

Documento de Arquitetura

Linguagem de Máquina e Microarquitetura - Problema 1

Universidade Estadual de Feira de Santana

Build 2.0a

Histórico de Revisões

Date	Descrição	Autor(s)
03/05/2018	Relatório Desenvolvido ao Final do Projeto	Nadine Cerqueira Marques Valmir Vinicius de Almeida Santos

SUMÁRIO

1	Intr	odução	3
	1	Propósito do Documento	3
	2	Acrônimos e Abreviações	3
	3	Definições	4
	4	Objetivo do Projeto	4
2	Visã	ão Geral da Arquitetura e Descrição do Projeto	5
	1	Arquitetura do Processador	5
	2	Configuração e Instanciamento do Processador	6
	3	Arquitetura do Projeto	6
	4	Algoritmo	7
		4.1 Construção da Tabela (Lookup Table)	7
		4.2 Cálculo do CRC-32	8
		4.3 Exibição do Resultado	9
	5	Assembly	10
		5.1 Instruções e Diretivas	10
3	Res	ultados	13
	1	Testes	13
	2	Área Total Ocupada pelo Circuito	13
	3	Caminho Crítico do Circuito	15
4	Con	nclusão	17
	1	Referências	17

1 Introdução

1. Propósito do Documento

Este documento tem por objetivo descrever a arquitetura do projeto Linguagem de Máquina e Microarquitetura - Problema 1, incluindo a apresentação da visão geral do processador utilizado, bem como foi instanciado. Além disso, descreve o algoritmo utilizado para o cálculo do CRC-32Q. Ademais também apresenta definições de entrada e saída do projeto final.

2. Acrônimos e Abreviações

Sigla	Descrição
FPGA	Field Programmable Gate Array (Arranjo de Portas Programáveis em Campo)
ASIC	Application Specific Integrated Circuit (Circuito Integrado de Aplicação Específica)
RISC	Reduced Instruction Set Computer (Computador com Conjunto Reduzido de Instruções)
LED	Light Emitting Diode (Diodo Emissor de Luz)
LE	Logic Element (Elemento Lógico)
LAB	Logic Array Block (Bloco de Matriz Lógico)
E/S	Entrada e Saída

3. Definições

Termo	Descrição
NIOS	Processador <i>softcore</i> RISC de 32 bits com arquitetura Harvard, desenvolvido pela Altera [1]
Processador Softcore	Implementação de um processador descrito em linguagem de hardware, que pode ser customizado e sintetizado em um <i>FPGA</i> ou <i>ASIC</i> [1]
CRC	Cógigo para detecção de erros em dados por meio da checagem por redundância cíclica
On Chip Memory	É o tipo de memória mais simples para uso em FPGA já que é implementada na própria placa [2]
Assembly	Representação simbólica das instruções de máquina [3]
bit	Dígito binário [3]
word	Unidade natural de acesso em um computador, geralmente em grupo de 32 <i>bits</i> [3]
Quartus	Software para criação de projetos com dispositivos programáveis, como o FPGA. Possui diversas ferramentas para análise de projeto, como Chip Planner e TimeQuest Time Analyzer

4. Objetivo do Projeto

O sistema desenvolvido tem por objetivo realizar o cálculo do CRC-32Q para uma sequência de dados de entrada cujo tamanho máximo é de 1KB. O cômputo em questão deverá ser efetuado por um processador NIOS II, implementado em um dispositivo FPGA Altera.

O resultado desse cálculo, uma sequência composta por 32 bits de dados, será apresentado a partir da interação do usuário com um push button e por meio de quatro leds. Além dos componentes da interface de entrada/saída anteriormente citados, é imprescindível que a unidade de processamento esteja associada a uma interface JTAG UART e a uma memória on-chip.

2 | Visão Geral da Arquitetura e Descrição do Projeto

A visão geral da arquitetura do processador NIOS II é apresentada nesta seção, bem como a arquitetura final do projeto. Além disso, as etapas de instanciamento e configuração do processador, implementação do algoritmo e componentes em *Assembly* utilizados para o cálculo do CRC-32Q são descritos.

