Dynamic Programming

Dynamic Programming (DP)

- An algorithm design technique (like divide and conquer)
- Divide and conquer
 - Partition the problem into independent subproblems
 - Solve the subproblems recursively
 - Combine the solutions to solve the original problem

DP vs. Divide and Conquire

- DP applies when the subproblems overlap—that is, when subproblems share subsubproblems.
- A divide-and-conquer algorithm does more work than necessary, repeatedly solving the common subsubproblems.
- A DP algorithm solves each subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time it solves each subsubproblem

More about DP

 We typically apply dynamic programming to optimization problems. Such problems can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value. We call such a solution an optimal solution to the problem, as opposed to the optimal solution, since there may be several solutions that achieve the optimal value

Steps taken in DP

- When developing a dynamic-programming algorithm, we follow a sequence of four steps:
 - Characterize the structure of an optimal solution.
 - Recursively define the value of an optimal solution.
 - Compute the value of an optimal solution, typically in a bottom-up fashion.
 - Construct an optimal solution from computed information.

DP - Two key ingredients

 Two key ingredients for an optimization problem to be suitable for a dynamic-programming solution:

1. optimal substructures

Each substructure is optimal.

(Principle of optimality)

2. overlapping subproblems

Subproblems are dependent.

(otherwise, a divide-andconquer approach is the choice.)

Three basic components

- The development of a dynamic-programming algorithm has three basic components:
 - The recurrence relation (for defining the value of an optimal solution);
 - The tabular computation (for computing the value of an optimal solution);
 - The traceback (for delivering an optimal solution).

Fibonacci numbers

The *Fibonacci numbers* are defined by the following recurrence:

$$F_0 = 0$$

 $F_1 = 1$
 $F_i = F_{i-1} + F_{i-2}$ for $i > 1$.

How to compute F_{10} ?

Dynamic Programming

- Applicable when subproblems are not independent
 - Subproblems share subsubproblems

E.g.: Fibonacci numbers:

- Recurrence: F(n) = F(n-1) + F(n-2)
- Boundary conditions: F(1) = 0, F(2) = 1
- Compute: F(5) = 3, F(3) = 1, F(4) = 2
- A divide and conquer approach would repeatedly solve the common subproblems
- Dynamic programming solves every subproblem just once and stores the answer in a table

Tabular computation

The tabular computation can avoid recomputation.

$oxed{F_0}$	$ F_1 $	F_2	F_3	F_4	F_5	$oxed{F_6}$	F_7	F_8	F_9	F_{10}
0	1	1	2	3	5	8	13	21	34	55

Result

1. Solving Problems using DP

Sequences

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n . Length of a sequence is number of elements in the list.

Definition

```
a_{i_1}, \ldots, a_{i_k} is a subsequence of a_1, \ldots, a_n if 1 \le i_1 < \ldots < i_k \le n.
```

Definition

A sequence is **increasing** if $a_1 < a_2 < \ldots < a_n$. It is **non-decreasing** if $a_1 \le a_2 \le \ldots \le a_n$. Similarly **decreasing** and non-increasing.

Sequences

Example...

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Subsequence: 5, 2, 1
- Increasing sequence: 3, 5, 9
- Increasing subsequence: 2, 7, 8

Longest increasing subsequence(LIS)

 The longest increasing subsequence is to find a longest increasing subsequence of a given sequence of distinct integers a₁a₂...a_n.

Longest Increasing Subsequence Problem

Input A sequence of numbers $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_n}$ Goal Find an increasing subsequence $\mathbf{a_{i_1}}, \mathbf{a_{i_2}}, \ldots, \mathbf{a_{i_k}}$ of maximum length

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

A naive approach for LIS

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
\begin{aligned} &\text{algLISNaive}(A[1..n]):\\ &\text{max} = 0\\ &\text{for each subsequence } B \text{ of } A \text{ do}\\ &\text{if } B \text{ is increasing and } |B| > \text{max then}\\ &\text{max} = |B| \end{aligned} Output \text{max}
```

A naive approach for LIS

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
\begin{aligned} &\text{algLISNaive}(A[1..n]):\\ &\text{max} = 0\\ &\text{for each subsequence } B \text{ of } A \text{ do}\\ &\text{if } B \text{ is increasing and } |B| > \text{max then}\\ &\text{max} = |B| \end{aligned} Output max
```

Running time: $O(n2^n)$.

