CHAPTER

दिष्ट धारा जनित्र (D.C. GENERATOR)

- जनित्र (Generator) :
- यांत्रिक ऊर्जा को विद्यत ऊर्जा में परिवर्तित करने वाली मशीन, जनित्र कहलाती है।
- यदि जनित्र डी. सी. (Direct Current) पैदा करती है तो डी. सी. जनित्र तथा ए. सी. (Alternating Current) पैदा करती है तो अल्टरनेटर (Alternator) कहलाती है।
- छोटे आकार के डी. सी. जिनत्र को डायनेमो (Dynamo) कहते हैं। डी.सी. जिनत्र या डायनेमो, फैराडे के विद्युत चुम्बकीय प्रेरण सिद्धांत पर आधारित होता है। इस सिद्धांत के अनसार
 - "यदि किसी चालक को किसी चुम्बकीय क्षेत्र में इस प्रकार गतिमान किया जाए कि उसकी गति से चुम्बकीय बल रेखाओं का छेदन होता हो तो उस चालक में वि.वा. बल (e.m.f.) उत्पन्न होता है।"
- जिस विधि से डी.सी. जिनत्र में वि.वा. बल पैदा होता है, वह गतिज
- फ्लेमिंग का दायाँ हस्त नियम (Fleming's Right Hand Rule):

Demings Hight Hand Bills

- इस नियम के अनुसार हम किसी चुम्बकीय क्षेत्र में गतिमान चालक में पैदा होने वाले वि. वा. बल की दिशा ज्ञात करते हैं।
 - "यदि दाएँ हाथ की प्रथम दो ऊँगलियों तथा अँगठे को परस्पर समकोण बनाते हुए इस प्रकार फैलाया जाए कि अँगुठा चालक की गति दिशा एवं पहली ऊँगली चम्बकीय क्षेत्र की दिशा को इंगित करे तो दसरी (बीच की) ऊँगली उस चलाक में प्रेरित वि. वा. बल की दिशा को इंगित करेगी।"
- D.C. जनित्र के मुख्य भाग:
- बॉडी (Body):
- मशीन के बाह्य भाग को बॉडी या योक (yoke) कहते हैं।
- यह कास्ट आयरन अथवा कास्ट स्टील से बनाई जाती है।
- यह मशीन के सभी भागों को सुरक्षित रखने के साथ-साथ चुम्बकीय बल रेखाओं के लिए पथ प्रदान करती है।

- फील्ड पोल (Field Pole):
- इनका मुख्य कार्य चुम्बकीय क्षेत्र स्थापित करना होता है।
- फील्ड पोल्स की न्यनतम संख्या 2 होती है तथा सामान्यत: अधिकतम संख्या 8 होती है।

- ये लेमिनेटेड कास्ट-स्टील अथवा एनील्ड-स्टील (annealed steel) से
- आर्मेचर (Armature) :
- यह एक बेलनाकार भाग है जो सिलिकॉन स्टील की पत्तियों (Laminated) को एक साथ रिवेट करके बनाया जाता है।
- आर्मेचर कोर के लेमिनेटेड होने से उनमें हिस्टैरेसिस क्षति तथा एडी धारा क्षति कम होती है।
- आर्मेचर में आर्मेचर क्वॉयल्स स्थापित करने के लिए स्लॉट कटे होते हैं।
- आर्मेचर का मुख्य कार्य चुम्बकीय फ्लक्स का छेदन करके उसमें स्थापित आर्मेचर वाइंडिंग्स में वि.वा. बल उत्पन्न करना होता है।
- समान्यतः आर्मेचर प्रतिरोध का मान 1 ओम होता है।

- यह डी.सी. जिनत्र के घूमने वाले भाग (shaft) पर स्थापित किया जाता है।
- आर्मेचर में मुख्यत: दो प्रकार से वाइंडिंग की जा सकती है:-
 - (b) Wave winding (a) Lap winding
- Lap winding में समांतर पथों की संख्या, पोल्स की संख्या के बराबर तथा wave binding में 2 होती है।

Lap winding

Wave winding

ELECTRICIAN ➤ CHAPTER -7: D.C. GENERATOR

- Lap winding में Voltage का मान कम होता है।
- इसमें एक-दूसरे के समांतर ब बहुत सा परिपथ होने के से Resistance बहुत कम हो जाता है जिससे current अधिक होता है।
- Wave winding में current का मान बहुत कम होता है।
- जहाँ अधिक Voltage की आवश्यकता होती है वहाँ wave winding का प्रयोग करते हैं।
- EMF = ब्रशों की सख्या पथों की सख्या
- अगर आर्मेचर को स्लिप रिंग से जोड़ दिया जाय तो यह अल्टरनेटिंग करंट देगा।
- अगर आर्मेचर को कम्यूटेटर के साथ जोड़ा जाय तो यह D.C. करंट देगा।
- मशीन के ध्रुवों की समान संख्या के लिए, lap winding की तुलना में बेब वाइंडिंग में उत्पन्न वि.वा. बल अधिक होगा।
- (4) दिक् परिवर्तक (Commutator):

- कम्यूटेटर सिगमेन्ट के बीच माइका इन्स्र्लेशन लगा होता है।
- क्वाइल के सिरों को कम्यूटेटर सेगमेंट पर जोड़ने की प्रक्रिया को कम्यूटेटर सेक्शन कहते हैं।
- यह हार्ड ड्रान (hard drawn) ताँबे की मोटी पत्तियों (segments) को बैकेलाइट के आधार पर कस कर बनाया जाता है।
- पत्तियों (segments) के बीच में अभ्रक (mica) भरा रहता है।
- कम्यटेटर को आर्मेचर शाफ्ट पर स्थापित किया जाता है।
- इसका मुख्य कार्य आर्मेचर क्वॉयल्स में उत्पन्न वि.वा. बल को डी.सी. के रूप में प्रदान करना।
- इसे खंडित वलय (split ring) भी कहते हैं।
- स्पार्किंग रिहत कम्यूटेशन प्राप्त करने के लिए कार्बन ब्रश और इन्टरपोल्स के साथ साथ कम्पैंसेटिंग वाइंडिंग का प्रयोग भी किया जाता है।
- (5) রু**श (Brush)**:

