Synthesis of a Novel Binuclear Chlorotin(II) Alkyl and a **Lithium Trialkylstannate Zwitterionic Cage Molecule:** Crystal Structures of [Sn(Cl)RN]2 and $[(SnR^{N}_{3})Li(\mu^{3}-Cl)Li(tmeda)]_{2}$ $[R^{N}=CH(SiBu^{t}Me_{2})C_{5}H_{4}N-2]$

Wing-Por Leung,* Lin-Hong Weng, Wai-Him Kwok, Zhong-Yuan Zhou, Ze-Ying Zhang, and Thomas C. W. Mak

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received September 14, 1998

The reaction of $SnCl_2$ with $[LiR^N(tmeda)]_2$ $[R^N = CH(SiBu^tMe_2)C_5H_4N-2$; tmeda = N,N,N,N-tetramethylethylenediamine)] in various stoichiometric ratios afforded a binuclear chlorotin(II) alkyl [Sn(Cl)R^N]₂ (1) and zwitterionic lithium trialkylstannate complexes $[\{(SnR^{N}_{3})Li\}\{(\mu^{3}-Cl)\{Li(tmeda)_{2}\}(\mu^{2}-Cl)]$ (2) and $[\{(SnR^{N}_{3})Li\}\{(\mu^{3}-Cl)Li(tmeda)]_{2}$ (3). X-ray structure analysis has shown that the anionic N-functionalized alkyl ligand $(\mathbb{R}^{N})^{-}$ in 1 acts as a bridging ligand joining the two tin atoms to form an eight-membered ring in a "boat" conformation. Compounds 2 and 3 consist of one and two lithium trialkylstannate ion pairs [SnR^N₃]⁻Li⁺ bound to the chlorine atom of the [LiCl(tmeda)]₂ fragment, respectively. The lithium ion in the ion pair is coordinated via the pyridyl nitrogens to form a cage.

Introduction

Organolithium compounds are widely used as alkylating agents for the synthesis of stannylenes SnR₂. For example, $Sn\{CH(SiMe_3)_2\}_2$, $Sn\{C_6H_2(CF_3)_3-2,4,6\}_2$, $Sn\{C_6H_2Pr^i{}_3\text{-}2,4,6\}_2,$ and $Sn\{C(SiMe_3)_2C_5H_4N-2\}_2$ have been synthesized from the appropriate lithium reagents.¹⁻⁵ Likewise, monoalkylated compound such as [Sn{C(SiMe₃)₂C₅H₄N-2}Cl] are accessible by the reaction of [Li{C(SiMe₃)₂C₅H₄N-2]₂ with SnCl₂ in 1:1 stoichiometric ratio or by the redistribution reaction of $Sn\{C(SiMe_3)_2C_5H_4N-2\}$ with $SnCl_2.5$

Tin(II) compounds are known to possess both acid and base properties; the metal center can either react with electrophiles or act as a Lewis acid and thus be susceptible to nucleophilic attack. It has been shown that nucleophilic addition of organolithium reagents to organotin(II) compounds formed triorganostannate compounds. For example, [(Sn(furyl)₃Li(furyl)₃Sn]⁻, [HC- $\{SiMe_2N(4-CH_3C_6H_4)\}_3SnLi(THF)_3\}$, and $[Bu^nSn(NC_5H_4-H_5)]$ C,N)3LiBr(0.5thf)] have been isolated and structurally characterized.⁶⁻⁸ Recently, we have shown that the tin-(II) dialkyl $[SnR']_2$ $[R' = CH(SiMe_3)C_9H_8N-8]$ behaves as a Lewis base and reacts with SnX2 to form donor-

acceptor compounds $R'_2Sn \rightarrow SnX_2$ (X = Cl, Br, I). 9,10 The Lewis acidity of the tin(II) alkyl Sn{CH(SiMe₃)₂}₂ was found to be low, as noted by the lack of thermal stability of the 1:1 base-adduct formed. The isolation of the product of the addition of LiR to SnR2 to form lithium trialkylstannate $LiSnR_3$ [R = $CH(SiMe_3)_2$] was unsuccessful.10

We have recently reported the synthesis and structures of some group 14 metal alkyls MR'_2 [M = Ge, Sn, Pb; $R' = CPh(SiMe_3)C_5H_4N-2$ or $CH(SiMe_3)C_9H_8N-8].^{11}$ We describe here the synthesis and X-ray structures of a series of products isolated from the alkylation reaction of $SnCl_2$ with $[LiR^N(tmeda)]_2$ $[R^N = CH(SiBu^tMe_2) C_5H_4N-2$] in different stoichiometric ratios.

