Climate Change and Migration: the case of Africa

Bruno Conte

Universitat Pompeu Fabra & Barcelona School of Economics

May 2025

I acknowledge funding from the EU's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101146979-SPEED

Motivation

- Implications of climate change (C Δ): at the center of the policy debate
- Drastic (potential) consequences for Sub-Saharan Africa (SSA):
 - High dependence on agriculture
 - Low usage of modern inputs
 - Rapid population growth

Motivation

- Implications of climate change (C Δ): at the center of the policy debate
- Drastic (potential) consequences for Sub-Saharan Africa (SSA):
 - High dependence on agriculture
 - Low usage of modern inputs
 - Rapid population growth
- Great Climate Migration (Lustgarten, 2020):
 - High vulnerability of SSA (in terms of migration responses to $C\Delta$)
 - Rigaud et al. (2018): intranational climate migration \sim millions by 2050

Research Questions and Outline

- 1. How can $C\Delta$ lead to migration flows in SSA (within/across countries)?
- 2. How economic mechanisms and potential policies interact with $C\Delta$ effects?

Research Questions and Outline

- 1. How can C Δ lead to migration flows in SSA (within/across countries)?
- 2. How economic mechanisms and potential policies interact with $C\Delta$ effects?

This project: Data + Model = long-run GE effects of climate change

- 1. Climate change: agricultural productivity shock
 - FAO-GAEZ data: variation at location-crop level
- 2. Embed it in a multi-sector spatial GE model to quantify:
 - $C\Delta$ migration by the end of the 21st century
 - Role of migration and trade policies on CΔ effects

Main Results and Takeaways

- 1. Aggregate $C\Delta$ effects:
 - Migration flows (22 million) and real GDP pc losses (-2%)
 - Magnitude of results: determined by spatial frictions
- 2. Distributional effects:
 - Heterogeneous migration responses across space [-280K, 270K]
 - Country-level welfare effects: [-14%, 3%]
 - Production adaptation across sectors + trade: mitigate CΔ effects
- 3. SSA as the European Union (↓ trade and migration barriers):
 - EU's migration and trade policies: aggregate vs. distributional trade-offs
 - Main channel: CΔ-induced structural change

Contribution more

1. Introduce $C\Delta$ migration into the structural change/development literature:

- Climate shocks: push-factors of migration (past and future) (Henderson et al., 2017; Rigaud et al., 2018; Benveniste et al., 2020; Burzyński et al., 2022)
- Mobility barriers: obstacle for migration, structural change, and development (Gollin et al., 2014; Bryan et al., 2014; Bustos et al., 2016; Lagakos et al., 2018; Bryan and Morten, 2019; Pellegrina and Sotelo, 2021; Imbert et al., 2022; Henderson and Turner, 2020)

2. Contribution to the spatial climate change literature:

(Desmet et al., 2021; Balboni, 2021; Conte et al., 2024; Cruz and Rossi-Hansberg, 2024)

- Crop-level C∆ (Costinot et al., 2016) and migration
- CΔ, structural change (the "food problem"), and migration (Gollin et al., 2007; Nath, 2022; Conte et al., 2021; Cruz, 2024)
- Carefully quantified real-world policies and their interaction with $C\Delta$ effects

Road Map

- 1. Data:
 - Main data sources
 - Motivating evidence
- 2. Theory:
 - Theoretical model
 - Model quantification
- 3. Counterfactuals for Climate Migration:
 - Main counterfactuals
 - Policy experiment: SSA as the EU
 - Additional experiments and robustness
- 4. Final remarks and further work

Data

Spatial Data: $1^{\circ} \times 1^{\circ}$ grid cells (~ 2000 cells) $\stackrel{\text{more}}{}$

- 1. GDP and Population:
 - 2000: both values from (G-Econ, Nordhaus et al., 2006)
 - 1975: population from (GHSP, Florczyk et al., 2019)
 - 2080: population estimates (UN's Population Prospects, at the country level)
- 2. Transportation network: African extract from gROADS and transportation friction surface from Weiss et al. (2018)
- 3. Agriculture: GAEZ agro-climatic potential yields (IIASA and FAO, 2012):
 - Unit: tons/ha, subsistence (rainfed) technology
 - Crops: cassava, maize, millet, rice, sorghum, wheat
 - Time periods: 1975, 2000 and 2080 (RCP 8.5)

$C\Delta$ and Agricultural Productivity spatial-crop heter.

Figure 1: CΔ effects on potential yields of cassava for 2000 (left) and 2080 (right).

Model

Model Outlook

- Static, multi-sector spatial GE model
- Ingredients from quantitative spatial economics (Allen and Arkolakis, 2014; Redding and Rossi-Hansberg, 2017):
 - Love for varieties (consumers) +
 - Trade frictions (production and trade) +
 - Congestion forces (location choice) =
 - Spatial allocation of economic activity
- Main outcomes: sectoral production in the most productive regions
- Sectoral specialization: disciplined by barriers to structural change (agricultural goods ≡ subsistence)

- *N* locations $i, j \in S = \{1, ..., N\}$ ∈ country $c \in C$ countries, K 1 crops (agriculture), $K \equiv$ non-agric. sector:
 - Sector-specific productivity $A_i^k \in \mathcal{A} = \{A_1^1, ..., A_N^K\}$ and land stock $H_i \in \mathcal{H}$
 - Amenity value $u_i \in \mathcal{U}$

