

Supplemental Figure 1. Genotypes of Guangluai-4, SL4, CSSL-Z3 and NIL-An-1 lines White color represents genotype from GLA4; blue color represents genotype from W1943. Red circles represent An-1 and An-2 loci detected for awn length in F_2 population derived from the cross between SL4 and GLA4.

Supplemental Figure 2. The T₀ Transgenic Phenotypes in Complementary Tests

- (A) The construct of pCPL-RF contained 10kb W1943 genomic fragment covering the entire gene region of *Os04g0351333*, its 5' upstream and its 3'downsteam regions.
- (B) Comparison of T_0 transgenic plants transformed respectively by pCAMBIA1301, pCPL and pCPL-RF. Bar= 20 cm
- (C) Comparison of panicles from T_0 transgenic plants transformed respectively by pCAMBIA1301, pCPL and pCPL-RF. Bar= 5 cm

```
1\ tcccctctctctctctctctctctctctctctccactctccactctccacgecgacgacgacgacgacgacgacgacgacgacgacgaccttcttccccgccg
 91 gcgactacttctccacctcctcgtccggcgccggcacggcggtgcggtgcggtgctgctgccgccgcggcgtacgggacgatgacgatga
181 tgccgccgtgggcagtggcggccgcgagatgatgatgatgatggcgccggcggcggcggcggggggttcgactccgcgtcagctccc
361 geggegecagegecaacaacteetgetacageaegecgeteageteeeegegegegegeegeegeegeegeteegtgetaegeeg
451 ccgccggcggcaggctgtcccgtgtctccagcagcaagtccctcggcggcgccgccgcggcattggacagctccgaggccgacATGAACC
541 CCACCACCGCCGCCGCCGACCAACCATCCAAGCCCTCCGCCGCCGCCGCCGGAAGCGCAAGTCGTCGGCGAAGCCCAAGGCCTCGT
    T T A A A A D Q P S K P S A A A A R K R K S S A K P K A S S
S S L P T A T A T T N A S P K R S K V A A G A G D D G D G D
721 ACGCCGACGCGGAGGAGAAGCCGGAGCCAAAGACTACATCCATGTGAGGGCGAGGCGGGGCAAGCCACCGATAGCCATAGCC
    A D A A E E K P E P A K D Y I H V R A R R G Q A T D S H S L
811 TCGCCGAGAGGGTGAGGAGGAGAGGATAAGCGAGAGGATGAAGCTTCTGCAGTCGCTCGTGCCAGGCTGCAACAAGATCACCGGCAAGG
   A E R V R R E R I S E R M K L L Q S L V P G C N K I T G K A
901 CTCTCATGCTGGACGAGATCATCAACTATGTGCAGTCGCTGCAGCGTCAGGTCGAGTTTTTGTCCATGAAGTTTGGCGACCATGAATCCTC
   L M L D E I I N Y V Q S L Q R Q V E F L S M K L A T M N P Q
991 AGCTGGACTTTGACAGCCATTACATGCCTTCCAAAGATATGAGCCATATGCCAGTACCCGCATACCCGTCAAGCGATCCGACCACCACCA
    L D F D S H Y M P S K D M S H M P V P A Y P S S D P T T T T
1081 CCGCGTTCTCCTACACCGGCTCACCCGCCACTGCTGATCCATTCACCGTCTACAACTGCTGGGAGCTCGACCTCCACACCGCTATGCAAA
    A F S Y T G S P A T A D P F T V Y N C W E L D L H T A M Q M
1171 TGGGAGCCACCACCGGACTCAGCCAAGACGGTCCAATCGCAACGATGGCACCCTCTCCCTCGCCATTGCCGCACCATCCTCCTCTTCACG
    G A T T G L S Q D G P I A T M A P S P S P L P H H P P L H G
1261 GCTTCTACGGGGGGCAGCAGCAGCAGGGACGACAGTAAACCACATGAAGGCCGAGCCATAATAAatgeggegaccteteettetgtaca
    FYGGQQQGTTVNHMKAEP**
```

Supplemental Figure 3. Full Length cDNAs of An-1 in W9143

A 1978bp *An-1* full length cDNA in W1943 encodes a 262-aa bHLH protein. The conserved bHLH domain is underlined.