1. Arquitetura do Processador

A arquitetura do processador NIOS II pode ser observada na figura 2.1. Nessa imagem, pode-se identificar os elementos essenciais para a implementação desse tipo de processador, como o banco de registradores e sua memória interna, com regiões de dados e de instruções.

Figura 2.1: Diagrama de Blocos da Arquitetura do *Core* do NIOS II [4]

2. Configuração e Instanciamento do Processador

A fase inicial do processo de desenvolvimento do projeto teve como foco a preparação de ambiente, ou seja, instalação e configuração dos componentes fundamentais à implementação.

Nesse contexto, destaca-se o *software* QUARTUS II, na sua versão 13.0.1, utilizado para configuração e instanciamento do processador NIOS II. Dentro deste programa, adotou-se a ferramenta Qsys, a partir da qual foram definidos parâmetros importantes do *softcore*, bem como sua memória e elementos periféricos (*LEDs* e botões).

Além disso, tendo em vista as versões *fast*, *standart* e *economy* do processador NIOS II e suas respectivas especificações, selecionou-se, por meio da ferramenta Qsys, a versão a ser utilizada.

A versão do NIOS II adotada foi a *economy*, como pode observado na tabela de especificações do projeto. Isso porque, para o cálculo do CRC-32Q, não foi necessária, por exemplo, a realização de operações de multiplicação, presente nas outras versões do processador.

Especificações do Projeto

Processador	NIOS II Economy
Memória Associada	On Chip Memory com 4096 bytes
Periféricos E/S	1 Push Button e 4 LEDs
Placa	Cyclone IV E EP4CE6E22C8 com <i>clock</i> de 50MHZ

3. Arquitetura do Projeto

A arquitetura geral do projeto, representada pela figura 2.2, é composta pelo processador NIOS II/e, que se conecta aos periféricos de E/S presentes no FPGA em que foi instanciado e configurado.

Figura 2.2: Arquitetura do Projeto

4. Algoritmo

Existem, atualmente, duas abordagens algorítmicas para o cálculo do CRC-32. A primeira delas é mais tradicional e baseia-se no cômputo bit-a-bit da entrada. Por outro lado, o segundo método, conhecido como método baseado em tabela (*Lookup Table Based*), realiza operações byte-a-byte. Apesar de mais simples, a primeira técnica pode ser ineficiente quando a entrada possui tamanho significativo, já que cada bit deverá ser analisado. Levando em consideração essa característica, adotou-se o *Look Up Table* na implementação descrita neste documento.

Outro aspecto a ser considerado são as diversas modalidades de CRC-32 existentes. Esses tipos diferem entre si por conta de alguns parâmetros que influenciam no valor final. Tais parâmetros são: inversão da entrada, valor inicial do resultado, XOR final do resultado e inversão da saída. O produto implementado foi desenvolvido com base no CRC-32Q, que não realiza inversão de entrada e saída, utiliza 0 como valor inicial do resultado e não realiza operação XOR ao final do cômputo.

Além do cálculo do CRC, foi necessário também desenvolver um algoritmo para possibilitar a exibição do resultado de 32 bits em sequências de 4 bits por meio de 4 *LEDs* e um *push button*. Para esse caso aderiu-se a técnica de espera por eventos externos denominada *polling*.

4.1. Construção da Tabela (Lookup Table)

O cálculo do CRC-32 baseado em tabelas efetua o processamento de cada *byte* da entrada por iteração. Cada um desses *bytes* pode assumir apenas 256 valores diferentes. Com base nessas observações, surge a possibilidade de pré computar a divisão de cada possível *byte* pelo polinômio, que é fixo, e armazenar os resultados em uma tabela. A *lookup table* é indexada por cada valor diferente que um byte pode assumir, indo desde 0 até o valor máximo de 255. O algoritmo completo para construção da tabela pode ser visualizado no fluxograma da figura 2.3.

