MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

7. april 2025

Vsebina

¶ Funkcija

2/33

Section 1

Funkcija

3/33

- ¶ Funkcija
 - Funkcija
 - Linearna funkcija
 - Graf linearne funkcije

Jan Kastelic (GAA) MATEMATIKA

Preslikava

Jan Kastelic (GAA)

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

5/33

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

f :

5/33

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava f sestoji iz:

• množice \mathcal{X} , ki ji pravimo **domena**,

 $f: \mathcal{X}$

5/33

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- ullet množice \mathcal{Y} , ki ji pravimo **kodomena** in

 $f: \mathcal{X} \to \mathcal{Y}$

5/33

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- ullet množice ${\cal Y}$, ki ji pravimo **kodomena** in
- **prirejanja**, ki vsakemu elementu *x* domene priredi natanko en element *y* kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$ $f: x \mapsto y$

5/33

Preslikava

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- ullet množice ${\mathcal Y}$, ki ji pravimo **kodomena** in
- prirejanja, ki vsakemu elementu x domene priredi natanko en element y kodomene.

Elemente x kodomene \mathcal{X} imenujemo **originali** preslikave.

$$f: \mathcal{X} \to \mathcal{Y}$$
$$f: x \mapsto y$$

5/33

Preslikava

Naj bosta \mathcal{X} in \mathcal{Y} neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- \bullet množice \mathcal{Y} , ki ji pravimo **kodomena** in
- prirejanja, ki vsakemu elementu x domene priredi natanko en element v kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$ $f: x \mapsto y$

Elemente x kodomene \mathcal{X} imenujemo **originali** preslikave.

Če elementu x priredimo element y iz kodomene, potem y imenujemo **slika** elemeta x.

5/33

Preslikava

Naj bosta \mathcal{X} in \mathcal{Y} neprazni množici.

Preslikava *f* sestoji iz:

- množice \mathcal{X} , ki ji pravimo **domena**,
- \bullet množice \mathcal{Y} , ki ji pravimo **kodomena** in
- prirejanja, ki vsakemu elementu x domene priredi natanko en element v kodomene.

 $f: \mathcal{X} \to \mathcal{Y}$ $f: x \mapsto y$

Elemente x kodomene \mathcal{X} imenujemo **originali** preslikave.

Če elementu x priredimo element y iz kodomene, potem y imenujemo **slika** elemeta x.

Preslikavo lahko podamo s predpisom, puščičnim diagramom, besednim opisom ...

Jan Kastelic (GAA) MATEMATIKA 7. april 2025 5/33

Jan Kastelic (GAA)

Funkcija

6/33

Jan Kastelic (GAA)

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

6/33

Funkcija

Naj bosta $\mathcal X$ in $\mathcal Y$ neprazni številski množici.

Funkcija f je preslikava med številskima množicama \mathcal{X} in \mathcal{Y} :

6/33

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

Funkcija f je preslikava med številskima množicama \mathcal{X} in \mathcal{Y} :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

6/33

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

Funkcija f je preslikava med številskima množicama \mathcal{X} in \mathcal{Y} :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

Število y je **funkcijska vrednost** števila x, če se število x preslika v število y.

$$f(x) = y$$

6/33

Funkcija

Naj bosta ${\mathcal X}$ in ${\mathcal Y}$ neprazni številski množici.

Funkcija f je preslikava med številskima množicama \mathcal{X} in \mathcal{Y} :

$$f: \mathcal{X} \to \mathcal{Y}$$
.

Število y je **funkcijska vrednost** števila x, če se število x preslika v število y.

$$f(x) = y$$

x je neodvisna spremenjlivka, f(x) je od x odvisna spremenljivka.