	cccc	CCC	ccc		CCC		CCC		,	CCC	CCC	cca			cac	Scc	Scc	Sac.	Sac	Sac	Sar	550	cga	cga	Sca		000	CCC	CBC	6
91	gcga	cta	ctt	ctc	cac	ctc	ctc	gto	cgg	cgc	cgg	cac	ggg	cgg	tgc	ggg	cgc	gtt	gct	gcc	cgc	cgc	ggc	gta	cgg	gac	gat	gac	gat	ga
181	tgcc	gcc	gtg	ggc	agt	ggc	ggc	cgc	cga	gca	gat	gat	gat	gat	ggc	gcc	ggc	ggc	ggc	cgc	ggc	gga	gtt	cga	ctc	cgc	gct	cag	ctc	сс
271	tcgt	gtc	gtc	tcc	gca	ggg	cgg	cgg	gegg	cgg	cga	cga	gat	ggc	ggc	cat	cgg	cga	cct	cat	cgg	ccg	gct	tgg	gag	cat	ctg	cag	cca	cg
	gcgg																													
	ccgc																													
		- 00													- 00	- 00												M	N	
541	CCAC	CAC	CGC	CGC	CGC	CGC	CGA	CCA	ACC	ATC	CAA	GCC	СТС	CGC	CGC	CGC	CGC	CGC	CCG	GAA	GCG	CAA	GTC	GTC	GGC	GAA	GCC	CAA	GGC	СТ
																		_												
	T	T	A	Α	Α	A	D	Q	Р	S	K	Р	S	Α	A	Α	Α	Α	R	K	R	K	S	S	A	K	Р	K	A	S
631	CGTC	СТС	ATC	СТТ	ACC	CAC	GGC	CAC	CGGC	GAC	GAC	GAA	CGC	GAG	ССС	GAA	GCG	GTC	CAA	GGT	CGC	CGC	CGG	CGC	CGG	AGA	CGA	CGG	CGA	CG
						_																				_				
	S	S	S	L	Р	T	Α	T	A	T	T	N	A	S	Р	K	R	S	K	V	A	A	G	A	G	D	D	G	D	Α
721	CCGA	CGC	CGA	CGC	GGC	GGA	GGA	GAA	GCC	GGA	GCC	AGC	CAA	AGA	СТА	CAT	CCA	TGT	GAG	GGC	GAG	GCG	GGG	GCA	AGC	CAC	CGA	TAG	CCA'	ГΑ
																		V									D	S	Н	S
811	GCCT																											CAC	CGG	CA
																		Q										Т		K
901	AGGC																											_		TC
		L		L				Ι										V			L			K	L	А	Т	М	N	
991	CTCA																								AAG		TCC	GAC		-
001			D															P			A				S		P	Т		Т
1081	-																											-	-	-
1001	Т	A			Y		G											Y							L	Н	Т	A		Q
1171	AAAT	••	•	_	•																	_	_	-	_	••	TCC	TCC		•
			A																									Р		
1261																														
1201																		A					1100	8-8	8-8	acc				D "
1351						-	-	-	-														gca	gca	gca	aac	сса	age	tca	ca
1441																														
1531																														
1621																														
1711																														
1801																														
1891																														
1001	cccg	aaa	aac	acc		~		15	65a	vat	15 L		Sua	cca	$a_{5}a$	$5\iota a$	008	Saa	cca	$\iota\iota\iota a$	180	arg	caa	800	aug.	000		5 a a	caa	U

Supplemental Figure 4. Full Length cDNA of an-1 in GLA4

A 1979bp an-1 full length cDNA in GLA4 encodes a 263-aa bHLH protein. The conserved bHLH domain is underlined. The 1^{st} A represents 3-bp insertion and the 2^{nd} A represents SNP causing a substitution of Gly by Ala in GLA4.

Supplemental Figure 5. Transcription activation activity assay and nuclear location of An-1 protein

- (A) Transcription activation activity assay of An-1 protein in yeast
- (B) An-1-GFP protein is located in nucleus of onion epidermal cell.
- (C) 35S:GFP is used as the control.

Supplemental Figure 6. Phylogenetic Tree of An-1 and its Homologies

Os: Oryza sativa; Bd: Brachypodium distachyon; Hv: Hordeum vulgare; Aet: Aegilops tauschii; Fv: Fragaria vesca; Gm: Glycine max; Pp: Prunus persica; Pt: Populus trichocarpa; Ca: Cicer arietinum; Tc: Theobroma cacao; Vv: Vitis vinifera; Mt: Medicago truncatula; Lj: Lotus japonicus; Tu: Triticum urartu; At: Arabidopsis thaliana; Sc: Saccharomyces cerevisiae

Os04g0350700 (NP_001052532.2); BdbHLH62-like(XP_003581118.1); HvbHLH (BAJ93018.1);
BdbHLH62(EMT20350.1); Os01g0915600 (NP_001045188.1); FvbHLH62 (XP_004292343.1);
PtbHLH1(XP_002303073.1); GmbHLH (XP_003532257.1); BdbHLH49 (XP_003576061.1);
PpbHLH (EMJ02381.1); PtbHLH2 (XP_002320444.1); CabHLH78-like (XP_004510232.1);
VvbHLH (CBI17295.3); MtbHLH (XP_003626938.1); TcbHLH (EOX93799.1); LjbHLH (AFK37834.1); TubHLH49 (EMS64147.1); VvbHLH62-like (XP_002264969.2); AetbHLH49 (EMT05490.1); Os09g0501600 (NP_001063582.1); AtbHLH62 (NP_187390.1); AlbHLH (XP_002884644.1); ScHms1p (NP_014675.1)

