FIG. 1

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 7B

FIG. 8

FIG. 9

GAM DETECTION MODIFIED GAM THERAPY

ANTI-GAM GAM REPLACEMENT THERAPY

GAM PRECURSOR

GAM PRECURSOR

DICER COMPLEX
GAM FOLDED
PRECURSOR RNA

GAMRNA

GAM TARGET

PROTEIN

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 13

	PRIMER SEQUENCE AATTIGCITIGAAC ACTIGCACITC CITAGACTIGAAG GAAGATTIGAAG GAAGATTIGAAG GAAGATTIGAAG GAAGATTIGAAG AATTIGCITIGAAG AATTIGCITIGAAG AGGGCAGTIGAA AGGGCAAGAG AGGCAAGAGA AGGGCAAGAGAT ATTICACTTIGACTTIGACTTIGACTTIGACTTIGAAG	PRIMER SEQUENCE SEQUENCE SEQUENCE SECUENCE AATTGCTTGAAC CCAGGAAGTGGA ACTGCACTCC CAGCCGAGCACA CTGAACTGAA		SEQUENCE E SEQENCE AC CCAGGAAGTGGA AC CCAGGAAGCAACA CAGCCCAGGAACAA CAGCCCAGAGCAACA CTCCTTGAAGGAC CTCCACCA CTCACCA CTCCACCA CTCCACCAC C
--	--	---	--	--

EST72223 (705 nt.)

EST72223 sequence:

MIR98

GAM25

FIG. 15B

FIG. 16A

FIG. 16B

FIG. 16C

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 18A

FIG. 18B

	8840	3100	776	709	725	465	HSA-MIR-136
	33532	1478	10636	1027	595	556	HSA-MIR-200C
	40076	11173	6021	2990	3492	1312	HSA-MIR-23A
	46845	2000	4063	1220	805	696	HSA-MIR-141
	54287	10608	20212	3520	9325	625	HSA-MIR-221
	62452	15288	6864	10703	2280	844	HSA-MIR-210
	65518	5377	32305	7684	11061	3233	HSA-MIR-224
	997	2250	763	698	617	448	HSA-MIR-134
	9637	14750	3309	1914	733	438	HSA-MIR-154
	738	23083	3871	477	433	410	HSA-MIR-10B
	6233	64859	6535	1757	3898	525	HSA-MIR-204
	2138	1681	8754	1286	1123	1026	HSA-MIR-183
	3683	2034	25771	1091	1944	662	HSA-MIR-182
	2	2645	65518	1646		551	HSA-MIR-205
	5280	29728	65518	5295	1463	648	HSA-MIR-150
	5466	2266	44800	1477	3100	887	HSA-MIR-96
	2607	1263	1628	20650	606	452	HSA-MIR-192
	2711	6204	5250	38436	620	413	HSA-MIR-148
3	7952 3	2342	4737	65518	910	501	HSA-MIR-194
1,3	570 1,3	617	2644	65518	447	1051	HSA-MIR-122A
	2027	5383	4819	3954	21969	1168	HSA-MIR-128B
3	2017	5364	2213	1175	22573	503	HSA-MIR-129
3	2495 3	5166	4876	4940	27701	2015	HSA-MIR-128A
12,3	2313 2,3	4485	4455	3504	42659	642	9-NIM-ASH
1,3	2498	2672	6608	7025	65517	1879	HSA-MIR-124A
REFERENCE	PLACENTA	TESTES	THYMUS	LIVER	BRAIN	HELA	MIRNA NAME

LAGOS-QUINTANA ET AL., CURRENT BIOLOGY 12:735 (2002)

2 KRICHEVSKY ET AL., RNA 9:1274 (2003)

3 SEMPERE ET AL., GENOME BIOLOGY 5:R13 (2004)

FIG. 19A

5'UTR SEQUENCE (5' TO 3') OF HIV-1 (U5-R)

GGTCTCTCGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACT
AGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTA
GTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAACCCTC
TTAGTCAGTGTGGAAAATCTCTAGCAGTGGCCCCGAACAGGGACCTGAAAG
CGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGCTTGCTGAA
GCGCCACGGCAAGAGGCGAGGGGCGCGCGACTGGTGAGTACGCCAAAAA
TTTTTGACTAGCGAGGGCTAGAAGGAGAGAG

FIG. 19D

FIG. 21A

FIG. 21B

CTCTCTGG TTA	GCAAG 7 CG	CTCTCTGG T	CTTTT	GGAAA T	GGAAA T	GCAAG CG	GGAAA T	SEQUEN	JOW!
GG CTCTCTGGTT GAGTAATA AGTAATAGG GG	GCAAGAGG GCAGAGGC GCAGAGGC CG T T T TAGAAGCAG	GG AGTACTTGG A	CTTTTTGCC CTTTTTGCCT CTTTTTGCA TG GGGCAGGGC C	GGAAAGAA GGAAAGAT TAATGTGAA AATGTGAA	GAA GGAAAGAAT TAATGTGAG	GCAAGAGG GCAAGAGT GAGAAGCAG GAGAAGCA A GA	GGAAAGAA GGAAAGGA T C GCAC GCAC	PRIMER SEQUENCED SEQUENCE	_
, CTCTCTGGA GAGTAATA GG	GCAGAGGC AGAAGCAG T	. , 4,	CTTTTTGCA GGGCAGGG C	GGAAAGAT AATGTGAA	GGAAAGGA TAATGTGAG	GCAAGAGT GAGAAGCA GA	GGAAAGGA AAGTGGGT GCAC	GAM RNA SEQUENCE	
CTTTGAGAAAAAGAGGCTTGTTATATTCCAAGCATG AGATGATTATTAGAAACACTTATTTTCTGTTCTCTCT GGAGAGTAATAGGCAGAACCCCTTATCAGGG	TCITGCCTTGCACTGTCCATAAATCTGCCCTGGCTTT CTGCCTGACTGCACACTAAGAATCATGCACAGAAA GCAGAGGCAGAAGCAGTGATTGGTAAGG	AGGGTCTAGTCTGGTTAGTACTTGGATGAGAGACCA AATAGCAAATACTTAAAATGTCTTTTCTAAGGAAAT TAAATTGGCTCCT	CTCTTCTAACTTCAGTCCTTTTTGCAGGGCAGGGCT TACTCTAGGAAACTTATTGCAAGGTAAGTCAAGTC	GCTAGAGACTTGAGACCGAGTGAAGGCCACACTC CGGAGGGAAAGATAATGTGAAGGCTCTCTCCACTG ACATGTCAACATGCTTTCTAACTTGACTGGGCTTCCCCT AAACTTGGGTAATTTTCAGC	GGAAAGAA GGAAAGAAT GGAAAGGA TGGCTCTTCTCAAACAGAACTCCAACTGCT TAAATGTGAG TAAATGTGAGTAAACAACTATTAACAACGAAAGGA TAAATGTGAG TAAATGTCAACAACACTATTAACAACTGATTTACTCCTCTCATCAAAATGGAGCTT	CCCAGGTTCTGCAAGAGTGAGAAGCAGAAAGCCTA CTTTGCGTTGCCTCTACCTGAGGAGAAAAAGCCAGG TGTGCTCTCAGATGGTCGGGGTAGTGCTTGGG	GACAGTGGCAATGGGGAAAGGAAAGTGGGTGCACT CAAGCTAGGCAGAAGTCAGCTAGGCAAGATGTGTA ACTGGTTCAACTTCTGCATAGAGGAGAATGTAGGTC CTTTCCATTCTAATATAGATGTTC	SEQUENCE	GAM PRECIESOR
2	1	11	5	6	21	20	11	HR	٦
	+	+	•	+	+	+	+	START OFFSET	
240247210	193722202	88695685	65170275	50974009	24398831	10164522	6527398	START OFFSET	