

LM1117/LM1117I

800mA Low-Dropout Linear Regulator

General Description

The LM1117 is a series of low dropout voltage regulators with a dropout of 1.2V at 800mA of load current. It has the same pin-out as National Semiconductor's industry standard LM317.

The LM1117 is available in an adjustable version, which can set the output voltage from 1.25V to 13.8V with only two external resistors. In addition, it is also available in five fixed voltages, 1.8V, 2.5V, 2.85V, 3.3V, and 5V.

The LM1117 offers current limiting and thermal shutdown. Its circuit includes a zener trimmed bandgap reference to assure output voltage accuracy to within ±1%.

The LM1117 series is available in SOT-223, TO-220, and TO-252 D-PAK packages. A minimum of 10µF tantalum capacitor is required at the output to improve the transient response and stability.

Features

- Available in 1.8V, 2.5V, 2.85V, 3.3V, 5V, and Adjustable Versions
- Space Saving SOT-223 Package
- **Current Limiting and Thermal Protection**
- **Output Current** 800mA ■ Line Regulation 0.2% (Max)
- Load Regulation 0.4% (Max)
- Temperature Range
 - LM1117

0°C to 125°C -40°C to 125°C — LM1117I

Applications

- 2.85V Model for SCSI-2 Active Termination
- Post Regulator for Switching DC/DC Converter
- High Efficiency Linear Regulators
- **Battery Charger**
- Battery Powered Instrumentation

Typical Application

Active Terminator for SCSI-2 Bus

Fixed Output Regulator

*Required if the regulator is located far from the power supply filter.

Ordering Information

Package	Temperature	Part Number	Packaging Marking	Transport Media	NSC
	Range				Drawing
3-lead	0°C to +125°C	LM1117MPX-ADJ	N03A	Tape and Reel	MA04A
SOT-223		LM1117MPX-1.8	N12A	Tape and Reel	1
		LM1117MPX-2.5	N13A	Tape and Reel	1
		LM1117MPX-2.85	N04A	Tape and Reel	1
		LM1117MPX-3.3	N05A	Tape and Reel	1
		LM1117MPX-5.0	N06A	Tape and Reel	
	-40°C to +125°C	LM1117IMPX-ADJ	N03B	Tape and Reel	1
		LM1117IMPX-3.3	N05B	Tape and Reel	1
		LM1117IMPX-5.0	N06B	Tape and Reel	1
3-lead TO-220	0°C to +125°C	LM1117T-ADJ	LM1117T-ADJ	Rails	T03B
		LM1117T-2.85	LM1117T-2.85	Rails	1
		LM1117T-3.3	LM1117T-3.3	Rails	
		LM1117T-5.0	LM1117T-5.0	Rails	
3-lead TO-252	0°C to +125°C	LM1117DTX-ADJ	LM1117DT-ADJ	Tape and Reel	TD03B
		LM1117DTX-1.8	LM1117DT-1.8	Tape and Reel	
		LM1117DTX-2.5	LM1117DT-2.5	Tape and Reel	
		LM1117DTX-2.85	LM1117DT-2.85	Tape and Reel]
		LM1117DTX-3.3	LM1117DT-3.3	Tape and Reel	
		LM1117DTX-5.0	LM1117DT-5.0	Tape and Reel	
	-40°C to +125°C	LM1117IDTX-ADJ	LM1117IDT-ADJ	Tape and Reel	
		LM1117IDTX-3.3	LM1117IDT-3.3	Tape and Reel	
		LM1117IDTX-5.0	LM1117IDT-5.0	Tape and Reel]

Block Diagram

Connection Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Input Voltage (V_{IN} to GND)

LM1117-ADJ, LM1117-1.8, LM1117-2.5, LM1117-3.3, LM1117-5.0, LM1117I-ADJ,

LM1117I-3.3, LM1117I-5.0 20V

Power Dissipation (Note 2) Internally Limited

Junction Temperature (T_J)

(Note 2)

Storage Temperature Range -65°C to 150°C

Lead Temperature

TO-220 (T) Package 260°C, 10 sec

SOT-223 (IMP) Package ESD Tolerance (Note 3) 260°C, 4 sec 2000V

15V

10V

Operating Ratings (Note 1)

Input Voltage (V_{IN} to GND) LM1117-ADJ, LM1117-1.8, LM1117-2.5, LM1117-3.3, LM1117-5.0, LM1117I-ADJ, LM1117I-3.3, LM1117I-5.0

LM1117-2.85

Junction Temperature Range (T_J)(Note 2)

LM1117 0°C to 125°C LM1117I -40°C to 125°C

LM1117 Electrical Characteristics

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $0^{\circ}C$ to $125^{\circ}C$.