Results and Discussion

The reactions of [LiR^N(tmeda)]₂ with SnCl₂ in various stoichiometric ratios afforded tin(II) alkyl compounds [Sn(Cl)R^N]₂ (1) and zwitterionic lithium trialkylstannate complexes $\{(SnR^N_3)Li\}\{(\mu^3-Cl)\{Li(tmeda)_2\}(\mu^2-Cl)\}$ (2) and $[\{(SnR^N_3)Li\}(\mu^3-Cl)Li(tmeda)]_2$ (3) (Scheme 1). Alkylation using 1 equiv of $[LiR^N(tmeda)]_2$ with $SnCl_2$ afforded the binuclear chlorotin(II) alkyl [RNSnCl]₂ (1) in good yield (75%). Similar reactions employing 3 and 3.5 equiv of $[LiR^{N}(tmeda)]_2$ yielded $[\{(SnR^{N}_3)Li\}\}\{(\mu^3-Cl)\}$ $\{\text{Li}(\text{tmeda})_2\}(\mu^2\text{-Cl})\}$ (2) and $\{\{(\text{SnR}^N_3)\text{Li}\}(\mu^3\text{-Cl})\text{Li}(\text{tme-superscript})\}$ (3)]₂ (3), respectively. Compounds 1-3 have been characterized by NMR spectroscopy and X-ray structure analysis. Binuclear tin(II) compounds similar to 1 such as chlorotin(II) amides $[Sn(\mu-Cl)(NR_2)]_2$ $[NR_2 =$

⁽¹⁾ Davidson, P. J.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1974, 895.

⁽²⁾ Lay, U.; Pritzkow, H.; Grützmacher, H. J. Chem. Soc., Chem. Commun. 1992, 260.

⁽³⁾ Masamune, S.; Sita, L. R. *J. Am. Chem. Soc.* **1985**, *107*, 6390. (4) Schäfer, A.; Weidenbruch, M.; Saak, W.; Pohl, S.; Marsmann, H. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 834. (5) Engelhardt, L. M.; Jolly, B. S.; Lappert, M. F.; Raston, C. L.; White, A. H. *J. Chem. Soc., Chem. Commun.* **1988**, 336. (6) Veith, M.; Ruloff, C.; Huch, V.; Töllner, F. *Angew. Chem., Int. Ed. Engl.* **1988**, *27*, 1381.

⁽⁷⁾ Hellmann, K. W.; Gade, L. H.; Gevert, O.; Steinert, P. *Inorg. Chem.* **1995**, *34*, 4069.

⁽⁸⁾ Beswick, M. A.; Belle, C. J.: Davies, M. K.; Halcrow, Raithby, A. S.; Wright, D. S. *J. Chem. Soc., Chem. Commun.* **1996**, 2619.

⁽⁹⁾ Leung, W.-P.; Kwok, W.-H.; Xue, F.; Mak, T. C. W. *J. Am. Chem. Soc.* **1997**, *119*, 1145.

⁽¹⁰⁾ Cotton, J. D.; Davidson, P. J.; Lappert, M. F. *J. Chem. Soc., Dalton Trans.* **1976**, 2275.
(11) Leung, W.-P.; Kwok, W.-H.; Weng, L.-H.; Law, L. T. C.; Zhou, Z.-Y.; Mak, T. C. W. *J. Chem. Soc., Dalton Trans.* **1997**, 4301.

Scheme 1. Preparation of Tin(II) Alkyl Compounds Containing the 2-Pyridyl(tert-butyldimethylsilyl)methyl Ligand [CH(SiButMe₂)C₅H₄N-2] (R^N)^a

^a Conditions and reagents: (i) 1.5SnCl₂, Et₂O; (ii) SnCl₂, Et₂O; (iii) 1.8SnCl₂, Et₂O; (iv) [LiR^N(tmeda)]₂.

