4. Funkce 4.

Verze 21. října 2019

4. Funkce

S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy. Zobrazení z množiny X do množiny Y je formálně podmnožina \mathcal{F} kartézského součinu $X \times Y$ (množina uspořádaných dvojic [x,y], kde $x \in X$ a $y \in Y$) splňující vlastnost: $[x,y_1], [x,y_2] \in \mathcal{F}$ $\Rightarrow y_1 = y_2$, tj. pro každé x existuje nejvýše jedno y, že $[x,y] \in \mathcal{F}$. Množina \mathcal{F} tak jednoznačně určuje předpis $f: x \mapsto y = f(x)$. Místo $[x,y] \in \mathcal{F}$ tak píšeme y = f(x). Prvku x říkáme vzor a prvek y = f(x) je obraz prvku x v zobrazení f.

Pokud X a Y jsou množiny číselné, zobrazení obvykle nazýváme **funkce**. Proměnné x říkáme **nezávislá proměnná** a y je **závislá proměnná**.

Definiční obor $\mathcal{D}(f)$ funkce f je množina všech x, která mají svůj **obraz** (**funkční hodnot** y, a **obor hodnot** $\mathcal{H}(f)$ je množina všech hodnot y = f(x). Pokud dvě funkce nemají stejný definiční obor, považujeme je za různé, i když je určuje stejný "předpis". Například funkce $x \mapsto x^2$, $x \in \mathbb{R}$ je jiná funkce než $x \mapsto x^2$, $x \in (0, \infty)$.

Dále řekneme, že funkce F je **rozšíření** (**extenze**) funkce f (a současně f je **zúžením** (**restrikce** funkce F)), pokud $\mathcal{D}(f) \subset \mathcal{D}(F)$ a $F(x) = f(x) \ \forall x \in \mathcal{D}(f)$. Funkce $f: X \to Y$ a $g: Y \to Z$ lze složit, pokud $\mathcal{H}(f) \subset \mathcal{D}(g)$. Složená funkce $g \circ f$ (čti g "po" f) je daná vztahem $(g \circ f)(x) = g(f(x))$. Připomeňme dále, že funkce $f: X \to Y$ s $\mathcal{D}(f) = X$ je

- (a) **prostá** (**injektivní**), pokud různé x dávají různé y = f(x), tj. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$,
- (b) na Y (surjektivní), pokud obor hodnot je celé Y, tj. $\mathcal{H}(f) = Y$,
- (c) vzájemně jednoznačná (bijektivní), pokud f je prostá i na Y.

Obr. 4.1: "Šipkové" diagramy funkce (zobrazení). f_1 je funkce $X \to Y$, f_2 je funkce prostá, f_3 je funkce na Y, f_4 je funkce vzájemně jednoznačná, f_5 je funkce inverzní k f_4 .

Jestliže funkce $f: X \to Y$ je bijektivní, potom existuje funkce $g: Y \to X$ inverzní k funkci f, taková, že g(y) = x právě když f(x) = y. Funkci inverzní funkci f označujeme obvykle f^{-1} . Platí také $\mathcal{D}(g) = \mathcal{H}(f)$ a $\mathcal{H}(g) = \mathcal{D}(f)$. Inverzní funkci f^{-1} lze určit také jako funkci splňující $f^{-1} \circ f = I_X$ a $f \circ f^{-1} = I_Y$, kde I_X je identická funkce na X, tj. $I_X(x) = x$ pro všechna $x \in X$ a $I_Y(y) = y$ je identická funkce na množině Y.

Poznamenejme, že pokud prostá funkce $f: X \to Y$ není na, tj. $\mathcal{H}(f)$ není celé Y, potom funkci inverzní lze definovat jen na $\mathcal{H}(f)$. Pokud funkce f není prostá na celém $\mathcal{D}(f)$, potom pro inverzní funkce je nutno ji omezit na podmnožinu X_1 množiny X, na které už je prostá.

Funkci lze znázornit, tak jako zobrazení, "šipkovým" diagramem, viz Obr. 4.1. Pro funkce se častěji užívá znázornění pomocí grafu v rovině, viz Obr. 4.2.

Obr. 4.2: Grafy funkcí: f_1 není funkce $X \to Y$, f_2 je prostá funkce z X do Y, f_3 je funkce z X na Y, f_4 je funkce vzájemně jednoznačná z X na Y, f_5 je graf funkce inverzní k funkci f_4 .

4A. Základní pojmy

V dalším textu pod funkcí budeme rozumět funkci $f: \mathbb{R} \to \mathbb{R}$ s definičním oborem $\mathcal{D}(f) \subset \mathbb{R}$. Takovým funkcím říkáme **reálné funkce jedné reálné proměnné**. Jsou ústředním pojmem **matematické analýzy**, takzvaného **kalkulu**.

Poznamenejme, že i když f(x) znamená hodnotu funkce v bodě x, tj. jedno číslo, budeme místo f psát f(x), aby se zdůraznilo, že jde o funkci s proměnnou x.

Poznámky 4.1.

- (a) Funkci zadáváme tak, že stanovíme **definiční obor** a určíme **funkční předpis**. Funkční předpis má obvykle tvar jednoho nebo více explicitních vzorců nebo výčet, případně kombinace obojího.
- (b) Není-li stanoven definiční obor, rozumí se jím všechny prvky z $\mathbb{R},$ pro něž mají vzorce smysl.
- (c) Ve výuce matematiky se obvykle zabýváme funkcemi zadanými nějakým (relativně) jednoduchým předpisem. Nutno si ale uvědomit, že funkcí, které nelze žádným jednoduchým předpisem určit, je mnohem, mnohem víc.
- (d) Funkce se znázorňuje **grafem**. Je to množina bodů $\{[x,y]\in\mathbb{R}^2\ :\ y=f(x), x\in\mathcal{D}(f)\}$.
- (e) Pozor, ne každá množina nebo křivka v rovině je grafem nějaké funkce. Například parabola $x=y^2$ není grafem funkce f(x), protože každému x>0 patří dvě hodnoty $y=\sqrt{x}$ a $y=-\sqrt{x}$. Podobně přímka x=0 a křivka $x=\sin y$ nejsou grafem žádné funkce f(x).
- (f) Jsou funkce, jejichž graf "nelze" načrtnout. Příkladem může být graf Dirichletovy funkce, která nabývá hodnoty 1 pro racionální x a 0 pro iracionální x, viz Příklad 4.2 (d).
- (g) Máme-li funkci f s definičním oborem $\mathcal{D}(f)$, potom novou funkci $f|_U$ dostaneme restrikcí funkce na nějakou podmnožinu $U \subset \mathcal{D}(f)$. Novou funkci dostaneme také rozšířením funkce na větší definiční obor. Novou funkci dostaneme také změnou hodnoty v jednom nebo více bodech x.

Obr. 4.3: Funkce znaménka sgn(x) a charakteristická funkce $\chi_A(x)$ množiny A

Příklady 4.2. Vedle tzv. elementárních funkcí, např. mocniny $f(x) = x^n$, exponenciální funkce e^x , logaritmické funkce $\log_z x$, goniometrických funkcí $\sin x, \cos x, \operatorname{tg} x, \cot x$ uveď me několik nestandardních funkcí:

(a) Funkce signum (znaménko) (Obr. 4.3) je určena předpisem

$$\operatorname{sgn}(x) = \begin{cases} -1 & \operatorname{pro} x < 0 \\ 0 & \operatorname{pro} x = 0 \\ 1 & \operatorname{pro} x > 0. \end{cases}$$

$$\chi_A(x) = \begin{cases} 1 & \text{pro } x \in A \\ 0 & \text{pro } x \notin A \end{cases}$$

Obr. 4.4: Funkce celá a necelá část.

