OBLON, SPIVAK, ET AL DOCKET #: 216648US2 INV: Hiroyoshi TANIMOTO, et al. SHEET 1 OF 8

1/8

Fig. 1

Fig. 2

Fig. 5

Fig. 6

Id[A] IsubQ/Idratio	0.0001	0.0002	0.0005	0.001	0.002
0.01	5.0E-08	1.3E-07	4.8E-07	1.3E-06	3.3E-06
0.02	7.5E-07	2.0E-06	7.1E-06	1.9E-05	5.0E-05
0.05	2.7E-05	7.0E-05	2.5E-04	6.7E-04	1.8E-03
0.1	4.0E-04	1.1E-03	3.8E-03	1.0E-02	2.6E-02
0.2	5.9E-03	1.6E-02	5.7E-02	1.5E-01	3.9E-01

4/8

Fig. 7

Id[A] IsubQ/Idratio	0.0001	0.0002	0.0005	0.001	0.002
0.01	4.7E-08	1.3E-07	4.9E-07	1.2E-06	3.6E-06
0.02	7.0E-07	1.9E-06	7.3E-06	1.9E-05	5.3E-05
0.05	2.5E-05	6.7E-05	2.6E-04	6.6E-04	1.9E-03
0.1	3.7E-04	1.0E-03	4.0E-03	1.1E-02	2.5E-02
0.2	5.8E-03	1.5E-02	5.9E-02	1.4E-01	4.0E-01

5/8

Fig. 9

Id[A] IsubQ/Idratio	0.0001	0.0002	0.0005	0.001	0.002
0.01	8.4E-08	2.3E-07	8.8E-07	2.3E-06	5.5E-06
0.02	1.3E-06	3.4E-06	1.3E-05	3.4E-05	8.1E-05
0.05	4.5E-05	1.2E-04	4.7E-04	1.2E-03	2.9E-03
0.1	6.7E-04	1.7E-03	6.0E-03	1.6E-02	4.1E-02
0.2	9.8E-03	2.6E-02	9.0E-02	2.5E-01	6.6E-01

Fig. 10

OBLON, SPIVAK, ET AL DOCKET #: 216648US2 INV: Hiroyoshi TANIMOTO, et al. SHEET <u>6</u> OF <u>8</u>

6/8

Fig. 11

OBLON, SPIVAK, ET AL DOCKET #: 216648US2 INV: Hiroyoshi TANIMOTO, et al. SHEET 7_OF_8_

OBLON, SPIVAK, ET AL DOCKET #: 216648US2 INV: Hiroyoshi TANIMOTO, et al. SHEET 8 OF 8

8/8

Fig. 14

FIG. 2

FIG. 3

FIG. 4

(DEVICE STRUCTURE) IMPURITY CONCENTRATION $3 \times 10^{17} \text{cm}^{-3}$ OF P-TYPE SUBSTRATE GATE OXIDE FILM THICKNESS 6nm N-TYPE POLYSILICON GATE ELECTRODE $0.3 \mu \text{ m}$ GATE LENGTH SOURCE/DRAIN DIFFUSION LAYER $1 \times 10^{20} \text{cm}^{-3}$ MAXIMUM CONCENTRATION SOURCE/DRAIN DIFFUSION LAYER $0.08 \,\mu\,\mathrm{m}$ JUNCTION DEPTH $1 \mu \text{ m}$ DEVICE WIDTH

FIG. 5A

	NO GR	SRH ONLY	II ONLY	BBT ONLY	ALL
SOURCE CURRENT	4.08E-17	1.38E-17	1.37E-17	4.17E-19	1.29E-18
DRAIN CURRENT	4.07E-17	6.78E-17	6.72E-17	9.45E-14	9.63E-14
SUBSTRATE CURRENT	3.37E-18	9.41E-18	1.72E-18	9.45E-14	9.62E-14

FIG. 5B

SOURCE CURRENT	1.29E-18
DRAIN CURRENT	9.63E-14
SUBSTRATE CURRENT	9.62E-14

MECHANISM	VOLUME INTEGRAL VALUE X PRIME CHARGE
J _{SRHn}	1.50E-17
$J_{\Pi n}$	1.68E-15
$J_{ m BBTn}$	9.45E-14

FIG. 6A

	NO GR	SRH ONLY	II ONLY	BBT ONLY	ALL
SOURCE CURRENT	4.08E-04	4.48E-04	4.48E-04	4.48E-04	4.48E-04
DRAIN CURRENT	4.08E-04	4.48E-04	4.48E-04	4.48E-04	4.48E-04
SUBSTRATE CURRENT	4.66E-18	1.59E-17	4.33E-08	4.66E-18	4.33E-08

FIG. 6B

SOURCE CURRENT	4.48E-04
DRAIN CURRENT	4.48E-04
SUBSTRATE CURRENT	4.33E-08

MECHANISM	VOLUME INTEGRAL VALUE X PRIME CHARGE
J _{SRHn}	4.78E-14
$J_{\Pi n}$	4.33E-08
$J_{ m BBTn}$, 0.00E+00

$$\frac{\delta n}{\delta t} = \frac{1}{q} \overrightarrow{\nabla} \cdot \overrightarrow{J_n} + GR_n$$

 $\mathsf{GR}_{n}\text{=}\mathsf{GR}_{\mathsf{SRH}n}\text{+}\mathsf{GR}_{\mathsf{II}n}\text{+}\mathsf{GR}_{\mathsf{BBT}n}$

$$A_{SRHn} = \int_{Si} GR_{SRHn} dv$$

$$A_{IIn} = \int_{Si} GR_{IIn} dv$$

$$A_{BBTn} = \int_{Si}^{GR_{BBTn}dv} dv$$

$$J_{SRHn} = q \int GR_{SRHn} dv$$

$$J_{IIn} = q \int_{Si}^{GR_{IIn}} dv$$

$$J_{BBTn} = q \int_{Si} GR_{BBTn} dv$$