Livro: Introdução à Álgebra Linear Autores: Abramo Hefez

Cecília de Souza Fernandez

Capítulo 5: Transformações Lineares

Sumário		
1	O que são as Transformações Lineares?124	
2	Núcleo e Imagem	
	2.1	O Núcleo
	2.2	A Imagem
	2.3	O Teorema do Núcleo e da Imagem 134
3	Operações com Transformações Lineares144	

As funções naturais no contexto dos espaços vetorais, as chamadas de transformações lineares, formam uma classe muito especial de funções que têm muitas aplicações na Física, nas Engenharias e em vários ramos da Matemática.

1 O que são as Transformações Lineares?

As funções nas quais se está interessado na Álgebra Linear são as funções cujos domínios e contradomínios são espaços vetoriais e que, além disso, preservam as operações de adição de vetores e de multiplicação de um vetor por um escalar. Isto é o conteúdo da definição a seguir.

Sejam V e W espaços vetoriais. Uma $transformação\ linear\ de\ V\ em\ W$ é uma função $T\colon V\to W$ que possui as seguintes propriedades:

- (i) $T(v_1 + v_2) = T(v_1) + T(v_2)$, para quaisquer v_1 e v_2 em V;
- (ii) T(av) = aT(v), para quaisquer v em V e a em \mathbb{R} .

As propriedades (i) e (ii) são equivalentes à seguinte propriedade:

$$T(v_1 + av_2) = T(v_1) + aT(v_2), (1)$$

para quaisquer v_1 e v_2 em V e para qualquer a em \mathbb{R} .

É esta caracterização das transformações lineares que utilizaremos, por ser mais prática, para mostrar que determinada função entre espaços vetoriais é uma transformação linear.

Mostra-se por indução (veja Problema 1.1) que uma função $T: V \to W$ é uma transformação linear se, e somente se, para todos $v_1, \ldots, v_r \in V$ e todos $a_1, \ldots, a_r \in \mathbb{R}$, tem-se que

$$T(a_1v_1 + \dots + a_rv_r) = a_1T(v_1) + \dots + a_rT(v_r).$$
 (2)

Vejamos a seguir alguns exemplos.

Exemplo 1. A função $T: \mathbb{R}^2 \to \mathbb{R}$, dada por T(x,y) = x + y, é uma transformação linear.

De fato, se
$$v_1 = (x_1, y_1) \in \mathbb{R}^2$$
, $v_2 = (x_2, y_2) \in \mathbb{R}^2$ e $a \in \mathbb{R}$, temos que
$$T(v_1 + av_2) = T(x_1 + ax_2, y_1 + ay_2)$$
$$= x_1 + ax_2 + y_1 + ay_2$$
$$= (x_1 + y_1) + a(x_2 + y_2)$$
$$= T(v_1) + aT(v_2).$$

Portanto, T é uma transformação linear de \mathbb{R}^2 em \mathbb{R} .

Exemplo 2. A função $T: \mathbb{R}^3 \to \mathbb{R}^2$, dada por T(x, y, z) = (x - y, y - z), é uma transformação linear.

De fato, se $v_1 = (x_1, y_1, z_1) \in \mathbb{R}^3$, $v_2 = (x_2, y_2, z_2) \in \mathbb{R}^3$ e $a \in \mathbb{R}$, então

$$T(v_1 + av_2) = T(x_1 + ax_2, y_1 + ay_2, z_1 + az_2)$$

$$= (x_1 + ax_2 - (y_1 + ay_2), y_1 + ay_2 - (z_1 + az_2))$$

$$= ((x_1 - y_1) + a(x_2 - y_2), (y_1 - z_1) + a(y_2 - z_2))$$

$$= (x_1 - y_1, y_1 - z_1) + a(x_2 - y_2, y_2 - z_2)$$

$$= T(v_1) + aT(v_2),$$

mostrando que T é uma transformação linear de \mathbb{R}^3 em $\mathbb{R}^2.$

Exemplo 3. A função $T: \mathbb{R} \to \mathbb{R}$, dada por T(x) = 5x, é uma transformação linear.

De fato, se $x_1, x_2, a \in \mathbb{R}$, temos que

$$T(x_1 + ax_2) = 5(x_1 + ax_2) = 5x_1 + a5x_2 = T(x_1) + aT(x_2).$$

Portanto, T é uma transformação linear de \mathbb{R} em \mathbb{R} .

Na realidade, toda transformação linear de \mathbb{R} em \mathbb{R} é da forma $T(x) = c \cdot x$, $x \in \mathbb{R}$, onde c é uma constante real; e reciprocamente (veja Problema 1.2).

Exemplo 4. A função $T\colon \mathbb{R}^2\to \mathbb{R}^3$, dada por T(x,y)=(0,0,0), é uma transformação linear.

De fato, dados v_1 e v_2 em \mathbb{R}^2 e dado $a \in \mathbb{R}$, tem-se que

$$T(v_1 + av_2) = (0, 0, 0) = (0, 0, 0) + a(0, 0, 0) = T(v_1) + aT(v_2),$$

mostrando que T é uma transformação linear.

Mais geralmente, se V e W são espaços vetoriais, a função $T\colon V\to W$, dada por $T(v)=0,\ v\in V$, é uma transformação linear, chamada $transformação\ nula$. A transformação nula de V em W será também denotada por 0.

Exemplo 5. A função $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ dada por $T(x,y) = (x^2,y)$ não é uma transformação linear.

Com efeito, se tomarmos $v_1 = (1,0)$ e $v_2 = (-1,0)$, então

$$T(v_1 + v_2) = (0,0) \neq (2,0) = T(v_1) + T(v_2).$$

Exemplo 6. Seja f(x) um polinômio arbitrariamente fixado em $\mathbb{R}[x]$. A função $T \colon \mathbb{R}[x] \to \mathbb{R}[x]$, dada por T(p(x)) = p(f(x)), é uma transformação linear.

De fato, se $p_1(x), p_2(x) \in \mathbb{R}[x]$ e $a \in \mathbb{R}$, temos que

$$T(p_1(x) + ap_2(x)) = p_1(f(x)) + ap_2(f(x)) = T(p_1(x)) + aT(p_2(x)),$$

mostrando que T é uma transformação linear.

Exemplo 7. Uma função $T: \mathbb{R}^n \to \mathbb{R}^m$ é uma transformação linear se, e somente se, existem números reais a_{ij} , com $1 \le i \le m$ e $1 \le j \le n$, tais que

$$T(x_1, \ldots, x_n) = (a_{11}x_1 + \cdots + a_{1n}x_n, \ldots, a_{m1}x_1 + \cdots + a_{mn}x_n),$$

fazendo jus ao adjetivo linear associado à palavra transformação. Para a demonstração deste resultado, veja Problema 1.3.

