# Como apresentar informações

Fazendo gráficos que as pessoas possam entender

Cássia Sampaio Sanctos
CONE 2021





## Estamos felizes & contentes fazendo uma modelagem e chegamos nestes resultados

| modelos acurácias              |         |
|--------------------------------|---------|
| árvore de decisão              | 0.85090 |
| regressão logística            | 0.82308 |
| naïve bayes                    | 0.81010 |
| floresta aleatória             | 0.85558 |
| máquinas de vetores de suporte | 0.82318 |
| rede neural simples            | 0.84532 |
| k-vizinhos mais próximos       | 0.84815 |
|                                |         |

### Qual acurácia é maior? 3 segundos

| modelos acurácias              |         |
|--------------------------------|---------|
| árvore de decisão              | 0.85090 |
| regressão logística            | 0.82308 |
| naïve bayes                    | 0.81010 |
| floresta aleatória             | 0.85558 |
| máquinas de vetores de suporte | 0.82318 |
| rede neural simples            | 0.84532 |
| k-vizinhos mais próximos       | 0.84815 |
|                                |         |

### Será que a gente consegue em 1 segundo?

| modelos                        | acurácias |
|--------------------------------|-----------|
| árvore de decisão              | 0.85090   |
| regressão logística            | 0.82308   |
| naïve bayes                    | 0.81010   |
| floresta aleatória             | 0.85558   |
| máquinas de vetores de suporte | 0.82318   |
| rede neural simples            | 0.84532   |
| k-vizinhos mais próximos       | 0.84815   |

### Sabe como fica mais direto ainda?

### O modelo de floresta aleatória

teve a maior acurácia, de **86%**, entre os 7 modelos testados.

| modelos                  | acurácias |
|--------------------------|-----------|
| árvore de decisão        | 0.85090   |
| regressão logística      | 0.82308   |
| naïve bayes              | 0.81010   |
| floresta aleatória       | 0.85558   |
| mvs                      | 0.82318   |
| rede neural simples      | 0.84532   |
| k vizinhos mais próximos | 0.84815   |

## Tudo depende de qual é a nossa informação principal

### O que queremos mostrar?

| modelos                        | acurácias |
|--------------------------------|-----------|
| árvore de decisão              | 0.85090   |
| regressão logística            | 0.82308   |
| naïve bayes                    | 0.81010   |
| floresta aleatória             | 0.85558   |
| máquinas de vetores de suporte | 0.82318   |
| rede neural simples            | 0.84532   |
| k vizinhos mais próximos       | 0.84815   |

### O que queremos mostrar?

### Queremos comparar valores

| modelos                        | acurácias |
|--------------------------------|-----------|
| árvore de decisão              | 0.85090   |
| regressão logística            | 0.82308   |
| naïve bayes                    | 0.81010   |
| floresta aleatória             | 0.85558   |
| máquinas de vetores de suporte | 0.82318   |
| rede neural simples            | 0.84532   |
| k vizinhos mais próximos       | 0.84815   |

podemos usar a própria tabela (já vimos como pode ser)

podemos usar a própria tabela (já vimos como pode ser)

podemos usar algum gráfico que coloque quantidades lado a lado para comparamos

podemos usar a própria tabela (já vimos como pode ser)

podemos usar algum gráfico que coloque quantidades lado a lado para comparamos



podemos usar a própria tabela (já vimos como pode ser)

podemos usar algum gráfico que coloque quantidades lado a lado para comparamos



| modelos                        | acurácias |
|--------------------------------|-----------|
| árvore de decisão              | 0.85090   |
| regressão logística            | 0.82308   |
| naïve bayes                    | 0.81010   |
| floresta aleatória             | 0.85558   |
| máquinas de vetores de suporte | 0.82318   |
| rede neural simples            | 0.84532   |
| k vizinhos mais próximos       | 0.84815   |
|                                |           |



