Дифференциальные уравнения

Гуревич

Содержание

1	$\mathbf{q}_{\mathbf{T}0}$	о такое дифференциальное уравнение?	•	
	1.1	Базовые определения	,	
	1.2	ДУ первого порядка, разрешенные относительно производной	•	
	1.3	Метод изоклин	۷	
	1.4	Практика	(
	1.5	Мини-рассказ про число е	,	
2	Элементарные методы интегрирования ДУ			
	2.1	Уравнения с разделяющимися переменными	(
	2.2	Уравнения, приводящиеся к уравнению с разделяющимися		
		переменными	(
	2.3	Однородные уравнения	10	
3	Однородное уравнение			
	3.1	Обобщенно-однородное уравнение	1:	
	3.2	Уравнение в полных дифференциалах	1	
		3.2.1 Геометрический смысл решения уравнения в полных дифференциалах	13	
	3.3		1	
4	Уравнения и ряды Тейлора			
	4.1	Практика	1	
	4.2	Численные методы	1'	
5	Теоремы о существовании и единственности решения			
	5.1	Практика	25	

6	Уравнение первого порядка		
	6.1	Базовые определения	23
	6.2	Метод Лагранжа	24
		Уравнения, приводящееся к линейному	25
7	Теоремы о непрерывной зависимости задачи Коши		
	7.1	Как решать Рикатти через Пикара (с оценкой погрешности)	30
8	Уравнение, не разрешенное относительно производной		31
	8.1	Уравнение первого порядка	31
	8.2	Практика и методы решения	33

1 Что такое дифференциальное уравнение?

1.1 Базовые определения

Определение 1

$$F\left(t, x, \frac{dx}{dt}, ..., \frac{d^n x}{dt^n}\right) = 0 \tag{1}$$

- обыкновенное дифференциальное уравнение (ОДУ) порядка п.

Здесь t - независмая переменная, x(t) - искомая функция.

Определение 2 Решение ОДУ - функция $x(t) \in C^n$ (дифференцируемая n раз), обращающая уравнение в тождество.

Примеры. $\frac{dx}{dt} = 0$ - решение есть константа.

 $\frac{dx}{dt} = 5$. Решение x = 5t + c. (Так как решение зависит от параметраконстанты, говорят об однопараметрическом семействе решений. Если задать x(0), то решение будет единственным, зависящим от начального условия).

 $\frac{d^2x}{dt^2} = w$ - уравнение равноускоренного движения. Решение: $x = \frac{wt^2}{2} + c_1t + c_2$, где c_1, c_2 - начальная скорость и начальная координата соответственно.

Пример. Для уравнения $\frac{dx}{dt} = f(t)$, если функция в правой части непрерывна на отрезке (a,b), тогда общее решение имеет вид $x = \int f(t)dt$. Более

точно, $t_0 \in (a,b)$, тогда $x(t) = \int_{t_0}^t f(\tau) d\tau + x(0)$.

Определение 3 Общее решение ОДУ - множество всех решений.

Естественно возникает вопрос, существует ли решение ДУ и единственно ли оно при заданных начальных условиях? Выражается ли оно через элементарные функции? Какова его область определения и значения?

1.2 ДУ первого порядка, разрешенные относительно производной

Определение 4 ДУ, разрешенные относительно производных - уравнения вида

$$\frac{dx}{dt} = f(t, x) \tag{2}$$

то есть уравнения, производная которых задана функцией в явном виде.

Пример. $(\frac{dx}{dt})^2 - x^2 = 0$ - не разрешенное относительно производных, но оно раскладывается в два таких уравнения.

Минимальные требования к функции f - определенность в области Геометрический смысл уравнения : На рисунке $\operatorname{tg} \tilde{\alpha} = f(\tilde{t}, \tilde{x})$

Говорят, что уравнение 1.2 определяет поле направлений в расширенном фазовом пространстве (в отличие от векторного поля в фазовом пространстве): каждой точке сопоставляется направление, определяемое функцией $f(x,t)=\operatorname{tg}\alpha$ (поскольку длина вектора не определена, говорят имено о поле направлений). Кое-кто говорит, что ДУ и поле направлений это одно и то же, поскольку ДУ биективно соответствуют полям направлений).

Пример. Пусть x(t) - количество зараженных вирусом в момент времени t. Допустим, что скорость заражения пропорциональная количеству уже зараженных людей. Запишем это в виде ДУ:

$$\frac{dx}{dt} = kx, \ k > 0$$

Мы получили простейшую модель роста населения Мальтуса. Очевидно, решение $x(t) = x_0 e^{kt}$. Проблема с такой моделью состоит в том, что количество людей дискретно, а найденная нами функция непрерывна. Корректировка состоит в том, что x(t) понимается в смысле *плотности населения*. **Пример.** Рассмотрим более интересное уравнение (уравнение Бернулли, оно же логистическое уравнение): $\frac{dx}{dt} = k(x)x$. Допустим, что k(x) - линейная убывающая функция. Тогда $\frac{dx}{dt} = (k_0 - \frac{k_0 x}{h})x$. (Здесь $k_0 = k(0)$, $h = k^{-1}(0)$). Получаем нелинейное уравнение, в котором переменные не разделяются. Теперь можно рассмотреть подробнее поле направлений. Пусть Γ_0 - множество точек (t,x), в которых $\frac{dx}{dt} = 0$, то есть векторы поля параллельны оси Ot. Решим уравнение $0 = x(k_0 - \frac{k_0}{h}x)$.

Получаем следующее поле: рис 2. Кривые, заключенные в середине, называются логистическими кривыми. "Крутизна"логистической кривой зависит от параметра k_0 . Данное уравнение было рассмотрено Ферхюльстом как уточнение модели Мальтуса.

1.3 Метод изоклин

Метод изоклин заключается в рисовании и исследовании графиков решений уравнения 1.2.

Определение 5 Изоклина наклона α - геометрическое место точек Γ_{α} ,

в которых касательная к решению уравнения 1.2 имеет наклон, равный α .

To есть, Γ_{α} : tg $\alpha = f(t, x)$

Опишем алгоритм метода изоклин на примере. Пусть задано уравнение $\frac{dx}{dt} = \frac{x}{t}$.

- 1. Найдем $\Gamma_0:0=\frac{x}{t}$ (то есть x=0 $(t\neq 0)$) Найдем $\Gamma_{90}:\frac{t}{x}=0$, то есть t=0 $(x\neq 0)$ Получили, что эти гаммы есть координатные оси.
- 2. Определим области с постоянным знаком $\frac{dx}{dt}$ (среди тех, на которые плоскость разбивается изоклинами)
- 3. Исследуем симметрии уравнений, например относительно $x \to -x, t \to -t$ (или одновременного применения). Эти симметрии эквивалентны отражению относительно осей.
- 4. Нахождение точек перегиба и областей выпуклости, вогнутости интегральных кривых.
- 5. Приближенное построение интегральных кривых (то есть решений уравнения).

Замечание. Не все интегральные кривые являются решениями. Так, в рассмотренном примере ось Ox - интегральная кривая, но она очевидно не является решением (так как не является функцией).

Метод изоклин является качественным, и он не дает более подробной информации о геометрии кривых. В данном конкретном примере интегральные кривые - в точности прямые, проходящие через точку (0,0), поскольку мы заметили, что в каждой точке направление касательной к интегральной кривой совпадает с прямой, соединяющей эту точку и начало координат.

Пример. Немного изменим уравнение: $\frac{dx}{dt} = -\frac{x}{t}$. Главные изоклины точно такие же, как у предыдущего, а вот знаки в координатных четвертях меняются. Поле направлений выглядит совершенно по-другому, в нем гиперболы.

Пример. Получим уравнение окружности с помощью ОДУ, исходя из следующего свойства: касательная перпендикулярна радиусу. То есть мы имеем некоторое поле направлений, исходя из которого можно восстановить ДУ: $\operatorname{tg} \alpha = \frac{dy}{dx}$, $\operatorname{tg} \beta = \frac{y_0}{x_0}$ Поскольку $\alpha = \beta + 90$, имеем $\operatorname{tg} \alpha = \operatorname{tg}(\beta + 90) =$

 $-\frac{1}{\lg\beta}$. В итоге уравнение имеет вид $\frac{dy}{dx}\big|_{x=x_0}=-\frac{x_0}{y_0}$ или, если сотрем нолики (поскольку свойство универсально)

$$\frac{dy}{dx} - \frac{x}{y}$$

Заметим, что это же уравнение можно получить дифференцированием обычного уравнения окружности. Решая его, в качестве параметра вылезет чтото, отвечающее за радиус.

Посмотрим на изоклины этого уравнения: РИС6. Ещё по приколу можно посчитать изоклины на 45^0 .

1.4 Практика

Пример (№17). Составим уравнение по решению: $y = e^{cx}$, $y' = ce^{cx}$. Имеем $c = \frac{\ln y}{x}$, значит, $y' = \frac{\ln y}{x}e^{\ln y}$. **Пример** (№25). Дано семейство функций $y = ax^2 + be^x$, $y' = 2ax + be^x$,

Пример (№25). Дано семейство функций $y = ax^2 + be^x$, $y' = 2ax + be^x$, $y'' = 2a + be^x$. Найдем ДУ, решениями которого они являются. Так как у нас два параметра: a и b, то и уранвение будет второго порядка. Имеем

$$y - y'' = 2a(x - 1) \implies a = \frac{y' - y''}{x - 1}$$

$$y'' = \frac{2(y' - y'')}{2(x - 1)} + be^x \implies \frac{1}{e^x} (y'' - \frac{y' - y''}{x - 1}) = b$$

$$y = \frac{y' - y''}{2(x - 1)} x^2 + (y'' - \frac{y' - y''}{x - 1})$$

Возникает вопрос: а единственно это решение? Здесь мы пользуемся теоремой о неявной функции.

