线性代数-14

主讲: 吴利苏

wulisu@sdust.edu.cn

2024年10月20日

本次课内容

1. AX = 0 的解的结构

2. $AX = \beta$ 的解的结构

齐次线性方程组解的结构

$$AX = 0 (1)$$

的全体解 $S = \{X \mid AX = 0\}$ 构成一个向量空间. 即 S 对向量加法和数乘运算封闭:

- 若 $A\boldsymbol{\xi} = 0$, 则对任意 $k \in \mathbb{R}, A(k\boldsymbol{\xi}) = 0$.

• 设 $S \to AX = 0$ 的解空间, $S_0: \xi_1, \dots, \xi_t \to S$ 的一个基. 则 $\forall X \in S$,

$$X = k_1 \boldsymbol{\xi}_1 + \cdots + k_t \boldsymbol{\xi}_t, k_1, \cdots, k_t \in \mathbb{R}.$$

• 设 $S \to AX = 0$ 的解空间, $S_0 : \xi_1, \dots, \xi_t \to S$ 的一个基. 则 $\forall X \in S$,

$$X = k_1 \boldsymbol{\xi}_1 + \cdots + k_t \boldsymbol{\xi}_t, k_1, \cdots, k_t \in \mathbb{R}.$$

• 解空间 S 的基 (最大无关组) 称为 AX = 0 的一个基础解系.

$$X = k_1 \boldsymbol{\xi}_1 + \cdots + k_t \boldsymbol{\xi}_t, k_1, \cdots, k_t \in \mathbb{R}$$

称为 AX = 0 的通解.

• 基础解系中线性无关的向量的个数:

$$t = n - R(A),$$

其中n为未知量个数,A为系数矩阵.

定理 (定理 7)

 $R(A_{m \times n}) = r$, 则 AX = 0 的解空间 S 的维数 $\dim S = n - r$.

定理 (定理 7)

$$R(A_{m \times n}) = r$$
, 则 $AX = 0$ 的解空间 S 的维数 $\dim S = n - r$.

基础解系中线性无关的向量的个数:

$$t = R_{S_0}$$
 基 S_0 中向量的个数

- = dim S 解空间 S 的维数
- = 自由未知量的个数
- =除去行最简形中每行首个非零元所在的列,剩余的列数
- = n R(A).

例 (例 22)

求

$$\begin{cases} x_1 + x_2 - x_3 - x_4 &= 0\\ 2x_1 - 5x_2 + 3x_3 + 2x_4 &= 0\\ 7x_1 - 7x_2 + 3x_3 + x_4 &= 0 \end{cases}$$

的基础解系和通解.

求解步骤:

- 1. 对系数矩阵 A 进行初等行变换化为行最简形;
 - 2. 写出同解方程组;
 - 3. 分别取自由未知量其中一个为 1, 其余为 0, 得基础解系 ξ_1, \dots, ξ_{n-r} ;
 - 4. 得通解 $X = k_1 \xi_1 + \cdots + k_{n-r} \xi_{n-r}, \forall k_1, \cdots, k_{n-r} \in \mathbb{R}.$

注

- 基础解系本质上是基和最大无关组, 所以取法不唯一.
- 自由未知量的选取不唯一,但一般取首非零元列之外的对应未知量为自由未知量。
- 自由未知量的取值不唯一,但一般取自由未知量的其中一个为 1,其余为0,这样更容易计算.

例

设 $A_{m \times n} B_{n \times l} = O$, 证明 $R(A) + R(B) \leq n$.

例

n 元齐次线性方程组 AX = 0 和 BX = 0 同解, 证明 R(A) = R(B).

例

n 元齐次线性方程组 AX = 0 和 BX = 0 同解, 证明 R(A) = R(B).

● 设矩阵 A, B 同型,则

例

证明 $R(A^TA) = R(A)$.

非齐次线性方程组解的结构

设 $\beta \neq 0$, 非齐次线性方程组

$$AX = \boldsymbol{\beta} \tag{2}$$

的全体解集 S 不是一个向量空间, 满足:

非齐次线性方程组解的通解

 $AX = \beta$ 的通解为:

$$X = k_1 \boldsymbol{\xi}_1 + \cdots + k_{n-r} \boldsymbol{\xi}_{n-r} + \boldsymbol{\eta}^*, \forall k_1, \cdots, k_{n-r} \in \mathbb{R}$$

非齐次线性方程组解的通解

 $AX = \beta$ 的通解为:

$$X = k_1 \boldsymbol{\xi}_1 + \cdots + k_{n-r} \boldsymbol{\xi}_{n-r} + \boldsymbol{\eta}^*, \forall k_1, \cdots, k_{n-r} \in \mathbb{R}$$

- 其中 $X = \eta^*$ 称为 $AX = \beta$ 的特解, 满足 $A\eta^* = \beta$;
- ξ_1, \dots, ξ_{n-r} 是齐次线性方程组 AX = 0 的一个基础解系.

