Logique 4 - HackMD 11/21/18, 2:25 PM

Logique

Numero 4

• Prof: Hémon Sébastien

• Date: 15/11/2017

Relations d'equivalence

Def: Soit E un ensemble et R relation d'equivalence sur E pour Z = $\{e \in E \mid ekx\}$. On nomme \bar{a} classe d'équivalence de x selon k.

Notation: $k_{\mathbb{Z}}$ avec $k \in \mathbb{Z}$ désigne les k multiples dans \mathbb{Z}

Remarque: si xky, alors $\bar{x} = \bar{\bar{y}}$

Definition: L'ensemble des classes d'équivalences de E selon R est appelé quotient de E par k, noté E/k.

Propriété: la relation \equiv_{F0} est une relation d'équivalence. Toute équalité x = y est une relation de congruence et n'est donc pas forcément vrai. Elle est liée au langage.

Théorème: On peut assimiler par correspondance bijective une relation k d'équivalence sur E à une partition de E.

Définition: (partition) Soit Ω un univers. On appelle partition de cet univers une famille d'ensemble / événements (Ai), i \in I vérifiant:

 $\bigcup Ai = \Omega$; $\forall i \neq j$, $Ai \cap Aj = \emptyset$; I = ensemble ordonné

Considérons (Ai) comme partition de E, on définit sur E la relation R par xRy ⇔

Reflexivité

Soit $x \in E$, on $a \cup Ai = E$ donc $x \in E \Leftrightarrow x \in \bigcup Ai \Leftrightarrow \exists i \in I$ $x \in Ai$ d'où $xRx \Leftrightarrow \exists I \in I x \in Ai \land x \in Ai \equiv \exists i \in I x \in Ai$

Symmetrie dans F0, $A \equiv A$ or $A \wedge B \equiv B \wedge A$, on pose $A = x \in Ai$ et $B = y \in Ai$