SEQUENCE LISTING <110> Yoshinori Watanabe <120> Novel centromeric protein SHUGOSHIN <130> 4439-4043 <140> 10/581,158 2007-01-30 <141> <150> JP2003-401943 <151> 2003-12-01 JP2004-279450 <150> <151> 2004-09-27 <160> 45 <170> PatentIn version 3.1 <210> 960 <211> <212> DNA <213> yeast <400> 60 atgaactttc aatttataaa ttcaaatata aacaatgaag ataaattgcc gatggagtcg ttgaaaaaga aatttttaaa acaaaatcgt gaaattataa aaataaatac tcagctttct 120 ataaaaatta gagaatctga aaacgaaatt caagatttga tacaagaaaa tttcactttg 180 aaaagttatt tggttaaact tgaagctcga tttcgcaatc aatctcaaac tgaggacttg 240 ttaaaaaact tctttcctga gatacaaacc attcacaaaa agatttcaca agtgcaaagt 300 ttactgaaga ttatagagaa aaagtgttca tcagatttcc tcgaagcgaa tgtaaaaaagt 360 caatttacaa cctgtgaaaa taaagattcg aaagaagatt atcagatttt gcataataaa 420 cgcttggagt atgtatcatt taatgatgaa cttaaaagtc tcgaaacagg gcaaccattg 480 tattqttttc aagatttcca aaaaaaagtc catqqtcctc cqqctctatc tqaaaaacct 540 ggaaaatgta tattaaaaga taaaaccaat gcccacgtaa acaaaatacc acaagatgag 600 660 gtgaattact cattgccgca aaaaaatatc accatctttt caaaggaatt aaaagaaaac gaatttgaat ccatcaacga gggcgaaact gaagaagaaa aggctaaaac atcaaatgtt 720 tgtgtttgta ttccttgtaa aagtgctgaa cagataactg accttaaagg acaagcaacc 780 ggagacagct ccccatgtga ttttgaagaa tctcaaccaa ggattaatgg acgtgaaaaa 840 ctaagacgat cagtcaaagt gataaactat gcaataccca gtttgcgaac taaactacga 900 960 cgagactttg acttaccatc tgatagaaaa cgcaaacgac atcccagagg caaagcataa <210>

<210> 2 <211> 319 <212> PRT

<213> yeast

<400> 2

Met Asn Phe Gln Phe Ile Asn Ser Asn Ile Asn Asn Glu Asp Lys Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Met Glu Ser Leu Lys Lys Lys Phe Leu Lys Gln Asn Arg Glu Ile 20 25 30

Ile Lys Ile Asn Thr Gln Leu Ser Ile Lys Ile Arg Glu Ser Glu Asn $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Glu Ile Gln Asp Leu Ile Gln Glu Asn Phe Thr Leu Lys Ser Tyr Leu 50 55 60

Val Lys Leu Glu Ala Arg Phe Arg Asn Gln Ser Gln Thr Glu Asp Leu 65 70 75 80

Leu Lys Asn Phe Phe Pro Glu Ile Gln Thr Ile His Lys Lys Ile Ser 85 90 95

Gln Val Gln Ser Leu Leu Lys Ile Ile Glu Lys Lys Cys Ser Ser Asp 100 105 110

Phe Leu Glu Ala Asn Val Lys Ser Gln Phe Thr Thr Cys Glu Asn Lys 115 120 125

Asp Ser Lys Glu Asp Tyr Gln Ile Leu His Asn Lys Arg Leu Glu Tyr 130 135 140

Val Ser Phe Asn Asp Glu Leu Lys Ser Leu Glu Thr Gly Gln Pro Leu 145 150 155 160

Tyr Cys Phe Gln Asp Phe Gln Lys Lys Val His Gly Pro Pro Ala Leu 165 170 175

Ser Glu Lys Pro Gly Lys Cys Ile Leu Lys Asp Lys Thr Asn Ala His 180 185 190

Val Asn Lys Ile Pro Gln Asp Glu Val Asn Tyr Ser Leu Pro Gln Lys 195 200 205

Asn Ile Thr Ile Phe Ser Lys Glu Leu Lys Glu Asn Glu Phe Glu Ser 210 220

Ile Asn Glu Gly Glu Thr Glu Glu Glu Lys Ala Lys Thr Ser Asn Val 225 230 235 240

Cys Val Cys Ile Pro Cys Lys Ser Ala Glu Gln Ile Thr Asp Leu Lys 245 250 255

Gly Gln Ala Thr Gly Asp Ser Ser Pro Cys Asp Phe Glu Glu Ser Gln
260 265 270

Pro Arg Ile Asn Gly Arg Glu Lys Leu Arg Arg Ser Val Lys Val Ile 275 280 285

Asn Tyr Ala Ile Pro Ser Leu Arg Thr Lys Leu Arg Arg Asp Phe Asp 290 295 300

Leu Pro Ser Asp Arg Lys Arg Lys Arg His Pro Arg Gly Lys Ala 305 310 315

<210> 3 <211> 1944 <212> DNA <213> yeast

<400> 3

60 atgtcgaaag catctctttc cccgaacgta gaagacttga aaaaaaagca aattcgacag 120 tataaggaaa ttatacgaat aagcaaggca caatcaatta gaattaaaga attgcagtta 180 gaaaatgaac ggttgctttc ggaaaatatc gatttgagga ctacagcgat aaacttggaa 240 gagcaactcg aaaccgtgca aaacgaaaac gaagaaaaca aaacaaagtt agctgcatta cttaatcgat ttcatgaaga aacagataat tttttatcaa aattaagtct ttgtcagcaa 300 360 gaaatacaag acaccttcaa accagtggag gctaacttag cttacgatgt cgatacggat tctgaagacc ttgacgagga atccgtcgtg aaagataccg aagaaataat tgagcaagct 420 480 cagcatgatg tttccttacg aaatttaagt ggaatagagg atgaaaatat aattgatgac ggagaaactg ctataaatga acaaaaaaaa agagaagcta atgttttttc cgacacgcaa 540 tcagcacctc agctaaaatc cggcaaagcc ctcccagctg attttgaaaa tccttacaat 600 660 ctatccaatt cgaaacctgt aaataataat aatgaagata gagttgaagc ggttacttct gaaaataaat ctatcgattc tgctcctcag gaaaaaaatc atgaatacga aatcgttagt 720 780 ccaaaatcat tatccaacaa aattaataat caagcagctg cacaaagaag aaccgaagaa 840 gataatgcaa atggagttgc tcaagaagaa aatgagggtt cacaagaagc tcattttcat 900 agcagaatac aatctgatac agtaatacaa agtacaccca ctaaacggaa atgggacgtt 960 gacattcaaa ataaacaaat taatctggct tctgcagcta ccaatgttac cggttatgta tcggagaccg atagtcgccc caatcgcgca aactctttgg attctgctgt ccttcttgtg 1020 1080 caatcttcaa ataaaagtaa ccgaaatggg catcatattt cagatcctaa tttaaatagc

tccatatcgt	tgaagtttgc	gcctgaagat	actgcgcata	attcattaac	ttcacaagag	1140
aatgttgggc	ctcaggttac	gacgacttct	ctgtcaaata	tgactgttgc	tgaatctcct	1200
cgtacagaca	ctccaaggga	aataaacggg	ttagtagact	cttctgtcac	taatgggaac	1260
gaaaaatttt	ctgtagaaat	aatgaatgac	tctaacaaaa	ttggactgaa	tcctaaatct	1320
tttaccgacg	aagagcggga	aattttaaca	ctttttcgaa	atcctcccat	gagactgtca	1380
agtgaacctc	catcttcaaa	tggattttca	atagcccatc	ccaataattc	tccgttacgt	1440
ccgccatcgc	tacaaggaat	attgaatgct	gaagatcgac	cttacgaaat	tgagccgtca	1500
cgtagctcct	ttgctaccaa	cgatacgggc	tcctataata	atttggaact	tctgtcatct	1560
gtaacgaatt	tgaaatcccc	taatgagaac	gatcgtgtga	cgaaaactca	gtcgcgaaga	1620
gaaacaaaag	tgaaaaggcg	aagaaaagct	cggattcaag	aaacttctga	agaaagtaca	1680
gtagtcaatg	agccaaatga	aaaacctgat	ggaaggagcc	gaagggaacg	gaaaaaggtt	1740
aattacgctt	tgcctggatt	aaggacgaaa	ttaagacgga	atttcgattt	accttcagat	1800
catgtaaaag	ctaaaaaaac	gagacgtgct	cctaagaact	ctgagaatga	ttcagctacc	1860
aaaacagaaa	ccgcaaacat	tacttctgaa	gcacccacta	cttcagaagt	aacccttgaa	1920
aactccgaaa	cccttaattt	gtaa				1944

<210> 4

<211> 647

<212> PRT

<213> yeast

<400>

Met Ser Lys Ala Ser Leu Ser Pro Asn Val Glu Asp Leu Lys Lys 1 10 15

Gln Ile Arg Gln Tyr Lys Glu Ile Ile Arg Ile Ser Lys Ala Gln Ser 20 25 30

Ile Arg Ile Lys Glu Leu Gl
n Leu Glu Asn Glu Arg Leu Leu Ser Glu 35 40 45

Asn Ile Asp Leu Arg Thr Thr Ala Ile Asn Leu Glu Glu Gln Leu Glu 50 55 60

Thr Val Gln Asn Glu Asn Glu Glu Asn Lys Thr Lys Leu Ala Ala Leu 65 70 75 80

Leu Asn Arg Phe His Glu Glu Thr Asp Asn Phe Leu Ser Lys Leu Ser 85 90 95

Leu Cys Gln Gln Glu Ile Gln Asp Thr Phe Lys Pro Val Glu Ala Asn

Leu Ala Tyr Asp Val Asp Thr Asp Ser Glu Asp Leu Asp Glu Glu Ser 115 120 125 Val Val Lys Asp Thr Glu Glu Ile Ile Glu Gln Ala Gln His Asp Val Ser Leu Arg Asn Leu Ser Gly Ile Glu Asp Glu Asn Ile Ile Asp Asp Gly Glu Thr Ala Ile Asn Glu Gln Lys Lys Arg Glu Ala Asn Val Phe 165 170 175 Ser Asp Thr Gln Ser Ala Pro Gln Leu Lys Ser Gly Lys Ala Leu Pro 180 Ala Asp Phe Glu Asn Pro Tyr Asn Leu Ser Asn Ser Lys Pro Val Asn 195 200 Asn Asn Asn Glu Asp Arg Val Glu Ala Val Thr Ser Glu Asn Lys Ser 210 Ile Asp Ser Ala Pro Gln Glu Lys Asn His Glu Tyr Glu Ile Val Ser Pro Lys Ser Leu Ser Asn Lys Ile Asn Asn Gln Ala Ala Gln Arg Arg Thr Glu Glu Asp Asn Ala Asn Gly Val Ala Gln Glu Glu Asn Glu 260 265 270 Gly Ser Gln Glu Ala His Phe His Ser Arg Ile Gln Ser Asp Thr Val 275 280 285 Ile Gln Ser Thr Pro Thr Lys Arg Lys Trp Asp Val Asp Ile Gln Asn 290 295 300 Lys Gln Ile Asn Leu Ala Ser Ala Ala Thr Asn Val Thr Gly Tyr Val Ser Glu Thr Asp Ser Arg Pro Asn Arg Ala Asn Ser Leu Asp Ser Ala Val Leu Leu Val Gln Ser Ser Asn Lys Ser Asn Arg Asn Gly His His 340 345 350

						S	ubst	itut	e_se	quen	ce_L	isti	ng.T	XT	
Ile	Ser	Asp 355	Pro	Asn	Leu									Ala	Pro
Glu	Asp 370	Thr	Ala	His	Asn	Ser 375	Leu	Thr	Ser	Gln	Glu 380	Asn	Val	Gly	Pro
G1n 385	Val	Thr	Thr	Thr	ser 390	Leu	Ser	Asn	Met	Thr 395	Val	Ala	Glu	Ser	Pro 400
Arg	Thr	Asp	Thr	Pro 405	Arg	Glu	Ile	Asn	Gly 410	Leu	Val	Asp	Ser	Ser 415	Val
Thr	Asn	Gly	Asn 420	Glu	Lys	Phe	Ser	Val 425	Glu	Ile	Met	Asn	Asp 430	Ser	Asn
Lys	Ile	Gly 435	Leu	Asn	Pro	Lys	Ser 440	Phe	Thr	Asp	Glu	Glu 445	Arg	Glu	Ile
Leu	Thr 450	Leu	Phe	Arg	Asn	Pro 455	Pro	Met	Arg	Leu	Ser 460	Ser	Glu	Pro	Pro
Ser 465	Ser	Asn	Gly	Phe	Ser 470	Ile	Ala	His	Pro	Asn 475	Asn	Ser	Pro	Leu	Arg 480
Pro	Pro	Ser	Leu	Gln 485	Gly	Ile	Leu	Asn	Ala 490	Glu	Asp	Arg	Pro	Tyr 495	Glu
Ile	Glu	Pro	Ser 500	Arg	Ser	Ser	Phe	Ala 505	Thr	Asn	Asp	Thr	Gly 510	Ser	Tyr
Asn	Asn	Leu 515	Glu	Leu	Leu	Ser	Ser 520	Val	Thr	Asn	Leu	Lys 525	Ser	Pro	Asn
Glu	Asn 530	Asp	Arg	Val	Thr	Lys 535	Thr	Gln	Ser	Arg	Arg 540	Glu	Thr	Lys	Val
Lys 545	Arg	Arg	Arg	Lys	Ala 550	Arg	Ile	Gln	Glu	Thr 555	Ser	Glu	Glu	Ser	Thr 560
Val	Val	Asn	Glu	Pro 565	Asn	Glu	Lys	Pro	Asp 570	Gly	Arg	Ser	Arg	Arg 575	Glu
Arg	Lys	Lys	Val 580	Asn	Tyr	Ala	Leu	Pro 585	Gly	Leu	Arg	Thr	Lys 590	Leu	Arg
Arg	Asn	Phe 595	Asp	Leu	Pro	Ser	Asp 600	His	Val	Lys	Ala	Lys 605	Lys	Thr	Arg