- *N* locations $i, j \in S = \{1, ..., N\}$ ∈ country $c \in C$ countries, K 1 crops (agriculture), $K \equiv$ non-agric. sector:
 - Sector-specific productivity $A_i^k \in \mathcal{A} = \{A_1^1, ..., A_N^K\}$ and land stock $H_i \in \mathcal{H}$
 - Amenity value $u_i \in \mathcal{U}$
- Initial population $\mathcal{L} = \{L_i^0\}_{i \in S}$, inelastic supply labor and earn v_j :
 - Heterogeneous w.r.t. location choice $\sim G(\theta, u_j(L_j/H_j)^{-\alpha})$
 - Migration barriers $\bar{m}_{ij} = \operatorname{dist}\left(i,j\right)^{\phi} \times m_{c(j)} \geq 1 \in \mathcal{M}$
 - Mobility on *S*: subj. to congestion forces $(\theta, \alpha, \phi, \{m_c\}_{c=1}^C)$

- *N* locations $i, j \in S = \{1, ..., N\}$ ∈ country $c \in C$ countries, K 1 crops (agriculture), $K \equiv$ non-agric. sector:
 - Sector-specific productivity $A_i^k \in \mathcal{A} = \{A_1^1, ..., A_N^K\}$ and land stock $H_i \in \mathcal{H}$
 - Amenity value $u_i \in \mathcal{U}$
- Initial population $\mathcal{L} = \{L_i^0\}_{i \in S}$, inelastic supply labor and earn v_j :
 - Heterogeneous w.r.t. location choice $\sim G(\theta, u_j(L_j/H_j)^{-\alpha})$
 - Migration barriers $\bar{m}_{ij} = \operatorname{dist}(i,j)^{\phi} \times m_{c(j)} \geq 1 \in \mathcal{M}$
 - Mobility on *S*: subj. to congestion forces $(\theta, \alpha, \phi, \{m_c\}_{c=1}^C)$
- Goods are mobile in *S*:
 - $\tau_{ij}^k = \tau_{ij} = \tau_{ji} \in \mathcal{T}$: iceberg shipping cost
 - $\tau_{ij} = \operatorname{dist}(i,j)^{\delta} \times (1 + t_{c(j)}) \times \tau^{F}$

- *N* locations $i, j \in S = \{1, ..., N\}$ ∈ country $c \in C$ countries, K 1 crops (agriculture), $K \equiv$ non-agric. sector:
 - Sector-specific productivity $A_i^k \in \mathcal{A} = \{A_1^1, ..., A_N^K\}$ and land stock $H_i \in \mathcal{H}$
 - Amenity value $u_i \in \mathcal{U}$
- Initial population $\mathcal{L} = \{L_i^0\}_{i \in S}$, inelastic supply labor and earn v_j :
 - Heterogeneous w.r.t. location choice $\sim G(\theta, u_j(L_j/H_j)^{-\alpha})$
 - Migration barriers $\bar{m}_{ij} = \operatorname{dist}(i,j)^{\phi} \times m_{c(i)} \geq 1 \in \mathcal{M}$
 - Mobility on *S*: subj. to congestion forces $(\theta, \alpha, \phi, \{m_c\}_{c=1}^C)$
- Goods are mobile in *S*:
 - $\tau_{ij}^k = \tau_{ij} = \tau_{ji} \in \mathcal{T}$: iceberg shipping cost
 - $\tau_{ij} = \operatorname{dist}(i,j)^{\delta} \times (1 + t_{c(j)}) \times \tau^{F}$
- $G(S) = \{L, H, A, U, T, M\}$: geography of the economy

- *N* locations $i, j \in S = \{1, ..., N\}$ ∈ country $c \in C$ countries, K 1 crops (agriculture), $K \equiv$ non-agric. sector:
 - Sector-specific productivity $A_i^k \in \mathcal{A} = \{A_1^1, ..., A_N^K\}$ and land stock $H_i \in \mathcal{H}$
 - Amenity value $u_i \in \mathcal{U}$
- Initial population $\mathcal{L} = \{L_i^0\}_{i \in S}$, inelastic supply labor and earn v_j :
 - Heterogeneous w.r.t. location choice $\sim G(\theta, u_j(L_j/H_j)^{-\alpha})$
 - Migration barriers $\bar{m}_{ij} = \text{dist}(i,j)^{\phi} \times m_{c(j)} \geq 1 \in \mathcal{M}$
 - Mobility on *S*: subj. to congestion forces $(\theta, \alpha, \phi, \{m_c\}_{c=1}^C)$
- Goods are mobile in *S*:
 - $\tau_{ij}^k = \tau_{ij} = \tau_{ji} \in \mathcal{T}$: iceberg shipping cost
 - $\tau_{ij} = \operatorname{dist}(i,j)^{\delta} \times (1 + t_{c(j)}) \times \tau^{F}$
- $G(S) = \{L, H, A, U, T, M\}$: geography of the economy

- Technology: Cobb-Douglas (labor + land) with Hicks-neutral $b_i^k A_i^k \equiv \text{TFP}_i^k$ ($A_i^k \equiv \text{fundamental productivity}, b_i^k \equiv \text{efficiency shifter}$)
 - Bilateral shipping prices $p_{ij}^k = f\left(w_i, r_i, b_i^k, A_i^k, au_{ij}\right) \ \forall i, j, k$

- Technology: Cobb-Douglas (labor + land) with Hicks-neutral $b_i^k A_i^k \equiv \text{TFP}_i^k$ ($A_i^k \equiv \text{fundamental productivity}, b_i^k \equiv \text{efficiency shifter}$)
 - Bilateral shipping prices $p_{ij}^k = f\left(w_i, r_i, b_i^k, A_i^k, \tau_{ij}\right) \forall i, j, k$
- Consumption choice: Multi-level CES demand over location–sector varieties q_{ii}^k and CES aggregates C_i^k
 - η_k , γ_a , $\sigma \equiv$ lower, middle, and upper level CES, $\xi_k \equiv k$'s trade elasticity
 - Bilateral expend. shares: $\lambda_{ij}^k \propto \left(p_{ij}^k/P_j^k\right)^{-\xi_k} \equiv g\left(\boldsymbol{w},\boldsymbol{r},\boldsymbol{b}^k,\boldsymbol{A}^k,\mathcal{T};\xi_k\right) \ \forall i,j,k$