- यह कार्बन का बना होता है।
- बडी क्षमता के जिनत्र में ब्रश, ताँबा और कार्बन के मिश्रण का बना होता है।
- कार्बन के बने ब्रश नर्म और स्व-ल्युब्रिकेटींग होते है तथा उनका तापमान गुणांक ऋणात्मक होता है।
- ब्रश के द्वारा ही current बाहरी परिपथ को भेजा जाता है।
- उच्चतम क्षमता प्राप्त करने के लिए ब्रशों को चुम्बकीय उदासीन अक्ष पर होना चाहिए।
- कार्बन ब्रशों का धारा घनत्व (Current density) 5 amp/sq. mtr रखा जाता है।
- यदि लोड करंट बढ जाए तो ब्रशेज (Brushes) का वोल्टेज ड्राप बंद हो जायेगा।
- ब्रुश और कम्यूटेटर की सहायता से एकदिशीय आघूर्ण प्राप्त किया जाता है।
- वि.वा. बल समीकरण (E.M.F. Equation) :
- इससे जिनत्र में उत्पन्न वि.वा. बल की गणना करते हैं-

$$E = \frac{\phi \cdot Z \cdot N}{60} \times \frac{P}{A}$$

जहाँ E = जनित्र द्वारा पैदा वि. वा. बल (volts में)

φ = प्रति पोल चुम्बकीय फ्लक्स (webbers में)

Z = आर्मेचर चालको की संख्या

N = आर्मेचर की घूर्णन गति (R.P.M. में)

P = पोल्स की संख्या

A = आर्मेचर वाइंडिंग में समांतर पथों की संख्या

- D.C. जिनत्र के घूर्णन की दिशा परिवर्तित करने से करंट प्रवाह की दिशा परिवर्तित हो जायेगी।
- D.C. जनित्रों का वर्गीकरण (Classification of D.C. Generators) :
- उत्तेजना प्रणाली के आधार पर D.C. जिनत्रों का वर्गीकरण दो भागों में किया गया है।

A. पृथक-उत्तेजित जनित्र (Seperately excited generator)

B. स्व-उत्तेजित जिनत्र (Self excited generator)

A. पथक उत्तेजित जनित्र

- इस प्रकार के जिनत्र में प्रयोग किये जाने वाले फील्ड Poles (विद्युत चुम्बक) को उत्तेजित करने के लिए बाहरी d.c. स्त्रोत की आवश्यकता होती है।
- इसमें उत्तेजक वोल्टेज का मान उत्पादित वोल्टेज के मान से कम होता है।
- पृथक उत्तेजित जिनत्र बिना अविशिष्ट चुम्बकत्व के वि. वा. बल पैदा कर सकती है।
- जहाँ कम वोल्टता तथा उच्च धारा की आवश्यकता हो तथा क्षेत्र धारा को नियंत्रित करना पड़ता हो वहाँ इस प्रकार का जिनत्र प्रयोग होता है।
- विद्युत लेपन, धातु शुद्धिकरण इत्यादि में प्रयोग होता है।

- स्व-उत्तेजित जनित्र B.
- इस प्रकार के जिनत्र में फील्ड पोल्स को उत्तेजित करने के लिए बाहय वैद्यतिक स्रोत की आवश्यकता नहीं होती।

- यह भी दो प्रकार के होते हैं:- \Rightarrow
- स्थायी-चुम्बकीय जनित्र (Permanent Magnetic Generator) (a)
- इसमें चुम्बकीय क्षेत्र स्थापित करने के लिए स्थायी चुम्बक प्रयोग किये जाते हैं।

- ये युक्ति डायनेमो आदि छोटे जिनत्रों में होती है।
- (b) विद्युत-चुम्बकीय जनित्र (Electro-magnetic generator)
- इसमें चुम्बकीय क्षेत्र स्थापित करने के लिए विद्युत चुम्बक का प्रयोग किया जाता है।
- क्षेत्र वाइंडिंग्स के संयोजन विधि के आधार पर ये जिनत्र मुख्यत: तीन प्रकार के होते हैं।
 - (i) श्रेणी कुण्डलित जनित्र
 - (ii) शंट कृण्डलित जनित्र
 - (iii) कम्पाउण्ड कुण्डलित जनित्र

श्रेणी कुण्डलित जनित्र (Series Wound Generator) (i)

- इस जिनत्र में आर्मेचर फील्ड वाइंडिंग तथा लोड तीनों श्रेणी क्रम में
- इस जिनत्र को बिना load के नहीं चलाना चाहिए क्योंकि ऐसी अवस्था में खला परिपथ हो जाने के कारण प्राप्त वि. वा. बल या धारा का मान शन्य हो जायेगा।
- इस जिनत्र की फील्ड वाइंडिंग मोटे तार तथा कम लपेट वाली बनाई जाती है।
- इस जनित्र का प्रतिरोध निम्न स्तरीय होता है।
- इस जिनत्र में लोड परिवर्तन से टिर्मिनल वोल्टेज परिवर्तित होता है।
- सीरीज जनित्र होने के कारण हर जगह विद्युत धारा का मान समान होता है।

जहाँ E = 3त्पन वि. वा. बल (volts में)

 $R_a = आर्मेचर प्रतिरोध (<math>\Omega$ में)

 $R_{Se}^- = फील्ड प्रतिरोध (<math>\Omega$ में)

 $\widetilde{R_{L}} =$ लोड प्रतिरोध (Ω में)

- इसका उपयोग डी.सी. पारेषण लाइन (transmission line) में हुए वोल्टेज ड्राप को पूरा करने के लिए बुस्टर जिनत्र के रूप में किया जाता है।
- (ii) शंट जनित्र (Shunt Generator)

- इसमें फील्ड वाइंडिंग आर्मेचर के समानांतर में संयोजित होती है।
- इस जनित्र को load से संयोजित करके चालू नहीं करना चाहिए क्योंकि इस अवस्था में प्रेरित विद्युत धारा का प्रवाह मुख्य रूप से load की ओर होने लगेगा और field winding को नहीं मिल पाता है फलस्वरूप field winding पूरा चुम्बकीय क्षेत्र स्थापित नहीं कर पाता है। और प्राप्त वि. वा. बल कम हो जाता है।
- इस जनित्र की फील्ड वाइंडिंग पतले तार की बनाई जाती है।
- शंट जनित्र में आर्मेचर धारा (I_a)

$$I_a = I_L + I_{Sh}$$

 $I_a = I_L + I_{Sh}$ जहाँ $I_L =$ लोड करंट एवं $I_{Sh} =$ शंट फील्ड करंट है। इसका उपयोग Centrifugal Pump, electroptating welding, एक्साइटर, लिफ्टिंग लोड, स्थिर वोल्टेज बैट्टी चार्जिंग आदि के लिए किया जाता है।

