2011-2012 (下)研究生应用数理统计试题(A)

1 设 X_1, X_2, L, X_n 为正态总体 $X \sim N(\mu, \sigma^2)$ 的样本,令 $d = \frac{1}{n} \sum_{i=1}^{n} |X_i - \mu|$,试证 $E(d) = \sqrt{\frac{2}{\pi}}\sigma$, $D(d) = \left(1 - \frac{2}{\pi}\right)\frac{\sigma^2}{n}$ (10 %)

2 设总体 x 服从正态 $N(\mu, \sigma^2)$, x_1, x_2 L, x_n 为其样本, \overline{x} 与 s^2 分别为样本均值及方差。又 设 X_{n+1} 与 X_1, X_2 上 $, X_n$ 独立同分布,试求统计量 $Y = \frac{X_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}}$ 的分布。

$$ar{x} \sim N(\mu, rac{\sigma^2}{n})$$
, $x_{n+1} \sim N(\mu, \sigma^2)$, $rac{(n-1)}{\sigma^2}$ $S^2 \sim \chi^2 (n-1)$. 则有
$$x_{n+1} - ar{x} \sim N(0, rac{n+1}{n} \sigma^2)$$
, 从而
$$rac{x_{n+1} - \overline{x}}{\sigma_1} \sim N(0, 1)$$
.

$$\frac{x_{n+1} - \overline{x}}{\sigma \sqrt{\frac{n+1}{n}}} \sim N(0,1).$$

又
$$rac{x_{n+1}-ar{x}}{\sigma\sqrt{rac{n+1}{n}}}$$
与 $rac{(n-1)}{\sigma^2}S_n^2$ 相互独立,从而

$$\frac{\frac{x_{n+l}-\overline{x}}{\sigma\sqrt{\frac{n+1}{n}}}}{\sqrt{\frac{(n-1)}{\sigma^2}S^2\left/\!\left(n-1\right)}} = \sqrt{\frac{n}{n+1}}\frac{(x_{n+l}-\overline{x})}{S} \sim t(n-1).$$

(其中
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
) (10 分)

3 设总体 X 具有分布律

X	1	2	3
p	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0<\theta<1)$ 为未知参数,已知取得了样本值 $x_1=1,x_2=2,x_3=1$,求 θ 的矩估计和最 大似然估计. (10分)

4 证明样本k 阶原点矩 $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$ 是总体X 的k 阶原点矩 $\mu_k = E(X^k)$ 的无偏估计量。 (10分)

5 假定某商场某种商品的月销售量服从正态分布 $N(\mu,\sigma^2)$, μ,σ 未知。为了决定商店对该 商品的进货量,需对μ作估计,为此,随机抽取若干月,其销售量分别为:64,57,49,81,

- 76, 70, 59, 求 μ 的置信度为 0.95的置信区间。(10分)
- 6 一种元件,要求其使用寿命不得低于 1000 (小时)。现在从一批这种元件中随机抽取 25 件,测得其寿命平均值为 950 (小时)。已知该种元件寿命服从标准差 $\sigma=100$ (小时)的正态分布,试在显著水平 0.05 下确定这批元件是否合格。 $(10\ \mathcal{H})$
- 7 某小学一年级共有三个班级,在一次数学考试中从三个班随机抽取 12,15,13 个学生的成绩。设学生成绩服从正态分布且方差相等,样本的方差分析表如下表 1 所示,问在显著性水平为 0.05 时,三个班的平均成绩有无显著差异? (10 分)

农工 万左万仞农						
方差来源	平方和	自由度	均方差	F 值	显著性	
因素 A	355.477					
误差	13429.498					
总和	13764.975					

表 1 方差分析表

- **8** 某问题是一个四因素二水平试验,选用 L_8 (2^7) 正交表,要考虑 $A \times B$,试验方案设计及试验结果见表 2。(15 分)
- (1) 各因素及交互作用的主次顺序(指标 y 越大越好)。
- (2) 试找最优工艺条件。
- (3) 在显著水平 α=0.05 下,哪些因素的影响显著?

表 2

列号	A	В	$A \times B$	С			D	数据 y _i
试验号	1	2	3	4	5	6	7	多 又功白 <i>y</i> _i
1	1	1	1	1	1	1	1	115
2	1	1	1	2	2	2	2	160
3	1	2	2	1	1	2	2	145
4	1	2	2	2	2	1	1	155
5	2	1	2	1	2	1	2	140
6	2	1	2	2	1	2	1	155
7	2	2	1	1	2	2	1	100
8	2	2	1	2	1	1	2	125
I_{j}	575	570	500	500	540	535	525	
II_{j}	520	525	595	595	555	560	570	
R_j	55	45	95	95	15	25	45	
S_{j}	378.1	253.1	1128.1	1128.1	28.1	78.1	253.1	

9 营业税税收总额 y 与社会商品零售总额 x 有关。为了利用社会商品零售总额预测税收总额,

表 3

单位: 亿元

700		1 12.		
序号	社会商业零售总额 x	营业税税收总额y		
1	142. 08	3. 93		
2	177. 30	5. 96		
3	204. 68	7. 85		
4	242. 88	9. 82		
5	316. 24	12. 50		
6	341.99	15. 55		
7	332. 69	15. 79		
8	389. 29	16. 39		
9	453. 40	18. 45		

- (1) 求营业税税收总额 y 与社会商品零售总额 x 的线性回归方程。
- (2) 在显著水平 α =0.05 下检验回归方程的线性性。
- (3) 预测当社会商品零售总额 x = 300 亿元时的营业税的平均税收总额。 附表: