Exploring the Impact of Adding a Low-Priority Room in Patient Management

Simulation of Patient Management and Waiting Time Analysis

Tarbiat Modares University - Faculty of Industrial and Systems Engineering

Professor: Dr. Yavari

Students: Matineh Rangzan, Faezeh Zare, Paria Sadeghi

__

01 Introduction

Analyze the effect of introducing a low-priority room on patient waiting times and deaths.

Simplified Current Flowchart

Suggested Flowchart

Simplified Flowchart

Suggested Flowchart

-\\\\\-

02 Scenarios

Scenarios

Number	Scenario	Waiting (Normal) Room	Low-Priority Room
Scenario 1	Current	100 %	0 %
Scenario 2	20 % of non-critical patients go to LP room	80 %	20 %
Scenario 3	Half of non-critical patients go to LP room	50 %	50 %
Scenario 4	80 % of non-critical patients go to LP room	20 %	80 %
Scenario 5	All of non-critical patients go to LP room	0 %	100 %

_\\\\\

03 Simulation

With NetLogo

Environment Setup

Room Types:

- Waiting Room (Green): For critical and percentage of non-critical patients.
- Doctor's Office (Red): Treatment area.
- CCU (Blue): Intensive care for critical patients.
- Low-Priority Room (Yellow): Optional room for non-critical patients.

Agents: Patients

Attributes:

			
patient-status	"critical(black)" or "non-critical(white)"		
treatment-time	Time required for treatment		
room-assigned	Room the patient is currently in		
waiting-time	Time spent waiting		

Simulation Hyperparameters

System Parameters

- Maximum Patients: 20,000
- Doctor's Office Capacity: 1 patient
- CCU Capacity: 12 patients
- Max Waiting Time for Critical Patients: 10 ticks (before death)

Patient Characteristics

- 30% Critical
- 70% Non-Critical
- Low-Priority Room Allocation: Controlled via slider (0% to 100%).

Simulation Outputs

- Average Waiting Time (Overall, Normal Room, Low-Priority Room)
- Deaths Over Time

Results: Different LP Percentages

Results: Death Over Time

- _\\\\
- Optimal Balance: The 50% LP configuration strikes the right balance between resource allocation and patient prioritization.
- Reduced Waiting Times: It minimizes waiting times for both critical and non-critical patients by efficiently managing patient flow.
- Lower Death Rate: Critical patients experience faster access to care, significantly reducing the death rate.

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

