Nitride film 0 MT-455

Group-2

Aim: To determine crystallite size and lattice strain for the given data.

### **Procedure:**

Given the instrumental broadening value,  $\mathbf{B_i} = 0.045^{\circ}$ 

Gaussian equation  $B_R^2 = B_O^2 - B_i^2$ 

$$B_{R}Cos\theta = \frac{k\lambda}{L} + \eta Sin\theta \qquad \text{where,} \quad \eta = S \text{train in the material}$$
 
$$L = \text{Crystallite Size}$$
 
$$k = 0.94$$

$$\lambda = 0.154$$
nm

Comparing the above equation with y = bx + a

$$b = Slope = \eta$$
 Where, 
$$a = Intercept = \frac{k\lambda}{L}$$



| 2θ       | θ(rad)   | B <sub>o</sub> (fwhm) | B <sub>o</sub> (rad) | B <sub>o</sub> <sup>2</sup> | B <sub>i</sub> (deg) | B <sub>i</sub> (rad) | B <sub>i</sub> <sup>2</sup> |
|----------|----------|-----------------------|----------------------|-----------------------------|----------------------|----------------------|-----------------------------|
| 32.89235 | 0.28704  | 0.91439               | 0.015959             | 0.000255                    | 0.045                | 0.000785             | 6.1685E-07                  |
| 34.91805 | 0.304717 | 0.45754               | 0.007986             | 6.38E-05                    | 0.045                | 0.000785             | 6.1685E-07                  |
| 39.34331 | 0.343335 | 1.47026               | 0.025661             | 0.000658                    | 0.045                | 0.000785             | 6.1685E-07                  |
| 56.53556 | 0.493366 | 1.68187               | 0.029354             | 0.000862                    | 0.045                | 0.000785             | 6.1685E-07                  |
| 71.0858  | 0.620341 | 2.44668               | 0.042703             | 0.001824                    | 0.045                | 0.000785             | 6.1685E-07                  |
| 84.1166  | 0.734056 | 1.46242               | 0.025524             | 0.000651                    | 0.045                | 0.000785             | 6.1685E-07                  |

| $B_r^2 = B_o^2 - B_i^2$ | Br       | B <sub>r</sub> cosθ | sinθ     |
|-------------------------|----------|---------------------|----------|
| 0.000254077             | 0.01594  | 0.015288            | 0.283114 |
| 6.31526E-05             | 0.007947 | 0.007581            | 0.300024 |
| 0.000657864             | 0.025649 | 0.024152            | 0.336629 |
| 0.00086105              | 0.029344 | 0.025844            | 0.473593 |
| 0.001822897             | 0.042695 | 0.03474             | 0.581312 |
| 0.00065086              | 0.025512 | 0.018942            | 0.669886 |



| Equation        | y = a + b*x       |
|-----------------|-------------------|
| Plot            | BrCosθ            |
| Weight          | No Weighting      |
| Intercept       | 0.00713 ± 0.01139 |
| Slope           | 0.03167 ± 0.02452 |
| Residual Sum of | 3.09912E-4        |
| Squares         |                   |
| Pearson's r     | 0.5424            |
| R-Square (COD)  | 0.2942            |
| Adj. R-Square   | 0.11775           |

$$b = Slope = \eta$$

$$a = Intercept = \frac{\mathbf{k}\lambda}{\mathbf{L}}$$
Therefore,  $\eta = 0.03167$ 

$$\frac{\mathbf{k}\lambda}{\mathbf{L}} = 0.00713$$

$$\mathbf{L} = \frac{\mathbf{k}\lambda}{0.00713}$$

$$\mathbf{L} = \frac{0.94 \times 0.154}{0.00713}$$

$$\mathbf{L} = 20.3029 \text{ nm}$$

 $\eta = S$ train in the material=0.0316 L= Crystallite Size = 20.3029 nm

Nitride film 1 MT-455

100

Aim: To determine crystallite size and lattice strain for the given data.