Arg Ala Pro Lys Asn Ser Glu Asn Asp Ser Ala Thr Lys Thr Glu Thr 610 620

Ala Asn Ile Thr Ser Glu Ala Pro Thr Thr Ser Glu Val Thr Leu Glu 625 630 635 640

Asn Ser Glu Thr Leu Asn Leu 645

<210> 5 <211> 1773 <212> DNA <213> yeast

<400> 5

atgccgaaga gaaaaattgc tcctaacaag gaaagcagca ggcgtacggt ctcccacgat 60 120 gatttaaccc cacaaataca agaatttcaa aacctaatgg atctcgaatc gcaaaaagtg gaaaacatca gacagtcgta ttcgaggcaa aactccctgc tggccaagga taactccata 180 ttaaaaatta aagttaatag cttggaaaaa aaaataagcc agctggtaca agaaaacgtg 240 300 actctacgat ctaaaacctc tataagcgaa gctatctaca gggaacggtt aagtaatcaa ctacaagtca ttgaaaacgg tattattcaa agatttgacg aaatttttta tatgtttgag 360 420 aacgtacgta aaaacgaaaa tttgcccagt tcgagcttaa gaacaatgtt gaagagaacg agttccaggt caagatcatg ctcattgtca tcacccacat actcaaaaag ttacactagg 480 ttatcaaatc acgagaataa cctgtcgcat gaatcaagtt ttaacaagga cgatggtcca 540 600 gatcttgagc ctaaggctaa aaaaaggaag agttctaggc ggcaatctat gtttgtatcc acqaqtttag aacctgaaga cgaaaccggt gaaaacgaac ccatgatgga aaattcctct 660 gtagaggtac cggcagaatc acacgagtct gcgcaagtgg aggaaacaat agatgcctta 720 aaccctgaag aggaaaatag cgattctgtc agtaatttta ccaattcaat tatagaatac 780 tccataccag aggagaatcc gacagaaccc gagcattcat cttctaaact agaaatattc 840 aatgacagta caaatatgct aagtacagtg ccgtcaaatc ctttgccgtt gcctttacca 900 ggcccatccg caactttacc tactaccact agcgatgctt caacggtcta tccttcatca 960 agttcttcta ctaattctca tccaaagacc aaaattaagc attccatgaa gccgcctagg 1020 atagaactga agaaaaaggt tattgacgaa gtcatgcccg taagtaacat gagcagcaac 1080 agcgaaatat catttacgag aactagaaga actcgtggta aagctgtaga ttacactttg 1140 ccttctttaa gagccaaaat gaggaggcct tcagaaaaac ttgtggatgc tactactgtg 1200 attgatatac atgatctaca ggtttccaag agaaatcggg aaacttcaca taaaaggaaa 1260 agtttatccc aagattcaat acccgacgaa ccgcaattga gagaagtcgt cgtctcaaag 1320

Substitute_Sequence_Listing.TXT gattatggaa ctccaaaagg gaaaaaaacg gaagatgaaa tacacgagga taccgctcat													
ctaatgacca cttccaacaa caacagcaac aacaaaaacg aaaaaaaact aactagcaac													
aatagcccta aaaaatcgtc gcctttactt gacattacaa ataaatcgga gaataagaaa													
aagtcaacaa gaactaaaaa attgttcaaa aatgcaattg tcaataattt atctgatgaa													
aattctacta cgcgaccctc caagtcgtca aagggaacca gtaataataa caacaattac													
aacaatttcg acaataacaa ttcaaacatt aataatgtta ataataaatc tgttagcttt													
agactaaatg aagatgattt agcagtattt gatttatttg gaaatggtaa ggcagtgaaa													
catcaaccaa aaacatatcg caccaaaaaa tga													
<210> 6 <211> 590													
<212> PRT <213> yeast													
<400> 6													
Met Pro Lys Arg Lys Ile Ala Pro Asn Lys Glu Ser Ser Arg Arg Thr													
1 5 10 15													
Val Ser His Asp Asp Leu Thr Pro Gln Ile Gln Glu Phe Gln Asn Leu													
20 25 30													
Met Asp Leu Glu Ser Gln Lys Val Glu Asn Ile Arg Gln Ser Tyr Ser													
35 40 45 45													
Arg Gln Asn Ser Leu Leu Ala Lys Asp Asn Ser Ile Leu Lys Ile Lys													
50 55 60													
Val Asn Ser Leu Glu Lys Lys Ile Ser Gln Leu Val Gln Glu Asn Val													
65 70 75 80													
The Lou Arg Con Lyc The Con Tlo Con Clu Alo Tlo Typ Arg Clu Arg													
Thr Leu Arg Ser Lys Thr Ser Ile Ser Glu Ala Ile Tyr Arg Glu Arg 85 90 95													
Leu Ser Asn Gln Leu Gln Val Ile Glu Asn Gly Ile Ile Gln Arg Phe 100 105 110													
Acc clu Tle Dhe Tur Met Dhe clu ter Well ter ter clu t													
Asp Glu Ile Phe Tyr Met Phe Glu Asn Val Arg Lys Asn Glu Asn Leu 115 120 125													

Pro Ser Ser Ser Leu Arg Thr Met Leu Lys Arg Thr Ser Ser Arg Ser 130 135 140

Leu Ser Asn His Glu Asn Asn Leu Ser His Glu Ser Ser Phe Asn Lys 165 170 175

Asp Asp Gly Pro Asp Leu Glu Pro Lys Ala Lys Lys Arg Lys Ser Ser 180 185 190

Arg Arg Gln Ser Met Phe Val Ser Thr Ser Leu Glu Pro Glu Asp Glu 195 200 205

Thr Gly Glu Asn Glu Pro Met Met Glu Asn Ser Ser Val Glu Val Pro 210 215 220

Ala Glu Ser His Glu Ser Ala Gln Val Glu Glu Thr Ile Asp Ala Leu 225 230 235 240

Asn Pro Glu Glu Asn Ser Asp Ser Val Ser Asn Phe Thr Asn Ser 255

Ile Ile Glu Tyr Ser Ile Pro Glu Glu Asn Pro Thr Glu Pro Glu His 260 265 270

Ser Ser Ser Lys Leu Glu Ile Phe Asn Asp Ser Thr Asn Met Leu Ser 275 280 285

Thr Val Pro Ser Asn Pro Leu Pro Leu Pro Leu Pro Gly Pro Ser Ala 290 295 300

Thr Leu Pro Thr Thr Ser Asp Ala Ser Thr Val Tyr Pro Ser Ser 305 310 315 320

Ser Ser Ser Thr Asn Ser His Pro Lys Thr Lys Ile Lys His Ser Met 325 330 335

Lys Pro Pro Arg Ile Glu Leu Lys Lys Lys Val Ile Asp Glu Val Met 340 345 350

Pro Val Ser Asn Met Ser Ser Asn Ser Glu Ile Ser Phe Thr Arg Thr 355 360 365

Arg Arg Thr Arg Gly Lys Ala Val Asp Tyr Thr Leu Pro Ser Leu Arg 370 375 380

Ala Lys Met Arg Arg Pro Ser Glu Lys Leu Val Asp Ala Thr Thr Val 385 390 395 400

Ile Asp Ile His Asp Leu Gln Val Ser Lys Arg Asn Arg Glu Thr Ser 405 410 415

His	Lys	Arg	Lys 420	Ser	Leu	Ser	Gln	Asp 425	Ser	Ile	Pro	Asp	Glu 430	Pro	Gln		
Leu	Arg	Glu 435	Val	Val	Val	Ser	Lys 440	Asp	Tyr	Gly	Thr	Pro 445	Lys	Gly	Lys		
Lys	Thr 450	Glu	Asp	Glu	Ile	His 455	Glu	Asp	Thr	Ala	His 460	Leu	Met	Thr	Thr		
ser 465	Asn	Asn	Asn	Ser	Asn 470	Asn	Lys	Asn	Glu	Lys 475	Lys	Leu	Thr	Ser	Asn 480		
Asn	Ser	Pro	Lys	Lys 485	Ser	Ser	Pro	Leu	Leu 490	Asp	Ile	Thr	Asn	Lys 495	Ser		
Glu	Asn	Lys	Lys 500	Lys	Ser	Thr	Arg	Thr 505	Lys	Lys	Leu	Phe	Lys 510	Asn	Ala		
Ile	Val	Asn 515	Asn	Leu	Ser	Asp	Glu 520	Asn	Ser	Thr	Thr	Arg 525	Pro	Ser	Lys		
Ser	Ser 530	Lys	Gly	Thr	Ser	Asn 535	Asn	Asn	Asn	Asn	Tyr 540	Asn	Asn	Phe	Asp		
Asn 545	Asn	Asn	Ser	Asn	Ile 550	Asn	Asn	Val	Asn	Asn 555	Lys	Ser	Val	Ser	Phe 560		
Arg	Leu	Asn	Glu	Asp 565	Asp	Leu	Ala	Val	Phe 570	Asp	Leu	Phe	Gly	Asn 575	Gly		
Lys	Ala	Val	Lys 580	His	Gln	Pro	Lys	Thr 585	Tyr	Arg	Thr	Lys	Lys 590				
<210 <211 <212 <213	L> 2 2> [7 2325 DNA Neuro	ospoi	^a cı	assa	ı											
<400 atgg		7 gcc 1	tcaad	cgaad	ca ag	gccat	tgtcg	j tci	tgtcg	gcgt	tgto	caaca	aga (caato	ctcgag		60
ctc	ctgc	gta g	ggaag	gttco	ct ca	agaca	aaaa	aga	agata	attg	ctco	gagto	caa ·	ttcca	acacag	1	20
															tcgaa	1	.80
ctc	gtgg	gtc a	aggto	cttg	g co	tcga	aaaag	g gag	gctco	aag	acaa	acgct	tgc (gcgaa	agggtg	2	40
gccg	gatca	atg d	cgcto	gagg	gt ca	aaggo	ccaag	g ato	ggaga	acgc	agtt	ggcg	gga a	actca	agttcg	3	00
ctg	tgg	caa g	gctta	agggg	ja go	cgc	cctco	g aag	gcggo	gcc	tttc	agaa	aga 🤅	gaggo	gatac	3	60

gcgcagcctc	gaccgagcgt	tcaccggagc	cctcccttac	gaagagcacg	ccaggaggcc	420
gaccaggaac	tactggctga	gcaggaagga	aggctaccgc	cgatatacga	gaacaagacg	480
tatgcgcgag	ccacaatgaa	cagtgaagaa	atcctggcgc	tgtgcatgca	ggcagacgat	540
tcgaatgact	cgccagatat	cggaccgccg	ccagtatcta	ggtttgtcga	ggatgatatg	600
gtcatacctt	gttcaccatc	gccaaacaag	aacgccgagg	ctgaagaaac	ggaaactacc	660
gagcaagtgg	aagagagccc	tagggctctt	caagtaccgc	cgtcattatc	gccgcctaaa	720
ctggactacg	acaggagacc	aaacatgatc	ctattcagcc	cacccaaaga	atcgagagtg	780
gcagaaccct	ccaaaatgtt	cagtccccct	ccgatggaac	caccgaaaca	gtccacatcg	840
gctgtaccga	gtgagacaat	acgagcaggc	ctcaagcgaa	agttgaacgg	cgacaaccaa	900
aacgaaccca	acaaggcaac	caagcttcaa	caaggaaagg	agaatggcaa	tgagactggg	960
atcaagaaag	gactctctgc	ccgcgacccg	cacaagagga	aaagcatcaa	agagaccgca	1020
acgaaaccga	gagccccgct	gtcagcaaag	agcacgaacg	agcacattgt	ctctccgaag	1080
aagccggcga	agccccacca	agtggccgac	gattttaagc	cggtgaaggt	gcacaaggcg	1140
tcaaagggta	aagagaaagt	cgacctgccc	gctccggaca	agaagtcagc	agtagaagaa	1200
acgcaaggaa	attctacgtc	ggcattcacg	aaagtcgaga	tcctcccgcc	ggctctggaa	1260
cctactcctg	aagttgcaga	gattcctgaa	accgatattc	tgatcacacc	tggaacacca	1320
gagcgcgcct	ctgaaagcac	tgttgtgacc	cacgataccc	cgccgccagc	ccacatttca	1380
tccaatggag	agacgtcgcg	gcctagcagg	cgtgctagag	cggctatcag	ctatacagag	1440
cccaatctgc	gcgacaagat	gcgacgaccg	accaaagagc	tctttgatgc	cgtttctggg	1500
gagggcaagt	tcctacacag	gccgacatcg	caacagcaac	agcagcaacg	caagggcgac	1560
gagtcagcac	cgacgtcagt	tagcaaggtc	aaggtcgagc	catcgccggc	ggtggatata	1620
agtagtctga	ccagcagtgc	gctgtttgaa	aaagagaagg	agaaggaacc	acagccggat	1680
gaaggaatat	tatctccaaa	cggcatcctc	ccaagctcag	tagacctggg	aaggagaaga	1740
cgcgcctcat	ccttctctac	tgcagcccct	gcaatgacaa	ttccttcggt	ccaagaacaa	1800
tcaactctaa	acctcccagc	cgcggacgag	accgatgaaa	acgccgcggt	cgaggctcag	1860
attcagaagg	agctgagtaa	tagtattaca	acacggccca	ggggtggaaa	ggggaggcaa	1920
tcaatgagcc	gttccgtacc	cacgatccca	acagaaaatt	acgagcacga	ggacgcacaa	1980
ctctcgacga	actcagcctc	ggtggatctt	tacgactttg	ctagttgtgc	gtctccggat	2040
agcgcagcac	cccagctaga	agcgactacc	ggcgatgttc	ctgttaataa	gaaggcaccc	2100
aaaggttcaa	gaagagcgtc	ctcagctgct	tcgaccgaga	caacagcaac	agcatccgca	2160
aagccaagat	cttcccgaaa	aagggcttcg	atgctggtgc	cgaagaaaag	cttgtgggct	2220

