Теортест-1 (Вариант 125)

Тема – определенный интеграл

Задача 1

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. du = v;
- 2. du = vdt;
- 3. dv = udt + C;
- 4. v = du + C;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна в точке a и f(b) = 1;
- 2. f непрерывна на [a,b] и f((a+b)/2)=1;
- 3. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 4. f(a) > 0, f(b) > 0;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;
- 2. первообразная дробно-рациональной функции выражается через элементарные функции;
- 3. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 4. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 4

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем A всегда неотрицателен;
- 2. объем $A \cup B$ равен сумме объемов A и B;
- 3. объем одной точки равен нулю;
- 4. $V(A) = V(A \cap B) + V(A \setminus B)$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;
- 2. $2 \int x f(x) dx = x^2 f'(x) \int x f'(x) dx$;
- 3. $\int f'(x)e^x dx = e^x f(x) \int f(x)e^x dx;$
- 4. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если функция $f \cdot g$ интегрируема на [a, b], то f и g тоже интегрируемы на [a, b];
- 2. Если $[c,d] \subset [a,b]$ и f интегрируема на [a,b], то f интегрируема и на [c,d];
- 3. Если f и g интегрируемы на [a,b], то f+g тоже интегрируема на [a,b];
- 4. Если f и g интегрируемы на [a, b], то $f \cdot g$ тоже интегрируема на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 7

Выберите все верные утверждения:

- 1. Длина кривой зависит от параметризации;
- 2. Спрямляемы только кусочно-гладкие кривые;
- 3. Гладкая кривая это кривая, все параметризации которой гладкие;

- 4. Длина замкнутой кривой равна нулю;
- 5. Длины противоположных путей равны;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [-1, 20];
- 2. [-2, 20];
- 3. [0, 10];
- 4. [-2, 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f \in R[a,b]$, $F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F дифференцируема на [a,b];
- 2. $\int_{a}^{b} f(x)dx = F(b) F(a);$
- 3. F не убывает на [a, b];
- 4. F непрерывна на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 10

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения верхняя сумма Дарбу увеличивается или не изменяется;
- 2. При измельчении разбиения верхняя сумма Дарбу уменьшается или не изменяется;
- 3. При измельчении разбиения верхняя сумма Дарбу увеличивается;
- 4. Верхняя сумма Дарбу является наибольшей из всех интегральных сумм для данного разбиения;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)