg/kg. The total mass of TPH

initially in soil is estimated to be 1,920 kg. This number is based on average TPH concentrations in soil by depth prior to the initiation of bioventing. All values of the inorganic parameters fall within ranges observed at successful bioventing sites. Results of final soil sampling indicate a significant reduction in contaminant concentration in soil with the exception of several depths below the water table level. In general, the highest final TPH and benzene concentrations were found in VW-1 and VW-3 at deeper depths that are saturated during parts or all of the year. TPH and BTEX also remained slightly elevated at several shallower depths, possibly associated with the surface spill indicated above. However, concentrations at these locations were significantly lower in the final sampling event as compared to the initial sampling event.

# SECTION IV NATURAL ATTENUATION DEMONSTRATION

# A. SITE SELECTION AND EVALUATION

# 1. Site History and Data Review

Battelle selected an appropriate site for the natural attenuation demonstration by evaluating existing literature and information on the general hydrogeology and the nature and extent of groundwater contamination at Rhein-Main Air Base. Site selection criteria included locating a well-characterized, fuel-rich source and plume that was not co-mingled with contamination from other sources and that was not disturbed by pumping, remedial activities, or physical features that would impact the physical mobility or chemistry of the plume. The plume also needed to be contained in an aquifer that could be sampled during the demonstration using a GeoProbe® or similar equipment. The demonstration itself needed to be sited in a physically accessible area. It would be useful to have background information on the source of fuel contamination and a history of the release.

Information and literature that was reviewed by Battelle provided the following useful facts:

- The Base is situated in the Main River Valley and overlies a large sequence of interbedded, alluvial sand and clay sediments; this alluvium extends to at least 100 m bgs.
- Based on available water level data, the depth to the groundwater table is generally 8 to 9 m bgs.
- Groundwater in the water table aquifer flows laterally to the west/northwest as it approaches and eventually discharges into the Main River.
- The depth to the first laterally extensive confining layer is well below the groundwater table.

It was also determined that little subsurface characterization has been performed to determine if fuel storage and distribution systems at Rhein-Main Air Base are sources of contamination. This lack of characterization presented some significant challenges to the demonstration. First, potential fuel contaminant sources needed to be identified and evaluated to locate an appropriate site and plume for the demonstration. Second, once a plume was selected, the nature and extent of contamination had to be determined as part of the natural attenuation demonstration, and several iterations of sampling and analysis, were needed to delineate a plume. Because there were no suitable, well-delineated plumes readily known and characterized, once a potentially suitable plume was selected, it was necessary to delineate and characterize it while also demonstrating the method for proving natural attenuation.

### 2. Soil-Gas Surveys

After consulting with Air Base environmental and fuels management staff, Battelle conducted two soil-gas surveys at locations thought to contain fuel contamination. These surveys were

conducted in an effort to locate a plume that was readily accessible and was not being disturbed by the ongoing remedial demonstration that was being conducted by the University of Karlsruhe and Battelle at the former UST site in the POL Yard.

Neither of the two soil gas surveys conducted by Battelle were successful at locating fuel contamination. The first survey was performed in April 1996 behind the Base gas station near the station's USTs. During this survey, eight soil probings were conducted, each to depths of about 3 m. Analysis of soil gas collected from each probe indicated that the oxygen content was too high and carbon dioxide content was too low for fuel contamination to be present. Battelle concluded from these results that there was no plume originating from the Base gas station.

The second survey was performed in July 1996, in the eastern part of the POL Yard, in an area just south of the rail line and east of Theis Road. This area was used for off-loading fuel into the yard from railroad tanker cars. The fuel was piped from this area to various aboveground storage tanks, including several which are no longer present in the yard. Based on his 20 years of experience at the POL Yard, POL Yard Manager Don Zier felt that this site was very likely to be contaminated. However, the soil-gas survey conducted by Battelle was not able to confirm the presence of contamination, so this site was not used for the natural attenuation study.

#### 3. On-Site Consultation

Prior to initiating the groundwater sampling program, Battelle met with hydrogeologists at the Institut Fresenius who were performing site characterization and groundwater monitoring activities across the entire Frankfurt Airport complex and Rhein-Main Air Base. Their study area included the land immediately downgradient to the POL Yard and Base property. The Institut Fresenius staff provided Battelle with background information on groundwater flow, monitoring well construction, and limited data on groundwater chemistry and quality. They were also able to identify other important contaminant sources that are in the general vicinity of the POL Yard plume, and provided Battelle with a copy of the most recent contour map of the water table aquifer for all of Rhein-Main Air Base (Institut Fresenius, 1994). The relevant portion of this map is presented in Figure 32. Battelle also met with several staff members in the Rhein-Main Civil Engineering Group, who were able to identify several potential hydrocarbon sources on Air Base property.

#### 4. Site Selection

Results from the soil-gas surveys and from the information collected from the Institut Fresenius and Rhein-Main Civil Engineering Group did not lead to the discovery of a suitable plume. Because there were no certain alternatives, the POL Yard plume at Rhein-Main Air Base was selected for the natural attenuation study. The source of this plume is the leak from the underground diesel storage tanks and piping at the POL Yard. The soil and groundwater contamination at this plume's source, caused by the leak, are being actively remediated by the University of Karlsruhe and Battelle demonstrations.

For several reasons, Battelle would have preferred to use another plume for this demonstration. Very little was known prior to the start of the natural attenuation demonstration about the nature and extent of contamination caused by this POL Yard source. There was very little known about the history of this fuel distribution system or the time of the leak. There had been no work performed to delineate or characterize the plume. There was also no information on the profile of the



Figure 32. Water Table Contour Map

plume; the vertical extent and distribution of contamination was unknown. The impact that the ongoing POL Yard remedial demonstrations were having on the plume were difficult to assess. There was uncertainty regarding the history of the area downgradient from the POL Yard source.

A diesel fuel leak is thought to be the POL Yard plume source, although JP-4 jet fuel may have been mixed with this diesel or perhaps also stored separately in the USTs. University of Karlsruhe (Swinianski et al., 1995) reported that JP-4 fuel was possibly added to the diesel during winter months. During the POL Yard demonstrations, it has been proven that the fuel leak contains significant quantities of BTEX, but diesel is not rich in BTEX. The presence of BTEX is important because they are the most common and mobile petroleum hydrocarbon contaminants of concern.

Visual observations made by Battelle indicated that other sources of contamination may be present downgradient of the POL Yard that may have co-mingled with this plume, thus complicating efforts to show that it is attenuating. There are several former and existing features downgradient of the POL Yard that warranted consideration. These features include (1) a former disposal and stormwater runoff catchment basin, (2) a former junk automobile storage compound, (3) a biopile, and (4) various solid and chemical waste storage compounds.

Perhaps the most import of these downgradient features is the former World War II-aged, disposal basin, which has been recently cleaned-up and is now being used as a catchment basin for airfield stormwater runoff. Soils excavated from the bottom of the basin were biopiled adjacent to the site, downgradient from the POL Yard. Very recently, the basin was lined (it was operated unlined for an unknown time period) and an oil-water separator was installed up-line from it to remove hydrocarbons carried by the airfield storm water runoff. Because of its history, this basin could have been a chronic source of groundwater contamination. The former basin or dump, as well as the former excavation and biopile could have impacted groundwater quality by possibly redistributing groundwater recharge, by adding hydrocarbon contamination to the aquifer, by adding or depleting dissolved oxygen to the aquifer, or by adding hydrocarbons or degradation products to the plume.

The junk automobile storage compound and other waste storage compounds that are downgradient from the POL Yard may also be impacting groundwater quality. There were no known releases from these compounds, but given that the soils at Rhein-Main are very sandy and permeable, it is likely that any small spills or releases would eventually impact the aquifer, as there is virtually no surface water runoff from unpaved areas across the Base.

# B. SITE CHARACTERIZATION TO DEMONSTRATE NATURAL ATTENUATION

Site characterization activities conducted as part of the natural attenuation study were patterned on those recommended in the U.S. Air Force Protocol for natural attenuation studies (Wiedemeier et al., 1995). The site characterization was designed to evaluate the nature and extent of petroleum contamination in groundwater as well as to determine if evidence of natural attenuation, and specifically intrinsic biodegradation, is present. Intrinsic biodegradation is the most important of several natural processes at play within a plume that is undergoing natural attenuation. It is most important because it is the only one of several natural attenuation processes that transforms contaminants into innocuous byproducts and reduces the total mass of contaminants in the subsurface.

A reduction in plume concentration is generally considered evidence of natural attenuation, provided that it is known that the plume source is being removed and that the plume is not increasing

in size. Evidence of intrinsic biodegradation is found by collecting groundwater quality data from points scattered across the area of the plume, from points within the source area, and from non-impacted upgradient locations.

Site characterization activities focused on collecting two temporal data sets to (1) determine the nature and extent of a plume caused by a release of petroleum-related contamination and (2) collect specific water quality parameters directly related to the intrinsic biodegradation of the plume. The second data set was collected two years after the first to determine if the levels of contamination were dropping over that two-year time period and if water quality parameters and concentrations of compounds related to intrinsic biodegradation were concurrently following anticipated trends.

Specific details concerning on-site activities are described in the following sections. Appendix H contains photographs of key on-site activities and site features related to the natural attenuation analysis.

# 1. Overview of On-Site Activities

The first phase (Phase 1) of data collection and analysis took place from September 30 through October 16, 1996. Two Battelle staff members, a hydrogeologist and a water quality technician, traveled at that time to Rhein-Main Air Base to collect the first of two sets of contaminant and water quality data. This effort consisted of setting up on-site analytical capabilities (Hach® kits and a gas chromatograph) at the site, finalizing the approach to collect the groundwater samples, and collecting samples using a subcontracted GeoProbe® unit and its two-person operating crew. To gain clearance from utility and unexploded ordnance (UXO) hazards, Battelle delineated an area thought to envelop the area of contamination and identified 25 locations where GeoProbe® sampling would likely provide data on contaminant concentrations or on the presence and concentration of degradation byproducts originating from the contaminants. Figure 33 contains the site map and the Phase 1 GeoProbe® sampling locations.

The second phase (Phase 2) of data collection and field analysis took place from September 22 through October 2, 1998. Two Battelle staff members returned to the site to determine and evaluate any changes that had taken place in the plume and groundwater since the first phase. The same GeoProbe® and sampling equipment were used in similar fashion to the first sampling event, but an improved, more easily used water quality meter and a flowthrough cell were deployed.

# 2. Study Area Features and Plume Delineation

Prior to the Phase 1 sampling, the study area or sampling area was delineated based on knowledge of the direction of groundwater flow across the source area, and on general knowledge of how a typical hydrocarbon plume might have formed. The study area had a downgradient constraint because sampling could only be performed within the confines of the Air Base. The distance from the source to the downgradient boundary of the Air Base is about 550 m.

Some potentially significant changes to site features occurred between the first and second sampling phases. The disposal basin located downgradient of the POL Yard plume present during Phase 1 was lined and upgraded to the existing airfield catchment basin before Phase 2. The biopile containing excavated soils from the disposal basin (another downgradient feature) that was in place during Phase 1 was removed prior to Phase 2. Construction of an oil-water separator was completed



Figure 33. Site Map Showing Phase 1 Geoprobe® Sampling Locations

between the two sampling phases. These changes may have impacted local groundwater quality between the sampling phases.

## 3. Sampling Locations and Clearance

Digging permits were obtained for probing prior to the start of both survey phases. All probing locations were pre-cleared for buried utilities and UXO. The UXO clearance was necessary because the study area was bombed extensively by Allied Forces during the latter part of World War II. A total of 25 locations were cleared for probing before each sampling phase. During each phase, probing locations were staked in the field and spotted on a site map, but not surveyed. Painted wooden stakes, marking each of the 25 cleared locations were used to guide the GeoProbe® crew from location to location, as sampling progressed during each phase. Because of the two-year time period between sampling events, the locations staked during Phase 1 could not be maintained for Phase 2. But the map of the Phase 1 sampling locations was used to guide the placement of Phase 2 sampling locations. Figure 33 shows the Phase 1 sampling locations; Figure 34 shows the Phase 2 sampling locations.

During Phase 1, GP-18 was the farthest downgradient sampling point, located 400 m northwest of the POL yard source. The closest sample point was GP-2, some 25 m downgradient and west of the source. Because field time was limited and there was a need to focus on delineating the plume, no upgradient or cross-gradient samples were collected during Phase 1. During Phase 2, GP-17, -20, and -21 were the farthest downgradient sample points from the source, they are located from 465 m to 515 m northwest of the source. During Phase 2 one sampling point (GP-23) was located 210 m upgradient and east of the source, and one crossgradient sample point, (GP-25), was located 250 m north of the source.

# 4. Groundwater Sampling and Analysis

During the first sampling phase, Battelle staff used the GeoProbe® to sample groundwater at a total of 14 of the 25 cleared locations. Groundwater at these locations was analyzed at the site using YSI field instruments (Model 3500) and a separate dissolved oxygen probe (Model 55), Hach® analytical kits, and a portable GC. During the second sampling phase, at the 23 Geoprobed locations, a total of 31 groundwater samples were retrieved for analysis. Groundwater samples were also collected at monitoring wells MW1, -2, and -3 at the Battelle test plot within the POL yard.

During Phase 2, groundwater was analyzed for various attenuation-related parameters using a YSI Model 6820 instrument. Hach® kits were used to analyze for other relevant water quality parameters. While Phase 1 samples were analyzed on site using a portable gas chromatograph, Phase 2 samples were collected in 40 mL volatile organic analysis (VOA) vials and shipped to Alpha Analytical, Inc., a U.S. EPA-certified laboratory in the United States to be analyzed for BTEX and TPH constituents. Eliminating the on-site GC work during Phase 2 enhanced the process of data collection and analysis because it enabled more time to be spent on measuring specific water quality parameters using the Hach® kits.

The Phase 2 analyses by a certified laboratory included initial runs for both TPH purgeable and extractable analyses. As was the case during Phase 1, results from the two types of TPH analyses on POL Yard groundwater samples indicated that purgeable (BTEX-rich) constituents were predominant at the site. The TPH results imply that JP-4 is the predominant contaminant, rather than



Figure 34. Site Map Showing Phase 2 Geoprobe® Sampling Locations

diesel. Because the source was found to be rich in BTEX, TPH-purgeable analyses were run on all Phase 2 downgradient samples collected by the GeoProbe®.

### a. Probe Head Measurements

During both phases of sampling, a GeoProbe® Model 4220 was used to physically drive sampling rods to depths of approximately 10 m. The 4220 unit consists of a Kawasaki 4-wheel drive utility vehicle (or "mule") with a GeoProbe® GH-40 hydraulic-driven percussion hammer mounted on the back. This unit is capable of driving assemblies of 1.0-inch outside diameter (O.D.) (0.5-inch inside diameter (I.D.) threaded hollow steel rods and tip-mounted sampling tools to depths as great as 40 m, in the most favorable geologic settings. At the Rhein-Main Air Base site, the unit was able to drive rods to below the water table at all but one of the cleared locations, where refusal occurred at about 5 m bgs. Based on water level data collected from monitor wells that are present in and around the area, the depth to groundwater was known to be approximately 8 to 8.5 m bgs. To be effective at retrieving sufficient groundwater, it was determined during the study that the GeoProbe® needed to be driven to a depth of at least 9 m. Some sampling was attempted at depths between 8.5 and 9.5 m, but most of the probings were driven to a depth of approximately 10 m so that there was enough groundwater flowing into the screen to lift it efficiently for sampling and parameter measurement.

During Phase 2, probes were driven to a depth of 10 m to streamline the sampling process at all locations by setting a target sampling depth that is sufficient to readily collect groundwater within the zone of contamination. Given that the plume source is a light, non-aqueous phase liquid (LNAPL), a shallow plume was expected. Interbeds, which is typically present within sandy deposits, would help to keep the plume shallow. Because field time was limited, it was not possible to collect samples from several depths at all locations.

At three locations, GP-1, GP-3, and GP-5, in addition to sampling at a depth of 10 m, samples were collected from greater depths to determine if the plume was extending deeper into the aquifer. At these three locations, samples were also collected at 14 m. However, efforts to collect samples from depths greater than 14 m were inhibited by GeoProbe® refusals. At GP-1, a sample was also collected at 17 m, where refusal occurred. GP-3 was successfully probed to 16 m before refusal, so a sample was collected at that depth. The refusals were apparently occurring at depths where the GeoProbe® was encountering gravel zones too thick and dense to penetrate.

Groundwater was sampled from the GeoProbe® rod assembly using a retractable screen point sampler that was placed ahead of the rods (Figure 35). The screen point sampler is exposed to the aquifer by retracting the drive rods that are above it once the assembly is driven below the water table. Groundwater was lifted to ground surface by inserting %-inch O.D. × ¼-inch I.D. polyethylene tubing inside the hollow rods to the base of the screen point and using either a peristaltic pump or a Waterra® pump to lift the groundwater above ground. When available, the Waterra® pump was generally used at locations where groundwater was too deep to lift with the peristaltic pump. During Phase 2, only the Waterra® pump was used to collect groundwater. Cavitation was generally not experienced because the screen bottom was set at 10 m, creating a high enough water column to keep the tubing completely submerged during pumping. Cavitation is undesirable because it possibly can bias concentrations of volatile fuel constituents and dissolved oxygen.

Once the screen and hollow rods had been driven by the GeoProbe®, generally to a depth of 10 m, groundwater was pumped through polyethylene tubing from the screen and up the GeoProbe®



Figure 35. Schematic Diagram Showing Details of the GeoProbe® Screen Point Sampler

rods to the probe head. The pumped groundwater was then channeled in the tubing through a flow cell that was attached to the YSI multi-parameter water quality instrument probe. The YSI measures groundwater temperature, conductivity, pH, and oxidation/reduction potential (Eh). During Phase 1, once these parameters had been measured at a given location, dissolved oxygen (DO) was also measured by disconnecting the flow tube from the flow cell and inserting it into a small glass Erlenmeyer flask. The DO probe was then placed inside the flask and groundwater was circulated through the beaker until the instrument measured a stable DO value. As readings were being taken, groundwater was always circulating through the flow cell and the Erlenmeyer flask. The rate of circulation varied from location to location, depending in part on how much groundwater any given probing would yield. The average circulation rate was about 80 mL/minute, and the rate was never less than approximately 20 mL/min. During Phase 2, a Model 6820 YSI instrument was used to collect DO within the flow cell along with the other parameters. Since the groundwater is not exposed to air when a cell is used, this is a more efficient and possibly more accurate method for measuring DO.

The instruments that were used to measure water quality parameters were manufactured by Yellow Springs International (YSI) located in Yellow Springs, Ohio. During Phase 1, the YSI Model 3500 meter was used to measure the four flow cell parameters (temperature, conductivity, pH, and Eh). The YSI 3500 meter was calibrated at the start of the six-day GeoProbe® survey and then three days later at the survey's mid point. The calibration procedures that were utilized are presented in the instrument's operator's manual. According to YSI's recommended procedure, the YSI 55 DO meter was calibrated every time it was used.

During Phase 2, a YSI 6820 instrument was used to monitor water quality parameters at the probe head. In addition to having all of the capabilities of the Model 3500, this probe can also measure dissolved oxygen. During Phase 2, the YSI 6820 instrument was calibrated daily for DO, pH, conductivity and Eh readings. At night, the meter was stored on site in the Battelle field trailer. Its power supply was recharged every evening.

At each well head, once stable water quality readings were measured, a set of groundwater samples was collected so that additional analyses could be made at the trailer. The pump and tubing were used to fill two 40-mL, chemically clean sample vials to determine BTEX concentrations in the groundwater. A 500-mL flask was filled to collect sulfide, sulfate, manganese, ferric iron, and nitrate measurements.

### b. Other On-Site Analyses

The Phase 1 on-site GC was a Model 8610, manufactured by SRI Instruments, Inc. of Las Vegas, NV. BTEX standards were used to calibrate the GC, and helium was used as the carrier gas. The standard was prepared daily by adding  $20~\mu L$  of 2 ppm BTEX solution to 10 mL deionized water to generate a 4-ppb level standard. Groundwater samples were compared to the known standard to determine the amount of BTEX contained within a sample. If a peak was found within 0.2 second of the retention time of the standard, then the parameter was considered as a positive detection and the value of the area of the peak was recorded. Because of the low level of BTEX in the standard, samples suspected of containing a high level of BTEX were diluted with deionized water. The dilution factor was then used when calculating BTEX concentration. Between sampling, blanks were run to purge the GC. The decision to dilute any sample was based on sample location (distance from the source) and odor (presence or absence of fuel odors in the groundwater).

During both the Phase 1 and the Phase 2 sampling events, a set of Hach® analytical kits were used to measure the content of other electron acceptors and biological degradation byproducts such as sulfide, sulfate, manganese (Mn II), ferric iron (Fe III), and nitrate. When samples could not be analyzed immediately following collection, the samples were stored in coolers containing ice packs until the time of analysis. Turbid groundwater samples were filtered using filter paper and a funnel. For groundwater containing ferrous iron (Fe II), concentrations exceeding 5.0 mg/L or sulfate concentrations exceeding 10 mg/L, the sample was diluted with deionized water so that the sample would fall within the limits of the Hach® colorimeter calibration modules. The dilution factor was then factored into the concentration calculation. The procedures that were applied with the Hach® kits are contained in the Hach® colorimeter manual. Prepared standards for nitrate, manganese, and sulfate were used to check the accuracy of the methods.

### C. RESULTS FROM GROUNDWATER ANALYSES

# 1. Summary of Groundwater Quality and Contamination

The parameters that were measured during both phases of the field survey have been tabulated and mapped. Appendix G contains all of the water quality data measured (1) at the probe head, using a YSI meter; (2) on-site, using a Hach kit and/or field GC; and (3) with a GC located at Alpha Analytical, Inc.'s laboratory in the United States. These tables contain all data collected during both phases of the field groundwater survey for the natural attenuation study. All of these data originated from groundwater samples that were collected with the GeoProbe® except samples collected from locations NW-2 and MW-1, -2, and -3. NW-2 was a preexisting monitoring well that is located northwest of the POL Yard. Battelle installed the MW monitoring wells within the POL Yard as part of the POL Yard bioremediation demonstration.

Both the 1996 and the 1998 data sets were mapped to determine if trends in the distribution of TPH or BTEX contamination and in natural attenuation are observable. Figure 36 is a contour plot depicting the distribution of TPH in September 1998. Figures 37a and b through 51a and b depict the September 1996 and September 1998 distributions of the following fuel components or attenuation parameters: benzene, toluene, ethylbenzene, *m*-, *p*-xylene, *o*-xylene, DO, oxidation/reduction potential, nitrate, sulfate, Fe II, manganese, sulfide, conductivity, temperature, alkalinity, and pH. Information on these components and parameters are presented and discussed in the sections that follow, along with interpretations of the data concerning the nature and extent of contamination and on evidence of natural attenuation.

In addition to contour maps that show the distribution of contaminants and water quality parameters, two sets of x-y plots (concentration versus distance) were developed to evaluate data collected during the two sampling phases. The plots were used to help evaluate the spatial trend of the contaminants and various attenuation parameters using a transect oriented along the direction of plume migration (the plume's major axis), which conforms with the direction of groundwater flow. This transect starts at the upgradient GP-23 location (Phase 2 only), traverses the POL Yard source, and proceeds past various GeoProbe® locations until it reaches the Base boundary located about 500 m northwest of the source. Since the exact locations of GeoProbe® locations differed between the two phases, the locations used on the transect for Phase 1 data varied slightly from the locations used on the transect for the Phase 2 data. Figures 52 and 53 depict the layout of Phase 1 and 2 transects across a map of the study area.



Figure 36. TPH-Purgeable Distribution (mg/L)-1998



Figure 37a. Benzene Distribution ( $\mu g/L$ ) – 1996



Figure 37b. Benzene Distribution ( $\mu g/L$ ) – 1998



Figure 38a. Toluene Distribution ( $\mu g/L$ ) – 1996



Figure 38b. Toluene Distribution ( $\mu g/L$ ) – 1998



Figure 39a. Ethylbenzene Distribution ( $\mu g/L$ ) – 1996



Figure 39b. Ethylbenzene Distribution ( $\mu g/L$ ) – 1998



Figure 40a. m,p-Xylene Distribution ( $\mu g/L$ ) – 1996



Figure 40b. m,p-Xylene Distribution ( $\mu g/L$ ) – 1998



Figure 41a. o-Xylene Distribution ( $\mu g/L$ ) – 1996



Figure 41b. o-Xylene Distribution ( $\mu g/L$ ) – 1998



Figure 42a. Dissolved Oxygen Distribution (mg/L) - 1996



Figure 42b. Dissolved Oxygen Distribution (mg/L) -1998



Figure 43a. Oxidation/Reduction Potential Distribution (mV) - 1996



Figure 43b. Oxidation/Reduction Potential Distribution (mV) - 1998



Figure 44a. Nitrate Distribution (mg/L) - 1996



Figure 44b. Nitrate Distribution (mg/L) – 1998



Figure 45a. Sulfate Distribution (mg/L) - 1996



Figure 45b. Sulfate Distribution (mg/L) - 1998



Figure 46a. Iron Distribution (mg/L) - 1996



Figure 46b. Iron Distribution (mg/L) – 1998



Figure 47a. Manganese Distribution (mg/L) - 1996



Figure 47b. Manganese Distribution (mg/L) - 1998



Figure 48a. Sulfide Distribution (mg/L) - 1996



Figure 48b. Sulfide Distribution (mg/L) - 1998



Figure 49a. Conductivity Distribution (mV) - 1996



Figure 49b. Conductivity Distribution (mV) - 1998



Figure 50a. Temperature Distribution (°C) – 1996



Figure 50b. Temperature Distribution (°C) – 1998



Figure 51a. pH Distribution - 1996



Figure 51b. pH Distribution – 1998



Figure 52. Transect for 1996 (Phase 1) Data Analysis



Figure 53. Transect for 1998 (Phase 2) Data Analysis

Trends in these data depicted on the x-y plots can indicate whether the POL Yard source is impacting the concentration of electron acceptors and degradation byproducts in the groundwater. Relationships between these parameters can imply that natural attenuation processes (specifically, intrinsic biodegradation) are working to remediate the plume.

The x-y transect plots are show in Figures 54a and b through 57a and b. The plots present the following analytical results for sample points projected on the transect (1) contaminants (TPH and BTEX); (2) metabolic byproducts (iron and manganese); (3) electron acceptors (nitrate and sulfate); and (4) field parameters (DO, conductivity, Eh, and alkalinity as measured at the probe head). An evaluation of each of these plots, either as support or lack of support for natural attenuation, is presented below.

#### a. Contaminants: TPH and BTEX Distribution and Attenuation

TPH concentrations in groundwater samples reflect the presence of a hydrocarbon plume that originates at the POL Yard and has moved with the groundwater to the northwest. In 1996, during Phase 1, samples were collected from three monitoring wells within the fuel yard and analyzed for TPH and BTEX. Both TPH-extractable and TPH-purgeable analyses were run on these samples to determine if the contaminants were more diesel or gasoline related, and results showed that gasoline phases predominated. Results from the TPH-extractable analysis indicated that components are primarily in the range of gasoline with minor amounts of diesel, light oil, and motor oil. In 1996, TPH-purgeable results from the three POL Yard monitoring wells showed an average and maximum concentration of 35 mg/L and 60 mg/L, respectively. There were no TPH analyses run on any of the GeoProbe® samples in 1996. Because of this, no map has been made to interpret the size and extent of the TPH plume in 1996. It is uncertain how far downgradient TPH components had migrated at that time. It is therefore difficult to determine if the plume is continuing to advance or if it has stabilized.

In 1998, TPH analyses were run on all samples collected from both the POL Yard and GeoProbe® locations. Figure 36 depicts the shape and extent of the TPH plume in 1998. This map indicates that the TPH concentration in the POL Yard average 29 mg/L and that the plume extends to the northwest from the POL yard to at least the area of the GP-10 location, where TPH was detected at 5.9 ppm. Samples from locations farther downgradient show concentrations below the 0.05 mg/L detection limit. A sample collected upgradient of the POL Yard at the GP-23 location was also below the detection limit.

There is also evidence that a lesser amount of TPH exists west of the sand pit, based on results from the GP-14 and GP-16 samples. At these locations TPH measured 0.56 and 0.14 mg/L respectively. It is difficult to determine whether these detections imply that the plume extends this far to the west, or whether the former sand pit may have been the source of this contamination.

The 1998 data indicate that the TPH plume extends some 220 m to the northwest of the POL Yard. Vertical sample profiling performed with the GeoProbe® at the GP-1, GP-3 and GP-5 locations indicate that the most concentrated portion of the plume may be deeper than 10 m bgs at some locations. If true, groundwater samples collected from greater depths might show that the plume is more areal extensive and possibly more concentrated than the existing data portray.

The TPH concentration data imply that the plume may be depleting. The average concentration in the POL Yard dropped from 35 mg/L to 29 mg/L between 1996 and 1998. The

## **Contaminants Along Transect** September 1996 100000 10000 Log Concentrations 1000 100 10 TPH-P Benzene 1 GR.23[215] TestPlat[0] Ethylbenzene GP-11051 KW 2 [190] GP-3 [100] GR.5 [ho] GR-2(75) Toluene GR.10[230] GR.18[415] **Xylenes**

Well ID (Distance from Source [ft])



Figure 54. Contaminants Along Transect (a) 1996; (b) 1998



Figure 55. Metabolic Byproducts Along Transect; (a) 1996; (b) 1998

# Electron Acceptors Along Transect September 1996







Figure 56. Electron Acceptors Along Transect; (a) 1996; (b) 1998

## Field Parameters Along Transect September 1996



# Field Parameters Along Transect



Figure 57. Field Parameters Along Transect; (a) 1996; (b) 1998

maximum concentration dropped from 60 mg/L to 57 mg/L. Results may have been impacted by the active remedial demonstrations in the POL Yard. Additional data are needed to confirm this favorable trend.

BTEX concentrations were measured in 1996 and 1998 in samples collected from both the POL Yard and from all GeoProbe® locations. In 1996, POL Yard benzene and toluene concentrations averaged 15,400 and 13,500  $\mu$ g/L, respectively. Xylene and ethylbenzene concentrations averaged 2,700 and 787  $\mu$ g/L, respectively. In 1998, POL Yard benzene and toluene concentrations dropped to averaged levels of 8,467 and 6,093  $\mu$ g/L, respectively. Xylene and ethylbenzene concentrations in 1998 dropped similarly to averaged levels of 2,170 and 550  $\mu$ g/L, respectively.

Figure 37b, the map of benzene distribution in 1998 shows a plume that conforms well with the TPH map shown in Figure 36. Significant benzene concentrations (>5  $\mu$ g/L) are found as far northwest as the GP-10A location. Additional benzene is present west of the sandpit at the GP-14 and GP-16 locations, at concentrations below 10  $\mu$ g/L. The map in Figure 37b shows that concentrations above the U.S. drinking water standard (5  $\mu$ g/L) extend at least 330 m northwest from the source. As depicted in Figure 38b, toluene distribution and concentrations are more limited than benzene. This is likely because toluene is more readily biodegraded than benzene (the least biodegradable of the BTEX constituents).

A comparison of Figure 54a with 54b, the transect plots of contaminant concentrations for 1996 and 1998, show the drop in TPH concentration along the plume between the two sampling events. Figure 54b, the 1998 contaminant transect, shows that toluene appears to be depleting more rapidly than benzene, evidence of intrinsic biodegradation.

It is informative to calculate and estimated distance of groundwater flow to determine how far the plume may have migrated. Because the aquifer is predominantly sandy, it is safe to assume that advection would be the primary transport mechanism and that diffusion would not need to be factored into the calculation.

The advective average groundwater velocity (or seepage velocity) is calculated using the following equation (Wiedemeier et al., 1995):

$$v = \frac{K}{n_e} \frac{dH}{dL}$$
 (4)

where: v = average advective ground water velocity (L/T)

K = hydraulic conductivity (L/T) (2  $\times$  10E-4 M/sec; Freeze and Cheery, 1979)

dH/dL = gradient (dimensionless) (0.0017; Univ. of Fresnuis map)

 $n_e$  = effective porosity (%) (30; Freeze and Cherry, 1979)

thus:

$$v = \frac{2 \times 10^{-4} \text{m/sec} \times 0.00017}{0.30} = 35.7 \frac{\text{m}}{\text{yr}}$$

It is uncertain when the UST or piping the leak at the POL Yard began. The University of Karlsruhe (Swinianski et al., 1995) reports that the spill was discovered in 1990. Assuming the system was installed in 1950 and that it began to leak in 1970, the leak has been releasing contamination for 28 years to the present (given that the source still exists). If these assumptions are correct, then the distance the plume could be expected to migrate, ignoring the effects of sorption or diffusion, can be calculated using the following equation (5):

Travel distance = 
$$v \times time$$
 (5)  
=  $35.7 \text{ m/yr} \times 28 \text{ yr}$   
=  $999.6 \text{ m}$ 

Assuming that the plume moves at one-third the rate of groundwater flow as a result of retardation, then the plume would have migrated only about 350 meters. This is well within the distance that the survey covered and slightly more than the distance of the existing TPH and BTEX plumes. The fact that the existing plume length is less than the distance the plume should have traveled could point to natural attenuation being responsible for the size of the smaller plume, but more historic and site-specific data and perhaps groundwater flow and transport modeling are need to solidify this claim.

#### b. Metabolic Byproducts: Iron and Manganese Distribution

Iron and manganese are metabolic byproducts that are produced during the bioremediation of hydrocarbons by iron and manganese reduction. Thus, an increase in the concentration of these byproducts is expected in areas where hydrocarbons are undergoing biodegradation by iron-reducing or manganese-reducing microorganisms.

There is no trend in the 1996 data set that would indicate that either iron or manganese has elevated concentrations in the midst of or immediately downgradient of the source.

However, the 1998 data show some useful evidence of greater concentrations of both of these byproducts in the source area and immediately downgradient of the source. As illustrated in Figure 55b, the transect plot of metabolic byproducts, concentrations in GP-23 for both iron and manganese, are among the lowest levels measured along the transect. Concentrations then increase across the source area and reach the most elevated levels immediately downgradient at the GP-2 location. At GP-2, manganese was measured at its highest concentration along the transect (8.5 mg/L) and iron was measured at 2.87 mg/L. Concentrations in both GP-1 and GP-3 average 7.1 mg/L for manganese and 2.21 mg/L for iron. The values at each of these two locations do not deviate much from this average. However, at a distance of about 170 m, which is the distance of the GP-4 and GP-5 locations, concentrations of both constituents decline, with manganese decreasing more than iron. The concentrations remain generally depressed at greater distances from the source, except for a spike in the concentration of manganese, which elevates to 10.2 mg/L at the GP-21 location. The cause of this elevated reading is unknown.

Figures 47b and 46b are the contour maps depicting distribution of manganese and iron measured in 1998. The plot of manganese shows that there are elevated concentrations immediately downgradient from the source and that the concentration at the source is not the highest recorded

value. There is also a general decline in concentration downgradient from the elevated area, as would be expected in intrinsic biodegradation was impacting the plume. The distribution of iron does not show elevated concentrations near the source.

### c. Electron Acceptors: Dissolved Oxygen, Nitrate, and Sulfate Distribution

i. Dissolved Oxygen Distribution. The 1998 data indicate that DO, which is the most thermodynamically favored electron acceptor for fuel biodegradation, is generally depressed across the area of investigation. As illustrated on the 1998 field parameters transect plot (Figure 57b), at the upgradient GP-23 location, DO was measured at a relatively high concentration of 2.58 mg/L. At the crossgradient GP-25 location, which is far outside of the TPH plume, DO was measured at 8.22 mg/L, which is close to fully saturated levels. However, DO levels drop sharply in the POL Yard, where they measured 0.28 mg/L, the lowest value recorded during the survey. DO remains depressed across the remainder of the transect, ranging from 0.74 to 0.32 mg/L, except for an increase to 1.12 mg/L at the GP-10 location. Figure 42b, the contour map of DO concentrations across the survey area in 1998, shows that the plume appears to be having a major impact on DO at all locations that are downgradient of the source. The plume also appears to be impacting locations farther to the west, beyond the former sandpit towards the western boundary of the air base.

The transect plot and map depicting the 1996 data (Figures 57a and 42a) show that DO values do not fit a useful trend. It is appears that several of the early readings made during the first survey were not accurate, specifically, the readings closest to the POL Yard. The abnormally high readings were likely the result of the field geologist not allowing the DO meter to drop to it lowest and most stable level during data collection at those locations. As the field geologist became more adept at using the instrument, DO readings improved when more downgradient readings were collected.

measured and mapped during the surveys. The 1996 sulfate data set is only partially complete and shows values that are highly variable along the transect. The plot lacks a useful, consistent trend. The reading at GP-2 is a relatively depressed 9 mg/L, as would be expected if biodegradation were occurring within and immediately downgradient of the POL Yard source area. But values fluctuate considerably downgradient from the POL Yard as indicated by the measurements at GP-1 of 63.3 mg/L, of 1.33 mg/L at GP-3, and of 52.1 mg/L at GP-5. Figure 45a, which shows the map of 1996 sulfate distribution, appears to be useful in depicting the depletion of this electron acceptor in the immediate vicinity of the source. However the useful trend collapses when values at the most downgradient locations are considered. At GP-16 and GP-18 sulfate was more depleted than at levels immediately adjacent to the POL Yard area. It is not known why this anomaly is present.

The 1998 sulfate data are somewhat more useful, particularly close to the POL Yard. As illustrated in transect plot in Figure 56b, the upgradient sulfate value at GP-23 was measured at 73.45  $\mu$ g/L. Sulfate is depleted across the POL Yard, measuring 15 mg/L at the Battelle test plot in the POL yard itself and 10.28 mg/L at GP-2. This downward trend continues to the GP-10A location, except for the averaged value for GP-1 and -3. But the value at GP-3 alone is 1.87 mg/L, so perhaps the GP-1 value is erroneous. Downgradient from the GP-1 and -3, sulfate values fluctuate but generally trend downward.

The distribution of nitrate levels measured during both the 1996 and 1998 surveys are generally low at the source, but they are also low upgradient and downgradient of the source. There

are no indications that nitrate is plentiful in the groundwater at the upgradient location. If that is the case, the plume is not utilizing nitrate, so nitrate may not be available to act as an electron acceptor.

# d. Other Field Parameters: Oxidation/Reduction Potential, Conductivity, Temperature, and pH Distribution

i. Oxidation/Reduction Eh Potential Distribution. Oxidation/reduction potential (Eh) is a measure of electron activity and is an indicator of the relative tendency of a solution to accept or transfer electrons. Eh values typically range from -400 mV to 800 mV in groundwater. At any location in a plume, more negative readings reflect more anaerobic or reducing conditions. The general range of aerobic and reducing conditions, measured as Eh are as follows: aerobic (+800 to +500 mV); nitrate reducing (+500 to +200 mV); iron reducing (+200 to -100 mV); manganese reducing (100 to -250 mV); sulfate reducing (-250 to -400 mV); and methanogenic (less than -400 mV). The rate of electron transfer, which is directly related to the rate of biodegradation of petroleum hydrocarbons, happens most readily in aerobic conditions and gradually decreases until the lowest rates are experienced under methanogenic conditions.

As shown in Figure 57a, the 1996 Eh readings along the transect show depressed values immediately downgradient of the source at the GP-2 location (-201 mV). Farther downgradient, Eh readings fluctuate, but remain depressed until the GP-5 and NW-2 locations, where it rises sharply to values of -55 mV and +53 mV, respectively.

The 1998 data set shows trends that are similar to the 1996 data. Eh was measured at +43.4 mV at the upgradient GP-23 location, but drops sharply across the POL Yard area where the lowest value is recorded (-108 mV). Downgradient from the Yard, Eh values stay depressed for about 100 m before rising sharply at the GP-4 and GP-5 locations, where it was measured at an average value of +76.3 mV. Farther downgradient, the Eh values fluctuate but remain generally negative. The map depicting the distribution of Eh readings collected in 1998 shows depressed, generally negative readings downgradient across the area of the plume. Readings are much more positive in upgradient and cross-gradient areas. The cause of the positive anomaly at the GP-4 location is not known, but the reading is thought to be accurate.

ii. Conductivity, Temperature, and pH Distribution. Conductivity, temperature, and pH do not appear to be clearly influenced by the source or the plume. Conductivity values trend lower and then higher with increased distance downgradient from the source. Temperature appears to be much more influenced by the sand pit than by the plume. The distribution of pH does not seem to fit any trend associated with the plume, and the range of pH values is narrow (from 5.39 to 6.62).

#### 2. Conceptual Model of Contamination and Natural Attenuation

The Geoprobe®-based groundwater sampling and analysis performed downgradient of the known fuel leak in the POL Yard indicate that a dissolved-phase plume has been created in the water table aquifer. This plume contains TPH and BTEX constituents that have moved in the direction of groundwater flow (northwest) toward the Base boundary. Sampling and analysis indicates that TPH is present at concentrations has high as 1 mg/L at least 220 m northwest of the POL Yard, and benzene is present at concentrations as high as 5  $\mu$ g/L at least 330 m northwest of the POL Yard. The vertical extent of the plume has not been fully defined.

The limited amount of data collected during two field surveys — the spatial distributions of contamination, degradation byproducts, electron acceptors, and relevant field parameters — generally indicate that intrinsic biodegradation is taking place within the plume. The trends of key parameters, especially across the source area from the upgradient to the first of the downgradient sampling locations, reflect conditions that are present when a hydrocarbon plume is undergoing intrinsic biodegradation, the most significant natural process.

Many of the key parameters are distributed erratically. This can be attributed to aquifer heterogeneity (both laterally and vertically within the aquifer), the presence of other potential downgradient sources, and operator and instrument error during the data collection and analysis.

The conclusion that natural attenuation is occuring is most strongly supported by the distribution and spatial trend of contaminant constituents, electron acceptors, and degradation products upgradient and immediately downgradient of the source. DO data show that aerobic conditions are clearly present upgradient from the source, and that the aquifer becomes far less rich in oxygen under the POL Yard. The aquifer remains relatively low in oxygen at most downgradient locations where measurements were collected. There is clearly a reduction of electron acceptors under the POL Yard and at location GP-2, the first downgradient location. Conversely, metabolic byproducts are increasing from the upgradient location, across the POL Yard, downgradient to the location GP-1. Together, these trends suggesst that intrinsic biodegradation processes are acting on the hydrocarbon contaminants in the groundwater.

#### D. CONCLUSIONS AND RECOMMENDATIONS

The collection of a more extensive data set is needed to determine which specific biodegradation processes are present at this site, and to then calculate the rate of degradation. This data set should include the following:

- Better characterization of the hydrocarbon plume. Specifically, greater knowledge of the distribution of TPH and BTEX is needed. More meaningful conclusions can be drawn from concentrations of electron acceptors and degradation products if the plume distribution is better known. Additional vertical and lateral sampling should be performed at both existing and at new locations. It would also be helpful to learn more about the history of the spill.
- Verification of the water quality parameter measurements. To date, the results from the Hach® kits and GC have not been verified by independent laboratory analyses. Some of the data collected by the YSI instruments were verified by using another instrument that was available in the field, but that verification was not rigorous. Verification of all instrument-derived data would increase confidence in the results and conclusions.
- Collection of additional background data. It would be very useful to collect background data at more than one location. These data would provide greater insight into ambient concentration for the various water quality parameters, and should be collected at locations that are upgradient and outside of the POL Yard.

- Develop and implement a groundwater monitoring plan. Once the plume has been fully delineated, a monitoring program should be planned and implemented to chart the progress of plume reduction and the trend of the relevant natural attenuation parameters. This plan should be presented to all stakeholders (local citizens, government regulators, and Base officials) to gain approval to implement a monitoring program that lasts at least two years, consisting of sample collection on a quarterly basis. A more extensive data set needs to present convincing and defendable evidence of natural attenuation.
- **Development of a numerical model.** This model would (1) represent all known site conditions, and (2) simulate and predict the rate of natural attenuation and its impact on the plume and overall groundwater quality with the progression of time.

#### SECTION V REFERENCES

- Downey, D.C. and J.F. Hall. 1994. Addendum One to Test Plan and Technical Protocol for a Field Treatability Test for Bioventing Using Soil Gas Surveys to Determine Bioventing Feasibility and Natural Attenuation Potential. U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, TX.
- Dupont, R.R. 1987. "A Sampling System for the Detection of Specific Hazardous Constituent Emissions from Soil Systems." In: *Hazardous Waste: Detection, Control, Treatment*, pp. 581-592, Amsterdam, The Netherlands, Elsevier Science Publisher, B.V.
- Dupont, R.R., W.J. Doucette, and R.E. Hinchee. 1991. "Assessment of In Situ Bioremediation Potential and the Application of Bioventing at a Fuel-Contaminated Site." In R.E. Hinchee and R.F. Olfenbuttel (Eds.), In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation, pp. 262-282. Butterworth-Heinemann, Stoneham, MA.
- Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ.
- Hessiches Landesamt für Bodenforschung. 1980. Geologische Karte von Hessen 1:25000 Erlauterungen 5917 Kelsterbach, Wiesbaden, Germany, 221 pp.
- Hinchee, R.E. and S.K. Ong. 1992. "A Rapid In Situ Respiration Test for Measuring Aerobic Biodegradation Rates of Hydrocarbons in Soil." *Journal of the Air & Waste Management Association*, 42(10): 1305-1312.
- Institut Fresenius. 1994. Flughafen Frankfurt/Main Grundwasserguteuberwachung Grundwasserfleichenplan 17-18 Okt. 1994.
- Leeson, A. and R.E. Hinchee. 1996. Soil Bioventing: Principles and Practice. CRC Press, Boca Raton, FL.
- McVeety, B.D. 1991. Current and Developing Analytical Technologies for Quantifying Biogenic Gas Emissions. Report on Contract 600/3-91/044 from Pacific Northwest Laboratory to U.S. Environmental Protection Agency, Corvallis, OR, NTIS Report #PB91-216523, June.
- Miller, R.N., C.C. Vogel, and R.E. Hinchee. 1991. "A Field-Scale Investigation of Petroleum Hydrocarbon Biodegradation in the Vadose Zone Enhanced by Soil Venting at Tyndall AFB, Florida." In R.E. Hinchee and R.F. Olfenbuttel (Eds.), In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation, pp. 283-302, Butterworth-Heinemann, Stoneham, MA.
- Swinianski, I. J., H. Wurdemann, F. Gleisner, G.N. Pralle, I.A. Einhardt, and I.G. Gudehus. 1995. Field Demonstration of In-Situ Bioremediation at the Rhein-Main Air Base in Frankfurt. First Report. Contractor Number: E/T 31 A/Q 0063/F 5138. Lehrstuhl Fur Bodenmechanik und Grundbau (IBF), Universitat (TH) Fridericiana Karlsruhe.

Wiedemeier, T.H., J.T. Wilson, D.H. Kampbell, R.N. Miller, and J.E. Hansen. 1995. *Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater*. Report prepared for the U.S. Air Force Center for Environmental Excellence, Technology Transfer Division, Brooks Air Force Base, San Antonio, TX.

# APPENDIX A LABORATORY ANALYTICAL RESULTS

#### **WORK ORDER #: 9605077**

Work Order Summary

CLIENT:

Mr. Greg Headington

BILL TO: Same

Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201-2693

PHONE:

614-424-4996

**INVOICE #** 

FAX:

614-424-3667

P.O. # 114865

DATE RECEIVED: 5/8/96 PROJECT # Rhein-Main AB

DATE COMPLETED:

AMOUNT\$: \$665.02

|            |           |      | RECEIPT    |          |
|------------|-----------|------|------------|----------|
| FRACTION # | NAME      | TEST | YAC./PRES. | PRICE    |
| 01A        | MPD-RED   | TO-3 | 0 "Hg      | \$120.00 |
| 02A        | MPC-RED   | TO-3 | 0 "Hg      | \$120.00 |
| 03A        | MPA-RED   | TO-3 | 0 "Hg      | \$120.00 |
| 04A        | MPB-BLACK | TO-3 | 0 "Hg      | \$120.00 |
| 05A        | Lab Blank | TO-3 | NA         | NC       |
|            |           |      |            |          |
|            |           |      |            |          |

Misc. Charges

1 Liter Summa Canister Preparation (4) @ \$15.00 each.

\$60.00

Shipping (4/15/96)

\$125.02

# PRELIMINARY

Laboratory Director

SAMPLE NAME: MPD-RED ID#: 9605077-01A

#### **EPA METHOD TO-3**

(Aromatic Volatile Organics in Air)

#### GC/PID

| File Name:    | 6050913    | The second secon | Date of Collection:<br>Date of Analysis: | 5/6/96<br>/9/96 |
|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|
|               | Det. Limit | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Amount                                   | Amount          |
| Compound      | (ppmv)     | (uG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ppmv)                                   | (uG/L)          |
| Benzene       | 0.002      | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                             | Not Detected    |
| Toluene       | 0.002      | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                             | Not Detected    |
| Ethyl Benzene | 0.002      | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                             | Not Detected    |
| Total Xylenes | 0.002      | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected                             | Not Detected    |

# TOTAL PETROLEUM HYDROCARBONS

#### GC/FID

(Quantitated as Jet Fuel)

| File Name 6050913       | を実施を構造し、このできない。 中央の対象を対象を<br>を対象を対象を対象を対象を対象を対象を対象を<br>・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ |            | Date of Collection<br>Date of Analysis: 3 | 5/6/96<br>79/96 |
|-------------------------|----------------------------------------------------------------------------------------------|------------|-------------------------------------------|-----------------|
|                         | Det. Limit                                                                                   | Det. Limit | Amount                                    | Amount          |
| Compound                | (ppmv)                                                                                       | (uG/L)     | (ppmv)                                    | (uG/L)          |
| TPH* (C5+ Hydrocarbons) | 0.020                                                                                        | 0.13       | 0.40                                      | 2.6             |
| C2 - C4** Hydrocarbons  | 0.020                                                                                        | 0.037      | 0.027                                     | 0.049           |

<sup>\*</sup>TPH referenced to Jet Fuel (MW=156)

<sup>\*\*</sup>C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: MPC-RED ID#: 9605077-02A

#### **EPA METHOD TO-3**

(Aromatic Volatile Organics in Air)

#### GC/PID

| File Name     | 6050914<br>253 |            | Date of Collection:<br>Date of Analysis: | 5/6/96<br>/9/86 |
|---------------|----------------|------------|------------------------------------------|-----------------|
|               | Det. Limit     | Det. Limit | Amount                                   | Amount          |
| Compound      | (ppmv)         | (uG/L)     | (ppmv)                                   | (uG/L)          |
| Benzene       | 0.025          | 0.082      | 0.98                                     | 3.2             |
| Toluene       | 0.025          | 0.097      | 1.1                                      | 4.2             |
| Ethyl Benzene | 0.025          | 0.11       | <b>ა.9</b>                               | 17              |
| Total Xylenes | 0.025          | 0.11       | 14                                       | 62              |

# TOTAL PETROLEUM HYDROCARBONS

#### GC/FID

(Quantitated as Jet Fuel)

| Elle Name: 60509 14     | And the second s | And the second s | Date of Collection<br>Date of Analysis | 5/9/96       |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|
|                         | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Amount                                 | Amount       |
| Compound                | (ppmv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (uG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ppmv)                                 | (uG/L)       |
| TPH* (C5+ Hydrocarbons) | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220                                    | 1400         |
| C2 - C4** Hydrocarbons  | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Detected                           | Not Detected |

<sup>\*</sup>TPH referenced to Jet Fuel (MW=156)

<sup>\*\*</sup>C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: MPA-RED ID#: 9605077-03A

#### **EPA METHOD TO-3**

(Aromatic Volatile Organics in Air)

#### GC/PID

| File Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>50500-15</b> |            | Date of Collection: | 6/6/9B |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|---------------------|--------|
| The state of the s | Det. Limit      | Det. Limit | Amount              | Amount |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ppmv)          | (uG/L)     | (ppmv)              | (uG/L) |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10            | 0.33       | 7.5                 | 24     |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10            | 0.39       | 7.0                 | 27     |
| Ethyl Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10            | 0.45       | 13                  | 57     |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10            | 0.45       | 32 M                | 140 M  |

#### **TOTAL PETROLEUM HYDROCARBONS** GC/FID

(Quantitated as Jet Fuel)

| File Name: Specific Control of the C | ・ ののの情報の情報を表示していません。<br>・ ののの情報の情報を表示していません。<br>・ ののでは、<br>・ | AND THE PROPERTY OF THE PROPER | Date of Collection<br>Date of Analysis | CARL SERVICE CONTROL OF THE SERVICE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Amount                                 | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ppmv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (uG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ppmv)                                 | (uG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TPH* (C5+ Hydrocarbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4600                                   | 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C2 - C4** Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3                                    | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

<sup>\*</sup>TPH referenced to Jet Fuel (MW=156)

M = Reported value may be biased due to apparent matrix interferences.

<sup>\*\*</sup>C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: MPB-BLACK ID#: 9605077-04A

#### **EPA METHOD TO-3**

(Aromatic Volatile Organics in Air)

#### GC/PID

| File Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01         |            | Date of Collection<br>Date of Analysis | 5/6/96 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|----------------------------------------|--------|
| A CONTRACTOR OF THE PROPERTY O | Det. Limit | Det. Limit | Amount                                 | Amount |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ppmv)     | (uG/L)     | (ppmv)                                 | (uG/L) |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10       | 0.33       | 25                                     | 81     |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10       | 0.39       | 16                                     | 61     |
| Ethyl Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10       | 0.45       | 11                                     | 48     |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10       | 0.45       | 25                                     | 110    |

# TOTAL PETROLEUM HYDROCARBONS

#### GC/FID

(Quantitated as Jet Fuel)

| File Name: 5050916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A property of the control of the con | Section of the contract of the section of the secti | Date of Collection<br>Date of Analysis: | <b>5</b> 6/96 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|
| Andrew 1 is a restrict of the second of the | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Amount                                  | Amount        |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ppmv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (uG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ppmv)                                  | (uG/L)        |
| TPH* (C5+ Hydrocarbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000                                    | . 52000       |
| C2 - C4** Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Detected                            | Not Detected  |

<sup>\*</sup>TPH referenced to Jet Fuel (MW=156)

<sup>\*\*</sup>C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: Lab Blank ID#: 9605077-05A

#### **EPA METHOD TO-3**

(Aromatic Volatile Organics in Air)

#### GC/PID

| File Name                             | 605090 <b>4</b> | Constitution of the consti | Date of Collection: | NAKOTA PROPERTURAN |
|---------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · · | Det. Limit      | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Amount              | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Compound                              | (ppmv)          | (uG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ppmv)              | (uG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzene                               | 0.001           | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected        | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Toluene                               | 0.001           | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected        | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ethyl Benzene                         | 0.001           | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected        | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Xylenes                         | 0.001           | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Detected        | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

| File Name: 6050904<br>Dir Rector | A production of the control of the c | ************************************** | Däte of Collection:<br>Date of Analysis: 5 | MA Company of the Com |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Det. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Det. Limit                             | Amount                                     | Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Compound                         | (ppmv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (uG/L)                                 | (ppmv)                                     | (uG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TPH* (C5+ Hydrocarbons)          | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.065                                  | Not Detected                               | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C2 - C4** Hydrocarbons           | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.018                                  | Not Detected                               | Not Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

<sup>\*</sup>TPH referenced to Jet Fuel (MW=156)

Container Type: NA

<sup>\*\*</sup>C2 - C4 Hydrocarbons referenced to Propane (MW=44)



Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### ANALYTICAL REPORT

Battelle 505 King Ave Columbus Ohio 43201 Job#: G002737-01 Phone: (614) 424-6199

Attn: Al Pollock

Sampled: 04/01/96 Received: 04/03/96 Analyzed: 04/07-08/96

Matrix: [ X ] Soil [ ] Water [ ] Waste

Analysis Requested: TPH - Total Petroleum Hydrocarbons-Purgeable

Quantitated As Gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

Methodology: TPH - Modified 8015/DHS LUFT Manual/BLS-191

BTEX - Method 624/8240

#### Results:

| Client ID/<br>Lab ID             | Parameter                                                              | Concentration              | Detec<br>Li                | tion<br>mit                               |
|----------------------------------|------------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------|
| RM1-VW3-1.5-2.0<br>/BMI040396-01 | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW3-2.5-3.0<br>/BMI040396-02 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | ND<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW3-3.5-4.0<br>/BMI040396-03 | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW3-4.5-5.0<br>/BMI040396-04 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | ND<br>ND<br>ND<br>ND       | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



Alpha Analytical, Inc. 255 Glendale Avenue. Suite 21

255 Glendale Avenue. Suite 21 Sparks. Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue. Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                              | Concentration              | Detection<br>Limit                                       |
|------------------------------------|------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| RM1-VW3-5.5-6.0<br>/BMI040396-05   | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | ND<br>ND<br>ND<br>ND       | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-6.5-7.0<br>/BMI040396-06   | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | ND<br>ND<br>ND<br>ND       | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-7.5-8.0<br>/BMI040396-07   | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | ND<br>ND<br>ND<br>ND       | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-8.5-9.0<br>/BMI040396-08   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-9.0-9.5<br>/BMI040396-09   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | ND<br>ND<br>ND<br>ND       | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-10.0-10.5<br>/BMI040396-10 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-11.0-11.5<br>/BMI040396-11 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |



Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration              | Detection<br>Limit                                       |
|------------------------------------|------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| RM1-VW3-12.0-12.5<br>/BMI040396-12 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-13.0-13.5<br>/BMI040396-13 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-14.0-14.5<br>/BMI040396-14 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-15.5-16.0<br>/BMI040396-15 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-16.5-17.0<br>/BMI040396-16 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-17.0-17.5<br>/BMI040396-17 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW3-18.0-18.5<br>/BMI040396-18 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |



Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21

255 Glendale Avenue, Suite 21 Sparks. Nevada 89431 (702) 355-1044 FAX: 702-355-0406 1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                              | Concentration                  | Detection<br>Limit                                           |
|------------------------------------|------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------|
| RM1-VW3-23.5-24.0<br>/BMI040396-19 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 150<br>ND<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg     |
| RM1-VW3-24-24.5<br>/BMI040396-20   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 41<br>ND<br>ND<br>ND<br>ND     | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg     |
| RM1-VW3-26-26.5<br>/BMI040396-21   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 39<br>ND<br>ND<br>ND<br>ND     | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg     |
| RM1-VW3-26.5-27<br>/BMI040396-22   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 280<br>ND<br>170<br>120<br>340 | 50 mg/Kg<br>100 ug/Kg<br>100 ug/Kg<br>100 ug/Kg<br>100 ug/Kg |
| RM1-VW3-27.5-28<br>/BMI040396-23   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | ND<br>98<br>ND<br>ND<br>ND     | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg     |
| RM1-VW3-28-28.5<br>/BMI040396-24   | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | ND<br>140<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg     |

ND - Not Detected

Approved by:

Roger L Scholl, Ph.D.

Laboratory Director

Page 4 of 4

Form No. Dage 10

CHAIN OF CUSTODY RECORD

Battelle

|                              | -           |                                                   | SAMPLE TYPE (🗸)                 |             |                         |            |
|------------------------------|-------------|---------------------------------------------------|---------------------------------|-------------|-------------------------|------------|
| 6001134                      | -21 Rh      | Rhoin-Main Air Base                               |                                 |             | \$                      |            |
| SAMPLERS: (Signature)        | ~           |                                                   |                                 | ON 18ni     | nədmu<br>to<br>nənistra |            |
|                              | 1           | SAMPLE I.D.                                       |                                 | Stnoo       |                         |            |
|                              |             |                                                   |                                 |             |                         | Remarks    |
| 4.1.96                       | 1100        | RM1-VW3-1.5-2,0                                   |                                 |             | _                       | Brass Slee |
| 46.1.12                      | 1100        | RHI-VW3-25-3.0                                    |                                 |             | 1                       | "          |
| 4.1.96                       | 2011        | 1                                                 |                                 |             | 1                       | //         |
| 4.1.96                       | 1108        | ٠. ا                                              |                                 |             | 1                       | )          |
| 46.1.1                       | 1120        | RM1-VW3-5,5-6,0                                   | 7                               |             | 1                       | )          |
| 4.1.96                       | 1120        | -MU3 -6.5                                         |                                 |             | 1                       | 1/         |
| 4.1.91                       | 1156        | - VW3-                                            |                                 |             | *                       | 0          |
| 4.1.96                       | 1156        | RM1-VW3-85-90                                     |                                 |             | 1                       | <i>"</i>   |
| 4.1.96                       | 1212        | 1,0                                               |                                 |             | "                       | 1          |
| 4.1.96                       | 1212        | - VW3-10.0-10                                     |                                 |             | "                       | 11         |
| 4.1.96                       | 1230        | RM1-VW3-11,0-11,5                                 |                                 |             | 1)                      | /          |
| 4.1.96                       | 1230        | RM1-VW3-12,0-12,5                                 | `\                              |             | 1                       | /          |
| 4.1.96                       | 1250        | -1                                                |                                 |             | "                       | ,          |
| 1.1.96                       | 1250        | PMI-VW3- 14.0-14.5                                |                                 |             | 1                       | )          |
| 4.1.96                       | 1305        | RH1-VW3-15,5-11.0                                 | 7                               |             | "                       | 1          |
| 4.1.96                       | 1305        | RM1-VW3-16,5-17.0                                 |                                 |             | į                       | 1          |
| 4.1.96                       | 1330        | - 2m/                                             |                                 |             | 1                       | 1          |
| Relinquished by: (Signature) | (Signature) | Date/Time Received by: (Signature)                | e) Relinquished by: (Signature) | Date/Time F | Received by:            | y:         |
|                              |             | 622, 24                                           |                                 |             | (Signature)             |            |
| Relinquished by: (Signature  | (Signature) | 1                                                 | Relinquished by: (Signature)    | Date/Time   | Received by:            | y:         |
|                              |             | (Signature)                                       |                                 |             | (Signature)             |            |
| Relinquished by: (Signature) | (Signature) | Date/Time Received for Laboratory by: (Signature) | y by: Date Time Remarks         | t           |                         |            |
|                              |             |                                                   |                                 | Ċ           |                         | <b>3</b> - |

Form No. Rage Z SF Z

CHAIN OF CUSTODY RECORD

Steene A PROPERTY Remarks Beard Sture Labour Labour 1 1 9 Received by: (Signature) Received by: (Signature) BA Containers 1 1 : ło Number Container No Date/Time Date/Time SAMPLE TYPE (</ Remarks Relinquished by: (Signature) Relinquished by: (Signature) 1000 Date/Time 77.28/2 HOT Received for Laboratory by: Received by: (Signature) 421-37 RHI-VW3-23.5-24.0 26-26.5 22-5 28-28,5 RHI-W3-18,0-18,5 RH1-VW3- 24-24.5 BASE 学 1 Received by: (Signature) (Signature) -Vw3-26 10 benist SAMPLE I.D. مكراسا RHI-VW3-RM1-VW3-RM1-123-00000 analyses とのこ Rhein-Main Pol Yay 4.2.9 1229 Date/Time Date/Time Date/Time (NOV) 0 PHI Andrea Nease about TA 330 250 1052 09 90 09000 ) I 0951 2951 Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Pormy SAMPLERS: (Signature) Columbus Laboratories G002737-01 9 76.2.4 4.1.96 Shins 47.96 4.2.96 4.2.91 DATE Proj. No.

Baffelle

şi

1000

Phone Number

Client Name

City, State, Zip

Address

255 Gléndale Avenue, Suite 21 Sparks, Nevada (89431 Phone (702) 355-1044 Fax (702) 355-0406 Khalywodi, ing

ᢐ

Page #

000, Time Remarks Date **Analyses Required** Company + CELM Minister Containers 10-45-4001 23-01 -2.0 5.5.60 -12.0 1.0-115 N. Print Name RM1-11103-1123-Report Attention 3 d 3 a 2 RMI-Rm1. Rm1-KMI-Rml Rml M KWI Sampled by K 13m x 040316-01 Lab ID Number Signature 30 See Key Below Relinquished by Relinquished by Relinguished by City, State, Zip Oate Received by Received by Time Sampled

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. OT - Other

WA - Waste \*Key: AQ - Aqueous

Received by

энниу иногламоп:

Phone Number City, State, Zip

Address Name

| T &      |
|----------|
| Marie .  |
| 10- n; . |

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 Phone (702) 355-1044 Fax (702) 355-0406

Alpha Analytical, Inc.

N

ð

Page # 11

000 Time Remarks Date ť Analyses Required Company + + ... + Containers Number 5 -1103-17.0-17 1 Phone # P.O. # Sample Description Print Name ١ 103-Report Attentigg 143 n M Dns RINI-RM RMI Rnzl an/ 8 Sampled by Lab ID Number Signature Type\* See Key Below 50 Relinquished by Retinguished by City, State, Zip Client Name Received by Received by Address Sampled Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. 10

Relinquished by

Received by

#### Laboratory Analysis Report

ALPHA ANALYTICAL 255 GLENDALE AVENUE, SUITE 21 SPARKS NV 89431



Sierra Environmental Monitoring, Inc.

Date : 4/25/96 Client : ALP-855 Taken by: CLIENT Report : 15982

PO# :

| sample                        | Colle<br>Date | cted<br>Time | BROMIDE<br>MG/L | AQUEOUS |  | • |   |    |
|-------------------------------|---------------|--------------|-----------------|---------|--|---|---|----|
| MI040596-22-RM1-VW1-21.8-22.3 | 4/03/96       | •            | 220 mg/kg       | YES     |  |   |   |    |
| MI040596-23-RM1-VW1-22.3-22.8 |               |              | 16 mg/kg        | YES     |  |   |   |    |
| MI040596-24-RM1-VW1-24.3-24.8 | 4/03/96       | :            | 1.8 mg/kg       | YES     |  |   |   | 1  |
| MI040596-25-RM1-VW1-24.8-25.3 | 4/03/96       | :            | <1 mg/kg        | YES     |  |   |   |    |
| MIO40596-26-INITIAL SOLUTION  | 4/03/96       | :            | 30,670          |         |  |   |   |    |
| MI040596-27-DOWNHOLE H20 VW1  | 4/03/96       | :            | 2,480           |         |  |   | i |    |
| MI040596-28-DOWNHOLE H20 7.1M | 4/03/96       | :            | 310             |         |  | 1 |   | 1. |
| MI040596-29-SECOND SOLUTION . | 4/03/96       | :            | 22,480          |         |  |   | 1 |    |
| M1040596-30-DOWNHOLE H20 7.8M | 4/03/96       | :            | 550             |         |  |   |   |    |
| MI040596-31-DOWNHOLE HZO 8.5M | 4/03/96       | <b>:</b> .,  | 420             |         |  |   | ŀ |    |
| MI040596-32-RM1-VW1-26.1-26.6 | 4/03/96       | :            | 125 mg/kg       | YES     |  |   |   |    |
| MI040596-33-RM1-VW1-26.6-27.1 | 4/03/96       | :            | 48 mg/kg        | YES     |  | ì | ļ |    |
| MI040596-34-RM1-VW1-27.1-26.6 |               | :            | 64 mg/kg        | YES     |  |   |   |    |
| MI040596-35-RM1-VW1-28.9-29.4 | 4/03/96       | :            | <1 mg/kg        | YES     |  |   |   |    |
| MI040596-36-RM1-VW1-29.4-29.9 | 4/03/96       | :            | 2.6 mg/kg       | YES     |  |   |   |    |
| MI040596-37-RM1-VW1-28.4-28.9 | 4/03/96       | :            | 1.9 mg/kg       | YES     |  |   |   |    |

proved By:

is report is applicable only to the sample received by the laboratory. The liability of the laboratory is limited to the amount paid or this report. This report is for the exclusive use of the client to whom it is addressed and upon the condition that the client summes all liability for the further distribution of the report or its contents.

Page:



Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### ANALYTICAL REPORT

 Battelle
 Job#: G002737-01

 505 King Ave
 Phone: (614) 424-6199

 Columbus Ohio 43201
 Attn: Al Pollock

Sampled: 04/02-03/96 Received: 04/05/96 Analyzed: 04/09-15/96

Matrix: [ X ] Soil [ ] Water [ ] Waste

Analysis Requested: TPH - Total Petroleum Hydrocarbons-Purgeable

Quantitated As Gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

Methodology: TPH - Modified 8015/DHS LUFT Manual/BLS-191

BTEX - Method 624/8240

#### Results:

| Client ID/<br>Lab ID             | Parameter                                                  | Concentration              | Detection<br>Limit                                       |
|----------------------------------|------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| RM1-VW1-2.0-2.5<br>/BMI040596-01 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW1-2.5-3.0<br>/BMI040596-02 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW1-3.5-4.0<br>/BMI040596-03 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW1-4.5-5.0<br>/BMI040596-04 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523

1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration              | Detect:<br>Lim:      |                                           |
|------------------------------------|------------------------------------------------------------|----------------------------|----------------------|-------------------------------------------|
| RM1-VW1-5.5-6.0<br>/BMI040596-05   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 20 i<br>20 i<br>20 i | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW1-6.5-7.0<br>/BMI040596-06   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 20 i<br>20 i<br>20 i | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW1-7.5-8.0<br>/BMI040596-07   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 20 i<br>20 i<br>20 i | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW1-8.5-9.0<br>/BMI040596-08   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 20 i<br>20 i<br>20 i | nd\Kd<br>nd\Kd<br>nd\Kd<br>nd\Kd          |
| RM1-VW1-9.5-10.0<br>/BMI040596-09  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 20 i<br>20 i<br>20 i | ng/Kg<br>ng/Kg<br>ng/Kg<br>ng/Kg          |
| RM1-VW1-10.5-11.0<br>/BMI040596-10 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 20 i<br>20 i<br>20 i | ng/Kg<br>ng/Kg<br>ng/Kg<br>ng/Kg          |
| RM1-VW1-11.5-12.0<br>/BMI040596-11 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 20 i<br>20 i<br>20 i | ng/Kg<br>ng/Kg<br>ng/Kg<br>ng/Kg          |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406 1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID                | Parameter                                                              | Concentration                 | Detection<br>Limit                                            |
|-------------------------------------|------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|
| RM1-VW1-12.5-13.0<br>/BMI040596-12  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | ND<br>ND<br>ND<br>ND          | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg      |
| RM1-VW1-13.5-14.0<br>/BMI040596-13  | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg      |
| RM1-VW1-14.5-15.0<br>/BMI040596-14  | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | 150<br>ND<br>ND<br>ND<br>ND   | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg      |
| RM1-VW1-15.3-15.8<br>/BMI040596-15  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 1,000<br>ND<br>ND<br>ND<br>ND | 100 mg/Kg<br>200 ug/Kg<br>200 ug/Kg<br>200 ug/Kg<br>200 ug/Kg |
| RM1-VW1-15.8-16.3<br>/BMI040596-16  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 280<br>ND<br>ND<br>ND<br>ND   | 17 mg/Kg<br>33 ug/Kg<br>33 ug/Kg<br>33 ug/Kg<br>33 ug/Kg      |
| RM1-VW1-17.2-17.17<br>/BMI040596-17 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 73<br>ND<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg      |
| RM1-VW1-17.7-18.2<br>/BMI040596-18  | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | 45<br>ND<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg      |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                 | Detection<br>Limit                                       |  |
|------------------------------------|------------------------------------------------------------|-------------------------------|----------------------------------------------------------|--|
| RM1-VW1-18.2-18.7<br>/BMI040596-19 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 47<br>ND<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |  |
| RM1-VW1-19.2-19.7<br>/BMI040596-20 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 66<br>ND<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |  |
| RM1-VW1-19.7-20.2<br>/BMI040596-21 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 17<br>ND<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |  |
| RM1-VW1-21.8-22.3<br>/BMI040596-22 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |  |
| RM1-VW1-22.3-22.8<br>/BMI040596-23 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 21<br>61<br>ND<br>ND<br>ND    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |  |
| RM1-VW1-24.3-24.8<br>/BMI040596-24 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>830<br>ND<br>83<br>270  | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |  |
| RM1-VW1-24.8-25.3<br>/BMI040596-25 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 78<br>520<br>ND<br>190<br>620 | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |  |



Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                               | Detec<br>Li                             | tion<br>mit                               |
|------------------------------------|------------------------------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------|
| RM1-VW1-26.1-26.6<br>/BMI040596-32 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 180<br>100<br>ND<br>290<br>1,000            | 50<br>100<br>100<br>100<br>100          | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW1-26.6-27.1<br>/BMI040596-33 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 4,100<br>7,200<br>2,500<br>15,000<br>61,000 | 500<br>1,000<br>1,000<br>1,000<br>1,000 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW1-27.1-26.6<br>/BMI040596-34 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 3,400<br>4,800<br>2,300<br>13,000<br>55,000 | 500<br>1,000<br>1,000<br>1,000<br>1,000 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW1-28.9-29.4<br>/BMI040596-35 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 26<br>1,100<br>44<br>170<br>630             | 10<br>20<br>20<br>20<br>20              | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW1-29.4-29.9<br>/BMI040596-36 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 32<br>820<br>ND<br>84<br>380                | 10<br>20<br>20<br>20<br>20              | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW1-28.4-28.9<br>/BMI040596-37 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 10<br>120<br>ND<br>ND<br>23                 | 10<br>20<br>20<br>20<br>20              | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |

ND - Not Detected

Approved by:

Roger M. Scholl, Ph.D.

