Optimalizace a teorie her Úvod

Martin Bohata

Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz

Základní informace

Stránky předmětu:

https://moodle.fel.cvut.cz/courses/A8B01OGT

Obsah kurzu:

- lacktriangle Základy konvexní analýzy v \mathbb{R}^n
- Podmínky optimality
- Oualita
- Lineární a kvadratické programování
- Vybrané numerické metody v optimalizaci
- Úvod do teorie her

Kde lze potkat optimalizaci nebo teorii her?

L. Euler: "Nothing takes place in the world whose meaning is not that of some maximum or minimum."

- Matematika
- Fyzika
- Řízení
- Zpracování signálu
- Zpracování obrazu
- Komunikace
- Elektronika
- Energetika
- Umělá inteligence
- Ekonomie

Formulace úlohy

Definice

Nechť $f:D\to\mathbb{R}$ a $M\subseteq D$.

- Řekneme, že f nabývá v $\hat{x} \in M$ minima (resp. maxima) na M, jestliže pro každé $x \in M$ je $f(\hat{x}) \leq f(x)$ (resp. $f(x) \leq f(\hat{x})$).
- Nabývá-li f v \hat{x} minima (resp. maxima), pak $f(\hat{x})$ se nazývá minimum (resp. maximum) funkce f na M a \hat{x} se nazývá bod minima (resp. bod maxima) funkce f na M.
- Extrémem funkce f na M rozumíme její minimum nebo maximum na M. Body, ve kterých funkce f nabývá extrému na M, nazýváme body extrému funkce f na M.
- Úmluva: U pojmů z předchozí definice budeme vynechávat "na M", jestliže M=D.

Martin Bohata Optimalizace a teorie her Úvod 4/20

Formulace úlohy

Značení:

- $\min_{x \in M} f(x)$... minimum funkce f na M;
- $\max_{x \in M} f(x) \dots$ maximum funkce f na M;
- ullet $rgmin_{x\in M}f(x)$... množina všech bodů minima f na M;
- ullet $rgmax_{x\in M}f(x)$... množina všech bodů maxima f na M.

Definice

Pod optimalizační úlohou rozumíme jakoukoli z následujících úloh:

- (U1) Pro $f:D \to \mathbb{R}$ a $M \subseteq D$ nalezněte $\operatorname{argmin}_{x \in M} f(x)$.
- (U2) Pro $f: D \to \mathbb{R}$ a $M \subseteq D$ nalezněte $\operatorname{argmax}_{x \in M} f(x)$.
- Zápis úlohy (U1): minimalizujte f na M.
- Zápis úlohy (U2): maximalizujte f na M.
- Nalézt všechna řešení optimalizační úlohy je většinou obtížné. Často se tak spokojíme i s nalezením jediného řešení.

Formulace úlohy

Terminologie:

- f . . . cílová funkce;
- M ... přípustná množina;
- Prvky z M ... přípustné body;
- Prvky z $\operatorname{argmin}_{x \in M} f(x) \dots$ řešení úlohy (U1);
- ullet Prvky z $\operatorname{argmax}_{x\in M}f(x)$... řešení úlohy (U2).

Příklad

- $argmin_{x \in (0,1)} x = \emptyset.$
- **3** $\operatorname{argmin}_{x \in [-\pi, \pi]} |\sin x| = \{-\pi, 0, \pi\}.$
- $argmin_{x \in M} 1 = M.$

Souvislost (U1) a (U2)

Tvrzení

Nechť $f:D\to\mathbb{R}$, $M\subseteq D$ a $\hat{x}\in M$.

- $\textbf{0} \ \ \hat{x} \in \operatorname{argmin}_{x \in M} f(x) \ \textit{právě tehdy, když} \ \hat{x} \in \operatorname{argmax}_{x \in M} (-f(x)).$
- $oldsymbol{2}$ Nabývá-li f v nějakém bodě z M minima na M, pak

$$\min_{x \in M} f(x) = -\max_{x \in M} (-f(x)).$$

Důkaz: Viz přednáška.

Dvě důležité oblasti optimalizace jsou:

- Optimalizace v \mathbb{R}^n .
- Variační počet.

Martin Bohata

Je dána cílová funkce $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$, množina $\Omega\subseteq D$ a množina

$$M = \{x \in \Omega \mid g_1(x) \le 0, \dots, g_k(x) \le 0, h_1(x) = 0, \dots, h_l(x) = 0\},\$$

kde $g_1,\ldots,g_k,h_1,\ldots,h_l$ jsou reálné funkce definované na Ω . Úlohu (U1) s cílovou funkcí f a přípustnou množinou M budeme zapisovat ve tvaru:

minimalizujte
$$f(x)$$
 za podmínek $g_i(x) \leq 0, \ i=1,\dots,k,$
$$h_j(x)=0, \ j=1,\dots,l,$$
 $x\in\Omega.$

Obdobně zapisujeme odpovídající úlohu (U2).