6/33

7/33

Jan Kastelic (GAA) MATEMATIKA

• $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{R}$ – realna funkcija realne spremenljivke;

7/33

- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{R}$ realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}$; $\mathcal{X} \subseteq \mathbb{N}$ realna funkcija naravne spremenljivke;

7/33

- $f: \mathcal{X} \to \mathbb{R}$; $\mathcal{X} \subseteq \mathbb{R}$ realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}$; $\mathcal{X} \subseteq \mathbb{N}$ realna funkcija naravne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{R}$ naravna funkcija realne spremenljivke;

7/33

- $f: \mathcal{X} \to \mathbb{R}$; $\mathcal{X} \subseteq \mathbb{R}$ realna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{R}; \mathcal{X} \subseteq \mathbb{N}$ realna funkcija naravne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{R}$ naravna funkcija realne spremenljivke;
- $f: \mathcal{X} \to \mathbb{N}; \mathcal{X} \subseteq \mathbb{N}$ naravna funkcija naravne spremenljivke.

7 / 33

8/33

Definicijsko območje

8/33

7. april 2025

Jan Kastelic (GAA) MATEMATIKA

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

8 / 33

Funkciia

Definicijsko območje in zaloga vrednosti

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

8 / 33

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

Zaloga vrednosti

8 / 33

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

Zaloga vrednosti

Zaloga vrednosti preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh slik oziroma funkcijskih vrednosti. Oznaka: Z_f .

8 / 33

Definicijsko območje

Definicijsko območje preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh originalov, ki jih v danem primeru opazujemo. Oznaka: D_f .

Za definicijsko območje navadno vzamemo največjo možno množico, za katero je predpis funkcije veljaven/definiran.

Zaloga vrednosti

Zaloga vrednosti preslikave ali funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica vseh slik oziroma funkcijskih vrednosti. Oznaka: Z_f .

Zaloga vrednosti Z_f je podmnožica kodomene \mathcal{Y} : $Z_f \subseteq \mathcal{Y}$.

→ □ → ← □ → ← □ → ○ へ ○

8 / 33

Naloga

Funkcijo $f:A\to B$ predstavite s tabelo. Izračunajte, kam posamezna funkcija preslika x=1.

- $A = \{-2, -1, 0, 1, 2, 3\}, B = \{0, 1, 2, 3, 4, 5\}, f(x) = |x| + 1$
- $A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, f(x) = 2x + 1$
- $A = B = \left\{\frac{1}{3}, \frac{1}{2}, 1, 2, 3\right\}, f(x) = \frac{1}{x}$

9/33

Naloga

Funkcijo $f:A\to B$ predstavite s tabelo. Izračunajte, kam posamezna funkcija preslika x=1.

- $A = \{-2, -1, 0, 1, 2, 3\}, B = \{0, 1, 2, 3, 4, 5\}, f(x) = |x| + 1$
- $A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, f(x) = 2x + 1$
- $A = B = \left\{\frac{1}{3}, \frac{1}{2}, 1, 2, 3\right\}, f(x) = \frac{1}{x}$

Naloga

Tabelirajte funkcijo g(x) = 2x + |x| od -3 do 3 s korakom 1.

9/33

Funkcija

Naloga

Zapišite definicijska območja funkcij.

$$f(x) = \frac{-7}{x+1}$$

•
$$g(x) = \frac{1}{(x+2)(x+6)}$$

•
$$h(x) = \frac{3x^2 + 1}{5}$$

•
$$i(x) = \sqrt{x-2}$$

•
$$j(x) = x^3 - \frac{2}{3}$$

•
$$k(x) = \sqrt{x^2 + 7}$$

$$I(x) = \frac{3}{x}$$

•
$$m(x) = \frac{x^2 + 1}{x^2 - 5x - 6}$$

Jan Kastelic (GAA)

MATEMATIKA

11/33

Funkcija

Ničla in začetna vrednost funkcije

Ničla funkcije

11/33

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

11/33

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

11 / 33

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju D_f funkcije f.

11/33

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju D_f funkcije f.

Začetna vrednost

11/33

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju D_f funkcije f.

Začetna vrednost

Začetna vrednost funkcije $f: \mathcal{X} \to \mathcal{Y}$ je funkcijska vrednost pri x = 0, to je f(0).

11/33

Ničla funkcije

Ničla funkcije $f: \mathcal{X} \to \mathcal{Y}$ je tista vrednost $x_0 \in \mathcal{X}$ neodvisne spremenljivke, pri kateri je vrednost funkcije f enaka $0: f(x_0) = 0$.

