Oregon Lectures Logics & Lambda Calculi 2

Valeria de Paiva Topos Institute

lune 2025

Modal Logic

...there is no one fundamental logical notion of necessity, nor consequently of possibility. If this conclusion is valid, the subject of **modality ought to be banished** from logic, since propositions are simply true or false...

[Russell, 1905]

Modal Logic

One often hears that modal logic is pointless because it can be translated[...] There is no weight to the claim that the original system must therefore be replaced by the new one. What is essential is to **single out important concepts** and to investigate their properties. [Scott 1972]

Classical Modal Logic

- Modalities: the most successful logical framework in CS
- □A = A is necessarily the case, A holds for all times, etc
 ◇A = A is possibly the case, A holds at some time, etc
- Temporal logic, knowledge operators, BDI models, denotational semantics, effects, security modelling and verification, databases, etc..
- Logic representation of info and to reason about it. Usually only classical modalities...

Classical Modalities

- Reasoning about [concurrent] programs
 Pnueli, 1977 ACM Turing Award, 1996.
- Reasoning about hardware; model-checking, Clarke, Emerson, 1981.
 ACM Kanellakis Award, 1999
- Knowledge Representation 2003 Semantic Web

They are also essential in AI, Cognitive Science, Philosophy, Decision Theory, etc...

Thanks Frank Pfenning!

Constructive reasoning

- What: Reasoning principles that are safer
- if I ask you whether "is there an x such that P(x)?"
- I'm happier with the answer "yes, x_0 ", than with an answer "yes, for all x it is not the case that not P(x)"
- Why: want reasoning to be as precise and safe as possible
- How: constructive reasoning as much as possible, classical if need be, but tell me where and why...
- Today: constructive modalities!

Intuitionistic Modal Logic

Basic idea: Modalities over an Intuitionistic propositional Basis:

$$\wedge, \vee, \rightarrow, \neg$$

- Which modalities?
- Which intuitionistic basis?
- · Why? How?
- Why so many modal logics?
- How to choose?
- Can relate to others?
- Which are the important theorems?
- Which are the most useful applications?

Constructive Modal Logic

- Constructive logic = a logical basis for programming via Curry-Howard correspondences
- Modalities useful in Computing
- Constructive modalities ought to be twice as useful
- But which constructive modalities?
- Usual phenomenon: classical facts can be 'constructivized' in many different ways. Hence constructive notions multiply...
- Too many choices

Constructive Modal Logics

- Operators Box □, Diamond ◊ (like forall/exists) not interdefinable
- How do these two modalities interact?
- Depends on expected behavior and on tools you want to use
- The proof theory of modal logic is difficult, Handbook of Philosophical Logic
 Segerberg 1984
- Solutions add to syntax: hypersequents, labelled deduction systems, (linear) nested sequents, tree-sequents, all add some semantics to syntax (many ways...)

Intuitionistic Modal Logic and Applications (IMLA)

- a loose association of researchers, meetings and a certain amount of mathematical common ground,
- IMLA stems from the hope that philosophers, mathematical logicians and computer scientists would share information and tools about intuitionistic modal logics and modal type theories,
- if they knew about each others' work...

IMLA Meetings

Workshops and invited speakers

- FLoC1999, Trento, Italy, (Pfenning)
- FLoC2002, Copenhagen, Denmark, (Scott and Sambin)
- LiCS2005, Chicago, USA, (Walker, Venema and Tait)
- LiCS2008, Pittsburgh, USA, (Pfenning, Brauner)
- 14th LMPS in Nancy, France, 2011 (Mendler, Logan, Strassburger, Pereira)
- UNILOG 2013, Rio de Janeiro, Brazil. (Gurevich, Vigano and Bellin)
- ESSLLI2017, Toulouse, France

IMLA Publications

- Fairtlough, Mendler, Moggi, Modalities in Type Theory, MSCS, (2001)
- de Paiva, Goré, Mendler, Modalities in constructive logics and type theories, J of Log and Comp (2004)
- de Paiva, Pientka (eds.) IMLA 2008, Inf. Comput. (2011)
- de Paiva, Benevides, Nigam, Pimentel, IMLA 2013, ENTCS300, (2014)
- N. Alechina, V. de Paiva (eds.) IMLA2011,
 J. of Log and Comp, (2015)
- S. Artemov and V. de Paiva, J. Applied Logic, 2021

What's the state of play?

- IMLA's goal: functional programmers talking to philosophical logicians and vice-versa
- Not attained, so far
- Communities still largely talking past each other
- Incremental work on intuitionistic modal logics continues, as well as some of the big research programmes that started it
- Does it make sense to try to change this?

What did I expect twenty years ago?

