СОДЕРЖАНИЕ

ОПРЕДЕЛЕНИЯ				
ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ				
BB	веден	ИЕ	4	
1	Аналитический раздел			
	1.1	TODO		
	1.2	TODO		
	1.3	TODO		
2	Конструкторский раздел			
	2.1	TODO	(
	2.2	TODO	(
	2.3	TODO	(
3A	КЛЮ	ЕНИЕ		
ПЕ	РИЛО	СЕНИЕ А		

ОПРЕДЕЛЕНИЯ

В настоящей расчетно-пояснительной записке применяют следующие термины с соответствующими определениями.

Test — TODO?

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящей расчетно-пояснительной записке применяют следующие сокращения и обозначения.

TODO — Test?

ВВЕДЕНИЕ

Компьютерная индустрия изменила курс в 2005 году, когда Intel, последовав примеру IBM Power 4 и процессору Niagara от Sun Microsystems, объявили, что их высокопроизводительные микропроцессоры отныне будут опираться на несколько процессоров или ядер. Новое в отрасли слово «многоядерный» отражает план удвоения количества стандартных ядер на матрицу с каждым поколением полупроводниковых процессов. Многоядерный процессор, очевидно, поможет многопрограммным рабочим нагрузкам, которые содержат набор независимых последовательных задач, но как отдельные задачи станут быстрее? Переход от последовательных вычислений к умеренно параллельным значительно усложняет программирование, не вознаграждая эти большие усилия значительно лучшим соотношением производительности к энергопотреблению. Следовательно, многоядерные процессоры едва ли являются идеальным решением. Подкрасться к проблеме параллелизма с помощью многоядерных решений, скорее всего, не удастся, и нам отчаянно нужно новое решение для параллельного аппаратного и программного обеспечения. Гипотеза заключается не в том, что традиционные научные вычисления - это будущее параллельных вычислений; она заключается в том, что совокупность знаний, полученных при создании программ, которые хорошо работают на массово параллельных компьютерах, может оказаться полезной при распараллеливании будущих приложений.

1 Аналитический раздел

- 1.1 TODO
- **1.2 TODO**
- **1.3 TODO**

2 Конструкторский раздел

- **2.1** TODO
- **2.2 TODO**
- **2.3 TODO**

ЗАКЛЮЧЕНИЕ

приложение а

Презентация к курсовой работе

Презентация содержит 13 слайдов.