Como a maioria dos resultados a seguir é evidente para espaços vetoriais nulos, vamos sempre considerar o domínio e o contradomínio de uma transformação linear como espaços vetoriais não nulos.

Como consequência da propriedade (1), temos que uma transformação linear $T\colon V\to W$ transforma o vetor nulo de V no vetor nulo de W, ou seja, T(0)=0. De fato,

$$0 = T(0) - T(0) = T(0) + (-1)T(0) = T(1 \cdot 0 - 1 \cdot 0) = T(0).$$

Porém, o fato de uma função T ter como domínio e contradomínio espaços vetoriais e satisfazer T(0) = 0 não implica que ela seja uma transformação linear, como mostra o Exemplo 5.

Uma propriedade importante de uma transformação linear é que ela fica totalmente determinada se conhecermos seus valores nos vetores de uma base de seu domínio. Mais precisamente, temos o resultado a seguir.

Teorema 5.1.1. Seja $\alpha = \{v_1, v_2, \dots, v_n\}$ uma base de um espaço vetorial V. Sejam w_1, w_2, \dots, w_n vetores de um espaço vetorial W. Então existe uma única transformação linear $T: V \to W$ tal que $T(v_j) = w_j$ para todo $1 \le j \le n$.

Demonstração Tomemos $v \in V$. Como α é uma base de V, v se escreve de modo único como uma combinação linear dos vetores de α , digamos

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n. \tag{3}$$

Defina $T \colon V \to W$ por

$$T(v) = a_1 w_1 + a_2 w_2 + \dots + a_n w_n. \tag{4}$$

A função T está bem definida, pois os números reais a_1, a_2, \ldots, a_n são unicamente determinados a partir de v. Além disso, T é uma transformação linear. De fato, tomemos a em \mathbb{R} e w em V. Suponhamos que $w=b_1v_1+b_2v_2+\cdots+b_nv_n$. Como

$$v + aw = (a_1 + ab_1)v_1 + (a_2 + ab_2)v_2 + \dots + (a_n + ab_n)v_n,$$

segue que

$$T(v + aw) = (a_1 + ab_1)w_1 + (a_2 + ab_2)w_2 + \dots + (a_n + ab_n)w_n$$

= $(a_1w_1 + a_2w_2 + \dots + a_nw_n) + a(b_1w_1 + b_2w_2 + \dots + b_nw_n)$
= $T(v) + aT(w)$.

Para mostrar que $T(v_j) = w_j$, fixe j, onde $1 \le j \le n$. Como

$$v_j = 0v_1 + \dots + 1v_j + \dots + 0v_n,$$

segue de (4) que

$$T(v_j) = 0w_1 + \dots + 1w_j + \dots + 0w_n = w_j.$$

Vejamos agora que T é a única função com as propriedades desejadas. Para isto, suponhamos que $S: V \to W$ seja uma transformação linear tal que $S(v_j) = w_j$ para todo j, com $1 \le j \le n$. Tomemos $v \in V$. Por (3) e pela linearidade de S (propriedade (2)), temos que

$$S(v) = a_1 S(v_1) + a_2 S(v_2) + \dots + a_n S(v_n).$$

Como $S(v_j) = w_j$ para todo $1 \le j \le n$, obtemos

$$S(v) = a_1 w_1 + a_2 w_2 + \dots + a_n w_n = T(v).$$

Como $v \in V$ foi tomado de modo arbitrário, segue que S = T.

Exemplo 8. Para determinarmos a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,1) = (0,2,1) e T(0,2) = (1,0,1) devemos, pelo Teorema 5.1.1, verificar que $\alpha = \{(1,1),(0,2)\}$ é uma base de \mathbb{R}^2 e calcular as coordenadas de um vetor de \mathbb{R}^2 na base α . Ora, como α é linearmente independente e dim $\mathbb{R}^2 = 2$, temos que α é uma base de \mathbb{R}^2 . Além disso, se $(x,y) \in \mathbb{R}^2$, então

$$(x,y) = a_1(1,1) + a_2(0,2)$$

se, e somente se, $a_1 = x$ e $a_2 = \frac{y - x}{2}$. Portanto,

$$T(x,y) = xT(1,1) + \left(\frac{y-x}{2}\right)T(0,2)$$

$$= x(0,2,1) + \left(\frac{y-x}{2}\right)(1,0,1)$$

$$= \left(\frac{y-x}{2}, 2x, \frac{x+y}{2}\right).$$

Problemas

129

1.1 Sejam V e W dois espaços vetoriais e $T\colon V\to W$ uma função. Prove que as seguintes afirmações são equivalentes:

(a) T(u+v) = T(u) + T(v) e T(av) = aT(v), para quaisquer u e v em V e qualquer a em \mathbb{R} ;

(b) T(u+av) = T(u) + aT(v), para quaisquer u e v em V e qualquer a em \mathbb{R} :

(c) $T(a_1v_1 + \cdots + a_rv_r) = a_1T(v_1) + \cdots + a_rT(v_r)$, para quaisquer v_1, \ldots, v_r em V e quaisquer a_1, \ldots, a_r em \mathbb{R} .

1.2 Mostre que $T: \mathbb{R} \to \mathbb{R}$ é uma transformação linear se, e somente se, existe $c \in \mathbb{R}$ tal que T(x) = cx, para todo $x \in \mathbb{R}$.

1.3 Seja $T: \mathbb{R}^n \to \mathbb{R}^m$ uma função. Mostre que T é uma transformação linear se, e somente se, existem números reais a_{ij} , com $1 \le i \le m$ e $1 \le j \le n$, tais que

$$T(x_1,\ldots,x_n)=(a_{11}x_1+\cdots+a_{1n}x_n,\ldots,a_{m1}x_1+\cdots+a_{mn}x_n).$$

Sugestão Para mostrar que T é da forma desejada, escreva $(x_1, \ldots, x_n) = x_1e_1 + \cdots + x_ne_n$, onde e_1, \ldots, e_n é a base canônica de \mathbb{R}^n . Ponha $T(e_i) = (a_{1i}, \ldots, a_{mi})$ e use a igualdade (2). A recíproca é uma verificação fácil.

1.4* Considere $V = \mathcal{M}(n, n)$ e seja B em V. Defina a função $T: V \to V$ por T(A) = AB + BA para toda matriz A em V. Mostre que T é uma transformação linear.

1.5 Mostre que a função $T: \mathcal{M}(m,n) \to \mathcal{M}(n,m)$, definida por $T(A) = A^t$, é uma transformação linear.

1.6 Dada uma transformação linear T tal que T(u) = 2u e T(v) = u + v, calcule em função de u e v:

(a) T(u+v); (b) T(3v); (c) T(-3u); (d) T(u-5v).

