UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CIÊNCIA DA COMPUTAÇÃO

ELC 408 – Compiladores Prof. Giovani Rubert Librelotto – 1º Bimestre – Peso 9,0

Prova de Compiladores

Nome: Data: 15/07/2020

1. (1,5 pontos) De acordo com a gramática abaixo, comprove que ela é uma gramática ambígua criando duas derivações mais a esquerda para a palavra **abab** e apresente a árvore sintática correspondente a cada derivação.

$$S \rightarrow bSaS \mid aSbS \mid \epsilon$$

2. (1,5 pontos) De acordo com a gramática abaixo, gere uma gramática que reconheça a mesma linguagem, porém que não tenha recursividade à esquerda.

$$S \rightarrow Sa \mid A$$

 $A \rightarrow bA \mid \epsilon$

3. (2,0 pontos) Dada a gramática G = ({E}, {-, /, (,), num}, P, E), onde P contém as produções:

$$E \rightarrow E - E \mid E \mid E \mid (E) \mid num$$

Complete o analisador preditivo recursivo abaixo, com as funções necessárias:

```
begin /* programa principal */
    token:= LETOKEN;
    if E
    then if token = '$' then write('OK') else write('ERRO')
    else write('ERRO')
end
```

4. (4,0 pontos) Dada a seguinte gramática e tabela SLR abaixo, sendo S o símbolo inicial, faça o reconhecimento das seguintes palavras a seguir, onde id pode ser qualquer combinação de uma ou mais letras e num pode ser qualquer combinação de um ou mais números:

1)
$$S \rightarrow S$$
; S

2)
$$S \rightarrow id := E$$

1)
$$S \rightarrow S$$
; S 2) $S \rightarrow id := E$ 3) $S \rightarrow print (L)$

5)
$$E \rightarrow \text{num}$$
 6) $E \rightarrow E + E$

7)
$$E \rightarrow (S, E)$$
 8) $L \rightarrow E$

	id	num	print	;	,	+	:=	()	\$	S	E	L
1	s4		s7							-	g2		
2				s3						a	2000		
3	s4		s7								g5		
4							s6						
5				r1	r1					r1			
6	s20	s10						s8				g11	
7								s9					
8	s4		s7								g12		
9	s20	s10						s8			100° - 100°	g15	g14
10				r5	r5	r5			r5	r5			
11				r2	r2	s16				r2			
12				s3	s18					2000			
13				r3	r3					r3			
14					s19				s13				
15					r8				r8				
16	s20	s10						s8				g17	
17				r6	r6	s16			r6	r6			
18	s20	s10						s8				g21 g23	
19	s20	s10						s8				g23	
20				r4	r4	r4			r4	r4			
21									s22				
22				r7	r7	r7			r7	r7			
23					r9	s16			r9				

a) print (
$$6 + a$$
, $b + 10 + a$); $c := (print ($d + 4$), 5)$

b)
$$c := b + (a := 5 + 6, b); c := 3$$