CCMe₂(CH₂)₃CMe₂ or N(SiMe₃)₂] having chloro-bridges have been prepared by the redistribution reaction of Sn-(NR₂)₂ with SnCl₂. ¹² In contrast, attempts to prepare ClSn{CH(SiMe₃)₂} by similar methods were unsuccessful. It was reported that the reaction of Sn{CH(SiMe₃)₂}₂ with $SnCl_2$ afforded $[Sn\{CH(SiMe_3)_2\}_2Cl_2]$ and tin metal.¹⁰

The X-ray structure of 1 as shown in Figure 1 is a binuclear molecule with $(R^N)^-$ acting in a bidentate C,N-bridging mode between two tin(II) atoms forming an eight-membered ring in a "boat" conformation. The closely related and more bulky alkyl ligand $[C(SiMe_3)_2C_5H_4N-2]^-$ (R")⁻ in the monomeric compound [R"SnCl] has been shown to function as a bidentate C,Nchelate ligand.⁵ In previous studies, we have found that the less bulky ligand R^N [R^N = $CH(SiBu^tMe_2)C_5H_4N-2$] can behave both as a C,N-chelate and in the bridging bonding mode, as demonstrated in the structures of binuclear compounds $(MR^{N}_{2})_{2}$ $(M = Fe \text{ and } Co).^{13} \text{ In } 1$, the geometry at the tin centers (sum of bond angles Σ = 277.4° and 276.9°) is consistent with the presence of a stereoactive lone pair. The Sn-C and Sn-N distances of 2.308(av) and 2.277(av) Å are in good agreement with the corresponding distances of 2.32(2) and 2.27(2) Å, respectively, in [C(SiMe₃)₂C₅H₄N-2]. The tin-tin distance of 4.47 Å in 1 is too long to be considered as a bonding interaction.

The reaction of SnCl₂ with 3 equiv of [LiR^N(tmeda)]₂ gave the self-assembled lithium trialkylstannate cage

(13) Leung, W.-P.; Lee, H.-K.; Weng, L.-H.; Zhou, Z.-Y.; Mak, T. C. W. *J. Chem. Soc., Dalton Trans.* **1997**, 779.

Figure 1. Perspective drawing of **1** with the atomic numbering scheme. Thermal ellipsoids are shown at the 35% probability levels. Selected bond distances [A] and angles [deg]: Sn(1)-Cl(1) 2.438(3), Sn(1)-N(1) 2.287(7), Sn(1)-C(18) 2.309(6), Sn(2)-Cl(2) 2.454(3), Sn(2)-C(6)2.306(6), Sn(2)-N(2) 2.267(5); Cl(1)-Sn(1)-N(1) 92.0(2), Cl(1)-Sn(1)-C(18) 95.8(2), N(1)-Sn(1)-C(18) 89.6(2), Cl-C(18) 89.6(2) (2)-Sn(2)-C(6) 94.3(2), Cl(2)-Sn(2)-N(2) 92.8(2), C(6)-Sn(2)-N(2) 89.8(2).

molecule $[\{(SnR^N_3)Li\}\{(\mu^3-Cl)\{Li(tmeda)_2\}(\mu^2-Cl)\}]$ (2). The alkylation reaction with an excess (3.5 equiv) of [LiR^N(tmeda)]₂ led to the formation of the double cage molecule $[\{(SnR^{N}_{3})Li\}(\mu^{3}-Cl)Li(tmeda)]_{2}$ (3). The trialkylstannate [SnRN₃]⁻ is believed to result from the nucleophilic addition of SnRN2 with [RN]-. Wright and co-workers recently have reported the structures of [Bun- $Sn(NC_5H_4-C,N)_3MBr(0.5thf)$] (M = Li, Cu) and [Pb(2-Pyridyl)₃Li(0.5thf)] isolated from the reaction of lithium pyridyl Li(C_5H_4N) with MCp₂ (M = Sn and Pb).⁸ Similar

⁽¹²⁾ Chorley, R. W.; Hitchcock, P. B.; Jolly, B. S.; Lappert M. F.; Lawless, G. A. J. Chem. Soc., Chem. Commun. 1991, 1302