- Fully worked out Curry-Howard for a collection of intuitionistic modal logics
- Fully worked out design space for intuitionistic modal logic, for classical logic and how to move from intuitionistic modal to classic modal
- Full range of applications of modal type systems
- Fully worked out dualities for desirable systems
- Collections of implementations for proof search/proof normalization

Why did I think it would be easy?

Some early successes. Systems: CS4, Lax Log, CK

- CS4: On an Intuitionistic Modal Logic (with Bierman, Studia Logica 2000)
- Lax Logic: Computational Types from a Logical Perspective (with Benton, Bierman, JFP 1998)
- CK: Basic Constructive Modal Logic. (with Bellin and Ritter, M4M 2001)
- Kripke semantics for CK (with Mendler 2005), Scheele's PhD CKn, 2014

Constructive S4 (CS4)

- Better behaved modal system, used by Gödel and Girard
- CS4 motivation is category theory, because of proofs, not simply provability
- Usual intuitionistic axioms plus MP, Nec rules and

Modal Axioms

$$\Box(A \to B) \to (\Box A \to \Box B)
\Box A \to A
\Box A \to \Box \Box A
\Box (A \to \Diamond B) \to (\Diamond A \to \Diamond B)
A \to \Diamond A$$

CS4 Sequent Calculus

S4 modal sequent rules first discussed in 1957 by Ohnishi and Matsumoto:

$$\frac{\Gamma, A \vdash B}{\Gamma, \Box A \vdash B} \qquad \frac{\Box \Gamma \vdash A}{\Box \Gamma \vdash \Box A}$$

$$\frac{\Box \Gamma, A \vdash B}{\Box \Gamma, \Diamond A \vdash B} \qquad \frac{\Gamma \vdash A}{\Gamma \vdash \Diamond A}$$

Cut-elimination works, for classical and intuitionistic basis.

CS4 Natural Deduction

Natural Deduction (ND) more complicated The rule

$$\frac{\Box\Gamma\vdash A}{\Box\Gamma\vdash\Box A}$$

Abramsky's "Computational Interpretation of Linear Logic" (1993) leads to calculus that does **not** satisfy substitution.

CS4 Natural Deduction

Given proofs
$$\frac{\Box A_1 \quad \Box A_2}{B}$$
 and $\frac{C \rightarrow \Box A_1 \quad C}{\Box A_1}$, we should be able to substitute $\frac{C \rightarrow \Box A_1 \quad C}{\Box A_1}$ $\Box A_2$

But a **problem**, as the promotion rule is not applicable. anymore.

Not a cut-elimination/normalization problem, a problem before one can even think of normalization

Natural Deduction for CS4

- Benton, Bierman, de Paiva, Hyland solved the problem for ILL, TLCA 1993.
- Bierman and de Paiva (Amsterdam 1992, journal 2000) same solution for modal logic.

The solution builds in the substitutions into the rule as

$$\frac{\Gamma \vdash \Box A_1, \dots, \Gamma \vdash \Box A_k \quad \Box A_1, \dots, \Box A_k \vdash B}{\Gamma \vdash \Box B} (\Box I)$$

Natural Deduction for CS4

Prawitz uses a notion of "essentially modal subformula" to guarantee substitutivity in his monograph (1965).

Several 'improvements'.

Two solutions: isn't this enough?

Natural Deduction for CS4

Usual Intuitionistic ND rules plus:

$$\frac{\Gamma \vdash \Box A_1, \dots, \Gamma \vdash \Box A_k \Box A_1, \dots, \Box A_k \vdash B}{\Gamma \vdash \Box B} (\Box I)$$

$$\Gamma \vdash \Box A_1, \dots, \Gamma \vdash \Box A_k, \Gamma \vdash \Diamond B A_1, \dots, A_k, B \vdash \Diamond C \dots \Box A_k \cup A_k, A \vdash A_k,$$

$$\frac{\Gamma \vdash \Box A_1, \dots, \Gamma \vdash \Box A_k, \Gamma \vdash \Diamond B A_1 \dots A_k, B \vdash \Diamond C}{\Gamma \vdash \Diamond C} (\Diamond E)$$

CS4: Properties/Theorems

- Axioms satisfy Deduction Thm, are equivalent to sequents,
- Sequents satisfy cut-elimination, sub-formula property
- ND is equivalent to sequents
- ND satisfies normalization, ND assigns λ -terms CH equivalent
- Categorical model: monoidal comonad plus box-strong monad
- Everything you kind of wanted for Currry-Howard?

CS4: Properties/Theorems

Issue with Prawitz formulation: idempotency of comonad not warranted...

