Классификация манипулятивных фрагментов в новостных текстах

Георгий Жаров Научный руководитель: Константин Воронцов

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

27 июня 2023 г.

Задача поиска пропаганды

- Актуальность: В современном мире задача поиска и классификации пропаганды является важной проблемой в силу большого влияния пропаганды на человека.
- Цель: Создание модели классификации фрагментов пропаганды в русскоязычных новостных текстах.

Задача поиска пропаганды

Математическая постановка

Данные: (s,c), где s — это фрагмент текста, c — метка класса. Пусть S — пространство текстовых последовательностей s, t — токенизатор, а V — словарь всевозможных токенов предобученной модели. Тогда токенизатор работает следующим образом

$$t: S \to (V)^n$$

где n- это фиксированная длина входного вектора предобученной модели.

a(w) — рассматриваемая модель, w — параметры модели. P — пространство векторов из \mathbb{R}^d , таких что $\forall p \in P: \sum\limits_{i=1}^d p_i = 1.$ Таким образом модель работает как

$$a:V\rightarrow P$$

Пусть теперь \hat{c} — предсказание модели, оно получается следующим образом

$$\hat{c} = arg \max_{i} a((V)^n, w)$$

Для обучения используется кросс-энтропийная функция потерь

$$\mathit{CE}(y,p) = -\sum_{i=1}^d y_i \log p_i$$
, где $y_i \in \{0,1\}$ — метка

принадлежности к i-ому классу, p_i — вероятность принадлежности к i-ому классу.

Тогда вся задача представляется в виде следующей оптимизационной задачи

$$CE(y, a(t(s), w)) \rightarrow \min_{w}$$

Оценка качества и относительные метрики

Классические метрики для задачи классификации: accuracy, precision, recall, f1-метрика.

Предлагается использовать: относительная f1-метрика.

$$RelF1_i = F1(S_{ij}, S_{ik}),$$

где $S_{ij}, S_{ik}, \; -$ разметки i-ого текста j-м и k-м разметчиком

$$MAF1 = \frac{1}{M} \sum_{i=1}^{M} RelF1_i,$$

где M — число текстов в датасете.

$$RF1 = \frac{F1(c,\hat{c})}{MAF1}$$

Данные

Проблема: сильный дисбаланс классов

Решение: равномерное сэмплирование обучающей выборки

Рис.: а) Распределение классов в исходной выборке

б) Распределение классов в сэмплированной обучающей выборке

Итоговая модель

Рис.: Общая схема используемой модели

Финальная модель: токенизатор, предобученный энкодер (ruRoBERTa-large), линейный классификатор.

Вычислительный эксперимент

При обучении модели все слои предобученного энкодера кроме последнего замораживались. Обучение происходило с кросс-энтропийной функцией потерь. В качестве оптимизатора использовался Adam. Обучение происходило со следующими гиперпараметрами:

- \blacksquare learning rate = 0.0001
- 2 label smoothing = 0.3
- 3 dropout = 0.3

Результаты эксперимента

Рис.: a) cls18 б) cls18-context в) cls4 г) cls4-context

Метрики качества

В таблице ниже приведены основные значения метрик качества

model	ACC	F1	RF1
cls18	0.353	0.249	0.508
cls18-context	0.357	0.166	0.339
cls4-context	0.620	0.443	-
cls4	0.676	0.509	-

Здесь cls18 — это модель, которая обучалась на данных, состоящих только из фрагментов пропаганды, cls18-context - аналогичная модель обучалась на фрагментах и их контексте, cls4-context и cls4 модели, классифицирующие фрагменты на 4 сгрупированных класса, обученные соответственно с контекстом и без.

Анализ ошибки модели

Рис.: a) Матрица ошибок модели б) Распределение классов

На защиту выносится

- Построена и обучена базовая модель классификации фрагментов пропаганды в русскоязычных текстах.
- Реализован код для воспроизведения вычислительного эксперимента, поставленного в работе.