

ULMF: Web Service QoS Collaborative Prediction with Explicit Ratings and Implicit User Location

Limin Shen, Zhen Chen and Feng Li

Presented by Zhen Chen

Taiyuan, China August 29, 2015

OUTLINE

1 | Motivation 2 | Related Work 3 | Architecture **QoS Prediction Approach Experiment** | Conclusion & Future Work

Web service: reusable, self-describing and loosely coupled Internetware designed to construct complex distributed systems

WPF C#调用新浪天气服务

Flex调用www.webxml.com.cn站点天气服务

http://php.weather.sina.com.cn/xml.php?city=%B1%B1%BE%A9&password=DJOYnie T8234jlsK&day=0

http://webservice.webxml.com.cn/WebServices/WeatherWS.asmx/getWeather

Web Services Components

■ Web service composition: build service-oriented systems using existing Web service components

- **□** Quality-of-Service (QoS)
 - Response time
 - Throughput
 - Failure probability

— ...

□ Challenges

- A user has only called a few services before
- Calling all the services one by one is time consuming
- Web services QoS may vary in different network condition

— ...

Predict the unknown values

2 Related Work

- Collaborative filtering(CF) based QoS prediction Neighborhood-based approaches
 - UPCC [Shao et al. 2007]
 - □ IPCC, UIPCC [Zheng et al. 2011]

Suffer from the sparsity of available historical QoS data, Especially run into malfunction for new users

Model-based approaches

- MF with regularization terms[Lo et al. 2012]
- NIMF[Zheng et al. 2013]

Address the cold-start issue

2 Related Work

User Location Information is not carefully concerned Why consider user location information?

Distribution of pairs in different distance range

$$GAP(\overline{r}_u, \overline{r}_v) = Abs(\overline{r}_u - \overline{r}_v) / Min(\overline{r}_u, \overline{r}_v)$$

Observation

A user pair's *GAP* has a positive correlation with user pair's distance

Motivation

The smaller distance, the more similar QoS ratings; the larger distance, the more dissimilar QoS ratings.

3 Architecture

- a. collecting userlocation info andmonitoring theQoS info
- b. neighbor selection based on both distance and similarity
- c. selected neighbors are integrated back into matrix factorization model

- Neighbor Selection based on distance and similarity
 - Distance Calculation

$$d(u,v) = RADIUS * arccos(\sin(lat'_u) * \sin(lat'_v) * cos(lon'_u - lon'_v) + cos(lat'_u) * cos(lat'_v) * PI / 180$$

Preliminary Filtering

$$N(u) = \{v \mid Top - K(List(u)), u \neq v\}$$

Are these neighbors OK?

- Neighbor Selection based on distance and similarity
 - □ Similarity Calculation PCC(Person Correlation Coefficient)

$$sim(u,v) = \frac{\sum_{s \in I_s} (r_{u,s} - \overline{r_u})(r_{v,s} - \overline{r_v})}{\sqrt{\sum_{s \in I_s} (r_{u,s} - \overline{r_u})^2} \sqrt{\sum_{s \in I_s} (r_{v,s} - \overline{r_v})^2}}$$

Secondary Filtering

$$EN(u) = \begin{cases} \{v \mid v \in N(u)\}, & u \text{ is a new comer} \\ \{v \mid sim(u, v) > 0, v \in N(u)\}, & otherwise \end{cases}$$

Model building with selected neighbors

Considering the biases of user & service

$$otag U^T S \quad \hat{r}_{u,s} = p_u^T q_s$$

The influence of neighborhood

$$\hat{r}_{u,s} = (1 - \beta)(\mu + b_u + b_s) + \beta q_s^T (p_u + |EN_u|^{-\frac{1}{2}} \sum_{v \in EN_u} n_v)$$

$$L = \min \frac{1}{2} \sum_{u=1}^{m} \sum_{s=1}^{n} I_{u,s} (r_{u,s} - \hat{r}_{u,s})^{2}$$

Diff. between historical records and

$$L = \min \frac{1}{2} \sum_{u=1}^{m} \sum_{s=1}^{n} I_{u,s} (r_{u,s} - \hat{r}_{u,s})^{2}$$

$$+ \frac{\lambda}{2} (|S_{u}|^{-\frac{1}{2}} ||b_{u}||_{F}^{2} + |U_{s}|^{-\frac{1}{2}} ||b_{s}||_{F}^{2} + |S_{u}|^{-\frac{1}{2}} ||p_{u}||_{F}^{2} + |U_{s}|^{-\frac{1}{2}} ||q_{s}||_{F}^{2} + \sum_{v \in EN_{u}} |EN_{v}|^{-\frac{1}{2}} ||n_{v}||_{F}^{2})$$

