

数学实验

Experiments in Mathematics

实验10 方差分析

清华大学数学科学系

方差分析

- 1、方差分析的基本概念、实例
- 2、单因素方差分析
- 3、双因素方差分析
- 4、MATLAB统计工具箱 (Statistics Toolbox)的使用

单因素方差分析示例——灯泡寿命

用4种工艺生产灯泡,从每种工艺制成的灯泡中各抽取若干个测量其寿命(小时),如表,试推断这几种工艺制成的灯泡寿命是否有显著差异。

下 艺 序号	A 1	A_2	A_3	A_4
1	1620	1580	1460	1500
2	1670	1600	1540	1550
3	1700	1640	1620	1610
4	1750	1720		1680
5	1800			
平均	1708	1635	1540	1585

从平均值看A₁最大,但其中最小者比A₄中最大者要小。

数据间的差异 有两个原因: 不同工艺造成 的系统差异; 同一工艺内的 随机差异。

双因素方差分析示例---小麦产量

为分析4种化肥和3个小麦品种对小麦产量的影响,把试验田等分成24块,对种子和化肥的每一组合种植2块田,产量如下表,问品种、化肥对小麦产量有无显著影响,二者的交互作用对小麦产量有无显著影响。

小麦产量试验数据(公斤)

化肥 品种	A_1	A_2	A_3	A_4
B_1	173, 172 175, 173 177, 175	174, 176	177, 179	172, 173
$\mathrm{B}_{\!2}$	175, 173	178, 177	174, 175	170, 171
B_3	177, 175	174, 174	174, 173	169, 169

方差分析的基本概念

指标: 关心的试验结果

灯泡的寿命,小麦的产量

因素: 需要考察、可以控制的条件

灯泡寿命中的4个工艺 小麦产量中的品种和化肥用量

単因素

双因素

水平: 因素所设定的状态

灯泡寿命: 工艺4水平

小麦产量: 品种3 水平, 化肥4水平

单因素方差分析(因素A)

数学模型

r 个水平A₁, A₂ ...A_r ,A_i 下总体 $x_i \sim N(\mu_i, \sigma^2)$, $i=1,\cdots r$, μ_i, σ^2 未知。 x_i 中抽取容量为 n 的样本 $x_j \sim N(\mu_i, \sigma^2)$, $i=1,\cdots, r$, $j=1,\cdots n$ 且相互独立。

_		A_1	A_2	•••	A_{r}	判断A的r个
数据	1	X ₁₁	X ₂₁	•••	X _{r1}	水平对指标
表格	2	X_{12}	\mathbf{X}_{22}	•••	$\mathbf{x}_{\mathrm{r}2}$	有无显著影
	n	 Х _{1п}	x _{2n}	•••	X _{rn}	响,等价于:

假设检验: H₀: μ₁=μ₂=..=μ_r ; H₁: μ₁, μ₂ , ...μ_r不全相等。

单因素方差分析----示例形式

灯泡寿命数据 (若每种工艺灯泡数量相同)

A 1	A $_2$	A 3	A_4	
1620	1580	1460	1500	单因素:
1670	1600	1540	1550	
1700	1640	1620	1610	
			1680	生产工艺
1800	1840	1840	1840	
	1620 1670 1700 1750	1620 1580 1670 1600 1700 1640 1750 1720	1620 1580 1460 1670 1600 1540 1700 1640 1620 1750 1720 1840	1620 1580 1460 1500 1670 1600 1540 1550 17700 1640 1620 1610 1750 1720 1840 1680

水平: 4个: A₁ A₂ A₃ A₄ 样本量: 每组5个数据

假设检验: Ho: μ=μ=μ=μ=μ; Ho: μ,μ,μ,μ,μ,μ,σ全相等。

单因素方差分析----数学模型

 $x_{ij} = \mu_i + \varepsilon_{ij}$, $i = 1, \dots r, j = 1, \dots n, \varepsilon_{ij} \sim N(0, \sigma^2)$ 且相互独立

$$\mu = \frac{1}{r} \sum_{i=1}^{r} \mu_i \sim$$
 总均值 $\alpha_i = \mu_i - \mu \sim A_i$ 对指标的效应

