Università degli Studi di Bergamo, Scuola di Ingegneria, Dalmine Laurea Magistrale in Ingegneria Edile

Dinamica, Instabilità e Anelasticità delle Strutture a.a. 2015/2016

I ELABORATO

Si considerino il telaio multipiano "shear-type" ed il portale monopiano in C.A. in figura. Si ritengano le colonne assialmente inestensibili, con rigidezza flessionale indicata e prive di massa; gli impalcati infinitamente rigidi. Il portale può risultare soggetto ad interazione suolo-struttura (Soil-Structure Interaction - SSI), secondo un modello puramente "sway" orizzontale.

Dati:

- parametri allievo: $\gamma = \gamma_a = 1 + 0.01$ (*N*−*C*), $\delta_a = 10 + 0.12$ (*N*−*C*) (*N*=n. lettera iniziale nome, *C*=n. lettera iniziale cognome);
- momento d'inerzia: $J=J_a=0.00048+0.00001 (N-C) \text{ m}^4$;
- altezza caratteristica delle colonne: h=3 m;

- modulo di elasticità: *E*=33000 MPa;
- massa degli impalcati: m = 18000 kg;
- rigidezza SSI sway model: $k_{sway} = 10 \gamma EJ/h^3$.

Richieste:

- Si consideri inizialmente il solo **portale monopiano** (**sistema SDOF**), ponendo $k_{sway} \rightarrow \infty$ ("fixed base"):
 - ♦ 1. Determinare e rappresentare la risposta non forzata del sistema, considerando i valori δ =0, δ = δ_a , δ → ∞ , con condizioni iniziali u_0 =3 cm, \dot{u}_0 =30 cm/s, per i fattori di smorzamento ζ =0%, 4%, 8%.
 - 2. Assumendo $\delta = \delta_a$ e $\zeta = 4\%$, determinare e rappresentare la risposta con c.i. nulle $u_0 = \dot{u}_0 = 0$ dovuta a forzante armonica $F(t) = F\cos(\omega t)$ di ampiezza F = 10000 N e periodo T = 0.7 s. Verificare se spostamento e velocità massimi a regime risultano inferiori a 2.5 cm e 10 cm/s. Rappresentare il diagramma di Argand delle risposte z(t), $\dot{z}(t)$, $\ddot{z}(t)$ a forzante armonica $F(t) = Fe^{i\omega t}$ e delle forze in gioco: forzante $Fe^{i\omega t}$, forza elastica $F_e = kz$, forza smorzante $F_d = c\dot{z}$ ($F_e = F_d$ positive se opposte a z = z), forza d'inerzia $F_i = -m\ddot{z}$. Indicare lo sfasamento tra risposta e forzante ed il modulo di tutte le forze sopra indicate.
- Si consideri quindi il **telaio multipiano** (**sistema MDOF**):
 - 1. Si determinino: a) matrici di massa e rigidezza M e K della struttura; b) modi principali di vibrare, fornendo autovettori ϕ_i , pulsazioni proprie ω_i e periodi propri T_i (utilizzare il metodo dell'iterazione vettoriale inversa e soluzioni alternative; rappresentare graficamente i modi principali di vibrare corrispondenti agli autovettori determinati); c) matrici degli autovettori e degli autovalori $\Phi \in \Omega$ (verificare le relazioni matriciali seguenti: $K\Phi = M\Phi \Omega^2$, $\mathcal{M} = \Phi^T M\Phi = diag[\mathcal{M}_i]$, $\mathcal{X} = \Phi^T K\Phi = diag[\mathcal{X}_i]$, $\Omega^2 = \mathcal{M}^{-1}\mathcal{X} = diag[\mathcal{X}_i/\mathcal{M}_i]$); d) trasformazioni diretta $q = \Phi p$ ed inversa $p = \Phi^{-1}q$ tra coordinate principali p e lagrangiane q.
 - 2. Assumendo uno smorzamento strutturale "alla Rayleigh", C = αM + βK, con i parametri α, β da calibrare in modo che i fattori di smorzamento per i due modi risultino pari a ζ₁=6%, ζ₂=4%, si valuti la risposta del sistema ad un'eccitazione sismica secondo lo spettro di risposta di accelerazione relativo al terremoto de L'Aquila del 06/04/2009, stazione AQV (dati scaricabili dalla pagina del corso o dal sito dell'Itaca). Considerare la componente orizzontale WE del sisma (periodo proprio in s, ζ=5%). Per ottenere lo spettro di risposta associato a ζ differenti si moltiplichino le ordinate per il fattore η = √ [0.10 / (0.05 + ζ)]. In particolare, si determinino: a) fattori di partecipazione e masse modali efficaci; b) spostamenti massimi attesi degli impalcati (stima SRSS); c) forze equivalenti modali ed azioni interne ad esse corrispondenti (rappresentare i diagrammi N,T,M, N esclusa per le travi); d) valori massimi attesi delle azioni interne (SRSS) nelle sezioni caratteristiche del telaio; e) considerando anche la risposta sismica del portale (δ=δa, ζ=4%) per k_{Sway} infinito e k_{Sway} finito assegnato ("flexible-base"), determinare il valore minimo della distanza Δ tra le due strutture tale da impedire il fenomeno del "martellamento" tra gli edifici. Discutere le differenze fra i due casi di k_{Sway}.
- Facoltativo: determinare la risposta sismica (spostamento, velocità ed accelerazione) del portale per i due casi di k_{sway} all'accelerogramma sismico scaricabile dalle stesse fonti (time step: $\Delta t = 0.005$ s), mediante il metodo di Newmark e/o tramite valutazione numerica dell'integrale di Duhamel. Confrontare gli esiti con le stime precedenti.