INT201 Decision, Computation and Language

Lecture 7 – Context-Free Languages (2)
Dr Yushi Li and Dr Chunchuan Lyu

Overall Study Tips

- Theory of Computation in 12 Hours by Easy Theory Youtuber
 Really clear explaination
- Theory of Computation 2020 by Michael Sipser MIT OCW
 We are following closely
- The Nature of Computation

 Good complementary book

Please come to office hour, if you are having difficulty or question about anything.

Assistant Professor-Dr Chunchuan Lyu

- Graduated from The University of Edinburgh and XJTLU
 Studied computational semantics but moved to unsupervised
 reinforcement learning (what an agent should do if no moral gold standard is given?)
- Office hour: 14:00-16:00 Thursday at SD543 (or by appointment)
- Contact: chunchuan.lyu@xjtlu.edu.cn

Noam Chomsky 1928-now

An American professor, father of modern linguistics

- Transformational Analysis (1955)
- Syntactic Structures (1957)
- · Minimalist program (1995)

What is language?
Why does it have the properties it has?

Formal Basis of a Language Universal (2021 Miloš Stanojević, Mark Steedman)

Noam Chomsky 1928-now

A public intellectual

- Manufacturing Consent (1988 with Edward S. Herman)
- On Palestine (2015 with Ilan Pappé)
- Consequences of Capitalism (2021 with Marv Waterstone)

"one of the most notable contemporary champions of the people"
"pathological hatred of his own country"

Closure Properties of Context Free Language

上京元夫遠 Theorem: If L_1 and L_2 are context-free languages, their union L_1 is also context free

Example:

$$L_1=\{a^nb^nc^m|m\geq 0, n\geq 0\}$$

$$L_2 = \{a^n b^m c^m | m \ge 0, n \ge 0\}$$

$$L_3 = L_1 \cup L_2 = \{a^i b^j c^k | i \ge 0, j \ge 0, k \ge 0, i = j \text{ or } j = k\}$$

Proof idea:

For L_1 and L_2 , there exists corresponding context free grammars $G_1=(V_1,\Sigma_1,R_1,S_1)$ and $G_2=(V_2,\Sigma_2,R_2,S_2)$. Let $G_3=(V_1\cup V_2,\Sigma_1\cup \Sigma_2,,R_1\cup R_2\cup \{S\to S_1|S_2\},S)$, clearly L $(G_3)=L_1\cup L_2$.

Recap

- · Regular languages are context-free
- Every context-free grammar has a Chomsky Normal Form

Today

- · Closure property of context-free grammar
- Syntactic parsing (*optional)
- Pushdown Automata

Closure Properties of Context Free Language

Theorem: If L_1 and L_2 are context-free languages, their u v u is also context

free.

Concatenate

Example:

$$L_1 = \{a^n | n \ge 0\}$$

$$L_2=\{b^n|n\geq 0\}$$

$$L_3 = L_1 \circ L_2 = \{a^i b^j | i \ge 0, j \ge 0\}$$

Proof idea:

For L_1 and L_2 , there exists corresponding context free grammars $G_1=(V_1,\Sigma_1,R_1,S_1)$ and $G_2=(V_2,\Sigma_2,R_2,S_2)$. Let $G_3=(V_1\cup V_2,\Sigma_1\cup \Sigma_2,,R_1\cup R_2\cup \{S\to S_1S_2\},S)$, clearly $L(G_3)=L_1\circ L_2$.

Closure Properties of Context Free Language

Theorem: If L_1 is context-free languages, their Kleene closure L_1^* is also context free.

Example:

$$L_1=\{a^nb^n|n\geq 0\}$$

$$L_2 = L_1^* = \{(a^nb^n)^k \mid n \geq 0, k \geq 0\}$$

Proof idea:

For L_1 , there exists corresponding context free grammars $G_1=(V_1,\Sigma_1,R_1,S_1)$. Let $G_2=(V_1,\Sigma_1,R_1\cup\{S\to S_1S|\epsilon\},S)$, clearly $L(G_2)=L_1^*$.

Parsing Natural Language with Context-Free Grammar CNF properties help, because we only need to consider to merge two consecutive phrases Det Nominal The Nominal Noun saw Det Nominal spy Preposition Noun Rules: $S \rightarrow NP VP$ Nominal cop Det NP → Det Nominal Nominal → Noun | Nominal PP Noun VP → VP PP | Verb NP telescope PP → Preposition NP

Parsing Natural Language with Context-Free Grammar Given CFG $G = (V, \Sigma, R, S)$ Variables V = {S, NP, VP, Det, Nominal, Noun, PP, Preposition, Verb} Terminals $\Sigma = \{\text{The, spy, saw, cop, with, a, telescope}\}\$ Rules: Grammar Lexicon考订词汇 S → NP VP 发达的 NP → Det Nominal Real Det → The a Noun → spy|cop|telescope Nominal → Noun | Nominal PP Verb → saw VP → VP PP | Verb NP Preposition → with PP → Preposition NP Is this CNF? How to generate Det Von Verb Non Det Mone The spy saw a cop with a telescope 0 Det Preposition

Pushdown Automata (PDAs)

A PDA consists of: a tape, a stack and a state control

- Tape: divided into cells that store symbols belonging to $\Sigma_{\epsilon} = \Sigma \cup \{ \epsilon \}$.
- Tape head: move along the tape, one cell to the right per move.
- Stack: containing symbols from a finite set

 Γ, called the stack alphabet. This set contains a special symbol \$ (often mark bottom of stack).
- Stack head: reads the top symbol of the stack. This head can also pop the top symbol, and it can push symbols of Γ onto the stack.
- State control: can be in any one of a finite number of states. The set of states is denoted by Q. The set Q contains one special state q, called the start state.