模型
$$\begin{cases} x_{ij} = \mu + \alpha_i + \varepsilon_{ij} \\ \sum_{i=1}^r \alpha_i = 0 \\ \varepsilon_{ij} \sim N(0, \sigma^2), \quad i = 1, \dots r, \quad j = 1, \dots n, \end{cases}$$

原假设为 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$ (略去备选假设)

统计 $\bar{x}_i = \frac{1}{n} \sum_{j=1}^n x_{ij} (\underline{4} \underline{Y} \underline{y} \underline{u}), \quad \bar{x} = \frac{1}{r} \sum_{i=1}^r \bar{x}_i (\underline{k} \underline{Y} \underline{y} \underline{u})$ 分析 $S = \sum_{i=1}^n \sum_{j=1}^n (x_{ij} - \bar{x}_i)^2 (\underline{k} \underline{u} \underline{z})$ $S = S_A + S_E (\underline{S} \underline{u}))$ $S = S_A + S_E (\underline{S} \underline{u})$

 $S_x = \sum_{i=1}^{r} n(\overline{x}_i - \overline{x})^2$ (组间平方和) $S_x = \sum_{i=1}^{r} \sum_{j=1}^{n} (x_y - \overline{x}_i)^2$ (组内平方和)

$$ES_{E} = r(n-1)\sigma^{2}$$
, $ES_{A} = (r-1)\sigma^{2} + \sum_{i=1}^{r} n\alpha_{i}^{2}$

 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$ (A的r个水平对指标无显著影响)

若
$$\mathrm{H}_0$$
 成立 $\frac{S_A/r-1}{S_E/r(n-1)} \approx 1$, $F = \frac{S_A/r-1}{S_E/r(n-1)} \sim F(r-1,r(n-1))$

显著性水平: α

检验规则: $F < F_{l-a}(r-1, r(n-1))$ 时接受 H_0 ,否则拒绝。

单因素方差分析表 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$

方差来源	平方和	自由度	平方均值	F 值	概率
因素A	S_A	r-1	$\overline{S}_A = S_A/r - 1$	$f = \overline{S}_A / \overline{S}_E$	$p = P\{F > f\}$
误差	S_E	r(n-1)	$\overline{S}_E = S_E / r(n-1)$		
总和	S	rn-1			f-F的样本值

若 $f < F_{1-\alpha}(r-1,n-r)$ $(即p > \alpha)$,则接受 H_0

若 $f > F_{1-\alpha}(r-1, n-r)$ (即 $p < \alpha$), 则拒绝 H_0

单因素方差分析

 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$ (A的r个水平对指标无显著影响)

 $\alpha = 0.01$, 拒绝 H₀ ---影响非常显著;

 α =0.01,不拒绝 H_0 ,但取 α =0.05,拒绝 H_0 ----影响显著;

 α =0.05, 不拒绝 H_0 ----无显著影响。

单因素方差分析----MATLAB实现

命令: p=a nov a 1(x)

适用于各组样本容量相同的单因素方差分析。

x为n行r列的数据矩阵,n为样本容量,r为水平数。

输出: $p = P\{F > f\}$

方差来源	平方和	自由度	平方均值	F 值
因素 A	S_A	r - 1	$\overline{S}_A = S_A / r - 1$	$f = \overline{S}_A / \overline{S}_E$
误差	S_E	r(n-1)	$\overline{S}_E = S_E / r(n-1)$	
总和	S	rn – 1		

多重比较		工艺 序号	Λ_1	${\rm A}_2$	A $_3$	${\rm A}_4$
假设检验: Η _ι : μ ₁ =	$=\mu_0=\mu_0=\mu_A$	1	1620	1580	1460	1500
1000012222 -0 1	- 2 - 3 - 4	2	1670	1600	1540	1550
/ 1.) A to the		3	1700	1640	1620	1610
结论: 拒绝H。	,小问	4	1750	1720		1680
工艺有显著影	II	5	1800			
工口日业日宏	비비ㅇ	平均	1708	1635	1540	1585
哪几种工艺有引 原假设	μ ₁ =μ ₂	」 两总体 μ ₁= μ		μ ₁ = :		
	F 1 F 2	FIF	3	P*	4	
Н	0	1		1		
p	0.1459	0.020	2	0.04	08	
A ₁ 与A ₃ , A ₄ 有显	g 注导 (α	-0.05)	旧片	л Т	日本注	兰 昆

