Deep Generative Models

Lecture 7

Roman Isachenko

Moscow Institute of Physics and Technology

2023. Autumn

Recap of previous lecture

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} \mathit{KL}(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = \mathit{KL}(q_{\mathrm{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}].$$

ELBO surgery

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \theta) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta)}_{\text{Reconstruction loss}} - \underbrace{\mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Optimal prior

$$KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\text{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior distribution $p(\mathbf{z})$ is aggregated posterior $q(\mathbf{z})$.

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

Recap of previous lecture

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, I) \Rightarrow$ over-regularization;
- ▶ $p(z) = q_{agg}(z) = \frac{1}{n} \sum_{i=1}^{n} q(z|x_i) \Rightarrow$ overfitting and highly expensive.

ELBO revisiting

$$rac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,oldsymbol{ heta}) = \mathsf{RL} - \mathsf{MI} - \mathcal{KL}(q_{\mathsf{agg}}(\mathbf{z})||p(\mathbf{z}|oldsymbol{\lambda}))$$

It is Forward KL with respect to $p(\mathbf{z}|\lambda)$.

ELBO with flow-based VAE prior

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}|\lambda) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \underbrace{\left(\log p(f(\mathbf{z}, \lambda)) + \log |\det(\mathbf{J}_f)| \right)}_{} - \log q(\mathbf{z}|\mathbf{x}, \phi) \right]$$

$$\mathbf{z} = f^{-1}(\mathbf{z}^*, \boldsymbol{\lambda}) = g(\mathbf{z}^*, \boldsymbol{\lambda}), \quad \mathbf{z}^* \sim p(\mathbf{z}^*) = \mathcal{N}(0, 1)$$

Recap of previous lecture

ELBO with flow-based VAE posterior

$$\mathcal{L}(\phi, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)} \log p(\mathbf{x}|\mathbf{z}^*, \theta) - KL(q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)||p(\mathbf{z}^*))$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|f(\mathbf{z}, \lambda), \theta) - KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\lambda)).$$

ELBO with flow-based VAE prior

$$\mathcal{L}(\phi, \theta, \lambda) = \mathbb{E}_{q(\mathsf{z}|\mathsf{x}, \phi)} \log p(\mathsf{x}|\mathsf{z}, \theta) - \mathit{KL}(q(\mathsf{z}|\mathsf{x}, \phi)||p(\mathsf{z}|\lambda))$$

Chen X. et al. Variational Lossy Autoencoder, 2016 image credit: https://courses.cs.washington.edu/courses/cse599i/20au

Outline

Gumbel-softmax

1. Likelihood-free learning

2. Generative adversarial networks (GAN)

Outline

Gumbel-softmax

1. Likelihood-free learning

2. Generative adversarial networks (GAN

Gumbel-softmax trick

- ▶ VQ-VAE has deterministic variational posterior (it allows to get rid of discrete sampling and reparametrization trick).
- ▶ There is no uncertainty in the encoder output.

Gumbel-max trick

Let $g_k \sim \text{Gumbel}(0,1)$ for $k=1,\ldots,K$, i.e. $g=-\log(-\log u)$, $u \sim \text{Uniform}[0,1]$. Then a discrete random variable

$$c = \arg\max_{k} [\log \pi_k + g_k],$$

has a categorical distribution $c \sim \mathsf{Categorical}(\pi)$.

- Let our encoder $q(c|\mathbf{x}, \phi) = \text{Categorical}(\pi(\mathbf{x}, \phi))$ outputs logits of $\pi(\mathbf{x}, \phi)$.
- We could sample from the discrete distribution using Gumbel-max reparametrization.

Maddison C. J., Mnih A., Teh Y. W. The Concrete distribution: A continuous relaxation of discrete random variables, 2016

Jang E., Gu S., Poole B. Categorical reparameterization with Gumbel-Softmax, 2016

Gumbel-softmax trick

Reparametrization trick (LOTUS)

$$\nabla_{\phi} \mathbb{E}_{q(c|\mathbf{x},\phi)} \log p(\mathbf{x}|\mathbf{e}_c,\theta) = \mathbb{E}_{\mathsf{Gumbel}(0,1)} \nabla_{\phi} \log p(\mathbf{x}|\mathbf{e}_{k^*},\theta),$$

where $k^* = \arg\max_k [\log q(k|\mathbf{x}, \phi) + g_k]$.

