Kapitel 5

Differential rechnung auf \mathbb{R}

5.1 Differential (Ableitung), Elementare Eigenschaften

Definition 5.1

Sei $f: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}$, und $x_0 \in \Omega$

1. f heisst differenzierbar an der Stelle x_0 , falls

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Dieser Grenzwert wird dann mit $f'(x_0)$ oder $\frac{df}{dx}(x_0)$ bezeichnet. Die Zahl $f'(x_0)$ heisst die Ableitung oder das Differential von f an der Stelle x_0 .

2. f heisst in Ω differenzierbar, falls sie an jeder Stelle $x_0 \in \Omega$ differenzierbar ist. In diesem Fall, nennt sich die Funktion $x \to f'(x)$ Ableitung von f.

Bemerkung 5.2

In der Definition 5.1 verlangen wir also, dass für jede in $\Omega \setminus \{x_0\}$ enthaltene Folge $(x_n)_{n\geq 1}$ mit Grenzwert x_0 , der Limes

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = 0$$

Bemerkung 5.3

Sei f differenzierbar in x_0

Dann ist

$$\frac{f\left(x\right) - f\left(x_0\right)}{x - x_0}$$

die Steigung der Geraden durch die Punkte $(x_0, f(x_0))$ und (x, f(x)).

Geometrisch ist also $f'(x_0)$ die Steigung der Tangenten am Graphen von f im Punkt $(x_0, f(x_0))$. Diese Tangente hat die Gleichung

$$T(x) = f'(x_0)(x - x_0) + f(x_0)$$

Sei

$$f(x) = f'(x_0)(x - x_0) + f(x_0) + R_{x_0}(x) = T(x) + R_{x_0}(x)$$

$$\Rightarrow \frac{f(x) - f(x_0)}{x - x_0} = \frac{f'(x_0)(x - x_0)}{x - x_0} + \frac{R(x)}{x - x_0}$$

Dann folgt

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{R(x)}{x - x_0} = 0$$

Die lineare Funktion $f(x_0) + f'(x_0)(x - x_0)$ stellt eine gute Approximation der Funktion f(x) dar:

Es gilt

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + R_{x_0}(x)$$

 $_{
m mit}$

$$\lim_{x \to x_0} \frac{R\left(x\right)}{x - x_0} = 0$$

 $T(x) = f'(x_0)(x - x_0) + f(x)$

Beispiel 5.4

1.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to mx + b$$

ist überall differenzierbar mit $f'(x) = m, \forall x \in \mathbb{R}$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{f(x) - f(x_0)} = m$$

2. f(x) = |x| ist für alle $x_0 \neq 0$ differenzierbar, aber nicht für $x_0 = 0$

$$f\left(x\right) - f\left(0\right) = \left\{ \begin{array}{ll} x & \text{ für } x \ge 0 \\ -x & \text{ für } x \le 0 \end{array} \right.$$

Also ist

$$\frac{f(x) - f(0)}{x - 0} = \begin{cases} 1 & \text{fur } x > 0 \\ -1 & \text{fur } x < 0 \end{cases}$$

und besitzt also keinen Grenzwert für $x \to 0, x \neq 0$

3. $\exp: \mathbb{R} \to \mathbb{R}$ ist überall auf \mathbb{R} differenzierbar und $\exp'(x) = \exp(x)$. Sei $x_0 \in \mathbb{R}, x_0 \neq x = x_0 + h \in \mathbb{R}$

$$\exp(x_0 + h) - \exp(x_0) = \exp(x_0) (\exp(h) - 1)$$
$$\exp(h) - 1 = h + \frac{h^2}{2!} + \dots$$
$$\Rightarrow \frac{\exp(h) - 1}{h} = 1 + \frac{h}{2!} + \frac{h^2}{3!} + \dots$$

Also

$$\left| \frac{\exp(h) - 1}{h} - 1 \right| \le |h| \left[\frac{1}{2!} + \frac{|h|}{3!} + \frac{|h|^2}{4!} + \dots \right]$$

$$\le |h| \left[1 + |h| + \frac{|h|^2}{2!} + \dots \right]$$

$$\le |h| \exp(h)$$

Woraus

$$\lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0 \end{subarray}} \frac{\exp(h) - 1}{h} = 1$$

und somit

$$\exp'(x_0) = \lim_{h \to 0} \frac{\exp(x_0 + h) - \exp(x_0)}{h}$$
$$= \lim_{h \to 0} \exp(x_0) \left(\frac{\exp(h) - 1}{h}\right)$$
$$= \exp(x_0)$$

folgt

4. $\sin(x)$ und $\cos(x)$ sind überall differenzierbar und

$$\sin' = \cos$$

 $\cos' = -\sin$

Mit den Additionsgesetzen:

$$\sin(x+h) - \sin(x) = \sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)$$
$$= \sin(x)(\cos(h) - 1) + \cos(x)\sin(h)$$

Nun ist

$$\lim_{h \to 0} \frac{\sin\left(h\right)}{h} = 1$$

und

$$\frac{\cos(h) - 1}{h} = \frac{\cos^2(h) - 1}{h\left(\cos(h) + 1\right)} = \frac{\sin^2(h)}{h\left(\cos(h) + 1\right)}$$
$$= \frac{1}{\cos(h) + 1} \cdot \frac{\sin^2(h)}{h}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{1}{2} \qquad \qquad 0$$

