UNIVERSITY OF TWENTE.

Symbolic Model Checking of Timed Automata using LTSmin Sybe van Hijum

Overview

Timed Automata

Symbolic Model Checking

LTSmin

Working with LATEX

Second Section

Third Section

UNIVERSITY OF TWENTE. Symbolic Model Checking of Timed Automata using LTSgeiptember 15, 2016 2 / 41

Definition (Labeled Transition System)

A labeled transition system is a 3-tuple $A = \langle S, Act, s_o \rangle$ where

- S is a finite set of states
- ► Act is a finite set of labelled actions
- $s_o \in S$ is a finite set of actions

3)

Timed Automata

Definition (Timed Automata)

An extended timed automaton is a 6-tuple A = $\langle L, C, Act, I_0, \rightarrow, I_c \rangle$ where

- ▶ L is a finite set of locations, typically denoted by I
- C is a finite set of clocks, typically denoted by c
- Act is a finite set of actions
- ▶ $l_0 \in L$ is the initial location
- ▶ $\rightarrow \subseteq L \times G(C) \times Act \times 2^C \times L$ is the (non-deterministic) transition relation.
- I_C: L → G(C) is a function mapping locations to downwards closed clock invariants.

UNIVERSITY OF TWENTE. Symbolic Model Checking of Timed Automata using LTSgeiptember 15, 2016 8 / 41

Time Zones

Time not represented as a variable, but as a zone. Most used structure to represent zones: Different Bound Matrix (DBM)

- Only convex zones
- Memory inefficient

$$\begin{array}{cccc} 0 \leq c < 60 & & \mathbf{O} & c \\ & & \downarrow & & \mathbf{O} & (0, \leq) \\ c - 0 < 60 & & c & (60, <) & (0, \leq) \\ 0 - c \leq 0 & & c & (60, <) & (0, \leq) \end{array}$$

Overview

Timed Automata

Symbolic Model Checking

LTSmin

Working with LATEX

Second Section

Third Section

UNIVERSITY OF TWENTE. Symbolic Model Checking of Timed Automata using LTSminSeptember 15, 2016411

Boolean Decision Diagram

- ► Expresses boolean expressions
- ► States can be seen as boolean expressions
- ► Memory efficient

Boolean Decision Diagram

Figure: A BDD representing $(a \land b) \lor c$

List Decision Diagram

Overview

Timed Automata

Symbolic Model Checking

LTSmin

Working with LATEX

Second Section

Third Section

UNIVERSITY OF TWENTE. Symbolic Model Checking of Timed Automata using LTSminSeptember 15, 2016₄†5

LTSmin

- ► Language independent model checker
- ► Multiple algorithmic back ends
- ► Internal optimization wrappers

LTSmin

LTSmin

- ► States as integer vectors
- Partitioned next-state function
- ► Optimizations based on matrices
 - ► Read(r)
 - ► Must-write(w)
 - ► May-write(W)
 - ► Copy(-)

1:
$$x = 1 \lor a[1] = 0 \rightarrow a[1] := 1, x := 0, y := 5$$

2: $a[0] = 1 \lor y = 5 \rightarrow a[x] := 0, x := 1$

$$\begin{array}{cccc}
x & y & a[0] & a[1] \\
1 & + & W & - & + \\
2 & + & r & + & W
\end{array}$$

Problem: Model checkers are designed for discrete variables (integers), clocks have real values.

- Can we use the LTSmin symbolic model checker for timed automata?
- ► Can we optimize the symbolic back end for clocks?

Current LTSmin Uppaal setup

States as a vector of discrete locations and a pointer to a DBM. Implemented in explicit-state multi-core tool.

First approach: values from DBM directly into an LDD

UNIVERSITY OF TWENTE. Symbolic Model Checking of Timed Automata using LTSmin^{September 15, 2016}421

LDD solution

- ► Correct, working solution
- ► Variable reordering possible
- All variables seen as discrete values
- ▶ No optimizations based on time

Difference Decision Diagram

Definition (Difference Decision Diagram)

A difference decision diagram (DDD) is a directed acyclic graph (V, E). The vertex set V contains two terminals 0 and 1 with out-degree zero, and a set of non-terminal vertices with ut dograp two and the following attributed

out-degree two and the following attributes.				
Attribute	Туре	Description		
pos(v), neg(v)	Var	Positive variable x_i , and negative variable x_j .		
op(v)	$\{<,\leq\}$	Operator $<$ or \le .		
const(v)	\mathbb{D}	Constant c.		
high(v), low(v)	V	High-branch h, and low-branch l.		
The set F contains the edges $(v, low(v))$ and $(v, high(v))$				

eages (v, iow(v)) and (v, nigh(v)), where $v \in V$ is a non-terminal vertex.

