Looking for ultra-high energy astroparticles in a radio haystack

Simon Chiche

Supervisors: Kumiko Kotera (IAP), Olivier Martineau (LPNHE)

The mystery of ultra-high energy cosmic rays (UHECRs)

- Cosmic rays: high energy atomic nuclei (protons, iron nuclei, etc)
- Most energetic particles in the universe
- Where do they come from?

- At the lowest energy: Solar origin
- Intermediate energy: SNR (galactical origin)
- Ultra-high energy: ?

We don't know the exact nature of these particles

We don't know the sources

We don't the mechanisms responsible for the acceleration

Very low flux: $10^{-2} \cdot km^{-2} \cdot yr^{-1}$

Extensive air showers (EAS)

Interaction of high enrgy astroparticles with the atmosphere: shower/cascade of secondary particles!

- Hadronic part: mainly π decaying into μ and ν
- Electromagnetic part: e^+, e^-, γ

Main emissions:

- Cherenkov light
- Fluorescence light
- Radio emission

GRAND and **GRAND**proto300

GRAND : Giant radio array of 200 000 radio antennas over 200 000 km^2

Science case of GRANDproto300

Galactical to extragalctical transition

- GRANDProto 300: $E_{range} = 10^{16.5} 10^{18} \text{ eV}$
- We expect a galactical to extragalctical transition in this region
- GRANDProto 300 could provide precious informations about the transition!

Constraints on the gamma flux

- Unprecedented sensibility to diffuse UHE gamma rays with GRANDProto300
- Could allow the detection of UHE gamma rays or constrains the limits on the flux

J. Rautenberg for Auger, PoS(ICRC2019)398

GRANDProto300 : Défis de la radiodétection

Autonomous detection of astroparticles

Graal of radiodétection!

Current experiences: external triggers (Cerenkov cuves, scintillators)

GRAND: radio antennas only because giant radio array

Overwhelming noise from human emissions

We have to identify the radio signal among the noise!

Reconstruction of shower parameters

Current experiences: vertical showers ($\theta < 70^{\circ}$)

GRAND détection of inclined showers $(\theta > 70^{\circ})$

Asymmetries, ground reflexion effects

Polarisation: Promising method to tackle those challenges!

Polarisation of the radio signal

2 main contributions to the polarisation

Geomagnetic emission

- Induced dipole with $\overrightarrow{\mathbf{B}_{\mathrm{geo}}}$
- Polarisation along $-v \times B$
- Main contribution to the radio signal

Charge excess emission

- Accumulation of negative charges close to the shower core
- Radial polarisation
- ≈ 10% of the amplitude of the total emission for vertical air showers

- Complex signature in polarisation: allow to discriminate the signal from the noise
- Charge excess signature: gives insights about the core position

Traces processing

ZHAireS Simulations (Alvarez-Muñiz et al. 2011)

Account for experimental detection effects

Shower plane

- Outputs of the simulations:
 Ex(t), Ey(t), Ez(t)
 - We want to derive Ev(t), Evxb(t), Evxvxb(t)

i: inclination of the magnetic field

θ: zenith angle

φ: azimuth of the shower

$$u_B = \cos i u_x - \sin i u_z$$

$$u_v = \sin \theta \cos \phi u_x + \sin \theta \sin \phi u_y + \cos \theta u_z$$

We can derive $u_{v \times B}$ and $u_{v \times v \times B}$ from u_v and u_B and thus $E_v(t)$, $E_{v \times B}(t)$ and $E_{v \times v \times B}(t)$

Stokes parameters

- Stokes parameters I,Q, U, V: standard method to reconstruct the polarisation (Schoorlemmer 2012)
- $x_i = E_{v \times B}(t_i), y_i = E_{v \times v \times B}(t_i),$
- $\hat{x_i}$, $\hat{y_i}$, Hilbert transform of x_i , y_i , i.e., extension of the traces in the complex domain

