Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky

aaaa

BAKALÁŘSKÁ PRÁCE

Studijní program: Aplikovaná informatika

Studijní obor: Aplikovaná informtika

Autor: Karel Douda

Vedoucí práce: Ing. David Král

Praha, květen 2020

Prohlášení				
Prohlašuji, že jsem bakalářskou práci <i>aaaa</i> vypracoval samostatně za použití v práci uvedených pramenů a literatury.				
V Praze dne DD. měsíc RRRR	Podpis studenta			

Poděkování		
Poděkování.		

Abstrakt

Abstrakt.

Klíčová slova

klíčové slovo, další pojem, jiný důležitý termín, a ještě jeden

Abstract

Abstract.

Keywords

keyword, important term, another topic, and another one

Obsah

Ú	vod	15
1	Nápověda k sazbě 1.1 Úprava práce	1 7 17
	1.2 Jednoduché příklady	17
2	Tabulky, obrázky, programy	19
	2.1 Tabulky	19
	2.2 Obrázky	20
	2.3 Zdrojové kódy	21
	2.4 Sazba matematiky	21
3	Práce s literaturu	23
	3.1 Použití bibliografické databáze	23
	3.2 Použití prostředí thebibliography	23
	3.3 Jak citovat v textu	23
4	Formát PDF/A	25
Zá	ávěr	27
A	Formulář v plném znění	31
В	Zdrojové kódy výpočetních procedur	33

Seznam obrázků

2.1 Náhodný výběr z rozdělení $\mathcal{N}_2(0,I)$	20
--	----

Seznam tabulek

2.1 Maximálně věrohodné odhady v modelu M		19
---	--	----

Seznam použitých zkratek

BCC Blind Carbon Copy

CC Carbon Copy

 \mathbf{CERT} Computer Emergency Response

Team

 $\textbf{CSS} \ \, \textbf{Cascading Styleheets}$

DOI Digital Object Identifier

HTML Hypertext Markup Language

REST Representational State Transfer

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML eXtended Markup Language

Úvod

Úvod je povinnou částí bakalářské/diplomové práce. Úvod je uvedením do tématu. Zvolené téma rozvádí, stručně ho zasazuje do souvislostí (může zde být i popis motivace k sepsání práce) a odpovídá na otázku, proč bylo téma zvoleno. Zasazuje téma do souvislostí a zdůvodňuje jeho nutnost a aktuálnost řešení. Obsahuje explicitně uvedený cíl práce. Text cíle práce je shodný s textem, který je uveden v zadání bakalářské práce, tj. s textem, který je uveden v systému InSIS a který je také uveden v části Abstrakt.

Součástí úvodu je také stručné představení postupu zpracování práce (detailně je metodě zpracování věnována samostatná část vlastního textu práce). Úvod může zahrnovat i popis motivace k sepsání práce.

Úvod k diplomové práci musí být propracovanější – podrobněji to je uvedeno v Náležitostech diplomové práce v rámci Intranetu pro studenty FIS.

Následuje několik ukázkových kapitol, které doporučují, jak by se měla bakalářská/diplomová práce sázet. Primárně popisují použití T_EXové šablony, ale obecné rady poslouží dobře i uživatelům jiných systémů.

1. Nápověda k sazbě

1.1 Úprava práce

Vlastní text práce je uspořádaný hierarchicky do kapitol a podkapitol, každá kapitola začíná na nové straně. Text je zarovnán do bloku. Nový odstavec se obvykle odděluje malou vertikální mezerou a odsazením prvního řádku. Grafická úprava má být v celém textu jednotná.

Zkratky použité v textu musí být vysvětleny vždy u prvního výskytu zkratky (v závorce nebo v poznámce pod čarou, jde-li o složitější vysvětlení pojmu či zkratky). Pokud je zkratek více, připojuje se seznam použitých zkratek, včetně jejich vysvětlení a/nebo odkazů na definici.

Delší převzatý text jiného autora je nutné vymezit uvozovkami nebo jinak vyznačit a řádně citovat.

1.2 Jednoduché příklady

Mezi číslo a jednotku patří úzká mezera: šířka stránky A4 činí $210\,\mathrm{mm}$, což si pamatuje pouze $5\,\%$ autorů. Pokud ale údaj slouží jako přívlastek, mezeru vynecháváme: $25\,\mathrm{mm}$ okraj, $95\,\%$ interval spolehlivosti.

