Aula 07 Esforço e Deformação

Plano da Aula

Introdução

Dobras e falhas

Esforço:

- Forças de corpo e superfície
- Esforço em 2D, esforços e eixos principais, esforço deviatórico.

Deformação:

• Deformação normal e cisalhamento, rotação, deformações e eixos principais.

Dobras e falhas

É comum os estratos das rochas serem desviados da sua posição inicial e as rochas mostrarem deformações.

As deformações são o efeito das forças tectônicas aplicadas nas rochas, que pode resultar em:

- Falhas- Ruptura das rochas com deslocação dos respectivos estratos.
- Dobras Enrugamento dos estratos

Dobras e falhas

A profundidade condiciona o comportamento frágil/dúctil das rochas:

Na Superficie:

- P, T baixo
- Reologia frágil

Em profundidade:

- P, T alto
- Reologia dúctil

Dobras e falhas

As forças tectônicas determinam o tipo de falhamento/deformação:

Tension

Shear

Reverse Fault

Copyright @ Marli Miller, <u>University of Oregon</u> Image source: Earth Science World Image Bank http://www.earthscienceworld.org/images

Normal Fault

Copyright @ Marli Miller, University of Oregon image source: http://www.uoreg.on.edu/~millerm/LVSS.html

Reverse Fault

Copyright @ Marti Miller, University of Oregon image source: http://www.uoregon.edu/~millerm/LVSS.html

Folds

Copyright @ Michael Collier , Image source: Image source: Earth Science World Image Bank http://www.earthscienceworld.org/images

Boudins

Copyright @ Marli Miller, <u>University of Oregon</u> Image source: Earth Science World Image Bank http://www.earthscienceworld.org/images

Ductile shear zone

Copyright @ Marli Miller, University of Oregon image source: http://www.uoregon.edu/~millerm/LVSS.html

Brittle

Esforço

As forças em um elemento de um sólido são de dois tipos:

 Forças de corpo - agem em todo o volume e são proporcionais ao volume.

Exemplo: gravidade - F=ρVg

• Forças de superfície - atuam na área delimitadora de um elemento de volume (superfície) e são transmitidas por campos de força interatómicos.

Exemplo: pressão hidrostática F=pghS

Pressão hidrostática

A gravidade sempre aponta para baixo, mas a pressão é normal à superfície.

Tração

Definimos tração como uma força por unidade de área.

$$T = \lim_{\Delta A \to 0} \Delta F / \Delta A$$

Esforço normal e de cisalhamento

A tração, como toda força, pode ser decomposta em 2 partes:

- Esforço transmitido perpendicular à superfície é esforço normal;
- Esforço transmitido paralelamente à superfície é esforço de cisalhamento.

Pressão litostática (p₁)

É o esforço normal devido ao peso da rocha sobrejacente ou sobrecarga.

$$y=0$$

$$\rho_c \quad crosta$$

$$\rho_b \quad \rho_c \quad rosta$$

$$\rho_b \quad \rho_c \quad rosta$$

$$\rho_c \quad \rho_c \quad \rho_c$$

(Para h = 35 km e ρ_c = 2750 kg/m³, σ_{yy} = 962.5 Mpa)

Estado de esforços litostático

Os esforços são chamados de litostáticos quando

$$\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = \rho gy$$

o que acontece quando a rocha tem esquentado a temperaturas altas o suficiente ou é fraca o suficiente.

É um estado equivalente ao estado hidrostático de um fluido em repouso.

Tensor de esforços (2D)

O estado de esforços é 2D quando:

- Não há forças de superfície na direção Z
- Nenhuma força muda nessa direção

Simetria do tensor de esforços

Se o elemento de volume está em equilíbrio, a suma dos torques tem que ser igual a zero:

$$M_O^{(xy)} = \sigma_{xy} \, dydz(dx/2) + \sigma_{xy} \, dydz(dx/2)$$

$$M_O^{(yx)} = \sigma_{yx} dxdz(dy/2) + \sigma_{yx} dxdz(dy/2)$$

Igualando os torques

$$\sigma_{xy} = \sigma_{yx}$$

O tensor de esforços é simétrico.

