Jednostka wykonawcza z interfejsem SPI

Opis ogólny

Spi_exe_unit_1 to jednostka wykonawcza przetwarzające dwuargumentowe dane. Układ posiada flagi dające dodatkowe informacje o wyniku.

Spi exe unit 1 może przetwarzać dane za pomącą następujących operacji:

- Odejmowanie
- XOR
- NAND
- Logiczne przesunięcie w lewo oraz w prawo
- Wyznaczanie kodu CRC-4 oraz jego weryfikacja
- Konwersja z kodu nkb do onehot
- Wyznaczanie liczby 0
- Konwersja kodu U2 na znak moduł i odwrotnie
- Konwersja na kod priorytetowy

PRZESYŁ DANYCH SPI

OPIS WYPROWADZEŃ

CLK – jest to pin wejściowy. Komunikacja odbywa się względem tego pinu.

CS – aktywny w stanie niskim. W momencie gdy pojawi się zbocze opadające rozpoczyna się komunikacja

MISO – pin używany do przesyłania danych z urządzenia nadrzędnego do spi_exe_unit

MOSI – pin używany do przesyłania danych z spi exe unit do urządzenia nadrzędnego

FORMAT RAMKI DANYCH

Dane wysyłane do jednostki wykonawczej powinny wyglądać w następujący sposób: argA0argB0oper000000

INTERFEJS SZEREGOWY

Interfejs szeregowy zawiera piny Chip Select (CS), Clock (CLK), Master Input Slave Out (MISO), Master Output Slave Input(MOSI), Jednostka wykonawcza pracuje jako SLAVE i jest

które uczestniczą w komunikacji. Chip Select służy do wybrania spi_exe_unit_1 z urządzeń które uczestniczą w komunikacji. Chip Select jest aktywny w stanie niskim i dane są wpisywane do exe_unit oraz odbierane w tym samym czasie. Sygnał CLK jest generowany przez urządzenie MASTER. Wejście SCK jest używane do synchronizacji danych na liniach MISO i MOSI. Wejście MOSI wpisuje dane do rejestrów exe_unit. Wyjście MISO wysyła dane do urządzenia MASTER. Spi_exe_unit reaguje na zbocze narastające sygnału CLK.

STRUKTURA WEWNETRZNA REJESTRÓW

Rejestr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
argA	A7	A6	A5	A4	A3	A2	A1	A0
argB	В7	В6	B5	B4	В3	B2	B1	В0
oper	O3	O2	01	O0	0	0	0	0

Rejestr argA

Rejestr argA jest write-only przechowuje pierwszy argument operacji jednostki wykonawczej.

Rejestr argB

Rejestr argB jest write-only przechowuje drugi argument operacji jednostki wykonawczej.

Rejestr oper

Rejestr oper jest write-only i wybiera operację jednostki wykonawczej.