HERIOT-WATT UNIVERSITY

Masters Thesis

Thesis Title

Author: Supervisor:

John Smith Dr. James Smith

A thesis submitted in fulfilment of the requirements for the degree of MSc.

in the

School of Mathematical and Computer Sciences

January 2023

Declaration of Authorship

I, John Smith, declare that this thesis titled, 'Thesis Title' and the work presented in it is my own. I confirm that this work submitted for assessment is my own and is expressed in my own words. Any uses made within it of the works of other authors in any form (e.g., ideas, equations, figures, text, tables, programs) are properly acknowledged at any point of their use. A list of the references employed is included.

Signed:			
Date:			

"Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism."

Dave Barry

Abstract

The Thesis Abstract is written here (and usually kept to just this page).

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor :)

Contents

D	eclar	ation o	of Authorship	i
A	bstra	ıct		iii
A	ckno	wledge	ements	iv
C	ontei	nts		v
Li	st of	Figure	es	vii
Li	st of	Table	${f s}$	vii
A	bbre	viation	1S	ix
Sy	ymbo	ols		х
1	Int:	coducti Welco	ion ome and Thank You	1 1
2	Out	line aı	nd Fundamentals	2
	2.1		a Signal Processing	2
		2.1.1	A broad overview of the field	2
		2.1.2	The graph Laplacian	2
		2.1.3	Graph filters	2
	2.2	Regres	ssion and Reconstruction	2
		2.2.1	Graph Signal Reconstruction	2
		2.2.2	Kernel Graph Regression	2
		2.2.3	Regression with Network Cohesion	2
	2.3	Thesis	s overview	2
3	Ker	nel Ge	eneralized Least Squares Regression for Network Data	3
	3.1		el Graph Regression with Missing Values	
	3.2	GLS I	Kernel Graph Regression	
		3.2.1	A Gauss-Markov estimator	
		3 9 9	AR(1) processes	3

Contents vi

		3.2.3	Experiments
4	Reg		and Reconstruction on Cartesian Product Graphs
	4.1		uction
	4.2	Graph	Signal Reconstruction on Cartesian Product Graphs
		4.2.1	A stationary iterative method
		4.2.2	A conjugate gradient method
		4.2.3	Convergence properties
		4.2.4	Image processing experiments
	4.3	Kernel	Graph Regression with Unrestricted Missing Data Patterns
		4.3.1	Cartesian product graphs and KGR
		4.3.2	Convergence properties
	4.4	Regres	ssion with Network Cohesion
		4.4.1	Regression with node-level covariates
		4.4.2	Convergence properties
	4.5	Multi-	Dimensional Cartesian Product Graphs
		4.5.1	Fast computation with d -dimensional Kronecker products
		4.5.2	Signal reconstruction
		4.5.3	Kernel Graph Regression
		4.5.4	Regression with Network Cohesion
5	Sign	nal Un	certainty: Estimation and Sampling
	5.1	Introd	uction
	5.2	Poster	ior Estimation
		5.2.1	Log-variance prediction
		5.2.2	Estimation models
		5.2.3	Query strategies
		5.2.4	Comparison and analysis
	5.3	Poster	ior Sampling
		5.3.1	Perturbation optimization
	5.4	Estima	ation vs Sampling
		5.4.1	Experiments
6	Wo	rking v	vith Binary-Valued Graph Signals
	6.1		ic Graph Signal Reconstruction
	6.2	Logisti	ic Kernel Graph Regression
	6.3	_	ic Regression with Network Cohesion
	6.4	_	ximate Sampling via the Laplace Approximation
7	Cor	clusio	ns
	7.1		Section 1
		K	

List of Figures

List of Tables

Abbreviations

LAH List Abbreviations Here

Symbols

Unless otherwise specified, the following naming conventions apply.

Scalar constants

N	The number of nodes in a graph
T	The number of time points considered
M	The number of explanatory variables
Q	The number of queries

Scalar variables

α	An autocorrelation regularisation parameter
β	A hyperparameter characterising a graph filter
γ	A precision parameter
λ	An eigenvalue or ridge regression penalty parameter
μ	The mean of a random variable
θ	AR(1) autocorrelation parameter
σ^2	The variance of a random variable

Matrices

Widthees	
A	The graph adjacency matrix
D	A diagonal matrix
${f E}$	The prediction residuals
\mathbf{F}	A predicted graph signal
\mathbf{G}	A graph filter
H	A Hessian matrix
I	The identity matrix

Symbols xi

 \mathbf{K} A kernel (Gram) matrix \mathbf{L} The graph Laplacian \mathbf{S} A binary selection matrix U Laplacian eigenvector matrix Kernel eigenvector matrix \mathbf{X} Data matrix of explanatory variables \mathbf{Y} (Partially) observed graph signal Λ A diagonal eigenvalue matrix $\mathbf{\Sigma}$ A covariance matrix Φ Auxiliary eigenvector matrix Ψ Auxiliary eigenvector matrix