Definition (Ordered DDD)

An ordered DDD (ODDD) is a DDD where each non-terminal vertex v satisfies:

- 1. $neg(v) \prec pos(v)$,
- 2. $var(v) \prec var(high(v))$,
- 3. $var(v) \prec var(low(v))$ or var(v) = var(low(v)) and $bound(v) \prec bound(low(v))$.

Definition (Locally Reduced DDD)

A locally reduced DDD (R_L DDD) is an ODDD satisfying, for all non-terminals u and v:

- 1. $\mathbb{D} = \mathbb{Z}$ implies $\forall v.op(v) = \leq' \leq'$,
- 2. (cstr(u), high(u), low(u)) = (cstr(v), high(v), low(v))implies u = v,
- 3. $low(v) \neq high(v)$,
- 4. var(v) = var(low(v)) implies $high(v) \neq high(low(v))$.

UNIVERSITY OF TWENTE. Symbolic Model Checking of Timed Automata using LTSminSeptember 15, 2016447

Overview

Timed Automata

Symbolic Model Checking

LTSmin

Working with LAT⊨X

Second Section

Third Section

Font Sizes

Table: The different font sizes within LATEX

tiny	sample text
scriptsize	sample text
footnotesize	sample text
small	sample text
normalsize	sample text
large	sample text
Large	sample text
LARGE	sample text
huge	sample text
Huge	sample text

Creation of a new frame

The text within the frame

Creation of a new frame - source

\begin{frame}{Creation of a new frame}
 The text within the frame
\end{frame}

Frame with pause itemes

▶ First item

Frame with pause itemes

- ► First item
- ▶ Second item

Frame with pause itemes

- ► First item
- ► Second item
- ► You get the point.

Frame with pause itemes - source

```
\begin{frame}{Frame with \texttt{pause} itemes}
\begin{itemize}
\item First item \pause
\item Second item \pause
\item You get the point.
\end{itemize}
\end{frame}
```


Frame with pause tables

Table: Caption

Class	Α	В	С	D
Χ	1	2	3	4

Frame with pause tables

Table: Caption

Class	Α	В	С	D
Χ	1	2	3	4
Υ	3	4	5	6

Frame with pause tables

Table: Caption

Class	Α	В	С	D
Χ	1	2	3	4
Υ	3	4	5	6
Z	5	6	7	8

Frame with pause tables - source

```
\begin{frame}{Frame with \texttt{pause} tables}
\rowcolors[]{1}{blue!20}{blue!10}
\begin{table}
\caption{Caption}
\begin{tabular}{1!{\vrule}cccc}
Class & A & B & C & D \\hline
X & 1 & 2 & 3 & 4 \pause \\
Y & 3 & 4 & 5 & 6 \pause \\
7. & 5 & 6 & 7 & 8
\end{tabular}
\end{table}
\end{frame}
```

UNIVERSITY OF TWENTE. Symbolic Model Checking of Timed Automata using LTSminSeptember 15, 2016₄35

Two Column Output

Text here.
Text here.
Text here.

Two Column Output - source

```
\begin{frame}{Two Column Output}
  \begin{columns}[c]
    \column{1.5in}
    Text here.\\
    Text here.\\
    Text here.
    \column{1.5in}
    \framebox{\includegraphics[width=1.5in]{img/back2}}
  \end{columns}
\end{frame}
```


Overview

Timed Automata

Symbolic Model Checking

LTSmin

Working with LATEX

Second Section

Third Section

First frame of the Second Section

Each new section starts with an Table Of Contents.

Overview

Timed Automata

Symbolic Model Checking

LTSmin

Working with LATEX

Second Section

Third Section

UNIVERSITY OF TWENTE. Symbolic Model Checking of Timed Automata using LTSminSeptember 15, 2016₄40

First frame of the Second Section

The Table Of Contents is clickable