Laboratory Director

Page 5 of 5

Baffelle

CHAIN OF CUSTODY RECORD

W

Pace

Form No. |

Sleeve Remarks r = = -: \_ Brass Received by: (Signature) Received by: (Signature) Containers : = Ξ = ło = = **'** -= = = = = = Number Container No. Date/Time Date/Time SAMPLE TYPE (\/) Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time 1PH-8015 Received for Laboratory by: (Signature) Received by: (Signature) 7.7.7-17.7 -15,8-16,3 RMI-1W1-14.5-15.0 RMI-VW1-15.3-15.8 RMI-VWI-11.5-12.0 RMI-1WI-12.5-13.0 RMI-1WI-13.5-14.0 -5.5-6.0 -6.5-7.0 7.5-8.0 5-5.0 -8,5-4.0 RMI-YWI -9.5-10.0 RM1-VW1-10.5-11.0 RMI-VWI-3.5-4.0 Received by: RMI-VWI-2.5-3,0 (Signature) RMI-VWI-2.0-2.5 Rhein-Main Air Base, POL YARD SAMPLE I.D. RMI-VWI-4 Chris Perfus, Waller Siebenlist RMI-VWI RMI-VWI RMI-IWI 4.394 525 RMI-VW RMI - VWI RMI-VWI Date/Time Date/Time Date/Time Project Title 0849 0849 1557 0932 0932 TIME 537 1614 9160 9160 0810 Relinquished by: (Signature) 0810 1557 Relinquished by: (Signature) 101 Relinquished by Signature 1527 1537 1527 SAMPLERS: (Signature) 6002737-01 Columbus Laboratories 2.96 .2.96 43.96 1.3.96 2.96 4.3.96 2.96 4.3.96 4.3.96 12.96 2.96 4.3.96 3.96 4.3.96 DATE 4.2.96 42.96 43.96 Proj. No.

CHAIN OF CUSTODY RECORD

W (M)

Form No. 1908 2

vile \* (O) below Ho m Remarks Brasslerge SPEVE VOA : = : = Received by: (Signature) Received by: Brass (Signature) 40m Containers ło : = Ξ Ξ = Number Container No. Date/Time Date/Time SAMPLE TYPE (V) 1-Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time TPH-1 Bromide Received for Laboratory by: (Signature) Received by: (Signature) Downhole 1120-VWI - 8.5m RMI-VWI-24.8-25.3 RM1-VW1-22.3-22.8 RMI-VWI -24.3-24.8 - 20.2 RMI-VW1-21.8-22.3 Downhole 11-0 - /WI - 7.1 m Downhole 11,0 = 1 MI-7.8 m RMI-VWI-18,2-18.7 RMI-VWI-17,7-18.2 Rheig-Main Air Base, Received by: (Signature) Downhop 1120 - VW Initial Solution Chris Perry, Walter Siebenlist SAMPLE I.D. Second Solution RM1-1W1-19.7 RM1-1W1-19. \ ++ 4.394 1525 Date/Time Date/Time Date/Time **Project Title** 1205 435 1303 303 1339 0958 1355 TIME 3 39 3 10 1315 1240 0958 1034 Relinquished by: (Signature) 034 Relinquished by: (Signature Relinquished by: (Signature SAMPLERS: (Signature) 6002737-01 Columbus Laboratories 43.96 43.96 3.96 3.96 13.96 4.3.96 1.3.96 4.3.96 4.3.96 13.96 DATE 4.3.96 14.3.96 14.3.96 43.96 Proj. No.

Battelle

CHAIN OF CUSTODY RECORD

Battelle

Columbus Laborator

|                       |                 |                       | redmu<br>to<br>tainet | Col         | Remarks | 1898 1 Brass sleer | "                                      | 11 11 11     | 11 11 11     | 11 11              | " " "             | <br>+10153 41.50 | 2-1.60 23.1-2 | , w |    |    |   |                                          | Received by:                       | (Signature) | Received by:                 | (Signature) |                                                   | ^ · · |
|-----------------------|-----------------|-----------------------|-----------------------|-------------|---------|--------------------|----------------------------------------|--------------|--------------|--------------------|-------------------|------------------|---------------|-----|----|----|---|------------------------------------------|------------------------------------|-------------|------------------------------|-------------|---------------------------------------------------|-------|
|                       |                 | ,                     | M teni                | etnoo       | / / /   |                    |                                        |              |              |                    |                   |                  |               |     |    |    | ( |                                          | Date/Time                          |             | Date/Time                    |             |                                                   |       |
|                       | SAMPLE TYPE (√) | 7                     | 80/108                |             |         | ×××                | ×××××××××××××××××××××××××××××××××××××× |              |              | 7                  |                   |                  |               |     | A. | \$ |   | 19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Relinquished by: (Signature        |             | Relinquished by: (Signature) |             | V by: Date/Time Remarks                           |       |
|                       | Project Title   | Khein-Main 711 1211 7 | Ashoolist             | SAMPLE I.D. |         | RMI-VWI-26,1-26,6  | RM1-VW1-26,6-27.1                      | 1 -26.6 L    | 1-28.9       | RM1-VW1- 29.4-29.9 | RMI-VWI- 78,4.289 | ,                |               |     |    | ,  |   | *                                        | Date/Time Received by: (Signature) | 4.3.9.1525  | Date/Time Received by:       | (Signature) | Date/Time Received for Laboratory by: (Signature) |       |
| Columbus Laboratories |                 | _                     | SAMPLERS: (Signature) | DATE        |         | 14.3.96 1423       | 143.96 1423                            | 14.3.96 1423 | 14.3.96 1511 | 4.3.96 1511        | 13:96 1511        |                  |               |     |    |    |   |                                          | Relinguished by; (Signature)       |             | Relinquished by: (Signature) |             | Relinquished by: (Signature)                      | σ,    |

| nformation: |      |
|-------------|------|
| Billing     | Name |

Address City, State, Zip

Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 Phone (702) 355-1044 Fax (702) 355-0406

| Phone Number | Vumber           | ,               |               | Fax (702) 355-0406         |                | Page # of   | P          |      |
|--------------|------------------|-----------------|---------------|----------------------------|----------------|-------------|------------|------|
| Client       | Client Name      | 1               | telle         | 0-787600 CO3737-0          | 10-6           | es Required |            |      |
| Address      | 8                |                 |               | Phone #                    |                |             |            |      |
| City, St     | City, State, Zip |                 |               | Report Attention / Jallock |                |             | _          |      |
| Time         | Date             | Time Date Type* | Sampled by    | 10 mmy                     | Number         |             |            |      |
| Sampled      | Daldwiss         | Below           | Lab ID Number | Sample Description         | Containers / / |             | Remarks    |      |
|              | 19               | 108             | Smz040526-01  | RM1-1101-2.0-25            | ×              |             | 884181     |      |
|              |                  |                 | 70            | RM1-141-250                | X              |             |            |      |
|              |                  |                 | 03            | 1                          | * \            |             |            |      |
|              |                  |                 | 40            | RM1-1W1-45-50              | × \            |             |            |      |
|              |                  |                 | 90            | RM1 - VW1 - 5,5-6.0        | ×              |             |            |      |
|              |                  |                 | 90            | AMI-VW1-6.5-7.0            | × ,            |             |            |      |
|              |                  |                 | 70            | RM1-VW1-7.5-8.0            | × /            |             | •          |      |
|              | 1                |                 | 80            | 11-8.5-9.                  | ×              |             |            |      |
|              | 1/3              |                 | 90            | RM1-VW1-9.5-10.0           | x /            |             |            |      |
|              | 1                |                 | 0/            | Rm1-1W1-10.5-11.0          | × /            |             |            |      |
|              |                  |                 | //            | RM1-VW1-11.5-12.0          | X   /          |             |            |      |
|              |                  |                 | 12            |                            | X              |             |            |      |
|              |                  |                 | 13            | Rm1-1215-14.0              | × /            |             |            |      |
|              |                  |                 | 14            | ١                          | × /            |             |            |      |
|              |                  |                 | 15            | 1-15.3-15.                 | * /            |             |            |      |
|              | <del>&gt;</del>  | <b>&gt;</b>     | 16            | RM1- VW1-15.8-16.3         | 1 1            |             |            |      |
|              |                  | Ť               | Signature     | > Print Name               | 0,             | Company     | Date Tim   | Time |
| Relinqu      | Relinquished by  | 111             | 101           | , ,                        |                |             | ///        |      |
| Received by  | X Aq pa          | Kuis            | 1 Hohil       | Linda Budairk              | TOH .          |             | 415/16 10. | 030  |
| Relinge      | Relinquished by  |                 | 1             |                            |                |             | / /        |      |
| Received by  | ad bý            |                 |               |                            |                |             |            |      |
| Relinqu      | Relinquished by  |                 |               |                            |                |             |            |      |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Received by

| Name Address City, State, Zip Phone Number                                      | 255 Glendale Avenue, Suite 21<br>Sparks, Nevada 89431<br>Phone (702) 355-1044<br>Fax (702) 355-0406                                                                                                                                  | Suite 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M              |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Client Name Mattell                                                             | P.O.#                                                                                                                                                                                                                                | Dogingod so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| Address                                                                         | Phone #                                                                                                                                                                                                                              | The state of the s |                |
| City, State, Zip                                                                | Report Attention                                                                                                                                                                                                                     | The Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _              |
| Time Date Type* Sampled by                                                      | Les manne                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| ampled                                                                          | nple Description                                                                                                                                                                                                                     | Containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks        |
| 1/3 50 BNJ 2040596                                                              | F1.71-17.2-17.17                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                 | 18 RM1- VW1-17.7-18.2                                                                                                                                                                                                                | * /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| ,                                                                               | Rm1-                                                                                                                                                                                                                                 | X \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 0                                                                               | 20 RMI- 11WI-192-197                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 0                                                                               | 21 RM1-1W1-19.7-20.2                                                                                                                                                                                                                 | * /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 8'                                                                              | 22 RMI-1W1-21.8-22.3                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| ,0                                                                              | 23 RMI-1401-22.3-22.8                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 78                                                                              | RMI- VL                                                                                                                                                                                                                              | ×××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 90                                                                              | 25 Rm1-11W1-248-253                                                                                                                                                                                                                  | × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|                                                                                 |                                                                                                                                                                                                                                      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                                                                                 | 17 Munhole Hin- VWI                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 18                                                                              | 18 Drug hole H10 - VWI-71m                                                                                                                                                                                                           | / / X   X   /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 200                                                                             |                                                                                                                                                                                                                                      | / X /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| N)                                                                              | 30 Down hole 410. VW1-7.80                                                                                                                                                                                                           | / X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| <i>Ŋ</i>                                                                        | 1 Down b                                                                                                                                                                                                                             | / X // /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| √   So                                                                          | 87                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Signature                                                                       | Print Name                                                                                                                                                                                                                           | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date Time      |
| Refinquished by                                                                 |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Received by My Milli Haller                                                     | K Giodo Bydairk                                                                                                                                                                                                                      | HAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/5/1/1030     |
| Relinquistydd by                                                                | Litra Lites of                                                                                                                                                                                                                       | AAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4181911545     |
| Received by                                                                     | スポント                                                                                                                                                                                                                                 | SE, W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J/8/40 15-45   |
| Refinquished by                                                                 |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              |
| Received by                                                                     |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| NOTE: Samples are discarded 60 days after resutevy: AQ - Aqueous SO - Soil WA - | NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. *Key: AQ - Aqueous SO - Soil WA - Waste OT - Other | ous samples will be returned to client or disposed of at cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lient expense. |

Billing miormation:

| Page # Of Of                                                                                                      | Analyses Required                                |                  | A Remarks                                                   | X X X                | X Datifics          | 7 37.1-26.6        | y Mass to | Jago Stil- |               |  | Company Date Time | /// | 15/1/2019            | 5/5/19/8/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70 |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|-------------------------------------------------------------|----------------------|---------------------|--------------------|-----------|------------|---------------|--|-------------------|-----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 Phone (702) 355-1044 Fax (702) 355-0406 | P.O. #                                           | Report Attention | M. M. M. M. M. Sarpate Description Containers               | 111-1101-26.6-27.1 1 | 111-1111-28.9-294 X | 1-1121-48.4-28.9 / | ***       | > 7        |               |  | Print Name        | , 3 | Linda Dydairk        | (-RAYB (2/57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |
| Billing Information: Name Address City, State, Zip Phone Number                                                   | Client Name //////////////////////////////////// | City, State, Zip | Time Date Type* Sampled by Sampled Sampled By Lab ID Number | 4/3 50 MILOY0576-33  | 35/2                | 7                  |           |            | \$\frac{1}{2} |  | Signature         | M   | Received by Key Just | Herinquished by Charles and Ch | Relinquished by                           |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.



Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312

FAX: 702-736-7523 1-800-283-1183

#### ANALYTICAL REPORT

Battelle

505 King Ave

Columbus Ohio 43201

Job#:

Phone: (614) 424-3783

Attn: Al Pollock

Sampled: 04/05/96

Received: 04/10/96 Analyzed: 04/14/96

Matrix: [ X ] Soil

Γ ] Water 1 Waste

Analysis Requested: TPH - Total Petroleum Hydrocarbons-Purgeable

Quantitated As Gasoline

[

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

Methodology:

Modified 8015/DHS LUFT Manual/BLS-191 TPH -

BTEX - Method 624/8240

#### Results:

| Parameter                                    | Concentration                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                         | ection<br>imit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TPH (Purgeable) Benzene Toluene Ethylbenzene | 120<br>ND<br>ND<br>ND                                                                                                                                                                                       | 10<br>20<br>20<br>20                                                                                                                                                                                                                                                                                    | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Xylenes                                | ND                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                      | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TPH (Purgeable) Renzene                      | 660<br>ND                                                                                                                                                                                                   | 170<br>330                                                                                                                                                                                                                                                                                              | mg/Kg<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Toluene                                      | ND                                                                                                                                                                                                          | 330                                                                                                                                                                                                                                                                                                     | ug/Kg<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Xylenes                                | ND                                                                                                                                                                                                          | 330                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TPH (Purgeable)                              | 170                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Benzene<br>Toluene                           | 120<br>760                                                                                                                                                                                                  | 100<br>100                                                                                                                                                                                                                                                                                              | ug/Kg<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ethylbenzene<br>Total Xylenes                | 310<br>760                                                                                                                                                                                                  | 100<br>100                                                                                                                                                                                                                                                                                              | ug/Kg<br>ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes  TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes  TPH (Purgeable) Benzene Total Xylenes  TPH (Purgeable) Benzene Toluene Ethylbenzene | TPH (Purgeable) 120 Benzene ND Toluene ND Ethylbenzene ND Total Xylenes ND  TPH (Purgeable) 660 Benzene ND Toluene ND Ethylbenzene ND Total Xylenes ND  Toluene ND Total Xylenes ND  Total Xylenes ND  Total Xylenes ND  Tetal Xylenes ND  The (Purgeable) 170 Benzene 120 Toluene 760 Ethylbenzene 310 | Parameter Concentration Language Parameter P |

ND - Not Detected

Approved by:

Roger L. Scholl, Ph.D. Laboratory Director

#### Laboratory **Analysis Report**



#### Sierra Environmental Monitoring, Inc.

Date

: 5/10/96

Client

: ALP-855

Taken by: CLIENT

Report : 16004

:

PO#

|                                | Colle   | cted | ALKALINITY | PH        | MOISTURE<br>CONTENT | KJELDAHL-N   | PHOSPHORUS<br>-TOTAL | IRON,<br>ICP |
|--------------------------------|---------|------|------------|-----------|---------------------|--------------|----------------------|--------------|
| Sample                         | Date    | Time | MG/L CACO3 | s.u.      | ×                   | MG/L         | MG/L                 | MG/L         |
| BMI041096-23-RM1-VW4-1.5-1.66  | 4/04/96 | :    | 70 mg/kg   | 7.37      | 6.4%                | 0.49 mg/g    | 26mg/kg              | 8.3 mg/      |
| BMI041096-26-RM1-VW4-3.05-3.21 | 4/04/96 | :    | 120 mg/kg  | 8.24      | 10.0                | <0.1 mg/g    | 43mg/kg              | 2.7 mg/      |
| BMI041096-29-RM1-VW4-4.87-5.04 | 4/04/96 | :    | 210 mg/kg  | 8.22      | 5.7                 | 0.63 mg/g    | 94mg/kg              | 2.5 mg/      |
| BMI041096-32-RM1-VW4-5.79-5.96 | 4/04/96 |      | 90 mg/kg   | 7.94      | 4.5                 | <0.1 mg/g    | 25mg/kg              | 250 ug/      |
| BMI041096-34-RM1-VW4-6.44-6.60 | 4/04/96 | :    | 400 mg/kg  | 9.09      | 5.4                 | 0.16 mg/g    | 83mg/kg              | 2.1 mg/      |
| BMI041096-38-RM1-VW4-7.09-7.25 | 4/04/96 | :    | 80 mg/kg   | 8.19      | 12.8                | 6.3 mg/g     | 14mg/kg              | 270 ug/      |
| BMI041096-42-RM1-VW4-8.06-8.22 | 4/04/96 | :    | 70 mg/kg   | 8.57      | 12.7                | <0.1 mg/g    | 13mg/kg              | 900 ug/      |
|                                |         |      | SULFATE    | SULFIDE   | SIEVE               | DIGESTION-   | AQUEOUS              |              |
|                                | Colle   |      |            | **        | ANALYSIS            | TOTAL METALS | EXTRACT              | İ            |
| Sample                         | Date    | Time | MG/L       | MG/L      |                     |              |                      |              |
| BMI041096-22A/B-RM1-1.82/2.15  | 4/04/96 | :    |            |           | yes                 |              |                      |              |
| BMI041096-23-RM1-VW4-1.5-1.66  | 4/04/96 | :    |            |           |                     | yes          | yes                  |              |
| BMI041096-24-RM1-VW4-1.66-1.22 | 4/04/96 | :    | 26 mg/kg   | 130 mg/kg |                     |              | yes                  |              |
| BMI041096-25A/B-RM1-3.38/3.70  | 4/04/96 | :    |            |           | yes                 |              |                      |              |
| BMI041096-26-RM1-VW4-3.05-3.21 | 4/04/96 | :    |            |           |                     | yes          | yes                  |              |
| BMI041096-27-RM1-VW4-3.21-3.38 | 4/04/96 | :    | 28 mg/kg   | 20 mg/kg  |                     |              | yes                  |              |
| BMI041096-28A/B-RM1-5.20/5.52  | 4/04/96 | :    |            |           | yes                 |              |                      |              |
| BMI041096-29-RM1-VW4-4.87-5.04 | 4/04/96 | :    |            | 1         |                     | yes          | yes                  |              |
| BMI041096-30-RM1-VW4-5.04-5.20 | 4/04/96 | :    | 11 mg/kg   | 80 mg/kg  |                     |              | yes                  |              |
| BMI041096-31A/B-RM1-6.12/6.44  | 4/04/96 | :    |            |           | yes                 |              |                      |              |
| BMI041096-32-RM1-VW4-5.79-5.96 | 4/04/96 | :    |            |           |                     | yes          | yes                  |              |
| BMI041096-33-RM1-VW4-5.96-6.12 | 4/04/96 | :    | 17 mg/kg   | 20 mg/kg  |                     |              | yes                  |              |
| BMI041096-34-RM1-VW4-6.44-6.60 | 4/04/96 | :    |            |           |                     | yes          | yes                  | 1            |
| BMI041096-35-RM1-VW4-6.60-6.76 | 4/04/96 | :    | 32 mg/kg   | 10 mg/kg  |                     |              | yes                  |              |
| BMI041096-36A/B-RM1-6.76/7.09  | 4/04/96 | :    |            |           | yes                 |              |                      |              |
| BMI041096-38-RM1-VW4-7.09-7.25 | 4/04/96 | :    |            |           |                     | yes          | yes                  |              |
| BMI041096-39-RM1-VW4-7.25-7.41 | 4/04/96 | :    | 40 mg/kg   | 60 mg/kg  |                     |              | yes                  |              |
| BMI041096-40A/B-RM1-7.57/7.90  | 4/04/96 | :    |            |           | yes                 |              |                      |              |
| BMI041096-42-RM1-VW4-8.06-8.22 | 4/04/96 | :    |            |           |                     | yes          | yes                  | 1            |
| 3MI041096-43-RM1-VW4-8.39-8.78 | 4/04/96 | :    |            |           | yes                 |              |                      |              |
| 3MI041096-44-RM1-VW4-8.78-8.95 | 4/04/96 | :    |            |           | yes                 |              |                      |              |
| 3MI041096-46-RM1-VW4-9.02-9.18 | 4/04/96 | :    | 50 mg/kg   | 10 mg/kg  |                     |              | yes                  |              |
| 3MI041096-47A/B-RM1-9.34/9.66  | 4/04/96 | :    |            |           | yes                 |              |                      |              |

\*\* - Analysis performed by Barringer Laboratory

proved By: is report is applicable only to the sample received by the laboratory. The liability of the laboratory is limited to the amount paid or this report. This report is for the exclusive use of the client to whom it is addressed and upon the condition that the client sumes all liability for the further distribution of the report or its contents.

> 1135 Financial Blvd. Reno, NV 89502 Phone (702) 857-2400 FAX (702) 857-2404

ALPHA ANALYTICAL

SPARKS NV 89431

255 GLENDALE AVENUE, SUITE 21



15000 W. 6TH AVE., SUITE 300 GOLDEN, COLORADO 80401 PHONE: (303) 277-1687

5301 LONGLEY LANE BUILDING E, SUITE 178 RENO. NEVADA 89511 PHONE: (702) 828-1158

8-May-96

SIERRA ENVIROMENTAL 1135 FINANCIAL BLVD RENO NV 89502

Page: 1 Copy: 1 of 2 Set: 1

Attn:

Received: 22-Apr-96 11:55

PO #: 2038

Project:

Job: 961269R

Status: Final

Soil

|          | S     | SO4   | S-       |                |
|----------|-------|-------|----------|----------------|
|          | Leco  | Leco  | Leco     |                |
| _Sample_ | %     | %%    | <u> </u> |                |
|          |       |       |          |                |
| 9604-383 | 0.028 | 0.046 | 0.013    | - BMI041096-24 |
| 9604-386 | 0.007 | 0.015 | 0.002    | - BMI041096-27 |
| 9604-389 | 0.014 | 0.018 | 0.008    | - BMI041096-30 |
| 9604-392 | 0.007 | 0.018 | 0.002    | - BMI041096-33 |
| 9604-394 | 0.006 | 0.015 | 0.001    | - BMI041096-35 |
| 9604-397 | 0.011 | 0.015 | 0.006    | - BMI041096-39 |
| 9604-402 | 0.001 | 0.003 | 0.001    | - BMI041096-46 |



15000 W. 6TH AVE., SUITE 300 GOLDEN, COLORADO 80401 PHONE: (303) 277-1687

5301 LONGLEY LANE BUILDING E, SUITE 178 RENO, NEVADA 89511 PHONE: (702) 828-1158

8-May-96

SIERRA ENVIROMENTAL 1135 FINANCIAL BLVD RENO NV 89502

Page: 2 Copy: 1 of 2

Set: 2

Attn: Project:

Received: 22-Apr-96 11:55

PO #: 2038

Job: 961269R

Status: Final

#### Abbreviations:

#### Parameters:

S

: Sulfur

SO4 S- : Sulfate Ion

: Sulfide

#### Methods:

Leco

: Leco Sulfer/Carbon Analysis

#### Units:

Ŷ

: percent



15000 W. 6TH AVE., SUITE 300 GOLDEN, COLORADO 80401 (303) 277-1687

5301 LONGLEY LANE BUILDING E, SUITE 178 RENO, NEVADA PHONE: 89511 (702) 828-1158

8-May-96

SIERRA ENVIROMENTAL 1135 FINANCIAL BLVD RENO NV 89502

Page: Copy: 1 of 2

Attn:

Received: 22-Apr-96 11:55

Project:

PO #: 2038

Job: 961269R

Status:

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project.

Job approved by:

Signed: Richard A. Brondin



1135 Financial Bloulevard

Reno, NV

89502

702-857-2400 FAX 702-857-2404

### SIEVE ANALYSIS REPORT

| Client         | Allpha Analytical, Inc.       | Analytical Method | ASTM     |
|----------------|-------------------------------|-------------------|----------|
| Sample Name    | BMI041096-22A/B-RM1-1.82/2.15 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9406-0381                     | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
| 1 inch                    | 100%            |
| 1/2 inch                  | 74%             |
| No. 4                     | 73%             |
| No. 8                     | 63%             |
| No. 10                    | 59%             |
| No. 16                    | 44%             |
| No. 30                    | 20%             |
| No. 40                    | 14%             |
| No. 50                    | 9%              |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |
| > 200                     | <1.0 %          |

Approved by:



1135 Financial Bloulevard

Reno, NV 89502

702-857-2400 FAX 702-857-2404

### SIEVE ANALYSIS REPORT

| Client         | Alpha Analytical, Inc.        | Analytical Method | ASTM     |
|----------------|-------------------------------|-------------------|----------|
| Sample Name    | BMI041096-25A/B-RM1-3.83/3.70 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9406-0384                     | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
|                           |                 |
| 1 inch                    | 100%            |
| 1/2 inch                  | 76%             |
| No. 4                     | 58%             |
| No. 8                     | 46%             |
| No. 10                    | 41%             |
| No. 16                    | 29%             |
| No. 30                    | 13%             |
| No. 40                    | <1.0 %          |
| No. 50                    | <1.0 %          |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |
| > 200                     | <1.0 %          |
|                           |                 |
| 1 mone                    |                 |

Approved by: \_



1135 Financial Bloulevard

Reno, NV 89502

702-857-2400 FAX 702-857-2404

## SIEVE ANALYSIS REPORT

| Client         | Alpha Analytical, Inc.        | Analytical Method | ASTM     |
|----------------|-------------------------------|-------------------|----------|
| Sample Name    | BMI041096-28A/B-RM1-5.20/5.52 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9406-0387                     | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
|                           |                 |
| 1 inch                    | 95%             |
| 1/2 inch                  | 86%             |
| No. 4                     | 64%             |
| No. 8                     | 54%             |
| No. 10                    | <1.0 %          |
| No. 16                    | <1.0 %          |
| No. 30                    | <1.0 %          |
| No. 40                    | <1.0 %          |
| No. 50                    | <1.0 %          |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |
| >200                      | <1.0 %          |

Approved by:



Sierra Environmental Monitoring, Inc. 1135 Financial Bloulevard

Reno, NV

89502

702-857-2400 FAX 702-857-2404

# SIEVE ANALYSIS REPORT

| Client         | Alpha Analytical, Inc.        | Analytical Method | ASTM     |
|----------------|-------------------------------|-------------------|----------|
| Sample Name    | BMI041096-31A/B-RM1-6.12/6.44 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9604-0390                     | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
| 1 inch                    | 100%            |
| 1/2 inch                  | 86%             |
| No. 4                     | 72%             |
| No. 8                     | 64%             |
| No. 10                    | 59%             |
| No. 16                    | 46%             |
| No. 30                    | 19%             |
| No. 40                    | <1.0 %          |
| No. 50                    | <1.0 %          |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |

Approved by:



1135 Financial Bloulevard

Reno, NV

89502

702-857-2400 FAX 702-857-2404

# SIEVE ANALYSIS REPORT

| Client         | Alpha Analytical, Inc.        | Analytical Method | ASTM     |
|----------------|-------------------------------|-------------------|----------|
| Sample Name    | BMI041096-36A/B-RM1-6.76/7.09 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9604-0395                     | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
|                           |                 |
| 1 inch                    | 100%            |
| 1/2 inch                  | 100%            |
| No. 4                     | 94%             |
| No. 8                     | 84%             |
| No. 10                    | 77%             |
| No. 16                    | 53%             |
| No. 30                    | 16%             |
| No. 40                    | <1.0 %          |
| No. 50                    | <1.0 %          |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |

Approved by:



Sierra Environmental Monitoring, Inc. 1135 Financial Bloulevard

Reno, NV 89502

U. S. Standard Sieve Size

702-857-2400 FAX 702-857-2404

# SIEVE ANALYSIS REPORT

| Client         | Alpha Analytical, Inc.        | Analytical Method | ASTM     |
|----------------|-------------------------------|-------------------|----------|
|                | BMI041096-40A/B-RM1-7.57/7.90 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9604-0398                     | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
|                           |                 |
| 1 inch                    | 100%            |
| 1/2 inch                  | 96%             |
| No. 4                     | 93%             |
| No. 8                     | 89%             |
| No. 10                    | 86%             |
| No. 16                    | 70%             |
| No. 30                    | 25%             |
| No. 40                    | 11%             |
| No. 50                    | <1.0 %          |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |

Approved by:



1135 Financial Bloulevard

Reno, NV 89

89502

702-857-2400 FAX 702-857-2404

# SIEVE ANALYSIS REPORT

| Client         | Alpha Analytical, Inc.         | Analytical Method | ASTM     |
|----------------|--------------------------------|-------------------|----------|
|                | BMI041096-43-RM1-VW4-8.39/8.78 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9604-0400                      | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
| 1 inch                    | 100%            |
| 1/2 inch                  | 89%             |
| No. 4                     | 61%             |
| No. 8                     | 43%             |
| No. 10                    | 38%             |
| No. 16                    | 26%             |
| No. 30                    | 10%             |
| No. 40                    | <1.0 %          |
| No. 50                    | <1.0 %          |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |

Approved by:



1135 Financial Bloulevard

Reno, NV

89502

702-857-2400 FAX 702-857-2404

# SIEVE ANALYSIS REPORT

| Client         | Alpha Analytical, Inc.         | Analytical Method | ASTM     |
|----------------|--------------------------------|-------------------|----------|
| Sample Name    | BMI041096-44-RM1-VW4-8.78-8.95 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9604-0401                      | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
| 4 in ab                   | 100%            |
| 1 inch                    |                 |
| 1/2 inch                  | 93%             |
| No. 4                     | 63%             |
| No. 8                     | 41%             |
| No. 10                    | 36%             |
| No. 16                    | 23%             |
| No. 30                    | 11%             |
| No. 40                    | <1.0 %          |
| No. 50                    | <1.0 %          |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |

Approved by:



Sierra Environmental Monitoring, Inc. 1135 Financial Bloulevard Reno, NV 89502

702-857-2400 FAX 702-857-2404

### SIEVE ANALYSIS REPORT

| Client         | Alpha Analytical, Inc.        | Analytical Method | ASTM     |
|----------------|-------------------------------|-------------------|----------|
| Sample Name    | BMI041096-47A/B-RM1-9.34-9.66 | Sample Date       | 04/04/96 |
| SEM Lab Number | 9604-0404                     | Analysis Date     | 05/03/96 |

| U. S. Standard Sieve Size | Percent Passing |
|---------------------------|-----------------|
|                           |                 |
| 1 inch                    | 100%            |
| 1/2 inch                  | 94%             |
| No. 4                     | 74%             |
| No. 8                     | 52%             |
| No. 10                    | 46%             |
| No. 16                    | 30%             |
| No. 30                    | 12%             |
| No. 40                    | <1.0 %          |
| No. 50                    | <1.0 %          |
| No. 100                   | <1.0 %          |
| No. 200                   | <1.0 %          |

Approved by:

Date/Time Date/Time TIS COMIC 3.53.5 SAMPLE TYPE ( Remarks Relinquished by: (Signature) Relinquished by: (Signature) GAP 130 Date/Time CHAIN OF CUSTODY RECORD > 7 7 Particle 151848 7 Received for Laboratory by: RMI-VW4-5.20-5,36m/V Received by: (Signature) RMI-VW1-6.28-6.44m -3.38-3.54m RMI-VW4-3.54-3.70m RMI-VW4-3.05-3.21m -5.79.5.96m RMI-1W4-3.21-3.38m RMI-VWA-4.87-5.04m RMI-VW4-5.96-6.12m RMI-VW4-5.36-5.52m RMI-VWA-6,12-6,2800 RMI-VW4-5,04-5,200 -2,15m Rhein-Main AB, POL Yard - 99. Received by: (Signature) Siebenlist 787-90 SAMPLE I.D. T RM1-124-1245 1 2 3 1 RM (- VW4 RMI-VW4 141-VW4 RMI-VW4 Date/Time Date/Time Walter 4/9/26 RHI Project Title 350 350 350 Momen 30 1230 230 1310 210 230 310 Relinquished by: (Signature) Relinquished by: (Signature) 230 Chris Perru Relinquished by: (Signature) 55 55 155 155 SAMPLERS: (Signature) 6002737-01 Columbus Laboratories Battelle 4.4.96 14.96 4.4.96 4.1.96 96. 4.9.96 44.96 144.96 V4.4.96 14.96 V44.96 DATE 4496 44.96 44.96 44.96 4.4.96 Proj. No. >

1255 SPPV

255 Sleeve

steeves

BUSS

Remarks

Containers 10 Number

Container No.

Form No. \_

YASS SPAVES

Bra55 5 POVP 55,55 spove B1255 SP0VE

SPOUP

SPOV

Bræss

STASS SPPUR

SPPVE 510016

(355

6

Received by: (Signature)

Received by: (Signature)

Baffelle

Form No.

Brass stane 100/5 3 (RP) Chrass sperc SPOU Spec Show Dras Remarks 51285 BLASS 210-10c ip-loc [85s Received by: (Signature) Received by: (Signature) Containers = ło Mumber ST Date/Time Date/Time ठेडंड SAMPLE TYPE (VIV) Remarks Relinquished by: (Signature) Relinquished by: (Signature) > CHAIN OF CUSTODY RECORD Dete/Time > > Received for Laboratory by: (Signature) > Received by: (Signature) RMI-144-7.57-7.74m RMI-VW4-774-7:40m -VW4-8'78-8.95m -9.18-9.3-Am -9.34-9.50m -9.50-9.6cm Rhein-Main Air Base, Pur Yard RMI-VW4-7.09-7.25m RMI-VW4-8.38-8.78m RMI-1W4-8.06-8.22m 1-9.02-9,18m RMI -VW4-6.76-6.92m RMI-VW4-6,92-7.09 m RAI-VW4-7.41-7.570 RMI-1W4-7.25-7.41m RMI-1W4-6.60-6.76m RMI-VW4-7.90-8.06m RMI-VW4-6.44-6,600 Received by: (Signature) SAMPLE I.D. Chris Perry, Walter Sebenlist 4/9/96 1245 RMI-VOL RMI-1WA RMI-VWA RMI-VW4 Date/Time Date/Time Date/Time 24 Project Title 084 084 08 44 TIME 084 D2 ( 020 10 20 0914 091 D44 100 1002 7601 Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) 1515 15,15 who thomas 57 55 6002737-01 SAMPLERS: (Signature) Columbus Laboratories 15.96 5.00 1,596 V4.5.96 74.5.96 4.5.96 96 4.5.96 5.96 596 3 DATE 4.5.96 30,00 4.49k Proj. No.

| Billing<br>Name  | Billing Information:<br>Name | on:                                                                      | Alpha Analytical, Inc. 255 Glendale Avenue. Suite 21 | e. Suite 21                                              |                  |
|------------------|------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------|
| Address          |                              |                                                                          | Sparks, Nevada 89431                                 |                                                          |                  |
| City, State, Zip | te, Zip                      | 6                                                                        | Phone (702) 355-10<br>Fax (702) 355-0406             | / ///                                                    |                  |
| Phone Number     | Vumber                       |                                                                          |                                                      |                                                          |                  |
| Client           | Name Name                    | ntill                                                                    | P.O. 100 73                                          | 1 10-6                                                   | 2                |
| Address          | s                            |                                                                          |                                                      |                                                          |                  |
| City, State, Zip | ate, Zip                     |                                                                          | Report Attention                                     | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 20               |
| Time Date        | Date Type*                   | Sampled by                                                               | (DERMANU                                             | Number Namber                                            | Ter              |
| Sampled          | Sampled Below                | Lab ID Number                                                            | Sample Description                                   | IN SILVED THE THE SILVED IN                              | (2) Remarks      |
|                  | 11/4/50                      | BMIO41096-12                                                             | 1Rm1-VW4-1.82-1.98m                                  | //                                                       | M 1885           |
|                  | - , ,                        | 121                                                                      | 18m1-1104-1.98-2.15m                                 |                                                          | 30,000 pos. +E   |
|                  |                              | 23                                                                       | 4-1.5-1                                              |                                                          |                  |
|                  |                              | 24                                                                       | 2ml- VW4-166-188m                                    | //                                                       |                  |
|                  |                              | 45K                                                                      | 1104-3.38-3                                          |                                                          | ,                |
|                  |                              | 258                                                                      | 14-3.54-                                             | >/2                                                      | Loubson          |
|                  |                              | 36                                                                       | 4-305-3.                                             |                                                          |                  |
|                  |                              | 47                                                                       | ١                                                    | ^^                                                       |                  |
|                  |                              | A8A                                                                      | - 1wd-5.20 -5                                        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                   | Jan 20 C. F.     |
|                  |                              | 28B                                                                      | - 1W4-5.36-5.                                        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                   | 3                |
|                  |                              | 79                                                                       | 1-1101-4.87-                                         |                                                          |                  |
|                  |                              | 30                                                                       | RMI- 1104- 5.04-5.20m                                |                                                          |                  |
|                  |                              | 3/14                                                                     | - VW4 -6:12                                          |                                                          | 2 Journallos: +5 |
|                  |                              | 318                                                                      | RMI- WW4-6-28-6-44m                                  |                                                          | - Luas           |
|                  |                              | 33                                                                       | RMI- VIN4-5:79-5.96m                                 |                                                          | ×                |
|                  | <u>→</u>                     | 33                                                                       | RMI-VW4-5.96-6-12m                                   | /// / / / / / / / / / / / / / / / / /                    |                  |
|                  |                              | Signature 7                                                              | Print Name 🔹                                         | Сотрапу                                                  | Date Time        |
| Relinqu          | Relinquished by              | // /*///                                                                 |                                                      |                                                          | , ,              |
| Received by      | ed by                        | X Lathert                                                                | (1001 Drian K                                        | - 120g                                                   | 4/10/1/1030      |
| Relindi          | Relinquished by              | X /                                                                      | LRAIR GIESU                                          | AAI                                                      | SIH1 76/01/h     |
| Received by      | 7 8 Japa                     | 100                                                                      | X                                                    |                                                          | 212/26/12/2      |
| Reling           | Relinquished by              |                                                                          |                                                      | )                                                        |                  |
| Received by      | ed by                        |                                                                          |                                                      |                                                          |                  |
| NOTE             | Samules are                  | NOTE: Samples are discarded 60 days after results are reported unless of | e renorded inject offer arrangements are made. Haza  | to be percusive to the contract of line solutions of the | offert avenue    |

OT - Other

WA - Waste

SO - Soil

\*Key: AQ - Aqueous

| Billing Information: | ormatio | Ë               | Alpha Analytical, Inc.                  | al, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|----------------------|---------|-----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Address              |         |                 | Sparks, Nevada 89431                    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| City, State, Zip     | To a    |                 | Phone (702) 355-1044 Fax (702) 355-0406 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Client Name          | 1       | 14.00           | FO.#                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Г            |
| Address              |         |                 | C / # enon4                             | 753 O F A Manayses Hequired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| City, State, Zip     | 6       |                 | Report Attention                        | 18 1 1 1 2 E P 54 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| Time Date            | Type*   | Sampled by      | 7EL man                                 | Number The Solution of the Sol |              |
| Sampled Sample       | Below   | Lab ID Number   |                                         | Containers The Third The Containers The Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Π            |
| 1/1/4                | 8/      | 12-11-01HOTUS   | 1/211-VU-4-6-44-6-60m                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ī            |
|                      |         | 35              | RM-1W4 - 6.60 - 6.76m                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
|                      |         | H18             | PM-11-04-6-16-6-1011                    | 1 January 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ť            |
| \ <u>'</u>           |         | 808             | AMI-11124-6-92-7.08m                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del> |
| 3//5                 | 2       | 46              | F-14.4-1                                | 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ī            |
|                      |         | 38              | 1m1-1W4-7.09-7.25m                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                      |         | 39              | RM1-1104-7:25-7.41m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ī            |
|                      |         | HOF             | Mr. 1- 104-1011-1111                    | C. S. W. C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13/2         |
|                      |         | JOH             | 12 Jul- 14-7-90m                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
|                      |         | 1/1             | RM1-VW4-7.90-8.06m                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                      |         | 42              | IM1-104-8-06-8-22m                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |
|                      |         | 43.             | - 86                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                      |         | 44              | RM1-1W4-8.78-8.95m                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                      |         | 45.             | RM1-1W4-9.18-9.34m                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                      |         | 16              | - VW4-9:02-                             | <b>&gt;&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                      | 7       | HCH /           | RM1-VW4- 4.34-950m                      | 1 / months. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ᄓ            |
| >                    | 1 \     | Signature . 475 | RM - 11, Aprint Name 9.50-9. 66 M       | npany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ţ            |
| Refinquished by      |         |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Received by          | XIII    | 12 Malik        | 1,601 C 6001)                           | 1801 Rally 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2            |
| Relinquished by      | J.      | Jet.            | 6331 5180                               | 2101 JUSIGH 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Received by          | Š       | S. C.           | W. G. A.C.                              | SCO) (1/16/66 1/115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Relinquished by      | *       |                 | )                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Received by          |         |                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Γ            |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.



Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### ANALYTICAL REPORT

Battelle 505 King Ave Columbus Ohio 43201 Job#: G002737-01

Phone: (614) 424-7289

Attn: Al Pollock

Sampled: 04/09/96

Received: 04/10/96

Analyzed: 04/14/96 \*

Matrix: [ X ] Soil

[

] Water [ ] Waste

Analysis Requested: TPH -

Total Petroleum Hydrocarbons-Purgeable

Quantitated As Gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

Methodology:

Modified 8015/DHS LUFT Manual/BLS-191 TPH -

BTEX - Method 624/8240

#### Results:

| Client ID/<br>Lab ID             | Parameter                                                  | Concentration                     | Detection<br>Limit             |                                           |
|----------------------------------|------------------------------------------------------------|-----------------------------------|--------------------------------|-------------------------------------------|
| RM1-VW2-1.5-2.0<br>/BMI041096-03 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 930<br>ND<br>ND<br>1,100<br>6,100 | 50<br>100<br>100<br>100<br>100 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-3.5-4.0<br>/BMI041096-04 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 630<br>ND<br>ND<br>400<br>1,400   | 20<br>40<br>40<br>40<br>40     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-4.5-5.0<br>/BMI041096-05 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 490<br>ND<br>ND<br>ND<br>410      | 50<br>100<br>100<br>100<br>100 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-5.5-6.0<br>/BMI041096-06 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 120<br>ND<br>ND<br>ND<br>41       | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



255 Glendale Avenue, Suite 2 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                   | Detection<br>Limit              |                                           |
|------------------------------------|------------------------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------|
| RM1-VW2-6.5-7.0<br>/BMI041096-07   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND      | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-7.5-8.0<br>/BMI041096-08   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 990<br>ND<br>ND<br>520<br>1,900 | 100<br>200<br>200<br>200<br>200 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-8.5-9.0<br>/BMI041096-09   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND      | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-9.5-10.0<br>/BMI041096-10  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND      | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-10.5-11.0<br>/BMI041096-11 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND      | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-11.5-12.0<br>/BMI041096-12 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 32<br>ND<br>ND<br>ND<br>ND      | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-12.5-13.0<br>/BMI041096-13 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 100<br>ND<br>ND<br>36<br>110    | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



Alpha Analytical, Inc. 255 Glendale Avenue. Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183

e-mail; alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523

1-800-283-1183

### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                   |                            | ction<br>mit                              |
|------------------------------------|------------------------------------------------------------|---------------------------------|----------------------------|-------------------------------------------|
| RM1-VW2-13.5-14.0<br>/BMI041096-14 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 100<br>ND<br>ND<br>35<br>100    | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-14.5-15.0<br>/BMI041096-15 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 170<br>ND<br>ND<br>86<br>210    | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-15.5-16.0<br>/BMI041096-16 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 140<br>ND<br>ND<br>73<br>190    | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-16.5-17.0<br>/BMI041096-17 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 520<br>ND<br>ND<br>460<br>1,100 | 20<br>40<br>40<br>40<br>40 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-17.5-18.0<br>/BMI041096-18 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 440<br>ND<br>ND<br>260<br>580   | 20<br>40<br>40<br>40<br>40 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-18.5-19.0<br>/BMI041096-19 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 320<br>ND<br>ND<br>130<br>270   | 20<br>40<br>40<br>40<br>40 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-19.5-20.0<br>/BMI041096-20 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 190<br>ND<br>ND<br>32<br>56     | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration               |                                 | ction<br>mit                              |
|------------------------------------|------------------------------------------------------------|-----------------------------|---------------------------------|-------------------------------------------|
| RM1-VW2-20.5-21.0<br>/BMI041096-21 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 510<br>ND<br>ND<br>ND<br>ND | 100<br>200<br>200<br>200<br>200 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |

ND - Not Detected

Approved by:

Laboratory Director

Page 4 of 4

| Billing Information: Name Address | Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 | J, Inc.<br>Suite 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|-----------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                   | Phone (702) 355-1044                                                      | Page # of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4            |
| 66                                | P.O. (1002737-1                                                           | M   Analyses Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                                   | Phone #                                                                   | TO THE PROPERTY OF THE PROPERT | <del>-</del> |
|                                   | Report Attention ( Welland                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Sampled by                        | OELMANY "                                                                 | Number C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Lab ID Number                     | Description                                                               | Containers // / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 Remarks    |
| PM ZC41096-03                     | RM1-VW2-15-20                                                             | /   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Muss Tul     |
| 40                                | RM1-1122-5.5-40                                                           | / X K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| SO                                | KM1-142-45.50                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| 06                                | RMI- NW2-5.5-6.0                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| 67                                | RM1-1122-6.5-7.0                                                          | - X X - \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| 108                               | RM1-1113-7.5-8.0                                                          | X X /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| 60                                | (1)// -                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| 10                                | RM1- WW2-95-10.0                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| //                                | RM1-1W2-10.5-11.0                                                         | XX   \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 12                                | RM1-113-115-0.0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            |
| 13                                | - NW                                                                      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •            |
| 14                                | 1                                                                         | 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •            |
| 15                                | RM1-1102-145-150                                                          | 1 KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •            |
| 16                                | - (                                                                       | /  X x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 17                                | - UW                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| 81                                | - VW                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Signature                         | Print Name                                                                | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date Time    |
| 1 / 1                             | 1 1 1 1                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 //         |
| Osy hick                          | Linda Bydairki                                                            | ABI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/10/h 1030  |
| ****                              | /                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,            |
|                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

OT - Other

WA - Waste

SO - Soil

\*Key: AQ - Aqueous

| coming mitorination:       |                    | Alpha Analytical, Inc.                     | al, Inc.       |            |                   |         |        |
|----------------------------|--------------------|--------------------------------------------|----------------|------------|-------------------|---------|--------|
| Address                    |                    | Sparks, Nevada 89431                       | 1, Suite 2.1   |            |                   |         |        |
| City, State, Zip           |                    | Phone (702) 355-1044<br>Fax (702) 355-0406 | 4              |            | K                 | 1       |        |
| Phone Number               |                    | א (ניטב) טטטיט                             |                | Page #     | 100               | 8       |        |
| Client Name DOTH           | ď.                 | GGC C 000 4.09                             | 10-69          | A. Analyse | Analyses Bequired |         |        |
| Address                    |                    | Phone #                                    |                | NA NA      |                   | T       |        |
| City, State, Zip           | Report Attention   | Pallo                                      | 1              |            | <i></i>           | _       |        |
| Time Date Type* Sampled by | The mount          |                                            | Number         |            | <i></i>           | _       |        |
| Sampled                    | Sample Description |                                            | Containers /// |            |                   | Remarks | rks    |
| 81-160/102 MJ 056/1        | RMI-VW             | 5-190                                      | × /            | ×<br>ع     |                   |         |        |
| 08                         | RMI-VU             | 1.5-20.0                                   | X              | ×          |                   |         |        |
| 18                         | RmI-VW             | 0.18-210                                   | × \            | X          |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         | •      |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
|                            |                    |                                            |                |            |                   |         |        |
| Signature                  | Print Name         | 6                                          |                | Company    |                   | Date    | , Time |
| Reinquished by A           | / /                | 10                                         |                |            |                   |         |        |
| Received by                | 10001)             | 11/0/1/L                                   | 7              | 714        |                   | 4/10/14 | 1036   |
| Relinquished by            | , ,                | /                                          |                |            |                   | //      |        |
| Received by                |                    |                                            |                |            |                   |         |        |
| Relinquished by            |                    |                                            |                |            |                   |         |        |
| Received by                |                    |                                            |                |            |                   |         |        |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

CHAIN OF CUSTODY RECORD

Battelle

N

Form No. 2

SPOUL Remarks 255 Received by: (Signature) Received by: (Signature) N Containers t ło . Митрег Container No. Date/Time Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time 1PH-8015 77 atory by: Received by: (Signature) RMI-VWZ-20.5-21.0 2002737-01 Rhein-Main AB, POL Yard Received for Labor (Signature) RMI-VWZ-19.5-20.0 Received by: Waller Siebenlist (Signature) SAMPLE 1.D. 4.9.96 1315 Date/Time Date/Time Date/Time **Project Title** 10 | 3 Relinguished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) homes SAMPLERS: (Signature) Columbus Laboratories Chris 4.9.96 DATE Proj. No.

CHAIN OF CUSTODY RECORD

Form No.

SPOUR -= Remarks \_ 355 7 ĭ 7 = = : = Ξ Received by: Received by: (Signature) (Signature) Containers --= Ξ : Ξ = ło τ : : × • × ĭ = : **И**птрет Container No Date/Time Date/Time SAMPLE TYPE (\/) Remarks Relinquished by: (Signature) Relinquished by: (Signature) 1030 Date / Time 1PH-8015-BIEX-82-> > > > / Received for Laboratory by: > > Received by: (Signature) RMI-1W2-- 14.5-15.0 (2002737-01 Rhein-Main AB, POLYard RMI-VW2-12.5-13,C RMI-VWZ-15.5-16.0 RM1-1W2-17.5-18,0 RM1-1W2-18,5-19,0 RM1-1W2-11.5-12.0 RMI-1W2-13.5-14.0 RM1-1W2-16.5-17.0 RMI-VWZ-10.5-11.0 RMI-VW2-4,5-5.0 5-10. -6.9-RMI-VW2-3.5-4. Received by: (Signature) RMI-VW2-5.5-(Signature) RMI-UWZ-1.5-2, O Chrispera Walter Siebpolist SAMPLE I.D. RM1-1W2-9 RUI-1W2-RM1-1W2= RMI-VWZ ulie Mame, 49.96 1315 Date/Time Date/Time Date/Time Project Title 0877 0847 TIME 08 29 08 29 5903 3903 0750 28 10 7024 3924 702 1092 1012 Relinquished by: (Signature) 08 ō 705 1014 Rejinquished by: (Signature) 4 Relinquished by: (Signature) SAMPLERS: (Signature) Columbus Laboratories 14.9.96 14.9.96 24.9.9C 149.96 V4996 V4.9.96 V4996 V49.96 1,9,96 49.96 4996 14.9.96 V4.9.96 DATE V49.96 149.96 Proj. No. ~ 4.9.9( 149

Battelle



255 Glendale Avenue, Suite 21 Sparks. Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### ANALYTICAL REPORT

Battelle 505 King Ave

Columbus Ohio 43201

Job#: G002737-01

Phone: (614) 424-6199

Attn: Al Pollack

Sampled: 04/09-10/96 Received: 04/12/96 Analyzed: 04/17-18/96

Matrix: [ X ] Soil [ ] Water [ ] Waste

Analysis Requested: TPH - Total Petroleum Hydrocarbons-Purgeable

Quantitated As Gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

Methodology: TPH - Modified 8015/DHS LUFT Manual/BLS-191

BTEX - Method 624/8240

#### Results:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                  | Detection<br>Limit                                       |
|------------------------------------|------------------------------------------------------------|--------------------------------|----------------------------------------------------------|
| RM1-VW2-22.3-22.8<br>/BMI041296-17 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 230<br>250<br>ND<br>200<br>460 | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW2-23.3-23.8<br>/BMI041296-18 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>170<br>ND<br>ND<br>24    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW2-24.3-24.8<br>/BMI041296-19 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 92<br>98<br>ND<br>44<br>97     | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |
| RM1-VW2-25.3-25.8<br>/BMI041296-20 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>400<br>68<br>24<br>30    | 10 mg/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg<br>20 ug/Kg |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http//www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                    | Detec<br>Li                     | tion<br>mit                               |
|------------------------------------|------------------------------------------------------------|----------------------------------|---------------------------------|-------------------------------------------|
| RM1-VW2-27.3-27.8<br>/BMI041296-21 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>900<br>390<br>ND<br>36     | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-27.8-28.3<br>/BMI041296-22 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>1,700<br>980<br>45<br>130  | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-29.3-29.8<br>/BMI041296-23 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>400<br>39<br>ND<br>ND      | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-29.8-30.3<br>/BMI041296-24 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>530<br>28<br>ND<br>ND      | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-31.3-31.8<br>/BMI041296-25 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>240<br>ND<br>ND<br>ND      | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-VW2-31.8-32.3<br>/BMI041296-26 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>300<br>230<br>55<br>140    | 10<br>20<br>20<br>20<br>20      | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-2.0-2.5<br>/BMI041296-27   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 2,500<br>ND<br>ND<br>ND<br>4,800 | 250<br>500<br>500<br>500<br>500 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



**Alpha Analytical, Inc.** 255 Glendale Avenue, Suite 21 Sparks. Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523

1-800-283-1183

### Continued:

| Client ID/<br>Lab ID              | Parameter                                                              | Concentration               |                                | ction<br>imit                             |
|-----------------------------------|------------------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------------------|
| RM1-MW1-3.5-4.0<br>/BMI041296-28  | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | 19<br>ND<br>ND<br>ND<br>ND  | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-4.0-4.5<br>/BMI041296-29  | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | 69<br>ND<br>ND<br>ND<br>ND  | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-5.5-6.0<br>/BMI041296-30  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 640<br>ND<br>ND<br>ND<br>ND | 50<br>100<br>100<br>100<br>100 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-6.5-7.0<br>/BMI041296-31  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 49<br>ND<br>ND<br>ND<br>ND  | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-7.5-8.0<br>/BMI041296-32  | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | 100<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-8.5-9.0<br>/BMI041296-33  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes             | 10<br>ND<br>ND<br>ND<br>ND  | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-9.5-10.0<br>/BMI041296-34 | TPH (Purgeable)<br>Benzene<br>Toluene<br>Ethylbenzene<br>Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND  | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



255 Glendale Avenue, Suite Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406 1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523

1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                          | Detec<br>Li                    | tion<br>mit                               |
|------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------|-------------------------------------------|
| RM1-MW1-10.5-11.0<br>/BMI041296-35 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 110<br>ND<br>ND<br>ND<br>ND            | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-2.5-3.0<br>/BMI041296-36   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 3,100<br>ND<br>ND<br>ND<br>ND<br>3,200 | 500<br>1,000<br>1,000<br>1,000 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |

ND - Not Detected

Approved by:

Roger L. Scholl, Ph.D.

Laboratory Director

Page 4 of 4

Date

4/23/96

Baffelle

SPEW Remarks 1355 = = Ξ ٤ = × Received by: Received by: (Signature) Signature) Containers 2 -= = = = = ło = = = = = Number Container No Date/Time Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time > > Received for Laboratally by: Received by: (Signature) RMI-1W2-23.3-23.8 RM1-1W2-31,8-32.3 1RM1-1W2-273-27.8 29.8 - 30.3 RMI-VW2-29.3-29.8 2MI-MWI-6.5-7.0 RMI-VWZ-24.8-28.3 Rhein-Main AB, Pollad 13,5-40 XMI-MWI-40-4.0 RMI-1W2-24, 3-24,8 RMI-1W2-25.3-20.8 M-MWI-5,5-6.0 RMI-1WZ-22.3-22.8 Perry, Walter Siebenlist Received by: (Signature) (Signature) RMI-1W2-31 SAMPLE I.D. RMI-VW2-RMI-MWI AMI-AWI 4.1096/1545 2M-ME Date/Time Date/Time Date/Time Project Title 2830 3000 14421 29 00 342 4 50 14 20 1420 3,85 TIME 3 Relinquished by: (Signature) 345 350 Relinguished by: (Signature) felinquished by: (Signature) 415 415 425 SAMPLERS: (Signature) 6002737-01 Stame Columbus Laboratories 10.96 V4.10.96 10.9° 10.96 10.96 10.96 0.96 10.96 Phris 49.96 19.9.6 10.96 V4.9.96 19.9.6 149.96 14.9.96 DATE Proj. No.

Battelle

CHAIN OF CUSTODY RECORD

Remarks [355 -Received by: (Signature) Received by: (Signature) = Containers ۲ = ło Иптрег Container No. Date/Time Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time 108-X7181 Received for Laboratory by (Signature) Received by: (Signature) 2002737-01 Rhein-Main AB, POL Kird RM1-MW1-10.5-11.0 RMI-MW1-9.5-10.C RMI-MWI-7.5-8.0 RMI-MW138.5-9.0 Received by: (Signature) SAMPLE I.D. SAMPLERS: (Signature)

A Dorris W. Sipbonlist 4.1096/1545 Date/Time Date/Time Date/Time 492 TIME 1942 Relinquished by: (Signature) Relinquished by: (Signature) イグ Relinquished by: (Signature) 52 Columbus Laboratories Mamer 1.10.96 DATE 4.10.96

| Billin      | ig Inte                          | Billing Information: |                |                    | Alpha Analytical, Inc.                                | al, Inc.     |          |                   |      |            |      |
|-------------|----------------------------------|----------------------|----------------|--------------------|-------------------------------------------------------|--------------|----------|-------------------|------|------------|------|
| NameAddress | 82                               |                      |                |                    | 255 Glendale Avenue, Suite 21<br>Sparks, Nevada 89431 | Suite 21     |          |                   | ,    |            |      |
| City, Si    | City, State, Zip<br>Phone Number | ip P                 |                |                    | Phone (702) 355-1044<br>Fax (702) 355-0406            | 4            | - a      | Page #            | N    |            |      |
| Client      | Client Name                      | metel                | 6              |                    | F600                                                  | 37-01        |          | Beonired          | _    |            |      |
| Address     | ss                               |                      |                |                    | Phone #                                               |              | 11 1     | Columbia coccurry | -    |            |      |
| City, S     | City, State, Zip                 | Q                    |                | Report Attention   | 11/00                                                 | N            | <b>₹</b> |                   | _    |            |      |
| Time        | Date                             | Time Date Type*      | Sampled by     | KL MAN!            |                                                       | Number       |          | <i> </i>          |      |            |      |
| Sampler     | Sample                           |                      | Lab ID Number  | Sample Description |                                                       | Containers / | / 1      | / /               |      | Remarks    |      |
|             | 4/6                              | 100                  | t1-968/160 = W | LMI-142-           | 23.3-33.8                                             | /            | ××       |                   |      |            |      |
|             |                                  |                      | 181            | Rinl- VW3 -        | 3-23                                                  | `            | ××       |                   | ئند  |            |      |
|             |                                  |                      | 19             | RIM-1W2-           | 8.45-5.4g                                             | /            | ×        |                   |      |            |      |
| :           |                                  |                      | 20             |                    | 25.3-25.8                                             | /            | メメ       |                   |      |            |      |
|             |                                  |                      | 18 h           | Pm1-1122-          | 27.3-27.8                                             | /            | XX       |                   |      |            |      |
|             |                                  | //                   | 33             | 12-                | 7.8- Z                                                | /            | ドメ       |                   | ,    |            |      |
|             | 2                                | 10.                  | 23             | 1                  | 29.3-29.8                                             | /            | X L.     |                   |      |            |      |
|             | 1                                | 45                   | 24             | 12m1-12-           | 29.8-30.3                                             | /            | XX       |                   |      |            |      |
|             |                                  | ach                  | 35             | 12ml-11W3-         | 31.3-31.8                                             | /            | 人と       | 1.00              |      | <b>ذ</b> , | ,    |
|             |                                  | 1.<br>90 pe          | 26             | RMI- VWB           | 31.8-323                                              | /            | XX       |                   | ·    | -          |      |
|             |                                  |                      | 47             | KM1-1001-          | 2.0-2.5                                               | /            | KK.      |                   |      |            |      |
|             |                                  | <b>y</b>             | 378            | RMI-MWI-           | 3.5-40                                                | /            | KK       |                   |      |            |      |
|             |                                  |                      | 88             |                    | 4.0-45                                                | /            | XX       |                   |      |            |      |
|             |                                  |                      | 30             | Rml-               | 5,5.6.0                                               | \            | XX       |                   |      | _          |      |
|             |                                  | -                    | 3              | Rm1-10101          | .65-7.0                                               | \            | Z/X      |                   |      |            |      |
|             | >                                | >                    | 32             |                    | -7.5-8.0                                              |              | X        |                   |      |            |      |
|             |                                  | Signature            | 100            | Print Name         | ате                                                   |              | Company  | ny                | Date | te         | Time |
| Relin       | Relinquished by                  | 1                    | 11             | , ,                | 0                                                     |              |          | 3.,               |      | //         |      |
| Rece        | Received by                      | March 1              | 1 dick         | (100a)             | Bushick                                               |              | FUH      |                   | 1/6  | 16/0       | 900  |
| Reli        | Relinquished by                  | ph )                 |                |                    | /                                                     |              |          |                   |      |            |      |
| Rece        | Received by                      |                      |                |                    |                                                       |              |          |                   |      |            |      |
| Relin       | Relinquished by                  | by                   |                |                    |                                                       |              |          |                   | -    |            |      |
| Rece        | Received by                      |                      |                |                    |                                                       |              |          |                   | -    | -          |      |

| Billing                                    | l Infor  | Billing Information: | ••            |         |                    | Alpha Analytical, Inc.                                             | rtical, Inc.           |          |             |                   | - معرضا                                 |       |         |
|--------------------------------------------|----------|----------------------|---------------|---------|--------------------|--------------------------------------------------------------------|------------------------|----------|-------------|-------------------|-----------------------------------------|-------|---------|
| Address<br>City, State, Zip                | te, Zip  |                      |               |         | (3)<br>(3)         | Sparks, Nevada 89431<br>Phone (702) 355-1044<br>Fax (702) 355-0406 | 39431<br>1-1044<br>406 | _        |             |                   | · N                                     | 0     |         |
| Phone Number                               | lumber   |                      |               |         |                    |                                                                    |                        | 1        | Page #      | ) # a             | 9                                       |       |         |
| Client                                     | ате      | B                    | Lattell       | ٩       |                    | P.O. #                                                             |                        | \        | , / An      | Analyses Required | nired                                   |       |         |
| Address                                    |          |                      |               |         |                    | Phone #                                                            | 10                     | 15       | 12/         | -                 | -                                       |       |         |
| City, State, Zip                           | ıte, Zip |                      | -             |         | Report Attention   | Il Tell                                                            | call                   | Z        | \<br>\Z     | _                 | _                                       | _     |         |
| Time Date Type*<br>Sampled Sampled See Key | Date     | Type*<br>See Key     | Sampled by    | d by    | J39                | hubed                                                              | Number                 | 2        | 1           | <u> </u>          | <u></u>                                 |       |         |
|                                            |          | Below                | Lab ID Number | ,       | Sample Description | scription                                                          | Containers             | <u> </u> | \<br>\<br>\ |                   | +                                       | Ren   | Rémarks |
|                                            | 1        | 20                   | 5111204/0%    | 16-33 1 | MI - MW.           | 1-8.5-4.0                                                          |                        | X        |             |                   |                                         | Bull  |         |
| •                                          | 7        | 7                    |               | 34 R    | mI-me              | 1-9.5-10.0                                                         | / 0                    | XX       |             |                   |                                         |       |         |
|                                            | 7        | B                    |               |         | PmI-my             | 1-10.5-110                                                         | 1 6                    | XX       |             |                   | *************************************** |       |         |
|                                            | 7        | 1                    |               | 0       | LM1-1112           | 1-2.5.30                                                           | / 0                    | ×        | ~           |                   |                                         |       |         |
|                                            |          |                      | ·.            |         |                    |                                                                    |                        |          |             |                   |                                         |       |         |
|                                            |          |                      |               |         |                    |                                                                    |                        |          |             |                   |                                         |       |         |
|                                            |          |                      |               |         |                    |                                                                    |                        |          |             |                   |                                         |       |         |
|                                            |          |                      |               |         |                    |                                                                    |                        |          |             |                   |                                         |       |         |
|                                            |          |                      |               |         |                    |                                                                    |                        |          |             | ź                 |                                         |       | ,       |
|                                            |          | *******              | an de Proposa |         |                    |                                                                    |                        |          |             |                   | •                                       |       |         |
|                                            |          |                      |               |         |                    |                                                                    | •                      |          |             |                   |                                         |       |         |
|                                            |          |                      |               |         |                    |                                                                    |                        | ,        |             |                   |                                         |       |         |
|                                            |          | ۵                    | A             |         |                    |                                                                    |                        |          |             |                   |                                         |       |         |
|                                            |          |                      |               |         |                    |                                                                    |                        | •        |             |                   |                                         |       |         |
|                                            |          |                      |               |         |                    |                                                                    |                        |          |             |                   |                                         |       |         |
|                                            |          |                      |               |         |                    |                                                                    |                        |          |             |                   |                                         | >     |         |
|                                            | -        | S                    | Signature     |         | Print Name         | ame                                                                |                        |          | Company     |                   |                                         | Date  | Time    |
| Relinquished by                            | shed by  | 1                    |               | _       |                    |                                                                    | •                      |          |             |                   |                                         | \     | _       |
| Received by                                | Jan Jack | 1/2                  | Main          | K       | Linda 1            | Tubick                                                             |                        | 180      | N           |                   |                                         | Well+ | 1000    |
| Relinquished by                            | sped by  |                      |               |         |                    | /                                                                  |                        |          |             |                   |                                         | /     |         |
| Received by                                | d by     |                      |               |         |                    |                                                                    |                        |          |             | :                 |                                         |       |         |
| Refinquished by                            | shed by  |                      |               |         |                    |                                                                    |                        |          |             |                   |                                         |       |         |
| Received by                                | d by     |                      |               |         |                    |                                                                    |                        |          |             |                   |                                         |       |         |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.



255 Glendale Avenue. Suite 21 Sparks. Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### ANALYTICAL REPORT

Battelle 505 King Ave

Columbus Ohio 43201

Job#: G002737-01

Phone: (614) 424-6199

Attn: Al Pollock

Sampled: 04/10-11/96 Received: 04/12/96 Analyzed: 04/16-17/96

Matrix: [ X ] Soil [ ] Water [ ] Waste

Analysis Requested: TPH - Total Petroleum Hydrocarbons-Purgeable

Quantitated As Gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

Methodology: TPH - Modified 8015/DHS LUFT Manual/BLS-191

BTEX - Method 624/8240

#### Results:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration               |                            | ction<br>mit                              |
|------------------------------------|------------------------------------------------------------|-----------------------------|----------------------------|-------------------------------------------|
| RM1-MW1-11.5-12.0<br>/BMI041296-01 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 190<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-12.5-13.0<br>/BMI041296-02 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 16<br>ND<br>ND<br>ND<br>ND  | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-13.5-14.0<br>/BMI041296-03 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 45<br>ND<br>ND<br>ND<br>ND  | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-14.5-15.0<br>/BMI041296-04 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 96<br>ND<br>ND<br>ND<br>ND  | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                          |                                | ction<br>mit                              |
|------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------|-------------------------------------------|
| RM1-MW1-16.5-17.0<br>/BMI041296-05 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 35<br>ND<br>ND<br>ND<br>ND             | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-18.0-18.5<br>/BMI041296-06 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 19<br>ND<br>ND<br>ND<br>ND             | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-15.5-16.0<br>/BMI041296-07 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND                   | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-18.5-19.0<br>/BMI041296-08 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 33<br>ND<br>ND<br>ND<br>ND             | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-19.0-19.5<br>/BMI041296-09 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 130<br>510<br>ND<br>ND<br>ND           | 50<br>100<br>100<br>100<br>100 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-19.5-20.0<br>/BMI041296-10 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 91<br>540<br>ND<br>ND<br>ND            | 50<br>100<br>100<br>100<br>100 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-22.0-22.5<br>/BMI041296-11 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 540<br>1,000<br>120<br>2,900<br>13,000 | 50<br>100<br>100<br>100<br>100 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



255 Glendale Avenue, Súite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                  | Detec<br>Lim         |                                           |
|------------------------------------|------------------------------------------------------------|--------------------------------|----------------------|-------------------------------------------|
| RM1-MW1-22.5-23.0<br>/BMI041296-12 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 14<br>300<br>ND<br>100<br>470  | 20 1<br>20 1<br>20 1 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-24.0-24.5<br>/BMI041296-13 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 12<br>100 ·<br>ND<br>65<br>310 | 20 1<br>20 1<br>20 1 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-24.5-25.0<br>/BMI041296-14 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 14<br>34<br>ND<br>30<br>120    | 20 1<br>20 1<br>20 1 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-26.0-26.5<br>/BMI041296-15 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>110<br>ND<br>ND<br>ND    | 20 1<br>20 1<br>20 1 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-MW1-26.5-27.0<br>/BMI041296-16 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>220<br>ND<br>ND<br>52    | 20 1<br>20 1<br>20 1 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |

ND - Not Detected

Approved by:

Roger L. Scholl, Ph.D.

