FUNCTIONS

OBJECTIVE PROBLEMS

b) nⁿ

b) 12

Let A be a set of n distinct elements. Then the total number of distinct functions from A

c) 2n

1.

to A is

a) n²

a) 144

2.	Set A has 3 elements	elements and set B has 4 elements. The number of injections that can be				
	defined from A into B	is				
	a) 144	b) 12	c) 24	c) 64		
3.	Let $n(A) = 4$ and $n(B)$	= K. The number of al	ll possible injections fro	om A to B is 120 then		
	k =					
	a) 9	b) 24	c) 5	d) 6		
4.	Let $n(A) = 4$ and $n(b)$	= 5. The number of all	possible many-one fun	ections from A to B is		
	a) 625	b) 20	c) 120	d) 505		
5.	Set A contains 3 elem	ents and set B contain	s 2 elements. The num	ber of onto functions		
	from A onto B is					
	a) 3	b) 6	c) 8	d) 9		
6.	Let $A = \{1, 2, 3, \dots, n\}$	n } and $B = \{a, b, c\}$, th	e number of functions	from A to B that are		
	onto is					
	a) $3^{n} - 2^{n}$	b) $3^n - 2^n = 1$	c) $3(2^n - 1)$	d) $3^n - 3(2^n - 1)$		
7.	Set A has 3 elements	s, Set B has 4 element	ts. The number of sur	jections that can be		
	defined from A to B is	S				

c) 0

d) 64

8.	Let A, B are to from A to B is	wo sets each wit	nts, then the num	number of all possible bijections			
	a) 20	b) 10!		C) 100	d) 1000		
9.	The number of 24 then n(B) =	f one-one onto fu	inctions tha	at can be defined	from (1, 2, 3, 4) onto set B	is	
	a) 4	b) 2		c) 3	d) 6		
10.	A = {1, 2, 3, 4 from A to B is), $B = \{a, b, c, c\}$	l, e}, then t	he number of all	possible constant functio	ns	
	a) 9	b) 4		c) 5	d) 16		
11.	If $f(x) = \cos(\log x)$	$\log x$), then $f(x)f$	2				
	$(a)_{-1}$	(b) $\frac{1}{2}$	(c)-2	(d)None of the	se		
12.	If $f(x) = \sin \log x$	g x, then the value	$\mathbf{ue} \ \mathbf{of} \ f(xy) - \mathbf{ue} \ \mathbf{of} \ f(xy) - \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{o}$	$+f\left(\frac{x}{y}\right)-2f(x).\cos\left(\frac{x}{y}\right)$	$\log y$ is equal to		
	(a)1	(b) 0		(d) $\sin \log x \cdot \cos x$			
13.	If $f(x) = \cos(\log x)$	$\log x$), then $f(x^2)$	$f(y^2) - \frac{1}{2} \left[f \right]$	$\left(\frac{x^2}{2}\right) + f\left(\frac{x^2}{y^2}\right)$ has	s the value		
	(a)-2	(b)-1	, ,	(d)None of the	_		
14.	$\mathbf{If} \ f(x) = \cos(\log x)$	$\log x$), then the va	lue of $f(x)$.	$f(4) - \frac{1}{2} \left[f\left(\frac{x}{4}\right) + f \right]$	$\left[(4x) \right]$		
	(a)1	(b) -1	(c)0	(d)±1			
15.	Given the fun	$\mathbf{action} \ f(x) = \frac{a^x + a}{2}$	$\frac{a^{-x}}{}, (a > 2).$	Then $f(x+y)+f(x+y)$	(x-y)=		
6	(a) $2f(x).f(y)$	(b) $f(x).f(y)$	$(c)\frac{f(x)}{f(y)}$	(d)None of the	se		
16.	Let $f: R \to R$	be defined by f	(x) = 2x + x	, then $f(2x) + f(-1)$	-x)-f(x)=		
	$(\mathbf{a})2x$	(b) $2 x $	(c) $-2x$	(d) $-2 x $			
17.	If $e^{f(x)} = \frac{10+x}{10-x}$	$\frac{2}{5}$, $x \in (-10, 10)$ and	$\mathbf{d} f(x) = kf \bigg($	$\left(\frac{200x}{100+x^2}\right)$, then $k = \frac{1}{100+x^2}$	=		
	(a) 0.5	` '	(c) 0.7 w.sakshied	(d)0.8 ucation.com			

18. If
$$f(x) = \log \left[\frac{1+x}{1-x} \right]$$
, then $f\left[\frac{2x}{1+x^2} \right]$ is equal to

- (a) $[f(x)]^2$
- (b) $[f(x)]^3$
- (c) 2f(x)
- (d) 3f(x)

19. If
$$f(x) = \cos[\pi^2]x + \cos[-\pi^2]x$$
, then

- (a) $f\left(\frac{\pi}{4}\right) = 2$

- (b) $f(-\pi) = 2$ (c) $f(\pi) = 1$ (d) $f(\frac{\pi}{2}) = -1$

20. If
$$y = f(x) = \frac{ax+b}{cx-a}$$
, then x is equal to

- (a) 1/f(x)
- (b) 1/f(y)
- (c) yf(x) (d) f(y)

21. The function equivalent to
$$\log x^2$$
 is

- (a) $2 \log x$
- (b) $2 \log |x|$ (c) $|\log x^2|$ (d) $(\log x)^2$

22. The graph of the function y = f(x) is symmetrical about the line x = 2, then

- (a) f(x) = -f(-x)
- (b) f(2+x) = f(2-x)
- (c) f(x) = f(-x)
- (d) f(x + 2) = f(x 2)

23. If
$$f(x) = \frac{1}{\sqrt{x + 2\sqrt{2x - 4}}} + \frac{1}{\sqrt{x - 2\sqrt{2x - 4}}}$$
 for $x > 2$, then $f(11) =$

- (a) 7/6
- (b) 5/6
- (c) 6/7 (d) 5/7

24. If
$$f: IR \rightarrow IR$$
 is defined by $f(x) = 3x - 4$, then $f^{-1}: IR \rightarrow IR$ is

- (b) $\frac{x+4}{3}$ (c) $\frac{1}{3x-4}$ (d) $\frac{3}{x+4}$

25. Which of the following function is invertible?

- (a) $f(x) = 2^x$

- (b) $f(x) = x^3 x$ (c) $f(x) = x^2$ (d) None of these

26. The inverse of the function
$$\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$$
 is

- (a) $\frac{1}{2}\log_{10}\left(\frac{1+x}{1-x}\right)$ (b) $\frac{1}{2}\log_{10}\left(\frac{1-x}{1+x}\right)$ (c) $\frac{1}{4}\log_{10}\left(\frac{2x}{2-x}\right)$ (d) None of these

27. If
$$f(x) = \frac{x}{1+x}$$
, then $f^{-1}(x)$ is equal to

- (a) $\frac{(1+x)}{x}$ (b) $\frac{1}{(1+x)}$ (c) $\frac{(1+x)}{(1-x)}$ (d) $\frac{x}{(1-x)}$

28. If
$$f(x) = \frac{x}{\sqrt{1+x^2}}$$
, then $(fofof)(x) =$

- (a) $\frac{3x}{\sqrt{1+x^2}}$ (b) $\frac{x}{\sqrt{1+3x^2}}$ (c) $\frac{3x}{\sqrt{1+x^2}}$ (d) None of these

