

Trends in Redox Flow Battery Technology and project REDOX2015

International Workshop on Energy Storage in the grid.

Barcelona, 9 January 2014

Luis Santos

Agenda

1. EDP in Spain

2. Conventional approach to storage: price arbitrage

3. New approach: grid services and reserves

4. Redox flow batteries are a promising option

5. Redox2015 project

1. EDP in Spain

First Portuguese company by market capitalisation

~ 3 GW of hydraulic projects under construction

More than 6.4 GW of wind capacity

2º Operator of natural gas

1. EDP in Spain

Innovation strategic lines

Flexible generation and with high availability

Grids and storage

Environmental innovation

Electric mobility

Energy intelligence

Agenda

1. EDP in Spain

2. Conventional approach to storage: price arbitrage

3. New approach: grid services and reserves

4. Redox flow batteries are a promising option

5. Redox2015 project

As a first approach, the economics of energy storage ar assessed by price arbitrage

Price arbitrage - charging during off peak hours and discharging at peak hours

Wind power has grown dramaticaly in Spain over the past years

<<Nome Departamento>>

Now there is a Supply Side Management problem

Sometimes wind power grows a lot...

...and has to be disconnected

Wind power production in Spain 29.03.2010

Wind power production in Spain 25.02.2010

Supply "peak shaving" is the problem now

There is a lot of energy wasted...

...but other fuels also suffer

Energy lost due to disconnection of wind (MWh) in Spain

Thermal units disconnected to allow wind production in Spain

Peak and off Peak prices are getting closer: the spread for price arbitrage is reducing

Spread (€/MWh) in Spain (Peak - Off peak Prices)

Days in a year

- Excess of capacity
- The number of days with a spread good enough to recover costs is reducing
- This puts more pressure on the economics of price arbitrage

Agenda

1. EDP in Spain

2. Conventional approach to storage: price arbitrage

3. New approach: grid services and reserves

4. Redox flow batteries are a promising option

5. Redox2015 project

Threats and opportunities for energy storage

Energy storage point of view

RES have reduced energy spreads

Grid Services

Need for **quicker** and **longer** reserves

Intermittent incontrollable generating capacity

Wind farms are far away from demand: more grids are needed

120

20

Services to transmission & distribution

Investment deferral

0.5 1.5 TIME [sec]

Rotor angle at transmission line fault

Contingency support

3.5

Voltage control

Grid stability

Frequency control

Charge management

But all these services deserve a proper retribution

Need for fast and longer reserves

- 1. Future loads cannot be perfectly predicted
- 2. Generator ouputs can vary substantially in different time frames
- 3. Power system equipment can fail without notice

Operating reserves: real power capability that can be given (upward) or taken (downward) to assist in generation and load balance and frequency control

15

Agenda

1.EDP in Spain

2. Conventional approach to storage: price arbitrage

3. New approach: grid services and reserves

4. Redox flow batteries are a promising option

5. Redox2015 project

Different needs imply different technologies and approaches

<<Nome Departamento>>

Power vs Capacity

Pumping and Compressed Air are for the lucky ones

Pumping hydro and Compressed Air Energy Storage fall apart from other technologies:

- Heavy reliance on geology (site dependent)
 (Portugal, Austria, Switzerland, Slovenia)
- Massive capital costs and long comissioning periods
- Mature technology
- Environmental issues involved

Other technologies are needed to address the storage problem from a distributed & site-independent approach

Redox flow battery

Capacity costs and power costs are independent

Redox flow batteries show more opportunities to bring costs down

Tendency of published patents shows better perspective for Redox Flow Batteries

NaS battery

VRF battery

From a fire incident in 2011 NGK has asked nearly every customer to suspend the use of NAS batteries or restrict its use

<<Nome Departamento>>

Agenda

1.EDP in Spain

2. Conventional approach to storage: price arbitrage

3. New approach: grid services and reserves

4. Redox flow batteries are a promising option

5. Redox2015 project

Consortium and funding

- Objective: develop a Vanadium Redox Flow Battery by spanish partners
- •Budget :2,7 M €
- •Project length: 27 months (2011-2013)

