Understanding quantum information and computation

By John Watrous

Lesson 3

Quantum circuits

Circuits

Circuits are models of computation:

- Wires carry information
- Gates represent operations

In this series, circuits are always acyclic—information flows from left to right.

Wires store binary values, gates represent Boolean logic operations, such as AND (\land), OR (\lor), NOT (\neg), and FANOUT (\bullet).

Circuits

Circuits are models of computation:

- Wires carry information
- Gates represent operations

In this series, circuits are always $\frac{\alpha cyclic}{\alpha cyclic}$ — information flows from left to right.

In the *quantum circuit* model, the wires represent qubits and the gates represent both unitary operations and measurements.

Convention

In this series (and in Qiskit), ordering qubits from bottom-to-top is equivalent to ordering them left-to-right.

It is also sometimes convenient to view *arbitrary unitary operations* as gates.

When we use the Dirac notation, a ket is a column vector, and its corresponding bra is a row vector:

$$|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \qquad \langle \psi | = (\overline{\alpha_1} \cdots \overline{\alpha_n})$$

Suppose that we have two kets:

$$|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \quad \text{and} \quad |\phi\rangle = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

Suppose that we have two kets:

$$|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$
 and $|\phi\rangle = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$

We then have

$$\langle \psi | \phi \rangle = \left(\overline{\alpha_1} \quad \cdots \quad \overline{\alpha_n} \right) \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \overline{\alpha_1} \beta_1 + \cdots + \overline{\alpha_n} \beta_n$$

This is the *inner product* of $|\psi\rangle$ and $|\phi\rangle$.

Alternatively, suppose that we have two column vectors expressed like this:

$$|\psi\rangle = \sum_{\alpha \in \Sigma} \alpha_{\alpha} |\alpha\rangle$$
 and $|\phi\rangle = \sum_{b \in \Sigma} \beta_b |b\rangle$

Then the inner product of these vectors is as follows:

$$\langle \psi | \phi \rangle = \left(\sum_{\alpha \in \Sigma} \overline{\alpha_{\alpha}} \langle \alpha | \right) \left(\sum_{b \in \Sigma} \beta_{b} | b \rangle \right)$$

$$= \sum_{\alpha \in \Sigma} \sum_{b \in \Sigma} \overline{\alpha_{\alpha}} \beta_{b} \langle \alpha | b \rangle$$

$$= \sum_{\alpha \in \Sigma} \overline{\alpha_{\alpha}} \beta_{\alpha}$$

Example

The inner product of these two vectors is

$$\langle \psi | \phi \rangle = \frac{1 - \sqrt{3}}{2\sqrt{2}} \approx -0.2588$$

Example

The inner product of these two vectors is

$$\langle \psi | \phi \rangle = \frac{1 - \sqrt{3}}{2\sqrt{2}} = \cos(105^\circ) \approx -0.2588$$

Example

The inner product of these two vectors is

$$\langle \psi | \phi \rangle = 0 = \cos(90^{\circ})$$

Relationship to the Euclidean norm

The inner product of any vector

$$|\psi\rangle = \sum_{\alpha \in \Sigma} \alpha_{\alpha} |\alpha\rangle$$

with itself is

$$\langle \psi | \psi \rangle = \sum_{\alpha \in \Sigma} \overline{\alpha_{\alpha}} \alpha_{\alpha} = \sum_{\alpha \in \Sigma} |\alpha_{\alpha}|^2 = ||\psi\rangle||^2$$

That is, the Euclidean norm of a vector $|\psi\rangle$ is given by

$$\|\psi\| = \sqrt{\langle \psi | \psi \rangle}$$

Conjugate symmetry

For any two vectors

$$|\psi\rangle = \sum_{\alpha \in \Sigma} \alpha_{\alpha} |\alpha\rangle$$
 and $|\phi\rangle = \sum_{b \in \Sigma} \beta_b |b\rangle$

we have

$$\langle \psi | \phi \rangle = \sum_{\alpha \in \Sigma} \overline{\alpha_{\alpha}} \beta_{\alpha}$$
 and $\langle \phi | \psi \rangle = \sum_{\alpha \in \Sigma} \overline{\beta_{\alpha}} \alpha_{\alpha}$

and therefore

$$\overline{\langle \psi | \phi \rangle} = \langle \phi | \psi \rangle$$

Linearity in the second argument -

Suppose that $|\psi\rangle$, $|\phi_1\rangle$, and $|\phi_2\rangle$ are vectors and α_1 and α_2 are complex numbers. If we define a new vector

$$|\phi\rangle = \alpha_1 |\phi_1\rangle + \alpha_2 |\phi_2\rangle$$

then

$$\langle \psi | \phi \rangle = \langle \psi | \left(\alpha_1 | \phi_1 \rangle + \alpha_2 | \phi_2 \rangle \right) = \alpha_1 \langle \psi | \phi_1 \rangle + \alpha_2 \langle \psi | \phi_2 \rangle$$

