AD NUMBER AD905201 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. Document partially illegible. FROM: Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; MAR 1972. Other

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; MAR 1972. Other requests shall be referred to Air Force Flight Dynamics Laboratory, Attn: FBC, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFFDL ltr, 24 Oct 1973

THE DEVELOPMENT OF NONLINEAR ANALYSIS METHODS FOR BONDED JOINTS IN ADVANCED FILAMENTARY COMPOSITE STRUCTURES

G. C. Grimes

L. F. Greimann

T. Wah

G. E. Commerford

W. R. Blackstone

G. K. Wolfe

NOV 30 1972

Southwest Research Institute

TECHNICAL REPORT AFFDL-TR-72-97

September 1972

Distribution limited to U.S. Government Agencies only; test and evaluation statement applied March 1972. Other requests for this document must be referred to the Air Force Flight Dynamics Laboratory (FBC), Wright-Patterson Air Force Base, Ohio 45433.

Air Force Flight Dynamics Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

Best Available Copy

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

THE DEVELOPMENT OF NONLINEAR ANALYSIS METHODS FOR BONDED JOINTS IN ADVANCED FILAMENTARY COMPOSITE STRUCTURES

G. C. Grimes

L. F. Greimann

T. Wah

G. E. Commerford

W. R. Blackstone

G. K. Wolfe

Distribution limited to U.S. Government Agencies only; test and evaluation statement applied March 1972. Other requests for this document must be referred to the Air Force Flight Dynamics Laboratory (FBC), Wright-Patterson Air Force Base, Ohio 45433.

FOREWORD

The research reported herein was performed by Southwest Research Institute, 8500 Culebra Road, Box 28510, Sin Antonio, Texas 78284 in the Department of Etructural Research under Air Force Contract No. E33615-69-C-1041. The contract was initiated under Project No. 436403 by the Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio 45433. Dr. Edvins Demuts, Air Force Project Engineer administered the program.

This report covers the research work conducted at SwRI between 14 April 1969 and 30 October 1971 under the management of Mr. Glenn C. Grimes, Project Leader in the Department of Structural Research headed by Dr. Robert C. DeHart, Director and Mr. L. U. Rastrelli, Assistant Director. Principal Investigators in this effort were Dr. L. F. Greimann, Dr. T. Wah,* Mr. G. E. Commerford, Mr. W. R. Blackstone, and Mr. G. K. Wolfe.

The authors gratefully acknowledge the fine laboratory work of Senior Technician Mr. William Keith and Technician Mr. Albert Reienert under the direction of Mr. B. C. Iroy, Laboratory Manager.

This technical report has been reviewed and is approved.

P. A. Parmley, Chief Advanced Composites Branch

Philip A Tarnley

Structures Division

AFFDL

^{*}Associate Professor, School of Engineering, Texas A & I University, Kingsville, Texas.

ABSTRACT

Development of analysis methods for orthotropic adherend bonded lap joints which account for material non-linearities at room temperature was the primary objective of the research reported herein. The use of these methods in predicting mechanical behavior, ultimate loads, and failure modes was the goal. In order to accomplish this, new analytical procedures were developed and successfully checked with discrete element techniques for single, double, and step lap adhesively bonded attachment configurations. Experimental verification of these nonlinear analyses was accomplished by the fabrication and evaluation of a variety of simple joint specimens under static monotonically increasing load. Failure loads and modes were used as the primary substantiation characteristics but the mechanical behavior of a small number of these simple joint specimens was observed at intermediate loadings and found to compare favorably with the analytically predicted behavior. Larger, more complex bonded joints were designed, fabricated, and evaluated under static monotonically increasing loads at room temperature utilizing these methods. Ultimate load, tailure mode, and detailed strain behavior at any intermediate load were accurately predicted with the new analyses, as substantiated by experimental observations. These techniques were put into a computerized design/analysis program for structural application use and the program was used to generate bonded joint design allowable curves.

CONTENTS

Section		Page
l.	INTRODUCTION	1
11.	THEORETICAL METHODS DEVELOPMENT	2
	II.1. GENERAL	2 2
	II.2. SINGLE LAP JOINT	
	II.4. STEP LAP JOINT	
	II.5. SOLUTION TO DIFFERENTIAL EQUATIONS	
III.	DISCRETE ELEMENT ANALYSIS (DEVELOPMENT)	35
	NI.1. GENERAL	35
	III.2. CONSTITUTIVE EQUATIONS	35
	III.3. ELEMENT STIFFNESS MATRIX AND PLASTIC FORCES	39
IV.	COMPARISON OF THEORETICAL AND DISCRETE ELEMENT RESULTS	41
	IV.1. JOINT CONFIGURATIONS AND MATERIAL PROPERTIES	41
	IV.2. JOINT ANALYSIS	42
V.	EXPERIMENTAL DESIGN	46
	V.1. GENERAL	46
	V.2. LITERATURE SURVEY	46
	V.3. TRIAL EFFECTIVE PROPERTIES PREDICTION	49
	V.4. DESIGN OF THE EXPERIMENTAL PROGRAM	50
VI.	LAMINATE PROCESSING	68
	VI.1. GENERAL	
	VI.2. PROCESSING FACILITIES	
	VI.3. PROCESS DEVELOPMENT	68
	VI.4. ADHEREND PANEL FABRICATION AND QUALITY CONTROL	76
VII.	LAMINATE AND TITANIUM ADHEREND TEST RESULTS	87
	VII.1. GENERAL	87
	VII.2. LAMINATE ADHEREND EXPERIMENTAL RESULTS	87
	VII.3. TITANIUM ADHEREND EXPERIMENTAL RESULTS	92
VIII.	BONDED JOINT PROCESSING	95
	VIII.1. GENERAL	95
	VIII.2. ADHESIVE ACCEPTANCE TEST RESULTS	95
	VIII.3. SIMPLE SPECIMEN JOINT FABRICATION	95

CONTENTS (Cont'd)

Section			Page
1X.	BONDI	ED JOINT TEST RESULTS	108
	IX.1.	GENERAL	108
	1X.2.	SIMPLE SPECIMEN DATA SUMMARY	108
	IX.3.	SPECIAL JOINT INVESTIGATION DATA SUMMARY	127
X.	THEOF	RETICAL/EXPERIMENTAL BEHAVIOR COMPARISONS AND "EFFECTIVE"	
		RTIES	146
	X.1.	GENERAL	146
	X.2.	ADDITION OF EFFECTIVE BENDING	146
	X.3.	ANALYTICAL/EXPERIMENTAL BEHAVIOR COMPARISON ON SIMPLE AND	
		SPECIAL JOINTS	148
	X.4.	DESIGN ANALYSIS OF COMPLEX JOINTS	157
	X.5.	COMPLEX JOINT TEST DATA CORRELATION WITH PREDICTIVE METHODS	165
XI.	BONDI	ED JOINT DESIGN CURVES	173
	XI.1.	GENERAL	173
	XI.2.	DISCUSSION OF APPROACH	173
	XI.3.	DESIGN CURVES	173
XII.	RESUL	TS, CONCLUSIONS AND RECOMMENDATIONS	177
	XII.1.	GENERAL	177
	XII.2.	RESULTS AND CONCLUSIONS	
	XII.3.	RECOMMENDATIONS	178
LIST OF	F REFER	RENCES	180
APPENI	DICES .		182

ILLUSTRATIONS

Figure		Page
1	DIMENSIONS AND COORDINATE SYSTEM	2
2	FORCES AND DISPLACEMENTS FOR AN ELEMENT OF INFINITESIMAL LENGTH OF A SINGLE LAP BONDED JOINT	3
3	MATERIAL COORDINATES ℓ, t, y AND STRESS-STRAIN CURVES FROM UNIAXIAL STRESS TESTS IN PRINCIPAL DIRECTIONS	9
4	FREE BODY OF AN ELEMENT OF INFINITESIMAL LENGTH OF A BONDED DOUBLE LAP JOINT	15
5	FORCES AND DISPLACEMENTS OF rth RISER	19
6	ORTHOTROPIC LAMINA COORDINATES ℓ, r, y and STRESS-STRAIN CURVES FROM UNIAXIAL TEST IN PRINCIPAL DIRECTIONS	37
7	PLANE STRAIN DISCRETE ELEMENT USED FOR NONLINEAR JOINT ANALYSIS	39
8	JOINT CONFIGURATIONS FOR COMPARISON OF ANALYSIS METHODS	41
()	DISCRETE ELEMENT LAYOUT FOR SINGLE LAP JOINT	43
10	DISCRETE ELEMENT LAYOUT FOR DOUBLE LAPJOINT	43
1.1	DISCRETE ELEMENT LAYOUT FOR STEP LAP JOINT	43
12	ADHESIVE STRESS, SINGLE LAP JOINT	11
13	ADHESIVE STRESS, DOUBLE LAP JOINT	44
14	ADHESIVE STRESS, STEP LAP JOINT	44
15	STANDARD DEVIATION VS MEAN ADHESIVE FAILURE STRESS COMPARISON	48
16	STANDARD DEVIATION VS MEAN ADHESIVE FAILURE STRESS COMPARISON	48
17	BE/BE DOUGLAS SINGLE LAP/SHELL 951	50
18	BE/AL DOUGLAS SINGLE LAP/SHELL 951	50
19	BE/AL DOUGLAS DOUBLE LAP/SHELL 951	50
20	NGE/NGE DOUGLAS SINGLE LAP/SHELL 951	50
21	NGE/AL DOUGLAS SINGLE LAP/SHELL 951	51
22	NGE/AL DOUGLAS SINGLE LAP/SHELL 951	51
23	NGE/NGE SwRI DOUBLE LAP/3M AF 126	51

Figure		Page
24	NGE/AL AND NGE/WGE SWRI DOUBLE LAP/3M AF 126	51
25	NGE/AL, NGE/WGE, AND NGE/TI SwRI DOUBLE LAP/3M AF 126	52
26	NGE/AL DOUGLAS DOUBLE LAP/SHELL 951	52
27	NGE/NGE IITRI DOUBLE LAP/FM-1000	52
28	NGE/NGE IITRI DOUBLE LAP/METLBOND 400	52
29	COMPARISON OF GROUP STANDARD DEVIATION ESTIMATES	53
30	COMPARISON OF STANDARD DEVIATIONS SWRI DOUBLE LAP DATA	53
31	COMPARISON OF STANDARD DEVIATIONS DOUGLAS SINGLE LAP DATA	54
32	COMPARISON OF STANDARD DEVIATIONS DOUGLAS DOUBLE LAP DATA	54
33	COMPARISON OF STANDARD DEVIATIONS GRUMMAN SINGLE LAP DATA	55
34	COEFFICIENT OF VARIATION AND STANDARD DEVIATION VS MEAN FAILURE STRESS, SWRI DOUBLE LAP DATA	5.5
35	CONFIDENCE LIMIT STRESS VS GROUP SURFACE TREATMENT (MARTIN (AL/E)	56
36	CONFIDENCE LIMITS HTRI DOUBLE LAP DATA	56
37	CONFIDENCE LIMITS SWRI DOUBLE LAP DATA	5-
38	CONFIDENCE LIMITS DOUGLAS SINGLE LAP DATA	57
39	CONFIDENCE LIMITS DOUGLAS DOUBLE LAP DATA	58
40	CONFIDENCE LIMITS GRUMMAN SINGLE LAP DATA	58
41	ORTHO-/ISO-ELASTIC SHEAR STRESS DISTRIBUTION FOR G = 160,000 PSI	60
2	ORTHO-/ISO-ELASTIC SHEAR STRESS DISTRIBUTION FOR $G = 90,000 \text{ PSI}$	60
43	ORTHO-/ISO-ELASTIC SHEAR STRESSES DISTRIBUTION FOR $G = 40,000 \text{ PSI}$	61
44	VARIATION OF SHEAR STRESS WITH ASSUMED SHEAR MODULUS	61
45	AF-126 (LS-HE) ESTIMATED ADHESIVE FAILING STRESSES ($ au_u$)	63
46	MB-329 (HS-LE) ESTIMATED ADHESIVE FAILING STRESSES ($ au_u$)	63
47	[0] ADHEREND TENSILE STRESS VS OVERLAP LENGTH, LS-HE (EMPIRICAL)	64
48	$[0/90]_{\it C}$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, LS-HE (EMPIRICAL)	64

Figure		Page
49	$[0/\pm45]_{\mathcal{C}}$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, LS-HE (EMPIRICAL)	65
50	[0] $_{\rm C}$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, HS-LE (EMPIRICAL)	65
51	$[0/90]_{\mathcal{C}}$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, HS-LE (EMPIRICAL)	66
52	$[0/\pm45]_{c}$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, HS-LE (EMPIRICAL)	66
53	COMPOSITE LABORATORY AND EQUIPMENT	69
54	1581 GLASS FABRIC/5505 EPOXY HEAT SURVEY PANEL POSITIONS OF THERMO-COUPLE	71
55	HEAT SURVEY PANEL BACK-LIGHTED PHOTOGRAPH	71
56	PANEL NO. G-6 WITH TEFLON-COATED GLASS FABRIC AND GLASS CLOTH ELECTRICAL TAPE INCLUSIONS FOR ULTRASONIC TEST CALIBRATION	73
57	PANEL NO. G-6 BACK-LIGHTED PHOTOGRAPH	73
58	PANEL NO. G-6 ULTRASONIC TEST CHART INDICATING INCLUSIONS IN PANEL	75
59	CHART OF ULTRASONIC TEST OF PANEL B-8	75
60	CHART OF ULTRASONIC TEST OF PANEL B-2	7.5
61	CHART OF ULTRASONIC TEST OF PANEL B-7	7.5
62	AVERAGE FLEXURE TEST RESULTS PANEL G-11 NO FLAWS INDICATED BY ULTRASONIC INSPECTION	7.7
63	AVERAGE FLEXURE TEST RESULTS PANEL G-11 FLAWS INDICATED BY ULTRA- SONIC INSPECTION	77
64	CUTTING PATTERN FOR PANEL G-11	78
65	ULTRASONIC THRU-SCAN RECORD PANEL G-11	78
66	X-RAY OF PANEL B-4	79
67	X-RAY OF PANEL B-8	79
68	X-RAY OF PANEL B-7	79
69	MATERIAL ACCEPTANCE TEST SPECIMENS	80
70	PANEL DRAWING - BONDED JOINT STUDY	81
71	ULTRASONIC INSPECTION RECORD FOR PANEL B-20	82

Figure		Page
72	POSITIVE PRINT OF X-RAY OF PANEL B-20 USED FOR ACCEPTANCE TESTING	83
73	BORON REINFORCED ULTRASONIC TEST PANELS	84
74	ULTRASONIC INSPECTION OF VOID PANEL B-29	85
75	ULTRASONIC INSPECTION OF VOID PANEL B-30	85
76	QUALITY CONTROL AND TENSILE STRENGTH TEST SPECIMENS	86
77	TYPICAL FAILED COMPOSITE TENSILE SPECIMENS, MATERIAL BATCH 373	89
78	TYPICAL FAILED COMPOSITE TENSILE SPECIMENS, MATERIAL BATCH 381	89
79	TYPICAL FAILED TI 6AI-4V ANNEALED TENSILE SPECIMENS	94
80	LAP SHEAR ASSEMBLY SINGLE LAP JOINT	98
81	LAP SHEAR ASSEMBLY DOUBLE LAP JOINT	99
82	LAP SHEAR A"SEMBLY STEP LAP JOINT	102
83	LAP SHEAR ASSEMBLY MACHINED STEP LAP JOINT	103
84	MULTIPLE-LAMINATE SINGLE STEP LAP JOINT	104
85	MULTIPLE-LAMINATE TWO-STEP LAP JOINT	105
86	MULTIPLE-LAMINATE TRIPLE STEP LAP JOINT	106
87	LAP SHEAR ASSEMBLY SCARF JOINT	107
88	LSA-28 FAILED SPECIMENS	114
89	LSA-29 FAILED SPECIMENS	114
90	LSA-30 FAILED SPECIMENS	114
61	LSA-40 FAILED SPECIMENS	115
92	LSA-66 FAILED SPECIMENS	115
93	LSA-57 FAILED SPECIMENS	115
94	LSA-6 FAILED SPECIMENS	116
95	LSA-19 FAILED SPECIMENS	116
96	LSA-8 FAILED SPECIMENS	116

Figure		Page
97	LSA-22 FAILED SPECIMENS	117
98	LSA-10 FAILED SPECIMENS	117
99	LSA-71 FAILED SPECIMENS	118
100	LSA-46 FAILED SPECIMENS	148
101	LSA-72 FAILED SPECIMENS	118
102	LSA-47 FAILED SPECIMENS	119
103	LSA-74 FAILED SPECIMENS	119
104	SINGLE LAP COMPOSITE/COMPOSITE JOINTS LOAD TRANSFER CAPABILITY	126
105	DOUBLE LAP COMPOSITE/COMPOSITE JOINTS LOAD TRANSFER CAPABILITY	121
106	SINGLE LAP COMPOSITE/TITANIUM JOINTS LOAD TRANSFER CAPABILITY	122
107	DOUBLE LAP COMPOSITE/TITANIUM JOINTS LOAD TRANSFER CAPABILITY	123
108	STEP LAP COMPOSITE/TITANIUM JOINTS LOAD TRANSFER CAPABILITY	125
109	LOAD/STRAIN CURVE FOR DOUBLE LAP AF-126-2 BONDED JOINT	126
110	LOAD/STRAIN CURVE FOR MB-329 BONDED JOINT	126
111	SINGLE LAP COMPOSITE/TITANIUM JOINT WITH NITRILE EPOXY ADHESIVE (LS-HE)	129
112	SINGLE LAP C/T-LSHE JOINT, COMPOSITE ADHEREND STRAIN DISTRIBUTION (1)	130
113	DOUBLE LAP COMPOSITE/TITANIUM JOINT WITH NITRILE EPOXY ADHESIVE(LS-HE)	131
114	LSA-23 FAILURE PHOTOGRAPHS	132
115	DOUBLE LAP C/T-LSHE JOINT, COMPOSITE AND TITANIUM ADHEREND STRAIN DISTRIBUTION	133
116	SINGLE LAP COMPOSITE/TITANIUM JOINT WITH EPOXY NOVOLAK ADHFSIVE (HS-LE)	134
117	LSA-59 FAILURE PHOTOGRAPHS	135
118	SINGLE LAP C/T-HSLE JOINT, COMPOSITE ADHEREND STRAIN DISTRIBUTION	136
119	DOUBLE LAP COMPOSITE/TITANIUM JOINT WITH EPOXY NOVOLAK ADHESIVE (HS-LE)	137
120	LSA-62 FAILURE PHOTOGRAPHS	138

Figure		Page
121	DOUBLE LAP C/T-HSLE JOINT, COMPOSITE AND TITANIUM ADHEREND STRAIN DISTRIBUTION	139
122	ONE-STEP LAP COMPOSITE/TITANIUM JOINT WITH EPCXY NOVOLAK ADHESIVE (HS-LE)	140
123	ONE-STEP LAP C/T-HSLE JOINT, COMPOSITE ADHEREND STRAIN DISTRIBUTION	141
124	TWO-STEP LAP COMPOSITE/TITANIUM JOINT WITH NITRILE EPOXY ADHESIVE (LS-HE)	143
125	TWO-STEP LAP C/T-LSHE JOINT, COMPOSITE ADHEREND STRAIN DISTRIBUTION	144
126	SHEAR STRESS-STRAIN CURVE OF AF126-2 ADHESIVE, SPECIMEN 3A11-126-1	145
127	TYPICAL SHEAR STRESS-STRAIN CURVE OF METLBOND 329 ADHESIVE	145
128	JOINT LOAD/DEFLECTION CURVES FOR LSA-56 (D.LHSLE)	152
129	CORRELATION CUPVE ON BONDED JOINTS FOR BF/JT	153
130	CORRELATION CURVE ←N BONDED JOINTS FOR BF/J ſ-AT-FT	154
131	LSA-31 FAILURE	155
132	LSA-33 FAILURE	155
133	LSA-36 FAILURE	155
134	LSA-56 FAILURE	156
135	LSA-58 FAILURE	156
136	LSA-61 FAILURE	157
137	THEORETICAL/EXPERIMENTAL CORRELATION OF SINGLE LAPJOINT SURFACE STRAINS	158
138	THEORETICAL/EXPERIMENTAL CORRELATION OF DOUBLE LAP JOINT SURFACE STRAINS	159
139	COMPLEX JOINT PANELS	160
140	BONDL!NE SHEAR STRESS VS L/t FOR COMPOSITE/TITANIUM DOUBLE LAP JOINTS .	162
141	LOAD INTRODUCTION FIXTURE FOR COMPLEX JOINT	163
142	COMPLEX JOINT STRAIN GAGE LOCATIONS	165
143	COMPLEX JOINT -501 TEST SET-UP	166

Figure		
		Pag
144	COMPLEX JOINT -509 TEST SET-UP	166
145	C/T COMPLEX JOINT-PREDICTED VS EXPERIMENTAL ADHEREND SURFACE STRAINS. LS-HE ADHESIVE	170
146	C/T COMPLEX JOINT-PREDICTED VS EXPERIMENTAL ADHEREND SURFACE STRAINS. HS-LE ADHESIVE	
147	COMPLEX JOINT -501 AFTER FAILURE	
148	FAILURE MODE OF -501 COMPLEX JOINT	
149	COMPLEX JOINT -509 AFTER FAILURE	
150	FAILURE MODE OF -509 COMPLEX JOINT	
151	DESIGN CURVES FOR SINGLE, DOUBLE, AND STEP-LAP JOINTS	175

TABLES

<u>Fable</u>		Pag
1	MATERIAL CONSTANTS FOR RAMBERG-OSGOOD APPROXIMATION	41
II	SIMPLE AND "SPECIAL" SPECIMENTEST PLAN	67
Ш	PRELIMINARY EVALUATION PANELS	72
IV	TENSILE STRENGTH TESTS OF PANEL G-2	74
V	PANEL DATA SUMMARY PACKAGE, PANEL NO. G-11	76
VI	MATERIAL ACCEPTANCE TESTS	80
VII	PANEL FABRICATION FOR SIMPLE BONDED JOINT EVALUATION	82
VIII	MATERIAL ACCEPTANCE TEST	83
IX	LAMINATE MECHANICAL/PHYSICAL PROPERTIES DATA SUMMARY	88
X	UNIDIRECTIONAL LAMINATE PERFORMANCE	90
ΧI	6AL-4V TITANIUM SHEET PROPERTIES SUMMARY	93
XII	ACCEPTANCE TEST RESULTS ON AF-126 ADHESIVE (LS-HE)	96
ХШ	ACCEPTANCE TEST RESULTS ON MB-329 ADHESIVE (HS-LE)	96
XIV	SINGLE AND DOUBLE LAP SHEAR ASSEMBLIES BORON/BORON	100
XV	SINGLE AND DOUBLE LAP SHEAR ASSEMBLIES BORON/TITANIUM	101
XVI	COMPOSITE/COMPOSITE SINGLE LAP JOINT DATA SUMMARY (LS-HE)	109
XVII	COMPOSITE/COMPOSITE DOUBLE LAP JOINT DATA SUMMARY (LS-HE)	109
XVIII	COMPOSITE/COMPOSITE SINGLE LAP JOINT DATA SUMMARY (HS-LE)	110
XIX	COMPOSITE/COMPOSITE DOUBLE LAP JOINT DATA SUMMARY (HS-LE)	110
λX	COMPOSITE/TITANIUM SINGLE LAP JOINT DATA SUMMARY (LS-HE)	111
XXI	COMPOSITE/TITANIUM DOUBLE LAP JOINT DATA SUMMARY (LS-HE)	111
XXII	COMPOSITE/TITANIUM SINGLE LAP JOINT DATA SUMMARY (HS-LE)	112
XXIII	COMPOSITE/TITANIUM DOUBLE LAP JOINT DATA SUMMARY (HS-LE)	112
XXIV	STEP LAP JOINT DATA SUMMARY	113
XXV	AVERAGE ADHESIVE MECHANICAL PROPERTIES	149

TABLES (Cont'd)

Table		Page
XXVI	THREE PARAMETER STRESS-STRAIN CURVE VALUES	150
XXVII	SUMMARY OF EXPERIMENTAL/THEORETICAL CORRELATION	151
XYVIII	VARIABLE BENDING FACTOR SELECTIONS: BF/JT	153
XXIX	BEST BENDING FACTOR SELECTIONS: BF/JT-AT-FT	154
XXX	COMPLEX JOINT ANALYSIS	161
XXXI	COMPLEX JOINT EXPERIMENTAL DATA WITH LSHE ADHESIVE	167
XXXII	COMPLEX JOINT EXPERIMENTAL DATA WITH HSLE ADHESIVE	168
XXXIII	LARGE JOINT ANALYSIS/TEST COMPARISON	169
XXXIV	BONDED JOINT ANALYTICAL/EXPERIMENTAL DESIGN DATA SUMMARY FOR 0/±45 COMPOSITE ADHERENDS	174

SECTION I

INTRODUCTION

This research program had three objectives as defined in Exhibit "A" of the Statement of Work of Contract F33615-69-C-1641. The first one was to develop new static structural analysis methods for bonded joints which account for the adhesive and composite (or metal) adherend nonlinear behavior under stress. Prediction of static failure in all principal modes was to be the goal of the analytical techniques developed under this first objective. Objective number two was to develop a method of determining "effective" adhesive properties for use in the analytical methods since true properties data are seldom available and not generally obtained from simple tests. In the third objective, useful static design curves were to be developed based on the new analysis techniques. The accomplishment of these objectives was the primary goal of the research, reported herein.

The "how, what, and why" results obtained in accomplishing these objectives make up the contents of this report. Work and results in completing the requirements of the first objective are given in Section II—Theoretical Methods Development, III—Discrete Element Analysis (Development), and IV—Comparison of Theoretical and Discrete Element Results. In Section V—Experimental Design, literature data were surveyed, analyzed, and used in test program development on adherend materials and bonded joints. Manufacturing and quality control of the composite materials is covered in Section VI—Laminate Processing, whereas Section VII—Laminate and Titanium Adherend Test Results, reports the experimental characterization values obtained. Lap shear assembly manufacture and postbond fabrication are covered in Section VIII—Bonded Joint Processing, while the experimental data obtained in the program are reported in Section IX—Bonded Joint Test Results. With the completion of the work reported in the previous Sections it was possible to satisfy the second objective as covered in Section X—Theoretical/Experimental Behavior Comparisons and "Effective" Properties. Satisfaction of the first two objectives made possible the accomplishment of the third objective reported in Section XI—Bonded Joint Design Curves. Section XII—Results. Conclusions, and Recommendations, covers the meaning and impact of the research effort with suggestions for related, pertinent future study of bonded joint structures.

After the List of References, the Appendices, except Appendix A, present the detailed information utilized in the program and are included for the reader's perusal if more data are needed.

In summary, the three objectives outlined above have been satisfied and the method developed can be used in R. T. static nonlinear design/analysis of adhesive bonded single, double, and step lap joints. With the publication of this report, computer programs based on this analytical method are available through the Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio.

SECTION II

THEORETICAL METHODS DEVELOPMENT

ILL GENERAL

This section contains the mathematical development of nonlinear analysis methods* for bonded single, double, and step lap joints subjected to static loads at R.T. These three joints are shown in Figure 1, along with the coordinate systems, dimensions, and applied loads which will be utilized in the following developments. The joints are assumed to be sufficiently wide in the z direction (perpendicular to the plane of the paper) such that the material under load is in a state of plane strain; i.e., the normal strain ϵ_z and the shear strains γ_{xz} and γ_{yz} are assumed to be zero. In general, the adherends may be either orthotropic (laminates) or isotropic, and may have different thicknesses which are constant for each adherend. The adhesive is assumed to be isotropic and of a constant thickness which is much smaller than the adherend thickness. The adherends are assumed to be flat plates in bending; i.e., normal stresses through the thicknesses (σ_v) are neglected. Interlaminar shear is neglected. Laminates are assumed to be

FIGURE 1. DIMENSIONS AND COORDINATE SYSTEM

 symmetrical about their middle surface. Further assumptions involving material behavior and assumptions peculiar to each joint will be discussed as they occur.

II.2. SINGLE LAP JOINT

II.2.a. Equilibrium Equations

The differential equations of equilibrium governing the behavior of a segment of a bonded single lap joint can be developed from the free bodies in Figure 2. (The joint is assumed to have a unit width in the z direction.) Summing forces in the x and y directions and moments in the x-y-plane for adherends 1 and 2 gives

$$\frac{dN_1}{dx} = \tau = 0 \qquad \frac{dN_2}{dx} + \tau = 0 \qquad (1a)$$

$$\frac{\mathrm{d}V_1}{\mathrm{d}x} \quad \sigma = 0 \qquad \qquad \frac{\mathrm{d}V_2}{\mathrm{d}x} \quad \sigma = 0 \tag{1b}$$

$$\frac{dM_1}{dx} - V_1 + \tau \frac{t_1}{2} = 0 \quad \frac{dM_2}{dx} - V_2 - \tau \frac{t_2}{2} = 0$$
(1c)

where σ and τ are the normal stress and shear stress in the adhesive, respectively, which are assumed constant through the thickness of the adhesive, and N_i , V_i , and M_i are the stress resultants for adherend i. Subtracting Equations (1a) gives:

^{*}The differential equations governing the behavior of a scarf joint are presented in Appendix A. No solution was obtained, however.

FIGURE 2. FORCES AND DISPLACEMENTS FOR AN ELEMENT OF INFINITESIMAL LENGTH OF A SINGLE LAP BONDED JOINT

 $\tau = \frac{1}{2} \, \phi' \tag{2}$

where

$$\phi = N_1 - N_2 \tag{3}$$

and the prime denotes differentiation with respect to x. Adding Equations (1b) and solving for σ yields

$$\sigma = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} \left(V_1 + V_2 \right) \tag{4}$$

or, by substitution of (1c), and (1a),

$$\sigma = \frac{1}{2}\theta^{\prime\prime} \tag{5}$$

where

$$\theta = M_1 + M_2 + \frac{t_1 - t_2}{4} (N_1 - N_2)$$
 (6)

Equilibrium of the overall joint, as deduced from Figure 1a, requires that

$$N_1 + N_2 - P = 0 (7)$$

and, by summing moments about the centerline of the adhesive.

$$M_1 = M_2 + \frac{N_1 t_1}{2} - \frac{N_2 t_2}{2} + P\left(\frac{\overline{t}c}{2a} - \frac{\overline{t}x}{a} - \frac{t_1}{4} + \frac{t_2}{4}\right) = 0$$
 (8)

By Equation (7), this can be written as

$$M_1 - M_2 - Q\left(x - \frac{c}{2}\right) + \frac{\overline{t}}{2}(N_1 - N_2) = 0$$
 (9)

where Q is taken as

$$Q = \frac{P_t^{-}}{a} \tag{10}$$

and

$$\overline{t} = \frac{t_1 + t_2}{2} \tag{11}$$

and P is the joint load per unit width of joint. The quantity t has been neglected with respect to t_i (the adherend thicknesses). Note that the "a" dimension is the distance between points of zero moment.

The variables ϕ and θ will be taken as the primary unknown functions. By solving Equations (3), (6), (7), (9), and (1c) simultaneously, the stress resultants are found in terms of ϕ and θ as:

$$N_{1} = \frac{1}{2} (P + \phi)$$

$$N_{2} = \frac{1}{2} (P - \phi)$$

$$M_{1} = \frac{1}{2} \left[\theta + \frac{P\overline{t}}{a} \left(x - \frac{c}{2} \right) - \frac{t_{1}}{2} \phi \right]$$

$$M_{2} = \frac{1}{2} \left[\theta - \frac{P\overline{t}}{a} \left(x - \frac{c}{2} \right) + \frac{t_{2}}{2} \phi \right]$$

$$V_{1} = \frac{1}{2} \left(\theta' + \frac{P\overline{t}}{a} \right)$$

$$V_{2} = \frac{1}{2} \left(\theta' - \frac{P\overline{t}}{a} \right)$$

$$(12)$$

The adhesive stresses τ and σ are also determined from ϕ and θ by Equations (2) and (5).

II.2.b. Compatibility Equations

Another set of equations, namely the compatibility equations, must be brought into play. The shear strain γ and normal strain ϵ which are assumed constant through the adhesive are given by

$$\gamma = \frac{\overline{u}_1 - \overline{u}_2}{t}$$

$$\epsilon = \frac{v_1 + v_2}{t}$$
(13)

where \overline{u}_1 and \overline{u}_2 are the x displacements of the upper adherend lower face and the lower adherend upper face, respectively (Fig. 2b).

$$\overline{u}_1 = u_1 + \frac{t_1}{2} v_1'$$

$$\overline{u}_2 = u_2 + \frac{t_2}{2} v_2'$$
(14)

The quantities u_i and v_i are the axial and lateral displacements of the midplane of adherend i, respectively, as shown in Figure 2b. The middle surface normal strain e_i and curvature X_i in the adherends are given by

$$c_i = u_i'$$

$$X_i = -v_i''$$
(15)

where i refers to adherend number.

II.2.c. Constitutive Equations

Constitutive equations must now be introduced to relate material deformations to stresses. The bonded joints are composed of both isotropic and orthotropic materials: isotropic and/or orthotropic adherends and an isotropic adhesive.

II.2.c.(1) Isotropic Adherend

The adherends are assumed to be in a state of plane stress in the x-z plane (Fig. 1), i.e., $\sigma_y = \tau_{xy} = \tau_{yz} = 0$. (The additional assumption of plane strain in the x-y plane, i.e., $\epsilon_z = \gamma_{xz} = \gamma_{yz} = 0$ will be introduced later.) Two basic theories of plasticity are available for the description of the nonlinear behavior of isotropic materials deformation (total strain) theory and flow (incremental strain) theory. Deformation theory is independent of the loading path whereas flow theory depends upon the Lading path. Deformation theory will be assumed here. For an isotropic material in plane stress, the deformation theory of plasticity states that the relationship between stresses and strains in the inelastic regime is (1)*

$$\begin{cases}
\epsilon_x \\
\epsilon_z
\end{cases} = \begin{pmatrix}
1 \\
-\nu \\
0
\end{pmatrix} - \nu = \begin{pmatrix}
0 \\
-\nu \\
0
\end{pmatrix} + \frac{\overline{\epsilon}_p}{\overline{\sigma}} \begin{pmatrix}
1 \\
-1/2 \\
0
\end{pmatrix} - 1/2 = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \begin{pmatrix}
\sigma_x \\
\sigma_z
\end{pmatrix}$$

$$\begin{pmatrix}
\sigma_x \\
\sigma_z
\end{pmatrix} \begin{pmatrix}
\sigma_x \\
\sigma_z$$

where $\epsilon_x, \epsilon_z, \gamma_{xz}$ are the plane stress strains; $\sigma_x, \sigma_z, \tau_{xz}$ are the plane stresses in the x-z plane of Figure 1; E, ν , are elastic constants; σ , the equivalent stress, is (1)

$$\bar{\sigma} = (\sigma_X^2 + \sigma_Z^2 - \sigma_X \sigma_Z + 3\tau_{XZ}^2)^{1/2}$$
 (17)

and $\overline{\epsilon}_p$ is the corresponding equivalent plastic strain. Deformation theory assumes that $\overline{\epsilon}_p$ for the plane stress case can be obtained from the uniaxial stress-strain curve at a stress level $\overline{\sigma}$. (The $\overline{\sigma}$ vs $\overline{\epsilon}_p$ curve is identical to the σ_x vs ϵ_{xp} curve for uniaxial stress.) Since the plastic strain is the difference between the total strain and the elastic component, one has

$$\overline{\epsilon}_p = \overline{\epsilon} = \frac{\overline{o}}{\overline{E}} \tag{18}$$

where $\overline{\epsilon}$ is equivalent total strain at a stress level $\overline{\sigma}$. If the Ramberg-Osgood⁽²⁾ approximation to the stress-strain curve is used, the relationship between $\overline{\sigma}$ and $\overline{\epsilon}$ can be expressed by:

$$\overline{\epsilon} = \frac{\overline{\sigma}}{E} + \frac{3}{7} \frac{\sigma_0}{E} \left(\frac{\overline{\sigma}}{\sigma_0} \right)^n \tag{19}$$

where σ_0 and *n* are material constants selected such that Equation (19) fits the nonlinear portion of the uniaxial stress-strain curve. (See Discrete Element Analysis, Section III.)

By combining Equations (16) and (18), one obtains

$$\begin{cases}
\epsilon_x \\
\epsilon_z
\end{cases} = \frac{1}{E_x} \begin{bmatrix}
1 & -\nu_p & 0 \\
-\nu_p & 1 & 0 \\
0 & 0 & 2(1+\nu_p)
\end{bmatrix} \begin{cases}
\sigma_x \\
\sigma_z
\end{cases}$$

$$\begin{cases}
\sigma_x \\
\sigma_z
\end{cases}$$
(20)

^{*}Raised numbers in parentheses refer to entries in the List of References,

in which E_s , the secant modulus, is

$$E_s = \frac{\overline{\sigma}}{\overline{\epsilon}} \tag{21}$$

and v_p , the plastic Poisson's ratio, is

$$\nu_p = \frac{1}{2} \left[1 - \frac{E_s}{E} (1 - 2\nu) \right] \tag{22}$$

Inversion of Equation (20) yields the stresses in terms of strain as

$$\begin{cases}
\sigma_{x} \\
\sigma_{z} \\
\tau_{xz}
\end{cases} = \frac{E_{s}}{(1 - \nu_{p}^{2})} \begin{bmatrix}
1 & \nu_{p} & 0 \\
\nu_{p} & 1 & 0 \\
0 & 0 & \frac{(1 - \nu_{p})}{2}
\end{bmatrix} \begin{cases}
\epsilon_{x} \\
\epsilon_{z} \\
\gamma_{xz}
\end{cases} (23)$$

in which, now, the equivalent stress $\overline{\sigma}$ is found from the uniaxial stress-strain curve at an equivalent strain of

$$\overline{\epsilon} = \frac{1}{(1 - \nu_p^2)} \left[(1 - \nu_p + \nu_p^2)(\epsilon_x^2 + \epsilon_z^2) + (4\nu_p - 1 - \nu_p^2) \epsilon_x \epsilon_z + \frac{3}{4} (1 - \nu_p)^2 \gamma_{xz}^2 \right]^{1/2}$$
(24)

which applies to the plane stress case in the x-z plane. The additional assumption of zero strain in the z direction can now be conveniently introduced ($\epsilon_z = \gamma_{xz} = 0$) so that Equations (23) and (24) specialize to

$$\sigma_{x} = \frac{E_{s}}{(1 - \nu_{p}^{2})} \epsilon_{x}$$

$$\sigma_{z} = \nu_{p} \frac{E_{s}}{(1 - \nu_{p}^{2})} \epsilon_{x}$$

$$\tau_{xz} = 0$$
(25)

and

$$\overline{\epsilon} = \frac{(1 - \nu_p + \nu_p^2)^{1/2}}{(1 - \nu_p^2)} \epsilon_x \tag{26}$$

It will be convenient, for later developments, to separate the stress into two components - the stresses which would be present if the strains were totally elastic and the stresses which must be subtracted from these stresses to account for plasticity, i.e.,

$$\sigma_{x} = \frac{E}{(1 - \nu^{2})} \epsilon_{x} - \sigma_{xp}$$

$$\sigma_{z} = \frac{\nu E}{(1 - \nu^{2})} \epsilon_{x} - \sigma_{zp}$$
(27)

where the fictitious stresses σ_{xp} and σ_{zp} , herein termed plastic stresses, are given by:

$$\sigma_{xp} = \left[\frac{E}{(1-\nu^2)} - \frac{E_s}{(1-\nu_p^2)}\right] \epsilon_x = \frac{E}{(1-\nu^2)} \left[1-\eta\right] \epsilon_x$$

$$\sigma_{zp} = \left[\frac{\nu E}{(1-\nu^2)} - \frac{\nu_p E_s}{(1-\nu_p^2)}\right] \epsilon_x = \frac{\nu E}{(1-\nu^2)} \left[1 - \frac{\nu_p}{\nu} \eta\right] \epsilon_x$$
(28)

in which:

$$\eta = \frac{E_s(1 - \nu^2)}{E(1 - \nu_p^2)} \tag{29}$$

In the analysis of the adherend, the relationship between the stress resultant in the x direction and middle surface strains is desired. In the customary fashion, one defines the stress-resultant normal force in the x direction of the adherend as:

$$N = \int_{t/2}^{t/2} \sigma_x \, \mathrm{d}y \tag{30}$$

and the stress resultant moment as

$$M = \int_{-t/2}^{t/2} \sigma_x y \, \mathrm{d}y \tag{31}$$

where t is the adherend thickness. Employing the assumption that plane sections remain plane, one has

$$\epsilon_X = e + pX \tag{32}$$

where e is the middle surface normal strain and X is the middle surface curvature.

For an isotropic plate, one employs Equations (27), (30), (31), and (32) to arrive at the following plate constitutive equations:

$$N = Ae - N_p$$

$$M = DX - M_p$$
(33)

where

$$A = \frac{Et}{(1 - \nu^2)}$$

$$D = \frac{Et^3}{12(1 - \nu^2)}$$
(34)

and the plastic stress resultants are:

$$N_{p} = \int_{-t/2}^{t/2} \sigma_{xp} \, dy$$

$$M_{p} = \int_{-t/2}^{t/2} \sigma_{xp} y \, dy$$
(35)

For purposes of numerical integration, the isotropic plate thickness will be divided into nine equal layers so that the plastic stress resultants can be written as

$$N_{p} = \frac{t}{9} \sum_{k=1}^{9} \sigma_{xp}^{k}$$

$$M_{p} = \frac{t}{9} \sum_{k=1}^{9} \sigma_{xp}^{k} y^{k}$$
(36)

where k refers to the layer number and y^k is the distance to the center of the layer f. om the middle surface. Introducing the strain-displacement relationships of Equation (15), Equation (33) can be written as

$$u'_{i} = \frac{N_{i} + N_{ip}}{A_{i}}$$

$$v''_{i} = -\frac{M_{i} + M_{ip}}{D_{i}}$$
(37)

where the subscript i has been added to denote a dherend number.

II.2.c.(2) Orthotropic Adherend

An appropriate modification of the deformation theory of plasticity for orthotropic materials which has been suggested by Reference (1) is a generalization of Equation (16) as

$$\begin{cases}
\epsilon_{\ell} \\
\epsilon_{\ell}
\end{cases} =
\begin{pmatrix}
S_{11} & S_{12} & 0 \\
S_{12} & S_{22} & 0 \\
0 & 0 & S_{66}
\end{pmatrix} +
\frac{\overline{\epsilon}_{p}}{\overline{\sigma}}
\begin{pmatrix}
\overline{\alpha}_{11} & \alpha_{12} & 0 \\
\alpha_{12} & \alpha_{22} & 0 \\
0 & 0 & 3\alpha_{66}
\end{pmatrix}
\begin{pmatrix}
\sigma_{\ell} \\
\sigma_{\ell}
\end{pmatrix}$$
(38)

where the subscripts ℓ and t, correspond to the principal material directions. The ℓ -axis is along the fibers and the t-axis is perpendicular to the fibers in the plane of a typical lamina (see Fig. 3). The quantities S_{11} , S_{12} , S_{22} , and $S_{6,6}$ are elastic constants in the principal material directions:

$$S_{11} = 1/E_{\ell}$$

$$S_{12} = -v_{\ell t}/E_{\ell} = -v_{t\ell}/E_{t}$$

$$S_{22} = 1/E_{t}$$

$$S_{66} = 1/G_{\ell t}$$
(39)

where E_{ℓ} , E_{t} , and $G_{\ell t}$ are the elastic orthotropic moduli and $\nu_{\ell t}$ is the orthotropic Poisson's ratio. The equivalent stress corresponding to Equation (38) is:

$$\overline{\sigma} = (\alpha_{11} \sigma_{\ell}^2 + \alpha_{22} \sigma_{\ell}^2 + 2\alpha_{12} \sigma_{\ell} \sigma_{\ell} + 3\alpha_{66} \tau_{\ell}^2)^{1/2}$$
(40)

The quantities α_{ij} are, in general, variables dependent upon the state of stress. Their values will be discussed shortly. It is apparent that, for isotropic materials (isotropic strain-hardening), one has $\alpha_{11} = \alpha_{22} = \alpha_{66} = 1$ and $\alpha_{12} = -1/2$; i.e., the α_{ij} are constant, and $\overline{\epsilon}_p$ is determined from a single uniaxial stress-strain curve. This will not be the case for orthotropic materials.

FIGURE 3. MATERIAL COORDINATES (1,1) AND STRESS-STRAIN CURVES FROM UNIAXIAL STRESS TESTS IN PRINCIPAL DIRECTIONS

The values of α_{11} , α_{12} , α_{22} , α_{66} , and $\overline{\epsilon}_p$ are determined such that Equations (38) and (40) are satisfied for the conditions of uniaxial (normal and shear) stress in the principal directions. Suppose that the orthotropic material is characterized by the four uniaxial curves shown in Figure 3, which are obtained by uniaxial tests of ϵ typical lamina. i.e., uniaxial normal stress tests in the ℓ and ℓ directions and a pure shear stress test in the $\ell\ell$ -plane. Each curve is to be approximated by a Ramberg-Osgood law, so that, for the *uniaxial* tests, one has

Uniaxial Stress ou

$$\epsilon_{\mathcal{K}} = S_{1,1} \sigma_{\mathcal{K}} + \frac{3}{7} S_{1,1} \sigma_{0,\mathcal{K}} \left(\frac{\sigma_{\mathcal{K}}}{\sigma_{0,\mathcal{K}}} \right)^{n_{\mathcal{K}}}$$
(41a)

$$\epsilon_t = S_{12} \sigma_{V} + \frac{3}{7} S_{12} \sigma_{0Vt} \left(\frac{\sigma_{V}}{\sigma_{0Vt}} \right)^{nVt}$$
 (41b)

Uniaxial Stress σ_t

$$\epsilon_I = S_{22}\sigma_I + \frac{3}{7}S_{22}\sigma_{0I} \left(\frac{\sigma_I}{\sigma_{0I}}\right)^{n_I} \tag{41c}$$

In-Plane Shear τ_{Ω}

$$\gamma_{i,t} = S_{i,6} \tau_{i,t} + \frac{3}{7} S_{6,6} \tau_{0,i,t} \left(\frac{\tau_{i,t}}{\tau_{0,i,t}} \right)^{m_{i,t}}$$
 (41d)

where the n s, m_{CL} , and σ_0 's, and τ_0 c_L are material constants selected such that Equations (41a), (41b), (41c), and (41d) fit the curves in Figure 3. The elastic constants are the same as those given in Equation (38).

For a uniaxial test in the ℓ direction, Equations (38) and (40) give the strain in the ℓ direction as

$$\epsilon_{\mathcal{K}} = S_{11}\sigma_{\mathcal{K}} + \sqrt{\alpha_{11}} \, \overline{\epsilon}_{p} \quad ; \quad \sigma_{\mathcal{K}} = \frac{\overline{\sigma}}{\sqrt{\alpha_{11}}}$$
 (42)

By comparison with Equation (41a), it is apparent that both α_{11} and $\overline{\epsilon}_p$ cannot be determined uniquely; i.e., either α_{11} or $\overline{\epsilon}_p$ is arbitrary. It is convenient to select

$$\alpha_{1|1} = 1 \tag{43}$$

so that, from (41a) and (42),

$$\overline{\epsilon}_p = \frac{3}{7} S_{11} \sigma_{00} \left(\frac{\overline{\sigma}}{\sigma_{00}} \right)^{n_0} \tag{44}$$

In other words, we have defined the uniaxial stress-strain curve in the ℓ direction [Eq. (41a)] to be the equivalent stress-strain curve,

$$\overline{\epsilon} = S_{11}\overline{\sigma} + \frac{3}{7}S_{11}\sigma_{0\varrho}\left(\frac{\overline{\sigma}}{\sigma_{0\varrho}}\right)^{n\varrho} \tag{45}$$

Using the remaining three equations (41b, c, d) in a similar manner, one finds [note that $\overline{\epsilon}_p$ is now defined by Equation (44)]

$$\alpha_{12} = \frac{S_{12}\sigma_{0\ell}}{S_{11}\sigma_{0\ell}} \left(\frac{\overline{\sigma}}{\sigma_{0\ell}}\right)^{n\ell} \left(\frac{\sigma_{0\ell}}{\overline{\sigma}}\right)^{n\ell}$$

$$\alpha_{22} = \left[\frac{S_{22} \sigma_{0t}}{S_{11} \sigma_{0y}} \left(\frac{\overline{\sigma}}{\sigma_{0t}} \right)^{nt} \left(\frac{\sigma_{0y}}{\overline{\sigma}} \right)^{n\frac{c}{2}} \right]^{\frac{2}{a_I + 1}}$$

$$(46)$$

$$\alpha_{66} = \frac{1}{3} \left[\frac{S_{66} \tau_{0 \xi_I}}{S_{11} \sigma_{0 \xi_I}} \left(\frac{\overline{\sigma}}{\tau_{0 \xi_I}} \right)^{m \xi_I} \left(\frac{\sigma_{0 \xi}}{\overline{\sigma}} \right)^{n \xi} \right]^{m \xi_I + 1}$$

Replacing $\overline{\epsilon}_p$ by

$$\overline{c}_{D} = \overline{c} = S_{11} \overline{o} \tag{47}$$

in Equation (38), and letting α_{11} be unity in Equation (40), gives

$$\frac{\left\langle c_{t} \right\rangle}{\left\langle c_{t} \right\rangle} = \begin{bmatrix} S_{115} & S_{125} & 0 \\ S_{125} & S_{225} & 0 \\ 0 & 0 & S_{655} \end{bmatrix} \begin{pmatrix} a_{t} \\ a_{t} \\ \tau_{t} \end{pmatrix} \tag{48}$$

and

$$\overline{\theta} = (\theta_t^2 + \alpha_{2,2}\theta_t^2 + 2\alpha_{1,2}\theta_t\theta_t + 3\alpha_{6,6}\tau_{t,t}^2)^{1/2}$$
(49)

where the orthotropic secant compliance elements are given by:

$$S_{11s} = \frac{\overline{\epsilon}}{\overline{\sigma}}$$

$$S_{12s} = S_{12} + \alpha_{12}(S_{11s} - S_{11})$$

$$S_{22s} = S_{22} + \alpha_{22}(S_{11s} - S_{11})$$

$$S_{66s} = S_{66} + 3\alpha_{66}(S_{11s} - S_{11})$$
(50)

which corresponds to Equation (20) for isotropic materials. For a given stress state σ_{ζ} , σ_{t} , $\tau_{\zeta t}$ and given material constants, Equations (45), (46), (48), and (49) completely define the state of strain. However, the definition is not explicit since Equations (45), (46), and (49) represent five nonlinear equations in the five unknowns $\bar{\sigma}$, $\bar{\epsilon}$, α_{12} , α_{22} , and α_{66} .

Inversion of Equation (48) yields the stresses in terms of the strains as

$$\begin{vmatrix}
\sigma_{\ell} \\
\sigma_{t}
\end{vmatrix} = \begin{bmatrix}
Q_{11s} & Q_{12s} & 0 \\
Q_{12s} & Q_{22s} & 0 \\
0 & 0 & Q_{66s}
\end{bmatrix} \begin{pmatrix}
\epsilon_{\ell} \\
\epsilon_{t}
\end{pmatrix} \tag{51}$$

where the secant stiffness elements Q_{ijs} , are given by

$$Q_{11s} = S_{22s}/(S_{11s}S_{22s} - S_{12s}^2)$$

$$Q_{12s} = -S_{12s}/(S_{11s}S_{22s} - S_{12s}^2)$$

$$Q_{22s} = S_{11s}/(S_{11s}S_{22s} - S_{12s}^2)$$

$$Q_{66s} = 1/S_{66s}$$
(52)

The equivalent strain, obtained by combining Equations (50), (49) and (51), is found as:

$$\overline{\epsilon} = (\beta_{11}\epsilon_{\ell}^2 + \beta_{22}\epsilon_{\ell}^2 + 2\beta_{12}\epsilon_{\ell}\epsilon_{\ell} + 3\beta_{66}\gamma_{\ell\ell}^2)^{1/2}$$
(53)

in which

$$\beta_{11} = (Q_{11s}^2 + \alpha_{22}Q_{12s}^2 + 2\alpha_{12}Q_{11s}Q_{12s})S_{11s}^2$$

$$\beta_{12} = [Q_{11s}Q_{12s} + \alpha_{22}Q_{22s}Q_{12s} + \alpha_{12}(Q_{11s}Q_{22s} + Q_{12s}^2)]S_{11s}^2$$

$$\beta_{22} = (Q_{12s}^2 + \alpha_{22}Q_{22s}^2 + 2\alpha_{12}Q_{1-s}Q_{22s})S_{11s}^2$$

$$\beta_{66} = \alpha_{66}Q_{66s}^2S_{11s}^2$$
(54)

Separating the stresses into two components, as for isotropic materials in Equation (27), gives

$$\begin{vmatrix}
\sigma_{\ell} \\ \sigma_{t} \\ -\tau_{\ell t}
\end{vmatrix} = \begin{bmatrix}
Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66}
\end{bmatrix} \begin{pmatrix}
\epsilon_{\ell} \\ -\tau_{\ell t} \\ -\tau_{\ell tp}
\end{pmatrix} (55)$$

in which the elastic stiffness elements Q_{ij} are as given in Equation (52) without the subscript s, i.e., in terms of the elastic compliance elements in Equation (39), and

$$\begin{vmatrix}
\sigma_{\ell p} \\ \sigma_{tp} \\ \tau_{\ell tp}
\end{vmatrix} = \begin{bmatrix}
Q_{11} - Q_{11s} & Q_{12} - Q_{12s} & 0 \\ Q_{12} - Q_{12s} & Q_{22} - Q_{22s} & 0 \\ 0 & 0 & Q_{66} - Q_{66s}
\end{bmatrix} \begin{pmatrix} \epsilon_{\ell} \\ \epsilon_{t} \\ \gamma_{\ell t} \end{pmatrix} \tag{56}$$

When dealing with orthotropic materials, it is necessary to transform stresses and strains from the x-z coordinate system to the principal material directions (ℓ -t) and vice versa (see Fig. 3). The stresses in the x-z coordinate system are given in terms of the stresses in the ℓ -t coordinate system by

$$\begin{cases}
\sigma_X \\
\sigma_Z \\
\tau_{XZ}
\end{cases} = \begin{bmatrix}
c^2 & s^2 & -2sc \\
s^2 & c^2 & 2sc \\
sc & -sc & c^2 - s^2
\end{bmatrix} \begin{cases}
\sigma_{\mathcal{Q}} \\
\sigma_{\mathcal{T}} \\
\tau_{\mathcal{Q}_{\mathcal{I}}}
\end{cases} (57)$$

where

$$s = \sin \psi$$

$$c = \cos \psi$$
(58)

and ψ is shown in Figure 3. Similarly, the strains in the ℓ -t plane, due to strains in the x direction, are (note, by the plane strain assumption in the x-y plane, $\epsilon_z = \gamma_{xz} = 0$)

$$\begin{cases} \epsilon_{\ell} \\ \epsilon_{\ell} \\ \gamma_{\ell} \end{cases} = \epsilon_{x} \begin{cases} c^{2} \\ s^{2} \\ -2cs \end{cases}$$

$$(59)$$

In a manner similar to that used for isotropic adherends, Equations (55), (30), (31), and (32) and the transformation Equation (57) are used to obtain the constitutive equations for a laminated plate composed of different layers of an orthotropic material. Assuming symmetry of the laminated adherend plate about its midplane, one again arrives at Equation (33) for the plate constitutive equations, except in this case the constants A and D are defined as:

$$A = \sum_{k} \bar{Q}_{11}^{k} t^{k}$$

$$D = \sum_{k} \bar{Q}_{11}^{k} \left[t^{k} (v^{k})^{2} + \frac{(t^{k})^{3}}{12} \right]$$
(60)

where t^k is the thickness of layer k,

$$\bar{Q}_{11}^k = [Q_{11}c^4 + 2(Q_{12} + 2Q_{66})c^2s^2 + Q_{22}s^4]_k \tag{61}$$

and s and c are defined in Equation (58). In Equation (60), the sum on k is taken over all the layers in the laminate. The plastic stress resultants for the laminate are found as

$$N_{p} = \sum_{k} \sigma_{xp}^{k} t^{k}$$

$$M_{p} = \sum_{k} \sigma_{xp}^{k} t^{k} y^{k}$$
(62)

II.2.c.(3) Isotropic Adhesive

The adhesive is—ssumed to be an isotropic material and the constitutive equations of Reference (1) are utilized. The relations for the three-dimensional stress state will now be specialized for the adhesive. The normal stress in the x direction is neglected, $a_x = 0$. Since the joint is assumed to be in a state of plane strain in the x-y-plane, one has $\gamma_{xz} = \gamma_{yz} = 0$. Hence, the equations of Reference (1) apply to the adhesive in the following form

$$\begin{vmatrix}
\epsilon_y \\
\epsilon_z \\
\gamma_{xy}
\end{vmatrix} = \frac{1}{E_s} \begin{bmatrix}
1 & -\nu_p & 0 \\
-\nu_p & 1 & 0 \\
0 & 0 & 2(1+\nu_p)
\end{bmatrix} \begin{pmatrix}
\sigma_y \\
\sigma_z \\
\tau_{xy}
\end{pmatrix}$$
(63)

where now

$$\bar{\sigma} = (\sigma_V^2 + \sigma_Z^2 - \sigma_V \sigma_Z + 3\tau_{XV}^2)^{1/2}$$
(64)

is the equivalent stress. E_s and ν_p are defined by Equations (21) and (22) respectively. Inversion of Equation (63) and introduction of the other zero strain for the plane strain assumption, $\epsilon_z = 0$, gives

$$\sigma_{y} = \frac{E_{s}}{(1 - \nu_{p}^{2})} \epsilon_{y}$$

$$\sigma_{z} = \frac{\nu_{p} E_{s}}{(1 - \nu_{p}^{2})} \epsilon_{y}$$

$$\tau_{xy} = \frac{E_{s}}{2(1 + \nu_{p})} \gamma_{xy}$$
(65)

Now the equivalent stress $\overline{\sigma}$ is found from the uniaxial stress strain curve at an equivalent strain of

$$\overline{\epsilon} = \frac{1}{(1 - \nu_p^2)} \left[(1 - \nu_p + \nu_p^2) \epsilon_y^2 + \frac{3}{4} (1 - \nu_p)^2 \gamma_{xy}^2 \right]^{1/2}$$
 (66)

Separating the elastic and inelastic portions of the stress, as was done for the adherends, one finds the total stresses

$$\sigma = \frac{E\epsilon}{(1 - v^2)} - \sigma_p$$

$$\tau = G\gamma - \tau_p$$
(67)

in which the subscripts on the adhesive stresses and strains have been removed, i.e., σ has replaced σ_y , τ replaced τ_{xy} , ϵ replaced ϵ_y , and γ replaced γ_{xy} . The plastic stresses are given by

$$\sigma_{p} = \left[\frac{E}{(1 - \nu^{2})} - \frac{E_{s}}{(1 - \nu_{p}^{2})} \right] \epsilon$$

$$\tau_{p} = \left[G - \frac{E_{s}}{2(1 + \nu_{p})} \right] \gamma$$
(68)

Introducing the compatibility equations for the adhesive [Equation (13)], the stress-displacement relationship for the adhesive is

$$\tau = \frac{G}{t}(u_1 - u_2) + \frac{G}{2t}(t_1 v_1' - t_2 v_2') - \tau_p \tag{69a}$$

$$\sigma = \frac{E}{(1 - v^2)t} (v_1 + v_2) - \sigma_p \tag{69b}$$

The constitutive equations for the adhesive and adherends are now complete.

11 2.d. Governing Differential Equation

The equilibrium, compatibility, and constitutive equations are combined to develop the governing differential equations for the single lap joint. In particular, by substituting Equations (2), (5), and (37) into (69) and employing (12) gives

$$\theta'''' + p_1 \theta - p_2 \phi = q_1 + q_2''$$

$$\phi'' - p_5 \phi + p_4 \theta = q_3 + q_4'$$
(70)

where

$$p_{1} = \frac{E}{t(1-v^{2})} \left(\frac{1}{D_{1}} + \frac{1}{D_{2}} \right)$$

$$p_{2} = \frac{F}{2t(1-v^{2})} \left(\frac{t_{1}}{D_{1}} - \frac{t_{2}}{D_{2}} \right)$$

$$p_{3} = \frac{G}{t} \left(\frac{1}{A_{1}} + \frac{1}{A_{2}} + \frac{t_{1}^{2}}{4D_{1}} + \frac{t_{2}^{2}}{4D_{2}} \right)$$

$$p_{4} = \frac{G}{2t} \left(\frac{t_{1}}{D_{1}} - \frac{t_{2}}{D_{2}} \right)$$

$$q_{1} = \frac{PE\overline{t}}{at(1-v^{2})} \left(\frac{1}{D_{1}} - \frac{1}{D_{2}} \right) \left(x - \frac{c}{2} \right) - \frac{2E}{t(1-v^{2})} \left(\frac{M_{1}p}{D_{1}} + \frac{M_{2}p}{D_{2}} \right)$$

$$q_{2} = -2\sigma_{p}$$

$$q_{3} = \frac{PG}{t} \left[\frac{1}{A_{1}} + \frac{1}{A_{2}} + \frac{\overline{t}}{2a} \left(\frac{t_{1}}{D_{1}} + \frac{t_{2}}{D_{2}} \right) \left(\frac{c}{2} - x \right) \right] + \frac{G}{t} \left[\frac{2N_{1}p}{A_{1}} - \frac{2N_{2}p}{A_{2}} - \frac{t_{1}M_{1}p}{D_{1}} + \frac{t_{2}M_{2}p}{D_{2}} \right]$$

$$q_{4} = -2\tau_{p}$$

Equations (70) represent the governing differential equations for the single lap joint. It will be noted that they are nonlinear equations since the plastic quantities N_{ip} , M_{ip} , σ_p , and τ_p are nonlinear functions of the displacements. However, as the equations are written, the portions on the left are linear differential equations with constant coefficients (p_i are constants). The portions on the right (q_i) which contain the plastic portions are nonlinear. Equations (70) are, thus, in proper form for an iterative solution—to be discussed in Section II.5. It is apparent that the equations become uncoupled if both adherends are identical; i.e., $p_2 = p_4 = 0$.

From Figure 1a, the boundary conditions for the single lap joint are developed by requiring that the stress resultants in the upper adherend must be zero at x = 0 and the stress resultants in the lower adherend be zero at x = c:

$$N_1 = M_1 = V_1 = 0$$
 .: $x = 0$
 $N_2 = M_2 = V_2 = 0$ at $x = c$ (72)

By substituting Equations (12) into (72), one arrives at the boundary conditions in terms of ϕ and θ as

$$\frac{x=0}{\phi_0 = -P} \qquad \frac{x=c}{\phi_c = P}$$

$$\theta_0 = \frac{P}{2} \left(\frac{c\overline{t}}{a} - t_1 \right) \qquad \theta_c = \frac{P}{2} \left(\frac{c\overline{t}}{a} - t_2 \right)$$

$$\theta'_0 = -\frac{P\overline{t}}{a} \qquad \theta'_c = \frac{P\overline{t}}{a}$$

$$(73)$$

These be undary conditions, along with Equations (70) and the constitutive equations of Section II.2.c, are the governing equations for the bonded single lap joint.

II.3. DOUBLE LAP JOINT

The free body in Figure 4 is used to develop the governing equations for the bonded double lap joint. Since the joint is assumed to be symmetrical about the midplane of adherend 2, the moment M_2 and shear V_2 vanish

everywhere. Equating the total forces and moments on adherends 1 and 2 to zero gives the equilibrium equations as

$$\frac{dN_1}{dx} - \tau = 0$$

$$\frac{dN_2}{dx} + 2\tau = 0$$
(74a)

$$\frac{dV_1}{dx} - \sigma = 0$$

$$V_2 = 0$$
(74b)

$$\frac{dM_1}{dx} - V_1 + \frac{7t_1}{2} = 0$$

$$M_2 = 0$$
(74c)

where the notation is as defined previously in accordance with Figures 1 and 4. Subtracting Equations (74a) and solving for τ yields

$$\tau = \frac{1}{2} \phi' \tag{75}$$

where

$$\phi = N_{i} - \frac{N_{2}}{2} \tag{76}$$

FIGURE 4. FREE BODY OF AN ELEMENT OF INFINITESIMAL LENGTH OF A BONDED DOUBLE LAP JOINT

The normal stress is given by the first of Equations (74b) as

$$\sigma = \frac{\mathrm{d}V_1}{\mathrm{d}x} \tag{77}$$

or, introducing Equations (74a) and (74c),

$$\sigma = \frac{1}{2}\theta'' \tag{78}$$

where

$$\theta = 2 \left[M_1 + \frac{t_1}{4} \left(N_1 - \frac{N_2}{2} \right) \right] \tag{79}$$

140

Equilibrium of the overall joint requires that (see Fig. 1b)

$$N_1 + \frac{N_2}{2} - P = 0$$

Solving for the stress resultants from Equations (74c), (76), (79), and (80) gives the stress resultants in terms of the unknown functions ϕ and θ as

$$N_{1} = \frac{1}{2} (P + \phi)$$

$$N_{2} = P - \phi$$

$$M_{1} = \frac{1}{2} \left(\theta - \frac{t_{1}}{2} \phi \right)$$

$$V_{1} = \frac{\theta'}{2}$$
(81)

One now proceeds to introduce the compatibility and constitutive equations, (69) and (37), in a manner almost identical to that followed for the single lap joint. Noting that, by symmetry, the lateral displacement of Adherend 2 is zero, one finds the governing differential equations to be:

$$\theta'''' + p_1\theta - p_2\phi = q_1 + q_2''$$

$$\phi'' - p_3\phi + p_4\theta = q_3 + q_4'$$
(82)

where now the quantities p_i and q_i are defined by

$$p_{1} = \frac{E}{(1 - v^{2})tD_{1}} \qquad p_{2} = \frac{Et_{1}}{2(1 - v^{2})tD_{1}}$$

$$p_{3} = \frac{G}{t} \left(\frac{1}{A_{1}} + \frac{2}{A_{2}} + \frac{t_{1}^{2}}{4D_{1}} \right) \qquad p_{4} = \frac{Gt_{1}}{2tD_{1}}$$

$$q_{1} = -\frac{2EM_{1p}}{tD_{1}(1 - v^{2})} \qquad q_{2} = -2\sigma_{p}$$

$$q_{3} = \frac{PG}{t} \left(\frac{1}{A_{1}} - \frac{2}{A_{2}} \right) + \frac{G}{t} \left(\frac{2N_{1p}}{A_{1}} - \frac{2N_{2p}}{A_{2}} - \frac{t_{1}M_{1p}}{D_{1}} \right) \qquad q_{4} = -2\tau_{p}$$

$$(83)$$

The reader will note the obvious similarity between these equations and those for the single lap joints. In fact, by replacing N_2 with $N_2/2$, A_2 with $A_2/2$, and i/D_2 with zero, and dropping the x-c/2 term (letting $\overline{t}=0$, which accounts for the shear Q) in Equations (71), one arrives at Equation (83). Similarly, one may deduce Equations (81) from (12).

The boundary conditions for the double lap are also only slightly different from those for the single lap. Equations (72) also apply to the double lap, but the equations $M_2 = V_2 = 0$ at x = c are redundant since this has already been used as a symmetry condition. Hence, two additional equations are required at x = c. By symmetry of the joint about the vertical centerline in Figure 1, the shear V_1 must be zero at x = c. It is now assumed that M_1 is also zero at x = c. The boundary conditions then become, by Equations (81),

$$\frac{x=0}{\phi_0 = -P} \qquad \frac{x=c}{\phi_c = P}$$

$$\theta_0 = -\frac{Pt_1}{2} \qquad \theta_c = \frac{Pt_1}{2}$$

$$\theta'_0 = 0 \qquad \theta'_c = 0$$
(84)

The solution of the nonlinear Equation (82) with the boundary conditions (84) and the constitutive equations will be discussed in Section II.5.

II.4. STEP LAP JOINT

Figure 1c shows schematically a step lap bonded joint under an axial tension, P. The total number of horizontal sections or "treads" is R, the number of risers being R+1. The notation remains the same as for the single and double lap, except that it now becomes necessary, at times, to identify the particular step under consideration by a subscript r. For example, t_{1r} is the thickness of the upper adherend (adherend 1 in Fig. 1c) at the rth tread. The subscript r will be omitted unless it is necessary for clarity.

The derivation of the governing differential equations for the step lap follows the development for the single lap very closely. Using the free body in Figure 2, the shear stress and normal stress in the adhesive are found as in Equations (2) and (5) to be

$$\tau = \frac{1}{2} \phi' \tag{85}$$

where

$$\phi = N_1 - N_2 \tag{86}$$

and

$$\sigma = \frac{1}{2}\theta'' \tag{87}$$

where

$$\theta = M_1 + M_2 + \frac{t_1 - t_2}{4} (N_1 - N_2)$$
 (88)

Equilibrium of the overall joint, as found from Figure 1c, requires that

$$N_1 + N_2 - P = 0 ag{89}$$

and

$$M_1 - M_2 + \frac{\overline{t}}{2}(N_1 - N_2) - \frac{P}{4}(t_1 - t_2) = 0$$
 (90)

The adherend stress resultants are found in terms of the unknown functions ϕ and θ by solving Equations (86), (88), (89), and (90) simultaneously:

$$N_{1} = \frac{1}{2} (P + \phi) \qquad M_{1} = \frac{1}{2} \left[\theta + \frac{P}{4} (t_{1} - t_{2}) - \frac{t_{1}}{2} \phi \right] \qquad V_{1} = \frac{\theta'}{2}$$

$$N_{2} = \frac{1}{2} (P - \phi) \qquad M_{2} = \frac{1}{2} \left[\theta - \frac{P}{4} (t_{1} - t_{2}) + \frac{t_{2}}{2} \phi \right] \qquad V_{2} = \frac{\theta'}{2}$$
(91)

The constitutive and compatibility conditions, (69) and (37)*, are now introduced in a manner similar to that used for the single lap. The governing differential equation is found to be

$$\theta'''' + p_1 \theta - p_2 \phi = q_1 + q_2''$$

$$\phi'' - p_3 \phi + p_4 \theta = q_3 + q_4'$$
(92)

in which, except for q_1 and q_3 , the p_i and q_i are identical to those listed for the single lap; i.e.:

$$p_{1} = \frac{E}{t(1-v^{2})} \left(\frac{1}{D_{1}} + \frac{1}{D_{2}} \right)$$

$$p_{2} = \frac{E}{2t(1-v^{2})} \left(\frac{t_{1}}{D_{1}} - \frac{t_{2}}{D_{2}} \right)$$

$$p_{3} = \frac{G}{t} \left(\frac{1}{A_{1}} + \frac{1}{A_{2}} + \frac{t_{1}^{2}}{4D_{1}} + \frac{t_{2}^{2}}{4D_{2}} \right)$$

$$p_{4} = \frac{G}{2t} \left(\frac{t_{1}}{D_{1}} - \frac{t_{2}}{D_{2}} \right)$$

$$q_{1} = -\frac{PE}{t(1-v^{2})} \left(\frac{t_{1}-t_{2}}{4} \right) \left(\frac{1}{D_{1}} - \frac{1}{D_{2}} \right) - \frac{2E}{t(1-v^{2})} \left(\frac{M_{1}p}{D_{1}} + \frac{M_{2}p}{D_{2}} \right)$$

$$q_{2} = -2\sigma_{p}$$

$$q_{3} = \frac{PG}{t} \left[\frac{1}{A_{1}} - \frac{1}{A_{2}} - \left(\frac{t_{1}-t_{2}}{8} \right) \left(\frac{t_{1}}{D_{1}} + \frac{t_{2}}{D_{2}} \right) \right] + \frac{G}{t} \left[\frac{2N_{1}p}{A_{1}} - \frac{2N_{2}p}{A_{2}} - \frac{t_{1}M_{1}p}{D_{1}} + \frac{t_{2}M_{2}p}{D_{2}} \right]$$

$$q_{4} = -2\tau_{p}$$

^{*}By use of Equation (37), it has been tacitly assumed that the adherends are symmetrical at each step. This may not be the typical case for the real problem but, considering the other assumptions involved in this analysis, it will be assumed that the stretch/bending coupling induced by asymmetry can be neglected.

The reader is reminded that Equation (92) applies only for one tread of the step lap, and that, in fact, each quantity should have a subscript r to refer it to the rth tread.

When Equation (92) has been written and its general solution found for each of the R treads, the individual solutions must be connected by a set of continuity conditions at each riser. The general solution of Equations (92) for each tread has six arbitrary constants or a total of 6R constants if there are R steps. Thus, we need six continuity conditions at each intermediate riser, giving 6(R-1) equations. With three boundary conditions at each end riser, there are 6R equations.

The continuity and boundary conditions will now be derived by the use of Figure 5 which shows a segment of the joint at riser number r. The length of the segment, δ , goes to zero in the limit. The continuity conditions for the

FIGURE 5. FORCES AND DISPLACEMENTS OF rth RISER

stress resultants are obtained by satisfying equilibrium of the free body of the upper adherend in Figure 5a. Assuming that no force is transmitted by the adhesive in the riser, one has

$$(M_1)_{r-1} - M_{1r} + N_{1r} \left[\frac{t_{1r}}{2} - \frac{(t_1)_{r-1}}{2} \right] = 0$$
 (94a)

$$(N_1)_{r-1} - N_{1r} = 0 (94b)$$

$$(V_1)_{r=1} - V_{1r} = 0 (94c)$$

where now the subscripts r and r-1 are required to refer to a particular tread. According to Figure 1c, the quantities for tread r-1 are evaluated at $x_{r-1}=b_{r-1}$ and for tread r at $x_r=0$.

From Figure 5b, continuity of the lateral displacements and rotations requires that

$$(v_1)_{r-1} = v_{1r}$$
 $(v_2)_{r-1} = v_{2r}$ (95a)

$$(v'_1)_{r-1} = v'_1, \qquad (v'_2)_{r-1} = v'_{2r}$$
 (95b)

Continuity of longitudinal displacements is satisfied if

$$u_{1r} = (u_1)_{r-1} + \frac{h}{2} (v_1')_{r-1}$$

$$u_{2r} = (u_2)_{r-1} - \frac{h}{2} (v_2')_{r-1}$$
(95c)

where

$$h = t_{1r} - (t_1)_{r-1} = (t_2)_{r-1} - t_{2r}$$

By subtracting Equations (95c), we obtain

$$u_{1r} - u_{2r} = (u_1)_{r-1} - (u_2)_{r-1} + \frac{h}{2} \left[(v_1')_{r-1} + (v_2')_{r-1} \right]$$
(96)

Now, from Equation (69a), one finds

$$u_{1r} - u_{2r} = \frac{t}{G} (\tau_r + \tau_{pr}) - \frac{1}{2} (t_{1r} v'_{1r} - t_{2r} v'_{2r})$$
(97)

and, similarly, for tread r-1. Introducing Equation (97) for treads r and r-1 into Equation (96) and using Equation (95b) gives

$$\tau_r + \tau_{pr} - \frac{Gh}{2t} (v'_{1r} + v'_{2r}) = \tau_{r-1} + (\tau_p)_{r-1} + \frac{Gh}{2t} [(v'_{1r})_{r-1} + (v'_{2r})_{r-1}]$$
(98)

By Equation (69b), this becomes

$$\tau_r + \tau_{pr} - \frac{Gh(1 - \nu^2)}{2E} (\sigma'_r + \sigma'_{pr}) = \tau_{r-1} + (\tau_p)_{r-1} + \frac{Gh(1 - \nu^2)}{2E} [\sigma'_{r-1} + (\sigma'_p)_{r-1}]$$
(99)

which represents the continuity equation for longitudinal displacements. The continuity equation for lateral displacements is obtained by adding Equations (95a) to obtain:

$$(v_1)_{r-1} + (v_2)_{r-1} = v_{1r} + v_{2r}$$
 (100)

which, by Equation (69b), becomes

$$\sigma_{r-1} + (\sigma_n)_{r-1} = \sigma_r + \sigma_{nr} \tag{101}$$

Similarly, the equation for continuity of rotations becomes

$$\sigma'_{r-1} + (\sigma'_p)_{r-1} = \sigma'_r + \sigma'_{pr} \tag{102}$$

Equations (94a), (94b), (94c), (99), (101), and (102) are the six required continuity conditions to be employed at each riser. By introducing Equations (85), (87), and (91) and the definitions of q_i in Equations (93), these continuity conditions become, respectively,

$$\theta_{r-1} + \frac{h}{2} \phi_{r-1} = \theta_r - \frac{h}{2} \phi_r$$

$$\phi_{r-1} = \phi_r$$

$$\theta'_{r-1} = \theta'_r$$

$$\phi'_{r-1} - (q_4)_{r-1} + \frac{Gh(1 - \nu^2)}{2E} \left[\theta'''_{r-1} - (q'_2)_{r-1}\right] = \phi'_r - q_{4r} - \frac{Gh(1 - \nu^2)}{2E} \left[\theta'''_r - q'_{2r}\right]$$

$$\theta''_{r-1} - (q_2)_{r-1} = \theta''_r - q_{2r}$$

$$\theta'''_{r-1} - (q'_2)_{r-1} = \theta'''_r - q'_{2r}$$

$$(103)_r$$

where again the subscript r-1 refers to a quantity for tread r-1 evaluated at $x_{r-1}=b_{r-1}$, and the subscript r to a quantity for tread r evaluated at $x_r=$ zero.