- यदि D.C. शंट जिनत्र का अविशिष्ट चुम्बकत्व समाप्त हो जाए तो उसे पुन: प्राप्त करने के लिए शंट फील्ड को कुछ मिनट के लिए बैट्री से संयोजित कर देना चाहिए।
- (iii) कम्पाउन्ड जनित्र (Compund Generator)
- जब D.C. जिनत्र के फील्ड वाइंडिंग को दो भागों में विभक्त कर एक भाग को आर्मेचर के श्रेणीक्रम में और दूसरे को उसके समानांतर क्रम में जोड़ा जाता है तो वह कम्पाउन्ड जिनत्र कहलाता है।
- इसका output वि. वा बल full load या No-load दोनों स्थिति में स्थिर रहता है।
- इसके आर्मेचर की सीरीज फील्ड वाइंडिंग मोटे तार और कम लपेट की तथा शंट फील्ड वाइंडिंग पतले तार और अधिक लपेट की होती है।

- कम्पाउन्ड जिनत्र की किस्में :
- (i) डिफरैन्शियल कम्पाउन्ड जनित्र (Differential Compound Generator):
- इस प्रकार के जिनत्र में शंट फील्ड तथा सीरीज द्वारा उत्पन्न फ्लक्स एक दूसरे के विपरीत कार्यरत होते हैं।
- इनका उपयोग आर्क वेल्डिंग में तथा चाप वेल्डिंग में भी होता है।
- इसमें लोड करंट बढने पर टर्मिनल वोल्टेज तीव्रता से घटता है।
- (ii) क्यूम्यूलेटिव कम्पाउण्ड जनित्र (Cumulative Compound Generator):
- इस प्रकार के जिनत्र में शंट-फील्ड तथा सीरीज फील्ड द्वारा उत्पन्न फ्लक्स एक-दूसरे के सहायक होते हैं।
- इनका उपयोग स्ट्रीट लाइट, रेलवे, लेथ मशीन, इलेक्ट्रोप्लेटिंग इत्यादि में किया जाता है। दूर के भार की आपूर्ति में भी इसका प्रयोग होता है।
- डी.सी. जिनत्रों में क्षितियाँ (Losses in D.C. Generator):
- ये मुख्यत: तीन प्रकार की होती हैं:-
 - 1. ताम्र क्षति
- 2. लौह क्षति
- 3. यांत्रिक क्षति
- 1. ताम्र क्षति (Copper loss):-
- यह वैद्युत शक्ति की वह क्षिति है जो आर्मेचर तथा फील्ड वाइंडिंग के प्रतिरोध एवं ब्रशेज के संपर्क प्रतिरोध के कारण पैदा होती है।
- 2. लौह क्षति (Iron loss):-
- आमेंचर तथा फील्ड की क्रोडो में होने वाली वैद्युतिक शिक्त की क्षिति,
 लौह क्षित कहलाती है।
- ⇒ यह दो प्रकार की होती है :-
- a. हिस्टेरेसिस क्षति (Hysteresis loss):-
- लौह आदि चुम्बकीय पदार्थ के बार-बार चुम्बिकत तथा विचुम्बिकत होने में हुई वैद्युत शिक्त की क्षित हिस्टेरैसिस क्षित कहलाती है।

$$W_h = \eta \cdot B_m^{1.6} \cdot f \cdot v$$

जहाँ W_h – हिस्टरैसीस क्षति (watt में)f—फ्रीक्वेंसी (Hz में)

 $\eta \stackrel{''}{-}$ हिस्टरैसीस नियतांक v—क्रोड का आयतन (m^3) में)

 B_m – अधिकतम चुम्बकीय फ्लक्स घनत्व (webber/ m^2 में)

- b. एडी करंट क्षति (Eddy Current loss)
- फैराडे के विद्युत चुम्बकीय प्रेरण के सिद्धांत के अनुसार, चुम्बकीय क्षेत्र
 में गितमान प्रत्येक चालक में वि. वा. बल पैदा हो जाता है और इसके अनुरूप आर्मेचर कोर में भी वि. वा. बल पैदा हो जाता है। इस वि. वा.

बल के कारण कोर में प्रवाहित विद्युत धारा अनावश्यक रूप से वैद्युतिक शक्ति की खपत करती हैं जिसे एडी करंट क्षति कहते हैं।

$$W_e = B_m^2.f^2.t^2$$

जहाँ W_e – eddy current loss (watt में)

 B_m^{-} - अधिकतम चुम्बकीय फलक्स धनत्व (webber/ m^2)

 $\int_{1}^{111} f = \int_{1}^{111} f = \int_{1}^{111}$

- आर्मेचर कोर को laminated बनाने से एडी धारा क्षति का मान कम
 होता है।
- 3. यांत्रिक क्षति (Mechanical loss)
- आर्मेचर के वायु के घर्षण से, वियरिंग्स के घर्षण से तथा ब्रशों के कम्युटेटर के घर्षण से होने वाली क्षित यांत्रिक क्षित कहलाती है।
- D.C Generator की सारी क्षतियों को सुविधापूर्वक निम्न प्रकार से दर्शाया जाता है।

स्ट्रे क्षति (Stray loss) = लौह क्षति + यांत्रिक क्षति नियत क्षति (Constant loss) = लौह क्षति + यांत्रिक क्षति + शंट

ानयत श्वात (Constant loss) = लाह श्वात + यात्रिक श्वात + शट फील्ड श्वति अस्थिर श्वति (Variable loss) = आर्मेचर श्वति + सीरीज फील्ड श्वति

अत:कुलक्षति (Total loss) = नियत क्षति + अस्थिर क्षति डी.सी. जनित्र की दक्षता (Efficiency of D.C. Generator) :

- (i) यांत्रिक दक्षता $(\eta_m) = \frac{3 \text{त्पन्न वैद्युतिक शिक्त}}{\text{इनपटु यांत्रिक शिक्त}} imes 100\%$
- (ii) वैद्युतिक दक्षता (η_e) = $\dfrac{\mbox{3182} \mbox{329} \mbox{229} \mbox{4}}{\mbox{329} \mbox{329} \mbox{4}} imes \mbox{3190} \mbox{329} \$
- (iii) व्यावसायिक दक्षता (η_c) = $\dfrac{$ आउटपुट वैद्युतिक शक्ति $}{$ इनपुट यांत्रिक शक्ति $} imes 100\%$ व्यवसायिक दक्षता (η_c) = यांत्रिक दक्षता (η_m) imes वैद्युतिक दक्षता (η_m)
- डी. सी. जिनत्र की दक्षता 85 95% तक होती है।
- डी.सी.जिनत्रों का समानांतर प्रयोग :

- दो जिनत्रों को समानांतर चलाने से सप्लाई की स्थिरता के साथ-साथ मरम्मत की सुविधा भी मिल जाती है और अतिरिक्त इकाई लगाने का काम आसान हो जाता है।
- ⇒ दो जनित्रों के समानांतर चालन की अवस्थाएँ
- धन-धन से ऋण-ऋण ध्रुव से जुड़ा होना चाहिए।
- दोनों जिनत्रों की वोल्टेज समान होनी चाहिए
- दोनों जिनत्रों की क्षमता समान होनी चाहिए।
- अगर दो जिनत्र समानांतर में चल रहे हो और एक जिनत्र हटा लिया जाए तो पहले की उत्तेजना धीरे-धीरे कम होगी और दूसरे की धीरे-धीरे बढ़ेगी।

13.

