Задание 10. Методы безусловной многомерной оптимизации

Спонсор задания — В. И. Гориховский

28 марта 2025

т.е. (СП6ГУ)

- [1] Б. Т. Поляк. Введение в оптимизацию.
- [2] В. Г. Жадан. Методы оптимизации. Часть 2: численные алгоритмы.
- [3] Ссылки:

```
http:
```

//mech.math.msu.su/~vvb/MasterAI/GradientDescent.html https://pnu.edu.ru/media/filer_public/2013/02/26/popova_methods-mo.pdf https://arxiv.org/ftp/arxiv/papers/1711/1711.00394.pdf https://www.mathnet.ru/links/

f8f8999f792f184fa8cdf0721137df7f/at554.pdf

[4] П. К. Силаев, В. А. Ильина. Численные методы для физиков-теоретиков. Часть І. 2003.

4日 → 4団 → 4 三 → 4 三 → 9 Q (*)

Т.Е. (СП6ГУ)

Что нужно сделать:

Реализовать и сравнить методы по метрикам:

- скорость сходимости по числу вычислений оптимизируемой функции
- скорость сходимости по времени
- точность метода
- вероятность нахождения глобального оптимума

Лирическое

Методы поиска: безградиентные (нулевого порядка) и градиентные (первого порядка; второго...)

Совет от физиков-теоретиков: если нет возможности вычислить градиент хотя бы приблизительно, НЕ стоит применять градиентные методы, вычисляя градиент численно покоординатным варьированием.

Метод градиентного спуска — не всегда разумный способ найти многомерный минимум.

Градиентный метод

Считаем, что в любой точке x можем вычислить градиент функции $\nabla f(x)$.

Тогда, начиная с некоторого приближения x^0 , строим итерационную последовательность

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k)$$
, где $\gamma_k \geqslant 0$ — длина шага.

Т.Е. (СП6ГУ)

Как прийти к этому методу?

- Из необходимых условий экстремума: если в точке x условие экстремума не выполняется $(\nabla f(x) \neq 0)$, то значение функции можно уменьшить, перейдя к точке $x \tau \nabla f(x)$ при достаточно малом $\tau > 0$. Применяем эту идею итеративно.
- ② В точке x^k дифференцируемая функция f(x) приближается линейной $f_k(x) = f(x^k) + (\nabla f(x^k), x x^k)$ с точностью до членов порядка $o(x x^k)$. Поэтому можно искать минимум аппроксимации $f_k(x)$ в окрестности x^k .
 - Например, можно задать некоторое ε_k и решать вспомогательную задачу $\min_{\|x-x^k\|\leqslant \varepsilon_k} f_k(x)$. Решение этой задачи принимают за новое приближение x^{k+1} .
 - Можно остаться в окрестности x^k иначе: добавив к $f_k(x)$ «штраф» за отклонение от x^k . Например, решая вспомогательную задачу $\min \left[f_k(x) + \alpha_k \|x x^k\|^2 \right]$ и ее решение брать в качестве x^{k+1} .
- **3** Можно в точке x^k брать направление локального наискорейшего спуска (оно будет противоположно направлению градиента).

Т.Е. (СПбГУ) 28 марта 2025 6 / 31

Сходимость градиентного метода

Считаем, что $\gamma_k \equiv \gamma$. То есть метод таков: $x^{k+1} = x^k - \gamma \nabla f(x^k)$.

Theorem

Пусть f(x) дифференцируема на \mathbb{R}^n ,

- градиент f(x) удовлетворяет условию Липшица: $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|,$
- f(x) ограничена снизу: $f(x) \geqslant f^* > -\infty$,
- ullet и γ удовлетворяет условию $0<\gamma<2/L.$

Тогда в методе

- градиент стремится к нулю: $\lim_{k\to\infty} \nabla f(x^k) = 0$,
- ullet а функция f(x) монотонно убывает: $f\left(x^{k+1}\right)\leqslant f\left(x^k\right)$.

