Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 15, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 5. Financial Forwards and Futures

Chapter 5. Financial Forwards and Futures

- § 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- § 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- § 5.5 Problems

Chapter 5. Financial Forwards and Futures

- § 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- § 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- § 5.5 Problems

Forward price is the future value of the prepaid forward price:

► No dividends

$$F_{0,T} = \mathrm{FV}\left(F_{0,T}^{
ho}\right)$$

Continuous dividends

$$F_{0,T} = S_0 e^{(r-\delta)T}$$

Forward price is the future value of the prepaid forward price:

► No dividends

$$F_{0,T} = \mathrm{FV}\left(F_{0,T}^{p}\right)$$

► Continuous dividends

$$F_{0,T} = S_0 e^{(r-\delta)T}$$

Forward premium =
$$\frac{F_{0,7}}{S_0}$$

Annualized forward premium =
$$\frac{1}{T} \ln \left(\frac{F_{0,T}}{S_0} \right)$$

Does the forward price predict the future spot price?

Buying a stock

Compensation for	Earn	Buying a stock
time value of the money	interest	✓
the risk of the stock	risk premium	✓

Entering a forward contract

Compensation for	Earn	Entering a forward contract
time value of the money	interest	×
the risk of the stock	risk premium	✓

The forward price is the expected future spot price, discounted at the risk premium.

$$F_{0,T} = e^{rT} \times \underbrace{F_{0,T}^p}_{=\mathbb{E}_0(S_T)e^{-\alpha T}} = \mathbb{E}_0(S_T)e^{-(\alpha - r)T}$$

Creating a synthetic forward contract

Assuming that the dividends are continuous and paid at the rate δ .

Recall that

Payoff of a long forward position at expiration $|| \\ S_{\mathcal{T}} - F_{0,\mathcal{T}} \\ || \\ S_{\mathcal{T}} - S_0 e^{(r-\delta)T}$

$Forward = Stock - Zero-coupon\ bond$

		Cash Flows		
Transaction	Time 0	Time T (expiration)		
Buy $e^{-\delta T}$ units of the index	$-S_0e^{-\delta T}$	$+ S_T$		
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0e^{(r-\delta)T}$		
Total	0	$S_T - S_0 e^{(r-\delta)T}$		

Stock = Forward + Zero-coupon bond

		Cash Flows		
Transaction	Time 0	Time T (expiration)		
Long one forward	0	$S_T - F_{0,T}$		
Lend $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_0e^{(r-\delta)T}$		
Total	$-S_0e^{-\delta T}$	S_T		

Zero-coupon bond = Stock - Forward

		Cash Flows		
Transaction	Time 0	Time T (expiration)		
Long one forward	0	$S_T - F_{0,T}$		
Lend $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_0e^{(r-\delta)T}$		
Total	$-S_0e^{-\delta T}$	S_T		

Cash-and-carry is a transaction in which one buys the underlying asset and short the offsetting forward contract.

A cash-and-carry has no risk because You have an obligation to deliver the asset that you have already owned.

	Cash Flows	
Transaction	Time 0	Time T (expiration)
Buy tailed position in stock, paying $S_0e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_T$
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0e^{(r-\delta)T}$
Short forward	0	$F_{0,T}-S_T$
Total	0	$F_{0,T}-S_0e^{(r-\delta)T}$

Cash-and-carry

	Cash Flows	
Transaction	Time 0	Time T (expiration)
Buy tailed position in stock, paying $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_T$
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0e^{(r-\delta)T}$
Short forward	0	$F_{0,T}-S_T$
Total	0	$F_{0,T} - S_0 e^{(r-\delta)T}$

Arbitrage when $F_{0,T} > S_0 e^{(r-\delta)T}$

Reverse cash-and-carry

	Cash Flows	
Transaction	Time 0	Time T (expiration
Short tailed position in stock, receiving $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_T$
Lend $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_0e^{(r-\delta)T}$
Long forward	0	$S_T - F_{0,T}$
Total	0	$S_0e^{(r-\delta)T}-F_{0,T}$

Arbitrage when $F_{0,T} < S_0 e^{(r-\delta)T}$