BT 3040: BIOINFORMATICS

Assignment 6

Atharva Mandar Phatak | BE21B009

Indian Institute of Technology Madras

Combined data for Q1 & Q2 can be found in 'Excel Assignment6 Q1&Q2'

- Q1) Using AL2CO server (http://prodata.swmed.edu/al2co/al2co.php), obtain the positional conservation scores from multiple sequence alignment (MSA) of given set of protein sequences (set1 and set2) using the methods given below:
- (i) Unweighted frequency and entropy-based measure
- (ii) Unweighted frequency and variance-based measure
- (iii) Unweighted frequency and sum of pairs measure
- (iv) Weighted frequency and variance-based measure
- (v) Normalize the scores obtained with (i)

b. Set 2 Alignment

c. AL2CO interface

AL2CO alignment conservation server

RESULTS:

- The list of positional conservation values is here.
 The alignment with integer conservation indices is here.

INPUTS:

- Input alignment is <u>here</u>.Input pdb file: none.

Based on the question, we can tune the parameters and obtain the results. The outputs are mentioned in separate folders for Set 1 and Set 2

Q2) Tabulate the topmost 10 residues with highest and lowest conservation scores (in both Set1 and Set 2) obtained with method (i).

a. Set 1

Lowest Conservation Score Set 1				
Position	Residue	Condition 1		
117	K	-1.846		
113	Т	-1.72		
70	L	-1.673		
73	S	-1.594		
84	Е	-1.414		
133	G	-1.414		
36	V	-1.367		
35	V	-1.295		
9	Α	-1.169		
6	K	-1.16		

Highest Conservation Score Set 1				
Position	Residue	Condition 1		
1	:	0		
3	L	0		
4	S	0		
7	D	0		
8	K	0		
17	K	0		
26	G	0		
30	L	0		
32	R	0		
38	Р	0		

b. Set 2

Lowest Conservation Score Set 2				
Position	Residue	Condition 1		
33	T	-1.889		
64	Q	-1.831		
147	Α	-1.831		
27	Е	-1.735		
23	V	-1.677		
36	Н	-1.677		
49	L	-1.677		
93	S	-1.677		
145	R	-1.677		
145	L	-1.677		

Highest Conservation Score Set 2				
Position	Residue	Condition 1		
12	N	0		
14	K	0		
16	N	0		
43	V	0		
68	Q	0		
69	N	0		
76	G	0		
77	Α	0		
78	F	0		
79	Т	0		