Substitute_Sequence_Listing.TXT gaagagttag cgcaggagga agaggatgag gaagatgtcg gcaatgacag tggcgggtcc ttgtccaagg ggagggcctc gaggaggaga agcatgatgc tttga

22802325

<210> <211> <212>	774 PRT	
<213>	Neurospora	crassa

<400> 8

Met Ala Arg Leu Asn Glu Gln Ala Met Ser Ser Val Ala Leu Ser Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asp Asn Leu Glu Leu Leu Arg Arg Lys Phe Leu Arg Gln Asn Arg Asp 20 25 30

Ile Ala Arg Val Asn Ser Thr Gln Ser Leu Arg Ile Arg Gly Leu Glu 35 40 45

Asn Glu Cys Ala Arg Leu Leu Ser Glu Asn Leu Glu Leu Arg Gly Gln 50 55 60

Val Leu Arg Leu Glu Lys Glu Leu Gln Asp Asn Ala Ala Arg Arg Val 65 70 75 80

Ala Asp His Ala Leu Glu Val Lys Ala Lys Met Glu Thr Gln Leu Ala 85 90 95

Glu Leu Ser Ser Leu Leu Ala Ser Leu Gly Glu Pro Pro Ser Lys Arg 100 105 110

Arg Leu Ser Glu Glu Arg Arg Tyr Ala Gln Pro Arg Pro Ser Val His 115 120 125

Arg Ser Pro Pro Leu Arg Arg Ala Arg Gln Glu Ala Asp Gln Glu Leu 130 135 140

Leu Ala Glu Gln Glu Gly Arg Leu Pro Pro Ile Tyr Glu Asn Lys Thr 145 150 155 160

Tyr Ala Arg Ala Thr Met Asn Ser Glu Glu Ile Leu Ala Leu Cys Met 165 170 175

Gln Ala Asp Asp Ser Asn Asp Ser Pro Asp Ile Gly Pro Pro Pro Val 180 185 190

Ser Arg Phe Val Glu Asp Asp Met Val Ile Pro Cys Ser Pro Ser Pro 195 200 205

Asn Lys Asn Ala Glu Ala Glu Glu Thr Glu Thr Thr Glu Gln Val Glu Glu Ser Pro Arg Ala Leu Gln Val Pro Pro Ser Leu Ser Pro Pro Lys Leu Asp Tyr Asp Arg Arg Pro Asn Met Ile Leu Phe Ser Pro Pro Lys 245 250 255 Glu Ser Arg Val Ala Glu Pro Ser Lys Met Phe Ser Pro Pro Pro Met Glu Pro Pro Lys Gln Ser Thr Ser Ala Val Pro Ser Glu Thr Ile Arg 275 280 285 Ala Gly Leu Lys Arg Lys Leu Asn Gly Asp Asn Gln Asn Glu Pro Asn Lys Ala Thr Lys Leu Gln Gln Gly Lys Glu Asn Gly Asn Glu Thr Gly Ile Lys Lys Gly Leu Ser Ala Arg Asp Pro His Lys Arg Lys Ser Ile Lys Glu Thr Ala Thr Lys Pro Arg Ala Pro Leu Ser Ala Lys Ser Thr Asn Glu His Ile Val Ser Pro Lys Lys Pro Ala Lys Pro His Gln Val Ala Asp Asp Phe Lys Pro Val Lys Val His Lys Ala Ser Lys Gly Lys 370 380 Glu Lys Val Asp Leu Pro Ala Pro Asp Lys Lys Ser Ala Val Glu Glu 385 390 395 400 Thr Gln Gly Asn Ser Thr Ser Ala Phe Thr Lys Val Glu Ile Leu Pro 405 Pro Ala Leu Glu Pro Thr Pro Glu Val Ala Glu Ile Pro Glu Thr Asp 420 430 Ile Leu Ile Thr Pro Gly Thr Pro Glu Arg Ala Ser Glu Ser Thr Val Page 13

Val Thr His Asp Thr Pro Pro Pro Ala His Ile Ser Ser Asn Gly Glu 455 Thr Ser Arg Pro Ser Arg Arg Ala Arg Ala Ile Ser Tyr Thr Glu 465 470 475 480 Pro Asn Leu Arg Asp Lys Met Arg Arg Pro Thr Lys Glu Leu Phe Asp 485 490 495 Ala Val Ser Gly Glu Gly Lys Phe Leu His Arg Pro Thr Ser Gln Gln Gln Gln Gln Arg Lys Gly Asp Glu Ser Ala Pro Thr Ser Val Ser 515 520 525 Lys Val Lys Val Glu Pro Ser Pro Ala Val Asp Ile Ser Ser Leu Thr 530 540 Ser Ser Ala Leu Phe Glu Lys Glu Lys Glu Lys Glu Pro Gln Pro Asp 545 550 555 560 Glu Gly Ile Leu Ser Pro Asn Gly Ile Leu Pro Ser Ser Val Asp Leu 565 570 575 Gly Arg Arg Arg Ala Ser Ser Phe Ser Thr Ala Ala Pro Ala Met Thr Ile Pro Ser Val Gln Glu Gln Ser Thr Leu Asn Leu Pro Ala Ala Asp Glu Thr Asp Glu Asn Ala Ala Val Glu Ala Gln Ile Gln Lys Glu Leu Ser Asn Ser Ile Thr Thr Arg Pro Arg Gly Gly Lys Gly Arg Gln 625 630 635 640 Ser Met Ser Arg Ser Val Pro Thr Ile Pro Thr Glu Asn Tyr Glu His Glu Asp Ala Gln Leu Ser Thr Asn Ser Ala Ser Val Asp Leu Tyr Asp

Phe Ala Ser Cys Ala Ser Pro Asp Ser Ala Ala Pro Gln Leu Glu Ala 675 680 685

Thr Thr Gly Asp Val Pro Val Asn Lys Lys Ala Pro Lys Gly Ser Arg

Arg Ala Ser Ser Ala Ala Ser Thr Glu Thr Thr Ala Thr Ala Ser Ala 705 710 715 720

Lys Pro Arg Ser Ser Arg Lys Arg Ala Ser Met Leu Val Pro Lys Lys 725 730 735

Ser Leu Trp Ala Glu Glu Leu Ala Gln Glu Glu Glu Asp Glu Glu Asp 740 745 750

Val Gly Asn Asp Ser Gly Gly Ser Leu Ser Lys Gly Arg Ala Ser Arg 755 760 765

Arg Arg Ser Met Met Leu 770

<210>

1671

DNA

Arabidopsis thaliana

<400>

atggttcgag cgacggttct gaatgtcggt gatcacgcca gtgaaggtgt gcgtactaac 120 aaagctaaag gagagaaaat ggttctggaa cctccgatga acagtgcaca aagacgaaag 180 ttgggggata ttactaattt gcagaatcag aagaatctaa tgaatcaggg agcgaagcat 240 cagcaacaag ctatattaat ctcttctaaa gaaaacgctg aaaatcttca aaaggcactg agaaattctt ctgaaaacac aaagctgatg aaagtcgtca tggagagaga tggaatcaaa 300 360 agtgatctga agaaacttag gattgaattt cagaaggttc aagaacagaa tttgctactt gcccaggcta acactcgtat cttggcgctg aaggtacttc agcacgaact tggttgcaag 420 480 aatgggttag tcatggccag gaaaatgctg cttaaggctc aagcaaatgc ttgtggtggg 540 gcttgcaaaa cctttcagcc aaatgatgca gatcatgagc atgcttccgg gagctccaac 600 gctaactcat tgcaaagaaa tgagaaagcc aacagtaaaa ggagagtttc tggaaggaag 660 aatcccgcca attccgaggt attagatata attggcagat cgggagagac atgtcagatg 720 gaagacaaca ttgacaacaa gaagttggtc tctgatagtg acaatgatgc tgaaaaccat 780 ataaatgaca atgtccaaag caaaagatat tgtgcaggaa gacagagtag cagttctaag 840 actcgagaag ccagccaaac agaaaccttg caaaaggtgg ttgacgccaa agaaattaag ggggatgcaa ggttttcttt gacaaagcat tctgactggt taaaatctca agaacctgag 900

60

ccatctgaaa	gcctatacga	gtcaaggttc	cctttgagaa	ggcgttctgc	ccggttaaaa	960
tctcaagaac	ctgagccatc	tgaaagcttc	catgactcaa	tagagacaac	caagaggagg	1020
aggtcggcaa	taaggtctgc	tatgtttaat	atccaagagc	tgggcgttat	tcaaaacttg	1080
aacggtttac	ctgatgatca	agagattgct	gcaaaggcca	gatgctctgc	acgtgaacag	1140
tctaccgggt	ctaaacccga	agcagtagaa	ccacatgaca	caaaagagat	aatcgggaaa	1200
agcaggatat	ctttgagaag	acagtctgcg	aggtttaatt	tccaagagct	gggcgtgact	1260
gaaaacttga	atggtccaca	tgatgatcaa	acgattgctg	caaatgccag	atgctgtgca	1320
agtgaacagt	ctatcgggtc	taaacccgaa	gcagtagaac	cacatgacat	tgaagagaga	1380
atcgggaaaa	tcagagtctc	ttcaagaaga	caatctgcaa	acattgaaac	tccgagagcc	1440
atcaaagaac	ctgcaaatcc	gcctttgcat	gatgacaatg	ttgaggagtc	tagtcagata	1500
tcatgttcag	tttcaatgga	gcttaaaaga	gaatcaaaga	agaaaccaac	aggcgacgaa	1560
tcagaggaaa	tgagaaaaac	aactgttgga	agaccttcaa	ggcaagctgc	tgaaaaaatc	1620
aaatcgtaca	aggaaccttc	acttaaggag	aagatgcgag	ggggcttctg	a	1671

<210> 10

<400> 10

Met Val Arg Ala Thr Val Leu Asn Val Gly Asp His Ala Ser Glu Gly 10 15

Val Arg Thr Asn Lys Ala Lys Gly Glu Lys Met Val Leu Glu Pro Pro 20 25 30

Met Asn Ser Ala Gln Arg Arg Lys Leu Gly Asp Ile Thr Asn Leu Gln 35 40 45

Asn Gln Lys Asn Leu Met Asn Gln Gly Ala Lys His Gln Gln Gln Ala 50 55 60

Ile Leu Ile Ser Ser Lys Glu Asn Ala Glu Asn Leu Gln Lys Ala Leu 65 70 75 80

Arg Asn Ser Ser Glu Asn Thr Lys Leu Met Lys Val Val Met Glu Arg 85 90 95

Asp Gly Ile Lys Ser Asp Leu Lys Lys Leu Arg Ile Glu Phe Gln Lys 100 105 110

<211> 556

<212> PRT

<213> Arabidopsis thaliana

- Val Gln Glu Gln Asn Leu Leu Ala Gln Ala Asn Thr Arg Ile Leu 115 120 125
- Ala Leu Lys Val Leu Gln His Glu Leu Gly Cys Lys Asn Gly Leu Val 130 135 140
- Met Ala Arg Lys Met Leu Leu Lys Ala Gln Ala Asn Ala Cys Gly Gly 145 150 155 160
- Ala Cys Lys Thr Phe Gln Pro Asn Asp Ala Asp His Glu His Ala Ser 165 170 175
- Gly Ser Ser Asn Ala Asn Ser Leu Gln Arg Asn Glu Lys Ala Asn Ser 180 185 190
- Lys Arg Arg Val Ser Gly Arg Lys Asn Pro Ala Asn Ser Glu Val Leu 195 200 205
- Asp Ile Ile Gly Arg Ser Gly Glu Thr Cys Gln Met Glu Asp Asn Ile 210 215 220
- Asp Asn Lys Lys Leu Val Ser Asp Ser Asp Asn Asp Ala Glu Asn His 225 230 235 240
- Ile Asn Asp Asn Val Gln Ser Lys Arg Tyr Cys Ala Gly Arg Gln Ser 245 250 255
- Ser Ser Ser Lys Thr Arg Glu Ala Ser Gln Thr Glu Thr Leu Gln Lys 260 265 270
- Val Val Asp Ala Lys Glu Ile Lys Gly Asp Ala Arg Phe Ser Leu Thr 275 280 285
- Lys His Ser Asp Trp Leu Lys Ser Gln Glu Pro Glu Pro Ser Glu Ser 290 295 300
- Leu Tyr Glu Ser Arg Phe Pro Leu Arg Arg Ser Ala Arg Leu Lys 305 310 315 320
- Ser Gln Glu Pro Glu Pro Ser Glu Ser Phe His Asp Ser Ile Glu Thr 325 330 335
- Thr Lys Arg Arg Ser Ala Ile Arg Ser Ala Met Phe Asn Ile Gln 340 345