Log marginal variance matrix

Vectors/tensors

 Ω

The prediction residuals

The predicted graph signal

A binary selection vector/tensor

A vector of explanatory variables

The observed graph signal

A flexible intercept vector/tensor

A graph filter parameter vector or vector of regression coefficients

A aggregated coefficient vector $[\boldsymbol{\alpha}^{\top}, \, \boldsymbol{\beta}^{\top}]^{\top}$

Functions

 $g(\cdot)$ A graph filter function

p(statement) The probability that a statement is true

 $\pi(\cdot)$ A probability density function $\xi(\cdot)$ Optimisation target function

 $\kappa(\cdot, \cdot)$ A kernel function

Operations

 $(\cdot)^{\top}$ Transpose of a matrix/vector

 $||\cdot||_{\mathrm{F}}$ The Frobenius norm

Symbols xii

$\operatorname{vec}(\cdot)$	Convert a matrix to a vector in column-major order
$\mathrm{vec}_{\mathrm{RM}}(\cdot)$	Convert a matrix to a vector in row-major order
$\mathrm{mat}(\cdot)$	Convert a vector to a matrix in column-major order
$\operatorname{mat}_{\operatorname{RM}}(\cdot)$	Convert a vector to a matrix in row-major order
$\mathrm{diag}(\cdot)$	Convert a vector to a diagonal matrix
$\mathrm{diag}^{-1}(\cdot)$	Convert the diagonal of a matrix into a vector
\otimes	The Kronecker product
\oplus	The Kronecker sum
0	The Hadamard product

Miscellaneous

<u>^</u>		
(\cdot)	The estimator of a	a matrix/vector/tensor

 $O(\cdot)$ The runtime complexity

 $egin{array}{lll} x_i & ext{A vector element} \\ \mathbf{X}_i & ext{A matrix column} \\ \mathbf{X}_{ij} & ext{A vector element} \end{array}$

For/Dedicated to/To my...

Introduction

1.1 Welcome and Thank You

 $[Arnold\ et\ al.,\ 1998]$

Outline and Fundamentals

- 2.1 Graph Signal Processing
- 2.1.1 A broad overview of the field
- 2.1.2 The graph Laplacian
- 2.1.3 Graph filters
- 2.2 Regression and Reconstruction
- 2.2.1 Graph Signal Reconstruction
- 2.2.2 Kernel Graph Regression
- 2.2.3 Regression with Network Cohesion
- 2.3 Thesis overview

Kernel Generalized Least Squares Regression for Network Data

- 3.1 Kernel Graph Regression with Missing Values
- 3.2 GLS Kernel Graph Regression
- 3.2.1 A Gauss-Markov estimator
- 3.2.2 AR(1) processes
- 3.2.3 Experiments

Hello

Regression and Reconstruction on Cartesian Product Graphs

4.1	Introduction
Hello	
4.2	Graph Signal Reconstruction on Cartesian Product Graphs
Hello	
4.2.1	A stationary iterative method
Hello	
4.2.2	A conjugate gradient method
Hello	
4.2.3	Convergence properties

4.2.4	Image	processing	experiments
T.4.T	Image	processing	CAPCITITICITIES

Hello

4.3 Kernel Graph Regression with Unrestricted Missing Data Patterns

Hello

4.3.1 Cartesian product graphs and KGR

Hello

4.3.2 Convergence properties

Hello

4.4 Regression with Network Cohesion

Hello

4.4.1 Regression with node-level covariates

Hello

4.4.2 Convergence properties

Hello

4.5 Multi-Dimensional Cartesian Product Graphs

Hello

4.5.1 Fast computation with d-dimensional Kronecker products

Hello

4.5.2 Signal reconstruction

Hello

4.5.3 Kernel Graph Regression

Hello

4.5.4 Regression with Network Cohesion

Signal Uncertainty: Estimation and Sampling

- 5.1 Introduction
- 5.2 Posterior Estimation
- 5.2.1 Log-variance prediction
- 5.2.2 Estimation models
- 5.2.3 Query strategies
- 5.2.4 Comparison and analysis
- 5.3 Posterior Sampling
- 5.3.1 Perturbation optimization
- 5.4 Estimation vs Sampling
- 5.4.1 Experiments

Working with Binary-Valued Graph Signals

- 6.1 Logistic Graph Signal Reconstruction
- 6.2 Logistic Kernel Graph Regression
- 6.3 Logistic Regression with Network Cohesion
- 6.4 Approximate Sampling via the Laplace Approximation

Conclusions

7.1 Main Section 1

Appendix A

Appendix Title Here

Write your Appendix content here.

Bibliography

Arnold, A. S., Wilson, J. S., and Boshier, M. G. (1998). A simple extended-cavity diode laser. *Review of Scientific Instruments*, 69(3):1236–1239.