4 D > 4 B > 4 E > 4 E > 990

Т.Е. (СП6ГУ)

Сходимость для сильно выпуклых функций

Функция f(x) на \mathbb{R}^n называется сильно выпуклой с константой $\ell>0$, если при $0\leqslant \lambda\leqslant 1$

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \ell \lambda (1-\lambda)||x-y||^2/2.$$

Theorem

Пусть f(x) дифференцируема на \mathbb{R}^n , ее градиент удовлетворяет условию Липшица с константой L и f(x) является сильно выпуклой функцией с константой $\ell > 0$.

Тогда при $0<\gamma<2/L$ метод сходится к единственной точке глобального минимума x^* со скоростью геометрической прогрессии: $\|x^k-x^*\|\leqslant cq^k,\, 0\leqslant q<1.$

4日 > 4日 > 4日 > 4日 > 日 990

т.е. (СПбГУ)

Метод Ньютона

Используем квадратичную (а не линейную) аппроксимацию функции в точке x^k , т.е. функцию

$$f_k(x) = f(x^k) + (\nabla f(x^k), x - x^k) + (\nabla^2 f(x^k) \cdot (x - x^k), x - x^k)/2.$$

Выбираем точку минимума $f_k(x)$ в качестве нового приближения: $x^{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^n} f_k(x)$.

Сам метод:
$$x^{k+1} = x^k - [\nabla^2 f(x^k)]^{-1} \cdot \nabla f(x^k)$$
.

Как придумать метод чуть по-другому?

Точка минимума должна быть решением системы n уравнений с n переменными: $\nabla f(x) = 0$, каковую решают методом Ньютона, заключающимся в линеаризации уравнений в точке x^k и решении линеаризованной системы.

4 D > 4 A > 4 B > 4 B > B 9 9 0

9 / 31

Т.Е. (СПбГУ) 28 марта 2025

Сходимость метода Ньютона

Theorem

Пусть f(x) дважды дифференцируема,

- $abla^2 f(x)$ удовлетворяет условию Липшица с константой L,
- \bullet f(x) сильно выпукла с константой ℓ
- и начальное приближение удовлетворяет условию $q = \frac{L}{2\ell^2} \|\nabla f(x^0)\| < 1.$

Тогда метод сходится к точке глобального минимума x^* с квадратичной скоростью: $\|x^k-x^*\|\leqslant \frac{2\ell}{L}q^{2^k}$.

|ロト 4回 ト 4 E ト 4 E ト 9 Q C・

Выводы

Метод	«+»	«-»
Градиентный	Глобальная сходимость.	Медленная сходимость.
	Слабые требования к $f(x)$.	Необходимость выбора γ .
	Простота вычислений.	
Ньютона	Быстрая сходимость	Локальная сходимость.
		Жесткие трабования к $f(x)$.
		Большой объем вычисле-
		ний.

4 D > 4 B > 4 E > 4 E > 9 Q @

т.е. (СП6ГУ)

Модификации градиентного метода

Идея: различные способы выбора длины шага γ_k (см. Приложение A).

• Идти до минимума по направлению антиградиента:

$$\gamma_k = \operatorname{argmin}_{\gamma \geqslant 0} \varphi_k(\gamma), \ \varphi_k(\gamma) = f\left(x^k - \gamma \nabla f(x^k)\right).$$

Получаем метод скорейшего спуска.

Про сходимость и скорость сходимости доказано в [1]. Но, например, для квадратичной функции метод скорейшего спуска сходится не быстрее, чем простой градиентный метод при соответствующем выборе γ .

② Выбор $\gamma_k \equiv \gamma$, $0 < \gamma < 2/L$ — некоструктивен из-за незнания L. Но можно использовать процедуру подбора γ : задают $0 < \varepsilon < 1$, $0 < \alpha < 1$ и некоторое γ . На каждой итерации вычисляют $\xi = f\left(x^k - \gamma \nabla f(x^k)\right)$ и проверяют неравенство $\xi \leqslant f(x^k) - \varepsilon \gamma \|\nabla f(x^k)\|^2$. Если это верно, то $x^{k+1} := x^k - \gamma \nabla f(x^k)$, иначе $\gamma := \alpha \gamma$ и проверку повторяют.

