Aufgabe 2

(a) \Longrightarrow Unterscheiden sich zwei Matrizen

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, M' = \lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$$

um einen skalaren Faktor λ , so erhalten wir für die assoziierten Möbiustransformationen

$$\varphi_M = \frac{az+b}{cz+d}, \qquad \varphi_{M'} = \frac{\lambda az+\lambda b}{\lambda cz+\lambda d} = \frac{az+b}{cz+d},$$

also $\varphi_M = \varphi_{M'}$.

- (b) (i) f ist ein Automorphismus, also bijektiv und f sowie f^{-1} sind holomorph auf $\overline{\mathbb{C}}$ als Riemannscher Fläche. Eine holomorphe Funktion $f\colon \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ ist meromorph als Funktion $f\colon \overline{\mathbb{C}} \to \mathbb{C}$. Gäbe es nämlich einen Häufungspunkt von Polstellen, so wäre die Kartenabbildung $z \to \frac{1}{z}$ auf dieser Karte nach dem Identitätssatz 0, also wäre f (weil die Riemannsche Zahlenkugel zusammenhängend ist) konstant im Widerspruch zur Bijektivität. Insbesondere ist die Singularitätenmenge S diskret. Holomorphie auf $\overline{\mathbb{C}} \setminus S$ ist eine lokale Eigenschaft, die an den Verklebungsstellen aus der Biholomorphie der Kartenwechselabbildungen folgt. Die Eigenschaft, dass $|f(z)| \to \infty$ für $z \to s \in S$ folgt aus der Stetigkeit von $f \circ \frac{1}{z}$ auf der entsprechenden Umgebung um s.
 - (ii) Die Inklusion $\mathfrak{M} \subset \operatorname{Aut}(\overline{\mathbb{C}})$ ist klar, da jede Möbiustransformation eine meromorphe Funktion ist, deren Umkehrfunktion stets existiert und ebenfalls eine Möbiustransformation und damit auch meromorph ist (1.1, 1.3b)

Sei nun $f \in \operatorname{Aut}(\overline{\mathbb{C}})$. Dann sind f und seine Umkehrfunktion meromorph. Nach Funktheo1 sind f und f^{-1} beide rational. Ist $f(\overline{\mathbb{C}}) \subset \overline{\mathbb{C}}$, so ist f bereits konstant. Für die eindeutig gegebene Möbiustransformation M mit $M\langle f(\infty)\rangle = \infty, M\langle f(1)\rangle = 1$ und $M\langle f(0)\rangle = 0$ betrachten wir $g := \varphi_M \circ f - z$. g ist eine meromorphe bijektive Funktion und besitzt damit genau eine Singularität. Diese befindet sich bei ∞ . Insbesondere ist also für $z \neq \infty$ auch $M\langle f(\infty)\rangle \neq \infty$. Es gilt für $z \neq \infty$ auch $\varphi_M \circ f \neq \infty$, also ist für $z \neq \infty$ auch $g \neq \infty$. Für $g = \infty$ erhalten wir g(g) = 0. Daher gilt $g(\overline{\mathbb{C}}) \subset \mathbb{C}$, d.h. g ist konstant. Es gilt also $g(\overline{\mathbb{C}}) = g(1) = M\langle f(1)\rangle - 1 = 1 - 1 = 0$. Daher ist $\varphi_M \circ f(z) = z \implies f = \varphi_M^{-1} = \varphi_{M^{-1}}$.