Exercice.

1. Puisque $0^3 = 0 \neq 1$, on cherche les solutions de l'équation sur \mathbb{C}^* . Soit $z \in \mathbb{C}^*$. Notons $r \in \mathbb{R}_+^*$ son module et $\theta \in \mathbb{R}$ un de ses arguments.

$$z^3 = 1 \iff r^3 e^{3i\theta} = e^{i0} \iff \left\{ \begin{array}{ll} r^3 &= 1 \\ 3\theta &= 0 \ [2\pi] \end{array} \right. \iff \left\{ \begin{array}{ll} r &= 1 \\ \theta &= 0 \ [\frac{2\pi}{3}] \end{array} \right..$$

On a notamment utilisé que 1 était la seule solution de $r^3 = 1$ sur \mathbb{R}_+^* (et même sur \mathbb{R} : penser au graphe de $x \mapsto x^3$ pour s'en convaincre).

On obtient les trois solutions attendues : 1, $e^{\frac{2i\pi}{3}}$ et $e^{\frac{4i\pi}{3}}$.

On parle de racines troisièmes de l'unité puisque lorsqu'on met ces nombres à la puissance 3, on obtient 1 : l'unité.

2. On a

$$j^2 = e^{\frac{4i\pi}{3}} = e^{2i\pi - \frac{2i\pi}{3}} = e^{-\frac{2i\pi}{3}} = \overline{j}.$$

Pour calculer $1 + j + j^2$,

· On peut reconnaître une progression géométrique, et écrire que

$$1 + j + j^2 = \frac{1 - j^3}{1 - j} = \frac{1 - 1}{1 - j} = 0.$$

· Sinon, on peut écrire

$$1 + j + j^2 = 1 + j + \overline{j} = 1 + 2\operatorname{Re}(e^{\frac{2i\pi}{3}}) = 1 + 2\cos(\frac{2\pi}{3}) = 1 - 1 = 0.$$

3. (a)

(b) On sait calculer les distances entre deux sommets de ce triangle : elles sont données par les modules |j-1|, $|j^2-j|$ et $|1-j^2|$. On a

$$|j^2 - j| = |j(j - 1)| = |j| \cdot |j - 1| = |j - 1|,$$

 $|1 - j^2| = |j^3 - j^2| = |j^2| \cdot |j - 1| = |j - 1|.$

ce qui montre que le triangle est équilatéral. Notons P_3 son périmètre.

$$P_3 = 3|j-1| = 3\left|e^{\frac{2i\pi}{3}} - 1\right| = 3\left|e^{\frac{i\pi}{3}}\left(e^{\frac{i\pi}{3}} - e^{-\frac{i\pi}{3}}\right)\right| = 3 \cdot |e^{\frac{i\pi}{3}}| \cdot |2i\sin(\frac{\pi}{3})| = 3\sqrt{3}.$$

4. (a) La première égalité à démontrer est classique :

$$S_0 + S_1 + S_2 = \sum_{k=0}^{n} {n \choose k} = \sum_{k=0}^{n} {n \choose k} 1^k 1^{n-k} = (1+1)^n = 2^n.$$

Pour la seconde,

$$(j+1)^n = \sum_{k=0}^n \binom{n}{k} j^k$$

$$= \binom{n}{0} + \binom{n}{1} j + \binom{n}{2} j^2 + \dots + \binom{n}{3k} + \binom{n}{3k+1} j + \binom{n}{3k+2} j^2 + \dots$$

$$= S_0 + S_1 j + S_2 j^2$$

En effet, pour k entier,

$$j^{3k} = (j^3)^k = 1^k = 1,$$
 $j^{3k+1} = j^{3k}j = j,$ et $j^{3k+2} = j^{3k}j^2 = j^2$

De même,

$$(j^{2}+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} (j^{2})^{k}$$

$$= \binom{n}{0} + \binom{n}{1} j^{2} + \binom{n}{2} j + \dots + \binom{n}{3k} + \binom{n}{3k+1} j^{2} + \binom{n}{3k+2} j + \dots$$

$$= S_{0} + S_{1} j^{2} + S_{2} j$$

En effet, pour k entier,

$$(j^2)^{3k} = j^{6k} = 1$$
, $(j^2)^{3k+1} = j^{6k+2} = j^2$ et $(j^2)^{3k+2} = j^{6k+4} = j^4 = j$.