There is a sin h/h which doesn't seem to belong anywhere, page 188 bottom right corner

$$\frac{\sin\left(x+h\right) - \sin\left(x\right)}{h} = \sin\left(x\right) \left(\frac{\cos\left(h\right) - 1}{h}\right) + \cos\left(x\right) \frac{\sin\left(h\right)}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{\sin\left(x+h\right) - \sin\left(x\right)}{h} = \lim\left(\sin\left(x\right) \lim_{h \to 0} \left(\frac{\cos\left(h\right) - 1}{h}\right)\right)$$

$$+ \cos\left(x\right) \lim_{h \to 0} \left(\frac{\sin\left(h\right)}{h}\right)$$

$$= \sin\left(x\right) \lim\left(\frac{\cos\left(h\right) - 1}{h}\right)$$

$$+ \cos\left(x\right) \lim\left(\frac{\sin\left(h\right)}{h}\right)$$

$$= (\sin\left(x\right)) \cdot 0 + (\cos\left(x\right)) \cdot 1 = \cos\left(x\right)$$

Analog

$$\cos(x+h) - \cos(x) = \cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)$$
$$= \cos(x)(\cos(h) - 1) + \sin(x)\sin(h)$$

Da wie oben
$$\frac{\cos(h)-1}{h} \to 0$$
, $\frac{\sin(h)}{(h)} \to 1$, folgt $\cos' = -\sin(h)$

Der Zusammenhang zwischen Differenzierbarkeit und Sstetigkeit ist:

Satz 5.5

Sei $\Omega \subseteq \mathbb{R}$, $x_0 \in \Omega$ und $f: \Omega \to \mathbb{R}$ in x_0 differenzierbar. Dann ist f in x_0 stetig. (Also ist "Differenzierbarkeit" ist mehr als "Stetigkeit")

Beweis

f differenzierbar in x_0 . Sei

$$T: \Omega \setminus \{x_0\} \to \mathbb{R}$$

$$x \to \frac{f(x) - f(x_0)}{x - x_0}$$

Da f differenzierbar in x_0 ist, hat T ein Grenzwert in x_0 , und

$$\lim_{x \to x_0} T(x) = f'(x)$$

Für $x \neq x_0$

$$f(x) = T(x)(x - x_0) + f(x_0)$$

f(x) ist die Summe von zwei Funktionen $T(x)(x-x_0)$ und $f(x_0) = \text{konstant}$.

Da beide Funktionen einen Grenzwert an der Stelle x_0 besitzen, hat auch f einen Grenzwert in x_0 und

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (T(x)) \lim_{x \to x_0} (x - x_0) + \lim_{x \to x_0} f(x_0)$$
$$= f'(x) \cdot 0 + f(x_0) = f(x_0)$$

 \Rightarrow ist stetig in x_0 .

Bemerkung

Add page + reference, page 190 middle

Die Umkehrung von Satz 5.5gilt nicht, z.B. f(x) = |x| ist stetig in x = 0 aber nicht differenzierbar.

Beispiel 5.6

Das folgende Beispiel zeigt, dass es stetige Funktionen $f: \mathbb{R} \to \mathbb{R}$ gibt, die an keiner Stelle $x_0 \in \mathbb{R}$ differenzierbar sind. (Von der Waerden (1930))

Sei für $x \in \mathbb{R}$

$$< x>=$$
 Distanz von x zur nächsten ganzen Zahl
$$= \min \left\{ |x-m| : m \in \mathbb{Z} \right\}$$

Der Graph von $\langle x \rangle$ sieht so aus

Graph von $\frac{10x}{10}$

Sei

$$f(x) := \langle x \rangle + \frac{\langle 10x \rangle}{10} + \frac{\langle 10^2x \rangle}{100} + \dots$$

Da

$$0 \le <10^n x > \le \frac{1}{2}$$

folgt absolute Konvergenz. Ausserdem sei

$$f_k(x) = \sum_{n=0}^{k} \frac{\langle 10^n x \rangle}{10^n}$$

Dann ist

$$|f(x) - f_k(x)| = \left| \sum_{n=k+1}^{\infty} \frac{\langle 10^n x \rangle}{10^n} \right| \le \frac{1}{2} \left| \sum_{n=k+1}^{\infty} \frac{1}{10^n} \right| = \frac{1}{2} \cdot \frac{10^{-k}}{9}$$

 $\forall k \geq 1 \text{ ist } f_k : \mathbb{R} \to \mathbb{R} \text{ stetig.}$

Da die Folge $(f_k)_{k\geq 1}$ gleichmässig gegen f konvergiert, ist f stetig. Man kann zeigen, dass f in keinem Punkt von $\mathbb R$ differenzierbar ist.

End of beweis is put here, I think it is better if it stays up when the bsp begins. Page 192 middle

Satz 5.7

Seien $f,g:\Omega\to\mathbb{R}$ Funktionen, $x_0\in\mathbb{R}$. Wir nehmen an, dass f und g in x_0 differenzierbar sind. Dann sind f+g, $f\cdot g$ und falls $g(x_0)\neq 0$ auch f/gan der Stelle x_0 differenzierbar. Es gelten dann folgende Formeln:

1. $(af + bg)'(x_0) = af'(x_0) + bf'(x_0) \quad \forall a, b \in \mathbb{R}$

2. $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$

3. $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}$

Is this supposed to be a fraction?? page 192 bottom; limenet: yes, function f over function g

Beweis

1. Für $x \neq x_0$

$$\frac{\left(af+bg\right)\left(x\right)-\left(af+bg\right)\left(x_{0}\right)}{x-x_{0}}=a\left(\frac{f\left(x\right)-f\left(x_{0}\right)}{x-x_{0}}\right)+b\left(\frac{g\left(x\right)-g\left(x_{0}\right)}{x-x_{0}}\right)$$

Da f und g in x_0 differenzierbar sind, folgt, dass af + bg in x_0 differenzierbar ist und

$$(af + bg)(x_0) = af'(x_0) + bf'(x_0)$$

2.

