System Design Life Cycle Phases

1. Planning Stage

- Define goals, scope, and allocate resources.
- Example: Initiating a CRM system project by identifying features and team roles.

2. Feasibility Study Stage

- Assess technical, operational, and economic viability.
- Example: Evaluating if the CRM's benefits justify its costs.

3. System Design Stage

- Create detailed blueprints (architecture, UI, database).
- Example: Designing user-friendly interfaces and database schema for the CRM.

4. Implementation Stage

- Convert design into an operational system.
- Example: Writing code and conducting basic tests.

5. Testing Stage

- Validate system performance and compliance with requirements.
- Example: Running unit and integration tests on the CRM.

6. Deployment Stage

- Release the system for use in its environment.
- Example: Installing the CRM and training employees.

7. Maintenance and Support Stage

- Perform updates, bug fixes, and user support.
- Example: Regular patch updates for CRM software.

Stage 1 Planning	Stage 2 Feasibility Study	Stage 3 System Design	Stage 4 Implement -ation	Stage 5 Testing	Stage 6 Deploy -ment	Stage 7 Maintena -nce and Support
Define the project scope, goals, and resources.	Asses the practicality of the proposed system.	Develop a blueprint of the system architec- ture and compo- nents.	Transform the design into an opera- tional system.	Verify that the system meets the specified require- ments.	Introduce the system to its intend- ed envi- ronment.	Ensure the ongoing functionality and address any issues that arise.

System Design Life Cycle

Key Differences: System Development vs. System Design Life Cycle

Aspect	System Development Life Cycle	System Design Life Cycle		
Definition	Encompasses all development phases.	Focuses on the design phase.		
Scope	Broad: initiation to retirement.	Narrow: design aspects.		
Focus	Overall system creation process.	Blueprinting system construction.		
Purpose	Guides the entire lifecycle.	Details how the system operates.		

Challenges in SDLC

- 1. Ambiguity in initial requirements.
- 2. Evolving user needs during the process.
- 3. Rapid tech advancements impacting design choices.
- 4. Complexity in component integration.
- 5. Budget constraints affecting feature incorporation.

Models Used

- 1. Waterfall Model: Sequential and structured.
- 2. Iterative Model: Continuous refinements.
- 3. Prototyping Model: Early feedback via prototypes.
- 4. **Spiral Model**: Combines iterative and prototyping aspects.
- 5. Agile Model: Adaptable with frequent updates.

Best Practices

- · Document requirements comprehensively.
- Foster stakeholder communication.
- Design modular, scalable systems.
- Identify and address risks early.

Use Cases

- New software development.
- · Legacy system replacement.
- Integration of systems.
- Tailored business solutions.

This holistic SDLC approach ensures systems are effective, scalable, and sustainable.