Machine Learning Techniques

(機器學習技法)

Lecture 3: Kernel Support Vector Machine

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 Embedding Numerous Features: Kernel Models

Lecture 2: Dual Support Vector Machine

dual SVM: another QP with valuable geometric messages and almost no dependence on \tilde{d}

Lecture 3: Kernel Support Vector Machine

- Kernel Trick
- Polynomial Kernel
- Gaussian Kernel
- Comparison of Kernels
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

Dual SVM Revisited

goal: SVM without dependence on \tilde{d}

half-way done:

$$\begin{aligned} & \min_{\boldsymbol{\alpha}} & & \frac{1}{2}\boldsymbol{\alpha}^T \mathbf{Q}_{\mathrm{D}}\boldsymbol{\alpha} - \mathbf{1}^T \boldsymbol{\alpha} \\ & \text{subject to} & & \mathbf{y}^T \boldsymbol{\alpha} = 0; \\ & & \alpha_n \geq 0, \text{for } n = 1, 2, \dots, N \end{aligned}$$

• $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$: inner product in $\mathbb{R}^{\tilde{d}}$

Kernel Trick

Dual SVM Revisited

goal: SVM without dependence on \tilde{d}

half-way done:

$$\begin{aligned} & \min_{\boldsymbol{\alpha}} & & \frac{1}{2}\boldsymbol{\alpha}^T \mathbf{Q}_{\mathrm{D}}\boldsymbol{\alpha} - \mathbf{1}^T \boldsymbol{\alpha} \\ & \text{subject to} & & \mathbf{y}^T \boldsymbol{\alpha} = 0; \\ & & \alpha_n \geq 0, \text{for } n = 1, 2, \dots, N \end{aligned}$$

- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$: inner product in $\mathbb{R}^{\tilde{d}}$
- need: $\mathbf{z}_{n}^{\mathsf{T}}\mathbf{z}_{m} = \mathbf{\Phi}(\mathbf{x}_{n})^{\mathsf{T}}\mathbf{\Phi}(\mathbf{x}_{m})$ calculated faster than $O(\tilde{\boldsymbol{\sigma}})$

Dual SVM Revisited

goal: SVM without dependence on \tilde{d}

half-way done:

$$\begin{aligned} & \min_{\boldsymbol{\alpha}} & & \frac{1}{2}\boldsymbol{\alpha}^T \mathbf{Q}_{\mathrm{D}}\boldsymbol{\alpha} - \mathbf{1}^T\boldsymbol{\alpha} \\ & \text{subject to} & & \mathbf{y}^T\boldsymbol{\alpha} = 0; \\ & & \alpha_n \geq 0, \text{for } n = 1, 2, \dots, N \end{aligned}$$

- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$: inner product in $\mathbb{R}^{\tilde{d}}$
- need: $\mathbf{z}_{n}^{\mathsf{T}}\mathbf{z}_{m} = \mathbf{\Phi}(\mathbf{x}_{n})^{\mathsf{T}}\mathbf{\Phi}(\mathbf{x}_{m})$ calculated faster than $O(\tilde{\boldsymbol{\sigma}})$

can we do so?

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

$$\Phi_2(\mathbf{x})^T \Phi_2(\mathbf{x}') = 1 + \sum_{i=1}^d + \sum_{j=1}^d \sum_{i=1}^d$$

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

$$\Phi_2(\mathbf{x})^T \Phi_2(\mathbf{x}') = 1 + \sum_{i=1}^d \frac{x_i x_i'}{x_i'} + \sum_{i=1}^d \sum_{j=1}^d \frac{x_i x_j}{x_i'} x_j' x_j'$$

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

$$\Phi_{2}(\mathbf{x})^{T}\Phi_{2}(\mathbf{x}') = 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} \sum_{j=1}^{d} x_{i}x_{j}x'_{i}x'_{j}$$
$$= 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} \sum_{j=1}^{d} x_{i}x'_{j} + \sum_{j=1}^{d} x_{j}x'_{j} + \sum_{j=1}^{d} x_{j}x'_$$

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

$$\Phi_{2}(\mathbf{x})^{T}\Phi_{2}(\mathbf{x}') = 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} \sum_{j=1}^{d} x_{i}x'_{j}x'_{j}x'_{j}$$

$$= 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} x_{i}x'_{i} \sum_{i=1}^{d} x_{j}x'_{j}$$

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

$$\Phi_{2}(\mathbf{x})^{T}\Phi_{2}(\mathbf{x}') = 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} \sum_{j=1}^{d} x_{i}x'_{j}x'_{j}x'_{j}$$

$$= 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} x_{i}x'_{i} \sum_{j=1}^{d} x_{j}x'_{j}$$

$$= 1 + + ()()$$

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

$$\Phi_{2}(\mathbf{x})^{T}\Phi_{2}(\mathbf{x}') = 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} \sum_{j=1}^{d} x_{i}x'_{j}x'_{j}x'_{j}$$

$$= 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} x_{i}x'_{i} \sum_{j=1}^{d} x_{j}x'_{j}$$

$$= 1 + \mathbf{x}^{T}\mathbf{x}' + (\mathbf{x}^{T}\mathbf{x}')(\mathbf{x}^{T}\mathbf{x}')$$

2nd order polynomial transform

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, x_{2}, \dots, x_{d}, x_{1}^{2}, x_{1}x_{2}, \dots, x_{1}x_{d}, x_{2}x_{1}, x_{2}^{2}, \dots, x_{2}x_{d}, \dots, x_{d}^{2})$$

—include both $x_1x_2 \& x_2x_1$ for 'simplicity':-)

$$\Phi_{2}(\mathbf{x})^{T}\Phi_{2}(\mathbf{x}') = 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} \sum_{j=1}^{d} x_{i}x'_{j}x'_{j}x'_{j}$$

$$= 1 + \sum_{i=1}^{d} x_{i}x'_{i} + \sum_{i=1}^{d} x_{i}x'_{i} \sum_{j=1}^{d} x_{j}x'_{j}$$

$$= 1 + \mathbf{x}^{T}\mathbf{x}' + (\mathbf{x}^{T}\mathbf{x}')(\mathbf{x}^{T}\mathbf{x}')$$

for Φ_2 , transform + inner product can be carefully done in O(d) instead of $O(d^2)$