#### **Procedure:**

Given the instrumental broadening value,  $\mathbf{B_i} = 0.045^{\circ}$ 

Gaussian equation  $\mathbf{B}_{R}^{2} = \mathbf{B}_{O}^{2} - \mathbf{B}_{i}^{2}$ 

$$B_{R}Cos\theta = \frac{k\lambda}{L} + \eta Sin\theta \qquad \text{where,} \quad \eta = \textit{Strain in the material}$$
 
$$L = \textit{Crystallite Size}$$
 
$$k = 0.94$$

 $\lambda = 0.154$ nm

Comparing the above equation with y = bx + a

$$\begin{aligned} b &= Slope = \eta \\ Where, & a &= Intercept = \frac{\mathbf{k}\lambda}{\mathbf{L}} \end{aligned}$$



| 2θ       | θ(rad)   | B <sub>o</sub> (fwhm) | B <sub>o</sub> (rad) | B <sub>o</sub> <sup>2</sup> | B <sub>i</sub> (deg) | B <sub>i</sub> (rad) | B <sub>i</sub> <sup>2</sup> |
|----------|----------|-----------------------|----------------------|-----------------------------|----------------------|----------------------|-----------------------------|
| 33.76656 | 0.294669 | 1.27552               | 0.022262             | 0.000496                    | 0.045                | 0.000785             | 6.17E-07                    |
| 39.00728 | 0.340403 | 1.928                 | 0.03365              | 0.001132                    | 0.045                | 0.000785             | 6.17E-07                    |
| 70.73872 | 0.617312 | 3.89281               | 0.067942             | 0.004616                    | 0.045                | 0.000785             | 6.17E-07                    |

| $B_r^2 = B_o^2 - B_i^2$ | Br       | B <sub>r</sub> cosθ | sinθ     |
|-------------------------|----------|---------------------|----------|
| 0.000495                | 0.022248 | 0.021289            | 0.290423 |
| 0.001132                | 0.033641 | 0.03171             | 0.333867 |
| 0.004616                | 0.067938 | 0.055399            | 0.578845 |



| Equation        | y = a + b*x        |
|-----------------|--------------------|
| Plot            | BrCosθ             |
| Weight          | No Weighting       |
| Intercept       | -0.00835 ± 0.00765 |
| Slope           | 0.11092 ± 0.01819  |
| Residual Sum of | 1.6005E-5          |
| Squares         |                    |
| Pearson's r     | 0.98682            |
| R-Square (COD)  | 0.97381            |
| Adj. R-Square   | 0.94762            |

$$b = Slope = \eta$$

$$a = Intercept = \frac{\mathbf{k}\lambda}{\mathbf{L}}$$
Therefore,  $\eta = 0.11092$ 

$$\frac{\mathbf{k}\lambda}{\mathbf{L}} = 0.00835$$

$$\mathbf{L} = \frac{\mathbf{k}\lambda}{0.00835}$$

$$\mathbf{L} = \frac{0.94 \times 0.154}{0.00835}$$

$$\mathbf{L} = 17.3365 \text{ nm}$$

 $\eta = S$ train in the material=0.11092 L= Crystallite Size = 17.3365 nm

### Nitride film 2 MT-455

Aim: To determine crystallite size and lattice strain for the given data.

### **Procedure:**

Given the instrumental broadening value,  $\mathbf{B_i} = 0.045^{\circ}$ 

Gaussian equation  $B_R^2 = B_O^2 - B_i^2$ 

Comparing the above equation with y = bx + a  $b = Slope = \eta$  Where,  $a = Intercept = \frac{k\lambda}{L}$ 



| 2θ       | θ(rad)   | B <sub>o</sub> (fwhm) | B <sub>o</sub> (rad) | B <sub>o</sub> <sup>2</sup> | B <sub>i</sub> (deg) | B <sub>i</sub> (rad) | B <sub>i</sub> <sup>2</sup> |
|----------|----------|-----------------------|----------------------|-----------------------------|----------------------|----------------------|-----------------------------|
| 36.67767 | 0.320073 | 1.52066               | 0.026541             | 0.000704                    | 0.045                | 0.000785             | 6.17E-07                    |
| 42.30679 | 0.369196 | 2.95861               | 0.051637             | 0.002666                    | 0.045                | 0.000785             | 6.17E-07                    |
| 61.62263 | 0.537759 | 2.14505               | 0.037438             | 0.001402                    | 0.045                | 0.000785             | 6.17E-07                    |
| 73.8236  | 0.644232 | 2.28072               | 0.039806             | 0.001585                    | 0.045                | 0.000785             | 6.17E-07                    |

| $B_r^2 = B_o^2 - B_i^2$ | Br       | B <sub>r</sub> cosθ | sinθ     |
|-------------------------|----------|---------------------|----------|
| 0.000704                | 0.026529 | 0.025182            | 0.314636 |
| 0.002666                | 0.051632 | 0.048152            | 0.360866 |
| 0.001401                | 0.03743  | 0.032147            | 0.512212 |
| 0.001584                | 0.039798 | 0.031821            | 0.600585 |



