CS 5683: Algorithms & Methods for Big Data Analytics

Dimensionality Reduction Singular Value Decomposition

Arunkumar Bagavathi
Department of Computer Science
Oklahoma State university

Topics Overview

High. Dim. Data

Data Features

Dimension ality Reduction

Application
Rec.
Systems

Text Data

Clustering

Non-linear Dim. Reduction

<u>Application</u> IR **Graph Data**

PageRank

ML for Graphs

Community Detection

Others

Data Streams Mining

Intro. to Apache Spark

Dimensionality Reduction So Far... (1)

- Principal Component Analysis (PCA)
- Eigen Decomposition problem
 - Standardize the input data matrix
 - Extract Correlation or Covariance matrix
 - Extract Eigen values and Eigen vectors
 - Projection with top 'k' Eigen vectors
 - De-standardize and Reconstruction
 - Manually optimize with Reconstruction loss
- Linear problem

Dimensionality Reduction So Far... (2)

- T-distributed Stochastic Neighbor Embedding (tSNE)
- Non-linear method for visualization
- 2 types of input data projections
 - Projection-1 (P): with N dims. and Gaussian
 - Projection-2 (Q): with n dims. and t-distribution
 - Optimize Q to be as close as P with KL Divergence
 - Optimization with Gradient Descent
- Extremely slow algorithm
- No reconstruction

Rank of a Matrix

- Q: What is rank of a matrix A?
- A: Number of linearly independent rows of A

For example:

• Matrix
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$
 has rank $\mathbf{r} = \mathbf{2}$

Why? The last two rows are linearly independent and the first row is addition of last two rows. So, the rank is 2

Rank is Dimensionality

Cloud of points 3D space:

■ Think of point positions as a matrix:

1 row per point:
$$\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$
 A B C

We can rewrite coordinates more efficiently!

- Old basis vectors: [1 0 0] [0 1 0] [0 0 1]
- New basis vectors: [-2 -3 1] [3 5 0]
- Then **A** has new coordinates: [1 1]. **B**: [1 0], **C**: [0 1]
 - Notice: We reduced the number of coordinates!

Singular Value Decomposition

$$\mathbf{A}_{[m \times n]} = \mathbf{U}_{[m \times r]} \mathbf{\Sigma}_{[r \times r]} (\mathbf{V}_{[n \times r]})^{\mathsf{T}}$$

■ A: Input data matrix

■ *m* x *n* matrix (e.g., *m* documents, *n* terms)

U: Left singular vectors

■ *m* x *r* matrix (*m* documents, *r* concepts)

• Σ : Singular values

r x r diagonal matrix (strength of each 'concept')(r : rank of the matrix A)

V: Right singular vectors

n x r matrix (n terms, r concepts)

SVD

$$\mathbf{A} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i$$

SVD

 σ_i ... scalar u_i ... vector v_i ... vector

SVD - Properties

It is **always** possible to decompose a real matrix ${\bf A}$ into ${\bf A}={\bf U}\; {\bf \Sigma}\; {\bf V}^{\rm T}$, where

- **U**, Σ, *V*: unique
- *U*, *V*: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- ullet Σ : diagonal
 - Entries (singular values) are positive, and sorted in decreasing order ($\sigma_1 \ge \sigma_2$ $\ge ... \ge 0$)

■ A = U Σ V^T - example: Users to Movies

■ A = U Σ V^T - example: Users to Movies

■ A = U Σ V^T - example: Users to Movies

0.40 **-0.80** 0.40 0.09

■ A = U Σ V^T - example: Users to Movies

■ A = U Σ V^T - example: Users to Movies

SVD – Interpretation #1

'movies', 'users' and 'concepts':

- *U*: user-to-concept similarity matrix
- *V*: movie-to-concept similarity matrix
- \blacksquare Σ : its diagonal elements: 'strength' of each concept

Solving SVD

$$M = U\Sigma V^{T}$$

$$M^{T} = (U\Sigma V^{T})^{T} = (V^{T})^{T}\Sigma^{T}U^{T} = V\Sigma^{T}U^{T}$$

Transposing a diagonal matrix Σ will not have any effect \rightarrow $M^T = V\Sigma II^T$

$$\mathbf{M}^{\mathrm{T}}M = V\Sigma \ U^{\mathrm{T}}U\Sigma \ V^{\mathrm{T}} = \mathbf{V}\boldsymbol{\Sigma}^{\mathbf{2}}\mathbf{V}^{\mathbf{T}}$$

(since *U* is column orthonormal!)

$$M^{T}MV = V\Sigma^{2}V^{T}V = V\Sigma^{2}$$

(looks very similar to $Mx = \lambda x!$)

Thus, V is an eigen vector of the correlation matrix M^TM Similarly, U is an eigen vector of the correlation matrix MM^T Σ^2 are eigen values $\Rightarrow \Sigma^2(MM^T) = \Sigma^2(M^TM)$

Goal: Minimize the sum of reconstruction errors:

$$\sum_{i=1}^{N} \sum_{j=1}^{D} ||x_{ij} - z_{ij}||^{2}$$

• where x_{ij} are the "old" and z_{ij} are the "new" coordinates

- SVD gives 'best' axis to project on:
 - 'best' = minimizing the reconstruction errors
- In other words, minimum reconstruction error

-0.80 0.40

\blacksquare A = U Σ V^T - example:

