

# Banco de Dados



- -Proposto em 1970 pelo Dr. Edgar Frank Cood (IBM).
- -Consiste em uma coleção de tabelas de nomes únicos.
- -Estrutura de dados simples e uniforme:
  - -Um banco de dados relacional é um conjunto de relações;
  - -Cada relação é um conjunto de linhas (ou tuplas);
  - -Cada tupla é uma lista de valores de atributos;
  - -Cada valor de atributo é retirado de um domínio.





#### **Domínio**

-O tipo de dado que descreve os tipos de valores que podem aparecer em cada coluna é representado por um **domínio** de valores possíveis.



## Características das Relações

- Uma relação é definida como um conjunto de tuplas;
- As tuplas em uma relação, assim como os elementos de um conjunto, não possuem ordem entre eles.
- A ordem dos atributos e seus valores não é tão importante, desde que a correspondência entre atributos e valores seja mantida.
- Cada valor em uma tupla é um valor atômico.



-Como não pode haver uma tupla repetida (duplicada) em uma instância da relação, isto significa que é possível identificar cada tupla separadamente uma da outra por meio da escolha de algum atributo.

#### Chaves

- Chave primária (PK)
- Chave única (UK)
- Chave estrangeira (FK)



## Mapeamento do MER para Relacional

O Modelo Entidade-Relacionamento (MER) é responsável por realizar uma representação mais conceitual dos dados de uma aplicação. Esta representação é um pouco distante da forma como realmente os elementos (entidades e relacionamentos) serão implementados.

O modelo relacional fornece uma representação dos dados de forma mais próxima de como estes dados se encontrarão quando forem definidos os arquivos para o BD.



#### Regras para o mapeamento

1- Todas as <u>entidades</u> são mapeadas para uma <u>relação</u> contendo os mesmos atributos do DER.



tbAluno
ALU\_CODIGO (PK)
ALU\_NOME
ALU\_MATRICULA (UK)



#### Regras para o mapeamento

2- Para os atributos multivalorados (A), é criada uma relação R que terá como atributos os mesmos de A mais a chave primária da entidade (ou relacionamento) no qual A é atributo. Se o atributo multivalorado é composto, será incluído seus componentes.



# ALT\_CODIGO (PK) ALT\_TELEFONE

ALU\_CODIGO (FK)



#### Regras para o mapeamento

3- Para relacionamento 1:1, dentre as relações que mapeiam as entidades participantes escolha uma delas (a que possuir participação total) e inclua como chave estrangeira a chave primária da outra.





#### Regras para o mapeamento

4- Para relacionamentos 1:N, escolha a relação que representa a entidade presente no lado N e acrescente como chave estrangeira a chave primária da entidade do lado 1.



tbProfessor

PRO\_CODIGO (PK)
PRO\_NOME

tbDisciplina

DIS\_CODIGO (PK)
DIS\_NOME

PRO\_CODIGO (FK)



#### Regras para o mapeamento

5- Para relacionamentos N:N, é criado uma nova relação contendo como chaves estrangeiras as chaves primárias das entidades participantes, mais os atributos do relacionamento.



tbAluno
ALU\_CODIGO (PK)
ALU\_NOME

tbDisciplina

DIS\_CODIGO (PK)

DIS\_NOME

tbAlunoDisciplina

ALD\_CODIGO (PK)

ALU\_CODIGO (FK)

DIS\_CODIGO (FK)

ALD\_FREQUENCIA



#### Regras para o mapeamento

6- Para relacionamentos triplos, o mapeamento ocorre de forma semelhante ao descrito pela regra 5.



**tbProduto** 

PRO\_CODIGO (PK)
PRO\_NOME

tbCidade

CID\_CODIGO (PK) CID\_NOME tbFornecedor

FOR\_CODIGO (PK)
FOR NOME

tbFornProdCidad

FPC\_CODIGO (PK)
CID\_CODIGO (FK)
PRO\_CODIGO (FK)
FOR CODIGO (FK)



#### Regras para o mapeamento

7- Na agregação, crie uma relação para cada entidade, inclusive para a entidade associativa. Adicione as chaves estrangeiras conforme a cardinalidade dos relacionamentos.





