SUBJECT INDEX ANALOG DEVICES' PARTS INDEX

SUBJECT INDEX

A	12-bit 35-μs SAR ADC, 1.39-40, 1.51,
A-law, 3.26	3.41, 4.12, 6.49
AA Alkaline Battery Discharge Characteristics,	block diagram, 1.40
9.197	AD580, precision bandgap reference, with Brokaw
Aaron, M.R., 3.37	cell, 7.5-6
Aasnaes, Hans Bent, 3.108	AD620:
Aavid 573300, 7.56	data sheet, 8.26
AAVID Thermal Technologies, Inc., general	overvoltage protection,
catalog, 9.139	circuit, 9.106
Aavid TO-220, heat sink, 7.56	CM clamping, 9.107
Absorption, within shielding material, 9.149	precision in amp, 8.9
Absorptive switch, 7.79	AD629, high voltage in-amp, circuit diagram, 9.98
ACCEL Technologies, Inc., 9.213	AD670, 8-bit 10-µs ADCPORT, 1.51
Accuracy:	AD671, 12-bit 2-MSPS ADC, 1.60
absolute, 2.97	AD673, 8-bit complete ADC, 1.51
logarithmic DAC, 2.97	AD674, 12-bit 15-µs ADC, 1.51
relative, 2.97	AD768:
Acker, David E., 8.104	16-bit BiCMOS DAC, 6.73
ACLR, adjacent channel leakage ratio, 2.46,	data sheet, 6.77
2.57-58, 2.98	single-ended interface, diagram, 6.73
ACPR, adjacent channel power ratio, 2.57-58, 2.98	AD770, 8-bit 300-MSPS flash ADC, 1.52
Acquisition time, 2.98, 7.102	AD797, low-noise buffer, 6.15-16
Active lowpass filter, audio DAC, 6.75-76	AD815 high output current differential driver,
AD2S90, integrated RDC, 3.103	data sheet, 9.139
AD260, digital isolator, 9.114 AD260/AD261:	AD830, AD8129, AD8130, data sheets, 6.45 AD850, thin-film resistor network, 1.25, 1.41,
digital isolator,	3.16-17 AD872:
circuit, 9.114-115	AD872:
key specifications, 9.115	12-bit 10-MSPS BiCMOS sampling ADC, 1.63
AD261, digital isolator, 9.114	diagram, 1.61
AD376, 16-bit 20-µs SAR ADC, 1.53	AD974, SAR ADC, 6.18
AD390, quad 12-bit voltage output DAC, 1.50	AD976, SAR ADC, 6.18
AD431, XFET, circuit, 7.25	AD977, SAR ADC, 6.18
AD480, op amp, 4.12	AD76xx-family, single-supply SAR ADC, 6.18
AD550, 4-bit binary-weighted μDAC quad switch,	AD77xx-family:
1.25, 1.38, 1.41, 3.15-17, 4.6	24-bit sigma-delta ADC, 3.126-127
AD558, 8-bit 1-µs bipolar/IIL DAC, 1.50	characteristics, 6.15
AD561, 10-bit 250-ns LWT current-output DAC,	equivalent input circuit, 6.16
1.38	AD92xx-family, CMOS ADC, 6.29-30
AD562, 12-bit 1.5-μs DAC, 1.35, 1.38, 1.41,	AD185x-family, audio DACs, data directed
1.42	scrambling, 3.133
AD563, IC DAC, 1.41	AD746x-family, low voltage single-supply ADC,
AD565:	6.18
12-bit 200-ns LWT current-output DAC, 1.38,	AD771x-series, 24-bit sigma-delta measurement
1.39-40, 1.41	ADC, 1.63
circuit diagram, 1.36	AD789x-family, 12-, 14-bit 8-channel
AD569, 16-bit segmented double-buffered voltage	single-supply ADC, 6.18-19
output BiCMOS DAC, 1.50	AD789x-series, LCCMOS SAR single-supply
AD570, 8-bit 25-μs SAR ADC, 1.39	ADC, 1.62
AD571:	AD813x-family:
10-bit 25-μs SAR ADC, 1.38, 4.12	differential amplifier, 6.75
diagram, 1.39-40	block diagram, 6.31
AD572, 12-bit 25-µs SAR ADC, 1.42-43, 4.6-7	configurations, 6.33-34
AD574:	feedback diagram, 6.31

AD813x-series, data sheets, 6.77	SigmaDSP 3-channel 26-bit signal processing
AD922x-family, single-ended DC-coupled level	DAC,
shifter and driver, circuit, 6.22-23	block diagram, 8.68
AD978x-series, 16-bit interpolating TxDAC	evaluation interface, 8.69
family,	AD1955:
key specifications, 8.135	16-/18-/20-/24-bit 192-kSPS sigma-delta DAC,
AD985x, high speed DDS synthesizers, table, 8.171	8.66
AD1170, modular ADC, VFC architecture, 3.96	functional diagram, 8.67
AD1175, 22-bit integrating ADC, 1.53-54	schematic, 3.134
AD1332, 12-bit 125-kSPS sampling ADC, 1.53	data sheet, 8.74
AD1377, 16-bit 10-μs SAR ADC, 1.53-54	AD1985, data sheet, 8.74
AD1382, 16-bit 500-kSPS sampling hybrid ADC,	AD5170:
1.64	8-bit two-time programmable digital
AD1385, 16-bit 500-kSPS sampling	potentiometer, block diagram, 8.54
autocalibrated hybrid ADC, 1.64	data sheet, 8.58
AD1580:	AD5172:
reference circuit, 7.7	data sheet, 8.58
shunt mode IC reference, 7.6-7	
AD1582-1585:	three-terminal potentiometer, 8.53
	AD5172/AD5173, one-time-programmable digital
bandgap references,	potentiometer, block diagram, 8.53
circuit diagram, 7.9	AD5173, rheostat, 8.53
specifications, 7.8	AD5231, 10-bit digital potentiometer, 5.11
series connection diagram, 7.9	AD5235:
AD1671, 12-bit 1.25-MSPS BiCMOS sampling	10-bit digital potentiometer, 5.11, 8.52-53
ADC, 1.63	block diagram, 8.52
AD1674:	data sheet, 8.58
12-bit 100-kSPS sampling SAR ADC, 1.63	AD5245:
diagram, 1.59	data sheet, 8.58
AD1839A:	digital potentiometer bandwidth model, 8.55
24-bit 96-kSPS sigma-delta codec, block	AD5246, data sheet, 8.58
diagram, 8.69	AD5247, data sheet, 8.58
data sheet, 8.74	AD5300, 8-bit buffered voltage output DAC, 8.42
AD1853:	AD5310, 10-bit buffered voltage output DAC, 8.42
data sheet, 6.77	AD5320:
sigma-delta audio DAC, 6.75-76	12-bit buffered voltage output DAC, 8.42-43
AD1856, 16-bit audio BiCMOS DAC, 1.50	diagram, 8.43
AD1857, 16-bit serial sigma-delta audio DAC,	data sheet, 8.48
1.57-58	AD5322:
AD1858, 18-bit serial sigma-delta audio DAC,	12-bit 100-kSPS dual DAC,
1.57-58	block diagram, 6.63
AD1859, 20-bit serial sigma-delta audio DAC,	serial input interface, 6.62-64
1.57-58	data sheet, 6.67
AD1860, 18-bit audio BiCMOS DAC, 1.50	AD5340:
AD1862, 20-bit DAC, diagram, 3.33	12-bit 100-kSPS DAC,
AD1865, dual 18-bit stereo DAC, 1.56	block diagram, 6.65
AD1871:	parallel data interface, 6.64-65
24-bit 96-kSPS stereo multi-bit sigma-delta	to ADSP-2189M, 6.65
ADC, 3.124	data sheet, 6.67
block diagram, 8.66	AD5379:
digital filter, 3.126	14-bit 40-channel parallel/serial input
key specifications, 3.125	voltage output DAC, diagram, 8.45
data sheet, 8.74	data sheet, 8.48
AD1879, dual audio ADC, 3.123	AD5380, 40-channel multiple DAC, 1.65-66
AD1896:	AD5381, 40-channel multiple DAC, 1.65-66
192-kHz stereo asynchronous sample rate	AD5381, 40-channel multiple DAC, 1.65-66
	AD5382, 32-channel multiple DAC, 1.65-66
converter, block diagram, 8.73	
data sheet, 8.74 AD1953:	AD5390, 16-channel multiple DAC, 1.65-66
data sheet, 8.74	AD5391, 16-channel multiple DAC, 1.65-66 AD5516:
uata sheet, 0.74	ADJJ10.

12-bit 16-channel voltage output DAC, diagram, 8.44	AD7240, 12-bit voltage mode CMOS DAC, 1.50 AD7245, 12-bit double-buffered voltage output
data sheet, 8.48	LCCMOS DAC, 1.50
AD5533B:	AD7450, 12-bit 1-MSPS ADC, evaluation board,
32-channel precision infinite SHA, 8.45-46	9.210
diagram, 8.46	AD7450A, 12-bit 1-MSPS 3-V ADC, 6.35
data sheet, 8.48	AD7450A/AD7440, data sheet, 6.45
AD5535, 32-channel 14-bit high voltage DAC,	AD7466:
evaluation board, 9.210, 9.211	12-bit 200-kSPS SAR ADC, 6.17
AD5541, 16-bit DAC, 8.47	input circuit, 6.17
AD5545/AD5555:	timing diagram, 6.51
16-/14-bit R-2R current-output DAC, 6.74	AD7466/AD7467/AD7468, data sheet, 6.45, 6.67
interface circuit, 6.74	AD7467, successive approximation ADC, 6.17
data sheet, 6.77	AD7468, successive approximation ADC, 6.17
AD5570, data sheet, 8.48	AD7520:
AD5660, data sheet, 8.48	10-bit 500-ns monolithic multiplying CMOS
AD6521:	DAC, 1.36-37, 1.38, 4.13
voiceband/baseband mixed-signal codec, 8.141	current-mode R-2R architecture, 1.36
block diagram, 8.142	AD7524:
AD6522, DSP-based baseband processor, 8.141	8-bit 150-ns LWT multiplying DAC,
AD6624/24A, 8.136	buffer latch, 1.38
AD6644, 14-bit 65-MSPS XFCB ADC, 3.85	diagram, 1.37-38
AD6645:	AD7528, dual 8-bit buffered CMOS MDAC, 1.50
14-bit 80-/105-MSPS ADC, aperture jitter, 6.83	AD7535, 14-bit double-buffered LCCMOS
14-bit 80-/105-MSPS BiCMOS ADC, 6.27-28	MDAC, 1.50
input common-mode voltage, 6.38-39	AD7541, 12-bit 1-μs LWT multiplying DAC,
RF transformers, 6.29	1.36-37, 1.38
transformer coupling, 6.28	AD7545, 12-bit buffered CMOS MDAC, 1.50
14-bit 80-/105-MSPS XFCB ADC, 4.12	AD7546, 16-bit segmented CMOS voltage mode
thermally enhanced package, 9.137	DAC, 1.50
14-bit 80-MSPS XFCB ADC, 3.77-78, 3.85	AD7550, 13-bit quad slope ADC, 1.38, 1.140
characteristics, 2.51-53	AD7568, 12-bit octal CMOS DAC, 1.56-58
NF calculation, 2.64-66	AD7570, 10-bit 20-μs CMOS SAR ADC, 1.38,
SFDR, 2.52, 2.56-57	1.40
SNR versus jitter, 2.73	AD7572, 12-bit 5-μs SAR LCCMOS ADC, 1.51
wideband CDMA channel, 2.58	AD7575, 8-bit 5-μs SAR LCCMOS sampling
14-bit 105-MSPS XFCB ADC, 1.65-66, 3.85,	ADC, 1.51
8.146	AD7579, 10-bit 50-kSPS LCCMOS SAR sampling
aperture jitter, 6.97	ADC, 1.51
circuit, 7.107-108	AD7582, 4-channel muxed input 12-bit CMOS
diagram, 3.78	ADC, 1.51
data sheet, 6.45	AD7621, 16-bit 3-MSPS PulSAR ADC, 1.65-66,
signal sampling frequency, 8.125	3.61
subranging pipelined ADC, 8.128	AD7664, 16-bit 570-kSPS ADC, 1.65
dithered and undithered DNL, 8.128-129	AD7674, 18-bit 800-kSPS PulSAR ADC, 1.65-66,
dithered and undithered SFDR FFT, 8.130	3.61, 6.42-43
DNL errors, 8.128	AD7675, 16-bit 100-kSPS PulSAR ADC, 3.61
two-tone intermodulation performance, 8.123	AD7676, 16-bit 500-kSPS PulSAR ADC, 3.61
AD7001, CMOS GSM baseband converter, 1.62,	AD7677:
1.63	16-bit 1-MSPS PulSAR ADC, 3.61, 6.41-42
AD7008:	diagram, 3.61
10-bit 50-MSPS DDS DAC, 1.57	data sheet, 6.45
diagram, 1.58	AD7678, 18-bit 100-kSPS PulSAR ADC, 3.61
AD7111:	AD7679, 18-bit 570-kSPS PulSAR ADC, 3.61
LOGDAC monolithic multiplying DAC, 2.112,	AD7730:
3.27	24-bit bridge transducer sigma-delta ADC, 1.63
diagram, 3.27	evaluation board, 9.210
AD7226, quad 8-bit double-buffered voltage	24-bit sigma-delta single-supply ADC, block
output BiCMOS DAC, 1.50	diagram, 8.3

24-bit single-supply sigma-delta ADC, 6.79	AD7880:
bridge application, 3.131	12-bit 66-kSPS LCCMOS sampling SAR ADC,
calibration modes, 3.130-131	1.59, 1.63
design component, 8.10	diagram, 1.60
design evaluation, 8.12	AD7890, data sheet, 6.45
diagram, 1.62, 3.128	AD7890-10, 12-bit 8-channel ADC, input circuit,
digital filter, 3.129, 8.4	6.18-19
external voltage reference, 3.131	AD7908/AD7918/AD7928:
high impedance input buffer, 6.15	8-, 10-, 12-bit 1-MSPS successive
internal digital filter, 3.128-129	approximation ADC, 8.34-35
key specifications, 8.5	block diagram, 8.34
oversampling, 3.128	data sheet, 8.48
ratiometric operation and Kelvin sensing,	AD7938/AD7939:
8.5	12-, 10-bit 1.5-MSPS successive approximation
resolution, 8.10-11	ADC, 8.35-36
settling time, 3.130	block diagram, 8.35
weigh scale analysis, 8.6, 8.6-12	data sheet, 8.48
AD7730/AD7730L, data sheet, 8.26	AD7943, multiplying DAC, 3.2
AD7739:	AD8001, high speed current-feedback
24-bit sigma-delta ADC, 8.36-38	amplifier, evaluation board, 9.207-209
block diagram, 8.36	AD8016:
timing, 8.38	20-lead PSOP3 package, heat sink, 9.131
data sheet, 8.48	BATWING package, 9.131
AD7793:	PSOP3 package, 9.130
data sheet, 8.26	AD8016 low power high output current xDSL line
dual channel 24-bit sigma-delta ADC, 8.12-14	driver, data sheet, 9.139
block diagram, 8.13	AD8017 dual high output current high speed
AD7820, 8-bit 1.36-µs half-flash sampling	
	amplifier, data sheet, 9.139 AD8017AR:
ADC, 1.51	
AD7821, 8-bit 1-MSPS half-flash sampling ADC,	8-pin SOIC op amp,
1.51	maximum power dissipation data, 9.127-128
AD7840, 14-bit double-buffered voltage output	Thermal Coastline IC package, 9.130
LCCMOS DAC, 1.50	thermal rating curves, 9.129
AD7846, 16-bit segmented voltage output	AD8021:
LCCMOS DAC, 1.50	data sheet, 6.45
AD7853/AD7853L:	op amp, 6.41-43
12-bit 200-/100-kSPS SAR ADC, 6.55	AD8027, data sheet, 6.45
diagram, 6.55	AD8027/8028, op amp family, pin-selectable
interfacing, 6.56	crossover threshold, 6.8
data sheet, 6.67	AD8031, 6.43
AD7853L, serial ADC output timing, 6.56	AD8038, differential amplifier, 6.37
AD7854/AD7854L:	AD8055, dual supply op amp, 6.72, 6.74
12-bit 3-V 200-/100-kSPS parallel output ADC,	AD8055/AD8056, data sheet, 6.77
6.59-61	AD8057:
block diagram, 6.59-60	high speed op amp, 6.12
data sheet, 6.67	distortion versus frequency, 6.14
AD7865:	distortion versus output voltage, 6.15
14-bit 4-channel SAR ADC, 8.39-40	key specifications, 6.13
block diagram, 8.39	thermal ratings, 9.133-134
data sheet, 8.48	AD8057/AD8058, data sheet, 6.45
AD7870, 12-bit 100-kSPS LCCMOS SAR	AD8058:
sampling ADC, 1.51	dual high speed op amp,
AD7871, 14-bit 83-kSPS LCCMOS SAR	ADC driver, 6.29-30
sampling ADC, 1.51	distortion versus frequency, 6.14
AD7873:	distortion versus output voltage, 6.15
12-bit SAR ADC,	key specifications, 6.13
touchscreen digitizer, 8.102-103	thermal ratings, 9.133-134
application circuit, 8.103	AD8061:
data sheet, 8.105	data sheet, 6.77

op amp, 6.72-73	AD9005, 112-bit 10-MSPS sampling ADC, 1.53-54
rail-to-rail output, 6.23	AD9006/AD9016, 6-bit 500-MSPS flash ADC,
AD8108/AD9109, crosspoint switch, 7.82	1.52
AD8110/AD8111, buffered crosspoint switch, 7.82	AD9008, DDS DAC, 1.58
AD8113, audio/video crosspoint switch, 7.82	AD9012, 8-bit 100-MSPS TTL flash ADC, 1.52
AD8114/AD8115, crosspoint switch, 7.82	AD9014, 14-bit 10-MSPS modular ADC, 1.64
AD8116:	AD9020, 10-bit 60-MSPS flash ADC, 1.52
buffered video crosspoint switch, 7.82-83	AD9028/AD9038, 8-bit 300-MSPS flash ADC,
diagram, 7.83	1.52
AD8130, differential receiver, 6.34	AD9032, 12-bit 210-MSPS sampling ADC, 1.65-66
AD8131, AD8132, AD8137, AD8138, AD8139,	AD9042:
data sheets, 6.45	12-bit 41-MSPS ADC, 1.63, 1.64, 3.85, 4.12
AD8132, differential ADC driver, 6.35	circuit, 7.106-107
AD8137, differential amplifier, 6.35	functional diagram, 1.61, 3.75
AD8138:	AD9048, 8-bit 35-MSPS flash ADC, 1.52
differential ADC driver, 6.36-37	AD9054, 8-bit 200-MSPS ADC, 1.62
noise calculations, 6.37	AD9054A, 8-bit 200-MSPS MagAMP ADC, 3.86
AD8139:	AD9058, dual 8-bit 50-MSPS flash ADC, 1.52
differential amplifier, 6.38-39, 6.42-44	AD9060, 10-bit 75-MSPS flash ADC, 1.52
DC coupled driver for ADC, circuit, 6.39 AD8152:	AD9220, 12-bit 10-MSPS CMOS ADC, 1.61, 1.63
3.2-Gbps asynchronous digital crosspoint	AD9221, 12-bit 1-MSPS CMOS ADC, 1.61, 1.63 AD9223, 12-bit 3-MSPS CMOS ADC, 1.61, 1.63
switch, 7.83-84	AD9225:
circuit, 7.84	12-bit 25-MSPS CMOS ADC, 6.20-21, 6.24
AD8170, bipolar video multiplexer, 7.80	diagram, 3.76
AD8174, bipolar video multiplexer, 7.80	single-ended input, 6.21
AD8180, bipolar video multiplexer, 7.80	AD9226, 12-bit 65-MSPS ADC, SINAD and
AD8182, bipolar video multiplexer, 7.80	ENOB, 2.49
AD8183, video multiplexer, 7.80-81	AD9229:
AD8183/AD8185, triple 2:1 video multiplexers,	quad 12-bit 65-MSPS ADC, 6.52-53
7.81	serial outputs, 6.53
AD8185, video multiplexer, 7.80-81	AD9235:
AD8186, single-supply video multiplexer, 7.80-81	12-bit 20-/40-/65-MSPS ADC, 6.36-37
AD8187, single-supply video multiplexer, 7.80-81	12-bit 65-MSPS CMOS ADC, 3.69
AD8346, quadrature modulator, 4.25	diagram, 3.77
AD8349, 800-MHz to 2.7-GHz quadrature	timing diagram, 3.70
modulator, 8.134-136	data sheet, 6.45
AD8351:	AD9236, 12-bit 80-MSPS ADC, sinewave
data sheet, 6.45	histogram
single-ended to differential converter, 6.40	DNL and INL, 5.43-44
key features, 6.39-40	AD9245:
performance, 6.40	14-bit 80-MSPS 3-V CMOS ADC,
AD8370:	packaging and heat sink, 9.135
data sheet, 6.45	power dissipation versus frequency,
variable-gain-amplifier, 6.41	9.134-135 AD0280
AD8402, 2-channel 8-bit DAC, 1.58	AD9289:
AD8403, 4-channel 8-bit DAC, 1.58	data sheet, 6.67
AD8515, single-supply rail-to-rail op amp, 6.18 AD8517, single-supply rail-to-rail op amp, 6.18	quad 12-bit 65-MSPS ADC, 6.52 timing diagram, 6.53-54
AD8517, single-supply fail-to-rail op amp, 6.18 AD8531/8532/8534, CMOS op amp family, 6.7	AD9410, 10-bit 210-MSPS ADC, 3.51-53
AD8551, chopper-stabilized amplifier, 9.50	AD9430:
AD8628:	12-bit 170-/210-MSPS BiCMOS ADC, 6.26-27,
chopper-stabilized op amp, 6.74	6.57-59, 9.136-137
data sheet, 6.77	block diagram, 6.57-58
AD8631, single-supply rail-to-rail op amp, 6.18	demuxed CMOS output timing, 6.59
AD8800, TrimDAC, 1.58	diagram, 3.77
AD9000, 6-bit 75-MSPS flash ADC, 1.52	FIFO evaluation, FFT output, 5.61-62
AD9002, 8-bit 150-MSPS flash ADC, 1.52	LVDS driver, diagram, 9.176
AD9003, 12-bit 1-MSPS sampling ADC, 1.53	NPR, 2.60, 5.70

packaging and heat sink, 9.136-137 pipelined, 3.69	broadband communications, 4.29 for broadband wireless OFDM modem, 4.29
supply current versus sample rate, 9.136	AD9877/AD9879, set-top box mixed signal front
timing, 6.58	end, 4.25
transformer coupling, 6.27	AD9887A:
12-bit 210-MSPS ADC, 8.146	8-bit 170-MSPS dual flat panel interface,
evaluation board, 9.211	functional diagram, 8.93
data sheet, 6.45, 6.67	data sheet, 8.105
AD9433, 12-bit 105-/125-MSPS BiCMOS ADC,	AD9888:
6.41	8-bit 100-/140-/170-/205-MSPS analog flat
AD9480, 8-bit 250-MSPS ADC, 3.49	panel interface, diagram, 8.92
AD9700, 8-bit 125-MSPS video ECL DAC, 1.50	data sheet, 8.105
AD9712, 12-bit 100-MSPS DAC, 1.57	AD9898:
AD9720, 10-bit 400-MSPS DAC, 1.57	CCD signal processor, block diagram, 8.99
AD9726:	data sheet, 8.105
16-bit 600+-MSPS DAC,	AD9954:
block diagram, 6.66	14-bit 400-MSPS 1.8-V DDS, 8.171-172
LVDS input, 6.66	block diagram, 8.172
data sheet, 6.67	key specifications, 8.172
AD9744, 14-bit 165-MSPS TxDAC, spectral	AD10242, dual 12-bit 41-MSPS AD9042 ADCs,
output, 5.22-23	1.64
AD9772A, data sheet, 6.77	AD10678, 16-bit 65-/80-/105-MSPS multichip
AD9773, 12-bit TxDAC, oversampling	ADC, 1.65-66
interpolating, 2.89	AD12400:
AD9775:	12-bit 400-MSPS ADC, 1.65-66, 8.152-155
14-bit 160-/400-MSPS TxDAC, 3.22	Advanced Filter Bank, 8.152-154
CMOS DAC core, structure, 3.22	block diagram, 8.153
oversampling interpolating, 2.89	AD74122:
AD9777:	16-/20/24-bit 48-kSPS stereo voiceband codec,
16-bit 160-MSPS TxDAC,	8.65
oversampling interpolating, 2.89	block diagram, 8.65
power dissipation, 9.138	data sheet, 8.74
SFDR, 2.84-86	AD20msp430:
smart partitioning, diagram, 4.25	chipset, composition, 8.141
AD9786, 16-bit 160-MSPS TxDAC, block	SoftFone chipset, 8.140-141
diagram, 8.134	AD1671, 12-bit 1.25-MSPS sampling BiCMOS
AD9814, 14-bit 3-channel CCD front-end, 8.99	ADC,
AD9816, 12-bit 3-channel CCD front-end, 8.99	diagram, 1.60
AD9822, 14-bit 3-channel CCD front-end, 8.99	Adage, 1.21, 1.23-24
AD9826, 16-bit 3-channel CCD front-end, 8.99	Adams, R., 3.137
AD9833, low power 50-MSPS DDS synthesizer,	Adams, Robert, 3.137
key features, 8.167	Adams, Robert W., 3.36, 3.137
AD9834:	Adams, R.W., 3.137
low power 50-MSPS DDS synthesizer,	ADC:
block diagram, 8.167	1-bit comparator, 3.42-45
key features, 8.167	3-bit binary ripple, input and residue
AD9850, 10-bit 125-MSPS DDS DAC, 1.57	waveforms, 3.80
AD9851, 10-bit DDS DAC, spectral outputs, 5.22	3-bit folding,
AD9857:	based on Chasek design, 3.83
14-bit 200-MSPS quadrature digital	single-ended waveforms, 3.83
upconverter, 8.173	block diagram, 3.82
block diagram, 8.173	input and residue waveforms, 3.82
AD9858:	3-bit serial-binary, diagram, 3.80
10-bit 1-GSPS DAC DDS, 1.65-66, 8.168-171	5-bit counting, 3.88
block diagram, 8.169	developed by Reeves, 1.9
key specifications, 8.170	Reeves, 3.88
single loop upconversion, 8.170	6-bit subranging error corrected,
AD9860/AD9862:	diagram, 3.68
mixed-signal front end	diagrams 3 66

7-bit 9-MSPS recirculating pipelined, diagram, 3.74	single-ended circuits, driving, 6.21-23 switched capacitor, driving, 6.19-23
7-bit pipelined, proposed, 3.75	differential nonlinearity, details, 2.18
8- to 16-bit, theoretical maximum NPR, 2.60	differential phase, 5.78-83
10-, 11-, 12-bit, theoretical NPR, 2.59	digital interface, 6.47-67
12-bit,	digital output, grounding, 9.37-38
noise floor, 2.43	digitally corrected subranging, 3.65
testing methods, 5.33	drive circuit, 6.2
16-bit, requires 16-bit driver, 6.42	driver,
16-bit sigma-delta, 1.51	differential amplifier, 6.29-44
50-kSPS vacuum-tube based, 1.21	selection criteria, 6.3
absolute accuracy, 2.97	driving, 6.15-44
analog bandwidth, 2.50	dual slope,
using FFT, 5.75	diagram, 3.96
analog input, high frequency BER test, 2.80	integrator output waveforms, 3.97
analog signal, BER test, 2.79	dual slope/multi-slope, 3.96-98
analyzer configuration file, inputs, 5.62	dynamic performance analysis, 2.42
aperture delay time, 5.73	dynamic range, 6.1
aperture jitter, 6.83	dither, 8.126-131
locked-histogram test method, 5.70-72	increasing using dither, 8.126-131
using FFT, 5.73-75	dynamic testing, 5.45-86
architecture, 3.39-108	back-to-back, 5.45-49
counting and integrating, 3.87-103	setup, 5.45
timeline, 3.87	FFT, basics, 5.51-59
design issues, 3.78	manual, 5.45-49
audio, high performance, 8.66-69	manual "back-to-back", 5.45-49
back-to-back static testing, 5.31-33	ENOB using sinewave curve fitting,
BER, 2.76-80, 3.45, 5.83-86	5.49-50
testing, 2.77-78, 5.83	error corrected, 3.61-78
BiCMOS, 6.5	external reference, diagram, 3.39
binary, single-stage transfer function,	feedback subtraction, 1.28, 3.54
diagram, 3.79	FFT analysis, 2.41
bipolar process, 6.1	flash, 1.40, 3.46-53
bit error rate, 2.76-80	4-, 6-, 8-bit monolithic, 1.41
buffered differential input, 6.26	8-bit 20-MSPS, SHA, 2.26
buffering, against logic noise, 9.60-62	monolithic, 1980s, 1.52-53
charge run-down, 3.89	PCM patent, 1.6
code center, 5.28, 5.29-30	folding, 3.78-87
code density test,	function, 2.1
code density test, 5.40	gain and ENOB versus frequency, 2.50
DNL integration, 5.40	generalized bit-per-stage architecture,
linear ramp input, 5.38-44	diagram, 3.79
code transition noise, 5.38	grounding, 9.30
code transition points, test setup, 5.29-30	high-impedance differential input,
combined pipelined and multibit, diagram, 3.71	transmission accuracy, 9.52
conversion using one stage per bit, 3.78	high-resolution, using VFC and frequency
counting and integrating, 3.87-113	counter, 3.92
architecture timeline, 1.29	high-speed,
crossplot measurements, linearity, 5.33-35	architectures, 3.46-87
crossplot test, 5.34	timeline, 1.29, 3.87
static errors, major code transitions, 5.35	back-to-back testing, 5.46
differential amplifier,	CMOS latched buffer, 9.61-62
driving, 6.29-44	pipelined, CMOS process, 4.15
fully integrated driver, 6.31-34	histogram test, linear ramp input, 5.38-44
differential gain, 5.78-83	hybrid,
differential input,	1970s, list, 1.43
driver, 6.23-29	1980s, 1.53-54
drivers, 6.35-44	1990s, 1.64
integrated differential driver 6 35-44	hybrid and modular

