[4-1] Applications of	the First Derivative
	is incheasing on an interval (a,b) if two numbers x, and x, in (e,b),
$f(z_i) \langle f(z_i) \rangle$	whenever $x_1 \langle x_2 \rangle$
· A function if for	f in decreasing on an interval (a, b) every two numbers x, 4 xz in (a, b)
II .	(2) whenever (2) (2) .
	on (a,, b,)
42 32	$\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
Recall that be d	suggests, that if a function is
di fferentiable	tenvals on which f is increasing/
V	decreasing.

NOT WRITE of [-1,0) U (0,1) to denote
interval where f is decreasing; use , " to
Recall P. 15 P. 100 Part ant
The definition of incheasing function which does not involve derivative at all/ (f(x1)) &f(x2) whenever x, (x2).
1x3 - 2x2+3x g then f(x)>0 on (-0, 1) g(3,00)
f is incheasing on $(-\infty, 1)$
f is incheasing on $(3, \infty)$.
fix not incheasing on (-0,1) U(3,0).
cause $f(.9) > f(3.1)$ inspite of $0.9 < 3.1$.

	Desiratives are again going to be consid to
	figure out relative max/min. The from the
d	
[Deg	finition! Critical Number/ Point of f
	The values of x in the domain of f where
	either $f'(x) = 0$ on where $f'(x)$ DNE,
71	are called the critical points of f
Algori	thm to find. Polative Extrema of a continuous function
0	Determine chitical points of f.
<u> </u>	Determine the sign of f'(x) to the left and. Pright of each critical number.
	(a) If f'(x) changes sign from positive to negative
-	f has a helative maximum at x = c.
(b) If f'(x) changes sign from negative to positive.
	as we move across a chit. pt. C, then f has a helative mine at x= c.
	If f'(x) does not charge sign as we move
ţ.	of does not have a gelative extremum at x=c.

Note: This is essentially doing the same thing as
before Colorwing sign chart I except that we are taking into account the point where f'(x) DNE instead of f' being discontinuous)
are taking into account the point where
f'(x) DNE instead of f' being discontinuous
We are using the following:
BUSHAD & Die Skind on the points
TITO COLON
[thm] If fix continuous on (a, b), c E(a, b)
and f(c) is a local extremum, then
and f(c) as a locally extremum. Then
either $f'(c)=0$ on $f'(c)$ DNE.
J
Thus, I relative extreme can occur only at
enitical points.
(IMPORTANT For True /False)
However, being a critical point does not always.
give a local extremum.
$e.q. f(x) = x^3 + 2$
f'(x) = 3x2. So, f' always exists.
and O is the only critical point. But f(0) is not
la l
a local max/min.

The	algorithm we just described is called
Fin	et - Desivative Test for Local Extrema.
Tog Fi	nd. relative max/min of the function.
,	$f(x) = \chi^{2/3}$
Soln:	
	$f'(x) = \frac{2}{3} x^{-1} 3 \qquad S_0, f'(x) = 0 \text{has no} \text{soft}.$
	However, f' does not exist at x = 0. Thus, 0 is the only critical point.
	$f'(1) = \frac{2}{3} > 0$
	f'(-1) = -2/0
80,	at Q. there is a gelative minimum of f. Both steps
	The helative minimum value is f(0) = 0 for answer

Important
[] f(x) = = + x . Find critical points & locate min [max
$\int \frac{d^2x}{x^2} f'(x) = -\frac{9}{x^2} + 1.$
f' is not defined at 0 but 0 is not in the domain of f. So, x=0 is not a critical point.
$f'(x)=0 \mathcal{D} \Longrightarrow \frac{-9}{x^2}+1=0$
$\Rightarrow 1 = \frac{9}{x^2}$
Thus, chitical points are $x = 3 - 3$.
$\frac{+ -3}{-3} + \frac{f'(-4) = -\frac{9}{16} + 1 > 0}{f'(1) = -\frac{9}{16} + 1 < 0}$
$f'(4) = -\frac{9}{14} + 1 > 0.$
Thus from sign chart, we have. $x = -3$ is a less trelative man. at $x = 3$ so a nelative min.
$f(-3) = \frac{9}{3} = -6$ is a relative mex value. $f(3) = \frac{9}{3} + 3 = 6$ is a " min. value.

