date: monday, february 5, 2024

Second Sylow Theorem

 Def^{\bullet} : A Sylow p-subgroup P of G is a subgroup that is a maximal p-group in G. Ie. if $IGI=p^{\circ}m$ with gcd(p,m)=1, then any subgroup of order p° is a Sylow p-subgroup.

Note: The First Sylow Theorem implies there always exists at least one Sylow p-group.

G×G->G
(g,h) -> ghg'

The cose D of the Second and Town Subject Transmiss (180 a at Domes

The proof of the First Sylow Theorem used the group action:

The proof of the Second and Third Sylow Theorem use a different action.

Let $S = \mathcal{E}$ all subgroups of G3. We define a G-action on S by $G \times S - S$ $(g, K) - g K g^{-1} = g \cdot K$.

Def^a: Say subgroups L and K are congruent if there exists $g \in G$ such that $L = g K g^{-1}$. If H is a subgroup of G, we say L and K are H-congruent if exists hell such that $L = h K h^{-1}$.

Defⁿ: $N(H) = \{g \in G \mid g \mid g^{-1} = H\}$ is the normalizer of H. 2-this plays the "role" of C(x)

Proposition: N(H) is a subgroup of G (and H≤N(H))

H is normal in N(H)

N(H) is the largest subgroup of G such that H is normal in it.

Second Sylow Theorem: Let G be a finite group and pllGl with p prime. If P., P. are two sylow p-subgroups of G, then they are conjugates, ie. exists geG such that $P_2 = gP.g^{-1}$.

Lemma ①: Let P be a sylow p-subgroup and suppose $\alpha \in G$ with $|\alpha| = p^m$. If $\alpha P \alpha^{-1} = P$, then $\alpha \in P$.

Note: $\alpha \in N(P)$, and since P is normal in N(P), $\alpha \in P$ is a cyclic subgroup of N(P)/P.

Note: $|\alpha| = p^m$ for some ℓ , since $(\alpha P)^{P^m} = \alpha^{P^m} P = eP = P$. So $|\alpha| = P^m$.

Note: $|xP| = p^p$ for some ℓ , since $(xP)^p = x^{p^m}P = eP = P$. So $|xP||P^m$.

Proof

By the Correspondence Theorem, there exists a subgroup H such that $P \subseteq H \subseteq N(P)$ and $H/p = \langle xP \rangle$. So $|H| = |\langle xP \rangle + |P|$. Ie. |H| is a power of p. But P is the largest subgroup that is a power of P = P. So |xP| = P = P.

is a power of p. But P is the largest subgroup that is a power of P => H = P. So $\alpha P = P => \alpha \in P$.

Lemma ②: Let H and K be subgroups of G. The number of distinct H-conjugates of K is [H:N(K)nH].

Proof (different from the book, uses group actions)

=[H:Hk] where Hk={heH|n.K=K<=>hKh-=K} (h.K)+>hKh-1 =[H:N(K)nH] = N(K)nH Proof (second Sylow) Suppose IGI=pm with ocd(p,m)=1. And let P by a Sylow p-subgroup

| [hKh- | heH3 | = | Ok | <- number of orbits of K under the action HxS->S

Suppose [G] = p'm with gcd(p,m) = 1. And let P by a Sylow p-subgrawith $[P] = p^r$. Let $S = \{gPg^r|g \in G\}$. By the previous result, the number of distinct conjugates given by $[S] = [G:N(P) \cap G] = [G:N(P)]$. We have [G] = [G:N(P)][N(P)]. Since $P \subseteq N(P)$, $p^r[N(P)]$. This forces

We have 1GI = LG: N(P)JIN(P)I. Since $P \subseteq N(P)$, P: IIN(P)I. This forces P: [G: N(P)] = |S|.

Let Q be any other Sylow p-subgroup. Want to show QES. For each P.ES, consider the Q-conjugates of P., ie. {qP,q-1 qeQ}. This is a subset of S
Also, $ \{qPq^- q\in Q\} = [Q:N(P_i)\cap Q] = p^r$, we have $p^{\ell}[[Q:N(P_i)\cap Q]]$ for some ℓ . The sets
$A_1 = \{qP_1q^{-1} q \in Q \}$ $A_2 = \{qP_2q^{-1} q \in Q \}$
partition the set S, ie. $S=A.UA_2UUA_L$ for some t. Note $ A_L = [Q:N(P_L) \cap Q] = P^{\ell_L}$ with $\ell_L \geqslant 0$.
If each $ A_i \ge p$, this forces plls1. But ptls1. So some $ A_i = 1 <=> \{qPq^- qeQ\} = \{P_i\}$.
But, $ q =p^m$ for some m and $qP_iq^*!=P_i$. But by Lemma \mathcal{D} , this says $q\in P_i$. So for all $q\in Q$, $q\in P_i$. Ie. $Q\subseteq P_i$. But $ Q = P_i $, so $Q=P_i$.
IMPORTANT COROLLARY A Sylow p-subgroup is normal if and only if there is exactly one Sylow p-subgroup.
P(1)()+
"=>"Suppose P and Q are sylow p-subgroups. So they are conjugates, ie. gPg-"=Q for all geG. But P is normal, so P=gPg-"=Q. "(="Suppose P is the only Sylow p-subgroup. Then for any geG. gPg-"=P since IgPg-" =IPI, ie. gPg-" is also a Sylow p-subgroup. So P is normal since true for all geG.
This florthan strice fraction and gear.