

Демонстрационно-отладочная плата 1986EvBrd_64. Техническое описание.

1. Общие положения.

- 1.1. Демонстрационно-отладочная плата 1986EvBrd_64 (далее 1986EvBrd_64) предназначена для:
- демонстрации функционирования и оценки производительности микроконтроллера 1986BE92У и его основных периферийных модулей;
- демонстрации функционирования интерфейсных микросхем CAN и COM (RS-232) интерфейсов;
- отладки собственных проектов с применением установленных на плате блоков;
- программирования памяти программ микроконтроллеров 1986ВЕ92У.
 - 1.2. Для демонстрации функционирования, 1986EvBrd 64 подключается к:
- к СОМ порту персонального компьютера;
- к CAN или COM (RS-232) интерфейсу дополнительного внешнего устройства, например, аналогичной демонстрационно-отладочной плате 1986EvBrd 64;
- к источнику питания +5В.
 - 1.3. Для программирования памяти программ микроконтроллеров 1986BE92У применяется внешний внугрисхемный программатор ULINK2 (Keil) или JEM-ARM-V2(Phyton).
 - 1.4. Питание 1986EvBrd_64 осуществляется от адаптера постоянного тока напряжением +5 вольт или от шины USB.
 - 1.5. Комплектация:
- печатная плата 1986EvBrd 64;
- образец микроконтроллера 1986ВЕ92У;
- нуль-модемный кабель для СОМ (RS-232) интерфейса;
- кабель USB-A/USB-B;
- блок питания для отладочной платы
- диск с программным обеспечением, документацией, схемотехническими файлами и исходными кодами программ.

2. Состав платы.

2.1. Внешний вид демонстрационно-отладочной платы приведен на рис 1.

Рис. 1

2.2. Установленные на плату компоненты показаны на рис 2, их описание содержится в таблице 1.

Демонстрационно-отладочная плата 1986EvBrd_64

Таблица 1

№ на	Описание компонентов платы 1986EvBrd_64		
рис.1			
1	Контактирующее устройство для микроконтроллера 1986ВЕ92У. Микроконтрол-		
	лер должен быть установлен в спутник-держатель.		
2	Разъем Х27 портов А,Е, F микроконтроллера.		
3	Разъем карты памяти microSD.		
4	Переключатели выбора режима загрузки.		
5	Разъем USB-B.		
6	Подстроечный резистор на 7-м канале АЦП.		
7	Разъем BNC внешнего сигнала на 7-м канале АЦП.		
8	Разъем BNC внешнего сигнала на 1-м входе компаратора.		
9	Разъем BNC выхода ЦАП1.		
10	Разъем Audio 3.5мм выхода ЦАП1 через звуковой усилитель.		
11	Батарея 3.0В.		
12	ЖК индикатор 128x64.		
13	Кнопка WAKEUP.		
14	Кнопки UP, DOWN, LEFT, RIGHT, SELECT.		
15	Кнопка RESET.		
16	Разъем питания 5В.		
17	Фильтр питания.		
18	Разъем RS-232.		
19	Разъем CAN.		
20	Приемо-передатчик RS-232 5559ИН4.		
21	Приемо-передатчик CAN 5559ИН14.		
22	Разъем отладки JTAG-B.		
23	Набор светодиодов на порте С.		
24	Разъем отладки JTAG-A.		
25	Разъем X26 портов B,C,D микроконтроллера.		