The boundary conditions at the two end risers, r = 1 and r = R + 1, are obtained from equilibrium considerations. At the first riser, one has

$$N_{11} = M_{11} = V_{11} = 0 ag{104}$$

and, at the R+1 riser,

$$N_{2R} = M_{2R} = V_{2R} = 0 ag{105}$$

In terms of ϕ and θ , the boundary conditions become, respectively,

$$\frac{x_1 = 0}{\phi_1 = -P} \qquad \frac{x_R = b_R}{\phi_R = P}$$

$$\theta_1 = \frac{P}{4}(t_{21} - 3t_{11}) \qquad \theta_R = \frac{P}{4}(t_{1R} - 3t_{2R})$$

$$\theta'_1 = 0 \qquad \theta'_R = 0$$
(106)

where the second subscript again refers to the tread number. The solution of the nonlinear Equations (92) with the compatibility Equations (103), boundary conditions (106), and constitutive equations for the step lap joint will be discussed in Section 11.5.

II.5. SOLUTION TO DIFFERENTIAL EQUATIONS

II.5.a. General Procedure

The differential equations governing the behavior of single lap (70), double lap (82), and step lap (92) bonded joints are all of the same general form:

$$\theta'''' + p_1 \theta - p_2 \phi = q_1 + q_2''$$

$$\phi'' - p_3 \phi + p_4 \theta = q_3 + q_4'$$
(107)

where the p_i are constants and the q_i are functions of the applied load P, the plastic stress resultants in the adherends, and the plastic stresses in the adhesive. The quantities p_i and q_i are given in Sections II.2, II.3 and II.4 for each of the respective joints. It is apparent that this set of equations is actually two nonlinear coupled differential equations since the q_i are nonlinear functions of the stress resultants and stresses and, hence, of ϕ and θ . The general approach will be to solve this set of nonlinear equations by iteration. Equation (107) is written as

$$(\theta'''')^{j} + p_{1}\theta^{j} - p_{2}\phi^{j} = q_{1}^{j-1} + (q_{2}'')^{j-1}$$

$$(\phi'')^{j} - p_{3}\phi^{j} + p_{4}\theta^{j} = q_{3}^{j-1} + (q_{4}')^{j-1}$$
(108)

where j refers to the current iteration. The portions on the left-hand side of the equations are linear differential equations with constant coefficients for which a solution can be found. Thus, supposing at iteration j we have the q_i from the previous iteration (j-1), then the functions θ and ϕ for the current iteration j are obtained by solving

I quations (108) subject to the boundary (and continuity for the step lap) conditions. Symbolically, this may be written as

$$\theta^{j} = \theta^{j}(q_{i}^{j-1}, x)$$

$$\phi^{j} = \phi^{j}(q_{i}^{j-1}, x)$$
(109)

With these functions of θ and ϕ , the adhesive stresses and adherend stress resultants may be obtained by equations presented in Section II.2, II.3, or II.4, e.g., Equations (2), (5), and (12):

$$\tau^{j} = \tau^{j}(\phi^{j})$$

$$\sigma^{j} = \sigma^{j}(\theta^{j})$$

$$N_{i}^{j} = N_{i}^{j}(\theta^{j}, \phi^{j}, x)$$

$$M_{i}^{j} = M_{i}^{j}(\theta^{j}, \phi^{j}, x)$$
(110)

where i refers to the adherend number. Using these new values of the stresses and the previous values of the plastic stresses (contained in q_i^{j-1}), the pertinent strains can be computed by the constitutive equations of Section II.2, e.g., Equation (20). These strains are then employed to compute new values of the plastic stress, e.g., by Equation (28), and, hence, new values of q_i :

$$q_{i}^{j} = q_{i}^{j}(\tau^{j}, \sigma^{j}, N_{i}^{j}, M_{i}^{j}, P, x)$$
(111)

This completes iteration j. The solution process now returns to Equation (109) to begin iteration j + 1. Iteration continues until there is an insignificant change in the plastic stresses. This solution will be discussed in more detail in the remainder of this section.

II.5.b. Homogeneous Solution

The homogeneous equation corresponding to Equations (107) is

$$\theta'''' + p_1 \theta = p_2 \phi = 0$$

$$\phi'' - p_3 \phi + p_4 \theta = 0$$
(112)

The superscript j's have been eliminated here as well as in the following developments since they are not needed for clarity. The reader should remember, however, that the solution is not in closed form and that an iterative procedure is involved. Following the standard procedure for the solution of linear differential equations with constant coefficients, one assumes a solution of the form

$$\phi = C_1 e^{\rho x}$$

$$\theta = C_2 e^{\rho x}$$
(113)

Substituting Equations (113) into (112) and setting the determinate of the coefficients C_1 and C_2 equal to zero, one finds the characteristic equation for ρ to be

$$\Gamma^3 - p_3 \Gamma^2 + p_1 \Gamma - p_1 p_3 + p_2 p_4 = 0 \tag{114}$$

where

$$\Gamma = \rho^2 \tag{115}$$

Equation (114) has one real, positive root, Γ_1 , which can be found numerically. (Note that for equal adherends in the single lap, $p_2 = p_4 = 0$, and the real, positive root is given by $\Gamma_1 = p_3$.)*

$$\Gamma_1$$
 = real, positive root of Equation (114) (116)

Then the other two roots are the complex conjugates:

$$\Gamma_2, \Gamma_3 = \zeta_1 \pm i \zeta_2 \tag{117}$$

where

$$\xi_{1} = \frac{p_{3} - \Gamma_{1}}{2}$$

$$\xi_{2} = \left[\frac{p_{1}p_{3} - p_{2}p_{4}}{\Gamma_{1}} - \left(\frac{\Gamma_{1} - p_{3}}{2} \right)^{2} \right]^{1/2}$$

$$i = \sqrt{-1}$$
(118)

The complete set of six roots for ρ can now be written using Equations (115) and (117) as

$$\rho_{1} = \lambda$$

$$\rho_{2} = -\lambda$$

$$\rho_{3} = \alpha + i\beta$$

$$\rho_{4} = -\alpha - i\beta$$

$$\rho_{5} = \alpha - i\beta$$

$$\rho_{6} = -\alpha + i\beta$$

$$(19)$$

where

$$\lambda = \sqrt{\Gamma_1}$$

$$\alpha = \left[\frac{p_3}{4} - \frac{\Gamma_1}{4} + \sqrt{\frac{p_1 p_3 - p_2 p_4}{4\Gamma_1}}\right]^{1/2}$$

$$\beta = \left[\frac{\Gamma_1}{4} - \frac{p_3}{4} + \sqrt{\frac{p_1 p_3 - p_2 p_4}{4\Gamma_1}}\right]^{1/2}$$
(120)

$$27 p_2^2 p_4^2 + 4p_1^3 + 4p_3^3 (p_1 p_3 - p_2 p_4) + p_1 p_3 (8p_1 p_3 - 36 p_2 p_4) > 0$$

This will generally be true since $p_1p_3 \gg p_2p_4$.

^{*}Equation (114) will have one real root and two complex conjugate roots if

The homogeneous solution to Equation (112) can, thus, be written in matrix notation as

$$\phi = \{f(x)\}^T \qquad \{C_1\}$$

$$\theta = \{f(x)\}^T \qquad \{C_2\}$$
(121)

in which

$$\left\{ f(x) \right\} = \begin{cases} e^{\lambda x} \\ e^{-\lambda x} \\ e^{\alpha x} \cos \beta x \\ e^{\alpha x} \sin \beta x \\ e^{-\alpha x} \cos \beta x \\ e^{-\alpha x} \sin \beta x \end{cases}$$
(122)

and the arbitrary constants are

$$\begin{cases}
C_{11} \\
C_{12} \\
C_{13} \\
C_{14} \\
C_{15} \\
C_{16}
\end{cases} : \{C_{2}\} = \begin{cases}
C_{21} \\
C_{22} \\
C_{23} \\
C_{24} \\
C_{25} \\
C_{26}
\end{cases} \tag{123}$$

Only six of the twelve constants C_{1i} and C_{2i} are arbitrary; the other six are determined by substitution into Equation (112). After some lengthy algebraic manipulations, one obtains:

$$\begin{aligned} \left\langle C_1 \right\rangle &= \left| T_1 \right| \left\langle C \right\rangle \\ \left\langle C_2 \right\rangle &= \left| T_2 \right| \left\langle C \right\rangle \end{aligned} \tag{1.74}$$

where $\{C\}$ is another vector of arbitrary constants and

$$[T_{1}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \delta_{2} & -\delta_{3} & 0 & 0 \\ 0 & 0 & \delta_{3} & \delta_{2} & 0 & 0 \\ 0 & 0 & 0 & \delta_{3} & \delta_{2} & \delta_{3} \\ 0 & 0 & 0 & 0 & -\delta_{3} & \delta_{2} \end{bmatrix}$$

$$(125)$$

$$[T_2] = \begin{bmatrix} \delta_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \delta_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (125)

in which

$$\delta_{1} = \frac{p_{2}}{p_{1} + \lambda^{4}}$$

$$\delta_{2} = \frac{-(\alpha^{2} - \beta^{2} - p_{3})p_{4}}{(\alpha^{2} - \beta^{2} - p_{3})^{2} + 4\alpha^{2}\beta^{2}}$$

$$\delta_{3} = \frac{-2\alpha\beta p_{4}}{(\alpha^{2} - \beta^{2} - p_{3})^{2} + 4\alpha^{2}\beta^{2}}$$
(126)

Substituting Equations (124) into Equation (121) gives the homogeneous solution as

$$\phi = \{f\}^T [T_1] \{C\}$$

$$\theta = \{f\}^T [T_2] \{C\}$$
(127)

It will be convenient, for computation purposes, to determine the derivatives of $\left\{f\right\}^T$ as

$$\left\{f'\right\}^T = \left\{f\right\}^T \left[d\right] \tag{128}$$

where

$$[d] = \begin{bmatrix} \lambda & 0 & 0 & 0 & 0 & 0 \\ 0 & -\lambda & 0 & 0 & 0 & 0 \\ 0 & 0 & \alpha & \beta & 0 & 0 \\ 0 & 0 & -\beta & \alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & -\alpha & \beta \\ 0 & 0 & 0 & 0 & -\beta & -\alpha \end{bmatrix}$$

$$(129)$$

The reader will note that, for the special case of equal adherends in the single lap, one has

Special Case-Equal Adherends in a Single Lap

$$p_2 = p_4 = 0$$

$$\Gamma_1 = p_3$$

$$\lambda = \sqrt{p_3}$$

$$\alpha = \beta = \sqrt[4]{\frac{p_1}{4}}$$

$$\delta_1 = \delta_2 = \delta_3 = 0$$

and, hence, the homogeneous differential equations uncouple.

II.5.c. General Solution

The general solution (homogeneous plus particular) to Equations (107) will be obtained by the method of variation of parameters. (3) According to this method, one supposes that the arbitrary constants $\{C\}$ in the homogeneous solution [Equation (127)] are functions of x; i.e.,

$$\phi = \{f(x)\}^T [T_1] \{C(x)\}$$

$$\theta = \{f(x)\}^T [T_2] \{C(x)\}$$
(130)

Successive differentiations of Equations (130) are made and conditions employed on these derivatives to ensure satisfaction of the differential Equations (107):

$$\phi' = \{f'\}^T | T_1 | \{C\} + \{f\}^T | T_1 | \{C'\} \}$$

$$\text{Condition 1: } \{f\}^T | T_1 | \{C'\} = q_4$$

$$\theta' = \{f'\}^T | T_2 | \{C\} + \{f\}^T | T_2 | \{C'\} \}$$

$$\text{Condition 2: } \{f\}^T | T_2 | \{C'\} = 0$$

$$\phi'' = \{f''\}^T | T_1 | \{C\} + \{f'\}^T | T_1 | \{C'\} + q_4 \}$$

$$\text{Condition 3: } \{f'\}^T | T_1 | \{C'\} = q_3 \}$$

$$\theta'' = \{f''\}^T | T_2 | \{C\} + \{f'\}^T | T_2 | \{C'\} \}$$

$$\text{Condition 4: } \{f'\}^T | T_2 | \{C'\} = q_2 \}$$

$$\theta''' = \{f'''\}^T | T_2 | \{C\} + \{f''\}^T | T_2 | \{C'\} + q_2' \}$$

$$\text{Condition 5: } \{f''\}^T | T_2 | \{C'\} = 0$$

$$\theta'''' = \{f''''\}^T | T_2 | \{C\} + \{f''''\}^T | T_2 | \{C'\} + q_2'' \}$$

$$\text{Condition 6: } \{f'''\}^T | T_2 | \{C'\} = q_1 \}$$

In summary, the six conditions on $\{C'\}$ are

$$[h(x)] \{C'(x)\} = \{q(x)\}$$
 (132)

where

$$\begin{cases}
q_4 \\
0 \\
q_3 \\
q_2 \\
0 \\
q_1
\end{cases}$$
(133)

and [h(x)] is the 6 \times 6 matrix

$$[h(x)] = \begin{cases} {\{f\}}^{T} | T_{1} | \\ {\{f'\}}^{T} | T_{2} | \\ {\{f'\}}^{T} | T_{1} | \\ {\{f''\}}^{T} | T_{2} | \\ {\{f'''\}}^{T} | T_{2} | \\ {\{f'''\}}^{T} | T_{2} | \end{cases}$$

$$(134)$$

Solving for $\{C(x)\}\$ from Equation (132) gives

$$\{C(x)\} = \{C_0\} + \int_0^x [h(v)]^{-1} \{q(v)\} dv$$
 (135)

where C_0 is a vector of arbitrary constants and y is a variable of integration. (It is a consequence of this application of the method of variation of parameters that it is not necessary to evaluate derivatives of q_2 and q_4 .) Thus, the complete general solution is given by Equations (130) and (135):

$$\phi = \{f(x)\}^{T} [T_{1}] \left(\{C_{0}\} + \int_{0}^{x} |h(y)|^{-1} \{q(y)\} dy\right)$$

$$\theta = \{f(x)\}^{T} [T_{2}] \left(\{C_{0}\} + \int_{0}^{x} |h(y)|^{-1} \{q(y)\} dy\right)$$
(136)

The reader can satisfy himself that Equation (136) indeed satisfies Equation (107) by substitution and use of the conditions (131).

11.5 d. Boundary Conditions for Single, Double, and Step Lap Joints

According to the developments of Section II.2, II.3, and II.4, the boundary conditions are specified as

$$\frac{x=0}{\phi = \phi_0} \qquad \frac{x=c}{\phi = \phi_c}$$

$$\theta = \theta_0 \qquad \theta = \theta_c$$

$$\theta' = \theta'_0 \qquad \theta' = \theta'_c$$
(137)

where ϕ_0 , θ_0 , etc., are specified values of ϕ and θ at the boundaries. Substituting these conditions into Equations (136) and solving for the arbitrary constants $\{C_0\}$ gives:

$$C_{0} = [H]^{-1} \left\{ \phi_{0} \right\} - \left\{ \begin{cases} f(c) \end{cases}^{T} [T_{1}] \int_{0}^{C} [h]^{-1} \{q\} \, dy \\ 0 \end{cases}$$

$$\left\{ f(c) \right\}^{T} [T_{2}] \int_{0}^{C} [h]^{-1} \{q\} \, dy$$

$$\left\{ f'(c) \right\}^{T} [T_{2}] \int_{0}^{C} [h]^{-1} \{q\} \, dy$$

$$0$$

$$\left\{ f'(c) \right\}^{T} [T_{2}] \int_{0}^{C} [h]^{-1} \{q\} \, dy$$

in which

$$\left\{\phi_{0}\right\} = \left\{\begin{array}{c} \phi_{0} \\ \theta_{0} \\ \theta_{0} \\ \theta_{c} \\ \theta_{c} \\ \theta_{c} \end{array}\right\} \tag{139}$$

and [H] is the 6×6 matrix

$$[H] = \begin{cases} \left\{ f(0) \right\}^{T} & \left[T_{1} \right] \\ \left\{ f(0) \right\}^{T} & \left[T_{2} \right] \\ \left\{ f'(0) \right\}^{T} & \left[T_{2} \right] \\ \left\{ f(c) \right\}^{T} & \left[T_{2} \right] \\ \left\{ f'(c) \right\}^{T} & \left[T_{2} \right] \end{cases}$$

$$(140)$$

By substituting Equation (138) into (136), one obtains the particular solution of Equations (107). By defining the matrix [F] by

$$[F(x)] = [h(x)] [H]^{-1}$$
 (141)

this solution can be written as

$$\begin{cases} \phi \\ \theta \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} [F(x)] \left(\{\phi_0\} + \{\phi_p(x)\} \right)$$
(142)

where

$$\left\{ \phi_{p}(x) \right\} = \left\{ \begin{array}{l} x \\ \int Q_{1}(y) \, \mathrm{d}y \\ \int Q_{2}(y) \, \mathrm{d}y \\ 0 \\ \int Q_{3}(y) \, \mathrm{d}y \\ 0 \\ \int Q_{4}(y) \, \mathrm{d}y \\ c \\ \int Q_{5}(y) \, \mathrm{d}y \\ c \\ \int Q_{6}(y) \, \mathrm{d}y \\ \end{array} \right\}$$

$$\left\{ \begin{array}{l} x \\ \int Q_{5}(y) \, \mathrm{d}y \\ c \\ \int Q_{6}(y) \, \mathrm{d}y \\ c \\ \end{array} \right\}$$

$$\left\{ \begin{array}{l} x \\ \int Q_{5}(y) \, \mathrm{d}y \\ c \\ \end{array} \right\}$$

and the quantities $Q_i(v)$ are elements of the vector $\{Q(v)\}$:

$$\{Q(y)\} = [F(y)]^{-1} \{q(y)\}$$
 (144)

The integrals in $\{\phi_p(x)\}$ will be evaluated numerically by a standard IBM integration subroutine. The adhesive shear and normal stresses are obtained as derivatives of ϕ and θ , e.g., Equations (2) and (5). Using the conditions in Equation (131), the complete solution can be summarized as

$$\begin{cases}
\phi \\
\theta \\
2\tau \\
\theta' \\
2\sigma \\
2\sigma'
\end{cases} = |F(x)| \left(\{\phi_0\} + \{\phi_p(x)\} \right) + \begin{cases}
0 \\
0 \\
q_4 \\
0 \\
q_2 \\
q'_2
\end{cases}$$
(145)

The application of these equations to the solution of the joint problems will be discussed in Section II.5.e. II.5.d.(1) Single Lap Joint

Equation (145) applies directly to the single lap joint with the quantities p_i and q_i appropriately defined as in Section II.2.a. From Equation (73), the vector $\{\phi_0\}$ is given by:

$$\{\phi_0\} = P \left\{ \begin{array}{c} -1 \\ \frac{1}{2} \frac{c\overline{t}}{a} - t_1 \\ -\frac{\overline{t}}{a} \\ 1 \\ \frac{1}{2} \frac{c\overline{t}}{a} - t_2 \\ \frac{\overline{t}}{a} \end{array} \right\}$$

$$(146)$$

II.5.d.(2) Double Lap Joint

For the double lap joint, Equation (145) is used in conjunction with the boundary condition vector

$$\{\phi_0\} = P \begin{cases} -1 \\ -\frac{t_1}{2} \\ 0 \\ 1 \\ \frac{t_1}{2} \\ 0 \end{cases}$$

$$(147)$$

II.5.d.(3) Step Lap Joint

For the step lap joint, Equation (145) applies to each of the R treads. The continuity conditions [Equation (103)] which are to be applied at each intermediate riser, r, can be written by employing Equation (145) as:

$$[R_{r-1}][F_{r-1}(b_{r-1})][\{\phi_0\}_{r-1} + \{\phi_p(b_{r-1})\}_{r-1}] = [S_r][F_r(0)][\{\phi_0\}_r + \{\phi_p(0)\}_r]$$
(148)

where

$$[R_{r-1}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{h}{2} & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \frac{hG(1-v^2)}{2E} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -\frac{h}{2} & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \frac{-hG(1-v^2)}{2E} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$(149)$$

This provides a set of 6(R-1) equations for determining the six elements in the R vectors $\{\phi_0\}_r$. The additional six equations are obtained from the boundary conditions in Equation (106) which specify ϕ , θ , and θ' at the end risers.

II.5.e. Iteration Procedure

The iteration procedure which will be used to solve the system of nonlinear equations was outlined briefly in Section II.5.a. A more detailed description is given here. The computer program which performs the calculations is organized along these lines. The process given on the following page refers specifically to the single lap solution. The double lap solution is almost identical. Comments regarding the step lap solution are enclosed in parenthesis.

	(1)	Geometry (Steps).		
	(2)	Loads.		
	(3)	Material constants.		
	(4)	Laminate layup.		
(B)	Compute appropriate constants:			
	(1)	Adherend stiffnesses [Eq. (60)].		
	(2)	Differential equation constants p_i [Eq. (71)].		
	(3)	Characteristic roots [Eq. (119)].		
	(4)	Coupling coefficients [Eq. (126)].		
	(This	(This is done for each tread of the step lap.)		
(C)	Subdivide the joint into a number of stations and set up the $[F(x)]$ and $[F(x)]^{-1}$ matrix at each station:			
	(1)	Set up $\{f(x)\}$ at each station [Eq. (122)].		
	(2)	Compute the derivatives at each station [Eq. (128)].		
	(3)	Set up $[h(x)]$ at each station [Eq. (134)].		
	(4)	Set up [H] [Eq. (140)] and invert.		
	(5)	Obtain $[F(x)]$ at each station [Eq. (141)].		
	(6)	Invert $[F(x)]$ at each station.		
	(This is done for each tread of the step lap.)			
(D)	Set up the boundary condition vector [Eq. (146)]:			
	(For the step lap, set up the continuity condition matrix at each of the intermediate risers [Eq. (148)]. Invert the coefficient matrix. Introduce the boundary conditions [Eq. (106)].)			
(E)		lize all iteration quantities—plastic stresses, plastic stress resultants, equivalent plastic strain, β_{ij} coeffis, and ν_p .		
(F)	Compute the particular integrals in the differential equation solution:			
	(1)	Compute the q_i at each station [Eq. (71)].		
	(2)	Find the vector $\{Q\}$ at each station [Eq. (144)].		

(A) Input parameters

By numerical integration, obtain the particular integrals $\{\phi_p\}$ [Eq. (143)]. This integration is performed by the QSF subroutine which is based on Simpson's rule together with Newton's 3/8 rule (see listing for details). Truncation error is of order n, where n is the distance between stations.

(This is done for each tread of the step lap.)

(G) Compute the adhesive stresses and adherend stress resultants [Eqs. (145) and (12)]:

(For the step lap, insert the computed $\{\phi_p\}_r$ into the continuity conditions [Eq. (148)]. By matrix multiplication, obtain the unknown elements in the R boundary condition vectors $\{\varphi_0\}_r$. Note that the coefficient matrix was inverted in Step (D).)

(H) Find new values of the plastic stresses and stress result - ts at each station:

Adhesive Plastic Stresses

- (1) Obtain the adhesive strains using the previous plastic stresses [Eq. (20)].
- (2) Compute the equivalent strain using the previous ν_p [Eq. (26)].
- Using the constant strain method⁽¹⁾, determine the equivalent stress [Eq. (17)] and, hence, the new E_s and ν_p [Eqs. (21) and (22)].
- (4) Determine the new plastic stresses [Eq. (28)].
- (5) Compute the iteration error as

$$e = \text{Max} \frac{\left| \sigma_p^k - \sigma_p^{k-1} \right|}{\sigma} , \quad \sigma \neq 0$$

Adherend Plastic Stress Resultants

- (1) Obtain the strain in each layer using the previous plastic stress resultants [Eqs. (32) and (33)]. For an orthotropic adherend, transform the strain to the principal material directions [Eq. (59)].
- (2) Compute the equivalent strain using the previous β_{ij} [Eq. (53)].
- Using the constant strain method, determine the equivalent stress [Eq. (40)] and, hence, new α_{ij} [Eq. (46)].
- (4) Determine the secant compliance S_{ijs} and stiffness Q_{ijs} elements [Eqs. (50) and (52)].
- (5) Compute the stresses in this layer [Eq. (51)].
- (6) Compute new values for β_{ij} [Eq. (54)].
- (7) Find the plastic stresses [Eq. (56)]. For orthotropic materials, transform plastic stresses to the joint plane [Eq. (57)].

(8) Compute the iteration error as

$$e = \operatorname{Max} \frac{\left| N_p^k - N_p^{k-1} \right|}{N_p} \qquad , \quad N_p \neq 0$$

- (9) Determine the plastic stress resultants [Eq. (62)].
- (1) If the maximum error is greater than prescribed, return to Step (F) and continue iteration. Otherwise, iteration is complete and the current stresses are the final values for the prescribed load.

SECTION III

DISCRETE ELEMENT ANALYSIS (DEVELOPMENT)

III.1. GENERAL

To solve the nonlinear composite joint problem by the discrete element method, several assumptions are made:

- (1) The joint is assumed to be in a state of plane strain in the x-y plane (see Fig. 1). This assumption, or that of plane stress, is a practical necessity if any real problem is to be worked with a reasonable computer cost. A three-dimensional analysis is theoretically possible but the number of nodal points increases so rapidly that external storage devices, with a significant increase in cost, would have to be used with the digital computer. It is felt that the plane strain assumption more closely approximates the conditions along the centerline of the joint than the plane stress assumption.
- (2) The adhesive is assumed to be an isotropic material which obeys the Von Mises yield condition and the associated flow rule. The composite material is assumed to be orthotropic with transverse isotropy, i.e., isotropic in a plane perpendicular to the fibers. Superposition of plastic strains is assumed valid so that, for example, the plastic strain in the t direction resulting from a stress in the l direction is independent of the other stress levels.
- (3) Deformation theory of plasticity is assumed valid.

III.2. CONSTITUTIVE EQUATIONS

III.2.a. Isotropic Material, Plane Strain

The adhesive material is considered to be an isotropic material in a state of plane strain in the x-y plane. Stresses and strains in the adhesive are represented by

where x - y is the longitudinal cross-section plane of the joint so that $\epsilon_z = \gamma_{zy} = \gamma_{xz} = 0$ for plane strain. One can write the total strains $\{\epsilon_x\}$ as the sum of the elastic and plastic strains, i.e.,

$$\langle \epsilon_x \rangle = \langle \epsilon_x \rangle_e + \langle \epsilon_x \rangle_p$$
 (151)

It will be noted that, in order to write (151), ϵ_z , the strain perpendicular to the longitudinal cross-section plane of the joint, must be included. Thus,

$$\left\{ \epsilon_{x} \right\}_{e}^{T} = \left\{ \epsilon_{xe} \right\} \quad \epsilon_{ye} \quad \epsilon_{ze} \quad \gamma_{xze} \quad \gamma_{zye} \quad \gamma_{xye} \right\}$$
 (152)

and, similarly, for $\{\epsilon_X\}$ $\frac{T}{p}$. Therefore, though the total strains vanish

$$\epsilon_z = \gamma_{xz} = \gamma_{zy} = 0 \tag{153}$$

for plane strain, this does not imply that the elastic and plastic strains, separately, vanish

$$\begin{cases}
\epsilon_{ze} = \gamma_{xze} = \gamma_{zye} = 0 \\
\epsilon_{zp} = \gamma_{xzp} = \gamma_{zyp} = 0
\end{cases} \text{NOT TRUE}$$

For the isotropic material, since there is no shear coupling, it happens that the elastic and plastic shear strains are zero, although ϵ_{zc} and ϵ_{zp} are, in general, not zero. For the orthotropic material which has shear coupling, the elastic and plastic shear strains will not, in general, be zero.

By Hooke's law, the stresses can be found as

$$\{\sigma_x\} = [C] \{\epsilon_x\}_e \tag{154}$$

in which

$$[C] = \frac{E}{(1+\nu)(1-2\nu)}$$

$$[C] = \frac{E}{(1+\nu)(1-2\nu)}$$
Symmetric
$$\frac{(1-2\nu)}{2} \qquad 0 \qquad 0$$

$$\frac{(1-2\nu)}{2} \qquad 0$$

$$\frac{(1-2\nu)}{2} \qquad 0$$

where E and ν are the elastic modulus and Poisson's ratio, respectively. The material is assumed to obey the Von Mises yield condition. By the deformation theory of plasticity,

$$\left\{ \epsilon_{X} \right\}_{p} = [S]_{\rho} \left\{ \sigma_{X} \right\} \tag{155}$$

in which

$$[S]_{p} = \frac{\overline{\epsilon}_{p}}{\overline{\sigma}}$$

$$\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ & 1 & -\frac{1}{2} & 0 & 0 & 0 \\ & & 1 & 0 & 0 & 0 \\ & & & 3 & 0 & 0 \\ Symmetric & & & 3 & 0 \\ & & & & & 3 \end{bmatrix}$$

where

$$\overline{\sigma} = \begin{cases} \frac{1}{2} \left[(\sigma_x - \sigma_z)^2 + (\sigma_z - \sigma_y)^2 + (\sigma_y - \sigma_x)^2 \right] + 3 \left[\tau_{xz}^2 + \tau_{zy}^2 + \tau_{xy}^2 \right] \end{cases}$$

is the effective stress and $\bar{\epsilon}_p$ is the effective plastic strain which may be found from the material stress-strain curve in uniaxial stress. If the Ramberg-Osgood law⁽²⁾ is used to approximate the stress-strain curve, one has

$$\bar{\epsilon} = \frac{\bar{\sigma}}{E} + \frac{3\sigma_0}{7E} \left(\frac{\bar{\sigma}}{\sigma_0}\right)^n \tag{156}$$

in which

 σ_0 = secant yield stress (stress at which the secant modulus = 0.7E)

$$n = \text{shape factor} = 1 + \frac{\log\left(\frac{17}{7}\right)}{\log\left(\frac{\sigma_0}{\sigma_1}\right)}$$

where

 σ_1 = stress at secant modulus at 0.85E

According to the constant strain method⁽²⁾, the effective plastic strain $\overline{\epsilon}_p$ for a given total effective strain $\overline{\epsilon}$ can be found from Equation (156) if it is rewritten as

$$\bar{c} = \left(\frac{7\bar{\epsilon}_p}{3}\right)^{1/n} \left(\frac{\sigma_0}{E}\right)^{1 - \frac{1}{n}} + \bar{\epsilon}_p \tag{157}$$

The above expressions could be simplified slightly by eliminating the elastic and plastic shearing strains γ_{xz} and γ_{zy} since this is an isotropic material. However, in order to keep the development parallel to the orthotropic case, they are included.

III.2.b. Orthotropic Material, Plane Strain

One ply (or lamina) of the adherend composite material, Figure 6, is assumed to be orthotropic. The principal material directions are ℓ -t- ν where ℓ is parallel to the fiber direction. Stress and strains in the principal material directions are

$$\begin{cases}
\sigma_{\ell} \\
 \end{cases}^{T} =
\begin{cases}
\sigma_{\ell} & \sigma_{t} & \sigma_{y} & \tau_{\ell t} & \tau_{t y} & \tau_{y \cdot \ell} \\
 \end{cases} \\
\{\epsilon_{\ell} \\
 \end{cases}^{T} =
\begin{cases}
\epsilon_{\ell} & \epsilon_{t} & \epsilon_{y} & \gamma_{\ell t} & \gamma_{t y} & \gamma_{y \cdot \ell} \\
 \end{cases}$$
(158)

The composite is assumed to be isotropic in the t-y plane.

Separating the total strain into its elastic and plastic components, one can write

$$\{\epsilon_{\ell}\} = \{\epsilon_{\ell}\}_e + \{\epsilon_{\ell}\}_p$$
 (159)

Using Hooke's law, one obtains the stresses as

$$\{\sigma_{\ell}\}$$
 [C] $\{\epsilon_{\ell}\}_{e}$ (160)

FIGURE 6. ORTHOTROPIC LAMINA COORDINATES & t, y AND STRESS-STRAIN CURVES FROM UNI-AXIAL TEST IN PRINCIPAL DIRECTIONS

where

All the E_i values are lamina elastic constants (some negative) which are obtained as the initial slope of the *i*th curve in Figure 6.

According to assumption (2) in Section 111.1, it is assumed that the plastic strains can be found by superposition, e.g.:

$$\epsilon_{\ell p} = \epsilon_{\ell \ell p} + \epsilon_{\ell \ell p} + \epsilon_{\ell y p}$$

where $\epsilon_{\ell tp}$ is the longitudinal plastic strain corresponding to the stress σ_t as found from the simple uniaxial test. Let the stress-strain relations from uniaxial tests of a typical lamina be as given in Figure 6. Each of the seven curves car be approximated by a Ramberg-Osgood relation of the form

$$\epsilon = \frac{\sigma}{E_i} + \frac{3\sigma_{0i}}{7E_i} \left(\frac{\sigma}{\sigma_{0i}}\right)^{n_i} \tag{161}$$

where ϵ and σ are the appropriate stress and strain for each curve, E_i is the initial stope of the curve, σ_{0i} and n_i are the quantities corresponding to those given in Equation (156) and i refers to the curve number as given in Figure 6. The plastic strains can now be written as*

$$\begin{cases} \epsilon_{sp} \\ \epsilon_{tp} \\ \epsilon_{tp} \\ \epsilon_{vp} \\ \epsilon_{vp} \\ \tau_{typ} \end{cases} = \frac{3}{7} \begin{cases} \frac{\sigma_{o1}}{E_{1}} \left(\frac{\sigma_{o1}}{\sigma_{o1}}\right)^{n_{1}} + \frac{\sigma_{o1}}{E_{1}} \left(\frac{\sigma_{t}}{\sigma_{o2}}\right)^{n_{1}} + \frac{\sigma_{o1}}{E_{1}} \left(\frac{\sigma_{v}}{\sigma_{o1}}\right)^{n_{1}} \\ \frac{\sigma_{o2}}{E_{2}} \left(\frac{\sigma_{o}}{\sigma_{o1}}\right)^{n_{2}} + \frac{\sigma_{o4}}{E_{4}} \left(\frac{\sigma_{t}}{\sigma_{o4}}\right)^{n_{4}} + \frac{\sigma_{o4}}{E_{5}} \left(\frac{\sigma_{v}}{\sigma_{o5}}\right)^{n_{1}} \\ \frac{\sigma_{o2}}{E_{1}} \left(\frac{\sigma_{o1}}{\sigma_{o1}}\right)^{n_{2}} + \frac{\sigma_{o4}}{E_{5}} \left(\frac{\sigma_{t}}{\sigma_{o4}}\right)^{n_{1}} + \frac{\sigma_{o4}}{E_{4}} \left(\frac{\sigma_{v}}{\sigma_{v}}\right)^{n_{1}} \\ \frac{\sigma_{ca}}{E_{6}} \left(\frac{\tau_{c1}}{\sigma_{o4}}\right)^{n_{2}} \\ \frac{\sigma_{ca}}{E_{6}} \left(\frac{\tau_{c1}}{\sigma_{o4}}\right)^{n_{4}} \\ \frac{\sigma_{o4}}{E_{6}} \left(\frac{\tau_{v}}{\sigma_{o4}}\right)^{n_{4}} \end{cases}$$

$$(162)$$

^{*}The plasticity theory used here for orthotropic materials is different than that employed in the theoretical methods. The "best" theory has not yet been established by experiments. As the results from the two theories show (see the following section), the difference is insignificant.

The transformation relating the plane strain strains in the x-y plane to the strains in the principal material directions C-t can be written as

$$\langle \epsilon_{\ell} \rangle = [T] \ \langle \epsilon_{\chi} \rangle \tag{163}$$

where $\{e_X\}$ and $\{e_X\}$ are given in Equations (158) and (150), respectively, and [T] is a 6 \times 3 matrix:

$$[T] = \begin{bmatrix} \cos^2 \psi & 0 & 0 \\ \sin^2 \psi & 0 & 0 \\ 0 & 1 & 0 \\ -2\sin \psi \cos \psi & 0 & 0 \\ 0 & 0 & -\sin \psi \\ 0 & 0 & \cos \psi \end{bmatrix}$$

in which ψ is the angle of fiber orientation as shown in Figure 6.

III.3. ELEMENT STIFFNESS MATRIX AND PLASTIC FORCES

After the constitutive equations have been defined in the above manner, the solution of the discrete element problem follows very closely the procedure outlined for $ELPLAN^{(4)}$, a computer program for the inelastic analysis of plane stress problems. A typical finite element is taken to be a triangle in the longitudinal cross-section plane of the joint (x-y) plane) with a unit thickness, Figure 7. The following expressions are obtained for the element stiffness

matrix [k] and the plastic nodal forces $\{f_p\}$ for the composite material:

$$\{f_p\} = [D] \{\epsilon_{\mathcal{Q}}\}_p$$
 (165)

$$[D] = \overline{A}[B]^T[T]^T[C]$$
 (166)

in which [T] is given in Equation (163), [C] in Equation (160), $\{\epsilon_{\mathcal{Q}}\}_p$ in Equation (162) and \overline{A} is the element area in the x-y plane. The matrix [B] relates the element strains to the nodal displacements $\{X'\}_p^{(4)}$, i.e.,

$$\{\epsilon_X\} = [B] \{X\}$$
 (167)

The stresses in a composite element in the principal material directions are

$$\{\sigma_{\mathcal{Q}}\} = [C]([T][B] \{X\} - \{\epsilon_{\mathcal{Q}}\}_{p})$$
 (168)

The above expressions apply also to the isotropic adhesive material although they can be slightly simplified. For programming purposes, it is convenient to use the same algorithm for the isotropic and orthotropic materials. In this regard, Equations (164), (165), (166), (167), and (168) are valid for the

FIGURE 7. PLANE STRAIN DISCRETE ELEMENT USED FOR NONLINEAR JOINT ANALYSIS

adhesive if ψ is taken equal to zero in [T]. Then [C] is found in Equation (154), and Equation (155) is used for the plastic strains.

The solution of the discrete element problem proceeds, according to deformation theory, in the following manner:

- (1) Formulate the structural stiffness matrix [K] by assembling the element stiffness matrices in (164) and the applied nodal load matrix $\{F\}$ as specified by the loading.
- (2) Perform an elastic analysis with the current values of $\{F_p\}$ to obtain the nodal displacements $\{X\}$:

$$\langle F \rangle + \langle F_p \rangle = [K] \langle X \rangle$$

For the initial iteration, $\langle F_p \rangle = \langle O \rangle$.

- (3) Calculate the stresses via Equation (168) with the current values of $\{\epsilon_{\ell}\}_p$, $\{\epsilon_{\ell}\}_p = 0$ for the first iteration.
- (4) Calculate the new plastic strains via Equation (162) for the composite or (155), (156), and (157) for the adhesive.
- Consider the new plastic strains as initial strains and compute new values of the element plastic forces $\{f_p\}$ by Equation (165). Assemble the element plastic forces into the structural plastic forces $\{F_p\}$.
- (6) If the maximum change in plastic strain from the previous iteration is sufficiently small, the solution is complete. If not, return to Step 2.

This process was incorporated into ELPLAN. The application of the resulting program is discussed in a later section.

SECTION IV

COMPARISON OF THEORETICAL AND DISCRETE ELEMENT RESULTS

IV.1. JOINT CONFIGURATIONS AND MATERIAL PROPERTIES

In order to compare the theoretical and discrete element analysis methods, the three particular joint configurations shown in Figure 8, i.e., single lap, double lap, and step lap, were analyzed by both methods. The Narmco 5505 Boron/Epoxy System was taken as the adherend and AF-126-2 as the adhesive. The adherend was a

FIGURE 8. JOINT CONFIGURATIONS FOR COMPARISON OF ANALYSIS METHODS

TABLE I. MATERIAL CONSTANTS FOR RAMBERG-

OSGOOD APPROXIMATION

Adhesive (AF-126-2)					
	G (ksi)	τ ₀ (ksi)	n		
τ νς γ	175	3,32	2.684		
Adherend (Narmco 5505)					
Curve (i) of Figure 6	E_{l} (ksi)	00i (ksi)	n_i		
$1 \sigma_{\varrho} \text{ vs } \epsilon_{\varrho}$	29,600	312.7	4.463		
$2 \sigma_{\varrho} \operatorname{vs} \epsilon_{t} (\epsilon_{y})$	-130,000	285.5	5.129		
$3 \sigma_t(\sigma_y) \text{ vs } \epsilon_{\ell}$	-130,000	285.5	5.129		
4 $\sigma_t(\sigma_y)$ vs $\epsilon_t(\epsilon_y)$	2,750	!1.91	2.541		
5 $\sigma_t(\sigma_y)$ vs $\epsilon_y(\epsilon_t)$	-8,876	10.52	3.350		
6 $\tau_{\ell t}(\tau_{\ell y}) \text{ vs } \gamma_{\ell t}(\gamma_{\ell y})$	933	7.95	2.991		
$7 \tau_{ty} \text{ vs } \gamma_{ty}$	191	68.44	2.031		

five-ply laminate (nominal ply thickness 0.0052 in.) with 0° , 90° , 0° , 90° , 0° orientations, except for the inner laminate of the double lap which had nine plies with 0/90 orientations. In each case, the joint length, c, was 0.75 in., and the total length, a, was 6.25 inches. The adhesive thickness was 0.005 inch.

The material properties used in the Ramberg-Osgood approximation [Eq. (156)] of the adhesive shear stress-strain curve are shown in Table I. Poisson's ratio of the adhesive was taken as 0.3. The material constants for the characterization of a typical lamina of an adherend are also given in Table I. They represent the Ramberg-Osgood constants in Equation (161) for the uniaxial stress-strain curves in Figure 6. The stress-strain curve for AF-126-2 was not a railable at the time of the comparison, but those values shown in Table I were thought to be appropriate. (5) More recent work shows that the shear modulus is about 80 ksi⁽⁶⁾ instead of the 175 ksi value shown in Table I and used in the analysis. Since consistent material properties were used in both analysis methods, the results of the comparison study will remain valid, however. Stress-strain curves for the Narmoo 5505 were obtained from Reference 7. Curves 5 and 7 for lamina characterization in a plane perpendicular to the fibers were not available. These curves were assumed to be identical to those of the transverse unidirectional lamina. Many of the curves for the lamina were quite linear to failure, and, thus, do not reach the stress σ_0 which corresponds to a secant modulus of 0.7E. In these cases, the value of σ_0 and n were determined such that the Ramberg-Osgood approximation passed

through two points on the upper nonlinear portion of the stress-strain curves. For an isotropic material, the solution for n and a_0 is

$$n = \left(\frac{E\epsilon' - \sigma'}{E\epsilon'' - \sigma''}\right) / \left(\frac{\sigma'}{\sigma''}\right)$$

$$\sigma_0 = \left[\frac{7}{3} (E\epsilon'' - \sigma'')(\sigma')^{-n}\right] \frac{1}{1 - n}$$

where (σ', ϵ') and (σ'', ϵ'') are two points on nonlinear portion of the stress-strain curve.

IV.2. JOINT ANALYSIS

IV.2.a. Discrete Element Analysis

The three joints shown in Figure 8 were analyzed by the discrete element computer program discussed in Section III. The finite element idealization of the single, double, and step lap joint are shown in Figures 9, 10, and 11, respectively. Joint boundary conditions are illustrated schematically in these figures. Material properties listed in Table I were used.

Results from the discrete element analysis for the shear and normal stress in the adhesive are presented as circled points in Figures 12, 13, and 14 for the single, double, and step lap joints, respectively. The discrete element program evaluates the stresses at the centroid of each triangular element. Hence, the stresses are evaluated at 1/3 and 2/3 thickness levels in the adhesive. In order to compare results with the theoretical method, these stresses were averaged to obtain the stress at midthickness. The discrete element program did not converge to the specified error tolerance of 0.01 within 20 iterations for step lap joint loads greater than 1000 lb/inch. This was caused by large plastic laminate strains developing in the stress concentration area at the juncture of a tread and a riser. (Note the change in the stress scale for the step lap joint as compared to that of the single and double lap joints.)

IV.2.b. Theoretical Analysis

The theoretical analysis technique outlined in Section II and programmed for the CDC 6400 computer was also used to analyze the joints in Figure 8. In addition to the geometric quantities, the adhesive material constants and the adherend material constants for Curves 1, 2, 4, and 6 from Table I were input into the program. These four curves for the adherend correspond to the four curves in Figure 3 and the four Equations (41a, b, c, and d). For the numerical integration involved in this solution, the single lap and double lap were subdivided into 20 equal segments (21 stations) along the joint. Each tread of the step lap was subdivided into 30 equal segments. The results of the theoretical analysis are presented as the curves in Figures 12, 13, and 14 for the three joints.

IV.2.c. Discussion

Despite the different assumptions involved in the finite element method and the analytical method, i.e., plastic strain superposition for the finite element method versus deformation theory for the analytical method and three dimensional stresses in the finite element method versus negligible shear deformation in the adherends for the analytical method, the comparison of the results in Figures 12 and 13 is quite good for the adhesive shear stress in the single and double lap joint. The difference in the two methods for the step lap joint adhesive shear (Fig. 14) is probably due to both of the following two causes:

- Shear deformation is neglected in the adherends for the theoretical method. For the step, the adhesive is attached to the 90-degree oriented layers. The shear modulus of these layers in the plane of the joint is only 191 ksi (see Table I), which is about equal to that of the adhesive itself.
- Transmission of force through the step risers is neglected in the theoretical method. Hence, the total force is transmitted by shear along the treads. Thus, the average shear stress for the theoretical method is about 1000/0.75 or 1333 psi, whereas it is lower for the discrete element method since some force is transmitted through the risers.

FIGURE 9. DISCRETE ELEMENT LAYOUT FOR SINGLE LAP JOINT

FIGURE 10. DISCRETE ELEMENT LAYOUT FOR DOUBLE LAP JOINT

FIGURE 11. DISCRETE ELEMENT LAYOUT FOR STEP LAP JOINT

FIGURE 12. ADHESIVE STRESS, SINGLE LAP JOINT

FIGURE 13. ADHESIVE STRESS, DOUBLE LAP JOINT

FIGURE 14. ADHESIVE STRESS, STEP LAP JOINT

According to Equation (122), the normal stress varies approximately as a damped cosine (and sine) curve with a period of length

$$L = \frac{2\pi}{\omega} \tag{169}$$

where, approximately,

$$\omega = \left[\frac{E}{4t(1 - v^2)} \left(\frac{1}{D_1} + \frac{1}{D_2} \right) \right]^{1/4} \tag{170}$$

These conditions are exact for t e special case of equal adherends in the single lap—see Section II.2. For the single, double, and step lap joints, the c/clic period, L, of the normal stress is 0.189 in., 0.224 in., and 0.084 in., respectively. (Note that $1/D_2 = 0$ for the double lap.) The discrete elements in the region of the adhesive were 0.025 in. long. These were not sufficiently small to pick up the rapid variation of the normal stress since the method is based on an assumed constant stress in each element. The theoretical method is somewhat limited in this regard also because of the numerical integration involved. However, the integration is performed according to Simpson's rule which is based on a parabolic approximation to the integrand. The error for the discrete element method is about h^2 and about h^5 for the theoretical method where h is the interval spacing. Thus, the normal stresses obtained by the theoretical method are probably more reliable than those from the discrete element method.

Although extensive calculations were not conducted for verification, it is thought that the interval for the numerical integration in the theoretical method should be no greater than about $L/2\pi$ or $1/\omega$. (For the examples above, the intervals were L/5.0, L/6.0, and L/6.8 for the single, double, and step lap, respectively.

SECTION V

EXPERIMENTAL DESIGN

V.I. GENERAL

This section presents the study of bonded joint data taken from the literature followed by the design of the experimental program to verify the theory of Sections II, III, and IV. Section V.2 presents the Literature Study covering six information data sources to establish statistical techniques for experimental data analysis and provide experimental design information. Section V.3 presents Trial Effective Properties Prediction for the elastic case utilizing the methods developed in the previous three sections. Design of the Experimental Program presented in Section V.4 provides the detailed history of the specimen selection and design which were used for verification of the new analytical methods in subsequent sections.

V.2. LITERATURE SURVEY

An example development of single and double lap joint experimental data analysis is presented in this section. It was accomplished by the study and analysis of test data from three sources: Douglas, IITRI, and SwRI. Preliminary analysis of the more limited data from two additional sources, Martin-Orlando and Grumman is also included. Two composite materials, boron/epoxy and S-glass/epoxy of several orientations were utilized as the primary adherend materials in the data studied in detail and they were bonded to the same materials or to aluminum, titanium or woven E-glass/epoxy secondary adherends. For the two sources of data studied in preliminary fashion, Grumman used composite and metal adherends while Martin-Orlando used only metal.

The data collection and analysis effort had two primary objectives: a gross characterization of the "effective" properties of the various adhesives, and a meaningful estimate of the general test precision in order to establish guidelines for the experimental effort. Pertinent data from all five sources [i.e., Dastin of Grumman⁽⁸⁾, Lehman of McDonnell-Douglas⁽⁹⁾, Chessin and Curran of Martin-Orlando⁽¹⁰⁾, Kutscha of IITRI⁽¹¹⁾, and Grimes of SwRI⁽¹²⁾] yielded lap joint test data in quantities sufficient for meaningful analysis. The Martin-Orlando data on metal adherend-bonded lap joints were included for comparative purposes. It should be noted that the Martin-Orlando data covered only one type of variable in their tests, the adherend surface preparation. While this variation caused a larger range of failure stress magnitudes than would be expected with one chosen surface preparation, the standard deviation was comparable to that of the Douglas, HTRI, and SwRI data which had variable overlap lengths and the Grumman data which used several different adhesives.

The data analysis consisted of two sequential steps: the generation of reliable precision estimates in order that confidence intervals might be established for the various mean failure stress measurements, and the subsequent use of these intervals to establish a reasonable range of apparent material properties as a function of the joint configuration for experimental design and data analysis purposes. The analysis work concentrated on the average apparent adhesive shear stress failure measurement, the average adherend tensile failure stresses, and on the running loads transferred in lb/in./ply. The generation of precision estimates was complicated generally by the scarcity of such estimates in the literature and specifically by the wide variance in test parameters among the five major data sources. As an example, it can be seen that, for the various parameters by which the data were tabulated, not a single instance can be found in which two different sources ran an identical test. This, of course, means that interlaboratory reproducibility could not be estimated.

On the other hand, the data collected did prove sufficient for estimating the intralaboratory repeatability, provided that analysis was approached via a method now under study for publication by ASTM Committee D2. This procedure is designed specifically for the generation of precision estimates from data in which

- (1) the standard deviation appears to vary with the mean rating of the various samples, and
- (2) only relatively small amounts of data are available on any one sample.

This is precisely the case with the lap joint data collected. The first step in the process was to calculate the standard deviations for the individual samples. Following this, a decision had to be made concerning grouping of the data, e.g., of the various parameters in the tabulation; how many should one group together? In this case, the decision was tairly easy, since groups broken down any further than source and test type would be too small to be useful. Hence, the data were divided into these six groups:

Single Lap Douglas -(adherend materials and overlap length variations)
Grumman-(adherend material and adhesive type variations)

Martin-Orlando—(adherend material surface preparation variation)

Double Lap Douglas—(adherend material and overlap length variation)

SwRI -(adherend material and overlap length variation)

IITRI- (adherend material, adhesive, and overlap length variation)

Linear regression lines resulting from plots of standard deviation vs mean adhesive shear stress failure for each of these six groups* are presented in Figures 15 and 16. These straight times were fitted to the data points by linear regression techniques which represent the best estimates of the overall test (or population) standard deviations for each of the six groups. The advantage of the above approach is that a large number of degrees of freedom can be utilized in the estimating procedure rather than the small number available in the few data points actually falling at a given level. This gives a much more realistic calculation for confidence intervals and provides a means of looking at data trends with respect to the variables encountered.

The difference between Figures 15 and 16 is the inclusion and exclusion, respectively, of the Metalbond 400 data in those analyzed from HTRI. When the Metalbond 400 data is removed from the balance of the HTRI data, the standard deviation vs mean line falls on top of all the rest of the data except for the Douglas single lap data. These two groups of data were obviously out of control in some fashion. It could have been the material, processing or testing; however, the important point is that the statistical technique picked it up.

Before dealing with confidence intervals, a study of the trends is shown in Figure 16 with the standard deviation estimates for all six data groups given on the same plot. Here it can be seen that, at mean adhesive shear stress failure levels in the area of 3,000 psi, the standard deviations for all but one are approximately equal. Considering that the experimental parameters varied a great deal in these tests, and that the double lap data behaved (statistically) much like two of the three single lap groups the general variance to be expected for both groups appears to be about the same at any mean level, regardless of the adhesive type, adherend combination, overlap length, etc.

Calculation of the confidence intervals for the population mean adhesive shear stress failure levels consists of using the regression line standard deviation estimate in the following formula:

95% Confidence Limits at
$$f_s = f_s^{-} \pm \frac{ts}{\sqrt{n}}$$
 (171)

where f_s is the average of these experimentally determined mean adhesive failure stresses, n is the number of determinations, s is standard deviation, and t is the t-deviate corresponding to the number of degrees of freedom involved in the regression line estimate of the standard deviation (not n). These limits define the interval within which the mean of a very large number of tests would probably lie relative to the mean of this experimental data.

With the confidence limits established, it is possible to calculate 95% confidence design allowables in the following manner:

$$DA_{95} = LCL - ts\left(\frac{1}{\sqrt{n}} + 1\right) \tag{172}$$

^{*}Using ASTM E-178 (Ref 13) for the deletion of "outlier points."

FIGURE 15. STANDARD DEVIATION VS MEAN ADHESIVE FAILURE STRESS—COMPARISON

FIGURE 16. STANDARD DEVIATION VS MEAN ADHESIVE FAILURE STRESS—COMPARISON

where $LCL = f_s - (ts/\sqrt{n})$ is the lower confidence limit and t, n and s have the same definitions as above. In essence, this calculation says that, if the population mean f_s did turn out to be at the lower confidence level, then about 5 of 100 specimens would fail at the design allowable stress level or lower. This is a conservative estimate; the real failure probabilities should be more favorable.

In the Douglas, IITRI and SwRI data groups, overlap lengths were varied, hence, it was possible to plot mean failure stress (or unit load) vs overlap lengths for various composite materials and joint types. These mean experimental plots are presented in Figures 17 through 28

The data analyses performed on the unit running loads per ply transferred were essentially a reiteration of those described above for adhesive failure stresses. Linear regression lines based on plots of standard deviation vs mean running load transferred in lb/in./ply for four of the five groups mentioned (the Martin-Orlando tests being on metal adherends were omitted) are presented in Figure 29. Because the adhesive failure stress and the running load are both calculated at the failure point and thus have a proportional relationship, it should be noted that their linear regressions look much alike. Only the Douglas single lap data regressions showed any appreciable difference in slope, and this is most probably due to the following related factors:

- (1) These data generally showed a significantly higher variance than did the other groups
- (2) The accuracy of the regression line slope as an estimator of the corresponding population statistic is inversely proportional to the average magnitude of the sample variance involved.

Thus, the different slope indicated for the Douglas single lap data may well be apparent rather than real, although Figure 29 shows that the standard deviations for all but the Douglas single lap data are approximately equal at a loading of 500 lb/in./ply.

Several interesting phenomena can be seen from study of this data. The lower curves in Figure 25 showed that a weak interface region is detrimental to composite bonded joints. The cause of this could be high adhesive viscosity at flow temperature (occurring during cure), i.e., a material quality problem, probably aging. Also, it can be seen from Figures 30 through 33 that a comparison of the plots of mean vs standard deviations for shear stress and load/ply transferred are very similar (as would be expected) except for the Douglas single lap data. In Figure 34 the coefficient of variation line slope and location are considerably different from that of the standard deviation. Because of this the coefficient of variation is less desirable as a design tool than is the standard deviation. Finally, a plot of the 45% comidence limits of the fainure stresses for the Martin-Orlando data showing controlled variations in processing are significant is presented in Figure 35. This is because all the data are shown to be consistent (under control) even though the difference in the magnitude of the mean stresses is quite large as a result of different processing techniques. It illustrates that the right processing technique should be chosen and kept under close control.

Illustrations of plots of 95% confidence limits vs mean failure magnitudes are shown in Figures 36 through 40. In Figure 36 the shear stresses for the IITRI data are presented in this fashion while Figures 37 through 40 present the SwRI, Douglas, and Grumman data in terms of lb/in./ply of running load transferred.

From the study of these data from the literature, techniques have been established to analyze similar experimental information on bonded joints for acceptable scatter limits (confidence limits) for the 95% confidence level when the number of like test points are limited.

V.3. TRIAL EFFECTIVE PROPERTIES PREDICTION⁽¹⁴⁾

Utilizing the mean data from Figure 23 on a 1/2-inch overlap double lap joint with a 14-ply $[0]_c$ adherend made of Scotchply XP-251S the shear stress distribution was calculated for three assumed bondline shear moduli values. The G values for which τ_x distribution will be computed are 160, 90, and 40 ksi.

FIGURE 17. BE/BE DOUGLAS SINGLE LAP/SHELL 951

FIGURE 19. BE/AL DOUGLAS DOUBLE LAP/SHELL 951

FIGURE 18. BE/AL DOUGLAS SINGLE LAP/SHELL 951

FIGURE 20. NGE/NGE DOUGLAS SINGLE LAP/SHELL 951

FIGURE 21 NGE/AL DOUGLAS SINGLE LAP/SHELL 951

FIGURE 23. NGE/NGE SwRI DOUBLE '/3M AF 126

FIGURE 22. NGE/AL DOUGLAS SINGLE LAP/SHELL 951

FIGURE 24. NGE/AL AND NGE/WGE SwRI DOUBLE LAP/3M AF 126

FIGURE 25. NGE/AL, NGE/WGE, AND NGE/TI SwRI DOUBLE LAP/3M AF 126

FIGURE 26. NGE/AL DOUGLAS DOUBLE LAP/SHELL 951

FIGURE 27. NGE/NGE IITRI DOUBLE LAP/FM-1000

FIGURE 28. NGE/NGE IITRI DOUBLE LAP/METLBOND 400

FIGURE 29. COMPARISON OF GROUP STANDARD DEVIATION ESTIMATES

Standard Deviation, pai ÷ 103

FIGURE 30. COMPARISON OF STANDARD DEVIATIONS SWRI DOUBLE LAP DATA

FIGURE 32. COMPARISON OF STANDARD DEVIATIONS-DOUGLAS DOUBLE LAP DA1A

FIGURE 34. COEFFICIENT OF VARIATION AND STANDARD DEVIATION VS MEAN FAILURE STRESS, SWRI DOUBLE LAP DATA

FIGURE 35. CONFIDENCE LIMIT STRESS VS GROUP SURFACE TREATMENT—MARTIN (AL/E)

FIGURE 36. CONFIDENCE LIMITS-IITRI DOUBLE LAP DATA

FIGURE 37. CONFIDENCE LIMITS-SWRI DOUBLE LAP DATA

FIGURE 38. CONFIDENCE LIMITS-DOUGLAS SINGLE LAP DATA

FIGURE 39. CONFIDENCE LIMITS - DOUGLAS DOUBLE LAP DATA

FIGURE 40. CONFIDENCE LIMITS-GRUMMAN SINGLE LAP DATA

Figure 41 shows the distribution for the G=160-ksi value. It is assumed that the end point τ_{max} and τ_c values are found at one bondline thickness (0.00315 in.) away from the end of the joint (via St. Venant's principle), for the shear stress must go to zero at both ends at the free surface. However, the τ_{max} value of 21,600 psi shown is, in the authors' judgment, too high. If the elastic G of the adhesive is actually close to the assumed 160 ksi, the end points would have to be cut off at some lower τ_{max} value which would make the area under the τ_{avg} line (i.e., $A_1 + A_3 = A_2$ on Fig. 41).

Figure 42 looks to be a more reasonable assumption for an assumed G = 90,000 psi with theoretical τ_{max} being closer to the estimated τ_{max} . It should be noted that lowering the modulus lowers the maximum shear stresses in the cement and raises the minimum stresses.

One additional computation for a G = 40,000 psi is shown in Figure 43. This is made to establish the relationship between adhesive shear stresses and the assumed G for the specific composite adherend combination, joint geometry, and experimentally measured average failing shear stress utilized. When the results from Figures 41, 42, and 43 are plotted, the variation of τ with the assumed G is shown in Figure 44. This shows the "effective" G to be 12,500 psi for τ_{max} = 8,400 psi and τ_{avg} = 5,250 psi, assuming elastic conditions to failure.

From this initial preliminary study the technique of using an effective G to determine bondline shear stress distribution was deemed feasible for the elastic condition.

V.4. DESIGN OF THE EXPERIMENTAL PROGRAM

An experimental program designed to verify the analytical techniques developed herein requires the complete evaluation of the mechanical properties of (1) the adhesives, (2) the adherend materials, and (3) joints made from these materials. Since the first item was being evaluated by at least two other programs, effort in this contract was concentrated on Items 2 and 3.

Because of the wealth of data available on N-5505 boron/epoxy composites and 6A14V titanium it was decided to evaluate only the longitudinal properties of these adherend materials. Three study areas on joints were decided upon to satisfy the verification objective and those of the contract Statement of Work. These were (1) a large number of simple specimen bonded joints tested primarily to determine ultimate strength, (2) a small number of special bonded joints to evaluate the strain distribution under a monotonically increasing load to failure, and (3) a very small number of complex (larger) joints to evaluate size effects on both ultimate strength and strain distribution.

V.4.a. Adherend Materials

It was decided to test four longitudinal tensile specimens from the two 0.938 in. wide, 20 in. long strips taken from each composite adherend panel made. In addition, two similar configuration tensile specimens were to be taken from each of the four gages of 6Al-4V titanium sheet. Specimen and test details are given in specification SwR1 03-401, Test Standard for Fibrous Composite Tensile Specimens published in Appendix C of this report. Complete uniaxial tension stress/biaxial strain curves to failure were to be recorded on each static test specimen. These data were then to be used in the nonlinear methods developed in this program for bonded joint analysis.

For purposes of experimental design, properties based on average test data were taken from the literature as follows:

		Boron/Epo F.V. Fraction	•	Sheet ⁽¹⁶⁾
Property	0	0/90	0/±45	Titanium (6Al-4V) Ann.
$\sigma_{\mathfrak{L}_{\mathcal{U}}}$	191.0 ksi	72.0 ksi	103.0 ksi	147.0 ksi
$\sigma_{\ell p \ell}$	134.0 ksi	29.0 ksi	36.7 ksi	120.0 ksi

^{*0.0052} in./ply

FIGURE 41. ORTHO-/ISO-ELASTIC SHEAR STRESS DISTRIBUTION FOR G=160,000 PSI

FIGURE 42. ORTHO-/ISO-ELASTIC SHEAR STRESS DISTRIBUTION FOR G = 90,000 PSI

Double Lap Joint S-Glass/Epoxy Adherend, $\lfloor 0_{14} \rfloor_T$, $t_0 = t_1$ Nitrile-Epoxy Adhesive, t=0.00315 in. Overlap 0.50 in.

FIGURE 43. ORTHO-/ISO-ELASTIC SHEAR STRESSES DISTRIBUTION FOR G=40,000 PSI

FIGURE 44. VARIATION OF SHEAR STRESS WITH ASSUMED SHEAR MODULUS

V 4 b Adhesive Properties

Since little data were available on the emperical strength of AF-126-2 and MB-329 adhesives used in single, double, step lap and scarf joints with variable overlap lengths, the data which were available were used to develop extrapolated curves. Those for AF-126-2 nitrile epoxy, low stiffness-high elongation (LSHE) adhesive are shown in Figure 45. Figure 46 presents similar type curves on MB-329 epoxy novolak high stiffness-low elongation (HSLE) adhesive. These estimated ultimate shear strength values were used in the design of the joint specimens.

V.4.c. Simple and Special Joint Specimen Design

Using the properties presented in the previous sub-sections, joint design curves were calculated and plotted which would cover both the linear and nonlinear ranges of both the adherend and the adhesive. In other words, some joints were designed to fail in the adhesive with the adherend tensile stresses in either the linear or nonlinear range but below failure. Others were designed to fail in the adherend while the adhesive shear stress was either in the linear or nonlinear range. Additionally, some were designed to cause failure to occur simultaneously in the adhesive and the adherend.

For the three fiber orientations selected and the four types (3 lap and 1 scarf) of joints to be studied, the empirical design curves using the AF-126-2 (LSHE) adhesive are given in Figures 47 through 49. Similar curves are presented for the MB-329 (HSLE) adhesive in Figures 50 through 52. With these empirical design curves based on average test properties, the overlap lengths were designed for a given stress level in the adherend for a given type adhesive and orientation of the composite. This information was then used to generate the required number of plies of a balanced symmetric laminate. Where titanium was used as the other adherend materials it was matched as closely as possible to the total composite adherend thickness. With this information, the simple and special specimen test plan could be completed and is shown in Table II

V.4.d. Complex Joint Design

General requirements established for the complex joints (C.J.) were:

- (1) One (1) C.J. test panel for each adhesive, i.e., two (2) C.J. test panels, total
- (2) Each C.J. test panel: approximately 5 in. wide X 15 in. long
- (3) Each C.J. test panel: double lap type
- (4) Each C.J. test panel: instrumented to determine load/strain distribution, concentrations, failure initiation locations, and ultimates.

FIGURE 45. AF-126 (LS-HE) ESTIMATED ADHESIVE FAILING STRESSES

FIGURE 46. MB-329 (HS-LE) ESTIMATED ADHESIVE FAILING STRESSES

FIGURE 47. $[0]_c$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, LS HE (EMPIRICAL)

FIGURE 48. $[0/90]_c$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, LS-HE (EMPIRICAL)

FIGURE 49. $[0/\pm 45]_c$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, LS-HE (EMPIRICAL)

FIGURE 50. $[0]_c$ ADHEREND TENSILE STRESS VS GVERLAP LENGTH, HS-LE (EMPIRICAL)

FIGURE 51. $[0/90]_{\mathcal{C}}$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, HS-LE (EMPIRICAL)

FIGURE 52. $[0/\pm45]_{\it C}$ ADHEREND TENSILE STRESS VS OVERLAP LENGTH, HS-LE (EMPIRICAL)

TABLE II

SIMPLE AND "SPECIAL" SPECIMEN TEST PLAN
(Monotonically Increasing Load to Failure)

	General	· ·					Overla	p Segm	ents*					<u> </u>	Line
Type of	Fiber		Num	ber	ī			mber 2			Num	bei	1.3]	Total
Joine	Orientation)		B-B		B-T		B-B	B-		_	B-B		B-T]	
	Category	N	O.L.	N	O.L.	Ν	O.L.	N†	O.L.	N	O.L.	N	O.L.		N
Single Lap	[0] _c [0/90] _c [0/±45] _c	3	-	3	1/4	3	1-1/4	3 3 + 1				3 - 3	1-3/4	18 0 18 + 1	
Double Lap	[0] _c [0/90] _c [0/±45] _c	3 3	1/4	3 3 3	1/4 1/4 1/4	3	1/2 1/2 3/4		1/2 1/2 3/4	3	3/4 3/4 1-1/4	3		18 18 18 † 1	AF-126-2(LS-HE) adhesive
Step Lap	[0] _c [0/90] _c [0/±45] _c	1 11		3 3 3	1/4 1/4 1/4		= -	3 3 3+1	1-1/4 1 1-1/2	1 1 1	 -	3 3	1-1/2	9 9 9 + 1	
									First	Gr	oup To	tal	S	117 + 3	
Single Lap	[0] _c [0/90] _c [0/±45] _c	3 - 3		3	1/4	3	1-1/4 - 1-1/2	3 = 3 + 1	1-1/4 - 1-1/2	-	Œ	****	2-1/4 - 2-1/2	18 0 18 + 1	
Double Lap	[0] _c [0/90] _c [0/±45] _c	3	1/4	3	1/4 1/4 1/4	3 3	1/2 3/4 1	3	1/2 3/4 I				1 1-1/2 1-3/4	18 18 18 + 1	MB-329(HS-LE) adhesive
Step Lap	[0] _c [0/90] _c [0/±45] _c	N 14	. 11	3	1/2 1/4 1/4		-	3 3 3+1	1-1/2 3/4 1-1/4	-	-		2-1/4 i-1/2 2-1/2	9 9 9+1	
								S	econd	Gro	oup To	tals		117 + 3	
								G	ROUP	TC	TALS			234 + 6	

^{*}Adherend Material: B-B is ooron-to-boron; B-T is boron-to-titanium; N = Number of Specimens; O.L. = Overlap Length in inches.

³(a) All simple specimens in this column will have clamp-on (2-in, gage length) extensometer used to record determation during loading.

⁽b) All "special" specimens in this column will be used to determine load deformation behavior of joint (e.g., strain gage instrumentation).

SECTION VI

LAMINATE PROCESSING

VL1. GENERAL

The purpose of this section is to describe the processing, fabrication and quality control activities in making composite laminate panels during this research program. These are presented in Sections V1.2, V1.3 and V1.4. Processing Facilities described in Section V1.2 give detailed information about the type of buildings and equipment used, while Section V1.3 on Process Development provides the reader with a brief summary of the developmental aspects of the materials processing. Adherend Panel Fabrication and Quality Control are presented in Section V1.4 and cover the processing and inspection details of panels used in the experimental program.

VI.2. PROCESSING FACILITIES

Special facilities and equipment are required for composite fabrication and quality control. This section describes these areas.

The processing laboratory* in which cleaning and layup of the boron/epoxy and fiber glass/epoxy laminates and the bonded joints was accomplished is 19 X 20 feet with air conditioning supplied by the zone-controlled central building unit. During a normal week, the temperature in the laboratory varies between 72° and 74°F while relative humidity varies from 51 to 57 percent. Temperature and humidity in the laboratory were recorded continuously by a Honeywell two-pen recorder actuated by a mercury-filled temperature sensor and a hair humidity sensor. Extremes recorded during the period of this research were 0.5° to 7.5° F in temperature and $40 \times 0.5^{\circ}$ percent relative humidity.

Equipment in the laboratory included a work bench, several work tables (two with Formica® tops for cleaning operations and layup), a Formica®-topped wash basin made of special chemical resistant molded epoxy reinforced plastic, storage cabinets, an air circulating Blue M oven capable of controlled temperatures up to $500^{\circ}F \pm 2^{\circ}F$, and a cleast type deep freeze for storage of preimpregnated materials at $0^{\circ}F$

The 50-ton M and N press is located in an adjacent laboratory (same building) which is also air conditioned, but the temperature and humidity may vary more widely since it is a large open area with direct access to the outside. Figure 53 consists of photographs of the laboratory and associated equipment.

VI.3. PROCESS DEVELOPMENT

The development of a standard process (see Appendix C) for making laminates and inspecting them was required to provide the necessary consistency and control for the adherend materials to be used in the experimental effort. While the processing and laminating variations were investigated, so was equipment functioning. Besides the hand layup process, the two main areas of concern were the laminating press and the thru-scan ultrasonic inspection system.

Providing a laminating press which had closely controlled temperatures was the first order of business. After considerable overhaul and modification of the 50-ton M and N press with 20 X 24-inch electrically heated platens the following heat survey/adjustment procedure was begun.

Separate recorder-controllers were connected to the contactors of the top and bottom platens. Four 20 X 24-inch plates were cut from 0.125-inch aluminum. A slot from the center to one side was cut in the back side of each plate and a 26-gage iron-constantin thermocouple cemented into the slot with the hot junction at the center of

^{*}Located in the Department of Structural Research.

A. Composite Layup Laboratory

B. Composite Layup Laboratory

C. Strain Gage Work Area

D. 50-Ton M&N Press

FIGURE 53. COMPOSITE LABORATORY AND EQUIPMENT

the plate. These thermocouples serve as the control input to the platen temperature recorder-controllers. The face of each tool plate was sanded to remove scratches and given two coats of a wax base mold release agent.

An eight-ply, 16 X 20-inch heat survey panel (made from 1581 glass/5505 epoxy) was laid up with eighteen thermocouples arranged in a triangular pattern (see Figure 54) embedded between the fourth and fifth plies. Layup and cure of this panel was accomplished in accordance with the SwRI 03-301 Process Standard for Boron/Resin Composite Laminate Fabrication*. During the cure cycle, the temperature at these thermocouples was monitored at frequent intervals. During the 200°F portion of the cycle, there was not more than 6°F difference between the highest and lowest thermocouple readings. There was an initial overrun of temperature on heat-up to 214°F which dropped within 15 min to 210°F, and was under control at 200° to 206°F during most of the remainder of the 2 hours. No overrun occurred at 300°F and control was maintained between 296°F and 302°F with a maximum difference of 12°F between the highest and lowest temperature readings. Control was maintained at 344° to 348°F with a maximum temperature difference of 14°F during the final 2 hours of cure. Figure 55 is a back-lighted photograph of the cured heat survey panel. The dark patches across the thermocouple wires are Scotch® Brand glass cloth electrical tape, No. 27, which was required to hold the thermocouples in place during layup and cure. The wires are 26-gage iron-constantin with enamel and glass fiber wrap on each wire and glass braid over all. Quality of the panel was visually good with a generally uniform light yellow translucent appearance.

Fifteen panels were fabricated using the 1581 glass fabric/5505 epoxy material and eleven panels were fabricated from Narmoo 5505 boron/epoxy Lot No. 297, Roll 13 (twisted fiber) and Lot No. 373, Roll 1, which was the first production lot of material received. These panels are listed in Table III.

Panel No. 6 has pieces of Teflon®-coated glass fabric and Scotch® Brand glass cloth electrical tape, No. 27, embedded between the fourth and fifth plies as shown in Figure 56. Figure 57 is a back-lighted photograph of this panel. This was used to develop the ultrasonic test technique for voids and inclusions.

Initial laminates using the boron prepreg had rather poor appearance. The top surface was resin-starved. Panels B-1 and B-2 were cured at a higher total pressure than had been used on an equivalent size of glass fabric reinforced panels, but the increased pressure was evidently not sufficient to accomplish the greater compression of the Coroprene boundary support required by the thinner boron layup. A 0.020-in, aluminum shim was placed under the layup for Panel B-3, and the press was adjusted to the load used previously for the glass fabric/epoxy panels. This also resulted in a resin-starved surface. An increased load was then used for panels B-4 and B-5. This improved the resin flow and, except for a few loose fibers in one location on the surface of B-4, the appearance was good. The later boron laminates all had good appearance, except Panel B-9 which had some loose fibers on the top surface.

Tensile strength specimens were prepared from Panel G-2 and were tested on the Instron machine at a constant deflection rate of 0.05 in./min. The average ultimate tensile strength of nine specimens was 56,700 psi, with a proportional limit of 30,030 psi. The average modulus was 4.78×10^6 psi initially and 3.17×10^6 psi above the proportional limit. Complete data on these tests are presented in Table IV. While these tests were performed for the IRAD Creep Program[†], they provide an indication of the quality of the fabrication technique.

A through transmission ultrasonic inspection facility was completed and all glass/epoxy panels, except G-1, 2 and 5 and boron/epoxy panels through B-8, were subjected to ultrasonic inspection. Panel G-1 is the heat survey panel with thermocouples imbedded as shown in Figures 54 and 55. Panels G-2 and G-5 had already been cut for test specimens; however, the larger remaining pieces of these panels were inspected. The recording of the ultrasonic test of Panel G-6 is shown in Figure 58. Plastic tape was placed on all edges and the whole panels were sprayed with creat facquer to prevent water absorption while immersed in the water bath. The edge tape shows as pips along each end of the panel and solid lines along one side. Each line on the chart represents a 1/8-inch interval on the panel.

^{*}Appendix C, Page C-9.

SwRI In-House Research and Development Program, Project 03-9036.

 $\bigoplus_{\mathrm{Survey}}$ Thermocouples

FIGURE 54. 1581 GLASS FABRIC/5505 EPOXY HEAT SURVEY PANEL POSITIONS OF THERMOCOUPLE

FIGURE 55. HEAT SURVEY PANEL-BACK-LIGHTED PHOTOGRAPH

TABLE III

A. 158	l Glass Fab	ric/N-5505	Epoxy Pane	ls	
Panel No.	Size, in.	No, of Plies	Thickness, in,	Fiber Orientation	Remarks
G-1	16 × 20	8		0°	Heat Survey Panel-18 Thermo- couples at Center
G-2*	16 × 20	8	0.072	0°	To be used for Tensile Test Specimens
G-3*	16 × 20	12	0.103	0°	To be used for Flexural Test Specimens
G-4*	6 × 10	8	0.067	0°	
G-5*	6 × 10	12		0°	
G-6*	6 × 10	8		0°	Void and Inclusion Test Panel
G-7*	16 × 20	10	0.090	0°	
G-8*	16 × 20	9		0°, 90°, , 0°	
G-9*	6 × 10	11		±45°	
G-10*	6 × 10	19		0°, ±45°,,0°	
G-11*	16 × 20	11	0.0975	0°	
G-12*	16 × 20	11	0.0960	90° to long axis of panel	
G-13*	16 × 20	11	0.0940	±45°	
G-14*	16 × 20	11	0.0930	0°, 90°,, 0°	
G-15*	16 × 20	13	0.115	0°, ±45°,, 0°	
B. Boro	on Fiber/N-5	505 Epox	y Panels		
B-1*	6 x 9	9	0.0493	0°	Surface is resin starved
B-2*	6 x 9	8	0.0450	0°	Surface is resin starved
B-3*	6 × 10	8	0.0357	0°	Surface is resin starved
B-4*	6 × 9	9	0.0458	0°, 90°, , 0°	Loose fiber on one surface
B-5*	6 × 10	9	0.0465	±45°	Good appearance
В-6	6 × 9	9	0.0474	0°	Used new material from Lot 373
B-7	6 × 10	15	0.0791	0°	Used for acceptance tests of Narmco 5505 Lot 373, Roll No. 1
B-8	6 × 9	17	0.0784	0°, 90°, , 0°	From Lot 373, Roll No. 1
B-9*	6 × 10	8	0.0447	0°, ±45°,,0°	Loose fibers on one surface
B-10*	6 × 9	15	0.0757	90" to long axis of panel	
B-1 i *	6 × 9	17	0.0803	0°, 90°,, 0°	
*IRAD I	Panels for Ci	reep Progra	am,		

FIGURE 56. PANEL NO. G-6 WITH TEFLON-COATED GLASS FABRIC AND GLASS CLOTH ELECTRICAL TAPE INCLUSIONS FOR ULTRASONIC TEST CALIBRATION

FIGURE 57. PANEL NO. G-6-BACK-LIGHTED PHOTOGRAPH

TABLE IV
TENSILE STRENGTH TESTS* OF PANEL G-2

Dimension B				Spec	imen Num	bers				Average
Dimension or Property	-1-1	-1-2	-1-3	-2-1	-2-2	-2-3	-3-1	-3-2	-3-3	Average
Gage Dimensions: Length (in.)	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
Width (in.)	0.501	0.501	0.501	0.502	0.502	0.500	0.501	0.500	0.497	
Thickness (in.)	0.070	0.069	0.068	0.069	0.069	0.069	0.069	0.069	0.070	
Proportional Limit Load (lb)	1,010	950	980	940	1,140	1,090	1,050	1,120	1,080	
Maximum Load (Failure) (lb)	2,050	2,025	1,950	1,860	1,775	2,000	2,115	1,940	1,950	
Ultimate Tensile Strength (psi)	58,300	58,600	57,200	53,800	51,200	57,900	61,200	56,200	56,100	56,720
P. L. Strength (psi)	28,750	27,400	28,700	27,100	32,900	31,600	30,300	32,500	31,000	30,030
Initial Modulus (× 10 ⁻⁶ psi)	4.08	4.74	4.88	4.92	4.48	4.78	4.55	5.81	4.78	4.78
Final Modulus (X 10 ⁻⁶ psi)	3.12	3.14	3.44	3.68	3.04	2.82	2.88	2.75	3.65	3.17

The tape inclusions in the panel are shown distinctly but are not very well defined by size or shape. Ultrasonic tests of Panels B-2 and B-8 show extensive areas of reduced ultrasonic transmission. Panel B-8 is a 0/90° layup, and the tape pattern is apparent in the chart (Fig. 59). Panel B-2 is a 0° layup, and no particular pattern is presented on the chart (Fig. 60). These two results indicate that the recording system's sensitivity was too high during this test. Panel B-7 was an acceptance test panel and is shown in Figure 61 at a lower sensitivity.