150°C

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Unit
V_{REF}	Reference Voltage	LM1117-ADJ				
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 2 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	1.238	1.250	1.262	V
		$10mA \le I_{OUT} \le 800mA, 1.4V \le V_{IN}-V_{OUT}$ $\le 10V$	1.225	1.250	1.270	V
V _{OUT}	Output Voltage	LM1117-1.8				
00.		$I_{OUT} = 10 \text{mA}, V_{IN} = 3.8 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	1.782	1.800	1.818	V
		$0 \le I_{OUT} \le 800 \text{mA}, \ 3.2 \text{V} \le V_{IN} \le 10 \text{V}$	1.746	1.800	1.854	V
		LM1117-2.5				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 4.5 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	2.475	2.500	2.525	V
		$0 \le I_{OUT} \le 800 \text{mA}, 3.9 \text{V} \le V_{IN} \le 10 \text{V}$	2.450	2.500	2.550	V
		LM1117-2.85				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 4.85 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	2.820	2.850	2.880	V
		$0 \le I_{OUT} \le 800 \text{mA}, 4.25 \text{V} \le V_{IN} \le 10 \text{V}$	2.790	2.850	2.910	V
		$0 \le I_{OUT} \le 500 \text{mA}, V_{IN} = 4.10 \text{V}$	2.790	2.850	2.910	V
		LM1117-3.3				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 5 \text{V T}_{.I} = 25 ^{\circ} \text{C}$	3.267	3.300	3.333	\ \ \
		$0 \le I_{OUT} \le 800 \text{mA}, 4.75 \text{V} \le V_{IN} \le 10 \text{V}$	3.235	3.300	3.365	/ v
		LM1117-5.0				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 7 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	4.950	5.000	5.050	V
		$0 \le I_{OUT} \le 800 \text{mA}, 6.5 \text{V} \le V_{IN} \le 12 \text{V}$	4.900	5.000	5.100	\ \ \
ΔV_{OUT}	Line Regulation	LM1117-ADJ				
	(Note 6)	$I_{OUT} = 10 \text{mA}, 1.5 \text{V} \le V_{IN} - V_{OUT} \le$		0.035	0.2	%
		13.75V				
		LM1117-1.8		1	6	m\
		$I_{OUT} = 0 \text{mA}, \ 3.2 \text{V} \le V_{IN} \le 10 \text{V}$				
		LM1117-2.5		1	6	m\
		$I_{OUT} = 0 \text{mA}, 3.9 \text{V} \le V_{IN} \le 10 \text{V}$				
		LM1117-2.85				
		$I_{OUT} = 0 \text{mA}, 4.25 \text{V} \le V_{IN} \le 10 \text{V}$		1	6	m\
		LM1117-3.3				
		$I_{OUT} = 0 \text{mA}, 4.75 \text{V} \le V_{IN} \le 15 \text{V}$		1	6	m\
		LM1117-5.0				
		$I_{OUT} = 0 \text{mA}, 6.5 \text{V} \le V_{IN} \le 15 \text{V}$		1	10	m\

LM1117 Electrical Characteristics (Continued)

