Metales de transición-Zuímica de la coordinación

2uímica 75 Cursado 2018

Dra María Luján Ferreira

Definición de Metales de Transición

- Es un elemento que forma por lo menos un lón simple con un conjunto incompleto de electrones "d".
- Se tienen elementos de Transición con orbitales d completos e incompletos.

T-220

Figure 23.21

Transition Metals

											e (generally and eigenversely grand (feet and		Acquisité finition de la finition de
3B	4B	5B	6B	7B		8B		1B	2B				
21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Z n				and the second s
39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd				
57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg				

T-18

Essential Elements for Life

Figure 2.20

1A H																	8A He
	2A											3A	4A	5A	6A	7A	H.
Li	Ве											В	С	N	0	F	Ne
Na	Mg							8B				Al	Si	Р	S	Cl	Ar
	U	3B	4B	5B	6B	7B	/8	9	10\	1B	2B						
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ва	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn

Elemento	Diagrama parcial de orbitales										
	4s	3 <i>d</i>	4 <i>p</i>								
Sc	$\uparrow\downarrow$	1									
Ti	$\uparrow\downarrow$	1 1									
V	$\uparrow\downarrow$	\uparrow \uparrow \uparrow									
Cr	\uparrow	$\boxed{\uparrow \uparrow \uparrow \uparrow \uparrow}$									
Mn	$\uparrow\downarrow$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Fe	$\uparrow\downarrow$	$\uparrow\downarrow$ \uparrow \uparrow \uparrow									
Co	$\uparrow\downarrow$	$\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow$									
Ni	$\uparrow\downarrow$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow$									
Cu	\uparrow	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$									
Zn	$\uparrow\downarrow$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$									

Estados de oxidación Metales de la primer serie de transición-Círculos grandes=Estados de oxidación preferidos

Algunos estados de oxidación del manganeso ıbla 23.5 Estados de oxidación* Mn(II) Mn(VII) Mn(III) Mn(IV) Mn(VI) Mn^{2+} MnO_4^{2-} Mn_2O_3 MnO_2 Ejemplo MnO_4 Configuración del ion BÁSICO ÁCIDO Acidez del óxido

Charges of Some Common lons Found in Ionic Compounds

ure 7.11

Electronegativities of the Elements

ESPECTRO DE RADIACION

Propiedades Físicas

Forman compuestos coloreados. El color depende de:

- Tipo de Metal: Zn+2: incoloro
- Estado de Oxidación: Fe⁺²: verde Fe⁺³: violeta pálido
- Ligando unidos al metal: [FeCn₆]⁻³ rojo

COLOR

Iones que tienen capas o niveles parcialmente llenas

 $Fe^{3+} 3d^5$ (Ar)

- lones que tienen subcapas "d" totalmente vacías (Ti+4)
- Los iones que tienen subcapas "d" completamente Ilenas. (Zn+2, Cd+2)

REDES CRISTALINAS

Las redes espaciales que se conocen son catorce y están agrupadas en siete SISTEMAS CRISTALINOS, definidos por la igualdad o desigualdad de los ángulos y la longitud de los ejes comprendida en la CELDA ELEMENTAL o CELDA UNITARIA.

El CRISTAL cuyas dimensiones son de escala atómica, del orden de los Amstrongs (10-8 cm) pueden ser observados por métodos indirectos como Difracción de Rayos X.

La red de un material se subdivide en pequeñas porciones, y se obtiene la **CELDA UNITARIA**, que conserva las características secuenciadas de toda la red, y que con ésta puede construirse toda la red. Los **SISTEMAS CRISTALINOS** son siete arreglos únicos que llenan el espacio tridimensional: cúbico, tetragonal, ortorrómbico, romboédrico, hexagonal, monoclínico y triclínico.

Empaquetamiento hexagonal compacto ABA

Los nombres hexagonal y cúbico que reciben estas estructuras se derivan de la simetría resultante. Esta simetría puede apreciarse en la transparencia siguiente. En la **b** se puede ver el empaquetamiento ABAB... que da lugar a la simetría hexagonal (ech) mientras que en la **c** se observa el empaquetemiento ABCABC.... que da lugar a la simetría cúbica (ecc).

EMPAQUETAMIENTO HEXAGONAL COMPACTO

Los metales que presentan estructura hexagonal compacta (hcp) son poco dúctiles y resistentes, la estructura cúbica centrada en las caras (fcc) tiende a poseer baja resistencia mecánica y elevada ductilidad, mientras que los metales con estructura cúbica centrada en el cuerpo (bcc) presentan resistencia superior y ductilidad inferior a los cúbicos centrados en las caras.

EJEMPLOS:

	Al	Cr	Qu	Sn	Fe	Ni	Au	Ag	Pb	Ti	Zn
HC										X	Х
CCC	X		X	Χ		Х	Χ	X	X		
CC	-	X			X						

Hierro

El hierro es muy abundante en la naturaleza (forma parte del núcleo en la corteza terrestre) y es el metal más utilizado.

Estructura cristalina

Cubica centrada en el cuerpo

Punto de Fusion: 1.538 °C

Numero atomico: 26

Punto de ebullicion: 2.862 °C

Zinc

Es un metal o mineral, a veces clasificado como metal de transición aunque estrictamente no lo sea, ya que tanto el metal como su especie dispositiva presentan el conjunto orbital completo.

ESTRUCTURA CRISTALINA DE METALES

Estructura cristalina

REDES CRISTALINAS

Mayormente los metales cristalizan en tres redes cristalinas:

RED CUBICA CENTRADA EN EL CUERPO (Body Centered Cubic Unit cell) BCC

Cromo, Tungsteno, Hierro (alfa), Hierro (beta), Molibdeno, Vanadio, Sodio

RED CUBICA CENTRADA EN LAS CARAS (Fase Centered Cubic Unit cell) FCC

Aluminio, Cobre, Plomo, Plata, Niquel, Oro, platino, Hierro (gamma)

RED HEXAGONAL COMPACTA (Hexagonal Closed Packed)
HCP

Magnesio, Berilio, Zinc y Cadmio

Características de Cristales Metálicos Comunes

Estructura	a en función de r	Átomos por celda	Número de coor- dinación	Factor de empaque- tamiento	Metales típicos
Cúbica simple (CS)	$a_0 = 2r$	1	6	0.52	Ninguno
Cúbica centrada en el cuerpo (CC)	$a_0 = 4r/\sqrt{3}$	2	8	0.68	Fe, Ti, W. Mo, Nb. Ta, K, Na, V, Cr. Zr
Cúbica centrada en las caras (CCC)	$a_0 = 4r/\sqrt{2}$	4	12	0.74	Fe, Cu, Al, Au, Ag, Pb, Ni, Pt
Hexagonal compacta (HC)	$a_0 = 2r$ $c_0 = 1.633 a$	2	12	0.74	Ti, Mg, Zn, Be, Co, Cd