1980s, 53-54	practical, noise, 2.43-44
1990s, 1.64	processing gain, FFT output, 5.55
high performance, 1980s, list, 1.53	quantization noise, 2.37-45
ideal bipolar, transfer function, 2.10	quantization uncertainty, 5.28
input and output, definition, 2.1	ramp run-up, 3.89-90
input impedance, equal to source resistance,	recirculating subranging, 3.74
2.62	reference input terminal, buffered, 3.40
input protection, circuit, 9.109	reference value, 3.39
integrating, frequency response, 3.98	reference with buffer, diagram, 3.40
integrating and counting, 3.87-113	relationship to DAC, 2.1
linearity,	resolver-to-digital converter and synchro,
crossplot measurements, 5.33-35	3.99-103
testing methods, 5.46	sampling, 2.112, 7.92
metastable states, 2.76-80	internal SHA, 9.30
modular,	sample-and-hold function, 5.45
1980s, 1.53-54	simultaneous sampling system, 8.39
1990s, 1.64	sampling clock input, 3.41
early 1970s, 1.44	SAR, 3.91, 6.50
monolithic,	algorithm, 3.57
1970s, 1.38-40	algorithm analogy, 1.27
summary, 1.40	development summary, 1.28
1980s, 1.51	diagram, 1.28
list, 1.51	fundamental timing, diagram, 3.53-54
1990s, 1.59-64	switched capacitor DAC, 3.55
list, 1.63	timing, 3.54-55
	Ç,
multistage subranging, design, 3.78	serial bit-per-stage binary and Gray-coded 3.78-87
N-bit two-stage subranging,	
diagram, 3.62	serial interface to DSPs, 6.55-56
residue waveforms, 3.63	serial output interface, 6.51-54
noise, 2.43-45	servo-loop tester, computer-based, 5.36-38
noise and distortion sources, 2.44	servo-loop transition test, 5.35-36
noise figure,	settling time, 2.112, 5.76-77
model, 2.61	SFDR, 2.41
oversampling and process gain effects, 2.65	sigma-delta, 2.112
from SNR, sampling rate, and input power,	architecture timeline, 1.30
2.64	digital filter, 2.74
summary, 2.68	high resolution, 3.127-131
non-monotonic, missing code, 2.19	driving, 6.15-16
non-monotonicity, 2.18-19	high speed clock, 9.30
trimming, 2.19	performance:
nonlinearity, using beat frequency and	chop mode disabled, 8.183
envelope tests, 5.49	normal, 8.182
Nyquist-type, 8.1	switched capacitor input, circuit, 7.22
offset and gain error, measurement, 5.31	synchronization, 8.40
optical converter, 3.98-99	sign-magnitude, 2.15
output, error codes, 2.76	single-supply,
overvoltage recovery time, 5.77-78	CMOS, 6.5
parallel output interface, 6.51, 6.57-61	driver, fundamental application circuit,
timing, 6.57	6.4
pipelined, 2.113, 3.61-78, 6.49-50	input protection, circuit, 9.109
1-bit per stage, diagram, 3.72	scaled input, driving, 6.18-19
1.5-bit per stage:	SNR, 2.63
error corrected range, 3.73	sampling clock jitter, 5.60
residue waveform, 3.73-74	sparkle codes, 2.76-80
error correction, 3.72	specifications, 5.27-28
stages, diagram, 3.71	static, 5.28-44
timing diagram, 3.69	back-to-back, testing, 5.32
power meter, application, 8.22-25	testing, 5.28-44
power-saving modes, 3.41	static transfer, DC errors, 2.12-21

subranging, 1.53-54, 2.19, 2.113, 3.11,	ADG467, octal channel protector, 9.110
3.61-78	ADG508F, trench-isolated multiplexer, 7.89
improper trimming, errors, 2.20	ADG509F, trench-isolated multiplexer, 7.89
missing codes, 3.63	ADG528F, trench-isolated multiplexer, 7.89
pipeline stage design, 3.67-68	ADG708:
successive approximation, 3.11, 3.53-61, 3.91	8-channel multiplexer,
5-bit 8-kSPS, 3.58	crosstalk versus frequency, 7.72
dynamic transient loads, 7.23-24	off-isolation versus frequency, 7.68
single-ended input, driving, 6.17-18	ADG801/ADG802, CMOS switch, resistance
superposition, 5.34	versus
testing, 5.27-91, 5.28	input, 7.64
back-to-back static, 5.31-33	ADG918, absorptive CMOS switch, 7.79
dynamic, 5.45-86	ADG919, reflective CMOS switch, 7.79
FFT, 5.51-59	ADG32xx-series, bus switches, 7.84
time-interleaved, block and timing diagrams,	ADG324x-series, unidirectional interfaces, 9.191
8.147	ADG3231:
total effective input noise, from SNR, 2.63	low-voltage bus switch, 9.188-189
total SNR, equation, 2.72-73	low voltage logic level translator, diagram,
tracking, 3.90-91	9.191
transfer function,	ADG3233:
endpoint measurement, 5.35	low voltage logic level translator and bypass
referred noise, 5.37	switch, 9.191-192
transient response, 2.73-74, 2.73-75	functional block diagram, 9.192
trimmed, 3.39	modes, 9.193
unipolar, transfer function;, 2.5	ADG3246:
video testing, 5.78-83	bus switch,
voltage-to-frequency converter, 3.91-96	hot-plug application, 9.194
ADC-12QZ:	hot swapping, 9.194
12-bit 40-µs SAR ADC, 1.44, 1.46	ADG3257:
quad-switch ICs, 4.6	quad 2:1 Mux/Demux bus switch, 9.186-188
ADC-12U, 12-bit 10-µs SAR ADC,	eye diagrams, 9.188
Pastoriza, 1.24-25	maximum pass voltage versus input voltage,
ADC analyzer software:	9.188
Coherent Sampling Calculator, 5.63	resistance versus input voltage, 9.187
single-tone input, 5.65	Adjacent channel leakage ratio, 2.57-58, 2.98
two-tone input, 5.65 ADC/DAC, DNL errors, 2.47	Adjacent channel power ratio, 2.57-58, 2.98
ADC/DAC, DNL effors, 2.47 ADC FIFO evaluation kit, ADC evaluation boards,	Adler, Joseph V., 6.98 ADM1023:
9.211-212	data sheet, 8.26
9.211-212 ADC80, 12-bit 25-μs SAR ADC, 1.43	microprocessor temperature monitor, 8.19-22
ADC1130, 14-bit 12-µs SAR ADC, 1.45	block diagram, 8.21
ADC1140, 16-bit 35-µs SAR ADC, 1.53	input conditionine circuits, 8.20
ADE775x-series, energy-metering IC, 1.63	key specifications, 8.22
ADE7755:	on-chip temperature sensor, 8.21
data sheet, 8.26	ADM3311E RS-232 Port Transceiver, data sheet,
energy metering IC, 8.23-25	9.126
block diagram, 8.23	ADP33xx-series, LDO architecture, diagram, 9.70
current and voltage sense connections, 8.25	ADP330x family:
pulse output, 8.24	anyCAP topology, 7.40-41, 7.43
ADF4360:	merged amplifier-reference design, 7.40-41
PLL with internal VCO, 6.93	ADP333x family:
phase noise and jitter, 6.93	anyCAP topology, 7.40
ADG200-series, switches and multiplexers, 7.62	merged amplifier-reference design, 7.40-41
ADG201-series, switches and multiplexers, 7.62	ADP3300:
ADG439F, trench-isolated multiplexer, 7.89	basic 50-mA LDO regulator circuit, 7.46
ADG465:	evaluation board, capacitor size, 7.48
channel protector IC, circuit diagram, 9.98	ADP3310:
single channel protector, 9.110	anyCAP LDO regulator controller,
ADG466 triple channel protector 9 110-111	current limiting 7 57

features, 7.52	data sheet, 8.105
functional diagram, 7.52-53	triple 8-bit 330-MSPS DAC, 8.88-89
LDO linear regulator controller, 9.79-80	functional diagram, 8.89
ADP3310-3.3, fixed-voltage LDO controller,	ADV7160/ADV7162:
9.77-78	220-MSPS video RAM-DAC, diagram, 8.90
ADP3310-5, PMOS FET LDO regulator controller,	data sheet, 8.105
circuit, 7.53	ADV7183A:
ADP3331, LDO, adjustable, 9.73	10-bit video decoder, 8.82-83
ADP3605, voltage inverter, 9.76	block diagram, 8.83
ADP3607:	data sheet, 8.104
voltage doubler, 9.76	ADV7310:
functional diagram, 9.76	12-bit video encoder, 8.83-84
ADP3607-5, charge-pump, application circuit, 9.77	block diagram, 8.84
ADR01/ADR02/ADR03, data sheet, 6.77	data sheet, 8.104
ADR39x:	Advanced digital post processing, 8.151
bandgap reference specification, 7.10	Advanced filter bank, 8.146, 8.151-155, 8.152
connection diagram, 7.10 ADR290-ADR293 series:	block diagram, 8.152
	design, 8.152-155 digital post-processing, 8.151-155
circuit, 7.12 specifications, 7.13	Advanced Filter Bank technical description, 8.157
ADR430-ADR439 series, specifications, 7.13	Advanced Micro Devices, 1.25, 1.28, 1.33, 1.40,
ADR510, shunt reference, 7.5	
ADR510, shuft reference, 7.5 ADR512, shunt reference, 7.5	1.45, 1.52 Advanced Mobile Phone Service, 8.108
ADSP-2106L, SHARC DSP, 9.170	AFE, 1.66
ADSP-2189, 75-MHz DSP, 6.60-61	Agilent Labs, 8.146
ADSP-2189M:	Agilent press release, 8.157
data sheet, 6.67	Aging, resistor, 9.14
DSP, 6.55-56	Air-gap discharge, ESD testing, 9.121
ADSP-21160, SHARC with internal PLL, 9.43	Akazawa, Yukio, 2.90, 3.105
ADT1-1WT, Mini-Circuits RF transformer, 6.26-27	Alfke, P., 9.197
ADT4-1WT, Mini-Circuits RF transformer, 6.24-25	Aliasing, 2.26, 2.98
ADT7301:	in direct digital synthesis, 8.163-165
13-bit digital temperature sensor, 8.17-19	implications;, 2.27
circuit, 8.18	in time domain, 2.28
key specifications, 8.18	All-0s, all bits off, 2.105
data sheet, 8.26	All-1s, all bits on, 2.104
ADu7xxx-series, microconverter, based on ARM7	All bits off, 2.105
processor, 8.187-190	All bits on, 2.104-105
ADuC-series, MicroConverters, 1.65-66	All-parallel ADC, 3-bit converter, 3.46
ADuC70xx-series, development system, 8.189	Aluminum electrolytic capacitor, 9.8
ADuC702x-series, ARM7-based MicroConverters,	AM685, 1.40
8.188	ECL latched comparator, 3.43-44
ADuC812 MicroConverter, precision analog	IC comparator, 1.41
microcontroller, 1.63	AM685/687, 3.49-50
ADuC814, reduced pin-count low cost SAR	AM687, 1.40
MicroConverter, diagram, 8.179	dual ECL comparator, 1.45
ADuC834, MicroConverter, in bridge transducer,	high-speed comparator, 3.63
8.184-185	IC comparator, 1.41
ADuM1100A:	AM6688:
digital isolator, 9.112-114	4-bit 100-MSPS flash ADC, 1.40, 1.45, 1.52
characteristics, 9.113	4-bit 100-MSPS flash converter, Advanced
ADuM1100B:	Micro Devices Inc., 3.49
digital isolator, 9.112-114	Ammann, Stephan K., 3.108
characteristics, 9.113	Amplifier:
ADV453, video RAM-DAC, 1.50	differential,
ADV471, video RAM-DAC, 1.50	fully integrated driver, 6.31-34
ADV476, video RAM-DAC, 1.50	voltage levels, 6.32
ADV478, video RAM-DAC, 1.50	feedback, patent, 1.14
ADV7125·	intercept points definition 2.54

output stages, 6.8-10	LDO regulator,
performance, 6.3-15	functional diagram, 7.45
rail-rail input stages, 6.5-8	thermal considerations, 7.46-51
Amplifier output:	LDO series devices, 7.43-44
EMI/RFI, 9.162-163	low current, 7.44
voltage phase-reversal, 9.101-102	"paddle-under-lead" packaging, 7.50
AMPS wideband digital receiver, 8.117	thermal coastline packaging, 7.49
noise, 8.120	thermal performance, 7.48
sensitivity, 8.119	LDO topology, benefits, 7.43
spurious requirements, 8.118	low dropout regulator family, 7.39-51
Analog bandwidth, 2.46, 2.98	pole-splitting topology, 7.42-43
ADC, 2.50	pole splitting topology, 7.42-43
data converter, 6.3	anyCAP LDO regulators, 9.70, 9.72
using FFTs, 5.75	Aperture delay, 2.69
Analog computing circuitry, 2.2	sample-to-sample variation, 2.70
Analog connector, high-end receiver, 8.81	SHA, 7.96-97
Analog Devices, 1.33	Aperture delay time, 2.68-72, 2.98
Analog Devices, Inc., founding, 1.24	ADC, 5.73
Analog Dialogue, 1.47	measurement, using locked-histogram test, 5.73
Analog Dialogue magazine, 1.33-34	SHA, 7.96-97
Analog-Digital Conversion Handbook, 1.34	Aperture jitter, 2.68-72, 2.99, 6.83, 9.39
Analog-Digital Conversion Notes, 1.34	ADC, locked-histogram test method, 5.70-72
Analog Front End, 1.66	calculation, using locked-histogram test, 5.72
Analog-front-end integrated devices, 8.99	degradation in SNR, 5.74
Analog front ends, 1.55	effects, 2.70
Analog full scale, 2.14	RMS noise, 5.72
Analog ground, in mixed-signal IC, 9.35	sample-to-sample variation, 2.70
Analog ground plane, PCB, 9.37	SHA, 7.97
Analog multiplexer, diagram, 8.28-31	test setup, 5.74
Analog power supply, systems, 9.65-91	using FFTs, 5.73-75
Analog switch:	Aperture time, 2.68-72, 2.98
application, 7.73-78	SHA, 7.95
dummy switch in feedback, 7.76	Aperture time jitter, 1.49
dynamic performance, 7.74	Aperture uncertainty, 2.99
minimizing on resistance, 7.75-77	SHA, 7.97
and multiplexer, 7.61-89	ARM7, TDMI microcontroller, 8.141
unity gain inverter, 7.74	ARM7TDMI, MCU core, 8.187
Analog-to-time conversion, using PTM, 1.8	Armstrong, Major Edwin H., 8.108
Analog variable, 2.2	Aspinall, D., 3.106, 7.111
Analogic, 1.23	Asynchronous digital subscriber line, 9.194
Analogic Corporation, 1.33	Asynchronous VFC, 3.91
Analogic, Inc., 4.2	Audio, digitall, 8.59-74
Anderson, Robin N., 3.108	Audio codec, multichannel, 8.69-70
Andreas, D., 3.137	Audio DAC, multichannel, 8.69-70
Andrews, James R., 5.25	Audio DAC family, chart, 8.67
Anti-ballistic missile system, 1.22-23	Audio Engineering Society, standards, 8.60
Anti-imaging filter, 8.163	Audio Precision, 5.25
digital audio, 8.64	Audio Precision, System Two, analyzer, 5.19
Antialiasing filter, 2.29, 3.115	Automatic zero, 2.99
design and requirements, 2.30	Avalanche diode, 7.3
dynamic range, 2.30	AWG2020, Tektronix, 5.17
elliptic, TTE Inc., 2.31	AWG2021, Tektronix, 5.17
position, op amp noise, 6.38	1111 02021, 10kd0mA, 0.17
transition band, 2.30	В
undersampling, 2.33-34	B4001 and B4003 common-mode chokes, 9.178
anyCAP:	Back-to-back testing, ADC, for large-signal
design features, 7.40-42	input, 5.48
functional diagram, basic LDO regulator,	
	Baird, Jon, 8.175
7.45-46	Baker, Bonnie, 9.63

Baker, R. Jacob, 2.117, 3.140, 5.89, 5.91	Best straight line method, integral linearity
Baldwin, Eugene E., 5.25	error measurement, 2.16
Ball-grid array, 1.55	Best, R.E., 6.98, 8.175
Ball-grid-array, packaging, 4.17	Beyschlag Resistor Products, 9.24
Ball grid array package, 9.200	Bias current, 2.99
Ballistic trajectory computation, 1.21	BiCMOS, 1.49
Ball, W.W. Rouse, 1.32, 3.105	Bin width, in FFT, 5.54
Bandgap reference, 6.80, 7.4-10	Binary code:
basic, 7.4	shadow mask, 1.12
characteristics, 7.14	unipolar, 2.4
Bandpass filter, 5.70-72, 6.92	Binary-coded decimal code, 2.11-12
Bandpass sampling, 2.31-32	table, 2.12
Bandpass sigma-delta ADC, 3.132-133	Binary-coded shadow mask, 3.47
Bandwidth:	Binary number, 2.3
aliasing, 2.98	Binary ripple ADC, 3.81
analog input small-signal, 2.99	Binary-to-Gray code, conversion, 2.8
effective resolution, 2.99	Binary transfer function, 3.78
full-linear, 2.99	Binary-weighted DAC, 3.9-12
full-power, 2.98, 2.99	Binary-weighted voltage-mode DAC, 3.9
full width, 2.98	Bipolar code:
sampling, rule, 2.32	4-bit converter, table, 2.9
Bardeen, J., 1.18, 4.9	relationships, table, 2.11
Bardeen, John, 1.15, 4.3-4	Bipolar converter, 2.14-15
Barnes, Erik, 8.105	Bipolar mode, 2.100
Barney, K. Howard, 3.107	Bipolar offset, 2.100, 2.110
Barrow, Jeff, 9.63	Bipolar processes, 4.11
Barr, P., 1.31, 5.87	Bipolar zero error, DAC, 5.2-4
Bartow, Doug, 8.105 Passaband antiplicating filter, 2.20, 31	Bird's nest breadboard, 9.201
Baseband antialiasing filter, 2.29-31	Bit error rate, see BER
Baudon, J.M.E., 1.4	Bit-per-stage ADC, 3.88
Baudot code, 1.3	BJT RFI rectification, 9.157-158
BCD, coding scheme, 2.14	sensitivity, 9.159
Beat frequency test:	Black, Harold S., 1.14, 1.18, 4.1, 4.9 Black, H.S., 1.11, 1.18, 2.90, 4.9
ADC linearity, 5.46-47 test setup, 5.47	Blackman, window function, 5.57-58
Beckman Instruments, 1.24	Black, W.C., Jr., 8.157
Bedingfield, Robert C., 1.23	Blair, Jerome, 5.89
Bell Laboratories, 1.14-16, 1.22-23, 4.3-4	Blanking, 1.53
Bell Labs, 7.91	Blattner, Rob, 7.60
Gray code, 2.6	Bleaney, B., 9.24, 9.63
nonlinear DAC, 3.26	Bleaney, B.I., 9.24, 9.63
Bell μ-255 standard, 3.26	Block conversion, 8.115
Bell System, 1.3	Blood, William R., Jr., 9.179
Bell Telephone Laboratories, 1.10-11, 1.17, 8.59	Bloomingdale, Cindy, 9.179
Bell Telephone Labs, 3.109	Bode plot, 7.67
Bell Telephone system, 4.1	Bogatin, Eric, 9.178, 9.179
Bell, Alexander Graham, 1.3, 1.17	Bondzeit, Frederick, 3.108
Bell, Barry A., 5.25	Bootstrapping, 7.103
Benjamin, O.J., 3.137	Bordeax, Ethan, 9.181
Bennett, W.R., 1.18, 2.37, 2.90	Boser, B., 3.137
BER, 2.76-80, 3.45	Bowers, G.G., 1.31
ADC, 2.76-80	Boyce, David E., 5.89
bit error rate, 2.76-80, 3.45, 5.83	BPF, bandpass filter, 3.132
tests, 5.83-86	Brahm, C.B., 3.111, 3.136
high-frequency test, analog input, 5.84-85	Brannon, Brad, 2.90, 6.98, 8.156, 8.157
low-frequency test, analog signal, 5.84	Brattain, Walter, 1.15, 4.3-4
PC-based test, test setup, 5.86	Brattain, W.H., 1.18, 4.9
tests, 5.83-86	Breadboarding, 9.199-213
and time between errors, 2.80	and prototyping, 9.199-213
,	1 31 6

Bridge, ratiometric, 8.9	impedance-balanced drive, 9.154
Bridge output, 2.2	Cable driving, 9.1
Broadband aperture jitter, 6.83	Cables and shields, 9.151-155
Brokaw cell, 7.5-6	Cage jack, 9.31, 9.205
bandgap reference, 7.33-34	Calibration process, 4.8
Brokaw, A. Paul, 1.47, 4.19	Candy, J.C., 2.116, 3.37, 3.112, 3.136, 3.137,
Brokaw, Adrian Paul, 1.47, 3.36	3.139, 5.90
Brokaw, Paul, 1.35, 1.40, 1.47, 3.18, 4.12, 7.26,	Capacitance, 4.15
7.60, 9.63, 9.91, 9.179	parallel plates, diagram, 9.58
Bruck, Donald B., 2.116, 3.139, 5.87, 5.90	Capacitance-coupled noise, reduction, 9.144-145
Bryant, James, 2.1, 2.37, 2.93, 3.1, 3.39, 3.108,	Capacitive coupling:
3.109, 4.11, 4.19, 7.1, 9.1, 9.25, 9.30, 9.63, 9.93,	EMI path, 9.142
9.125, 9.141, 9.178, 9.199	equivalent circuit, 9.59
Bryne, Mike, 9.126	Capacitive noise, 9.59, 9.59-60
•	Capacitor, 9.2-8
BTL, standards, 9.184	
Buchanan, James E., 9.23	ceramic, 9.82, 9.84
Bucklen, Willard K., 3.105, 8.104	comparisons, 9.8
Buckley, Kevin, 8.105	decoupling, 9.36, 9.41, 9.43
Buffer, ADC digital output, 9.37	dielectric absorption, 7.101, 9.3-4
Buffer amplifier, 3.18-19	circuit diagram, 9.3
Buffer latch, 1.35	dissipation factor, 9.5-6
Buffering:	electrolytic, 9.7, 9.82, 9.83
AC analog outputs, 6.69-77	equivalent circuit, 9.84
ADC reference, 3.40	failure mechanisms, 9.7
BiCMOS ADC, 6.25-26	film, 9.82, 9.83
complementary bipolar ADC, 6.25-26	general purpose aluminum, 9.83
DAC analog output, 6.69-77	leakage, 9.5
internal, 6.1	materials, 9.2
Bulk metal resistor, 9.16	noise reduction, 9.82-85
Buried Zener, 6.80, 7.11, 7.14, 7.16, 7.19	organic semiconductor, 9.83
Burkhardt, Andrew, 9.178	parasitic waveforms, 9.84
Burr Brown, 1.23, 1.33	parasitics, 9.2-3, 9.5-6
Burst mode, 6.49-50	passive component, 9.1
Bus, 2.100	polarized, 9.7
Bus switch:	power supply noise reduction and filtering,
advantages, 9.187	9.82-85
hot swap and hot plug applications, 9.193-194	series impedance, 9.5
low voltage, 9.190	stacked-film, 9.83
NMOS FET, for interfacing, 9.186-190	switching, 9.83
Buss wire, 9.31	tantalum, 9.83
Busy, ADC status, 3.41	temperature, 9.6
Butterworth filter, 2.30	tolerance, 9.6
noise bandwidth, 2.62	types, 9.2, 9.4, 9.82
	Carbon composition resistor, 9.9, 9.16
two-pole, SNR, 2.87	Carbrey, R.L., 3.37
Buxton, Joe, 9.93, 9.125, 9.178 Pymass/decoupling level high fraguency, 9.89, 90	
Bypass/decoupling, local high frequency, 9.89-90	Card entry filter, 9.87-88
Byrne, Mike, 9.30	circuit diagram, 9.87
Byte, 2.100, 2.112	power supply noise reduction and filtering,
low, 2.100	9.87-88
	ringing, 9.87
C	Carrier, and harmonic distortion, 2.48
Cable:	Cascaded network, two-stage, diagram, 2.67
electrically long, 9.151	Cattermole, K.W., 1.2, 1.17, 2.22, 2.90, 2.116,
electrically short, 9.151	3.139, 5.90
ground loops, in shielded twisted pair, 9.152	CAV-1040, 10-bit 40-MSPS sampling ADC,
improper use of shielding, 9.151	1.53-54
mutual inductance, 9.19	CAV-1220, 12-bit 20-MSPS sampling ADC,
shielded,	1.53-54
hybrid grounding with passive sensor, 9.153	Caveney, R.D., 3.106

CB, 3.85	Clamping diode:
CB processes, 4.12	leakage, 9.95-96
JFET used, 4.12	reverse bias current, 9.95
CCD:	Clamping diode leakage, 9.95-96
kT/C noise, 8.97	Clelland, Ian, 9.91
output stage and waveforms, 8.96	Clock distribution:
thermal noise, calculation, 8.97	end-of-line termination, 9.174
CCD array, linear and area, chart, 8.95	source terminated transmission lines, 9.174
CCD image processor, 1.55	Clock generator, "hybrid", 6.94-95
CCD imaging electronics, 8.94-99	Cloninger, Chris, 8.156
CDMA, spread-spectrum system, 8.112	Closed-loop SHA, circuit, 7.103-104
CDMA system, signals, chart, 8.123	CM choke, 9.146
Çeçen, Kâzim, 1.17	CM overvoltage protection:
Cecil, Jim, 4.13	amplifier output voltage phase reversal,
Cell phone, handsets, 8.136-139	9.101-102
Cellular radio system, 2.40	CMOS channel protectors, 9.98-99
Cellular telephone:	high CM voltage in-amp, 9.99-100
ADC and DAC, handsets, 8.139-145	inverting op amp, 9.100-101
handsets, 8.136-139	CMOS, 9.181
ADCs and DACs, 8.139-140	process, 4.13-15
receiver, direct conversion architecture,	standards, 9.184
8.143	CMOS ADC:
Cellular telephone system, 8.108	differential input, transformer coupling, 6.25
Ceramic capacitor, 9.82	equivalent input circuit, 6.19-23
Chain code, 1.3	SHA, 6.19-20
Changeover switch, 3.3	single-ended drive circuit, 6.21-23
Channel protector, for dual-supply in-amp,	CMOS channel protector, 9.98
circuit, 9.107	CMOS IC output driver, configuration, 9.183
Channel-to-channel isolation, 2.100, 2.102	CMOS logic, 1.41, 2.2
Channelizer, 8.115	CMOS process, 3.11
Charge-balance VFC, 3.91	CMOS processes, 4.13-15
diagram, 3.93	CMOS switch, 3.4, 5.35
Charge-coupled device, 8.94-99	1-GHz, attributions, 7.78-79
Charge coupling, 7.71	absorptive, 7.79
Charge injection, 2.100	adjacent, equivalent circuit, 7.65
reducing, 7.104	basics, 7.62-64
Charge injection model, 7.69	charge injection, 7.69
Charge-pump circuit, 9.74	charge injection effects, 7.70
Charge-pump voltage converter, 9.74-75	complementary pair technology, 7.63
advantages, 9.74-75	DC performance, factors, 7.66
characteristics, 9.75	diode protection, 7.87
regulated output, 9.75-77	dynamic performance,
Charge run-down ADC, 3.89	charge injection, 7.69
Charge transfer, 2.100, 2.111	off isolation, 7.68
Charged Device Model, ESD model, 9.121	transfer accuracy versus frequency, 7.67
Charpentier, A., 3.137	error sources, 7.65-73
Chasek, N.E., 3.82, 3.106	input protection, external Schottky diodes,
Chesnut, Bill, 9.91	7.88
Chip area, voltage tolerance/compliance, 9.196	junction-isolation, cross-section, 7.86
Chip enable, 6.57	latchup prevention, 7.87
Chip-on-Lead packaging, 7.49-50	MOSFET technology, 7.62-63
Chip-scale package, 1.55	off isolation versus frequency, 7.68
Chip-scale-packaging, 4.17	on-resistance versus signal voltage, 7.64
Chip Select, ADC edges, 3.42	overcurrent protection, 7.88
Chopper-stabilized amplifier, 8.20	parasitic latch, equivalent circuit, 7.86
Chroma signal, 8.79, 8.82	parasitic latchup, 7.85-89
Chrominance, 5.78	reflective, 7.79
Circuit, effective input impedance, 6.32-33	settling time, 7.72
Circuit inductance ground plane 9 49	single-pole settling time table 7.73

transfer function, Bode plot, 7.67	solutions, 9.144
trench-isolation technique, 7.89	Common-mode choke, 9.162
CMR, 2.101, 6.74	Common-mode error, 2.101 Common-mode overvoltage protection:
input transient currents, 6.24 Coaxial cable, 9.154	CMOS channel protectors, 9.98-99
shielding, 9.155	
Code:	high CM voltage in-amp, 9.99-100 Common-mode range, 2.101
binary, unipolar, 2.4	Common-mode rejection, see CMR
binary-coded decimal, 2.11-12	Common-mode voltage, 2.101
binary-to-Gray, conversion, 2.8	Compact PCI Hot Swap Specification R1.0, 9.197
bipolar, 2.8-12	Companding, 3.26
offset binary, 2.8-9	Comparator:
center, 2.4	1-bit ADC, 3.42-45
complementary, 2.12	in flash ADC, 3.46
fractional binary, 2.3	latched, 2.76
Gray, 2.4, 2.6-8	metastability, 3.50
Gray-to-binary, conversion, 2.8	metastable output states, error codes, 3.51
integer binary, 2.3	metastable state errors, diagram, 3.45
meaning, 2.3	μA711/712, 3.49
missing, 2.107	in parallel ADC, 3.46
MSB, error, 2.7	structure, 3.42
ones complement, 2.8, 2.11	diagram, 3.43
reflective-binary, 2.6	Comparator ADC, 1-bit, 3.42-45
resolution,	Complementary bipolar, see CB
flicker-free, 2.45	Complementary bipolar processes, 4.12
noise-free, 2.45	Complementary code, 2.12
sign-magnitude, 2.8, 2.11	Compliance voltage, 6.71
sparkle, ADC, 2.76-80	Compliance-voltage range, 2.101
twos complement, 2.8, 2.9, 2.11	Complimentary metal oxide semiconductor,
unipolar, 2.3-5	see CMOS
Code center, 5.28	Component analog video standard, 8.79-80
data converter, 2.14	Composite video signal, 8.79
Code-center testing, misleading results, 5.29-30	Composite video testing, test setup, 5.78
Code density test:	Compound monolithic, 4.7-8
ADC, 5.38-44	Computer Labs, 1.23, 1.33
data display, 5.39-40	Computer Labs, Inc., 1.24, 1.41, 1.43, 1.44,
setup, 5.39	4.4-5
Code-division-multiple-access, see CDMA	Conduction, EMI path, 9.142
Code resolution:	Conductive wrist strap, for ESD protection, 9.120
flicker-free, 2.109	Conductor:
noise-free, 2.106, 2.109	ground plane, skin effect, 9.47
Code transition noise, 2.100	Ohm's law, 9.27
DNL, 2.20	resistance, 9.26-27
Code width, 2.100	skin depth, 9.47
Codec, 1.55, 5.27, 5.78, 8.59, 8.61, 8.82	Conductor resistance, in PCB, 9.26-27
voiceband, 8.65	Connelly, J.A., 9.63, 9.125
Coder-decoder, 1.55, 5.27	Contact discharge, ESD testing, 9.121
Coding, quantizing, 2.1-22	Contact-image sensor, 8.94-99
Coherent sampling, FFT output signal and	waveforms, 8.98 Continuous-aperiodic signal, in FFT, 5.52
harmonics, 5.63 Cold junction compensation, thermocouple, 8.14	Continuous-periodic signal, in FFT, 5.52 Continuous-periodic signal, in FFT, 5.52
Collins, Niamh, 8.175	Continuously available output, ADC, 3.91
Color difference, 8.79	Continuously converting, temperature sensor
Colton, Evan T., 1.32, 3.106	output mode, 8.15-16
Comfort noise insertion, 8.138	Conversion complete, 2.101, 2.102
Common-impedance, EMI path, 9.142	Conversion rate, 2.101
Common-impedance noise:	Conversion rate, 2.101 Conversion relationship, meaning, 2.3
reducing, 9.143-144	Conversion time, 2.101, 2.112
reduction, 9.143-144	Convert command, for ADC, 8.29
•	· · · · · · · · · · · · · · · · · · ·

Convert-start command, ADC, 3.41	diagram, 3.16
Converter:	4-bit cyclic serial, diagram, 3.30
optical, 3.98-99	5-bit binary-weighted, diagram, 3.9
sub-ranging, 2.104	5-bit counting,
Convolutional coding, 8.137	developed by Reeves, 1.10
Conway, Paul, 8.191	diagram, 3.29
Cooley, J.W., 5.89	6-bit binary-weighted, diagram, 3.10
Copper, resistance, 9.47	6-bit nonlinear segmented, characteristics,
Copper conductor, resistance calculation, 9.26	3.27
Correlated double sampling, 8.97-98	7-bit segmented, test codes, 5.12
Cost, 4.23	8-bit, 8-kSPS data converter, 3.26
Counting ADC, 3.88	12-bit, sampling clock to output ratio, SFDR,
Counting and integrating ADC architectures,	8.166
3.87-113	12-bit current-output, with cascaded binary
Counting DAC, monotonic, 3.29	quad switches, diagram, 3.17
Counting pulse-width modulated DAC, 3.28-29	12-bit monolithic, with quad switch, problems,
Counts, Lew, 9.23, 9.125, 9.178	3.18
Coupling, within signal cabling, 9.19	architecture, 3.1-38
Coxeter, H.S.M., 1.32, 3.105	low-distortion, 3.31-33
Craven, Bob, 1.35	monotonic, 3.4
Craven, Robert B., 1.47	audio, high performance, 8.66-69
Critical components, assembly, 9.7	basic structures, 3.3-4
Crook, David, 6.98, 8.175	Kelvin divider, 3.4-6
Crosspoint switch:	binary-weighted, 3.9-12
digital, 7.83-84	currents switched to load, 3.14-15
video, 7.82-83	electro-mechanical, 3.9
Crosstalk, 2.101-102, 7.71-72, 8.28	voltage-mode, 3.9
adjacent switches, equivalent circuit, 7.72	bipolar process IC, 1970s, 1.34-36
digital, 2.102	bipolar zero error, 5.2-4
noise interference, 9.144	buffer, selection criteria, 6.3
Crystal oscillator, low phase jitter, 9.39	buffered reference input terminal, 3.2
Crystal Oscillators: MF Electronics, 9.63	buffered reference output terminal, 3.2
Crystal Oscillators: Wenzel Associates, Inc.,	buffering analog output, 6.69-77
9.64	capacitive binary-weighted, in successive
Crystal Semiconductor, 1.51	approximation ADC, 3.12
CSZ5316, monolithic sigma-delta ADC, 1.51	capacitive coupling, 3.34
Current limiting, 7.30	CMOS IC, 1970s, 1.36-38
Current-mode binary-weighted DAC, 3.10-11	communications, 5.13
Current output thermometer DAC, 3.7	compound monolithic, 1.35
Current-steering multivibrator VFC, 3.91	counting,
Current-steering VFC, diagram, 3.92	monotonic, 3.29
Curtin, Mike, 6.98, 8.175	pulse-width modulated, 3.28-29
Cushing, Richard, 8.175	current-mode, 3.12
Cutler, C.C., 3.109, 3.111, 3.136	current-mode binary-weighted, 3.10-11
Cyclic serial DAC, 3.29-31	current-mode R-2R ladder network, 3.14
	current output, general model, 6.70
D	cyclic serial, 3.29-31
DAC:	DDS, distortion, 2.85
1-bit changeover switch, 3.4	deglitching, 7.93
3-bit binary-decoded, linearity error,	demultiplexed, data distribution, 8.41
superposition, 5.9	differential nonlinearity, 5.2, 5.5
3-bit capacitor, 3.55-56	details, 2.18
3-bit nonideal,	digital input interface, 6.61-66
DNL and INL, superposition, 5.7	digital interface, 6.47-67
transfer function, superposition, 5.6	digital output interface, 6.61-66
4-bit, DNL and INL, superposition, 5.7	distortion,
4-bit binary-decoded, superposition, bit	measurement, 5.17-18, 5.17-24
tests, 5.8	test setup, 5.18
4-bit binary-weighted, R-2R ladder network,	DNL, measurement, 2.17