- 29. If $f(x) = \log_a x$ and $F(x) = a^x$, then F[f(x)] is
 - (a) f[F(x)]
- (b) f[F(2x)]
- (c) F|f(2x)|
- (d) F[(x)]
- Let f and g be functions defined by $f(x) = \frac{x}{x+1}$, $g(x) = \frac{x}{1-x}$, then $(f \circ g)(x)$ is **30.**
 - (a) $\frac{1}{a}$
- (b) $\frac{1}{x-1}$ (c) x-1
- (d)x
- If $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$. Then, for what value of α is f(f(x)) = x31.
 - (a) $\sqrt{2}$
- (b) $-\sqrt{2}$
- (c) 1
- (d)-1
- If $f(x) = (a x^n)^{1/n}$, where a > 0 and n is a positive integer, then f[f(x)] = 032.
- (b) x^2
- (c) x (d) None of these
- **33.** If $f(x_1) f(x_2) = f\left(\frac{x_1 x_2}{1 x_1 \cdot x_2}\right)$ for $x_1, x_2 \in [-1, 1]$, then f(x) is

 - (a) $\log \frac{(1-x)}{(1+x)}$ (b) $\tan^{-1} \frac{(1-x)}{(1+x)}$
- $(c)\log\frac{(1+x)}{(1-x)}$
 - (d) all the above
- **34.** If $f(x) = \begin{cases} x, \text{ when } x \text{ is rational} \\ 0, \text{ when } x \text{ is irrational} \end{cases}$; $g(x) = \begin{cases} 0, \text{ when } x \text{ is rational} \\ x, \text{ when } x \text{ is irrational} \end{cases}$ then (f g) is
 - (a) One-one onto

(b)One-one not onto

(c) Not one-one but onto

(d)Not one-one not onto

- **35.** If $e^x = y + \sqrt{1 + y^2}$, then y =
 - (a) $\frac{e^x + e^{-x}}{2}$ (b) $\frac{e^x e^{-x}}{2}$

- (c) $e^x + e^{-x}$ (d) $e^x e^{-x}$

- **36.** If $f(x) = \frac{x-|x|}{|x|}$, then f(-1) =
 - (a) 1

- (c) 0
- (d) +2
- 37. If f(x+ay, x-ay) = axy, then f(x, y) is equal to
 - (a) xy
- (b) $x^2 a^2 v^2$

- (c) $\frac{x^2 y^2}{4}$ (d) $\frac{x^2 y^2}{a^2}$

38. Let
$$f(x) = \begin{cases} \frac{1}{2}, & \text{if } 0 \le x \le \frac{1}{2} \\ \frac{1}{3}, & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$
, then f is

(a) A rational function

(b)A trigonometric function

(c) A step function

- (d)An exponential function
- **39.** Let $f:(2,3) \to (0,1)$ be defined by f(x) = x [x] then $f^{-1}(x)$ equals

- (b) x+1 (c) x-1 (d) x+2
- **40.** The domain of $\sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$ is
 - (a)[1,9]

- (b) [-1, 9] (c) [-9, 1] (d) [-9, -1]
- **41.** The domain of the function $f(x) = \sin^{-1}[\log_2(x/2)]$ is
 - (a) [1, 4]

- (b) [-4, 1] (c) [-1, 4] (d) None of these
- **42.** The domain of the function $f(x) = \log(\sqrt{x-4} + \sqrt{6-x})$ is
 - (a) $[4, \infty)$

- (b) $(-\infty, 6]$ (c) [4, 6] (d) None of these
- **43.** Domain of the function $f(x) = \left[\log_{10}\left(\frac{5x x^2}{4}\right)\right]^{1/2}$ is
- (b) $1 \le x \le 4$ (c) $4 \le x \le 16$
- (d)None
- **44.** Domain of the function $f(x) = \sqrt{2 2x x^2}$ is
 - (a) $-\sqrt{3} \le x \le \sqrt{3}$
- (b) $-1 \sqrt{3} \le x \le -1 + \sqrt{3}$
- $(c) -2 \le x \le 2$
- (d) $-2 + \sqrt{3} \le x \le -2 \sqrt{3}$
- 45. Domain of the function $\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ is
 - (a)(-1,1)
- (b) (-1, 1)– $\{0\}$
- (c)[-1, 1] $(d)[-1, 1]-\{0\}$
- **46.** The largest possible set of real numbers which can be the domain of $f(x) = \sqrt{1 \frac{1}{r}}$ is
 - (a) $(0, 1) \cup (0, \infty)$
- (b) $(-1,0)\cup(1,\infty)$
- (c) $(-\infty, -1) \cup (0, \infty)$ (d) $(-\infty, 0) \cup (1, \infty)$

47. Domain of the function $f(x) = \frac{x^2 - 3x + 2}{x^2 + x - 6}$ is

- (a) $\{x : x \in R, x \neq 3\}$
- (b) $\{x : x \in R, x \neq 2\}$
- (c) $\{x: x \in R\}$
- (d) $\{x : x \in R, x \neq 2, x \neq -3\}$

48. The domain of the function $y = \frac{1}{\sqrt{|x|-x}}$ is

- (a) $(-\infty, 0)$
- (b) $(-\infty, 0]$

- (c) $(-\infty, -1)$
- (d) (-∞, ∘

49. Function $\sin^{-1} \sqrt{x}$ is defined in the interval

- (a) (-1, 1)
- (b)[0,1]

- (c) [-1, 0]
- (d)(-1,2)

50. The domain of the function
$$f(x) = \frac{\sin^{-1}(3-x)}{\ln(|x|-2)}$$
 is

- (a) [2, 4]
- (b) $(2, 3) \cup (3, 4]$
- (c) [2,∞)
- (d) $(-\infty, -3) \cup [2, \infty)$

51. The domain of
$$f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$$
 is

- (a) $R \{-1, -2\}$
- (b) $(-2, +\infty)$

- (c) $R \{-1, -2, -3\}$
- (d) $(-3, +\infty) \{-1, -2\}$

52. The domain of the function $f(x) = \log_{3+x}(x^2 - 1)$ is

(a) $(-3, -1) \cup (1, \infty)$

(b) $[-3, -1) \cup [1, \infty)$

(c) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$

(d) $[-3, -2) \cup (-2, -1) \cup [1, \infty)$

53. Domain of definition of the function $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3 - x)$, is

- (a)(1,2)
- (b) $(-1,0)\cup(1,2)$
- (c) $(1, 2) \cup (2, \infty)$
- (d) $(-1, 0) \cup (1, 2) \cup (2, \infty)$

54. Domain of the function $\sqrt{\log\{(5x-x^2)/6\}}$ is

- (a)(2,3)
- (b) [2, 3]
- (c) [1, 2]
- (d)[1,3]

55. The domain of the function $\sqrt{\log(x^2 - 6x + 6)}$ is

- (a) $(-\infty, \infty)$
- $\left(b\right)\left(-\infty,\,3-\sqrt{3}\right)\cup\left(3+\sqrt{3},\,\infty\right)$
- (c) $(-\infty, 1] \cup [5, \infty)$
- (d) $[0, \infty)$

56. T	he domain of t	he function	$f(x) = \exp(\sqrt{x})$	$\sqrt{5x-3-2x^2}$) is
-------	----------------	-------------	-------------------------	--------------------	------

(a)
$$\left[1, -\frac{3}{2}\right]$$
 (b) $\left[\frac{3}{2}, \infty\right]$ (c) $\left[-\infty, 1\right]$ (d) $\left[1, \frac{3}{2}\right]$

(b)
$$\left[\frac{3}{2}, \infty\right]$$

(d)
$$\left[1, \frac{3}{2}\right]$$

57. The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ is

- (a) [1, 2)
- (b) [2, 3)
- (c) [1, 2]
- (d) [2, 3]