Rozlišujeme různé druhy pomlček: červeno-černý (krátká pomlčka), strana 16–22 (střední), 45 – 44 (matematické minus), a toto je — jak se asi dalo čekat — vložená věta ohraničená dlouhými pomlčkami.

V českém textu se používají "české" uvozovky, nikoliv "anglické".

Na některých místech je potřeba zabránit lámání řádku (v~ T_EXu značíme vlnovkou): u~předložek (neslabičnych, nebo obecně jednopísmenných), vrchol~v, před k~kroky, a~proto, ... obecně kdekoliv, kde by při rozlomení čtenář "škobrtnul".

2. Tabulky, obrázky, programy

Používání tabulek a grafů/obrázků v odborném textu má některá společná pravidla a některá specifická. Tabulky a grafy/obrázky neuvádíme přímo do textu, ale umístíme je buď na samostatné stránky nebo na vyhrazené místo v horní nebo dolní části běžných stránek. LATEX se o umístění plovoucích grafů a tabulek postará automaticky.

Grafy/obrázky a tabulky se číslují a jsou vybaveny legendou. Legenda má popisovat obsah grafu či tabulky tak podrobně, aby jim čtenář rozuměl bez důkladného studování textu práce.

Na tabulku a graf/obrázek musí být v textu číselný odkaz (lze důrazně doporučit dynamický mechanismus křížových referencí, jený je součástí LATEXu). Na příslušném místě textu pak shrneme ty nejdůležitější závěry, které lze z tabulky či grafu učinit. Text by měl být čitelný a srozumitelný i bez prohlížení tabulek a grafů a tabulky a grafy by měly být srozumitelné i bez podrobné četby textu.

Na tabulky a grafy odkazujeme pokud možno nepřímo v průběhu běžného toku textu; místo "Tabulka 2.1 ukazuje, že muži jsou v průměru o 9,9 kg těžší než ženy" raději napíšeme "Muži jsou o 9,9 kg těžší než ženy (viz tab. 2.1)".

2.1 Tabulky

Tabulka 2.1: Maximálně věrohodné odhady v modelu M.

	Směrod.		
Efekt	Odhad	\mathbf{chyba}^a	P-hodnota
Abs. člen	-10,01	1,01	_
Pohlaví (muž)	9,89	5,98	0,098
Výška (cm)	0,78	$0,\!12$	< 0,001

Pozn:^a Směrodatná chyba odhadu metodou Monte Carlo.

U tabulek se doporučuje dodržovat následující pravidla:

- Vyhýbat se svislým linkám. Silnějšími vodorovnými linkami oddělit tabulku od okolního textu včetně legendy, slabšími vodorovnými linkami oddělovat záhlaví sloupců od těla tabulky a jednotlivé části tabulky mezi sebou. V IATEXu tuto podobu tabulek implementuje balík booktabs. Chceme-li výrazněji oddělit některé sloupce od jiných, vložíme mezi ně větší mezeru.
- Neměnit typ, formát a význam obsahu políček v tomtéž sloupci (není dobré do téhož sloupce zapisovat tu průměr, onde procenta).
- Neopakovat tentýž obsah políček mnohokrát za sebou. Máme-li sloupec Rozptyl, který v prvních deseti řádcích obsahuje hodnotu 0,5 a v druhých deseti řádcích hodnotu 1,5,

pak tento sloupec raději zrušíme a vyřešíme to jinak. Například můžeme tabulku rozdělit na dvě nebo do ní vložit popisné řádky, které informují o nějaké proměnné hodnotě opakující se v následujícím oddíle tabulky (např. Rozptyl = 0.5" a níže Rozptyl = 1.5").

- Čísla v tabulce zarovnávat na desetinnou čárku.
- V tabulce je někdy potřebné používat zkratky, které se jinde nevyskytují. Tyto zkratky
 můžeme vysvětlit v legendě nebo v poznámkách pod tabulkou. Poznámky pod tabulkou
 můžeme využít i k podrobnějšímu vysvětlení významu některých sloupců nebo hodnot.

2.2 Obrázky

Obrázek 2.1: Náhodný výběr z rozdělení $\mathcal{N}_2(\mathbf{0}, I)$.