Ničle funkcije f poiščemo tako, da rešimo enačbo f(x) = 0.

Ničle so le tiste izmed vrednosti, ki ležijo v definicijskem območju D_f funkcije f.

Začetna vrednost

Začetna vrednost funkcije $f: \mathcal{X} \to \mathcal{Y}$ je funkcijska vrednost pri x = 0, to je f(0).

Začetna vrednost obstaja le, če je 0 v definicijskem območju funkcije $f \colon 0 \in D_f$.

(ロト 4回 ト 4 E ト 4 E ト 9 Q C・

11/33

Funkcija

Naloga

Izračunajte ničle funkcij.

•
$$f(x) = \frac{4}{5} - 6x$$

•
$$g(x) = x^2 - 7x + 12$$

•
$$h(x) = \frac{3x+6}{5}$$

•
$$i(x) = x^2 - 9$$

•
$$j(x) = x^2 + 1$$

•
$$k(x) = x^2 - 3x^2 - 4x + 12$$

•
$$I(x) = \sqrt{x+7}$$

$$m(x) = \frac{3}{x}$$

Jan Kastelic (GAA)

MATEMATIKA

Funkcija

Naloga

Izračunajte začetne vrednosti funkcij.

•
$$f(x) = \frac{4}{5} - 6x$$

•
$$g(x) = x^2 - 7x + 12$$

•
$$h(x) = \frac{3x+6}{5}$$

•
$$i(x) = x^2 - 9$$

$$j(x) = x^2 - 3x^2 - 4x + 12$$

•
$$k(x) = \sqrt{x+7}$$

$$I(x) = \frac{3}{x}$$

•
$$m(x) = \frac{x^3 - 2x^2 - 4}{x^4 + 2x^3 + 3}$$

Jan Kastelic (GAA)

MATEMATIKA

7. april 2025

Jan Kastelic (GAA)

Graf funkcije

Jan Kastelic (GAA) MATEMATIKA

Graf funkcije

Graf Γ_f funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica urejenih parov $(x, y) \in \mathcal{X} \times \mathcal{Y}$, kjer element x preteče celotno definicijsko območje D_f funkcije, element y pa je slika pripadajočega x, torej y = f(x).

14 / 33

Graf funkcije

Graf Γ_f funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica urejenih parov $(x, y) \in \mathcal{X} \times \mathcal{Y}$, kjer element x preteče celotno definicijsko območje D_f funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$

14 / 33

Graf funkcije

Graf Γ_f funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica urejenih parov $(x, y) \in \mathcal{X} \times \mathcal{Y}$, kjer element x preteče celotno definicijsko območje D_f funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$

Urejene pare iz množice Γ_f lahko upodobimo v koordinatnem sistemu.

14 / 33

Graf funkcije

Graf Γ_f funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica urejenih parov $(x, y) \in \mathcal{X} \times \mathcal{Y}$, kjer element x preteče celotno definicijsko območje D_f funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$

Urejene pare iz množice Γ_f lahko upodobimo v koordinatnem sistemu. Vsakemu elementu (x, f(x)) iz zgornje množice pripada natanko ena točka v koordinatnem sistemu, katere abscisa je enaka x, ordinata pa je njegova slika f(x).

14 / 33

Graf funkcije

Graf Γ_f funkcije $f: \mathcal{X} \to \mathcal{Y}$ je množica urejenih parov $(x, y) \in \mathcal{X} \times \mathcal{Y}$, kjer element x preteče celotno definicijsko območje D_f funkcije, element y pa je slika pripadajočega x, torej y = f(x).

$$\Gamma_f = \{(x, y) \in \mathcal{X} \times \mathcal{Y}; x \in D_f \land y = f(x)\}$$

Urejene pare iz množice Γ_f lahko upodobimo v koordinatnem sistemu. Vsakemu elementu (x, f(x)) iz zgornje množice pripada natanko ena točka v koordinatnem sistemu, katere abscisa je enaka x, ordinata pa je njegova slika f(x).

V ničli graf funkcije seka abscisno os, v začetni vrednosti pa ordinatno os.