Q3) Write a program to compute the conservation score from MSA using unweighted frequency, and entropy, variance and sum of pairs-based measures.

```
#Atharva Mandar Phatak | BE21B009 | BT3040 Assignment 6 Q1 |
import numpy as np
def calculate_frequencies(dat, aminoacids):
  totseq = len(dat)
  lenseq = len(dat[0])
  unweightedfreq = np.zeros((lenseq, 20))
  for i in range(lenseq):
     for j in range(totseq):
       if dat[j][i].isalpha():
          a = aminoacids.index(dat[i][i])
          unweightedfreq[i][a] += 1
  return unweightedfreq / totseq
def calculate_entropy_and_variance(unweightedfreq, aminoacidfreq):
  entropy = np.zeros(len(unweightedfreq))
  variance = np.zeros(len(unweightedfreq))
  for i, freq in enumerate(unweightedfreq):
    for j, f in enumerate(freq):
       if f != 0:
          entropy[i] += f * np.log(f)
       variance[i] += (f - aminoacidfreq[j]) ** 2
  entropy = [-e if e != 0 else 0 for e in entropy]
  variance = np.sqrt(variance)
  return entropy, variance
def calculate_sum_of_pairs(unweightedfreq, aminoacids, blosum62):
  sum_of_pairs = np.zeros(len(unweightedfreq))
  for i, freq in enumerate(unweightedfreq):
    for j in range(20):
       for k in range(20):
          tup = (aminoacids[i], aminoacids[k])
          if tup not in blosum62:
            tup = (aminoacids[k], aminoacids[j])
          sum_of_pairs[i] += freq[j] * freq[k] * blosum62[tup]
  sum_of_pairs = np.sqrt(sum_of_pairs)
```

```
return sum of pairs
def Con score MSA(dat):
  totseq = len(dat)
  lenseq = len(dat[0])
  aminoacids = 'ACDEFGHIKLMNPQRSTVWY'
  aminoacidfreq = np.zeros(20)
  blosum62 = {
  ('W', 'F'): 1, ('L', 'R'): -2, ('S', 'P'): -1, ('V', 'T'): 0,
  ('Q', 'Q'): 5, ('N', 'A'): -2, ('Z', 'Y'): -2, ('W', 'R'): -3,
  ('Q', 'A'): -1, ('S', 'D'): 0, ('H', 'H'): 8, ('S', 'H'): -1,
  ('H', 'D'): -1, ('L', 'N'): -3, ('W', 'A'): -3, ('Y', 'M'): -1,
  ('G', 'R'): -2, ('Y', 'I'): -1, ('Y', 'E'): -2, ('B', 'Y'): -3,
  ('Y', 'A'): -2, ('V', 'D'): -3, ('B', 'S'): 0, ('Y', 'Y'): 7,
  ('G', 'N'): 0, ('E', 'C'): -4, ('Y', 'Q'): -1, ('Z', 'Z'): 4,
  ('V', 'A'): 0, ('C', 'C'): 9, ('M', 'R'): -1, ('V', 'E'): -2,
  ('T', 'N'): 0, ('P', 'P'): 7, ('V', 'I'): 3, ('V', 'S'): -2,
  ('Z', 'P'): -1, ('V', 'M'): 1, ('T', 'F'): -2, ('V', 'Q'): -2,
  ('K', 'K'): 5, ('P', 'D'): -1, ('I', 'H'): -3, (I', 'D'): -3,
  ('T', 'R'): -1, ('P', 'L'): -3, ('K', 'G'): -2, ('M', 'N'): -2,
  ('P', 'H'): -2, ('F', 'Q'): -3, ('Z', 'G'): -2, ('X', 'L'): -1,