चुम्बकीय पदार्थ के बार-बार चुम्बकीत तथा विचुम्बकीत होने में हुई

Objective Questions -

D.C. जनित्र में फिल्ड पोल्स की न्यूनतम संख्या होती है-

	(A) 1 (B) 2		वैद्युतिक क्षति कहलाती है।
	(C) 4 (D) 8		(A) एंडी धारा क्षति (B) हिस्टेरैसिस क्षति
0	D.C. जिनत्र के फील्ड पोल्स बने होते हैं—		(C) ताम्र क्षति (D) यांत्रिक क्षति
2 .		14.	लौह क्षति, यांत्रिक क्षति एवं शंट फील्ड क्षति के मिश्रण को कहते हैं—
	(A) कास्ट स्टील के (B) Mica के		(A) स्ट्रे क्षति (B) नियत क्षति
	(C) ताँबा के (D) जस्ता के		(C) अस्थिर क्षति (D) कुल क्षति
3.	आर्मेचर कोर के लेमिनेटेड होने से कौन-सी क्षति कम होती है ?	15.	फ्लेमिंग के दाएँ हाथ के नियम के अनुसार प्रेरित वि॰ वा॰ बल की
	(A) एंडी धारा क्षति (B) ताम्र क्षति		दिशा इंगित करती है।
	(C) यांत्रिक क्षति (D) उपरोक्त सभी		(A) तर्जनी (B) मध्यमा
4.	आर्मेचर में स्लॉट क्यों कटे होते हैं-	4.0	(C) अँगूठा (D) अनामिका
	(A) आर्मेचर को घुमने में आसानी होगी	16.	निम्न में से कौन-सी विधि द्वारा डी०सी० जनरेटर में वि.बा. बल प्रेरित
	(B) आर्मेचर क्वायल्स स्थपित करने के लिए		होता है?
	(C) Mica भरने के लिए (D) इनमें से कोई नहीं		(A) तापीय (B) गतिज
5 .	4-pole वाले Wave wound जनित्र के आर्मेचर में समांतर पथों की		(C) रासायनिक (D) स्थितिज
	संख्या होगी-	17.	निम्न में से किस सिद्धांत पर डी०सी० जेनरेटर कार्य करता है?
	(A) 2 (B) 4		(A) लैंज का नियम
	(C) 8 (D) 16		(B) ओह्म का नियम
6.	D.C. जनित्र में current किसके द्वारा बाहरी परिपथ में भेजा जाता है ?		(C) फैराडे का विद्युत-चुम्बकीय प्रेरण नियम
	(A) ब्रश के द्वारा (B) आर्मेचर के द्वारा		(D) न्यूटन के नियम
	(C) दिक्परिवर्तक के द्वारा (D) फील्ड वाइंडिंग के द्वारा	18.	इनमें से कौन-कौन डी०सी० जनित्र की मौलिक आवश्यकताएँ हैं?
7 .	D.C. जिनित्र के घूर्णन की दिशा परिवर्तित करने से करंट प्रवाह के	Y	(A) आर्मेचर (B) चुम्बकीय क्षेत्र
	की दिशा हो जायेगी ।		(C) कम्यूटेटर तथा ब्रश आदि (D) सभी
	(A) समान (B) परिवर्तित	19.	ऊर्जा रूपांतरण का कौन–सी कार्य डी०सी० जनित्र द्वारा किया जाता है ?
	(C) A.C. हो जायेगी (D) इनमें से कोई नहीं		(A) ध्वनि ऊर्जा उत्पन्न करना है
8.	डायनमों में कौन-सी उत्तेजना प्रणाली होती है ?		(B) विद्युत ऊर्जा को यांत्रिक ऊर्जा में परिवर्तित करता है
	(A) पृथक उत्तेजित (B) स्थायी चुम्बकीय		(C) यांत्रिक ऊर्जा को विद्युत ऊर्जा में परिवर्तित करता है
0	(C) विद्युत चुम्बकीय (D) इनमें से कोई नही		(D) रासायनिक ऊर्जा को यांत्रिक ऊर्जा में परिवर्तित करता है
9.	Electroplating में कौन-सा जिनत्र प्रयुक्त होता है ?	20.	किस नियम द्वारा कुंडली में धारा की दिशा ज्ञात की जाती है ?
	(A) D.C. series जिनत्र (B) D.C. shunt जिनत		(A) फ्लैमिंग का बायाँ हस्त नियम द्वारा
10.	(C) D.C. compound जनित्र(D) इनमें से कोई नहीं जब DC जनित्र के फील्ड वाइंडिंग को दो भागों में विभक्त कर		(B) फ्लैमिंग का दायाँ हस्त नियम
10.	एक-एक भाग को श्रेणी तथा समांतर क्रम में जोड़ा जाता है तो वह		(C) कॉर्क-स्क्रू नियम
	जिन्तर कहलाता है।		(D) दायें हाथ के अंगूठे के नियम द्वारा
	(A) D.C. series जनित्र (B) D.C. shunt जनित्र	21.	ढलवाँ लोहे के प्रयोग से जनरेटर का योक बनाया जाता है। क्योंकि ?
	(C) D.C. compound जिनत्र(D) इनमें से कोई नहीं		(A) यह मशीनों को यांत्रिक सुरक्षा देता है
11.	DC compound जिनत्र में वि॰ वा॰ बल स्थिर रहता है—		(B) यह सस्ता होता है
	(A) केवल Full load पर		(C) यह चुम्बकीय पथ पूर्ण करता है।
	(B) केवल No load पर		(D) उपरोक्त तीनों
	(C) full load तथा No load दोनों पर	22.	सामान्यत: आर्मेचर प्रतिरोध का मान होता है–
	(D) कभी नहीं		(A) 500 ओह्म (B) 50 ओह्म
12 .	लेथ मशीन में किस जनित्र का प्रयोग होता है ?		(C) 10 ओह्म (D) 1 ओह्म
	(A) D.C. shunt	23.	कौन-सा अचालक पदार्थ कम्यूटेटर सेगमेंट्स के मध्य प्रयोग किया
	(B) D.C. series		जाता है ?
	(C) Differential compound		(A) लकड़ी (B) रबर
	(D) cumulative compound		(C) अभ्रक (D) संगमरमर
		1	