$$f(x) g(x) - f(x_0) g(x_0) = g(x) [f(x) - f(x_0)] + f(x_0) [g(x) - g(x_0)]$$

Durch $(x-x_0)$ dividient

$$\frac{f(x) g(x) - f(x_0) g(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{(x - x_0)} \cdot g(x_0) + \frac{g(x) - g(x_0)}{(x - x_0)} \cdot f(x_0)$$

Da g in x_0 differenzierbar ist, ist g in x_0 stetig und (Satz 5.5)

$$\lim_{x \to x_0} g\left(x\right) = g\left(x_0\right)$$

Add reference + page number, page 194 middle

Die Formel folgt dann aus der Differenzierbarkeit von f und g in x_0

3.

$$\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)} = \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)}$$

$$= \frac{[f(x) - f(x_0)]g(x_0) - f(x_0)[g(x) - g(x_0)]}{g(x)g(x_0)}$$

Man dividiere duch $x - x_0$ und benutze die Stetigkeit von g in x_0

Beispiel 5.8

1. $n \in \mathbb{N}$, $f_n(x) = x^n$ ist überall differenzierbar und $f'_n(x) = nx^{n-1}$

Beweis

Induktion: $f_0(x) = 1 \ \forall x$

$$f_0'(x) = 0 (= 0 \cdot x^{-1})$$

•
$$f_1(x) = x, \forall x$$

•
$$f_1'(x) = 1 = 1 \cdot x^{1-1} \checkmark$$

Sei $n \geq 2$. Wir nehmen an, dass die Formel für n-1 gilt, i.e.

$$f'_{n-1}(x) = (x^{n-1})' = (n-1)x^{n-2}$$

 $f_n(x) = x^n = x \cdot x^{n-1} = x \cdot f_{n-1}(x)$

Add reference + page number, page 195 middle to bottom Nach 2., Satz 5.7

$$f'_{n}(x) = (x)' f_{n-1}(x) + x f'_{n-1}(x)$$

$$= f_{n-1}(x) + x (n-1) x^{n-2}$$

$$= x^{n-1} + (n-1) x^{n-1} = n x^{n-1}$$

2.

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

$$p'(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \dots + a_1$$

Insbesondere ist die Ableitung eines Polynoms von Grad n ein Polynom von Grad $(n-1), n \ge 1$.

3. Sei $R(x) = \frac{p(x)}{q(x)}$, wobei p,q Polynome bezeichnen. R(x) ist eine sogenannte rationale Funktion mit Definitionsbereich

$$\Omega = \{ x \in \mathbb{R} : q(x) \neq 0 \}$$

$$R'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{q^2(x)}$$

z.B.

$$R(x) = \frac{x^3 + 1}{x - 1}$$

$$R(x) = \frac{(3x^2)(x-1) - (x^3+1)}{(x-1)^2}$$
$$= \frac{3x^3 - 3x^2 - x^3 - 1}{(x-1)^2}$$
$$= \frac{2x^3 - 3x^2 - 1}{(x-1)^2}$$

Die nächste Rechenregel wird uns erlauben, Funktionen wie z.B. $\exp(x^3 + 1)$ und $\sin(x^2)$ abzuleiten

Satz 5.9 (Kettenregel)

Seien $f: \Omega \to \mathbb{R}$, $g: T \to \mathbb{R}$ Funktionen mit $f(\Omega) \subset T$, und $x_0 \in \Omega$. Wir nehmen an, dass f an der Stelle x_0 und g an der Stelle $f(x_0)$, differenzierbar sind. Dann ist $g \circ f: \Omega \to \mathbb{R}$ an der Stelle x_0 differenzierbar und

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0)$$

Bemerkung

f ist differenzierbar in x_0 , falls

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert, d.h. für jede in $\Omega \setminus \{x_0\}$ enthaltene Folge $(x_n)_{n \geq 1}$ mit Grenzwert x_0 , existiert der Limes

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}$$

Beweis

Sei $(x_n)_{n\geq 1}$ mit $\lim x_n=x_0, x_n\neq x_0$. Dann gilt

$$\lim f\left(x_n\right) = f\left(x_0\right)$$

(Nach Satz 5.5 f differenzierbar $\Rightarrow f$ stetig (in x_0)).

Add reference + page number, page 198 top

Sei $y_n := f(x_n)$ $(y_0 := f(x_0))$. Wir nehmen an, dass $y_n \neq f(x_0)$, $\forall n$. Dann folgt

$$\frac{(g \circ f)(x_n) - (g \circ f)(x_0)}{x_n - x_0} = \frac{g(f(x_n)) - g(f(x_0))}{x - x_0}$$

$$= \left(\frac{g(f(x_n)) - g(f(x_0))}{f(x_n) - f(x_0)}\right) \cdot \left(\frac{f(x_n) - f(x_0)}{x - x_0}\right)$$

$$= \left(\frac{g(y_n) - g(x_0)}{y_n - y_0}\right) \cdot \left(\frac{f(x_n) - f(x_0)}{x - x_0}\right)$$

$$\downarrow \lim_{n \to \infty} \qquad \downarrow \lim_{n \to \infty}$$

$$g'(y_0) \qquad f'(x_0)$$

$$\stackrel{n \to \infty}{=} g'(f(x_0)) f'(x_0)$$

Beispiel 5.10

1. Berechne die Ableitung von exp $(x^3 + 1)$

$$g(x) = \exp(x)$$
 $f(x) = x^3 + 1$
 $g'(x) = \exp(x)$ $f'(x) = 3x^2$

$$(g \circ f)(x) = \exp(x^3 + 1)$$

 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x) = [\exp(x^3 + 1)] \cdot 3x^2$

2.

