

Segmentez des clients d'un site e-commerce OIST

Formation Data Scientist - Projet 5 Octave POUILLOT Juin 2023

Sommaire

- Mission
- Présentation du jeu de données
- Nettoyage & Exploration
- Modélisation
- Maintenance
- Conclusions

Présentation de la mission oist

Présentation de la mission

Olist

- Campagne de communication
 - → Segmentation des clients
- Comprendre les différents types d'utilisateurs
- Fournir à l'équipe marketing une description actionnable
 - → Segmentation compréhensible
- Analyse de la stabilité des segments au cours du temps
 - → Proposer un contrat de maintenance

Présentation du jeu de données oist

Présentation du jeu de données

RFM - RFM Review - RFM « full »

- Imports
- Chargement des fichiers de dataset :
 - orders
 - orders_payements
 - orders_items
 - orders_reviews
 - customers
- Premières vérifications :
 - head
 - duplicated
 - isna

- Nettoyage:
 - Sélection des commandes livrées
 - Date de livraison NA = date estimée
 - Payment : group by order_id value: sum & installment: mean
 - Items: group by order_id NofItems: count
 - Merge des informations

- Concentration sur 01-2017 -> 10-2018
- Suppression des achats spécifiques à gros montants

- Création « RFM » : pour chaque « customer_unique_id »
 - Recency
 - Frequency
 - Monetary value
 - Review score
 - Payment installment
 - Items quantity
 - Delivery time
- Sauvegarde:
 - RFM
 - RFM + Review
 - RFM + Review + Installement + Items + Delivery

Modélisation

Algorithmes: KMeans - CAH - DBSCAN

Datasets: RFM - RFM Review - RFM Full

Scores: Silhouette - Davis Bouldin - Kalinski Harabasz

Modélisation

- Echantillon pour chaque dataset :
 - 20 000 samples
 - Graine fixée (random state)
- Sélection de l'algorithme :
 - Hyperparamètres
 - Scores
 - t-SNE
- Sélection du dataset :
 - Barplot
 - t-SNE
 - radar plot

Modélisation - Sélection de l'algorithme

Kmeans & CAH

- RFM: n_clusters=4
- RFM review : n_clusters=5
- RFM full : n_clusters=5

DBSCAN

eps=0.056, min_samples=5

Modélisation - Sélection de l'algorithme

Meilleur algorithme:

KMEANS

Modélisation - Sélection du dataset

RFM

RFM review

RFM full

Modélisation - Sélection du dataset

Cluster2: Acheteur "classique"

Cluster3: Acheteur récent

Cluster4: Acheteur régulier

Cluster1: Gros acheteur (occasionel)

Cluster2: Acheteur "classique"

Cluster3: Acheteur mécontent

Cluster4: Acheteur récent

Cluster5: Acheteur régulier

Cluster1: Acheteur "classique" content

Cluster2: Gros acheteur (occasionel)

Cluster3: Acheteur en quantité

Cluster4: Acheteur régulier

Cluster5: Acheteur mécontent

Maintenance

Simulation de décalage temporel

Maintenance

- Création de fonction :
 - Automatisation Nettoyage & Création dataframe
 - Date start = 01-01-2017
 - N_days = 15
 - N_days_d0 = 365
- Création de df0 01-01-2017 + 365 jours
- Création de dictionnaire dfs 01-01-2017 → 01-01-2018 +15 jours / df

Maintenance

- StandardScaler
- Kmeans(n_clusters=5)
- Adjusted Rand Index score

dataframe	Df0	df1	•••	dfn
scaler	Sc0 (fitted on df0)	Sc1 (fitted on df1)		
Scaled dataframe	Df0_sc0	Df1_sc1 Df1_sc0		
Models	Km0 kmeans fitted on df0_sc0	Km1 kmeans fitted on df1_sc1		
ARI score		Label0 vs label1 ←→ km0.predict(df1_sc0) vs km1.predict(df1_sc1)		

• Boucle for : score ari (predict Km0(dfx), predict Km(dfx))

olist

- Limite de performance fixée à 0,80
- Modèle obsolète au bout de ~ 3 mois

Conclusion

Modèle : Kmeans avec 5 clusters

Dataset: RFMR

- Maintenance tout les 3 mois
 - Changement du jeu d'entrainement
 - Vérification de la cohérence du modèle
 - Vérification de la segmentation
 - Vérification du rythme de maintenance