(b) On a montré

$$\begin{cases}
S_0 + S_1 + S_2 = 2^n & (L_1) \\
S_0 + S_1 j + S_2 j^2 = (j+1)^n & (L_2) \\
S_0 + S_1 j^2 + S_2 j = (j^2+1)^n & (L_3)
\end{cases}$$

Sommons: $L_1 + L_2 + L_3$ donne

$$3S_0 + S_1 \underbrace{(1+j+j^2)}_{=0} + S_2 \underbrace{(1+j^2+j)}_{=0} = 2^n + (j+1)^n + (j^2+1)^n.$$

Or,
$$j^2 = \overline{j}$$
 donc $(j^2 + 1)^n = \overline{(j+1)^n}$. On a donc
$$3S_0 = 2^n + (j+1)^n + \overline{(j+1)^n} = 2^n + 2\text{Re}((j+1)^n).$$
 Or,
$$(j+1)^n = e^{\frac{in\pi}{3}} \left(e^{\frac{i\pi}{3}} + e^{-\frac{i\pi}{3}}\right)^n = e^{\frac{in\pi}{3}} (2\cos(\frac{\pi}{3}))^n = e^{\frac{in\pi}{3}}.$$
 On a donc bien

$$3S_0 = 2^n + 2\operatorname{Re}\left(e^{\frac{in\pi}{3}}\right) = 2^n + 2\cos\left(\frac{n\pi}{3}\right)$$
 $S_0 = \frac{1}{3}\left(2^n + 2\cos\left(\frac{n\pi}{3}\right)\right)$

Problème. Intégrales de Wallis et applications.

A. Intégrales de Wallis

Pour tout $n \in \mathbb{N}$ on définit $W_n = \int_0^{\pi/2} (\cos t)^n dt$.

1. À l'aide d'une intégration par parties, les fonction u et v étant bien C^1 :

$$W_{n+2} = \int_0^{\pi/2} \underbrace{(\cos t)}_{u'(t)} \underbrace{(\cos t)^{n+1}}_{v(t)} dt$$

$$= \underbrace{\left[\underbrace{(\sin t)}_{u(t)} \underbrace{(\cos t)^{n+1}}_{v(t)}\right]_0^{\pi/2}}_{0} - \int_0^{\pi/2} \underbrace{(\sin t)}_{u(t)} \underbrace{(n+1)(-\sin t)(\cos t)^n}_{v'(t)} dt$$

$$= (n+1) \int_0^{\pi/2} (\sin t)^2 (\cos t)^n dt$$

$$= (n+1) \int_0^{\pi/2} (1 - \cos^2 t)(\cos t)^n dt$$

$$= (n+1) \int_0^{\pi/2} (\cos t)^n dt - (n+1) \int_0^{\pi/2} (\cos t)^{n+2} dt$$

$$= (n+1)W_n - (n+1)W_{n+2}.$$

$$\underbrace{(n+2)W_{n+2} = (n+1)W_n}$$

2. On procède par récurrence. Pour $n \in \mathbb{N}$, posons

$$\mathcal{P}_n$$
: « $W_{2n} > 0$ et $W_{2n+1} > 0$ ».

- $W_0 = \int_0^{\frac{\pi}{2}} 1 dt = \frac{\pi}{2} \text{ et } W_1 = \int_0^{\frac{\pi}{2}} \cos t dt = [\sin t]_0^{\frac{\pi}{2}} = 1.$
- Soit $n \in \mathbb{N}$. Supposons que \mathcal{P}_n est vraie. On a, d'après la relation trouvée en question 1 :

$$W_{2n+2} = \frac{2n+1}{2n+2}W_{2n}$$
 et $W_{2n+3} = \frac{2n+2}{2n+3}W_{2n+1}$.

Les nombres W_{2n+2} et W_{2n+3} sont strictement positifs par produit de nombres strictement positifs : \mathcal{P}_{n+1} est vraie.

• D'après le principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout entier $n \in \mathbb{N}$, ce qui établit que

tous les termes de la suite (W_n) sont strictement positifs.

3. Montrer que la suite $((n+1)W_{n+1}W_n)_{n\in\mathbb{N}}$ est constante. Préciser la valeur de cette constante. Pour $n\geq 0$, notons provisoirement $u_n=(n+1)W_{n+1}W_n$. Alors, par la question précédente,

$$\forall n \in \mathbb{N} \quad u_{n+1} = (n+2)W_{n+2}W_{n+1} = (n+1)W_nW_{n+1} = u_n.$$