Glu	Leu	Gly	۷al	Ile	Gln	S Asn	ubst Leu	itut Asn	e_Se Gly	quen Leu	ce_L Pro	isti Asp	ng.T Asp	XT Gln	Glu
		355					360		,			365	•		
Ile	Ala 370	Ala	Lys	Ala	Arg	Cys 375	Ser	Ala	Arg	Glu	G1n 380	Ser	Thr	Gly	Ser
Lys 385	Pro	Glu	Ala	Val	G1u 390	Pro	His	Asp	Thr	Lys 395	Glu	Ile	Ile	Gly	Lys 400
Ser	Arg	Ile	Ser	Leu 405	Arg	Arg	Gln	Ser	Ala 410	Arg	Phe	Asn	Phe	Gln 415	Glu
Leu	Gly	Val	Thr 420	Glu	Asn	Leu	Asn	Gly 425	Pro	His	Asp	Asp	G1n 430	Thr	Ile
Ala	Ala	Asn 435	Ala	Arg	Cys	Cys	Ala 440	Ser	Glu	Gln	Ser	Ile 445	Gly	Ser	Lys
Pro	Glu 450	Ala	Val	Glu	Pro	His 455	Asp	Ile	Glu	Glu	Arg 460	Ile	Gly	Lys	Ile
Arg 465	Val	Ser	Ser	Arg	Arg 470	Gln	Ser	Ala	Asn	Ile 475	Glu	Thr	Pro	Arg	Ala 480
Ile	Lys	Glu	Pro	Ala 485	Asn	Pro	Pro	Leu	ніs 490	Asp	Asp	Asn	Val	Glu 495	Glu
Ser	Ser	Gln	Ile 500	Ser	Cys	Ser	Val	Ser 505	Met	Glu	Leu	Lys	Arg 510	Glu	Ser
Lys	Lys	Lys 515	Pro	Thr	Gly	Asp	G1u 520	Ser	Glu	Glu	Met	Arg 525	Lys	Thr	Thr
Val	Gly 530	Arg	Pro	Ser	Arg	Gln 535	Ala	Ala	Glu	Lys	Ile 540	Lys	Ser	Tyr	Lys
Glu 545	Pro	Ser	Leu	Lys	G1u 550	Lys	Met	Arg	Gly	G]y 555	Phe				
<21(<21)		11 1341													
<212 <213		ONA Arabi	idops	sis t	:hali	iana									
<40(atg	-	11 aag a	aagag	gacgo	a go	cagaa	aggaa	a aat	atgo	ctat	tcto	cttco	ca g	ggaat	atgct
gcaa	aagct	ttc a	aaag	ggcat	t to	ctct	tcac	ttt	aato	ttg	aaaa	acato	gac a	actga	ıtgaaa

gctctagcac	accgaaataa	actcgtcgag	ttgagcggta	ttgagattca	gaaactgagg	180
attaacttac	ggagtgtgca	ggaaaagaat	ttgcagcttg	ctcaggcaaa	cagtcagatg	240
ttagcgctca	aggatctcca	gcatgaactt	ggctgcaaga	atgctttact	taaagtcaag	300
aaacatcttg	aggagcaagt	acttccacgt	acacatcatg	aatcgaaaga	caaggtttca	360
gcaagcgctt	ctgatgggga	ttgcaaatcc	tttcaggtgc	atgacataaa	acataaagat	420
accaagagaa	agcgaacaac	aaggataaaa	tcttcagtaa	gtgccgacgt	caagccaata	480
cctgtgaatg	attctaacag	taaagctaac	cgtaaaagaa	gagtttctgg	agtaatagat	540
actactggta	ttcccgaaga	gatctgtcag	actgaagatg	acattgataa	gggggttgtc	600
tctcgagggg	taaaccaaga	tattgacaat	gttgtcaaca	agaagtttgt	tcctgatgca	660
gcaaacccgg	taaaagagag	tgtgcatcgc	aagaggcaat	gtacacgaag	gcaatctacc	720
agatttgatg	ttcaagaaac	taaacaaacg	gaaaagttgc	ttgagatgga	tggtgccaaa	780
gaaagtaaag	aaaccgcaag	cttctctttg	agaagacggt	ctgctcggtt	aaggcacgaa	840
gaagctgaac	catgtaaaag	cttacatgag	ggagacgaag	tcagggagac	aatcaagagg	900
agaagagtct	ctttaagact	gtctgcaagg	tttgatatac	aagaaccgca	tgtgactgaa	960
acctcgaatg	ctgacgatgc	aagaagcata	gtaatcgaag	aatctgctgg	atcaagatcg	1020
gaatctgtag	aaccatccga	aagcaggcat	gaaacaaaag	agataacccg	gaaacgcagt	1080
ttctcaacga	gaagacaatc	aacaaagggt	aaatctcaaa	ccgatgaagc	cattaaagaa	1140
atagcgacag	acccatcttt	ggtcaacacc	atagttcaag	agtgtgatca	ggaaacagaa	1200
tcaaaggata	agcctaaagc	tgatgaaaac	gaagggatga	caagaagatc	atctgtggga	1260
agaccatcga	gacatgccgc	agagaaagtc	caatcataca	gagaagtctc	acttagagta	1320
aagatgcgac	gaaaatgcta	a				1341

<210> 12 <211> 446 <212> PRT <213> Arabidopsis thaliana

Met Asp Lys Glu Glu Thr Gln Gln Lys Glu Asn Met Leu Phe Ser Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gln Glu Tyr Ala Ala Lys Leu Gln Lys Ala Phe Pro Leu His Phe Asn 20 25 30

Leu Glu Asn Met Thr Leu Met Lys Ala Leu Ala His Arg Asn Lys Leu 35 40 45

⁽²¹³⁾ Mastaops is charrana

<400> 12

Substitute_Sequence_Listing.TXT Val Glu Leu Ser Gly Ile Glu Ile Gln Lys Leu Arg Ile Asn Leu Arg 50 55 60 Ser Val Gln Glu Lys Asn Leu Gln Leu Ala Gln Ala Asn Ser Gln Met 70 75 80 Leu Ala Leu Lys Asp Leu Gln His Glu Leu Gly Cys Lys Asn Ala Leu 85 90 95 Leu Lys Val Lys Lys His Leu Glu Glu Gln Val Leu Pro Arg Thr His $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ His Glu Ser Lys Asp Lys Val Ser Ala Ser Ala Ser Asp Gly Asp Cys 115 120 125 Lys Ser Phe Gln Val His Asp Ile Lys His Lys Asp Thr Lys Arg Lys 130 140 Arg Thr Thr Arg Ile Lys Ser Ser Val Ser Ala Asp Val Lys Pro Ile 145 150 155 160 Pro Val Asn Asp Ser Asn Ser Lys Ala Asn Arg Lys Arg Arg Val Ser 165 170 175 Gly Val Ile Asp Thr Thr Gly Ile Pro Glu Glu Ile Cys Gln Thr Glu Asp Asp Ile Asp Lys Gly Val Val Ser Arg Gly Val Asn Gln Asp Ile Asp Asn Val Val Asn Lys Lys Phe Val Pro Asp Ala Ala Asn Pro Val 210 215 220 Lys Glu Ser Val His Arg Lys Arg Gln Cys Thr Arg Arg Gln Ser Thr 225 230 235 240 Arg Phe Asp Val Gln Glu Thr Lys Gln Thr Glu Lys Leu Leu Glu Met 255 Asp Gly Ala Lys Glu Ser Lys Glu Thr Ala Ser Phe Ser Leu Arg Arg Arg Ser Ala Arg Leu Arg His Glu Glu Ala Glu Pro Cys Lys Ser Leu 275 280 285 His Glu Gly Asp Glu Val Arg Glu Thr Ile Lys Arg Arg Arg Val Ser 290 295 300

	_ 3
Leu Arg Leu Ser Ala Arg Phe Asp Ile Gln Glu 305 310 315	ı Pro His Val Thr Glu 320
Thr Ser Asn Ala Asp Asp Ala Arg Ser Ile Val	Ile Glu Glu Ser Ala 335
Gly Ser Arg Ser Glu Ser Val Glu Pro Ser Glu 340 345	ı Ser Arg His Glu Thr 350
Lys Glu Ile Thr Arg Lys Arg Ser Phe Ser Thr 355 360	Arg Arg Gln Ser Thr 365
Lys Gly Lys Ser Gln Thr Asp Glu Ala Ile Lys 370 375	Glu Ile Ala Thr Asp 380
Pro Ser Leu Val Asn Thr Ile Val Gln Glu Cys 385 390 395	s Asp Gln Glu Thr Glu 5 400
Ser Lys Asp Lys Pro Lys Ala Asp Glu Asn Glu 405 410	ı Gly Met Thr Arg Arg 415
Ser Ser Val Gly Arg Pro Ser Arg His Ala Ala 420 425	a Glu Lys Val Gln Ser 430
Tyr Arg Glu Val Ser Leu Arg Val Lys Met Arg 435 440	g Arg Lys Cys 445
<210> 13 <211> 1554 <212> DNA <213> mouse	
<400> 13 atggctaagg aaaggtgtca gaaaaggtcc tttcaagata	a cccttgaaga cattaagaat 60
cgaatgaaag aaaaaaggaa taaaaatttg gcggggattg	
gttgcaccgg gccaagtacc cactaacact gctacactac	
aacaggttgt tagtcttggc tttggaaaat gagaaatcca	
gtcatcctgc aactgagaaa agaatgctac taccttactt	
gagaagctaa cttcccgaca aagtgaagaa actactcaga	a actggaaagg acgtccctca 360
gacgtggtct ccagcattga caatacgacc agggacttgt	
attgctgttg aagaaactga ttgtccttac caaaccacag	
ccagagacac agggttgcga ttttgattca ggtaaagttg	
cccagaacta tatctatccg tcgccattta aggaaagatt	

acgactttgg	aggattgtaa	agccagtcca	agagtggcac	agtctctgga	agttaaagga	660
agtagatgta	gagaagtaac	cgtaaccctg	cacagacttg	aaaatgtttg	tctgtggaac	720
aaagaccaaa	ttagcttatg	ttctagactg	attaacccag	caaagattac	tgaaacagaa	780
gtcattttat	catctaaacc	tgaacaaata	gaaagcaagc	ataaacgtgc	acgaaaaaga	840
agagcagagc	aaagaagaac	caagcagaga	tgcaaatcaa	aatcctcatt	gaggagtaag	900
gggaacaaaa	acaaagataa	gcagggttta	cccctacta	cactggatgg	aggtattggt	960
tcctgtgatg	cttacgattt	taatctaaaa	gggacggtcc	accccacccc	tttccgacaa	1020
aaaatgaaca	atggctgcaa	caaagaaacg	gatagcagca	actcagaagt	gagtgacctc	1080
gaatgcagta	cctctgagga	tgagtctgat	gacctctacc	tgcctccctc	caagcgcttg	1140
cgagactaca	gagagtcaga	gagagcagtt	accaggcctc	ggtctaaaag	aggacttcag	1200
tacccagatg	ggaaagagag	gaaggaggtg	ctgccatcta	cagctcctac	tggtatccca	1260
cctgagactc	aagagtcacc	tcgttgtagc	ctaaaggatg	tcaccaatat	cctgcagtgt	1320
cctagagtga	agatcaggaa	gccttctctg	cctccaaagc	ggcgtgaaga	cagcccagca	1380
gtggctctga	ctaaacgcag	gtgtagcacc	atcaaaagct	ataaagagcc	aacactcgct	1440
tcaaagctaa	gaagagggga	ccctttcacg	gacttgtgtt	tcttgaattc	tcctattttc	1500
aagcagaaaa	ggggtatgag	atgtcctaaa	agaagaacca	agcaaacaca	gtaa	1554

<210> 14

<400> 14

Met Ala Lys Glu Arg Cys Gln Lys Arg Ser Phe Gln Asp Thr Leu Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asp Ile Lys Asn Arg Met Lys Glu Lys Arg Asn Lys Asn Leu Ala Gly 20 25 30