  ('T', 'M'): -1, ('Z', 'C'): -3, ('X', 'H'): -1, ('D', 'R'): -2,
  ('B', 'W'): -4, ('X', 'D'): -1, ('Z', 'K'): 1, ('F', 'A'): -2,
  ('Z', 'W'): -3, ('F', 'E'): -3, ('D', 'N'): 1, ('B', 'K'): 0,
  ('X', 'X'): -1, ('F', 'I'): 0, ('B', 'G'): -1, ('X', 'T'): 0,
  ('F', 'M'): 0, ('B', 'C'): -3, ('Z', 'I'): -3, ('Z', 'V'): -2,
  ('S', 'S'): 4, ('L', 'Q'): -2, ('W', 'E'): -3, ('Q', 'R'): 1,
  ('N', 'N'): 6, ('W', 'M'): -1, ('Q', 'C'): -3, ('W', 'I'): -3,
  ('S', 'C'): -1, ('L', 'A'): -1, ('S', 'G'): 0, ('L', 'E'): -3,
  ('W', 'Q'): -2, ('H', 'G'): -2, ('S', 'K'): 0, ('Q', 'N'): 0,
  ('N', 'R'): 0, ('H', 'C'): -3, ('Y', 'N'): -2, ('G', 'Q'): -2,
  ('Y', 'F'): 3, ('C', 'A'): 0, ('V', 'L'): 1, ('G', 'E'): -2,
  ('G', 'A'): 0, ('K', 'R'): 2, ('E', 'D'): 2, ('Y', 'R'): -2,
  ('M', 'Q'): 0, ('T', T'): -1, ('C', 'D'): -3, ('V', 'F'): -1,
  ('T', 'A'): 0, ('T', 'P'): -1, ('B', 'P'): -2, ('T', 'E'): -1,
  ('V', 'N'): -3, ('P', 'G'): -2, ('M', 'A'): -1, ('K', 'H'): -1,
  ('V', 'R'): -3, ('P', 'C'): -3, ('M', 'E'): -2, ('K', 'L'): -2,
  ('V', 'V'): 4, ('M', 'I'): 1, ('T', 'Q'): -1, (T', 'G'): -4,
  ('P', 'K'): -1, ('M', 'M'): 5, ('K', 'D'): -1, ('I', 'C'): -1,
  ('Z', 'D'): 1, ('F', 'R'): -3, ('X', 'K'): -1, ('Q', 'D'): 0,
  ('X', 'G'): -1, ('Z', 'L'): -3, ('X', 'C'): -2, ('Z', 'H'): 0,
  ('B', 'L'): -4, ('B', 'H'): 0, ('F', 'F'): 6, ('X', 'W'): -2,
  ('B', 'D'): 4, ('D', 'A'): -2, ('S', 'L'): -2, ('X', 'S'): 0,
  ('F', 'N'): -3, ('S', 'R'): -1, ('W', 'D'): -4, ('V', 'Y'): -1,
  ('W', 'L'): -2, ('H', 'R'): 0, ('W', 'H'): -2, ('H', 'N'): 1,
  ('W', 'T'): -2, ('T', 'T'): 5, ('S', 'F'): -2, ('W', 'P'): -4,
   ('L', 'D'): -4, ('B', 'I'): -3, ('L', 'H'): -3, ('S', 'N'): 1,
```

```
('B', 'T'): -1, ('L', 'L'): 4, ('Y', 'K'): -2, ('E', 'Q'): 2,
  ('Y', 'G'): -3, ('Z', 'S'): 0, ('Y', 'C'): -2, ('G', 'D'): -1,
  ('B', 'V'): -3, ('E', 'A'): -1, ('Y', 'W'): 2, ('E', 'E'): 5,
  ('Y', 'S'): -2, ('C', 'N'): -3, ('V', 'C'): -1, ('T', 'H'): -2,
  ('P', 'R'): -2, ('V', 'G'): -3, ('T', 'L'): -1, ('V', 'K'): -2,
  ('K', 'Q'): 1, ('R', 'A'): -1, ('I', 'R'): -3, ('T', 'D'): -1,
  ('P', 'F'): -4, ('I', 'N'): -3, ('K', 'I'): -3, ('M', 'D'): -3,
  ('V', 'W'): -3, ('W', 'W'): 11, ('M', 'H'): -2, ('P', 'N'): -2,
  ('K', 'A'): -1, ('M', 'L'): 2, ('K', 'E'): 1, ('Z', 'E'): 4,
  ('X', 'N'): -1, ('Z', 'A'): -1, ('Z', 'M'): -1, ('X', 'F'): -1,
  ('K', 'C'): -3, ('B', 'Q'): 0, ('X', 'B'): -1, ('B', 'M'): -3,
  ('F', 'C'): -2, ('Z', 'Q'): 3, ('X', 'Z'): -1, ('F', 'G'): -3,
  ('B', 'E'): 1, ('X', 'V'): -1, ('F', 'K'): -3, ('B', 'A'): -2,