$$\left(\sin\left(x^2\right)\right)' = \left(g \circ f\right)'(x)$$

mit

$$g(x) = \sin(x) \qquad f(x) = x^2$$
$$g'(x) = \cos(x) \qquad f'(x) = 2x$$
$$(\sin(x^2))' = \cos(x^2) \cdot 2x$$

3.

$$\left(\left(3x^7 + 11x^6 + 5 \right)^2 \right)' = 2\left(3x^7 + 11x^6 + 5 \right) \cdot \left(21x^6 + 66x^5 \right)$$

4. Sei $g:\mathbb{R}\to\mathbb{R}$ differenzierbar und $n\in\mathbb{N}$

$$f\left(x\right) = g\left(x\right)^{n}$$

Dann ist

$$f'(x) = ng(x)^{n-1} \cdot g'(x)$$

5.

$$\exp(\exp(x)) = e^{e^x}$$
$$(e^{e^x})' = e^{(e^x)} \cdot e^x$$

5.2 Der Mittelwertsatz und Folgerungen

Wichtige Informationen über eine Funktion f lassen sich leicht aus der Ableitung schliessen. Dies geschieht mittels dem Mittelwertsatz . Ein Spezialfalls der Mittelwertsatz ist

Satz 5.12

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar. Sei $z_+\in[a,b]$ mit $f(z_+)=\max\{f(x):x\in[a,b]\}$. Wir nehmen an, dass $z_+\in(a,b)$. Dann gilt $f'(z_+)=0$ Eine analoge Aussage gilt für z.

Bemerkung 5.13

- 1. z_+, z_- existieren nach Satz 4.9
- 2. Die Voraussetzung $z_+ \in (a,b)$ ist wichtig, z.B. Sei $f:[0,1] \to \mathbb{R}, f(x)=x$. Dann ist $z_+=1$ und $f'(x)=1\neq 0 \ (\forall x\in (a,b))$

Beweis

Sei $z_+ \in (a,b)$. Da $(a,z_+) \neq \emptyset$ und $(z_+,b) \neq \emptyset$, gibt es

$$(x_n)_{n\geq 1}\subset (a,z_+)$$

sowie

$$(y_n)_{n\geq 1}\subset (z_+,b)$$

$$V - 10$$

mit

$$\lim_{n \to \infty} x_n = z_+ = \lim_{n \to \infty} y_n$$

(z.B.
$$x_n = z_+ - \frac{1}{n}, y_n = z_+ + \frac{1}{n}$$
)

Für $n \geq 1$ folgt

$$f'(z_{+}) = \lim_{n \to \infty} \frac{\overbrace{f(x_{n}) - f(z_{+})}^{<0}}{\underbrace{x_{n} - z_{+}}_{<0}} \ge 0$$

$$f(z_{+}) = \max \{f(x)\}\$$

$$f'(z_{+}) = \lim_{n \to \infty} \underbrace{\frac{f(y_{n}) - f(z_{+})}{\underbrace{y_{n} - z_{+}}_{>0}}}_{\leq 0} \leq 0$$

Woraus

$$f'\left(z_{+}\right) = 0$$

folgt.

Satz 5.14 (Mittelwertsatz)

Sei $f:[a,b]\to \mathbb{R}$ stetig und auf (a,b) differenzierbar, $a\neq b.$ Dann gibt es $x_0\in (a,b)$ mit

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Beweis

Die Idee lässt sich auf den Fall f(a) = f(b) = 0 züruckführen und dann den Satz 5.12anwenden. Die Gleichung für die Sekante durch die Punkte (a, f(a)),

Add reference + page number

(b, f(b)) ist

$$S(x) = (x - a) \left(\frac{f(b) - f(a)}{b - a} \right) + f(a)$$

Sei nun g(x) = f(x) - S(x). Dann ist g(a) = 0 = g(b)

<u>Fall 1:</u> g ist identisch = 0. Also ist f(x) = S(x) eine Gerade und die Aussage stimmt $\forall x_0 \in (a,b)$

Fall 2: $g \neq 0$. Also ist entweder

$$\max_{x} g(x) > 0 \ \left(\text{oder } \min_{x} g(x) < 0 \right)$$

Im "max"-Fall sei z_+ mit

$$g(z_{+}) = \max\{g(x) : x \in [a, b]\}$$

Dann ist $z_{+} \in (a, b)$ (Da g(a) = g(b) = 0, und $g(z_{+}) > 0$) und nach Satz 5.12 $g'(z_{+}) = 0$, d.h.

 $g(z_{+}) = f'(z_{+}) - S'(z_{+}) = 0$ $\Rightarrow f'(z_{+}) = S'(z_{+}) = \frac{f(b) - f(a)}{b - a}$

Der "min"-Fall ist analog.

Als erste Anwendung haben wir

Korollar 5.15

Add reference + page number, page 205 middle to bottom

Sei $f:[a,b]\to\mathbb{R}$ wie im Satz 5.14

- 1. Falls f'(x) = 0, $\forall x \in (a, b)$ folgt, dass f konstant ist.
- 2. Falls $f'(x) \ge 0$, $\forall x \in (a, b)$ so ist f monoton wachsend.
- 3. Falls f'(x) > 0, $\forall x \in (a, b)$ so ist f streng monoton wachsend.
- 4. Falls $f'(x) \leq 0$, $\forall x \in (a, b)$ so ist f monoton fallend.
- 5. Falls $f'(x) < 0, \forall x \in (a, b)$ so ist f streng monoton fallend.