Ile Gly Lys Arg Lys Ser Phe Ile Val Ala Pro Gly Gln Val Pro Thr 35 40 45

Asn Thr Ala Thr Leu Leu Arg Tyr Tyr Gln Asp Asn Asn Arg Leu Leu 50 55 60

Val Leu Ala Leu Glu Asn Glu Lys Ser Lys Val Arg Glu Ala Gln Asp 65 70 75 80

Val Ile Leu Gln Leu Arg Lys Glu Cys Tyr Tyr Leu Thr Cys Gln Leu Page 22

<211> 517

<212> PRT

<213> mosue

Tyr Ala Leu Lys Glu Lys Leu Thr Ser Arg Gln Ser Glu Glu Thr Thr 100 105 110Gln Asn Trp Lys Gly Arg Pro Ser Asp Val Val Ser Ser Ile Asp Asn 115 120 125 Thr Thr Arg Asp Leu Ser Gly Lys Ser Leu Gln Gln Ile Ala Val Glu 130 140 Glu Thr Asp Cys Pro Tyr Gln Thr Thr Glu Pro Ser Pro Ala Val Thr 145 150 155 160 Pro Glu Thr Gln Gly Cys Asp Phe Asp Ser Gly Lys Val Glu Ser Thr 165 170 175 Asp Glu Val Leu Pro Arg Thr Ile Ser Ile Arg Arg His Leu Arg Lys 180 Asp Phe Ser Asn Ile Ser His Ser Thr Thr Leu Glu Asp Cys Lys Ala 195 200 Ser Pro Arg Val Ala Gln Ser Leu Glu Val Lys Gly Ser Arg Cys Arg 210 215 220 Glu Val Thr Val Thr Leu His Arg Leu Glu Asn Val Cys Leu Trp Asn Lys Asp Gln Ile Ser Leu Cys Ser Arg Leu Ile Asn Pro Ala Lys Ile 245 250 255 Thr Glu Thr Glu Val Ile Leu Ser Ser Lys Pro Glu Gln Ile Glu Ser 260 265 270 Lys His Lys Arg Ala Arg Lys Arg Ala Glu Gln Arg Arg Thr Lys 275 280 285 Gln Arg Cys Lys Ser Lys Ser Ser Leu Arg Ser Lys Gly Asn Lys Asn 290 295 300 Lys Asp Lys Gln Gly Leu Pro Pro Thr Thr Leu Asp Gly Gly Ile Gly Ser Cys Asp Ala Tyr Asp Phe Asn Leu Lys Gly Thr Val His Pro Thr 325 330 335

Substitute_Sequence_Listing.TXT Pro Phe Arg Gln Lys Met Asn Asn Gly Cys Asn Lys Glu Thr Asp Ser 340 345 350 Ser Asn Ser Glu Val Ser Asp Leu Glu Cys Ser Thr Ser Glu Asp Glu Ser Asp Asp Leu Tyr Leu Pro Pro Ser Lys Arg Leu Arg Asp Tyr Arg Glu Ser Glu Arg Ala Val Thr Arg Pro Arg Ser Lys Arg Gly Leu Gln Tyr Pro Asp Gly Lys Glu Arg Lys Glu Val Leu Pro Ser Thr Ala Pro 405 410 415 Thr Gly Ile Pro Pro Glu Thr Gln Glu Ser Pro Arg Cys Ser Leu Lys Asp Val Thr Asn Ile Leu Gln Cys Pro Arg Val Lys Ile Arg Lys Pro 435 440 445 Ser Leu Pro Pro Lys Arg Arg Glu Asp Ser Pro Ala Val Ala Leu Thr 450 455 460 Lys Arg Arg Cys Ser Thr Ile Lys Ser Tyr Lys Glu Pro Thr Leu Ala 465 470 475 480 Ser Lys Leu Arg Gly Asp Pro Phe Thr Asp Leu Cys Phe Leu Asn 485 490 495 Ser Pro Ile Phe Lys Gln Lys Arg Gly Met Arg Cys Pro Lys Arg Arg 500 510 Thr Lys Gln Thr Gln 515 <210> 3495 <212> DNA mouse <400> 15 60 atggagtacc cagggataaa agttgacact gttacctctg gaattcagag acgagtgaag ggcagaattg caaagacaaa tttgaatgtt tctcttgctt caaagatcaa agcaaaaata 120 180 ttaaacaatt cttctatttt caagatctct ctaaagcaca acaacagagc attagcgcgg 240 gcccttagta aagagaaaga gaattctcga agaattacta ccgaaaagat gcaattacag 300 aaagaagtag agaaactgaa ttttgagaat acctttcttc gcttaaagtt aaataccttg

aataagaagc	ttgtagaaat	agaatcgcat	gtgagcaatg	atttgttaac	tgcaattgaa	360
ataagcagtc	tttctgagtt	ccaccaaggt	tcttttctcc	tgtcagctac	caagaaacaa	420
aggaacagta	agcagtgcaa	gcctgcgcat	cttccatatg	caagagttct	gttaacttca	480
gaaaatgatg	atgatgatgg	tgctgatgat	aaatggcaga	caaagtgtaa	caacagaact	540
atatcaaaga	cctcacctga	tagtacctct	tcagtatcaa	gacaaccttc	atccttacat	600
cagtgcaatt	tgaaagcatt	ccctcctaaa	gaagataatc	agaagacatg	tgggtcaggt	660
catttagaac	atacttcaag	tgttgatata	cttcctaatg	agagccactc	agatcaaagt	720
cctaagagtt	ctctgagtga	gatgaaaact	gctccatctc	ccagcctcag	aagggaaaaa	780
ttatcacatg	gtaatgtgac	tatgaggaag	aagtgtgtgt	cttcaactcc	agacattctg	840
tatgtgacag	atttagatca	ccaaccaact	tcaagtccag	gatcaaattg	gaataatgag	900
atacatggtc	atactaatga	aaccagcaat	aacacgcaaa	gaaatgccga	gtgttttctt	960
gacttacctt	ctgagtcttc	cagtgagcct	gacgcaaagc	gcatggagct	agtgcagaag	1020
aacaccgata	gctttcactt	ccagaaaact	gtatatgatg	ccgctgatat	ggagttaact	1080
gctactgaca	taggcaagat	tgtagcagtt	tcaaaaagca	agaaaaatca	aaataagaaa	1140
aaggcagact	gtagaaagga	gactttcaga	aaagtgaaag	gtgcaagctc	tgataaaaag	1200
agagaaagct	caaagagaga	atgtaaagat	ggttcagaag	taggtgctga	ggaagaggct	1260
gatgcagcca	gagcagaaag	aggcgctggt	gtcctggatg	gcagagggga	ttcagaagag	1320
ccaaactgca	tttccagtac	tgagcagcca	tctcaggtaa	acacgcaaaa	gaaaagaacc	1380
ctccagaaca	gctcagatca	ggagaacatt	caaaatacga	agaggaggca	aacatatacg	1440
acagatgagc	aagaggaaac	aaaccctttc	tccagacatt	cagtcaaatt	tcttcaagat	1500
ggtaaatttg	atctgtgtca	gaaaacccta	catcataatt	taagtaagcc	ttctcgacag	1560
acatttgtga	ttcgtaagtc	agaaaaagat	aacttatttc	caaatcaaga	agataaagac	1620
accatttctg	aaaacctaga	agttacaaat	gaatttcata	tagatgatct	ttccatcgaa	1680
gctaatgaaa	atgtatgtga	ccatgagact	cagacaatgt	tggacttgaa	aaagtctgtc	1740
agtgctcaac	aaaatcaaac	aaaaataaat	aagactaagc	agaaaataaa	tcgaaggaca	1800
aaaataattt	ctgtcatgag	ccaagtatat	gaggacaatg	ataaagatat	tcacgtccta	1860
gaaaaagaca	actttccctt	tcatacccaa	gcaaataaag	aaaccaccag	tggaaaccta	1920
gaaagttcaa	aagaatttga	atcacctctt	cttttcacaa	gagacaacgg	aagcttacgt	1980
gactgtaaga	cccagaatgt	tctggatctg	cacaagcaaa	ttcctgatct	ataccctgat	2040
cggaatgagt	cccagattag	caaaatccct	aggcaaaaag	taaatcgcaa	gacagaagta	2100
atttctggag	tgaaatgttt	tagtaatgac	caaggtgttc	attgctcaga	aaaggataag	2160

Substitute_Sequence_Listing.TXT 2220 tctttgttac tacaaaagga taaagacttc ccaggaactt taaaagactt aagtgagttt 2280 gatacgcctg ctttttgtaa caaagatagt gcaaagtcgt gtgattataa gtctgaaatg 2340 ctcttggggt tgaaaaaaca tgaccctaat atgcaacctg cttgtcaaga tgattcaaaa 2400 gcaggtaaga aacttagaca aaaggtaaat cgaaaaaacag aaataatttc taaaatcacc 2460 caaatacatg aaaatgatag aggaagtaca catgactcat taaataagaa gctctgtcag 2520 aaggttaata tatcaaaaat catttctcaa atgaaccaaa tatatgagac tattaatgaa 2580 gatggaaatg gctttaaaag ctctatcaaa gattgcgaag atattaaaag ttgtgacttt 2640 ggggaaatca acagtaataa aaaggaaaat tatgatccaa ttcaagatcc ttgcacactg 2700 gttaaaaaaa caaagagaaa gggatcatgt aaagcaggga gcagtttggc aggagctaag aacaggtgtg gtttgcagtt aacagactct tcccaggtac agtctgtccc cttagactct 2760 ggcttaagac accatccaaa cgaagcagat tctggtcctg gagagcagac taacctgcca 2820 aagatgcaga aacaaagcgc tgggaggtca ctgggagatg ctttctctgt gagtctggga 2880 aaagaaggaa gccgcccagc caaagcagtt agtaaaatga cacccaaatc aaagaagaga 2940 3000 aagctccctc tcggttgttc tcctgaaacc cacgggacgg tggagataac acccaacact 3060 gacctcgcta aggctgttga ctcccaacag actgagaagg agaactattt ggagaaggag 3120 aaaattgcca agaggaagcc agatttttgt acaaaggtgt tgaaaccttt atctgagaca tgttcatcta acataaagaa ttcttccttg gacagtatgt gtaagagttc gctacctttg 3180 3240 agtatttctt ctagaaaaac cctgatgctg gaagaaagtt cttccctgga gagtacatgc 3300 atctttcaag taggtgatgc cgctcatgag aagataacga caggcacacg taatccccac 3360 cacaggacac agaagtcgac accgggtagc agaacgtccc tggtcttggt ggataccagt 3420 tctgtttcag ataccaaccc tgctaacccc gagaatgagt cagaagggca gtcttcacac

<210> 16 <211> 1164 <212> PRT <213> mouse

aagatgagga gataa

<400> 16

Met Glu Tyr Pro Gly Ile Lys Val Asp Thr Val Thr Ser Gly Ile Gln 10 15

ccaatgagaa ggaaaagaca gtgcgtccct ctcaacctga cagagccaag ccttagaagc

3480

3495

Arg Arg Val Lys Gly Arg Ile Ala Lys Thr Asn Leu Asn Val Ser Leu 20 25 30

Ala Ser Lys Ile Lys Ala Lys Ile Leu Asn Asn Ser Ser Ile Phe Lys Page 26

Ile Ser Leu Lys His Asn Asn Arg Ala Leu Ala Arg Ala Leu Ser Lys 50 55 60 Glu Lys Glu Asn Ser Arg Arg Ile Thr Thr Glu Lys Met Gln Leu Gln 65 70 75 80 Lys Glu Val Glu Lys Leu Asn Phe Glu Asn Thr Phe Leu Arg Leu Lys 85 90 95 Leu Asn Thr Leu Asn Lys Lys Leu Val Glu Ile Glu Ser His Val Ser Asn Asp Leu Leu Thr Ala Ile Glu Ile Ser Ser Leu Ser Glu Phe His Gln Gly Ser Phe Leu Leu Ser Ala Thr Lys Lys Gln Arg Asn Ser Lys Gln Cys Lys Pro Ala His Leu Pro Tyr Ala Arg Val Leu Leu Thr Ser 145 150 155 160 150 160 Glu Asn Asp Asp Asp Gly Ala Asp Asp Lys Trp Gln Thr Lys Cys
165 170 175 Asn Asn Arg Thr Ile Ser Lys Thr Ser Pro Asp Ser Thr Ser Ser Val 180 Ser Arg Gln Pro Ser Ser Leu His Gln Cys Asn Leu Lys Ala Phe Pro 195 200 205 Pro Lys Glu Asp Asn Gln Lys Thr Cys Gly Ser Gly His Leu Glu His 210 215 220 Thr Ser Ser Val Asp Ile Leu Pro Asn Glu Ser His Ser Asp Gln Ser 225 230 Pro Lys Ser Ser Leu Ser Glu Met Lys Thr Ala Pro Ser Pro Ser Leu Arg Arg Glu Lys Leu Ser His Gly Asn Val Thr Met Arg Lys Lys Cys 260 270 Val Ser Ser Thr Pro Asp Ile Leu Tyr Val Thr Asp Leu Asp His Gln 275 280

