

Readability-guided Idiom-aware Sentence Simplification (RISS) for Chinese

Jingshen Zhang, Xinglu Chen, Xinying Qiu*, Zhimin Wang, Wenhe Feng

Guangdong University of Foreign Studies, Guangzhou, China

Abstract

Definition

Sentence simplification (SS) aims to reduce the linguistic complexity of a sentence while preserving its meaning.

Challenge

However. Chinese sentence simplification faces two main challenges: the scarcity of parallel training data and the prevalence of idioms.

Proposal

propose Readability-guided *Idiom-aware* Simplification (RISS), a novel framework combining data augmentation tech.

Methodology I

RPS: Readability-guided Paraphrase Selection

readability pairwise Levenshtein/syntactic/semantic similarities to automatically mine high-quality training data.

Methodology II

IAS: Idiom-aware Simplification

Introducing an idiom-specific loss component to encourage accurate representations and simplification of idiomatic phrase.

Combined Strategy Framework

RISS

Using multi-stage or multi-task to combine RPS and IAS.

Figure 3: The RISS module architecture with multi-stage (left) and multi-task (right) strategies, where I_i , E_i denoted idioms and their corresponding explanations respectively, and S_i , T_i denote source and target sentences selected by RPS respectively.

Main Result & **Ablation Study**

Method	CSS				MCTS				
	$Sari_{char}$	$Sari_{word}$	B.S.	BLEU	$Sari_{char}$	$Sari_{word}$	B.S.	BLEU	
Identity	29.08	27.61	0.88	88.77	25.06	22.37	0.90	84.75	
Truncation	32.95	33.18	0.79	76.36	25.21	21.85	0.87	61.6	
Gold Reference	46.72	45.71	0.96	65.31	50.12	48.11	0.90	61.62	
Unsupervised (Zero-Shot) M	$_{ m ethod}$								
Lu et al. (2021)	36.27	33.39	-	63.47	-	40.37	-	48.72	
Translate Training (2023)	36.02	34.44	-	71.41	-	28.30	-	82.20	
Cross-Lingual Pseudo (2023)	-	-	-		-	38.49	-	63.06	
Gpt-3.5-turbo (2023)	31.95	28.92	0.83	42.22	-	42.39	-	49.22	
$RISS_{multi-stage}$	40.95	39.36	0.81	81.92	44.37	42.71	0.90	79.94	
$RISS_{multi-task}$	41.68	40.52	0.87	84.05	46.23	44.36	0.90	80.83	
Supervised (Few-Shot) Meth	od								
mT5-large (2023)	37.57	35.97	-	74.71	-	-	-	-	
Gpt-3.5-turbo (2023)	39.32	36.57	0.85	60.57	-	-	-	-	
RISS _{multi-stage+labeled data}	44	43.1	0.88	88.48	47.41	45.94	0.90	79.94	
RISS _{multi-task+labeled data}	43	42.35	0.88	88.59	48.49	46.42	0.90	81.12	

Table 2: Main results of the experiment. For a comprehensive analysis, we calculate the missing metrics for publicly available system-generated results provided by previous studies; otherwise we use "-" to fill in the missing values. **Bold** indicates the best result, and <u>underline</u> indicates the second-best result. For detailed experiment parameters, please see Appendix B.

Method		CSS				MCIS				
	$Sari_{char}$	$Sari_{word}$	B.S.	BLEU	$Sari_{char}$	$Sari_{word}$	B.S.	BLEU		
Unsupervised (Zero-Sho	t) Method									
Raw Paraphrase	36.45	35.22	0.806	86.68	41.27	39.8	0.908	81.1		
RPS	40.54	38.98	0.867	82.51	43.89	42.29	0.90	78.24		
IAS _{without-loss}	36.23	35.39	0.874	89.17	45.84	43.72	0.90	81.73		
$IAS_{with-loss}$	36.56	35.89	0.878	89.66	46.31	44.76	0.901	81.18		
$RISS_{multi-stage}$	40.95	39.36	0.811	81.92	44.37	42.71	0.899	79.94		
$RISS_{multi-task}$	41.68	40.52	0.873	84.05	46.23	44.36	0.899	80.83		
Supervised (Few-Shot) N	Method									
Bart	40.21	39.39	0.886	88.13	44.8	43.43	0.899	81.48		
Raw Paraphrase	41.32	40.33	0.868	89.45	45.13	44.28	0.905	81.49		
RPS	43.76	42.68	0.87	87.84	46.47	45.48	0.903	80.94		
IAS _{without-loss}	41.51	40.73	0.877	88.34	47.37	45.71	0.903	81.68		
$IAS_{with-loss}$	42.99	42.26	0.902	88.63	47.62	46.11	0.895	81.15		
$RISS_{multi-stage}$	44	43.1	0.875	88.48	47.42	45.94	0.903	81.57		
$RISS_{multi-task}$	43	42.35	0.876	88.59	48.49	46.42	0.904	81.12		

Table 3: Ablation Study on CSS and MCTS. Bold indicates the best result, and underline indicates the second-best result.

- Addressing two major challenges in Chinese sentence simplification.
- Advancing the SOTA performance on two Chinese sentence simplification datasets.

