Math 357 Exam 02M

2024-04-13 (S)

Your name:		
Honor pledge:		

Instructions

- 1. In the space above, please legibly write your name and the Rice Honor Pledge, then sign.
- 2. You have exactly 50 minutes for this exam. No resources are allowed.

Exercise	Total	(a)	(b)	(c)	(d)
1	/4	/4	/4	/4	
2	/4	/4	/4		
3	/4	/4	/4	/4	/4
4	/4	/4	/4		
Total	/20				

(4 pt) Let $K:K_0$ be a field extension, and let $\alpha\in K$ be algebraic over $K_0.$

(a) Define (axiomatically) the minimal polynomial $\mathfrak{m}_{\alpha,K_0}$ for α over $K_0.$

In addition, let K_1 be an intermediate field of $K:K_0$; that is, let $K:K_1:K_0$.

- (b) Prove that $\mathfrak{m}_{\alpha,K_1}$ divides $\mathfrak{m}_{\alpha,K_0}$. In what polynomial ring(s) does this divisibility apply?
- (c) Give an example in which $[K_1:K_0]>1$ and $\mathfrak{m}_{\alpha,K_1}=\mathfrak{m}_{\alpha,K_0}$ has degree greater than 1.

(4 pt) Let

$$f = t^4 - 6t^3 + 21t^2 - 36t + 36 \in \mathbf{Q}[t]$$

- (a) Compute the formal derivative $D_t f$ of f.
- (b) You apply the euclidean algorithm to f and $D_t f$ and find

$$\begin{split} f &= q_1 D_t f + r_1 \\ D_t f &= q_2 r_1 + 0 \end{split}$$

where $q_1, q_2, r_1 \in \mathbf{Q}[t]$, and

$$deg \ q_1 = 1 \qquad \qquad deg \ q_2 = 1 \qquad \qquad deg \ r_1 = 2$$

From this, what can we conclude about the separability of f? about the irreducibility of f? Explain.

(4 pt) Consider $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ as a subfield of \mathbf{C} .

- (a) Prove that $[\mathbf{Q}(\sqrt{2}, \sqrt{3}) : \mathbf{Q}] = 4$. Give a basis for $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ as a \mathbf{Q} -vector space.
- (b) Specify the elements of $Aut(\mathbf{Q}(\sqrt{2},\sqrt{3}):\mathbf{Q})$. *Hint:* Recall that to specify a $\sigma \in Aut(\mathbf{Q}(\sqrt{2},\sqrt{3}):\mathbf{Q})$, it suffices to specify $\sigma(\sqrt{2})$ and $\sigma(\sqrt{3})$.
- (c) List the subgroups of $Aut(\mathbf{Q}(\sqrt{2}, \sqrt{3}) : \mathbf{Q})$, and find the fixed field of each.
- (d) Prove that the field extension $\mathbf{Q}(\sqrt{2}, \sqrt{3})$: \mathbf{Q} is galois.

(4 pt) Let $K: K_0$ be a field extension.

- (a) Using the definitions from the theory we developed in class, define what it means for $K: K_0$ to be finite, normal, separable, and galois. (That is, " $K: K_0$ is finite if...", " $K: K_0$ is normal if...", etc.)
- (b) One can prove that $K: K_0$ is galois if and only if it is finite, normal, and separable. Discuss where, in your definition of a galois extension, each of these latter three concepts appears.