Laboratory Director

Page 3 of 3

Date

4/23/96

| billing information: | rmation:    |               |                    | Alpha Analytical, Inc.                                | al, Inc.   |             |                   |      |         |
|----------------------|-------------|---------------|--------------------|-------------------------------------------------------|------------|-------------|-------------------|------|---------|
| Address              |             |               |                    | Sparks, Nevada 89431                                  | 31         |             |                   | ,    |         |
| City, State, Zip     | 0           |               |                    | Phone (702) 355-10 <sup>4</sup><br>Fax (702) 355-0406 | 4          |             | \                 | \    |         |
| Phone Number         | 1,4         | , , , , ,     |                    |                                                       |            | )           | Page # of         | 1    |         |
| Client Name          | 111         | 11/11         |                    | 8 + 600 200 god                                       | 3201       | _           | Analyses Bequired |      |         |
| Address              |             |               |                    |                                                       |            |             |                   | T    |         |
| City, State, Zip     |             |               | Report Attention   | Mallo                                                 | 11         |             |                   | _    |         |
| Time Date            | Type*       | Sampled by    | CELINA             | 70                                                    | Number     |             |                   | _    |         |
| Sampled Sampled      | Below Below | Lab ID Number | Sample Description |                                                       | Containers |             |                   | 7 Re | Remarks |
| 1110                 | 130 Mm      | 104/1991-01   | -1011-1MX          | 11.5-12.0                                             | /          | X           |                   | Mal  | 15 tube |
| ,                    |             | 20            | 1-10M-141          | 125-130                                               | /          | <i>&gt;</i> |                   |      |         |
| 7                    |             | 0.3           | Km1-mw1-           | 13.5-14.0                                             | /          | メン          |                   |      |         |
| 7                    |             | po            | 2ml-mui-           | 0.51-5.61                                             | /          | メメ          |                   |      |         |
| 11/1                 |             | SO            | 1-1011-1117        | 16.5-12.0                                             | /          | XX          |                   |      |         |
| 1,                   |             | 90            | Km1-1911-1         | 18.0-18.5                                             | /          | XX          |                   |      |         |
|                      |             | 07            | Km1-1001-1         | K.S-11.0                                              | /          | XX          |                   |      |         |
|                      |             | 80            | ١,                 | 18.5-19.0                                             | /          | [X X]       |                   |      |         |
|                      |             | 60            | 1-1                | 190-195                                               | /          | XX          |                   |      |         |
|                      |             | 70            | PMI- NW1-          | 19.5-20.0                                             | /          | ×           |                   |      |         |
|                      |             |               | 1-mm-              | -22.0-22.5                                            | \          | イメ          |                   |      |         |
|                      |             | 13            | RmI- MWI.          | 22.5-23.0                                             | _          | XX          |                   |      |         |
|                      |             | 13            | RMI- MWI-          | 24.0-245                                              | _          | X           |                   |      |         |
|                      |             | 14            | RMI- MW1-          | 24.5-25.0                                             | _          | 1 7         |                   | ``   |         |
|                      |             | 7             | RMI- MWI-          | 26.0 26.5                                             | ,          | X           |                   | *~.  |         |
| <del>-&gt;</del>     | <b>&gt;</b> | 16            | RM-1001-           | 26.5-27.0                                             |            | 17 7        |                   |      |         |
|                      | Signature   |               | Print Name         | ıme                                                   |            | ပိ          | Company           | Date | Time    |
| Relinquished by      |             | M.            | / / /              |                                                       |            |             |                   | /    |         |
| Received by          | Mail.       | 1 Su heril    | Linds to           | wark                                                  |            | 1202        |                   | 4/2/ | 1000    |
| Relinquished by      | 1           |               |                    | /                                                     |            |             |                   |      |         |
| Received by          |             | <b>S</b>      |                    |                                                       |            |             |                   |      |         |
| Refinquished by      |             |               |                    |                                                       |            | -           |                   |      |         |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Received by



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### ANALYTICAL REPORT

Battelle

505 King Ave

Columbus Ohio 43201

Job#: G002737-01

Phone: (614) 424-3753

Attn: Al Pollock

Sampled: 07/25/96

Received: 07/29/96 Analyzed: 08/03-07/96

Matrix: [ X ] Soil

l Water

ſ

l Waste

Analysis Requested: TPH -

Total Petroleum Hydrocarbons-Purgeable

Ouantitated As Gasoline

[

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

Methodology:

TPH - Modified 8015/DHS LUFT Manual/BLS-191

BTEX - Method 624/8240

#### Results:

| Client ID/<br>Lab ID             | Parameter                                                  | Concentration                        |                                         | ction<br>mit                              |
|----------------------------------|------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------|
| RM1-HSP-0-15<br>/BMI072996-01    | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>37           | 10<br>20<br>20<br>20<br>20              | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-30-60<br>/BMI072996-02   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 3,700<br>ND<br>ND<br>7,100<br>47,000 | 500<br>1,000<br>1,000<br>1,000<br>1,000 |                                           |
| RM1-HSP-60-75<br>/BMI072996-03   | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 420<br>ND<br>ND<br>ND<br>ND<br>730   | 50<br>100<br>100<br>100<br>100          | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-90-1.05<br>/BMI072996-04 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 93<br>ND<br>ND<br>ND<br>84           | 10<br>20<br>20<br>20<br>20              | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

| Continued:                         |                                                                 |                                       |                                | 1-80                                      |
|------------------------------------|-----------------------------------------------------------------|---------------------------------------|--------------------------------|-------------------------------------------|
| Client ID/<br>Lab ID               | Parameter                                                       | Concentration                         |                                | ction<br>mit                              |
| RM1-HSP-1.2-1.35<br>/BMI072996-05  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes      | 190<br>ND<br>ND<br>ND<br>83           | 20<br>40<br>40<br>40<br>40     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-1.5-1.65<br>/BMI072996-06  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes      | ND<br>ND<br>ND<br>ND                  | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-1.8-1.95<br>/BMI072996-07  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes      | 92<br>ND<br>ND<br>ND<br>ND            | 20<br>40<br>40<br>40<br>40     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-2.1-2.25<br>/BMI072996-08  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes      | 260<br>ND<br>ND<br>ND<br>890          | 50<br>100<br>100<br>100<br>100 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-2.4-2.55<br>/BMI072996-09  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes      | 230<br>ND<br>ND<br>ND<br>270          | 50<br>100<br>100<br>100<br>100 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-2.7-2.85<br>/BMI072996-10  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes      | 16<br>ND<br>ND<br>ND<br>ND            | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-3.15-3.30<br>/BMI072996-11 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes      | 120<br>ND<br>ND<br>ND<br>ND           | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-3.3-3.45<br>/BMI072996-12  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes Page | 110<br>ND<br>ND<br>ND<br>ND<br>2 of 4 | 10<br>20<br>20<br>20<br>20     | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 e-mail: alpha@powernet.net http//www.powernet.net/~alpha 2505 Chandler Avenue, Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

#### Continued:

| Client ID/<br>Lab ID               | Parameter                                                  | Concentration                |                            | ction<br>mit                              |
|------------------------------------|------------------------------------------------------------|------------------------------|----------------------------|-------------------------------------------|
| RM1-HSP-3.6-3.75<br>/BMI072996-13  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 260<br>ND<br>ND<br>ND<br>140 | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-3.9-4.05<br>/BMI072996-14  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND   | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-4.2-4.35<br>/BMI072996-15  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 300<br>ND<br>ND<br>97<br>920 | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-4.5-4.65<br>/BMI072996-16  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND   | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-4.95-5.10<br>/BMI072996-17 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND   | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-5.1-5.25<br>/BMI072996-18  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND   | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-5.4-5.55<br>/BMI072996-19  | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND   | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha 2505 Chandler Avenue. Suite 1 Las Vegas, Nevada 89120 (702) 498-3312 FAX: 702-736-7523 1-800-283-1183

Continued:

| Client ID/<br>Lab ID              | Parameter                                                  | Concentration              |                            | ction<br>mit                              |
|-----------------------------------|------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------|
| RM1-HSP-5.7-5.85<br>/BMI072996-20 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND       | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-6.0-6.15<br>/BMI072996-21 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-6.3-6.45<br>/BMI072996-22 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 40<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-6.6-6.75<br>/BMI072996-23 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 49<br>ND<br>ND<br>ND<br>41 | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |
| RM1-HSP-6.9-7.05<br>/BMI072996-24 | TPH (Purgeable) Benzene Toluene Ethylbenzene Total Xylenes | 61<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>20<br>20<br>20 | mg/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg |

ND - Not Detected

Approved by:

Roger W. Scholl, Ph.D.

Laboratory Director

Page 4 of 4

|                                                                               |                                                                    |              | -           | _       |                  |                                     | _                  | <u> </u>                                         | I   |    |     |     |       |                                |            |      |            |     | $\neg$    |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|-------------|---------|------------------|-------------------------------------|--------------------|--------------------------------------------------|-----|----|-----|-----|-------|--------------------------------|------------|------|------------|-----|-----------|
|                                                                               |                                                                    |              | -           | _       | _                |                                     | _                  |                                                  |     |    | _   |     | _     |                                |            |      |            |     | $\dashv$  |
| . 1                                                                           |                                                                    |              | <u> </u>    | _       | _                |                                     | _                  |                                                  |     |    |     |     |       |                                |            |      |            |     |           |
| N                                                                             | pe                                                                 |              | -           | _       |                  |                                     |                    |                                                  |     |    |     |     |       |                                |            |      |            |     |           |
|                                                                               | equir                                                              |              | _           | _       |                  |                                     | _                  | -                                                |     |    |     |     |       |                                |            |      |            |     |           |
| ō                                                                             | es R                                                               |              | -           | _       |                  |                                     | \                  |                                                  |     |    |     |     |       |                                |            |      |            |     |           |
| K                                                                             | Analyses Required                                                  |              |             | _       |                  |                                     |                    |                                                  |     |    |     |     |       |                                |            |      |            |     | $\neg$    |
| #                                                                             | *                                                                  |              | $\vdash$    | _       | _                |                                     |                    |                                                  |     |    |     |     |       |                                |            |      |            |     |           |
| Page #                                                                        |                                                                    |              | $\vdash$    | _       | _                |                                     | _                  | <del>                                     </del> |     |    |     |     | Ý     | /                              |            |      | 3          | τ,  |           |
|                                                                               |                                                                    |              | <u> -</u>   | _       | · ·              |                                     |                    |                                                  |     |    |     |     |       |                                |            |      |            |     |           |
|                                                                               |                                                                    |              | ~           |         | X X              | 2                                   | ~                  | X                                                | X   | 7  | 7   | ×   | X     | 乂                              | 7          | 人    | Y          | 7   | ×         |
|                                                                               | _                                                                  | /            | 110         |         | 7                | $ \langle \langle \langle \rangle $ | $\geq$             | ×                                                | >   | >  | ×   | ×   | >     | ×                              | ×          | V    | X          | . 🔻 | *         |
|                                                                               |                                                                    |              | 10.48 E     |         |                  | type of                             | Moje               | ~                                                |     |    |     |     |       |                                |            |      | ,          |     |           |
| uite 21                                                                       |                                                                    |              | 66          |         |                  | Total and type of                   | ** See below       | 1                                                | ./  | ., | 1.  | `.  | //    | ,,                             | ,,         | ,    | .,         | •   |           |
| Alpha Analytical, Inc.<br>255 Glendale Avenue, Suite 21<br>Speta Manada 60434 | -1044<br>-106                                                      | I            | 00          |         |                  |                                     |                    | 5.75                                             | 105 | 35 | 15, | 0   | 5.075 | 25                             | 5          | 15   | /د         | 25  | S         |
| ale Ave                                                                       | Spairs, nevada 69431<br>Phone (702) 355-1044<br>Fax (702) 355-0406 |              | # qor       | DWR #   | Fax#             | 1                                   |                    | 1                                                | 16  | 6- | 11  | -5. | 1,0   | -5.5                           | 5.7-5.85   | 1.1  | 7          | 19  | W         |
| Glenda<br>Slenda<br>Sto No                                                    | 8, 56<br>(707)<br>(202)                                            |              | 3           | 0       | -                | 3                                   |                    | 10                                               | 6   | 3  | 12  | X   | /-/   | · /                            | 7          | 6.0- | 3-,        | 9   | 9         |
| 255                                                                           | F P S                                                              | П            |             |         |                  | 2                                   | noito              | (5                                               | 3   | 1  | 11  | 1   | 5     | $\langle \dot{\gamma} \rangle$ | <i>\</i> 0 | 1    | <i>(</i> / | i   | i         |
|                                                                               |                                                                    |              |             |         | 0                | 10                                  | Descrip            | ١                                                |     |    |     |     |       |                                |            |      |            |     |           |
| -                                                                             |                                                                    |              | *           | *       | # 00             | nt Attention                        | Sample Description | 95                                               |     |    |     |     |       |                                |            |      |            |     | 1         |
| -                                                                             |                                                                    | ᅦ            | P.O. #      | # SMA   | Phone #          | Report Att                          |                    | H                                                | "   | 11 | "   | "   | "     | ٠,                             | "          | "    | ,,         |     |           |
|                                                                               |                                                                    | ı            |             |         |                  |                                     |                    | 11-                                              |     |    |     |     |       |                                |            |      |            |     |           |
| 1                                                                             |                                                                    |              |             |         |                  |                                     |                    | RM                                               | .,  | *  | 1   | ;   | .,    |                                | ,,         | ,,   | .,         | :   | ;         |
|                                                                               |                                                                    |              |             |         |                  |                                     |                    | -13                                              | 14  | 1  | 2   | 7   | 7     | 5                              | 20         | 1/   | 23         | 23  | The       |
| ٤ .                                                                           |                                                                    |              |             |         |                  | ed by                               | -ie                | 776-1                                            |     | ,  |     |     |       | 100                            | 18         | 8    | 18         | 18  | , 0       |
|                                                                               |                                                                    | Fax          |             |         |                  | Sampled by                          | Lab ID Number      | 33                                               |     |    |     |     |       |                                |            |      |            |     |           |
|                                                                               |                                                                    |              |             |         |                  | Use                                 | Lab                | 3111-035                                         |     | i  |     |     |       |                                |            |      |            |     |           |
|                                                                               |                                                                    | 11 11        | 17/1        |         |                  | Office Use<br>Onfy                  |                    | BIN                                              |     |    |     |     |       |                                |            |      |            |     |           |
| mation                                                                        |                                                                    |              | 11          |         |                  | Matrix*                             | Below              | 50                                               | _   |    |     |     |       |                                |            |      |            |     | $\supset$ |
| TOTU                                                                          | 3, Zip                                                             | ımber.       | me .        |         | e, Zip           | Date                                | ampled             | XIE                                              |     |    |     |     |       |                                |            |      |            |     | >         |
| Dilling Information:                                                          | Address<br>City, State, Zip.                                       | Phone Number | Client Name | Address | City, State, Zip | Time Date Matrix*                   | ampled S           |                                                  |     |    |     |     |       |                                |            |      |            |     | 1         |
| u z                                                                           | A O                                                                | ۵١           |             |         |                  |                                     | ری                 |                                                  |     |    |     |     |       |                                | L          |      |            |     |           |

REMARKS:

0730 Time Date Company 1717 Print Name Signature Relinquished by Relinquished by Relinquished by Received by Received by Received by

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

| Name             | orn E            | billing information: | in:                          |                    | Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 | I, Inc.<br>Suite 21 |          | d             |                  | N             | 61 |          |   |
|------------------|------------------|----------------------|------------------------------|--------------------|------------------------------------------------------|---------------------|----------|---------------|------------------|---------------|----|----------|---|
| Address          | -                |                      |                              |                    | Sparks, Nevada 89431                                 |                     | L        | rage #        | 10 / 01          |               |    |          |   |
| City, State, Zip | ıte, Zip         |                      |                              |                    | Phone (702) 355-1044                                 | ,s                  | _        |               | Analyses Dogging | Posti in post |    |          |   |
| Phone Number     | Jumber           |                      | Z Fax                        |                    | rax (/02) 333-0406                                   |                     | _        |               | Allalyses n      | nalinha       |    |          |   |
| Client Name      | James            | 11                   |                              | P.O. #             | O V # dor                                            | 10.52.501           | <u> </u> | -             |                  | -             |    | -        |   |
| Address          | 2                |                      |                              | PWS#               | DWR#                                                 |                     | \        |               | <u> </u>         | <u> </u>      | _  | _        |   |
| City, SI         | City, State, Zip |                      |                              | Phane # 1 1        | 14/338 Fax#                                          |                     | 5,       | \<br>\<br>??? | _                | <u></u>       | _  | _        |   |
| Time             | Date             | Time Date Matrix*    | Office Use Sampled by/ / Cut | Report Attention   | 15/1/cK                                              | Total and type of   | ~{<br>?? | <i></i>       | <u> </u>         | _             | _  | <u> </u> | _ |
| Sampled          | Sampled          | Below                |                              | Sample Description | iption                                               | ** See below        | <u> </u> | _             | <u></u>          | \             | _  | _        | _ |
|                  | 7/25             | 20                   | 1 1. West 60 = 1019          | 115P               | - 0-15                                               | 1 B x               | X        |               |                  |               |    |          | _ |
|                  | _                | _                    | 11 60 *                      | ·                  | 07-00                                                | 7 2 -               | ×        |               |                  |               |    |          | T |
|                  |                  |                      | ., 50                        | .,                 | 25-04                                                | 12                  | X        |               |                  |               |    |          |   |
|                  |                  |                      | " ho                         |                    | 30-1.05                                              | 133                 | X        |               |                  |               |    |          |   |
|                  |                  |                      | " 30                         | .,,                | 1.2-1.35                                             | 150                 | ×        |               |                  |               |    |          | т |
|                  |                  |                      | " 97                         | ,,                 | 1.5-1.65                                             | 18                  | ×        |               |                  |               |    |          | 1 |
|                  |                  |                      | " (2)                        | "                  | 261-81                                               | 18                  | ×        |               |                  |               |    |          | 1 |
|                  |                  |                      | :. X                         | ,,                 | 2.1-2.25                                             | 113 >               | × ,      |               |                  |               |    |          | 1 |
|                  |                  |                      | 60                           | ,                  | 24-255                                               |                     | ×        |               |                  |               |    |          |   |
|                  |                  |                      | " 01                         |                    | 7.7 - 2.85                                           | 171                 | ×        |               |                  |               |    |          | T |
|                  |                  |                      | " //                         | , , ,              | 7.15 - 5.3C                                          | 100                 | ×        |               |                  |               |    |          |   |
|                  | >                | >                    | : 7                          | , ,                | 3.3 - 5.45                                           | 181                 | × ×      |               |                  |               |    |          |   |
| REMARKS:         | \RKS             | ;;                   |                              |                    |                                                      |                     |          |               |                  |               |    | `        |   |

| Signature                                                                      | Print Name                                                          | Company                                                                                              | Date       | Time |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|------|
| Relinquished by                                                                |                                                                     |                                                                                                      | ,          |      |
| Received by                                                                    | (1.10 ) Rebink                                                      | 193                                                                                                  | 1900/6     | 1336 |
| Relinquished by                                                                |                                                                     |                                                                                                      |            |      |
| Received by /                                                                  |                                                                     |                                                                                                      |            |      |
| Relinquished by                                                                |                                                                     |                                                                                                      |            |      |
| Received by                                                                    |                                                                     |                                                                                                      | -          |      |
| NOTE: Samples are discarded 60 days after results are reported unless other ar | e reported <u>unlass other arrangements</u> are made Haza <u>ır</u> | rangements are made _ Hazardous samples খুill be returned to client or disposed of at client expense | esaedxe ta | 1    |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha

Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9089

FAX: (916) 366-9138

ANALYTICAL REPORT

Battelle

505 King Ave

Columbus Ohio 43201

Job#: G002737-01

Phone: (614) 424-6199

Attn: Al Pollock

Sampled: 12/10/96 Received: 12/11/96

Analyzed: 12/13-14/96

Matrix: [ ] Soil

[ X ] Water

1 Waste

Analysis Requested: TPH - Total Petroleum Hydrocarbons-Purgeable

Quantitated as Gasoline

[

TPH -

Total Petroleum Hydrocarbons-Extractable

Quantitated as Diesel

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

Methodology:

TPH (Gas) - Modified 8015/DHS LUFT Manual/BLS-191

TPH (Diesel) - Modified 8015/DHS LUFT Manual/BLS-191

BTEX - Method 624/8240

#### Results:

| Client ID/<br>Lab ID       | Parameter                                                                | Concentration                                 | Detection<br>Limit                                                |
|----------------------------|--------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|
| RMAB-MWI<br>/BMI121196-01  | TPH (Gasoline) TPH (Diesel) * Benzene Toluene Ethylbenzene Total Xylenes | 24<br>5.1<br>9,100<br>6,600<br>820<br>2,800   | 5.0 mg/L<br>0.50 mg/L<br>10 ug/L<br>10 ug/L<br>10 ug/L<br>10 ug/L |
| RMAB-MWII<br>/BMI121196-02 | TPH (Gasoline) TPH (Diesel) Benzene Toluene Ethylbenzene Total Xylenes   | 60<br>4.0<br>30,000<br>30,000<br>720<br>2,500 | 25 mg/L<br>0.50 mg/L<br>50 ug/L<br>50 ug/L<br>50 ug/L<br>50 ug/L  |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http//www.powernet.net/~alpha

Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California

(916) 366-9089 FAX: (916) 366-9138

Continued:

| Client ID/<br>Lab ID        | Parameter                                                              | Concentration                               | Detection<br>Limit                                                |
|-----------------------------|------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|
| RMAB-MWIII<br>/BMI121196-03 | TPH (Gasoline) TPH (Diesel) Benzene Toluene Ethylbenzene Total Xylenes | 20<br>3.5<br>7,300<br>3,900<br>820<br>3,000 | 5.0 mg/L<br>0.50 mg/L<br>10 ug/L<br>10 ug/L<br>10 ug/L<br>10 ug/L |

Components are primarily in the range of gasoline with minor amounts of diesel, light oil and motor oil.

Note: Hydrocarbons outside the range of diesel may have varying recoveries.

Not Detected

Laboratory Director

Page 2 of 2

| ABKS:  (a) Zip  (b) Aminthorial Mathint  (c) Aminthorial Mathint  (d) A | Billing Information: | Infor   | mano             |                      |                    | 255 Glendale Avenue, Suite 21<br>Sparks, Nevada 89431 |             |          | Page #     | /            | of                                      |          |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|------------------|----------------------|--------------------|-------------------------------------------------------|-------------|----------|------------|--------------|-----------------------------------------|----------|----------|----------|
| The control   Semestry   The control   The   | Address              | ZiZ o   | 1                |                      | Phone (%)          | (702) 355-1044                                        | _           |          |            | Sylvan       | I Dod                                   | irod     |          |          |
| When the Law District Company (Company Company | hone N               | umber   |                  | Fax                  |                    | 12) 355-0406                                          | <u> </u>    |          |            | Alialy.      | hau sas                                 | 5        |          |          |
| Prof.   Prof   | Client No            | The T   | 1111             | 4.11                 | F.O.*              | EEEEW                                                 | _           |          |            | <del> </del> |                                         |          |          | <u> </u> |
| Prince to Servicify (L. M.M.) Reconstraint to the form of the form | Address              | 1       |                  |                      | PWS#               | DWR#                                                  |             | _        | / ' /      | <u> </u>     | <u> </u>                                | _        | <u> </u> | _        |
| Where Ones I Simple of Market Married That A Company  The State of the Same of | City, Sta            | le, Zip |                  |                      | Phone #            | Fax#                                                  | 70          | 100      | ₹ <u>₹</u> | <u> </u>     | <u> </u>                                | _        | _        | \        |
| Signal Control | Time                 | Date    | Matrix*          | Office Use           | $\overline{}$      | Total and type                                        | 0           |          | <u> </u>   | _            | _                                       | <u> </u> | _        | _        |
| Time Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampled              | Sampled | See Key<br>Below |                      | Sample Description | * See below                                           | / / /       | <u> </u> | //         |              |                                         |          |          |          |
| Time COUNTY COUN |                      | 13      | AL               | 16/101 TM            | MU                 | K                                                     | ×           |          |            | -            |                                         |          |          |          |
| Time Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 1       | 1                |                      | 9-0                | 2                                                     | *           |          |            |              |                                         | ,        |          |          |
| Time and the state of the state |                      | 7       | 7                | (1)                  | 5-1                | <i>S</i>                                              |             | -        |            |              |                                         |          |          |          |
| Time Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |         |                  |                      |                    |                                                       |             |          |            |              | :                                       |          |          |          |
| Time Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |         |                  |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
| Time (1/02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | -       |                  |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
| Time Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |         |                  |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
| Time Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |         |                  |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
| Time (707)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |         |                  |                      |                    |                                                       | 1           |          |            |              |                                         |          |          |          |
| Time (707)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |         |                  |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
| Time (707)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |         |                  |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
| Time (1/0 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         |                  | ***                  |                    |                                                       |             |          |            |              |                                         |          | _        |          |
| Time (1/0/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REMA                 | IRKS    | <i>;</i> ;       |                      |                    |                                                       |             | ř.       | í          | 7            |                                         |          |          |          |
| Time 1/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         |                  |                      | 1001               | 100 CC                                                |             |          |            |              |                                         |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |         |                  |                      | (72C)              | 11/4/11                                               |             |          |            |              |                                         |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |         |                  |                      |                    |                                                       |             |          |            | ;            |                                         |          |          |          |
| 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |         |                  | Signature            | Print Name         |                                                       |             | Compa    | JUJ.       |              |                                         | Date     | TIm      | g g      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relinqui             | shed by | 1                |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
| Received by Received by Received by Received by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Receive              | 1       | air              | 1 John il            | Linda Applain      | 7                                                     | M           | H        |            |              | 14                                      | 11/11/   | 1110     | 0        |
| Relinquished by Received by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Receive              | d by    |                  |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
| Received by Received by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 65      |                  |                      |                    |                                                       |             |          |            |              | 1                                       |          |          |          |
| Received by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relinqu              | shed by |                  |                      |                    |                                                       |             |          |            |              |                                         | i        |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Receive              | d by    |                  |                      |                    |                                                       |             |          |            |              |                                         |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *Kev: AQ - Agueous   | O - Agi | SHOOLIS          | SO - Soil WA - Waste | OT - Other         | **:   _  itar \/_\/\na                                | מ מינו ויים | -        |            |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |          |          |

CHAINTOE CUSTODY RECORD APS. Battelle

Form No.

Remarks Received by: (Signature) Received by: (Signature) Containers ło Mumber Container No. Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) 0011 Date/Time 508 10 18/1/ VI 15 X × × >Received for Laboratory by: X × × Received by: (Signature) 6002737-01 PHEIN-HAIN AB, POL YARD D Received by: (Signature) (Signature) SAMPLE I.D. RMAB-MWI アイストンプ NIKO - MIN 7.03 13:00 PHAR -Date/Time Date/Time Date/Time W. A. SIEBENLIST 07:11 2-10-96/08:35 05:31 12-10-16 08:30 TIME Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Je which 90 SAMPLERS: (Signature) Columbus Laboratories 7-10-96 7-10-96 2-10-96 2-10-96 10-11-6 36-01-6 05-01-21 26-01-21 12-10-96 DATE



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406 1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha

Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9089

FAX: (916) 366-9138

### ANALYTICAL REPORT

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

Job#: Rhein-Main AB Phone: (614) 424-3779 Attn: Julie Kramer

Methodology:

TPHP - Modified 8015/DHS LUFT Manual - Purgeable

VOCs - Method 8260

|                      | Parameter     | Concentration | Reporting<br>Limit     | Date<br>Sampled | Date<br>Analyzed |
|----------------------|---------------|---------------|------------------------|-----------------|------------------|
| Client ID: GP-14     | TPH Purgeable | 0.56          | 0.25 mg/L              | 9/23/98         | 10/1/98          |
| Lab ID: 98092643-01A | Benzene       | 8.3           | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
|                      | Toluene       | ND            | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
|                      | Ethylbenzene  | 2.4           | $1.0 \mu g/L$          | 9/23/98         | 10/1/98          |
|                      | m,p-Xylene    | 1.0           | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
|                      | o-Xylene      | 1.2           | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
| Client ID: GP-10A    | TPH Purgeable | 5.9           | 0.25 mg/L              | 9/23/98         | 10/1/98          |
| ab ID: 98092643-02A  | Benzene       | 780           | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
|                      | Toluene       | 77            | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
|                      | Ethylbenzene  | 310           | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
|                      | m,p-Xylene    | 170           | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
|                      | o-Xylene      | 48            | $1.0~\mu g/L$          | 9/23/98         | 10/1/98          |
| Client ID: GP-9      | TPH Purgeable | ND            | $0.050\mathrm{mg/L}$   | 9/23/98         | 10/1/98          |
| ab ID: 98092643-03A  | Benzene       | ND            | $0.50  \mu g/L$        | 9/23/98         | 10/1/98          |
|                      | Toluene       | ND            | $0.50  \mu g/L$        | 9/23/98         | 10/1/98          |
|                      | Ethylbenzene  | ND            | $0.50  \mu g/L$        | 9/23/98         | 10/1/98          |
|                      | m,p-Xylene    | ND            | $0.50~\mu g/L$         | 9/23/98         | 10/1/98          |
|                      | o-Xylene      | ND            | $0.50~\mu g/L$         | 9/23/98         | 10/1/98          |
| Client ID: GP-1      | TPH Purgeable | 2.0           | 0.25  mg/L             | 9/22/98         | 10/1/98          |
| ab ID: 98092643-04A  | Benzene       | 3.1           | $1.0~\mu \mathrm{g/L}$ | 9/22/98         | 10/1/98          |
|                      | Toluene       | . ND          | $1.0~\mu g/L$          | 9/22/98         | 10/1/98          |
|                      | Ethylbenzene  | 2.0           | $1.0~\mu g/L$          | 9/22/98         | 10/1/98          |
|                      | m,p-Xylene    | <b>9.9</b> ;  | $1.0~\mu g/L$          | 9/22/98         | 10/1/98          |
|                      | o-Xylene      | 1.9           | $1.0~\mu g/L$          | 9/22/98         | 10/1/98          |
| Client ID: GP-5      | TPH Purgeable | 3.2           | $0.050\mathrm{mg/L}$   | 9/22/98         | 10/1/98          |
| Lab ID: 98092643-05A | Benzene       | 12            | $0.50  \mu g/L$        | 9/22/98         | 10/1/98          |
|                      | Toluene       | 1.4           | $0.50~\mu g/L$         | 9/22/98         | 10/1/98          |
|                      | Ethylbenzene  | 260           | $0.50~\mu g/L$         | 9/22/98         | 10/1/98          |
|                      | m,p-Xylene    | 280           | $0.50  \mu g/L$        | 9/22/98         | 10/1/98          |
|                      | o-Xylene      | 5.1           | $0.50  \mu g/L$        | 9/22/98         | 10/1/98          |
|                      |               |               |                        | of 2            |                  |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California

(916) 366-9089

|            | 1-000-200-1100 |               |      |                      |         | 300-2002 |
|------------|----------------|---------------|------|----------------------|---------|----------|
| Client ID: | CD 2           | MOTE D. 11    |      |                      |         | 366-9138 |
|            |                | TPH Purgeable | 6.8  | 0.10 mg/L            | 9/22/98 | 10/1/98  |
| Lab ID:    | 98092643-06A   | Benzene       | 450  | $0.50\mu g/L$        | 9/22/98 | 10/1/98  |
|            |                | Toluene       | ND   | $0.50\mu g/L$        | 9/22/98 | 10/1/98  |
|            |                | Ethylbenzene  | 390  | $0.50\mu g/L$        | 9/22/98 | 10/1/98  |
|            |                | m,p-Xylene    | 1200 | $0.50  \mu g/L$      | 9/22/98 | 10/1/98  |
|            |                | o-Xylene      | 6.7  | $0.50  \mu g/L$      | 9/22/98 | 10/1/98  |
| Client ID: | GP-10          | TPH Purgeable | 0.15 | $0.050\mathrm{mg/L}$ | 9/23/98 | 10/1/98  |
| Lab ID:    | 98092643-07A   | Benzene       | 76   | $0.50\mu g/L$        | 9/23/98 | 10/1/98  |
|            |                | Toluene       | ND   | $0.50\mu g/L$        | 9/23/98 | 10/1/98  |
|            |                | Ethylbenzene  | ND   | $0.50\mu g/L$        | 9/23/98 | 10/1/98  |
|            |                | m,p-Xylene    | ND   | $0.50\mu g/L$        | 9/23/98 | 10/1/98  |
|            |                | o-Xylene      | ND   | $0.50\mu g/L$        | 9/23/98 | 10/1/98  |
| Client ID: | GP-2           | TPH Purgeable | 9.8  | 2.5 mg/L             | 9/24/98 | 10/1/98  |
| Lab ID:    | 98092643-08A   | Benzene       | 240  | $10  \mu g/L$        | 9/24/98 | 10/1/98  |
|            |                | Toluene       | 11   | $10  \mu g/L$        | 9/24/98 | 10/1/98  |
|            |                | Ethylbenzene  | 650  | $10  \mu g/L$        | 9/24/98 | 10/1/98  |
|            |                | m,p-Xylene    | 2300 | $10  \mu g/L$        | 9/24/98 | 10/1/98  |
|            |                | o-Xylene      | 48   | 10 μg/L              | 9/24/98 | 10/1/98  |
| Client ID: | GP-4           | TPH Purgeable | 0.6  | $0.050\mathrm{mg/L}$ | 9/24/98 | 10/1/98  |
| Lab ID:    | 98092643-09A   | Benzene       | 40   | $0.50\mu g/L$        | 9/24/98 | 10/1/98  |
|            |                | Toluene       | ND   | $0.50\mu g/L$        | 9/24/98 | 10/1/98  |
|            |                | Ethylbenzene  | ND   | $0.50\mu g/L$        | 9/24/98 | 10/1/98  |
|            |                | m,p-Xylene    | ND   | $0.50~\mu g/L$       | 9/24/98 | 10/1/98  |
|            |                | o-Xylene      | ND   | $0.50\mu g/L$        | 9/24/98 | 10/1/98  |
|            |                |               |      |                      |         |          |

ND = Not Detected

Approved By:

Roger L. Scholl, Ph.D. Laboratory Director

Date:

| CHAIN OF | OF CUSTODY | REGORD |
|----------|------------|--------|

Form No.

Baffelle

Columbus Laboratories

る Container No. <u>-</u> = ~ = SAMPLE TYPE (V) SAMPLE 1.D. Rhein-Abin AB GP-10A J. Kramer, Chris Percu 60-4 66-5 GPH Project Title TIME 740 SAMPLERS: (Signature) G002437-01 -029.23.98 -03 9.23.98 9.23.98 DATE Proj. No.

Remarks

containers ło **Митрет** 

|  |   | Received by:                 | (Signature)          | Received by:                 | (Signature) |                              | -           |   |
|--|---|------------------------------|----------------------|------------------------------|-------------|------------------------------|-------------|---|
|  |   | Date/Time R                  | 9                    | Date/Time F                  |             |                              |             | E |
|  |   | (Signature)                  |                      | (Signature)                  |             | Remarks                      |             |   |
|  | ` | Relinquished by: (Signature) |                      | Relinquished by: (Signature) |             | Date/Time                    |             |   |
|  |   | Received by: (Signature) 926 | Minte Melle 11.00    |                              | (Signature) | Received for Laboratory by:  | (Signature) |   |
|  |   | Date/Time                    | 9 5.00 13 00 MILLINE | Date/Time                    |             | Date/Time                    |             |   |
|  |   | Delinduished hv. (Wonsture)  |                      | 1                            |             | Refinquished by: (Signature) |             |   |

Billing Information:

Battelle

505 King Avenue

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406

Page: 1 of 1

(614) 424-3779 (614) 424-3667 Rhein-Main AB FAX: 耳三 Job : Battelle Memorial Institute Columbus, OH 43201 505 King Avenue Client:

28-Sep-989/26 ů Cooler Temp: QC Level: P0 :

Julie Kramer

Report Attention:

Sampled by:

| Sample ID Sample ID BMI98092643-01 GP-14 |     |        |                   |             |          |       |                |        | Requested Tests |
|------------------------------------------|-----|--------|-------------------|-------------|----------|-------|----------------|--------|-----------------|
|                                          |     | -      | Collection No. of | No. of      |          |       | BTEX_W TPH/P_W | W_MHMT |                 |
|                                          |     | Matrix | Matrix Date       | Bottles TAT |          | # SMd |                |        | Sample Remarks  |
|                                          | 4   | ΑQ     | 96/23/68          | 2           | 9        |       | ∢              | <      |                 |
| BMI98092643-02 GP-10A                    | AC. | ΑQ     | 9/23/98           | 2           | 5        |       | <              | <      |                 |
| BMI98092643-03 GP-9                      |     | ΑQ     | 9/23/98           | 2           | 5        |       | <              | <      |                 |
| BMI98092643-04 GP-1                      |     | ΑQ     | 9/22/98           | 2           | <b>£</b> |       | A              | V      |                 |
| BMI98092643-05 GP-5                      |     | ΑQ     | 9/22/98           | 2           | ₽        |       | 4              | <      |                 |
| BMI98092643-06 GP-3                      |     | ΑQ     | 9/22/98           | 2           | 5        |       | <              | 4      |                 |
| BMI98092643-07 GP-10                     | 0   | ΑQ     | 9/23/98           | 2           | 5        |       | <              | ٧      |                 |
| BMI98092643-08 GP-2                      |     | ΑQ     | 9/24/98           | 2           | 10       |       | ٧              | Ą      |                 |
| BMI98092643-09 GP-4                      |     | ΑQ     | 9/24/98           | 2           | 10       |       | V              | ٧      |                 |

|                  | Signature     | Print Name | Сощия |          |
|------------------|---------------|------------|-------|----------|
| Relinquished by: |               |            |       |          |
| Received by:     | Harrain Mallo | Mula       | AM    | <b>"</b> |
| Relinquished by: |               |            |       | 1        |

FOREIGN SOILS. CA DETECTION LIMITS

Comments:

0

Date/Time

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE. Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Received by:

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9089

FAX: (916) 366-9138

### ANALYTICAL REPORT

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Job#: G002737-01 Phone: (614) 424-3779 Attn: Julie Kramer

Methodology:

TPHP - Modified 8015/DHS LUFT Manual - Purgeable

VOCs - Method 8260

|            |              | Parameter     | Concentration | Reporting<br>Limit   | Date<br>Sampled | Date<br>Analyzed |
|------------|--------------|---------------|---------------|----------------------|-----------------|------------------|
| Client ID: | GP-16        | TPH Purgeable | 0.14          | 0.050 mg/L           | 9/25/98         | 10/6/98          |
| Lab ID:    | 98092922-01A | Benzene       | 6.5           | $0.50 \mu g/L$       | 9/25/98         | 10/6/98          |
|            |              | Toluene       | ND            | $0.50 \mu g/L$       | 9/25/98         | 10/6/98          |
|            |              | Ethylbenzene  | 4.4           | $0.50  \mu g/L$      | 9/25/98         | 10/6/98          |
|            |              | m,p-Xylene    | 1.9           | $0.50  \mu g/L$      | 9/25/98         | 10/6/98          |
|            |              | o-Xylene      | 1.8           | $0.50~\mu g/L$       | 9/25/98         | 10/6/98          |
| Client ID: | GP-17        | TPH Purgeable | ND            | $0.050\mathrm{mg/L}$ | 9/28/98         | 10/6/98          |
| Lab ID:    | 98092922-02A | Benzene       | 1.6           | $0.50~\mu g/L$       | 9/28/98         | 10/6/98          |
|            |              | Toluene       | ND            | $0.50~\mu g/L$       | 9/28/98         | 10/6/98          |
|            |              | Ethylbenzene  | 0.78          | $0.50~\mu g/L$       | 9/28/98         | 10/6/98          |
|            |              | m,p-Xylene    | ND            | $0.50~\mu g/L$       | 9/28/98         | 10/6/98          |
|            |              | o-Xylene      | ND            | $0.50~\mu g/L$       | 9/28/98         | 10/6/98          |
| Client ID: | GP-8         | TPH Purgeable | ND            | $0.050\mathrm{mg/L}$ | 9/25/98         | 10/6/98          |
| Lab ID:    | 98092922-03A | Benzene       | 7.1           | $0.50~\mu g/L$       | 9/25/98         | 10/6/98          |
|            |              | Toluene       | ND            | $0.50~\mu g/L$       | 9/25/98         | 10/6/98          |
|            |              | Ethylbenzene  | ND            | $0.50~\mu g/L$       | 9/25/98         | 10/6/98          |
|            |              | m,p-Xylene    | ND            | $0.50~\mu g/L$       | 9/25/98         | 10/6/98          |
|            |              | o-Xylene      | ND            | $0.50~\mu g/L$       | 9/25/98         | 10/6/98          |
| Client ID: | GP-9C        | TPH Purgeable | 0.18          | $0.050\mathrm{mg/L}$ | 9/24/98         | 10/6/98          |
| Lab ID:    | 98092922-04A | Benzene       | ND            | $0.50~\mu g/L$       | 9/24/98         | 10/6/98          |
|            |              | Toluene       | ND            | $0.50~\mu g/L$       | 9/24/98         | 10/6/98          |
|            |              | Ethylbenzene  | ND            | $0.50~\mu g/L$       | 9/24/98         | 10/6/98          |
|            |              | m,p-Xylene    | ND            | $0.50~\mu g/L$       | 9/24/98         | 10/6/98          |
|            |              | o-Xylene      | ND            | $0.50~\mu g/L$       | 9/24/98         | 10/6/98          |
| Client ID: | GP-6         | TPH Purgeable | 0.13          | $0.050\mathrm{mg/L}$ | 9/24/98         | 10/6/98          |
| Lab ID:    | 98092922-05A | Benzene       | ND            | $0.50~\mu g/L$       | 9/24/98         | 10/6/98          |
|            |              | Toluene       | ND            | $0.50\mu g/L$        | 9/24/98         | 10/6/98          |
|            |              | Ethylbenzene  | ND            | $0.50~\mu g/L$       | 9/24/98         | 10/6/98          |
|            |              | m,p-Xylene    | ND            | $0.50~\mu g/L$       | 9/24/98         | 10/6/98          |
|            |              | o-Xylene      | ND            | $0.50 \mu g/L$       | 9/24/98         | 10/6/98          |

1 of 2



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

(702) 355-1044 FAX: (702) 355-0406

1 900 993 1193

e-mail: alpha@powernet.net http//www.powernet.net/~alpha

Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California

(916) 366-9089

|            | 1-800-283-1183 |               |       |                 | (916       | ) 366-9089 |
|------------|----------------|---------------|-------|-----------------|------------|------------|
| Client ID: | GP-9B          | TPH Purgeable | ND    |                 | FAX: (916) |            |
| Lab ID:    | 98092922-06A   | Benzene       |       | 0.050 mg/L      | 9/25/98    | 10/6/98    |
| Lao ID .   | 70072722-00A   |               | ND    | 0.50 μg/L       | 9/25/98    | 10/6/98    |
|            |                | Toluene       | ND    | 0.50 μg/L       | 9/25/98    | 10/6/98    |
|            |                | Ethylbenzene  | ND    | 0.50 μg/L       | 9/25/98    | 10/6/98    |
|            |                | m,p-Xylene    | ND    | $0.50\mu g/L$   | 9/25/98    | 10/6/98    |
|            |                | o-Xylene      | ND    | $0.50\mu g/L$   | 9/25/98    | 10/6/98    |
| Client ID: | GP-15          | TPH Purgeable | ND    | 0.050 mg/L      | 9/25/98    | 10/6/98    |
| Lab ID:    | 98092922-07A   | Benzene       | ND    | $0.50\mu g/L$   | 9/25/98    | 10/6/98    |
|            |                | Toluene       | ND    | $0.50\mu g/L$   | 9/25/98    | 10/6/98    |
|            |                | Ethylbenzene  | ND    | $0.50\mu g/L$   | 9/25/98    | 10/6/98    |
|            |                | m,p-Xylene    | ND    | $0.50\mu g/L$   | 9/25/98    | 10/6/98    |
|            |                | o-Xylene      | ND    | $0.50\mu g/L$   | 9/25/98    | 10/6/98    |
| Client ID: | GP-20          | TPH Purgeable | 0.074 | 0.050 mg/L      | 9/28/98    | 10/6/98    |
| Lab ID:    | 98092922-08A   | Benzene       | ND    | $0.50 \mu g/L$  | 9/28/98    | 10/6/98    |
|            |                | Toluene       | ND    | 0.50 μg/L       | 9/28/98    | 10/6/98    |
|            |                | Ethylbenzene  | ND    | 0.50 μg/L       | 9/28/98    | 10/6/98    |
|            |                | m,p-Xylene    | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
|            |                | o-Xylene      | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
| Client ID: | GP-21          | TPH Purgeable | ND    | 0.050 mg/L      | 9/28/98    | 10/6/98    |
| Lab ID:    | 98092922-09A   | Benzene       | ND    | $0.50  \mu g/L$ | 9/28/98    | 10/6/98    |
|            |                | Toluene       | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
|            |                | Ethylbenzene  | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
|            |                | m,p-Xylene    | ND    | $0.50  \mu g/L$ | 9/28/98    | 10/6/98    |
|            |                | o-Xylene      | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
| Client ID: | GP-RINSATE     | TPH Purgeable | ND    | 0.050 mg/L      | 9/28/98    | 10/6/98    |
| Lab ID:    | 98092922-10A   | Benzene       | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
|            |                | Toluene       | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
|            |                | Ethylbenzene  | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
|            |                | m,p-Xylene    | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |
|            |                | o-Xylene      | ND    | $0.50\mu g/L$   | 9/28/98    | 10/6/98    |

ND = Not Detected

Approved By:

Roger L. Scholl, Ph.D. Laboratory Director

| -        |
|----------|
| =        |
| 0        |
| ===      |
| -        |
| =        |
| =        |
| _        |
| 0        |
| -        |
| =        |
| _        |
| g        |
| ~        |
| =        |
| =        |
| =        |
| <b>m</b> |

Battelle

505 King Avenue

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406

BMI98092922 WorkOrder:

Page: 1 of 1

Battelle Memorial Institute 505 King Avenue Cllent:

Columbus, OH 43201

(614) 424-3779 (614) 424-3667 G002737-01 FAX: 正: Job :

QC Level:

Report Attention: Julie Kramer

PO:

Sampled by: J. Kramer C. Pem

Cooler Temp:

Sample Remarks Requested Tests TPH/P\_W < ⋖ ⋖ V ⋖ < ⋖ < < BTEX\_W 4 < ⋖ < < < ≺ ⋖ < Bottles TAT PWS# 10 2 9 10 9 9 9 9 9 9 Collection No. of 8 2 2 2 2 2 9/28/98 9/28/98 9/28/98 AQ 9/25/98 9/25/98 9/24/98 9/24/98 9/25/98 9/28/98 9/25/98 Matrix Date AQ AQ AQ AQ AQ AQ GP-RINSATE Sample ID GP-9C GP-15 GP-20 GP-9B GP-21 Client GP-16 GP-17 GP-6 GP-8 BMI98092922-10 BMI98092922-02 BMI98092922-05 BMI98092922-06 BMI98092922-08 BMI98092922-09 BMI98092922-03 BMI98092922-04 BMI98092922-01 BMI98092922-07 Sample ID Alpha

| THIS PROJECT IS TITLED RHEIN-MAIN AB(FOREIGN SAMPLES) |
|-------------------------------------------------------|
| THIS PRO                                              |
| Comments:                                             |

|           | 2    |
|-----------|------|
| Signature | Hert |
|           | Tie  |
|           | 10   |

Date/Time

Company

Print Name

Received by:

Relinquished by:

Received by:

Relinquished by:

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

| <u>ه</u> |
|----------|
| fel      |
| M        |

CHAIN OF CUSTODY RECORD

|                       |                 |               | to<br>fo<br>enistroc  | Remarks     | 12 1104 |         |         | 7       | 7       | = 1     |          | - 7     | 11 6    |              |  |  | Received by:                             | (Signature)                    | Received by:<br>(Signature)  |                             |                              |
|-----------------------|-----------------|---------------|-----------------------|-------------|---------|---------|---------|---------|---------|---------|----------|---------|---------|--------------|--|--|------------------------------------------|--------------------------------|------------------------------|-----------------------------|------------------------------|
|                       |                 | , / /         | N 1aniet              | uoo         | VOV     | -       | 5       | =  :    |         |         | =        | -       | =       |              |  |  | Date/Time                                |                                | Date/Time                    |                             |                              |
|                       | SAMPLE TYPE (V) |               |                       |             |         |         |         |         |         |         |          |         |         |              |  |  | 1 (0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | /Signature                     | (Signature)                  | Remarks                     | 2611617                      |
|                       |                 | 1             | 29-15/08              | ////        |         |         |         |         |         |         |          |         |         |              |  |  |                                          | neinquisned by: (Signature)    | Relinquished by: (Signature) | Time                        | Date/ Illie                  |
|                       |                 |               | \$108.                |             | メメ      | ブナ      | 7       | X       | ×-      |         |          | 47      |         |              |  |  | 7                                        | Received by: (Signature) 2:978 | (Signature)                  | Becaived for Laboratory hy: |                              |
|                       | Project Title   | Rhein-Main AB | ונלני                 | SAMPLE I.D. | GP-16   | 41-00   | 67-8    | GP-9C   | 7-25    | GP-98   | <u> </u> | GY-20   | 0000    | CITY KINSOFE |  |  | ]                                        | 97999 14:00                    |                              |                             | Date/Time                    |
|                       | Proj            |               | nature)               | TIME        | 1525    | 00      | 130     | 1545    | 91/1    | 1015    | 1340     | 7.7     | 471     | 1.71         |  |  |                                          | : (Signature)                  | (Signature)                  |                             | : (Signature)                |
| Columbus Laboratories | Proj. No.       | G002437-01    | SAMPLERS: (Signature) | DATE        | 97508   | 9 28 48 | 9.25.98 | 9.24.98 | 9.24.98 | 9.25.98 | 925.98   | 9.28.98 | 4.72.42 | 45.97        |  |  |                                          | Relinquished by: (Signature)   | Pelinquished by: (Signature) |                             | Relinquished by: (Signature) |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

(702) 355-1044 FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9089

(916) 366-9089 FAX: (916) 366-9138

### ANALYTICAL REPORT

Battelle Memorial Institute 505 King Avenue

Columbus, OH 43201

Job#: Rhein-Main AB Phone: (614) 424-3779

Attn: Julie Kramer

Methodology:

TPHE - Modified 8015/DHS LUFT Manual - Extractable

|                       |                      | Parameter                                         | Concentration  | Reporting<br>Limit                    | Date<br>Sampled                     | Date<br>Analyzed |
|-----------------------|----------------------|---------------------------------------------------|----------------|---------------------------------------|-------------------------------------|------------------|
| Client ID:            | MW-1<br>98100210-17A | TPH-E (Jet Fuel)<br>TPH-E (Diesel)<br>TPH-E (Oil) | ND<br>ND<br>ND | 0.050 mg/L<br>0.050 mg/L<br>0.50 mg/L | 01-Oct-98<br>01-Oct-98<br>01-Oct-98 |                  |
| Client ID:<br>Lab ID: | MW2<br>98100210-19A  | TPH-E (Jet Fuel)<br>TPH-E (Diesel)<br>TPH-E (Oil) | ND<br>ND<br>ND | 0.050 mg/L<br>0.050 mg/L<br>0.50 mg/L | 30-Sep-98<br>30-Sep-98<br>30-Sep-98 | 09-Oct-98        |

ND = Not Detected

Approved By:

Roger L. Scholl, Ph.D. Laboratory Director Date:

10/14/98



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California

(916) 366-9080 FAX: (916) 366-9128

### ANALYTICAL REPORT

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

Job#: Rhein-Main AB Phone: (614) 424-6315 Attn: Julie Kramer

Methodology:

TPHP - Modified 8015/DHS LUFT Manual - Purgeable

VOCs - Method 8260

|            |              | Parameter     | Concentration | Reporting<br>Limit   | Date<br>Sampled | Date<br>Analyzed |
|------------|--------------|---------------|---------------|----------------------|-----------------|------------------|
| Client ID: | GP-23        | TPH Purgeable | ND            | 0.050 mg/L           | 9/30/98         | 10/7/98          |
| Lab ID:    | 98100210-01A | Benzene       | ND            | 0.50 μg/L            | 9/30/98         | 10/7/98          |
|            |              | Toluene       | ND            | 0.50 μg/L            | 9/30/98         | 10/7/98          |
|            |              | Ethylbenzene  | ND            | 0.50 μg/L            | 9/30/98         | 10/7/98          |
|            |              | m,p-Xylene    | ND            | 0.50 μg/L            | 9/30/98         | 10/7/98          |
|            |              | o-Xylene      | ND            | 0.50 μg/L            | 9/30/98         | 10/7/98          |
| Client ID: | GP-25        | TPH Purgeable | ND            | 0.050 mg/L           | 9/30/98         | 10/7/98          |
| Lab ID:    | 98100210-02A | Benzene       | ND            | $0.50  \mu g/L$      | 9/30/98         | 10/7/98          |
|            |              | Toluene       | ND            | $0.50 \mu g/L$       | 9/30/98         | 10/7/98          |
|            |              | Ethylbenzene  | ND            | $0.50  \mu g/L$      | 9/30/98         | 10/7/98          |
|            |              | m,p-Xylene    | ND            | $0.50  \mu g/L$      | 9/30/98         | 10/7/98          |
|            |              | o-Xylene      | ND            | $0.50\mu g/L$        | 9/30/98         | 10/7/98          |
| Client ID: | GP-19        | TPH Purgeable | ND            | $0.050\mathrm{mg/L}$ | 9/29/98         | 10/7/98          |
| Lab ID:    | 98100210-03A | Benzene       | ND            | $0.50\mu g/L$        | 9/29/98         | 10/7/98          |
|            |              | Toluene       | ND            | $0.50\mu g/L$        | 9/29/98         | 10/7/98          |
|            |              | Ethylbenzene  | ND            | $0.50  \mu g/L$      | 9/29/98         | 10/7/98          |
|            |              | m,p-Xylene    | ND            | $0.50\mu g/L$        | 9/29/98         | 10/7/98          |
|            |              | o-Xylene      | ND            | $0.50\mu\text{g/L}$  | 9/29/98         | 10/7/98          |
| Client ID: | GP-12        | TPH Purgeable | ND            | $0.050\mathrm{mg/L}$ | 9/29/98         | 10/7/98          |
| Lab ID:    | 98100210-04A | Benzene       | ND            | $0.50\mu g/L$        | 9/29/98         | 10/7/98          |
|            |              | Toluene       | ND            | $0.50\mu g/L$        | 9/29/98         | 10/7/98          |
|            |              | Ethylbenzene  | ND            | $0.50~\mu g/L$       | 9/29/98         | 10/7/98          |
|            |              | m,p-Xylene    | ND            | $0.50~\mu g/L$       | 9/29/98         | 10/7/98          |
|            |              | o-Xylene      | ND            | $0.50~\mu g/L$       | 9/29/98         | 10/7/98          |
| Client ID: | GP-11        | TPH Purgeable | 0.14          | $0.050\mathrm{mg/L}$ | 9/28/98         | 10/7/98          |
| Lab ID:    | 98100210-05A | Benzene       | 0.61          | $0.50~\mu g/L$       | 9/28/98         | 10/7/98          |
|            |              | Toluene       | ND            | $0.50~\mu g/L$       | 9/28/98         | 10/7/98          |
|            |              | Ethylbenzene  | ND            | $0.50\mu g/L$        | 9/28/98         | 10/7/98          |
|            |              | m,p-Xylene    | ND            | $0.50\mu g/L$        | 9/28/98         | 10/7/98          |
|            |              | o-Xylene      | ND            | $0.50\mu g/L$        | 9/28/98         | 10/7/98          |
|            |              |               |               | 1                    | of 4            |                  |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

(702) 355-1044

FAX: (702) 355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California

|                       | 1-800-283-1183 |               |      |                      |           | 366-9089 |
|-----------------------|----------------|---------------|------|----------------------|-----------|----------|
| Cliant ID             | CD 10          | TOTAL DE LA   | 3770 |                      | AX: (916) |          |
| Client ID:<br>Lab ID: | GP-18          | TPH Purgeable | ND   | 0.050 mg/L           | 9/28/98   | 10/7/98  |
| Lab ID:               | 98100210-06A   | Benzene       | ND   | 0.50 μg/L            | 9/28/98   | 10/7/98  |
|                       |                | Toluene       | ND   | 0.50 μg/L            | 9/28/98   | 10/7/98  |
|                       |                | Ethylbenzene  | ND   | 0.50 μg/L            | 9/28/98   | 10/7/98  |
|                       |                | m,p-Xylene    | ND   | 0.50 μg/L            | 9/28/98   | 10/7/98  |
|                       |                | o-Xylene      | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
| Client ID:            | GP-18-D        | TPH Purgeable | ND   | $0.050\mathrm{mg/L}$ | 9/28/98   | 10/7/98  |
| Lab ID:               | 98100210-07A   | Benzene       | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | Toluene       | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | Ethylbenzene  | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | m,p-Xylene    | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       | ,              | o-Xylene      | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
| Client ID:            | GP-Rinsate     | TPH Purgeable | ND   | 0.050 mg/L           | 9/28/98   | 10/7/98  |
| Lab ID:               | 98100210-08A   | Benzene       | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | Toluene       | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | Ethylbenzene  | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | m,p-Xylene    | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | o-Xylene      | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
| Client ID:            | GP-18-FB       | TPH Purgeable | ND   | 0.050 mg/L           | 9/28/98   | 10/7/98  |
| Lab ID:               | 98100210-09A   | Benzene       | ND   | 0.50 μg/L            | 9/28/98   | 10/7/98  |
|                       |                | Toluene       | ND   | 0.50 μg/L            | 9/28/98   | 10/7/98  |
|                       |                | Ethylbenzene  | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | m,p-Xylene    | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
|                       |                | o-Xylene      | ND   | $0.50\mu g/L$        | 9/28/98   | 10/7/98  |
| Client ID:            | GP-1-10M       | TPH Purgeable | 1.5  | 0.050 mg/L           | 9/30/98   | 10/7/98  |
| Lab ID:               | 98100210-10A   | Benzene       | 9.3  | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       |                | Toluene       | ND   | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       |                | Ethylbenzene  | 5.8  | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       |                | m,p-Xylene    | 13   | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       |                | o-Xylene      | 1.7  | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
| Client ID:            | GP-7           | TPH Purgeable | 0.14 | 0.050 mg/L           | 9/30/98   | 10/7/98  |
| Lab ID:               | 98100210-11A   | Benzene       | ND   | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       |                | Toluene       | ND   | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       |                | Ethylbenzene  | ND   | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       |                | m,p-Xylene    | ND   | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       |                | o-Xylene      | ND   | $0.50\mu g/L$        | 9/30/98   | 10/7/98  |
|                       | •              | •             |      |                      |           |          |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha

Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramente, California

(916) 366-9089

|            | 1-000-200 1100 |               |       |   | 77                     | ATT. COLOR           | 900 0000              |
|------------|----------------|---------------|-------|---|------------------------|----------------------|-----------------------|
| Client ID: | GP3-10M        | TPH Purgeable | 6.6   |   | 0.25 mg/L              | AX: (916)<br>10/1/98 | აის-ჟൂაი<br>- 10/8/98 |
| Lab ID:    | 98100210-12A   | Benzene       | 330   |   | 1.0 μg/L               | 10/1/98              | 10/8/98               |
|            |                | Toluene       | ND    | В | 1.0 μg/L               | 10/1/98              | 10/8/98               |
|            |                | Ethylbenzene  | 340   |   | 1.0 μg/L               | 10/1/98              | 10/8/98               |
|            |                | m,p-Xylene    | 880   |   | 1.0 μg/L               | 10/1/98              | 10/8/98               |
|            |                | o-Xylene      | 5.8   |   | 1.0 µg/L               | 10/1/98              | 10/8/98               |
| Client ID: | GP1-14M        | TPH Purgeable | 12    |   | 2.5 mg/L               | 10/1/98              | 10/6/98               |
| Lab ID:    | 98100210-13A   | Benzene       | 1400  |   | $10  \mu g/L$          | 10/1/98              | 10/6/98               |
|            |                | Toluene       | 78    |   | $10  \mu g/L$          | 10/1/98              | 10/6/98               |
|            |                | Ethylbenzene  | 870   |   | $10~\mu g/L$           | 10/1/98              | 10/6/98               |
|            |                | m,p-Xylene    | 1500  |   | $10 \mu g/L$           | 10/1/98              | 10/6/98               |
|            |                | o-Xylene      | 520   |   | $10~\mu g/L$           | 10/1/98              | 10/6/98               |
| Client ID: | GP1-17M        | TPH Purgeable | 0.076 |   | $0.050\mathrm{mg/L}$   | 10/1/98              | 10/8/98               |
| Lab ID:    | 98100210-14A   | Benzene       | ND    |   | $0.50~\mu g/L$         | 10/1/98              | 10/8/98               |
|            |                | Toluene       | ND    |   | $0.50~\mu g/L$         | 10/1/98              | 10/8/98               |
|            |                | Ethylbenzene  | ND    |   | $0.50~\mu g/L$         | 10/1/98              | 10/8/98               |
|            |                | m,p-Xylene    | ND    |   | $0.50~\mu g/L$         | 10/1/98              | 10/8/98               |
|            |                | o-Xylene      | ND    |   | $0.50~\mu g/L$         | 10/1/98              | 10/8/98               |
| Client ID: | MW-1           | TPH Purgeable | 12    | * | $0.050\mathrm{mg/L}$   | 10/1/98              | 10/7/98               |
| Lab ID:    | 98100210-15A   | Benzene       | 800   | * | $0.50~\mu g/L$         | 10/1/98              | 10/7/98               |
|            | •              | Toluene       | 980   | * | $0.50~\mu g/L$         | 10/1/98              | 10/7/98               |
|            |                | Ethylbenzene  | 390   | * | $0.50\mu g/L$          | 10/1/98              | 10/7/98               |
|            |                | m,p-Xylene    | 1100  | * | $0.50~\mu g/L$         | 10/1/98              | 10/7/98               |
|            |                | o-Xylene      | 690   | * | $0.50~\mu g/L$         | 10/1/98              | 10/7/98               |
| Client ID: |                | TPH Purgeable | 0.068 |   | 0.050  mg/L            | 9/30/98              | 10/8/98               |
| Lab ID :   | 98100210-16A   | Benzene       | 0.56  |   | $0.50\mu g/L$          | 9/30/98              | 10/8/98               |
|            |                | Toluene       | ND    |   | $0.50\mu \mathrm{g/L}$ | 9/30/98              | 10/8/98               |
|            |                | Ethylbenzene  | ND    |   | $0.50\mu g/L$          | 9/30/98              | 10/8/98               |
|            |                | m,p-Xylene    | ND    |   | $0.50~\mu g/L$         | 9/30/98              | 10/8/98               |
|            |                | o-Xylene      | ND    |   | $0.50~\mu g/L$         | 9/30/98              | 10/8/98               |
| Client ID: |                | TPH Purgeable | 57    |   | 2.5 mg/L               | 9/30/98              | 10/6/98               |
| Lab ID:    | 98100210-17A   | Benzene       | 20000 |   | $10  \mu g/L$          | 9/30/98              | 10/6/98               |
|            |                | Toluene       | 14000 |   | $10~\mu g/L$           | 9/30/98              | 10/6/98               |
|            |                | Ethylbenzene  | 750   |   | $10  \mu g/L$          | 9/30/98              | 10/6/98               |
|            |                | m,p-Xylene    | 2000  |   | $10  \mu g/L$          | 9/30/98              | 10/6/98               |
|            |                | o-Xylene      | 800   |   | $10  \mu g/L$          | 9/30/98              | 10/6/98               |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9080

\*-The measured concentration is somewhat less than the true value because of detector saturation. Only one vial was available for a single analysis.

ND = Not Detected

B = Detection Limits were raised due to high concentrations of target analytes.

Approved By:

Roger L Scholl, Ph.D. Laboratory Director

Date:

505 King Avenue Billing Information: Battelle

### CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406

BMI98100210 WorkOrder:

Page: 1 of 3

(614) 424-3779 (614) 424-3667 FAX: TEL: Battelle Memorial Institute Columbus, OH 43201 505 King Avenue

Clent:

Rhein-Main AB QC Level: . gop P0 :

Report Attention: Julie Kramer

Sampled by: J. Khaman, C. Perhut

02-Oct-98

ပ္

Cooler Temp:

|                    |                                             |       |                  |             |          |       |                        |            | Requested Tests | d Tests |                                               |                   |
|--------------------|---------------------------------------------|-------|------------------|-------------|----------|-------|------------------------|------------|-----------------|---------|-----------------------------------------------|-------------------|
|                    | 1-10                                        |       | to Mantina No of | No of       |          | STEX  | BTEX W TPH/E W TPH/P W | W HHAT     |                 |         |                                               | T                 |
| Aipna<br>Cample 10 | Sample ID                                   | Matri | Matrix Date      | Bottles TAT | TAT PWS# |       | 1                      |            |                 |         |                                               | Sample Remarks    |
| 1001               | GP-23                                       | AQ    | 96/06/6          | 2           | 1        | A     |                        | A          |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI98100210-02     | GP-25                                       | AQ    | 96/06/6          | 2           | 10       | V     |                        | A          |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI98100210-03     | GP-19                                       | AQ    | 86/67/6          | 2           | 10       | 4     |                        | 4          |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI98100210-04     | GP-12                                       | AQ    | 9/23/38          | 2           | 9        | 4     |                        | V.         |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI98100210-05     | GP-11                                       | ΑQ    | 9/28/98          | 2           | 9        | 4     |                        | 4          |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI98100210-06     | GP-18                                       | AQ    | 9/28/98          | 2           | 10       | Α.    |                        | A          |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI96100210-07     | GP-18-D                                     | AQ    | 9/28/98          | -           | 10       | A     |                        | ¥          |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI96100210-08     | GP-Rinsate                                  | AQ    | 9/28/98          | -           | 10       | 4     | 1                      | A          |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI98100210-09     | GP-18-FB                                    | AQ    | 9/28/98          | -           | 9        | 4     | م                      | A          |                 |         |                                               | BTEX BY 8240 MOD. |
| BMI98100210-10     | GP-1-10M                                    | A     | 96/06/6          | 2           | ę        | ¥     |                        | A          |                 |         |                                               | BTEX BY 8240 MOD. |
| Comments:          | SAMPLES FROM GERMANY. tobb only per RG 9/30 | GERN  | IANY. teb/o o    | nly per RG  |          | 74/E0 | daled t                | 0 PP 0     | بنگسل ره        | Kramu   | TPH/Eactable to 19 per Julis Kramer 10/6 (FE) |                   |
|                    |                                             |       | Signature        |             |          |       |                        | Print Name | Vame            |         | Company                                       | Date/Time         |

| yamın 10/6 (tte | 1941 Eachded to 19 per July tra | SAMPLES FROM GERMANY. table only per RG 9/30 | omments: |
|-----------------|---------------------------------|----------------------------------------------|----------|

Company Print Name Signature 198 20pm

| Relinquished by: |              |
|------------------|--------------|
| Received by:     | Slaidi Bakau |
| Relinquished by: |              |

Received by: Re

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The jiability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

505 King Avenue Billing Information: Battelle

### CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406

BMI98100210 WorkOrder:

Page: 2 of 3

(614) 424-3779 FAX: 딘 .. dob Battelle Memorial Institute Columbus, OH 43201 505 King Avenue Clent

(614) 424-3667 Rhein-Main AB QC Level:

Julie Kramer

Report Attention:

Sampled by: J. Khannell, C. PENNY

02-Oct-98

Cooler Temp:

BTEX BY 8240 MOD. BTEX BY 8240 MOD. BTEX BY 8240 MOD. BTEX BY 8240 MOD. BTEX BY 8240 MOD. BTEX BY 8240 MOD. Sample Remarks Requested Tests TPH/E\_W TPH/P\_W ∢ ⋖ ⋖ ⋖ ⋖ ⋖ BTEX\_W ∢ 4 4 ⋖ TAT PWS# 9 10 5 9 9 Bottles Collection No. of N 2 10/1/98 96/06/6 10/1/98 10/1/98 96/06/6 96/06/6 Matrix Date AQ φ AQ A GP-7-Matrix Spike Dup. GP-7-Matrix Spike Sample 1D GP3-10M GP1-14M Cllent GP-7 BMI98100210-16 BMI98100210-14 BMI98100210-35 TOMMY BMI98100210-11 BMI98100210-)X Sample ID

BTEX BY 8240 MOD. ⋖ ⋖ 9 86/00/6 BMI98100210-18/ GP3-14M

HAVE A VERY HIGH

CONCENTRATION

BTEX BY 8240 MOD. THIS SAMPLE WILL

4

6

10/1/98

GP1-17M

BMI98100210-16

BMI98100210-17 MW-1

4

SAMPLES FROM GERMANY. tphp only per RG 9/30 Comments:

|                  | Chemotive    | Print Name | Company | Date/T  |
|------------------|--------------|------------|---------|---------|
|                  | a magnific   |            |         |         |
| Relinquished by: |              |            | 00 00   | 10/0/01 |
| Received by:     | Sleide doken | #. COKew   | upre    | 14217   |
| Relinquished by: |              |            |         |         |

Received by:

21000

Date/Time

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangen..... are made. Hazardous samples will be returned to client or disposed of at client expense.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

| Billing Information :<br>Battelle  | CHA       | CHAIN-OF-CUSTODY RECORD                                                                                           |              |                           | Page: 3 of 3 |
|------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|--------------|
| 505 King Avenue                    |           | Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406 |              | WorkOrder:<br>BM198100210 |              |
| Chert. Battelle Memorial Institute | TEL:      | (614) 424-3779                                                                                                    |              |                           |              |
| 505 King Avenue                    | FAX:      | (614) 424-3667                                                                                                    |              | A C Nomenty L.            | طر<br>ح      |
| Columbus, OH 43201                 | : dob     | Rhein-Main AB                                                                                                     | Sampled by:  | 3                         | -            |
| Report Attention: Julie Kramer     | QC Level: |                                                                                                                   | Cooler Temp: | 20                        | 02-Oct       |

Sample Renarks

Requested Tests

BTEX\_W TPH/E\_W TPH/P\_W

Bottles TAT PWS#

Matrix Date

Client Sample ID

Alpha Sample ID

Collection No. of

|                      |                                             |       |               | 1           |        |   |     |     |                                       |   |         |     |                   |      |
|----------------------|---------------------------------------------|-------|---------------|-------------|--------|---|-----|-----|---------------------------------------|---|---------|-----|-------------------|------|
| BMI98100210-79 - MW2 | MW2                                         | ΑQ    | 86/06/6       | 2           | 10     | - | A A | ٠   | A                                     |   |         |     | BTEX BY 8240 MOD. | OD.  |
|                      |                                             |       |               |             |        |   | 32  | 333 | a Marya<br>Bilara<br>Bilara<br>Bilara |   |         |     |                   |      |
| Comments:            | SAMPLES FROM GERMANY. tphp caly per RG 9/30 | GERMA | NY. tpho cals | only per Re | G 9/30 | 6 |     |     | Print Name                            | , | Company | any | Date/Time         |      |
| Relinquished by:     | 7                                           | 7,    | 101           |             |        |   |     | 7   | Frker                                 | 7 | Mall    | n   | 840/01            | 200h |
| Received by:         | 3                                           | 3     | 200           | 3           |        |   |     |     |                                       |   | 1       |     |                   |      |

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Relinquished by:

Received by:

Battelle

Remarks 2 Received by: (Signature) Received by (Signature) FVOA 2VOA 2VOA ンや不 4 WA 2 VOA 2VOhA VOY Containers NW-I will new high doncentral = = = Number Date/Time urchealth & Extractable SAMPLE TYPE (<) Remarks RelinquisKed by: (Signature) Relinquished by: (Signature) Date/Time Heidi Eskur Received for Laboratory by: Received by: (Signature) 1-4-Matix Sike Received by: (Signature) (Signature) SAMPLE I.D. GP-7-Matrix GP3-10M P-18-FB GP-Rinsate 10:18 18:00 NO1-1-P/ 7 4 2 Date/Time GP-18-D Date/Time Rhein-Main 6-19 68-23 P-1 J. Kramer, C. Perrus Project Title 1545 Relinquished by: (Signature) 1633 7E) 1545 Relinguished by: (Signature) TIME 632 1030 230 Refinquished by: (Signature) 145 255 545 15.22 1320 G002737-01 SAMPLERS: (Signature Columbus Laboratories .28.48 1.30,99 10.1.98 28.98 99. 38 dB 29.98 1.30.98 1.30.98 ,29.98 ,28.98 . 30.48 DATE Proj. No.

CHAIN OF CUSTODY RECORD

Form No.

Remarks Received by: Received by: (Signature) (Signature) 2VCA Containers ZVOA ło Number Container No. Date/Time Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time BIE 624/8240 Received for Laboratory by: (Signature) Received by: (Signature) names 10.198 16:00 Leidi (Signature) SAMPLE I.D. Project Title
Rhein-Main GP3-14N Date/Time Date/Time Date/Time J. Maner, C Billia TIME 15 30 Relinquished by: (Signature) Relingdishyd by: (Sjenature) Helinquished by: (Signature) GD2737-01 Columbus Laboratories 9.30.48 वि.क.पि DATE Proj. No.

Battelle

Page: 1 of 1

### CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

505 King Avenue

Billing Information:

in.

Battelle

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406

BM198100501 WorkOrder:

> Battelle Memorial Institute Columbus, OH 43201 505 King Avenue Client:

(614) 424-3779 (614) 424-3667 Rhein-Main AB TEL: FAX: . qof

Saupled by: G. Khameh, C. Perby Cooler Temp: QC Level: P0 : Report Attention: Julie Kramer

CONCENTRATION Sample Remarks VERY HIGH Requested Tests TPH/P\_W < ⋖ ⋖ TPH/E\_W ⋖ BTEX\_W < ⋖ Bottles TAT PWS# 9 5 9 Collection No. of 2 2 10/1/98 10/1/98 10/2/98 Matrix Date AQ AQ ΑQ Sample ID GP3-17M GP5-14M Clent MW3 BMI98100501-03 BMI98100501-02 BMI98100501-01 Sample ID Alpha

| Comments:        | Ca detection limits. Foreign Samples.  Signature  Signature | Company | Date/Time    |
|------------------|-------------------------------------------------------------|---------|--------------|
| Relinquished by: | 1 Esker                                                     | Odolo   | 10/5/98 1050 |
| Received by:     | Heide Cokers                                                |         |              |
| Relinquished by: |                                                             |         |              |
| Received by:     |                                                             |         |              |

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Baffelle

Project Title Columbus Laboratories

Proj. No.

Form No.