58. The domain of the function $f(x) = \sin^{-1}\{(1+e^x)^{-1}\}$ is

- (a) $\left(\frac{1}{4}, \frac{1}{3}\right)$
- (b) [-1, 0] (c) [0, 1]
- (d) [-1, 1]

59. Domain of the function $\sqrt{2-x} - \frac{1}{\sqrt{9-x^2}}$ is

- (a)(-3, 1)
- (b) [-3, 1] (c) (-3, 2]
- (d) [-3, 1)

60. Domain of the function
$$f(x) = \frac{x-3}{(x-1)\sqrt{x^2-4}}$$
 is

- (a)(1,2)
- (b) $(-\infty, -2) \cup (2, \infty)$
- (c) $(-\infty, -2) \cup (1, \infty)$ (d) $(-\infty, \infty) \{1, \pm 2\}$

61. The domain of the function
$$f(x) = \sqrt{\log \frac{1}{|\sin x|}}$$
 is

- (a) $R \{2n\pi, n \in I\}$
- (b) $R \{n\pi, n \in I\}$
- (c) $R \{-\pi, \pi\}$
- (d) $(-\infty, \infty)$

62. The function $f(x) = \frac{\sec^{-1} x}{\sqrt{x - [x]}}$, where [.] denotes the greatest integer less than or equal to x is

defined for all x belonging to

(a) *R*

- (b) $R \{(-1, 1) \cup (n \mid n \in Z)\}$
- (c) $R^+ (0, 1)$
- (d) $R^+ \{n \mid n \in N\}$

63. Domain of $f(x) = \log |\log x|$ **is**

- (a) $(0, \infty)$
- (b) (1, ∞)
- (c) $(0,1)\cup(1,\infty)$ (d) $(-\infty,1)$

64. Domain of function $f(x) = \sin^{-1} 5x$ is

- (a) $\left(-\frac{1}{5}, \frac{1}{5}\right)$
- (b) $\left[-\frac{1}{5}, \frac{1}{5} \right]$

- (c) R (d) $\left(0, \frac{1}{5}\right)$

65. The domain of the function
$$f(x) = \log(\sqrt{x-4} + \sqrt{6-x})$$
 is

- (a) $[4, \infty)$
- (b) $(-\infty, 6]$

- (c)[4, 6]
- (d)None of these

66.	Domain of the function	$f(r) = \sin^{-1}(1 + 3r + 2r^2)$ is	
vv.	Domain of the function	f(x) = SIII (1 + 3x + 2x + 13)	

(a)
$$(-\infty, \infty)$$

(b)
$$(-1, 1)$$
 $(c) \left[-\frac{3}{2}, \frac{3}{2} \right]$

(b) (-1, 1) (c)
$$\left[-\frac{3}{2}, 0\right]$$
 (d) $\left(-\infty, \frac{-1}{2}\right) \cup (2, \infty)$

67. The range of the function $f(x) = \frac{x+2}{|x+2|}$ is

(a)
$$\{0, 1\}$$

(b)
$$\{-1, 1\}$$

(d)
$$R - \{-2\}$$

68. Range of the function $\frac{1}{2-\sin 3x}$ is

(b)
$$\left[\frac{1}{3},1\right]$$

(c)
$$(1, 3)$$
 (d) $\left(\frac{1}{3}, 1\right)$

69. If x is real, then value of the expression $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$ lies between

(b)
$$5 \text{ and } -4$$

$$(c) - 5 \text{ and } 4$$

70. If the function
$$f:[1,\infty)\to[1,\infty)$$
 is defined by $f(x)=2^{x(x-1)}$, then $f^{-1}(x)$ is

(a)
$$\left(\frac{1}{2}\right)^{x(x-1)}$$

(b)
$$\frac{1}{2}(1+\sqrt{1+4\log_2 x})$$

(c)
$$\frac{1}{2}(1 - \sqrt{1 + 4\log_2 x})$$
 (d) Not defined

71. The range of function The range of function $f(x) = x^2 - 6x + 7$ is

(a)
$$(-\infty, \infty)$$

(b)
$$[-2, \infty)$$
 (c) $(-2, 3)$ (d) $(-\infty, -2)$

(d)
$$(-\infty, -2)$$

72. Range of the function
$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$$
; $x \in R$ is

(a)
$$(1, \infty)$$

(c)
$$(1,7/3]$$

73. The function
$$f: R \to R$$
 is defined by $f(x) = \cos^2 x + \sin^4 x$ for $x \in R$, then $f(R) = \cos^2 x + \sin^4 x$

(a)
$$\left(\frac{3}{4}, 1\right)$$

(b)
$$\left[\frac{3}{4},1\right]$$

(c)
$$\left[\frac{3}{4}, 1\right]$$

(c)
$$\left[\frac{3}{4}, 1\right]$$
 (d) $\left(\frac{3}{4}, 1\right)$

74. If
$$f: R \to R$$
, then the range of the function $f(x) = \frac{x^2}{x^2 + 1}$ is

(a)
$$R^{-}$$

(b)
$$R^+$$

(d)
$$R \times R$$

75. Range of the function
$$f(x) = 9 - 7 \sin x$$
 is

$$(c) [-1, 1]$$

76. The range of
$$f(x) = \sec\left(\frac{\pi}{4}\cos^2 x\right), -\infty < x < \infty$$
 is

(a)
$$[1, \sqrt{2}]$$

(c)
$$[-\sqrt{2}, -1] \cup [1, \sqrt{2}]$$
 (d) $(-\infty, -1] \cup [1, \infty)$

$$(d)$$
 $(-\infty, -1] \cup [1, \infty)$

		W	ww.sakshiedu	ucation.com	
77.	$\mathbf{If} \ f(x) = a\cos(bx + c) + a\cos(bx + c)$, then range	of $f(x)$ is		
	(a) $[d+a, d+2a]$	(b) $[a-d, a+$	[d]	(c) $[d+a, a-d]$	$(\mathbf{d})[d-a,d+a]$
78.	Range of the func	$f(x) = \frac{x^2}{x^2 + 1}$	- is		
	(a) $(-1, 0)$	(b) (-1, 1)			
	(c) [0, 1)	(d)(1, 1)			
79.	The domain of sin	$^{-1}(\log_3 x)$ is			
	(a) [-1, 1]	(b) [0, 1]		(c) $[0, \infty]$	(d) <i>R</i>
80.	For $\theta > \frac{\pi}{3}$, the value	1e of $f(\theta) = \sec^2 \theta$	$\theta + \cos^2 \theta$ alway	s lies in the interva	ı
	(a)(0,2)	(b) [0, 1]		(c) (1, 2)	(d) [2, ∞)
81.	The Domain of fu	nction $f(x) = \log_{x} f(x)$	$e^{(x-[x])}$ is		
	(a) R	(b) R-Z		(c) (0,+∞)	(d) Z
82.	If $f(x) = x^2 + 1$, then	$f^{-1}(17)$ and $f^{-1}(17)$	(–3) will be		
	(a) 4, 1	(b) 4, 0		(c) 3, 2	(d) None of these
83.	If $f(x) = \cos x$ and g	g(x) = [x], then $g(x) = [x]$	of(x) is equal t	0	
	(a) $ \cos[x] $	(b) $ \cos x $		(c) $[\cos x]$	(d) $ [\cos x] $
84.	Let $g(x) = 1 + x - [x]$ a	and $f(x) = \begin{cases} -1, & x < 0, & x = 1, & x > 0 \end{cases}$	o, then for al	$\mathbf{l}(x)$, $f(g(x))$ is equal to	
	(a) <i>x</i>	(b) 1	(c) f(x)	(d) $g(x)$	
85.	A real valued fun	ction $f(x)$ satis	fies the funct	ion equation $f(x-y)$	= $f(x)f(y) - f(a-x)f(a+y)$ where a
	is a given constan	t and $f(0) = 1$, $f(0) = 1$	(2a-x) is equa	l to	
	(a) $f(a)+f(a-x)$	(b) $f(-x)$	(c)-f(x)	(d) $f(x)$	
86.	Let $g(x) = 1 + x - [x]$	and			
	$f(x) = \begin{cases} -1, & \text{If } x < 0 \\ 0, & \text{If } x = 0, \text{ th} \\ 1, & \text{if } x > 0 \end{cases}$	en for all value	es of x the val	ue of $fog(x)$	
	(a) <i>x</i>	(b) 1	(c) f(x)	(d) $g(x)$	
87.	The function $f \cdot R$	$\rightarrow R f(x) = x^2$	$\forall r \in R \text{ is}$		

