

- lexical analysis of "if i == 0"? Write the token sequence.
 - <keyword, 'if'>, <id, 'i'>, <op, '=='>, <num, '0'>
- Usage of RE and FA in lexical analysis?
 - RE: specify the token pattern; FA: implement the token recognizer
- Regular expression (x | y)(x | y) denotes the set
 - {xx, xy, yx, yy}
- The languages over the {0,1} described by (0|1)*0(0|1)*0(0|1)*
 - Strings with at least two 0's

The graph describes NFA or DFA? Why?
 NFA.

A: ε-transition,

B: multiple transitions for input '1'

- What is the RE?
 - 0*1+2*

• Then, what is the NFA of 0+1+2+?

Que.	The behavior of a NFA can be simulated by a DFA	
a.	always	
b.	sometime	
c.	Never	
d.	Depend on NFA	
	Answer: always	
Que.	Which of the following are Lexemes?	
a.	Identifiers	
b.	Constants	
C.	Keywords	
d.	All of the mentioned	
	Answer: All of the mentioned	

Que.	Regular expression a b denotes the set	
a.	{a}	
b.	{ε, a, b}	
c.	{a, b}	
d.	{a b}	
	Answer: {a, b}	
Que.	What is the complement[补集] of the language accepted by the NFA shown below? Assume Σ = {a} and ϵ is the empty string	
a.	Φ	
b.	ε	
c.	a	
d.	{ε, a}	
	Answer: ε	

- Write regular definitions for the following languages
 - All strings of a's and b's which contains the substring aba (a|b)*aba(a|b)*
 - 2. A language comprising <u>all</u> possible strings of even[偶数] length over the alphabet {a,b}

```
(aa | ab | ba | bb)*
```

3*. All strings of a's and b's that DO NOT contain the substring abb

a..ba..

```
b*(a | ab)*

ε

bbb...

aaa...
```


- Convert (a|b)*abb(a|b)* into NFA
 - Thompson construction: RE→NFA

- Convert (a|b)*abb(a|b)* into NFA
 - Thompson construction: RE→NFA
 (a|b)→(a|b)*

abb

(a|b)*abb(a|b)*

- Convert (a|b)*abb(a|b)* into NFA
 - Thompson construction: RE→NFA

```
(a|b) \rightarrow (a|b)^*
```

abb

(a|b)*abb(a|b)*

Exercise: from RE to minimized FA

- Construct a DFA for a minion language with $\Sigma = \{a, b\}$ that does not contain "abb":
- 1. Build the regular expression for the minion's language
- 2. Convert the regular expression into NFA first
- 3. Convert the NFA into DFA by subset construction.
- 4. Minimize the state of DFA

Build the RE for this language

Convert b*(a | ab)* into NFA

Convert the NFA into DFA by subset construction

1	I_a	I_b	Accept
{0,1,3,4,5,6,8,13} 0	{7,9,12,13,5,6,8,10} 1	{2,1,3,4,5,6,8,13} <mark>2</mark>	Yes
{5,6,7,8,9,10,12,13} 1	{5,6,7,8,9,10,12,13} 1	{11,12,13,5,6,8} <mark>3</mark>	Yes
{1,2,3,4,5,6,8,13} <mark>2</mark>	{5,6,7,8,9,10,12,13} 1	{1,2,3,4,5,6,8,13} 2	Yes
{5,6,8,11,12,13} <mark>3</mark>	{5,6,7,8,9,10,12,13} 1	{}	Yes

Draw DFA according to the transition table

1	I_a	I_b
{0,1,3,4,5,6,8,13} <mark>0</mark>	{7,9,12,13,5,6,8,10} 1	{2,1,3,4,5,6,8,13} <mark>2</mark>
{5,6,7,8,9,10,12,13} 1	{5,6,7,8,9,10,12,13} 1	{11,12,13,5,6,8} 3
{1,2,3,4,5,6,8,13} <mark>2</mark>	{5,6,7,8,9,10,12,13} 1	{1,2,3,4,5,6,8,13} 2
{5,6,8,11,12,13} 3	{5,6,7,8,9,10,12,13} 1	{}

Minimization DFA

- Initial: {0,1,2,3}{3} have no 'b' transition, split
- {0,1,2} {3} {1} on 'b' ->3, {0,2} on 'b' ->{2}, split
- {0,2} {1} {3}
 {0,2} on 'a' -> {1}
 {0,2} on 'b' -> {2}
 No way to distinguish {0,2} on any transition with '0' or '1'
- Final: {0,2} {1} {3}

