Magnetic Field Camera Milestone 2

Aditya Vema Reddy Kesari Ashwajit Singh NV Navaneeth Rajesh Raunak Mukherjee Suchet Gopal

Outline

- 1. Feedback from milestone 1
- 2. Project management plan and documentation
- 3. Progress updates
- 4. Block diagram and relevant analysis
- 5. Schematic and PCB layout
- 6. Preliminary tests and plan
- 7. Future plans

O1 Feedback

Feedback from Milestone 1

Pictures of sensors — We added pictures of components to the presentation

Component choice — We explored the reviewer's suggestions, particularly for the FPGA, and settled on the current choice

Clearer schematics—We created a hierarchy within the schematic and labelled nets for easier readability

02 Project management

Work Division

- CAD and motor design: Designing the CAD files for the motor movement mechanism and the structure
 - Ashwajit, Raunak, Aditya
- FPGA programming: VHDL for communication and data processing
 - Ashwajit, Suchet
- **PCB Designing:** Designing the TMAG3001 board, in addition to the breakout board for the alternate magnetometer
 - Navaneeth, Suchet
- Microcontroller and GUI: Code to control the motors and FPGA, and to display the output on the laptop
 - Raunak, Aditya

Documentation

OneNote:

 We use OneNote to document and share our general progress, with attached schematic files

GitHub:

- All code used in our project is backed up on GitHub
- The GitHub repository with all our code is available <u>here</u>

Task Name :	Jan	Feb 2025				Mar 2025				
	27	02	09	16	23	02	09	16	23	
▼ Sensor Head										
3001 5170 PCB board										
Finalise PCB Design + Fabrication			-							
I2C Master										
64 Sensor Readout						→				
3001 EVM										
5170 Breakout board design + Head CAD										
▼ Microcontroller										
Microcontroller-SPI										
Microcontroller-Laptop										
Microcontroller-Motor Testing and Characteri										
Laptop-uController-FPGA-Motor and Sensor				→						
▼ Rig	:									
Motor Movement Design										
Mechanism CAD			-							
Prototyping Rig				-						
CAD Design										
Testing Prototypes										
Assembly of Rig								+		
▼ GUI										
GUI-Visualisation										
▼ FPGA										
FIFO Merge/Demerge + Sensor Command f										
FPGA SPI Coding										
Buffer+Documentation+Final Protoypes										
Midsem + Sensors arrive										

Deviations from original plan

- The VHDL code for the I2C master and the SPI slave was delayed as iterating the PCB design took longer than originally expected
- We could not test the functioning of the motor using the microcontroller due to non-arrival of parts
- The CAD design is currently in progress, as finalising the top-level design of the mechanism took longer than expected

03 Progress Updates

PCB Design

• TMAG3001 64 sensor array

- Designed a high-density, four-layer PCB integrating a 64-sensor array of TMAG3001 magnetometers.
- Developed a space-efficient layout for a 4-sensor I2C bus architecture to optimize signal integrity and maximize resolution.
- Carefully selected pull-up resistor values and decoupling capacitor placements to ensure robust sensor operation.

TMAG5170 breakout board

 Designed a breakout board consisting of 2 TMAG5170 to be used for testing of the sensors.

Sensors Used

TMAG3001

TMAG5170

FPGA Programming

- The packet formats and communication protocol between the FPGA and the microcontroller were decided
- The associated VHDL to unpack data from the sensor array and commands from the microcontroller and validate it were completed
- The code to add error detection and timestamps (to allow AC field detection) was also completed

Microcontroller and GUI

- The microcontroller SPI master was tested and was able to communicate with the CMOD-A7 FPGA
- Additionally, the WiFi communication between the microcontroller and the laptop was tested
- We finalised the GUI available on the laptop to visualise the fields

Rig Design

Mechanism

- We are continuing with the r-theta-z coordinate system to move the sensor head, since most
- The sensor head will face in the theta direction as this allows us to cover the maximum area, since the theta-controlling motor will be moving the fastest
- We are also using linear actuators instead of our original plan to use belts, as they require precise control over the tension to function
- Materials
- The initial prototype will be 3D printed, as it allows us to quickly test the design, and does not interfere magnetically