CHAIN OF CUSTODY BOCORD

Remarks Containers 20A ÌΟ Number Container No. SUMPATAEN SAMPLE TYPE (V) Relinquished by: (Signature) Flan Received by: (Signature) SAMPLE I.D. Rhein-Main AB GP3-17M GP5-141 Date/Time XX J. Kramer, C. Perrus TIME 18 30 030 SAMPLERS: (Signature) (yithed by (Signature) die Mame 6002737 10.1.98 0.2.98 10.1.98 DATE

Received by: (Signature)

Date/Time

Relinquished by: (Signature)

Remarks

Date/Time

1015/94/050

John

(Signature)

Received for Laboratory by:

Date/Time

Relinquished by: (Signature)

Received by:

D.78 16:20

Date/Time

Relinquished by: (Signature)

(Signature)

Received by:

Date/Time

(Signature)



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9089

FAX: (916) 366-9138

### **ANALYTICAL REPORT**

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Job#: Rhein-Main AB Phone: (614) 424-3779 Attn: Julie Kramer

Methodology:

TPHP - Modified 8015/DHS LUFT Manual - Purgeable

VOCs - Method 8260

| ,          |              | Parameter     | Concentration | Reporting<br>Limit | Date<br>Sampled | Date<br>Analyzed |
|------------|--------------|---------------|---------------|--------------------|-----------------|------------------|
| Client ID: | MW3          | TPH Purgeable | 18            | 2.5 mg/L           | 10/2/98         | 10/8/98          |
| Lab ID:    | 98100501-01A | Benzene       | 4600          | 20 μg/L            | 10/2/98         | 10/8/98          |
|            |              | Toluene       | 3300          | $20~\mu g/L$       | 10/2/98         | 10/8/98          |
|            |              | Ethylbenzene  | 510           | $20~\mu g/L$       | 10/2/98         | 10/8/98          |
|            |              | m,p-Xylene    | 1500          | 20 μg/L            | 10/2/98         | 10/8/98          |
|            |              | o-Xylene      | 420           | $20~\mu g/L$       | 10/2/98         | 10/8/98          |
| Client ID: | GP5-14M      | TPH Purgeable | 7.0           | 0.25 mg/L          | 10/1/98         | 10/8/98          |
| Lab ID:    | 98100501-02A | Benzene       | 99            | $2.0~\mu g/L$      | 10/1/98         | 10/8/98          |
|            |              | Toluene       | 5.2           | $2.0~\mu g/L$      | 10/1/98         | 10/8/98          |
|            |              | Ethylbenzene  | 270           | $2.0~\mu g/L$      | 10/1/98         | 10/8/98          |
|            |              | m,p-Xylene    | 1700          | $2.0~\mu g/L$      | 10/1/98         | 10/8/98          |
|            |              | o-Xylene      | 61            | $2.0~\mu g/L$      | 10/1/98         | 10/8/98          |
| Client ID: | GP3-17M      | TPH Purgeable | 0.085         | 0.050 mg/L         | 10/1/98         | 10/7/98          |
| Lab ID:    | 98100501-03A | Benzene       | ND            | $0.50~\mu g/L$     | 10/1/98         | 10/7/98          |
|            |              | Toluene       | ND            | $0.50~\mu g/L$     | 10/1/98         | 10/7/98          |
|            |              | Ethylbenzene  | ND            | $0.50~\mu g/L$     | 10/1/98         | 10/7/98          |
|            |              | m,p-Xylene    | 0.5           | $0.50~\mu g/L$     | 10/1/98         | 10/7/98          |
|            |              | o-Xylene      | ND            | $0.50~\mu g/L$     | 10/1/98         | 10/7/98          |

ND = Not Detected

Approved By:

Roger L. Scholl, Ph.D. Laboratory Director

Date:

10/9/98



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

(702) 355-1044 FAX: (702) 355-0406 1-800-283-1183 e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California

(916) 366-9089

FAX: (916) 366-9138

### ANALYTICAL REPORT

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

Job#: Rhein-Main AB Phone: (614) 424-6315 Attn: Julie Kramer

Methodology:

TPHE - Modified 8015/DHS LUFT Manual - Extractable

|                       |                     | Parameter                                   | Concentration   | Reporting<br>Limit                    | Date<br>Sampled | Date<br>Analyzed                    |
|-----------------------|---------------------|---------------------------------------------|-----------------|---------------------------------------|-----------------|-------------------------------------|
| Client ID:<br>Lab ID: | MW3<br>98100501-01A | TPH-E (Jet Fuel) TPH-E (Diesel) TPH-E (Oil) | ND<br>150<br>ND | 0.050 mg/L<br>0.050 mg/L<br>0.50 mg/L | 02-Oct-98       | 08-Oct-98<br>08-Oct-98<br>08-Oct-98 |

ND = Not Detected

Approved By:

Roger L. Scholl, Ph.D. Laboratory Director

Date:

10/19/98



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha

Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9089

FAX: (916) 366-9138

### ANALYTICAL REPORT

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

Job#: Rhein-Main AB Phone: (614) 424-3779 Attn: Julie Kramer

Methodology:

TPHP - Modified 8015/DHS LUFT Manual - Purgeable

VOCs - Method 8260

|                          | Parameter     | Concentration | Reporting<br>Limit  | Date<br>Sampled | Date<br>Analyzed |
|--------------------------|---------------|---------------|---------------------|-----------------|------------------|
| Client ID: MWI6075       | TPH Purgeable | 2.6           | 1.0 mg/Kg           | 9/21/98         | 10/1/98          |
| ab ID: 98092642-01A      | Benzene       | ND            | $5.0  \mu g/Kg$     | 9/21/98         | 10/1/98          |
|                          | Toluene       | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | Ethylbenzene  | ND            | $5.0  \mu g/Kg$     | 9/21/98         | 10/1/98          |
|                          | m,p-Xylene    | ND            | $5.0 \mu g/Kg$      | 9/21/98         | 10/1/98          |
|                          | o-Xylene      | ND            | $5.0 \mu g/Kg$      | 9/21/98         | 10/1/98          |
| Client ID: MWI7589       | TPH Purgeable | 6.0           | 1.0 mg/Kg           | 9/21/98         | 10/1/98          |
| ab ID: 98092642-02A      | Benzene       | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | Toluene       | ND            | $5.0  \mu g/Kg$     | 9/21/98         | 10/1/98          |
|                          | Ethylbenzene  | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | m,p-Xylene    | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | o-Xylene      | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
| Client ID: MWI-1.06-1.22 | TPH Purgeable | 6.0           | $1.0\mathrm{mg/Kg}$ | 9/21/98         | 10/1/98          |
| ab ID: 98092642-03A      | Benzene       | ND            | $5.0 \mu g/Kg$      | 9/21/98         | 10/1/98          |
|                          | Toluene       | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | Ethylbenzene  | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | m,p-Xylene    | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | o-Xylene      | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
| Client ID: MWI-1.64-1.78 | TPH Purgeable | 34            | 1.0 mg/Kg           | 9/21/98         | 10/1/98          |
| Lab ID: 98092642-04A     | Benzene       | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | Toluene       | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | Ethylbenzene  | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | m,p-Xylene    | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | o-Xylene      | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
| Client ID : MWI-6.0-6.15 | TPH Purgeable | 3.2           | 1.0 mg/Kg           | 9/21/98         | 10/1/98          |
| Lab ID: 98092642-05A     | Benzene       | ND            | $5.0 \mu g/Kg$      | 9/21/98         | 10/1/98          |
|                          | Toluene       | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | Ethylbenzene  | ND            | $5.0 \mu g/Kg$      | 9/21/98         | 10/1/98          |
|                          | m,p-Xylene    | ND            | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |
|                          | o-Xylene      | 6.4           | 5.0 μg/Kg           | 9/21/98         | 10/1/98          |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http//www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California

(916) 366-9089

|            | 1-000-200-1100 | ,             |     | TCT A           | X: (916) | 966 0196 |
|------------|----------------|---------------|-----|-----------------|----------|----------|
| Client ID: | MWI-6.7-6.85   | TPH Purgeable | 1.5 | 1.0 mg/Kg       | 9/21/98  | 10/1/98  |
| Lab ID:    | 98092642-06A   | Benzene       | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | Toluene       | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | Ethylbenzene  | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | m,p-Xylene    | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | o-Xylene      | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            | MWI-6.85-7.0   | TPH Purgeable | ND  | 1.0 mg/Kg       | 9/21/98  | 10/1/98  |
| Lab ID:    | 98092642-07A   | Benzene       | ND  | $5.0  \mu g/Kg$ | 9/21/98  | 10/1/98  |
|            |                | Toluene       | ND  | $5.0  \mu g/Kg$ | 9/21/98  | 10/1/98  |
|            | •              | Ethylbenzene  | ND  | $5.0  \mu g/Kg$ | 9/21/98  | 10/1/98  |
|            |                | m,p-Xylene    | ND  | $5.0  \mu g/Kg$ | 9/21/98  | 10/1/98  |
|            |                | o-Xylene      | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
| Client ID: | MWI-7.47-7.62  | TPH Purgeable | ND  | 1.0 mg/Kg       | 9/21/98  | 10/1/98  |
| Lab ID:    | 98092642-08A   | Benzene       | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | Toluene       | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | Ethylbenzene  | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | m,p-Xylene    | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | o-Xylene      | ND  | $5.0\mu g/Kg$   | 9/21/98  | 10/1/98  |
| Client ID: | VW24661        | TPH Purgeable | 77  | 1.0 mg/Kg       | 9/21/98  | 10/1/98  |
| Lab ID:    | 98092642-09A   | Benzene       | ND  | $5.0 \mu g/Kg$  | 9/21/98  | 10/1/98  |
|            |                | Toluene       | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | Ethylbenzene  | ND  | $5.0 \mu g/Kg$  | 9/21/98  | 10/1/98  |
|            |                | m,p-Xylene    | ND  | $5.0 \mu g/Kg$  | 9/21/98  | 10/1/98  |
|            |                | o-Xylene      | ND  | $5.0\mu g/Kg$   | 9/21/98  | 10/1/98  |
| Client ID: | VW2-1.07-1.22  | TPH Purgeable | 14  | 1.0 mg/Kg       | 9/21/98  | 10/1/98  |
| Lab ID:    | 98092642-10A   | Benzene       | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | Toluene       | ND  | $5.0\mu g/Kg$   | 9/21/98  | 10/1/98  |
|            |                | Ethylbenzene  | ND  | $5.0  \mu g/Kg$ | 9/21/98  | 10/1/98  |
|            |                | m,p-Xylene    | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |
|            |                | o-Xylene      | ND  | $5.0  \mu g/Kg$ | 9/21/98  | 10/1/98  |
| Client ID: |                | TPH Purgeable | 1.4 | 1.0 mg/Kg       | 9/21/98  | 10/1/98  |
| Lab ID:    | 98092642-11A   | Benzene       | ND  | $5.0  \mu g/Kg$ | 9/21/98  | 10/1/98  |
|            |                | Toluene       | ND  | $5.0\mu g/Kg$   | 9/21/98  | 10/1/98  |
|            |                | Ethylbenzene  | ND  | $5.0  \mu g/Kg$ | 9/21/98  | 10/1/98  |
|            |                | m,p-Xylene    | ND  | $5.0 \mu g/Kg$  | 9/21/98  | 10/1/98  |
|            |                | o-Xylene      | ND  | 5.0 μg/Kg       | 9/21/98  | 10/1/98  |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9089

FAX: (916) 366-9138

|                          |               |     | $\mathbf{F}_{A}$    | AX: (916) | 366-9138  |
|--------------------------|---------------|-----|---------------------|-----------|-----------|
| Client ID: VW2-5.03-5.18 | TPH Purgeable | 7.5 | $1.0\mathrm{mg/Kg}$ | 9/21/98   | 10/1/98   |
| Lab ID: 98092642-12A     | Benzene       | ND  | $5.0  \mu g/Kg$     | 9/21/98   | 10/1/98   |
|                          | Toluene       | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | Ethylbenzene  | ND  | $5.0  \mu g/Kg$     | 9/21/98   | 10/1/98   |
|                          | m,p-Xylene    | ND  | $5.0  \mu g/Kg$     | 9/21/98   | 10/1/98   |
|                          | o-Xylene      | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
| Client ID: VW2-5.34-5.48 | TPH Purgeable | ND  | 1.0 mg/Kg           | 9/21/98   | 10/1/98   |
| Lab ID: 98092642-13A     | Benzene       | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | Toluene       | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | Ethylbenzene  | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | m,p-Xylene    | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | o-Xylene      | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
| Client ID: VW2-8.48-8.63 | TPH Purgeable | 2.6 | $1.0\mathrm{mg/Kg}$ | 9/21/98   | 10/1/98   |
| Lab ID: 98092642-14A     | Benzene       | 610 | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | Toluene       | 130 | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | Ethylbenzene  | 16  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | m,p-Xylene    | 42  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | o-Xylene      | 10  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
| Client ID: VW1-4.66-4.82 | TPH Purgeable | ND  | 1.0 mg/Kg           | 9/21/98   | 10/1/98   |
| Lab ID: 98092642-15A     | Benzene       | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | Toluene       | ND  | 5.0 μg/K·g          | 9/21/98   | 10/1/98   |
|                          | Ethylbenzene  | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | m,p-Xylene    | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
|                          | o-Xylene      | ND  | 5.0 μg/Kg           | 9/21/98   | 10/1/98   |
| Client ID: VW1-7.56-7.71 | TPH Purgeable | 66  | 1.0 mg/Kg           | 9/21/98   | 10/2/98   |
| Lab ID: 98092642-16A     | Benzene       | ND  | 5.0 μg/Kg           | 9/21/98   | 10/2/98   |
|                          | Toluene       | ND  | 5.0 μg/Kg           | 9/21/98   | 10/2/98 . |
|                          | Ethylbenzene  | 6.7 | 5.0 μg/Kg           | 9/21/98   | 10/2/98   |
|                          | m,p-Xylene    | ND  | 5.0 μg/Kg           | 9/21/98   | 10/2/98   |
|                          | o-Xylene      | ND  | 5.0 μg/Kg           | 9/21/98   | 10/2/98   |
| Client ID: VW1-7.84-8.0  | TPH Purgeable | 43  | 1.0 mg/Kg           | 9/21/98   | 10/2/98   |
| Lab ID: 98092642-17A     | Benzene       | 29  | 5.0 μg/Kg           | 9/21/98   | 10/2/98   |
|                          | Toluene       | ND  | $5.0  \mu g/Kg$     | 9/21/98   | 10/2/98   |
|                          | Ethylbenzene  | 18  | $5.0 \mu g/Kg$      | 9/21/98   | 10/2/98   |
|                          | m,p-Xylene    | 19  | 5.0 μg/Kg           | 9/21/98   | 10/2/98   |
|                          | o-Xylene      | ND  | 5.0 μg/Kg           | 9/21/98   | 10/2/98   |
|                          |               |     |                     |           |           |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 (702) 355-1044

FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California

 $(916)\,366\text{-}9089$ 

|                          |               |     | FA                    | X: (916) | 366-9138 |
|--------------------------|---------------|-----|-----------------------|----------|----------|
| Client ID: VW4-7.2-7.35  | TPH Purgeable | 1.1 | $1.0  \mathrm{mg/Kg}$ | 9/21/98  | 10/2/98  |
| Lab ID: 98092642-18A     | Benzene       | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | Toluene       | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | Ethylbenzene  | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | m,p-Xylene    | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | o-Xylene      | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
| Client ID: VW4-7.35-7.5  | TPH Purgeable | ND  | 1.0 mg/Kg             | 9/21/98  | 10/2/98  |
| Lab ID: 98092642-19A     | Benzene       | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | Toluene       | ND  | $5.0  \mu g/Kg$       | 9/21/98  | 10/2/98  |
|                          | Ethylbenzene  | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | m,p-Xylene    | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | o-Xylene      | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
| Client ID: VW4-7.5-7.65  | TPH Purgeable | 11  | 1.0 mg/Kg             | 9/21/98  | 10/2/98  |
| Lab ID: 98092642-20A     | Benzene       | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | Toluene       | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | Ethylbenzene  | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | m,p-Xylene    | ND  | 5.0 µg/Kg             | 9/21/98  | 10/2/98  |
|                          | o-Xylene      | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
| Client ID: VW4-7.65-7.8  | TPH Purgeable | 29  | 1.0 mg/Kg             | 9/21/98  | 10/2/98  |
| Lab ID: 98092642-21A     | Benzene       | ND  | $5.0 \mu g/Kg$        | 9/21/98  | 10/2/98  |
|                          | Toluene       | ND  | $5.0 \mu g/Kg$        | 9/21/98  | 10/2/98  |
|                          | Ethylbenzene  | ND  | $5.0  \mu g/Kg$       | 9/21/98  | 10/2/98  |
|                          | m,p-Xylene    | ND  | $5.0  \mu g/Kg$       | 9/21/98  | 10/2/98  |
|                          | o-Xylene      | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
| Client ID: VW4-8.0-8.15  | TPH Purgeable | 1.4 | 1.0 mg/Kg             | 9/21/98  | 10/2/98  |
| Lab ID: 98092642-22A     | Benzene       | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
|                          | Toluene       | ND  | $5.0 \mu g/Kg$        | 9/21/98  | 10/2/98  |
|                          | Ethylbenzene  | ND  | $5.0  \mu g/Kg$       | 9/21/98  | 10/2/98  |
|                          | m,p-Xylene    | ND  | $5.0  \mu g/Kg$       | 9/21/98  | 10/2/98  |
|                          | o-Xylene      | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |
| Client ID: VW4-8.30-8.50 | TPH Purgeable | 15  | 1.0 mg/Kg             | 9/21/98  | 10/2/98  |
| Lab ID: 98092642-23A     | Benzene       | ND  | $5.0  \mu g/Kg$       | 9/21/98  | 10/2/98  |
|                          | Toluene       | ND  | $5.0  \mu g/Kg$       | 9/21/98  | 10/2/98  |
|                          | Ethylbenzene  | ND  | $5.0 \mu g/Kg$        | 9/21/98  | 10/2/98  |
|                          | m,p-Xylene    | ND  | $5.0 \mu g/Kg$        | 9/21/98  | 10/2/98  |
|                          | o-Xylene      | ND  | 5.0 μg/Kg             | 9/21/98  | 10/2/98  |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

(702) 355-1044 FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312 FAX: (702) 736-7523 Sacramento, California (916) 366-9089

FAX: (916) 366-9138

|                          |               |       | F                | XX: (916) | 366-9138 |
|--------------------------|---------------|-------|------------------|-----------|----------|
| Client ID: VW4-8.65-8.8  | TPH Purgeable | 4300  | 250 mg/Kg        | 9/21/98   | 9/29/98  |
| Lab ID: 98092642-24A     | Benzene       | 4300  | 1000 μg/Kg       | 9/21/98   | 9/29/98  |
|                          | Toluene       | 27000 | 1000 μg/Kg       | 9/21/98   | 9/29/98  |
|                          | Ethylbenzene  | 4200  | 1000 μg/Kg       | 9/21/98   | 9/29/98  |
|                          | m,p-Xylene    | 10000 | 1000 μg/Kg       | 9/21/98   | 9/29/98  |
|                          | o-Xylene      | 2800  | $1000  \mu g/Kg$ | 9/21/98   | 9/29/98  |
| Client ID: VWI-8.11-8.26 | TPH Purgeable | 160   | 1.0 mg/Kg        | 9/22/98   | 10/2/98  |
| Lab ID: 98092642-25A     | Benzene       | 180   | 5.0 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | Toluene       | 14    | $5.0 \mu g/Kg$   | 9/22/98   | 10/2/98  |
|                          | Ethylbenzene  | 200   | $5.0 \mu g/Kg$   | 9/22/98   | 10/2/98  |
|                          | m,p-Xylene    | 510   | 5.0 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | o-Xylene      | 29    | 5.0 μg/Kg        | 9/22/98   | 10/2/98  |
| Client ID: VW1-8.26-8.41 | TPH Purgeable | 2000  | 250 mg/Kg        | 9/22/98   | 9/29/98  |
| Lab ID: 98092642-26A     | Benzene       | 4400  | 1000 μg/Kg       | 9/22/98   | 9/29/98  |
|                          | Toluene       | 2500  | $1000  \mu g/Kg$ | 9/22/98   | 9/29/98  |
| •                        | Ethylbenzene  | 5500  | $1000 \mu g/Kg$  | 9/22/98   | 9/29/98  |
|                          | m,p-Xylene    | 16000 | 1000 μg/Kg       | 9/22/98   | 9/29/98  |
|                          | o-Xylene      | ND    | 1000 μg/Kg       | 9/22/98   | 9/29/98  |
| Client ID: VW1-8.81-9.0  | TPH Purgeable | 5600  | 250 mg/Kg        | 9/22/98   | 9/29/98  |
| Lab ID: 98092642-27A     | Benzene       | 27000 | 1000 μg/Kg       | 9/22/98   | 9/29/98  |
|                          | Toluene       | 3800  | 1000 μg/Kg       | 9/22/98   | 9/29/98  |
|                          | Ethylbenzene  | 22000 | 1000 μg/Kg       | 9/22/98   | 9/29/98  |
|                          | m,p-Xylene    | 83000 | 1000 μg/Kg       | 9/22/98   | 9/29/98  |
|                          | o-Xylene      | 20000 | 1000 μg/Kg       | 9/22/98   | 9/29/98  |
| Client ID: VW3-8.0-8.33  | TPH Purgeable | 55    | 2.0 mg/Kg        | 9/22/98   | 10/2/98  |
| Lab ID: 98092642-28A     | Benzene       | ND    | 8.0 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | Toluene       | ND    | 8.0 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | Ethylbenzene  | 21    | 8.0 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | m,p-Xylene    | 45    | 8.0 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | o-Xylene      | 8.5   | 8.0 μg/Kg        | 9/22/98   | 10/2/98  |
| Client ID: VW3-8.33-8.67 | TPH Purgeable | 750   | 50 mg/Kg         | 9/22/98   | 10/2/98  |
| Lab ID: 98092642-29A     | Benzene       | ND    | 200 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | Toluene       | 210   | 200 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | Ethylbenzene  | 580   | 200 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | m,p-Xylene    | 1500  | 200 μg/Kg        | 9/22/98   | 10/2/98  |
|                          | o-Xylene      | ND    | 200 μg/Kg        | 9/22/98   | 10/2/98  |
|                          |               |       |                  |           |          |



255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

(702) 355-1044

FAX: (702) 355-0406

1-800-283-1183

e-mail: alpha@powernet.net http://www.powernet.net/~alpha Las Vegas, Nevada (702) 498-3312

FAX: (702) 736-7523 Sacramento, California

(916) 366-9089 FAX: (916) 366-9138

| <b>~</b> :: - |               |               |     | ra                  | $\alpha$ . (310) | 900-2199 |
|---------------|---------------|---------------|-----|---------------------|------------------|----------|
| Client ID:    | VW3-8.68-9.0  | TPH Purgeable | 150 | $5.0\mathrm{mg/Kg}$ | 9/22/98          | 10/2/98  |
| Lab ID:       | 98092642-30A  | Benzene       | ND  | 20 μg/Kg            | 9/22/98          | 10/2/98  |
|               |               | Toluene       | 31  | $20  \mu g/Kg$      | 9/22/98          | 10/2/98  |
|               |               | Ethylbenzene  | 350 | $20 \mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | m,p-Xylene    | 880 | $20 \mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | o-Xylene      | 53  | $20\mu g/Kg$        | 9/22/98          | 10/2/98  |
| Client ID:    | VW3-7.16-7.32 | TPH Purgeable | 2.3 | 1.0 mg/Kg           | 9/22/98          | 10/2/98  |
| Lab ID:       | 98092642-31A  | Benzene       | ND  | $5.0\mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | Toluene       | ND  | $5.0\mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | Ethylbenzene  | ND  | 5.0 μg/Kg           | 9/22/98          | 10/2/98  |
|               |               | m,p-Xylene    | ND  | $5.0\mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | o-Xylene      | ND  | $5.0  \mu g/Kg$     | 9/22/98          | 10/2/98  |
| Client ID:    | VW3-7.32-7.48 | TPH Purgeable | ND  | 1.0 mg/Kg           | 9/22/98          | 10/2/98  |
| Lab ID:       | 98092642-32A  | Benzene       | ND  | $5.0\mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | Toluene       | ND  | $5.0\mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | Ethylbenzene  | ND  | $5.0\mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | m,p-Xylene    | ND  | $5.0\mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               | o-Xylene      | ND  | $5.0\mu g/Kg$       | 9/22/98          | 10/2/98  |
|               |               |               |     |                     |                  |          |

ND = Not Detected

Approved By:

er Scholl Roger L. Scholl, Ph.D.

Laboratory Director

Form No.

0

Baffelle

E4)

Sampl Remarks N Sci -\_ = = -= ť Received by: (Signature) Received by: (Signature) Containers to Dans Number Container No. Date/Time Date/Time SAMPLE TYPE (\/) Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time -19-X318 5108-Hd1 Received for Laboratory by: Received by: (Signature) -5.34 - 5.49 Received by: (Signature) VWZ -2,29-2.49 -5,03-5.18 -8.48 -8.63 1W1-7.56-7.7 -4.66-4.8Z (Signature) 7.84-8.0 MW1-6.85-7.0 1.89 VW2-1,07-1,2 MW) -6.7-6.85 MW1--60-.75 MW1-1.64-1.78 MW1-6.0-6.15 SAMPLE I.D. Rhein-Nain AB 9.23gB 17.00 Date/Time Date/Time Date/Time - /M 7117 VW2 ムだ」 AV メド **Project Title** J. Hamer, C. Perry 13:38 40 13:05 00:41 13:40 14:50 15:05 16:00 The me 12:00 12:55 12:35 TIME 13:20 4:15 14:15 Relinquished by; (Signature) Relinquished by: (Signature) 12:00 11:50 11:50 Relinquished by: (Signature) GCC2737-01 SAMPLERS: (Signature) Columbus Laboratories Sm DATE Proj. No. = = = --= = = = = = 15/ ₹ 5 4 7 2 3 \$ 5 E 200

CHAIN OF CUSTODY RECORD

### 3000 - 100

30%

Battelle

sample Remarks \_ Ξ Soil Received by: (Signature) Received by: (Signature) Containers jo Number Container No. Date/Time Date/Time SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time Received for Laboratory by: Received by: (Signature) 143-8:33-8W1 W1-8.11-8.26 8.30-8.50 -8.65-8.B (Keuther Received by VW3-8.67-9.1 (Signature) (Signature) VW1-8.26-8.4 VW1-8.81-9.0 VW3-8.0-8.23 8.0-0.15 SAMPLE I.D. Project Title Rhein-Main AB 9.23.98 17:00 Date/Time Date/Time Date/Time J. Kiamer, C. Perru 7:35 7:25 0:35 0:35 10:35 9:25 10:2 TIME Relinduished by: , (Signature) Relinquished by: (Signature) Relinquished by: (Signature) celie Framer G002737-01 SAMPLERS: (Signature Columbus Laboratories 9 9/22/98 DATE Proj. No. -= 200 224 747 302 717 200

### CHAIN-OF-CUSTODY RECORD

\* Billing Information:

505 King Avenue

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406

BMI98092642 WorkOrder:

(614) 424-3779

TEL:

Battelle Memorial Institute

Client:

(614) 424-3667 FAX: Sob:

QC Level:

Julic Kramer Report Attention: Chris Zimmorman

Columbus, OH 43201

505 King Avenue

P0:

Sampled by:

ပ္

Cooler Temp:

26-Sep-98

|                              |                             |       |                   |             |     |              |        |          | Requested Tests |                |
|------------------------------|-----------------------------|-------|-------------------|-------------|-----|--------------|--------|----------|-----------------|----------------|
| Alpha                        | Client                      |       | Collection No. of | No. of      |     |              | втех в | TPH//P_S |                 |                |
| Sample ID                    | Sample ID                   | Matri | Matrix Date       | Bottles TAT | TAT | #SMd         |        |          |                 | Sample Kemarks |
| BMI98092642-01 MWI6075       | MWI6075                     | SO    | SO 9/21/1998      | -           |     |              |        | <        |                 |                |
| BMI98092642-02 MWI7589       | MWI7589                     | 80    | SO 9/21/1998      | -           | 10  |              | <      | <        |                 | -              |
| BMI98092642-03 MWI-1.06-1.22 | MWI-1.06-1.22               | 80    | SO 9/21/1998      | -           |     |              | <      |          |                 |                |
| BMI98092642-04 MWI-1.64-1.78 | MWI-1.64-1.78               | SO    | SO 9/21/1998      |             | 9   |              | <      | <        |                 |                |
| BMI98092642-05 MWI-6.0-6.15  | MWI-6.0-6.15                | SO    | SO 9/21/1998      | -           | 9   |              | <      | <        | · > 2/0+        | 1              |
| BMI98092642-06               | MWI-6.7-6.85                | 80    | SO 9/21/1998      | -           | 9   |              | <      | <b>V</b> |                 | <b>II</b>      |
| BMI98092642-07               | MWI-6.85-7.0                | so    | SO 9/21/1998      | -           | 10  |              | <      | <        | 10101           | ıı             |
| BMI98092642-08               | MWI-7.47-7.62               | so    | SO 9/21/1998      | -           | 14  |              |        | ٧        |                 |                |
| BMI98092642-09 VW24661       | VW24661                     | 80    | SO 9/21/1998      | -           | 9   |              | <      | <        |                 |                |
| BMI98092642-10               | VW2-1.07-1.22               | so    | SO 9/21/1998      | -           | 10  |              | <      | <        |                 |                |
| Comments:                    | PROJECT-TYTLE RHEIN-MAIN AB | RIEER | 4-MAIN AB         | 15          | 10R | SOIL FOREIGN | OREI   | GN G     |                 |                |

Print Name

Received by:

Relinquished by:

Refinentished by: Received by:

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Olher)

Page: 2 of 4

## CHAIN-OF-CUSTODY RECORD

Billing Information:

Battelle

505 King Avenue

Alpha Analytical, Inc.

255 (Hendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406

BMI98092642 WorkOrder:

> Battelle Memorial Institute Client:

Columbus, OH 43201 505 King Avenue

ا عنا کار Report Attention: Chirs Zimmoras

QC Level:

(614) 424-3667 FAX: op: PO:

(614) 424-3779

TEL:

Sampled by:

26-Sep-98

۲

Cooler Temp:

| Alpha         Cilent           Sample ID         Sample ID           BMI98092642-11         VW2-2.29-2.44           BMI98092642-12         VW2-5.03-5.18           BMI98092642-13         VW2-5.34-5.48           BMI98092642-14         VW2-8.48-8.63           BMI98092642-14         VW2-8.48-8.63 | Cilent Sample ID VW2-2.29-2.44 VW2-5.03-5.18 VW2-5.34-5.48 VW2-8.48-8.63 | Matr<br>SO<br>SO<br>SO<br>SO<br>SO | Collection         No. of           Matrix         Date         Bottles           SO         9/21/1998         1           SO         9/21/1998         1           SO         9/21/1998         1           SO         9/21/1998         1           SO         9/21/1998         1 |  | * | BTEX_S TP1 | s_ < < < < < |  |  |  | Sample Remarks | arks |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|------------|--------------|--|--|--|----------------|------|
| BMI98092642-17 VW1-7.56-7.71 BMI98092642-17 VW4-7.2-7.35 BMI98092642-19 VW4-7.3-7.55 BMI98092642-20 VW4-7.5-7.65                                                                                                                                                                                      | VW1-7.56-7.71<br>VW1-7.84-8.0<br>VW4-7.2-7.35<br>VW4-7.35-7.5            | 8 08 08 08                         | SO 9/21/1998<br>SO 9/21/1998<br>SO 9/21/1998<br>SO 9/21/1998<br>SO 9/21/1998                                                                                                                                                                                                         |  |   |            | < < < < <    |  |  |  |                |      |

PROJECT-TITLE RHEIN-MAIN AB Comments:

Date/Time

Company

Print Name

Relinquished by:

Received by:

Refinguished by:

Received by:

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soll) WS(Waste) DW(Drinking Water) OT(Other)

Page: 3 of 4

### CHAIN-OF-CUSTODY RECORD

Billing Information:

505 King Avenue

### Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 TEL: (702) 355-1044 FAX: (702) 355-0406

(614) 424-3779

WorkOrder:

Cllent:

Battelle Memorial Institute 505 King Avenue

Chile Krans Columbus, OH 43201

Report Attention:

(614) 424-3667 QC Level: FAX: 正: 三 op: PO:

Sampled by:

26-Sep-98

 $\varsigma$ 

Cooler Temp:

BMI98092642

Sample Remarks Requested Tests TPH/P S < < < ∖≺ BTEX\_S < < < < < < < PWS # **Bottles TAT** 9 9 9 9 9 10 9 9 Collection No. of 9/21/1998 SO 9/21/1998 9/22/1998 SO 9/22/1998 9/21/1998 9/21/1998 9/22/1998 9/22/1998 9/22/1998 9/22/1998 Matrix Date SO so SO SO SO SO SO SO BMI98092642-26 • VW1-8.226-8.41 VW4-8.30-8.50 VW3-8.33-8.67 VWI-8.11-8.26 VW4-8.0-8.15 BMI98092642-27 • VW1-8,81-9.0 VW3-8.0-8.33 VW4-7.65-7.8 BMI98092642-24 • VW4-8.65-8.8 VW3-8.68-9.0 Sample ID Client BMI98092642-30 BMI98092642-28 BMI98092642-25 BMI98092642-22 BMI98092642-23 BMI98092642-29 BMI98092642-21 Sample ID Alpha

Comments:

PROJECT-TITLE RHEIN-MAIN AB

Date/Time

Company

Print Name

Meyere hill

Relinquished by:

Relinquished by:

Received by:

Received by:

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samptes will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

# CHAIN-OF-CUSTODY RECORD

Billing Information:

|          | WorkOrder: 06  BMI98092642 | Sampled by:                                                            | Cooler Temp: °C 26-Sep-98                                                            |
|----------|----------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|          | :                          | TEL: (614) 424-3779<br>FAX: (614) 424-3667<br>Job:                     | QC Level:                                                                            |
| Battelle | 505 King Avenue            | Cilent: Battelle Memorial Institute 505 King Averue Columbus, OH 43201 | اعمان) ما المال Report Attention : خاسته Report Attention : خاسته Report Attention : |

Sample Remarks

ŀ

BTEX\_S TPHIP\_S

Bottles TAT PWS# 9 10

> SO 9/22/1998 SO 9/22/1998

VW3-7.32-7.48 VW3-7.16-7.32 Sample 1D Client

> BMI98092642-32 BMIQ8092642-31

Sample ID Alpha

Matrix Date

Collection No. of

|                             | Date/Time         |
|-----------------------------|-------------------|
|                             | Company Date/Time |
|                             | Print Name        |
| PROJECT-TITLE RHEIN-MAIN AB | Signature         |
| Comments:                   |                   |

Relinquished by: Relinquished by: Received by:

Received by:

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tediar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Alr) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

### APPENDIX B SOIL BORING LOGS



| Putting Technology To Work                                                              |                                                      |                                                                                            |
|-----------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Project #: 600 2737-01                                                                  | Site: Rhein Main AB POL Yard                         | Boring #: VW-1(P31/2)                                                                      |
| Drilling Method:                                                                        | Rig Type: Potary                                     | Date: 4/3/94                                                                               |
| Drilling Contractor:                                                                    | Driller:                                             | Hydrogeologist:                                                                            |
| Rolig                                                                                   |                                                      |                                                                                            |
| Depth (feet bgs) Sample ID USCS                                                         | Sample de                                            | <u>escription</u>                                                                          |
| 0-                                                                                      | •                                                    |                                                                                            |
| 1 ML set & clay;                                                                        | dark brown; organic;                                 | some gravel                                                                                |
| <sup>2</sup>                                                                            |                                                      |                                                                                            |
| SP sitty sand;                                                                          | dark brown (15 asore)                                | 1/2-3/4" diameter)                                                                         |
| SP send; med                                                                            | grained office; shight                               | vion mottling, subround, ") near. 4:5" ned grain, some sitt (10%) R-10% grand (1/4-1"dian) |
| 6 SW poor satisfied                                                                     | d med Somm, most, v                                  | med grain; some sier (100)                                                                 |
| 7- 500 54 2, 260030                                                                     | de-t boomen worder no                                | enic zones moist NOODOR                                                                    |
| 8 SP Send desen                                                                         | med sand, well sated                                 | ; zone (~4") if cs-vesd                                                                    |
| 3 SP send, well so that                                                                 | - 1" deam; moist, que, que, que que (1/2-1" diam) 7+ | noit !                                                                                     |
| 10 = 56 send, med brown                                                                 | 1. Line to Medium - grain                            | ned; gravel (                                                                              |
| 12- SP sand, well sont                                                                  | - I median to light brown                            | ; gravely (1/2-1/4")                                                                       |
| 12- 5P trace sult                                                                       | sontine sus rounded; med                             | burn, fine grained NO ODOR                                                                 |
| SW sand, Miller                                                                         | all mad known wint                                   | por suting NO ODOR                                                                         |
| 56 sondy gravel; s                                                                      | ind crosse grained; good                             | ; subsect FUEL ODOR                                                                        |
| 14 SW sond, sulty of<br>56 sondy gravel; s<br>5W said, makeute<br>16 SP sand, well sont | ed med grained, 7+0c d                               | kguy FUEL DOOR                                                                             |
|                                                                                         |                                                      | G U                                                                                        |
| 10 30 Sand, Medium                                                                      | Strong ! weer farmed                                 | EVEL                                                                                       |
| SP Send, Medium<br>19 Send, Medium<br>Well Sortu<br>20 GROWNO WATER                     | & STRONG FUEL ODE                                    | ork                                                                                        |
| 20 GROUND WATER                                                                         | at 20.1 Feet                                         | BHGRM01.CDR                                                                                |



| Project #:<br>G-002737-01                                                                                                                                                                | Site: Rhein Main AB<br>POL Yard                                                                                                                                                 | Boring #: VW-1 (Pg 2/2)                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Drilling Method:                                                                                                                                                                         | Rig Type:                                                                                                                                                                       | Date: 4/4/96                                                                                                                            |
| Drilling Contractor:                                                                                                                                                                     | Driller:                                                                                                                                                                        | Hydrogeologist:                                                                                                                         |
| Depth (feet bgs) Sample ID USCS  20  21  SP Sond, well sont  22  SP Sond, well sont  23  SP Sond, well son  24  25  SP Sond, well son  24  25  SP Sond, medium  26  27  SW Sond, courses | Sample de  Sample de  od, no odor, wet, hvoks  ey 9+3c, sus nounded,  pump granda  ted medum grained, co  n-grained, quartzie, so  grained, trace gravel  t spron deeper - clar | Hydrogeologist:  CI PERTY  Escription  Like Cavings  well sorted FAIR FUEL ODOR  Ansening downward  SCHOOL SUBJECT ODOR  FAIR FUEL ODOR |
| 17-3                                                                                                                                                                                     |                                                                                                                                                                                 |                                                                                                                                         |
| 18-11-11-11-11-11-11-11-11-11-11-11-11-1                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                         |
| 20 🗐                                                                                                                                                                                     | •                                                                                                                                                                               | BHGRM01.CDR                                                                                                                             |



| Putting Technology To Work                                   |                                                                                                                                                                                                    |                    |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| Project #:                                                   | Site: Zhein Main AB                                                                                                                                                                                | Boring #:          |  |
| 6002737-01                                                   | FOL Yard.                                                                                                                                                                                          | VW-2               |  |
| Drilling Method:                                             | Rig Type: Ro tary                                                                                                                                                                                  | Date: 4/9/96       |  |
| Drilling Contractor:                                         | Driller:                                                                                                                                                                                           | Hydrogeologist:    |  |
| Kolig                                                        |                                                                                                                                                                                                    | Citery             |  |
| Depth (Carter) Carrela ID (1909)                             | Sample d                                                                                                                                                                                           | escription         |  |
| (feet bgs) Sample ID USCS                                    | <u>Jampie u</u>                                                                                                                                                                                    | escription         |  |
|                                                              | Lab Samo nort                                                                                                                                                                                      | Alight ada         |  |
| 1 1 ML Silt, clayer                                          | , dark som niest,                                                                                                                                                                                  | ienne saarel       |  |
| 2 SM Soud fine &                                             | grained, sutty (170%)                                                                                                                                                                              | FUEL DOUR          |  |
| 3 = 2/8-3/4"dia                                              | nater (10%)                                                                                                                                                                                        |                    |  |
| SP Send; med - l                                             | Litebrown, Aubargula<br>6; Smedark (Fe?)<br>FAIR                                                                                                                                                   | mothing            |  |
| Ponly glasse                                                 | FAIR                                                                                                                                                                                               | - GOOD FUEL ODOR   |  |
| 35P Sard; med bin: porty graded PAIR PUELODOR                |                                                                                                                                                                                                    |                    |  |
| 6 = SW Sind, med-cs grained; well graded; gravely PAIR DOOR  |                                                                                                                                                                                                    |                    |  |
| 7 SW Sand, med - cs grained; m- lt bin q tyc. Good FUEL ODOR |                                                                                                                                                                                                    |                    |  |
| <b>=</b>                                                     |                                                                                                                                                                                                    |                    |  |
| SW Sand; med-dkbn. medgrad; wellgraded; FAIR ODOR            |                                                                                                                                                                                                    |                    |  |
| <u> </u>                                                     | " =                                                                                                                                                                                                | one in No Face     |  |
| 144 3                                                        | SP Sand - fine to med grained; med gray, NO FUEL ODOR  11- SP Sand; med grad med brum cola SLI FUEL ODOR  11- SP Sand; med grad med brum cola SLI FUEL ODOR  (14-1/2"their) med -dk brum FUEL ODOR |                    |  |
| Sp Sane,                                                     | . Q. (1/4-1/2" die ) m                                                                                                                                                                             | ied-dkbum FUELODOR |  |
| 12 SW Sand grand                                             | 50 Sand; prevely (14-1/2" diein) med-dk brum FUEL ODOR<br>13- 5W Sand; gravely (14-1/2" diein) med-dk brum FUEL ODOR<br>13- 5W Sand; cransa gind TRACE FUEL ODOR                                   |                    |  |
| 13 = 5W Se.C., CIMS                                          | a give proce me                                                                                                                                                                                    | 1 brolons          |  |
| 14 SP Sand; some day; med gind; med bin/gry                  |                                                                                                                                                                                                    |                    |  |
| = - C. J. med-m. stud. Sugartay, 1000                        |                                                                                                                                                                                                    |                    |  |
|                                                              |                                                                                                                                                                                                    |                    |  |
| 3 - 1 So at Preguntation                                     |                                                                                                                                                                                                    |                    |  |
| 18 SP. Sand, russie Eme, sury / would                        |                                                                                                                                                                                                    |                    |  |
| 10 SP Sand . Dord                                            | 19 SP Sound, porly graded, med grained                                                                                                                                                             |                    |  |
| 50 Send; pon                                                 | Granuled atrice:                                                                                                                                                                                   | GOOD FUEL OBOR     |  |
| 20 = 34 32 20 , 100 %                                        | 10.0.                                                                                                                                                                                              | 8HGRM01.CDR        |  |



| •                                                                                                                                                                                                                                         | •                                                                                               |                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| Project #:                                                                                                                                                                                                                                | Site: Phein, Main AB                                                                            | Boring #:                                     |  |
| 6002737-01                                                                                                                                                                                                                                | POL Vard.                                                                                       | VW-2                                          |  |
| Drilling Method:                                                                                                                                                                                                                          | Rig Type:                                                                                       | Date: 4/9/96                                  |  |
| Drilling Contractor:                                                                                                                                                                                                                      | Driller:                                                                                        |                                               |  |
| Rolla                                                                                                                                                                                                                                     |                                                                                                 | Hydrogeologist:                               |  |
| Deoth Blow                                                                                                                                                                                                                                | 1                                                                                               | V                                             |  |
| Depth Blow (feet bgs) Sample ID Counts                                                                                                                                                                                                    | USCS Sample description                                                                         | OVA (ppm) TPH (ppm)                           |  |
| 20 JSP; send; zonl                                                                                                                                                                                                                        | gended. 6000 Put                                                                                | L ODOR                                        |  |
|                                                                                                                                                                                                                                           | J. Jazz J. Osto J.                                                                              |                                               |  |
| 21量 (                                                                                                                                                                                                                                     |                                                                                                 |                                               |  |
| [22를 )                                                                                                                                                                                                                                    | . 1                                                                                             | FUELODOR                                      |  |
| 23 SP, 5 and; Med-                                                                                                                                                                                                                        | es grained; mediga                                                                              | of 1 gazie , sime from                        |  |
| SP Sand; as a                                                                                                                                                                                                                             | Sove                                                                                            | SLIGHT FUEL ODOR                              |  |
|                                                                                                                                                                                                                                           | reasoned ionabore                                                                               |                                               |  |
| 25 SP; Sand; Med-                                                                                                                                                                                                                         | OS JULIET E                                                                                     | HE DODA                                       |  |
| 1 = 1 - 0 · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                             | behaves stilling                                                                                |                                               |  |
| SP; sand, nogravel SLIGHT FUEL ODOR<br>SP; as a sure, nogravel SLIGHT FUEL ODOR                                                                                                                                                           |                                                                                                 |                                               |  |
| SW , SE TO PAIR FUEL OBOR                                                                                                                                                                                                                 |                                                                                                 |                                               |  |
| 5W; send med grained; better graded; ht-med brun.  5W; send med grained; better graded; ht-med brun.  5W; send frigand w/some silt & clay  5W; send frigand w/some silt & clay  two fresh frigands full full full full full full full ful |                                                                                                 |                                               |  |
| ======================================                                                                                                                                                                                                    |                                                                                                 |                                               |  |
| and soud; me                                                                                                                                                                                                                              | 30 SM: send; med grained wisht (25%) of clay (25%) SW: med-lt. brown; very clayery 30.5-30.7 It |                                               |  |
| SW med-lt 6                                                                                                                                                                                                                               | 30 SW med - lt. brown. Very clauses 30.5-307 it                                                 |                                               |  |
| 31 SCKW 54 51 6                                                                                                                                                                                                                           | 31 SC/SW sard; fine grained; very changery (35-40%)                                             |                                               |  |
|                                                                                                                                                                                                                                           | , votagion                                                                                      | - John 10 10 10 10 10 10 10 10 10 10 10 10 10 |  |
| 32 W/ Silt (2<br>33 Total Depth (                                                                                                                                                                                                         | 45%).<br>drilled) @ 32.1/+1                                                                     | /                                             |  |
| 33 Total Depth (                                                                                                                                                                                                                          | drilled) @ 32.1/+1                                                                              | (9.8m)                                        |  |
| 34-                                                                                                                                                                                                                                       |                                                                                                 | •                                             |  |
| 35-                                                                                                                                                                                                                                       |                                                                                                 |                                               |  |
|                                                                                                                                                                                                                                           |                                                                                                 |                                               |  |
| 36                                                                                                                                                                                                                                        |                                                                                                 |                                               |  |
| 17- 를                                                                                                                                                                                                                                     |                                                                                                 |                                               |  |
| 18-                                                                                                                                                                                                                                       |                                                                                                 |                                               |  |
| 40                                                                                                                                                                                                                                        |                                                                                                 |                                               |  |
| 19-                                                                                                                                                                                                                                       |                                                                                                 |                                               |  |
| <sub>20</sub> 크                                                                                                                                                                                                                           |                                                                                                 | BHGRM01.CDR                                   |  |



| Project #:<br>6-002737-01                                                                                                                                | Site: Thein Main AB POL Yard                                                                                         | Boring#: VW-3 (なん)                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Drilling Method:                                                                                                                                         | Rig Type:  Ro farry  Driller:                                                                                        | Date: 4/1/96                                                                                                     |  |
| Drilling Contractor:                                                                                                                                     | Driller:                                                                                                             | Hydrogeologist:                                                                                                  |  |
| Rolig                                                                                                                                                    |                                                                                                                      |                                                                                                                  |  |
| Depth (feet bgs) Sample ID USCS                                                                                                                          |                                                                                                                      | escription                                                                                                       |  |
| Dolling w/ solid                                                                                                                                         | stem augers; Sampling<br>neumatic hammer                                                                             | w/splitspoms diven                                                                                               |  |
| 1= 50 Sec pour pr                                                                                                                                        | e. 100%                                                                                                              | Hat 1 0                                                                                                          |  |
| 1 = 1 - m > SI m-mos                                                                                                                                     | rne, coon,                                                                                                           | crmittent gravel                                                                                                 |  |
| SWISH mornd p                                                                                                                                            | noderate sortis                                                                                                      | mother will ronstains                                                                                            |  |
| 4 Slightly moist.                                                                                                                                        | of chicehen                                                                                                          | 2267.                                                                                                            |  |
| SP, mid bra; some stavel; qbic; subergular.  SP, mid bra; some stavel; qbic; subergular.  grave is white fty - angular 1/2-3/4" diameter                 |                                                                                                                      |                                                                                                                  |  |
| 5P sand, fine-ml grained, med-light brown; moist                                                                                                         |                                                                                                                      |                                                                                                                  |  |
| quartie; dark brown intervel w/feldspar gravila 12-1 indian                                                                                              |                                                                                                                      |                                                                                                                  |  |
| SP sand, med to cranse grained; well sorted; mother w/rust brum  matrix is buff to white                                                                 |                                                                                                                      |                                                                                                                  |  |
| SP bull to lite by                                                                                                                                       | own coarse engined a                                                                                                 | 6.                                                                                                               |  |
| large gravel                                                                                                                                             | 10- SP bull to lite brown, coarse grained, gfzie, Sus rounled.  large gravels 1.5" diameter feldspars; moist; no odn |                                                                                                                  |  |
| 11 5W course grain.                                                                                                                                      | ed, fair sorting quar                                                                                                | trie; subminded                                                                                                  |  |
| 1 -                                                                                                                                                      |                                                                                                                      |                                                                                                                  |  |
| 13 SW porty sorted                                                                                                                                       | ( w/much v. large gra<br>ity feldspurs; some ar                                                                      | e iron stained.                                                                                                  |  |
| 14 = 56 sand is very                                                                                                                                     | crarse grained of porch                                                                                              | sorted; grt feldspur                                                                                             |  |
| 15 gravel 1-1.5,                                                                                                                                         | nehis diameter, sand                                                                                                 | susrounded                                                                                                       |  |
| 16 SW Some selt/c                                                                                                                                        | coarsening down wand                                                                                                 | sorted; grt feldspur<br>hter color (butf)<br>susrounded<br>some very large gravels<br>; some clay prehets nouder |  |
| 17 56 sand is craise                                                                                                                                     | grad, quartzie ponh                                                                                                  | y sorted med burn                                                                                                |  |
| 18 56 sand is craise grad, quartie ponly sorted med burns<br>gravels 1" diam, gife maybe cherty<br>56 (anabove); trace of silt, party sorted; gres 14-1" |                                                                                                                      |                                                                                                                  |  |
| 19386 (as 12000) to                                                                                                                                      | ace set, grand as as                                                                                                 | ve.                                                                                                              |  |
| 20 No odors of F                                                                                                                                         | nel to this depth                                                                                                    | BHGRM01.CDR                                                                                                      |  |



| Project #:                         | Site: Rhein Main AB                       | Boring #: (Pa2/3)                         |
|------------------------------------|-------------------------------------------|-------------------------------------------|
| G-002737-01                        | 70L Yard                                  | Boring #: VW-3 (Pg 7/2)                   |
| Drilling Method:                   | Rig Type:                                 | Date: 4/1/96                              |
| Drilling Contractor:               | Driller:                                  | Hydrogeologist:                           |
| Folig                              | L                                         | arremy                                    |
| Depth<br>(feet bgs) Sample ID USCS | Sample                                    | description                               |
|                                    |                                           | rounded 1/4-1" deam                       |
| 21 - hit ground wat                | in at about 21/4                          | run conductor                             |
| 22 (6/2)/kazing brunhr             | le And Start to upen                      | run conductors<br>of bedinent out of hole |
|                                    |                                           |                                           |
| 5usive nded:                       | ted; medium-fine gra<br>no gravel; wet 15 | elow gut), NO ODOR                        |
| SP sand coars                      | e grained, quantzie                       | w/feldspar; submunded<br>rel ( 8")</td    |
| 25 Wet; NO DE                      | ept 1/2" silty med-                       | gray clayery "plug"                       |
| TO A SU MUCH SECOM                 |                                           | , ,                                       |
| 27 3 SW course grains              | ed; no fines; trace                       | gravel (NI FOO)                           |
| 750000                             | justitudes                                | 0.2011                                    |
| 29 Stiff dense                     | Somm-med grey@for, silty at top; v. c     | layer at 50Hom                            |
|                                    | 2 DEPTH 29.5 1.                           |                                           |
| 11-                                |                                           |                                           |
| 12-                                |                                           |                                           |
| 13.                                |                                           |                                           |
| 14.                                |                                           |                                           |
|                                    |                                           |                                           |
| 15-                                |                                           |                                           |
| 16-3                               |                                           |                                           |
| 17-=                               |                                           |                                           |
| 18-                                |                                           |                                           |
| 19-1                               |                                           |                                           |
| 20                                 |                                           | BHGRM01.CDR                               |



| Project #:      | <b>7</b> 0.    | Site: Rhein Main AB   | Boring #: VW-4                                       |
|-----------------|----------------|-----------------------|------------------------------------------------------|
|                 | 737-01         | Rig Type:             | Deter                                                |
| Drilling Metho  | Split Spron    | Rotary                | Date: 4/5/96                                         |
| Drilling Contra |                | Driller:              | Hydrogeologist:                                      |
| Roli            |                |                       | CIFERY                                               |
| Depth           | •              |                       | 0 I                                                  |
| (feet bgs)      | Sample ID USCS | Sample                | description                                          |
| 0 T NO          | te: Many in    | tervals in this boxe  | hale were not logged,                                |
| 1-              | nather so      | uples were collect    | d in brass sleves                                    |
| 2-              | and sent       | to lake natory for    | morganic analyses                                    |
| 3-              | or grain:      | size Listubution a    | nalyses.                                             |
|                 | Q              |                       |                                                      |
| 4               |                |                       |                                                      |
| 5-              |                |                       |                                                      |
| 6- SP           | Sand; med      | - le brown; mik-c     | s grained; fairsorting                               |
| 7               | _              |                       | :                                                    |
|                 |                |                       |                                                      |
|                 |                |                       |                                                      |
| 9 1             | log            |                       |                                                      |
| 10-             | • /            |                       |                                                      |
| 11-             |                |                       |                                                      |
|                 |                |                       |                                                      |
| 56              | Sand, gravel   | y fair sorting; quart | 3; med-cs grained<br>-1" diameter; no okon           |
| 13-             | bull & Dink    | color: navels 1/2.    | -1" diameter: no otor                                |
| 14              | _ // - /       |                       | •                                                    |
| 4.5             |                |                       |                                                      |
| 10              | •              |                       |                                                      |
| 16-             |                |                       |                                                      |
| 17-             |                |                       |                                                      |
| 18-             |                | 0 1 0.1               | - 11 11 mederate                                     |
| 56              | Sand, grave    | by, as grained; lite  | gray/buff, moderate wel = 1/2-1/2" dian  BHGRMO1.CDR |
| 19              | Anting; gt     | ¿ Subrounded; gra     | vel                                                  |
| 20-3            | Subrounde      | 3, quartice           | 8HGRM01,CDR                                          |
|                 |                |                       |                                                      |



| Project #: 6-002737-01        | Site: Phein M<br>POL Yard                                                                                                                                                     | ALD AB Boring #:   | /W-4                  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--|
| Drilling Method:              | Rig Type:                                                                                                                                                                     | Date:              | 5/96                  |  |
| Drilling Contractor:          | Driller:                                                                                                                                                                      | Hydroge            | ologist:              |  |
| Kolis                         |                                                                                                                                                                               | Chleud             |                       |  |
| Depth<br>(feet bgs) Sample ID | <u>USCS</u>                                                                                                                                                                   | Sample description |                       |  |
| 20冒                           | •                                                                                                                                                                             |                    |                       |  |
| 21-                           | 1 : 1 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 :                                                                                                                                       | med: moderate      | antira                |  |
| 22 SG Sand, grand             | wely; crace gra<br>1/8->1" diam;                                                                                                                                              | subrounded         | · · · · // /          |  |
| 23- SP SAND ME                | edgrained, lite of                                                                                                                                                            | may; well sort     | .6                    |  |
| 24                            |                                                                                                                                                                               |                    |                       |  |
| 25 SP Sand Me                 | ed grained, gtyric                                                                                                                                                            | , shodoz           |                       |  |
| 26 SP Sand M                  | ed grained; sime                                                                                                                                                              | silt; qtzie, 5     | a Grounded,           |  |
| 27 med                        | SP Sand med grained; sime silt; qtzie, subrounded, med-lite gray  SP Sand; CS grained; moderate Anting, qtzie, med  grey; gravels 18-12" diameter; subrounded  Good FUEL ODOR |                    |                       |  |
| SP Sand; C                    | s grained; mode                                                                                                                                                               | rate Anting,       | gtzie, med            |  |
| 29 grey; =                    | pavels 18-12"                                                                                                                                                                 | diameter; sus      | nounded<br>DFUEL-ODOR |  |
| 30 SP Sand; ~                 | + a Sove but less                                                                                                                                                             | - gravel; med-     | lite grang            |  |
| 31 Total depth                | 31.17 H.                                                                                                                                                                      |                    |                       |  |
| 32-                           | •                                                                                                                                                                             |                    |                       |  |
| <b>3</b> 3-                   |                                                                                                                                                                               |                    |                       |  |
| 34-                           | ,                                                                                                                                                                             |                    |                       |  |
| 35-                           |                                                                                                                                                                               |                    |                       |  |
| 36-                           |                                                                                                                                                                               |                    |                       |  |
| <b>3</b> 7-                   |                                                                                                                                                                               |                    |                       |  |
| l =                           |                                                                                                                                                                               |                    |                       |  |
| <b>3</b> 9-                   |                                                                                                                                                                               |                    |                       |  |
| 38                            |                                                                                                                                                                               |                    |                       |  |
| 17                            |                                                                                                                                                                               |                    | BHGRM01.CDR           |  |



| Site: Thein Main<br>POL Vand | Boring #: MW-1                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rig Type:                    | Date: 4/10/96                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Driller:                     | Hydrogeologist:                                                                                                                                                                                                                                                                                                                                                                                                                         |
| USCS Sample desc             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>ogoo</u>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (20%); dark brown,           | stiff ; gravely such selow substituted); sand 30%                                                                                                                                                                                                                                                                                                                                                                                       |
| grained, dark brown          | , a supt change to med-                                                                                                                                                                                                                                                                                                                                                                                                                 |
| tze,                         | Lunni abust grains isc                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mel grained; 5a da           | And at 6' 10                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -7'; med-light be            | our, ous nounded                                                                                                                                                                                                                                                                                                                                                                                                                        |
| l; med brown cold            | I lighten downward FUEL ODOR                                                                                                                                                                                                                                                                                                                                                                                                            |
| - ASTUR BULL                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nted                         | garage (14)                                                                                                                                                                                                                                                                                                                                                                                                                             |
| my publicy - g               | black Very SUGHT                                                                                                                                                                                                                                                                                                                                                                                                                        |
| vel (1/8-1/2" de             | anter) FUEL OOOR                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ed - cs grained;             | and well pounded                                                                                                                                                                                                                                                                                                                                                                                                                        |
| lt 20-35% each.              | med gray when                                                                                                                                                                                                                                                                                                                                                                                                                           |
| red: parlute 50              | nting some brown<br>native no odo &<br>native no odo &                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | Driller:  USCS Sample description  (20%); Lankbown,  gravel 1/3-1 dem;  gravel 1/3-1 dem;  gravel, darkbown  the,  med grained, the  med grained; she da  get coarse gravel  el at 81, some of  el at 81, some of  el at 81, some of  el at 81, some  el at 81, some  of med bown colo  and - grey w/sa  of me grained; shi  med - grey w/sa  of me grained; shi  med (1/8-1/2" di  ed - cs grained;  get 20-35% each:  med than above; |



| , damg recimology to viola              |                        |                     |
|-----------------------------------------|------------------------|---------------------|
| Project #:                              | Site: Rhein Main &B    | Boring #: MW-1      |
| 602737-01                               | POL Yard.              | /NW-1               |
| Drilling Method:                        | Rig Type: Rotary       | Date: 4/10/96       |
| Drilling Contractor:                    | Driller:               | Hydrogeologist:     |
| Kolig                                   |                        | Cotterry            |
| Depth Blow                              | Sample description     | OVA (ppm) TPH (ppm) |
|                                         |                        |                     |
| 20 SP med-cs                            | paines; lite - viet gr | It may wet          |
| 21 SP shahty f                          | , were forward then of | FUEL OPOR           |
| 22                                      | The grantee visit      | well ented.         |
| 23 SP med-lt b<br>25/Selt veins         | 19655 & gravel         | FAINT ODOR, wet     |
| 1 3                                     | ce mained SU           | SHIT ODOK           |
| 25- SP Brown, W<br>26- SW fre-med       | in grained stiff       | - clayen & selty    |
| 26-15W                                  |                        | SLIGHT ODOR         |
| DRILLED FR                              | om 27.0 to 34.5        | A. (10.5m)          |
| Using gru                               | al pump of angers.     | -no sampling        |
|                                         |                        |                     |
| 30 TOTAL LEM                            | HI 34.5' (10.51        |                     |
| 31-                                     |                        |                     |
| <b>3</b> 2 ■                            |                        |                     |
| <b>3</b> 3                              |                        |                     |
| 34-                                     |                        |                     |
| 35-                                     |                        |                     |
| <b>3</b> 6- <b>1</b>                    |                        |                     |
| 32 ———————————————————————————————————— |                        |                     |
| 38-                                     |                        |                     |
| <b>3</b> 9-                             |                        |                     |
| <b>4</b> 0                              |                        | BHGRM01.CDR         |
| L'                                      |                        |                     |

# APPENDIX C SURFACE EMISSIONS SAMPLING RESULTS

SURFACE EMISSIONS RESULTS

**APRIL 1996** 

Rhein-Main AB Germany Surface Emission Results

Sampling Period: 4/08/96 to 4/10/96

## SAMPLE CONCENTRATIONS

| Tube ID | Site ID          | Benzene<br>(ppbv) | Toluene<br>(ppbv) | Ethyl<br>Benzene<br>(ppbv) | m&p<br>Xylene<br>(ppbv) | o-Xylene<br>(ppbv) | TPH<br>as Hexane<br>(ppbv) |
|---------|------------------|-------------------|-------------------|----------------------------|-------------------------|--------------------|----------------------------|
| A-11    | RM1-Center-1     | 1.30              | 1.59              | <0.50                      | 0.56                    | <0.50              | 34.07                      |
| A-24    | RM1-Center-2     | 1.37              | 2.46              | < 0.50                     | 0.79                    | < 0.50             | 212.19                     |
| A-27    | RM1-Center-3     | 1.08              | 1.08              | <0.50                      | <0.50                   | <0.50              | 222.05                     |
| A-26    | RM1-Perimeter-1  | 1.26              | 2.79              | <0.50                      | 0.96                    | n.d.               | 329.86                     |
| A-1     | RM1-Perimeter-2  | 1.10              | 0.84              | < 0.50                     | < 0.50                  | < 0.50             | 39.03                      |
| A-25    | RM1-Perimeter-3  | 0.62              | 0.59              | < 0.50                     | < 0.50                  | <0.50              | 25.55                      |
| A-14    | RM1-Background-1 | < 0.50            | 0.72              | <0.50                      | <0.50                   | n.d.               | 294.15                     |
| A-20    | RM1-Background-2 | 0.67              | 0.71              | <0.50                      | < 0.50                  | n.d.               | 35.37                      |
| A-16    | RM1-Atmosphere   | 1.56              | 2.82              | n.d.                       | 0.59                    | <0.50              | 218.41                     |
| A-28    | RM1-Cylinder     | 0.64              | < 0.50            | n.d.                       | < 0.50                  | n.d.               | 23.57                      |
| A-19    | RM1-Trip Blank   | < 0.50            | < 0.50            | n.d.                       | <0.50                   | n.d.               | 14.11                      |

<0.50 = Below Method Detection Limit.

n.d. = Not Detected.

FLUX RATES: ug/ 0.453 m²/minute.

|         |                  |         |         | ,                |               |          |                  |
|---------|------------------|---------|---------|------------------|---------------|----------|------------------|
| Tube ID | Site ID          | Benzene | Toluene | Ethyl<br>Benzene | m&p<br>Xylene | o-Xyléne | TPH<br>as Hexane |
| A-11    | RM1 – Center – 1 | 0.008   | 0.012   | <0.004           | 0.005         | <0.004   | . 0.245          |
| A-24    | RM1-Center-2     | 0.009   | 0.018   | < 0.004          | 0.007         | < 0.004  | 1.524            |
| A-27    | RM1-Center-3     | 0.007   | 0.008   | < 0.004          | < 0.004       | < 0.004  | 1.595            |
| A-26    | RM1-Perimeter-1  | 0.008   | 0.021   | < 0.004          | 0.008         | n.d.     | 2.369            |
| A-1     | RM1-Perimeter-2  | 0.007   | 0.006   | < 0.004          | < 0.004       | < 0.004  | 0.280            |
| A-25    | RM1-Perimeter-3  | 0.004   | 0.004   | <0.004           | < 0.004       | <0.004   | 0.183            |
| A-14    | RM1-Background-1 | < 0.004 | 0.005   | < 0.004          | <0.004        | n.d.     | 2.112            |
| A-20    | RM1-Background-2 | 0.004   | 0.005   | < 0.004          | <0.004        | n.d.     | 0.254            |
| A-16    | RM1 – Atmosphere | 0.010   | 0.021   | n.d.             | 0.005         | < 0.004  | 1.568            |
| A-28    | RM1-Cylinder     | 0.004   | < 0.004 | n.d.             | < 0.004       | n.d.     | 0.169            |
| A-19    | RM1-Trip Blank   | < 0.004 | < 0.004 | n.d.             | < 0.004       | n.d.     | 0.101            |

<0.004 = Below Method Detection Limit.

n.d. = Not Detected.

Form No.

CHAIN OF CUSTODY RECORD

Battelle

No.

rpe Remarks Sprhent Ξ = = Received by: (Signature) Received by: (Signature) Containers = = = = Ξ Иптрег 0900h Container No. Date/Time Date/Time 76-51-17 SAMPLE TYPE (V) Remarks Relinquished by: (Signature) Relinquished by: (Signature) و t P al Pelent Date/Time A-26 CA -A A S A+16 R-1/ 4 Z A ATT X STORY 98-11-4 Received for Laboratory by: > > Received by: (Signature) 541-646 KG ROJ ND-V RMI-PERILLIETER-1 RMI-PERIMETER-2 RAUI-PERIMETER-3 RAII - RAKCOCUMO -G002737-01 Rhein-Main AB, POL Yard RMI-TRIPBIAUK ABOBELA RAII - ATAICSPHERE Received by: (Signature) (Signature) Chrisperny, Walter Siebenlist RMI-CYLIUDER RMI-CENTER-2 RMI-CEUTER-3 RMI-CENTER-SAMPLE I.D. 4.10% 1530 Date/Time Date/Time Date/Time Project Title Relinquished by: (Signature) TIME Relinquished by: (Signature) 538 436 493 812 Relinqujshed by: (Signature) 1522 <u>이</u>이 22 超 25 35 SAMPLERS: (Signature) Columbus Laboratories Mamer. 4.8.96 4.10.96 1.10.96 1.0.96 1.8.96 4.8,96 .8.96 4.8.96 4.8.90 DATE Proj. No.



