Полные системы булевых функций

3. S – класс самодвойственных функций.

V ↔ & – двойственные операции (см. раньше).

Обобщим понятие двойственности.

Определение 4. Функция $f^*(x_1,...,x_n)$ двойственна к $f(x_1,...,x_n)$, если

$$f^*(x_1,\ldots,x_n) = \neg f(\neg x_1,\ldots,\neg x_n)$$

Если $f^* = f$, то функцию f называют самодвойственной.

Пример 7.

$$(x_1 \& x_2)^* = \neg(\neg x_1 \& \neg x_2) = x_1 \lor x_2$$

$$(x_1 \lor x_2)^* = x_1 \& x_2$$

$$(x_1 \sim x_2)^* = \neg(\neg x_1 \sim \neg x_2) = \neg x_1 + \neg x_2 = x_1 + 1 + x_2 + 1 = x_1 + x_2$$

$$(\neg x)^* = \neg(\neg(\neg x)) = \neg x \in S$$

Докажем, что класс самодвойственных функций S функционально замкнут.

Пусть $f_1(x_1,...,x_{n_1}) \in S$, $f_2(x_1,...,x_{n_2}) \in S$. Рассмотрим их суперпозицию.

$$(f_1(x_1, ..., f_2(x_1, ..., x_{n_2}), ..., x_{n_1}))^* = \neg f_1(\neg x_1, ..., \neg \neg f_2(\neg x_1, ..., \neg x_{n_2}), ..., \neg x_{n_1}) =$$

$$= \neg f_1(\neg x_1, ..., \neg f_2^*(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., \neg f_2(x_1, ..., x_{n_2}), ..., \neg x_{n_1}) = \neg f_1(\neg x_1, ..., x_{n_2}), ..., \neg x_{n_2})$$

(т.к. f_2 – самодвойственная)

$$= f_1^*(x_1, \dots, f_2(x_1, \dots, x_{n_2}), \dots, x_{n_1}) = f_1(x_1, \dots, f_2(x_1, \dots, x_{n_2}), \dots, x_{n_1}),$$

т.к. f_1 – самодвойственная.

Самодвойственных функций — $2^{\frac{1}{2}2^n} = 2^{2^{n-1}}$, т.к. на противоположных оценках они принимают противоположные значения.

Принцип двойственности и его доказательство

Ранее мы сформулировали принцип двойственности для функций, содержащих операции &, V, ¬, но не доказали его. Докажем принцип двойственности в обобщенном виде.

По определению функции, двойственной к $f(x_1, ..., x_n)$:

$$f^*(x_1, \dots, x_n) = \neg f(\neg x_1, \dots, \neg x_n)$$

Значения функции f^* на всех оценках определены однозначно через значения функции f: на противоположных оценках двойственная функция принимает противоположные значения. Следовательно, если f=g, то $f^*=g^*$

Докажем следующее утверждение.

Утверждение 4. Функция, двойственная к суперпозиции функций, есть суперпозиция двойственных функций.

Доказательство:

$$(f(g_1, ..., g_m))^* = \neg f(g_1(\neg x_1, ..., \neg x_{n_1}), ..., g_m(\neg x_1, ..., \neg x_{n_m})) =$$

$$= \neg f(\neg \neg g_1(\neg x_1, ..., \neg x_{n_1}), ..., \neg \neg g_m(\neg x_1, ..., \neg x_{n_m})) =$$

$$= \neg f(\neg g_1^*, ..., \neg g_m^*) = f^*(g_1^*, ..., g_m^*)$$

Из утверждения следует принцип двойственности.

Обобщенный принцип двойственности.

Пусть функции f и g заданы формулами F и G, включающими только операции ¬, & и V, ~ и +, 1 и 0, штрих Шеффера и Вебба. Тогда, если $F \equiv G$, то $F^* \equiv G^*$.

Доказательство следует из утверждения с учетом, что операции \neg , & и V, \sim и +, 1 и 0, штрих Шеффера и Вебба соответствуют двойственным функциям, а \neg – самодвойственная.