Problem: We still have non-differentiable arg max operation.

Gumbel-softmax relaxation

Concrete distribution = **con**tinuous + dis**crete**

$$\hat{c}_k = \frac{\exp\left(\frac{\log q(k|\mathbf{x}, \phi) + g_k}{\tau}\right)}{\sum_{j=1}^K \exp\left(\frac{\log q(j|\mathbf{x}, \phi) + g_j}{\tau}\right)}, \quad k = 1, \dots, K.$$

Here τ is a temperature parameter. Now we have differentiable operation, but the gradient estimate is biased now.

Maddison C. J., Mnih A., Teh Y. W. The Concrete distribution: A continuous relaxation of discrete random variables, 2016

Gumbel-softmax trick

Concrete distribution

Reparametrization trick

$$\nabla_{\phi} \mathbb{E}_{q(c|\mathbf{x},\phi)} \log p(\mathbf{x}|\mathbf{e}_c,\theta) = \mathbb{E}_{\mathsf{Gumbel}(0,1)} \nabla_{\phi} \log p(\mathbf{x}|\mathbf{z},\theta),$$

where $\mathbf{z} = \sum_{k=1}^{K} \hat{c}_k \mathbf{e}_k$ (all operations are differentiable now).

Maddison C. J., Mnih A., Teh Y. W. The Concrete distribution: A continuous relaxation of discrete random variables, 2016

Jang E., Gu S., Poole B. Categorical reparameterization with Gumbel-Softmax, 2016

DALL-E/dVAE

Deterministic VQ-VAE posterior

$$q(\hat{z}_{ij} = k^* | \mathbf{x}) = \begin{cases} 1, & \text{for } k^* = \arg\min_k \|[\mathbf{z}_e]_{ij} - \mathbf{e}_k\| \\ 0, & \text{otherwise.} \end{cases}$$

- Gumbel-Softmax trick allows to make true categorical distribution and sample from it.
- ➤ Since latent space is discrete we could train autoregressive transformers in it.
- ▶ It is a natural way to incorporate text and image token spaces.

an armchair in the shape of an avocado [...]

AI-GENERATED IMAGES

Outline

Gumbel-softmax

1. Likelihood-free learning

2. Generative adversarial networks (GAN)

Likelihood based models

Poor likelihood Great samples

$$p_1(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\mathbf{x} | \mathbf{x}_i, \epsilon \mathbf{I})$$

For small ϵ this model will generate samples with great quality, but likelihood will be very poor.

Great likelihood Poor samples

$$p_2(\mathbf{x}) = 0.01p(\mathbf{x}) + 0.99p_{\mathsf{noise}}(\mathbf{x})$$

$$\begin{split} &\log\left[0.01p(\mathbf{x}) + 0.99p_{\mathsf{noise}}(\mathbf{x})\right] \geq \\ &\geq \log\left[0.01p(\mathbf{x})\right] = \log p(\mathbf{x}) - \log 100 \end{split}$$

Noisy irrelevant samples, but for high dimensions $\log p(\mathbf{x})$ becomes proportional to m.

- Likelihood is not a perfect quality measure for generative model.
- Likelihood could be intractable.

Likelihood-free learning

Where did we start

We would like to approximate true data distribution $\pi(\mathbf{x})$. Instead of searching true $\pi(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\boldsymbol{\theta}) \approx \pi(\mathbf{x})$.

Imagine we have two sets of samples

- \triangleright $S_1 = \{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$ real samples;
- \triangleright $S_2 = \{\mathbf{x}_i\}_{i=1}^{n_2} \sim p(\mathbf{x}|\theta)$ generated (or fake) samples.