**GERTUBE A-28 CYLINDER 300CC** 

Acquired from HP5890-FID via Port 3 on 04-14-1996 09:49:44

HP5890 FID G002737-01

300CC SWEEP

Data File:

C:\CPWIN\DATA1\RHEINAFB.04R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time Name               | Amount | Amount% | Area            | Area%  | Турс | Width | Height   | Height% | ? restre       |
|-----|-----------------------------|--------|---------|-----------------|--------|------|-------|----------|---------|----------------|
| 1   | 5.519                       | 5.2535 | 28.267  | 75198.5         | 28.691 | BB   | 0.114 | 11028.49 | 19.936  | ? mediline     |
| 2   | 6.405                       | 0.2368 | 1.274   | 3390.2          | 1.293  | BV   | 0.090 | 628.91   | 1.137   |                |
| 3   | 6.583                       | 0.2951 | 1.588   | 4223.8          | 1.612  | VB   | 0.137 | 512.12   | 0.926   | - 1. A A       |
| 4   | 8.735                       | 2.8534 | 15.353  | 40843.2         | 15.583 | BV   | 0.068 | 10051.39 | 18.169  | 2 methy! - but |
| 5   | 9.208 iso-Pentane           | 0.9593 | 5.162   | 12708.4         | 4.849  | VB   | 0.086 | 2459.97  | 4.447   |                |
| 6   | 12,209 2-Methyl Pentane     | 0.2529 | 1.361   | 3513.7          | 1.341  | BV   | 0.064 | 911.25   | 1.647   |                |
| 7   | 12.469                      | 0.2440 | 1.313   | 3492.9          | 1.333  | VB   | 0.082 | 713.06   | 1.289   |                |
| 8   | 12.842                      | 0.0892 | 0.480   | 1276.2          | 0.487  | BB   | 0.059 | 361.43   | 0.653   |                |
| 9   | 13.203 n-Hexane             | 0.0947 | 0.510   | 1356.1          | 0.517  | BB   | 0.055 | 413.93   | 0.748   |                |
| 10  | 14.148 Benzene              | 0.4754 | 2.558   | 8593.9          | 3.279  | BB   | 0.052 | 2775.59  | 5.017   |                |
| 11  | 15.086                      | 0.1419 | 0.764   | 2031.7          | 0.775  | BB   | 0.062 | 550.40   | 0.995   |                |
| 12  | 16.099                      | 0.0668 | 0.360   | 956.8           | 0.365  | BB   | 0.057 | 281.50   | 0.509   |                |
| 13  | 16.763 Toluene              | 0.2308 | 1.242   | 4116.1          | 1.570  | BB   | 0.054 | 1282.24  | 2.318   |                |
| 14  | 19.097 Ethyl Benzene        | 0.0672 | 0.362   | 1490.3          | 0.569  | BB   | 0.066 | 378.95   | 0.685   |                |
| 15  | 21.325 1,3,5-Trimethylbenze | 0.1045 | 0.562   | 2172.0          | 0.829  | BB   | 0.074 | 487.75   | 0.882   |                |
| 16  | 21.657                      | 0.0998 | 0.537   | 1428.3          | 0.545  | BV   | 0.062 | 385.87   | 0.698   | 1              |
| 17  | 21.846 n-Decane             | 0.0502 | 0.270   | 1143.3          | 0.436  | VB   | 0.054 | 350.14   | 0.633   |                |
| 18  | 23.675                      | 0.5132 | 2.761   | 7345.7          | 2.803  | BV   | 0.075 | 1638.48  | 2.962   |                |
| 19  | 24.029                      | 0.1166 | 0.627   | 1669.3          | 0.637  | vv   | 0.087 | 318.77   | 0.576   |                |
| 20  | 24.460                      | 0.1852 | 0.996   | 2650.5          | 1.011  | vv   | 0.125 | 354.49   | 0.641   |                |
| 21  | 24.638                      | 0.2575 | 1.386   | 3686.2          | 1.406  | vv   | 0.077 | 797.08   | 1.441   |                |
| 22  | 24.790                      | 0.2731 | 1.470   | 3909.4          | 1.492  | vv   | 0.069 | 948.10   | 1.714   |                |
| 23  | 24.914                      | 0.2045 | 1.100   | 2927.4          | 1.117  | vv   | 0.072 | 680.33   | 1.230   |                |
| 24  | 25.195                      | 1.8888 | 10.163  | 27036.1         | 10.315 | vv   | 0.062 | 7326.21  | 13.243  |                |
| 25  | 25.373                      | 1.1477 | 6.175   | 16427.5         | 6.268  | vv   | 0.069 | 3957.32  | 7.153   |                |
| 26  | 25.641 n-C12                | 0.4035 | 2.171   | 6926.2          | 2.643  | vv   | 0.092 | 1252.14  | 2.263   |                |
| 27  | 26.178                      | 0.2635 | 1.418   | 3772.2          | 1.439  | vv   | 0.068 | 920.88   | 1.665   |                |
| 28  | 26.600                      | 0.2483 | 1.336   | 3553.6          | 1.356  | vv   | 0.069 | 853.01   | 1.542   |                |
| 29  | 26.969                      | 0.5835 | 3.140   | <b>\$</b> 352.5 | 3.187  | vv   | 0.089 | 1565.09  | 2.829   |                |
| 30  | 27.458 n-C13                | 0.1983 | 1.067   | 1799.0          | 0.686  | vv   | 0.106 | 283.34   | 0.512   |                |
| 31  | 27.796                      | 0.1643 | 0.884   | 2351.2          | 0.897  | VB   | 0.082 | 475.28   | 0.859   |                |
| 32  | 28.473 n-C14                | 0.6217 | 3.345   | 1755.4          | 0.670  | BB   | 0.078 | 376.95   | 0.681   |                |

Total Area = 262097.4, Total Amount = 18.585, Total Height = 55320.48



**GERTUBE A-16 ATMOSPHERE 300CC** 

Acquired from HP5890--FID via Port 3 on 04-14-1996 11:11:02

HP5890 FID G002737-01

**300CC SWEEP** 

Data File:

C:\CPWIN\DATA1\RHEINAFB.05R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time  | Name               | Amount   | Amount% | Arca           | Area%          | Туре | Width          | Height            | Height% |           |
|-----|-----------|--------------------|----------|---------|----------------|----------------|------|----------------|-------------------|---------|-----------|
| 1   | 3.313     |                    | 1.4250   | 0.833   | 20397.2        | 0.840          | BB   | 0.140          | 2436.40           | 0.604   |           |
| 2   | 4.386     |                    | 0.1155   | 0.068   | 1653.5         | 0.068          | BB   | 0.103          | 268.81            | 0.067   |           |
| 3   | 4.793     |                    | 0.1127   | 0.066   | 1613.5         | 0.066          | BB   | 0.094          | 285.41            | 0.071   |           |
| 4   | 5.517     |                    | 115.0667 | 67.275  | 1647054.0      | 67.811         | BB   | 0.118          | 231716.00         | 57.484  |           |
| 5   | 6.412     |                    | 24.5013  | 14.325  | 350709.8       | 14.439         | BV   | 0.085          | 68796.24          | 17.067  | -1-Butere |
| 6   | 6.739     |                    | 1.2815   | 0.749   | 18343.1        | 0.755          | vv   | 0.094          | 3241.48           | 0.804   |           |
| 7   | 7.131     |                    | 0.2262   | 0.132   | 3237.9         | 0.133          | VB   | 0.158          | 342.52            | 0.085   |           |
| 8   | 8,742     |                    | 1.7806   | 1.041   | 25487.7        | 1.049          | BV   | 0.064          | 6591.93           | 1.635   |           |
| 9   | 9.152 is  | o-Pentane          | 5.9925   | 3.504   | <b>79383.7</b> | 3.268          | VB   | 0.089          | 14897.99          | 3.696   |           |
| 10  | 9.663     |                    | 0.1696   | 0.099   | 2427.2         | 0.100          | BB   | 0.103          | 394.08            | 0.098   |           |
| 11  | 9.970     |                    | 1.5149   | 0.886   | 21684.5        | 0.893          | BV   | 0.066          | 5473.09           | 1.358   |           |
| 12  | 10.095 n- | Pentane            | 0.3340   | 0.195   | 3686.5         | 0.152          | VB   | 0.060          | 1028.76           | 0.255   |           |
| 13  | 10.988    |                    | 0.2502   | 0.146   | 3581.5         | 0.147          | BB   | 0.075          | 796.66            | 0.198   |           |
| 14  | 11.203    |                    | 0.0867   | 0.051   | 1241.2         | 0.051          | BB   | 0.061          | 339.79            | 0.084   |           |
| 15  | 11.513    |                    | 0.0867   | 0.051   | 1241.6         | 0.051          | BV   | 0.062          | 336.22            | 0.083   |           |
| 16  | 11.757    |                    | 0.1700   | 0.099   | 2433.9         | 0.100          | vv   | 0.062          | 652.42            |         |           |
| 17  | 11.987    |                    | 0.7138   | 0.417   | 10217.0        | 0.421          | vv   | 0.075          | 2274.92           |         |           |
| 18  | 12.213 2- | Methyl Pentane     | 0.1908   |         | 2650.9         | 0.109          |      | 0.055          | 796.11            |         |           |
| 19  | 12.369    |                    | 0.5000   | 0.292   | 7157.2         | 0.295          |      | 0.068          | 1743.89           |         |           |
| 20  | 12.847    |                    | 0.8104   | 0.474   | 11600.1        | 0.478          |      | 0.060          | 3217.05           |         |           |
| 21  |           | Hexane             | 0.1067   |         | 1527.9         | 0.063          |      | 0.060          | 425.83            |         |           |
| 22  |           |                    | 0.6679   |         | 9560.7         | 0.394          |      | 0.092          | 1735.03           |         |           |
| 23  | 13.651    |                    | 0.1649   |         | 2360.4         | 0.097          |      | 0.078          | 502.81            |         |           |
| 24  |           | 4-Dimethyl Pentane | 0.2640   |         | 3400.1         | 0.140          |      | 0.093          | 607.19            |         |           |
| 25  |           |                    | 1.4656   |         | 20977.8        | 0.864          |      | 0.052          | 6752.18           |         |           |
| 26  |           |                    | 0.2875   |         | 4114.7         | 0.169          |      | 0.063          | 1093.49           |         |           |
| 27  |           | enzene             | 2.5764   |         | 46572.3        | 1.917          |      | 0.061          | 12778.63          |         |           |
| 28  |           |                    | 0.5566   |         | 7967.4         | 0.328          |      | 0.095          | 1396.74           |         |           |
| 29  |           |                    | 0.6262   |         | 8963.5         | 0.369          |      | 0.080          | 1875.65           |         |           |
| 30  |           |                    | 0.8288   |         | 11863.8        | 0.488          |      | 0.112          |                   |         |           |
| 31  |           | -Heptane           | 0.2264   |         | 3849.6         | 0.158          |      | 0.055          | 1171.28           |         |           |
| 32  |           |                    | 0.4091   | 0.239   | 5855.2         | 0.241          |      | 0.070          | 1401.36<br>488.09 |         |           |
| 33  |           |                    | 0.1858   |         | 2659.7         | 0.110          |      | 0.091          |                   |         |           |
| 34  |           |                    | 0.0947   |         | 1355.6         | 0.056          |      | 0.061          | 371.36<br>419.57  |         |           |
| 35  |           |                    | 0.1818   |         | 2602.4         | 0.107          |      | 0.103<br>0.051 | 13715.86          |         |           |
| 36  |           |                    | 2.9181   |         | 41768.8        | 1.720          |      |                |                   |         |           |
| 37  |           | oluene             | 0.0873   |         | 1557.4         | 0.064          |      | 0.076<br>0.099 |                   |         |           |
| 38  |           | •                  | 0.1918   |         | 2745.3         | 0.113<br>0.097 |      | 0.059          |                   |         |           |
| 39  |           | -Octane            | 0.1232   |         | 2355.2         |                |      | 0.032          |                   |         |           |
| 40  |           |                    | 0.3107   |         | 4446.9         | 0.183          |      | 0.033          |                   |         |           |
| 41  |           | thyl Benzene       | 0.4040   |         | 8958.2         | 0.369          |      | 0.067          |                   |         |           |
| 42  | 19.477 p  | -Xylene            | 0.0698   | 0.041   | 1268.7         | 0.052          | . 88 | 0.033          | 401.34            | 0.100   |           |

| PK# | Ret Time     | Name            | Amount | Amount% | Area   | Arca% | Турс | Width | Height  | Height% |
|-----|--------------|-----------------|--------|---------|--------|-------|------|-------|---------|---------|
| 43  | 19.591 o-Xy  | lene            | 0.0592 | 0.035   | 1250.6 | 0.051 | BB   | 0.034 | 615.74  | 0.153   |
| 44  | 21.663 1,3,5 | -Trimethylbenze | 0.0895 | 0.052   | 1861.3 | 0.077 | BV   | 0.063 | 491.20  | 0.122   |
| 45  | 25.194       |                 | 0.6660 | 0.389   | 9533.3 | 0.392 | vv   | 0.051 | 3135.59 | 0.778   |
| 46  | 28.475 n-C1  | 4               | 0.5492 | 0.321   | 1550.4 | 0.064 | VB   | 0.043 | 603.42  | 0.150   |
| 47  | 29.909 n-C1: | 5               | 1.5981 | 0.934   | 2162.8 | 0.089 | BB   | 0.070 | 513.01  | 0.127   |

Total Area = 2428892.0, Total Amount = 171.039, Total Height = 403094.6



**GERTUBE 42COMP 10PPBC 17305 300CC** 

Acquired from HP5890-FID via Port 3 on 04-15-1996 08:39:15

HP5890 FID G002737-01

300CC SWEEP

Data File:

C:\CPWIN\DATA1\RHEINAFB.14R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| 1 1.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PK# | Ret Time      | Name            | Amount  | Amount% | Area     | Area% | Туре | Width | Height   | Height% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|-----------------|---------|---------|----------|-------|------|-------|----------|---------|
| 3 4,847 2,7350 1.255 39148.9 1.161 BB 0.101 6451.72 0.597 4 5.811 3.4324 1.575 49131.5 1.457 BV 0.169 4843.22 0.449 5 6.009 12.1287 5.565 173609.4 5.149 VV 0.079 36686.23 3.397 6 6.457 0.4755 0.218 6805.7 0.202 VV 0.081 1402.27 0.130 7 6.597 9.9332 4.558 142183.1 4.217 VV 0.072 32722.09 3.030 8 7.267 2.3920 1.098 34238.6 1.016 VB 0.060 9580.05 0.887 9 7.860 5.2145 2.393 74639.9 2.214 BB 0.061 20332.31 1.991 10 8.808 0.1486 0.068 2126.6 0.063 BB 0.060 594.75 0.055 11 8.997 0.2185 0.100 3127.2 0.093 BV 0.062 843.82 0.078 12 9.237 iso-Pentane 1.3954 0.640 18485.4 0.548 VV 0.081 8806.15 0.352 13 9.395 0.4184 0.192 5988.4 0.178 VB 0.080 1246.11 0.115 14 10.295 n-Pentane 6.0212 2.763 66451.8 1.971 BB 0.066 12972.23 1.201 16 10.671 6.4505 2.960 92331.6 2.773 VV 0.052 23316.0 2.715 17 10.922 3.0682 1.408 43917.7 1.303 VV 0.076 9625.88 0.391 18 11.238 0.0828 0.038 1183.4 0.035 VB 0.078 22316.01 2.715 17 10.922 3.0682 1.408 43917.7 1.303 VV 0.076 9625.88 0.891 18 11.238 0.0828 0.033 1183.4 0.035 VB 0.078 22316.0 0.023 18 11.792 4.6534 2.135 66667.9 1.976 BV 0.063 1337.48 0.124 22 12.491 0.2211 0.101 3164.5 0.094 VV 0.063 1337.48 0.124 22 12.491 0.2211 0.101 3164.5 0.094 VV 0.063 1337.48 0.124 22 12.491 0.2211 0.101 3164.5 0.094 VV 0.055 8811.33 0.788 23 13.251 0.1106 0.051 1533.0 0.047 VV 0.055 8811.33 0.788 24 12.920 n-Hexane 1.9446 0.892 27834.1 0.826 VV 0.055 8811.33 0.788 25 13.251 0.1106 0.051 1533.0 0.047 VV 0.056 468.08 0.043 24 12.920 n-Hexane 1.9446 0.892 27834.1 0.826 VV 0.055 8811.33 0.788 25 13.251 0.1106 0.051 1533.0 0.047 VV 0.056 468.08 0.043 25 13.558 1.351 1.5137 4.4040 2.021 63037.9 1.370 VB 0.051 58774.11 5.438 26 13.558 1.350 1.404 0.207 56890.9 1.667 VB 0.060 15696.15 1.454 27 13.784 2.4-Dimethyl Pentane 3.294 1.514 56409.8 1.666 BV 0.046 19589.0 1.814 27 13.784 2.4-Dimethyl Pentane 3.294 1.514 56409.8 1.666 BV 0.049 19196.5 1.773 28 14.325 Benzene 1.1614 0.533 20964.2 2.075 VV 0.055 468.08 0.043 29 14.925 0.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066 8.066      | 1   | 1.330         |                 | 1.1963  | 0.549   | 17124.3  | 0.508 | BB   | 0.044 | 6498.69  | 0.602   |
| \$ 5.811 3.4324 1.575 49131.5 1.457 BV 0.169 4843.22 0.449 \$ 5 6.009 12.1287 5.565 173609.4 5.149 VV 0.079 36686.23 3.397 \$ 6 6.457 0.4755 0.218 6805.7 0.202 VV 0.081 1402.27 0.130 \$ 7 6.597 9.9332 4.558 142183.1 4.217 VV 0.072 32722.09 3.030 \$ 7.267 2.3920 1.098 34238.6 1.016 VB 0.060 9580.05 0.887  9 7.860 5.2145 2.393 74639.9 2.214 BB 0.061 20332.31 1.901 10 8.808 0.1486 0.068 2126.6 0.063 BB 0.060 20332.31 1.901 11 8.997 0.2185 0.100 3127.2 0.099 BV 0.062 843.82 0.078 12 9.237 iso-Pentane 1.3954 0.640 18485.4 0.548 VV 0.081 3806.15 0.352 13 9.395 0.4184 0.192 5988.4 0.178 VB 0.080 1246.11 0.115 14 10.295 n-Pentane 6.0212 2.763 66451.8 1.971 BB 0.056 19818.16 1.835 15 10.547 2.5278 1.160 36183.1 1.073 BV 0.046 12972.23 1.201 16 10.671 6.4505 2.960 92331.6 2.739 VV 0.032 29316.01 2.715 17 10.922 3.0682 1.408 4391.7 1.303 VV 0.076 9625.8 0.891 18 11.238 0.0628 0.038 1188.4 0.035 VB 0.076 9625.8 0.891 18 11.238 0.0628 0.038 1188.4 0.035 VB 0.076 9625.8 0.891 19 11.792 4.6534 2.135 66607.9 1.976 BV 0.054 20464.99 1.895 20 12.109 0.3394 0.156 4858.1 0.144 VV 0.077 1046.46 0.097 21 12.241 2-Methyl Pentane 0.3616 0.166 5024.1 0.144 VV 0.077 1046.46 0.097 21 12.241 2-Methyl Pentane 1.9446 0.892 27834.1 0.026 VV 0.057 917.43 0.085 22 12.693 n-Hexane 1.9446 0.892 27834.1 0.205 VV 0.050 24103.73 2.232 13 15.513 1.016 0.051 1583.0 0.047 VV 0.055 8511.33 0.088 14.915 6.5873 3.023 94290.0 2.797 BV 0.055 2868.3 0.043 15.1374 4.4040 2.021 63037.9 1.870 VB 0.066 15696.15 1.454 28 14.185 1.25642 5.765 179843.1 5.334 BV 0.051 15974.11 5.438 3 16.531 4.0039 1.837 5731.2 1.700 VV 0.050 24103.73 2.232 17 13.784 2,+Dimethyl Pentane 4.4180 2.027 56890.9 1.687 VB 0.060 15696.15 1.454 28 14.185 1.25642 5.765 179843.1 5.334 BV 0.051 15974.11 5.438 3 16.531 4.0039 1.837 5731.2 1.700 VV 0.055 9191.35 1.773 3 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 3 14.915 6.5873 3.023 94290.0 2.797 BV 0.050 1919.35 1.773 3 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 3 17.702 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 3 17 | 2   | 3.989         |                 | 0.1980  | 0.091   | 2834.2   | 0.084 | BB   | 0.141 | 335.18   | 0.031   |
| \$ 6.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3   | 4.847         |                 | 2.7350  | 1.255   | 39148.9  | 1.161 | BB   | 0.101 | 6451.72  | 0.597   |
| 6 6.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4   | 5.811         |                 | 3.4324  | 1.575   | 49131.5  | 1.457 | BV   | 0.169 | 4843.22  | 0.449   |
| 7         6.597         9.9332         4.558         142183.1         4.217         VV         0.072         32722.09         3.030           8         7.267         2.3920         1.098         34238.6         1.016         VB         0.060         9580.05         0.887           9         7.860         5.2145         2.393         74639.9         2.214         BB         0.060         358.01         0.060         358.01         0.060         358.75         0.055           11         8.997         0.2185         0.100         3127.2         0.093         BV         0.062         343.82         0.078           12         9.237 iso-Pentane         1.3954         0.640         18485.4         0.548         VV         0.081         3306.15         0.352           13         9.395         0.4184         0.192         5988.4         0.178         VB         0.080         1246.11         0.115           14         10.295 n-Pentane         1.036         0.622         2.2788         1.160         36183.1         1.073         BW         0.046         12972.23         1.61         1.61         10.671         6.6251.8         1.971         1.80         0.046         12972.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5   | 6.009         |                 | 12.1287 | 5.565   | 173609.4 | 5.149 | vv   | 0.079 | 36686.23 | 3.397   |
| 8         7:267         2.5920         1.098         34238.6         1.016         VB         0.060         9580.05         0.887           9         7.860         5.2145         2.393         74639.9         2.214         BB         0.061         20532.31         1.001           10         8.808         0.1486         0.068         2126.6         0.063         BB         0.061         20532.31         1.001           11         8.897         0.2215         0.100         31272.2         0.093         BV         0.062         844.82         0.078           12         9.237 jao-Pentane         1.3954         0.640         18485.4         0.548         VV         0.081         3806.15         0.352           13         9.395         0.4148         0.192         5988.4         0.178         VP         0.081         3806.15         0.352           13         9.395         0.4141         0.192         5988.4         0.178         VP         0.081         246.11         0.115           14         10.229         3.682         1.403         3613.1         1.073         VV         0.032         29316.01         2715           17         10.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6   | 6.457         |                 | 0.4755  | 0.218   | 6805.7   | 0.202 | vv   | 0.081 | 1402.27  | 0.130   |
| 9 7.860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7   | 6.597         |                 | 9.9332  | 4.558   | 142183.1 | 4.217 | vv   | 0.072 | 32722.09 | 3.030   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8   | 7.267         |                 | 2.3920  | 1.098   | 34238.6  | 1.016 | VB   | 0.060 | 9580.05  | 0.887   |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9   | 7.860         |                 | 5.2145  | 2.393   | 74639.9  | 2.214 | BB   | 0.061 | 20532.31 | 1.901   |
| 12   9.237 iso-Pentane   1.3954   0.640   18485.4   0.548   VV   0.081   3806.15   0.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10  | 8.808         |                 | 0.1486  | 0.068   | 2126.6   | 0.063 | BB   | 0.060 | 594.75   | 0.055   |
| 13   9.395   0.4184   0.192   5988.4   0.178   VB   0.080   1246.11   0.115     14   10.295 n-Pentane   6.0212   2.763   66451.8   1.971   BB   0.056   19818.16   1.835     15   10.547   2.5278   1.160   36183.1   1.073   BV   0.046   12972.23   1.201     16   10.671   6.4505   2.960   9231.6   2.739   VV   0.052   29316.0   2.715     17   10.922   3.0682   1.408   43917.7   1.303   VV   0.076   9625.88   0.891     18   11.238   0.0828   0.038   1185.4   0.035   VB   0.078   233.05   0.023     19   11.792   4.6534   2.135   66607.9   1.976   BV   0.054   20464.99   1.895     20   12.109   0.3394   0.156   4858.1   0.144   VV   0.077   1046.46   0.097     21   12.241 2-Methyl Pentane   0.3616   0.166   5024.1   0.149   VV   0.063   1337.48   0.124     22   12.491   0.2211   0.101   3164.5   0.094   VV   0.063   3337.48   0.124     23   12.635   4.8865   2.242   69944.2   2.075   VV   0.049   23825.77   2.206     24   12.920 n-Hexane   1.9446   0.892   27834.1   0.826   VV   0.055   8511.33   0.788     25   13.251   0.1106   0.051   1583.0   0.047   VV   0.056   468.08   0.043     26   13.538   5.0023   2.295   71603.0   2.124   VV   0.050   468.08   0.043     27   13.784 2.4-Dimethyl Pentane   4.4180   2.027   56890.9   1.687   VB   0.060   15696.15   1.454     28   14.185   12.5642   5.765   179843.1   5.334   BV   0.051   58724.11   5.438     29   14.322 Benzene   1.1614   0.533   20994.2   0.623   VB   0.060   5861.59   0.543     30   14.915   6.5873   3.023   94290.0   2.797   BV   0.055   28668.52   2.655     31   15.137   4.4040   2.021   6303.9   1.870   VB   0.066   5865.59   0.543     35   16.531   4.0039   1.837   57311.2   1.700   VV   0.050   19143.35   1.773     36   16.798 Toluene   9.5509   4.383   170357.2   5.033   VB   0.050   5702.697   5.281     37   17.279   0.4567   0.210   6536.7   0.194   BV   0.057   1912.11   0.177     38   17.402   4.0718   1.868   58283.0   1.726   VV   0.049   1998.917   1.851     39   17.524   0.519   0.253   7899.7   0.224   VB   0.081   1624.85   0.150     40           | 11  | 8.997         |                 | 0.2185  | 0.100   | 3127.2   | 0.093 | BV   | 0.062 | 843.82   | 0.078   |
| 14       10.295 n-Pentane       6.0212       2.763       66451.8       1.971       BB       0.056       19818.16       1.835         15       10.547       2.5278       1.160       36183.1       1.073       BV       0.046       12972.23       1.201         16       10.671       6.4505       2.960       92331.6       2.739       VV       0.052       29316.01       2.715         17       10.922       3.0682       1.408       43917.7       1.303       VV       0.076       9625.88       0.891         18       11.238       0.0828       0.038       1185.4       0.035       VB       0.078       253.05       0.023         19       11.792       4.6534       2.135       66607.9       1.976       BV       0.054       20444.99       1.895         20       12.109       0.3394       0.156       4885.1       0.144       VV       0.077       1046.46       0.097         21       12.241 2-Methyl Pentane       0.3616       0.166       5024.1       0.149       VV       0.063       1337.48       0.124         22       12.491       0.2211       0.101       3164.5       0.094       VV       0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12  | 9.237 iso-Pe  | ntanc           | 1.3954  | 0.640   | 18485.4  | 0.548 | vv   | 0.081 | 3806.15  | 0.352   |
| 15       10.547       2.5278       1.160       36183.1       1.073       BV       0.046       12972.23       1.201         16       10.671       6.4505       2.960       92331.6       2.739       VV       0.052       29316.01       2.715         17       10.922       3.0682       1.408       43917.7       1.303       VV       0.076       9625.88       0.891         18       11.238       0.0828       0.038       1185.4       0.035       VB       0.073       253.05       0.023         19       11.792       4.6334       2.135       66607.9       1.976       BV       0.054       20464.99       1.895         20       12.109       0.3394       0.156       4858.1       0.144       VV       0.063       1337.48       0.124         21       12.241 2-Methyl Pentane       0.3616       0.166       5024.1       0.149       VV       0.063       1337.48       0.124         22       12.2491       0.2211       0.101       3164.5       0.094       VV       0.057       917.43       0.085         23       12.635       4.8865       2.242       69944.2       2.075       VV       0.049       23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13  | 9.395         |                 | 0.4184  | 0.192   | 5988.4   | 0.178 | VB   | 0.080 | 1246.11  | 0.115   |
| 16       10.671       6.4505       2.960       92331.6       2.739       VV       0.052       29316.01       2.715         17       10.922       3.0682       1.408       43917.7       1.303       VV       0.076       9625.88       0.891         18       11.238       0.0828       0.038       1185.4       0.035       VB       0.078       253.05       0.023         19       11.792       4.6334       2.135       66607.9       1.976       BV       0.054       20464.99       1.895         20       12.109       0.3394       0.156       4858.1       0.144       VV       0.063       1337.48       0.124         21       12.241 2-Methyl Pentane       0.3616       0.166       5024.1       0.149       VV       0.063       1337.48       0.124         22       12.491       0.2211       0.101       3164.5       0.094       VV       0.057       917.43       0.085         23       12.635       4.8865       2.242       69944.2       2.075       VV       0.049       23825.77       2.206         24       12.920 n-Hexane       1.946       0.892       2783.41       0.826       VV       0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14  | 10.295 n-Pent | tane            | 6.0212  | 2.763   | 66451.8  | 1.971 | BB   | 0.056 | 19818.16 | 1.835   |
| 17 10.922 3.0682 1.408 43917.7 1.303 VV 0.076 9625.88 0.891 18 11.238 0.0828 0.038 1185.4 0.035 VB 0.078 253.05 0.023 19 11.792 4.6534 2.135 66607.9 1.976 BV 0.054 20464.99 1.895 20 12.109 0.3394 0.156 4858.1 0.144 VV 0.077 1046.46 0.097 21 12.241 2-Methyl Pentane 0.3616 0.166 5024.1 0.149 VV 0.063 1337.48 0.124 22 12.491 0.2211 0.101 3164.5 0.094 VV 0.057 917.43 0.085 23 12.635 4.8865 2.242 69944.2 2.075 VV 0.049 23825.77 2.206 24 12.920 n-Hexane 1.9446 0.892 27834.1 0.826 VV 0.055 8511.33 0.788 25 13.251 0.1106 0.051 1583.0 0.047 VV 0.055 468.08 0.043 26 13.558 5.0023 2.295 71603.0 2.124 VV 0.050 24103.73 2.232 27 13.784 2,4-Dimethyl Pentane 4.4180 2.027 56890.9 1.687 VB 0.060 15696.15 1.454 28 14.185 12.5642 5.765 179843.1 5.334 BV 0.051 58724.11 5.438 29 14.322 Benzene 1.1614 0.533 20994.2 0.623 VB 0.060 5861.59 0.543 30 14.915 6.5873 3.023 94290.0 2.797 BV 0.055 28668.32 2.655 31 15.137 4.4040 2.021 63037.9 1.870 VB 0.051 20718.72 1.919 32 15.909 n-Heptane 3.2994 1.514 56104.0 1.664 BV 0.049 19196.59 1.778 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.049 19196.59 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.061 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15  | 10.547        |                 | 2.5278  | 1.160   | 36183.1  | 1.073 | BV   | 0.046 | 12972.23 |         |
| 18 11.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16  | 10.671        |                 | 6.4505  | 2.960   | 92331.6  | 2.739 | vv   | 0.052 | 29316.01 | 2.715   |
| 19 11.792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17  | 10.922        |                 | 3.0682  | 1.408   | 43917.7  | 1.303 | vv   | 0.076 | 9625.88  | 0.891   |
| 12.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18  | 11.238        |                 | 0.0828  | 0.038   | 1185.4   | 0.035 | VB   | 0.078 | 253.05   | 0.023   |
| 12.241 2-Methyl Pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19  | 11.792        |                 | 4.6534  | 2.135   | 66607.9  | 1.976 | BV   | 0.054 | 20464.99 | 1.895   |
| 22       12.491       0.2211       0.101       3164.5       0.094       VV       0.057       917.43       0.085         23       12.635       4.8865       2.242       69944.2       2.075       VV       0.049       23825.77       2.206         24       12.920 n-Hexane       1.9446       0.892       27834.1       0.826       VV       0.055       8511.33       0.788         25       13.251       0.1106       0.051       1583.0       0.047       VV       0.056       468.08       0.043         26       13.558       5.0023       2.295       71603.0       2.124       VV       0.050       24103.73       2.232         27       13.784 2,4-Dimethyl Pentane       4.4180       2.027       56890.9       1.687       VB       0.060       15696.15       1.454         28       14.185       12.5642       5.765       179843.1       5.334       BV       0.051       58724.11       5.438         29       14.322 Benzene       1.1614       0.533       20994.2       0.623       VB       0.060       5861.59       0.543         30       14.915       6.5873       3.023       94290.0       2.797       BV <t< th=""><th>20</th><th>12.109</th><th></th><th>0.3394</th><th>0.156</th><th>4858.1</th><th>0.144</th><th>vv</th><th>0.077</th><th>1046.46</th><th>0.097</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20  | 12.109        |                 | 0.3394  | 0.156   | 4858.1   | 0.144 | vv   | 0.077 | 1046.46  | 0.097   |
| 23       12.635       4.8865       2.242       69944.2       2.075       VV       0.049       23825.77       2.206         24       12.920 n-Hexane       1.9446       0.892       27834.1       0.826       VV       0.055       8511.33       0.788         25       13.251       0.1106       0.051       1583.0       0.047       VV       0.056       468.08       0.043         26       13.558       5.0023       2.295       71603.0       2.124       VV       0.050       24103.73       2.232         27       13.784 2,4-Dimethyl Pentane       4.4180       2.027       56890.9       1.687       VB       0.060       15696.15       1.454         28       14.185       12.5642       5.765       179843.1       5.334       BV       0.051       58724.11       5.438         29       14.322 Benzene       1.1614       0.533       20994.2       0.623       VB       0.060       5861.59       0.543         30       14.915       6.5873       3.023       94290.0       2.797       BV       0.055       28668.52       2.655         31       15.137       4.4040       2.021       63037.9       1.870       VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21  | 12.241 2-Met  | hyl Pentane     | 0.3616  | 0.166   | 5024.1   | 0.149 | vv   | 0.063 | 1337.48  |         |
| 24       12.920 n-Hexane       1.9446       0.892       27834.1       0.826       VV       0.055       8511.33       0.788         25       13.251       0.1106       0.051       1583.0       0.047       VV       0.056       468.08       0.043         26       13.558       5.0023       2.295       71603.0       2.124       VV       0.050       24103.73       2.232         27       13.784 2,4-Dimethyl Pentane       4.4180       2.027       56890.9       1.687       VB       0.060       15696.15       1.454         28       14.185       12.5642       5.765       179843.1       5.334       BV       0.051       58724.11       5.438         29       14.322 Benzene       1.1614       0.533       20994.2       0.623       VB       0.060       5861.59       0.543         30       14.915       6.5873       3.023       94290.0       2.797       BV       0.055       28668.52       2.655         31       15.137       4.4040       2.021       63037.9       1.870       VB       0.051       20718.72       1.919         32       15.909 n-Heptane       3.2994       1.514       56104.0       1.664       BV<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22  | 12.491        |                 | 0.2211  | 0.101   | 3164.5   | 0.094 |      | 0.057 |          |         |
| 25 13.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23  | 12.635        |                 | 4.8865  | 2.242   | 69944.2  | 2.075 | VV   | 0.049 |          |         |
| 26 13.558 5.0023 2.295 71603.0 2.124 VV 0.050 24103.73 2.232 27 13.784 2,4-Dimethyl Pentane 4.4180 2.027 56890.9 1.687 VB 0.060 15696.15 1.454 14.185 12.5642 5.765 179843.1 5.334 BV 0.051 58724.11 5.438 29 14.322 Benzene 1.1614 0.533 20994.2 0.623 VB 0.060 5861.59 0.543 30 14.915 6.5873 3.023 94290.0 2.797 BV 0.055 28668.52 2.655 31 15.137 4.4040 2.021 63037.9 1.870 VB 0.051 20718.72 1.919 32 15.909 n-Heptane 3.2994 1.514 56104.0 1.664 BV 0.049 19196.59 1.778 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24  | 12.920 n-Hex  | anc             | 1.9446  | 0.892   | 27834.1  | 0.826 |      |       |          |         |
| 13.784 2,4-Dimethyl Pentane 14.4180 2.027 56890.9 1.687 VB 0.060 15696.15 1.454 28 14.185 12.5642 5.765 179843.1 5.334 BV 0.051 58724.11 5.438 29 14.322 Benzene 1.1614 0.533 20994.2 0.623 VB 0.060 5861.59 0.543 30 14.915 6.5873 3.023 94290.0 2.797 BV 0.055 28668.52 2.655 31 15.137 4.4040 2.021 63037.9 1.870 VB 0.051 20718.72 1.919 32 15.909 n-Heptane 3.2994 1.514 56104.0 1.664 BV 0.049 19196.59 1.778 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25  | 13.251        |                 | 0.1106  | 0.051   | 1583.0   | 0.047 | VV   | 0.056 |          |         |
| 14.185 12.5642 5.765 179843.1 5.334 BV 0.051 58724.11 5.438 29 14.322 Benzene 1.1614 0.533 20994.2 0.623 VB 0.060 5861.59 0.543 30 14.915 6.5873 3.023 94290.0 2.797 BV 0.055 28668.52 2.655 31 15.137 4.4040 2.021 63037.9 1.870 VB 0.051 20718.72 1.919 32 15.909 n-Heptane 3.2994 1.514 56104.0 1.664 BV 0.049 19196.59 1.778 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26  | 13.558        |                 | 5.0023  |         |          |       |      |       |          |         |
| 1.1614 0.533 20994.2 0.623 VB 0.060 5861.59 0.543 30 14.915 6.5873 3.023 94290.0 2.797 BV 0.055 28668.52 2.655 31 15.137 4.4040 2.021 63037.9 1.870 VB 0.051 20718.72 1.919 32 15.909 n-Heptane 3.2994 1.514 56104.0 1.664 BV 0.049 19196.59 1.778 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27  | 13.784 2,4-Di | imethyl Pentane | 4.4180  |         |          |       |      |       |          |         |
| 30 14.915 6.5873 3.023 94290.0 2.797 BV 0.055 28668.52 2.655 31 15.137 4.4040 2.021 63037.9 1.870 VB 0.051 20718.72 1.919 32 15.909 n-Heptane 3.2994 1.514 56104.0 1.664 BV 0.049 19196.59 1.778 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28  | 14.185        |                 | 12.5642 |         |          |       |      |       |          |         |
| 31 15.137 4.4040 2.021 63037.9 1.870 VB 0.051 20718.72 1.919 32 15.909 n-Heptane 3.2994 1.514 56104.0 1.664 BV 0.049 19196.59 1.778 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29  | 14.322 Benze  | ne              |         |         |          |       |      |       |          |         |
| 32 15.909 n-Heptane 3.2994 1.514 56104.0 1.664 BV 0.049 19196.59 1.778 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30  | 14.915        |                 |         |         |          |       |      |       |          |         |
| 33 16.127 0.1356 0.062 1940.8 0.058 VB 0.066 486.88 0.045 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 15.137        |                 |         |         |          |       |      |       |          |         |
| 34 16.385 3.8054 1.746 54469.8 1.616 BV 0.046 19589.00 1.814 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32  | •             | tane            |         |         |          |       |      |       |          |         |
| 35 16.531 4.0039 1.837 57311.2 1.700 VV 0.050 19143.35 1.773 36 16.798 Toluene 9.5509 4.383 170357.2 5.053 VB 0.050 57026.97 5.281 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33  |               |                 |         |         |          |       |      |       |          |         |
| 36       16.798 Toluene       9.5509       4.383       170357.2       5.053       VB       0.050       57026.97       5.281         37       17.279       0.4567       0.210       6536.7       0.194       BV       0.057       1912.11       0.177         38       17.402       4.0718       1.868       58283.0       1.729       VV       0.049       19989.17       1.851         39       17.524       0.5519       0.253       7899.7       0.234       VB       0.081       1624.85       0.150         40       17.874       3.8518       1.767       55134.3       1.635       BB       0.051       17915.54       1.659         41       18.129 n-Octane       0.0604       0.028       1153.6       0.034       BB       0.046       415.05       0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |               |                 |         |         |          |       |      |       |          |         |
| 37 17.279 0.4567 0.210 6536.7 0.194 BV 0.057 1912.11 0.177 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35  |               |                 |         |         |          |       |      |       |          |         |
| 38 17.402 4.0718 1.868 58283.0 1.729 VV 0.049 19989.17 1.851 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |               | ne              |         |         |          |       |      |       |          |         |
| 39 17.524 0.5519 0.253 7899.7 0.234 VB 0.081 1624.85 0.150 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |               |                 |         |         |          |       |      |       |          |         |
| 40 17.874 3.8518 1.767 55134.3 1.635 BB 0.051 17915.54 1.659<br>41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |               |                 |         |         |          |       |      |       |          |         |
| 41 18.129 n-Octane 0.0604 0.028 1153.6 0.034 BB 0.046 415.05 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |               |                 |         |         |          |       |      |       |          |         |
| 41 16.12 Politic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 17.874        |                 |         |         |          |       |      |       |          |         |
| 42 18.542 10.4282 4.785 149267.7 4.427 BV 0.050 50128.95 4.642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 18.129 n-Octa | ine             |         |         |          |       |      |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42  | 18.542        |                 | 10.4282 | 4.785   | 149267.7 | 4.427 | BV   | 0.050 | 50128.95 | 4.642   |

| PK# | Ret Time   | Name              | Amount  | Amount% | Area     | Area% | Турс | Width | Height   | Height% |
|-----|------------|-------------------|---------|---------|----------|-------|------|-------|----------|---------|
| 43  | 18.777     |                   | 0.1134  | 0.052   | 1622.7   | 0.048 | VB   | 0.053 | 512.35   | 0.047   |
| 44  | 18.943     |                   | 11.4376 | 5.248   | 163717.0 | 4.856 | BV   | 0.050 | 54260.71 | 5.025   |
| 45  | 19.143 Eth | yl Benzene        | 6.9459  | 3.187   | 154005.7 | 4.568 | VB   | 0.049 | 52839.66 | 4.893   |
| 46  | 19.506 p-X | Cylene            | 7.2311  | 3.318   | 131366.2 | 3.896 | BB   | 0.045 | 48491.91 | 4.491   |
| 47  | 19.621 o-X | Cylone            | 7.5754  | 3.476   | 159901.3 | 4.743 | BB   | 0.051 | 52189.34 | 4.833   |
| 48  | 21.072     |                   | 6.8195  | 3.129   | 97614.4  | 2.895 | BV   | 0.043 | 37727.20 | 3.494   |
| 49  | 21.174 n-P | ropylbenzene      | 4.9900  | 2.290   | 111164.8 | 3.297 | VB   | 0.046 | 40682.14 | 3.767   |
| 50  | 21.688 1,3 | ,5-Trimethylbenze | 4.9909  | 2.290   | 103743.6 | 3.077 | BB   | 0.044 | 39412.09 | 3.650   |
| 51  | 21.854     |                   | 8.9700  | 4.116   | 128395.7 | 3.808 | BB   | 0.048 | 44590.38 | 4.129   |
| 52  | 21.952 n-D | Decane            | 2.5836  | 1.186   | 58801.9  | 1.744 | BV   | 0.040 | 24378.30 | 2.258   |
| 53  | 22,409     |                   | 5.6176  | 2.578   | 80409.1  | 2.385 | VB   | 0.041 | 32493.34 | 3.009   |
| 54  | 25.032     |                   | 4.0524  | 1.860   | 58006.3  | 1.720 | BB   | 0.040 | 24295.76 | 2.250   |
| 55  | 25.842 n-C | 212               | 1.6967  | 0.779   | 29121.7  | 0.864 | BB   | 0.038 | 12692.32 | 1.175   |

Total Area = 3371516.0, Total Amount = 217.931, Total Height = 1079866.0

|          | Dec      | 29,1993                                                            |
|----------|----------|--------------------------------------------------------------------|
| 1        |          |                                                                    |
| 1        | m        | ultiplien to generate the oplow walnes for TPH                     |
| 1        |          | 2.64 oph Q = 15.84 oph C arbon                                     |
| +        |          | Tava for 500 cc douple = 15810 - 998.11 aum out                    |
| 1        |          | 15.84 per ppl C.                                                   |
| $\dashv$ |          | .: divide the TPH and 998.11 to generate the policionale           |
| 7        |          |                                                                    |
| 7        |          | To multiple PPBU x (x) to get Flux Volus of                        |
| 1        | B.       | To multiply PPBU x (x) to get Flux Volus of reg Curyand :453 m2/mi |
| 1        | - 1JA    | luc mult. = 0.00752                                                |
| 1        |          | tyl begre Mult. = 0,00868                                          |
| 1        |          | o bylen mult. = 0,00868                                            |
| -        | <u> </u> | glan Mult = 0,00869                                                |
| -        | 0        | H (as Heyere) mult = 0,007181                                      |
| -        |          | H (as Herfore) Much 0,00 mg                                        |
| -        |          | ·                                                                  |
|          |          |                                                                    |
|          |          |                                                                    |
| -        |          |                                                                    |
|          |          |                                                                    |
|          |          |                                                                    |
|          | <b> </b> |                                                                    |
|          |          |                                                                    |
|          | <b>-</b> |                                                                    |
| _        | <b> </b> |                                                                    |
|          |          |                                                                    |
|          | l .      |                                                                    |

| RT's          | 14,19~~<br>Bonger<br>augus | 16.80m   | 18,94<br>EBL. | o type 19,62   | 1794       |
|---------------|----------------------------|----------|---------------|----------------|------------|
| ster V/AII    | 17471.8                    | 23574,3  | 4120.7        | 8595.0/1031.7  | 378925,4   |
|               | 6,13 1,30 M                | lm 1,59  | 0,28          | 0,56 / 0,15    | _          |
| t 2/A24       | 18429,8                    | 3 6378,6 | 4735.9        | 12006,5/1308,3 | 235-9685.0 |
|               | 1.37                       | 2,46     | 0.32          | 0.79 / 0.19    | 212,19     |
| uter 3/A27    | 14477.8                    | 16028.1  | 2788.1        | 5620,2/632,    | 5 2469343, |
|               | 1,08                       | 1,08     | 0,19          | 0.37 / 0.09    |            |
| marte 1/Ash   | 16913.8                    | 41399.1  | 4290.2        | 14709.2/ND     | 36682980   |
|               | (126                       | 2,79     | 0,31          | 0.96/-         | 329.86     |
| mite 4/A-1    | 14761.4                    | 1245412  | 1932.3        | 3901.2/2871.7  | 434074.8   |
|               | (110                       | 0.84     | 0.13          | 0,26 / 0.43    | 39,03      |
| -ite 3/A-25   | 8311.2                     | 0.867 &  | 1167.6        | 2779.8 / 748,0 | 284 133,3  |
|               | 0.62                       | 0.59     | 0,08          | 0.18 / 0.11    | 25,55      |
| -Dynal /AIY   | 6561.7                     | 10642.5  | 1274.0        | 3 GILL / NO    | 3,271,37.0 |
| •             | 0.49                       | 0.72     | 0.11          | 0,24/-         | 294.15     |
| - Lyund 2/A20 | 9009,4                     |          | 1449.5        | 148°'0\ NO     | 393,334.8  |
|               | 0,67                       | 0.7(     | 0.10          | 0.19/ -        | 35,37      |
| <del></del>   |                            |          |               |                |            |
| 18 6enl/A-19  | 2744.4                     | 2496.4   | ND            | 1837.3/ND      | 156962.6   |
|               | 0,20                       | 0,17     | -             | 0,12/-         | 14.11      |
| 128/men       | 8593,3                     | 4116.1   | 0 0.          | 140'3\ND       | 262097.4   |
|               | 0.64                       | 0,28     | _             | 0.10/-         | 23,57      |
| MOSPABE/AIL   | 20977.8                    | 41768.8  | N.D           | 898.2/1250,6   | 2428892.0  |
|               | 0                          | 2,82     | _             | 0,59 0,19      | E 218,41   |
| -14 300cc     | 179843.1                   | 170357,2 |               |                | 01.3 1.8)  |
| . only        | 13.40                      | 11,50    | 11,70         | 10.10          | ,0 Cu /w   |

SURFACE EMISSIONS RESULTS
OCTOBER 1996

## Analytical Technique for Processing the Sorbent Sampling Tubes

The organic compounds retained by the sorbent materials in the sampling tubes were thermally desorbed, refocused, and analytically resolved using gas chromatography. A calibration mixture that contained the compounds of interest was processed to establish these retention times and response factors. Generally, the same volume sample as that collected during the soil emission sampling was used when processing the calibration gas.

#### Instrumentation

The instrumentation and analytical technique used to process the sorbent tubes was based upon the US EPA Method TO-14 that is employed to identify toxic organics in ambient air. This method involves: 1) the collecting of VOCs in a gas sample on a cryogenically cooled glass bead trap; 2) the transfer of the trapped organics by ballistically heating the cold trap, with; 3) the delivery of the organics to a GC for qualitative/quantitative analysis. The modification to the method when using sorbent tubes was the extra step of heating the tube to deliver the remotely collected organics to the cold, glass-bead trap.

The automated GC system consisted of a Hewlett-Packard Model 5890 GC with parallel flame ionization (FID) and electron capture (ECD) detectors. Hewlett Packard 3396A integrators in conjunction with a 9122 disk drive received detector output signals and stored data. The disk drive also provided access to the Basic program used to automate sample collection from the sorbent tube and analysis. A modified NuTech Model 320 sample preconcentration unit was used to collect the organics from the tube. The unit contained two subsystems: (1) an electronic console that regulated various temperature zones, and (2) the sample-handling subassembly containing a 6-port valve and trap. The console controlled the temperatures of the valve body (120°C), sample transfer lines (120°C), and the trap. The trap temperature was regulated by the controlled release of liquid nitrogen via a solenoid valve. The trap temperature during sample transfer from the sorbent tube was maintained at -150°C. The trap was heated to 130°C for delivery of organics to the GC.

Sample flow from the tube to the trap was controlled using: (1) a Tylan readout control unit, Model R032-B; (2) a Tylan zero to 100 standard cm<sup>3</sup>/min mass flow controller, Model MFC-260; (3) a Thomas dual diaphragm pump; and (4) a Perma Pure Dryer, Model MD-125-48F. The readout control unit, in conjunction with the mass flow controller, regulated the sample transfer flow rate from the sorbent tube to the trap. The Perma Pure Dryer with a tubular hygroscopic ion-exchange membrane (Nafion) was used to selectively remove any water vapor from the sorbent sample. The Nafion tube size was 30 cm x 0.1 cm inner diameter, embedded within a shell of Teflon<sup>TM</sup> tubing of 0.25 cm inner diameter. A counter current flow of dry zero air (300 mL) was used to purge the shell. This type of dryer has been shown to have no affinity for BTEX or straight-chained/branched petroleum hydrocarbons (Pliel et al., 1987).

A Dynatherm, Model 10 sorbent tube conditioner/desorber was used to heat the sorbent tube to deliver the organics to the analytical system. A desorption temperature of 250°C with a helium purge gas flow of 20 mL/minute was used during the desorption process. The desorption time was 15 minutes, resulting in a total helium back-flush volume of 300 mL.

### **Calibration Mixture**

The target compounds for TO-14 analysis are listed in Table 4. A calibration cylinder was prepared at Battelle that contained the 41 volatile organic compounds at a nominal targeted concentration of 200 ppbv for each species. A gas phase dynamic dilution system was used to generate the working calibration standard for the Eielson AFB tube analyses with species concentrations of 2 to 4 ppbv for each of the BTEX compounds. Separations chemistry of the TO-14 compounds was accomplished using two 30 m HP-1 series capillary columns joined with a zero dead-volume butt connector. Internal diameter of the capillary was 0.53 mm with a 2.65  $\mu$ m film thickness. Optimal chromatographic resolution is obtained by temperature programming the GC oven from -50°C to 200°C at a rate of 8°C per minute.

The sampling tubes collected at Eielson AFB were processed using this system, with the FID area counts being used to calculate the compound concentration at each sampling location. The total FID area counts were used to generate the TPH value.

Rhein-Main AB Germany Surface Emission Results

Sampling Period: 10/30/96 to 11/01/96

SAMPLE CONCENTRATIONS

|            |                  | OAIVII LL OO      | HOLINIA           |                            |                         |                    | <b>TD11</b>                |
|------------|------------------|-------------------|-------------------|----------------------------|-------------------------|--------------------|----------------------------|
| Tube ID    | Site ID          | Benzene<br>(ppbv) | Toluene<br>(ppbv) | Ethyl<br>Benzene<br>(ppbv) | m&p<br>Xylene<br>(ppbv) | o-Xylene<br>(ppbv) | TPH<br>as Hexane<br>(ppbv) |
| Blower On  | 10/30/96         |                   |                   |                            |                         |                    |                            |
| A-7        | RM1-Center-1     | n.d.              | < 0.50            | n.d.                       | n.d.                    | n.d.               | 9.30                       |
| A-8        | RM1-Center-2     | n.d.              | 0.66              | n.d.                       | n.d.                    | n.d.               | 5.20                       |
| A-20       | RM1-Perimeter-1  | 0.72              | 0.72              | n.d.                       | n.d.                    | n.d.               | 2.05                       |
| A-21       | RM1-Perimeter-2  | n.d.              | < 0.50            | n.d.                       | n.d.                    | n.d.               | 5.90                       |
| 10/31/96   |                  |                   |                   |                            |                         |                    |                            |
| A-17       | RM1-Background-1 | 0.83              | n.d.              | n.d.                       | n.d.                    | n.d.               | 4.30                       |
| A-16       | RM1-Background-2 | <0.50             | n.d.              | n.d.                       | n.d.                    | n.d.               | 1.60                       |
| Blower Off | 11/01/96         |                   |                   |                            |                         |                    |                            |
| A-12       | RM1-Center-3     | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 22.33                      |
| A-23       | RM1-Center-4     | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 2.90                       |
| A-3        | RM1-Perimeter-3  | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 74.30                      |
| A-9        | RM1-Perimeter-4  | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 14.10                      |
|            |                  |                   |                   |                            |                         |                    |                            |
| A-18       | RM1-Cylinder Air | n.d.              | 12.24             | n.d.                       | n.d.                    | n.d.               | 53.55                      |
| A-28       | RM1-Trip Blank   | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 25.70                      |

<0.50 = Below Method Detection Limit.

n.d. = Not Detected.

|            |                    | FLUX RATES | i: ug/ 0.453 |         |        |          |           |
|------------|--------------------|------------|--------------|---------|--------|----------|-----------|
|            |                    |            |              | Ethyl   | m&p    |          | TPH       |
| Tube ID    | Site ID            | Benzene    | Toluene      | Benzene | Xylene | o-Xylene | as Hexane |
| Blower On  | 10/30/96           |            |              |         |        | _        |           |
| A-7        | RM1-Center-1       | n.d.       | < 0.005      | n.d.    | n.d.   | n.d.     | 0.067     |
| A-8        | RM1-Center-2       | n.d.       | 0.005        | n.d.    | n.d.   | n.d.     | 0.037     |
| A-20       | RM1-Perimeter-1    | 0.005      | 0.005        | n.d.    | n.d.   | n.d.     | 0.015     |
| A-21       | RM1-Perimeter-2    | n.d.       | < 0.005      | n.d.    | n.d.   | n.d.     | 0.042     |
| 10/31/96   |                    |            |              |         |        |          |           |
| A-17       | RM1-Background-1   | 0.005      | n.d.         | n.d.    | n.d.   | n.d.     | 0.031     |
| A-16       | RM1-Background-2   | <0.005     | n.d.         | n.d.    | n.d.   | n.d.     | 0.011     |
|            |                    |            |              |         |        |          |           |
| Blower Off | 11/01/96           |            |              |         |        |          |           |
| A-12       | RM1-Center-3       | n.d.       | ∙n.d.        | n.d.    | n.d.   | n.d.     | 0.160     |
| A-23       | RM1-Center-4       | n.d.       | n.d.         | n.d.    | n.d.   | n.d.     | 0.021     |
| A-3        | RM1-Perimeter-3    | n.d.       | n.d.         | n.d.    | n.d.   | n.d.     | 0.534     |
| A-9        | RM1-Perimeter-4    | n.d.       | n.d.         | n.d.    | n.d.   | n.d.     | 0.101     |
|            |                    |            |              |         |        |          |           |
| A-18       | RM1 - Cylinder Air | n.d.       | 0.093        | n.d.    | n.d.   | n.d.     | 0.385     |
| A-28       | RM1 – Trip Blank   | n.d.       | n.d.         | n.d.    | n.d.   | n.d.     | 0.185     |

<0.005 = Below Method Detection Limit.

n.d. = Not Detected.

Rhein-Main AB Germany Surface Emission Results

Sampling Period: 10/30/96 to 11/01/96

SAMPLE CONCENTRATIONS

|            |                     | SAIVIF LL CO      |                   |                            |                         |                    |                            |
|------------|---------------------|-------------------|-------------------|----------------------------|-------------------------|--------------------|----------------------------|
| Tube ID    | Site ID             | Benzene<br>(ppbv) | Toluene<br>(ppbv) | Ethyl<br>Benzene<br>(ppbv) | m&p<br>Xylene<br>(ppbv) | o-Xylene<br>(ppbv) | TPH<br>as Hexane<br>(ppbv) |
|            |                     |                   |                   |                            |                         |                    |                            |
| Blower On  | 10/30/96            |                   |                   |                            |                         |                    |                            |
| A-7        | RM1 – Center – 1    | n.d.              | < 0.50            | n.d.                       | n.d.                    | n.d.               | 9.30                       |
| A-8        | RM1-Center-2        | n.d.              | 0.66              | n.d.                       | n.d.                    | n.d.               | 5.20                       |
|            |                     |                   |                   |                            |                         |                    |                            |
| A-20       | RM1 – Perimeter – 1 | 0.72              | 0.72              | n.d.                       | n.d.                    | n.d.               | 2.05                       |
| A-21       | RM1-Perimeter-2     | n.d.              | < 0.50            | n.d.                       | n.d.                    | n.d.               | 5.90                       |
|            |                     |                   |                   |                            |                         |                    |                            |
| 10/31/96   |                     |                   |                   |                            |                         |                    |                            |
| A-17       | RM1-Background-1    | 0.83              | n.d.              | n.d.                       | n.d.                    | n.d.               | 4.30                       |
| A-16       | RM1-Background-2    | < 0.50            | n.d.              | n.d.                       | n.d.                    | n.d.               | 1.60                       |
|            |                     |                   |                   |                            |                         |                    |                            |
|            |                     |                   |                   |                            |                         |                    |                            |
| Blower Off | 11/01/96            |                   |                   |                            | _                       | _                  |                            |
| A-12       | RM1-Center-3        | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 22.33                      |
| A-23       | RM1-Center-4        | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 2.90                       |
|            |                     |                   |                   |                            |                         |                    |                            |
| A-3        | RM1-Perimeter-3     | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 74.30                      |
| A-9        | RM1-Perimeter-4     | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 14.10                      |
|            |                     |                   |                   |                            |                         |                    |                            |
|            |                     |                   |                   |                            |                         |                    |                            |
| A-18       | RM1 - Cylinder Air  | n.d.              | 12.24             | n.d.                       | n.d.                    | n.d.               | 53.55                      |
| A-28       | RM1-Trip Blank      | n.d.              | n.d.              | n.d.                       | n.d.                    | n.d.               | 25.70                      |
|            | •                   |                   |                   |                            |                         |                    |                            |

<sup>&</sup>lt;0.50 = Below Method Detection Limit.

FLUX RATES: ug/ 0.453 m²/minute.

|            |                    | FLUX HATES | s: ug/ 0.453 | m²/minute.<br>Ethyl | m&p    |          | TPH       |
|------------|--------------------|------------|--------------|---------------------|--------|----------|-----------|
| Tube ID    | Site ID            | Benzene    | Toluene      | Benzene             | Xylene | o-Xylene | as Hexane |
| Blower On  | 10/00/06           |            |              |                     |        |          |           |
|            | 10/30/96           | m al       | 40.00E       | n d                 | n.d.   | n d      | 0.067     |
| A-7        | RM1-Center-1       | n.d.       | < 0.005      | n.d.                |        | n.d.     | 0.067     |
| 8-A        | RM1-Center-2       | n.d.       | 0.005        | n.d.                | n.d.   | n.d.     | 0.037     |
| A-20       | RM1-Perimeter-1    | 0.005      | 0.005        | n.d.                | n.d.   | n.d.     | 0.015     |
| A-21       | RM1-Perimeter-2    | n.d.       | < 0.005      | n.d.                | n.d.   | n.d.     | 0.042     |
| 10/31/96   |                    |            |              |                     |        |          |           |
| A-17       | RM1-Background-1   | 0.005      | n.d.         | n.d.                | n.d.   | n.d.     | 0.031     |
| A-16       | RM1-Background-2   | <0.005     | n.d.         | n.d.                | n.d.   | n.d.     | 0.011     |
| Blower Off | 11/01/96           |            |              |                     |        |          |           |
| A-12       | RM1-Center-3       | n.d.       | n.d.         | n.d.                | n.d.   | n.d.     | 0.160     |
| A-23       | RM1-Center-4       | n.d.       | n.d.         | n.d.                | n.d.   | n.d.     | 0.021     |
| A-3        | RM1-Perimeter-3    | n.d.       | n.d.         | n.d.                | n.d.   | n.d.     | 0.534     |
| A-9        | RM1-Perimeter-4    | n.d.       | n.d.         | n.d.                | n.d.   | n.d.     | 0.101     |
|            |                    |            |              |                     |        |          |           |
| A-18       | RM1 – Cylinder Air | n.d.       | 0.093        | n.d.                | n.d.   | n.d.     | 0.385     |
| A-28       | RM1 – Trip Blank   | n.d.       | n.d.         | n.d.                | n.d.   | n.d.     | 0.185     |
|            | ·                  |            |              |                     |        |          |           |

<sup>&</sup>lt;0.005 = Below Method Detection Limit.

\_\_\_\_\_\_

n.d. = Not Detected.

n.d. = Not Detected.

Q

Form No.

CHAIN OF CUSTODY RECORD

Battelle

ઇ y ۲ SORBENT Remarks ĭ ೭ ਝ 3 3 ¥ Received by: (Signature) Received by: (Signature) 2 A28 £ 18 Containers W ło Иптрег Container No. Date/Time Date/Time SAMPLE TYPE (V) र्ठ 6 Remarks 8 Relinquished by: (Signature) Relinquished by: (Signature) Ban B Date/Time Rest HEXYNE HEI BIEX Received for Laboratory by: (Signature) (3) 0 30 ଡ 0 0 Received by: (Signature) 6 GOOZ 73701 DHEIN-HAIN AB, POL YARD accere N BACK GROUND SACKSROUND Received by: PEUMETEN ERIMETEN (Signature) PENIHETER LENTER - YLINDEN SAMPLE I.D. ENTER PHICENTER 11-1-96 13:00 Date/Time Date/Time Date/Time 12/11 PHI REI **Project Title** 500 05:1 んろこの 7:15 0: TIME elinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Ŵ SAMPLERS: (Signature) Columbus Laboratories 1:36 76-1 MACTIER 10-31-96 -36 10-30-96 10-30-96 10-30-96 10-30-96 Q 0)8-1-DATE Proj. No. 1 1 ş

age \_\_\_\_\_of



COMP42 20PPB 100/1000 300CC

Acquired from HP5890--FID via Port 3 on 11-7-1996 12:45:41

HP5890 FID RANGE 3 RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.14R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

Height% Area% Type Width Height Ret Time Amount% Area PK# Name Amount 0.190 0.065 507.72 0.163 1975.8 BB1 1.104 0.0000 0.000 10109.6 0.974 BB 0.097 1733.00 0.557 0.000 2 4.268 0.0000 0.000 9880.3 0.952 вv 0.128 1283.44 0.412 0.0000 3 5.233 4.689 vv 0.082 9864.61 3.168 0.0000 0.000 48656.6 4 5 407 2.282 vv 7107.70 5 0.0000 0.000 34732.2 3.347 0.081 5.990 VB 2313.55 0.743 0.887 0.066 0.0000 0.000 9198.9 6 6.642 0.065 4858.36 1.560 1.834 BB 7 7.242 0.0000 0.000 19028.8 0.000 2960.2 0.285 BB0.065 759.02 0.2440.0000 8 8.377 0.145 BB0.064 391.71 0.126 0.0000 0.000 1503.8 Q 8.635 0.058 1.917 5970.31 10 9.678 0.0000 0.000 20778.2 2.003 BBRV 0.049 3562.73 1.144 10572.2 1.019 11 9.947 0.0000 0.000 2.604 28882.0 2.784 vv 0.059 8108.99 0.000 12 10.066 0.0000 VB 0.094 3056.04 0.981 0.0000 0.000 17274.1 1.665 13 10.322 1.816 19078.7 1.839 BB0.056 5655.84 0.0000 0.000 14 11.184 BV 6369.08 2.045 0.0000 0.000 19064.8 1.837 0.050 15 12.032 VB 0.056 2151.10 0.691 0.000 7170.1 0.691 12.319 0.0000 16 6511.30 2.091 19388.3 1.869 BV 0.050 0.000 0.0000 17 12,949 1.374 **VB** 0.062 3831.86 1.231 18 13.172 0.0000 0.000 14251.4 5.171 0.0000 0.000 52545.6 5.064 SBB 0.054 16101.35 19 13.571 Birm TVB 0.055 1304.06 0.419 4295.4 0.414 20 13.706 0.0000 0.000 2.547 2.499 BV 0.054 7932.60 0.0000 0.000 25926.7 21 14.304 **VB** 0.051 5714.12 1.835 0.000 17588.8 1.695 22 0.0000 14.530 14802.9 1.427 BB0.050 4942.90 1.587 0.0000 0.000 23 15.311 1.076 1.239 0.0000 0.000 11166.7 BV 0.048 3856.88 24 15.791 vv 5386.97 1.730 0.052 0.000 16762.8 1.616 25 15.928 0.0000 Tollegre 4.699 48752.6 **VB** 0.051 15782.87 5.068 26 16.191 0.0000 0.000 15493.7 1.493 BB0.048 5394.03 1.732 0.0000 0.000 27 16.785 1.578 BB0.054 5061.07 1.625 0.0000 0.000 16377.7 28 17.263 4.491 29 17.932 0.0000 0.000 41970.3 4.045 BV 0.050 13985.24 4.511 vv 0.051 15252.57 4.898 Ethyl B 0.000 46810.5 30 18.340 0.0000 14961.02 4.804 25 x 30 0.000 45223.5 4.359 **VB** 0.050 0.0000 31 18.542 0.0000 0.000 40377.4 3.891 BV 0.049 13714.42 4.404 32 18.905 Oxylen + Cl2C2 5.587 0.0000 0.000 59962.3 5.779 **VB** 0.057 17397.27 33 19.017 0.098 BV 0.066 305.73 0.117 34 20.080 0.0000 0.000 1209.7 40807.6 3.933 vv 0.052 13168.13 4.229 0.0000 0.000 35 20.479 0.000 14098.62 4.527 4.251 VV 0.052 0.0000 44112.9 36 20.581 vv 0.051 13975.90 4.488 0.0000 0.000 42604.9 4.106 37 21.092 vv 0.052 15020.32 4.823 0.000 47233.8 4.552 0.0000 38 21.249 0.051 3.030 vv9434.87 2.808 39 21.345 0.0000 0.000 29132.1 0.000 35890.9 3,459 VB 0.052 11581.06 3.719 21.799 0.0000 40 2.577 26579.5 BV 0.055 8024.07 2.562 0.000 41 24.429 0.0000 VB 4973.66 1.597 0.000 17455.0 1.682 0.058 0.0000 42 25.252

Total Area = 1037589.0, Total Amount = 0.0, Total Height = 311406.0



GR.S.E TUBE A-18 CYLN. AIR 300CC

Acquired from HP5890--FID via Port 3 on 11-1-1996 17:45:16

HP5890 FID RANGE 3 RHEIN-MAIN AB POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.03R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Arca    | Arca%  | Type | Width | Height  | Height% |
|-----|----------|------|--------|---------|---------|--------|------|-------|---------|---------|
| 1   | 10.488   |      | 0.0000 | 0.000   | 1261.5  | 1.210  | BV   | 0.047 | 444.81  | 1.708   |
| 2   | 10.755   |      | 0.0000 | 0.000   | 1867.2  | 1.792  | VB   | 0.064 | 489.28  | 1.879   |
| 3   | 12.575   |      | 0.0000 | 0.000   | 1785.9  | 1.714  | BB   | 0.058 | 515.46  | 1.980   |
| 4   | 12.971   |      | 0.0000 | 0.000   | 2865.9  | 2.750  | BB   | 0.058 | 823.24  | 3.162   |
| 5   | 13.347   |      | 0.0000 | 0.000   | 837.6   | 0.804  | BB   | 0.055 | 254.49  | 0.977   |
| 6   | 13.958   |      | 0.0000 | 0.000   | 915.3   | 0.878  | BB   | 0.057 | 267.72  | 1.028   |
| 7   | 14.500   |      | 0.0000 | 0.000   | 4774.6  | 4.581  | BV   | 0.050 | 1597.50 | 6.135   |
| 8   | 14.720   |      | 0.0000 | 0.000   | 7278.3  | 6.984  | VV   | 0.060 | 2036.85 | 7.823   |
| 9   | 14.933   |      | 0.0000 | 0.000   | 8965.5  | 8.603  | VV   | 0.072 | 2082.18 | 7.997   |
| 10  | 15.080   |      | 0.0000 | 0.000   | 7159.9  | 6.870  | VB   | 0.081 | 1467.82 | 5.637   |
| 11  | 15.384   |      | 0.0000 | 0.000   | 20881.9 | 20.037 | BB   | 0.095 | 3664.88 | 14.075  |
| 12  | 15.620   |      | 0.0000 | 0.000   | 2049.7  | 1.967  | BB   | 0.057 | 596.34  | 2.290   |
| 13  | 16.153   |      | 0.0000 | 0.000   | 25492.4 | 24.461 | BB   | 0.062 | 6890.92 | 26.465  |
| 14  | 16.396   |      | 0.0000 | 0.000   | 1048.1  | 1.006  | BB   | 0.050 | 348.34  | 1.338   |
| 15  | 16.743   |      | 0.0000 | 0.000   | 1295.0  | 1.243  | BB   | 0.067 | 320.13  | 1.229   |
| 16  | 16.905   |      | 0.0000 | 0.000   | 4258.0  | 4.086  | BV   | 0.048 | 1472.51 | 5.655   |
| 17  | 17.112   |      | 0.0000 | 0.000   | 2011.0  | 1.930  | VB   | 0.084 | 398.67  | 1.531   |
| 18  | 17.420   |      | 0.0000 | 0.000   | 2139.7  | 2.053  | BB   | 0.072 | 493.49  | 1.895   |
| 19  | 17.610   |      | 0.0000 | 0.000   | 1067.3  | 1.024  | BV   | 0.070 | 254.46  | 0.977   |
| 20  | 17.849   |      | 0.0000 | 0.000   | 2150.2  | 2.063  | VB   | 0.083 | 432.57  | 1.661   |
| 21  | 18.245   |      | 0.0000 | 0.000   | 1955.2  | 1.876  | BB   | 0.066 | 490.85  | 1.885   |
| 22  | 18.629   |      | 0.0000 | 0.000   | 1472.3  | 1.413  | BB   | 0.053 | 462.39  | 1.776   |
| 23  | 18.979   |      | 0.0000 | 0.000   | 683.1   | 0.656  | BB   | 0.049 | 232.58  | 0.893   |

Total Area = 104215.7, Total Amount = 0.0, Total Height = 26037.49



GR.S.E TUBE A-7 CENTER 1 300CC

Acquired from HP5890--FID via Port 3 on 11-7-1996 10:48:59

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.12R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area   | Area%  | Type                   | Width | Height | Height% |
|-----|----------|------|--------|---------|--------|--------|------------------------|-------|--------|---------|
| 1   | 2.878    |      | 0.0000 | 0.000   | 1007.5 | 5.553  | BB                     | 0.135 | 124.51 | 5.021   |
| 2   | 5.131    |      | 0.0000 | 0.000   | 3016.9 | 16.627 | BV                     | 0.122 | 413.52 | 16.675  |
| 3   | 5.994    |      | 0.0000 | 0.000   | 1790.9 | 9.871  | VB                     | 0.115 | 259.68 | 10.471  |
| 4   | 8.645    |      | 0.0000 | 0.000   | 1791.9 | 9.876  | $\mathbf{B}\mathbf{B}$ | 0.078 | 381.01 | 15.364  |
| 5   | 10.328   |      | 0.0000 | 0.000   | 7160.9 | 39.466 | BB                     | 0.326 | 366.42 | 14.776  |
| 6   | 16.196   |      | 0.0000 | 0.000   | 1064.3 | 5.866  | BB                     | 0.055 | 322.01 | 12.985  |
| 7   | 21.100   |      | 0.0000 | 0.000   | 860.5  | 4.743  | BV                     | 0.056 | 257.75 | 10.394  |
| 8   | 21.206   |      | 0.0000 | 0.000   | 1451.4 | 7.999  | VB                     | 0.068 | 354.98 | 14.315  |

Total Area = 18144.3, Total Amount = 0.0, Total Height = 2479.88



GR.S.E TUBE A-8 CENTER 2 300CC

Acquired from HP5890--FID via Port 3 on 11-7-1996 11:41:29

HP5890 FID RANGE 3 RHEIN-MAIN AB.POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.13R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area   | Area%  | Type | Width | Height | Height% |
|-----|----------|------|--------|---------|--------|--------|------|-------|--------|---------|
| 1   | 8.639    |      | 0.0000 | 0.000   | 1409.8 | 13.877 | BB   | 0.072 | 324.44 | 29.210  |
| 2   | 10.329   |      | 0.0000 | 0.000   | 7365.0 | 72.496 | BB   | 0.339 | 362.35 | 32.623  |
| 3   | 16.193   |      | 0.0000 | 0.000   | 1384.4 | 13.627 | BB   | 0.054 | 423.92 | 38.167  |

Total Area = 10159.3, Total Amount = 0.0, Total Height = 1110.71



GR.S.E TUBE A-20 PMETER 1 300CC

Acquired from HP5890--FID via Port 3 on 11-6-1996 17:58:12

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.10R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area   | Arca%  | Type                   | Width | Height | Height% |
|-----|----------|------|--------|---------|--------|--------|------------------------|-------|--------|---------|
| 1   | 5.890    |      | 0.0000 | 0.000   | 1096.7 | 27.489 | BB                     | 0.087 | 209.05 | 19.224  |
| 2   | 13.606   |      | 0.0000 | 0.000   | 1397.4 | 35.025 | BB                     | 0.057 | 409.34 | 37.642  |
| 3   | 16.227   |      | 0.0000 | 0.000   | 1495.6 | 37.486 | $\mathbf{B}\mathbf{B}$ | 0.053 | 469.06 | 43.134  |

Total Area = 3989.7, Total Amount = 0.0, Total Height = 1087.45



## GR.S.E TUBE A-21 PMETER 2 300CC

Sample Name:

GR.S.E TUBE A-21 PMETER 2 300CC

Acquired from HP5890--FID via Port 3 on 11-7-1996 09:39:07

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD Data File: C:\CPWIN\D

C:\CPWIN\DATA1\RHEIN116.11R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area   | Area%  | Туре | Width | Height | Height% |
|-----|----------|------|--------|---------|--------|--------|------|-------|--------|---------|
| 1   | 5.153    |      | 0.0000 | 0.000   | 2029.7 | 17.647 | BB   | 0.134 | 252.17 | 20.547  |
| 2   | 8.645    |      | 0.0000 | 0.000   | 1432.8 | 12.457 | BB   | 0.068 | 349.09 | 28.444  |
| 3   | 10.334   |      | 0.0000 | 0.000   | 7033.9 | 61.155 | BB   | 0.354 | 330.96 | 26.966  |
| 4   | 16.198   |      | 0.0000 | 0.000   | 1005.3 | 8.740  | BB   | 0.057 | 295.08 | 24.043  |

Total Area = 11501.7, Total Amount = 0.0, Total Height = 1227.29



GR.S.E TUBE A-17 BACKGROUND 2 300CC

Acquired from HP5890--FID via Port 3 on 11-6-1996 16:05:13

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.08R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area   | Area%  | Туре | Width | Height | Height% |
|-----|----------|------|--------|---------|--------|--------|------|-------|--------|---------|
| 1   | 1.123    |      | 0.0000 | 0.000   | 1191.1 | 14.270 | BB   | 0.074 | 268.76 | 15.734  |
| 2   | 5.158    |      | 0.0000 | 0.000   | 3341.9 | 40.040 | BB   | 0.132 | 423.22 | 24.776  |
| 3   | 8.690    |      | 0.0000 | 0.000   | 1002.0 | 12.005 | BB   | 0.076 | 218.81 | 12.809  |
| 4   | 9.305    |      | 0.0000 | 0.000   | 1200.2 | 14.380 | BB   | 0.062 | 322.77 | 18.896  |
| 5   | 13.608   |      | 0.0000 | 0.000   | 1611.3 | 19.305 | BB   | 0.057 | 474.63 | 27.785  |

Total Area = 8346.4, Total Amount = 0.0, Total Height = 1708.18



GR.S.E TUBE A-16 BACKGROUND 1 300CC

Acquired from HP5890--FID via Port 3 on 11-6-1996 16:57:42

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.09R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area   | Area%  | Type | Width | Height | Height% |
|-----|----------|------|--------|---------|--------|--------|------|-------|--------|---------|
| 1   | 5.162    |      | 0.0000 | 0.000   | 2421.6 | 78.262 | BB   | 0.121 | 334.27 | 62.677  |
| 2   | 13.608   |      | 0.0000 | 0.000   | 672.6  | 21.738 | BB   | 0.056 | 199.05 | 37.323  |



GR.S.E TUBE A-12 CENTER 3 300CC

Acquired from HP5890--FID via Port 3 on 11-2-1996 12:44:27

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.06R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK#      | Ret Time        | Name           | Amount              | Amount%   | Arca     | Area%  | Турс | Width  | Height  | Height% |
|----------|-----------------|----------------|---------------------|-----------|----------|--------|------|--------|---------|---------|
| 1        | 10.525          |                | 0.0000              | 0.000     | 2646.6   | 1.109  | BV   | 0.078  | 567.49  | 5.921   |
| 2        | 10.827          |                | 0.0000              | 0.000     | 6730.2   | 2.821  | VB   | 0.116  | 970.16  | 10.122  |
| 3        | 11.654          |                | 0.0000              | 0.000     | 1505.8   | 0.631  | BB   | 0.073  | 345.69  | 3.607   |
| 4        | 12.918          |                | 0.0000              | 0.000     | 2180.3   | 0.914  | BB   | 0.188  | 192.87  | 2.012   |
| 5        | 14.730          |                | 0.0000              | 0.000     | 1707.4   | 0.716  | BB   | 0.050  | 573.94  | 5.988   |
| 6        | 18.165          |                | 0.0000              | 0.000     | 16409.7  | 6.879  | BB   | 0.074  | 3698.02 | 38.581  |
| 7        | 20.758          |                | 0.0000              | 0.000     | 731.6    | 0.307  | BB   | 0.074  | 164.05  | 1.712   |
| 8        | 21.770          |                | 0.0000              | 0.000     | 6357.3   | 2.665  | BB   | 0.070  | 1513.33 | 15.788  |
| 9        | 24.636          |                | 0.0000              | 0.000     | 1186.3   | 0.497  | BB   | 0.067  | 293.98  | 3.067   |
| 10       | 25.211          |                | 0.0000              | 0.000     | 1564.6   | 0.656  | BB   | 0.057  | 459.56  | 4.795   |
| 11       | 27.028          |                | 0.0000              | 0.000     | 701.9    | 0.294  | BB   | 0.078  | 149.54  | 1.560   |
| 12       | 29.893          |                | 0.0000              | 0.000     | 1747.6   | 0.733  | BB   | 0.070  | 415.28  | 4.333   |
| 13       | 34.444          |                | 0.0000              | 0.000     | 195085.4 | 81.778 | BB   | 13.482 | 241.17  | 2.516   |
| Total Ar | rea = 238554.9. | Total Amount = | 0.0. Total Height = | = 9585.08 | ' \s     | Bose   | اند  | Duf    | ,       |         |

