FYZIKÁLNÍ PRAKTIKUM II FJFI ČVUT v Praze

Geometrická optika

Číslo úlohy: 6 Skupina: 4

Kruh: Středa Jméno: Denis Krapivin

Datum měření: 16.3.2022 Kolega: Kseniia Politskovaia

Klasifikace:

1 Pracovní úkoly

1. $\mathbf{D}\hat{\mathbf{U}}$: V přípravě odvoďte rovnici (2), načrtněte chod paprsků a zdůvodněte nutnost podmínky e>4f. Zjistěte, co je konvenční zraková vzdálenost.

- 2. Určete ohniskovou vzdálenost spojné čočky +200 ze znalosti polohy předmětu a jeho obrazu (pro minimálně pět konfigurací, proveďte též graficky) a Besselovou metodou.
- 3. Změřte ohniskovou vzdálenost mikroskopického objektivu a Ramsdenova okuláru Besselovou metodou. V přípravě vysvětlete rozdíl mezi Ramsdenovým a Huygensovým okulárem.
- 4. Změřte zvětšení lupy při akomodaci oka na konvenční zrakovou vzdálenost. Stanovte z ohniskové vzdálenosti lupy zvětšení při oku akomodovaném na nekonečno.
- 5. Určete polohy ohniskových rovin tlustých čoček (mikroskopický objektiv a Ramsdenův okulár) nutných pro výpočet zvětšení mikroskopu.
- 6. Z mikroskopického objektivu a Ramsdenova okuláru sestavte na optické lavici mikroskop a změřte jeho zvětšení.
- 7. Ze spojky +200 a Ramsdenova okuláru sestavte na optické lavici dalekohled. Změřte jeho zvětšení přímou metodou.
- 8. Výsledky měření zvětšení mikroskopu a dalekohledu porovnejte s hodnotami vypočítanými z ohniskových vzdáleností.

2 Pomůcky

Dvě optické lavice (větší a menší) s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický objektiv, Ramsdenův okulár v držáku s Abbeho kostkou, spojné čočky +200, matnice, clona se šipkou, pomocný světelný zdroj s milimetrovou stupnicí, křížový vodič s objektivovým mikrometrem (se stupnicí o velikosti 1 mm dělenou po 0,01 mm), pomocný mikroskop s měřícím okulárem, světelný zdroj pro optickou lavici s kvádříkem (se stupnicí o velikosti 5 mm, dělenou po 0,1 mm), pomocný dalekohled, měřítko (25 cm), trojnožka, stupnice na zdi

3 Teorie

3.1 Určení ohniskové vzdálenosti

Při studiu optických čoček je důležitým pojmem tzv. ohnisková rovina, která obsahuje ohnisko a je kolmá k optické ose. Zobrazují se do ní předměty ležící v nekonečnu. Ohnisková vzdálenost je vzdálenost čočky od jejího ohniska [1].

3.1.1 Měření ohniskové vzdálenosti z polohy předmětu a jeho obrazu

Při měření ohniskové vzdálenosti f tenké spojné čočky (Obr. 1) podle [1] platí čočková rovnice:

$$f = \frac{aa'}{a+a'},\tag{1}$$

kde a je vzdálenost čočky od předmětu, a' je vzdálenost obrazu od čočky.

Obr. 1: Zobrazení spojnou čočkou. a je vzdálenost čočky od předmětu y, a' vzdálenost obrazu y' od čočky, f a f' jsou ohniskové vzdálenosti, body F aF' jsou přímo ohniska [1].

Jiným způsobem jak můžeme najít ohniskové vzdálenosti f čočky je grafická metoda. Tato metoda spočívá v tom, že na vodorovnou osu x pravoúhlé soustavy souřadnic nanášíme vzdálenost čočky od předmětu a, na svislou osu y pak vzdálenost obrazu a'. Takto vynesené body pak spojíme úsečkou. Pak zjistíme, že se všechny úsečky protínají v jednom bodě. Přitom bude platit, že obě souřadnice tohoto bodu jsou rovny hledané ohniskové vzdálenosti měřené čočky f.

3.1.2 Měření ohniskové vzdálenosti Besselovou metodou

Obr. 2: Určení ohniskové vzdálenosti Besselovou metodou. a_1 , a'_1 , a_2 , a'_2 jsou vzdálenosti čočky od stínítka a od předmětu, d je vzdálenost poloh čočky a e je vzdálenost předmětu od stínítka [1].