Areas of reduced transmission also appear in one corner of Panels G-7, G-11, G-12, G-13, G-14 and G-15. It was possible to determine the significance of these areas by cutting flexure specimens which included these areas of reduced ultrasonic transmission. A more detailed study of Panel No. G-11 will reveal this.

Typical and reduced performance of such flexure specimens is illustrated by the results of tests on glass fabric/epoxy composite (Panel No. G-11). A data summary package is included here as Table V and Figures 62, 63, 64 and 65. Table V gives general information on the prepreg material and the cured laminated panel. The fiber orientation indicates the warp direction of the 1581 style woven glass fabric. The 2387 epoxy resin system is the same that is used in Narmco's Rigidite 5505 boron/epoxy materials which were used as the primary adherend materials in this program. The material was 2 months beyond the warranty expiration date when cured, but it does not appear to have deteriorated to any significant extent.

Figures 62 and 63 represent the average results of flexure tests on three specimens each from adjacent areas of the panel in which the ultrasonic inspection indicated no flaws and extensive flaws, respectively. The flawed area flexure strength and modulus were slightly lower than in the area with no flaws. Figure 64 is the cutting pattern for Panel G-11 in approximately true proportion. Figure 65 is the ultrasonic inspection record for Panel G-11. This is not in true proportion to the panel. The long dimension of the chart represents the 16-in, width of the panel. Each line across the chart represents 1/4 in, in 18-1/2 in, of the 20-in, length of the panel (approximately 1-1/2 in, at the end of the panel, area 11-3 in Fig. 64, was not inspected). The portions of the panel used in these flexure tests are outlined in Figure 65. The other specimens cut were for the IRAD* program only.

FIGURE 58. PANEL NO. G-6 - ULTRASONIC TEST CHART INDICATING INCLUSIONS IN PANEL

FIGURE 60. CHART OF ULTRASONIC TEST OF PANEL B-2

FIGURE 59. CHART OF ULTRASONIC TEST OF PANEL B-8

FIGURE 61. CHART OF ULTRASONIC TEST OF PANEL B-7

TABLE V

PANEL DATA SUMMARY PACKAGE PANEL NO. G-11

- 1. MATERIAL INFORMATION
- A Material Type: Narmco 2387-1581-38
- B. Date of Manufacture: 6-10-69
- C. Material Confirms to Specification:
- D. Prepreg Resin Content (Volume %): 34.0
- E. Batch No.: 11
- F. Roll No.: 1
- G. Warranty Expiration: 9-11-69
- II. LAMINATE INFORMATION:
 - A. Orientation: [0] 11T
 - B. Process Record No.: G-11
 - C. Process Conforms to Specification:
 - D. Cure Date: 11-14-69
 - E. Number of Plies: 11
 - F. Average Panel Thickness (in.): 0.0975
 - G. Average Ply Thickness (in.): 0.00886
 - H. Fiber Content (wt %): 70.810
 - 1. Resin Content (wt %): 29.190
 - J. Void Volume (Volume %): 3.87
 - K. Panel Density (lb/in.3): 0.0671
 - L. Panel Size: 16" X 20"

The boron panels were also X-rayed. A positive print of Panel B-4 is shown in Figure 66 and Panel B-8 in Figure 67. These are both 0°/90° layups, but B-4 was prepared with material from Lot 297, Roll 13 and is nine plies thick, while B-8 was made from Lot 373. Roll 1 and is seventeen plies thick. Spaces are quite evident between the 1/8-in, tapes used in preparing the 3-in, wide tapes in each of these panels. Panel B-8 shows evidence of poor spacing between the 3-in, tapes during layup of the panel which also corresponds to the pattern found in the ultrasonic inspection. The fiber-poor (light) areas on Panel B-4 running parallel to the long axis of the panel (along the edges) are the areas where surface fibers were loose and peeled off when the panel was removed from the tool plate. Panel B-7, the material acceptance test panel, is shown in Figure 68.

Rolls 1, 2 and 3 of Lot 373, Narmco 5505 boron/epoxy prepreg were received on December 16, 1969. Panel B-7 was prepared from Roll 1 on December 23, 1969, for acceptance testing. This was first subjected to ultrasonic and X-ray examination (see Figs. 61 and 68). The panel was then cut into specimens for longitudinal and transverse flexure strength tests and horizontal shear strength test. The results of these tests are given in Table VI along with the results from Narmco. The specimens after test are shown in Figure 69. The test results all satisfy the General Dynamics specification FMS-2001 except the flexural modulus which is slightly (5%) low.

VI.4. ADHEREND PANEL FABRICATION AND QUALITY CONTROL

All composite adherend material panels were fabricated in accordance with Figure 70. These panels and one acceptance test panel (B-20) are listed in Table VII with the ply thickness and fiber orientation. The panel thicknesses shown represent the average of a number of measurements taken 1 in. from the edge around the perimeter of the panel. Except for Panel B-20, these measurements indicate a ply thickness value of 0.0053 ± 0.0004 in. average for the boron/epoxy composites. Panel B-20 is indicated to have a ply thickness of 0.00486 in.; however, measurement of the ply thickness in a microphotograph gave a value of 0.00518 inch.

Panel B-20 was a 6×10 -in, panel which was prepared for acceptance testing of the Narmoo 5505 mate-

rial from Batch No. 381. This shipment was comprised of Roll Nos. 30, 31, 32, 33 and 73, which were received on March 5, 1970. The ultrasonic test chart of this panel is shown in Figure 71, and a positive print of the X-ray is shown in Figure 72. The results of the longitudinal and transverse flexure strength and modulus and horizontal shear strength tests are given in Table VIII along with the qualification test results from Narmoo and the General Dynamics 1 MS-2001 specification requirements. All acceptance test results were substantially in excess of this specification's requirements and also exceeded the Narmoo qualification flexure values.

FIGURE 63. AVERAGE FLEXURE TEST RESULTS-PANEL G-11-

FLAWS INDICATED BY ULTRASONIC INSPECTION

FIGURE 64. CUTTING PATTERN FOR PANEL G-11

FIGURE 65. ULTRASONIC THRU-SCAN RECORD-PANEL G-11

FIGURE 66. X-RAY OF PANEL B-4

FIGURE 67. X-RAY OF PANEL B-8

FIGURE 68. X-RAY OF PANEL B-7

TABLE VI

MATERIAL ACCEPTANCE TESTS

Narmco 5505 Boron/Epoxy Prepreg Lot 373, Roll 1

Laminate Fiber Orientation: 0°

Load Orientation: 0° and 90°

Laminate Thickness: 15 plies - 0.080 inch

Physical Property	Test Temp, ° F	SwR1 Acco	eptance Tests Results	Narmeo QC Report	G.D.'s Spec. FMS-2001
Flexural Strength— Longitudinal (psi)	RT RT RT	B-7-1 B-7-2 B-7-3 Average	233,260 268,130 234,490 245,290	225,900	225,000
Flexural Modulus— Longitudinal (psi)	RT RT RT	B-7-1 B-7-2 B-7-3 Average	29.85 × 10 ⁶ 27.65 × 10 ⁶ 27.85 × 10 ⁶ 28.45 × 10 ⁶		30 × 10°
Flexural Strength- Transverse (psi)	RT RT RT	B-7-4 B-7-5 B-7-6 Average	14,770 9,375 12,300 12,150	14,200	10,000
Horizontal Shear Strength (psi)	RT RT RT RT	B-7-7 B-7-8 B-7-9 B-7-10 Average	15,390 15,510 15,330 15,340 15,390	13,400	13,000

FIGURE 69. MATERIAL ACCEPTANCE TEST SPECIMENS

FIGURE 70, PANEL DRAWING BONDED JOINT STUDY

TABLE VII

PANEL FABRICATION FOR SIMPLE BONDED
JOINT EVALUATION

Panel	Nominal Size.	No of	Measured Average Panel	File	Mate Narmo		Remarks
No	ın	Plies	Thickness, in	Orientation*	Batch No	Roll No	
B-12	16 × 20	ı	0.01655	[0] 11	373	1	
B-13	16 × 20	1 6	J 03325	[0] _{6.1}	373	1	
B-14	16 × 20	ų,	0.04918	[(0/90) ₄ /0] _T	37 3	1	
B-15	16 × 20	17	0.09098	[(0/90) ₈ /0] _T	173	1,2	
B-16	16 × 20	,	0.04925	[0/+45/0/-45/0]3	17.1	2	
B-17	16 × 20	17	0.09150	[10/+45/0/-45)@/0[3	17.3	1	
8-18	16 × 20	6	0.03167	10161	173	1	
B 19	16 × 20	17	0.09077	[(0/90),/0] [173	1	
B-20	6 × 10	15	0.07290	[0] 13.7	181	10	Acceptance Test Panel
B-21	16 + 20	,	0.04760	10] 21	tk i	NO.	
B 22	16 × 20	17	0.0911.7	[(0 +15/0 45) _Q /0] _A	361	30, 31	
B 23	16 * 20	16	บอลเอล	[0 90; 0]4;	381	30, 31	
B 24	16 ± 20	9	0.04835	[0/+45.0/-45/0] 5	381	10 H	
B-25	16→ 20	۱ ۸	0.04126	[0] x t	181	11	
B-26	16 + 20	16	0.08485	10 +45400/L	181	11, 12	
B 27	16 × 20	16	0.08460		381	32, 31, 73	
B 28	16 + 26	9	0.08454	[(0+45.0) 45.0] (lkj	74	
B-29	6 - 9	h	0.03610	[0:90] 0] _{1.1}	in:	*1	Void Standard Punel
B 40	6+ 9) te	0.07210	[0.90] 0]4]	38.1	٠,	Viud Standard Panel

FIGURE 71. ULTRASONIC INSPECTION RECORD FOR PANEL B-20

TABLE VIII MATERIAL ACCEPTANCE TEST

March 20, 1970 oy R. L. Tuck

Natinco 5505 Boron I poxy Prepried Lot 381, Roll 30 Laminate Liber Orientation | 0 Laminate Direkness | 15 phes | 0.023 in

Physical Property	Lest Temp, 1	SwRI Spec No	Results	Natinco QC Report	GD \ Spec 1MS 2001
Hexmal Strength	RI	B-20-4	258 772		
Longitudinal	R1	8.203	280,430		
(psi)	1.1	B 20 6	277,181		
		Average	272.128	245,100	225,000
Dexural Modulus	RI	B 20 4	30 '6 + 10'		
Longitudinal	RT	B.20 ·	31.49 ₹ 10°		
(psi)	RI	B 20 n	32.5 1 × 10f	1	
•	1	Average	31 60 × 10°		30 < 10"
Llexural Strength	RI	B '0 I	13 145	[
Transverse (psi)	RI	B 20-2	14 15 1	}	1
,	RT	B 20 3	13 604	ļ	1
		Average	1.4 3013	14 100	10 000
Heyaral Modulus	RI	B-20-1	190 + 10"		
Line verse (psi)	R1	в.0.	261 + 105	l.	
	RT	B 10 3	2.64 × 10′	į.	-
	İ	Average	2.72 × 101		
Honzental Shca	R1	B.20	14.225		
Strength (psu	RI	B 30 %	14 62		
	RI	B 10.9	11938		
	RT	B20	11.11		
		Average	14 ->1-	Ex ceiti	- FY CRIMI

FIGURE 72. POSITIVE PRINT OF X-RAY OF PANEL B 20 USED FOR ACCEPTANCE TESTING

Panels B-29 and B-30 were manufactured with known void inclusions for use as void standards in comparisons with the actual panels. A scale drawing of the void inclusion panels is shown in Figure 73, locating and describing

FIGURE 73. BORON REINFORCED ULTRASONIC TEST PANELS

them precisely. The ultrasonic record of void panel B-29 is shown in Figure 74, and that of void panel B-30, in Figure 75. Two void panels, one 8-ply and one 16-ply, were necessary to adjust the ultrasonic inspection system. Most of the panels used in the program are close to these numbers of plies.

The ultrasonic inspection recorder charts (see Figs. 74 and 75) for the 6- X 9-in. panels, B-29 (8 plies) and B-30 (16 plies), contain the following built-in voids. Pieces of TX-1040 Teflon®*-treated glass fabric, 0.001-in. thick, were placed between the center plies. The top row is composed of square shapes ranging from 1/8 to 1 in. in size. The second row is composed of circles of the same diameters. The third row, from left to right, contains 1/8- X 1-in. long strips spaced 1/8, 1/4 and 3/8 in. apart, oriented at 0° to the direction of the ultrasonic scan. Next are strips oriented at 90° to the scan direction. The first strip is 1/4 in. wide and the others are 1/8 in. wide and again spaced at intervals of 3/8, 1/4 and 1/8 inch. These are followed by a 1/8- and a 1/4-in. wide strip at a 45° angle. Below the 1/4-in. wide, 45° strip, a 1/8-in. wide X i-in. long strip of boron/epoxy prepreg was placed between the center plies. Below the 1/8-in., 45° strip, three strips of boron/epoxy were placed between plies 2 and 3, 4 and 5, and 6 and 7. The boron/epoxy strips were also oriented at 45° to the scan direction. A 0/90 cross-ply fiber orientation was used for both panels.

The 1/8-in, diameter circle was lost at the 6-dB sensitivity level required to minimize extraneous signals in the 16-ply panel (B-30). Some other areas of apparent thickness discontinuity are present in addition to the TX-1040 fabric. The extra layer of boron/epoxy also is detected by the ultrasonic test. In the 8-ply panel (B-29) the 1/8-in. square and circle are barely detectable at a 4-dB sensitivity. The single extra ply of boron/epoxy shows up more

^{*}Registered trademark, E. I. DuPont de Nemours.

FIGURE 74. ULTRASONIC INSPECTION OF VOID PANEL B-29

FIGURE 75. ULTRASONIC INSPECTION OF VOID PANEL B-30

teadily than in the 16-ply panel. Some unplanned apparent thickness discontinuity areas are also apparent in this panel. The ultrasonic thru-scan and radiograph inspection records for adherend panels B-12 through B-28 are shown in Appendix D.

Marking and machining of the 16 × 20-in, boron composite adherend panels into lap shear assembly details is shown in Figure 76. A 15/16-in, wide strip was cut from the long edges of each panel. Two 9-in, long tensile test specimens were cut from each strip (four per panel). These had glass-fabric/epoxy (1581/5505) load pads bonded (with AF 126-2) to the ends for the monotonically loaded tension test which provided the complete stress-strain curve for strength and modulus determination of each panel*. Standard constituent properties of boron/epoxy laminates are presented in Appendix B.

Fiber content of each panel was determined by the fiber count method using from two to six specimens cut at each end, and the center of each of the strips to be used for tensile test specimens. Figure 76 shows the location of the strips and individual specimens relative to the panel and adherend pieces

1, 3, 5, 6, 8, and 10 are density and fiber content specimens.

FIGURE 76. QUALITY CONTROL AND TENSILE STRENGTH TEST SPECIMENS

^{*}See Appendix C for Test Method, Appendix E for typical data.

SECTION VII

LAMINATE AND TITANIUM ADHEREND TEST RESULTS

VII.1. GENERAL

Section VII is devoted to summarizing and discussing the results obtained from testing composite and titanium adherend materials. Section VII.2 analyzes the Laminate Adherend Experimental Results whereas Section VII.3 summarizes the Titanium Adherend Experimental Results.

VII.2. LAMINATE ADHEREND EXPERIMENTAL RESULTS

Selected typical tensile test data on the N-5505 boron/epoxy laminates are given in Appendix E. There are typical stress-strain curves and cross-section photomicrograp is presented for each different material batch/orientation group of four tensile specimens. A summary of the key properties has been made from the detailed data and is shown in Table 1X. Typical, representative failed specimens are covered in Figures 77 and 78.

VII.2.a. Laminate Performance

It becomes obvious after study of this data that laminate tensile specimen performance was not up to par with 2nd Edition Design Guide data.* In an attempt to establish the magnitude of the discrepancy from the normal or expected values the unidirectional data were analyzed. Panels B-12, 13 and 18 from material Batch No. 373 and Panels B-21 and 25 from material Batch No. 381 were $\{0\}_{nT}$ laminates from which tensile specimens and adherend materials were cut with their longitudinal axis parallel to the fibers. The method used for properties prediction was originally proposed by Tsai⁽¹⁷⁾ based on the "rule of mixtures" technique. The "k" (and k') factor used by Tsai was called a fiber misalignment factor. In the analysis here it shall be called the "void factor" and based on an empirically developed mathematical form of the laminate decimal void-volume (V.V.). The results of this study along with the formulas are presented in Table X. These formulas give results which are strongly dependent on the fiber volume (F.V.). In addition, the factor K_0 (and K_0) is a function of the matrix/fiber modulus or strength ratio. Here another deviation was used. Both the matrix modulus and strength were utilized as being the average of the matrix material and a 104 glass scrim laminate.† Since the tensile stress-strain curve of this boron/epoxy material is linearly elastic.‡ almost to failure it was felt satisfactory to use the rule of mixtures technique to predict ultimate strength as well as modulus.

A study of the photomicrographs of Appendix E will reveal that all the reinforcing fibers in the laminates were badly cracked but fully encased in resin throughout the crack spaces. Therefore, it must be assumed that the fibers were cracked prior to laminating the prepreg material in the hot platen press. It also is assumed that the extensive amount of cracked and broken fibers visible in the photomicrographs had not occurred at the time of impregnating them with resin. This assumption is to sell on the judgment that impregnating and revocesively cracked and broken fibers would have been impossible by present methods. There is the possibility of course that the breakage could have occurred immediately after impregnating due to handling of the prepreg manufacturer or due to subsequent handling by the laminator.** In the author's judgment the latter two possibilities are remote

 $[*]F_L^{t\mu}$ = 188 ksi, E_L^t = 30 × 10⁶ psi.

[†]See Appendix B.

[‡]Sometimes in two stages.

^{*1}SwR1.

TABLE IX

LAMINATE MECHANICAL/PHYSICAL PROPERTIES DATA SUMMARY

							2	2 3035 N							
Panel Number	B-12	B-13	B-14	B-15	B-16	R-17	8.18	P. 10	in a series	5 4					
Orientation Parameters	10137	[0] 6T	£[0/5(06/0)]	0.50-01 4 0 8(06.01 4 0.70(06.01)	45 0 IS	(10 -45 0 4510 01s	[0] h.r	T [0/8(06 (0)	70 [1]	Simons	[0.30 ₂ /0]47	S[0.5+ 0.5++.0]	10 8T	8-26 [107:45 [11Q]S	8-28 [0 -45 0, 45/0]S
No. of Phes	3	9	6	_1	0	٠,١	c	-1	3	71	16	6	∞	16	0
au. ksi	122.539	122 539 146 738	59 972	52.876	980 06	88	147 726	.5 110	-8:1	109 603	40.005	nez 66	177.830	93.524	92.989
ful. µIn./In	4,727	5,382	2,658	3,577	5.110	8.55.8	5,330	3,632	890'9	6,246	3.140	6.782	6,255	5,614	5.342
למוב. בעום לוח	964	1,145	129	104	3,435	3 665	1,059	65	1.208	885.4	86	4.129	1.391	4.020	3,548
9pt. ks:	97.753	127.960	14 861	27.476	61 824	1.5 49	120 053	33 012	174 564	£ 50.0	24 772	73.155	166 735	71.190	77,930
or/'mm'/m	3,556	4,638	1.902	769'1	3,355	¥ %;	4 282	056.1	5,944	3,5,15	1.626	4,333	5.808	4.186	707°F
CpC2. µIn./tn	744	975	885	65	2,205	2.5 0	923	6	1.195	2.512	60	2,929	1.289	2,975	2,952
Ep. khsi	26 767	27 682	560 81	15 967	18 435	0×8 41	28 3:2	17 (4)	29.535	18 4 7	15 356	16.873	28 701	17.027	17 705
Es, kksı	22 062	.5 314	14 390	13.113	16 440	14.5×8		13 365		16.832		15 654	(4)	15 654	
å	0.2134	0 2087	0.0427	0.0395	0.6578	87,540	2015	0.0342	4561 ()	0 7212	0.0340	0.6625	0.2112	0.7195	0.6790
2,	0.2165	0 2065	0.0334	0 330	0 6466	0.6503		0.0310		F184 0		0 6648		0.7160	1
F.V. Fraction	0.536	0 498	0.476	905 0	0.468	0.520	. \$01	0.512	0.520	0.496	\$05.0	0.506	0.505	0 484	0.495
V.V Fraction	0110	0.014	0 004	с	¢		20.00	s	8 10 0	ç	c	9	c	¢	
Density, lb/in.3	0.0643	0.0688	0.0681	0170.0	0.0583	0.07**	0.0678	0.0712	.6900	11,00	0.0712	#0c0 ti	86900	0.0713	0.0721
% Cracked Filaments	94.5	0.96	8 6 8	94.0	93.0	*	80.0	s: 04	2,	e Z	016	. io	190	70	82.0
Thickness per ply, in	0.00551	0.00551 0.00554	0 90546	0.00535	0.90547	2,500,0	P 005 28	F1 500 0	X.	11 (10) \$ 36	61500 p	0 (80537	0 (9)\$16	0.00533	60 FG (C
Total Thickness, in.	0.01655	0.01655 0.03325	0.04918	86060.0	0.04925	05160.0	0.03167	090133	0.03760	, 1160 c	0.08308	0 04835	0 04126	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.04494
Material Batch/ Lot	373/1	373/1	373/1	373/1 & 2	373/2	3/3 3	373.3	373.3	381/30	381/30 & 31	381 30 & 31	381 30 & 31	381/31	381/31 & 32	381/73

FIGURE 77. TYPICAL FAILED COMPOSITE TENSILE SPECIMENS. MATERIAL BATCH 373

FIGURE 78. TYPICAL FAILED COMPOSITE TENSILE SPECIMENS, MATERIAL BATCH 381

TABLE X
UNIDIRECTIONAL LAMINATE PERFORMANCE

Batch	Panel No.	Panel F.V.	Panel V.V.	Panel Density, l'5/in. ³	Exper. E_{p} , 10^{6} psi	Calc. $E_{\rm g}$, $10^6~{ m psi}$	$\frac{E_p}{E_{\ell}} \times 100,$	Exper. σ_{u} , ksi	Calc. <i>F_{tu}</i> , ksi	$\frac{\frac{\sigma_u}{F_{tu}} \times 100,}{\%}$		
	B-12	0.536	0.160	0.0643	26.767	31.140	85.96	122,539	168,739	72,62		
37.3	B-13	0.498	0 014	0.0688	27.682	29,752	93.04	146.738	184.934	79.34		
	B-18	0.501	0.040	0.0678	28.312	29,938	94.57	147,726	181,090	81.58		
381	B-21	0.520	0.018	0.0697	29,535	31.021	95.21	177.387	191,608	92.58		
	B-25	0.505	0	0.0698	28.701	30.218	94,98	177.856	190,080	93,57		
	_	territor e consessional administration de Anna Anna	and the same of th		Form	ulas						
	Modulus Strength											
	ŀ	$E_{\chi} = kE_f$	[1 K ₀ (i F ¥.)]	I·	$F_{tu} = k'F_f [1 - K'_0(1 - F.V.)]$						
	k	= 1 (1	$(N_{\cdot})^2$		K	k' = 0.80(1 - V.V.)						
$K_0 = 1 - \frac{E_m}{E_f} = 0.9682$ $K_0' = 1 - \frac{F_m}{F_f} = 0.9534$												
	-				Proper	rties						
	l:	$r_m = \frac{(3.2)^{-3}}{2}$	+ 0.487) × 10° = ;	1,844 × 10) _e ba	$E_f =$	58,0 × 10 ⁶	' psi			
	ŀ	$m = \frac{37.8}{m}$	2	= 20,992	ksi		F_f =	450.0 ksī				

because (1) handling the material after impregnating does not usually involve severe mechanical impingements and (2) making flat laminates does not normally induce such damage. Since this fiber was one of the first batches delivered after the twisted fiber episode with the fiber makers was solved, the tiber manufacture appears to be at fault. It is the authors' judgment that built-in residual stresses in the boron fibers caused cracking and breaking at some time after impregnation but before curing.

What is amazing about this problem is that only the tensile tests and photomicrographs uncovered the phenomena and the flexure tests and ultrasonic and radiograph inspections on the cured panels did not reveal the problem.

For Material Batch 373 in Table X it can be seen that Panel B-12 had a very high void volume (16%) with a resultant substantial reduction in the tensile properties from that of the low void volume laminate of Panels B-13 and B-18. Panel B-12 exhibited properties realization percentages of 85.96% for modulus of elasticity and 72.62% for strength whereas the average of Panels B-13 and B-18 gave 93.80% for modulus and 80.46% for strength. This illustrates the reduction caused by a high void content. Longitudinal flexure acceptance tests showed this material passed the minimum strength required (225 ksi) by 9% while the modulus failed by 5%. Transverse flexulal strength was 42% above requirements (10 ksi) whereas interlaminar shear strength exceeded minimum requirements (13 ksi) by

only 3%. While the flexure acceptance test predicted closely what would happen to the tensile modulus the flexural strength was not even close as a predictor of tensile strength.

Material Batch 381, received later, was substantially better than 373 as indicated by both the acceptance tests and the tensile tests. However, the modulus and strength realization percentages* are still only 95.10% and 93.08%, respectively, as shown by the average of Panels B-21 and B-25. This compares with longitudinal flexural strength and modulus values which exceeded the requirements by 21% and 5%, respectively. Transverse flexural strength exceeded that required by 41% whereas horizontal shear strength exceeded that required by 20%.

All this indicates that the flexure and interlaminar shear tests for acceptance are not good measures of cracked or broken fibers even though they may be good checks on impregnation and lamination processing variables.

Because of the fiber breakage problem, which was detected from photomicrographs on all panels regardless of orientation, all of the longitudinal tensile properties are somewhat low. However, it is doubtful that the transverse tension and shear tests of $\{0\}_{nT}$ laminates would show any reduction, although transverse tests on the angleply ones would probably exhibit some degradation.

VII.2.b. Laminate Orientation Sequence vs Performance

An interesting phenomena is the variation of properties with laminate orientation sequence. For the general crossply (0/90) orientation type the following comparison illustrates this point.

Item	Panel Nos.	F.V.	Orientation	V.V.	σ_U , ksi	E_P , 10^6 psi	Batch
1	B-15/B-19	0.510	$[(0/90)_8/0]_T$	()	53.993	16.504	373
2	B-23	0.505	[0/90 ₂ /0] _{4T}	0	40.005 13.988 Diff.	15.356 1.144 Diff.	381

The $[0/90_2/0]_{4T}$ orientation exhibits a 26% reduction in strength and a 7% reduction in modulus compared to the $[(0/90_8/0]_T$ one. This occurred in spite of the fact that the $[0/90_2/0]_{4T}$ orientation laminate was made from a substantially superior batch (381) of material. While the 12-1/2% more 0° plies in the first one over the second one may account for the modulus change it does not account for all of the strength change.

Another comparison can be made with the general $0/\pm45^\circ$ orientation as shown in the following table.

Item	Panel Nos.	F.V.	Orientation	V.V.	σ_U , ksi	E_P . 10^6 psi	Batch
1	B-16	0.468	$[0/+45/0/-45/\bar{0}]_S$	0	90.036	18.435	373
2	B-24/B-28	0.500	[0/+45/0/ -45/0] _S	0	96.390 6.354 Diff.	17.289 1.146 Diff.	381
3	B-17	0.520	$[(0/+45/0/-45)_Q/\overline{0}]_S$	0	88.009	16.880	373
4	B-22	0.496	$[(0/+45/0/-45)_Q/\bar{0}]_S$	0	109.669 21.660 Diff.	18.476 1.596 Diff.	381
5	B-22	0.496	$[(0/+45/0/-45)_Q/\bar{0}]_S$	0	109.569	18.476	381
6	B-26	0.484	$[(0/\pm 45/0)_Q]_S$	0	93.524 16.145 Diff.	17.027 1.449 Diff.	381

^{*}As measured in tension.

In Items 1 and 2, identical nine-ply orientations are compared for the two different material batches. Items 3 and 4 compare identical seventeen ply orientations of the two different material batches. The strength values of Material Batch 381 show 7% and 25% improvement, respectively, over those of Batch 373 while the modulus values are about the same for the two pair of items. Comparison of the $[(0/+45/0, -45)Q/0]_S$ orientation with the $[(0/\pm45/0)Q]_S$ one is shown in Items 5 and 6. The first orientation shows an improvement of 17% in strength and 9% in modulus over the second one with both laminates being of the same batch of material. Again the strength increase is greater than would be indicated by the 12-1/2% increase in 0° plies whereas the modulus increase could be accounted for by this difference.

A direct comparison of Panels B-23, E-15/B-19, B-26, and B-22 is made below showing the trend of improvement with change of basic orientation and sequence.

Item	Panel Nos.	F.V.	Orientation	V.V.	σ_U , ksi	E_P , 10^6 psi	Batch
1	B-23	0.505	$[0/90_2/0]_{4T}$	0	40.005	15.356	381
2	B-15/B-19	0.510	$[(0/90)_8/0]_T$	0	53.993	16.504	373
3	B-26	0.484	$[(0/\pm 45/0)_Q]_S$	0	93,524	17.027	381
4	B-22	0.496	$[(0/+45/0/45)_Q/\bar{0}]_S$	O	109.669	18.476	381

From these comparisons it appears that the general $0/\pm45^{\circ}$ orientation is stronger and stiffer than the general $0/90^{\circ}$ orientation and that further improvement can be made by separating either the plus and minus 45° plies or the 90° plies by 0° plies.

The orientations and thicknesses selected for adherend materials are believed to be representative of those used in the aerospace industry. They cover ten orientation/thickness combinations in the fifteen 16×20 -in flat panels made, from which adherends were cut for the bonded joint program.

VII.3. TITANIUM ADHEREND EXPERIMENTAL RESULTS

The other adherend material was 6A!-4V annealed titanium sheet purchased from Titanium Metals Corp. (TMC). Four nominal thicknesses were used. These were 0.016, 0.032, 0.045 and 0.090 in. Two straight : ided tensile specimens were tested from each thickness with the same equipment and instrumentation used to test the composite tensile specimens and the bonded joints. Average stress-strain curves for each thickness are contained in Appendix E. A summary of these properties is presented in Table XI whereas Figure 79 presents typical, representative tensile specimen failures. These average curves of Appendix E were used to obtain the Ramberg-Osgood parameters for use in the nonlinear analysis of bonded joints with at least one of the adherends made of titanium. Properties measured compared reasonably well with 1MC and handbook typical properties. It can be observed from these data that the titanium becomes far more nonlinear than the composite materials studied in this bonded joint investigation.

TABLE XI

6AL4V TITANIUM SHEET PROPERTIES SUMMARY

		Nom.		
Parameter		Thickn		2.000
	0.016	0.032	0.045	0.090
t _{ACT} , in.	0.0165	0.0315	0.0455	0.0925
σ_u , ksi	146.026	129.607	137.523	134.860
σ_y , ksi	136,500	128.850	135.200	131.400
$\sigma_{m{p}m{\chi}}$, ksi	116.834	125.356	123.584	112.700
ν_p	0.3074	0.3086	0.3184	0.2902
$E_p \times 10^{-6}$	17.756	15.514	17.251	16.096
$\epsilon_{1y} \times 10^{-6}$ in./in.	9,575	10,225	9,750	9,985
$\varepsilon_{2y} \times 10^{-10}$ in./in.	2,700	-5,750	2,800	2,907
$\epsilon_{1p\ell} \times 10^t$ in./in.	6,590	8,074	7,171	7,004
$\epsilon_{2p^{Q}} \times 10^{6}$ in./in.	2,012	-2,575	-2,312	2,038
$\epsilon_{1u} \times 10^6$ in./in.	46,636	20,934	38,260	21,300
$\epsilon_{2u} \times 10^6$ in./in.	9,120	7,885	14,362	3,735
TMC-Typ. F_{tu} , ksi	146.200	138.000	137.500	138.400
TMC-Heat No.	G-9075	G-9072	G-9520	K-3793

^{*}Properties were obtained by use of straight sided "composite configuration" tensile specimen one inch wide; gripping tensile specimens was by direct contact.

0.016 in. Nom. Thick.

0.032 in. Nom. Thick.

Specimen 5

0.045 in. Nom. Thick.

FIGURE 79. TYPICAL FAIL: D Ti 6AI-4V ANNEALED TENSILE SPECIMENS

SECTION VIII

BONDED JOINT PROCESSING

VIII.1. GENERAL

This section covers the processing and fabrication of the simple specimen bonded joints. Section VIII.2 presents the Adhesive Acceptance Test Results whereas Section VIII.3 covers the Simple Specimen Joint Fabrication.

VIII.2. ADHESIVE ACCEPTANCE TEST RESULTS

A summary of the last acceptance test results for both the old and new batches of the two adhesive systems (AF-126 and MB-329) used in this program is presented in Tables XII and XIII. These tests were run on 29 October 1970. Earlier acceptance tests were run on the first Batch (724) of Scotchweld®* AF-126-2 adhesive on 15 March 1970. The later Batch (739) of AF-126 adhesive was first tested on 24 July 1970. Initial acceptance tests on the Metlbond®† 329 adhesive batches were performed on (1) the first Batch 345/47 on 15 March 1970 and (2) the later Batch 360/40 on 24 July 1970. Batch 739 of AF-126 and Batch 360/40 of Metlbond 329 were used in fabricating the lap shear assemblies for this program. The data from these tables (XII and XIII) indicate that some degradation occurred with aging, however, all tests passed the MMM-A-132 specification requirements.

VIII.3. SIMPLE SPECIMEN JOINT FABRICATION

Single and double lap shear assemblies were fabricated in accordance with Figures 80 and 81 covering both boron/epoxy to boron/epoxy and boron/epoxy to titanium joints with each adhesive system. A detailed listing of the single and double lap shear assemblies for single and double lap joints with boron/epoxy to boron/epoxy adherends utilizing both adhesive systems is shown in Table XIV. The boron/epoxy to titanium single and double lap shear assemblies with both adhesive systems are shown in Table XV. Fiberglass tabs were bonded on the boron/epoxy adherends with Eastman 910. Tabs were not used on the titanium adherends.

It was originally intended that three-step lap joints would be made by machining steps into the boron/epoxy laminates and titanium with subsequent matching and bonding as shown in Figure 82. Machining such steps in boron/epoxy proved nearly impossible with state-of-the-art diamond tools and cutting equipment. In consulting the Design Guide and several recent research investig: 'ions on machining boron/epoxy composites, nothing was found to guide our efforts on machining steps. After contacting the manufacturing experts of several aerospace companies it was found that most organizations lay-up and mold in the steps, usually in combination with bonding. However, several ideas were obtained on now step machining in boron/epoxy materials might be done. One idea was tried. Several diamond cup cutting wheels were tried with little success. After cutting the three steps in two different boron/epoxy laminate adherend materials and starting on a time, the tools were worn out. The manhour expenditure and the cutting tool wear rate on fabricating the steps that were made were prohibitive.

One machined step lap joint was made as shown in Figure 83. All other step lap joints were made from the unmachined details that were originally scheduled to be used in the machined step lap program. Three types of multiple-laminate step lap joints were made. The first was a single step lap joint shown in Figure 64 and the second was a double step lap joint shown in Figure 85. Figure 86 presents the triple step lap joint design.

Because of the large overlap involved some volatiles were trapped in the step tap joints, bonded with MB-329 and as a result they had multiple small voids in the bondlines which gave lower than desirable results. The voids were visible, unmagnified on the edges of the bondlines. All AT-120 step tap joints performed well.

^{*}Registered trade name of the 3M Company

[†]Registered trade name of the Whittaker Corporation

[‡]LSA-11, -13, -24 (see Fig. 84)

TABLE XII. ACCEPTANCE TEST* RESULTS ON AF-126 ADHESIVE (LS-HE)

TABLE XIII. ACCEPTANCE TEST* RESULTS ON MB-329 ADHESIVE (HS-LE)

Min. Req. Value,*

Date of Previous Results

psi

2,250

4/15/70

2,250 2,250

4/15/70 4/15/70 2,250

7/24/70

2,250 2,250

7/24/70 7/24/70

‡No primer used.

 \ddagger Probably used wrong primer on these.

Batch No.	Specimen No.	Single Overlap	Shear Strength,	Failure Mode	Previous Results,	Date of Previous	Min. Req. Value,*	Batch	Specimen	Single Overlap	Shear Strength,	Failure	Previous Results,	Date o
		Lengint	isd		bsi	Results	psi			Length‡	psi		isd	Result
724	A-1	0.500	4,662	Cohesive				345/47	A-1	0.500	2.566	Adhesive		
	A-2	0.500	4,802	Cohesive					A-2	0.500	2,488	Adhesive		
	A-3	0.500	4,845	Cohesive				_	A-3	0.500	2,488	Adhesive		
	4 ·	0.500	4,780	Cohesive					A4	0.500	2,356	Adhesive		
	A-5	0.500	4.421	Cohesive					A-5	0.500	2,410	Adhesive		
	Average		4.702		2,690	4/13/70	2,500		Average		2,471		2,577	4/15/7
	B. 1	250	263.5	100								:		
		300	0,000	Conesive						0.500	2.674	Adhesive		
	7-0	0.500	/70,0	Cohesive					င္ပရ	0.500	2,517	Adhesive		
	, p	0.500	4,995	Cohesive					B-3	0.500	2,371	Adhesive		
	7 t	0.500	2,666	Cohesive					8	0.500	2,371	Adhesive		
	B- 5	0.500	5,160	Cohesive					B-5	0.500	2,203	Adhesive		
	Average		5,415		5,993	4/15/79	2,500		Average		494.5		2,730‡	4/15/7
724	Average		5,059		5.842	4/15/70	2,500	345/47	Average		2,468		2,653‡	4/15/7
739	A-1	0.500	818	Cohesive				360/40	- T	000	3636	Adhacina		
	C-A	0.500	4 941	Cobesive				2		200	070,7	Adhesive		
	A-3	0.500	\$ 015	Cohesive					7 ×	0000	000,7	Adhering		
	4.4	0000	210,0	Collegine					7	005.0	1,077	Aunesi /e		
	· ·	300	4,773	Conesive					T Y	0.500	2./1/	Adhesive		
	A-5	0000	5,14/	Cohesive					A-5	0.500	2,663	Adhesive		
	Average		4,983		5,772‡	7/24/70	2.500		Average		2,673		2,574‡	7/24/7
	B-1	0.500	5.266	Cohesive					<u>~</u>	0 \$00	1070ء	Adhesive		
	B-2	0.500	5,029	Cohesive					. 6	0050	1 × × ×	Adhesive		
	B-3	0.500	5,327	Cohesive						0.500	4.0°, c	Adhesive		
	B4	0.500	5 117	Cohesive					7 0	005.0	7000	Adhesive		
	B-5	0.500	5,267	Cohesive			_		B 5	0.500	0.59.0	Adhesive		
	Average		5,201		5,092	7/24/70	2,500		Average)	2.839		2.262+	7/24/7
									,				+	· ·
739	Average		5,092		5,432	7/24/70	2,500	360	Average		2,756		2,418‡	7/24/7
*Per M	*Per MMM-A-132, Type I, Class 3 except	ype I, Class	s 3 except 1	10 specimens instead of 6 were tested	instead of t	6 were teste	d.	*Per MM	*Per MMM-A-132, Type II except 10 specimens instead of 6 were tested.	pe II excep	ot 10 specim	iens instead	of 6 were t	ested.
:														
Tinches	Š.							+Inches.						

Originally, the program's scope covered the manufacture of scarf joints for tests. These were designed to be made as shown in Figure 87. However, a reorientation of the program eliminated their fabrication.

All lap shear assemblies were cut into one-inch wide strips for simple specimen coupon testing.

FIGURE 80, LAP SHEAR ASSEMBLY SINGLE LAP JOINT

FIGURE 81. LAP SHEAR ASSEMBLY - DOUBLE LAP JOINT

 $\label{table XIV} \mbox{SINGLE AND DOUBLE LAP SHEAR ASSEMBLIES-BORON/BORON}$

L.S.A. No.	Type Adhesive	Adherend No.	Adherend Thickness	Joint Thickness	Bond-Line Thickness	Primer	Corg Pres , Is	Cure Temp., °F
l	AF-126	B-21-A B-21-D	0,044	0.0925	0.0045	Blue EC-2320	50	275
14	AF-126	B-21-F B-21-H	0.042	0.091	0.006	Dry at 150° for 30 min		
27	AF-126	B-21-C	0.043	0.093	0.007	30 100		
2	AF-126	B-21-J B-24-A	0.043	0.0955	0.0035		 	-
15	AF-126	B-24-B B-28-C	0.047	0.0935	0,0075	 		
28	A F-1 26	B-28-G	0.042					
		B-24-I) B-24-II	0,046 0,047	0.096	0.003			
3	AF-126	B-12-A B-12-D	610,0 610,0	0.065	0.0005			
16	AF-126	B-13-K B-12-G	0.032					
,,,		B-12-1.	0.015	0.067	0.0025			
29	AF-126	B-13-F B-12-H	0,032				 	
		B-12-M B-13-M	0.015	0.0675	0.00275			
4	AF-126	B-14-J B-14-K	0.048	0 1845	0.00125			
	41 12/	B-15-K	0,088		0.0012.0		ļ <u>ļ</u>	<u> </u>
17	A1-126	B-14-B B-14-F	0.046 0.047	0.184	0.0015			
30	A1-126	B-15-L B-14-L	0.088					-
		B-14-M B-19-K	0.047 0.087	0.184	0.0015			
5	AF-126	B-24-J	0.046					
		B-24-K B-17-A	0.045	0.1845	0.00125	I		
18	λF-126	B-24-F B-24-F	0.04	0.1845	0.00175			
31	AF-126	B-17-B B-16-A	0.088			<u> </u>	ļ	275
.71	A14120	B-16-G	0.045	0.192	0.0055	Blue I C-2320		2/3
4()	MB-329	B-22-1 B-25-F B-25-J	0.089 0.040 0.042	0.086	0.004	Red MB-329 Type If Air dry for 15 min Force dry for 30 min at 235°F		350
53	MB-329	B 25-F	0.041	0.089	0.007	30 1131 2133 1		
66	MB-329	B-25-K B-25-G	0,041	0.0895	0.0075			
41	MB-729	B-25-L B-28-B	0.041	0.095	0.011			
54	MB-329	B-28-K B-28-D	0.042	6.099	0.011			
		B-28-H	0.043					
67	MB-329	B-16 C B-16-b	0.048 0.048	0.1025	0,0065			
42	MB-329	B-12-F B-12-K	0.016	0.0715	0.00375			
55	MB-329	B-1 3-B B-1 2-B	0.032				_ v	
33	MO-327	B-12-C	0.016	0.071	0.0035	1	50	350
68	MB-329	B-1 3-J B-1 2-J	0.032			Red MB-Bond 329	-51	350
		B-12-N B-13-1.	0.016	0,0755	0.00475	1		
43	MB-329	B-14-A B-14-F	0.049 0.049	0.196	0.005			
	100.322	B-15-J	0.088	0.170	0.003			
56	MB-329	B-14-C B-14-G	0.047 0.047	0.192	0.005			
69	MB-329	P-19-A B-14-D	0,088					
		B-14-H B-15-D	0.049 0.090	0.1935	0.00375			
44	MB-329	B-28-A	0.046	0.1055	0.00774			_
		B-28-b B-17-J	0.044	0.1955	0.60775			
57	MB-329	B-24-C B-24-L	0.047	0.1945	0.00723			
70	MB-329	B-22-K B-16-B	0.087					
70	mD-529	B-16-H B-17-C	0.047 0.047 0.087	0.1945	0.00675		50	350

TABLE XV
SINGLE AND DOUBLE LAP SHEAR ASSEMBLIES—BORON/TITANIUM

	S.A.	Type Adhesive	Adherend No.	Adherend Thickness	Joint Thickness	Bond-Line Thickness	Primer	Cure Pressure, psi	Cure Temp., °F
L			D 18 C	0.031	0.0655	0.0025	Blue EC-2320	50	275
	6	AF-126	B-18-C Ti	0.032	0.0695	0,0085			
	19	AF-126	B-18-K Ti	0.029 0.032				1	•
ŀ	32	AF-126	B-18-J Ti	0.031	867.0	0.005	n 114 n = 4 320		275 350
١	45	MB-329	B-18-H Tı	0.031 0.032	0.1655	0.0025	Red M-Bond 329 Type		
	58	мв-329	B-13-D	0.031	0.070	0.007		1	
ŀ	71	MB-329	Ti B-18-E	0.032	0.068	0.005		1 1	350
١	7	A1:-1 26	Ti B-16-D	0.032	0.0915	0	Blue EC-2320	1 1	275
			Ti B-16-E	0.045	0.0955	0.0035		1 1	1 1 1
	20	AF-126	Ti	0.045	0.099	0.007		1 1	1
	33	AF-126	B-24-M Ti	0.045		0.003	Red M-Bond 329		275 350
	46	MB-329	B-28-F Ti	0.043	0.091			1	1 1
	59	MB-329	B-28-M T1	0.044	0.093	0.004		1 1	1 1
i	7.2	MB-329	B-16-J	0.048	0.1445	0.0065		1	350
-	8	AF-126	B-18-A	0.031	0.064	0.001	Blue EC-2320	1 1	275
-		1	Ti Ti	0,016 0,016	0.004			1	
١	21	AF-126	B-18-F Tı	0.031	0.063	0			
Ì	14	AF-126	T ₁ B-13-H	0.016			1		1 1
	34	AF-120	Ti	0,016	0.0605	0			275
	47	MB-329	B-18-D	0.031	0,074	0.055	Red M-Bond 320	'	350
			Ti Ti	0,016	0,074	0.033			
-	60	MB-329	B-13-C Ti	0.032	0.074	0.005			
		MB-329	Ti	0.016			ĺ		
١	73	M D-329	Ti	0.016	0.0725	0.0045			350
İ	9	AF-126		0.090	0.178	0	Blue EC-2320		275
			Ti Ti	0.045	0.176	0			
	22	A11 26	B-15-C Ti	0.087	0.178	0.0005			
	2.5	411.134	Ti	0.045					
	35	AF-126	Tı	0.045	0.175	0	Red M-Bond 32	9	275
	48	MB-32		0.087	0.1974	0.0052			350
			Ti Ti	0.045 0.045	0.1875	0,0032.	° [1	1 1 1
	61	MB-32	9 B-19-J Ti	0,090 0,045		0.0065			
		140.22	Ti	0.045			Red M-Bond 32	29	
	74	MB-32	Ti	0.045	0.190	0.0065	1		350
	10	AF-12				0.0005	Blue EC-2320	\ ▼	275
			Ti Ti	0.045	;	0.0005	Blue EC-2320	50 50	
	23	AF-12	6 B-17-1 Ti	0.088		5 0.0017		Ĭ	
			Ti	0.045	5				
	36	AF-12	Ti	0.04	0.180	0.0007	75		275
	49	м В-33	Ti B-22-	0.04 0.08)	0.00**	Red M-Bond 3	29	350
	1		Ti Ti	0.04		0.007	13		
	6:	2 мв-3		1	9	75 0.009	25		
			Ti	0.04	5				.]
	7:	5 MB-3	Ti	0.04	5 0.19	5 0.008		50	0 350
			Ti	0.04	3				!

FIGURE 82. LAP SHEAR ASSEMBLY STEP LAP JOINT

FIGURE 83, LAP SHEAR ASSEMBLY MACHINED STEP LAP JOINT

FIGURE 84. MULTIPLE-LAMINATE SINGLE STEP LAP JOINT

FIGURE 85. MULTIPLE-LAMINATE TWO-STEP LAP JOINT

FIGURE 86. MULTIPLE-LAMINATE TRIPLE STEP LAP JOINT

FIGURE 87. LAP SHEAR ASSEMBLY—SCARF JOINT

SECTION IX

BONDED JOINT TEST RESULTS

IX.1. GENERAL

This Section presents the experimental results of the simple specimen bonded joint testing conducted in this program. Two hundred and three specimens covering two adhesives, three lap configurations, three basic composite adherend fiber orientations, and two adherend material combinations were ested. Six representative samples of these specimens were extensively strain gaged and tested for detailed behavior study.

Section IX.2 presents the Simple Specimen Data Summary based on the detailed data covered in Appendix F. Section IX.3 gives the results of the Special Joint Investigation Data Summary covering the six joints which were extensively strain gaged.

IX.2. SIMPLE SPECIMEN DATA SUMMARY

A summary of all the simple specimen lap joint tests is contained in Tables XVI through XXIV along with the failed specimen photographs presented in Figures 88 through 103. Each lap shear assembly number identified in these tables represents an average of three or four specimens taken from it and tested. The total number of simple specimens tested was 203 and the detailed data tables are located in Appendix F. There were 72 single lap, 108 double lap, and 23 step lap joints tested covering composite/composite and composite/titanium bonded joints utilizing two adhesive systems: a nitrile-epoxy low stiffness-high elongation (LS-HE) system* and an epoxy-novolak high stiffness-low elongation (HS-LE) system.† Selectively covered were three basic orientations of the boron/epoxy adherend materials with sequence variations on two of these. The titanium adherend materials were the 6A1-4V alloy in the annealed condition. Data on the adherend materials was previously covered in Section VII.

From Tables XVI and XVIII, the graph in Figure 104 summarizes the single lap composite/composite joint data on the two adhesives whereas the graph in Figure 105 (taken from Tables XVII and XIX) presents the data on the double lap composite/composite joints with the same two adhesives. In Figure 104 on load transfer capability of single lap composite/composite joints it can be noted that the curve slope increases with increased adherend stiffness, decreased adhesive stiffness, and increased adhesive elongation. By contrast the change in slope due to these same property variables is much less in double lap joints as shown in Figure 105. In fact all other slopes except one are close to being the same. For this exception it appears that the high Poisson's ratio of the basic 0/±45° orientation adherend is detrimental when used with the high stiffness-low elongation epoxy-novolak adhesive. Also presented in Figure 105 are stopes of data points which represent poor quality specimens, illustrating the deleterious effects of interface region failure.

On the composite/titanium joints summarized in Tables XX and XXII the graph in Figure 106 presents the data on the single lap joints with both adhesive systems whereas the graph in Figure 107 (taken from Tables XXI and XXIII) give them for the double lap joints utilizing the two adhesives. The same sort of trend in load transfer capability exhibited in Figure 104 for the single lap ioints is evident in Figure 106. Higher slopes result from higher adherend stiffnerses and adhesive elongations plus lower adhesive moduli. Figure 107 also exhibits the same trends as were shown in Figure 105. In fact all but one of the adherend/adhesive combinations plot on the same line; this one with the 0/±45° orientation adherends bounded together with the high stiffness low elongation epoxy movelak adhesive gives a slightly lower slope, probably because of Poisson's ratio effects. Again, poor quality specimen results are shown. These had poor adhesive materials quality in the bondline. Also the slopes of the double lap joint curves are generally higher than those of the single lap graphs.

^{*3}M Company's AF-126-2.

[†]Narmco's Metlbond 329.

TABLE XVI

COMPOSITE/COMPOSITE SINGLE LAP JOINT DATA SUMMARY (LS-HE) AF-126-2, Nominal Width--1.000 In.

Assembly Number	Length	Measured Adhesive This Sness,	Composite Adherend Liber	Composite Adherend Panel	Measured Composite Adherend	Measured Overlap Length,	1/t	Load,	I Stress at	Adhenive Stress at Lailure.	Load Transfer at Fudure.		Fa	llun	e Ty	pe*.	T.	General Comments
	lubs, in.	in .	Orientation	Number	Thickness, in	in.		lb/in	De1	рŧi	lb/in/ply	Γ	2	٦	4	5	6	
ESA I	4-178	0.0010	[Plan	H-21A/D	0.047/0.045	0.250	5.556	1,063	23,629	4,247	118	15		7K	6	ı		
LSA 14	5-1/4	0.0043	[0] ₉ p	B-211 /H	0.0423/0.045	1 250	29 551	5,668	131,928	4,466	630	2		27	52	19	t	=
1 SA 27	7-5/8	0.0043	10101	B-21C/J	0 046 3/0,046	1.7357	37 733	7,871	164,928	4,361	875			5	5	23	67:	
1 SA 2	4-1/8	0.0030	[0/+45/0/-45/0] _S	B-24A/B	0 047/0 047	0 250	5 319	1,147	24,945	4,593	127	27		70	,			
154.15	3 1/4	0.0060	0/+45/0/-45/0 _S	B-ZBC/G	0.0433	1 250	24 86B	1,938	89,611	3,106	4 3 H	7()			26	4		1
I SA 28	6.7/8	0.0042	[0/+45/0/-45/0] _S	B 24D/H	0.046	2.000	43 47B	4,758	102,770	2,365	529	,	П	2		۱,	96**	

- 1 | 3 adhesive to boron/epoxy composite 2 | 2 adhesive to titanium (6 A1 4V 3 | 5 cohesive

- 4 % surface resin 5 % interfaminar 6 % other

- 4 Net section tension and longitudinal splitting composite
- Net section tension composite

TABLE XVII

COMPOSITE/COMPOSITE DOUBLE LAP JOINT DATA SUMMARY (LS-HE) AF-126-2, Nominal Width - 1,000 In.

Assembly	Measured Length Between	Measured Adhesive Thickness,	Composite Adherend Erber	Composite Adherend Panel	Measured Composite Adherend	Measured Overlap Length,	11	Failure Load,	Adherend Stress at Failure,	Stiessat	Load Transfer at Lailure,		1	atlui	e 1	pe '	, q	General Comments
Number	Tabs, in	in	Orientation	Number	Thickness, in	ın		lb/m	psı	ps:	lb/m ply	1	2	3	4	5	6	
ISA 3	4 1/4	0.0023	$2 \times [0]_{MT}[0]_{6T}$	B-12A/D, β-13K	2 × 0.016/ 0.0273	0.250	9 58	1,783	65,262	3,510	297	50		46	3	1		
15A-16	4 3/16	0.0048	$2\times\{0\}_{AF},[0]_{6F}$	B 12G/L, B-13F	2 × 0.015/ 0.0313	0.500	16 667	4,00 5	131,982	1,958	667	18		17	5		P(); 1	
1 NA 29	4.5/8	0 (x)33	$2 \times [0]_{MT}[0]_{6T}$	B-F2H/M, B-F3M	2 × 0.015/ 0.0313	0.750	25 00	4,150	136,807	2,736	692						10011	
1SA 4	4 1/8	0.0018	2 × [(0/90)4/0] _T , [(0/90) _B /0] _T	B-14J/K, B-15K	2 × 0.046/ 0.088	() 21 H	2 477	1,520	17,015	1,439	89	58.		32	10			
1 SA 17	4 13/32	0.0027	2 × [(0/90) ₄ /0] _I , [(0/90) ₈ /0] _I	B 148/) , B 151	2 × 0 046/ 0 0867	0.437	5 040	4,782	54,445	5,197	281	21		59		١	17**	
LSA 30	4-5/8	0.0009	2 × [(0/90) ₄ /0] _F , [(0/90) ₈ /0] _T	B-141/M,	2 × 0.047/	0 729	8.379	5,898	66,977	4,090	147						100****	
18A 5	4 1/4	0.0033	$\begin{array}{l} 2\times [0/+45/0/-45/0]_S, \\ [(0/+45/0/-45)_Q/0]_S \end{array}$	B 24J/K, B-17A	2 x 0 045/ 0 088	0 250	2 841	2,295	25,820	4,523	135	31		54	15			
15A 18	4 17/32	0.0020	$2 \times [0/+45/0/-45/0]_S$, $[10/+45/0/-45)_Q/0]_S$	B-241 /t , B-17B	2 × 0 046/ 0 0877	0.750	8 552	7,018	78,988	4,614	413	18		55	25	2		
1 SA 31	5 3/16	0.0017	$2 \times [0/+45/0/-45/0]_S$, $\{(0/+45/0/-45)_Q/0]_S$	B-16A/G, B-22I	2 × 0.045/ 0.0897	1 250	13 935	8,715	95,621	1,443	513						100**11	

t Net section tension and longitudinal splitting composite

18 affure in double adherend partially over and/or adjacent the bond area

118 affore in single adherend away from the bond area

1.11 affore in double adherend away from the bond area

TABLE XVIII

COMPOSITE/COMPOSITE SINGLE LAP JOINT DATA SUMMARY (HS-LE) MB-329, Nominal Width—1,000 In.

Assembly Number	Length	Measured Adhesive Diskness,	Composite Adherend Liber	Composite Adherend Panel	Measured Composite Adherend	Measured Overlap Length,	1/1	Lailure Load,	Adherend Stress at Lailure,	Adhesive Stress at Failure,	Load Transfer at Failure,		Faile	ire '	Type	•,%		General Comments
	Tabs, in	in	Orientation	Number	Thickness, in.	ın.		Mb/in	pvi	pu	lb/in./ply	1	2	3	4	5	6	
15540	4-5/16	0.0043	[0] 87	B-251 /J	0.0407/0,040	0.250	6.250	1,075	26,348	4,218	134	8		43	49			
184.53	5.5 16	0.0073	[0] _{8T}	B-251 /K	0.0403/0.0403	1 250	31 017	3,045	74,4H2	2,403	381	28		я	55	9		
154-66	6	0.0063	[0] _{8T}	B-25G/L	0.041/0.0403	2 250	55 831	4,902	120,486	2,160	613			18	70	12,		
18441	4 9/16	0.0070	[0/+45/0/-45/0] _S	B-28B/K	0 043/0 043	0.500	1) 628	880	20,578	1,755	98	86		10	4			
154.54	5 5/H	0.0117	[0/+45/0/-45/0] _S	B-28D/H	0.044/0.043	1.500	34 884	2,157	49,502	1,418	240	75		7	18			J.
1 SA 67	6 1/8	0.0087	[0/+45/0/-45/0] _S	B-16C/I	0.047/0.0477	2 500	53 191	3,043	64,311	1,209	338	85			12	3		
*Ibid	****						`								•			

TABLE XIX

$\frac{\text{COMPOSITE/COMPOSITE DOUBL}}{\text{MB-329}}, \\ \text{Now mal Width} = 1,000 \text{ In}, \\$

Assembly	Measured Length Between	Aphesive	Composite Adherend Eiber	Composite Adherenc Panel	A the	Overlap Length	11	Lailure Load.	Adherend Stress at Lailure,	Adhesive Stress at Failure,	Load Transfer at Failure,		Last	a:e	Γ) P	c•.	9	Cener + Comments
Vumber	Laby, in	m	Orientation		15 0 0			lh in	pu pu	psi	lb-an ply		2 3	Ţ	I	5	ъ	1
15A 42	4 1/4	0.0034	$2 \times [0]_{3T}[1]_{6T}$	B=1.21 /K B-1.3 B	. 15/	0.250	7 812	2,165	66,615	4,266	361	27	11	, ,	, [
18A 55	418	0.0055	$2 \times [0]_{^{-1}F}[0]_{6F}$	В 12E (В 13)	* d16/ , uj	0 500	16 667	4,300	132,716	4,248	717	23		1			551;)
LSA 68	47 K	0.0082	2 > {0}3/40\6P	B 12J/N B 13I	` → 0.016/ c 030	1 000	11111	4,012	123,816	1,981	269	11		, 2	5	,-	1	
ISA-43	4 1/4	0.0076	$2 \times [(0.90)_4 \ 0]_T$, $[(0/90)_5/0]_I$	B-144 B-153	2 ± 0 049/ ±090	0 250	2 778	1,718	18,800	3,383	101	17	36	, [,	5	1		
LSA 56	4 1/2	0.0046	2 × [(0/90) ₄ /0] ₇ , [(0/90) ₈ 0] ₇	5-14C/G B-19A	2 × 0 04*/ 0 088	0.750	8 523	5 048	56,657	3,322	297	15	1:	5	:	4	1•••	
LSA 69	5 5/16	0 0069	$2 \times \{(0/90)_4/0\}_T$. $\{(0/90)_8/0\}_T$	B 14D/H B 15D	2 ± 3 047′ 0 €883	L 500	16 988	4,907	54,869	1,617	189	56	1		ı	8		
15A 44	45/16		$2 \times \{0/+45/0/-45/\tilde{0}\}_{S}$, $\{(0/+45/0/-45)_{Q}/\tilde{0}\}_{S}$	B-28A/L, B-171	2 × 0 044/ 0 091	0 229	2 602	2,010	22,508	4,423	118	57	10	3	2	1		
15A 57	47%		2 × [0/+45/0* 45/0̄] _S . [(0/+45/0/ 45) _Q /0̄] _S	B-24C/I B-22K	2 × 0 046/ 0 086	1 000	11 628	5 7	60.611	2.594	109	35	,	5.	,	1		
15A 70	5 1/2	0 0065	2 × [0/+45/0/ 45/0] _S . [(0/+45/0/ 45) _Q /0] _S	B-15B/H, B-17C	2 × 0 047/ 0 088	1 750	19 886	5,073	57.407	1.436	298	58	1	31	1	2		

*Ibid

Net section tension and longitudinal splitting, composite

 ${\mathfrak p}\Gamma_{\rm tilistic}$ in double adherend partially over and/or adjacent the bond area

•••set with a tension composite

TABLE XX

COMPOSITE/TITANIUM SINGLE LAP JOINT DATA SUMMARY (HS-LE) AF-126-2, Nominal Width $-1.000~\rm{In}$.

Assembl)	Measured Length	Measured Adhesive	Composite Adherend	Composite Adherend	Measured Composite	Measured Fitanium	Measured Overlap	1./1	I atlure	2 ilen u	Adhesive Stress at	Load Transfer		L	ulur	r I y	ype.•	4	General Comments
Number	lletween Tabs, in	Pikkneu, in	f ther Orientation	Panel Number	Adherend Thickness, in.	Adherend Thickness, in.	Length,	<u> </u>	lb/in	l·ailure, psi	failure, pa	at failure, lb/in/ply	ı	2	1	4	1		
USA 6	2 /4	0 0022	[0]67	10-1 RC	0.030	0.032	0 250	8.33	995	13,166(B)	394K	166	1	15	64	LH			
t.sa i ∳	17/16	0.0058	[0] ₆ T	a isk	0.031	0.032	1 250	40 121	4197	133,366(R) 129,258(Tr)	3307	700		13	13	13	1 2	491	
LSA 12	1.5/8	0.0042	(0) ₆ ,	B-18)	0.0313	0.032	16#17	5 1 89R	4168	133,061 (B) 130,260(Ti)	2470	691						1001	
LSA 7	2 V/H	0.0027	[0/+45/0/ 45/0] ₅	B 16D	0 045	0 045	0 239	5311	1133	25,185(B)	4497	126	15	11	12	2	T		
LSA 20	33/4	D (K)28	 0/+45/0/ 45/0 ₅	H 161	ii (3467	0.045	1 250	27 178	4255	89,979(B) 93,241(Ti)	3351	473		2	,	15	13	67**	
I SA 33	3 7/H	0.0032	[0/+45/0/ 45/Å] _S	11-24M	0.0467	0.045	2 000	46 444	5087	109,325(B) 112,537(To	2531	565						100**	
•Ibid								•											
† Net secti	on tenuon .	and longitue	linal splitting compe	suie															
‡Net secti	on leason	in stanium																	

TABLE XXI

COMPOSITE/TITANIUM DOUBLE LAP JOINT DATA SUMMARY (LS-HE) AF-126-2, Nominal Width=1.000 In.

Length	Adheuve	Adherend	Composite Adherend	Measured Composite	I stansum	Measured Overlap	1/1	Failure Load,	Adherend Stress at	Adhesive Stress at			ı	ulur	e I)	pc, "		General Comment
Tabs, in	in	Orientation	Number			in in		fb/in	pu pu	pai pai	fb/in/ply	_	2	ı	4	5	6	
2.5/16	8000.0	[0] ₆₇	B IRA	0.029	2 × 0 016	0 239	8 241	2,592	88,943(B) 79,743(Ti)	5,373	432	8	23	47	22			
2 1/2	0.0003	[0] ₆ 7	B 181	0.030	2 × 0 016	0.500	16 667	3,497	129,825(B) 121,689(Ti)	1,891	583	2	2	7	7		8211	
2 5/8	0 0/402	[0]67	19-1391	0 0 30	2 × 0 016	0.750	25 000	3,351	111,037(B) 104,141(Ti)	2,222	558						100+	
2 1/4	0.0002	[40/90) ₈ /0] _T	B-15A	880.0	2 × 0 (M5	0 250	2 841	1,873	70,920(8)	1,681	110	23	18	19	18	2		-
2-1/2	0.0019	[(0/90) ₈ /0] _T	B 15C	0.0847	2 × 0.045	0.500	5 903	5,220	60,464(B)	5,119	307		8	23	22	13	34**	
2 1 1/16	0.0009	[c0/90) ₈ /0] _{.F}	B 198	0.0847	2 x 0 043	0 750	8 855	5,930	69,564(H)	3,927	148						1001**	
2 1/4	0.0010	[(0/+45/0/-45) _Q /0] _S	B-22J	0.088	2 × 0 045	0 250	2 841	2,368	26,557(B)	4,669	139	,	32	38	21	2		
2 11/16	0 (5030	[(0)+45/0/ 451 _Q /0] _S	B-17K	0.087	2 × 0.045	0.687	7 897	7,450	86,348(B)	5,457	438		8	28	35	29		
3-1/8	0 0018	[10]+45]0]-45)Q]ff] _S	B 22C	0.089	2 × 0 045	1 250	14 145	9,780	109,111(B) 107,907(To	1,881	575						1001	1
	Length Between Tabs, in 2-5/16 2-1/2 2-5/8 2-1/4 2-1/2 2-1/4 2-1/4 2-1/6 2-1/4 2-1/16	Length Adheuse Tabs, in 10,0008	Irigil	Length Adheuve Adheuve Parel	Length Adheure Adheured Adheured Composite	Length Adheure Adheure Adheured Composite Islanum Corentation Number Panel Composite Adheured Corentation Number Panel Composite Adheured Corentation Number Panel Composite Adheured Corentation Length Adheure Adheure Adheured Coupsite C	Length Adherent Adherent Adherent Number Panel Number Numb	Length Adheurd Price Adheurd Adheurd Price Pric	Length Adhewer Adhewer Adhewer Panel Number Intantum Adhewer Adhewe	Length Adhever Adhever Adhever Panel Composite Istanum Adhever Adhe	Length Adheron Paris Paris Composite Istanum Coverlap It Lind It Lind Coverlap It Lind Lind It Lind It Lind Lind It Lind Lind It Lind Lind Lind It Lind	Adherend Parish Adherend Parish		Length Adherond Parish Adhered Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Adhered Park Park Park Adhered Park Park Adhered Park Park Adhered Park Park				

Net section tension and longitudinal splitting composite

TABLE XXII

COMPOSITE/TITANIUM SINGLE LAP JOINT DATA SUMMARY (HS-LE) MB-329, Nominal Width- 1.000 In.

	Measured	Measured Measured	Composite	Composite	Composite Measured	Wearured Measured	Measured			Adherend Adherine	Adheny	9	ı					
<u>ر</u> ۾	Aucmby length Adheuve	Adheuve		Adherend	Adherend Compoute		Overbp	1/3	Load.	Stress at	Stress at	Stress at Transfer	-	lure	failure Type*, T	۳.		General Comments
	Tahs, in	th.	Orientation	Number	Number Thickness in Thickness in	Thickness in	E 1		lb/in		Par .	ib.in.'ph	1	3	2 3 4 5	\$	9	
1.54.45	2-5/16	0.800.0	loleT	H#II-H	01.00	2100	0.250	8 313		777 25,625(B)	3.076	130	\$		98	6	E	
1.SA 58	5.3/16	0.0052	(0) b.t	R 130	71100	0.032	1 250	39 432	1,985	39 432 1.957 61,079(B)	1,548	126	10 32 15 41	- 52	7	~		
LSA-71	4-1/4	0.0048	19,67	BIRF	0.032	0.032	2 250	70 312	2,788	70 312 2,788 87,135(B)	1,240	465	3 42 10 38	2	æ	7		
1.54-46	3-1/16	0.0045	0.004s 10/+45/0/ 45/0/ _S	B-28!	0.043	\$100	0.500	11 628	973	973 22,445(B)	1.930	808	5 - 5 32	-	32	1		
1.SA-59	\$-7/16	0.0037	10/-45/0/ 45/0]S	В-28М	0.043	0.045	1437	33419	8	33.419 2,093 48,048(B)	1.438	233	4 8 66 18	-	3	90		
LSA-72	4-9/16	0.0107	10/+45/0/ 45/015	19-16	0 048	0.045	2 500	52 (8)	2,215	52 083 2,215 46,249(8)	8.8.2	246	48 5 - 42	,	7	~		-
1hd														ł	l]	í	

TABLE XXIII

COMPOSITE/TITANIUM DOUBLE LAP JOINT DATA SUMMARY (HS-LE) MB-329, Nominal Width-1.000 In.

Assembly	Measure	Measured Measured Assembly Length Adhesive	2.5	Composite	Measured	Measured Measured Trumum Overlap	Measured	77	Fathure 1	Adherend Stress at	Adhesive Load Stress at Transfer	Load	4	ing.	į.	Failure Type". 5			
En		Between I hick ness, Tabs, in. in	Onentation	Number	Adherend Thickness, in.	Adherend Adherend Thickness, in. Thickness, in.	ë =		D, 13		Palure.	at Failure.	-	3	-	~			
1.S.A.4.7	21/4	0 0059	10187	B-18D	0.0297	9100 1 2	0.250	8 418	2,645	8 418 2,645 86,671(B)	5213	2	~	-	80			-	
1.5A-60	3.3/8	0 0033	10167	¥	0 031	2 0 0 16	0.500	16 139	1,330	16 129 1,330 42,7 (8(B)	1,326	222	- 22 57 17	<u> </u>	<u>-</u>	,			
15.4 73	2-3/4	0.0036	10167	B-18B	0.003	2 × 0 016	500	33 003	4 391	33.003 4.393 143.923.B) 136.439(Tu	2,183	732	\$			2 20 37 33,			
LSA48	2-1-4	0.0054	1 (0/8(06/0))	B-15B	980 0	2 × 0 045	n 250	2 907 2,508	2,508	28.682(B)	0%6.4	148	2	H	2	8	_	-	
1.54-61	2.13/16	9 0067	1.0/8(09/)2	E 43	0 0897	2 x 0 04 S	90.0	7 893	4,703	7 893 4,703 \$2,292(B)	3,319	772	<u>=0</u>		- 14	3 22 55			
LSA 74	3.7/16	0.0058	7 [0,8(06,0)]	B-15M	0.0887	2 × 0 0 4 S	1 500	116 411	. 80	16 911 4,997 \$6,128(B)	1.652	₹.	Я		_~	2 2		30;	
1.5A.49	2.5 16	0800 0	110/043/0/ 43/0/018	B 22A	1.680.0	2 × 0.045	0.250	2 800	1,487	17,956(B)	1,212	6	_	17 11 71	-	-	_		
15A42	_	6600.0	10/-45/0/ 45/6/015	B-22B	0 0.88	2 - 0 045	0001	11 274	161,	11 274 5 191 58,268 (B)	2,483	ž			20	-			
LSA 75	31116	0.0965	100,445.0 4530/615	1,11	0 0497	3 • 0.045	1 69	18 919	1987	18 919 3,987 44,02*(B)	<u>-</u>	332	~	7	- 52				
· Ibid													1	ł		1	1	1	

T Net Section Control

TABLE XXIV

STEP LAP JOINT DATA SUMMARY (Nominal Width—1.000 In.)

General Comments								
	9	Ī,	\$	25	100‡	26‡	191	1
Failure Type*, %	5	۰		7	,	7		26
е Тур	2 3 4	- 30 9 55	2 22 11 55	3 42 1 27		1 19 44	10 22 15 34	- 31 36 26
ailur	3	Ļ			1		2 15	
		Ť	- 5	ω 4	+	2	0	
Adherend Adhesive Load Stress at Stress at Transfer Failure, Failure, at Failure, psi [b/in/pty		991	55	41	113	232	327	99
Adhesive Stress at Failure,	pxd	1.325	847	741	1,462	2,864	996'\$	3,376
Li Failure Load. Ib/m.		2.006 13.600 2,650 30,550(B)	1,745 10,443(B)	1,492 8.628(B)	5,403 20,474(B)	4.805 11.146 42,401(B)	.1.297 11,783 65,437(B)	900 10,474(B)
		2,650				11.146	11,783	
		:3.600	£.	1.639	3.989	4.805	.1.297	3116
Total Overlap.	<u>i</u>	2.006	2.051	2.010	3.689	3.879	1 969	0 267
Composite Composite Titanium Total Adherend Adherend Adherend Overlap. Panel Thybrone	En.	0 085	0.1762	0.1767	0 265	0.254	0.1743	10
Net Net Composite Titanium Adherend Adherend Thickness, in.		9800	0 1662	0 1727	0 2637	0 262	0 1797	0.08637
Composite Adherend Panel Number		В-25С/М	B-26E/G	B-23J/L	B-23	B-26	B-21	B-23A B-26A
Composite Adherend Fiber Orientation		2 × [0] 8T	2 × [10 :45 0)Qls B-26E/G	$2 \times [0.90_2/0]_{4T}$	3 × [0/902/0]4T B-23	3 x 1(0:45/0)Q S B-26	4 × [0] or	10/90 ₂ /01 ₄ T
Adhesive Thickness, in		0 0017	0.0160	0.0130	0 0010	0 0058	0 0059	0.0070
Adhesive Type		MB-329	MB-329	MB-329	AF-126-2	AF-126-2	AF-126-2	MB-329
Adherend Comb		1-8	B-t	B-T	B-T	B-T	B-T	В-В
Length Between Tabs,	ű.	7-1/2	6-7/16	8-1/8	4-7/8	5-11/16	91/2-9	4-3/16
Assembly No. of Fabrication Between Adherend Adhesive This free Adhesive Of Steps Tabs, Comb Type In In			4	٦	7	1	7	×
No. of Steps		-	_	-	۲،	۲.	3	3
Assembly		LSA-13	LSA-11	LSA-24	LSA-25	LSA-26	LSA-37	LSA-12

Note: $L = Laminating\ by\ bonding\ up\ prefabricated\ laminates$ M = Machining

• Ibid

† Net section tension and longitudinal splittings - composite

‡Net section tension~composite

FIGURE 90. LSA-30 FAILED SPECIMENS

FIGURE 91. LSA-40 FAILED SPECIMENS

FIGURE 92. LSA-66 FAILED SPECIMENS

FIGURE 93. LSA-57 FAILED SPECIMENS

FIGURE 94. LSA-6 FAILED SPECIMENS

FIGURE 95. LSA-19 FAILED SPECIMENS

FIGURE 96. LSA-8 FAILED SPECIMENS

FIGURE 97. LSA-22 FAILED SPECIMENS

FIGURE 98. LSA-10 FAILED SPECIMENS

FIGURE 99. LSA-71 FAILED SPECIMENS

FIGURE 100. LSA-46 FAILED SPECIMENS

FIGURE 101. LSA-72 FAILED SPECIMENS

FIGURE 102, LSA-47 FAILED SPECIMENS

FIGURE 103. LSA-74 FAILED SPECIMENS

FIGURE 104. SINGLE LAP COMPOSITE/COMPOSITE JOINTS LOAD TRANSFER CAPABILITY

FIGURE 105. DOUBLE LAP COMPOSITE/COMPOSITE JOINTS LOAD TRANSFER CAPABILITY

FIGURE 106. SINGLE LAP COMPOSITE/TITANIUM JOINTS LOAD TRANSFER CAPABILITY

FIGURE 107. DOUBLE LAP COMPOSITE/TITANIUM JOINTS LOAD TRANSFER CAPABILITY

Limited step lap test data were obtained in this program and are summarized in Figure 108 (taken from Table XXIV). Examination of Figure 108 will reveal that the same trends are in effect as with the single lap joints with the addition of one new trend. This is that the slope also increases as the number of steps are increased from one to three. It should be noted, as shown in Section VIII, that these are single step-lap joints. This configuration is probably more related to single lap joints than the double lap ones, as slope comparisons with Figures 104 and 106 will show. The load transfer shown for these joints is that of the "gross section" rather than the "net section," therefore, this capability looks low for the one step-lap joint. However, net section calculations would double it. Curve 3 does give a higher slope than the best of the single lap data but not quite as good as the best of the double lap data. These trends probably indicate that an even higher number of steps would further increase the slope as would changing the configuration to that of a double step lap. In this case, the low quality specimens had voids in the bondline.