Beweis

1. Seien $a \le x < y \le b$ beliebig und sei (nach Mittelwertsatz) $x_0 \in (x, y)$ mit

$$\frac{f(y) - f(x)}{y - x} = f'(x_0)$$

da $f'(x_0)$ folgt $f(y) = f(x) \Rightarrow f$ ist konstant

2. Seien $a \le x < y \le b$ beliebig und $x_0 \in (x, y)$ mit

$$\frac{f(y) - f(x)}{y - x} = f'(x_0 > 0)$$

woraus folgt $f(y) \ge f(x)$ folgt $\Rightarrow f$ monoton wachsend.

- 3. Analog
- 4. Analog

Beispiel 5.16

1. Bestimme alle differenzierbare Funktionen $f: \mathbb{R} \to \mathbb{R}$ mit $f' = \lambda f$. Offensichtlich erfüllt $t \to e^{\lambda t}$ diese Gleichung

$$f(t) = e^{\lambda t}$$

$$f'(t) = \lambda e^{\lambda t} = \lambda f(t)$$

Betrachten wir

$$\begin{split} g'\left(t\right) &= e^{-\lambda t} f\left(t\right) \\ g'\left(t\right) &= -\lambda e^{-\lambda t} f\left(t\right) + e^{-\lambda t} f'\left(t\right) \\ &= e^{-\lambda t} \left(-\lambda f\left(t\right) + f'\left(t\right)\right) \\ &= e^{-\lambda t} \left(0\right) \forall t \\ &= 0 \end{split}$$

Also folgt, dass g konstant ist, d.h.

$$g(t) = C \Rightarrow f(t) = Ce^{\lambda t}$$

Anders gesagt: Die Menge der Lösungen von $f' = \lambda f$ ist ein 1-dimensionaler Vektorraum

$$V = \{ f : \mathbb{R} \to \mathbb{R} \mid f' = \lambda f \} = \{ Ce^{\lambda t} \mid c \in \mathbb{R} \}$$

2.

$$f(x) = \frac{2x}{1+x^2}$$

$$f'(x) = \frac{2(1+x^2) - (2x)(2x)}{(1+x^2)^2}$$

$$= \frac{2-2x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2}$$

$$f'(x) < 0$$
 für $|x| > 1$
 $f'(\pm 1) = 0$
 $f'(x) > 0$ für $|x| < 1$

x	x < -1	-1 < x < 0	0 < x < 1	x > 1
f'(x)	_	+	+	_
$f\left(x\right)$	7	7	7	¥

Fix vertical positioning in table, page 208 bottom

Korollar 5.17 (Bernoulli, L'Hôpital)

Seien $f, g: [a, b] \to \mathbb{R}$ stetig differenzierbar in (a, b) mit $g'(x) \neq 0, \forall x \in (a, b)$. Wir nehmen an, dass

(i)
$$f(a) = 0 = g(a)$$

(ii)
$$\lim_{x \searrow a} \frac{f'(x)}{g'(x)} = A$$

Dann ist $g(x) \neq 0$, $\forall x > a$ und $\lim_{x \searrow a} \frac{f(x)}{g(x)} = A$

Beweis

Falls es $x_1 > a$ gibt mit $g(x_1) = 0$, dann folgt die Existenz von $x_0 \in (a, x_1)$ mit $g'(x_0) = 0$ (MWS.)

Wiederspruch zur Annahme $g'(x) \neq 0$, $\forall x \in (a,b)$. Also $g(x) \neq 0$, $\forall x > a$. Nun sei a < s < b beliebig, und

$$h(x) := \frac{f(s)}{g(s)} \cdot g(x) - f(x) \quad x \in [a, s]$$

Dann gilt, h(a) = 0 und h(s) = 0, es gibt also $x_s \in (a, s)$ mit $h'(x_s) = 0$, d.h.

$$0 = h'(x_s) = \frac{f(s)}{g(s)} \cdot g'(x_s) - f'(x_s)$$

$$\Rightarrow \frac{f'(x_s)}{g'(x_s)} = \frac{f(s)}{g(s)}$$

Sei nun $s_n \in (a, b)$ beliebig mit $\lim s_n = a$. Da $a < x_{s_n} < s_n$ folgt, $\lim x_{s_n} = a$, und aus (*)

$$\lim \frac{f(s_n)}{g(s_n)} = \lim \frac{f'(x_{s_n})}{g'(x_{s_n})} = A$$

Bemerkung 5.18

1. Es gibt die selbe Version für $\lim_{x \nearrow b}$

2. (Limes von links und rechts zusammen). Seien $f,g:[a,b]\to\mathbb{R}$ stetig. Sei a< c< b, wir nehmen an, f,g sind in $(a,c)\cup(c,b)$ differenzierbar, $g'(x)\neq 0, \, \forall x\in(a,c)\cup(c,b)$ und

(i)
$$f(c) = g(c) = 0$$

(ii)
$$\lim_{\begin{subarray}{c} x \to c \\ x \neq c \end{subarray}} \frac{f'(x)}{g'(x)} = A$$

Dann ist
$$g(x) \neq 0$$
, $\forall x \in (a, c) \cup (c, b)$ und $\lim_{\substack{x \to c \\ x \neq c}} \frac{f(x)}{g(x)} = A$

Beispiel 5.19

1.
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} = \lim_{x \to 1} \frac{3x^2}{2x} = \frac{3}{2}$$

2.
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1$$

3.
$$\lim_{x \to 0} \frac{\sin(x^2)}{x^2} = \lim_{x \to 0} \frac{2x\cos(x^2)}{2x} = \lim_{x \to 0} \cos(x^2) = 1$$

4.
$$\lim_{x \to 0} \frac{\cos(x) - 1}{x^2} = \lim_{x \to 0} \frac{-\sin(x)}{2x} = -\frac{1}{2}$$

$$5. \lim_{x \to 0} \frac{\left(e^x - 1 - x - \frac{x^2}{2!}\right)}{x^3} = \lim_{x \to 0} \left(\frac{e^x - 1 - x}{3x^2}\right) = \lim_{x \to 0} \frac{e^x - 1}{6x} = \lim_{x \to 0} \frac{e^x}{6} = \frac{1}{6}$$

Die nächste Anwendung des Mittelwertsatzes ist der sogenannte "Umkehrsatz"

Fundamentale Frage

Sei $f:\mathbb{R}\to\mathbb{R}$ differenzierbar und bijektiv und sei $g:\mathbb{R}\to\mathbb{R}$ die inverse Funktion. Ist dann g auch differenzierbar?