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $0^{\circ}C$ to $125^{\circ}C$.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
ΔV _{OUT}	Load Regulation	LM1117-ADJ				
	(Note 6)	$V_{IN}-V_{OUT} = 3V, 10 \le I_{OUT} \le 800 \text{mA}$		0.2	0.4	%
		LM1117-1.8		1	10	mV
		$V_{IN} = 3.2V, 0 \le I_{OUT} \le 800 \text{mA}$				
		LM1117-2.5		1	10	mV
		$V_{IN} = 3.9V, 0 \le I_{OUT} \le 800 \text{mA}$				
		LM1117-2.85				
		$V_{IN} = 4.25V, 0 \le I_{OUT} \le 800mA$		1	10	mV
		LM1117-3.3		_		
		$V_{IN} = 4.75V, 0 \le I_{OUT} \le 800 \text{mA}$		1	10	mV
		LM1117-5.0		_		
		$V_{IN} = 6.5V, 0 \le I_{OUT} \le 800mA$		1	15	mV
V_{IN} - V_{OUT}	Dropout Voltage	I _{OUT} = 100mA		1.10	1.20	V
	(Note 7)	I _{OUT} = 500mA		1.15	1.25	V
		I _{OUT} = 800mA		1.20	1.30	V
I _{LIMIT}	Current Limit	V_{IN} - V_{OUT} = 5V, T_J = 25°C	800	1200	1500	mA
	Minimum Load	LM1117-ADJ				
	Current (Note 8)	V _{IN} = 15V		1.7	5	mA
	Quiescent Current	LM1117-1.8		5	10	mA
		V _{IN} ≤ 15V				
		LM1117-2.5		5	10	mA
		V _{IN} ≤ 15V				
		LM1117-2.85				
		V _{IN} ≤ 10V		5	10	mA
		LM1117-3.3				
		V _{IN} ≤ 15V		5	10	mA
		LM1117-5.0				
		V _{IN} ≤ 15V		5	10	mA
	Thermal Regulation	T _A = 25°C, 30ms Pulse		0.01	0.1	%/W
	Ripple Regulation	f _{RIPPLE} =1 20Hz, V _{IN} -V _{OUT} = 3V	60	75		dB
		$V_{RIPPLE} = 1V_{PP}$				
	Adjust Pin Current			60	120	μA
	Adjust Pin Current	10 ≤ I _{OUT} ≤ 800mA,				
	Change	$1.4V \le V_{IN} - V_{OUT} \le 10V$		0.2	5	μΑ
	Temperature Stability			0.5		%
	Long Term Stability	T _A = 125°C, 1000Hrs		0.3		%
	RMS Output Noise	(% of V _{OUT}), 10Hz ≤ f ≤10kHz		0.003		%
	Thermal Resistance	3-Lead SOT-223		15.0		°C/W
	Junction-to-Case	3-Lead TO-220		3.0		°C/W
		3-Lead TO-252		10		°C/W
	Thermal Resistance	3-Lead SOT-223		136		°C/W
	Junction-to-Ambient	3-Lead TO-220		79		°C/W
	(No heat sink;	3-Lead TO-252 (Note 9)		92		°C/W
	No air flow)					

LM1117I Electrical Characteristics

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $-40^{\circ}C$ to $125^{\circ}C$.