It should be brought to the readers attention that the above graphical analysis was performed only on the composite/composite and composite/utanium joints utilizing the 0° and $0^{\circ}/\pm 45$ general adherend orientations with both adhesives. Data utilizing both adherend combinations and both adhesive selections were also obtained using the $0/90^{\circ}$ orientation, but not as extensively. Only double lap and step lap data were obtained with this orientation.

Testing of the tensile lap shear simple specimens was performed in a Multirange Baidwin Test Machine at a constant deflection rate of 0.0025 in./min (over a 2-in. gage length over the bond area).* An autographically recorded road deflection curve was obtained to failure on each specimen over this 2-in. gage length with a multirange TSMD extensometer. Temperature and humidity during testing were $70^{\circ} \pm 4^{\circ}F$ and $50\% \pm 10\%$, respectively.

Figures 109 and 110 are characteristic of the type of load/deflection† curves that were obtained from the joint specimens, the characteristic difference being that the joint with the low stiffness-high elongation adhesive has a curve which exhibits some nonlinearity while the high stiffness-low elongation adhesive curve is linear to failure. The LS-HE adhesive joint is stronger but gives a slightly lower curve slope compared to the HS-LE joint. A detailed description of these two example joints follows:

Figure 109 represents a 1-in, wide double lap joint with 0.045-in, thick 6A14V annealed Ti double adherends and a [(0/+45/0/-45)Q/0]s 17-ply boron epoxy single adherend 0.087 in, thick. The overlap length was 0.687 in, with the AF-126-2 nitrile epoxy low modulus, high elongation adhesive bond. Failure was predominately cohesive and surface resin fracture at a bondline average shear stress of 5,444 psi. Adherend average tensile stress was 86,023 psi. The load transfer capability of joints made with this adhesive system were very high, regardless of adherend stiffness lap length, or lap type.

Figure 110 presents a 1-in. wide double lap joint with 0.047-in. thick $[0/\pm45/0/-45/0]_S$ 9-ply boron/epoxy double adherends and a 0.087-in. thick $[(0/\pm45/0/-45)_Q/0]_S$ 17-ply boron/epoxy single adherend. Overlap length was 1.75 in. using the Metlbond-329 high modulus, low elongation adhesive system. Failure was predominately at the interface region between the laminate and the adhesive at a bondline shear stress of 1,154 psi and an adherend average tensile stress of 45,384 psi. The load transfer capability of these joints range from very high to very low depending on adherend stiffness, lap length and type.

By contrast Figure 109 represents a high quality, high performance joint and Figure 110 illustrates a low quality, low performance joint. Their characteristic failures are the key to their quality differences, although the adhesive shear stresses will always be lower with larger overlaps on high modulus, low elongation bondline materials. It has been found that the type of failure typified by the joint whose mechanical behavior curve is shown in Figure 109 has a predictable failing load with the nonlinear bonded joint analysis techniques developed in this program using a maximum stress adhesive failure criterion (i.e., for the low modulus, high elongation adhesive). Failures in the HS-LE adhesive joint can also be predicted by this criterion when failures are cohesive or surface resin fracture

^{*}i.e., strain rate is 0.00125 in./in./min.

[†]Deflection divided by the 2-in, gage length gives gross strain.

FIGURE 108. STEP LAP COMPOSITE/TITANIUM JOINTS LOAD TRANSFER CAPABILITY

FIGURE 109. LOAD/STRAIN CURVE FOR DOUBLE LAP AF-126-2 BONDED JO'NT (Two Inch Gage Length Over Joint Area)

FIGURE 110. LOAD/STRAIN CURVE FOR MB-329 BONDED JOINT (Two Inch Gage Length Over Joint Area)

However, failures cannot be predicted for either adhesive system when failures occur like the one on the specimen whose mechanical behavior is described in Figure 110. This illustrates that a lack of adhesion exists at the interface region and results in behavior which is not predictable by current nonlinear orthotropic mechanics methods without empirical modification. It is suspected that this is a materials and processes quality problem and therefore should not be considered in design/analysis. Whenever such a condition cannot be prevented it should at least be identified and isolated as was done herein in order for the results to be analyzed in a meaningful manner.

The types of failure observed in the simple joint program can be generally divided into the following classes:

- A. Adhesive/Adherend Interface Adhesion Failure
- B. Adherend Surface Resin/Reinforcing Fiber Interface Adhesion Failure
- C. Cohesive Fracture of the Bondline
- D. Cohesive Fracture of the Adherend Surface Resin
- E. Delamination, Splitting
- F. Adherend Net Section Tension

The first two types (A and B) almost always occur as a result of materials or process quality being low. Failures of this type usually occur at lower joint load transfer magnitudes than those failing by other means. The nonlinear bonded joint analytical methods will not predict these failure types or load magnitudes.

Failure modes C and D represent high quality specimens which have predictable failure modes and magnitudes with the nonlinear joint analysis techniques. The maximum stress failure surface can be used to predict the C and D failure types with the nonlinear theory. Occasionally poor adhesive (or matrix resin) material or improper cure will result in low magnitude test values with the C or D failure type.

Delamination and splitting type failure* is associated with laminate behavior, probably emanating from some sort of micro-mechanical damage occurring during non-failure loading. However, this has not been proven for boron/epoxy laminates. Large differences in modulus, Poisson's ratio, or thermal coefficient of expansion of the two adherend materials could be a contributing factor as well as a low quality laminate. In any case the present nonlinear techniques cannot predict these failure types or magnitudes without further modification.

Adherend net section tension failures* were observed on those specimens designed to fail in this fashion and the failure stress magnitudes were approximately equal to the experimentally measured tensile strength of the composite and titanium materials. Failure predictions can be accomplished with the nonlinear techniques using maximum strain failure criteria for the composite adherends and maximum stress failure criteria for the titanium adherends.

1X.3. SPECIAL JOINT INVESTIGATION DATA SUMMARY

Six composite/titanium bonded joins were selected from the simple specimen program reported in Section IX.2 for in-depth experimental behavior study. These "special" joints cover the single, double and step-lap configurations with both adhesive systems and one composite material orientation category $(0 \pm 45^{\circ})$. The joints chosen for study were:

No.	Joint Type	Adhesive	No. 01 Strain Gages
LSA-20-1	S.L.	AF-126-2	4
LSA-23-1	D.L.	AF-126-2	4
LSA-59-1	S.L.	MB-329	2
LSA-62-1	D.L.	MB-329	6
LSA-11-4	1-St.L.	MB-329	5
LSA-26-4	2-St.L.	AF-126-2	6

Detail experimental data at failure on these joints appear in Appendix F.

^{*}Type E.

[†]Type F.

The method used for presenting the experimental data is the familiar stress-strain curve. Stresses used were the average calculated values based on the adherend cross-section area outside the joint overlap. Strains were those measured directly on the adherend surfaces at selected longitudinal centerline locations.

Data on LSA-20-1 are presented in Figure 111. A map of these strains vs overlap location are shown in Figure 112. Strains at four composite adherend stress levels were mapped: 10, 60, 80 and 92.437 (failure) ksi. The first stress level (10 ksi) was picked so that both the average adherend and adhesive behavior were still in the linear range. The second stress level (60 ksi) was picked so that the average adherend behavior would still be linear (just below the P.L.) but the adhesive would be nonlinear. At the third stress level (80 ksi) both the adherend and the adhesive average stress levels are in the nonlinear range. Failure stress level (92.437 ksi) was selected as the fourth one with fracture occurring by net section tension in the composite at about the same stress as the average tensile strength data on panel B-10 would indicate. Transverse composite adherend strains were high, as would be expected with the high Poisson's ratio of the 0/±45° orientation.

Figure 113 gives the LSA-23-1 joint strain behavior as a function of average adherend stress level. Failure characteristics of this series of joints (covering also LSA-23-2 and 23-3) is shown in Figure 114. Primary failure was caused by cohesive fracture of the adhesive and composite surface resin. Strain maps of both the composite and titanium adherend are shown in Figure 115. Again the four adherend stress levels were picked for the same reasons given above. They are as shown below:

	Estimated	Estimated
Avg. Adherend	Adherend	Bondline
Stress Level (ksi)	Behavior Range	Behavior Range
10	linear	linear
50	linear	nonlinear
80	nonlinear	nonlinear
90.203	failure	failure

The higher transverse strains of the composite adherend can be seen clearly in Figure 115.

Speciman LSA 59-1 strain data are shown in Figure 116 with typical failures shown in Figure 117. The primary mode was failure at the interface of the surface resin and the boron fibers of the composite adherend under the bondline. Results are considered to be low. The strain distribution map is shown in Figure 118. The high transverse strains in the composite adherend can be noted. Three adherend stresses were selected at which to evaluate the strain distribution: 10, 30 and 44.954 (F) ksi. All are in the linear range for the adherend, but the second one could cause nonlinear behavior in the adhesive. The third (failure) adherend stress level selected is definitely such that the adhesive behavior will be in the nonlinear range.

Figure 119 presents the strain data on LSA-62-1 and Figure 120 shows the cohesive fracture of the adhesive as the primary failure mode. Strain map curves covering both the composite and titanium adherends are shown in Figure 121. Since the adherend net section stress vs joint surface strain plots are all linear (with some minor knees evident) only two stress levels were investigated in the strain distribution study: 25 and 56.648 (F) ksi. While the longitudinal (X-dir.) strains in the composites are only slightly higher than those in the titanium at locations just outside the joint, the transverse strains in the composite are substantially higher (than those in the titanium) at all locations.

Strain distribution on joint LSA-11-4 is shown in Figure 122 with a strain map at four adherend stress levels given in Figure 123. Primary failure was by cohesive fracture of the surface resin of the composite with secondary failure at the interface between the adhesive and the composite surface resin. Some cohesive fracture of the adhesive was also evident. Results are considered to be low. All adherend and adhesive stress levels up to failure, which were investigated, are considered to be in the linear behavior range.

FIGURE 111. SINGLE LAP COMPOSITE/TITANIUM JOINT WITH NITRILE EPOXY ADHESIVE (LS-HE)

FIGURE 112. SINGLE LAP C/T-LSHE JOINT, COMPOSITE ADHEREND STRAIN DISTRIBUTION

FIGURE 113. DOUBLE LAP COMPOSITE/TITANIUM JOINT WITH NITRILE EPOXY ADHESIVE (LS-HE)

FIGURE 114. LSA-23 FAILURE PHOTOGRAPHS

FIGURE 115. DOUBLE LAP C/T-LSHE JOINT, COMPOSITE AND TITANIUM ADHEREND STRAIN DISTRIBUTION

FIGURE 116. SINGLE LAP COMPOSITE TITANIUM JOINT WITH EPONY NOVOLAK ADHESIVE (HS-LE)

FIGURE 117. LSA-59 FAILURE PHOTOGRAPHS

FIGURE 118. SINGLE LAP C/T-HSLE JOINT COMPOSITE ADHEREND STRAIN DISTRIBUTION

FIGURE 119. DOUBLE LAP COMPOSITE/TITANIUM JOINT WITH EPOXY NOVOLAK ADHESIVE (HS-LE)

FIGURE 120. LSA-62 FAILURE PHOTOGRAPHS

FIGURE 121. DOUBLE LAP C'T-HSLE JOINT, COMPOSITE AND TITANIUM ADHEREND STRAIN DISTRIBUTION

FIGURE 122. ONE-STEP LAP COMPOSITE/TITANIUM JOINT WITH EPOXY NOVOLAK ADHESIVE (HS-LE)

FIGURE 123. ONE-STEP LAP C/T-HSLE JOINT, COMPOSITE ADHEREND STRAIN DISTRIBUTION

830 (Fail)

1

LSA-26-4 specimen strain distribution is given in Figure 124. Failure mode was cohesive fracture of both the adhesive and the surface resin of the composite. Figure 125 shows the strain distribution map for the four adherend stress levels investigated and can be categorized as follows:

Avg. Adherend Stress Level (ksi)	Estimated Adherend Behavior Range	Estimated Adhesive Behavior Range
5	linear	linear
15	linear	nonlinear
30	linear	nonlinear
36.969(F)	linear	nonlinear

The adherend strain map shows that the strain distribution for the two-step-lap joint deviates substantially from that of the single and double lap joints. Maximum adherend surface strains occur in the middle of the joint on this two-step-lap configuration while those on the single and double lap ones are located at the start of the overlap. A sudden change in strain also occurs over the middle riser where the middle layer is changing from composite to titanium. Transverse strains of the composite adherend are relatively high.

FIGURE 124. TWO-STEP LAP COMPOSITE/TITANIUM JOINT WITH NITRILE EPOXY ADHESIVE (LS-HE)

FIGURE 125. TWO-STEP LAP C/T-LSHE JOINT, COMPOSITE ADHEREND STRAIN DISTRIBUTION

FIGURE 126. SHEAR STRESS-STRAIN CURVE OF AF126-2 ADHESIVE, SPECIMEN 3A11-126-1* (Typical)

FIGURE 127. TYPICAL SHEAR STRESS-STRAIN CURVE OF METLBOND 329 ADHESIVE* (Typical)

SECTION X

THEORETICAL/EXPERIMENTA. BEHAVIOR COMPARISONS AND "EFFECTIVE" PROPERTIES

N.1. GENERAL

The purpose of this section is to show the correlation between the theoretically predicted joint behavior (including failure loads) and the experimental results on both small simple specimens and larger complex assemblies. Section X.2 covers the Addition of Effective Bending to the theory developed earlier and Section X.3 covers the Analytical/Experimental Behavior Comparison on Simple and Special Joints. Section X.4 presents the Design Analysis of Complex Joints. In Section X.5 Complex Joint Test Data Correlation with Predictive Methods is given.

X.2. ADDITION OF EFFECTIVE BENDING

The theory outlined in Section II was used to predict the failure loads of several of the experimental joint configurations. Maximum stress theory was used for the adhesive and isotropic adherends. Maximum strain theory was used for the composite adherends. These theories were incorporated into the computer program.

Early investigation indicated that the theory as presented predicted excessively low failure loads. Attempts were made to bring theory into agreement with experiment by an effective properties approach, e.g., modifying the adhesive modulus appropriately. Such attempts were not entirely successful.*

Comparison of analytical and experimental strains indicated the theory predicted excessively high bending strains. For example, the theory of Section II predicted *compressive* strains in adherend 2 of the single lap at x equal zero, y_2 equal to $t_2/2$ (refer to Figure 2). This was never observed in the experimental data. Similar inconsistencies arose in the double and step lap. The primary cause of the high predicted bending stresses is the small deflection assumption for the derivation of the equilibrium equations. As the axial load is increased, the eccentricity of the joint is reduced and, therefore, the bending due to the axial load is also reduced. (The reverse occurs in the familiar beam-column problem.) Thus, the moment in adherend 2 of the single lap at x equal zero is significantly less than $P\bar{t}$ (1 - c/a)/2 as would be predicted by Equation (9). The plane sections remain plane assumption also exaggerates the studies have the formation are significant.

In order to remedy this situation without revising the entire theory, an effective bending factor, k_e , was introduced. This factor reduced all the computed bending moments in the joint by k_e . The quantity k_e was introduced into the equations of Section II in the following form:

Single Lap

$$M_{1} = \frac{1}{2} \left[\theta + \frac{P\bar{t}}{a} \left(x - \frac{c}{2} \right) - \frac{t_{1}}{2} \phi \right] k_{e}$$

$$M_{2} = \frac{1}{2} \left[\theta - \frac{P\bar{t}}{a} \left(x - \frac{c}{2} \right) + \frac{t_{2}}{2} \phi \right] k_{e}$$

$$(12M)$$

^{*}While "effective G" could be used in shear distribution and ultimate load prediction, when the normal stresses and the failure theories were introduced, the approach became useless. Large changes (by a factor of 2 to 4) in effective G resulted in only small changes in the predicted failing load.

$$p_{1} = \frac{E}{t(1 - v^{2})} \left(\frac{1}{D_{1}} + \frac{1}{D_{2}} \right) k_{e}$$

$$p_{2} = \frac{E}{2t(1 - v^{2})} \left(\frac{t_{1}}{D_{1}} - \frac{t_{2}}{D_{2}} \right) k_{e}$$

$$p_{3} = \frac{G}{t} \left(\frac{1}{A_{1}} + \frac{1}{A_{2}} + \frac{t_{1}^{2}k_{e}}{4D_{1}} + \frac{t_{2}^{2}k_{e}}{4D_{2}} \right)$$

$$p_{4} = \frac{G}{2t} \left(\frac{t_{1}}{D_{1}} - \frac{t_{2}}{D_{2}} \right) k_{e}$$

$$q_{1} = -\frac{PE\bar{t}k_{e}}{at(1 - v^{2})} \left(\frac{1}{D_{1}} - \frac{1}{D_{2}} \right) \left(x - \frac{c}{2} \right) - \frac{2E}{t(1 - v^{2})} \left(\frac{M_{1}p}{D_{1}} + \frac{M_{2}p}{D_{2}} \right)$$

$$q_{3} = \frac{PG}{t} \left[\frac{1}{A_{1}} - \frac{1}{A_{2}} + \frac{k_{e}t}{2a} \left(\frac{t_{1}}{D_{1}} + \frac{t_{2}}{D_{2}} \right) \left(\frac{c}{2} - x \right) \right] + \frac{G}{t} \left[\frac{2N_{1}p}{A_{1}} - \frac{2N_{2}p}{A_{2}} - \frac{t_{1}M_{1}p}{D_{1}} + \frac{t_{2}M_{2}p}{D_{2}} \right]$$

Double Lap

$$M_1 = \frac{1}{2} \left(\theta - \frac{t_1}{2} \phi \right) k_\theta \tag{81M}$$

$$p_{1} = \frac{Ek_{e}}{(1 - \nu^{2})tD_{1}}$$

$$p_{2} = \frac{Et_{1}k_{e}}{2(1 - \nu^{2})tD_{1}}$$

$$p_{3} = \frac{G}{t}\left(\frac{1}{A_{1}} + \frac{2}{A_{2}} + \frac{t_{1}^{2}k_{e}}{4D_{1}}\right)$$

$$p_{4} = \frac{Gt_{1}k_{e}}{2tD_{1}}$$
(83M)

Step Lap

$$M_{1} = \frac{1}{2} \left[\theta + \frac{P}{4} (t_{1} - t_{2}) - \frac{t_{1}}{2} \phi \right] k_{e}$$

$$M_{2} = \frac{1}{2} \left[\theta - \frac{P}{4} (t_{1} - t_{2}) + \frac{t_{2}}{2} \phi \right] k_{e}$$
(91M)

$$p_{1} = \frac{E}{t(1 - v^{2})} \left(\frac{1}{D_{1}} + \frac{1}{D_{2}} \right) k_{e}$$

$$p_{2} = \frac{E}{2t(1 - v^{2})} \left(\frac{t_{1}}{D_{1}} - \frac{t_{2}}{D_{2}} \right) k_{e}$$

$$p_{3} = \frac{G}{t} \left(\frac{1}{A_{1}} + \frac{1}{A_{2}} + \frac{t_{1}^{2}k_{e}}{4D_{1}} + \frac{t_{2}^{2}k_{e}}{4D_{2}} \right)$$

$$p_{4} = \frac{G}{2t} \left(\frac{t_{1}}{D_{1}} - \frac{t_{2}}{D_{2}} \right) k_{e}$$

$$q_{1} = -\frac{PEk_{e}}{t(1 - v^{2})} \left(\frac{t_{1} - t_{2}}{4} \right) \left(\frac{1}{D_{1}} - \frac{1}{D_{2}} \right) - \frac{2E}{t(1 - v^{2})} \left(\frac{M_{1}p}{D_{1}} + \frac{M_{2}p}{D_{2}} \right)$$

$$(93M)$$

where the equation numbers of Section II are referred to with the suffix M to indicate Modified. The following values of k_e were found to give reasonable analytical/experimental correlation:

	k_e
Single Lap	0.01
Double Lap	0.02
Step Lap	0.10

X.3. ANALYTICAL/EXPERIMENTAL BEHAVIOR COMPARISON ON SIMPLE AND SPECIAL JOINTS

X.3.a. Simple Specimen Joints

For correlation purposes the averaged results from sixteen lap shear assemblies* were chosen as representative samples of the 67‡ investigated in this research program. Seven single lap (S.L.), seven double lap (D.L.), and two step lap (St.L.) joints were chosen, covering both adhesive systems and adherend combinations, selectively. Within these categories the choices were made, based on a study of the quality of the experimental data. Bad data points were judged by the failure mode (interface or interlaminar) and/or whether the points fell on or near the majority data test curves (N') vs L/t1) as shown in the previous section.

Adherend properties were obtained from Section VII and the literature for use in the computer prediction program. Adhesive properties, taken from the literature, are presented in Table XXV and Figures 126 and 127. A summary of all the properties used in the computer program is given in Table XXVI.

The nonlinear joint behavior equations were programmed for failure by (1) cohesive fracture of the adhesive by the maximum stress theory, (2) tensile failure of the composite adherend by maximum strain theory, and (3) tensile failure of the titanium adherend by maximum stress theory. The experimental/theoretical correlation is presented in Table XXVII. The predicted low values of item 6 may have been caused by the inaccuracy of the unidirectional lamina Ramberg-Osgood three parameter predicted stress-strain curve for the 0/90° orientation laminate that was used for all three adherends. Observe that the experimental value in parenthesis correlates reasonably well with that

^{*}Each assembly represents 3 or 4 specimens.

[†]Totaling 203 individual specimens.

TABLE XXV

AVERAGE ADHESIVE MECHANICAL PROPERTIES

D	Mate	erial
P.operty 	AF 126-2 (LSHE)*	MB-329 (HSLE)†
o_u	5513 psi	7300 psi
E‡	0.22568 X 10 ⁶ psi	0.96847 × 10 ⁶ psi
ν‡	0.40	0.4284
τ_u	7170 psi	8970 psi
G	0.0806 × 10 ⁶ psi	0.399 X 10 ⁶ psi

^{*}See References (6) and (18).

predicted. It represents the proportional limit average value for this group of joints and was taken from the 2-in. gage length (over the bondline) autographically recorded load/deflection curves. Item 6 (lap shear assembly 56) load/deflection curves are shown in Figure 128. Apparently, the shape of the three parameter stress-strain curves used to derive the 0/90° orientation adherend behavior resulted in adhesive stresses high enough to cause joint failure prediction at the loads indicated. In the actual test adherend proportional limits* were exceeded and a redistribution of stresses in the adhesive was brought on by the sudden drop in adherend modulus, allowing the bondline to go to a much higher stress, i.e., the joint to transfer much higher loads. It is felt that the proper choice of unidirectional lamina Ramberg-Osgood parameters would give derived 0/90° stress-strain curves which would allow accurate prediction of failure loads. Item 13 (lap shear assembly 61) apparently was less affected by this phenomenon because only the single adherend was 0/90 composite with the double adherends being titanium. The limiting factor in these three parameter stress-strain curves' accuracy could be the lack of 90° lamina experimental data.†

As pointed out in the previous section, values of the bending factor were selected for reasonable correlation with each joint 'ype (BF-JT) and are listed in Table XXVII. Table XXVIII gives a more explicit listing of the BF-JT factors relating them to the item nos. of Table XXVII.

Figure 129 shows the experimental/analytical correlation with these bending factors by joint type. A limited amount of effort was devoted to further refining the values of the bending factor for various adhesive types and failure types within the joint types (BF-JT, AT, FT). The selected bending factors are shown in Table XXIX and Figure 130 shows the corresponding correlation. This latter approach could be extended to other joint configurations. The refinement of the bending factor definition is limited only by the amount of experimental data available.

Typical failure types are shown photographically in Figures 130 through 135. Figures 131, 132 and 133 show the composite net section tension failure of the LSA-31, -33 and -36 specimens, respectively. Figures 134 and 135 show the cohesive fracture of the composite surface resin and bondline of LSA-56 and -58, respectively. In Figure 136 specimens LSA-61 show primary composite adherend delamination and secondary surface resin fracture.

Five typical computer printouts on the joint predictive techniques are given in Appendix G. These are on items 7 (LSA-20), 9 (LSA-23), and 15 (LSA-26) from Table XXVII. The printouts cover shear (TAU) and normal (SIGMA) stresses at various stations along the joint overlap length for ultimate loads in Appendix G.1. The individual ply stresses at intermediate loads are also presented in Appendix G.2 for items 7 (LSA-20), 14 (LSA-62), and 15 (LSA-26). Correlation of the predicted surface ply stresses on the special test specimens with the experimentally measured strains is given in the next subsection.

[†]See References (18) and (19).

[‡]These v^* was are calculated. Such calculations are based on c, perimentally measured G and E^* (constrained) values assuming an isotropic-elastic relationship among E, G and v. See Reference (19).

^{*}See Appendix E for appropriate experimental laminate tensile specimen stress-strain curves.

^{*} Das research effort generated only 0° unidirectional lamina axial test data, the 90° axial data were taken from the laterature, as were the in-plane shear values.

TABLE XXVI

THREE PARAMETER STRESS-STRAIN CURVE VALUES

								A DHEREND PROPERTIES	PROPFRI	TES							
Item	Curve	σ ₀₁ , ksi		$E_i \times 10^{-6} \text{ psi}$	i ni	σ _{0i} , ksi	-	σ_{1i} , ksi $E_i \times 10^{-6}$ psi	n_i	σ _{0i} , ksī	-	σ_{1i} . ksi $E_i \times 10^{-6}$ psi	n	σ _{0i} , ksi	o I i, ksi E	σ_{0i} , ksi $ \sigma_{1i}$, ksi $ E_i \times 10^{-6}$ psi	1 11
			Composi Panels B-1	Composite Adherends Panels B-12 (B-12 only)		Pane!s	Composi B-13, B-18	Composite Adherends Panels B-13, B-18 Avg (B-13 thru B-19)	п В-19)	Panels	Composit B-21, B-21,	Composite Adherends Panels B-21, B-21 Avg (B-21 thru B-28)	B-28)				
	4(05 NS EQ) A	1	122.539	25.923	l	1	147.232	27.489	ı	ı	177.622	28.825					
2	V(13 sa do)	1	122.539	127.115		ı ———	147.232	133.604	<u> </u>	ı	177.622	136.632	1	-			
3	$T(a_t \text{ as } \epsilon_t)T$	11.910		2.750	2.541	11.910		2.750	2.541	11.910		2.750	2.541				
4	(181 vs 781)L	7.950		0.933	2.991	7.950		0.933	2.991	7.950		0.933	2.991				
			0.01 Ti 6Al-4	0.016 Sheet Ti 6A14V Annealed			0.0. Ti 6Al-4	0.032 Sheet Ti 6Al4V Annealed			0.045 Ti 6Al-	0.045 Sheet Ti 6A14V Sheet			0.090 Sheet Ti 6AH4V Sheet	Sheet V Sheet	
٠٥	(σ vs ε) _A	137.7	134.5	17.756	38.741	129.5	128.2	15.514	75.438	136.6	133.3	17.251	37.246	134.0	130.5	16.096	34.559
			AD	ADHESIVE PROPERTIES	PERTIES												
		⁷ O _i , ksi Adhe	r_{1i} , ksi G sive-Nitrile	r_{0i} , ksi r_{1i} , ksi $G_i \times 10^{-6}$ psi Adhesive-Nitrile/Epoxy (LSHE)	ı,	Adhesive	$ au_{0i}$, ksi $ au_{1I}$, ksi $ au_{Gi} imes 10^{-6}$ psi Adhesive-Epoxy/Novolak (HS	ksi τ_{1l} . ksi $G_i \times 10^{-6}$ psi n_i Adhesive-Epoxy/Novolak (HSLE)	 								
			Ar	AF 120-2	+		MB-329	6									
9	T(t NS t)	3.75	3.25	90800	6.318	6.60 5.	5.35 0.	0.3158 4.227	Li								
7	(τ vs γ) _C	3.32		0.1750	2.684												
Subs	Subscripts:																
A-e L-e: C-c:	A-experimental values obtained in the program L-experimental values taken from the literature C-calculated values taken from literature	lues obtair ues taken : taken fro	from the li	A-experimental values obtained in the program (see Section VII) L -experimental values taken from the literature C -calculated values taken from literature	ection VI	G											

TABLE XXVII

SUMMARY OF EXPERIMENTAL/THEORETICAL CORRELATION

	Experimental Failure Description		Cohesive fracture of composite surface	resin and bondline Composite adherend tension, longitudinal	splitting, and delamination Cohesive fracture of bondline and com-	posite surface resin Adherend tension		Cohesive tracture of composite surface resin and adherend tension	Adherend tension and surface resin	cohesive fracture Adherend tension	Composite surface resin cohesive frac-	ture, delamination, cohesive fracture of	bondline Adherend tes sion and longitudinal	splitting Cohesive fracture of composite surface	resin and bondline and composite/adhesive	interface Cohesive fracture of composite surface	resin and delamination	Composite delamination and surface resin	cohesive fracture Cohesive fracture of composite surface	resin Composite detamination and tension	Cohesive fracture of surface resin of	composite, titanum/bondline interface, composite tension, and splitting
	Failure	1 y be t	4.3	6++,5	3,4	*** ‡ ‡ 9	- ·	4.011111	6‡‡.4	‡ ‡9	4,5,3		++9	4, 2, 3		4.5		5, 4	77	5.6++	4, 2, 6++	
;	JT, AT, FT	Exp./Pred.	0.883	1.104	1.005	0.964	1.161.	(0.945)‡‡‡‡	0.910	0.917	166.0		1.037	1.353		1.300		1.188	0.900	16.097	1.058	
	Bending Factor-JT, AT, FT	Predicted.	6,420	7,132	986	9,042	77977	3.27.27.2	4.677	5.548	7,474	•	9,430	1,446		1.615		3,958	5,792	0.10 11.181.111 0.997	0.01 11,124	
	Ber	B.F.	0.01 6,420	0.01 7.132	0.20 6.986	0.02 9,042	2,50,2 10.0		0.01 4,677	0.01 5.548	0.20 7,474		0.02 9.430	0.01 1.446	• • • •	0.01 1.615		0.02 3,958	5,792	97 0	E o	
Ulumate Load	ır-JT•	Exp./Pred.	0.883	1.104	0.827		ie : :	1.343	016.0	0.917	368 0		1 037	1.353		1.300		381.1	0.000	766.0	1.268	
n	Bending Factor - JT	Predicted, Ib	0.01 6.420	0.01 7.132	0.02 8,486	0.02 9,042	77077	2,77.6	4,677	5,548	8.326		9,430	0.01 1,446		1.615		0.02 3,958	5,792	0.10 11.181.111 0.997	0.10 9.296	
		B.F.	10.0	0.01	0.02	0.02	220.2 10.0	70.0	0.01 4.677	0.01 5.548	0.02		0.02 9,430	0.01		0.01		0.02	0.02	0.10	9 I G	
	Fyperimental	ql	3,668	7.873	7,018	8,715	0.040	3.093)++++	4,255	5,087	7,450		9,780	1,957		2,093		4,703	5,193	11,146	11,783	
General	Adher.	Orient. Code	[0]	[0] _c 7.873	10/±45]	=_		(3.09)	[0/±45]c 4.255		10/±45]c 7.450		10/245]	- 1.957		[0/2.45]		[0/90] _C 4,703	[0/±45]c 5.193	[0/:45]		
	Adherend	5	B.⊙	(C)	P _B	<u>۾</u>			<u>ට</u>	<u>@</u> (<u>ම</u>		В	© 1		O 1	(4		B.	⊕ 1	<u>ි</u>	
		_	⊙ ₈	(Page 1)	в	00 g) (£) (9 ₈	୍ଦ୍ର ୧	<u>ි</u>		1 ©	B _©		(B)	6	<u> </u>	Ω1	(O)	<u>୍</u> ତ୍ର	
	Adhesive		0.0043	0.0043	0.0020	0.0037	0.0038		0.0028		0.0030		0.0018	0.0052		0.0037	1 2 2 2	0.0067	0.0099	0.0058	0.0059	
	Adhesive		AF-126-2	AF-126-2	AF-126-2	AF-126-2 MB-329	MB. 379		AI-126-2	AF-126-2	AF-126-2		41-126-2	MB-329		MB-329	911	MB-529	MB-329	AF-126-2	AF-126-2	
	Joint No		14 (SL)	27 (SL)	18 (DL)	31 (DL) 53 (SL)	\$6 (DL)		20**** (SL)	33 (SL)	23**** (DL)		36 (DL)	(15) 85		(S)6\$		91 (DE)	62**** (DL)	26**** (2 St. L.) AF-126-2	37 (3 St L)	
	Item		-	r:	8	7 7			r		σ		9.	=		2		2	7	15	4	

Note: See Appendix F-9 for exact geometry.

FIGURE 128. JOINT LOAD/DEFLECTION CURVES FOR LSA-56 (D.L.-HSLE)

TABLE XXVIII

VARIABLE BENDING FACTOR SELECTIONS: BE/JT (Based on Joint Type Only)

Joint Type	Bending Factor	Item Numbers, Table XXVII
Single Lap	0.01	1, 2, 5, 7, 8, 11, 12
Double Lap	0.02	3, 4, 6, 9, 10, 13, 14
Step Lap	0.10	15, 16

FIGURE 129. CORRELATION CURVE ON BONDED JOINTS FOR BF/JT

TABLE XXIX

BEST BENDING FACTOR SELECTIONS: BF/JT-AT-FT (Based on Joint Type, Adhesive Type, and Failure Type)

Joint Type	Adhesive Type	Primary Failure Type	Bending Factor	Item Numbers, Table XXVII
S.L.	LSHE or HSLE	AT or CF	0.01	1, 2, 5, 7, 8, 11, 12
D.L.	LSHE	CF	0.20	3,9
D.L.	LSHE	АТ	0.02	4, 10
D.L.	HSLE	CF	0.02	6, 13, 14
2-St.L.	LSHE	ГА	0.10	15
3-St.L.	LSHE	CF	0.01	16

Legend: S.L. Single Lap D.L. Double Lap

St.L.- Step Lap

LSHE - Low stiffness/high elongation (AF-126-2)

HSLE - High stiffness/low elongation (MB-329)

AT Adherend Tension

CF-Cohesive Fracture (Bondline or Composite Surface Resin)

FIGURE 130. CORRELATION CURVF ON BONDED JOINTS FOR BF/JT-AT-FT

FIGURE 131, LSA-31 FAILURE

FIGURE 132. LSA-33 FAILURE

FIGURE 133. LSA-36 FAILURE

FIGURE 134. LSA-56 FAILURE

FIGURE 135. LSA-58 FAILURE

FIGURE 136. LSA-61 FAILURE

X.3.b. Special Joint Correlations

Figure 137 shows the plots of the predicted surface strains in the overlap area of specimen LSA-20-1 at one load level with the experimentally measured values superimposed. Figure 138 presents the predicted surface strains in the overlap area of specimen LSA-62-1 at one load level with the experimental points superimposed. Correlation is good enough to further verify the nonlinear analysis and design techniques developed herein.

Note that the experimentally measured longitudinal surface strain values correlate very closely to those predicted for both composite and titanium adherends. The experimentally measured transverse strains on the composite are also shown. Since the plane strain assumption is used in the program the predicted transverse strains are zero.

X.4. DESIGN ANALYSIS OF COMPLEX JOINTS

A more complex* joint was designed to evaluate the size effects which can be anticipated when designing larger joints. A basic composite/titanium double lap joint configuration five inches wide was chosen for evaluation. Fight of these joints were designed as shown in Figure 13° (Dwg. No. 03-2587-13), varying overlap length, adhesive, and laminate orientation. Of these, two were chosen for test: the -501 and -509 assemblies. These two joints are analyzed in Table XXX. This empirical analysis considers the possibility of failure in the titanium adherends, the compassion adherends and as condition. Experimentally determined transmitted (Table XI) and composite (Table XI) and composite (Table XI) and composite (Table XI) are used along with simple specimen bonded joint (Figs. 107 and 140) test data. Design was based on average test

FIGURE 137. THEORETICAL/EXPERIMENTAL CORRELATION OF SINGLE LAP JOINT SURFACE STRAINS

FIGURE 138, THEORETICAL/EXPERIMENTAL CORRELATION OF DOUBLE LAP JOINT SURFACE STRAINS

FIGURE 139. COMPLEX JOINT PANELS

TABLE XXX

COMFLEX JOINT ANALYSIS

		! !			Titanium	ımı			×	Boron/Epovy			
			1	_	۲.	۳.	7	5	4	7	×	6	10
No. Plies	7	Adhesive	Ass'y No.	Sheet Thick t ₂ , in.	Test F _T U: ksi	1 x 3 = Unit Load Strength V1. ktps/in.	Panel No.	Fiber Orientation	Thick, t ₁ , in. (each adher.)	Test FTU. ksi	2 x 6 x 7 = Unit Load Strength, X, kips/in. (2 adherends)	Unit Load per Ply Strength, N2. kips/in./ply	1/1
2 × 16	5.	LSHI	501	0.090	134.86*	12.137	B-27÷	B-27÷ [(0/±45/0)Q]s.	0.085	93.524÷	15.899	0.944	16.67(Ti) 17.65(B)
2 × 16	2.5	HSLE	509	0.090	134.86*	12.137	B-27÷	B-27÷ [(0/+45 0)Q]S	0.085	93.524÷	15.899	0.944	27.9(Ti) 29.5(B)
		11		12	13		4	15					
		Simple Joint Data	int Data				Simp	Simple Joint Data					
Ass'y No.	Ter Un per P N_3 , k	Test Avg.‡ Test Avg., Unit Load Unit Load per Ply for L/L , N_s , kips/in. N_3 , kips/in./ply (2 adherends)	Test Avg. Unit Load N ₃ , kips/in. (2 adherends		Avg. Bondline Shear Stress at Nmin, ksi**		Avg. Bondline Shear Strength÷ at L/t, ksi	Avg. Allowable Unit Load for Unit Ead for X, kips/in.	able 1 for ength, in.	Type Failt	Type Fallure Predicted		
-501	O	0.572	8	18.304	4.044		3.110	9.330		ondline (or surf fracture	Bondline (or surface resin) cohesive fracture	·	
-509)	0.572	18	18.304	2.427		1.250	6.250		andline tor surf fracture	Bondline (or surface resin) cohesive fracture		
*See Table XI	able >	Z.										 	
† Panel	B-27	identical to	o Panel	В-26, В-	.26 proper	+Panet B-27 identical to Panet B-26, B-26 properties used (see Table IX)	Table L	χ)					
‡See Figure 107	igure	107											
**The	smalle	**The smallest of 3, 8 or 12 divided by overlap length L	or 12 di	ivided by	y overlap l	ength L							
÷+See Figure 140	Figure	140											

FIGURE 140. BONDLINE SHEAR STRFSS VS L/t FOR COMPOSITE/TITANIUM DOUBLE LAP JOINTS

data using no safety factors. Unit failure load is predicted to be cohesive fracture of the bondline or composite surface resin.

Loading of the complex joint was to be done through four 1/2-in. diameter steel bolts at each end which are loaded via two 3/8-in, steel plates. These steel plates are loaded through a clevis by a 2-1/2-in, diameter steel pin (see Fig. 141).* This setup was mounted in a Baldwin Universal Test Machine for loading. Load introduction analysis follows for the 03-2587-13 Dwg.-501 and -509 complex joints:

^{*}Dwg. No. 03-2587-14.

FIGURE 141. LOAD INTRODUCTION FIXTURE FOR COMPLEX JOINT

Sell Assembly

 $V_{ii} = 9.330$ lb/m. (from Table XXX) $V_{ii} \times S = 46.650$ lb estimated failure load

 $P = 1.2 \times 46.650 = 69.975$ lb (load intro. des. ld.) Load Boit = $P = 4 = \frac{69.975}{4} = 17.494$ lb/bolt

Since moduli of Ti and $0/\pm 45^{\circ}$ orientation B/E are approximately equal, from Figure 139 let $T_1*=3\times0.090=0.270$ in, for the single adherend all Ti end and $T_2*=3\times0.090+2\times0.085=0.440$ in, for the composite double adherend end.

Using the double adherend end T_2 .

$$C-F_{BR} = \frac{P}{dT_2} = \frac{17,494}{1/2(0.440)} = 79,500 \text{ psi}$$

 $TiF_{BRU} = 245,000 \text{ psi}$ (Fig. 3.0362, Page 21, Code 3707, AFML-TR-68-115 Vol. II, Jan. 1968)

 $0.\pm45 B/E F_{BRU} = 43,000 \text{ psi (Fig. 6.2.2.20, Design Guide)}^{(20)}$

1.e.,

if the B/E fails in bearing, this amount of load will be picked up by the Ti insert and grip plates and all the load would be transferred to the boron through the four bondlines. This then results in the same bearing condition as the single adherend end, i.e.,

$$F_B = \frac{17,494}{1/2(0.270)} = 130,000$$
 psi bearing in *Ti*

i.e., bearing in Ti ok when compared with allowable. Bondline stress then becomes P/AB:

from above P = 69.975 lb $AB = 4 \times 5 \times 4 = 80 \text{ in.}^2$ $F_S = \frac{69.975}{80} = 875 \text{ psi}$

This stress is lower than the lowest value obtained from all the lap joint data, i.e., bond line is ok.

Another check using Figure 107 gives 572 lb/in./ply composite joint allowable (18,304 lb/in.) or 91,520 lb total load allowable.

Therefore load introduction joint is safe with the bondrine being most critical. -509 assembly will not transmit as much loa d, i.e., it is ok.

$$\frac{1}{I_1}$$
 $\frac{I_1}{I_2}$ $\frac{2I_3}{I_4}$ $\frac{1}{I_4}$ from Fig. 139

NS COMPLEX JOINT TEST DATA CORRELATION WITH PREDICTIVE METHODS

The two complex (double lap) joints, assemblies -501 and -509, of SwRI Dwg. 03-2587-13 (see Fig. 139) were tablicated and tested to further check out the nonlinear theoretical predictive techniques developed in this reservoir. These joints represented larger, wider bonded joint structures which can be more easily instrumented for behavior measurement. Twenty-four strain gages were laid on the front and back faces of the joint in the pattern shown in Figure 142. Test setup for the -501 complex joint assembly with the LSHE* adhesive is shown in Figure 143 whereas Figure 144 shows the -509 assembly with the HSLE† adhesive.

Load rate was 0.00125 in./min over a two-inch gage length in the joint area and strain gage readings were taken automatically at each 1,000 pound increment of load to failure. Load introduction tabs of 6A1-4V annealed titanium were bonded to the specimens, initially with a room temperature setting, two-part epoxy.

Assembly -501 was loaded to 32,200 lb on first loading, at which the load introduction tabs on the bottom became unbonded. New tabs were made, cleaned, and rebonded with AF-126-2 film adhesive. On second loading failure of the tab bond at the top occurred at 48,100 lb. New tabs were made, cleaned and rebonded with AF-126 adhesive. On third loading the failure occurred in the joint by cohesive fracture of the bondline at 56,800 lb (11,340 lb/in.). A summary of the strain gage readings is given in Table XXXI for each of the three loadings.

Assembly -509 was loaded first to 30,675 lb at which failure occurred simultaneously at both ends in the load introduction tab/specimen bondline. New tabs were made, cleaned, and rebonded with AF-126-2 adhesive. The second loading resulted in cohesive fracture of the joint bondline at 33,000 lb (6,590 lb/in.). Table XXXII presents a summary of the strain gage data for each of these loadings.

FIGURE 142. COMPLEX JOINT STRAIN
GAGE LOCATIONS

Using the actual measured joint dimensions the nonlinear predictive program was used to predict the failure load and mode of each of the joints. For the -501 joint, failure was predicted at 12,144 lb/in. whereas for the -509 joint, failure was predicted at 5,188 lb/in. Both failure made predictions were for a cohesive fracture of the adhesive. Observed mode of failure was cohesive fracture of bondline in both cases starting near the ends of the composite adherends. Table XXXIII summarizes the measured and predicted values. Complete printouts of these predictions and their related adhesive and adherend stresses are presented in Appendix H. Composite surface strains taken from these predicted failure data are included above the measured strains in Tables XXX and XXXII.

Observed that the longitudinal strains predicted at gages 1, 3, 5 and 9 (see Fig. 142) on both joints for all loadings correlated well with the measured strains at that load level. Also, observe that the predicted strains at gage 7 do not correlate the measured strains. With gage 7 located near the end of the bondline

*LSHE Low Stif less, High Elongation (AF-126-2).

#HSEE High Stiffness, Low Elongation (MB-329).

(a) Front

(b) Back

FIGURE 144. COMPLEX JOINT -509 TEST SET-UP

TABLE XXXI

COMPLEX JOINT EXPERIMENTAL DATA WITH HSLE ADHESIVE

	,			_															_	_
	Ā	7	-	;	=	,;	ź	;	7		-	:	• •	:	-		•	4		
	2	-111-	H	7	**	**	127		? ?	100	1112	7	1	£	<i>(</i>)			7		
	-	1,	·:	;	46.5	27	=	2,73		÷	F	£ Fi	4	5	4	7	27			1
	·-	144	9	ž.	5.	72.7	477.	¥ 7	Ç. 7 -	Ď.	7	335.	. 5 4.	7 4	7	2	÷	174		1
:	<u> </u>	4		3	ī	2	*	7 1 7	ē	Ę	28.	120	7	1,44	ř	-	<i>'</i>	2		
Pa	¥	1,57	15.	 			186		703.	-1,884	1001.	107	*	<u>:</u>	£ 7 :	7	÷		_	1
a Indo	1	127	3	*	<i>ş</i>	ž.	5 7 7	7	7	± -	1.00	2,	7.	7	ź	7.4.7	7	7		
J. Coage	<u>"</u>	5.5	50.1	;	7	<u>'</u> .	y,4: 1 -	1.	<u>;</u>		13.50	, PG .	3 5 5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.	ĩ,	;; ;;	1 148 1		
Strain.	21	ž,	* * * * * * * * * * * * * * * * * * * *	7	5	1	*	577	¥5.	· - -	4	* 7;	1 100		5	1.42	2	7		
berg that the open of company a chair charteness which is the open of the open of the plant of the property of the open of the	=	1.5.	- - -		<u> </u>		?	1, 2		77	:. ::	7: 7:	420-1-		1	13.5%	::	3		
the Adhe	£	ţ,	ζ,	÷	¥. 5	Ā	÷ 7	ř	100	122.1	1,47,	7 4	4:	7,	1.012	ر د. ب	77	÷		1
44.6	7	1, 10, 1	46.2 -2.144	33.2.	F12 F 1	7	500	11.1.	7 2 3	1157 9.	344	<i>‡</i>	ÿ :	977	777 7	? .	į			
In a per	,	ž)	24	ž	7,7	345	ř	7774	4	1 14:	3,	ξ.	., .,	-	# T	200	? .	į		
Alank "	,	74	Ē.	5	F	4	7	77	3 .	45.4	, 62 A	2.1. OS	ť,	£;	4488	' :	>115	77]
litini	Ŀ	5,	7	É	7 5	570	?	;	4	1.23	7.7	5.	7	<i>;</i>	8 5	7.	-			
	4	32.	7	Ξ.		7.	į.	: :	1130 -1472	5×	7	<u></u>	7	7	1, 424	£1 -	4	7.		
	-7	-77	7	ş	1 199	1	4	Ŷ,		1423	į.	.;	4	4	1,183	,	1.659	77		
		7.7	Ť	<u> </u>	35	7.	2.	¥ 77	3 (· · ·	. 3.41.5		ź	?	7.	49%	77	1	1/4 "		
	٠.	7 %	444	7	1146	7.	3,	2	= =	77.7	1	<i>.</i>	-	í			7	1		
	-	155	*****	7	V	,	1 : 54	1.51.	7 - 2 L2x	. 64.	?.	7117	ř	30%	1 - 1 - 4	, P	1	5		
or posite per Piv Unit	H in M		2	٧.	# J.	÷			ij,	ij	. 19.44	:	,	= 3	9,	į	1	3	ij	1
Lond Lond	-	1 1000	1977	: ; ;	ž ,ž 11 11 4 4			<u>i</u>		3		-		, ;	÷ + ÷	÷		100	ŝ,	
I Adherend Set Sect. Inn	Strew, 431	:	3 91	: : ;	Ēř	1	> 51	7°1 7°	7	5					Ē	;		7.	1.34	
Adherend	Strew ky	4. 5		'n.	3.4	4 60	1 2	į,	**	, , , , , , , , , , , , , , , , , , ,	7	3			ž	-		2	2	and the second s
i caden; Loadina	k sps	,	<u> </u>	7.	ρĝ	,	<u> </u>	Z,	21	÷	4		<u> </u>		. y	ā	4	ż	1 4 4 4 5	
i aden		-				r:														1
Par No. of	11, 342, 11	105																		A separate A

TABLE XXXII

COMPLEX JOINT EXPERIMENTAL DATA WITH HSLE ADHESIVE

	Ę,	129	626	41.4	51.6	1156	316	<u>e</u>	7	¥16	35	1201	-1301	Ī
	2	-136-	-2476	+ 3 42	- 3630	-4-89	-1272	-2501	-3228	- 3650	145()5	+4804	-5674	
	×	- 244	459	68 0	964	×	205	44.5	or or	6.4	7.	7 2	47.00	
	-	-200 +188	-330	*398	3.68	7	35	611	5	=	061	133	161	1
	91	-200	383	493	\$66	14	-168	-370	-67	.573	146	826	864	1
hated	3.	- 44.	4:	-1130	-1306	-1703	-410	- 564	1145	=	+1463	-1752	-1429	
Pul o	7.	236	449	165	693	916	183	413	578	24.5	7.0	931	-1001	
at Gage	~	-511	1-6-	7.	9241 - 1449	***************************************	-420	606-	- 13	- 1 39S	1033 -1768	10 34	+2076	
e Strains	-:	285	\$48	5.7	42,	=	343	526	ç	ž	1033	E	1216	1
Itanium Single and Composite Double Adherend Surface Strains at Gage No. Indicated	=	+518	10.24	385	. 150	- 200x	4.5	-1035	7.	. 1522	101.	4117	-2324	
Adheren	Ξ	12.7	1,77	563	623	5	£1	365	620	7	7 7	=======================================	1060	
Deathle	5	-1288	410 .2473	+ 30.35	1461	. 1110	96 .	-2408	2,15	0.792 -	1911	p_05.	\$385	
nposte	1	Ę	=	867	XXX	3	<u>-</u>	707	, c	- 2 9	Ĕ	077	£.	
and Con	,	<u>*</u>	77.	1422	071	÷ + + + + + + + + + + + + + + + + + + +	r1	٤	45	2	=		3	⊣
Sragle.	٤	807	30%	199 - 422	7 4	;	2	380	\$18	-6%	Š	220	1218	
#marti]		12.	615.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2901.	9mb	£.	Ē.	1442	• L US9	77	-1453	97.	1
	7	ž.	46.2	3 =	, i	5	<u>.</u>	446	tota to	509	81.5	£ 0 !!	÷ = = = = = = = = = = = = = = = = = = =	
		154	9.5.	1911.	ا ۱۶۵۶ ا	7.	Ž.	x	-112	sus I.	1696	3.51	35.5.	
	-,	27.3	41.7	6. 1074	, 14 °	286	717	697	632 -	. 11.	1>6	1080 - 1906	1224	
		7.	- 181	A - 1404	1694	in a	.536	11157	1395	6651	2940	.227h	13481	
	_		•	· .		•		,	. d		•	•	•	
Composite per Pix Unit	lead transfer lban phy	Ş	100		0>1	22	Ĩ	100	E .	14.0	***	500	206	
leant truct	Z British	1600	3260	Unit t	0.15.7	649441 11 311	[800]	321K	30.27	- 1.×4	MILM	64.30	0659 0659	
It Adherend Net Sect 1 en	Stress, ksi	x	3 58	4 64	. 23	4 4 4		* **	4 4		9 99	<u>-</u>	113	
(omposite Adherend Net Sect. Ten	Stress, ku	9.40	x <u>x</u>	7.	28.5	2 4 4 2	57 7	18.8	, 7.	£.	34.2	3-6	x x	
Leading Magnitude,	k ip.	×	<u>\$</u>	<i>ī</i> .	7.	130 6751	×	<u>4</u>	F	77	92	53	33.01)	
Loading		-					cı							Luby
Avv. No. of Loading Loading Day No. of Loading	03-2587-13	500												A Actual strains

TABLE XXXIII. LARGE JOINT ANALYSIS/TEST COMPARISON

Joint	l	Stress Analysis	1	ear Design diction	l	xperimental ailure
Assembly	P_u , lb/in.	Type Failure	P_u , lb/in.	Type Failure	P_u , lb/in.	Type Failure
-501	9,330	C.F.	12,144	C.F.	11,340*	C.F.
- 509	6,250	C.F.	5,188	C.F.	6,590†	C.F.
*Ret. Tabl	e XXXI		<u> </u>		<u> </u>	
†Ref. Tabl	e XXXII					

overlap on the composite adherend over the area where failure is supposed to occur, this difference in predicted vs actual strains is critical. On -501, note, gage 7 shows a 22% reduction in measured strain from the first loading to the third one, an indication that bondline shear and normal stress peaking has been reduced at this point by the repeated loadings beyond the adhesives' proportional literal Amore vivid indication of this is shown by the behavior of gage 17 in the corner of the composite adherence the first loading the strain at gage 17 was exactly 50% of that of gage 7, on second loading 17 was 77% of 7, while on third loading gage 17 was reading 169% of gage 7. For -509 a different redistribution phenomena occurred. On first loading the strain reading of gage 17 lagged those of gage 7 only slightly as the loading increased through 24,000 lb and then started dropping as the load was increased to 30,000 lb. Gage 17 strain dropped faster than 7 and it was reading about 10% of 17 at 30,000 lb load. On second loading both 7 and 17 were reading decreasing magnitudes of minus strain. Gage 7 read decreasing small minus, strains to 30,000 lb while gage 17 read decreasing small minus strains to 30,000 lb before they started increasing again.

Plots of the predicted longitudinal strains along the joint overlap length for predicted failure load are shown for -501 in Figure 145 and for -509 in Figure 146. Actual strains at this load level are superimposed on these figures for the last (or failure) loading test sequence and they correlate well with those predicted. Transverse strain predictions are zero due to the plane strain assumption; however, actual transverse strain measurements are shown to be relatively large. This is caused by the large Poisson's atio exhibited by the 0/±45° composite adherends.

A redistribution of the surface ply strains of the composite adherend at or near the ends and corners, apparently resulting from multiple load cycles before failure, is probably caused by a redistribution of the adhesive strains (stresses) at those points. Such a redistribution could cause the test article to fail at higher loads than predicted since peak adhesive stresses (strains) would not be reached as soon. This could be offset by preload damage to the adhersive, thereby reducing its strength. The exact phenomena causing surface strain redistribution and its resulting effects are unknown.

At this point it can be said that there is a substantial amount of correlation of the predicted mechanical behavior with the experimental results on the complex joints with accurately predicted failure loads obtained when using maximum stress theory cohesive fracture of the adhesive. Adherend failure prediction in the joint was not checked experimentally in the complex joints.

Failed specimen photographs for -501 are shown in Figures 147 and 148 whereas Figures 149 and 150 show the -509 failures.

FIGURE 145. C/T COMPLEX JOINT-PREDICTED VS EXPERIMENTAL ADHEREND SURFACE STRAINS. LS-HE ADHESIVE

FIGURE 146. C/T COMPLEX JOINT-PREDICTED VS EXPERIMENTAL ADHEREND SURFACE STRAINS. HS-LE ADHESIVE

(a) Eron1

(b) Ea k

FIGURE 147. COMPLEX JOINT -501 AFTER FAILURE

(a) Front

(b) ha k

FIGURE 148. FAILURE MODE OF -501 COMPLEX JOINT

(a) Front

(h) Buck

FIGURE 149. COMPLEX JOINT -509 AFTER FAILURE

(a) Front

(b) Back

FIGURE 150. FAILURE MODE OF -509 COMPLEX JOINT

SECTION XI

BONDED JOINT DESIGN CURVES

XI.I. GENERAL

The purpose of this section is to illustrate how the nonlinear design/analysis techniques developed in this program can be used to generate useful design curves on bonded joints. Section XI.2 presents a Discussion of Approach whereas Section XI.3 gives the Design Curves and how to use them.

XI.2. DISCUSSION OF APPROACH

Design oriented experimental data curves for composite adherend joints can be generated by plotting failure loads vs the geometric parameter L/t. For each composite orientation a plot of running load/ply vs L/t is recommended. The running loads at joint failure in lb/in, are divided by the number of plies to get the running load/ply (Λ'') in lb/in./ply. The L/t parameter may be obtained by dividing the bondline overlap length by the adherend thickness. Always use the smaller of the two adherend thicknesses.

For this project, data from selected, representative joints were picked from Table XXVII for use in design oriented experimental data curve generation. Table XXXIV summarizes the experimental analytical data on nine joint groups* which were used as a basis for design curve prediction along with pertinent, related geometric parameters. These predicted failure load values and the use of N' = 0 when L/t = 0 define these curves (or lines) up to laminate failure. Laminate failure then becomes a cut off at N' = 1 laminate failure load (constant). This cutoff value may be predicted or plugged in from experimentar data on laminates. While the cutoff shown here is based on laminate adherend failure it could just as easily be based on titanium adherend failure (for composite/titanium joints) where this is critical.

XL3 DESIGN CURVES

The design oriented average experimental data curves generated fall on or very close to the nonlinear analytically predicted joint failure load values as shown in Figure 151. All predicted and actual failure modes correspond except one, that being No. 36. Actual failure of this joint was by laminate adherend tension while its predicted failure was by cohesive fracture of the adhesive†. Experimentally measured tensile ultimate strength is used as the horizontal cutoffs for these curves with the points 31, 33, and 36 used for correlation.

Use of such design oriented experimental data curves which allow prediction of average test values for any L/t (or vice-versa) is one method of allowables determination. Statistically based formulas can be applied with such data to obtain reduced values for use as design allowables. Such formulas were developed in Section V on Experimental Design. The 95% confidence design ultimate allowables may be calculated using the general formula (given by equation 172, page —) in which the average (mean) value can be taken from the Figure 151 curves. The other parameters are known or can be determined from the detail data tabulation of Appendix F.

Once the nonlinear analytical formulas have been checked out with simple lap joint tests utilizing the joint configuration and material combination desired, they can be used to generate a family of curves for design allowables purposes as was done herein. Or the computerized formulas could be used to predict failure loads and types of failure for any specific joint design which could be modeled as single, double, or step lap. If it is desired to use the type

^{*}Lach joint group is made up of the avg of 3 or 4 test specimens taken from one lap shear assembly.

[†]Changing the bending factor k_e , from 0.02 to 0.05 predicts adherend tension failure mode but at a somewhat lower trailing to d

TABLE XXXIV.

BONDED JOINT ANALYTIC AL/EXPERIMENTAL DESIGN DA1A SUMMARY FOR 0/±45 COMPOSITE ADHERENDS

Adherend Sondline Stress. N*. N/ply. f_A ksi r_B -psi Max Bondline rax, psift Stress. t_A , ksi t_B -psi t_B -psi t_A -psi <th>Adherend Bondine N. Niph. In Max. Pier Bondine Max Bondine Paluer Sires. Normal Stress. Normal S</th> <th>Unit Load Transfer, N. 1b/in.</th> <th>linit Load Ameri</th> <th>A viorage</th> <th>V. 1.52.00</th> <th></th> <th></th> <th>ייים ייים ייים ייים ייים ייים ייים ייי</th> <th></th> <th>diucs</th> <th></th> <th></th> <th></th> <th></th>	Adherend Bondine N. Niph. In Max. Pier Bondine Max Bondine Paluer Sires. Normal Stress. Normal S	Unit Load Transfer, N. 1b/in.	linit Load Ameri	A viorage	V. 1.52.00			ייים ייים ייים ייים ייים ייים ייים ייי		diucs				
89.38(B) 3.357 4.677(A.T.) 520 98.8(B) 3.590 5.926(¹) 1,737(¹) 0.01 A.T. 109.32(F) 1,254(T) 1.105.54(T) 1.105.54(T) 1.105.54(T) 1.105.54(T) 1.105.54(T) 1.105 1.23.0(T) 1.105 1.10	4,677(A.T.) 520 98.8(B) 3.590 5.926(1) 1,737(1) 60.01 A.T. 5,548(A.T.) 617 119.5(B) 1,730 6,339'2) 1,469'2) 0.01 A.T. 1,615(C.F.) 180 37.0 1,105 7,477(3) 3.921(3) 0.01 C.F. 6,986(C.F.) 411 78.8(B) 4,600 5,910'4) 2,214(4) 0.20 C.F. 9,042'A.T.) 532 99.2(B) 3,580 5,802'5) -961'5) 0.02 C.F. 7,474(C.F.) 440 86.5(B) 3,480 5,993'6) 2,156'6) 0.02 C.F. 9,430(C.F.)1‡ 555 105.2(B) 3,750 6,501'7) -1,676'8) 0.02 C.F. 11,18H(C.F.) 341 64,9(B) 2,800 (5,155'48) -1,676'8) 0.02 C.F. 11,18H(C.F.) 334 42.5(B) 2,800 (5,155'48) -1,676'8) 0.02 C.F. 11,18H(C.F.) 334 42.5(B) 2,800 (5,155'48) 43.06'(E) -1,576'(B) -1,576'(B) -1,576'(B) -1,576'(B) </td <td>,</td> <td></td> <td>Average Adherend Stress. f_A . ksi</td> <td>Average Bondline Ib/in. 7B. psi</td> <td>N. Ib/in/ply</td> <td>N/ply.</td> <td></td> <td>rB. psi</td> <td>Max Bondline Shear Stress, Tmax Psit</td> <td>Corresponding Max Bondline Normal Stress, omax Psit</td> <td></td> <td>Actual Failure Type**</td> <td>L/14</td>	,		Average Adherend Stress. f_A . ksi	Average Bondline Ib/in. 7B. psi	N. Ib/in/ply	N/ply.		rB. psi	Max Bondline Shear Stress, Tmax Psit	Corresponding Max Bondline Normal Stress, omax Psit		Actual Failure Type**	L/14
19.23(11) 1.456(12) 1.466(2) 1.466(2) 1.466(2) 1.466(2) 1.466(2) 1.466(2) 1.12.54(11) 1.2.54(11) 1.2.54(11) 1.2.54(11) 1.438 1.615(C.F.) 1.80 37.0 1.105 7.477(3) 3.921(3) 0.01 C.F. 18.99(B) 3.443 9.042'A.T.) 3.52 99.2(B) 3.580 5.802(5) -961(5) 0.20 C.F. 109.11(B) 3.883 9.430(C.F.)±‡ 5.55 105.2(B) 3.750 6.501(7) -1.153(7) 0.02 A.T./L.S 107.91(Ti) 5.802(F.) 341 64.9(B) 2.864 11.181(C.F.) 3.445(M) 4.442(M) 4.445(M) 4.455(M)	5.548(A.T.) 617 119.5(B) 19.5(B)	1		89.98(B)	3,357	4.677(A.T.)	520	98.8(B)	3,590	5,926(1)	1,737(1)	0.01	A.T.	7.72
48.05(B) 1,438 1,615(C.F.) 180 37.0 1,105 7,477(3) 3.921(3) 0.01 C.F. 78.94(B) 4,614 6,986(C.F.) 411 78.8(B) 4,600 5,910 ⁽⁴⁾ 2,214 ⁽⁴⁾ 0.20 C.F. 96.62(B) 3,443 9,042(A.T.) 532 99.2(B) 3,580 5,992 ⁽⁶⁾ -961 ⁽⁶⁾ 0.02 A.T. 86.35(B) 5,457 7,474(C.F.) 440 86.5(B) 5,480 5,993 ⁽⁶⁾ 2,156 ⁽⁶⁾ 0.20 C.F. 109.11(B) 3,883 9,430(C.F.)1‡ 555 105.2(B) 3,750 6,501 ⁽⁷⁾ -1,153 ⁽⁷⁾ 0.02 A.T./L.S 107.91(Ti) 3,883 9,430(C.F.)1‡ 555 105.2(B) 2,870 8,171 ⁽⁸⁾ -1,676 ⁽⁸⁾ 0.02 A.T./L.S 42,40(B) 2,864 11,181(C.F.) 234 42.5(B) 2,880 (S-1)5,524(E) +3,018(E) 0.10 A.T 42,40(B) 2,864 11,181(C.F.) 234 42.5(B) 2,832(B) <	1,615(C.F.) 180 37.00 1,105 7,477(3) 3,921(3) 0.01 C.F. 6,986(C.F.) 411 78.8(B) 4,600 5,910(4) 2,214(4) 0,20 C.F. 9,042'A.T.) 532 99.2(B) 3,80 5,802(5) -961(5) 0,02 A.T. 7,474(C.F.) 440 86.5(B) 5,480 5,993(6) 2,156(6) 0,20 C.F. 9,430(C.F.)± 555 105.2(B) 3,750 6,501(7) -1,153(7) 0,02 A.T./L.S 5,792(C.F.) 341 64,9(B) 2,80 (S.115,524(B) +3,018(E) 0,02 C.F 11.18H(C.F.) 234 42,5(B) 2,80 (S.115,524(B) +3,018(E) 0.10 A.T 5,432(E) 43,25(B) +3,067(E) +3,067(E) +3,067(E) A.T	562		93.24(11) 09.32(B) 12.54(Ti)	2,531	5,548(A.T.)	617	119.5(B)	2,750	6,339 ⁽²⁾	1,469 ⁽²⁾	0.01	A.T	46.44
78.94(B) 4,614 6,986(C.F.) 411 78.8(B) 4,600 5,910(4) 2,214(4) 0.20 C.F. 96.62(B) 3,443 9,042(A.T.) 532 99.2(B) 3,580 5,802(5) -961(5) 0.02 A.T. 1 86.35(B) 5,457 7,474(C.F.) 440 86.5(B) 5,480 5,993(6) 2,156(6) 0.20 C.F. 109.11(B) 3,883 9,430(C.F.)±‡ 555 105.2(B) 3,750 6,501(7) -1,153(7) 0.02 A.T./L.S 1 58.27(B) 2,485 5,792(C.F.) 341 64.9(B) 2,870 +3,018(E) 0.02 C.F 1 42.40(B) 2,864 11,181(C.F.) 234 42.5(B) 2,880 (S-1)5,524(E) +3,018(E) 0.10 A.T 1 42.40(B) 2,864 11,181(C.F.) 234 42.5(B) 2,8425(M) 44,25(M) A5,532(E) A5,67(E) A7,67(E)	6.986(C.F.) 411 78.8(B) 4.600 5.910 ⁽⁴⁾ 2.214 ⁽⁴⁾ 0.20 C.F. 9.042 ⁽⁴⁾ 3532 99.2(B) 3.580 5.993 ⁽⁶⁾ 2.156 ⁽⁶⁾ 0.02 A.T. 1 7.474(C.F.) 440 86.5(B) 3.750 6.501 ⁽⁷⁾ -1.153 ⁽⁷⁾ 0.02 A.T./L.S 1 0.430(C.F.) 341 6.49(B) 2.870 8.171 ⁽⁸⁾ -1.676 ⁽⁸⁾ 0.02 C.F 1 1.181(C.F.) 234 4.25(B) 2.880 (S-1)5.224(E) 4.3067(E) 4.35(M) 5.432(E) 7.3067(E) 7.3067	232		48.05(B)	1,438	1,615(C.F.)	180	37.0	1,105	7,477(3)	3,921(3)	10.0	C.F.	33.419
96.62(B) 3.443 9,042'A.T.) 532 99.2(B) 3.580 5.802(5) -961(5) 0.02 A.T. 1 86.35(B) 5,445 7,474(C.F.) 440 86.5(B) 5,480 5,993(6) 2,156(6) 0.20 C.F. 109,11(B) 3,883 9,430(C.F.)‡‡ 555 105.2(B) 3,750 6,501(7) -1,153(7) 0.02 A.T./L.S 1 88,27(B) 2,485 5,792(C.F.) 341 64.9(B) 2,870 8,171(8) -1,676(8) 0.02 C.F. 1 42,40(B) 2,864 11,181(C.F.) 234 42.5(B) 2,880 (5-1)5.5.24(E) +3.018(E) 0.10 A.T. 1 42,40(B) 2,864 11,181(C.F.) 234 42.5(B) (5-1)5.5.24(E) +3.067(E) A.5.32(E)	9,042'A.T.) 532 99.2(B) 3.580 5,802 ⁽⁵⁾ -961 ⁽⁵⁾ 0.02 A.T. 1 7,474(C.F.) 440 86.5(B) 5,480 5,993 ⁽⁶⁾ 2,156 ⁽⁶⁾ 0.20 C.F. 9,430(C.F.) 11 555 105.2(B) 2,870 8.171 ⁽⁸⁾ -1,676 ⁽⁸⁾ 0.02 C.F 1 5,792(C.F.) 341 6,49(B) 2,880 (S-1)5.524(E) +3.018(E) 0.10 A.T 1 11.181(C.F.) 234 4.2.5(B) 2,880 (S-1)5.524(E) 4.3.018(E) 0.10 A.T 1 5,432(E) 4.3.067(E) 4.3.067(E)	413	m	78.99(B)	4,614	6,986(C.F.)	411	78.8(B)	4.600	5,910(4)	2,214(4)	0.20	C.F.	8.552
86.35(B) 5,457 7,474(C.F.) 440 86.5(B) 5,480 5,993(6) 2,156(6) 0.20 C.F. 109,11(B) 3,883 9,430(C.F.)±± 555 105.2(B) 2,870 6,501(7) -1,153(7) 0.02 A.T./L.S 1 107.91(Ti) 58.27(B) 2,485 5,792(C.F.) 341 64.9(B) 2,870 8,171(8) -1,676(8) 0.02 C.F 1 42.40(B) 2,864 11,181(C.F.) 234 42.5(B) 2,880 (S-1)5,524(E) +3,018(E) 0.10 A.T 1 14.25(M) (S-2)4,436(M) -455(M) -455(M) 5,432(E) +3,067(E) 1.3,067(E)	7,474(C.F.) 440 86.5(B) 5,480 5,993(6) 2,156(6) 0.20 C.F. 9,430(C.F.)±‡ 555 105.2(B) 3,750 6,501(7) -1,153(7) 0.02 A.T./L.S 1 104.3(Ti) 0.4.9(B) 2,870 (S-1)5,524(E) +3.018(E) 0.10 A.T 1 11.1814(C.F.) 234 42.5(B) 2,880 (S-1)5,524(E) 43.05(E) 43.05(E) 3,432(B) 5,432(B) 5,4	5	512	96.62(B)	3,443	9,042'A.T.)	532	99.2(B)	3,580	5,802(5)	-961(5)	0.02	A.T.	13.935
109,11(B) 3.883 9,430(C.F.)11 555 105.2(B) 3,750 6,501(7) -1,153(7) 0.02 A.T./L.S 107,91(Ti) 58.27(B) 2,485 5,792(C.F.) 341 64,9(B) 2,870 8,171(8) -1,676(8) 0.02 C.F 42,40(B) 2,864 11,181(C.F.) 234 42,5(B) 2,880 (5-1)5,524(E) +3,018(E) -4,53(M) -	9,430(C.F.)±± 555 105.2(B) 3,750 6,501(7) -1,153(7) 0.02 A.T./L.S 5,792(C.F.) 341 64,9(B) 2,870 8,171(8) -1,676(8) 0.02 C.F 11,181(C.F.) 234 42.5(B) 2,880 (5-1)5,524(E) +3,018(E) 0.10 A.T 4,425(M) -435(M) -455(M) 3,432(E) +3,067(E) 3,432(E)	4	438	86.35(B)	5,457	7,474(C.F.)	440		5.480	5,993(6)	2,156(6)	0.20	C.F.	7.897
58.27(B) 2.864 11.181(C.F.) 234 42.5(B) 2.880 (S-1)5.524(E) 43.5(M) 44.25(M) 5.432(E) 43.06(M) 5.432(E) 43.06(M)	5.792(C.F.) 341 64.978) 2.870 8.171(8) -1,676(8) 0.02 C.F. 11.181(C.F.) 234 42.5(B) 2.880 (S-1)5.524(E) +3.018(E) 0.10 A.T. 4,425(M) -458(M)	S	575	09,11(B)	3,883	9,430(C.F.)±‡	555	105.2(B)	3,750	6,501(7)	-1,153(7)	0.02	A.T./L.S	14.045
42.40(B) 2.864 11.181(C.F.) 234 42.5(B) 2.880 (S-1)5.524(E) +3.018(E) 0.10 A.T 44.25(M) 44.25(M) 45.8(M) 45.8(M) 5.432(E) +3.067(E)	11.181fC.F.) 234 42.5(B) 2.880 (S-1)5.224(E) +3.018(E) 0.10 A.T 4,425(M) —45.8(M) —45.8(M) (S-2)4,436(M) —45.8(M) 5,432(E) +3.067(E)	3	305	07.91(11) 58.27(B)	2,485	5,792(C.F.)	341	64.9(B)	2.870	8,171(8)	-1,676(8)	0.02	C.F	11.274
		232	2	42.40(B)	2.864	11,181(C.F.)	234	42.5(B)		(S-1)5_524(E) 4,425(M) (S-2)4,436(M) 5,432(E)	+3,018(E) -458(M) -455(M) +3,067(E)	0.10	A.T	14.805
	2) I failure, Ref. Table XXVII r both	= +1672												
	d failure, Ref. Table XXVII													
	p 2) id failure, Ref. Table XXVII													
	p 2) Id failure, Ref. Table XXVII													
	id fablure, Ket. Table XXVII	of st	M: middle of joint overlap (end of step 1, start of step 2)											
2)	or both	ਲ ਦ	in land.	e, Kei. Jabi	e XXVII									
2) failure, Ref. Table XXVII	or both													
2) failure, Ref. Table XXVII		resin o	r both											
2) failure, Ref. Table XXVII														

FIGURE 151. DESIGN CURVES FOR SINGLE, DOUBLE, AND STEP-LAP JOINTS

of allowable, urves generated above directly in design it will be necessary to use a design factor K which would be

$$K = \frac{(DA)}{f_s} = \frac{N_D'}{N_f'} \tag{173}$$

where

(DA) = Design allowable value, N'_D lb/in./ply (use eq. 172)

 $f_s = \text{Mean value of strength } N'_f \text{ lb/in./ply}$

To use the curve in this fashion the design load in lb/in./ply would be input on the ordinate to curve intersection and the L/t value read on the abscissa at that point. This L/t value would then have to be adjusted as follows:

$$(L/t)_D = \frac{1}{K} (L/t)_f = \frac{N_f'}{N_D'} (L/t)_f$$
 (174)

where

 $(L/t)_D$ = Design value

 $(L/t)_f$ = Mean value read from curve

If the input load is above the horizontal cutoff line (as in Fig. 151) a stronger orientation or composite material must be used.

When using the design predictive formulas or computer programs, the distance between assumed zero bending moment points on the adherend on each side of the joint (quantity a) must be known or very larget as compared to the overlap length c. That is, the ratio c/a must be known or small (in the latter case it can be assumed to be zero).

Design ultimate allowables can be calculated based on the nonlinear design/analysis formulae prediction values. These values are used as mean strength values and can be applied to most any joint design which is or can be broken into single, double, or step lap configurations. If the users then have a large backlog of lap joint test data, typical experimentally based statistical parameters will also be available. These can be used with the predicted mean strength to calculate bonded joint design ultimate allowables for most any adherend/adhesive and configuration combination.

Where insufficient basic adherend or adhesive material properties are known, the use of these formulas will be advantageous. This can be done by using assumed "effective" properties ‡, chosen on a trial and error basis to predict failure loads and correlate them with the results from a few simple lap joint tests. Such a procedure will provide a powerful technique for mean joint strength prediction. However, such "effective" properties may be substantially different from the real ones.

Since the predicted mean strength and type of failure of the complex joints (see Section X.5) is reasonably accurate when compared with experimental results, design allowables calculated from such mean strength predictions should also be accurate. Therefore, the use of the standard 1.5 factor of safety on design limit loads to obtain design ultimate loads should be sufficient to provide ample operational safety for static load conditions at room temperature.

^{*}This would also be the N_f' value used in equation 172 to obtain the N_D' value.

 $[\]pi_{C} a$ should be 1/50 or smaller.

In the form of the Ramberg-Osgood three parameter stress-strain curve values for the adherend orthotropic lamina or isotropic material and the adhesive.

SECTION XII

RESULTS, CONCLUSIONS AND RECOMMENDATIONS

XII.1. GENERAL

The purpose of this section is to provide a brief summary of the results and conclusions which have become evident in the completion of the research and in addition to delineate problem areas which were identified. Recommendations for future research along lines related to this effort but further advanced are also covered. Results and Conclusions are covered in Section XII.2, whereas Section XII.3 covers the Recommendations.

XII.2. RESULTS AND CONCLUSIONS

In brief, the results of this research have been the development and verification of nonlinear design/analysis techniques for certain types of bonded joints covering static failure in several principal modes at room temperature. The methods developed have proven to be accurate when using basic material behavior characteristics and appropriate empirical bending factors.* The use of assumed adhesive properties in these formulae can be a reasonably accurate technique as long as some simple joint experimental data are available for use in calculating "effective" properties for comparison. Through the use of appropriate failure criteria for the adherend and adhesive in the nonlinear joint formulae the analytical methods become design-predictive equations which can be used to predict joint mean strength, failure type, and as a basis for average strength curves. Example curves have been generated and their design use explained.

