Unseen Life on Earth Exam 1

- Unit overview for each
 - Episodes 1 4
- Readings
 - □ Help to explain/expand upon videos
 - Text know the major concepts
 - Will be pulled into next pages as appropriate
- Review Quizzes
 - Quizzes 1 4
 - Correct answers should be available on Moodle once everyone has completed each quiz

Video Episodes

Episode #1

What are they?
Are they important?

Episode #2

What are they made of?

Episode #5

How are the instructions exchanged or altered?

MICROBES

Episode #3

What do they do?

What are the instructions for the cell?

Episode #4

Episode 1: The Microbial Universe

- Microbes are unseen—but essential
 - Role in carbon and other cycles
 - Produce 50% of oxygen
- Many not known, not all can be grown in the laboratory
- They outnumber us on our own bodies 10:1
- Microbiology diverse field:
 - Medical
 - Environmental
 - Industrial

Types of Microbes

- Prokaryotes (no nucleus)
 - □ Bacteria
 - Know the basic shapes of bacterial cells
 - □ Archaea
- Eukaryotes (have a nucleus and organelles)
 - Algae
 - Fungi
 - Protozoa
 - □ Helminthes (Worms)
- Non-living/not cells
 - □ Viruses

Types of Microbes

- Prokaryotes (no nucleus)
 - Bacteria the basic shapes of bacterial cells

Past and Present

- Important Scientists
 - □ Bruce
 - Fleming
 - □ Hooke
 - Jenner
 - □ Koch
 - Leeuwenhoek
 - Ogata
 - Pasteur
 - □ Reed
 - Ricketts
 - Ross

Microbiology today

- Genetic Engineering
- Bioremediation
- Discovering unknown microbes and their role in maintaining ecosystems

Episode 2: Unity of Living Things

- The cell: all include same fundamental building blocks
 - Amino acids
 - Nucleotides
 - Lipids
- Important features of prokaryotes and eukaryotes
 - □ Proteins = enzymes (amino acids)...perform tasks of cell
 - Nucleic acids (DNA and RNA): instructions
 - Cytoplasm
 - Cell membrane
 - ATP = energy molecule
 - **made of carbon

Distinguishing Characteristics

(note readings, video, and lab #2, too)

Architecture

- Prokaryotes
 - No organelles
 - Have DNA and ribosomes in cytoplasm

Eukaryotes

- Have organelles (i.e., mitochondria to make energy)
- Ribosomes, too, for protein synthesis
- Appendages
 - Pili
 - Flagella

Distinguishing Characteristics

(note readings, video, and lab #2, too)

- Cell wall
 - Bacteria
 - Almost all have a cell wall
 - Eukaryotes
 - Only some have a cell wall (plants and fungi)
 - Animal = no cell walls
- Nucleus
 - Prokaryotes
 - No nucleus
 - Eukaryotes
 - Possess a nucleus

Viruses

- DNA, RNA in a protein coat
- May or may not have "cell" membrane
 - If it has a membrane it stole it from a host cell
- VERY SMALL and dependent on living cells
- Cannot reproduce on its own not a cell
- Do not have ribosomes for protein synthesis
- Not living

Episode 3: Metabolism

- All biochemical reactions in a cell
- Why is this important?
 - □ How nutrients are cycled through an organism / the environment
 - How cells make and use energy to survive and reproduce
- Metabolic categories for organisms
 - □ Autotrophs: CO₂ is the carbon source
 - Energy source: sun (phototrophs) or inorganic chemical (chemolithotrophs)
 - □ Heterotroph: organic molecules for carbon source
 - Chemoheterotroph: energy source also from organic molecules
 - Via fermentation or respiration turn organic molecules into ATP
 - □ To know: examples of each (i.e., book and video)
- Food source determines environmental niche

Metabolic Reactions

- Catabolism: break down of nutrients
 - Glycolysis
 - Krebs cycle
- Use for
 - Making ATP (storage form of energy)
 - Making building blocks for growth and reproduction
- If use oxygen to make ATP: aerobic respiration
- If no oxygen: anaerobic metabolism
 - fermentation (heterotrophs) or anaerobic respiration (i.e., in deep sea vents)
- Fermentation used in food, wine, and beer production

Anabolic Reactions

- Use to produce macromolecules of the cell
- Must occur for cells to grow and divide
 - DNA replication
 - Transcription
 - Translation
- Bacteria asexual reproduction called binary fission
- Growth curve phases
 - Lag, log or exponential, stationary death
 - Need to give new nutrients and other things to keep growing

"- philes"

- Psychrophile cold-loving
- Mesophile middle temperature range loving
- Thermophile heat-loving
- Barophile pressure-loving
- Halophile salt-loving
- Acidophile acid-loving

Other topics – Episode 3

Waste-water

- O₂ rate-limiting, so it is added to process
- Anaerobic digester wastes reduced to organic acids
- Methanogens produce methane in the anaerobic digester

Volcanic vents

- Chemolithotrophs use sulfur as source of energy
- Serve as food for larger organisms

Episode 4: Reading the Code of Life

Mutations happen in the DNA, which can change the gene expression and what the organism is capable of doing

DNA

- Composed of nucleotides
 - Four different bases
 - Differs from RNA; 3 types of RNA molecules
- Sequence of bases determines amino acid sequence in protein
- Double stranded: sequence on 2 sides determined by base-pairing
 - Held together by weak hydrogen bonds
- Replication: goal is to make an exact copy so makes cells with identical DNA
 - Occurs before cells divide

Useful videos on DNA replication

- http://www.youtube.com/watch?v=rpwjZX_z5rg
- http://www.youtube.com/watch?v=hfZ8o9D1tus
- http://www.youtube.com/watch?v=4jtmOZalvS0

Protein synthesis

- Gene expression = making proteins from DNA instructions
- Two processes:
 - Transcription
 - Translation
- Translation on ribosomes
 - Requires mRNA, tRNA, and rRNA
- Useful video on process:
 - □ http://www.youtube.com/watch?v=NJxo bgkPEAo

Mutations

- Change in sequence of DNA
 - May give rise to altered proteins and altered ability
 - Heritable: passed on to daughter cells when parent cell divides
- May occur at the time of DNA replication (vs. physical, chemical cause)
 - DNA replicates before cells divide
 - Microbes divide rapidly so more mutations in population
- Rarely an advantage for organism
 - Antibiotic resistance
 - Able to adapt to new environment

Mutations

Substitution mutations

- One base is substituted for another
- Reading frame is maintained
- Change in 3rd base often does not result in a change in the amino acid of the resulting protein
- Change in the 1st base mostly results in a change in the amino acid of the resulting protein
- Change in the 2nd base always results in a change in the amino acid of the resulting protein

Frameshift mutations

- A base is either added or deleted
- Results in a change in the reading frame
- In the resulting protein, everything after the mutation will be different – always very bad!

Gene Expression

- Gene expression is regulated involves transcription and translation
- Energy used to make proteins
- Thus many genes are expressed only when needed
- Not all genes are transcribed and translated into proteins on an ongoing basis
 - Inducible
 - Repressible
 - Constitutive