Пример (№30). Составим уравнение для окружностей, центры которых лежат на y = 2x. Уравнение окружностей $(x - x_0)^2 + (y - 2x_0)^2 = 1$. Ответом должно быть однопараметрическое семейство решений, которые соответствуют различным положениям центра на прямой. Дифференцируем:

$$2(x - x_0) + 2(y - 2x_0)y' = 0 \implies x_0 = \frac{x + yy'}{1 + 2y'}$$

Подставим выражение для параметра обратно в уранвение:

$$(x - \frac{x + yy'}{1 + 2y'})^2 + (y - 2\frac{x + yy'}{1 + 2y'})^2 = 1$$

Пример (№71). Найдем кривые, касательные которых заметают одинаковые площади под своим графиком. Пусть f(x) = y - искомая кривая. Её производная не может быть нулевой, иначе она не образует треугольник с осью абсцисс.

Фикисруем точку x_0 . Получаем условие: $\frac{y^2(x_0)}{2y'(x_0)} = a^2 \implies y' = \frac{y^2}{2a^2}$. Если производная отрицательная, то в этой формуле должен вылезти минус (и формально мы имеем два случая, поэтому

$$y' = \pm \frac{y^2}{2a^2}$$

Проинтегрируем (переменные разделяются): $\frac{1}{y} = \pm \frac{1}{2a^2}x + C$ Итак,

$$y = \frac{2a^2}{2a^2C \pm x}$$

Пример (№73). Ещё одна геометрическая задачка. Беглый анализ: производная не равна нулю. Уравнение касательной: $y = y'(x_0)(x - x_0) + y_0$. Точка пересечения с осью абсцисс: $x_k = \frac{-y_0}{y'(x_0)} + x_0$. Уравнение нормали: $y = -\frac{1}{y'}(x - x_0) + y_0$. Точка пересечения нормали с осью абсцисс: $x_n = y_0y' + x_0$. Диффур снова распадается на два случая... $|KN| = |x_k - x_n| = |\frac{y}{y'}$. Рашаем дома кароч.

1.5 Мини-рассказ про число е

Архимед в общем-то знал, что при умножении показатели степеней складываются. Это легко получить из анализа обычной геометрической пргрессии. В XV веке начали торговать, используя сложные проценты. Возник вопрос, можно ли полутать бесконечное количество денег при уменьшении периода факторизации. Какой-то челик (Саймон вставить фамилию) решил написать таблицу сложных процентов, чтобы полутать денег с её использования, и оказалось, что ответ на предыдущий вопрос отрицательный. Иоста Бюрге (помощник Кеплера) посмотрел на таблицы и полутал с них инфу о том, что с их помощью можно перемножать огромные числа. Джон Непер составил более юзабельные таблицы, ввел понятие логарифма, и кароч дальше вводим предел для натуральных чисел, переходим к непрерывной хрени...

Теперь фокус:
$$e^k = \lim_{n \to \infty} (1 + \frac{1}{n})^{nk} = (1 + \frac{k}{m})^m = \sum_{i=0}^m C_m^i(\frac{k}{m})^i = \sum_{i=0}^m \frac{k^i}{i!}$$
. Эту

хрень придумал Бернулли, и она сходится к e быстрее обычного предела. Можно это положить за определение e^x , и мгновенно распространить на любые действительные показатели степеней.

2 Элементарные методы интегрирования ДУ

2.1 Уравнения с разделяющимися переменными

Определение 6 Уравнение с разделяющими переменными - уравнение ви- ∂a

$$\frac{dx}{dt} = f(x)g(t) \tag{3}$$

где f,g непрерывны на $x \in (a,b), \ t \in (\alpha,\beta)$

Как решать такие уравнения? Алгебраическая нтуиция подсказывает, что надо перенести дифференциалы к своим функциям и проинтегрировать. Но это ещё надо обосновать. Сделаем следующее:

- 1. Найти все $x_*: f(x_*) = 0$. Тогда $x = x_*$ решение-константа.
- 2. Пусть x_*^i, x_*^j такие, что $f(x_*^i) = f(x_*^j) = 0$ и $\forall x \in (x_*^i, x_*^j) : f(x) \neq 0$. Тогда уравнение 3 эквивалентно уравнению

$$\frac{dx}{f(x)} = g(t)dt$$

Эту штуку можно проинтегрировать с обеих сторон. Результат непрерывен и не обращается в ноль. Значит, по теореме о неявной функции найдется решение. $\frac{dF}{dx} = \frac{1}{x}$ (решение в области $(\alpha, \beta) \times (x_*^i, x_*^j)$).

3. Выписать решение на каждом интервале (x_*^i, x_*^j)

Других решений не существует. Почему? Допустим, существует другое решение. Оно не может быть константой, так как все константы были получены в п.1. Если она

Пример. Решим уравнение $\frac{dx}{dt}=0$. Решение-константа: x=0. Теперь рассмотрим два интервала: x<0 и x>0. Если x<0, имеем уравнение

$$\frac{1}{x}\frac{dxdt}{dt} = dt$$

Интегрируем:

$$\int \frac{dx}{x} = \int dt$$

Получаем, что $\ln |x| = t + C$. Выражаем искомую функцию (не забыв, на каком промежутке мы рассматриваем функцию, и раскрыв модуль соответственно):

$$x = -Ce^t, C > 0$$

Для интервала x>0 точно такой же порядок действий, только получим другой знак. Итак, множество решений:

$$x = Ce^t, C \in \mathbb{R}$$

2.2 Уравнения, приводящиеся к уравнению с разделяющимися переменными

Определение 7 Уравнение, приводящееся к уранвению с разделяющмися переменными - уравнение вида

$$\frac{dx}{dt} = f(at + bx + c) \tag{4}$$

Давайте решим его.

1. Введем замену z(t) = at + bx + c. Имеем

$$\frac{dz}{dt} = a + b\frac{dx}{dt}$$

Получаем уравнение с разделяющимися переменными.

$$\frac{dz}{a+f(z)} = dt$$

Пример. Решим уравнение $\frac{dx}{dt}=\cos(x+t)$. Замена $z=x+t, \ \frac{dz}{dt}=1$. Уравнение имеет вид

$$\frac{dz}{dt} = \frac{dx}{dt} + 1$$

Найдем $\cos z_* + 1 = 0$: это, очевидно, $\pi + 2\pi k$, $k \in \mathbb{Z}$ Свели задачу кпрошлому пункту

2.3 Однородные уравнения

Сначала докажем, что два определения однородного уравнения эквивалентны.

Определение 8 Однородным называется уравнение вида

$$\frac{dx}{dt} = f\left(\frac{x}{t}\right) \tag{5}$$

Это уравнение инвариантно относительно замены $x \mapsto kx, \ t \mapsto kt$. Геометрически это означает, что совокупность интегральных кривых инвариантно относительно преобразования $\theta(x,y)=(kx,ky)$. Из этого следует, что если мы найдем одно решение, то мы найдем всю совокупность ему подобных. Вставить картинку.

Определение 9 (вспомогательное)

Уравнение в форме дифференциалов: M(x,y)dx + N(x,y)dy = 0.

Это таже форма, что и $\frac{dy}{dx} = f(x,y)$, поскольку $\frac{dy}{dx} = -\frac{M(x,y)}{N(x,y)}$. Обратно, -f(x,y)dx+dy=0. Уравнение в форме дифференциалов имеет чуть большее множество решений.

Определение 10 Уравнение в форме дифференциалов называется однородным, если

$$M(kx, ky) = k^n M(x, y)$$

$$N(kx, ky) = k^n N(x, y)$$

п называется степенью однородности.

Теорема 1 Определения 5 и 10 эквивалентны.

Доказательство. $1 \Rightarrow 2$. $\frac{dy}{dx} = f(\frac{y}{x})$

 $2\Rightarrow 1.$ Пусть дано уравнение в форме дифференциалов. Подставим k. При $x\neq 0$ Имеем

$$\frac{dx}{dy} = -\frac{k^n M(x, y)}{k^n N(x, y)} = -\frac{M(kx, ky)}{N(kx, ky)} = -\frac{M(1, \frac{y}{x})}{N(1, \frac{y}{x})} = f(x)$$

Пример. $M = x^2 + y^2$

Пример (№31). Найти уравнение, решение которых - параболы с осью,

параллельной оси ординат и касающиеся прямых $y=0,\ y=x$. Во-первых, поймем, как выглядит уравнение такой параболы. Исходя из геометрии, получим, что уравнение параболы, удовлетворяющее первому условию, имеет вид $y=ax^2+bx+\frac{b^2}{4a}$, а первому и второму - $y=ax^2+\frac{1}{2}x+\frac{1}{16a}$. Остался один параметр \Rightarrow уравнение первого порядка. Подставляем и хаваем ответ бесплатно:

$$y = \left(\frac{y' - \frac{1}{2}}{2x}\right)x^2 + \frac{1}{2}x + \frac{2x}{16y' - 8}$$

Пример (№72). Найти линии, у которых треугольники, образованные касательными, осью ОХ и точкой касания, имеют одинаковую сумму катетов. Из геометрических соображений имеем уравнение

$$\frac{|y|}{|y'|} + |y| = b = const$$

Раскрываем модули. В простейшем случае имеет уравнение с разделяющимися переменными.