Bonded single, double, and step lap, and scarf joints were studied resulting in nonlinear design/analysis techniques being developed for the first three types of joints, whereas only the differential equations were set up for the scarf joint. Comparative results based on typical joint models were generated by both the theoretical methods and the standard nonlinear discrete element techniques. The latter took considerably more computer time to run than the former one. After the theory was developed to the point where good agreement was obtained with the discrete element method, an experimental effort was initiated to provide final verification of the nonlinear analysis methods.

For the three lap configurations, composite adherends of three fiber orientations with two adhesive systems were utilized in the test program along with two adherend material combinations. A total of 203 simple specimen joints were made and tested along with the necessary characterization tests on the composite and titanium adherend materials. In addition, six of these simple specimens were selected for "special" investigation and were extensively strain gauged in the joint overlap area. Data from these special specimens were correlated with the theoretical behavior prediction methods. The large quantity of simple specimen results allowed the theory to be checked out against many geometric, configuration, and material parameter variations as well as failure mode changes. Finally, two larger, complex joints were designed, built, instrumented, and tested as a final check on the analytical methods. These complex specimens were extensively strain gauged for study of the joint behavior under loading. Experimental verification was successful.

Every effort was made to achieve high quality repeatable processing, inspection, and testing. Existing specifications were utilized as much as possible with new specifications written as required. Basically the philosophy was to (1) rigidly monitor and control the incoming material and its subsequent storage, (2) provide complete traceability records on all materials, processing, and testing, and (3) inspect the fabricated materials and joints as necessary with visual and automatic ultrasonic and radiographic methods. Specimen fabrication and instrumentation was accomplished using the same rigid processing and inspection controls utilized in laminate and joint manufacture. Testing was accomplished in accordance with appropriate specifications with all testing conducted at a constant strain rate and with load and strain data automatically recorded both digitally and with autographic continuous plots. Data reduction and analyses were designed to fit the analytical method verification requirements, causing many details to

^{*}Necessary because the small deflection assumption was inadequate.

be recorded and analyzed which have not usually been considered important in the past. The detailed traceability records were extremely useful in the data analysis task.

A survey and statistical study of bonded lap joint data in the literature was made early in the program to provide guidance on the experimental effort and insight into the generation of design information.

Problem areas encountered were (1) low and variable boron fiber quality from one prepreg batch to the next, (2) inability to machine steps into boron laminate adherends in preparation for step lap joint fabrication and (3) the difficulty of developing rigorous scarf joint analysis equations. Another small problem was that a closely controlled bondline thickness was not achieved in the experimental effort. Tools for achieving lap shear assemblies with controlled, consistent, and repeatable bondline thicknesses were designed but not fabricated and used because of program economic limitations.

In summary, the above research program accomplished all objectives delineated in Section I. The goal of being able to predict all principal failure modes was only partially achieved, however. Cohesive fracture of the bondline or composite surface resin and adherend net section tension failure are the principal modes predictable by the nonlinear equations developed herein. Interlaminar shear (or longitudinal splitting) failure is not predictable by these methods. Neither is interface (adhesive/adherend or composite surface resin/fiber) failure but it is doubtful that this should be considered an acceptable primary mode of failure since it is related to poor materials and processing quality.

The nonlinear joint analysis techniques developed utilize the Ramberg-Osgood three-parameter stress-strain curves on the adhesive and adherend materials as inputs into program in order that behavior may be predicted throughout the elastic and inelastic range to failure. Maximum stress theory was used for both adhesive and titanium adherend failure prediction, whereas maximum strain theory was used for laminate adherend failure prediction. When these were input the analysis computer programs became design predictive programs for mean strength estimation. At predicted failure load the program prints out the bondline adhesive shear and normal stresses at numerous stations along the overlap length along with individual iamina and isotropic adherend stresses at these points. This provides a complete stress map of the overlap area in digital form. Such information will be useful in joint design analysis as well as post-failure critiques.

XII.3. RECOMMENDATIONS

The areas which need further study are (1) the adaptation of these nonlinear techniques to predict interlaminar shear (and longitudinal splitting) failure*. (2) modification of the nonlinear formulas to predict interface failure and correlate it with some materials or processing property which depicts qual? level, (3) modification of plane strain assumption used in the formulas to predict correct transverse composite adherend lamina strains for various orientations and (4) determination of the small deflection theory's adequacy for nonlinear analysis developed herein. The equations need experimental verification for compressive and combined loadings and for other composite materials which exhibit different behavior patterns such as graphite/epoxy, glass/epoxy, and metal matrix composites. Design analysis application studies need to be made which would check out these formulas against typical airframe component structural joints which have been or could be experimentally evaluated.

A need for experimental study of the detailed joint behavior under repeated loadings† is also indicated from the test results of this program. Such loadings, expanded into time and temperature dependent spectrums and/or environmental exposures typical of airframe applications would yield much information on the time-temperature dependent and/or environmental effects change of bonded joint behavior under various loadings. It might also be

^{*}Ref (21) presents methods of predicting interlaminar shear bonded joint failure in the elastic range, however, report was received too late for consideration in present program.

Ref (21) also presents considerable fatigue data on bonded joints but was received too late for consideration herein.

possible to relate these behavior changes to a pattern of changes in "effective" input properties and then use the non-linear formulae as predictive methods.

An effort to complete development of the nonlinear analysis equations for the scarf joint is also needed along with the necessary discrete element and experimental checks. This effort would round out the nonlinear methods available to cover all the basic types of load transfer joints used in airframe structures.

LIST OF REFERENCES

- Jensen, W. R., Falby, W. E., and Prince, N., "Matrix Analysis Methods for Anistropic Inelastic Structures," Fechnical Report AFFDL-TR-65-770, April, 1966.
- 2. Ramberg, W. and Osgood, W. R., "Description of Stress-Strain Curves by Three Parameters," NACA TN 902, July 1943.
- 3. Spiegel, M. R., Applied Differential Equations, Prentice-Hall, 1958.
- 4. Salmon, M., Berke, L., and Sandhu, R., "An Application of the Finite Element Method to Elastic-Plastic Problems of Plane Stress," AFFDL-TR-68-39, May 1970.
- Dastin, S., "Joining and Machining Techniques," from Lubin, G., Handbook of Fiberglass and Advanced Plastic Composites, Van Nostrand Reinhold, p 581 (1969).
- 6. Imrie, G. C. and Bell, J. E., "Test Techniques for Determination of Adhesive and Interlaminar Properties." Interim Technical Report 3 to AFFDL, Contract F33615-70-C 1292 by Boeing, December 1970.
- 7. Lackman, L. M., "Aircraft Structural Design Manual," AFML Advanced Composites Division, WPAFB Report NA-68-321-9, December 1968, pp 26, 38 and Report NA-68-321-12, pp 57, 74, 84, March 1969.
- 8. Dastin, et al, "Advanced Composi e Wing Structures-Materials Qualitative Properties, Final Report," Grumman T. R. AC-ME-ST 8082, October 1968,
- 9. Lehman, G. M., et al., Quarterly Reports Nos. 1-7, "Investigation of Joints and Cutouts in Advanced Fibrous Composites of Aircraft Structures," June 1967-January 1969, McDonnell-Douglas.
- Chessin, N. and Curran, V., "Preparation of Aluminum Surfaces for Bonding" in Bodnar, M., Applied Polymer Symposium No. 3, Structural Adhesive Bonding, 1966.
- 11. Kutscha, D. and Hofer, K. E., "Feasibility of Joining Advanced Composite Flight Vehicle Structure," AFML-TR-68-391, January 1969—IITRI.
- 12. Grimes, G. C., et al, "Investigation of Structural Design Concepts for Fibrous Aircraft Structures," AFFDL-TR-67-29, Volumes I and III, February 1968 and November 1967 SwRI.
- 13. ASTM-E-178-68, "Recommended Practice for Dealing With Outlying Observations." 1971.
- 14. Grimes, Glenn C., "Stress Distribution in Adhesive Bonded Lap Joints," SAE Paper 710107, January 1971 (SAE Congress Paper), also published in 1971 SAE *Transactions*.
- 15. Final Draft and First Edition, Structural Design Guide for Advanced Composite Applications.
- 16. Sessler and Weiss, AFML-TR-68-115, Vol. II, "Non-Ferrous Light Metal Alloys," January 1968.
- 17. Tsai, S. W., "Structural Behavior of Composite Materials," NASA-CR-71, July 1964.
- 18. Gehring, R. W. and Hughes, E. J., et al, "Evaluation of Environmental and Service Conditions on Filamentary Reinforced Composite Structural Joints and Attachments," Technical Management Report No. 4, May 1970, Cn F33615-69-C-1436.

LIST OF REFERENCES (Cont'd)

- 19. Rutherford, J. L., et al, "Analysis of Mechanical Properties of Metlbond 329," Final Report on Grumman P. O. No. 9-84247.
- 20. 2nd Edition, Structural Design Guide for Advanced Composite Applications.
- 21. Fehrle, Albert C., et al, "Development of an Understanding of the Fatigue Phenomena of Bonded and Bolted Joints in Advanced Filamentary Composites," AFFDL-TR-71-44, June 1971.

APPEN DICES

		Page
A	Scarf Joint Equations	A-1
В	Standard Constituent Properties of Boron-Epoxy Laminates	B-1
С	Specifications	C-1
D	Ultrasonic Thru-Scan and Radiograph Inspection Records on Boron/Epoxy Adherend Panels	D-1
E	Selected Typical Adherend Material Tensile Stress-Strain Curves and Photomicrographs	E-1
F	Complete Experimental Data on Bonded Joints	F-1
G	Nonlinear Design/Analysis Program Failure/Behavior Prediction Results on Simple Joints	Ğ-1
П	Northmear Formula Predictions of Complex Joint Failure Loads/Behavior	11-1

APPENDIX A

SCARF JOINT EQUATIONS

SCARF JOINT EQUATIONS

The scarf joint is idealized as shown in Fig. A. I, the cement thickness being exaggerated for clarity.

We take the coordinate axes, x and z, as shown. The displacement $u_0 = u_0(x, z)$ is the x displacement of the right face of the adhesive and $u_1 = u_1(x, z)$ is the x displacement of the left face.

The displacements u_0 and u_1 are the x displacements of the centroids of the upper and lower adherends, as shown. The z displacements of the upper and lower adherends are w_0 and w_1 taken positive in the positive z directions. The displacements w_0 and w_1 are the usual "bending deflections" of the adherends.

For the present, we shall assume the material to be elastic-isotropic and consider conditions of plane strain.

Consider the free body of Fig. A.2. Equilibrium of the upper element requires that

$$V_{U} + dV_{U} - V_{U} + \frac{\tau dx}{\cos \frac{\theta}{2}} \sin \frac{\theta}{2} - \frac{\sigma dx}{\cos \frac{\theta}{2}} \cos \frac{\theta}{2} = 0$$

οr

$$\frac{dV_{U}}{dx} = \sigma - \tau \tan \frac{\theta}{2} \tag{1}$$

and

$$dN_{U} - \frac{\tau dx}{\cos \frac{\theta}{2}} \cos \frac{\theta}{2} - \frac{\sigma dx \sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = 0$$

FIGURE A. 1. SCHEMATIC OF SCARF

FIGURE A.2. FREE BODY OF SCARF

or

$$\frac{\mathrm{dN}_{\mathrm{U}}}{\mathrm{dx}} = \tau + \sigma \tan \frac{\theta}{2} \tag{2}$$

Similarly, for the lower element we have

$$\frac{\mathrm{dV}_{L}}{\mathrm{dx}} = \sigma - \tau \tan \frac{\theta}{2} \tag{3}$$

$$\frac{dN_L}{dx} = -\left(\tau + \sigma \tan \frac{\theta}{2}\right) \tag{4}$$

Equations (1) and (3) give

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(V_{\mathrm{U}}-V_{\mathrm{L}}\right)=0$$

So

$$V_{\overline{U}} - V_{\overline{J}} = constant$$
 (5)

If we take moments about a transverse section, that is, a section normal to the \mathbf{x} axis, we get

$$M_{U} + N_{U} \frac{h_{U}}{2} - M_{L} - N_{L} \frac{h_{L}}{2} - P \frac{(h_{U} - h_{L})}{2} \cos \frac{\theta}{2} = 0$$

Οľ

$$M_{U} - M_{L} + \frac{(N_{U}h_{U} - N_{L}h_{L})}{2} - 2P_{X} \sin \frac{\theta}{2} = 0$$
 (6)

Considering the deformation of the cement, we have

$$\tau = \frac{G}{t} \cos \frac{\theta}{2} \left[(\overline{u}_0 - \overline{u}_1) - (v_0 - v_1) \tan \frac{\theta}{2} \right]$$
 (7)

$$\sigma = \frac{E_C}{t} \cos \frac{\theta}{2} \left[\left(\overline{u}_0 - \overline{u}_1 \right) \tan \frac{\theta}{2} + \left(v_0 - v_1 \right) \right]$$
 (8)

where G and E_{C} are the shear and tensile moduli of the cement. Noting that

$$h_U = \frac{H}{2} + 2x \tan \frac{\theta}{2}$$
, $h_L = \frac{H}{2} - 2x \tan \frac{\theta}{2}$

or

$$\frac{dh_{U}}{dx} = -\frac{dh_{L}}{dx} = 2 \tan \frac{\theta}{2}$$
 (9)

and

$$u_0 = u_0 + \frac{h_U}{2} \frac{dw_0}{dx}, \quad \overline{u}_1 = u_1 + \frac{h_L}{2} \frac{dw_1}{dx},$$

$$v_0 = w_0, \quad v_1 = -w_1$$
(10)

we get

$$\tau = \frac{G}{t} \cos \frac{\theta}{2} \left[(u_0 - u_1) + \frac{h_U}{2} \frac{dw_0}{dx} - \frac{h_L}{2} \frac{dw_1}{dx} - (w_0 + w_1) \tan \frac{\theta}{2} \right]$$
 (11)

$$\sigma = \frac{E_C}{t} \cos \frac{\theta}{2} \left[(u_0 - u_1) \tan \frac{\theta}{2} + \left(\frac{h_U}{2} \frac{dw_0}{dx} - \frac{h_L}{2} \frac{dw_1}{dx} \right) \tan \frac{\theta}{2} + \left(w_0 + w_1 \right) \right]$$
(12)

Differentiation gives

$$\frac{d\tau}{dx} = \frac{G}{t} \cos \frac{\theta}{2} \left[\frac{d}{dx} \left(u_0 - u_1 \right) + \frac{1}{2} \left(h_U \frac{d^2 w_0}{dx^2} - h_L \frac{d^2 w_1}{dx^2} \right) \right]$$
 (13)

$$\frac{d\sigma}{dx} = \frac{E_C}{t} \cos \frac{\theta}{2} \left[\frac{d}{dx} \left(u_0 - u_1 \right) \tan \frac{\theta}{2} + \frac{1}{2} \tan \frac{\theta}{2} \left\{ h_U \frac{d^2 w_0}{dx^2} - h_L \frac{d^2 w_1}{dx^2} \right\} + \sec^2 \frac{\theta}{2} \frac{d}{dx} \left(w_0 + w_1 \right) \right]$$
(14)

We assume the following strain-displacement and moment curvature relations for the adherend

$$N_{U} = \frac{Eh_{U}}{1 - v^2} \frac{du_0}{dx} \tag{15}$$

$$N_{L} = \frac{Eh_{L}}{1 - v^{2}} \frac{du_{1}}{dx}$$
 (16)

$$M_{U} = -\frac{Eh_{U}^{3}}{12(1-v^{2})} \frac{d^{2}w_{0}}{dx^{2}}, \qquad M_{L} = -\frac{Eh_{L}^{3}}{12(1-v^{2})} \frac{d^{2}w_{1}}{dx^{2}}$$
(17)

where E is the elastic modulus of the adherend and v is Poisson's ratio.

From Equations (15), (16), and (17), we get

$$\frac{du_0}{dx} - \frac{du_1}{dx} = \frac{(1 - v^2)}{E} \left(\frac{N_U}{h_U} - \frac{N_L}{h_L} \right)$$

$$h_{U} \frac{d^{2}w_{0}}{dx^{2}} - h_{L} \frac{d^{2}w_{1}}{dx^{2}} = -\frac{12(1-\nu^{2})}{E} \left(\frac{M_{U}}{h_{U}^{2}} - \frac{M_{L}}{h_{L}^{2}}\right)$$
(18)

$$\frac{d^2w_0}{dx^2} + \frac{d^2w_1}{dx^2} = -\frac{12(1-v^2)}{E} \left(\frac{M_U}{h_U^3} + \frac{M_L}{h_L^3} \right)$$

Substitution into Equations (13) and (14) gives

$$\frac{d\tau}{dx} = \frac{(1 - v^2)G}{Et} \cos \frac{\theta}{2} \left[\left(\frac{N_U}{h_U} - \frac{N_L}{h_L} \right) - 6 \left(\frac{M_U}{h_U^2} - \frac{M_L}{h_L^2} \right) \right]$$
(19)

$$\frac{d\sigma}{dx} = \frac{(1 - v^2)E_C}{Et} \sin \frac{\theta}{2} \left[\left(\frac{N_U}{h_U} - \frac{N_L}{h_L} \right) - 6 \left(\frac{M_U}{h_U} \cdot \frac{M_L}{h_L^2} \right) + \frac{2E \csc \theta}{(1 - v^2)} \frac{d}{dx} \left(w_0 + w_1 \right) \right] \tag{20}$$

Differentiation of Equation (20) and substitution from the third of Equations (18) gives

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}x^{2}} = \frac{(1-\nu^{2})E_{C}}{Et} \sin\theta \left[\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{N_{U}}{h_{U}} - \frac{N_{L}}{h_{L}} \right) - 6 \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{M_{U}}{h_{U}^{2}} - \frac{M_{L}}{h_{L}^{2}} \right) - 6 \cos\theta \left(\frac{M_{U}}{h_{U}^{3}} + \frac{M_{L}}{h_{L}^{3}} \right) \right]$$

$$- 6 \cos\theta \left(\frac{M_{U}}{h_{U}^{3}} + \frac{M_{L}}{h_{L}^{3}} \right)$$
(21)

From Equations (1) and (3), we get

$$\sigma - \tau \tan \frac{\theta}{2} = \frac{1}{2} \frac{d}{dx} (V_U + V_L)$$
 (22)

and, from Equations (2) and (4), there results

$$\tau + \sigma \tan \frac{\theta}{2} = \frac{1}{2} \frac{d}{dx} (N_U - N_L)$$
 (23)

Solving Equations (22) and (23) for σ and τ , there results

$$\tau \sec^2 \frac{\theta}{2} = \frac{1}{2} \left[\frac{\mathrm{d}}{\mathrm{dx}} \left(V_{\mathrm{U}} + V_{\mathrm{L}} \right) + \tan \frac{\theta}{2} \frac{\mathrm{d}}{\mathrm{dx}} \left(N_{\mathrm{U}} - N_{\mathrm{L}} \right) \right] \tag{24}$$

$$\tau \sec^2 \frac{\theta}{2} = \frac{1}{2} \left[\frac{d}{dx} \left(N_U - N_L \right) - \tan \frac{\theta}{2} \frac{d}{dx} \left(V_U + V_L \right) \right]$$
 (25)

Since

$$V_U = \frac{dM_U}{dx}$$
, $V_L = \frac{dM_L}{dx}$

these equations may be written in the form

$$\sigma = \frac{1}{2}\cos^2\frac{\theta}{2}\left[\frac{d^2}{dx^2}\left(M_U + M_L\right) + \tan\frac{\theta}{2}\frac{d}{dx}\left(N_U - N_L\right)\right]$$
 (26)

$$\tau = \frac{1}{2} \cos^2 \frac{\theta}{2} \left[\frac{\mathrm{d}}{\mathrm{dx}} \left(N_{\mathrm{U}} - N_{\mathrm{L}} \right) - \tan \frac{\theta}{2} \frac{\mathrm{d}^2}{\mathrm{dx}^2} \left(M_{\mathrm{U}} + M_{\mathrm{L}} \right) \right]$$
 (27)

We note the following identities:

$$\frac{N_{U}}{h_{U}} - \frac{N_{L}}{h_{L}} = \left(\frac{1}{h_{U}} - \frac{1}{h_{L}}\right) (N_{U} + N_{L}) + (N_{U} - N_{L}) \left(\frac{1}{h_{U}} + \frac{1}{h_{L}}\right)$$
(28)

$$\frac{M_{U}}{h_{U}^{2}} - \frac{M_{L}}{h_{L}^{2}} = \left(\frac{1}{h_{U}^{2}} - \frac{1}{h_{L}^{2}}\right) (M_{U} + M_{L}) + (M_{U} - M_{L}) \left(\frac{1}{h_{U}^{2}} + \frac{1}{h_{L}^{2}}\right)$$
(29)

Since

$$N_{U} + N_{L} = P \cos \frac{\theta}{2}$$
 (30)

and, from Equation (6),

$$M_{U} - M_{L} = 2Px \sin \frac{\theta}{2} + \frac{1}{4} [(N_{U} + N_{L})(h_{U} + h_{L}) + (N_{U} - N_{L})(h_{U} + h_{L})]$$

$$= 3Px \sin \frac{\theta}{2} + (N_{U} - N_{L}) \frac{H}{4}$$
(31)

Equations (28) and (29) give

$$\frac{N_{U}}{h_{U}} - \frac{N_{L}}{h_{L}} = \left[-4Px \sin \frac{\theta}{2} + (N_{U} - N_{L})H \right] \frac{1}{h_{U}h_{L}}$$

$$\frac{M_{U}}{h_{U}^{2}} - \frac{M_{L}}{h_{L}^{2}} = \frac{1}{h_{U}^{2}h_{L}^{2}} \right\} - 4x \tan \frac{\theta}{2} d(M_{U} + M_{L}) + \left[3Px \sin \frac{\theta}{2} + N_{U} - N_{L} \right] \frac{H}{4}$$

$$\times (h_{U}^{2} + h_{L}^{2}) \right\}$$

Substitution of these results in Equations (19) and (21) gives

$$\begin{split} \frac{\mathrm{d}\tau}{\mathrm{dx}} &= \frac{(1-\nu^2)G}{\mathrm{Et}\; h_U h_L} \cos\frac{\theta}{2} \left[-4 \mathrm{Px}\; \sin\frac{\theta}{2} + \mathrm{H}(\mathrm{N_U} - \mathrm{N_L}) \right. \\ &\left. - \frac{6}{\mathrm{h_U} h_L} \left\{ -4 \mathrm{Hx}\; \tan\frac{\theta}{2} \left(\mathrm{M_U} + \mathrm{M_L} \right) + 3 \mathrm{Px} (\mathrm{h_U}^2 + \mathrm{h_L}^2) \sin\frac{\theta}{2} \right. \\ &\left. + \frac{\mathrm{H}}{4} \left(\mathrm{h_U}^2 + \mathrm{h_L}^2 \right) (\mathrm{N_U} - \mathrm{N_L}) \right\} \right] \end{split}$$

$$= \frac{(1 - v^{2})G}{Et h_{U}h_{L}} \cos \frac{\theta}{2} \left\{ - \left[2 + \frac{9(h_{U}^{2} + h_{L}^{2})}{h_{U}h_{L}} \right] P_{X} \sin \frac{\theta}{2} + \left[1 - \frac{3}{2} \frac{(h_{U}^{2} + h_{L}^{2})}{h_{U}h_{L}} \right] H(N_{U} - N_{L}) + \frac{24H_{X}}{h_{U}h_{L}} \tan \frac{\theta}{2} (M_{U} + M_{L}) \right\}$$

$$= \frac{d^{2}\sigma}{dx^{2}} = \frac{(1 - v^{2})E_{C}}{Et} \sin \frac{\theta}{2} \left[\frac{d}{dx} \left\{ - \frac{4P_{X}}{h_{U}h_{L}} \sin \frac{\theta}{2} + \frac{H}{h_{U}h_{L}} (N_{U} - N_{L}) \right\} \right]$$

$$= -6 \frac{d}{dx} \left\{ - \frac{4xH}{h_{U}^{2}h_{L}^{2}} \tan \frac{\theta}{2} (N_{U} + M_{L}) + \frac{(h_{U}^{2} + h_{L}^{2})}{h_{U}^{2}h_{L}^{2}} \left(3P_{X} \sin \frac{\theta}{2} + \frac{H}{h_{U}^{2}h_{L}^{2}} \right) \right\}$$

$$+ (N_{U} - N_{L}) \frac{H}{4}$$

$$= -3 \cos e^{-\theta} \left\{ \left(\frac{1}{h_{U}^{3}} + \frac{1}{h_{L}^{3}} \right) (M_{U} + M_{L}) + \left(\frac{1}{h_{U}^{3}} - \frac{1}{h_{U}^{3}} \right) \left[3P_{X} \sin \frac{\theta}{2} + \frac{H}{4} (N_{U} - N_{L}) \right] \right\}$$

$$= + \left(\frac{1}{h_{U}^{3}} - \frac{1}{h_{U}^{3}} \right) \left[3P_{X} \sin \frac{\theta}{2} + \frac{H}{4} (N_{U} - N_{L}) \right] \right\}$$

$$= (32)$$

Differentiation of Equations (26) and (27) and introduction into Equations (32) and (33) yield

$$\frac{1}{2}\cos^{2}\frac{\theta}{2}\left[\frac{d^{2}}{dx^{2}}\left(N_{U}-N_{L}\right)-\tan\frac{\theta}{2}\frac{d^{3}}{dx^{3}}\left(M_{U}+M_{L}\right)\right]$$

$$=\frac{(1-\nu^{2})G}{Et\ h_{U}h_{L}}\cos\frac{\theta}{2}\left\{-\left[2+\frac{9(h_{U}^{2}h_{L}^{2})}{h_{U}h_{L}}\right]Px\sin\frac{\theta}{2}\right\}$$

$$+\left[1-\frac{3}{2}\frac{(h_{U}^{2}+h_{L}^{2})}{h_{U}h_{L}}\right]H(N_{U}-N_{L})+\frac{24Hx}{h_{U}h_{L}}\tan\frac{\theta}{2}\left(M_{U}+M_{L}\right)\right\} (34)$$

$$\frac{1}{2}\cos^{2}\frac{\theta}{2}\left[\frac{d^{4}}{dx^{4}}\left(M_{U}+M_{L}\right)+\tan\frac{\theta}{2}\frac{d^{3}}{dx^{3}}\left(N_{U}-N_{L}\right)\right]$$

$$=\frac{(1-v^{2})EC}{Et}\sin\frac{\theta}{2}\left\{\frac{d}{dx}\left[-\frac{4Px}{h_{U}h_{L}}\sin\frac{\theta}{2}+\frac{H}{h_{U}h_{L}}\left(N_{U}-N_{L}\right)\right]$$

$$-6\frac{d}{dx}\left[-\frac{4xH}{h_{U}^{2}h_{L}^{2}}\tan\frac{\theta}{2}\left(M_{U}+M_{L}\right)+\frac{(h_{U}^{2}+h_{L}^{2})}{h_{U}^{2}h_{L}^{2}}\left(3Px\sin\frac{\theta}{2}+\frac{H}{h_{U}^{2}}\right)\right]$$

$$+\left(N_{U}-N_{L}\right)\frac{H}{4}\right]$$

$$-3\cos^{2}\frac{\theta}{dx}\left[\frac{d}{dx}\left(N_{U}+M_{L}\right)+\frac{H}{h_{U}^{2}}\right]$$

$$+\left(N_{U}-N_{L}\right)\frac{H}{4}\right]$$

$$+\left(\frac{1}{h_{U}^{3}}-\frac{1}{h_{L}^{3}}\right)\left\{3Px\sin\frac{\theta}{2}+\frac{H}{4}\left(N_{U}-N_{L}\right)\right\}\right]$$

$$+\left(\frac{1}{h_{U}^{3}}-\frac{1}{h_{L}^{3}}\right)\left\{3Px\sin\frac{\theta}{2}+\frac{H}{4}\left(N_{U}-N_{L}\right)\right\}\right\}$$
(35)

Equations (34) and (35) represent the two basic differential equations in $(M_U + M_L)$ and $(N_U - N_L)$ that are to be integrated. The coefficients in the equations are variable, being functions of the coordinate x. The integral of these equations is not known.

BIBLIOGRAPHY

Lubkin, J. L., <u>J. Appl. Mech.</u>, 9A, Vol. 24, p. 255.

Lubkin, J. L. and Reissner, E., <u>Transactions ASME</u>, Vol. 78, pp. 1213-1221, August 1956.

"Aircraft Structural Design Manual--Advanced Composites," First Quarterly Progress Report, Contract F33615-68-C-1489, L. A. Div. N. A. R. Corp., June 1968.

APPENDIX B

STANDARD CONSTITUENT PROPERTIES OF BORON-EPOXY LAMINATES*

*Taken from 1st Edition Structural Design Guide for Advanced Composite Applications, August 1969.

TABLE B.1. BORON FIBER PROPERTIES (RT)

Property	Value
Diameter	0.004275 in.
Density	0.100 lb/in. ³
α	2.7×10^{-6} in./in./°F
ν	0.20
Ftu	450.0 ksi
$\mathbf{E^{t}}$	58.0 $ imes$ 10 ⁶ psi
G	24.2 × 10 ⁶ psi

TABLE B.2. 104 GLASS SCRIM/5505 LAMINATE PROPERTIES (RT)

Property	Value
Density	
^a T	$9.5 \times 10^{-6} \text{ in./in./}^{\circ}\text{F}$
αL	5.8×10^{-6} in./in./°F
$\mathtt{F}^{\mathrm{tu}}_{\mathrm{L}}$	37.8 ksi
F ^{tpl} L	33.3 ksi
$\mathtt{E}^{t}_{\mathtt{L}}$	3.2×10^6 psi
$^{ u^t_{ m LT}}$	0.151 (at 5000 μ -in./in. strain)
$^{\rm F^{tu}_T}_{\rm T}$	13.41 ksi
$_{ ext{F}}^{ ext{tp}\ell}_{ ext{T}}$	9.00 ksi
${\scriptscriptstyle\mathrm{E}}_{\mathrm{T}}^{t}$	1.7×10^6 psi
$^{ m v^t}_{ m TL}$	0.120 (at 5000 μ -in./in. strain)
F ^{cu} L	45.36 ksi
$_{ ext{F}}_{ ext{L}}^{ ext{cp}\ell}$	8.88 ksi
$\mathtt{E}_{\mathrm{L}}^{c}$	$4.69 \times 10^6 \text{ psi}$
v ^C LT	0.32 (at 5000 μ -in./in. strain)
F ^{su}	11.11 ksi
$_{ ext{F}}$ sp ℓ	2.10 ksi
G	0.933 × 10 ⁶ psi

TABLE B. 3. 2387 EPOXY-NOVOLAK RESIN MATRIX (RT)

Property	Value
Density	0.044 lb/in. ³
α	27 × 10 ⁻⁶ in./in./°F
F ^{tu}	4.184 ksi
$_{ m F}^{ m tp}$	2.92 ksi
Et	0.487 × 10 ⁶ psi
vt	0.31 (at 5000 μ -in./in. strain)
Fcu	23.52 ksi
$_{\mathtt{F}}^{\mathtt{cp}\ell}$	8.88 ksi
Ec	0.560 × 10 ⁶ psi
ν ^C	0.387 (at 5000 μ -in./in. strain)
F ^{su}	1.54 ksi
G	0.191 ksı

APPENDIX C
SPECIFICATIONS

SwR1-S3-101

GENERAL SPECIFICATION LAMINATE ORIENTATION CODE

Date: March 19, 1970
Prepared by: G. Wolfe
Approved by: J. Frimes

SwRI-S3-101 GENERAL SPECIFICATION

Laminate Orientation Code

1.0 Purpose

The purpose of this specification is to establish a Standard Laminate Code that will provide the user with a clear, concise, and common notation when dealing with Laminated Composite Materials.

2.0 Applicable Documents

"Structural Design Guide for Advanced Composite Applications,"
First Edition, Section 1.5.

3.0 Scope

This specification presents only the sections of the Standard Laminate Code that are applicable to the work being done presently at the Institute.

For the complete code and a condensed code, see the document referenced above.

Note: This specification is intended to be used in specifying laminate orientation. It does not imply any preferred laminate design.

4.0 Standard Laminate Code

The Standard Laminate Code is used to describe a specific laminate uniquely. It is most simply defined by the following detailed description of its features.

4.1 Standard Code Elements

- a. Each lamina is denoted by a number representing

 its orientation in degrees between its filament direction
 and the X-axis (principal axis).
- b. Individual adjacent laminae are separated in the code

 by a slash, if their angles are different.
- c. The laminae are listed in sequence from one laminate face to the other, with brackets indicating the beginning and end of the code.
- d. Adjacent laminae of the same angle are denoted by a numerical subscript.
- e. A subscript T to the bracket indicates that the total

Code
[45/0/90 ₂ /30] _T

4.2 Positive and Negative Angles

When adjacent laminae are of the same angle but opposite in sign, the appropriate use of + and - signs is employed. Each + or - sign represents one lamina and supersedes the use of the numerical subscript, which is used only when the directions are identical. Positive angles are assumed clockwise:

Laminate	Code
45 0 -60 -60 30	[45/0/-60 ₂ /30] _T
45 -45 -30 +30 0	$\left[\frac{+45}{+}30/0\right]_{T}$
45 45 -45 -45 0	[45 ₂ /-45 ₂ /0] _T
45 -45 45 -45 0	$[(\pm 45)_2/0]_T$, or $[\pm 45/\pm 45/0]_T$
45 -45 -45 45 0	[+745/0] T
45 -45 -45 45 45	[+++++45] _T or
45 -45 -45 45	$\left[\frac{\pm \mp \pm \pm \pm 45}{45}\right] T$

Note that, in condensing signs, the sign of the center lamina of an odd number is left uncombined.

4.3 Symmetric Laminates

Symmetric laminates with an even number of laminae still list the laminae in sequence, starting at one face, but stopping at the plane of symmetry instead of continuing to the other face. A bracket subscript S indicates only one-half of the laminate is shown:

Symmetric laminates with an odd number of laminae are coded the same as even symmetric laminates, except that the center lamina, listed last, is overlined to indicate that half of it lies on either side of the plane of symmetry:

4.4 Sets

Repeating sequences of laminae are called sets and are enclosed in parentheses. A set is coded in accordance with the same rules which apply to a single lamina:

Laminate		Code
45		
0 (SET	, 1
90		$[(45/0/90)_2]_S$
45	SET	
0) SE I	
90	SYM	or
90		<u>F</u>
) 0	SET	
45		r 1
90	}	$[45/0/90]_{2S}$
0	SET	
45]	

on the other hand:

Laminates are often composed of a single repeated set. When it is desired to refer to the laminate in a generic sense, or when the number of sets has yet to be determined, as in the sizing stages of design, the coefficient n will be used with the bracket subscripts T and S instead of a numerical coefficient.

4.5 Quasi-Symmetric Laminates

Laminates which would be symmetrical about the center plane, except that the halves of corresponding pairs of laminae are of different sign, are said to exhibit quasi-symmetry. These are coded in the same manner as symmetrical laminates except for the introduction of the bracket subscript Q in place of the subscript S. The direction of the positive angle is assumed clockwise:

SwRI 03-301

PROCESS STANDARD FOR BORON/RESIN COMPOSITE LAMINATE FABRICATION

SwRI 03-301

PROCESS STANDARD FOR BORON/RESIN COMPOSITE LAMINATE FABRICATION

SUBJECT: Manufacture and Quality Control of Advanced Composite Laminate - Fiber Glass/Epoxy and Boron/Epoxy.

SCOPE: This process standard establishes the procedures for the fabrication and quality control of laminates of fiber glass/epoxy and boron/epoxy composites to be used in the evaluation of simple bonded joints.

REFERENCES:

- (1) Division X "Processes and Effects," Structural Design Guide

 for Advanced Composite Applications, Final Draft, November

 1968.
- (2) "Structural Airframe Application of Advanced Composite

 Materials," Volume VII, Manufacturing Methods, by B. E.

 Chitwood and J. R. Stovall, The Fort Worth Division of General

 Dynamics, Technical Report AFML-TR-69-101, May 1969.
- (3) "Advanced Composite Wing Structure," Grumman Aircraft
 Engineering Corporation, AF Contract F33615-68-C-1301,
 First Quarterly Progress Report, May 1968.

MATERIALS AND EQUIPMENT:

- (1) NARMCO 1581-5505 preimpregnated glass fabric.
- (2) NARMCO Boron/5505 epoxy preimpregnated material.
- (3) 181 and 120 dry glass fabric.
- (4) TX-1040 glass fabric (Teflon's treated) Pallflex Corporation.

- (5) 0.001-inch Mylar® film duPont.
- (b) Coroprene (rubber-asbestos) Armstrong Cork.
- (7) Herblease (EXL-1894/10% Vydax AR) Mitchell Rand/duPont.
- (8) M and N 50-ton Hydraulic Press (350°F).
- (9) Air-circulating oven (500°F).
- (10) Molds.

PROCEDURE:

- A. <u>General</u> Requirements for fabrication of glass fabric/epoxy and boron/epoxy composites are as follows:
 - (1) Temperature and Humidity Control the layup area shall be maintained at 70°F ± 5°F and humidity shall be 65 percent or less.
 - specified in process instructions. The ply orientation shall be accurate to ±0.50°. Butt joints of 3-in, boron tape shall be staggered 0.500 in, ± 0.030 in, between plies. During layup, the fiber spacing of the tape shall be inspected. Loose fibers, crossovers, and gaps greater than 0.030 in, wide shall be repaired. All discrepancies shall be noted and approval for further use must be obtained from the project leader.
 - (3) To avoid penetration of boron filaments into the flesh or clothing, the following safety precautions must be used:
 - (a) A coat of nylon or equivalent tight-weave, smooth surface fabric must be worn at all times when working with boron/epoxy materials.

- (b) Safety glasses or eye shield shall be worn when cutting boron filaments.
- (c) Immediately remove any filament which penetrates the flesh to prevent the filament from breaking off or penetrating deeper.

B. Laminating Requirements

- Preparation The steel tooling plate shall have two coats of EXL/10 percent Vydax, each coat allowed to dry at least 10 min, followed by buffing. If steel restraining dams are to be used for boundary supports, they should also be coated with two applications of EXL/10 percent Vydax. Steel dams shall be 1/2 in. in width and within +0 005/-0.000 in. of the final laminate thickness. If Coroprene dams are used, 1/8-in, thick Coroprene shall be used for 8 through 19 plies of boron/epoxy or half that number of glass fiber/epoxy plies.
- (2) Laminates to be subsequently bonded shall have a peel ply which is to be placed on the tool surface. If a partial peel ply is to be used, the remainder of the tool surface shall be covered with Teflon[®] film of the same thickness. Weight of the peel ply shall be recorded.
- (3) The lot number and roll number of the boron/epoxy or fiber glass epoxy used for the layup shall be recorded. Panel weight before and after curing shall be entered on the quality control sheet for each panel. The preimpregnated materials shall be maintained in

- 0°F storage until ready for use. The material is then removed from storage and allowed to warm to room temperature while sealed in the polyethylene bag.
- (4) Hand layup shall use Mylar templates for each ply of material. Each template is scribed with the panel size, shape, and fiber orientation. It will be identified with the panel number, dash number, and ply number counting from the tool. Tooling pin holes will locate the template on the tool. Boron or fiber-glass material is laid up on each template, trimmed to the trim lines, and covered with transparent polyethylene film. The material is taped in place and inspected with template layup. If the panel is not laid up immediately, the material is returned to 0°F storage until ready for layup. Templates are allowed to come to room temperature before protective sheet is removed. The Mylar® template is placed (material down) on the tool next to the tooling pins. The template is rubbed over the layup to create intimate contact with the tool or preimpregnated peel ply, The template is removed by rolling from one corner with the axis of the roll perpendicular to the fiber direction. Each subsequent ply is located in the same way. The exposed material is inspected after each template is removed.
- (5) When the last ply of material has been laid up on the tool, a boundary support is located around the periphery of the panel.

 This boundary must be within 0.06 in. (maximum) of the edge of

the panel. It must be slightly thicker than the cured panel. Resin (liquid and at 85 psi) must not be able to leak under the boundary support or through the corners. All resin loss must be vertical. The layup is then covered with one ply of TX-1040 trimmed to fit within the boundary support. The required number of bleeder plies are trimmed to fit within the boundary support and are placed on the TX-1040. (One-ply, 120-dry glass fabric bleeder should be used for each 4 to 5 plies boron; one ply of 181 preimpregnated glass fabric is equal to the thickness of two plies of boron.) The entire layup is covered with thin Mylar® (0,0075 in, thick) which extends over the boundary support and is taped to the tool on two opposite sides. The Mylar[®] film is perforated on 2-in, centers which allow escape of gas, but prevent excessive loss of resin. The layup is then covered with one ply of 181-dry glass fabric large enough to completely cover the layup and overhang the tool by at least 4 in. on at least one side. This ply permits gas in the panel to vent to the atmosphere. A press plate (or upper tool plate) is placed over the layup and the panel is cured in the hot platen press. See Figure 30 on the following page.

- (6) The panel is cured at a pressure of 85 psi with temperature cycle as follows:
 - (a) 200°F for 2 hr

- 1. Separator Cloth (TX 1040) or Peel Ply
- 2. Boron or Glass Fabric Laminate
- 3. Separator Cloth (TX 1040)
- 4. Bleeder Plies (120 Glass Fabric -- 1 ply per 4 plies Boron or 2 plies Glass Fabric
- 5. Mylar Film (Overlaps Boundary Support)
- 6. 181 Vent Ply (Overlaps Tool)
- 7. Boundary Support

FIGURE 30. LAYOUT PROCEDURE

- (b) 300°F for 2 hr
- (c) 350°F for 2 hr

Allow panel to cool in press under 85-psi pressure until cooled to 125°F. If postcure is required, this may be accomplished in the air circulating oven.

(7) Trim laminate to remove resin flash and record panel weight.

Calculate and record the retained resin content on the quality

control sheet.

Quality Assurance Provisions

(1) Receiving - All materials shall be inspected upon receipt and before use in layup in accordance with provisions outlined in The Structural Design Guide for Advanced Composite Applications.

- (2) Process Control A quality control sheet shall be maintained for each panel to verify compliance to the requirements of this specification.
- Process Verification Panels A 15-ply, 3 × 9 in., 0° orientation process verification tab shall be molded simultaneously with each panel using the same lot of material unless excess (cutoff) panel material is available. The process verification tab shall be submitted for testing for flexural strength and horizontal shear strength at room temperature prior to machining of the test specimen laminate.
- (4) Nondestructive Test Requirements Each laminate, including test tabs, shall be inspected ultrasonically for voids, delaminations, and missing plies and results recorded on the quality control sheet. Each machined detail shall be visually inspected for filament orientation (or other nondestructive inspection) and results recorded on the quality control sheet.

SwRI 03-304

PROCESS STANDARD FOR ADHESIVE BONDING OF ADVANCED COMPOSITE LAMINATES AND METAL ATTACHMENTS

SwRI 03-304

PROCESS STANDARD FOR ADHESIVE BONDING OF ADVANCED COMPOSITE LAMINATES AND METAL ATTACHMENTS

SUBJECT: Bonding Techniques for Preparation of Physical Test Specimens and Bonded Joints from Fiber Glass/Epoxy or Boron/Epoxy Composite Laminates and Metal Attachments.

SCOPE: This process standard establishes the procedures for surface preparation of composite laminates and metal attachments and adhesive bonding and cure of joints or other attachments.

REFERENCES:

- (1) ASTM-2093-62T Preparation of Surfaces of Plastic for Adhesive Bonding.
- (2) ASTM-2651-67T Preparation of Metal Surfaces for Adhesive Bonding
- (3) "Investigation of Structural Design Concepts for Fibrous Air-craft Structures," by G. C. Grimes, B. J. Pape, and J. H. Ferguson, Southwest Research Institute, Technical Report AFFDL-TR-67-29-Vol. III, November 1967.

MATERIALS AND EQUIPMENT:

- (1) 3M Company AF-126-2-0.06 Film Adhesive
- (2) NARMCO Materials Division, Whittaker Corporation Metlbond - 329 Film Adhesive
- (3) 7075-T6 Clad Aluminum Alloy
- (4) 6A1-4V Titanium Alloy

- (5) 1581 Glass Fabric/5505 Epoxy Laminate
- (6) Boron/5505 Epoxy Laminate
- (7) Constant Temperature Bath (150 to 650°F)
- (8) Air-Circulating Oven (RT-500°F)
- (9) M&N 50-Ton Hydraulic Press/Heated Platens (RT-600°F).

CLEANING PROCEDURES:

- A. <u>Aluminum Alloy</u> Aluminum alloys are to be cleaned prior to applying the adhesive bonding agent by the following procedure.
 - (1) Wipe with solvent (MEK)
 - (2) Immerse in Oakite 61B (6 to 8 oz/gal) at 160 to 180°F for 5 min
 - (3) Rinse with R. T. running tap water for I min
 - (4) Immerse in Oakite 34M (8 to 16 oz/gal) at R. T. for 10 min
 - (5) Rinse with R. T. running tap water for 2 min
 - (6) Dry in air-circulating oven at 200°F for 5 to 10 min.
- B. <u>Titanium Alloy</u> Titanium alloys are to be cleaned prior to applying the adhesive bonding agent by the following procedure:
 - (1) Grit blast with fine grit
 - (2) Immerse in Oakite 31 (1 part Oakite to 2 parts water) at R. T. for 5 min
 - (3) Rinse with R. T. running tap water for 3 min
 - (4) Immerse in the following solution at R. T. for 2 min
 - (a) 841 ml HCL acid (Reagent Grade, 37 to 38 percent)
 - (b) 89 ml Orthophosphoric acid (Reagent Grade, 85 to 87 percent)

- (c) 63 ml HF acid (Reagent Grade, 60 percent)
- (5) Rinse with R. T. running tap water for 3 min
- (b) Air dry for 1 hr at less than 60 percent R. H. and above 65°F or oven dry for 15 min at 180° to 200°F.
- C. 1581 Glass Fabric or Boron/5505 Epoxy Laminates Glass fabric or boron laminates in epoxy matrix are cleaned for application of adhesive bonding agents as follows:
 - (1) Wipe with solvent (MEK or acetone)
 - (2) Sand with emery paper or sandpaper, fine grit, no larger than No. 400
 - (3) Wipe with clean, dry cloth
 - (4) Wipe with solvent (MEK or acetone).

BONDING PROCEDURES

- A. AF-126-2-0.06 Film Adhesive The AF-126 adhesive is a nitrile-epoxy, unsupported B-stage film adhesive manufactured by the 3M Company. It is used with EC-2320 Primer according to the following procedure
 - (1) Clean parts to be bonded (see Cleaning Procedures above)
 - (2) Apply EC-2320 Primer to bonding area by spray, brush or dip method
 - (3) Dry primer in air-circulating oven at 150°F for 30 min
 - (4) Cut film to be used from roll with separating liner in place
 - (5) Place film on primed part using the separating liner as a protective cover

- (b) Roll film onto part with a rubber roller insuring that no air is trapped between surface and film
- (7) Remove protective cover
- (8) Assemble parts
- (9) Cure bond at 50 psi and 275°F for 1 hr. Heat-up rate should not exceed 10°F/min and cool down under pressure to 200°F or below. Temperature should be monitored at glue line.
- B. Metlbond 329 Film Adhesive The MB-329 adhesive is modified epoxy, nylon cloth supported, B-stage film adhesive manufactured by NARMCO Materials Division, Whittaker Corporation. The bonding procedure is as follows
 - (1) Clean parts to be bonded (see Cleaning Procedures above)
 - (2) Apply primer to bonding area
 - (3) Dry primer
 - (4) Cut film adhesive to be used from roll with protective liners
 in place
 - (5) Remove paper separator and place film on part using plastic liner as a protective cover
 - (6) Roll film onto part with a rubber roller to insure that no air is trapped between surface and film
 - (7) Remove plastic protective cover
 - (8) Assemble parts

(9) Cure bond at 50 psi and 350°F for 1 hr. Heat-up rate should not exceed 10°F/min and cool down under pressure to 200°F or below. Temperature should be monitored at glue line.

SwRI S3-401

TEST STANDARD FOR FIBROUS COMPOSITE TENSILE SPECIMENS

SwRI S3-401

TEST STANDARD FOR FIBROUS COMPOSITE TENSILE SPECIMENS

1.0 PURPOSE

It is the purpose of this standard to provide a standardized technique for measuring the static tensile properties of boron/epoxy and graphite/epoxy composites subjected to a monotonically increasing load to failure.

2.0 APPLICABLE DOCUMENTS

"Structural Design Guide for Advanced Composite Applications, 2nd Edition, Sections 7.3.1 and 7.3.2.

3.0 SCOPE

This standard covers both boron/epoxy and graphite/epoxy materials up to 18 plies thick. Measurements shall include load/biaxial strain data to obtain biaxial stress-strain curves to failure under constant strain rate conditions.

4.0 SPECIMEN PREPARATION AND INSTRUMENTATION

Specimens are to be laid out and cut from a suitable size panel to the dimensions shown on the drawing below. Subsequent to cutting out the specimens, tabs are bonded onto the specimens in groups of three or more (see drawing below). Strain gages are to be as described on the drawing.

SwRI Standard Tensile Specimen for Composites

Notes:

- t1 boron/epoxy or graphite/epoxy specimen ≤ 18 plies thick unidirectional or angleply
- 2. t_2 fiberglass/epoxy tabs 0.100 ± 0.01 in. thick (approximately 12 plies 1581)
- 3. Strain gages Micro-Measurements 06-250BF-350
- 4. Tolerances: $X \pm 0.1$ $XX \pm 0.04$ unless noted otherwise Fractions $\pm 1/16$
- 5. t₃ boron/epoxy 0.96 in. wide sides to be smooth, splinter free and graphite/epoxy 0.75 in. wide flat and parallel within 0.015
- 6. Diamond cutoff wheel to be used in sizing specimens from panel
- 7. Tabs are bonded on in groups of three specimens or more at time with strip tabs leaving 3/8-in. spacing between specimens. Individual specimens are then sliced off by cutting through tab material.
- 8. Use stand Instron wedge grips with fine serrations.
- 9. Tab bonding: cure adhesive 1 hr at 275°F at 50 psi in heated platen press.

5.0 TESTING

In addition to the strain gages, a clamp on extensometer with a 2-in. gage length will be used on each specimen in order to control the strain rate during test and to provide back-up load-deflection curves should they be needed. Loading should be on a monotonically increasing basis at a constant strain rate of 0.00125 in./min. Load and strain shall be recorded automatically, either continuously or at known automatically spaced time intervals.

6.0 FAILURE ANALYSIS

All specimens shall be categorized as to failure type, such as (1) net section tension, (2) delamination, (3) diagonal shear, (4) brooming net section tension delamination, or (5) any combination thereof. Location of the failure shall be measured and recorded.* Any type failure between tabs is acceptable. Any type failure under the tabs is unacceptable. Complete failure description, type and location shall be recorded.

7.0 DATA REDUCTION

Raw data shall be appropriately processed to yield stress-strain data from which biaxial stress-strain curves may be plotted. Proportional limits, knees, moduli, Poisson's ratio, and ultimate strengths shall be

^{*}Photographs of typical failures shall be made for record.

located, calculated, and tabulated along with related strains. Complete computerized data reduction, plotting, and the tabulation of data is acceptable.

APPENDIX D

ULTRASONIC THRU-SCAN AND RADIOGRAPH INSPECTION RECORDS ON BORON/EPOXY ADHEREND PANELS

FIGURE D. 1 INSPECTION RECORD, B-12

FIGURE D. 2 INSPECTION RECORD, B-13

FIGURE D.3 INSPECTION RECORD, B-14

FANEL B-15, 1,	ply, 0°-90' 4/23/	70					
					11111111111		
[] [] [] [] [] [] [] [] [] []			1::::::::		11111111		
나녀를 보면 된 다음다름다			1:::::::				
1:1 5 m.::1::::::::	1::::::::::::::::::::::::::::::::::::::						
- d							
							· · · · · · · · · · · · · · · · · · ·
1::0:::::::::::::::::::::::::::::::::::	1						
1	::::::						
	11:::::::::::::::::::::::::::::::::::::		1:::::::	1:::::::			
1:55:3::1::4::5::	1::::::::::::::::::::::::::::::::::::::						
	FE + + 1 + + E TE -, T - T -	 	{	+11+ :::::::	: - :::::::		
	1						
Tourness of the second	1::::::::::::::::::::::::::::::::::::::		1:::::::::		- · · · · · - · · ·		
1 	A						
	HILLIAN HILL	11 11 11 H		=::::::::			-
1:2-:::::::::::::::::::::::::::::::::::	1:::::::		• • • • • • • • • • • • • • • • • • •				1.00
: r-	· · · · · · · · + · · · · · · · · · ·		: : : : : - 				l titt
1::2:::7:1::1::::::	1:::7::51:1:1:5:52:				Add to the		
			[111 4 1 1 53]	-			_

1 : 250 : : : : : : : : : : : : : : : : : : :	 				1.11		
1::::::::::::::::::::::::::::::::::::::		.					
	· · · · · · · · · · · · · · · · · · ·						1.1111
						1:5	~~
	-						
1:37:::::::::::::::::::::::::::::::::::							+
1:0::::::::::::::::::::::::::::::::::::	1::::::::::::::::::::::::::::::::::::::					4	
1:12:::::::::::::::::::::::::::::::::::	1:::::::::						
1: G			: : : : <u>-</u> : : -		1111	4-11-1	
1: 4:::::::::::::::::::::::::::::::::::	: : : : <u> : : : : : : : : : : : : : : : : : </u>	- I I - I - I - I					_ ~
<u>- 4</u> 2 11 11 11 11 11 11 11	** * .		: : : : : : : : : : :			170 17	
1:47	: H :: :: H+ H=: H+++	:: : H : . + [:::	1		111		
:@:::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::	11 - 4 - 1 - 3 - 1	111111		1.11		
H.C.							
T	: : : :				· . T ·		
176::::::::::::::::::::::::::::::::::::	1::+::::::::::::::::::::::::::::::::::		1:::::::1	::::::::			·
	A CANADA AT CALL	· · Last Last			-		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	: : : : : : : : : : : : : : : : : :					1	-
1:::	 	:: : : : : : : : : : 1			 		
I	L. L. L. L. L. L. L. L. L. L. L. L. L. L						

FIGURE D. 4 INSPECTION RECORD, B-15

FIGURE D. 5 INSPECTION RECORD, B-16

1		1	1	1				
					111111111	11111111		1111111111111
÷								::::::::::::::::::::::::::::::::::::
		1 : : : : : : : : : :	1					
							1111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 - 1 - 1 - 1 - 1 - 1 - 1	
	1	1::::::::::::::::::::::::::::::::::::::			11:1:1:1:1:1			18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1							
· · · · · · ·					1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	111111111	
i : :==				111111111		111111111	11:11:11:1	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1						нанин	
· · · · · · · · · · · ·						1 4 4 4 5 5 4 5 4 4	1111 -1 1111	[#####################################
				1 1 1 1 1 1 1 1 1 1 1 1 1		1111111111111111111111111111111111111	44 1 ⁴ 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 			1::::::::::::::::::::::::::::::::::::::			1 : : : : : : : : : : : : : : : : : : :		LL: L: : : : : : : : : : : : : : : : :
· · <u>· · ·</u> · · · · · ·						111111111	1,571 174747	attait ta a a ta a a a a a a a a a a a a
	· · · · · · · · · · · · · · · · · · ·			 		 	1	
	1::::::							111111111111111111111111111111111111111
						111111111]::::::::::::::::::::::::::::::::::::::	11111114
		1 1	u · u · i · i ·	1111111111	. , , bed	+ 6+ + + + + 16-	111111111	111111111111111111111111111111111111111
	[F::-7]	1 : : T: : : : : F	13:11:11:11:		T		IETH HILL	
	T		7 1 2 11			111111111111111111111111111111111111111		::::::::::::::::::::::::::::::::::::::
•••	1 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	l :: ! :	1 1-4-1		l - 		<u> </u>	
					+	111111	1	
. 🛏				1111 H 111			L <u></u> . <u></u>	
	l : : : : : : : : ! .	12:1:4:1:1:1	1:::::::::::			I 111111111 1 I-	(14111) (14 14	
ς					1		F F	· · · · · · · · · · · · · · · · · · ·
			1	17 12 11 11	1 44 1 44 1		1 47 144	# F-F-1 F F
.: <i>i±</i> -::::::::::::::::::::::::::::::::::::			H: +1::::::	H L+11 . i	::::: : ::		11111 :	::::::::::::::::::::::::::::::::::::::
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11.14
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					 	····
. =					7.5.1.5.111		I = : : : : : = I	
				<u>-</u>				<u></u>
			1-4 · · · · · · · ·	[· · · · · · · · · · · · · · · · · · ·	4	1		
* Make 'ed'								
						- ,		
111C11F4			1::::::::	1 : : : : : : * :				11111111111111111111111111111111111111
			-		<u> </u>			
1 - 5 - 7 - 7 - 7 - 7	4	<u>.</u>				7, <u>.</u>	1	
	: : : : : : : - 		1 : : : : : : : : : : : : -	L:::::::	· · · · · · · · · · · · · · · · · · ·	L::::::::	1 : : : : : : : : . 	202020000000
1. 16. 4						4:11:::::		-C. (-B.)
· · · · · · · · · · · · · · · · · · ·	🛨	F		[24F + + + + + + + + + + + + + + + + + + +		177.4.4	1	rada territoria de la com
114 5 1111					111111111		1111111111111	2111111111111111111
				: : : : : : : : :	111111111			
and a company							┝ ▗▗▗▗ ▗ ▗▗++-。┿	
	-						1	
	<u> </u>				1 05 01		+	
15.77 كالمرادا		7.7	L	LITE FOLLET	14 +11 +11 +			
					1			
					<u>F</u> ::::::		1	<u> </u>
						1 M 1		+ <u>. +</u>
	1 17 - 12 1		• • • • • • • • • • • • • • • • • • • •			T	37	
					111111111			

FIGURE D.6 INSPECTION RECORD, B-17

FIGURE D.7 INSPECTION RECORD, B-18

FIGURE D.8 INSPECTION RECORD, B-19

FIGURE D. 9 INSPECTION RECORD, B-21

FIGURE D. 10 INSPECTION RECORD, B-22

The state of the s	
	11111 11
The state of the s	N
The state of the s	
	1
	1 1
	T
	N. 1011
	40.11
	y : ! ! ! !
	2::::
הראים הנאומידינה ליייין ו	11.111
	15:11
Ed Kextrates have	
Checker free free free free free free free f	-
	4:::::
	→ ::::
	4
	311111
	*
	1:::::
	7
	y
	.
ာ ီစေစစ်ရှိစ်ရေး ရေရ <u>ှည်း</u> ခဲ့ခဲ့ ရေပြီး နေနဲ့ မြန်မို့ ရေရှိ ရေရှိနှစ် ရေရှိနှစ် ရှိနှစ် ရေးမြန်မို့ ရေးမြန်မို့ ရေးမြန်မို့ ရေရေးမြနေနှစ် မြန်မို့ ရေးမြန်မို့ မြန်မို့ ရေမြနေနှစ် မြန်မို့ ရေမြနေနှစ် မြန်မို့ ရေမြနေနှစ် မြန်မို့ ရေးမြနေနှစ် မြန်မို့ ရေ	
· Correst to the transfer of the transfer of the transfer of the transfer of the transfer of the transfer or transfer of the t	
: 몇: : : : : : : : : : : : : : : : : :	<i>5</i>
. 6	

FIGURE D. 11 INSPECTION RECORD, B-23
D-12

PANEL B-24, 9 plv, 0/±450

FIGURE D. 12 INSPECTION RECORD, B-24 D-13

FIGURE D. 13 INSPECTION RECORD, B-25
D-14

FIGURE D. 14 INSPECTION RECORD, B-26

FIGURE D. 15 INSPECTION RECORD, B-27
D-16

FIGURE D. 16 INSPECTION RECORD, B-28

APPENDIX E

SELECTED TYPICAL ADHEREND MATERIAL TENSILE STRESS-STRAIN CURVES AND PHOTOMICROGRAPHS

SPECIMEN T-142 (Tension) $\left[\left(0/90 \right)_4 / 0 \right]_{\mathrm{T}}$

FIGURE E.1 STRESS VS STRAIN

 $\sigma_{\rm u}$ = 58,454 psi $\epsilon_{\rm u}$ = 3,692 x 10⁻⁶ in./in. $\nu_{\rm p}$ = 0.0435 $\nu_{\rm s}$ = 0.0394 $\sigma_{\rm pl}$ = 30,096 psi $\epsilon_{\rm pl}$ = 1,691 x 10⁻⁶ in./in. $E_{\rm p}$ = 17.798 x 10⁶ psi $E_{\rm s}$ = 14.270 x 10⁶ psi

STRAIN (THOUSANDS OF MICRO-INCHES/INCH)

(a) 50X 0° Photo No. 15305

(c) 50X 90° Photo No. 15259

(b) 50N 0° Photo No. 15298

(d) 50N 90° Photo No. 15306

FIGURE E.2 PANEL B-14 PHOTOMICROGRAPHS

SPECIMEN T-163 (Tension) $\left[0/+45/0/-45/\overline{0}\right]_{s}$

FIGURE E.3 STRESS VS STRAIN

σu =89,287 (91,087)* psi cu =5,090 x 10⁻⁶ in./in. γp =0.6561 γs =0.6700 σpl =59,426 (61,226)* psi cpl =3,209 x 10⁻⁶ in./in. Ep =18.518 x 10⁶ (19.079)* psi Es =16.673 x 10⁶ (17.009)* psi

E-4

(a) 50X 90° Photo No. 15303

(b) 50X 90° Photo No. 15260

FIGURE E. 4 PANEL B-16 PHOTOMICROGRAPHS E-5

FIGURE E.6 STRESS VS STRAIN

SPECIMEN T-223 (Tension) $\left[(0/+45/0/-45)_{Q} / \overline{0} \right]_{S}$

 σ_u = 107,150 psi ε_u = 5,954 x 10⁻⁶ in./in. v_p = 0.7200 v_s = 0.7344 σ_{pl} = 64,875 psi ε_{pl} = 3,525 x 10⁻⁶ in./in. E_p = 18.404 x 10⁶ psi E_s = 17.399 x 10⁶ psi

STRAIN (THOUSANDS OF MICRO-INCHES/INCH)

(a) 50X 90° Photo No. 15308

(b) 50X 90° Photo No. 15296

FIGURE E.7 PANEL B-22 PHOTOMICROGRAPHS
E-8

FIGURE E.8 STRESS VS STRAIN

SPECIMEN T-233 (Tension) $\left[0/90_2/0 \right]_{4T}$

 $\begin{array}{lll} \sigma_{\rm u} &= 40,872 \; (41,672) * \; \rm psi \\ \varepsilon_{\rm u} &= 3,200 \; \rm x \; 10^{-6} \; \rm in./in. \\ \nu &= 0.0377 \; (0.0400) * \\ \\ \sigma_{\rm pl} &= 24,183 \; (24,983) * \; \rm psi \\ \varepsilon_{\rm pl} &= 1,634 \; \rm x \; 10^{-6} \; in./in. \\ E &= 14.800 \; \rm x \; 10^6 \; (15.289 \; x \; 10^6) * \; \rm psi \end{array}$

STRAIN (THOUSANDS OF MICRO-INCHES/INCH)

(b) 50X 0° Photo No. 14988

50X 0° Photo No. 14860

(a)

(c) 50X 90° Photo No. 14879

(d) 300X 0° Photo No. 14861

FIGURE E. 9 PANEL B-23 PHOTOMICROGRAPHS

(a) 75X 90° Photo No. 14881

(b) 75X 90° Photo No. 14984

FIGURE E. 11 PANEL B-25 PHOTOMICROGRAPHS
E-12

SPECIMEN T-264 (Tension) $\left[(0/\pm 45/0)_{q} \right]_{s}$

FIGURE E. 12 STRESS VS STRAIN

σu = 94,134 psi εu = 5,561 x 10⁻⁶ in./in. νp = 0.6849 (0.7138)* νs = 0.6914 (0.6944)* σp1 = 70,691 psi εp1 = 4,087 x 10⁻⁶ in./in. Εp = 17.296 x 10⁶ psi Εs = 16.284 x 10⁶ psi

STRAIN (THOUSANDS OF MICRO-INCHES/INCH)

*Ibid

(a) 50X 90° Photo No. 14986

(b) 50X 90° Photo No. 14987

FIGURE E.13 PANEL B-26 PHOTOMICROGRAPHS E-14

FIGURE E. 14 AVERAGE DATA STRESS VS STRAIN CURVE - 0.016 Ti 6A1-4V ANNEALED SHEET

AVERAGE DATA STRESS VS STRAIN CURVE - 0,032 Ti 6A1-4V ANNEALED SHEET FIGURE E, 15

FIGURE E, 16 AVERAGE DATA STRESS VS STRAIN CURVE - 0.045 Ti 6A1-4V ANNEALED SHEET

AVERAGE DATA STRESS VS STRAIN CURVE - 0.090 Ti 6A1-4V ANNEALED SHEET FIGURE E. 17

APPENDIX F COMPLETE EXPERIMENTAL DATA ON BONDED JOINTS

TABLE F. 1

DETAILED TEST DATA ON BONDED JOINTS

* .								,					-		-	1				-	_	***	1		
14								,				į									1			,	
2		-		!				i		٠,	-	-				_					-		-		-
allure I .pc			•			_	-		4	•	۳.	22		91	= -	So 13	- 2	- 15	54 15	5 20		7	92	, ,	
-	× 3	e a		9	,	9	£	Ť	4.5	5	7	33		*	32	-	90,	55	···	S 75	10	30 51	9.		=
- 1	Ē. 2	2 =	1.5	-	52	÷	;,	ŝ	- 05	07	20	9.0	0.	\$\$	5 ,	oc.	۲i	95	Ē	,		-	\$ 8	S 47	\$5
Strenge Strenge Fudure pu	1,480	1880	1,247	4,430	1897	4.679	1,593	3,514	3,425	3,542	3,510	3,608	3,235	3 473	3.439	7	4,397	b2 7 7	4,523	3,968	3,254	3,948	4.821	7 T	1 4 4
Adherend Strew at Fadure, pu	24,888	21.556	21,629.B1	23,511	25,435	25,889	34,945rB)	63,750	64,444	265"29	65.262(B)	17,921	16.067	17,056	12,015(8)	36.778	25,000	25.681	25.820tBt	33,333	27,333	33.166(B)	27.000		25.185(B)
Load. Brimi	1,120	0_6	1,(146.3	1,195	1.176	1,165	1,147	58- 1	1.740	1,825	or or	\$65.1	1,430	1.535	1.520	2,410	2225	2.250	2,245	1,000	820	999	1,215	0111	1.133
Ronded Joint Area in?	0.250	2,50	10,250	0.250	0.250	244	91 :	NOS O	10 S UN	0.5(0)	¥9, 0	0 442	377	ä	0 442	9050	£ 5.	803.0	050	0 252	0.252	0 252	0.252	, j	
Overlap Length in	0.250	0 350	1380	0.350	0.250	0.250	1320	2 x 0 250	2 v 0 250	2 + 0.250	2 (0.250	2 x 0 218	2 . 0 218	2 + 0 218	2 + 0.218	3 - 0.250	23.0250	23.0.250	23.0.250	0.250	0.250	0.250	0.250	0.250	239
Adherend CrossSection Area, in?	5,000	570.0	18177 H	1111	47111	57111	0.046(B)	450 p	0.027	0.022	0.027(B)	2 HO 42	080 0	060 0	(B)680 U	0,00	6 M() ()	580	180801	0.030	9K0 0	0.030	97() ()	970	0 (45(8)
Adherend II Adherend Width Phickness, in																	THE PERSON NAMED IN			0.032	0.032	0.032	0.045	2 to 10 to 1	2710
Adherend	000		<u>.</u>	6661	1 000	966 0	566 ti	1 015	1015	1014	101	1813	101	7 =	101	101	1013	1 015	1017	0101	1 (936	6 6	1 -105	0.50	600
Composite Adherend Thickness (Net)	0.047/0.045	25007000	2600 - 200	104 6 14	D1146 0 th	0.047 0.048	0.047 0.047	2 - 0 016 0 028	2 1 0 016 0 027	2 - 0 00016/0 027	2 - 0.016/0.02*3	2 - 0.046/0.088	3 * 0 046 0 088	2 × 0 0.46 0 087	2 + 0.046 0.088	2 * 0 045 '0 089	2 5 0 045 0 085	2 - 0 045 0 087	2 + 0.045 0.088	0.030	0.030	4030	9400	5770	0 045
Composite Adherend Panel Number	B-214 D	0.412.8	8-214 D	H 24 B	B-24 B	B-244/B	B-24A B	+	_	B 124 D, B-13K	B 12A D. B-13K	B-14J K, B-15K	B-14J-K, B-15K	b-14J K, B-15K	B-14J-K, B-15K	B-241/K, B-17A	B-24J N. B 17A	B-243 K. B-17A	B 24J K. B-17A	B-18(B-18C	34 P.	B-16D	B-16D	D-16D
Composite Adherend Fiber Cerentation	14101	ielo	10 0	10 -45 0 45 015	10 -45 0 45 0 5	10 -45 0 45 mis	10-45/0 45/01S	2 - [0] 31 - [0] 61	2 . [10] 31. [10] 61	2 v [0]31, [0]61	2 × 0 31 0 61	1 (0 8ms/0) = 7	1 (0 5(0) (0) 1 (0	1 [0,8(05/01] 1 [0,8(05/0] x 2	1 [0/806.01]	2 x [0/+45/0 45/0]S [(0/+45 0 45)Q/0]S	2 x 10 +45 0 45 01S 100+45 0 45 Q 01S	2 10 -45 0/-45/0[S	2 + [0, 45 0 45/0]s [(0 +45/0, 45/0][S	[0]67	19 67	19161	0/+45/0 45/0 S	10/-45 0 45/015	0:+45.0 45.0 5
Adherend	# # # #	2 22	- x		# B	×	н в	# E	g-6	£ £	æ	æ	##	¥.	an Ai	8:8	P-8	8-8	B-B	B-T	E 0	- L	B-1	F id	- H-
Adheuve Thickness	0.0010	0.0015	0100'0	0,000	0.0035	0.0025	0.000	0 (4015	0.0025	0.0028	Cimo Cimo	0.00034	0.18120	\$100 d	0.00.14	0 0025	\$500.0	0.0040	0.0033	0.0015	0 0040	0.0022	0.0050	\$1000	0.00 t
Adheave	AF 126.2	A 126.2	Al 126-2	41 126 2	41 126-2	AF 126.2	Al 126.2	41-1262	Al-126-2	AF -126 2	A1 126 2	51 120-2	AF-126-2	41 126 2	AI -126-2	AF 126 2	AF-126.2	Al -126.2	44 126-2	AF-126-2	AF-126-2	AI -126-2	AF-126-2	AF-176-2	AF-126-2
Between Labe	x - 7 7		E -			-1		!			 	4 E	4.1 16	4 - x	x	7 1 7	7	7 -	7 7	21.4	7 .	7.7			2.378
Joint	77	-	-	15	15	15	<u>,</u>	10	ī	Ξ.	10	1 d	10	10	14	70	14	1 G	10	S.L.	75	3.5	75		1 S
Specification	13411	1 1 1 1 1	154 16g	15421	15422	ISA 2.3	154 2 4vg	15 4 3 1	184 : 5	1543.3	ISA ANK	1.84.4.1	18442	1.54-4.3	1.5.4-4 AVE	13441	154.5.2	15453	154.5 AV	LS4-6-1	154.6.2	LSA-6 Avg	LSA-7-1	LSA-7-3	LSA-7 A·

TABLE F. I (Contid)

Vpc.th.atton Number	loint Dype	Length Between Labs	Adheave	Adhesse Thickness	Adherend	Composite Adherend Dher Ottentation	Composite Adherend Panul Number	Composite Adherend Thickness (Net)	Adherend	II Adherend Fhickness in	Adherend Crow Section Area, in	Overlap I ength, in	Bonded Junt Vrea m2	Failure Load Ibr m r	Adherend Stress at Failure psi	A nesse Stress of Ladure psi	i-	F	* Allure I spe	1	14
134 8 1	Ξ	41.5%	AF 126.2	01000	Ī	[4]tr]	H 18.3	600	, =	2 . 0 016	0.0295(B)	2 4 0 250	0.5084	2.685	91.0174Bb 82.6154Tu	187.5		95.	· -		
LSAAZ	Ξ	3.4 16	41-126-2	\$0000	± -	I V m	B 18.4	6.20 11	4	2.0016	0.0295(B)	2 - 0.250	0.5980	0,4,5	88.814(B)	. 18.		\$4	χ,		
15443	14	2.5 15	Al 126.2	01000	1 81	[*1]*]	F 1.3	×01:0		2+008	0.028484	2 + 0.288	4425	, r	86,972(B) 76,000 In	165.5	51	\$ 7 116	Ξ		
154-8 412	10	25.16	41 136 3	О поия	ж.	1414	H 13A	60.00	4	31.0116	0.0291689	2 + 0 239	0 4863	2,592	48,914(B)	4,371	-	23 . 47	#		
15491	D 1	7	AF-126-2	2000 0	<u>.</u>	the son of	HISA	4 4 0 0	2101	3+0045	.6800	2 + 0.250	5005 ()	051-1	050.21	2,650		+	<u>-</u>		
2 4 7	= =	7 .	41-126-2	0.0000	 x :	Lin sine in	H 163	11 (184)	5101	2 · 0 045	90600	23.0250	0605 0	2,055	22,682	4,037		-	-	-	
154 0 412	DI	7 7	Al 126-2	0 0002		10/909/01	H 14.1	, x 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, = =	2 . O 045	11.14.85	25 0 250	2 6000	2.215	25.028	4.356	15	200	2		
				. 1.		To e.a.							and the same		14 14 14 19 1	6			r		
154 [01]	10	-	41 126.2		18.	10,013 n 35-101	B 221	- KB ::	1.00	2 + 11 (42 5	0.0872	2 1 0 250	0 5030	2.2641	75.91	4.511	١.	-	2	+	ī
154 162	2 :	4 .	Al .126-2			(10 0 + 15 10 11 15 10)	B 233	4×0:0	1020	2 > 0.045	th the day	2 x 0 250	0.5100	192	26.281	4 627	2	25 40	15		
104 101	1 .	7	41 26-2	2000		100 0154 10 574 101	R-233	of oben	123.	510000	10800	2 4 0 250	0.5105	2,445	10.00	4 568		-	2	¥	
154 111 Avg	10	7	AF-126-2	0.00010		100 -45/0 45/0 015	H 223	N 401 ()	10	5H) (-1.2	11 1158 91 181	23.0.250	2.05.0	3.368	26,557(B)	644			77	7.4	
LSA-11-4	1.511	67 16	MB-329	0.0140	1 8	2 x [10 :45 010] c	B Jos C.	11 168	101	17.3	2017 111	3.013	1,1427	1 700	2000	1		-	:		
111 +51	1.511	67 16	MB-329	19100	÷	2 - 1.0/245 000 5	H IN C	1100	480 0	- 1 - c	1941	7.07	7510	140	111 6.36	4	. ~		9	-	
LS4 71 2	1.81	2	4B-129	0.6170	F T	2 . [10 :45.010] 5	H 2NF C	941 0	1:003	1110	0 Ibbs	9.7	2	1.10	10.276	7			2 ¥		. , !
15111 412	1 1	£ 6	MB-179	2 1 2 1	 	2 1 (0:45.0)0.5	3 . W. S	196	f onth	,	0 1660	4107	1 0281	0.51	11,024	, , ,	~	20. 5	5	•	. 92
				1		SiOnocatori	2	4	1000		1907	1707	90.	¥	10,44 30B)	, u			4.5	-	7
154 121	3 N 1 1 8 F	<u>c</u> 	MB-329	5, th c	H H	15(0 500 a)	H 214 H 264	0.086-0.086	<u> </u>		1 13/61	7,00	1 2843	650	2 83 2	1 150		. 5	: :	A	
154 122	N 1 88	<u>-</u>	WB.324	F. IHI 2	±	V(0to 54+ 101)	H 231 H 264	adin adin	7		5 08t 0	7,7	0.2851	31.6	10.834	0,2%	•	\$	3,	-	
184-123	3-84 L M	4 **	MB-329	n2.m16	# #	1510 200 01	B 253 B 263	24114 41146	<u> </u>		2 No 0	7.	5 F F C	y! 6	1 to 1 to 1	, , ,	7	<u>\$</u>	ā	÷	
LSA 12 4vc	3 St 1 M	4 7 16	VEB-124	0.00076	æ æ	140 50 01 140 54 01	B 23 X B 26 V	, van 11 (14 van 12 van	1 0413		18 44 B	41	. 4	ê	10,474(B)	4-1-1	,	15	5	* .	
154 13 1	115	7	MB 325	4 (10)	- 2	2 - (0) > 1	N 75. H	1083	57.0	, x 0 ::	0.108	2 0008	, M200	2,835	12,326	1 416		1	1		
1.54.1	1 24 1		MB 329	0.0030	- -	14 141 - 7		4411	4000	11 (196.3	43860	2 040	0,00	2,208	07. 1.	7				,	
184 13 3	1-51	7 -	MB 329	thuite !	1 4	3 · [a] · ;	H 250 M	, M110	777	1 000	1986	2 0405	277		11,564	1 146				2	
154-13 446	1.5.1	;;	MB-329	0 000 1	æ -	2. [8] 8.7		4800	1 444	1000	disso (B)	3.490	1 000 -	2.650	Su.SSMRD	1.3%	, ,,	9.	ÿ:	٤.	
1.54 ; 4.1	5.1	7 - 7	41 126 2	L	##	16[6]	B 211 H	0.043.0.045	1016	-	0.043	1 350	1,2700	1132.3	1315.0	4.5.28		=	+	2/12	1
154 142	s 1	7	AF 126.2		H H	17/6/	H 211 H	0.042 0.04×	7101		0.0426	1.56	1,00	4 5 35	130 011	7 103		2		Ç	
1.4-14-3	- s	***	A 1.20	0 4000	£ .	20,00	E .	0.042.0.045	\$10.1		4,700	1330	1,000	07.3	7.777	4.508		7	Ĵ.	Ξ	1
154-14 416	10	7	136-2	11 (1004.3	=	Talla1	H 3.H H		; = - -		0.04246(B)	1.250	1.20.	c nbs	131,928rBs	1 144	~	1.3	-	2	1