Několik rad týkajících se obrázků a grafů.

- Graf by měl být vytvořen ve velikosti, v níž bude použit v práci. Zmenšení příliš velkého grafu vede ke špatné čitelnosti popisků.
- Osy grafu musí být řádně popsány ve stejném jazyce, v jakém je psána práce (absenci diakritiky lze tolerovat). Kreslíme-li graf hmotnosti proti výšce, nenecháme na nich popisky ht a wt, ale osy popíšeme Výška [cm] a Hmotnost [kg]. Kreslíme-li graf funkce h(x), popíšeme osy x a h(x). Každá osa musí mít jasně určenou škálu.
- Chceme-li na dvourozměrném grafu vyznačit velké množství bodů, dáme pozor, aby se neslily do jednolité černé tmy. Je-li bodů mnoho, zmenšíme velikost symbolu, kterým je vykreslujeme, anebo vybereme jen malou část bodů, kterou do grafu zaneseme.

Grafy, které obsahují tisíce bodů, dělají problémy hlavně v elektronických dokumentech, protože výrazně zvětšují velikost souborů.

- Budeme-li práci tisknout černobíle, vyhneme se používání barev. Čáry rozlišujeme typem (plná, tečkovaná, čerchovaná,...), plochy dostatečně rozdílnými intensitami šedé nebo šrafováním. Význam jednotlivých typů čar a ploch vysvětlíme buď v textové legendě ke grafu anebo v grafické legendě, která je přímo součástí obrázku.
- Vyhýbejte se bitmapovým obrázkům o nízkém rozlišení a zejména JPEGům (zuby a
 kompresní artefakty nevypadají na papíře pěkně). Lepší je vytvářet obrázky vektorově
 a vložit do textu jako PDF.

2.3 Zdrojové kódy

Algoritmy, výpisy programů a popis interakce s programy je vhodné odlišit od ostatního textu. Jednou z možností je použití IATEXového balíčku fancyvrb (fancy verbatim), pomocí něhož je v souboru makra.tex nadefinováno prostředí code. Pomocí něho lze vytvořit např. následující ukázky.

```
> mean(x)
[1] 158.90
> objekt$prumer
[1] 158.90
```

Jinou vhodnou alternativou je použití balíčku listings a jeho prostředí lstlisting, které je velmi bohatě konfigurovatelné. Příklady:

- https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
- https://www.overleaf.com/learn/latex/Code_listing#Using_listings_to_highlight_
 code

2.4 Sazba matematiky

Proměnné sázíme kurzívou (to TEX v matematickém módu dělá sám, ale nezapomínejte na to v okolním textu a také si matematický mód zapněte). Názvy funkcí sázíme vzpřímeně. Tedy například: $var(X) = E X^2 - (E X)^2$.

Zlomky uvnitř odstavce (třeba $\frac{5}{7}$ nebo $\frac{x+y}{2}$) mohou být příliš stísněné, takže je lepší sázet jednoduché zlomky s lomítkem: 5/7, (x+y)/2.

Možnosti L^ATEXu pro sazbu matematiky jsou sice bohaté, ale je možné, že v některých specifických situacích nebudou postačovat. Proto lze doporučit k použití balíčky American Mathe-

matical Society (AMS). V souboru makra.tex jsou standardně zaváděny balíčky amsmath, amsfonts a amsthm. Pro proniknutí do jejich možností poslouží:

- Math Extension with AMSIATEX http://ptgmedia.pearsoncmg.com/images/0321173856/samplechapter/kopkach15.pdf
- https://www.overleaf.com/learn/latex/Aligning_equations_with_amsmath
- Math Mode http://tex.loria.fr/general/Voss-Mathmode.pdf
- More Math into LaTeX http://tug.ctan.org/info/Math_into_LaTeX-4/Short_ Course.pdf

3. Práce s literaturu

Šablona předpokládá použití bibliografické databáze z důvodu větší flexibility. Použití bibliografické databáze není nutnou podmínkou, lze si vystačit i se standardním prostředím thebibliography. V takovém případě je však zapotřebí provést zásahy do některých souborů, jak je uvedeno dále.