Пример 8. Рассмотрим закон дистрибутивности, который мы использовали при построении многочлена Жегалкина. Заменим операции на двойственные (& на V, + на ~) и опять получим справедливое тождество.

$$A\&(B+C) \equiv (A\&B) + (A\&C) \Rightarrow A \lor (B\sim C) \equiv (A \lor B)\sim (A \lor C)$$

Принцип двойственности, сформулированный только для операций ¬, & и V, мы использовали ранее для обоснования основных тождеств логики высказываний. Фактически он является следствием обобщенного закона.

4. L – класс линейных функций.

Функция f – линейная, если её многочлен Жегалкина имеет вид $f(x_1,\ldots,x_n)=a_0+a_1x_1+\ldots+a_nx_n.$ $a_i\in\{0;1\}, i=1,\ldots,n.$

Пример 9.

$$x_1 + x_2 \in L$$

 $\neg x = x + 1 \in L$
 $x_1 \sim x_2 = x_1 + x_2 + 1 \in L$
 $x_1 \& x_2 = x_1 \cdot x_2 \notin L$

Доказательство функциональной замкнутости класса L.

$$f_1(x_1, ..., x_{n_1}) = a_0 + a_1 x_1 + ... + a_{n_1} x_{n_1}$$

$$f_2(x_1, ..., x_{n_2}) = b_0 + b_1 x_1 + ... + b_{n_2} x_{n_2}$$

$$f_1(x_1, ..., f_2(x_1, ..., x_{n_2}), ..., x_{n_1}) =$$

$$= a_0 + ... + a_i (b_0 + b_1 x_1 + ... + b_{n_2} x_{n_2}) + ... + a_{n_1} x_{n_1} \in L$$

Так как $a_i, b_i \in \{0; 1\}$, получим линейную функцию.

Линейных функций — 2^{n+1} , n — число переменных. (n+1) —число коэффициентов функции $f(x_1,...,x_n) = a_0 + a_1x_1 + ... + a_nx_n$, причем каждый коэффициент равен 0 или 1.

5. М – класс монотонных функций.

Введем отношение предшествования на множестве оценок.

Рассмотрим оценки списка переменных $s = < s_1, \dots, s_n >$ и $t = < t_1, \dots, t_n >$. Будем говорить, что оценка s предшествует оценке t ($s \le t$), если $s_i \le t_i$, для всех $i = \overline{1, n}$. $\le -$ отношение предшествования является отношением частичного порядка.

Функция $f(x_1,...,x_n)$ называется монотонной, если для оценок $s \le t$ выполняется $f(s) \le f(t)$.

x_1	x_2	$x_1 \& x_2$	$x_1 \sim x_2$
1	1	1	1
1	0	0	0
0	1	0	0
0	0	0	1

Монот. Не монот.

Пример 10.

 $x_1 \& x_2 \in M$,

 $x_1 \lor x_2 \in M$

 $x_1 \sim x_2 \notin M$, т.к. $< 0.0 > \le < 0.1 >$, но функция на оценке < 0.0 > принимает значение 1, а на оценке < 0.1 > - значение 0.

Доказательство функциональной замкнутости класса *M*.

Пусть $f_1(x_1,...,x_n) \in M$, $f_2(x_1,...,x_n) \in M$ и оценка $s \leq t$.

Рассмотрим суперпозицию этих функций $f_1(x_1,\ldots,f_2(x_1,\ldots,x_n),\ldots,x_n)$ на оценках $s=< s_1,\ldots,s_n>$ и $t=< t_1,\ldots,t_n> s_i\leq t_i,\ i=\overline{1,n}.$ Из монотонности функций $f_1(x_1,\ldots,x_n),f_2(x_1,\ldots,x_n)$ получим

$$f_1(s_1,\ldots,f_2(s_1,\ldots,s_n),\ldots,s_n) \leq f_1(t_1,\ldots,f_2(t_1,\ldots,t_n),\ldots,t_n), \text{ т.к. } s_i \leq t_i, \ i=\overline{1,n} \quad \text{и} \\ f_2(s_1,\ldots,s_n) \leq f_2(t_1,\ldots,t_n).$$

Утверждение. Никакая полная система булевых функций не может содержаться в функционально замкнутом классе, отличном от класса всех булевых функций.

Доказательство. От противного.