下惟自动和U Pushdown Automata (PDAs)

権値 pushoum automate 接続 通道に是上文表決さ The class of languages that can be accepted by pushdown automata is exactly the class of context-free languages (finite automata are for regular languages).

- The input for a pushdown automaton is a string w in Σ*. Pdc 的報义是 至*中的一个字符
- PDA accepts or doesn't accept w. PDA 可以接受式不接受w
- Different from finite automata, PDAs have a stack. 和何的分析可以 PDA 有样
- Stack have 2 different operations: 有两种不同的操作
- (1) push adds item to top of stack 推入 将内容放入标页
- (2) pop removes item from top of stack 推出 从红顶彩出元素

PDA Transition

If PDA

- in state q
- reads a ∈ Σ_e
- pops $b \in \Gamma_{\epsilon}$ off the stack

If $a = \varepsilon$, then no input symbol is read.

If $b = \varepsilon$, then nothing is popped off stack.

then PDA

- moves to state q_i
- push $c \in \Gamma_{\epsilon}$ onto top of stack

If $c = \varepsilon$, then b is popped from stack.

If $c=u_1u_2\ldots u_k$ with $k\ge 1$ and $u_1,u_2,\ldots ,u_k\in \Gamma,$ then b is replaced by c, and u_k becomes the new top symbol of the stack .

read, pop \rightarrow push

PDA Definition

Definition 台井住地包动和) A **pushdown automaton** is a 6-tuple <u>M = (Q, Σ, Γ, δ, q, F)</u>:

· Q is finite set of states

了样字联 见初始状态

• Σ is (finite) input (tape) alphabet

口非空有穷贱 品钱原答

- 三输付银 下接到太狼
- Γ is (finite) stack alphabet

 #\(\beta \) \(\frac{\kappa_{\sigma} \text{ k}}{\sigma_{\sigma} \text{ V}_{\sigma} \rightarrow Q \times \Gamma_{\sigma^*} \)
 δ is the transition function: $Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow Q \times \Gamma_{\sigma^*} \)$

- q is start state, q ∈ Q
- F is set of accept states, $F \subseteq Q$, PDA accepts as long as it is in F regardless of

the stack.

Let $r, r' \in Q$, $a \in \Sigma^*$ and $b, c \in \Gamma^*$

$\delta(r, a, b) = (r', c)$.

In state r, PDA reads a on the tape and pop b from the stack, move to state r^\prime and push c to the stack. The tape head moves to the right.

PDA从 tape 凌取a, 把b从核顶弹出, 彩铜下个状态下, 起c推入 💓 栈、将状态的到下个tape.

Example 柱板 Process string 000111 0 0 0 1 1 1 Stack Input string ullet Start in start state q_1 with stack empty. • No input symbols read so far. ullet Next go to state q_2 • reading nothing, popping nothing, and pushing \$ on stack.

Example

Given a PDA $M = (Q, \Sigma, \Gamma, \delta, q_1, F)$

- $Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0, \$\}$
- · q1 is start state
- $F = \{q_1, q_4\}$
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow Q \times \Gamma_{\varepsilon}^{*}$

Input:	0			1			ε		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1	Г				П	Г	Г		$\{(q_2,\$)\}$
q_2			$\{(q_2,0)\}$	$\{(q_3,\varepsilon)\}$		Г	Г		
q_3				$\{(q_3,\varepsilon)\}$				$\{(q_4,\varepsilon)\}$	
q_4									

Language accepted by PDA

Definition

The set of all input strings that are accepted by PDA M is the language recognized by M and is denoted by L(M).

Example

PDA for language $\{ww^R \mid w \in \{0, 1\}^*\}$

- $ullet q_1
 ightarrow q_2$: First pushes \$ on stack to mark bottom
- $ullet q_2
 ightarrow q_2$: Reads in first half w of string, pushing it onto stack
- $\bullet q_2 \rightarrow q_3$: Guesses that it has reached middle of string
- $q_3 \rightarrow q_3$: Reads second half w^R of string, matching symbols from first half in reverse order (recall: stack LIFO)
- $ullet q_3
 ightarrow q_4$: Makes sure that no more input symbols on stack

Quick review

- CFLs are closed under concatenation, union and Kleene closure
- CFLs/Natural language exhibits ambiguities (* optional)
- Pushdown automata has an additional stack to store information

Q&A

 Does the stack elements have any influence on the accepting condition of PDA?

No, the acceptance is solely decided by the state.

• Why we put the \$ at the beginning for some PDA?

Combined with poping \$ before accepting, we make sure that all things being added later will be processed. Back to the first question, if a stack conditioned PDA is defined by accepting when its' state is accepting and stack elements match some criteria. We can add popping transitions to make an equivalent standard PDA.