Kernel Trick

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

• quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$

Kernel Trick

transform
$$\Phi \iff$$
 kernel function: $\mathcal{K}_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff \mathcal{K}_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^T \mathbf{z}_s$$

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^\mathsf{T} \mathbf{z}_s = y_s - \left(\right)^\mathsf{T} \mathbf{z}_s$$

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z_n}^T \mathbf{z_m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^T \mathbf{z}_s = y_s - \left(\sum_{n=1}^N \alpha_n y_n \mathbf{z}_n\right)^T \mathbf{z}_s$$

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^\mathsf{T} \mathbf{z}_s = y_s - \left(\sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \right)^\mathsf{T} \mathbf{z}_s = y_s - \sum_{n=1}^N \alpha_n y_n \left(\sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \right)^\mathsf{T} \mathbf{z}_s$$

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^\mathsf{T} \mathbf{z}_s = y_s - \left(\sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \right)^\mathsf{T} \mathbf{z}_s = y_s - \sum_{n=1}^N \alpha_n y_n \left(\mathcal{K}(\mathbf{x}_n, \mathbf{x}_s) \right)^\mathsf{T}$$

Kernel Trick

Kernel: Transform + Inner Product

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m = y_n y_m \mathcal{K}(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^T \mathbf{z}_s = y_s - \left(\sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \right)^T \mathbf{z}_s = y_s - \sum_{n=1}^N \alpha_n y_n \left(K(\mathbf{x}_n, \mathbf{x}_s) \right)^T$$

optimal hypothesis g_{SVM}: for test input x,

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\mathbf{w}^{\mathsf{T}}\mathbf{\Phi}(\mathbf{x}) + b\right)$$

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^T \mathbf{z}_s = y_s - \left(\sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \right)^T \mathbf{z}_s = y_s - \sum_{n=1}^N \alpha_n y_n \left(K(\mathbf{x}_n, \mathbf{x}_s) \right)^T$$

optimal hypothesis g_{SVM}: for test input x,

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\mathbf{w}^{\mathsf{T}}\mathbf{\Phi}(\mathbf{x}) + b\right) = \text{sign}\left(+ b \right)$$

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^T \mathbf{z}_s = y_s - \left(\sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \right)^T \mathbf{z}_s = y_s - \sum_{n=1}^N \alpha_n y_n \left(K(\mathbf{x}_n, \mathbf{x}_s) \right)$$

optimal hypothesis g_{SVM}: for test input x,

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\mathbf{w}^{\mathsf{T}} \mathbf{\Phi}(\mathbf{x}) + b\right) = \text{sign}\left(\sum_{n=1}^{N} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

transform
$$\Phi \iff$$
 kernel function: $K_{\Phi}(\mathbf{x}, \mathbf{x}') \equiv \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
 $\Phi_2 \iff K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + (\mathbf{x}^T \mathbf{x}') + (\mathbf{x}^T \mathbf{x}')^2$

- quadratic coefficient $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m)$
- optimal bias b? from SV (\mathbf{x}_s, y_s) ,

$$b = y_s - \mathbf{w}^T \mathbf{z}_s = y_s - \left(\sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \right)^T \mathbf{z}_s = y_s - \sum_{n=1}^N \alpha_n y_n \left(K(\mathbf{x}_n, \mathbf{x}_s) \right)^T$$

optimal hypothesis g_{SVM}: for test input x,

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\mathbf{w}^{\mathsf{T}} \mathbf{\Phi}(\mathbf{x}) + b\right) = \text{sign}\left(\sum_{n=1}^{N} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

kernel trick: plug in **efficient kernel function** to avoid dependence on \tilde{d}

 $\mathbf{q}_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./bound constraints

- $\mathbf{0} \ q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c}) \text{ for equ./bound constraints}$

- 1 $q_{n,m}=y_ny_mK(\mathbf{x}_n,\mathbf{x}_m); \mathbf{p}=-\mathbf{1}_N;$ (A, c) for equ./bound constraints
- 3 $b \leftarrow \left(y_s \sum_{\text{SV indices } n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s) \right) \text{ with SV } (\mathbf{x}_s, y_s)$

- 1 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./bound constraints
- 3 $b \leftarrow \left(y_s \sum_{\text{SV indices } n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s) \right) \text{ with SV } (\mathbf{x}_s, y_s)$
 - 4 return SVs and their α_n as well as b such that for new \mathbf{x} , $g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV indices } \mathbf{r}} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$

- $\mathbf{q}_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./bound constraints
- 3 $b \leftarrow \left(y_s \sum_{\text{SV indices } n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s) \right) \text{ with SV } (\mathbf{x}_s, y_s)$
- 4 return SVs and their α_n as well as b such that for new x, $g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV indices } n} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$
 - (1): time complexity $O(N^2)$ · (kernel evaluation)

- 1 $q_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./bound constraints
- 3 $b \leftarrow \left(y_s \sum_{\text{SV indices } n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s) \right) \text{ with SV } (\mathbf{x}_s, y_s)$
- 4 return SVs and their α_n as well as b such that for new \mathbf{x} , $g_{\text{SV indices } n} \left(\sum_{\text{SV indices } n} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b \right)$
 - (1): time complexity $O(N^2)$ · (kernel evaluation)
 - (2): QP with N variables and N + 1 constraints

Kernel SVM with QP

- $\mathbf{q}_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c}) \text{ for equ./bound constraints}$
- 3 $b \leftarrow \left(y_s \sum_{\text{SV indices } n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s) \right) \text{ with SV } (\mathbf{x}_s, y_s)$
- 4 return SVs and their α_n as well as b such that for new \mathbf{x} , $g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV indices }n} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$
- (1): time complexity $O(N^2)$ · (kernel evaluation)
- (2): QP with N variables and N+1 constraints
- (3) & (4): time complexity O(#SV) · (kernel evaluation)