www.sakshieducation.com

(b) Surjection but not injection

(d) Neither injection nor surjection

(a) Injection but not surjection

(c) Injection as well as surjection

88. If $f: R \to R$, then f(x) = |x| is

(a) One-one but not onto

(b) Onto but not one-one

(c) One-one and onto

(d) None of these

89. Which one of the following is a bijective function on the set of real numbers

- (a) 2x 5
- (b) |x|

- (c) x^2 (d) $x^2 + 1$

90. If $(x,y) \in R$ and $x, y \ne 0$; $f(x,y) \to \frac{x}{y}$, then this function is a/an

- (a) Surjection
- (b) Bijection
- (c) One-one
- (d) None of these

91. The function $f(x) = \sin(\log(x + \sqrt{x^2 + 1}))$ is

(a) Even function

(b) Odd function

(c) Neither even nor odd

(d) Periodic function

92. If $f(x) = \sin^2 x$ and the composite function $g\{f(x)\} = \sin x$, then the function g(x) is equal to

- (a) $\sqrt{x-1}$
- (b) \sqrt{x}
- (c) $\sqrt{x+1}$
- (d) $-\sqrt{x}$

93. If $f(x) = 2x^6 + 3x^4 + 4x^2$ then f'(x) is

(a) Even function

(b) An odd function

(c) Neither even nor odd

(d) None of these

94. The function $f(x) = \log(x + \sqrt{x^2 + 1})$, is

(a) An even function

(b) An odd function

(c) A Periodic function

(d) Neither an even nor odd function

95. The period of f(x) = x - [x], if it is periodic, is

- (a) f(x) is not periodic
- (c) 1
- (d)2

96. A function f from the set of natural numbers to integers defined by

$$f(n) = \begin{cases} \frac{n-1}{2}, & \text{when } n \text{ is odd} \\ -\frac{n}{2}, & \text{when } n \text{ is even} \end{cases}, \text{ is}$$

(a) One-one but not onto

(b) Onto but not one-one

(c) One-one and onto both

(d) Neither one-one nor onto

	_					_	
97.	Let f	$: N \to N$	defined by	$f(x) = x^2 + x + 1$	$x \in N$, then i	<i>f</i> is

(a) One-one onto

(b) Many one onto

(c) One-one but not onto

(d) None of these

98. The function $f: R \to R$ defined by f(x) = (x-1)(x-2)(x-3) is

(a) One-one but not onto

(b) Onto but not one-one

(c) Both one-one and onto

(d) Neither one-one nor onto

99. If
$$f:[0,\infty) \to [0,\infty)$$
 and $f(x) = \frac{x}{1+x}$, then f is

(a) One-one and onto

(b) One-one but not onto

(c) Onto but not one-one

(d) Neither one-one nor onto

100. Let the function
$$f: R \to R$$
 be defined by $f(x) = 2x + \sin x, x \in R$. Then f is

(a) One-to-one and onto

(b)One-to-one but not onto

(c) Onto but not one-to-one

(d) Neither one-to-one nor onto

101.
$$f(x) = x + \sqrt{x^2}$$
 is a function from $R \to R$, then $f(x)$ is

- (a) Injective
- (b) Surjective (c) Bijective (d) None of these

102. Range of
$$f(x) = \frac{x^2 + 34x - 71}{x^2 + 2x - 7}$$
 is

- (a) [5, 9]
- (b) $(-\infty, 5] \cup [9, \infty)$
- (c)(5,9)
- (d) None of these

103. Which of the following functions is inverse of itself

(a)
$$f(x) = \frac{1-x}{1+x}$$
 (b) $f(x) = 5^{\log x}$

$$(b) f(x) = 5^{\log x}$$

(c)
$$f(x) = 2^{x(x-1)}$$

(c) $f(x) = 2^{x(x-1)}$ (d) None of these

104. If
$$f(x) = 3x - 5$$
, then $f^{-1}(x)$

(a) Is given by $\frac{1}{3r-5}$

- (b) Is given by $\frac{x+5}{3}$
- (c) Does not exist because f is not one-one
- (d) Does not exist because f is not onto

105. If $f: R \to S$ defined by $f(x) = \sin x - \sqrt{3} \cos x + 1$ is onto, then the interval of S is

- (a) [-1, 3]
- (b)[1,1]
- (c) [0, 1]
- (d) [0, -1]

106. Let
$$f: R \to R$$
 be a function defined by $f(x) = \frac{x-m}{x-n}$, where $m \ne n$. Then

(a) f is one-one onto

(b) f is one-one into

(c) f is many one onto

(d) f is many one into

107. Let $f(x) = \frac{x^2 - 4}{x^2 + 4}$ for |x| > 2, then the function $f: (-\infty, -2] \cup [2, \infty) \to (-1, 1)$ is

- (a) One-one into
- (b) One-one onto
- (c) Many one into
- (d) Many one onto

108. Let X and Y be subsets of R, the set of all real numbers. The function $f: X \to Y$ defined by $f(x) = x^2$ for $x \in X$ is one-one but not onto if (Here R^+ is the set of all positive real numbers)

(a) $X = Y = R^+$

(b) $X = R, Y = R^+$

(c) $X = R^+, Y = R$

(d) X = Y = R

109. Function $f: R \to R, f(x) = x^2 + x$ **is**

- (a) One-one onto
- (b) One-one into
- (c) Many-one onto
- (d) Many-one into

FUNCTIONS

HINTS AND SOLUTIONS

1. (b).

$$n(A) = n(B) = n$$

and no.functions = $n(B)^{n(A)}$

- 2. (c) Synopsis 3. (c) Synopsis
- 4. (d) Synopsis 5. (b) Synopsis

- 6. (d)
- 7. (c)
- 8. (b)
- 9. (a)
- 10. (c) Synopsis

11. (d)
$$f(x) = \cos(\log x) \Rightarrow f(y) = \cos(\log y)$$

$$f(x).f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$$

$$= \cos(\log x)\cos(\log y) - \frac{1}{2} \left[\cos\left(\log \frac{x}{y}\right) + \cos(\log xy) \right]$$

- $= \cos(\log x)\cos(\log y) \frac{1}{2}[2\cos(\log x)\cos(\log y)] = 0.$
- 12. (b) $f(xy) = \sin \log xy = \sin(\log x + \log y)$ (i)

$$f(x/y) = \sin\log(x/y) = \sin(\log x - \log y) \qquad \dots (ii)$$

 $\therefore f(xy) + f(x/y) = 2 \sin \log x \cos \log y$

 $2\sin\log x\cos\log y - 2\sin\log x\cos\log y = 0.$

- 13. (d)
- 14. (c)

15. (a)
$$f(x+y) + f(x-y)$$

$$= \frac{1}{2} \left[a^{x+y} + a^{-x-y} + a^{x-y} + a^{-x+y} \right]$$

$$= \frac{1}{2} \left[a^x (a^y + a^{-y}) + a^{-x} (a^y + a^{-y}) \right]$$

$$= \frac{1}{2} (a^x + a^{-x}) (a^y + a^{-y}) = 2f(x) f(y).$$

16. (b)
$$f(2x) = 2(2x) + |2x| = 4x + 2|x|$$
,

$$y = x^2 + 1$$
,

$$f(x) = 2x + |x| \implies f(2x) + f(-x) - f(x)$$

$$=4x+2|x|+|x|-2x-2x-|x|=2|x|$$
.