Beispiel

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to x^3$$

ist überall differenzierbar und bijektiv. Die "Umkehrfunktion"

$$g: \mathbb{R} \to \mathbb{R}$$
$$x \to x^{\frac{1}{3}}$$

ist aber in 0 nicht differenzierbar

$$\frac{g(h) - g(0)}{h} = \frac{h^{\frac{1}{3}}}{h} = h^{-\frac{2}{3}} \to \infty$$

Man kann folgendes bemerken: Falls $f: \mathbb{R} \to \mathbb{R}$ bijektiv und die Umkehrfunktion $g: \mathbb{R} \to \mathbb{R}$ auch differenzierbar ist, dann folgt aus $(f \circ g)(x) = x$, $\forall x$ und der Kettenregel, dass:

$$f'(g(x))g'(x) = 1 \quad \forall x$$

Insbesondere $f'(x) \neq 0$ $(g'(x) \neq 0)$, $\forall x$. Dies ist also eine notwendige Bedingung zur Existenz der Ableitung von f^{-1}

Satz 5.20 (Umkehrsatz)

Sei $f:(a,b)\to\mathbb{R}$ differenzierbar mit $f'(x)>0, \forall x\in(a,b)$. Seien $c=\inf_x f(x),$ $d=\sup_x f(x)$. Dann ist $f:(a,b)\to(c,d)$ bijektiv und die Umkehrfunktion $f^{-1}:(c,d)\to(a,b)$ ist differenzierbar mit

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \quad \forall x \in (a, b)$$

d.h.

$$\left(f^{-1}\right)'(y) = \frac{1}{f'\left(f^{-1}\left(y\right)\right)} \quad \forall y \in (c, d)$$

Beweis

Sei $f'(x) > 0 \Rightarrow f$ streng monoton Wachsend. Da f streng monoton wachsend ist, folgt die erste Behauptung aus dem Zwischenwertsatz für monotone Funktionen (d.h. $f:(a,b)\to(c,d)$ bijektive).

Nun zeigen wir: f^{-1} ist differenzierbar. Sei $y_0 \in (c,d)$, und $(y_k)_{k\geq 1}$ eine Folge in (c,d) lim

$$\lim x_k = y_0 \quad y_k \neq y_0 \quad \forall k \ge 1$$

Dann gibt es eindeutig bestimmte $(x_k)_{k\geq 1}$ in (a,b) mit $f(x_k)=y_k$ (f bijektiv) und $x_0\in (a,b)$ mit $f(x_0)=y_0$. Also ist

$$\frac{f^{-1}(y_k) - f^{-1}(y_0)}{y_k - y_0} = \frac{x_k - x_0}{f(x_k) - f(x_0)}$$

Beachte, dass $x_k \neq x_0$, $\forall k \geq 1$ und dass die Stetigkeit (Satz 4.21) von f^{-1} , $\lim x_k = x_0$ impliziert

$$\begin{pmatrix} f(x_k) = y_k & \Rightarrow & x_k & = & f^{-1}(y_k) \\ & \lim x_k & = & f^{-1}(\lim y_k) \\ & = & f^{-1}(y_0) \\ & = & x_0 \end{pmatrix}$$

Nun ist

$$\frac{x_k - x_0}{f(x_k) - f(x_0)} = \frac{1}{\frac{f(x_k) - f(x_0)}{x_k - x_0}} \to \frac{1}{f'(x_0)}$$

 $da f'(x_0) \neq 0$

Korollar 5.21

Die Funktion $\log:(0,\infty)\to\mathbb{K}$ ist differenzierbar und $\log'(x)=\frac{1}{x}, \forall x\in(0,\infty)$

Beweis

 $\exp: \mathbb{R} \to (0, \infty)$ erfüllt alle Bedingungen von Satz 5.20 $(\exp' = \exp > 0)$. Wir haben also

$$\log (\exp(x)) = x$$

$$\log' \underbrace{(\exp(x))}_{y} \underbrace{(\exp(x))}_{y} = 1$$

$$\log'(y) = \frac{1}{y}$$

Wir definieren mittels "exp" die verallgemeinerte Potenzfunktion $x \to x^{\alpha}$. Sei $\alpha \in \mathbb{R}$: zunächst bemerken wir für $n \in \mathbb{N}$ und x > 0: $x^n = e^{n \log x}$. Wir definieren also für x > 0

$$x^{\alpha} := e^{\alpha \log x}$$

Dann gilt

Korollar 5.22

 $\alpha \in \mathbb{R}, x \to x^{\alpha}$ ist differenzierbar und $(x^{\alpha})' = \alpha x^{\alpha-1}$

Exkurs

Die Exponentialfunktion wächst schneller als jedes Polynom

$$e^x > \frac{x^n}{n!} \quad x \ge 0$$

Insbesondere $e^x > x$, $\forall x \geq 0$. Die log Funktion ist strikt monoton wachsend, Also $e^x > x \Rightarrow x \ge \log(x), \forall x > 0.$

Für a > 0, $x^a > \log(x^a) = a \log(x)$. Also $\log(x) < \frac{x^a}{a}$. Die \log -Funktion wächst also langsamer als jede positive Potenz.