Problems with CS4 system:

- Impurity of rules?
- Commuting conversions, eek!
- what about other modal logics?

see "On an Intuitionistic Modal Logic", Studia Logica, Bierman, de Paiva, 2000

Dual Intuitionistic and Modal Logic

- Following LL can define a dual system for □-only modal logic.
- DIML, after Barber and Plotkin's DILL, in Ghani et al, ICALP 1998.

$$\frac{\Gamma, x: A, \Gamma'|\Delta \vdash x_M: A \quad \Gamma|\Delta, x: A, \Delta' \vdash x_I: A}{\Gamma|\Delta \vdash \Box t: \Box A} \quad \frac{\Gamma|\Delta \vdash t_i: \Box A_i \Gamma, x_i: A_i|\Delta \vdash u:}{\Gamma|\Delta \vdash \Box t: \Box A} \quad \frac{\Gamma|\Delta \vdash t_i: \Box A_i \Gamma, x_i: A_i|\Delta \vdash u:}{\Gamma|\Delta \vdash \exists t_1, \dots, t_n \text{ be } \Box x_1, \dots, \Box x_n}$$

 Less 'impurity' on rules, less commuting conversions, but what about ◊? what about other modal systems?

Lax Logic

- Motivation: Moggi's computational lambda calculus, an intuitionistic modal metalanguage for denotational semantics for programming language features: non-termination, differing evaluation strategies, non-determinism, side-effects are examples.
- USing Curry-Howard 'backwards' to get the logic: intuitionistic modal logic with a degenerate possibility, Curry 1952

Lax Modality Axioms

Modal Axioms

$$\begin{array}{l}
A \to \Diamond A \\
\Diamond \Diamond A \to \Diamond A \\
(A \to B) \to (\Diamond A \to \Diamond B)
\end{array}$$

System Lax

- Also called CL-logic (for computational lambda calculus)
- Definition: the logic CH-equivalent to a strong monad in a CCC
- Semantic distinction: computations and values.
- If A models values of a type, then T(A) is the object that models computations of the type A
- T is a curious possibility-like modality, Curry 1952, rediscovered by Fairtlough and Mendler, Propositional Lax Logic, Information and Computation, 1997

Lax logic Properties

- Axioms, sequents, and ND are equivalent
- Deduction theorem holds, as does substitution and subject reduction
- The term calculus associated is strongly normalizing
- The reduction system given is confluent
- Cut elimination holds (Curry 1952)
- Lax logic (PLL) categorical models as expected
- Lax logic (PLL) Kripke models as expected
- Fairtlough and Mendler application: hardware correctness, up to constraints

Constructive K: more difficult

- Constructive K comes from proof-theoretical intuitions provided by Natural Deduction formulations of logic
- Already CS4 does not satisfy distribution of possibility over disjunction:
 ◊(A ∨ B) ≅ ◊A ∨ ◊B and ◊⊥ ≅ ⊥
- Sequent rules not as symmetric as in constructive S4, harder to model

$$\frac{\Gamma \vdash A}{\Box \Gamma \vdash \Box A} \quad \frac{\Gamma, A \vdash B}{\Box \Gamma, \Diamond A \vdash \Diamond B}$$

 Note: only one rule for each connective, also ◊ depends on □.

Constructive K Properties

- Dual-context only for Box fragment
- For Box-fragment, OK. Have subject reduction, normalization and confluence for associated lambda-calculus.
- Have categorical models, but too unconstrained?
- Kripke semantics OK
- No syntax in CK style for Diamonds that I know
- No ideas for uniformity of systems
- More work necessary

Alternatives

- Simpson 1994 PhD: very robust system for geometric ND theories for intuitionistic modal logic
- Justified by translation into intuitionistic first-order, recovers many of the systems in the literature
- Strong normalization and confluence proved for all the systems
- Normalization establishes completeness of cut-free sequent calculi and decidability of some of the systems
- Decidable systems satisfy "finite model property"

Alternatives

- Arnon Avron (1996) Hypersequents (based on Pottinger and Mints)
- Martini and Masini 2-sequents (1996)
- Dosen's higher-order sequents (1985)
- Display calculus (Belnap 1982, Kracht, Gore', survey by Wansing 2002)
- multiple-sequent (more than one kind of sequent arrow) Indrejcazk (1998)
- labelled sequent calculus Negri (2005)
- Nested sequents: Bruennler (2009), Hein, Stewart and Stouppa, Strassburger et al,

Recent Alternatives

- Fitch-style systems of several kinds, e.g. Borghuis 1994
- Judgmental modal logic, Pfenning, Davies 2001, 1995,
- Contextual Modal Type Theory, Nanevski, Pfenning, Pientka 2008
- Adjoint logic, Pfenning, Reed 2009, 2018
- Kavvos, Dual-context calculi for modal logic, 2017
- Shulman, Licata, Riley, A Fibrational Framework for Substructural and Modal Logics, 2017
- MTT Gratzer, 2019, 2023

What I wanted

- Constructive modal logics with axioms, sequents and natural deduction formulations, proved equivalent
- Cut-elimination, finite model property, (strong) normalization, confluence, and decidability
- Algebraic, Kripke, and categorical semantics
- Translating proofs more than simply theorems
- A broad view of constructive and/or modality
- If possible, limitative results

