0.1 幂等变换

定义 0.1 (幂等变换)

线性变换 φ 若满足 $\varphi^2 = \varphi$, 则称为**幂等变换**.

定义 0.2 (投影变换)

设 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$ 为线性空间 V 关于子空间 $V_i (1 \leq i \leq m)$ 的直和分解, 则 V 中任一向量 v 可唯一地分解为 $v = v_1 + v_2 + \cdots + v_m$, 其中 $v_i \in V_i$. 定义 $\varphi_i : V \to V, \varphi_i(v) = v_i (1 \leq i \leq m)$, 容易验证 $\varphi_i \not\in V$ 上的线性变换, 称为 V 到 V_i 上的**投影变换**.

命题 0.1 (投影变换的性质)

设 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$ 为线性空间V关于子空间 $V_i (1 \leq i \leq m)$ 的直和分解, φ_i 为V到 V_i 上的投影变换. 投影变换 φ_i 满足如下性质:

- (1) $\varphi_i^2 = \varphi_i, \varphi_i \varphi_j = \mathbf{0}(i \neq j), \mathbf{I}_V = \varphi_1 + \varphi_2 + \cdots + \varphi_m;$
- (2) $\operatorname{Im}\varphi_i = V_i, \operatorname{Ker}\varphi_i = \bigoplus_{j \neq i} V_j, V = \operatorname{Im}\varphi_i \oplus \operatorname{Ker}\varphi_i.$
- (3) 投影变换 φ_i 都是幂等变换;
- (4) 若取 V_i 的一组基拼成 V 的一组基,则 φ_i 在这组基下的表示矩阵为 diag $\{0, \dots, 0, 1, \dots, 1, 0, \dots, 0\}$, 其中有 dim V_i 个 1;
- (5) $V = \operatorname{Im}\varphi_1 \oplus \operatorname{Im}\varphi_2 \oplus \cdots \oplus \operatorname{Im}\varphi_m$;
- (6) $\operatorname{Ker}\varphi_1 \cap \operatorname{Ker}\varphi_2 \cap \cdots \cap \operatorname{Ker}\varphi_m = 0$.

证明

- (1) 证明是显然的.
- (2) 证明是显然的.
- (3) 由(1) 易得.
- (4) 由(2)易得.
- (5) 由 (2) 易知 $V = \operatorname{Im}\varphi_1 \oplus \operatorname{Im}\varphi_2 \oplus \cdots \oplus \operatorname{Im}\varphi_m$.
- (6) 任取 $\alpha \in \text{Ker}\varphi_1 \cap \text{Ker}\varphi_2 \cap \cdots \cap \text{Ker}\varphi_m$. 由投影变换性质 (2), 可知 $\text{Ker}\varphi_i = \bigoplus_{j \neq i} V_j$. 于是对任意整数 $i, j \in [1, m]$

且
$$i \neq j$$
, 有 $\alpha \in \operatorname{Ker} \varphi_i \cap \operatorname{Ker} \varphi_j = \bigoplus_{k \neq i} V_k \cap \bigoplus_{k \neq j} V_k$. 从而

$$\alpha = v_1 + \cdots + v_{i-1} + v_{i+1} + \cdots + v_m = u_1 + \cdots + u_{i-1} + u_{i+1} + \cdots + u_m$$

其中
$$v_k, u_k \in V_k$$
. 上式经整理可得 $v_j - u_i = \sum_{k \neq i,j} (u_k - v_k) \in \bigoplus_{k \neq i,j} V_k$. 又 $v_j - u_i \in V_i \oplus V_j$. 故 $v_j - u_i \in V_j$

$$(V_i \oplus V_j) \cap \bigoplus_{k \neq i,j} V_k$$
. 而由于 $V = \bigoplus_{k=1}^m V_k$, 因此 $(V_i \oplus V_j) \cap \bigoplus_{k \neq i,j} V_k = \mathbf{0}$. 故 $v_j - u_i = \mathbf{0}$, 从而 $v_j = u_i \in V_i \cap V_j$. 又因

为
$$V_i \oplus V_j$$
, 所以 $V_i \cap V_j = \mathbf{0}$. 故 $v_j = u_i = \mathbf{0}$. 再由 i, j 的任意性可知, $v_i = \mathbf{0}$, $i = 1, 2, \dots, m$. 因此 $\alpha = \sum_{k \neq i} v_k = \mathbf{0}$.