91 gcgactacttctccacctcctcgtccggcgccggcacggcggtgcggtgcggtgctgctgcccgccgcggcgtacgggacgatgacgatga 181 tgccgccgtgggcagtggcggccgccgagcagatgatgatgatggcgccggcggcggcggcggcggagttcgactccgcgctcagctccc $451\ \operatorname{ccgccggcggcaggctgtcccgtgtctccagcagcaagtccctcggcgcgccgccgcgcgcattggacagctccgaggccgacATGAACC}$ 541 CCACCACCGCCGCCGCCGCCGAACCAACCATCCAAGCCCTCCGCCGCCGCCGCCGCCGGAAGCGCAAGTCGTCGGCGAAGCCCAAGGCCT T T A A A A D Q P S K P S A A A A A R K R K S S A K P K A S $\begin{smallmatrix} S & S & L & P & T & A & T & A & T & T & N & A & S & P & K & R & S & K & V & A & A & G & A & G & D & D & G & D & A \\ \end{smallmatrix}$ 721 CCGACGCCGACGCGGAGGAGAAGCCGGAGCCAGCCAAAGACTACATCCATGTGAGGGCGAGGCGGGGCAAGCCACCGATAGCCATAG D A D A A E E K P E P A K D Y I H V R A R R G K P P I A I A S P R G * $1081\ cacegegt tetectacacegget cacege cactget gate catteaceg tetacaactget gg agete gacete cacacege tat gear the catteaceget account of the cacege of the cacego of the c$ $1171\ a atgggage cae cae cggaete ag cea ag acggte caatege aac gatggeac cete tee ctee catt geege accate ctee tet tea atgggage cae cae cae cggaete ag cae acggaete acggaete ag cae acggaete acggaete ag cae acggaete acggae$ 1351 catacgcccagccgccgtacgtgtactccgcttttctgctccatcctgcagcatcagcatcaccagcagcagcagcaaacccaagctcacaa 1531 ctatettttttteegettttetaececetetgeeGtetgteactgeaggtggggeceagetgcaeagggaaggaaggatttteeaagge 1621 ttaactttttccagatgcagtgtcatattgtttaggcaaagaacttgttttgatgttgtgatgcttgtaggacagaggagtatatgtgta

Supplemental Figure 7. Full Length cDNA of *an-1* in HP228

A 1980 bp *an-1* cDNA in HP228 encodes a 97-aa protein. Black triangle points to 1bp deletion site.

Supplemental Figure 8. *In situ* Hybridization of An-1 sense probe at different developmental stages in NIL-An-1.

- (A) Young panicle at primary branch formation stage
- (B) Young panicle at spikelet primordia formation stage
- (C) Young panicle at spikelet development stage

Supplemental Figure 9. Screening of Domestication Sweeps on Chromosome 4 The values of π_w/π_c are plotted against the position within range of 10-20Mb on chromosome 4. π_w : the level of genetic diversity in wild rice; π_c : the level of genetic diversity in cultivated rice.

Supplemental Table 1. (A) Gene Annotation Summary of Genomic Region between FM3 and FM6 in Nipponbare

Chromosome	Name	Description	Domain	exon	Length	v7_start	v7_end	ori	W1943	MSU/RAP
Chr4	Gene1	BEE 3, putative, expressed	HLH, helix-loop-helix DNA-binding domain	7	2414	3442	5855	-	1	LOC_Os04g28280 Os04g0350700
Chr4	Gene2	transposon protein, putative, unclassified, expressed	MuDR	5	5274	6993	12266	-		
Chr4	Gene3	Rf1, mitochondrial precursor, putative, expressed	Ankyrin repeat	3	3668	24605	28272	+	6,7	LOC_Os04g28300 Os04g0351300 Os04g0351333
Chr4	Gene4	expressed protein (tandem repeat)		1	201	31341	31541	+	8	
Chr4	Gene5	expressed protein (tandem repeat)	transmembrane_regions	1	204	35239	35442	+	9	
Chr4	Gene6	expressed protein (tandem repeat)	transmembrane_regions	1	210	38506	38715	+	10	
Chr4	Gene7	transposon protein, putative, unclassified, expressed	MULE	5	4571	45255	49825	+		
Chr4	Gene8	expressed protein (tandem repeat)	transmembrane_regions	1	204	57049	57252	+	11	
Chr4	Gene9	hypothetical protein (partial tandem repeat)	transmembrane_regions	2	314	66106	66419	-	12	
Chr4	Gene10	expressed protein (partial tandem repeat)		1	186	71175	71360	-	14	

Supplemental Table 1. (B) Gene Annotation Summary of Genomic Region between FM3 and FM6 in W9143

Chromosome	Name	Description	Domain	exon	Length	v7_start	v7_end	ori	Nip	MSU/RAP
Chr4	Gene1	BEE 3, putative, expressed	HLH, helix-loop-helix DNA-binding domain	7	2884	3423	6306	-	1	LOC_Os04g28280 Os04g0350700
Chr4	Gene2	hypothetical protein		3	1706	7851	9556	+		
Chr4	Gene3	transposon protein, putative, unclassified, expressed	Transposase_28	7	2833	17068	19900	+		
Chr4	Gene4	retrotransposon protein	GAG/POL/ENV POLYPROTEIN	2	5796	20533	26328	-		
Chr4	Gene5	expressed protein (highly repeat)	HGWP	1	1383	31898	33280	+		
Chr4	Gene6	expressed protein (tandem repeat)	ankyrin repeats	3	534	42754	43287	+	3	LOC_Os04g28300 Os04g0351300
Chr4	Gene7	expressed protein	PPR: pentatricopeptide repeat domain	1	2373	44122	46494	+	3	LOC_Os04g28300 Os04g0351333
Chr4	Gene8	expressed protein (tandem repeat)		1	201	49257	49457	+	4	
Chr4	Gene9	expressed protein (tandem repeat)	transmembrane_regions	1	213	54212	54424	+	5	
Chr4	Gene10	expressed protein (tandem repeat)	transmembrane_regions	1	198	57039	57236	+	6	
Chr4	Gene11	expressed protein (tandem repeat)	transmembrane_regions	1	213	61980	62192	+	8	
Chr4	Gene12	hypothetical protein (partial tandem repeat)	transmembrane_regions	2	309	70814	71122	-	9	
Chr4	Gene13	retrotransposon protein	GAG-POL-RELATED RETROTRANSPOSON	6	6314	72261	78574	-		
Chr4	Gene14	expressed protein (partial tandem repeat)	transmembrane_regions	1	186	82762	82947	-	10	