- Technology: Cobb-Douglas (labor + land) with Hicks-neutral $b_i^k A_i^k \equiv \text{TFP}_i^k$ ($A_i^k \equiv \text{fundamental productivity}, b_i^k \equiv \text{efficiency shifter}$)
 - Bilateral shipping prices $p_{ij}^k = f\left(w_i, r_i, b_i^k, A_i^k, \tau_{ij}\right) \forall i, j, k$
- Consumption choice: Multi-level CES demand over location-sector varieties q_{ij}^k and CES aggregates C_i^k
 - η_k , γ_a , $\sigma \equiv$ lower, middle, and upper level CES, $\xi_k \equiv k$'s trade elasticity
 - Bilateral expend. shares: $\lambda_{ij}^k \propto \left(p_{ij}^k/P_j^k\right)^{-\xi_k} \equiv g\left(w,r,b^k,A^k,\mathcal{T};\xi_k\right) \ \forall i,j,k$
- Non-/Agricultural expenditures: shares μ_i^k , k = a, K
 - Non-homothetic upper-tier (Comin et al., 2021):

$$\mu_j^k = \Omega_k \times \underbrace{\left(P_j^k/P_j\right)^{1-\sigma}}_{\text{substitution effect}} \times \underbrace{\left(w_j/P_j\right)^{\varepsilon_k - (1-\sigma)}}_{\text{income effect}}$$

- Technology: Cobb-Douglas (labor + land) with Hicks-neutral $b_i^k A_i^k \equiv \text{TFP}_i^k$ ($A_i^k \equiv \text{fundamental productivity}, b_i^k \equiv \text{efficiency shifter}$)
 - Bilateral shipping prices $p_{ij}^k = f\left(w_i, r_i, b_i^k, A_i^k, \tau_{ij}\right) \forall i, j, k$
- Consumption choice: Multi-level CES demand over location-sector varieties q_{ij}^k and CES aggregates C_j^k
 - η_k , γ_a , $\sigma \equiv$ lower, middle, and upper level CES, $\xi_k \equiv k$'s trade elasticity
 - Bilateral expend. shares: $\lambda_{ij}^k \propto \left(p_{ij}^k/P_j^k\right)^{-\xi_k} \equiv g\left(w,r,b^k,A^k,\mathcal{T};\xi_k\right) \ \forall i,j,k$
- Location choice: destination j s.to an i.i.d. shock $\varepsilon_j \sim G_j(z) = e^{-z^{-\theta} \times u_j (L_j/H_j)^{-\alpha}}$
 - $L_{ij} \equiv h(v/P, \mathcal{U}, \mathcal{M}, \theta, \alpha, \mathcal{L}) \ \forall i, j$
 - $\theta \equiv$ elasticity of L_{ij} w.r.t. real income in j

- Technology: Cobb-Douglas (labor + land) with Hicks-neutral $b_i^k A_i^k \equiv \text{TFP}_i^k$ ($A_i^k \equiv \text{fundamental productivity}$, $b_i^k \equiv \text{efficiency shifter}$)
 - Bilateral shipping prices $p_{ij}^k = f\left(w_i, r_i, b_i^k, A_i^k, \tau_{ij}\right) \forall i, j, k$
- Consumption choice: Multi-level CES demand over location-sector varieties q_{ij}^k and CES aggregates C_j^k
 - η_k , γ_a , $\sigma \equiv$ lower, middle, and upper level CES, $\xi_k \equiv k$'s trade elasticity
 - Bilateral expend. shares: $\lambda_{ij}^k \propto \left(p_{ij}^k/P_j^k\right)^{-\xi_k} \equiv g\left(w,r,b^k,A^k,\mathcal{T};\xi_k\right) \ \forall i,j,k$
- Location choice: destination j s.to an i.i.d. shock $\varepsilon_j \sim G_j(z) = e^{-z^{-\theta} \times u_j (L_j/H_j)^{-\alpha}}$
 - $L_{ij} \equiv h(v/P, \mathcal{U}, \mathcal{M}, \theta, \alpha, \mathcal{L}) \ \forall i, j$
 - $\theta \equiv$ elasticity of L_{ij} w.r.t. real income in j

From Theory to Data:

Calibration and Validation

From Theory to Data: Matching SSA in 2000

Parameters	Description	Source
Panel A: Demana	d parameters	
$\eta_k = 5.4$	Lower-tier CES ($k \neq K$, crops)	Costinot et al. (2016)
$\eta_K=4$	Lower-tier CES (non-agriculture)	Desmet et al. (2018)
$\gamma_a=2.5$	Mid-tier CES (across crops)	Sotelo (2020)
$\sigma = 0.26$	Upper-tier CES	Comin et al. (2021)
$\epsilon_a = 0.2$	Non-homothetic CES (agriculture)	Comin et al. (2021)
$\epsilon_K = 1$	Non-homothetic CES (non-agriculture)	Comin et al. (2021)
Panel B: Supply	parameters	
$\xi_k = 5.66$	Sectoral trade elasticity ($k \neq K$, crops)	Pellegrina (2022)
$\xi_K = 6.63$	Sectoral trade elasticity (non-agriculture)	Pellegrina (2022)
$\alpha^k = 0.39$	Crop labor share $(k \neq K)$	Fajgelbaum and Redding (2022)
$\alpha^K = 0.58$	Non-agricultural labor share	Fajgelbaum and Redding (2022)
Panel C: Location	ı choice parameters	
$\theta = 3.65 \ (0.15)$	Migration elasticity	Gravity estimation
$\beta = 0.32$	Congestion to population density	Desmet et al. (2018)
ρ = 0.52	Congestion to population density	Desiriet et al. (2010)