Pro	Thr 290	Ser	Ser	Pro	Gly		Asn								His
Thr 305	Asn	Glu	Thr	Ser	Asn 310	Asn	Thr	Gln	Arg	Asn 315	Ala	Glu	Cys	Phe	Leu 320
Asp	Leu	Pro	Ser	Glu 325	Ser	Ser	Ser	Glu	Pro 330	Asp	Ala	Lys	Arg	Met 335	Glu
Leu	Val	Gln	Lys 340	Asn	Thr	Asp	Ser	Phe 345	His	Phe	Gln	Lys	Thr 350	Val	Tyr
Asp	Ala	Ala 355	Asp	Met	Glu	Leu	Thr 360	Ala	Thr	Asp	Ile	Gly 365	Lys	Ile	Val
Ala	Val 370	Ser	Lys	Ser	Lys	Lys 375	Asn	Gln	Asn	Lys	Lys 380	Lys	Ala	Asp	Cys
Arg 385	Lys	Glu	Thr	Phe	Arg 390	Lys	Val	Lys	Gly	Ala 395	Ser	Ser	Asp	Lys	Lys 400
Arg	Glu	Ser	Ser	Lys 405	Arg	Glu	Cys	Lys	Asp 410	Gly	Ser	Glu	Val	Gly 415	Ala
Glu	Glu	Glu	Ala 420	Asp	Ala	Ala	Arg	Ala 425	Glu	Arg	Gly	Ala	Gly 430	Val	Leu
Asp	Gly	Arg 435	Gly	Asp	Ser	Glu	Glu 440	Pro	Asn	Cys	Ile	Ser 445	Ser	Thr	Glu
Gln	Pro 450	Ser	Gln	Val	Asn	Thr 455	Gln	Lys	Lys	Arg	Thr 460	Leu	Gln	Asn	Ser
Ser 465	Asp	Gln	Glu	Asn	Ile 470	Gln	Asn	Thr	Lys	Arg 475	Arg	Gln	Thr	Tyr	Thr 480
Thr	Asp	Glu	Gln	Glu 485	Glu	Thr	Asn	Pro	Phe 490	Ser	Arg	His	Ser	Val 495	Lys
Phe	Leu	Gln	Asp 500	Gly	Lys	Phe	Asp	Leu 505	Cys	Gln	Lys	Thr	Leu 510	His	His
Asn	Leu	ser 515	Lys	Pro	Ser	Arg	Gln 520	Thr	Phe	Val	Ile	Arg 525	Lys	Ser	Glu
Lys	Asp 530	Asn	Leu	Phe	Pro	Asn 535	Gln	Glu	Asp	Lys	Asp 540	Thr	Ile	Ser	Glu

Asn Leu Glu Val Thr Asn Glu Phe His Ile Asp Asp Leu Ser Ile Glu 545 550 555 560 Ala Asn Glu Asn Val Cys Asp His Glu Thr Gln Thr Met Leu Asp Leu 565 570 575 Lys Lys Ser Val Ser Ala Gln Gln Asn Gln Thr Lys Ile Asn Lys Thr 580 585 590 Lys Gln Lys Ile Asn Arg Arg Thr Lys Ile Ile Ser Val Met Ser Gln $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$ Val Tyr Glu Asp Asn Asp Lys Asp Ile His Val Leu Glu Lys Asp Asn 610 620 Phe Pro Phe His Thr Gln Ala Asn Lys Glu Thr Thr Ser Gly Asn Leu 630 640 Glu Ser Ser Lys Glu Phe Glu Ser Pro Leu Leu Phe Thr Arg Asp Asn Gly Ser Leu Arg Asp Cys Lys Thr Gln Asn Val Leu Asp Leu His Lys Gln Ile Pro Asp Leu Tyr Pro Asp Arg Asn Glu Ser Gln Ile Ser Lys 675 680 685 Ile Pro Arg Gln Lys Val Asn Arg Lys Thr Glu Val Ile Ser Gly Val Lys Cys Phe Ser Asn Asp Gln Gly Val His Cys Ser Glu Lys Asp Lys 705 710 715 720 Ser Leu Leu Gln Lys Asp Lys Asp Phe Pro Gly Thr Leu Lys Asp 725 730 735 Leu Ser Glu Phe Asp Thr Pro Ala Phe Cys Asn Lys Asp Ser Ala Lys 740 745 750 Ser Cys Asp Tyr Lys Ser Glu Met Leu Leu Gly Leu Lys Lys His Asp 755 760 765 Pro Asn Met Gln Pro Ala Cys Gln Asp Asp Ser Lys Ala Gly Lys Lys 770 780 Leu Arg Gln Lys Val Asn Arg Lys Thr Glu Ile Ile Ser Lys Ile Thr 785 790 795 800

Gln Ile His Glu Asn Asp Arg Gly Ser Thr His Asp Ser Leu Asn Lys 805 Lys Leu Cys Gln Lys Val Asn Ile Ser Lys Ile Ile Ser Gln Met Asn Gln Ile Tyr Glu Thr Ile Asn Glu Asp Gly Asn Gly Phe Lys Ser Ser 835 840 845 Ile Lys Asp Cys Glu Asp Ile Lys Ser Cys Asp Phe Gly Glu Ile Asn 850 860 Ser Asn Lys Lys Glu Asn Tyr Asp Pro Ile Gln Asp Pro Cys Thr Leu Val Lys Lys Thr Lys Arg Lys Gly Ser Cys Lys Ala Gly Ser Ser Leu 885 890 895 Ala Gly Ala Lys Asn Arg Cys Gly Leu Gln Leu Thr Asp Ser Ser Gln Val Gln Ser Val Pro Leu Asp Ser Gly Leu Arg His His Pro Asn Glu Ala Asp Ser Gly Pro Gly Glu Gln Thr Asn Leu Pro Lys Met Gln Lys Gln Ser Ala Gly Arg Ser Leu Gly Asp Ala Phe Ser Val Ser Leu Gly Lys Glu Gly Ser Arg Pro Ala Lys Ala Val Ser Lys Met Thr Pro Lys Ser Lys Lys Arg Lys Leu Pro Leu Gly Cys Ser Pro Glu Thr His Gly 980 985 990 Thr Val Glu Ile Thr Pro Asn Thr Asp Leu Ala Lys Ala Val Asp Ser 995 1000 Gln Gln Thr Glu Lys Glu Asn Tyr Leu Glu Lys Glu Lys Ile Ala 1010 1015 1020 Lys Arg Lys Pro Asp Phe Cys Thr Lys Val Leu Lys Pro Leu Ser 1025 1030 1035 Glu Thr Cys Ser Ser Asn Ile Lys Asn Ser Ser Leu Asp Ser Met

Page 30

Substitute_Sequence_Listing.TXT 1040 Cys Lys Ser Ser Leu Pro Leu Ser Ile Ser Ser Arg Lys Thr Leu 1055 1060 1065 Met Leu Glu Glu Ser Ser Ser Leu Glu Ser Thr Cys Ile Phe Gln 1075 1080 1070 Val Gly Asp Ala Ala His Glu Lys Ile Thr Thr Gly Thr Arg Asn Pro His His Arg Thr Gln Lys Ser Thr Pro Gly Ser Arg Thr Ser 1100 1105 1110 Leu Val Leu Val Asp Thr Ser Ser Val Ser Asp Thr Asn Pro Ala 1115 1120 1125 Glu Asn Glu Ser Glu Gly Gln Ser Ser His Pro Met Arg Asn Pro 1130 1140 Arg Lys Arg Gln Cys Val Pro Leu Asn Leu Thr Glu Pro Ser Leu 1145 1155 1150 Arg Ser Lys Met Arg Arg 1160 <210> 17 1584 <211> DNA <213> Homo sapiens <400> 17 60 atggccaagg aaagatgcct gaaaaagtcc tttcaagata gtcttgaaga cataaagaag cgaatgaaag agaaaaggaa taaaaacttg gcagagattg gcaaacgcag gtcttttata 120 gctgcaccat gccaaataat caccaacact tctacactgc tgaaaaatta ccaagacaac 180 240 aacaaaatgt tagttttagc tttggaaaat gaaaaatcca aagtgaaaga agcccaagat atcatcctac agctgagaaa agaatgttac tatctcacat gtcagctata tgcattgaaa 300 ggaaaactta catcacaaca aacagtagaa cctgctcaga accaggaaat atgttcctct 360 ggaatggacc ccaatagtga tgacagctcc agaaatttat ttgtgaagga tttaccgcaa 420 480 attcctcttg aagaaactga acttccagga caaggagaat catttcaaat agaagatcag 540 atacctacta ttcctcaaga cacactggga gttgattttg attcaggtga agctaagtct actgataatg tcttacctag aactgtatct gttcgtagca gtttaaagaa acattgtaac 600 660 agtatatgtc agtttgatag cttggatgat tttgaaacca gtcatttggc agggaagtct

+++++		tute_Sequen			720
tttgaattcg aaagagttgg	attttagac	ccactagtaa	acatgcacat	acctgaaaat	720
gtacaacaca atgcttgtca	atggagcaag	gaccaagtta	acttatcacc	aaagctgatt	780
cagccaggaa cgtttactaa	aacaaaagaa	gacattttag	aatctaaatc	tgaacaaact	840
aaaagtaagc aaagagatac	acaagaaaga	aaaagagaag	agaaaagaaa	agctaacagg	900
agaaaatcaa aacgtatgtc	aaaatataaa	gagaataaaa	gcgaaaataa	aaaaactgtt	960
ccccaaaaaa aaatgcacaa	atctgtcagt	tccaatgatg	cttacaattt	taatttggaa	1020
gagggtgttc atcttactcc	tttccgacaa	aaagtgagca	atgactctaa	tagagaagaa	1080
aacaacgagt ctgaagtgag	cctctgtgaa	tcaagtggtt	caggagatga	ttccgatgac	1140
ctctatttgc ccacttgcaa	gtacattcag	aatcccacga	gcaattcaga	tagaccagtc	1200
accaggcctc tagctaaaag	agcactgaaa	tacacagatg	aaaaagagac	ggagggttct	1260
aagccaacaa aaactcctac	cactacacca	cctgaaactc	agcagtcacc	tcatcttagc	1320
ctgaaggata tcaccaatgt	ctccttgtat	cctgttgtga	aaatcagaag	actttctctt	1380
tctccaaaaa agaataaagc	aagcccagca	gtggctctgc	ctaaacgtag	gtgcacagcc	1440
agcgtgaact ataaggagcc	caccctcgct	tcgaaactga	gaagaggga	cccttttaca	1500
gatttgtgtt ttttgaattc	tcctattttc	aagcagaaaa	aggatttgag	acgttctaaa	1560
aaaagtatga aacaaataca	atga				1584

<210> 18 <211> 527

<212> PRT

<213> Homo sapiens

<400> 18

Met Ala Lys Glu Arg Cys Leu Lys Lys Ser Phe Gln Asp Ser Leu Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Asp Ile Lys Lys Arg Met Lys Glu Lys Arg Asn Lys Asn Leu Ala Glu 20 25 30

Ile Gly Lys Arg Arg Ser Phe Ile Ala Ala Pro Cys Gln Ile Ile Thr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asn Thr Ser Thr Leu Leu Lys Asn Tyr Gln Asp Asn Asn Lys Met Leu 50 60

Val Leu Ala Leu Glu Asn Glu Lys Ser Lys Val Lys Glu Ala Gln Asp 65 70 75 80

Ile Ile Leu Gln Leu Arg Lys Glu Cys Tyr Tyr Leu Thr Cys Gln Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Tyr Ala Leu Lys Gly Lys Leu Thr Ser Gln Gln Thr Val Glu Pro Ala Gln Asn Gln Glu Ile Cys Ser Ser Gly Met Asp Pro Asn Ser Asp Asp Ser Ser Arg Asn Leu Phe Val Lys Asp Leu Pro Gln Ile Pro Leu Glu Glu Thr Glu Leu Pro Gly Gln Gly Glu Ser Phe Gln Ile Glu Asp Gln Ile Pro Thr Ile Pro Gln Asp Thr Leu Gly Val Asp Phe Asp Ser Gly 165 170 175 Glu Ala Lys Ser Thr Asp Asn Val Leu Pro Arg Thr Val Ser Val Arg 180 Ser Ser Leu Lys Lys His Cys Asn Ser Ile Cys Gln Phe Asp Ser Leu Asp Asp Phe Glu Thr Ser His Leu Ala Gly Lys Ser Phe Glu Phe Glu Arg Val Gly Phe Leu Asp Pro Leu Val Asn Met His Ile Pro Glu Asn 225 230 235 240 Val Gln His Asn Ala Cys Gln Trp Ser Lys Asp Gln Val Asn Leu Ser 245 250 255 Pro Lys Leu Ile Gln Pro Gly Thr Phe Thr Lys Thr Lys Glu Asp Ile Leu Glu Ser Lys Ser Glu Gln Thr Lys Ser Lys Gln Arg Asp Thr Gln 275 280 285 280 Glu Arg Lys Arg Glu Glu Lys Arg Lys Ala Asn Arg Arg Lys Ser Lys 290 295 300 Arg Met Ser Lys Tyr Lys Glu Asn Lys Ser Glu Asn Lys Lys Thr Val Pro Gln Lys Lys Met His Lys Ser Val Ser Ser Asn Asp Ala Tyr Asn