Supplemental Table 2. Summary of An-1 genotypes and Sequence Variations in Cultivated rice and Wild rice

																														ı			
In-Nanjing6	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C		G	С	Т	-	G	-		С			-	- C	
In-IR36	T	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	-	G	-	Υ (С			-	- C	
In-Minghui63	Т	Т	Α	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	-	G	-	Υ (С			-	- C	
In-Teqing	Т	Α	T	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	-	-	-	Υ (C			-	- C	
In-HP188	Т	Т	Α	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	-	Υ (C	G -		-	- C	G
In-HP219	Т	Т	Α	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-		Υ (C	G -		-	- C	G
In-Guangluai4	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	Т	Т	Α	-	Y	Υ (C	G -		-		G
Ja-Nipponbare	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	Y	Υ (C	G -		0		· G
Ja-GP509	Т	U	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	Y	Υ (C	G -		-	- C	G
Ja-GP525	Т	U	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	Y	Υ	C	G -		-	- C	G
Ja-GP520	Т	U	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	Y	Υ (C	G -		-	<u>-</u> С	G
In-GP43	Т	U	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	Т	G	G	Т	Т	Α	-	Y	Y (C	G -		-		G
Ja-HP10	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	Y	Υ	C	G -		0		G
Ja-HP7	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	Т	Т	Α	-	Y	Υ	C	G -		0		G
Ja-HP1	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	Т	Т	Α	-	Y	Υ (C	G -		-		G
Ja-HP13	Т	Т	Α	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	Y	Υ	C	G -		0	- C	G
Ja-HP14	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	Т	Т	Α	-	Y	Υ (C	G -		- /	٠ ،	G
Ja-HP6	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	Т	Т	Α	-	Y	Υ (C	G -		_		G
Ja-HP9	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	Y	Υ (C	G -		-	- C	G
Ja-HP4	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	Т	Т	Α	-	Y	Υ (C	G -		-		G
Ja-GP513	Т	Т	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	-	-	Υ (C	G -		-	- C	G
Ja-GP711	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	Т	G	G	С	Т	Α	-	-	Υ (C	G -		-	- C	G
Ja-GP517	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	Т	G	G	С	Т	Α	-	-	Υ (C	G -		_	- c	G
Ja-HP2	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	-	-	-	Υ (C	G -		0	- C	G
Ja-HP8	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	Т	G	G	С	Т	Α	_	-			G -		-	- C	
Ja-HP12	Т	Α	Т	Υ	Α	G	С	3	Υ	Т	т	С	Υ	Т	Α	Α	С	Т	C	G	G	С	Т	Α	_	_			G -		_	- c	
Ja-GP640	т	Α	т	Υ	Α	G	С	3	Υ	т	т	С	Υ	т	Α	Α	С	т	C	G	G	С	т	Α	_	_			G -		_	- C	
Aro-GP296	т	Α	т	Υ	Α	G	С	3	Υ	т	т	С	Υ	т	Α	Α	С	т	C	G	G	С	т	Α	_	_			G -		_	- C	
Aus-Kasalath	С	Т	т	Υ		G	С	3	Υ	т	т	Т	Υ	т	Α	Α	С	т	C	G	Α	С	С	U	U	_	- (G T		0	- C	
In-GP69	С	0	Т	Y	_	G	C	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	Т	C	G	Α	С	С	0	_	_	- (G T		0	- C	
Or-W0166	T	A	Т	Y	Α	G	C	3	Υ	Т	Т	С	Υ	Т	Α	Α	С	T	C	G	G	С	0	_	G	_		_			-	- C	
Or-W1959	T	Α	Т	Y	Α	G	С		Υ	Т	Т	С	Y	Т	Α	Α	С	Т	C		G	С	Т	_	G	_			G -			- C	
31 11 1000			-													71						J						•	_				

С

С

С

С

С

С

C G

C C

C C

С

C C

C C

С

С

C C

C C

C C

C C

C C

C C

C C

С

C C

C C G

С

С

G

G

U:Unknown

O:Other genotype

Supplemental Table 3. Phenotypes Summary of T₀ Transgenic Plants

Construct	Type	Host plants	Transgenic plants	Awned plants	Phenotypes
pCPL	Complementary	Nipponbare	62 lines (138 plants)	52 lines /112 plants with long awn	82% plants with long awns, elongated seeds and reduced grain number per panicle
pOX	Ectopic/Over Expression	Nipponbare	42 lines (42 plants)	38 plants with long awns	90% plants with long awns, elongated seeds and reduced grain number per panicle
pRNAi	RNA Iinterference	kasalath	36 lines (82 plants)	23 lines/47 plants with shortened awns	57.3% plants with shortened awns
pCPL-RF	Complementary	Nipponbare	33 lines (68 plants)	0 plants with long or short awns	No phenotypes
pCAMBIA1301	control	Nipponbare	8 lines (25 plants)	0 plants with long or short awns	No phenotypes
pTCK303	control	kasalath	8 lines (25 plants)	Awn length not changed	No phenotypes