双因素方差分析

为考察某指标(如小麦产量)受两个因素 A(化肥),B(品种)影响的显著性, 将A,B各划分几个水平; 每个水平组合作若干次试验; 对试验数据进行方差分析; 检验因素A,B是否分别对指标有显著影响, 以及两因素是否对指标有显著的交互影响。

双因素方差分析
数学模型 两个因素: A和B

A: r个水平A₁, A₂, ...A_r, B: s个水平B₁, B₂, ...B_s
水平组合 (A_i, B_j): 总体
$$x_{ij} \sim N(\mu_{ij}, \sigma^2)$$
, $i=1, \cdots r, j=1, \cdots s$
(A_i, B_j) 下作了 t 个试验,所得结果记作 x_{ijk} , x_{ijk} 服从 $N(\mu_{ij}, \sigma^2)$, $i=1, \cdots r, j=1, \cdots s, k=1, \cdots t$, 且相互独立

A₁ A₂ ··· A_r

B₁ x_{111} , ... x_{11t} x_{211} , ... x_{21t} ··· x_{r11} , ... x_{r1t} B₂ x_{121} , ... x_{12t} x_{221} , ... x_{22t} ··· x_{r21} , ... x_{r2t} ··· B_s x_{1s1} , ... x_{1st} x_{2s1} , ... x_{2st} ··· $x_{rs1, ...}$ x_{rst}

数学模型
$$x_{ijk} \sim N(\mu_{ij}, \sigma^2)$$

$$x_{ijk} \rightarrow M(0, \sigma^2), \quad \text{相互独立}.$$

$$\mu = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij} \sim \text{总均值}$$

$$\mu_{ij} = \frac{1}{r} \sum_{i=1}^{r} \mu_{ij}, \quad \beta_{j} = \mu_{j} - \mu$$

$$\mu_{ij} = \frac{1}{s} \sum_{j=1}^{s} \mu_{ij}, \quad \alpha_{i} = \mu_{i} - \mu$$

$$\alpha_{ij} \sim A_{ij} \text{ Historical parts}$$

$$x_{ijk} \sim N(0, \sigma^2), \quad \text{HD独立}.$$

$$\mu_{ij} = \frac{1}{r} \sum_{i=1}^{r} \mu_{ij}, \quad \beta_{j} = \mu_{j} - \mu$$

$$\beta_{j} \sim B_{j} \text{ Historical parts}$$

$$\gamma_{ij} = \mu_{ij} - \mu - \alpha_{i} - \beta_{j}$$

$$\gamma_{ij} \sim A_{i}, B_{j} \text{ Historical parts}$$

$$x_{ijk} = \mu + \alpha_{i} + \beta_{j} + \gamma_{ij} + \varepsilon_{ikj}$$

$$\sum_{i=1}^{r} \alpha_{i} = 0, \quad \sum_{j=1}^{s} \beta_{j} = 0, \quad \sum_{i=1}^{r} \gamma_{ij} = \sum_{j=1}^{s} \gamma_{ij} = 0$$

$$\varepsilon_{ijk} \sim N(0, \sigma^2), \quad i = 1, \dots, r, \quad j = 1, \dots, s, \quad k = 1, \dots, t$$

假设
检验 原假设
$$H_{01}:\alpha_i=0 \ (i=1,\cdots r);$$

 $H_{02}:\beta_j=0 \ (j=1,\cdots s);$
 $H_{03}:\gamma_{ij}=0 \ (i=1,\cdots r,\ j=1,\cdots s)$
 统计分析

$$\overline{x}_{ij} = \frac{1}{t} \sum_{k=1}^{t} x_{ijk} \qquad \overline{x}_{i} = \frac{1}{s} \sum_{j=1}^{s} \overline{x}_{ij}, \quad \overline{x}_{j} = \frac{1}{r} \sum_{i=1}^{r} \overline{x}_{ij} \qquad \overline{x} = \frac{1}{r} \sum_{i=1}^{r} \overline{x}_{i} = \frac{1}{s} \sum_{j=1}^{s} \overline{x}_{j}$$