[e.g.] f(x) = x3-12x2 + 36x. Find melative r	rian/min.
18xen/cise	
[4.2] Applications of 2nd donivative.	
Note that provided of is friendly, we can about f". Hence Poters at use can	tolk
Note that provided of is favorably, we can about of" theree Better at we can same treatment to of now as we did to figure out where of is increasing of etc. etc.	to f
Definition given a function $f(x)$, we say the graph of is concave up Crespectively, con	
on the interval (a, b) if f'(ne) and is i	
i.e. $f''(x) > 0$ on (a,b) (nexp. $f'(x)$)	Ü
decheasing, i.e. $f''(\pi)$ (0 on (e,b)).	
f"(x) f'/x) Graph of f	
t increasing concave up	
- decheasing concave down	

An inflection point of f is a point in the stores of f where concavity changes. What happens tobar at an inflection point? Theorem Of $g = f(x)$ is continuous on (a,b) and has an inflection point? Theorem $f''(c) = 0$ on $f''(c)$ DNE. From either point $g(c) = 0$ on $g(c) = 0$ does not imply that $g(c) = 0$ does not imply	
An inflection point if of f is a point in the disconsist of f where concavity changes. What happens about at an inflection point? Theorem I heorem inflection point at $x = c$ $E(a,b)$, then either $f''(c) = 0$ or $f''(c)$ DNE. For it is sort of potative about f	pt
What happens when at an inflection point? Theorem 9 $f = f(x)$ is continuous on (a,b) and has an inflection point at $x = c \in (a,b)$, then either $f''(c) = 0$ on $f''(c)$ DNE. (For it is some of point of the source of	
Theorem 9f $y = f(x)$ is continuous on (a,b) and has an inflection point at $x = c \in (a,b)$, then either $f''(c) = 0$ on $f''(c)$ DNE. (A) it is some of yelsting about to great the solution of the solu	
If $y = f(x)$ is continuous on (a,b) and has an inflection point at $x = c \in (a,b)$, then either $f''(c) = 0$ on $f''(c)$ DNE. (by it is said to get the said of special of s	
inflection point at $x = c \in (a, b)$, then either $f''(c) = 0$ on $f''(c)$ DNE. (it is sont) getative above by	
f"(c)=0 on f"(c) DNE. (it is soption of metating and b	
netative more	
Note P1/c)=0 does not imply that a is an as	*
inflection point. We have to check concavit	y
So, here's an algorithm:	

Finding Inflection Points.
(2) Solve $f''(x) = 0$ and also I find x such that
3 Determine sign of f"(x) & Sign Chart for f"(x):
if there is a change in sign as we move across a particular point, then the care (c, f(c)) is a inflection point
e.g Fird inflection point for $g(x) = \frac{1}{x-3}$
$\frac{q'(x) = -\frac{1}{(x-3)^2} ; q''(x) = -\frac{2}{(x-3)^3}}{q'(x)^2 + \frac{1}{(x-3)^2} ; q''(x) = -\frac{2}{(x-3)^3}}$
$g''(x) \neq 0$ for all x in the domain of g . $g'''(x) \neq 0$ for all x in the domain of g .
domain of 9. So, 3 cont be included in our discussion.
So, 9 has no inflection point.

[e.g] Find inflection points for $f(x) = x^9 - 9x^2 + 24x - 10$.
gfn: f'(x) = 3x2-18x + 24
-f''(x) = 6x - 18.
So, f ((x) = 0 when x = 3. ; f'' exists everywhere. Thus 3 is the only candidate for checking)
$\frac{-}{3} + \frac{f''(2) = 12 - 18(0)}{f''(4) \geq 0}$
Thus, (3, f(3)) (3) is an I.P. (inflection point).
Second- Denivative Test for Local Max/Min.
(1) Compute f'(x), f"(x).
6) Compute all critical numbers of fat which
f'(x)=0.
(3) Compute f"(c) for such critical number c.
@ 9f f"(c) <0, then f has a relative maximum at c. (b) 9f f"(c) >0, then f has a relative minimum at c.
6 9f f"(c)=0 on f"(c) DNE, then Test is inconclusive.