	Subset	Description	Data source / Moment matched
\mathcal{L}	-	SSA's initial population	Population data in 2000 and 1990
$\{b_i^k,\Omega_k\}_{i,k}$	-	Production and consumption shifters	Spatial-sectoral output/expenditures
\mathcal{H}	-	Land endowments	Grid cell land areas
\mathcal{A}	$\{A_i^k\}_{i\in S, k\neq K}$	Agricultural productivities	FAO-GAEZ data (go)
	$\{A_i^K\}_{i\in S}$	Non-agricultural productivities	Spatial distribution of GDP
\mathcal{U}	-	Amenities	Spatial distribution of population
\mathcal{T}	dist(i,j)	Bilateral travel distances	Transportation data
	$\delta = 0.22(0.06)$	Distance elasticity of τ	Spatial dispersion of prices (go)
	$\{t_c\}_c$	Country-level tariffs	H6-level tariff data 💀
	$\tau^F = 4.15(1.45)$	Border effect (e.g., NTB)	Aggregate bilateral trade flows
\mathcal{M}	dist(i,j)	Bilateral travel distances	Transportation data
	$\phi = 0.45(0.02)$	Distance elasticity of m_{ij}	Internal migr. flows (from census) 80
	$\{m_c\}_{c=1}^{C}$	Country migration barriers	Country-level bilateral migration flows

results: outer loops results: trade network gravity estimation results: fundamentals model validation

	Subset	Description	Data source / Moment matched
\mathcal{L}	-	SSA's initial population	Population data in 2000 and 1990
$\{b_i^k,\Omega_k\}_{i,k}$	-	Production and consumption shifters	Spatial-sectoral output/expenditures
\mathcal{H}	-	Land endowments	Grid cell land areas
\mathcal{A}	$\{A_i^k\}_{i\in S, k\neq K}$	Agricultural productivities	FAO-GAEZ data 80
	$\{A_i^K\}_{i\in S}$	Non-agricultural productivities	Spatial distribution of GDP
И	-	Amenities	Spatial distribution of population
\mathcal{T}	dist(i,j)	Bilateral travel distances	Transportation data
	$\delta = 0.22(0.06)$	Distance elasticity of $ au$	Spatial dispersion of prices (go)
	$\{t_c\}_c$	Country-level tariffs	H6-level tariff data (go)
	$\tau^F = 4.15(1.45)$	Border effect (e.g., NTB)	Aggregate bilateral trade flows
\mathcal{M}	dist(i,j)	Bilateral travel distances	Transportation data
	$\phi = 0.45(0.02)$	Distance elasticity of m_{ij}	Internal migr. flows (from census) 80
	$\{m_c\}_{c=1}^C$	Country migration barriers	Country-level bilateral migration flow

	Subset	Description	Data source / Moment matched
\mathcal{L}	-	SSA's initial population	Population data in 2000 and 1990
$\{b_i^k,\Omega_k\}_{i,k}$	-	Production and consumption shifters	Spatial-sectoral output/expenditures
\mathcal{H}	-	Land endowments	Grid cell land areas
\mathcal{A}	$\{A_i^k\}_{i\in S, k\neq K}$	Agricultural productivities	FAO-GAEZ data 🔞
	$\{A_i^K\}_{i\in S}$	Non-agricultural productivities	Spatial distribution of GDP
\mathcal{U}	-	Amenities	Spatial distribution of population
\mathcal{T}	dist(i,j)	Bilateral travel distances	Transportation data
	$\delta = 0.22(0.06)$	Distance elasticity of $ au$	Spatial dispersion of prices (80)
	$\{t_c\}_c$	Country-level tariffs	H6-level tariff data 🔞
	$\tau^F = 4.15(1.45)$	Border effect (e.g., NTB)	Aggregate bilateral trade flows
\mathcal{M}	dist(i,j)	Bilateral travel distances	Transportation data
	$\phi = 0.45(0.02)$	Distance elasticity of m_{ij}	Internal migr. flows (from census) 80
	$\{m_c\}_{c=1}^C$	Country migration barriers	Country-level bilateral migration flows

results: outer loops results: trade network gravity estimation results: fundamentals model validation

	Subset	Description	Data source / Moment matched
\mathcal{L}	-	SSA's initial population	Population data in 2000 and 1990
$\{b_i^k,\Omega_k\}_{i,k}$	-	Production and consumption shifters	Spatial-sectoral output/expenditures
\mathcal{H}	-	Land endowments	Grid cell land areas
\mathcal{A}	$\{A_i^k\}_{i\in S, k\neq K}$	Agricultural productivities	FAO-GAEZ data so
	$\{A_i^K\}_{i\in S}$	Non-agricultural productivities	Spatial distribution of GDP
\mathcal{U}	_	Amenities	Spatial distribution of population
\mathcal{T}	dist(i,j)	Bilateral travel distances	Transportation data
	$\delta = 0.22(0.06)$	Distance elasticity of $ au$	Spatial dispersion of prices (go)
	$\{t_c\}_c$	Country-level tariffs	H6-level tariff data
	$\tau^F = 4.15(1.45)$	Border effect (e.g., NTB)	Aggregate bilateral trade flows
\mathcal{M}	dist(i,j)	Bilateral travel distances	Transportation data
	$\phi = 0.45(0.02)$	Distance elasticity of m_{ij}	Internal migr. flows (from census) go
	$\{m_c\}_{c=1}^{C}$	Country migration barriers	Country-level bilateral migration flows

results: outer loops results: trade network gravity estimation results: fundamentals model validation