$$\frac{dy}{dx} = \frac{y}{b - y}$$

Остальные уравнения такие же в принципе. Так шо это идет в дз Его легчайшее (и, видимо, общее) решение: $x+C=\pm b\ln|y|\pm y$

Пример (№76). Геометрическая интуиция не должна подводить нас. Вставить картинку. Есть кароч такая формула: $\operatorname{tg} \gamma = \frac{r}{r'}$

3 Однородное уравнение

$$\frac{dx}{dt} = f(\frac{x}{t})$$

Как искать его решение? Заменой $u(t)=\frac{x}{t}$. Тогда уравнение перепишется в виде $\frac{dx}{dt}=\frac{du}{dt}t+u$. В нем переемнные разделяются: $\frac{du}{f(u)-u}=\frac{dt}{t}$. Итак, типы уравнений:

- 1. С разделяющимися переменными
- 2. Приводящиеся к виду $\frac{dx}{dt} = f(ax + bx + c)$
- 3. Првиодящиеся к виду $(a_1x + b_1t + c_1)dx + (a_2x + b_2x + c_2)dt = 0$

Подумаем, можно ли это последнее привести к однородному. Добавим условие $c_1^2+c_2^2\neq 0$ (иначе система уже однородна). В общем, если эти две прямые пересекаются в точке (x_*,t_*) , то можно ввести новые переменные, передвинув эту точку в начало координат: $x\mapsto x-x_*,\ t\mapsto t-t_*$. Тогда система перепишется без $c_1,\ c_2,$ и таким образом будет однородной. Если прямые не пересекаются, то прямые лиюо совпадают, либо параллельны. Тогда введем замену (для любой прямой) $z(t)=a_1x+b_1t+c_1$. Так как прямые параллельны, то $\frac{a_1}{a_2}=\frac{b_1}{b_2}=k$, значит, мы можем выразить вторую прямую: $a_2x+b_2t+c_2=\frac{1}{k}(a_1x+b_1t+kc_2)=\frac{1}{k}(z-c_1+kc_2)$. Уравнение приводится к виду $z(t)dx+\frac{1}{k}(z-c_1+kc_2)dt=0$. Но у нас все равно многовато переменны. Выразим dx через z:

$$z(\frac{dz - b_1 dt}{a_1}) + \frac{1}{k}(z - c_1 + kc_2) = 0$$

Умножим на a_1k :

$$kzdz = kb_1zdt - a_1zdt - a_1(kc_2 - c_1)dt$$

Домножим на $\frac{1}{kzdt}$:

$$\frac{dz}{dt} = ((b_1 - \frac{a_1}{k})z - a_1(kc_2 - c_1))\frac{1}{z}$$

Finally, уравнение с разделяющимися переменными! ПОБЕДА!

3.1 Обобщенно-однородное уравнение

Определение 11 Обобщенно-однородное уравнение - уравнение вида

$$M(x,t)dx + N(x,t)dt = 0$$

причем M, N - такие. что $\exists n \in \mathbb{R}$: если $x = z^n(t)$, то уравнение $M(z^n, t)nz^{n-1}dz + N(z^n, t)dt = 0$ однородно.

Пример. Испортим однородное уравнения, чтобы сделать его обощеннооднородным. Роман придумал, чел харош.

Сведем и этого зверя к разделяющимся переменным.

$$\begin{cases} n(kz)^{n-1}M((kz)^n, kt) = k^m M(z^n, t)nz^{n-1} \\ N((kz)^n, kt) = k^m N(z^n, t) \end{cases}$$

3.2 Уравнение в полных дифференциалах

Напомним, что полный дифференциал dF(x,y) C^1 -гладкой функции равен $\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy.$

Определение 12 Уравнение в полных дифференциалах - уравнение вида

$$dF(x,y) = 0, \ F \in C^2(\Omega), \ \Omega \subset \mathbb{R}^2$$

Если мы знаем саму функцию, то решение находится мгновенно: dF(x,y) = const. Правда, оно неявное. Выразим y = y(x) по теореме о неявной функции.

Пример. $x^2 \sin t dt + 2x \cos t dx = 0$

Уравнение является уравнение в полных дифференциалах, если существуют такие функции, что $M=\frac{\partial F}{\partial x},\ N=\frac{\partial F}{\partial y}$

Теорема 2 (необходимое условие представления в полных дифференциалах)

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial y}$$

Достаточное условие - $M_y = N_x$ в односвязной области

Доказательство. \square

Как подбирать такие функции? Мы знаем, что $\frac{\partial F}{\partial x} = M(x,y)$. Проинтегрируем это равенство по x. Имеем $F = \int M(x,y)dx + \varphi(y)$. Проделаем то же самое по переменной y: $\frac{\partial F}{\partial y} = \frac{\partial}{\partial y}(\int M(x,y)dx) + \varphi' = N(x,y)$, откуда $\varphi = \int \left(N - \frac{\partial}{\partial y}(\int Mdx)\right)dy$. Чтобы проверить себя при решении, помним, что φ не зависит от x! Итак,

$$F = \int M(x,y)dx + \int \left(N - \frac{\partial}{\partial y} \left(\int Mdx\right)\right) dy$$

3.2.1 Геометрический смысл решения уравнения в полных дифференциалах

Так как z=z(x,y) - какая-то поверхность, то запись z=const - это линии уровня, которые можно спроецировать на плокость переменных и получить интегральные кривые.

Пример (модель Лотки-Вольтерра). Пусть x(t) - плотность карасей, y(t) - плотность щук в некотором пруду. Щуки сдерживают рост карасей, но от количества карасей зависит также и количество щук. Запишем систему:

$$\begin{cases} \dot{x} = x(a - by) \\ \dot{y} = y(-c + ex) \end{cases}$$

Лотка придумал эту систему для биоценозов, а Вольтерра - для химических реакций.

Давайте решим эту систему. Её расширенное фазовое пространство, вообще говоря, трехмерное, поэтому будем рассматривать фазовые кривые проекции интегральных на плоскость независимых параметров. Они ориентированы в направлении роста параметра t. Найдем эти кривые, найдя решение уравнения $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-cy+exy}{ax-bxy}$. Переменные разделяются:

$$\frac{(a-by)dy}{y} = \frac{(-c+ex)dx}{x}$$

Представим его в полных дифференциалах:

$$d(a \ln y - by + c \ln x - ex) = 0$$

Значит, решение имеет вид $a \ln y - by + c \ln x - ex = h = const$. Выглядит очень сложно, но давайте попробуем построить изолинии. Введм функцию $F = \ln (y^a x^c) - by - ex$, и поищем её изолинии. Сначала найдем критические точки: $(x_*, y_*) = (\frac{c}{e}, \frac{a}{b})$ (получилась единственная точка). Определим тип критической точки (составим гессиан, посчитаем его знакоопределенность); получим, что это точка максимума. Линии уровня - какие-то окружности/эллипсы.

Упражнение. Доказать, что фазовые кривые замкнуты.

Теперь нам надо понять, куда закручиваются эти линии, как они ориентированы. Они закручиваются против часовой стрелки вокруг критической точки, кстати, область решения - первая координатная четверть. Чтобы избежать проблем с дискретностью, наши переменные - это плотность населения пруда.

3.3 Автономные уравнения

Определение 13 Автономное $\mathcal{A}Y$ - дифференциальное уравнение, правая часть которого не зависит от времени.

Автономные уравнения не могут быть динамическими системами, так как они не зависят от времени, но можно искусственно этого достичь.

Пример. Нелинейный консервативный осциллятор. Рассмотрим маятник с координатами φ - отклонение от положения равновесия. Рассмотрим плоские колебания маятника массой m и длиной l. При повороте на малый угол движение можно представить как прямолинейное движение по касательной. Запишем второй закон Ньютона в проекции на касательную:

$$\vec{\tau}: \ m\frac{d^2x}{dt^2} = -mg\sin\varphi$$

Пусть Δx - длина дуги окружности, примерно равная малой части касательной. Тогда $\Delta x = l\Delta \varphi + o(\Delta \varphi)$. Получим уравнение $\frac{fx}{dt} = l\frac{d\varphi}{dt}$. Finally,

$$ml\frac{d^2\varphi}{dt^2} = -mg\sin\varphi$$

- уравнение колебания маятника. Оно нелинейное из-за синуса. Оно имеет порядок 2, значит, нам надо зафиксировать начальные условия: $\varphi(0)$, $\dot{\varphi}(0)$. Уравнение тогда превратится в систему

$$\begin{cases} \dot{\varphi} = \psi \\ \dot{\psi} = -\omega^2 \sin \varphi \end{cases}$$

Кстати, если мы напишем функцию Лагранжа и напишем уравнение Лагранжа для него, то получим это же уравнение.

Начнем решение. Сделаем замену $\dot{\varphi} = \psi$. Теперь введем фазовое пространство угол-скорость таким образом, чтобы близкие точки были близки. В угловых координатах мы склеим точки $\pi, -\pi$ у координат углов (точнее, создадим факторпространство по отношению $(\varphi, \psi) \sim (\varphi + 2\pi k, \psi)$). Получим, что фазовое пространство - цилиндр. Любая замкнутая кривая - это некоторая траектория (вообще говоря, определляемая уравнением). На цилиндре есть два типа замкнутых кривых - стягиваемые в точку и нестягиваемые. Вторые отвечают за движение через верх.

