Declan Mathews
8(6(0357
Solid State Assignment 5 5/4/20
Problem 2: Critical Field of a Thin Superconclucting Film
a) Taking result: $\mu_0 M(x) \propto -Ba \left(\frac{1}{8l^2}\right) \left(\delta^2 - 4x^2\right)$; $\delta \ll l$
Work density to bring a superconductor into & held
W= - Som M. dB
$= - \int_0^{\beta_a} -\frac{\beta_a}{\mu_o} \left(\frac{1}{\beta_{\star}^2} \right) \left(\frac{S^2 - 4\kappa^2}{\kappa^2} \right) d\beta \qquad both \hat{\underline{x}}$
$= \frac{\left(\int^2 - \zeta_1 \chi^2\right)}{8 \mu_0 \lambda^2} \int_0^{8\alpha} B dB = \frac{B_\alpha^2 \left(\int^2 - \zeta_1 \chi^2\right)}{\left(\int \mu_0 \lambda_1^2\right)}$
The free energy denoty inside the superconductor at field strength Ba is the whiat free energy denoting at 0 field strength; F, (C) plus the additional amount gained from the work denoty to bring the superconductor who the field of strength by
:. $F_{S}(x, B_{a}) \approx F_{S}(B=0) + \frac{Ba^{2}(S^{2}-4x^{2})}{16\mu_{0}\lambda_{c}^{2}}$ when $S \ll \lambda_{c}$ from $M(x)$ sol.
where x is the distance from the centre of the & along &.
b) F _{SM} (K, Ba) = $\frac{(S^2 - 4x^2) Ba^2}{(6m_0 x^2)}$
(over K)
(over K) (FSM (x, Ba) dx is the average magnetic contribution to the free energy density in the SC
$= \frac{1}{5} \int_{-\frac{5}{2}}^{\frac{5}{2}} \frac{\left(5^2 - 4\pi^2\right) Ba^2}{\left(6 \mu_0 \lambda_c^2\right)} dx$
$=\frac{\beta a^2}{(6\mu o \lambda_c^2)} \left[\frac{\delta x}{\delta x} \right]^{\frac{\delta}{2}} - 4 \left[\frac{x^3}{\delta x} \right]^{\frac{\delta}{2}}$
$\frac{S^2 + S^2}{2} = S^2$ $= S^2$ $= S^2$ $= S^2$
12

The data for these plets is included in the table titled 'Solid State Problem Id Data'.

- Cs was lound by multiplying the given C data by T - Cse was lound by gething the phonon contributes, Cph, by taking \$=0.0568 (from type () and muliphying by T3, then subtracting Cph from Cs. - Cn was found by yT + Cph where y = 0.596 from figure 1.

e) $C_{ne}(T_c) = \gamma T_c$ where $\gamma = 0.596$ mJ mol⁻¹ K^{-2} from the graph in Figure 1 $= 0.596 \cdot 1.078$

Cne(Tc) = 0.642 m 5 mol 1 K1

Solid State Problem 1d Data

	John State	Problem 10 Da	<u>ta</u>
T (K)	C_n (mJ /mol /K)	C_s (mJ /mol /K)	C_se (mJ /mol /K)
2.05E-01	1.23E-01	3.89E-03	3.40E-03
2.19E-01	1.31E-01	6.13E-03	5.54E-03
2.39E-01	1.43E-01	9.79E-03	9.02E-03
2.49E-01	1.49E-01	1.29E-02	1.21E-02
2.70E-01	1.62E-01	2.08E-02	1.97E-02
2.83E-01	1.70E-01	2.60E-02	2.47E-02
2.97E-01	1.78E-01	3.32E-02	3.17E-02
3.07E-01	1.84E-01	4.05E-02	3.88E-02
3.21E-01	1.93E-01	4.97E-02	4.79E-02
3.63E-01	2.19E-01	7.92E-02	7.65E-02
3.79E-01	2.29E-01	1.05E-01	1.02E-01
3.94E-01	2.38E-01	1.09E-01	1.05E-01
3.99E-01	2.41E-01	1.18E-01	1.14E-01
4.18E-01	2.53E-01	1.41E-01	1.37E-01
4.45E-01	2.70E-01	1.73E-01	1.68E-01
4.56E-01	2.77E-01	1.85E-01	1.79E-01
4.82E-01	2.93E-01	2.27E-01	2.21E-01
5.16E-01	3.15E-01	2.74E-01	2.67E-01
5.33E-01	3.26E-01	3.03E-01	2.94E-01
5.72E-01	3.51E-01	3.71E-01	3.61E-01
5.72E-01	3.51E-01	3.66E-01	3.55E-01
6.08E-01	3.75E-01	4.39E-01	4.26E-01
6.24E-01	3.86E-01	4.65E-01	4.51E-01
6.34E-01	3.92E-01	4.89E-01	4.74E-01
6.62E-01	4.11E-01	5.43E-01	5.27E-01
6.86E-01	4.27E-01	5.95E-01	5.77E-01
7.22E-01	4.52E-01	6.73E-01	6.52E-01
7.40E-01	4.64E-01	7.20E-01	6.97E-01
7.92E-01	5.01E-01	8.31E-01	8.02E-01
8.14E-01	5.16E-01	8.85E-01	8.55E-01
8.85E-01	5.67E-01	1.07E+00	1.03E+00
8.92E-01	5.72E-01	1.08E+00	1.04E+00
9.69E-01	6.29E-01	1.29E+00	1.24E+00
9.77E-01	6.35E-01	1.33E+00	1.28E+00
1.01E+00	6.59E-01	1.41E+00	1.36E+00
1.02E+00	6.68E-01	1.45E+00	1.39E+00
1.06E+00	6.99E-01	1.60E+00	1.54E+00

The every gap determined from (f) is the every to evaile
The energy gap determined from (f) is the energy to excite one electron from a looper pair; $\Delta(0) = Eg$
BCS theory relates this. 20(0) × 3.5 kBTc.
From BCS Neary; D(0) ~ Z kBTc = 0.163 mel
therefore the result from BCS theory is roughly the same as derived here.
Note; Eg could be found worning $m = \frac{-Eg}{2k_B}$, which then defines Eg as the energy to break and excite a Cooper pair, where Eg = $2\Delta(0)$. There used $m = -Eg$ as this was given on the lecture slides.
This method works when ignaring the temperature dependence as it , who three a very small difference when $T < T^2/2$. The gap also electedes as $T < T^2/2$. The gap also electedes as $T < T^2/2$ increases and so this gives an extincte at the more gap.
(at T-OK) (at T-OK) (c) is the energy per electron n to break a Coeper pair and exaite a single electron to a higher energy state