	Subset	Description	Data source / Moment matched
\mathcal{L}	-	SSA's initial population	Population data in 2000 and 1990
$\{b_i^k,\Omega_k\}_{i,k}$	-	Production and consumption shifters	Spatial-sectoral output/expenditures
\mathcal{H}	-	Land endowments	Grid cell land areas
\mathcal{A}	$\{A_i^k\}_{i\in S, k\neq K}$	Agricultural productivities	FAO-GAEZ data go
	$\{A_i^K\}_{i\in S}$	Non-agricultural productivities	Spatial distribution of GDP
\mathcal{U}	-	Amenities	Spatial distribution of population
\mathcal{T}	dist(i,j)	Bilateral travel distances	Transportation data
	$\delta = 0.22(0.06)$	Distance elasticity of $ au$	Spatial dispersion of prices (go)
	$\{t_c\}_c$	Country-level tariffs	H6-level tariff data 🔞
	$\tau^F = 4.15(1.45)$	Border effect (e.g., NTB)	Aggregate bilateral trade flows
\mathcal{M}	dist(i,j)	Bilateral travel distances	Transportation data
	$\phi = 0.45(0.02)$	Distance elasticity of m_{ij}	Internal migr. flows (from census) go
	$\{m_c\}_{c=1}^C$	Country migration barriers	Country-level bilateral migration flows

Climate Change and Migration:

Counterfactuals and Policy Experiments

Main Counterfactual

- Solve for 2080's equilibrium with $\mathcal{G}(S)$ but using:
 - \mathcal{L} for 2080 +
 - 1. $\{A_i^k\}_{k\neq K}$ with $C\Delta$ 2. $\{A_i^k\}_{k\neq K}$ (no $C\Delta$)

Main Counterfactual

- Solve for 2080's equilibrium with G(S) but using:
 - \mathcal{L} for 2080 +
 - 1. $\{A_i^k\}_{k\neq K}$ with $C\Delta$ -
 - 2. $\{A_i^k\}_{k\neq K}$ (no C Δ)
- Results: C Δ migration (\sim 22 million), welfare losses (real GDP pc \downarrow 1.7%), non-agricultural employment (\downarrow 0.82%) C Δ migration empl. results welfare results

		Location Level		Country Level				
	Aggregate	Bottom decile	Median	Top decile	Angola	Senegal	Nigeria	Tanzania
Δ Population (K)	22,315.27	-108.05	-0.63	94.59	-1,686.26	-347.16	133.24	2,760.20
Δ Non–agric. Δ Real GDP pc	-0.82 -1.76	-10.89 -22.86	-1.40 -3.76	16.16 4.56	4.92 -16.60	2.78 -32.81	-0.31 -1.11	-2.53 2.50

Policy Experiment: SSA as frictionless as the European Union

- A. Trade, Migration, and Sectoral Specialization: mitigating role
 - Trade: attenuates "the food problem" (Gollin et al., 2007; Nath, 2022)
 - Trade and migration: substitutes as adaptation (Conte et al., 2021)
 - Migration: key adaptation (Cruz and Rossi-Hansberg, 2024)

B. Policy Experiment: SSA as the European Union (trade/migration policies)

	SSA as frictionless as the EU					
	Baseline	Migration Policy	Trade Policy	Both		
Δ Pop. (M)	22.32	34	9.18	20.46		
Δ Non–agric. (%)	-0.82	-0.54	-0.84	-0.76		
Δ GDP pc (%)	-1.76	-1.01	-1.31	-1.41		
[bottom, top]	[-14.62; 3.27]	[-11.32; 4.69]	[-6.32; 3.69]	[-5.64; 3.35]		

EU vs SSA spatial frictions Alternative welfare measures Level CΔ effects Policy 2: road corridors in SSA

Additional Experiments, Extensions, and Robustness Checks

- 1. Less crop switching: larger welfare losses
- 2. Homothetic preferences: major welfare gains
 - Economy substitutes out agricultural consumption for non-agriculture
- 3. Tariff revenues: slightly larger welfare losses
 - Distortive effect of tariff redistribution (to less productive regions)
- 4. Endogenous fertility: reduces population growth in damaged locations
 - Less climate migration
- 5. Rest of the World: larger migration flows and welfare losses
- 6. Productivity growth: attenuates welfare losses; ambiguous migration effects
- 7. Alternative climate damages: (amenities, non-agric.) mildly magnifies effects
- 8. $C\Delta$ assumptions: weaker effects with RCP 4.5 (less severe)

Final Remarks

Final Remarks

- Study and quantify climate migration in SSA by combining:
 - Rich spatial data for SSA
 - Tractable, transparent spatial GE model
- Main results: CΔ effects on migration, welfare, and structural change
 - Sector adaptation and trade: key adaptation mechanisms
 - Trade and migration policies: powerful mitigation tools (EU as benchmark)

Thank you!

bruno.conte@upf.edu

References I

- **Abel, Guy J and Joel E Cohen**, "Bilateral international migration flow estimates for 200 countries," *Scientific data*, 2019, 6 (1), 1–13.
- **Allen, Treb and Costas Arkolakis**, "Trade and the Topography of the Spatial Economy," *The Quarterly Journal of Economics*, 2014, 129 (3), 1085–1140.
- **Asturias, Jose, Manuel García-Santana, and Roberto Ramos**, "Competition and the welfare gains from transportation infrastructure: Evidence from the Golden Quadrilateral of India," *Journal of the European Economic Association*, 2019, 17 (6), 1881–1940.
- **Atkin, David and Dave Donaldson**, "Who's getting globalized? The size and implications of intra-national trade costs," Technical Report, National Bureau of Economic Research 2015.
- __ , Arnaud Costinot, and Masao Fukui, "Globalization and the Ladder of Development: Pushed to the Top or Held at the Bottom?," Technical Report, National Bureau of Economic Research 2021.
- Baez, Javier, German Caruso, Valerie Mueller, and Chiyu Niu, "Heat Exposure and Youth Migration in Central America and the Caribbean," *American Economic Review*, 2017, 107 (5), 446–50.
- Balboni, Clare Alexandra, "In Harm's Way? Infrastructure Investments and the Persistence of Coastal Cities," 2021.

