# 1.2 数制

## 1.2.1十进制

## 1.2.2 二进制

## 1.2.3 二-十进制之间的转换

## 1.2.4十六进制和八进制

### 1.2.2 二进制

#### 1、二进制数的表示方法

二进制数只有0、1两个数码,进位规律是: "逢二进一".

例如: 
$$1+1=10=1\times 2^1+0\times 2^0$$

二进制数的一般表达式为:



各位的权都是2的幂。

### 1.2.3 二十进制之间的转换(自学)

1)、十进制数转换成二进制数: 整数部分小数部分

a. 整数的转换:

"辗转相除"法:将十进制数连续不断地除以2,直至商为零,所得余数由低位到高位排列,即为所求二进制数

例1.2.2 将十进制数(37)p转换为二进制数。

解:根据上述原理,可将(37)p按如下的步骤转换为二进制数



由上得 (37)<sub>D</sub>=(100101)<sub>B</sub>

当十进制数较大时,有什么方法使转换过程简化?

### b. 小数的转换:

对于二进制的小数部分可写成

$$(N)_{\rm D} = b_{-1} \times 2^{-1} + b_{-2} \times 2^{-2} + \dots + b_{-(n-1)} \times 2^{-(n-1)} + b_{-n} \times 2^{-n}$$

将上式两边分别乘以2,得

$$2\times (N)_{\rm D} = b_{-1}\times 2^0 + b_{-2}\times 2^{-1} + \cdots + b_{-({\rm n}-1)}\times 2^{-({\rm n}-2)} + b_{-n}\times 2^{-({\rm n}-1)}$$

由此可见,将十进制小数乘以2,所得乘积的整数即为

 $b_{-1}$ 

不难推知,将十进制小数每次除去上次所得积中的整数再乘以2,直到满足误差要求进行"四舍五入"为止,就可完成由十进制小数转换成二进制小数。

例 将十进制小数(0.39)p转换成二进制数,要求精度达

到 0.1%。

解 由于精度要求达到 0.1%, 需要精确到二进制小数 10位, 即 1/210=1/1024。



所以  $(0.39)_D = (0.011000111)_B$ 

### 1.2.4 十六进制和八进制

#### 1.十六进制

十六进制数中只有 0,1,2,3,4,5,6,7,8,9 , A 、 B 、 C 、 D 、 E 、 F 十六个数码,进位规律是"逢十六进一"。各位的权均为16的幂。

## $(A6.C)_{ij} = 10 \times 16^{1} + 6 \times 16^{0} + 12 \times 16^{-1}$

$$(N)_{H} = \sum_{i=-m}^{n-1} a_{i} \times 16^{i}$$

各位的权都是16的幂。

#### 4、二八进制之间的转换(自学)

•因为八进制的基数 8=2³ ,所以,可将三位二进制数表示一位八进制数,即 000~ 111 表示 0~7

•转换时,由小数点开始,整数部分自右向左,小数部分自左向右,三位一组,不 够三位的添零补齐,则每三位二进制数表示一位八进制数。

例 (10110.011)<sub>B</sub> = (26.3)<sub>O</sub>

将每位八进制数展开成三位二进制数,排列顺序不变即可。

例 (752.1)<sub>0</sub>= (111 101 010.001)<sub>B</sub>

### (3)用BCD代码表示十进制数

对于一个多位的十进制数,需要有与十进制位数相同的几组 BCD代码来表示。例如:



### 2、二--十六进制之间的转换

### 二进制转换成十六进制:

因为16进制的基数16=24,所以,可将四位二进制数表示一位 16进制数,即 0000~1111 表示 0-F。

### 十六进制转换成二进制:

将每位16进制数展开成四位二进制数,排列顺序不变即可。

#### (4)求BCD代码表示的十进制数

对于有权BCD码,可以根据位权展开求得所代表的十进制数。例如:

$$[0111]_{8421BCD} = 0 \times 8^{+}1 \times 4^{+}1 \times 2^{+}1 \times 1 = (7)_{D}$$

$$\begin{bmatrix} 1101 \end{bmatrix}_{2421BCD} = 1 \times 2 + 1 \times 4 + 0 \times 2 + 1 \times 1 = (7)_{D}$$