(d) Dirichletova funkce (Obr. 4.5) je určena předpisem

$$D(x) = \begin{cases} 1 & \text{pro } x \text{ racionální} \\ 0 & \text{pro } x \text{ iracionální} . \end{cases}$$

Obr. 4.5: Dirichletova funkce D(x)

Funkce sudá, lichá a periodická

Definice 4.3. (Sudá a lichá funkce) Řekneme, že množina $M \subset \mathbb{R}$ je symetrická, pokud: $x \in M$ právě když $-x \in M$.

Funkci $f:\mathbb{R}\to\mathbb{R}$ nazveme sudou, pokud

definiční obor $\mathcal{D}(f)$ je symetrická množina a platí f(-x) = f(x) pro každé $x \in \mathcal{D}(f)$ a funkci $f: \mathbb{R} \to \mathbb{R}$ nazveme lichou, pokud

definiční obor $\mathcal{D}(f)$ je symetrická množina a platí f(-x) = -f(x) pro každé $x \in \mathcal{D}(f)$.

Obr. 4.6: Funkce sudá, lichá a periodická s periodou p.

Poznámky 4.4.

- (a) Funkce x, x^3 , 1/x, $\sin x$, $\tan x$, $\tan x$, $\cot x$ jsou funkce liché, funkce 1, x^2 , x^4 , $\frac{1}{x^2}$, $\cos x$ jsou funkce sudé. Naproti tomu funkce e^x , $\ln x$ nejsou ani sudé ani liché.
- (b) Součet sudých funkcí je funkce sudá a součet lichých funkcí je funkce lichá. Dále součin dvou sudých i dvou lichých funkcí je funkce sudá a součin sudé a liché funkce je funkce lichá. Každou funkci f(x) definovanou na symetrické množině lze rozložit na součet $f(x) = f_s(x) + f_l(x)$ funkce sudé $f_s(x) = \frac{1}{2}[f(x) + f(-x)]$ a liché $f_l(x) = \frac{1}{2}[f(x) f(-x)]$.

Definice 4.5. (Periodická funkce) Nechť existuje kladné číslo p takové, že

- (a) definiční obor funkce f je množina "periodická", tj. $x \in \mathcal{D}(f) \Leftrightarrow x + p \in \mathcal{D}(f)$.
- (b) platí f(x+p) = f(x) pro všechna $x \in \mathcal{D}(f)$.

Potom řekneme, že funkce f je periodická s periodou p, zkráceně funkce f je p-periodická.

Poznámky 4.6.

- (a) Goniometrické funkce $\sin x$, $\cos x$, $\tan x$, $\cot x$ jsou funkce periodické. Nejmenší periodou prvních dvou funkcí je $p=2\pi$, periodou jsou však i násobky 2π . Nejmenší periodou funkcí $\tan x$ a $\cot x$ je $p=\pi$. Také funkce necelá část x je periodická s (nejmenší) periodou x je x 1. Funkce celá část x 1 periodická není.
- (b) Má-li funkce periodu p, periodou jsou i násobky kp, $k \in \mathbb{N}$. Obvykle za periodu bereme nejmenší kladné p splňující f(x+p)=f(x). Tuto podmínku však splňuje i konstantní funkce pro libovolné p>0, a nejmenší periodu tudíž nemá. Někteří autoři proto funkce, které nemají nejmenší periodu, za periodické nepovažují.
- (c) Zajímavá je i Dirichletova funkce. Pro ni je podmínka f(x+p)=f(x) splněna pro každé kladné racionální p. Tato funkce tudíž také nemá nejmenší periodu a někteří autoři ji proto za periodickou nepovažují.

Funkce omezená, rostoucí a klesající

Definice 4.7. (Omezené funkce) Buď f funkce a $M \subset \mathcal{D}(f)$. Řekneme, že funkce f je

- (a) **zdola omezená** na M, jestliže existuje $K \in \mathbb{R}$ takové, že pro všechna $x \in M$ je $f(x) \geq K$.
- (b) shora omezená na M, jestliže existuje $L \in \mathbb{R}$ takové, že pro všechna $x \in M$ je $f(x) \leq L$.
- (c) **omezená** na M, je-li na M současně zdola omezená i shora omezená.
- (d) **neomezená** na M, není-li na M omezená zdola nebo shora.

Poznámky 4.8.

- (a) Místo slova omezené a neomezené se také často říká ohraničené a neohraničené.
- (b) Funkce e^x je omezená zdola na celém \mathbb{R} . Funkce 1/x je omezená shora na $(-\infty,0)$ a omezená zdola na $(0,\infty)$. Funkce $\sin x$, $\cos x$ jsou omezené, $\operatorname{tg} x$ i $\cot g x$ jsou neomezené na celém svém definičním oboru.

Definice 4.9. (Funkce rostoucí a klesající) Buď f funkce a $I \subset \mathcal{D}(f)$ interval. Řekneme, že funkce f je

- (a) rostoucí na I, jestliže pro každé $x_1, x_2 \in I$ platí $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$,
- (b) neklesající na I, jestliže pro každé $x_1, x_2 \in I$ platí $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$,
- (c) klesající na I, jestliže pro každé $x_1, x_2 \in I$ platí $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$,
- (d) **nerostoucí** na I, jestliže pro každé $x_1, x_2 \in I$ platí $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$,
- (e) konstantní na I, jestliže pro každé $x_1, x_2 \in I$ platí $f(x_1) = f(x_2)$,
- (f) monotónní na I, jestliže je neklesající na I nebo nerostoucí na I.
- (g) ryze monotónní na I, jestliže je rostoucí na I nebo klesající na I.

Poznámky 4.10.

- (a) Na intervalu *I* je každá rostoucí funkce také neklesající a každá klesající funkce je i nerostoucí. Je-li funkce nerostoucí a současně neklesající, je konstantní.
- (b) Je-li funkce rostoucí (neklesající, klesající, nerostoucí, konstantní) na překrývajících se intervalech I_1 a I_2 ($I_1 \cap I_2 \neq \emptyset$), potom je taková i na sjednocení intervalů $I_1 \cup I_2$.

Obr. 4.7: K definici funkce rostoucí.

Obr. 4.8: Funkce f(x) je rostoucí na intervalu I_1 , neklesající na I_2 , klesající na I_3 , konstantní na I_4 a nerostoucí na I_5 .

Funkce konvexní a konkávní

Dále zkoumáme, zda je funkce konvexní nebo konkávní. Rozhodující přitom je, zda spojnice dvou bodů grafu leží nad nebo pod grafem funkce.

K tomu potřebujeme popsat souřadnice bodu na úsečce s krajními body $P_0 = [x_0, y_0]$ a $P_1 = [x_1, y_1]$. Pro $t \in \langle 0, 1 \rangle$ položme

$$x(t) = (1-t)x_0 + t x_1, \quad y(t) = (1-t)y_0 + t y_1$$

a označme $P_t=[x(t),y(t)]$. Zřejmě pro t=0 dostáváme bod P_0 , pro t=1 bod P_1 , bod $P_{1/2}$ je střed úsečky $\overline{P_0P_1}$. Body P_t pro $t\in(0,1)$ tvoří celou otevřenou úsečku.

Vyjádření využijeme při definici konvexní funkce. Bod úsečky s koncovými body $[x_0, f(x_0)]$ a $[x_1, f(x_1)]$ se souřadnicí x = x(t) má příslušnou y-novou souřadnici danou $y(t) = (1-t)f(x_0) + t f(x_1)$. Tuto hodnotu budeme v definici porovnávat s hodnotou f(x(t)):

Obr. 4.9: Popis bodů úsečky.

Obr. 4.10: K definici funkce konvexní.