Conjugate linearity in the first argument

Suppose that $|\psi_1\rangle$, $|\psi_2\rangle$, and $|\phi\rangle$ are vectors and β_1 and β_2 are complex numbers. If we define a new vector

$$|\psi\rangle = \beta_1 |\psi_1\rangle + \beta_2 |\psi_2\rangle$$

then

$$\langle \psi | \phi \rangle = \left(\overline{\beta_1} \langle \psi_1 | + \overline{\beta_2} \langle \psi_2 | \right) | \phi \rangle = \overline{\beta_1} \langle \psi_1 | \phi \rangle + \overline{\beta_2} \langle \psi_2 | \phi \rangle$$

The Cauchy-Schwarz inequality

For every choice of vectors $|\psi\rangle$ and $|\phi\rangle$ we have

$$|\langle \psi | \phi \rangle| \le |||\psi \rangle|| |||\phi \rangle||$$

(Equality holds if and only if $|\psi\rangle$ and $|\phi\rangle$ are linearly dependent.)

Two vectors $|\psi\rangle$ and $|\phi\rangle$ are <u>orthogonal</u> if their inner product is zero:

$$\langle \psi | \phi \rangle = 0$$

An orthogonal set $\{|\psi_1\rangle, \ldots, |\psi_m\rangle\}$ is one where all pairs pairs are orthogonal:

$$\langle \psi_j | \psi_k \rangle = 0$$
 (for all $j \neq k$)

An orthonormal set $\{|\psi_1\rangle, \ldots, |\psi_m\rangle\}$ is an orthogonal set of unit vectors:

$$\langle \psi_j | \psi_k \rangle = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$
 (for all $j \neq k$)

An orthonormal basis $\{|\psi_1\rangle, \ldots, |\psi_m\rangle\}$ is an orthonormal set that forms a basis (of a given space).

Example

For any classical state set Σ , the set of all standard basis vectors

$$\{|\alpha\rangle: \alpha \in \Sigma\}$$

is an orthonormal basis.

Example

The set $\{|+\rangle, |-\rangle\}$ is an orthonormal basis for the 2-dimensional space corresponding to a single qubit.

Example

The Bell basis $\{|\phi^{+}\rangle, |\phi^{-}\rangle, |\psi^{+}\rangle, |\psi^{-}\rangle\}$ is an orthonormal basis for the 4-dimensional space corresponding to two qubits.

Example

The set $\{|+\rangle, |-\rangle\}$ is an orthonormal basis for the 2-dimensional space corresponding to a single qubit.

Example

The Bell basis $\{|\phi^{+}\rangle, |\phi^{-}\rangle, |\psi^{+}\rangle, |\psi^{-}\rangle\}$ is an orthonormal basis for the 4-dimensional space corresponding to two qubits.

Example

The set $\{|0\rangle, |+\rangle\}$ is not an orthogonal set because

$$\langle 0|+\rangle = \frac{1}{\sqrt{2}} \neq 0$$

Fact

Suppose that

$$\{|\psi_1\rangle,\ldots,|\psi_m\rangle\}$$

is an *orthonormal set* of vectors in an n-dimensional space.

(Orthonormal sets are always linearly independent, so these vectors span a subspace of dimension $m \le n$.)

If m < n, then there must exist vectors

$$|\psi_{m+1}\rangle,\ldots,|\psi_{n}\rangle$$

so that $\{|\psi_1\rangle, \ldots, |\psi_n\rangle\}$ forms an orthonormal basis.

(The *Gram–Schmidt* orthogonalization process can be used to construct these vectors.)

Orthonormal bases are closely connected with unitary matrices.

These conditions on a square matrix U are equivalent:

- 1. The matrix U is unitary (i.e., $U^{\dagger}U = 1 = UU^{\dagger}$).
- 2. The rows of U form an orthonormal basis.
- 3. The columns of U form an orthonormal basis.