Продолжаем решение. Из системы имеем $\frac{d\psi}{d\varphi} = -\frac{\omega^2 \sin \varphi}{\psi}$. Полная энергия равна константе: $\frac{m\psi^2}{2} + \frac{mg}{l}(1 - \cos \varphi) = h$. Это мы вывели из формы уранвения в полных диференциалах. В общем, решаем. Получим

$$\varphi = \pm \sqrt{\frac{2}{m} \left(h - \frac{mg}{l} (1 - \cos \varphi) \right)}$$

Нарисуем фазовые траектории, и ещё функцию $F(\varphi) = \frac{mg}{l}(1-\cos\varphi)$. Уровни постоянной энергии - одномерные торы. Как и обычно с функцией Гамильтона. Из анализа фазовых траекторий можно выяснить, что период колебаний растет по мере увеличения энергии. Также есть два состояния равновесия: верхнее (неустойчивое) и нижнее (устойчивое).

Уравнения и ряды Тейлора

Пусть $\frac{dx}{dt} = f(t,x)$. Рассмотрим $x(t_0) = x_0$. Разложим в ряд Тейлора: $x(t) = x(t_0) + \frac{dx}{dt}(t_0)(t-t_0) + o(t-t_0)$. Отбросив члены высшего порядка (прямо как топовые физики), получим приближенное решение. Приближенные решение можно итерировать, и это будет широко известный метод Эйлера (первого порядка). $t_{k+1} = t_k + h$, $x_{k+1} = x_k + f(t_k, x_k)h$

4.1 Практика

Пример (№111). $(y + \sqrt{xy})dx = xdy$. Уравнение однородно (проверим умножением на k). Значит, делаем замену $u(x) = \frac{y}{x}$. Имеем $dy = u \cdot dx + du \cdot x$. Переменные разделяются: $\frac{dx}{x} = \frac{du}{\sqrt{u}}$

Пример (№113). $(2x-4y+6)\dot{dx}+(x+y-3)dy$. Переносим начало координат в точку пересечения.

Пример (№126). $y' = y^2 - \frac{2}{x^2}$. Это - обобщенно-однородное уравнение, то есть приводится к однородному заменой $y=z^m(x).$ $y'=mz^{m-1}z$ Далее $mz^{m-1}z=z^{2m}-\frac{2}{x^2}$ Теперь уравнение однородно. Введем замену $\frac{z}{x}=u,\ z=ux.$ Получим $u'x+u=-1+2u^2$

Пример (№128). $\frac{2}{3}xyy' = \sqrt{x^6 - y^4} + y^2$. Пусть $y = z^m$. Идея: сделать так, чтобы под корнем степень у x и y была одинаковой.

Пример (No) $2xydx + (x^2 - y^2)dy = 0$. Подберем функцию, полным дифференицалом которого является это выражение; получим $F(x,y) = x^2y - \frac{1}{3}y^3$. Решние: F = C = const

Пример (№192). $(1 + y^2 \sin 2x) dx - 2y \cos^2 x dy$. Мы должны показать, что вторые производные равны. Тогда это значит, что $F_{xy} = F_{yx}$, и такая функция вообще существует на некотором диске (где правая часть не обращается в ноль). Интегируем два раза, и найдем эту функцию: F(x,y) = $x-y^2\frac{1}{2}\cos 2x-\frac{y^2}{2}+C_0$. Итак, ответ: F=const Пример (№202). $y^2dx+(xy+\operatorname{tg} xy)dy=0$. Является ли однородным, в

полных дифференциалах? Давайте раскроем скобки и сгруппируем: $y(ydx+xdy)+\operatorname{tg} xydy$. Это то же, что и $\frac{d(xy)}{\operatorname{tg} xy}+\frac{dy}{y}=0$. Домножим на $\frac{1}{y\operatorname{tg} xy}$ и хаваем уравнение в полных дифференицалах бесплатно. То, на что домножили - интегрирующий множитель.

4.2 Численные методы

Сегодня поговорим о численных методах решения дифференциальных уравнений. Именно, задача Коши

$$\begin{cases} \frac{dx}{dt} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

имеет решение какое-то. Поскольку

$$x_{k+1} = x(t_{k+1}) = x(t_k + h) = x(t_k) + \frac{dx}{dt} \Big|_{t_k} h + \frac{d^2x}{dt^2} \Big|_{t_k} \frac{h^2}{2} + o(h^3)$$

Если мы рассмотрим конечные приращения h, то получим итеративную формулу

$$x_{k+1} = x_k + f(t_k, x_k)h$$

- метод Эйлера первого порядка, основанный на разложении функции в ряд Тейлора и отбрасывании членов высшего порядка. Таким образом, можно рассмотреть более точные методы, основынные на использовании членов высшего пордяка. Например, $\frac{d^2x}{dx} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{f(t_k + h, x_k + f(t_k, x_k)h) - f(t_k, x_k)}{h}$. Из этого мы получим метод Штермера. И так далее. Метод Рунге-Кутты - 4го порядка.

Пример. Супер-простая функция:

$$\begin{cases} \frac{dx}{dt} = x \\ x(0) = 1 \end{cases}$$

Это - определение обычной экспоненты. Решим методом Эйлера. Возьмем $t_1=h$. Далее, $x_1=1+f(t_0,x_0)\cdot h=1+h$. Далее, $t_2=t_1+h=2h$, $x_2=x_1+f(t_1,x_1)\cdot h=1+h+(1+h)h=(1+h)^2$. В общем виде, в точке $x_{k+1}=x_k(1+h)=(1+h)^{k+1}$ функция будет принимать значение $x_n=(1+h)^n=\left(1+\frac{T}{n}\right)^n\to e^T$. Неслучайно тут вылез замечательный предел - определение экспоненты.

5 Теоремы о существовании и единственности решения

Эту задачу можно решить с помощью ф.п. Пикара. Доспустим, у нас есть решение задачи Коши в виде непреывной функции f(t,x). Тогда мы можем проинтегрировать:

$$\int \frac{dx(t)}{dt} \equiv \int f(t, x)dt$$

Справа стоит набор первообразных:

$$x \equiv x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau$$

Теорема 3 (лемма)

Задача Коши эквивалента решению интегрального уравнения

Доказательство. Пусть x(t) - решение задачи Коши. Тогда при подставновке в уравнение имеем

$$\frac{dx(t)}{dt} \equiv f(t, x(t))$$

Интегрируя, получим $x(t)=x_0+\int\limits_{t_0}^tf(\tau,x(\tau))d\tau$ - решение интегрального уравнения.

Обратно, пусть x(t) - непрерывное решение интегрального уравнения. Тогда, взяв производную, получим

$$\frac{dx}{dt} = f(t, x(t))$$

Подставив $t=t_0$ в интегральное уравнение, получим $x(t_0)=x_0$, т.е. x(t) - решение д.у. \square

На самом деле, это обман, так как мы прсото записали в другом виде все так же не решаемую задачу. Запишем последовательность Пикара $\{x_k(t)\}$:

$$x_0(t) = x_0, x_{k+1}(t) = x_0 + \int_{t_0}^t f(\tau, x_k(\tau)) d\tau$$
. Теперь нам надо бы доказать, что эта последовательность сходится к решению. Хм, где же нас обманули...

Теорема 4 (Коши-Пикара, или о существовании и единственности задачи Коши)

Пусть f(t,x), $\frac{\partial f}{\partial x}$ непрерывны в области $D \subset \mathbb{R}^2$. Тогда для любой точки $(t_0,x_0) \in D$ существует решение x(t) задачи Коши, определенное на отрезке $I_{\delta} = [t_0 - \delta, t_o + \delta], \delta = \frac{r}{\sqrt{1+m^2}}$, где r > 0 такое, что $B_r \subset D$ (замкнутый шар), $m = \max|f(t,x)|$, $(t,x) \in B_r$. Кроме того, если $\tilde{x}(t)$ другое решение задачи Коши, определенный на интервале $[t_0 - \tilde{\delta}, t_0 + \tilde{\delta}]$, то существует такое $\delta^* \in (0, \min(\delta, \tilde{\delta}))$, что $x(t) = \tilde{x}(t)$ для $t \in [t_0 - \delta^*, \delta^*]$.

Доказательство. Докажем, что последовательность Пикара корректно определена и её предел - непрерывная функция. Именно, каждый раз, когда мы вычисляем x_k , она непрерывна и не выходит за пределы области D, и поэтому снова интегрируема.

Рассмотрим

$$|x_1(t) - x_0(t)| = \left| \int_{t_0}^t f(\tau, x_0) d\tau \right| \le \left| \int_{t_0}^t m \, d\tau \right| \le m|t - t_0| \le m \frac{r}{\sqrt{1 + m^2}} \le r$$

- значит, график функции лежит в B_r , пока $t \in I_\delta$. По индукции доказывается, что $|x_k-x_0|\leqslant r$, значит, все эти приближения лежат в шаре и непрерывны. Потому что у первообразной есть производная, значит она непрерывна. Итак, последовательность Пикара корректно определена и её члены - непрерывные функции.

Докажем, что последовательность сходится. Рассмотрим ряд $x_0(t) + x_1(t) - x_0(t) + x_2(t) - x_1(t) + \dots + x_k(t) - x_{k-1}(t) + \dots$ Частичные суммы S_n этого ряда сумма этого ряда как раз равны x_n . Если мы докажем, что если ряд сходится равномерно, то и последовтаельность Пиакара имеет непрерывный предел. Имеем $|f(t,x)-f(t,\tilde{)}| \leqslant L|\tilde{x}-x|$, где $L=\max\left|\frac{\partial f}{\partial x}(t,x)\right|$, $(t,x) \in B_r$.

