Framing Rules

Henry Blanchette

1 Definitions

Note: in this document "formula" refers to "precise formula," however gradual formulas will eventually be supported.

A **permission** is to either access a field, written access(e.f), or to assume a predicate holds of its arguments, written $assume(\alpha_C(\overline{e}))$.

A formula ϕ requires a permission π if ϕ contains an access or assumption that π premits. The set of all permissions that ϕ requires (the set of permissions required to frame ϕ) is called the requirements of ϕ .

A formula ϕ grants permission π if it contains an adjuct that yields π .

A set of permissions Π frames a formula ϕ if and only if ϕ requires only permissions contained in Π , written

$$\Pi \vDash_I \phi$$
.

The **footprint** of a formula ϕ is the smallest permission mask that frames ϕ , written

 $\lfloor \phi \rfloor$.

A formula ϕ is **self-framing** if and only if for any set of permissions ϕ , $\Pi \vDash_I \phi$, written

 $\vdash_{\mathsf{frm}I} \phi$.

2 Framing Algorithm

The following algorithm decides $\Pi \vDash_{I} \phi$ for a given set of permissions Π and formula ϕ .

```
\Pi \vDash_I \phi \iff \mathsf{match} \ \phi \ \mathsf{with} \ |
                                                                                                     \mapsto \top
                                                                                                    \mapsto \Pi \vDash_I e_1, e_2
                                              e_1 \oplus e_2
                                              e_1 \odot e_2
                                                                                                 \mapsto \Pi \vDash_I e_1, e_2
                                              e.o.f
                                                                                                 \mapsto \Pi \vDash_I e.o, o.f
                                                                                                    \mapsto access(e.o) \in \Pi
                                              result, id, old(id), this \mapsto \top
                                              n, o, \mathtt{null}, \mathtt{true}, \mathtt{false} \qquad \mapsto \quad \top
                                                                                                    \mapsto \Pi \vDash_I e
                                              acc(e.f)
                                                                                               \begin{array}{ll} \mapsto & \Pi \cup \mathsf{granted}(\phi_1) \cup \mathsf{granted}(\phi_2) \vDash_I \phi_1, \phi_2 \\ \mapsto & \Pi \vDash_I \overline{e} \end{array}
                                              \phi_1 \circledast \phi_2
                                              \alpha_C(\overline{e})
                                              if e then \phi_1 else \phi_2 \mapsto \Pi \vDash_I e, \phi_1, \phi_2
                                              unfolding \alpha_C(\overline{e}) in \phi \mapsto \operatorname{assume}(\alpha_C(\overline{e})) \in \Pi \wedge \Pi \vDash_I \overline{e}
```

The following algorithm produces the set of permissions granted by a given formula ϕ .

3 Self-Framing

The following algorithm decides $\vdash_{\mathsf{frm}I} \phi$ for a given formula ϕ .

$$\vdash_{\mathsf{frm}I} \phi \iff \varnothing \vDash_I \phi$$