Первая модификации метода Ньютона: демпфированный метод Ньютона

Первая идея: регулирем длину шага, т.е.

$$x^{k+1} = x^k - \gamma_k \left[\nabla^2 f(x^k) \right]^{-1} \cdot \nabla f(x^k)$$

- демпфированный метод Ньютона.
 - $\gamma_k = \operatorname{argmin}_{\gamma \geqslant 0} f\left(x^k \gamma \left[\nabla^2 f(x^k)\right]^{-1} \cdot \nabla f(x^k)\right)$
 - или γ дробится (умножается на 0 < α < 1), начиная с γ = 1, до выполнения какого-либо условия

$$f(x^{k+1}) \leqslant f(x^k) - \gamma q \left(\left[
abla^2 f(x^k)
ight]^{-1} \cdot
abla f(x^k), \,
abla f(x^k)
ight), \, 0 < q < 1,$$
 или $\|
abla f(x^{k+1}) \|^2 \leqslant (1 - \gamma q) \|
abla f(x^k) \|^2, \, 0 < q < 1.$

Для гладких сильно выпуклых функций метод глобально сходится.

На начальных итерациях сходимость со скоростью геометрической прогрессии. При попадании в окрестность x^* будет иметь место квадратинная сходимость.

Т.Е. (СП6ГУ) 28 марта 2025 13 / 31

900

Вторая модификация: метод Левенберга-Марквардта

Направление движения отличается от задаваемого методом Ньютона: к аппроксимирующей функции добавляется квадратичный штраф за отклонение от точки x^k .

Т.е. ищут x^{k+1} из условия минимума

$$f_k(x) + rac{lpha_k}{2} \|x - x^k\|^2,$$
 где $f_k(x) = f(x^k) + \left(
abla f(x^k), x - x^k
ight) + rac{\left(
abla^2 f(x^k)(x - x^k), x - x^k
ight)}{2}.$

$$\frac{1}{4} \frac{1}{2} \frac{1}$$

Таким образом, метод: $x^{k+1} = x^k - (\nabla^2 f(x^k) + \alpha_k E)^{-1} \nabla f(x^k)$.

[3] При $lpha_k=0$ это будет метод Ньютона. При $lpha_k o\infty$ — направление движения стремится к антиградиенту. За счет выбора α_{ν} можно добиться глобальной сходимости.

Алгоритм (начинаем с $\alpha_k \approx 10^4$):

1 Если $f(x^{k+1}) < f(x^k)$, то берем $\alpha_{k+1} < \alpha_k$ и k = k+1.

 \bullet Иначе $\alpha_k = \rho \alpha_k$, где $\rho > 1$, и пересчитываем этот шаг ещё раз.

Метод пригоден не только для выпуклых функций.

4日 → 4 日 → 4 豆 → 1 豆 り Q (P)

Многошаговая идея

Пытаемся учесть «предысторию» процесса; для ускорения сходимости. Методы

$$x^{k+1} = \varphi_k(x^k, \ldots, x^{k-s+1})$$

называются *s*-шаговыми.

Градиентный метод и метод Ньютона — одношаговые.

Метод тяжелого шарика

Двухшаговый метод:

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}),$$

где $\alpha > 0$, $\beta \geqslant 0$ — некоторые параметры.

Физическая аналогия: движение тела («тяжелого шарика») в потенциальном поле при наличии силы трения (или вязкости) описывается дифференциальным уравнением второго порядка $\mu \frac{d^2 x(t)}{dt^2} = -\nabla f\left(x(t)\right) - p \frac{dx(t)}{dt}$. Из-за потери энергии на трение тело в конце концов окажется в точке минимума потенциала f(x).

Если рассмотреть разностный аналог уравнения, то получим итерационный метод.

