Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science

End Sem (Odd) Examination Dec-2019 BC3EP04 Quantum Mechanics and Spectroscopy

Branch/Specialisation: Computer Programme: B.Sc. (CS)

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- The photoelectric effect takes place only when the wavelength of 1 Q.1 i. incident light is
 - (a) Above threshold wavelength
 - (b) Below threshold wavelength
 - (c) Equal to threshold wavelength
 - (d) Any wavelength
 - The wavelength of the scattered light in Compton effect is equal to 1 input wavelength when the scattering angle θ is
 - (a) 0
- (b) $\pi/2$
- (c) π
- (d) $\pi/4$
- A wavefunction is admissible if
 - (a) It is single valued and finite
 - (b) It is finite
 - (c) It is single valued
 - (d) None of these
- iv. A stationary state is that for which the probability of finding the 1 particle at a point in space is
 - (a) Dependent of time
- (b) Dependent of x
- (c) Independent of time
- (d) Independent of x
- Electron's potential energy at the most probable distance in the 1 ground state of hydrogen atom is
 - (a) Zero
- (b) -13.6 ev (c) -27.2 ev (d) 13.6 ev

P.T.O.

1

[2]

	V1.	When $E > V_0$ the width of barrier contains	1
		(a) Integral multiple of de-Broglie wavelength	
		(b) Half Integral multiple of de-Broglie wavelength	
		(c) Odd multiple of de-Broglie wavelength	
		(d) Fraction of de-Broglie wavelength	
	vii.	Quantum particles are	1
		(a) Identical	
		(b) Identical and distinguishable	
		(c) Identical but indistinguishable	
		(d) Indistinguishable	
	viii.	The principal series of hydrogen atom is observed during the	1
		transition of the electron from	
		(a) s to p state (b) p to s state (c) d to p state (d) p to d state	
	ix.	Time during which pulses are recorded but are of smaller size in	1
		G.M. counter is called	
		(a) Recovery time (b) Dead time	
		(c) Resolving time (d) No specific name	
	Χ.	In fission the percentage of mass converted into energy is about	1
		(a) 0.01 % (b) 0.1 % (c) 1 % (d) 10 %	
Q.2	i.	Write four properties of matter waves.	2
Q.2	ii.	Why Compton effect cannot be observed with visible light?	3
	iii.	Explain Davission-Germer experiment.	5
OR	iv.	Differentiate between Photoelectric effect and Compton effect and	5
	1,,	explain with schematic diagram working of Compton effect.	
0.0			•
Q.3	i.	What is a wavefunction? Given its physical significance.	3
	ii.	Show that, in one-dimensional problems, the energy spectrum of the	7
0.5		bound states is always non-degenerate.	_
OR	iii.	In what respect Schrodinger equation differ from classical wave equation? Derive Schrodinger time independent wave equation?	7
Q.4	i.	What do you mean by free state and bound state of a particle?	3
•	ii.	What is one dimensional tunnelling effect? Explain the phenomenon of alpha-decay.	7

OR	iii.	Write and solve Schrodinger's wave equation for the fixed axis rigid	7

[3]

		rotator.	
Q.5		Attempt any two:	
	i.	Explain normal Zeeman effect and anomalous Zeeman effect.	,
	ii.	What are the selection rules for j for observing doublet spectra in single electron system?	
	iii.	Write short note on Stern-Gerlach experiment.	
Q.6		Attempt any two:	
	i.	Give the main assumption of liquid drop model. Justify the name liquid drop model.	
	ii.	Explain the working of Linear particle accelerator.	
	iii.	Explain the working of G.M. counter.	

Marking Scheme

BC3EP04 Quantum Mechanics and Spectroscopy

Q.1	i.	The photoelectric effect takes place only when the waveler incident light is	igth of	1	
	ii.	(b) Below threshold wavelength The wavelength of the scattered light in Compton effect is equal to input wavelength when the scattering angle θ is			
	iii.	(b) $\pi/2$ A wavefunction is admissible if		1	
	111.	(a) It is single valued and finite		_	
	iv.	A stationary state is that for which the probability of finding particle at a point in space is (b) Dependent of x	ng the	1	
	v.	Electron's potential energy at the most probable distance ground state of hydrogen atom is (b) -13.6 ev	in the	1	
	vi.	When $E > V_0$ the width of barrier contains		1	
	V 1.	(b) Half Integral multiple of de-Broglie wavelength		_	
	vii.	Quantum particles are		1	
		(c) Identical but indistinguishable			
	viii.	The principal series of hydrogen atom is observed during transition of the electron from	ng the	1	
		(b) p to s state		-	
	ix.	Time during which pulses are recorded but are of smaller G.M. counter is called	size in	1	
	х.	(a) Recovery time In fission the percentage of mass converted into energy is abou (b) 0.1 %	ıt	1	
Q.2	i.	Four properties of matter waves		2	
₹2	1.	0.5 mark for each (0.5 mark	* 4)	_	
	ii.	Reason for Compton effect cannot be observed with visible lig		3	
	iii.	Explain Davission-Germer experiment.			
		Diagram 1 mark		5	
		Working 2 marks			
		Result 2 marks			
OR	iv.	Difference b/w Photoelectric effect and Compton effect		5	
	•	2 marks		_	
		Working of Compton effect 3 marks			
		6			

Q.3	i.	Wavefunction	2 marks	3
		Its physical significance	1 mark	
	ii.	Show that, in one-dimensional problems, the energy	gy spectrum of the	7
		bound states is always non-degenerate		
		Proof – equation	5 marks	
		Result	2 marks	
OR	iii.	Schrodinger equation differ from classical wave eq	uation	7
			2 marks	
		Schrodinger time independent wave equation	5 marks	
Q.4	i.	Free state of a particle	1.5 marks	3
		Bound state of a particle	1.5 marks	
	ii.	One dimensional tunnelling effect	2 marks	7
		Phenomenon of alpha-decay	5 marks	
OR	iii.	Schrodinger's wave equation for the fixed axis rigic	d rotator	7
		Explanation	2 marks	
		Solution	5 marks	
Q.5		Attempt any two:		
	i.	Normal Zeeman effect and anomalous Zeeman effe	ect	5
		Setup diagram	1 mark	
		Equation	1 mark	
		Explanation	3 mark	
	ii.	Selection rules for j for observing doublet spectra	in single electron	5
		system		
		Stepwise marking		_
	iii.	Stern-Gerlach experiment	1 1	5
		Diagram	1 mark	
		Setup	1 mark	
		Explanation	3 marks	
Q.6		Attempt any two:		
	i.	Main assumption of liquid drop model	2 marks	5
		Name liquid drop model	3 marks	_
	ii.	Working of Linear particle accelerator	4 marks	5
		Diagram	1 mark	_
	iii.	Working of G.M. counter	4 marks	5
		Diagram	1 mark	