故 Ker φ_1 ∩ Ker φ_2 ∩ · · · ∩ Ker φ_m = **0**.

命题 0.2

设 φ 是n维线性空间V上的幂等变换,证明: $V = U \oplus W$,其中 $U = \operatorname{Im} \varphi = \operatorname{Ker} (I_V - \varphi), W = \operatorname{Im} (I_V - \varphi) = \operatorname{Ker} \varphi$, 且 φ 就是V到U上的投影变换.

1

笔记 注意到 φ 适合 $x^2 - x = x(x - 1)$, 从而由互素多项式诱导直和分解也可得到证明.

笔记 由上述命题可知n 维线性空间V 上的幂等变换 φ 也是V 到 $Im\varphi$ 上的投影变换. 于是由命题??和命题??可知,投影变换可以看作幂等变换,幂等变换也可以看作投影变换.(即幂等变换和投影变换等价)

证明 因为 $\varphi^2 = \varphi$, 故 $\operatorname{Im} \varphi \subseteq \operatorname{Ker} (I - \varphi), \operatorname{Im} (I - \varphi) \subseteq \operatorname{Ker} \varphi$. 对任意的 $\alpha \in V, \varphi(\alpha) \in \operatorname{Ker} (I - \varphi), (I - \varphi)(\alpha) \in \operatorname{Ker} \varphi$, 于是 $\alpha = (I - \varphi)(\alpha) + \varphi(\alpha) \in \operatorname{Ker} \varphi + \operatorname{Ker} (I - \varphi)$, 从而 $V = \operatorname{Ker} \varphi + \operatorname{Ker} (I - \varphi)$. 任取 $\beta \in \operatorname{Ker} \varphi \cap \operatorname{Ker} (I - \varphi)$, 则 $\beta = (I - \varphi)(\beta) + \varphi(\beta) = 0$, 即 $\operatorname{Ker} \varphi \cap \operatorname{Ker} (I - \varphi) = 0$. 因此, $V = \operatorname{Ker} \varphi \oplus \operatorname{Ker} (I - \varphi)$. 特别地, 由维数公式可得 $\operatorname{dim} \operatorname{Im} \varphi = \operatorname{dim} \operatorname{Ker} (I - \varphi), \operatorname{dim} \operatorname{Im} (I - \varphi) = \operatorname{dim} \operatorname{Ker} \varphi$, 从而 $\operatorname{Im} \varphi = \operatorname{Ker} (I - \varphi), \operatorname{Im} (I - \varphi) = \operatorname{Ker} \varphi$.

令 $U = \text{Im}\varphi = \text{Ker}(I - \varphi), W = \text{Im}(I - \varphi) = \text{Ker}\varphi$, 则 $V = U \oplus W$. 注意到对任意的 $\alpha \in V, \alpha = \varphi(\alpha) + (I - \varphi)(\alpha)$, 其中 $\varphi(\alpha) \in U, (I - \varphi)(\alpha) \in W$, 故 φ 就是 V 到 U 上的投影变换.

推论 0.1

对线性空间 V 上的幂等变换 φ , 总存在 V 的一组基 (它由 $Im\varphi$ 的基和 $Ker\varphi$ 的基拼成), 使得 φ 在这组基下的表示矩阵为下列对角矩阵:

$$\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$
,

其中 I_r 为 r 阶单位矩阵, r 等于 $\dim \operatorname{Im}\varphi$, 即 φ 的像空间的维数.

证明 由这个命题??和投影变换的性质容易证明.