DNL and INL,	multiple, data distribution, 8.41
no superposition, 5.10-13	multiplying, 3.2, 3.24-25
via superposition, 5.6-10	current-mode R-2R ladder network, 3.25
double-buffered, advantages, 3.33-34, 6.61-62	diagram, 3.25
dynamic performance, 81-89, 2.81-91, 5.13-25	non-monotonicity, 2.17
end-point errors, 5.2-5	nonlinear, 3.25-26, 3.28
even harmonics, 5.23	normal mode, 3.12
four-quadrant, 3.24	odd harmonics, 5.24
full-scale settling time, measurement, 5.14	offset coding, bipolar zero error, 5.4-5
fully decoded, 3.6-9	offset error, 5.1, 5.2-4
no superposition, 5.10	output, 3.3, 3.5
gain error, 5.1, 5.2-4	deglitching, 3.32
glitch, 2.102	voltage or current, 3.3
glitch impulse area, 2.82-83, 5.15	output settling time, 2.81-82
oscilloscope, 5.15-17	output spectrum, $sin(x)/x$ frequency rolloff,
grounding, 9.30	2.87
high-speed,	oversampling interpolating, 3.23-24
alternative loading, 3.35	diagram, 3.24
buffering using differential amplifier,	patents, 3.23
6.75	parallel input interface to DSP, 6.64-66
clock rate, 3.34	R-2R, 3.12-18
high speed,	R-2R 3-bit binary, 3.26
SFDR performance trends, 4.16	R-2R ladder,
update rate trends, 4.16	current mode, 3.14
high speed communication, CMOS process, 4.15	equal current sources, 3.14-15
history, hydraulic, 1.1	voltage mode, 3.13
hybrid,	R-2R thin-film resistor, 3.11
1970s, list, 1.43	reference input terminal, buffered, 3.2
1980s, 1.53-54	reference output terminal, buffered, 3.2
1990s, 1.64	reference voltage, 3.2
hybrid and modular,	references, 3.1-2
1980s, 53-54	references and buffer, diagram, 3.3
1990s, 1.64	relationship to ADC, 2.1
high performance, 1980s, list, 1.53	resolution, definition, 5.1
hydraulic, 1.1	segmented, 3.18-23
ideal bipolar, transfer function, 2.10	all-codes testing, 5.11
input and output, definition, 2.1	current-output, structure, 3.21
integral nonlinearity, 5.1, 5.2, 5.5	voltage-output, 3.19
intentionally nonlinear, 3.25-26	serial input interface, 6.62-64
interpolating, oversampling, 2.87-89	to DSP, 6.62-64
inverted mode, 3.12	settling time, 2.81-82, 2.112, 5.13-14, 5.16
linearity error, 5.5	oscilloscope, 5.15-17
superposition, 5.9	SFDR, measurement, 2.85, 5.19
logic, 3.33-35	SFDR and SNR, 2.83-86
low distortion, 5.2	sigma-delta, 3.33, 3.133-134, 5.12
mid-scale glitch, 2.83	sign-magnitude, rare, 2.14-15
mid-scale settling time, measurement, 5.14	skew glitch, 3.20
modular,	SNR, measurement, analog spectrum analyzer,
1980s, 1.53-54	2.86-87
1990s, 1.64	static error,
monolithic,	basic test method, 5.1-2
1970s, summary, 1.38	measurement methods, 5.1
1980s, 1.49-51	static linearity, testing, 5.12
list, 1.50	static transfer functions, DC errors, 2.12-21
1990s, 1.56-58	string, 3.4, 3.18
list, 1.58	INL trimming, 3.6
bipolar process IC, 1.34-36	no superposition, 5.10
monotonicity, 5.1	resistors, 3.6
INL and DNL, 5.10	unbuffered, segmented, 3.19-20

superposition, 5.5-6	commercial,
errors, 5.5	1950s, 1.21-22
testing, 5.1-25	history, 1960s, 1.22-26
dynamic performance, 5.13-25	data sheet importance, 2.93, 2.95
static, 5.1-13	distortion, 2.47-48
thermometer, 3.4, 3.6-9	DNL error, 2.17
two-quadrant, 3.24	dynamic performance, 2.46-80
unipolar, transfer function;, 2.5	quantifying, table, 2.46
vacuum tube, binary, 3.9	dynamic performance specifications, 6.3
very high speed, 3.20	early processes, 4.1-10
voiceband and audio, 5.12	ENOB, 2.48-50
voltage-mode, 3.12	evaluation board, 9.209-212
voltage-mode binary-weighted resistor, 3.10	gain error, 2.15
voltage-output thermometer, 3.4	general specifications, 2.93-96
DAC-12QZ:	high resolution, low noise references, 7.24-25
12-bit DAC, 1.46	high speed, CMOS process, 4.14
12-bit modular DAC, 4.8	history, 1.1-66, 5.27-28
DAC80, 12-bit DAC, 1.41-43	1950s, 1.21-22
DAC1138, 18-bit DAC, 1.46	1950s and 1960s, 1.21-32
DAC08:	1950s to 1960s, 1.21-32
8-bit 80-ns DAC, 1.38	1970s, 1.33-47, 1.33-49
8-bit 85-ns IC DAC, diagram, 1.34	1980s, 1.49-54
IC DAC, 1.41	1990s, 1.55-64
Daigle, Paul, 8.26	2000s, 1.65-66
Daisy chain, temperature sensor output mode, 8.15	early, 1.1-19
Daisy-chaining, 6.62	telegraph to telephone, 1.3-5
Dammann, C.L., 3.37	hybrid, 1.33, 4.3-8
Damping resistors, high-speed DSP	1970s, 1.41-44
interconnections, 9.172	hybrid and modular components, 1970s, list,
Dark current, 8.95	1.41
Dark signal, 8.95	ideal N-bit, theoretical quantization
Darlington connection, 9.68, 9.70	noise, 2.37-43
Darlington NPN, pass device, 7.31-33	ideal transfer characteristics, 2.13-14
Data acquisition system:	integral and differential nonlinearity
on a chip, 8.34	distortion, 2.46-47
on chip, 8.33-36	intercept points, 2.54-56
configurations, 8.27-28	interfacing, 6.1-98
filtering, 8.31-33	intermodular distortion, 2.53
diagram, 8.31	internal control registers, initialization,
multichannel, 8.27-48	6.48
design, 8.27	linearity errors, 2.15
multiplexing, 8.28-31	logic, 2.95-96
PGA and SAR ADC, diagram, 8.29	logic interface issues, 2.94-95
timing diagram, 8.31	low power, sleep, and standby modes, 6.48-49
Data converter:	measurement and control, 2.13
8-bit 10-MSPS, 1.23	modern, trends, 6.1-2
2000s, list, 1.66	modern processes, 4.11-19
absolute maximum ratings, 2.93	modular, 1.33, 4.3-8, 4.6
AC errors, 2.37-90	1970s, 1.44-46
ADC transient response, 2.73-75	milestones, 1.46
analog bandwidth, 2.50	monolithic, 1.33
analog full scale, 2.14	1970s, 1.34-40
aperture time, delay, and jitter, 2.68-72	monolithic DAC, 1980s, 1.49-51
applications, 8.1-192	multi-tone SFDR, 2.56-57
architectures, 1.27-30, 3.1-140	noise filter and noise figure, 2.61-68
feedback subtraction, 1.27	NPR, 2.58-60
bipolar processes, 4.11	offset error, 2.15
code centers, 2.14	overall considerations, 2.93-94
coding schemes, 2.14	packages, examples, 4.18
	partinger, emilipion, 1.10

PCM, 1.5-6	direct digital synthesis, 2.84
phase noise, 2.71	flexible, diagram, 8.161
popular reference options, 6.80	frequency planning, 8.165-166
power-on initialization, 6.47-48	for integrated DAC, 4.22
process technology, 4.1-30	low power 400-MSPS product family, table
processes, summary, 4.15	8.173
processes and architectures, 4.15-18	modern integrated systems, 8.166-174
summary, 4.18	schematic, 8.160
reconstruction systems, 2.13	tuning equation, 8.161
sampling frequency,	DDS I/Q quadrature modulators, table, 8.174
burst mode, 6.49-50	DDS synthesizers, low-power, chart, 8.168
minimum, 6.49-50	De Forest, Lee, 1.13, 1.18, 4.1, 4.9
single-shot mode, 6.49-50	De Jager, F., 3.136
sampling systems, 2.13	Dead time, DAC, 2.81
SFDR, 2.51-53	Deadbug prototyping, 9.200-202
SINAD, 2.48-50	breadboard, 9.201
SNR, 2.48-50	power busses, 9.202
solid state, 4.3-8	short decoupling paths, 9.200
specifications, 2.93-96	DEC PDP minicomputer, 5.27
definitions, 2.97-117	Decimation, 3.111, 3.116
specifications and testing, history, 5.27-28	GSM channel, 8.112
structure, 2.93	Decimation filter, on ADC, 4.22
supply current, 2.94	Decoder, digital video, 8.81-84
support circuit, 7.1-112	Decoupling, and grounding, diagram, 9.38
testing, 5.1-91	Decoupling capacitor, 9.36, 9.41, 9.43
THD, 2.47-48	Deglitcher, 2.102, 2.105
THD+N, 2.47-48	Deglitching, 3.31-32
theoretical quantization noise, 2.37-45	Del Signore, B.P., 3.137
thermal considerations, 9.134-138	Delay constant, microstrip, 9.167
transfer functions, 2.17	Deloraine, E.M., 3.109, 3.136
vacuum tube, 4.1-3	Delta modulation, 3.109
voltage, 2.93	changes, 3.109
voltage reference, 7.1-26	for quantization, 3.110
voltage reference considerations, 6.81	in sigma-delta ADC., 3.113
voltage references, 6.79-81	versus differential PCM, scheme, 3.110
wideband CDMA, 2.57-58	Delta phase register, 8.160
worst harmonic, 2.47-48	Delta-sigma architecture, 3.112-113
Data distribution system, 8.41-45	Demler, Michael J., 2.116, 3.139, 5.88, 5.90
with infinite SHA, 8.45-47	Demodulation, 8.137
multiple programmable voltage sources, 8.41	analog, 2.32
Data ready, 2.101, 2.102, 6.57	Dempsey, Dennis, 3.20, 3.37
ADC status, 3.41	Demultiplexed data bus, 9.177
Data valid, 6.57, 6.59	Demuxed CMOS output data, 6.58
Datel, 1.33	Derating curves, 9.130
DATRAC, 3.59-60	Derjavitch, B., 3.109, 3.136
11-bit 50-kSPS SAR ADC, picture, 3.60	Designing for EMC, 9.178
11-bit 50-kSPS vacuum tube converter, 5.27	Dickinson, Arthur H., 3.107
11-bit 50-kSPS vacuum tube SAR ADC, 4.2-3	Dielectric, PCB design, 9.165
Datrac converter: 11-bit 50-kSPS vacuum tube ADC, 1.22	Dielectric absorption, 7.100-101, 9.3-4 capacitor, 9.2
from Epsco, 1.21	PCBs, 9.57
Dattorro, J., 3.137	SHA applications, 9.4
DCS, digitally corrected subranging, 2.113	surface guarding, 9.57
DDS, 1.57, 8.159-176	Dielectric hysteresis, 9.3
aliasing, 8.163-165	Differential analog input capacitance, 2.102
graph, 8.164	Differential analog input capacitance, 2.102
anti-imaging filter, 8.163	Differential analog input impedance, 2.102 Differential analog input resistance, 2.102
architecture, signal flow, 8.163	Differential analog input voltage range, 2.102
digital dither, 8.166	Differential circuit, 9.28
	= 1110101111111 0110111, 7.20

Differential current-to-differential voltage	Digital phase wheel, 8.162
conversion, 6.75	Digital post-processing:
Differential gain, 2.102, 5.78-83	advanced, 8.151
ADC, 5.78-83	architecture, 8.151
digital measurement, 5.81	Digital potentiometer, 1.58, 8.49-58
test signal, 5.80, 5.82	AC considerations, 8.55
Differential input ADC driver, 6.23-29	advantages and applications, 8.57
Differential linearity, 2.107-108	applications, 8.55-57
error, 2.15	circuit applications, 8.56
definition, 2.17	CMOS, characteristics, 8.51
Differential nonlinearity, see DNL	modern, small packaging, 8.50-51
Differential overvoltage, 9.104	nonvolatile memory, 8.51-53
Differential PCM, 3.109	one-time-programmable, 8.53-54
versus delta modulation, scheme, 3.110	from string DAC, 3.5
Differential phase, 2.102, 5.78-83	tiny packaging, 8.50-51
ADC, 5.78-83	Digital receiver:
digital measurement, 5.81	AMPS wideband, 8.117
test signal, 5.80, 5.82	multicarrier, chart, 8.131
Differential single-ended conversion, 6.70-73	narrowband, 8.110-114
Differential to single-ended conversion, 6.70-73	narrowband IF-sampling, 8.110-114
Differential transformer coupling, 6.71	GSM/EDGE, 8.110-114
DigiPOT, 1.58, 8.56	single carrier, chart, 8.131
Digit grounder, 3.57, 3.59	software radio, 8.110
Digital audio, 8.59-74	wideband, 8.114-126
48-kSPS sampling, 8.62	wideband IF-sampling, 8.114-126
ADC and DAC, 8.63-65	Digital synthesis, direct, 8.159-176
trends, 8.63-65	Digital temperature measurement, direct, 8.14-19
	Digital video:
anti-imaging filter, 8.64	
CD, circuit diagrams, 8.64	ADC and DAC, decoders and encoders, 8.81-84
key specifications, 8.61	basics, 8.75-77
PCM, 8.63	black box, 8.78
sampling rate and THD+N, 8.60-63	decoders and encoders, 8.81-84
studio quality recording, 8.66	display electronics, 8.75-105
THD+N and sample rate, 8.62	formats, 8.77-81
Digital baseband, software radio, 8.109-110	serial data interfaces, 8.81
Digital circuit:	signal generation, model, 8.79
cost efficiency, 4.23	standard broadcast television interlace
standard voltage level, 9.181	format, 8.75
Digital converter, Advanced Filter Bank	Digital videodisc, 8.63
compensation, 8.154	Digital videotape recorders, development, 8.78
Digital corrected subranging, 3.64	Digital voltmeter, 2.15
Digital crosspoint switch, 7.83-84	Digitally corrected subranging ADC, 2.113
Digital crosstalk, 2.102	Digitizing, SHA function, 2.26
Digital Display Working Group, 8.105	Diniz, George, 8.105
Digital down converter, 8.115	Diode:
Digital error correction, 3.64	protection network, circuit diagram, 9.97
Digital filter, 3.111, 3.116, 3.125-126	unbuffered, 7.20
GSM channel, 8.113	Diode reference circuit, 7.3
for sigma-delta ADC, 3.125-126	DIP package, prototyping, 9.206
Digital ground, in mixed-signal IC, 9.35	DiPilato, Joe, 3.138, 8.157
Digital ground plane, PCB, 9.37	Direct digital synthesis, 1.58, 2.84, 6.48,
Digital IC, fabrication process geometry, 4.23	8.159-176
Digital interface, ADC and DAC, 6.47-67	aliasing, 8.163-165
Digital isolation, 9.111-116	frequency planning, 8.165-166
LED/photodiode optocoupler, circuit, 9.113	modern integrated systems, 8.166-174
LED/phototransistor optocoupler, circuit,	see also DDS
9.112	Direct IF-to-digital conversion, 2.31-32
Digital isolator, overvoltage protection,	Discontinuous transmission, 8.137-138
9.111-116	Discrete Fourier transform, 5.51-53
-	

applications, 5.51	output, 6.72
characteristics, 5.53	Duff, David, 2.90
outputs, conversion, 5.53	Dummer, G.W.A., 9.24, 9.63
sampled-periodic time domain signal, 5.52	Duracell Inc., 9.197
Discrete time Fourier series, 5.51-52	Duracell MN1500 AA alkaline battery, discharge
Discrete time sampling, 2.24	characteristics, 9.182
Discriminator, 3.43	DVD, sampling, 8.63
Displacement current, 9.143	Dynamic range, digital audio, 8.60-61
Display electronics, 8.85-90	Dynamic response, 2.104
graphics resolution and pixel rates, table,	Dynamic settling time transient:
8.86	from charge coupling, 7.71
Dissipation factor, 9.5-6	during multiplexing, 7.71
Distortion measurement, 5.17	Dynamic stability, 2.113
DAC, 5.17-24	Dynamic testing:
Distortion products, location, 2.48	ADC, 5.45-86
Dither, 2.42, 8.126-131	low-distortion sinewave inputs, 5.66-68
out-of-band, to improve SFDR, 8.127	
used to randomize ADC transfer function, 8.127	E
Dither noise, 8.126	EIA RS-170, monochrome television standard, 8.76
generation, 8.129	Earnshaw, J.B., 3.104
Dither sinewave, 5.81	Eccles-Jordan bistable multivibrator, 3.88
Divider buffer, 3.18-19	Eckbauer, F., 3.137
DNL, 2.72, 3.32, 5.2	ECL, 1.41, 2.2, 9.175
DAC, 5.2, 5.5	emitter-coupled logic, 3.43
due to encoding process, 2.46-47	high-speed, invention, 1.24
error, 2.17	standards, 9.184
randomized, 8.129	Edge rates, 9.163
temperature coefficient, 2.114	Edson, J.O., 1.11, 1.18, 1.31, 2.22, 3.84, 3.104,
DNR, digital audio, 8.60-61	3.106, 7.111
	Edwards, D.B.G., 3.106, 7.111
Dobkin, Robert C., 7.60	EEMEM family, digital potentiometer, 8.52
Doeling, W., 9.23, 9.63	Effective aperture delay time, 2.69, 2.98
Doernberg, Joey, 5.88	measurement, and ADC input, 2.70
Dominant pole, 7.37	SHA, 7.96-97
Dooley, Daniel J., 2.116, 3.139	Effective input noise, 2.103, 2.106
Dorey, Howard A., 3.108	Effective number of bits, see ENOB
Double-buffered DAC, advantages, 3.33-34	Effective resolution, 2.45, 2.103, 2.109, 8.8
Double throw switch, 3.4	Effective resolution bandwidth, see ERB
Doublet glitch, DAC, 2.82	Effective series inductance, 9.5
Downconversion, 8.142	Effective series resistance, 9.5
DPO, digital phosphor scope, 5.15	Efstathiou, Dimitrios, 8.156
Drakhlis, Boris, 6.98	EIA RS-343A standard, electronic display, 8.85
DRDY, data ready, 3.41	EIAJ ED-4701 Test Method C-111, 9.125
Drift, 2.102-103, 7.16, 7.18	8051, 1.63
Droop, 6.50	Electrolytic capacitor, 9.82
rate, 2.102-103	ceramic, 9.84
SHA, 7.99	film, 9.83
Dropout voltage, 7.27-28, 7.31, 9.66	general purpose aluminum, 9.83
inverting mode pass device, 9.68	impedance, graph, 9.85
DSO, digital storage scope, 5.15	organic semiconductor, 9.83
DSP:	stacked-film, 9.83
grounding, internal PLL, 9.43-44	switching, 9.83
output rise and fall times, graph, 9.170	tantalum, 9.83
serial interface, 6.51	Electromagnetic compatability, see EMC
Dual-slope conversion, 2.111	Electromagnetic interference, see EMI
Dual-slope converter, 2.103	Electromagnetic radiation, EMI path, 9.142
Dual-slope integration, in ADC, 3.97	Electromechanical Compatibility level, European
Dual slope/multi-slope ADC, 3.96-98	Community, 9.121
Dual supply op amp, differential DC coupled	Electromechanical rotating commutator,

multiplexing, 1.4	ENOB, 1.49, 1.55, 2.103, 5.28
Electron beam coder:	of ADC, using sinewave curve fitting, 5.49-50
Bell Labs, 3.48	calculation using SINAD, 5.50
modes, 2.6	data converter, 6.3
shadow masks, 2.7	degradation, in comparators, 3.50
Electron beam coding tube, 1.11-12	effective number of bits, 2.46, 2.48-50,
Electronic Concepts, Inc., 9.91	2.103, 3.115
Electrostatic discharge, 2.94	FPBW, 2.99
see also ESD	jitter, 6.84
Elliott, Michael, 3.107, 7.111	and SINAD, 6.84
Elliott, Michael R., 3.107	Envelope test:
Elliptic filter, TTE, 2.30	ADC linearity, 5.46
EMC:	lower input frequency, 5.47
described, 9.141	test setup, 5.47
emissions, 9.141	EOC, 2.101, 3.41
EMI:	ADC status, 3.41
coupling paths, 9.142	Epsco, 1.33
noise sources, 9.142	Epsco Engineering, 1.21, 4.2
EMI path:	Equivalent input referred noise, 2.43-44
high impedance ground connection, 9.143	Equivalent series inductance, capacitor, 9.2
summary, 9.143	Equivalent series resistance, capacitor, 9.2
EMI/RFI, 9.141-179	ERB, 2.99, 5.75
amplifier outputs, 9.162-163	Erisman, Brian, 9.91 Error:
common-mode choke, for in-amps, 9.162	gain, 2.97
considerations, 9.141-179 coupling paths, 9.142	gam, 2.97 linearity, 2.97
damping resistors, fast logic edges, 9.171	sources, 2.97
flexible common-mode and differential-mode	zero, 2.97
filter, 9.161	Error code, 1.52
general purpose common-mode/differential mode	Error corrected ADC, 3.61-78
filter, 9.161	Error correction, quantization levels, 3.64
mechanisms, 9.142, 9.142-179	Error voltage, 8.148
noise coupling mechanisms, 9.143	digital current in analog path, 9.32
noise filter, op amp circuit, diagram, 9.160	Esaki diode, 3.48
noise sources, 9.142	ESD, 9.116
op amp and in-amp outputs, long cable driving,	damage, 9.118
9.163	data sheet statement, 9.119
and passive components, 9.146-147	models and testing, 9.121-124
rectification sensitivity, op amp and in-amp,	packaging and labeling, 9.118
9.155-157	prime sources, 9.116
reducing system susceptibility, 9.147-148	protection and prevention, buyer and seller,
shielding, review, 9.148-151	9.120
susceptibility, 9.141	summary, 9.124
system susceptibility reduction, 9.147-148	testing methods,
Emitter-coupled-logic, 2.2, 2.94	differences, 9.122-123
design, 6.96	waveforms, 9.123
Emitter-coupled logic, see ECL	voltage sources, 9.117
Encode, sampling clock, 2.103	ESD Association Draft Standard DS5.3, 9.125
Encode command, 2.103, 2.112	ESD Association Standard S5.2, 9.125
ADC, 3.41	ESD Prevention Manual, 9.125
Encode pulsewidth/duty cycle, 2.103	ESD protection, 9.195
Encoder, 2.24, 3.41	ESI, 9.5
digital video, 8.81-84	capacitor, 9.2
nonsampling, input frequency limitations, 2.24	ESL:
End-of-conversion, see EOC End point method, integral linearity error	capacitor loss, 9.83
measurement, 2.16-17	filter loss, 9.84 ESR, 9.5
Engelhardt, E., 3.137	capacitor, 9.2
ENIAC computer, invention, 1.21	Eubanks, John M., 1.23
r ,	-, · · · · · · · · · · · · · · · · ·

Euler's equation, 5.53 European Broadcast Union, standards, 8.60	to compute discrete Fourier transform, 5.54 dynamic ADC testing, 5.59-65
Evaluation board, 9.206-212	FPBW, 2.99
data converter, 9.209-212	processing gain, 2.42
characteristics, 9.209	sinewayes, 5.56
dedicated op amp, 9.207-209	single-tone sinewave testing, 2.42
general purpose op amp, older, 9.207	spectral analysis, ADC, 5.50
Expandor, 3.26	test setup, 5.59-65
External components, 4.22	configuration and measurements, 5.59-65
,	diagram, 5.60
F	verifying accuracy, 5.65-66
Fabrication process:	Fiedler, Udo, 3.107
geometry,	Film capacitor, 9.82
and cost, 4.24	Filter:
for digital IC, 4.23	advanced, 8.152
Fagen, M.D., 1.17, 1.32	analog, oversampling, 2.88
Failure, resistor, 9.14	anti-imaging, 3.23, 8.163
Fair-Rite Linear Ferrites Catalog, Fair-Rite	for digital audio, 8.64
Products, 9.91	antialiasing, 3.115, 8.32
Fair-Rite Products, 9.91	baseband, 2.29-31
Fairchild, 1.24, 1.33	position, op amp noise, 6.38
Fairchild Semiconductor, 1.15, 4.3-4, 4.11	in undersampling, 2.33-34
Far-field interference, EMI path, 9.142	undersampling, 2.33-34
Faraday shield, 9.20, 9.58-61, 9.59-60, 9.144	attenuation, 7.19
floating, 9.60	bandpass, 5.70-72, 6.92
impractical location, 9.60	Butterworth, 2.30
operational model, 9.60	noise bandwidth, 2.62
Farmer, M.B., 1.4	two-pole, SNR, 2.87
Fast Fourier transform, see FFT	bypass/decoupling, 9.89-90
FASTRON GmbH, 9.91	card entry, 9.87-88
FASTStep mode, for AD7730, 3.130	power supply noise reduction and filtering,
Fault-protected multiplexer, 9.99	9.87-88
FDM, telephone, 1.8	custom analog, firms, 2.31
FDMA, frequency division multiple access, 2.58	damping, 9.85
Feedback amplifier, patent, 1.14	data acquisition system, 8.31-33
Feedback coder, 1.25, 3.57	differential, 6.72
Feedback subtraction, 1.27-28, 3.56	digital, 3.125-126
Feedback subtraction ADC, 1.28	implications, 3.125-126
Feedback subtractor coder, 1.25, 3.57	sigma-delta ADC, 2.74
Feedthrough, 2.103, 7.101	elliptic,
SHA, 2.103	11-pole, characteristics, 2.31
Feedthrough error, 2.103	TTE, 2.30
Felix, Micheal O., 5.89	Gaussian active, buffering for audio DAC, 6.76
Ferguson, P.F., Jr., 3.137, 3.138	interpolation, 3.23
Ferrite:	loss via ESR, 9.82-83
characteristics, 9.86	lowpass, audio DAC, 6.75-76
filter inductor, 9.86-87	lowpass/bandpass, 2.23
power supply noise reduction and filtering,	noise, power supply, 9.81-90
9.86-87	notch, 2.59, 2.109
Ferrite bead, 9.38, 9.42-44, 9.86, 9.89, 9.160,	minimizing analyzer overdrive, 5.68
9.164	passive components, EMI reduction, 9.147
FET RFI rectification, 9.158-159	rail bypass/distribution, 9.88
Fetterman, Scott, 3.106	power supply noise reduction and filtering,
FFT, 5.54	9.88
accuracy, 5.65-66	single-pole, settling time, table, 8.32
ADC analog bandwidth, 5.75	type, EMI reduction, 9.147
ADC aperture jitter, 5.73-75	Finite amplitude resolution, due to quantization,
analysis, 2.23	2.24
basics, 5.51-59	Fisher, J., 3.137

Flach, Donald R., 5.88	diagram, 3.7
Flash ADC, 1.40, 2.112, 3.46, 3.88	Fundamental frequency, 2.50
4-, 6-, 8-bit monolithic, 1.41	FVC, 2.104
5-bit, diagram, 3.47	
monolithic, 1980s, 1.52-53	G
Flash converter, 2.103-104, 3.48	Gailus, Paul H., 3.138
3-bit all-parallel, diagram, 3.46	Gain, 2.105
ADC, 3.46-53	Gain error, 2.15, 2.97
comparator, 2.76	DAC, 5.1, 5.2-4
electronic, 1.11	measurement, 5.31
interpolating, 3.52	Gain nonlinearity, 2.110
output latches, 3.70	Gain tempco, 2.114
power dissipation, 3.51	Gaines, W.M., 1.31, 5.87
Flash SADC, 3.64	Gallium arsenide, data converter role, 4.17
Flat panel display, 8.90-94	Gallium arsenide process, 3.50
analog and digital interfaces, 8.91	Gamma unit, 8.79
electronics, 8.90-94	Ganesan, A., 3.137
Flat-pulse generator, 5.76-77	Garcia, Adolfo, 9.125, 9.178, 9.213
Fleming, Tarlton, 9.23	Gardner, F.M., 6.98, 8.175
Flexibility, 4.23	Gate-drain capacitance, 7.70
Flicker-free code resolution, 2.45, 2.109	Gaussian active filter, buffering for audio DAC,
Floating shield, 9.60	6.76
Flutter, 5.29	Gaussian-filtered minimum-shift keying, 8.145
Flyers, 3.45	Gaussian frequency distribution, 6.83
ADC, 2.76	Gaussian noise, 2.38, 2.58, 2.109, 5.44, 8.8,
Flynn, George, 1.31	8.124
Folding ADC, 3.42, 3.78-87	General Electric, 1.23
Folding converter, 3.81	General Instrument Corp., 1.23
Folding stage, functional equivalent circuit,	Gentile, Ken, 8.175
3.81	George A. Philbrick Researches, Inc., 1.34, 4.2, 4.9
Folding transfer function, 3.78, 3.84	Gerber file, 9.46, 9.204, 9.209
using rectifier amplifiers, diagram, 3.84	Gerke, Daryl, 9.178
Four-element-varying bridge configuration,	Germanium transistor, invention, 1.14
8.6	Gilbert, Roswell W., 3.108
Four-quadrant, 2.104, 2.108	Giles, James N., 3.44, 3.104
4000-series, CMOS logic, RCA, 1.24	Giles, Jim, 1.40
Fourier analysis, 5.51-59	Glitch, 2.102, 2.105, 2.109
Fourier series, 5.51-52	DAC, 2.102
Fourier transform, 5.51-52	net impulse area, calculation, 2.83
FPBW, 2.50, 5.75	Glitch charge, 2.106
Fraschilla, J.L., 3.106	Glitch energy, 2.102, 2.106, 5.15
Freeman, J., 1.31, 5.87	DAC, 2.82
Freeman, Wes, 9.93, 9.125	Glitch impulse, 2.106
Frenzel, Louis E., 8.156	Glitch impulse area, 1.49, 2.102, 2.105-106
Frequency division multiple access, 2.58	DAC, 2.82-83, 5.15
Frequency division multiplexing, see FDM	measurement, 5.15-17
Frequency synthesis, 8.159	net impulse area, calculation, 2.83
Frequency-to-voltage conversion, see FVC	Gold, B., 5.89
Friis equation, for noise figure, 2.67	Goldberg, A., 8.104
FS-125, modular op amp, Computer Labs, 1.23	Goldberg, A.A., 8.77
FSEA30, Rhode and Schwartz, 5.18	Goldberg, Bar-Giora, 6.98
FSR, full-scale range, 2.104	Goodall, W.M., 1.11, 1.18, 3.105
Fu, Dennis, 3.108	Goodenough, Frank, 7.60, 9.91
Full-power bandwidth, see FPBW	Goodman, D.J., 3.112, 3.136
Full-scale, 2.104	Gorbatenko, G.G., 3.106
positive or negative, 2.104	Gordon Engineering, 1.33
Full-scale input power, ADC, 2.104	Gordon, Bernard M., 1.21, 1.22, 1.25, 1.28, 1.31,
Full-scale range, 2.97, 2.104, 2.107	1.32, 2.116, 3.36, 3.59, 3.105, 3.106, 3.107,
Fully decoded DAC, 3.6-9	3.139, 4.2, 5.27, 5.87, 5.88, 5.90

