

IXPE

Imaging X-ray

Polarimetry Explorer

IXPE addresses key scientific objectives

IXPE

SCIENCE & TECHNOLOGY OFFICE

- Opens a new window on the universe — imaging (30") X-ray polarimetry
 - The science driver that advances and impacts high-energy astrophysics
 - Increases information space and lifts modeling degeneracies
- Addresses key questions, providing new scientific results and constraints that trace back to the Astrophysics Roadmap and the Decadal Survey
 - What is the spin of a black hole?
 - What are the geometry and magnetic-field strength in magnetars?
 - Was our Galactic Center an Active Galactic Nucleus in the recent past?
 - What is the magnetic field structure in synchrotron X-ray sources?
 - What are the geometries and origins of X-rays from pulsars (isolated and accreting)?
- Provides powerful and unique capabilities
 - Reduces integration time by a factor of 100 over our OSO-8 experiment
 - Simultaneously provides imaging, energy, timing, and polarization data
 - Devoid of instrument systematic effects at less than a fraction of a percent
 - Meaningful polarization measurements for a large number of sources of different classes, as evidenced by our Design Reference Mission

IXPE Team and Mission

IXPE

SCIENCE & TECHNOLOGY OFFICE

Institutional Roles and Responsibilities are Clearly Defined

Marshall Space Flight Center PI team, project management, SE and S&MA oversight, mirror module fabrication, X-ray calibration, science operations, and data analysis and archiving	INAF IAPS Polarization-sensitive imaging detector systems
GMI Detector system funding, ground station	LASP ROMA TRE Stanford University Mission operations
Busek Spacecraft, payload structure, payload, observatory I&T	McGill MIT Science Working Group Co-Chair Student collaboration

Mission Design and Operations Concept are Straightforward

- NASA Explorer Mission, cost capped at \$175M (FY15)
- Class D Mission managed by MSFC
- XL launch from Kwajalein
- 540-km circular orbit at 0° inclination
- 2 year baseline mission, 1 year SEO
- PI: Martin Weisskopf, MSFC
- Launch ready by end of 2020

IXPE INSTRUMENT DESCRIPTION

IXPE

SCIENCE & TECHNOLOGY OFFICE

Measures spatial, spectral, timing, and polarization state of X-rays from 49 known targets

- Set of three mirror module assemblies focus x rays on to three corresponding focal plane detector units.
- Mirror modules provide imaging and background reduction
- Detectors provide position, energy and polarization information, photon by photon, plus time stamp

IXPE Deployment

IXPE

SCIENCE & TECHNOLOGY OFFICE

Property	Value
Mass	4.9 kg
Length	3.64 m
Deployment repeatability	Length: 0.2 mm, Translation: 0.07 mm Twist: 0.27°

IXPE Mirror Module Assembly

IXPE

SCIENCE & TECHNOLOGY OFFICE

MMA Optical Requirements

MMA-7	The combined effective area of all three MMAs with their thermal shields shall be greater than 589 cm ² at 2.3 keV, and greater than 686 cm ² at 4.5 keV.
MMA-9	The focal length of each MMA shall be 4000 +/- 1 mm, measured from the node of the optical assembly.
MMA-8	The HPD of each mirror module assembly shall be no greater than 26 arcseconds at 2.3 keV and 4.5 keV on axis.

MSFC will fabricate:

- 24 mandrels
- 1 engineering unit consisting of 6 shells, 3 mass simulators, 1 external thermal shield, 1 support spider /combs & 1 end capture spider
- 96-102 Nickel – Cobalt (not Ir coated) very thin shells
- 4 flight units (3 + spare) with w/ 24 nested shells, external thermal shield, spider /combs & end capture spider

Replicated Optics Manufacturing at MSFC

IXPE

SCIENCE & TECHNOLOGY OFFICE

1. CNC machine, mandrel formation from Al Bar

2. Chemical clean and activation & Electroless Nickel(EN) plating

3. Precision turn to sub-micron figure accuracy

4. Polish and superpolish to 3-4 Å finish

Currently contracted out

5. Metrology – repeat Step 4 until surface finish met

6. Ultrasonic clean & passivation to remove surface contaminants

7. Electroform nickel shell onto mandrel

8. Separate optic from mandrel – reuse mandrel for next shell

8. Align shells into module

9. Test module

IXPE Alignment System

IXPE

SCIENCE & TECHNOLOGY OFFICE

ART-XC shells supported from 3 points during the alignment and bonding process

IXPE shells are $\frac{1}{2}$ the thickness of ART and will be gravity off-loading during the alignment and bonding process

MSFC X-ray Optics Heritage

IXPE

SCIENCE & TECHNOLOGY OFFICE

Parameter	FOXSI -1 (-2 & 3)	ART-XC	IXPE
Number of mirror modules	7	7 (plus 1 spare)	3 (plus 1 spare)
Number of shells per mirror module	7 (10 for selected modules)	28	24
Focal length	2000 mm	2700 mm	4000 mm
Total shell length	600 mm	580 mm	600 mm
Range of shell diameters	38 – 52 mm	50 – 150 mm	162 – 272 mm
Range of shell thicknesses	0.25 mm	0.5 mm	0.18 – 0.26 mm
Shell material	Electroformed nickel–cobalt alloy Coating: > 30 nm of iridium (> 90% bulk density)	Electroformed nickel–cobalt alloy Coating: > 10 nm of iridium (> 90% bulk density)	Electroformed nickel–cobalt alloy
Effective area per mirror module	150 cm^2 (200) at 8 keV, 14 cm^2 (40) at 15 keV	$\geq 65 \text{ cm}^2$ at 8 keV (on axis)	210 cm^2 (at 2.3 keV); $> 230 \text{ cm}^2$ (at 3–6 keV)
Angular resolution (HPD)	10 arcsec	25 arcsec HPD on axis (measured)	≤ 25 arcsec HPD on axis

FOXSI Free Flyer Science Objectives

IXPE

SCIENCE & TECHNOLOGY OFFICE

- FOXSI Free Flyer addresses the fundamental processes of impulsive energy release and particle acceleration in the solar corona.
- FOXSI will achieve this through focused hard X-ray imaging with **100 times better sensitivity and dynamic range** than previous instruments (e.g. RHESSI).
- FOXSI will observe emission from energetic electrons:

- directly in the acceleration site in the corona such as near flare reconnection sites or CME shocks,

- as they travel through the corona,
- where they are stopped in the chromosphere, and
- as they escape into interplanetary space.

FOXSI Free Flyer Hardware

IXPE

SCIENCE & TECHNOLOGY OFFICE

- If selected MSFC will provide 2 flight modules + 1 spare module, fully calibrated, each with 15 or 20 shells
- X-ray optics is a Tier 1 for Scientific Research at MSFC
- FOXSI science requires high-resolution hard x-ray optics, niche area for MSFC – no domestic competitors
- Sub-Orbital Development (significant)
 - FOXSI rocket flights (Nov. 2012, Dec. 2014), FOXSI-3 on schedule
 - HEROES balloon flight (Sept. 2013)
- Orbital Development
 - ART-XC fabricated and delivered by MSFC
 - IXPE SMEX Development

Schematic representations of stowed and deployed FOXSI SMEX satellite

Seven FOXSI Mirror Modules
mounted on rocket

FOXSI (rocket) Mirror Module
fabricated at MSFC