LIST OF FIGURES

		Page
Figure 2.1	The influence of land use on (a) specific conductance levels and (b)	
	cation composition of streams (Walling and Webb, 1986)	14
Figure 2.2	Changes in conductivity following prolonged drought conditions	
	(after Kelbe and Germishuyse, 1999)	16
Figure 3.1	Classification of hydrosalinity models according to Addiscot	
	and Wagenet (1985)	22
Figure 3.2	Schematic break-through curves for various miscible displacement	
	conditions (after Bresler, 1981)	28
Figure 3.3	Break-through curves for Cl ⁻ , ³ H ₂ O and Ca ²⁺ (after Leij and	
	Genuchten, 1999)	29
Figure 3.4	Salt movement in the soil profile (after Görgens et al., 2001)	34
Figure 3.5	Salt uptake curves over time, showing both rapid (high k) and slow	
	(low k) salt uptake (after Ferguson et al., 1994)	36
Figure 3.6	Sequence of enrichment of "old" water prior to an event: (a)	
	instantaneous mixing of "new" water during an event	
	and (b) non-instantaneous mixing (after Ferguson et al., 1994)	37
Figure 4.1	General structure of the ACRU agrohydrological modeling system	
	(Schulze, 1995)	40
Figure 4.2	The ACRU agrohydrological modelling system: Concepts	
	(Schulze, 1995)	41
Figure 4.3	An example of objects and their relationships as applied in a	
	simplified soil system	44
Figure 4.4	Examples of object classes as conceptualised in ACRU2000 (after	
	Clark et al., 2001)	48
Figure 5.1	Flow diagram of salt input mechanism to irrigated lands as	
	accounted in the PIrrigSaltInput Process Object	57
Figure 5.2	Class diagram of PIrrigSaltInput Process and associated data and	
	component objects	58

Figure 5.3	Class diagram of <i>PSubsurfaceSaltTra</i> Process and its associated	
	component and data objects	60
Figure 5.4	Flow diagram of subsurface salt movement in non-irrigated lands	64
Figure 5.5	Class diagram of PIrrigSubsurfSaltTransport and its associated	
	data and component objects	65
Figure 5.6	Class diagram of PUpwardSaltTransport Process and associated	
	data and component objects	66
Figure 5.7	Flow diagram of upward salt movement in non-irrigated lands as	
	represented in ACRUSalinity	67
Figure 5.8	An increase in subsurface TDS concentration with time based on	
	the first order rate kinetics	69
Figure 5.9	Suggested values of critical stormflow response soil depth (m)	
	according to climatic, vegetation and soil characteristics (Schulze, 1995)	72
Figure 5.10	Class diagram of PRunoffSalinity Process and its associated component	
	and data objects	76
Figure 5.11	Flow diagram for determination of upper and lower net land segment	
	areas	79
Figure 5.12	Class diagram of the PLandSegmentSaltMovement Process and	
	associated component and data objects	80
Figure 5.13	Flow diagram of runoff salt load allocation from non-irrigated areas	82
Figure 5.14	Class diagram of PIrrigatedAreaSaltMovement Process and associated	
	data and component objects	83
Figure 5.15	Runoff generation from impervious areas as conceptualised in $ACRU$	
	model (Schulze and Tarboton, 1995)	84
Figure 5.16	Class diagram of PImperviousAreaSaltMovement Process and associated	
	objects	85
Figure 5.17	Flow diagram of salt load determination and distribution from impervious	
	areas	88
Figure 5.18	Reservoir water budget as conceptualised in ACRU model (Schulze and	
	Smithers, 2002)	91
Figure 5.19	Class diagram of PReservoirComponSalinity Process and associated data	
	and component objects	94
Figure 5.20	Class diagram of PSaltStacking Process and associated data and	
	component objects	95