17. (a)
$$e^{f(x)} = \frac{10+x}{10-x} \implies f(x) = \log\left(\frac{10+x}{10-x}\right)$$

$$\Rightarrow f\left(\frac{200 \, x}{100 + x^2}\right) = \log \left[\frac{10 + \frac{200 \, x}{100 + x^2}}{10 - \frac{200 \, x}{100 + x^2}}\right] = \log \left[\frac{10(10 + x)}{10(10 - x)}\right]^2$$

$$= 2 \log \left(\frac{10 + x}{10 - x} \right) = 2f(x)$$

$$f(x) = \frac{1}{2} f\left(\frac{200 \, x}{100 + x^2}\right) \Rightarrow k = \frac{1}{2} = 0.5.$$

18. (c)
$$f(x) = \log(x + \sqrt{x^2 + 1})$$

$$\therefore f\left(\frac{2x}{1+x^2}\right) = \log\left[\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right] = \log\left[\frac{x^2+1+2x}{x^2+1-2x}\right]$$

$$= \log \left[\frac{1+x}{1-x} \right]^2 = 2 \log \left[\frac{1+x}{1-x} \right] = 2 f(x).$$

19. (d)
$$f(x) = \cos [\pi^2]x + \cos [-\pi^2]x$$

$$f(x) = \cos(9x) + \cos(-10x) = \cos(9x) + \cos(10x)$$

$$= 2\cos\left(\frac{19x}{2}\right)\cos\left(\frac{x}{2}\right)$$

$$f\left(\frac{\pi}{2}\right) = 2\cos\left(\frac{19\pi}{4}\right)\cos\left(\frac{\pi}{4}\right); \ f\left(\frac{\pi}{2}\right) = 2 \times \frac{-1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = -1.$$

20. (d)
$$y = \frac{ax+b}{cx-a} \implies x(cy-a) = b + ay \implies x = \frac{ay+b}{cy-a} = f(y)$$
.

- 21. (b) domain of $\log x^2$ is R-{0} and the domain of $\log |x|$ is also R-{0}. $\log x^2$ and $2\log |x|$ are identical functions.
- 22. (b) $f(x) = f(-x) \Rightarrow f(0+x) = f(0-x)$ is symmetrical about x = 0.

$$f(2+x) = f(2-x)$$
 is symmetrical about $x = 2$.

23. (c)
$$f(x) = \frac{1}{\sqrt{x + 2\sqrt{2x - 4}}} + \frac{1}{\sqrt{x - 2\sqrt{2x - 4}}}$$

$$f(11) = \frac{1}{\sqrt{11 + 2\sqrt{18}}} + \frac{1}{\sqrt{11 - 2\sqrt{18}}}$$

$$= \frac{1}{3+\sqrt{2}} + \frac{1}{3-\sqrt{2}} = \frac{3-\sqrt{2}}{7} + \frac{3+\sqrt{2}}{7} = \frac{6}{7}.$$

24. (b)
$$f(x) = 3x - 4$$
. let $y = f^{-1}(x) \Rightarrow f(y) = x$

$$\Rightarrow 3y - 4 = x \Rightarrow 3y = x + 4$$

$$\Rightarrow y = \frac{x+4}{3} \Rightarrow f^{-1}(x) = \frac{x+4}{3}$$
.

25. (a) A function is invertible if it is bijection.

26. (a)
$$y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}} \Rightarrow x = \frac{1}{2} \log_{10} \left(\frac{1+y}{1-y} \right)$$

Let
$$y = f(x) \implies x = f^{-1}(y)$$

$$\implies f^{-1}(y) = \frac{1}{2} \log_{10} \left(\frac{1+y}{1-y} \right) \implies f^{-1}(x) = \frac{1}{2} \log_{10} \left(\frac{1+x}{1-x} \right)$$

27. (d)
$$f(x) = \frac{x}{1+x}$$
. Let $y = f(x) \Rightarrow x = f^{-1}(y)$

$$\therefore y = \frac{x}{1+x} \Rightarrow y + yx = x \Rightarrow x = \frac{y}{1-y}$$

$$\implies f^{-1}(y) = \frac{y}{1-y} \implies f^{-1}(x) = \frac{x}{1-x} .$$

28. (b)
$$(fofof)(x) = (fof)(f(x)) = (fof)\left(\frac{x}{\sqrt{1+x^2}}\right)$$

$$= f \left[\frac{\left(\frac{x}{\sqrt{1+x^2}} \right)}{\sqrt{1+\frac{x^2}{1+x^2}}} \right] = f \left(\frac{x\sqrt{1+x^2}}{\sqrt{1+x^2}\sqrt{1+2x^2}} \right)$$

$$= f\left(\frac{x}{\sqrt{1+2x^2}}\right) = \frac{\frac{x}{\sqrt{1+2x^2}}}{\sqrt{1+\frac{x^2}{1+2x^2}}} = \frac{x}{\sqrt{1+3x^2}}.$$

29. (a)
$$F[f(x)] = F(\log_a x) = a^{\log_a x} = x$$

$$f[F(x)] = f(a^x) = \log_a a^x = x \log_a a = x$$
.

30. (d)
$$(f \circ g)(x) = f(g(x)) = f\left(\frac{x}{1-x}\right) = \frac{\frac{x}{1-x}}{\frac{x}{1-x}+1} = \frac{x}{x+1-x} = x$$
.

31. (d)
$$f(f(x)) = \frac{\alpha f(x)}{f(x)+1} = \frac{\alpha \left(\frac{\alpha x}{x+1}\right)}{\left(\frac{\alpha x}{x+1}+1\right)} = \frac{\alpha^2 . x}{\alpha x + x + 1}$$

$$\therefore x = \frac{\alpha^2 \cdot x}{(\alpha + 1)x + 1} \quad \text{Of} \quad x((\alpha + 1)x + 1 - \alpha^2) = 0$$

$$Or(\alpha + 1)x^2 + (1 - \alpha^2)x = 0$$
.

$$\Rightarrow \alpha + 1 = 0, 1 - \alpha^2 = 0, \quad \therefore \quad \alpha = -1.$$

32. (c)
$$f[f(x)] = [a - \{f(x)\}^n]^{1/n} = [a - (a - x^n)]^{1/n} = x$$
.

33. (d) When $x_1 = -1$ and $x_2 = 1$, then

$$f(-1) - f(1) = f\left[\frac{-1-1}{1+1(1)}\right] = f(-1) \Rightarrow f(1) = 0$$

Which is satisfied when $f(x) = \tan^{-1} \left(\frac{1-x}{1+x} \right)$

When $x_1 = x_2 = 0$, then

$$f(0) - f(0) = f\left[\frac{0 - 0}{1 - 0}\right] = f(0) \Rightarrow f(0) = 0$$

When $x_1 = -1$ and $x_2 = 0$ then

$$f(-1) - f(0) = f\left(\frac{-1 - 0}{1 - 0}\right) = f(-1) \Rightarrow f(0) = 0$$

Which is satisfied when $f(x) = \log\left(\frac{1-x}{1+x}\right)$ and $f(x) = \log\left(\frac{1+x}{1-x}\right)$.