  ('X', 'R'): -1, ('D', 'D'): 6, ('W', 'G'): -2, ('Z', 'F'): -3,
  ('S', 'Q'): 0, ('W', 'C'): -2, ('W', 'K'): -3, ('H', 'Q'): 0,
  ('L', 'C'): -1, ('W', 'N'): -4, ('S', 'A'): 1, ('L', 'G'): -4,
  ('W', 'S'): -3, ('S', 'E'): 0, ('H', 'E'): 0, ('S', 'I'): -2,
  ('H', 'A'): -2, ('S', 'M'): -1, ('Y', 'L'): -1, ('Y', 'H'): 2,
  ('Y', 'D'): -3, ('E', 'R'): 0, ('X', 'P'): -2, ('G', 'G'): 6,
  ('G', 'C'): -3, ('E', 'N'): 0, ('Y', 'T'): -2, ('Y', 'P'): -3,
  ('T', 'K'): -1, ('A', 'A'): 4, ('P', 'Q'): -1, ('T', 'C'): -1,
  ('V', 'H'): -3, ('T', 'G'): -2, ('I', 'Q'): -3, ('Z', 'T'): -1,
  ('C', 'R'): -3, ('V', 'P'): -2, ('P', 'E'): -1, ('M', 'C'): -1,
  ('K', 'N'): 0, (T, T): 4, (P', A'): -1, (M', G'): -3,
  ('T', 'S'): 1, ('I', 'E'): -3, ('P', 'M'): -2, ('M', 'K'): -1,
  (T, 'A'): -1, ('P', T'): -3, ('R', 'R'): 5, ('X', 'M'): -1,
  ('L', T'): 2, ('X', T'): -1, ('Z', 'B'): 1, ('X', 'E'): -1,
  ('Z', 'N'): 0, ('X', 'A'): 0, ('B', 'R'): -1, ('B', 'N'): 3,
  ('F', 'D'): -3, ('X', 'Y'): -1, ('Z', 'R'): 0, ('F', 'H'): -1,
  ('B', 'F'): -3, ('F', 'L'): 0, ('X', 'Q'): -1, ('B', 'B'): 4
  unweightedfreq = calculate_frequencies(dat, aminoacids)
  aminoacidfreq = np.sum(unweightedfreq, axis=0) / (totseq * lenseq)
  entropy, variance = calculate_entropy_and_variance(unweightedfreq, aminoacidfreq)
  sum_of_pairs = calculate_sum_of_pairs(unweightedfreq, aminoacids, blosum62)
  return entropy, variance, sum_of_pairs
if __name__ == "__main__":
  data = [\text{'-SLSDKDKAAVRALWSKIGKSADAIGNDALSRMIVVYPQTKTYFSHWPDVTPGSPHI-data}] \\
KAH',
        'MVLSANDKSNVKSIFSKISSHAEEYGAETLERMFTTYPOTKTYFPHF-DLHHGSAOVKAH',
        '-VLSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF-DLSPGSAQVKAH',
        'MVLSADDKTNIKNCWGKIGGHGGEYGEEALQRMFAAFPTTKTYFSHI-DVSPGSAQV-
KAH',
        '-VLSAADKANVKAAWGKVGGQAGAHGAEALERMFLGFPTTKTYFPHF-NLSHGSDQV-
KAH'.
```

```
'MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHF-DVSH-
GSAQVKGH',
     'MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLSHGSAQV-
KAH',
     'MVLSAADKTNVKAAWSKVGGNAGEFGAEALERMFLGFPTTKTYFPHF-DLSHGSAQV-
KAH',
     'MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHF-DLSH-
GSAQVKGH',
     'MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLSH-
GSAQVKGH',
     'MVLSPADKTNVKTAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHF-DLSH-
GSAQVKDH'
 entropy, variance, sum_of_pairs = Con_score_MSA(data)
 print('Entropy:', entropy)
 print('Variance:', variance)
 print('Sum of pairs:', sum_of_pairs)
```