Figure 2. Perspective drawing of **3** with the atomic numbering scheme. Thermal ellipsoids are shown at the 35% probability levels. Selected bond distances [Å] and angles [deg]: Sn(1)-C(18) 2.351(9), Sn(1)-C(30) 2.330(11), Sn(1)-C(6) 2.357(9), Li(3)-N(1) 2.08 (2), Li(3)-N(2) 2.09(2), Li(3)-N(3) 2.00(2), Li(3)-Cl(1) 2.504(14), Li(2)-Cl(1) 2.331(2), Li(2)-Cl(2) 2.33- $(2), \text{Li}(1) - \text{Cl}(1) \ 2.365(14), \text{Li}(1) - \text{Cl}(2) \ 2.347(13); \\ \text{C}(6) - \text{Sn}(1) - \text{C}(18) \ 94.1(4), \\ \text{C}(6) - \text{Sn}(1) - \text{C}(30) \ 95.4(4), \\ \text{C}(18) - \text{C}(18) - \text{C}(18) \ 94.1(4), \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \ 94.1(4), \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) \\ \text{C}(18) - \text{C}(18) - \text{C}(18) - \text{C}$ 94.5(4), N(1) -Li(3) -N(2) 111.4(3), N(1) -Li(3) -N(3) 117.3(2), N(2) -Li(3) -N(3) 120.3(8), Li(2) -Cl(1) -Li(1) 80.0(5), Li(2) - $Cl(2)-Li(1)\ 80.4(5),\ Cl(1)-Li(2)-Cl(2)\ 100.6(5),\ Cl(1)-Li(1)-Cl(2)\ 98.8(5).$

structural features in Li[M(C₅H₄N)₃] with M(C₅H₄N)₃ acting as a tridendate ligand coordinating to lithium have been found.8 Moreover, sodium tri(pyrazol-1-yl)germanate [(THF)₃Na{(pz)₃Ge}] and -stannate [(THF)₂- $(pzH)\{(pz)_3Sn\}\}_2$ (pz = pyrazol-1-yl) with similar structural features have been reported by Stalke and coworkers.14

The reaction of SnCl₂ with 2 equiv of [LiR^N(tmeda)]₂ gave compound 2 in moderate yield; the expected dialkyl compound was not isolated. However, stepwise reaction of compound 1 with a further equivalent of [LiRN-(tmeda)]₂ afforded the tin(II) dialkyl SnRN₂, which has been characterized by its ¹¹⁹Sn and ¹H NMR spectra. Attempts to isolate good-quality crystals of 4 for X-ray structure determination have been unsuccessful.

The structure of **3** as shown in Figure 2 comprises two (SnR^N₃)⁻Li⁺ ion pairs, with the lithium ion bound to the chlorine atoms of the four-membered chlorobridged Li₂Cl₂ unit. The [SnR^N₃]⁻ moiety acts as a tridentate ligand coordinated to lithium via the pyridyl nitrogen atoms to form a cagelike structure. The structure of the [LiCl(tmeda)]₂ unit resembles that of the 1:1 adducts of lithium(I) halides, [LiX(tmeda)] (X = Cl, Br, I), reported by Raston and co-workers. 15 The geometry at the tin center (sum of bond angles $\Sigma = 283.2^{\circ}$) is trigonal pyramidal, with the tin atom located 1.25 Å above the plane of the three α -carbons. The two triangular planes defined respectively by the three α -carbons and the pyridyl nitrogens are staggered with a twist angle of about 58.5°. The average Sn-C distance of 2.34-(1) Å is consistent with covalent bonding as compared to the corresponding values of 2.32 and 2.36(av) Å in [R"SnCl] and [SnR"₂], respectively.⁵ The structure of **2** is similar to that of **3** except that only one SnR^N₃Li ion pair is connected to the chlorine atom of the Li₂Cl₂ ring.

Experimental Section

General Procedures. All manipulations were carried out under an inert atmosphere of argon gas by standard Schlenk techniques or in a dinitrogen glovebox. Solvents were dried over and distilled from CaH₂ (hexane) and/or Na (Et₂O). SnCl₂ was purchased from Aldrich and used without further purification. [Li{CH(SiBu^tMe₂)C₅H₄N-2}(tmeda)] was prepared according to the literature. 16 The 1H and 119 Sn NMR were recorded at 250 and 186.5 MHz, respectively, using a Bruker WM-250 or ARX-500 instrument. All spectra were recorded in benzene- d_6 , and the chemical shifts δ are relative to SiMe₄ and SnMe₄ for ¹H and ¹¹⁹Sn NMR, respectively.