Terminologie:

```
x\in\Omega ... přímé omezení; g_i(x)\leq 0 ... omezení ve tvaru nerovnosti; h_j(x)=0 ... omezení ve tvaru rovnosti.
```

- Úmluva: Je-li $\Omega=D$, pak přímé omezení budeme v zápisu vynechávat.
- Omezení g(x) = h(x) lze vždy zapsat pomocí dvou omezení $g(x) \le h(x)$ a $g(x) \ge h(x)$.
- Omezení $g(x) \ge h(x)$ můžeme přepsat do tvaru $-g(x) \le -h(x)$.
- Omezení $g(x) \le h(x)$ lze psát ve tvaru $G(x) \le 0$, kde G(x) = g(x) h(x).

Martin Bohata Optimalizace a teorie her Úvod

Příklad

$$\label{eq:continuous} \begin{array}{ll} \mbox{minimalizujte} \ x^2 + 1 \\ \mbox{za podmínek} \ \ \frac{3}{x} \leq 1, \\ \ x \in \mathbb{N}. \end{array}$$

Vidíme, že přípustná množina je $M=\mathbb{N}\setminus\{1,2\}.$

(Je snadné ukázat, že $\operatorname{argmin}_{x \in M} x^2 + 1 = \{3\}.$)

Příklad

maximalizujte
$$\ln x$$
 za podmínek $x \leq 5,$
$$\cos(\pi x) = 1.$$

Přípustná množina tedy je $M=\{2,4\}.$

(Zřejmě $\operatorname{argmax}_{x \in M} \ln x = \{4\}.$)

Základní klasifikace oblastí optimalizace v \mathbb{R}^n

- Nepodmíněná optimalizace . . . přípustná množina je \mathbb{R}^n .
- Podmíněná optimalizace \dots přípustná množina je vlastní podmnožina množiny \mathbb{R}^n .
- Konvexní optimalizace ... přípustná množina M je konvexní a cílová funkce je konvexní (resp. konkávní) na M v případě minimalizační (resp. maximalizační) úlohy.
- Lineární programování ... přípustná množina je konvexní polyedrická množina a cílová funkce je afinní.
- Kvadratické programování ... přípustná množina je konvexní polyedrická množina a cílová funkce je kvadratická.
- Celočíselné programování ... přípustná množina je průnik konvexní polyedrické množiny a množiny \mathbb{Z}^n a cílová funkce je afinní.

• Prostor \mathbb{R}^n ...lineární prostor všech uspořádaných n-tic reálných čísel. Prvky \mathbb{R}^n budeme považovat za "sloupcové vektory", tj. je-li $x \in \mathbb{R}^n$, pak píšeme

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

• Skalární součin na \mathbb{R}^n :

$$\langle x, y \rangle = y^T x = \sum_{i=1}^n x_i y_i.$$

• Eukleidovská norma na \mathbb{R}^n :

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Tvrzení (Cauchyova-Schwarzova nerovnost)

Pro každé $x,y\in\mathbb{R}^n$ platí

$$|\langle x, y \rangle| \le ||x|| \, ||y|| \, .$$

Důkaz: Vynecháváme.

- Pro $\Omega \subseteq \mathbb{R}^n$ budeme symbolem $C(\Omega)$ označovat množinu všech reálných spojitých funkcí na Ω .
- Je-li $\Omega \subseteq \mathbb{R}^n$ otevřená a $k \in \mathbb{N}$, pak $C^k(\Omega)$ označuje množinu všech reálných funkcí, které mají na Ω spojité všechny parciální derivace řádu k.

Věta (Weierstrassova věta)

Je-li neprázdná množina $M \subseteq \mathbb{R}^n$ kompaktní (tj. omezená a uzavřená) a $f \in C(M)$, pak existuje bod minima a bod maxima funkce f na M.

Důkaz: Vynecháváme.

Definice

Nechť $f:D\subseteq\mathbb{R}^n\to\mathbb{R},\ M\subseteq D.$

- Řekneme, že f nabývá v $\hat{x} \in M$ lokálního minima (resp. ostrého lokálního minima) na M, jestliže existuje $\delta > 0$ tak, že $f(\hat{x}) \leq f(x)$ pro všechna $x \in M \cap U(\hat{x}, \delta)$ (resp. $f(\hat{x}) < f(x)$ pro všechna $x \in M \cap P(\hat{x}, \delta)$).
- Nabývá-li f v \hat{x} lokálního minima (resp. ostrého lokálního minima), pak $f(\hat{x})$ se nazývá lokální minimum (resp. ostré lokální minimum) funkce f na M a \hat{x} se nazývá bod lokálního minima (resp. bod ostrého lokálního minima) funkce f na M.
- Úmluva: U pojmů z předchozí definice budeme vynechávat "na M", jestliže M=D.
- Analogicky definujeme pojmy v případě lokálního maxima.