Kernel SVM with QP

Kernel Hard-Margin SVM Algorithm

- $\mathbf{q}_{n,m} = y_n y_m K(\mathbf{x}_n, \mathbf{x}_m); \mathbf{p} = -\mathbf{1}_N; (A, \mathbf{c})$ for equ./bound constraints
- 3 $b \leftarrow \left(y_s \sum_{\text{SV indices } n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_s) \right) \text{ with SV } (\mathbf{x}_s, y_s)$
 - 4 return SVs and their α_n as well as b such that for new \mathbf{x} , $g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV indices } n} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$
 - (1): time complexity $O(N^2)$ · (kernel evaluation)
 - (2): QP with N variables and N + 1 constraints
 - (3) & (4): time complexity O(#SV) · (kernel evaluation)

kernel SVM:

use computational shortcut to avoid \tilde{d} & predict with SV only

Fun Time

Consider two examples \mathbf{x} and \mathbf{x}' such that $\mathbf{x}^T\mathbf{x}'=10$. What is

$$K_{\Phi_2}(x,x')$$
?

- 1
- **2** 11
- **3** 111
- **4** 1111

Fun Time

Consider two examples \mathbf{x} and \mathbf{x}' such that $\mathbf{x}^T\mathbf{x}'=10$. What is $K_{\Phi_2}(\mathbf{x},\mathbf{x}')$?

- 0
 - **2** 11
 - **3** 111
- 4 1111

Reference Answer: (3)

Using the derivation in previous slides,

$$K_{\mathbf{\Phi}_2}(\mathbf{x},\mathbf{x}') = 1 + \mathbf{x}^T\mathbf{x}' + (\mathbf{x}^T\mathbf{x}')^2.$$

General Poly-2 Kernel

$$\Phi_2(\mathbf{x}) = (1, x_1, \dots, x_d, x_1^2, \dots, x_d^2) \Leftrightarrow K_{\Phi_2}(\mathbf{x}, \mathbf{x}') = 1 + \mathbf{x}^T \mathbf{x}' + (\mathbf{x}^T \mathbf{x}')^2$$

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, \dots, x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) \Leftrightarrow \mathcal{K}_{\mathbf{\Phi}_{2}}(\mathbf{x}, \mathbf{x}') = 1 + \mathbf{x}^{T}\mathbf{x}' + (\mathbf{x}^{T}\mathbf{x}')^{2}$$

$$\mathbf{\Phi}_{2}(\mathbf{x}) = (1, \sqrt{2}x_{1}, \dots, \sqrt{2}x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) \Leftrightarrow \mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') =$$

$$\begin{aligned} & \mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, \dots, x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) & \Leftrightarrow & \mathcal{K}_{\mathbf{\Phi}_{2}}(\mathbf{x}, \mathbf{x}') = 1 + \mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2} \\ & \mathbf{\Phi}_{2}(\mathbf{x}) = (1, \sqrt{2}x_{1}, \dots, \sqrt{2}x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) & \Leftrightarrow & \mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = 1 + 2\mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2} \end{aligned}$$

$$\begin{aligned} & \mathbf{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, \dots, x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) & \Leftrightarrow & \mathcal{K}_{\mathbf{\Phi}_{2}}(\mathbf{x}, \mathbf{x}') = 1 + \mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2} \\ & \mathbf{\Phi}_{2}(\mathbf{x}) = (1, \sqrt{2}x_{1}, \dots, \sqrt{2}x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) & \Leftrightarrow & \mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = 1 + 2\mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2} \\ & \mathbf{\Phi}_{2}(\mathbf{x}) = (1, \sqrt{2\gamma}x_{1}, \dots, \sqrt{2\gamma}x_{d}, \gamma x_{1}^{2}, \dots, \gamma x_{d}^{2}) \end{aligned}$$

 $\Leftrightarrow K_2(\mathbf{x},\mathbf{x}') =$

$$\begin{aligned} & \boldsymbol{\Phi}_{2}(\mathbf{x}) = (1, x_{1}, \dots, x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) & \Leftrightarrow & K_{\boldsymbol{\Phi}_{2}}(\mathbf{x}, \mathbf{x}') = 1 + \mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2} \\ & \boldsymbol{\Phi}_{2}(\mathbf{x}) = (1, \sqrt{2}x_{1}, \dots, \sqrt{2}x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) & \Leftrightarrow & K_{2}(\mathbf{x}, \mathbf{x}') = 1 + 2\mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2} \\ & \boldsymbol{\Phi}_{2}(\mathbf{x}) = (1, \sqrt{2\gamma}x_{1}, \dots, \sqrt{2\gamma}x_{d}, \gamma x_{1}^{2}, \dots, \gamma x_{d}^{2}) \\ & \Leftrightarrow K_{2}(\mathbf{x}, \mathbf{x}') = 1 + 2\gamma \mathbf{x}^{T} \mathbf{x}' + \gamma^{2} (\mathbf{x}^{T} \mathbf{x}')^{2} \end{aligned}$$

$$\Phi_{2}(\mathbf{x}) = (1, x_{1}, \dots, x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) \Leftrightarrow \mathcal{K}_{\Phi_{2}}(\mathbf{x}, \mathbf{x}') = 1 + \mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2}$$

$$\Phi_{2}(\mathbf{x}) = (1, \sqrt{2}x_{1}, \dots, \sqrt{2}x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) \Leftrightarrow \mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = 1 + 2\mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2}$$

$$\Phi_{2}(\mathbf{x}) = (1, \sqrt{2\gamma}x_{1}, \dots, \sqrt{2\gamma}x_{d}, \gamma x_{1}^{2}, \dots, \gamma x_{d}^{2})$$

$$K_2(\mathbf{x}, \mathbf{x}') = (1 + \gamma \mathbf{x}^T \mathbf{x}')^2$$
 with $\gamma > 0$