(总領漢)
$$S = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} (x_{ijk} - \overline{x})^2$$
 \Rightarrow $S = S_A + S_B + S_{AB} + S_E$
$$\begin{cases} S_A = st \sum_{i=1}^{r} (\overline{x}_i - \overline{x})^2, & S_B = rt \sum_{j=1}^{s} (\overline{x}_j - \overline{x})^2 \\ S_{AB} = t \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{x}_{ij} - \overline{x}_i - \overline{x}_j + \overline{x})^2, & S_E = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} (\overline{x}_{ijk} - \overline{x}_{ij})^2 \end{cases}$$

随机变量 F_A , F_B 和 F_{AB} 代入样本值后,分别记成 f_A , f_B 和 f_{AB}

			方差分析表		
方差来源	平方和	自由度	平方均值	F 值	概率
因素A	S_A	r-1	$\overline{S}_A = S_A/r - 1$	$f_A = \overline{S}_A / \overline{S}_E$	$P_A = P(F_A > f_A)$
因素B	S_B	s-1	$\overline{S}_B = S_B / s - 1$	$f_B = \overline{S}_B / \overline{S}_E$	$P_B = P(F_B > f_B)$
因素A×B	S_{AB}	(r-1)(s-1)	$\overline{S}_{AB} = S_{AB}/(r-1)(s-1)$	$f_{AB} = \overline{S}_{AB} / \overline{S}_{E}$	$P_{AB} = P(F_{AB} > f_{AB})$
误差	S_E	r(t-1)	$\overline{S}_E = S_E / rs(t-1)$		
总和	S	rst-1		显著性力	x 平 α

规则 $f_{\scriptscriptstyle B} < F_{\scriptscriptstyle 1-\alpha}(s-1,rs(t-1))(P_{\scriptscriptstyle B} > \alpha)$ 时接受 H_{02} ,否则拒绝 H_{02} ;

 $f_{{}_{AB}} < F_{{}_{1-\alpha}}((r-1)(s-1), rs(t-1))(P_{{}_{AB}} > \alpha)$ 时接受 \mathbb{H}_{03} ,否则拒绝 \mathbb{H}_{03} 。

双因素方差分析----无交互影响情况

根据经验或某种分析能够事先断定两因素之间 没有交互影响,每组试验就不必重复,t=1.

$$\underbrace{\mathbb{E}}_{\substack{j \in S_{j} \\ \text{fight}}} \begin{bmatrix} x_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ikj} \\ \sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0 \\ \sum_{i=1}^r \gamma_{ij} = \sum_{j=1}^s \gamma_{ij} = 0 \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} x_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij} \\ \sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0 \\ \sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0 \\ \varepsilon_{ij} \sim N(0, \sigma^2) \end{bmatrix}}_{\mathcal{E}_{ij}}$$

假设验: H_{01} : $\alpha_i = 0$ $(i=1,\dots,r)$; H_{02} : $\beta_i = 0$ $(j=1,\dots,s)$

统计 $H_{01}: \alpha_i = 0 \ (i = 1, \dots, r); \quad H_{02}: \beta_j = 0 \ \ (j = 1, \dots, s)$ $S = \sum_{i=1}^{r} \sum_{j=1}^{s} (x_{ij} - \overline{x})^2, \qquad S = S_A + S_B + S_E$ 分析

$$S_A = s \sum_{i=1}^{r} (\overline{x}_i - \overline{x})^2, \quad S_B = r \sum_{j=1}^{s} (\overline{x}_j - \overline{x})^2, \quad S_E = \sum_{i=1}^{r} \sum_{j=1}^{s} (x_{ij} - \overline{x}_j + \overline{x})^2$$

$$ES_{E} = (r-1)(s-1)\sigma^{2}, \ ES_{A} = (r-1)\sigma^{2} + s\sum_{i=1}^{r} \alpha_{i}^{2}, \ ES_{B} = (s-1)\sigma^{2} + r\sum_{j=1}^{s} \beta_{j}^{2}$$

$$H_0$$
 成功時, $F_A = \frac{S_A/r-1}{S_E/(r-1)(s-1)} \sim F(r-1,(r-1)(s-1))$

当
$$_{\text{H}_{\infty}}$$
成計, $F_B = \frac{S_B/s-1}{S_{\kappa}/(r-1)(s-1)} \sim F(s-1,(r-1)(s-1))$

