## 2023

## COMPUTER SCIENCE

Paper: CSME-301

(Image Processing and Pattern Recognition)

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1, question no. 2 and any four questions from the rest.

1. Answer any five questions:

2×5

- (a) How does the Weber Ratio affect the brightness of an image?
- (b) Perform shear (vertical) and shear (horizontal) transformations on the following matrix:

| 1 | 3 | 1 | 3 |
|---|---|---|---|
| 2 | 4 | 6 | 1 |
| 2 | 6 | 5 | 3 |
| 5 | 3 | 4 | 2 |

- (c) What is the impact of gamma in gamma transformation used in image enhancement?
- (d) Calculate the aspect ratio of an image of dimension 1920 × 1080.
- (e) What is the gradient of an image? Give an example.
- (f) How does correlation differ from convolution? Illustrate with an example.
- (g) Let p and q be the pixels at coordinates (10, 15) and (15, 25), respectively. Find out which distance gives the minimum distance between the pixels.

2. Answer any five questions:

4×5

- (a) How can you differentiate between intensity resolution and spatial resolution? How do these parameters affect the quality of the image?
- (b) If an image looks too dark or bleached out, then which transformation is used to make it more prominent? How will the appropriate correction be used?
- (c) What are the different noise models? Define each model with diagrams.
- (d) Image transmission is done in packets. A packet consists of a start bit, a byte of data, and a stop bit. Answer the following:
  - (i) How many minutes would it take to transmit a 512×512 image with 256 gray levels at a 300 baud rate?
  - (ii) What would be the time at the 9600 baud rate?

Please Turn Over

- (e) Suppose the RGB colour triplet for a particular colour is given by (0.3, 0.5, 0.2). Compute corresponding YIQ and HSV triplets.
- (f) Compute the median value of the masked pixels shown below using a 3×3 mask.

| 18 | 22  | 33 | 25 | 32 | 24 |
|----|-----|----|----|----|----|
| 34 | 128 | 24 | 17 | 26 | 33 |
| 22 | 19  | 32 | 31 | 28 | 26 |

- 3. (a) Write the application of sharpening filters.
  - (b) Consider the following image segment. Perform the following transformation on the shaded, pixels:

- (i) Image negative
- (ii) Log
- (iii) Gamma correction
- (iv) Contrast stretching in [0, 8]
- (v) Segmentation using mean intensity threshold.

| 15 | 6  | 21   | 22 |
|----|----|------|----|
| 17 | 15 | 6    | 19 |
| 14 | 3  | in ? | 12 |
| 19 | 14 | 19   | 16 |

- 4. (a) Discuss the process of region splitting and merging for region-based segmentation.
  - (b) Let A = {a/20, b/15, c/5, d/15, e/45} be the alphabet and its frequency distribution. Draw the Huffman tree and then find the corresponding Huffman code from it.
- 5. (a) Write the algorithm for histogram specification.
  - (b) Plot the histogram of the following 8×8 in

| е. | e following 8×8 image. |   |   |   |   |   |   |   |
|----|------------------------|---|---|---|---|---|---|---|
|    | 0                      | 5 | 7 | 7 | 5 | 8 | 7 | 8 |
|    | 7                      | 2 | 6 | 2 | 6 | 5 | 6 | 8 |
|    | 6                      | 9 | 7 | 7 | 0 | 7 | 2 | 7 |
|    | 6                      | 6 | 1 | 7 | 6 | 7 | 7 | 5 |
|    | 9                      | 6 | 0 | 7 | 8 | 2 | 6 | 7 |
|    | 2                      | 8 | 8 | 2 | 7 | 6 | 7 | 8 |
|    | 7                      | 3 | 2 | 6 | 1 | 7 | 5 | 8 |
|    | 9                      | 9 | 5 | 6 | 7 | 7 | 7 | 7 |
|    |                        |   |   |   |   |   |   |   |

(c) Perform the histogram equalization of the image. Output the resultant image and its correspond

(3)

S(3rd Sm.)-Comp. Science-CSME-301

6. Convert the following 3-bit RGB image to the CMY model.

| 1,2,5 | 4,1,5 | 5,4,2 | 2,1,4 |
|-------|-------|-------|-------|
| 3,6,5 | 4,1,3 | 6,6,1 | 5,4,1 |
| 2,1,4 | 3,1,4 | 4,2,3 | 1,4,3 |
| 3,2,1 | 3,1,3 | 1,1,2 | 2,3,1 |

- 7. (a) What are the steps of the Canny edge detector? Explain in detail.
  - (b) The following figure shows a 3-bit image of size 5-by-5 image in the square (with x and y coordinates specified) and a Laplacian filter.

| <b>Y</b> /  |     |   | Imag | e  |     |
|-------------|-----|---|------|----|-----|
| /X          | 11  | 2 | 3    | 4. | 5   |
| 1           | 3   | 7 | 6    | 2  | 0   |
| 2           | 1 2 | 4 | 6    | 1  | 1   |
| 3           | 4   | 7 | c 2  | 5  | 4   |
| 015 40 F    | 3   | 0 | 6    | 2  | . 1 |
| 10 A # 7.65 | 5   | 7 | 5    | 1  | 2   |



Compute the output of the image with the 3×3 Laplacian filter shown above at the pixel (3, 3).

8. (a) Consider the following samples given below:

 $\begin{array}{l} X1=(0,0),\ X2=(1,0),\ X3=(0,1),\ X4=(1,1),\ X5=(2,1),\ X6=(1,2),\ X7=(2,2),\ X8=(3,2),\ X9=(6,6),\\ X10=(7,6),\ X11=(8,6),\ X12=(6,7),\ X13=(7,7),\ X14=(8,7),\ X15=(9,7),\ X16=(7,8),\ X17=(8,8),\\ X18=(9,8),\ X19=(8,9),\ and\ X20=(9,9). \end{array}$ 

Apply K-means algorithm to form clusters. Show all intermediate steps.

- (b) What is the performance index used in the above procedure?
- (c) What are the demerits of the K-means algorithm? Which method will you adopt to overcome the problem and how? 5+1+4