3.1 Použití bibliografické databáze

1. Změna názvu databáze

V šabloně se předpokládá databáze uložená v souboru literatura.bib. Pokud se databáze jmenuje jinak, pak je nutné v souboru makra.tex změnit hodnotu parametru příkazu \bibliography.

2. Změna citačního stylu

Standardně se citace v textu uvádějí v číselné variantě. Na použití kombinace příjmení a roku lze snadno přepnout změnou v souboru makra.tex, kde se prohodí komentářový znak v parametrech pro balíček biblatex.

3.2 Použití prostředí thebibliography

1. V souboru makra.tex vymazat na počátku tyto řádky:

```
%% Nastavení pro použití samostatné bibliografické databáze.
\usepackage[
   backend=biber
   ,style=iso-authoryear %iso-numeric
   ,sortlocale=cs_CZ
   ,bibencoding=UTF8
   %,block=ragged
]{biblatex}
\bibliography{literatura}
```

2. V souboru literatura. tex odstranit řádek s příkazem \printbibliography a odstranit příznak komentáře v další části obsahující prostředí thebibliography.

3.3 Jak citovat v textu

```
\begin{tabular}{ll} $$\subset {\tt Cermak2018}$ &$\longrightarrow [{\tt Cermak2018}]$ \\ $\subset {\tt Hladik2018, Jasek2018}$ &$\longrightarrow [{\tt Hladik2018, Jasek2018}]$ \\ $\subset {\tt Lap. 3] \{Pecakova2018\}}$ &$\longrightarrow [{\tt Pecakova2018}]$ \\ \end{tabular}
```

4. Formát PDF/A

Elektronická podoba závěrečných prací musí být odevzdávána ve formátu PDF/A úrovně 1a nebo 2u. To jsou profily formátu PDF určující, jaké vlastnosti PDF je povoleno používat, aby byly dokumenty vhodné k dlouhodobé archivaci a dalšímu automatickému zpracování. Dále se budeme zabývat úrovní 2u, kterou sázíme TFXem.

Mezi nejdůležitější požadavky PDF/A-2u patří:

- Všechny fonty musí být zabudovány uvnitř dokumentu. Nejsou přípustné odkazy na externí fonty (ani na "systémové", jako je Helvetica nebo Times).
- Fonty musí obsahovat tabulku ToUnicode, která definuje převod z kódování znaků použitého uvnitř fontu to Unicode. Díky tomu je možné z dokumentu spolehlivě extrahovat text.
- Dokument musí obsahovat metadata ve formátu XMP a je-li barevný, pak také formální specifikaci barevného prostoru.

Tato šablona používá balíček pdfx, který umí L^AT_EX nastavit tak, aby požadavky PDF/A splňoval. Metadata v XMP se generují automaticky podle informací v souboru prace.xmpdata (na vygenerovaný soubor se můžete podívat v pdfa.xmpi).

Správnost PDF/A lze zkontrolovat pomocí on-line validátoru: https://www.pdf-online.com/osa/validate.aspx/.

Pokud soubor nebude validní, mezi obvyklé příčiny patří používání méně obvyklých fontů (které se vkládají pouze v bitmapové podobě a/nebo bez unicodových tabulek) a vkládání obrázků v PDF, které samy o sobě standard PDF/A nesplňují.

Je pravděpodobné, že se to týká obrázků vytvářených mnoha různými programy. V takovém případě se můžete pokusit obrázek do zkonvertovat do PDF/A pomocí GhostScriptu, například takto:

```
gs -q -dNOPAUSE -dBATCH
    -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress
    -sOutputFile=vystup.pdf vstup.pdf
```

Závěr

Závěr je povinnou částí bakalářské/diplomové práce. Obsahuje shrnutí práce a vyjadřuje se k míře splnění cíle, který byl v práci stanoven, případně shrnuje odpovědi na otázky, které byly položeny v úvodu práce.

Závěr k diplomové práci musí být propracovanější – podrobněji to je uvedeno v Náležitostech diplomové práce v rámci Intranetu pro studenty FIS.

Závěr je vnímán jako kapitola (chapter), která začíná na samostatné stránce a která má název Závěr. Název Závěr se nečísluje. Samotný text závěru je členěn do odstavců.

Přílohy

A. Formulář v plném znění

B. Zdrojové kódy výpočetních procedur