Estatísticas Suficientes

ESTAT0078 - Inferência I

Prof. Dr. Sadraque E. F. Lucena

sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/inferencia1

Definição 6.1: Estatística Suficiente

Dizemos que a estatística $T = T(X_1, ..., X_n)$ é suficiente para θ , quando a distribuição condicional de $X_1, ..., X_n$ dado T for independente de θ .

• Em outras palavras, uma estatística suficiente contém todas a informação sobre θ presente na amostra.

Para verificarmos se T é uma estatística suficiente para θ :

1. Calculamos

$$P(X_1 = x_1, ..., X_n = x_n | T = t) = \frac{P(X_1 = x_1, ..., X_n = x_n, T = t)}{P(T = t)}$$

2. Se $P(X_1 = x_1, ..., X_n = x_n | T = t)$ não envolve θ , dizemos que T é suficiente para θ .

Exemplo 6.1

Seja X_1, \ldots, X_n uma amostra aleatória da distribuição de Bernoulli (θ) . Verifique se $T = \sum_{i=1}^n X_i$ é suficiente para θ .

(i) Lembretes

- 1. $X \sim \text{Bernoulli}(p)$: $P(X = x) = p^x (1 p)^{1-x}$, x = 0, 1.
- 2. A soma de n v.a. de Bernoulli(p) tem distribuição Binomial(n, p).
- 3. $Y \sim \text{Binomial}(n, p)$: $P(Y = y) = \binom{n}{y} p^y (1 p)^{n-y}, y = 0, 1, 2, ..., n$.

Exemplo 6.2

Considere o exemplo anterior, com n=3 e $T=X_1+2X_2+X_3$. Verifique que T não é suficiente para θ .

Dica: Considere $X_1 = 1$, $X_2 = 0$ e $X_3 = 1$.

Exemplo 6.3

Seja X_1,\ldots,X_n uma amostra aleatória da distribuição de Poisson com parâmetro θ . Verifique se $T=\sum_{i=1}^n X_i$ é suficiente para θ .

(i) Lembrete

$$X \sim \operatorname{Poisson}(\theta)$$
: $P(X = x) = \frac{e^{-\theta}\theta^x}{x!}, x = 0, 1, 2, \dots$

Fim