For example, consider a 3 × 3 matrix U:

$$U^{\dagger} = \begin{pmatrix} \overline{\alpha}_{1,1} & \overline{\alpha}_{2,1} & \overline{\alpha}_{3,1} \\ \overline{\alpha}_{1,2} & \overline{\alpha}_{2,2} & \overline{\alpha}_{3,2} \\ \overline{\alpha}_{1,3} & \overline{\alpha}_{2,3} & \overline{\alpha}_{3,3} \end{pmatrix} \qquad U = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\ \alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\ \alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3} \end{pmatrix}$$

For example, consider a 3 × 3 matrix U:

$$U^{\dagger} = \begin{pmatrix} \overline{\alpha}_{1,1} & \overline{\alpha}_{2,1} & \overline{\alpha}_{3,1} \\ \overline{\alpha}_{1,2} & \overline{\alpha}_{2,2} & \overline{\alpha}_{3,2} \\ \overline{\alpha}_{1,3} & \overline{\alpha}_{2,3} & \overline{\alpha}_{3,3} \end{pmatrix} \qquad U = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\ \alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\ \alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3} \end{pmatrix}$$

Forming vectors from the columns of U, we can express $U^{\dagger}U$ like this:

$$|\psi_{1}\rangle = \begin{pmatrix} \alpha_{1,1} \\ \alpha_{2,1} \\ \alpha_{3,1} \end{pmatrix} \qquad |\psi_{2}\rangle = \begin{pmatrix} \alpha_{1,2} \\ \alpha_{2,2} \\ \alpha_{3,2} \end{pmatrix} \qquad |\psi_{3}\rangle = \begin{pmatrix} \alpha_{1,3} \\ \alpha_{2,3} \\ \alpha_{3,3} \end{pmatrix}$$

$$U^{\dagger}U = \begin{pmatrix} \langle \psi_{1} | \psi_{1} \rangle & \langle \psi_{1} | \psi_{2} \rangle & \langle \psi_{1} | \psi_{3} \rangle \\ \langle \psi_{2} | \psi_{1} \rangle & \langle \psi_{2} | \psi_{2} \rangle & \langle \psi_{2} | \psi_{3} \rangle \\ \langle \psi_{3} | \psi_{1} \rangle & \langle \psi_{3} | \psi_{2} \rangle & \langle \psi_{3} | \psi_{3} \rangle \end{pmatrix}$$

These conditions on a square matrix U are equivalent:

- 1. The matrix U is unitary (i.e., $U^{\dagger}U = 1 = UU^{\dagger}$).
- 2. The rows of U form an orthonormal basis.
- 3. The columns of U form an orthonormal basis.

Fact

Given any orthonormal set of n-dimensional vectors

$$\{|\psi_1\rangle,\ldots,|\psi_m\rangle\}$$

there is a unitary matrix U whose first m columns are these vectors:

$$U = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ |\psi_1\rangle & |\psi_2\rangle & \cdots & |\psi_m\rangle & |\psi_{m+1}\rangle & \cdots & |\psi_n\rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

A square matrix Π is called a *projection* if it satisfies two properties:

- 1. $\Pi = \Pi^{\dagger}$ 2. $\Pi^{2} = \Pi$

Example

If $|\psi\rangle$ is a unit vector, then this matrix is a projection:

$$\Pi = |\psi\rangle\langle\psi|$$

$$\Pi^{\dagger} = (|\psi\rangle\langle\psi|)^{\dagger} = (\langle\psi|)^{\dagger}(|\psi\rangle)^{\dagger} = |\psi\rangle\langle\psi| = \Pi$$

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

A square matrix Π is called a *projection* if it satisfies two properties:

- 1. $\Pi = \Pi^{\dagger}$ 2. $\Pi^{2} = \Pi$

Example

If $|\psi\rangle$ is a unit vector, then this matrix is a projection:

$$\Pi = |\psi\rangle\langle\psi|$$

$$\Pi^{\dagger} = (|\psi\rangle\langle\psi|)^{\dagger} = (\langle\psi|)^{\dagger}(|\psi\rangle)^{\dagger} = |\psi\rangle\langle\psi| = \Pi$$

$$\Pi^{2} = (|\psi\rangle\langle\psi|)^{2} = |\psi\rangle\langle\psi|\psi\rangle\langle\psi| = |\psi\rangle\langle\psi| = \Pi$$

