Sistemas de visualização de redes metabólicas

Gabriella de O. Esteves Universidade de Brasília Departamento de Ciência da Computação Brasília, Brasil Email: gabepk.ape@gmail.com

Abstract—The abstract goes here.

I. INTRODUCÃO

O metabolismo é isso X, ocorre por isso (síntese e degradação) e funciona com isso (moléculas, metabólitos).

Como o metabolismo tem sido representado computacionalmente (redes metabólicas)? Como as redes metabólicas tem sido visualizadas (estado da arte)?

Problema, objetivo.

Descrição dos capítulos.

II. REDES METABÓLICAS

Paragrafo intro

. As reações bioquímicas são alterações químicas que fornecem um ou mais produtos a partir de uma ou mais entradas, chamadas de substratos. Uma via metabólica é uma sequência de reações bioquímicas, cujo produto e subtrato são denominados de metabólitos, que podem ser catalisadas por enzimas, estas que muitas vezes necessitam de compostos químicos não-proteicos chamados de co-fatores para realizarem suas atividades na célula. O conjunto de vias metabólicas de um organismo é chamado de rede metabólica. Todos estes elementos que compõem as redes metabólicas são dados biológicos estudados na área metabolômica. Nesta seção serão apresentados três bancos de dados de redes metabólicas utilizadas em análise do metaboloma, KEGG, BIoCyc e Reactoma.

A. Conceitos de Biologia Molecular

O DNA é um conjunto de biomoléculas em um organismo que armazenam informações, chamados de genes, referentes ao funcionamento de todas as suas células. Ele constitui o genoma em todos os seres vivos, com excessão dos vírus. A expressão dos genes é o processo no qual os genes são filtrados e utilizados na síntese de um produto, geralmente proteína. O método é segmentado em três etapas: transcrição (síntese de RNA mensageiro, mRNA, a partir de DNA), splicing (filtragem do gene síntetizador de proteínas desejadas do mRNA) e tradução (síntese de proteína a partir do mRNA filtrado). Completo este processo, as proteínas resultantes poderão formar uma configuração tridimensional de até quatro níveis. As enzimas, por exemplo, são proteínas que podem ter estrutura terciária ou quaternária.

Intro sobre sequenciamento de genoma

B. Conceitos de Metabolismo

O papel das enzimas no metabolismo é realizar biosíntese/degradação de moléculas para produção de energia (catalisar) com o propósito de acelerar reações bioquímicas. Aquelas que possuem a mesma atividade enzimática porém estruturas físicas diferentes são chamadas isoenzimas. Ligar paragrafos.

Quando o metabolismo exerce uma função fundamental no organismo, ele é classificado como metabolismo primário. Mitose e meiose são exemplos de metabolismos primários. Já quando o metabolismo não está relacionado a reprodução, desenvolvimento ou crescimento, ele não é essencial no organismo e, portanto, secundário. Os metabólitos secundários, apesar da aparente insignificância, podem ser antibióticos, por exemplo, e deste modo são bastante aplicados na medicina e na indústria [2].

C. Banco de Dados de redes metabólicas

Paragrafo intro

. O KEGG (Kyoto Encyclopedia of Genes and Genomes) é uma base de informações sobre sistemas biológicos em nível molecular, sobretudo sobre conjuntos de dados em larga escala gerados por sequenciamento de genoma [3]. As informações sobre os sistemas podem ser dadas em forma de módulos, unidades funcionais com identificação otimizada para análise dos dados, em forma de brite, coleção de arquivos estruturados hierarquicamente sobre as funções das entidades biológicos, ou em forma de vias, mapa de interações moleculares e reações químicas. Dado que o metabolismo é um conjunto de reações e transformações químicas, a maneira natural de representá-lo é por meio de uma rede de interações, ou seja, em forma de vias. O KEGG oferece uma ferramenta de busca de vias metabólicas sobre várias rede metabólica, dos vários organismos que constituem o banco de dados. É possível acessar o KEGG pela web através do site http://www.kegg.jp. Ligar paragrafos.

O BioCyc é um sistema de coleção de aproximadamente 7 mil bancos de dados chamados PGDBs (*Pathway/Genome Databases*) pois possuem duas maneiras diferentes de representar as informações: modelo de vias metabólicas, que

enfatiza as sequências de reações, substratos e produtos de múltiplos organismos, ou modelo de sequência genômica, que destaca a localização e descrição dos genes de cada organismo específico [4]. Os bancos PGDBs são organizado em três camadas de acordo com a frequência de atulizações/refinações e da maneira com que os dados foram obtidos. O BioCyc possui um banco de dados específico para redes metabólicas determinadas experimentalmente, chamado MetaCyc. Este é o único banco de dados multi-organismos do grupo Biocyc e ele é referência na ferramenta gratuita *Pathway Tools* desenvolvida pelo instituto de pesquisa *SRI International*. Ligar paragrafos

