* Exercice 1

On considère la matrice $A = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}$

- 1) Montrer que $X_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ est un vecteur propre de A, préciser la valeur propre associée à X.
- 2) Déterminer les autres valeurs propres de A.
- 3) Justifier que A est diagonalisable et déterminer $P \in \mathcal{M}_3(\mathbb{R})$ telle que $P^{-1}AP$ est diagonale.

Pour tout $a \in \mathbb{R}$, on pose $A(a) = \begin{pmatrix} 1 & 1 & a \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$.

- 1) Déterminer le rang de A(a) selon les valeurs de $a \in \mathbb{R}$.
- 2) Discuter de la diagonalisabilité de A(a) selon la valeur de $a \in \mathbb{R}$.
- 3) On note dans cette question A = A(1). Pour tout $n \in \mathbb{N}^*$, calcular $\frac{1}{4^n}A^n$.

Soit E un espace vectoriel de dimension finie et $\lambda \in \mathbb{R}^*$. On considère l'endomorphisme $f = \lambda \cdot \mathrm{Id}_E$ (f est une **homothétie** de rapport λ) et un projecteur $p \in \mathcal{L}(E)$ avec $p \neq \mathrm{Id}_E$ et $p \neq 0$.

- 1) Montrer que λ est une valeur propre de $f \circ p$. Quel est le sous-espace propre associé?
- 2) Montrer que 0 est une valeur propre de $f \circ p$. Quel est le sous-espace propre associé?
- 3) L'application $f \circ p$ est-elle diagonalisable?
- 4) Réciproquement, supposons que g soit un automorphisme de E tel que $g \circ p$ soit diagonalisable avec pour seules valeurs propres λ et 0, a-t-on nécessairement $g = \lambda \cdot \operatorname{Id}_E$?

Exercice 4

Soit $a \in \mathbb{R}$ et $n \ge 1$ un entier. Étudier la diagonalisabilité de $A = \begin{pmatrix} a & \cdots & a \\ \vdots & & \vdots \\ a & \cdots & a \end{pmatrix}$ et la diagonalisabilité de $B = A - I_n$.

Soit E un \mathbb{R} -espace vectoriel de dimension finie.

- 1) Dans cette question, u et v sont deux endomorphismes de E avec u diagonalisable. Montrer que u et v commutent si et seulement si tout sous-espace propre de u est stable par v.
- 2) Dans cette question, u et v sont deux endomorphismes diagonalisables de E. Montrer que u et v commutent si et seulement si il existe une base \mathcal{B} de diagonalisation commune à u et v.

Exercice 6

- 1) a) Trouver une condition nécessaire et suffisante sur le réel a pour que la matrice $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ soit diagonalisable.
 - b) Trouver deux matrices de $\mathcal{M}_2(\mathbb{R})$ diagonalisables dont la somme n'est pas diagonalisable.
- 2) Soit A une matrice carrée diagonalisable. Montrer que A^2 est également diagonalisable.
- 3) a) Soit $\theta \in \mathbb{R}$, calcular $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^2$.
 - b) Trouver une matrice $A \in \mathcal{M}_2(\mathbb{R})$ non diagonalisable telle que A^2 est diagonalisable.

* * Exercice 7

Soit $n \in \mathbb{N}^*$. On considère l'application $\psi_n : \mathbb{R}_n[X] \longrightarrow \mathbb{R}[X]$ définie pour tout $P \in \mathbb{R}_n[X]$ par $\psi_n(P)(X) = P(1-X)$.

- 1) Montrer que ψ_n est un endomorphisme de $\mathbb{R}_n[X]$
- 2) Calculer $\psi_n(1), \psi_n(X), \psi_n(X^2)$ et $\psi_n(X^3)$
- 3) Montrer que ψ_n est une symétrie.
- 4) On s'intéresse dans cette question au cas n=3
 - a) Déterminer la matrice M de ψ_3 dans la base canonique \mathcal{B}_0
 - b) Déterminer $Ker(\psi_3 Id)$ et $Ker(\psi_3 + Id)$.
 - c) Déterminer une matrice P telle que

$$P^{-1}MP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Şoit \mathbb{E} un \mathbb{R} -espace vectoriel de dimension finie, soit $\alpha \in \mathbb{R}$ et $f \in \mathcal{L}(E)$.

Montrer que α^2 est une valeur propre de f^2 si et seulement si α ou $-\alpha$ est valeur propre de f.

* * - Exercice 9 *-*

On définit pour tout $k \in [0; 3]$, $f_k : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x^k e^{-x}$ et on note \mathcal{B} la famille (f_0, f_1, f_2, f_3) . Soit E le sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R})$ engendré par \mathcal{B} .

- 1) Montrer que \mathcal{B} est une base de E
- 2) Montrer que l'application $u: f \mapsto f' f''$ est un endomorphisme de E
- 3) Déterminer la matrice de u dans la base \mathcal{B}
- 4) u est-elle inversible? Est-elle diagonalisable?