命题 0.3

设 A 是数域 F 上的 n 阶幂等矩阵, 求证:

- (1) 存在 n 阶非异阵 P, 使得 $P^{-1}AP = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, 其中 r = r(A);
- $(2) r(\mathbf{A}) = tr(\mathbf{A}).$

证明 将 A 看成是 n 维列向量空间 \mathbb{F}^n 上 (由矩阵 A 乘法诱导) 的线性变换,则它是幂等变换,因此由推论??即得 (1).

注意到
$$\operatorname{tr}(A) = \operatorname{tr}(P^{-1}AP) = \operatorname{tr}\begin{pmatrix} I_r & O \\ O & O \end{pmatrix} = r = \operatorname{r}(A)$$
,故 (2) 也成立.

例题 0.1 设 A, B 是数域 \mathbb{F} 上的 n 阶幂等矩阵, 且 A 和 B 的秩相同, 求证: 必存在 \mathbb{F} 上的 n 阶可逆矩阵 C, 使得 CB = AC.

证明 由命题??可知,A 和 B 均相似于矩阵 $\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, 于是 A 和 B 相似, 即存在可逆矩阵 C, 使得 $B = C^{-1}AC$, 即 CB = AC.

命题 0.4

设 φ, ψ 是n维线性空间V上的幂等线性变换,求证:

- (1) $\text{Im}\varphi = \text{Im}\psi$ 的充要条件是 $\varphi\psi = \psi, \psi\varphi = \varphi$;
- (2) $Ker\varphi = Ker\psi$ 的充要条件是 $\varphi\psi = \varphi, \psi\varphi = \psi$.

🔮 笔记 也可由幂等变换等价于投影变换来给出直观的几何证明.

证明 (1) 由 $\psi = \varphi \psi$ 可得 $\text{Im} \psi \subseteq \text{Im} \varphi$. 同理由 $\varphi = \psi \varphi$ 可得 $\text{Im} \varphi \subseteq \text{Im} \psi$. 因此 $\text{Im} \varphi = \text{Im} \psi$.

反之, 若 $\operatorname{Im}\varphi = \operatorname{Im}\psi$, 则对任意的 $\alpha \in V, \psi(\alpha) \in \operatorname{Im}\psi = \operatorname{Im}\varphi$, 故存在 $\beta \in V$, 使得 $\psi(\alpha) = \varphi(\beta)$. 注意到 $\varphi^2 = \varphi$, 故 $\varphi\psi(\alpha) = \varphi^2(\beta) = \varphi(\beta) = \psi(\alpha)$, 于是 $\varphi\psi = \psi$. 同理可证 $\psi\varphi = \varphi$.

(2) 设 $\varphi \psi = \varphi, \psi \varphi = \psi$. 对任意的 $\alpha \in \text{Ker}\varphi$, 即 $\varphi(\alpha) = 0$, 有 $\psi(\alpha) = \psi \varphi(\alpha) = 0$, 即 $\alpha \in \text{Ker}\psi$, 于是 $\text{Ker}\varphi \subseteq \text{Ker}\psi$.

反之, 设 Ker φ = Ker ψ . 对任意的 $\alpha \in V$, 有 $\psi(\alpha - \psi(\alpha)) = \psi(\alpha) - \psi^2(\alpha) = \mathbf{0}$, 因此 $\alpha - \psi(\alpha) \in \text{Ker}\psi = \text{Ker}\varphi$, 从 而 $\varphi(\alpha - \psi(\alpha)) = \mathbf{0}$, 即 $\varphi(\alpha) = \varphi\psi(\alpha)$, 于是 $\varphi = \varphi\psi$. 同理可证 $\psi\varphi = \psi$.

命题 0.5

设 φ, ψ 是n维线性空间V上的幂等线性变换,求证:

- $(1) \varphi + \psi$ 是幂等变换的充要条件是 $\varphi \psi = \psi \varphi = 0$;
- $(2) \varphi \psi$ 是幂等变换的充要条件是 $\varphi \psi = \psi \varphi = \psi$.