Preparation of $[Sn(Cl)R^N]_2$ $[R^N = CH(SiBu^tMe_2)C_5H_4N_-$ **2] (1).** To a slurry of SnCl₂ (0.276 g, 1.46 mmol) in hexane (30 mL) was added dropwise a solution of [Li{CH(SiButMe2)- C_5H_4N-2 {tmeda)]₂ (0.472 g, 0.73 mmol) in ether (25 mL). After stirring for 4 h, the white solid formed was separated from the pale yellow mixture by filtration. The pale yellow filtrate was concentrated to ca. 10 mL and kept at -20 °C for 18 h to yield a white, crystalline solid, which was collected by filtration, washed with cooled pentane, and dried under vacuum to

⁽¹⁴⁾ Steiner A.; Stalke, D. J. Chem. Soc., Chem. Commun. 1993,

⁽¹⁵⁾ Raston, C. L.; Skelton, B. W.; Whitaker, C. R.; White, A. H. Aust. J. Chem. 1988, 41, 1925.

⁽¹⁶⁾ Leung, W.-P.; Weng, L.-H.; Wang, R.-J.; Mak, T. C. W. Organometallics 1995, 4832.

yield 0.39 g (75%) of 1. Single crystals suitable for X-ray structure determination were recrystallized from a solvent mixture of ether and hexane. Anal. Calcd for C24H40N2Cl2Si2-Sn₂: C, 39.98; H, 5.59; N, 3.89. Found: C, 39.95; H, 5.64; N, 3.94. ^{1}H NMR (250 MHz, C₆D₆, 25 $^{\circ}$ C, SiMe₄): $\delta = 0.33$ (s, 6H, SiMe₂), 0.86 (s, 9H, Bu^t), 2.49 (s, ²J(H, ¹¹⁹Sn); C₅H₄N, 5.75 (t, 1H), 6.78(t, 1H), 7.19(m, 1H), 8.06 (d, 1H). 119Sn NMR (186.5 MHz, C₆D₆, 25 °C, SnMe₄): $\delta = 75.9$ (s).

Preparation of [{(SnR $^{N}_{3}$)Li}{LiCl(tmeda)}₂] (2). To a slurry of SnCl₂ (0.15 g, 0.79 mmol) in hexane (30 mL) was added dropwise a solution of [Li{CH(SiButMe₂)C₅H₄N-2}-(tmeda)]₂ (0.50 g, 0.79 mmol) in ether (30 mL). After stirring for 5 h, the reaction mixture was filtered and the filtrate was concentrated to ca. 10 mL and kept at −20 °C for 18 h to yield a yellow crystalline solid, which was collected by filtration, washed with cooled pentane, and dried under vacuum to yield 0.39 g (64%) of **2**. Anal. Calcd for C₄₈H₉₂N₇Cl₂Li₃Si₃Sn: C, 53.48; H, 8.60; N, 9.10. Found: C, 53.12; H, 8.55; N, 8.63. ¹H NMR (250 MHz, C_6D_6 , 25 °C, $SiMe_4$): δ = 0.27 (s, 9H), 0.71 (s, 9H), 0.79 (s, 27H), 1.69 (s, 3H), 2.01 (s, 8H), 2.15 (s, 24H), 6.32 (t, 3H), 6.97 (t, 3H), 7.10 (d, 3H), 8.89 (d, 3H). ¹¹⁹Sn NMR (186.5 MHz, C_6D_6 , 25 °C, $SnMe_4$): $\delta = 209$ (s).

Preparation of $[{(SnR^{N_3})Li}_{2}{\{LiCl(tmeda)}_{2}]$ (3). The procedure for the preparation of 3 was similar to 2 except that 3 equiv of [Li{CH(SiButMe₂)C₅H₄N-2}(tmeda)]₂ was used (yield = 58%). Anal. Calcd for $C_{84}H_{152}N_{10}Cl_2Li_4Si_6Sn_2$: C, 54.38; H, 8.26; N, 7.39. Found: C, 55.84; H, 8.48; N, 7.75. ¹H NMR (250 MHz, C_6D_6 , 25 °C, SiMe₄): $\delta = 0.24$ (s, 18H), 0.78 (s, 18H), 0.89 (s, 54H), 1.63 (s, 6H), 2.10 (s, 8H), 2.14 (s, 24H), 6.29 (m, 6H), 6.99 (m, 6H), 7.11 (m, 6H), 8.58 (m, 6H). 119Sn NMR (186.5 MHz, C₆D₆, 25 °C, SnMe₄): $\delta = 201.5$ (s).

