Rou no. 31 26 No.

Title: Data wrangling II

Problem Statement:

Create an "Academic Performance" dataset of

- students and perform the following operations using python
 1. Scan all variables for missing values of
 - inconsistencies. If there are missing values/ inconsistencies, use any of the technique to deal

2. Scan all numeric variables for outliers If

they outlies use any suitable technique to deal with them.

3. Apply data transformations on atleast one

of the following reasons to change the scale for better understanding of the variable,

or to decrease skewness and convert to

normal distribution

learning Objectives:

- To learn & understand data wrangling in pandas

- To deal with missing values/incosistencies - To deal with outliers in dataset

- To learn and perform data transformation

learning Outcomes:

students will be able to

- Perform handling of outliers in the dataset.

	- Perform data transformation for better
	understanding of variable.
	O S
	H/W & S/W Requirements:
	Windows 10 64 bit, 8GB RAM, 256GB SSD
	VS code, By thon 3.8
	Theory:
	An outlier is an observation in a given
	dataset that lies far from rest of the observations.
	It may occur due to variability in data/experime
	al or human error. They may indicate heavy
	skepnen
	- Mean is accurate measure to describe data
	when we do not have outliers present.
	- Median is used if outliers is present in
	I dataset - MUNCIAN FILLION
	- Mode is used it there is outlier & > 12 of
	data is some Mean is the only measure of
	central tendency that is affected by outliers
	which in turn impacts standard deviation
-	* Some techniques to detect outliers -
	→ Boxplot
-	7-score
	→ Inter quantile. Range
	de la
	& some techniques to treat the outliers:
	> Trimming / Removing the outlier:
	Although not a good practice
	-> Quantile based flooring or capping:
	at a certain value above 30 percentile value
	or floored at a value below to percentile

Date

	1 00 New Indonestica
-o	-> mean/ Median imputation
	As mean is highly influenced by outliers adviced
· ·	to replace outliers with median value.
	Normalization is a technique with the goal to
	change the values of numeric columns to common
	scale without distorting differences in the ranges of
~	values or losing information
	z-score is a variation of scaling that represents
	the number of standard deviations away from mean
	Ensurer your feature distribution has mean = 0 g
	std std dev=1. Useful when there are tens
	outliers but not so extreme that you need
	clipping
	Another normalization method is the min-max
\ 	scaling all features are transformed into the range
	[0,1) meaning minimum corresponds to 04 maximum
	to 1.
	Analysis
	i) The dataset has shape of (1000,8)
	ii) There are null values in math score; 'reading
	score, whiting score,
	iii) 'Math sore' column is given in string data type
	so we type cost it into int 64.
	ix) By plotting box plot, we come to know that these
	are outliers in every numeric column
	v) We apply the technique of
	1) We apply the technique of interquantile range to detect outliers
	IQR = 93-9,
1	upper bound = Q3 + 1-5× IGR
	Lower bound = 0 15x TOP
	LOWER BUYING - O ISX TOP

A The Control of the	Page No.
	vi) We drop the rows having outliers vi) We apply one that encoding on categorical columns to ensure there is linear nelationships
	conclusion: We have successfully implemented data wrangling on dataset.
*	