bbs,eins.mainz Berufsbildende Schule Technik	4. Klassenarbeit	Name: Musterlösung
	Mathematik	Datum:
HBF IT 18A - A	von Punkten erreicht:%	Note:

Allgemeines

- Bei der Bearbeitung ist ein nachvollziehbarer, vollständiger Rechenweg aufzuschreiben.

- Die Bewertung der Klassenarbeit ist nur bei gut lesbarer Schrift möglich.

- Die Lösungen müssen mit dokumentenechten Stift (Kugelschreiber oder Fine-Liner - keine rote Mine) erstellt werden.

- Runden Sie ihre Ergebnisse auf **2 Nachkommastellen**. Wurzelausdrücke müssen nicht berechnet werden (z.B. $\sqrt{10}$).

- Zugelassene Hilfsmittel: Taschenrechner (nicht graphikfähig / programmierbar)

- Bearbeitungszeit: 90 Minuten

Aufgabe 1

Führen Sie eine vollständige Kurvendiskussion durch:

$$f(x) = \frac{1}{4}x^4 - 2x^2 + 1,5$$

a) Symmetrieeigenschaften (mit kurzer Begründung)s (🔏)

b) Achsenabschnittspunkte (Nullstellen, Schnittpunkt mit y-Achse) (21)

c) Globalverlauf (Verhalten für große x-Beträge) mit Skizze (2) $f(x) \xrightarrow{x \to -\infty}$? und $f(x) \xrightarrow{x \to \infty}$?

d) Extrempunkte (notwendige und hinreichende Bedingung) ()

e) Wendepunkte (notwendige und hinreichende Bedingung), eventuell vorliegender Sattelpunkt. (8)

f) Skizzieren Sie den Graphen der Funktion mit Hilfe der charakteristischen Punkte. (4) Nutzen Sie zudem eine Wertetabelle im Bereich $-3 \le x \le 3$.

Skalieren Sie das Koordinatensystem entsprechend.

g) Untersuchen Sie die Funktion auf ihr Krümmungsverhalten (rechts- bzw. linksgekrümmt). Markieren Sie die Intervalle in ihrer Zeichnung. (3)

Zusatzaufgabe

/ 4 Pkt.

/ 40 Pkt.

Bestimmen Sie die Funktion der Wendetangente im Wendepunkt WP(1,15|-0,72).

Aufgabe 2

- a) Geben Sie anhand des Graphen möglichst große Intervalle an, in denen dargestellte Funktion rechts- bzw. linksgekrümmt ist. (4)
- b) Skizzieren Sie den Graphen der Ableitungsfunktion f'(x) in das nebenstehende Koordinatensystem. (4)

$$\frac{\text{Aufgabe J}}{P(x)} = \frac{1}{4}x^4 - 2x^2 + 1.5$$

a) Achsensymmetrisch, da alle Exponenten gerade sind, (1)

b)
$$y - AAS$$
: $P(0) = \frac{1}{4} \cdot 0^4 - 2 \cdot 0^2 + 1.5 = 1.5$ (0.5)
 $Sy(0|1.5)$ (0.5)

$$0 = \frac{1}{4}x^4 - 2x^2 + 1.5$$

substitution: Z= x2

(2)

$$0 = z^2 - 8z + 6$$

$$P q$$

$$2_{1/2} = -\frac{8}{2} \pm \sqrt{\left(-\frac{8}{2}\right)^2 - 6} = 4 \pm \sqrt{\left(-4\right)^2 - 6} = 4 \pm \sqrt{16 - 6}$$

Rucksubstitution:
$$x^2 = 2$$

 $x^2 = 7,16$ IT

$$x^2 = 0.84$$
 IV

$$X_1 = -2.68$$
 $X_2 = 2.68$

$$X_1 = -2.68$$
 $X_2 = 2.68$
 $N_1(-2.68 | 0)$ $N_2(2.68 | 0)$
 $N_2(2.68 | 0)$ (0.5)

$$x_3 = -0.92$$
 $x_4 = 0.93$

$$N_3(-0.3210)$$
 $N_4(0.3210)$

c)
$$a_{1}x^{n} = \frac{1}{4}x^{4}$$
 $f(x) \xrightarrow{x \to -\infty} \infty$ (0,5) (0,5)

 $f(x) \xrightarrow{x \to \infty} \infty$ (0,7)

d) $f'(x) = x^{3} - 4x = x (x^{2} - 4)$ (1) $f''(x) = 3x^{2} + 4$ (1)

Extremstelle: $f'(x) = 0$ notwendge Bedingung

 $0 = x(x^{2} - 4)$ $\Rightarrow x_{5} = 0$ (1)

 $0 = x^{2} - 4$ $\Rightarrow x_{7} = 2$
 $f''(x_{E}) \neq 0$ hinreichende Bedingung

 $f''(x_{E}) \neq 0$ hinreichende Bedingung

 $f''(x_{E}) \neq 0$ $\Rightarrow x_{7} = 2$
 $f''(x_{7}) = 3 \cdot 0^{2} - 4 = 4 < 0 \Rightarrow 10^{2}$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 > 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 = 8 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 0 \Rightarrow 17$
 $f''(x_{7}) = 3 \cdot (-2)^{2} - 4 \Rightarrow 3 \Rightarrow 17$
 f

e) Wendestelle: P"(x) =0

notwendige Bedingung

$$f'''(x) = 6x (1)$$

$$0 = 3x^2 - 4$$

15

$$4 = 3x^2$$

$$\chi^2 = \frac{4}{3}$$

$$\chi_8 = \sqrt{\frac{4}{3}}$$

$$X_8 = \sqrt{\frac{4}{3}} \qquad X_g = -\sqrt{\frac{4}{3}}$$

hinreichende Zedlingung

Punkte?

$$P(\overline{13}) = \frac{1}{4}(\overline{13})^4 - 2 \cdot (\overline{13})^2 + 1.5 = -0.72$$

$$W_2(\sqrt{\frac{4}{3}} - 0.72)$$

(1)

Zusatzaufgatze W(1,151-0,72) Gesucht: Wende tangente Yw=mx + b Losung m = Steigung = f'(xw) f'(1,15) = (1,15)3 - 4. (1,15) =-3.08 (1) Yw = P(1,15) = -0,72 =) -072 =-3,08.1,15+b (1,5)(-) -0.72 = -3.54 + b + 1 + 3.54b = 2.82

 $-0 \quad y_4 = -3,08 \times +2,82 \quad (1.5)$

Aufgabe 2
Par rechtsgekrimmt [-0;-4]

liuksgekrimmt [-4;-0,5]

rechtsgekrimmt [-0,5; 2,5]

liuksgekrimmt [2,5,00]