Let define discriminative model (classifier):

$$p(y = 1|\mathbf{x}) = P(\{\mathbf{x} \sim \pi(\mathbf{x})\}); \quad p(y = 0|\mathbf{x}) = P(\{\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})\})$$

Assumption

Generative distribution $p(\mathbf{x}|\boldsymbol{\theta})$ equals to the true distribution $\pi(\mathbf{x})$ if we can not distinguish them using discriminative model $p(y|\mathbf{x})$. It means that $p(y=1|\mathbf{x})=0.5$ for each sample \mathbf{x} .

Outline

Gumbel-softmax

1. Likelihood-free learning

2. Generative adversarial networks (GAN)

Likelihood-free learning

The more powerful discriminative model we will have, the more likely we got the "best" generative distribution $p(\mathbf{x}|\theta)$.

The most common way to learn a classifier is to minimize cross entropy loss.

- ▶ **Generator:** generative model $\mathbf{x} = G(\mathbf{z})$, which makes generated sample more realistic. Here \mathbf{z} comes from the base (known) distribution $p(\mathbf{z})$ and $\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})$. Generator tries to **maximize** cross entropy.
- Discriminator: a classifier p(y = 1|x) = D(x) ∈ [0,1], which distinguishes real samples from generated samples. Discriminator tries to minimize cross entropy (tries to enhance discriminative model).

Generative adversarial network (GAN) objective

$$\min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{\rho(\mathbf{x}|\boldsymbol{\theta})} \log (1 - D(\mathbf{x})) \right]$$

$$\min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{\rho(\mathbf{z})} \log (1 - D(G(\mathbf{z}))) \right]$$

Generative models zoo

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$.

Proof (fixed G)

$$V(G, D) = \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log(1 - D(\mathbf{x}))$$

$$= \int \underbrace{\left[\pi(\mathbf{x}) \log D(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta}) \log(1 - D(\mathbf{x})\right]}_{y(D)} d\mathbf{x}$$

$$\frac{dy(D)}{dD} = \frac{\pi(\mathbf{x})}{D(\mathbf{x})} - \frac{p(\mathbf{x}|\boldsymbol{\theta})}{1 - D(\mathbf{x})} = 0 \quad \Rightarrow \quad D^*(\mathbf{x}) = \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}$$

GAN optimality

Proof continued (fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log \frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}$$

$$= KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2}\right) + KL\left(p(\mathbf{x}|\boldsymbol{\theta})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2}\right) - 2\log 2$$

$$= 2JSD(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) - 2\log 2.$$

Jensen-Shannon divergence (symmetric KL divergence)

$$JSD(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2}\right) + KL\left(p(\mathbf{x}|\boldsymbol{\theta})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2}\right) \right]$$

Could be used as a distance measure!

$$V(G^*, D^*) = -2 \log 2$$
, $\pi(\mathbf{x}) = p(\mathbf{x}|\theta)$, $D^*(\mathbf{x}) = 0.5$.

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$. Expectations

If the generator could be **any** function and the discriminator is **optimal** at every step, then the generator is **guaranteed to converge** to the data distribution.

Reality

- Generator updates are made in parameter space, discriminator is not optimal at every step.
- Generator and discriminator loss keeps oscillating during GAN training.

GAN training

Let futher assume that generator and discriminator are parametric models: $D(\mathbf{x}, \phi)$ and $G(\mathbf{z}, \theta)$.

Objective

$$\min_{m{ heta}} \max_{m{\phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}, m{\phi}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z}, m{ heta}), m{\phi})) \right]$$

- ightharpoonup $z \sim p(z)$ is a latent variable.
- $p(\mathbf{x}|\mathbf{z}, \theta) = \delta(\mathbf{x} G(\mathbf{z}, \theta))$ is deterministic decoder (like NF).
- ▶ We do not have encoder at all.

Summary

- Gumbel-softmax trick relaxes discrete problem to continuous one using Gumbel-max reparametrization trick.
- ▶ It becomes more and more popular to use discrete latent spaces in the fields of image/video/music generation.
- Likelihood is not a perfect criteria to measure quality of generative model.
- Adversarial learning suggests to solve minimax problem to match the distributions.
- ► GAN tries to optimize Jensen-Shannon divergence (in theory).