### 3. 逻辑图表示方法

用与、或、非等逻辑符号表示逻辑函数中各变量之间的逻辑关系所得到的图形 称为逻辑图。

将逻辑函数式中所有的与、或、非运算符号用相应的逻辑符号 代替,并按照逻辑运算的先后次序将这些逻辑符号连接起来, 就得到图电路所对应的逻辑图



4. 波形图表示方法

用输入端在不同逻辑信号作用下所对应的输出信号的波形图, 表示电路的逻辑关系。

| Γ | 真值表 |   |   |  |  |
|---|-----|---|---|--|--|
|   | A   | В | L |  |  |
|   | 0   | 0 | 1 |  |  |
|   | 0   | 1 | 0 |  |  |
|   | 1   | 0 | 0 |  |  |
|   | 1   | 1 | 1 |  |  |



# 2. 反演规则注意原则

- (1) 保持原来的运算优先级,即先进行与运算,后进行或运算,并注意优先 考虑括号内的运算
- (2) 对于反变量以外的非号应保留不变

例2.1.2 试求

 $L = A + B\overline{C} + \overline{D + E}$ 

的非函数

解:按照反演规则,并保留反变量以外的非号不变,得

 $\bar{L} = \bar{A} \cdot (\bar{B} + C) \cdot \bar{DE}$ 

• 试将下列逻辑函数化简成最简与 -或表达式

$$L_1 = AC + \overline{B}C + B\overline{D} + A(B + \overline{C}) + \overline{A}C\overline{D} + A\overline{B}DE$$

$$L_2(A, B, C) = \sum m(0,2,4,6,7)$$

$${\rm L}_{3}({\rm A,B,C,D}) = \sum m(0,1,4,5,6,8,9) + \sum d(10,11,12,13,14,15)$$

 $L = \overline{C} + B\overline{D}$ 

例:要求设计一个逻辑电路,能够判断一位十进制数是奇数还是偶数,当十进制数为奇数时,电路输出为1,当十进制数为偶数时,电路输出为0。

## 解

(1)列出真值表

$$F = \overline{ABC}D + \overline{AB}CD + \overline{AB}\overline{C}D + \overline{AB}\overline{C}D + \overline{AB}\overline{C}D$$

(2)画出卡诺图

(3) 卡诺图化简

L = D



| ABCD | L |
|------|---|
| 0000 | 0 |
| 0001 | 1 |
| 0010 | 0 |
| 0011 | 1 |
| 0100 | 0 |
| 0101 | 1 |
| 0110 | 0 |
| 0111 | 1 |
| 1000 | 0 |
| 1001 | 1 |
| 1010 | × |
| 1011 | × |
| 1100 | × |
| 1101 | × |
| 1110 | × |
| 1111 | × |

4选1MUX(数据选择器)如附图所示,其逻辑功能如下表所示。试仅用4选1数据选择器分别实现二变量和三变量异或逻辑函数。





### 用一片74HC138实现函数 $L = \overline{AC} + AB$

#### 首先将函数式变换为最小项之和的形式



在译码器的输出端加一个与非门,即可实现给定的组合逻辑函数.

### 2. 用集成计数器构成任意进制计数器

例 用74LVC161构成九进制加计数器。 解:九进制计数器应有9个状态,而74 LVC 161在计数过程中 有16个状态。如果设法跳过多余的7个状态,则可实现模9计数器。

### (1) 反馈清零法



#### (2) 反馈置数法



### 例3 分析下图所示的同步时序电路,写出驱动方程和状态方程; 画出状态转换真值表和完全状态图;判断能否自启动



激励方程组  $D_0 = \overline{Q}_1^n \overline{Q}_0^n$   $D_1 = Q_0^n$   $D_2 = Q_1^n$ 

### 将激励方程代入D触发器的特性方程得状态方程



### 得状态方程

 $Q_0^{n+1} = D_0 = \overline{Q}_1^n \overline{Q}_0^n$   $Q_1^{n+1} = D_1 = Q_0^n$   $Q_2^{n+1} = D_2 = Q_1^n$ 

2.列出其状态表

#### $Q_2^n Q_1^{n1} Q_0^n$ $Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$ $0 \ 0 \ 0$ 001 001 010 010 100 011 110 100 001 101 010 110 100 110