$\begin{array}{ c c c c c } \hline V_{REF} & Reference Voltage & LM1117I-ADJ & 1.262 \\ \hline V_{OUT} & Output Voltage & LM1117I-ADJ & 1.260 & 1.260 & 1.290 \\ \hline V_{OUT} & Output Voltage & LM1117I-3.3 & 1.260 & 1.260 & 1.290 \\ \hline V_{OUT} & Output Voltage & LM1117I-3.3 & 1.260 & 1.260 & 1.290 \\ \hline V_{OUT} & Output Voltage & LM1117I-3.3 & 1.260 & 1.260 & 3.267 & 3.300 & 3.333 \\ \hline U_{OUT} = 10mA, V_{IN} = 5V, T_{J} = 25^{\circ}C & 3.267 & 3.300 & 3.333 \\ \hline U_{OUT} = 10mA, V_{IN} = 7V, T_{J} = 25^{\circ}C & 4.950 & 5.000 & 5.050 \\ \hline 0 \le I_{OUT} \le 800mA, 6.5V \le V_{IN} \le 10V & 4.800 & 5.000 & 5.200 \\ \hline \Delta V_{OUT} & Line Regulation & LM1117I-ADJ & 0.035 & 0.3 \\ \hline 1.250 & 1.262 & 1.290 & 1.290 & 1.290 & 1.290 & 1.290 \\ \hline \Delta V_{OUT} & Line Regulation & LM1117I-ADJ & 0.035 & 0.3 \\ \hline 1.250 & 1.250 & 1.250 & 1.290 & 1.290 & 1.290 \\ \hline \Delta V_{OUT} & Load Regulation & LM1117I-3.3 & 0.007 & 0.035 & 0.3 \\ \hline 1.250 & 1.200 & 1.200 & 1.290 & 1.290 & 1.290 \\ \hline \Delta V_{OUT} & Load Regulation & LM1117I-ADJ & 0.200 & 0.200 & 1.290 \\ \hline V_{IN}V_{OUT} = 0mA, 6.5V \le V_{IN} \le 15V & 1 & 1.5 \\ \hline LM1117I-3.3 & 0.007 & 0.05 & 0.007 & 0.05 \\ \hline V_{IN}V_{OUT} & 3V, 10 \le I_{OUT} \le 800mA & 1 & 1.5 \\ \hline U_{IM117I-S.0} & 0.05 & I_{OUT} \le 800mA & 1 & 1.20 \\ \hline V_{IN}V_{OUT} & 1.200 & 1.200 & 1.200 & 1.200 \\ \hline V_{IN}V_{OUT} & 0.05 & I_{OUT} \le 800mA & 1.100 & 1.300 \\ \hline V_{IN}V_{OUT} & 0.05 & I_{OUT} \le 800mA & 1.100 & 1.300 \\ \hline U_{IOT} = 800mA & 1.100 & 1.300 \\ \hline U_{IUT} & 0.000 & 0.000 & 1.200 & 1.500 \\ \hline Minimum Load & LM1117I-ADJ & 1.200 & 1.400 \\ \hline U_{ILIMIT} & Current Limit & V_{IN}V_{OUT} = 5V, T_{J} = 25^{\circ}C & 800 & 1200 & 1500 \\ \hline Quiescent Current & LM1117I-3.3 & 1.700 & 1.700 & 1.700 \\ \hline Quiescent Current & LM1117I-3.3 & 1.700 & 1.700 & 1.700 \\ \hline U_{IN}Guiescent Current & LM1117I-3.3 & 1.700 & 1.700 & 1.700 \\ \hline U_{IN}Guiescent Current & LM1117I-3.3 & 1.700 & 1.700 & 1.700 \\ \hline U_{IN}Guiescent Current & LM1117I-3.3 & 1.700 & 1.700 & 1.700 \\ \hline U_{IN}Guiescent Current & LM1117I-3.3 & 1.7000 & 1.7000 & 1.7000 \\ \hline U_{IN}Guiescent Current & LM1117I-3.3 & 1.7000 & 1.7000 & 1.7000 \\ \hline U_{IN}G$	V V V V V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V V V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V V V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V V V
$\frac{\Delta V_{OUT}}{\Delta V_{OUT}} = \frac{10 \text{mA, } V_{\text{IN}} = 5 \text{V, } V_{\text{J}} = 25 \text{°C}}{0 \le l_{\text{OUT}} \le 800 \text{mA, } 4.75 \text{V} \le V_{\text{IN}} \le 10 \text{V}} = \frac{3.267}{3.168} = \frac{3.300}{3.300} = \frac{3.333}{3.432}$ $\frac{3.432}{1.0017} = \frac{10 \text{mA, } V_{\text{IN}} = 7 \text{V, } V_{\text{J}} = 25 \text{°C}}{0 \le l_{\text{OUT}} \le 800 \text{mA, } 6.5 \text{V} \le V_{\text{IN}} \le 12 \text{V}} = \frac{4.950}{4.800} = \frac{5.000}{5.000} = \frac{5.050}{5.000}$ $\frac{\Delta V_{\text{OUT}}}{5.000} = \frac{1.0017}{1.0017} = 1.000000000000000000000000000000000000$	V V V