(Long Awn: awn length> 20mm, awn rate >30%)

Supplemental Table 4. Summary of An-1 Haplotypes and Phenotypes in Cultivated rice and Wild rice

Accession	Original producing		Subspecies		Awn
ID/Name	area	Species	/Type	Hyplotype	(mm)
HP1	China	O. sativa	japonica	an-1(Tn+)	0
HP10	China	O. sativa	japonica	an-1(Tn+)	0
HP13	China	O. sativa	japonica	an-1(Tn+)	0
HP14	China	O. sativa	japonica	an-1(Tn+)	0
HP4	China	O. sativa	japonica	an-1(Tn+)	0
HP6	China	O. sativa	japonica	an-1(Tn+)	0
HP7	China	O. sativa	japonica	an-1(Tn+)	0
HP9	China	O. sativa	japonica	an-1(Tn+)	0
Nipponbare	Japan	O. sativa	japonica	an-1(Tn+)	0
HP2	China	O. sativa	japonica	0	9.4
HP8	China	O. sativa	japonica	0	16.4
HP12	China	O. sativa	japonica	0	33.6
GP509	Japan	O. sativa	japonica	an-1(Tn+)	ND
GP520	Laos	O. sativa	japonica	an-1(Tn+)	ND
GP525	Thailand	O. sativa	japonica	an-1(Tn+)	ND
GP513	Philippine	O. sativa	japonica	0	ND
GP517	Philippine	O. sativa	japonica	0	ND
GP640	US	O. sativa	japonica	0	ND
GP711	Indonesia	O. sativa	japonica	0	ND
GP296	Pakistan	O. sativa	aromatic	0	ND
Guangluai4	China	O. sativa	indica	an-1(Tn+)	0
HP183	China	O. sativa	indica	an-1(G-)	0
HP191	China	O. sativa	indica	an-1(G-)	0
HP193	China	O. sativa	indica	an-1(G-)	0
HP195	China	O. sativa	indica	an-1(G-)	0
HP198	China	O. sativa	indica	an-1(G-)	0
HP218	China	O. sativa	indica	an-1(G-)	0
HP228	China	O. sativa	indica	an-1(G-)	0
HP230	China	O. sativa	indica	an-1(G-)	0
HP231	China	O. sativa	indica	an-1(G-)	0
IR36	IRRI	O. sativa	indica	an-1(G-)	0
Minghui63	China	O. sativa	indica	an-1(G-)	0
Nanjing6	China	O. sativa	indica	an-1(G-)	0
Teqing	China	O. sativa	indica	an-1(G-)	0
HP219	China	O. sativa	indica	0	0
HP190	China	O. sativa	indica	0	0
HP188	China	O. sativa	indica	0	18
Kasalath	India	O. sativa	aus	0	23
GP539	India	O. sativa	aus	an-1(G-)	ND
GP6	Thailand	O. sativa	indica	an-1(G-)	ND
GP68	IRRI	O. sativa	indica	an-1(G-)	ND
GP43	India	O. sativa	indica	an-1(Tn+)	ND

GP69	IRRI	O. sativa	indica	0	ND
W1839	China	O. rufipogon	Or-I	an-1(G-)	3.2
W1914	Thailand	O. rufipogon	Or-I	an-1(G-)	54
W0594	Malaya	O. rufipogon	Or-II	an-1(G-)	0
W0164	Thailand	O. rufipogon	Or-II	an-1(G-)	56
W0166	Thailand	O. rufipogon	Or-II	an-1(G-)	ND
W1668	India	O. rufipogon	Or-III	an-1(G-)	20.7
W3094	China	O. rufipogon	Or-III	an-1(G-)	22
W0126	India	O. rufipogon	Or-III	an-1(G-)	64
W1959	China	O. rufipogon	Or-I	An-1	29
W2053	Bangladesh	O. rufipogon	Or-I	An-1	54
W3105	India	O. rufipogon	Or-I	An-1	55
W2268	Thailand	O. rufipogon	Or-I	An-1	57
W1230	Dutch New Guinea	O. rufipogon	Or-I	An-1	66
W0151	India	O. rufipogon	Or-I	An-1	72.4
W1832	Thailand	O. rufipogon	Or-I	An-1	95
W2263	Cambodia	O. rufipogon	Or-I	An-1	95
W0606	Malaya	O. rufipogon	Or-II	An-1	37
W1687	India	O. rufipogon	Or-II	An-1	70.5
W0634	Burma	O. rufipogon	Or-II	An-1	ND
W2284	Thailand	O. rufipogon	Or-II	An-1	ND
W1989	India	O. rufipogon	Or-III	An-1	48
W1114	India	O. rufipogon	Or-III	An-1	57
W1943	China	O. rufipogon	Or-III	An-1	57
W0629	Burma	O. rufipogon	Or-III	An-1	60.7
W0593	Malaya	O. rufipogon	Or-III	An-1	100
W3104	Africa	O. gl	aberrima	An-1	ND
W3106	Africa	0.	barthii	An-1	25

