• • • • • • • • •

Одређивање дубине из једне референтне слике оптимизовано за графичке процесоре

Студент: Душан Ердељан SW-43/2018

Ментор: др Јелена Сливка

Мотивација и стерео визија

- Домени примене
 - Аутономна вожња
 - 3Д реконструкција
 - Роботика

Методологија

Модул за генерисање десне референтне слике

Модул за одређивање мапе диспаритета

Модул за синтезу слике

Модули за одређивање дубине

- Стерео мечинг алгоритам класични приступ
- GwcNet
- MobileStereoNet 3D

Стерео мечинг алгоритам...

- 1. Конверзија улазних слика у црно-белу репрезентацију
- 2. Скалирање резолуције улазних слика фактором К (MeanPooling)
- 3. Конструисање $matching \ cost \$ тензора

$$C(x,y,d) = \sum_{i=-W}^{N} \sum_{j=-W}^{N} \left[255 - \left| I_{x+i,y+j}^{L} - I_{x+i,y+j-d}^{R} \right| \right]$$

4. Мулти-блок агрегације *cost* функције

$$CA(x, y, d) = \prod_{b \in B} \left[\sum_{(i,j) \in b(x,y)} C(i,j,d) \right]$$

...Стерео мечинг алгоритам...

- 5. Селекција оптималног диспаритета $D_{S}(x,y) = argmax\{CA(x,y,d) \mid d \in [d_{min},d_{max}]\}$
- 6. Секундарно одређивање диспаритета

...Стерео мечинг алгоритам

7. Повећање резолуције мапе диспаритета

$$D(K \cdot x, K \cdot y) = K \cdot D_S(x, y)$$

- 8. Вертикално попуњавање недостајућих вредности диспаритета
- 9. Хоризонтално попуњавање недостајућих вредности диспаритета

$$|D(x,y) - D(x+K,y)| \ge T$$

$$D(x,y+i) = D(x,y) + i \cdot \frac{[D(x+K,y) - D(x,y)]}{K}, \qquad D(x,y+i) = \begin{cases} |I_{x+i,y} - I_{x,y}| \le |I_{x+i,y} - I_{x+K,y}|, & D(x,y) \\ |I_{x+i,y} - I_{x,y}| > |I_{x+i,y} - I_{x+K,y}| & D(x+K,y) \end{cases}$$

$$\exists a \ 0 < i < K$$

Скупови података

KITTI Raw скуп података

- Резолуција (375 × 1242)
- Без обележених мапа диспаритетета
- 3000 тренинг парова
- 864 тест парова

КІТТІ 2015 скуп података

- Подскуп *Raw* скупа података са прецизно обележеним мапама диспаритета
- 200 тренинг парова
- 200 тест парова

Експерименти

- Модел за генерисање десне референтне слике → 200*K* итерација на *KITTI Raw* скупу података
- *GwcNet* и *MobileStereoNet 3D* дотренирани на *KITTI 2015* скупу података \rightarrow 45*K* итерација
- Евалуација са и без коришћена модула за генерисање десне референтне слике на *KITTI Raw* скупу података

Евалуација решења

- Mean Absolute Error
- *D1* мера
 - Проценат пиксела за које важи:

$$|D_{est} - D_{true}| \ge max(3, 0.05 \cdot D_{true})$$

- Број обрађених фрејмова у секунди ФПС
- Подаци са сензора (Лидар) → генерисање обележених мапа диспаритета (100*K* тачака по стерео пару, ~20%)

Резултати и дискусија...

• Са употребом модула за генерисање десне референтне слике

Метод	D1	MAE	FPS
Стерео мечинг	0.345	4.296	30
GwcNet	0.270	2.856	6
MobileStereoNet 3D	0.301	3.434	4

• Без употребе модула за генерисање десне референтне слике

Метод	D1	MAE	FPS
Стерео мечинг	0.2785	4.335	91
GwcNet	0.063	1.286	7
MobileStereoNet 3D	0.071	1.269	4

...Резултати и дискусија...

• Генерисање десне слике + Стерео мечинг алгоритам

• Генерисање десне слике + *GwcNet*

• Генерисање десне слике + MobileStereoNet 3D

...Резултати и дискусија

• Могућа побољшања:

- Коришћење неуронских мрежа заснованих на архитектури трансформера за одређивање дубине
- Претпроцесирање РГБ слика у циљу бољег рада са униформним регионима
- Коришћење разређених блокова приликом рачунања агрегације *cost* функције
- Комбиновање класичних приступа и техника машинског учења

Питања?