Gorman, Christopher, 3.20, 3.37	linear and switching regulators, 9.78-81
Gosser, Roy, 3.106, 4.12, 7.111	mixed-signal, 9.40-41
Goto, 3.104	mixed signal system, 9.30-46
Graham, M., 9.197	multicard mixed-signal systems, 9.33-34
Grame, Jerald, 9.63	multicard systems,
Grant, Doug, 8.139, 9.23	high digital currents, summary, 9.42-43
Graphics control system, signal generation, 8.87	low digital currents, summary, 9.41-42
Graphics display, RGB video levels, 8.89	PCB, 9.25
Gratzek, Tom, 8.156	sampling clock, 9.38-41
Gray bit, 3.81	separating analog and digital, 9.34-35
Gray bit output, 3.81	signal routing, for LDO, diagrams, 9.80
Gray code, 1.3, 1.12-13, 2.4-8, 3.47-48, 3.51,	single-card, for multicard system, 9.40-41
3.81, 3.99	summary, 9.44-45
ADC architecture, 3.42	Grown-junction silicon transistor, 4.3
in ADC architecture, 3.84	GSM-900MHz system:
coding scheme, 2.14	sensitivity requirements, 8.121
decoding, errors, 3.52	spurious requirements, 8.120-121
latched, 3.51	GSM/DCS cellular telephone handset, functional
LSB error, 1.13	diagram, 8.140
Gray code MagAMP design, 3.85	GSM digital cellular telephone system, block
Gray code shadow mask, 3.47	diagram, 8.137
Gray-coded ADC, 3.78-87	GSM/EDGE, European multicarrier time-division
Gray-to-binary code, conversion, 2.8, 3.51	multiplexed-access system, 8.111-112
Gray transfer function, 3.78	GTL, standards, 9.184
Gray, Elisha, 1.13, 2.6, 3.47	Guard rings, 7.99
Gray, Frank, 1.13, 2.6, 3.47 Gray, Frank, 1.13, 1.18, 2.6, 2.22, 3.47, 3.104	Guard shield, in PCB, 7.100
Gray, G.A., 2.90	Guarding:
Gray, J.R., 3.106, 7.111	basic principles, 9.54
Gregg, Christopher, 9.178	inverting mode, diagram, 9.53, 9.56
Grift, Rob E.J. van de, 3.107	MINIDIP layout, 9.55-56
Groshong, Richard, 8.156	non-inverting mode, diagram, 9.54, 9.56
Gross, George F., Jr., 3.106	PCB, 9.53
Ground, 2.2	Gustavsson, M., 8.157
analog and digital,	Gustavsson, Mikael, 2.117, 3.140, 5.91
separation, 9.34-35	Gustavisson, Mikaoi, 2.117, 3.110, 3.71
diagram, 9.35	Н
isolation techniques, 9.50-52	Hageman, Steve, 9.91
PCB, layers, 9.32-33	Hamming, window function, 5.57-58
return current, 9.28	Hanning, window function, 5.57, 5.63-64
Ground current, amplifier degradation, 9.50	Hardware:
Ground isolation amplifier, 9.51	design,
differential input, 9.51	cable driving, 9.1
Ground isolation techniques, 9.50-52	overvoltage protection, 9.1
Ground loop, digital isolator, 9.111	passive components, 9.1-24
Ground noise, 9.39	receiving, 9.1
Ground plane, 9.30-32	shielding, 9.1
breaks, 9.49-50	Hardware design, 1-213
circuit inductance, 9.49	Harmonic distortion, 2.46-48, 5.17
current flow, 9.49	2nd, 2.106
in mixed-signal multicard system, 9.33-34	3rd, 2.106
summary, 9.33	data converter, 6.3
Grounded-input histogram, 2.44	total, 2.106
for input-referred noise, 5.44	plus noise, 2.106
Grounding, 9.30-45	Harmonic sampling, 2.31-32
ADC digital output, 9.37-38	Harmonic telegraph, 1.3
decoupling, 9.35-36	Harmonics, 2.48
and decoupling, diagram, 9.38	Harris, Fredrick J., 5.89
double-sided versus multilayer PCBs, 9.32-33	Harrison, R.M., 3.106
ground plane multiple connections, 9.81	Hartley, R.V.L., 1.17, 2.27, 2.35
0	

Hold-to-track transition, specifications, 7.102 Holloway, Peter, 1.35, 1.47 Homodyne, 8.108 Horizontal sync, 8.76 Horna, O.A., 3.106, 7.111 Horvath, Johannes, 9.181
Homodyne, 8.108 Horizontal sync, 8.76 Horna, O.A., 3.106, 7.111
Horizontal sync, 8.76 Horna, O.A., 3.106, 7.111
Horna, O.A., 3.106, 7.111
Horvath Johannes 0 181
1101 vaui, Johannes, 9.161
HS-810:
8-bit 10-MSPS ADC, 4.4-5
Computer Labs, Inc., 1.24
using Gray code, 3.84
HTC-0300, 300-ns SHA, 1.43-44
HTS-0025, 25-ns SHA, 1.43-44
Human Body Model, ESD model, 9.121, 9.123
Hybrid clock generator, 6.94-95
Hybrid data converter, 4.6
Hybrid ground, cable shielding, 9.153
Hybrid regulation, 9.77
Hybrid SHA, 7.92
Hybrid Systems, 1.33
Hygroscopicity, PCB, 9.25
Hysteresis, 2.104, 3.43-44
•
I
IC, 4.4
ESD-sensitive, workstation environment, 9.119
invention, 1.14
Ichiki, H., 3.104
iCoupler technology, 9.112
Idle tone:
in sigma-delta ADC, 3.121-123
sigma-delta converter, 3.121-123
IEC-1000-4, ESD standard, 9.122
IEC-1000-4-1, ESD standard, 9.122
IEC-1000-4-2:
compliance testing methods, 9.121
ESD standard, 9.122-123
IEC-1000-4-3, ESD standard, 9.122
IEC-1000-4-4, ESD standard, 9.122
IEC-1000-4-5, ESD standard, 9.122
IEC-1000-4-6, ESD standard, 9.122
IEC-1000-4-x, 9.121
IEEE-488 bus, 5.27
IEEE Standard 746-1984, 5.81, 5.88, 8.104
IEEE Standard 1057-1994 (R2001), 5.88
IEEE Standard 1241-2000, 5.21, 5.25, 5.81, 5.88
IEEE Standard 1596.3-1996, 9.179
IF sampling, 146-155, 2.31-32, 8.107
software radio receiver and transmitter,
diagram, 8.107
time-interleaved, 8.146-155
IF sampling receiver, 1.55
IF-to-digital conversion, direct, 2.31-32
Ikeda, K., 3.104
ILC/Data Device Corporation, 1.33
Image spurs, 8.147, 8.150, 8.153
Images, aliases, 2.28
Imaging system, diagram, 8.94
IMD:

intermodulation distortion, 2.53, 2.106, 2.108	Integrated-injection-logic process, 4.12
third-order products, 2.54-56	Integrating and counting ADC architectures,
slope, 2.54	3.87-113
Impedance:	Integrating servo-loop ADC tester, diagram, 5.36
in grounding system, 9.29	Integration, 4.21-26
input, 2.106	levels, trends, 4.26
Impedance mismatch, 9.149	Intel, 4.26
Impulse, 2.105	Intentionally nonlinear DAC, 3.25-26
In-amp:	Intercept points, amplifier, definition, 2.54-55
input, 9.160-162	Interconnection stability, resistor, 9.11
rectification, 9.160-162	Interface bandwidth, 4.22
overvoltage protection, 9.105-109	Interfacing:
RFI rectification sensitivity, tests,	2.5V/1.8V, 9.190-193
9.155-157	3.3V/1.8V, 9.190-193
single supply, protection, circuit, 9.108	3.3V/2.5V, 9.188-190, 9.190-193
In-circuit overvoltage:	analysis, 9.190
general input common-mode, 9.93-95	5V systems to 3.3V systems, using NMOS FET
protection, 9.93-116	bus switches, 9.186-190
summary, 9.116	bidirectional, NMOS FET, 9.186
In-circuit voltage protection, 9.93-116	Interference, associated impedance, 9.148
general input common-mode limitations, 9.93-95	Interlacing, television, 8.75
In-phase signal processing, 8.38	Intermodulation distortion, 2.106, 2.108
Incremental optical encoder, 3.98	data converter, 6.3
Inductance, 4.15, 9.17-21	Internal compliance and tolerance, CMOS IC,
mutual, 9.17-20, 9.17-21	diagram, 9.195
ringing, 9.17-20	Internal high voltage generation, 9.196
stray, 9.17	International Telephone and Telegraph
wire and strip, calculations, 9.17	Corporation, 1.8, 1.10, 8.59
Induction, skin effects, 9.46-48	Interpolation, 3.51
Induction, skill effects, 9.40-46 Inductive coupling:	Interpolation, 3.31 Interpolation filter, on DAC, 4.22
basic principles, 9.18	Intersil, 1.33
EMI path, 9.142	Intersymbol interference, 3.8
Inductor:	Inverse Fourier transform, 5.51
parasitic effects, 9.21	Inverting-mode op amp protection, 9.100-101
Q (quality factor), 9.21-22	Irons, Fred H., 2.91
quality factor, 9.21-22	IS-136, US multicarrier time-division
ringing, 9.20	multiplexed-access system, 8.112
Infinite ground conductivity, 9.29	ISI, intersymbol interference, 3.8
Infinite SHA, 8.45-47	ITT Laboratories, 3.109
INL, integral nonlinearity, 5.2	ITU-Recommendation BT.601, 8.104
Inose, H., 3.136	ITU-Recommendation BT.656-4, 8.104
Input differential protection, 9.104-105	ITU-Recommendation BT.709-5, 8.104
Input impedance, 2.106	ITU Recommendation ITU-R BT.1204, 5.89
Input multiplexer, 1.55	
Input noise, 2.72	J
Input-referred noise, 2.103, 2.106, 5.71, 5.76	Jager, F. de, 3.136
grounded input histogram, 5.44	Jantzi, S.A., 3.138
Instantaneous power, 8.22	Jayant, Nuggehally S., 2.116, 3.139, 5.90
Instantaneous real power, 8.22	J.B. Rea, 1.21
Insulation resistance, capacitor, 9.2	JEDEC, 9.197
Integral linearity, 2.107-108	JEDEC standards, 9.184-185
error measurement, 2.15-16	JFET RFI rectification, sensitivity, 9.159
Integral nonlinearity, 2.107-108	Jitter:
DAC, 5.1, 5.5	aperture, 9.39
Integrated circuit, see IC	calculation, from phase noise, 6.88
Integrated circuit ground pin, 9.31	oscillator, 6.86-94
Integrated Device Technology (IDT), Inc., 9.197	Johns, David A., 2.116, 3.139, 5.90
Integrated function, 1990s, table, 1.64	Johnson noise, 9.14-15, 9.100
Integrated-injection logic, 1.38	Johnson, H., 9.197

Johnson, Howard W., 9.63	Krabbe, Hank, 4.13
Joint Electron Device Engineering Council	kT/C noise, 2.43, 2.109
(JEDEC), 9.197	CCD, 8.97
Jump size, 8.163	Kurosawa, N., 8.157
Junction field effect transistor, extra	Kurth, C.F., 2.116, 3.139, 5.90
implantation, 7.11-14	Kurz, Dov, 9.125
Junction-to-ambient, thermal resistance, 9.127	Kwan, Tom W., 3.36, 3.137
Jung, Walt, 1.1, 3.108, 4.2, 4.19, 6.79, 7.1,	
7.26-27, 8.157, 9.1, 9.25, 9.65, 9.91, 9.93,	L
9.127, 9.139, 9.141, 9.178, 9.199	LabVIEW, 5.89
Jung, Walter G., 1.17, 2.90, 2.117, 3.140, 4.9,	Lackey, 8.156
4.19, 5.91, 6.77, 8.26, 9.23	Lane, Chuck, 3.105
	Lapham, Jerome F., 4.19
K	Laser wafer trimming, 4.12
K2-W op amp, 4.2	Latch:
K2-W Operational Amplifier, data sheet, 4.9	in double-buffered DAC, 3.33
Kaiser, Harold R., 3.105	output, 3.70
Kaiser, H.R., 3.59	Latched comparator, 2.76, 3.43
Kaneko, H., 3.37	Latchup, 9.35
Kearney, Paul, 8.105	Latency, 2.106
Kelvin divider, 3.8	Lateral PNP, 4.11
DAC, 3.4, 3.4-6	LCCMOS, 1.49, 4.13
DNL, 5.10	LDO, 7.27
no superposition, 5.10	adjustable voltage, 9.72-74
Kelvin feedback:	advantages, 9.66
in PCB, 9.27-28	architectures, 7.35-39, 9.70-74
signal leads, 9.27-28	DC and AC design issues, 7.38
Kelvin sensing, 7.8, 7.17, 7.20, 7.58, 8.5, 8.9	zoned load capacitor, effects, 7.39
Kelvin-Varley divider, 3.18	device selection, voltages, table, 9.72
Kelvin, Lord, 3.4	fixed-voltage, 9.71-72
Kemet Electronics, 9.91	grounding, 9.78-79
Kemet T491C-series, tantalum capacitor, 7.48	signal routing, diagram, 9.78-79
Kerr, Richard J., 8.175	regulator controller, 9.73
Kessler, Martin, 4.21	LDO regulator:
Kester, W.A., 5.88, 8.104	board layout guidelines, 7.47
Kester, Walt, 1.1, 1.49, 2.1, 2.23, 2.37, 2.90,	thermal considerations, 7.46-51
2.97, 2.117, 3.1, 3.39, 3.109, 3.140, 5.1, 5.88,	LDO regulator controller, 7.51-59, 7.51-60
5.89, 5.91, 6.1, 6.45, 6.47, 6.67, 6.69, 6.77,	2.8-V/8-A, 7.59
6.83, 7.1, 7.61, 7.91, 8.26, 8.27, 8.49, 8.59,	diagram, 7.59
8.75, 8.107, 8.157, 8.159, 9.1, 9.25, 9.30,	basic, 7.53-54
9.63, 9.65, 9.91, 9.93, 9.125, 9.139, 9.141,	copper resistance design, table, 7.58
9.178, 9.181, 1.55, 1.65, 4.1, 4.11, 9.199	pass device, 7.54-55
Kester, Walter, 5.88	PCB layout issues, 7.58
Kester, Walter A., 5.87, 8.104	PMOS FET pass device, 7.51
Khairolomour, Peter, 8.58	sensing resistor, 7.57-58
Kilby, Jack, 1.15, 4.3-4	sensing resistors, 7.57-58
Kilby, J.S., 1.19, 4.9	thermal design, 7.55-57
Kimmel, William, 9.178	LE1182-series elliptic filter, TTE Inc., 2.31
King, Grayson, 8.177	Leaded ferrite bead, 9.86
Kinniment, D.J., 3.106, 7.111	Leakage current, output, 2.106
Kirchoff's law, 9.17, 9.28	Leakage resistance, static effect, 9.52
Kitchen, Charles, 9.125, 9.178	Least-significant bit, see LSB
Kitchen, Chuck, 9.178	Lee, Hae-Seung, 5.88
Kitsopoulos, S.C., 3.106, 7.111	Lee, Seri, 9.139
Kiyomo, T., 3.104	Lee, Wai Laing, 3.137
Klonowski, Paul, 3.108	Lee, W.L., 3.137
Koch, R., 3.137	Left-justified data, 2.107
Kovacs, Gregory T.A., 7.60	Lewis, Stephen H., 3.106
Kovar lid, 9.60	Li, Alan, 7.60, 8.58

Li, Harry W., 5.89	EMI/RFI protection, 9.164
Lindesmith, John L., 3.108	Logic gate, 6.85
Line sensitivity, 7.17-18	RMS jitter, 6.86
Linear compatible CMOS, 4.13	Logic IC, characteristics, 9.183
Linear IC regulation, 9.66	Logic interfacing, low voltage, 9.181-197
Linear mode regulation, 9.65	Logic noise:
Linear post regulator:	ADC buffering, 9.60-62
low noise, 9.78	buffering ADC, 9.60-62
switching supplies, 9.77-78	CMOS latched buffer, 9.61
Linear predictive coding, 8.137	Lohman, R.D., 3.104
Linear ramp input, 3.79	Lohman, Robert D., 3.48
limitations, 5.41	Long term prediction, 8.138
Linear regulator:	Looney, Mark, 8.146, 8.157
low dropout, 7.27-60	Lorber, Matt, 4.11
architectures, 7.35-39	Low byte, 2.100
Linear resistance, calculation, 9.26	Low-distortion DAC, 3.31-33
Linear settling time, DAC, 2.81	Low-distortion sinewave, generation, test setups,
Linear voltage regulator:	5.66-67
basics, 7.27-31, 9.66-68	Low dropout linear regulator, 7.27-60
block diagram, 9.68	Low dropout regulator:
negative leg series, 9.66	architectures, 7.35-39
pass device, 9.68	definition, 7.27
positive leg series, 9.66	see also LDO
three-terminal circuit, 9.67	Low-glitch architecture, DAC, 3.5
Linearity, 2.107	Low-glitch segmented DAC, 3.31-32
differential, 2.107-108	Low noise, 7.24-25
error, 2.15, 2.97	Low power mode, 6.48
integral, 2.107	Low-voltage-differential-signaling, see LVDS
Linearity tempco, 2.114	Low-voltage logic, interfaces, 9.181-197
LM309, fixed-voltage regulator, 9.68	Lowpass filter, audio DAC, 6.75-76
LM317, adjustable-voltage regulator, 9.69	LPKF Laser & Electronics, 9.213
LM109, basic bandgap reference, 7.4	LSB, 2.13, 2.100, 2.107
LM109/309, bandgap voltage reference, 7.33	peak-to-peak, 2.109
LM309:	rms, 2.109
voltage regulator, 7.33-35, 7.37	Luma signal, 8.79, 8.82
schematic diagram, 7.34	Luminance, 5.78, 8.79
LM311:	LVDS, 3.76, 6.52, 6.54
comparator, 1.38	for high speed interfaces, 4.22
IC comparator, 1.41	logic, 2.2
LM317:	output driver, 6.54
adjustable voltage regulator,	standards, 9.184
schematic diagram, 7.34	LVDS logic, 9.175-176
topology, 7.35	LVTTL, standards, 9.184
LM361, IC comparator, 1.41 LO-PADS, 9.202	Lyne, Niall, 9.125
Load sensitivity, 7.17-18	M
Local high frequency bypass/decoupling, 9.89-90	Machine Model, ESD model, 9.121
layouts, 9.89	
Locked-histogram test, 5.70-72	MacKenzie, I. Scott, 8.191 Maddox, C.L., 3.37
ADC aperture jitter, test setup, 5.71	MagAMP, 3.81
Logarithmic transfer function, 3.26	3-bit, folding ADC, 3.81-82
LOGDAC, functions, 3.27-28	architecture, advantages, -86
Logic:	current-steering, differential gain-of-two,
interface, 2.94-95	diagram, 3.85
standards, summary, 9.184	Gray code, 3.86
types, 2.2	Magnetic field, reflection loss, 9.149
Logic circuit, low voltage, interfacing, 2.95	Magnetically-coupled noise, reduction, 9.145-146
Logic device:	Magnetically coupled noise, reduction, 9.145-146
choice and noise problems 9 164	Mahoney Matthew 2 116 3 139 5 88 5 90

Malaeb, Mark, 8.58, 8.191	definition, 8.177
Mangelsdorf, Christopher W., 2.90, 3.104	development tools, chart, 8.186
Mannion, Patrick, 8.156	family, characteristics, 8.178-183
Manolakis, Dimitris G., 5.89	RTD interfacint, 8.185
Mark/Space ratio, ADC, 3.91	sigma-delta ADC architecture, 8.182
Markow, John, 8.26	summary, 8.183
Mark, W., 9.23	MicroConverter 12-bit SAR-based, summary, 8.180
Mark, W, 9.63	MicroConverter SAR ADC performance, 8.179
Martin, Ken, 2.116, 3.139, 5.90	MicroConverter sigma-delta ADC architecture,
Martin, Steve, 3.108	8.180-182
MAS-1202, 12-bit 2-µs SAR ADC, 1.44, 1.46	Micronetworks, 1.33
MASH:	Microprocessor supervisory products, 8.19
multistage noise shaping, 3.126	Microstrip:
sigma-delta ADC, block diagram, 3.127	delay constant, 9.167
Mathcad, 5.89	guidelines, 9.167
MATLAB, 5.89	Microstrip PCB layout, two pairs of LVDS signals,
Matsuya, Y., 3.137	9.177
Matsuzawa, A., 2.90, 3.105	Microstrip transmission line:
Matsuzoe, Nobuhiro, 8.191	characteristic impedance, 9.166
Maximum conversion rate, 2.108	controlled impedance, termination techniques,
Maxwell, Darragh, 8.191	9.173
MC1650, IC comparator, 1.41	general parameters, 9.48
McCarthy, Mary, 8.58	on PCB, 9.166-167
McClaning, Kevin, 2.90	MICROWIRE, serial interface, 6.51
McDaniel, L.D., 3.37	Mid-scale settling time, 5.14
McDaniel, Wharton, 7.60	Mierlo, S. Van, 3.109, 3.136
MCM, 4.7	MIL-883B, 4.6
MDAC, 3.2	MIL-M-38510, standard for 12-bit DAC, 1.35
current-mode R-2R ladder network, 3.25	MIL-STD-883 Method 3015, 9.121, 9.125
diagram, 3.25	MIL-STD-883B, 1.42
external voltage reference, 3.24	MIL-STD-883B Method 3015.7, ESD test method,
MDS-1250, 12-bit 50-ns DAC, 1.46	9.122-123
Meacham, L.A., 1.18, 3.37, 3.105, 7.111, 8.59,	Milled PCB prototyping, 9.203-205
8.74	board, 9.204-205
Melliar-Smith, C. Mark, 1.18, 4.9	Millman, S., 1.17
Memory, non-volatile, 4.14	Miner, Willard M., 1.4, 1.17
Mendelsohn, Alex, 8.191	Mini-Circuits, 6.45
Mercer, Doug, 4.19, 8.157	Mini-Circuits RF transformer, 6.24-27
MESC series RFI suppression chokes, 9.91	Mini-Mount, breadboarding system, 9.202
Metal film resistor, 9.16	Minidac, 1.24-25
Metal foil resistor, 9.16	12-bit, with op amp, quad switches, thin film
Metal migration, 9.94	resistor network, diagram, 1.26
Metal-on-silicon device, 4.13	MINIDIP guard layout, 9.55-56
Metastability, 2.76, 3.44-45	Minimum 4-term Blackman-Harris, window
Metastable comparator output, errors, 2.77	function,
Metastable state, 2.76-80	5.57, 5.63-64
ADC, 2.76-80	Minimum conversion rate, sampling, 2.108
Meyer, F.C., 5.87	Minimum sampling frequency, 6.49-50
MF Electronics, 9.39	Missing code, 2.107, 2.108
Miao, Kai, 8.191	errors, 2.20-21
Mica capacitor, 9.8	MIT Lincoln Labs, 1.23
Micro Power, 1.52	Mitola, Jim, 8.156
Micro Power Systems, 1.33	Mixed-signal front ends, 1.55
Microcontroller, 8.16	Mixed-signal grounding, problems, 9.40-41
precision analog, 8.177-191	Mixed-signal IC:
MicroConverter:	grounding, 9.30
applications, 8.184-186	internal digital currents, diagram, 9.36
based on ARM7 processor core, 8.187-190	low internal digital currents, diagram,
characteristics, 8.178-183	9.41

grounding and decoupling, 9.35-36	comparator, Fairchild, 1.24
low voltage, summary, 9.182	comparators, Fairchild, 1.23
Mixed-signal system:	μA710 comparator, 1.25
grounding, 9.45	μA710/μA711, comparator, 4.11
multicard, 9.33-34	μA711, IC comparator, 1.41
partitioning analog and digital circuits, 9.46	μA711/712, comparator, Fairchild, 3.49
PCB layout guidelines, 9.45-46	μA741, op amp, 4.11
MOD-815:	Multi-bit sigma-delta ADC, 3.123-125
8-bit 15-MSPS ADC, 1.44-45	block diagram, 3.123
8-bit 15-MSPS subranging ADC, Computer Labs	Multi-tone intermodulation distortion, 2.46
Inc., 3.64	Multi-tone SFDR, 2.56-57
8-bit 15-MSPS video sampling ADC, 1.46	Multibit sigma-delta converter, 3.123-125
MOD-1020, 10-bit 20-MSPS sampling ADC,	Multicard, mixed-signal systems, 9.33-34
photograph, 1.45-46	Multicard system:
MOD-1205, 12-bit 5-MSPS sampling ADC,	grounding, high digital currents, diagram,
1.45-46	9.43
MOD-4100, 4-bit 100-MSPS flash ADC, using	grounding mixed-signal devices, 9.41-42
AM685	Multicarrier CDMA2000 receiver, RF spectrum,
comparator, 3.49-50	8.117
Modern data converter processes, 4.11-19	Multicarrier receiver, chart, 8.131
Modular data converter, 4.6	Multicarrier transceiver, summary, 8.136
Modulation, 8.137	Multicarrier transmitter, chart, 8.135
Moghimi, Reza, 3.104, 8.58	Multichannel audio codecs and DACs, chart, 8.70
Monochrome, television, 8.76	Multichannel data acquisition system, 8.27-48
Monolithic ceramic capacitor, 9.8	Multichannel data distribution, 8.42
Monolithic dual FET, matched, 1.41	Multichannel system, two-tone intermodulation
Monolithic transistor array, 1.41	distortion, 8.122
Monotonic, DAC, 3.5, 5.1	Multichip module, 4.7, 4.17
Monotonicity, 2.107, 2.108, 3.89	Multimode cellular chipset, l, 4.22
Montrose, Mark, 9.64, 9.178	Multiplexed Front End, 1.66
Moore, Gordon, 4.26	Multiplexer, 7.80-82, 8.37
Moore's Law, 4.26, 4.30	analog, diagram, 8.28
Moreland, Carl, 3.85, 3.107, 7.111	from Analog Devices, 7.84-85
Moreland, Carl W., 3.107	dual source RGB,
Morrison, Ralph, 9.63, 9.178	using AD8183/AD8185/AD8186/AD8187, 7.81
MOS, 4.13	using three AD8170, 7.81
MOSFET, switch, on-resistance versus signal	fault-protected, 9.99
voltage, 7.63	for dual-supply in-amp, circuit, 9.107
Moss, Brian, 8.191	key specifications, 8.28
Most significant bit, see MSB	MOSES-8 MOSFET Multiplexer, 7.61
Motchenbacher, C.D., 9.63, 9.125	output, 2.73, 3.125
Motherboard, PCB, in mixed-signal system,	settling time, 2.74, 7.73
9.33-34	SHA, dynamic signal input processing, 8.30
Motorola, 1.33	triple dual input, 7.82
Motorola MC1650, 3.49	Multiplexers and analog switches, 7.61-89
Motorola MC1650 dual ECL comparators, 3.65	Multiplexing, 1.4, 8.28-31
MP7684, 8-bit 20-MSPS flash ADC, 1.52	inputs to sigma-delta ADC, 8.36-38
MSB, 2.2, 2.108	Multiplying DAC, 2.108, 3.24-25
error, electron beam coder, 1.12	current-mode R-2R ladder network, 3.25
μ-law, 3.26 Mu-metal:	diagram, 3.25
shielding, 9.20	external voltage reference, 3.24 feedthrough, 2.103
shields, 9.146	Multipoint ground, diagram, 9.34
μA702, monolithic op amp, 4.11	Multistage noise shaping: sigma-delta ADC, 3.126-127
μA709: IC op amp, Fairchild, 3.49	sigma-delta ADC, 3.126-127 sigma-delta converter, 3.126-127
op amp, Fairchild, 1.24	Multisync, 8.86
μA710, IC comparator, 1.41	Multitone spurious free dynamic range, 2.108
μΑ/10, 1C comparator, 1.41 μΑ710/711:	Murakami, J., 3.136
μΔ/10//11.	iviuianaiiii, J., J.130

Murden, Frank, 3.85, 3.106, 3.107, 4.12, 7.111	Noise bandwidth, definition, 2.62
Murphy, Eva, 9.181, 9.197	Noise coupling, mechanisms, 9.143
Musmann, H.G., 3.37	Noise factor, 2.61-68
Muto, Art, 5.88	Noise figure, 2.46, 2.61-68
Muto, Arthur S., 5.88	cascaded, using Friis equation, 2.67
Mutual inductance, 9.17-20, 9.17-21, 9.143	Noise-free code resolution, 2.45, 2.103, 2.106,
within signal cabling, 9.19	2.109, 8.8, 8.11
MxFE, 1.66, 4.25	Noise immunity, 3.103
	Noise power ratio testing, 5.69-70
N	Noise reduction, power supply, 9.81-90
N1 SADC gain error, 3.67	Noise reduction pin, 7.19
N1 SADC linearity error, 3.67	Noise Shaped Video techniques, 8.83
N1 SADC offset error, 3.67	Noise shaping, 3.111, 3.112, 3.116
N1 SDAC offset error, 3.67	Non-coherent sampling:
Nahman, Norris S., 5.25	FFT output signal and harmonic leakage, 5.64
Narrowband, definition, 8.114	leakage, 5.63
Narrowband digital receiver, 8.110-114	Non-Linear Systems, Inc., 1.21
Narrowband GSM receiver bandpass sampling,	Non-monotonic ADC, errors, 2.20
diagram, 8.112	Non-monotonicity, 3.19
National LM361, 3.49	Nonlinear DAC, 3.25-26
National Semiconductor, 1.25, 1.28, 1.33	Nonlinearity, 2.107, 2.110
Naylor, Jim R., 5.25, 5.87	offset, 2.111
NDB6020P, 7.53, 7.56, 7.59	Nonlinearity error, resistor, 9.10
NDP6020P, 7.53-56, 7.59	Nordenberg, H., 9.63
NDP6020P/NDB6020P, data sheet, 7.60	Normal mode, 2.110
NE521, IC comparator, 1.41	Normal mode rejection, see NMR
Near-field interference, EMI path, 9.142	Normalization, 2.2
Neary, Eamon, 8.191	Norton, Mark, 1.47
Neelands, Lewis J., 3.108	Notch filter, 2.59, 2.109
Negative full-scale, 2.104	minimizing analyzer overdrive, 5.68
Neil, Martin, 5.88	Nova Devices, 4.11
Net glitch area, 5.15	Noyce, Robert N., 1.15, 1.19, 4.3-4, 4.9
New TxDAC Generation, 8.157	NPO ceramic capacitor, 9.8
NF, noise figure, 2.61 Nguyen, Khiem, 3.36, 3.137	NPR, 1.49, 2.58-60 ADC testing, 5.69-70
Nicholas, Henry T., III, 8.175-176	measurements, 2.58
Ninke, W.H., 3.37	noise power ratio, 2.46, 2.109, 5.69-70
NMR, 2.110	test setup, 5.69
No missing codes resolution, 2.109, 2.112	NTSC, 5.78-79, 5.81
Noise, 2.97	composite color video line, 8.76-77
capacitance-coupled, reduction, 9.144-145	signal characteristics, 8.77
common-impedance, reduction, 9.143-144	videotape recorders, 8.62
conducted type, 9.82	Numerically controlled oscillator, 8.115,
equivalent input referred, 2.43-44	8.160-161
excess, 9.14-15	Nyquist ADC, 3.111
Gaussian, 2.109	high resolution, 3.112
input-referred, 2.44	Nyquist band, 3.116
input referred, grounded input histogram, 5.44	sigma-delta ADC, 3.115
Johnson, 9.14-15	Nyquist bandwidth, 1.61, 1.64, 2.28-29, 2.38-39
KT/C, 2.109	2.41, 2.63, 2.86-87, 2.98, 3.76, 5.19, 8.32,
magnetically-coupled, reduction, 9.145-146	8.113, 8.120, 8.122, 8.133, 8.160, 8.165
magnetically coupled, reduction, 9.145-146	Nyquist conditions, 2.64
from near-field interference, 9.144	Nyquist criteria, 2.27, 2.27-29, 8.163
peak, 2.109	Nyquist frequency, 2.30, 2.49, 5.48, 6.37,
random, 2.109	8.148-149, 8.164
RMS, 2.109	Nyquist operation, 3.133
signal-to-quantization ratio, 2.39	Nyquist range, 3.23
thermal, 9.14-15	Nyquist rate, 3.110
voltage reference, 7.18-20	Nyquist sigma-delta ADC, 3.112