### o problema da borda





### o problema de virar o pescoço na acurácia

#### acurácias versus modelos



### o problema de virar o pescoço na acurácia

#### acurácias versus modelos



### o problema de qual o número das colunas

#### acurácias versus modelos



### o problema de qual o número das colunas

#### acurácias versus modelos



### o problema das linhas de grade e das marcações nos eixos

#### acurácias versus modelos



### o problema das linhas de grade e das marcações nos eixos

#### acurácias versus modelos



### o problema das linhas de grade e das marcações nos eixos



### o problema dos títulos dos eixos

#### acurácias versus modelos



### o problema dos títulos nos eixos

acurácias

#### acurácias versus modelos



modeios

### o problema da ordem das colunas



### o problema da ordem das colunas



### o problema do destaque das colunas



### o problema do destaque das colunas



### o problema de ler os nomes dos modelos



#### o problema de ler os nomes dos modelos





### o problema do título

#### acurácias versus modelos

| floresta aleatória                | 85.558 |
|-----------------------------------|--------|
| árvore de decisão                 | 85.090 |
| k vizinhos mais próximos          | 84.815 |
| rede neural simples               | 84.532 |
| máquinas de vetores de<br>suporte | 82.318 |
| regressão logística               | 82.308 |
| naïve bayes                       | 81.010 |

### o problema do título

#### acur<del>ácias versus modelos</del>

| floresta aleatória             | 85.558 |
|--------------------------------|--------|
| árvore de decisão              | 85.090 |
| k vizinhos mais próximos       | 84.815 |
| rede neural simples            | 84.532 |
| máquinas de vetores de suporte | 82.318 |
| regressão logística            | 82.308 |
| naïve bayes                    | 81.010 |

#### o problema do título

A acurácia mais alta, de 86%, foi do modelo de floresta aleatória

| floresta aleatória                | 85.558 |
|-----------------------------------|--------|
| árvore de decisão                 | 85.090 |
| k vizinhos mais próximos          | 84.815 |
| rede neural simples               | 84.532 |
| máquinas de vetores de<br>suporte | 82.318 |
| regressão logística               | 82.308 |
| naïve bayes                       | 81.010 |



A acurácia mais alta, de **86%**, foi do modelo de floresta aleatória

| floresta aleatória          | 85.558 |
|-----------------------------|--------|
| árvore de decisão           | 85.090 |
| k vizinhos mais próximos    | 84.815 |
| rede neural simples         | 84.532 |
| máquinas de vetores de      | 82.318 |
| suporte regressão logística | 82.308 |
| 5                           |        |
| naïve bayes                 | 81.010 |



Analisamos dados da rede elétrica & queremos mostrar o que está acontecendo com o consumo de energia (kwh)

| meses    | consumo (kwh) |
|----------|---------------|
| março    | 80            |
| abril    | 40            |
| maio     | 80            |
| junho    | 110           |
| julho    | 180           |
| agosto   | 120           |
| setembro | 240           |

# Nesta situação, a gente também quer comparar quantidades

Nesta situação, a gente também quer comparar quantidades

Neste caso, também faríamos um gráfico de barras?

| meses    | consumo (kwh) |  |
|----------|---------------|--|
| março    | 80            |  |
| abril    | 40            |  |
| maio     | 80            |  |
| junho    | 110           |  |
| julho    | 180           |  |
| agosto   | 120           |  |
| setembro | 240           |  |

|       | meses    | consumo (kwh) |
|-------|----------|---------------|
| tempo | março    | 80            |
|       | abril    | 40            |
|       | maio     | 80            |
|       | junho    | 110           |
|       | julho    | 180           |
|       | agosto   | 120           |
|       | setembro | 240           |

# Como geralmente pensamos o tempo?

# Como geralmente pensamos o tempo?

Na vertical? maio abril março

# Como geralmente pensamos o tempo?



## Queremos um gráfico de linhas



### Assim está bom?



#### removendo a borda



### removendo as linhas de grade





#### removendo as linhas de grade



#### removendo as marcações dos eixos



#### removendo as marcações dos eixos



#### colocando valores na linha



#### colocando valores na linha



#### arrumando o consumo vira pescoço, bolinhas e os meses

### consumo (kwh) versus meses



#### arrumando o consumo vira pescoço, bolinhas e os meses



#### arrumando o título

### consumo (kwh) versus meses



#### arrumando o título

#### consumo (kwh) versus meses



#### arrumando o título











Vamos analisar dados de séries & queremos saber qual a proporção de categorias que o pessoal dá mais like

| categorias | likes |
|------------|-------|
| ação       | 349   |
| ficção     | 257   |
| drama      | 100   |
| comédia    | 125   |

# O que queremos mostrar?

| categorias | likes |
|------------|-------|
| ação       | 349   |
| ficção     | 257   |
| drama      | 100   |
| comédia    | 125   |

# O que queremos mostrar?

Como cada categoria compõe um total

| categorias | likes |
|------------|-------|
| ação       | 349   |
| ficção     | 257   |
| drama      | 100   |
| comédia    | 125   |