Definice 4.11. (Funkce konvexní a konkávní) Buď f funkce a $I \subset \mathcal{D}(f)$ interval. Řekneme, že funkce f je

(a) konvexní na I, jestliže pro všechna $x_0, x_1 \in I$ a všechna $t \in (0,1)$ platí

$$f((1-t)x_0 + tx_1) \le (1-t)f(x_0) + tf(x_1),$$

(b) ryze konvexní na I, jestliže pro všechna $x_0, x_1 \in I$, $x_0 \neq x_1$ a všechna $t \in (0,1)$ platí

$$f((1-t)x_0 + tx_1) < (1-t)f(x_0) + tf(x_1),$$

(c) konkávní na I, jestliže pro všechna $x_0, x_1 \in I$ a všechna $t \in (0,1)$ platí

$$f((1-t)x_0 + tx_1) \ge (1-t)f(x_0) + tf(x_1),$$

(d) ryze konkávní na I, jestliže pro všechna $x_0, x_1 \in I$, $x_0 \neq x_1$ a všechna $t \in (0, 1)$ platí

$$f((1-t)x_0 + tx_1) > (1-t)f(x_0) + tf(x_1)$$
.

(e) Bod x = a nazveme **inflexním bodem** funkce f(x), jestliže v levém okolí bodu a je funkce f(x) konvexní a v pravém okolí konkávní, nebo naopak.

Obr. 4.11: Funkce f_1 je konvexní, f_2 je konkávní a bod x^* je inflexním bodem funkce f_3 .

Příklady 4.12.

- (a) Funkce e^x a sudé mocniny x^2, x^4, \ldots jsou ryze konvexní na celém \mathbb{R} , logaritmická funkce $\ln x$ je ryze konkávní na $(0, \infty)$. Odmocniny $\sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \ldots$ jsou ryze konkávní na $(0, \infty)$.
- (b) Liché mocniny x^3, x^5, \ldots jsou ryze konvexní na $(0, \infty)$ a ryze konkávní na $(-\infty, 0)$, v nule mají inflexní bod.
- (c) Funkce $\sin x$ je ryze konkávní na intervalech $\langle 2k\pi, (2k+1)\pi \rangle$ a konvexní na intervalech $\langle (2k-1)\pi, 2k\pi \rangle$ $(k \in \mathbb{Z})$. V $x = k\pi$ jsou inflexní body.
- (d) Funkce $\operatorname{arctg} x$ je konvexní na $(-\infty, 0)$, konkávní na $(0, \infty)$ a x = 0 je inflexní bod.

Poznámky 4.13.

- (a) Je-li funkce ryze konvexní, je také konvexní a podobně ryze konkávní je konkávní. Funkce, která je současně konvexní i konkávní na intervalu I, je na tomto intervalu lineární, tj. tvaru f(x) = ax + b, a jejím grafem je úsečka.
- (b) Nechť v bodě grafu funkce existuje tečna ke grafu funkce. Potom:
 - je-li funkce ryze konvexní, tato tečna je pod grafem funkce,
 - je-li funkce ryze konkávní, tato tečna je nad grafem funkce,
 - je-li bod inflexní, tato tečna je na jedné straně bodu pod grafem, na druhé nad grafem.
- (c) Předchozí vlastnosti nejsou vhodné pro definici konvexní a konkávní funkce. Museli bychom nejprve definovat, co je to tečna ke grafu funkce. Také by definice nezahrnovala případy, kdy graf funkce v uvažovaném bodě tečnu nemá.

Funkce algebraické a transcendentní

I když názvosloví není zcela jednotné, tzv. analytické funkce dělíme následovně:

Definice 4.14. (Funkce algebraické a transcendentní)

Funkci y = f(x) nazveme **algebraickou**, jestliže je určena rovnicí P(x, y) = 0, kde P(x, y) je polynom v proměnných x, y. Algebraické funkce dělíme na podskupiny:

- (a) racionální funkce celistvé zvané polynomy, česky mnohočleny. Jsou to funkce y = Q(x), kde Q(x) je polynom proměnné x.
- (b) racionální funkce lomené, zkráceně racionální funkce nebo lomené funkce. Jsou to funkce, které vzniknou podílem dvou polynomů Q(x) a R(x), přičemž $R(x) \not\equiv 0$.
- (c) **iracionální funkce** ostatní algebraické funkce, které nelze vyjádřit jako podíl dvou polynomů.

Analytické funkce, které nejsou algebraické, nazýváme transcendentní.

Mezi tzv. nižší transcendentní funkce řadíme **elementární funkce**: mocniny s iracionálním exponentem, exponenciální a logaritmické funkce, funkce goniometrické, cyklometrické, hyperbolické atd.

Mezi tzv. vyšší transcendentní funkce řadíme například funkce definované pomocí integrálů, například $y=\int_0^x e^{-t^2}\,\mathrm{d}t$ a další.

Poznámky 4.15.

(a) Polynom v proměnných x, y je lineární kombinace mocnin $x^i y^j$, tj. součet konečně mnoha násobků členů $x^i y^j$, kde $i, j \in \mathbb{N}_0 \equiv \{0, 1, 2, 3, \dots\}$, například funkce

$$P(x,y) = x^3 - 2x^2y - 3xy^2 + \frac{3}{7}x^2 - \pi xy + 2 - 4y - \sqrt{7}.$$

- (b) Polynom k-tého stupně v proměnné x lze zapsat $Q(x) = a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$, kde $a_i \in \mathbb{R}$, například $x^3 + 3x 5$. Polynom Q(x) patří mezi algebraické funkce, v tomto případě v rovnici P(x,y) = 0 je polynom P(x,y) = Q(x) y.
- (c) Příkladem racionální lomené funkce je funkce

$$f(x) = \frac{Q(x)}{R(x)} = \frac{2x^3 + x^2 - 2x + 3}{x^4 - \sqrt{3}x^2 - \pi x + 2}.$$

V tomto případě je polynom $P(x,y) = Q(x) - R(x) \cdot y$.

- (d) Iracionální funkce jsou určeny polynomem P(x,y), který obsahuje alespoň druhou mocninu proměnné y, například $P(x,y)=x^2+y^2-4=0$. Pokud existuje explicitní vyjádření funkce ve tvaru y=f(x), potom obsahuje odmocniny, například $y=\sqrt{4-x^2}$.
- (e) Předchozí definice se týká jenom tzv. analytických funkcí, s jejich přesnou definicí se setkáme v kurzu Matematika 3: jsou to spojité funkce, které mají derivace všech řádů a v okolí každého bodu příslušná Taylorova řada konverguje k dané funkci. Mezi analytické funkce nepatří například funkce znaménka $\operatorname{sgn}(x)$, absolutní hodnoty |x| v okolí nuly, funkce celá [x] i necelá část $\{x\}$. Ani Dirichletova funkce D(x) není analytická, i když $\operatorname{splňuje}$ rovnici y(y-1)=0.

Posloupnosti

Zobrazení (funkce) definované na množině přirozených čísel \mathbb{N} se nazývají **posloupnosti**. Místo a(n) píšeme $\{a_n\}$ a myslíme tím uspořádanou nekonečnou množinu $\{a_1, a_2, a_3, \ldots\}$, kterou zapisujeme zkráceně $\{a_n\}_{n=1}^{\infty}$ nebo jenom $\{a_n\}$. Někdy je vhodné začínat posloupnost nultým členem, tj. $\{a_0, a_1, a_2, a_3, \ldots\}$, potom je definičním oborem množina $\mathbb{N}_0 \equiv \mathbb{N} \cup \{0\}$.

Jaký je rozdíl mezi posloupností a množinou? V množině nezáleží na pořadí uvedených prvků, každý prvek je v množině jen jednou (pokud je náhodou zapsán vícekrát, je považován za jeden). Naproti tomu v posloupnosti záleží na pořadí prvků, prvky se mohou opakovat: například v konstantní posloupnosti se jeden prvek stále opakuje.