Подключение портов микроконтроллера к разъемам X26, X27 показано в табл. 2. Таблица 2

I/ average	Вывод МК	/питание
Контакт	X26	X27
1,2	GND	GND
3,4	+3,3V	+3,3V
5	PD0	PA6
6	PD1	PA7
7	PD2	PA4
8	PD3	PA5
9	PD4	PA2
10	PD5	PA3
11	PD6	PA0
12	-	PA1
13	PB0	-
14	PB1	-
15	PB2	PE1
16	PB3	PE3
17	PB4	-

18	PB5	-
19	PB6	PF0
20	PB7	PF1
21	PB8	PF2
22	PB9	PF3
23	PB10	PF4
24	PC0	PF5
25	PC1	PF6
26	PC2	-
27,28	+5V	+5V
29,3	GND	GND

- 2.3. Назначение установленных на плате конфигурационных перемычек:
- POWER_SEL выбор источника питания для платы между разъемом USB и внешним источником питания.
- SLEW RATE выбор скорости передачи данных интерфейса CAN.
- CAN LOAD выбор нагрузки линии CAN.
- ADC_INP_SEL выбор источника сигнала для 7-го канала АЦП между подстроечным резистором "TRIM" и BNC разъемом "ADC".
- COMP_INP_SEL выбор источника сигнала на 1-м входе компаратора между BNC разъемом "COMP_INP" и выходом ЦАП1.
- DAC_OUT_SEL выбор назначения сигнала с выхода ЦАП1 между BNC разъемом "DAC_OUT" и звуковым усилителем.
 - 2.4. Назначение установленных на плате переключателей и клавиш:
- SW1, SW2 переключатели выбора режима работы.

Таблица 3

SW2	SW1	Режим работы
0	0	Режим микроконтроллера, код исполняется из Flash памяти начиная с адреса 0x0800_0000.
0	1	Режим микроконтроллера, код исполняется из Flash памяти начиная с адреса 0x0800_0000, отладка через разъем JTAG_A.
1	0	Режим микропроцессора, код исполняется из внешней памяти начиная с адреса 0x1000_0000.
1	1	Режим микропроцессора, код исполняется из внешней памяти начиная с адреса 0x1000 0000, отладка через разъем JTAG B.

- UP, DOWN, LEFT, RIGHT, SELECT программируемые пользователем клавиши.
- RESET сигнал аппаратного сброса МК.
- WAKEUP сигнал внешнего выхода из режима Standby.

3. Конфигурирование среды разработки Keil uVision 3 для работы с МК 1986ВЕ91Т.

- 3.1. После установки пакета Keil uVision3 в папку <Keil uVision>\ ARM\Flash необходимо скопировать файл 1986BE.FLM с CD диска, входящего в комплект поставки.
- 3.2. После создания нового проекта в меню Project Options в закладке Device необходимо выбрать процессор ARM Cortex-M3 (Рис. 2).

Рис. 2

3.3. В закладке Target выставить параметры распределения памяти (рис. 3): память программ – начальный адрес 0x0800_0000, размер 0x0002_0000; память данных — начальный адрес 0x2000_0000, размер 0x0000_8000.

Рис. 3

Демонстрационно-отладочная плата 1986EvBrd_64

- 3.4. В закладке Debug необходимо установить следующие параметры (рис. 4):
 - Use ULINK Cortex Debugger
 - Load Application at Startup
 - Run to Main().

После задания конфигурации нажмите кнопку ОК.

Рис. 4

3.5. Далее нужно снова вызвать Project Options и в закладке Debug нажать кнопку Settings (рис. 5):

Рис. 5

Выберите закладку Flash Download, затем нажмите кнопку Add и из списка поддерживаемых микроконтроллеров выберите 1986BE IAP 128kB Flash. Затем нажмите кнопку Add (рис. 6).

Рис. 6

3.6. После добавления микроконтроллера 1986BE в Keil uVision, он отражается в окне Programming Algorithm. В строке ввода RAM for Algorithm Size установите значение 0x0800 (рис. 7). Для закрытия окна нажмите кнопку ОК.

Рис. 7

Теперь среда разработки Keil uVision готова для разработки и отладки приложений на микроконтроллере МК1986ВЕ91Т.

4. Демонстрационная программа для микроконтроллера.

- 4.1. Демонстрационная программа для микроконтроллера (далее демопрограмма для МК) написана на языке С. Исходный текст программы прилагается к комплекту демонстрационной платы.
- 4.2. Для программирования памяти программ микроконтроллера прилагается .hex файл (.hex).