Lecture 15

Least squares estimation

Singular value decomposition (SVD)

Wed. Oct. 28, 2020

Recall from lecture 5.

Version 1: linear regression

Error is distance to line in *y* direction only.

Version 2: "total least squares"

Error is distance perpendicular to line.

Least squares: version 2

Find the $m{u}$ that minimizes L2 norm $\| m{A} \, m{u} \|^2$ subject to $\| m{u} \| = 1$.

where

- A is an $m \times n$ data matrix, $m \ge n$
- \boldsymbol{u} is a $n \times 1$ vector of variables

Find unit vector u that minimizes the L2 norm of Au.

Examples of Version 2 Problems (next two weeks)

- Camera calibration
- Image Stitching for panoramas
- Binocular Stereo

Least squares: version 2

Find the $oldsymbol{u}$ that minimizes L2 norm $\parallel oldsymbol{A} \ oldsymbol{u} \parallel^2$

subject to $\|u\| = 1$, where

- A is an $m \times n$ data matrix, $m \ge n$
- \boldsymbol{u} is a $n \times 1$ vector of variables

Solution (claimed back in lecture 5):

Compute the eigenvectors of $m{n} imes m{n}$ matrix $m{A}^T m{A}$.

Take the unit eigenvector that has the smallest eigenvalue.

Why does the eigenvector of A^TA with the minimum eigenvalue solve this problem ?

Main idea: first suppose u is an eigenvector of A^TA :

$$\| \boldsymbol{A} \boldsymbol{u} \|^2 = \boldsymbol{u}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{u}$$

$$= \lambda \boldsymbol{u}^T \boldsymbol{u} \qquad \text{if } \boldsymbol{u} \text{ is an eigenvector (and } \lambda \text{ is its eigenvalue)}$$

$$= \lambda \qquad \qquad \text{when } \boldsymbol{u} \text{ has unit length}$$

So we want the eigenvector with smallest eigenvalue.

because L2 norm is non-negative.

Why does the eigenvector of A^TA with the minimum eigenvalue solve the problem ?

Linear algebra tells us that the $n \times n$ matrix $\mathbf{A}^T \mathbf{A}$ has

- *n* orthogonal eigenvectors
- non-negative eigenvalues

Therefore we can write any vector u as a sum of these eigenvectors. By inspection, $u^T A^T A u$ will be smallest when u is the eigenvector with smallest eigenvalue.

Singular Value Decomposition (SVD)

Let A be any $m \times n$ real data matrix.

In our examples, $m \geq n$.

Since the eigenvectors of A^TA are orthogonal and the eigenvalues are non-negative, we can write:

$$A^T A V = V D$$

where

- the columns of $oldsymbol{V}$ are orthonormal eigenvectors of $oldsymbol{A}^Toldsymbol{A}$
- $oldsymbol{D}$ is a diagonal matrix of (non-negative) eigenvalues

Since the eigenvectors of A^TA are orthogonal and the eigenvalues are non-negative, we can write:

$$A^T A V = V \Sigma^2$$

where

- ullet the columns of $oldsymbol{V}$ are ortho*normal* eigenvectors of $oldsymbol{A}^Toldsymbol{A}$
- Σ is a diagonal matrix, whose elements are called the singular values of A

$$A^T A V = V \Sigma^2$$

Multiplying on the left by $oldsymbol{V^T}$ gives:

$$V^T A^T A V = \Sigma^2$$

$$A^T A V = V \Sigma^2$$

Multiplying on the left by $oldsymbol{V^T}$ gives:

$$V^T A^T A V = \Sigma^2$$

By inspection, the columns of AV are orthogonal. Therefore we can uniquely define a matrix U such that:

$$A V = U \Sigma$$

where the columns of \boldsymbol{U} are parallel to columns of $\boldsymbol{A} \, \boldsymbol{V}$ (and orthonormal).

Q: What are the magnitudes of the columns of AV?

Singular Value Decomposition (SVD)

From the previous slide:

$$A V = U \Sigma$$

Since the columns of $\c V$ are orthonormal, right multiplying by $\c V^T$ gives:

$$A = U \Sigma V^T$$

This is known as the Singular Value Decomposition (SVD) of A.

What does the matrix A do when you multiply it by an n vector: Ax?

Matlab

n singular valuesreturned as a vectorin decreasing order

Examples of Version 2 Problems (coming soon)

- Camera calibration
- Image Stitching for panoramas
- Binocular Stereo

For each of these problems, we will set up a data matrix \mathbb{A} and solve the problem by taking the SVD. The solution will be the column of matrix \mathbb{V} that corresponds to the smallest singular value.

Recall from lecture 5.

Version 1: linear regression

Error is distance to line in *y* direction only.

Version 2: "total least squares"

Error is distance perpendicular to line.

Given **A** and **b** defined below, find the **u** that minimizes:

$$\| \mathbf{A} \mathbf{u} - \mathbf{b} \|^2$$

where

 ${f A}$ is an $m \times n$ matrix, where $m \ge n$

u is a $n \times 1$ vector of variables

b is a $m \times 1$ data vector

(lecture 5) To find the \mathbf{u} that minimizes:

$$\| \mathbf{A} \mathbf{u} - \mathbf{b} \|^2$$

we solve for:

$$\mathbf{u} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

This matrix is called the *pseudoinverse* of ${\bf A}.$ It is typically written ${m A}^+$.

Let's give a geometric interpretation of this matrix and then relate it to the SVD.

pseudoinverse
$$A^+ \equiv (A^T A)^{-1} A^T$$

What does the pseudoinverse do?

$$A^+ \equiv (A^T A)^{-1} A^T$$

Thus,

$$\bigcap_{\mathbf{A}^{+}}^{\mathbf{A}}$$

$$A^{+}A = (A^{T}A)^{-1}A^{T}A = I$$

$$\mathbf{A} \mathbf{A}^{+} = \mathbf{A} \left(\mathbf{A}^{\mathrm{T}} \mathbf{A} \right)^{-1} \mathbf{A}^{\mathrm{T}} \neq \mathbf{I}$$

equality if *A* is invertible.

Given ${\bf A}$ and ${\bf b}$ in ${\mathcal R}^m$, find the ${\bf u}$ in ${\mathcal R}^n$ that minimizes $\| {\bf A} {\bf u} - {\bf b} \|^2$. The solution is ${\bf u} = {\bf A}^+ {\bf b}$.

Given **A** and **b** in \mathcal{R}^{m} , find the **u** in \mathcal{R}^{n} that minimizes $\|\mathbf{A}\mathbf{u} - \mathbf{b}\|^{2}$.

The solution is $\mathbf{u} = \mathbf{A}^+ \mathbf{b}$. Intuitively (and as we'll argue next), $\mathbf{A}\mathbf{u}$ is the orthogonal projection of \mathbf{b} onto the column space of \mathbf{A} .

25

Substitute
$$A = U \Sigma V^T$$
 into $A^+ \equiv (A^T A)^{-1} A^T$

Exercise: Show this gives $A^+ = V \Sigma^{-1} U^T$.

Exercise: Show $AA^+ = UU^T$.

 $\mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathrm{T}}$.

The crossed out statement is not true.

 $A A^+ = U U^T b$

 UU^T is an $m \times m$ diagonal matrix, with 1's on the first n diagonals and 0's on the last m-n diagonals. Why?

 UU^T is an $m \times m$ matrix which projects b to the column space of A.

$$\mathbf{A}^+ = V \, \mathbf{\Sigma}^{-1} \mathbf{U}^T$$

Next Two Weeks...

Camera calibration

Image Stitching for panoramas

Binocular Stereo