Nyquist theorem, PCM, 1.7	diagram, 6.11
Nyquist-type ADC, 8.1	gain-of-two, 3.84
Nyquist zone, 2.28-29, 2.33-34, 2.58, 8.112,	input, 9.159-160
8.118, 8.153	rectification, 9.159-160
first, 2.31-32	input bias current, 6.7
frequency translation, 2.32	input common-mode voltage, 6.5
undersampling, 2.31-32	input differential overvoltage protection
Nyquist, Harry, 1.6, 1.17, 2.27, 2.35	network, 9.104
	inverting-mode protection, 9.100-101
0	low bias current FET input I/V converter,
OA-125, modular op amp, Computer Labs, 1.23	block diagram, 9.100
O'Brien, Paul, 6.98, 8.175	in low voltage rail-rail references, table,
Octal DAC, 1.56	7.21
Off-channel isolation, 8.28	noise, antialiasing filter, 6.38
Offset, bipolar, 2.110	noise figure, 2.61
Offset binary code, 2.8-9, 2.14	open-loop gain, 6.9
bipolar 3-bit ADC, 2.9-10	output stages, diagram, 6.9
bipolar 3-bit DAC, 2.9-10	overvoltage, CM protection circuit, 9.94
Offset error, 2.15	performance factors, 6.2
DAC, 5.1, 5.2-4	PNP, PMOS, or N-channel JFET stages, 6.5-6
measurement, 5.31	push-pull output, 6.8
Offset nonlinearity, 2.111	rail-rail input, 6.5-8
Offset spurs, 8.147	diagram, 6.6
Offset step, 2.100, 2.110, 2.111	rail-to-rail,
Offset tempco, 2.115	"almost" output, 6.10
Ohmite Victoreen MAXI-MOX Resistors, 9.23	for single-ended level shifter with gain,
Ohm's law, 9.27	6.13
Oliver, Bernard M., 3.107	and regenerative repeaters, 1.13-16
Oliver, B.M., 1.18, 2.90	RFI rectification sensitivity, tests,
Olshausen, Richard, 3.108	9.155-157
O'Mara, Brian, 8.191	single-supply, grounding, 9.56
On-Chip tools, resources, 8.189	slew rates, 6.8
On-resistance, 8.28	specifications, key specifications, 6.4
On-resistance modulation, 8.28	specifications and requirements, 6.13-15
ON Semiconductor, 6.98	thermal resistance considerations, 9.131
One shot, temperature sensor output mode, 8.15-16	video driver, power dissipation, 9.133
1-dB compression point, 2.54	Op Amp Applications, 1.1, 4.2, 4.19
1N821-1N829 series, Zener references, 7.3	Op Amps Combine Superb DC Precision and Fast
1148, IC switcher, 9.77-78	Settling, 4.19
1408:	OP177, low-noise buffer, 6.15-16
8-bit bipolar process IC DAC, 1.34	OP184/284/484:
IC DAC, 1.41	bias input currents, 6.7
O'Neill, E.F., 1.17	rail-rail input stage, 6.7
Ones complement, code, 2.11, 2.14	OP191/291/491, common-mode voltage, 6.7
Ones-density, 3.117	OP275, data sheet, 6.77
Op amp:	OP1177, low-noise buffer, 6.15
applied feedback, 6.9	Open-loop SHA, 7.102-104
bipolar input, output phase-reversal, 9.103	circuit, 7.103
for buffering DAC output, 6.69	using diode bridge switch, 7.103
dual,	Oppenheim, V., 5.89
driver, 6.29-30	Optical converter, 3.98-99
driving, 6.29-30	ADC, 3.98-99
dual supply, differential DC coupled output,	Optical encoder:
6.72-73	incremental, 3.98
evaluation board,	incremental and absolute, illustration, 3.99
1990s, 9.207	Opto-isolator, 8.14
dedicated, 9.207-209	Optocoupler, 9.112
FET, output phase-reversal, 9.103	architecture, 9.112-113
gain and level-shifting circuits, 6.10-13	Optoisolator, 9.112

OS-CON, organic semiconductor capacitor, 9.83	out-of-circuit, 9.93
OS-CON Aluminum Electrolytic Capacitor	power supply sequencing, protection, circuit,
Technical	9.111
Book, Sanyo, 9.91	protection, 9.93-126
Oscillation, 3.43	CMOS channel protectors, 9.98-99
Oscillator, 3.89	recovery time, 2.46, 2.75, 2.110, 5.77-78
broadband phase noise comparison, 6.90	test waveform, 5.77
phase noise and jitter, 6.86-94	Overvoltage overrange, 2.110
phase noise versus frequency, 6.88	Overvoltage protection, 9.1, 9.93-126
power spectrum, phase noise, 6.86	CMOS channel protector, 9.110-111
quartz crystal, 2.71	CMOS channel protectors, 9.110-111
resolution and input frequency, 6.94	digital isolators, 9.111-116
Wenzel, 6.90-91	ESD models and testing, 9.121-124
jitter calculations, 6.91	in-amps, 9.105-109
Oscilloscope, sensitivity, 5.16	in-circuit, 9.93-116
Oscilloscope measurement, settling time and	out-of-circuit, 9.116-124
glitch impulse area, 5.15-17	Owen, Frank F.E., 2.116, 3.139, 5.90
Othello direct conversion radio, 4.22	
Othello radio, dual band GSM architecture, 8.144	P
Othello radio chipset, 8.140-145	p-epi CB process, 4.12
Virtual-IF transmitter, 8.142	Packaging, data converter, 4.17
Othello radio chipsets, 8.140-145	PADS Software, Advanced CAM Technologies
Ott, Henry, 9.178	Inc.,
Ott, Henry W., 9.24, 9.63, 9.91	9.213
Out-of-circuit overvoltage, protection, 9.116-124	PAL, 5.78-79, 5.81
Out-of-circuit voltage protection, 9.116-124	signal characteristics, 8.77
Output, digital, signal quantization, 2.12	videotape recorders, 8.62
Output amplifier, 1.35	Panasonic, 9.91
Output glitch, 3.21	Parallel ADC, 3.46-53
Output latches, flash converters, 3.70	Parallel latch, 3.21
Output leakage current, 2.106	Parallel plate capacitor, 9.58
Output phase-reversal, fixes, 9.103-104	Parasitic capacitance, 9.11
Output phase-reversal test, 9.102-103	Parasitic coupling, 9.57
Output propagation delay, 2.110	Parasitic diode, 2.94
Output ripple, 2.104	Parasitic effect, 7.37-38
Output ripple voltage, voltage regulator, 9.76	pin socket, 9.205
Output settling time, 2.112	Parasitic inductance, 9.11
Output spectrum, DAC, $\sin(x)/x$ frequency rollout,	Parasitic resistance, 4.15
2.87	Parasitic thermocouple, 9.12
Output voltage phase-reversal, 9.101-102	Parasitics, 1.56, 9.200
illustration, 9.102	capacitor, 9.2
key points, 9.103	copper wire, 9.12
prevention, 9.103-104	Partitioning, 4.21-30
testing, 9.102-103	chip set, progress, 4.28
Output voltage tolerance, 2.110	developments, 4.27-30
Overdrive, settling time, 5.15	necessity, 4.26-27
Overlap bits, 3.64	smart, 4.21-30
Overload, 2.110	diagram, 4.24
Overrange, overvoltage, 2.110	purposes, 4.26-27
Oversampling, 2.40, 3.111, 3.112, 3.115-116,	versus complete integration, 4.21
3.116	Parzefall, F., 3.137
audio DAC, 6.75-76	Pass device, 9.68
baseband antialiasing filter, 2.29	associated tradeoffs, 7.31-35
for digital audio, 8.64	pros and cons, 7.32
interpolating DAC, 2.87-89, 3.23-24	for voltage regulator, types, 7.31
sigma-delta ADC, 3.115	Passive component, 9.1-24
and undersampling, process gain, 2.40-41	capacitor, 9.1, 9.2-8
Overvoltage:	EMI path, 9.146-147
in-circuit, 9.93	error analysis, 9.22

inductance, 9.17-21	Western Electric, 1.5
PCB, 9.1	mathematical foundations, 1.6-8
potentiometer, 9.1, 9.15	mathematics, 1.6
resistor, 9.1, 9.9-16	historical summary, 1.8
versus EMI/RFI, 9.146-147	nonlinear DAC, 3.26
Pastoriza division of Analog Devices, 7.92	Nyquist theorem, 1.7
Pastoriza Electronics, 1.23, 1.24, 1.44, 4.11	patent, 1.6
Pastoriza, James, 1.23, 1.25	patents, 1.8-10
Pastoriza, James J., 1.31, 3.16-17, 3.36	reinvention by Reeves, 1.8
Pattavina, Jeffrey S., 9.63	solid state repeater, Wrathall, 1.15
PCB:	theory, 1.5-6
capacitive noise, 9.59-60	voice channels, copper cable pairs, 1.15
conductor resistance, 9.26-27	PCM DAC, architecture, 3.30
continuous ground plane, 9.50	PCM facsimile system, patent, 3.47
design, 9.25-64, 9.163-164	Peak glitch area, DAC, 2.82
controlled impedance traces, 9.164-166	Peak spurious component, 2.115
EMI/RFI protection, 9.163, 9.163-164	Pease, Bob, 9.125
double-sided,	Pease, Robert A., 9.23, 9.213
from HS-81, 4.5	PECL, 2.2, 6.96
versus multilayer, 9.32-33	standards, 9.184
double-sided versus multilayer, 9.32-33	PECL low-jitter receiver/driver, 6.96
dynamic effects, 9.57-62	Pedestal, 2.110, 2.111, 2.112
Faraday shield, 9.59-60	Pedestal error, SHA, 7.95
floating shield, 9.60	Pedestall, 2.100
grounding, in mixed systems, 9.30-45	Peetz, Bruce E., 5.88
guard pattern, MINIDIP package, 9.55	Pericom Semiconductor Corporation, 9.197
Kelvin feedback, 9.27-28	Personal digital assistants, 8.100
layout, 7.58-59	Peterson, E., 1.18, 3.37, 3.105, 7.111, 8.59
mixed-signal system, 9.45-46	Peterson, J., 1.47, 3.105
layout guidelines, for mixed-signal	Phase accumulator, 8.160
systems, 9.45-46	Phase-frequency detector, 8.144
microstrip transmission line, as controlled	Phase jitter, in sampling clock, 9.39
impedance conductor, 9.48	Phase-locked loop, 6.92-94, 8.145, 8.159
microstrip transmission lines, 9.166-167	design, 6.94
moisture sensitivity, 9.53	Phase noise, 2.71
multilayer, versus double-sided, 9.32-33	definition, 6.86
passive component, 9.1	jitter, calculation, 6.88, 6.90
precision circuit performance, 9.25	oscillator, 6.86-94
signal leads, voltage drop, 9.27-28	sampling clock, sinewave, 6.87
signal return currents, 9.28-30	Phased array radar receiver, 1.23
skin effect, 9.46-48, 9.48	Phillips Laboratories, 3.109
SOIC guard layout, 9.56	Pierce, J.R., 1.18, 2.90
static effects, 9.52-56	Pin count, 4.21
guard layouts, 9.55-56	Pin socket, 9.31, 9.205, 9.207
stray capacitance, 9.58-59	parasitic effects, 9.205
symmetric stripline transmission lines,	Ping-pong high-speed DAC, 3.35
9.167-168	Pipelined ADC, 2.113, 3.61-78, 3.88
trace resistance, 9.27	Pipelined architecture, 3.68
transmission lines, 9.48-49	Pipelining, 2.106, 2.111
PCB design:	Pixel, 8.85
controlled impedance traces, 9.164-166	Planar process, 1.14-15, 4.4
embedded traces, 9.169	Plassche, R.J. van de, 3.136
for EMI/RFI protection, 9.163-164, 9.164	Plassche, Rudy J. van de, 3.107
low impedance reference plane, 9.165 PCM, 3.109	Plassche, Rudy van de, 2.116-117, 3.139, 3.140,
from Bell Labs, 1.11	5.90-91 PLL, grounding DSP, 9.43-44
and Bell System, history, 1.10-13	PMOS:
Bell System work, 1.21	pass device, 7.31-32
invention, 1.5-6, 4.2	transistor current switch, 3.22-23
111vention, 1.5-0, 4.4	mansistor cultetit switch, 3.22-23

PN4117, JFET diode, 9.95	Precision Monolithics, 1.33
PNP/NPN, pass device, 7.31-32	Precision Resistor Co., Inc., 9.23
Pohlmann, Ken C., 8.74	Preston Scientific, 1.24
Pole-splitting, 7.42	Principles of Pulse Code Modulation, 1.2
Pole splitting, 9.71	Printed circuit board, see PCB
anyCAP topology, 7.42-43	Proakis, John G., 5.89
basic topology, 7.42	Process gain, 2.40, 8.113, 8.118
Polycarbonate capacitor, 9.8	ADC, FFT output, 5.55
Polyester capacitor, 9.8	DAC, 5.20
Polypropylene capacitor, 9.8	Process support protection, 9.195
Polystyrene capacitor, 9.8	Programmable gain amplifier, 1.55
Positive emitter coupled logic, see PECL	alternate configuration, 7.78
Positive full-scale, 2.104	poor design, 7.77
Positive-true, 2.104-105	Prototyping, 9.199-213
Potentiometer, 2.2, 9.15	analog, key points, 9.199
digital, 6.48, 8.49-58	and breadboarding, 9.199-213
3-bit CMOS string DAC, diagram, 8.50	deadbug, 9.200-202
passive component, 9.1	milled PCB, 9.203-205
trimming, 9.15	PCB design, 9.206
Poulin, Michael, 8.74, 8.104	solder-mount, 9.202-203
Poulton, K., 8.157	summary, 9.212
Power Consideration Discussions, 9.139	Pseudo-color, 8-bit RGB graphics system, 8.87-88
	Pseudo-Gray code, 1.13, 2.7, 3.48
Power conversion efficiency, 9.65 Power-down, ADC status, 3.41	
	PSpice diode models, 9.95-96
Power line decoupling, resonant circuit, 9.20	PSRR, 2.111
Power measurement, basics, 8.22-23	PTM, constant pulse amplitude, 1.8
Power meter, ADC application, 8.22-25	Pulldown resistor, 6.8
Power-on circuitry, 6.47	PulSAR family, SAR ADCs, 3.53
Power plane, 9.30-32	PulSAR series, 3.60
Power supply:	Pulse code modulation:
analog, 9.65-91	digital audio, 8.63
regulation priorities, 9.65	see also PCM
analog ready, 9.87	Pulse current response, 7.22-24
analog systems, 9.65-91	Pulse Engineering B4001 choke, 9.162
conditioning, summary, 9.90	Pulse Engineering, Inc., 9.178
filter, ferrite, 9.86-87	Pulse time modulation, see PTM
linear IC regulation, 9.66	Pulse-width-modulated, pulse control, 3.88
low dropout regulator, 9.70-74	Pulse width modulated, see PWM
noise, 9.65	PWM, pulse-width-modulated, 3.28-29, 3.88
reduction and filtering, 9.81-90	PWM DAC, 3.28-29
noise reduction and filtering, 9.81-90	PWM pulse, in Reeves' ADC and DAC, 1.10
bypass/decoupling, 9.89-90	
capacitor, 9.82-85	Q
card entry filter, 9.87-88	QS3384 data sheet, Integrated Device Technology
ferrite, 9.86-87	(IDT), Inc., 9.197
rail bypass/distribution filter, 9.88	QSPI, serial interface, 6.51
pass device, 9.66-68	Quad-slope architecture, in ADC, 3.97
regulator with adjustable voltage ICs, 9.68-69	Quad-slope converter, 2.111
switching, noise, 9.81-90	Quad switch, 3.16-17
voltage regulator, 9.66-68	DAC with thin film resistor network, diagram,
Power-supply rejection ratio, see PSRR	1.26
Power-up sequencing, 9.195	Quadrature modulation, 8.145
Poynton, Charles, 8.104	Quadrature signal processing, 8.38
Pratt, Bill, 5.87	Quality factor, inductor, 9.21-22
Preamplifier, 3.52-53	Quantization:
Precision analog microcontroller, 1.63, 8.177-191	error, 2.14, 2.38, 2.111
Precision measurement:	root-mean-square, 2.38
sensor conditioning, 8.1-26	sigma-delta ADC, 3.115
sigma-delta ADC, applications, 8.2-6	table, 2.13

uncertainty, 2.4, 2.14, 5.28	Recirculating subranging ADC, 3.74
using delta modulation, 3.110	Recovery time, DAC, 2.81
Quantization noise, 2.37-45, 2.59-60, 2.72,	Rectangular, window function, 5.58
3.119, 8.126, 8.165-166	Redcor Corporation, 1.23-24
frequency content, 2.41	Redmond, Catherine, 9.181, 9.197
function of time, 2.38	Redundant bits, 3.64
sigma-delta ADC, 3.115	Reeves Instruments, 1.24
Quantizing uncertainty, 2.97, 2.111	Reeves, A.H., 3.28, 3.37, 7.91, 8.59
Quartz crystal oscillator, 2.71	5-bit counting ADC, 3.88
QuickStart, MicroConverter development tool,	Reeves, Alec Harley, 1.8-10, 1.18, 3.105, 4.9,
8.186	7.111, 8.74 Page Also Hentley 4.2
QXGA, electronic display standard, 8.86	Reeves, Alec Hartley, 4.2
D.	Reference noise:
R	bandwidth, 7.18
R-2R DAC, 3.12-18	performance, circuit, 7.20
3-bit binary, 3.26	requirements, table, 7.19
resistor ladder network, diagram, 3.12	Reference white, 1.53
R-2R ladder network, trimming, 3.19	Reflected binary code, 1.13, 3.47
Rabbits, 3.45	Reflection, off shielding material, 9.149
ADC, 2.76	Reflective switch, 7.79
Rabiner, L.R., 5.89	Regeneration time constant, 3.45
Rack, A.J., 3.30	Regular pulse excitation, 8.138
Radiation, Inc., 1.23	Regulated output charge-pump voltage converter,
Radio frequency interference, see RFI	9.75-77
Radix-2 algorithm, 5.54	Regulator controller, differences, 7.52-53
Rail bypass/distribution filter, 9.88	Reichenbacher, P., 9.23, 9.63
diagram, 9.88	Rempfer, William C., 9.63
power supply noise reduction and filtering,	Repetitive code patterns, ADC testing, 5.41
9.88	Residue amplifier offset error, 3.67
Rainey, Paul M., 1.5, 1.17, 3.9, 3.36,	Residue output, 3.78
3.47, 3.104	Resistor:
Raltron Electronics Corporation, 6.98	aging, 9.14
RAM-DAC, high-speed video, 1.49	comparison, chart, 9.16
RAM-DAC family, 1.57	comparisons, 9.16
Ramachandran, R., 3.106	discrete, 9.16
Ramirez, R.W., 5.89	excess noise, 9.14-15
Ramp run-up ADC, 3.89-90	failure mechanisms, 9.14
diagram, 3.90	mismatched, error source, 9.9
Ramp voltage, 3.88	network, 9.16
Random noise, 2.109	parasitics, 9.11-12
Rappaport, Andy, 9.23	passive component, 9.1
Raster scan, 8.86	power dissipation, error source, 9.10
Ratiometric, 2.111	ratiometrical precision, 4.11
Ratiometric converter, 2.111	temperature-related errors, 9.11
Raytheon Computer, 1.23-24	thermoelectric effects, 9.12-14
RCD Components, Inc., 9.23	types, 9.9
RDACs, 9.15	voltage sensitivity, 9.14
RDC:	Resistor noise, 2.43
resolver-to-digital converter, 3.91, 3.99,	Resistor-transistor-logic, see RTL
3.101-102	Resolution, 2.112
diagram, 3.102	DAC, 5.1
tracking, 3.103	no missing codes, 2.109, 2.112
type-2 servo loop, 3.103	Resolver, 2.2
Reay, Richard J., 7.60	diagram, 3.100
Receive signal processing, in wideband receiver,	Resolver-to-digital converter, 3.91, 3.99-103
diagram, 8.115	ADC, 3.99-103
Receive signal processor, 8.107	Resonant circuit, power line decoupling, 9.20
Receiver design, 8.109	Resonator, replacing integrator, for bandpass
digital processing at baseband, 8.109-110	sigma-delta ADC, 3.132

Retrace factor, 8.86	Sampled-aperiodic signal, in FFT, 5.52
Reverse junction breakdown, 9.104	Sampled data system:
RF transformers, noise figure improvement, 2.66	block diagram, 2.23
RFI, rectification, sensitivity, 9.155	fundamentals, 2.1-117
RFI rectification, 9.155	Sampled-periodic signal, in FFT, 5.52
device susceptibility, 9.156	Sampling:
op amp and in-amp,	bandpass, 2.31-32
sensitivity, summary, 9.157	harmonic, 2.31-32
sensitivity, summary, 5.157	IF, 2.31-32
proportional to interfering signal amplitude,	Nyquist criteria, 2.27-29
9.158	SHA need, 2.24-26
reduction, using op amp and in-amp circuits,	theory, 2.23-25
9.158	Sampling ADC, 2.112
RFI Rectification Test Configuration, 9.156	Sampling clock, 2.112, 6.83-98
Rheostat, 8.50	ADC input, 3.41
Rich, Alan, 9.63, 9.178	circuitry, grounding, 9.38
Right-justified data, 2.112	differential,
Ringing, 9.17-20, 9.20	driving input, 6.995-997
voltage reference, 7.23	input driving, 6.95-97
Risetime, DAC, 5.16	distribution, digital to analog ground planes,
Ritchie, G.R., 3.37	diagram, 9.40
RMS input noise, 2.45	encode, 2.103
RMS jitter:	generation, 6.83-98
calculation, 6.89	grounding, 9.38-40, 9.38-41
versis analog input frequency, ENOB, 6.85	"hybrid" generator, 6.94-95
RMS noise:	jitter, 2.72, 6.83
aperture jitter, 5.72	effect on ADC SNR, 9.39
measurement, 5.75	effects, 2.70
RMS quantization error, 2.38	low jitter single-ended to differential,
RMS quantization noise, 3.115	diagram, 6.96
Roberts, Neil, 6.98	phase jitter, 9.39
Robertson, Dave, 4.19, 4.21, 8.156	phase noise, sinewave, 6.87
Robin, Michael, 8.74, 8.104	pulsewidth/duty cycle, 2.103
Rohde & Schwarz, Inc., 5.25	ratio to input frequency, SFDR, 2.42
Rohde, Ulrich L., 6.98, 8.175	ratio to output frequency on 12-bit DAC SFDR,
Rollenhagen, D.C., 5.87	8.166
Root-mean-square, see RMS	summary, 6.97
Rorabaugh, C. Britton, 5.89	Sampling frequency, 2.112
Ross, Ian M., 4.9	Sampling rate, 2.108
Rotating transformer, 3.100	criteria, 1.5
RS-232, 9.121	Sampling system, simultaneous, 8.38-40
RTL, in anti-ballistic missile system	Sampling theory:
electronics, 1.23	basics, 2.23
Ruscak, Stephen, 8.156	discrete time sampling, 2.24
Ruscak, Steve, 2.90	finite amplitude resolution due to
Rutten, Ivo W.J.M., 3.107	quantization, 2.24
	Samueli, Henry, 8.175-176
S	Sanyo, 9.91
S/N+D, see SINAD	SAR, 2.114
"S" series surface mount current sensing	logic function, implementation, 3.59
resistors, 7.60	SAR ADC, 3.11, 3.53-61, 3.91, 6.50
SADC, subranging ADC, 3.64-65, 3.67	algorithm, 3.57
Sallen, R.P., 3.78	algorithm analogy, 1.27
Sample-and-hold, see SHA	with capacitive binary-weighted DAC, 3.12
Sample-and-hold amplifier, see SHA	development summary, 1.28
Sample rate converter, 8.70-73	diagram, 1.28
concepts, 8.71	dynamic transient loads, 7.23-24
Sample-to-hold offset, 2.100, 2.111, 2.112 Sample-to-sample variation in CCD 8 97	fundamental timing, diagram, 3.53-54 by Schelleng 3.58
DATIONS TO SAMOR VALIATION IN CALL A 97	DV OCHEHERY 3.36

single-supply, resolution/conversion times, table, 3.60	function of time constant, 2.75 measurement, 5.76
superposition, 5.34	oscilloscope, 5.15
switched capacitor DAC, 3.55	multiplexer, 2.74
terminology, 3.57	output, 2.112
timing, 3.54-55	overdrive, 5.15
SAR logic IC, invention, 1.25	Settling time error, SHA, 7.95
SAR MicroConverter products, 8.178	74ACTQ240, Fairchild driver, 9.172
SAR register logic IC, invention, 1.25	74FCT3807/A, IDT driver, 9.172
Sauerwald, Mark, 9.63	7400-series TTL logic, 4.11
Sawtooth error waveform, 5.32-33	7400TTL:
Scaled reference, 7.20-22	transistor-transistor-logic, 1.23
Schafer, R.W., 5.89	RCA, 1.24
Scharf, Brad W., 4.19	SFDR, 1.49, 1.55, 2.46, 2.51-53, 2.84, 2.113,
Schelleng, J.C., 3.57-59	3.32, 5.17
Schelleng, John, 3.9-10	12-bit DAC, sampling clock and output
Schelleng, John C., 3.36, 3.105	frequency, 5.22
Schindler, H.R., 3.104	ADC, 2.41
Schmid, Hermann, 2.116, 3.139, 5.90	clock frequency, worst harmonic, 5.24
Schmitt trigger, 8.37	DAC, 2.83-86
Schoeff, John A., 3.37	measurement, 2.85
Schoenwetter, Howard K., 5.25	data converter, 6.3
Schottky diode, 1.24, 1.41, 2.94, 5.16, 5.76,	measurement in DAC, 5.19
6.96-97, 7.88, 7.103, 9.34, 9.42-44, 9.94-96,	measurement with analog spectrum analyzer,
9.103, 9.108-109	2.86-87
Schownwetter, H.K., 5.87	multi-tone, 2.56-57, 2.108
Schreier, Richard, 3.138	two tone, 2.115
Schultz, Thomas W., 8.191	SHA, 1.55, 2.24-26, 7.91
Scott-T transformer, 3.101	acquisition time, 8.33
SDA6020, 6-bit 50-MSPS flash ADC, 1.52	in ADC, FFT processing gain, 2.43
SDC, synchro-to-digital converter, 3.91	amplifier, function, 2.24-26
SDC1700, synchro-to-digital converter, 1.46	aperture delay, 7.96
Sears, R.W., 1.11, 1.18, 2.22, 3.47, 3.104	aperture delay time, 7.96
SECAM, 8.77	aperture jitter, 7.97
Segmentation, 3.18-23	aperture uncertainty, 7.97
Segmented ADC, 8.59	applications, 7.108-110
Segmented current-output DAC, diagrams, 3.21	architectures, 7.102-105
Segmented DAC, 3.18-23, 8.59	open-loop, 7.102-103
Segmented unbuffered string DAC, 3.20	basic operation, 7.93-94
Seitzer, Dieter, 3.107	circuit, 7.91-111
Selector, 3.57, 3.59	DAC deglitcher, 7.109
Semiconductor, junction temperature, 9.127	dielectric absorption, 7.100, 9.4
Semiconductor process, range, diagram, 4.28	differential switching, 7.104
Sensitivity, 8.119	driving ADCs, 7.108
Sensor, conditioning, 8.9	droop error, 3.67
Sequential coder, 1.25, 3.57	effective aperture delay time, 7.96
Serial bit-per-stage binary ADC, 3.78-87	error sources, 7.94
Serial data interface, 8.81	function, 2.25
Serial-Gray converter, 3.81	hold mode, 2.25
Serial output, 2.112	hold mode specifications, 7.99-102
Servo-loop tester, 5.36	internal circuit, for IC ADCs, 7.104-108
computer-based, 5.36-38	minimizing DAC glitches, 7.108
diagram, 5.37	multiple,
Servo-loop transition test, ADC, 5.35-36	data distribution system, 7.110
Settling time, 2.46, 2.115, 3.80, 5.16-17,	for simultaneous sampling, 7.109
5.76-77	output, jitter effects, 7.98
ADC, 2.112, 5.76-77	in pipelined delay, 7.110
DAC, 2.81, 2.81-82, 2.112, 5.13, 5.13-14	sample mode, 2.25
full-scale, definitions, 5.13-14	in sampling, 2.24-26

in SAR ADC, 3.53	benefits, 8.1
settling time error, 3.67	timeline, 3.112
specifications, 7.94	architecture timeline, 1.30
stray capacitance, 7.101	bandpass, 3.132-133
switched capacitor CMOS, circuit, 7.106	basics, 3.114-120
synchronous sampling clock delay, 7.97	characteristics, 3.115
track mode specifications, 7.94-95	on chip features, 8.2
bandwidth, 7.94	choice of name, 3.113-114
distortion, 7.95	CMOS process, 4.15
gain, 7.94	decimation, 3.114
noise, 7.95	for digital audio, 8.64
nonlinearity, 7.94	digital filter, 2.74, 3.114, 3.125-126
offset, 7.94	in digital temperature sensor, 8.14
settling time, 7.95	first-order,
slew rate, 7.95	diagram, 3.117
track-to-hold mode specifications, 7.95-99	modulator, idling patterns, 3.122
versus THA, 2.25	high-density digital VLSI, 3.114
virtual ground design, guard shield, 7.100	high resolution, 3.127-131, 8.1
waveforms, 7.96	applications, 8.3
definitions, 2.69	driving, 6.15-16
SHA circuit, 7.91-111, 7.93	high speed clock, 9.30
applications, 7.108-111	linear, 8.59
architectures, 7.102-105	modulator, 3.117
basic operation, 7.93-94	ENOB, 3.120
history, 7.91-93	frequency domain linearized model, 3.119
hold mode specification, 7.99-102	quantization noise shaping, 3.120
hold-to-track transition specifications, 7.102	repetitive bit pattern, 3.122
internal circuits, 7.105-108	waveforms, 3.118
internal timing, 7.96	modulator loop, higher order, 3.123
track mode specifications, 7.94-95	multi-bit, 3.123-125
track-to-hold mode specifications, 7.95-99	multiplexing inputs, 8.36-38
Shadow mask:	oversampling, 3.114
binary-coded, 1.12-13, 2.7	performance,
electron beam coder, for binary and Gray code,	chop mode disabled, 8.183
1.12	normal, 8.182
Shannon decoder, 3.31	precision measurement, 8.2-6
Shannon-Rack decoder, 1.11, 3.31	quantization noise shaping, 3.114
Shannon, C.E., 1.17, 1.18, 2.35, 2.90, 3.30	second-order,
Shannon, Claude, 2.27	modulator:
Shannon, Claude E., 3.107	block diagram, 3.120
SHARC DSP, 9.170, 9.174-175	idling patterns, 3.122
bi-directional transmission, source	single and multibit, 3.111
termination, 9.175	SNR versus oversampling, loops, 3.121
Sheet resistance, calculation, 9.26	switched capacitor input, circuit, 7.22
Sheingold, Dan, 1.33-34, 1.47, 2.1, 2.22, 2.91,	synchronous voltage-to-frequency converter,
2.97, 2.116, 3.108, 3.112-113, 3.139, 4.2, 5.1,	3.118
5.25, 5.87, 5.88, 5.90, 7.26	Sigma-delta architecture, summary, 3.134-135
5.25, 5.67, 5.66, 5.90, 7.20 Shielding, 9.1	Sigma-delta converter, 3.109-140
absorption loss, 9.149	ADC basics, 3.114-120
effectiveness, calculation, 9.150	bandpass, 3.132-133
magnetic field, 9.20	DAC, 3.133-134
review, 9.148-151	high resolution measurement ADC, 3.127-131
Shockley, W., 1.19, 4.9	higher order loop, 3.123
Shockley, William, 1.15, 4.3-4	history, 3.109-114
Shunt, voltage reference, 7.2	idle tone, 3.121-123
Siemens, 1.52	multibit, 3.123-125
Sigma-delta ADC, 2.112	multistage noise shaping, 3.126-127
advantages, 3.112	Sigma-delta DAC, 3.133-134
architecture, 3.112	CMOS process, 4.15