References II

- **Benveniste, Hélène, Michael Oppenheimer, and Marc Fleurbaey**, "Effect of border policy on exposure and vulnerability to climate change," *Proceedings of the National Academy of Sciences*, 2020, 117 (43), 26692–26702.
- Borchert, Ingo, Mario Larch, Serge Shikher, and Yoto V Yotov, "The international trade and production database for estimation (ITPD-E)," *International Economics*, 2021, 166, 140–166.
- **Bryan, Gharad and Melanie Morten**, "The aggregate productivity effects of internal migration: Evidence from Indonesia," *Journal of Political Economy*, 2019, 127 (5), 2229–2268.
- __ , Shyamal Chowdhury, and Ahmed Mushfiq Mobarak, "Underinvestment in a profitable technology: The case of seasonal migration in Bangladesh," *Econometrica*, 2014, 82 (5), 1671–1748.
- Burzyński, Michał, Christoph Deuster, Frédéric Docquier, and Jaime De Melo, "Climate Change, Inequality, and Human Migration," *Journal of the European Economic Association*, 2022, 20 (3), 1145–1197.
- **Bustos, Paula, Bruno Caprettini, and Jacopo Ponticelli,** "Agricultural productivity and structural transformation: Evidence from Brazil," *American Economic Review*, 2016, 106 (6), 1320–65.
- Cai, Ruohong, Shuaizhang Feng, Michael Oppenheimer, and Mariola Pytlikova, "Climate variability and international migration: The importance of the agricultural linkage," *Journal of Environmental Economics and Management*, 2016, 79, 135–151.

References III

- Caliendo, Lorenzo, Luca David Opromolla, Fernando Parro, and Alessandro Sforza, "Goods and factor market integration: a quantitative assessment of the EU enlargement," *Journal of Political Economy*, 2021, 129 (12), 3491–3545.
- Comin, Diego, Danial Lashkari, and Martí Mestieri, "Structural change with long-run income and price effects," *Econometrica*, 2021, 89 (1), 311–374.
- Conte, Bruno, Klaus Desmet, and Esteban Rossi-Hansberg, "On the Geographic Implications of Carbon Taxes," 2024.
- ____, ____, **Dávid Krisztián Nagy, and Esteban Rossi-Hansberg**, "Local sectoral specialization in a warming world," *Journal of Economic Geography*, 2021, 21 (4), 493–530.
- Costinot, Arnaud, Dave Donaldson, and Cory Smith, "Evolving comparative advantage and the impact of climate change in agricultural markets: Evidence from 1.7 million fields around the world," *Journal of Political Economy*, 2016, 124 (1), 205–248.
- Cruz, José-Luis, "Global warming and labor market reallocation," Available at SSRN 4946752, 2024.
- __ and Esteban Rossi-Hansberg, "The economic geography of global warming," *Review of Economic Studies*, 2024, 91 (2), 899–939.
- **Desmet, Klaus and Esteban Rossi-Hansberg**, "Spatial Development," *The American Economic Review*, 2014, 104, 1211–1243.

References IV

- ____, Dávid Krisztián Nagy, and Esteban Rossi-Hansberg, "The geography of development," Journal of Political Economy, 2018, 126 (3), 903–983.
- ____, Robert E. Kopp, Scott A. Kulp, Dávid Krisztián Nagy, Michael Oppenheimer, Esteban Rossi-Hansberg, and Benjamin H. Strauss, "Evaluating the Economic Cost of Coastal Flooding," *American Economic Journal: Macroeconomics*, April 2021, 13 (2), 444–86.
- **Donaldson, Dave**, "Railroads of the Raj: Estimating the impact of transportation infrastructure," *American Economic Review*, 2018, 108 (4-5), 899–934.
- __ and Richard Hornbeck, "Railroads and American economic growth: A "market access" approach," The Quarterly Journal of Economics, 2016, 131 (2), 799–858.
- Ducruet, César, Réka Juhász, Dávid Krisztián Nagy, and Claudia Steinwender, "All aboard: The effects of port development," Technical Report, National Bureau of Economic Research 2020.
- Eckert, Fabian and Michael Peters, "Spatial structural change," Unpublished Manuscript, 2018.
- **Fajgelbaum, Pablo and Stephen J Redding,** "Trade, Structural Transformation, and Development: Evidence from Argentina 1869–1914," *Journal of Political Economy*, 2022, 130 (5), 1249–1318.
- Fan, Tianyu, Michael Peters, and Fabrizio Zilibotti, "Service-led or service-biased growth? Equilibrium development accounting across Indian Districts," Technical Report, National Bureau of Economic Research 2021.

References V

- Florczyk, AJ, C Corbane, D Ehrlich, S Freire, T Kemper, L Maffenini, M Melchiorri, M Pesaresi, P Politis, M Schiavina et al., "GHSL Data Package 2019," Luxembourg. EUR, 2019, 29788.
- **Gollin, Douglas, David Lagakos, and Michael E Waugh**, "The agricultural productivity gap," *The Quarterly Journal of Economics*, 2014, 129 (2), 939–993.
- __, **Stephen L Parente, and Richard Rogerson**, "The food problem and the evolution of international income levels," *Journal of Monetary Economics*, 2007, 54 (4), 1230–1255.
- **Gröger, André and Yanos Zylberberg**, "Internal labor migration as a shock coping strategy: Evidence from a typhoon," *American Economic Journal: Applied Economics*, 2016, 8 (2), 123–53.
- **Henderson, J Vernon, Adam Storeygard, and Uwe Deichmann**, "Has climate change driven urbanization in Africa?," *Journal of development economics*, 2017, 124, 60–82.
- _ and Matthew A Turner, "Urbanization in the developing world: too early or too slow?," Journal of Economic Perspectives, 2020, 34 (3), 150–173.
- IIASA and FAO, "Global Agro-Ecological Zones (GAEZ v3. 0)," 2012.
- **Imbert, Clement, Marlon Seror, Yifan Zhang, and Yanos Zylberberg**, "Migrants and firms: Evidence from china," *American Economic Review*, 2022, 112 (6), 1885–1914.