O: other haplotype

Supplemental Table 5. Panicle Phenotypes Comparison in NIL-*An4-1*/CPL/OX/RNAi Plants

	Awn Length	Awn Rate	Grain length	Primary	Secondary	Grain number
	(mm)	(%)	(mm)	branch	branch	per panicle
GLA4	0	0	6.92±0.32	9.10±0.79	29.00±2.66	144.5±17.20
NIL-An-1	14.68±2.45	52.81±12.80	7.14±0.49	9.20±0.62	26.45±3.17	129.21 ±15.00
	$P=2.54E^{-27}$	$P=1.30E^{-12}$	$P=3.45E^{-05}$		$P=8.90E^{-03}$	$P=1.21E^{-04}$
Nipponbare	0.11±0.25	0.45±0.81	7.18±0.23	9.67 ±1.57	19.76±3.95	111.56±19.29
CPL-1	31.84±6.36	54.48±14.41	8.34±0.37	7.03 ±0.88	8.11±2.08	63.61±9.17
	$P=1.43E^{-19}$	$P=1.76E^{-18}$	$P=5.12E^{-22}$	$P=1.36E^{-12}$	$P=7.12E^{-24}$	$P=3.00E^{-20}$
CPL-2	31.90±6.98	53.21±15.14	8.04±0.37	7.42±0.94	9.39±2.85	68.47±12.19
	$P=9.50E^{-20}$	$P=8.10E^{-17}$	$P=4.65E^{-26}$	$P=6.93E^{-04}$	$P=6.40E^{-11}$	$P=3.50E^{-23}$
OX-1	33.82±5.81	63.41±14.19	8.78±0.43	6.04±1.08	6.42±2.17	51.79±9.57
	$P=7.26E^{-19}$	$P=6.54E^{-21}$	$P=1.94E^{-48}$	$P=2.10E^{-14}$	$P=1.54E^{-21}$	$P=1.58E^{-23}$
OX-5	34.04 ±6.99	65.74±16.82	8.62±0.40	6.71±1.04	7.38±1.69	55.82±14.34
	$P=5.34E^{-24}$	$P=5.62E^{-19}$	$P=4.35E^{-49}$	$P=9.24E^{-13}$	$P=1.65E^{-22}$	$P=4.05E^{-22}$

Kasalath	23.30±3.05	56.32±4.11	7.29±0.56	10.80±1.08	NA	190.93±23.22
RNAi-1	9.14±1.87	23.84±9.49	7.05 ± 0.35	10.60±0.95	NA	216.90 ±21.13
	$P = 1.77 E^{-11}$	$P = 4.49 E^{-04}$	$P = 1.88 E^{-03}$			$P=4.50E^{-03}$
RNAi-2	5.89±1.89	20.93±9.90	7.04 ± 0.39	11.00±1.17	NA	257.27±34.60
	$P=2.95E^{-13}$	$P = 2.38E^{-03}$	$P=1.41~\mathrm{E}^{-05}$			$P=5.92E^{-04}$
RNAi-5	6.49±5.02	18.59±15.75	6.91±0.45	10.57±0.98	NA	228.63 ±33.97
	$P=2.13E^{-10}$	$P=8.41E^{-04}$	$P=1.49E^{-05}$			$P = 8.40 \mathrm{E}^{-03}$
RNAi-6	0.82±1.29	4.25±3.44	6.59±0.35	11.20±1.33	NA	264.71 ±27.90
	$P=4.76E^{-13}$	$P=1.95E^{-05}$	$P=1.73E^{-05}$			P=7.67E ⁻⁰⁶

Awn length is represented by average awn length of all apex grains of primary branches. NA: Not available

Supplemental Table 6. The list of 43 cultivars and 28 wild rice accessions used in phylogenic tree analysis

Name	Туре	Accession No.	EMBL_ID
GP43	indica	FO681427	ORC0130
GP539	indica	FO681428	ORC0131
GP6	indica	FO681429	ORC0132
GP68	indica	FO681430	ORC0133
GP69	indica	FO681431	ORC0134
Guangluai4	indica	FO681432	ORC0135
HP183	indica	FO681433	ORC0136
HP188	indica	FO681434	ORC0137
HP190	indica	FO681435	ORC0138
HP191	indica	FO681436	ORC0139
HP193	indica	FO681437	ORC0140
HP195	indica	FO681438	ORC0141
HP198	indica	FO681439	ORC0142
HP218	indica	FO681440	ORC0143
HP219	indica	FO681441	ORC0144
HP228	indica	FO681442	ORC0145
HP230	indica	FO681443	ORC0146
HP231	indica	FO681444	ORC0147
IR36	indica	FO681445	ORC0148
Kasalath	indica	FO681446	ORC0149
Minghui63	indica	FO681447	ORC0150
Nanjing6	indica	FO681448	ORC0151
Teqing	indica	FO681449	ORC0152
GP296	japonica	FO681450	ORC0153
GP509	japonica	FO681451	ORC0154
GP513	japonica	FO681452	ORC0155
GP517	japonica	FO681453	ORC0156
GP520	japonica	FO681454	ORC0157
GP525	japonica	FO681455	ORC0158
GP640	japonica	FO681456	ORC0159
GP711	japonica	FO681457	ORC0160
HP1	japonica	FO681458	ORC0161
HP10	japonica	FO681459	ORC0162
HP12	japonica	FO681460	ORC0163
HP13	japonica	FO681461	ORC0164
HP14	japonica	FO681462	ORC0165
HP2	japonica	FO681463	ORC0166
HP4	japonica	FO681464	ORC0167
HP6	japonica	FO681465	ORC0168