Phe Asn Leu Glu Glu Gly Val His Leu Thr Pro Phe Arg Gln Lys Val 340 345 350

Ser	Asn	Asp 355	Ser	Asn	Arg	Glu	G1u 360	Asn	Asn	Glu	Ser	Glu 365	Val	Ser	Leu		
Cys	G1u 370	Ser	Ser	Gly	Ser	Gly 375	Asp	Asp	Ser	Asp	Asp 380	Leu	Tyr	Leu	Pro		
Thr 385	Cys	Lys	Tyr	Ile	G1n 390	Asn	Pro	Thr	Ser	Asn 395	Ser	Asp	Arg	Pro	Val 400		
Thr	Arg	Pro	Leu	Ala 405	Lys	Arg	Ala	Leu	Lys 410	Tyr	Thr	Asp	Glu	Lys 415	Glu		
Thr	Glu	Gly	Ser 420	Lys	Pro	Thr	Lys	Thr 425	Pro	Thr	Thr	Thr	Pro 430	Pro	Glu		
Thr	Gln	Gln 435	Ser	Pro	His	Leu	Ser 440	Leu	Lys	Asp	Ile	Thr 445	Asn	Val	Ser		
Leu	Tyr 450	Pro	Val	Val	Lys	Ile 455	Arg	Arg	Leu	Ser	Leu 460	Ser	Pro	Lys	Lys		
Asn 465	Lys	Ala	Ser	Pro	Ala 470	Val	Ala	Leu	Pro	Lys 475	Arg	Arg	Cys	Thr	Ala 480		
Ser	Val	Asn	Tyr	Lys 485	Glu	Pro	Thr	Leu	Ala 490	Ser	Lys	Leu	Arg	Arg 495	Gly		
Asp	Pro	Phe	Thr 500	Asp	Leu	Cys	Phe	Leu 505	Asn	Ser	Pro	Ile	Phe 510	Lys	Gln		
Lys	Lys	Asp 515	Leu	Arg	Arg	Ser	Lys 520	Lys	Ser	Met	Lys	G1n 525	Ile	Gln			
<210 <211 <212 <213	L> 3 2> 0	L9 3798 DNA Homo	sapi	iens													
<400 ataa		L9 acc d	cagto	atao	ıa aa	actac	ıctca	ı ctt	ttta	ıcct	cago	aatt	aa o	nagag	catttg	60)
															ataaaa	120	
					_							-			agggca	180	
												-			agatg	240	
				-						-	-			_	agcta	300	
	-		-				•						-		ataact	360)

gcaactgaaa	tgagcagtct	ttctgagttc	catcagagtt	cctttctact	gtcagctagc	420
aagaagaaac	gagttagtaa	acagtgcaag	ttgatgcgtc	ttccatttgc	aagggttcca	480
ttaacttcaa	atgatgatga	agatgaagat	aaagagaaaa	tgcagtgtga	caacaatatt	540
aaatcaaaga	cattacctga	tattccctct	tcaggatcaa	caacacaacc	tttatcaact	600
caggataatt	cggaagtgtt	atttcttaaa	gaaaataatc	aaaatgtata	tggtttagat	660
gattcagaac	atatttcttc	tatagttgat	gtacctccca	gagaaagcca	ttcccactca	720
gaccaaagtt	ctaagacttc	tctaatgagt	gagatgagaa	acgcccagtc	tattggccgc	780
agatgggaga	aaccatctcc	tagtaatgtg	actgaaagga	agaagcgtgg	gtcatcttgg	840
gaatcaaata	atctttctgc	agacactccc	tgtgcaacag	ttttagataa	acaacacatt	900
tcaagtccag	aattaaattg	caataatgag	ataaatggtc	atactaatga	aacaaatact	960
gaaatgcaaa	gaaataaaca	ggatcttcct	ggcttatctt	ctgagtctgc	cagagaacct	1020
aatgcagagt	gcatgaatca	aattgaggat	aatgatgact	ttcaattgca	gaaaactgtg	1080
tatgatgctg	acatggattt	aactgctagt	gaagtcagca	aaattgtcac	agtctcaaca	1140
ggcattaaaa	agaaaagtaa	taaaaaaaca	aatgaacatg	gaatgaaaac	tttcagaaaa	1200
gtgaaagatt	ccagctctga	aaaaaagaga	gaaagatcaa	agagacagtt	taaaaatagt	1260
tcagatgtcg	atattgggga	aaagattgaa	aacaggacag	aaagatctga	tgtcctggat	1320
ggcaaaaggg	gtgcagaaga	tcccggtttt	attttcaata	atgaacagct	ggctcagatg	1380
aatgaacagc	tggctcaggt	gaatgaacta	aagaaaatga	cccttcaaac	tggctttgaa	1440
caaggtgaca	gagaaaatgt	actgtgtaat	aaaaaggaga	aaagaataac	aaatgagcaa	1500
gaggaaacat	actctttatc	ccaaagttca	ggtaaatttc	accaggagag	taaatttgat	1560
aagggtcaga	attccctaac	ttgtaataaa	agtaaagctt	ctagacagac	atttgtgatt	1620
cacaaattag	aaaaagataa	cttactccca	aaccaaaagg	ataaagtaac	catttatgaa	1680
aacctagacg	tcacaaatga	atttcacaca	gccaatcttt	ccaccaaaga	taatggaaat	1740
ttatgtgatt	atgggaccca	caatatattg	gatttgaaaa	agtatgtcac	tgatattcaa	1800
ccctcagagc	aaaatgaatc	aaacattaat	aagcttagaa	agaaagtaaa	ccggaagaca	1860
gaaataattt	ctggaatgaa	ccacatgtat	gaagataatg	ataaagatgt	ggtgcatggc	1920
ctaaaaaaag	gtaattttt	tttcaaaacc	caagaggata	aagaacctat	ctctgaaaac	1980
atagaagttt	ccaaagagct	tcaaatccca	gctctttcta	ctagagataa	tgaaaatcaa	2040
tgtgactata	ggacccagaa	tgtgttgggt	ttgcaaaagc	agatcaccaa	tatgtacccc	2100
gttcagcaaa	atgaatcaaa	agttaataag	aagcttaggc	agaaagtaaa	tcggaagaca	2160
gaaataattt	ctgaagtgaa	tcatttagat	aatgacaaaa	gtatagaata	cacagttaaa	2220

		Substi	tute_Sequen	ce_Listina.	TXT	
agtcactcac	tctttttaac					2280
ccaagtgagt	ttgaaacacc	tgctctttct	accaaagata	gtggaaacct	gtatgattct	2340
gagattcaaa	atgttttggg	ggtgaaacat	ggccatgata	tgcaacctgc	ttgtcaaaat	2400
gattcaaaaa	taggtaagaa	gcctagacta	aatgtatgtc	aaaagtcaga	aataattcct	2460
gaaaccaacc	aaatatatga	gaatgataac	aaaggtgtac	atgacctaga	aaaagataac	2520
ttcttctctc	taaccccaaa	ggataaagaa	acaatttctg	aaaatctaca	agtcacaaat	2580
gaatttcaaa	cagttgatct	tctcatcaaa	gataatggaa	atttatgtga	ttatgacacc	2640
cagaatatat	tggagttgaa	aaagtatgtt	actgatagga	aatctgctga	gcaaaatgaa	2700
tcaaaaataa	ataagctcag	gaataaagtg	aattggaaga	cagaaataat	ttctgaaatg	2760
aaccagatat	atgaggataa	tgataaagat	gcacatgtcc	aagaaagcta	tacaaaagat	2820
cttgatttta	aagtaaataa	atctaaacaa	aaacttgaat	gccaagacat	tatcaataaa	2880
cactatatgg	aagtcaacag	taatgaaaag	gaaagttgtg	atcaaatttt	agattcctac	2940
aaagtagtta	aaaaacgtaa	gaaagaatca	tcatgcaagg	caaagaacat	tttgacaaaa	3000
gctaagaaca	aacttgcttc	acagttaaca	gaatcttcac	agacatctat	ctccttagaa	3060
tctgatttaa	aacatattac	tagtgaagca	gattctgatc	caggaaaccc	agttgaacta	3120
tgtaagactc	agaagcaaag	cactaccact	ttgaataaaa	aagatctccc	ttttgtggaa	3180
gaaataaaag	aaggagagtg	tcaggttaaa	aaggtaaata	aaatgacatc	taagtcaaag	3240
aaaaggaaga	cctccataga	tccttctcca	gagagccatg	aagtaatgga	aagaatactt	3300
gacagcgttc	agggaaagtc	tactgtatct	gaacaagctg	ataaggaaaa	caatttggag	3360
aatgagaaaa	tggtcaaaaa	taagccagac	ttttacacaa	aggcatttag	atctttgtct	3420
gagatacatt	cacctaacat	acaagattct	tcctttgaca	gtgttcgtga	aggtttagta	3480
cctttgagcg	tttcttctgg	taaaaatgtg	ataataaaag	aaaattttgc	cttggagtgc	3540
tccccagcct	ttcaagtaag	tgatgatgag	catgagaaga	tgaacaagat	gaaatttaaa	3600
gtcaaccgga	gaacccaaaa	atcaggaata	ggtgatagac	cattacagga	cttgtcaaat	3660
accagttttg	tttcaaataa	cactgctgaa	tctgaaaata	agtcagaaga	tctatcttca	3720
gaacggacaa	gcagaagaag	aaggtgtact	cctttctatt	ttaaagagcc	aagcctcaga	3780
gacaagatga	gaagatga					3798

<210> 20 <211> 1265 <212> PRT <213> Homo sapiens

<400> 20

Met Glu Cys Pro Val Met Glu Thr Gly Ser Leu Phe Thr Ser Gly Ile

Lys Arg His Leu Lys Asp Lys Arg Ile Ser Lys Thr Thr Lys Leu Asn 20 25 30 Val Ser Leu Ala Ser Lys Ile Lys Thr Lys Ile Leu Asn Asn Ser Ser 35 40 45 Ile Phe Lys Ile Ser Leu Lys His Asn Asn Arg Ala Leu Ala Gln Ala 50 55 60 Leu Ser Arg Glu Lys Glu Asn Ser Arg Arg Ile Thr Thr Glu Lys Met 65 70 75 80 Leu Leu Gln Lys Glu Val Glu Lys Leu Asn Phe Glu Asn Thr Phe Leu Arg Leu Lys Leu Asn Asn Leu Asn Lys Lys Leu Ile Asp Ile Glu Ala 100 Leu Met Asn Asn Asn Leu Ile Thr Ala Ile Glu Met Ser Ser Leu Ser 115 120 Glu Phe His Gln Ser Ser Phe Leu Leu Ser Ala Ser Lys Lys Arg 130 Ile Ser Lys Gln Cys Lys Leu Met Arg Leu Pro Phe Ala Arg Val Pro 145 150 155 160 Leu Thr Ser Asn Asp Asp Glu Asp Glu Asp Lys Glu Lys Met Gln Cys 165 170 175 Asp Asn Asn Ile Lys Ser Lys Thr Leu Pro Asp Ile Pro Ser Ser Gly Arg Thr Thr Gln Pro Leu Ser Thr Gln Asp Asn Ser Gly Val Leu Phe 195 200 205 Leu Lys Glu Asn Asn Gln His Val Tyr Gly Leu Asp Asp Ser Glu His 210 220 Ile Ser Ser Ile Val Asp Val Pro Pro Arg Glu Ser His Ser His Ser

Asp Gln Ser Ser Lys Thr Ser Leu Met Ser Glu Met Arg Asn Ala Gln 245 250 255

Ser	Ile	Gly	Arg 260	Arg	Trp		ubst Lys								Glu
Arg	Lys	Lys 275	Arg	Gly	Ser	Ser	Trp 280	Glu	Ser	Asn	Asn	Leu 285	Ser	Ala	Asp
Thr	Pro 290	Cys	Ala	Thr	Val	Leu 295	Asp	Lys	Gln	His	Ile 300	Ser	Ser	Pro	Glu
Leu 305	Asn	Cys	Asn	Asn	Glu 310	Ile	Asn	Gly	His	Thr 315	Asn	Glu	Thr	Asn	Thr 320
Glu	Met	Gln	Arg	Asn 325	Lys	Gln	Asp	Leu	Pro 330	Gly	Leu	Ser	Ser	G]u 335	Ser
Ala	Arg	Glu	Pro 340	Asn	Ala	Glu	Cys	Met 345	Asn	Gln	Ile	Glu	Asp 350	Asn	Asp
Asp	Phe	G]n 355	Leu	Gln	Lys	Thr	Val 360	Tyr	Asp	Ala	Asp	Met 365	Asp	Leu	Thr
Ala	Ser 370	Glu	Val	Ser	Lys	Ile 375	Val	Thr	Val	Ser	Thr 380	Gly	Ile	Lys	Lys
Lys 385	Ser	Asn	Lys	Lys	Thr 390	Asn	Glu	His	Gly	Met 395	Lys	Thr	Phe	Arg	Lys 400
Val	Lys	Asp	Ser	Ser 405	Ser	Glu	Lys	Lys	Arg 410	Glu	Arg	Ser	Lys	Arg 415	Gln
Phe	Lys	Asn	Ser 420	Ser	Asp	Val	Asp	Ile 425	Gly	Glu	Lys	Ile	Glu 430	Asn	Arg
Thr	Glu	Arg 435	Ser	Asp	Val	Leu	Asp 440	Gly	Lys	Arg	Gly	Ala 445	Glu	Asp	Pro
Gly	Leu 450	Phe	Phe	Asn	Asn	Glu 455	Gln	Leu	Ala	Gln	Met 460	Asn	Glu	Gln	Leu
Ala 465	Gln	Val	Asn	Glu	Leu 470	Lys	Lys	Met	Thr	Leu 475	Gln	Thr	Gly	Phe	Glu 480
Gln	Gly	Asp	Arg	Glu 485	Asn	Val	Leu	Cys	Asn 490	Lys	Lys	Glu	Lys	Arg 495	Val
Thr	Asn	Glu	G]n 500	Glu	Glu	Thr	Tyr	Ser 505	Leu	Ser	Gln	Ser	Ser 510	Gly	Lys