1.7 Quais das funções abaixo são transformações lineares? Justifique as respostas dadas.

(a) $T: \mathbb{R}^3 \to \mathbb{R}^3$, onde T(x, y, z) = (x + y, x - z, 0).

(b) $T: \mathbb{R}^2 \to \mathbb{R}^3$, onde $T(x, y) = (x^2, x, y)$.

(c)
$$T: \mathbb{R}^2 \to \mathcal{M}(2,2)$$
, onde $T(x,y) = \begin{bmatrix} 2x & x-y \\ x+y & 2y \end{bmatrix}$.

- (d) $T: \mathbb{R}^2 \to \mathbb{R}$, onde T(x, y) = xy.
- (e) $T: \mathbb{R}[x]_2 \to \mathbb{R}[x]_2$, onde $T(ax+b) = ax^2 + bx$.
- (f) $T: \mathbb{R}[x]_d \to \mathbb{R}[x]_d$, onde T(x) = x + a, com $a \in \mathbb{R}$.
- **1.8** Determine n e m e a transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ tal que:
- (a) T(1,2) = (3,1,1) e T(1,1) = (1,-1,0);
- (b) $T(1,1,1) = (2,-1,4), T(1,1,0) = (3,0,1) \in T(1,0,0) = (-1,5,1).$
- **1.9** Sejam $\{v_1, v_2, \ldots, v_n\}$ uma base de um espaço vetorial V e $T: V \to W$ uma transformação linear. Mostre que $T(v_1) = T(v_2) = \cdots = T(v_n) = 0$ se, e somente se T é a transformação nula.

2 Núcleo e Imagem

O núcleo e a imagem de uma transformação linear são dois subespaços de seu domínio e de seu contradomínio, respectivamente, que nos fornecem informações valiosas sobre a transformação. Há uma relação importante entre as dimensões do domínio, do núcleo e da imagem de uma transformação linear, que apresentaremos nesta seção e que possui muitas aplicações.

2.1 O Núcleo

Seja $T: V \to W$ uma transformação linear. O núcleo de T, denotado por Ker T, é o conjunto de vetores de V que são levados por T no vetor nulo de W, ou seja,

$$Ker T = \{ v \in V ; T(v) = 0 \}.$$

Note que Ker T é um subconjunto não vazio de V, já que T(0) = 0. Mais ainda, Ker T é um subconjunto de V. De fato, se $v_1, v_2 \in \text{Ker } T$ e se $a \in \mathbb{R}$,

131

então $v_1 + av_2 \in \operatorname{Ker} T$, pois

$$T(v_1 + av_2) = T(v_1) + aT(v_2) = 0 + a \cdot 0 = 0.$$

O seguinte exemplo ilustra o fato de que a determinação do núcleo de uma transformação linear, entre espaços vetoriais de dimensão finita, recai na determinação do conjunto solução de um sistema de equações lineares homogêneo.

Exemplo 1. Seja $T: \mathbb{R}^4 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, s, t) = (x - y + s + t, x + 2s - t, x + y + 3s - 3t).$$

Para determinarmos Ker T, devemos obter o conjunto de vetores (x, y, s, t) em \mathbb{R}^4 tais que

$$T(x, y, s, t) = (x - y + s + t, x + 2s - t, x + y + 3s - 3t) = (0, 0, 0).$$

Equivalentemente, $\operatorname{Ker} T$ é o conjunto solução do seguinte sistema linear homogêneo:

$$\begin{cases} x - y + s + t = 0 \\ x + 2s - t = 0 \\ x + y + 3s - 3t = 0 \end{cases}$$

Resolvendo o sistema acima, obtemos

$$\operatorname{Ker} T = \{(-2s + t, -s + 2t, s, t); \ s, t \in \mathbb{R}\}.$$

Note que Ker T é um subespaço vetorial de \mathbb{R}^4 de dimensão 2.

Inversamente, o conjunto solução de um sistema de equações lineares homogêneo AX=0, onde $A=[a_{ij}]$, pode ser interpretado como o núcleo de uma transformação linear. Mais precisamente, é o núcleo da transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$,

$$T(x_1, \ldots, x_n) = (a_{11}x_1 + \cdots + a_{1n}x_n, \ldots, a_{m1}x_1 + \cdots + a_{mn}x_n).$$

Se uma transformação linear T é injetiva, então a equação T(v) = 0 só possui a solução v = 0. De fato, sendo T injetiva e como T(0) = 0, tem-se que T(v) = 0 = T(0) implica que v = 0. Fato curioso, é que vale também a recíproca desta propriedade, como mostraremos a seguir.

Proposição 5.2.1. Seja $T: V \to W$ uma transformação linear. Temos que T é injetiva se, e somente se, $\operatorname{Ker} T = \{0\}$.

Demonstração A implicação direta foi provada no comentário acima. Suponhamos agora que Ker $T = \{0\}$. Tomemos u e v vetores em V. Se T(u) = T(v), então T(u) - T(v) = 0. Equivalentemente, T(u - v) = 0. Assim, $u - v \in \text{Ker } T$. Como Ker $T = \{0\}$, segue-se que u - v = 0, logo u = v, mostrando a injetividade de T.

Por exemplo, a transformação linear do Exemplo 1 não é injetiva, pois $\text{Ker } T \neq \{(0,0,0,0)\}$. Já a transformação linear dada por T(x,y)=(x-y,x+y), $(x,y) \in \mathbb{R}^2$, é injetiva, pois $\text{Ker } T = \{(0,0)\}$.

2.2 A Imagem

A imagem de T de uma transformação linear $T\colon V\to W$ é o conjunto $\operatorname{Im} T=T(V)$. Como T(0)=0, temos que $0\in\operatorname{Im} T$, logo ele é um subconjunto não vazio de W. Deixaremos como exercício para o leitor verificar que, de fato, $\operatorname{Im} T$ é um subespaço vetorial de W (veja Problema 2.1). A seguinte proposição mostra como podemos determinar geradores para a imagem de uma transformação linear.

Proposição 5.2.2. Seja $T: V \to W$ uma transformação linear. Se $\{v_1, \ldots, v_n\}$ é um conjunto de geradores de V, então $\{T(v_1), \ldots, T(v_n)\}$ é um conjunto de geradores de $Im\ T$. Em particular, $\dim Im\ T \leq \dim V$.

Demonstração Seja $w \in \text{Im } T$ e tomemos $v \in V$ tal que T(v) = w. Como $\{v_1, \ldots, v_n\}$ gera V, v é uma combinação linear de v_1, \ldots, v_n , digamos,

$$v = a_1 v_1 + \dots + a_n v_n.$$

133

Pela linearidade de T (cf. (2) da Seção 1), temos que

$$w = T(v) = a_1 T(v_1) + \dots + a_n T(v_n),$$

ou seja, w é uma combinação linear de $T(v_1),\ldots,T(v_n)$. Como w é arbitrário em $\operatorname{Im} T$, segue que $\operatorname{Im} T=G(T(v_1),\ldots,T(v_n))$.