Итак,
$$|x_1 - x_0| \le m|t - t_0|$$
. Далее $|x_2 - x_1| \le \left| \int_{t_0}^t (f(\tau, x_1(\tau)) - f(\tau, x_0)) d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0)| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_0(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0}^t |f(\tau, x_1(\tau)) - f(\tau, x_1(\tau))| d\tau \right| \le \left| \int_{t_0$

щимся числовым рядом, следовтаельно, по признаку Вейерштрасса сумма

ряда сходится равномерно:

$$\frac{m}{L} \sum_{n=1}^{\infty} \frac{L^n \delta^n}{n!} \Longrightarrow \frac{m}{L} \left(e^{L\delta} - 1 \right)$$

Обозначим $\lim_{n\to\infty} x_n = x^*(t)$. Тогда $|x^*(t) - x_k(t)| \to 0$. Теперь рассмотрим разницу $\left|\int\limits_{t_0}^t f(\tau, x^*(\tau))d\tau - \int\limits_{t_0}^t f(\tau, x_k(\tau))d\tau\right| \leqslant \int\limits_{t_0}^t L|x^* - x_k|d\tau$. Правая часть стремится к нулю, значит, и левая тоже. Поэтому, переходя к пределу по t при $k\to\infty$ в формуле $x_{k+1}(t)=x_0+\int\limits_{t_0}^t f(\tau, x_k(\tau))d\tau$, имеем $x^*=x_0+\int\limits_{t_0}^t f(\tau, x^*(\tau))d\tau$, то есть x^* - решение интегрального уравнения, а значит и задачи Коши.

Теперь докажем единственность. Пусть на интервале I_{δ}^* определено два решения, x и x^* . Тогда $|x^*(t) - x(t)| \leqslant \left| \int\limits_{t_0}^t f(\tau, x^*(\tau)) - f(\tau, x(\tau)) d\tau \right| \leqslant L \int\limits_{t_0}^t |x^*(\tau) - x(\tau)| d\tau$. Пусть $t > t_0$. Положим $\Delta = \int\limits_{t_0}^t |x^*(\tau) - x(\tau)| d\tau$, тогда $\frac{d\Delta}{dt} \leqslant L\Delta$; $\Delta(t_2) \geqslant \Delta(t_2)$ для всех $t_2 > t_2 \geqslant t_0$. Кстати, $\frac{d\Delta}{dt} \leqslant L\Delta$ Значит, существует инфинум $T = \inf\{t \geqslant t_0\}$. Рассмотрим случай, когда $T = t_0$ (самая жесткая оценка). Если это так, то пусть $(t_0 + \varepsilon) = \Delta_{\varepsilon}$. Тогда $\Delta_{\varepsilon} > 0$. Поставим задачу Коши:

$$\begin{cases} \frac{d\Delta}{dt} = L\Delta \\ \Delta(t_0 + \varepsilon) = \Delta_{\varepsilon} \end{cases}$$

Отсюда $\Delta = \Delta_{\varepsilon}e^{L(t-t_0-\varepsilon)}$. Для всех $t > t_0$, $\Delta(t) \leqslant \Delta_{\varepsilon}e^{L(t-t_0-\varepsilon)}$. Устремим $\varepsilon \to 0$. Тогда и $\Delta(t) = 0$ в пределе. Рассуждение при $t < t_0$ аналогично. \square **Пример.** Что можно сказать о решении задачи Коши для

$$\begin{cases} \frac{dx}{dt} = |x| \\ x(0) = x_0 \end{cases}$$

Теорема Коши-Пикара не работает в нуле, так как там функция не дифференцируема. Но не обманывают ли нас? $||x_1| - |x_2|| \le 1 \cdot |x_1 - x_2|$. Модуль

- липшицева функция, поэтому условия теоремы работают. А если

$$\begin{cases} \frac{dx}{dt} = \sqrt{x} \\ x(0) = x_0 \end{cases}$$

Производная растет неограниченно, функция не липшецева: $|\sqrt{x_1} - \sqrt{x_2}| = \frac{|x_1 - x_2|}{\sqrt{x_1} + \sqrt{x_2}} \leqslant L|x_1 - x_2$ - при приближении к нулю $L \geqslant \frac{1}{\sqrt{x_1} + \sqrt{x_2}}$. Но это только в нуле. А не в нуле можно \Rightarrow решение сущетсвует и единственно. В общем, давайте зарешаем. Получаем $x = \frac{(t+C)^2}{4}, \ t+C>0$. По условию x(0)=0, откуда $x = \frac{t^2}{2}$. Но ведь ещё есть куча решений типа $x(t_0)=0, \ x = \frac{(t-t_0)^2}{4}, \ x = 0$.

Определение 14 Функция $\tilde{x}(t)$ определенная на интервале (a,b), называется продолжением решения вправо, если она совпадает c x(t) на некотором подинтервале.

Теорема 5 (о продолжении решения)

Пусть дано уравнение $\frac{dx}{dt} = f(t,x), \ x(t_0) = x_0, \ \text{функции} \ f(t,x), \ \frac{\partial f}{\partial x}$ непрерывны на компакте $D \subset \mathbb{R}^2$ (причем в D лежит как минимум 1 шар), $x(t,t_0,x_0)$ - решение задачи Коши для $(t_0,x_0) \in IntD$. Тогда существует решение, определенное на отрезке [a,b], причем $(a,\tilde{x}(a,t_0,x_0)), (b,\tilde{x}(b,t_0,x_0)) \in \partial D$. Иначе говоря, решение продолжается на границу компакта.

Доказательство. В силу теоремы о существовании и единственности решения, функция (x, t_0, x_0) определена на отрезке $[t_0 - \delta_0, t_0 + \delta_0]$, где $\delta_0 = \frac{r_0}{\sqrt{1+m^2}} = \frac{\rho(P_1, \partial D)}{\sqrt{1+m^2}}$.

Положим $t_1=t_0+\delta_0,\; x_1=x(t_1,t_0,x_0),p_1(t_1,x_1).$ определим

$$\tilde{x}(t, t_0, x_0) = \begin{cases} x(t, t_0, x_0), & t \in [t_0 - \delta_0, t_0 + \delta_0]; \\ x(t, t_1, x_1), & t \in [t_1 - \delta_1, t_1 + \delta_1]; \end{cases}$$

Если (x_1, t_1) лежит на границе, то все хорошо. Если нет, то будем увеличивать шар, пока не достигнем границы множества (в силу компактности это всегда можно сделать).

Возможен вариант, когда последовательность δ_i стремится к нулю и сама не затрагивает границу компакта. Рассмотрим функцию, определенную на $t \in [t_0 - \delta_0, t + k + \delta_k]$. Последовательность t_k невозрастающая и

ограниченная, поэтому существует и предел b. Функция \tilde{x} определена на объединении интервало $\bigcup_k [t_0 - \delta_0, t_k + \delta_k] = [t_0 - \delta_0, b)$. Воспользуемся непрерывностью функций: пусть $0 < h \ll 1$. Тогда $\forall \alpha, \beta \in (b-h, b): |\tilde{x}(\alpha, t_0, x_0) - \tilde{x}(\beta, t_0, x_0)| \leqslant m|\alpha - \beta| < mh$. Последовательность \tilde{x}_k фундаментальна, значит по критерию Коши у неё есть конечный предел. Положим этот предел значением функции в точке b: $x^* = \tilde{x}(b)$. Тогда функция непрерывна на $[t_0 - \delta_0, b]$. Вспомним про интегральное уравнение: заметим, что $\tilde{x}(a)$ удовлетворяет интегральному уравнению на интервале. Функция, дополненная на конце интервала, непрерывна и также удовлетворяет интегральному уравнению, поэтому в ней есть и производная (по эквивалентности определений).

Покажем, что точка b лежит на границе области D. Предположим противное, тогда она лежит во внутренности D. Тогда она лежит в нем вместе с некоторой 2ε -окрестностью с центром в $p^* = (t^*, x^*)$. Так как точки $p \to p^*$, то все $p_i, i > k$ лежат в ε -шаре точки p^* . Тогда расстояние до границы больше ε , и мы получаем противоречие с тем, что ряд из δ_k сходится и также удален от границы больше чем на ε . Значит, $p^* \in \partial D$. \square

Следствие. Пусть $D \subset \mathbb{R}^2$ - такое неограниченное замкнтуое подмножество плоскости, что для любых $(a,b):D_{a,b}=D\cap\{(t,x):a\leqslant t\leqslant b\}$ компактно, функции $f(t,x),\frac{\partial f}{\partial x}$ непрерывны на D. Тогда решение задачи Коши продолжается либо неограниченно, либо до выхода на границу D. Доказать самостоятельно.

Пример. $x' = t^3 - x^3$. Показать, что любое решение этого уравнения продолжается неограниченно вправо. Нарисуем изоклину x = t. Заметим, что если $t_0 > x_0$, то $x(t, t_0, x_0) \in D$:. Тогда в силу следствия решение продолжается на границу, на граница не достигается, то есть

Пример. $x' = 1 + x^2$. Его решение - $x = \operatorname{tg}(x + C)$, $C = \operatorname{arctg}(x_0) - t_0$, поэтому его нельзя продолжить до бесконечности, так как каждое решение определено на конечном интервале $(C_0 - \frac{\pi}{2}, C_0 + \frac{\pi}{2})$.