Martin Bohata Optimalizace a teorie her Úvod 15 / 20

•

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix}.$$

•

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix}.$$

- Symetrická matice $A \in \mathbb{M}_n(\mathbb{R})$ je pozitivně semidefinitní, jestliže $\langle Ax, x \rangle \geq 0$ pro každé $x \in \mathbb{R}^n$.
- Symetrická matice $A \in \mathbb{M}_n(\mathbb{R})$ je pozitivně definitní, jestliže $\langle Ax, x \rangle > 0$ pro každé nenulové $x \in \mathbb{R}^n$.

Věta (O Taylorově polynomu 1. a 2. řádu)

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená a $x \in \Omega$. Potom platí:

- Jestliže $f \in C^1(\Omega)$, pak existuje $\omega : \mathbb{R}^n \to \mathbb{R}$ tak, že $\lim_{h \to 0} \omega(h) = 0$ a pro každé $h \in \mathbb{R}^n$ splňující $x + h \in \Omega$ je $f(x + h) = f(x) + \langle \nabla f(x), h \rangle + \|h\| \omega(h)$.
- ② Jestliže $f \in C^2(\Omega)$ a $h \in \mathbb{R}^n$ splňuje $[x, x+h] \subseteq \Omega$, pak existuje $\xi \in \{x+\lambda h \mid \lambda \in (0,1)\}$ tak, že $f(x+h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} \langle \nabla^2 f(\xi)h, h \rangle$.
- 3 Jestliže $f \in C^2(\Omega)$, pak existuje $\omega : \mathbb{R}^n \to \mathbb{R}$ tak, že $\lim_{h \to 0} \omega(h) = 0$ a pro každé $h \in \mathbb{R}^n$ splňující $x + h \in \Omega$ je $f(x + h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} \langle \nabla^2 f(x)h, h \rangle + \|h\|^2 \omega(h)$.

Důkaz: Vynecháváme.

Martin Bohata

Motivační příklady – optimalizace v \mathbb{R}^n

Příklad (Proložení bodů přímkou)

Naměřené hodnoty závislosti napětí na rezistoru na protékajícím proudu jsou:

Proud [A]	0,02	0,04	0,06	0,08
Napětí [V]	5,0	10,1	15,8	21,1

Chceme-li z naměřených hodnot určit odpor R metodou nejmenších čtverců, musíme vyřešit úlohu:

minimalizujte

$$f(R) = (0,02R - 5)^2 + (0,04R - 10,1)^2 + (0,06R - 15,8)^2 + (0,08R - 21,1)^2$$

na \mathbb{R} .

Motivační příklady – optimalizace v \mathbb{R}^n

Příklad (Úloha o dietě – příprava salátu)

Jedna porce salátu musí obsahovat alespoň 4g vlákniny, 15mg vitamínu C a 20mg hořčíku. Suroviny na přípravu salátu jsou mrkev, okurka a rajče. Ceny příslušných surovin a zastoupení vyžadovaných látek v těchto surovinách jsou:

	Mrkev	Okurka	Rajče
Vláknina [g/kg]	29	7	16
Vitamín C [mg/kg]	45	137	187
Hořčík [mg/kg]	180	90	80
Cena [Kč/kg]	25	20	30

Cílem je najít takové složení salátu, aby cena za porci byla co nejnižší při splnění předepsaných podmínek.

Motivační příklady – optimalizace v \mathbb{R}^n

Příklad (Úloha o dietě – příprava salátu)

Označme x_M množství mrkve, x_O množství okurek a x_R množství rajčat (vše v kilogramech), která jsou potřebná k přípravě jedné porce salátu. Potom zadaný problém vede na optimalizační úlohu

$$\begin{split} \text{minimalizujte} & \ 25x_M + 20x_O + 30x_R \\ \text{za podmínek} & \ 29x_M + 7x_O + 16x_R \geq 4, \\ & \ 45x_M + 137x_O + 187x_R \geq 15, \\ & \ 180x_M + 90x_O + 80x_R \geq 20, \\ & \ x_M, x_O, x_R \geq 0. \end{split}$$

Martin Bohata Optimalizace a teorie her Úvod