$ \frac{\Delta V_{OUT}}{\Delta V_{OUT}} = \frac{10 \text{mA, } V_{IN} = 7 \text{V, } T_{J} = 25^{\circ}\text{C}}{0.5 \mid_{OUT} \le 800 \text{mA, } 6.5 \text{V} \le V_{IN} \le 12 \text{V}} = \frac{4.950}{4.800} = \frac{5.000}{5.000} = \frac{5.050}{5.200} $ $ \frac{\Delta V_{OUT}}{\Delta V_{OUT}} = \frac{10 \text{mA, } 1.5 \text{V} \le V_{IN} \le 12 \text{V}}{1.0 \text{UT}} = \frac{10 \text{mA, } 1.5 \text{V} \le V_{IN} \le 12 \text{V}}{1.0 \text{UT}} = \frac{10 \text{mA, } 1.5 \text{V} \le V_{IN} \le 12 \text{V}}{1.0 \text{UT}} = \frac{10 \text{mA, } 1.5 \text{V} \le V_{IN} \le 15 \text{V}}{1.0 \text{UT}} = \frac{10 \text{mA, } 1.5 \text{V} \le V_{IN} \le 15 \text{V}}{1.0 \text{UT}} = \frac{10 \text{mA, } 1.5 \text{V} \le V_{IN} \le 15 \text{V}}{1.0 \text{UT}} = \frac{10 \text{mA, } 1.5 \text{V}$	V V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$ \frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{OUT}}} \ \begin{array}{c} \text{Line Regulation} \\ \text{(Note 6)} \\ \end{array} \begin{array}{c} \text{Line Regulation} \\ \text{I}_{\text{OUT}} = 10\text{mA}, 1.5\text{V} \leq \text{V}_{\text{IN}} \cdot \text{V}_{\text{OUT}} \leq \\ 13.75\text{V} \\ \end{array} \begin{array}{c} \text{LM1117I-ADJ} \\ \text{I}_{\text{OUT}} = 10\text{mA}, 1.5\text{V} \leq \text{V}_{\text{IN}} \cdot \text{V}_{\text{OUT}} \leq \\ 13.75\text{V} \\ \end{array} \begin{array}{c} \text{LM1117I-3.3} \\ \text{I}_{\text{OUT}} = 0\text{mA}, 4.75\text{V} \leq \text{V}_{\text{IN}} \leq 15\text{V} \\ \end{array} \begin{array}{c} \text{1} \\ \text{10} \\ \end{array} \begin{array}{c} \text{10} \\ \text{LM1117I-5.0} \\ \text{I}_{\text{OUT}} = 3\text{V}, 10 \leq \text{I}_{\text{OUT}} \leq 800\text{mA} \\ \end{array} \begin{array}{c} \text{LM1117I-3.3} \\ \text{V}_{\text{IN}} \cdot \text{V}_{\text{OUT}} = 3\text{V}, 10 \leq \text{I}_{\text{OUT}} \leq 800\text{mA} \\ \end{array} \begin{array}{c} \text{LM1117I-5.0} \\ \text{V}_{\text{IN}} \cdot \text{V}_{\text{OUT}} \leq 800\text{mA} \\ \end{array} \begin{array}{c} \text{LM1117I-5.0} \\ \text{V}_{\text{IN}} \cdot \text{Current Limit} \\ \end{array} \begin{array}{c} \text{I}_{\text{OUT}} = 100\text{mA} \\ \text{I}_{\text{OUT}} = 500\text{mA} \\ \end{array} \begin{array}{c} \text{I}_{\text{LIMIT}} \\ \text{I}_{\text{LIMIT}} \end{array} \begin{array}{c} \text{Current Limit} \\ \text{Minimum Load} \\ \text{Current (Note 8)} \\ \end{array} \begin{array}{c} \text{LM1117I-ADJ} \\ \text{V}_{\text{IN}} \cdot \text{V}_{\text{OUT}} = 5\text{V}, \text{T}_{\text{J}} = 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} \text{800} \\ \text{800} \\ \end{array} \begin{array}{c} \text{1.00} \\ \text{1.77} \end{array} \begin{array}{c} \text{5} \\ \text{5} \\ \end{array} \end{array} \begin{array}{c} \text{5.200} \\ \text{0.035} \\ \text{0.35} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{0.35} \\ \text{0.35} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{0.35} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{0.3} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{0.35} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{0.3} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{0.35} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{0.35} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{0.35} \\ \end{array} \begin{array}{c} \text{0.35} \\ \text{1.15} \\ \end{array} \begin{array}{c} \text{1.15} \\ \text{1.20} \\ \end{array} \begin{array}{c} \text{1.20} \text{1.20} \\ \end{array} $	V