Esforço e tração

A tração sobre qualquer plano através de um ponto P pode ser escrita como uma combinação linear dos esforços:

$$T_{x}(n)ds = \sigma_{xx}dy + \sigma_{yx}dx$$
$$T_{y}(n)ds = \sigma_{xy}dy + \sigma_{yy}dx$$

$$T_{x} = \sigma_{xx} n_{x} + \sigma_{yx} n_{y}$$
$$T_{y} = \sigma_{xy} n_{x} + \sigma_{yy} n_{y}$$

Notação matricial

As equações anteriores podem ser expressas através de matrizes:

$$\begin{bmatrix} T_{x} \\ T_{y} \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \sigma_{yx} \\ \sigma_{xy} & \sigma_{yy} \end{bmatrix} \begin{bmatrix} n_{x} \\ n_{y} \end{bmatrix}$$

ou, usando a convenção de suma dos sub-indices repetidos,

$$T_i = \sigma_{ji} n_j$$

Mudança de coordenadas

$$\sigma_{x'x'} = \sigma_{xx} \cos^2\theta + \sigma_{yy} \sin^2\theta + \sigma_{xy} \sin 2\theta$$

$$\sigma_{x'y'} = \frac{1}{2}(\sigma_{yy} - \sigma_{xx}) \sin 2\theta + \sigma_{xy} \cos 2\theta$$

$$\sigma_{y'y'} = \sigma_{xx} \sin^2\theta + \sigma_{yy} \cos^2\theta - \sigma_{xy} \sin 2\theta$$

Eixos principais

Para qualquer estado arbitrário de esforço 2D, σ_{xx} , σ_{yy} , σ_{xy} , é possível achar uma superfície orientada de tal forma que nenhuma força de cisalhamento é exercida sobre a superfície.

$$\tan 2\theta = \frac{2\sigma_{xy}}{\sigma_{xx} - \sigma_{yy}}$$

A direção θ é conhecida como um dos eixos principais de esforço.

Eixos principais

A direção $\theta+\pi/2$ é também um eixo principal de esforço,

 $tan [2(\theta + \pi/2)] = tan 2\theta$

Assim, sempre há dois eixos principais de esforços.

Não há esforços de cisalhamento em elementos de área perpendiculares aos eixos principais.

Esforços principais

Os esforços normais ao sistema de coordenadas dos eixos principais são conhecidos como esforços principais.

Os esforços principais podem ser achados através da equação:

$$\sigma_{1,2} = \frac{\sigma_{xx} + \sigma_{yy}}{2} \pm \left\{ \frac{(\sigma_{xx} - \sigma_{yy})^2}{4} + \sigma_{xy}^2 \right\}^{1/2}$$

Equações inversas

Os esforços σ_{xx} , σ_{xy} , σ_{yy} são expressos a partir dos esforços principais, σ_1 e σ_2 e da direção dos eixos principais θ , através das equações:

$$\sigma_{xx} = \frac{1}{2} (\sigma_1 + \sigma_2) + \frac{1}{2} (\sigma_1 - \sigma_2) \cos 2\theta$$

$$\sigma_{xy} = -\frac{1}{2} (\sigma_1 - \sigma_2) \sin 2\theta$$

$$\sigma_{yy} = \frac{1}{2} (\sigma_1 + \sigma_2) - \frac{1}{2} (\sigma_1 - \sigma_2) \cos 2\theta$$

Pressão e esforço deviatórico

Quando todos os esforços principais são iguais, definimos a pressão como

$$\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = p$$

Quando todos os esforços principais não são iguais

$$p = (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})/3$$

e os esforços deviatóricos são

$$\sigma'_{xx} = \sigma_{xx} - p; \sigma'_{yy} = \sigma_{yy} - p; \sigma'_{zz} = \sigma_{zz} - p$$

$$\sigma'_{xy} = \sigma_{xy}; \sigma'_{yz} = \sigma_{yz}; \sigma'_{xz} = \sigma_{xz}$$

Deformação

As deformações são descritas através de um campo de deslocamento.