Řada pojmů definovaných pro funkce lze přirozeně převést také posloupnosti. Například posloupnost $\{a_n\}_{n=1}^{\infty}$ je **neklesající**, jestliže $a_{n+1} \geq a_n$ pro všechna $n \in \mathbb{N}$. Podobně se zavádí pojem rostoucí, klesající, nerostoucí, omezené (ohraničené) posloupnosti.

U posloupností je důležitým pojmem její limita, budeme jí věnovat v části 5.

Příklady 4.16. Několik konkrétních posloupností

- (a) Posloupnost konstantní je posloupnost $\{a, a, a, a, a, \dots, a, \dots\}$, kde $a \in \mathbb{R}$.
- (b) Posloupnost aritmetická s diferencí d a počátečním členem $a_0 = a$ je posloupnost definovaná rekurentně $a_{n+1} = a_n + d$, neboli $a_n = a_0 + n \cdot d$. Pro $a_0 = 3$ a d = 2 je

$${a, a+d, a+2d, a+3d, a+4d, a+5d, \dots} = {3, 5, 7, 9, 11, 13, \dots}.$$

Pro d>0 je posloupnost rostoucí a neomezená (roste do nekonečna), pro d<0 je klesající do $-\infty$ a pro d=0 je konstantní.

(c) Posloupnost **geometrická** s počátečním členem $a_0 = a$ a kvocientem q je definovaná rekurentně $a_{n+1} = a_n \cdot q$, neboli $a_n = a_0 \cdot q^n = a \cdot q^n$. Například pro $a_0 = 3$ a q = 2 je

$${a, aq, aq^2, aq^3, aq^4, aq^5, \dots} = {3, 6, 12, 24, 48, 96, \dots}.$$

Nechť například a > 0. Potom podle hodnoty q rozlišujeme pět případů:

```
q>1 — posloupnost roste do nekonečna, q=1 — posloupnost je konstantní, 0 < q < 1 — posloupnost klesá k nule, -1 < q < 0 — členy a_n "skáčou" kolem nuly a blíží se k ní, q=-1 — posloupnost "osciluje": \{a,-a,a,-a,a,\dots\} a q<-1 — posloupnost diverguje, "rozbíhá se" do \pm\infty.
```

Pro a < 0 je situace analogická.

4B. Elementární funkce

V dalším se budeme věnovat funkcím, které nazýváme elementární. Jsou to zejména funkce:

- (a) exponenciální a logaritmické;
- (b) obecné mocninné;
- (c) goniometrické a cyklometrické;
- (d) hyperbolické a hyperbolometrické.

Exponenciální funkce

Funkce typu a^x , kde základ a je pevné kladné číslo různé od jedničky, tj. $a \in (0,1) \cup (1,\infty)$, a exponent x je proměnná, nazýváme exponenciální funkce. Tyto funkce jsou přirozeně definované pro přirozená čísla $x \in \mathbb{N}$: a^x je součin x čísel a. Její základní vlastností je rovnost

$$a^{x+y} = a^x \cdot a^y$$

Z rovnosti $a^x=a^{x+0}=a^x\cdot a^0$ plyne $a^0=1$ a ze vztahu $a^x\cdot a^{-x}=a^{x-x}=a^0=1$ plyne $a^{-x}=1/a^x$. Dále z rovnosti $(a^{\frac{1}{q}})^q=a^{\frac{1}{q}\cdot q}=a^1=a$ pro $q\in\mathbb{N}$ plyne $a^{\frac{1}{q}}=\sqrt[q]{a}$. Díky tomu můžeme rozšířit funkci a^x na všechna racionální čísla $x=\frac{p}{q}$ vztahem

$$a^{\frac{p}{q}} = \sqrt[q]{a^p} \,. \tag{*}$$

Pro iracionální x je funkce definována jako limita (pojem definujeme později) a^{r_i} hodnot funkce v racionálních čísel r_i blížících se k iracionálnímu x. Případ základu a=1 se nepovažuje za exponenciální funkci, protože $1^x=1$ je konstantní funkce.

Definice 4.17. (Exponenciální funkce) Buď a kladné reálné číslo různé od 1. Potom funkci $f(x) = a^x$ s definičním oborem \mathbb{R} , a oborem hodnot $(0, \infty)$, která vznikne rozšířením funkce (*) z racionálních na reálná čísla, nazveme exponenciální funkcí se základem a.

V matematice se užívá zejména tzv. přirozená exponenciální funkce e^x se základem a=e, kde e je Eulerova konstanta, $e \doteq 2.7182\,818$. Místo e^x se píše také $\exp(x)$.

Poznámka. Eulerovu konstantu lze definovat jako limitu

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

S funkcí e^x se ještě mnohokrát setkáme. V aplikacích se užívají také exponenciální funkce se základem $a=2,\ a=3,\ a=10.$

Věta 4.18. Funkce a^x je pro každé kladné $a \neq 1$ omezená zdola a neomezená shora.

Pro a > 1 je rostoucí a pro 0 < a < 1 klesající na celém \mathbb{R} .

V obou případech je funkce na celém R ryze konvexní.

Významné hodnoty funkce jsou $a^0 = 1$, $a^1 = a$ a $a^{-1} = 1/a$.

Z pravidel pro počítání s exponenciální funkcí uveď me

$$a^{x+y} = a^x \cdot a^y, \qquad a^{x-y} = \frac{a^x}{a^y}, \qquad (a^x)^y = a^{xy}, \qquad a^{\frac{x}{y}} = \sqrt[y]{a^x} \quad (y \neq 0).$$

Obr. 4.12: Exponenciální funkce a^x pro $a=\frac{1}{2},\ a=\frac{2}{3},\ a=\frac{3}{2},\ a=2$ a a=e. Všimněte si zrcadlové symetrie grafů funkcí 2^x a $(\frac{1}{2})^x=2^{-x},\ (\frac{3}{2})^x$ a $(\frac{2}{3})^x=(\frac{3}{2})^{-x}$, obecně a^x a $(\frac{1}{a})^x=a^{-x}$.

Logaritmické funkce

Exponenciální funkce a^x jsou pro základ $a \in (0,1)$ klesající a pro $a \in (1,\infty)$ rostoucí, tedy v obou případech funkce prosté. Existují proto funkce inverzní, které se nazývají logaritmické. Graf logaritmické funkce $y = \log_a x$ je zrcadlově symetrický podle osy y = x ke grafu funkce $y = a^x$, speciálně přirozený logaritmus $y = \ln x$ je zrcadlově symetrický ke grafu funkce $y = e^x$.

Definice 4.19. (Logaritmické funkce) Nechť $a \in \mathbb{R}$, a > 0, $a \neq 1$. Inverzní funkce k funkci $f(x) = a^x$ se nazývá logaritmická funkce o základu a. Značí se $f(x) = \log_a(x)$ nebo bez závorek jen $\log_a x$. Jsou definovány na $(0, \infty)$ s oborem hodnot $(-\infty, \infty)$ a platí

$$\log_a x = y \iff x = a^y$$
.

Přirozený logaritmus je logaritmus se základem a = e. Značíme ho $\ln x \equiv \log_e x$. Užívá se také **dekadický logaritmus** se základem a = 10, který se často píše bez základu: $\log x \equiv \log_{10} x$. Je to funkce inverzní k funkci 10^x .

Vlastnosti logaritmické funkce shrneme v tvrzení:

Věta 4.20. Nechť $a \in (0,1) \cup (1,\infty)$.

Logaritmické funkce $f(x) = \log_a x$ jsou definovány jen pro kladná čísla x.

Pro a > 1 jsou to funkce rostoucí a ryze konkávní "jdoucí" od $-\infty$ do ∞ .

Pro 0 < a < 1 jsou to funkce klesající a ryze konvexní "jdoucí" od ∞ do $-\infty$.

