$\Delta T_{EX} 2_{\epsilon}$ -Vorlage von Matthias Pospiech

Leibniz Universität Hannover

Matthias Pospiech

June 2, 2011

Erklärung der Selbstständigkeit

Hiermit versichere ich, die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate deutlich kenntlich gemacht zu haben.

<Ort einfügen>, den <Datum einfügen>

<Autor einfügen>

Contents

1	Intro	duction	1																							1
	1.1	Person	nal	mo	otiv	<i>r</i> ati	ior	1.																		1
	1.2	Resear	rch	ov	erv	riev	V																			1
	1.3	Mesh 1	net	WO:	rks	s in	e	mb	ed	dε	ed	d	ev	ic	es											1
2	Eval	uation																								3
	2.1	Existin	ng	sol	uti	ons	з.																			3
	2.2	Assum	_																							3
	2.3	Requir	_																							3
3	Arch	itecture	9																							5
	3.1	Algorit	thi	$_{ m ms}$																						5
		3.1.1		onc																						5
		3.1.2	R	out	ing	g d	es	ign																		5
		3.1.3		rote		_		_																		5
	3.2	Implen																								5
		3.2.1	Η	ard	lwa	are																				5
		3.2.2		oftv																						6
4	Rese	arch																								7
	4.1	Metho	do	log	V																					7
	4.2	Result			-																					7
5	Cond	clusion																								9
Bil	bliogra	aphy																								11
Lis	st of F	igures																								13
Lis	st of T	Гables																								15

1 Introduction

1.1 Personal motivation

This thesis describes the analysis, enhanced design and implementation of an existing microcontroller based mesh solution [Kor09]. The current solution showed.

1.2 Research overview

1.3 Mesh networks in embedded devices

2 Evaluation

- 2.1 Existing solutions
- 2.2 Assumptions
- 2.3 Requirements

3 Architecture

3.1 Algorithms

- 3.1.1 Concurrency
 - Problem description
 - Petri net design
 - Complexity
 - Thread based design
 - Stack
 - Context switch
 - Protothreads
- 3.1.2 Routing design
- 3.1.3 Protocol design
- 3.2 Implementation
- 3.2.1 Hardware

RAM

- Harvard architecture
- RAM bus
- Latch

6 3 Architecture

USB serial interface

RFM12B interface

keyboard interface

3.2.2 Software

UART

SPI

RFM12

Watchdog

Shell

4 Research

- 4.1 Methodology
- 4.2 Results

5 Conclusion

Bibliography

[Kor09] Korniowski, Marek: Projekt odpornej na awarie sieci komputerowej z transmisją danych w pasmach nielicencjonowanych (2009)

List of Figures

List of Tables

Danksagung