### Gráficos mais usados



### Gráficos mais usados





#### Gráficos mais usados



## Gráficos mais usados



### Como saímos dessa?

#### Como talvez saiamos dessa

Proporção de likes de cada gênero de série



#### Como realmente saímos dessa

Ação é a categoria com mais likes, compondo 42% do total





 Deixe a principal informação destacada, explícita para quem vai visualizar

- Deixe a principal informação destacada, explícita para quem vai visualizar
- Simples é melhor do que complexo (se a tabela funciona, use a tabela)

- Deixe a principal informação destacada, explícita para quem vai visualizar
- Simples é melhor do que complexo (se a tabela funciona, use a tabela)
- Escolha gráficos de acordo com o que quer mostrar com os dados

- Deixe a principal informação destacada, explícita para quem vai visualizar
- Simples é melhor do que complexo (se a tabela funciona, use a tabela)
- Escolha gráficos de acordo com o que quer mostrar com os dados
- Liberte os gráficos das informações excessivas

- Deixe a principal informação destacada, explícita para quem vai visualizar
- Simples é melhor do que complexo (se a tabela funciona, use a tabela)
- Escolha gráficos de acordo com o que quer mostrar com os dados
- Liberte os gráficos das informações excessivas
- Evite gráficos de comidas

- Deixe a principal informação destacada, explícita para quem vai visualizar
- Simples é melhor do que complexo (se a tabela funciona, use a tabela)
- Escolha gráficos de acordo com o que quer mostrar com os dados
- Liberte os gráficos das informações excessivas
- Evite gráficos de comidas
- Use cores para destacar, unir ou diferenciar elementos



# Guia para a escolha de gráficos



guia do Edward Tufte





Guia de cores opostas e complementares



# Cores opostas



# Cores opostas



# Cores complementares



# Cores complementares



# Cores complementares



# Cores neutras



#### Fontes dos dados & gráficos

- gráficos de barras e pizza: <a href="https://www.maisbolsas.com.br/enem/matematica/analise-de-graficos">https://www.maisbolsas.com.br/enem/matematica/analise-de-graficos</a>
- gráficos de pizza, linha e barras: <a href="https://escola.britannica.com.br/artigo/gr%C3%A1fico/481401/recursos/134386">https://escola.britannica.com.br/artigo/gr%C3%A1fico/481401/recursos/134386</a>
- diagrama de caixa: <a href="https://operdata.com.br/blog/como-interpretar-um-boxplot/">https://operdata.com.br/blog/como-interpretar-um-boxplot/</a>
- gráfico complexo: <a href="https://businessg-software.com/2019/02/28/chartjunk">https://businessg-software.com/2019/02/28/chartjunk</a> and why to avoid them/
- gráfico de dispersão: <a href="https://estatsite.com.br/2018/03/04/grafico-de-dispersao-no-python/">https://estatsite.com.br/2018/03/04/grafico-de-dispersao-no-python/</a>
- logo linkedin: <a href="https://logodix.com/logos/91001">https://logodix.com/logos/91001</a>
- logo github e logo twitter: <a href="http://www.newdesignfile.com/post\_linkedin-icons-black-circle\_372056/">http://www.newdesignfile.com/post\_linkedin-icons-black-circle\_372056/</a>
- dados de pesos por idade: <a href="https://www.unimed.coop.br/viver-bem/pais-e-filhos/estatura-por-idade">https://www.unimed.coop.br/viver-bem/pais-e-filhos/estatura-por-idade</a>
- círculo cromático: <a href="https://www.significados.com/circulo-cromatico/">https://www.significados.com/circulo-cromatico/</a>
- guia de gráficos: <a href="https://www.labnol.org/software/find-right-chart-type-for-your-data/6523/">https://www.labnol.org/software/find-right-chart-type-for-your-data/6523/</a>
- guia de gráficos colorida: <a href="https://looker-elearning-resources.s3.amazonaws.com/DataVisualizationInfographic\_PPT1.jpg">https://looker-elearning-resources.s3.amazonaws.com/DataVisualizationInfographic\_PPT1.jpg</a>
- tabela de acurácias:
   <a href="https://www.researchgate.net/figure/Comparison-of-classification-accuracy-of-13-models\_tbl2\_284136695">https://www.researchgate.net/figure/Comparison-of-classification-accuracy-of-13-models\_tbl2\_284136695</a>
- imagens dos slides: <a href="https://www.pexels.com">https://www.pexels.com</a>

## Contato

# @cassiasamp