Preparation of SnR $^{N}_{2}$ (4). To a solution of 1 (0.26 g, 0.36 mmol) in 20 mL of ether was added slowly a solution of [Li- $\{CH(SiBu^tMe_2)C_5H_4N-2\}(tmeda)]_2$ (0.25 g, 0.38 mmol) in 15 mL of ether. The resulting mixture was stirred at room temperature for 6 h and then filtered. The pale yellow filtrate was concentrated (ca. 10 mL) and stored at $-20\,^{\circ}\text{C}$ for 3 days to yield yellow solid of 4 (0.21 g, 55%). 1H NMR (250 MHz, C_6D_6 , 25 °C, SiMe₄): δ 0.20 (bs, 6H), 0.94 (s, 9H), 2.14 (s, 1H), 6.34 (t, 1H), 6.49(d, 1H), 6.91(m, 1H), 7.96(d, 1H). 119Sn NMR (186.5 MHz, C₆D₆, 25 °C, SnMe₄): $\delta = 165$ (s).

X-ray Crystallography. Crystal data (Mo Kα radiation, 295 K): for (1), $C_{24}H_{40}Cl_2N_2Si_2Sn_2$, M = 721.0, triclinic, space group P1, a = 8.296(3) Å, b = 12.293(5) Å, c = 16.835(9) Å, α = $76.640(0)^{\circ}$, $\beta = 86.450(0)^{\circ}$, $\gamma = 71.990(10)^{\circ}$, V = 1588.4(15)Å³, Z = 4, F(000) = 720, $D_c = 1.508 \text{ mg m}^{-3}$, $\mu = 1.830 \text{ mm}^{-1}$, $2\theta_{\text{max}} = 45$ °, N = 4641, $N_o = 3312$, R = 0.040, wR = 0.050; for (2), $(C_{52}H_{98}Cl_2Li_4N_7OSi_3Sn, M = 1132.05, monoclinic, space$ group $P2_1/c$, a = 17.157(3) Å, b = 19.911(3) Å, c = 23.724(9) Å, $\alpha = 90^{\circ}, \beta = 100.93^{\circ}, \gamma = 90^{\circ}, V = 7957(4) \text{ Å}^3, Z = 4, F(000)$ = 2408, $D_{\rm c}$ = 0.945 g cm⁻³, μ = 0.464 mm⁻¹, $2\theta_{\rm max}$ = 26.73°, N= 11042, N_o = 9012, R = 0.0590, wR = 0.1415; for (3), (C₈₈H₁₆₂- $Cl_2Li_4N_{10}OSi_6Sn_2$, M = 1880.86, monoclinic, space group $P2_1/$ n, a = 20.7230(10) Å, b = 25.8150(10) Å, c = 21.9910(10) Å, α $= 90^{\circ}, \beta = 93.650(10)^{\circ}, \gamma = 90^{\circ}, V = 11740.5(9) \text{ Å}^3, Z = 4,$ F(000) = 3992, $D_c = 1.064$ g cm⁻³, $\mu = 0.572$ mm⁻¹, $2\theta_{\text{max}} =$ 26.73°, N = 21178, $N_o = 13567$, R = 0.0775, wR = 0.2392.

Single crystals were sealed in 0.5 mm Lindemann glass capillaries under dinitrogen. X-ray data were collected on a R3m/V and Rigaku AFC7R diffractometers using graphitemonochromatized MoK α radiation ($\lambda = 0.71073$ Å) in the $\omega/2\theta$ scan mode. Unique reflections were measured, and "observed" reflections with $|F_0| \ge 3\sigma(|F_0|)$ were used in the structure solution and refinement. The weighing scheme used was w = $[\sigma^2|F_0| + 0.0008|F_0|^2]^{-1}$ for **1** and $w = [\sigma^2|F_0| + 0.0005|F_0|^2]^{-1}$ for **2** and **3**. The structures were solved by direct phase determination using the computer program SHELXTL-PC17 on a PC 486 and refined by full-matrix least-squares with anisotropic thermal parameters for the non-hydrogen atoms. Hydrogen atoms were introduced in their idealized positions and included in structure factor calculations with assigned isotropic temperature factors.

Acknowledgment. This work was supported by the Hong Kong Grants Council Earmarked Grant CUHK 306/94P.

Supporting Information Available: Tables of crystal data, bond distances and angles, atomic coordinates and equivalent isotropic temperature factors, anisotropic thermal parameters, and hydrogen atom coordinates and assigned isotropic temperature factors for 1-3. This material is available free of charge via the Internet at http://pubs.acs.org.

OM9807699

⁽¹⁷⁾ Sheldrick G. M. In Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: New York, 1985; p 175.