PSI3451

RELATÓRIO - Projeto 1 – (RAND_NUM) + (LFSR)

NOME: Gabriel Moraes da Cruz				
#USP: 10355020				
DATA DE ENTREGA:				
NOTA:				
Parte I:				
Parte II.1 (anexos 1-2-3):				
Parte II.2 (anexo 4):				
Parte II.3 (anexos 5-6):				
Parte II.4 (anexos 7-8-9-10):				
TOTAL:				

Instruções para a elaboração do relatório.

O relatório apresenta 2 partes.

- 1. Na parte I os dados devem ser preenchidos nos espaços apropriados.
- 2. Na parte II os dados devem ser anexados no final do relatório na ordem em que comparecem neste modelo.
- 3. Todos os anexos devem ser numerados (a numeração é indicada abaixo).
- 4. Todas os arquivos, imagens e tabelas anexadas devem **mostrar com clareza as informações solicitadas**
- 5. Dados relevantes presentes nas imagens devem ser obrigatoriamente destacados. Podem ser usados os seguintes recursos:
 - a. INSERIR COMENTÁRIOS EM CÓDIGOS
 - b. SUBLINHAR VALORES OU OUTROS RESULTADOS
 - c. INDICAR COM SETAS DETALHES RELEVANTES DAS IMAGENS DO WAVE
 - d. OUTRO recurso que permita a fácil identificação de resultados relevantes por parte do leitor.

OBSERVAÇÃO: por conveniência, no final desta apostila encontra-se uma breve recordação teórica sobre o LFSR que será desenvolvido. Estas informações foram extraídas da apostila de conceitos já disponível no site da disciplina

IMPORTANTE: este projeto desenvolve o modelo do módulo RAND_NUM (gerador de números aleatórios) o qual contém o módulo LFSR conforme ilustra a figura 1b no breve resumo teórico reproduzido no final deste texto.

Parte I

Geração do LFSR e simulação por software

(PREENCHER OS CAMPOS ABAIXO)

#USP: 10335020

#USP mod 2048 (decimal): 812

#USP mod 2048 (binário): 01100101100

Polinômio característico resultante (INDICAR ATRAVÉS DE UM CÍRCULO AS POTÊNCIAS RELEVANTES, RISCAR AS DEMAIS):

$$x^{12} + x^{10} + x^9 + x^6 + x^4 + x^3 + 1$$

Parte II

Resultados das simulações do LFSR pelo software
Online CRC BCH Calculator - Code Generator
do site (https://leventozturk.com/engineering/crc/)

Execute o software por pelo menos 10 ciclos

ANEXO 1 (acrescentar no final do relatório): Impressão das imagens de tela com os resultados da simulação por software (10 ciclos)

➤ Tabela 1 com os 10 primeiros números gerados pelo software. ATENÇÃO: apresentar os números em binário e hexadecimal.

ANEXO 2 (acrescentar no final do relatório): tabela 1 contendo os 10 estados codificados em <u>BINÁRIO</u> (copiados do software) e em <u>HEXADECIMAL</u> (para fácil identificação).

Tabela 1: Resultados da simulação (10 ciclos)

CICLO	Binário	Hexadecimal
1	100110100111	9A7
2	010100010111	517
3	101000101110	A2E
4	00100000101	205
5	010000001010	40A
6	100000010100	814
7	011001110001	671
8	110011100010	CE2
9	111110011101	F9D
10	100101100011	963

> Desenhar o circuito correspondente ao seu polinômio característico

ANEXO 3 (acrescentar no final do relatório): esquema do LFSR. Indicar as células REG, EXOR e OR (veja a figura 2 no final deste texto). Este esquema é o que será capturado em VHDL.

1. <u>Código VHDL ESTRUTURAL dos módulos RAND NUM e LFSR (ver figura 1b no final deste texto).</u>

(Atenção: lembrar que o código do LFSR deve obrigatoriamente respeitar as seguintes características:

- o LFSR terá obrigatoriamente 12 FFs (Q_{11} .. Q_0). As saídas (Q_1 e Q_0 ,) são roteadas para o módulo RAND_NUM (figura 1.b).
- o modelo VHDL do DFF é o fornecido ao aluno (no site da disciplina).
- os modelos VHDL das células XOR e OR devem ser copiadas e adaptadas (se for necessário) de módulos utilizados em aulas anteriores.
- usar <u>obrigatoriamente o comando GENERATE</u>
- ➤ Criar os códigos VHDL do RAND_NUM e do LFSR **ANEXO 4** (acrescentar no final do relatório): Descrições do RAND_NUM e do LFSR em VHDL.

LFSR:

```
library IEEE;
       use IEEE.std logic 1164.all;
           clk : in std logic;
           res : in std logic;
           qi : out std logic vector(11 downto 0);
           qout : out std logic vector(1 downto 0)
      end entity:
        gl : for i in 0 to 11 generate
           g2: if i = 0 generate
45
               ou : or2 port map(q_s(11),res,d_s(i));
           g3: if (i = 3) or (i=4) or (i = 6) or (i = 9) or (i = 10) generate
               xor3 : xor2 port map(q_s(i-1),q_s(11),aux(i));
              or10 : or2 port map(aux(i),res,d_s(i));
           end generate:
               or10: or2 port map(q_s(i-1), res, d_s(i));
           FF : d_reg port map(clk,'1',d_s(i),q_s(i));
        qout <= q s(1 downto 0);
        qi <= q_s;
```

RAND_NUM:

XOR_2bits:

OR 2bits:

ATENÇÃO: ressaltar (sublinhar) as linhas de código do LFSR onde estão indicadas as posições dos taps e as linhas de código do RAND_NUM onde estão indicadas as conexões (2 bits) entre este módulo e o LFSR.