TABLE F. I (Cont'd)

Page 1					4.	A () A.	4.	1.			1	*					4		4001	467	_001		100	11
*		~	۲,	7					Î	Ξ				٧.	**	r:	~	S.		<u>:</u>		ç		=======================================
"f adure lype		,,	E	ę,		~	4	*		-			8,	35	50	×	2	£		2	-	4.		
	ļ				. =	2	~	-	*	ğ	2	8	٥٢	35	58		02	20		13 13		- 10		
-	24	ę	15	ş	3.0	·		4	1.	2	2	77	<u>g</u>	- 35	s,	<u></u>	8	ę,			-			
Adheuve Stress at Failure, pu	3.23k	3,007	3,074	3,108	3 980	10411	3.855	85458	4554	5223	÷	\$ 347	4,707	4,728	4.40	4.614	3,370	3,30%	3,246	3,307	3,471	3,167	3,432	1347
Adherend Sv.ess 31 Failure, psi	24.037	85,342	89,450	89.611.080	132,673	31 X, 25 L	128,454	11.08.24	£15	55,545	16. Tr	54,445/Bi	\$0,269	\$1,555	16.140	*. 358rB1	135,873(B)	133,175(B) 129,077(T)	131.053(B) 127,006(T)	133,366(B) 129,258(T))	92,4171B)	84,244(B) 87,938(T))	93,255(B) 95,295(T))	84.0.0.B1
Load.	3.19	3,815	3,900		4,020	4.085	3 9116	6,660	9.	14.8	4,555	77.7	150	3.1.5	el. 4	.018	4,280	4 195	4115	7.1.4	4.400	#10 *	4.355	3 74 6
Bonded Joint Area, in?	1 2062	1 2688	2688	5, 47	100101	1 0110	1.01 301	64114	1,446.1	7,88	****	0.8860	1.52 pc	¥7.15.	15235	15210	1.27(00)	1 2683	7.42 T	4467	2,0%	1,266.2	768h	7,4,1
Overlap I canth in	1.250	1.250	057.1	120	2 - 0.530	2 + 11 5/11	2 + 11 5:101		2.0484	21.0437		2.040	2 x 4 750	9.0 42	23.1.42	1 1 1 1 1 1 1	25.	25.	1.250	1.250	1.36.0		оў. Т	1 160
Adheren I From Section Area in 2	0.0436	0.044	10436	H lotter	. 10301	1111 1111	4115414	Harryno	1.40.	0.483	E KAP :	0.0875/80	C Parity	1.48%	1986	CONTRACTOR	0.0315(B)	0.0315(8)	0.0324.7.0	0.03247(B)	0.045 heB)	0.0476(B)	0.0467(B)	143, 700
Ti Adherend Thickness, in																	288	0.032	0.032	0.042	771·6÷	y 171	2	770 0
Adherend Width	1013	1015	y 17 1		1 010 1		74.	, I.	1 mls	<u>.</u>	1 -5:3	210	= = = = = = = = = = = = = = = = = = = =	=	17	7	= =====================================	100	-1	-	710-1	Ĩ	1 41,	7
Adherend Thickness (Net)	2	0.044	0.043		Secondary of	Troughous:	2 + 0.015 0.032	1180031007	2 1 11146 Bilber	7 + 0 046 0 087	2 + 1146 mm	To dida diba		To toda to a	September 1000		1	l _{k++} +·	11.11	1	, Trons	7	4411	. 1990
Adherend Pinel Number	B-28C G	B-28C G	5 5 K- 4	D	B 125, L.B.14	B12t, 1 B13t	B126.1 B13	H1201 B134	B-146 + B 141	BI4RI Bust	H 14H F K 141	B 348 F H-141	R 245 1 B 1 'R	B 241 F B 1 7R	H 245 F H 17H	H-241 1 H-7H	* * * * * * * * * * * * * * * * * * * *	4 1 4	H INK	B-15K	1616	<u>z</u>	7 2	141 %
Adherend Ether Orientation	0 -45 0 45 0,5	10 -45 0 45 015	3 (0 st 1 st 1)		2 + [10] 24 + 10[64	1910 11 10 . 2	2 + 10, 31, 10, 11	2 * [01 21 [0.61	I to State to 1	I to sup of	Lin Sugar) e ;	lin Sue of a	2 × 10 -45 0 45 0,5 [10 -45 0 45 10 015	1 - (0 -45 0 45 0 5 (0) 5 (0) 5	10 -450 4500 5	21.24.24.04.45.015	140	77.01	11 + 2 - 4	Ť	When had all	(0) 4R (0) 4R (0)	* To 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Michella de ma
Adherend combinition	H H	æ. :	r at		4-£	æ	Ŧ	æ	±.	#:	æ æ	X.	x	# #	¥.	1	2	2	1	4	÷	7	1.4	-
Thickness	590000	0.0040	. 0990		0.000	11 (14) (11	7141	× 7791	(1 (1913)	\$7000	0.0020	0.0027	11.00.22	11 (40 c) ×	often.	5	1 Marie	10,000	16,000	No little S	8	5		£ 1
Adhesive	AF-126-2	AF 126-2	1 1 26 2		41-126.2	1 126 2	AF 126 2	Al 136.2	4F-126-2	AF 126-2	41-1-62	Al 126.	44 -126 2	M 126-2	AF 126.2	138.1	43 176.2	43 +126.2	AL 126.2	44 125 2		136.1	44 (36.2	1.000
Permeen 3 Tab.	1.9 12 4		. 4	- !	4 3 16			4.3 16	413 12	4 13 32 .	4.3 K	413.32	4.3.8	5.5	¥.	21.35	43.14	33.00	*1.19	13.18	+ 11	1.1.4		114
Type Type	15		1 5	+	70		- -	+ -	10	ā	10	14	<u>-</u>	10	1 d	Ē	3.1	15	1,	315	*11	-	11	7
Number	LSA 15 1	5.163	154 15 415		1.54 16-1	101 101	LSA 16 .	L54 16 4vg	LSA-17.1	154-172	L\$4-17.1	LSA 17 Avp	LSA-18-1	LSA-18-2	LSA-13 3	LSA-IN AVE	134 14-1	154-19.2	LSA-19-5	154-14-14	154-301	(54.2h:	154.247	254 24 Acc

TABLE F, I (Cont'd)

. 4	, U	1901	+(x)	8.2.4°	•	(**)		,ı	1				30.		 R.Y.		3 5	9 3	8			20		9:	14		4	1,		- 56	· ·	56	n 96	-		3 3	9 9
P in		-			٠ يو		2	13	1 =	5	3.0	55		-		+					4	4.6	. 05	3		;		33	+	-		٠,	-				
Fadure Type	Ξ.	•		۴	1 5	î	33	::	4		07	35	20	y)	2, 5,	.				1	ç, 4	n <u>'</u>		<u>o</u>	į.	,	<u>.</u>	٧									,
l anu	92				ž	3	45	ñ	36	95	35	£			cı -								~	-		9.	-	v.				~	C1	-		1	
[-				.,	=	-	2	or	=	91	y :	30	70	*	3 42	1					٠.		11	10	ŀ					r1			-	-	1		
Adheuse Stress at Failure, psi	1,039	3,958	3,783	3,893	.11	\$ 103	5.108	671.3	5.685	5,444	5.241	. 54 5	68.	569	£ 7		100	25.5	1.462	885 6	1,1036	3.108		7 8	1 163	100	1 5	1361		2,453	196	2.381	2,365	3 484	2,000	18.5	1100
Adherend A Stress at S Failure, psi Pa	131,250(B) 23,148(T)	131,908(B) 123,765(Ti)	126,316(B)	21,689(Ti)	50 454	60,046	61.793	60,464rB1	90,203	Se.023	42 518	46,344.8	5.0'6	5,154	5.6281B1		2000	13 755	20,474(B)	12, 96.0	26.489	45.415	12.130	42,401(B)	101 44	1.1 3.11	157 143	18:50.1		877701	102.592	103,441	102,770(B)	1 12 17 1	11 901	10.05	125 007.0
Failure Load, Ibi/in.) F	3,990	E 0.7	3,840	3,947		5 200	-				~	_	1,59	1,405	1,480		240.0		5,403	ومنده		12.100			. 2	_		_				_	4.758	4.070			071
Bonded F Joint I Area, in? It	1013	1013	1 015	1014	0.50			070						0130						£ 23.3				1 49.16	+ , 14			× + ×	i		. 10	2 020	e 2.5	\$150	14.14		
Overlap B	2 + 0 500 1	2 × 0.500 1	1 0050 - 3	1 005 0 x 2	1 11 Saka			000000	1 72011 1	_		68-	S of S	~1	010		0 004		1	177								. 18.						05.03			•
		×		1	1			5	i	-	í		0.	-	2.0	,	C 4				1,00				. <u>-</u>				1				-	1			
Adherend Cross-Section Area, in-	0.0304(3)	0.032473	0.0304cB) 0.0325cTn	0.0304(B)	1000	of civibra	0.000	H DSP VIB	0.0837	0.0880	0.0873	O ORESTERS	0.1752	0.1733	01710 01725,Bs	100	24, 7	124	14.26.14.B1	1 17	504,0	184	34145	0.262MB1	. 177	24111	1 17	0.04**(B)		C TOTAL C		1170	J 046 1(B)	0.030	11000	tug o o	11.1 kg 2, 18.
II Adherend Thickness, in	4 0 0 c c c	VIII O A	10017	9100.5	2 to 0 to 5	2 - 0.045	2 - 0.045	7	1, 0.045	2 + 13 () 3 5	570 d 5 5	× 50.03×	180	<u>, </u>	7 2	1,460		9 4 1	476	4.7.0	7	727.0	7	747										!			
Width	" =	1013	y is I	7 :	1 020	7	0.00			210.4	- F	27 5	1 001	1 002	1 601	1 100	, 1117		2000	. y(H) [1	1 103	, a _	"	. 41.	, 1	100	, 47		4		5	4	1000	10101	~	110
Composite Adherend Thickness (Net)	eg in i	0.430	1144 349	0,000	0.095	5800	0.084	7600	40.00	100	103	****	2 l c	2.15	1,14		14.		-144.1	995 0	Ž	*4.	11.280	720 7		0.04 0.048	0.04 0.046	0.0463 0.0460	4	471	2	4	0.046	2 - ant any	1100 - 100 - 2	typo slop - ;	3 1 0 015 0 0 13 3
Adherend Panel Number	¥ 1.4	8 12	<u> </u>	\$1±	H 150	14 141	7 3 2 3	-	R-1 7.	# - X	¥ :	¥		11:2:8	#201 #201				 =	2	1 4	. £. =	£. ±	7. ±	B 214 J	H 2H 1	H 210 3	R 211 1		11 (17, 11	1 014 3	11 (17) 11	H 1157 H	BILLIN BEW	BITH M. BITM	BALSHAN BLING	
Composite Adherend Fiber Orientation	19191	19(a)	[0]0)	19191	111 400 01	111 400 111	[10 405 m] I	The street and	10 -45 0 4540 015	100 -45 0 45 10 018	**	Shi Orat in string	2 - [0/402 0141	17 0 505 0	2 - 10.902.0141	3 x 10 905 111 x f	3 * 10 90 3 01 41	3 - (0 90 - 0) - 1	3 . (0 my n/1)	3 - [10 -4- 0)[15	3 . [40 -4 . Ohije	3 - 10 - 4 - 00015	3 * 100 545 0101 *	5.00 spi pal + 1		7 11	7	16[0]		H - 45 0 45 015	(0 + 45 to 45 to)			2 - [0] 11 [0] 61	14.1	19 61	1910
Adherend Combination	-	в.	B 1	1 8	1 8	H H	 x x		В 1		 	- E	19-1	- ·	 	- 1			н		B T	1 6	ВТ	- E	±	H	* 8	B-H				9.0		B-R	# #	¥	×
Adhesive Thickness	S(N)O O	0 (M)UG	0.0002	0.0003	0.0020	order 24	× 1000	•	0.4032	2000	1 19025	1071101	ole o	5 0 0 1 2	2 E E	0.00005	01000	S len n	010000	i thise	0.000	n Onisu	95000	EStet o	in interior	0.0000	0.0030	0,0043	0 18140	0.0045	0.0040			0.000	35000	1) (10) 35	1) (14) 3.3
Adhesive	Al 126.2	Al 126-2	AF 126.2	Af -1 26-2	Al -126 2	At -126.2	41 126 2		41-1262		4 26.		4B-329	200	WB 320	Al 126 2	AI 1262	11 126.2	41 :21 2	Al 126.2	M 126.2	AL 126.2	11.25.2	41 126.2	Al 126.2	44 126 2	41 -126 2	AL 126-2	N 136-2		41-126.2				41 126-2	M 126.2	41 126-2
Between Tabs		2 2 2		2 12			7 7	•	2.H 16		9 4				x &	+				.			-	41117					X	-	6.7/8		-	4.5.4	-	4 4 4 4	
Joint	ī	<u> </u>	10	10				٠							1.5.1	+		2501					2.81			-			5.1		_	_	-+	1 6		1:1	
Npeathathon Number	1 SA 21-1	LSA 21 2	151213	LSA-21 Avg	154 22 I	184 23-2	LS4 22 4ve		LSA.231	124 24 2	154-15-4	311 67 107	[\$A-24-1		u	1		-	LS4-25 4vg					154 26 4vg	LSA 27 I	1.54-27.2	1.54.27.3	184 27 412	LSA 28-1	LSA 23-2	S 4-28 3	154.79.40	100000	LSA 29 1	LS4-24-2	1.54.74.3	114 20 115

TABLE F. I (Contid)

	100	100[}	Frest -3	- G	68	189 3	1	190	168	- K	1.001	1001	100	100	001	<u>.</u>
Hailure lype														-		
-		—-		•	-							-				
Adheave Stress at	4 0.88	3,784	4.127	4,000	3,519	3,044	72.00	3,443	2,472	3,469	2,469	3,470	2.609	2,525	1,460	1531
Adherend Stress at Fadure, psi	70,454	65,266	65,210	66,977(B)	97,478	84,560	104.824	95,621tB)	130,312(B) 130,312(Ta)	134,516(B) 130,312(Ti)	134,355(B)	133.061(B) 130.260(T)	113.528(B)	107.521(B) 112.278(Ti)	106,926(B) 109,292(T))	109,325(B) 112,537(Ti)
Load.	6,216	65.3	5,745	868.0	8.840	\$69.	6447	51. 8	4.170	4.170	4.155	4,168	5.245	\$10.8	076.7	5,087
bonded Jon.' Area, m-	1 5105	1 5 1 9 5	1 3914	0924:	25122	2.5275	:5325	2.5308	1 6870	. 889	0.84	1 6876	20100	20100	2 00800	2 (4)43
Overlap Length, in	2 < 0.750	2 * 0 *50	- x 0 88 -	21.012	2 - 1 250	2 x 1 250	2 - 1230	2 × 1 250	1 6.87	1 687	1657	1 6.8	2 040	2 000	3 (906)	2 (4)
Section A. in 2	0.0880	1 1881 u	0.0481	0.08507681	0.0912	01600	<u></u>	0.09113(B)	0.0320(B)	0.0320(10.0	0.0320(10	0.03133(B) 0.0320(To	0.0462:B) 0.04520.c	0.0472(B)	0.0462(B)	0.0465-81
Il Adheren Ibannesa									5.000	2100	5400	211.0	0 045	5 (14.5	24() ()	5 7 °) (
Adherend Width	=	1013	1 013	;; ;;	<u> </u>	1101	C To 1	1 013	1.000	ē.	1 000	doc 1	3001	1 mos	1 004	year
Composite Adherend Thickness (Net)	2 * 0.047/0.087	2 × 0.047 0.087	2 × 0 047 0 087	2 × 0.04 0.08	2 - 0.045 0.089	2 x 0.045 0.090	2 × 0.045 0.059	2 × 0.045 0.0697	0.032		1800	4.0313	11 ()46	,77	4700	0.046
Composite Adherend Panel Number	P-141, M. B-19K	B-141 M, B 19K	B 141 W B-14K	B-141 M. B-14K	B 164 G. B-22L	B 164/G. B.221	B 164 G 3.231	B-16A B. B-22L	B-15.J	8:8	8.182	5-183	B 24M	H 24M	N 77 H	B-24M
Composite Adherend Faber Orientation	2 = {(0'90\4/0 1 [(0'90\8/0)]	110/8(05/0)	1 0,800/01	L[(0, ε'(06/0))] I (0, ε(06, ε') × ξ	2× 10/+45/0 45 0/5 5	2 × [0/+45/0/ 45/0]S [(0/+45/0/ 45\Q 0]S	2 × {0 +45 0 45/0}S	2 × [0:+45:0; 45/0]s (0:+45:0: 45:0/0]s	10/67	[6]61	E 0 0	19[0]	10 -45 0 45 0 S	0 -45 0 45 0)5	S 0 + + 0 8 + + 0	10 +45 0 45 0 ls
Adherend	8:3	ë E	# #	æ.	8:8	æ.	8.8	B-B	i i	F:T	1 2	×	÷	ī.	B-1	B.T
Vaheur	 	0 0012	\$100.0	6000 u	3 004 2	0 0035	0.0034	0.0037	9,600,0	11 (10)45	3 (1014.5	0.0042	0 (8635	27 E E	0.0035	0.0032
Adhenve	4F-126-2	AI 126.2	AF 126-2	41 . 26-2	AF-126-2	AF-126-2	AF-126-2	AF-126-2	41-126-2	AF 126-2	4F-126-2	AF 126-2	4F 126.2	AF-126-2	AH-126-2	AF 126-2
Length Between Tabs	8.5.	4.5/8	875.4	4.578	5-3/16	5.3/16	\$1.16	5-3/16	1.5/8	3-5/8	3.5.18	1.5/8	3.7.5	ж г.	×	3.778
Joint	10	10	DE	D.L.	D.L.	D.L	16	10	S.L.	1 S	18	1.5	-	- S	15	15
Spect Gation Numbs	LSA 30-1	LSA 30.2	LSA:30:3	LSA-3-3 Avg	LSA-31-1	LSA-31-2	LSA-31-3	154 31 AVE	LSA-32 3	154 23	154.123	LSA-32 4vg	154 33 1	154-31-2	154 13.1	LSA-33 Avg

TABLE F. I (Cont'd)

4	l(m)	î.	1(4)	t . (S)	104)	100	9 9	(K)	4		4.	4;	4	+ >-	+-													
*Fadure 1, pc 7												۶	-	20 20 25		1	95 17		(F C F F	Ť	- S	v.			1			9 5 9 5
P T T					-			+-	-			-		Ξ		+	= =			+	5.5		, e			-		3 2,
Adhesive Stress at Failure, psi	2.21	2,227	2,229	2,222	160 1	3757	1,933	170'8	3,686	3,893	3.847	35.8.3	5.13	5.81	\$ 986	91.	1 4 7 4	1961	812.7		1 *05	1.736	1.74	1 36	1		1.5	1.266
Adherend Stress at Failure, pg	110.596(B) 103.727(Ta)	111,258(B) 104,348(Ti)	111.258(B) 104.348(Ti)	111,037dB) 104,141/T ₀	-2.196	050'.29	69,415 59,564(B)	114,397(B) 113.135(T)	103.571(B)	109.364(B)	109,111tBn 107,907cTn	30,44	57 24	777.0%	65.417.81	100	11011	55, Fr.	.c. 345/B)		52.85	3444	21.230	205 348)	14. 3	04 04	1 385	Ph.61548+
Failure Load, 15(/m)	3,340	3,360	3,360	3,353	6,180	5.675	5,935	10.250	2.5	3	5.0	13 150	13.450	10.50	18, 11	1.176	1140		4.		***	200	4 7	18.	1 17		11.1	2,165
Bonded Joint Area, in	15105	0605 1	1 5075	1 5090	1 5105	1 5105	1.5090	2.8175	25125	2 6 2(10)	25153	. 400	2000	17.7	24. 2	1 76.50	1,444	0.350	244		5000	0 50 10	1 51135	11 5013	3.000		3-0 - 0	¥ 0, 0
Overlap Length, m	2 . 0 750	2 - 0 750	2 × 0.750	2.0.50	2.0.50	21.0750	2 4 0 50	2 + 1.250	2 1 250	2 - 1 2%	2 - 1250	, 106	377	1 145	- 45.53	1, 76,0	1050	1981	11.75	!	13 7 (8)	4 500	Y	111/2	1	7.	0000	0,7
Adherend Crow-Section Area, m2	0.0302(B) 0.0322(T))	0.0302(B) 0.0322(To	0.0322(Ti)	0.0302(B) 0.0322(To	43,800	0.0846	0.0855 0.08523(B)	0.0906080	0.0896481	(T)	0.0846°dB1	11826	1	? =====================================	11 1 Km 1 1 h 2	A (14.0)	70.0	*(171) (1	o steSiBs		7	~ :		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	34,111	25.00	1 0 1 3 Kar
TI Adherend Thickness, in	2 - 0 016	3 - 0 016	2 . 0 016	2 • 0 016	2 . 0.045	2 - 0.045	2 + 0.045	\$ 40 to 4 \$	2 + 0.045	2 + 0.045	24.0.145		<u> </u>	+_1	1743					•								
Adherend	1 0/07	1 004	5001	9 U U	1 00.1	1001	100	2 to 0 1	1 1102	8001	_ 1111	1 003	2 400 2		2 1015	2 -	21: -	0.70	7111	+				189.	· <u>'</u>	100	10.	-
Composite Adherend Phickness (Net)	0.030	9 0 349	0.030	00.00	580.0	1800	0.084	11 (159	0.089	P. (1) 4	6.000	0.152	0.12	P_ 1 =	, , , ,		0.041.0.040	14 14 14 14 14	0.0407 0.040			7710 7701	7	117 117	To a other order	2 + 0 often et2	2 + methores;	2 + 15 15 76 11 1132
Composite Adherend Panel Number	B-13H	H: 1:8	B-1 3H	Hr.1-8	B-19B	80 m	B-1-8	H-22C	B 220	H 22(. B	B-21	E 2	~ =	7.±	R 251 J	B-251 J	B-24-1	14 344 3		4 4 4	2	4 0	4 SI 2 SI	8 12 1 X B 1 · B	4	4	
Composite Adherend Fiber Orientation	[6]61	19 [11]	19 0]	[0]67	1 (0 8006 (0)	L[0 8(06 to)	L[n 8(06.0)]	\$ [0 0 (\$p - 0 \$p - 10)	100 -45 0 450g 015	10 -45 0 4510 0 5	10 00 to 00 to 00	10.51	16/01.5	10 . 7	4 . [0]01	19 61	1860	15 11	10141	o se o se o	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111 24 11 14 1111	100 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·	2 · (0) 11 [0] 61	14. (1) (1) · [1]	2 - 0 31 0 61	2 - 19 4 10 10 10 1
Adherend Combination	1.8	ВТ	B·I	ž.	B 1	— ⊦ ac.a	- i-	18	B-3	E.	B.T	1 8	н	pa i	æ	ac ac	88	B #F	8 8	,-		3 a	i a	, c	B 18	æ	æ	T.
Adhesive Thickness	SBOC 0	ε	÷	0.0002	\$6000	21000	6000 u	91604	0.0020	0.0018	0.0018	0 0053	0.0063	0.9060		1.96.10	0.00040	to the co	11 DOM 3	. 54000	0.0000	111111111111111111111111111111111111111	0.000		52.00.0	0.003%	* (M) **	12 (10) 57
Adhesive	4F-126.2	AF 126 2	AF-126 2	AF 136-2	AF-126-2	AF-126-2 AF-176-3	AF-126-2	AF 126-2	AF-126-2	vr -126-2	41 126 2	41 : 26-2	AF 126-2	41 126 2	1 1 1	MB-329	MB-339	MB-320	MB 329	VH.139	MH-170	MB-329	0 × 2 × 2		MB 324	MB 320	MB-329	WB 329
Length Between Tabs	3.5.8	X 5.2	2.58	2-5/8		91 11:2	~	318	×	5 1 5	318			1 1 1 1					91 97	41 0.7				Ť				7
Joint Type	10	10	10	10	17.			D.I.	<u>-</u>	10	0.1			117:		15					15			٠				7 I I
Specification Number	LSA 34 I	LSA 34-3	1 SA-34 3	LSA-14 AVF	1.54.35-1	LSA 35-3	1 SA 35 A1R	LSA 36 1	LS4.36.2	L5A 16-1	LSA 36 4.2		-	1 24 27 4 21		,			L5440 41E	LSA-11		-	34					18442 416

TABLE F. i (Cont'd)

•	,								1										Ì												
				-		~		-	2	- 71	00	-	,		-	٧.		rı		45	0 2	1	•		-	J.	<u>c</u>	<u> </u>	1		
* sadure fype	\$0	\$0	*	4	ş	9	51	32	Ş	6	% %	3	8 8	5 5	*	2	7.5	8 8	55	52	£ 5	5	8 08	ž	-	Ş		? %		2 %	12
	28	ฆ	55	92	01	9	91	10						· ·	-			90	~		oc •7	+		20 5		=	×.	<u>_</u> =		9 9	:
-	92	35	7	- 11	50	¥	7.5	53	-	· s	۰ . د د	5	5.	98	اة	-		ر م ر م	38	en.	13	-	1 =		- 9		\$3	*	9	 2	85
Adheuve Stress at Fadure, pu	3 379	3,543	3,228	3,383	5.506	3.488	4,276	4,423	100.0	2,934	3,089	3.0.5	1.942	1.874	1.930	5,389	5 4 5	217	4 612	1.753	5 4 26	410	3 3 5 5 5	3 -40	3,212	2551	7777	512.5 614.5		917	1.438
Adherend Stress at Failure, pa	14,764	19,69.	17,943	13,800rB)	23,404	19.821	24,390	32.508	35 978	35.20	25.742 25.625(B)	11 556	22.581	21.198	1000	¥6,234		\$5.671(8)	26.44	27,638	31,912 28,662(B)	921 11	11251	31 011	- SeerBi	11.8.11	4.35.6	0 7 7 7		050'04	552.0%
Failure Load. Ibt in i	1.715	0.801	1,640	1,718	2,n90	1.7.70	2.170	2,010	1		180		086	920				2.646	3,745	2410	2.508	36171	1 36.	0, 4 1	2	1,340	3,3140	¥1).		×	2
Bonded F	0.5075	0.805.0	0.5080	0 5078	956 0	\$2050	0.5075	61910	0.2528	0 2523	0 82 82 83	0.505.0	0.5045	25050	62160	5.050	0.000	54050	38050	0.050	50150 0 508	5080	24(15	11 5.1610	1 477	1,002			=	17.4	7
Overlap Length, in	2 + 0 250	2 × 0 250	2 + 0 250	2 + 0 250	2 × 0 187	2 × 0 250	2 . 0 250	952 0 × 2	0 250	0.250	0 25 0 0 25 0	0.500	0.500	0.500	no co	2 . 0 250	00000	97.0.12	2 × 1350	2 × 0 250	2 0 250	23.0.250	577	· · · · · · · · · · · · · · · · · · ·	Ž,	12.	- 32	1.7	•	4	
Cross Section Area in	\$160 U	*160 t	0.0914	(10914/B)	1 080 U	10800	6 0893	(80.089.0B)	0.0313	16200	0.0303(B)	0.0433	0.0434	0.0474	10 10 10 10	0.0204	1000	0.0301680	0.0885	11.08.73	0.0875(B)	*(190)	1486	1.5%(1.	E SE	4.7	1 · ·	7 7 7		2 1	7
Tl Adherend Thickness, in									0.032	0.032	0.032	\$500	0.045	0.045	١ -	3 . 0 0 16	310012	2.0016	2 . 0 045	2 × 0 0.45	2 0 0 0 2 5	,		2 + 10 104 6	2 mile - 1						
Adherend	\$10 1	4 6	*1:-	1016	1 015	1015	\$1u '	1 915	. =	1 000	1 010	1.008	600 1	000		910	0 7	\$10-1	101	1014	, E	101	127	1000			<u>.</u>	= =	i		1
(omposite Adherend Thickness (Net)	2 * (1)(149 (1) (9()	2 • 0044 0 090	2 + 0.049.0.090	Onto topical + 2	2 - 0 044 0 090	2 > 0.044 (1092)	2 > 0.044.0.091	2 < 0.044 0.091	1100	6,00	0.030	0.043	0.043	, in (2000	3,00	-520.0	- St) tr	9800	980 0	0.00	11.16411	241.0	1000	170 0 170 0	11 (12 to 12	1 1440 1 1440		7700770	7 7 7 7 7
Adherend Panel Number	B 144 F. B-155	B-144 F B-151	H 14.4 F. B 155	Bital Bits	B-28A E. B-17]	B-28A E. B-1*1	B-28A'E, B-17]	B 284 F. B-17J	B-18H	B-18H	HSI-8	B-28t	B-28F	86 50 5		2 2	G-1-8	F 13D	B 15B	æ 3	B-15B	B.27.4	B 224	B 22.1	A 22 M	\bar{z}	7. 7	× × × × × × × × × × × × × × × × × × ×	. 3	E NOVE	H : 1
Composite Adherend Fiber Orientation	1 0 0 0 1 1 1 1 1 1	2 × [10/9014'0] T	I to sons of	1 0 100 m] . 2	2 x [0 +45 0 45 0]c [10-+45 0 45 10 0]S	2 x (0 +45.0 45 0}S (10 +45.0 -4500-0]S	2 x 0/-45 0 4' 0 S (0 -45 0 45 0 0 S	2 10 -45.0 45 0}S	[6]67	(a)e1	10 61	[0 -45 v 45/0] 5	(0 +45 (45 0)S	0 +45 45 0 S		19 1	0 2	Talui	I 11 8(06 (01)	1 (a 400 a)	I 10 800 01		1:0 -45 11 4510 11/1	S 00 35 0 35 00)	YIO 0154 11 VE - 1011	18(0)	14.3	7 7	. :	10.45.0.45.01	0 - 45 0 45 10 5
Adhesive Adhesend Thickness Combination	x	æ	æ æ	В.В	æ.	æ	3.B	æ.	i i	B.1	Ξ	B-1	B:1	 abai		- -	i di	F	B-1	 e. a	- - -			ec a		ac a	ı a	L .E	,	: ±	30. 31 30. 3
Adhesive Thickness	0.0100	99000	0 m/62	0 0076	0.600.0	3000 0	υ 008υ	. 800 0	0.0045	0.0060	0.0050	0.0045	0.500.0	0.0045	37000	95000	0 (4055	0.0000	0.00055	25000	0.0054	0.008	er eresser	2000		5 \$100 0	0 11130	E		0.012	2100
Adheuve	MB-325	MB-329	WB-329	VB-329	MB-329	WB-329	MB-329	MB-329	MB-329	MB-329	MB-329	MB-329	MB-329	MB-329 MB-329	100 130	0.000	.4B-329	ML 329	MB-339	0000	MB-329	MB-329	MB-329	MB-329	WB-5.5	MB-329		MB-329	0,14	MB 324	MB 124
Length Between Tabs	4 - 4	4	7 7	4-1/4	4.1.4	4.5.16	4.5/16	4-5/16			5.5.16	3-1 32		3-1-16	İ	7 7					#. T.	1		3.3	i	91 5 5					£ 4
Jount I vpe	D.1.	1 6	10	10	10	70	D.L.	10		18				\$ T	+	10			10					<u>.</u>	1	15		-	1		15
Specification	184431	LSA-41;	LSA-3-3	LSA43 4vg	1.54-44.1	LSA-44.2	LSA-44 3	LSA-44 AVE	LSA-45-1	LSA45.2	LSA45 Avp	LS4-46-1	LSA-46-2	LSA-46 Avg	154.47.1	LSA-47.2	LS4.47.1	LS447 Avg	LSAdal	1 SA-48 :	LS448 4vg	L54-40 I	.S4 +9.2	70745	7.0	151511	1.54 53.3	154 53 412	54 54	L54 54 2	154.54.3

TABLE F, I (Cont'd)

1		Ę, Ţ	4	i.				1 05	1,																								
					İ		•	=	4					-	• • •	-	4	1	ē	y .	-	~	٧.	41	-7	3	. 5	5 5	55	-			7
*Fadure Type	+	ř.	_	1.7	ť,		\$5	8	52	9	ē	\$5	5.5	+	1 -			1	90				15			۲	ş	ê	21	3	r S	: 5	1.3
-	-•-	9	_	٧,	Ξ		15	=		-		51	•	1	30 12		12	ľ	01 3	8 10		Į.	30 60			5	, 0	2	· ·	0	101		,
	1	5	1	33	=	-	81	01	ž	ž	29	35	35	1	10.		10 3	-		۴-					-					1			
Adheave Stress at Failu 2, psi		1791	1080	877	1,261	:	3,258	æ + + + + + + + + + + + + + + + + + + +	1,322	346	2 - 20	2,112	2,594	1 610	1514	1.630	1,548	1 346	423	1.544	1,438	1,206	1,546	1,426	1.326	1,599	1,270	1.087	6 lú :	1570	77.9	565	4
Adherend Stress at Fadure, po		118.518	143,304	132,716(B)	19.55		\$5,562	10. 55	\$6,657(B)	53 916	63,095	1267.9	60.6111B)	3.0 33	50.08	6: 1: 4	61,079(B)	44 064	4. 4.	\$1,606	45 0.8(P)	4 190	13,408	44.5.48	42,718/B)	54.933	50503	1771	62.292(B)	Sh n36	×1. 65	A 0 0 2 7	58.268(B)
Load. Load. Ibc'm		1,840	7.	(40)	4.95.14		4.945	6,250	870 7	4 750	# \$ F \$	215.	4.36.	3 (10 1	\$10.	. 050	1.06.1	200	2,070	2.250	, ob.	1,210	11.1	1.30	1330	7/7	5.15	4 6411	; o, 7	5.0%	CHO.	. 31	101
Bonded Joint Area in		201	0.75	9,710	15150		15180	15236	601	2 0260	2.026-1	. 0280	2.026	1 -	1.2650	0547	1,42	13567	77.7	1.57	1455	1 0030	1 00 50	1 0030	1.0030	1	78.14	1 -11311	14257		: :	11.	=
(Nerlap Length, in		G 500	0650	2 + 0 500	2 . 0 . 60		. 03, 0 47	2 4 0 740	5	2 - 1 000	2 1 000	2 - 1060	2 - 1 mm	1.36.1	9,	1,3511	1.250	1 7 7	1.4	- 4.3	127	0000000	2 . 1 . 181	10050 47	3 × 13 × 301	2 . 0 . 5	1440	02000	40.00	1	7 + 3 chito	100	2 - 1 km
Adherend Cross Section Area in		0.0324	2000	0.0124(B)	11 118 911		0.0860	10801	or sequen	14 0 KN 1	a displ	1.086.1	HONBYER	2,11,10	7 1200	0.0324	4032mBn	0.770	72.70 11	\$ 77.	0.4.35 7.83	logon	logot !	1770	0444116B0	, (51	70111	3,0402	775	State of			2
Il Adherend Thi knew, in							-							6,000	0.032	0.032	2010	77	7.	¥ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	× † 11 · 1	4100000	41000	4100.0	410000		3 - 11.13 6	2 + 11.1145	2	2 . 0.045	· 11:11		
Adherend		= :		- 11	1012		=======================================	1014	<u>-</u>	1 1 1	1	7 :	1181	50.00-1	1101	1 -112	1.001	1 10 1	1.01	101	2 10	1.101.7	1001	1 (10)	1001	200.0	1.60	1007	CHI.	4 4 4 7 7	1 100	700	190
Composite Adherend Thickness (Net)		10004000	0,00 4100	2 + nolle nom	2 1 04 *- 0 088		2 . 0.04 0.088	2 - 0.04 0.088		2 - 0 046 0 087	2 - 0.046 0.085	2 - 0 046 d 0x5	2 - 0 146 11 036	1000	1500	0.032	Ligaro	21.1.	7	71.0	7			11032	1001	1,1141	1 1814	1111/01	11 11 11 11	DAILE	4 (1844)	**	
Composite Adherend Panel Number		B-128 (H 151	B.138 C B.131	B-128 C. B-13)	B :40 G. B-194		B 40 'C. B 19A	B 140 G B 144	H 140 C. H 193	B 340 1 B 23K	B 24t 1 B 22K	P 244 B 22.K	B 24c 1 B 22K	F 1 %	8130	B 13D	8-130	H NY	B 28M	Z .	B 254	K J W	#		¥-1%	15/14	F 131	15 H	7 4	H 223 H	H 2.1R	H	# 228
Composite Adherend Tiber Orientation		19101.18101.7	2 (0) 3 (1)	2 (0)31 [0]61	Lio Fundos	I in Sing mil	2 • [(0.900)4 0]1 [(0.90)8(0]1	1 0 8(06,0)	2 - [10 908 0+1	2 - 10 -45 0 -45 0 5 10 10 10 45 0 45 0 45 10 10 15	2 (0.445.0: 45/0)s	2 - 10 -45 W 45 0 15	2 - 10 -45 0 45 0 15 (10 -45 0 45 0 0 3	[11] A.T	19101	[0]61	19(0)		10 54 11 St. 11	VIII 57 10 57 10 1	7 111 AT 11 AT 11	. 19 0	17/6	1.0		Liu Stub toi	L to work the	100 400 1	Lin Suns nil	\$ \$0 015F 0 5F 00 h			Sin 98 0 48 00 015
Adherend	9 9	c a	9.50	gg.	8-8		æ	×	æ 8	19	B-B	#	8.8	1.6	B.1	B-1	B:T	<u>-</u>	<u></u>	 	-	- £	an o	·	ır.	1 11	- -	H-	- ±	-		÷.	
Adhesive Thickness	1,000 0	r 500 0	0,000	\$00.0	0.0048		0.0045	0 (HHS	0.00	0.0085	\$9000	26000	0.0081	0.000	0.00055	(14)(15)	(10005)	0.0040	10040	0.0030	(100)	7000	9000	4 1 1	1 5001	0.00%	61-10172	0.4068	0.0067	5×000	0.0100	H 1108	notice (
Adhesive	130	VE.13	MB-329	MB-329	MB-329		MB-339	MB-329	MB-329	MB-329	MB-329	MB-329	MB-329	MB-329	MB-329	MB-326	MB-329	MB-329	MB-329	MB-329	MB-1-3	MB 329	MB-524	40.00	WD-7.	MB-329	MB-255	MB-374	MB-329	MB-329	MB 324	MB 324	MB 339
Length Between Tabs	4.7.4	30, 77	4 3/8	x ~ 7	0.17	_	7	<u>;</u>		8.7.4	4.7.3	4	4.7.8	5-3.16			5-3'16	-	9	9 :	-+	-					91 5 16		 2				
Jount Type	Ē		10	ī	10		<u>-</u>	10	DΓ	10	10	10	10	15	15	- 2	2.1	5.1	. 15	7 -		- - -	1 6		10	D1	<u>.</u>	14	10	. 14	Ξ	=======================================	1 2
Specification	154 66.1	LSA 55.2	1.54.55.3	LSA-55 AVR	LSA \$6-1		LSA 56.2	LSA-56-3	LSA-56 Avg	LSA 57.1	LS4-5-2	LSA 5°.3	LSA 5" AVE	1.54.58.1	L5A 55 2	LS4-58 3	LSA 48 Avg	LSA.50.14	LSA-54-2	1 24 24	200	154.60.1	154 604 2	5.00.00	L34-60 41F	LS4-61-1	15461	15/6/1	15441 112	LS4+21	154 622	184423	L54-62 Avg

TABLE F. I (Cont'd)

14c	/		- - - - - - - -	İ									
2 - 2	25 51 51		48.80	-		ŝ	ž			ø,	r.	10 5	v, o ∽
	25 85 05 05 05 05 05 05 05 05 05 05 05 05 05	~ 5 8 1	2 88	ž1	50	<u>.</u>		۶	- 22	9	38	38	0 2 5 5 5
Father Type.	12 20 21		0 0 0	Ξ.	-,,	100	80		· S		٠.	0292	
										,		30 42	5 01 5
	ļ	28.55	₽ - =	2	-	9	\$	OS.	9	8	58	~~~	8 4 0 8
Adheave Stress at Fadure, psi	2,230 0,222 1,920 1,160	1,095 1,196 1,336 1,209	2.048 2.048 2.141 1.981	1,14	14.1	1,395	1.61	1,353	1.154	1.800	1,436	1,364	748 926 973 882
Adherend Stress at Failure, pa	127,792 125,725 107,940 120,486(B)	58,228 63,579 71,135 64,311(8)	109,723 128,086 133,641 123,816(B)	67 143	39,136	48.139	\$4,869(B)	54,452	45,384	72,386	57,407(B)	95.781 48.750 76.575	39,787 48,236 50,725 46,249(B)
Fatture Load. Ibt/im r	5.150 5.205 4.350 4.902	2,760 3,020 3,043 3,043	3,555 4,150 4,330 4,012	9. 2.	5223	4.745	. 66.4	£.73	4,080	0,5,0	5,073	3.065 2.840 2.460 2.388	52223 52523
Bonded Joint Area in ²	2 2680 2 2725 2 2658 2 2688	25260 25250 25075 25075	2 0260 2 0250 2 0220 2 0234	3 0330	3.0300	(C.F.)	3.4350	3.5245	3 2 350	3.5.485	15327	2 2478 2 2500 2 2500 2 2493	2.5000
Overlap Length, in	33.50 88.00 80 80 80 80 80 80 80 80 80 80 80 80 8	2.500 2.500 2.500 2.500	000 000 000 000 000 000 000 000 000 00	2 x 1 500	2 x 1 500	(H) 1 + 2	2 × 1 500	2 × 1 750	15.1 12	23.1.260	23.1.50	22222	35.000
Adherend Cross-Section Area, in	0 0403 0 (414 0 0403 0 0407(B)	0 (L74 0 (L75 0 (L77 0 0 L77	0.0324	0.191.0	0.0889	0.0882	0 0844P3	5 . KU .	66800	0.0880	0.0885480	0.032	2 (12) 3 (12
Tl Adherend Thickness, in												0032	0600 0600 0600
Adherend Width	1 008 1 010 1 307 1 008	1 000	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 011	0101	7 0	1101	1 007	0.00	1101	- 196 - 1	0.499 1.680 1.600 1.600	
Camposite Adherend Thickness (Net)	0 041 /0 040 0 041 /0 041 0 041 /0 040 0 041 /0 040	0.047 0.048 0.047 0.047 0.047 0.048 0.047 0.048	2 x 0 016/0 030 . 2 x 0 016/0 030 . 2 x 0 016/0 030 . 2 x 0 016/0 030	2 x 3 (M 7 0 890)	2 x 0 (47 0 088	2 × 0 (14" p.n8"	2 × 0.047 0.0883	2 + 0.04" 0.08"	2 + 0.047 0.089	2 × 0 047 0 087	2 + 0.047.0.088	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Composite Adherend Panel Number	8-256/L 8-256/L 8-256/L 8-256/L	B-16C/I B-16C/I B-16C/I B-16C/I	8-1217-8-131 8-1217-8-131 8-1217-8-131 8-1217-8-131	B-14D H, B-15D	B 14D H, B-15D	B-14D H, R 15D	B 14D H.B 15D	B 16B H B 17c	BISBH, B-17C	B 16B H. B 17C	B 16B H. B-170	# # # # # # # # # # # # # # # # # # #	8 8 8 8 2 2 1 6 2 6 6
Composite Adherend Fiber Orientation	161.11 101817 101817	0, t\$/n 45/0]s n-45/0, 45/0]s n-45/0, 45/0]s 0,-45/0 45/0]s	2 × [0] 37 ([0] 67 2 × [0] 37 ([0] 61 2 × [0] 31 ([0] 61 2 × [0] 31 ([0] 61	1 [0.8(06.0)] < 2	1 0.500.01 1 1 1 1 1 1 1 1 1	1 (10,800#.0) 1 1 (10,800#.0) 1	1 (0.800/0) x Z × (10.8008-0) 1	2 × 10 +45/0 45 0 S 1(0)+45/0 45\0,0 S	2 x [11/+45/0/ 45/0]s [(0/+45/0/ 45)Q/0]s	2 x 10 +45/0/ 45/0/5 1	2 x [0/+45/0 45/0]S	19 (0) 19 (0) 19 (0) 19 (0)	07-45/0 45/0 5 0/-45/0/45/0 5 0/-45/0 45/0 5 0-45/0 45/0 5
Adherend Combination	8 6 6 8 8 6 8 8 8	# # # # # # # #	# # # # # # # #	e	B B	æ.	es sis	##. ##.	9·B	#-#	B-B	8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F. H. H. T. H.
Adhesive	0.00.70 0.00.70 0.00.50 0.00.63	0.0090 0.0090 0.0087	0.0090 0.0082 0.0075 0.0082	0.0062	0.0072	0.00%	69000	89000	95000	0.0070	0.0065	0.0045 0.0050 0.0050	0.0115
Adhesive	MB-329 MB-329 MB-329 MB-329	MB-329 MB-329 MB-329 MB-329	MB-329 MR-329 MB-329 MB-329	MB-329	MB-329	MB-329	MB-329	MB-329	VB-329	MB-329	MB-329	MB-329 MB-329 MB-329 MB-329	MB-329 MB-329 MB-329 MB-329
Length Between Tabs	****	6-3-8 6-3/8 6-3/8	4-7/8 4-7/8 4-7/8	\$ 5.16	5.5.16	\$-5.16	5.5/16	5.1.2	\$-1/2	5-1/3	5 15	7/1-7 7/1-7 7/1-7	4.9/16 4.9/16 4.9/16
Lount	31 51 51 51	S1 S1 S1 S1.	D.L D.L D.L D.L	DL	10	DI	DL	DL	70	D.L.	10	S 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	15 15 15 15 15
Specification	15A-66-1 LSA-66-2 LSA-66-3 L5A-00 Avg	LSA47.1 LSA47.2 LSA47.3 LSA47.4vp	LSA 68-1 LSA 28-2 LSA 68-1 LSA 68-47	L54-69-1	LSA 49.2	LSA-69.3	LSA-69 Avg	LSA-70-1	LSA-70 2	LSA-70-3	LSA-70 Avg	LSA-71-1 LSA-71-2 LSA-71-3 LSA-71 Ave	LSA-72-1 LSA 72-2 LSA-72-3 1SA 72-3×2

TABLE F, I (Contid)

-	\$05	+	\$05	135	60.	
		92	v	37	E 25.5	41 m E 4
*Fadure Type	130		5	30	2 22	3227
13	-		٧.	~	~ ~ ~	m -
	5 10		- 91	m	r n	4555
- 1			11	•	10 10 00 00 00 00 00 00 00 00 00 00 00 0	
Adhesive Srr.3 - Failure pa	2,181	2,145	2,224	2,183	1,392 1,896 1,667 1,653	1072
Adherend Stress at Failures s	140,545(B) 136,180(Ti)	143,046(B) 134,161(T))	148,179(B) 138,975(Ti)	143,923(B) 136,439(Ti)	46,931 64,640 56,813 56,128(B)	41,370 48,240 42,464 44,025(B)
Fadure Load, Ib/m)	4,385	4,320	54.5	4,393	4.205 5.740 5.045 4.99*	3,715 4,365 3,860 3,987
Bonded Joint Area m2	3010	2014	2.012	2 012	3 02 10 3 02 70 3 02 70 3 02 50	3407
Overlap I ength. in	2 * 1000	23 ()00	2 × 1 000	000 1 x 3	2x 1500 2x 1500 2x 1500 2x 1500 2x 1500	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Adherend Cross-Section Area, in	0.0312(P) 0.0322(Tu	0.03024B) 0.0322(Ti)	0.0302681 0.0477 To	0.0322(Tu	0 0898 0 0888 0 0888 0 0888	0.0909 0.0909 0.0909 0.0909
Aherend Tl Adherend Width Thickness, in	2 * 0 016	2 x 0 016	3 • 0 016	2×0016	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23.00 (15
Adherend Width	1 1005	1.00	- Sign	1 096	100	010101
Composite Adherend Thickness (Net)	l to o	0.030	0.60	0.0303	0.089 0.088 0.088	0.089 0.00 to 0.040 to
Composite Adherend Panel Number	B-15B	B 18B	B-18B	B-18B	N S 1-86	777
Composite Adherend Fiber Orientation	19 [0]	19[4]	[0]61	T9 0)	1 (4* 8 (06 (04) 1 (0* 9(06 (04) 1 (0.8 (06 (04)) 1 (0.8 (06 (04))	10 -45 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Adherend Combination	8: ±	B.T	F:4	B.T	8.4 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	****
Adhesive	0.0038	\$5000	\$5000	0.0056	0.0055	0.0068 0.0055 0.0072 0.0065
Adhesive	MB-329	MB-329	MB-329	MB-320	MB-329 MB-329 MB-329 MB-329	MB-329 MB-329 MB-329
Length Berween Tabs	2.3.4	3.3/4	3.4	2.3/4	3-716 3-716 3-7/16 3-7/16	3-11 16 3-11 16 3-11 16 3-11/16
Joint	10	10	DT	10	1:0 0:1 0:1	1.0 D1 D1 D1
Specification Number	LSA-73-1	LSA 73.3	LSA-73-3	LSA 73 41g	LSA-74-1 LSA-74-2 LSA-74-3 LSA-74 Avg	LSA-75-1 LSA-75-2 LSA-75-3 ESA-75-34k

allure Types

1. Adheave to B/5

2. Adheave to TI

3. Coheave

4. Surface Resun

5. Interlaminar

6. Other

Note. Stepped addretends for step tap 151 L.) joints mode by bonding up. 2 or more laminates or Tij sheets.

**Come small words.

**Some small words.

**Note scrion tension. Ti.

**Note scrion tension and longitudinal splitting. Boton.

**Note scrion tension and longitudinal splitting. Boton.

**Note scrion tension and longitudinal splitting. Boton.

**Note scrion tension.

**Strain gased "special" rest specimen.

**I shallow in double adherend awas from the bond area.

**I shallow in double adherend awas from the bond area.

**I shallow in single adherend awas from the bond area.

APPENDIX G

NONLINEAR DESIGN/ANALYSIS PROGRAM FAILURE/BEHAVIOR PREDICTION RESULTS ON SIMPLE JOINTS

APPENDIX G.1

FAILURE LOAD PREDICTION RESULTS ON SIMPLE JOINTS

SINGLE LAP COMPOSITE TO TITANIUM ADHERENDS, LSHE ADHESIVE

NUNLINEAR ORTHOTROPIC ANALYSIS, SINGLE LAP JOINT

LSA 20

TOTAL LENGTH = 3.2500
JOINT LENGTH = 1.2500
ENROR TOLERANCE = .025
MAXIMUM ITERATIONS = 20
NUMBER OF STATIONS = b1
EFFECTIVE K = .010
ADHESIVE
THICKNESS = .01028
POISSONS RATIO = .40
RAHBERG USGOOD CONSTANTS (SHEAR STRESS=STRAIN "URVE)
6 = 80600
K ALUE = 6.318

ADHEREND NUMBER I(ORTHUTROPIC)

THICKNESS

NUMBER OF LAYERS

RANHERG OSGOOD CONSTANTS

SL VS. EL

SL VS. ET

2750000

11910

2.541

SL VS. EL

A33000

11910

2.541

SL VS. EL

A33000

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A550

A5

TAICKNESS
POISSONS RATIO
POISSONS RATIO
RANBERG USGOOD CONSTANTS
S VS. E 17251000 136600 37.246

ULTIMATE LUAD PREDICTION HASED ON
AUMESIVE - MX STRESS, SU = 7.17E+03
ADMEREND I - MX STRAIN, SL = 5.76E-03, ST = 4.01E-03, SLT = 1.50E-02
ADMEREND Z - MX STRESS, SL = 1.38E+05

ALPHA = 7.3919E+00 BETA = 7.3915E+00 LAMDA = 8.2150E+00 N RESET TO 31

ADHEREND NUMBER Z(ISOTROPIC)

```
AT ITERATION 1 EMRON IS 2.69E-09
MAXIMUM STRESS(STRAIN)/ALLOWABLE = .001 IN ADHESIVE
                                                                                                                                                                                        IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                               .817 IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 . 935 IN ADHESIVE
                                                                                                           IN ADHESIVE
                                                                                                                                                                                                                                                                                            IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                .885 IN AD. SIVE
                                                                       AT ITERATION 1 ERROR IS 1.11E-01
AT ITERATION 2 ERROR IS 7.24E-03
MAXIMUM STRESS(STRAIN)/ALLOMABLE = .458 IN
LOAD = 125S
AT ITERATION 1 ERROR IS 2.51E-01
AT ITERATION 2 ERROR IS 5.44E-02
AT ITERATION 3 ERROR IS 1.64E-02
MAXIMUM STRESS(STRAIN)/ALLOMABLE = .602 IN
                                                                                                                                                                                                                                                                                                                  AT ITERATION 2 ERROR IS 3.87E-01
AT ITERATION 2 ERROR IS 1.97E-11
AT ITERATION 4 ERROR IS 7.74E-02
AT ITERATION 5 ERROR IS 5.11E-02
AT ITERATION 5 ERROR IS 5.11E-02
AT ITERATION 7 ERROR IS 3.36E-02
AT ITERATION 7 ERROR IS 2.22E-02
AZZIMUM STRESS(STAIN)/ALLOMABLE = .817
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      AT ITEMATION & ERROR IS 1.15E-01
AT ITEMATION & ERROR IS 7.13E-02
AT ITEMATION & ERROR IS 7.13E-02
AT ITEMATION & ERROR IS 5.29E-02
AT ITEMATION OF ERROR IS 2.49E-02
AT ITEMATION OF ERROR IS 2.17E-02
HAXIMUM STRESS(STRAIN)/ALLOWABLE = .9885
LOAD = +0.92
AT ITEMATION I ERROR IS 3.15E-01
                                                                                                                                                                                                              AT ITERATION 1 EAROR IS 3.44E-01
AT ITERATION 2 ERROR IS 1.35E-01
AT ITERATION 4 ERPOR IS 3.54E-02
AT ITERATION 5 ERROR IS 3.54E-02
AT ITERATION 5 ERROR IS 1.58E-02
AT ITERATION 5 ERROR IS 1.58E-02
AT ITERATION 1 ERROR IS 3.87E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.59E-01
1.98E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.15E-01
1.77E-01
1.26E-01
9.54E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      7.426-U2
5.87E-U2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.92E-112
2.31E-112
18LE = .9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.306-01
1.276-01
9.246-02
5.646-02
4.656-02
3.806-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4.658-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.68E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             HAKIYUM STRESS(STRAIM)/ALLOWABL
ITEMATION FOR ULTIMATE LOAD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EKHCA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ERRCH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ERFOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ELHOH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  6 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TERATION
ATTERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ITERATION
ITERATION
ITERATION
ITERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                             ITERATION
ITERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ITEMATION
ITEMATION
ITEMATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TEMATION
TEMATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IFERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ITEMATION
                                                               786
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1041
```

AT ITERATION 9 ERROR IS 2.5SE-02 AT ITERATION 10 FYROR IS 2.08E-02 HAXIMUM STRESS(STRAIN)/A.L. ABLE = .962 IN ADHESIVE LOAD = 4718 AT ITERATION 1 ERROR IS 9.49E-02 AT ITERATION 2 ERROR IS 9.48E-02 AT ITERATION 4 ERROR IS 9.48E-02 AT ITERATION 6 ERROR IS 9.48E-02 AT ITERATION 7 ERROR IS 9.05E-02 AT ITERATION 8 ERROR IS 9.05E-02 AT ITERATION 9 ERROR IS 9.05E-02 AT ITERATION 9 ERROR IS 9.05E-02 AT ITERATION 9 ERROR IS 2.15E-02 MAXIMUM STRESS(STRAIN)/ALLOMABLE = 1.015 IN ADHEREND 1 LOAD = 4577 AXIMUM STRESS(STRAIN)/ALLOMABLE = 1.006 IN ADHEREND 1 AXIMUM STRESS(STRAIN)/ALLOMABLE = 1.006 IN ADHEREND 1 AXIMUM STRESS(STRAIN)/ALLOMABLE = 1.006 IN ADHEREND 1
AT ITERATION 9 ERROR IS 2.5SE-02 MAXIMUM STRESS(STRAIN)/A.L. ABLE = .962 IN ADHESIVE LOAD = 4718 AT ITERATION 1 ERROR IS 9.47E-02 AT ITERATION 2 ERROR IS 9.47E-02 AT ITERATION 4 ERROR IS 9.47E-02 AT ITERATION 4 ERROR IS 9.42E-02 AT ITERATION 5 ERROR IS 9.42E-02 AT ITERATION 6 ERROR IS 9.54E-02 AT ITERATION 7 ERROR IS 9.55E-02 AT ITERATION 8 ERROR IS 9.51E-02 MAXIMUM STRESS(STRAIN)/ALLOMABLE = 1.015 IN ADHEREND LOAD = 4577 AT ITERATION 1 ERROR IS 1.07E-02 MAXIMUM STRESS(STRAIN)/ALLOMABLE = 1.015 IN ADHEREND
AT ITERATION 9 ERROR IS 2.55E-02 MAXIMUM STRESS(STRAIN)/A, L. WABLE = .962 IN LOAD = 4718 AT ITERATION 1 ERROR IS 1.73E-01 AT ITERATION 2 ERROR IS 9.47E-02 AT ITERATION 9 ERROR IS 9.47E-02 AT ITERATION 9 ERROR IS 9.48E-02 AT ITERATION 9 ERROR IS 9.48E-02 AT ITERATION 9 ERROR IS 9.6E-02 AT ITERATION 9 ERROR IS 3.05E-02 AT ITERATION 9 ERROR IS 2.12E-02 MAXIMUM STRESS(STRAIN)/ALLOMABLE = 1.015 IN MAXIMUM STRESS(STRAIN)/ALLOMABLE = 1.006 IN MAXIMUM STRESS(STRAIN)/ALLOMABLE
AT ITERATION 9 ERROR IS 2.55E-02 MAXIMUM STRESS(STRAIN)/A, L. ABLE = .962 LOAD = 4718 AT ITERATION 1 ERROR IS 9.47E-01 AT ITERATION 2 ERROR IS 9.47E-02 AT ITERATION 4 ERROR IS 9.47E-02 AT ITERATION 9 ERROR IS 9.48E-02 AT ITERATION 9 ERROR IS 9.48E-02 AT ITERATION 7 ERROR IS 9.48E-02 AT ITERATION 9 ERROR IS 9.54E-02 AT ITERATION 9 ERROR IS 3.05E-02 MAXIMUM STRESS(STRAIN)/ALLOMABLE = 1.015 LOAD = 48.77 AT ITERATION 1 ERROR IS 2.12E-02 MAXIMUM STRESS(STRAIN)/ALLOMABLE = 1.006
AT ITERATION 9 ERROR IS MAXIMUM STRESS(STRAIN)/A. LOAD = 4718 AT ITERATION 2 ERROR IS AT ITERATION 2 ERROR IS AT ITERATION 4 ERROR IS AT ITERATION 4 ERROR IS AT ITERATION 5 ERROR IS AT ITERATION 6 ERROR IS AT ITERATION 9 ERROR IS
AT ITERATION 9 ERROR MAXIMUM STRESS(STRAIN). LOAD = 4718 AT ITERATION 2 ERROR AT ITERATION 2 ERROR AT ITERATION 5 ERROR AT ITERATION 5 ERROR AT ITERATION 5 ERROR AT ITERATION 6 ERROR AT ITERATION 9 ERROR AT ITERATION 9 ERROR AT ITERATION 9 ERROR MAXIMUM STRESS(STRAIN). LOAD = 4877 AT ITERATION 1 ERROR MAXIMUM STRESS(STRAIN).
AT ITERATION MAXINUM STRESS(1.0AD = 4718 AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION MAXINUM STRESS LOAD = 4877 AXINUM STRESS

THE PREDICTED ULTIMATE LOAD IS 4677

X230L13 7	./a+ II	~				
NUMBER OF	ITERATIONS =	1 , MAXIMUM	ERROR = .01071			
×	TAU	SIGMA	NXI	HX	N X	N X E
0.000	,9256E+	.7368	.3656E-1	0.	.6775E+0	8E-
-0417	.8000E+0	3236	. * * * 1E + 0	7	.4331E+0	1838
.0843	.6403E+1	. 2 2 8 4	.82545+0	.1887E-0	.1949E+0	55525
12		m	.13596+0	6.2878E-0	.9639E+0	0
.1667	.2246£+A	9437	.3584E+0	.2619E-0	.7+1bE+0	90 + E 6
. en 8 3	.45408+0	.4318	.1482E+0	3.64625-0	.5292E+0	0-38E-0
i) U	.6787E+A	* 18t	.3492E+0	.4247E-0	.3283E+0	2554E-0
€ 1 5 2 •	.3479F+U	7010	.5373E+U	.4852E-0	.1+01E+0	51975-0
LU)	.9648E+0	4 357	.7105E+0	.7277E-U	.9669E+0	0-3008 h
.375)	.50946+11	3580	.8555+0	.0687£-0	.8109E+0	0-36+80
. 4152	.9624E+U	.5285	.0017E+0	.1327E-0	.6758E+0	.7438E-0
£85+•		.206	.1124E+0	.8813E-0	.5651E+0	.50466-0
.5000	. ¥157E+0	.8711	.1988£+0	.5644E-C	. 4787E+0	.5884E-0
61,5.	.4354E+0	184.	. 2660E+U	.4125E-0	.*115e+0	0-34+00.
EF55.	.2143c+0	354E.	.3207£+0	.6518E-0	.3558£+C	.88805-0
. b < 5 J	304E	9128	2.36416+03	87E-	8 ¥ F +	2.580bE-U2
.6567	.1765£+0	.6356E+0	.4167E+U	.4174E-0	.2508E+0	.24296-0
Ž.	.3573E+0	.7043E+0	. * 640E+0	. 4846£-0	.2085E+0	.9580E-0
~	• b 8994E+0	.8333E+C	.5319E+0	.1479E-D	.1455E+0	.75696-0
4176	.1953E+0	. U559E+D	.6121E+0	.6256E-0	.0654E+0	. 5201E-0
en en en en en en en en en en en en en e	.7877E+0	. 26	.7155E+0	.0503E-0	.9620E+0	1E-0
.8750	.3600£+0	0071E+6	.8438E+0	.5004E-	.8337E+0	.1604E-U
. 9157	.8398E+D	.0136E+0	0+30+66*	.0319E-	.6834E+0	.803UE-U
σ	.24036+	.2427E+0	.1625E+U	-1.h422t-01	.5150E+D	.4746E-0
1.0000	.58336+0	3E+0	.3464E+U	.3613E-	.3310E+0	5 8 E - 0
<u>.</u>	•8825E+0	.ub39E+U	.5436E+0	.15776-	.1339£+0	. B288E-0
Ĉ	.1+49E+0	.04066+0	.7525E+0	-4951E-	.2492E+0	5.3422E-0
7	.3749E+	. 2322	.9716E+U	.8121E-	.0585E+0	6.2483E-0
-4 :	.5739E+n	3+884e.	.1998E+0	b35E-0	.7771E+0	.0504E-0
ณ์ เ	. 7416E+1	.<310E+0	.4353E+0	6.1745E-0	.4219E+0	.1618E-U
Ų.	.8771E+0	.59446+0	<u>•</u> 6775E+ <u>u</u>	C) U	. 1552E-1	416E-1

LSA 23 DOUBLE LAP TITANIUM TO COMPOSITE ADHERENUS, LSHE ADHESIVE

JOINT	
DOUBLE LAP	
ANALYSIS,	
ORTHOTROPIC	
NONLINEAR O	

JOINT LENGTH = .6870
ERROR TOLERANCE = .025
MAXIMUM ITERATIONS = 20
NUMBER OF STATIONS = 61
EFFECTIVE K = .020
ADHESIVE
THICKNESS = .0030
POISSONS RATIO = .40
RAHBERG OSGOOD CONSTANTS (SHEAR STRESS-STRAIN CURVE)
G = .85CANT S = 3740
N VALUE = 6.318

ADHEREUD NUMBER 1(ISOTROPIC)

THICKNESS

THICKNESS

POISSONS RATIO

RAMBERG 08G00D CONSTANTS

S VS. E

17251000

134600

13560

5 0 1 10 000 1 0 000 1 0 000 2 5 4 1 2 5 4 1 5 6 4 5 87.248 5+- 0 11910 SECANT 8 S S 0 27489000 -133504000 2750000 .0870 17 ÷ 0 1 t ADMEREND NUMBER 2(ORTHOTROPIC) 0 THICKNESS
NUMBER OF LAYERS
RAMBERG OSGOOD CONSTANTS
SL VS. ET
SL VS. ET
SL VS. ET
SL VS. ET
SL VS. ET
ORIENTATIONS

ULTIMATE LOAD PREDICTION BASED ON
ADHESIVE - MX STRESS, SU = 7.17E+03
ADHEREND I - MX STRESS, SL = 1.38E+05
ADHEREND 2 - MX STRAIN, SL = 5.36E-03, ST # 4.01E-03, SLT = 1.50E-02

0

5 + 5

ALPHA = 7.4702E+00 BETA = 7.4230E+00 LAMDA = 8.0475E+00 N RESET TO 15

```
2.25E-01
1.02E-01
7.32E-02
5.38E-02
4.03E-02
3.05E-02
2.34E-02
AABLE = .812 IN ADHESIVE
                                                                                                                                                               AT ITERATION 1 ERROR IS 3.52E-01
AT ITERATION 2 ERROR IS 1.51E-01
AT ITERATION 3 ERROR IS 7.6NE-02
AT ITERATION 4 ERROR IS 3.99E-02
AT ITERATION 5 ERROR IS 2.14E-02
MAXIMUM STRESS(STRAIN)/ALLOWABLE = .712 IN ADHESIVE
FERATION FOR ULTIMATE LOAD

LOAD = 1

AT ITERATION 1 ERROR IS 2.32E-09

MAXIMUM STRESS(STRAIN)/ALLOWABLE # .001 IN ADHESIVE

LOAD = 810
                                                                                                           AT ITERATION 1 ERROR IS 2.55E-01
AT ITERATION 2 ERROR IS 6.03E-02
AT ITERATION 3 ERROR IS 2.11E-02
HAZIMUM STRESS(STRAIN)/ALLOWABLE = .600 IN ADHESIVE
                                                           AT ITERATION 1 ERROR IS 1.15E-01
AT ITERATION 2 ERROR IS 8.15E-03
MAXI UN STRESS(STRAIN)/ALLOWABLE = .45b IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IN ADHEBIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4.516-02
4.186-02
3.886-02
                                                                                                                                                                                                                                                                                                                                                                                                                              1.43E-01
1.22E-01
1.06E-01
9.41E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.60E-02
3.35E-02
3.12E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.29E-01
1.04E-01
9.21E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8.42E-027.83E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             8.42E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          . 50E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     6.90E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 6.30E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           5.77E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5.30E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4.89E-02
                                                                                                                                                                                                                                                                                                                                                                                                                   1.756-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.07E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   7.35E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     11
                                                                                                                                                                                                                                                                                                                                                                   MAXIMUM STRESS(STRAIN)/ALLOWABLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              AT ITERATION 19 ERROR 1S
AT ITERATION 20 ERROR 1S
MAXIMUM STRESS(STRAIN)/ALL
LOAD = 3982
                                                                                                                                                                                                                                                                                                                                            ERROR IS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               EHROR
                                                                                                                                                                                                                                                                                                          ERROR
                                                                                                                                                                                                                                                                                                                      ERROR
                                                                                                                                                                                                                                                                        EPROR
                                                                                                                                                                                                                                                                                   ERROR
                                                                                                                                                                                                                                                                                                ERROR
                                                                                                                                                                                                                                                                                                                                  ERPOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ERHOH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ERROR
                                                                                                                                                                                                                                                                                                                                                                                                        ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                     ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ERROK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ERHOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ERROP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ERHOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ITERATION 11
ITERATION 12
ITERATION 13
ITERATION 14
ITERATION 15
ITERATION 15
ITERATION 15
                                                                                                                                                                                                                                                                                                                                            ∞ σ
                                                                                                                                                                                                                                                                                                                                                                                        ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
                                                                                                                                                                                                                                                          AT ITERATION
AT ITERATION
AT ITERATION
AT ITERATION
AT ITERATION
AT ITERATION
AT ITERATION
AT ITERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TTERATION
TIERATION
TTERATION
TTERATION
TTERATION
                                                                                                                                                             LOAC = 1964
AT ITERAT
                                                                                                 1.040 = 1292
                                                                                                                                                                                                                                                                                                                                                                               1040J
                                                                                                                                                                                                                                                                                                                                              G-৪
```

```
AT ITERATION 15 ERROR 13 6.53E-02
AT ITERATION 10 ERROR 13 6.53E-02
AT ITERATION 11 ERROR 13 5.80E-02
AT ITERATION 12 ERROR 13 5.80E-02
AT ITERATION 12 ERROR 13 5.80E-02
AT ITERATION 12 ERROR 13 4.00E-02
AT ITERATION 12 ERROR 13 5.80E-02
AT ITERATION 13 ERROR 13 5.80E-02
AT ITERATION 14 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITERATION 15 ERROR 13 5.80E-02
AT ITE
```

		0		.	0	0		•	•		0	0	0				
	N X X	8,3255E+03	7.6932E+03	7.0785E+03	6.4737E+03	5.8816E+03	5,2978E+03	4.7214E+03	4.1488E+03	3,5769E+03	3.0027E+03	2.4223E+G3	1.83462+03	1.0348E+03	5-2610E+02	2.6193E-10	
	HXT	-4.0927E-14	-1.1397E-01	-1.7451E-01	-1.9063E-D1	-1,72925-01	-1.2999E-01	-7.1399E-02	-4.7648E-03	6.2115E-02	1.2153t-01	1.65726-01	1.8512E-01	1.70916-01	1.12255-01	2.27375-14	
ERROR = .02477	NXI	5.82086-11	3.1611E+02	6.23425+02	9.2588E+02	1.2219E+03	1.51386+03	1.8020E+03	2.0883E+03	2.3743E+03	2.66146+33	2.9516E+03	3.2454E+03	3.5453E+03	3 8 4 9 7 E + 0 3	4.1627E+03	
ITERATIONS = 18 , MAXIMUM ERROR = .02477	SIGMA	1.2150E+03	1,05015+03	8.5956E+02	6.6138E+02	4.7138E+D2	2.48686+02	1.4446E+02	2.2870€+00	-1.3978E+02	-2.9401E+02	-4.6757E+02	-6.5998E+02	-8.6202E+02	-1.0576E+03	-1.2273E+03	
ITERATIONS =	TAU	6.4967E+03	6.35626+03	6.2239E+03	6.1024E+03	5.49705+03	5.9130E+03	5.8565E+03	5.8319E+03	5.8416E+03	5.88446+03	5.4567E+03	6.0527E+03	6.1671E+03	6.29416+03	6.4304E+03	
NUMBER OF	×	000000	16+0°	1860.	• 1 + 7 2	.1963	+ C+ C+	* + 5 2 "	3 + 3 5	• 392b	• + + 16	C064.	.5398	5 9 9 9	.6379	. E870	

HX Z

4163

RESULTS FOR P =

COMPOSITE TO TITANIUM ADHERENDS, LSWE ADHESIVE LSA ZE TWO STEP LAP

```
1
4
5
5
7
                                                                                                                                                                                                                                                                                                                                                        00
                                                                                                                                                                                                                                                                                                                                                     1
1
1
1
1
1
1
                                                                                                                                                                                                                                                                                                                                                     .
.
.
.
.
                                                                                                                                                                                                                                                                                                                                                      0 0
                                                                                                                                                                                                                                                                                                                                                   + t 2
                                                                                                                                                                                                                                                                                                                                                   5 to 10
                                                                                                                                                                                                                                                                                                                                                   00
                                                                                                                                                                                                                                                                                                                                                                                                                                          ULTIMATE LOAD PREDICTION BASED ON
ADMESIVE - MX STRESS, SU = 7.17E+03
ADMEMEND 1 - MX STRAIN, SL = 6.0RE-03, ST = 4.01E-03, SLT = 1.50E-02
ADMEMEND 2 - MX STRESS, SL = 1.35E+05
                                                                                                                                                                                                                                                                                           ADHESIVE

THICKVESS = .nos8

POISSONS RATIO = .40

RAMBERG OSGOOD CONSTANTS (SHEAR STRESS-STRAIN CURVE)

G = 80600
                                                                                                                                                                                                                                                                                                                                                                                                            SECANT 8
134000
                                                                                                                                                                                                                                                                                                                                            Sh Sh 0
NONLINEAR ORTHOTROPIC ANALYSIS, STEP LAP JOINT
                                                                                                                                                                                                                                                                                        3
00055985
000559861=
                                                                                                                                                                                                                                                                    .2620
                                                                                                                                                                                                                                                                                                                                                                                       .3062
.3062
16096000
                                                                                                                                                                                                                                                                                                                        2750000
                                                                                                                                                                                                                                                                                                                                  933000
                   ERROR TOLERANCE = .025
MAXIMUM ITERATIONS = 20
NUMBER OF STATIONS = 31 PER TRFAD
FFECTIVF K = .100
                                                                                                                                                                                                                                                                                                                                             00
                                                                                                                                                                                                                                                ADREMEND NUMBER 1(ORTHOTROPIC)
THICKNESS
NUMHER OF LAYERS
RAMBERG OSGODD CONSTANTS
SL VS. ET
SL VS. ET
SL VS. ET
SL VS. ET
SL VS. ET
SL VS. ET
                                                                                                        2.0080
                                                                                                                            1.8730
                                                                                                                                                                                                                                                                                                                                                                     ADHEREND NUMBER Z(ISOTHOPIC)
THICKNESS
POISSONS RATIO
RAMHERG OSGOOD CONSTANTS
S VS. E
                                                                                                                                                                                                                       3740
6.318
                                                                               A
£580.
                                                                                                                .0873
                                                                                                                                                                                                                     SFCANT S = N VALUE =
                                                                            STEP GEOMETRY
```

5.9221E+00 5.8758E+00 3.9374E+00

STEP 1 ALPHA = RETA = LAMBDA = N RESETTO

5.4848E+U0 5.4347E+U0 3.4519E+U0

```
. hed IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                               . 744 IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IN ADHEBIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 .936 IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    .978 IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IN ADHESIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TERATION | ERROR | IS | 1.99E-01 | ITERATION | ERROR | IS | 1.02E-01 | ITERATION | S | ERROR | IS | S.86F-02 | ITERATION | S | ERROR | IS | S.44E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | ITERATION | S | ERROR | IS | S.47E-02 | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ERROR | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERATION | S | ITERA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.41E-02
3.67E-02
2.51E-02
1.72E-02
ARLE = .9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         9.84E+D2
5.19E-D2
3.55E-D2
2.55E-D2
1.86E+D2
                                                                                                                                                                                            AT ITERATION 1 ERROR IS 2.05E-01
AT ITERATION 2 ERROR IS 7.44E-02
AT ITERATION 3 ERROR IS 7.70E-03
MAXIMUM STRESS(STRAIN)/ALLOWARLE = .6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.996-01
1.286-01
6.556:02
3.476-02
1.866-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          5.03E-02
3.14E-02
1.98E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.376-01
8.16E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.46E-01
1.26E-01
8.06E-02
                                                                                                                                                                                                                                                                                                                                       AT ITERATION 1 ERROR IS 2.72E-0.1
AT ITERATION 2 EPROR IS 8.46E-02
AT ITERATION 3 EPROR IS 3.34F-02
AT ITERATION 4 EPROR IS 1.32E-0.2
MAXIMUM STRESS(STRAIN)/ALLOWARLE = ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.83E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ARLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    AHLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TPAIN)/ALLOW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AT ITERATION 1 EREOR IS
AT ITERATION 2 ERROR IS
AT ITERATION 4 ERROR IS
AT ITERATION 5 EPROR 1S
AT ITERATION 5 EPROR 1S
HAXIMIN STRESS(STRAIN)/ALLOM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FRAIN)/ALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ITERATION FOR ULTIMATE LOAD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                EPPCH
ERROR
ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     EAROR
EFIRTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E R R O R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      EPHOR
CHHOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ERHOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ERHOR
ERHOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ERHOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EHHOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EHROH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EHROH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              MAXIMUM STRESS(ST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               MAXIMUM STRESS(S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TERATION
TTERATION
TTERATION
TTERATION
TTERATION
TTERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TIERATION
ITERATION
ITERATION
ITERATION
ITERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ITERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I SFRATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ITERATION
```

AT ITERATION 3 ERHOR IS 5.58E-02
AT ITERATION 4 ERROR IS 4.08E-02
AT ITERATION 5 ERROR IS 3.04F-02
AT ITERATION 6 ERROR IS 2.28E-02
MAXIMUM STRESS(STRAIN)/ALLOWAHLE = 1.001 IN ADHESIVE

