Fine-tuning RESNET for Cross Domain Applications

Elliot, Parth, Kerwin

Goal

- Initially wanted to do graph neural networks for protein inference
 - PyTorch geometric demands standard size for input data tensor
 - Datasets all contained heterogeneous sizes for molecular structure
 - Could not construct adjacency matrix in format demanded by PyTorch graph in reasonable computational time
 - Switched goals
- New goal:
- Fine-tuning RESNET for multiple tasks

Problem 1 Overview

- Aim: Classify hand-drawn art for sorting or authorship detection
- <u>Challenge</u>: RESNET trained on physical images, not drawn
 - Physical images often have fairly even balance between width and height
 - Artists can use very abnormal dimensions
- Solution: Normalize to largest dimension and pad with black
- Dataset: Custom

Binary classification

Multiclass classification

Problem 2 Overview

- Aim: Classify all subjects present in photo
- <u>Challenge</u>: Different loss function in multilabel setting
- <u>Solution</u>: treat output as vector of binary states, then treat as many binary classification tasks
- Dataset: https://bigearth.net/

Results

TBD

Problem 3 Overview

- Aim: Domain-transfer RESNET for image segmentation to classify flooded areas
- <u>Challenge</u>: Need to adjust loss function again, also needs a decoder layer
- Solution: Add decoder, sum loss over image
- <u>Dataset</u>: <u>https://www.kaggle.com/datasets/faizalkarim/flood-area-segmentation</u>

Results

TBD