• K_2 : somewhat 'easier' to calculate than K_{Φ_2}

 $\Leftrightarrow K_2(\mathbf{x}, \mathbf{x}') = 1 + \frac{2\gamma \mathbf{x}^T \mathbf{x}' + \gamma^2 (\mathbf{x}^T \mathbf{x}')^2}{2}$

$$\Phi_{2}(\mathbf{x}) = (1, x_{1}, \dots, x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) \Leftrightarrow \mathcal{K}_{\Phi_{2}}(\mathbf{x}, \mathbf{x}') = 1 + \mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2}$$

$$\Phi_{2}(\mathbf{x}) = (1, \sqrt{2}x_{1}, \dots, \sqrt{2}x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) \Leftrightarrow \mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = 1 + 2\mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2}$$

$$\Phi_{2}(\mathbf{x}) = (1, \sqrt{2\gamma}x_{1}, \dots, \sqrt{2\gamma}x_{d}, \gamma x_{1}^{2}, \dots, \gamma x_{d}^{2})$$

$$K_2(\mathbf{x}, \mathbf{x}') = (1 + \gamma \mathbf{x}^T \mathbf{x}')^2$$
 with $\gamma > 0$

- K_2 : somewhat 'easier' to calculate than K_{Φ_2}
- Φ₂ and Φ₂: equivalent power,
 different inner product ⇒ different geometry

 $\Leftrightarrow K_2(\mathbf{x}, \mathbf{x}') = 1 + \frac{2}{2}\gamma \mathbf{x}^T \mathbf{x}' + \gamma^2 (\mathbf{x}^T \mathbf{x}')^2$

$$\Phi_{2}(\mathbf{x}) = (1, x_{1}, \dots, x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) \Leftrightarrow \mathcal{K}_{\Phi_{2}}(\mathbf{x}, \mathbf{x}') = 1 + \mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2}$$

$$\Phi_{2}(\mathbf{x}) = (1, \sqrt{2}x_{1}, \dots, \sqrt{2}x_{d}, x_{1}^{2}, \dots, x_{d}^{2}) \Leftrightarrow \mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = 1 + 2\mathbf{x}^{T} \mathbf{x}' + (\mathbf{x}^{T} \mathbf{x}')^{2}$$

$$\Phi_{2}(\mathbf{x}) = (1, \sqrt{2\gamma}x_{1}, \dots, \sqrt{2\gamma}x_{d}, \gamma x_{1}^{2}, \dots, \gamma x_{d}^{2})$$

 $K_2(\mathbf{x},\mathbf{x}') = (1 + \gamma \mathbf{x}^T \mathbf{x}')^2$ with $\gamma > 0$

$$\Leftrightarrow K_2(\mathbf{x}, \mathbf{x}') = 1 + 2\gamma \mathbf{x}^T \mathbf{x}' + \gamma^2 (\mathbf{x}^T \mathbf{x}')^2$$

- K_2 : somewhat 'easier' to calculate than K_{Φ_2}
- Φ₂ and Φ₂: equivalent power,
 different inner product ⇒ different geometry

K2 commonly used

- g_{SVM} different, SVs different
 - —'hard' to say which is better before learning

- g_{SVM} different, SVs different
 —'hard' to say which is better before learning
- change of kernel ⇔ change of margin definition

- g_{SVM} different, SVs different
 —'hard' to say which is better before learning
- change of kernel ⇔ change of margin definition

need selecting K, just like selecting Φ

$$K_2(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^2 \text{ with } \gamma > 0, \zeta \ge 0$$

$$K_2(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^2 \text{ with } \gamma > 0, \zeta \ge 0$$

 $K_3(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^3 \text{ with } \gamma > 0, \zeta \ge 0$

$$\mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{2} \text{ with } \gamma > 0, \zeta \geq 0
\mathcal{K}_{3}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{3} \text{ with } \gamma > 0, \zeta \geq 0
\vdots
\mathcal{K}_{Q}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{Q} \text{ with } \gamma > 0, \zeta \geq 0$$

$$\mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{2} \text{ with } \gamma > 0, \zeta \geq 0
\mathcal{K}_{3}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{3} \text{ with } \gamma > 0, \zeta \geq 0
\vdots
\mathcal{K}_{Q}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{Q} \text{ with } \gamma > 0, \zeta \geq 0$$

• embeds Φ_Q specially with parameters (γ, ζ)

$$\mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{2} \text{ with } \gamma > 0, \zeta \geq 0
\mathcal{K}_{3}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{3} \text{ with } \gamma > 0, \zeta \geq 0
\vdots
\mathcal{K}_{Q}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{Q} \text{ with } \gamma > 0, \zeta \geq 0$$

- embeds Φ_Q specially with parameters (γ, ζ)
- allows computing large-margin polynomial classification without dependence on d

10-th order polynomial with margin 0.1

$$\mathcal{K}_{2}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{2} \text{ with } \gamma > 0, \zeta \geq 0
\mathcal{K}_{3}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{3} \text{ with } \gamma > 0, \zeta \geq 0
\vdots
\mathcal{K}_{Q}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{Q} \text{ with } \gamma > 0, \zeta \geq 0$$

- embeds Φ_Q specially with parameters (γ, ζ)
- allows computing large-margin polynomial classification without dependence on \tilde{d}

SVM + Polynomial Kernel: Polynomial SVM

10-th order polynomial with margin 0.1

$$K_{\mathbf{Q}}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^{\mathbf{Q}} \text{ with } \gamma > 0, \zeta \geq 0$$

$$\mathcal{K}_{1}(\mathbf{x}, \mathbf{x}') = (0 + 1 \cdot \mathbf{x}^{T} \mathbf{x}')^{1}$$

$$\vdots$$

$$\mathcal{K}_{Q}(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{Q} \text{ with } \gamma > 0, \zeta \ge 0$$

$$\begin{aligned} \mathcal{K}_{1}(\mathbf{x}, \mathbf{x}') &= (0 + 1 \cdot \mathbf{x}^{T} \mathbf{x}')^{1} \\ &\vdots \\ \mathcal{K}_{\mathbf{Q}}(\mathbf{x}, \mathbf{x}') &= (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{\mathbf{Q}} \text{ with } \gamma > 0, \zeta \geq 0 \end{aligned}$$