HP7	japonica	FO681466	ORC0169
HP8	japonica	FO681467	ORC0170
HP9	japonica	FO681468	ORC0171
Nipponbare	japonica	FO681469	ORC0172
W0126	wild rice	FO681400	ORC0103
W0151	wild rice	FO681401	ORC0104
W0164	wild rice	FO681402	ORC0105
W0166	wild rice	FO681403	ORC0106
W0593	wild rice	FO681404	ORC0107
W0594	wild rice	FO681405	ORC0108
W0606	wild rice	FO681406	ORC0109
W0629	wild rice	FO681407	ORC0110
W0634	wild rice	FO681408	ORC0111
W1114	wild rice	FO681409	ORC0112
W1230	wild rice	FO681410	ORC0113
W1668	wild rice	FO681411	ORC0114
W1687	wild rice	FO681412	ORC0115
W1832	wild rice	FO681413	ORC0116
W1839	wild rice	FO681414	ORC0117
W1914	wild rice	FO681415	ORC0118
W1943	wild rice	FO681416	ORC0119
W1959	wild rice	FO681417	ORC0120
W1989	wild rice	FO681418	ORC0121
W2053	wild rice	FO681419	ORC0122
W2263	wild rice	FO681420	ORC0123
W2268	wild rice	FO681421	ORC0124
W2284	wild rice	FO681422	ORC0125
W3094	wild rice	FO681423	ORC0126
W3104	wild rice	FO681424	ORC0127
W3105	wild rice	FO681425	ORC0128
W3106	wild rice	FO681426	ORC0129

Supplemental Table 7. Summary of Primes used in this study

(A) The molecular Marker Primers for QTLs Mapping and Fine Mapping

Name	Forward primer (5' to 3')	Reverse primer (5' to 3')
M1207	GGTGGGGACTGAAGAGATGA	CATACGGTTGCGCAGAATAA
M1219	ATCCGCAAGGTTGGTATGAG	GGTGGCAACCATGAGAAATC
M1240	TGGTTTAGTGTGGCGATGAA	TTCGAAAATCCATCACATCAA
M6381	CTGGCCCACTTGACAGTTAAT	GGCTCAAAAAGCATTCCTCA
M1254	F1:TTCTTGGCGTCATTTTGACA	GCATCCTGGGCTGTTAGAAG
	F2:ATCGGTTGGCTGCGTAGATA	
M1276	CGGGTCATGAATCAACCTTT	CGGGCATCAAGATTGCTATT
M6148	ACGCTACAGGGATGTTCGAC	R1:TCGGGCAAATCGGGTTTA
		R2:CCCCACACCAGAGTTGAAGT
M6132	ATGGTGCGTCACCGATTTAT	CGACGAGGGTGACATCTCTT
M6316	GCCCATCAATTGCTCTTTGT	R1:ATTCCACCAAACAGCCAAAC
		R2:CAATGGTGCTGATGGTCAAG
M6298	TCGTCACGTGCTTTNTCATC	R1:AACTGCCATACTTGGCTTGG
		R2:GCCCATAACACAACCCAAAA
M13_2	CCAAGAGTGCATTTTCATT	CTTCAACACCATCAGTCAAA
M6285	CATGTCCTTCAGGCCATCTT	GCAGCAAACCGAGGAACTAA
M6277	CCCTCCCTGATCAAAAACT	R1:CCTCCAGCAATCAGGAACAT
		R2:CATGCGGGCTTATGATGTAA
M6265	TGGTTGTCCAGTGGATTTGA	CCGGAGATCGAACTTAACCA
M6229	F1:AAAGAAATGGCTACAACCGAAA	CACTCCCGGAGGAAAAGTAA
	F2:CCTGGACGAGGATTTTATGC	
M1134	TCAACCGCTACATGTCCATC	TCGATCCCCACCAGTATCTC
M1200	TTCATGTTCATCCTGCCTCA	GCTAACACCCCACCTGACC
M1108	TTTGAGCCACCTCAAAATCA	GAACTCTCCGCGTCAATCTT
M6104	TGACACGGATGTGGCTAAAA	CGCTTTGCTAGAGCGATACC
M6102	CATTGTGATGTGGGATCGAA	TGCAAAAACATGTGGGGTTA
M1160	GTCATGTGCGTGCAGGTTAG	GCCTTGTTTGCCTTTCCTTC
M1084	CGCCTTAATCCTTTCCACAA	GTTTCGTTCGCCACACTTTT
M6051	GCGGCAGAAAACGTATCATT	TTTGGACGGATGCTCTCTTT
M1182	CCTTTTCCTCTCCGTGAATG	CCTTGCCATGCTTATTGGAT
M1059	CCATATTGCCCAAGGAGAAA	CTGAGCTCCCAACATGTCCT
M1045	TCTTCCAAGTGTGCAACGAA	GAGGGCGAATTCTGATTGAC
M6019	TCCGTTGCATGTTGATTCAT	CCTCCAGAGCAGCTGAATTT
M6005	GGGCCATGTCCGTATAAGTG	GGCAGGGAAGAGGAGTATC
FM1	CCGGCGAATTGTGTAATTG	GCACAAAAAGGTTAGCGGTTTA
FM2	CATATGTAGGCCGGTGAGAGA	TTAGCCGGCGAAACATATTC
FM3	TCTGAGAGGCTCTTGCTCTG	ACGGCAGAGGGTAGAAAAG
FM4	GCCGGATGATTTCTCGTACT	CCCTCTTTGCACAGGTTGTT
	_	