5.1 Практика

Пример (№199). $y^2dx - (xy - x^3)dy = 0$. Раскроем скобки и перегруппируем слагаемые: $y(ydx - xdy) - x^3dy = 0$. Поделим все на x^2 , тогда получим: $-d\left(\frac{x}{y} - \frac{x}{y}dy = 0\right)$. Домножая на $-\frac{y}{x}$, получаем $d\left(\frac{1}{2}\left(\frac{y}{x}\right)^2\right) + dy = 0$. Итак,

 $d\left(\frac{1}{2}\left(\frac{y}{x}\right)^{2}+y\right)=0$ В общем, мы нашли интегрирующий множитель методом внимательного взгляда. Ответ: $\frac{1}{2} \left(\frac{y}{x} \right)^2 + y = const.$ Пример (№202). $d(\ln|\sin(xy)|) + \ln|y| = 0.$

Определение 15 Интегрирующий множитель - такая функция $\mu(z(x,y))$, что при домножении на неё уравнение становится уравнением в полных дифференциалах.

Тогда $\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x}$. То есть $\frac{\partial\mu}{\partial z}\frac{\partial z}{\partial y}M = \Pi$ олучаем, что $\frac{d\mu}{\mu} = \frac{N_x - M_y}{z_y M - z_x N} = P(z)$. То есть, если интегрирующий множитель существует, то он удовлетворяет этому условию. Значит, $\mu=e^{\int P(z)dz}$. Пример (№212). $(2x^2y^3-1)ydx+(4x_1^2y^3-1)xdx=0$. Пусть z=xy.

Найдем интегрирующий множитель: $\mu = \frac{1}{(xu)^2}$.

6 Уравнение первого порядка

6.1 Базовые определения

Определение 16 Уравнение

$$\frac{dx}{dt} + a(t)x = b(t) \tag{6}$$

где a,b непрерывны на $t \in (\alpha,\beta)$ (интервал непрерывности), называется линейным ДУ первого порядка. Если при этом $b(t) \not\equiv 0$, то оно называется неоднородным.

Как следствие из теоремы Коши-Пикара, для $\forall t_0 \in (\alpha, \beta), \ \forall x_0 \in \mathbb{R}$ существует и единственно решение задачи Коши.

Замечание. Решение задачи Коши для 6 можно продолжить на весь интервал (α, β) . Если этот интервал конечен, то функции a(t), b(t) ограниченны на нём, то есть $|a(t)x+b(t)| \leq Ax+B$, и решениене выйдет за конус, образованный этой прямой.

Определение 17 Линейныйй ператор - отображение $A: X \to Y$ такое, $umo\ A(x+y) = A(x) + A(y),\ A(\lambda x) = \lambda A(x).$

Пусть $X = C^1(\alpha, \beta)$, $C^0(\alpha, \beta)$ - пространства дифференцируемых и непрерывных функций. Положим $A(x) = \frac{dx}{dt} + a(t)x$. В силу линейности производной, это - линейный оператор. Также и любая линейная комбинация производных (любого порядка) является линейным оператором.

Итак, уравнение 6 в операторной записи эквивалентно Ax = b(t). Обозначим за $x_{o.n.}$ множество решений неоднородного уравнения, $x_{o.o.}$ - множество решений однородного уравнения, $x_{o.n} + x_{o.o}$ - множество вида x + x

Теорема 6 (о структуре решения линейного уравнения) Решение неоднородного уравнения - сумма общего решения однородного уравнения и частного решения.

Доказательство. Пусть $\varphi(t)$ - частное решение однородного уравнения, x_p - частное решение неоднородного уравнения. Применим оператор A к их сумме: $A(\varphi(t)+x_p)=A\varphi(t)+Ax_p=0+b(t)$. Значит, сумма этих функций обращает уравнение в тождество, значит, $\varphi(t)+x_p\in x_{o.n.}$.

Докажем, что других решений нет. Допустим, $\psi(t) \in x_{o.n.}$ таков, что его нельзя представить суммы решений однородного и неоднородного. Рассмотрим $\psi - x_p$ - вычтем частное решение неоднородного. Подставляя в уравнение, получаем $A(\psi - x_p) \equiv 0$, значит, их разность - решение однородного уравнения. Но это противоречит предположению. \square

Как решать линейные уравнения? Сначале решаем однородное уравнение: $\frac{dx}{dt} = -a(t)x$, $x = C(t)e^{-\int_{t_0}^t a(\tau)d\tau}$. Решать неоднородное 3мя способами:

- 1. Угадайка
- 2. Метод Лагранжа вариации постоянных
- 3. Формула Коши (см. справочник).

6.2 Метод Лагранжа

Мы знаем, что $x = Ce^{-\int a(t)dt}$ - решение однородного уравнения. Будем её варьировать, чтобы в уравнении было бы тождество:

$$\frac{d}{dt}\left(C(t)e^{-\int_{t_0}^t a(\tau)d\tau}\right) + a(t)C(t)e^{-\int_{t_0}^t a(\tau)d\tau} = b(t)$$

Дифференцируя, получаем $C'=b(t)e^{-\int\limits_{t_0}^t a(\tau)d\tau},$ откуда

$$C = e^{-\int_{t_0}^t a(\tau)d\tau} \int_{t_0}^t \left(b(s)e^{-\int_{s_0}^s a(\tau)d\tau} \right) ds + C_0 e^{-\int_{t_0}^t a(\tau)d\tau}$$

Значит, мы нашли семейство всех решений неоднородного уравнения, произвольно выбирая C_0 . По предыдущей теореме, этим все решения исчерпываются.

То, что мы получили - это и есть формула Коши. Она нужна в основном для всяких теоретических свойств.

Пример. $\frac{dx}{dt} + \frac{x}{t} = t^2$. Интервал непрерывности - $\mathbb{R} \setminus \{0\}$, поэтому вообщето надо рассматривать два интервала. Решение однородного уравнения: $\frac{dx}{dt} = -\frac{x}{t}, \ x = \frac{C}{t}$. Подумаем, как можно подобрать частное неоднородного уравнения. Поищем в виде $x = at^3$. Тогда при подстановке $3at^2 + t^2 = t^2$, откуда $a = \frac{1}{4}$. Ответ: $x = \frac{t^3}{4} + \frac{C}{t}$.

6.3 Уравнения, приводящееся к линейному

Испортрим уравнение 6, добавив нелинейности:

$$\frac{dx}{dt} + a(t)x = b(t)x^k, \ k \in \mathbb{R} \setminus \{0, 1\}$$

Это - уравнение Бернулли. Если разделим на x^k , получим

$$x^{-k}\frac{dx}{dt} + a(t)x^{1-k} = b(t)$$

Значит, оно сводится к линейному уравнению заменой $z = x^{1-k}$:

$$\frac{1}{1-k}\frac{dz}{dx} + a(t)z = b(t)$$

Рассмотрим уравнение Риккати:

$$\frac{dx}{dt} + a(t)x = b(t)x^2 + c(t), \ c(t) \neq 0, c(t) \in C^0(\alpha, \beta)$$

В общем виде не решается, но можно частное решение угадать. Пусть $x = z + x_p$, где x_p - частное решение. Получим

$$\frac{dz}{dt} + a(t)z + \frac{dx_p}{dt} + a(t)x_p = b(t)x_t^2 + 2zx_pb(t) + c(t)$$

Свели к уравнению Бернулли

$$\frac{dz}{dt} + [a(t) - 2x_p b(t)]z = b(t)z^2$$

Ну зато можно численно и приближенно решать.

Пример (№136). $xy' - 2y = 2x^4$, $x \neq 0$. Разделим на x, свели к линейному (делить на x можно, ибо x не является решением):

$$\frac{dy}{dx} - \frac{y}{x} = 2x^3$$

Общее решение неоднородного уравнения:

$$\int \frac{dy}{2y} = \int \frac{dx}{x}$$

откуда $y=x^2$. Подберем частное решение: $y=ax^4$. Подставляя в уравнение, получим a=1, откуда общее решение $y=x^4+Cx^2$.

Теперь решим методом Лагранжа. Пусть $y = c(x)x^2$. Имеем $c'x^2 + 2xc - 2cx = 2x^3$, откуда $c(x) = x^2 + C_0$. Значит, ответ $y = x^4 + C_0x^2$.

Пример (№149). $y' = \frac{y}{3x-y^2}$. Приведем к линейному (перевернем): $\frac{dx}{dy} = \frac{3x-y^2}{y}$. Общее решение однородного уравнения: $x = Cy^3$. Частное решение поищем в виде $x = ay^2$. Отсюда a = 1, общее решение $x = Cy^3 + y^2$.

Пример (№158). $2y' - \frac{x}{y} = \frac{xy}{x^2-1}$. Домножим на y: $2y'y - x = \frac{xy^2}{x^2-1}$. Замена: $z = y^2$. Тогда уравнение линеаризуется:

$$\frac{dz}{dx} - \frac{xz}{x^2 - 1} = x$$

Общее решение однородного уравнения $z=C\sqrt{x^2+1}$. Метод внимательного взгляда: $z=x^2-1$ - частное решение. Итак, ответ: $z=x^2-1+C\sqrt{x^2+1}$, $y=\sqrt{x^2-1+C\sqrt{x^2+1}}$.

Пример (№164). $(x^2-1)y'\sin y + 2x\cos y = 2x-2x^3$. Наша нейросетка заметила, что здесь есть тригонометрическая замена. Именно, пусть $z = \cos x$. Тогда $(x^2-1)(-z') + 2xz = 2x-2x^3$. Делим на x^2-1 получим однородное.