#### Regras para o mapeamento

- 8- Converta cada especialização com m subclasses  $\{S_1, S_2, ..., S_m\}$  e superclasse SC, onde os atributos de SC são  $\{c, a_1, a_2, ..., a_n\}$  onde c é a chave primária de SC, em tabelas utilizando uma das seguintes opções:
- a) Crie uma tabela T para SC com os atributos  $A(T) = \{c, a_1, a_2, ..., a_n\}$  e chave C(T) = c; crie uma tabela  $T_i$  para cada subclasse  $S_i$ ,  $1 \le i \le m$ , com os atributos  $A(T_i) = \{c\}$  U  $A(S_i)$ , onde C(T) = c;
- b) Crie uma tabela  $T_i$  para cada subclasse  $S_i$ ,  $1 \le i \le m$ , com os atributos  $A(T_i) = A(S_i) \cup \{c, a_1, a_2, ..., a_n\}$  e  $C(T_i) = c$ ;
- c) Crie uma tabela T com os atributos  $A(T) = \{c, a_1, a_2, ..., a_n\} U A(S1) U ... U A(S_m) U \{t\},$  onde t é um atributo tipo que indica a subclasse à qual cada tupla pertence, caso isto venha a ocorrer;
- d) Crie uma tabela T com atributos  $A(T) = \{c, a_1, a_2, ..., a_n\} U A(S_1) U ... U A(S_m) U \{t_1, t_2, ..., t_m\}$ ; cada  $t_i$ ,  $1 \le i \le m$ , é um atributo "booleano" indicando se a tupla pertence ou não à subclasse  $S_i$ ; embora funcional, esta opção pode gerar uma quantidade muito grande de valores nulos.



#### Regras para o mapeamento

8- a) Crie uma tabela T para SC com os atributos  $A(T) = \{c, a_1, a_2, ..., a_n\}$  e chave C(T) = c; crie uma tabela  $T_i$  para cada subclasse  $S_i$ ,  $1 \le i \le m$ , com os atributos  $A(T_i) = \{c\}$  U  $A(S_i)$ , onde C(T) = c;



tbFuncionario

FUN\_CODIGO (PK)
FUN\_NOME

tbGerente

GER\_CODIGO (PK) GER\_CARGA\_HOR FUN\_CODIGO (FK) tbSupervisor

SUP\_CODIGO (PK) SUP\_DPTO FUN\_CODIGO (FK)



#### Regras para o mapeamento

8- b) Crie uma tabela  $T_i$  para cada subclasse  $S_i$ ,  $1 \le i \le m$ , com os atributos  $A(T_i) = A(S_i) \cup \{c, a_1, a_2, ..., a_n\} \in C(T_i) = c$ ;



GER\_CODIGO (PK)
GER\_NOME
GER\_CARGA\_HOR

SUP\_CODIGO (PK)
SUP\_NOME
SUP\_DPTO



#### Regras para o mapeamento

8- c) Crie uma tabela T com os atributos  $A(T) = \{c, a_1, a_2, ..., a_n\} \cup A(S1) \cup ... \cup A(S_m) \cup \{t\}$ , onde t é um atributo tipo que indica a subclasse à qual cada tupla pertence, caso isto venha a ocorrer;





#### Regras para o mapeamento

8- d) Crie uma tabela T com atributos  $A(T) = \{c, a_1, a_2, ..., a_n\}$  U  $A(S_1)$  U ... U  $A(S_m)$  U  $\{t_1, t_2, ..., t_m\}$ ; cada  $t_i$ ,  $1 \le i \le m$ , é um atributo "booleano" indicando se a tupla pertence ou não à subclasse  $S_i$ ; embora funcional, esta opção pode gerar uma quantidade muito grande de valores nulos.



# tbFuncionario FUN\_CODIGO (PK) FUN\_NOME FUN\_CARGA\_HOR FUN\_DPTO FUN\_GERENTE FUN\_SUPERVISOR