• U Σ: Gives the coordinates of the points in the projection axis

Projection of users on the "Sci-Fi" axis $(U \Sigma)^T$:

	_	_
1.61	0.19	-0.01
5.08	0.66	-0.03
6.82	0.85	-0.05
8.43	1.04	-0.06
1.86	-5.60	0.84
0.86	-6.93	-0.87
0.86	-2.75	0.41

More details

- Q: How exactly is dim. Reduction done?
- A: Set smaller singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{12.4} & 0 & 0 \\ 0 & \mathbf{9.5} & 0 \\ 0 & 0 & \mathbf{3} \end{bmatrix} \mathbf{x}$$

$$\begin{bmatrix} \mathbf{0.56} & \mathbf{0.59} & \mathbf{0.56} & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & -\mathbf{0.69} & -\mathbf{0.69} \\ 0.40 & -\mathbf{0.80} & 0.40 & 0.09 & 0.09 \end{bmatrix}$$

More details

- Q: How exactly is dim. Reduction done?
- A: Set smaller singular values to zero

1	_	1	1	0	0		$\boxed{0.13}$	0.02	-(1)	.01						
3	3	3	3	0	0		0.41	0.07	-0	.03		_		_		
4	ļ	4	4	0	0		0.55	0.09	-0	.04		12.4				
5	•	5	5	0	0	2	0.68	0.11	-0	.05	X	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	9.5		X	
C)	2	0	4	4		0.15	-0.59	0	65		\Box	0	(3)		
C								-0.73				Γn 56	0.50	0.56	0.00	0.00
)	1	0	2	2		0.07	-0.29	Ø	.32		0.30	_0.39	0.30	0.09 -0.69	-0.09
												0.12	-0.02 -0.80	0.12	-0.09 -0.09	-0.09 -0 ()C

More details

- Q: How exactly is dim. Reduction done?
- A: Set smaller singular values to zero

								T _{12.4}	0	\neg		
							V	12.4			V	
							X		7.5		X	
								L				_
								$\boxed{0.56}$	0.59	0.56	0.09	0.09
			-			_	•	0.12	-0.02	0.12	-0.69	-0.69
3 4 5 2 0	3 3 4 4 5 5 2 0 0 0	3 3 0 4 4 0 5 5 0 2 0 4 0 0 5	3 3 0 0 4 4 0 0 5 5 0 0 2 0 4 4 0 0 5 5	3 3 0 0 4 4 0 0 5 5 0 0 2 0 4 4 0 0 5 5	3 3 0 0 0	3 3 0 0 0 4 4 0 0 0 5 5 0 0 0 2 0 4 4 0 0.55 0.09 0.68 0.11 0.15 -0.59 0.07 -0.73	3 3 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

More details

- Q: How exactly is dim. Reduction done?
- A: Set smaller singular values to zero

$$A \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \approx \begin{bmatrix} 0.92 & 0.95 & 0.92 & 0.01 & 0.01 \\ 2.91 & 3.01 & 2.91 & -0.01 & -0.01 \\ 3.90 & 4.04 & 3.90 & 0.01 & 0.01 \\ 4.82 & 5.00 & 4.82 & 0.03 & 0.03 \\ 0.70 & 0.53 & 0.70 & 4.11 & 4.11 \\ -0.69 & 1.34 & -0.69 & 4.78 & 4.78 \\ 0.32 & 0.23 & 0.32 & 2.01 & 2.01 \end{bmatrix}$$

Frobenius norm:

$$\|\mathbf{M}\|_{\mathrm{F}} = \sqrt{\sum_{ij} M_{ij}^2}$$

$$\|\mathbf{A} - \mathbf{B}\|_{F} = \sqrt{\Sigma_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^{2}}$$
 is "small"

B is best approximation of A

Q: How many σ_s to keep?

A: Rule-of-a thumb:

keep 80-90% of 'concepts'
$$\left(\frac{\sum_{i=1}^k \sigma_i^2}{\sum_{i=1}^r \sigma_i^2} = \mathbf{0.8}\right)$$

- To compute SVD:
 - O(nm²) or O(n²m) (whichever is less)
- But:
 - Less work, if we just want singular values
 - or if we want first k singular vectors
 - or if the matrix is sparse
- Implemented in linear algebra packages like
 - LINPACK, Matlab, SPlus, Mathematica ...

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Project into concept space:

Inner product with each 'concept' vector $\mathbf{v_i}$

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Project into concept space: Inner product with each 'concept' vector v_i

- The query is now mapped to a new compact space
- $q_{concept} = q.V$

- How would the user d that rated ('Alien','Serenity') be handled?
- $d_{concept} = d.V$

 Observation: User d that rated ('Alien', 'Serenity') will be similar to user q that rated ('Matrix'), although d and q have zero ratings in common!

SVD Drawbacks

- +Optimal low-rank approximation in terms of Frobenius norm
- Interpretability problem:
 - A singular vector specifies a linear combination of all input columns or rows
- Lack of sparsity:
 - Singular vectors are dense!

0.13 0.02 -0.01 0.41 0.07 -0.03 0.55 0.09 -0.04 0.68 0.11 -0.05 0.15 -0.59 0.65 0.07 -0.73 -0.67 0.07 -0.29 0.32

Questions???

Acknowledgements

Most of this lecture slides are obtained from the Mining Massive

Datasets course: http://www.mmds.org/