A square matrix Π is called a *projection* if it satisfies two properties:

- 1. $\Pi = \Pi^{\dagger}$ 2. $\Pi^{2} = \Pi$

Example

If $\{|\psi_1\rangle,\ldots,|\psi_m\rangle\}$ is an orthonormal set, then this is a projection:

$$\Pi = \sum_{k=1}^{m} |\psi_k\rangle\langle\psi_k|$$

$$\Pi^{\dagger} = \left(\sum_{k=1}^{m} |\psi_k\rangle\langle\psi_k|\right)^{\dagger} = \sum_{k=1}^{m} (|\psi_k\rangle\langle\psi_k|)^{\dagger} = \sum_{k=1}^{m} |\psi_k\rangle\langle\psi_k| = \Pi$$

$$\Pi^{2} = \sum_{j=1}^{m} \sum_{k=1}^{m} |\psi_{j}\rangle\langle\psi_{j}|\psi_{k}\rangle\langle\psi_{k}| = \sum_{k=1}^{m} |\psi_{k}\rangle\langle\psi_{k}| = \Pi$$

A square matrix Π is called a *projection* if it satisfies two properties:

- 1. $\Pi = \Pi^{\dagger}$ 2. $\Pi^{2} = \Pi$

- Fact -

Every projection matrix TT takes the form

$$\Pi = \sum_{k=1}^{m} |\psi_k\rangle\langle\psi_k|$$

for some orthonormal set $\{|\psi_1\rangle, \ldots, |\psi_m\rangle\}$.

(This includes the case $\Pi = 0$.)

A collection of projections $\{\Pi_1, \ldots, \Pi_m\}$ that satisfies

$$\Pi_1 + \cdots + \Pi_m = 1$$

describes a projective measurement.

When such a measurement is performed on a system in the state $|\psi\rangle$, two things happen:

1. The outcome $k \in \{1, ..., m\}$ of the measurement is chosen randomly:

$$Pr(\text{outcome is } k) = \|\Pi_k|\psi\rangle\|^2 = \langle\psi|\Pi_k|\psi\rangle$$

2. The state of the system becomes

$$\frac{\Pi_k|\psi\rangle}{\|\Pi_k|\psi\rangle\|}$$

We can also choose different names for the measurement outcomes. Any collection of projections $\{\Pi_{\alpha}: \alpha \in \Gamma\}$ that satisfies the condition

$$\sum_{\alpha \in \Gamma} \Pi_{\alpha} = 1$$

describes a projective measurement having outcomes in the set Γ . The rules are the same as before:

1. The outcome $\alpha \in \Gamma$ of the measurement is chosen randomly:

$$Pr(outcome is a) = ||\Pi_a|\psi\rangle||^2$$

2. The state of the system becomes

$$\frac{\Pi_{a}|\psi\rangle}{\|\Pi_{a}|\psi\rangle\|}$$

Example

Standard basis measurements are projective measurements:

- The outcomes are the classical states of the system being measured.
- The measurement is described by the set $\{|\alpha\rangle\langle\alpha|:\alpha\in\Sigma\}$.

Suppose that we measure the state

$$|\psi\rangle = \sum_{\alpha \in \Sigma} \alpha_{\alpha} |\alpha\rangle$$

Each outcome α appears with probability $\||\alpha\rangle\langle\alpha|\psi\rangle\|^2 = |\alpha_{\alpha}|^2$.

Conditioned on the outcome α , the state becomes

$$\frac{|a\rangle\langle a|\psi\rangle}{\||a\rangle\langle a|\psi\rangle\|} = \frac{\alpha_a}{|\alpha_a|}|a\rangle$$

Example

Standard basis measurements are projective measurements:

- The outcomes are the classical states of the system being measured.
- The measurement is described by the set $\{|\alpha\rangle\langle\alpha|:\alpha\in\Sigma\}$.

Example

Performing a standard basis measurement on a system X and doing nothing to a system Y is equivalent to performing the projective measurement

$$\{|a\rangle\langle a|\otimes 1_{Y}: a\in \Sigma\}$$

on the system (X, Y).

Example

Performing a standard basis measurement on a system X and doing nothing to a system Y is equivalent to performing the projective measurement

$$\{|\alpha\rangle\langle\alpha|\otimes 1_{Y}:\alpha\in\Sigma\}$$

on the system (X, Y).