14 / 33

Jan Kastelic (GAA) MATEMATIKA

Naraščajoča funkcija

Jan Kastelic (GAA) MATEMATIKA

Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) < f(x_2)$.

15/33

Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) \le f(x_2)$.

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) < f(x_2)$.

15 / 33

Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) \le f(x_2)$.

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) < f(x_2)$.

Padajoča funkcija

15 / 33

Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) \le f(x_2)$.

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) < f(x_2)$.

Padajoča funkcija

Funkcija f je na intervalu (a, b) **padajoča**, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) \ge f(x_2)$.

15 / 33

Naraščajoča funkcija

Funkcija f je na intervalu (a, b) naraščajoča, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) \le f(x_2)$.

Funkcija f je na intervalu (a, b) **strogo naraščajoča**, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) < f(x_2)$.

Padajoča funkcija

Funkcija f je na intervalu (a, b) **padajoča**, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) \ge f(x_2)$.

Funkcija f je na intervalu (a, b) **strogo padajoča**, če za poljubna $x_1, x_2 \in (a, b)$, kjer je $x_1 < x_2$, velja $f(x_1) > f(x_2)$.

4□ > 4□ > 4□ > 4□ > 4□ > 90

15/33

16/33

7. april 2025

Jan Kastelic (GAA) MATEMATIKA

Surjektivnost

16/33

Jan Kastelic (GAA) MATEMATIKA

Surjektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **surjektivna**, če je zaloga vrednosti Z_f funkcije enaka njeni kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika vsaj enega elementa iz domene \mathcal{X} .

16 / 33

Surjektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **surjektivna**, če je zaloga vrednosti Z_f funkcije enaka njeni kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika vsaj enega elementa iz domene \mathcal{X} .

$$\forall y \in \mathcal{Y}.\exists x \in \mathcal{X} \ni : f(x) = y$$

16 / 33

Surjektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **surjektivna**, če je zaloga vrednosti Z_f funkcije enaka njeni kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika vsaj enega elementa iz domene \mathcal{X} .

$$\forall y \in \mathcal{Y}. \exists x \in \mathcal{X} \ni : f(x) = y$$

Injektivnost

16 / 33

Surjektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **surjektivna**, če je zaloga vrednosti Z_f funkcije enaka njeni kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika vsaj enega elementa iz domene \mathcal{X} .

$$\forall y \in \mathcal{Y}.\exists x \in \mathcal{X} \ni : f(x) = y$$

Injektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **injektivna**, če se dva poljubna različna originala iz domene \mathcal{X} preslikata v različni sliki v kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika kvečjemu enega elementa iz domene \mathcal{X} .

16 / 33

Surjektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **surjektivna**, če je zaloga vrednosti Z_f funkcije enaka njeni kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika vsaj enega elementa iz domene \mathcal{X} .

$$\forall y \in \mathcal{Y}. \exists x \in \mathcal{X} \ni : f(x) = y$$

Injektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **injektivna**, če se dva poljubna različna originala iz domene \mathcal{X} preslikata v različni sliki v kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika kvečjemu enega elementa iz domene \mathcal{X} .

$$\forall x, y \in \mathcal{X} : f(x) = f(y) \Rightarrow x = y$$

16 / 33

Injektivnost in surjektivnost

Surjektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **surjektivna**, če je zaloga vrednosti Z_f funkcije enaka njeni kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika vsaj enega elementa iz domene \mathcal{X} .

$$\forall y \in \mathcal{Y}.\exists x \in \mathcal{X} \ni : f(x) = y$$

Injektivnost

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **injektivna**, če se dva poljubna različna originala iz domene \mathcal{X} preslikata v različni sliki v kodomeni \mathcal{Y} – vsak element kodomene \mathcal{Y} je slika kvečjemu enega elementa iz domene \mathcal{X} .

$$\forall x, y \in \mathcal{X} : f(x) = f(y) \Rightarrow x = y$$

Funkcija $f: \mathcal{X} \to \mathcal{Y}$ je **bijektivna**, če je injektivna in surjektivna hkrati – vsak element iz kodomene \mathcal{Y} je slika natanko enega elementa domene \mathcal{X} .