THE PREDICTED ULTIMATE LOAD IS 11181

NO CONVERGENCE AFTER TEN ITERATIONS - TERMINATED

RESULTS FOR P = 11181

Table Tabl	MINARER OF	ITERATIONS =	S , MAXIMUM ER	7ROR = .02282			
1	×		SIGMA	NXI	HX1		MXS
12 12 12 12 12 12 12 12	EP NUMBE	1					
19.55 5.18616.03 1.80516.03 1.80516.00 1.80516.	000.	. 5244E+0	.n180E+n	.1642E-1	9.0949E-1	.11945+0	4.8863E+0
1.00 1.00	5.	.3996E+0	• 5575E+0	.99638+0	1.1195E+0	.06956+0	4.3412F+0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ນ ເ ນ ເ	• 18702+U	5.437274D	.8257E+0	7.6460E-0	.0212E+0	3.6707E+9
1.1579E 03	10 to 10		7. 3542E+0	0+335+0	. 8470 E - 0	.7509E+0	2,96998+0
1.05 1.05	יים נים נית	0.2002.	D * 4 7 7 3 H + D	.8750E+0	.0632E+0	.3193E+0	2.31446+0
1.05 1.05	0 F	0.447.4.4	/•+b!:bE+U	0 + 4 + E + O	.5860E+0	.4149E+0	1.7369E+0
10 10 10 10 10 10 10 10	, c	D+11+5.7	6.5566F+0	.635*E+0	.66185+0	.5589E+0	1.2546F+0
1.27 1.27	7. t	.1635t+0	4.7512F+0	.4506E+0	. "J23E+0	. 2436E+0	8.66015+0
1.077 1.077 1.0	UE 2	2.4905E+0	2.9579F+0	. 2090E+0	.972BF-0	0+32586°	5.6669E+0
1.12	ຕຸ ? ພ :	1.8417E+0	1.67236+0	. +057E+0	.11636-0	.78865+0	3.46636+0
10 10 10 10 10 10 10 10	ນ : - ເ	.3575E+II	4.35655+1	.55025+0	.1302E-0	.6440E+0	1.8645E+O
	÷ 0	- 0 + 2 + E + C	5.1276E+0	. 65866+0	.3327E-0	.5356E+0	P.5884E-0
10 10 10 10 10 10 10 10	500	.6522E+0	1.62516+0	.7447E+0	6.9671E-0	. 4496E+0	.1024E-0
### ##################################	186	.02675+0	.8341E+0	.8200E+0	1.9035E-D	.3742E+0	.1709E+0
38441 1,000 be 60.3 1,174 be 60.3 3,979 be 60.3 -3,400 be 60.3 1,000 be	. 27,	.46365+0	.3778E+0	.8945E+0	3.0619E-0	.2998E+0	.0+34E+0.
Variable Variable	.354	.0008€+∩	.1244E+0	.97796+0	3.9705E-0	.2164E+0	0+368+0.
1.72 1.72	. + 61	.2841E+n	.5848E+11	. nBirt+0	4.7544E-0	.1132E+0	.3264E+0
1. 1. 1. 1. 1. 1. 1. 1.	.551	.72445+1)	.6129E+D	.2170E+0	5.61358-0	.9772E+0	02446+0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	7. 7.	.3503€+0	. 2177E+0	. * UOBE+0	7.3842F-11	. 7934E+U	2593F+U
14.2974 14.2	ት ይረ •	.99618+0	1. 144PE+U	.6440F+0	1.0988E+0	.55n3E+0	.1107F+0
1,0338603	Υ. Ω.	.5796E+A	3.75446+0	. 9446F+0.	1.8498E+n	. 249hE+1	.+304F+0
### ### ##############################	414	.0333E+U	5.58566+0	.2017E+0	3.0918E+0	.9026E+0	.7631E+0
EP HUNDS 4,4355E+03 -4,5527E+02 5,6745E+03 1,5241E+01 5,1525E+03 -1,5241E+01 4,685E+01 4,085E+03 -1,5242E+03 3,1545E+03 3,1555E+03 3,155E+03 3,	¥ 0 0 •		4.5773E+D	.5785E+D	4.4019E+0	.5157E+0	.04380P0.
1.00	EP HUNBE	n.					
1,000 1,00	.0033	.4355E+O	4.5522E+0	. 6785E+0	9885E+0	.5157E+0	3,1585E+0
1.259926+03	Ξ.	.0835E+0	3.62005+1	.0417E+0	0+31 425°	1525E+0	2.0350E+0
3.1%526.03 3.1%526.03	7	.67055+0	1.5575E+0	.371hE+0	25559E+D	82255+0	1.27475+0
1.67546E+03	'n.	.1467E+n	. 91174E+1	. 6 h 3 3 E + 0	31375+11	.5310E+0	7.90135-0
1.99AbEE+93	17 17,	.574JF+0	. h359F+N	.9078E+0	3787E+0	2854E+0	5.093+E-0
1.5203E+03 1.2205F+03 1.2205F+03 1.2205F+03 1.2205F+03 1.2205F+03 1.2205F+03 1.2205F+03 1.2205F+03 1.2205F+03 1.2303E+03 1.0049E+03 2.3428F+01 2.3438F+01 2.3438F+01 2.3438F+01 2.3438F+01 2.3438F+03 1.3513E+03	J.	.9266+9	0+35000	.1012E+0	11183E+0	09316+0	D-T+CCC-E
.59% 1.22% 7.35% 7.569% 7.569% 7.699% 7.36% <	7	.5273E+O	. 72685+0	0+356+2.	1862E+0	0+3C+46	3.03605-0
• 6847 1.084926403 7.38125401 7.84102403 -1.7636601 3.73326403 1.0525640 • 755 46102403 -1.38596400 3.64706403 1.3513603 • 850 462 <th< td=""><td>ک</td><td>.2205F+0</td><td>. 2883E+0</td><td>.3554E+0</td><td>.6996E-0</td><td>.8289E+0</td><td>1.0098E-0</td></th<>	ک	.2205F+0	. 2883E+0	.3554E+0	.6996E-0	.8289E+0	1.0098E-0
9.54704E+02 2.5428F+01 7.5473E+03 -1.3859E+00 3.6470E+03 1.3513E-0 9.50 1.0599E+03 -1.580E+01 7.5340E+03 -2.3784E+00 3.5603E+03 2.8230E-03 9.50 1.2499E+03 -6.515E+03 -7.311E+03 -7.312E+00 3.453E+03 2.823E+03 1.573E+03 -1.5049E+03 -7.316E+03 -6.515E+00 3.454E+03 4.552E+03 1.053 2.0574E+03 -7.1043E+03 -6.515E+03 -1.317E+03 4.385E+03 1.053 2.0570E+03 -1.1824E+01 2.9376E+03 1.355E+03 1.355E+03 1.05 3.701E+03 -2.550E+03 -1.1824E+01 2.9376E+03 1.551E+03 2.05 4.1855E+03 -2.550E+03 -1.5550E+03 -1.5550E+03 1.7551E+03 2.05 4.1855E+03 -2.550E+03 -2.550E+03 -2.550E+03 -2.550E+03 2.05 4.1855E+03 -2.250E+03 -2.550E+03 -2.550E+03 -2.550E+03 2.05 4.1855E+03 -2.2485E+03 -2.550E+03 -2.550E+03 -2.550E+03	33	.0+95£+0.	.3215E+D	.46102+0	3.763bt-0	. 7332E . 3	0-35050.
-8519 1.05996+03 -1.580hE+01 7.5311E+03 -2.3783E+00 3.5603E+03 2.8580E-0 -9355 1.28496E+03 -6.052E+01 7.7311E+03 -3.4732E+00 3.4631E+03 4.5503E-0 -1.2496E+03 -6.052EE+01 7.7311E+03 -4.799bE+00 3.3449E+03 7.0028E-0 -1.2515E+03 -2.1943E+02 8.0030E+03 -4.799bE+00 3.3449E+03 7.0028E-0 -1.2523E-03 -2.1940E+03 -2.1940E+02 8.203E+03 -1.1824E+01 2.7376E+03 1.3451E+0 -1.2534 3.2583E+03 -2.1940E+02 8.203E+03 -1.1824E+01 2.7376E+03 1.751E+0 -1.2534 3.2534E+03 -2.1063bE+03 -1.5550E+01 2.7376E+03 1.7551E+0 -1.2534 4.855E+03 -2.398E+03 -2.0317E+01 2.0489E+03 1.751E+0 -1.1534 4.855E+03 -2.398E+02 9.8676E+03 -3.1871BE+01 1.7576E+03 1.7776E-0 -1.153 4.855E+03 -2.398E+02 9.8670E+03 -3.1871BE+01 1.7576E+03 -3.1777E-0 -1.2534 5.33184E+03 1.758E+03 1.0736E+01 1.7550E+01 1.7552E-10 -1.0737E+0 -1.2534 5.33184E+03 3.0669E+03 1.1194E+04 -4.49474E+01 1.4552E-10 -1.8130E+01	<u>ئ</u> ت	.97114E+0	.5328F+U	0+3645.	1.38548+0	.6470E+0	.3513E-0
1.24496E+03	ar L	•0599E+3	1,580hE+0	.6340E+0	2.3784E+U	.5603E+0	.8280E-0
1.5715E+01	5	. 2449E+0	6.11522£+0	.7311E+0	3.47326+11	.4631E+0	.650JE-0
1443 2 2.05742403 -2.1943E402 8.0030E403 -6.5153E400 3.1912E403 1.3451E40 2.99702E403 -3.70156402 8.2035E403 -1.1851E401 2.7375E403 1.3451E403 1.3451E403 1.3451E403 1.3451E403 1.3451E403 1.3551E401 2.7375E403 1.7551E401 2.7375E403 1.7551E401 1.7552E403 1.7551E401 1.7552E403 1.7551E401 1.7572E403 -7.5504E403 1.7572E403 1.7772E404 1.7772E401 1.7572E403 1.7772E404 1.7777E404 1.7777E404 1.7777E404 1.7777E404 1.7777E404 1.7777E404 1.7777E404 1.77777E404 1.7	ر (•	.5715E+A	1.20416+0	. 8449E+0	4.7495E+P	34446	.00≥8E-D
2.6691E+03	=	.0574E+0	2.1943E+0	.0030E+0	6.5153t+P	.191cE+0	0-385 Rp.
3.2683f+33 -5.5451F+02 8.9567E+03 -1.1824F+01 2.335E+03 1.555E+03 3.273E+13 -7.108JF+02 8.7567E+03 -1.5550E+01 2.4375E+03 1.751E+0 4.4185E+13 -7.50484E+03 -2.0317F+01 2.0484E+03 1.551E+0 4.515 4.585E+03 -7.50E+03 -3.535E+03 -3.535E+03 -3.535E+03 5.15 4.855E+03 -1.245E+03 -3.841JF+01 4.0247E+03 -8.0175E-0 2.53 3.125 3.841JF+01 4.5624E+02 -8.0175E-0 2.85 3.105 4.4526E+01 4.5624E+02 -1.0737E+0 2.85 3.105 4.4526E+01 4.5624E+02 -1.0737E+0 2.85 3.05 4.4426E+01 4.5624E+02 -1.0737E+0 2.85 3.05 4.4426E+01 4.5624E+02 -1.0737E+0	σ ~'	.6691E+n	3.746b£+D	.2036E+0	A.805 JE+0	0+36000.	.34616+0
3.7701E+U3 -7.1061F+D2 8.7567E+U3 -1.5650E+U1 2.4375E+O3 1.7751E+D 4.1855E+U3 -7.5504E+D2 9.0954E+O3 -2.0317E+D1 2.0989E+O3 1.5617E+O 4.1854E+D3 -7.5504E+D2 9.4850E+O3 1.7272E+O3 0.5350E+O3 0.5350E+O3 0.5350E+O3 0.5350E+O3 0.5350E+O3 0.5350E+O3 0.5350E+O3 0.50514 0.00547E+O3 0.00	7	. 2683E+1	5.53511+1	. 4567£+0	1.18246+0	. 7376E+0	. 6555E+0
**************************************		. 2201E-11	7.1083F+D	.7567E+U	1.5h50E+0	.4375E+0	.7751E+N
	3	,1855E+1)	7.55n+E+D	.09546+0	2.0317£+0	.0489E+0	.5617E+0
.515/2 4.8555403 -1.39556403 9.85586403 -3.19508601 1.32756403 7.1777640 275/2 5.12196403 5.60706402 1.02426409 -3.84136401 9.02476402 -8.01756540 2755/3 5.31846403 1.75856403 1.07356409 -4.45256401 4.58246402 -1.0737640 .8770 5.93196403 3.05546403 1.11946409 -4.94746401 1.45526410 -1.8130641		0+36245.	5.945RE+0	.4670E+0	2.59128+0	.72725+0	.5350E-0
	د ر	.8565E+O	1.3465E+O	. 8558E+O	3.19506+0	.3275E+0	.17778-0
.//5/5/3 5.41846403 1./5856403 1.0/356409 -4.4/6/66401 4.58646402 -1.0/37640 .#?/0 5.43196403 3.05696403 1.11496409 -4.94/46401 1.45526-10 -1.8130641	. ,	. 1 < 1 + E + C	• 60 20E +0	0+32520.	3.8413140	. U2 + 7E + 0	. 0176E-U
. r 2:0 5.4319E+03 3.0669E+03 1.1149E+04 -4.9479E+01 1.4552E-10 -1.8130E+1	0 1 2	.31848+0	.7585E+0	.0736£+0	4.45268+	.5824E+0	.0737E+0
	1	.4319E+0	. nbb9t+0	. 1144E+	44746+	.4552E-1	.817Uf-1

APPENDIX G.2

LEHAVIOR PREDICTION AT GIVEN LOADS IN SIMPLE JOINTS

LSA 20 SINGLE LAP COMPOSITE TO TITANIUM ADHERENUS, LSHE ADHESIVE

NOWLL REAR OFFHUTHOPIC ANALYSIS, SINGLE LAP JOINT

 ADMEREUD 11) 18ER 1 (DRTHOTROPIC)

INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
INTERNESS
***INTERNESS**

ADMERRYD AUMBER 2(ISOTROPIC)
THICKNESS
THICKNESS
THICKNESS
THICKNESS
THICKNESS
THE STATES
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S
TO SECANT S

ALPHA = 7.3919E+00 BET. = 7.3915E+00 LAMBDA = 8.2150E+10 N RESET TO 31

```
1.0AU = 4430

AT ITERATION 1 ERROR IS 7.28E-01

AT ITERATION 2 ERROR IS 3.47E-01

AT ITERATION 4 ERROR IS 3.47E-01

AT ITERATION 5 ERROR IS 7.65E-01

AT ITERATION 6 ERROR IS 1.65E-01

AT ITERATION 7 ERROR IS 1.65E-01

AT ITERATION 8 ERROR IS 1.65E-01

AT ITERATION 9 ERROR IS 8.51E-02

AT ITERATION 10 ERROR IS 8.76E-02

AT ITERATION 11 ERROR IS 5.46E-02

AT ITERATION 12 ERROR IS 8.48E-02

AT ITERATION 13 ERROR IS 5.46E-02

AT ITERATION 14 ERROR IS 8.48E-02

AT ITERATION 15 ERROR IS 8.48E-02

AT ITERATION 15 ERROR IS 8.48E-02

AT ITERATION 15 ERROR IS 8.48E-02
```

	:1X2		STRSLT 20.00.00.00.00.00.00.00.00.00.00.00.00.0	STRSLT 20.00.00.00.00.00.00.00.00.00.00.00.00.0
			8TRST 2 94396+04 95846+04 94146+04 94166+04 00556+04 00656+04 00156+04 01156+04	STRST 2 78D0E+04 791bE+04 8013E+04 8149E+04
	N X N	4 + + + + + + + + + + + + + + + + + + +		S
	нхи	77. 77. 77. 77. 77. 77. 77. 77. 77. 77.	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
52	1		STRSLT 1	37R3LT 1 .2258E+02 .2365E+02
ERROR = .0237	×	4.35 4.35	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TRST 1 6.2 E + 0.2 3.9 E + 0.2 0.9 E + 0.2 5.0 E + 0.2 5.1 E + 11.2
MAXIHUM ER	SIGMA	11. 22. 4. 22. 4. 23. 23. 4. 23. 4. 23. 4. 23. 4. 23. 4. 23. 4. 23. 4. 23. 4. 23. 4. 2		2
15 -	A U		<u>τ</u>	STRSL 1 7.4211E+03 3.80+1E+03 7.4902E+03 3.4394F+03
ITERALLONS	-	2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	Г А Т Б В В В В В В В В В В В В В В В В В В	ላ ላ ጥቴመወኮ ኤቴመወኮ
45 r2 r	٦	G-18	× 5000000000000000000000000000000000000	x x
		U-1 0		

	STRSLT'2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		STRSLT 200.000.000000000000000000000000000000	81R8L1 200.000.000000000000000000000000000000
2.8382E+04 2.849E+04 2.8515E+04 2.8731E+04	STRST .6235E+0 .6338E+0	6.6446E+04 6.65446E+04 6.6548E+04 6.6856E+04 7.6856E+04 7.063E+04 7.063E+04	17 4 7 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1	STRST 2 3334 E + 0 4 2 34 5 5 E + 0 4 2 3 5 5 5 E + 0 4 2 3 5 5 5 E + 0 4 2 3 5 5 5 E + 0 4 2 3 5 5 5 E + 0 4 2 3 5 5 5 E + 0 4 2 3 5 5 5 E + 0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	STRST 2 2.1981E+94 2.2036E+04 2.2040E+04 2.2144E+04 2.2194E+04 2.2307E+04
9.2691E+04 9.3071E+04 9.3451E+04 9.3832E+04	3TRSL .5679E+0 .6017E+0	8.3030E+04 8.7030E+04 8.7030E+04 8.3070E+04 8.3070E+04	8 1 2 3 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31kSL 2 7.61b8E+04 7.6400E+04 7.6632E+04 7.7097E+04 7.7329E+04 7.7329E+04 7.734E+04 7.734E+04	STRSL 2 7.1788E+04 7.1965E+04 7.2142E+04 7.2340E+04 7.247E+04 7.2674E+04
1.2472E+02 0. -1.2579E+02 0.		2.2473E+02 0.2594E+02 0.2714E+02 0.3714E+02	8906+0 893E+0 985E+0 027E+0	STRSLT 1 03.5159E+02 3.5219E+02 0. 3.5279E+02 03.5339E+02	3TRSLT 1 0. -3.4054E+02 0. 3.4044E+02 0. 3.4127E+02
4.5561E+02 1.5693E+02 4.5972E+02 1.5835E+02	STRST .01876+0 .75346+0	8.8120E+02 3.0802E+02 8.920E+02 8.9280E+02 9.1007E+02 8.9280E+02 8.9280E+02	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	STRST 1 1.6623E+03 1.6623E+03 5.8672E+02 1.672E+02 1.6721E+03 5.9157E+03 1.6770E+03	3TRST 1 7.1846£402 2.0276£403 7.1978F402 2.0211£403 7.2110£402 2.1246£403
3.87%5E+03 7.628%E+03 3.9099E+03 7.6975E+03	STR3 **698E *5177E	2.5.5.4.6.4.0.3.1.4.4.0.4.4.6.4.0.4.4.6.4.0.4.6.4.0.4.6.4.0.3.1.5.0.4.4.6.4.0.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.0.3.1.5.0.4.4.6.4.6.4.6.4.6.4.6.4.6.4.6.4.6.4.6	2.1272E+04 1.1127E+04 2.127E+04 1.1127E+04 2.1477E+04 2.1777E+04 2.204 1.1287E+04 2.204	STRSL 1 2.8595E+04 1.4602E+04 2.8673E+04 1.4647E+04 2.8773E+04 2.8773E+04 2.8873E+04 2.8851E+04 1.4592E+04	STRSL 1 3.5103E+04 1.7909E+04 1.7947E+04 1.7977E+04 3.5294E+04
Σ Γ Φ σ	LAYER 2 3	ጉ ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	⊣໙ຓታኴഛሎଝԾ	L A Υ Ε Υ Ε Α Β Α Α Α Α Α Α Α Α Β Α Α Α Α Α Α Α Α Α	LAYER YER YISEWNIA
	X M	×	. 1256	. 1 6 6 7	× m c c

•••	STRSLT 2		.	• •	• c	• •				.0	. STRSLT 2	0.	•		• •	• •	• =	• •	.0	STRSLT 2	•0	• 0	•	• •	• •	0.	• •	;	STRSLT 2	_	• •	•0	•	• •	• •	0.0	.
2,2416£+04 2,2416£+04	SIRST 2		C.0724E+04	0,000,510		08785+0	0916E+0	.0955£+0	.0993E+0	.1032E+0	STRST 2	.9559E+	•9583E+0	.9608£+0	1.4632E+04	0+12,016	4204640	.9730E+0	.9755£+0	STRST 2	.8499E+0	.8512E+0	*8525E+0	. 85338C+C	.8564E+0	.8577E+0	1.8540E+0:		STRST 2	. 256.7F + O	.7571E+0	.7575E+0	.7580E+0	1.7584E+04	.7592E±0	.7547E+0	.76016+0
7.3206E+04 7.3206E+04	STRSL 2		40+04C4C4	1127007.	. 8059F+0	8184E+0	.8310E+0	.8+35E+D	.8551E+0	.8687E+0	STRSL 2	.38755+0	.3955E+0	.4036E+0	6.4115E+04	444944	**************************************	***36E+0	.45162+0	STRSL 2	•0416E+0	.0+59E+0	.0501E+0	10744640	.0628E+0	.0671E+0	6.0713E+04		STRSL 2	0430667	-7384E+0	. 7348E+0	.7412E+0	5.74255+04	. 2 + 5 + E + O	. 746HE+U	.7+82E+0
-3,9162E+02 0.	STRSLT 1	,	.0.	•	4 . 1 4 R 4 F 4 D 2		4.1970€+02		-+.1986E+02	•0	STRBLT 1		-+-+079E+02	1	4.4085E+02	4 C C C C C C C C C C C C C C C C C C C		-4.4099E+02	•	STHSLT 1		-7.5677E+02	. O . 30 F 13 H	. 36796+0	4.5680E+02	0.	74.2683E+UC		STRBLT 1	0.	-4.6857E+02		4.6857E+02	U. 4 - 6642F+02		-+.6857E+02	
2,02825+03 7,73755+03	STRST 1	() () () () () () () () () ()			347040	E+000+1	34925+0	.4483E+0	.3514E+0	.45656+0	STRST 1	.5654E+D	5424E+0	.5694E+0	6.54355403		. 5281E+0	. 5456E+0	.58216+0	STRST 1	.0595E+0	.9073E+0	. NS95E+U	0.498640	.4080E+0	0+35650	6.40084E+U3		STRST 1	14916+0	.1357E+0	.1491E+0	.1358E+n	1.14414403	14916+0	.1358E+O	1.968+0
1.80096+04 3.5364E+04	STRSL 1		7.15666494	36361	103	.1303E	.1058E	.1344E	.10745	.1345c	STRSL 1	88	20 i	5	4 0 4 C 3 C 4 C 4 C 4 C 4 C 5 C 5 C 5 C 5 C 5 C 5	. 0	. ÷	ë	3.	STPSL 1	. 2nnsE	H + 0 + 0 +	. 7U12t	777777	. 650nE	-202E	5.20.30E+04		STRSL 1	9	87	9	8.7	0.84777404 7.8477404	. J	, k 7.	÷ 0 •
ασ	LAYER	•	⊣ ∩	יז נ	ì ±	S	و.	^	οc		LAYFR	н	n. 1	m:	→ 1/1	ı ve	۰ ۸	æ	σr	LAYER		n: ı	n a	- L T	و.	۰ ۵	no or		LAYER	-	n.	m	±+ (nα	۰ ۸	æ	σ
	×		• • • •								×	. 2417								×	. 2333								*	0565							

×	LAYER	STRSL 1	STRST 1	STRSLT 1	STRBL 2	STRST 2	STRSLT 2
. 4 1 6 7		6.0186E+04 3.0650E+04 5.01857+04 3.0650E+04 5.0184E+04 3.0450E+04 5.0184E+04 5.0183E+04	1. 2231E 1. 2231E 1. 2231E 3. 3226E 3. 3226E 1. 2230E 1. 223	0. 0. 4.7704E+02 0. 4.7704E+02 0. 4.7704E+02	5. 4 4 8 2 1 E + 0 4 5. 4 8 8 1 1 E + 0 4 5. 4 8 8 1 1 E + 0 4 5. 4 8 9 0 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 4 9 9 1 E + 0 4 5. 5 9 9 1 E + 0 4 5. 6 9 9 1 E + 0 4 5. 6 9 9 1 E + 0 4 5. 7 9 1 E + 0 4 5. 7 9 1 E	1.6788E+04 1.6786E+04 1.6785E+04 1.6783E+04 1.6782E+04 1.6776E+04 1.6776E+04 1.6776E+04	
× m & +	ገ ቀ ጉ ማ ተበພትየህጭራወል	STRSL 1 6.3059E+64 3.2116E+04 5.3059E+04 5.3058E+04 5.3058E+04 3.2116E+04 5.3057E+04	STRST 1 1.2805E+03 3.4667E+03 1.2805E+03 1.2805E+03 3.4667E+03 1.2805E+03 1.2805E+03 1.2805E+03	STRSLT 1 1.8793E+02 1.8292E+02 1.8292E+02 1.8292E+02	STRSL 2 5.2829E+04 5.2813E+04 5.2797E+04 5.2782E+04 5.2785E+04 5.2735E+04 5.2735E+04 5.2735E+04	3TR3T 2 1.6176E+04 1.6167E+04 1.6167E+04 1.6157E+04 1.6157E+04 1.6157E+04 1.6147E+04 1.6147E+04	STRSLT 2 0.00.00.00.00.00.00.00.00.00.00.00.00.0
x 00000	ገ ል ሕግ 4 5 6 6 7 8 6 አ	9 TPSL 1 6.5253E+04 3.3205E+04 6.5255F+04 6.5251F+04 6.5251F+04 8.3225E+04 8.3225GE+04 8.5249E+04	578 21 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3TRSLT 1 0.8699E+02 0.8699E+02 0.8699E+02 0.8699E+02	STRSL S. 1302E+04 S. 1288E+04 S. 1288E+04 S. 1283E+04 S. 1283E+04 S. 1183E+04 S. 1163E+04 S. 1163E+04	STRST 2 1.5709E+04 1.5697E+04 1.5690E+04 1.5690E+04 1.5684E+04 1.5678E+04 1.5666E+04 1.5666E+04	STRSLT 2 0.00.00.00.00.00.00.00.00.00.00.00.00.0
X C	ር ቀ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ	STRSL 1 6.6942E+04 3.4083E+04 6.693E+04 3.4078E+04 5.6935E+04 5.6935E+04 5.6935E+04 6.6935E+04 6.6935E+04	STRST 1. 3574E+03 1. 3574E+03 1. 3573E+03 1. 3573E+03 3. 5574E+03 3. 5574E+03 2. 4572E+03 3. 5574E+03 1. 3574E+03	STRSLT 1 14.8943E+02 14.8942E+02 14.8942E+02	STRSL 2 5.0113E+U4 5.003E+04 5.003E+04 5.003E+04 5.0012E+04 4.4442E+04 4.4442E+04	STRST 2 1.5344E+04 1.5338E+04 1.5326E+04 1.5326E+04 1.5314E+04 1.5304E+04 1.5304E+04	STRSLT 2 0. 0. 0. 0. 0.

ļ

STRSLT 2		STRSLT 2 0.00.00.00.00.00.00.00.00.00.00.00.00.0	STRSLT 20.00.00.00.00.00.00.00.00.00.00.00.00.0	STRSLT 200.00.00.00.00.00.00.00.00.00.00.00.00.
STRST 2	1.5046E+04 1.5040E+04 1.503E+04 1.5029E+04 1.5029E+04 1.5018E+04 1.5013E+04 1.5007E+04	STRST 2 1.4780E+04 1.4770E+04 1.4750E+04 1.4750E+04 1.4757E+04 1.4757E+04 1.4757E+04 1.4757E+04 1.4757E+04	STRST 1.4518E+04 1.4516E+04 1.4502E+04 1.4499E+04 1.4495E+04 1.4495E+04 1.4495E+04 1.4495E+04	STRST 2 1.4231E+04 1.4228E+04 1.4222E+04 1.4219E+04 1.42116+04 1.42116+04 1.4210E+04 1.4202E+04
STRSL 2	+ 4 4 4 1 3 7 E + 0 4 + 4 4 1 1 3 F E + 0 4 + 4 4 0 8 3 E + 0 4 + 4 9 0 5 E + 0 4 + 4 9 0 2 8 E + 0 4 + 4 9 0 2 8 E + 0 4 + 8 9 9 2 E + 0 4	\$14.8C 4.825.3E 4.825.3E 4.820.8E 4.820.8E 4.81.92E 4.81.9E 4.81.9E 4.81.9E 4.81.9E 6.81.9E	STRSL 2 4.7413E+04 4.73894E+04 4.7356E+04 4.7356E+04 4.7356E+04 4.7356E+04 4.7356E+04 4.7356E+04	STRSL 2 4.6476E+04 4.6456E+04 4.6456E+04 4.6437E+04 4.6437E+04 4.64127E+04 4.64108E+04 4.64108E+04
STRBLT 1	0. -4.9220E+02 0. 4.9219E+02 0. -4.9216E+02	STRSLT 1	STRSLT 1 0.4.4544E+02 0.4.4541E+02 0.4.4588E+02 0.4.4588E+02	9TRSLT 1 04.9784E+02 0. 4.9787E+02 0. 4777E+02 04777E+02
STRST 1	1.38476 3.74546 1.38466 1.38466 1.38466 1.38466 1.38466 1.38466 1.38466 1.38466 1.38466 1.38466	11.4090E+03 12.4090E+03 13.4087E+03 13.4087E+03 13.4084E+03 13.4084E+03 13.4081E+03 13.4081E+03 13.4081E+03	8.4	\$1857 1 1.45846+03 3.40856+03 1.45846+03 3.40726+03 1.45706+03 1.45746+03 1.45746+03 1.45746+03
STRSL 1	6.8321E+04 3.4783F+04 6.8313E+04 3.4778E+04 6.8374E+04 5.8274E+04 3.4770E+04 5.8246E+04	57RSL 1 2 4 5 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6	STRSL 7.0753E+04 3.6015E+04 7.0732E+04 7.071)E+04 7.071)E+04 7.0690E+04 7.0690E+04 7.0690E+04 7.0690E+04	STR3L 1 7.2075E+04 3.648E+04 7.2044E+04 3.6572E+04 7.2073E+04 7.1948E+04 7.1948E+04 7.1948E+04
LAYER	⊣心ጠታගኌጒወሆ	ር አ ተ መ ነት መ ነት መ ነት መ ነት መ ነት መ ነት መ ነት መ ነት	ር ት ላ ማግ ተመመት መግባ መግባ መመካ	ር እን ተ መ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ
,	21 22 23	x 0 5 3	× ,	× 6 3 3 ×

STRSLT 2		STRSLT & 0.00.00.00.00.00.00.00.00.00.00.00.00.0	STRSLT 2.	3TRSLT 2 0. 0. 0. 0. 0.	STRSLT 2
STRST 2	1,3887E+04 1,3884E+04 1,3887E+04 1,3877E+04 1,3877E+04 1,3877E+04 1,3877E+04 1,3870E+04 1,3870E+04	1. 34 4 5 6 6 4 1 1 2 3 4 4 5 6 6 4 1 1 2 3 4 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6	STRST 2 1.2865E+004 1.2865E+004 1.2861E+004 1.2861E+004 1.2856+004 1.2856+004 1.2856+004 1.2856+004 1.2856+004	\$1857 2 1.21106+04 1.21086+34 1.21086+34 1.21086+34 1.21066+04 1.21066+04 1.21066+04 1.21066+04 1.21066+04	STRST 2
STRSL 2	######################################	STR ST ST ST ST ST ST ST ST ST ST ST ST ST	STRSL 4.2016 4.2010 4.2000 4.1000	STRSL 3.4546E+04 3.4546E+04 3.45346E+04 3.45346E+04 3.45346E+04 3.45346E+04 3.45346E+04 3.45346E+04 3.45346E+04 3.45346E+04 3.45346E+04 3.45346E+04 3.45346E+04	STRSL 2
STRSLT 1	-5.0000E+02 0.4997E+02 0.4993E+02 0.9990E+02	STRSLT 1 -5.0257E+02 5.0255E+02 0.5.0254E+02 0.	\$1R\$LT 1 0. -5.0567E+02 0. 5.0568E+02 0. 5.0569E+02	STRSLT 1 0. -5.0924E+02 0. 5.0930E+02 0. -5.0940E+02	STRSLT 1
STRST 1	1.44901E+03 1.4445E+03 1.4845E+03 1.4841E+03 1.4861E+03 1.4885E+03 1.4881E+03 1.4881E+03	87481 1 1.588978 4 1.08188 6 1.08188 6 1.0818 6	STRST 1 1.5813E+03 4.208(E+03 4.2	STRST 1 1.64748 1 1.64848 1 1.64848 1 1.65848 1 1.6506 1 1.6506 1 1.6511 1 1.651 1 1.6526 1 1.6526 1 1.6526 1 1.6526 1 1.6526 1	STRST 1
STRSL 1	7.365E+04 3.7488E+04 7.3630E+04 3.7475E+04 7.3502E+04 7.3574E+04 7.3574E+04 7.3554E+04	STRSL 1 7.56646404 7.56486404 7.56486404 7.56336404 7.56336404 7.56176404 7.56176404 7.56176404	STRSL 1 7.8241E+04 3.4851E+04 7.8311E+04 7.8310E+04 7.8320E+04 3.4851E+04 7.8320E+04	STRSL 1 R.1585E+04 R.1739E+04 R.1739E+04 R.1734E+04 R.1541E+04 F.1564E+04 F.1664E+04	STRSL 1
LAYER	ተመታ ያ ው ን C ወ ው	A	ገ ት ጉ ጉ ተሠከተ የ ቀ ጉ	ር ል አመ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ	LAYER
×	. 250.	x c1pc.	× m m m m m m m m m m m m m m m m m m m	α.	×

	STRSLT 2 0. 0. 0. 0. 0.	STRSLT 2 0.00.00.00.00.00.00.00.00.00.00.00.00.0	STRSLT 2000.000.0000.000000000000000000000000	STRSLT 2 0.
1	STRST 2 1.0104E+04 1.0106E+04 1.0104E+04 1.011E+04 1.0114E+04 1.0118E+04 1.0121E+04 1.0121E+04	8.4028E+03 8.4024E+03 8.4131E+03 8.4133E+03 8.4235E+03 8.4235E+03 8.4286E+03 8.4338E+03 8.442E+03	STRST 2 7,5978E+03 7,6061E+03 7,6124E+03 7,6226E+03 7,6391E+03 7,6474E+03 7,657E+03 7,657E+03	STRST 2 6.2033E+03 6.2144E+03
9.65114 9.65116 9.65116 9.65176 9.65176 9.6516 9.6526 9.7526 9.7526 9.7526 9.7526 9.7526 9.7526 9.7526 9.7526	STRSL 2. 3.0005E+04 3.3003E+04 3.3003E+04 3.3003E+04 3.3003E+04 3.3003E+04 3.3003E+04 3.3003E+04	STRSL 2 2.9075E+04 2.91092E+04 2.9126E+04 2.9126E+04 2.9126E+04 2.9126E+04 2.9126E+04 2.9126E+04 2.9126E+04	STRSL 2 P.4813E+04 P.4840E+04 P.4867E+04 P.4921E+04 P.4975E+04 P.5002E+04 P.5002E+04	\$1KSL 2 2.0259E+04 2.0295E+04
3 -5.1301E+02 3 -5.1311E+02 3 0.1320E+02 3 0.1331E+02	3TRSLT 1 0.51651E+02 0.1540E+02 0.1540E+02	STRSLT 1 -5.1984E.402 0.5.2001E.402 0.5.2017E.402 0.7.2035E.402	STRSLT 1 -5.2254L+02 0.2271L+02 0.2289L+02 0.22807E+02	STRSLT 1 0. -5.2465£+02
1.72R8E 4.55FE+03 1.7312E+03 1.7313E+03 1.7373E+03 1.7375E+03 1.738C+03 1.738C+03 1.738C+03	STRST 1.82175.03 4.74845.403 4.74885.4143 1.63005.03 4.81745.403 1.83415.403 1.83415.403	STRST 1	STRST 1 5.0435E+03 5.0435E+03 5.352E+03 6.352E+03 7.0505E+03 7.0507E+03 7.0507E+03 7.0507E+03	STRSf 1 2.1526E+03 5.557E+03
4.38828844 4.394156404 6.39518404 6.39518404 6.30518404 6.31476404 8.51476404 8.31476404 8.31476404	97 P.S.L. 1 4. P.S.S.G.E.+0.4 4. P.S.S.G.E.+0.4 4. D.S.S.G.E.+0.4 4. D.S.G.E.+0.4 4. B.4.75 E.+0.4 4. B.4.75 E.+0.4 4. L.4.56 E.+0.4	STRSL 4.888978+04 4.6888978+04 4.40146+04 4.4198+04 4.78988+04 4.93888+04 4.78988+04	3 TPSL 1 1.01146405 5.18138408 1.02096409 5.205846409 1.02846409 1.0286409 1.0286409 1.03936409	STPSL 1 1.07%CE+05 5.4%72+04
ባ ແ ታ ਯ ወ ዮ ወ <mark></mark>	A 4 Y E A B 2 C C 4 W P L A B 2 C C C C C C C C C C C C C C C C C C	ገ አ ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት	ገ * * ጠ ⊣ທພትጥ⊅ሶαዌ	LAYER 1
7. 1 	× m ພ ທ ະ	1 - C 0 C C	X × 0.4 1.7	X (1) (1) (2) (3) (4)

; 5 6	STRSLT 2	•••				•	STRSLT 2	•		•	•		• 0	STRSLT 2	•		•	• •	•	•	•	STRSLT 2	
	817831 2	4.7346E+03 4.7474E+03 4.74026+03	.7296+03	.7837E+03	.8113E+03 .8241E+03	• 8369E+03	STRST 2	+2023E+03	.22646+03	.2392E+03	. 2516E+03 . 2639E+03	.2752E+03	3.2885E+03 0	SIRST 2	1.6217E+03 0	.b386E+03	.6471E+03	.664UE+03	.6724E+03	.6804E+03	50+2+r89.	STRST 2	0.0000000000000000000000000000000000000
000000	STRSL	1.57466404 1.55046404 554677404	.5588E+0	.5671E+0	.5/13E+0 .5755E+0	. 5 / 4 6 E + 0	STRSL 2	.045RE+0	.0539E+0	+0579E+0	.0654E+0	.0700E+0	1.0740£+04 1.0780c+04	STRSL 2	5.2962E+03 5.3238E+03	.3514E+0	.3791E+0	.43636+0	.46196+0	. 4896E+0	0.439716.	STRSL 2	••••
5.2482E+02 0.47E+02 0.5.2497E+02 -5.2513E+02 0.478417		0. -5.2616E+02 0.	5.262RE+02	5.2640E+C2	-5.2651E+02	•	STRSLT 1	0.	• 0	5.271SE+02	5.2720E+02		-5.2726£+02 0.	STRSLT 1	0. -5.2742E+02		5.27436+02	5.27#3E+02	n.	-5.2742E+02	•	STRSLT 1	n. -5.2726E+D2 0. 5.2721E+O2
2.1538E+03 5.5129E+03 2.1749E+03 5.6182E+03 2.1859E+03 5.6438E+03 5.1969E+03	31831		.8837E+U	. 41×1E+0	0+5++5 0+5++5 0+5++5	### ## ## ## ## ## ## ## ## ## ## ## ##	STRST 3	.4070E+0	.4227E+G	.1835E+0	. 1383C+U	.45396+0		STRST	2.5424E+03	.5598E+0	14300646	.5283F+n	.5946E+D	555555+0		STRST 1	2,5H31E+03 6,7h3E+03 2,7016E+03 6,R023E+03
1.0838E+05 5.5260E+34 1.0895E+05 5.553E+04 1.0953E+05 5.58*6E+04 1.1011E+05	אר איני קר ני	1.1440E+US 5.830RE+O+ 1.1500E+DS	8667	7005	. 438.	•	STRSL 1	.2120E+0	.2203E+0	.22476+0	.266Pt+0	.2371E+0		STRSL 1	1.28%?E+05 6.5507E+09	293	2474	645	. 3121	2000		STRSL 1	1,35976+05 6,93506+04 1,36976+05 6,98586+04
ው ታ ያ ታ ር ወ ይ ት ላ ት ላ	ر ا	ዛመጠ	. Ժ Մ	ים.	- c o d	,	LAYER	ન ત	m	or u	ם. ח	۲.	യ ഗ⊤	LAYER	٦ %	m :	.	وب ا	~ 0	oo or		LAYER	t m m t
×	125	•				•	×	1.1667						×	1.2083							ж	1.65

00000

00000

0. 5.2714E+02 0. -5.2708E+02 0.

2.72026+03 6.84276+03 2.73886+03 6.88306+03 2.75736+03

1.379RE+05 7.036bE+04 1.3898E+05 7.0873E+04 1.3998E+05

տոռաσ

LSA 62 DOUBLE LAP TITANIUM TO COMPOSITE ADHERENDS, HSLE ADHESIVE

NOMLIMEAR OPTHOTRUPIC ANALYSIS, DOUMLE LAP JOINT

```
$ $
                                                                                                                                                                                                                                                                                     0
                                                                                                                                                                                                                                0 -0.700
0 -0.700
0 -0.000
0 -2.541
2 -441
                                                                                                                                                                         N 37.2+6
                                                                                                                                                                                                                                                               11910
7950
5 0 =45
                                                                                                                                                                        SECANT 8
136500
                                                                                                                                                                                                                                 SECANT 8
                                                        ADHESIVE
THICKNESS = .0A99
PUINSOUS HAIIO = .43
RANGER UNSTANTS (SHEAR STRESS-STRAIN CURVE)
S = 315400
SECANT S = 6600
                                                                                                                                                                                                                                                                                     5+2
                                                                                                                                                                                                                                                                                     0
                                                                                                                                                     .0450
.3062
17251000
                                                                                                                                                                                                                                          28425000
-136632000
2750000
                                                                                                                                                                                                                                                                         933000
9 45
                                                                                                                                                                                                               .0887
                                                                                                                                                                                                                                                                                    145
                                                                                                                                                                                                   ADMEREND NUMBER 2(ORIHOTROPIC)
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                            TAILENFESS

AANGER OF LAYERS
AANGER OSSOOD CONSTANTS
SL VS. EL
SL VS. ELT
SL VS. ELT
SL VS. ELT
OHIENTAILONS O 45 0
                                                                                                                                          ADMERETO AUGMER ICISTRUPIC)
INICATESS
POICAGOS MATTO
RAMSLAS OSGOOD CONSTANTS
S VS. E
JULYT LEMGTH = 1.0000
FRRJA TULEMANCE = .U2S
MAXIMUM ITERATIONS = 20
YUARRY UF STATIONS = 61
FFFECTIVE A = .020
                                                                                                                                                                                                                                                                                                                7.8929E+00
7.8497E+00
8.6294E+00
                                                                                                                                                                                                                                                                                                                ALP44 = 44.74 = 164.74 = N RESET TO
                                                                                                                                                                                                                                        G-27
```

G-28

S N		STRSLT 2 -5.7180E+02 0.7180E+02 0.7180E+02 0.7180E+02 0.7180E+02 0.7180E+02 0.7180E+02 0.7180E+02	STRSLT 2 0. -5.6686£+02 0. 5.6686£+02
0000		STRST & STRST	STRST 2 768E+03 316E+07 759E+03 315E+63 758E+03
00E+0 24E+0 31E+0	3466-03 3466-03 3466-03 3666-03 376	0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 + 0 1 V W T C		8 18 8 C C C C C C C C C C C C C C C C C	STRSL 2 4224E+04 7751E+04 42-4E+04 77-1E+04
× 4005	11. 16. 16. 16. 16. 16. 16. 16.	መታወታወታወታወታወታወታወታ ««««»»«««««»«»«»«»««««»«»«»«»«««««»«»«»«	
•		8 T T S G T T T S G T T T S G T T T T S G T T T T	37RSL1 1
* * * * * * * * * * * * * * * * * * *			
E 2 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8		8 8 8 8	81RST 0758E+0 0387E+0 1215E+0 1445F+0 1574E+0
8 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.41.41.41.41.41.41.41.41.41.41.41.41.41.	0000000000	•••••••••••••••••••••••••••••••••••••
# # ⊃ m m m m		84 84 84 84 84 84 84 84 84 84 84 84 84 8	STRSL
A 1 1 0 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2
7 2 2 3 4 5 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	×	4 4 1000+0
C C C C C C C C C C C C C C C C C C C		50 -	i.

-5.6686E+U2 5.6686E+U2 6.6686E+U2 6.6686E+U2 6.6686E+U2 6.6686E+U2 6.6686E+U2	STRSLT 2	.5745E+0 .5745E+0	-5.5745E+02 0. 5.5745E+02	5.5745E+02 0.5.5745E+02 0.5.5745E+02 0.5.5745E+02	STRSLT 2	-5.4495E+02 0.4495E+02 0.4495E+02 0.4495E+02 0.4495E+02 0.4495E+02 0.4495E+02 0.4495E+02 0.4495E+02 0.4495E+02 0.4495E+02
3.4316E+03 3.4316E+03 3.4316E+03 1.4768E+03 3.4316E+03 1.4768E+03 1.4768E+03 1.4768E+03 1.4768E+03 1.4768E+03 1.4768E+03	STRST 2	.3033E+0 .5090E+0 .3033E+0 .5090E+0	.5090E+0 .3033E+0 .5090E+0	1.3090E+03 1.3090E+03 1.3090E+03 1.3090E+03 1.3090E+03 1.3090E+03 1.3090E+03 1.3090E+03	STRST 2	1.1681E+03 3.1759E+03 1.1681E+03 3.1759E+03 1.1681E+03 3.1759E+03 1.1681E+03 3.1759E+03 1.1681E+03 3.1759E+03 1.1681E+03 3.1759E+03 1.1681E+03 1.1681E+03 1.1681E+03 1.1681E+03 1.1681E+03 1.1681E+03 1.1681E+03
3.72918+04 7.4234E+04 7.4234E+04 7.4234E+04 7.4234E+04 7.4234E+04 7.4234E+04 7.4234E+04 7.4234E+04 7.4234E+04	STRSI, 2	.5380E+0 .3293E+0 .5380E+0 .3293E+0	. 92936+0 . 53806+0 . 92936+0	3 3	STRSL 2	5. 4817E 6. 4817E 7. 4817E 7. 4817E 8. 8517E 8. 8517E 9. 8817E 9. 881
	STR3LT 1	••••	• • • • • • • • • • • • • • • • • • •	•	STRBLT 1	
2.1403E+03 2.232E+03 2.2351E+03 2.2540E+03	STRST 1	3.88266403 3.885446403 3.885246403 3.41746403 3.41746403	.9315E+O .01335+O .0+51E+O		STRST 1	5.2126+03 5.2426+03 5.27336+03 5.30416+03 5.3346+03 5.3456+03 5.3456+03 5.46736+03 5.46736+03
7.1532E+03 7.2291E+03 7.3028E+03 7.375E+03	STR3L 1	1.284846+04 1.28486+04 1.28926+04 1.27956+04 1.27956+04	. 3107E . 3207E . 321.E	, , , , , , , , , , , , , , , , , , ,	STRSL 1	1,7021E+04 1,7222E+04 1,7322E+04 1,7322E+04 1,732E+04 1,722E+04 1,722E+04 1,722E+04
° ∨ ∝ ⊳ ∪ ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч	X LAYER	10 b c c c c c c c c c c c c c c c c c c	⊅ ~ ∞ o	- C T T T T T T T T T T T T T T T T T T	LAYER	

STRSLT 2	0. 5.3186E+U 0. 5.3186E+U	-5.3186E+02 0.3186E+02 0.3186E+02 0.3186E+02 0.3186E+02 0.3186E+02 0.3186E+02 0.3186E+02	STRSLT 2	.2023E+0	-5.2023E+02 0.2023E+02 0.2023E+02 0.2023E+02 0.2023E+02 0.2023E+02 0.2023E+02	STRSLT 2	.1083E+U	-5.1083E+02 5.1083E+02 0. 5.1083E+02 0. -5.1083E+02 5.1083E+02
STRST 2	.0691E+0 .922E+0 .0691E+0 .922E+0	2.4626 + 403 1.0641E + 603 1.0641E + 603 2.4626 + 603 1.0641E + 603 1.0641E + 603 2.4626 + 603 1.0641E + 603 1.0641E + 603 1.0641E + 603	STRST	. 4430E+0 . 7435E+0 . 4436E+0 . 7435E+0	2.7435E+03 2.7435E+03 2.7435E+03 2.7435E+03 2.7435E+03 2.7435E+03 2.7435E+03 2.7435E+03 2.7435E+03 2.7435E+03 3.9430E+03	STRST 2	.5095E+0 .6187E-0 .5095E+0	9.5095E+7070 9.5095E+7070 9.5097E+7070 9.5097E+0070 9.5097E+0070 9.5095E+0070 9.5095E+0070
STRSL 2	. 3 C S 3 E + 0 . 3 C S 3 E + 0 . 3 C S 3 E + 0 . 3 C S 3 E + 0 . 3 C S 3 E + 0 . 3 C S 3 E + 0 . 3 C S 3 E + 0	5. 3. 3. 4. 4. 0. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	STRS	* * * * * * * * * * * * * * * * * * *	7. 54 60 E + 00 + 6. 54 54 60 E + 0. 54 60 E + 0. 54 6	STRSL 2		7. 7. 2. 2. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
3183LT 1				•••••		STRSLT 1		
STRST 1	6.251E+03 6.2757E+03 6.302E+03 6.3248E+03 6.3248E+03	0 C C C C C C C C C C C C C C C C C C C	3TRST .9985E+D		0 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	STRST 1	52 12 12 12 12 12 12 12 12 12 12 12 12 12	. 545 40 . 545 87 6 + 0 . 545 87 6 + 0 . 545 8 6 + 0 . 545 8 6 + 0
STRSL 1	2.0495E+04 2.0495E+04 2.057bE+04 2.056bE+04 2.0736E+04	. 10575 . 10575 . 10575	STRSL .2849£+0	2,3013E+04 2,3013E+04 2,3013E+04 2,3017E+04		STRSL 1	2,45576+04 2,45886+04 2,45186+04 3,4518+14	
LAYER	የህ መ ድ መ ድ	C 25 C T 2 C T T T T T T T T T T T T T T T T	LAKER	∙លក់⇒ ហុរ	**************************************	LAYER	n r^ r u	1 1 2 2 2 2 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
×	1813		ን	,		×	ر د ج ز	

0. -5.1083E+02 0.	STRSLT 2	0.0000000000000000000000000000000000000	3.0361540	5,0361E+02	0.	-5.0361E+U2	5.0361E+02			-5.03612+02	0. 5.0351F+02				α 	3 K3L 1	-t- 9817F+02	0	4.9817E+02		-4.481/E+UZ	4.9817E+U2	1	4.4817E+U2			4.9817E+02	U		STRSLT 2	0.	-4.9400E+02	0.	• •	-4.9400E+02
9.5095E÷02 2.6187E+03 9.5095E+02	STRST 2	1741E	. 1741E+0	.5316E+0	.1741E+0	.17%16+0	.5316E+0	.1741E+0	.1741E+U	.5316E+0	.1741E+O	.1741E+0	.5316E+U	.17416+0	n W W		4.702E+0	-4382E+0	.4701E+0	.9382E+0	.4701E+0	.4701E+U	.9382E+0	9-3010-6	.*?01E+0	.9382E+0	4701E+0	1 4 3 8 6 E + E	4388E+	STRST 2	.7666E+0	.4252E+0	.7656E+G	.7666E+0.	2.4252c+03 8.7666E+02
4.7534E+04 2.4219E+04 4.7534E+04	STRSL 2	+ 5843E+04	.58435+0	.3354E+0	58436+0	.5843E+0	.3359E+0	.5843E+0	.5843E+0	•3359E+0	.5843540	.5843E+0	.3359L+D	.5843E+0	STR	4 - 2 - 2 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	2255F+0	• * b 5 5 E + D	•2754E+0	. 4655E+0	. e > 5 4 5 + 0	.2754E+U	.4555E+0	• 6 7 5 4 F + C	.2754E+0	.4655E+0	754E+	. + 0 2 2 C + C	** 655E+0	STRSL 2	.3741	.2314	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1875.	2.2314E+04
	STRSLT 1	0.0	0.	0.	•	• •	0.	•0							8. T. J. S. T. J. J. S. T. J.	2 7 2 7 2			•0											STRSLT 1	0.	• 0	• •	0.	
	STRST 1	7.8824E+03	.8416E+0	.8960E+0	.4003E+0	9090E+0	0+34ET6	.9178E+0							STRST	13655+0	1378E+0	.1390F.+O	8.14n2E+03	• 1 • 1 • E • O	14386+0	11505+0	.1+61E+U							STRST 1	.3176E+0	.3174E+0	. 3132E+0	.3167E+0	8.3185F+U3 8.31838+U3
	STRSL 1	2.5744E+04 2.5759E+04	.5773E+0	.5787E+0	. 580117+0	.5830E+U	.5844E+D	.58586+0							STRSL	.6573E+0	. h577E+0	.6581E+0	3.5585E+0+	. 45884.	.65356+0	. 66AJE+U	. 5604							STASL 1	.7164E	.7163E	.71665 .71625	.71516	2.7160E+04
2 4 5 2 4 5	LAYER	⊶ r∪	m	+ (nι) (-					n + 1				LAYER		٨	m	ታ 1	r J	, r	89					+ U - I			LAYER	7	nu r	η +	'n	10
	*	3132													×	. 35 35 37														*	T 5 .				

+.9400E+02 0.49400E+02 0.49400E+02 0.9490E+02 1.9490E+02	STRSLT 0.	14.9065E+02 0.965E+02 0.965E+02 1.965E+02 0.965E+02 0.965E+02 0.965E+02 0.965E+02 0.965E+02 0.965E+02	STRSLT 2 -4.8765E+U2 0.18765E+U2 0.18765E+U2 0.18765E+U2 0.18765E+U2 0.18765E+U2 0.18765E+U2 0.18765E+U2 0.18765E+U2 0.18765E+U2
8.746526 8.766526 8.766566 8.766666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.766666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666 8.76666	STRST •6332E+0		8.5174E+02 8.5174E+03 8.5174
2.2314E+0+ 4.3741E+0+ 4.3741E+0+ 4.3741E+0+ 6.2314E+0+ 7.3741E+0+ 7.3741E+0+ 7.3741E+0+ 7.3741E+0+	STH.	2.113 ME + O + C + MIN ME + O + MIN ME + O + MIN ME + O + MIN ME + O + MIN ME + O + MIN ME + O + MIN ME + O + MIN ME + O + MIN ME + O + MIN ME + O + MIN ME + O	\$7 x S1 \$7 x S1 \$7 x S1 \$7 x S2 \$7
•••		••••••	STASLT 1 0.00.00.00.00.00.00.00.00.00.00.00.00.0
8.3151E+03 8.3159E+03	3TRST .4546E+0		8.5712E+03 8.5713E+03 8.5713E+03 8.5713E+03 8.5713E+03 8.5714E+03 8.5714E+03 8.5714E+03 8.5714E+03 8.5714E+03
2.7159€+114 2.7159€+114	8TR .7611	2.750107+04 2.750107+04 2.75056+04 2.75026+04 2.75026+04 2.75026+04	STRSL 1 2.7492E+04 2.7492E+04 2.7493E+04 2.7493E+04 2.7493E+04 2.7493E+04 2.7493E+04 2.7493E+04 2.7493E+04
8 6 C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	LAYER . 1 ?	7 E 3 C B C B C B C B C B C B C B C B C B C	ا کو کا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا
	× 5 + 5 + •		× 10 0 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

4E01.4		
--------	--	--

, o	STRSLT 2	-4.6673E+02 -4.6873E+02 -4.6873E+02 -4.6873E+02 -4.6873E+02 -4.6873E+02 -4.6873E+02 -4.6873E+02 -4.6873E+02 -4.6873E+02 -4.6873E+02	STRSLT 2	-4.5785E+02 -4.5785E+02 -4.5785E+02 -4.5785E+02 -4.5785E+02 -4.5785E+02 -4.5785E+02 -4.5785E+02 -4.5785E+02 -4.5785E+02 -4.4056E+02 -4.4056E+02 -4.4056E+02 -4.4056E+02 -4.4056E+02 -4.4056E+02	
8.0914E+D2	STRST 2	2.88508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03 2.8508EE+03	STRST 2	7.5082E+03 7.5082	1
4°0344E+04	STRSL 2	3. 94106 1. 941	STRSL 2	1. 2464 E	
	STRSLT 1		STRSLT 1	00.00000000000000000000000000000000000	•
	STRST 1	4. 26. 40. 3 4. 26. 56. 56. 56. 56. 56. 56. 56. 56. 56. 5	STRST 1	4.56403 4.5611366+03 4.5611366+03 4.561366+03 4.562866+03 4.562866+03 5.562866+03 5.562866+03 5.562866+03 6.562866+03 7.5628669 1.0163869 1.016386	
	STRSL 1	3.02746404 3.02896404 3.02806404 3.02166404 3.02166404 3.01876404 3.01876404 3.01876404 3.01876404 3.01876404	STRSL 1	## 11495 ## 11495 ## 11492 ## 114	
7.5	LAYER	- 2 m + 5 9 C 8 5 C - 2 C m + 5 9 C - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	LAYER	10m+50-04 E 10m+50	
	×	n e £	×	× × × × × × × × × × × × × × × × × × ×	

4.4066E+U2		0.		0.	-4.4056E+UZ		STRSLT 2		-4.1258E+02	0.	4.1258E+02			4.1258E+02		4.1258E+02		T . C	4.1258E+02	•	-+.1258E+02		STRSLT 2	Ĉ	-3.6572E+02		3.6574462	-3.6577F+02		3.6572E+02	0. 3.6572F+02		-3.6572E+02		3.65/25+U2	-3.6572E+02		STRSLT 2	0. -2.8818E+U2
1.9504E+03	-9504E+0	.0137E+9	.9504E+0	.0137E+0	.45U4E+U		STRST 2	399F+C	378E+0	199E+J	,78E+0	0+35cc		1.76786+03	499E+0	,78£+0	194E+0	144E+0	378E+0	144E+0	38E+0	399E+0	STRST 2	.2869E+0	.491SE+0	.2859E+0	0+12174.	4915E+1	.2854E+0	.4915E+0	5.28645+02	.2859E+0	.4915E+0	. 2869E+0	. 4415E+U	.4915E+0	.2869£+0	STRST 2	3.9080E+02 1.1097E+113
1.7831E+04	.7831E+0	.4482E+U	-7831E+n	0+485E+0	1 30		STRSL 2	0 + 2 + 0 + 1 + 0	. 6009E+0	.1404E+0	.hDN9E+0	* 1 4 0 4 E + 0		1.50095+0+	.1+04E+0	••00dE+0	0+11+11+1.		.6009E+0	.1+0+E+0	•6009€+0	•1404E+0	STRSL 2	•6335E+	.3+25E+	.6335E+	+346564	・コイングに・	+335E4	.3+26E+	2.6335E+04 1.3425E+04	.633E+	.3+26E+	+ 10 12 mm or 1	• 4400E	.3426E+	.6335E+	STRSL 2	1.9448E+04 9.9171E+03
							STRSLT 1	0		0.	•	•	• -		0.								STRSLT 1	0.	•	• •	•		0.	•0	• 6							STRSLT 1	• 0
							STRST 1	04346+0	.0919E+0	.03846+0	90854 9	0.835E+0	. 11785F+11	1.U750E+04	.0735E+O								STRST 1	.1992E	1.14616+04		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1839	.1835	17746	3F + / 1 •							STRST 1	1.33400E+04 1.3354E+U4
							STPSL 1	5700	.5628	.5547	9 + 6			3.51408+04	505.								STRSL 1	.9163	3.90625+04	20.0	8757	8855	.8554	8.45	נישים.							STRSL 1	4.3764E+D4
C 1 1							LAYER	-1		m	ታ (ሶ .(o 1~	œ					j. T				LAYER	,	nu r	ב ריי	- un	و	^	c c (501				15			LAYER	⊣ ∩
							×	8 1 8 S															×	ት 6 ሳ 8 •														~	1506.

2.8818E+U2 0.8818E+U2 0.8818E+U2 0.8818E+U2 0.8818E+U2 0.8818E+U2 0.8818E+U2 0.8818E+U2	STRSLT 2 1.6722E+02 1.6722E+02 1.6722E+02 1.6722E+02 1.6722E+02 1.6722E+02 1.6722E+02 1.6722E+02	8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3.9080E+03 1.1097E+03 3.9080E+03 1.1097E+03 3.9080E+03 1.1097E+03 3.9080E+03 1.1097E+03 1.1097E+03 3.9080E+03 1.1097E+03	STRST 6.11406E+02 6.11476E+02 6.11476E+02 6.11476E+02 6.11476E+02 6.11476E+02 6.11476E+02 6.11476E+02 6.11476E+02 7.11476E+02 7.11476E+02 7.11476E+02 8.11476E+02 8.11476E+02	S C C C C C C C C C C C C C C C C C C C
1	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	37RSLT 1 0.00.00.00.00.00.00.00.00.00.00.00.00.0	STRSLT 1.00.00.00.00.00.00.00.00.00.00.00.00.00
1.3355E+04 1.3304E+04 1.3272E+04 1.3279E+04 1.3209E+04 1.3176E+04 1.3176E+04	8TRST 1	31RST 1 1.7249E+04 1.7249E+04 1.7249E+04 1.7249E+04 1.7249E+04 1.7249E+04 1.7249E+04 1.7249E+04
4. 35556+04 4. 34556+04 4. 3457+04 4. 35416+04 4. 35416+04 4. 35416+04 4. 35416+04 4. 35416+04 4. 35416+04	8 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 TR % L L L R % L L L R % L L L R % L L L R % L L L R % L L L R % L L L R % L L L R % L L L L
m + w = r = a = a = a = a = a = a = a = a = a	ነ የ የ ባለውት የነው / ወደ መጣጣጣጣጣ የ	7. 4 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
	×	00nc-1

COMPOSITE TO TITANIUM ADMERENDS, LSHE ADMESIVE LSA 26 TWO STEP LAP

NOWLINEAR DATHOTROPIC ANALYSIS, STEP LAP JUINT

ERROR TILERANCE = .025
MAX[104] ITERATIONS = 20
NUMBER OF STATIONS = 31 PER TREAD
EFFELTIVE K = .100 30 1.8720 2.0080 .0873 A .0873 STEP GEUMETRY

ADMESIVE

FHICKNESS = .0058

POISSONS RATIO = .40

RAMMERG DSGOOD CONSTANTS (SHEAR STRESS-STRAIN CURVE)

G = 80500

SECANT S = 3740

THIOS = 6.318

.2520 +8 G-38

5+ 5+ 0 0 +5 +5 E 28825000 -136632000 2750000 433nga 00 ADMEMEND NUMBER I(ORTHOTROPIC)
THICKNESS
NUMBER OF LAYERS
AAMAENG USGOOD CONSTANTS
SL VS. EL
SL VS. ET
SL VS. ET
SL VS. ELT
SL VS. ELT
SLI VS. ELT
OMIENTATIONS
O 45 -45 1 4 4 5 5 5 1 0

00

10 th

00

% W

10 CO 00

7950

00

0 0

SECANT 8 -0 -10

.3968 3968 3968 ADMEMEND NUMBER P(ISUTROPIC) THICKNESS
PUISSOUS RATIO
RAMMERR OSGOOD CONSTANTS
S VS. E

34,554

SECANT 8

5.4221E+00 5.8758E+U0 3.9374E+00 STEP 1 ALOHA = BETA = LAMBDA = N RESET TO 5.4347£+00 5.4347£+00 3.4514£+00 LAMBDA =

\$152 ≥ AL244 = BETA =

```
LUAD = 8340

AT ITERATION I ERROM IS 3.02E-01

AT ITERATION 3 ERROM IS 1.82E-01

AT ITERATION 4 ERROM IS 1.82E-01

AT ITERATION 5 ERROM IS 7.34E-02

AT ITERATION 5 ERROM IS 8.65E-02

AT ITERATION 7 ERROM IS 2.89E-02

AT ITERATION 7 ERROM IS 2.89E-02

AT ITERATION 8 ERROM IS 2.89E-02
```

Obes = d acts. Si

02825-03 2.85216-03 1.85216-03 3.35216-03 3.35216-03 3.35216-03 4.55216-03 4.55216-03 4.55216-03 4.55		•		1	
2	.7746E+03	1.16426-10	-9,0949E-14	8.34006+03	-3.6622E+01
######################################	4750E+0	. 8215E+0	7.04335	.5078E+0	.5725E+0
######################################	0+368u2	.2831E+O	35600.	.1069E+0	1.9690E+0
265+03 265+03 275+03	0+35226	·6+58E+0	.88136	.7442E+0	1.42925+0
77+04	01245+0	.96335+0	37875	.4257E+0	9.8313E+0
	3462540		. U.O. O. O. O. O. O. O. O. O. O. O. O. O.	15586+3	6.44 <u>11E+0</u>
		0.001040			
	7010010	1111111111	はってくら	* & C D / C + C - C - C - C - C - C - C - C - C -	7 * 1 * 2 £ + 0
	11+3666	0+3656	11.50.	. 550.4F+0	4.5422510
35+02	9.325E+0	7459E+0	1.39032	0+30+55	1.30125-0
1-+02	5-49+49	. R414E+0	1.07372	5 4 8 5 E + 0	0-30SbE
46+0>	73166+0	. 8834E+0	1.83935	.5064E+0	.112+E+0
¥ 20+34	5144E+1	42675+0	31161.5	.4633E+0	. F.144E+0
5£+0+ R	シーコヒナいる	.9778E+13	3.0570E	. 413CE+0	.2140E+n
×E+12 1	16356+0	.0419E+0	3.5461E	.349(E+0	.0117E+0
8E+03 1	31515+0	.1254£+U	7.474 £	.2631E+0	0+3-8-0.
4=+13 9	8.1.5.2E+U	· 2 4 5 4 5 + 1]	11 . S + CC .	.1 - + 5 - + 1	.5712E+0
51 60+1+	D+3355	. + 10 42 + 9	7.432.r	37415+0	.5373E+C
15624113 - 6	5 35 3E + D	0+409E9*	10000	75405+9	. 9537E+0
# F F F F F F F F F F F F F F F F F F F	D + 3 ∪ 1 11 11 11 11 11 11 11 11 11 11 11 11	0 + 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76467	C+UBC47	. 7.7.8.T.+0.
• •) } 4) - - - -
	5 L	0 0 0			() () () () () () () () () ()
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			+ 13 + 7 > 7 -	0+277670	
475+04	9340046	E 04-100 E 4	H FCJIEFIO	E (1430+13 F)	00134035 64
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0-10-5	0.444.50	+30,00		100000
805+03	0+47009			0 + 11 + 15 + 17 + 17 + 17 + 17 + 17 + 17	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
11 11 11 11 11 11 11 11 11 11 11 11 11	1722E+11	37056+0	4 C T T E E	101426+0	1.95656-0
235+112 I	34926+1	. * 13 F + 13	.2547E+	9257E+0	1.35016-0
5446+82	3243E+0	.5359E+U	.76+1E-	.8541E+0	7.080sE-0
+1)2 5	36756+0	.593hE+0	3.1132E-	. 795+E+U	6.92258-0
7525+02 2	3757£+0	. 6+3ht+0.	8.92185-	.7454E+0	.65285-0
475€+132 3	01445-0	0+3U269.	1.439464	.698UE+9	. 6551E-0
+75+12 -2	32-12F.+0	7442E+A	2.(114×f+	1+34546.	.72476-0
5-6+05 -5	4390F+ 0	.80h4E+0	2. 7.319E+	. 5×3n£+0	. n 2 2 3 E - 0
855+03 -1	2202E+0	. 885PE+U	3.57HUIT	.50425+0	.7551E-0
42E+33	3240£+0	. 441HE+3	4.775hE+	.∃482:+U	.7134E-0
++6+3++	01285+3	.1355E+O	h.4715c+	. 25455+0	.624Bf-0
245+03 - 6	UZhb£+ 0	. 324E+1	8.93EE+	0+0+0	.03298+0
07E+03 -7	33256+0	. 5775E+11	1.22366+	.816*:+N	.c1+5E+0
52£ +በ3 - 5	5355E+0	. R 2+ 1E+U	. 5514E+	.515/2+0	.3914E-0
63E+U3 	0+3rc+6	. 2105r.	+ 12 mm E +	17946+11	. * 530E - O
: dE+03	5714640	. 5842E+0	2.71545+	0478640	7.2876E-0
h > E + 1) 3 1	5345E+N	.475ht.		.14446+0	0-3+E+5-6
106+03 2	82615+0	.3400E+0	3.7084F+	.1642E-1	1,8190E-1

STRSLT 2		STRSLT 2		STRSLT 2	
STRST 2	1.02806E+04 1.3534E+04 1.4561E+04 1.4688E+04 1.5717E+04 1.6441E+04	STRST 2	1.2563E+04 1.252E+04 1.452E+04 1.473E+04 1.5407E+04 1.5407E+04	STRST 2	1.1809E+04 1.2320E+04 1.3342E+04 1.3342E+04 1.3854E+04 1.4362E+04
STRSL 2	4.1822E+04 4.4194E+04 4.6575E+04 4.8952E+04 5.1329E+04 5.359E+04	STRSL 2	4.0050E+04 4.0105E+04 4.5212E+04 4.8212E+04 5.0318E+04	STRSL 2	3,8566E+04 4,0255E+04 4,3574E+04 4,5244E+04 4,544E+04
STRSLT 1		STRSLT 1	-1.0930E+02 1.1150E+02 0. -1.1806E+02 1.2029E+02 0. 1.2671E+02 1.2875E+02 0. 1.3524E+02	STRSLT 1	-2.15.05.E+0.2 -1.15.24.E+0.2 0.0 -2.19.04.02 -2.21.02.02 0.0 0.0 0.0 0.0 0.0 0.0 0.
STRST 1		STRST 1	1.38642E+002 4.05842E+002 1.4514E+002 4.3414E+002 4.3414E+002 4.3414E+002 1.54118E+002 4.3454E+002 4.3454E+002 4.3454E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002 1.3434E+002	STRST 1	8 . 4445E+02 8 . 4445E+02 8 . 4414E+02 8 . 6225E+02 8
STR3L i	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	STRSL 1	7.38088 9.5798088 	STRSL 1	1.4526E+U4 7.5104@+03 7.5403E+03 1.4403E+04 1.5040E+114 7.7714E+03 1.5452E+04 1.5453E+04 7.4433E+03 7.4433E+03 7.4453E+04
LAYER	4 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	LAYER		LAYER	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
×	a600•∟	×	• 0 0 0 1 1 3	×	್ ಬ ಜ

	91RSLT 2000.000.0000.000000000000000000000000	STRSL1 200.000.000000000000000000000000000000	STRSLT 2 0. 0. 0.
	81857 2 1.14096404 1.18016404 1.25836404 1.26776404 1.33646404	STRST 2 1.1045E+04 1.1529E+04 1.1897E+04 1.21812+04 1.21812+04 1.21812+04	STRST 2 1.0713E+04 1.0978E+04 1.1103E+04 1.1494E+04
	3. 3.26 LE + 0.4 3. 3.26 LE + 0.4 3. 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	3.6498E+0+ 3.6498E+0+ 3.7426E+0+ 3.782E+0+ 3.782E+0+ 4.070+E+0+	8TRSL 2 3.448bE+D4 3.5Ec4E+04 3.5c76E+04 3.7538E+04
0. 2.2940E+02 -2.3757E+02 0.	9TRSLT 1 0. 94 53 E + 0 2 2. 94 45 E + 0 2 0. 94 17 E + 0 2 0. 93 8 + E + 0 2 2. 93 8 + E + 0 2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	9TRSLT 1 -3.4759E+02 3.469E+02 0.485E+02 3.4416E+02 0.3.4416E+02 0.3.4139E+02 0.4208E+02 0.4208E+02 0.4339E+02 0.4339E+02 0.4339E+02 0.4339E+02	STRSLT 1 f. -3.8230E+02 3.8154E+02 0.
3.1890E+02 9.0889E+02 9.1384E+02 3.2513E+02	1. 25 11 25	######################################	STAST 1 7.12166+n2 1.946590E+03 1.9465£+03 7.0354E+02
1.5970F+J4 8.1447E+33 8.1975E+03 1.6191E+04	878 L 1 2.2524 E + 0 + 1.1477 E + 0 + 2.2498 E + 0 + 2.2498 E + 0 + 2.2499 E + 0 + 2.2459 E + 0		STRSL 1 3.558nF+04 1.8u55E+04 1.7431E+04 3.514E+04
#: → S & 		7 A D 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ר א א א ט א א פ א ר ש פ
	X & m	5 4 5 t	* 1 * * *

STRSLT S		STRSLT 200.00.00.00.00.00.00.00.00.00.00.00.00.	3TRSLT 2 0. 0.
STRST 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	STRST 2 1.0200E+04 1.0280E+04 1.0361E+04 1.041E+04 1.0601E+04	STRST 2 1.0033E+04 1.0081C+04 1.0124E+04
STRSL 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.78 S. S. S. S. S. S. S. S. S. S. S. S. S.	3.2766E+0+ 3.2766E+0+ 3.3080E+09
3.7524C+02 0. 0. 3.7524C+02 0. 0. 3.758E+02 -3.7201E+02 U.	53 90 90 90 90 90 90 90 90 90 90	STRSLT 1 10. 14.1846E+02 10. 14.1678E+02 14.1678E+02 14.1477E+02 14.1477E+02 14.1477E+02 14.1477E+02 14.1314E+02	STRSLT 1 0. -4.2720E+02 4.2693E+02
6.8917E+02 1.8942bE+03 1.8850E+03 6.3915+E+02 6.77b7E+02 1.8523E+03 1.8548E+03 6.6915E+03		STRST 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	STKS1 1 9.128824-02 2.4758403 2.47298403 9.04428403
3.4422E+04 1.7466E+04 1.7392E+04 3.3984E+04 1.7171E+04 1.7077E+04 1.7097E+04 3.3410E+04	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	STRSL 2.30226+04 7.30226+04 4.30226+04 4.30226+04 4.20226+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04 4.2026+04	STRSL 1 4.5721E+04 2.3251E+04 7.351eE+14
		C A Y E B B B B B B B B B B B B B B B B B B	ተ ላ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ
*	ર. દ	× σ ====================================	× 66.

