

Business Understanding

Objective:

- Our goal is to **create a model** that can interpret and label a message using **Natural Language Processing**.
- Messages are either:
 - **-direct** (messages sent from person-to-person)
 - **►news** (headlines or clippings)
 - **-social** (social media)
- ■In order to simplify the given dataset, I will be working only with a single label "aid_related".

■Success criteria:

- ▶ How well the model finds all the aid_related messages (Recall).
- ► How accurate the model is when it predicts an aid_related message (Precision).
- ► How accurate the model is overall (Accuracy).

Data Understanding

- The relevant columns of the dataset are message and aid_related.
 - message (our predictive data) is a string of text, e.g.:
 - "Weather update a cold front from Cuba that could pass over Haiti"
 - "There's nothing to eat and water, we starving and thirsty."
 - aid_related (our target) is a binary column, i.e.:
 - Is the message aid related? 1=yes, 0=no.

Data Understanding

Non-Aid-Related

Aid-Related

Data Understanding

Data Preparation

- Text Preparation
 - Cleaning abnormalities (unusual html characters),
 - Removing stop words ("the", "is", "and") & punctuation,
 - Lemmatizing (feet -> foot; running -> run)
- Vectorizing
 - Premade Vectorizer GloVe model (Global Vectors for Word Representation)
 - https://nlp.stanford.edu/projects/glove/
 - Homemade Vectorizer Gensim Word2Vec model

Data Preparation

Homemade Word Vectors Trained on Training Data

Modeling Featured Model:

RNN - GloVe

We are out of food and water.

Disaster Response - Message Identification

This app is designed to show predictions on whether a given text is likely to be aid-related or not. A model like this can be used to quickly label a high volume of texts during times when it is important to find messages that are laberal as important.

Try the WebA Then cell bing used is Returnent Neural Neura

On unseen text data, 80.67% of aid-related messages were found, 80.74% of aid-related predictions were correct. The model scored an 82.69% overall accuracy.

Please fill in some text into the left sidebar, then press the button below. (The messages can be any length)

Current text:

We are out of food and water.

Click here for results.

Ξ

Modeling Featured Model: RNN - GloVe

	F1	Accuracy	Recall	Precision
RNN_glove	0.807064	0.826862	0.806708	0.80742
multilayer_model_NN_glove	0.77246	0.785261	0.812004	0.736589
SVC_glove	0.769165	0.787639	0.788173	0.751051
simple_model_NN_glove	0.764513	0.771791	0.825243	0.71211
multilayer_model_NN_w2v	0.762413	0.770602	0.819947	0.712423
simple_model_NN_w2v	0.754296	0.773376	0.774934	0.734728
RNN_w2v	0.747631	0.767829	0.766108	0.730025
LOGREG_glove	0.733208	0.718304	0.862312	0.637728
RFC_glove	0.73288	0.76664	0.713151	0.753731
LOGREG_w2v	0.729776	0.751189	0.748455	0.712007
RFC_w2v	0.722543	0.771791	0.661959	0.795334
NB_w2v	0.707668	0.709984	0.781995	0.646244
\$VC_w2v	0.707053	0.731775	0.721094	0.693548
NB_glove	0.689233	0.698098	0.745808	0.640637

Evaluation

- Overall, RNN GloVe (the RNN accompanied by the GloVe embeddings) performed clearly / best overall.
 - On the test set:
 - 80.67% of `aid-related` messages were found.
 - 80.74% of `aid-related` predictions were correct.
 - 82.69% overall accuracy.

Evaluation

- This model, if used in the field, would save hours of man-power.
 - With approximately 2500 messages, the model would save approximately 15 hours of time that would have been spent with a human-labeler.

Model Recommendations

- If the priority is overall accuracy, confidence in positive predictions, and balance (F1):
 - The Recurrent Neural Network with GloVe embeddings scored significantly best – 81% of aid-related predictions were correct, and 83% of its overall predictions were correct.
- If the priority is to find the most aid-related messages (at the expense of mislabeling many messages as aid-related):
 - Logistic Regression with the homemade Vectorizer scored the best – finding 86% of all aidrelated messages.

	F1	Accuracy	Recall	Precision
RNN_glove	0.807064	0.826862	0.806708	0.80742
multilayer_model_NN_glove	0.77246	0.785261	0.812004	0.736589
SVC_glove	0.769165	0.787639	0.788173	0.751051
simple_model_NN_glove	0.764513	0.771791	0.825243	0.71211
multilayer_model_NN_w2v	0.762413	0.770602	0.819947	0.712423
simple_model_NN_w2v	0.754296	0.773376	0.774934	0.734728
RNN_w2v	0.747631	0.767829	0.766108	0.730025
LOGREG_glove	0.733208	0.718304	0.862312	0.637728
RFC_glove	0.73288	0.76664	0.713151	0.753731
LOGREG_w2v	0.729776	0.751189	0.748455	0.712007
RFC_w2v	0.722543	0.771791	0.661959	0.795334
NB_w2v	0.707668	0.709984	0.781995	0.646244
SVC_w2v	0.707053	0.731775	0.721094	0.693548
NB_glove	0.689233	0.698098	0.745808	0.640637

Future Work

- Include the other 36 target labels to further classify the messages.
 - (Multilabel Classification)
- Add other languages to the model rather than just English translation.
- Continue to explore the complexity of the neural network architecture and create a larger network.

Thank You!

- Data
 - Appen Datasets
 - https://appen.com/datasets/combined-disaster-response-data/
- Flatiron School
 - James Irving DS Instructor