Exemplo 2. Calculemos a imagem da transformação linear apresentada no Exemplo 1.

Pela Proposição 5.2.2, devemos determinar o espaço gerado pela imagem de um conjunto de geradores de \mathbb{R}^4 . Vamos calcular, então, o espaço gerado por

$$T(1,0,0,0) = (1,1,1),$$
 $T(0,1,0,0) = (-1,0,1),$
 $T(0,0,1,0) = (1,2,3)$ e $T(0,0,0,1) = (1,-1,-3).$

Pelo Teorema 3.4.1, basta reduzir a matriz

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -3 \end{bmatrix}$$

à forma escalonada. Ora,

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -3 \end{bmatrix} \xrightarrow{L_2 \to L_2 + L_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ L_3 \to L_3 - L_1 \\ L_4 \to L_4 - L_1 \end{bmatrix} \xrightarrow{L_3 \to L_3 - L_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ L_3 \to L_3 - L_2 \\ L_4 \to L_4 + 2L_2 \end{bmatrix} \xrightarrow{L_3 \to L_3 - L_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Assim, $\{(1,1,1),(0,1,2)\}$ é uma base de $\operatorname{Im} T,$ ou seja,

Im
$$T = \{(x, x + y, x + 2y); x, y \in \mathbb{R}\}.$$

2.3 O Teorema do Núcleo e da Imagem

O seguinte resultado é um teorema importante que relaciona a dimensão do núcleo à dimensão da imagem de uma transformação linear $T\colon V\to W,$ quando V tem dimensão finita.

Teorema 5.2.3. (Teorema do Núcleo e da Imagem) $Seja \ T: V \to W$ uma transformação linear, onde V tem dimensão finita. Então

$$\dim \operatorname{Ker} T + \dim \operatorname{Im} T = \dim V. \tag{1}$$

Demonstração Suponhamos que dim V = n. Seja $\alpha = \{u_1, u_2, \dots, u_m\}$ uma base de Ker T. Como qualquer conjunto linearmente independente de vetores em V tem no máximo n vetores (Teorema 3.3.3), segue que $m \leq n$. Vamos considerar dois casos:

Caso 1. m = n.

Neste caso, dim Ker $T=\dim V$ e, consequentemente, pelo Teorema 3.3.6, Ker T=V. Isto implica que Im $T=\{0\}$, portanto, dim Im T=0, mostrando que a fórmula (1) é válida.

Caso 2. m < n.

Pelo Teorema 3.3.5, podemos completar α de modo a obtermos uma base β de V, digamos $\beta = \{u_1, u_2, \ldots, u_m, v_{m+1}, \ldots, v_n\}$. Note que a fórmula (1) é verificada se provarmos que $\{T(v_{m+1}), \ldots, T(v_n)\}$ é uma base de Im T. Pela Proposição 5.2.2, temos que Im $T = G(T(v_{m+1}), \ldots, T(v_n))$. Para provarmos que esses vetores são linearmente independentes, consideremos a equação

$$b_{m+1}T(v_{m+1}) + \dots + b_nT(v_n) = 0,$$

que equivale a termos

$$b_{m+1}v_{m+1} + \cdots + b_nv_n \in \operatorname{Ker} T.$$

Como α é uma base de Ker T, existem b_1, b_2, \ldots, b_m em \mathbb{R} tais que

$$b_{m+1}v_{m+1} + \cdots + b_nv_n = b_1u_1 + b_2u_2 + \cdots + b_mu_m$$

ou seja,

$$b_1u_1 + b_2u_2 + \dots + b_mu_m - b_{m+1}v_{m+1} - \dots - b_nv_n = 0.$$

Sendo β uma base de V, a equação anterior se verifica somente se todos os coeficientes da combinação linear são iguais a zero. Em particular, $b_{m+1} = \cdots = b_n = 0$.

Em geral, para mostrarmos que uma função é bijetiva, devemos mostrar que ela é injetiva e sobrejetiva. No entanto, se a função é uma transformação linear entre espaços vetoriais de mesma dimensão finita, então, exatamente como no caso de funções entre conjuntos finitos de mesma cardinalidade, basta verificar que ela ou é injetiva ou é sobrejetiva; a outra condição é automaticamente satisfeita. Provaremos este fato a seguir com o auxílio do teorema do núcleo e da imagem. Note que esse resultado não é consequência do resultado para funções entre conjuntos finitos, pois um espaço vetorial sobre \mathbb{R} , quando não nulo, é um conjunto infinito.

Proposição 5.2.4. Seja $T: V \to W$ uma transformação linear entre espaços vetoriais de dimensão finita. Se dim $V = \dim W$, então as seguintes afirmações são equivalentes:

- (i) T é injetiva;
- (ii) T é sobrejetiva.

Demonstração Pelo Teorema do Núcleo e da Imagem,

$$\dim \operatorname{Ker} T + \dim \operatorname{Im} T = \dim V.$$

Sendo $\dim V = \dim W$, podemos escrever a igualdade acima como

$$\dim \operatorname{Ker} T + \dim \operatorname{Im} T = \dim W. \tag{2}$$

Suponhamos que T seja injetiva. Pela Proposição 5.2.1, $\operatorname{Ker} T = \{0\}$ e, consequentemente, $\operatorname{dim} \operatorname{Ker} T = 0$. Segue então, de (2), que $\operatorname{dim} \operatorname{Im} T =$

 $\dim W,$ mostrando que T é sobrejetiva, já que, pelo Teorema 3.3.6, $\operatorname{Im} T = W.$

Suponhamos agora que T seja sobrejetiva, ou seja, $\operatorname{Im} T = W$. Esses dois espaços têm mesma dimensão, portanto, de (2) temos que dim $\operatorname{Ker} T = 0$, o que garante que $\operatorname{Ker} T = \{0\}$. Pela Proposição 5.2.1, segue que T é injetiva.

Exemplo 3. Verifiquemos que a transformação linear $T: \mathcal{M}(2,2) \to \mathbb{R}^4$, dada por

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b, b+c, c, a+b+d)$$

é uma função bijetiva.

Ora, como dim $\mathcal{M}(2,2)=\dim\mathbb{R}^4$, segue, da Proposição 5.2.4, que basta verificarmos que T é uma função injetiva.

Como a igualdade

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (0, 0, 0, 0)$$

só ocorre quando a=b=c=d=0, temos que Ker $T=\{0\}$. Pela Proposição 5.2.1, T é injetiva.

Observamos que a condição dim $V=\dim W$, na Proposição 5.2.4, é necessária. De fato, consideremos a transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x,y,z)=(x,y). Temos que T é sobrejetiva, mas $n\tilde{a}o$ é injetiva. Já a transformação linear $T\colon \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x,y)=(x,y,0) é injetiva, mas $n\tilde{a}o$ é sobrejetiva.

