Homework Due 10/5/17 (7 problems): Section 4.1 pages 169 - 170; 1, 6(b), 7(f), 9(a), 11, 12, 15

#1

Mark each statement True or False. Justify each answer.

a. If (s_n) is a sequence and $s_i = s_j$ then i = j.

False.

Let: $(s_n) = \{1^n\}$

b. If $s_n \longrightarrow s$, then, for every $\epsilon > 0$, $\exists N \in \mathbb{N}$ st $n \ge N$ implies $|s_n - s| < \epsilon$.

True.

A sequence $\{s_n\}$ is said to **converge** to $s \in \mathbb{R}$ provided that $\forall \epsilon > 0$

 $\exists\ N\in\mathbb{N}\leq n\ st$

 $|s_n - s| < \epsilon$

This is the definition of convergence, so this implies that $\mathbf{s}_n \ \longrightarrow \mathbf{s}$

c. If $\mathbf{s}_n \ \longrightarrow \mathbf{k}$ and $\mathbf{t}_n \ \longrightarrow \mathbf{k},$ then $\mathbf{s}_n = \mathbf{t}_n \ \forall \ \mathbf{n} \in \mathbb{N}$.

False.

Let: $s_n = \sum_{i=0}^{\infty} \frac{1}{2^i}, t_n = 2 - \sum_{i=0}^{\infty} \frac{1}{2^i}$

d. Every convergent sequence is bounded.

By Theorem 4.1.13, this is true.

6(b)

Definition 4.1.2

A sequence $\{s_n\}$ is said to **converge** to $s \in \mathbb{R}$ provided that $\forall \epsilon > 0$ $\exists N \in \mathbb{N}$ st $n \geq N \longrightarrow |s_n - s| < \epsilon$

Using only definition 4.1.2, prove the following:

For k > 0, k
$$\in \mathbb{R}$$
, $\lim_{n \to \infty} (\frac{1}{n^k}) = 0$

Proof.

Let: $\{s_n\} = \frac{1}{n^k}, s = 0$ $|s_n - s| = |\frac{1}{n^k} - 0| = |\frac{1}{n^k}|$

Want to show: $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \longrightarrow \left|\frac{1}{n^k}\right| < \epsilon$

Let: $\epsilon > 0, N \in \mathbb{N}, k \in \mathbb{R} > 0$

Want to show: $\exists N \in \mathbb{N} \text{ st } \left| \frac{1}{N^k} \right| < \epsilon$

Let: $\left|\frac{1}{N^k}\right| < \epsilon$ $\frac{1}{|N^k|} < \epsilon$ $\frac{1}{\epsilon} < |N^k|$

 $|\mathbf{N}^k| = \mathbf{N}^k \text{ since } \mathbf{N} \in \mathbb{N} \text{ and } \mathbf{k} > 0$ (1)

 $\frac{1}{\epsilon} < N^k$ $(\frac{1}{\epsilon})^{\frac{1}{k}} < N$

If N is the ceiling of $(\frac{1}{\epsilon})^{\frac{1}{k}} + 1$, then N exists.

Want to show: $\left|\frac{1}{(N+1)^k}\right| < \epsilon$

If we know that $\left|\frac{1}{N^k}\right| < \epsilon$,

then showing

$$\left|\frac{1}{(N+1)^k}\right| < \left|\frac{1}{N^k}\right|$$

shows

$$\left|\frac{1}{(N+1)^k}\right| < \epsilon$$

$$\begin{split} & |\frac{1}{(N+1)^k}| < |\frac{1}{N^k}| \\ & \frac{1}{|(N+1)^k|} < \frac{1}{|N^k|} \\ & |\mathbf{N}^k| < |(\mathbf{N}+1)^k| \end{split}$$

From (1),

$$|N^k| = N^k < |(N+1)^k| = (N+1)^k$$

$$N^k < (N+1)^k$$

This is true since $N \in \mathbb{N}$ and k > 0

So, $\left|\frac{1}{N^k}\right|$ decreases as N grows.

Since $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } \left| \frac{1}{n^k} \right| < \epsilon$,

$$\lim_{n\to\infty} \frac{1}{n^k} = 0$$

7(f)

Using any of the results in this section (4.1), prove the following: If $|\mathbf{x}| < 1$, then $\lim_{n \to \infty} \mathbf{x}^n = 0$

Proof.

 $|x| < 1 \text{ implies } 0 \le |x| < 1$ (1)

Let: $s_n = x^n, s = 0$

Want to show: $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - s| < \epsilon$

Let: $\epsilon > 0$

 $|\mathbf{s}_n - \mathbf{s}| < \epsilon = |\mathbf{x}^n| < \epsilon$

Want to show: $\exists N \in \mathbb{N} \text{ st } |\mathbf{x}^N| < \epsilon$

 $|\mathbf{x}^N|<\epsilon$

 $||\mathbf{x}^N|| < |\epsilon|$

We know that because of (1) and because $N \in \mathbb{N}$,

 $|\mathbf{x}^{N+1}| < |\mathbf{x}^N|$

We also know that $\epsilon > 0$

So, $0 < |\mathbf{x}^{N+\ k}| < \dots < |\mathbf{x}^{N+1}| < |\mathbf{x}^N|$ where $\mathbf{k} \in \mathbb{N}$

9(a)

For each of the following, prove or give a counter example: If (s_n) converges to s, then $(|s_n|)$ converges to |s|.