Figura 2.3: Fluxograma - Construção da Tabela

4.2. Cálculo do CRC-32

Tendo sido construída a tabela, o próximo passo consiste em obter cada *byte* da entrada e utilizá-lo como índice para obtenção do valor pré-computado na tabela. A entrada do sistema possui tamanho de 1 KB e é obtida da memória em sequências com tamanho máximo de 32 bits. Assim, são necessárias 250 leituras à memória para obtenção de toda a entrada e 1000 iterações para o cálculo do CRC, já que para cada sequência obtida são realizadas 4 iterações, uma para cada *byte*.

Figura 2.4: Fluxograma - Cálculo do CRC-32

4.3. Exibição do Resultado

A etapa final do algoritmo implementado consiste na exibição do resultado obtido. O CRC calculado, que é composto por 32 bits, é apresentado a partir de 4 *LEDs*. Dessa forma, foi fundamental utilizar um botão do tipo *push button*, de forma que cada toque no botão carrega os 4 bits menos significativos do resultado nos *LEDs*.

Essa funcionalidade foi implementada por meio da técnica *polling*, que consiste em fazer diversas verificações, até que a condição do botão ser pressionado seja atendida.

Vale ressaltar que, após a exibição de 4 bits, é necessário inserir um atraso, pois o tempo em que o dedo humano permanece pressionando o botão é consideravelmente

maior que o tempo de execução do código. O *delay* foi implementado através da utilização de um decrementador, cujo valor inicial é 500000.

O algoritmo da rotina de exibição do resultado está descrito no fluxograma da figura 2.5.

Figura 2.5: Fluxograma - Exibição do Resultado

5. Assembly

Esta seção visa apresentar os componentes em *Assembly* utilizados para a implementação do algoritmo para o cálculo do CRC-32Q e para exibição do resultado desse cálculo.

5.1. Instruções e Diretivas

Instruções Utilizadas

Segue abaixo a tabela composta pelas instruções do NIOS II utilizadas para o desenvolvimento do projeto.

Instrução	Descrição
AND	Lógico AND bit a bit
XOR	Lógico OR exclusivo bit a bit
ADD	Soma conteúdo de um registrador com outro
ADDI	Adição com valor imediato
SUBI	Subtração por valor imediato
MOVIA	Move endereço imediato para a word
MOVI	Move imediato com sinal para a word
MOV	Mover conteúdo de um registrador para outro
STW	Armazena word para memória ou periférico de E/S
LDW	Carrega word da memória ou periférico de E /S
STB	Armazena <i>byte</i> para memória ou periférico de E/S
LDB	Carrega <i>byte</i> da memória ou periférico de E/S
SRLI	Deslocamento lógico para a direita em quantidade de vezes imediata
SLLI	Deslocamento lógico para a esquerda em quantidade de vezes imediata
ROR	Rotação para direita
BEQ	Desvia o fluxo de execução caso a condição de igualdade seja verdadeira
BNE	Desvia o fluxo de execução caso a condição de desigualdade seja verdadeira
CALL	Chama subrotina
BR	Desvio incondicional

Diretivas Utilizadas

A tabela a seguir é composta pelas diretivas do NIOS II utilizadas para o desenvolvimento do projeto.

Diretiva	Descrição
.data	Identifica os dados que devem ser colocados na seção de dados da memória
.word	Expressões separadas por vírgula seguintes a essa diretiva são montadas em um número binário de 32 <i>bits</i>
.equ	Seta o valor de um símbolo para uma expressão
.text	Identifica o código que deve ser colocado na seção de código da me- mória
.global	Faz com que símbolo após a diretiva seja visível externamento ao arquivo objeto montado
.end	Identifica o final do arquivo do código fonte

3 Resultados

1. Testes

Durante o processo de implementação da solução foram realizados diversos testes, buscando, assim, garantir o funcionamento esperado do algoritmo em linguagem *Assembly*, assim como do processador NIOS II.

A primeira fase de testes foi baseada na realização de simulações do código fonte por meio do *software* JNIOSEmu. Por outro lado, a segunda fase aferições baseou-se carregamento dos arquivos do processador (gerados pela ferramenta Qsys) e do código fonte na placa Cyclone IV EP4CE6E22C8, por meio da aplicação Altera Monitor.