5.3 Die Trigonometrischen und Hyperbolischen Funktionen

 $1. \sin(x)$

 $\sin'(x)=\cos(x);$ d.h. $\sin'(x)>0,\,\forall x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ und besitzt daher eine differenzierbare Umkehrfunktion

$$\arcsin: (-1,1) \to \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

deren Ableitung wie folgt berechnet wird

$$\arcsin'(x) = \frac{1}{\sin'(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))}$$

Falls $\alpha = \arcsin(x), -\frac{\pi}{2} < \alpha < \frac{\pi}{2}$. So ist

$$\cos^{2}(\alpha) + \sin^{2}(\alpha) = 1$$
$$\cos^{2}(\alpha) + x^{2} = 1$$

d.h. $\cos^2{(\alpha)}=1-x^2$. Da nun $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ folgt aus $\cos{(\alpha)}>0\Rightarrow\cos{(\alpha)}=\sqrt{1-x^2}$. Daraus ergibt sich

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}$$

Analog haben wir

2. $\cos, \mathbb{R} \to \mathbb{R}$

$$\cos: (0,\pi) \to (-1,1)$$

bijektiv und

$$\arccos: (-1,1) \to (0,\pi)$$

ist die inverse Funktion und

$$\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$$

3.
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$$

$$\arctan: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

und

$$\arctan'(x) = \frac{1}{1+x^2}$$

4. Hyperbelfunktionen

$$\tanh(x) := \frac{\sinh(x)}{\cosh(x)}$$

Dann ist sinh: $\mathbb{R} \to \mathbb{R}$ bijektiv und differenzierbar mit $\sinh'(x) = \cosh(x)$ und somit monotone steigend und $\arcsinh: \mathbb{R} \to \mathbb{R}$ die Inverse

- $\cosh: [0, \infty) \to [1, \infty)$ bijektiv. Inverse: $\operatorname{arccosh}: (1, \infty) \to (0, \infty)$
- $\tanh : \mathbb{R} \to (-1,1)$ ist bijektiv. Inverse: $\operatorname{arctanh} : (-1,1) \to \mathbb{R}$

Dann gilt:

$$\sinh'(x) = \cosh(x)$$

$$\cosh'(x) = \sinh(x)$$

$$\tanh'(x) = \frac{1}{\cosh^2(x)}$$

mit der Beziehung $\cosh^2 + \sinh^2 + 1$ folgt

$$\operatorname{arcsinh}'(x) = \frac{1}{\sqrt{1+x^2}}$$

$$\operatorname{arccosh}'(x) = \frac{1}{\sqrt{x^2 - 1}}$$

$$\operatorname{arctanh}'(x) = \frac{1}{1 - x^2}$$

5.4 Funktionen der Klasse C^m

Sei $\Omega\subset\mathbb{R},\,f:\Omega\to\mathbb{R}$ differenzierbar

Definition 5.23

 $f:\Omega\to\mathbb{R}$ heisst C' (von der Klasse C'), falls f auf Ω differenzierbar ist und $x\to f'(x)$ auf Ω stetig ist.

Notation: $C'(\Omega) = \text{Vektorraum der auf } \Omega$ C'-Funktionen

Beispiel 5.24

1. $\exp, \cos, \sin, \text{Polynom} \in C'(\mathbb{R})$

2.
$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

 $\forall x \in \mathbb{R} \backslash \{0\}$

$$f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

In 0:

$$\frac{f(h) - f(0)}{h} = \frac{h^2 \sin\left(\frac{1}{h}\right) - 0}{h} = h \sin\left(\frac{1}{h}\right)$$

Is this "In 0" or

"ln 0" (Nat. Log), page

 $\lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0$

Also f'(0) = 0, f ist differenzierbar in $x_0 = 0$. Aber f' ist in 0 nicht stetig. Für $x_n = \frac{1}{n\pi}$ ist

$$f'(x_n) = \frac{2\sin(n\pi)}{n\pi} + (-1)^{n+1} = (-1)^{n+1}$$

 $\lim x_n = 0$, $\lim f'(x_n)$ (insbesondere $\neq f'(0)$) nicht existiert.

Wir haben einen Konvergenzbegriff auf $C^{0}\left(\Omega\right)$ gesehen: Gleichmässige Konvergenz

$$f_n \stackrel{\text{glm.}}{\to} f \text{ falls } \sup_{x \in \Omega} ||f_n - f|| \to 0$$

Falls alle f_n stetig sind, folgt, dass f stetig ist. Für $C'(\Omega)$ haben wir

Satz 5.26

Sei $(f_n)_{n\geq 1}$ eine Folge in $C'(\Omega)$. Wir nehmen an, dass $f_n\stackrel{\text{glm.}}{\to} f$ und $f'_n\stackrel{\text{glm.}}{\to} g$. Dann gilt $f\in C'(\Omega)$ und g=f'

Beweis

Da $f_n \stackrel{\text{glm.}}{\to} f$ und $f'_n \stackrel{\text{glm.}}{\to} g$, sind f und g stetig Zu Zeigen: f ist differenzierbar und f' = g.