Simpson's desiderata

- IML is a conservative extension of IPL.
- IML contains all substitution instances of theorems of IPL and is closed under modus ponens.
- If A ∨ B is a theorem of IML either A is a theorem or B is a theorem too. (Disjunction Property)
- Box \square and Diamond \lozenge are independent in IML
- Adding excluded middle to IML yields a standard classical modal logic
- (Intuitionistic) Meaning of the modalities, wrt IML is sound and complete

Avron's desiderata

- Should be able to handle a great diversity of logics, esp. the traditional ones
- Should be independent of any particular semantics
- Structures should not be too complicated, yield a "real" subformula property
- Rules of inference should have a small fixed number of premises, and a local nature of application
- should give us a better understanding of the logics and the differences between them

Diamond over Disjunction

 distribution of possibility over disjunction binary and nullary: CS4 vs. IS4 (Simpson)

$$\Diamond (A \lor B) \to \Diamond A \lor \Diamond B$$
$$\Diamond \bot \to \bot$$

- Distribution is canonical for classical modal logics
- Many constructive systems don't satisfy it
- Should it be required for constructive ones or not?
- Consequence: adding excluded middle gives you back classical modal logic (or not)?

Labelled vs. unlabelled

$$\frac{\Gamma \vdash A}{\Box \Gamma \vdash \Box A} \text{ vs. } \frac{\Gamma \ [xRy] \vdash y : A}{\Gamma \vdash x : \Box A}$$

- Introduction rule for □ says if A holds at every world y visible from x then □A holds at x.
- Simpson two kinds of hypotheses: x : A
 means that the modal formula A is true
 in the world x; xRy, which says that world
 y is accessible from world x
- How reasonable is it to have your proposed semantics as part of your syntax?
- Proof-theoretic properties achieved, but no categorical semantics

Modularity of framework

The framework of ordinary sequents is not capable of handling all interesting logics. There are logics with nice, simple semantics and obvious interest for which no decent, cut-free formulation seems to exist... Larger, but still satisfactory frameworks should, therefore, be sought. Avron (1996)

Can we modify systems minimally and obtain other modal logics?

IK and CK cubes

Cut-elimination for cubes below, syntax works, but very complicated? Curry-Howard for CK cube, OK?

Fig. 2. The intuitionistic "modal cube"

Schools of Intuitionistic Modal logic

- Justification Logics, Artemov et al
- Judgemental Modal Logic, Adjoint logic, Pfenning et al,
- Simpson framework, Negri sequent calculus
- Avron hyper-sequents, Dosen's higher-order sequents, Belnap display calculus, Bruennler/Strassbuerger, Poggiolesi, Pimentel and Lellmann, "nested sequents"
- all the modal type theories

Conclusions

- (tried) Panorama of Curry-Howard for constructive modal logics
- Plenty of recent work on pure syntax from Pfenning, Strassburger, Bruennler, Marin, Das, Pimentel, and many others
- Many applications of the ideas of constructive modal logic
- Many interesting papers on specific applications, especially homotopy type theory, etc
- Is an overarching framework even possible? Desirable?

Thanks!

Some References

G. Bierman, V de Paiva

On an Intuitionistic Modal Logic Studia Logica (65):383-416, 2000.

N. Benton, G. Bierman, V de Paiva Computational Types from a Logical Perspective I.

Computational Types from a Logical Perspective I. Journal of Functional Programming, 8(2):177-193. 1998 .

N. Ghani, V de Paiva, E. Ritter

Explicit Substitutions for Constructive Necessity ICALP'98 Proceedings, LNCS 1443, 1998

G. Bellin, V de Paiva, E. Ritter
Basic Constructive Modal Logic

Methods for the Modalities, 2001

A. Simpson

The Proof Theory and Semantics of Intuitionistic Modal Logic *PhD thesis. Edinburgh.* 1994.

A. Avron

The method of hypersequents in the proof theory of propositional non-classical logics http://www.math.tau.ac.il, 1996

H. Wansing

Sequent Systems for Modal Logic Handbook of Philosophical Logic Volume 8, 2002

Some References II

S. Negri

Proof analysis in modal logic. Journal of Philosophical Logic, 34:507\(\text{D}\)544, 2005.

S Marin and L. Strassburger

Label-free Modular Systems for Classical and Intuitionistic Modal Logics *AiML*, 2014.

M. Mendler and S Scheele

On the Computational Interpretation of CKn for Contextual Information Processing Fundamenta Informaticae 130, 2014

Lellmann, Björn and Pimentel, Elaine,

Modularisation of Sequent Calculi for Normal and Non-Normal Modalities, *ACM Trans. Comput. Logic*, 7, 2019.