Tato metoda je založena na poznatku, že pro jistou pevnou vzdálenost e předmětu a stínítka, na němž se vytváří obraz, existují dvě polohy čočky 1 a 2 (Obr. 2), při nichž dostaneme ostrý obraz. Takový případ může nastat jen v tom případě, kdy splněna nerovnost e > 4f (viz Příloha. Domácí příprava).

Je-li d vzdálenost dvou polohy čočky, kdy je obraz ostrý, můžeme vypočítat ohniskovou vzdálenost f ze vztahu:

$$f = \frac{e^2 - d^2}{4e}. (2)$$

3.1.3 Huygensův a Ramsdenův okulár

Huygensův okulár se skládá ze dvou plankonvexních spojných čoček, mezi nimiž je clona. Umožňuje korekci barevné chyby a dodnes se užívá u laciných přístrojů.

Ramsdenův okulár se skládá ze dvou identických plankonvexních čoček stejné ohniskové vzdálenosti. Jejich vyduté strany jsou přivráceny k sobě. Obě čočky Ramsdenova okuláru jsou od sebe vzdáleny 2/3 až 3/4 jejich ohniskové vzdálenosti. Má mnohem menší kulovou vadu než Huygensův okulár. Na rozdíl od Huygensova okuláru má však barevnou vadu.

3.2 Optické přístroje

3.2.1 Lupa

Pod zvětším lupy $Z_{l_{\infty}}$ se obvykle rozumí zvětšení při oku akomodovaném na nekonečno:

$$Z_{\rm l\infty} = \frac{l}{f},\tag{3}$$

kde l označuje konvenční zrakovou vzdálenost a f předmětovou ohniskovou vzdálenost lupy.

Při akomodaci oka na normální zrakovou vzdálenost zvětšení lupy je větší:

$$Z_{\text{lnorm}} = \frac{y'}{y},\tag{4}$$

kde y je lineární velikost předmětu, y' je lineární velikostí obrazu.

3.2.2 Mikroskop

Mikroskop je tvořen dvěma optickými částmi, okulárem a objektivem. Každá z nich má své vlastní ohniska, vzdálenost bližších ohnisek f_1 a f_2 nazýváme optickým intervalem a značíme Δ . Pak zvětšení mikroskopu $Z_{\rm m}$ vypočteme jako:

$$Z_{\rm m} = \frac{\Delta l}{f_1 f_2},\tag{5}$$

kde l je konvenční zraková vzdálenost.

3.2.3 Dalekohled

Dalekohled je tvořen z objektivu s ohniskovou vzdálenosti f_1 a okuláru s ohniskovou vzdálenosti f_2 . Zvětšení přístroje se vypočítá podle vztahu:

$$Z_{\rm d} = \frac{f_1}{f_2},\tag{6}$$

4 Postup měření

4.1 Určení ohniskové vzdálenosti

4.1.1 Měření ohniskové vzdálenosti spojné čočky +200

Umístíme na optické lavici matnici, spojnou čočku +200, clonu s šipkou a zdroj světla. Polohu matnice nebudeme během měření měnit. Zvolíme libovolnou vzdálenost zdroje světla od matnice a hledáme polohu čočky, pro kterou budeme na matnici pozorovat ostrý obraz šipky. Pro vhodnou polohu čočky změříme vzdálenost od matnice do čočky a od čočky do matnice. Pak změníme polohu zdroje světla a postup opakujeme. Celkem provedeme 5 měření.

Pro měření ohniskové vzdálenosti Besselovou metodou umístíme zdroj světla ve více něž 4 ohniskové vzdálenosti, které jsme našli z předchozího měření. Posouváním čočky po lavici určíme dvě polohy, ve kterých se na matnici vytvoří ostrý obraz. Zaznamenáme vzdálenost těchto dvou bodu a vzdálenost mezi matnicí a zdrojem světla. Měření provedeme celkem 5krát.

4.1.2 Měření ohniskové vzdálenosti mikroskopického objektivu a Ramsdenova okuláru

Umístíme na optické lavici pomocný mikroskop, Ramsdenův okulár, clonu s šipkou a skleněný kvádřík se stupnicí. Před použitím pomocného mikroskopu určíme, v jaké vzdálenosti leží jeho předmětová rovina. Tuto vzdálenost je nutno odečíst od vzdáleností pomocného mikroskopu a čočky. Dálnější měření provádíme stejné jako v minulé úloze.