Jan Kastelic (GAA) MATEMATIKA 7. april 2025 16/33

Funkcija

Zapišite in narišite grafe funkcij ter zapišite začetne vrednosti in ničle funkcije. Določite, kje je funkcija naraščajoča oziroma padajoča, ter preverite surjektivnost in injektivnost.

- f(x) = x $D_f = \mathbb{R}$

- $i(x) = \frac{1}{x^2}$ $D_i = \left\{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2\right\}$
- $j(x) = \frac{x+2}{x-3}$ $D_j = \{-2, -1, 0, 1, 2\}$

17/33

Predpis linearne funkcije

18 / 33

7. april 2025

Jan Kastelic (GAA) MATEMATIKA

Ugotovite, ali je dana funkcija linearna. Linearnim funkcijam določite smerni koeficient in začetno vrednost.

$$f(x) = \frac{1}{7x} - \frac{3}{4}$$

$$g(x) = \frac{2}{3} - \pi x$$

•
$$h(x) = \frac{8+6x}{24}$$

•
$$i(x) = 0.\overline{3}x + 1$$

•
$$j(x) = \frac{x^2 - 3}{5}$$

•
$$k(x) = -\sqrt{2}x + \frac{2}{3}$$

•
$$I(x) = 2$$

19 / 33

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.

20 / 33

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.

Naloga

Dana je linearna funkcija p(x) = 3x - 4. Izračunaj p(-2), p(0); p(5) in $p(\sqrt{2})$.

20 / 33

Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik -3.

Naloga

Dana je linearna funkcija p(x) = 3x - 4. Izračunaj p(-2), p(0); p(5) in $p(\sqrt{2})$.

Naloga

Zapišite predpis linearne funkcije, za katero je u(-2) = 10 in u(0) = 2.

20 / 33

Ali je funkcija naraščajoča ali padajoča?

•
$$f(x) = 3x + 5$$

•
$$g(x) = -2x + 7$$

•
$$h(x) = 10 - \frac{1}{2}x$$

$$i(x) = \frac{x-1}{2}$$

$$i(x) = \frac{5-2x}{3}$$

$$k(x) = \frac{-\sqrt{3}x + 1}{3}$$

•
$$I(x) = -\frac{2-4x}{17}$$

21 / 33

Izračunajte ničlo linearne funkcije.

•
$$f(x) = 6x + 12$$

•
$$g(x) = 5x + 2$$

•
$$h(x) = 3x - 12$$

•
$$i(x) = -4x + 8$$

•
$$j(x) = -3x + 2$$

•
$$k(x) = -x - 7$$

•
$$I(x) = \frac{3}{4}x - \frac{1}{4}$$

•
$$m(x) = -\frac{2x+3}{6}$$

$$n(x) = \frac{1-4x}{2}$$

$$o(x) = \frac{\pi x + 4}{3}$$

•
$$p(x) = \sqrt{2}x + 1$$

•
$$r(x) = 4$$

Dana je linearna funkcija f. Zapišite predpis funkcije g v obliki g(x) = kx + n.

•
$$f(x) = 2x - 6$$
, $g(x) = 3f(x)$

•
$$f(x) = 5x - 3$$
; $g(x) = f(x + 1)$

•
$$f(x) = \frac{2x-5}{3}$$
; $g(x) = f(1-x)$

•
$$f(x) = \frac{10-4x}{7}$$
; $g(x) = f(3x)$

23 / 33

Dana je družina linearnih funkcij $f(x) = (2m-1)x + (3-m); \ m \in \mathbb{R}.$

- Za katero vrednost parametra m ima funkcija diferenčni količnik enak -5?
- Za katero vrednost parametra m je funkcija padajoča?
- Za katero vrednost parametra m je funkcija konstantna?
- Za katero vrednost parametra m je funkcija naraščajoča?
- Za katero vrednost parametra *m* je začetna vrednost enaka 2?
- Za katero vrednost parametra m ima funkcija ničlo x = -4?