Proof.

If s_n converges to s, then by definition,

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } N \leq \text{n implies } |\mathbf{s}_n - \mathbf{s}| < \epsilon$

Want to show: $||\mathbf{s}_n| - |\mathbf{s}|| < \epsilon$

Case 1: s_n and s are the same sign.

 $||s_n| - |s|| = |s_n - s|$

Therefore, $N \leq n$ implies $||s_n| - |s|| < \epsilon$

If we let $s_n = |s_n|$ and |s| = s, then $|s_n|$ converges to |s|.

Case 2: s_n and s are different signs.

 $||\mathbf{s}_n| - |\mathbf{s}|| \le |\mathbf{s}_n - \mathbf{s}| < \epsilon$

 $||\mathbf{s}_n| - |\mathbf{s}|| < \epsilon$

Therefore, $N \le n$ implies $||s_n| - |s|| < \epsilon$

If we let $s_n = |s_n|$ and |s| = s, then $|s_n|$ converges to |s|.

Hence, result.

11

Given the sequence (s_n) , $k \in \mathbb{N}$, let (t_n) be the sequence defined by $t_n = s_{n+k}$. That is, the terms in (t_n) are the same as that of the terms in (s_n) after the first k terms have been skipped. Prove that (t_n) converges iff (s_n) converges, and if they converge, show that $\lim t_n = \lim s_n$. Thus, the convergence of a sequence is not affected by omitting (or changing) a finite number of terms.

Proof.

```
(t_n) converges \longrightarrow (s_n) converges
If t_n converges, then by definition,
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |t_n - L| < \epsilon
(or)
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } |t_n - L| < \epsilon \forall n \geq N
Since t_n = s_{n+k},
we know that s_{n+k} converges.
Let: n_1 = n + k
So,
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n_1 \geq N \text{ implies } |s_{n_1} - L| < \epsilon
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n + k \geq N \text{ implies } |s_{n_1} - L| < \epsilon
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N - k \text{ implies } |s_{n_1} - L| < \epsilon
Notice that N\,-\,k\in\mathbb{N} . Let's call it N_1
\forall \epsilon > 0, \exists N_1 \in \mathbb{N} \text{ st } n \geq N_1 \text{ implies } |s_{n_1} - L| < \epsilon
Since there is still a natural number N_1 st n \ge N_1 implies |s_{n_1} - L| < \epsilon,
If t_n converges, then s_n converges.
(s_n) converges \longrightarrow (t_n) converges
If s_n converges, then by definition,
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - L| < \epsilon
Since t_n = s_{n+k}, t_{n-k} = s_n
So since s_n converges, t_{n-k} converges.
If we let n_1 = n - k,
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n_1 \geq N \text{ implies } |t_{n_1} - L| < \epsilon
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n - k \geq N \text{ implies } |t_{n_1} - L| < \epsilon
\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq (N + k) \text{ implies } |t_{n_1} - L| < \epsilon
Notice that N+k\in\mathbb{N} . Let's call it N_1
\forall \epsilon > 0, \exists N_1 \in \mathbb{N} \text{ st } n \geq N_1 \text{ implies } |t_{n_1} - L| < \epsilon
Since there is still a natural number N_1 st n \geq N_1 implies |t_{n_1} - L| < \epsilon,
If s_n converges, then t_n converges.
```

12

a. Assume that $\lim s_n = 0$. If (t_n) is a bounded sequence, prove that $\lim(s_n t_n) = 0$. If $\lim s_n = 0$, then by definition, $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n - 0| < \epsilon$ If t_n is a bounded sequence, then $\forall n \in \mathbb{N}$, $a \leq t_n \leq b$, where $a, b \in \mathbb{R}$

We know that t_n will always be between two constants a and b, so lets let $t_n = c$, where $a \le c \le b$.

Since s_n converges,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n - 0| < \epsilon$$

can be simplified to

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n| < \epsilon$$

Want to show: $\lim(s_n t_n) = 0$

 $\lim(\mathbf{s}_n\mathbf{t}_n)=0$ if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n t_n| < \epsilon$$

Since we let $t_n = c$, some bounded real number, this is equivalent to

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |cs_n| < \epsilon$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n| < |c|\epsilon$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n| < \epsilon_1$$

which is equivalent to

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n| < \epsilon$$

Hence, result.

b. Show by example that the boundedness of (t_n) is a necessary condition in part (a).

If $\lim s_n = 0$, then by definition,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n - 0| < \epsilon$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n| < \epsilon$$

However, if we let t_n be unbounded (i.e. let $t_n = e^n$), this doesn't work. See below:

 $s_n t_n$ is bounded if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st if } n \geq N, \text{ then } |s_n t_n| < \epsilon$$

Suppose:
$$s_n = \frac{1}{n}$$

Then
$$s_n t_n = \frac{e^n}{n}$$

Since e^n grows faster than $\frac{1}{n}$, $s_n t_n$ grows overall as n approaches infinity.