Output:

```
Cetty Ptt.

Intropy: [0.23160271354075243, 0.30463609734923813, 0, 0, 1.1209503926735835, 1.159588814308626, 0, 0, 1.1685184057430877, 0.30463609734923813, 0.5859526183035508, 0.30463609734923813, 0.5859526183035508, 0.30463609734923813, 0.90503510 0, 909503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 59950310 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 599503170 0, 5
```

Q4) Using the program written in Q3 (unweighted frequency and entropy based measure), compare the MSA from Clustal Omega, MAFFT, and MUSCLE. Identify the residues with (i) similar and (ii) different conservation scores among the three alignment methods

```
import numpy as np
def Con score MSA(dat):
  totseq=len(dat)
  lenseq=len(dat[0])
   unweightedfreq=[[0 for i in range(20)] for j in range(lenseq)]
   aminoacids=['A','C','D','E','F','G','H','I','K','L','M','N','P','Q','R','S','T','V','W','Y']
   aminoacidfreq=[0 for i in range(20)]
  blosum62 = {
 ('W', 'F'): 1, ('L', 'R'): -2, ('S', 'P'): -1, ('V', 'T'): 0,
 ('Q', 'Q'): 5, ('N', 'A'): -2, ('Z', 'Y'): -2, ('W', 'R'): -3,
 ('Q', 'A'): -1, ('S', 'D'): 0, ('H', 'H'): 8, ('S', 'H'): -1,
('H', 'D'): -1, ('L', 'N'): -3, ('W', 'A'): -3, ('Y', 'M'): -1,
('G', 'R'): -2, ('Y', 'I'): -1, ('Y', 'E'): -2, ('B', 'Y'): -3,
('Y', 'A'): -2, ('V', 'D'): -3, ('B', 'S'): 0, ('Y', 'Y'): 7,
('G', 'N'): 0, ('E', 'C'): -4, ('Y', 'Q'): -1, ('Z', 'Z'): 4,
('V', 'A'): 0, ('C', 'C'): 9, ('M', 'R'): -1, ('V', 'E'): -2,
('T', 'N'): 0, ('P', 'P'): 7, ('V', 'I'): 3, ('V', 'S'): -2,
 ('Z', 'P'): -1, ('V', 'M'): 1, ('T', 'F'): -2, ('V', 'Q'): -2,
('K', 'K'): 5, ('P', 'D'): -1, (T', 'H'): -3, (T', 'D'): -3,
('T', 'R'): -1, ('P', 'L'): -3, ('K', 'G'): -2, ('M', 'N'): -2,
('P', 'H'): -2, ('F', 'Q'): -3, ('Z', 'G'): -2, ('X', 'L'): -1,
 ('T', 'M'): -1, ('Z', 'C'): -3, ('X', 'H'): -1, ('D', 'R'): -2,
('B', 'W'): -4, ('X', 'D'): -1, ('Z', 'K'): 1, ('F', 'A'): -2,
('Z', 'W'): -3, ('F', 'E'): -3, ('D', 'N'): 1, ('B', 'K'): 0,
('X', 'X'): -1, ('F', T'): 0, ('B', 'G'): -1, ('X', 'T'): 0,
('F', 'M'): 0, ('B', 'C'): -3, ('Z', 'I'): -3, ('Z', 'V'): -2,
('S', 'S'): 4, ('L', 'Q'): -2, ('W', 'E'): -3, ('Q', 'R'): 1,
('N', 'N'): 6, ('W', 'M'): -1, ('Q', 'C'): -3, ('W', 'I'): -3,
 ('S', 'C'): -1, ('L', 'A'): -1, ('S', 'G'): 0, ('L', 'E'): -3,
 ('W', 'Q'): -2, ('H', 'G'): -2, ('S', 'K'): 0, ('Q', 'N'): 0,
('N', 'R'): 0, ('H', 'C'): -3, ('Y', 'N'): -2, ('G', 'Q'): -2,
('Y', 'F'): 3, ('C', 'A'): 0, ('V', 'L'): 1, ('G', 'E'): -2,
 ('G', 'A'): 0, ('K', 'R'): 2, ('E', 'D'): 2, ('Y', 'R'): -2,
('M', 'Q'): 0, ('T', 'I'): -1, ('C', 'D'): -3, ('V', 'F'): -1,
('T', 'A'): 0, ('T', 'P'): -1, ('B', 'P'): -2, ('T', 'E'): -1,
('V', 'N'): -3, ('P', 'G'): -2, ('M', 'A'): -1, ('K', 'H'): -1,
 ('V', 'R'): -3, ('P', 'C'): -3, ('M', 'E'): -2, ('K', 'L'): -2,
('V', 'V'): 4, ('M', T): 1, ('T', 'Q'): -1, (T', 'G'): -4,
('P', 'K'): -1, ('M', 'M'): 5, ('K', 'D'): -1, ('I', 'C'): -1,
```

```
('Z', 'D'): 1, ('F', 'R'): -3, ('X', 'K'): -1, ('Q', 'D'): 0,
('X', 'G'): -1, ('Z', 'L'): -3, ('X', 'C'): -2, ('Z', 'H'): 0,
('B', 'L'): -4, ('B', 'H'): 0, ('F', 'F'): 6, ('X', 'W'): -2,
('B', 'D'): 4, ('D', 'A'): -2, ('S', 'L'): -2, ('X', 'S'): 0,
('F', 'N'): -3, ('S', 'R'): -1, ('W', 'D'): -4, ('V', 'Y'): -1,
('W', 'L'): -2, ('H', 'R'): 0, ('W', 'H'): -2, ('H', 'N'): 1,
('W', 'T'): -2, ('T', 'T'): 5, ('S', 'F'): -2, ('W', 'P'): -4,
('L', 'D'): -4, ('B', T): -3, ('L', 'H'): -3, ('S', 'N'): 1,
('B', 'T'): -1, ('L', 'L'): 4, ('Y', 'K'): -2, ('E', 'Q'): 2,
('Y', 'G'): -3, ('Z', 'S'): 0, ('Y', 'C'): -2, ('G', 'D'): -1,
('B', 'V'): -3, ('E', 'A'): -1, ('Y', 'W'): 2, ('E', 'E'): 5,