 K₁: just usual inner product, called linear kernel

$$\begin{aligned} \mathcal{K}_{1}(\mathbf{x}, \mathbf{x}') &= (0 + 1 \cdot \mathbf{x}^{T} \mathbf{x}')^{1} \\ &\vdots \\ \mathcal{K}_{\mathbf{Q}}(\mathbf{x}, \mathbf{x}') &= (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{\mathbf{Q}} \text{ with } \gamma > 0, \zeta \geq 0 \end{aligned}$$

- K₁: just usual inner product, called linear kernel
- 'even easier': can be solved (often in primal form) efficiently

$$\begin{split} \mathcal{K}_{1}(\mathbf{x}, \mathbf{x}') &= (\mathbf{0} + \mathbf{1} \cdot \mathbf{x}^{T} \mathbf{x}')^{1} \\ &\vdots \\ \mathcal{K}_{\mathbf{Q}}(\mathbf{x}, \mathbf{x}') &= (\zeta + \gamma \mathbf{x}^{T} \mathbf{x}')^{\mathbf{Q}} \text{ with } \gamma > 0, \zeta \geq 0 \end{split}$$

- K₁: just usual inner product, called linear kernel
- 'even easier': can be solved (often in primal form) efficiently

linear first, remember? :-)

Fun Time

Consider the general 2-nd polynomial kernel $K_2(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^2$. Which of the following transform can be used to derive this kernel?

$$\Phi(\mathbf{x}) = (\zeta, \sqrt{2\gamma\zeta}x_1, \dots, \sqrt{2\gamma\zeta}x_d, \gamma x_1^2, \dots, \gamma x_d^2)$$

Fun Time

Consider the general 2-nd polynomial kernel $K_2(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^2$. Which of the following transform can be used to derive this kernel?

$$\bullet (\mathbf{x}) = (1, \sqrt{2\gamma}x_1, \dots, \sqrt{2\gamma}x_d, \gamma x_1^2, \dots, \gamma x_d^2)$$

$$\mathbf{\Phi}(\mathbf{x}) = (\zeta, \sqrt{2\gamma\zeta}x_1, \dots, \sqrt{2\gamma\zeta}x_d, \gamma x_1^2, \dots, \gamma x_d^2)$$

Reference Answer: (4)

We need to have ζ^2 from the 0-th order terms, $2\gamma\zeta\mathbf{x}^T\mathbf{x}'$ from the 1-st order terms, and $\gamma^2(\mathbf{x}^T\mathbf{x}')^2$ from the 2-nd order terms.

infinite dimensional $\Phi(x)$?

```
when \mathbf{x} = (x),
```

when
$$\mathbf{x} = (x), K(x, x') = \exp(-(x - x')^2)$$

$$= \mathbf{\Phi}(\mathbf{x})^T \mathbf{\Phi}(\mathbf{x}')$$

when
$$\mathbf{x} = (x)$$
, $K(x, \mathbf{x}') = \exp(-(x - \mathbf{x}')^2)$
= $\exp(-(x - \mathbf{x}')^2)$
= $\exp(-(x - \mathbf{x}')^2)$

$$= \mathbf{\Phi}(\mathbf{x})^T \mathbf{\Phi}(\mathbf{x}')$$

when
$$\mathbf{x} = (x)$$
, $K(x, x') = \exp(-(x - x')^2)$
= $\exp(-(x)^2)\exp(-(x')^2)\exp(2xx')$

$$= \mathbf{\Phi}(\mathbf{x})^T \mathbf{\Phi}(\mathbf{x}')$$

when
$$\mathbf{x} = (x)$$
, $K(x, x') = \exp(-(x - x')^2)$

$$= \exp(-(x)^2)\exp(-(x')^2)\exp(2xx')$$
Taylor
$$= \exp(-(x)^2)\exp(-(x')^2)\left(\sum_{i=0}^{\infty}\right)$$

$$= \Phi(x)^T \Phi(x')$$

when
$$\mathbf{x} = (x)$$
, $K(x, x') = \exp(-(x - x')^2)$

$$= \exp(-(x)^2)\exp(-(x')^2)\exp(2xx')$$

$$\stackrel{\text{Taylor}}{=} \exp(-(x)^2)\exp(-(x')^2)\left(\sum_{i=0}^{\infty} \frac{(2xx')^i}{i!}\right)$$

$$= \Phi(x)^T \Phi(x')$$

when
$$\mathbf{x} = (x)$$
, $K(x, \mathbf{x}') = \exp(-(x - x')^2)$
 $= \exp(-(x)^2)\exp(-(x')^2)\exp(2xx')$
 $\stackrel{\text{Taylor}}{=} \exp(-(x)^2)\exp(-(x')^2)\left(\sum_{i=0}^{\infty} \frac{(2xx')^i}{i!}\right)$
 $= \sum_{i=0}^{\infty} \left(\exp(-(x)^2)\exp(-(x')^2)\sqrt{1-(x')^2}\right)$
 $= \Phi(x)^T \Phi(x')$

when
$$\mathbf{x} = (x)$$
, $K(x, x') = \exp(-(x - x')^2)$
 $= \exp(-(x)^2)\exp(-(x')^2)\exp(2xx')$
Taylor $\stackrel{}{=} \exp(-(x)^2)\exp(-(x')^2)\left(\sum_{i=0}^{\infty} \frac{(2xx')^i}{i!}\right)$
 $= \sum_{i=0}^{\infty} \left(\exp(-(x)^2)\exp(-(x')^2)\sqrt{\frac{2^i}{i!}}\sqrt{\frac{2^i}{i!}}(x)^i(x')^i\right)$
 $= \Phi(x)^T \Phi(x')$

