Continuous Assessment Test (CAT) - I AUGUST 2025

Programme	1	B.Tech CSE (AI & ML Specialization)	Semester	:	Fall 2025-26	
Course Code & Course Title	:	BCSE209L Machine Learning			CH2025260102132 CH2025260102132 CH2025260102128 CH2025260102130	
Faculty	:	Dr. R. Bhargavi, Dr.Rajalakshmi R, Dr. S A Sajidha, Dr. Syed Ibrahim SP	Slot	:	A1 + TA1	
Duration	1:	1 Hour 30 minutes	Max. Mark		50	

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information
- Use statistical tables supplied from the exam cell as necessary
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

Answer all questions

Q. No	Sub Sea.	Description					Marks
	Sca.	Consider the feature and y	following d	lataset whe	ere x is tl	ne independent	
		and the second	ID	x	у		
	100		1	10	277		
			2	3	4		
			3	6	85		
	1550		4	15	680		
			- 5	5	60		
			6	12	425		
		The state of the s	7	9	220		
	1		8	13	484		
1		y _{pred1} = -223. But, as a do of regressing any other generalised in the parameter a	main expert x on y, reg feature(s)) nodel. linear regrand	* x). you have gressing x on y w ession wi target fe	a confide (only x ² ould result th x ² as ature. Cal	nodel is learned ence that instead feature without alt in a better the independent at this model as a 17 for both the the performance	
		(b) Predict to models(i.e. (c) Identify metric MA	he y value i y _{pred1} and y _p which mod	for the test red2) (2M) lel is bett	er using	the performance	

		A medical doctor wants to develop a machine learning system to analyze and predict which patients are more likely to be readmitted to the hospital in the near future (readmit/No re-admit).	ansino 7
2	A	Would this problem be considered a supervised, or unsupervised learning task? Explain your choice based on the nature of the data and the objective. (3M)	15
	В	With an appropriate neat diagram, give a detailed roadmap for building this Machine learning problem. Explain the process. (8M)	
	С	How is a classification problem different from regression problem? Given two examples for each with input and output features. (4M)	
	A	You are a data scientist building a logistic regression model to predict the probability of a customer signing up for a premium subscription service. You have collected a wide range of features, including customer demographics and	
3		usage habits. After training your model, you examine the coefficients to understand which features are driving the predictions. You notice a surprising result: * The coefficient for monthly_call_minutes is a large, positive value (w1 = +0.65). * The coefficient for monthly_data_usage_GB is a large, negative value (w2=-0.42). Your business intuition suggests that both high call minutes and high data usage should be strong positive indicators of a customer who is a heavy user and therefore more likely to sign up for a premium plan. The negative coefficient for data usage seems illogical. You also know that monthly_call_minutes and monthly_data_usage_GB are highly correlated; customers who use a lot of one service also tend to use a lot of the other.	*
		(a) Explain, why the logistic regression model product these illogical and contradictory coefficients, despite your strong business intuition. (2M) (b) Propose two distinct methods to address this issue and make the coefficients more stable and interpretable. Explain the core mechanism of each method. (4M)	
		You are a data scientist building a multiple linear regression model to predict housing prices. You have a large dataset with 30 potential features (e.g., square footage, number of house, lot size, age of the house, etc.).	
	В	After building an initial model with all 30 features, you observe a high R-squared value of 0.95. However, when you	i

	1. Explain to and Adjust squared in this scenario. 2. What is to the square in the scenario.	he fundamen usted R-squa s a more reli- urio. (2M)	tal difference bared, and why able metric for y reason for the	d it is significantly between R-squared the Adjusted R-model selection in large discrepancy	
	to train the	classifier, and sification, i.e	l only three wor each email is	lar and spam mails ds are informative represented as a 3 mponents indicate in the email. Category Regular	
		0 0 1	0 0	Regular Regular Regular Spam	10
+	0 0	1 1 1	0 0	Spam Spam Spam	
	0 0 0	1 1 1	1	Spam Spam Spam Spam	
	10	free:0, money	have a test mai: 1. Predict wheth **All the best ***	l with the features her the test mail is	