N-CHANNEL SILICON POWER MOS-FET

FAP-II SERIES

Features

- High speed switching
- Low on-resistance
- No secondary breakdown
- Low driving power
- High voltage
- \bullet $V_{GSS} = \pm 30V$ Guarantee
- Avalanche-proof

Applications

- Switching regulators
- UPS
- DC-DC converters
- General purpose power amplifier

Outline Drawings

Max. Ratings and Characteristics

● Absolute Maximum Ratings(Tc=25°C)

ltems	Symbols	Ratings	Units
Drain-source voltage	V _{DSS}	900	V
Continuous drain current	I_D	6	A
Pulsed drain current	I _{D(puls)}	18	Α
Continuous reverse drain current	I_{DR}	6	A
Gate-source peak voltage	V _{GSS}	±30	V
Max. power dissipation	Pp	125	W
Operating and storage	Tch	150	°C
temperature range	T_{stg}	$-55 \sim +150$	°C

Equivalent Circuit Schematic

● Electrical Characteristics (Tc=25°C)

Items	Symbols	Test Conditions		Min.	Тур.	Max.	Units
Drain-source breakdown voltage	V _{(BR)DSS}	$I_D = 1 \text{mA}$ $\dot{V}_{GS} = 0 \text{V}$		900			V
Gate threshold voltage	V _{GS(th)}	$I_D = 1mA$ $V_{DS} = V_{GS}$		2.5	3.5	5.0	V
	т	$V_{DS} = 900V$	$T_{ch} = 25^{\circ}C$		10	500	μ A
Zero gate voltage drain current	I_{DSS}	$V_{GS} = 0V$	$T_{ch} = 125^{\circ}C$		0.2	1.0	mA
Gate-source leakage current	I _{GSS}	$V_{GS} = \pm 30V$ $V_{DS} = 0V$			10	100	nA
Drain-source on-state resistance	R _{DS(on)}	$I_D = 3A$ $V_{GS} = 10V$			2.1	2.8	2
Forward transconductance	gfs	$I_D = 3A$ $V_{DS} = 25V$		2.0	4.5		S
Input capacitance	Ciss	$V_{DS} = 25V$			1200	1800	
Output capacitance	Coss	$V_{GS} = 0V$			140	210	pF
Reverse transfer capacitance	Crss	f = 1MHz			50	75	
Turn-on time ton	td(on)	$V_{CC} = 600 V I_D = 6A$			35	55	
$(t_{on}+t_{d(on)}+t_r)$	tr	$V_{GS} = 10V$			110	170	ns
Turn-off time t _{off}	ta(off)				150	230	113
$(t_{d(off)} + t_f)$	t _f	$R_G = 25\Omega$			100	150	
Diode forward on-voltage	V _{SD}	$I_F = 2 \times I_{DR}$ $V_{GS} = 0V$	$T_{ch} = 25^{\circ}C$		1.0	1.5	V
Reverse recovery time	t _{rr}	$I_F = I_{DR} d_i/d_t = 100A$	$/\mu$ S $T_{ch} = 25^{\circ}C$	4.	800		ns

Thermal Characteristics

Items	Symbols	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance	R _{th(ch-a)}	channel to air			35.0	°C/W
	R _{th(ch-c)}	channel to case			1.0	°C/W

Characteristics

Typical Output Characteristics

Typical Transfer Characteristics

Typical Forward Transconductance vs. ID

On State Resistance vs. Tch

Typical Drain-Source on State Resistance vs. ID

Gate Threshold Voltage vs. Tch

800

Typical Capacitance vs. VDS

20

Typical Input Charge

Forward Characteristics of Reverse Diode

Allowable Power Dissipation vs. Tc

Transient Thermal Impedance

Safe Operating Area