Kernel of Infinite Dimensional Transform

infinite dimensional $\Phi(\mathbf{x})$? Yes, if $K(\mathbf{x}, \mathbf{x}')$ efficiently computable!

when
$$\mathbf{x} = (x)$$
, $K(x, x') = \exp(-(x - x')^2)$

$$= \exp(-(x)^2) \exp(-(x')^2) \exp(2xx')$$

$$\stackrel{\text{Taylor}}{=} \exp(-(x)^2) \exp(-(x')^2) \left(\sum_{i=0}^{\infty} \frac{(2xx')^i}{i!}\right)$$

$$= \sum_{i=0}^{\infty} \left(\exp(-(x)^2) \exp(-(x')^2) \sqrt{\frac{2^i}{i!}} \sqrt{\frac{2^i}{i!}} (x)^i (x')^i\right)$$

$$= \Phi(x)^T \Phi(x')$$
with infinite dimensional $\Phi(x) = \exp(-x^2) \cdot \left(\frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$

Kernel of Infinite Dimensional Transform

infinite dimensional $\Phi(\mathbf{x})$? Yes, if $K(\mathbf{x}, \mathbf{x}')$ efficiently computable!

when
$$\mathbf{x} = (x)$$
, $K(x, x') = \exp(-(x - x')^2)$
 $= \exp(-(x)^2)\exp(-(x')^2)\exp(2xx')$
Taylor $= \exp(-(x)^2)\exp(-(x')^2)\left(\sum_{i=0}^{\infty}\frac{(2xx')^i}{i!}\right)$
 $= \sum_{i=0}^{\infty}\left(\exp(-(x)^2)\exp(-(x')^2)\sqrt{\frac{2^i}{i!}}\sqrt{\frac{2^i}{i!}}(x)^i(x')^i\right)$
 $= \Phi(x)^T\Phi(x')$
with infinite dimensional $\Phi(x) = \exp(-x^2) \cdot \left(1, \sqrt{\frac{2}{1!}}x, \sqrt{\frac{2^2}{2!}}x^2, \dots\right)$

Kernel of Infinite Dimensional Transform

infinite dimensional $\Phi(\mathbf{x})$? Yes, if $K(\mathbf{x}, \mathbf{x}')$ efficiently computable!

when
$$\mathbf{x} = (x)$$
, $K(x, x') = \exp(-(x - x')^2)$

$$= \exp(-(x)^2)\exp(-(x')^2)\exp(2xx')$$

$$\stackrel{\text{Taylor}}{=} \exp(-(x)^2)\exp(-(x')^2)\left(\sum_{i=0}^{\infty} \frac{(2xx')^i}{i!}\right)$$

$$= \sum_{i=0}^{\infty} \left(\exp(-(x)^2)\exp(-(x')^2)\sqrt{\frac{2^i}{i!}}\sqrt{\frac{2^i}{i!}}(x)^i(x')^i\right)$$

$$= \Phi(x)^T \Phi(x')$$
with infinite dimensional $\Phi(x) = \exp(-x^2)$ $\left(1 - \sqrt{\frac{2}{2}}x + \sqrt{\frac{2^2}{2}}x^2\right)$

with infinite dimensional $\Phi(x) = \exp(-x^2) \cdot \left(1, \sqrt{\frac{2}{1!}}x, \sqrt{\frac{2^2}{2!}}x^2, \dots\right)$

more generally, Gaussian kernel
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$
 with $\gamma > 0$

Gaussian kernel
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

Gaussian Kernel Hypothesis of Gaussian SVM

Gaussian kernel
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

Gaussian kernel
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

$$g_{\text{SVM}}(\mathbf{x}) = \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

$$= \text{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

Gaussian kernel
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

$$\begin{split} g_{\text{SVM}}(\mathbf{x}) &= \text{sign}\left(\sum_{\text{SV}} \alpha_{n} y_{n} K(\mathbf{x}_{n}, \mathbf{x}) + b\right) \\ &= \text{sign}\left(\sum_{\text{SV}} \alpha_{n} y_{n} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{n}\|^{2}\right) + b\right) \end{split}$$

linear combination of Gaussians centered at SVs xn

Gaussian kernel
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

$$\begin{split} g_{\text{SVM}}(\mathbf{x}) &= & \text{sign}\left(\sum_{\text{SV}} \alpha_{n} y_{n} K(\mathbf{x}_{n}, \mathbf{x}) + b\right) \\ &= & \text{sign}\left(\sum_{\text{SV}} \alpha_{n} y_{n} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{n}\|^{2}\right) + b\right) \end{split}$$

- linear combination of Gaussians centered at SVs xn
- also called Radial Basis Function (RBF) kernel

Gaussian kernel
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

$$\begin{split} g_{\text{SVM}}(\mathbf{x}) &= \text{sign}\left(\sum_{\text{SV}} \alpha_{n} y_{n} K(\mathbf{x}_{n}, \mathbf{x}) + b\right) \\ &= \text{sign}\left(\sum_{\text{SV}} \alpha_{n} y_{n} \text{exp}\left(-\gamma \|\mathbf{x} - \mathbf{x}_{n}\|^{2}\right) + b\right) \end{split}$$

- linear combination of Gaussians centered at SVs xn
- also called Radial Basis Function (RBF) kernel

Gaussian SVM:

find α_n to combine Gaussians centered at \mathbf{x}_n & achieve large margin in infinite-dim. space

	large-margin hyperplanes + higher-order transforms with kernel trick
#	not many
boundary	sophisticated

	large-margin hyperplanes + higher-order transforms with kernel trick
#	not many
boundary	sophisticated

• transformed vector $\mathbf{z} = \mathbf{\Phi}(\mathbf{x}) \Longrightarrow$ efficient kernel $K(\mathbf{x}, \mathbf{x}')$

	large-margin hyperplanes + higher-order transforms with kernel trick
#	not many
boundary	sophisticated

- transformed vector $\mathbf{z} = \mathbf{\Phi}(\mathbf{x}) \Longrightarrow$ efficient kernel $K(\mathbf{x}, \mathbf{x}')$
- store optimal $\mathbf{w} \Longrightarrow$ store a few SVs and α_n

	large-margin hyperplanes higher-order transforms with kernel trick
#	not many
boundary	sophisticated

- transformed vector $\mathbf{z} = \mathbf{\Phi}(\mathbf{x}) \Longrightarrow$ efficient kernel $K(\mathbf{x}, \mathbf{x}')$
- store optimal w ⇒ store a few SVs and α_n

new possibility by Gaussian SVM: infinite-dimensional linear classification, with generalization 'guarded by' large-margin:-)

$$\exp(-1\|\mathbf{x} - \mathbf{x}'\|^2)$$

• large $\gamma \Longrightarrow$ sharp Gaussians \Longrightarrow 'overfit'?