Seien $x \neq x_0$ in Ω . Aus $f_n \stackrel{\text{glm.}}{\to} f$ folgt, $\lim_{n \to \infty} f_n(x) = f(x)$ und $\lim_{n \to \infty} f_n(x_0) = f(x_0)$

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| = \lim_{n \to \infty} \left| \frac{f_n(x) - f_n(x_0)}{x - x_0} - g(x_0) \right|$$

Mittelwertsatz: $\exists \xi_n$ zwischen x und x_0 , so dass

$$\frac{f_n(x) - f_n(x_0)}{x - x_0} = f'_n(\xi_n)$$

Nun

$$\begin{aligned} |f_{n}'\left(\xi_{n}\right)-g\left(x_{0}\right)| &\leq |f_{n}'\left(\xi_{n}\right)-g\left(\xi_{n}\right)| + |g\left(\xi_{n}\right)-g\left(x_{0}\right)| \\ &\leq \sup_{\xi \in \Omega} |f_{n}'\left(\xi\right)-g\left(\xi\right)| + |g\left(\xi_{n}\right)-g\left(x_{0}\right)| \\ &\downarrow \operatorname{Da} f_{n}' \to g &\downarrow \underset{\left(\xi_{n} \to x_{0}\right)}{\operatorname{falls}} \underset{\left(\xi_{n} \to x_{0}\right)}{\times} \\ &0 & 0 & (\operatorname{Stet. von } g) \end{aligned}$$

Folglich

$$\lim_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| = 0 \Rightarrow f' = g$$

Beispiel 5.28

Die gleichmässige Konvergenz von $f_n' \to g$ ist notwendig: Sei

$$f_n(x) = \sqrt{\left(\frac{1}{n}\right)^2 + x^2}, x \in (-1, 1)$$

Behauptung

$$f_n(x) \stackrel{\text{glm.}}{\to} f = |x| \text{ für } |x| < 1$$

Beweis

$$|f_{n}(x) - |x|| = \left| \sqrt{\left(\frac{1}{n}\right)^{2} + x^{2}} - |x| \right|$$

$$= \left| \sqrt{\left(\frac{1}{n}\right)^{2} + x^{2}} - |x| \right| \cdot \frac{\left| \sqrt{\left(\frac{1}{n}\right)^{2} + x^{2}} + |x| \right|}{\left| \sqrt{\left(\frac{1}{n}\right)^{2} + x^{2}} + |x| \right|}$$

$$= \frac{\left(\frac{1}{n}\right)^{2} + x^{2} - (|x|)^{2}}{\left| \sqrt{\left(\frac{1}{n}\right)^{2} + x^{2}} + |x| \right|} = \frac{\left(\frac{1}{n}\right)^{2}}{\left| \sqrt{\left(\frac{1}{n}\right)^{2} + x^{2}} + |x| \right|} \le \frac{\left(\frac{1}{n}\right)^{2}}{\left(\frac{1}{n}\right)} \xrightarrow{n \to \infty} 0$$

d.h. $f_n(x) \stackrel{\text{glm.}}{\rightarrow} |x|$

 $\underline{\text{Nun:}}|x|$ ist stetig aber nicht differenzierbar

$$f'_{n}\left(x\right) = \frac{x}{\sqrt{\left(\frac{1}{n}\right)^{2} + \left|x\right|^{2}}} \underset{n \to \infty}{\longrightarrow} \left\{ \begin{array}{cc} \frac{x}{\left|x\right|} & x \neq 0 \\ 0 & x = 0 \end{array} \right.$$
$$g\left(x\right) = \left\{ \begin{array}{cc} 1 & x > 1 \\ 0 & x = 0 \\ -1 & x < 1 \end{array} \right.$$

 $f'_n(x) \to g(x)$ konvergiert nicht gleichmässig (g nicht stetig in x=0)

reference + pageber, page 228 midd-

Eine sehr wichtige Anwendung von Satz 5.26 ist auf die Eigenschaften von Funktionen, die Summe von Potenzreihen sind. Sei $(a_n)_{n>0} \in \mathbb{R}$. Wir nehmen

$$\rho := \frac{1}{\limsup \sqrt[n]{|a_n|}} > 0$$

Satz 5.29

Sei $x \in (-\rho, \rho) = \Omega$

$$f\left(x\right) = \sum_{n=0}^{\infty} a_n x^n$$

die Summe der absolut konvergenten Potenzreihe. Dann ist $f \in C'(\Omega)$ und

$$f'(x) = \sum_{n=0}^{\infty} na_n x^{n-1}$$

mit dem selben Konvergenzradius

Beweis

Sei

$$f_k(x) = \sum_{n=0}^{\infty} a_n x^n$$

Sei $0 < r < \rho$. Dann gilt, $\forall x \in (-r, r)$:

$$|f_k(x) - f(x)| \le \sum_{n=k+1}^{\infty} |a_n| r^n \stackrel{n \to \infty}{\to} 0$$

Also $f_k \to f$ gleichmässig auf (-r, r). Da

$$\limsup \sqrt[n]{|na_n|} = \limsup \left(\sqrt[n]{n} \cdot \sqrt[n]{|a_n|} \right)$$
(Da $\lim \sqrt[n]{n} = 1$) = $\limsup \sqrt[n]{|a_n|} = \rho$

konvergiert

$$\sum_{n=0}^{\infty} n a_n x^{n-1} =: g\left(x\right)$$

absolut $\forall x \in (-\rho, \rho)$. Nun ist

$$f_k'(x) = \sum_{n=0}^k na_n x^{n-1}$$

und es folgt wie oben $f'_n(x) \stackrel{\text{glm.}}{\to} g$. Nach Satz 5.26 folgt, dass f, g stetig und Add reference + page g = f', auf $(-\rho, \rho)$.

number, page 230 midd-

Beispiel 5.30

1.

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}$$

$$\exp'(x) = \sum_{n=0}^{\infty} \frac{nx^{n-1}}{n!} = \sum_{n=0}^{\infty} \frac{x^{n-1}}{(n-1)!}$$

$$= \sum_{k=0}^{\infty} \frac{x^k}{k!} = \exp(x)$$

2.

$$f(x) = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \quad |x| < 1$$

Daraus folgt

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$
eine
nicht
WHAT
Identität

Can't understand word, page 230 very bottom