Reactoma é um banco de dados de reações de mudança de estado, ou seja, além de reações bioquímica, ele também abrange reacões de ativação, de degradação e de ligação, por exemplo [5]. Ele faz uma ligação sistemática entre as proteínas de um certo organismo e as funções moleculares do mesmo, fornecendo uma base de funções que pode ser utilizada para pesquisas sobre expressão de genes ou mutações somáticas. O Reactoma disponibiliza o Pathway Browser, uma rede geral para cada organismo, que representa os vários seus sistemas, como reprodução e metabolismo, por exemplo. Algumas subredes estão conectadas (por exemplo, replicação de DNA e ciclo de célula), outra não (por exemplo, contração muscular e reprodução). Nesta rede, cada nó representa uma via cujo número de entidade se reflete no raio do nó, e cada aresta representa a relação entre estas vias. O site ainda possui uma ferramenta de análise de dados baseada nas correspondências entre as reações na redes dos organismos comparados.

Frase final

III. FERRAMENTAS DE VISUALIZAÇÃO DE REDES METABÓLICAS

Paragrafo inicial

A. KEGG Pathway Maps

O KEGG oferece uma visao geral e uma visualização específica para análise de redes metabólicas. Na primeira, o grafo interativo apresenta uma perspectiva global das entidades do banco de dados do KEGG, chamadas de objetos KEGG. Neste panorama, a rede metabólica selecionada é destacada e é acompanhada de interações externas, que não possuem ligação direta com a rede análisada. Os nós representam compostos químicos e as arestas podem representar enzimas, reações e/ou otholog. Na página do Atlas, a visualização das arestas pode ser filtrada, bem como as vias, de acordo com suas funções. A Figura 1 apresenta uma parte da via de biosíntese de terpenóide, que tem início no composto Acetyl-CoA, destacada sobre as demais. A outra maneira de visualizar esta via é acessando o objeto KEGG do tipo map o qual ela representa (KEGG Pathway Map). O mapa de vias é um diagrama de interações/reações moleculares entre enzimas desenhado manualmente. A via da Figura 2 apresenta a mesma via da Figura 1.

Figure 1. KEGG

Figure 2. KEGG

B. MetaCyc Pathway Tools

O intituto SRI International oferece a ferramenta *Pathway Tools* para busca, visualização e edição de dados do MetaCyc [6]. Ela possui três componentes de análise:

- 1 Pathologic: Um PGDB é gerado a partir do genoma de um organismo e de vias metabólicas produziadas por um software de predição de vias;
- 2 Pathway/Genome Editor: Permite que curadores (especialistas responsáveis por verificar na literatura a corretude dos dados) possam refinar manualmente um PGDB, bem como importar ou exportar entidades de um PGDB para outro;
- 3 **Pathway/Genome Navigator**: Oferece mecanismos de busca, visualização e anpalise de redes metabólicas.

Além dessas funcionalidades principais, o Pathway Tools dispõe também de meios para geração de posters de genomas e mapas metabólicos a partir de PGDB, comparação de mapas

Figure 3. BioCyc

Figure 4. BioCyc

metabólicos inteiros e exportação de PGDB em vários formatos [7]. Via web, o MetaCyc oferece mecanismos básicos de análise metabolômica, tais como coloração de nós sobre redes (ou colagens de redes) metabólicas para geração de diagramas customizados e análise de níveis de metabólitos, por exemplo [8].

C. Reactome

- http:wiki.reactome.orgindex.phpUsersguide
- The Reactome pathway knowladgebase

D. Cytoscape

- http://www.cytoscape.orgwhat_is_cytoscape.html
- Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks

IV. CONCLUSÃO

Conclusão

Figure 5. Reactome

AGRADECIMENTO REFERENCES

- H. Kopka and P. W. Daly, A Guide to <u>BTEX</u>, 3rd ed. Harlow, England: Addison-Wesley, 1999.
- W.M.C. Silva, Método para reconstrução in silico de redes metabólicas de fungos: um estudo de caso para o Paracoccidioides lutzii. Universidade de Brasília. 2014.
- [3] Kyoto Encyclopedia of Genes and Genome, KEGG Overview http://www.kegg.jp/kegg/kegg/la.html visitado em 01 de Outubro de 2016.
- [4] SRI International and BioCyc Database Collection, Introduction to Bio-Cyc http://biocyc.org/intro.shtml visitado em 01 de Outubro de 2016.
- [5] Reactome, a curated pathway database, Usersguide http://wiki.reactome.org/index.php/Usersguide visitado em 01 de Outubro de 2016.
- [6] Caspi, Ron et al. MetaCyc: A Multiorganism Database of Metabolic Pathways and Enzymes. Nucleic Acids Research 34.Database issue (2006): D511–D516. PMC. Web. 5 Oct. 2016.
- [7] SRI International and BioCyc Database Collection, Comparison of Desktop and Web Modes of Pathway Tools http://biocyc.org/desktop-vs-webmode.shtml visitado em 03 de Outubro de 2016.
- [8] SRI International and BioCyc Database Collection, Omics Data Analysis http://metacyc.org/PToolsWebsiteHowto.shtml#omicsDataAnalysis visitado em 04 de Outubro de 2016.