for digital audio, 8.64	Single-slope conversion, 2.113
interpolation filter, 3.23	Skew glitch, 3.20
linear, 8.59	Skin effect, 9.46-48, 9.49
schematic, 3.133	PCB, 9.46-48
Sigma-delta MicroConverters, 16-/24-bit, 1.65-66	Skinny connection, 9.32
SigmaDSP family, audio DACs, 8.68	Slattery, Colm, 8.175
Sign-magnitude code, 2.11, 2.14	Sleep, 6.48-50
Sign-magnitude converter, 2.14	ADC status, 3.41
Signal:	Slew rate, 2.113
aliasing, 2.27	Slewing time, DAC, 2.81
in FFT, 5.52	Slope clipping, 3.110
undersampled, Nyquist zone, 2.34	Small signal bandwidth, 2.50
Signal return current, 9.28-30	Smith, B., 3.37
in PCB, 9.28-30	Smith, B.D., 1.28, 3.9-10, 3.13, 3.26, 3.36,
Signal-to-noise-and-distortion ratio, see SINAD	3.59, 3.81, 3.105, 3.106
Signal-to-noise ratio, see SNR	Smith, B.K., 3.9
Signal trace routing, 9.18	Smith, Bruce K., 3.36
correct, 9.19	Smith, D.B., 3.78
Signetics, 1.33	Smith, Steven W., 5.89
Signetics 521, 3.49	SMPTE 125M, 8.104
Sikimoto, T., 3.37	SMPTE 170M, monochrome television standard,
Silence descriptor, 8.138	8.76
Silicon germanium, data converter role, 4.17	SMPTE 244M, 8.104
Silicon transistor, 4.4	standard for NTSC signals, 8.78
Siliconix PAD/JPAD/SSTPAD series low leakage	SMPTE 259M, 8.104
Pico-amp diodes, Vishay/Siliconix, 9.125	standard for NTSC signals, 8.78, 8.81
Simpson, Chester, 7.60	SMPTE 292M, 8.104
Simultaneous sampling system, 8.38-40	Snelgrove, M., 3.138
SINAD, 1.49, 1.55, 2.46, 2.103, 2.113, 5.28	SNR, 1.49, 1.55, 2.72, 5.17, 5.28
calculation from SNR and THD, for DAC, 5.21	ADC,
data converter, 6.3	aperture and sampling clock jitter effects,
FFT, noise and distortion, calculation, 5.64	2.71
5.04 FPBW, 2.99	sampling clock jitter effect, 9.39 and broadband aperture jitter, 6.83
signal-to-noise-and-distortion, 2.46, 2.48-50,	DAC, 2.83-86
2.103, 2.113	spectrum analyzer, 5.20
Sinewave, probability density function, 5.42	data converter, 6.3
Sinewave converter, 8.72	degradation from jitter, 9.39
Sinewave curve fitting:	digital audio, 8.60-61
for ADC ENOB, 5.49-50	FFT, values, 5.66
test setup, 5.50	measurement with analog spectrum analyzer,
Sinewave generator, 5.82	2.86-87
Sinewave histogram DNL and INL, for ADC,	sampling clock jitter effects, 7.98
5.43-44	signal-to-noise ratio, 2.39, 2.46, 2.48-50,
Sinewave input, low-distortion, 5.66-68	5.17
Singer, Larry, 2.90	theoretical, 2.39
Single-carrier narrowband system, 8.122	total, equation, 2.72-73
Single-carrier receiver, chart, 8.131	without harmonics, 2.113
Single-ended current-to-voltage conversion,	Soakage, 9.3
6.73-75	Socket, 9.200, 9.205-206
Single-ended single-supply DC-coupled level	low-profile, 9.205
shifter, diagram, 6.12	problems, 9.205-206
Single-ended to differential conversion, using	Sockolov, Steve, 9.23
RF transformer, 6.97	Sodini, C.G., 3.137
Single loop upconversion, 8.170	Softcell family, 8.134, 8.136
Single NPN, pass device, 7.31-32	SoftFone chipset, 8.140-145
Single PNP, pass device, 7.31-32	SoftFone radio chipsets, 8.140-145
Single-pole switch, 3.4	Software radio, 8.107-145
Single-shot mode, 6.49-50	ADC dynamic range, dither, 8.126-131

evolution, 8.108	SHA, 7.101
IF sampling, 8.107-157	Stray inductance, 9.17
receiver, digital baseband processing,	String DAC, 3.4, 3.18
8.109-110	architecture for digital potentiometer, 8.49
SOIC guard layout, 9.56	INL, 5.11
Solder-Mount:	INL trimming, 3.6
breadboarding system, 9.202	no superposition, 5.10
prototyping, 9.202-203	resistors, 3.6
board, 9.203	unbuffered, segmented, 3.19-20
Solid-state:	Strip inductance, 9.17
key developments, 1.15, 4.4	Stroud, Tim, 8.105
and op amp, history, 1.13-16	Submicron CMOS, 4.14
Solomon, Jim, 7.60	Subranging ADC, 2.113, 3.11, 3.61-78, 3.88
Sonet/SDH OC-48, using AD8152, 7.83-84	Subranging converter, 2.104
SOT-223 packaging, reduction, 7.51	Substrate PNP, 4.11
Souders, T. Michael, 5.88	Successive approximation, see SAR
Souders, Thomas, 5.87	Superheterodyne, 8.108, 8.142-143
Southern and F-Dyne film capacitors, 9.23	
	Superhomodyne, 8.142-144
Span, 2.104 Spankle and a 1.52, 2.76, 80, 2.45	Superposition:
Sparkle code, 1.52, 2.76-80, 3.45	DAC,
ADC, 2.76-80	bit errors, 5.5
SPDT switch, 3.3	DNL and INL, 5.6
Specification MIL-PRF-123B, 9.23	Supply range, 7.17-18
Specification MIL-PRF-19978G, 9.23	Supply voltage, 4.21
Specifications, definitions, 2.97-117	shrinking, effects, 4.27
Spectral leakage, ADC testing, 5.55	Susskind, Alfred K., 2.116, 3.139, 5.90
Spectral output, code-dependent glitches, effect,	SVFC:
2.84	clock frequency, 3.94
Spectrum:	nonlinearity, 3.95
in-band SFDR, 2.51	problems, 3.94
out-of-band SFDR, 2.51	quantization, 3.95
Spectrum analyzer:	synchronous VFC, 3.93-94
DAC distortion and SNR measurement, 5.20	temperature stability, 3.94
sensitivity to input overdrive, 5.68	waveforms, 3.95
Speech decoder, 8.136	SVGA, electronic display standard, 8.86
Speech encoder, 8.136	Swanson, E.J., 3.137
SPI, serial interface, 6.51	Swart, Leland K., 3.36
Sprague, Clarence A., 3.36	Sweetland, Karl, 3.36, 3.137
Spread-spectrum, 8.116	Switch:
Spurious free dynamic range, 2.113, 5.17	from Analog Devices, 7.84-85
Stability, 2.113	CMOS,
Staffin, R., 3.104	1-GHz, 7.78-79
Staffin, Robert, 3.48	application, 7.73-78
Staircase, 2.113	basics, 7.62-64
Staircase generator, 5.82	error sources, 7.65-73
Standard IPC-2141, 9.178	CMOS and DMOS, 1.41
Standby mode, 6.48, 6.50	digital crosspoint, 7.83-84
ADC status, 3.41	hold mode, 6.19-20
Staniforth, Alan, 9.178	track mode, 6.19-20
Star ground, 9.31, 9.34	video, and multiplexers, 7.80-82
Stata, Ray, 1.24, 1.33, 1.47, 4.11	video crosspoint, 7.82-83
Static error, DAC, measurement methods, 5.1	Switch capacitance, 7.70
Status, 2.101	Switches and multiplexer, CMOS process, 7.62
Stewart, James W., 8.191	Switching regulator, 9.79-80
Stop, Russell, 3.107, 7.111	analog ready, 9.82
Straight binary, coding scheme, 2.14	capacitor, 9.82-85
Strain gage, 2.2	peak amplitudes, 9.82
Stray capacitance, 9.58-59	power supply noise, reducing, 9.82
PCBs, 9.57-59	Switching time, 2.114, 8.28

D + G • 01	00 . 0.115
DAC, 2.81	offset, 2.115
Switching transients, charge-balance VFC, 3.93	Temperature, capacitor, 9.6
SXGA, electronic display standard, 8.86	Temperature coefficient, 2.113, 2.114
Symmetric stripline, 9.167	Temperature measurement, digital, direct, 8.14-19
capacitance, 9.168	Temperature retrace, resistor, 9.11
transmission line, 9.167-168	Temperature sensor, microprocessor substrate,
formation, 9.168	8.19-22
Sync, 1.53	10 percent white, 1.53
Synchro, 2.2, 3.99-103 diagram, 3.100	Testability, 4.22
	Tewksbury, Stuart K., 5.87
Synchro ADC, 3.99-103 Synchro-to-digital converter, 3.91	Texas Instruments, 1.15, 1.24, 4.3-4 THA, 2.25
Synchronous sampling clock delay, SHA, 7.97	for deglitching DAC, 3.32
Synchronous VFC, 3.91, 3.93	Thandi, Gurgit, 9.91
System Management Bus, 8.21	THD, 2.46-48, 2.106, 3.32, 5.17, 5.28
System Management Bus, 6.21	data converter, 6.3
T	THD+N, 2.46-48, 2.106, 5.17
T-1 carrier system, Bell Labs, 1.16	data converter, 6.3
T-Carrier digital transmission system, 8.137	digital audio, 8.60-61
T-Tech, Inc., 9.213	Theoretical SNR, jitter, 6.84
Tadewald, T., 9.23, 9.63	Thermal basics, 9.127-128
Talambiras, Robert P., 1.31, 3.36, 3.105, 3.107	Thermal Coastline packaging, 7.39, 7.48-49
Tan, Nianxiong Nick, 2.117, 3.140, 5.91	Thermal EMF, 9.12
Tan, N.N., 8.157	Thermal management, 9.127-139
Tantalum and Ceramic Surface Mount Capacitor	basics, 9.127-128
Catalog, 9.23	Thermal noise, 8.124, 9.14-15
Tantalum capacitor, 9.8	Thermal rating curves:
Tantalum Electrolytic and Ceramic Capacitor	for BATWING and PSOP3 packages, 9.131
Families, 9.91	for standard and ADI Thermal Coastline 8-pin
Tant, M.J., 2.90	SOIC pppackages, 9.130
Tartaglia, mathematician, 3.56	Thermal relationships, table, 9.128
TDC-1007J:	Thermal resistance, 9.127
8-bit 30-MSPS video-speed flash ADC, 1.40,	considerations, 9.131
1.45, 1.52	junction and ambient air, 9.128
TRW LSI Division, 3.49	Thermal tail, 2.115
TDC-1014J:	Thermal turbulence, 9.14
6-bit 30-MSPS video-speed flash ADC, 1.40,	Thermocouple, 2.2
1.45	conditioning, 8.12-14
TRW LSI Division, 3.49	effect, 9.12
TDC-1016J, 6-bit 30-MSPS flash ADC, 1.40, 1.52	EMF, effects, diagram, 9.13
TDC-1048, 8-bit 30-MSPS flash ADC, 1.52	measurement design, 8.13-14
TDM, telegraph, 1.4	resistor, diagram, 9.13
Teal, Gordon, 4.3-4	type K, conditioning, 8.12-14
Teflon capacitor, 9.8	Thermoelectric effect, 9.12-14
Tektronix, Inc., 5.25	Thermometer DAC, 3.6-9
Teledyne Philbrick, 1.33	3-bit, in current-output segmented DAC, 3.21
Telegraph, electric, history, 1.3	current output, diagram, 3.7
Telegraph multiplexing system, 1.3	high speed, current outputs, 3.8
Telephone:	Thevenin impedance, 9.172
cellular, handsets, 8.136-139	Thick film resistor, 9.16
most significant communication event, 1.3	Thin film laser trimming, sigma-delta ADC, 3.124
NPR, 5.69	Thin-film resistor, 9.16
patent, 1.4	in in-amp, 9.105
Television, standard interlace format, 8.75	process, 4.11-12
Telmos, 1.52	Thin-film wafer trimmed resistor, 4.12
Temes, Gabor C., 2.116, 3.137, 3.139, 5.90	Threshold, 2.104
Tempco:	THS-0025, 25-ns SHA, 1.46
gain, 2.114	THS-0300, 300-ns SHA, 1.46
linearity, 2.114	TIA/EIA-644-A Standard, 9.179

Time division multiplexing, see TDM	Trimpot, 9.15
Time-interleaved ADC:	Triple-slope architecture, in ADC, 3.97
digital post-processor, 8.146-155	TRW LSI Division, 1.33, 1.40, 1.45, 1.52
matching requirements, 8.150	TTE, elliptic filters, 2.30
Time interleaving, 8.146, 8.154	TTE, Inc., 2.35
Time-skew, 2.102	TTL, 1.41, 2.2
Timing, data converter, 2.95-96	standards, 9.184
TLM1070, 7-bit 20-MSPS flash ADC, 1.52	Tukey, J.W., 5.89
TMP05/TMP06:	Tunnel diode, 3.48
data sheet, 8.26	Turney, William J., 3.138
digital output sensor, 8.14-17	Two-converter interleaved FFT plot, 8.149
circuit, 8.15	Two-converter time-interleaved 12-bit 400-MSPS
output format, 8.15	ADC, 8.148
TMP06, digital output sensor, interfaced to	Two-tone intermodulation distortion, 2.46, 2.53
microcontroller, 8.16	Two-tone SFDR, 2.115
Tolerance, 7.15, 7.18	2N5457, JFET diode, 9.95-96
capacitor, 9.6	2502:
Total harmonic distortion, see THD	8-bit serial SAR IC, 1.41
Total harmonic distortion plus noise, see THD+N	Advanced Micro Devices and National
Total unadjusted error, 2.115	Semiconductor, 1.25
Touchscreen:	2503:
construction, 8.100	8-bit serial expandable SAR IC, 1.41 Advanced Micro Devices and National
digitizer, 8.100-103 voltages, absolute and ratiometric	Semiconductor, 1.25
measurements, 8.101	2504:
Touchscreen digitizer, 8.100-103	12-bit serial expandable SAR IC, 1.41-42
Trace, embedding, 9.169	Advanced Micro Devices and National
Track-and-hold, see THA	Semiconductor, 1.25
Track-and-hold circuit, 7.91	Twos complement code, 2.9, 2.11, 2.14
Track mode distortion, 7.101	TxDAC, 1.57, 1.58, 4.25, 6.66, 6.70
Tracking ADC, 3.90-91	clock-rate dependent power dissipation, 9.138
Transfer function:	CMOS process, 4.15
data converter, graphs, 2.14	communications, 5.13, 5.18
folding stage, 3.81	current switching, 3.22
Transformer coupling, 6.24	interpolating, oversampling, block diagram,
Transient error, SHA, 7.95	2.89
Transient response, 2.73, 2.73-75, 2.115, 8.33	testing, 5.46
Transient voltage suppressor, 9.109, 9.124	in wideband radio, 8.132
Transistor, germanium, invention, 1.14	Type 5MC Metallized Polycarbonate Capacitor,
Transistor-transistor logic, 2.2	Electronic Concepts, Inc., 9.91
Transmission line, 9.48-49, 9.165	Type EXC L leadless ferrite bead, 9.91
clock distribution, 9.174	Type EXCEL leaded ferrite bead, 9.91
PCB, as controlled impedance conductor, 9.48	Type HFQ Alumninum Elecrolytic Capacitor,
single, end termination, 9.175	Panasonic, 9.91
symmetric stripline, PCB, 9.167-168	Type K thermocouple, 8.12-14
termination guidelines, 9.169-170	
Transmission Systems for Communications, 1.17	
Transmit DAC, 1.58	U
TransZorb, 9.124	U-matic, videotape recorders, 8.62
clamp, 9.106	Undersampling, 2.31-32
General Semiconductor, Inc., 9.126	antialiasing filter, 2.33-34
Travis, Bill, 8.191	and oversampling, process gain, 2.40-41
Trench-isolation, 9.111	Understanding Common Mode Noise, 9.178
CMOS switch, 7.89	Unipolar converter, 2.14-15
Triboelectric effect, 9.117	zero TC, 2.114
TrimDAC, 1.58, 9.15 Trimming 4.8, 4.11	UNIVAC computer, invention, 1.21
Trimming, 4.8, 4.11 ADC, 3.39	Upmall, 8.156 UXGA, electronic display standard, 8.86
laser wafer, 4.12	OAOA, electronic display standard, 0.00
10001 110101, 1.12	

	Vocoder, 1.10
V	Voice activity detector, 8.138
Vacuum tube:	Voiceband ADC, sigma-delta, 8.139
data converter, 4.1-3	Voiceband codec, 8.65, 8.139
invention, 4.1	Voiceband digital audio, beginnings, 8.59
patent, 1.13	Voiceband telcom digital audio:
and op amp, history, 1.13-16	diagram, 8.60
Vacuum tube binary DAC, 3.9	standards, 8.60
Van de Grift, Rob E.J., 3.107	Voldicon VF7, 8-bit 1-MSPS sampling ADC,
Van de Plassche, R.J., 3.136	Adage,
Van de Plassche, Rudy, 2.116-117, 3.139, 3.140,	1.24
5.90-91	Voltage-adjustable regulator, 9.68-69
Van de Plassche, Rudy J., 3.107	Voltage compliance, 9.185
Van de Weg, H., 3.136	voltage tolerance, 9.185
Van der Veen, Martien, 3.107	internal, 9.195-196
Van Doren, A., 1.31, 5.87	Voltage-controlled crystal oscillator, 6.91
Van Mierlo, S., 3.109, 3.136	phase noise, 6.92
Variable frequency oscillator, see VFO	Voltage converter:
Variable phase shifter, in locked-histogram ADC	charge-pump, 9.74-75
test setup, 5.71	regulated output, 9.75-77
1,	
Vassalli, Luca, 8.191 VCXO, voltage-controlled crystal oscillator, 6.91	Voltage doubler, 9.74 Voltage drop:
	analysis, 9.28
Vector Electronic Company, 9.213	•
Vectorscope, 5.80	signal leads, 9.27-28
Veen, Martien van der, 3.107	Voltage follower protection circuit, 9.96-98
Velazquez, S., 8.157	Voltage inverter, 9.74
Verster, T.C., 3.64, 3.106	Voltage-mode binary-weighted resistor DAC, 3.10
Vertical sync, 8.76	Voltage reference, 1.35
VFC, 2.104, 3.91-96, 8.14	architectures, characteristics, 7.14
applications, 3.96	capacitive decoupling, 6.81
charge-balance, 3.91	data converter, 6.79-81, 7.1-26
current-steering multivibrator, 3.91	DC specifications, table, 7.18
waveforms, 3.95 VFO, 3.91	design specifics, 6.81 drift, 7.16, 7.18
VGA, electronic display standard, 8.86	large capacitive load, 7.23
VHS-630, 6-bit 30-MSPS flash converter,	line sensitivity, 7.17-18
Computer	• · · · · · · · · · · · · · · · · · · ·
Labs Inc., 3.49	load sensitivity, 7.17-18 low noise, 7.24-25
VHS-675, 6-bit 75-MSPS flash converter,	noise, 7.18-20
Computer	precision, 7.1-2
Labs Inc., 3.49	issues, 7.1-2
Video, analog and digital standards, 8.80	pulse current response, 7.22-24
Video crosspoint switch, 7.82-83	scaled reference, 7.20-22
Video DAC, properties, 8.88	shunt, 7.2
Video decoder, specifications, 8.85	specifications, 7.15-25
Video encoder, specifications, 8.85	standard hookup, diagram, 7.15
Video RAM-DAC, 8.87, 8.90-91	supply range, 7.17-18
Video switch, 7.80-82	temperature drift, accuracy, table, 7.16
Video testing, 5.78-83	three-terminal, 7.2
ADC, 5.78-83	tolerance, 7.15, 7.18
Vishay/Dale Resistors, 9.24	transient loads, 7.23
Vishay/Siliconix, 9.125	trim, 7.14
Viswanathan, T.R., 3.106	
Viterbi coding, 8.137	two-terminal, 7.2
Viterbi decoding, 8.137	types, 7.2-4
	Voltage regulator: block diagram, 7.30
Vito, Tom, 2.90	
VLSI mixed-signal CMOS processing, 8.33 VM-700, Tektronix, 5.19	current underload, 7.29 grounding, 9.78-81
VM-5000, Tektronix, 5.19 VM-5000, Tektronix, 5.19	linear,
v 1v1-5000, 1 GKHOHIA, 5.1 7	iiicai,

basics, 7.27-31, 9.66-68	characteristics, 5.58
low dropout, 7.27-60	comparison, 5.59
low dropout, 9.70-74	frequency response, 5.58
adjustable voltage, 9.72-74	Windowing, to reduce spectral leakage, 5.57
fixed voltage, 9.71-72	Wire inductance, 9.17
pass device, types, 7.31	Wire microstrip, 9.165
pole-splitting topology, 7.42	Wireless air interface standards, wideband ADC
positive leg series style, 7.27	requirements, table, 8.126
thre terminal, circuit, 7.28	Wireless communication:
Voltage sensing, feedback, 9.27-28	evolution, chart, 8.116
Voltage sensitivity, resistor, 9.14	standards, 8.116
Voltage-to-frequency converter, see VFC	Wirewound resistor, 9.16
Voltage tolerance, 9.185	Witte, Robert A., 2.90
voltage compliance, 9.185	Wold, Ivar, 1.47, 3.108
internal, 9.195-196	Wold, Peter I., 3.36
, , , , , , , , ,	Wong, James, 9.23, 9.178
W	Wong, Thick C., 5.88
Wadell, Brian C., 9.179	Woodward, Charles E., 2.90, 3.104
Wainwright Instruments, 9.202	Wooley, B.A., 3.137
Wainwright Instruments GmbH, 9.213	Wooley, Bruce, 3.137
Wainwright Instruments Inc., 9.213	Word, 2.2
Waldhauer, F.D., 3.106	Worst harmonic, 2.46-48
Waldhaur, W.D., 3.84	data converter, 6.3
Waltman, Ron, 2.90	Worst other spur, 2.115
Water metering system, binary weighted, 1.2	Wrathall repeater, germanium transistors, 1.14-15
Waveform generator, 5.17	Wrathall, L.R., 1.14-15, 1.19
WCDMA, 2.57-58	Wurcer, Scott, 9.23
Weaver, Lindsay A., 8.175	Wilcon, 500tt, 7.25
Weaver, Emasay 11., 0.175	
Weg H Van de 3 136	X
Weg, H. Van de, 3.136 Weigh scale:	X XFCR·
Weigh scale:	XFCB:
Weigh scale: analysis, using AD7730, 8.6-7	XFCB: high-speed complementary bipolar process, 1.61
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio:	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132 architectures, 8.132	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33 Zener diode, 1.24, 1.35, 1.39, 1.41, 1.42, 3.17,
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132 architectures, 8.132 Widlar, Bob, 1.24, 4.11, 7.26, 7.60	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33 Zener diode, 1.24, 1.35, 1.39, 1.41, 1.42, 3.17, 7.3-4, 7.11, 7.19, 9.96-97, 9.106, 9.109, 9.124
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132 architectures, 8.132 Widlar, Bob, 1.24, 4.11, 7.26, 7.60 Wikner, J. Jacob, 2.117, 3.140, 5.91	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33 Zener diode, 1.24, 1.35, 1.39, 1.41, 1.42, 3.17, 7.3-4, 7.11, 7.19, 9.96-97, 9.106, 9.109, 9.124 monolithic, 7.3
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132 architectures, 8.132 Widlar, Bob, 1.24, 4.11, 7.26, 7.60 Wikner, J. Jacob, 2.117, 3.140, 5.91 Wikner, J.J., 8.157	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33 Zener diode, 1.24, 1.35, 1.39, 1.41, 1.42, 3.17, 7.3-4, 7.11, 7.19, 9.96-97, 9.106, 9.109, 9.124 monolithic, 7.3 Zeoli, G.W., 2.90
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132 architectures, 8.132 Widlar, Bob, 1.24, 4.11, 7.26, 7.60 Wikner, J. Jacob, 2.117, 3.140, 5.91 Wikner, J.J., 8.157 Wilhelm, Tim, 5.88	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33 Zener diode, 1.24, 1.35, 1.39, 1.41, 1.42, 3.17, 7.3-4, 7.11, 7.19, 9.96-97, 9.106, 9.109, 9.124 monolithic, 7.3 Zeoli, G.W., 2.90 Zero error, 2.97
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132 architectures, 8.132 Widlar, Bob, 1.24, 4.11, 7.26, 7.60 Wikner, J. Jacob, 2.117, 3.140, 5.91 Wikner, J.J., 8.157 Wilhelm, Tim, 5.88 Williams, Jim, 9.213	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33 Zener diode, 1.24, 1.35, 1.39, 1.41, 1.42, 3.17, 7.3-4, 7.11, 7.19, 9.96-97, 9.106, 9.109, 9.124 monolithic, 7.3 Zeoli, G.W., 2.90 Zero error, 2.97 Zero TC, 2.114
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132 architectures, 8.132 Widlar, Bob, 1.24, 4.11, 7.26, 7.60 Wikner, J. Jacob, 2.117, 3.140, 5.91 Wikner, J.J., 8.157 Wilhelm, Tim, 5.88 Williams, Jim, 9.213 Williamson, Russell, 8.191	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33 Zener diode, 1.24, 1.35, 1.39, 1.41, 1.42, 3.17, 7.3-4, 7.11, 7.19, 9.96-97, 9.106, 9.109, 9.124 monolithic, 7.3 Zeoli, G.W., 2.90 Zero error, 2.97 Zero TC, 2.114 Zuch, Eugene L., 2.116, 3.139, 5.87, 5.90
Weigh scale: analysis, using AD7730, 8.6-7 design analysis, 8.6-12 load cell characteristics, 8.7 fullscale output, 8.7 Welland, D.R., 3.137 Wenzel Associates, Inc., 6.98, 9.39 Wesco film capacitors, 9.23 Western Electric, 1.14 Wheable, Desmond, 3.108 Wide code, errors, 2.20 Wideband, definition, 8.114 Wideband DCMA, 2.57-58 Wideband digital receiver, 8.114-126 Wideband radio: transmission, 8.132-136 transmitter, 8.132 architectures, 8.132 Widlar, Bob, 1.24, 4.11, 7.26, 7.60 Wikner, J. Jacob, 2.117, 3.140, 5.91 Wikner, J.J., 8.157 Wilhelm, Tim, 5.88 Williams, Jim, 9.213	XFCB: high-speed complementary bipolar process, 1.61 for producing converters, 4.12 XFET, 6.80 reference, 7.11-15, 7.16 characteristics, 7.14 XGA, electronic display standard, 8.86 Y Yasuda, Y., 3.136 Yester, Francis R., Jr., 3.138 Yield, 4.22 Young, F.M., 1.31 Young, Joe, 3.107, 7.111 Z Zeltex, Inc., 1.24, 1.33 Zener diode, 1.24, 1.35, 1.39, 1.41, 1.42, 3.17, 7.3-4, 7.11, 7.19, 9.96-97, 9.106, 9.109, 9.124 monolithic, 7.3 Zeoli, G.W., 2.90 Zero error, 2.97 Zero TC, 2.114

ANALOG DEVICES' PARTS INDEX

AD2S90, 3.103	AD780, 6.23, 7.5, 7.15, 7.17-18, 7.18, 7.24,
AD29x, 7.20	8.47, 8.184-185
AD38x, 7.15	AD781, 7.91
AD39x, 7.15	AD783, 7.91, 7.92
AD42x, 7.20	AD795, 9.100-101
AD43x, 7.20	AD797, 6.15, 7.20, 9.105, 9.156
AD52xx-series, 1.58	AD817, 9.133
AD260, 9.114	AD820, 8.47, 9.97
AD261, 9.114	AD820/822, 7.21
AD376, 1.53	AD827, 9.156
AD376, 1.33 AD386, 7.92	AD845, 9.156
AD380, 7.92 AD390, 1.50	AD850, 1.25-26, 1.41, 3.16-17
AD431, 7.25	AD872, 1.61, 1.63
AD480, 4.12	AD974, 3.60, 6.18
AD510, 7.21	AD976, 6.18
AD512, 7.21	AD977, 6.18
AD550, 1.25-26, 1.38, 1.41, 3.15-17, 4.6	AD51xx-series, 1.58
AD558, 1.50	AD76xx-series, 6.18
AD561, 1.35, 1.38	AD77xx-series, 6.15-16, 7.24-25, 9.30
AD562, 1.35, 1.38, 1.41, 1.42, 4.8	AD92xx-series, 6.21, 6.29-30
AD563, 1.35, 1.41	AD158x-series, 7.18
AD565, 1.35, 1.38, 1.39-40, 1.41, 4.8	AD185x-series, 3.133
AD565A, 1.35	AD746x-series, 6.18
AD569, 1.50	AD771x-series, 1.62, 1.63
AD570, 1.39	AD789x-series, 1.62, 6.18, 6.19
AD571, 1.38, 1.40, 4.12	AD813x-series, 6.31, 6.33-34, 6.75
AD572, 1.42, 4.6-7	AD922x-series, 6.22
AD574, 1.39-40, 1.51, 1.59, 2.24, 3.41, 4.12,	AD974x, 8.136
6.49, 7.24, 7.92, 8.29	AD976x, 1.57
AD574A, 1.63	AD976x-series, 6.70
AD580, 7.5-6	AD977x, 1.57
AD582, 7.92	AD977x-series, 3.22, 6.70
AD583, 7.92	AD978x, 8.136
AD584, 7.6	AD978x-series, 8.135
AD585, 7.92	AD985x, 8.171
AD586, 7.16, 7.18, 7.20	AD985x-series, 3.22, 9.138
AD587, 7.19, 7.20	AD987x, 1.57
AD588, 7.15-16, 7.17-18	AD1170, 3.96
AD589, 7.5, 7.6, 7.20-21	AD1176, 5.56 AD1175, 1.53, 1.54
AD592, 8.184-185	AD1332, 1.53
	AD1377, 1.53, 1.54
AD621, 0.161, 162	
AD621, 9.161-162	AD1382, 1.64
AD622, 9.161-162	AD1385, 1.64
AD623, 9.52, 9.108, 9.161	AD1580, 7.5, 7.6-7, 7.20-21
AD627, 9.108, 9.161	AD1582, 7.7
AD629, 9.51, 9.98-99	AD1582-1585 series, 7.5, 7.7, 7.15, 7.17, 7.23
AD670, 1.51	AD1671, 1.60, 1.63
AD671, 1.60	AD1674, 1.59, 1.63
AD673, 1.51	AD1833, 8.70
AD674, 1.51	AD1833C, 8.70
AD680, 7.5, 7.17	AD1834, 8.70
AD684, 7.91, 7.92	AD1835A, 8.70
AD688, 7.17	AD1836A, 8.70
AD768, 6.73	AD1836AC, 8.70
AD770, 1.52	AD1837A, 8.70

1710001 0 FO	17 (CA) 0 111 0 101
AD1838A, 8.70	AD6624, 8.111, 8.131
AD1839A, 8.69-70, 8.70	AD6630, 8.131
AD1852, 8.67	AD6633, 8.135, 8.136
AD1853, 3.134, 6.75-76, 8.67	AD6634, 8.111, 8.131, 8.136
AD1854J, 8.67	AD6635, 8.131, 8.136
AD1854K, 8.67	AD6636, 8.131, 8.136
AD1855, 8.67	AD6640, 8.131
AD1856, 1.50	AD6640/44/45, 8.136
AD1857, 1.57, 1.58	AD6644, 3.85, 8.131
AD1858, 1.57, 1.58	AD6645, 1.65-66, 2.51-53, 2.56-57, 2.58,
AD1859, 1.57, 1.58	2.64-66, 2.73, 3.77-78, 3.85, 4.12, 6.27-28,
AD1860, 1.50	6.38-40, 6.83, 6.97, 7.107, 8.117-120,
AD1862, 3.32-33	8.122-125, 8.128-129, 8.131, 8.146, 9.137-138
AD1865, 1.56	AD6650, 8.111, 8.131
AD1871, 3.124, 8.66	AD6652, 8.111, 8.131
AD1879, 3.123	AD6654, 8.131
AD1890, 8.72	AD7001, 1.62, 1.63
AD1896, 8.72	AD7008, 1.57-58
AD1938, 8.70	AD7111, 2.112, 3.27-28
AD1953, 8.68	AD7226, 1.50
AD1955, 3.134, 8.66, 8.67	AD7240, 1.50
AD5170, 8.54	AD7245, 1.50
AD5172, 8.53-54	AD7311, 8.84
AD5173, 8.53-54, 8.56	AD7450, 9.210
AD5227, 8.56	AD7450A, 6.35
AD5231, 5.11	AD7466, 6.17, 6.51-52
AD5235, 5.11, 8.52-53	AD7467, 6.17, 6.51
AD5255, 5.11, 6.52-55 AD5245, 8.50-51, 8.55	AD7468, 6.17, 6.51
AD5246, 8.50-51	AD7484, 3.60
AD5247, 8.50-51	AD7484, 3.60
AD5251, 8.52	AD7490, 3.60
AD5252, 8.52	AD7500-series, 7.62
AD5253, 8.52	AD7520, 1.36, 1.38, 4.13
AD5254, 8.52	AD7524, 1.37-38, 1.38
AD5300, 8.42	AD7528, 1.50
AD5310, 8.42	AD7535, 1.50
AD5320, 8.42-43	AD7541, 1.36, 1.38
AD5322, 6.62-64	AD7545, 1.50
AD5340, 6.64-65	AD7546, 1.50
AD5379, 8.44-45	AD7550, 1.38, 1.40
AD5380, 1.65-66	AD7568, 1.56-57, 1.58
AD5381, 1.65-66	AD7570, 1.38, 1.40
AD5382, 1.65-66	AD7572, 1.51
AD5383, 1.65-66	AD7575, 1.51
AD5390, 1.65	AD7579, 1.51
AD5391, 1.65	AD7582, 1.51
AD5516, 8.44	AD7621, 1.65-66, 3.60, 3.61
AD5533B, 8.45-46	AD7664, 1.65
AD5535, 9.210, 9.211	AD7674, 1.65-66, 3.60-61, 6.42-43
AD5541, 8.47	AD7675, 3.61
AD5545/AD5555, 6.74	AD7676, 3.61
	AD7676, 3.61 AD7677, 3.60, 6.41-42
AD5660, 8.43	
AD5660, 8.43	AD7678, 3.61
AD6521, 8.141	AD7679, 3.61
AD6522, 8.141	AD7710, 7.24-25
AD6600, 8.111, 8.131	AD7730, 1.62, 1.63, 3.127-130, 6.15, 6.79,
AD6620, 8.111, 8.131, 8.136	8.2-6, 8.6-12, 8.9, 9.210
AD6622, 8.135, 8.136	AD7732, 8.37
AD6623, 8.135, 8.136	AD7734, 8.37