Total Area = 238554.9, Total Amount = 0.0, Total Height = 9585.08

\_ 195085,4

43,469,5



GR.S.E TUBE A-23 CENTER 4 300CC

Acquired from HP5890--FID via Port 3 on 11-2-1996 15:28:50

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.07R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area   | Area%  | Туре | Width | Height | Height% |
|-----|----------|------|--------|---------|--------|--------|------|-------|--------|---------|
| 1   | 14.169   |      | 0.0000 | 0.000   | 3068.6 | 54.870 | BB   | 0.053 | 973.30 | 61.163  |
| 2   | 15.176   |      | 0.0000 | 0.000   | 1430.8 | 25.583 | BB   | 0.085 | 281.90 | 17.715  |
| 3   | 16.790   |      | 0.0000 | 0.000   | 1093.2 | 19.547 | BB   | 0.054 | 336.12 | 21.122  |

Total Area = 5592.6, Total Amount = 0.0, Total Height = 1591.32

Blower

| ube       | A-20 Permit      | A.21 Permits 2              | A-7 Catal         | A-8 Center 2        |
|-----------|------------------|-----------------------------|-------------------|---------------------|
| gm<br>Tol | 1397.4 (,        | 941 (25,00) (25,00) (25,00) | ) 1064.3 (0.54)   | NO<br>1384.4 (0,66) |
| EB        | No               | NO                          | NO                | NO                  |
| -8        | NO               | NO                          | ND                | ND                  |
| 6         | ND               | NO                          | NO .              | NP                  |
| TEL       | 3989.7<br>(2.05) | (5.9)                       | 18,144.3<br>(9.3) | (2.7)               |

Tube A-18 Cylinder air Burgers NO Tol 25492.4 (12,24) EBm NO

on on

Told 104215.7 53,55



10

12

14

16

18

25 -

30 -

- 25.22

- 29.90

HORZ-

GR.S.E TUBE A-3 PMETER 3 300CC

Acquired from HP5890--FID via Port 3 on 11-2-1996 09:40:29

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.04R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area     | Area%  | Type | Width | Height  | Height% |
|-----|----------|------|--------|---------|----------|--------|------|-------|---------|---------|
| 1   | 10.430   |      | 0.0000 | 0.000   | 2559.8   | 1.769  | BB   | 0.081 | 525.22  | 7.477   |
| 2   | 10.661   |      | 0.0000 | 0.000   | 1861.5   | 1.287  | BB   | 0.047 | 659.17  | 9.384   |
| 3   | 11.400   |      | 0.0000 | 0.000   | 2775.7   | 1.919  | BV   | 0.110 | 418.81  | 5.962   |
| 4   | 11.583   |      | 0.0000 | 0.000   | 2071.7   | 1.432  | VB   | 0.075 | 460.06  | 6.550   |
| 5   | 14.706   |      | 0.0000 | 0.000   | 4526.7   | 3.129  | BB   | 0.048 | 1571.17 | 22.368  |
| 6   | 15.206   |      | 0.0000 | 0.000   | 1146.0   | 0.792  | BB   | 0.071 | 268.18  | 3.818   |
| 7   | 15.508   |      | 0.0000 | 0.000   | 1287.5   | 0.890  | BB   | 0.100 | 214.72  | 3.057   |
| 8   | 16.925   |      | 0.0000 | 0.000   | 876.7    | 0.606  | BB   | 0.047 | 311.51  | 4.435   |
| 9   | 18.086   |      | 0.0000 | 0.000   | 1140.8   | 0.789  | BB   | 0.029 | 661.64  | 9.419   |
| 10  | 18.255   |      | 0.0000 | 0.000   | 2249.0   | 1.554  | BB   | 0.075 | 496.76  | 7.072   |
| 11  | 18.818   |      | 0.0000 | 0.000   | 900.6    | 0.623  | BB   | 0.072 | 208.94  | 2.975   |
| 12  | 20.753   |      | 0.0000 | 0.000   | 1380.4   | 0.954  | BV   | 0.100 | 230.80  | 3.286   |
| 13  | 21.762   |      | 0.0000 | 0.000   | 1786.0   | 1.234  | VB   | 0.077 | 389.03  | 5.538   |
| 14  | 25.217   |      | 0.0000 | 0.000   | 1058.4   | 0.732  | BB   | 0.065 | 270.19  | 3.846   |
| 15  | 29.900   |      | 0.0000 | 0.000   | 493.0    | 0.341  | BB   | 0.067 | 122.72  | 1.747   |
| 16  | 34.324   |      | 0.0000 | 0.000   | 118562.4 | 81.950 | BB   | 9.178 | 215.31  | 3.065   |
|     |          |      |        |         |          |        |      |       |         |         |

Total Area = 144676.3, Total Amount = 0.0, Total Height = 7024.22



**GR.S.E TUBE A-9 PMETER 4 300CC** 

Acquired from HP5890-FID via Port 3 on 11-2-1996 10:56:03

HP5890 FID RANGE 3

RHEIN-MAIN AB, POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.05R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

C:\CPWIN\DATA1\BTEX20A.CAL Calibration file:

| PK# | Ret Time | Name | Amount | Amount% | Area   | Агса%  | Турс | Width | Height  | Height% |
|-----|----------|------|--------|---------|--------|--------|------|-------|---------|---------|
| 1   | 9.949    |      | 0.0000 | 0.000   | 2235.4 | 8.155  | BB   | 0.110 | 338.41  | 4.542   |
| 2   | 11.150   |      | 0.0000 | 0.000   | 2959.0 | 10.795 | BV   | 0.039 | 1255.49 | 16.851  |
| 3   | 11.363   |      | 0.0000 | 0.000   | 1422.4 | 5.189  | VB   | 0.059 | 405.22  | 5.439   |
| 4   | 12.851   |      | 0.0000 | 0.000   | 1932.6 | 7.051  | BB   | 0.122 | 263.30  | 3.534   |
| 5   | 14.573   |      | 0.0000 | 0.000   | 8331.0 | 30.395 | BB   | 0.053 | 2639.65 | 35.429  |
| 6   | 14.931   |      | 0.0000 | 0.000   | 1004.7 | 3.666  | BB   | 0.094 | 177.53  | 2.383   |
| 7   | 15.433   |      | 0.0000 | 0.000   | 1457.3 | 5.317  | BB   | 0.087 | 280.35  | 3.763   |
| 8   | 16.960   |      | 0.0000 | 0.000   | 1789.3 | 6.528  | BB   | 0.058 | 514.84  | 6.910   |
| 9   | 18.272   |      | 0.0000 | 0.000   | 3466.7 | 12.648 | BB   | 0.072 | 807.38  | 10.837  |
| 10  | 20.710   |      | 0.0000 | 0.000   | 747.6  | 2.727  | BB   | 0.053 | 235.89  | 3.166   |
| 11  | 21.733   |      | 0.0000 | 0.000   | 2063.5 | 7.529  | BB   | 0.065 | 532.39  | 7.146   |

10

12

14

16

18

GR.S.E TUBE A-28 TRIP BLK 300CC

Acquired from HP5890-FID via Port 3 on 11-1-1996 16:33:55

HP5890 FID RANGE 3 RHEIN-MAIN AB.POL YARD

Data File:

C:\CPWIN\DATA1\RHEIN116.02R

Method File:

C:\CPWIN\DATA1\BTEX2.MET

Calibration file:

C:\CPWIN\DATA1\BTEX20A.CAL

| PK# | Ret Time | Name | Amount | Amount% | Arca    | Arca%  | Туре | Width | Height  | Height% |
|-----|----------|------|--------|---------|---------|--------|------|-------|---------|---------|
| 1   | 2.621    |      | 0.0000 | 0.000   | 46181.6 | 92.270 | BB   | 0.135 | 5697.36 | 88.500  |
| 2   | 5.566    |      | 0.0000 | 0.000   | 1670.2  | 3.337  | BB   | 0.109 | 255.00  | 3.961   |
| 3   | 8.760    |      | 0.0000 | 0.000   | 2198.9  | 4.393  | BB   | 0.076 | 485.32  | 7.539   |

| ingened       | RT(mi)                        | Cone (pplu)     | Qua               | <b>R</b> F      |
|---------------|-------------------------------|-----------------|-------------------|-----------------|
| Bener         | 13,57                         | ۵7.0            | 5 2,545.6         | 0.00051         |
| Tolume        | 16,19                         | 23,4            | 48,752.6          | 0,00048         |
| 3 Benjane     | 18.34                         | 23,0            | 46810.5           | ०,०००५१         |
| ~ +0 / yeu    | 18,54                         | ಎಂ. ಶಿ          | 45223.5           | 0,00046         |
| ) Kylene      | 19.02                         | 23.6 (.8)(5     | 59962.3) 47,969.8 | 0,00049         |
|               | <u> </u>                      |                 |                   |                 |
| A-19          | T : 0.0 1                     | Tube A-3        | Permeter 3        | Tube A-9 Puntu4 |
| whe A-29      | •                             | •               | Vermeter 5        | 1               |
| Benjere       | No                            | NO              |                   | ND              |
| Tol           | NO                            | N               |                   | NP              |
| EB            | N D                           | N               | 2                 | ND              |
| July          | NP                            | ν <b>ν</b>      | P                 | NO              |
|               | N, D                          | N               |                   | NP              |
| Total         | 50050,7 (                     | (72'3 com) 1114 | 676.3 (74.3)      | 2749.5          |
|               |                               |                 | ••                |                 |
| Tube A-12 Cin | tu 3.                         | Tube A-23 Getal | A-17 Backgrodk    | A16 B. 102      |
| Ben           | NO                            | NO              | 1611,3 (0,1       | 83) 672,663     |
| Tol .         | NO                            | NO              | NP                | NO              |
| EB            | NO                            | NO              | NO                | NO              |
| mp            | NP                            | NP              | NO                | NO              |
| •             | NO                            | NO              | N0                | NO              |
| Total         | 43,469,5                      | 5 5 92.6        | 8346.4            | 3094,2          |
|               | ( <del>122.6</del> )<br>22.33 | (2,9)           | (4.3)             | (1,6)           |

## SURFACE EMISSIONS RESULTS AUGUST 1998

**SAMPLE CONCENTRATIONS (August 1998)** 

| Tube ID | Site ID                        | benzene<br>ppbv | toluene<br>ppbv | ethylbenzene<br>ppbv | m/p-xylene<br>ppbv | o-xylene<br>ppbv | TPH as hexane ppbv |
|---------|--------------------------------|-----------------|-----------------|----------------------|--------------------|------------------|--------------------|
| A-5     | center BL on                   | 0.59            | 2.36            | n.d.                 | n.d.               | 0.54             | 62.98              |
| A-5     | center BL on                   | 0.73            | 2.49            | n.d.                 | n.d.               | n.d.             | 59.29              |
| A-2     | center BL on                   | С               | С               | С                    | С                  | С                | С                  |
| A-11    | perimeter BL on                | n.d.            | 0.33            | n.d.                 | n.d.               | n.d.             | 7.24               |
| A-11    | perimeter BL on                | 0.46            | n.d.            | n.d.                 | n.d.               | n.d.             | 8.37               |
| A-7     | perimeter BL on                | С               | С               | С                    | С                  | С                | С                  |
| A-15    | center BL off                  | 0.74            | 1.48            | n.d.                 | n.d.               | n.d.             | 26.13              |
| A-20    | center BL off                  | С               | С               | С                    | С                  | С                |                    |
| A-21    | perimeter BL off               | 0.82            | 13.82           | n.d.                 | 0.39               | n.d.             | 258.94             |
| A-24    | perimeter BL off               | С               | С               | С                    | С                  | С                | С                  |
| A-25    | background                     | 0.55            | 12.99           | n.d.                 | 0.39               | n.d.             | 280.04             |
| A-26    | background                     | С               | c               | С                    | С                  | С                | С                  |
| A-27    | ambient air                    | 0.64            | 8.26            | n.d.                 | n.d.               | n.d.             | 217.73             |
| A-28    | trip blank<br>(loose fittings) | 0.42            | 10.57           | n.d.                 | n.d.               | n.d.             |                    |

<sup>&</sup>quot;c" indicates a contaminated sample Detection level is 0.2 ppbv

FLUX RATES: ug/0.0453m2/minute(August 1998)

| Tube ID | Site ID                        | benzene | toluene | ethylbenzene | m/p-xylene | o-xylene | TPH as hexane |
|---------|--------------------------------|---------|---------|--------------|------------|----------|---------------|
| A-5     | center BL on                   | 0.00380 | 0.01776 | n.d.         | n.d.       | 0.00469  | 0.45223       |
| A-5     | center BL on                   | 0.00470 | 0.01874 | n.d.         | n.d.       | n.d.     | 0.42577       |
| A-2     | center BL on                   | С       | С       | С            | С          | С        | c             |
| A-11    | perimeter BL on                | n.d.    | 0.00252 | n.d.         | n.d.       | n.d.     | 0.05196       |
| A-11    | perimeter BL on                | 0.00293 | n.d.    | n.d.         | n.d.       | n.d.     | 0.06014       |
| A-7     | perimeter BL on                | С       | С       | . с          | С          | Ċ        | С             |
| A-15    | center BL off                  | 0.00473 | 0.01111 | n.d.         | n.d.       | n.d.     | 0.18763       |
| A-20    | center BL off                  | С       | С       | С            | С          | С        | C             |
| A-21    | perimeter BL off               | 0.00525 | 0.10393 | n.d.         | 0.00341    | n.d.     | 1.85942       |
| A-24    | perimeter BL off               | С       | С       | С            | С          | С        | С             |
| A-25    | background                     | 0.00353 | 0.09769 | n.d.         | 0.00338    | n.d.     | 2.01096       |
| A-26    | background                     | С       | С       | С            | С          | С        | С             |
| A-27    | ambient air                    | 0.00413 | 0.06214 | n.d.         | n.d.       | n.d.     | 1.56355       |
| A-28    | trip blank<br>(loose fittings) | 0.00268 | 0.07947 | n.d.         | n.d.       | n.d.     | 1.01510       |

A-5 CENTER BLO ON 360CC

- C:\CPWIN\DATA1\RE090998.08R



A-5 CENTER BLO ON 360CC

Acquired from Chrom1-Det1A via port 1 on 9/10/98 05:22:17pm by GWK

header 1 for chan 1 header 2 for chan 1

C:\CPWIN\DATA1\RE090998.08R

Method File:

C:\CPWIN\DATA1\42COMP.MET

Calibration File:

Data File:

(none)

| PK# | Ret Time | Name | Amount | Amount% | Area    | Area% | Туре | Width | Height          | Height% |
|-----|----------|------|--------|---------|---------|-------|------|-------|-----------------|---------|
| 1   | 6.280    |      | 0.0000 | 0.000   | 730.1   | 0.000 | BB   | 0.096 | 126.79          | 0.000   |
| 2   | 6.763    |      | 0.0000 | 0.000   | 1392.7  | 0.000 | BB   | 0.110 | 211.55          | 0.000   |
| 3   | 7.071    |      | 0.0000 | 0.000   | 7390.8  | 0.000 | BV   | 0.252 | 488.87          | 0.000   |
| 4   | 7.767    |      | 0.0000 | 0.000   | 1080.9  | 0.000 | VB   | 0.114 | 158.43          | 0.000   |
| 5   | 10.970   |      | 0.0000 | 0.000   | 9127.2  | 0.000 | BV   | 0.054 | 2837.34         | 0.000   |
| 6   | 11.132   |      | 0.0000 | 0.000   | 4452.7  | 0.000 | VB   | 0.140 | 531. <b>7</b> 2 | 0.000   |
| 7   | 11.965   |      | 0.0000 | 0.000   | 4313.8  | 0.000 | BB   | 0.050 | 1427.80         | 0.000   |
| 8   | 19.380   |      | 0.0000 | 0.000   | 866.8   | 0.000 | BB   | 0.088 | 165.10          | 0.000   |
| 9   | 20.385   |      | 0.0000 | 0.000   | 1885.2  | 0.000 | BB   | 0.065 | 480.83          | 0,000   |
| 10  | 22.190   |      | 0.0000 | 0.000   | 842.8   | 0.000 | BB   | 0.075 | 186.83          | 0.000   |
| 11  | 25.560   |      | 0.0000 | 0.000   | 86623.2 | 0.000 | BV   | 0.082 | 17697.89        | 0.000   |
| 12  | 26,571   |      | 0.0000 | 0.000   | 2341.8  | 0.000 | VB   | 0.055 | 711.97          | 0.000   |
| 13  | 27.193   |      | 0.0000 | 0.000   | 556.1   | 0.000 | BB   | 0.049 | 190.98          | 0.000   |
| 14  | 28.988   |      | 0.0000 | 0.000   | 863.9   | 0.000 | BB   | 0.054 | 264.34          | 0.000   |
| 15  | 30.801   |      | 0.0000 | 0.000   | 2769.7  | 0.000 | BV   | 0.066 | 701.99          | 0.000   |
| 16  | 31.100   |      | 0.0000 | 0.000   | 766.2   | 0.000 | VB   | 0.056 | 226.23          | 0.000   |
| 17  | 33.081   |      | 0.0000 | 0.000   | 640.9   | 0.000 | BB   | 0.071 | 150.56          | 0.000   |
| 18  | 34.549   |      | 0.0000 | 0.000   | 27282.6 | 0.000 | BB   | 0.069 | 6592.85         | 0.000   |

A-11 PERIM BLO ON 360CC

C:\CPWIN\DATA1\RE090998.09R



Data File:

A-11 PERIM BLO ON 360CC

Acquired from Chrom1-Det1A via port 1 on 9/10/98 06:20:02pm by GWK

header 1 for chan 1 header 2 for chan 1

C:\CPWIN\DATA1\RE090998.09R

Method File:

C:\CPWIN\DATA1\42COMP.MET

Calibration File:

(none)

| PK# | Ret Time | Name | Amount | Amount% | Area    | Area% | Туре | Width | Height  | Height% |
|-----|----------|------|--------|---------|---------|-------|------|-------|---------|---------|
| 1   | 2.393    |      | 0.0000 | 0.000   | 2081.9  | 0.000 | BB   | 0.294 | 118.19  | 0.000   |
| 2   | 10.983   |      | 0.0000 | 0.000   | 679.7   | 0.000 | BB   | 0.073 | 156.26  | 0.000   |
| 3   | 25.547   |      | 0.0000 | 0.000   | 38660.1 | 0.000 | BB   | 0.098 | 6560.75 | 0.000   |
| 4   | 30.791   |      | 0.0000 | 0.000   | 3135.3  | 0.000 | BB   | 0.065 | 808.02  | 0.000   |
| 5   | 33.076   |      | 0.0000 | 0.000   | 790.3   | 0.000 | BB   | 0.107 | 123.27  | 0.000   |
| 6   | 34.539   |      | 0.0000 | 0.000   | 28339.6 | 0.000 | BB   | 0.069 | 6842.15 | 0.000   |

A-15 CENTER BLO OFF 360CC

C:\CPWIN\DATA1\RE090998.10R



A-15 CENTER BLO OFF 360CC

Acquired from Chrom1-Det1A via port 1 on 9/10/98 07:16:50pm by GWK

header 1 for chan 1 header 2 for chan 1

Data File:

C:\CPWIN\DATA1\RE090998.10R

Method File: Calibration File: C:\CPWIN\DATA1\42COMP.MET
C:\CPWIN\DATA1\42COMP97.CAL

| PK# | Ret Time | Name | Amount | Amount% | Area    | Area%  | Туре | Width | Height  | Height% |
|-----|----------|------|--------|---------|---------|--------|------|-------|---------|---------|
| 1   | 2.438    |      | 0.0000 | 0.000   | 3164.2  | 5.178  | BB   | 0.365 | 144.38  | 1.281   |
| 2   | 6.758    |      | 0.0000 | 0.000   | 785.0   | 1.285  | BB   | 0.099 | 132.20  | 1.173   |
| 3   | 10.949   |      | 0.0000 | 0.000   | 9141.1  | 14.960 | BB   | 0.055 | 2782.38 | 24.682  |
| 4   | 11.945   |      | 0.0000 | 0.000   | 4212.1  | 6.893  | BB   | 0.051 | 1376.49 | 12.211  |
| 5   | 17.110   |      | 0.0000 | 0.000   | 616.8   | 1.009  | BB   | 0.063 | 163.83  | 1.453   |
| 6   | 19.361   |      | 0.0000 | 0.000   | 1142.8  | 1.870  | BB   | 0.083 | 228.59  | 2.028   |
| 7   | 20.368   |      | 0.0000 | 0.000   | 1161.9  | 1.902  | BB   | 0.062 | 313.57  | 2.782   |
| 8   | 22.171   |      | 0.0000 | 0.000   | 4960.0  | 8.117  | BB   | 0.563 | 146.92  | 1.303   |
| 9   | 25.546   |      | 0.0000 | 0.000   | 20341.6 | 33.290 | BB   | 0.133 | 2544.83 | 22.575  |
| 10  | 30.793   |      | 0.0000 | 0.000   | 957.9   | 1.568  | BB   | 0.073 | 218.25  | 1.936   |
| 11  | 34.534   |      | 0.0000 | 0.000   | 14620.0 | 23.927 | BB   | 0.076 | 3221.37 | 28.576  |

Total Area = 61103.4, Total Amount = 0.0, Total Height = 11272.81

A-21 PERIM. BLO OFF 360CC

C:\CPWIN\DATA1\RE090998.11R



A-21 PERIM. BLO OFF 360CC

Acquired from Chrom1-Det1A via port 1 on 9/10/98 08:13:44pm by GWK

header 1 for chan 1 header 2 for chan 1

Data File:

C:\CPWIN\DATA1\RE090998.11R

Method File:

C:\CPWIN\DATA1\42COMP.MET

Calibration File:

(none)

| PK# | Ret Time | Name | Amount | Amount% | Area    | Area% | Туре | Width | Height   | Height% |
|-----|----------|------|--------|---------|---------|-------|------|-------|----------|---------|
| 1   | 2.433    |      | 0.0000 | 0.000   | 2747.4  | 0.000 | BB   | 0.341 | 134.23   | 0.000   |
| 2   | 4.598    |      | 0.0000 | 0.000   | 1691.1  | 0.000 | BB   | 0.193 | 146.37   | 0.000   |
| 3   | 6.208    |      | 0.0000 | 0.000   | 2672.9  | 0.000 | BB   | 0.104 | 429.65   | 0.000   |
| 4   | 6.706    |      | 0.0000 | 0.000   | 5921.0  | 0.000 | BB   | 0.129 | 762.78   | 0.000   |
| 5   | 7.725    |      | 0.0000 | 0.000   | 1118.6  | 0.000 | BB   | 0.099 | 189.03   | 0.000   |
| 6   | 10.929   |      | 0.0000 | 0.000   | 86226.5 | 0.000 | BB   | 0.052 | 27849.49 | 0.000   |
| 7   | 11.928   |      | 0.0000 | 0.000   | 43813.5 | 0.000 | BB   | 0.048 | 15084.54 | 0.000   |
| 8   | 12.690   |      | 0.0000 | 0.000   | 854.2   | 0.000 | BB   | 0.062 | 229.84   | 0.000   |
| 9   | 14.128   |      | 0.0000 | 0.000   | 684.5   | 0.000 | BB   | 0.058 | 196.70   | 0.000   |
| 10  | 15.488   |      | 0.0000 | 0.000   | 1696.6  | 0.000 | BB   | 0.054 | 528.00   | 0.000   |
| 11  | 17.103   |      | 0.0000 | 0.000   | 604.8   | 0.000 | BB   | 0.062 | 163.85   | 0.000   |
| 12  | 17.293   |      | 0.0000 | 0.000   | 484.6   | 0.000 | BB   | 0.053 | 151.33   | 0.000   |
| 13  | 17.687   |      | 0.0000 | 0.000   | 1709.7  | 0.000 | BV   | 0.088 | 323.57   | 0.000   |
| 14  | 17.957   |      | 0.0000 | 0.000   | 1809.8  | 0.000 | vv   | 0.059 | 512.73   | 0.000   |
| 15  | 18.281   |      | 0.0000 | 0.000   | 1107.3  | 0.000 | vv   | 0.126 | 146.98   | 0.000   |
| 16  | 18.697   |      | 0.0000 | 0.000   | 1507.3  | 0.000 | VB   | 0.067 | 374.87   | 0.000   |
| 17  | 19.356   |      | 0.0000 | 0.000   | 1673.9  | 0.000 | BB   | 0.060 | 466.88   | 0.000   |
| 18  | 20.356   |      | 0.0000 | 0.000   | 8999.0  | 0.000 | BB   | 0.056 | 2685.93  | 0.000   |
| 19  | 25.547   |      | 0.0000 | 0.000   | 13379.1 | 0.000 | BB   | 0.103 | 2174.68  | 0.000   |
| 20  | 26.558   |      | 0.0000 | 0.000   | 841.5   | 0.000 | BB   | 0.055 | 254.88   | 0.000   |
| 21  | 30.787   |      | 0.0000 | 0.000   | 953.1   | 0.000 | BB   | 0.076 | 207.86   | 0.000   |
| 22  | 34.532   |      | 0.0000 | 0.000   | 19050.1 | 0.000 | BB   | 0.078 | 4090.27  | 0.000   |
|     |          |      |        |         |         |       |      |       |          |         |

A-25 BACKGROUND 360CC

— C:\CPWIN\DATA1\RE090998.12R



A-25 BACKGROUND 360CC

Acquired from Chrom1--Det1A via port 1 on 9/10/98 09:11:38pm by GWK

header 1 for chan 1 header 2 for chan 1

Data File:

C:\CPWIN\DATA1\RE090998.12R

Method File:

C:\CPWIN\DATA1\42COMP.MET

Calibration File: (none)

| PK# | Ret Time | Name | Amount | Amount% | Area    | Area% | Туре | Width | Height         | Height% |
|-----|----------|------|--------|---------|---------|-------|------|-------|----------------|---------|
| 1   | 6.205    |      | 0.0000 | 0.000   | 2945.8  | 0.000 | BB   | 0.111 | 443.75         | 0.000   |
| 2   | 6.742    |      | 0.0000 | 0.000   | 4564.0  | 0.000 | BB   | 0.125 | 606. <b>77</b> | 0.000   |
| 3   | 7.733    |      | 0.0000 | 0.000   | 1221.4  | 0.000 | BB   | 0.109 | 185.94         | 0.000   |
| 4   | 10.929   |      | 0.0000 | 0.000   | 95528.1 | 0.000 | BB   | 0.051 | 31270.25       | 0.000   |
| 5   | 11.800   |      | 0.0000 | 0.000   | 543.3   | 0.000 | BB   | 0.050 | 182.59         | 0.000   |
| 6   | 11.926   |      | 0.0000 | 0.000   | 44044.0 | 0.000 | BB   | 0.048 | 15337.87       | 0.000   |
| 7   | 12.687   |      | 0.0000 | 0.000   | 980.2   | 0.000 | BB   | 0.053 | 307.80         | 0.000   |
| 8   | 14.125   |      | 0.0000 | 0.000   | 935.6   | 0.000 | BB   | 0.053 | 295.88         | 0.000   |
| 9   | 15.484   |      | 0.0000 | 0.000   | 1872.4  | 0.000 | BB   | 0.051 | 606.56         | 0.000   |
| 10  | 17.283   |      | 0.0000 | 0.000   | 768.7   | 0.000 | BV   | 0.051 | 250.89         | 0.000   |
| 11  | 17.397   |      | 0.0000 | 0.000   | 841.8   | 0.000 | VB   | 0.052 | 268.08         | 0.000   |
| 12  | 17.683   |      | 0.0000 | 0.000   | 623.5   | 0.000 | BB   | 0.031 | 330.84         | 0.000   |
| 13  | 17.954   |      | 0.0000 | 0.000   | 2572.3  | 0.000 | BB   | 0.050 | 851.86         | 0.000   |
| 14  | 18.268   |      | 0.0000 | 0.000   | 408.1   | 0.000 | BB   | 0.040 | 171.33         | 0.000   |
| 15  | 18.695   |      | 0.0000 | 0.000   | 1551.4  | 0.000 | BB   | 0.051 | 508.59         | 0.000   |
| 16  | 19.351   |      | 0.0000 | 0.000   | 2870.9  | 0.000 | BB   | 0.044 | 1090.89        | 0.000   |
| 17  | 19.945   |      | 0.0000 | 0.000   | 631.0   | 0.000 | BB   | 0.062 | 168.70         | 0.000   |
| 18  | 20.150   |      | 0.0000 | 0.000   | 483.9   | 0.000 | BB   | 0.040 | 203.29         | 0.000   |
| 19  | 20.355   |      | 0.0000 | 0.000   | 8821.6  | 0.000 | BB   | 0.052 | 2812.05        | 0.000   |
| 20  | 25.546   |      | 0.0000 | 0.000   | 11146.1 | 0.000 | BB   | 0.104 | 1780.06        | 0.000   |
| 21  | 30.783   |      | 0.0000 | 0.000   | 1373.8  | 0.000 | BB   | 0.072 | 319.81         | 0.000   |
| 22  | 34.529   |      | 0.0000 | 0.000   | 28426.7 | 0.000 | BB   | 0.078 | 6081.91        | 0.000   |

A-28 TRIP BLANK 360CC

\_\_\_\_ C:\CPWIN\DATA1\SE090998.18R



A-28 TRIP BLANK 360CC

Acquired from Chrom1-Det1A via port 1 on 9/16/98 12:10:50pm by GWK

header 1 for chan 1 header 2 for chan 1

Data File:

C:\CPWIN\DATA1\SE090998.18R

Method File:

C:\CPWIN\DATA1\42COMP.MET

Calibration File: (none)

| PK# | Ret Time | Name | Amount | Amount% | Area    | Area% | Туре | Width | Height   | Height% |
|-----|----------|------|--------|---------|---------|-------|------|-------|----------|---------|
| 1   | 6.260    |      | 0.0000 | 0.000   | 1256.2  | 0.000 | BB   | 0.096 | 217.39   | 0.000   |
| 2   | 6.762    |      | 0.0000 | 0.000   | 1848.1  | 0.000 | BB   | 0.106 | 291.63   | 0.000   |
| 3   | 7.750    |      | 0.0000 | 0.000   | 1070.6  | 0.000 | BB   | 0.119 | 149.72   | 0.000   |
| 4   | 10.953   |      | 0.0000 | 0.000   | 36152.1 | 0.000 | BB   | 0.053 | 11473.47 | 0.000   |
| 5   | 11.949   |      | 0.0000 | 0.000   | 31669.7 | 0.000 | BB   | 0.048 | 11073.94 | 0.000   |
| 6   | 14.442   |      | 0.0000 | 0.000   | 818.6   | 0.000 | BB   | 0.052 | 261.66   | 0.000   |
| 7   | 14,910   |      | 0.0000 | 0.000   | 760.8   | 0.000 | BB   | 0.055 | 230.36   | 0.000   |
| 8   | 15.510   |      | 0.0000 | 0.000   | 1694.3  | 0.000 | BB   | 0.054 | 521.91   | 0.000   |
| 9   | 16.347   |      | 0.0000 | 0.000   | 786.6   | 0.000 | BB   | 0.051 | 256.17   | 0.000   |
| 10  | 17.414   |      | 0.0000 | 0.000   | 959.9   | 0.000 | BB   | 0.049 | 325.58   | 0.000   |
| 11  | 17.705   |      | 0.0000 | 0.000   | 446.3   | 0.000 | BB   | 0.034 | 219.60   | 0.000   |
| 12  | 17.970   |      | 0.0000 | 0.000   | 1876.3  | 0.000 | BV   | 0.054 | 576.75   | 0.000   |
| 13  | 18.355   |      | 0.0000 | 0.000   | 1410.6  | 0.000 | VB   | 0.123 | 190.99   | 0.000   |
| 14  | 18.713   |      | 0.0000 | 0.000   | 1496.7  | 0.000 | BB   | 0.064 | 388.02   | 0.000   |
| 15  | 19.371   |      | 0.0000 | 0.000   | 2182.1  | 0.000 | BB   | 0.059 | 618.89   | 0.000   |
| 16  | 20.373   |      | 0.0000 | 0.000   | 7621.1  | 0.000 | BB   | 0.065 | 1969.15  | 0.000   |
| 17  | 28.985   |      | 0.0000 | 0.000   | 645.4   | 0.000 | BB   | 0.070 | 154.43   | 0.000   |

A-27 AMBIENT AIR 360CC





Sample Name: A-27 AMBIENT AIR 360CC

Acquired from Chrom1--Det1A via port 1 on 9/16/98 01:07:16pm by GWK

header 1 for chan 1 header 2 for chan 1

Data File:

(

C:\CPWIN\DATA1\SE090998.19R C:\CPWIN\DATA1\42COMP.MET

Method File: C:\CPV
Calibration File: (none)

| PK# | Ret Time | Name | Amount | Amount% | Area    | Area% | Туре | Width | Height   | Height% |
|-----|----------|------|--------|---------|---------|-------|------|-------|----------|---------|
| 1   | 4.612    |      | 0.0000 | 0.000   | 1014.5  | 0.000 | BB   | 0.109 | 155.81   | 0.000   |
| 2   | 6.227    |      | 0.0000 | 0.000   | 4402.0  | 0.000 | BV   | 0.118 | 622.52   | 0.000   |
| 3   | 6.767    |      | 0.0000 | 0.000   | 6292.1  | 0.000 | vv   | 0.125 | 840.19   | 0.000   |
| 4   | 7.750    |      | 0.0000 | 0.000   | 1300.6  | 0.000 | VB   | 0.104 | 209.38   | 0.000   |
| 5   | 8.095    |      | 0.0000 | 0.000   | 649.4   | 0.000 | BB   | 0.093 | 116.99   | 0.000   |
| 6   | 10.941   |      | 0.0000 | 0.000   | 89547.2 | 0.000 | BB   | 0.053 | 28063.69 | 0.000   |
| 7   | 11.943   |      | 0.0000 | 0.000   | 17605.3 | 0.000 | BB   | 0.049 | 6041.23  | 0.000   |
| 8   | 12.696   |      | 0.0000 | 0.000   | 1239.6  | 0.000 | BB   | 0.060 | 343.49   | 0.000   |
| 9   | 14.143   |      | 0.0000 | 0.000   | 546.4   | 0.000 | BB   | 0.048 | 188.56   | 0.000   |
| 10  | 15.497   | •    | 0.0000 | 0.000   | 2088.8  | 0.000 | BB   | 0.055 | 627.89   | 0.000   |
| 11  | 17.120   |      | 0.0000 | 0.000   | 663.6   | 0.000 | BV   | 0.067 | 164.11   | 0.000   |
| 12  | 17.296   |      | 0.0000 | 0.000   | 1183.5  | 0.000 | vv   | 0.059 | 334.23   | 0.000   |
| 13  | 17.405   |      | 0.0000 | 0.000   | 1709.5  | 0.000 | vv   | 0.064 | 444.56   | 0.000   |
| 14  | 17.745   |      | 0.0000 | 0.000   | 2568.6  | 0.000 | vv   | 0.088 | 488.12   | 0.000   |
| 15  | 17.843   |      | 0.0000 | 0.000   | 1338.7  | 0.000 | vv   | 0.057 | 390.13   | 0.000   |
| 16  | 17.964   |      | 0.0000 | 0.000   | 2262.2  | 0.000 | vv   | 0.066 | 572.11   | 0.000   |
| 17  | 18.348   |      | 0.0000 | 0.000   | 1243.0  | 0.000 | VB   | 0.070 | 295.40   | 0.000   |
| 18  | 18.710   |      | 0.0000 | 0.000   | 1010.6  | 0.000 | BB   | 0.056 | 300.20   | 0.000   |
| 19  | 19.362   |      | 0.0000 | 0.000   | 2334.7  | 0.000 | BB   | 0.043 | 896.13   | 0.000   |
| 20  | 19.965   |      | 0.0000 | 0.000   | 971.0   | 0.000 | BB   | 0.078 | 208.61   | 0.000   |
| 21  | 20.162   |      | 0.0000 | 0.000   | 663.1   | 0.000 | BB   | 0.043 | 256.14   | 0.000   |
| 22  | 20.370   |      | 0.0000 | 0.000   | 5339.9  | 0.000 | BB   | 0.053 | 1679.87  | 0.000   |

COMP42 SD10941 10-1000 360CC

\_\_\_\_ C:\CPWIN\DATA1\RE090998.01R



COMP42 SD10941 10-1000 360CC

Acquired from Chrom1-Det1A via port 1 on 9/9/98 03:27:19pm by GWK

header 1 for chan 1 header 2 for chan 1

Data File:

C:\CPWIN\DATA1\RE090998.01R

Method File:

C:\CPWIN\DATA1\42COMP.MET

Calibration File: (none)

| PK# | Ret Time | Name | Amount | Amount% | Area           | Area% | Type | Width | Height  | Height% |
|-----|----------|------|--------|---------|----------------|-------|------|-------|---------|---------|
| 1   | 2.460    |      | 0.0000 | 0.000   | 3521.6         | 0.000 | BB   | 0.305 | 192.41  | 0.000   |
| 2   | 4.460    |      | 0.0000 | 0.000   | 5129.4         | 0.000 | BB   | 0.160 | 534.56  | 0.000   |
| 3   | 5.977    |      | 0.0000 | 0.000   | 2025.2         | 0.000 | BB   | 0.180 | 187.93  | 0.000   |
| 4   | 6.755    |      | 0.0000 | 0.000   | 765.4          | 0.000 | BB   | 0.103 | 124.45  | 0.000   |
| 5   | 7.020    |      | 0.0000 | 0.000   | 1112.6         | 0.000 | BV   | 0.090 | 205.33  | 0.000   |
| 6   | 7.228    |      | 0.0000 | 0.000   | 6702.3         | 0.000 | VB   | 0.115 | 974.72  | 0.000   |
| 7   | 7.903    |      | 0.0000 | 0.000   | 3723.9         | 0.000 | BB   | 0.091 | 682.59  | 0.000   |
| 8   | 8.690    |      | 0.0000 | 0.000   | 927.7          | 0.000 | BB   | 0.078 | 199.41  | 0.000   |
| 9   | 9.391    |      | 0.0000 | 0.000   | 2718.5         | 0.000 | BB   | 0.077 | 589.36  | 0.000   |
| 10  | 12.315   |      | 0.0000 | 0.000   | 2413.4         | 0.000 | BV   | 0.052 | 772.59  | 0.000   |
| 11  | 12.634   |      | 0.0000 | 0.000   | 1259.2         | 0.000 | vv   | 0.058 | 361.02  | 0.000   |
| 12  | 12.785   |      | 0.0000 | 0.000   | 3111.0         | 0.000 | vv   | 0.060 | 867.66  | 0.000   |
| 13  | 13.085   |      | 0.0000 | 0.000   | 1762.9         | 0.000 | VB   | 0.053 | 558.04  | 0.000   |
| 14  | 14.162   |      | 0.0000 | 0.000   | 2244.0         | 0.000 | BB   | 0.051 | 738.08  | 0.000   |
| 15  | 15.204   |      | 0.0000 | 0.000   | 2064.3         | 0.000 | BV   | 0.054 | 638.53  | 0.000   |
| 16  | 15.560   |      | 0.0000 | 0.000   | 1044.0         | 0.000 | VB   | 0.059 | 295.95  | 0.000   |
| 17  | 16.351   |      | 0.0000 | 0.000   | 2289.9         | 0.000 | BV   | 0.061 | 624.27  | 0.000   |
| 18  | 16.623   |      | 0.0000 | 0.000   | 1884.2         | 0.000 | VB   | 0.048 | 660.47  | 0.000   |
| 19  | 17.118   |      | 0.0000 | 0.000   | 5505.0         | 0.000 | BB   | 0.047 | 1944.33 | 0.000   |
| 20  | 18.037   |      | 0.0000 | 0.000   | 2966.2         | 0.000 | BB   | 0.053 | 941.41  | 0.000   |
| 21  | 18.310   |      | 0.0000 | 0.000   | 2145.9         | 0.000 | BB   | 0.055 | 654.75  | 0.000   |
| 22  | 19.283   |      | 0.0000 | 0.000   | 1687.0         | 0.000 | BB   | 0.061 | 458.76  | 0.000   |
| 23  | 19.878   |      | 0.0000 | 0.000   | 1376.0         | 0.000 | BV   | 0.063 | 364.43  | 0.000   |
| 24  | 20.052   |      | 0.0000 | 0.000   | 2372.1         | 0.000 | VB   | 0.068 | 584.48  | 0.000   |
| 25  | 20.375   |      | 0.0000 | 0.000   | <i>557</i> 9.5 | 0.000 | BB   | 0.055 | 1689.32 | 0.000   |
| 26  | 21.125   |      | 0.0000 | 0.000   | 1449.4         | 0.000 | BB   | 0.053 | 456.98  | 0.000   |
| 27  | 21.713   |      | 0.0000 | 0.000   | 1722.5         | 0.000 | BB   | 0.047 | 604.97  | 0.000   |
| 28  | 22.543   |      | 0.0000 | 0.000   | 4129.1         | 0.000 | BB   | 0.052 | 1335.08 | 0.000   |
| 29  | 23.045   |      | 0.0000 | 0.000   | 5128.2         | 0.000 | вv   | 0.053 | 1622.70 | 0.000   |
| 30  | 23.296   |      | 0.0000 | 0.000   | 5154.7         | 0.000 | vv   | 0.057 | 1519.84 | 0.000   |
| 31  | 23.747   |      | 0.0000 | 0.000   | 3878.9         | 0.000 | vv   | 0.052 | 1234.22 | 0.000   |
| 32  | 23.890   |      | 0.0000 | 0.000   | 7176.9         | 0.000 | VB   | 0.065 | 1837.95 | 0.000   |
| 33  | 25.699   |      | 0.0000 | 0.000   | 3947.7         | 0.000 | BV   | 0.051 | 1278.99 | 0.000   |
| 34  | 25.827   |      | 0.0000 | 0.000   | 4907.9         | 0.000 | VB   | 0.052 | 1566.13 | 0.000   |
| 35  | 26.462   |      | 0.0000 | 0.000   | 4435.3         | 0.000 | BV   | 0.051 | 1453.94 | 0.000   |
| 36  | 26.660   |      | 0.0000 | 0.000   | 5219.8         | 0.000 | vv   | 0.057 | 1527.59 | 0.000   |
| 37  | 26.779   |      | 0.0000 | 0.000   | 3902.6         | 0.000 | VB   | 0.073 | 885.46  | 0.000   |
| 38  | 27.342   |      | 0.0000 | 0.000   | 3890.9         | 0.000 | BB   | 0.058 | 1124.32 | 0.000   |
| 39  | 30.600   |      | 0.0000 | 0.000   | 2944.9         | 0.000 | BB   | 0.079 | 621.59  | 0.000   |
| -   | 31.607   |      | 0.0000 | 0.000   | 2300.8         | 0.000 | BB   | 0.054 | 710.84  | 0.000   |

## APPENDIX D RESULTS FROM SOIL GAS PERMEABILITY TESTING



Figure D1. Radius of Influence at the Bioventing Test Plot



Figure D2. Radius of Influence at a Depth of 1 m at the Bioventing Test Plot



Figure D3. Radius of Influence at a Depth of 2 m at the Bioventing Test Plot



Figure D4. Radius of Influence at a Depth of 3 m at the Bioventing Test Plot



Figure D5. Radius of Influence at a Depth of 4 m at the Bioventing Test Plot



Figure D6. Radius of Influence at a Depth of 5 m at the Bioventing Test Plot



Figure D7. Radius of Influence at a Depth of 6 m at the Bioventing Test Plot

#### Projekt Rhein Main Air Base R 68.346

Date: 12-11-96 Time:

Weather:

Temperature: -4°C

#### Messurement:

| MPA    | + Isuin | + 35 min | 1:174 | 2:00h | 2:461 | 3:44/1 | 4:361 |  |
|--------|---------|----------|-------|-------|-------|--------|-------|--|
| clean  | 697     | .108     | ,125  | ,12,1 | .121  | .125   | ,128  |  |
| black  | :109    | . 118    | .136  | .132  | .131  | 135    | .140  |  |
| brown  | .124    | +129     | 146   | .142  | .139  | 149    | 149   |  |
| green  | 18€     | .163     | .175  | 1135  | 172   | ,181   | 182   |  |
| orange | 220     | ,218     | .235  | .230  | .228  |        | ,237  |  |
| red    | .132    | , 188    | .203  |       | .201  | .206   | .202  |  |
| yellow |         | _        |       |       |       |        |       |  |
| blue   |         |          |       |       |       |        |       |  |

| MPB    | -Zezisa | +37 au | 1:19 % | 2:02h | 2:48   | 3:461 | 4:381 |  |
|--------|---------|--------|--------|-------|--------|-------|-------|--|
| clean  | +80.    | 120.0  | , 101  | 1102  | .1C3   | 109   | .103  |  |
| black  | ·C94    | 094    | .105   | .107  | .107   | .114  | .107  |  |
| brown  | .105    | 0.099  | . 110  | .111  | 112    | .117  | 111   |  |
| green  | -355    | 327    | -321   | 295   | -, 299 | -257  | 288   |  |
| orange | .123    | .115   | .130   | .131  | .129   | 1.137 | .129  |  |
| red    | .126    | .118   | .132   | .135  | .128   | ,141  | .134  |  |
| yellow |         |        |        |       |        |       |       |  |
| blue   |         |        |        |       |        |       |       |  |

| MPC    | +5+44 | +39min | 1:22h | 2:04 | 2:50h | 3:48h | 3:40 |  |
|--------|-------|--------|-------|------|-------|-------|------|--|
| clean  | .044  | 0.033  | .04C  | 457  | .044  | .053  | .056 |  |
| black  | 042   | .034   | .639  | .05% | .045  | .053  | .058 |  |
| brown  | .043  | 6.39   | .045  | .060 | . 048 | .054  | .060 |  |
| green  | .048  | .041   | .046  | .061 | ·050  | .054  | .001 |  |
| orange | 050   | 1:046  | .049  | .C64 | .054  | .056  | 259  |  |
| red    | .049  | .045   | .056  | .064 | .054  | .061  | .0G0 |  |
| yellow |       |        |       |      |       |       |      |  |
| blue   |       |        |       |      |       |       |      |  |

The second

#### Date

| MPD    | + 9 min | 14/ min | 1:25h | 2:07/ | 2:544 | 3:50 | 4:42  |  |
|--------|---------|---------|-------|-------|-------|------|-------|--|
| clean  | .016    | .004    | .023  | .027  | ·CIC  | .013 | 2500  |  |
| black  |         | 0006    |       |       |       |      |       |  |
| brown  | .014    | .009    | .024  | . (23 | .617  | .014 | , CZ3 |  |
| green  | ·C 14   | .c.c7   | +(25  | . 023 | .018  | .619 | . C24 |  |
| orange | .014    | . COS   | 0CZ7  | .C24  | 0617  | ·C18 | .024  |  |
| red    | 0017    | ,008    | .025  | .624  | 0018  | .618 | . C25 |  |
| yellow |         |         |       |       |       |      |       |  |
| blue   |         |         |       | 4     |       |      |       |  |

|        |           |             |        |        | 2000 en |        |       |  |
|--------|-----------|-------------|--------|--------|---------|--------|-------|--|
| ckgrou | nd 124 4: | I:CI h      | 1:374  | 2:21/1 | 3:154   | 4:16 h | 5:09h |  |
| clean  | - C.CL3   | O.CC        | -0.002 | .001   | .014    | .614   | .610  |  |
| black  | -C.C11    | -C.CC3      | CO3    | CCZ    | .014    | .C14   | .CClc |  |
| brown  | -0.012    | -0.604      | 003    | 002    | 0017    | .017   | .068  |  |
| green  | -C.C.1C   | -0.COL      | CO 1   | .col   | CIR     | 610    | 1612  |  |
| orange | -C.C/3    | · C.C.C. 6. | -, 603 | COI    | .015    | .016   | · C12 |  |
| red    | -0.CIZ    | -0.666      | 003    | 661    | .018    |        | .012  |  |
| yellow | -0.013    | -0.004      | 006    | .001   | .012    | 210.   | .013  |  |
| blue   | _         |             |        | ,      |         |        |       |  |

| GP1    | +27 mis | + 544 | 1:40 | 2: 19h | 2:07 | 4: 03h | 4:546 | - |
|--------|---------|-------|------|--------|------|--------|-------|---|
| white  | 0.025   | .035  | .020 | .041   | .032 | .030   | .102  |   |
| blue   | 0,040   | .049  | .036 | .054   | .C48 | -048   | .040  |   |
| red    | 0,044   |       |      |        |      |        |       |   |
| yellow | 0.045   | .063  | .045 | .065   | 262  | .060   | .053  |   |

| GP2    | +20 min | +52 44 | 1:38 | 2:176 | 3:04h | 4:00h | 4:51  |  |
|--------|---------|--------|------|-------|-------|-------|-------|--|
| white  |         |        |      |       | .015  |       |       |  |
| blue   | 0.032   | .042   | .028 | ·c37  | ,037  | .038  | .04.5 |  |
| red    | 0.038   | .049   | ·032 | .043  | .C45  | .046  | .051  |  |
| yellow | 0.047   | .056   | .042 | . C&3 | .052  | .051  | .059  |  |

| yellow | _       | <u> </u> |        |      |       |       |       |  |
|--------|---------|----------|--------|------|-------|-------|-------|--|
| red    | .035    | · 627    | .CZ 7  | 6037 | .032  | -039  | .47   |  |
| blue   | +.6.34  | -0.169   | . 034  | *    | *     | *     | *     |  |
| white  | +.180   | -0.045   | 003    | .010 | 0010  | + [12 | 6     |  |
| GP3    | + (fair | + 49 m   | 1:34 / | 2:14 | 3:01h |       | 4149/ |  |

\* deeps down from 301 to -020

\* deeps down from 300 to :009

\* a 300 to solte 2

נשחנה מפחשי-.048

| GP4    | +14 min | +47  | 1:32h | 2:12/1 | 21544 | 3:56h | 4:48h |  |
|--------|---------|------|-------|--------|-------|-------|-------|--|
| white  | · CC4   | .664 | .003  | 0010   | .007  | .008  | .016  |  |
| blue   | +.008   |      |       |        |       |       |       |  |
| red    | .009    | .010 | .007  | .025   | .CZO  | .021  | .032  |  |
| yellow |         |      |       |        |       |       | .CZ7  |  |

| GP5    | +11 min | 445 mi | 1:286 | 2:16h | 2157 | 3:54 | 4:466 |   |
|--------|---------|--------|-------|-------|------|------|-------|---|
| white  | 145     | CICCI  | .000  | 0001  | .coz | .000 | .005  | A |
| blue   | 241     | -0.002 | C10   | .005  | .003 | .000 | 2009  |   |
| red    | 16C     | 0.003  | 003   | .006  | .001 | .001 | ,012  |   |
| vellow | 120     | t.180  | . (60 | ×     | ×    | *    | *     |   |

| GP8    | +2314 | +56 hin | 1:44  | 2:22h | 3:10h | 4:06h | Sicily |  |
|--------|-------|---------|-------|-------|-------|-------|--------|--|
| white  | 0.005 | -007    | .003  | .012  | .009  | .619  | .011   |  |
|        |       |         |       | ,023  |       |       |        |  |
| red    | 0.014 | .C22    | -012  | .026  | .024  | c 34  | .020   |  |
| yellow | 0.014 | .c.22   | · C14 | .029  | . c24 | .032  | .023   |  |

\* 60 TABI GOLD & FROM . 185 40 -. 664

# APPENDIX E MONTHLY SOIL GAS SAMPLING RESULTS

### MPA

| C <sub>2</sub> (%) | 5/10/36 5/13/36 5/21/36 5/21/36 5/28/36 6/3/36 6/13/36 6/20/36 6/27/36 7/3/36 8/21/36 9/19/36 10/29/36 11/25/36 | 2.0 0.8 17.1 19.5 19.3 18.8 18.5 19.0 19.1 19.1 17.5 19.0 19.4 19.4 | 0.0 0.3 20.5 20.9 20.7 20.3 20.0 20.5 20.3 20.1 20.0 20.1 20.9 20.9 | 0.0 0.3 20.7 20.9 20.9 20.7 20.6 20.8 20.5 20.9 20.2 20.7 20.9 20.9 | 0.0 4.2 20.9 20.9 20.9 20.8 20.7 20.8 20.5 20.9 20.5 20.5 20.9 20.9 20.9 | 0.0 20.0 20.9 20.9 20.9 20.9 20.8 20.8 20.9 20.9 20.9 20.9 20.9 | 0.0 20.0 20.9 20.9 20.9 20.8 20.7 20.9 20.8 20.9 20.9 20.9 20.9 20.9 | NT N | NT N |
|--------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|------------------------------------------|
|                    | 5/13/96 5/21/96                                                                                                 | 17.1 19.5                                                           | 20.5 20.9                                                           | 20.7 20.9                                                           | 20.9 20.9                                                                | 20.9 20.9                                                       | 20.9 20.9                                                            | TN                                       | TN N                                     |
|                    | 3/29/96 5/3/96 5/10/96                                                                                          | Н                                                                   |                                                                     |                                                                     |                                                                          |                                                                 |                                                                      |                                          |                                          |
| Depth              | (m) 11/14/95                                                                                                    | L L                                                                 | 2 NT                                                                | S NT                                                                | 4<br>TN                                                                  | 5 NT                                                            | 6 NT                                                                 | 7 NT                                     | 8                                        |

|                     | 8/21/96 9/19/96 10/29/96 11/25/96 | 7.4 2.0 2.2 2.3 | 1.5 0.5 0.5 0.6 | 0.8 0.4 0.1 0.3 | 0.2 0.2 0.0 0.1 | 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 | TN TN TN TN | NT NT NT TN |
|---------------------|-----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------|-------------|
|                     | 7/3/96                            | 1.5             | 0.5             | 0.3             | 0.1             | 0.0             | 0.0             | Į.          | LN          |
|                     | 6/27/96                           | 1.5             | 0.5             | 0.4             | 0.2             | 0.0             | 0.0             | TN          | IN          |
|                     | 6/20/96                           | 2.0             | 0.5             | 0.5             | 0.4             | 0.0             | 0.1             | FN.         | Ā           |
| CO <sub>2</sub> (%) | 6/13/96                           | 2.0             | 0.5             | 0.3             | 0.3             | 0.0             | 0.0             | Ā           | Ĭ           |
|                     | 96/8/9                            | 1.3             | 9.0             | 0.3             | 0.3             | 0.0             | 0.0             | Z           | Ā           |
|                     | 5/28/96                           | 1.3             | 0.5             | 0.4             | 0.3             | 0.0             | 0.0             | TN.         | Ā           |
|                     | 5/21/96                           | 1.3             | 0.5             | 0.5             | 0.4             | 0.1             | 0.1             | TN          | ΤN          |
|                     | 5/13/96                           | 3.3             | 9.0             | 0.5             | 0.4             | 0.0             | 0.0             | TN          | Ā           |
|                     | 5/10/96                           | 15.5            | 15.0            | 15.0            | 14.1            | 2.6             | 2.5             | TN          | TN          |
|                     | 5/10/96                           | 13.6            | 14.5            | 14.1            | 14.0            | 12.5            | 12.5            | TN          | TN          |
|                     | 5/3/96                            | 15.5            | 15.5            | 15.0            | 14.5            | 13.1            | 13.0            | IN          | LN.         |
|                     | 3/29/96                           | TN              | ΙN              | ¥               | ž               | ¥               | ķ               | N.          | ΙN          |
|                     | 11/14/95                          | ħ               | ¥               | ħ               | ¥               | ¥               | Ę               | F           | ħ           |
| Depth               | Œ                                 | -               | 2               | ေ               | 4               | 2               | 9               | 7           | ھ           |

|            | 11/25/96 | 120   | 0     | 0     | 0     | .0    | 0     | ħ    | TM |
|------------|----------|-------|-------|-------|-------|-------|-------|------|----|
|            | 10/29/96 | 200   | 100   | 90    | 9     | 20    | 0     | Ä    | NT |
|            | 9/19/96  | 460   | 140   | 120   | 80    | 40    | 20    | FN.  | TN |
|            | 8/21/96  | 460   | 120   | 120   | 80    | 20    | 20    | R    | NT |
|            | 7/3/96   | 640   | 260   | 140   | 120   | 40    | 0     | Ν    | TN |
|            | 6/27/96  | 460   | 160   | 180   | 160   | 60    | 20    | LN T | TN |
|            | 6/20/96  | 620   | 240   | 220   | 220   | 140   | 120   | NT   | TN |
| TPH (ppmv) | 6/13/96  | 740   | 240   | 200   | 200   | 100   | 80    | NT   | TN |
|            | 96/2/9   | 999   | 200   | 140   | 100   | 0     | 0     | NT   | TN |
|            | 5/28/96  | 680   | 260   | 260   | 280   | 140   | 100   | TN   | FN |
|            | 5/21/96  | 620   | 260   | 260   | 300   | 100   | 100   | TN   | TN |
|            | 5/13/96  | 720   | 420   | 400   | 580   | 120   | 120   | IN   | TN |
|            | 5/10/96  | 840   | 1,000 | 1,120 | 1,560 | 1,400 | 1,320 | IN   | TN |
|            | 5/10/96  | 800   | 880   | 920   | 1,280 | 3,000 | 4,400 | TN   | NT |
|            | 5/3/96   | 1,080 | 1,160 | 1,200 | 1,800 | 4,720 | 7,320 | Ä    | NT |
|            | 3/29/96  | ۲N    | IN    | IN    | TN    | ¥     | TN    | TN   | TN |
|            | 11/14/95 | ۲N    | IN    | ħ     | TN    | LN.   | IN    | Ŋ    | FN |
| Depth      | Œ        | -     | 2     | 8     | 4     | 2     | 9     | 7    | 8  |

NT = Not Taken

\* Groundwater prevents soil gas collection at deeper depth intervals

\*\* Monitoring point not yet installed on first two sampling dates

\*\*\* Bold line represents startup of blower

| _ |  |
|---|--|
| n |  |
| - |  |
|   |  |
| - |  |
|   |  |
| _ |  |
|   |  |

| _     |          | _    |      | _    | _    | -    | _    |    |    |
|-------|----------|------|------|------|------|------|------|----|----|
|       |          |      |      |      |      |      |      |    |    |
|       |          |      |      |      |      |      |      |    |    |
|       | 11/25/96 | 18.0 | 18.7 | 19.8 | 20.1 | 20.9 | 50.9 | ΙN | IN |
|       | 10/29/96 | 17.5 | 18.0 | 19.5 | 20.0 | 20.4 | 20.4 | TN | ĸ  |
|       | 9/19/96  | 14.1 | 17.8 | 18.9 | 19.7 | 20.1 | 20.0 | IN | TN |
|       | 8/21/96  | 13.9 | 18.1 | 19.0 | 20.3 | 20.7 | 20.8 | M  | IN |
|       | 96/2/2   | 15.3 | 18.2 | 19.0 | 20.0 | 20.3 | 20.8 | NT | N  |
|       | 96/22/96 | 14.3 | 17.9 | 18.3 | 19.8 | 20.1 | 20.2 | TN | NT |
|       | 96/07/9  | 13.9 | 17.8 | 18.6 | 20.0 | 20.3 | 20.5 | TN | IN |
| 02(%) | 6/13/96  | 11.9 | 17.1 | 18.0 | 19.9 | 20.5 | 20.6 | ΤN | IN |
|       | 96/2/9   | 12.0 | 16.8 | 17.5 | 19.8 | 20.6 | 20.8 | TN | NT |
|       | 5/28/96  | 13.8 | 17.0 | 17.8 | 19.5 | 20.5 | 20.5 | N  | IN |
|       | 5/21/96  | 12.5 | 17.0 | 17.4 | 19.5 | 20.3 | 20.5 | NT | N  |
|       | 5/13/96  | 3.7  | 12.1 | 14.6 | 18.3 | 19.8 | 20.1 | IN | N  |
|       | 5/10/96  | 0.8  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | TN | N  |
|       | 5/10/96  | 0.5  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | IN | IN |
|       | 96/6/9   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | ĸ  | N  |
|       | 3/29/96  | IN   | M    | N    | M    | ۲    | IN   | Ä  | N  |
|       | 11/14/95 | TN   | IN   | ΙN   | N    | ΙN   | IN   | Ŋ  | IN |
| Depth | (E)      | +    | 2    | 3    | 4    | 5    | 9    | 7  | 8  |

|                     | 11/25/96 | 4.3  | 2.8  | 1.9  | 9.0  | 0.7  | 9.0  | IN  | ¥  |
|---------------------|----------|------|------|------|------|------|------|-----|----|
|                     | 10/29/96 | 4.8  | 2.5  | 1.0  | 9.0  | 0.5  | 0.3  | IN  | IN |
|                     | 9/19/96  | 5.1  | 2.0  | 1.6  | 0.6  | 0.3  | 0.0  | NT  | ĸ  |
|                     | 8/21/96  | 6.0  | 2.5  | 1.5  | 0.7  | 0.4  | 0.2  | NT  | IN |
|                     | 7/3/96   | 4.4  | 2.0  | 1.7  | 9.0  | 0.1  | 0.1  | IN  | TN |
|                     | 6/27/96  | 5.0  | 2.3  | 1.8  | 9.0  | 0.4  | 0.1  | TN  | IN |
|                     | 6/20/96  | 6.0  | 2.6  | 2.1  | 0.8  | 0.5  | 0.5  | N   | IN |
| CO <sub>2</sub> (%) | 6/13/96  | 6.8  | 2.0  | 2.3  | 0.8  | 0.4  | 0.3  | IN  | Z  |
|                     | 96/2/9   | 6.2  | 3.3  | 3.0  | 1.0  | 0.5  | 0.5  | M   | Ł  |
|                     | 5/28/96  | 5.0  | 3.2  | 2.9  | 1.0  | 9.0  | 9.0  | Z   | Z  |
|                     | 5/21/96  | 5.4  | 3.1  | 3.0  | 1.2  | 0.7  | 9.0  | Ā   | ¥  |
|                     | 5/13/96  | 13.0 | 8.5  | 6.7  | 3.2  | 1.5  | 1.0  | N   | N  |
|                     | 5/10/96  | 14.3 | 14.2 | 14.0 | 13.5 | 13.0 | 13.0 | TN  | ŢŅ |
|                     | 5/10/96  | 13.0 | 13.0 | 13.0 | 12.3 | 12.0 | 12.0 | N   | K  |
|                     | 5/3/96   | 14.0 | 14.0 | 13.9 | 13.0 | 12.5 | 12.5 | ĮN. | 'n |
|                     | 3/29/96  | N    | N    | ¥    | ź    | TN   | IN   | IN  | ١  |
|                     | 11/14/95 | IN   | N    | Ŋ    | LN   | ΤN   | IN   | IN  | ΙN |
| Depth               | Œ)       | -    | 2    | 6    | 4    | 22   | 9    | 7   | 80 |

|            | 11/25/96 | 480   | 240   | 180   | 100   | 0     | 0     | IN | TN |
|------------|----------|-------|-------|-------|-------|-------|-------|----|----|
|            | 10/29/96 | 900   | 400   | 400   | 140   | 80    | 0     | IN | IN |
|            | 9/19/96  | 1,800 | 1,000 | 600   | 140   | 80    | 20    | NT | IN |
|            | 8/21/96  | 1,740 | 009   | 520   | 120   | 90    | 20    | ΙN | IN |
|            | 96/2/2   | 3,180 | 1,360 | 1,180 | 340   | 180   | 40    | IN | IN |
|            | 6/27/96  | 2,780 | 1,160 | 1,020 | 200   | 100   | 60    | TN | IN |
| 1)         | 96/07/9  | 3,600 | 1,660 | 1,280 | 360   | 240   | 220   | IN | IN |
| TPH (ppmv) | 6/13/96  | 3,720 | 1,460 | 1,340 | 320   | 160   | 120   | ΤN | N  |
|            | 96/2/9   | 3,540 | 1,660 | 1,540 | 280   | 90    | 09    | N  | N  |
|            | 5/28/96  | 3,620 | 1,960 | 1,860 | 400   | 220   | 200   | N  | Į. |
|            | 5/21/96  | 3,700 | 2,380 | 2,620 | 380   | 240   | 240   | IN | ¥  |
|            | 5/13/96  | 5,800 | 3,860 | 3,860 | 1,920 | 1,080 | 1,220 | IN | Į, |
|            | 5/10/96  | 5,640 | 6,000 | 6,040 | 5,800 | 5,840 | 5,800 | ΙN | IN |
|            | 5/10/96  | 5,400 | 6,080 | 6,120 | 5,920 | 5,960 | 6,000 | 'n | Į. |
|            | 5/3/96   | 7,880 | 8,880 | 8,720 | 8,440 | 8,600 | 8,800 | ¥  | z  |
|            | 3/29/96  | IN    | Ā     | ¥     | ¥     | ĸ     | Ŋ     | IN | F  |
|            | 11/14/95 | Ņ     | ¥     | ź     | Z     | F     | Ŋ     | N  | ž  |
| Depth      | Œ)       | -     | 2     | 9     | 4     | 150   | 9     | 7  | 80 |

NT = Not Taken

\* Groundwater prevents soil gas collection at deeper depth intervals

\*\* Monitoring point not yet installed on first two sampling dates

\*\*\* Bold line represents startup of blower

### MPC

|       | 11/25/96 | 20.2 | 20.8 | 50.9 | 20.9 | 50.9 | 20.9 | ħ   | ۲  |
|-------|----------|------|------|------|------|------|------|-----|----|
|       | 10/29/96 | 20.0 | 20.6 | 20.8 | 50.9 | 50.9 | 20.9 | Z   | ٦  |
|       | 9/19/96  | 19.0 | 20.3 | 20.8 | 20.9 | 20.9 | 20.9 | IN  | TN |
|       | 8/21/96  | 19.1 | 20.3 | 20.6 | 20.8 | 20.9 | 20.9 | M   | Ν  |
|       | 7/3/96   | 19.1 | 20.1 | 20.5 | 20.6 | 20.7 | 20.7 | Ā   | Ā  |
|       | 6/27/96  | 19.1 | 20.5 | 20.8 | 20.9 | 20.9 | 20.9 | NT  | TN |
|       | 6/20/96  | 18.3 | 20.6 | 20.9 | 20.9 | 20.9 | 20.9 | ΤN  | Ŋ  |
| 02(%) | 6/13/96  | 18.5 | 20.0 | 20.3 | 20.3 | 20.6 | 20.6 | TN  | IN |
|       | 96/2/9   | 19.2 | 20.6 | 20.9 | 20.9 | 20.9 | 50.9 | ĸ   | NT |
|       | 5/28/96  | 19.3 | 20.3 | 20.6 | 20.5 | 20.5 | 20.5 | ĸ   | ΙN |
|       | 5/21/96  | 19.1 | 20.2 | 20.6 | 20.7 | 20.9 | 20.9 | F   | IN |
|       | 5/13/96  | 15.8 | 20.0 | 20.6 | 20.8 | 20.8 | 20.8 | M   | TN |
|       | 5/10/96  | 3.0  | 0.2  | 0.0  | 0.0  | 5.5  | 2.5  | M   | Ņ  |
|       | 5/10/96  | 7.0  | 4.0  | 0.5  | 0.0  | 0.0  | 0.0  | N   | TN |
|       | 96/8/9   | 6.2  | 2.5  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 | N  |
|       | 3/29/96  | Į,   | TN   | TN   | 'n   | TN   | Ā    | ž   | TN |
|       | 11/14/95 | N    | TN   | ΤN   | M    | IN   | Ā    | ¥   | M  |
| Depth | Œ)       | -    | 2    | က    | 4    | 22   | 9    | 7   | 80 |

|                     | 11/25/96 | 1.5  | 0.5  | 0.0  | 0.0  | 0.0  | 0.0  | FN   | IN |
|---------------------|----------|------|------|------|------|------|------|------|----|
|                     | 10/29/96 | 1.5  | 0.5  | 0.0  | 0.0  | 0.0  | 0.0  | FN   | TN |
|                     | 9/19/96  | 1.6  | 9.0  | 0.2  | 0.0  | 0.0  | 0.0  | Ħ    | Ā  |
|                     | 8/21/96  | 1.8  | 9.0  | 0.2  | 0.0  | 0.0  | 0.0  | NT   | N  |
|                     | 7/3/96   | 1.5  | 0.6  | 0.1  | 0.0  | 0.0  | 0.0  | N    | IN |
|                     | 6/27/96  | 1.6  | 9.0  | 0.2  | 0.0  | 0.0  | 0.0  | ΙN   | IN |
|                     | 96/07/9  | 1.8  | 0.7  | 0.3  | 0.1  | 0.0  | 0.1  | LN.  | TN |
| CO <sub>2</sub> (%) | 6/13/96  | 1.8  | 0.7  | 0.1  | 0.0  | 0.0  | 0.0  | N    | ΙN |
|                     | 96/2/9   | 1.5  | 9.0  | 0.3  | 0.1  | 0.0  | 0.1  | TN   | TN |
|                     | 5/28/96  | 1.3  | 0.7  | 0.4  | 0.3  | 0.0  | 0.0  | Z    | ħ  |
|                     | 5/21/96  | 1.5  | 0.7  | 0.4  | 0.3  | 0.3  | 0.4  | N.   | ħ  |
|                     | 5/13/96  | 5.0  | 0.8  | 9.0  | 0.5  | 0.4  | 0.5  | ¥    | ۲N |
|                     | 5/10/96  | 12.8 | 14.5 | 14.5 | 14.0 | 13.0 | 13.0 | ĸ    | TN |
|                     | 5/10/96  | 10.3 | 11.9 | 13.8 | 13.4 | 13.0 | 12.9 | Z    | IN |
|                     | 5/3/96   | 10.5 | 12.8 | 14.5 | 14.1 | 14.0 | 13.8 | 14.0 | Ā  |
|                     | 3/29/96  | ΙN   | N    | TN   | N    | ΤN   | IN   | Ŋ    | ħ  |
|                     | 11/14/95 | N    | TN   | Ŋ    | ۲    | Ν    | IN   | IN   | Ŗ  |
| Depth               | (m)      | 1    | 2    | က    | 4    | 2    | 9    | 7    | ۵  |

| 5/21/96 5/<br>520<br>400<br>560 | 5/10/96         5/10/96         5/13/96           740         560         740           740         720         540           1120         1360         780           1640         1720         800 |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 520 400 560                     | 740<br>540<br>780<br>800                                                                                                                                                                            |
| 560                             | 540<br>780<br>800                                                                                                                                                                                   |
| 560                             | 780                                                                                                                                                                                                 |
| -                               | 800                                                                                                                                                                                                 |
| 800 480 380                     |                                                                                                                                                                                                     |
| 440 200 180                     | 440                                                                                                                                                                                                 |
| 320 100 120                     | 320                                                                                                                                                                                                 |
| TN TN TN                        | ¥                                                                                                                                                                                                   |
| NT NT TN                        | ¥                                                                                                                                                                                                   |

| (m) 11/14/95 329.96 53.96 54.09 54.09 571.96 5721.96 521.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 5721.96 57 | Depth |          |         |        |         |         |      |      |         | Terr | Temperature (°C) | (၁့     |         |        |         |         |          |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|---------|--------|---------|---------|------|------|---------|------|------------------|---------|---------|--------|---------|---------|----------|----------|--|
| 11.4         11.3         11.2         11.5         12.4         13.0         15.0         16.4         16.5         16.9         17.9         16.5         16.0           10.0         9.8         10.1         10.5         10.9         11.2         11.7         12.1         12.7         13.5         15.1         15.0         15.0           10.3         10.2         10.2         10.3         10.5         10.8         11.2         11.0         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1 </th <th>(E)</th> <th>11/14/95</th> <th>3/29/96</th> <th>5/3/96</th> <th>5/10/96</th> <th>5/10/96</th> <th>_</th> <th></th> <th>5/28/96</th> <th></th> <th>6/13/96</th> <th>6/20/96</th> <th>6/27/96</th> <th>7/3/96</th> <th>8/21/98</th> <th>9/19/96</th> <th>10/29/96</th> <th>11/25/96</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (E)   | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | _    |      | 5/28/96 |      | 6/13/96          | 6/20/96 | 6/27/96 | 7/3/96 | 8/21/98 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| 10.0         9.8         10.1         10.5         10.9         11.2         11.7         12.1         12.7         13.5         16.1         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0         16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2     | N<br>L   | ħ       | 11.0   | 11.4    | 11.3    | 11.2 | 11.5 | 12.4    | 13.0 | 15.0             | 16.4    | 16.5    | 16.9   | 17.9    | 16.5    | 16.0     | 11.4     |  |
| 103 102 102 103 105 108 112 110 111 115 127 125 124 112 1108 1110 108 111 111 111 111 112 118 119 NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4     | TN       | Ŋ       | 9.7    | 10.0    | 9.8     | 10.1 | 10.5 | 10.9    | 11.2 | 11.7             | 12.1    | 12.7    | 13.5   | 15.1    | 15.0    | 15.0     | 13.5     |  |
| 11.0 10.8 11.1 11.1 11.4 10.9 11.1 11.2 11.6 11.8 NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9     | TN       | TN      | 10.3   | 10.3    | 10.2    | 10.2 | 10.3 | 10.5    | 10.8 | 11.2             | 11.0    | 11.1    | 11.5   | 12.7    | 12.5    | 12.4     | 13.7     |  |
| The state of the s | 80    | N        | Z       | 11.1   | 11.2    | 10.8    | 11.0 | 10.8 | 11.1    | 11.1 | 11.4             | 10.9    | 11.1    | 11.2   | 11.6    | 11.6    | N        | 13.4     |  |