笔记 也可由幂等变换等价于投影变换来给出直观的几何证明.

证明 充分性容易验证,下面证明必要性.

- (1) 若 $(\varphi + \psi)^2 = \varphi + \psi$, 则 $\varphi \psi + \psi \varphi = 0$, 即 $\varphi \psi = -\psi \varphi$. 将上式两边分别左乘及右乘 φ , 可得 $\varphi \psi \varphi = -\varphi \psi = -\psi \varphi$. 因此 $\varphi \psi = \psi \varphi = 0$.
- (2) 若 $(\varphi \psi)^2 = \varphi \psi$, 则 $\varphi \psi + \psi \varphi = 2\psi$. 将上式两边分别左乘及右乘 φ , 可得 $\varphi \psi \varphi = \varphi \psi = \psi \varphi$. 因此 $\varphi \psi = \psi \varphi = \psi$.

命题 0.6

设 $\varphi_1, \dots, \varphi_m$ 是 n 维线性空间 V 上的线性变换, 且适合条件:

$$\varphi_i^2 = \varphi_i, \ \varphi_i \varphi_j = 0 \ (i \neq j), \ \operatorname{Ker} \varphi_1 \cap \cdots \cap \operatorname{Ker} \varphi_m = 0.$$

求证: $V = \operatorname{Im}\varphi_1 \oplus \operatorname{Im}\varphi_2 \oplus \cdots \oplus \operatorname{Im}\varphi_m$.

证明 任取 $\alpha \in \text{Im}\varphi_i \cap (\sum_{j \neq i} \text{Im}\varphi_j)$, 设 $\alpha = \varphi_i(\beta)$, 其中 $\beta \in V$, 则 $\varphi_i(\alpha) = \varphi_i^2(\beta) = \varphi_i(\beta) = \alpha$. 又可设

$$\alpha = \varphi_1(\alpha_1) + \cdots + \varphi_{i-1}(\alpha_{i-1}) + \varphi_{i+1}(\alpha_{i+1}) + \cdots + \varphi_m(\alpha_m),$$

于是

$$\alpha = \varphi_i(\alpha) = \varphi_i(\varphi_1(\alpha_1) + \dots + \varphi_{i-1}(\alpha_{i-1}) + \varphi_{i+1}(\alpha_{i+1}) + \dots + \varphi_m(\alpha_m)) = 0.$$

因此 $\operatorname{Im}\varphi_i \cap (\sum_{i\neq i} \operatorname{Im}\varphi_j) = 0.$

对V中任一向量 α 以及任意的i.有

$$\varphi_i(\alpha - (\varphi_1(\alpha) + \dots + \varphi_m(\alpha))) = \varphi_i(\alpha) - \varphi_i^2(\alpha) = 0,$$

因此

$$\alpha - (\varphi_1(\alpha) + \dots + \varphi_m(\alpha)) \in \operatorname{Ker} \varphi_1 \cap \dots \cap \operatorname{Ker} \varphi_m = 0,$$

从而 $\alpha - (\varphi_1(\alpha) + \cdots + \varphi_m(\alpha)) = 0$,即 $\alpha = \varphi_1(\alpha) + \cdots + \varphi_m(\alpha)$,于是 $V = \operatorname{Im}\varphi_1 + \cdots + \operatorname{Im}\varphi_m$. 这就证明了 V 是 $\operatorname{Im}\varphi_1, \cdots, \operatorname{Im}\varphi_m$ 的直和.

设 $\varphi, \varphi_1, \dots, \varphi_m$ 是 n 维线性空间 V 上的线性变换, 满足: $\varphi^2 = \varphi$ 且 $\varphi = \varphi_1 + \varphi_2 + \dots + \varphi_m$. 求证: $\mathbf{r}(\varphi) = \mathbf{r}(\varphi_1) + \mathbf{r}(\varphi_2) + \dots + \mathbf{r}(\varphi_m)$ 成立的充要条件是 $\varphi_i^2 = \varphi_i, \varphi_i \varphi_i = 0$ ($i \neq j$).