4.2 Optické přístroje

4.2.1 Lupa

Sestavíme na optické lavici lupu z Ramsdenova okuláru a skleněného kvádříku se stupnicí. Jako srovnávací stupnici použijeme milimetrové měřítko, které umístíme kolmo na Abbeho kostku ve vzdálenosti 25 cm od optické lavice. Tato kostka je připevněna k Ramsdenovu okuláru. Zvětšení lupy pak najdeme jako poměr velikostí obou stupnic.

4.3 Ohniskové roviny mikroskopického objektivu a Ramsdenova okuláru

Sestavíme na optické lavici systém z pomocného dalekohledu, Ramsdenova okuláru a skleněného kvádříku se stupnicí. Zvolíme libovolnou vzdálenost zdroje světla od dalekohledu a hledáme polohu čočky, pro kterou budeme v dalekohledu pozorovat ostrý obraz kvádříku. Tuto polohu zaznamenáme a postup opakujeme. Celkem provedeme 3 měření. Zaměníme Ramsdenův okulár za mikroskopický objektiv a stejným postupem provedeme další 3 měřeni. Mikroskopický objektiv má ohniskové roviny na opačné straně než Ramsdenův okulár, proto objektiv pro toto měření otočíme.

4.3.1 Mikroskop

Sestavíme na optické lavici mikroskop z Ramsdenova okuláru, mikroskopického objektivu a objektivového mikrometru. Stejné jako v minulé úloze umístíme kolmo na lavici ve vzdálenosti 25 cm od Abbeho kostky pomocný zdroj světla s milimetrovou stupnicí. Opět zaznamenáme poměr velikostí obou stupnic.

4.3.2 Dalekohled

Dalekohled sestavíme na menší optické lavici na trojnožku z Ramsdenova okuláru a čočkou +200. Jako předmět používáme stupnici dělenou po 1 cm umístěnou svisle na stěně ve vedlejší místnosti. Jako referenční stupnici používáme měřítko ve vzdálenosti 25 cm od Abbeho kostky. Jako v minulé úloze zaznamenáme poměr velikostí obou stupnic.

5 Zpracování dat

5.1 Určení ohniskové vzdálenosti

5.1.1 Měření ohniskové vzdálenosti spojné čočky +200 z polohy předmětu a jeho obrazu

Naměřené hodnoty vzdálenosti předmětu a a ostrého obrazu předmětu a' od čočky jsou v Tab. 1. Chyby těchto vzdálenosti jsou určeny jako chyba nepřímého měření [2] na $\sigma_a = \sigma_{a'} = 0,07$ cm. Hodnoty ohniskové vzdálenosti f_i jsou nalezený podle (1), příslušná chyba je chybou nepřímého měření.

Výslednou hodnotu ohniskové vzdálenosti čočky f_1 jsme našli jako aritmetický průměr hodnot f_i pro jednotlivé měření a chybu jako chybu aritmetického průměru [2]:

$$f_1 = (18, 55 \pm 0, 04) \text{ cm},$$

což odpovídá situaci na Obr. 3 pro grafickou metodu hledaní ohniskové vzdálenosti.

a [cm]	a' [cm]	$f_i[\mathrm{cm}]$
32, 8	42, 2	$18,46 \pm 0,02$
49, 2	29,8	$18,56 \pm 0,04$
50,6	29, 4	$18,60 \pm 0,04$
47,3	30, 7	$18,62 \pm 0,04$
36, 7	37, 3	$18,50 \pm 0,02$

Tab. 1: Naměřené hodnoty vzdálenosti předmětu a a ostrého obrazu předmětu a' od čočky s chybami $\sigma_a = \sigma_{a'} = 0,07$ cm, f je vypočtená hodnota ohniskové vzdálenosti s příslušnou chybou.

Obr. 3: Grafická metoda pro řešení čočkové rovnice. a je vzdálenost čočky od předmětu, a' je vzdálenost obrazu od čočky.

5.1.2 Měření ohniskové vzdálenosti spojné čočky +200 Besselovou metodou

Naměřené hodnoty vzdálenost předmětu od stínítka e a vzdálenosti d dvou poloh čočky, ve kterých čočka dává ostrý obraz předmětu jsou v Tab. 2. Chyba těchto vzdálenosti jsou určeny jako chyba nepřímého měření na $\sigma_d = \sigma_e = 0,07$ cm. Hodnoty ohniskové vzdálenosti f_i jsou nalezený podle (2), příslušná chyba je chybou nepřímého měření.