Významné hodnoty jsou $\log_a 1 = 0$, $\log_a a = 1$ a $\log_a (\frac{1}{a}) = -1$.

Z pravidel pro počítání s logaritmickými funkcemi uveď me:

$$\begin{split} \log_a(xy) &= \log_a x + \log_a y \,, \qquad \log_a(\frac{x}{y}) = \log_a x - \log_a y \,, \\ \log_a(x^p) &= p \cdot \log_a x \,, \qquad \log_a(\sqrt[p]{x}) = \frac{1}{p} \log_a x \,. \end{split}$$

Pravidla dostaneme z definice logaritmu a vlastností exponenciální funkce. První tvrzení plyne z rovnosti $e^{\ln(xy)} = xy = e^{\ln x} e^{\ln y} = e^{\ln x + \ln y}$. Rovnost $e^{\ln(x/y)} = x/y = e^{\ln x}/e^{\ln y} = e^{\ln x - \ln y}$ dává druhé tvrzení. Třetí plyne z rovnosti $e^{\ln(x^p)} = x^p = (e^{\ln x})^p = e^{p \ln x}$. Poslední tvrzení je důsledkem rovnosti $e^{\ln(\sqrt[p]{x})} = \sqrt[p]{x} = x^{1/p} = (e^{\ln x})^{1/p} = e^{1/p \ln x}$.

Exponenciální a logaritmické funkce s různými základy lze navzájem převádět.

Věta 4.21. Buď
$$a, b \in (0, 1) \cup (1, \infty)$$
. Potom platí $a^x = e^{x \ln a}$, $b^x = (a^x)^{\frac{\ln b}{\ln a}}$, $\forall x \in \mathbb{R}$ a $\log_b x = \log_a x \frac{\ln a}{\ln b}$, speciálně $\log x \equiv \log_{10} x = \frac{\ln x}{\ln 10}$, $\log_a x = \frac{\ln x}{\ln a}$, $\forall x > 0$.

Naznačme odvození uvedených vzorců. Z rovnosti $a = e^{\ln a}$ plyne $a^x = (e^{\ln a})^x = e^{x \cdot \ln a}$. Důkaz druhého vzorce: $b^x = e^{x \cdot \ln b} = e^{x \cdot \ln a \cdot \ln b / \ln a} = (e^{x \ln a})^{\ln b / \ln a} = (a^x)^{\ln b / \ln a}$. Číslo x > 0 lze napsat jako $x = a^{\log_a x} = (e^{\ln a})^{\log_a x} = e^{\ln a \cdot \log_a x}$ a také jako $x = b^{\log_b x} = e^{\ln b \cdot \log_b x}$. Porovnání exponentů dává $\ln a \cdot \log_a x = \ln b \cdot \log_b x$, odkud plyne třetí vzorec, další jsou jeho důsledky.

Obr. 4.13: Logaritmické funkce $\log_a x$ pro $a = \frac{1}{2}$, $a = \frac{2}{3}$, $a = \frac{3}{2}$, a = 2. Funkce $\ln x$ je inverzní k e^x . Funkce $\ln x$ a e^x jsou navzájem zrcadlově symetrické podle osy y = x, stejně navzájem symetrické jsou i funkce $\log_a x$ a a^x . Všimněte si také zrcadlové symetrie podle osy x funkcí $\log_a x$ a $\log_{1/a} x$.

Obecné mocninné funkce

V exponenciálních funkcích byl základ pevný a exponent proměnná, u mocninných funkcí je to naopak: exponent p je pevný, proměnnou x je základ. Mocninné funkce jsou přirozeně definovány pro exponenty $p=0,1,2,3,4,\ldots$ na celém $\mathbb R$, pro záporné celé exponenty na celém $\mathbb R$ kromě x=0. Obecně jsou hodnoty x^p definovány pro $x\in\mathbb R^+=(0,\infty)$ vztahem $x^p=\mathrm{e}^{p\ln x}$.

Definice 4.22. (Obecná mocninná funkce) Nechť $p \in \mathbb{R}$. Funkce $f(x) = x^p$ je definovaná vztahem $x^p = e^{p \ln x}$ pro všechna kladná čísla $x \in \mathbb{R}^+ = (0, \infty)$.

Pro p > 0 lze položit $0^p = 0$. V případě celých exponentů $p \in \mathbb{Z}$ lze funkci rozšířit pro $x \in \mathbb{R} \setminus \{0\}$, pokud navíc $p \in \mathbb{N}$, funkce x^p je definovaná na celém \mathbb{R} .

Uveď me grafy několika mocninných funkcí na intervalu $(0, \infty)$. Funkce $x^0 = 1, x^1, x^2, x^3, \ldots$ jsou definované na celém \mathbb{R} , funkce $x^{-1}, x^{-2}, x^{-3}, \ldots$ jsou definované na \mathbb{R} kromě nuly.

Obr. 4.14: Mocninné funkce x^p pro $p=-1, p=0, p=\frac{1}{2}, p=1$ a p=2 na intervalu $(0,\infty)$.

Věta 4.23. (Vlastnosti obecných mocninných funkcí)

Nechť $p \in \mathbb{R}$. Obecná mocninná funkce $f(x) = x^p$ má pro $x \in (0, \infty)$ vlastnosti:

- (a) je rostoucí v případě exponentů p > 0 a klesající v případě p < 0,
- (b) funkce je ryze konvexní pro p > 1 a pro p < 0, pro 0 je ryze konkávní.
- (c) Platí $(xy)^p = x^p \cdot y^p$, $\left(\frac{x}{y}\right)^p = \frac{x^p}{y^p}$,
- (d) V obecném případě $p \in \mathbb{R}$ a $p \neq 0$ funkce x^p zobrazí interval $(0, \infty)$ na celé $(0, \infty)$.

Goniometrické funkce

Na základní a střední škole byly goniometrické funkce definovány pro úhel α pravoúhlého trojúhelníka $\triangle ABC$ s úhlem α při vrcholu A, pravým úhlem při vrcholu C, odvěsnami BC délky a, AC délky b a přeponou AB délky c, (viz obr. 4.15) jako:

- (a) $\sin\alpha=\frac{a}{c}\,$ tj. poměr (délky) protilehlé odvěsny ku přeponě,
- (b) $\cos\alpha=\frac{b}{c}\,$ tj. poměr přilehlé odvěsny ku přeponě,
- (d) $\cot \alpha = \frac{b}{a}$ tj. poměr přilehlé odvěsny ku protilehlé odvěsně.

Obr. 4.15: Oznacení trojúhelníka ΔABC .

Pro úplnost uveď me, že zbývající poměr stran c:b definuje funkci sekans: $\sec \alpha = 1/\cos \alpha$ a poměr c:a funkci kosekans: $\csc \alpha = 1/\sin \alpha$. Tyto funkce se však používají jen velmi zřídka. Nejsou omezené a nejsou definovány pro hodnoty α , kdy $\sin \alpha = 0$ nebo $\cos \alpha = 0$.

Goniometrické funkce rozšíříme z ostrého úhlu na libovolný úhel. Budeme uvažovat orientovaný úhel s vrcholem v počátku, jehož první (počáteční) rameno směřuje od počátku vpravo. Velikost úhlu budeme měřit v radiánech, tj. pomocí délky orientovaného oblouku na jednotkové kružnici, který začíná na počátečním rameni a končí na koncovém rameni. Pokud je tento oblouk orientován v kladném směru, tj. proti směru pohybu hodinových ručiček, bereme úhel kladný, v opačném případě záporný. Význam orientovaného úhlu už není plocha mezi rameny úhlu, ale otáčivý pohyb, kterým se počáteční rameno přemístí na koncové rameno.

Protože délka jednotkové kružnice je 2π , orientované úhly $x, x+2\pi, x-2\pi, x+4\pi, x-4\pi, \dots$ mají stejná ramena.