- large $\gamma \Longrightarrow$ sharp Gaussians \Longrightarrow 'overfit'?
- warning: SVM can still overfit :-(

- large $\gamma \Longrightarrow$ sharp Gaussians \Longrightarrow 'overfit'?
- warning: SVM can still overfit :-(

Gaussian SVM: need careful selection of γ

Fun Time

Consider the Gaussian kernel $K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$. What function does the kernel converge to if $\gamma \to \infty$?

- **4** $K_{lim}(\mathbf{x}, \mathbf{x}') = 1$

Fun Time

Consider the Gaussian kernel $K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$. What function does the kernel converge to if $\gamma \to \infty$?

Reference Answer: (2)

If $\mathbf{x}=\mathbf{x}'$, $K(\mathbf{x},\mathbf{x}')=1$ regardless of γ . If $\mathbf{x}\neq\mathbf{x}'$, $K(\mathbf{x},\mathbf{x}')=0$ when $\gamma\to\infty$. Thus, K_{lim} is an impulse function, which is an extreme case of how the Gaussian gets sharper when $\gamma\to\infty$.

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

$$\mathcal{K}(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{x}^T\boldsymbol{x}'$$

Pros

 safe—linear first, remember? :-)

$$\mathcal{K}(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{x}^T\boldsymbol{x}'$$

- safe—linear first, remember? :-)
- fast—with special QP solver in primal

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

- safe—linear first, remember? :-)
- fast—with special QP solver in primal
- very explainable—w and SVs say something

$$\mathcal{K}(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{x}^T\boldsymbol{x}'$$

Cons

restricted

-not always separable?!

- safe—linear first, remember? :-)
- fast—with special QP solver in primal
- very explainable—w and SVs say something

$$\mathcal{K}(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{x}^T\boldsymbol{x}'$$

Cons

restricted—not always separable?!

Pros

- safe—linear first, remember? :-)
- fast—with special QP solver in primal
- very explainable—w and SVs say something

linear kernel: an important basic tool

$$K(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^Q$$

$$K(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^Q$$

Pros

less restricted than linear

$$K(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^Q$$

- less restricted than linear
- strong physical control
 —'knows' degree Q

$$K(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^Q$$

Cons

- less restricted than linear
- strong physical control
 —'knows' degree Q

$$K(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^Q$$

Cons

- numerical difficulty for large Q
 - $|\zeta + \gamma \mathbf{x}^T \mathbf{x}'| < 1$: $K \to 0$
 - $|\zeta + \gamma \mathbf{x}^T \mathbf{x}'| > 1$: $K \rightarrow \text{big}$

- less restricted than linear
- strong physical control
 —'knows' degree Q

$$K(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^Q$$

Cons

- numerical difficulty for large Q
 - $|\zeta + \gamma \mathbf{x}^T \mathbf{x}'| < 1$: $K \to 0$
 - $|\zeta + \gamma \mathbf{x}^T \mathbf{x}'| > 1$: $K \to \text{big}$
- three parameters (γ, ζ, Q) —more difficult to select

- less restricted than linear
- strong physical control
 —'knows' degree Q

$$K(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^Q$$

Cons

- numerical difficulty for large Q
 - $|\zeta + \gamma \mathbf{x}^T \mathbf{x}'| < 1$: $K \to 0$ • $|\zeta + \gamma \mathbf{x}^T \mathbf{x}'| > 1$: $K \to \text{big}$
- three parameters (γ, ζ, Q) —more difficult to select

Pros

- less restricted than linear
- strong physical control
 —'knows' degree Q

polynomial kernel: perhaps small-Q only

$$K(\mathbf{x}, \mathbf{x}') = (\zeta + \gamma \mathbf{x}^T \mathbf{x}')^Q$$

Cons

- numerical difficulty for large Q
 - $|\zeta + \gamma \mathbf{x}^T \mathbf{x}'| < 1$: $K \to 0$ • $|\zeta + \gamma \mathbf{x}^T \mathbf{x}'| > 1$: $K \to \text{big}$
- three parameters (γ, ζ, Q)
 - -more difficult to select

Pros

- less restricted than linear
- strong physical control
 —'knows' degree Q

polynomial kernel: perhaps small-Q only—sometimes efficiently done by linear on $\Phi_Q(\mathbf{x})$

Gaussian Kernel: Cons and Pros

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

Pros

more powerful than linear/poly.

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

- more powerful than linear/poly.
- bounded—less numerical difficulty than poly.

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

- more powerful than linear/poly.
- bounded—less numerical difficulty than poly.
- one parameter only—easier to select than poly.

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

Cons

• mysterious—no w

- more powerful than linear/poly.
- bounded—less numerical difficulty than poly.
- one parameter only—easier to select than poly.

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

Cons

- mysterious—no w
- slower than linear

- more powerful than linear/poly.
- bounded—less numerical difficulty than poly.
- one parameter only-easier to select than poly.

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

Cons

- mysterious—no w
- slower than linear
- too powerful?!

- more powerful than linear/poly.
- bounded—less numerical difficulty than poly.
- one parameter only—easier to select than poly.