Пример (№163). $x(e^y - y') = 2$. Введем замену $t = e^y$, получаем $1 - \frac{dt}{dx} \cdot \frac{1}{t^2} = \frac{2}{xt}$. Далее $z = \frac{1}{t}$, и наконец получаем линейное уравнение:

$$1 + \frac{dz}{dx} = \frac{2z}{x}$$

Пример (№167). Уравнение Риккати: $x^2y'+xy+x^2y^2=4$. Частное решение $y=\frac{a}{x}$. Тогда $-a+a+a^2=4$, $a=\pm 2$. Пусть $y=\frac{2}{x}$. Общее решение тогда $y=z+\frac{2}{x},\ y'=z'-\frac{2}{x^2}$. Имеем уравнение Бернулли

$$-z^2 = \frac{5z}{x} + z'$$

Сделаем замену $u=\frac{1}{z}$, получим $\int \frac{du}{u}$

7 Теоремы о непрерывной зависимости задачи Коши

от начальных условий и правой части уравнения.

Дано: уравнение с задачей Коши

$$\begin{cases} \frac{dx}{dt} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

 $f, \frac{\partial f}{\partial x}$ непрерывны в области D. Утверждается, что решение задачи Коши $x = x(t, t_0, x_0)$, определенное на отрезке I = [a, b]. непрерывно по всем аргументам. Из этого следует, что решение при малом изменении начальных условий будет мало отличаться от исходного (разумеется, на конечном интервале).

Обозначим $V_{\rho}=\{(t,x)\in\mathbb{R}^2\mid t\in I, |x-x(t,t_0,x_0)|\leqslant\rho\}$ - цилиндрическая окрестность решения.

Теорема 7 (о непрерывной зависимости)

Пусть $f, \frac{\partial f}{\partial x}$ непрерывны в области V_{ρ} . Тогда для любого ε для любой функции g(t,x), такой, что $g, \frac{\partial g}{\partial x}$ непрерывны в V_{ρ} найдется $\delta(\varepsilon): |x_0-y_0| \leqslant$

 $\delta, |g(t,x)-f(t,x)|\leqslant S.$ Решение y(t) задачи Коши для уравнения $\frac{dy}{dt}=g(t,y)$ продолжается на I и $\forall t\in I: |y(t,t_0,y_0)-x(t,t_0,x_0)|<\varepsilon.$

Иначе говоря, решение, проходящее ближе чем ρ от решения задачи Коши, не выходит из этой ρ -окерстности.

Лемма Гронуолла. Пусть $\varphi(t), \beta(t)$ - непрерывные функции на отрезке $[t_1, t_2]$, причем на отрезке $\beta(t) > 0$ и $\varphi(t) \leqslant \alpha + \int\limits_{t_1}^{t_2} \beta(\tau) \varphi(\tau) d\tau$. Тогда $\varphi(t) \leqslant \alpha e^{t_1}$.

Доказательство. Положим $\Phi(t) = \alpha + \int\limits_{t_1}^{t_2} \beta(\tau) \varphi(\tau) d\tau$, где $\varphi(t) \leqslant \Phi(t)$. Тогда

$$\frac{\partial \Phi}{\partial t} e^{-\int_{t_1}^{t_2} \beta d\tau} - e^{-\int_{t_1}^{t_2} \beta d\tau} \beta(t) \Phi(t) \leqslant 0$$

Все это выражение на самом деле является производной:

$$\frac{d}{dt} \left(\Phi e^{-\int_{t_1}^t \beta d\tau} \right) \leqslant 0$$

Так как производная этой функции отрицательна, то

$$\varphi \leqslant \Phi \leqslant \alpha e^{t_1} \beta d\tau$$

Мы установили равносильность неравенства из условия и неравенства $\frac{d\varphi}{dt} \leqslant \beta(t)\varphi(t)$ \square

Теперь перейдем к доказательству основной теоремы. Поскольку f непрерывна, то она ограниченна на компакте, иными словами

$$\forall (t,x) \in V_{\rho} \ \exists M \geqslant 0, L \geqslant 0 : |f(t,x)| \leqslant M, \ \left| \frac{df}{dx} \right| \leqslant L$$

Значит, эта функция липшицева:

$$|f(t,x) - f(t,y)| \leqslant L \cdot |x - y|, |f(t,x) - g(t,y)| \leqslant \delta$$

Тогда $|f(t,x)-f(t,y)+f(t,y)-g(t,y)| \leq |-(f(t,x)+f(t,y))|+|f(t,y)-g(t,y)| \leq L\cdot |x-y|+\delta.$

Оценим разность $|y(t,t_0,y_0)-x(t,t_0,x_0)|$. По лемме об интегральной форме уравнения, это то же самое, что и

$$\left| y_0 + \int_{t_0}^t g(\tau, y(\tau)) d\tau - x_0 - \int_{t_0}^t f(\tau, x(\tau)) d\tau \right| \leqslant$$

$$\leqslant |y_0 - x_0| + \left| \int_{t_0}^t g(\tau, y(\tau)) d\tau - \int_{t_0}^t f(\tau, x(\tau)) d\tau \right| \leqslant \delta + \left| \int_{t_0}^t (L(|y - x| + \delta)) d\tau \right| \leqslant$$

Пусть решение $y(t, t_0, x_0)$ определено на отрезке $I_1 = [a_1, b_1]$. Продолжим неравенства:

$$\leq \delta(1+(b_1-a_1)) + \left| \int_{t_0}^t L|y-x|d\tau \right|$$

Обозначим $\alpha = \delta(1+(b_1-a_1)), \ \varphi(t) = |y(t,t_0,y_0)-x(t,t_0,x_0)|.$ Применяя лемму Гронуолла, получаем $\varphi(t) \leqslant \alpha e^{L|b_1-a_1|} < \varepsilon_1$ (при $\alpha = \frac{\varepsilon_1}{2e^{L|b_1-a_1|}}$). Таким образом, разность между двумя решениями меньше чем ε_1 на отрезке $[a_1,b_1]$, иными словами $y(t,t_0,y_0)$ лежит в V_{ε_1} -трубочке решения $x(t,t_0,x_0)$. По теореме о продолжении решения, $y(t,t_0,y_0)$ продолжается до выхода на границу $\partial V_{\varepsilon_1}$. Через верхнюю и нижнюю границу часть границы мы не выходим, так как $|y-x|<\varepsilon_1$, значит, $y(t,t_0,y_0)$ продолжается на I. Аналогично, если $t< t_0$. \square

Рис. 1: Теорема о непрерывной зависимости

Следствие. Пусть числовая последовательность $x_0^i \to x_0$ сходится при $i \to \infty$. Тогда $x(t, t_0, x_0^i) \to x(x, t_0, x_0)$. Доказать самостоятельно. Упражнение: доказать теорему о непрерывной зависимости одновременно от t_0 и x_0 . Также доказать следствие о равномерной сходимости.

Как решать Рикатти через Пикара (с оценкой по-7.1грешности)

Рассмотрим уравнение $\frac{dy}{dx}=x-y^2(x),\ y(0)=0.$ Найдем формулу для решения на отрезке $x\in[0,0.5].$ Допустим, решение существует. Запишем последовательность Пикара, определенную рекуррентной формулой $y_{k+1}(x) =$ $\int_{0}^{x} (s-y_k^2(s)ds)$. Посчитаем первые члены: $y_1 = 0 + \int_{0}^{x} sds = \frac{x^2}{2}$, $y_2 = \int_{0}^{x} \left(s - \frac{s^4}{4}\right)ds = 0$ $\frac{x^2}{2} - \frac{x^5}{20}$, $y_3 = \frac{x^2}{2} - \frac{x^5}{20} + \frac{x^8}{160} - \frac{x^{11}}{4400}$. Построим ряд из последовательности:

$$y = y_0 + (y_1 - y_0) + (y_2 - y_1) + (y_3 - y_2)... + a_k$$

Остаток a_k оценивается по формуле $|a_k| \leqslant \frac{M}{L} \cdot \frac{L^k |t-t_0|^k}{k!}$. Рассмотрим шар $B_r = \{|x| \leqslant \frac{1}{2}, y \in [0, \frac{1}{2}]\}$. Тогда постоянные Липшица для функции и её производной равны $M=\max_{B_r}|f(t,x)|,\ L=\max_{B_r}|\frac{\partial f}{\partial x}(t,x)|.$ Задача. Что нам мешает провести через одну точку несколько реше-

ний уравнения $y' = x - y^2$? Тот факт, что тангенс угла наклона задается уравнением однозначно, поэтому трансверсальное пересечение невозможно. А если касательные параллельны? Если такая ситуация имеет место, тогда по теореме о существовании и единственности в этой точке правая часть либо её производная не непрерывны, но это не так. А что, если $y'' = x - y^2$ - уравнение второго порядка? Тогда все-таки ничего неельзя сказать (там есть свои теоремы).

8 Уравнение, не разрешенное относительно производной

8.1 Уравнение первого порядка

Общий вид -

$$F\left(t, x, \frac{dx}{dt}\right) = 0\tag{7}$$

Уравнение нельзя разрешить относительно производной, если $\frac{dx}{dt}$ нельзя выразить единственным образом.