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

A naive approach for LIS

 Let L[i] be the length of a longest increasing subsequence ending at position i.

$$L[i] = 1 + \max_{j = 0...i-1} \{L[j] \mid a_j < a_i\}$$
 (use a dummy $a_0 = \min_{j = 0...i-1} \{L[j] \mid a_j < a_i\}$

Index	0	1	2	3	4	5	6	7	8	9	10
Input	0	9	2	5	3	7	11	8	10	13	9
Length	0	1	1	2	2	3	4	4	5	6	3
Prev	-1	0	0	2	2	4	5	5	7	8	4
Path	1	1	1	1	1	2	2	2	2	2	2

The subsequence 2, 3, 7, 8, 10, 13 is a longest increasing subsequence.

This method runs in $O(n^2)$ time.

Simplifying:

Running time: $O(n^2)$

A better solution

One can compute LIS in O(n log n) time

TRY YOURSELF !!!!!!!

An O(n log n) method for LIS

 Define BestEnd[k] to be the smallest number of an increasing subsequence of length k.

An O(n log n) method for LIS

 Define BestEnd[k] to be the smallest number of an increasing subsequence of length k.

2. Sum of Subset Problem

Problem:

– Suppose you are given N positive integer numbers A[1...N] and it is required to produce another number K using a subset of A[1..N] numbers. How can it be done using Dynamic programming approach?

Example:

```
N = 6, A[1..N] = \{2, 5, 8, 12, 6, 14\}, K = 19
```

Result: 2 + 5 + 12 = 19

Use a two dimensional array

			w1	w2	w3	 ws
Input[i]		0	1	2	3	 S
	0					
2	1					
3	2					
7	3					
10	n					

• for (int i = 0; $i \le n$; i++)

$$-$$
 s[0][i] = 1;

			w1	w2	w3	 ws
Input[i]		0	1	2	3	 s
	0	1				
2	1	1				
3	2	1				
7	3	1				
		1				
		1				
10	n	1				

- for (int j = 1; $j \le s$; j++)
 - s[j][0] = 0;

				w1	w2	w3		ws
Input[i]			0	1	2	3		S
		0	1	0	0	0	0	0
2		1	1 '					
3		2	1					
7		3	1					
		•	1					
		•	1					
10		n	1					

S

```
s[i,j] = \begin{cases} s[i-1,j] & \text{if } j < \text{input}[i] \\ s[i-1,j] \mid | s[i-1,j-\text{input}[i]] & \text{otherwise} \end{cases}
```

			w1	w2	w3		ws
Input[i]		0	1	2	3		s
	0	1	0	0	0	0	0
2	1	1					
3	2	1					
7	3	1					
		1					
		1					
10	n	1					

$$s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}$$

		0	1	2	3	4	5	6	7	8	9	10	11
input	0												
2	1												
3	2												
7	3												
8	4												
10	5												

$$s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}$$

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	1											
3	2	1											
7	3	1											
8	4	1											
10	5	1											

```
s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}
```

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0										
3	2	1											
7	3	1											
8	4	1											
10	5	1											

```
s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] \mid \mid s[i-1, j-\text{input}[i]] & \text{otherwise} \end{cases}
```

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	\bigcirc	0	0	0	0	0	0	0	0	0
2	1	1	0										
3	2	1											
7	3	1											
8	4	1											
10	5	1											

$$(1 || 0)=1$$

```
s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}
```

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	(1)	0	9	0	0	0	0	0	0	0	0	0
2	1	1	0	1									
3	2	1											
7	3	1											
8	4	1											
10	5	1											

$$(1 || 0)=1$$

```
s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}
```

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	1	0	0	0	0	0	0	0	0	0
3	2	1											
7	3	1											
8	4	1											
10	5	1											

```
s[i,j] = \begin{cases} s[i-1,j] & \text{if } j < \text{input}[i] \\ s[i-1,j] \mid | s[i-1,j-\text{input}[i]] & \text{otherwise} \end{cases}
```