Protože 180° je π radiánů, přepočet velikosti úhlu v radiánech na stupně a obráceně je:

$$x \left[\mathrm{radi\acute{a}n\mathring{u}} \right] = x \cdot \frac{180}{\pi} \left[\mathrm{stup\check{n}\mathring{u}} \right] \qquad \text{a obr\'acen\`e} \qquad x \left[\mathrm{stup\check{n}\mathring{u}} \right] = x \cdot \frac{\pi}{180} \left[\mathrm{radi\acute{a}n\mathring{u}} \right].$$

Pamatujte si převod ostrých úhlů v prvním kvadrantu a násobků pravého úhlu:

Stupně	0°	30°	45°	60°	90°	180°	270°	360°	540°	720°
Radiány	0	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$	π	$\frac{3}{2}\pi$	2π	3π	4π

Definice 4.24. (Goniometrické funkce). Buď k jednotková kružnice se středem v počátku O = [0,0] a orientovaný úhel s počátečním ramenem \overrightarrow{OA} směřujícím vpravo a koncovým ramenem \overrightarrow{OB} , přičemž body A = [1,0] a B jsou průsečíky ramen s kružnicí k.

Potom délka orientovaného oblouku AB určuje velikost úhlu x,

"svislá" souřadnice bodu B je hodnota $\sin x$ funkce sinus,

"vodorovná" souřadnice B je hodnota $\cos x$ funkce kosinus, tj. $B = [\cos x, \sin x]$.

Funkce tangens a kotangens jsou definovány jako podíly

$$tg x = \frac{\sin x}{\cos x}, \qquad \cot g x = \frac{\cos x}{\sin x}.$$

Obr. 4.16: K definici goniometrických funkcí $\sin x$, $\cos x$, $\operatorname{tg} x$, $\cot g x$.

Poznámky 4.25.

- (a) Při psaní argumentu goniometrických funkcí se často závorky vynechávají, např. místo $\sin(x)$ se píše jenom $\sin x$, také místo $\sin(2x)$ se píše $\sin 2x$ a místo $\sin\left(\frac{x}{2}\right)$ se píše jenom $\sin\frac{x}{2}$. Mocniny se píší před argument $\sin^2 x$ nebo $\sin^2(x)$ místo těžkopádného $(\sin(x))^2$, bez závorek $\sin x^2$ totiž znamená $\sin(x^2)$.
- (b) Na obrázku jsou vidět také hodnoty funkcí tangens a kotangens. Protože x označuje velikost úhlu (měřeného délkou orientovaného oblouku na kružnici k), označme "vodorovnou" souřadnicovou osu y a "svislou" souřadnicovou osu z. Koncové rameno úhlu "prodloužíme" na přímku p a obrázek doplníme "svislou" přímkou y=1 a "vodorovnou" přímkou z=1. Potom funkce tg x je "svislá" souřadnice průsečíku C přímky p a přímk
- (c) Z definice a obrázku je také vidět, že funkce $\sin x$ a $\cos x$ jsou definovány pro všechny hodnoty úhlu $x \in \mathbb{R}$.
- (d) Z definice $\operatorname{tg} x = \sin x/\cos x$ plyne, že funkce $\operatorname{tg} x$ není definována pro $x = \frac{1}{2}\pi + k\pi$, kdy $\cos x = 0$. Pro tyto hodnoty x na obrázku přímka p neprotíná přímku y = 1. Také z definice $\cot x = \cos x/\sin x$ plyne, že funkce $\cot x$ není definována pro $x = k\pi$, kdy $\sin x = 0$. Pro tyto hodnoty přímka p neprotíná přímku z = 1.
- (e) Z obrázku lze dále usoudit, že zatímco funkce sin a cos mají (nejmenší) periodu 2π , funkce tg a cotg mají (nejmenší) periodu poloviční, tj. π .
- (f) Protože délka OB je rovna jedné, z Pythagorovy věty plyne rovnost $\sin^2 x + \cos^2 x = 1$.

Obr. 4.17: Grafy funkcí $\sin x$ a $\cos x$ na základní periodě $(0, 2\pi)$.

Zapamatujte si vybrané hodnoty funkcí v prvním kvadrantu a znaménka v dalších kvadrantech. Jako mnemotechnická pomůcka pro hodnoty funkce sinus pro $x=0,\pi/6,\pi/4,\pi/3,\pi/2$ slouží řada: $\frac{1}{2}\sqrt{0}, \frac{1}{2}\sqrt{1}, \frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{3}, \frac{1}{2}\sqrt{4}$ a v opačném pořadí pro kosinus.

x	0	$\frac{1}{6}\pi \ (30^{\circ})$	$\frac{1}{4}\pi \ (45^{\circ})$	$\frac{1}{3}\pi \ (60^{\circ})$	$\frac{1}{2}\pi \ (90^{\circ})$	$(0,\frac{\pi}{2})$	$(\frac{\pi}{2},\pi)$	$(\pi, \frac{3\pi}{2})$	$\left(\frac{3\pi}{2},2\pi\right)$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	+ >	+ >	- >	- >
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	+ >	- >	- 7	+ /
$\operatorname{tg} x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\nearrow \infty$	+ >	- >	+ 7	- >
$\cot g x$	∞	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	+ >	- >	+ >	- >

Základní vlastnosti goniometrických funkcí shrneme ve větě:

Věta 4.26. (Vlastnosti goniometrických funkcí)

- (a) Definiční obory: $\mathcal{D}(\sin x) = (-\infty, \infty)$, $\mathcal{D}(\cos x) = (-\infty, \infty)$, $\mathcal{D}(\operatorname{tg}) = \bigcup_{k \in \mathbb{Z}} (-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi)$, $\mathcal{D}(\operatorname{cotg}) = \bigcup_{k \in \mathbb{Z}} (k\pi, k\pi + \pi)$.
- (b) Obory hodnot: $\mathcal{H}(\sin x) = \mathcal{H}(\cos x) = \langle -1, 1 \rangle$, $\mathcal{H}(\operatorname{tg} x) = \mathcal{H}(\operatorname{cotg} x) = (-\infty, \infty)$.
- (c) Funkce $\sin x$, $\operatorname{tg} x$ a $\cot x$ jsou liché, funkce $\cos x$ je sudá.
- (d) Funkce $\sin x$ a $\cos x$ mají periodu 2π : $\sin(x+2\pi) = \sin x$, $\cos(x+2\pi) = \cos x$ a funkce $\tan x$ a $\cot x$ mají periodu π : $\tan x$ a $\cot x$ cot $\tan x$ a $\cot x$ cot a cot a
- (e) Funkce $\sin x$ je rostoucí na intervalech $\langle -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \rangle$ a klesající na intervalech $\langle \frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi \rangle$. Funkce $\cos x$ je rostoucí na intervalech $\langle -\pi + 2k\pi, 2k\pi \rangle$ a klesající na intervalech $\langle 2k\pi, \pi + 2k\pi \rangle$. Funkce $\tan x$ je rostoucí na intervalech $(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi)$ a funkce $\cot x$ je klesající na intervalech $(k\pi, \pi + k\pi)$.
- (f) Funkce $\sin x$ je konvexní na intervalech $\langle -\pi + 2k\pi, 2k\pi \rangle$ a konkávní na $\langle 2k\pi, \pi + 2k\pi \rangle$, inflexní body jsou $k\pi$. Funkce $\cos x$ je konvexní na intervalech $\langle \frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi \rangle$ a konkávní na $\langle -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \rangle$, inflexní body jsou $\frac{\pi}{2} + k\pi$.