Для любой полной системы, отличной от класса всех булевых функций можно указать функцию, не принадлежащую этому множеству. Следовательно, эта функция не сможет быть выражена через суперпозиции в силу функциональной замкнутости класса, что противоречит полноте системы.

Критерий Поста.

Для того, чтобы система булевых функций $f = \{f_1, \ldots, f_k\}$ была полной, необходимо и достаточно, чтобы для каждого из классов T_0 , T_1 , S, L, M существовала функция $f_i \in f$, не принадлежащая этому классу.

Доказательство (необходимость). От противного.

Пусть f_1, \ldots, f_k принадлежат одному из этих классов. Обозначим его — T'. Тогда любая суперпозиция также принадлежит классу T', т.к. классы ФЗ. Но для любого из классов T_0 , T_1 , S, L, M существует булева функция, не принадлежащая этому классу (приведены примеры выше). Следовательно, её нельзя выразить с помощью суперпозиции f_1, \ldots, f_k , и данная система не является полной.

Пример 11.

Проверим на полноту систему булевых функций $\{V, \sim, 0\}$, используя критерий Поста. Составим и обоснуем таблицу.

Для того, чтобы система была полной, необходимо и достаточно, чтобы в каждом столбце таблицы Поста был хотя бы один "_".

	T_0	T_1	S	L	M
V	+	+	_	_	+
~	_	+	_	+	_
0	+	_	_	+	+

Классы T_0 , T_1 — очевидно по таблицам операций.

Класс S.

V двойственна к &;

$$(x \sim y)^* = \neg(\neg x \sim \neg y) = x + 1 + y + 1 + 1 + 1 = x + y$$

 $0^* = \neg 0 = 1$.

Класс L.

$$x \lor y = \neg(\neg x \& \neg y) = (x+1)(y+1) + 1 = xy + x + y \notin L;$$

 $x \sim y = \neg(x+y) = x + y + 1 \in L.$

Класс М.

 $x \sim y \notin M$, т. к. на оценке < 0,0 > принимает значение 1, а на оценке < 0,1 > − значение 0. Но < 0,0 > ≤ < 0,1 >,

х	У	<i>x</i> ~ <i>y</i>	$x \lor y$
1	1	1	1
1	0	0	1
0	1	0	1
0	0	1	0

Не монот. Монот.

Для каждого класса нашлась функция, не принадлежащая этому классу, следовательно, система $\{V, \sim, 0\}$ полная.

Независимые системы булевых функций. Базис.

Определение 1. Система булевых функций f_1, \ldots, f_k называется **независимой**, если ни одну из этих функций нельзя выразить с помощью суперпозиции остальных.

Например, система $\{\&, \lor, \neg\}$ – не является независимой, потому что функцию & можно выразить через \lor и \neg : $x\&y = \neg(\neg x \lor \neg y)$.

Чтобы проверить независимость, нужно найти разделяющие ФЗ классы, т.е. такие классы, что одна функция системы не принадлежит данному классу, а остальные функции принадлежат.

Можно использовать любые ФЗК: T_0 , T_1 , S, L, M, класс функций одной переменной и т.д.

Пример 1.

1. Покажем, что система функций {V, ~,0} – независимая.

Мы составили таблицу Поста, когда доказывали полноту этой системы.

	T_0	T_1	S	L	M
V	+	+	_	_	+
~	_	+	_	+	_
0	+	_	_	+	+

Найдем в таблице три столбца с одним "-" и двумя "+". Получим.

Класс T_0 : ~ $\notin T_0$, а ∨, $0 \in T_0 \Longrightarrow$ ~ нельзя выразить через ∨, 0.

Класс T_1 : 0 ∉ T_1 , а ∨, \sim ∈ $T_1 \Longrightarrow 0$ нельзя выразить через ∨, \sim .

Класс *L***:** $\lor \notin L$, а ~, $0 \in L \Rightarrow \lor$ нельзя выразить через ~, 0.

Ни одну из операций системы $\{V, \sim, 0\}$ нельзя выразить через две оставшиеся, следовательно, система независимая.

2. Покажем, что система функций {V, ⊃} не является независимой.

Составим таблицу (обосновать самостоятельно).

