Sentiment analysis: drug reviews

Jonathan Marks

Business Problem

- A hospital or insurance provider
- Efficiently extracting numeric ratings from patients' written review.
- To this end we build a model using labelled, numerically, patient reviews.

Data Understanding / Preprocessing

- 160,000 samples
- Short paragraphs
 - 800 and 3400 unique conditions and drugs
- Non-normal distribution of target
- Frext and meta-deta
- he data comes from Drugs.com and is accessed through UCI's website.

(Kalummadi and Grer)

Preprocessing / nlp techniques

RMSE cross-model comparisons

■ Linear regression model performs best.

		No word embeddings (TF-IDF)			Word embeddings	
		Baseline Decision Tree Regressor	linear regression	Random Forest Regressor	linear regression	Decision Tree Regressor
	Train rmse	3.38	2.84	3.44	3.03	3.14
	Val rmse	3.38 (3.09 w/deepe r tree (5 leaves).	2.88	3.44	3.10	3.22

Evaluation of chosen model

Linear Regression with TF-IDF	MSE	RMSE
	8.3	2.9

Recommendations/future work

Deployment of linear regression model

- Gather insights on how patients rate drugs
 - "Doctor", "horrible", "worse", "love"

- Combine the tf-idf and word embedding models.
- Use the "meta-data" as features. (i.e. the drug evaluated)