References VI

- Lagakos, David, Ahmed Mushfiq Mobarak, and Michael E Waugh, "The welfare effects of encouraging rural-urban migration," Technical Report, National Bureau of Economic Research 2018.
- Lustgarten, Abrahm, "The Great Climate Migration Has Begun," The New York Times, Jun 2020.
- **Morten, Melanie and Jaqueline Oliveira**, "The Effects of Roads on Trade and Migration: Evidence from a Planned Capital City," *American Economic Journal: Applied Economics*, 2024. Forthcoming.
- **Nagy, Dávid Krisztián**, "Hinterlands, City Formation and Growth: Evidence from the U.S. Westward Expansion," *The Review of Economic Studies*, 01 2023, p. rdad008.
- **Nath, Ishan B**, "The Food Problem and the Aggregate Productivity Consequences of Climate Change," Technical Report 2022.
- Nordhaus, William, Qazi Azam, David Corderi, Kyle Hood, Nadejda Makarova Victor, Mukhtar Mohammed, Alexandra Miltner, and Jyldyz Weiss, "The G-Econ database on gridded output: methods and data," *Yale University, New Haven*, 2006, 6.
- **Pellegrina, Heitor S**, "Trade, productivity, and the spatial organization of agriculture: Evidence from Brazil," *Journal of Development Economics*, 2022, p. 102816.
- _ and Sebastian Sotelo, "Migration, Specialization, and Trade: Evidence from Brazil's March to the West," Technical Report, National Bureau of Economic Research 2021.

References VII

- **Redding, Stephen J and Esteban Rossi-Hansberg**, "Quantitative spatial economics," *Annual Review of Economics*, 2017, 9, 21–58.
- Rigaud, KK, B Jones, J Bergmann, V Clement, K Ober, J Schewe, S Adamo, B McCusker, S Heuser, and A Midgley, "Groundswell: Preparing for Internal Climate Migration (Washington, DC: World Bank)," 2018.
- Sotelo, Sebastian, "Domestic trade frictions and agriculture," *Journal of Political Economy*, 2020, 128 (7), 2690–2738.
- Takeda, Kohei, "The Geography of Structural Transformation: Effects on Inequality and Mobility," 2022.
- Weiss, D, A Nelson, HS Gibson, W Temperley, S Peedell, A Lieber, M Hancher, E Poyart, S Belchior, N Fullman et al., "A global map of travel time to cities to assess inequalities in accessibility in 2015," *Nature*, 2018, 553 (7688), 333.

Appendix

Contribution to the Literature: Details (back)

- Weather shocks and migration: empirical literature (Baez et al., 2017; Cai et al., 2016; Gröger and Zylberberg, 2016; Henderson et al., 2017)
- Spatial structural change (Desmet and Rossi-Hansberg, 2014; Eckert and Peters, 2018; Fan et al., 2021; Fajgelbaum and Redding, 2022; Takeda, 2022)
- Migration (barriers) and development (Bryan and Morten, 2019; Caliendo et al., 2021; Morten and Oliveira, 2024; Lagakos et al., 2018)
- Market integration and development (Asturias et al., 2019; Donaldson, 2018; Nagy, 2023; Ducruet et al., 2020; Sotelo, 2020; Atkin and Donaldson, 2015; Donaldson and Hornbeck, 2016; Atkin et al., 2021)

Additional Data Sources back

- Sectoral production data (2000 circa):
 - Crop-cell-level production (tons, FAO-GAEZ)
 - Crop-country-level production (US\$, FAOSTAT)
 - Country-level sectoral VA (WBDI)
- Trade data: country-pair-sector tradeflows (1990-2005) from the International Trade and Production Database (ITPD-E, Borchert et al., 2021)
- Migration data: country-pair flows (1990-2005, from Abel and Cohen, 2019)

Heterogeneous Effects of C_{\Delta}

A: Change in average suitability to agriculture (ton/ha)

B: Standard deviation of changes in crop suitabilities at the location level

Drawing $\{A_i^k\}$ from FAO-GAEZ back

A: Sorghum potential yields (2000)

B: Rice potential yields (2000)

Drawing tariffs $\{t_c\}$ from the data back

A: Raw bilateral tariffs data

Yields (ton/ha) 5.0 2.5 0.0

B: Aggregated (importer *c* level)

Newly Collected Price Data back

Crop price data from WFP-VAM project (FAO):

- \sim 40 countries and 900 markets (coordinates)
- 4 crops: maize, millet, sorghum, rice
- Covers 2000–2018

No origin-destination structure: use price dispersion to pin down δ

Quantification Results: Outer Loops back

Figure 2: Quantified trade network for two subsamples of SSA. back

Gravity Estimation for Migration Elasticy back

Bilateral migration flows between i and j:

$$L_{ij} = \frac{(v_j/P_j)^{\theta} \bar{m}_{ij}^{-\theta} u_j (L_j/H_j)^{-\beta}}{\sum\limits_{s \in S} (v_s/P_s)^{\theta} \bar{m}_{is}^{-\theta} u_s (L_s/H_s)^{-\beta}} \times L_i^0, \text{ where}$$
(1)

$$\bar{m}_{ij} = \operatorname{distance}(i,j)^{\phi} \times m_{c(j)}.$$
 (2)

Set $m_{c(i)} = 1$ (migration within countries), take logs:

$$\log(L_{ij}) = -\nu \log(\operatorname{distance}(i,j)) + a_j + b_i + \varepsilon_{ij}, \tag{3}$$

where $\nu \equiv \phi \theta$. Estimate Equation (3) with internal migration (and distances) data.

