Refined analysis of local convergence: implicit regularization

Cong Ma
University of Chicago, Autumn 2021

A natural least-squares formulation

given:
$$y_k = (\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\star})^2, \quad 1 \leq k \leq m$$

$$\Downarrow$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^{\top} \boldsymbol{x} \right)^2 - y_k \right]^2$$

A natural least-squares formulation

given:
$$y_k = (\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\star})^2, \quad 1 \leq k \leq m$$

$$\Downarrow$$

$$\text{minimize}_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^{\top} \boldsymbol{x} \right)^2 - y_k \right]^2$$

• pros: often exact as long as sample size is sufficiently large

A natural least-squares formulation

given:
$$y_k = (\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\star})^2, \quad 1 \leq k \leq m$$

$$\Downarrow$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^{\top} \boldsymbol{x} \right)^2 - y_k \right]^2$$

- pros: often exact as long as sample size is sufficiently large
- ullet cons: $f(\cdot)$ is highly nonconvex \longrightarrow computationally challenging!

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$

ullet spectral initialization: $x^0 \leftarrow {
m leading}$ eigenvector of certain data matrix

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^{m} \left[\left(\boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$

- ullet spectral initialization: $x^0 \leftarrow {
 m leading}$ eigenvector of certain data matrix
- gradient descent:

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \, \nabla f(\boldsymbol{x}^t), \qquad t = 0, 1, \cdots$$

$$\mathsf{dist}({m x}^t,{m x}^\star) := \min\{\|{m x}^t \pm {m x}^\star\|_2\}$$

Theorem 9.1 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{4}\right)^{t/2} \|\boldsymbol{x}^\star\|_2,$$

with high prob., provided that step size $\eta \lesssim 1/n$ and sample size: $m \gtrsim n \log n$.

$$\mathsf{dist}({m x}^t,{m x}^\star) := \min\{\|{m x}^t \pm {m x}^\star\|_2\}$$

Theorem 9.1 (Candès, Li, Soltanolkotabi'14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{4}\right)^{t/2} \|\boldsymbol{x}^\star\|_2,$$

with high prob., provided that step size $\eta \lesssim 1/n$ and sample size: $m \gtrsim n \log n$.

• Iteration complexity: $O(n\log\frac{1}{\epsilon})$

$$\mathsf{dist}({oldsymbol x}^t,{oldsymbol x}^\star) := \min\{\|{oldsymbol x}^t \pm {oldsymbol x}^\star\|_2\}$$

Theorem 9.1 (Candès, Li, Soltanolkotabi'14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{4}\right)^{t/2} \|\boldsymbol{x}^\star\|_2,$$

with high prob., provided that step size $\eta \lesssim 1/n$ and sample size: $m \gtrsim n \log n$.

- Iteration complexity: $O(n\log\frac{1}{\epsilon})$
- Sample complexity: $O(n \log n)$

$$\mathsf{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) := \min\{\|\boldsymbol{x}^t \pm \boldsymbol{x}^\star\|_2\}$$

Theorem 9.1 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{4}\right)^{t/2} \|\boldsymbol{x}^\star\|_2,$$

with high prob., provided that step size and sample size: .

- Iteration complexity: $O(n\log\frac{1}{\epsilon})$
- Sample complexity: $O(n \log n)$
- Derived based on (worst-case) local geometry

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \asymp n \log n)$

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m\asymp n\log n$

WF converges in O(n) iterations

WF converges in O(n) iterations

Step size taken to be $\eta = O(1/n)$

This choice is suggested by worst-case optimization theory

WF converges in O(n) iterations

Step size taken to be $\eta = O(1/n)$

This choice is suggested by worst-case optimization theory

Does it capture what really happens?

Improved theory of WF

$$\mathsf{dist}({oldsymbol x}^t,{oldsymbol x}^\star) := \min\{\|{oldsymbol x}^t \pm {oldsymbol x}^\star\|_2\}$$

Theorem 9.2 (Ma, Wang, Chi, Chen '17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\mathsf{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\star) \lesssim \left(1 - \frac{\eta}{2}\right)^t \|\boldsymbol{x}^\star\|_2$$

with high prob., provided that step size $\eta \approx 1/\log n$ and sample size $m \gtrsim n \log n$.