Метод сопряженных градиентов [1, 2]

Параметры находятся из решения двумерной задачи оптимизации:

$$\begin{split} x^{k+1} &= x^k - \alpha_k \nabla f(x^k) + \beta_k \big(x^k - x^{k-1} \big), \\ \{\alpha_k, \, \beta_k\} &= \operatorname{argmin}_{\{\alpha_k, \, \beta_k\}} f\left(x^k - \alpha \nabla f(x^k) + \beta_k \big(x^k - x^{k-1} \big) \right). \end{split}$$

Для случая квадратичной функции f(x) = (Ax, x)/2 - (b, x), A > 0, есть явное решение:

$$\alpha_{k} = \frac{\|r^{k}\|^{2} (Ap^{k}, p^{k}) - (r^{k}, p^{k}) (Ar^{k}, p^{k})}{(Ar^{k}, r^{k}) (Ap^{k}, p^{k}) - (Ar^{k}, p^{k})^{2}}, r^{k} = \nabla f(x^{k}) = Ax^{k} - b,$$

$$\beta_{k} = \frac{\|r^{k}\|^{2} (Ar^{k}, p^{k}) - (r^{k}, p^{k}) (Ar^{k}, p^{k})}{(Ar^{k}, r^{k}) (Ap^{k}, p^{k}) - (Ar^{k}, p^{k})^{2}}, p^{k} = x^{k} - x^{k-1}.$$

Т.Е. (СПБГУ) 28 марта 2025 17 / 31

Сходимость для квадратичной функции

Пусть начальное приближение x^0 произвольно, а x^1 получено из него методом скорейшего спуска:

$$x^{1} = x^{0} - \frac{\|r^{0}\|^{2}}{(Ar^{0}, r^{0})}, \ r^{0} = \nabla f(x^{0}) = Ax^{0} - b.$$

Theorem

Метод дает точку минимума квадратичной функции f(x) рассматриваемого вида за число итераций, не превосходящее n.

|ロト 4回 ト 4 直 ト 4 直 ト りへで

Сопряженные градиенты: другая (вторая) форма записи

$$\begin{aligned} x^{k+1} &= x^k + \alpha_k p^k, \ \alpha_k = \operatorname{argmin}_{\alpha} f\left(x^k + \alpha p^k\right), \\ p^k &= -r^k + \beta_k p^{k-1}, \ \beta_k = \frac{\left\|r^k\right\|^2}{\left\|r^{k-1}\right\|^2}, \\ r^k &= \nabla f(x^k), \ \beta_0 = 0 \end{aligned}$$

Theorem

Для случая квадратичной функции рассматриваемого вида при одинаковом x^0 оба метода определяют одну и ту же последовательность точек x^k .

4D + 4B + 4B + 4B + 4D +

т.е. (СП6ГУ)

Неквадратичные задачи: идея обновления

Для неквадратичных задач — несколько иная форма. Вводится процедура обновления: время от времени шаг делается не по формуле, а как в начальной точке, т.е. по градиенту.

Например:

$$\begin{aligned} x^{k+1} &= x^k + \alpha_k s^k, \ \alpha_k = \text{argmin}_{\alpha \geqslant 0} \, f \left(x^k + \alpha s^k \right), \\ s^k &= -r^k + \beta_k s^{k-1}, \ r^k = \nabla f(x^k), \\ \beta_k &= \left\{ \begin{array}{l} 0, \ k = 0, \ n, \ 2n, \ \dots \\ \frac{\left\| r^k \right\|^2}{\left\| r^{k-1} \right\|^2}, \ k \neq 0, \ n, \ 2n, \ \dots \end{array} \right. \end{aligned}$$

Т.Е. (СП6ГУ)

Третья схема сопряженных градиентов

Для неквадратичных функций. Другое правило выбора β_k .

$$\begin{split} \mathbf{x}^{k+1} &= \mathbf{x}^k + \alpha_k \mathbf{s}^k, \ \alpha_k = \operatorname{argmin}_{\alpha \geqslant 0} f\left(\mathbf{x}^k + \alpha \mathbf{s}^k\right), \\ \mathbf{s}^k &= -r^k + \beta_k \mathbf{s}^{k-1}, \ \beta_k = \frac{\left(r^k, \ r^k - r^{k-1}\right)}{\|r^{k-1}\|^2}, \\ r^k &= \nabla f(\mathbf{x}^k), \ \beta_0 = 0 \end{split}$$

- Здесь тоже возможны варианты с обновлением или без него.
- Для квадратичной функции последовательности x^k , порождаемые второй и третьей схемами совпадают.
- Считается, что для неквадратичного случая третья схема обычно дает более быструю сходимость.