$ \frac{\Delta V_{OUT}}{(Note 6)} \begin{tabular}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \frac{\Delta V_{OUT}}{\Delta V_{OUT}} = \frac{15}{10000000000000000000000000000000000$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mV
$ \begin{array}{ c c c c c c }\hline \Delta V_{OUT} & Load Regulation & LM1117I-ADJ & 0.2 & 0.5 \\ \hline & V_{IN}\text{-}V_{OUT} = 3V, \ 10 \leq I_{OUT} \leq 800\text{mA} & 0.2 & 0.5 \\ \hline & LM1117I-3.3 & & & & & \\ \hline & LM1117I-5.0 & & & & & \\ \hline & V_{IN}\text{-}V_{OUT} & Dropout \ Voltage & I_{OUT} = 100\text{mA} & 1.10 & 1.30 \\ \hline & I_{OUT} = 500\text{mA} & 1.15 & 1.35 \\ \hline & I_{OUT} = 800\text{mA} & 1.20 & 1.40 \\ \hline & I_{LIMIT} & Current \ Limit & V_{IN}\text{-}V_{OUT} = 5V, \ T_J = 25^{\circ}C & 800 & 1200 & 1500 \\ \hline & Minimum \ Load & LM1117I-ADJ & & & & \\ \hline & Current \ (Note \ 8) & V_{IN} = 15V & 1.7 & 5 \\ \hline \end{array} $	
$ \begin{array}{c} \text{(Note 6)} & \begin{array}{c} V_{\text{IN}^{-}}V_{\text{OUT}} = 3\text{V, } 10 \leq I_{\text{OUT}} \leq 800\text{mA} \\ \hline \\ \text{LM1117I-3.3} \\ \hline \\ V_{\text{IN}} = 4.75\text{V, } 0 \leq I_{\text{OUT}} \leq 800\text{mA} \\ \hline \\ \text{LM1117I-5.0} \\ \hline \\ V_{\text{IN}} = 6.5\text{V, } 0 \leq I_{\text{OUT}} \leq 800\text{mA} \\ \hline \\ \text{I} & \begin{array}{c} 20 \\ \hline \\ \text{LM1117I-5.0} \\ \hline \\ V_{\text{IN}^{-}}V_{\text{OUT}} \\ \hline \\ \text{(Note 7)} \end{array} \end{array} \begin{array}{c} \begin{array}{c} I_{\text{OUT}} = 100\text{mA} \\ \hline \\ I_{\text{OUT}} = 500\text{mA} \\ \hline \\ I_{\text{OUT}} = 500\text{mA} \\ \hline \\ I_{\text{OUT}} = 800\text{mA} \\ \hline \\ I_{\text{CUT}} = 800\text{mA} \\ \hline \\ \begin{array}{c} I_{\text{LIMIT}} \\ \hline \\ \text{Current Limit} \\ \hline \\ \text{Current (Note 8)} \\ \end{array} \begin{array}{c} V_{\text{IN}^{-}}V_{\text{OUT}} = 5\text{V, T}_{\text{J}} = 25^{\circ}\text{C} \\ \hline \\ \text{800} \\ \hline \\ \text{1.7} \end{array} \begin{array}{c} 1.50 \\ \hline \\ 1.7 \\ \hline \end{array} \begin{array}{c} 5 \\ \hline \end{array}$	mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
V _{IN} -V _{OUT} Dropout Voltage (Note 7) I _{OUT} = 100mA 1.10 1.30 I _{OUT} = 500mA 1.15 1.35 I _{OUT} = 800mA 1.20 1.40 I _{LIMIT} Current Limit V _{IN} -V _{OUT} = 5V, T _J = 25°C 800 1200 1500 Minimum Load Current (Note 8) LM1117I-ADJ V _{IN} = 15V 1.7 5	mV
Note 7 I _{OUT} = 500mA 1.15 1.35 1.00 1.40 1.15 1.35 1.	V
I _{LIMIT} Current Limit V _{IN} -V _{OUT} = 5V, T _J = 25°C 800 1200 1500 Minimum Load Current (Note 8) LM1117I-ADJ V _{IN} = 15V 1.7 5	V
Minimum Load LM1117I-ADJ Current (Note 8) V _{IN} = 15V 1.7 5	V
Minimum Load LM1117I-ADJ Current (Note 8) V _{IN} = 15V 1.7 5	mA
Quiescent Current LM1117I-3.3	mA
V _{IN} ≤ 15V 5 15	mA
	mA
	%/W
Ripple Regulation $f_{RIPPLE} = 1 \text{ 20Hz, } V_{IN} \cdot V_{OUT} = 3V$ 60 75	dB
$V_{RIPPLE} = 1 V_{PP}$	uВ
Adjust Pin Current 60 120	μΑ
Adjust Pin Current 10 ≤ I _{OUT} ≤ 800mA,	
Change $1.4V \le V_{IN} - V_{OUT} \le 10V$ 0.2 10	μΑ
Temperature Stability 0.5	%
Long Term Stability $T_A = 125^{\circ}C$, 1000Hrs 0.3	%
RMS Output Noise (% of V_{OUT}), $10Hz \le f \le 10kHz$ 0.003	%
Thermal Resistance 3-Lead SOT-223 15.0	°C/W
Junction-to-Case -Lead TO-252 10	°C/W
Thermal Resistance 3-Lead SOT-223 136	°C/W
Junction-to-Ambient 3-Lead TO-252 (Note 9) 92 92 (No heat sink;	°C/W
No air flow)	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