Pour une matrice $A \in \mathcal{M}_n(\mathbb{R})$ on note $C(A) = \{M \in \mathcal{M}_n(\mathbb{R}) , MA = AM\}$ le **commutant** de A.

Pour $1 \le k \le n$ on note I_k la matrice de $\mathcal{M}_n(\mathbb{R})$ telle que $(I_k)_{i,j} = \begin{cases} 1 & \text{ si } i = j \text{ et } i \le n \end{cases}$

- 1) Déterminer $C(I_k)$.
- 2) Soit P une matrice inversible. Montrer que M appartient à C(A) si et seulement si $P^{-1}MP$ appartient à $C(P^{-1}AP)$.
- 3) Supposons que A est la matrice d'un projecteur. Déterminer ${\cal C}(A)$.

* * * Exercice 11 -

Soit $n \geq 1$ un entier et $A \in \mathbb{R}_n[x]$ un polynôme fixé. Soit $\phi : \mathbb{R}_n[x] \longrightarrow \mathbb{R}_n[x]$, $P \longmapsto \phi_P$ où la fonction polynomiale ϕ_P est définie par

$$\forall x \in \mathbb{R}, \quad \phi_P(x) = A(x) \times \int_0^1 P(t) dt - P(x) \int_0^1 A(t) dt$$

Dans la suite, on notera $\alpha = \int_0^1 A(t) dt$ et Id l'endomorphisme identité de $\mathbb{R}_n[X]$.

- 1) Montrer que ϕ est un endomorphisme de $\mathbb{R}_n[x]$
- 2) Soit $\lambda \in \mathbb{R}$ une valeur propre de ϕ . Montrer que $\lambda \in \{0, -\alpha\}$.
- 3) Montrer que $\operatorname{Im}(\phi + \alpha \operatorname{Id}) \subseteq \operatorname{Ker}(\phi)$.
- 4) En déduire que pour $\alpha \neq 0$, on a $\operatorname{Ker}(\phi + \alpha \operatorname{Id}) \oplus \operatorname{Ker}(\phi) = \mathbb{R}_n[x]$
- 5) À quelle condition ϕ est-il diagonalisable?

Le coin des khûbes

*
Exercice 12

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soit $u \in \mathcal{L}(E)$. On définit l'application ϕ par :

$$\phi: \left\{ \begin{array}{ccc} \mathcal{L}(E) & \to & \mathcal{L}(E) \\ v & \mapsto & u \circ v \end{array} \right.$$

On note $\mathrm{Id}_{\mathcal{L}(E)}$ et Id_E les fonctions identités des espaces $\mathcal{L}(E)$ et E.

- 1) Montrer que ϕ est un endomorphisme de $\mathcal{L}(E)$.
- 2) Montrer que $\operatorname{Spec}(\phi) \subset \operatorname{Spec}(u)$.
- 3) En considérant des endomorphismes particuliers de E, montrer que $\operatorname{Spec}(\phi) = \operatorname{Spec}(u)$.
- 4) Soit $\lambda \in \operatorname{Spec}(u)$
 - a) Montrer que

$$v \in \operatorname{Ker}(\phi - \lambda \operatorname{Id}_{\mathcal{L}(E)}) \iff \operatorname{Im}(v) \subset \operatorname{Ker}(u - \lambda \operatorname{Id}_E)$$

- b) En déduire dim(Ker($\phi \lambda \operatorname{Id}_{\mathcal{L}(E)}$))
- c) Montrer que u est diagonalisable si et seulement si ϕ est diagonalisable.

(D'après écrits ENS 2023)

On considère un entier $n \geq 1$ et l'application linéaire $\varphi : \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$ définie par

$$\varphi(x_1, x_2, x_3, \dots, x_{2n}, x_{2n+1}) = (x_2, x_1 + x_3, x_2 + x_4, \dots, x_{2n-1} + x_{2n+1}, x_{2n})$$

- 1) Quelle est la matrice de φ dans la base canonique?
- 2) Déterminer une base du noyau de φ .
- 3) Déterminer le rang de φ
- 4) A-t-on $\operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi) = \mathbb{R}^{2n+1}$?
- 5) Soient a et b deux réels. En étudiant la partie imaginaire de $\mathrm{e}^{ia}(\mathrm{e}^{ib}+\mathrm{e}^{-ib})$, montrer que

$$\sin(a+b) + \sin(a-b) = 2\cos(b)\sin(a)$$

6) Soit
$$k \in \{1, 2, \dots, 2n+1\}$$
 et $\theta = \frac{k\pi}{2n+2}$. On considère le vecteur

$$v_{\theta} = (\sin(\theta), \sin(2\theta), \sin(3\theta), \dots, \sin((2n+1)\theta))$$

a) Pour $j \in \{1, \dots, 2n+1\}$, montrer que la j-ème coordonnée de $\varphi(v_{\theta})$ est

$$\sin((j-1)\theta) + \sin((j+1)\theta)$$

- b) Montrer que v_{θ} est un vecteur propre de φ , préciser la valeur propre associée.
- c) La matrice de φ est-elle diagonalisable?