# Fair Colorful k-Center Clustering

Xinrui Jia, Kshiteej Sheth, Ola Svensson

# 1) Problem Statement

- k-Center: Given n points, choose k of them to minimize largest distance from a point to a center.
- Coverage requirement p: can choose n-p points to omit.
- With colors: each color has a coverage requirement.
- Example: Red points and blue points with coverage requirements r and b.



• Our algorithm easily generalizes to more color classes

# 4) 3-Approximation Outline

Close one of the extra centers

- Phase I:
- $\diamond$  Guess some centers of optimal solution to maximize number of red points in special Gain region
- Phase II:
- $\diamond$ Remove *Dense* sets and solve subset-sum to add centers to solution
- ♦Run 2-Approx (k+1) centers and close one center

Assume no ball of radius 3·(OPT radius) covers 2 optimal clusters

#### 6) Phase II

- Point j is **dense** if  $\mathcal{B}(j)$  contains strictly more than  $2\cdot \overline{\phantom{a}}$  red points of  $P_s$
- Define:  $I_j \subseteq P_s$  contain those points  $i \in P_s$  such that  $\mathcal{B}(i) \cap \mathcal{B}(j)$  contains strictly more than  $\tau$  red points of  $P_s$

Initially, let  $I = \emptyset$  and  $P_s = P_4$ . While there is a dense point  $j \in P_s$ :

- Add  $I_j$  to I, update  $P_s$  by removing  $D_j = \bigcup_{i \in I_j} \mathcal{B}(i) \cap P_s$ .
- Let  $P_d = \bigcup_j D_j$
- Use flow network/dynamic programming to find dense points that belong in solution set



- 2-Approx (k+1) centers on  $P_s$  to complete solution
- Can remove a center, since number of red points in all flowers from  $P_s$  is bounded by 3.7, which **Guess** makes up for

#### 8) Open Questions

- Tight 2-approximation?
- Integrality gap example for SoS doesn't fool knapsack, and vice versa
- \$SoS hierarchy on LP with added flow constraints?

#### 2) Motivation

- Fairness
- $\diamond$  In k-center without colors, every member of a certain group may be treated as an outlier
- Algorithmic challenges
- Subset-sum problem
- ♦ Clustering



# 3) Previous Results

|               | Best approx | Tight? | Authors                  |
|---------------|-------------|--------|--------------------------|
| k-center      | 2           | Yes    | T. F. Gonzalez           |
| k-center with | 2           | Yes    | D. Chakrabarty, P. Goyal |
| outliers      |             |        | R. Krishnaswamy          |

• Colorful k-center: S. Bandyapadhyay, T. Inamdar, S. Pai, K. Varadarajan:



# 5) Phase I

- Optimal radius from feasibility LP relaxation.
- Gain(p,q):  $flower(q) \setminus \mathcal{B}(p)$  that maximizes number of red points



Guess  $c_1, c_2, c_3$  optimal centers and find  $q_i \in \mathcal{B}(c_i)$  such that number of red points in  $\mathbf{Gain}(c_i, q_i) \cap P_i$  is maximized over all possible  $c_i$ , where

$$P_1 = P$$
  
 $P_i = P_{i-1} \setminus flower(q_i) \text{ for } 2 \le i \le 4.$ 

- Define **Guess** :=  $\mathcal{B}(c_1) \cup \mathcal{B}(c_2) \cup \mathcal{B}(c_3)$
- Define  $\tau = |\mathbf{Gain}(c_3, q_3) \cap P_3|$

#### 7) LP Integrality Gaps

#### Sum-of-Squares

- Linear rounds of SoS are required to close integrality gap for following example, k = n, r = b = 2n, n odd
- Need radius to cover 2 balls



#### Knapsack Constraints







- add flow constraints to LP to model knapsack problem
- Fractional assignment of 1/2 to each ball satisfies flow constraints