Nombre de la asignatura: Visión Artificial

LGAC: Control de procesos energéticos

Tiempo de dedicación del estudiante a las actividades:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

1. Historia de la asignatura.

Fecha revisión/actualización	Participantes	Observaciones, cambios y justificación.
Marzo de 2017 Instituto Tecnológico de	Dr. Ricardo Francisco Martínez González.	Primera versión como curso básico del programa de posgrado.
Veracruz	M.C. José Antonio Hernández Reyes.	

2. Prerrequisitos y correquisitos.

Matemáticas Avanzadas aplicadas a la Ingeniería, asignatura recomenda para todas las líneas de investigación. Recomendable cursarla en segundo semestre.

3. Objetivo de la asignatura.

Aplicar las técnicas básicas de Visión Artificial y Procesamiento de Imágenes para el desarrollo de sistemas de Reconocimiento de patrones.

4. Aportaciones al perfil del graduado.

La materia contribuye a formar al alumno en los conocimientos y habilidades necesarias de las técnicas de Visión Artificial y Procesamiento de Imágenes para poderlas utilizar en las diferentes líneas de investigación, algunos de los tópicos se mencionan a continuación:

- Adquirir las bases desde una perspectiva global de qué es la Visión Artificial
- Explorar los fundamentos de Visión Artificial
- Revisar las técnicas y algoritmos utilizados para la resolución de problemas en el área de Visión Artificial.
- Analizar las diferentes etapas de adquisición, extracción de características, reconocimiento e identificación de patrones para utilizarlos en la solución de problemas de áreas de conocimiento diferentes.

5. Contenido temático.

UNIDAD	TEMA	SUBTEMAS
1	Introducción al procesamiento de imágenes y visión por computadora	 1.1 Introducción a Visión Computacional y Procesamiento de Imágenes. 1.2 Etapas de un Sistema de Visión Computacional 1.3 Sistema de Visión Humano 1.4 Adquisición de la Imagen 1.5 Muestreo de Civilización
2	Preprocesamiento	 2.1 Histograma, Niveles de Tonos de Grises 2.2 Operadores de Apertura y Cierre 2.3 Técnicas de Filtrado 2.4 Detección y Técnicas de Remoción de Ruido 2.5 Morfología Matemática

3	Procesamiento	3.1 Fundamentos de Filtrado Espacial
	espacial y frecuencial	3.2 La mecánica de filtrado espacial
	de imágenes	3.3 Técnica espacial de correlación y convolución
		3.4 Representación vectorial de filtrado lineal
		3.5 Filtros de suavizado espacial (Smoothing)
		3.6 Filtros de Orden Estadístico (No Lineales)
		3.7 Filtrado Espacial de Formas (Sharpening)
4	Detección de Bordes	4.1 Fundamentos
		4.2 Puntos, Líneas y detección de bordes
		4.3 Background
		4.4 Detección de Puntos aislados, Detección de Líneas
		4.5 Modelos de Bordes, Detección de Bordes Básica
		4.6 Técnicas Avanzadas para Detección de Bordes
5	Segmentación de	5.1 Introducción
	imágenes	5.2 Métodos de Segmentación robusta con estadística
		5.2.1 Principios de segmentación robusta
		5.2.2 Segmentación por Rango
		5.2.3 Segmentación en movimiento
		5.3 Segmentación por escala
6	Reconocimiento de	6.1 Patrones yclases de patrones
	objetos	6.2 Reconocimiento basado en métodos teóricos de decisión6.3 Acoplamiento (Matching)
		6.4 Clasificadores Estadísticos Óptimos
		6.5 Métodos estructurales
		6.6 Acoplamiento de cadenas

6. Metodología de desarrollo del curso.

El docente impartirá la materia desarrollando problemas relacionados con los temas de manera analítica, y comprobando resultados con la aplicación de herramientas de software para análisis y simulación como Matlab, Labview, etc.

7. Sugerencias de evaluación.

La evaluación de la asignatura se hará con base en el siguiente desempeño:

- El alumno desarrollará un articulo breve respecto a su línea de investigación de interés y la relación con los temas tratados.
- Elaborará reportes intermedios durante el semestre para evaluar el avance de su trabajo.
- Exámenes parciales y un examen general y representativo al final del curso para evaluar sus conocimientos.

8. FUENTES DE INFORMACIÓN

Bibliografía obligatoria:

- Computer Vision and Fuzzy-Neural Systems by Arun D. Kulkarni, Prentice Hall PTR (May 8,2001), ISBN-10: 0135705991, ISBN-13: 978-0135705995.
- Computer Vision: Algorithms and Applications, Richard Szeliski, Springer, September 3, 2010.
- Digital Image Processing, Rafael C. Gonzalesz, Richard E. Woods, Pearson Prentice Hall, 3rd Edition, 19 May 2012, ISBN 0-13-168728-8
- Data Segmentation and Model Selection for Computer Vision A Statistical Approach, Alirezaz Bab-Hadiashar, David Suter, Springer; 2000 edition, ISBN-10: 0387988157, ISBN-13: 978-0387988153
- Advances in Image and Video Segmentation, Yu-Jin Zhang, IRM Press, May 2, 2006, ISBN-10: 1591407532, ISBN-13: 978-1591407539, China.
- Computer Vision, Detection, Recognition and Reconstruction, Series: Studies in Computacional Intelligence, Vol. 285, Cipolla, Roberto; Battiato, Sebastiano; Farinella, Giovanni Maria (Eds.) Springer Verlag 2010, ISSN: 1860-949X (Print) 1860-9503
- Series: Advances in Computer Vision and Pattern Recognition, Springer; 2013, ISBN-10: 1447151941, ISBN-13: 978-1447151944.
- Series: Synthesis Lectures on Artificial Intelligence and Machine Learning, Publisher: Morgan & Claypool, April 19, 2011, ISBN-10: 1598299689, ISBN-13: 978-1598299687.
- Computer Vision, Linda G. Shapiro, George C. Stockman, Prentice Hall, February 2, 2001, ISBN-10: 0130307963, ISBN-13: 978-0130307965.
- Computer Vision: A Modern Approach, David A. Forsyth, Jean Ponce, Prentice Hall; November 5, 2011, ISBN-10: 013608592X, ISBN-13: 978-0136085928.

Bibliografía complementaria:

 Image Processing with LabVIEW and IMAQ Vision, Thomas Klinger, Prentice Hall; First printing (stated) edition (June 21, 2003), ISBN-10 0130474150, ISBN-13: 978-0130474155 • Image Processing, Analysis, and Machine Vision, Milan Sonka, Vaclav Hllavac, Roger Boyle, Publisher: Cengage Learning; March 19, 2007, ISBN-10: 049508252X, ISBN-13: 978-0495082521.

Software de apoyo:

· Matlab, Labview

9. Actividades propuestas

Para complementar los conocimientos teóricos se propone la elaboración de proyectos extra-clase con laboratorio en las horas de trabajo adicional.

10. Nombre y firma de los catedráticos responsables.

Dr. Ricardo Francisco Martínez González.	
M.C. José Antonio Hernández Reyes.	