2. <u>Códigos VHDL para o arquivo de estímulos e para o respectivo testbench para a simulação do módulo RAND NUM (lembrando que o LFSR é um sub-módulo) através do ModelSim.</u>

(Atenção: lembrar que os estímulos devem obrigatoriamente mostrar (na carta de tempos no Wave) as seguintes situações:

- A condição inicial do LFSR
- A sequência das 10 saídas do LFSR (em hexadecimal) demonstrando serem as mesmas obtidas na simulação por software (os resultados devem estar visíveis na figura).
- A sequência de 10 saídas do módulo RAND_NUM (2 bits)
- ➤ Código VHDL do arquivo de estímulos para simulação de RAND_NUM

ANEXO 5 (acrescentar no final do relatório): código do arquivo de estímulos

STIMULI:

```
stimuli.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity stimuli is

generic(

kidth: natural := 12;

CLK_PERIOD: time := 10 ns

);

port(
clk: out std_logic;
res: out std_logic;
rand: in std_logic_vector(1 downto 0)

);

end entity;

end entity;

16

17
```

```
45
46 begin
47 reset_activate;
48 wait for 20*CLK_PERIOD;
49 end process sim;
50
51 end architecture test;
52
```

ATENÇÃO: ressaltar (sublinhar) as linhas de código correspondentes ao estabelecimento da condição inicial e o início da sequência de 10 (ou mais) ciclos. Estas linhas também podem ser identificadas através da inserção de comentários no código.

➤ Código VHDL do arquivo do *testbench* para simulação de RAND_NUM

ANEXO 6 (acrescentar no final do relatório): código do testbench

ATENÇÃO: ressaltar (sublinhar) as linhas de código que indicam os componentes presentes no testbench e as ligações entre eles.

3. Resultados das simulações através do programa ModelSim

Simulação mostrando a correta a condição inicial do LFSR e do RAND_NUM

ANEXO 7 (acrescentar no final do relatório): Imagem do WAVE ilustrando a condição inicial do LFSR e do RAND_NUM

Simulação mostrando a correta geração da sequência pseudo-aleatória

ANEXO 8 (acrescentar no final do relatório): Imagem do WAVE ilustrando a sequências das 10 saídas do RAND_NUM e do LFSR (os mesmos percorridos durante a simulação com o software).

ATENÇÃO: as saídas devem estar identificadas pelos mesmos valores <u>HEXADECIMAIS</u> apresentados no anexo 2 (para fácil identificação).

➤ Tabela 2 anotando os instantes de tempo em que ocorrem as 10 saídas relevantes do LFSR e do RAND_NUM.

ANEXO 9 (acrescentar no final do relatório): tabela 2 com os 10 valores de saída do LFSR (em hexadecimal), os 10 valores de saída do RAND_NUM (em binário) e os instantes de tempo em que ocorrem (extraídos da simulação).

Tabela 2: Resultados da simulação ModelSim

Tempo (em ns)	Saída LFSR	Saída RAND_NUM
12	9A7	3
52	517	2
62	A2E	1
72	205	2
82	40A	0
92	814	1
102	671	2
112	CE2	1
122	F9D	3
132	963	2

Observe e comente:

- 1) se os resultados das simulações por software e pelo ModelSim foram iguaisR: Sim os resultados da parte do FLSR foram todos corretos!
- 2) se a aleatoriedade dos valores de saída do módulo LFSR foi observada na saída do módulo RAND_NUM

R: Sim, observa-se uma sequêncai aleatória de 0 a 3.

ANEXO 10 (acrescentar no final do relatório): comentários.

IMPORTANTE: Para validar o seu projeto, além deste relatório, fazer o UP-LOAD de todos os arquivos VHDL usados neste projeto:

- ✓ RAND_NUM
- ✓ LFSR E SEUS COMPONENTES
- ✓ ESTÍMULOS E TESTBENCH

Breves considerações teóricas:

Este relatório refere-se ao projeto do LFSR, que fará parte do módulo $random_num$ (figura 1b) e este, por sua vez fará parte do módulo num_gen (figura 1a). O LFSR atuará como gerador de números aleatórios e será integrado ao Circuito do Wisdom. Observar que serão aproveitados apenas 2 bits (Q_0 e Q_1) dos n(=12) bits do LFSR. Estes serão utilizados para a definição do endereço da posição inicial do Guru.

Figura 1: Esquemas detalhados de 2 módulos

O sinal RESET será usado para estabelecer a condição inicial do LFSR na configuração Galois (todos os registradores com saídas "1" (figura 2).

Figura 2: Esquema detalhado de cada estágio do LFSR (sem a EXOR)

No desenvolvimento do código VHDL do LFSR

Adotar:

- O modelo VHDL do DFF fornecido ao aluno (no site da disciplina).
- Os modelos VHDL das células XOR e OR devem ser copiadas e adaptadas (se for necessário) de módulos utilizados em aulas anteriores.

- Usar <u>obrigatoriamente o comando GENERATE na descrição VHDL do LFSR</u>
- O LFSR terá obrigatoriamente 12 FFs (Q_{11} .. Q_0). As saídas (Q_1 e Q_0 ,) serão depois roteadas para as saídas do módulo $rand_num$ (figura 1.b).