\$

笔记 $r(\varphi) = r(\varphi_1) + r(\varphi_2) + \cdots + r(\varphi_m)$ 等价于 $\dim \operatorname{Im} \varphi = \dim \operatorname{Im} \varphi_1 + \dim \operatorname{Im} \varphi_2 + \cdots + \dim \operatorname{Im} \varphi_m$.

证明 证法一 (几何方法): 令 $V_0 = \operatorname{Im}\varphi_i$,则由 $\varphi = \varphi_1 + \varphi_2 + \cdots + \varphi_m$ 可得 $V_0 \subseteq V_1 + V_2 + \cdots + V_m$.

先证充分性. 由 $\varphi_i^2 = \varphi_i, \varphi_i \varphi_j = 0$ $(i \neq j)$ 可得 $\varphi_i = (\varphi_1 + \varphi_2 + \dots + \varphi_m)\varphi_i = \varphi \varphi_i$, 故 $V_i \subseteq V_0$, 从而 $V_0 = V_1 + V_2 + \dots + V_m$. 要证上述和为直和, 只要证明零向量表示唯一即可. 设

$$\mathbf{0} = \alpha_1 + \alpha_2 + \cdots + \alpha_m, \alpha_i = \varphi_i(\mathbf{v}_i) \in V_i (1 \leqslant i \leqslant m),$$

则 $\mathbf{0} = \varphi_i(\varphi_1(\mathbf{v}_1)) + \varphi_i(\varphi_2(\mathbf{v}_2)) + \dots + \varphi_i(\varphi_m(\mathbf{v}_m)) = \varphi_i^2(\mathbf{v}_i) = \varphi_i(\mathbf{v}_i) = \alpha_i$. 因此 $V_0 = V_1 \oplus V_2 \oplus \dots \oplus V_m$. 两边同取维数即得 $\mathbf{r}(\varphi) = \mathbf{r}(\varphi_1) + \mathbf{r}(\varphi_2) + \dots + \mathbf{r}(\varphi_m)$.

再证必要性. 由于 $V_0 \subseteq V_1 + V_2 + \cdots + V_m$, 于是

$$\dim V_0 \leq \dim(V_1 + V_2 + \dots + V_m) \leq \dim V_1 + \dim V_2 + \dots + \dim V_m$$

故由 $\mathbf{r}(\varphi) = \mathbf{r}(\varphi_1) + \mathbf{r}(\varphi_2) + \cdots + \mathbf{r}(\varphi_m)$ 可得 $\dim V_0 = \dim V_1 + \dim V_2 + \cdots + \dim V_m$, 从而上式中的不等号只能取等号. 由命题??及直和的充要条件可知, $V_1 + V_2 + \cdots + V_m$ 是直和,并且

$$V_0 = V_1 \oplus V_2 \oplus \cdots \oplus V_m$$
.

因为 $\operatorname{Im}\varphi_i = V_i \subseteq V_0 = \operatorname{Im}\varphi$, 故对 V 中任一向量 α , 存在 $\beta \in V$, 使得 $\varphi_i(\alpha) = \varphi(\beta)$, 从而

$$\varphi_i(\alpha) = \varphi(\beta) = \varphi^2(\beta) = (\varphi_1 + \varphi_2 + \dots + \varphi_m)\varphi(\beta)$$
$$= (\varphi_1 + \varphi_2 + \dots + \varphi_m)\varphi_i(\alpha)$$
$$= \varphi_1\varphi_i(\alpha) + \varphi_2\varphi_i(\alpha) + \dots + \varphi_m\varphi_i(\alpha).$$

由直和表示的唯一性可知

$$\varphi_i^2(\alpha) = \varphi_i(\alpha), \varphi_j \varphi_i(\alpha) = 0 \ (j \neq i),$$

于是 $\varphi_i^2 = \varphi_i, \varphi_i \varphi_j = 0 \ (i \neq j).$

证法二 (代数方法):把问题转换成代数的语言: 设 A, A_1, A_2, \cdots, A_m 是 n 阶矩阵, 满足 $A^2 = A$ 且 $A = A_1 + A_2 + \cdots + A_m$, 求证: $\mathbf{r}(A) = \mathbf{r}(A_1) + \mathbf{r}(A_2) + \cdots + \mathbf{r}(A_m)$ 成立的充要条件是 $A_i^2 = A_i, A_i, A_j = O$ ($i \neq j$).