Hence, the boundedness of t_n is necessary.

15

a. Prove that x is an accumulation point of a set S iff \exists a sequence (s_n) of points in $S \setminus \{x\}$ st (s_n) converges to x.

--->

Let: $x \in S'$

This means that $N^*(x,\epsilon) \cap S \neq \emptyset, \forall \epsilon > 0$. (1)

 $N^*(x, \epsilon)$ means $\{y \in \mathbb{R} : 0 < |y - x| < \epsilon \}$

If $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - x| < \epsilon$,

Then (s_n) converges to x.

Let: $s_n \in N^*(x, \frac{1}{n}) \cap S \neq \emptyset$

Then

 $|\mathbf{s}_n - \mathbf{x}| < \frac{1}{n} \text{ and } \mathbf{s}_n \in \mathbf{S} \setminus \{\mathbf{x}\}$

Let: $\epsilon > 0$

 $\exists \ \mathrm{N}(\epsilon) \in \mathbb{N} \ \mathrm{st} \ \frac{1}{N} < \epsilon \ (\mathrm{By} \ \mathrm{AP})$

Thus, from (1),

 $|\mathbf{s}_n - \mathbf{x}| < \epsilon$, $\forall n \geq N$.

Hence, $\lim s_n = x$ and $s_n \in S \setminus \{x\} \ \forall \ n \in \mathbb{N}$

 \leftarrow

Conversely,

Assume: $\{s_n\}$ is a sequence in $S \setminus \{x\}$ st $\lim_{n \to \infty} s_n = x$

Want to show: $x \in S'$

 $\forall \epsilon > 0, \exists N(\epsilon)$ (as in N is chosen based on ϵ) $\in \mathbb{N}$ st

 $|s_n - x| < \epsilon \ \forall \ n \ge N \ and \ s_n \in S \setminus \{X\}$

 $s_n \in (x - \epsilon, x + \epsilon), s_n \neq x$

(theorem 4.2.1 is a possibility on test)

4.2.4, 4.2.7 not on exam

Thus, $N^*(x, \epsilon) \cap S \neq \emptyset$

So, $x \in S'$

Hence result.

b. Prove that a set S is closed iff, whenever (s_n) is a convergent sequence of points in S, it follows that $\lim s_n$ is in S.

 \longrightarrow

Let: S be a closed set.

Want to show: (s_n) is a sequence in S st $\lim_{n\to\infty} s_n = s$ implies $s \in S$

If S is closed, then $S=cl\ S=S\cup S'$, bd $S\subset S$

 $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ st } |s_n - s| < \epsilon \forall n \geq N$

Want to show: $s \in S$

Case

i) $s \in S$.

In this case, we are done.

ii) $s \notin S$

Hence, (s_n) is a sequence in $S \setminus \{s\}$ st $\lim_{n \to \infty} s_n = s$. By (a), $s \in S'$.

Since S is closed, $s \in S$.

Note: The above is what we did in class. Below (until \leftarrow) is my original answer. Can you tell me if the next 11 or so lines are valid?

Suppose: $\lim s_n \notin S$

This implies that $s \not\in S$ where

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |s_n - s| < \epsilon$

Since S is closed,

Let: u be the closest boundary point to s

Now, let $\epsilon = \left| \frac{u-s}{2} \right|$

We know that $|\mathbf{s}_n - \mathbf{s}| < \epsilon$ for this epsilon.

 $|\mathbf{s}_n - \mathbf{s}| < |\frac{u - L}{2}|$

Which implies that the distance between s_n and s is less than the distance between s_n and the nearest boundary point of S.

This means there is an \mathbf{s}_n st $\mathbf{s}_n \not\in \mathbf{S}$, a contradiction.

So, s_n is not a convergent sequence of points in S if $\lim s_n$ is not in S.

 \leftarrow

Conversely,

Assume: whenever (s_n) is a sequence in S st $\lim_{n\to\infty} s_n = s$, then $s \in S$

Want to show: S is closed

We will use Theorem 3.4.17 (a): S is closed iff $S' \subset S$

Let: $s \in S'$

 $s \in S' \text{ means } \forall \epsilon > 0, N^*(s, \epsilon) \cap S \neq \emptyset$

Let: $s_n \in N^*(s, \frac{1}{n}) \cap S \neq \emptyset, n \in \mathbb{N}$

So,

 $|\mathbf{s}_n - \mathbf{s}| < \frac{1}{n}, \, \mathbf{s}_n \in \mathbf{S} \, \forall \, \mathbf{n} \in \mathbb{N}$

Hence $\lim_{n\to\infty} \mathbf{s}_n = \mathbf{s}$

We know $\exists N \in \mathbb{N} \text{ st } \frac{1}{N} < \epsilon \text{ by AP.}$

From (1), $|\mathbf{s}_n - \mathbf{s}| < \frac{1}{n} < \epsilon \ \forall \ n \ge N$

Hence, $\lim_{n\to\infty} s_n = s, s_n \in S, \forall n \in \mathbb{N}$

By assuming $s \in S$, S is closed.