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	1	0	0	0	0	0	0	0	0	0
3	2	1	0										
7	3	1											
8	4	1											
10	5	1											

```
s[i,j] = \begin{cases} s[i-1,j] & \text{if } j < \text{input}[i] \\ s[i-1,j] \mid | s[i-1,j-\text{input}[i]] & \text{otherwise} \end{cases}
```

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	7	0	1	0	0	0	0	0	0	0	0	0
3	2	1	0	1									
7	3	1											
8	4	1											
10	5	1											

```
s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}
```

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	$(\overline{+})$	0	1	9	0	0	0	0	0	0	0	0
3	2	1	0	1									
7	3	1											
8	4	1											
10	5	1											

```
s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}
```

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	(-)	0	1	0	0	0	0	0	0	0	0	0
3	2	1	0	1	1								
7	3	1											
8	4	1											
10	5	1											

$$s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}$$

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	1	0	0	0	0	0	0	0	0	0
3	2	1	0	1	1	0	1	0	0	0	0	0	0
7	3	1											
8	4	1											
10	5	1											_

$$s[i,j] = \begin{cases} s[i-1,j] & \text{if } j < \text{input}[i] \\ s[i-1,j] & \text{otherwise} \end{cases}$$

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	1	0	0	0	0	0	0	0	0	0
3	2	1	0	1	1	0	1	0	0	0	0	0	0
7	3	1	0	1	1	0	1	0	1	0	1	1	0
8	4	1	0	1	1	0	1	0	1	1	1	1	1
10	5	1	0	1	1	0	1	0	1	1	1	1	1

$$s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}$$

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	1	0	0	0	0	0	0	0	0	0
3	2	1	0	1	1	0	1	0	0	0	0	0	0
7	3	1	0	1	1	ф	4	0	1	0	1	1	0
8	4	1	0	1	1	0	1	0	1	1	1	1	1
10	5	1	0	1	1	0	1	0	1	1	1	1	1

$$s[i, j] = \begin{cases} s[i-1, j] & \text{if } j < \text{input}[i] \\ s[i-1, j] & \text{otherwise} \end{cases}$$

		0	1	2	3	4	5	6	7	8	9	10	11
input	0	1	0	0	0	0	0	0	0	0	0	0	0
2	1	1 🔸	d	1	0	0	0	0	0	0	0	0	0
3	2	1	0	1	1	0	1	0	0	0	0	0	0
7	3	1	0	1	1	0	1	0	1	0	1	1	0
8	4	1	0	1	1	0	1	0	1	1	1	1	1
10	5	1	0	1	1	0	1	0	1	1	1	1	1

Algorithm

```
for (int i = 0; i <= n; i++)
   s[0][i] = 1;
for (int j = 1; j <= s; j++)
   s[j][0] = 0;
for (int i = 1; i \le n; i++)
   for (int j = 1; j <= s; j++)
        if(j<input[i])</pre>
               s[i][j]=s[i][j-1]
        else
               s[i][j]=s[i][j-1] || s[i][j-input[i]]
```

Coin Change Problem

- Suppose you are given *n* types of coin C₁, C₂,
 ..., C_n coin, and another number *K*.
- Is it possible to make K using above types of coin?
 - Number of each coin is infinite
 - Number of each coin is finite
- Find minimum number of coin that is required to make K?
 - Number of each coin is infinite
 - Number of each coin is finite

Maximum-sum interval

Given a sequence of real numbers a₁a₂...a_n, find a consecutive subsequence with the maximum sum.

For each position, we can compute the maximum-sum interval starting at that position in O(n) time. Therefore, a naive algorithm runs in $O(n^2)$ time.