Seja $T: V \to W$ uma transformação linear bijetiva. Logo, existe a função inversa $T^{-1}: W \to V$ de T. A função T^{-1} é também uma transformação linear. Com efeito, consideremos w_1 e w_2 em W e a em \mathbb{R} . Como T é bijetiva, existem únicos vetores v_1 e v_2 em V tais que $T(v_1) = w_1$ e $T(v_2) = w_2$.

Portanto,

$$T^{-1}(w_1 + aw_2) = T^{-1}(T(v_1) + aT(v_2))$$

$$= T^{-1}(T(v_1 + av_2))$$

$$= v_1 + av_2$$

$$= T^{-1}(w_1) + aT^{-1}(w_2).$$

Uma transformação linear bijetiva é chamada *isomorfismo*. Dois espaços vetoriais que possuem um isomorfismo entre eles serão ditos *isomorfos*, o que, em grego, significa que possuem mesma forma. Os isomorfismos desempenham um papel importante na Álgebra Linear.

Por exemplo, \mathbb{R}^4 e $\mathcal{M}(2,2)$ são espaços vetoriais isomorfos, pois a função $T \colon \mathbb{R}^4 \to \mathcal{M}(2,2)$ dada por

$$T(x, y, z, t) = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$$

é um isomorfismo.

Pelo Teorema 5.2.3, segue que se dois espaços vetoriais de dimensão finita são isomorfos, então eles têm a mesma dimensão. O próximo resultado mostra que a recíproca desta afirmação é também verdadeira, ou seja, espaços vetoriais de mesma dimensão finita são isomorfos.

Teorema 5.2.5. Se V e W são espaços vetoriais de dimensão n, então V e W são isomorfos.

Demonstração Para provarmos que V e W são isomorfos, devemos mostrar que existe uma transformação linear bijetiva de V em W. Para isto, tomemos $\alpha = \{v_1, \ldots, v_n\}$ e $\beta = \{w_1, \ldots, w_n\}$ bases de V e W, respectivamente. Dado $v \in V$, podemos escrever de modo único

$$v = a_1v_1 + \cdots + a_nv_n$$

 $com a_1, \ldots, a_n \in \mathbb{R}.$

Defina, então, $T: V \to W$ por $T(v) = a_1w_1 + \cdots + a_nw_n$. Pela demonstração do Teorema 5.1.1, T está bem definida e, além disso, T é uma transformação linear.

Para provarmos que T é bijetiva basta provarmos, pela Proposição 5.2.4, que T é injetiva. Ora, se $v=a_1v_1+\cdots+a_nv_n$ e

$$0 = T(v) = a_1 w_1 + \dots + a_n w_n,$$

segue-se que $a_1 = \cdots = a_n = 0$, pois $\{w_1, \ldots, w_n\}$ é uma base de W. Logo, v = 0, mostrando que Ker $T = \{0\}$.

Dois espaços vetoriais V e W isomorfos são essencialmente o "mesmo espaço vetorial", exceto que seus elementos e suas operações de adição e de multiplicação por escalar são escritas diferentemente. Assim, qualquer propriedade de V que dependa apenas de sua estrutura de espaço vetorial permanece válida em W, e vice-versa. Por exemplo, se $T: V \to W$ é um isomorfismo de V em W, então $\{T(v_1), \ldots, T(v_n)\}$ é uma base de W se, e somente se, $\{v_1, \ldots, v_n\}$ é uma base de V (veja Problema 2.4).

Exemplo 4. Seja W o subespaço de $\mathcal{M}(2,2)$ gerado por

$$M_1 = \begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, \ M_2 = \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}, \ M_3 = \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix} \ e \ M_4 = \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix}.$$

Vamos encontrar uma base e a dimensão de W.

Para encontrarmos uma base e a dimensão de W não usaremos a definição de espaço gerado. Em vez disso, usaremos a noção de espaço linha, que nos auxilia a exibir uma base de subespaços de \mathbb{R}^n e, consequentemente, de espaços vetoriais isomorfos a subespaços de \mathbb{R}^n .

Ora, como $T(x, y, t, z) = \begin{bmatrix} x & y \\ t & z \end{bmatrix}$ é um isomorfismo de \mathbb{R}^4 em $\mathcal{M}(2, 2)$, temos que W é isomorfo ao espaço $G(v_1, v_2, v_3, v_4)$, onde $v_1 = (1, -5, -4, 2)$, $v_2 = (1, 1, -1, 5)$, $v_3 = (2, -4, -5, 7)$ e $v_4 = (1, -7, -5, 1)$. Temos que a

139

matriz

$$\begin{bmatrix} 1 & -5 & -4 & 2 \\ 1 & 1 & -1 & 5 \\ 2 & -4 & -5 & 7 \\ 1 & -7 & -5 & 1 \end{bmatrix}$$

se reduz, pelas transformações elementares, à matriz

$$\begin{bmatrix} 1 & 3 & 0 & 6 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Assim, $\alpha = \{(1,3,0,6),(0,2,1,1)\}$ é uma base de $G(v_1,v_2,v_3,v_4)$ e, consequentemente, $\alpha' = \left\{\begin{bmatrix} 1 & 3 \\ 0 & 6 \end{bmatrix},\begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}\right\}$ é uma base de W, mostrando que dim W=2.

Note que, como consequência do Teorema 5.2.5, temos que $todo \ espaço \ vetorial \ não \ nulo \ de \ dimensão finita \ n \ é isomorfo \ ao <math>\mathbb{R}^n$. Dessa forma, o estudo de espaços vetoriais de dimensão finita pode se reduzir ao estudo dos espaços \mathbb{R}^n , mediante a escolha de algum isomorfismo. Assim, dado um problema em um espaço vetorial de dimensão finita n, reescrevemos o problema para \mathbb{R}^n , usando um isomorfismo, e o resolvemos neste contexto. Com o isomorfismo utilizado, voltamos ao contexto original. Essa técnica foi ilustrada no Exemplo 4. Um outro exemplo pode ser visto no Problema 2.6, bem como no exemplo a seguir, em que são aplicados os conceitos de espaço vetorial, base e dimensão, de modo a obter resultados não triviais.

Exemplo 5. Consideremos a recorrência $\mathcal{R}(1,1)$, definida por

$$u_{n+1} = u_n + u_{n-1}, \quad n \ge 2.$$

Vimos no Exemplo 2 da Seção 1, do Capítulo 1 e no Exemplo 5 da Seção 1, do Capítulo 3, que as sequências reais que satisfazem a esta recorrência formam um espaço vetorial.