('Y', 'S'): -2, ('C', 'N'): -3, ('V', 'C'): -1, ('T', 'H'): -2,
('P', 'R'): -2, ('V', 'G'): -3, ('T', 'L'): -1, ('V', 'K'): -2,
('K', 'Q'): 1, ('R', 'A'): -1, ('I', 'R'): -3, ('T', 'D'): -1,
('P', 'F'): -4, ('I', 'N'): -3, ('K', 'I'): -3, ('M', 'D'): -3,
('V', 'W'): -3, ('W', 'W'): 11, ('M', 'H'): -2, ('P', 'N'): -2,
('K', 'A'): -1, ('M', 'L'): 2, ('K', 'E'): 1, ('Z', 'E'): 4,
('X', 'N'): -1, ('Z', 'A'): -1, ('Z', 'M'): -1, ('X', 'F'): -1,
('K', 'C'): -3, ('B', 'Q'): 0, ('X', 'B'): -1, ('B', 'M'): -3,
('F', 'C'): -2, ('Z', 'Q'): 3, ('X', 'Z'): -1, ('F', 'G'): -3,
('B', 'E'): 1, ('X', 'V'): -1, ('F', 'K'): -3, ('B', 'A'): -2,
('X', 'R'): -1, ('D', 'D'): 6, ('W', 'G'): -2, ('Z', 'F'): -3,
('S', 'Q'): 0, ('W', 'C'): -2, ('W', 'K'): -3, ('H', 'Q'): 0,
('L', 'C'): -1, ('W', 'N'): -4, ('S', 'A'): 1, ('L', 'G'): -4,
('W', 'S'): -3, ('S', 'E'): 0, ('H', 'E'): 0, ('S', 'I'): -2,
('H', 'A'): -2, ('S', 'M'): -1, ('Y', 'L'): -1, ('Y', 'H'): 2,
('Y', 'D'): -3, ('E', 'R'): 0, ('X', 'P'): -2, ('G', 'G'): 6,
('G', 'C'): -3, ('E', 'N'): 0, ('Y', 'T'): -2, ('Y', 'P'): -3,
('T', 'K'): -1, ('A', 'A'): 4, ('P', 'Q'): -1, ('T', 'C'): -1,
('V', 'H'): -3, ('T', 'G'): -2, ('I', 'Q'): -3, ('Z', 'T'): -1,
('C', 'R'): -3, ('V', 'P'): -2, ('P', 'E'): -1, ('M', 'C'): -1,
('K', 'N'): 0, (T, T): 4, (P', A'): -1, (M', G'): -3,
('T', 'S'): 1, (T', 'E'): -3, ('P', 'M'): -2, ('M', 'K'): -1,
(T', 'A'): -1, ('P', T'): -3, ('R', 'R'): 5, ('X', 'M'): -1,
('L', T): 2, ('X', 'I'): -1, ('Z', 'B'): 1, ('X', 'E'): -1,
('Z', 'N'): 0, ('X', 'A'): 0, ('B', 'R'): -1, ('B', 'N'): 3,
('F', 'D'): -3, ('X', 'Y'): -1, ('Z', 'R'): 0, ('F', 'H'): -1,
('B', 'F'): -3, ('F', 'L'): 0, ('X', 'Q'): -1, ('B', 'B'): 4
  for i in range(lenseq):
     for j in range(totseq):
        if dat[j][i].isalpha()==1:
           a=aminoacids.index(str(dat[j][i]))
           unweightedfreq[i][a]+=1
  unweightedfreq=np.divide(unweightedfreq, totseq)
  for i in range(lenseq):
     for j in range(totseq):
```

```
if dat[j][i].isalpha()==1:
         a=aminoacids.index(str(dat[j][i]))
         aminoacidfreq[a]+=1
  aminoacidfreq=np.divide(aminoacidfreq, totseq*lenseq)
  entropy=[0]*lenseq
  variance=[0]*lenseq
  sum_of_pairs=[0]*lenseq
  for i in range(lenseq):
    for j in range(20):
       if unweightedfreq[i][j]!=0:
         entropy[i]+=unweightedfreq[i][j]*np.log(unweightedfreq[i][j])
       variance[i]+=(unweightedfreq[i][j]-aminoacidfreq[j])**2
       for k in range(20):
         tup=(aminoacids[i],aminoacids[k])
         if tup in blosum62:
            tup=(aminoacids[j],aminoacids[k])
         else:
            tup=(aminoacids[k],aminoacids[j])
         sum_of_pairs[i]+=unweightedfreq[i][j]*unweightedfreq[i][k]*blosum62[tup]
  for i in range(lenseq):
     variance[i]=variance[i]**0.5
    sum_of_pairs[i]=sum_of_pairs[i]**0.5
    print('\nEntropy=\n', entropy)
    print('\nVariance=\n', variance)
    print('\nSum of pairs=\n', sum_of_pairs)
    return entropy, variance, sum_of_pairs
def compare_msa(a, b, c):
  similar=[]
  dissimilar=[]
  for i in range(len(a)):
    if a[i] == b[i] == c[i]:
       similar.append((i, a[i]))
    elif a[i]!=b[i]!=c[i]:
       dissimilar.append((i,a[i],b[i],c[i]))
    print('total number of similar scores=', len(similar))
    print('Similar residues through Clustal Omega, MAFFT and Muscle= (Posiiton, common conservation
score')
    print(similar)
    print('Total number of diff scores=',len(dissimilar))
    print('Different residues through Clustal Omega, MAFFT and MUSCLE are= (Position, same order
conservation scores')
    print(dissimilar)
def compare_results():
```