- डीसी जनित्र के कम्यट्टेटर का कार्य होता है-24.
 - (A) वोल्टता को बढाता है
 - (B) एकदिशीय धारा देने में सहायता करता है
 - (C) अर्द्ध तरंग परिशोधक की तरह कार्य करता है
 - (D) धारा को नियत रखता है
- प्राप्त धारा कैसी होगी अगर डीसी जिनत्र के आर्मेचर को स्लिप रिंग्स **25**. से जोडा जाये?
 - (A) आल्टरनेटिंग करंट
- (B) शून्य आवत्ति करंट
- (C) डाइरेक्ट करंट
- (D) ऑसिलेटिंग करंट
- किस गुण के कारण ब्रश के लिए कार्बन प्रयुक्त होता है? **26**.
 - (A) उनका तापमान गुणांक ऋणात्मक होता है
 - (B) वे नर्म होते हैं
 - (C) वह स्व-लुब्रीकेटिंग होते हैं
 - (D) उपरोक्त तीनों गुण होते हैं
- **27**. धारा घनत्व का कौन-सा मान कार्बन ब्रशों के लिए प्रायोगिक है?
 - (A) 15 amp/sq.m.
- (B) 20 amp/sq.m.
- (C) 0.5 amp/sq.m.
- (D) 5 amp/sq.m.
- कौन-से ब्रशों का प्रयोग बड़ी क्षमता वाले जेनरेटरों के लिए होता है? 28.
 - (A) कार्बन
- (B) ताँबा एवं कार्बन का मिश्रण
- (C) एल्यमिनियम
- (D) लकडी
- **29**. निम्न में से कौन-सा समीकरण डीसी जनित्र के लिए प्रयोग होता है ?
 - (D) $E = \frac{\phi Z}{60}$
- (B) $E = \frac{ZPN}{16\varphi A}$
- (C) $E = \frac{\phi Z N P}{60 A}$
- (D) $E = \frac{\phi Z N P}{\sigma}$
- 8-पोल वाले सिम्प्लैक्स लैप-वाउण्ड जैनेरेटर में समानान्तर पथों की **30**. संख्या होगी-
 - (A) 2
- (B) 8
- (D) 16
- **31**. निम्न किन तथ्यों पर जेनरेटर का वि.बा. बल निर्भर करता है ?
 - (A) ध्रुवों की संख्या
- (B) गति
- (D) उपरोक्त तीनों (C) चालकों की संख्या
- लैप वाइंडिंग की तुलना में वेब बाइंडिंग में जनित वि.वा. बल क्या होगा 32. यदि मशीन के ध्रुवों की संख्या समान हो ?
 - (A) कम
- अधिक (B)
- (C) बराबर
- (D) नगण्य
- **33**. जनित्र का वि.वा. बल नियंत्रित करने के लिए किसे परिवर्तित कर सकते हैं ?
 - (A) फ्लक्स
- (B) जनरेटर की गति
- (C) चालक के पदार्थ
- (D) गति व फ्लक्स दोनों
- जेनरेटर के अपने अपशिष्ट चुम्बकत्व खोने का कारण है-34.
 - (A) अधिक उत्तेजना
- (B) हैमरिंग
- (D) हैमरिंग व ओवर हीटिंग दोनों
- निम्नलिखित किस कमी के कारण जेनरेटर वि.बा. बल जनित करने में 35. असमर्थ है ?
 - (A) इसमें अवशिष्ट चुंबकत्व की क्षति हो गई हो
 - (B) घर्णन की दिशा गलत हो
 - (C) क्षेत्र प्रतिरोध क्रिटिकल प्रतिरोध से अधिक हो
 - (D) उपरोक्त तीनों में से कोई भी एक
- प्राइम मूवर के आधार पर डी॰ सी॰ जनित्र के प्रकार है ? **36**.
 - (A) Hyro turbine चालित (B) Gas trubine चालित
 - (C) Diesel Engine चालित (D) उपरोक्त तीनों

