Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

Лабораторная работа № 5 Изучение шифров AES и Кузнечик

Студентка:

Усачева Дарья, группа 1384

Руководитель:

Племянников А.К., доцент каф. ИБ

Санкт-Петербург, 2024

Цель работы и задачи

Цель: Повысить свою компетенцию в области симметричных блочных шифров и в криптографии в целом.

Задачи:

- 1. Изучить преобразования AES.
- 2. Провести исследование криптостойкости AES.
- 3. Изучить действия нарушителя при атаке предсказанием дополнения на шифр AES в режиме CBC.
- 4. Изучить алгоритм развертывания ключа шифра Кузнечик.
- 5. Изучить раундовые преобразования шифра Кузнечик.

Изучение преобразований AES

Ручной расчет

Открытый текст: USACHEVADARIA123

Ключ: 1384VLADIMIROVNA

Результат раунда 1

Результат раунда 1 совпадает с результатом раунда 1 ручного расчета.

Ключ раунда 1

Ключ раунда 1 совпадает с результатом ручного расчета ключа 1.

Исследование криптостойкости AES

Шаблон атаки «грубой силы» CrypTool 2

Оценка времени атаки грубой силы

Результаты трудоемкости энтропийной атаки «грубой силы» для различных вариантов знаний о ключе и количестве задействованных процессорных ядер.

Кол-во известных байт	Ожидаемые временные затраты			
	1 ядро	2 ядра	4 ядра	
n – 2	1 c	1 c	1 c	
n – 4	2 ч 46 мин	1 час 39 мин	47 мин	
n – 6	16.9 лет	9.5 лет	5.6 лет	

Оценка времени атаки грубой силы

Результаты трудоемкости текстовой атаки «грубой силы» для различных вариантов знаний о ключе и количестве задействованных процессорных ядер.

Открытый текст DEARSIRSDIDYOUKNOWTHATILOVECATSTHANKS, оценочная функция DEARSIRS. Как можно заметить, затрачиваемое время уменьшилось.

Кол-во известных байт	Ожидаемые временные затраты			
	1 ядро	2 ядра	4 ядра	
n – 2	1 c	1 c	1 c	
n – 4	1 ч 18 мин	45 мин	27 мин	
n – 6	9.5 лет	5.2 лет	3.2 года	

Изучение действий нарушителя при атаке предсказанием дополнения на шифр AES в режиме CBC.

Результаты 3 фаз атак

Схема алгоритма действия нарушителя

Изучение алгоритма развертывания ключа шифра Кузнечик

Ручной расчет развертывания ключа

Ключ: 1384VLADIMIROVNA1384VLADIMIROVNA

Результат развертывания ключа шифра

Результат выполнения итерации 9 не совпадает с результатом ручного расчета.

Проанализировав выводы работы приложения ЛИТОРЕЯ, заметим, что С9 задана неверно, она должна иметь вид: 09be2efa901cdcf0312c4d8a6440fb98.

В результате 16 сдвигов байт 09 должен вернуться на первую позицию. Однако в ЛИТОРЕЕ этого не произошло, что позволяет сделать вывод о неправильности реализации линейного преобразования.

Изучение раундовых преобразований шифра Кузнечик

Ручной расчет раунда 9

Открытый текст: USACHEVADARIA123

Ключ: 1384VLADIMIROVNA1384VLADIMIROVNA

Результат раунда 9

Результат выполнения раунда 9 не совпадает с результатом ручного расчета. Объяснение этому представлено на слайде номер 16.

Заключение

1. Изучены преобразования AES по шаблонной схеме AES Visualisation.

Алгоритм выполняет 10,12,14 (для ключей длины 128, 192, 256 бит соответственно) раундов шифрования с выполнением различных обратимых преобразований (SubBytes, ShiftRows, MixColums, AddRoundKey). Выяснено, что раундовый ключ генерируется последовательно (слово за словом) при помощи преобразований RotWord, SubWord и раундовой константы Rcon(i).

2. Проведено исследование криптостойкости AES.

Были сделаны следующие выводы:

- Увеличение известной части секретного ключа ускоряет атаку, а рост числа процессорных ядер значительно сокращает её время.
- Использование специфических оценочных функций (например, "DEAR SIRS") повышает эффективность атак по сравнению с применением энтропийных методов.
- 3. Изучены действия нарушителя при атаке предсказанием дополнения на шифр AES в режиме CBC.
- В режиме СВС была исследована атака Padding Oracle Attack, включающая три фазы: поиск допустимого заполнения, определение его длины и побайтовое расшифрование.
- 4. Изучен алгоритм развертывания ключа шифра Кузнечик.

Выяснено, что каждая последующая пара раундовых ключей генерируется с использованием восьми итераций сети Фейстеля, где на каждой итерации генерируется константа и выполняются L,S,X преобразования.

5. Изучены раундовые преобразования шифра Кузнечик.

Алгоритм выполняет девять полных раундов с последовательными X, L, S преобразованиями. Заключительный десятый раунд включает в себя только X преобразование.