Each measurement outcome a appears with probability

$$\|(|\alpha\rangle\langle\alpha|\otimes 1)|\psi\rangle\|^2$$

The state of the system (X, Y) then becomes

$$\frac{(|a\rangle\langle a|\otimes 1)|\psi\rangle}{\|(|a\rangle\langle a|\otimes 1)|\psi\rangle\|}$$

Projective measurements

Example

Define two projections as follows:

$$\Pi_0 = |\phi\rangle\langle\phi^+| + |\phi^-\rangle\langle\phi^-| + |\psi^+\rangle\langle\psi^+|$$

$$\Pi_1 = |\psi^-\rangle\langle\psi^-|$$

The projective measurement $\{\Pi_0, \Pi_1\}$ is an interesting one...

Every projective measurements can be *implemented* using unitary operations and standard basis measurements.

Definition

Suppose that $|\psi\rangle$ and $|\phi\rangle$ are quantum state vectors satisfying

$$|\phi\rangle = \alpha |\psi\rangle$$

The states $|\psi\rangle$ and $|\phi\rangle$ are then said to differ by a global phase.

(This requires $|\alpha| = 1$. Equivalently, $\alpha = e^{i\theta}$ for some real number θ .)

Imagine that two states that differ by a global phase are measured. If we start with the state $|\phi\rangle$, the probability to obtain any chosen outcome α is

$$\left|\left\langle \alpha | \phi \right\rangle\right|^2 = \left|\alpha \left\langle \alpha | \psi \right\rangle\right|^2 = \left|\alpha \right|^2 \left|\left\langle \alpha | \psi \right\rangle\right|^2 = \left|\left\langle \alpha | \psi \right\rangle\right|^2$$

That's the same probability as if we started with the state $|\psi\rangle$.

Definition

Suppose that $|\psi\rangle$ and $|\phi\rangle$ are quantum state vectors satisfying

$$|\phi\rangle = \alpha |\psi\rangle$$

The states $|\psi\rangle$ and $|\phi\rangle$ are then said to differ by a global phase.

(This requires $|\alpha| = 1$. Equivalently, $\alpha = e^{i\theta}$ for some real number θ .)

Imagine that two states that differ by a global phase are measured. If we start with the state $|\phi\rangle$, the probability to obtain any chosen outcome α is

$$\|\Pi_{\alpha}|\phi\rangle\|^{2} = \|\alpha\Pi_{\alpha}|\psi\rangle\|^{2} = |\alpha|^{2}\|\Pi_{\alpha}|\psi\rangle\|^{2} = \|\Pi_{\alpha}|\psi\rangle\|^{2}$$

That's the same probability as if we started with the state $|\psi\rangle$.

Definition

Suppose that $|\psi\rangle$ and $|\phi\rangle$ are quantum state vectors satisfying

$$|\phi\rangle = \alpha |\psi\rangle$$

The states $|\psi\rangle$ and $|\phi\rangle$ are then said to differ by a global phase.

(This requires $|\alpha|=1$. Equivalently, $\alpha=e^{i\theta}$ for some real number θ .)

Suppose we apply a unitary operation to two states that differ by a global phase:

$$U|\phi\rangle = \alpha U|\psi\rangle = \alpha (U|\psi\rangle)$$

They still differ by a global phase...

Consequently, two quantum state vectors $|\psi\rangle$ and $|\phi\rangle$ that differ by a global phase are completely indistinguishable and are considered to be equivalent.

Example

The quantum states

$$|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$
 and $-|-\rangle = -\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

differ by a global phase.

Example

The quantum states

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
 and $|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$

do *not* differ by a global phase. (This is a *relative phase* difference.)

This is consistent with the observation that these states can be discriminated perfectly:

$$\left| \langle 0|H| + \rangle \right|^2 = 1 \qquad \left| \langle 0|H| - \rangle \right|^2 = 0$$
$$\left| \langle 1|H| + \rangle \right|^2 = 0 \qquad \left| \langle 1|H| - \rangle \right|^2 = 1$$

Theorem (No-cloning theorem) -

Let X and Y both have the classical state set $\{0, ..., d-1\}$, where $d \ge 2$. There does not exist a unitary operation U on the pair (X, Y) such that

$$\forall |\psi\rangle : U(|\psi\rangle \otimes |0\rangle) = |\psi\rangle \otimes |\psi\rangle$$

Theorem (No-cloning theorem)