Try Yourself

The Knapsack Problem

The 0-1 knapsack problem

- A thief robbing a store finds n items: the i-th item is worth v_i dollars and weights w_i pounds (v_i, w_i integers)
- The thief can only carry W pounds in his knapsack
- Items must be taken entirely or left behind
- Which items should the thief take to maximize the value of his load?

The fractional knapsack problem

- Similar to above
- The thief can take fractions of items

The 0-1 Knapsack Problem

- Thief has a knapsack of capacity W
- There are n items: for i-th item value v_i and weight w_i
- Goal:
 - find x_i such that for all $x_i = \{0, 1\}$, i = 1, 2, ..., n
 - $\sum w_i x_i \leq W$ and
 - $\sum x_i v_i$ is maximum

0-1 Knapsack - Greedy Strategy

\$6/pound \$5/pound \$4/pound

- None of the solutions involving the greedy choice (item 1) leads to an optimal solution
 - The greedy choice property does not hold

0-1 Knapsack - Dynamic Programming

- P(i, w) the maximum profit that can be obtained from items 1 to i, if the knapsack has size w
- Case 1: thief takes item i

$$P(i, w) = v_i + P(i - 1, w - w_i)$$

Case 2: thief does not take item i

$$P(i, w) = P(i - 1, w)$$

0-1 Knapsack - Dynamic Programming

 $P(i, w) = \max \{v_i + P(i - 1, w - w_i), P(i - 1, w)\}$

Item	Weight	Value
1	2	12
2	1	10
3	3	20
4	2	15

	0	1	2	3	4	5
0	0 *	0/	0/	o /	0	0
1	0	/ o	/ <mark>12 ×</mark>	12	12	12
2	0	10 →		22/	22	22
3	0	_10 * /		22_	/30	32
4	0	10	15	25	30	37

$$P(1, 1) = P(0, 1) = 0$$

$$P(1, 2) = max\{12+0, 0\} = 12$$

W = 5

$$P(1, 3) = max\{12+0, 0\} = 12$$

$$P(1, 4) = max\{12+0, 0\} = 12$$

$$P(1, 5) = max\{12+0, 0\} = 12$$

$$P(2, 1) = max\{10+0, 0\} = 10$$

$$P(2, 2) = max\{10+0, 12\} = 12$$

$$P(2, 3) = max\{10+12, 12\} = 22$$
 $P(3, 3) = max\{20+0, 22\} = 22$ $P(4, 3) = max\{15+10, 22\} = 25$

$$P(2, 4) = max\{10+12, 12\} = 22$$

$$P(2, 5) = max\{10+12, 12\} = 22$$
 $P(3, 5) = max\{20+12, 22\} = 32$ $P(4, 5) = max\{15+22, 32\} = 37$

$$P(3, 1) = P(2,1) = 10$$

$$P(3, 2) = P(2,2) = 12$$

$$P(2, 4) = max\{10+12, 12\} = 22$$
 $P(3, 4) = max\{20+10,22\} = 30$ $P(4, 4) = max\{15+12, 30\} = 30$

$$P(4, 1) = P(3,1) = 10$$

$$P(4, 2) = max\{15+0, 12\} = 15$$

$$P(4, 4) = max\{15+12, 30\}=30$$

Reconstructing the Optimal Solution

- Item 4
- Item 2
- Item 1

- Start at P(n, W)
- When you go left-up ⇒ item i has been taken
- When you go straight up ⇒ item i has not been taken

Overlapping Subproblems

 $\mathbb{E}.g.$: all the subproblems shown in grey may depend on P(i-1, w)

Sudocode

```
main()
   int P[5]= {0,1,2,5,6};
   int wt[5]={0,2,3,4,5};
  int m=8, n=4;
  int k[s][9];
 for(int i=0; i<=n; i+t)
  for (int \omega = 0; \omega < = m; \omega + +)
       ik ( i==0 | | w == 0)
           k[i][w]=0;
      cheil (wt[i] <= w)
         K[i][w]=max(P[i]+K[i-1][w-w][i]),
                      K[i-1](w]);
      che KliTlW]=K[i-I][w];
```

Thanks All