

Exercise 6

Date of Issue: 12.04.2021

Date of Issue Solutions: 19.04.2021

1 Anomalies

Consider the following relation schema: ${\bf gameRelease}$

gameRelease(developer, game, platform, release_year)

The primary key is (game, platform).

gameRelease

	developer	game	platform	release_year
g_1	ZeniMax Online Studios	Elder Scrolls Online	PC/Mac	2014
g_2	ZeniMax Online Studios	Elder Scrolls Online	Xbox	2014
g_3	Arkane Studios	Dishonored 2	PC/Mac	2016
g_4	Lucas Arts	Monkey Island	DOS	1990

For each of the following tasks, use the instance of **gameRelease** given above.

1. Insert anomaly

- (a) Give a DML statement that leads to an *insert* anomaly in this instance of **gameRelease**.
- (b) Explain shortly, but precisely why your statement leads to an *insert* anomaly. State all your assumptions.

2. Update anomaly

- (a) Give a DML statement that leads to an *update* anomaly in this instance of **gameRelease**.
- (b) Explain shortly, but precisely why your statement leads to an *update* anomaly. State all your assumptions.

3. Delete anomaly

- (a) Give a DML statement that leads to a *delete* anomaly in this instance of **gameRelease**.
- (b) Explain shortly, but precisely why your statement leads to a *delete* anomaly. State all your assumptions.

2 Functional Dependencies

- 1. Consider a relation schema $\mathcal{R}(A,B,C,D)$ for which the functional dependencies $\{B \to C, D \to A\}$ hold. List all the candidate keys and all the superkeys of \mathcal{R} .
- 2. Given the following set $\mathcal{F}_{\mathcal{R}}$ of functional dependencies for relation schema $\mathcal{R}(A,B,C,D,E,F)$:

$$\mathcal{F}_{\mathcal{R}} = \{ \\ A \rightarrow DE, \\ B \rightarrow F, \\ CE \rightarrow D, \\ F \rightarrow BD, \\ E \rightarrow A \\ \}$$

Determine for each functional dependency F_1 listed bellow if it can be derived from $\mathcal{F}_{\mathcal{R}}$.

(i.e.,
$$\mathcal{F}_{\mathcal{R}} \Rightarrow F_1$$
)

- (a) $CEF \rightarrow ABCDEF$
- (b) $AF \rightarrow ABCDEF$
- (c) $E \to D$
- (d) $ACF \rightarrow BCD$
- (e) $ABC \rightarrow DEF$
- (f) $D \rightarrow B$
- 3. Consider a relation schema $\mathcal{R}(A,B,C,D,E,F)$ for which the functional dependencies $\{ABC \to BC, B \to C, C \to DE, F \to B\}$ hold. Decide if $AF \to D$ holds.
- 4. Consider a relation schema $\mathcal{R}(A,B,C,D,E,F)$ for which the functional dependencies $\{AB \to C, BC \to AD, D \to E, CF \to B\}$ hold. Use the inference rules you learn in the lecture and show that AB \to D holds.

3 Multivalued Dependency

1. Assume B \rightarrow A is a multivalued dependency on the relation schema $\mathcal{R}(A,B,C)$. Based on the three tuples in relation R, add all other tuples that must belong to the relation.

$$\begin{array}{c|ccccc} R & & & & \\ & A & B & C \\ \hline r_1 & a & 1 & 7 \\ r_2 & c & 1 & 8 \\ r_3 & e & 1 & 9 \\ \end{array}$$

- 2. Disprove the following statements. Hint: Find a counterexample to disprove the statements.
 - (a) $X \rightarrow Y \Rightarrow X \rightarrow Y$
 - (b) $X \rightarrow Y Z \Rightarrow X \rightarrow Y, X \rightarrow Z$