Observe que todo elemento (u_n) de $\mathcal{R}(1,1)$ fica totalmente determinado se soubermos os valores de u_1 e u_2 . Por exemplo, se $u_1 = u_2 = 1$, temos que (u_n) é a sequência de Fibonacci.

Definamos a seguinte função:

$$T: \mathcal{R}(1,1) \rightarrow \mathbb{R}^2$$

$$(u_n) \mapsto (u_1, u_2).$$

Note que T é uma transformação linear, pois se $(u_n), (v_n) \in \mathcal{R}(1,1)$ e $c \in \mathbb{R}$, então

$$T((u_n) + c(v_n)) = T((u_n + cv_n))$$

$$= (u_1 + cv_1, u_2 + cv_2)$$

$$= (u_1, u_2) + c(v_1, v_2)$$

$$= T((u_n)) + cT((v_n)).$$

Por outro lado, T é obviamente sobrejetora. T é também injetora, pois os valores de u_1 e u_2 determinam univocamente a sequência (u_n) de $\mathcal{R}(1,1)$.

Logo, T é um isomorfismo de espaços vetoriais e, portanto, dim $\mathcal{R}(1,1) = 2$. Vamos determinar uma base de $\mathcal{R}(1,1)$.

Procuremos dentre as progressões geométricas (q^n) , com $q \neq 0$, aquelas que satisfazem à recorrência $\mathcal{R}(1,1)$. Essas devem satisfazer à condição

$$q^{n+1} = q^n + q^{n-1}.$$

Daí deduz-se que q deve satisfazer a equação

$$q^2 - q - 1 = 0,$$

cujas raízes são

$$q_1 = \frac{1+\sqrt{5}}{2}, \qquad q_2 = \frac{1-\sqrt{5}}{2}.$$

Portanto, sendo (q_1^n) e (q_2^n) linearmente independentes (basta verificar que as imagens por T são linearmente independentes), eles formam uma base de $\mathcal{R}(1,1)$.

Assim, todo elemento (u_n) de $\mathcal{R}(1,1)$ é tal que

$$u_n = t_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + t_2 \left(\frac{1-\sqrt{5}}{2}\right)^n, \quad t_1, t_2 \in \mathbb{R}.$$
 (3)

Portanto, dados u_1 e u_2 , podemos determinar t_1 e t_2 resolvendo o sistema de equações:

$$\begin{cases} t_1q_1 + t_2q_2 = u_1 \\ t_1q_1^2 + t_2q_2^2 = u_2. \end{cases}$$

Em virtude das igualdades $q_1^2 = q_1 + 1$ e $q_2^2 = q_2 + 1$, este sistema é equivalente ao sistema

$$\begin{cases} t_1q_1 + t_2q_2 = u_1 \\ t_1(q_1+1) + t_2(q_2+1) = u_2, \end{cases}$$

Por exemplo, para a sequência de Fibonacci, onde $u_1 = u_2 = 1$, resolvendo o sistema acima, obtemos $t_1 = 1/\sqrt{5}$ e $t_2 = -1/\sqrt{5}$, que substituídos em (3) nos dão a seguinte fórmula para o termo geral da sequência de Fibonacci:

$$u_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

Finalizaremos esta seção com mais uma aplicação do Teorema do Núcleo e da Imagem.

Exemplo 6. Determinaremos uma fórmula para a dimensão da soma de dois subespaços de um espaco vetorial.

Sejam U e W subespaços vetoriais de dimensão finita de um espaço vetorial V. Considere a transformação linear

$$T: \ U \times W \to V$$
$$(u, w) \mapsto u + w$$

É fácil verificar que a imagem de T é o subespaço U+W e que KerT é isomorfo a $U\cap W$ (veja Problema 2.5). Logo, pelo Teorema do Núcleo e da Imagem e pelo Problema 3.15, do Capítulo 3, temos que

$$\dim U + \dim W = \dim U \times W = \dim \operatorname{Ker} T + \dim \operatorname{Im} T$$
$$= \dim(U \cap W) + \dim(U + W).$$

Assim, temos que

142

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

Problemas

- **2.1*** Prove que a imagem de uma transformação linear $T\colon V\to W$ é um subespaço vetorial de W.
- **2.2*** Dada a transformação linear T(x,y,z)=(x+2y-z,y+2z,x+3y+z) em \mathbb{R}^3 :
- (a) Verifique que $\operatorname{Ker} T$ é uma reta que passa pela origem;
- (b) Determine as equações paramétricas da reta obtida em (a);
- (c) Verifique que $\operatorname{Im} T$ é um plano que passa pela origem;
- (d) Determine as equações paramétricas do plano obtido em (c).
- **2.3** Explique por que não existe nenhuma transformação linear sobrejetiva $T \colon V \to W$, quando dim $V < \dim W$.
- **2.4*** Seja $T: V \to W$ um isomorfismo. Prove que $\{v_1, \ldots, v_n\}$ é uma base de V se, e somente se, $\{T(v_1), \ldots, T(v_n)\}$ for uma base de W.
- **2.5** Sejam U e W subespaços de um espaço vetorial V. Considere a função $T: U \times W \to V$, definida por T(u, w) = u + w. Mostre que:
- (a) T é uma transformação linear;
- (b) A imagem de T é o subespaço U + W;
- (c) Ker $T=\{(u,-u);\ u\in U\cap W\}$ é isomorfo a $U\cap W.$
- **2.6*** Determine a dimensão do subespaço de $\mathbb{R}[x]_3$, definido por

$${p(x) = ax^3 + bx^2 + cx + d; \ p(-1) = 0}.$$

- 2.7 Determine o núcleo e a imagem das seguintes transformações lineares:
- (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$, onde T(x, y, z) = (x y, x z);

- 143
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$, onde T(x, y, z, w) = (2x + y z + w, x + 2y w, 6x + 2z 3w);
- (c) $T \colon \mathbb{R}[x] \to \mathbb{R}[x]$, onde $T(p(x)) = x \cdot p(x)$;
- (d) $T: \mathcal{M}(2,2) \to \mathcal{M}(2,2)$, onde $T(A) = M \cdot A$, sendo $M = \begin{bmatrix} 1 & -1 \\ -4 & 4 \end{bmatrix}$;
- (e) $T: \mathbb{R}[x]_2 \to \mathbb{R}^4$, onde $T(ax^2 + bx + c) = (a + b, 2b + c, a + 2b c, c)$.
- 2.8 Determine quais das transformações lineares do exercício anterior são injetivas e quais são sobrejetivas.
- **2.9** Dada uma transformação linear $T: V \to W$, mostre que:
- (a) se é sobrejetiva, então $\dim W \leq \dim V$;
- (b) se é injetiva, então $\dim V \leq \dim W$.
- **2.10** Encontre uma transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ cujo núcleo seja gerado por (1,2,-1) e (-1,1,0).
- **2.11** Encontre uma transformação linear $T \colon \mathbb{R}^4 \to \mathbb{R}^3$ cujo núcleo seja gerado por (1,2,3,4) e (0,1,1,1).
- **2.12** Encontre uma transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja imagem seja gerada por (1,2,3) e (0,1,-1).
- **2.13** Encontre uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^4$ cuja imagem seja gerada por (1, 3, -1, 2) e (1, 0, 1, -1).
- **2.14** Seja $T: \mathbb{R}^3 \to V$ uma transformação linear de \mathbb{R}^3 em um espaço vetorial V qualquer. Mostre que o núcleo de T é todo o \mathbb{R}^3 , um plano pela origem, uma reta pela origem, ou só a origem.
- **2.15** Seja $T\colon V\to\mathbb{R}^3$ uma transformação linear de um espaço vetorial V qualquer em \mathbb{R}^3 . Mostre que a imagem de T é só a origem, uma reta pela origem, um plano pela origem, ou todo o \mathbb{R}^3 .
- ${\bf 2.16}$ Dê, quando possível, exemplos de transformações lineares T satisfazendo:
- (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ sobrejetiva;
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^2 \text{ com Ker } T = \{(0, 0, 0, 0)\};$