Esse campo é vetorial e cada vector faz a ligação das posições das partículas antes e após da deformação.

Translação, rotação e deformação

Esse campo vetorial pode ser sempre dividido em:

- Translação de corpo rígido
- Rotação de corpo rígido
- Elongação (contração)
- Cisalhamento puro

Deformação

O cientista alemão H.L.F. Von Helmholz mostrou, em 1858, que isso acontece para toda deformação.

Um exemplo

Toda deformação é expressa como uma soma de quatro deslocamentos básicos:

Translação de corpo rígido

É um deslocamento do corpo, descrito por um campo vetorial uniforme.

Contração/elongação

É a razão da mudança no comprimento de um sólido respecto ao seu tamanho original.

$$\begin{array}{ccc}
P \\
& & \\
O', & S'
\end{array}$$

$$\epsilon_{n} = \lim_{\Delta s \to 0} \frac{\Delta s - \Delta s'}{\Delta s}$$

A deformação normal não leva em conta a translação de sólido rígido, nem a rotação.

Deformação normal e deslocamento

Vamos agora relacionar deformação normal e deslocamento:

Deformação de cisalhamento

É a metade da diminuição de um ângulo recto num sólido quando é deformado.

A deformação de cisalhamento também não leva em conta a translação de sólido rígido, nem a rotação.

Deformação de cisalhamento e deslocamento

Vamos agora relacionar deformação de cisalhamento e deslocamento:

Rotação de corpo rígido

A rotação do corpo, é descrito por um único ângulo de rotação médio ω .

Cisalhamento puro e simples

A rotação devida à deformação de cisalhamento é expressa como

$$\varepsilon_{xy} = \partial w_x / \partial y$$
 $\omega_z = 0$

$$\varepsilon_{xy} = \frac{1}{2} \frac{\partial w_x}{\partial y}$$

$$\omega_z = -\frac{1}{2} \frac{\partial w_x}{\partial y}$$

Mudança de coordenadas

$$\varepsilon_{x'x'} = \varepsilon_{xx} \cos^2\theta + \varepsilon_{yy} \sin^2\theta + \varepsilon_{xy} \sin 2\theta$$

$$\varepsilon_{x'y'} = \frac{1}{2}(\varepsilon_{yy} - \varepsilon_{xx}) \sin 2\theta + \varepsilon_{xy} \cos 2\theta$$

$$\varepsilon_{y'y'} = \varepsilon_{xx} \sin^2\theta + \varepsilon_{yy} \cos^2\theta - \varepsilon_{xy} \sin 2\theta$$

Deformações principais

No sistema de coordenadas principal a deformação de cisalhamento é zero.

$$\tan 2\theta = \frac{2\epsilon_{xy}}{\epsilon_{xx} - \epsilon_{yy}}$$

As deformações principais são:

$$\varepsilon_{1,2} = \frac{\varepsilon_{xx} + \varepsilon_{yy}}{2} \pm \left\{ \frac{(\varepsilon_{xx} - \varepsilon_{yy})^2}{4} + \varepsilon_{xy}^2 \right\}^{\frac{1}{2}}$$

Deformações principais

E as deformações ε_{xx} , ε_{xy} , ε_{yy} podem ser achadas a partir das deformações principais, σ_1 e σ_2 e da direção dos eixos principais θ , através das equações:

$$\varepsilon_{xx} = \frac{1}{2} (\varepsilon_1 + \varepsilon_2) + \frac{1}{2} (\varepsilon_1 - \varepsilon_2) \cos 2\theta$$

$$\varepsilon_{xy} = -\frac{1}{2} (\varepsilon_1 - \varepsilon_2) \sin 2\theta$$

$$\varepsilon_{yy} = \frac{1}{2} (\varepsilon_1 + \varepsilon_2) - \frac{1}{2} (\varepsilon_1 - \varepsilon_2) \cos 2\theta$$