- डी.सी. जिनत्र के कौन-कौन प्रकार हैं: अगर उत्तेजना प्रणाली को ध्यान **37**. में रखा जाये।
 - (A) पृथक उत्तेजित जनित्र
- (B) स्व∘ उत्तेजित जनित्र
- (C) दोनों
- (D) इनमें से कोई नहीं
- 38. निम्नलिखित किस कारण से किसी डी.सी. स्व-उत्तेजित जेनरेटर का अवशिष्ट चुम्बकत्व समाप्त हो सकता है?
 - (A) ओवर हिटिंग
 - (B) भारी ओवर लोडिंग
 - (C) जैनेरेटर को लम्बे समय तक निष्प्रयोज्य अवस्था में रखना
 - (D) उपरोक्त तीनों
- **39**. ये जेनरेटर बिना अवशिष्ट चुम्कत्व के भी वोल्टता जनित कर सकता है।
 - (A) शंट जैनेरेटर
- (B) सिरीज जैनेरेटर
- (C) कम्पाउण्ड जैनेरेटर
- (D) पृथक उत्तेजित जैनेरेटर
- क्षेत्र वाइंडिंग किसके द्वारा उत्तेजित होगी यदि जनित्र पृथक उत्तेजित 40.
 - (A) अपनी धारा द्वारा
 - (B) प्रत्यावर्ती धारा के बाह्य स्रोत द्वारा
 - (C) प्रत्यक्ष D.C. धारा के बाह्य स्रोत द्वारा
 - (D) पल्सेटिंग करंट द्वारा
- 41. क्षेत्र वाइंडिंग किसके द्वारा उत्तेजित होगी यदि जनित्र स्व-उत्तेजित जनित्र हो ?
 - (A) D.C. बाह्य स्रोत द्वारा (B) A.C. द्वारा
 - (C) इसकी अपनी धारा द्वारा (D) पल्सेटिंग करंट द्वारा
- 42. स्व-उत्तेजित जनित्र का प्रकार है-
 - (A) श्रेणी जनरेटर
- (B) शंट जनरेटर
- (C) मिश्रित जनरेटर
- (D) उपरोक्त सभी
- 43. सही कथन चुनें-
 - (A) सीरीज जिनत्र में आर्मेचर, फील्ड-बाइंडिंग तथा लोड, तीनों श्रेणीक्रम में संयोजित होते हैं
 - (B) सीरीज जिनत्र की फील्ड बाइंडिंग मोटे तार तथा कम लपेट वाली बनाई जाती है
 - (C) सीरिज जिनत्र को बिना लोड संयोजित किए नहीं चलाना चाहिए
 - (D) सभी सत्य है
- 44. सत्य कथन चुनें-
 - (A) सीरीज जिनत्र को बिना लोड संयोजित किए नहीं चलाना चाहिए
 - (B) सीरीज जनित्र लोड बढाने से जनित्र का टर्मिनल वोल्टेज घटता है
 - (C) सीरिज जनित्र का प्रतिरोध निम्न स्तरीय होता है।
 - (D) सभी सत्य है
- **45**. निम्नलिखित किसके लिए श्रेणी जेनरेटर का प्रयोग होता है ?
 - (A) बैटरी चार्जिंग
- (B) घरेलू प्रयोग
- (C) ब्रस्टर
- (D) लाइटिंग लोड
- **46**. सत्य कथन चुनें-
 - (A) फील्ड-बाइंडिंग आर्मेचर के समानांतर में संयोजित की जाती है
 - (B) शंट जिनत्र की फील्ड बाइंडिंग पतले तार की बनाई जाती है
 - (C) शंट जिनत्र को लोड से संयोजित करके चालू नहीं करना चाहिए
 - (D) उपरोक्त सभी
- निम्नलिखित किस सूत्र के द्वारा डी.सी. शंट जिनत्र की आर्मेचर धारा 47. ज्ञात होती है ?
 - (A) $I_a = \frac{V E}{R_a}$ (B) $I_a = I_L \times I_{sh}$ (C) $I_a = I_L + I_{sh}$ (D) $I_a = I_L I_{sh}$

ELECTRICIAN ➤ CHAPTER -7: D.C. GENERATOR

- 48. स्पार्किंग रहित कम्यटेशन प्राप्त करने के लिए-
 - (A) कार्बन ब्रश प्रयोग करने चाहिए
 - (B) इन्टरपोल्स प्रयोग करने चाहिए
 - (C) कम्पैन्सेटिंग वाइन्डिंग प्रयोग करनी चाहिए
 - (D) उपरोक्त तीनों विधियाँ प्रयोग की जानी चाहिए
- 49. जिनत्र स्थिर वोल्टेज बैट्री चार्जिंग के लिए उपयुक्त है।
 - (A) क्यूम्यूलेटिव कम्पाउण्ड जनित्र
 - (B) शंट जनित्र
 - (C) सिरीज जनित्र
 - (D) अंडर कम्पाउण्ड जनित्र
- **50.** कैसे पुन: प्राप्त करेंगे यदि किसी dc शंट जिनत्र का अविशष्ट चुम्बकत्व खो जाए ?
 - (A) जैनेरेटर को शून्य लोड पर कुछ समय तक चलाना चाहिए
 - (B) शंट-फील्ड को कुछ मिनट के लिए बैट्री से संयोजित कर देना चाहिए
 - (C) जैनेरेटर की घूर्णन दिशा परिवर्तित कर देनी चाहिए
 - (D) जनित्र को कांपित करना चाहिए
- 51. कम्पाउन्ड जिनत्र के संबंध में निम्न में से कौन-सा सत्य है?
 - (A) आर्मेचर के श्रेणीक्रम में जोड़ा गया सीरीज फील्ड बाइंडिंग तार और कम लपेट का बनाया जाता है
 - (B) इस जनित्र में फील्ड बाइंडिंग दो भागों में विभक्त होती है
 - (C) आर्मेचर के समानांतर क्रम में जोड़ा गया शंट फील्ड बाइंडिंग पतले तार और अधिक लपेट का बनाया जाता है।
 - (D) उपरोक्त सभी
- 52. सही कथन इंगित करें—
 - (A) डिफ्रैन्शियल कम्पाउण्ड जनित्र एवं sunt field के फ्लक्स एक-दूसरे के विपरीत कार्य करते हैं । परिणामी फ्लक्स दोनों का अंतर होता है ।
 - (B) ओभर कम्पाउण्ड जिनत्र, लेवल कम्पाउण्ड जिनत्र, अण्डर कम्पाउण्ड जिनत्र के तीन प्रकार हैं।
 - (C) डिफ्रैन्शियल कम्पाउण्ड जनित्र एवं क्यूम्यूलेटिव कम्पाउण्ड जनित्र के दो प्रकार हैं।
 - (D) उपरोक्त सभी
- 53. निम्नलिखित में से कौन-कौन सी क्षति डी.सी. जनरेटर में होती है?
 - (A) ताम्र क्षति
- (B) लौह क्षति
- (C) यांत्रिक क्षति
- (D) उपरोक्त सभी
- 54. ये क्षति, लोड के साथ परिवर्तित होती है।
 - (A) ताम्र क्षति
- (B) एडी करंट क्षति
- (C) हिस्टरैसिस क्षति
- (D) वायु घर्षण क्षति
- 55. सही सूत्र चूनें।
 - (A) यांत्रिक दक्षता = $\frac{3 \text{त्प-} \frac{3}{8} \text{ हुत्तिक शिक्त}}{\frac{3}{8} \text{ हुत्पुट यांत्रिक शिक्त}} \times 100\%$
 - (B) यांत्रिक दक्षता = $\frac{$ आउटपुट वैद्युतिक शक्ति $}{$ इनपुट यांत्रिक शक्ति $} imes 100\%$
 - (C) यांत्रिक दक्षता = $\frac{\text{आउटपुट वैद्युतिक शिक्त}}{\text{उत्पन्न यांत्रिक शिक्त}} \times 100\%$
 - (D) उपरोक्त सभी
- **56.** डी.सी. जैनेरेटर की दक्षता (efficiency) होती है-
 - (A) 60% से 80% तक
- (B) 10% से 30% तक
- (C) 85% से 95% तक
- (D) 100%

- 57. इनमें से किसके द्वारा जनरेटर की विद्युत दक्षता ज्ञात की जाती है।
 - (A) आउटपुट वैद्युतिक शक्ति ×100% उत्पन्न यांत्रिक शक्ति

