Algorithm 1 Nonparametric tensor completion	
Input: Noisy and incomplete data tensor \mathcal{Y}_{Ω} , rank r, resolution parameter H.	
1: for $\pi \in \mathcal{H} = \{-1, \dots, -\frac{1}{H}, 0, \frac{1}{H}, \dots, 1\}$ do	
2: Define π -shifted tensor $\mathcal{V} = \mathcal{V} - \pi$ and corresponding sign tensor $\text{sgn}(\mathcal{V}) = \text{sgn}(\mathcal{V} - \pi)$.	

3: Run 1-bit tensor estimation using base algorithm (e.g.
$$(????)$$
) on $\bar{\mathcal{Y}}_{\Omega}$ and obtain $\hat{\mathcal{Z}}_{\pi}$ \leftarrow $2\pi g \min_{x \in \mathcal{X}} |\bar{\mathcal{Y}}_{(x)}| \times F(\mathcal{Z}_{(x)} \operatorname{sgn} \bar{\mathcal{Y}}_{(x)})$ where $F(x)$ is the large margin less

$$\arg\min_{\text{low-rank }\mathcal{Z}} \sum_{\omega \in \Omega} |\bar{\mathcal{Y}}(\omega)| \times F(\mathcal{Z}(\omega) \operatorname{sgn}\bar{\mathcal{Y}}(\omega)) \text{ where } F(\cdot) \text{ is the large-margin loss.}$$

$$\underset{\text{and for}}{\operatorname{arg \, min}}_{\operatorname{low-rank} \, \mathcal{Z}} \sum_{\omega \in \Omega} |\bar{\mathcal{Y}}(\omega)| \times F(\mathcal{Z}(\omega) \operatorname{sgn} \bar{\mathcal{Y}}(\omega)) \text{ where } F(\cdot) \text{ is the large-margin loss.}$$