Method of Undetermined Coefficients Section 3.4 (Noonburg)

In this section we will describe a method to find the particular solution, x_p of a non-homogeneous equation. There are two methods, namely; Method of undetermined coefficients and Variation of parameters. But we will not cover the method of variation of parameters in this course. Again, for simplicity, we only focus on second order non-homogeneous linear DEs.

Recall: $x_h + x_p$ makes a general solution of the non-homogeneous linear DE. (See Section 3.1)

The method of undetermined coefficients only works if;

- the coefficients are all constants.
- for ax'' + bx' + cx = f(t), where a, b, c are constants, the function f(t) is
 - an exponential function e.g. $ax'' + bx' + cx = 2e^{-3t}$
 - a linear combination of sines and cosines e.g. $ax'' + bx' + cx = 5\sin(2t)$
 - a polynomial e.g. $ax'' + bx' + cx = 2t^3 - t + 1$
 - or an algebraic combination of such functions e.g. $ax'' + bx' + cx = 2t^3 - t + \sin(3t)$

Procedure to determine x_p :

Looking at the f(t), guess the form of the x_p as give in the table below:

Sample $f(t)$	x_p used
$2e^{-3t}$	Ae^{-3t}
$5\sin(2t)$	$A\sin(2t) + B\cos(2t)$
$2t^3 - t + 1$	$At^3 + Bt^2 + Ct + D$

NOTE: If x_p is a solution of the associated homogeneous equation, then use $t^k x_p$ where k is the smallest positive integer which distinguishes x_p from x_h . e.g. Suppose $x_h = 5e^{-3t} + e^t$ and the $f(t) = 2e^{-3t}$. Then you must use the guess as $x_p = Ate^{-3t}$.

After finding the suitable guess for x_p , the function x_p and its derivatives are substituted to the DE and then solve for the unknown constants of x_p by matching the coefficients of f(t).

Example #1: Find the solution of the IVP

$$2x'' + 5x' - 3x = 3t^2 - 4t + 1$$
, $x(0) = 1$, $x'(0) = 0$.

$$2x'' + 5x' - 3x = 0$$

$$2r^{2} + 5r - 3 = 0$$

$$r = \frac{1}{2}, -3$$

$$X_{h} = C_{1}e^{\frac{1}{2}t} + C_{2}e^{-\frac{3}{2}t}$$

$$Y_{h} = C_{1}e^{\frac{1}{2}t} + C_{2}e^{-\frac{3}{2}t}$$

$$Y_{h} = C_{1}e^{\frac{1}{2}t} + C_{2}e^{-\frac{3}{2}t}$$

$$Y_{h} = 2A + 6$$

$$Y_{h} = 2A$$

Example #2: Find the particular solution, x_p of the IVP. (HW: Solve the IVP.)

$$x'' + x' + x = 3\sin(2t), \quad x(0) = 1, \quad x'(0) = 0.$$

$$c = \frac{-1 * \sqrt{1 - 4}}{2} = -\frac{1}{2} * \frac{13i}{2} \qquad \alpha = \frac{-14}{2}$$

$$x_h = c_1 e^{-1/2 t} cos(\frac{5}{2} t) + c_2 e^{-1/2 t} sin(\frac{13}{2} t)$$

$$f(t) = 3 sin(2t)$$

$$x_P = A sin(2t) + B cos(2t)$$

$$x_P = 1 A cos(2t) - 2 B sin(2t)$$

$$x_P = -1 A sin(2t) - 4 B cos(2t)$$

$$-4 A sin(2t) - 4 B cos(2t) - 2 A cos(2t) - 2 B sin(2t) + A sin(2t) + B cos(2t) = 3 sin(2t)$$

$$sin(2t)(-4A - 2B + A) + cos(2t)(-4B + 2A + B) = 3 sin(2t)$$

$$(-3A - 2B) sin(2t) + (2A - 3B) cos(2t) = 3 sin(2t)$$

$$-3A - 2B = 3$$

$$-13 B = 3$$

$$-13 B = 3$$

$$-13 B = 3$$

$$A = \frac{3}{2}B$$

$$A = \frac{-16}{13}$$

$$A = \frac{-9}{13} sin(2t) - \frac{6}{13} cos(2t)$$

$$x_P = -\frac{9}{13} sin(2t) - \frac{6}{13} cos(2t)$$

Example #2: Find the particular solution, x_p of the IVP. (HW: Solve the IVP.)

$$x'' + 4x' + 4x = 2e^{-2t}, \quad x(0) = 1, \quad x'(0) = 1.$$

$$\begin{array}{l} r^{2} + 4r + 4 = 0 \\ r = -2 \\ \chi_{h} = c_{1}e^{-2t} + c_{2}te^{-2t} \\ \chi_{p} = At^{2}e^{-2t} + 2At^{2}e^{-2t} = 2Ae^{-2t}(t-t^{2}) \\ \chi_{p}^{2} = 2Ate^{-2t} + 2At^{2}e^{-2t} + (t-t^{2})(-2e^{-2t})) = 2Ae^{-2t}(1-4t+2t^{2}) \\ 2Ae^{-2t}(2t^{2} - 4t+1) + 8Ae^{-2t}(t-t^{2}) + 4At^{2}e^{-2t} = 2e^{-2t} \\ 2A(2t^{2} - 4t+1) + 8A(t-t^{2}) + 4At^{2} = 2 \\ 2At^{2} - 4At + A + 4At - 4At^{2} + 2At^{2} = 1 \\ A = 1 \\ \chi_{p} = t^{2}e^{-2t} \end{array}$$

Important observation:

Example #3: Consider $x'' + 4x' + 4x = 2t^2e^{-2t}$.

From Example #2, we have $x_h = C_1 e^{-2t} + C_2 t e^{-2t}$ as the homogeneous solution. Here I need to find the particular solution according to $2t^2 e^{-2t}$.

Suppose I assumed $x_p = (At^2 + Bt + C)e^{-2t}$. This contains terms in x_h .

So if I modified it to $x_p = (At^3 + Bt^2 + Ct)e^{-2t}$, still it contains terms in x_h .

But if I used $x_p = (At^4 + Bt^3 + Ct^2)e^{-2t}$, then it is different from x_h .

So this will be the correct guess for my x_p .

Example #4: Consider $x'' + 2x' + 10x = te^{-t}\sin(3t) + t$.

Given that $x_h = C_1 e^{-t} \cos(3t) + C_2 e^{-t} \sin(3t)$. (Check: HW). Find the structure of the particular solution, x_p .

$$X_{P} = (At^2 + Bt)e^{-t}sin(3t) + (Ct^2 + Dt)e^{-t}cos(3t)$$