De plus
$$u_0 = W_1 W_0 = \int_0^{\pi/2} \cos t dt \times \int_0^{\pi/2} 1 dt = \pi/2.$$

$$\forall n \in \mathbb{N} \quad (n+1)W_{n+1} W_n = \frac{\pi}{2}$$

4. Pour $0 \le t \le \pi/2$, on a $0 \le \cos t \le 1$ et donc

$$(\cos t)^{n+2} \le (\cos t)^{n+1} \le (\cos t)^n.$$

En intégrant :

$$W_{n+2} \le W_{n+1} \le W_n.$$

Puisque $W_n > 0$, on a $W_{n+2}/W_n \le W_{n+1}/W_n \le 1$ pour tout $n \in \mathbb{N}$. Par la question 1, il vient

$$\frac{n+1}{n+2} \le \frac{W_{n+1}}{W_n} \le 1.$$

On en déduit, par encadrement, que

$$\boxed{\frac{W_{n+1}}{W_n} \xrightarrow[n \to +\infty]{} 1}$$

5. Pour $n \in \mathbb{N}$, on a établi en question 3 l'égalité

$$(n+1)W_nW_{n+1} = \frac{\pi}{2},$$

qu'on récrit

$$nW_n^2 \cdot \frac{n+1}{n} \cdot \frac{W_{n+1}}{W_n} = \frac{\pi}{2}.$$

Isolons

$$nW_n^2 = \frac{n}{n+1} \cdot \left(\frac{W_{n+1}}{W_n}\right)^{-1} \cdot \frac{\pi}{2}.$$

On a $\frac{n}{n+1} \to 0$ ainsi que $\frac{W_{n+1}}{W_n} \to 0$ d'après la question 4, d'où

$$nW_n^2 \longrightarrow \frac{\pi}{2}$$
 soit $\sqrt{n}W_n \longrightarrow \sqrt{\frac{\pi}{2}}$

Pour justifier le passage à la racine et l'écriture de l'inverse plus haut, on rappelle que l'on a établi la stricte positivité de W_n pour tout entier n.

6. Soit $n \in \mathbb{N}$. Par itération, on calcule

$$W_{2n} = \frac{2n-1}{2n}W_{2n-2} = \frac{2n-1}{2n}\frac{2n-3}{2n-2}W_{2n-4} = \dots = \frac{(2n-1)(2n-3)\cdots 3\cdot 1}{(2n)(2n-2)\cdots 4\cdot 2}W_0$$

En multipliant par $(2n)(2n-2)\cdots 4\cdot 2=2^n n!$ au numérateur et au dénominateur, on obtient

$$W_{2n} = \frac{(2n)!}{(2^n n!)^2} W_0.$$

On a déjà calculé $W_0 = \frac{\pi}{2}$. De manière analogue, on obtient

$$W_{2n+1} = \frac{(2n)(2n-2)\cdots 4\cdot 2}{(2n+1)(2n-1)\cdots 3\cdot 1}W_1 = \frac{(2^n n!)^2}{(2n+1)!}W_1.$$

On a déjà calculé $W_1 = 1$.

On pouvait bien sûr faire une récurrence, et certains trouverons même cela plus rigoureux que les itérations ci-dessus. Mais attention, pour entreprendre une récurrence, il faut que l'énoncé nous donne comme ici la formule à établir. Avec la preuve ci-dessus, on l'a trouvée tout seul.

B. Intégrale de Gauss

Pour tout x réel on pose

$$f(x) = \int_0^x e^{-t^2} \mathrm{d}t.$$

- 1. (a) $t \mapsto e^{-t^2}$ est <u>continue</u> sur \mathbb{R} . D'après le théorème fondamental, f est dérivable sur \mathbb{R} et $f'(x) = e^{-x^2}$ pour tout x réel. Par conséquent f' est strictement positive sur (l'intervalle) \mathbb{R} et f est strictement croissante sur \mathbb{R} .
 - (b) Après avec justifié que pour tout $t \ge 1$, on a $e^{-t^2} \le e^{-t}$, justifiez que

$$\forall x \in [1, +\infty[\quad \int_1^x e^{-t^2} dt \le \int_1^x e^{-t} dt.$$

En déduire que f est majorée sur $[1, +\infty[$.

Croissante et majorée, f admet une limité finie en $+\infty$ (d'après le théorème de la limite monotone, admis pour le moment).