4D + 4B + 4B + 4B + 4D +

Т.Е. (СП6ГУ)

Ускоренный метод Нестерова

Идея: инерция + использование антиградиента в прогнозируемой точке.

Итерационные формулы:

$$y_{0} = x_{0}$$

$$x_{1} = y_{0} - \alpha \cdot f_{x}(y_{0})$$

$$y_{1} = x_{1} + \beta(x_{1} - x_{0})$$

$$\dots$$

$$x_{k+1} = y_{k} - \alpha \cdot f_{x}(y_{k})$$

$$y_{k+1} = x_{k+1} + \beta(x_{k+1} - x_{k})$$

(□) ∢┛) ∢ ≧) ∢ ≧) 9 Q (°

Сходимость и скорость сходимости

Пусть функция удовлетворяет условию Липшица на её градиент с константой L:

$$\|\nabla f(z_1) - \nabla f(z_2)\| \leqslant L\|z_1 - z_2\|.$$

Пусть

$$0 \leqslant \beta < 1, \quad 0 \leqslant \alpha < \frac{2(1-\beta)}{I}.$$

Тогда методы тяжелого шарика и Нестерова сходятся.

Верна оценка на число итераций $\mathit{N} \colon \mathit{N} = O\left(\frac{\mathit{LR}^2}{\sqrt{\varepsilon}}\right)$.

Стохастический градиентный спуск (см. книгу А.В.Гасникова в [3]

Идея: используем не $\nabla f(x)$, а некое, зависящее от случайной величины ξ , «приближение» — $g(x,\,\xi)$: $E_{\xi}g(x,\,\xi)=\nabla f(x)$. Итерационная формула:

$$x_{k+1} = x_k - \alpha_k \cdot g(x_k, \, \xi_k).$$

Пример:

$$f(x) = \frac{1}{2m} \sum_{j=1}^{m} (x - y_i)^2$$

$$\Rightarrow \nabla f(x) = \frac{1}{m} \sum_{j=1}^{m} (x - y_i)$$

$$g(x, i) \equiv x - y_i.$$

3десь, g — это в среднем градиент f.

◆ロト ◆個ト ◆意ト ◆意ト 章 めの

Задание 10. Методы безусловной многомерной оптимизации

Список методов первого порядка (выбрать три):

- градиентный спуск
- наискорейший спуск
- метод тяжелого шарика
- метод сопряженных градиентов
- метод Нестерова
- стохастический градиентный спуск

Список методов второго порядка (выбрать один):

- метод Ньютона
- демпфированный метод Ньютона
- метод Левенберга-Марквардта

Для тестов: несколько примеров задач есть в [1] (глава 12), 🖶 🕟 📵 🕟 📵 🔻 🔾 🔾 🤆

 Т.Е. (СП6ГУ)
 28 марта 2025
 25 / 31

Общая схема методов спуска

Задача $\min_{x \in \mathbb{R}^n} f(x)$.

Идея: строим последовательность точек $\{x^k\}$: $f(x^{k+1}) < f(x^k)$. Различия:

- способы выбора направления убывания;
- способы выбора шага;
- + правила остановки процесса.

Ненулевой вектор $s \in \mathbb{R}^n$ называется направлением убывания функции f(x) в точке $x \in \mathbb{R}^n$, если $f(x+\alpha s) < f(x)$ для достаточно малых $\alpha > 0$.

