FM Chapter 5 – Language Based Security – Exercise 5.10

Lemma If $\langle q; \sigma \rangle \Longrightarrow_1^* \langle q'; \sigma' \rangle$ then we also have $\langle q; \sigma \rangle \Longrightarrow_0^* \langle q'; \sigma' \rangle$.

Proof. By induction on the size of the trace $\langle q; \sigma \rangle \Longrightarrow_{1}^{*} \langle q'; \sigma' \rangle$.

- Base case: Holds vacuously, as there is no successor of $\langle q; \sigma \rangle$.
- Induction Hypothesis: Assume that if $\langle q; \sigma \rangle \Longrightarrow_1^n \langle q'; \sigma' \rangle$ then we also have $\langle q; \sigma \rangle \Longrightarrow_0^n \langle q'; \sigma' \rangle$.
- **Induction Step**: We need to show that if $\langle q; \sigma \rangle \Longrightarrow_1^{n+1} \langle q''; \sigma'' \rangle$ then we can construct $\langle q; \sigma \rangle \Longrightarrow_0^{n+1} \langle q''; \sigma'' \rangle$.

With this we have that $\langle q; \sigma \rangle \Longrightarrow_1^n \langle q'; \sigma' \rangle \stackrel{act}{\Longrightarrow}_1 \langle q''; \sigma'' \rangle$. First notice that by IH on $\langle q; \sigma \rangle \Longrightarrow_1^n \langle q'; \sigma' \rangle$ we get $\langle q; \sigma \rangle \Longrightarrow_0^n \langle q'; \sigma' \rangle$.

It now remains to show that if $\langle q'; \sigma' \rangle \stackrel{act}{\Longrightarrow}_1 \langle q''; \sigma'' \rangle$ then $\langle q'; \sigma' \rangle \stackrel{act}{\Longrightarrow}_0 \langle q''; \sigma'' \rangle$. We now have three cases for act:

- Case $act = \mathtt{skip}$. Because $\langle q'; \sigma' \rangle \stackrel{\mathtt{skip}}{\Longrightarrow}_1 \langle q''; \sigma'' \rangle$, then we must have that $\mathcal{S}_1[\![\mathtt{skip}]\!](\sigma') = \sigma'$, so $\sigma' = \sigma''$. Furthermore $\mathcal{S}_0[\![\mathtt{skip}]\!](\sigma') = \sigma' = \sigma''$, and we now get that $\langle q'; \sigma' \rangle \stackrel{\mathtt{skip}}{\Longrightarrow}_0 \langle q''; \sigma'' \rangle$.
- Case $act = x := a\{X\}$. Because $\langle q'; \sigma' \rangle \xrightarrow{x := a\{X\}} \langle q''; \sigma'' \rangle$, then we must have that $\mathcal{A}[\![a]\!](\sigma')$ is defined and that $X \cup \mathsf{fv}(a) \rightrightarrows \{X\}$, which gives that $\mathcal{S}_1[\![x := a\{X\}]\!](\sigma') = \sigma'[x \mapsto \mathcal{A}[\![a]\!](\sigma')]$. So $\sigma'' = \sigma'[x \mapsto \mathcal{A}[\![a]\!](\sigma')]$.

Because $\mathcal{A}\llbracket a \rrbracket(\sigma')$ is defined and 0 = 0, then we also have that $\mathcal{S}_0\llbracket x := a\{X\} \rrbracket(\sigma') = \sigma''$, and we now get that $\langle q'; \sigma' \rangle \xrightarrow{x := a\{X\}} \langle q''; \sigma'' \rangle$.

- Case act = b. Because $\langle q'; \sigma' \rangle \stackrel{act}{\Longrightarrow}_1 \langle q''; \sigma'' \rangle$ then we must have that $\mathcal{B}[\![b]\!](\sigma')$ is defined and holds, and we get that $\mathcal{S}_1[\![b]\!](\sigma') = \sigma'$. So $\sigma'' = \sigma'$.

Because $\mathcal{B}[\![b]\!](\sigma')$ is defined and holds, then we get that $\mathcal{S}_0[\![b]\!](\sigma') = \sigma''$, and we now get that $\langle q'; \sigma' \rangle \stackrel{b}{\Rightarrow}_0 \langle q''; \sigma'' \rangle$.

The program in Try It Out 5.9 with $x \not\to y$ would be allowed to progress by the reference-monitor semantics \Longrightarrow_0 , but is halted by the reference-monitor semantics \Longrightarrow_1 . This will therefore give us that $\langle q; \sigma \rangle \Longrightarrow_0^* \langle q'; \sigma' \rangle$ but where $\langle q; \sigma \rangle \not\Longrightarrow_1^* \langle q'; \sigma' \rangle$.