Figure 5.21	Plug-flow cells for the cases (a) when outflow is less than storage	
	and (b) when outflow is greater or equal to storage (after Herold,	
	1980)	96
Figure 5.22	Flow diagram of the PSaltStacking Process	97
Figure 5.23	Class diagram of PCatchmentSalinity and associated component	
	and data objects	99
Figure 6.1	The U1H005 gauging weir at Camden	103
Figure 6.2	Mkomazi River at upstream of the U1H005 gauging weir	103
Figure 6.3	Land use classes of the Upper Mkomazi Catchment (from CSIR, using	
	LANDSAT TM, 1996)	105
Figure 6.4	Major geological formations of the Upper Mkomazi Catchment (after	
	Council for Geoscience, 1999)	106
Figure 6.5	Intra-and inter-annual trends of streamflow salinity in the Upper	
	(U1H005) and Lower (U1H006) Mkomazi Catchments	108
Figure 6.6	ACRU sub-catchment delineation of the Upper Mkomazi Catchment	
	(after Taylor, 2001)	110
Figure 6.7	Diagram of sub-catchment configuration for the Upper Mkomazi	
	Catchment (after Taylor ,2001)	111
Figure 6.8	Layout and direction of salt transport for the catchment used on code	
	validation of channel and distributed hydrosalinity modeling processes	121
Figure 6.9	TDS versus EC relationship as recorded in U1H005 (Camden)	125
Figure 6.10	Monthly mean of daily observed and simulated streamflow TDS	
	concentration at Camden (U1H005) for the calibration period	127
Figure 6.11	Percentile curves of observed and simulated monthly mean of	
	daily streamflow TDS concentration at Camden (U1H005) for the	
	calibration period	127
Figure 6.12	Daily observed and simulated streamflow TDS concentration values	
	at Camden (U1H005)	130
Figure 6.13	Monthly mean of daily observed and simulated streamflow TDS	
	concentration values at Camden (U1H005) for the verification period	131
Figure 6.14	Percentile curves of observed and simulated TDS concentration values	
	at Camden (U1H005) for the verification period	131
Figure 7.1	The effect of changes in salt uptake rate constant, k , on baseflow salinity	
	(BFLOSA) and runoff salinity (RUNOSA)	136

Figure 7.2	The effect of change in salt uptake rate constant on the topsoil salinity	
	(TOPSSA), subsoil salinity (SUBSSA) and groundwater salinity (GWSA)	137
Figure 7.3	The impact of changes in value of the salt saturation parameter on	
	runoff salinity (RUNOSA) and baseflow salinity (BFLOSA)	138
Figure 7.4	Sensitivity of the topsoil salinity (TOPSSA), subsoil salinity (SUBSSA)	
	and groundwater salinity (GWSA) to changes in values of the salt	
	saturation parameter	139
Figure 7.5	Sensitivity of baseflow salinity (BFLOSA) and runoff salinity	
	(RUNOSA) in response to changes in initial soil horizon salinity	140
Figure 7.6	Daily simulated topsoil TDS concentration curves at different initial	
	topsoil salinity (INITOPSSA) values	141
Figure 7.7	Daily simulated subsoil TDS concentration curves at different initial	
	subsoil salinity (INISUBSSA) values	141
Figure 7.8	The influence of changes in initial soil moisture salinity on topsoil	
	moisture salinity at different times during the year	143
Figure 7.9	The influence of changes in initial soil moisture salinity on subsoil	
	moisture salinity at different times during the year	143
Figure 7.10	The influence of changes in initial soil moisture salinity on groundwater	
	salinity at different times during the year	144
Figure 7.11	The impact of initial reservoir storage salinity on simulated daily	
	reservoir storage salinity	145
Figure 7.12	Sensitivity of reservoir storage and outflow salinity to changes in	
	reservoir initial storage salinity	145
Figure 7.13	Spatial variation of mean TDS concentration at sub-catchment outlets	
	of the Upper Mkomazi Catchment	147
Figure 7.14	Simulated monthly average of daily TDS concentration and salt load	
	at the outlet of the Upper Mkomazi Catchment (U1H005)	149
Figure 7.15	Impact of the proposed Impendle Reservoir on downstream streamflow	
	TDS concentration at two reservoir sizes	150
Figure 7.16	The impact of forests on downstream streamflow TDS concentration	152
Figure 7.17	Impact of irrigation on downstream streamflow TDS concentration	
	under different irrigation scheduling practices	153