Painel / Meus cursos / SC26EL / 11-Alocação de Polos / Questionário sobre Alocação de Polos

Iniciado em	domingo, 18 abr 2021, 06:21
Estado	Finalizada
Concluída em	domingo, 25 abr 2021, 09:44
Tempo empregado	7 dias 3 horas
Notas	2,0/2,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão **1** Correto

Atingiu 1,0 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Observe que esse sistema é instavel, uma vez que seus polos são $s_{1,2}=\pm 2$. Para estabilizar o sistema, utilize a técnica de realimentação de estados e projete o vetor de ganhos K de forma que os polos do sistema, em malha fechada, sejam $s_{1,2}=-2$.

A matriz de controlabilidade tem a forma $M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$. Assim, os elementos da matriz M são:

- $m_{11} = 0$
- **✓** , **m**₁₂ =
- **~**
- $m_{21} =$
- √ , m₂₂ =

 0
- ~

O posto da matriz de controlabilidade é:

- 2
- 7

Portanto, o sistema é: Controlável 💠 🗸 .

O polinômio característico desejado para o sistema é: $\phi(s)=$

- 1
- **✓** s²+
- **✓** s+
- ~

A matriz $\phi(A)$ tem a forma $\phi(A) = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$. Assim, os elementos da matriz $\phi(A)$ são:

- $\phi_{11} =$ 8
- \checkmark , $\phi_{12} = 4$
- **~** ,
- $\phi_{21} = 16$
- \checkmark , $\phi_{22} =$ 8

O vetor de	ganhos do controlador é: $K = [$
8	
~	

4

O sistema em malha fechada é representado por:

$$\dot{x} = A_{MF}x + B_{MF}u$$
, $y = C_{MF}x$.

Considere as estruturas das matrizes abaixo:

$$A_{MF}=egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$$
 . Assim, os elementos da matriz A_{MF} são:

 $a_{11} = 0$

~ ,

V

$$B_{MF} = \begin{bmatrix} b_{11} & b_{21} \end{bmatrix}^T$$
 . Assim, os elementos da matriz B_{MF} são:

 $b_{11} = 0$

~ ,

$$b_{21} = 0$$

~

$$\mathit{C_{MF}} = [\ \mathit{c_{11}} \ \ \ \mathit{c_{12}}\]$$
 . Assim, os elementos da matriz $\mathit{C_{MF}}$ são:

 $c_{11} = \frac{1}{2}$

$$\checkmark$$
 , $c_{12} = 0$

~

Questão **2** Correto

Atingiu 1,0 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -8 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Utilize a técnica de realimentação de estados e projete o vetor de ganhos K de forma que os polos do sistema, em malha fechada, sejam $s_{1,2} = -2$ e $s_3 = -20$.

Os polos do sistema são: $s_{1,2} =$

-1

✓ ±

1,732

✓ e **s**₃ =

~

A matriz de controlabilidade tem a forma $M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$. Assim, os elementos da matriz M são:

 $m_{11} = 0$

 \checkmark , $m_{12} = 0$

✓ , **m**₁₃ =

~ ,

 $m_{21} = 0$

✓ , m₂₂ =

1

✓ , **m**₂₃ =

v ,

 $m_{31} = 1$

✓ , $m_{32} =$ -4

✓ , **m**₃₃ = 8

V

O posto da matriz de controlabilidade é:

3

✔ .

Portanto, o sistema é: Controlável O polinômio característico desejado para o sistema é: $\phi(s)=$ **√** s³+ 24 **✓ 5**²+ 84 **√** s+ 80 $\begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \end{bmatrix} \text{. Assim, os elementos da matriz } \phi(\textbf{\textit{A}}) \text{ são:}$ A matriz $\phi(A)$ tem a forma $\phi(A)=$ $\phi_{11} =$ 72 left , $\phi_{12}=$ 76 ullet , $\phi_{13}=$ 20 $\phi_{21} =$ \checkmark , $\phi_{22}=$ -88 ullet , $\phi_{23}=$ **v** , $\phi_{31} =$ 32 \checkmark , $\phi_{32}=$ -128 ullet , $\phi_{33}=$ -72 O vetor de ganhos do controlador é: $K = \lceil$ 72 76 20 O sistema em malha fechada é representado por: $\dot{x} = A_{MF}x + B_{MF}u$, $y = C_{MF}x$.

Considere as estruturas das matrizes abaixo:

 $A_{MF} = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

 $a_{11} = 0$

✓ , a₁₂ =

1

✓ , a₁₃ =

 $a_{21} = 0$

 \checkmark , $a_{22} = 0$

✓ , a₂₃ =

1

~ ,

 $a_{31} = -80$

✓ , **a**₃₂ =

✓ , **a**₃₃ =

~

 $B_{MF} = \left[egin{array}{ccc} b_{11} & b_{21} & b_{31} \end{array}
ight]^T$. Assim, os elementos da matriz B_{MF} são:

 $b_{11} = 0$

 $b_{21} =$

✓ , **b**₃₁ =

~

 $extit{C}_{MF} = \left[egin{array}{ccc} c_{11} & c_{12} & c_{13} \end{array}
ight]$. Assim, os elementos da matriz $extit{C}_{MF}$ são:

 $c_{11} = 4$

• , c₁₂ =

• , c₁₃ =

~

Seguir para...
 ♦
 Aula 12 - Projeto de Controladores em Espaço de Estados - Parte 1 ►