उत्पन्न यात्रिक शाक्त आउटपुट वैद्युतिक शक्ति

(B) जाउटपुट वद्यातक शाक्त ×100% आउटपुट + अवांछित क्षतियाँ ×100%

आउटपुट —×100%

 $^{(C)}$ आउटपुटimesI 2 R क्षति

- 58. निम्नलिखित किस कारण से जनरेटरों को समांतर में चलाया जाता है?
 - (A) सप्लाई की स्थिरता रखता है
 - (B) जब और जैसे आवश्यक हो, अतिरिक्त इकाई लगाने की सुविधा देता है
 - (C) मरम्मत की सुविधा देता है, फलस्वरूप कम ब्रेक डाउन होते हैं
 - (D) उपरोक्त तोनों
- 59. किस अवस्था पर दो जनरेटरों समांतर में चलाया जाता है?
 - (A) दोनों जनरेटरों की वोलटेज समान होनी चाहिए
 - (B) धन-धन से जुड़ा होना चाहिए और ऋण-ऋण से
 - (C) जनरेटरों की क्षमता समान होनी चाहिए
 - (D) इनमें से सभी
- **60.** क्या होगा जब समांतर में चल रहे दो जनरेटरों में से एक जनरेटर हटा लिया जाय?
 - (A) दूसरा जेनरेटर भी बंद हो जायेगा
 - (B) दूसरे जनरेटर की उत्तेजना धीरे-धीरे कम होगी
 - (C) पहले की उत्तेजना धीरे-धीरे कम होगी और दूसरे की धीरे-धीरे बढ़ती है
 - (D) दोनों जनरेटरों की उत्तेजना साथ-साथ बढ़ती है।
- 61. डायनेमो का सिद्धांत है-
 - (A) फैराडे लॉ ऑफ इलेक्ट्रोमैग्नेटिक इन्डक्शन
 - (B) ऐम्पीयर्स लॉ
 - (C) ओहम लॉ
 - (D) इनमें से कोई नहीं
- 62. फ्लेमिंग के वाम-हस्त नियम प्रयोज्य है-
 - (A) मोटर पर
- (B) जनित्र पर
- (C) ट्रांसफार्मर पर
- (D) इनमें से कोई नहीं
- 63. यदि एक दिष्ट धारा जिनत्र की चाल को बढ़ाया जाय, तो जिनत विद्युत वाहक बल—
 - (A) बढता है
- (B) घटता है
- (C) एक ही रहता है
- (D) घटता है एवं बाद में बढता है
- **64.** स्थिर चाल पर चलने वाले श्रेणी वेष्ठित जेनरेटर में भार धारा में वृद्धि के साथ टर्मिनल वोल्टेज—
 - (A) बढती है
- (B) अपरिवर्ती रहती है
- (C) घटती है
- (D) इनमें से कोई नहीं
- 65. किसी मशीन की दक्षता अधिक होगी; यदि-
 - (A) इनपुट पावर निम्न हो
 - (B) हानियाँ निम्न हों
 - (C) पावर का वास्तविक घटक निम्न हो
 - (D) kWh का उपभोग निम्न हो
- 66. डीसी जेनरेटर में ध्रुव क्रोड से ध्रुव शू निम्नलिखित द्वारा आबद्ध रहते हैं-
 - (A) रिवेट
- (B) शंकुखात पेंच
- (C) ब्रेजिंग
- (D) वेल्डिंग