Výslednou hodnotu ohniskové vzdálenosti čočky f_2 Besselovou metodou jsme našli jako aritmetický průměr hodnot f_i pro jednotlivé měření a chybu jako chybu aritmetického průměru:

$$f_2 = (18, 45 \pm 0, 02) \text{ cm}.$$

5.1.3 Měření ohniskové vzdálenosti mikroskopického objektivu a Ramsdenova okuláru Besselovou metodou

Vzdálenost předmětové roviny pomocného mikroskopu jsme určili na $p=(24,60\pm0,07)$ cm, chyba je chybou nepřímého měření.

d [cm]	e [cm]	$f_i [{ m cm}]$
29,3	84,0	$18,44 \pm 0,02$
38,1	90,0	$18,47 \pm 0,03$
35, 2	88,0	$18,48 \pm 0,02$
21,9	80,0	$18,50 \pm 0,02$
15, 2	77, 0	$18,50 \pm 0,02$

Tab. 2: Naměřené hodnoty vzdálenosti d dvou poloh čočky, ve kterých čočka dává ostrý obraz předmětu při měření ohniskové vzdálenosti čočky Besselovou metodou, e je vzdálenost předmětu od stínítka, chyby $\sigma_d = \sigma_e = 0,07$ cm, f je vypočtená hodnota ohniskové vzdálenosti s příslušnou chybou.

Naměřené a vypočtené hodnoty pro mikroskopický objektiv a Ramsdenuv okular jsou v Tab. 3. d jsou vzdálenosti dvou poloh čoček, ve kterých čočky dávají ostrý obraz předmětu. Vzdálenost kvadriku od pomocného mikroskopu e je uvedena s korekci na polohu předmětové roviny. Chyba těchto vzdálenosti jsou určeny jako chyba nepřímého měření na $\sigma_d = \sigma_e = 0,07$ cm. Hodnoty ohniskové vzdálenosti f_i jsou nalezený podle (2), příslušná chyba je chybou nepřímého měření.

Mikroskopický objektiv			Ramsdenuv okulár		
$d[\mathrm{cm}]$	$e[\mathrm{cm}]$	$f_{\mathrm{m}_i} [\mathrm{cm}]$	d [cm]	e [cm]	$f_{\mathrm{r}_i} [\mathrm{cm}]$
13, 2	18, 6	$2,31 \pm 0,05$	5,3	14, 2	$3,06 \pm 0,03$
18, 2	23, 4	$2,31 \pm 0,05$	14, 1	21, 4	$3,03 \pm 0,04$
8,6	14, 4	$2,32 \pm 0,04$	18,3	24, 4	$3,05 \pm 0,05$

Tab. 3: Naměřené a vypočtené hodnoty pro mikroskopický objektiv a Ramsdenuv okulár. d jsou vzdálenosti dvou poloh čočky, ve kterých čočka dává ostrý obraz předmětu, e je vzdálenost kvadriku od pomocného mikroskopu zmenšená o vzdálenost předmětové roviny $p=(24,60\pm0,07)$ cm, chyby $\sigma_d=\sigma_e=0,07$ cm, $f_{\mathbf{m}_i}$ a $f_{\mathbf{r}_i}$ jsou vypočtené hodnoty ohniskových vzdálenosti s příslušnými chyby.

Výsledné hodnoty ohniskových vzdálenosti mikroskopického objektivu $f_{\mathbf{m}}$ a Ramsdenova okuláru $f_{\mathbf{r}}$ jsme našli jako aritmetický průměr hodnot $f_{\mathbf{m}_i}$ a $f_{\mathbf{r}_i}$ pro jednotlivé měření a chybu jako chybu aritmetického průměru:

$$f_{\rm m} = (2, 31 \pm 0, 03) \, {\rm cm}, \qquad f_{\rm r} = (3, 05 \pm 0, 02) \, {\rm cm}.$$

5.2 Optické přístroje

5.2.1 Lupa

Porovnáním velikosti obrazu předmětu $y'=(5\pm0,5)$ mm, kterou jsme změřili milimetrovou stupnice a velikosti předmětu $y=(0,50\pm0,05)$ mm (měřítko na kvadriku dělené po 0,1 mm) jsme určili hodnotu zvětšení lupy $Z_{\rm lnorm}$ podle vztahu (4):

$$Z_{\text{lnorm}} = (10, 0 \pm 1, 4) [-],$$

chyba je určena jako chyba nepřímého měření.