34. (a)
$$(f-g)(x) = \begin{cases} x, & x \in \mathbb{Q} \\ -x, & x \notin \mathbb{Q} \end{cases}$$

35. (b)
$$:: e^x = y + \sqrt{1 + y^2}$$

$$\therefore e^x - y = \sqrt{1 + y^2}$$

$$(e^x - y)^2 = (1 + y^2)$$

$$e^{2x} + y^2 - 2ye^x = 1 + y^2 \Rightarrow e^{2x} - 1 = 2ye^x$$

$$\implies 2y = \frac{e^{2x} - 1}{e^x} \Rightarrow 2y = e^x - e^{-x}$$

$$y = \frac{e^x - e^{-x}}{2}.$$

36. (b)
$$f(-1) = \frac{-1-|-1|}{|-1|} = \frac{-1-1}{1} = -2$$
.

37. (c)
$$f(x+ay, x-ay) = axy$$
(i)

Let
$$x + ay = u$$
 and $x - ay = v$

Then
$$x = \frac{u+v}{2}$$
 and $y = \frac{u-v}{2a}$

Substituting the value of x and y in (i), we obtain

$$f(u,v) = \frac{u^2 - v^2}{4} \implies f(x,y) = \frac{x^2 - y^2}{4}$$
.

39. (d)
$$f(x) = x - [x]$$
, here $[x] = 2$

:
$$f(x) = y = x - 2 \implies x = y + 2 = f^{-1}(y) \implies f^{-1}(x) = x + 2$$
.

40. (a)
$$y = \sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right] \implies -1 \le \log_3 \left(\frac{x}{3} \right) \le 1$$

$$\Rightarrow \frac{1}{3} \le \frac{x}{3} \le 3 \Rightarrow 1 \le x \le 9 \Rightarrow x \in [1,9]$$
.

41. (a)
$$f(x) = \sin^{-1}[\log_2(x/2)]$$
, Domain of $\sin^{-1} x$ is $x \in [-1,1]$

$$\implies -1 \le \log_2(x/2) \le 1 \implies \frac{1}{2} \le \frac{x}{2} \le 2 \implies 1 \le x \le 4$$

$$x \in [1,4]$$
.

42. (c)
$$f(x) = \log(\sqrt{x-4} + \sqrt{6-x})$$

$$\Rightarrow x-4 \ge 0$$
 and $6-x \ge 0 \Rightarrow x \ge 4$ and $x \le 6$

 $\therefore \text{ Domain of } f(x) = [4, 6].$

43. (b) We have
$$f(x) = \left[\log_{10}\left(\frac{5x - x^2}{4}\right)\right]^{1/2}$$
(i

From (i), clearly f(x) is defined for those values of x for which $\log_{10} \left[\frac{5x - x^2}{4} \right] \ge 0$

$$\Rightarrow \left(\frac{5x - x^2}{4}\right) \ge 10^0 \Rightarrow \left(\frac{5x - x^2}{4}\right) \ge 1$$

$$\implies x^2 - 5x + 4 \le 0 \implies (x - 1)(x - 4) \le 0$$

44. (b)
$$2-2x-x^2 \ge 0 \Rightarrow -1-\sqrt{3} \le x \le -1+\sqrt{3}$$
.

45. (d)
$$1+x \ge 0 \Rightarrow x \ge -1$$
; $1-x \ge 0 \Rightarrow x \le 1, x \ne 0$

Domain is $[-1,1]-\{0\}$.

46. (d)
$$1 - \frac{1}{x} > 0 \Rightarrow x > 1$$
. Also, $x \neq 0$.

∴ Required interval = $(-\infty,0) \cup (1,\infty)$

47. (d)
$$(x-2)(x+3) \neq 0$$

Domain is $\{x : x \in R, x \neq 2, x \neq -3\}$.

48. (a)
$$|x| - x > 0$$

|x| > x but |x| = x for x positive and |x| > x for x negative. Domain is $(-\infty, 0)$.

49. (b) Let
$$y = \sin^{-1} \sqrt{x} \Rightarrow \sqrt{x} = \sin y$$

$$\Rightarrow x = \sin^2 y, :: 0 \le x \le 1$$

50. (b)
$$f(x) = \frac{\sin^{-1}(3-x)}{\log|x|-2|}$$

Let
$$g(x) = \sin^{-1}(3 - x) \implies -1 \le 3 - x \le 1$$

Domain of g(x) is [2, 4]

And let
$$h(x) = \log[x|-2] \implies |x|-2 > 0$$

$$\Rightarrow |x| > 2 \Rightarrow x < -2 \text{ Or } x > 2 \Rightarrow (-\infty, -2) \cup (2, \infty)$$

We know that

$$(f/g)(x) = \frac{f(x)}{g(x)} \forall x \in D_1 \cap D_2 - \{x \in R : g(x) = 0\}$$

:. Domain of
$$f(x) = (2,4] - \{3\} = (2,3) \cup (3,4]$$
.

51. (d) Here
$$x + 3 > 0$$
 and $x^2 + 3x + 2 \neq 0$

$$\therefore$$
 $x > -3$ and $(x + 1)(x + 2) \neq 0$, *i.e.* $x \neq -1, -2$

:. Domain =
$$(-3, \infty) - \{-1, -2\}$$

52. (c)
$$x^2 - 1 > 0$$

$$\Rightarrow x^2 > 1$$
, $\Rightarrow x < -1$ or $x > 1$ and $3 + x > 0$

$$\therefore x > -3 \text{ and } x \neq -2$$

:.
$$D_f = (-3, -2) \cup (-2, -1) \cup (1, \infty)$$
.

53. (d)
$$f(x) = \frac{3}{4-x^2} + \log_{10}(x^3-x)$$
. $4-x^2 \neq 0 \implies x \neq \pm \sqrt{4}$

$$x^3 - x > 0 \Rightarrow x(x^2 - 1) > 0 \implies x > 0, x > 1$$

54. (b)
$$\log \left\{ \frac{5x - x^2}{6} \right\} \ge 0 \Rightarrow \frac{5x - x^2}{6} \ge 1$$
 or $x^2 - 5x + 6 \le 0$ or $(x - 2)(x - 3) \le 0$. Hence $2 \le x \le 3$.

55. (c)
$$\log(x^2 - 6x + 6) \ge 0$$

$$\Rightarrow x^2 - 6x + 6 \ge 1 \Rightarrow (x - 5)(x - 1) \ge 0$$

$$\Rightarrow x \le 1 \text{ or } x \ge 5$$
. $\Rightarrow \text{Domain is } (-\infty, 1] \cup [5, \infty)$.

56. (d)
$$5x-3-2x^2 \ge 0 \implies (x-1)\left(x-\frac{3}{2}\right) \ge 0$$

$$\therefore$$
 Domain is $[1,3/2]$.

57. (b)
$$9-x^2 > 3 \Rightarrow -3 < x < 3$$
(i)

$$-1 \le (x-3) \le 1 \Rightarrow 2 \le x \le 4$$
(ii)

From (i) and (ii), $2 \le x < 3$ *i.e.*, [2, 3)

58. (a)
$$-1 \le \frac{1}{1+e^x} \le 1$$

 $2 < e^x < 3 \implies 3 < (e^x + 1) < 4 \implies \frac{1}{4} < \frac{1}{1+e^x} < \frac{1}{3}$

∴ Domain of
$$f(x) = \left(\frac{1}{4}, \frac{1}{3}\right)$$
.