Funded by the Economy and

Competitiveness Ministry of Spain with FEDER funding from the European

Commission

(IPT-2011-1690-900000)

red**Ox** 2015

Questions to answer by the project: metrics to evaluate

Cost metrics

 capex in €/kW and €/kWh

Performance metrics

real efficiency

ciclability stability

calendar and cycle lifes

Findings so far

	Service	Required power		Required discharge time	Required response time	Frequency of use	MV connection				on	LV connection			
edp							Α	В	С	D	П	F	G	I	ı
	Capacity support	MV	500 kW – some MW	2 – 10 h	Minutes	Occasional (peaks)	•	•	•	•	•	•	•	•	•
	Local voltage control	LV MV	hundreds kW 100 kW – some MW		Minutes	Occasional (peaks)									
Distribution		LV	10 kW – hundreds kW	2 – 10 h				•	•	•	•	•	•	•	
	Contingency support Island mode	MV	100 kW – some MW	2 – 10 h	Minutes	Unusual	•	•	•		•	•		•	
		LV	10 kW – hundreds kW					Ĺ			_				
		MV	100 kW – 10 MW	4 – 10 h	20 ms	Unusual	0	0	0	0	0	0	0	0	0
	Reactive compensation	LV 10 kW - 1 MW hundreds kVar - some MVar.			Minutes	Daily	0	0	0	0	0				
	Peak capacity	More than 1 MW		1 -10 h	Minutes	Daily									
ation	Local generation support	More than 1 MW		variable	Variable	Variable									
Generation	Services to DER	hundreds kW – 2 MW		20 min. – 1h30	15 30 seconds	Continual	•	•	•	•	•			•	
Transporting	Frequency control	More than 1 MW		20 min. – 1h30	15 – 30 seconds	Continual	•	•	•	•	•				
	Frecuency stability on island	More than 1 MW		Tens of seconds	Less than 1 second	Unusual	•	•	•	•	•				
Consumer. Mana	ging peak demand	0,5 – 10 MW		1 -10 h	Minutes	Daily			•		•		•	•	•

Feasible	•	High value for storage (■ specific for island mode)
Inappropriate	0	Other applications are feasible (specific for island mode)

Findings so far

SIMPLE CELL DESIGN

- 2. Cell design
- 3. Charger/Discharger prototipe
- 4. Flow dynamics modelling
- 5. Single cell optimizing tests
- 6. Stack development

Findings so far

ELECTRODE ACTIVE MATERIALS SCREENING FOR VRFB

ARGF: Felt untreated

TTFF: Thermal felt

BiGF: Modified felt using bismuth

GFOx: Electrochemically oxidized felt

GFOxQN: chemically oxidized felt

Findings so far

VRFB PROTOTYPE

PAN commercial felt with standard electrolyte (3M H₂SO₄ and 1M VOSO₄) Objective: High energy and power efficiency, long life and cyclability (excellent> 30,000), 5 times the charge density of the typical solutions

Electrodes development

Synthesis

Graphene nanoparticles

Functionalization

PAN commercial felt

PAN based flexible nanofiber

Electrospinning

High energy density electrolyte

Innovative membranes

Use of additives to improve the electrolyte

- standard electrolyte
- additive-containing electrolyte

Findings so far

MEMBRANES FOR REDOX FLOW BATTERIES

• Objective: To minimize vanadium crossover through the membrane by surface plasma activation .

• These treatments cause changes in the polymer material:

• Inversion of surface polarity

• Surface crosslinking

REDOX FLOW BATTERY SINGLE CELL

- Single cell set-up to test new materials in flow battery operation
- Development of testing protocols for membranes and electrodes

Agenda

1.EDP in Spain

2. Conventional approach to storage: price arbitrage

3. New approach: grid services and reserves

4. Redox flow batteries are a promising option

5. Redox2015 project

- •Energy storage for price arbitrage, at the current state of art and current prices, is not competitive
- •But the increase of penetration of wind power implies different conditions to take into account
- Reserve markets are a good opportunity for energy storage economics
- •Where pumping is not an option, other applications of distributed energy storage are necessary
- •R&D projects like REDOX2015 are needed to meet performance and cost requirements

Thanks for your attention!

Isantos@edpenergia.es