

Scalable and Cost-Effective Deduplication: Leveraging Algorithms and LLMs

SponsorMotion

Rohan Chaudhary, Sarmad Kahut, Valentina Torres

Table of Contents

- 1. Business Problem & Data and Initial Analysis
- 2. Research and Initial Approach & Final Approach and Method
- 3. Key Findings & Results
- 4. Cost Optimization
- 5. Business Impact & Implications
- 6. Known limitations and avenues for further improvement
- 7. Summary & Conclusions

Business Problem, Data and Initial Analysis

Deduplication Algorithm; Python Notebook Workflow

Dropped all rows with no name, no state, no start date. Data went from 48k to 45k

Removed special characters and blank spaces, all names were changed to lowercase

Picked 6 states with most records to test our approach (CA, MA, NY, TX, FL, and NV)

Found exact duplicates, with same name and same start date (+/- 1 day)

Kept duplicate records with longest summaries and dropped the rest

Applied fuzzy matching to remaining records and applied 3 thresholds (75, 80, and 85)

Added 'Human Verification' column to show rows needing attention (Yes; similar name but different start dates, No; similar names and date)

Final Approach and Method

Text Analysis

using LLM

Key Findings: Deduplication

Performance Assessment

- Used 3 threshold level
- Six states with the highest number of records
- Actual duplicates = Duplicates identified + FN FP
- % of Actual duplicates identified = Duplicates identified /
 Actual duplicates

Accuracy Results

- Higher thresholds = more false negatives
- Cost function: estimates the cost associated with each threshold
- Test dataset:
 - 15% actual duplicate records to be identified
 - 75% threshold identified 12% of those duplicates

Similarity Threshold	Total Records	Duplicates Identified	False Negatives	False Positives	Actual Duplicates	% of Actual Duplicates Identified
75	5646	680	223	65	838	81.15%
80	5646	530	288	35	783	67.69%
85	5646	426	336	26	736	57.88%

Cost (fn) = $3 \times FN + 1 \times FP$

- Cost (Threshold: **75**) = 3 x 223 + 1 x 65= 669 + 65 = **734**
- Cost (Threshold: 80) = $3 \times 288 + 1 \times 35 = 864 + 35 = 899$
- Cost (Threshold: 85) = $3 \times 336 + 1 \times 26 = 1008 + 26 = <math>1034$

Where

FN = Number of False Negatives

FP = Number of False Positives

Cost Optimization

Dynamic Model Selection

- Choose LLMs (GPT-J, GPT-4, ChatGPT) based on:
 - Query needs
 - Balancing accuracy
 - Budget for data extraction
- Pilot Project: Compare GPT-3.5
 and frugal LLMs (GPT-J,
 ChatGPT) on 100 healthcare
 URLs for accuracy, cost, and
 data quality insights.

Business Impact & Implications

Deduplication

Automation

Efficient preprocessing and automated fuzzy matching reduce manual effort, streamline deduplication, and enhance productivity

Scalability

Scalable strategy handles expanding healthcare data, maintains accuracy, and supports database growth seamlessly

Cost Savings

Cost reduction, efficiency boost, data integrity improvement, and enhanced business outcomes

LLM Optimization

Faster Processing

Speedy processing, rapid analysis, enhanced efficiency for textual content tasks

Enhanced Scalability

Affordable scaling, process large data volumes, expand analytics for small businesses

Cost Savings & Efficiency

Enhanced cost-effectiveness, more analysis within budget with pay-per-token model

Limitations and Avenues for Further Improvement

Enhancing Data Quality for Accurate Analysis

- Implement filters to highlight ".org" URLs
- Optimize web scraping by eliminating null values in key columns

www.ncchc.orgCorrectional Health Care

Advancing User Experience through Taxonomy Labeling

- Enhanced Categorization of events (e.g., oncology, cardiology)
- Improve user experience through quick access and filtering based on categories

Balancing Business Benefits with Model Selection

- Strategic Consideration:
 Evaluate trade-offs in
 accuracy, response time,
 and comprehensiveness
 when choosing LLM sizes
- Workflow Integration:

 Integrate LLM cascading
 with minimal workflow
 disruption while assessing
 task suitability

Summary

Our Path of Achievements, Insights and Learning

Automated Data
Quality Control and
Optimized PostScrape Filtering

Preprocessed textual data and explored similarity detection techniques

Achieved 81.15% Accuracy at 75% Threshold

Developed a cost function to assess results and estimated savings through Deduplication Process Automation

Informed Decision-Making: Pilot Project for LLM Comparison: GPT-3.5, GPT-J, ChatGPT

Future Vision:
Streamlined
Operations and
Enhanced Navigation

Business impact and deliverables aligning with the objective of the project

Balanced Trade-offs:
accuracy,response
time,
ccomprehensiveness
in LLM Usage

the Final Project Report

Thank You for your time!