Phe His Gln Glu Ser Lys Phe Asp Lys Gly Gln Asn Ser Leu Thr Cys 515 520 525

Asn Lys Ser Lys Ala Ser Arg Gln Thr Phe Val Ile His Lys Leu Glu 530 540

Lys Asp Asn Leu Leu Pro Asn Gln Lys Asp Lys Val Thr Ile Tyr Glu 545 550 555 560

Asn Leu Asp Val Thr Asn Glu Phe His Thr Ala Asn Leu Ser Thr Lys 565 570 575

Asp Asn Gly Asn Leu Cys Asp Tyr Gly Thr His Asn Ile Leu Asp Leu 580 585 590

Lys Lys Tyr Val Thr Asp Ile Gln Pro Ser Glu Gln Asn Glu Ser Asn 595 600 605

Ile Asn Lys Leu Arg Lys Lys Val Asn Arg Lys Thr Glu Ile Ile Ser 610 620

Gly Met Asn His Met Tyr Glu Asp Asn Asp Lys Asp Val Val His Gly 625 630 635

Leu Lys Lys Gly Asn Phe Phe Phe Lys Thr Gln Glu Asp Lys Glu Pro 645 650 655

Ile Ser Glu Ser Ile Glu Val Ser Lys Glu Leu Gln Ile Pro Ala Leu 660 665 670

Ser Thr Arg Asp Asn Glu Asn Gln Cys Asp Tyr Arg Thr Gln Asn Val 675 680 685

Leu Gly Leu Gln Lys Gln Ile Thr Asn Met Tyr Pro Val Gln Gln Asn 690 695 700

Glu Ser Lys Val Asn Lys Lys Leu Arg Gln Lys Val Asn Arg Lys Thr 705 710 715 720

Glu Ile Ile Ser Glu Val Asn His Leu Asp Asn Asp Lys Ser Ile Glu 725 730 735

Tyr Thr Val Lys Ser His Ser Leu Phe Leu Thr Gln Lys Asp Lys Glu 740 745 750

Ile Ile Pro Gly Asn Leu Glu Asp Pro Ser Glu Phe Glu Thr Pro Ala 755 760 765

Leu Ser Thr Lys Asp Ser Gly Asn Leu Tyr Asp Ser Glu Ile Gln Asn 770 780 Val Leu Gly Val Lys His Gly His Asp Met Gln Pro Ala Cys Gln Asn 785 790 795 800 Asp Ser Lys Ile Gly Lys Lys Pro Arg Leu Asn Val Cys Gln Lys Ser 805 810 815 Glu Ile Ile Pro Glu Thr Asn Gln Ile Tyr Glu Asn Asp Asn Lys Gly Val His Asp Leu Glu Lys Asp Asn Phe Phe Ser Leu Thr Pro Lys Asp 845 Lys Glu Thr Ile Ser Glu Asn Leu Gln Val Thr Asn Glu Phe Gln Thr Val Asp Leu Leu Ile Lys Asp Asn Gly Asn Leu Cys Asp Tyr Asp 865 870 875 Gln Asn Ile Leu Glu Leu Lys Lys Tyr Val Thr Asp Arg Lys Ser Ala Glu Gln Asn Glu Ser Lys Ile Asn Lys Leu Arg Asn Lys Val Asn Trp 900 905 910 Lys Thr Glu Ile Ile Ser Glu Met Asn Gln Ile Tyr Glu Asp Asn Asp Lys Asp Ala His Val Gln Glu Ser Tyr Thr Lys Asp Leu Asp Phe Lys Val Asn Lys Ser Lys Gln Lys Leu Glu Cys Gln Asp Ile Ile Asn Lys 960 His Tyr Met Glu Val Asn Ser Asn Glu Lys Glu Ser Cys Asp Gln Ile 965 970 975 Leu Asp Ser Tyr Lys Val Val Lys Lys Arg Lys Lys Glu Ser Ser Cys 980 985 990 Lys Ala Lys Asn Ile Leu Thr Lys Ala Lys Asn Lys Leu Ala Ser Gln 995 1000 Leu Thr Glu Ser Ser Gln Thr Ser Ile Ser Leu Glu Ser Asp Leu

Page 40

Substitute_Sequence_Listing.TXT 1010 Lys His Ile Thr Ser Glu Ala Asp Ser Asp Pro Gly Asn Pro Val 1030 Glu Leu Cys Lys Thr Gln Lys Gln Ser Thr Thr Thr Leu Asn Lys 1045 Lys Asp Leu Pro Phe Val Glu Glu Ile Lys Glu Gly Glu Cys Gln 1055 1060 1065 Val Lys Lys Val Asn Lys Met Thr Ser Lys Ser Lys Lys Arg Lys 1070 1080 1075 Thr Ser Ile Asp Pro Ser Pro Glu Ser His Glu Val Met Glu Arg 1085 1090 1095Ile Leu Asp Ser Val Gln Gly Lys Ser Thr Val Ser Glu Gln Ala 1100 1105 1110Asp Lys Glu Asn Asn Leu Glu Asn Glu Lys Met Val Lys Asn Lys 1120 Pro Asp Phe Tyr Thr Lys Ala Phe Arg Ser Leu Ser Glu Ile His Ser Pro Asn Ile Gln Asp Ser Ser Phe Asp Ser Val Arg Glu Gly 1150 Leu Val Pro Leu Ser Val Ser Ser Gly Lys Asn Val Ile Ile Lys Glu Asn Phe Ala Leu Glu Cys Ser Pro Ala Phe Gln Val Ser Asp 1175 1180 1185 Asp Glu His Glu Lys Met Asn Lys Met Lys Phe Lys Val Asn Arg 1190 1200 Arg Thr Gln Lys Ser Gly Ile Gly Asp Arg Pro Leu Gln Asp Leu Ser Asn Thr Ser Phe Val Ser Asn Asn Thr Ala Glu Ser Glu Asn Lys Ser_ Glu Asp Leu Ser Ser_ Glu Arg Thr Ser Arg Arg Arg Arg 1240

```
Substitute_Sequence_Listing.TXT
Cys Thr Pro Phe Tyr Phe Lys Glu Pro Ser Leu Arg Asp Lys Met
    1250
Arg Arg
    1265
<210>
       21
<211>
      45
<212>
       PRT
<213>
       yeast
<400>
Met Glu Ser Leu Lys Lys Phe Leu Lys Gln Asn Arg Glu Ile Ile 1 10 15
Lys Ile Asn Thr Gln Leu Ser Ile Lys Ile Arg Glu Ser Glu Asn Glu 20 25 30
Ile Gln Asp Leu Ile Gln Glu Asn Phe Thr Leu Lys Ser
<210>
       22
<211>
       45
<212>
       PRT
<213>
       yeast
<400>
Val Glu Asp Leu Lys Lys Gln Ile Arg Gln Tyr Lys Glu Ile Ile 1 10 15
Arg Ile Ser Lys Ala Gln Ser Ile Arg Ile Lys Glu Leu Gln Leu Glu 20 25 30
Asn Glu Arg Leu Leu Ser Glu Asn Ile Asp Leu Arg Thr
<210>
       23
<211>
       45
<212>
       PRT
<213>
       yeast
<400>
       23
Val Glu Asn Ile Arg Gln Ser Tyr Ser Arg Gln Asn Ser Leu Leu Ala
Lys Asp Asn Ser Ile Leu Lys Ile Lys Val Asn Ser Leu Glu Lys Lys 20 25 30
Ile Ser Gln Leu Val Gln Glu Asn Val Thr Leu Arg Ser
```

```
<210>
       24
<211>
       45
<212>
       PRT
<213>
       Neurospora crassa
<400>
Leu Glu Leu Leu Arg Arg Lys Phe Leu Arg Gln Asn Arg Asp Ile Ala
Arg Val Asn Ser Thr Gln Ser Leu Arg Ile Arg Gly Leu Glu Asn Glu 20 25 30
Cys Ala Arg Leu Leu Ser Glu Asn Leu Glu Leu Arg Gly
<210>
       25
<211>
      45
<212>
       PRT
       Dactylicapnos macrocapnos
<213>
<400> 25
Gly Ser Lys Val Glu Gln Gln Tyr Lys Leu Leu Asn Ala Glu Leu Met
Asp Gln Val Gln Lys Gln Arg Leu Glu Ile Gly Glu Tyr Arg Lys Arg
Val Ile Ser Leu Glu Arg Glu Ile Met Asp Ile Arg Glu
<210>
       26
<211>
       27
<212>
       PRT
<213>
       yeast
<400>
       26
Gly Arg Glu Lys Leu Arg Arg Ser Val Lys Val Ile Asn Tyr Ala Ile
1 10 15
Pro Ser Leu Arg Thr Lys Leu Arg Arg Asp Phe 20 25
<210>
       27
       27
<211>
<212>
       PRT
<213>
       yeast
<400> 27
```

Pro Asp Gly Arg Ser Arg Arg Glu Arg Lys Lys Val Asn Tyr Ala Leu Page 43

```
1
                                          10
Pro Gly Leu Arg Thr Lys Leu Arg Arg Asn Phe 20 25
              20
<210>
        28
<211>
        28
<212>
        PRT
<213>
        yeast
<400>
        28
Ser Phe Thr Arg Thr Arg Arg Thr Arg Gly Lys Ala Val Asp Tyr Thr 1 10 15
Leu Pro Ser Leu Arg Ala Lys Met Arg Arg Pro Ser 20 25
        29
28
<210>
<211>
<212>
        PRT
<213>
        Neurospora crassa
<400>
        29
Glu Thr Ser Arg Pro Ser Arg Arg Ala Arg Ala Ile Ser Tyr Thr 10 15
Glu Pro Asn Leu Arg Asp Lys Met Arg Arg Pro Thr 20 25
<210>
        30
        27
<211>
<212>
        PRT
        Dactylicapnos macrocapnos
<213>
<400>
Asn Ser Ala Arg Pro Ser Arg Ser Cys Arg Pro Thr Ser Leu Val Glu 1 	 5 	 10 	 15
Pro Ser Leu Lys Asn Lys Leu Arg Asn Gly Ser
20 25
<210>
<211>
        28
<212>
        PRT
        Caenorhabditis elegans
<400>
        31
Thr Val Arg Arg Gln Arg Ser Ala Lys Met Asn Ile Lys Ser Leu Lys 1 \hspace{1cm} 10 \hspace{1cm} 15
```

```
Substitute_Sequence_Listing.TXT
Glu Pro Ser Gly Lys Asp Lys Leu Arg Arg Pro Gly 20 25
<210>
        32
       29
<211>
<212>
       PRT
<213>
       Arabidopsis thaliana
<400>
       32
Thr Val Gly Arg Pro Ser Arg Gln Ala Ala Glu Lys Ile Lys Ser Tyr 1 5 10 15
Lys Glu Pro Ser Leu Lys Glu Lys Met Arg Gly Gly Phe
<210>
        33
       29
<211>
<212>
       PRT
<213>
       Arabidopsis thaliana
<400>
       33
Ser Val Gly Arg Pro Ser Arg His Ala Ala Glu Lys Val Gln Ser Tyr
Arg Glu Val Ser Leu Arg Val Lys Met Arg Arg Lys Cys
<210>
       34
<211>
       28
<212>
       PRT
<213>
       mouse
<400>
        34
Ala Val Ala Leu Thr Lys Arg Arg Cys Ser Thr Ile Lys Ser Tyr Lys 10 15
Glu Pro Thr Leu Ala Ser Lys Leu Arg Arg Gly Asp
20 25
<210>
       35
25
<211>
<212>
       PRT
<213>
       mouse
<400>
       35
His Pro Met Arg Arg Lys Arg Gln Cys Val Pro Leu Asn Leu Thr Glu 1 5 10 15
Pro Ser Leu Arg Ser Lys Met Arg Arg 20 25
```

```
<210>
        36
<211>
       28
<212>
       PRT
<213>
       Homo sapiens
<400> 36
Ala Val Ala Leu Pro Lys Arg Arg Cys Thr Ala Ser Val Asn Tyr Lys 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Glu Pro Thr Leu Ala Ser Lys Leu Arg Arg Gly Asp 20 25
<210>
        37
<211>
<212>
       26
       PRT
<213>
       Homo sapiens
<400>
       37
Ser Glu Arg Thr Ser Arg Arg Arg Cys Thr Pro Phe Tyr Phe Lys 10 15
Glu Pro Ser Leu Arg Asp Lys Met Arg Arg 20 25
<210>
        38
<211>
        21
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       ?TriplEx
<400> 38
                                                                                   21
ctcgggaagc gcgccattgt g
<210>
        39
        22
<211>
<212>
        DNA
<213>
       Homo sapiens
<400> 39
cctggctgaa tcagctttgg tg
                                                                                   22
<210>
        40
<211>
       23
<212> DNA
<213> Artificial
<220>
<223>
       hSgo1
<400> 40
                                                                                   23
aagucuacug auaaugucuu att
<210> 41
```

<211> <212> <213>	23 DNA Artificial Sequence	Substitute_Sequence_Listing.TXT	
<220> <223>	hSgo2		
<400> aagcac	41 uacc acuuugaaua att	2	23
<211> <212>	42 21 DNA Artificial Sequence		
<220> <223>	hSgo1		
<400> gugagc	42 cucu gugaaucaat t		21
<210> <211> <212> <213>	43 21 DNA Artificial Sequence		
<220> <223>	hSgo2		
<400> gcucuc	43 auga acaauaacut t		21
<210> <211> <212> <213>	44 21 DNA Artificial Sequence		
<220> <223>	siRNA,Target1		
<400> gaguga	44 ucac gauuucuaat t		21
<210> <211> <212> <213>	45 21 DNA Artificial Sequence		
<220> <223>	siRNA,Target2		
<400> aacggg	45 cauu ugaauaugaa a		21