Minimize this value

Regularization terms

Model learning with gradient decent algorithm

$$\begin{split} b'_u &= b_u - \gamma \frac{\partial L}{\partial b_u}, \qquad -\frac{\partial L}{\partial b_u} = \sum_{s=1}^n I_{u,s} (r_{u,s} - \hat{r}_{u,s}) (1-\beta) - \lambda |S_u|^{-\frac{1}{2}} b_u \\ b'_s &= b_s - \gamma \frac{\partial L}{\partial b_s}, \qquad -\frac{\partial L}{\partial b_s} = \sum_{u=1}^m I_{u,s} (r_{u,s} - \hat{r}_{u,s}) (1-\beta) - \lambda |U_s|^{-\frac{1}{2}} b_s \\ p'_u &= p_u - \gamma \frac{\partial L}{\partial p_u}, \qquad -\frac{\partial L}{\partial p_u} = \sum_{s=1}^n I_{u,s} (r_{u,s} - \hat{r}_{u,s}) \beta q_s - \lambda |S_u|^{-\frac{1}{2}} p_u \\ q'_s &= q_s - \gamma \frac{\partial L}{\partial q_s}, \qquad -\frac{\partial L}{\partial q_s} = \sum_{u=1}^m I_{u,s} (r_{u,s} - \hat{r}_{u,s}) \beta (p_u + |EN_u|^{-\frac{1}{2}} \sum_{v \in EN_u} n_v) - \lambda |U_s|^{-\frac{1}{2}} q_s \\ n'_v &= n_v - \gamma \frac{\partial L}{\partial n_v}, \qquad \forall v \in EN_v, -\frac{\partial L}{\partial n_v} = \sum_{s=1}^n I_{u,s} (r_{u,s} - \hat{r}_{u,s}) \beta |EN_u|^{-\frac{1}{2}} q_s - \lambda |EN_v|^{-\frac{1}{2}} n_v \end{split}$$

Gradient Descent

Dataset

- 1,974,675 response time records of 5825 Web service from 339 distributed users in 24 countries.
- Longitude and latitude geographic information of 339 users were extracted from userlist.txt file.

Metrics

■ MAE: to measure the average prediction accuracy.

$$MAE = \frac{1}{N} \sum \left| r_{u,s} - \hat{r}_{u,s} \right|$$

■ RMSE: presents the deviation of the prediction error, to detect relatively large errors.

$$RMSE = \sqrt{\frac{1}{N} \sum \left| r_{u,s} - \hat{r}_{u,s} \right|^2}$$

COMPARISON (SMALLER VALUE INDICATES BETTER ACCURACY)

	Density	UMEAN	IMEAN	UPCC	IPCC	UIPCC	NMF	SVD++	NIMF	ULMF
MAE	2.5%	0.8792	0.7382	0.7639	0.7884	0.6965	0.7616	0.6929	0.6715	0.6189
	5%	0.8786	0.7032	0.6955	0.7178	0.6173	0.6778	0.6558	0.6159	0.5329
	7.5%	0.8749	0.6941	0.6888	0.7131	0.5721	0.6691	0.6444	0.5517	0.5036
	10%	0.8716	0.6884	0.6876	0.7047	0.5395	0.6551	0.6417	0.5023	0.4778
RMSE	2.5%	1.8625	1.6467	1.7278	1.7934	1.5239	1.9411	1.7066	1.6198	1.5674
	5%	1.8579	1.5746	1.5025	1.5333	1.4916	1.7936	1.4490	1.4808	1.3962
	7.5%	1.8588	1.5599	1.4813	1.5120	1.4557	1.7818	1.4343	1.3682	1.3054
	10%	1.8596	1.5485	1.4661	1.4988	1.4195	1.7701	1.4309	1.3001	1.2526

denser training matrix provides more ratings information that can be utilized to benefit the prediction performance

ULMF outperforms the other methods

□ The influence of code-start users

200:139

Location-aware
neighbors'
information enabling
UMLF to learn more
reliable user latent
features than ratingonly matrix
factorization

COMPARISON WITH COLD-START USERS

	Density	IMEAN	NMF	SVD++	ULMF
	2.5%	0.7141	0.8447	0.7125	0.6324
NAAE	5%	0.6921	0.8109	0.7023	0.5925
MAE	7.5%	0.6758	0.8001	0.6802	0.5891
	10%	0.6790	0.7753	0.6688	0.5739
	2.5%	1.6356	2.0809	1.6787	1.6025
RMSE	5%	1.5712	2.0173	1.6220	1.5220
KIVISL	7.5%	1.5576	1.9621	1.5948	1.5129
	10%	1.5346	1.9495	1.5203	1.4812

denser training matrix provides more ratings information that can be utilized to benefit the prediction performance

ULMF outperforms the other methods

■ The impact of parameters

The Impact of β:

1 optimal β setting can obtain better prediction accuracy

2 fusing of user and service biases will improve prediction accuracy

The Impact of Top-K:
Optimal Top-K can
be selected to
achieve best
performance.

■ The impact of parameters

1.27

density=10%

The Impact of dimensionality:

ULMF is less sensitive to the value of dimensionality.

The Impact of λ and γ :

Optimal λ and γ can be selected to achieve best performance.

6 Conclusion and future work

Conclusion

- Analyze the relationship of users and neighbors' QoS ratings under the concept of geographic distance relationship
- Cooperate location information with matrix factorization approach
- Outperform the other existing approaches, as well as perform well under cold start situation.

☐ Future work

- Support service-side location information mining and extend our model to support service location-awareness for better prediction
- Find out some other additional information(time, trust) except location to improve the prediction outcome