NT = Not Taken
• Groundwater prevents soil gas collection at deeper depth intervals
• Monitoring point not yet installed on first two sampling dates
••• Bold line represents startup of blower

| _ | ł |
|---|---|
| _ | l |
| ı | 1 |
| • | ١ |
|   | 1 |
|   | ı |

| _     | -        |      |      | -    | _    |      | <u> </u> | _    | - 1 |
|-------|----------|------|------|------|------|------|----------|------|-----|
|       |          |      |      |      |      |      |          |      |     |
|       |          |      |      |      |      |      |          |      |     |
|       | 11/25/96 | 20.9 | 20.9 | 20.9 | 20.9 | 20.9 | 20.9     | 20.9 | ΝŢ  |
|       | 10/29/96 | 20.5 | 20.9 | 20.9 | 20.9 | 20.9 | 20.9     | Ν    | Ν   |
|       | 9/19/96  | 20.2 | 20.2 | 20.3 | 20.4 | 20.3 | 20.4     | ħ    | N   |
|       | 8/21/96  | 20.0 | 20.0 | 20.1 | 20.1 | 20.2 | 20.2     | ΙN   | TN  |
|       | 2/3/96   | 20.1 | 20.3 | 20.3 | 20.3 | 20.4 | 20.4     | Ä    | TN  |
|       | 96/27/9  | 20.2 | 20.3 | 20.3 | 20.4 | 20.6 | 20.7     | ۲    | TN  |
|       | 96/07/9  | 20.2 | 20.5 | 20.8 | 20.8 | 20.8 | 20.7     | TN   | N   |
| 02(%) | 6/13/96  | 20.7 | 20.8 | 20.9 | 20.9 | 50.9 | 20.8     | M    | M   |
|       | 96/2/9   | 20.5 | 20.8 | 20.8 | 20.9 | 20.8 | 20.8     | ħ    | Ā   |
|       | 5/28/96  | 20.1 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2     | N    | N   |
|       | 5/21/96  | 20.0 | 20.1 | 20.2 | 20.2 | 20.2 | 20.0     | TN   | Ā   |
|       | 5/13/96  | 9.0  | 10.2 | 14.0 | 11.8 | 9.2  | 9.8      | TN   | N   |
|       | 5/10/96  | 10.5 | 9.6  | 6.0  | 5.3  | 4.5  | 4.2      | IN   | LN  |
|       | 5/10/96  | 10.9 | 9.8  | 6.8  | 6.0  | 4.9  | 4.2      | IN   | ۲   |
|       | 5/3/96   | 10.0 | 9.0  | 5.0  | 4.5  | 4.0  | 3.8      | IN   | ۲   |
|       | 3/53/96  | TN   | IN   | IN   | N    | N    | TN       | ħ    | NT  |
|       | 11/14/95 | TN   | ΙΝ   | ۲    | ۲    | M    | ¥        | ŢN   | ۲N  |
| Depth | Œ        | -    | 2    | က    | 4    | 5    | 9        | 7    | æ   |

| Depth |          |         |        |         |         |         |         |         |        | CO <sub>2</sub> (%) |         |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|--------|---------------------|---------|---------|--------|---------|---------|----------|----------|--|
| (m)   | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/2/9 | 6/13/96             | 96/02/9 | 6/27/96 | 2/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| 1     | Ł        | Ŋ       | 8.8    | 8.0     | 9.0     | 8.8     | 2.6     | 1.0     | 8.0    | 8.0                 | 0.7     | 0.7     | 0.7    | 9.0     | 0.5     | 0.5      | 9.0      |  |
| 2     | ŢN       | IN      | 9.5    | 8.9     | 10.0    | 9.2     | 2.0     | 8.0     | 0.7    | 9.0                 | 9.0     | 9.0     | 0.5    | 0.5     | 0.4     | 0.5      | 9.0      |  |
| ဗ     | ħ        | ŢN      | 11.0   | 10.1    | 11.0    | 9.2     | 1.2     | 2.0     | 9.0    | 0.5                 | 0.5     | 0.5     | 0.5    | 0.4     | 9.4     | 0.4      | 0.2      |  |
| 4     | ¥        | ۲       | 11.5   | 10.7    | 11.8    | 8.5     | 2.0     | 0.7     | 0.6    | 0.5                 | 0.5     | 0.5     | 9.0    | 0.3     | 0.2     | 0.2      | 0.2      |  |
| 2     | ¥        | F       | 11.8   | 11.0    | 12.0    | 9.0     | 2.1     | 6.0     | 0.7    | 9.0                 | 0.5     | 0.5     | 0.5    | 0.2     | 0.0     | 0.2      | 0.2      |  |
| 9     | ź        | ħ       | 12.0   | 11.0    | 12.0    | 8.5     | 2.5     | 6.0     | 0.7    | 0.7                 | 0.7     | 9.0     | 9.0    | 0.5     | 0.0     | 0.2      | 0.3      |  |
| 7     | ¥        | ħ       | Ę      | TN      | TN      | TN      | IN      | IN      | TN     | IN                  | N.      | TN      | ۲      | ۲       | F       | IN       | 0.3      |  |
| 80    | ΙN       | LN.     | TN     | ħ       | TN      | TN      | LN.     | Į,      | Ŋ      | M                   | N       | N       | TN     | N       | LΝ      | TN       | NT       |  |

| Depth |          |         |        |         |         |         |         |         | -      | IPH (ppmv) |         |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|--------|------------|---------|---------|--------|---------|---------|----------|----------|--|
| Œ)    | 11/14/95 | 3/29/96 | 96/2/9 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 6/3/96 | 6/13/96    | 6/20/96 | 6/27/96 | 7/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| -     | ۲        | TN      | 320    | 320     | 260     | 640     | 260     | 180     | 100    | 220        | 180     | 120     | 180    | 180     | 160     | 100      | 40       |  |
| 2     | TN       | M       | 640    | 260     | 440     | 420     | 220     | 180     | 60     | 160        | 180     | 120     | 180    | 140     | 120     | 80       | 20       |  |
| 6     | IN       | NT      | 009    | 260     | 400     | 099     | 180     | 160     | 40     | 120        | 160     | 100     | 140    | 100     | 100     | 80       | 0        |  |
| 4     | TN       | Ŋ       | 900    | 260     | 400     | 540     | 220     | 160     | 40     | 120        | 160     | 90      | 140    | 9       | 20      | 0        | 0        |  |
| 2     | N        | ħ       | 600    | 560     | 400     | 640     | 240     | 160     | 40     | 120        | 160     | 20      | 100    | 40      | 0       | 0        | 0        |  |
| 9     | IN       | TN      | 260    | 260     | 400     | 260     | 240     | 160     | 60     | 100        | 160     | 40      | 100    | 40      | ٥       | 0        | 0        |  |
| 7     | NT       | NT      | Ä      | IN      | TN      | ¥       | IN      | INT     | NT     | ħ          | FN.     | Ę       | ź      | ħ       | ħ       | μN       | 0        |  |
| 80    | IN       | Ŋ       | IN     | TN      | IN      | IN      | Ν       | Ŋ       | M      | Ā          | Ŋ       | ¥       | ¥      | Ā       | IN      | N        | NT       |  |

| Depth |          |         |        |         |         |         |         |                                | Ten  | emperature (°C) | (၃      |                                                                  |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|--------------------------------|------|-----------------|---------|------------------------------------------------------------------|--------|---------|---------|----------|----------|--|
| (E)   | 11/14/95 | 3/29/96 | 96/2/9 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/13/96 5/21/96 5/28/96 6/3/96 |      | 6/13/96         | 6/20/96 | 6/13/96 6/20/96 6/27/96 7/3/96 8/21/96 9/19/96 10/29/96 11/25/96 | 2/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| -     | TN       | ĸ       | 12.7   | 12.3    | 12.1    | 11.8    | 12.8    | 14.5                           | 15.7 | 20.3            | 50.9    | 17.8                                                             | 17.7   | 19.5    | 19.5    | 19.0     | 6.9      |  |
| 4     | Ę        | ¥       | 9.0    | 9.5     | 9.4     | 9.6     | 9.9     | 10.6                           | 10.6 | 11.2            | 11.8    | 12.4                                                             | 13.1   | 15.0    | 15.0    | 14.8     | 11.2     |  |
| 9     | ¥        | ¥       | 10.1   | 10.0    | 6.6     | 10.0    | 10.1    | 10.3                           | 10.5 | 10.2            | 10.6    | 10.8                                                             | 11.3   | 12.6    | 12.8    | 12.6     | 13.4     |  |
|       |          |         |        | -       |         |         |         |                                |      |                 |         |                                                                  |        |         |         |          |          |  |

NT = Not Taken
• Groundwater prevents soil gas collection at deeper depth intervals
• Monitoring point not yet installed on first two sampling dates
•• Bold line represents startup of blower

# Background

|                    | 11/25/96 | 18.1 | 18.4 | 18.2 | 18.0 | 18.0 | 17.9 | 17.8 | Z    |
|--------------------|----------|------|------|------|------|------|------|------|------|
|                    | 10/29/96 | 18.0 | 18.3 | 18.0 | 18.0 | 18.0 | 18.0 | 17.9 | Ŋ    |
|                    | 9/19/96  | 17.7 | 17.7 | 17.8 | 18.0 | 18.0 | 17.0 | 17.8 | ΙN   |
|                    | 8/21/96  | 17.8 | 17.8 | 17.8 | 17.8 | 17.9 | 17.9 | 17.9 | 17.9 |
|                    | 7/3/96   | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 | 18.1 | 18.0 | ķ    |
|                    | 96/22/9  | 18.3 | 18.0 | 18.0 | 18.0 | 18.0 | 18.1 | 17.9 | Ϋ́   |
|                    | 96/07/9  | 18.5 | 18.1 | 18.2 | 18.2 | 18.2 | 18.2 | 18.2 | Ä    |
| O <sub>2</sub> (%) | 6/13/96  | 18.5 | 18.0 | 18.0 | 18.0 | 18.0 | 17.8 | 17.8 | Ŋ    |
|                    | 96/2/9   | 18.5 | 18.2 | 18.1 | 18.0 | 18.2 | 18.0 | 18.0 | Ā    |
|                    | 5/28/96  | 18.8 | 18.5 | 18.3 | 18.3 | 18.0 | 18.2 | 18.3 | LN L |
|                    | 5/21/96  | M    | ۲N   | ۲    | μ    | ħ    | ¥    | ۲    | Ŋ    |
|                    | 5/13/96  | ۲۷   | ħ    | ۲    | ۲    | ħ    | ¥    | Ä    | TN   |
|                    | 5/10/96  | TN   | ħ    | TN   | NT   | TN   | ΙN   | ħ    | TN   |
|                    | 5/10/96  | ۲    | TN   | TN   | TN   | TN   | TN   | TN   | ΙN   |
|                    | 96/2/9   | IN   | IN   | TN   | LΝ   | TN   | ۲    | IN   | TN   |
|                    | 3/29/96  | ΙN   | IN   | IN   | ΤN   | TN   | TN   | ΙΝ   | N    |
|                    | 11/14/95 | Ā    | TN   | ΤN   | NT   | TN   | TN   | ŢN   | Ĭ    |
| Depth              | (m)      | 1    | 2    | 3    | 4    | 5    | 9    | 7    | 80   |

|                     | 11/25/96 | 4.0 | 4.0 | 4.5 | 4.6 | 4.8 | 4.8 | 8.4 | LN  |
|---------------------|----------|-----|-----|-----|-----|-----|-----|-----|-----|
|                     | 10/29/96 | 4.0 | 3.9 | 4.5 | 4.5 | 4.6 | 4.6 | 4.6 | M   |
|                     | 9/19/96  | 4.1 | 4.0 | 4.1 | 4.3 | 4.3 | 4.3 | 4.3 | Z   |
|                     | 8/21/96  | 4.6 | 4.5 | 4.5 | 4.3 | 4.3 | 4.3 | 4.2 | 4.2 |
|                     | 7/3/96   | 4.2 | 4.2 | 4.3 | 4.2 | 4.2 | 4.1 | 4.3 | NT  |
|                     | 6/27/96  | 4.4 | 4.5 | 4.5 | 4.4 | 4.2 | 4.2 | 4.2 | ΙN  |
|                     | 6/20/96  | 4.1 | 4.0 | 4.0 | 3.9 | 3.9 | 3.9 | 3.9 | ħ   |
| CO <sub>2</sub> (%) | 6/13/96  | 4.2 | 4.2 | 4.2 | 4.1 | 4.1 | 4.2 | 4.1 | ΙN  |
|                     | 96/2/9   | 3.9 | 3.9 | 4.0 | 3.9 | 3.8 | 3.9 | 3.8 | Ā   |
|                     | 5/28/96  | 3.8 | 3.6 | 3.9 | 4.0 | 3.9 | 3.8 | 3.7 | IN  |
|                     | 5/21/96  | ۲   | N   | N   | TN  | NT  | NT  | NT  | TN  |
|                     | 5/13/96  | TN  | Ν   | IN  | NT  | NT  | NT  | TN  | ۲   |
|                     | 5/10/96  | Ŋ   | IN  | TN  | TN  | TN  | TN  | IN  | ΤN  |
|                     | 5/10/96  | ΙN  | TN  | TN  | Ŋ   | TN  | FN  | IN  | ħ   |
|                     | 96/2/9   | ۲   | TN  | IN  | NT  | Ž   | IN  | Ŋ   | Ā   |
|                     | 3/29/96  | Ŋ   | TN  | ħ   | ΤN  | IN  | TN  | TN  | ħ   |
|                     | 11/14/95 | ħ   | TN  | ¥   | ħ   | ¥   | ŢN  | TN  | Ŋ   |
| Depth               | (m)      | -   | 2   | 3   | 4   | 2   | 9   | 7   | 80  |

|            | 11/25/96 | 240 | 240 | 260 | 260 | 280 | 260 | 280 | N   |
|------------|----------|-----|-----|-----|-----|-----|-----|-----|-----|
|            | 10/29/96 | 240 | 240 | 240 | 240 | 260 | 240 | 260 | ۲   |
|            | 9/19/96  | 240 | 240 | 240 | 240 | 220 | 220 | 200 | Ŋ   |
|            | 8/21/96  | 240 | 240 | 220 | 220 | 200 | 200 | 200 | 200 |
|            | 7/3/96   | 320 | 320 | 320 | 300 | 300 | 300 | 300 | TN  |
|            | 6/27/96  | 200 | 180 | 180 | 180 | 160 | 160 | 160 | LN  |
| ,          | 6/20/96  | 260 | 260 | 240 | 240 | 220 | 240 | 220 | N   |
| TPH (ppmv) | 6/13/96  | 300 | 280 | 280 | 260 | 220 | 260 | 260 | N   |
|            | 96/2/9   | 240 | 220 | 220 | 220 | 220 | 220 | 220 | M   |
|            | 5/28/96  | 240 | 260 | 260 | 260 | 260 | 280 | 280 | IN  |
|            | 5/21/96  | N   | N   | M   | NT  | M   | M   | TN  | N   |
|            | 5/13/96  | N   | NT  | NT  | N   | NT  | NT  | NT  | TN  |
|            | 5/10/96  | N   | NT  | TN  | TN  | Ā   | IN  | TN  | ΤN  |
|            | 5/10/96  | IN  | IN  | NT  | NT  | INT | TN  | IN  | TN  |
|            | 96/8/9   | ħ   | IN  | Ŋ   | ۲   | ħ   | ħ   | IN  | ħ   |
|            | 3/29/96  | ž   | ħ   | ħ   | Ā   | IN  | Ā   | ¥   | Į.  |
|            | 11/14/95 | Ā   | TN. | ΙN  | ħ   | ħ   | ¥   | ¥   | ¥   |
| Depth      | (m)      | -   | 2   | က   | 4   | ß   | ဖ   | 7   | æ   |

|       |          |         |        | - CONTRACTOR - CON |         |         |                 |         | 1      | THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. |                 |         |        |         | -                        |          |          |  |
|-------|----------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------------|---------|--------|--------------------------------------------------|-----------------|---------|--------|---------|--------------------------|----------|----------|--|
| Depth |          |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                 |         | Tem    | Temperature (°C)                                 | (၃              |         |        |         |                          |          |          |  |
| (m)   | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/10/96 | 5/13/96 | 5/21/96 5/28/96 | 5/28/96 | 96/2/9 | 6/13/96                                          | 6/20/96 6/27/96 | 6/27/96 | 7/3/96 | 8/21/96 | 8/21/96 9/19/96 10/29/96 | 10/29/96 | 11/25/96 |  |
| 2     | ž        | Ĭ       | Ę      | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¥       | N<br>T  | IN              | 11.5    |        | 14.1                                             | 14.8            | 15.2    | 15.6   | 16.9    | 18.0                     | 18.0     | 11.2     |  |
| 4     | Ę        | ħ       | ¥      | ΤN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TN      | TN      | TN              | 10.2    | 10.1   | 11.0                                             | 11.3            | 12.0    | 12.4   | 13.9    | 14.0                     | 14.5     | 13.3     |  |
| 9     | Ä        | ħ       | ΙN     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NT      | NT      | TN              | 10.4    | 10.4   | 10.9                                             | 10.8            | 11.2    | 11.6   | 12.6    | 12.5                     | 13.4     | 13.4     |  |
| 8     | Ŋ        | IN      | IN     | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NT      | IN      | TN              | 11.2    | 11.0   | 11.4                                             | 11.3            | 11.7    | 11.9   | 11.6    | 11.5                     | 13.2     | 13.0     |  |
|       | -        |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                 |         |        |                                                  |                 |         |        |         |                          |          |          |  |

NT = Not Taken
• Groundwater prevents soil gas collection at deeper depth intervals
• Boid line represents startup of blower

GP1

| Depth |          |         |        |         |         |         |         |         |         | 05(%)   |         |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|----------|----------|--|
| Ê     | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/2/96 | 6/13/96 | 96/07/9 | 6/27/96 | 96/6/2 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| 1.80  | 6.0      | 6.2     | TN     | 6.8     | 0.8     | 17.0    | 14.5    | 19.9    | 19.2    | 19.8    | 20.1    | 19.0    | 19.0   | 19.1    | 19.2    | 20.0     | 20.0     |  |
| 3.25  | 0.5      | 0.0     | Ä      | 1.0     | 0.0     | 17.9    | 19.4    | 20.0    | 19.7    | 20.0    | 20.0    | 20.0    | 19.8   | 20.1    | 20.0    | 20.3     | 20.2     |  |
| 4.80  | 0.5      | 6.0     | Ā      | 0.0     | 0.0     | 19.2    | 20.0    | 20.2    | 20.0    | 20.5    | 20.1    | 20.2    | 20.0   | 20.5    | 20.2    | 20.2     | 20.2     |  |
| 6.30  | ۲        | 0.0     | ۲      | 0.0     | 0.0     | 18.5    | 19.9    | 20.1    | 20 0    | 20.2    | 20.1    | 20.2    | 20.1   | 20.6    | 20.3    | 20.1     | 20.0     |  |

| Depth |          |         |        |         |         |         |         |         |         | CO <sub>2</sub> (%) |         |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|---------|---------------------|---------|---------|--------|---------|---------|----------|----------|--|
| Œ     | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/3/96 | 6/13/96             | 6/20/96 | 96/22/9 | 7/3/96 | 8/21/96 | 9/19/96 | 10/96/96 | 11/25/96 |  |
| 1.80  | 10.5     | 9.0     | F      | 10.0    | 14.0    | 3.7     | 1.0     | 1.0     | 1.      | 1.5                 | 9.0     | 1.5     | 1.5    | 1.5     | 1.4     | 1.3      | 1.3      |  |
| 3.25  | 14.0     | 11.5    | Ŋ      | 12.3    | 13.9    | 3.3     | 1.2     | 6.0     | 6.0     | 6.0                 | 0.7     | 0.7     | 0.7    | 0.7     | 0.7     | 9.0      | 0.7      |  |
| 4.80  | 15.0     | 11.2    | ķ      | 12.0    | 13.0    | 1.5     | 0.7     | 0.7     | 0.7     | 0.7                 | 0.5     | 9.0     | 0.5    | 0.5     | 0.5     | 0.7      | 0.7      |  |
| 6.30  | Z        | 11.2    | IN     | 11.6    | 12.8    | 2.5     | 8.0     | 0.7     | 0.8     | 0.7                 | 9.0     | 9.0     | 0.5    | 0.4     | 0.3     | 1.0      | 1.1      |  |

| Depth |          |         |        |         |         |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TPH (ppmv) |         |         |        |         |         |          |          |   |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------|--------|---------|---------|----------|----------|---|
| Ê     | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 6/3/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/13/96    | 6/20/96 | 6/27/96 | 7/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |   |
| 1.80  | 420      | 800     | ¥      | 260     | 09/     | 2,180   | 1,440   | 1,220   | 1,020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,020      | 240     | 720     | 1,040  | 520     | 300     | 200      | 160      |   |
| 3.25  | 1,400    | 1,360   | ħ      | 880     | 1,640   | 2,900   | 800     | 540     | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 480        | 300     | 320     | 440    | 160     | 120     | 120      | 100      |   |
| 4.80  | 2,400    | 2,480   | F      | 2,280   | 3,160   | 2,440   | 620     | 360     | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360        | 240     | 160     | 340    | 100     | 100     | 80       | 80       |   |
| 6.30  | ¥        | 3,000   | Ä      | 2,680   | 3,120   | 2,800   | 760     | 400     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340        | 260     | 120     | 340    | 100     | 120     | 90       | 180      |   |
|       |          |         |        |         |         |         |         |         | The second secon |            |         |         |        |         |         |          | -        | - |

GP2

|        | 10/29/96 11/25/96 | 20.6 20.8 | 20.6 20.8 | 20.8 20.9 | 20.7 20.5 |
|--------|-------------------|-----------|-----------|-----------|-----------|
|        | 9/19/96 10/2      | 20.6 20   | 20.5 20   | 20.7 20   | 20.9 20   |
|        | 8/21/96           | 20.3      | 20.8      | 20.9      | ħ         |
|        | 6 7/3/96          | 20.5      | 20.6      | 20.6      | F         |
|        | 96 6/27/96        | 6 20.6    | 7 20.9    | 7 20.8    | 5 NT      |
| 02 (%) | 6/13/96 6/20/96   | 20.8 20.6 | 20.9 20.7 | 20.9 20.7 | NT 20.5   |
| O      | 6/3/96 6/1        | 20.5      | 20.8      | 20.8      | TN        |
|        | 5/28/96           | 20.6      | 20.9      | 20.9      | N         |
|        | 5/21/96           | 20.5      | 20.8      | 20.9      | ΙN        |
|        | 5/13/96           | 20.1      | 20.9      | 20.9      | Ā         |
|        | 5/10/96           | 4.0       | 6.3       | 19.0      | Ā         |
|        | 5/10/96           | 4.8       | 3.5       | 2.0       | Z         |
|        | 96/2/3/96         | 0.        | - FN      | 0         | Ā         |
|        | 11/14/95 3/29/96  | 5.0 11    | 2.0       | 0.5 0.    | Z L       |
| Depth  | Ê                 | 2.50      | 3.25      | 4.95      | 6.55      |

|                     | 11/25/96 | 0.7  | 0.3  | 0.0  | 0.0  |
|---------------------|----------|------|------|------|------|
|                     | 10/29/96 | 0.3  | 0.2  | 0.0  | 0.0  |
|                     | 9/19/96  | 0.2  | 0.0  | 0.0  | 0.0  |
|                     | 8/21/96  | 9.0  | 0.1  | 0.0  | N.   |
|                     | 7/3/96   | 0.5  | 0.0  | 0.0  | Ā    |
|                     | 6/27/96  | 0.3  | 0.0  | 0.0  | Ä    |
|                     | 96/07/9  | 0.4  | 0.0  | 0.0  | 0.5  |
| CO <sub>2</sub> (%) | 6/13/96  | 0.5  | 0.0  | 0.0  | IN   |
|                     | 96/2/96  | 0.5  | 0.0  | 0.0  | N.   |
|                     | 5/28/96  | 0.5  | 0.0  | 0.0  | NT   |
|                     | 5/21/96  | 0.5  | 0.2  | 0.3  | TN   |
|                     | 5/13/96  | 0.8  | 0.0  | 0.0  | N    |
|                     | 5/10/96  | 11.2 | 12.0 | 3.3  | IN   |
|                     | 5/10/96  | 12.8 | 10.8 | 10.8 | Ţ    |
|                     | 5/3/96   | F    | ¥    | ¥    | IN   |
|                     | 3/29/96  | 6.2  | 10.2 | 11.0 | ΤN   |
|                     | 11/14/95 | 6.5  | 13.0 | 13.4 | TN   |
| Depth               | (E)      | 2.50 | 3.25 | 4.95 | 6.55 |

| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         |        |         |         |         |         |         |         | TPH (ppmv) |         |         |        |         |         |          |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|---------|---------|---------|---------|---------|---------|------------|---------|---------|--------|---------|---------|----------|----------|--|
| (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/2/96 | 6/13/96    | 96/07/9 | 6/27/96 | 7/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300      | 640     | N      | 260     | 520     | 220     | 120     | 100     | 9       | 200        | 180     | 120     | 90     | 80      | 80      | 40       | 0        |  |
| 3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 480      | 840     | Z      | 260     | 999     | 80      | 9       | 80      | 0       | 160        | 160     | 100     | 40     | 20      | 80      | 20       | 0        |  |
| 4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,460    | 880     | Z      | 260     | 220     | 80      | 90      | 80      | 0       | 160        | 160     | 80      | 20     | 20      | 40      | 20       | 0        |  |
| 6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ¥        | ¥       | IN     | ¥       | N       | IN      | M       | L'N     | M       | ¥          | 180     | N       | LN.    | N       | 0       | 0        | 0        |  |
| - The state of the |          |         |        |         |         |         |         |         |         |            |         |         |        |         |         |          |          |  |

NT = Not Taken
• Groundwater prevents soil gas collection at deeper depth intervals
• Bold line represents startup of blower

| H    |          |         |        |         |         |         |         |         |        | 02 (%)  |         |         |        |         |         |          |          |  |
|------|----------|---------|--------|---------|---------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|----------|----------|--|
| 1    | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/2/9 | 6/13/96 | 6/20/96 | 6/27/96 | 2/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| ╬    | 90       | 12.1    | ¥      | 13.0    | 9.6     | 20.9    | 20.9    | 20.8    | 20.9   | 20.9    | 20.8    | 20.6    | 20.5   | 20.5    | 20.9    | 20.9     | 50.9     |  |
| +    | 40       | 3.5     | Z      | 0.9     | 18.0    | 20.9    | 20.9    | 20.7    | 20.9   | 20.9    | 20.9    | 20.6    | 20.6   | 20.7    | 20.9    | 20.9     | 50.9     |  |
| 4 95 | 20       | 22      | Z      | 5.5     | 20.9    | 20.8    | 20.9    | 20.4    | 20.9   | 20.9    | 20.9    | 20.7    | 20.6   | 20.8    | 20.9    | 20.9     | 20.9     |  |
| 1    | Į.       | N<br>L  | ĸ      | ۲N      | ۲       | LN.     | Į.      | ħ       | ΤN     | TN      | 20.9    | 20.8    | 20.6   | ۲N      | 20.5    | 20.9     | 20.5     |  |

|                                            |                        |                 |         |         |     |         |         |         |        | 200      |          |         |        |         |         |          |          |  |
|--------------------------------------------|------------------------|-----------------|---------|---------|-----|---------|---------|---------|--------|----------|----------|---------|--------|---------|---------|----------|----------|--|
|                                            |                        |                 |         |         |     |         |         |         |        | CO2 (70) |          |         |        |         |         |          |          |  |
| 11/14/95 3/29/96 5/3/96 5/10/96 5/10/96 5/ | 5/3/96 5/10/96 5/10/96 | 5/10/96 5/10/96 | 5/10/96 | L       | 5   | 5/13/96 | 5/21/96 | 96/87/9 | 96/2/9 | 6/13/96  | 96/50/96 | 6/27/96 | 2/3/96 | 8/21/96 | 9/16/96 | 10/96/96 | 11/25/96 |  |
| 53 NT 6.2 8.7                              | NT 6.2 8.7             | 6.2 8.7         | 8.7     | 8.7 0   | °   | 8       | 0.2     | 0.0     | 0.0    | 0.0      | 0.0      | 0.0     | 0.0    | 0.0     | 0.1     | 0.0      | 0.0      |  |
| Z                                          | 60 cm                  | 3.8             | 80.63   | 3.8     | 0.0 | Γ       | 0.0     | 0.0     | 0.0    | 0.0      | 0.0      | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      | 0.0      |  |
| -                                          | NT 93                  |                 |         | 0.5 0.0 | 8   | Г       | 0.0     | 0.0     | 0.0    | 0.0      | 0.0      | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      | 0.0      |  |
| Į.                                         | 7                      | -               | -       | FN FN   | Z   | Γ       | ¥       | ¥       | ¥      | IN       | 0.0      | 0.0     | 0.0    | ħ       | 0.0     | 0.0      | 0.0      |  |

| Denth |          |         |        |         |         |         |         |         | •      | TPH (ppmv) |        |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|--------|------------|--------|---------|--------|---------|---------|----------|----------|--|
| Œ     | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/2/9 | 6/13/96    | 96/579 | 6/27/96 | 2/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| 28    | 380      | 640     | ¥      | 260     | 400     | 80      | 40      | 80      | 0      | 200        | 140    | 100     | 9      | 80      | 80      | 80       | 0        |  |
| 2.50  | 420      | 008     | Ä      | 520     | 180     | 98      | 40      | 8       | 0      | 160        | 160    | 100     | 09     | 9       | 80      | 80       | 0        |  |
| 4 05  | 420      | 908     | Þ      | 520     | 9       | 8       | 8       | 5       | 20     | 160        | 160    | 40      | 80     | 60      | 40      | 9        | 0        |  |
| 6.50  | ¥        | Ę       | Z      | F       | NT.     | TN      | TN      | TN      | TN.    | ħ          | 140    | 80      | 40     | TN      | 40      | 40       | 0        |  |

Yas

| Daoth |          |         |        |         |         |         |         |         |        | 02(%)   |         |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|----------|----------|--|
| E     | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/2/9 | 6/13/96 | 6/20/96 | 6/27/96 | 7/3/96 | 8/21/96 | 9/16/96 | 10/29/96 | 11/25/96 |  |
| 90,0  | 16.0     | 15.5    | ¥      | 16.5    | 14.4    | 20.5    | 20.8    | 20.8    | 20.9   | 20.9    | 20.8    | 20.9    | 20.8   | 20.7    | 20.9    | 20.9     | 20.9     |  |
| 3.50  | 5.0      | 5.2     | Þ      | 7.0     | 6.0     | 20.9    | 20.9    | 20.8    | 20.9   | 20.9    | 20.8    | 20.9    | 20.8   | 50.9    | 20.9    | 20.9     | 20.9     |  |
| 8 6   | 0.7      | 4.5     | ¥      | 0.9     | 7.1     | 20.9    | 20.9    | 20.9    | 20.9   | 20.9    | 20.8    | 20.8    | 20.8   | 20.9    | 20.9    | 50.9     | 20.9     |  |
| 6.50  | ¥        | Į.      | Ę      | Z       | Z       | Þ       | IN      | ¥       | ¥      | 20.9    | 20.8    | TN      | 20.5   | IN      | 20.5    | 20.9     | 50.9     |  |

| Depth |          |         |        |         |         |         |         |         |         | CO <sub>2</sub> (%) |         |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|---------|---------------------|---------|---------|--------|---------|---------|----------|----------|--|
| Œ     | 11/14/95 | 3/29/96 | 96/2/9 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/3/96 | 6/13/96             | 96/07/9 | 96/22/9 | 7/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| 28    | 4.5      | 40      | ž      | 4.5     | 5.5     | 2.2     | 9.0     | 9.0     | 0.2     | 0.0                 | 1.0     | 0.1     | 0.1    | 0.1     | 0.0     | 0.0      | 0.0      |  |
| 3.50  | 12.0     | 2.0     | Į.     | 5.6     | 10.5    | 0.2     | 0.2     | 0.0     | 0.0     | 0.0                 | 0.0     | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      | 0.0      |  |
| 8 8   | 12.5     | 0 0     | Þ      | 86      | 10.0    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0                 | 0.0     | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      | 0.0      |  |
| 6.50  | Į.       | Ż       | z      | Ä       | ¥       | N       | ¥       | ¥       | TN      | 0.0                 | 0.0     | ĸ       | 0.0    | ĸ       | 0.0     | 0.0      | 0.0      |  |

| Oenth |          |         |        |         |         |         |         |         | •      | TPH (ppmv) |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|--------|------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|----------|--|
| Œ     | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 6/3/96 | 6/13/96    | 6/20/96 | 6/27/96 | 7/3/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| 200   | 320      | 520     | ¥      | 260     | 500     | 200     | 8       | 100     | 20     | 140        | 80      | 100     | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80      | 40      | 40       | 0        |  |
| 3.50  | 460      | 900     | ¥      | 280     | 440     | 8       | 99      | 8       | 20     | 140        | 80      | 120     | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20      | 40      | 20       | 0        |  |
| 200   | 480      | 760     | ¥      | 999     | 440     | 8       | 04      | 88      | 0      | 120        | 9       | 120     | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0       | 80      | 40       | 0        |  |
| 6.50  | ž        | Į.      | ¥      | Z       | z       | Ę       | ¥       | ¥       | ¥      | 120        | 8       | IN      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TN      | 100     | 09       | 0        |  |
|       |          |         |        | -       |         |         |         |         |        |            |         |         | A STATE OF THE PARTY OF THE PAR |         |         |          |          |  |

NT = Not Taken
• Groundwater prevents soil gas collection at deeper depth intervals
•• Bold line represents startup of blower

| _ | į |
|---|---|
| ñ | i |
| ᄔ | i |
| U |   |
|   | ı |

| ٦     |          |      |      |      |      |
|-------|----------|------|------|------|------|
|       |          |      |      |      |      |
|       |          |      |      |      |      |
|       | 11/25/96 | 20.9 | 20.9 | 20.9 | 20.9 |
|       | 10/29/96 | 20.9 | 20.9 | 20.9 | 20.9 |
|       | 9/19/96  | 20.9 | 20.9 | 20.8 | 20.8 |
|       | 8/21/96  | 20.5 | 20.9 | 20.9 | 20.9 |
|       | 7/3/96   | 20.4 | 20.6 | 20.7 | 20.2 |
|       | 6/27/96  | 20.9 | 20.9 | 20.2 | 20.9 |
|       | 6/20/96  | 20.7 | 20.9 | 20.9 | 20.9 |
| 02(%) | 6/13/96  | 20.9 | 20.9 | 20.9 | 20.5 |
|       | 6/3/96   | 20.9 | 20.9 | 20.9 | 20.9 |
|       | 5/28/96  | 20.2 | 20.6 | 20.6 | 20.5 |
|       | 5/21/96  | 20.3 | 20.8 | 20.9 | 20.7 |
|       | 5/13/96  | 17.5 | 20.5 | 20.8 | 20.5 |
|       | 5/10/96  | 14.9 | 7.0  | 5.5  | 5.5  |
|       | 5/10/96  | 16.5 | 8.0  | 7.0  | 7.0  |
|       | 96/2/9   | Z    | Ä    | IN   | ΙN   |
|       | 3/53/96  | 14.5 | 6.2  | 5.5  | 4.2  |
|       | 11/14/95 | 15.0 | 6.0  | 6.0  | 5.0  |
| Depth | (m)      | 1.85 | 3.40 | 475  | 6.10 |

|       |          |         |        |         |         |         |         | THE REAL PROPERTY AND ADDRESS OF THE PARTY AND | The second secon |                     |          |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|---------|--------|---------|---------|----------|----------|--|
| Depth |          |         |        |         |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO <sub>2</sub> (%) |          |         |        |         |         |          |          |  |
| Ē     | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96/2/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/13/96             | 96/50/96 | 6/27/96 | 2/3/96 | 8/21/96 | 9/19/96 | 10/96/96 | 11/25/96 |  |
| 1.85  | 5.0      | 4.5     | TN     | 4.7     | 5.1     | 6.5     | 1.5     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7                 | 0.5      | 0.0     | 0.5    | 0.5     | 0.0     | 0.0      | 0.1      |  |
| 3.40  | 12.0     | 9.2     | TN     | 9.2     | 10.1    | 1.5     | 0.5     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                 | 0.0      | 0.0     | 0.0    | 0.0     | 0.0     | 0.0      | 0.0      |  |
| 4.75  | 11.0     | 6.6     | TN     | 9.5     | 10.8    | 0.5     | 0.3     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                 | 0.0      | 0.0     | 0.0    | 0.0     | 0.0     | 0.1      | 0.0      |  |
| 6.10  | 12.2     | 9.5     | TN     | 9.5     | 10.5    | 0.5     | 0.5     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                 | 0.2      | 0.0     | 0.1    | 0.1     | 0.0     | 0.1      | 0.1      |  |

|            | 96/        |      |      |      |        |
|------------|------------|------|------|------|--------|
|            | 6 11/25/96 | 0    | 0    | ٥    | 0      |
|            | 10/29/96   | 0    | 40   | 9    | 40     |
|            | 9/19/96    | 20   | 80   | 90   | 80     |
|            | 8/21/96    | 9    | 20   | 0    | 160    |
|            | 7/3/96     | 140  | 120  | 120  | 160    |
|            | 6/27/96    | 40   | 100  | 120  | 140    |
|            | 6/20/96    | 100  | 80   | 60   | 80     |
| TPH (ppmv) | 6/13/96    | 200  | 200  | 200  | 200    |
|            | 96/2/9     | 9    | 0    | 0    | 20     |
|            | 5/28/96    | 140  | 08   | 80   | 80     |
|            | 5/21/96    | 160  | 09   | 9    | 60     |
|            | 5/13/96    | 280  | 180  | 80   | 100    |
|            | 5/10/96    | 260  | 999  | 999  | 560    |
|            | 5/10/96    | 260  | 260  | 260  | 260    |
|            | 96/2/9     | IN   | ž    | Ł    | LN.    |
|            | 3/29/96    | 760  | 840  | 760  | 19,920 |
|            | 11/14/95   | 320  | 440  | 400  | 2,200  |
| Depth      | (m)        | 1.85 | 3.40 | 4.75 | 6.10   |

### GP8

|                    | 11/25/96 | 20.9 | 20.9 | 20.8 | 20.8 |
|--------------------|----------|------|------|------|------|
|                    | 10/29/96 | 50.9 | 50.9 | 20.9 | 20.8 |
|                    | 9/19/96  | 20.9 | 50.9 | 20.9 | 20.9 |
|                    | 8/21/96  | 20.6 | 20.8 | 20.8 | 20.9 |
|                    | 2/3/96   | 20.1 | 20.2 | 20.2 | 20.2 |
|                    | 6/27/96  | 20.8 | 20.9 | 20.9 | 20.9 |
|                    | 6/20/96  | 20.7 | 20.5 | 20.7 | 20.7 |
| O <sub>2</sub> (%) | 6/13/96  | 20.8 | 20.8 | 20.9 | 20.9 |
|                    | 96/2/9   | 20.0 | 20.2 | 20.2 | 20.6 |
|                    | 5/28/96  | 20.2 | 20.4 | 20.4 | 20.5 |
|                    | 5/21/96  | 20.1 | 20.2 | 20.2 | 20.5 |
|                    | 5/13/96  | 19.5 | 20.0 | 19.1 | 19.8 |
|                    | 5/10/96  | 5.5  | 0.5  | 0.5  | 0.0  |
|                    | 5/10/96  | 9.0  | 1.8  | 9.0  | 0.7  |
|                    | 5/3/96   | IN   | ¥    | ħ    | TN   |
|                    | 3/29/96  | 9.5  | 2.5  | 0.1  | 0.0  |
|                    | 11/14/95 | 7.0  | 1.0  | 0.5  | N    |
| Depth              | Ê        | 2.00 | 3.50 | 5.00 | 6.50 |

| Depth |          |         |        |         |         |         |         |         |         | CO <sub>2</sub> (%) |         |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|---------|---------------------|---------|---------|--------|---------|---------|----------|----------|--|
| Œ     | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 96/3/96 | 6/13/96             | 6/20/96 | 6/27/96 | 7/3/96 | 8/21/96 | 9/19/96 | 10/29/96 | 11/25/96 |  |
| 2.00  | 9.2      | 7.1     | TN     | 8.6     | 10.9    | 1.9     | 0.7     | 0.7     | 0.7     | 9.0                 | 0.5     | 0.5     | 0.5    | 9.0     | 0.3     | 0.3      | 0.3      |  |
| 3.50  | 14.0     | 10.2    | μ      | 11.2    | 12.8    | 8.0     | 9.0     | 9.0     | 0.5     | 0.5                 | 0.3     | 0.3     | 0.4    | 0.2     | 0.2     | 0.1      | 0.2      |  |
| 5.00  | 14.0     | 8.2     | Z      | 11.1    | 12.2    | 1.9     | 9.0     | 0.5     | 0.4     | 0.7                 | 0.3     | 0.3     | 0.1    | 0.1     | 0.3     | 0.2      | 0.1      |  |
| 6.50  | ¥        | 11.5    | Z      | 11.2    | 12.5    | 1.3     | 9.0     | 0.5     | 0.4     | 0.5                 | 0.1     | 0.3     | 0.1    | 0.0     | 0.1     | 0.1      | 0.0      |  |

| Depth |          |         |        |         |         |         |         |         | _      | TPH (ppmv) |         |         |        |         |         |          |          |  |
|-------|----------|---------|--------|---------|---------|---------|---------|---------|--------|------------|---------|---------|--------|---------|---------|----------|----------|--|
|       | 11/14/95 | 3/29/96 | 5/3/96 | 5/10/96 | 5/10/96 | 5/13/96 | 5/21/96 | 5/28/96 | 6/3/96 | 6/13/96    | 6/20/96 | 6/27/96 | 7/3/96 | 8/21/96 | 9/13/96 | 10/29/96 | 11/25/96 |  |
| 2.00  | 440      | 480     | TN     | 740     | 900     | 960     | 220     | 180     | 80     | 200        | 100     | 40      | 180    | 80      | 40      | 40       | 40       |  |
| 3.50  | 999      | 260     | IN     | 009     | 009     | 980     | 280     | 220     | 80     | 200        | 100     | 20      | 160    | 60      | 20      | 20       | 20       |  |
| 5.00  | 1,080    | 840     | INT    | 840     | 800     | 620     | 180     | 160     | 9      | 200        | 100     | 0       | 140    | 40      | 20      | 20       | 20       |  |
| 6.50  | ¥        | 096     | N.     | 920     | 1,040   | 700     | 240     | 180     | 09     | 200        | 90      | 0       | 140    | 09      | 82      | 20       | 20       |  |
|       |          |         |        |         |         |         |         |         |        |            |         |         |        |         |         |          |          |  |

NT = Not Taken

\* Groundwater prevents soil gas collection at deeper depth intervals

\*\* Bold line représents startup of blower

# APPENDIX F RESULTS FROM IN SITU RESPIRATION TESTS

AUGUST 1996 IN SITU RESPIRATION TEST RAW DATA

#### Calibration:

#### wheater: cloudy

| O2 gas    | 9.97%    | instrument | 70.2%   |
|-----------|----------|------------|---------|
| CO2 gas   | 70.02%   | instrument | 10.0%   |
| Heran gas | 3983pp m | instrument | 4040 pp |

#### Messurement:

| Backgr. | 02    | CO2      | TPH    | GT202 / O2 | Temp.  |
|---------|-------|----------|--------|------------|--------|
| clean   | 18.0% | 4.0%     | 300000 | 17.9%      | _      |
| black   | 17.9  | 4.1      | 300    | 17.8       | 77.4°C |
| brown   | 17.1  | 3.9      | 300    | 77.8       | _      |
| green   | 78.0  | 3.9      | 280    | 17.9       | 14.3   |
| orange  | 17.9  | 3.6      | 580    | 17.8       |        |
| red     | 78.7  | 3.5      | 260    | 18.0       | 17.8   |
| yellow  | 18.1  | 3.4      | 260    | 17.9       |        |
| blue    |       | 9 rd abl | dwater |            | 77.9   |

| MPA        | O2   | CO2     | TPH   | GT202 / O2 |
|------------|------|---------|-------|------------|
| clean - \  | 17.0 | 1.8     | 440   | 74.7       |
| black - 2  | 20.1 | 0.5     | 200   | 70.4       |
| brown -3   | 20.4 | 0.3     | 180   | 20.5       |
| green -4   | 20.5 | 6.1     | 140   | 20.6       |
| orange - 5 | 20.6 | 0.0     | 80    | 20.7       |
| red -6     | 20.8 | 0.0     | 60    | 20.9       |
| yellow - 7 |      | ground  | unter |            |
| blue - 8   |      | grounde |       |            |

| MPB    | O2   | CO2  | TPH     | GT202 / O2 | Temp. |
|--------|------|------|---------|------------|-------|
| clean  | 14.2 | 5.0  | 1960    | 15.0       | 22.5  |
| black  | 18.3 | 7.9  | 720     | 18.6       | 20.4  |
| brown  | 77.1 | 7.3  | 600     | 79.3       | 79-4  |
| green  | 20.0 | 0.6  | 200     | 20.2       | 46.7  |
| orange | 20.5 | 0.2  | 100     | 20.5       | 15.4  |
| red    | 20.6 | 0.0  | 60      | 20.5       | 74.1  |
| yellow |      |      | advater |            | 17.3  |
| blue   |      | arou | ulwater |            | 12.7  |

| MPC    | 02    | CO2  | TPH       | GT202 / O2 | Temp. |
|--------|-------|------|-----------|------------|-------|
| clean  | 11.1  | 5.0  | 200       | 19.2       | _     |
| black  | 20.2. | 1.9  | 720       | 70.2       | 78.8  |
| brown  | 20.5  | 4.3  | 100       | 70.4       | -     |
| green  | 20.6  | 0.6  | 60        | 20.5       | 15.6  |
| orange | 20.7  | 0.2  | 40        | 20.5       |       |
| red    | 20.7  | 0.0  | 20        | 20.6       | 13.2  |
| yellow |       | 9 00 | un dwater |            | -     |
| blue   |       |      | inductor  |            | 72.4  |

| MPD    | 02   | CO2    | TPH     | GT202 / O2 | Temp. |
|--------|------|--------|---------|------------|-------|
| clean  | 20.3 | 1.5    | 120     | 70.3       | 20.4  |
| black  | 20.5 | 9.5    | 700     | 20.4       | ſ     |
| brown  | 20.5 | 0.1    | 80      | 20.5       | 1     |
| green  | 20.5 | 6.0    | 60      | 20.5       | 15.2  |
| orange | 20.7 | 0.0    | 40      | 20.6       | I     |
| red    | 20.7 | 0.0    | uo      | 20.7       | 72.8  |
| yellow |      | 91044  | lwater  |            | _     |
| blue   |      | ground | lue her |            |       |

| <u>GP1</u> | O2   | CO2  | TPH | GT202 / O2 |
|------------|------|------|-----|------------|
| white      | 19.1 | 1.4  | 360 | 19.3       |
| blue       | 20.1 | o. 7 | 140 | 70.2       |
| red        | 20.4 | 0.5  | 60  | 20.4       |
| yellow     | 20.5 | 0.4  | 60  | 20.5       |

| GP2    | O2   | CO2    | TPH   | GT202 / O2 |
|--------|------|--------|-------|------------|
| white  | 20.2 | 0.5    | 100   | 20.7       |
| blue   | 20.5 | 0.0    | 40    | 20.5       |
| red    | 20.6 | 0.0    | 40    | 20.6       |
| yellow |      | ground | water |            |

| GP3    | O2    | CO2     | TPH  | GT202 / O2 |
|--------|-------|---------|------|------------|
| white  | 20. 7 | 0.0     | 60   | 20.6       |
| blue   | 20.8  | 0.0     | 40   | 20.6       |
| red    | 20.9  | 0.0     | 40   | 20.7       |
| yellow |       | groundw | eter |            |

| GP4    | O2   | CO2     | TPH  | GT202 / O2 |
|--------|------|---------|------|------------|
| white  | 209  | 0.0     | 60   | 20.7       |
| blue   | 20.8 | 0-0     | 40   | 20.6       |
| red    | 8.05 | 0.0     | 20   | 20.7       |
| yellow |      | roundwa | fer- |            |

| GP5    | 02   | CO2 | TPH | GT202 / O2 |
|--------|------|-----|-----|------------|
| white  | 20.7 | 0.4 | 80  | 20.7       |
| blue   | 20.9 | 0.0 | 40  | 20.9       |
| red    | 20.9 | 0.0 | 20  | 20.9       |
| yellow | 20.8 | 0.0 | 60  | 20.7       |

| GP8    | 02   | CO2 | ТРН | GT202 / O2 |
|--------|------|-----|-----|------------|
| white  | 20.5 | 0.4 | 80  | 20.5       |
| blue   | 20.6 | 0.2 | 80  | 20.5       |
| red    | 20.7 | 0.0 | 40  | 20.6       |
| yellow | 20.5 | 0.0 | 100 | 20.5       |

#### Calibration:

wheater: claudy

| O2 gas  | 9.97%   | instrument | 10.2% |
|---------|---------|------------|-------|
| CO2 gas | 10.02 % | instrument | 10.0% |

| Heran gas  | 39 | 830Pm | instrument | 3440 ppm |
|------------|----|-------|------------|----------|
| Treate Sea |    |       |            |          |

#### Messurement:

| Backgr. | 02    | CO2   | TPH    | GT202 / O2 | Тетр.  |
|---------|-------|-------|--------|------------|--------|
| clean   | 77.8% | 4.2%  | 240000 | 77.7%      |        |
| black   | 12.9  | . 4.0 | 260    | 17.7       | 17.5°C |
| brown.  | 17.8  | 4.1   | 260    | 77.7       | I      |
| green   | 18.0  | 4.0   | 260    | 77.7       | 14.4   |
| orange  | 18.0  | 3.5   | 260    | 77.7       | -      |
| red     | 78.1  | 3.8   | 260    | 77.6       | 12.7   |
| yellow  | 18.0  | 3.8   | 260    | 77.6       |        |
| blue    |       | groun | dwater |            | 77.6   |

| MPA    | 02    | CO2 | TPH       | GT202 / O2 |
|--------|-------|-----|-----------|------------|
| clean  | 15.0  | 4.0 | 420       | 14.5       |
| black  | 17.5  | 1.6 | 200       | 17.5       |
| brown  | 18.6  | 1.0 | 200       | 18.3       |
| green  | -17.7 | 0.8 | 160       | 17.3       |
| orange | 19.8  | 0.5 | 100       | 79.4       |
| red    | 20.1  | 0.4 | 40        | 20.2       |
| yellow |       |     | un dwater |            |
| blue   |       |     | un dwate  |            |

| MPB    | 02   | CO2 | TPH       | GT202 / O2 | Temp. |
|--------|------|-----|-----------|------------|-------|
| clean  | 12.0 | 6.2 | 2280      | 11.5       | 22.4  |
| black  | 15.0 | 3-8 | 840       | 14.5       | 20.0  |
| brown  | 17.5 | 2.1 | 680       | 17.2       | 18.5  |
| green  | 12.5 | 0.7 | 180       | 79.5       | -16.6 |
| orange | 20.0 | 0.5 | 80        | 19.9       | 75.3  |
| red    | 20.4 | 0.3 | 0         | 20.4       | 73.9  |
| yellow |      | are | underst   |            | 73.7  |
| blue   |      |     | roundury. | 1          | 12.2  |

08127196

#### Tab1

| MPC    | O2   | CO2 | TPH       | GT202 / O2 | Temp.     |
|--------|------|-----|-----------|------------|-----------|
| clean  | 79.0 | 1.6 | 780       | 79.7       |           |
| black  | 12.8 | 0.9 | 140       | 19.8       | 18.8      |
| brown  | 20.2 | 0.7 | 100       | 20.4       | · dende . |
| green  | 20.5 | 0.3 | 40        | 20.9       | 15.7      |
| orange | 20.5 | 0.0 | 0         | 20.9       |           |
| red    | 20-9 | 0.0 | 0         | 20.8       | 73.3      |
| yellow |      |     | n. dwa kc |            | -         |
| blue   |      |     | ndum ter  |            | 12.3      |

| MPD    | • 02 | CO2 | TPH       | GT202 / O2 | Temp. |
|--------|------|-----|-----------|------------|-------|
| clean  | 70.5 | 0.7 | 100       | 20.4       | 20.2  |
| black  | 20.5 | 0.5 | 100       | 20.4       | -     |
| brown  | 20.7 | 0.4 | 60        | 20.6       | -     |
| green  | 20,8 | 0.4 | 40        | 20.6       | 15.3  |
| orange | 20.8 | 0.3 | 40        | 70.7       |       |
| red    | 208  | 0.5 | 40        | 20.7       | 73.0  |
| yellow |      | 410 | rudwo ker |            | 4     |
| blue   |      | 400 | andwo ter |            | _     |

| GP1    | 02   | CO2 | TPH | GT202 / O2 |
|--------|------|-----|-----|------------|
| white  | 17.8 | 2.6 | 420 | 77.4       |
| blue   | 13.2 | 0.8 | 160 | 77.2       |
| red    | 20.0 | 0.5 | 100 | 20.2       |
| yellow | 20.5 | 0.2 | 80  | 20.4       |

| GP2    | 02   | CO2  | TPH    | GT202 / O2 |
|--------|------|------|--------|------------|
| white  | 19.5 | 7.2  | 760    | 19.5       |
| blue   | 20.7 | 0.0  | 40     | 20.7       |
| red    | 20.8 | 0.0  | 40     | 20.7       |
| yellow |      | 9104 | dwefer |            |

| GP3    | 02   | CO2   | TPH | GT202 / O2 |
|--------|------|-------|-----|------------|
| white  | 20.6 | 0.1   | 80  | 20.5       |
| blue   | 20.9 | 0.0   | 40  | 70.8       |
| red    | 70.9 | 0.0   | 40  | 208        |
| yellow |      | groun |     |            |

08/27/96

| GP4    | 02   | CO2     | TPH | GT202 / O2 |
|--------|------|---------|-----|------------|
| white  | 21.7 | 0.2     | 80  | 20.5       |
| blue   | 20.9 | 0.0     | 60  | 20.7       |
| red    | 20.5 | 0.0     | 40  | 20.8       |
| yellow |      | groundw |     |            |

| GP5    | 02   | CO2 | TPH | GT202 / O2 |
|--------|------|-----|-----|------------|
| white  | 20.5 | 0.6 | 700 | 20.4       |
| blue   | 20.9 | 0.0 | 80  | 70.8       |
| red    | 20.9 | 0.0 | 100 | 20.8       |
| yellow | 20.7 | 0.1 | 200 | 20.7       |

| GP8    | O2   | CO2 | ТРН | GT202 / O2 |
|--------|------|-----|-----|------------|
| white  | 20.0 | 0.5 | 120 | 20.1       |
| blue   | 20.5 | 0.0 | 80  | 20.5       |
| red    | 20.5 | 0.0 | 60  | 20.5       |
| yellow | 20.5 | 0.0 | 100 | 20.5       |

08/28/26

#### Calibration:

wheater: cloudy training

| O2 gas  | 9.97%  | instrument | 10.0% |
|---------|--------|------------|-------|
| CO2 gas | 10.02% | instrument | 10.0% |

| Hexan gas | 3983 | instrument | 3920 ppm |
|-----------|------|------------|----------|
|           |      |            |          |

#### Messurement:

| Backgr. | 02    | CO2   | TPH     | GT202 / O2 | Temp.    |
|---------|-------|-------|---------|------------|----------|
| clean   | 17.6% | 4.4%  | 160 000 | 17.3%      | <u> </u> |
| black   | 17.3  | 4.4   | 760     | 17.2       | 17.50    |
| brown   | 17.5  | 4.3   | 160     | 17.2       | _        |
| green   | 17.5  | 4.2   | 160     | 17.2       | 14.4%    |
| orange  | 17.5  | 4.2   | 160     | 17.2       |          |
| red     | 17.5  | 4.2   | 760     | 17.2       | 12.8     |
| yellow  | 17.5  | 4.2   | 160     | 17.2       | -        |
| blue    |       | groun | Swafer  |            | 11.9     |

| MPA    | O2   | CO2       | TPH | GT202 / O2 |
|--------|------|-----------|-----|------------|
| clean  | 77.7 | 5.8       | 400 | 11.4       |
| black  | 16.0 | 2.9       | 220 | 15.9       |
| brown  | 17.2 | 2.0       | 180 | 16.8       |
| green  | 18.8 | 7.1       | 140 | 18.6       |
| orange | 14.2 | 0.7       | 80  | 19.3       |
| red    | 20.0 | 0.5       | 60  | 20.2       |
| yellow |      | a roundus | her |            |
| blue   |      | groundw   |     |            |

w.D. = with Deluder

| MPB     | 02   | CO2      | TPH       | GT202 / O2 | Temp. |
|---------|------|----------|-----------|------------|-------|
| clean   | 9.5  | 7.2      | 7680 w. D | 17.7 w.D   | 22.4  |
| black   | 12.5 | 5.0      | \$80      | 10.5       | 20.7  |
| brown   | 15.1 | 3.1      | 700       | 14.2       | 18.4  |
| green   | 18.4 | 0.9      | 180       | 18.4       | 16.6  |
| orange: | 19.2 | 0-6      | 100       | 19.5       | 15.4  |
| red     | 20.0 | 0.4      | 60        | 20.2       | 14.0  |
| yellow  |      | grounder | ake       |            | 13.1  |
| blue    |      | groundwa |           |            | 12.3  |

#### 28/25/80

| MPC    | 02   | CO2       | TPH | GT202 / O2 | Temp. |
|--------|------|-----------|-----|------------|-------|
| clean  | 19.0 | 1.8       | 760 | 19.7       | Ţ     |
| black  | 19.2 | 1.1       | 120 | 77.8       | 18.7  |
| brown  | 19.5 | 0.8       | 100 | 19.3       | -     |
| green  | 20.2 | 0.5       | 60  | 20.2       | 15.7  |
| orange | 20.8 | 0.2       | 40  | 20.7       |       |
| red    | 20.9 | 0.0       | 20  | 20.5       | 73.4  |
| yellow |      | y com due | fer |            | _     |
| blue   |      | y rounda  |     |            | 12.1  |

| MPD    | · O2 | CO2   | TPH    | GT202 / O2 | Temp. |
|--------|------|-------|--------|------------|-------|
| clean  | 20.6 | 0.7   | 80     | 20.6       | 20.4  |
| black  | 20-8 | 0.5   | 40     | 20.7       | _     |
| brown  | 20-9 | 0,3   | 40     | 20.9       |       |
| green  | 20.9 | 0.2   | 40     | 20.9       | 16.3  |
| orange | 20.9 | 0.2   | 40     | 20.9       |       |
| red    | 20.9 | 0.5   | 40     | 20,5       | 12.9  |
| yellow |      | groun | dwater |            | _     |
| blue   |      | groun | dwater |            | -     |

| GP1    | 02   | CO2   | TPH | GT202 / O2 |
|--------|------|-------|-----|------------|
| white  | 17.7 | . 3.0 | 300 | 17.5       |
| blue   | 18.5 | 1.3   | 140 | 77-8       |
| red    | 20.0 | 0.6   | 60  | 19.8       |
| yellow | 20.5 | 0.4   | 40  | 20.4       |

| GP2    | 02   | CO2   | TPH    | GT202 / O2 |
|--------|------|-------|--------|------------|
| white  | 19.5 | 1.3   | 120    | 19.0       |
| blue   | 20.5 | 0.0   | 20     | 20.5       |
| red    | 20.7 | 0.0   | 20     | 20.7       |
| yellow | •    | grous | dwater |            |

| GP3    | O2   | CO2    | TPH   | GT202 / O2 |
|--------|------|--------|-------|------------|
| white  | 20.5 | 0.5    | 46    | 20.5       |
| blus   | 20.9 | 0.0    | 0     | 20.9       |
| red    | 20.9 | 0.0    | 0     | 20.9       |
| yellow |      | around | meter |            |

08/28/96

| GP4    | 02   | _ CO2  | TPH   | GT202 / O2 |
|--------|------|--------|-------|------------|
| white  | 20.6 | 0.4    | 40    | 20.6       |
| blue   | 70.9 | 0.0    | 20    | 20.9       |
| red    | 20.9 | 0.0    | 20    | 20.9       |
| yellow |      | ground | water |            |

| GP5    | 02   | CO2 | TPH | GT202 / O2 |
|--------|------|-----|-----|------------|
| white  | 20.6 | 0.6 | 60  | 20.5       |
| blue   | 20.9 | 0.0 | 0   | 20-9       |
| red    | 20.9 | 0.0 | Ø   | 20.9       |
| yellow | 20.9 | ø.0 | 20  | 20.9       |

| GP8    | 02   | CO2 | TPH | GT202 / O2 |
|--------|------|-----|-----|------------|
| white  | 17.8 | 0.8 | 100 | 79.5       |
| blue   | 20.6 | 0.1 | 20  | 20.6       |
| red    | 202  | 0.0 | 20  | 20.6       |
| yellow | 20.8 | 0.0 | 40  | 20.8       |

#### Calibration:

#### wheater: cloudy 08/29/96

| O2 gas  | 9.97%  | instrument | 10.2% |  |
|---------|--------|------------|-------|--|
| CO2 gas | 10.02% | instrument | 9.9%  |  |

| Hexan gas | 3 983, | instrument | 3780pm |
|-----------|--------|------------|--------|
|           |        |            |        |

#### Messurement:

| Backgr. | 02    | CO2   | TPH    | GT202 / O2 | Temp. |
|---------|-------|-------|--------|------------|-------|
| clean   | 17.9% | 4.4%  | 200 pp | 18.0%      | _     |
| black   | 17.8  | 4.4   | 200    | 77.8       | 17.70 |
| brown   | 17.9  | 4,3   | 200    | 18.0       | _     |
| green   | 77.9  | 4.2   | 200    | 18.0       | 14.4  |
| orange  | 17.9  | 4.2   | 200    | 18.0       | -     |
| red     | 17.9  | 4.2   | 200    | 18.1       | 12.8  |
| yellow  | 18.0  | 4.2   | 200    | 18.1       | -     |
| blue    |       | groun | dwafer |            | 17.9  |

| MPA    | 02   | CO2      | TPH       | GT202 / O2 |
|--------|------|----------|-----------|------------|
| cican  | 7.8  | 7.1      | 300 w. D. | 14.6w.D    |
| black  | 73.7 | 4.3      | 220       | 13.2       |
| brown  | 15.5 | 3.2      | 200       | 15.6       |
| green  | 17.5 | 2.1      | 160       | 17.7       |
| orange | 18.7 | 7.0      | 100       | 79.0       |
| red    | 77.8 | 0.7      | 60        | 20.0       |
| yellow |      | grounde  | nker      |            |
| blue   |      | grounden |           |            |

| MPB    | O2   | CO2    | TPH        | GT202 / O2 | Temp. |
|--------|------|--------|------------|------------|-------|
| clean  | 6.1  | 7.2    | 7340 w. D. | 72.7 w. D. | 22.2  |
| black  | 1.5  | 7.0    | 600 W.D.   | 740 w.D    | 20.2  |
| brown  | 12.1 | 4.8    | 720        | 72.7       | 78.4  |
| green  | 17.6 | 1.8    | 160        | 17.6       | 16.6  |
| orange | 18.9 | 0.8    | 100        | 79.0       | 15.2  |
| red    | 19.8 | 0.6    | 60         | 19.9       | 14.1  |
| vellow | ,    | ground | in for     |            | 13.2  |
| olue   |      | ground | nufer      |            | 12.5  |

08/29/96

| MPC    | 02   | CO2     | TPH    | GT202 / O2 | Temp. |
|--------|------|---------|--------|------------|-------|
| clean  | 18.5 | 2.2     | 160    | 18.5       |       |
| black  | 18.5 | 1.8     | 140    | 18.6       | 18.7  |
| brown  | 78.9 | 7.1     | 170    | 17.0       | -     |
| green  | 19.7 | 0.7     | 80     | 19.9       | 15.5  |
| orange | 20.2 | 0.3     | 40     | 20.5       |       |
| red    | 20.5 | 0.1     | 20     | 20.7       | 73.4  |
| yellow |      | grounde | rater  |            | -     |
| blue   |      | Aroun   | dwaker |            | 12.0  |

| MPD          | O2   | CO2    | ТРН     | GT202 / O2 | Тетр,   |
|--------------|------|--------|---------|------------|---------|
| clean        | 70.1 | 0.8    | 20      | 20.3       | 79.9    |
| black        | 20.3 | 0.7    | 0       | 20.5       |         |
| brown        | 70.7 | 0.5    | 0       | 20.8       | -       |
| <b>green</b> | 20.8 | 0:4    | 0       | 20.7       | 15.2    |
| orange       | 20.8 | 0.4    | 0       | 20.9       | 1       |
| red          | 20.8 | 0.5    | 0       | 20.9       | 12.9    |
| vellow       |      | groups | lea for |            | - Annua |
| blue         |      |        | dwafer  |            |         |

| GP1    | 02   | CO2  | ТРН | GT202 / O2 |
|--------|------|------|-----|------------|
| white  | 16.7 | 3.9  | 240 | 76.8       |
| blue   | 16.8 | 2.2  | 140 | 17.0       |
| red    | 19.2 | 0.8  | 60  | -19.3      |
| yellow | 79.9 | .0.5 | 40  | 20.0       |

| yellow | 20,5 | ground hater |     | 20.3       |
|--------|------|--------------|-----|------------|
| red    | 20.3 | 0.0          | 0   | 20.5       |
| blue   | 19.9 | 0.4          | 20  | 20.1       |
| white  | 18.9 | 2.0          | 120 | 19.0       |
| GP2    | O2   | CO2          | TPH | GT202 / O2 |

| yellow |      | groun | dwater |            |
|--------|------|-------|--------|------------|
| red    | 20.7 | 0.0   | 0      | 20.9       |
| blue   | 20.6 | 0.0   | 0      | 20.8       |
| white  | 20.0 | 0.6   | 40     | 20.2       |
| GP3    | 02   | CO2   | TPH    | GT202 / O2 |

| " GP4  | 02   | CO2      | TPH | GT202 / O2 |
|--------|------|----------|-----|------------|
| white  | 20.2 | 0.6      | 40  | 20.5       |
| blue   | 20.9 | 0.0      | 0 . | 20.9       |
| red    | 20.9 | 0.0      | 20  | . 20.9     |
| yellow |      | grounder | fer |            |

| GP5    | 02   | CO2 | · TPH | GT202 / O2 |
|--------|------|-----|-------|------------|
| white  | 20.0 | 0.8 | 60    | .20.3      |
| blue   | 20.9 | 0.0 | 0     | 20.9       |
| red    | 20.9 | 0.0 | •     | 20.9       |
| yellow | 20.5 | 0.0 | 0     | 20.5       |

| GP8    | 02   | CO2 | TPH | GT202 / O2 |
|--------|------|-----|-----|------------|
| white  | 19.7 | 7.1 | 100 | 19.1       |
| blue   | 20.3 | 0.1 | 20  | 20.2       |
| red    | 20.5 | 0.0 | 20  | 20.4       |
| yellow | 20.5 | 0.0 | 20  | 20.5       |

08/29/96.

08/30/26

#### Calibration:

wheater: cloudy training

| CO2 gas 10.02 % instrument | 10.0.% |
|----------------------------|--------|

| Hexan gas  | 3983ppm | instrument     | 3940 pp |
|------------|---------|----------------|---------|
| TICTUM END | PIPM    | Tables and the |         |

#### Messurement:

W. O. = with Delater

| Backgr. | 02    | CO2    | TPH     | GT202 / O2 | Temp.  |
|---------|-------|--------|---------|------------|--------|
| clean   | 17.8% | 4.5%   | 160 ppm | 77.9%      |        |
| black   | 17.8  | 4.5    | 140     | 17.9       | 17.200 |
| brown   | 17.8  | 4.5    | 140     | 17-9       |        |
| green   | 17.8  | 4.4    | 140     | 18.0       | 14.5   |
| orange  | 17.8  | 4.4    | 140     | 78.0       |        |
| red     | 17.8  | 4.4    | 140     | 18-0       | 12.8   |
| yellow  | 17.8  | 4.4    | 120     | 18.1       |        |
| blue    | 1,1   | ground | lwater  |            | 11.9   |

| MPA    | O2    | CO2    | TPH       | GT202 / O2 |
|--------|-------|--------|-----------|------------|
| cican  | 8.2   | 8.1    | 260 w. D. | 13.8 w.D   |
| black  | 11.2  | 5.6    | 220       | 71.8       |
| brown  | 74.1  | 4.0    | 200       | 74.4       |
| green  | 16. 2 | 2.9    | 780       | 16.6       |
| orange | 18.2  | 7.3    | 100       | 78.4       |
| red    | 19.5  | 0.8    | 60        | 17.7       |
| yellow |       | ground | water     | ١.         |
| blue   |       | ground |           |            |

| MPB    | O2   | CO2    | TPH        | GT202 / O2 | Temp. |
|--------|------|--------|------------|------------|-------|
| clean  | 7.8  | 10.2   | 1220 w. D. | 11.8 w. D. | 27.9  |
| black  | 5.7  | 8.2    | 580w. D.   | 72.8mD     | 20.5  |
| prowu  | 1.5  | 5.9    | 460 w. D.  | 15.0 W.D.  | 18.7  |
| green  | 16.1 | 2.2    | 220        | 74.7       | 76.8  |
| orange | 18.0 | 7.1    | 120        | 18.4       | 15.4  |
| red    | 19.0 | 0.7    | 60         | 19.5       | 74.2  |
| yellow |      | ground | webe       |            | -13.3 |
| blue   |      | ground | ne for     |            | 72.7  |

08/30/96

| MPC      | 02   | CO2       | TPH   | GT202 / O2 | Temp. |
|----------|------|-----------|-------|------------|-------|
| clean    | 78.4 | 2.2       | 140   | -18.4      |       |
| black    | 18.1 | 1.9       | 120   | 18.3       | 18.8  |
| brown    | 18.3 | 7.5       | 120   | 18.6       | -     |
| green    | 19.5 | 0.8       | 80    | 79.6       | 15.7  |
| orange : | 20.7 | 0.5       | 40    | 20.4       |       |
| red      | 20.5 | 0.3       | 50    | 20.5       | 73.4  |
| yellow   |      | grounder  | a fer |            |       |
| bluc     |      | a rounder |       |            | 12.3  |

| MPD    | · O2 | CO2    | TPH    | GT202 / O2 | Temp. |
|--------|------|--------|--------|------------|-------|
| clean  | 20.0 | 0.8    | 60     | 20.2       | -19.0 |
| black  | 20.2 | 0.7    | 40     | 20.4       |       |
| brown  | 20.6 | 0.5    | 20     | 20.7       | -     |
| green  | 20.7 | 0.4    | 20     | 20.7       | 15.4  |
| orange | 202  | 0.4    | 20     | 20.8       |       |
| red    | 20.8 | 0.6    | 20     | 20.8       | 12.8  |
| yellow |      | ground | natur  |            |       |
| blue   |      | ground | voter. |            |       |

|   | GP1    | O2   | CO2 | TPH | GT202 / O2 |
|---|--------|------|-----|-----|------------|
|   | white  | 16.7 | 3.7 | 200 | 17.4       |
| • | blue   | 15.5 | 3.1 | 160 | 76.3       |
|   | red    | 18.5 | 8.9 | 60  | 19.3       |
|   | yellow | 19.5 | 0.6 | 20  | 20.2       |

| yellow |      | ground | on for |            |
|--------|------|--------|--------|------------|
| red    | 20.2 | 0.1    | 0      | 20.6       |
| blue   | 11.5 | 0.6    | 50     | 79.9       |
| white  | 11.2 | 7.8    | 700    | 79.7       |
| GP2    | O2   | CO2    | ТРН    | GT202 / O2 |

| GP3    | O2   | CO2   | TPH    | GT202 / O2 |
|--------|------|-------|--------|------------|
| white  | 20.2 | 0.7   | 40     | 20.6       |
| blue   | 20.9 | 0.0   | 0      | 20.9       |
| red    | 20.8 | 0.0   | 0      | 20.9       |
| yellow |      | Aroun | dwater |            |

08/30/96

| " <u>GP4</u> | 02   | . CO2  | TPH   | GT202 / O2 |
|--------------|------|--------|-------|------------|
| white        | 20.5 | 0.6    | 20    | 20.6       |
| blue         | 20.9 | 0.0    | 0     | 20,9       |
| red          | 20.9 | 0.0    | 0     | 20.9       |
| yeilow       |      | ground | water |            |

| GP5    | 02   | CO2 | TPH | GT202/02 |
|--------|------|-----|-----|----------|
| white  | 20.0 | 0.8 | 60  | 20.3     |
| blue   | 20.9 | 0.0 | 0   | 20.9     |
| red    | 20.9 | 0.0 | 0   | 20.9     |
| yellow | 20.9 | 0.1 | 0   | 20.9     |

| GP8    | 02   | CO2 | TPH | GT202 / Q2 |
|--------|------|-----|-----|------------|
| white  | 79.0 | 7.8 | 100 | 19.6       |
| blue   | 20.7 | 0.4 | 0   | 20.7       |
| red    | 20.5 | 0.1 | 0   | 20.9       |
| yellow | 20.7 | 0.1 | 0   | 20.9       |

NOVEMBER 1996 IN SITU RESPIRATION TEST RAW DATA

Taballet

Date: //-25-96

10:00 Time:

Tabelle1

Projekt:

Rhein Main Air Base

R 68.346

Date: 11/25/96

Time: 09:00

Weather: SNOW.

