

Exercise 19B

Q4. Answer:

(i) A cuboid has 8 vertices, namely A, B, C, D, E, F, G and H.

(ii) A tetrahedron has 4 vertices, namely K, L, M and N.

(iii) A pentagonal prism has 10 vertices, namely A, B, C, D, E, F, G, H, I and J.

(iv) A square pyramid has 5 vertices, namely O, W, X, Y and Z.

Answer:

Euler's relation is:

$$F - E + V = 2$$

Here:

F - Number of faces

E- Number of edges

V- Number of vertices

(i) A square prism

(There is an error in this question. It should have been a square prism rather than square.)

Number of faces
$$= F = 2$$
 squares $+ 4$ rectangular $= 6$
Number of edges $= E = 12$

Number of vertices
$$= V = 8$$

$$\Rightarrow (F-E+V) = 6-12+8=2$$

(ii) A tetrahedron

Number of faces
$$= F = 4$$

Number of edges
$$= E = 6$$

Number of vertices
$$= V = 4$$

 $\Rightarrow (F - E + V) = 4 - 6 + 4 = 2$

(iii) A triangular prism

Number of faces
$$= F = 2$$
 triangular $+ 3$ rectangular $= 5$

Number of edges
$$= E = 9$$

Number of vertices
$$=V=6$$

$$\Rightarrow (F - E + V) = 5 - 9 + 6 = 2$$

(iv) A square pyramid

Number of faces
$$= F = 2$$
 triangular $+ 3$ rectangular $= 5$

Number of edges
$$= E = 8$$

Number of vertices
$$=V=5$$

$$\Rightarrow (F - E + V) = 5 - 8 + 5 = 2$$