

HALO: Using CM SAF's MAGICSOL method to retrieve global and direct surface radiation from historical geosynchronous observations

R.W. Mueller German Weather Service

D. Lee University of Marburg

Historical solar Analysis from Long-term geosynchronous Orbit

Proof of concept for a global solar ECV data set

Global solar data sets: Requirements

Essential climate variables:

- Relevant base variable
- Long-term record
- High quality measurements

Global solar data sets: Available data

Comparable data sets:

- Helio-Clim
- ERA-Interim
- GEWEX SRB
- ISCCP FD
- FLASHFlux
- CLARA

Global solar data sets: Available data

Comparable data sets:

- Helio-Clim
- ERA-Interim
- GEWEX SRB
- ISCCP FD
- FLASHFlux
- CLARA

Data needed with:

- Robust data requirements
- Long time series available
- High resolution
- Differentiation in diffuse/beam radiation
- Global spatial extent
- Free to use/distribute

Global solar data sets: MAGICSOL

Advantages:

- Robust and well tested
- Low data requirements
- Self-calibration high data availability
- Computation of direct and diffuse radiation
- Relatively low computational costs
- Best validation among comparable data sets
- Open source verifiable, modifiable, freely usable

Historical solar Analysis from Long-term geosynchronous Orbit

HALO: Spatial coverage

Source: Météo-France 2009, composite by author

HALO: Spatial coverage

HALO: Spatial coverage

Temporal coverage

Temporal coverage

Temporal coverage

Year	GOES-W (-135°)	GOES-E (-74°)	MSAT-Prime (0°)	MSAT-IODC (57.5°)	GMS (155°)
	GOES-2	SMS-1	MOZI TIME (V)	M3A1-10DC (01.0)	GIVIS (155)
1978 – 1980	GOES-3	SMS-2+	<u>Meteosa</u> t 1		GMS
1981 – 1985	GOES-4	GOES-5	Meteosat 2		GMS-2
1986 – 1990	Variable – GOES-6 & GOES-7	Variable – GOES- 6 & GOES-7	Meteosat 3		GMS-3
1991 – 1995	_		<u>Meteosa</u> t 4 <u>Meteosa</u> t 5		GMS-4
1996 – 2000	GOES-9	GOES-8	Meteosat 6		
05 1996					GMS-5
2 001 – 20	GOES-10		Meteosat 7	Meteosat-5	GOES-++
7					
2006 – 2010	GOES-11	GOES-12	Meteosat Second Generation	Meteosat 7	MTSAT
2011	GOES-15	GOES-13			

1 month = \sim 3 TB

Chosen test month:

June 2003

HALO: Validation stations

HALO: Validation stations

HALO: Validation scheme

HALO: Validation scheme

HALO: Validation scheme