Множество всех направлений убывания функции f(x) в точке x образуют конус — $\mathcal{K}_d(x)$. Утверждение. Пусть функция f(x) дифференцируема в точке $x \in \mathbb{R}^n$. Тогда:

- 1 для любого $s \in \mathcal{K}_d(x)$ выполнено $(\nabla f(x), s) \leqslant 0$;
- $oldsymbol{2}$ если s удовлетворяет условию $(\nabla f(x),\ s) < 0$, то $s \in \mathcal{K}_d(x)$.

Далее рассматриваем итерационные методы спуска, где

$$x^{k+1} = x^k + \alpha_k s_k, \ s_k \in \mathcal{K}_d(x^k), \ \alpha_k > 0.$$

Если $\mathcal{K}_d(x^k)=\emptyset$, то процесс прерывается.

Т.Е. (СПбГУ) 28 марта 2025 26 / 31

Правила выбора длины шага

Правило одномерной минимизации

В качестве α_k берется решение задачи

$$f(x^k + \alpha_k s_k) = \min_{\alpha \geqslant 0} f(x^k + \alpha s_k).$$

Если $\nabla f(x^{k+1}) \neq 0_n$, то геометрически решение этой задачи означает, что x^{k+1} является точкой касания луча, задаваемого направлением s_k , с поверхностью уровня функции f(x), проходящей через точку x^{k+1} . В общем случае задачу минимизации решить непросто, поэтому её решают приближенно: вместо поиска минимума на луче ищут минимум на отрезке $[0, \bar{\alpha}]$.

Правило Армихо

Это — приближенный способ нахождения шага α_k . Пусть f(x) дифференцируема в точке x^k . Задаются два числа: $0<\varepsilon<1$ и $0<\theta<1$ и выбирают начальное значение длины шага $\bar{\alpha}$. Полагают $\alpha=\bar{\alpha}$. Выбор α_k проводится двухэтапной процедурой:

• проверка выполнения условия (неравенство Армихо)

$$f(x^k + \alpha s_k) - f(x^k) \leqslant \varepsilon \alpha \left(\nabla f(x^k), s_k \right);$$

② если неравенство не выполняется, то заменяем α на $\alpha := \theta \alpha$ и повторяем первый этап; иначе заканчиваем процесс и полагаем $\alpha_k = \alpha$.

(□ > ◀률 > ◀불 > ◀불 > _ 를 _ 쒸Q♡

Т.Е. (СП6ГУ)

Правило Голдстейна

Задаются два параметра $0<\varepsilon_1<1$ и $0<\varepsilon_2<1$, причем $\varepsilon_1<\varepsilon_2$. Шаг α на k-й итерации подбирается таким образом, чтобы было верно неравенство

$$\varepsilon_1 \leqslant \frac{f(x^k + \alpha s_k) - f(x^k)}{\alpha (\nabla f(x^k), s_k)} \leqslant \varepsilon_2.$$

Левое неравенство — это идейно правило Армихо. Правое — чтобы шаг не был достаточно малым.

(ロ) (団) (目) (目) (目) (O)

29 / 31

Т.Е. (СПбГУ) 28 марта 2025

Правило априорного выбора

Последовательность шагов $\{\alpha_k\}$ задается такая, чтобы

$$\alpha_k > 0$$
, $\sum_{k=0}^{\infty} \alpha_k = \infty$, $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$.

На некоторых шагах метод может перестать быть методом спуска. Используется при минимизации негладких функций.

| □ ▶ ◀큔 ▶ ◀돌 ▶ 〈돌 ▶ ♡Q Cº

30 / 31

Где что:

В [1] методы для недифференцируемых функций (глава 5):

- субградиентный метод, §3;
- многошаговые методы, §4.

Можно почитать и про влияние помех.

В [2] многоэкстремальные методы (глава 11):

- метод неравномерных покрытий;
- метод секущих углов.

Метод сопряженных градиентов, возможно, описан человеколюбивее.

B [4]:

- метод Пауэлла (безградиентный);
- динамический метод (сравните с методом тяжелого шарика :)).

Есть полезные практические указания.