ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ PrO_x – BaO – 1/2Fe₂O₃ ПРИ 1100 °C

Давыдова М.В., Волкова Н.Е., Черепанов В.А. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

В рамках настоящего исследования были изучены гомогенность и кристаллическая структура твёрдых растворов в системе $PrO_x - BaO - 1/2Fe_2O_3$ при 1100 °C на воздухе.

Образцы для исследования были получены с использованием глицериннитратной технологии. Фазовый состав полученных оксидов контролировался рентгенографически.

На первом этапе было подтверждено образование 4 квазибинарных оксидов: $BaFeO_{3-\delta}$, $BaFe_2O_4$, $BaFe_{12}O_{19}$, $PrFeO_3$. В первые был получен твердый раствор $Ba_{2\to t}Pr_tO_{2.5\pm\delta}$ ($0.9 \le t \le 1.0$), согласно PCA, который кристаллизуется в рамках орторомбической сингонии с пр.гр. Pnma.

В квазитройной системе $PrOx-1/2Fe_2O_3-BaO$ обнаружено образование фаз на основе феррита бария $BaFeO_{3-\delta}$ и празеодима $PrFeO_{3-\delta}$, а также оксидов состава $Ba_3Pr_{1.05}Fe_{1.95}O_{7-\delta}$ и $Ba_{1.05}Pr_{1.95}Fe_2O_{7\pm\delta}$

По результатам РФА, твердые растворы $Ba_{1-x}Pr_xFeO_{3-\delta}$ имеют две границы существования. При содержании бария $0.1 \le x \le 0.5$ ферриты кристаллизируютсяв кубической ячейке с пр.гр. Pm3m. Твердые растворы, обогащенные празеодимом $(0.75 \le x \le 1.0)$, образуют орторомбическую ячейку с пр. гр. Pbnm и являются изоструктурными ферриту празеодима $PrFeO_{3-\delta}$. Замена иона бария на меньший ион Pr^{3+} приводит к уменьшению размера элементарной ячейки.

Для исследования возможности замещения ионов железа празеодимом в BaFeO_{3- δ} были синтезированы составы BaFe_{1-k}Pr $_k$ O_{3- δ}, где $k=0.05,\,0.1,\,0.15$ и 0.2. Только сложный оксид BaFe_{0.9}Pr_{0.1}O_{3- δ} (пр.гр. *Pm3m*, a=4.08276(2)) не содержит примесные фазы.

Установлено, что в системе образуется только один сложный оксид состава $Ba_3Pr_{1.05}Fe_{1.95}O_{7-\delta}$ гексагональной структурой (пр. гр. $P6_3mc$) с параметрами элементарной ячейки a=11.822(1) Å, c=7.053(1). По данным РФА определено, что образец состава $Ba_{1.05}Pr_{1.95}Fe_2O_{7\pm\delta}$ является однофазным. Параметры кристаллической структуры, вычисленные из рентгеновских данных, составили a=5.55455(3) Å, c=20.4955(2) Å (пр. гр. $P4_2/mnm$). По результатам РФА всех полученных 61 образцов, закаленных на комнатную температуру, фазовая диаграмма квазитройной системы $PrO_x-BaO-1/2Fe_2O_3$ при 1100 °C на воздухе была разбита на 19 фазовых полей.