LM1117I Electrical Characteristics (Continued)

- Note 3: For testing purposes, ESD was applied using human body model, 1.5k Ω in series with 100pF.
- Note 4: Typical Values represent the most likely parametric norm.
- Note 5: All limits are guaranteed by testing or statistical analysis.
- Note 6: Load and line regulation are measured at constant junction room temperature.
- Note 7: The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 100mV from the nominal value obtained at V_{IN} = V_{OUT} +1.5V.
- Note 8: The minimum output current required to maintain regulation.
- Note 9: Minimum pad size of 0.038in²

Typical Performance Characteristics

0

50 75

Temperature (°C)

100 125

DS100919-43

LM1117-ADJ Ripple Rejection

Typical Performance Characteristics (Continued)

LM1117-ADJ Ripple Rejection vs. Current

Temperature Stability

Adjust Pin Current

LM1117-2.85 Load Transient Response

LM1117-5.0 Load Transient Response

LM1117-2.85 Line Transient Response

Typical Performance Characteristics (Continued)

LM1117-5.0 Line Transient Response

APPLICATION NOTE

1.0 External Capacitors/Stability

1.1 Input Bypass Capacitor

An input capacitor is recommended. A 10µF tantalum on the input is a suitable input bypassing for almost all applications.

1.2 Adjust Terminal Bypass Capacitor

The adjust terminal can be bypassed to ground with a bypass capacitor (C_{ADJ}) to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. At any ripple frequency, the impedance of the C_{ADJ} should be less than R1 to prevent the ripple from being amplified:

$$1/(2\pi^*f_{RIPPLE}^*C_{ADJ}) < R1$$

The R1 is the resistor between the output and the adjust pin. Its value is normally in the range of 100-200 Ω . For example, with R1 = 124 Ω and f_{RIPPLE} = 120Hz, the C_{ADJ} should be > 11 μ F.

1.3 Output Capacitor

The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and ESR (Equivalent Series Resistance). The minimum output capacitance required by the LM1117 is $10\mu F_{\rm i}$, if a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should be less than $0.5\Omega_{\rm i}$. In the case of the adjustable regulator, when the $C_{\rm ADJ}$ is used, a larger output capacitance (22µf tantalum) is required.

2.0 Output Voltage

The LM1117 adjustable version develops a 1.25V reference voltage, $V_{REF},$ between the output and the adjust terminal. As shown in Figure 1, this voltage is applied across resistor R1 to generate a constant current I1. The current I_{ADJ} from the adjust terminal could introduce error to the output. But since it is very small (60µA) compared with the I1 and very constant with line and load changes, the error can be ignored. The constant current I1 then flows through the output set resistor R2 and sets the output voltage to the desired level.

For fixed voltage devices, R1 and R2 are integrated inside the devices.

FIGURE 1. Basic Adjustable Regulator

3.0 Load Regulation

The LM1117 regulates the voltage that appears between its output and ground pins, or between its output and adjust pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed.

Figure 2, shows a typical application using a fixed output regulator. The Rt1 and Rt2 are the line resistances. It is obvious that the $V_{\rm LOAD}$ is less than the $V_{\rm OUT}$ by the sum of the voltage drops along the line resistances. In this case, the load regulation seen at the $R_{\rm LOAD}$ would be degraded from the data sheet specification. To improve this, the load should be tied directly to the output terminal on the positive side and directly tied to the ground terminal on the negative side.

FIGURE 2. Typical Application using Fixed Output
Regulator

When the adjustable regulator is used (*Figure 3*), the best performance is obtained with the positive side of the resistor R1 tied directly to the output terminal of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 5V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of 0.05Ω x I_L. If R1 (=125 Ω) is connected near the load, the effective line resistance will be 0.05Ω (1+R2/R1) or in this case, it is 4 times worse. In addition, the ground side of the resistor R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

FIGURE 3. Best Load Regulation using Adjustable Output Regulator

4.0 Protection Diodes

Under normal operation, the LM1117 regulators do not need any protection diode. With the adjustable device, the internal resistance between the adjust and output terminals limits the current. No diode is needed to divert the current around the regulator even with capacitor on the adjust terminal. The adjust pin can take a transient signal of ±25V with respect to the output voltage without damaging the device.

When a output capacitor is connected to a regulator and the input is shorted to ground, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and rate of decrease of $V_{\text{IN}}.$ In the LM1117 regulators, the internal diode between the output and input pins can withstand microsecond surge currents of 10A to 20A. With an extremely large output capacitor ($\geq \! 1000~\mu F)$, and with input instantaneously shorted to ground, the regulator could be damaged.

In this case, an external diode is recommended between the output and input pins to protect the regulator, as shown in *Figure 4*.

FIGURE 4. Regulator with Protection Diode

5.0 Heatsink Requirements

When an integrated circuit operates with an appreciable current, its junction temperature is elevated. It is important to quantify its thermal limits in order to achieve acceptable performance and reliability. This limit is determined by summing the individual parts consisting of a series of temperature rises from the semiconductor junction to the operating environment. A one-dimensional steady-state model of conduction heat transfer is demonstrated in *Figure 5*. The heat generated at the device junction flows through the die to the die attach pad, through the lead frame to the surrounding case material, to the printed circuit board, and eventually to the ambient environment. Below is a list of variables that may affect the thermal resistance and in turn the need for a heatsink.