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

Cons

- mysterious—no w
- slower than linear
- too powerful?!

Pros

- more powerful than linear/poly.
- bounded—less numerical difficulty than poly.
- one parameter only—easier to select than poly.

Gaussian kernel: one of most popular but shall be used with care

• kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity
 valid kernel?

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary conditions for valid kernel:
 - symmetric

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary conditions for valid kernel:
 - symmetric
 - let $k_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$, the matrix K

```
= \begin{bmatrix} \boldsymbol{\Phi}(\boldsymbol{x}_1)^T \boldsymbol{\Phi}(\boldsymbol{x}_1) & \boldsymbol{\Phi}(\boldsymbol{x}_1)^T \boldsymbol{\Phi}(\boldsymbol{x}_2) & \dots & \boldsymbol{\Phi}(\boldsymbol{x}_1)^T \boldsymbol{\Phi}(\boldsymbol{x}_N) \\ \boldsymbol{\Phi}(\boldsymbol{x}_2)^T \boldsymbol{\Phi}(\boldsymbol{x}_1) & \boldsymbol{\Phi}(\boldsymbol{x}_2)^T \boldsymbol{\Phi}(\boldsymbol{x}_2) & \dots & \boldsymbol{\Phi}(\boldsymbol{x}_2)^T \boldsymbol{\Phi}(\boldsymbol{x}_N) \\ & \dots & & \dots & \dots \\ \boldsymbol{\Phi}(\boldsymbol{x}_N)^T \boldsymbol{\Phi}(\boldsymbol{x}_1) & \boldsymbol{\Phi}(\boldsymbol{x}_N)^T \boldsymbol{\Phi}(\boldsymbol{x}_2) & \dots & \boldsymbol{\Phi}(\boldsymbol{x}_N)^T \boldsymbol{\Phi}(\boldsymbol{x}_N) \end{bmatrix}
```

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary conditions for valid kernel:
 - symmetric
 - let $k_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$, the matrix K

```
= \begin{bmatrix} \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_N) \end{bmatrix}
= \begin{bmatrix} \end{bmatrix}^T \begin{bmatrix} \end{bmatrix}
```

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary conditions for valid kernel:
 - symmetric
 - let $k_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$, the matrix K

$$= \begin{bmatrix} \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_N) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}^T \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}$$

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary conditions for valid kernel:
 - symmetric
 - let $k_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$, the matrix K

```
= \begin{bmatrix} \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_N) \end{bmatrix}
= \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}^T \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}
= \mathbf{Z}\mathbf{Z}^T
```

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary conditions for valid kernel:
 - symmetric
 - let $k_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$, the matrix K

$$= \begin{bmatrix} \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_N) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}^T \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}$$

$$= \mathbf{Z} \mathbf{Z}^T \text{ must always be positive semi-definite}$$

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary & sufficient conditions for valid kernel:
 - symmetric
 - let $k_{ij} = K(\mathbf{x}_i, \mathbf{x}_i)$, the matrix K

$$= \begin{bmatrix} \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_N) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}^T \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}$$

$$= \mathbf{Z} \mathbf{Z}^T \text{ must always be positive semi-definite}$$

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary & sufficient conditions for valid kernel:
 Mercer's condition
 - symmetric
 - let $k_{ij} = K(\mathbf{x}_i, \mathbf{x}_i)$, the matrix K

$$= \begin{bmatrix} \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_N) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}^T \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}$$

$$= \mathbf{Z} \mathbf{Z}^T \text{ must always be positive semi-definite}$$

- kernel represents special similarity: $\Phi(\mathbf{x})^T \Phi(\mathbf{x}')$
- any similarity ⇒ valid kernel? not really
- necessary & sufficient conditions for valid kernel:
 Mercer's condition
 - symmetric
 - let $k_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$, the matrix K

$$= \begin{bmatrix} \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_1)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_2)^T \mathbf{\Phi}(\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_1) & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_2) & \dots & \mathbf{\Phi}(\mathbf{x}_N)^T \mathbf{\Phi}(\mathbf{x}_N) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}^T \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{bmatrix}$$

$$= \mathbf{Z} \mathbf{Z}^T \text{ must always be positive semi-definite}$$

define your own kernel: possible, but hard

Which of the following is not a valid kernel? (*Hint: Consider two* 1-dimensional vectors $\mathbf{x}_1 = (1)$ and $\mathbf{x}_2 = (-1)$ and check Mercer's condition.)

- $K(\mathbf{x}, \mathbf{x}') = (0 + \mathbf{x}^T \mathbf{x}')^2$
- **3** $K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^2$
- **4** $K(\mathbf{x}, \mathbf{x}') = (-1 \mathbf{x}^T \mathbf{x}')^2$

Fun Time

Which of the following is not a valid kernel? (*Hint: Consider two* 1-dimensional vectors $\mathbf{x}_1 = (1)$ and $\mathbf{x}_2 = (-1)$ and check Mercer's condition.)

$$\mathbf{1} K(\mathbf{x}, \mathbf{x}') = (-1 + \mathbf{x}^T \mathbf{x}')^2$$

2
$$K(\mathbf{x}, \mathbf{x}') = (0 + \mathbf{x}^T \mathbf{x}')^2$$

3
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^2$$

4
$$K(\mathbf{x}, \mathbf{x}') = (-1 - \mathbf{x}^T \mathbf{x}')^2$$

Reference Answer: (1)

The kernels in 2 and 3 are just polynomial kernels. The kernel in 4 is equivalent to the kernel in 3. For 1, the matrix K formed from the kernel and the two examples is not positive semi-definite. Thus, the underlying kernel is not a valid one.

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 3: Kernel Support Vector Machine

Kernel Trick

kernel as shortcut of transform + inner product

- Polynomial Kernel
- embeds specially-scaled polynomial transform
- Gaussian Kernel
 embeds infinite dimensional transform
- Comparison of Kernels

 linear for efficiency or Gaussian for power
- next: avoiding overfitting in Gaussian (and other kernels)
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models