FM6	GGAGGAAAGGAGGGAGGTC	CCGGGATATGACCACGTATT
FM7	CGGATGAGATGAGGTCGAAT	TGGATAGAACTTGTCGCAGTG
FM8	TTTTATCTACTGCATTGCATCTTG	CGAAGGGATCGTTGTTTTA
FM9	TGTAATCCTAAGTTGCGTTTG	TTTGTTGGTGCCTTCAACTG

(B) The Primers Used for Plasmid Construction and Functional Analysis

primer name	Forward primer (5' to 3')	Reverse primer (5' to 3')
		•
<i>An-1-</i> flc	CGGCAGGCTGTCCCGTGTCT	GGCAATGATTGTGAGCTTGGGTTTG
An-1-OXW	AGGCGCGCCTGGCAGGCTGTCCCT	GGGGTACCGCTGGCTCGGCCTTCATGTG
1111 1 01111	GTCT	
<i>An-1</i> -RNAi	GGGGTACCACTAGT	CGGGATCCGAGCTCCCTCTCCAATCTCTAC
7111 1 KKKI	GGTTTTCCAAGGCTTAAC	AT
An-1-GFP-N	CCGCTCGAGATGAACCCCACCACC	GGACTAGTCATGGCTCGGCCTTCATGTGGT
All-1-Ol 1-IV	G	T
An-1-GFP-C	GCTCTAGACATGAACCCCACCACC	CGGGATCCTCACATGGCTCGGCCTTCATGT
All-1-Olf-C	G	GGTT
An-1-yeast	CCGGAATTCATGAACCCCACCACC	CGGGATCCTCACATGGCTCGGCCTTCATGT
All-1-yeast	G	GGTT
An-1-yeast-N	CCGGAATTCATGAACCCCACCACC	CGGGATCCTCACGCCCTCACATGGATGTAG
All-1-yeast-IV	G	TCTTT
An 1 weest C	CCGGAATTCAGGCGGGGGCAAGC	CGGGATCCTCACATGGCTCGGCCTTCATGT
An-1-yeast-C	CA	GGTT
<i>An-1</i> -insitu	ATCCATTCACCGTCTACAACTG	CTAAACAATATGACACTGCATCTG
OSH1-insitu	CTGCACTACAAATGGCCTTAC	GCATAACCACAACCACCTCAT
OsHistone H4		CTCCTA CCCCCA A CA CCA T
insitu	CTTCTTCCACATCTCCACCCA	CTGCTACGCCCAACACCAT
An-1-qPCR	CGGCGACCTCTCCTTCTGTA	TGCTGCTGGTGATGCTGATG
<i>eEF1a</i> -qPCR	TTTCACTCTTGGTGTGAAGCAGAT	GACTTCCTTCACGATTTCATCGTAA
LOG-qPCR	TCTTGAGGAGTTGCTTGAG	GTTGGAGCCGAGATGATAA
Histone H1-q	GCAAGGCACCTGCAGCTT	AGGCAGCCTTTGTACAGATCCT

(C) Sequencing Primers

• • • • • • • • • • • • • • • • • • • •	
primer name	primer sequence(5' to 3')
S1	TGCTCACTGTTTGAGTGTGTTG
S2	CGTTAGCAGTTCGGAAAACATA
S 3	TCCCAGTACATTTTCACCAGTC
S4	AACCCTTAACCCAATAAGATGGA
S5	CCTGCTTCTTTTACCTTCAGC
S6	AAAGCCCCTTTTGTTTATGG
S7	GGGGGTAGCTTAGAGCATTATT
S 8	ATCCGCCTCTAAAAATACAAAGG

S9	CGTTTGTTGTTCCTCTTTGT
S10	CCTCCACTCTCGGTTAGTGTTT
S11	TCTTGAGCAAGGGTGAGAGAA
S12	CATGGTCTAAAGTTTGGCCTCCA
S13	TTTCCTTTCTTATATAACGGTCAACCA
S14	GAGGGACTTGCTGCTGGAGA
S15	TTTCCTTTCTTATATAACGGTCAACCA
S16	CGCCCTCACATGGATGTAGTCT
S17	CGGCAGGCTGTCCCGTGTCTC
S18	CTTGGACCACTGGGAGCTTA
S19	ACACTCCAGCGGCTAATCTCA
S20	GGATTCATGGTCGCCAACTTC
S21	CCTCGTCCTCATCCTTACCC
S22	TTCATGTGGTTTACTGTCGTCCC
S23	ACTGCTGATCCATTCACCGTCTA
S24	CGGGATCCTTGCATGCATGATGATTCCAGTA