Goals, Power and Sample size

Shubham Gupta

June 17, 2019

1 Introduction

- Statistical methods allow us to measure the *probability* of achieveing a goal *given that* the underlying assumptions are true.
- All experiment goals can be expressed in the form of HDI's.

1.1 Power

- Probability of acheiving goal, given hypothetical state of the world and the sampling process, is the **power** of planned research.
- Method to increase chance of detecting an effect:
 - Reduce measurement noise.
 - Amplify magnitude of underlying effect.
 - Increase sample size. Sample size increases \implies Power increases.
- We will repeating sample from datasets that contain points we expect to see, and perform Bayesian analysis on them before performing the actual experiments. A "dress rehearsal" of sorts.

Figure 1: Real world vs Power analysis

- For power analysis, we do the following:
 - From hypothetical distribution of values, generate representative values.
 - From representative values, generate random sample of data, using a planned sampling method. The sampling method should be the same as expected to be used in the real world experiment.
 - From random sample, compute posterior using Bayesian analysis and appropriate priors.
 - From posterior estimate, check if the goals were acheived or not.
 - Repeat the process many times to increase the power.

Sample Size 1.2

- Large sample sizes will help make the posterior distribution narrower thereby giving us more confidence in our results.
- If we are trying to prove that a value is different from the null hypothesis, sometimes large samples will not be enough. They will just show how the sampling process was performed.
- For eg, if we think a coin is baised, and the changes of the theta value assigned as: $p(\theta = 0.5) = 0.25, p(\theta = 0.7) = 0.25, p(\theta = 0.8) = 0.50$, then even with a large amount of data, the maximum probability we can get that discards the $p(\theta = 0.5)$ null hypothesis is 0.75.

1.3 Other expressions of goals

- Average width of HDI over different trails should excede a value L.
- It can also be measured using **entropy**. The goal will be to have a low entropy.
- Goal can also be to obtain a sufficiently large Bayes factor.

2 Computing Power and Sample Size

• We will go through the above process to find exact number of samples needed for various degrees of power for different data-generating hypothesis

2.1 Goal is to exclude null value

- If aim is to exclude null value, we must prove that HDI does not include ROPE for that null value.
- We need to geen rate a parameter distribution which will be used to generate data.
- **Simple method**: Use posterior distribution obtained from data and prior(could be actual or expected) as parameter distribution. This approach is called as **equivalent prior sample** method.
- Once we have the hypothetical distribution, we sample from it to get a representative parameter value. Using this value, we generate a data point.
- The process looks as follows:
 - Select a value for the **true** bias of the coin, centered around your hypothesis(in this case, around $\theta = 0.65$.
 - Simulate flipping a coin with this bias **N** times. With **z** heads, proportion of heads will be $\frac{z}{N}$.
 - Using audience appropriate priors (not sure what this means), determine posterior beliefs about θ . Check if ROPE excludes $\theta=0.5$.
 - Repeat this process many times to determine power.

Table 13.1 Minimal sample size required for 95% HDI to exclude a ROPE from 0.48 to 0.52, when flipping a single coin.

	Generating Mode ω							
Power	0.60	0.65	0.70	0.75	0.80	0.85		
0.7	238	83	40	25	16	7		
8.0	309	109	52	30	19	14		
0.9	430	150	74	43	27	16		

Note. The data-generating distribution is a beta density with mode ω , as indicated by the column header, and concentration $\kappa = 2000$. The audience prior is a uniform distribution.

Figure 2: Power table

- The table above shows how the sample size varies with the mode. When the mode is large, the sample size is small. This makes sense **because** large mode \implies higher proportion of heads $\implies \theta$ HDI falls well above 0.5
- When the mode is only slightly above 0.5, then it will take a large number of samples for the HDI to **consistently** fall ourside the ROPE of 0.5.
- Increase in power \implies Increase in the number of samples needed.

2.2 Goal is precision

- If we need to determine which variant of A or B is more preferred, how many samples would we need to show that 80% of the time 95% HDI falls about $\theta=0.5$?
- ullet Problems: When **N** is large, HDI will be around the intial θ value used.
- Instead of proving intial θ value lies outside the HDI, we will try to show width L of the HDI is always less than a value, say 0.2. Less width \Longrightarrow Narrow HDI \Longrightarrow Higher confidence on posterior values.

Table 13.2 Minimal sample size required for 95% HDI to have maximal width of 0.2, when flipping a single coin.

	Generating Mode ω								
Power	0.60	0.65	0.70	0.75	0.80	0.85			
0.7	91	90	88	86	81	75			
0.8	92	92	91	90	87	82			
0.9	93	93	93	92	91	89			

Note. The data-generating distribution is a beta density with mode ω , as indicated by the column header, and with concentration $\kappa = 10$. The audience-agreeable prior is uniform.

Figure 3: Power table for width of HDI

- Increase in power only has **marginal increase** in sample size. This is because distribution of HDI widths has shunted high tail. Small changes in N can pull high tail towards threshold values like 0.2.
- HDI width decrease $\implies Nincreases$ rapidly.

2.3 Monte Carlo approximation of power

• Script present to do power calculations of complex models. Will all more details when I'm implementing it.

2.4 Power from idealized or actual data

• Use actual/hypothesized data to represent top level paramters.

Figure 13.2 Flow of information in a power analysis when the hypothesis regarding the distribution of parameters is a posterior distribution from a Bayesian analysis on real or idealized previous data. Compare with Figure 13.1, p. 363.

Figure 4: Information flow for power analysis

• Benefits of using this approach:

- 1. Hypothesis is expressed as easily understandable data and bayesian analysis will convert it into parameter distributions.
- 2. Corelation between the parameters are automatically created in the posterior distribution
- Long example around how to do power analysis. This will be implemented in the code.

3 Sequential testing and goal of precision

- Comparison between bayesian method and NHST. Basically claims that practice of always rejecting null hypothesis is not correct.
- Instead of rejecting null hypothesis, we should aim for precision. This is because precision for most parameters is unaffected by the true underlying value of the parameter.
- We will compare the appraoches of p-values, Bayes Factors(BF), HDI, ROPE and precision.

•