检验规则

 $f_{a} < F_{1-\alpha}(r-1,(r-1)(s-1))$ 即 $P_{a} > \alpha$) 时接受 H_{01} , 否则拒绝 H_{01} ;

 $f_{R} < F_{1-\alpha}(s-1,(r-1)(s-1))($ 即 $P_{R} > \alpha)$ 时接受 H_{02} ,否则拒绝 H_{02} 。

MATLAB实现 双因素方差分析(无交互作用)

命令: p=anova2(x)

输入: x为s行r列的数据矩阵。

输出:
$$p = P\{F_A > f_A\}, P\{F_B > f_B\}$$

方差来源	平方和	自由度	平方均值	F 值
因素A	S_A	r-1	$\overline{S}_A = S_A / r - 1$	$f_A = \overline{S}_A / \overline{S}_E$
因素B	S_B	s-1	$\overline{S}_B = S_B / s$	$f_B = \overline{S}_B / \overline{S}_E$
误差	S_E	(r-1)(s-1)	$\bar{S}_{E} = S_{E} / (r-1)(s-1)$	
总和	S	rs-1		

MATLAB实现 双因素方差分析(有交互作用)

命令: p=anova2(x,rep)

输入: x为st行r列的数据矩阵,每一个试验水平(A_i , B_j)的t个数据按列排列, rep=t重复试验的次数。

输出: $p = P\{F_A > f_A\}, P\{F_R > f_R\}, P\{F_{AR} > f_{AR}\}$

方差来源	平方和	自由度	平方均值	F 值
因素 A	S_A	r – 1	$\overline{S}_A = S_A / r - 1$	$f_A = \overline{S}_A / \overline{S}_E$
因素 B	S_B	s-1	$\overline{S}_B = S_B / s$	$f_B = \overline{S}_B / \overline{S}_E$
因素 A×B	S_{AB}	(r-1)(s-1)	$\overline{S}_{AB} = S_{AB} / (r - 1)(s -$	1) $f_{AB} = \overline{S}_{AB} / \overline{S}_{E}$
误差	S_E	rs(t-1)	$\overline{S}_E = S_E / rs(t-1)$	
总和	S	rst-1		

双因素方差分析----MATLAB实现

例: 小麦产量

问品种、化肥及二者的交互作用对小麦产量有无显著影响。

化肥 品种	Α,	A 2	A 3	A ₄
B 1	173, 172	174, 176 178, 177 174, 174	177, 179	172, 173
B 2	175, 173	178, 177	174, 175	170, 171
В 3	177, 175	174, 174	174, 173	169, 169

假设检验 $H_{\text{ol}}: \alpha_i = 0 \ (i = 1, \dots 4);$

 $H_{\infty}: \beta_{j} = 0 \ (j = 1, \dots 3);$ $H_{\infty}: \gamma_{ii} = 0 \ (i = 1, \dots 4, j = 1, \dots 3)$

双因素方差分析----MATLAB实现

%read data from 'wheatdata.m'
x=dlmread('wheatdata.m','\t');
p=anova2(x,2)

	ANOVA	Tabl	. е	
Source	SS	df	MS	F
Columns	90.83	3	30.28	33.03
Rows	8.083	2	4.042	4.409
Interaction	51.92	6	8.653	9.439
Error	11	12	0.9167	
Total	161.8	23		

结论: 因素A(化肥) 和交互作用 AB影响非常 显著,因素 B(品种)显著.

演示 wheat.m

1、了解方差分析的基本原理

目的 2、根据问题的要求提出模型

3、对已经确定的模型,确定参数、使用MATLAB

作业 1), 4), 6)*

1. 目的。 2. 内容(对每一题): 模型(对应用题); 算法设计; 计算结果; 结果分析; 附程序(必要时加说明 语句)。 3. 收获和建议。