Rig Design

Materials

- The initial prototype is 3D printed, as it allows us to quickly test the design, and does not interfere magnetically
- We will be using nylon rods for support, as they are standard and will not interfere, and are planning to 3D print and laser cut custom linear actuators

04 Block Diagrams

Overall block diagram

FPGA Code Structure

05 Schematics

4 SENSOR BUS

MAGNETOMETER ARRAY (8X8)

TMAG5170 Breakout Board

FPGA-Sensor Bridge Schematic

Sensor Connector L	
CND 72	
GND 32 GND 31	
INT5 30 _	
SCL9 29 _	
SDA9 28 _	
SCL10 27	
SDA10 26	
INT6 25 _	
SCL11 24	
SDA11_23_	
SCL12 22	
SDA12 21	
INT7_20	
SCL13 <u>19</u>	
SDA13 <u>18</u>	
SCL14 <u>17</u>	
SDA14 16	J4 -
INT8 15	
SCL15 14	
SDA15 13	
SCL16 <u>12</u> SDA16 11 _	
GND 10	
GND 9 _	
GND 8	
GND 7	
GND 6	
VCCS 5	
GND 4	
VCCS 3	
GND 2	
GND 1	

Sensor	Connector R	
	GND_32_	
	GND 31	
	GND 30	3 2 3 2 3 3 3 3 3
	GND 29	
	GND 28	
	GND 27	
	GND 26	
	GND 25	
	GND 24	
	GND 23	
	GND 22	
	GND 21	
	SDA8 20	
	SCL8 19	
	SDA7 18	
	SCL7 17	
	INT4 16	J3
	SDA6 15	75
	SCL6 14	
	SDA5 13	
	SCL5 12	
	INT3 11	
	SDA4 10	
	SCL4 9	
	SDA3 8	
	SCL3 7	
	INT2 6	
	SDA2 5	
	SCL2 4	
	SDA1 3	
	SCL1 2	
	INT1 1	

06 Preliminary Tests

TI Simulation

- To determine the range of magnets that we could test, we used a Texas Instruments tool to simulate the a sensor array sweeping across magnets of different strengths
- This allows us to fix the minimum distance away from the magnet we will sweep at, to prevent damaging the sensors, and also makes the use cases for the product clearer

FPGA-uC SPI

Setup

We made connections from the FPGA's PMOD header using simple jumper wires to an RPi Pico

Speed

We were successfully able to test SPI
Communication up to 12 MHz, which is above spec.

Software Delay

We have a software delay of about 60us per 128 bits—using MicroPython, which is within spec. This can be further reduced using C++ if necessary.

WiFi Test

Connection

A WiFi connection was successfully implemented and tested using an Raspberry Pi Pico W and an Asus laptop over a supplied hotspot.

Data Transfer

Data was then sent from the Raspberry Pi Pico W to the laptop using Internet Protocol. The data sent was a basic html page that was received and correctly displayed on the laptop demonstrating real time transfer capabilities.

GUI Test

• Implemented several techniques of visualisation available on

matplotlib including 2D and 3D quiver plots, heat maps and

contour plots.

 Finalised the design to be a 3D zoomable and rotatable heat map along with a 2D heat map of any plane specified by user

 Aim to implement a 2D heat map cum quiver plot of the plane parellel to the current orientation of the 3D heat map as default

07 Future Plans

Mechanical Design

- We prioritised electronic design initially to ensure we could send our PCBs for printing as soon as possible
- The priority in the near future is to focus on mechanical design, and create an initial 3D printed prototype to test the accuracy of the linear actuators and rigidity of the design
- We aim to complete and test the first prototype in the first week of March
- Following this, we will place an order for the necessary mechanical components and build the final version

Motor testing

- We initially planned to test the motors and their accuracy this week, but due to a delay in procuring the components we were unable to
- This is a priority as it determines the resolution of our camera, and the microcontroller code will have to be tweaked accordingly
- Getting a better idea of the dimensions also allows us to design the case for the motors