O. STRSLT 2		STRSLT 200.00.00.00.00.00.00.00.00.00.00.00.00.	STRSLT 2
25E+073E+0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	STRST 2 4.8325E+03 4.8422E+03 4.8614E+03 4.8710E+03 4.8710E+03 4.8710E+03 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.	STRST 2
33549E 3549E 31R3	3 2 2 3 2 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	STRSL 2 3.200E+04 3.2143E+04 3.2143E+04 3.2204E+04 3.2204E+04 3.2204E+04	STRSL 2
	+,323,52,02 0. 1,323,52,02 4,323,15,02 0. 1,321,55,02 0. 1,31,35,02 0. 1,31,35,02 0. 1,31,35,02 0. 1,31,35,02 0. 0.	9TRSLT 1 -4,3674E+02 -4,367E+02 -4,3651E+02 0 -4,3651E+02 0 -4,363E+02 -4,363E+02 -4,363E+02 -4,363E+02 -4,363E+02 -6,3612E+02 -6,3612E+02	STRSLT 1
0.000000000000000000000000000000000000	4	\$78\$7 1 9.61532403 2.61532403 2.61532403 9.651784603 9.651784603 9.63264603 9.62218403 9.62218403 2.611786403 9.62218403 2.611786403 8.62218403 8.62218403 8.62218403	STRST 1
	2. + 0.55 5. + 0	STRSL 1 2.46.44 2.46.46 2.46.46 4.38.36 4.3	STRSL 1
7 K R R R R R R R R R R R R R R R R R R	~ ~ + 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	C A Y E B B B B B B B B B B B B B B B B B B	LAYER
x 50 00 00 00 00 00 00 00 00 00 00 00 00		× 6	×

0 7										.,															Ĩ.	
4,4832E+02 2,6488E+03	.h446E+0	44496+0	. 711211E+0	. 2028E+0	.000058+0	. nunge+0	.7052E+0	.70505+0	.0018E+0	STRST 1	.01016+0	. 7290£+0	./340E/-	.0116E+0	. 11122E.+0	.7345E+0	.7358E+0	.0138E+n	.nl436+0	.74001 +0	.74136+0	.01608+0	.0165E+U	0+34546.	2.74686+03	. 4181E+0
5.0053E+04 2.5503E+04	.55175+0	01275+1	.553hE+1	.5545E+!	.0176E+U	.01928+1	.5569E+U	.55778+0	.02476+0	STRSL 1	.06576+0	.5812E+J	.5824E+0	.074:1E+1)	.0758E+13	.5864£+0	.5882E+U	.085nE+U	.08785+0	.5424E+0	.59386+0	.04616+0	.048xE+U	.548JE+0	7.593#E+0+	10716+1
ጥነ	~ 00							7.5		LAYER	7	æ	m	.	ľ	T	۷	œ	σ						12	
										×	1.1465															

ı	ດ ⊢-	ru ►-
•••••	STRSL.	STRSL.
9.7555E+03 9.7524E+03 9.7524E+03 9.747E+03 9.7452E+03 9.7426E+03	STRST 2 9.7009E+03 9.6881E+03 9.657E+03 9.6500E+03 9.6374E+03	STRST 2 9.6515E+03 9.6073E+03 9.6073E+03 9.5631E+03 9.5631E+03
3.1851E+0+ 3.1851E+0+ 3.1835E+0+ 3.1836E+0+ 3.1818E+0+	STRSL 3.1681E+04 3.1540E+04 3.1557E+04 3.1515E+04 3.1517E+04	STRSL 2 3.1520E+04 3.1376E+04 3.1376E+04 3.1376E+04 3.1231E+04
+.3968E+02 0.3968E+02 0.3968E+02 1.3969E+02 1.3969E+02 0.3973E+02 0.3973E+02 0.3973E+02	STRSLT 1 14.4147E+02 4.4202E+02 0.4222E+02 14.4232E+02 0.4235E+02 0.4235E+02 0.4235E+02 0.4235E+02 0.4235E+02	STRSLT 1 -4.4405E+02 4.4413E+02 0.44413E+02 4.44470E+02 0.44770E+02 14.44770E+02 0.44470E+02 14.4471E+02 14.4471E+02
4.889946403 4.889176403 4.889176403 5.55946403 6.55986403 6.55986403 6.55986403 6.55986403 6.55086403 6.55086403 6.55086403 6.89516403 6.89516403 6.89516403 6.89516403 6.89516403	\$1831 1 9.9705E+02 2.6456E+03 9.9800E+02 4.9832E+03 2.6494E+03 2.7028E+03 1.0008E+03 1.0008E+03 1.0008E+03 1.0008E+03 1.0008E+03	STRST 1 1.0100E+03 2.2304E+03 2.230E+03 1.0125E+03 2.234E+03 2.234E+03 1.0183E+03 2.2413E+03 2.2413E+03 2.2413E+03 2.2414E+03 2.2414E+03 2.2414E+03 2.2414E+03
+. 9286 E+04 2.510 E+04 +. 9510 E+04 +. 9595 E+04 +. 9595 E+04 510 5 E+04 +. 9310 E+04 9310 E+04	\$188_1 4.99986+04 6.54716+04 6.04716+04 5.004766+04 6.550386+04 6.55186+04 6.554866+04 6.55466+04 6.55466+04 6.55466+04 6.55466+04 6.55466+04 6.55466+04 6.55466+04 6.55466+04 6.55466+04	STRSL 1 S. 0 6 5 7 E + 0 4 C. 5 8 1 2 E + 0 4 C. 5 8 2 E E + 0 4 S. 0 7 5 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E E + 0 4 S. 0 8 2 E + 0 4 S. 0 9 2 8 E E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 3 8 E + 0 4 S. 0 9 9 8 8 E + 0 4 S. 0 9 9 8 8 E + 0 4
	LAYER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L L L L L L L L L L L L L L L L L L L
0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X T D 4 S 3	1 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

,	% 4	STRSL 1	STRSF 1	STRSLT 1	STRSL 2	STRST 2	31RSL 7 2	
ж		5.13536+04 6.51896+04 6.51896+04 6.18684+04 7.18036+04 6.6584+04 6.6586+04 7.18036+04 8.18086+04 8.18386+04 8.18386+04 8.18386+04 8.18386+04 8.18386+04 8.18386+04	1.00 20 20 20 20 20 20 20 20 20 20 20 20 2	14.4617E+02 14.4624E+02 0 14.4651E+02 14.4652E+02 0 0 14.475E+02 14.4716E+02 0 0 14.4714E+02 0 14.4714E+02 0 0 0 14.4714E+02	3.1355E+04 3.1251E+04 3.145E+04 3.1042E+04 3.0937E+04 3.0833E+04	9.5691E+03 9.5691E+03 9.5370E+03 9.1749E+03 9.4728E+03 9.4409E+03		
×	LAYER	STR3L 1	STRST 1	STRSLT 1	STRSL 2	STRST 2	STRSLT	
1 4 4 5		5.6538E+04 5.6538E+04 5.6339E+104 5.7538E+04 6.7578E+04 6.7578E+04 6.7578E+04 6.7578E+04 6.7578E+04 7.7578E+04 7.7578E+04 7.7578E+04 7.7578E+04 7.7578E+04	1.0401E+003 2.8058E+003 1.0458E+003 1.0458E+003 2.8123E+003 1.0454E+003 1.0454E+003 1.0454E+003 1.0454E+003 1.0500E+003 1.0500E+003 1.0500E+003 1.0500E+003 1.0500E+003 1.0500E+003	10. 14.485E+02 10. 14.4934E+02 14.4934E+02 16. 14.4982E+02 14.4982E+02 14.4982E+02 14.5031E+02 14.5031E+02	3.1167E+04 3.1023E+04 3.0879E+04 3.0735E+04 3.0591E+04 3.0591E+04	9.5434E+03 9.4552E+03 9.4111E+03 9.3576E+03 9.3570E+03		
*	LAYER	STRSL 1	STRST 1	STRSLT 1	STRSL 2	STRST 2	STRSLT 2	
# C C C C C C C C C C C C C C C C C C C		5.3273E+04 2.7181E+04 5.3433E+04 5.3433E+04 6.7430E+04 6.7430E+04 6.343E+04 6.3431E+04 6.7341E+04 7.8431E+04 7.8434E+04 7.8434E+04	1.0514 2.8549 2.85649 1.0565 1.0555 2.97300 2.9730 2.97300 2.97300 2.97300 2.97300 2.97300 2.97300 2.97300 2.97300 2.97	-4.5175E+02 4.5190E+02 0. 1.5231E+02 4.5247E+02 0. 1.5291E+02 1.5390EE+02 0. 0.	3.0932E+04 3.0735E+04 3.0541E+04 3.0345E+04 3.0150E+04	9.4.713E+03 9.4.115E+03 9.3516E+03 9.2918E+03 9.2319E+03 9.1724E+03		

	STRSLT 2	•••••	STRSLT 2		STRSLT 2	•••••
	STRST 2	4,3754E+03 4,2125E+03 4,1311E+03 4,0496E+03 8,968E+03 8,968E+03	STRST 2	9.2418E+03 9.1311E+03 9.0204E+03 8.79097E+03 8.7989E+03 8.6488E+03	STRST 2	9.0510E+03 8.9012E+03 8.7515E+03 8.6017E+03 8.4514E+03
	STRSL 2	3.0619E+04 3.0353E+04 3.0087E+04 2.9821E+04 2.9650E+04	STRSL 2	3.01826+04 2.44216+04 2.49546+04 2.40976+04 2.83366+04	STRSL 2	2.40596+04 2.4070E+04 2.4541E+04 2.8042E+04 2.7603E+04 2.7116E+04
-4.5364E+02 0.	STRSLT 1	+	STRSLT 1	-4.5099E+02 -4.5170E+02 -4.5170E+02 -4.5170E+02 -4.5240E+02 -4.5240E+02 -4.5240E+02 -4.5310E+02 -4.5310E+02	STRSLT 1	-4.671E+0? -4.571E+0? -6.5834E+0? -4.6863E+0? -6.6863E+0? -6.6863E+0? -6.6863E+0? -6.6863E+0? -6.6863E+0?
2.8440E+03 1.0770E+03	STRST 1	2.44468 2.44468 2.44468 2.44468 2.44468 2.44488 2.44488 2.44488 2.44488 2.4448	STRST 1	1.1300E+03 3.0334E+03 1.1348E+03 1.1348E+03 3.0432E+03 3.0432E+03 3.0452E+03 1.1414E+03 3.0456E+03 1.1456E+03 1.1456E+03 1.1456E+03 1.1456E+03 1.1456E+03	STRST 1	1.18326+03 3.1520E+03 1.1720E+03 1.1413E+03 1.1412E+03 1.1412E+03 1.1424E+03 1.1474E+03
5.4070E+04 5.4070E+04	STR9L 1	5. 74136 6. 74136 6. 74436 7. 44436 7. 44436 7. 44436 7. 44436 7. 44436 7. 80376 8. 5176 8. 51	STASL 1	0.000000000000000000000000000000000000	STRSL 1	######################################
ر ا د ه	L 4 7 E &		LAYER	4 J E + W E F E E D 4 J M E + W D	LAYEA	ተመታሳይ መቀመ ተመመት ተ
	эr	1.5516	×	ช ณ ว	×	1.7342

STRSLT 2		3TRSLT 200.00.00.00.00.00.00.00.00.00.00.00.00.	STRBLT 2 0.00.00.00.00.00.00.00.00.00.00.00.00.0
STRST S	100 E + 0 E + 0 0 E + 0 E + 0	STRST 2 8.4167E+03 7.4113E+03 7.458E+03 7.458E+03 7.1544E+03	\$1R\$1 2 7.4722E+03 7.5624E+03 7.3527E+03 7.0430E+03 6.7343E+03 6.7343E+03
STRSL 2		STRSL 2	STRSL 2 2.6036E+04 2.5024E+04 2.9013E+04 2.1440E+04
-+.6954E+02 0. 0. 4.702E+U2 -4.7044E+02 0. STR9LT 1	918+0 878+0 836+0 718+0 778+0 128+0 188+0	STRSLT 1 -4.82b1E+02 -4.84b8E+02 -4.84bE+02 -4.870bE+02 -4.8758E+02 -4.8713E+02 -4.8913E+02	STRSLT 1 0. -4.8985E+02 4.9069E+02 0. 0.
3.21228+03 1.2055E+03 1.2075E+03 3.227+E+03 1.2135E+03 1.2135E+03	1. 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	STRST 1.3274E403 3.5335E403 3.5495E403 1.3534E603 1.3534E603 1.3534E603 1.3534E603 1.3744E403 1.3744E403 1.3744E403 3.6763E403 1.4054E403 3.7235E403 1.4054E403 1.4054E403 3.7235E403 1.4054E403	STRST 1 1.4102E+03 3.7724E+03 1.44542E+03 1.4542E+03 1.4542E+03
3.0819E+04 6.0544E+04 6.0744E+04 3.0372E+04 5.1055E+04	3. 20 10 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	STRSL 1 6.690 + E + O + O + O + O + O + E + O + O + E + O + O	5TRSL 1 7.11756+04 3.65136+04 3.68176+04 7.28476+04 7.34536+04 3.75706+04
LAYER	ั	A Y E R A A B B B B B B B B B B B B B B B B B	۲ م ۲ ت ۲ ت ۲ ت ۲ ت
×	ଓ ୧୯ ୧୯ ୧୯	, , , , , , , , , , , , , , , , , , ,	x x 0 0 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

```
3.7454E+U4 3.8742E+U3 0.894E+U2

8 7.51A2E+U4 1.4972E+U3 0.85731E+U4 3.458E+U3 0.8452E+U3 0.8452E+U3 0.8452E+U3 0.8412E+U2 0.84112E+U3 0.8412E+U3 `

|                                                                                                                                                                                                            | STRSLT 2 | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STRSLT 2 | ••••                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------|
| ·                                                                                                                                                                                                          | SIRST 2  | 1.2448E+04<br>1.2448E+04<br>1.2448E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STRST 2  | 1.1415E+04<br>1.1485E+04<br>1.1555E+04<br>1.1590E+04   |
|                                                                                                                                                                                                            | STRSL 2  | 3.4624E+04<br>4.0034E+04<br>4.0444E+04<br>4.052E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STRSL 2  | 3.7279E+04<br>3.7502E+04<br>3.7736E+04<br>3.7852E+04   |
| 4.0337E+02<br>0.14.0037E+02<br>3.9935E+02<br>0.3966E+02<br>0.3962E+02                                                                                                                                      | STRSLT 1 | + 2526E+02<br>+ 2465E+02<br>0<br>0<br>+ 217E+02<br>0<br>+ 171E+02<br>0<br>+ 171E+02<br>0<br>+ 170EE+02<br>0<br>0<br>+ 170EE+02<br>0<br>0<br>1 1508E+02<br>0<br>0<br>1 1508E+02<br>0<br>0<br>0<br>1 1508E+02<br>0<br>0<br>0<br>0<br>1 1508E+02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRSLT 1 | 0.<br>+4.2988E+U2<br>+.2946E+U2<br>U.                  |
| 2.1740E+n3<br>7.852E+n2<br>2.1343E+02<br>2.1245E+03<br>7.721E+03<br>7.721E+03<br>7.721E+03<br>7.5450E+03<br>7.5450E+03<br>7.5450E+03<br>7.5450E+03<br>7.5450E+03<br>7.5450E+03<br>7.5450E+03<br>7.5450E+03 | STAST    | 8.4 + 48 1 EE + 40 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STRST 1  | 9.2726E+03<br>2.5126E+03<br>2.5128E+03<br>9.219+F+02   |
| 2.0228E+0+ 3.9495E+0+ 1.4831E+0+ 1.94231E+0+ 1.94231E+0+ 1.9421E+0+ 1.9424E+0+ 1.94324E+0+ 1.88492E+0+ 1.8848E+0+ 1.8848E+0+ 1.8848E+0+ 1.8848E+0+ 1.8848E+0+                                              | STRSL 1  | 4. 2896 EE + 0 + 4. 4 28 6 EE + 0 + 4. 4 28 6 EE + 0 + 4. 4 28 6 EE + 0 + 4. 4 28 6 EE + 0 + 4. 4 28 6 EE + 0 + 4. 4 28 6 EE + 0 + 4. 4 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 EE + 0 + 4. 28 6 E | STRSL 1  | 4.86478E+U4<br>2.3614E+U4<br>2.3555E+U4<br>4.61335E+U4 |
| 4 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4                                                                                                                                                                    | LAYER    | ようきょうちゃ りょうきょう はい しゅうしょう しゅう しょう しゅう しょう しゅう しょう しゅう しょう しゅう しょう のっぱ のっぱ のっぱ のっぱ のっぱ のっぱ のっぱ のっぱ のっぱ のっぱ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LaYEr    | ⊣∿ო÷                                                   |
|                                                                                                                                                                                                            | ×        | 1 2 U 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×        | 7 5 5                                                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STRSLT 20.00.00.00.00.00.00.00.00.00.00.00.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81R97 2<br>1.0850E+04<br>1.0845E+04<br>1.0949E+04<br>1.0962E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3188L 2<br>3.5436E+04<br>3.5581E+04<br>3.5726E+04<br>3.5800E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1, 2323E+02<br>1, 2782E+02<br>0, 2, 55E=02<br>1, 2782E+02<br>0, 4, 2514E+02<br>0, 4, 243E+02<br>0, 4, 2314E+02<br>0, 4, 2314E+02<br>0, 4, 2314E+02<br>0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STRSLT 1  -4.331bE+02  -4.321bE+02  -4.310bE+02                                                                                   |
| 4.1866E+003<br>2.4935E+003<br>4.1184E+003<br>2.4551E+003<br>2.4551E+003<br>4.0045E+003<br>4.0045E+003<br>8.4354E+003<br>8.4354E+003<br>8.4452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.8452E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003<br>8.84501E+003                                             | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4. 38 20 12 4<br>2. 38 20 12 4<br>2. 38 20 12 4<br>2. 38 20 12 4<br>2. 30 20 30 4<br>2. 20 30 4<br>2. 20 30 4<br>2. 20 30 4<br>2. 20 30 4<br>2. 20 30 4<br>2. 20 30 4<br>2. 20 30 4<br>3. 20 30 4<br>4. 4 2 30 6<br>4. 4 2 30 6<br>4. 4 2 30 6<br>5. 20 30 4<br>6. 20 30 4<br>6. 20 30 4<br>7. 20 30 4<br>7. 20 30 4<br>7. 20 30 4<br>7. 20 30 4<br>7. 20 30 4<br>7. 30 4<br>8. 30 4<br>8. 30 4<br>8. 30 4<br>8. 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 4<br>9. 20 30 5<br>9. | \$\begin{align*} \text{A} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & \text{C} & |
| <br>2 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *3+0+6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                                      | <b>~</b> |          |                                        |              |          |                     |                                                   |          |            |          |          |                                       |           |          |             |          |          |                                         |         |          |          |              |          |          |           |                    |   | <b>∩</b><br>⊢ |         |            |           |            |         |            |        |           |            |              |         |                     |
|------------------------------------------------------|----------|----------|----------------------------------------|--------------|----------|---------------------|---------------------------------------------------|----------|------------|----------|----------|---------------------------------------|-----------|----------|-------------|----------|----------|-----------------------------------------|---------|----------|----------|--------------|----------|----------|-----------|--------------------|---|---------------|---------|------------|-----------|------------|---------|------------|--------|-----------|------------|--------------|---------|---------------------|
|                                                      | STRSL    | •0       | •                                      | • •          | •        |                     |                                                   |          |            |          |          |                                       |           |          |             |          |          |                                         |         |          |          |              |          |          |           |                    |   | STRSE         |         | • •        |           | •0         |         |            |        |           |            |              |         |                     |
|                                                      | STRST 2  | .0428E+0 | 1.04598+04                             | .0505E+0     |          |                     |                                                   |          |            |          |          |                                       |           |          |             |          |          |                                         |         |          |          |              |          |          |           |                    |   | STRST         | 0113640 | 1.01346+04 | • G155E+D | .01555+0   |         |            |        |           |            |              |         |                     |
|                                                      | STRSL 2  | .4057E+0 | 3.41556+04                             | - 4307E+0    |          |                     |                                                   |          |            |          |          |                                       |           |          |             |          |          |                                         |         |          |          |              |          |          |           |                    |   | STRSL 2       | 1157F+0 | 3.3045E+04 | .31646+0  | .31992+0   |         |            |        |           |            |              |         |                     |
| 0.<br>+.2561E+02<br>-4.2533E+02<br>0.                | STRSLT 1 | •        | ## 3549E+02                            |              | . t.     | #* 3488E+D2         |                                                   |          | 4.3425E+02 | 0.       |          | <b>*</b> :                            | . 3347±+0 | . 0      | -4,3299£+02 | .3284E+0 | <b>.</b> |                                         | + +     |          | •        | 4.3172E+D2   | .3156E+U | • •      | *         | 091E+0             | • | STRSLT 1      | 0.      | .371       | .3711E+0  | <b>.</b> c | - 48846 | 4.3580E+02 | •      | •         | 4,3655E+U2 | 0.           |         | 4.3h25 <u>L</u> +02 |
| 9.0370E+02<br>2.4530E+03<br>2.4492E+03<br>8.9922E+02 | STRST 1  | -5860E+  |                                        | .55882+0     | .54976+0 | .5x55E+0<br>5x35E+0 | 0.4.3.4.2.4.5.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0 | .51346+0 | 57635+0    | .48516+0 | .4220E+0 | .55705+0                              | D+42+55.  | .44075+0 | .55778+0    | .555784  | D+2+67+. |                                         | 5+525+0 | .4771E+N | .3680E+0 | 0+396F+0     | . * 7    | .3315F+7 | . 5244E+1 | .5475E+0           |   | STRST 1       | . 6825  | . 5205E    | 3E614.    | 10001      | .61576  | 2.61458+03 | 36849. | 305+4•    |            | . 5 3 1 U.E. | .62h3£  | 5006.               |
| 4.5258E+04<br>2.3013E+04<br>2.295E+04<br>4.5031E+04  | STRSL 1  | **08     | ###################################### | .79115E      | . 7859E  |                     | .7721E                                            | .7675    |            | .7536E   | 36646.   | # # # # # # # # # # # # # # # # # # # | 73526     | .73068   |             |          | 71216    | 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - | 36566   | . 6983E  | .6437E   | . axa<br>non |          | 67526    | 37846     | . 3/27F<br>. 55++E |   | STRSL 1       | 48534   | . 470      | +69+      |            |         | #0+45#4# S | 8.467  | F + F & F |            | ~~~          | 8 + 2 K | . 455.              |
| от т<br>п<br>п                                       | LAYER    | -4 Г     | u m                                    | <del>+</del> | ហាដ      | د <i>۱</i> ۰        | 00                                                | σ:       | 7 T        | 1 T      | T        | <del>+</del> u                        | r 4       | 17       | S (         | or ::    | รี จึ    | 1 7.<br>1 70                            | ; rr.   | †<br>N   | ហ        | د n<br>ئ م   | 'n       | 5<br>1 N | G. Y.     | - ~<br>r • n       |   | LAYER         | -       | ď          | m ÷       | + u        | م       | ^          | π      | or ;      | = -        | : ~:<br>     | en -    | <b>,</b>            |
|                                                      | *        | 4255     |                                        |              |          |                     |                                                   |          |            |          |          |                                       |           |          |             |          |          |                                         |         |          |          |              |          |          |           |                    |   | ×             | 5105    |            |           |            |         |            |        |           |            |              |         |                     |

| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STRSLT 200.00.00.00.00.00.00.00.00.00.00.00.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STRSLT 2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31 RST 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STRST 2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.22505+0+<br>3.22856+0+<br>3.2326+0+<br>3.23406+0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STRSL 2  |
| -4.3593E+02<br>-4.3593E+02<br>-4.3585E+02<br>0.3586E+02<br>0.3586E+02<br>0.3586E+02<br>0.3586E+02<br>0.3586E+02<br>0.3586E+02<br>0.3586E+02<br>0.3990E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STRSLT 1  14.3846 E + 0 2  14.3846 E + 0 2  14.3837 E + 0 2  14.3830 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0 2  14.3820 E + 0                                                                                                                                                                                                              | STR3LT 1 |
| 4.5000<br>4.5000<br>4.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000<br>6.5000 | \$\text{A}\$ \text{C}\$ \text{A}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text{C}\$ \text | STAST 1  |
| 2. 45.46 + 0.4 4. 81.27 + 0.4 2. 45.12 + 0.4 2. 45.12 + 0.4 4. 80.8 + 0.4 4. 80.8 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 4. 748.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6 + 0.4 6. 435.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STRSL 1  |
| \$ 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LAYER    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×        |

| 7080 | 1                     | ٠.                       | 8183E+0                                    | •0                                    | 1634640    | 1 1 2 5 5 F + D | €:       |
|------|-----------------------|--------------------------|--------------------------------------------|---------------------------------------|------------|-----------------|----------|
|      | υ                     | ٠.                       | , 6555E+O                                  | .3452E+B                              | .1534E+    | - 6863E+0       | • •      |
|      | m                     |                          | .4568E+U                                   | 4.3954E+U2                            | .1634E+n   | 5854F+0         | •        |
|      | ÷                     | ٠.                       | P218E+0                                    |                                       | E + 0      | 9. 5.65E+03     | • •      |
|      | <b>ம</b> ்.           | ٠. ٔ                     | .8230E+U                                   |                                       |            |                 |          |
|      | ^ ف                   |                          | .5377E+0                                   | -4.3960£+02                           |            |                 |          |
|      | · or                  |                          | 2 + LU C C C C C C C C C C C C C C C C C C | 34025                                 |            |                 |          |
|      | τ                     |                          | R277E+0                                    | • •                                   |            |                 |          |
|      | CT                    |                          | 1594E+11                                   | 4.3953E+02                            |            |                 |          |
|      | - C                   | '                        | . 5542E+0                                  | 33706+0                               |            |                 |          |
|      | 2 T                   |                          | .8312E+n                                   | • •                                   |            |                 |          |
|      | ) ÷                   | • -                      |                                            | . מידש לר מכי                         |            |                 |          |
|      | 1.5                   | • -                      |                                            | 20+38/56***                           |            |                 |          |
|      |                       | ٠.                       | 8359E+0                                    | 10000                                 |            |                 |          |
|      | 21.                   |                          | .8371E+0                                   | • •                                   |            |                 |          |
|      | 18                    |                          | . hhlzE+C                                  | 39836+                                |            |                 |          |
|      | <del>Մ</del> -        |                          | .6515E+A                                   | .398SE+0                              |            |                 |          |
|      | ī. ;                  |                          | 84055.40                                   | ·0•                                   |            |                 |          |
|      | - T                   |                          | . X418E+0                                  | 0                                     |            |                 |          |
|      | ט ת<br>טיד            |                          | . h b 2 4 E + U                            | 50+344F +-                            |            |                 |          |
|      | n <del>s</del><br>u n |                          | . 55675+U                                  | 3443E+D                               |            |                 |          |
|      | ر<br>د<br>د           |                          | 8 + 5 5 5 7 + 0                            |                                       |            |                 |          |
|      | ů,                    |                          | . 6436E+O                                  | .3448E+0                              |            |                 |          |
|      | ۲ ع                   | •                        | .5539E+0                                   | -4.4000E+02                           |            |                 |          |
|      | х:<br>по              |                          | .8500E+0                                   | 0.                                    |            |                 |          |
|      | ភ ដ<br>លេក            | ٠                        | .8512E+0                                   | ,                                     |            |                 |          |
|      | n a                   |                          |                                            | * * * * * * * * * * * * * * * * * * * |            |                 |          |
|      | 3.5                   | 6.5150E+04<br>4.9404E+04 | 6. h5516+03<br>9.85+7E+02                  | 008E+0                                |            |                 |          |
|      |                       |                          | ·<br>•                                     | •                                     |            |                 |          |
|      |                       |                          |                                            |                                       |            |                 |          |
| ×    | LAYFR                 | STRSL 1                  | STRST 1                                    | STRSLT 1                              | STRSL 2    | STRST 2         | STRSLT 2 |
| 7559 | 7                     |                          | 0+34228                                    | Ü,                                    | .11075+0   | 0.000           |          |
|      | ירי                   | , ,                      | . 5 2 1 2 F + D                            |                                       | 1059540    |                 |          |
|      | חו                    |                          | .6716F+0                                   | # * # D # 3E + O S                    | 3.10295+04 | 4.5011E+03      | • •      |
|      | ÷                     | •                        | .88246+0                                   |                                       | .1009E+0   | .4950t.+U       |          |
|      | n u                   | •                        | .3858E+0                                   | • 0                                   |            |                 |          |
|      | ۰ م                   | •                        | . 5 7 5 5 F + E                            | 14.4055E+02                           |            |                 |          |
|      | œ                     | · •                      | .945BE+11                                  |                                       |            |                 |          |
|      | σ;                    | •                        | . 8992F+A                                  |                                       |            |                 |          |
|      | o .                   | •                        | .6775E+0                                   | # :                                   |            |                 |          |
|      | 7 7                   | , -                      |                                            | . * 0 4 2 5 + 0                       |            |                 |          |
|      | . E                   | ٠,                       | 41256+                                     | • =                                   |            |                 |          |
|      | †<br>  <del> </del>   | ,                        | 5804F+n                                    | .4109E+0                              |            |                 |          |
|      | 15                    |                          | . 581 AE+D                                 | -4.4114E+02                           |            |                 |          |
|      | 14                    | ٠.                       | .9276E+1)                                  | •                                     |            |                 |          |
|      | 1.7                   | ٠.                       | 0+3656.                                    | o•                                    |            |                 | ٠        |
|      | 18                    | -:                       | 6843E+0                                    | -4.4130E+02                           |            |                 |          |
|      | <b>Б</b> ;            | •                        | . 6852E+0                                  | .41356+0                              |            |                 |          |
|      | ∴ (                   | 4 4367777                | 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | • •                                   |            |                 |          |
|      | ٠ n.                  |                          | 1 1 1 2 2 E + D                            | # 15 1 F + C                          |            |                 |          |
|      | ι τ<br>: <b>'</b> υ   |                          | ロイスなとに十口                                   | 4.4157E+UZ                            |            |                 |          |
|      | ÷ ~1                  | ٠.                       | こ・はナロナコ・                                   |                                       |            |                 |          |
|      |                       |                          |                                            |                                       |            |                 |          |

| 7          | .54346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .69255+0                                  |                 |             |            |          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|-------------|------------|----------|
| γσ         | 94586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4078540                                   |                 |             |            |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 400000                                  |                 |             |            |          |
| 14.5       | 7.5453E+34<br>5.002EE+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 + E + E + C + C + C + C + C + C + C + C | 44.4149E+02     |             |            |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                 |             |            |          |
| Υ.<br>9.   | STR3L 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STRST 1                                   | STRSLT 1        | STRSL 2     | STRST 2    | STRSLT 2 |
| -1         | 9936P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .9434E+0                                  | •               | .0505E+0    | .3714E+0   |          |
| n r        | .5360E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0+32+89*                                  | -1 - 4132E+02   | .0521E+0    | .3455£+0   |          |
| กታ         | 7 - C X 2 - C X 2 - C X 2 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C X 3 - C | 941540                                    | . 4141E+O       | #0+37E+0*E  | 9.3197E+03 | <b>.</b> |
|            | 746649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | • •             | 0.4.1.5.0.4 | . 3007510  |          |
| ه ۱        | .5415E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 5402E+0                                 | . 4167E+0       |             |            |          |
| ~          | 36245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5915E+D                                  | •               |             |            |          |
| œ          | .4961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .95326+0                                  |                 |             |            |          |
| σ          | 35875.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .9585E+D                                  | •               |             |            |          |
| = -        | .5471E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .69576+0                                  | <b>+</b> :      |             |            |          |
| 4 N        | 705 F.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0+40>777                                  | . 4 < 1 0 E + 0 |             |            |          |
| æ          | .00986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9402E+0                                   | . 0             |             |            |          |
| <b>.</b>   | .5527E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .7011E+0                                  | 4.423bE+02      |             |            |          |
| un.        | .5541E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .7n25E+0                                  | . 42446+0       |             |            |          |
| _c r       | . C1871E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0.9.05E+D                                | ·               |             |            |          |
| \ m        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .001255+0<br>705125+0                     | 012000          |             |            |          |
| σ          | .55975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20H0E+0                                   | •               |             |            |          |
| <u>.</u>   | . n290E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .00286+0                                  |                 |             |            |          |
| <b>⊣</b> ∩ | . () 317E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 0.              |             |            |          |
| ı m        | 1 4 5 7 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 7134E+D                                 |                 |             |            |          |
| +          | 0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-30200                                   |                 |             |            |          |
| v          | 3654D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .nu55E+0                                  |                 |             |            |          |
| וצ         | 35894E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .7176E+0                                  |                 |             |            |          |
| ` ~        | יומטיני.<br>קמטינינים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .7187E+U                                  | . 4346E+0       |             |            |          |
| or         | 05376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.32760.                                  |                 |             |            |          |
| Ξ          | .57501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 723GE+0                                 | , <b>*</b> ,    |             |            |          |
| 1 F        | 2.5754E+34<br>5.0519E+34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7244E+83<br>1.0043E+03                  | 38∩E+0          |             |            |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                 |             |            |          |
| æ          | STRSL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STRST 1                                   | STRSLT 1        | STRSL 2     | STRST 2    | STRSLT 2 |
| - 2        | 5.0063E+0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.4833R+02                                | 0.4 0.0 0.0 0.0 | #0+U0r00 m  | 9.2074E+03 |          |
| ~          | .5534E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .7019E+0                                  | . 4             | 0+3656      |            |          |
| <b>,</b>   | .0178E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .00066.3                                  |                 | .4772E+0    | .1008E+0   |          |
| Ŋ          | .n217E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .001+E+0                                  |                 |             |            |          |
| ו ם.       | 65936+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .7075£+0                                  | -4.4275E+02     |             |            |          |
| <b>~</b> : | .5413E+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 7895E+8                                 | .4683£+0        |             |            |          |
| c or       | はいったから                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 1 3 5 5 F + C                           | · 0             |             |            |          |
| -          | 10.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                 |             |            |          |

```
STRSLT
 0000
 9.0131£+03
8.9495£+03
8.8858£+03
8.8536£+03
 STRST
 2.9435E+04
2.9227E+04
2.9020E+04
2.8914E+04
 STRSL
 0.
4.4468E+U2
4.4484E+02
 0.
4,4530E+02
*4,4546E+02
 *+.+592E+02
+.+507E+02
0.
 +.4558E+U2
*4.4569E+O2
0.
 +.4371E+U2
-4.4383E+U2
 -4.4418E+U2
 -4.4465E+02
4.4477E+02
 +.4511E+02
-4.4523E+02
 -4.4342E+02
 -4.440SE+02
 -+.4553E+02
+.4569E+02
 4.4715E+02
-4 4730E+02
 4.4775E+U2
-4.4747E+U2
 -4.4335E+0-
 STRSLT
 ċ
 . .
 2.78826.03
2.78826.03
2.72886.03
2.72886.03
2.72866.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
2.73106.03
 2.7172E+03
1.0056E+03
1.0056E+03
2.7276E+03
1.00376E+03
1.00376E+03
2.7325E+03
1.0135E+03
1.0135E+03
2.7478E+03
 STRST
2.5541E+04
5.0534E+04
6.0534E+04
7.0570E+04
7.0570E+04
8.0578E+04
8.0578E+04
8.0837E+04
 5.0416E+04

5.5701E+14

5.5701E+14

6.5702E+14

6.5702E+14

6.5802E+14

6.6802E+14

6.8802E+14

6.8802
 STASL
 しょししどくらう からぞうりおんとら カミジェリトリンド ちょうそうしょう ジンララこうしょうしょう こうこうこうしょうしょ しょしょしょしょ
 1.90.1
```

| •        | · · · · · · · · · · · · · · · · · · ·                                                                      | STRSL                                        | STRST                                      | STRSLF 1                                                                                                                                                            | STRSL 2                                                         | SIRST 2                                                               | STRSLT 2                                        |
|----------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|
|          | $\begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot $ | 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. |                                            | 10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.                                                                                                                | 2.8430E+0+<br>2.8430E+0+<br>2.8437E+04<br>2.7888E+04            | 8,7244E+03<br>8,5848E+03<br>8,53948E+03<br>8,53948E+03<br>8,53948E+03 |                                                 |
| X X 1913 | 7<br>A 4<br>E 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                      | 77 85                                        | \$ 7 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | STRSLT 1  14.4669E+02  10.476E+02  10.4776E+02  10.4882E+02  10.4882E+02  10.4882E+02  10.4987E+02  10.4987E+02  10.4987E+02  10.5013E+02  10.5013E+02  10.5013E+02 | STRSL 2<br>2,7525F+04<br>2,7132E+04<br>2,5734E+04<br>2,5540E+04 | STRST 28.4282E+038.3074E+0388.1875E+0388.1265E+03388.1265E+033        | STRSLT 20.00.00.00.00.00.00.00.00.00.00.00.00.0 |

|                                                                                                                                                           | 31RSLT 2<br>0.00.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STRSL1 2<br>0.00.00                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                                                           | 97RST 2<br>7.96D3E+03<br>7.560UE+03<br>7.5838E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STRST 27.30.72.40.37.40.37.40.37.40.38.41.40.3                                              |
|                                                                                                                                                           | 3788 2 5 5 5 6 4 6 7 6 4 6 4 6 7 6 4 6 8 6 4 6 7 6 4 6 7 6 4 6 7 6 4 6 7 6 7 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STRSL 2 2-3466E+04 2-3314E+04 2-2704E+04 2-2704E+04                                         |
| -4.5198+02<br>4.52188+02<br>0.522188+02<br>0.53988+02<br>1.53198+02<br>1.53198+02<br>1.53198+02<br>1.53198+02                                             | 3788LT 1<br>10. 4490<br>10. 4490<br>10. 5004E+02<br>11. 5004E+02<br>11. 5004E+02<br>11. 5328E+02<br>11. 5328E+02                                                   | STRSLT 1<br>0.<br>-4.5208E+02<br>4.525E+02<br>0.<br>0.                                      |
| 1.0614E+03<br>2.856E+03<br>1.056E+03<br>1.0566E+03<br>2.874E+03<br>2.874E+03<br>2.0734E+03<br>1.0734E+03<br>2.877E+03<br>2.8474E+03                       | 27857<br>1.094086+03<br>2.81226+03<br>2.81226+03<br>1.054086+03<br>2.83566+03<br>2.83566+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85106+03<br>2.85266+03<br>2.85106+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+03<br>2.85108+0 | STRST 1<br>1.0604E+03<br>2.8645E+03<br>2.8724E+03<br>1.0704E+03<br>1.0742E+03<br>2.8480E+03 |
| 5.32788404<br>2.71758404<br>2.7278718404<br>5.35498404<br>5.35408404<br>6.73608404<br>6.73408404<br>6.73408404<br>6.746048404<br>7.75458404<br>7.75458404 | \$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STASL 1<br>5.32+8E+0+<br>2.72871E+09<br>4.72871E+09<br>5.34572+0+<br>5.3457E+0+             |
| と と と と と と と と と ま ま ま と と と と と と と と                                                                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ር አ<br>የ የ የ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ ዓ                                              |
|                                                                                                                                                           | 1.8754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | × 5.                                                                                        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STRSLT<br>0.00.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9TRST 2<br>6.4371E+03<br>6.278E+03<br>6.1205E+03<br>6.0+03E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STRSL 2<br>2.10236+0*<br>2.05066+0*<br>1.94276+0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| +.5441E+02<br>0.45577E+02<br>1.553E+02<br>0.5535E+02<br>1.5830E+02<br>1.5830E+02<br>1.5830E+02<br>1.5830E+02<br>1.5830E+02<br>1.5830E+02<br>1.5830E+02<br>1.5830E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58257E+02<br>1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3TRSLT 1<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>14.55SSGE+02<br>15.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55SSGE+02<br>16.55S |
| 2.90538<br>1.088428<br>1.088428<br>1.098428<br>1.098428<br>1.09848<br>1.09848<br>1.1188<br>1.1188<br>1.1188<br>1.11848<br>1.11848<br>1.1188<br>1.11848<br>1.11848<br>1.11848<br>1.11848<br>1.11848<br>1.11848<br>1.11848<br>1.11848<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.1188<br>1.                                             | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.4 4 35 EE + 1) 4 5 4 4 3 5 EE + 1) 4 5 4 4 3 5 EE + 1) 4 5 7 4 4 3 5 EE + 1) 4 5 7 4 4 3 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 EE + 1) 4 5 7 5 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\sim \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{\text{COM}} + \text{ACC}_{$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| AYER               | STRSL 1                  | STRST 1             | STRSLT 1          | STRSL 2    | STRST 2      | STRSLT 2 |
|--------------------|--------------------------|---------------------|-------------------|------------|--------------|----------|
| <b>⊣</b> ∩         | 5.5853E+0#<br>2.8504E+34 | 1.11216+03          | 0+40693           | 7473E+     | 3504E+       |          |
| m                  | 80                       | .0156E+0            |                   | .6822E+0   | .1509E+0     | • •      |
| <b>ታ</b> Մ         | ٠,                       | 13066+0             | •<br>•            | •6657E+0   | .1004E+0     |          |
| Q.                 | ď                        | .U618E+D            | .6251E+0          |            |              |          |
| ~ 0                | ō :                      | .U??2E+0            | 4.6327E+02        |            |              |          |
| ж от               | , x                      | .1553E+U            | • •               |            |              |          |
| 10                 | õ                        | 1232641             | 6551E+0           |            |              |          |
| 11                 | 5                        | .1385E+0            | -4.6524E+02       |            |              |          |
| ru r               | 5                        | .1799E+D            | • 0               |            |              |          |
| 7) <del>)</del>    | 7 0                      | 18716+0             |                   |            |              |          |
| 15                 | ō                        | .1947E+0            | -4.6408E+02       |            |              |          |
| 16                 | 0                        | .2045F+0            | 0.                |            |              |          |
| 17                 | 0                        | .2107E+D            | •                 |            |              |          |
| x 0                | ₹;                       | 17+53+E+D           | -4.71136+02       |            |              |          |
| r =                | <u>-</u>                 | .250155+0           | .7180E+0          |            |              |          |
| วาเ                | 1 7                      | 0+40560             | • 0               |            |              |          |
| 2                  | ã                        | .31) h1E+0          | .7377E+0          |            |              |          |
| 23                 | 7.                       | .3213E+D            | - 2441E           |            |              |          |
| + u                | m 1                      | . 2536E+0           | • 0               |            |              |          |
| ת<br>קיי           | היי                      | 355555+0            | .7529E+0          |            |              |          |
| 72                 | ď.                       | .3317E+0            | -4.7590E+02       |            |              |          |
| 80 0               | ÷ :                      | .2782E+6            |                   |            |              |          |
| 7 :<br>U 1         | <del>,</del>             | C+ LF + 20 .        |                   |            |              |          |
| ];                 | <u>.</u>                 | C+40005.            | <b>*</b> :        |            |              |          |
| T 7                | 'n                       | 0+4524+0<br>0+0.000 | .7430 <u>E</u> +0 |            |              |          |
| u<br>n             | ņ                        | . 342 br. + II      | •                 |            |              |          |
| AYER               | STRSL 1                  | STRST 1             | STRSLT 1          | STRSL 2    | STRST 2      | STRSLT 2 |
| ٦                  | , 7364                   | .1415E+U            | <b>.</b> D        | .3335E+0   | 08336+0      |          |
| ď                  | 4414                     | .0783E+n            |                   | .3343E+0   | . 085hE+0    |          |
| m ·                | 4624                     | 0+3+8+0             | -6429E+U          | 1.33502+04 | 4 = 0878E+03 | •0       |
| ±r U               | . 75 G T L               | .1547E+0            |                   | .33546+0   | .089uE+0     |          |
| ·τ                 | +520                     | 15856+0             | . h 2 1 5 F + D   |            |              |          |
| ^                  | 0.453                    | .1785E+0            | +                 |            |              |          |
| æ                  | .0244                    | .1974F+1            |                   |            |              |          |
| J S                | .486.                    | 2059E+0             |                   |            |              |          |
| : -                | 11261                    | 0+1646<br>0+1646    |                   |            |              |          |
| , <sub>7</sub> , 1 | 1, 1895E+J4              | 1.74005+03          | 0.                |            |              |          |
| £ T                | . 2 30 A                 | . 2 1 M 1 E + F     | 0.                |            |              |          |
| <b>+</b> (         | 1924E                    | .3178E+0            | 4.7423E+02        |            |              |          |
| т.<br>Г:           | ı.                       | ٠,                  | 7.                |            |              |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STRSLT 2 | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRSLT 2 | ••                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STRST 2  | 2.6004E+03<br>2.8041E+03<br>2.9178E+03<br>3.9754E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRST 2  | 1.2848E+U3                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STRSL    | 9.7853E+03<br>9.1577E+03<br>9.5240E+03<br>9.7172E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRSL 2  | <pre>+.17616+03 +.6849E+03</pre> |
| 1.77+75+02<br>1.7825E+02<br>0.00<br>1.8055E+02<br>0.8346E+02<br>0.8346E+02<br>0.8416E+02<br>0.8416E+02<br>0.8416E+02<br>0.8416E+02<br>0.8620E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STRSLT 1 | + 64338E + 02<br>+ 64338E + 02<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STRSLT 1 | n.<br>-4.7178E+02                |
| 1. 24 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STRST 1  | 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STRST 1  | 1.2114E+03<br>3.75715+03         |
| 5.2956<br>5.2956<br>5.2956<br>6.51956<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.5506<br>6.550 |          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | STRSL 1  | 6.19443E+1)4<br>3.1342E+1)4      |
| ^ * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LAYER    | u m m t m u v x o c a v m t m u n x o c a v m t m u n x o c a v m o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c a v o c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LATER    | <b>→</b> ℃                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 6.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~        | 1.7304                           |

| •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3188L1<br>00.00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.5842E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STRST 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.1737E+03<br>5.4215E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 TRSL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| +,7307E+02<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STRSLT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.24788403<br>1.24788403<br>1.24788403<br>1.24788403<br>1.24884603<br>1.34876403<br>1.34876403<br>1.34876403<br>1.34876403<br>1.34876403<br>1.34876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.48876603<br>1.88876603<br>1.88876603<br>1.88876603<br>1.88876603<br>1.88876603<br>1.88876603<br>1.88876603<br>1.88876603<br>1.88876603<br>1.88876603 | \$17.81 1.25.725 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.85 4.14.8                                                                                                                                                                                                                                                                                                                                                       |
| 3.16596+04 6.3+346+04 3.25086+04 3.24086+04 6.53126+04 3.44256+04 3.44256+04 3.44256+04 3.44256+04 4.043586+04 7.843746+04 7.84876+04 7.84876+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04 7.84846+04                                                                                                                                                                                                                                        | \$188L 1<br>5.33182+04<br>5.545356+04<br>6.61546+04<br>3.44036+04<br>5.84306+04<br>5.84306+04<br>7.1836+04<br>7.1836+04<br>7.1836+04<br>7.1836+04<br>7.18356+04<br>7.18356+04<br>7.18356+04<br>7.4556+04<br>7.4556+04<br>7.4556+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.45686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.46686+04<br>7.4 |
| <ul><li>* + 2</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .8 7 LAYER LAYER LA LA LA LA LA LA LA LA LA LA LA LA LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

187

### APPENDIX H

NONLINEAR FORMULA PREDICTIONS OF COMPLEX JOINT FAILURE LOADS/BEHAVIOR

### APPENDIX H.1

FAILURE PREDICTION RESULTS IN COMPLEX JOINTS

# 501 COMPLEX DOUBLE LAP JOINT TITANIUM TO BORON, LSHE ADHESIVE

## NONLI'EAR URTHUTHUPIC ANALYSIS, DOUBLE LAP JOINT

```
JOINT LEAGIN = 1.4670
EMAXIMUM ITEMANCE = .025
MAXIMUM ITEMANCE = .025
MUNIMER OF STATIONS = 20
MUNIMER OF STATIONS = 20
MUNIMER OF STATIONS = 20
MUNIMER OF STATIONS = 20
MUNIMER OF STATIONS = 20
MUNIMER OF STATIONS = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S = 2740
MAYOR S
```

ULTIMATE LOAD PREDICTION BASED ON ADMERSIVE - MX STRESS, SU = 7.17E+03 ADMERSIVE - MX STRAIN, SL = 6.08E-03, ST = 4.01E-03, SLT = 1.50E-02 ADMERSIVE 2 - MX STRESS, SL = 1.35E+05

ALP-4 :: 4.2813E+00 8E1A :: 4.2613E+00 LAMBDA = 6.1671E+00 N RESETTO 19

H-3

AD-EMEND NUMBER Z(ISOTROPIC)
THICKNESS
POISSONS MATIO
AAMBERG OSGOOD CONSTANTS
S VS. E

0

Z 555 \* +E

SECANT S 134000

.0900 .3062 .3062 .3068

```
LUAN = 818

AT ITEMATION | ERROR IS 8.97E-03

AT ITEMATION | ERROR IS 8.97E-03

AT ITEMATION | ERROR IS 8.97E-03

AT ITEMATION | ERROR IS 8.97E-03

AT ITEMATION | ERROR IS 8.87E-02

AT ITEMATION | ERROR IS 8.87E-02

AT ITEMATION | ERROR IS 1.74E-02

AT ITEMATION | ERROR IS 3.51E-01

AT ITEMATION | ERROR IS 3.51E-01

AT ITEMATION | ERROR IS 3.70E-02

AT ITEMATION | ERROR IS 3.70E-02

AT ITEMATION | ERROR IS 1.90E-02

 3.516-01

2.056-01

1.186-01

4.486-02

6.126-02

4.966-02

4.966-02

4.026-02

2.666-02

2.666-02

2.666-02
 AT ITEMATION 1 ERROR IS 4.12E-01
AT ITEMATION 2 ERROR IS 2.19E-01
AT ITEMATION 3 ERROR IS 1.37E-01
AT ITEMATION 4 ERROR IS 5.88E-02
AT ITEMATION 5 ERROR IS 5.88E-02
AT ITEMATION 6 ERROR IS 2.63E-02
AT ITEMATION 8 ERROR IS 2.63E-02
AANTAL STRESS(STRAIN)/ALLOWABLE = .801 IN ADHESIVE
.874 IN ADHESIVE
 4.19E-01
2.45E-01
1.73E-01
1.28E-01
9.61E-02
 5.55E-02
4.24E-02
3.25E-02
 3.20E-01
1.88E-01
1.41E-01
1.13E-01
 H
 AAIN)/ALLOWA
 15
13
13
 ERROR
ERROR
ERROR
ERROR
 THATION HERALION
```

| ADHESIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | ADHESIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ADHE3IVE<br>ED                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A I A                                                                                                                                                                                                                        |
| 9.32E102<br>7.75E102<br>6.86E102<br>8.86E102<br>9.87E102<br>9.26E102<br>2.75E102<br>6.33E102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              |
| IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                       |
| EXECT ENTROPE EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECT EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE |                                                                              | TARRESTED A PREETY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROP | ERROR<br>ERROR<br>ERROR<br>ERROR<br>ERROR<br>TANION                                                                                                                                                                          |
| 5<br>7<br>7<br>8<br>8<br>8<br>8<br>10<br>11<br>11<br>12<br>12<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ብ መ ጠ ተ <b>መ</b> መ ጉ                                                         | 3 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SC                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AAT 1162AATI<br>AAT 1162AATI<br>AAT 1162AATI<br>AAT 1162AATI<br>AAT 1162AATI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION AT ITERATION |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H-5                                                                                                                                                                                                                          |

THE PREDICTED ULTIMATE LOAD IS 6077

|                 |                         |             | c          | • •         |             | 0           | 0           | 0           | . 0         | 0           | 0           | 0           | 0           | 0           | G          | 0                 | 0                 |             | · c         |             |             |
|-----------------|-------------------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------------|-------------------|-------------|-------------|-------------|-------------|
|                 |                         | N<br>X<br>Z | 1-1918E+0+ | 1.08745+04  | 9.8711E+03  | 8.9165E+03  | 8.01475+03  | 7.17245+03  | 6.3482E+03  | 5,70455+03  | 5.10856+03  | 4.6324E+03  | 4.2732E+03  | 3,9812E+U3  | 3.6843E+U3 | B0+31+88          | 2.85225+83        | 2.27+25+03  | 1.58855+03  | 8.31215-92  | 2.3283E-10  |
|                 |                         | TXW         | 1.90935-13 | -3.8053E-01 | -6.1671E-01 | -7.3254E-01 | -7.4790E-01 | -6.8744E-01 | -5.7915E-01 | -4.4598E-01 | -3.0800E-01 | -1.680-5-01 | -2.4030c-C2 | 1.2244E-01  | 8.6552E-51 | 3.93281-01        | 4.8190E-01        | 5.11565-01  | 4.5573E~01  | 10-125-6-2  | 5.45705-14  |
|                 | ERROR = .02357          | T X N       | 1.15425-10 | 5.220hE+02  | 1.0233E+03  | 1.5006E+03  | 1.9515E+03  | 2.3726£+03  | 2.75985.+03 | 3.1065E+03  | 3.4046E+03  | 3.6426E+03  | 3.8223E+03  | 3.96836+03  | 4.1140E+03 | 4.2412E+03        | 4.5278E+03        | 4.8219E+03  | 5.15+6€+03  | 5.5430E+03  | 5.9589E+03  |
| ۲۶              | 9 . MAXIMUM ERROR =     | SIGMA       | 1.0291E+03 | 9.2337E+U2  | 7.75348+02  | 5.42046+02  | 3.81305+02  | 1.52306+92  | -7.6501E+01 | -2.75306+02 | -3.8745E+02 | -3.5152E+02 | -1.9781E+U2 | -2.1428E+01 | 9.4042E+01 | 9.65735+01        | -6.6522E+01       | -3.2512E+02 | -5.80462+02 | -7.839 F+02 | -4.0830E+UZ |
| 2209 = d d1     | NIJMALR OF ITERATIONS # | TAU         | 6.5693E+03 | 6.3112E+03  | 6.0294E+03  | 5.7191E+03  | 5.3734E+03  | 4.9822E+03  | 4.5293£+03  | 3.9E53E+03  | 3.31445+03  | 2.5355E+03  | 1.93316+03  | 1.7222E+03  | 1.92075+03 | 2.5112E+03        | 3.2 b 0 8 E + 0 3 | 3.93536+03  | +*4557E+03  | ** 8863E+03 | 5.2500E+03  |
| 11 d d( 1 5 Six | אולאארא נים             | ~           | 600000     | S THO.      | .1537       | 5+.5        | C           | 500         | 7           | 5 2 5 5     | C :         | . 7 3 3 5   | . 2 1 5 .   | 10°         | orky.      | 10<br>T 10<br>C 1 | 1.1+1.            | 1.25.55     | 1.3 +       | 1.3.25      | 1,4,70      |

MX Z

### APPENDIX H.2

### BEHAVIOR PREDICTION FOR GIVEN LOADS IN COMPLEX JOINTS

# 501 COMPLEX DOUBLE LAP JOINT TITANIUM TO BORON, LSHE ADMESIVE

### NONLINEAR ORTHOTROPIC ANALYSIS, DOUBLE LAP JOINT

| <b>†</b>                                                                                                                          |            |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| 6                                                                                                                                 |            |
| 0                                                                                                                                 |            |
| 00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00                                                                                |            |
| tu<br>vi                                                                                                                          |            |
| ANT 8<br>-0<br>11910<br>7950                                                                                                      |            |
| SEC                                                                                                                               |            |
| ы<br>+<br>0000шео                                                                                                                 |            |
| . 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                           |            |
| 288<br>1366<br>27<br>9                                                                                                            |            |
| , 0                                                                                                                               |            |
| IC)                                                                                                                               |            |
| TROP<br>ANTS<br>- S+                                                                                                              |            |
| RTHOONST                                                                                                                          |            |
| 1(0<br>) ERS<br>) D C<br>EL<br>ET                                                                                                 |            |
| 8 E K K K K K K K K K K K K K K K K K K                                                                                           |            |
| RUCH<br>RESS<br>RC O<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC                                |            |
| MHTX<br>MCX<br>MCX<br>MM<br>MCX<br>MM<br>MCX<br>MM<br>MCX<br>MM<br>MCX<br>MM<br>MCX<br>MM<br>MCX<br>MM<br>MCX<br>MM<br>MCX<br>MCX |            |
| m L N W O                                                                                                                         |            |
| 4                                                                                                                                 |            |
|                                                                                                                                   | # SECANT S |

SECANT S N 134000 34.559 .0900 .3062 .3062 ADHEREND NUMBER Z(ISOTROPIC)
THICKNESS
PUISSONS RATIO
RAMBERG OSGOOD CONSTANTS
S VS. E H-8

S.

1 + 5

4.2819E+00 4.2613E+00 6.1671E+00 ALPHA = BETA = LAMBDA = N RESET TO

```
LOAD = 3200
AT ITERATION 2 ERROR IS 3.52E-01
AT ITERATION 2 ERROR IS 2.27E-01
AT ITERATION 4 ERROR IS 1.52E-01
AT ITERATION 5 ERROR IS 1.01E-02
AT ITERATION 7 ERROR IS 4.94E-02
AT ITERATION 9 ERROR IS 3.46E-02
AT ITERATION 9 ERROR IS 3.46E-02
AT ITERATION 9 ERROR IS 3.46E-02
```

| 3200 |
|------|
| 11   |
| 5    |
| ľ,   |
| •    |
| v.   |
| ,    |

Control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

|                                   | MXZ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STRBLT 2  | ••••••                                                                                         | STRSLT 2 |                                                                                                          |
|-----------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------|
|                                   | NXS   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STRST 2   | 2.1274E+04 2.1274E+04 2.1274E+04 2.1274E+04 2.1274E+04 2.1274E+04 2.1274E+04 2.1274E+04        | STRST 2  | 1. 888 # 66 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #                                                                |
|                                   | H×1   | 114<br>011<br>021<br>031<br>031<br>031<br>031<br>031<br>031<br>031<br>03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STRSL 2   | 7.1111E+04<br>7.1111E+04<br>7.1111E+04<br>7.1111E+04<br>7.1111E+04<br>7.1111E+04<br>7.1111E+04 | STRSL 2  | 6.1549E+04<br>6.1549E+04<br>6.1549E+04<br>6.1549E+04<br>6.1549E+04<br>6.1549E+04<br>6.1549E+04           |
|                                   | Î.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRSLT 1   |                                                                                                | TRSLT 1  | 624E+02<br>694E+02<br>903E+02<br>973E+02                                                                 |
| ERROR = .O2437                    | TXN   | 5.8208E 11<br>4.3029E 12<br>1.1810E 10<br>1.7294E 103<br>1.7294E | STRST 1 S |                                                                                                | rrst 1 s | 78E+02<br>77E+02<br>111<br>58E+02<br>58E+02<br>58E+02<br>111<br>84E+02<br>111<br>94E+02<br>111<br>52E+02 |
| , MAXIMUM E                       | SIGMA | 9.6791E+02<br>6.1721E+02<br>3.2292E+02<br>3.2292E+02<br>4.2093E+02<br>4.2093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02<br>1.3093E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~         |                                                                                                | 3L 1 8.  |                                                                                                          |
| ATIONS II 9                       | TAU   | 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R STRSL   |                                                                                                | R STR    |                                                                                                          |
| ۵ ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X LAYE    | 0.0000                                                                                         | X LAYE   | 0815<br>1976<br>1976<br>1976<br>1976                                                                     |
| ,                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I         | 1-10                                                                                           |          |                                                                                                          |

| STRSLT 2                                                                                       | •••••                                                                                         | 91RSL1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STRSLT 200.00.00.00.00.00.00.00.00.00.00.00.00.                                             |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| STRST 2                                                                                        | + + + + + + + + + + + + + + + + + + +                                                         | STRST 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STRST 2<br>1.1662E+04<br>1.1662E+04<br>1.1662E+04<br>1.1662E+04<br>1.1662E+04               |
| STRSL 2                                                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                         | 8 2 4 4 4 8 8 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STRSL 2<br>3.8085E+04<br>3.8085E+04<br>3.8085E+04<br>3.8085E+04<br>3.8085E+04               |
| 1.2251E+02<br>0.<br>1.2458E+02<br>-1.2527E+02<br>0.                                            | 60 E+ 40 00                                                                                   | STR9LT 1<br>12.7775E+02<br>2.7850E+02<br>0.875E+02<br>2.8150E+02<br>0.9372E+02<br>2.8445E+02<br>2.8445E+02<br>2.86445E+02<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.2441E+02<br>3.2441E+02<br>0.00<br>3.2566E+02                                              |
| 4.4420E+02<br>1.5817E+02<br>1.5912E+02<br>4.5723E+02<br>4.5990E+02<br>1.6195E+02<br>1.8195E+02 | 79 F 20 G 2 F 20 G 2 F 20 G 2 F 20 G 2 F 20 G 2 F 20 G 2 F 20 G 2 F 20 G 2 F 20 G 2 F 20 F 20 | 8 TRST 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STRST 1. #584E+02 1. #584E+03 1. #725E+03 5. 2467E+02 5. 3118E+02 1. #847E+03               |
| 3.9862E+03<br>7.883CE+03<br>7.9100E+03<br>4.0881E+03<br>4.0820E+03<br>8.0510E+03               |                                                                                               | 3 TRS. 1<br>1.0549E<br>1.0540E<br>1.0540E<br>1.0540E<br>1.0713E<br>1.0713E<br>1.0713E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1.0755E<br>1. | STRSL 1<br>2.5182E+04<br>1.3383E+04<br>1.3422E+04<br>2.5441E+04<br>2.5485E+04<br>1.3532E+04 |
| 11<br>12<br>13<br>14<br>15<br>16<br>16<br>LAYER                                                |                                                                                               | 1<br>A<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L A 〈 ພ ພ ト ス ↑                                                                             |
| ×                                                                                              | O E 9                                                                                         | ж                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X ( ,5                                                                                      |

| •••                                                                                                                                                    | STRSLT 2<br>0.00.00.00.00.00.00.00.00.00.00.00.00.0                                                                                                                                                                                                                                                                                                                  | STRS_T 2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STRSLT 2                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1.1552E+04<br>1.1552E+04<br>1.1552E+04                                                                                                                 | 87R87 2<br>1.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                    | 88.944478403<br>8.944478403<br>8.944478403<br>8.944478403<br>8.944478403<br>8.944478403<br>8.944478403<br>8.944478403<br>8.944478403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STRST 2<br>8.2562E+03<br>8.2562E+03 |
| 3.8085E+04<br>3.8085E+04<br>3.8085E+04                                                                                                                 | 3785L 2<br>3.2790E+04<br>3.2790E+04<br>3.2790E+04<br>3.2790E+04<br>3.2790E+04<br>3.2790E+04<br>3.2790E+04<br>3.2790E+04                                                                                                                                                                                                                                              | 8788L 2<br>8.9212E+0+<br>2.9212E+0+<br>2.9212E+0+<br>2.9212E+0+<br>2.9212E+0+<br>2.9212E+0+<br>2.9212E+0+<br>2.9212E+0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STRSL 2<br>2.6963E+0+               |
| -3.27226+02<br>0.<br>0.<br>-3.28896+02<br>3.29446+02<br>0.<br>0.<br>3.31096+02                                                                         | 3783LT 1<br>-3.5484E+02<br>3.552E+02<br>0.3.553E+02<br>0.3.573E+02<br>0.3.573E+02<br>0.3.573E+02<br>0.3.573E+02<br>0.3.573E+02<br>0.3.573E+02<br>0.3.573E+02<br>0.3.573E+02                                                                                                                                                                                          | STRSLT 1 -3.73026+02 3.73276+02 0.3.74246+02 0.3.74246+02 0.3.75245+02 0.3.75346+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STRSLT 1<br>0.<br>-3.8353E+02       |
| 1, 98875+03<br>5,35716+02<br>5,37266+02<br>1,50096+03<br>1,50496+03<br>5,432766+03<br>5,432766+03<br>1,51716+03<br>1,51716+03<br>5,47806+02            | 97857 1<br>1.70345E+02<br>1.7035E+03<br>1.7048E+03<br>6.12717E+02<br>6.12717E+02<br>1.7149E+03<br>1.7330E+03<br>1.7330E+03<br>1.7478E+03<br>1.7454E+03<br>1.7454E+03<br>1.7454E+03<br>1.7454E+03                                                                                                                                                                     | STRST 1.86502444865.03 1.865024403 1.86502403 1.873924603 1.873924603 1.88226403 1.88226403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.884956403 1.88495640 | STRST 1<br>7.1361E+02<br>1.9657E+03 |
| 1.3576E+04<br>2.6713E+04<br>2.678GE+04<br>1.3731E+04<br>2.7016E+04<br>2.7016E+04<br>2.7016E+04<br>2.7016E+04<br>2.7016E+04<br>2.7016E+04<br>2.7016E+04 | 3785 1<br>3.0514E+0+<br>1.5533E+0+<br>1.5563E+0+<br>3.0863E+0+<br>3.0863E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+<br>1.5731E+0+ | STRSL 1 3.3880E+04 1.7184E+04 3.3813E+04 3.3813E+04 1.7274E+04 1.7474E+04 1.7474E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STRSL 1<br>3.5553E+04<br>1.8179E+04 |
| ^ @ & O = N M + M + M + M + M + M + M + M + M + M                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      | L A Y E B A C B B A C C B B A C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LAYER<br>1                          |
|                                                                                                                                                        | × vi                                                                                                                                                                                                                                                                                                                                                                 | × □ × □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × 10                                |

|                                                                                                                                                                                                  | STRSLT 20.00.00.00.00.00.00.00.00.00.00.00.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STRSLT 2000.000.00000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 88.2562E+03<br>8.2556E+03<br>8.2556E+03<br>8.2566E+03<br>8.2562E+03<br>8.2562E+03<br>8.2562E+03                                                                                                  | STRST 2<br>2.8186E+03<br>7.8186E+03<br>7.8186E+03<br>7.8186E+03<br>7.8186E+03<br>7.8186E+03<br>7.8186E+03<br>7.8186E+03<br>7.8186E+03<br>7.8186E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8785<br>8785<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.525<br>7.52 |
| 2. 6463E+04<br>2. 6463E+04<br>2. 6463E+04<br>2. 6463E+04<br>2. 6463E+04<br>2. 6463E+04<br>2. 6463E+04                                                                                            | 8 31 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.8378E+02<br>0.38419E+02<br>3.8431E+02<br>0.8475E+02<br>0.8475E+02<br>0.8475E+02<br>0.8475E+02<br>0.8475E+02<br>0.8475E+02                                                                      | 3 4008 E + 02<br>3 4014 E + 02<br>0<br>3 4034 E + 02<br>3 4034 E + 02<br>0<br>13 406 1 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>13 406 7 E + 02<br>0<br>0<br>10 406 7 E + 02<br>0<br>10 406 7 E + 02 | 3788LT 1<br>3.9425E+02<br>0.074425E+02<br>0.074431E+02<br>0.07444E+02<br>0.07444E+02<br>0.07444E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.9671E+03<br>7.1520E+02<br>7.1574E+02<br>1.9713E+03<br>1.9727E+03<br>7.1737E+02<br>7.1737E+02<br>7.1737E+02<br>7.1737E+02<br>7.1737E+02<br>7.1906E+03<br>7.2006E+02<br>1.9839E+03<br>7.2160E+02 | 87RST 1 2 2 2 3 3 1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$7831 1<br>2.05594E + 03<br>2.0759E + 03<br>7.5513E + 03<br>7.5513E + 03<br>7.5513E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E + 03<br>7.5549E +                                                                                                                 |
| 1.8143E+04<br>3.5794E+04<br>1.85761E+04<br>1.8578E+04<br>1.8248E+04<br>3.5841E+04<br>3.5862E+04<br>1.8302E+04<br>1.8357E+04<br>1.8357E+04<br>1.8357E+04                                          | 3785L<br>1.8825EE+0+<br>1.8825EE+0+<br>1.8826EE+0+<br>1.8826EE+0+<br>1.8826EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+<br>1.8836EE+0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$788L<br>1.9288E+04<br>1.9258E+04<br>1.9255E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04<br>1.9256E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                  | 7 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # + C + C + C + C + C + C + C + C + C +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                  | × c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | × vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| STRSLT 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STRSLT 2 |                                                                                                                                                                                                   | STRSLT 2 |                                                                                                                                                                                                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STRST 2  | 7.3044EF+03<br>7.3044EF+03<br>7.3044EF+03<br>7.3043EF+03<br>7.3043EF+03<br>7.3043EF+03<br>7.3043EF+03<br>7.3043EF+03<br>7.3043EF+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STRST 2  | 7.0998E+03<br>7.0998E+03<br>7.0998E+03<br>7.0998E+03<br>7.0998E+03<br>7.0998E+03<br>7.0998E+03                                                                                                    | STRST 2  | 6.8609E+03<br>6.8609E+03<br>6.8609E+03<br>6.8609E+03<br>6.8609E+03<br>6.8609E+03<br>6.8609E+03<br>6.8609E+03                                                                                             |
| STRSL 2  | 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STRSL 2  | 2.3187E+04<br>2.3187E+04<br>2.3187E+04<br>2.3187E+04<br>2.3187E+04<br>2.3187E+04<br>2.3187E+04<br>2.3187E+04                                                                                      | STRSL 2  | 2.2407E+04<br>2.2407E+04<br>2.2407E+04<br>2.2407E+04<br>2.2407E+04<br>2.2407E+04<br>2.2407E+04<br>2.2407E+04                                                                                             |
| STRSLT 1 | -3.4732E+02<br>3.4730E+02<br>0.372E+02<br>0.372E+02<br>0.372E+02<br>0.3472E+02<br>0.3472E+02<br>0.34702E+02<br>0.34702E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STRSLT 1 | 14.0009E+02<br>14.0003E+02<br>13.9988E+02<br>13.9983E+02<br>10.99962E+02<br>10.99962E+02<br>10.99962E+02<br>10.99962E+02<br>10.99962E+02                                                          | STRSLT 1 | -4.0356+02<br>4.03166+02<br>0.00906+02<br>-4.02816+02<br>0.009<br>4.0246+02<br>4.02456+02<br>0.009<br>1.02106+02<br>0.009                                                                                |
| STRST 1  | 7.6883E + 02<br>2.1084E + 03<br>2.1082E + 03<br>7.6848E + 02<br>2.1073E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7.682E + 03<br>7 | STRST 1  | 7.8074E+02<br>2.1340E+03<br>2.1384E+03<br>7.800bE+02<br>7.913bbE+02<br>2.134bE+02<br>7.7893E+02<br>7.7893E+03<br>7.7825E+03<br>7.7825E+03<br>7.7825E+03<br>7.7825E+03<br>7.7825E+03<br>7.7834E+03 | STRST 1  | 7.9465E+02<br>2.1747E+03<br>2.1737E+03<br>7.9348E+02<br>7.9348E+02<br>2.1076E+03<br>2.167E+03<br>7.9193E+02<br>7.9193E+02<br>2.1656E+03<br>7.993E+02<br>7.993E+02<br>7.993E+02<br>7.993E+03<br>7.993E+03 |
| STRSL 1  | 3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STRSL 1  | 3.99039E+0+<br>1.9875E+0+<br>3.9005E+0+<br>3.9005E+0+<br>1.9879E+0+<br>1.9854E+0+<br>3.8954E+0+<br>1.9836E+0+<br>1.9830E+0+<br>1.9830E+0+<br>1.9830E+0+<br>1.9802E+0+<br>1.9802E+0+               | STRSL 1  | 3.97+2E+0+ 2.0236E+0+ 3.958E+0+ 3.9683E+0+ 2.0136E+0+ 2.0136E+0+ 2.0156E+0+ 2.0156E+0+ 3.9526E+0+ 3.9526E+0+ 3.9526E+0+ 2.0115E+0+ 2.0115E+0+ 3.9526E+0+ 3.9526E+0+ 3.9526E+0+                           |
| LAYER    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LAYER    |                                                                                                                                                                                                   | LAYER    | 400+00-00-00-+00<br>444444<br>444444                                                                                                                                                                     |
| ,        | C 5 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×        | い<br>.o<br>で<br>œ                                                                                                                                                                                 | ×        | 0<br>8<br>6                                                                                                                                                                                              |

| 7RSLT 2                                              |                                                   | TRSLT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRSLT 2                                                                                                   |
|------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| υ                                                    | 00000000                                          | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                         |
| STRST 2                                              |                                                   | 81R81 2<br>2.1632E 6 0 3<br>2.1632E 6 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STRST 2<br>0.00.00.00.00.00.00.00.00.00.00.00.00.0                                                        |
| STRSL<br>2                                           | 881E++0<br>881E++0<br>81E++0<br>81E++0<br>881E++0 | STRSL<br>2.0546E+03<br>7.0546E+03<br>7.0546E+03<br>7.0546E+03<br>7.0546E+03<br>7.0546E+03<br>7.0546E+03<br>7.0546E+03<br>7.0546E+03<br>7.0546E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34R3L ≥ 0.00.00.00.00.00.00.00.00.00.00.00.00.0                                                           |
| 0.<br>4.2004E+02<br>-4.1984E+02<br>0.<br>STRSLT 1    | ### ### ##############################            | 97R9LT 1<br>14, % 18E + 02<br>0<br>0<br>14, 4908E + 02<br>0<br>14, 4808E + 02<br>0<br>14, 4838E + 02<br>0<br>14, 4827E + 02<br>0<br>14, 4827E + 02<br>0<br>0<br>14, 4827E + 02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STRSLT 1<br>0.<br>-4.6382E+02<br>0.<br>0.<br>+4.6382E+02<br>0.<br>-4.6382E+02                             |
| 8.7175E+02<br>8.7175E+03<br>8.7175E+03               |                                                   | 3TR3T 1<br>1.0457E 03<br>2.8145E 03<br>2.8145E 103<br>1.0430E 103<br>2.8074E 103<br>2.8072E 103<br>1.0415E 103<br>2.8073E 103<br>1.0415E 103<br>1.0356E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103<br>2.7956E 103 | 37RST 1<br>1.1547E+03<br>3.0913E+03<br>3.06.3E+03<br>1.1547E+03<br>1.1547E+03<br>3.0913E+03<br>3.0913E+03 |
| 4.3541E+04<br>2.2281E+04<br>2.2255E+04<br>4.3541E+04 |                                                   | STRSL 1<br>5.2479E+04<br>2.658EE+04<br>5.2375E+04<br>5.2370E+04<br>5.2370E+04<br>5.2235E+04<br>5.2231E+04<br>5.2231E+04<br>5.2201E+04<br>5.2201E+04<br>5.2201E+04<br>5.2202E+04<br>5.2047E+04<br>5.2047E+04<br>5.2047E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.8044E+04<br>2.953E+04<br>2.953E+04<br>5.8044E+04<br>5.8044E+04<br>2.953E+04<br>2.953E+04                |
| E 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              | - W W + R 2 C C C C C C C C C C C C C C C C C C   | L A Y E B B B A A E B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ር አ<br>ተ<br>ተ<br>መ ተ መ መ ተ ራ<br>አ                                                                         |
| ×                                                    | 0 * 0 m * T                                       | x sn cn cn cn cn cn cn cn cn cn cn cn cn cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                         |

.

0

ċ

5.80446+04 1.15476+03 0. 2.95536+04 3.09136+03 4.63816+02 2.95536+04 3.09136+03 4.63816+02 5.80446+04 1.15476+03 0. 5.80446+04 1.15476+03 0. 2.95536+04 3.09136+03 4.63826+02 2.95536+04 3.09136+03 9.63826+02 5.80446+04 1.15476+03 0.

111 111 121 13 14 15 15 Unclassified

Security Classification

| DOCUMENT CONT                                                                                                                 | ROL DATA - R & D                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Security classification of title, body of abstract and indexing                                                               | nnotation must be entered when the overall report is classified)                                         |
| * AN ANNA TING ACTIVITY (Corporate author)                                                                                    | 28. REPORT SECURITY CLASSIFICATION                                                                       |
|                                                                                                                               | Unclassified                                                                                             |
| Southwest Research Institute                                                                                                  | 26. GROUP                                                                                                |
|                                                                                                                               | N/A                                                                                                      |
| REPORT TITLE                                                                                                                  |                                                                                                          |
| The Development of Nonlinear Analysis Methods for Bonded J                                                                    | oints in Advanced Filamentary Composite Structures                                                       |
| 4 DESCRIPTIVE NOTES (Type of report and inclusive dates)                                                                      |                                                                                                          |
| Final Technical Report (14 April 1969 to 30 Oct. 1971)                                                                        |                                                                                                          |
| AUTHOR(S) (First name, middle initial, last name)                                                                             |                                                                                                          |
| G.C. Grimes, L.F. Greimann, T. Wah, G.E. Commerford, W.R.                                                                     | Blackstone, G.K. Wolfe                                                                                   |
| 6 REPORT DATE                                                                                                                 | 78. TOTAL NO. OF PAGES 7b. NO. OF REFS                                                                   |
| September 1972                                                                                                                | 182 plus 15 prelims & 173 app 21                                                                         |
| 88. CONTRACT OR GRANT NO. F-33615-69-C-1641                                                                                   | 98. ORIGINATOR'S REPORT NUMBER(5)                                                                        |
| b. Project NO. 4364                                                                                                           | AFFDL-TR-72-97                                                                                           |
| <sup>c.</sup> Task No. 436403                                                                                                 | 9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)                              |
| d.                                                                                                                            |                                                                                                          |
| Distribution limited to U.S. Government agencies only; test and this document must be referred to AF Flight Dynamics Laborato | evaluation; statement applied March 72. Other requests for bry, (FBC), Wright-Patterson AFB, Ohio 45433. |
| 11. SUPPLEMENTARY NOTES                                                                                                       | 12. SPONSORING MILITARY ACTIVITY                                                                         |
|                                                                                                                               | Air Force Flight Dynamics Laboratory (FBC) WPAFB, Ohio 45433                                             |
| 13. ABSTRACT                                                                                                                  | L                                                                                                        |

Development of analysis methods for orthotropic adherend bonded lap joints which account for material nonlinearities at room temperature was the primary objective of the research reported herein. The use of these methods in predicting mechanical behavior, ultimate loads, and failure modes was the goal. In order to accomplish this, new analytical procedures were developed and successfully checked with discrete element techniques for single, double, and step lap adhesively bonded attachment configurations. Experimental verification of these nonlinear analyses was accomplished by the fabrication and evaluation of a variety of simple joint specimens under static monotonically increasing load. Failure loads and modes were used as the primary substantiation characteristics but the mechanical behavior of a small number of these simple joint specimens was observed at intermediate loadings and found to compare favorably with the analytically predicted behavior. Larger, more complex bonded joints were designed, fabricated, and evaluated under static monotonically increasing loads at room temperature utilizing these methods. Ultimate load, failure mode, and detailed strain behavior at any intermediate load were accurately predicted with the new analyses, as substantiated by experimental observations. These techniques were put into a computerized design/analysis program for structural application use and the program was used to generate bonded joint design allowable curves.

Unclassified

| Sec | urity | Class | ficat | lion |
|-----|-------|-------|-------|------|

| KEY WORDS                         | LI   | LINKA |      | LINK B |      | LINK C |  |
|-----------------------------------|------|-------|------|--------|------|--------|--|
|                                   | ROLE | : WT  | RCLE | wт     | ROLE | WT     |  |
| Vähesives                         |      |       |      |        | ļ    | }      |  |
| Jomis                             |      |       |      | }      | 1    |        |  |
| Composites                        |      |       |      | Ì      | ļ    |        |  |
| Nonlinear Behavior                |      |       |      |        |      |        |  |
| Design                            |      |       |      |        |      |        |  |
| Analysis                          |      | ł     |      |        |      |        |  |
| Testing                           |      | 1     |      |        |      |        |  |
| Computer Programs (JTSDL & JTSTP) |      | 1     |      |        |      |        |  |
| Boron/epoxy                       | ļ    |       |      |        |      |        |  |
| Titanium                          |      |       |      |        |      |        |  |
| Adhesion                          |      |       |      |        |      |        |  |
| Surface Preparation               |      |       |      |        |      |        |  |
| Polymer Processing                |      | ĺ     |      |        |      |        |  |
| Bonding                           |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      | 1     |      |        |      |        |  |
|                                   |      | 1     |      |        | j    |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   | 1    | 1     |      |        |      |        |  |
|                                   |      |       |      | ł      |      |        |  |
|                                   |      |       |      |        | }    |        |  |
|                                   |      |       | [    |        |      |        |  |
|                                   |      |       |      | j      | •    |        |  |
|                                   |      |       |      | 1      |      |        |  |
|                                   |      |       |      | 1      |      |        |  |
|                                   |      | ] [   |      | }      |      |        |  |
|                                   |      |       |      | !      |      |        |  |
|                                   |      |       | 1    | ļ      | 1    |        |  |
|                                   |      | ļ     |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      | J      |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      | ,      |  |
|                                   |      |       |      |        | į    |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      |       |      |        |      |        |  |
|                                   |      | ĺ     | }    |        |      |        |  |
|                                   |      |       |      |        |      |        |  |

Unclassified

Security Classification