

20V N-Channel Enhancement-Mode MOSFET

VDS= 20V

RDS(ON), Vgs@4.5V, Ids@2.8A = $60m\Omega$ RDS(ON), Vgs@2.5V, Ids@2.0A = $115m\Omega$

Features

High Density Cell Design For Ultra Low On-Resistance Improved Shoot-Through FOM we declare that the material of product compliance with RoHS reuirements.

S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

▼ High Density Cell Design For Ultra Low On - Resistance Improved Shoot-Through FOM

Ordering Information

Device	Marking	Shipping
LN2302LT1G S-LN2302LT1G	N02	3000/Tape & Reel
LN2302LT3G S-LN2302LT3G	N02	10,000/Tape & Reel

LN2302LT1G S-LN2302LT1G

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		$V_{ t DS}$	20	v	
Gate-Source Voltage		V_{GS}	± 8	V	
Continuous Drain Current		I _D	2.3	A	
Pulsed Drain Current 1)		I _{DM}	8		
Maximum Power Dissipation	TA = 25°C	P _D	0.9	w	
	TA = 75°C	٠ ت	0.57		
Operating Junction and Storage Temperature Range		T_{J},T_{stg}	-55 to 150	°C	
Junction-to-Case Thermal Resistance		R _{qJC}		°C/W	
Junction-to-Ambient Thermal Resistance (PCB mounted) 2)		R _{qJA}	145		

Note: 1. Repetitive Rating: Pulse width limited by the Maximum junction temperation

^{2. 1-}in² 2oz Cu PCB board

^{3.} Guaranteed by design; not subject to production testing

LN2302LT1G, S-LN2302LT1G

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_{D} = 250uA$	20	-	-	٧
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 4.5V, I_D = 2.8A$		40	60	mΩ
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 2.5V, I_D = 2.0A$		50	115	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250uA$	0.60	0.95	1.20	٧
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 9.6V, V_{GS} = 0V$			-1	uA
Gate Body Leakage	I _{GSS}	$V_{GS} = \pm 8V$, $V_{DS} = 0V$			±100	nA
Gate Resistance	Rg					Ω
Forward Transconductance	g _{fs}	$V_{DS} = 5V, I_{D} = 4.0A$		6.5		S
Dynamic ³⁾						
Total Gate Charge	Q _g	V 0V 1 0 0 1		3.69		nC
Gate-Source Charge	Q_{gs}	$V_{DS} = 6V, I_{D} = 2.8A$ $V_{GS} = 4.5V$		0.70		
Gate-Drain Charge	\mathbf{Q}_{gd}	63		1.06		
Turn-On Delay Time	t _{d(on)}			6.16		- ns
Turn-On Rise Time	t _r	$V_{DD} = 6V, R_{L} = 6\Omega$ $I_{D} = 1A, V_{GEN} = 4.5V$		7.56		
Turn-Off Delay Time	t _{d(off)}	$R_{G} = 6\Omega$		16.61		
Turn-Off Fall Time	t _f			4.07		
Input Capacitance	C _{iss}			427.12		pF
Output Capacitance	C _{oss}	$V_{DS} = 6V, V_{GS} = 0V$ f = 1.0 MHz		80.56		
Reverse Transfer Capacitance	C _{rss}	1 - 1.0 1/11/2		57.00		
Source-Drain Diode						
Max. Diode Forward Current	Is				1.6	Α
Diode Forward Voltage	V _{SD}	I _S = -1.6A, V _{GS} = 0V			1.2	٧

Note: Pulse test: pulse width <= 300us, duty cycle<= 2%

LN2302LT1G , S-LN2302LT1G

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1. Transfer Characteristics

Figure 2. On-Region Characteristics

Figure 3. On-Resistance versus Drain Current

Figure 4. On-Resistance vs. Gate-to-Source Voltage

LN2302LT1G, S-LN2302LT1G

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 5. Gate Charge

Figure 6. Capacitance

Figure 7. On-Resistance Vs.Junction Temperature

Figure 8. Vth Vs.Junction Temperature

LN2302LT1G, S-LN2302LT1G

SOT-23

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,1982
- 2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	0.1102	0.1197	2.80	3.04	
В	0.0472	0.0551	1.20	1.40	
С	0.0350	0.0440	0.89	1.11	
D	0.0150	0.0200	0.37	0.50	
G	0.0701	0.0807	1.78	2.04	
Н	0.0005	0.0040	0.013	0.100	
J	0.0034	0.0070	0.085	0.177	
K	0.0140	0.0285	0.35	0.69	
L	0.0350	0.0401	0.89	1.02	
S	0.0830	0.1039	2.10	2.64	
V	0.0177	0.0236	0.45	0.60	