	T_0	T_1	S	L	M
V	+	+	_	_	+
\supset	_	+	_	_	

Класс T_0 : ⊃∉ T_0 , а $\lor ∈ T_0 \Longrightarrow ⊃$ нельзя выразить через \lor .

Второго разделяющего класса в таблице нет. Попробуем выразить V через \supset . $x \lor y \equiv (x \supset y) \supset y$.

Следовательно, система {V, ⊃} не является независимой.

Определение 2. Независимая система функций $f_1, ..., f_k$ называется *базисом* функционально замкнутого класса, если любая функция из этого класса может быть выражена с помощью суперпозиции $f_1, ..., f_k$.

Базис ФЗК – независимая и полная для данного класса система.

Пример 2.

- 1. Ранее мы доказали, что система функций $\{V, \sim, 0\}$ независимая и полная, следовательно, она является базисом ФЗК всех булевых функций K.
- 2. Система $\{\neg, \&, \lor\}$ полная, но не базис, т.к. не является независимой: $x\&y = \neg(\neg x \lor \neg y)$.
- 3. Система {¬, &} является базисом ФЗК всех булевых функций.

	T_0	T_1	S	L	M
	_	_	+	+	_
&	+	+	_	_	+

В каждом столбце таблицы есть минус. Система полная.

Разделяющие классы.

Класс T_0 : ¬∉ T_0 , а & ∈ $T_0 \Rightarrow \neg$ нельзя выразить через &. **Класс L:** & ∉ L, а ¬ ∈ $L \Rightarrow \sim$ нельзя выразить & через ¬.

Система независимая.

Заметим, что для функции \neg в качестве разделяющего класса можно использовать класс P_1 – функция одной переменной: & $\notin P_1$, а $\neg \in P_1$.

4. Система функций $\{V, \sim\}$ — независимая, но не полная для ФЗК всех булевых функций K: в столбце класса T_1 нет минуса.

	T_0	T_1	S	L	M
V	+	+	_	_	+
~	_	+	_	+	_

Разделяющие классы для проверки независимости, например T_0 и L.

Класс T_0 : ~ $\notin T_0$, а ∨ ∈ $T_0 \Longrightarrow$ ~ нельзя выразить через ∨.

Класс *L*: $\lor ∉ L$, $a \sim ∈ L ⇒ \lor$ нельзя выразить через \sim .

Ни одну из операций системы $\{V, \sim\}$ нельзя выразить через другую, следовательно, система независимая.

Базисы существуют для любого ФЗК, а не только для класса всех БФ.

Например, {&, \vee } – базис T_1 (доказательство можно посмотреть в задачнике Π и M). {+,1} – базис для линейных функций, т.к. по определению линейная функция $f(x_1, \ldots, x_n) = a_0 + a_1 x_1 + \ldots + a_n x_n.$

Докажем, что система $\{\sim,0\}$ также базис ФЗК L.

Полноту системы мы можем доказать только по утверждению 1, т.к. критерий Поста только для Φ 3К всех булевых функций. Выразим операции системы $\{+,1\}$ через $\{\sim,0\}$

$$1 = 0 \sim 0$$
;

$$x + y = \neg(x \sim y) = (x \sim y) \sim 0.$$

С учетом
$$\neg x = x \sim 0$$
.

Разделяющие классы

	T_0	T_1	S	L	M
~	_	+	_	+	-
0	+	_	_	+	+

Класс T_0 : ~ $\notin T_0$, а $0 \in T_0 \Longrightarrow$ ~ нельзя выразить через 0.

Класс T_1 : 0 ∉ T_1 , а ∨, \sim ∈ $T_1 \Longrightarrow 0$ нельзя выразить через \sim .

Таблица Поста для всех рассмотренных функций

	T_0	T_1	S	L	M
7	_	_	+	+	_
&	+	+	_	_	+
V	+	+	_	_	+
כ	_	+	_	_	_
+	+	_	_	+	_
~	_	+	_	+	_
0	+	_	_	+	+
1	_	+	_	+	+
	_	_	_	_	_
o	_	_	_	_	_
⊅	+	_	_	_	_

Где $x \not\supset y = \neg(y \supset x)$