Pour tout $t \ge 1$ on a $t \le t^2$ et donc $e^{-t^2} \le e^{-t}$. Les bornes des intégrales étant « dans le bon sens » », on aura pour x > 1:

$$\int_1^x e^{-t^2} \mathrm{d}t \le \int_1^x e^{-t} \mathrm{d}t.$$

Ainsi, pour $x \ge 1$, on obtient grâce à la relation de Chasles,

$$f(x) = \int_0^1 e^{-t^2} dt + \int_1^x e^{-t^2} dt$$

$$\leq f(1) + \int_1^x e^{-t} dt$$

$$\leq f(1) + \left[-e^{-t} \right]_1^x$$

$$\leq f(1) + \frac{1}{e} - e^{-x}$$

$$\leq \boxed{f(1) + \frac{1}{e}}.$$

2. (a) L'inégalité $1+u \le e^u$ est vraie pour tout réel u. (On peut la démontrer en invoquant des arguments de convexité ou plus naïvement en étudiant rapidement la fonction $t \mapsto e^t - t - 1$.)

On aura donc aussi, en remplaçant u par -u:

$$\forall u \in \mathbb{R} \quad e^{-u} \ge 1 - u.$$

Soit u < 1. Alors 1 - u > 0. La fonction inverse est décroissante sur \mathbb{R}_+^{\star} donc $e^u \leq \frac{1}{1-u}$.

$$u < 1 \implies 1 + u \le e^u \le \frac{1}{1 - u}$$

(b) On applique ce qui précède à $u = -\frac{x^2}{n} < 1 : 1 - \frac{x^2}{n} \le e^{-\frac{x^2}{n}} \le \left(1 + \frac{x^2}{n}\right)^{-1}$. Puisque $0 \le x \le \sqrt{n}$, il s'agit d'inégalités entre nombres positifs. La fonction $t \mapsto t^n$ étant croissante sur \mathbb{R}_+ :

$$0 \le x \le \sqrt{n} \implies \left(1 - \frac{x^2}{n}\right)^n \le e^{-x^2} \le \frac{1}{\left(1 + \frac{x^2}{n}\right)^n}.$$

3. (a) La fonction $t \mapsto \sqrt{n} \sin t$ est de classe C^1 sur $\left[0, \frac{\pi}{2}\right]$.

x	$\sqrt{n}\sin t$
$\mathrm{d}x$	$\sqrt{n}\cos t dt$
x = 0	t = 0
$x = \sqrt{n}$	$t = \frac{\pi}{2}$

Le changement de variable proposé conduit à

$$I_n = \int_0^{\frac{\pi}{2}} \left(1 - \sin^2 t\right)^n \sqrt{n} \cos t dt = \boxed{\sqrt{n}W_{2n+1}}.$$

(b) La fonction $t \mapsto \sqrt{n} \tan t$ est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{4}\right]$

	x	$\sqrt{n} \tan t$
1	$\mathrm{d}x$	$\frac{\sqrt{n}}{\cos^2 t} dt$
] .	x = 0	t = 0
	$x = \sqrt{n}$	$t = \frac{\pi}{4}$

4

Le changement de variable proposé conduit à

$$J_{n} = \int_{0}^{\frac{\pi}{4}} \frac{1}{(1 + \tan^{2} t)^{n}} \frac{\sqrt{n}}{\cos^{2} t} dt$$

$$= \int_{0}^{\frac{\pi}{4}} \sqrt{n} \cos^{2n-2} t dt$$

$$\leq \int_{0}^{\frac{\pi}{2}} \sqrt{n} \cos^{2n-2} t dt \quad \text{car } \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^{2n-2} t dt \geq 0$$

$$\leq \sqrt{n} W_{2n-2}.$$

(c) En intégrant les inégalités de 2)b) entre 0 et \sqrt{n} , la croissance de l'intégrale donne $\boxed{I_n \leq f\left(\sqrt{n}\right) \leq J_n}.$

Les deux questions précédentes donnent ensuite

$$\sqrt{n}W_{2n+1} \le f\left(\sqrt{n}\right) \le \sqrt{n}W_{2n-2}.$$

Or, en utilisant A 5,

$$\sqrt{n}W_{2n+1} = \sqrt{\frac{n}{2n+1}} \cdot \sqrt{2n+1}W_{2n+1} \longrightarrow \frac{1}{\sqrt{2}} \cdot \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2}.$$

$$\sqrt{n}W_{2n-2} = \sqrt{\frac{n}{2n-2}} \cdot \sqrt{2n-2}W_{2n-2} \longrightarrow \frac{1}{\sqrt{2}} \cdot \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2}.$$

On en déduit par encadrement que $f(\sqrt{n}) \longrightarrow \frac{\sqrt{\pi}}{2}$

Puisque $\lim_{n\to+\infty} f(\sqrt{n}) = \lim_{x\to+\infty} f(x)$, on conclut que

$$\lim_{x \to +\infty} f(x) = \frac{\sqrt{\pi}}{2}$$