Administración de Memoria Sistemas Operativos

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

20 de abril de 2023

Memoria Virtual: Repaso

- ► Memoria Virtual: Hacerle creer al proceso que dispone de más memoria de la que realmente tiene en cada momento.
- Memoria física < Memoria Virtual.</p>
- La memoria virtual puede implementarse con diferentes técnicas, incluyendo paginación, segmentación, o una combinación de ambos.
- ► El tamaño de la memoria virtual depende de la capacidad de direccionamiento (cantidad de bits dispuesto para esto).
- La memoria virtual requiere soporte especial del hardware y del sistema operativo.

Repasemos definiciones

- Dirección virtual: dirección lógica que usa el proceso.
- Dirección física: dirección real en memoria física.
- Marcos de página: "pedazos" de tamaño fijo en que se divide la memoria física.
- Páginas: "pedazos" en los que se divide la memoria virtual, del mismo tamaño que los marcos de página.
- **Fragmentación:** memoria que se vuelve inutilizable.
- Page fault: evento que ocurre cuando una página solicitada no está en memoria y debe ser copiada desde el disco.

Ejercicios:

1. Tengo direcciones de 16 bits. ¿Cuánta memoria virtual puedo tener direccionando cada byte? ¿Cuánta física?

16 bits \rightarrow 2¹⁶ direcciones diferentes.

Queda la misma cantidad de memoria física que virtual.

2. Tengo 65536 (2¹⁶) bytes de memoria física dividida en unidades de direccionamiento de 16 bits. ¿Cuántos bits necesito para direccionar?

$$16 \text{ bits} = \frac{2 \text{ bytes}}{}$$

$$\frac{\textit{tam_mem_en_bytes}}{\textit{tam_bloque_en_bytes}} = \frac{2^{16}}{2} = 2^{15} \text{ bloques}$$

Necesito 15 bits

Paginación y Segmentación: Repaso

Paginación	Segmentación		
Pedazos del mismo tamaño.	• <i>Pedazos</i> de tamaño variable.		
El usuario ni se entera del particionamiento.	• El usuario tiene que saber de los tamaños y límites de los segmentos.		
• Favorece fragmentación interna.	• Favorece fragmentación externa.		

► En un enfoque combinado, el espacio de direcciones virtuales se divide en segmentos de tamaño variable, y los segmentos se dividen en páginas de tamaño fijo.

Remoción de páginas

- Algoritmos de remoción:
 - ► FIFO: La clásica de siempre.
 - LRU: Desalojo la página que hace más tiempo que no se usa.
 - Segunda oportunidad: Si fue referenciada, le doy otra oportunidad.
 - ► Not Recently Used: Primero desalojo las que no fueron referenciadas ni modificadas. Después, las solamente referenciadas y por último las modificadas.

Ejercicio:

- Tengo un sistema con 6 páginas y sólo 4 marcos de página. La memoria comienza vacía.
- Llegan los siguientes pedidos de memoria (número de página) en ese orden:
- **▶** 1, 2, 1, 3, 4, 3, 5, 6, 2
- Indique qué página se desaloja tras cada pedido utilizando los algoritmos FIFO, LRU y Second Chance y calcule el hit-rate en cada caso.
- Hit-Rate= Páginas qué pedí y ya estaban cargadas en memoria / páginas totales pedidas.

Solución

Solución

	FIFO		LRU		Second Chance	
1	1	1000	1	1000	1	10000
2	1 2	1200	12	1200	12	1200
1	12	1200	12	2100	12	1200
3	1 2 3	1230	1 2 3	2130	123	123 0
4	1234	1234	1234	2134	1234	1234
3	1 2 3 4	1234	1 2 3 4	2143	1234	1234
5	5234	2345	1534	1435	1234	1 2341 1 3415
6	5634	3456	6 5 3 4	4356		14153 1536
2	5624	4562	6532	3562	2536	5362

Solución

- ► Hit-Rate (FIFO) = 2 / 9
- ► Hit-Rate (LRU) = 2 / 9
- ► Hit-Rate (SC) = 2 / 9

Asignación de memoria

- ¿Qué porción de memoria conviene asignar?
- Algoritmos de elección de bloque libre:
 - First fit: La primera sección de memoria contigua del tamaño necesario.
 - ▶ Best fit: De todas las secciones de tamaño mayor o igual al tamaño necesario, tomo la más chica.
 - **Worst fit:** Mejor tomo la más grande.
 - Quick fit: Se usan listas de bloques de determinados tamaños, para accederlos más rápido.

Ejercicio:

► Tengo un sistema con 16 MB de memoria sin particionar que direcciona a byte. El estado actual de la memoria es el siguiente (cuadrado= 1MB):

Llegan los siguientes pedidos de memoria en ese orden: 512 KB. 3 MB. 1 MB. 2MB. 512 KB.

▶ Indique qué bloques se asignan para cada pedido utilizando first-fit, best-fit y worst-fit.

Solución First-Fit

Solución Best-Fit

Solución Worst-Fit

Entonces, ¿Cuál es mejor?