59. (c) (i)
$$x \le 2$$
 (ii) $\sqrt{9-x^2} > 0 \Rightarrow |x| < 3$ or $-3 < x < 3$.

Domain is $(-3, 2]$.

60. (b)
$$|x| > 2$$
 and $x \ne 1$

61. (b)
$$f(x) = \sqrt{\log \frac{1}{|\sin x|}} \implies \sin x \neq 0 \implies x \neq n\pi + (-1)^n 0$$

$$\implies x \neq n\pi \text{ Domain of } f(x) = R - \{n\pi, n \in I\}.$$

- 62. (b) The function $\sec^{-1} x$ is defined for all $x \in R (-1, 1)$ and the function $\frac{1}{\sqrt{x [x]}}$ is defined for all $x \in R Z$. So the given function is defined for all $x \in R \{(-1, 1) \cup (n \mid n \in Z)\}$.
- 63. (c) $f(x) = \log|\log x|$, f(x) is defined if $|\log x| > 0$ and x > 0 i.e., if x > 0 and $x \ne 1$ (: $|\log x| > 0$ if $x \ne 1$) $\Rightarrow x \in (0,1) \cup (1,\infty)$.

64. (b)
$$-1 \le 5x \le 1 \Rightarrow \frac{-1}{5} \le x \le \frac{1}{5}$$
. Domain is $\left[\frac{-1}{5}, \frac{1}{5}\right]$.

65. (c)
$$f(x) = \log(\sqrt{x-4} + \sqrt{6-x})$$

 $\Rightarrow x-4 \ge 0 \text{ and } 6-x \ge 0 \Rightarrow x \ge 4 \text{ and } x \le 6$

:. Domain =
$$[4, 6]$$
.

66. (c)
$$-1 \le 1 + 3x + 2x^2 \le 1$$

 $2x^2 + 3x + 1 \ge -1$; $2x^2 + 3x + 2 \ge 0$

$$x = \frac{-3 \pm \sqrt{9-16}}{6} = \frac{-3 \pm i\sqrt{7}}{6}$$
 Which is imaginary, not allowed

$$2x^2 + 3x + 1 \le 1$$

$$\implies 2x^2 + 3x \le 0 \implies 2x\left(x + \frac{3}{2}\right) \le 0$$

$$\implies \frac{-3}{2} \le x \le 0 \implies x \in \left[-\frac{3}{2}, 0 \right]$$

Domain of function = $\left[\frac{-3}{2}, 0\right]$.

67. (b)
$$f(x) = \frac{x+2}{|x+2|}$$

$$f(x) = \begin{cases} -1, & x < -2\\ 1, & x > -2 \end{cases}$$

 \therefore Range of f(x) is $\{-1,1\}$.

68. (b)
$$f(x) = \frac{1}{2 - \sin 3x}, \sin 3x \in [-1, 1]$$

Hence f(x) lies in $\left[\frac{1}{3}, 1\right]$.

69. (c)
$$\frac{x^2 + 14x + 9}{x^2 + 2x + 3} = y \implies x^2 + 14x + 9 = x^2y + 2xy + 3y$$

$$\implies x^2(y-1) + 2x(y-7) + (3y-9) = 0$$

Since x is real, $\therefore 4(y-7)^2 - 4(3y-9)(y-1) > 0$

$$\Rightarrow 4(y^2 + 49 - 14y) - 4(3y^2 + 9 - 12y) > 0$$

$$\Rightarrow$$
 4y² + 196 - 56y - 12y² - 36 + 48y > 0

$$\Rightarrow$$
 8y² +8y -160 < 0 \Rightarrow y² +y -20 < 0

$$\Rightarrow$$
 $(y+5)(y-4)<0$;

70. (b) Given
$$f(x) = 2^{x(x-1)} \Rightarrow x(x-1) = \log_2 f(x)$$

$$\Rightarrow x^2 - x - \log_2 f(x) = 0 \Rightarrow x = \frac{1 \pm \sqrt{1 + 4 \log_2 f(x)}}{2}$$

Only $x = \frac{1 + \sqrt{1 + 4 \log_2 f(x)}}{2}$ lies in the domain

$$f^{-1}(x) = \frac{1}{2} [1 + \sqrt{1 + 4 \log_2 x}].$$

71. (b)
$$x^2 - 6x + 7 = (x - 3)^2 - 2$$

Minimum value is -2 and maximum ∞ .

Hence range of function is $[-2, \infty]$.

72. (c)
$$f(x) = 1 + \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \implies \text{Range} = (1, 7/3].$$

73. (c)
$$y = f(x) = \cos^2 x + \sin^4 x$$

$$\implies y = f(x) = \cos^2 x + \sin^2 x (1 - \cos^2 x)$$

$$\implies y = \cos^2 x + \sin^2 x - \sin^2 x \cos^2 x$$

$$\implies y = 1 - \sin^2 x \cos^2 x \implies y = 1 - \frac{1}{4} \cdot \sin^2 2x$$

$$\therefore \frac{3}{4} \le f(x) \le 1, \ (\because 0 \le \sin^2 2x \le 1)$$

$$\implies f(R) \in [3/4, 1]$$
.

74. (b)
$$R^+$$
 {as y is always positive $\forall x \in R$ }.

75. (b)
$$y = f(x) = 9 - 7 \sin x$$
. Range = [2, 16].

76. (a)
$$f(x) = \sec\left(\frac{\pi}{4}\cos^2 x\right)$$

 $0 \le \cos^2 x \le 1$ at $\cos x = 0$, f(x) = 1 and at $\cos x = 1$, $f(x) = \sqrt{2}$; $\therefore 1 \le x \le \sqrt{2} \Longrightarrow x \in [1, \sqrt{2}]$.

77. (d)
$$f(x) = a\cos(bx + c) + d$$
(i)

For minimum cos(bx + c) = -1

$$\implies f(x) = -a + d = (d - a)$$

For maximum cos(bx + c) = 1

$$\implies f(x) = a + d = (d + a)$$

 \therefore Range of f(x) = [d - a, d + a].

78. (c) Let
$$y = \frac{x^2}{x^2 + 1}$$

$$\Rightarrow$$
 $(y-1)x^2 + 0x + y = 1, y \ne 1$ For real values of x ,

We have $D \ge 0 \Rightarrow -4y(y-1) \ge 0 \Rightarrow y(y-1) \le 0 \Rightarrow y \in [0,1)$

$$0 \le \frac{x^2}{x^2 + 1} < 1$$
.

79. (e)
$$-1 \le \log_3 x \le 1$$
; $3^{-1} \le x \le 3 \implies \frac{1}{3} \le x \le 3$

∴ Domain of function =
$$\left[\frac{1}{3}, 3\right]$$

80. (d)
$$-1 \le \cos \theta \le 1 \implies \cos^2 \theta \le 1$$

And
$$\sec^2 \theta \ge 1$$
 for $\theta > \frac{\pi}{3}$, $\sec \theta \ge 2$

$$\Rightarrow$$
 sec² $\theta \ge 4$. \therefore Required interval = $[2, \infty)$

81. (a) The domain of
$$\log_e \{x - [x]\}$$
 is R, because $[x] \le 0$

82. (d) Let
$$y = x^2 + 1 \implies x = \pm \sqrt{y - 1}$$

$$\implies f^{-1}(y) = \pm \sqrt{y-1} \implies f^{-1}(x) = \pm \sqrt{x-1}$$

$$\Rightarrow f^{-1}(17) = \pm \sqrt{17 - 1} = \pm 4 \text{ and } f^{-1}(-3) = \pm \sqrt{-3 - 1} = \pm \sqrt{-4}$$
, which is not possible

83. (c)
$$gof(x) = g\{f(x)\} = [|\cos x|].$$

84. (b) Here
$$g(x) = 1 + n - n = 1, x = n \in \mathbb{Z}$$

$$1+n+k-n=1+k$$
, $x=n+k$ (where $n \in \mathbb{Z}, 0 < k < 1$)

Now
$$f(g(x)) = \begin{cases} -1, & g(x) < 0 \\ 0, & g(x) = 0 \\ 1, & g(x) > 0 \end{cases}$$

Clearly, g(x) > 0 for all x. So, f(g(x)) = 1 for all x.