先证充分性. 若 $A_i^2 = A_i$,则由命题??可知 $\mathbf{r}(A_i) = \mathbf{tr}(A_i)$,从而

$$r(A) = tr(A) = tr(A_1 + A_2 + \dots + A_m)$$

= $tr(A_1) + tr(A_2) + \dots + tr(A_m) = r(A_1) + r(A_2) + \dots + r(A_m)$.

再证必要性. 因为 A 是幂等矩阵, 故由命题??可得 $n = r(I_n - A) + r(A)$, 从而 $n = r(I_n - A) + r(A_1) + r(A_2) + \cdots + r(A_m)$. 构造如下分块对角矩阵并对其实施分块初等变换, 可得

$$\begin{pmatrix} I_{n} - A & & & \\ & A_{1} & & \\ & & A_{2} & & \\ & & & \ddots & \\ & & & & A_{m} \end{pmatrix} \rightarrow \begin{pmatrix} I_{n} & & & \\ A_{1} & A_{1} & & \\ A_{2} & A_{2} & & \\ \vdots & & \ddots & \\ A_{m} & & & A_{m} \end{pmatrix} \rightarrow \begin{pmatrix} I_{n} & & & & \\ A_{1} & A_{1} & & & \\ A_{m} & & & & A_{m} \end{pmatrix} \rightarrow \begin{pmatrix} I_{n} & O & O & \cdots & O \\ O & A_{1} - A_{1}^{2} & -A_{1}A_{2} & \cdots & -A_{1}A_{m} \\ O & -A_{2}A_{1} & A_{2} - A_{2}^{2} & \cdots & -A_{2}A_{m} \\ \vdots & \vdots & \vdots & & \vdots \\ O & -A_{m}A_{1} & -A_{m}A_{2} & \cdots & A_{m} - A_{m}^{2} \end{pmatrix}.$$

由 $n = r(I_n - A) + r(A_1) + r(A_2) + \cdots + r(A_m)$ 可得最后一个矩阵的右下角部分必为零矩阵, 从而 $A_i^2 = A_i, A_i A_j = O(i \neq j)$.

推论 0.2

若取 I_V 为 n 维线性空间 V 上的恒等变换, 并且此时线性变换 φ_i 满足 $\varphi_1+\varphi_2+\cdots+\varphi_m=I_n$. 如果下列条件之一成立:

- (1) $\dim V = \dim \operatorname{Im} \varphi_1 + \dim \operatorname{Im} \varphi_2 + \cdots + \dim \operatorname{Im} \varphi_m$;
- (2) $\varphi_i^2 = \varphi_i, \varphi_i \varphi_j = 0 \ (i \neq j),$

则 $V = \operatorname{Im} \varphi_1 \oplus \operatorname{Im} \varphi_2 \oplus \cdots \oplus \operatorname{Im} \varphi_m$, 并且 φ_i 就是 V 到 $\operatorname{Im} \varphi_i$ 上的投影变换.

证明 由命题??可知条件 (1)(2) 等价, 并且由命题??证法一的必要性证明过程可直接由条件 (1) 推出 $V = \text{Im}\varphi_1 \oplus \text{Im}\varphi_2 \oplus \cdots \oplus \text{Im}\varphi_m$ (直和的证明也可由条件 (2) 及投影变换的性质直接得到). 又因为幂等变换和投影变换等价, 故由条件 (2) 可直接得到 φ_i 就是 V 到 $\text{Im}\varphi_i$ 上的投影变换. 因此结论得证.