- (c) $T: \mathbb{R}^3 \to \mathbb{R}^3 \text{ com Im } T = \{(0,0,0)\};$
- (d) $T: \mathbb{R}^3 \to \mathbb{R}^4$ com Ker $T = \{(x, y, -x); x \in \mathbb{R}\}.$
- **2.17** Seja $T:V\to\mathbb{R}$ uma transformação linear não nula. Prove que existe um vetor $v\in V$ tal que T(v)=1. Seja W o subespaço de V gerado pelo vetor v. Prove que $V=W\oplus \operatorname{Ker} T$.
- **2.18** Sejam W_1 e W_2 subespaços de um espaço vetorial V tais que dim W_1 + dim W_2 = dim V. Mostre que existe uma transformação linear $T: V \to V$ tal que Ker $T = V_1$ e Im $T = W_2$.
- **2.19** Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T(x, y, z) = (3x + y, -2x - 4y + 3z, 5x + 4y - 2z).$$

Determine se T é invertível. Em caso afirmativo, encontre T^{-1} .

2.20 Seja $T \colon \mathbb{R}^n \to \mathbb{R}^n$ a transformação linear dada por

$$T(x_1, x_2, \dots, x_n) = (a_1 x_1, a_2 x_2, \dots, a_n x_n).$$

- (a) Sob quais condições sobre a_1, a_2, \ldots, a_n , a função T é invertível?
- (b) Supondo satisfeitas as condições determinadas em (a), encontre T^{-1} .
- $\mathbf{2.21}$ Seja $T\colon\mathbb{R}^2\to\mathbb{R}^2$ a transformação linear dada por

$$T(x,y) = (x+ky, -y).$$

Prove que T é injetiva e que $T^{-1} = T$, para cada valor real de k.

2.22 Ache um isomorfismo entre o espaço vetorial V das matrizes simétricas $n \times n$ e o espaço vetorial W das matrizes triangulares inferiores $n \times n$.

3 Operações com Transformações Lineares

Nesta seção, apresentaremos as operações usuais com as transformações lineares, obtendo novas transformações lineares a partir de transformações lineares dadas.

Sejam $T\colon V\to W$ e $S\colon V\to W$ transformações lineares. Definimos a soma de T e S, denotada por T+S, como a função $T+S\colon V\to W$ dada por

$$(T+S)(v) = T(v) + S(v),$$
 (1)

para todo $v \in V$. Se $k \in \mathbb{R}$, definimos o produto de k por T, denotando-o kT, como a função $kT \colon V \to W$ dada por

$$(kT)(v) = kT(v), (2)$$

para todo $v \in V$. As funções T+S e kT são, de fato, transformações lineares, pois para qualquer a em \mathbb{R} e para quaisquer v_1 e v_2 em V temos que

$$(T+S)(v_1 + av_2) = T(v_1 + av_2) + S(v_1 + av_2)$$

$$= T(v_1) + aT(v_2) + S(v_1) + aS(v_2)$$

$$= [T(v_1) + S(v_1)] + a[T(v_2 + S(v_2))]$$

$$= (T+S)(v_1) + a(T+S)(v_2)$$

е

$$(kT)(v_1 + av_2) = kT(v_1 + av_2) = k[T(v_1) + aT(v_2)]$$
$$= kT(v_1) + akT(v_2)$$
$$= (kT)(v_1) + a(kT)(v_2).$$

Denotemos por (V, W) o conjunto de todas as transformações lineares de V em W. As operações descritas em (1) e (2) definem uma adição e uma multiplicação por escalar em (V, W), tornando-o um espaço vetorial (veja Problema 3.4). Se $W = \mathbb{R}$, o espaço (V, \mathbb{R}) é chamado espaço dual de V e seus elementos chamados de funcionais lineares em V.

A composição de duas transformações lineares $T\colon V\to W$ e $S\colon W\to U$ é a composição usual de funções:

$$(S \circ T)(v) = S(T(v)), \quad v \in V.$$

A função $S \circ T$ é também uma transformação linear. Com efeito, se $v_1, v_2 \in V$ e se $a \in \mathbb{R}$, então

$$(S \circ T)(v_1 + av_2) = S(T(v_1 + av_2)) = S(T(v_1) + aT(v_2))$$

= $S(T(v_1)) + aS(T(V_2)) = (S \circ T)(v_1) + a(S \circ T)(v_2).$

Exemplo 1. Sejam $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ e $S \colon \mathbb{R}^3 \to \mathbb{R}^3$ transformações lineares dadas por

$$T(x, y, z) = (2x, x - y, y + z)$$
 e $S(x, y, z) = (x + 2z, y, -z)$.

Determinaremos T + S, $2S \in T \circ S$.

Temos

$$(T+S)(x,y,z) = T(x,y,z) + S((x,y,z))$$

= $(2x, x-y, y+z) + (x+2z, y, -z)$
= $(3x+2z, x, y),$

$$(2S)(x,y,z) = 2S(x,y,z) = 2(x+2z,y,-z) = (2x+4z,2y,-2z)$$

е

$$(T \circ S)(x,y,z) = T(S(x,y,z)) = T(x+2z,y,-z) = (2x+4z,x-y+2z,y-z).$$

Sejam $T\colon V\to V$ uma transformação linear e $n\in\mathbb{N}\setminus\{0\}$. Definimos a $n\text{-}ésima\ potência\ de\ T$, denotando-a por T^n , como a função $T^n\colon V\to V$ dada por

$$T^n = \underbrace{T \circ \cdots \circ T}_{n \text{ vezes}}.$$

Pelo que vimos anteriormente, T^n é uma transformação linear. Definimos T^0 como a função identidade em V, ou seja,

$$T^0 = I_V$$
.

