1 Complexity Zoo

1.1 General time and space complexity classes

Central to complexity theory is identifying the 'complexity' of a problem with the amount of time needed to solve it.

Definition 1.1. Given some function $f: \mathbb{N} \to \mathbb{N}$, TIME[f(n)] are the set of problems solvable within O(f(n)) atomic steps on a deterministic Turing machine. Here n is the size of the input.

For most conventional time-complexity classes, the big-oh in the definition is superficial.

Definition 1.2. Given some function $f: \mathbb{N} \to \mathbb{N}$, $\mathtt{NTIME}[f(n)]$ are the set of problems solvable within O(f(n)) atomic steps on a nondeterministic Turing machine.

SPACE and NSPACE are defined similarly.

1.2 P

Informally: all problems that can be solved in polynomial time.

Definition 1.3.

$$\mathbf{P} = \bigcup_{k \ge 0} \mathrm{TIME}[n^k]$$

Descriptive Complexity definitions:

Definition 1.4.

$$\mathbf{P} = FO(LFP)$$

(First Order logic extended with the Least Fixed Point operator, with successor. A high level, handwavy description of the LFP operator is the added ability to recursively define FO formulas.)

Definition 1.5.

$$\mathbf{P} = SO(Horn)$$

(Second Order logic restricted with Horn. SO logic allows you to quantify over subsets/relations/functions on the domain, and Horn means all 'clauses' are really implications with literal in the conclusion and all literals positive.)

Circuit Complexity definition:

Definition 1.6.

 \mathbf{P} = Set of problems that can be solved by a polynomial-time uniform family of boolean circuits

Notable Problems in **P**:

- 2-SAT
- 2-Colourability
- Reachability

1.3 NP

Informally: all problems that can be solved in nondeterministic polynomial time.

Definition 1.7.

$$\mathbf{NP} = \bigcup_{k \ge 0} \mathrm{NTIME}[n^k]$$

In terms of a verifier:

Informally: The set of decision problems where a solution can be verified in polynomial time.

Descriptive Complexity Definition:

Definition 1.8.

$$\mathbf{NP} = SO\exists$$

(Existential Second Order)

Notable Problems in \mathbf{NP} :

- SAT
- 3-Colourability
- TSP
- Subset sum

- 1.4 FPT
- 1.5 W[1]
- 1.6 FPTAS
- 1.7 PTAS
- 1.8 L
- 1.9 NL
- 1.10 PSPACE
- 1.11 coNP
- **1.12** Σ_2^p
- 1.13 Σ_i^p
- **1.14** Π_2^p
- 1.15 Π_i^p
- 1.16 PH
- 1.17 P^{SAT}
- 1.18 NP^{SAT}
- 1.19 P/poly
- 1.20 P-Uniform
- 1.21 EXP
- 1.22 NC
- 1.23 NC_0
- 1.24 NC_1
- 1.25 NC_2
- 1.26 NC_i
- 1.27 AC_i
- 1.28 AC_0
- 1.29 AC_1
- 1.30 BPP
- 1.31 RP
- 1.32 co-RP
- 1.33 ZPP
- 1.34 APX
- 1.35 PO
- 1.36 PCP

4