Z ohniskové vzdálenosti Ramsdenova okuláru $f_{\rm r}=(3,05\pm0,02)\,{\rm cm}$ a konvenční zrakové vzdálenosti $l=25\,{\rm cm}$ [2], stanovili jsme zvětšení lupy $Z_{\rm l\infty}$ podle vztahu (3):

$$Z_{l\infty} = (8, 20 \pm 0, 05) [-],$$

chyba je určena jako chyba nepřímého měření.

5.3 Ohniskové roviny mikroskopického objektivu a Ramsdenova okuláru

Naměřili jsme polohy ohniskových rovin mikroskopického objektivu $p_{
m m}$ a Ramsdenova okuláru $p_{
m r}$:

$$p_{\rm m} = (0,71 \pm 0,07) \, {\rm cm}, \qquad p_{\rm r} = (0,19 \pm 0,07) \, {\rm cm}.$$

Chyby těchto poloh jsou určeny podle vzorci pro chyby nepřímého měření.

5.3.1 Mikroskop

Porovnáním velikosti obrazu předmětu $y'=(2\pm0,5)$ mm, kterou jsme změřili milimetrovou stupnice a velikosti předmětu $y=(0,10\pm0,05)$ mm (měřítko na kvadriku dělené po 0,1 mm) jsme určili hodnotu zvětšení mikroskopu Z_{1_1} přímou metodou:

$$Z_{\mathbf{m}_1} = (20, 0 \pm 1, 4) [-],$$

chyba je určena jako chyba nepřímého měření.

Z vypočtených poloh ohniskových rovin a ohniskových vzdálenosti stanovili jsme zvětšení mikroskopu Z_{l_2} podle vztahu (5):

$$Z_{\text{m}_2} = (19, 5 \pm 0, 4) [-],$$

chyba je určena jako chyba nepřímého měření.

5.3.2 Dalekohled

Přímou metodou jsme změřili hodnotu zvětšení dalekohledu $Z_{\mathbf{d}_1}$ na:

$$Z_{d_1} = (6 \pm 1) [-],$$

kde chyba je chybou nepřímého měření.

Z vypočtených ohniskových vzdáleností čočky +200 $f_1=(18,45\pm0,02)$ cm a Ramsdenova okuláru $f_2=(3,05\pm0,02)$ cm jsme stanovili zvětšení dalekohledu $Z_{\mathbf{d_2}}$ podle vztahu (6):

$$Z_{\text{d}_2} = (6,08 \pm 0,02) [-],$$

kde chyba je chybou nepřímého měření.

6 Diskuze

Polohu čoček, clony se šipkou a matnici jsme odečítali pomocí kovového měřítka s chybou 0,05 cm. Pak vzdálenosti jsme určovali odečtením těchto poloh, proto je chyby všech vzdálenosti jsme určili jako chybu nepřímého měřeni na 0,07 cm.

6.1 Určení ohniskové vzdálenosti

6.1.1 Měření ohniskové vzdálenosti spojné čočky +200 z polohy předmětu a jeho obrazu

Určili jsme ohniskovou vzdálenost spojné čočky +200 ze znalosti polohy předmětu a jeho obrazu na $f_1 = (18, 55 \pm 0, 04)$ cm s relativně malou chybou cca 0.2% a Besselovou metodou $f_2 = (18, 45 \pm 0, 02)$ cm s chybou cca 0.01%. Hodnoty od sebe vzdáleny $\leq 3\sigma$, tím pádem hodnoty můžeme považovat za shodné.

6.1.2 Měření ohniskové vzdálenosti Besselovou metodou

Změřili jsme ohniskovou vzdálenost mikroskopického objektivu na $f_{\rm m}=(2,31\pm0,03)\,{\rm cm}$ s chybou cca 1,2% a Ramsdenova okuláru na $f_{\rm r}=(3,05\pm0,02)\,{\rm cm}$ s chybou cca 0,6%.

6.2 Optické přístroje

6.2.1 Lupa

Zvětšení lupy jsme změřili při akomodaci oka na konvenční zrakovou vzdálenost $Z_{\rm lnorm}=10,0\pm1,4$ s chybou cca 14% a stanovili jsme z ohniskové vzdálenosti lupy zvětšení při oku akomodovaném na nekonečno $Z_{\rm l\infty}=8,20\pm0,05$ s chybou cca 6%.