| Equation        | y = a + b*x        |
|-----------------|--------------------|
| Plot            | Brcosθ             |
| Weight          | No Weighting       |
| Intercept       | 0.03862 ± 0.02381  |
| Slope           | -0.00961 ± 0.05159 |
| Residual Sum of | 2.80937E-4         |
| Squares         |                    |
| Pearson's r     | -0.13062           |
| R-Square (COD)  | 0.01706            |
| Adj. R-Square   | -0.47441           |

$$b = Slope = \eta$$

$$a = Intercept = \frac{k\lambda}{L}$$
Therefore,  $\eta = 0.00961$ 

$$\frac{k\lambda}{L} = 0.03862$$

$$L = \frac{k\lambda}{0.03862}$$

$$L = \frac{0.94 \times 0.154}{0.03862}$$

$$L = 3.7483 \text{ nm}$$

 $\eta = S$ train in the material=0.00961 L= Crystallite Size = 3.7483 nm Nitride film 3

MT-455

Aim: To determine crystallite size and lattice strain for the given data.

### **Procedure:**

Given the instrumental broadening value,  $\mathbf{B_i} = 0.045^{\circ}$ 

Gaussian equation  $B_R^2 = B_O^2 - B_i^2$ 

$$\mathbf{B_RCos\theta}=rac{\mathbf{k}\lambda}{\mathbf{L}}+\eta\mathbf{Sin}\theta$$
 where,  $\eta=S$ train in the material  $L=C$ rystallite Size  $k=0.94$   $\lambda=0.154$ nm

Comparing the above equation with y = bx + a

Where, 
$$a = Intercept = \frac{k\lambda}{L}$$



| 2θ       | θ(rad)   | B <sub>o</sub> (fwhm) | B <sub>o</sub> (rad) | B <sub>o</sub> <sup>2</sup> | B <sub>i</sub> (deg) | B <sub>i</sub> (rad) | B <sub>i</sub> <sup>2</sup> |
|----------|----------|-----------------------|----------------------|-----------------------------|----------------------|----------------------|-----------------------------|
| 31.23024 | 0.272535 | 0.40573               | 0.007081             | 5.01E-05                    | 0.045                | 0.000785             | 6.17E-07                    |
| 36.29897 | 0.316768 | 1.10047               | 0.019207             | 0.000369                    | 0.045                | 0.000785             | 6.17E-07                    |
| 41.76266 | 0.364448 | 1.10718               | 0.019324             | 0.000373                    | 0.045                | 0.000785             | 6.17E-07                    |
| 51.3042  | 0.447714 | 1.01079               | 0.017642             | 0.000311                    | 0.045                | 0.000785             | 6.17E-07                    |
| 60.93761 | 0.531781 | 1.65249               | 0.028841             | 0.000832                    | 0.045                | 0.000785             | 6.17E-07                    |
| 72.90834 | 0.636245 | 1.89106               | 0.033005             | 0.001089                    | 0.045                | 0.000785             | 6.17E-07                    |

| $B_r^2 = B_o^2 - B_i^2$ | Br       | B <sub>r</sub> cosθ | sinθ     |
|-------------------------|----------|---------------------|----------|
| 4.95E-05                | 0.007038 | 0.006778            | 0.269174 |
| 0.000368                | 0.019191 | 0.018236            | 0.311497 |
| 0.000373                | 0.019308 | 0.01804             | 0.356434 |
| 0.000311                | 0.017624 | 0.015887            | 0.432906 |
| 0.000831                | 0.028831 | 0.024849            | 0.507069 |
| 0.001089                | 0.032996 | 0.02654             | 0.59418  |



| Equation        | y = a + b*x        |
|-----------------|--------------------|
| Plot            | BrCosθ             |
| Weight          | No Weighting       |
| Intercept       | -0.00181 ± 0.00628 |
| Slope           | 0.04905 ± 0.01471  |
| Residual Sum of | 6.59624E-5         |
| Squares         |                    |
| Pearson's r     | 0.85762            |
| R-Square (COD)  | 0.73551            |
| Adj. R-Square   | 0.66938            |

$$b = Slope = \eta$$

$$a = Intercept = \frac{\mathbf{k}\lambda}{\mathbf{L}}$$
Therefore,  $\eta = 0.04905$ 

$$\frac{\mathbf{k}\lambda}{\mathbf{L}} = 0.00447$$

$$\mathbf{L} = \frac{\mathbf{k}\lambda}{0.00447}$$

$$\mathbf{L} = \frac{0.94 \times 0.154}{0.00447}$$

$$\mathbf{L} = 32.3847 \text{ nm}$$

 $\eta = S$ train in the material=0.04905 L= Crystallite Size = 32.3847 nm