24 / 33

Taksist meri razdaljo, ki jo je prevozil. Vsak kilometer stane $2.5 \in$, startnina pa 7 €. Zapišite funkcijo, po kateri taksist izračuna znesek za plačilo, ko prebere število prevoženih kilometrov x. Izračunajte, koliko bi pačali, če bi se peljali $12 \ km$.

25 / 33

Naloga

Taksist meri razdaljo, ki jo je prevozil. Vsak kilometer stane $2.5 \in$, startnina pa $7 \in$ Zapišite funkcijo, po kateri taksist izračuna znesek za plačilo, ko prebere število prevoženih kilometrov x. Izračunajte, koliko bi pačali, če bi se peljali $12 \ km$.

Naloga

V bezenu je 12 I vode. V bazen po cevi vsako minuto pritečejo še 4 I vode. Zapišite funkcijo, s katero bomo lahko izračunali, koliko je vode v bazenu po pretečenih x minutah. Izračunajte, koliko vode je v bazenu po 9 minutah.

25/33

Graf linearne funkcije

26/33

Jan Kastelic (GAA) MATEMATIKA

Katere od točk A(1,1), B(4,0), C(7,-2), $D(-4,\frac{5}{2})$, $E(0,\frac{3}{2})$, F(2,2) in G(3,0) ležijo na grafu funkcije $f(x)=-\frac{1}{2}x+\frac{3}{2}$?

27 / 33

Katere od točk A(1,1), B(4,0), C(7,-2), $D(-4,\frac{5}{2})$, $E(0,\frac{3}{2})$, F(2,2) in G(3,0) ležijo na grafu funkcije $f(x) = -\frac{1}{2}x + \frac{3}{2}$?

Naloga

Dana je funkcija g(x) = 3x - 2. Za koliko se spremeni vrednost funkcije g, če se vrednost x

- poveča za 1?
- poveča za 2?
- zmanjša za 5?
- zmanjša za −10?

 Jan Kastelic (GAA)
 MATEMATIKA
 7. april 2025
 27 / 33

Narišite graf linearne funkcije. Zapišite začetno vrednost in izračunajte ničlo funkcije. Določite, kje je funkcija pozitivna oziroma negativna, ter ali je naraščajoča ali padajoča?

•
$$f(x) = -x + \frac{1}{2}$$

•
$$g(x) = 2x + 2$$

•
$$h(x) = 3 - 2x$$

•
$$i(x) = -x$$

•
$$j(x) = -3$$

$$k(x) = \frac{6x-1}{3}$$

•
$$I(x) = -\frac{2-3x}{4}$$

•
$$m(x) = 3 - \frac{3}{5}x$$

Jan Kastelic (GAA)

V isti koordinatni sistem narišite grafe funkcij f(x) = 2x - 2, g(x) = 2x + 1, h(x) = 2x + 2 in i(x) = 2x. Kaj opazite?

29 / 33

V isti koordinatni sistem narišite grafe funkcij f(x) = 2x - 2, g(x) = 2x + 1, h(x) = 2x + 2 in i(x) = 2x. Kaj opazite?

Naloga

V isti koordinatni sistem narišite grafe funkcij f(x) = 2x - 2, g(x) = 3x - 2, h(x) = x - 2 in $i(x) = \frac{1}{2}x - 2$. Kaj opazite?

29 / 33

Zapišite predpis linearne funkcije, ki jo prikzauje graf.

Jan Kastelic (GAA)

Zapišite predpis linearne funkcije, ki jo prikzauje graf.

7. april 2025

Jan Kastelic (GAA)

Zapišite predpis linearne funkcije, ki jo prikzauje graf.

Jan Kastelic (GAA)

Graf linearne funkcije

7. april 2025

Narišite graf sestavljene funkcije in zapišite njeno zalogo vrednosti.

$$f(x) = \begin{cases} 2x; & x \le 2 \\ 4; & x > 2 \end{cases}$$

•
$$k(x) = \begin{cases} -x+1; & x \le 2 \\ -1; & 2 < x < 4 \\ x-5; & x \ge 4 \end{cases}$$

$$I(x) = \begin{cases} 0.5x; & x \le 2 \\ 2x - 3; & 2 < x < 4 \\ 0.5x + 3; & x \ge 4 \end{cases}$$

33 / 33