Let X and Y both have the classical state set $\{0, ..., d-1\}$, where $d \ge 2$. There does not exist a unitary operation U on the pair (X, Y) such that

$$\forall |\psi\rangle: U(|\psi\rangle\otimes|0\rangle) = |\psi\rangle\otimes|\psi\rangle$$

The operation U must clone the standard basis states $|0\rangle$ and $|1\rangle$:

$$U(|0\rangle \otimes |0\rangle) = |0\rangle \otimes |0\rangle$$

$$U(|1\rangle \otimes |0\rangle) = |1\rangle \otimes |1\rangle$$

Therefore, by linearity,

$$U\left(\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \otimes |0\rangle\right) = \frac{1}{\sqrt{2}}|0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |1\rangle$$

Theorem (No-cloning theorem)

Let X and Y both have the classical state set $\{0, ..., d-1\}$, where $d \ge 2$. There does not exist a unitary operation U on the pair (X, Y) such that

$$\forall |\psi\rangle: U(|\psi\rangle\otimes|0\rangle) = |\psi\rangle\otimes|\psi\rangle$$

Therefore, by linearity,

$$U\left(\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \otimes |0\rangle\right) = \frac{1}{\sqrt{2}}|0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |1\rangle$$

But this is not the correct behavior — we must have

$$U\left(\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \otimes |0\rangle\right)$$

$$= \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right)$$

Theorem (No-cloning theorem)

Let X and Y both have the classical state set $\{0, ..., d-1\}$, where $d \ge 2$. There does not exist a unitary operation U on the pair (X, Y) such that

$$\forall |\psi\rangle : U(|\psi\rangle \otimes |0\rangle) = |\psi\rangle \otimes |\psi\rangle$$

Remarks:

- Approximate forms of the cloning theorem are known.
- Copying a standard basis state is possible the no-cloning theorem does not contradict this.

$$|0\rangle$$
 $|a\rangle$ $|a\rangle$

• Cloning a probabilistic state (classically) is also impossible.

It is not possible to *perfectly discriminate* two non-orthogonal quantum states. Equivalently, if we can discriminate two quantum states perfectly, then they must be orthogonal.

Two states $|\psi\rangle$ and $|\phi\rangle$ can be discriminated perfectly if there is a unitary operation U that works like this:

$$\begin{split} U(|0\cdots 0\rangle|\psi\rangle) &= |\pi_0\rangle|0\rangle & U(|0\cdots 0\rangle|\phi\rangle) &= |\pi_1\rangle|1\rangle \\ |0\cdots 0\rangle|\psi\rangle &= U^{\dagger}(|\pi_0\rangle|0\rangle) & |0\cdots 0\rangle|\phi\rangle &= U^{\dagger}(|\pi_1\rangle|1\rangle) \\ \langle\psi|\phi\rangle &= \langle0\cdots 0|0\cdots 0\rangle\langle\psi|\phi\rangle \\ &= (\langle\pi_0|\langle 0|)UU^{\dagger}(|\pi_1\rangle|1\rangle) = \langle\pi_0|\pi_1\rangle\langle 0|1\rangle = 0 \end{split}$$

Conversely, orthogonal quantum states can be perfectly discriminated.

In particular, if $|\psi\rangle$ and $|\phi\rangle$ are orthogonal, then any unitary matrix whose first two columns are $|\psi\rangle$ and $|\phi\rangle$ will work.

$$\mathbf{U} = \begin{pmatrix} \vdots & \vdots & & \\ |\psi\rangle & |\phi\rangle & ? \\ \vdots & \vdots & & \end{pmatrix}$$

Alternatively, we can define a projective measurement $\{\Pi_0, \Pi_1\}$ like this:

$$\Pi_0 = |\psi\rangle\langle\psi| \qquad \Pi_1 = \mathbb{1} - |\psi\rangle\langle\psi|$$

If we measure the state $|\psi\rangle$...

$$Pr[outcome is 0] = ||\Pi_0|\psi\rangle||^2 = |||\psi\rangle||^2 = 1$$

$$Pr[outcome is 1] = ||\Pi_1|\psi\rangle||^2 = ||0||^2 = 0$$

If we measure any state $| \phi \rangle$ orthogonal to $| \psi \rangle$...

$$Pr[outcome is 0] = ||\Pi_0|\Phi\rangle||^2 = ||0||^2 = 0$$

$$Pr[outcome is 1] = ||\Pi_1|\phi\rangle||^2 = |||\phi\rangle||^2 = 1$$