AD7738, 8.37	AD8180, 7.80, 7.85
AD7739, 8.36-38	AD8182, 7.80, 7.85
AD7793, 8.12-14	AD8183, 7.80-81, 7.82
AD7820, 1.51	AD8184, 7.82, 7.85
AD7821, 1.51	AD8185, 7.80-81, 7.82, 7.85
AD7840, 1.50	AD8186, 7.80-81, 7.82, 7.85
AD7846, 1.50	AD8187, 7.80-81, 7.82, 7.85
AD7853/AD7853L, 6.55	AD8346, 4.25-26
AD7853L, 6.55-56	AD8349, 8.134-135, 8.136
AD7854/AD7854L, 6.59-61	AD8350, 8.131
AD7865, 8.39-40	AD8351, 6.38-40
AD7870, 1.51	AD8370, 6.41
AD7871, 1.51	AD8402, 1.58
AD7873, 8.102	AD8403, 1.58
AD7880, 1.59, 1.63	AD8515, 6.18
AD7890-10, 6.18-19, 9.109	AD8517, 6.18
AD7908/AD7918/AD7928, 8.34-35	AD8531, 6.7
AD7928, 3.60	AD8531/32/34, 7.21
AD7938/AD7939, 8.35-36	AD8532, 6.7
AD7943, 3.2	AD8534, 6.7
AD8001, 9.207-209	AD8541/42/44, 7.21
AD8016, 9.130-133	AD8551, 9.50, 9.56
AD8017, 9.133	AD8610, 9.103
AD8017AR, 9.127-130	AD8628, 6.74
AD8018, 7.82	AD8631, 6.18
AD8021, 6.41-43	AD8800, 1.58
AD8027, 6.8, 6.23	AD9000, 1.52
AD8028, 6.8, 6.30	AD9002, 1.52
AD8031, 6.23, 6.43	AD9003, 1.53
AD8032, 6.30	AD9005, 1.53, 1.54
AD8038, 6.37	AD9006/AD9016, 1.52
AD8055, 6.72, 6.74	AD9008, 1.58
AD8057, 6.12, 6.13-15, 6.23, 9.133	AD9012, 1.52
AD8058, 6.13-15, 6.29-30, 9.133	AD9014, 1.64
AD8061, 6.23, 6.72-73	AD9020, 1.52
AD8062, 6.30	AD9028/AD9038, 1.52
AD8074, 7.85	AD9032, 1.65-66
AD8075, 7.85	AD9042, 1.61, 1.63, 1.64, 3.75-76, 3.85, 4.12,
AD8091, 6.23	7.106-107
AD8092, 6.30	AD9048, 1.52
AD8108, 7.85	AD9054, 1.62
AD8109, 7.85	AD9054A, 3.86
AD8110, 7.82, 7.85	AD9058, 1.52
AD8111, 7.82, 7.85	AD9060, 1.52
AD8113, 7.82, 7.85	AD9100, 7.92
AD8114, 7.82, 7.85 AD8114, 7.82, 7.85	AD9100, 7.92 AD9101, 7.92
AD8115, 7.82, 7.85 AD8115, 7.82, 7.85	AD9101, 7.92 AD9109, 7.82
AD8116, 7.82-83, 7.85	AD9220, 1.61, 1.63
AD8130, 6.34	AD9221, 1.61, 1.63
AD8131, 6.35	AD9223, 1.61, 1.63
AD8132, 6.34, 6.35	AD9225, 3.76, 6.20-21, 6.24
AD8137, 6.35-36	AD9226, 2.49, 8.131, 8.136
AD8138, 6.35-37	AD9229, 6.52-54
AD8139, 6.35, 6.38, 6.38-39, 6.42-44	AD9235, 3.69, 3.76-77, 6.36-37
AD8150, 7.85	AD9235/38, 8.131
AD8151, 7.85	AD9236, 5.43-44
AD8152, 7.83-84, 7.85	AD9244, 8.136
AD8170, 7.80, 7.85	AD9245, 9.134-135
AD8174, 7.80, 7.82, 7.85	AD9245/AD9444, 8.131
, , ,	,

AD9289, 6.52-54 AD9430, 2.60, 3.69, 3.76-77, 5.61-62, 5.70, 6.26-27, 6.57-59, 8.146, 9.136-137, 9.176, 9.211 AD9432, 8.131 AD9432/33, 8.136 AD94344/45, 8.131 AD94342/33, 8.136 AD9444/45, 8.131 AD9443, 3.49 AD9700, 1.50 AD9712, 1.57 AD9726, 6.66 AD9744, 5.22-23, 8.135 AD9772, 8.135 AD9774, 8.136 AD9774, 8.136 AD9777, 2.89 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9786, 8.133-134 AD9822, 8.99 AD9822, 8.99 AD9822, 8.99 AD9823, 8.168 AD9833, 8.168 AD9833, 8.168 AD9833, 8.168 AD9834, 8.166-168, 8.168 AD9833, 8.167, 8.168 AD9833, 8.168 AD9833, 8.168 AD9833, 8.168 AD9834, 8.166 AD9833, 8.168 AD9833, 8.168 AD9834, 8.161-181 AD9856, 8.171 AD9855, 8.171 AD9858, 1.57, 8.173 AD9858, 8.99 AD9856, 8.174 AD9888, 8.99 AD9893, 8.173 AD9985, 8.173 AD9986, 8.194 AD6686, 9.190 AD63986, 9.190 AD63986, 9.190 AD63986, 9.190 AD63987, 9.190 AD63988,		
AD9410, 3.51-53 AD9430, 2.60, 3.69, 3.76-77, 5.61-62, 5.70, 6.26-27, 6.57-59, 8.146, 9.136-137, 9.176, 9.211 AD9432, 8.131 AD9432, 8.136 AD94333, 8.136 ADP44448, 8.136 AD944448, 8.131 AD94448, 8.131 AD94448, 8.131 AD94448, 8.131 AD9700, 1.50 AD9700, 1.50 AD9712, 1.57 AD9720, 1.57 AD9720, 1.57 AD9724, 8.135 AD9744, 5.22-23, 8.135 AD9744, 5.22-23, 8.135 AD9742, 8.136 AD97712, 8.135 AD9772, 8.135 AD9772, 8.135 AD9777, 2.89 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9786, 8.133-134 AD9814, 8.99 AD9814, 8.99 AD982, 8.99 AD982, 8.99 AD982, 8.99 AD982, 8.99 AD9831, 8.168 AD9831, 8.168 AD9831, 8.168 AD9833, 8.167 AD9833, 8.174 AD9858, 1.17, 1.57, 8.171 AD9856, 8.173 AD9888, 8.99 AD9887, 8.171 AD9887, 8.171 AD9887, 8.171 AD9887, 8.173 AD9888, 8.99 AD9888, 8.99 AD9888, 8.99 AD9888, 8.99 AD9888, 8.99 AD9983, 8.173 AD9988, 8.192 AD9983, 8.173 AD9983, 8.173 AD9983, 8.173 AD9983, 8.173 AD9983, 8.173 AD9988, 8.99 AD9887, 9.190 AD9888, 8.99 AD9887, 9.190 AD9888, 8.99 AD9887, 9.191 AD9888, 9.99 AD9893, 8.173 AD9988, 8.99 AD9888, 9.99 AD9893, 8.173 AD9988, 8.99 AD9983, 8.173 AD9988, 8.99 AD9893, 8.173 AD9988, 8.99 AD9893, 8.173 AD9988, 8.99 AD9983, 8.173 AD9988, 8.99 AD9983, 8.173 AD9988, 8.99 AD9893, 8.173 AD9988, 8.99 AD9893, 8.173 AD9988, 8.99 AD9983, 8.173 AD9988, 8.99 AD9987, 8.173 AD9988, 8.99 AD9987, 9.124 AD9888, 9.99 AD9987, 8.173 AD9988, 8.99 AD9987, 9.190 AD9987, 9.190 AD9988, 8.99 AD9888, 8.99 AD9888, 8.99 AD9888, 8.99 AD9888, 8.99 AD9888,	AD9289, 6.52-54	ADC80, 1.43
AD9430, 2.60, 3.69, 3.76-77, 5.61-62, 5.70, 6.26-27, 6.57-59, 8.146, 9.136-137, 9.176, 9.211 AD9432, 8.131 AD9432, 8.131 AD9432, 8.131 AD9444, 8.136 AD9444, 8.136 AD9444, 8.131 AD9430, 3.49 AD9700, 1.50 AD9712, 1.57 AD9720, 1.57 AD9726, 6.66 AD9743, 8.135 AD9744, 8.135 AD9744, 8.135 AD9748, 8.135 AD9772, 8.135 AD9772, 8.135 AD9772, 8.135 AD9773, 2.89 AD97773, 2.89 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784, 8.133-134 AD9814, 8.99 AD9831, 8.138 AD9831, 8.168 AD9831, 8.171 AD9856, 8.171 AD9856, 8.171 AD9856, 8.171 AD9857, 8.171 AD9857, 8.171 AD9857, 8.171 AD9857, 8.171 AD9858, 8.171 AD9858, 8.171 AD9858, 8.171 AD9858, 8.173 AD9988, 8.99 AD9879, 4.23, 4.25 AD9888, 8.99 AD9871, 4.23, 4.25 AD9887, 8.171 AD9857, 8.171 AD9858, 8.171 AD9858, 8.173 AD98860/AD9862, 4.29 AD9879, 4.23, 4.25 AD9888, 8.99 AD9879, 4.23, 4.25 AD9888, 8.99 AD9879, 4.23, 4.25 AD9887, 8.171 AD9858, 8.173 AD9888, 8.99 AD9887, 8.173 AD9888, 8.99 AD9879, 4.23, 4.25 AD9887, 8.97 AD9879, 8.173 AD9888, 8.99 AD9870, 1.78-79 AD9887, 8.97 AD9879, 4.23, 4.25 AD9888, 8.99 AD9870, 1.78-79 AD9871, 8.173 AD98860/AD9862, 4.29 AD9873, 8.173 AD98860/AD9862, 4.29 AD9873, 8.173 AD9888, 8.99 AD9873, 8.173 AD9888, 8.99 AD9953, 8.173 AD9953, 8.174 AD10242, 1.64 AD10678, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-1207, 1.44, 1.46, 4.6 AD10678, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-1207, 1.44, 1.46, 4.6 AD36327, 3.99-40 AD8330x-series, 9.70-71 AD8730x-series, 9.70-71 AD8730x-series, 9.70-71 AD8730x-series, 9.70-71 AD8730x-series, 9.70-71 AD8730x-series, 7.39-40		
6.26-27, 6.57-59, 8.146, 9.136-137, 9.176, 9.211 AD9432, 8.131 AD9432, 8.131 AD9432, 8.131 AD9433, 6.41 AD94433, 6.41 AD944445, 8.131 AD944445, 8.131 AD9480, 3.49 AD9700, 1.50 AD9700, 1.50 AD9701, 1.57 AD9712, 1.57 AD9720, 1.57 AD9720, 1.57 AD9724, 6.66 AD9744, 5.22-23, 8.135 AD9744, 5.22-23, 8.135 AD9744, 5.22-23, 8.135 AD9772A, 8.135, 8.136 AD9772A, 8.135, 8.136 AD9772A, 8.135, 8.136 AD97772, 8.135 AD97772, 8.135 AD97784, 8.136 AD97784, 8.136 AD97784, 8.136 AD97846, 8.135 AD97846, 8.135 AD97846, 8.135 AD9831, 8.168 AD9831, 8.168 AD9831, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167 AD9836, 8.171 AD9857, 8.171 AD9857, 8.171 AD9857, 8.171 AD9857, 8.171 AD9858, 8.171 AD9887, 8.171 AD98		
AD9432, 8,131 AD9432/33, 6.41 AD9432/33, 6.41 AD9444, 8,136 AD94444, 8,136 AD9444, 8,136 AD9444, 8,136 AD9444, 8,131 AD9480, 3,49 AD9700, 1,50 AD9712, 1,57 AD9712, 1,57 AD9726, 6.66 AD9742, 6,222,3, 8,135 AD9748, 8,136 AD9772, 8,135 AD9772, 8,135 AD9772, 8,135 AD9772, 8,135 AD9773, 2,89 AD9777, 2,84-86, 2,89, 4,25-26, 8,135, 9,138 AD9784, 8, 8,131-1 AD9848, 8,99 AD982, 8,99 AD982, 8,99 AD982, 8,99 AD9830, 8,168 AD9833, 8,167, 8,168 AD9833, 8,167, 8,168 AD9833, 8,167 AD9833, 8,173 AD9854, 8,171 AD9859, 8,173 AD9859, 8,173 AD9887, 8,173 AD9887, 8,173 AD9887, 8,173 AD9887, 8,173 AD9887, 8,173 AD9887, 8,173 AD9888, 8,99 AD9877, 4,23, 4,25 AD9887, 8,173 AD9887, 8,173 AD9887, 8,173 AD9888, 8,99 AD9836, 8,174 AD9859, 8,173 AD9889, 8,173 AD9887, 8,173 AD9887, 8,173 AD9887, 8,173 AD9887, 4,23, 4,25 AD9887, 8,173 AD9888, 8,99 AD9837, 4,23, 4,25 AD9887, 8,173 AD9988, 8,99 AD9951, 8,173 AD9953, 8,173 AD9656, 8,152-154, 8,152-155 AD74122, 8,65 AD20mpsp430, 8,140-141 ADC-1207, 1,44, 1,46, 46 AD16678, 1,65 AD20mpsp430, 8,140-141 ADC-1207, 1,44, 1,46, 46 AD1676, AD2		· · · · · · · · · · · · · · · · · · ·
AD9432/33, 8.136 AD9433, 6.41 AD9433, 6.41 AD9434, 8.136 AD9444/4, 8.131 AD9480, 3.49 AD940, 1.50 AD9700, 1.50 AD9712, 1.57 AD9720, 1.57 AD9721, 1.57 AD9726, 6.66 AD9744, 5.22-23, 8.135 AD9772, 8.135 AD9773, 2.8135 AD9772, 8.135 AD9772, 8.135 AD9772, 8.135 AD9772, 8.135 AD9772, 8.135 AD9773, 2.89 AD97772, 8.135 AD9784, 8.29 AD9775, 2.89, 3.22 AD97772, 8.135 AD9786, 8.133-134 AD9816, 8.99 AD9816, 8.99 AD9822, 8.99 AD9822, 8.99 AD9828, 8.99 AD9828, 8.99 AD9833, 8.168 AD9834, 8.166-168, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167, 8.168 AD9833, 8.171 AD9851, 8.171 AD9851, 8.171 AD9858, 8.171 AD9859, 8.171 AD9859, 8.173 AD9887, 4.23, 4.25 AD9887, 4.23, 4.25 AD9887, 4.23, 4.25 AD9889, 8.91 AD9851, 8.171 AD9851, 8.171 AD9851, 8.171 AD9852, 8.171 AD9858, 8.171 AD9858, 8.171 AD9859, 8.173 AD9887, 4.23, 4.25 AD9887, 8.171, 8.173, 8.174 AD9859, 8.173 AD9888, 8.99 AD9888, 8.99 AD9887, 8.173 AD9888, 8.99 AD9888, 8.99 AD9888, 8.99 AD9888, 8.99 AD9887, 4.23, 4.25 AD9887, 4.23, 4.25 AD9887, 4.23, 4.25 AD9887, 8.171, 8.173, 8.174 AD9888, 8.91-92 AD9888, 8.99 AD9898, 8.99 A		
ADF4401, 6.92 ADF444, 8.136 ADF4444, 8.131 ADF4404, 8.131 ADF4403, 3.49 ADF700, 1.50 ADF700, 1.50 ADF712, 1.57 ADF720, 1.5		
AD9444, 8, 136 AD9444/45, 8, 131 AD9484, 3, 49 AD9700, 1, 50 AD9712, 1, 57 AD9712, 1, 57 AD9720, 1, 57 AD9720, 1, 57 AD9720, 1, 56 AD9714, 5, 22-23, 8, 135 AD9714, 5, 22-23, 8, 135 AD9772, 8, 135 AD9773, 2, 89 AD9775, 2, 89, 3, 22 AD9777, 2, 284-86, 2, 89, 4.25-26, 8, 135, 9, 138 AD9786, 8, 133-134 AD9886, 8, 133 AD9882, 8, 193 AD9822, 8, 99 AD9823, 8, 168 AD9831, 8, 168 AD9831, 8, 168 AD9831, 8, 168 AD9833, 8, 167, 8, 168 AD9833, 8, 167 AD9853, 8, 171 AD9854, 8, 171 AD9854, 8, 171 AD9854, 8, 171 AD9856, 8, 174 AD9858, 1, 174 AD9858, 1, 174 AD9858, 1, 174 AD9858, 1, 175 AD9858, 1, 174 AD9858, 1, 175 AD9858, 1, 174 AD9858, 1, 175 AD9858, 1, 175 AD9858, 1, 174 AD9858, 1, 175 AD9859, 8, 173 AD9954, 8, 171 AD9888, 8, 99 AD9824, 8, 191 AD9888, 8, 99 AD9828, 8, 99 AD9828, 8, 99 AD9829, 8, 173 AD9854, 8, 171 AD9858, 1, 174 AD9858, 1, 175 AD9858, 8, 191 AD9859, 8, 173 AD9952, 8, 173 AD9953, 8, 173 AD9954, 8, 171-172, 8, 173 AD9953, 8, 174 AD0614x-series, 9, 190 AD930x-series, 7, 39-40 AD830x-series, 7, 39-40 AD830x-series, 7, 39-40 AD830x-series, 7, 39-40	AD9432/33, 8.136	ADF41xx-series, 6.92
AD9444, 8, 136 AD9444/45, 8, 131 AD9484, 3, 49 AD9700, 1, 50 AD9712, 1, 57 AD9712, 1, 57 AD9720, 1, 57 AD9720, 1, 57 AD9720, 1, 56 AD9714, 5, 22-23, 8, 135 AD9714, 5, 22-23, 8, 135 AD9772, 8, 135 AD9773, 2, 89 AD9775, 2, 89, 3, 22 AD9777, 2, 284-86, 2, 89, 4.25-26, 8, 135, 9, 138 AD9786, 8, 133-134 AD9886, 8, 133 AD9882, 8, 193 AD9822, 8, 99 AD9823, 8, 168 AD9831, 8, 168 AD9831, 8, 168 AD9831, 8, 168 AD9833, 8, 167, 8, 168 AD9833, 8, 167 AD9853, 8, 171 AD9854, 8, 171 AD9854, 8, 171 AD9854, 8, 171 AD9856, 8, 174 AD9858, 1, 174 AD9858, 1, 174 AD9858, 1, 174 AD9858, 1, 175 AD9858, 1, 174 AD9858, 1, 175 AD9858, 1, 174 AD9858, 1, 175 AD9858, 1, 175 AD9858, 1, 174 AD9858, 1, 175 AD9859, 8, 173 AD9954, 8, 171 AD9888, 8, 99 AD9824, 8, 191 AD9888, 8, 99 AD9828, 8, 99 AD9828, 8, 99 AD9829, 8, 173 AD9854, 8, 171 AD9858, 1, 174 AD9858, 1, 175 AD9858, 8, 191 AD9859, 8, 173 AD9952, 8, 173 AD9953, 8, 173 AD9954, 8, 171-172, 8, 173 AD9953, 8, 174 AD0614x-series, 9, 190 AD930x-series, 7, 39-40 AD830x-series, 7, 39-40 AD830x-series, 7, 39-40 AD830x-series, 7, 39-40	AD9433, 6.41	ADF4001, 6.92
AD9444/45, 8.131 AD9440, 3.49 AD9700, 1.50 AD9700, 1.50 AD9700, 1.50 AD9700, 1.57 AD9720, 1.57 AD9720, 6.66 AD9720, 1.57 AD9726, 6.66 AD9744, 5.22-23, 8.135 AD9744, 5.22-23, 8.135 AD9744, 5.22-23, 8.135 AD97744, 5.22-23, 8.135 AD97772A, 8.135, 8.136 AD97772A, 8.135, 8.136 AD97772, 8.135 AD97773, 2.89 AD97773, 2.89 AD97775, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 AD9784/86, 8.135 AD9814, 8.99 AD9816, 8.99 AD9816, 8.99 AD9816, 8.99 AD9826, 8.99 AD9826, 8.99 AD9826, 8.99 AD9838, 8.168 AD9831, 8.168 AD9831, 8.168 AD9833, 8.168 AD9834, 8.166-168, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.171 AD9856, 8.171 AD9858, 8.171 AD9858, 8.171 AD9858, 8.174 AD9858, 8.171 AD9858, 8.174 AD9858, 8.173 AD9859, 8.171 AD9858, 8.174 AD9858, 8.173 AD9858, 8.174 AD9858, 8.173 AD9859, 8.171 AD9858, 8.174 AD9858, 8.173 AD9859, 8.173 AD9859, 8.173 AD9859, 8.173 AD9887, 4.23, 4.25 AD9877, 4.23, 4.25 AD9878, 8.99 AD9824, 8.191 AD9888, 8.99 AD9877, 4.23, 4.25 AD9877, 4.23, 4.25 AD9877, 4.23, 4.25 AD9877, 4.23, 4.25 AD9887, 4.23, 4.25 AD9887, 4.23, 4.25 AD9887, 4.23, 4.25 AD9888, 8.99 AD9859, 8.173 AD9953, 8.174 AD9888, 8.99 AD9303, 8.1840-141 ADC-12QZ, 1.44, 1.46, 4.6 ADP330x-series, 7.39-40 ADP330x-series, 7.97-71 ADP330x-series, 7.97-71 ADP330x-series, 7.39-40		
AD9480, 3.49 AD9700, 1.50 AD9700, 1.50 AD9712, 1.57 AD9712, 1.57 AD9720, 1.57 AD9720, 1.57 AD9726, 6.66 AD9744, 5.22-23, 8.135 AD9754, 8.136 AD9772, 8.135 AD9772A, 8.135 AD9772A, 8.135 AD9772A, 8.135 AD9775, 2.89, 3.22 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9786, 8.133-134 AD9786, 8.133-134 AD9816, 8.99 AD9816, 8.99 AD9822, 8.99 AD9822, 8.99 AD9833, 8.168 AD9833, 8.168 AD9833, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.171 AD9854, 8.171 AD9854, 8.171 AD9856, 8.174 AD9858, 1.173 AD9858, 1.174 AD9858, 1.175 AD9858, 1.174 AD9858, 1.174 AD9858, 1.174 AD9858, 1.175 AD9858, 1.174 AD9858, 1.175 AD9858, 1.174 AD9858, 1.175 AD9858, 1.		
AD9700, 1.50 AD9700, 1.50 AD9712, 1.57 AD9720, 1.57 AD9720, 1.57 AD9726, 6.66 AD9734, 5.22-23, 8.135 AD9744, 5.22-23, 8.135 AD9744, 5.22-23, 8.135 AD97728, 8.136 AD97728, 8.135 AD97729, 8.135 AD977729, 8.135 AD977729, 8.135 AD977729, 8.135 AD977729, 8.136 AD977729, 8.136 AD977729, 8.137 AD9773, 2.89 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 AD9784/86, 8.135 AD9816, 8.99 AD9784/86, 8.133-134 AD9816, 8.99 AD9816, 8.99 AD9816, 8.99 AD9826, 8.99 AD9826, 8.99 AD9826, 8.99 AD9828, 8.99 AD9830, 8.168 AD9831, 8.168 AD9831, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.169 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9853, 8.174 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171 AD9858, 8.174 AD9859, 8.173 AD9988, 8.173 AD9988, 8.173 AD99888, 8.1949 AD9951, 8.173 AD99888, 8.99 AD63247, 9.190 AD9951, 8.173 AD9954, 8.171-172, 8.173 AD9858, 9.975 AD14122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADP330x-series, 7.39-40		
AD9712, 1.57 AD9720, 1.57 AD9720, 6.66 AD9720, 1.57 AD9726, 6.66 AD9744, 5.22-23, 8.135 AD9734, 8.136 AD9734, 8.136 AD9734, 8.135 AD9773, 2.89 AD97773, 2.89 AD97773, 2.89 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD978486, 8.135 AD978486, 8.135 AD978486, 8.135 AD978486, 8.135 AD978486, 8.135 AD978486, 8.135 AD9816, 8.99 AD9816, 8.99 AD9822, 8.99 AD9822, 8.99 AD9822, 8.99 AD9823, 8.168 AD9831, 8.168 AD9831, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9836, 8.171 AD9856, 8.171 AD9858, 8.171 AD9858, 8.171 AD9858, 8.171 AD9858, 8.171 AD9858, 8.174 AD9858, 8.173 AD9858, 8.99 AD9524, 8.173 AD9858, 8.99 AD9524, 8.173 AD9858, 8.99 AD9524, 8.173 AD9858, 8.99 AD9525, 8.173 AD9858, 8.99 AD9524, 8.173 AD9858, 8.173 AD9858, 8.99 AD9954, 8.171-172, 8.173 AD90594, 8.171-172, 8.173 AD90594, 8.171-172, 8.173 AD90594, 8.171-172, 8.173 AD905954, 8.179 AD905954, 8.173 AD905954, 8.1		
AD9720, 1.57 AD9726, 6.66 AD9744, 5.22-23, 8.135 AD9754, 8.136 AD9754, 8.135 AD9754, 8.135 AD9772, 8.135 AD9772, 8.135 AD9773, 2.8135 AD9773, 2.89 AD9773, 2.89 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9786, 8.133-134 AD9814, 8.99 AD9814, 8.99 AD9822, 8.99 AD9822, 8.99 AD9828, 8.99 AD9838, 8.168 AD9833, 8.168 AD9833, 8.168 AD9834, 8.166-168, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.171 AD9852, 8.171 AD9852, 8.171 AD9853, 8.174 AD9856, 8.174 AD9856, 8.173 AD9857, 8.173 AD9857, 8.173 AD9887, 8.99 AD9887, 8.99 AD9888, 8.91-92 AD9888, 8.99 AD9824, 8.99 AD9887, 8.99 AD63284, 9.90 AD63294, 9.90 AD63284, 9.90 AD6		
AD9726, 6.66 AD9744, 5.22-23, 8.135 AD9754, 8.136 AD9774, 8.135 AD9754, 8.136 AD9772, 8.135 AD9772, 8.135 AD9773, 2.89 AD9773, 2.89 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 AD9784/86, 8.135 AD9814, 8.99 AD9816, 8.99 AD9822, 8.99 AD9822, 8.99 AD9823, 8.99 AD9823, 8.168 AD9831, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.171 AD9851, 5.22, 8.171 AD9854, 8.171 AD9854, 8.171 AD9856, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9877, 4.23, 4.25 AD98877, 4.23, 4.25 AD9898, 8.99 ADG3287, 7.85 AD9898, 8.99 AD63287, 7.85 AD6467, 9.98, 9.110-111 AD6467, 9.98, 9.10-11 AD6467, 9.98, 9.110-111 AD6467, 9.98, 9.10-11 AD6467, 9.98, 9.110-111 AD6467, 9.98, 9.10-11 AD6467, 9.98, 9.110-111 AD6467, 9.89, 9.10 AD6508F, 7.85, 7.89, 9.99 AD6509F, 7.85, 7.89, 9.99 AD6509F, 7.85, 7.89, 9.99 AD6509F, 7.85, 7.89, 9.99 AD6509F, 7.85, 7.89, 9.99 AD648, 1.71-1.72, 8.173 AD63244, 9.190 AD63244, 9.190 AD63244, 9.190 AD63245, 9.190 AD63246, 9.190 AD63246, 9.190 AD63247, 9.190	AD9712, 1.57	ADG6xx-series, 7.85
ADG944, 5.22-23, 8.135 ADG9754, 8.136 ADG200-series, 7.62 AD9772, 8.135 ADG201-series, 7.62 AD9773, 2.8135 ADG201-series, 7.62 AD9773, 2.89 ADG387, 7.85, 7.89, 9.99 ADG387, 7.85, 7.89, 9.99 ADG438F, 7.85, 7.89, 9.99 ADG777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 ADG465, 9.98, 9.107, 9.110 AD9784, 8.99 ADG466, 9.98, 9.110-111 AD9786, 8.133-134 ADG466, 9.98, 9.110-111 AD9786, 8.133-134 ADG466, 9.98, 9.110-111 AD9814, 8.99 ADG508F, 7.85, 7.89, 9.99 AD9816, 8.99 ADG508F, 7.85, 7.89, 9.99 ADG528F, 7.85, 7.89, 7.99 AD9822, 8.99 ADG528F, 7.85, 7.89, 7.99 AD9830, 8.168 AD9831, 8.168 AD9832, 8.168 AD9833, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9858, 8.174 AD9858, 8.174 AD9857, 8.173, 8.174 AD9858, 8.174 AD9858, 8.174 AD9859, 8.173 AD9851, 8.174 ADG324x-series, 7.81 ADG324x, 9.190 AD9879, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 ADG3245, 9.190 ADG3245, 9.190 AD9878, 8.99 AD9954, 8.171 AD9854, 8.171 AD9858, 8.173 AD9953, 8.173 AD9953, 8.173 AD9859, 8.173 AD9	AD9720, 1.57	ADG7xx-series, 7.85
ADG944, 5.22-23, 8.135 ADG9754, 8.136 ADG200-series, 7.62 AD9772, 8.135 ADG201-series, 7.62 AD9773, 2.8135 ADG201-series, 7.62 AD9773, 2.89 ADG387, 7.85, 7.89, 9.99 ADG387, 7.85, 7.89, 9.99 ADG438F, 7.85, 7.89, 9.99 ADG777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 ADG465, 9.98, 9.107, 9.110 AD9784, 8.99 ADG466, 9.98, 9.110-111 AD9786, 8.133-134 ADG466, 9.98, 9.110-111 AD9786, 8.133-134 ADG466, 9.98, 9.110-111 AD9814, 8.99 ADG508F, 7.85, 7.89, 9.99 AD9816, 8.99 ADG508F, 7.85, 7.89, 9.99 ADG528F, 7.85, 7.89, 7.99 AD9822, 8.99 ADG528F, 7.85, 7.89, 7.99 AD9830, 8.168 AD9831, 8.168 AD9832, 8.168 AD9833, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9858, 8.174 AD9858, 8.174 AD9857, 8.173, 8.174 AD9858, 8.174 AD9858, 8.174 AD9859, 8.173 AD9851, 8.174 ADG324x-series, 7.81 ADG324x, 9.190 AD9879, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 ADG3245, 9.190 ADG3245, 9.190 AD9878, 8.99 AD9954, 8.171 AD9854, 8.171 AD9858, 8.173 AD9953, 8.173 AD9953, 8.173 AD9859, 8.173 AD9	AD9726, 6.66	ADG8xx-series, 7.85
AD9754, 8.136 AD9772, 8.135, 8.136 AD9772, 8.135, 8.136 AD9772, 8.135, 8.136 AD9773, 2.89 AD9775, 2.89, 3.22 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 AD984/86, 8.133-134 AD9814, 8.99 AD9816, 8.99 AD982, 8.99 AD982, 8.99 AD982, 8.99 AD982, 8.99 AD982, 8.168 AD9831, 8.168 AD9831, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9835, 8.166-168, 8.168 AD9835, 8.167 AD9851, 5.22, 8.171 AD9854, 8.171 AD9856, 8.174 AD9856, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9897, 4.23, 4.25 AD9898, 8.99 AD9877, 4.23, 4.25 AD9898, 8.99 AD9850, 1.57, 8.171 AD9859, 8.173 AD9850, 1.57 AD9859, 8.173 AD9850, 8.99 AD63248, 9.100 AD63248, 9.100 AD63248, 9.100 AD63247, 9.100		
AD9772, 8.135 AD9772A, 8.135, 8.136 AD9773, 2.89 AD9775, 2.89, 3.22 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 AD9786, 8.133-134 AD9814, 8.99 AD9816, 8.99 AD9822, 8.99 AD9822, 8.99 AD9830, 8.168 AD9831, 8.168 AD9831, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9851, 8.171 AD9858, 8.174 AD9858, 8.173 AD9858, 8.173 AD9850/AD9860, 4.29 AD9877, 4.23, 4.25 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9888, 8.99 AD951, 8.173 AD9888, 8.91-92 AD9888, 8.99 AD952, 8.173 AD9953, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9953, 8.179 AD9930, 8.168 AD621-29, 99 A		
AD9772A, 8.135, 8.136 AD9773, 2.89 AD9775, 2.89, 3.22 AD97777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 AD9784/86, 8.135 AD9786, 8.133-134 AD9814, 8.99 AD9822, 8.99 AD9822, 8.99 AD9822, 8.99 AD9823, 8.168 AD9833, 8.168 AD9833, 8.168 AD9834, 8.166-168, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9854, 8.171 AD9854, 8.171 AD9854, 8.171 AD9858, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9869, 4.23 AD9804, 8.99 AD9828, 8.99 AD63082, 8.168 AD9834, 8.168-171, 8.171 AD9857, 8.171 AD9851, 5.22, 8.171 AD9854, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9859, 8.173 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9878, 4.23, 4.25 AD9898, 8.99 AD9324, 9.190 AD9324, 9.190 AD9879, 4.23, 4.25 AD9898, 8.99 AD32247, 9.190 AD9879, 4.23, 4.25 AD9898, 8.99 AD32247, 9.190 AD9879, 4.23, 4.25 AD9898, 8.99 AD32247, 9.190 AD9879, 4.23, 4.25 AD9898, 8.99 AD93248, 9.190 AD9327, 9.186-189 AD9327, 9.186-189 AD9328, 8.173 AD9952, 8.173 AD9953, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.174-141 ADC-12QZ, 1.44, 1.46, 4.6		
AD9773, 2.89 AD9775, 2.89, 3.22 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 AD9784/86, 8.135 AD9784/86, 8.133-134 AD9814, 8.99 AD9816, 8.99 AD9826, 8.99 AD9826, 8.99 AD9830, 8.168 AD9831, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9852, 8.171 AD9853, 8.174 AD9854, 8.171 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9888, 8.99 AD9888, 8.99 AD9826, 4.29 AD9324, 2.3 AD9324, 9.190 AD93248, 9.190 AD32247, 9.190 AD32347, 9.190 AD32247, 9.190 AD32347, 9.190		
AD9775, 2.89, 3.22 AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 AD9784/86, 8.135 AD9786, 8.133-134 AD9814, 8.99 AD9816, 8.99 AD9826, 8.99 AD9826, 8.99 AD9827, 8.99 AD9830, 8.168 AD9831, 8.168 AD9833, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9854, 8.171 AD9856, 8.174 AD9856, 8.174 AD9856, 8.174 AD9856, 8.174 AD9856, 8.174 AD9856, 8.173 AD9858, 1.65-66, 8.168-171, 8.171 AD9858, 1.73 AD9888, 8.91-92 AD9888, 8.99 ADG3987, 9.180 ADG3287, 9.180 ADG3247, 9.190 AD9839, 8.173 AD9951, 8.173 AD9953, 8.173 AD9953, 8.173 AD9953, 8.173 AD9954, 8.171 AD9953, 8.173 AD9954, 8.171 AD9858, 8.99 AD63247, 9.190 AD		
AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138 AD9784/86, 8.135 ADP786, 8.135-134 AD9814, 8.99 AD9816, 8.99 AD9816, 8.99 AD9822, 8.99 AD9823, 8.99 AD9830, 8.168 AD9831, 8.168 AD9831, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9833, 8.166-168, 8.168 AD9835, 8.168 AD9851, 5.22, 8.171 AD9854, 8.171 AD9858, 8.173 AD9857, 8.171, 8.173, 8.174 AD9858, 8.91 AD9887, 4.23, 4.25 AD9887, 4.23, 4.25 AD9888, 8.99 AD63247, 9.190 AD63248, 9		
AD9784/86, 8.135 AD9786, 8.133-134 AD9786, 8.133-134 ADG467, 9.98, 9.110-111 AD9814, 8.99 AD9816, 8.99 AD9816, 8.99 AD9822, 8.99 AD9826, 8.99 AD9830, 8.168 AD9831, 8.168 AD9831, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 1.67 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9854, 8.171 AD9854, 8.171 AD9855, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887, 4.23, 4.25 AD9887, 8.99 AD63247, 9.190 AD9877, 4.23, 4.25 AD9888, 8.91-92 AD9851, 8.173 AD9953, 8.173 AD9951, 8.173 AD9953, 8.173 AD9951, 8.173 AD9953, 8.173 AD9951, 8.173 AD9953, 8.173 AD9951, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9930, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6	AD9775, 2.89, 3.22	ADG439F, 7.85, 7.89, 9.99
AD9784/86, 8.135 AD9786, 8.133-134 AD9786, 8.133-134 ADG467, 9.98, 9.110-111 AD9814, 8.99 AD9816, 8.99 AD9816, 8.99 AD9822, 8.99 AD9826, 8.99 AD9830, 8.168 AD9831, 8.168 AD9831, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 1.67 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9854, 8.171 AD9854, 8.171 AD9855, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887, 4.23, 4.25 AD9887, 8.99 AD63247, 9.190 AD9877, 4.23, 4.25 AD9888, 8.91-92 AD9851, 8.173 AD9953, 8.173 AD9951, 8.173 AD9953, 8.173 AD9951, 8.173 AD9953, 8.173 AD9951, 8.173 AD9953, 8.173 AD9951, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9930, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6	AD9777, 2.84-86, 2.89, 4.25-26, 8.135, 9.138	ADG465, 9.98, 9.107, 9.110
AD9786, 8.133-134 AD9814, 8.99 AD6308F, 7.85, 7.89, 9.99 AD9816, 8.99 AD9822, 8.99 AD6528F, 7.85, 7.89, 9.99 AD9822, 8.99 AD6708, 7.68, 7.72 AD9830, 8.168 AD9831, 8.168 AD9831, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9854, 8.174 AD9855, 8.174 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887, 8.23 AD9887, 8.23 AD9887, 8.23 AD9888, 8.91-92 AD9888, 8.91-92 AD98988, 8.99 AD63247, 9.190 AD9951, 8.173 AD9953, 8.173 AD9953, 8.173 AD9954, 8.173 AD9954, 8.171-172, 8.173 AD9953, 8.173 AD9954, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.173-174, 8.152-155 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8840, 9.75 ADP330x-series, 7.39-40		
AD9814, 8.99 AD9816, 8.99 AD9822, 8.99 AD9826, 8.99 AD9826, 8.99 AD9830, 8.168 AD9831, 8.168 AD9831, 8.168 AD9832, 8.168 AD9831, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9853, 8.174 AD9854, 8.171 AD9857, 8.171, 8.173, 8.174 AD9858, 8.173 AD9859, 8.173 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887, 4.23, 4.25 AD9887, 8.29 AD9888, 8.99 AD6708, 7.85, 7.89, 9.99 ADG708, 7.88, 7.89 AD96324x-series, 7.85 AD9859, 8.173 AD9860/AD9862, 4.29 AD6324x-series, 9.191 AD9887, 4.23, 4.25 AD9887, 8.93-94 AD9887, 8.93-94 AD9953, 8.173 AD9859, 8.173 AD9854, 8.171-172, 8.173 AD9859, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9859, 8.173 AD9954, 8.171-172, 8.173 AD9830, 9.75 AD1240, 1.65-66, 8.152-154, 8.152-155 ADM8840, 9.75 ADM830x-series, 7.39-40		
AD9816, 8.99 AD9822, 8.99 AD9826, 8.99 AD9830, 8.168 AD9831, 8.168 AD9831, 8.168 AD9831, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9853, 8.174 AD9854, 8.171 AD9855, 8.171 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD98874, 8.93-94 AD98875, 8.173 AD9888, 8.99 AD9837, 8.173 AD9888, 8.99 AD9837, 8.173 AD9952, 8.173 AD9888, 8.99 AD9853, 8.173 AD9858, 8.173 AD9888, 8.99 AD9877, 4.23, 4.25 AD98878, 8.173 AD9888, 8.99 AD9879, 4.23, 4.25 AD98874, 8.93-94 AD98875, 8.173 AD9888, 8.99 AD9952, 8.173 AD9953, 8.173 AD9954, 8.173 AD9954, 8.174 AD63248, 9.190 AD9887, 4.23, 4.25 AD98877, 4.23, 4.25 AD98877, 4.23, 4.25 AD98877, 4.23, 4.25 AD98877, 8.93-94 AD63245, 9.190 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 ADB32xx-series, 9.124 AD10678, 1.65-66 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8840, 9.75 ADM8840, 9.75 ADM8840, 9.75 ADM8840, 9.75 ADM8840, 9.75 ADP330x-series, 7.39-40		
AD9822, 8.99 AD9826, 8.99 ADG708, 7.68, 7.72 AD9830, 8.168 ADG725, 7.61 AD9831, 8.168 ADG725, 7.61 AD9832, 8.168 ADG732, 7.61 AD9833, 8.167, 8.168 ADG732, 7.61 AD9834, 8.166-168, 8.168 ADG801/ADG802, 7.64 AD9835, 8.168 ADG985, 8.171 ADG918, 7.78-79 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9853, 8.174 AD9853, 8.174 AD9854, 8.171 AD9855, 8.171 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9888, 8.99 ADG3244, 9.190 AD9888, 8.99 ADG3244, 9.190 AD9853, 8.173 ADG3248, 9.190 AD9853, 8.173 ADG3248, 9.190 AD9859, 8.173 ADG3248, 9.190 AD9859, 8.173 ADG3248, 9.190 AD9859, 8.173 ADG3248, 9.190 AD9859, 8.173 ADG3248, 9.190 AD9951, 8.173 ADG3248, 9.190 AD9952, 8.173 ADG3248, 9.190 ADG3247, 9.190 AD9951, 8.173 ADG3248, 9.190 ADG3247, 9.190 ADG3247, 9.190 ADG3248, 9.190 ADG3248, 9.190 ADG3249, 9.190 ADG3248, 9.190 ADG3249, 9.190 ADG3248, 9.190		
AD9826, 8.99 ADG708, 7.68, 7.72 AD9830, 8.168 ADG725, 7.61 AD9831, 8.168 ADG725, 7.61 AD9832, 8.168 ADG731, 7.61 AD9833, 8.167, 8.168 ADG732, 7.61 AD9833, 8.167, 8.168 ADG732, 7.61 AD9834, 8.166-168, 8.168 ADG801/ADG802, 7.64 AD9835, 8.168 ADG918, 7.78-79 AD9850, 1.57, 8.171 ADG919, 7.78-79 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9854, 8.171 AD9854, 8.171 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9859, 8.173 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD98878, 8.93-94 AD9888, 8.91-92 AD9888, 8.91-92 AD98878, 8.93-94 ADG3247, 9.190 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 ADG3243, 9.190 AD9887, 8.93-94 ADG3247, 9.190 AD9887, 8.93-94 ADG3247, 9.190 AD9887, 8.93-94 ADG3247, 9.190 AD9951, 8.173 ADG3248, 9.190 AD9952, 8.173 ADG3249, 9.190 AD9952, 8.173 ADG3249, 9.190 AD9951, 8.173 ADG3247, 9.190 ADG3247, 9.190 AD9952, 8.173 ADG3248, 9.190 ADG3247, 9.190 AD9952, 8.173 ADG3249, 9.190 ADG3247, 9.190 ADG3247, 9.190 ADG3247, 9.190 ADG3248, 9.190 ADG3249, 9.190 ADG32		
AD9830, 8.168 AD9831, 8.168 AD9832, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9854, 8.171 AD9854, 8.171 AD9855, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9878, 4.25 AD98878, 8.93-94 AD9888, 8.91-92 AD98878, 8.173 AD9859, 8.173 AD9859, 8.173 AD9859, 8.173 AD98860, AD9860, AD9860	AD9822, 8.99	ADG528F, 7.85, 7.89
AD9831, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.166-168, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9854, 8.174 AD9857, 8.174 AD9857, 8.171 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9874, 2.3, 4.25 AD9887, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9858, 8.174 AD9888, 8.91-92 AD9888, 8.91-92 AD9889, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9880, 8.91-92 AD9887, 8.93-94 AD9888, 8.91-92 ADB3248, 9.190 AD9888, 8.91-92 ADB3248, 9.190 AD9888, 8.91-92 ADB3248, 9.190 AD9888, 8.91-92 ADB3248, 9.190 ADB3248, 9.190 ADB3249, 9.190 ADB3257, 9.186-189 ADB3257, 9.186-189 ADB3257, 9.186-189 ADB3889, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM88840, 9.75 ADM88840, 9.75 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6	AD9826, 8.99	ADG708, 7.68, 7.72
AD9831, 8.168 AD9832, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.166-168, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9854, 8.174 AD9857, 8.174 AD9857, 8.171 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9874, 2.3, 4.25 AD9887, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9858, 8.174 AD9888, 8.91-92 AD9888, 8.91-92 AD9889, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9880, 8.91-92 AD9887, 8.93-94 AD9888, 8.91-92 ADB3248, 9.190 AD9888, 8.91-92 ADB3248, 9.190 AD9888, 8.91-92 ADB3248, 9.190 AD9888, 8.91-92 ADB3248, 9.190 ADB3248, 9.190 ADB3249, 9.190 ADB3257, 9.186-189 ADB3257, 9.186-189 ADB3257, 9.186-189 ADB3889, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM88840, 9.75 ADM88840, 9.75 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6	AD9830, 8.168	ADG725, 7.61
AD9832, 8.168 AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9853, 8.174 AD9854, 8.171 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD98874, 8.93-94 AD9888, 8.91-92 AD98874, 8.93-94 AD9953, 8.173 AD9953, 8.173 AD98898, 8.99 AD63247, 9.190 AD9888, 8.91-92 AD98874, 8.93-94 AD9895, 8.173 AD980954, 8.173 AD980954, 8.173 AD980955, 8.173 AD980954, 8.173 AD99554, 8.174 AD99574, 8.175 AD9888, 8.99 AD63247, 9.190 AD9958, 8.9190 AD		
AD9833, 8.167, 8.168 AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9854, 8.171 AD9854, 8.171 AD9855, 8.174 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9877, 4.23, 4.25 AD9887, 8.93-94 AD9888, 8.91-92 AD9888, 8.91-92 AD9888, 8.91-92 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9955, 8.173 AD9957, 4.23, 4.25 AD9951, 8.173 AD9951, 8.173 AD9951, 8.173 AD9951, 8.173 AD9951, 8.173 AD9952, 8.173 AD9951, 8.173 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9955, 8.173 AD9954, 8.171-172, 8.173 AD9955, 8.173 AD9954, 8.171-172, 8.173 AD9957, 4.24, 6.65 AD12400, 1.65-66, 8.152-154, 8.152-155 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6		
AD9834, 8.166-168, 8.168 AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9854, 8.171 AD9857, 8.174 AD9857, 8.174 AD9857, 8.174 AD9858, 1.65-66, 8.168-171, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9953, 8.173 AD9860/AD9868, 8.99 AD9954, 8.171 AD9858, 8.99 AD9954, 8.173 AD9954, 8.173 AD9955, 8.173 AD9860/AD9888, 8.99 AD63247, 9.190 AD9879, 4.23, 4.25 AD63243, 9.190 AD9879, 4.23, 4.25 AD63245, 9.190 AD9879, 4.23, 4.25 AD63247, 9.190 AD9951, 8.173 AD9952, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD63257, 9.186-189 AD9954, 8.171-172, 8.173 AD63257, 9.186-189 AD9954, 8.171-172, 8.173 AD63257, 9.186-189 AD9954, 8.171-172, 8.173 ADM3288, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8830, 9.75 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6		
AD9835, 8.168 AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9853, 8.174 AD9854, 8.171 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9888, 8.91-92 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9953, 8.173 AD9954, 8.173 AD9954, 8.173 AD9954, 8.173 AD9955, 8.173 AD9888, 8.99 ADG3241, 9.190 AD9879, 4.23, 4.25 ADG3243, 9.190 AD9887A, 8.93-94 ADG3245, 9.190 AD9888, 8.91-92 ADG3246, 9.190, 9.194 AD9898, 8.99 ADG3247, 9.190 AD9951, 8.173 ADG3248, 9.190 AD9952, 8.173 ADG3249, 9.190 AD9954, 8.171-172, 8.173 ADG3249, 9.190 AD9954, 8.171-172, 8.173 ADM3242, 1.64 ADM3257, 9.186-189 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8830, 9.75 AD20msp430, 8.140-141 ADP330x-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD9850, 1.57, 8.171 AD9851, 5.22, 8.171 AD9851, 5.22, 8.171 AD9852, 8.171 AD9853, 8.174 AD9853, 8.174 AD9854, 8.171 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9888, 8.91-92 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.1713 AD9954, 8.1713 AD9954, 8.1713 AD9954, 8.173 AD9954, 8.173 AD9954, 8.173 AD9954, 8.173 AD9954, 8.173 AD9954, 8.173 AD9954, 8.174 AD9955, 8.173 AD9955, 8.173 AD9956, 8.173 AD9957, 8.174 AD9957, 8.175 AD9957, 8.175 AD9957, 8.176 AD1240, 1.65-66, 8.152-154, 8.152-155 ADM8889, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8889, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD9851, 5.22, 8.171 AD9852, 8.171 AD9852, 8.171 AD9853, 8.174 AD9853, 8.174 AD9854, 8.171 AD9856, 8.174 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9888, 8.91-92 AD99891, 8.173 AD99891, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.173 AD9954, 8.174 AD9954, 8.175-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.173-174 AD10242, 1.64 AD1023, 8.19-22 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD12400,		
AD9852, 8.171 AD9853, 8.174 AD9853, 8.174 AD9854, 8.171 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 ADM3245, 9.190 AD9888, 9.90 AD9954, 8.171-172, 8.173 ADM3247, 9.190 AD9954, 8.171-172, 8.173 ADM3257, 9.186-189 AD910242, 1.64 AD10242, 1.64 AD1023, 8.19-22 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD12400, 8.140-141 AD12400, 8.1		
AD9853, 8.174 AD9854, 8.171 AD9856, 8.174 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD98879, 4.23, 4.25 AD9888, 8.91-92 AD9888, 8.91-92 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 ADG3247, 9.190 AD9953, 8.173 ADG3247, 9.190 AD9954, 8.171-172, 8.173 ADG3248, 9.190 AD9954, 8.171-172, 8.173 ADG3249, 9.190 AD9954, 8.171-172, 8.173 ADM3249, 9.190 AD9954, 8.171-172, 8.173 ADM3257, 9.186-189 AD10242, 1.64 ADM1023, 8.19-22 AD10678, 1.65-66 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8840, 9.75 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6		
AD9854, 8.171 AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.152-154, 8.152-155 AD12400, 1.65-66, 8.152-154, 8.152-155 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG324x-series, 9.189 ADG324x-series, 9.191 ADG324x-series, 9.191 ADG324x-series, 9.191 ADG324x-series, 9.190 ADG324x,	AD9852, 8.171	ADG12xx-series, 7.85
AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 ADG3244, 9.190 AD9952, 8.173 ADG3245, 9.190 AD9953, 8.173 ADG3246, 9.190, 9.194 AD9954, 8.171-172, 8.173 ADG3247, 9.190 AD9954, 8.171-172, 8.173 ADG3248, 9.190 AD9954, 8.171-172, 8.173 ADMxxx-E series, 9.124 AD10242, 1.64 AD10242, 1.64 ADM1023, 8.19-22 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8830, 9.75 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6	AD9853, 8.174	ADG14xx-series, 7.85
AD9856, 8.174 AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 ADG3244, 9.190 AD9952, 8.173 ADG3245, 9.190 AD9953, 8.173 ADG3246, 9.190, 9.194 AD9954, 8.171-172, 8.173 ADG3247, 9.190 AD9954, 8.171-172, 8.173 ADG3248, 9.190 AD9954, 8.171-172, 8.173 ADMxxx-E series, 9.124 AD10242, 1.64 AD10242, 1.64 ADM1023, 8.19-22 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8830, 9.75 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6	AD9854, 8.171	ADG32xx-series, 7.84
AD9857, 8.171, 8.173, 8.174 AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 ADG3247, 9.190 AD9953, 8.173 ADG3247, 9.190 AD9954, 8.171-172, 8.173 ADG3247, 9.190 AD9954, 8.171-172, 8.173 ADG3247, 9.190 AD9954, 8.171-172, 8.173 ADG3248, 9.190 AD9954, 8.171-172, 8.173 ADM3249, 9.190 AD9954, 8.171-172, 8.173 ADM3257, 9.186-189 ADM830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8839, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8840, 9.75 AD20msp430, 8.140-141 ADP330x-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD9858, 1.65-66, 8.168-171, 8.171 AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.65 AD12400, 1.65-66, 8.152-154, 8.152-155 AD20msp430, 8.140-141 ADG3231, 9.188-189, 9.191 ADG3231, 9.188-189, 9.191 ADG3241, 9.190 ADG3242, 9.190 ADG3245, 9.190 ADG3247, 9.190 ADG3248, 9.190 ADG3249, 9.190 ADMxxx-E series, 9.124 ADM1023, 8.19-22 ADM8830, 9.75 ADM8839, 9.75 ADM8840, 9.75 ADM8840, 9.75 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD9859, 8.173 AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 ADMxxx-E series, 9.124 AD10242, 1.64 ADM1023, 8.19-22 AD10678, 1.65-66 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 ADM8840, 9.75 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6		· · · · · · · · · · · · · · · · · · ·
AD9860/AD9862, 4.29 AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD10242, 1.64 AD10242, 1.64 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADM3244, 9.190 ADG3241, 9.190 ADG3243, 9.190 ADG3245, 9.190 ADG3247, 9.190 ADG3248, 9.190 ADG3257, 9.186-189 ADMxxx-E series, 9.124 ADM023, 8.19-22 ADM8830, 9.75 ADM8830, 9.75 ADM8840, 9.75 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6		
AD9877, 4.23, 4.25 AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD10242, 1.64 AD10242, 1.64 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3243, 9.190 ADG3245, 9.190 ADG3246, 9.190 ADG3248, 9.190 ADG3249, 9.190 ADG3257, 9.186-189 ADMxxx-E series, 9.124 ADM023, 8.19-22 ADM8830, 9.75 ADM8830, 9.75 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		· ·
AD9879, 4.23, 4.25 AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 ADG3247, 9.190 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD10242, 1.64 AD10242, 1.64 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3243, 9.190 ADG3245, 9.190 ADG3246, 9.190 ADG3247, 9.190 ADG3249, 9.190 ADG3257, 9.186-189 ADMxxx-E series, 9.124 ADM1023, 8.19-22 ADM8830, 9.75 ADM8840, 9.75 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD9887A, 8.93-94 AD9888, 8.91-92 AD9898, 8.99 ADG3247, 9.190 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD10242, 1.64 AD10242, 1.64 AD10248, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3245, 9.190 ADG3247, 9.190 ADG3248, 9.190 ADG3257, 9.186-189 ADM3257, 9.186-189 ADM3257, 9.186-189 ADM8830, 9.75 ADM8830, 9.75 ADM8830, 9.75 ADM8830, 9.75 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD9888, 8.91-92 AD9898, 8.99 ADG3247, 9.190 AD9951, 8.173 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD10242, 1.64 AD10242, 1.64 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3246, 9.190, 9.194 ADG3247, 9.190 ADG3248, 9.190 AD		
AD9898, 8.99 ADG3247, 9.190 AD9951, 8.173 ADG3248, 9.190 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD10242, 1.64 AD10242, 1.64 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3247, 9.190 ADG3248, 9.190 ADG3249, 9.190 ADG3257, 9.186-189 ADM3257, 9.186-189 ADM8xx-E series, 9.124 ADM8830, 9.75 ADM8839, 9.75 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6	AD9887A, 8.93-94	ADG3245, 9.190
AD9898, 8.99 ADG3247, 9.190 AD9951, 8.173 ADG3248, 9.190 AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 AD10242, 1.64 AD10242, 1.64 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3247, 9.190 ADG3248, 9.190 ADG3249, 9.190 ADG3257, 9.186-189 ADM3257, 9.186-189 ADM8xx-E series, 9.124 ADM8830, 9.75 ADM8839, 9.75 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6	AD9888, 8.91-92	ADG3246, 9.190, 9.194
AD9951, 8.173 ADG3248, 9.190 AD9952, 8.173 ADG3249, 9.190 AD9953, 8.173 ADG3257, 9.186-189 AD9954, 8.171-172, 8.173 ADMxxx-E series, 9.124 AD10242, 1.64 AD10242, 1.64 ADM1023, 8.19-22 AD10678, 1.65-66 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3248, 9.190 ADG3248, 9.190 ADG3249, 9.190 ADG3257, 9.186-189 ADMxxx-E series, 9.124 ADM8830, 9.75 ADM8839, 9.75 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6	AD9898, 8.99	
AD9952, 8.173 AD9953, 8.173 AD9954, 8.171-172, 8.173 AD9954, 8.171-172, 8.173 ADMxxx-E series, 9.124 AD10242, 1.64 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3257, 9.186-189 ADMxxx-E series, 9.124 ADM8830, 9.75 ADM8839, 9.75 ADM8840, 9.75 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6	,	· ·
AD9953, 8.173 AD9954, 8.171-172, 8.173 ADMxxx-E series, 9.124 AD10242, 1.64 AD10678, 1.65-66 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADG3257, 9.186-189 ADMxxx-E series, 9.124 ADM1023, 8.19-22 ADM8830, 9.75 ADM8839, 9.75 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD9954, 8.171-172, 8.173 ADMxxx-E series, 9.124 AD10242, 1.64 ADM1023, 8.19-22 AD10678, 1.65-66 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADM330x-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD10242, 1.64 ADM1023, 8.19-22 AD10678, 1.65-66 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADM1023, 8.19-22 ADM8830, 9.75 ADM8849, 9.75 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6		
AD10678, 1.65-66 ADM8830, 9.75 AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADM8830, 9.75 ADM8839, 9.75 ADM8840, 9.75 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6 ADP330x-series, 7.39-40		
AD12400, 1.65-66, 8.152-154, 8.152-155 AD74122, 8.65 AD20msp430, 8.140-141 ADC-12QZ, 1.44, 1.46, 4.6 ADP330x-series, 7.39-40 ADP330x-series, 7.39-40		
AD74122, 8.65 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6 ADP330x-series, 7.39-40	AD10678, 1.65-66	ADM8830, 9.75
AD74122, 8.65 ADM8840, 9.75 AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6 ADP330x-series, 7.39-40	AD12400, 1.65-66, 8.152-154, 8.152-155	ADM8839, 9.75
AD20msp430, 8.140-141 ADP33xx-series, 9.70-71 ADC-12QZ, 1.44, 1.46, 4.6 ADP330x-series, 7.39-40		
ADC-12QZ, 1.44, 1.46, 4.6 ADP330x-series, 7.39-40		
ADI 333A-301103, 7.37-40		
	1100 120, 1.21, 1.20	1101 000 001100, 1.07-40