Se $T\colon V\to V$ é um isomorfismo, a transformação linear $T^{-n}\colon V\to V$ é definida por

$$T^{-n} = \underbrace{T^{-1} \circ \cdots \circ T^{-1}}_{n \text{ vezes}}.$$

147

O próximo resultado, cuja demonstração é deixada como exercício (veja Problema 3.9), relaciona a composição com a adição e a multiplicação por escalar de transformações lineares.

Proposição 5.3.1. Sejam T e T' transformações lineares de V em W e sejam S e S' transformações lineares de W em U. Então:

- (a) $S \circ (T + T') = S \circ T + S \circ T'$:
- (b) $(S+S') \circ T = S \circ T + S' \circ T$;
- (c) $k(S \circ T) = (kS) \circ T = S \circ (kT)$, onde $k \in \mathbb{R}$.

Problemas

- **3.1*** Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^4$ dada por T(x,y,z) =(x+y,z,x-y,y+z). Calcule $(T\circ S)(x,y)$, onde $S\colon\mathbb{R}^2\to\mathbb{R}^3$ é dada por S(x,y) = (2x + y, x - y, x - 3y).
- **3.2** Sejam $T: V \to W$ e $S: V \to W$ transformações lineares entre espaços vetoriais de mesma dimensão. Se $S \circ T = I_V$, prove que $T \circ S = I_W$ e $S = T^{-1}$.
- **3.3** Sejam $T: \mathbb{R}^2 \to \mathbb{R}^2$ e $S: \mathbb{R}^2 \to \mathbb{R}^2$ transformações lineares dadas por T(x,y)=(x+y,0) e S(x,y)=(-y,x). Encontre expressões para definir:
- (a) T+S;
- (b) 5T 4S; (c) $S \circ T$;

- (d) $T \circ S$;
- (e) T^3 ;
- (f) S^{-3} .
- **3.4** Prove que (V, W), com as operações dadas em (1) e (2), é um espaço vetorial.
- 3.5 Mostre que as seguintes transformações lineares T, S e Q são linearmente independentes:
- (a) $T, S, Q \in (\mathbb{R}^3, \mathbb{R}^2)$, definidas por T(x, y, z) = (x+y+z, x+y), S(x, y, z) =(2x + z, x + y) e Q(x, y, z) = (2y, x);
- (b) $T, S, Q \in (\mathbb{R}^3, \mathbb{R})$, definidas por T(x, y, z) = x + y + z, S(x, y, z) = y + ze Q(x, y, z) = x - z.

- **3.6** Seja $T\colon V\to V$ uma transformação linear. Prove que $T^2=0$ se, e somente se, ${\rm Im}\, T\subset {\rm Ker}\, T.$
- **3.7** Prove que se $T\colon V\to V$ e $S\colon V\to V$ são transformações lineares não nulas tais que $T\circ S=0$, então T não é injetiva.
- **3.8** Dada a transformação linear T(x, y, z) = (ay + bz, cz, 0) de \mathbb{R}^3 em \mathbb{R}^3 , mostre que $T^3 = 0$.
- **3.9** Prove a Proposição 5.3.1.
- **3.10** Dada a transformação linear T(x,y)=(ac+by,cx+dy) de \mathbb{R}^2 em \mathbb{R}^2 , mostre que:
- (a) $T^2 (a+d)T = (bc ad) I_{\mathbb{R}^2}$;
- (b) Se $ad-bc\neq 0$, então existe uma transformação linear S de \mathbb{R}^2 em \mathbb{R}^2 tal que $S\circ T=T\circ S=\mathrm{I}_{\mathbb{R}^2}.$
- **3.11** Seja $T: W \to U$ uma transformação linear injetiva. Prove que se $S_1, S_2 \in (V, W)$ satisfazem a igualdade $T \circ S_1 = T \circ S_2$, então $S_1 = S_2$.
- **3.12** Seja $T: V \to W$ uma transformação linear sobrejetiva. Prove que se $S_1, S_2 \in (W, U)$ satisfazem a igualdade $S_1 \circ T = S_2 \circ T$, então $S_1 = S_2$.
- **3.13** Prove que se $T\colon V\to V$ é uma transformação linear tal que $T^2=0$, então a transformação I_V-T é invertível.
- **3.14** Seja V um espaço vetorial. Suponhamos que $V=W_1\oplus\cdots\oplus W_s$. Considere a função $T\colon V\to V$ definida por $T(v)=w_i$, onde $v=w_1+\cdots+w_i+\cdots+w_s$, com $w_i\in W_i$, para cada $1\leq i\leq s$. Mostre que:
- (a) T é uma transformação linear; (b) $T^2 = T$.

A transformação T é chamada de projeção de V em seu subespaço vetorial W_i .

- **3.15** Seja $T\colon V{\to}V$ uma transformação linear tal que $T^2{=}T.$ Mostre que:
- (a) T(v) = v para todo $v \in \text{Im } T$;
- (b) $V = \operatorname{Ker} T \oplus \operatorname{Im} T$;
- (c) T é a projeção de V em sua imagem.

- **3.16** Seja $T\colon V\to V$ uma transformação linear. Mostre que T é uma projeção se, e somente se, $T^2=T$.
- ${\bf 3.17}$ SejamTe Sduas transformações lineares entre os espaços vetoriais de dimensão finita Ve W. Mostre que:
- (a) Se Ker $T=\operatorname{Ker} S,$ então existe um isomorfismo $T_1\colon W\to W$ tal que $S=T_1\circ T;$
- (b) Se $\operatorname{Im} T = \operatorname{Im} S,$ então existe um isomorfismo $T_2 \colon V \to V$ tal que $S = T \circ T_2.$

Bibliografia

- [1] H. P. Bueno, Álgebra Linear, um segundo curso, Coleção Textos Universitários, SBM, 2006.
- [2] P. Halmos, *Teoria Ingênua dos Conjuntos*, Editora Ciência Moderna, 2001.
- [3] A. Hefez e M. L. T. Villela, *Códigos Corretores de Erros*, Coleção Matemática e Aplicações, IMPA, 2008.
- [4] A. Hefez e M. L. T. Villela, *Números Complexos e Polinômios*, Coleção PROFMAT, SBM, 2012.
- [5] V. J. Katz, A History of Mathematics an Introduction, HarperCollins College Publishers, 1993.
- [6] S. Lang, *Introduction to Linear Algebra*, 2nd edition, Undergraduate Texts in Mathematics, Springer, 1986.
- [7] E.L. Lima, Álgebra Linear, 3ª edição, Coleção Matemática Universitária, IMPA, 1998.
- [8] E.L. Lima, Geometria Analítica e Álgebra Linear, 2ª edição, Coleção Matemática Universitária, IMPA, 2010.