Temperature: -2°C

Instrument calibration:

| O2 gas:    | 9.97%   | Instrument: | 10.5 |  |
|------------|---------|-------------|------|--|
| CO2 gas:   | 10.02%  | instrument: | 10.0 |  |
|            |         |             |      |  |
| Hexan gas: | 3983ppm | Instrument: | 4000 |  |

#### Messurement:

| MPA           | O <sub>2</sub> | CO <sub>2</sub> | TPH     | GT202-O <sub>2</sub> | temp *C |
|---------------|----------------|-----------------|---------|----------------------|---------|
| clean         | 194            | 2,3             | 120     | 19.4                 |         |
| black         | 20.9           | 0.6             | Q       | 207                  |         |
| brown         | 209            | 03              | 0       | 209                  |         |
| green         | 20'9           | 0.1             | 0       | 20.9                 |         |
| orange        | 20.9           | 0               | 0       | 20.9                 |         |
| red           | 20.9           | 0               | 0       | 20.9                 |         |
| red<br>yellow |                | chounce         | lwater  |                      |         |
| blue          |                | Crou            | nd wate | <i>\frac{1}{2}</i>   |         |

| MPB    | 02   | CO <sub>2</sub> | TPH    | GT202-O2 | temp *C |
|--------|------|-----------------|--------|----------|---------|
| clean  | 180  | 4.3             | 480    | 17.6     | 8.2     |
| black  | 18.7 | 2.8             | 20-0   | 18.9     | 12,3    |
| brown  | 19.8 | 1.9             | 180    | 198      | 13.9    |
| green  | 20.1 | 08              | 100    | 70,9     | 149     |
| orange | 20.9 | 0.7             | 0      | 20.4     | 15.0    |
| red    | 10.9 | 0.6             | Q      | 20,9     | 14.9    |
| yellow |      | CHOUNCE         | water  |          | 14.5    |
| blue   |      |                 | Lwater |          | 14.0    |

#### Tabellet

Date: //-25-96

Time: 10:00

| MPC    | O <sub>2</sub> | CO2     | TPH   | GT202-O2 | temp *C |
|--------|----------------|---------|-------|----------|---------|
| clean  | 20.2           | 1,5     | 100   | 202      |         |
| black  | 2.9.8          | 0.5     | 40    | 20.9     | 114     |
| brown  | 209            | 0       | 0     | 209      |         |
| green  | 10.9           | 0       | 0     | 20.9     | 135     |
| orange | 20.9           | 0       | 0     | 10.9     |         |
| red    | ZO.9           | 0       | 0     | 20.9     | 13.7    |
| yellow |                | ciaund  | witer |          |         |
| blue   |                | 1 stour |       |          | 13.4    |

| MPD    | O <sub>2</sub> | CO <sub>2</sub> | TPH       | GT202-O <sub>2</sub> | temp °C |
|--------|----------------|-----------------|-----------|----------------------|---------|
| clean  | 20.9           | 0.6             | 40        | 20.9                 | 6.9     |
| black  | 20.9           | 0.5             | 20        | 20,9                 |         |
| brown  | 120.9          | 0.2             | 0         | 109                  | #2      |
| green  | 20.9           | 0.2             | 0         | 20.9                 | 11,2    |
| orange | 20.9           | 0,2             | 0         | 20.9                 |         |
| red    | 10.9           | 0,3             | .0.       | 109                  | 134     |
| yellow | 20.9           | 0.3             | 0         | 20.4                 |         |
| blue   |                | chould          | circl + c | <i>+</i>             |         |

| Background | O <sub>2</sub> | CO2   | TPH   | GT202-O <sub>2</sub> | temp*C |
|------------|----------------|-------|-------|----------------------|--------|
| clean      | 18,1           | 4.0   | 240   | 17.8                 |        |
| black      | 184            | 4.0   | 240   | 17.9                 | 11.2   |
| brown      | 13.2           | 4,5   | 260   | 18,2                 |        |
| green      | 18.0           | 4.6   | 260   | 18.0                 | 13,3   |
| orange     | 18.0           | 4.8   | 280   | 18.1                 |        |
| red        | 17.9           | 4.8   | 260   | 17.8                 | 13.4   |
| yellow     | 18B            | 4,8   | 280   | 18.5                 |        |
| blue       |                | round | water |                      | 13.0   |

| GP1    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-02 |
|--------|----------------|-----------------|-----|----------|
| white  | 20.0           | 1,3             | 160 | 20.2     |
| blue   | 20,2           | 0.7             | 100 | 20.6     |
| red    | 202            | 6.7             | 80  | 20. C    |
| yellow | 200            | (, 1            | 180 | 20.1     |

well win

Date: 11-25-\$6 Time: 10:30

| GP2    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 8.05           | 0,7             | 0   | 20.9                 |
| blue   | 20 P           | 0.3             | 0   | 20.9                 |
| red    | 70.9           | O               | 0   | 20.9                 |
| yellow | 20.5           | O               | O   | 20.8                 |

| GP3    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O₂ |
|--------|----------------|-----------------|-----|----------|
| white  | 20.9           | 0               | 0   | 209      |
| blue   | 20.9           | 0               | 0   | 20.9     |
| red    | 20.9           | 0               | 0   | 209      |
| yellow | 20.5           | 0               | 0   | 20,9     |

from idwater

| GP4    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.9           | 0.              | 0   | 209                  |
| blue   | 20.9           | 0               | 0   | 20.9                 |
| red    | 20.9           | 0               | 0   | 20.9                 |
| yellow | 20.9           | 0,1             | 0   | 20.9                 |

| GP5    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.8           | Dil             | Q   | 20.9                 |
| blue   | 70.9           | 0               | 0   | 20.4                 |
| red    | 20.9           | 0               | .0  | 70,9                 |
| yellow | 70.9           | 0.1             | 0   | 20,9                 |

| GP8    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O₂ |
|--------|----------------|-----------------|-----|----------|
| white  | 10.4           | 0.3             | 40  | 20.4     |
| blue   | 20.9           | 0.2             | ZO  | 209      |
| red    | 208            | 0.1             | 20  | 20.9     |
| yellow | 20.8           | 0               | 20  | 20.9     |

### Instruments after messurement

| O <sub>2</sub><br>CO <sub>2</sub> | 11-25-86 |
|-----------------------------------|----------|
| TPH                               |          |

BLOWER OFF: 11:30 FOR RESPIRATION-TEST Projekt:

Rhein Main Air Base

R 68.346

Date: 46-26-96

Time: //: / →

Weather: SUNNY

Temperature: 4 C

### Instrument calibration:

| O2 gas:    | 9.97%   | 10.1 | Instrument: | 10,1 |          |
|------------|---------|------|-------------|------|----------|
| CO2 gas:   | 10.02%  | 10.0 | Instrument: | 10.0 |          |
|            |         |      |             | -0.4 |          |
| Hexan gas: | 3983ppm |      | Instrument: | 3960 | <u> </u> |

### Messurement:

| MPA    | O <sub>2</sub> | CO <sub>2</sub> | TPH     | GT202-O <sub>2</sub> | temp *C |
|--------|----------------|-----------------|---------|----------------------|---------|
| clean  | 18.0           | 3.0             | 160     | 18.6                 | 8       |
| black  | 18.9           | 1.1             | 80      | 19.6                 |         |
| brown  | 19.5           | 0.8             | 40      | 20.2                 |         |
| green  | 19.8           | 0.7             | 20      | 20.5                 |         |
| orange | 20.0           | 0.7             | 0       | 20.4                 |         |
| red    | 1.05           | 0.6             | 20      | 20.8                 |         |
| yellow |                | Ground          | water   |                      |         |
| blue   |                | Grain           | ud wate | <del>4</del>         |         |

| MPB    | O <sub>2</sub> | CO <sub>2</sub> | TPH   | GT202-O <sub>2</sub> | temp °C |
|--------|----------------|-----------------|-------|----------------------|---------|
| clean  | 16.9           | 4.1             | 480   | 17.2                 | 8.4     |
| black  | 17.5           | 3.2             | 260   | 17.7                 | 12.1    |
| brown  | 18.1           | 2.4             | 180   | 18.7                 | 14.0    |
| green  | 19.7           | 1.1             | 100   | 20.3                 | 14.8    |
| orange | 20,1           | 0.8             | 60    | 20.8                 | 14.4    |
| red    | 20.1           | 0.8             | 60    | 20,9                 | 15.0    |
| yellow |                | crown           | dwat  | 9                    | 14.6    |
| blue   |                | chou            | nd wa | AC.                  | 14.4    |

Tabelle1

Date: 11-26-96

Time: 12:00

| MPC             | O <sub>2</sub> | CO <sub>2</sub> | TPH   | GT202-O <sub>2</sub> | temp °C |
|-----------------|----------------|-----------------|-------|----------------------|---------|
|                 | 19.E           | 1.6             | 100   | 20.6                 |         |
| clean           | 10.2           | 0.8             | 60    | 20.9                 | 11.0    |
| black<br>brown  | 20.8           | 0.5             | 20_   | 20.9                 |         |
|                 | 20.8           | 0.5             | 20    | 20.9                 | 13.4    |
| green<br>orange | 79.8           | 0.3             | 0     | 21.0                 |         |
| red             | 20.9           | 0.3             | 0     | 21,1                 | 13.6    |
| yellow          |                | round           | water |                      | 10 3    |
| blue            | (              | Ctours          | Lwat  | t                    | 13.2    |

| GT 202 C | 2 new | CO <sub>2</sub> | TPH  | Z1, 7 → C | temp °C |
|----------|-------|-----------------|------|-----------|---------|
| clean    | 120.9 | 0.1             | 40   | 20.8      | 6.3     |
| black    | 29.9  | 0.5             | 20   | 20.8      |         |
| brown    | 20.9  | 0.3             | 20   | 20.9      | 3.6     |
| green    | 20.9  | 0.3             | · 25 | 20.9      | 15,0    |
| orange   | 20.9  | 0.4             | 20   | 20.9      | 12/     |
| red      | 20.9  | 0.5             | 20   | 20.9      | 13.4    |
| yellow   |       |                 |      |           |         |
| blue     |       |                 |      |           | L       |

| Background | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> | temp°C |
|------------|----------------|-----------------|-----|----------------------|--------|
| clean      | 13.5           | 3.5             | 180 | 13.6                 |        |
| black      | 18.1           | 3,5             | 140 | 18.1                 |        |
| brown      | 18.1           | 4.1             | 280 | 18.                  | 13.4   |
| green      | 18.6           | 4,2             | 200 | 18.6                 | 10,7   |
| orange     | K.O            | 4.2             | 200 | 17.7                 | 13.6   |
| red        | 17.9           | 4,2             | 200 | 17.3                 | 13.6   |
| yellow     |                |                 |     |                      | 13/    |
| blue       |                |                 |     |                      | 121    |

| GP.5   | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.9           | 0.5             | 20  | . 20.9               |
| blue   | 20.9           | 0.1             | 0   | 20,9                 |
| red    | 20.9           | 0.2             |     | 20.9                 |
| yellow | 20.9           | 0.7             | 20  | 20,9                 |

Date: 11-26-96 Time: 12:40

| GP2    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.0           | 0.9             | 80  | 20.6                 |
| blue   | 20.7           | 0.4             | 20  | 20.8                 |
| red    | 20.9           | 02              | 0   | 20,9                 |
| yellow | 20.8           | 0.1             | 0   | 20.9                 |

| GP3    | O <sub>2</sub> | CO <sub>2</sub> | TPH   | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-------|----------------------|
| white  | 20.9           | 0.2             | 0     | 20,9                 |
| blue   | 20.9           | 0               | Ó     | 20.9                 |
| red    | 20.9           | .0              | 0     | 20.9                 |
| yellow | Cial           | end w           | x ton |                      |

| GP4    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.9           | 0.4             | 0   | 20.9                 |
| blue   | 20.9           | 0.2             | 0   | 20.9                 |
| red    | 20.9           | 0.1             | 0   | 20.9                 |
| yellow | 20.9           | 0.3             | 0   | 20.9                 |

| GP. I  | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 19.5           | 2.0             | 120 | 19.8                 |
| blue   | 20.0           | 0.8             | 60  | 20.7                 |
| red    | 20.3           | 0.7             | 40  | 20.9                 |
| yellow | 20             | 1.0             | 80  | 20,8                 |

| GP8    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.9           | 0.5             | 20  | 20.9                 |
| blue   | 20.9           | 0.3             | O   | 20.9                 |
| red    | 20.9           | 0.4             | 0   | 20.9                 |
| yellow | 20.3           | 0.5             | 0   | Z0, 9                |

### Instruments after messurement

| O <sub>2</sub>  |  |
|-----------------|--|
| CO <sub>2</sub> |  |
| TPH             |  |

Projekt: Rhein Main Air Base

R 68.346

Date: 11-27-96

Time: /3:30

Weather: raining

Temperature: 1.5 %

### Instrument calibration:

| O2 gas:    | 9.97%   | - | Instrument: | 10.1 |  |
|------------|---------|---|-------------|------|--|
| CO2 gas:   | 10.02%  |   | instrument: | 10.0 |  |
|            |         |   |             |      |  |
| Hexan gas: | 3983ppm |   | Instrument: | 4000 |  |

### Messurement:

| MPA    | O <sub>2</sub> | CO <sub>2</sub> | TPH     | GT202-O <sub>2</sub> | temp *C |
|--------|----------------|-----------------|---------|----------------------|---------|
| clean  | 18.0           | 2.9             | 180     | 17.9                 |         |
| black  | 18.8           | 1.5             | 100     | 18.6                 |         |
| brown  | 19.2           | 1.0             | 80      | i9.2                 |         |
| green  | 20.2           | 0.8             | 60      | 20.0                 |         |
| orange | 199            | 0.7             | 40      | 19.8                 |         |
| red    | 20.2           | 0.7             | 20      | 20.5                 |         |
| yellow |                | CHOOLO          | dwater  |                      |         |
| blue   |                |                 | durates | ^                    |         |

| MPB    | O <sub>2</sub>  | CO <sub>2</sub> | TPH     | GT202-O <sub>2</sub> | temp *C |  |
|--------|-----------------|-----------------|---------|----------------------|---------|--|
| clean  | 16.0            | 4.5             | 380     | 16.0                 | 8,2     |  |
| black  | 168             | 3.9             | 160     | 16.2                 | 12.0    |  |
| brown  | 17.2            | 2.7             | 100     | 17.0                 | 13,8    |  |
| green  | 19.2            | 1.1             | 20      | 19,Z                 | 14.7    |  |
| orange | 70.2            | 0.7             | 0       | 20,1                 | 15,2    |  |
| red    | 10.0            | 0.7             | 0       | 20.2                 | 14.9    |  |
| yellow |                 | 1400            | nd wate |                      |         |  |
| blue   | 8 cio and water |                 |         |                      |         |  |

Date: 11-27-96

Time: 14:15

| MPC    | O <sub>2</sub> | CO <sub>2</sub> | TPH    | GT202-O <sub>2</sub> | temp *C |
|--------|----------------|-----------------|--------|----------------------|---------|
| clean  | 20.0           | 1.5             | 20     | 20.1                 | •       |
| black  | 20.1           | 0.8             | 0      | 20,4                 | 11.0    |
| brown  | 20.8           | 0.6             | 2.0    | 20.9                 |         |
| green  | 20.9           | 0.5             | 0      | 20.9                 | 14.0    |
| orange | 20.9           | 0.3             | 0      | 20.9                 |         |
| red    | 20.9           | 0.2             | Ø      | 20,9                 | 14.4    |
| yellow |                | CHESA           | ndura  |                      |         |
| blue   |                | da              | endura | Acr                  |         |

| MPD    | O <sub>2</sub> | CO <sub>2</sub> | TPH    | GT202-O <sub>2</sub> | temp *C |
|--------|----------------|-----------------|--------|----------------------|---------|
| clean  | 20.9           | 0.7             | 60     | 20.9                 | 3.9     |
| black  | 20.9           | 0.6             | 40     | 120.9                |         |
| brown  | 20.9           | 0.5             | 40     | 20.9                 |         |
| green  | 20.9           | 0.4             | 40     | 20.9                 | 13.9    |
| orange | 20.9           | 0,4             | 40     | 20.9                 |         |
| red    | 20.9           | 0.5             | 40     | 20,9                 | 13.8    |
| yellow |                | croun           | d wate |                      |         |
| blue   |                | Octori          | ed mat | 4                    |         |

| Background | O <sub>2</sub> | CO2      | TPH    | GT202-O <sub>2</sub> | temp°C |
|------------|----------------|----------|--------|----------------------|--------|
| clean      | 18.2           | 3.6      | 130    | 18.1                 |        |
| black      | 18.2           | 3.5      | 180    | 18.1                 | 11.2   |
| brown      | 18.1           | 4.0      | 130    | 18.0                 |        |
| green      | 18.1           | 4.0      | 180    | 17.9                 | 13.5   |
| orange     | 18.1           | 4.0      | 180    | 17.8                 |        |
| red        | 18.3           | 4.0      | 180    | 17.8                 | 13.8   |
| yellow     |                | so crend | water  | 1                    |        |
| blue       |                | Varace   | nelwat | do                   | 133    |

| GP1    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 19.5           | 2.0             | 140 | 19.5                 |
| blue   | 20.Z           | 0.8             | 60  | 20,2                 |
| red    | 20.3           | 0.7             | 40  | 20.6                 |
| yellow | 20.2           | 0.8             | 80  | 20.5                 |

Date: 11-27-86 Time: 15:15

| GP2    | O <sub>2</sub> | CO2 | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----|-----|----------------------|
| white  | 78.3           | 20  | 30  | 20.6                 |
| blue   | 20.8           | 0.3 | 0   | 20.9                 |
| red    | 20.8           | 0.1 | 0   | 20.9                 |
| yellow | 20.8           | 0.1 | 0   | 20.9                 |

| GP3    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.9           | 0.4             | 20  | 20.9                 |
| blue   | 20.9           | 0.1             | 0   | 20.9                 |
| red    | 20.9           | 0               | 0   | 20.9                 |
| yellow |                |                 |     |                      |

fround wa for

| GP# 8  | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.9           | 0.5             | 20  | 2.0.9                |
| blue   | 208            | 0,2             | 0   | 20.8                 |
| red    | 20.9           | 0.2             | 0   | 20.9                 |
| yellow | 20.9           | 0.4             | 20  | 209                  |

| GP5    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O2 |
|--------|----------------|-----------------|-----|----------|
| white  | 20.9           | 0.4             | 20  | 20,9     |
| blue   | 20.9           | 0               | 0   | 20.9     |
| red    | 20.9           | 0               | 0   | 709      |
| yellow | 20.9           | 0.6             | 20  | 709      |

| GP# 4  | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.8           | 0.1             | 0   | 20.9                 |
| blue   | 20.9           | 0               | 0   | 20.3                 |
| red    | 20.9           | 0               | 0   | 20,9                 |
| yellow | 20.9           | 0               | 0   | 20,9                 |

### Instruments after messurement

| O <sub>2</sub>  |  |
|-----------------|--|
| CO <sub>2</sub> |  |
| TPH             |  |

Projekt: Rhein Main Air Base

R 68.346

Date: 28.11. %

Time: 1330

Weather: 5 ncm

Temperature: -1 C

### Instrument calibration:

| O2 gas:    | 9.97%   | Instrument: | 991   | ~ |
|------------|---------|-------------|-------|---|
| CO2 gas:   | 10.02%  | Instrument: | 10.00 |   |
|            |         |             | 7     |   |
| Hexan gas: | 3983ppm | Instrument: | 4000  |   |

### **Messurement:**

| MPA    | ·O <sub>2</sub> | CO2 | TPH | GT202-O <sub>2</sub> | temp *C |
|--------|-----------------|-----|-----|----------------------|---------|
| clean  | 180             | 31  | 200 | 16.8                 |         |
| black  | 18,5            | 2.0 | 120 | 17,2                 |         |
| brown  | 19.0            | 1.3 | 100 | 186                  |         |
| green  | 13,5            | 1.1 | 100 | 18.9                 |         |
| orange | 19.5            | 1.0 | 80  | 18,3                 |         |
| red    | 20.2            | 0:2 | 60  | 19.8                 |         |
| yellow |                 |     | 00  | 1,0                  | ···     |
| blue   |                 |     |     |                      |         |

| MPB    | O <sub>2</sub> | CO2 | TPH | GT202-O <sub>2</sub> | temp °C |
|--------|----------------|-----|-----|----------------------|---------|
| clean  | 16,9           | 42  | 500 | 155                  | 80      |
| black  | 16.6           | 4.0 | 280 | 153                  | 120     |
| brown  | 17,0           | 3.1 | 220 | 16.2                 | 13 2    |
| green  | 18.9           | 1,4 | 140 | 18.2                 | 14.2    |
| orange | 19.5           | 0.3 | 100 | 18.3                 | 149     |
| red    | 19.8           | 0.8 | 80  | 188                  | 148     |
| yellow |                |     |     | 7.9                  | 7/3     |
| blue   |                |     |     |                      |         |

Date: 28.11. 36

Time: 14 25

| MPC    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> | temp *C |
|--------|----------------|-----------------|-----|----------------------|---------|
| clean  | 200            | 1,5             | 20  | 20,3                 |         |
| black  | 10.0           | 0,3             | 0   | 20.8                 | 105     |
| brown  | 20.0           | 0.7             | 0   | 20.9                 | 134     |
| green  | 100            | 0,5             | 0   | 20.9                 | 717     |
| orange | 20.6           | 0:2             | 0   | 20'8                 | A 5 55  |
| red    | 208            | 0,2             | Ø   | 20.7                 | 1345    |
| yellow | ,              |                 |     | 1                    | 10,0    |
| blue   |                | *               |     |                      |         |

| MPD    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> | temp °C |
|--------|----------------|-----------------|-----|----------------------|---------|
| clean  | રેલ્ફ          | 0.7             | 0   | 20:7                 | 2.5     |
| black  | 20.8           | 0.5             | 0   | 20 7                 |         |
| brown  | 203            | 0.4             | 0   | 20,8                 |         |
| green  | 103            | 0,4             | 0   | 109                  | 12,9    |
| orange | 20,9           | 0.4             | O   | 208                  |         |
| red    | 20.3           | 0.4             | Õ   | 20.8                 | 13,3    |
| yellow |                |                 |     | ,0                   |         |
| blue   |                |                 |     |                      |         |

| Background | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> | temp*C                                  |
|------------|----------------|-----------------|-----|----------------------|-----------------------------------------|
| clean      | 18,5           | 3.4             | 180 | 17.7                 | *************************************** |
| black      | 18.5           | 3.4             | 180 | 125                  | 10.8                                    |
| brown      | 18,5           | 39              | 200 | 17.5                 | 7,0                                     |
| green      | 182            | 3.9             | 200 | 13.5                 | 13,2                                    |
| orange     | 18,4           | 3.8             | 200 | 17.5                 |                                         |
| red        | 18.5           | 3.9             | 200 |                      | 13,5                                    |
| yellow     | 18.5           | 3.9             | 200 | 173                  | 1, 3, 0                                 |
| blue       |                |                 | 200 | 1 1                  | -                                       |

| GP1    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 19,5           | 2,0             | 160 | 194                  |
| blue   | 15,€           | 0.8             | 100 | 12,3                 |
| red    | 200            | 07              | 60  | 199                  |
| yellow | 20,0           | 0.7             | 80  | 199                  |

Date: 28. nn. 96 Time: 15 15

| GP2    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20,8           | 0.8             | 100 | 20,7                 |
| blue   | 20.8           | 0.1             | 20  | 20.7                 |
| red    | 20.8           | 0               | 0   | 20.7                 |
| yellow | 20,8           | 0               | 0   | 107                  |

| GP3    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.8           | 0,3             | 20  | 20,9                 |
| blue   | 20,9           | 0               | 0   | 20.0                 |
| red    | 20.9           | 0               | 0   | 20,9                 |
| yellow |                |                 | •   |                      |

| GP4    | O <sub>2</sub> | O <sub>2</sub> CO <sub>2</sub> |   | GT202-O <sub>2</sub> |  |
|--------|----------------|--------------------------------|---|----------------------|--|
| white  | 10,8           | 0,2                            | 0 | 20.9                 |  |
| blue   | 20,9           | 0.1                            | 0 | 20.5                 |  |
| red    | 20,9           | 0                              | 0 | 20.9                 |  |
| yellow | 20,9           | 0,2                            | 0 | 20,9                 |  |

| GP5    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.9           | 0,3             | 10  | 20.9                 |
| blue   | 20.9           | 0,1             | 0   | 20.9                 |
| red    | 20,9           | 0,1             | 0   | 20,9                 |
| yellow | 20,9           | 0.5             | 20  | 20.9                 |

| GP8    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.8           | 96              | 40  | 20,9                 |
| blue   | 208            | 0.1             | 0   | 20.8                 |
| red    | 20 G           | 0,2             | 0   | 20.3                 |
| yellow | 20.8           | 0:4             | 20  | 20.8                 |

### Instruments after messurement

| O <sub>2</sub>  |  |
|-----------------|--|
| CO <sub>2</sub> |  |
| TPH             |  |

Projekt:

Rhein Main Air Base

R 68.346

Date: 29.10.96

Time: 12 30

Weather: Sincing

Temperature: 1+°C

### Instrument calibration:

| O2 gas:    | 9.97%   | Instrument: | B   | 9 |  |
|------------|---------|-------------|-----|---|--|
| CO2 gas:   | 10.02%  | instrument: |     |   |  |
|            |         |             |     | • |  |
| Hexan gas: | 3983ppm | Instrument: | 400 | Ó |  |

### **Messurement:**

| MPA      | O <sub>2</sub> | CO <sub>2</sub> | TPH. | GT202-O <sub>2</sub> | temp *C |
|----------|----------------|-----------------|------|----------------------|---------|
| clean    | 18,5           | 3, 2,           | 140  | 170                  |         |
| black    | 19.5           | 18              | 40   | 18.2                 |         |
| brown    | 18,5           | 1.9             | 180  | 17.5                 |         |
| green    | 130            | 1,5             | 160  | 18.7                 |         |
| orange 7 | 20,1           | 0.8             | 160  | 20,2                 |         |
| red 😺    | 19,3           | 10              | 120  | 128                  |         |
| yellow   |                | -               |      | 1,40                 |         |
| blue     |                |                 |      |                      |         |

| MPB    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> | temp *C |
|--------|----------------|-----------------|-----|----------------------|---------|
| clean  | 15,6           | 4.2             | 580 | 13,9                 | 7.6     |
| black  | 1.60           | 33              | 300 | 139                  | 112     |
| brown  | 16,6           | 3'2             | 200 | 148                  | 135     |
| green  | 18.1           | 1.6             | 100 | 17.4                 | 14.5    |
| orange | 1.9.0          | 10              | 40  | 18.4                 | 14.9    |
| red    | 19.2           | 0.8             | 40  | 19,0                 | 149     |
| yellow | 7              | -/-             |     | ,-                   | 1.40    |
| blue   |                |                 |     |                      |         |

Tabelle1

Date: 29. 11. 96

Time: 1315

| MPC    | O <sub>2</sub> | CO <sub>2</sub> | TPH  | GT202-O <sub>2</sub> | temp *C  |
|--------|----------------|-----------------|------|----------------------|----------|
| clean  | 19,8           | 12              | 160  | 197                  | Tentip O |
| black  | 19,9           | 0.9             | 1.40 | 19,7                 | 703      |
| brown  | 18,5           | 2.3             | 100  | 49.8                 | -/-/- 3  |
| green  | 20,2           | 0.5             | 80   | 20.3                 | 12.7     |
| orange | 20,5           | 0.7             | 40   | 20.2                 | 11214    |
| red    | 2 0 6          | 0,2             | 20   | 207                  | 136      |
| yellow |                |                 |      |                      | 16020    |
| blue   |                |                 |      |                      |          |

| MPD    | O <sub>2</sub> | CO2 | TPH          | GT202-O <sub>2</sub> | temp °C |
|--------|----------------|-----|--------------|----------------------|---------|
| clean  | 20,6           | 0.6 | 80           | 20,8                 | 2 5     |
| biack  | 20,5           | 0.5 | 60           | 20,8                 | ع رو    |
| brown  | 20.6           | 0,2 | 40           | 200                  |         |
| green  | 20,8           | 0,2 | 40           | 20,8                 | 12.8    |
| orange | 20,6           | 0.1 | 40           | 508                  | 21218   |
| red    | 20,6           | 011 | 10           | 20,7                 | 137     |
| yellow |                |     |              | 20,7                 | 1111    |
| blue   |                |     | <del> </del> | -                    |         |

| Background | O <sub>2</sub> | CO <sub>2</sub> | TPH      | GT202-O <sub>2</sub> | temp*C |
|------------|----------------|-----------------|----------|----------------------|--------|
| clean      |                |                 |          | 01202.02             | temp C |
| black      |                |                 |          |                      |        |
| brown      |                |                 |          |                      | •      |
| green      |                |                 |          |                      |        |
| orange     |                |                 |          | +                    |        |
| red        |                |                 | <u> </u> |                      |        |
| yellow     |                |                 |          | <del> </del>         |        |
| blue       |                |                 |          |                      |        |

| GP1    | O <sub>2</sub> | CO2 | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----|-----|----------------------|
| white  | -19,6          | 2.1 | 220 | 19,4                 |
| blue   | .15,4          | 1,0 | 160 | 19.0                 |
| red    | .10,0          | 0,3 | 100 | 19.8                 |
| yellow | 20,0           | 2.7 | 100 | 19'2                 |

Tabelle1

Date: 29. nn. 96

Time: 141.5

| GP2    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20,2           | 0,8             | 140 | 20,4                 |
| blue   | 20.4           | 0.2             | 20  | 20,5                 |
| red    | 20,4           | 0.1             | 20  | 20,3                 |
| yellow | 20,4           | 0,2             | 20  | 105                  |

| GP3    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20.8           | 0.4             | 40  | 20,9                 |
| blue   | 208            | 0.1             | 0   | 20 9                 |
| red    | 20,3           | 0               | 0   | 10.9                 |
| yellow | 20,8           | 0.1             | 0   | 20,8                 |

| GP4    | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|--------|----------------|-----------------|-----|----------------------|
| white  | 20,5           | 0               | 0   | 170.5                |
| blue   | 2 3 %          | 0               | 0   | 20,9                 |
| red    | 20.8           | 0               | O   | 20,8                 |
| yellow | 20.8           | 0               | 20  | 20.7                 |

| GP5     | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|---------|----------------|-----------------|-----|----------------------|
| white - | 20,9           | 0               | 0   | 20,9                 |
| blue    |                |                 |     |                      |
| red     |                |                 |     |                      |
| yellow  |                |                 |     |                      |

| GP8      | O <sub>2</sub> | CO <sub>2</sub> | TPH | GT202-O <sub>2</sub> |
|----------|----------------|-----------------|-----|----------------------|
| white    |                |                 |     | -                    |
| blue     |                |                 |     |                      |
| red      |                |                 |     |                      |
| yellow · |                |                 | ·   |                      |

### Instruments after messurement

| O <sub>2</sub>  |  |
|-----------------|--|
| CO <sub>2</sub> |  |
| TPH             |  |

AUGUST 1998 IN SITU RESPIRATION TEST RAW DATA

| (ppm / 140 / 250 / 220 / 140 / 140 / 150 / 150                                   | (ppm (ppm 310 290 270 170 140 145                                                | TPH (ppm ) 260 270 280 330 330 310                                                 |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| (C)                                                                              | Temp (C) 20.8 19.9 14.7 14.7 13.4 12.4                                           | (C)<br>(C)<br>19.3<br>15.7<br>13.6                                                 |
| 28.08. CO2   (%) 0.9 4.2 2.8 1.7 0.8 0.8 0.8                                     | 28.08.<br>CO2 (%)<br>3.2<br>8.5<br>4.7<br>0.9<br>0.7                             | 28.08.<br>CO2 (%)<br>6.8<br>7<br>7<br>7<br>7<br>6.1<br>5.9                         |
| 20.0<br>20.1<br>17<br>18.5<br>19.5<br>20.1<br>20.2<br>water                      | 02<br>(%)<br>18.5<br>10.3<br>15.5<br>20.6<br>20.6<br>water                       | 02<br>(%)<br>14.5<br>12.5<br>13.9<br>15.4<br>16.5<br>17.3<br>water                 |
| TPH (ppm ) MPA 200 clean 320 black 280 brown 250 green 210 orang 220 red yello v | TPH (ppm ) MPB 280 clean 360 black 330 brown 220 green 200 orang 200 red yello v | TPH (ppm ) MPC 340 clean 340 black 360 brown 420 green 490 orang 400 red yello     |
| (C)                                                                              | Temp<br>(C)<br>20.9<br>19.7<br>17.8<br>16.2<br>14.6<br>13.9<br>11.9              | (C) (C) 19.4 15.4 15.4 12.6                                                        |
| CO2 (%) 0.8 4.2 2.5 1.8 0.9 0.9                                                  | 27.08.<br>CO2 (%)<br>11.5<br>8.8<br>4.4<br>0.7<br>0.7                            | 27.08.<br>CO2 (%)<br>8.1<br>7.8<br>7.2<br>6.9<br>6.9                               |
| O2 (%) 20 16.8 19.1 19.8 19.8 water                                              | 02<br>(%)<br>18<br>10<br>15<br>20<br>20<br>20<br>water                           | 02<br>(%)<br>10.3<br>10.2<br>13.2<br>15.9<br>water                                 |
| TPH Temp (ppm (C) ) MPA clean black brown green orang red yello yello yello blue | (ppm) (ppm) ) clean black brown green orang red yello                            | TPH (Ppm ) MPC 340 clean 340 black 360 brown 420 green 400 red yello blue blue     |
| emp (C)                                                                          | Temp (C) 20.9 19.6 17.7 14.3 13.4 11.6                                           | (C)<br>(C)<br>19.2<br>15.5<br>13.4                                                 |
| 26.08. CO2 T (%) 1.8 3.8 2.2 1.5 0.7                                             | 26.08.<br>CO2 1<br>1.8 8.8<br>3.8<br>3.8<br>0.7                                  | 26.08. CCO2 7 (%) 8.5 8.7 8.7 7 7 6.9                                              |
| 02<br>(%)<br>18.5<br>17.1<br>18.3<br>19.8<br>20<br>water                         | 02<br>(%)<br>20<br>11<br>16<br>19.5<br>20<br>20<br>20<br>xwater                  | 02<br>(%)<br>10.1<br>10.4<br>13.8<br>15.1<br>16.1<br>water                         |
| (ppm MPA clean black brown green orang red yello v                               | (ppm<br>) MPB<br>clean<br>black<br>brown<br>green<br>orang<br>red<br>yello v     | (ppm<br>(ppm<br>) MPC<br>clean<br>black<br>brown<br>green<br>orang<br>red<br>yello |
|                                                                                  | Temp (C) 20.7 19.6 17.7 16.1 14.4 13.6 11.6                                      | · · · · · · · · · · · · · · · · · · ·                                              |
| 25.08. CO2 Temp (%) (C) 0.7 2.5 1.2 0.8 0.5                                      | 25.08.<br>CO2   11.2<br>11.2<br>8.5<br>4.1<br>0.8<br>0.7                         | 25.08. CO2 Temp (%) (C) 8.3 8.5 8.7 7                                              |
| 2<br>(%)<br>20.2<br>18.7<br>19.7<br>20<br>20.5<br>20.5<br>20.3<br>water          | 02<br>(%)<br>19.8<br>14.5<br>18.4<br>19.2<br>20<br>20<br>20<br>20<br>20          | 02<br>(%)<br>16<br>9<br>11.3<br>14.2<br>15.5<br>16.8<br>water                      |
| MPA<br>clean<br>black<br>brown<br>green<br>orang<br>red<br>yello v               | MPB<br>clean<br>black<br>brown<br>green<br>orang<br>red<br>yello                 | MPC<br>clean<br>black<br>brown<br>green<br>orang<br>red<br>yello                   |
| Hdr (<br>mg()                                                                    | (ppm (                                                                           | (ppm )                                                                             |
| Temp (C)                                                                         | (C)<br>20.5<br>19.8<br>17.8<br>14.5<br>13.9<br>12.9                              | emp<br>(C)<br>19.4<br>15.5<br>12.5                                                 |
| 24.08.<br>CO2 T<br>(%)<br>2.2<br>1.5<br>0.9<br>0.7<br>0.1                        | 24.08.<br>CO2   12 6 11.8 6 0.5 0.5 0.5                                          | 24.08.<br>CO2 (%)<br>8.9<br>8.5<br>8.5<br>7                                        |
| 20 (%) 20 20.2 20.8 21 21 21 water                                               | 02<br>(%)<br>20<br>16.5<br>20<br>21<br>21<br>21<br>21                            | 02<br>(%)<br>16.8<br>10<br>12<br>14.9<br>17.5<br>water                             |
| MPA<br>clean<br>black<br>brown<br>green<br>orang<br>red                          | MPB<br>clean<br>black<br>brown<br>green<br>orang<br>red<br>yello v               | MPC<br>clean<br>black<br>brown<br>green<br>orang<br>red                            |

Project: Rhein-Main Air Base

# Respiration Test August 1998

| TPH (ppm ) 220 230 2300 3300 (ppm (ppm (ppm ) 170 170 170 170 170 170 170 170 170 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170<br>170<br>170<br>170                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.5<br>13.5<br>12.6                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | တာ ထား ထား ထု<br>လေး လေး လဲ လဲ                                                                            |
| 002<br>17.2<br>13.4<br>13.4<br>11.6<br>(%)<br>17.6<br>18.2<br>17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.2<br>18.3<br>18.4<br>Wate                                                                              |
| TPH (ppm ) MPD 310 clean 320 black 330 brown 340 green 340 orang 330 red yellow blue TPH (ppm Back- 180 clean 180 black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | brown<br>green<br>orang<br>red<br>yello<br>blue                                                           |
| Temp (C) 19.3 13.3 (C) (C) (C) (C) (C) 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.2<br>13.6<br>13.6<br>CO2<br>(%)<br>5.1<br>4.8<br>0.8                                                   |
| 27.08.<br>CO2<br>(%)<br>5.1<br>6.3<br>8.2<br>10.2<br>10.3<br>27.08.<br>CO2<br>(%)<br>4.5<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.5<br>17.5<br>17.5<br>water<br>GP1<br>white<br>blue<br>red                                              |
| MPD<br>clean<br>black<br>brown<br>green<br>orang<br>red<br>yello<br>blue<br>grd<br>clean<br>black-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | green 17.5 green 17.4 orang 17.5 red 17.5 yello water blue (ppm) GP1 330.white 330 blue 210 red 190 yello |
| (ppm (ppm (ppm (ppm (ppm (ppm (ppm (ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.08.<br>CO2 (%)<br>7.1<br>6<br>0.8                                                                      |
| Temp (C) 19.6 13.1 (C) (C) 19.2 (C) 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.6<br>14.2<br>02<br>(%)<br>15.1<br>19.8<br>20                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.8<br>4.7<br>4.7<br>4.6<br>4.6<br>6P1<br>white<br>blue<br>red                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.5<br>17.6<br>17.6<br>17.6<br>water<br>TPH<br>(ppm)                                                     |
| MPD clean black brown green orang red yello blue grd clean black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | prown green orang red yello blue CO2 (%) 9 5.7 6.08                                                       |
| (ppm)  | 02<br>(%)<br>14<br>16.3<br>19.9                                                                           |
| 25.08.  CO2 Temp (%) (C) 5 19.5 6.3 8.2 9.3 15.9 10.1 10.5 13.2 CO2 Temp (%) (C) 4.4 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.1<br>13.3<br>12.2<br>GP1<br>white<br>blue<br>red                                                       |
| 25.08. (%) 9.3 10.1 10.5 (%) (%) 4.4 4.4 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.9<br>18.3<br>18.1<br>18.1<br>18.1<br>(%)<br>9.5<br>9.5<br>0.8<br>0.8                                   |
| MPD<br>clean<br>black<br>brown<br>green<br>orang<br>red<br>yellow<br>gred<br>clean<br>blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | brown<br>green<br>orang<br>red<br>yello<br>blue<br>(%)<br>12.6<br>16.8                                    |
| HAT HAT HAT COMMAND AND A COMMAND AND A COMMAND AND A COMMAND A CO | GP1<br>white<br>blue<br>red<br>yello                                                                      |
| Гемр<br>(С)<br>19.1<br>13.3<br>(С)<br>(С)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.2<br>13.6<br>12.6<br>(ppm)                                                                             |
| 24.08.<br>02<br>(%)C<br>5.5<br>6.9<br>8.8<br>9.8<br>10.8<br>11.8<br>(%)<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.08. (%) (%) (%) (9.5 (0.8 (0.8 (0.8 (0.8 (0.8 (0.8 (0.8 (0.8                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.6<br>18.6<br>18.3<br>18.5<br>002<br>(%)<br>13.1<br>19.8<br>20.5<br>20.5                                |
| MPD<br>clean<br>brack<br>brown<br>green<br>orang<br>red<br>yello<br>yello<br>blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | green<br>orang<br>red<br>yello<br>blue<br>GP1<br>white<br>blue<br>red                                     |

## Respiration Test August 1998

| TPH (ppm) 180 210 180 150                          | TPH (ppm) 180 240 310                          | TPH (ppm) 110 240 400 290                          | TPH (ppm) 180 180 270 360                        |
|----------------------------------------------------|------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| 28.08.<br>CO2<br>(%)<br>4<br>6.9<br>3.3            | 28.08.<br>CO2<br>(%)<br>3.1<br>6.2<br>5        | 28.08.<br>02.<br>(%)<br>1.5<br>5.2                 | 28.08.<br>CO2<br>(%)<br>1<br>3.4<br>4.7<br>5.1   |
| 02<br>(%)<br>18<br>15<br>18.5<br>19.9              | 02<br>(%)<br>18<br>15<br>17.5<br>water         | CO2<br>(%)<br>19.8<br>15.9<br>16.1                 | 02<br>(%)<br>20.5<br>17.2<br>16<br>15.9          |
| TPH (ppm) GP2 330 white 350 blue 310 red 260 yello | TPH (ppm) GP3 305 white 380 blue 470 red yello | TPH (ppm) GP4 250 white 365 blue 580 red 480 yello | TPH GP5 220 white 295 blue 380 red 500 yello     |
| 27.08.<br>CO2<br>(%)<br>5.5<br>9.3<br>3.8<br>2.8   | 27.08.<br>CO2<br>(%)<br>4.2<br>8.6<br>6.5      | 27.08.<br>O2<br>(%)<br>2<br>6.4<br>7.8             | 27.08.<br>CO2<br>(%)<br>1.8<br>4.2<br>6.6<br>7.3 |
| 02<br>(%)<br>16<br>12.3<br>18<br>19                | 02<br>(%)<br>16.5<br>12<br>16<br>water         | CO2<br>(%)<br>19<br>13.2<br>14.5                   | 02<br>(%)<br>20<br>15.4<br>13.8                  |
| GP2<br>white<br>blue<br>red<br>yello               | GP3<br>white<br>blue<br>red<br>yello           | GP4<br>white<br>blue<br>red<br>yello               | GP5<br>white<br>blue<br>red<br>yello             |
| ТРН<br>(ррм)                                       | TPH<br>(ppm)                                   | TPH<br>(ppm)                                       | TPH<br>(ppm)                                     |
| 26.08.<br>CO2 (%)<br>7.3<br>10<br>3.8              | 26.08.<br>CO2<br>(%)<br>5.2<br>9.8<br>7        | 26.08.<br>O2<br>(%)<br>2.2<br>6.9<br>8.8<br>8.9    | 26.08.<br>CO2<br>(%)<br>1.9<br>4.4<br>7.2        |
| 002<br>141<br>18.1<br>19.1                         | 02<br>(%)<br>15<br>11.5<br>16.4<br>water       | CO2 (%) 18.9 12.8 13.7 14.1                        | 02<br>(%)<br>19.1<br>15.1<br>12.2                |
| GP2<br>white<br>blue<br>red<br>yello               | GP3<br>white<br>blue<br>red<br>yello           | GP4<br>white<br>blue<br>red<br>yello               | GP5<br>white<br>blue<br>red<br>yello             |
| ТРН (ррм)                                          | ТРН<br>(ррт)                                   | TPH<br>(ppm)                                       | TPH (ppm)                                        |
| 25.08.<br>CO2<br>(%)<br>8<br>9.3<br>2.8            | 25.08.<br>CO2<br>(%)<br>4.2<br>9.2<br>6.8      | 25.08.<br>02<br>(%)<br>1.9<br>6.2<br>8.2<br>8.2    | 25.08.<br>CO2 (%)<br>1.4<br>4.1<br>6.6           |
| 02<br>(%)<br>13.1<br>12.7<br>18 water              | 02<br>(%)<br>15.2<br>11<br>16.8<br>water       | CO2<br>(%)<br>18.7<br>12.2<br>13.8                 | 02<br>(%)<br>19.8<br>15.1<br>11.5                |
| GP2<br>white<br>blue<br>red<br>yello               | GP3<br>white<br>blue<br>red<br>yello           | GP4<br>white<br>blue<br>red<br>yello               | GP5<br>white<br>blue<br>red<br>yello             |
| ТРН<br>(ррт)                                       | ТРН (ррш)                                      | TPH<br>(ppm)                                       | TPH (ppm)                                        |
| 24.08.<br>CO2<br>(%)<br>2.2<br>9.3<br>2.5<br>2.5   | 24.08.<br>CO2<br>(%)<br>6.5<br>10<br>6.8       | 24.08.<br>O2<br>(%)<br>2.3<br>6.7<br>9<br>8.8      | 24.08.<br>CO2<br>(%)<br>1.8<br>4.2<br>6.9<br>7.9 |
| 02<br>(%)<br>20<br>13.8<br>19.3                    | 02<br>(%)<br>12<br>10.7<br>12.3<br>water       | CO2 (%) 19 12.9 13.3                               | O2 (%) 20 115.8 11.2                             |
| GP2<br>white<br>blue<br>red<br>yello               | GP3<br>white<br>blue<br>red<br>yello           | GP4<br>white<br>blue<br>red<br>yello               | GP5<br>white<br>blue<br>red<br>yello             |

Project: Rhein-Main Air Base

# Respiration Test August 1998

|        | TPH | (mdd)    | 160       | 150      | 120         | 100          |
|--------|-----|----------|-----------|----------|-------------|--------------|
| 28.08. | C02 | (%)      | 2.9       | 7        | 0.8         | 0.7          |
| .,     | 05  | (%)      | 18.8      | 19.5     | 20.2        | 20.5         |
|        | TPH | ppm) GP8 | 290 white | 260 blue | 240 red     | 220 yello    |
| 27.08. |     | (%)      |           |          |             |              |
| •      |     | (%)      |           |          |             |              |
|        |     | (mdd)    | white     |          |             |              |
| 26.08. | C02 | (%)      | 3.8       | 2.2      | <del></del> | 0.9          |
| .,     |     | (%)      |           |          |             |              |
|        |     |          | white     | plue     | red         | yello        |
|        |     | (mdd)    |           |          |             |              |
| 25.08  | C02 | (%)      | 3.2       | 2        | 0.9         | 0.9          |
|        | 05  | (%)      | 18        | 19       | 20          | 20           |
|        |     | GP8      | white     | plue     | red         | yello        |
|        | TPH | (mdd)    |           |          |             |              |
| 24.08. | C02 | (%)      | 4         | 2        | _           | <del>-</del> |
|        | 05  | (%)      | 18        | 19       | 20          | 21           |
|        |     | GP8      | white     | plue     | red         | yello        |

### $\label{eq:appendix} \textbf{APPENDIX G}$ RESULTS FROM GROUNDWATER QUALITY SAMPLING

OCTOBER 1996

FALL 1996 YSI PROBE-HEAD WATER QUALITY DATA

| SAMPLE  | SAMPLING | TIME  | DEPTH | TEMP (c) | COND    | DO (%) DO | O (mg/l) | ORP  | pН   |
|---------|----------|-------|-------|----------|---------|-----------|----------|------|------|
|         | DATE     | (hrs) | (m)   |          | (mV/cm) |           |          | (mV) |      |
| NW2     | 10/2/96  | 1650  | 7     | 14.7     | 0.492   | 15.7      | 1.47     | 53   | 6.3  |
| GP5     | 10/8/96  | 800   | 9     | 13.6     | 0.297   | 13.5      | 1.4      | -55  | 6.11 |
| GP2     | 10/7/96  | 1115  | 8     | 14.8     | 0.37    | 14.6      | 2.15     | -201 | 6.25 |
| GP9     | 10/8/96  | 1300  | 8.5   | 16.9     | 0.269   | 20        | 1.9      | -110 | 5.39 |
| GP4     | 10/8/96  | 1035  | 2.0*  | 15.9     | 0.576   | 32        | 3.01     | -123 | 5.5  |
| GP10    | 10/10/96 | 800   | 10    | 13.7     | 0.24    | nr        | 0.29     | -345 | 6.64 |
| GP3@9M  | 10/10/96 | 1345  | 9     | 13.3     | 0.38    | 12        | 1.12     | -206 | 6.33 |
| GP1@9M  | 10/11/96 | 800   | 9     | 12.8     | 0.363   | nr        | 4.47     | -90  | 5.85 |
| GP1@10M | 10/11/96 | 900   | 10    | 12.3     | 0.279   | 18.2      | 1.82     | -132 | 5.56 |
| GP3@11M | 10/11/96 | 1100  | 11    | 12.5     | 0.336   | 2.8       | 0.2      | -269 | 6.5  |
| GP9C    | 10/11/96 | 1300  | 10    | 13.2     | 0.312   | nr        | 0.29     | -336 | 5.82 |
| GP9B    | 10/14/96 | 800   | 10    | 13.7     | 0.295   | 8.4       | 0.86     | -104 | 6.03 |
| GP8     | 10/14/96 | 1025  | 10.5  | 15.1     | 0.455   | 3.4       | 0.34     | 70   | 6.13 |
| GP16    | 10/14/96 | 1305  | 10    | 15.8     | 0.428   | 2         | 0.2      | -131 | 6.39 |
| GP9A    | 10/15/96 | 800   | 10    | 11.9     | 0.328   | 7.2       | 0.74     | -48  | 6.3  |
| GP10A   | 10/15/96 | 1420  | 10    | 14.6     | 0.58    | 7.3       | 0.74     | 30   | 5.98 |
| GP18    | 10/15/96 | 1510  | 10    | 13.7     | 0.315   | 3.3       | 0.33     | -94  | 6.62 |

nr = not recorded

file: c:\RM'96-ysi-data

<sup>\*</sup> depth measured from base of sand pit

### WATER QUALITY DATA RHEIN MAIN AIR FORCE BASE

| SAMPLE    | SAMPLING |       | ANALYSIS |       | SULFIDE | MN   | IRON +2 | NITRATE | SULFATE |
|-----------|----------|-------|----------|-------|---------|------|---------|---------|---------|
|           | DATE     | TIME  | DATE     | TIME  | mg/L    | mg/L | mg/L    | mg/L    | mg/L    |
| NW2       | 10/2/96  | 15:00 | 10/2/96  | 15:30 | NA      | 1.4  | 0.02    | 3.30    | HIGH    |
| GP5       | 10/8/96  | NA    | 10/8/96  | NA    | 0.117   | 3.1  | 2.17    | 2.70    | 52.1*   |
| GP2       | 10/7/96  | 15:40 | 10/8/96  | 10:00 | NA      | NA   | NA      | 3.70    | LOW     |
| GP9       | 10/8/96  | 13:45 | 10/8/96  | 15:00 | 0.105   | 3.9  | 2.4     | 4.10    | 59.8*   |
| GP4       | 10/8/96  | 15:40 | 10/8/96  | 16:00 | 0.155   | 2.3  | 1.93    | 10.60   | HIGH    |
| GP10      | 10/10/96 | 15:10 | 10/10/96 | 13:10 | 0.09    | 4.0  | 5.1**   | 1.00    | 1.4     |
| GP3 @ 9M  | 10/10/96 | 14:00 | 10/10/96 | 15:15 | 0.041   | 1.2  | 1.96    | 6.30    | 0.94    |
| GP1 @ 10M | 10/11/96 | 8:50  | 10/11/96 | 10:00 | 0.049   | 0.5  | 1.01    | 15.20   | 63.3    |
| GP1 @ 9M  | 10/11/96 | 10:40 | 10/11/96 | 11:30 | 0.153   | 2.5  | 3.27    | 15.00   | 135.7   |
| GP3 @ 11M | 10/11/96 | 14:00 | 10/11/96 | 14:50 | 0.091   | 3.6  | 5.1**   | 1.10    | 1.33    |
| GP9C      | 10/11/96 | 15:45 | 10/14/96 | 10:45 | NA      | 0.8  | 4.84    | 16.70   | 100     |
| GP9B      | 10/14/96 | 12:55 | 10/14/96 | 13:30 | 0.074   | 1.3  | 4.27    | 8.10    | 128     |
| GP8       | 10/14/96 | 14:40 | 10/14/96 | 15:05 | 0.018   | 0.4  | 1.85    | 18.80   | 23.8    |
| GP16      | 10/14/96 | 16:05 | 10/14/96 | 17:30 | 0.078   | 3.1  | 22.1    | 1.50    | 1.68    |
| GP9A      | 10/15/96 | 10:40 | 10/15/96 | 11:05 | 0.087   | 0.8  | 38.8    | 1.90    | 53.5    |
| GP10A     | 10/15/96 | 16:30 | 10/16/96 | 9:30  | NA      | NA   | 7.7     | 15.00   | 165.57  |
| GP18      | 10/15/96 | 17:30 | 10/16/96 | 9:30  | NA      | NA   | 5.2     | 2.40    | 5.45    |

NA = not available

Based on the development of turbidity in sample...

HIGH = above 50 mg/L

LOW = below 10 mg/L

### OTHER REMARKS:

Often needed to dilute sample in order to fall within calibration limits set for sulfate in the colorimeter module. Several times dilution of sample was necessary in order to fall within limits set for iron in the colorimeter module.

Analysis using Hach Kits takes appx one hour and was almost always done in the above order. (Begining with sulfide and ending with sulfate)

<sup>\*</sup> Analyzed on 10/10 at 9:45

<sup>\*\*</sup> Minimum value for iron. Actual value is greater.

### BTEX CONCENTRATIONS RHEIN MAIN AFB

| SAMPLE    | SAMPLING | ANALYSIS | BENZENE  | TOULENE | ETHYLBENZENE | M+P-XYLENE | O-XYLENE |
|-----------|----------|----------|----------|---------|--------------|------------|----------|
|           | DATE     | DATE     | ppb      | ppb     | ppb          | ppb        | ppb      |
| GW3/95    | 9/30/96  | 10/3/96  | 159.61   | 25.37   | 503.39       | 521.75     | 0        |
| NW2       | 10/2/96  | 10/3/96  | 3.31     | 0       | 0.28         | 0          | 0        |
| GP2       | 10/7/96  | 10/8/96  | 4.02     | 1.09    | 29.94        | 21.81      | 0        |
| GP5       | 10/8/96  | 10/8/96  | 4.51     | 0       | 0.89         | 0          | 0        |
| GP9       | 10/8/96  | 10/8/96  | 0.18     | 0       | 0            | 0          | 0        |
| GP4       | 10/8/96  | 10/8/96  | 0.19     | 0       | 0.27         | 0          | 0.07     |
| GPD*      | 10/9/96  | 10/10/96 | 11144.76 | 9988.04 | 267          | 265.95     | 340.03   |
| GP10      | 10/10/96 | 10/10/96 | 0        | 0       | 0            | 0          | 0        |
| GP3 @ 9M  | 10/10/96 | 10/10/96 | 27.27    | 0       | 0            | 0          | 0        |
| GP1 @ 10M | 10/11/96 | 10/11/96 | 4.72     | 0       | 0            | 0          | 0        |
| GP1 @ 9M  | 10/11/96 | 10/11/96 | 0        | 0       | 0            | 0          | 0        |
| GP3 @ 11M | 10/11/96 | 10/11/96 | 382.86   | 5.21    | 432.38       | 328.76     | 0        |
| GP9C      | 10/11/96 | 10/14/96 |          | 0       | 0            | 0          | 0        |
| GP9B      | 10/14/96 | 10/14/96 | 0.32     | 1.32    | 0            | 0          | 0.21     |
| GP8       | 10/14/96 | 10/14/96 | 30.09    | 1       | 0            | 0          | 0        |
| GP16      | 10/14/96 | 10/14/96 | 2.05     |         | 0            | 0          | 0        |
| GP9A      | 10/15/96 | 10/15/96 | 0.193    | 0.686   | 0            | 0          | 0        |
| GP10A     | 10/15/96 | 10/16/96 | 7.225    | 0       | 0            | 0          |          |
| GP18      | 10/15/96 | 10/16/96 | 0.545    | 0       | 0            | 0          | 0        |

<sup>\*</sup>GPD was driven and sampled at a location in the fuel yard during the site visit by the International group on 10/9/96



### Contaminant Concentrations September/October 1998 POL Yard, Rhein Main AB

|           | TPH-P  | Benzene | Toluene | Ethylbenzene | m,p-Xylene | o-Xylene | TPH-E (mg/L) | TPH-E (mg/L) | TPH-E (mg/L) |
|-----------|--------|---------|---------|--------------|------------|----------|--------------|--------------|--------------|
| Sample ID | (mg/L) | (ug/L)  | (ug/L)  | (ug/L)       | (ug/L)     | (ug/L)   | (Jet Fuel)   | (Diesel)     | (Oil)        |
| GP-1      | 2      | 3.1     | ND      | 2            | 9.9        | 1.9      | NA           | NA           | NA           |
| GP-1-10M  | 1.5    | 9.3     | ND      | 5.8          | 13         | 1.7      | NA           | NA           | NA           |
| GP-1-14M  | 12     | 1400    | 78      | 870          | 1500       | 520      | NA           | NA           | NA           |
| GP-1-17M  | 0.076  | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-2      | 9.8    | 240     | 11      | 650          | 2300       | 48       | NA           | NA           | NA           |
| GP-3      | 6.8    | 450     | ND      | 390          | 1200       | 6.7      | NA           | NA           | NA           |
| GP-3-10M  | 6.6    | 330     | 1.0     | 340          | 880        | 5.8      | NA           | NA           | NA           |
| GP-3-14M  | 0.068  | 0.56    | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP3-17M   | 0.085  | ND      | ND      | ND           | 0.5        | ND       | NA           | NA           | NA           |
| GP-4      | 0.6    | 40      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-5      | 3.2    | 12      | 1.4     | 260          | 280        | 5.1      | NA           | NA           | NA           |
| GP5-14M   | 7      | 99      | 5.2     | 270          | 1700       | 61       | NA           | NA           | NA           |
| GP-6      | 0.13   | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-7      | 0.14   | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-8      | ND     | 7.1     | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-9      | ND     | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-9B     | ND     | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-9C     | 0.18   | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-10     | 0.15   | 76      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-10A    | 5.9    | 780     | 77      | 310          | 170        | 48       | NA           | NA           | NA           |
| GP-11     | 0.14   | 0.61    | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-12     | ND     | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-14     | 0.56   | 8.3     | ND      | 2.4          | 1          | 1.2      | NA           | NA           | NA           |
| GP-15     | ND     | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-16     | 0.14   | 6.5     | ND      | 4.4          | 1.9        | 1.8      | NA           | NA           | NA           |
| GP-17     | ND     | 1.6     | ND      | 0.78         | ND         | ND       | NA           | NA           | NA           |
| GP-18     | ND     | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-19     | ND     | ND      | ND      | ND           | ND         | ND       | ' NA         | NA           | NA           |
| GP-20     | 0.074  | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-21     | ND     | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-23     | ND     | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| GP-25     | ND     | ND      | ND      | ND           | ND         | ND       | NA           | NA           | NA           |
| MW-1      | 12     | 800     | ND      | 390          | 1100       | 690      | ND           | ND           | ND           |
| MW-2      | 57     | 20,000  | 14,000  | 750          | 2000       | 800      | ND           | ND           | ND           |
| MW-3      | 18     | 4600    | 3300    | - 510        | 1500       | 420      | ND           | 150          | ND           |

ND = Not detected NA = Not analyzed

### Natural Attenuation Parameters September/October 1998 POL Yard, Rhein Main AB

|           | Sulfide | Mn     | Iron   | Nitrate | Sulfate | Alkalinity |
|-----------|---------|--------|--------|---------|---------|------------|
| Sample ID | (mg/L)  | (mg/L) | (mg/L) | (mg/L)  | (mg/L)  | (mg/L)     |
| GP-1      | 0.063   | 0.8    | 1.29   | 8.9     | 61.84   | 10         |
| GP-1-10M  | 0.125   | 2.1    | 2.61   | 5.6     | 51.68   | 60         |
| GP-1-14M  | 0.215   | 7.5    | 2.28   | 2.6     | 58.9    | 180        |
| GP-1-17M  | 0.165   | 1.3    | 1.42   | 9.7     | 66.89   | 25         |
| GP-2      | 0.326   | 8.5    | 2.87   | 4.5     | 10.28   | 260        |
| GP-3      | 0.055   | 6.7    | 2.13   | 5.1     | 1.87    | 160        |
| GP-3-10M  | 0.245   | 5.9    | 2.54   | 3.2     | 8.29    | 180        |
| GP-3-14M  | 0.096   | 0.14   | 1.56   | 4.4     | 62.92   | 60         |
| GP3-17M   | 0.189   | 3.3    | 3.38   | 3       | 55.24   | 75         |
| GP-4      | 0.086   | 1.0    | 0.75   | 0.25    | 15.01   | 70         |
| GP-5      | 0.086   | 3.7    | 2.41   | 3.3     | 2.81    | 180        |
| GP5-14M   | 0.166   | 3.8    | 2.31   | 2.7     | 1.98    | 160        |
| GP-6      | 0.119   | 3.7    | 3.24   | 6.0     | 84.22   | 140        |
| GP-7      | 0.165   | 3.5    | 2.25   | 3.2     | 19.69   | 200        |
| GP-8      | 0.144   | 0.18   | 2.22   | 16.1    | 46.57   | 95         |
| GP-9      | 0.121   | 0.5    | 3.82   | 4.2     | 74.25   | 50         |
| GP-9B     | 0.065   | 1.3    | 2.82   | 5.4     | 27.16   | 25         |
| GP-9C     | 0.074   | 0.15   | 2.91   | 2.6     | 24.72   | 120        |
| GP-10     | 0.233   | 4.8    | 2.97   | 7.5     | 45.9    | 180        |
| GP-10A    | 0.071   | 2.5    | 3.07   | 2.1     | 1.2     | 140        |
| GP-11     | 0.047   | 2.9    | 3.25   | 4.4     | 59.72   | 55         |
| GP-12     | 0.09    | 1.1    | 1.15   | 7.1     | 29.8    | 35         |
| GP-14     | 1.086   | 2.2    | 5.09   | 4.8     | 6.6     | 120        |
| GP-15     | 1.0     | 2.2    | 3.16   | 3.0     | 44.86   | 160        |
| GP-16     | 0.074   | 3.0    | 2.89   | 2.7     | 18.95   | 195        |
| GP-17     | 0.148   | 2.2    | 3.23   | 0.9     | 1.04    | 200        |
| GP-18     | 0.08    | 1.5    | 2.36   | 1.7     | 2.73    | 180        |
| GP-19     | 0.017   | 0.6    | 0.68   | 9.4     | 27.47   | 30         |
| GP-20     | 0.067   | 3.2    | 1.69   | 21.1    | 42.25   | 45         |
| GP-21     | 0.111   | 10.2   | 2.84   | 0.9     | 2.21    | 300        |
| GP-23     | 0.04    | 0.6    | 0.74   | 5.8     | 73.45   | 50         |
| GP-25     | 0.102   | 1.7    | 2.03   | 13.8    | 58.24   | 25         |
| MW-1      | 0.04    | 4.7    | 0.87   | 1.3     | 42.17   | 90         |
| MW-2      | 0.719   | 3.1    | 2.31   | 5       | 2.54    | 90         |
| MW-3      | 1.87    | 3.5    | 1.61   | 6.6     | 0.81    | 85         |

### Probe Head Groundwater Quality Parameters Measured with YSI Instruments Rhein-Main Air Base 1998 Survey

| Well      | Temp  | Cond  | Doc  | 00    | ORP    | SpC   | He   | Trb  | Date   |
|-----------|-------|-------|------|-------|--------|-------|------|------|--------|
| 3P1       | 13.22 | 0.172 | 63.5 | 0.37  | 61.1   | 0.222 | 5.20 | 1.3  | 22-Sep |
| GP1 (10m) | 13.33 | 0.187 | 59.4 | 0.45  | -41.8  | 0.241 | 5.48 | 0.5  | 30-Sep |
| GP1 (14m) | 12.59 | 0.362 | 77.8 | 0.61  | -103.0 | 0.474 | 8.16 | 0.3  | 1-Oct  |
| GP1 (17m) | 14.34 | 0.369 | 9.89 | 1.12  | -47.5  | 0.463 | 6.10 | 0.8  | 1-Oct  |
| GP10      | 16.87 | 0.506 | 9.07 | 1.12  | -9.4   | 0.600 | 6.18 | -9.0 | 23-Sep |
| 3P10A     | 12.68 | 0.220 | 64.5 | 0.36  | -4.3   | 0.287 | 6.27 | 0.7  | 23-Sep |
| GP11      | 14.01 | 0.245 | 62.5 | 0.35  | -4.2   | 0.310 | 6.24 | 0.8  | 29-Sep |
| GP12      | 13.57 | 0.194 | 78.8 | 4.55  | 88.8   | 0.248 | 5.85 | 0.7  | 29-Sep |
| GP14      | 13.56 | 0.295 | 9.79 | 0.39  | -138.0 | 0.378 | 5.88 | 0.5  | 23-Sep |
| GP15      | 12.40 | 0.504 | 61.4 | 0.57  | -109.6 | 0.664 | 6.28 | 0.0  | 25-Sep |
| GP17      | 13.35 | 0.311 | 56.3 | 0.32  | -21.2  | 0.400 | 6.35 | 0.5  | 28-Sep |
| GP18      | 12.79 | 0.263 | 54.3 | 0.18  | -30.3  | 0.344 | 6.64 | 0.4  | 28-Sep |
| GP19      | 14.35 | 0.165 | 76.8 | 8.57  | 78.2   | 0.207 | 6.04 | 0.8  | 29-Sep |
| GP2       | 13.28 | 0.350 | 63.5 | 0.74  | 6.06-  | 0.451 | 6.15 | -0.3 | 24-Sep |
| P20       | 12.68 | 0.326 | 55.3 | 0.62  | 20.7   | 0.426 | 5.79 | 0.4  | 28-Sep |
| P21       | 13.88 | 0.439 | 56.3 | 0.28  | -34.1  | 0.557 | 6.56 | 0.4  | 28-Sep |
| P23       | 11.63 | 0.343 | 78.8 | 2.58  | 43.4   | 0.461 | 6.79 | 9.0  | 30-Sep |
| GP25      | 13.27 | 0.239 | 79.8 | 8.22  | 100.9  | 0.309 | 5.66 | 0.8  | 30-Sep |
| GP3       | 15.25 | 0.412 | 9.89 | 0.65  | -38.5  | 0.507 | 6.10 | 1.3  | 22-Sep |
| GP3 (14m) | 12.87 | 0.222 | 59.4 | 0.45  | 36.7   | 0.355 | 6.13 | 0.3  | 1-Oct  |
| GP3 (16m) | 12.84 | 0.274 | 9.69 | 0.54  | 10.8   | 0.357 | 6.24 | -0.1 | 1-Oct  |
| GP4       | 13.84 | 0.258 | 60.4 | 0.79  | 92.0   | 0.328 | 5.73 | -0.5 | 24-Sep |
| P5        | 13.29 | 0.278 | 63.5 | 0.59  | -60.5  | 0.358 | 6.02 | 1.3  | 22-Sep |
| GP5 (14m) | 12.81 | 0.268 | 0.06 | 20.80 | -104.9 | 0.350 | 7.07 | 0.1  | 1-Oct  |
| GP6       | 14.82 | 0.359 | 59.4 | 0.71  | -42.3  | 0.445 | 6.12 | -3.0 | 24-Sep |
| GP7       | 12.22 | 0.340 | 64.5 | 0.44  | 17.2   | 0.449 | 5.35 | 0.7  | 30-Sep |
| GP8       | 12.74 | 0.374 | 59.4 | 0.63  | 31.8   | 0.489 | 5.86 | -0.2 | 25-Sep |
| GP9       | 13.17 | 0.261 | 64.5 | 0.54  | -53.0  | 0.337 | 5.80 | 0.5  | 23-Sep |
| GP9B      | 13.08 | 0.199 | 61.4 | 0.58  | 58.8   | 0.250 | 5.64 | -0.5 | 25-Sep |
| GP9C      | 13.69 | 0.233 | 66.5 | 0.57  | -13.7  | 0.298 | 6.19 | 0.5  | 24-Sep |
| GP16      | 12.40 | 0.504 | 61.4 | 0.57  | -109.6 | 0.664 | 6.28 | 0.0  | 25-Sep |
| IW3       | 14.30 | 0.164 | 59.4 | 0.28  | -107.9 | 0.205 | 8.26 | 0.1  | 2-Oct  |

Note: Temp = temperature (C); Cond = conductivity (mV/cm); Doc = dissolved oxygen (mg/L); DO = dissolved oxygen (%); ORP = oxygen/reduction potential (mV); SpC = specific conductivity (mV/cm); Trb = turbidity (NTU); Date = date of reading in 1998

### APPENDIX H PHOTO OF ON-SITE FIELD AVTIVITIES



Typical Soil Samples (VW-2 Boring) (3/96)



Typical Soil Samples (VW-2 Boring) (3/96)



Typical Soil Samples - Very Sandy Soils (3/96)



Typical Aquifer Material – Well-Sorted Sand (3/96)



Drilling a Vent Well at the POL Yard



Downgradient View Along Transect from Near GP-1
[In order (foreground to background) former biopile;
oil-water separator; catchment basin (former sand pit); airport] (9/98)



Upgradient View Along Transect from Near GP-1 Location (View is to southeast into POL yard) (9/98)



View to Northeast from Close to GP-5 Location, Location of Removed Biopile (9/98)



GP-1 Location Looking Into POL Yard (Upgradient) (9/98)



Typical Stockpiled Materials in Area Downgradient of POL Yard (9/98)



View of Newly-Completed Catchment Basin (9/98)



Geoprobing at GP-10A Location, Note Biopiled Soils Behind Workers



Geoprobing at GP-3 Location (9/98)



Measuring Probe-Head Parameters at GP-16 Location During Phase 1 (3/96)



Collecting Probe-Head Measurements During Phase 1 (3/96)



Collecting a Dissolved Oxygen Reading During Phase 1 (3/96)



Collecting a Groundwater Sample with Waterra Pump (3/96)



Sampling and Survey Equipment on Back of Geoprobe Unit (9/98)



Collecting Probe-Head Measurements at GP-2 During Phase 2 (9/98)



Collecting Measurements at MW-3 Location Within POL Yard (9/98)



**POL Yard Bioventing Control Box and Air Pump** 



Split-Spoon Sampler Display at Joint Technology Conference (10/96)



Bioventing Display at Joint Technology Conference (10/96)



Bioventing Display at Joint Technology Conference (10/96)