Clustal_Omega =['-SLSDKDKAAVRALWSKIGKSADAIGNDALSRMIVVYPQTK-TYFSHWPDVTPGSPHIKAH'.

'MVLSANDKSNVKSIFSKISSHAEEYGAETLERMFTTYPQTKTYFPHF-DLHHGSAQVKAH', '-VLSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF-DLSPGSAQVKAH', 'MVLSADDKTNIKNCWGKIGGHGGEYGEEALQRMFAAFPTTKTYFSHI-DVSPGSAQV-

KAH',

 $\hbox{$'$-VLSAADKANVKAAWGKVGGQAGAHGAEALERMFLGFPTTKTYFPHF-NLSHGSDQV-KAH',}$

 $\label{lem:control} \mbox{'MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHF-DVSH-GSAQVKGH',}$

 ${\tt 'MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLSHGSAQV-KAH'}.$

 $\label{lem:market} 'MVLSAADKTNVKAAWSKVGGNAGEFGAEALERMFLGFPTTKTYFPHF-DLSHGSAQV-KAH',$

'MVLSPADKTNVKTAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHF-DLSH-GSAQVKDH']

MAFFT = ['MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLSH-GSAOVKGH',

 $\label{eq:mvlspadktnvktawgkvgahagdygaealermflsfpttktyfphf-dlsh-gsaqvkdh;} \\$

 ${\tt 'MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHF-DLSH-GSAQVKGH',}$

'MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLSHGSAQV-KAH'.

 ${\tt 'MVLSAADKTNVKAAWSKVGGNAGEFGAEALERMFLGFPTTKTYFPHF-DLSHGSAQV-KAH',}$

'MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHF-DVSHGSAQVKGH', '-VLSAADKANVKAAWGKVGGQAGAHGAEALERMFLGFPTTKTYFPHF-NLSHGSDQV-KAH'.

'MVLSADDKTNIKNCWGKIGGHGGEYGEEALQRMFAAFPTTKTYFSHI-DVSPGSAQVKAH',
'-VLSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF-DLSPGSAQVKAH',
'MVLSANDKSNVKSIFSKISSHAEEYGAETLERMFTTYPQTKTYFPHF-DLHHGSAQVKAH',
'-SLSDKDKAAVRALWSKIGKSADAIGNDALSRMIVVYPQTKTYFSHWPDVTPGSPHIKAH']
MUSCLE = ['-SLSDKDKAAVRALWSKIGKSADAIGNDALSRMIVVYPQTKTYFSHWPDVTPG-SPHIKAH',

'MVLSANDKSNVKSIFSKISSHAEEYGAETLERMFTTYPQTKTYFPHF-DLHHGSAQVKAH', '-VLSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF-DLSPGSAQVKAH', 'MVLSADDKTNIKNCWGKIGGHGGEYGEEALQRMFAAFPTTKTYFSHI-DVSPGSAQVKAH', '-VLSAADKANVKAAWGKVGGQAGAHGAEALERMFLGFPTTKTYFPHF-NLSHGSDQV-KAH'.

 $\label{lem:masspot} 'MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHF-DVSHGSAQVKGH', \\ 'MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLSHGSAQVKAH', \\$

```
'MVLSAADKTNVKAAWSKVGGNAGEFGAEALERMFLGFPTTKTYFPHF-DLSHGSAQV-
KAH'.
    'MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHF-DLSH-
GSAQVKGH',
    'MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLSH-
GSAOVKGH'.
    'MVLSPADKTNVKTAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHF-DLSH-
GSAQVKDH',]
 Clustal_Omega_entropy, Clustal_Omega_variance, Clustal_Omega_sum=Con_score_MSA(Clus-
tal Omega)
 MAFFT_entropy, MAFFT_variance, MAFFT_sum=Con_score_MSA(MAFFT)
 MUSCLE entropy, MUSCLE variance, MUSCLE sum=Con score MSA(MUSCLE)
  print('Compating entropy-based conservation scores...')
 compare_msa(Clustal_Omega_entropy, MAFFT_entropy, MUSCLE_entropy)
  print('comparing variance-based conservation scores...')
 compare msa(Clustal Omega variance, MAFFT variance, MUSCLE variance)
  print('Comparing sum of all pairs-based conservation scores...')
 compare_msa(Clustal_Omega_sum, MAFFT_sum, MUSCLE_sum)
  return None
compare results()
```

Output*:

^{*}Only a small snippet is shown. The complete output is saved in text file named "Assignment6_Q4_Output"

Q5). Check the scores manually at positions 9, 11, 20, 22 and 30 (use MSA from Clustal Omega)

	B13040 0000 17 March 2020	4
	Atharra Mandar Phatau BEZIBOOD Assistment 6	
	S PLOT - HALL STATE OF	-3
	273-0-105-1339	7
a	5) a) Set A	
	Position 9: ASTTASTTATT	
	F(A)=2 = 0.182	
	(183-030LIV 0 + (180-030) 1000	
	F(s) = 2 = 0.182	
	11801-3	
	F(T) = 6 = 0.54B	
	MARADADARA DE PREMI	
	F(G) = 1 = 0.185 0.091	
	11 2120 = p=(A)7	
	:. C (3) = 0.185 70 (0.185) + 0.185 70 (0.185)	
	+ 0.549 ln(0.549) + 0.031 ln(0.091)	
	= -1:169	
	Out 4 a	
	Position II : VVII VI VVVV	
	41112411414	
	E(y) = 8/11 $F(z) = 3/11$	
	$F(V) = 8/11 \qquad F(\Sigma) = 3/11 = 0.273$	
	0 (2)	
	c(11 = 0.727 ln(0.727) + 0.273 ln(0.273)	
	= -0.5862	
	-0.56.62	
BELLIE	THE RESIDENCE OF THE PARTY OF T	