非齐次线性方程组解的通解

 $AX = \beta$ 的通解为:

$$X = k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r} + \boldsymbol{\eta}^*, \forall k_1, \dots, k_{n-r} \in \mathbb{R}$$

- 其中 $X = \eta^*$ 称为 $AX = \beta$ 的特解, 满足 $A\eta^* = \beta$;
- ξ_1, \dots, ξ_{n-r} 是齐次线性方程组 AX = 0 的一个基础解系.
- $AX = \beta$ 的通解 $\Leftrightarrow AX = 0$ 的通解 $+AX = \beta$ 的一个特解.

例 (例 26)

$$\begin{cases} x_1 - x_2 - x_3 + x_4 &= 0 \\ x_1 - x_2 + x_3 - 3x_4 &= 1 \\ x_1 - x_2 - 2x_3 + 3x_4 &= -\frac{1}{2}. \end{cases}$$

求解步骤:

- 1. 对增广矩阵 (A,β) 进行初等行变换化为行最简形;
 - 2. 写出同解方程组;
- 3. 取自由未知量全为 0, 解 $AX = \beta$ 得到一个特解 η^* ;
- 4. 分别取自由未知量其中一个为 1, 其余为 0, 解 AX=0 得基础解系 $\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{n-r}$;
- 5. 得通解 $X = k_1 \xi_1 + \cdots + k_{n-r} \xi_{n-r} + \eta^*$, $\forall k_1, \cdots, k_{n-r} \in \mathbb{R}$.

注

- 特解的取法并不唯一, 但取自由未知量全为 0, 更容易计算.
- 基础解系的取法不唯一.
- 自由未知量的选取不唯一,但一般取首非零元列之外的对应未知量为自由未知量。
- 自由未知量的取值不唯一,但一般取自由未知量的其中一个为 1,其余为0,这样更容易计算.

补充: 计算机如何求解线性方程组-LU 分解

例

求解

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

算法步骤:

1. LU 分解: 将系数矩阵 A 表示为一个单位下三角矩阵和一个上三角矩阵的乘积,

$$A = LU$$

- 2. \diamondsuit Y = UX, \bowtie LY = β.
- 3. 解 UX = Y.

小结

- 求解 AX = 0;
 求解步骤:
 - 1. 对系数矩阵 A 进行初等行变换化为行最简形;
 - 2. 写出同解方程组;
 - 3. 分别取自由未知量其中一个为 1, 其余为 0, 得基础解系 ξ_1, \dots, ξ_{n-r}
 - 4. 得通解 $X = k_1 \xi_1 + \cdots + k_{n-r} \xi_{n-r}, \forall k_1, \cdots, k_{n-r} \in \mathbb{R}.$
- 求解 AX = β
 求解步骤:
 - 1. 对增广矩阵 (A, β) 进行初等行变换化为行最简形;
 - 2. 写出同解方程组;
 - 3. 取自由未知量全为 0, 解 $AX = \beta$ 得到一个特解 η^* ;
 - 4. 分别取自由未知量其中一个为 1, 其余为 0, 解 AX = 0 得基础解系 ξ_1, \dots, ξ_{n-r} ;
 - 5. 得通解 $X = k_1 \xi_1 + \dots + k_{n-r} \xi_{n-r} + \eta^*$, $\forall k_1, \dots, k_{n-r} \in \mathbb{R}$.

齐次线性方程组小结

方程组	矩阵	白量
$\sum_{j} a_{ij} x_j = 0$	$A_{m \times n} X_n = 0$	$x_1 \mathbf{\alpha}_1 + \dots + x_n \mathbf{\alpha}_n = 0$
是否有非零解?	R(A) < n?	向量组 $\{a_i\}$ 线性相关?
有非零解	R(A) < n	线性相关
有唯一零解	R(A) = n	线性无关

• AX = 0 的通解

$$X = k_1 \boldsymbol{\xi}_1 + \cdots + k_{n-r} \boldsymbol{\xi}_{n-r}, \forall k_1, \cdots, k_{n-r} \in \mathbb{R}$$

其中 r = R(A).

非齐次线性方程组小结

方程组	矩阵	白量
$\sum_{j} a_{ij} x_j = b_i$	$A_{m \times n} X_n = \boldsymbol{\beta}_m$	$x_1 \mathbf{\alpha}_1 + \dots + x_n \mathbf{\alpha}_n = \mathbf{\beta}$
是否有解?	$R(A, \boldsymbol{\beta}) = R(A)$?	β由向量组 {α _i } 线性表示?
无解	$R(A, \boldsymbol{\beta}) > R(A)$	No
有解	$R(A, \boldsymbol{\beta}) = R(A)$	Yes
有唯一解	$R(A, \boldsymbol{\beta}) = R(A) = n$	Yes,且表示唯一
	A 列满秩	
有唯一解 $(m=n)$	$R(A, \boldsymbol{\beta}) = R(A) = n$	Yes,且表示唯一
	A 可逆	
有无穷解	$R(A, \boldsymbol{\beta}) = R(A) < n$	Yes,且表示不唯一

$$X = k_1 \boldsymbol{\xi}_1 + \cdots + k_{n-r} \boldsymbol{\xi}_{n-r} + \boldsymbol{\eta}^*, \forall k_1, \cdots, k_{n-r} \in \mathbb{R}.$$

作业

- Page₈₀: 18-(3)
- Page₁₁₂-Page₁₁₃: 28、30、31-(1)、32、35

欢迎提问和讨论

吴利苏 (http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2024年10月20日