Рис. 2: Уравнение задает поверхность

Допустим, функция $F(t,x,\frac{dx}{dt})=0$ задает какую-то поверхность в \mathbb{R}^3 . Вектор нормали к этой поверхности: $\left(\frac{\partial F}{\partial t},\frac{\partial F}{\partial x},\frac{\partial F}{\partial p}\right)$ (где введено обзначение $p=\frac{dx}{dt}$). Уравнение нельзя разрешить, если этот вектор параллелен плоскости (x,t). Но зато мы можем выразить, например, x от p,t.

кости (x,t). Но зато мы можем выразить, например, x от p,t. Пусть $F, \frac{\partial F}{\partial t}, \frac{\partial F}{\partial x}, \frac{\partial F}{\partial p}$ непрерывны в области $D \subset Otxp$, и в каждой точке хотя бы одна из производных не равна нулю. Тогда по теореме о неявной функции уравнение 7 можно разрешить относительно одной из переменных.

Пример. $x'^2 - x^2 = 0$. Два семейства решений: $x = x_0 e^{\pm t}$. Как видно, в каждой точке пересекаются 2 решения. Для таких уравнений ситуация

с пересечением решений типична, но их количество и взаимный наклон определены в зависимости от вида уравнения.

Определение 18 Особая точка - точка, через которую проходит несколько решений.

Теорема 8 Пусть F непрерывна по всем аргументам, имеющая непрерывные частные производные по x,t и $\frac{\partial F}{\partial x} \neq 0$. Тогда существует одна или несколько функций f(t,x) такие, что $F(t,x,f(t,x)) \equiv 0$, и решение задачи Коши $x(t_0) = x_0$, $x'(t_0) = x'_0$ существует и единственно.

Доказательство. Допустим, решение существует. Рассмотрим полную про-изводную по времени: $\frac{dF(t,x,x')}{dt} = \frac{\partial F}{\partial t} + \frac{\partial F}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial F}{\partial x'} \frac{\partial x'}{\partial t} \equiv 0$ Тогда $\frac{dx}{dt} = \frac{-\frac{\partial F}{\partial t} - \frac{\partial V}{\partial x}}{dt}$ списываем из фихтенгольца Эти условия должны выполняться в окрестности какой-то точки $F(t_0,x_0,x_0')=0$ \square

Теорема 9 Пусть F непрерывна по всем аргументам в области D, имеющая непрерывные частные производные по x, t и $\frac{\partial F}{\partial x} \neq 0$. Тогда для любой точки t_0, x_0, x_0' существует и единственно решение задачи Коши.

Доказательство. 🗆

Определение 19 Регулярная (обыкновенная) точка уравнения F(t, x, x') - точка (t, x), в которой задача Коши (для уравнения, разрешенного или не разрешенного относительно производной) имеет единственное решение. Если решений несколько или ноль, то точка особая (сингулярная).

Теорема 10 Пусть f(t,x) - такая функция, что $F(t,x,f(t,x)) \equiv 0$. Тогда любое решение x(t) уравнения 7, удовлетворяющее условию $\frac{dx}{dt} = f(t,x)$, является решением уравнения $\frac{dx}{dt} = f(t,x)$

Доказательство. Упражнение. \square

8.2 Практика и методы решения

Есть два метода решения уравнения 7:

- 1. Если $\frac{\partial F}{\partial p} \neq 0$, тогда разрешить относительно p и решать несколько уравнений типа $\frac{dx}{dt} = f(t,x)$.
- 2. Метод введения параметра. Если $\frac{\partial F}{\partial p} = 0$, $\frac{\partial F}{\partial x} \neq 0$, то 7 эквивалентно уравнению $x = \varphi(t,p)$, где φ такая функция, что $F(t,\varphi,p) \equiv 0$. Будем считать p параметром и искать решение уравнения 7 в виде x = x(p), t = t(p). Найдя t(p), тогда $x = \varphi(t(p),p)$. Далее, имеем $dx = \varphi_t dt + \varphi + p dp$, $p dt = \varphi_t + \varphi_p dp$. Finally,

$$\frac{dt}{dp} = \left(\frac{\varphi_p}{p - \varphi_t}\right)$$

Пример на метод введения параметра. $x = \dot{x}t - \dot{x}^2$. Введем параметр $p = \dot{x}$ и ищем решение в виде $\begin{cases} x = x(p) \\ t = t(p) \end{cases}$. Имеем уравнение $x = pt - p^2$, которое можно записать в виде dx = dpt + pdt - 2pdp, то есть dp(t-2p) = 0. Оно разбивается в два уравнения: dp = 0 (то есть dp(t-2p) = 0) и dp(t-2p) = 0 (то есть dp(t-2p) = 0).

Это - частный случай уравнения Клеро:

$$x = \frac{dx}{dt}t + \psi\left(\frac{dx}{dt}\right)$$

Сформулируем теорему:

Теорема 11 Общее решение уравнения Клеро - семейство прямых

$$x = Ct + \psi(C)$$

и (возможно, вырожденная) кривая - огибающая для семейства кривых:

$$x = \eta(t)$$

Доказательство. Пусть $p = \dot{x}$, dx = p dt. Тогда $dp(t + \psi_p'(p)) = 0$. Значит, одно из решений - семейство прямых $x = Ct + \psi(C)$. Другое решение получаем из условия $t = -\psi'(p)$. Подставляя её в исходное уравнение, получаем $x = -p\psi'(p) + \psi(p) = \eta(p)$.

Пусть $p=p_0 \; \psi$???????????? Юра скоро допишет

Убедимся в том, что касательные к кривой $x=\eta(t)$ и к прямой $x=C_*t+\psi(C_*)$ в точке (t_0,x_0) совпадают, то есть кривая - действительно огибающая. $\frac{d\eta}{dt}\big|_{t_0}=C_*.$

 $\psi'(p_0)(C_*-p_0)=\psi(C_*)-\psi(p_0)$. Это - уравнение Лагранжа. Значит, уравнение Клеро - частный случай уравнения Лагранжа:

$$x = \alpha(\dot{x})t + \psi(\dot{x})$$

Пример (№292). $y = x(y')^2 - 3(y')^3$. Вводим параметр y' = p, $y = xp^2 - 2p^3$, $dy = dx p^2 + x \cdot 2p dp - 6p^2 dp$. С другой стороны, dy = p dx, поэтому имеем

$$p \, dx = dx \, p^2 + x \cdot 2p \, dp - 6p^2 \, dp$$

Группируя, получаем уравнение $\frac{dx}{dp} = \frac{2xp-6p^2}{p-p^2}$. Значит, введением параметра уравнение Лагранжа приводится к линейному относительно x. Доказать самостоятельно. Итак,

$$\frac{dx}{dt} = x \cdot \frac{2}{1-p} - \frac{6p}{1-p}$$

Общее решение однородного уравнения $\frac{dx}{dt} = \frac{2x}{1-p}$ с разделяющимися переменными - $x_{oo} = \frac{C}{(1-p)^2}$. Частное решение неоднородного уравнения сложно угадать, используем метод Лагранжа: $\frac{C'(p)(1-p)^p + C(p)2(1-p)}{(1-p)^4} = \frac{2C-6p}{1-p}$.

Итак, ответ:

$$\begin{cases} y = xp^2 - 2p^3 \\ x = \frac{-3p^3\tilde{C}}{(1-p)^2} \end{cases}$$

Пример (№268). $x=(y')^3+y'$. Введем параметр $p=y', \frac{dy}{dx}=p,$ $dx=\frac{dy}{p}$. Имеем $x=p^3+p,\ dx=3p^2\,dp+dp$. Заметим, что это можно делать при условии $p\neq 0$. Значит, $y=\frac{3p^4}{4}+\frac{p^2}{2}+C$ - ответ.

Теперь - про особые решения. Найдем такие начальные условия, при которых задача Коши имеет единственное решение. То есть

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ x_0 = y'^3_0 + y'_0 \end{cases}$$

Чтобы получить единственность решения, необходимо проверить условия теоремы Коши-Пикара.

- 1. Покажем, что уравнение $F = x y'^3 y' = 0$ разрешимо относительно производной, при этом функция f(x,y) будет гладкой. Фиксируя точку (x_0,y_0,y_0') и в ней все частные производные и сама F непрерывна и $F_y' \neq 0$, то существует гладкая функция f(x,y): $F(x,y,f(x,y)) \equiv 0$ по теореме о неявной функции.
- 2. Покажем, что функция y' = f(x,y) Кароч в дз отлетает. Че за троллинг? решени

Пример (**№249**). $(y')^3 + y^2 = y \cdot y'(y'+1)$. Группируем и выносим общий множитель два раза, получаем $((y')^2 - y)(y'-y) = 0$. Получаем три

оощии множитель два раза, получаем
$$((y')^2-y)(y'-y)=0$$
. Получаем три уравнения:
$$\begin{cases} y'=y;\\ y'=\sqrt{y};\\ y'=-\sqrt{y} \end{cases}$$
. Решения:
$$\begin{cases} y=y_0e^t;\\ y=\left(-\frac{x}{2}+\frac{c}{2}\right)^2\\ y=\left\{\frac{(x+x_0)^2}{2},\ x< x_0\\ 0,\ x\geqslant x_0 \end{cases}$$
 Найдем

особые точки: y=0, ибо там бесконечно много решений. Вообще говоря, $y=\begin{cases} 0, & x\leqslant x_0 \\ \left(\frac{x-x_0}{2}\right)^2, & x>x_0 \end{cases}$ Проверим условия теоремы для оставшихся точек

(тем доказав, что других особых точек нет). Гладкость функции очевидна, нули производной: $3(y')^2 - y \cdot 2y' - y = 0$

Определение 20 Особое решение - решение состоящее из особых точек