Funkce tg x je konvexní na intervalech $\langle k\pi, \frac{\pi}{2} + k\pi \rangle$ a konkávní na $(-\frac{\pi}{2} + k\pi, k\pi)$, inflexní body jsou $k\pi$. Funkce cotg x je konvexní na $(k\pi, \frac{\pi}{2} + k\pi)$ a konkávní na $\langle -\frac{\pi}{2} + k\pi, k\pi \rangle$, inflexní body jsou $\frac{\pi}{2} + k\pi$.

Obr. 4.18: Definiční obor a graf funkcí na základních periodách: $\operatorname{tg} x$ na $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ a $\operatorname{cotg} x$ na $\left(0, \pi\right)$.

Věta 4.27. (Užitečné vzorce pro goniometrické funkce)

- (a) Vztahy mezi funkcemi: $\cos x = \sin(x + \frac{\pi}{2})$, $\cos x = \sin(\frac{\pi}{2} x)$, $\sin x = \cos(\frac{\pi}{2} x)$, $\cot x = \cot(\frac{\pi}{2} x)$, $\cot x = \cot(\frac{\pi}{2} x)$.
- (b) Základní rovnosti: $\sin^2 x + \cos^2 x = 1$, $\operatorname{tg} x \cdot \cot x = 1$.
- (c) Vzorce pro součet argumentů pro $\sin x \ a \cos x$:

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y, \ \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y.$$

(d) Důsledkem jsou vzorce pro dvojnásobný argument:

$$\sin(2x) = 2\sin x \cos x$$
, $\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$.

(e) Pro integrování mocnin funkcí sinus a kosinus budou později užitečné vztahy, které snadno plynou z předchozích vzorců:

$$\sin^2(x) = \frac{1}{2} (1 - \cos(2x)), \qquad \cos^2(x) = \frac{1}{2} (1 + \cos(2x)).$$

(f) Při odvozování derivace využijeme vzorec pro součet a rozdíl hodnot sinus a kosinus, které lze odvodit z předchozích vzorců pro součet argumentů

$$\sin u + \sin v = 2\sin\frac{u+v}{2} \cdot \cos\frac{u-v}{2}, \quad \sin u - \sin v = 2\cos\frac{u+v}{2} \cdot \sin\frac{u-v}{2},$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2} \cdot \cos\frac{u-v}{2}, \quad \cos u - \cos v = -2\sin\frac{u+v}{2} \cdot \sin\frac{u-v}{2}.$$

Pro srovnání uvedeme ještě grafy všech goniometrických funkcí na větším intervalu:

Obr. 4.19: Grafy funkcí $\sin x$, $\cos x$, $\operatorname{tg} x$ a $\cot x$ na intervalu $(-2\pi, 4\pi)$.

Cyklometrické funkce

Cyklometrické funkce jsou funkce inverzní k funkcím goniometrickým. Protože goniometrické funkce jsou periodické, nejsou prosté. Proto ve všech případech musíme zúžit definiční obor původní goniometrické funkce na interval, ve kterém je prostá. Z možných intervalů vybíráme ten interval, který je nejblíže k nule a obsahuje kladná čísla:

- (a) $\sin x$ je prostá z $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ na $\langle -1, 1 \rangle$, inverzní funkci značíme arcsin x,
- (b) $\cos x$ je prostá z $\langle 0, \pi \rangle$ na $\langle -1, 1 \rangle$, inverzní funkci značíme $\arccos x$,
- (c) tg x je prostá z $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ na $\left(-\infty, \infty\right)$, inverzní funkci značíme arctg x,
- (d) $\cot x$ je prostá z $(0,\pi)$ na $(-\infty,\infty)$, inverzní funkci značíme arccotg x.

Definice 4.28. (Cyklometrické funkce) Inverzní funkce ke goniometrickým funkcím jsou definovány následovně:

- (a) Funkce **arkussinus** je inverzní k funkci sinus na $\langle -\frac{1}{2}\pi, \frac{1}{2}\pi \rangle$, tj. pro $x \in \langle -1, 1 \rangle$ platí $\arcsin x = y$, pokud $\sin y = x$ a $y \in \langle -\frac{1}{2}\pi, \frac{1}{2}\pi \rangle$.
- (b) Funkce **arkuskosinus** je inverzní k funkci kosinus na $\langle 0, \pi \rangle$, tj. pro $x \in \langle -1, 1 \rangle$ platí $\arccos x = y$, pokud $\cos y = x$ a $y \in \langle 0, \pi \rangle$.
- (c) Funkce arkustangens je inverzní k funkci tangens na $(-\frac{1}{2}\pi, \frac{1}{2}\pi)$, tj. pro $x \in \mathbb{R}$ platí $\operatorname{arctg} x = y$, pokud $\operatorname{tg} y = x$ a $y \in (-\frac{1}{2}\pi, \frac{1}{2}\pi)$.
- (d) Funkce **arkuskotangens** je inverzní k funkci kotangens na $(0, \pi)$, tj. pro $x \in \mathbb{R}$ platí $\operatorname{arccotg} x = y$, pokud $\operatorname{cotg} y = x$ a $y \in (0, \pi)$.

Obr. 4.20: Grafy funkce $\arcsin x$ inverzní k $\sin x$ a funkce $\arccos x$ inverzní k $\cos x$.

Vybrané hodnoty cyklometrických funkcí (lze vyčíst z hodnot goniometrických funkcí):

x	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	(-1,1)
$\arcsin x$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	7
$\arccos x$	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	7

x	$-\infty$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	$(-\infty,\infty)$
$\operatorname{arctg} x$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	7
$\operatorname{arccotg} x$	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	7

Obr. 4.21: Graf funkce $\operatorname{arctg} x$ inverzní k $\operatorname{tg} x$ a graf funkce $\operatorname{arccotg} x$ inverzní k $\operatorname{cotg} x$. Všimněte si zrcadlové symetrie funkce a inverzní funkce podle osy y=x.

Věta 4.29. (Vlastnosti cyklometrických funkcí)

- (a) Definičním oborem funkcí $\arcsin x$ a $\arccos x$ je uzavřený interval $\langle -1, 1 \rangle$ a definičním oborem funkcí $\arctan x$ a $\arctan x$ jsou všechna reálná čísla $(-\infty, \infty)$.
- (b) Oborem hodnot cyklometrických funkcí jsou intervaly: $\mathcal{H}(\arcsin) = \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle, \ \mathcal{H}(\arccos) = \left\langle 0, \pi \right\rangle, \ \mathcal{H}(\operatorname{arctg}) = (-\frac{\pi}{2}, \frac{\pi}{2}), \ \mathcal{H}(\operatorname{arccotg}) = (0, \pi).$
- (c) Funkce $\arcsin x$ a $\arctan x$ jsou rostoucí, funkce $\arccos x$ a $\arccotg x$ klesající.
- (d) Funkce $\arcsin x$ a $\operatorname{arccotg} x$ jsou konkávní pro $x \leq 0$ a konvexní pro $x \geq 0$, funkce $\operatorname{arccos} x$ a $\operatorname{arctg} x$ jsou konvexní pro $x \leq 0$ a konkávní pro $x \geq 0$ a všechny mají inflexní bod x = 0.
- (e) Pro $x \in \langle -1, 1 \rangle$ platí $\arcsin x + \arccos x = \frac{\pi}{2}$,
- (f) pro $x \in \mathbb{R}$ platí $\arctan x + \operatorname{arccotg} x = \frac{\pi}{2}$.

Hyperbolické funkce

Pro úplnost uvedeme ještě hyperbolické funkce, které mají podobné vlastnosti jako goniometrické funkce a nacházejí využití v některých aplikacích.

Definice 4.30. (Hyperbolické funkce) Funkce hyperbolický sinus označovaný sinh x a hyperbolický kosinus označovaný $\cosh x$ jsou definovány pomocí exponenciální funkce:

$$sinh x = \frac{1}{2} [e^x - e^{-x}], \quad cosh x = \frac{1}{2} [e^x + e^{-x}].$$

Definičním oborem funkcí sinh x, cosh x je celé \mathbb{R} , obor hodnot funkce sinh x je celé \mathbb{R} a funkce cosh je $\langle 1, \infty \rangle$. Funkce sinh x je lichá, cosh x je sudá.

