Possibile svolgimento della prova del 15 settembre 2025 - Modulo B

1) Disegniamo sul piano il dominio di integrazione A (è il settore circolarel'area colorata

In coordinate polari $x = r \cos \theta$, $y = r \sin \theta$, il dominio d'integrazione A è quindi dato da $1 \le \rho \le 2$ e $0 \le \theta \le \frac{\pi}{3}$.

Passando alle coordinate polari abbiamo:

$$\int_A \frac{1}{1+x^2+y^2} \, \mathrm{d}x \, \mathrm{d}y = \int_{\theta=0}^{\pi/3} \int_{r=1}^2 \frac{r}{1+r^2} \, \mathrm{d}r \, \mathrm{d}\theta = \left(\int_0^{\pi/3} \, \mathrm{d}\theta\right) \left[\frac{1}{2} \ln(1+r^2)\right]_1^2 = \frac{\pi}{6} \ln \frac{5}{2}.$$

2) Dominio. Deve essere 3-x-y>0, dunque $D=\{(x,y)\in\mathbb{R}^2:\ x+y<3\}$, semipiano aperto sotto la retta x+y=3.

 $Gradiente\ e\ punti\ critici.\ \nabla f(x,y) = \Big(2(x-1) - \frac{1}{3-x-y},\ 2(y+2) - \frac{1}{3-x-y}\Big).\ I\ punti\ critici\ soddisfano$

$$\begin{cases} 2(x-1) - \frac{1}{3-x-y} = 0\\ 2(y+2) - \frac{1}{3-x-y} = 0 \end{cases}$$

Sottraendo membro a membro otteniamo $2(x-1)=2(y+2) \Rightarrow y=x-3$; sostituendo nella prima equazione, otteniamo (2x-2)(6-2x)=1, cioè $4x^2-16x+13=0$. Quindi

$$x_{1,2} = 2 \pm \frac{\sqrt{3}}{2}, \qquad y_{1,2} = x_{1,2} - 3 = -1 \pm \frac{\sqrt{3}}{2}.$$

Abbiamo quindi due punti critici $P_1=(2+\frac{\sqrt{3}}{2},-1+\frac{\sqrt{3}}{2})$ e $P_2=(2-\frac{\sqrt{3}}{2},-1-\frac{\sqrt{3}}{2})$, entrambi interni a D.

Natura dei punti critici. La matrice Hessiana di f è

$$H(x,y) = \begin{pmatrix} 2-\alpha & -\alpha \\ -\alpha & 2-\alpha \end{pmatrix}, \quad \text{con } \alpha = \alpha(x,y) = \frac{1}{(3-x-y)^2} > 0.$$

Quindi $\det H(x, y) = (2 - \alpha)^2 - \alpha^2 = 4(1 - \alpha)$

Nel punto P_1 , abbiamo $\alpha(2+\frac{\sqrt{3}}{2},-1+\frac{\sqrt{3}}{2})=\frac{1}{(2-\sqrt{3})^2}>1$, quindi $\det H(P_1)<0$: P_1 è un punto di sella.

Nel punto P_2 , $\alpha(2-\frac{\sqrt{3}}{2},-1-\frac{\sqrt{3}}{2})=\frac{1}{(2+\sqrt{3})^2}<1$, quindi $\det H(P_2)>0$ e $2-\alpha(P_2)>0$: P_2 è minimo locale stretto.

 $Derivata\ direzionale.$ Poiché f è di classe C^{∞} sul suo dominio, è differenziabile su D e quindi

$$\frac{\partial f}{\partial v}(2,0) = \nabla f(2,0) \cdot v = (1,3) \cdot \frac{1}{\sqrt{2}}(1,-1) = -\sqrt{2}.$$

3) Soluzioni singolari. Ponendo il fattore in y uguale a zero si trovano le soluzioni costanti $y \equiv 0$ e $y \equiv -1$, escluse dal metodo di separazione delle variabili.

Integrale generale. Per $y \neq 0, -1$ separiamo le variabili:

$$\frac{dy}{y(y+1)} = e^x dx, \qquad \frac{1}{y(y+1)} = \frac{1}{y} - \frac{1}{y+1}.$$

Integrando: $\ln \left| \frac{y}{y+1} \right| = e^x + C$. Ponendo $K = \pm e^C \neq 0$ ed esplicitando:

$$\frac{y}{y+1} = K e^{e^x} \quad \Longrightarrow \quad y(x) = \frac{K e^{e^x}}{1 - K e^{e^x}}.$$

Problema di Cauchy. Con y(0)=1 si ha $\frac{Ke}{1-Ke}=1\Rightarrow K=\frac{1}{2e},$ dunque

$$y(x) = \frac{e^{e^x}}{2e - e^{e^x}}.$$

- 4) (Enunciato e dimostrazione del criterio della radice). Sia $\sum a_n \operatorname{con} a_n \geq 0$ e $L = \lim_{n \to \infty} \sqrt[n]{a_n}$.
 - Se L < 1 allora $\sum a_n$ converge. Dim. Scelto r con L < r < 1, per definizione di limite, esiste N tale che $\sqrt[n]{a_n} < r$ per $n \ge N$, quindi $a_n < r^n$ per $n \ge N$ e per confronto con la geometrica $\sum r^n$ segue la convergenza.
 - Se L > 1 la serie diverge positivamente . Dim. Scelto r con 1 < r < L,Di nuovo per la definizione di limite, esiste N tale che $\sqrt[n]{a_n} > r$ per $n \ge N$, quindi $a_n > r^n > 1$ per $n \ge N$ e pertanto (a_n) non converge a zero. Dato che la serie $\sum a_n$ è a termini non negativi, essa deve divergere positivamente
 - Se L = 1 il criterio è inconcludente.

Applicazioni.

(i)
$$a_n = \frac{n^3}{3^n} \Rightarrow \sqrt[n]{a_n} = \frac{\sqrt[n]{n^3}}{3} \xrightarrow[n \to \infty]{} \frac{1}{3} < 1 \Rightarrow \sum \frac{n^3}{3^n}$$
 converge.

(ii)
$$a_n = \left(\frac{2}{3}\right)^n \sqrt[n]{n^2 + 1} \implies \sqrt[n]{a_n} = \frac{2}{3} \sqrt[n^2 + 1]{n^2 + 1} \xrightarrow[n \to \infty]{} \frac{2}{3} < 1$$

$$\Rightarrow \sum_{n \to \infty} \left(\frac{2}{3}\right)^n \sqrt[n]{n^2 + 1} \text{ converge.}$$