FIGURE 5. Cross-sectional view of Integrated Circuit Mounted on a printed circuit board. Note that the case temperature is measured at the point where the leads contact with the mounting pad surface

r. = 25°C

Mounting Pad DS100919-37

The LM1117 regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the LM1117 must be within the range of 0°C to 125°C. A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. To determine if a heatsink is needed, the power dissipated by the regulator, $P_{\rm D}$, must be calculated:

$$\begin{split} I_{IN} &= I_L + I_G \\ P_D &= (V_{IN} - V_{OUT})I_L + V_{IN}I_G \end{split}$$

Figure 6 shows the voltages and currents which are present in the circuit.

FIGURE 6. Power Dissipation Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, $T_R(max)$:

$$T_R(max) = T_J(max) - T_A(max)$$

where $T_J(max)$ is the maximum allowable junction temperature (125°C), and $T_A(max)$ is the maximum ambient temperature which will be encountered in the application.

Using the calculated values for $T_R(max)$ and $P_D,$ the maximum allowable value for the junction-to-ambient thermal resistance (θ_{JA}) can be calculated:

$$\theta_{JA} = T_R(max)/P_D$$

If the maximum allowable value for θ_{JA} is found to be $\geq\!136^{\circ}\text{C/W}$ for SOT-223 package or $\geq\!79^{\circ}\text{C/W}$ for TO-220 package or $\geq\!92^{\circ}\text{C/W}$ for TO-252 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θ_{JA} falls below these limits, a heatsink is required.

As a design aid, *Table 1* shows the value of the θ_{JA} of SOT-223 and TO-252 for different heatsink area. The copper patterns that we used to measure these θ_{JA} s are shown at the end of the Application Notes Section. *Figure 7* and *Figure 8* reflects the same test results as what are in the *Table 1*

Figure 9 and Figure 10 shows the maximum allowable power dissipation vs. ambient temperature for the SOT-223 and TO-252 device. Figures Figure 11 and Figure 12 shows the maximum allowable power dissipation vs. copper area (in²) for the SOT-223 and TO-252 devices. Please see AN1028 for power enhancement techniques to be used with SOT-223 and TO-252 packages.

TABLE 1. θ_{JA} Different Heatsink Area

Layout	Copper Area		Thermal Resistance		
	Top Side (in²)*	Bottom Side (in ²)	(θ _{JA} , °C/W) SOT-223	(θ _{JA} , °C/W) TO-252	
1	0.0123	0	136	103	
2	0.066	0	123	87	
3	0.3	0	84	60	
4	0.53	0	75	54	
5	0.76	0	69	52	
6	1	0	66	47	
7	0	0.2	115	84	
8	0	0.4	98	70	
9	0	0.6	89	63	
10	0	0.8	82	57	
11	0	1	79	57	
12	0.066	0.066	125	89	
13	0.175	0.175	93	72	
14	0.284	0.284	83	61	
15	0.392	0.392	75	55	
16	0.5	0.5	70	53	

^{*}Tab of device attached to topside copper

FIGURE 7. θ_{JA} vs. 1oz Copper Area for SOT-223

FIGURE 8. θ_{JA} vs. 2oz Copper Area for TO-252

FIGURE 9. Maximum Allowable Power Dissipation vs.
Ambient Temperature for SOT-223

FIGURE 10. Maximum Allowable Power Dissipation vs.
Ambient Temperature for TO-252

FIGURE 11. Maximum Allowable Power Dissipation vs. 1oz Copper Area for SOT-223

FIGURE 12. Maximum Allowable Power Dissipation vs. 2oz Copper Area for TO-252

FIGURE 13. Top View of the Thermal Test Pattern in Actual Scale

FIGURE 14. Bottom View of the Thermal Test Pattern in Actual Scale

Typical Application Circuits

Adjusting Output of Fixed Regulators

Regulator with Reference

5V Logic Regulator with Electronic Shutdown*

1.25V to 10V Adjustable Regulator with Improved Ripple Rejection

Battery Backed-Up Regulated Supply

Typical Application Circuits (Continued)

Low Dropout Negative Supply

3-Lead SOT-223 NS Package Number MA04A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

3-Lead TO-220 NS Package Number T03B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS
3-Lead TO-252

NS Package Number TD03B

TD03B (REV A)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

emiconductor National Semiconductor
on Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

LM1117 - http://www.ti.com/product/lm1117?HQS=TI-null-null-dscatalog-df-pf-null-wwe