ADP3300, 7.43-46, 7.48, 9.71-72 ADSP-218x, 8,141 ADP3300-5, 7.46 ADSP-2106L, 9.170 ADP3301, 7.43-44, 9.71-72 ADSP-2189, 6.60-61 ADP3302, 7.43-44 ADSP-2189M, 6.55-56, 6.63-65 ADP3303, 7.43-44, 9.72 ADSP-21160, 9.43-44 ADP3303A, 9.72 ADSX34, 7.85 ADP3307, 7.43-44, 9.72 ADT7301, 8.17-19 ADP3308, 7.44, 9.72 ADu7xxx-series, 8.187-190 ADP3309, 7.44, 9.72 ADuC7xxx-series, 8.187-190 ADP3310, 7.51-52, 7.54, 7.57, 7.58-59, 9.78-80 ADuC8xxx-series, 8.187-190 ADP3310-3.3, 9.77-78 ADuC70xx-series, 8.189 ADP3310-5, 7.53 ADuC702x-series, 8.188 ADP3330, 7.44, 7.49, 9.72 ADuC812, 8.178, 8.180, 8.186 ADP3331, 7.44, 7.49, 9.72-73 ADuC812 MicroConverter, 1.63 ADP3333, 7.44, 7.50, 9.72 ADuC814, 8.179-180, 8.186 ADP3334, 7.44, 9.72 ADuC816, 8.183, 8.186 ADP3335, 7.44, 7.50, 9.72 ADuC824, 8.183, 8.186 ADP3336, 7.44, 7.50, 8.56, 9.72 ADuC831, 8.178, 8.180, 8.186 ADuC832, 8.178, 8.180, 8.186 ADP3338, 7.44, 7.50-51, 9.72 ADP3339, 7.44, 7.50, 9.72 ADuC834, 8.180-182, 8.183, 8.186 ADP3605, 9.76 ADuC836, 8.183, 8.186 ADP3607, 9.76 ADuC841, 8.178, 8.180, 8.186 ADP3607-5, 9.77 ADuC842, 8.178, 8.180, 8.186 ADuC843, 8.178, 8.180, 8.186 ADR01, 7.5, 7.15, 7.18, 7.20 ADR02, 7.5, 7.15, 7.18, 7.20 ADuC845, 8.180-182, 8.183, 8.186 ADR03, 6.74, 7.5, 7.15, 7.18, 7.20 ADuC847, 8.181, 8.183, 8.186 ADR29x, 7.15, 7.17-18 ADuC848, 8.181, 8.183, 8.186 ADuC7020, 8.188 ADR29x-series, 7.23 ADR38x, 7.17-18 ADuC7021, 8.188 ADR38x-series, 7.5, 7.8 ADuC7022, 8.188 ADR39x, 7.17-18 ADuC7024, 8.188 ADR39x-series, 7.5, 7.8 ADuC7026, 8,188 ADR42x, 7.18 ADuM1100A, 9.112-114 ADR43x, 7.15, 7.17-18 ADuM1100B, 9.112-114 ADR43x-series, 7.23 ADuM1300, 9.113 ADR290, 7.12 ADuM1301, 9.114 ADR290-ADR293 series, 7.12 ADuM1400, 9.113 ADR291, 7.12 ADuM1401, 9.114 ADR292, 7.12 ADV453, 1.50 ADR292E, 7.20 ADV471, 1.50 ADR293, 7.12 ADV476, 1.50 ADR380, 7.9 ADV478, 1.50 ADR381, 7.9 ADV7125, 8,88-89 ADR390, 6.35, 7.10 ADV7160/ADV7162, 8.90 ADR391, 7.10 ADV7183A, 8.82-83 ADR392, 7.10 ADV7310, 8.83-84 ADR395, 7.10 AMP03, 9.51, 9.100 ADR430-ADR439 series, 7.13 CAV-1040, 1.53, 1.54 CAV-1220, 1.53, 1.54 ADR431, 6.23, 6.42, 7.24-25 ADR433, 7.24 DAC-12QZ, 1.46, 4.8 ADR510, 7.5, 7.7, 7.21 DAC08, 1.38, 1.41 ADR512, 7.5, 7.7, 7.20-21 DAC80, 1.41-43 ADR520, 7.7 DAC1138, 1.46 ADR525, 7.7 HAS-1201, 1.53 ADR530, 7.7 HAS-1202, 1.43 ADR540, 7.7 HAS-1409, 1.53 ADR545, 7.7 HDG-series, 1.53 ADR550, 7.7 HDS-1240E, 1.53 ADSP-21xx-series, 6.62 HDS-1250, 1.43

HTC-0300, 1.43, 7.92 OP275, 6.76 HTS-0025, 1.43, 7.92 OP279, 6.7, 7.21, 7.22 LOGDAC, 2.112 OP281/481, 7.21 MAS-1202, 1.44 OP284, 6.7, 7.21 MOD-815, 1.44, 1.45, 3.63, 3.64 OP291, 6.7 OP297, 9.156 MOD-1020, 1.45 MOD-1205, 1.45 OP484, 6.7 MOD-4100, 3.50 OP491, 6.7 OP777, 7.21, 9.98 MOSES-8, 7.61 OP27, 7.20, 9.104 OP1177, 6.15-16 REF01, 7.5 OP42, 9.156 REF02, 7.5 OP80, 9.156 OP113, 7.20 REF03, 7.5 REF43, 7.15, 7.17 OP113EP, 7.20 REF19x, 7.15, 7.17, 7.18, 7.23 OP177, 6.15, 9.13 OP181/281/481, 7.22 REF19x-series, 7.5 REF195, 7.15, 7.17, 7.18 OP184, 6.7, 7.20 OP184/284/484, 7.21 SHA1, 7.92 OP191, 6.7 SHA2, 7.92 TMP05/TMP06, 8.14-17 OP193/293, 7.21 OP193/293/493, 7.22 TMP06, 8.16 Transmit TxDAC family, 2.85 OP196/296/496, 7.21 TxDAC family, 1.55 OP200, 9.156 OP213, 7.71 VHS-630, 3.49 OP249, 9.156 VHS-675, 3.49