EVALUATION METHOD TO BE USED:

Continuous assessment	Mid term	End Semester
15(T) + 25 (P)	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓	✓	✓								
CO2	✓	✓		✓	✓							
CO3	✓		✓	✓	✓							
CO4	✓	✓		✓								
CO5	✓	✓			✓							
CO6	✓	✓	✓	✓								

CS 6107 COMPUTER ARCHITECTURE

Prerequisites for the course: None

OBJECTIVES:

- To identify the requirements of different types of computer systems
- To understand the evaluation of computer systems based on various performance metrics
- To study the characteristics of the ISA and the hardware software co-design
- To trace the execution sequence of an instruction through the processor
- To compare different approaches used for implementing a functional unit
- To understand the fundamentals of memory and I/O systems and their interaction with the processor

	L	Т	Р	EL	CI	REDITS
COMPUTER ARCHITECTURE	3	0	2	3		5
MODULE I:			L	Т	Р	EL
			3	0	2	3

Introduction - Classes of computer systems - Performance - Amdahl's law - The Power wall - Switch from uniprocessors to multiprocessors – Benchmarks.

SUGGESTED ACTIVITIES:

- In Class activity for performance evaluation
- EL Evolution of computer systems, identification of benchmarks
- Practical Demonstration Opening up a computer system and studying the components

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE II:	L	Т	Р	EL
	3	0	2	3

Hardware Software Interface - ISA - Operations of the computer hardware - Operands - Representing instructions - Instructions for making decisions - Supporting procedures in computer hardware.

SUGGESTED ACTIVITIES:

- Flipped classroom and activity
- EL Writing simple assembly language programs from high level code
- Practical Study of an existing standard architectural simulator

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE III:	L	Т	Р	EL
	3	0	2	3

Addressing modes - Translating and starting a program - Arrays versus pointers - MIPS instruction formats - Assembly language programming.

SUGGESTED ACTIVITIES:

- EL Familiarising with assembly language programming
- Practical Study of an existing standard architectural simulator

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE IV:	L	T	Р	EL
	3	0	2	3

Integer arithmetic - Binary Parallel adder - Carry Look-ahead Adder - Carry save adder - Binary multiplier - Booth's multiplier - Bit-pair recoding - Binary division.

SUGGESTED ACTIVITIES:

- Flipped Class room
- Some arithmetic algorithms in class and some as EL
- Practical: Study of addressing modes with examples, Tracing the execution sequences, Identifying the timing constraints

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE V:	L	Т	Р	EL
	3	0	2	3

Floating point arithmetic- Representation - Arithmetic operations on floating point numbers - Parallelism and computer arithmetic.

SUGGESTED ACTIVITIES:

- Flipped class room
- EL Simulation of the floating point operations
- Practical Study of the ISA supported by the architectural simulator and running simple programs on the simulator

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes
- Demonstrate decode and execute for a subset of instructions on the simulator

MODULE VI:	L	T	Р	EL
	3	0	2	3

Datapath design - Implementation of the basic MIPS ISA - Building the datapath - A simple implementation scheme - Drawbacks.

SUGGESTED ACTIVITIES:

- Introduction in class
- Flipped Classroom for building of datapath for additional instructions
- · Practical Analysing the datapath on the standard simulator

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quiz in Class or automatic Quizzes for the flipped classroom content

MODULE VII:	L	T	Р	EL
	6	0	2	6

Instruction Level Parallelism - Pipelining - Overview of pipelining - Performance - Pipeline hazards - Pipelined datapath and control - Handling data hazards and control hazards - Exceptions - Introduction to advanced ILP.

SUGGESTED ACTIVITIES:

- Combinations of in Class & Flipped class rooms
- Practical Study of the pipelined implementation and analysis of various hazards on the standard simulator

SUGGESTED EVALUATION METHODS:

- Assignment problems involving instruction sequences and real-time scenarios
- Quizzes

MODULE VIII:	L	Т	Р	EL
	6	0	4	6

Need for a hierarchical memory system - The basics of caches - Measuring and improving cache performance. Virtual memory - Paging and segmentation - TLB - Implementing protection with virtual memory. A common framework for memory hierarchies, Associative memories, Introduction to virtual machines.

SUGGESTED ACTIVITIES:

- Flipped classroom
- Practical Implement a simple functional model of a set-associative cache in C/C++. Study hit/miss rates for various access patterns. Experiment with different replacement policies.

- EL Writing simple programs to study the behaviour of the memory hierarchy of your own laptop/ PC
 - Analyzing the performance of the memory hierarchy by varying different parameters

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes
- Practical component evaluation

MODULE IX:	L	Т	Р	EL
	3	0	2	3

Storage and I/O - Dependability, reliability and availability - Disk storage - Flash storage - Connecting processors, memory and I/O devices - Interfacing I/O devices to the processor, memory and the operating system, Designing an I/O system, Parallelism and I/O, RAID.

SUGGESTED ACTIVITIES:

- EL Survey of storage devices (NAS/SAN/RAID etc.) on different classes of systems
- Practical Continue with the exercises on memory hierarchy

SUGGESTED EVALUATION METHODS:

Survey evaluation – mindmap

OUTCOMES:

Upon completion of the course, the students will be able to:

- Evaluate the performance of computer systems
- Design a simple instruction execution unit
- Point out the hazards present in a pipeline and suggest remedies
- Explain the data path and control path implementation of a processor
- Modify some features of an architectural simulator
- Critically analyse the various characteristics of the hierarchical memory and I/O devices and their interface to the processor

TEXT BOOKS:

- 1. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", Fifth Edition, Morgan Kaufmann / Elsevier, 2013.
- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian, "Computer Organization and Embedded Systems", Sixth Edition, Tata McGraw Hill, 2012.

REFERENCE BOOKS:

- 1. William Stallings, "Computer Organization and Architecture Designing for Performance", Sixth Edition, Pearson Education, 2003.
- 2. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata McGraw Hill, 1998.
- 3. V.P. Heuring, H.F. Jordan, "Computer Systems Design and Architecture", Second Edition, Pearson Education, 2004.
- 4. Behrooz Parhami, "Computer Architecture", Oxford University Press, 2007.

EVALUATION METHOD TO BE USED:

Continuous assessment	Mid term	End Semester
15(T) + 25 (P)	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓		✓	✓				✓		✓	✓
CO2	✓	✓	✓	✓	✓				✓			✓
CO3	✓	✓	✓	✓	✓				✓			✓
CO4	✓	✓	✓	✓	✓				✓			✓
CO5	✓	✓	✓	✓	✓				✓			✓
CO6	✓	✓										✓

CS 6108

OPERATING SYSTEMS

Prerequisites for the course: None

OBJECTIVES:

- To learn the basic concepts and functions of operating systems
- To learn the mechanisms of operating systems to handle processes and threads and their communication
- To know the components and management aspects of concurrency management
- To study the basic components of scheduling mechanism
- To learn the mechanisms involved in memory management in contemporary OS
- To appreciate the emerging trends in Operating Systems
- To learn programmatically to implement simple OS mechanisms

OPERATING SYSTEMS	L	Т	Р	EL	TOTA	L CREDIT S
	3	0	4	3		6
MODULE I INTRODUCTION TO OPERATING SYSTEMS			L	Т	Р	EL
			4	0	4	4

Introduction to OS – Operating System Services – Operating System Operations – Virtualization – User and Operating System Interface – System Calls – Operating System Structures - Building and Booting an Operating System

SUGGESTED ACTIVITIES:

PRACTICAL:

I - Shell programming assignments