6.2.2 Mikroskop

Při zkoumaní mikroskopu naměřili jsme hodnotu zvětšení přímou metodou na $Z_{\rm m_1}=20,0\pm1,4$ s chybou cca 7% a teoretickou metodou $Z_{\rm m_2}=19,5\pm0,4$ s chybou cca 2%. Hodnoty od sebe vzdáleny $\leq 3\sigma$, tím pádem můžeme říct, že hodnotu zvětšení jsme ověřili správně.

6.2.3 Dalekohled

Při zkoumaní dalekohledu jsme získali hodnotu zvětšení přímou metodou na $d_1=6\pm1$ s chybou cca 16% a teoretickou metodou $Z_{d_2}=6,08\pm0,02$ s chybou cca 0,3%. Hodnoty od sebe vzdáleny $\leq3\sigma$, tím pádem hodnoty můžeme považovat za shodné.

7 Závěr

- 1. $\mathbf{D}\hat{\mathbf{U}}$: V přípravě (viz Příloha. Domácí příprava) jsme odvodili vzorec (2), načrtli jsme chod paprsků a zdůvodnili nutnost podmínky e > 4f.
- 2. Určili jsme ohniskovou vzdálenost spojné čočky +200 ze znalosti polohy předmětu a jeho obrazu (pro pět konfigurací, provedli jsme graficky na Obr. (3)) f_1 a Besselovou metodou f_2 .

$$f_1 = (18, 55 \pm 0, 04) \,\mathrm{cm}, \qquad f_2 = (18, 45 \pm 0, 02) \,\mathrm{cm}.$$

3. Změřili jsme ohniskovou vzdálenost mikroskopického objektivu $f_{\rm m}$ a Ramsdenova okuláru $f_{\rm r}$ Besselovou metodou:

$$f_{
m m} = (2, 31 \pm 0, 03) \, {
m cm}, \qquad f_{
m r} = (3, 05 \pm 0, 02) \, {
m cm}.$$

V přípravě jsme vysvětlili rozdíl mezi Ramsdenovým a Huygensovým okulárem.

4. Změřili jsme zvětšení lupy při akomodaci oka na konvenční zrakovou vzdálenost Z_{lnorm} a stanovili jsme z ohniskové vzdálenosti lupy zvětšení při oku akomodovaném na nekonečno $Z_{\text{l}\infty}$:

$$Z_{\text{lnorm}} = (10, 0 \pm 1, 4) [-], \qquad Z_{\text{loc}} = (8, 20 \pm 0, 05) [-].$$

5. Určili jsme polohy ohniskových rovin tlustých čoček mikroskopického objektivu p_{m} a Ramsdenova okuláru p_{r} :

$$p_{\rm m} = (0,71 \pm 0,07) \, {\rm cm}, \qquad p_{\rm r} = (0,19 \pm 0,07) \, {\rm cm}.$$

6. Z mikroskopického objektivu a Ramsdenova okuláru jsme sestavili na optické lavici mikroskop a změřili jeho zvětšení přímou metodou Z_{m_1} a teoretickou metodou Z_{m_2} :

$$Z_{\rm m_1} = (20,0\pm 1,4)\,[-], \qquad Z_{\rm m_2} = (19,5\pm 0,4)\,[-]. \label{eq:Zm1}$$

7. Ze spojky +200 a Ramsdenova okuláru jsme sestavili na optické lavici dalekohled. Změřili jsme jeho zvětšení přímou metodou $Z_{\rm d_2}$:

$$Z_{\rm d_1} = (6 \pm 1) [-], \qquad Z_{\rm d_2} = (6, 08 \pm 0, 02) [-].$$

8. Výsledky měření zvětšení mikroskopu a dalekohledu jsme porovnali s hodnotami vypočítanými z ohniskových vzdáleností.

Literatura

- [1] FJFI ČVUT: Balmerova série [online] https://moodle-vyuka.cvut.cz/pluginfile.php/435579/mod_resource/content/6/optika_180226.pdf [cit.20.3.2022]
- [2] Petr Chaloupka, Základy fyzikálních měření, prezentace [online] https://people.fjfi.cvut.cz/chalopet/ZFM/ZFM.pdf [cit.20.3.2022]

Příloha

8 Domácí příprava