Newly Collected Migration Data back

Internal migration data from IPUMS (census):

- \sim 24 countries, 40 years
- Individual-level data (\sim 17 mi obs.)
- Aggregated at admin × admin level

Identification: total internal migration to pin down θ

Newly Collected Migration Data back

Internal migration data from IPUMS (census):

- \sim 24 countries, 40 years
- Individual-level data (\sim 17 mi obs.)
- Aggregated at admin × admin level

Identification: total internal migration to pin down θ

Table 1: Estimates of gravity equation of within country migration back

	$\log(L_{ij})$			
	(1)	(2)	(3)	(4)
	OLS	IV	OLS	IV
log(distance)	-1.576***	-1.593***	-1.606***	-1.630***
	(0.1222)	(0.1192)	(0.1226)	(0.1179)
Origin <i>i</i> FE	Yes	Yes	Yes	Yes
Destination <i>j</i> FE	Yes	Yes	Yes	Yes
Controls	No	No	Yes	Yes
Observations R ²	4,913	4,913	4,913	4,913
	0.86747	0.86745	0.86787	0.86784

Notes: Standard errors clustered at country-level. ***: 0.01, **: 0.05, *: 0.1.

Separate identification: $\hat{v} \equiv \theta \phi = 1.63 \rightarrow \text{with a guess for } \theta$, retrieve $\phi = \hat{v}/\theta$.

Quantification Results: Outer Loops back

Figure 3: Results of the outer loops that solve for θ

Quantification Results (back)

Notes: All results are shown in percentiles, where 1 (100) stands for the bottom (top) percentile of each sample. A and B document, respectively, the spatial distribution of the real wages in 2000 and the product of the quantified non-agricultural productivities productivity shifter of the non-agricultural sector.

Quantification Results (back)

Notes: All results are shown in deciles, where 1 (100) stands for the bottom (top) decile of each sample. A and B document, respectively, the spatial distribution of observed population in 2000 and the quantified amenities.

Quantification Results (back)

Notes: All results are shown in deciles, where 1 (100) stands for the bottom (top) decile of each sample. A and B document, respectively, the spatial distribution of the quantified cassava shifters and country migration barriers (the latter in deciles).

Validating the model: backcasting exercise using \mathcal{L} and $\{A_i^k\}_{k\neq K}$ for 1975; check:

- model-implied population differences between 2000 and 1975
- extra: model-implied agricultural employment in 2000

Validating the model: backcasting exercise using \mathcal{L} and $\{A_i^k\}_{k\neq K}$ for 1975; check:

- model-implied population differences between 2000 and 1975
- extra: model-implied agricultural employment in 2000

Figure 4: Backcasting exercise: population distribution in 1975. back

Validating the model: backcasting exercise using \mathcal{L} and $\{A_i^k\}_{k\neq K}$ for 1975; check:

- model-implied population differences between 2000 and 1975
- extra: model-implied agricultural employment in 2000.

Figure 5: Model goodness of fit: backcasting results for differences in population and labor shares in agriculture for 2000. back

Figure 6: Change in agricultural suitabilities in SSA. back

A: Change in average suitability to agriculture B: Change in average suitability to agriculture (1975–2000). (2000–2080).

Figure 7: Climate migration in SSA – baseline results for 2080. back

Figure 8: Climate change impact on non-agricultural employment. back

Figure 9: Climate change impact on real GDP per capita. back

Figure 10: Estimated trade and migration frictions in the European Union back

A: Country border effects τ^F in the European Union 70°N 65°N 60°N 55°N 50°N $log(\tau_{ii})$ 45°N 40°N 0.8 0.4 35°N

20°E

30°E

B: Country migration barriers $\{m_c\}_c$ in the European Union and SSA, in logs

Notes: Panel A presents trade frictions in the EU as done for SSA in Figure 2 (in this context, trade frictions are relative to Barcelona (Spain), represented by the black dot). Panel B plots the distribution of country migration barriers $\{m_c\}_c$ in SSA and the EU.

Figure 11: Welfare effects of climate change for the baseline and different EU policies back

Panel A: Real income per capita

Panel B: Welfare (amenities, mig. barriers, etc.)

Notes: Panel A and B plot the country-level distributions of welfare in three different policy scenarios for SSA: baseline, EU migration policy, and EU trade and migration policy. Panel A refers to the baseline welfare measure (real income per capita). Panel B refers to an alternative welfare measure that also account for mobility barriers and congestion.

EU mig. policy	0.88	0.87	1.18
EU trade policy	1.65	1.69	-2.12
Both policies	1.84	1.90	-3.32
No mig. barriers $(\bar{m}_{ij}=1)$	5.34	5.39	-0.89
Panel B - Real income per capita v_j/P_j :			
Baseline	0.98	1.00	-1.76
EU mig. policy	1.18	1.19	-1.01
EU trade policy	1.35	1.36	-1.31
Both policies	1.63	1.65	-1.41
No mig. barriers $(\bar{m}_{ij}=1)$	1.32	1.32	-0.66

Panel A - Welfare W_R :

Baseline

(1)

change

1.01

(2)

With climate No climate Climate change

change

1.00

(3)

1.16

effect (%)

baseline, no climate change scenario. Column 3 refers to their percentage difference. back

Figure 12: The Trans-African Highway (TAH) project and its welfare effects back

Notes: Panel A illustrates the highways designed for the TAH project. Panel B documents the (difference-in-differences) climate change effects (in real GDP per capita) of the TAH project.