Multivariate Statistik, Übung 6

HENRY HAUSTEIN

Aufgabe 1

Es lohnt sich meiner Meinung nach hier, Ideen aus der linearen Algebra vorher sich anzuschauen. Das Produkt zweier Zeilenvektoren xy' ist eine Zahl, man nennt es das Skalarprodukt von x und y und schreibt dafür $\langle x,y\rangle$. Das Skalarprodukt hat unter anderem die Eigenschaft der Additivität, also $\langle x,y\rangle+\langle u,v\rangle=\langle x+u,y+v\rangle$. Mehr brauchen wir nicht, um das Fundamentaltheorem der multivariaten Varianzanalyse in wenigen Zeilen zu beweisen:

$$\sum_{i=1}^{g} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)(x_{ij} - \bar{x}_i)' + \sum_{i=1}^{g} \sum_{j=1}^{n_i} (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})' = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)(x_{ij} - \bar{x}_i)' + \underbrace{(\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})'}_{y}$$

$$= \sum_{i=1}^{g} \sum_{j=1}^{n_i} xx' + yy'$$

$$= \sum_{i=1}^{g} \sum_{j=1}^{n_i} \langle x, x \rangle + \langle y, y \rangle$$

$$= \sum_{i=1}^{g} \sum_{j=1}^{n_i} \langle x + y, x + y \rangle$$

$$= \sum_{i=1}^{g} \sum_{j=1}^{n_i} [(x_{ij} - \bar{x}_i) + (\bar{x}_i - \bar{x})] \cdot [(x_{ij} - \bar{x}_i) + (\bar{x}_i - \bar{x})]'$$

$$= \sum_{i=1}^{g} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)(x_{ij} - \bar{x})'$$

Aufgabe 2

Bei einer standardisierten Matrix sind die Mittelwerte der Spalten 0.

$$S = \frac{1}{n-1}T$$

$$= \frac{1}{n-1}(Z'Z - n\underbrace{\bar{z}}_{0}\underbrace{\bar{z}'}_{0})$$

$$= \frac{1}{n-1}Z'Z$$

$$= R$$

Aufgabe 3

- (a) Der F-Test ist hier ein geeignetes Mittel, wobei wir Körpergröße und Körpergewicht herausrechnen wollen
- (b) Gruppe 1: (x_1, x_2, x_3, x_4) Gruppe 2: (Körpergewicht, Körpergröße) $H_0: \mu_{\text{Mitglied},1.2} = \mu_{\text{Nicht-Mitglied},1.2}$ vs. $H_1: \mu_{\text{Mitglied},1.2} \neq \mu_{\text{Nicht-Mitglied},1.2}$
- (c) Wir haben p = 4, q = 2, g = 2, k = 6, n = 10

$$\begin{split} \nu_1 &= p(g-1) = 4 \\ \nu_2 &= s \left[(n-1-p) - \frac{q+g}{2} \right] - \frac{q(g-1)-2}{2} = 3 \\ s &= \sqrt{\frac{k^2(g-1)^2-4}{k^2+(g-1)^2-5}} = 1 \\ \Lambda &= \frac{\det(W_{1.2})}{\det(T_{1.2})} = -0.8391879 \\ F &= \frac{1-\Lambda^{\frac{1}{s}}}{\Lambda^{\frac{1}{s}}} = -13.14977 \end{split}$$

Ich bin mir nicht sicher, ob meine berechneten Werte richtig sind, da als Teststatistik der Wert 3.32 rauskommen soll. Ich vermute, dass die gegebenen Matrizen falsch sind, so ist z.B T nicht symmetrisch: $t_{26} \neq t_{62}$.

- (d) Die Matrix T_{11} ist eine 4×4 -Matrix, T_{22} hat die Dimensionen 2×2 . Logischerweise dann die Dimension von T_{12} 4×2 . Selbiges gilt für die Partitionen von W.
- (e) Der kritische Wert ist $F_{4,3;0.95} = 9.1172$. Man kann also H_0 nicht ablehnen.

Aufgabe 4

Wir bilden wieder 2 Gruppen. Gruppe 1: (X_1, X_2) und Gruppe 2: (X_3, X_4) . Wir testen dann H_0 : $\mu_{\text{Land}_1,1,2} = \mu_{\text{Land}_2,1,2}$ vs. H_1 : $\mu_{\text{Land}_1,1,2} \neq \mu_{\text{Land}_2,1,2}$. Zudem haben wir p=2, q=2, g=2, k=4 und n=72. Damit ergibt sich

$$u_1 = 2$$
 $u_2 = 67$
 $s = 1$
 $F = 136.5508$

Es gilt $F > F_{2,67;0.95} = 3.134$, also lehnen wir H_0 ab. Ein Tempolimit verändert also die Verkehrsunfälle.

```
1 p = 2

2 q = 2

3 g = 2

4 n = 72

5 k = p + q

6 alpha = 0.05

7

8 v1 = p*(g-1)
```

```
9 s = sqrt((k^2 * (g-1)^2 - 4)/(k^2 + (g-1)^2 - 5))

10 v2 = s*((n-1-p)-(q+g)/2) - (q*(g-1)-2)/2

11

12 lambda = 0.197

13

14 F = (1-lambda^(1/s))/(lambda^(1/s)) * v2/v1

15

16 krit = qf(1-alpha,v1,v2)
```