Podobně hyperbolický tangens označený tgh a hyperbolický kotangens cotgh jsou definovány jako podíl hyperbolického sinu a kosinu:

$$tghx = \frac{\sinh x}{\cosh x} \equiv \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad cotghx = \frac{\cosh x}{\sinh x} \equiv \frac{e^x + e^{-x}}{e^x - e^{-x}}.$$

Funkce $\tanh x$ je definovaná a rostoucí na celém $\mathbb R$ s oborem hodnot (-1,1). Funkce $\coth x$ je klesající na obou "částech": levé záporné definované na $(-\infty,0)$ s hodnotami $(-\infty,-1)$ a pravé kladné zobrazující $(0,\infty)$ na $(1,\infty)$. Obě funkce jsou liché.

Obr. 4.22: Grafy hyperbolických funkcí $\sinh x$, $\cosh x$ a funkcí $\tanh x$, $\coth x$

V kurzu Matematika 3 uvidíme, že funkce $\sin x$ a $\cos x$ souvisejí s exponenciální funkcí rozšířenou na komplexní čísla. Platí totiž podobné vzorce

$$\sin x = \frac{1}{2i} \left[e^{ix} - e^{-ix} \right] \text{ a } \cos x = \frac{1}{2} \left[e^{ix} + e^{-ix} \right],$$

kde i je imaginární jednotka $i^2 = -1$. V literatuře lze také najít zkrácený symbol sh pro hyperbolický sinus, ch pro hyperbolický kosinus, th pro hyperbolický tangens a coth pro hyperbolický kotangens.

Náčrty grafů transformovaných funkcí

Dosud jsme se zabývali elementárními funkcemi v základním tvaru. Studenti mají znát, jak se změní graf funkce při jednoduchých transformacích. Budeme se zabývat lineárními transformacemi jednak hodnoty, tj. závislé proměnné y, a také nezávislé proměnné x.

Obr. 4.23: Posunutí hodnot funkce a násobek hodnot funkce.

Věta 4.31. (Změna hodnoty funkce, tj. závisle proměnné y) Mějme funkci f(x) s definičním oborem $\mathcal{D}(f) = \langle a, b \rangle$ a oborem hodnot $\mathcal{H}(f) = \langle A, B \rangle$. Potom při následujících změnách funkce se definiční obor nemění, mění se však obor hodnot a graf funkce:

- (a) přičtení konstanty f(x)+D: obor hodnot se posune o D na $\langle A+D,B+D\rangle$. Graf se přitom posune o D nahoru při D>0 a o |D| dolů v případě D<0.
- (b) násobek hodnoty $C \cdot f(x)$: obor hodnot se zvětší C-krát na $\langle CA, CB \rangle$ (případně $\langle CB, CA \rangle$ pokud C < 0) a graf se C-krát ve svislém směru "roztáhne" pokud C > 1 nebo "stáhne" pokud 0 < C < 1. V případě záporného C < 0 se graf natáhne nebo stáhne |C|-krát a navíc "překlopí" okolo osy x.
- (c) absolutní hodnota |f(x)|: záporné hodnoty grafu funkce (pokud existují) se "překlopí" na kladné hodnoty grafu, kladné hodnoty se nemění.
 - Pokud A > 0 obor hodnot $\mathcal{H}(f)$ (ani graf funkce) se nemění.
 - Pokud A < 0 < B, potom obor hodnot bude $\mathcal{H}(f) = \langle 0, \max(-A, B) \rangle$.
 - Pokud A < B < 0, potom $\mathcal{H}(f) = \langle -B, -A \rangle$.
- (d) $maximum \max(f(x), g(x))$ dvou funkcí f(x) a g(x) se stejným definičním oborem. Bereme vždy graf "horní" funkce, tj. té funkce, která má na intervalu větší hodnoty. Tam, kde je $f(x) \geq g(x)$, vezmeme f(x), tam kde f(x) < g(x), vezmeme g(x).
- (e) $minimum \min(f(x), g(x))$ dvou funkcí f(x) a g(x) se stejným definičním oborem. Bereme vždy graf "dolní" funkce, tj. té funkce, která má na intervalu menší hodnoty.

Obr. 4.24: Graf absolutní hodnoty funkce a graf maxima a minima dvou funkcí.

Při transformaci argumentu funkce je situace je jiná. Obor hodnot se nemění (kromě případu absolutní hodnoty), mění se definiční obor a to obráceně než hodnoty v předchozím případě:

Obr. 4.25: Graf funkce a definiční obor posunutého argumentu f(x+d) a násobku argumentu f(cx).

Věta 4.32. (Změna argumentu funkce, tj. nezávisle proměnné x) Mějme funkci f(x) s definičním oborem $\mathcal{D}(f) = \langle a, b \rangle$ a oborem hodnot $\mathcal{H}(f) = \langle A, B \rangle$. Potom při lineární změně argumentu se obor hodnot nemění, mění se však definiční obor a graf funkce:

- (a) přičtení konstanty f(x+d): definiční obor se posune o -d na $\langle a-d, b-d \rangle$. Graf funkce se přitom posune o d doleva při d > 0 a o |d| doprava při d < 0.
- (b) násobek argumentu f(cx): definiční obor se "zúží" c-krát na $(\frac{a}{c}, \frac{b}{c})$ (případně $(\frac{b}{c}, \frac{a}{c})$ pro c < 0). Graf se c-krát ve "vodorovném" směru "zúží" pokud c > 1 nebo "roztáhne" při 0 < c < 1. V případě záporného c < 0 se graf natáhne nebo stáhne |c|-krát na šířku a navíc "překlopí" okolo osy y.
- (c) absolutní hodnota f(|x|): pro kladné x se graf funkce nemění. Graf f(x) pro záporná x zmizí, místo něho zde bude graf funkce pro kladné x "překlopený" kolem osy y.
 - Pokud a > 0 definiční obor $\mathcal{D}(f)$ ani obor hodnot $\mathcal{H}(f)$ se nemění.
 - Pokud $a \le 0 \le b$, potom definiční obor bude $\langle -b, b \rangle$ a obor hodnot bude oborem hodnot funkce f(x) na intervalu $\langle 0, b \rangle$.
 - Pokud a < b < 0, potom f(|x|) nebude definována pro žádné x.

Obr. 4.26: Graf a definiční obor absolutní hodnoty argumentu f(|x|), případ a < 0 < b a 0 < a < b.

Poznámky 4.33.

- (a) Nechť konstanty d, D jsou kladné. Pamatujte si, že při f(x)+D se graf posouvá nahoru, zatímco f(x+d) obráceně, tj. doleva. Pro c, C > 1 se graf funkce $C \cdot f(x)$ roztahuje na výšku, zatímco při $f(c \cdot x)$ se graf neroztahuje, ale zužuje na šířku.
- (b) Jestliže funkce f(x) je definována pro $x \in \langle a, b \rangle$, potom definiční obor funkce f(cx+d) zjistíme nejsnáze řešením nerovnice $a \leq cx+d \leq b$. Například při hledání definičního oboru funkce $\arcsin(\frac{3-x}{5})$ postupujeme takto: funkce $\arcsin x$ je definována pro x splňující $-1 \leq x \leq 1$. V této nerovnici x nahradíme výrazem $\frac{3-x}{5}$ a řešíme nerovnici $-1 \leq \frac{3-x}{5} \leq 1$. Úpravou dostáváme $-5 \leq 3 x \leq 5$ odkud plyne $-2 \leq x \leq 8$, tj. $x \in \langle -2, 8 \rangle$.