1	Paga Ho.:	
A STREET	Onto:	
	Position 20 : KS GGGGGGAA	
	F(A)=2/11 = 0.18 2	
	F(G)=7/11 =0.636	
	F(LL) = 1/11' = 0.09)	
	F(9) = 1/\$11 = 0.091	
	$C(20) = 0.182 \ln(0.182) + 0.636 \ln(0.636) +$	-
23-	0.031 40(0.091) + 0.081 90(0.031)	
	F(S) = 2, = 0.18 =	
	= -1.0341.	
	# PE: 0 = D = (T) 9	
	Position 22: AAAGAGAAAA	_
	1000 TEND = L = (D) 9	_
	F(A) = g = 0.818	-
		-
	F(q) = 2 - 0.182	+
	(100-0) n1 100-0 + 1/e pero) nl 2 12 0 +	+
	$C^{e}(22) = 0.818 \ln(0.818) + 0.182 \ln(0.182)$	
	= -0.4144	
	VVVVVIVIIVV : II nodizeq	1
	Postion 30 LLLLLLLLLL	
	11 (E=(2)) 11 (2 = (1)) 1	_
-	F(L) = 11/11=1	-
100	·	
-	$c^{e}(30) = ln(1) = 0$	
	Chileran	
4		
-		
7		
-		
1		
All the second		

			Page Na.1
			Date:
Cara			
Set 2:			
0.011			
Position 9: 1	3- VVVVV	V	
6(0)			
F(A) = 1		E = (T) 9	
		E	
f(v) = 7		15 = (.10 9	
9		E	
-1			
: c'(g) = 0\111 = 0.88	1+ 9:418	10000 = 6000	5
= 0/8/8	91		
= -0.43	9		
		MUMM , OED	n1/2-3
Position 11: A-	. 6666666		
		32 = (143	3
F(A) = 1		3	
F(G) = 1	1		24
9	C, C(1) = (p.889 -0.43	9
		PASO (08)	3/13
Position 20: SAQ	LOAKQKK		
F(S)= 1 P(A	A)= (-(1c)=3	F(D) = 1	
9		9	
F(A)=2	F(Q) = 2		
9	3		
c'(20) = 0	999 -1.76	6	
Por			

	Page No.:
	Date:
Position 22 LIIVVILLL	
 F(V)= 2	
9	
f(I) = 3	
 9	
F(L)=4	
9	
 c1(22) = 0499 -1.06	0.3
10-2820 =	
ELEMENT - +	
Position 30: NNNNN 9 NNN	
0(n) - 02	11807
F(N) = 8	y-
2	
F(S) = 1	
PEV 09 69/3/6=0113/3	
e1(30) = -0.349	
A SI DSIA OPA E TOO OO	237.000
1 = (D) 9 5 = (SI) 9 = (A) A 1 = 6	3)9
e e	
D=0 = F(0)=2	AD9
E E	
225-1 - Chap = (927)	
	200

Q6) Obtain the conservation score of 1BTM, A-chain using Consurf server (https://consurf.tau.ac.il/

Homologues, Alignment and Phylogeny

- 33874 homologues were collected from the UNIREF90 database using HMMER.
- Of these, <u>28566 homologues</u> passed the thresholds (min/max similarity, coverage, etc.), <u>27844 of them</u> are CD-HIT unique.
- The calculations were conducted on <u>150 hits</u> (query included), sampled from the unique hits. Click <u>here</u> if you wish to view the list of sequences which produced significant alignments, but were not chosen as hits.

Alignment details

- The average number of replacements between any two sequences in the alignment;
 A distance of 0.01 means that on average, the expected replacement for every 100 positions is 1.
- Average pairwise distance : 0.998229
- Lower bound: 0.18384
- Upper bound: 1.87984
- Residue variety per position in the MSA (The table is best viewed with an editor that respects Comma-Separated Values)
- View MSA and phylogenetic tree using WASABI
- Download Phylogenetic Tree (Newick format)
- The best evolutionary model was selected to be: WAG. See details here

MSA Amino Acid Percentage, check excel file named 'Assignment6 Q6 msa aa variety percentage'.