85. (c)
$$f(a-(x-a)) = f(a)f(x-a) - f(0)f(x)$$
(i)

Put
$$x = 0, y = 0$$
; $f(0) = (f(0))^2 - [f(a)]^2 \Rightarrow f(a) = 0$

[:
$$f(0) = 1$$
]. From (i), $f(2a - x) = -f(x)$.

86. (b)
$$g(x) = 1 + \{x\}$$
; $f\{g(x)\} = f\{1 + \{x\}\} = f(k) = 1$

Where,
$$k = 1 + \{x\}, 1 \le k < 2$$

88. (d)
$$f(-1) = f(1) = 1 \implies f$$
 is not one

Range of the function is $R^+U\{0\}$ which is not equal to co domain. Therefore f is not onto. so f is neither one-one nor onto.

89. (a)
$$|x|$$
 is not one-one; x^2 is not one-one;

$$x^2 + 1$$
 is not one-one. But $2x - 5$ is one-one because $f(x) = f(y) \Rightarrow 2x - 5 = 2y - 5 \Rightarrow x = y$

Now
$$f(x) = 2x - 5$$
 is onto. $f(x) = 2x - 5$ is bijective.

91. (b)
$$f(x) = \sin(\log(x + \sqrt{1 + x^2}))$$

$$\Rightarrow f(-x) + f(x) = 0$$

 \therefore f(x) is odd function.

92. (b)
$$(gof)(x) = |\sin x|$$
 and $f(x) = \sin^2 x$

$$\Rightarrow g(\sin^2 x) = |\sin x|; : g(x) = \sqrt{x}.$$

93. (b)
$$f(x) = 2x^6 + 3x^4 + 4x^2$$

$$f(-x) = 2(-x)^6 + 3(-x)^4 + 4(-x)^2 = f(x)$$

 \Rightarrow f(x) is an even function and derivative of an even function is always odd.

94. (b)
$$f(x) = \log(x + \sqrt{x^2 + 1})$$

and
$$f(-x) = -\log(x + \sqrt{x^2 + 1}) = -f(x)$$

f(x) is odd function.

95. (c)

96. (c)
$$f(1) = 0, f(2) = -1, f(3) = 1, f(4) = -2, f(5) = 2$$

And f(6) = -3 so on.

No two elements of domain have same image. And range of the function is set of all integers. Hence f is one-one and onto function.

97. (a) Let $x,y \in N$ such that f(x) = f(y)

Then
$$f(x) = f(y) \Rightarrow x^2 + x + 1 = y^2 + y + 1$$

$$\Rightarrow$$
 $(x-y)(x+y+1) = 0 \Rightarrow x = y$ Or $x = (-y-1) \notin N$

 \therefore f is one-one.

Again, since for each $y \in N$, there exist $x \in N$

 \therefore f is onto.

98. (b)
$$f(x) = (x-1)(x-2)(x-3)$$

$$\Rightarrow$$
 $f(1) = f(2) = f(3) = 0 \Rightarrow f(x)$ is not one-one.

For each $y \in R$, there exists $x \in R$ such that f(x) = y. Therefore f is onto. Hence $f: R \to R$ is onto but not one-one.

99. (b)
$$f'(x) = \frac{1}{(1+x)^2} > 0, \forall x \in [0, \infty) \text{ and range } \in [0,1)$$

⇒ Function is one-one but not onto

100. (a) $f'(x) = 2 + \cos x > 0$. So, f(x) is strictly monotonic increasing so, f(x) is one-to-one and onto.

101. (d)
$$f(x) = x + \sqrt{x^2} = x + |x|$$

Clearly f is not one-one as $f(-1) = f(-2) = 0 \implies f$ is not one-one

 $f(x) \ge 0, \forall x \in R$, \Rightarrow Range of $f = (0, \infty) \subset R$. \Rightarrow f is not onto.

102. (b) Let
$$\frac{x^2 + 34x - 71}{x^2 + 2x - 7} = y$$

$$\Rightarrow x^{2}(1-y) + 2(17-y)x + (7y-71) = 0$$

$$\Rightarrow \Delta \ge 0$$

$$\Rightarrow$$
 $y^2 - 14y + 45 \ge 0 \Rightarrow y \ge 9, y \le 5$.

103. (a)
$$fof(x) = f(f(x)) = f\left(\frac{1-x}{1+x}\right) = \frac{1 - \frac{1-x}{1+x}}{1 + \frac{1-x}{1+x}} = x, \forall x$$

 \therefore fof = $I \Rightarrow f$ is the inverse of itself.

104. (b) f is one-one and onto, so
$$f^{-1}$$
 exists and is $f^{-1}(x) = \frac{x+5}{3}$.

105. (a)
$$-\sqrt{1+(-\sqrt{3})^2} \le (\sin x - \sqrt{3}\cos x) \le \sqrt{1+(-\sqrt{3})^2}$$

$$-2 \le (\sin x - \sqrt{3}\cos x) \le 2$$

$$-2 + 1 \le (\sin x - \sqrt{3}\cos x + 1) \le 2 + 1$$

$$-1 \le (\sin x - \sqrt{3}\cos x + 1) \le 3$$
 i.e., range = [-1, 3]

$$\therefore$$
 For f to be onto $S = [-1, 3]$

106. (b) For any
$$x, y \in R$$
, we have

$$f(x) = f(y) \Rightarrow \frac{x - m}{x - n} = \frac{y - m}{y - n} \Rightarrow x = y$$

 \therefore f is one-one.

Let
$$\alpha \in R$$
 such that $f(x) = \alpha \Rightarrow \frac{x - m}{x - n} = \alpha \Rightarrow x = \frac{m - n\alpha}{1 - \alpha}$

Clearly $x \notin R$ for $\alpha = 1$. So, f is not onto.

107. (c) Let
$$f(x) = f(y) \implies \frac{x^2 - 4}{x^2 + 4} = \frac{y^2 - 4}{y^2 + 4}$$

$$\Rightarrow \frac{x^2 - 4}{x^2 + 4} - 1 = \frac{y^2 - 4}{y^2 + 4} - 1 \Rightarrow x^2 + 4 = y^2 + 4$$

$$\Rightarrow x = \pm y$$
, $\therefore f(x)$ is many-one.

Now for each $y \in (-1,1)$, there does not exist $x \in X$ such that f(x) = y. Hence f is into.

108. (c) $f(x_1) = f(x_2) \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = x_2$, [if $X = R^+$]

 $\Rightarrow f$ is one-one. Since $R_f = R^+ \subseteq R = Y$; $\therefore f$ is not onto.

109. (d) : f(0) = f(-1) = 0 hence f(x) is many one. But there is no pre-image of -1. Hence f(x) is into function. So function is many-one into.