Stokes parameters

100% Q	100% U	100% V
+Q y	+U y	+V y
x	45° X	×
Q > 0; U = 0; V = 0 (a)	Q = 0; U > 0; V = 0 (c)	Q = 0; U = 0; V > 0 (e)
-Q	-U	-V
x	45 X	×
Q < 0; U = 0; V = 0 (b)	Q = 0, U < 0, V = 0 (d)	Q = 0; U = 0; V < 0 (f)

$$I = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 + \hat{x}_i^2 + y_i^2 + \hat{y}_i^2) = |E_{v \times B}|^2 + |E_{v \times v \times B}|^2$$

$$Q = \frac{1}{n} \sum_{i=1}^{n} (x_i^2 + \hat{x}_i^2 - y_i^2 - \hat{y}_i^2) = |E_{v \times B}|^2 - |E_{v \times v \times B}|^2$$

$$U = \frac{2}{n} \sum_{i=1}^{n} (x_i y_i + \hat{x}_i \hat{y}_i)$$

$$V = \frac{2}{n} \sum_{i=1}^{n} (\hat{x}_i y_i - x_i \hat{y}_i)$$

Reconstruction of the polarisation

- We have to define a time window over which we average the traces
- Stokes parameters I: Related to the total intensity of the traces

Time window: Fwhm of the I parameter

 ϕ_p : angle between the polarisation and the $v \times B$ direction

$$\phi_{\rm p} = 0.5 \tan^{-1} \frac{U}{Q}$$

$$E_{v \times B} = \sqrt{\langle I \rangle} \cos \phi_{p}$$

$$E_{v \times v \times B} = \sqrt{\langle I \rangle} \sin \phi_{p}$$

Reconstruction of the polarisation

Total polarisation

Various methods to reconstruct the polarisation: absolute value, max value, Stokes parameters...

Total polarisation essentially along $-v \times B$

Dominant geomagnetic emission

Zenith = 53.31° , Energy = 3.981 Eev

Separation of each mechanism: (Huege et al. 2019)

$$E_{\text{ce}} = \frac{E_{\text{v} \times \text{v} \times \text{B}}}{|\sin \phi_{\text{obs}}|}$$
 $E_{\text{geo}} = E_{\text{v} \times \text{B}} - E_{\text{v} \times \text{v} \times \text{B}} \frac{\cos \phi_{\text{obs}}}{|\sin \phi_{\text{obs}}|}$

→ Signatures to identify the radio signal
 → Reconstruction of the air shower core position

Signal identification

Ratio of the amplitude of each mechanism

$$a = \sin\alpha \, \frac{E_{charge \, excess}}{E_{geomagnetic}}$$

Ratio below 1% for inclined air showers

Dominant contribution of the geomagnetic emission for inclined showers

- Total field orthogonal to B
- Strong signature of the radio signal visible directly at the antenna level
- Could be implemented in the trigger hardware of GRAND antennas

Shower core Reconstruction

$$a = sin \alpha \frac{E_{charge \ excess}}{E_{geomagnetic}}$$

The ratio drops to 0 at the core

Increase with the distance to the core

Estimation of the shower core as the position that minimizes the ratio

Method

- For several positions we compute the mean ratio measured by the 20 closest antennas
- Core estimation: position with the lowest measurement

Conclusion

Aim: Understanding the origin of ultra-high energy cosmic rays

- Multi-messengers approach to tackle this challenge
- Detection of the radio signal from extensive air showers induced by UHE astroparticles

GRANDProto300: Prototype of 300 antennas for the detection of UHE astroparticles

- · Identification of the radio signal among the noise
- Reconstruction of the shower parameters

Results:

- Electric field orthogonal to B for inclined showers
- Strong criteria to identify the radio signal!
 - · The charge excess to geomagnetic ratio increases with distance to the core
- Allow for reconstruction of the core position for showers with low inclination!