Os resultados obtidos em tempo de execução foram comparados os valores fornecidos por ferramenta *online*, exibida na figura 3.1, para geração de sequências aleatórias de 1 KB de dados e de valores de CRC-32 com base nessas sequências.

Figura 3.1: Calculadora Online CRC-32Q

Os primeiros testes da segunda fase revelaram problemas ocasionados por conta do baixo valor (1000) utilizado inicialmente parar gerar *delay* através de decrementos. Dessa forma, tornou-se fundamental alterar esse número para 50000. Após essa modificação, o sistema passou a apresentar o comportamento esperado, atendendo, assim, aos requisitos propostos.

2. Área Total Ocupada pelo Circuito

A partir de relatório gerados pelo *software* Quartus foi possível obter dados sobre a área que o projeto implementado consome em função dos elementos que o compõem.

Área Ocupada em Função dos Elementos Internos do Dispositivo

A tabela a seguir é composta pelas por elementos internos do dispositivo e suas respectivas quantidades ao final do projeto.

Elemento	Quantidade
LE	1.695
LAB	136
Registradores	920
Memória	44.032 bits

Área Ocupada por Elementos Lógicos por Modo

Além disso, esse relatórios ainda apresentam a quantidade de elementos lógicos utilizados em cada modo de operação, como mostra a tabela a seguir.

Modo	Quantidade
Normal	1.464
Aritmético	137

Representação da Área Total Ocupada Pelo Circuito

A figura 3.3 a seguir, gerada pela ferramenta *Chip Planner* do *software Quartus*, apresenta a área total ocupada pelo circuito do projeto, simbolizada pelos blocos em azul escuro.

Figura 3.2: Área Total Ocupada pelo Circuito

3. Caminho Crítico do Circuito

A partir da geração de relatórios com tabelas por meio da ferramenta *TimeQuest Timing Analyzer*, presente no *software* Quartus, foi possível observar qual caminho do sistema com maior custo em termos de tempo. Assim, verificou-se que esse caminho crítico se dá entre registradores presentes na interface JTAG e que consome 99.209ns.

Esse caminho foi identificado no circuito por meio da ferramenta *Chip Planner* e é apresentado na figura a seguir, extraída da própria ferramenta:

Figura 3.3: Caminho Crítico do Circuito

4 | Conclusão

A concepção sistema para cálculo de CRC-32, utilizando o *sofcore* NIOS II, exigiu a aplicação prática de conceitos teóricos relacionados ao funcionamento de processadores e à programação em baixo nível por meio da linguagem *Assembly*. Vale destacar, ainda, que o processo de desenvolvimento proporcionou o ganho de experiência na utilização dos componentes de *software* (Quartus II, Altera Monitor e JNIOSEmu) e *hardware* (placa Cyclone IV) adotados.

Entende-se que o produto obtido ao final do projeto foi satisfatório, pois atende aos requisitos funcionais e não funcionais propostos. Entretanto, existe ainda abertura para futuros trabalhos direcionados à promoção, por exemplo, de melhorias relacionadas ao desempenho (tempo de execução). Ademais, outro possível aperfeiçoamento é promover uma flexibilização no código fonte, de maneira a proporcionar o cálculo de outras versões do CRC-32.

1. Referências

- [1] R. P. M. da Silva, *Processador softcore Altera Nios II.* 2014. Disponível em: https://www.embarcados.com.br/altera-nios-ii/>. Acesso em: 3 maio 2018.
- [2] Altera, *Memory System Design*. Disponível em: https://www.altera.com/en_US/pdfs/literature /hb/nios2/edh_ed51008.pdf>. Acesso em: 3 maio 2018.
- [3] J. L. H. David A. P, Computer Organization and Design: The Hardware/Software Interface ARM Edition. Morgan Kaufman, 2017.
- [4] Altera, Nios II Processor Reference Guide. Disponível em: https://www.altera.com/documentation/iga1420498949526.html#iga1409258110065>. Acesso em: 3 maio 2018.