Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

y © CKE 2013	UZUP	EŁNIA ZDAJĄCY	miejsce
graficzny	KOD	PESEL	miejsce na naklejkę
Jkład gr			
Ukła			

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, schematu blokowego, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

17 MAJA 2016

Godzina rozpoczęcia: 14:00

WYBRANE:
(środowisko)
(kompilator)
(program użytkowy)

Czas pracy: 90 minut

Liczba punktów do uzyskania: 20

MIN-R1 1P-162

Zadanie 1. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli zdanie jest fałszywe.

W każdym zadaniu cząstkowym punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 1.1. (1 pkt)

Liczba CB₍₁₆₎ jest równa liczbie

1.	10101111 ₍₂₎ .	P	F
2.	313 ₍₈₎ .	P	F
3.	3120 ₍₄₎ .	P	F
4.	203 ₍₁₀₎ .	P	F

Zadanie 1.2. (1 pkt)

Dana jest funkcja f określona wzorem rekurencyjnym

$$\begin{cases} f(1) = 4 \\ f(n+1) = \frac{1}{1 - f(n)} & \text{dla } n \ge 1 \end{cases}$$

Wtedy:

1.	$f(8) = \frac{1}{3}$	P	F
2.	$f(9) = \frac{3}{4}$	P	F
3.	f(10) = 4	P	F
4.	$f(100) = -\frac{1}{3}$	P	F

Miejsce na	obliczenia.
------------	-------------

Egzamin maturalny z informatyki Poziom rozszerzony

Zadanie 1.3. (1 pkt)

Dla dwóch liczb 110₍₂₎ i 101₍₂₎, ich

1.	suma jest równa 10000 ₍₂₎ .	P	F
2.	różnica jest równa 1 ₍₂₎ .	P	F
3.	iloczyn jest równy 11110 ₍₂₎ .	P	F
4.	iloraz jest równy 11 ₍₂₎ .	P	F

Miejsce na obliczenia.		

Zadanie 1.4. (1 pkt)

Protokołem pocztowym jest

1.	FTP.	P	F
2.	POP3.	P	F
3.	SMTP.	P	F
4.	IMAP.	P	F

Zadanie 1.5. (1 pkt)

Dwudziestocyfrowa liczba binarna z 1 na najbardziej znaczącej pozycji ma w systemie

1.	czwórkowym dokładnie 9 cyfr.	P	F
2.	ósemkowym dokładnie 7 cyfr.	P	F
3.	szesnastkowym dokładnie 5 cyfr.	P	F
4.	dziesiętnym co najwyżej 7 cyfr.	P	F

Miejsce na ol	bliczenia.
---------------	------------

	Nr zadania	1.1.	1.2.	1.3.	1.4.	1.5.
Wypełnia	Maks. liczba pkt.	1	1	1	1	1
egzaminator	Uzyskana liczba pkt.					

Zadanie 2. Popularność

Rozważ algorytm.

Specyfikacja:

Dane:

n – liczba całkowita większa od 1, A[I..n] – tablica liczb całkowitych

Algorytm:

1.	$max \leftarrow 1; nr \leftarrow 1$
2.	dla $i = 1, 2,, n$ wykonuj:
3.	$k \leftarrow 0$
4.	dla $j = i, i+1,, n$ wykonuj:
5.	jeżeli $A[i] = A[j]$, to
6.	$k \leftarrow k + 1$
7.	jeżeli $k > max$, to
8.	$\max \leftarrow k; nr \leftarrow i$
9.	wynikiem jest $A[nr]$

Zadanie 2.1. (2 pkt)

Przeanalizuj algorytm i podaj wynik jego działania dla danych z poniższej tabeli.

n	A[1], A[2],, A[n]	Wynik
5	1, 2, 1, 2, 1	
6	2, 4, 4, 2, 4, 2	
9	2, 3, 3, 4, 4, 3, 2, 2, 3	

Miejsce na obliczenia.		

Zadanie 2.2. (3 pkt)

W poniższej tabeli wpisz, ile razy w przedstawionym algorytmie zostanie wykonana operacja porównania elementów A[i] i A[j] w wierszu 5.

n – liczba elementów tablicy A	Liczba porównań $A[i] = A[j]$
2	3
3	
7	
10	
15	
1000	

Miejsce na obliczenia.

Zadanie 2.3. (3 pkt)

Podaj liczbę wykonań instrukcji w wierszu 6. i liczbę wykonań instrukcji w wierszu 8., gdy wszystkie elementy tablicy są takie same, tzn. A[1] = A[2] = A[3] = ... = A[n]

Liczba wykonań instrukcji w wierszu 6.	
Liczba wykonań instrukcji w wierszu 8.	

	Nr zadania	2.1.	2.2.	2.3.
Wypełnia	Maks. liczba pkt.	2	3	3
egzaminator	Uzyskana liczba pkt.			

Zadanie 3. Przekątne w tabliczce mnożenia

Rozważmy tabliczkę mnożenia z przekątnymi, tak jak pokazano poniżej.

								6.	prze	ekątı	na	<u> </u>	\geq
1. przekątna								_	7/				
		1	2	3	4	5	6	//	8	9			
	1	1	2	3	4	5	6	7					
	2	2	4	6	8	10	12						
	3	3	6	9	12	15							
	4	4	8	12	16								
	5	5	10	15									
	6	6	12										
	7	7											
	8												
	9												

Suma liczb na pierwszej przekątnej jest równa 1, natomiast suma liczb na szóstej przekątnej jest równa 56.

Zadanie 3.1. *(1 pkt)*

Podaj sumę liczb na 8. przekątnej:

.....

Zadanie 3.2. (2 pkt)

Wartość otrzymaną podczas sumowania liczb na czwartej przekątnej można przedstawić jako sumę: jednej czwórki, dwóch trójek, trzech dwójek oraz czterech jedynek, czyli: 4+3+3+2+2+1+1+1+1=20. Podobnie na 6. przekątnej mamy:

$$6+5+5+4+4+4+3+3+3+3+2+2+2+2+1+1+1+1+1+1+1=56$$

Zapisz wzór, za pomocą którego obliczysz ile występuje piątek w sumie liczb na n-tej przekątnej, dla $n \ge 5$:

.....

Zadanie 3.3. (4 pkt)

W wybranej przez siebie notacji zapisz algorytm, który dla danej całkowitej dodatniej liczby n poda sumę liczb na n-tej przekątnej.

Specyfikacja:

Dane:

n-liczba całkowita dodatnia (oznaczająca n-tą przekątną w tabliczce mnożenia) Wynik:

w – suma liczb na n-tej przekątnej w tabliczce mnożenia

Algorytm:

	Nr zadania	3.1.	3.2.	3.3.
Wypełnia egzaminator	Maks. liczba pkt.	1	2	4
	Uzyskana liczba pkt.			

BRUDNOPIS (nie podlega ocenie)