- Iteration complexity: $O(n \log \frac{1}{\epsilon}) \searrow O(\log n \log \frac{1}{\epsilon})$
- Sample complexity: $O(n \log n)$
- Derived based on finer analysis of GD trajectory

Gaussian designs: $a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \asymp n \log n)$

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m\asymp n\log n$

WF converges in O(n) iterations

WF converges in O(n) iterations

Step size taken to be $\eta = O(1/n)$

This choice is suggested by worst-case optimization theory

WF converges in O(n) iterations

Step size taken to be $\eta = O(1/n)$

This choice is suggested by worst-case optimization theory

Does it capture what really happens?

Numerical efficiency with $\eta_t = 0.1$

Vanilla GD (WF) converges fast for a constant step size!

Which local region enjoys both strong convexity and smoothness?

$$abla^2 f(oldsymbol{x}) = rac{1}{m} \sum_{k=1}^m \left[3 oldsymbol{(a_k^ op oldsymbol{x})}^2 - oldsymbol{(a_k^ op oldsymbol{x}^\star)}^2
ight] oldsymbol{a}_k oldsymbol{a}_k^ op$$

Which local region enjoys both strong convexity and smoothness?

$$\nabla^2 f(\boldsymbol{x}) = \frac{1}{m} \sum_{k=1}^m \left[3 (\boldsymbol{a}_k^\top \boldsymbol{x})^2 - (\boldsymbol{a}_k^\top \boldsymbol{x}^\star)^2 \right] \boldsymbol{a}_k \boldsymbol{a}_k^\top$$

ullet Not sufficiently smooth if $oldsymbol{x}$ and $oldsymbol{a}_k$ are too close (coherent)

Which local region enjoys both strong convexity and smoothness?

• x is incoherent w.r.t. sampling vectors $\{a_k\}$ (incoherence region)

Which local region enjoys both strong convexity and smoothness?

ullet x is incoherent w.r.t. sampling vectors $\{a_k\}$ (incoherence region)

Which local region enjoys both strong convexity and smoothness?

• x is incoherent w.r.t. sampling vectors $\{a_k\}$ (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation, projection, regularized loss) to promote incoherence

Encouraging message: GD is implicitly regularized

GD implicitly forces iterates to remain incoherent with $\{a_k\}$ $\max_k |a_k^\top (x^t - x^\star)| \lesssim \sqrt{\log n} \, \|x^\star\|_2, \quad \forall t$

 cannot be derived from generic optimization theory; relies on finer statistical analysis for entire trajectory of GD

Theoretical guarantees for local refinement stage

Theorem 9.3 (Ma, Wang, Chi, Chen'17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

• $\max_k |\boldsymbol{a}_k^{\top} \boldsymbol{x}^t| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{\star}\|_2$ (incoherence)

Theoretical guarantees for local refinement stage

Theorem 9.3 (Ma, Wang, Chi, Chen'17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

- $\max_k |\boldsymbol{a}_k^{\top} \boldsymbol{x}^t| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{\star}\|_2$ (incoherence)
- $\mathsf{dist}(m{x}^t, m{x}^\star) \lesssim \left(1 \frac{\eta}{2}\right)^t \|m{x}^\star\|_2$ (linear convergence)

provided that step size $\eta \approx 1/\log n$ and sample size $m \gtrsim n \log n$.

• Attains ε accuracy within $O(\log n \, \log \frac{1}{\varepsilon})$ iterations

For each $1 \leq l \leq m$, introduce leave-one-out iterates $\boldsymbol{x}^{t,(l)}$ by dropping lth measurement

ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)}$ is independent of $oldsymbol{a}_l$

- ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)}$ is independent of $oldsymbol{a}_l$
- ullet Leave-one-out iterate $x^{t,(l)} pprox {
 m true}$ iterate x^t

- ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)}$ is independent of $oldsymbol{a}_l$
- ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)} pprox ext{true}$ iterate $oldsymbol{x}^t$
 - $\Longrightarrow x^t$ is nearly independent of a_l

No need of sample splitting

 Several prior works use sample-splitting: require fresh samples at each iteration; not practical but helps analysis

No need of sample splitting

 Several prior works use sample-splitting: require fresh samples at each iteration; not practical but helps analysis

• This tutorial: reuses all samples in all iterations

Low-rank matrix completion