67 .	डीसी जेनरेटर में उत्पन्न e.m.f. निम्नलिखित के समानुपाती होता है—		होती है।
	(A) फ्लक्स/ध्रुव (B) आर्मेचर की चाल		(A) दोगुनी (B) बराबर
	(C) ध्रुवों की संख्या (D) इनमें से सभी		(C) कम (D) ज्यादा
68.	शंट जनरेटर में सामान्यत: वोल्टेज बनना रूक जाता है, जब–	79.	DC जनरेटर में शाफ्ट पर ऐसा क्या लगा होता है जिससे वाइंडिंग ठंडी होती रहती है ?
	(A) गति सीमित होने पर		(A) बॉल बेयरिंग (B) फैन ब्लेड
	(B) आयरन की संतृप्ति (सेचुरेशन) होने पर		(C) लैमिनेटेड कोर (D) कूलर
	(C) आर्मेचर गरम होने पर	80.	डाइनेमो का सिद्धांत है—
	(D) अवरोधक प्रतिबंधित होने पर	00.	(A) फैराडे लॉज ऑफ इलेक्ट्रोमैग्नेटिक इन्डक्शन
69 .	यन्त्र हिस्टैरिसीस और एड्डी धारा के दोषों से मुक्त		(B) ऐम्पीयर्स लॉ
	रहता है।		(C) ओहम लॉ
	(A) मूविंग आयरन		(D) इनमें से कोई नहीं
	(B) मूर्विंग कॉइल–स्थायी चुंबक प्रकार	81.	डीसी (DC) जनरेटर में अवशिष्ट चुंबक का क्या कार्य है ?
	(C) स्थिर विद्युत	01.	(A) अन्य विकल्पों में से कोई नहीं
	(D) मूविंग कॉइल डाइनेमो मीटर प्रकार		(A) अन्य विकल्पा म स काइ नहीं (B) वोल्टेज का निर्माण करना
70 .	DC मोटर में एकदिशीय आघूर्ण निम्नलिखित में से किसकी सहायता		
	से उत्पन्न किया जाता है ?		· ·
	(A) बुश (B) एंड प्लेट	00	(D) आवृत्ति का निर्माण करना
	(C) कम्यूटेटर (D) बुश एवं कम्यूटेटर दोनों	82 .	डी.सी. जनरेटर निम्नलिखित में से किस तरह से कनेक्ट होने से
71 .	मशीन की दक्षता में वृद्धि की जा सकती है—		अवशिष्ट चुंबकत्व (रेसिड्आल मैगनेटीज्म) की मौजूदगी महत्वपूर्ण
, 1.	(A) हानियाँ घटा कर		नहीं होगी ?
	(B) हानियाँ बढ़ा कर		(A) शंट जनरेटर (B) कंपाउंड जनरेटर
	(C) हानियों को स्थिर रख कर		(D) कपाउड जनस्टर (C) सेपरेटली एक्साइटेड जनस्टर
	(D) दक्षता पर हानियों का कोई प्रभाव नहीं होता		(C) संवरदेशा एक्साइटड जनस्टर (D) सिरीज जनस्टर
72 .	arc वेल्डिंग में प्रयोग होने वाला जनरेटर है—	83.	(D) ।सराज जनरटर रोटर शाफ्ट को सपोर्ट देने के लिए जिस बियरिंग का उपयोग किया
12.	(A) DC सीरिज जनरेटर (B) DC शंट जनरेटर	00.	जाता है वह सामान्यत: है—
	(C) DC कंपाउंड जनरेटर (D) कुमेलेटिव कंपाउंड जनरेटर		जाता ह जह सानाज्या. ह— (A) बॉल बियरिंग (B) बुश बियरिंग
73 .	एक DC मशीन में भिन्नात्मक पिच कुंडली प्रयोग की		(C) चुम्बकीय बियरिंग (D) नीडल बियरिंग
13.	जाती है।	84.	लैप वाईंडिंग सबसे ज्यादा उपयोगी होती है—
	(A) स्पार्किंग को कम करने के लिए	01.	(A) निम्न वोल्टता, निम्न धारा मशीनों हेतु
	(B) ताम्र हानि को कम करने के लिए		(B) उच्च वोल्टता, उच्च धारा मशीनों हेतु
	(C) कूलिंग को बढ़ाने के लिए		(C) निम्न वोल्टता, उच्च धारा मशीनों हेतु
	(D) उत्पन्न emf को बढ़ाने के लिए		(D) उच्च वोल्टता, निम्न धारा मशीनों हेतु
74		85 .	एक उत्तेजक निम्न के अलावा कुछ नहीं होता—
74 .	एक विलगित, उत्तेजित (separately excited) जनरेटर में। (A) बाह्य कुंडली प्रयोग की जाती है।		(A) शंट मोटर (B) शंट जनरेटर
	(B) बाह्य क्षेत्र वार्ड्डिंग प्रयोग की जाती है।		(C) श्रेणी मोटर (D) श्रेणी जनरेटर
	(C) क्षेत्र वाइंडिंग को बाह्य DC स्रोत से उत्तेजित किया जाता है।	86.	DC जनरेटरों में भारी मात्रा में विद्युत धारा उत्पन्न करने हेतु किस्
	(D) क्षेत्र वाइंडिंग स्वयं उत्पादित होतीहै।		प्रकार की वाइंडिंग (वक्र) को वरीयता दी जाती है ?
75 .	कम्यूटेरर सेगमेन्ट के बीच इन्सुलेशन होता है, का—		(A) प्रगतिशील तरंग (B) प्रतिगामी वाइंडिंग
13.	(A) वैकलाइट (B) ग्लास		(C) लैप वाइंडिंग (D) Wave binding
		87 .	बेल्डिंग जनरेटर में सामान्यत: होता है—
76	(C) माइका (D) लकड़ी		(A) लैप वाइंडिंग (B) वेब बाइंडिंग
76 .	DC शंट जनरेटर में किस प्रकार की वाइंडिंग होती है ?		(C) डेल्टा वाइंडिंग (D) डुप्लेक्स वेब वाइंडिंग
	(A) शंट फील्ड वाइंडिंग	88.	एक 4 pole दि.धा. जनित्र 1500 rpm पर चलता है। आर्मेचर मे
	(B) शंट फील्ड और सीरीज फील्ड वाइंडिंग दोनों		धारा की आवृत्ति है—
	(C) कंपाउंड फील्ड वाइंडिंग		(A) शून्य (B) 25 Hz
	(D) सीरीज फील्ड वाइंडिंग	-	(C) 50 Hz (D) 100 Hz
77 .	DC जनरेटर की रेटिंग में होती है।	89.	एक दि.धा. जिनत्र में 8 समांतर परिपथ और धारा संग्रह करने हेतु 16
	(A) kVA (B) HP		ब्रुश का प्रयोग किया गया है। यदि प्रति ब्रुश विभव पात 1V हो ते
	(C) kW (D) kH		प्रेरित वि.वा. बल में कमी होगी— (A) 2V
78 .	लैप वाइंडिंग में समान्तर पथों की संख्या की तुलना में ध्रुवों की संख्या		(A) 2V (B) 4V (C) 8V (D) 16V
			(C) 8V (D) 16V

	ANSWERS KEY								
1 . (B)	2 . (A)	3 . (A)	4. (B)	5. (A)	6. (A)	7 . (B)	8 . (B)	9 . (B)	10 . (C)
11. (C)	12 . (D)	13 . (B)	14. (B)	15 . (B)	16. (B)	17 . (C)	18 . (D)	19 . (C)	20 . (B)
21 . (D)	22 . (D)	23 . (C)	24 . (B)	25 . (A)	26 . (D)	27 . (D)	28 . (B)	29 . (C)	30 . (B)
31 . (D)	32 . (B)	33 . (D)	34 . (D)	35 . (D)	36 . (D)	37 . (C)	38 . (D)	39 . (D)	40 . (C)
41 . (C)	42 . (D)	43 . (D)	44 . (D)	45 . (C)	46 . (D)	47 . (C)	48 . (D)	49 . (B)	50 . (B)
51 . (D)	52 . (D)	53 . (D)	54 . (A)	55 . (A)	56 . (C)	57 . (A)	58 . (D)	59 . (D)	60 . (C)
61 . (A)	62 . (A)	63 . (A)	64 . (A)	65 . (B)	66 . (B)	67 . (B)	68 . (B)	69 . (C)	70 . (C)
71 . (A)	72 . (D)	73 . (B)	74 . (C)	75 . (C)	76 . (A)	77 . (C)	78 . (B)	79 . (C)	80 . (A)
81 . (B)	82 . (C)	83. (A)	84 . (C)	85 . (B)	86. (C)	87 . (A)	88. (C)	89 . (A)	·

000

SSC/RLY/BSSC/METRO/DAROGA ETC.

Foundation Course/Master Course

Duration: 8 Months

Subjects: G.S./Math/English/Reasoning

Bath: Every Week

Fee: Rs. 8650/ (Down Payment)

	Quiz Classes	Rs. 200/- Per Month
G.S. (सामान्य अध्ययन)	5 TO 6 PM/ 6 TO 7 PM	Mon, Tue, Wed, Thur.
Math Test	8 TO 9 AM & 6 TO 7 PM & 7 TO 8 PM	Monday to Friday
Math (R.S. Agrawal)	07 TO 08 AM & 07 TO 08 PM	Monday to Friday
SSC English Test	09 TO 10 AM & 08 TO 09 PM	Monday to Friday
SSC English Previous	10 TO 11 AM & 7 TO 08 PM	Monday to Friday
R.K. Rajput (J.E.) Electrical Electronics	08 TO 09 PM	Monday to Friday