(e.g).	Find welative max/min of the function:
	$f'(x) = \frac{9}{x} + x$
<u>SP</u>	n: $f'(x) = -\frac{9}{x^2} + 1$. So, $f'(x) = 0$ at $x = 3, -3$.
	$f''(z) = 0 \frac{18}{x^3}$ $f''(3) > 0$ $so_2 x = 3 ion a local$
	f"(-3) (0: So, x = -30, a local. max. with value -6.
	First-Derivative Test is stronger than 2nd derivative Test
	e.g. $f(x) = x^{2/3}$. Ind-desirative test can't be Applied !!

43	Curve-Shetching Will use the tools we've developed so fan to graph- functions now.
W	need two more tools:
Dofn	The writed line $x = a$ is a writed asymtote for the graph of $y = f(x)$ if $\lim_{x \to a^+} f(x) = \pm a$ or $\lim_{x \to a^-} f(x) = \pm a$
	Theorem) If $f(x) = \frac{p(x)}{q(x)}$ is a sational function,
	and if $q(c)=0$, $p(c)\neq 0$, then $x=c$ is a vertical asymptote of f .
Defn	The horizontal line y=b is a horizontal asymptote of. for the graph of f if lim f(x)=b on lim f(x)=b x>-0 x>-0

Graphing Technique.
1) Determine domain of f.
2) Find x & y intercepts of f.
3) determine the horizontal and ventical asymptotes of f.
Analyze f'(x): find intervals where f is incheasing, decreasing: find critical points; find relative entruma.
(5) Analyze f"/x): Find concavity; inflection points.
6) Sketch the graph: 6) Draw asymptotes
Drocate intercepte, local extreme & inflection points.
Wherever unsure, compute & values cot some points
4 connect dots.

[e.g.	Sketch 2-12+5
	$Skelch$ $g(\pi) = \frac{2\pi^2 + 5}{4 - \pi^2}$
Soln	· Domain = (-0,-2) U(-2,2) U(2,00).
	• $2x^2+5\neq0$ anywhere . So, there is no x - intercept; • $g(0)=\frac{5}{4}$. Thus $(0,\frac{5}{4})$ is the y-intercept.
	Now, $4-x^2=0 \Rightarrow x=\pm 2$. (a) and $2x^2+5+0$. Thus,
	Now, $4-\chi=0$ = $\chi=1$ a. Exp that. $4\chi+3+0$. Thus, $4\chi+3+0$. Thus, $4\chi+3+0$. Thus, $4\chi+3+0$. Thus, $4\chi+3+0$.
	lim 2x2+5 = -2. j the horizontal asymptotes.
	1. 21/ 2(2-215)~
	$g'(x) = \frac{(4-x^2) 4x + 2(2x^2+5) x}{(4-x^2)^2}$
	$=\frac{16x-4x^3+4x^3+10x}{\left(4-x^2\right)^2}=\frac{26x}{\left(4-x^2\right)^2}$
	$g'(x)=0 \Rightarrow x=0$. (1) [2,-2 are not in domain] Thus, $x=0$ is the cartical point. $g'(-1) \neq 0$
97-31	5'(1) >0.

Thus, at x=0, there is a relative minimum
$g''(x) = \frac{(4-x^2)^2}{(4-x^2)^4} = \frac{(4-x^2)^4}{(4-x^2)^4}$
$= \frac{(4-x^2)(26)\left[4-x^2+4x^2\right]}{(4-x^2)^4} = \frac{26(3-x^2+4)}{(4-x^2)^3}$
$g''(x) > 0$ for all $x \neq \pm 2$. (not in the domain).
No inflection point : always concave as up for $x \in (-2, 2)$ Concave down for $x \in (2, \infty)$ $x \in (-2, 2)$

