Before giving the lemma, we list the definitions of the symbols to be used as follows.

TABLE I: Summary of notation conventions used in the article

δ_X	Dirac measure.
$\Gamma(x)$	The gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$.
t_v distribution	Student's t distribution with the probability density function $f(t) = \frac{\Gamma((v+1)/2)}{\sqrt{\pi v \Gamma(v/2)}} (1 + t^2/v)^{-(v+1)/2}$.

A. An Auxiliary Lemma

Definition 1. A d-dimensional random vector X is said to follow a spherical distribution if OX and X have the same probability distribution for all $d \times d$ orthogonal matrix O.

There are many typical examples of spherical distributions, such as the zero-mean normal distribution, the multivariate t-distribution, and so on [1, p.33].

Let $Y \in \mathbb{R}^d$ be a fixed nonzero vector, X_1, \ldots, X_n be random vectors independet chosen with a spherical distribution on \mathbb{R}^d and $P(X_1 = X_2) = 0$. Let $\psi_{ij} \in [0, \pi]$ denote the angle between $X_i - X_j$ and Y for all $1 \le i < j \le n$. Consider the normalized empirical distribution

$$\mu_{n,d} = \frac{1}{\binom{2}{n}} \sum_{1 \le i \le j \le n} \delta_{\sqrt{d}(\frac{\pi}{2} - \psi_{ij})}.$$

under the case where both n and d grow.

Lemma 1. Assume $d = d_n$ satisfying $\lim_{n\to\infty} d_n = \infty$, Then, with probability one, $\mu_{n,d}$ converges weakly to N(0,1) as $n\to\infty$.

Proof. Firstly, denote

$$r_{ij} = \cos \psi_{ij} = \frac{Y \cdot (X_i - X_j)}{\|Y\| \cdot \|X_i - X_i\|}, \quad 1 \le i < j \le n.$$

Note that $X_i - X_j$ also follows a spherical distribution, by [1, Theorem 1.5.7 (i)],

$$\frac{(d-1)^{1/2}r_{ij}}{(1-r_{ij}^2)^{1/2}}\tag{1}$$

has the t_{d-1} distribution. Then, by [1, p.147 (5)], it follows that the density function of r_{ij} is

$$\frac{\Gamma(d/2)}{\pi^{1/2}\Gamma((d-1)/2)}(1-r^2)^{(d-3)/2}, \quad r \in (-1,1).$$
 (2)

July 17, 2024 DRAFT

Similar to the proof of [2, Lemma 4.1] and [3, Lemma 12], we obtain that $\{r_{ij}, 1 \le i < j \le n\}$ are pairwise independent. Moreover, by (2) and some direct computations, $\{\psi_{ij} = \cos^{-1} r_{ij}, 1 \le i < j \le n\}$ are pairwise independent with the density function

$$h(\psi) = \frac{\Gamma(d/2)}{\pi^{1/2}\Gamma((d-1)/2)} (\sin \psi)^{d-2}, \quad \psi \in [0, \pi].$$
 (3)

Next, borrow the idea from the proof of [3, Lemma 16], since $\{\psi_{ij}, 1 \leq i < j \leq n\}$ are pairwise independence with common distribution, we can show that for any bounded and continuous function u(x) defined on \mathbb{R} ,

$$\frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} \left[u(\varphi_n(\psi_{ij})) - Eu(\varphi_n(\psi_{ij})) \right] \to 0 \tag{4}$$

with probability one, where $\varphi_n(\psi) = \sqrt{d_n}(\frac{\pi}{2} - \psi)$. Then, if we replace Θ_{ij} with ψ_{ij} in [3, Lemma 16 (ii)], the conclusion still holds. This means that we only need to show that $\varphi_n(\psi_{12})$ converges weakly to N(0,1), and then we can get that $\mu_{n,d}$ converges weakly to N(0,1) by [3, Lemma 16 (ii)].

Finally, by taking account of (3) and [3, equations (41)–(43)], it is straightforward to obtain that $\varphi_n(\psi_{12})$ converges weakly to N(0,1), thus completes the proof.

REFERENCES

- [1] R. J. Muirhead, Aspects of Multivariate Statistical Theory. Wiley, New York, 1982.
- [2] T. T. Cai and T. Jiang, "Phase transition in limiting distributions of coherence of high-dimensional random matrices," *Journal of Multivariate Analysis*, vol. 107, pp. 24–39, 2012.
- [3] T. T. Cai, J. Fan, and T. Jiang, "Distributions of angles in random packing on spheres," *Journal of Machine Learning Research*, vol. 14, p. 1837, 2013.

July 17, 2024 DRAFT