Zadanie. Anteny

W tajnej bazie wojskowej testowana jest nowa technologia komunikacji radiowej. Na potrzeby eksperymentu w obrębie bazy postawiono m anten nadawczo-odbiorczych. Teren bazy jest całkowicie płaski i ma z lotu ptaka kształt wielokąta wypukłego. Wzdłuż brzegu tego wielokąta przebiega specjalny mur, który między innymi zabezpiecza fale radiowe przed podsłuchem. Z powodu przebudowy architektury bazy konieczne będzie wyburzenie fragmentów muru odpowiadającym pewnym dwu bokom wielokąta. To niestety wystawi testowaną technologię na ryzyko podsłuchu: jeżeli można rozmieścić na zewnątrz bazy dwóch szpiegów w taki sposób, by w linii prostej pomiędzy nimi znalazły się dwie anteny i by linii tej nie przedzielił żaden fragment muru, to komunikację między tymi dwiema antenami można przechwycić. Rozważasz różne scenariusze usunięcia dwu fragmentów muru. Twoim zadaniem jest wyznaczyć dla każdego z tych scenariuszy, ile par anten będzie zagrożonych podsłuchem w tym scenariuszu.

Powyższy rysunek przedstawia przykładową bazę, której teren jest pięciokątem, i w obrębie której znajdują się cztery anteny oznaczone krzyżykami. Liniami przerywanymi zaznaczono wszystkie proste przechodzące przez pary różnych anten. Rysunek odpowiada pierwszemu zestawowi danych z przykładowego wejścia przedstawionego w dalszej części treści.

Wejście

Pierwsza linia wejścia zawiera liczbę zestawów danych z ($1 <= z <= 200\,000$). Potem kolejno podawane są zestawy w następującej postaci: Pierwsza linia zestawu zawiera liczbę całkowitą w (3 <= w <= 10) – liczbę wierzchołków wielokąta określającego teren bazy. Następne n linii zawiera n par liczb całkowitych – współrzędne kolejnych wierzchołków wielokąta zgodnie z ruchem wskazówek zegara. Wierzchołki numerujemy od 0 zgodnie z ich kolejnością pojawiania się na wejściu. Kolejna linia zestawu zawiera liczbę całkowitą m ($2 <= m <= 50\,000$) – liczbę anten. Dalsza część zestawu składa się z m linii, każda zawierająca parę liczb całkowitych – są to współrzędne anten. W następnej linii znajduje się liczba

całkowity q (1 \leq = $q\leq$ =10) – liczba zapytań. Ostatnie q linii zestawu zawiera q par liczb całkowitych (a_1, b_1), . . . , (a_q, b_q) (0 \leq = $a_i < b_i <$ =n-1), opisujących q zapytań. Para (ai, bi) oznacza zapytanie o liczbę nieuporządkowanych par różnych anten, takich że przechodząca przez nie prosta przecina bok między wierzchołkami o numerach a_i oraz a_i + 1, a także bok między wierzchołkami o numerach b_i oraz (b_i + 1) mod n. Wszystkie współrzędne są liczbami całkowitymi nieprzekraczającymi co do modułu 10 9 . W obrębie zestawu danych, wszystkie pojawiające się punkty są różne i nie ma trzech współliniowych. Między każdymi dwoma zestawami danych oraz przed pierwszym zestawem znajduje się pusta linia. Suma wartości m we wszystkich zestawach danych nie przekracza 300 000.

Wyjście

Dla każdego zestawu danych wypisz w osobnej linii odpowiedzi na kolejne zapytania, oddzielając je spacjami

Przykład

Frzykiau	
Dla danych wejściowych:	Poprawną odpowiedzią jest:
2	
	4 1 0
5	0 1 0 0 0 0
0 0	
0 5	
3 7	
6 5	
60	
4	
1 2	
1 3	
5 2	
5 3	
3	
0 3	
1 4	
1 2	
4	
-1 -1	
-1 1	
2 1	
2 -1	
2	
0 0	
10	
6	
0 1	
0 2	
0 3	
1 2	
1 3	
2 3	

Plik zawierający rozwiązanie powinien nosić nazwę utworzoną według schematu: ASD2 [NazwiskoI] anteny.cpp (lub ASD2z [NazwiskoI] anteny.cpp)