状态表

### 3. 画出状态图

#### 状态表 $Q_2^n Q_1^{n1} Q_0^n \quad Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$ 000 001 0 0 1 010 0.1.0 100 0 1 1 110 100 001 010 101 110 100 111 110



#### 3. 画出时序图



#### 4、逻辑功能分析

由状态图可见,电路的有效状态是三位循环码。 从时序图可看出,电路正常工作时,各触发器的 Q端轮流出现 一个宽度为一个CP周期脉冲信号,循环周期为 $3T_{CP}$ 。电路的功能为脉冲分配器或节拍脉 和产生思。



### 练习题3:

RAM2114(1k×4) 组成题图6-17所示电路。

- (1) 若要实现2k×8的内存,需要多少片2114芯片?
- (2) 写出2114-1至2114-3的地址范围(用十六进制表示)。



# 习题4

• 试用上升沿触发的JK触发器设计一同步时序 电路,其状态图如下图所示,要求电路使 用的门电路最少。



## • 状态转化真值表

| $Q_i^{n_{\varphi^i}}$ | $Q_0^{\eta} \varphi$ | $A \circ$ | $Q_1^{n-1} \varphi$ | $Q_0^{n+1} o$ | Y e |
|-----------------------|----------------------|-----------|---------------------|---------------|-----|
| 00                    | 00                   | 00        | 0φ                  | 00            | 00  |
| 0+2                   | 0₽                   | 10        | 0+0                 | 10            | 00  |
| 0₽                    | 10                   | 00        | 1₽                  | 10            | 00  |
| 0+2                   | 10                   | 10        | 0+0                 | 10            | 00  |
| 10                    | 0₽                   | 00        | 0+0                 | 00            | 00  |
| 10                    | 00                   | 10        | 1€                  | 0.0           | 10  |
| 1₽                    | 10                   | 00        | 1₽                  | 10            | 1₽  |
| 10                    | 10                   | 10        | 10                  | 0.0           | 10  |



# 习题5

• 试用上升沿触发的D触发器设计一同步时序 电路,其状态图如下图所示,要求电路使 用的门电路最少。



• 状态转化真值表

| $Q_1^{n_{\varphi^0}}$ | $Q_0^n \varphi$ | $A \circ$ | $Q_1^{n+1} e$ | $Q_0^{n+1} +$ | Y o |
|-----------------------|-----------------|-----------|---------------|---------------|-----|
| 00                    | 0+2             | 0+2       | 00            | 00            | 0+2 |
| 0+2                   | 0+2             | 10        | 00            | 1€            | 0+2 |
| 00                    | 10              | 0.0       | 10            | 1€            | 00  |
| 0+2                   | 1₽              | 1₽        | 0.0           | 1€            | 0+0 |
| 10                    | 00              | 00        | 00            | 0≠            | 00  |
| 10                    | 0+3             | 1₽        | 1€            | 0+0           | 10  |
| 1₽                    | 10              | 0+        | 1₽            | 1€            | 1₽  |
| 10                    | 10              | 10        | 10            | 00            | 10  |





### 实验复习





解:由图题 6.5.18 所示计数器可知, 它是用"反馈请零法"构成的。当输出端状态为 1010 1110 时,与非门输出清零信号, 使2 片 74××161 同时清零,计数器又从 0000 0000 状态开始计数。由于(1010 1110);=(174)。,因此该计数器的模 M=174。



6.5.20 试用 74××161 构成同步模 24 计数器,要求采用两种不同的方法。

解:因为 M=24,有16 cM<256,所以要用两片74xx161。将两芯片的 CP 箱直接与计数脉冲 相连,构成同步计数电路,并将低位芯片的进位信号连到高位芯片的计数使能端。用"反馈清零法"或"反馈置数法"跳过256-24=232 个多余状态。

及被请零选、利用 74×x161 的"异步请零"功能,在第24 个计数脉冲作用后,电路的输出状态为0001 1000 时,将低位芯片的 Q, 及高位芯片的 Q。信号经与非门产生清零信号,输出到两芯片的异步清零端,使计数器从 0000 0000 状态开始重新计数。其电路如图题解 6.5.20(a) 所示。

反馈置数法:十进制数 24 对应的二进制数为 9001 1000,利用 74××161 的"同步預置数据" 功能、在两片74××161 的数据输入端从路位到低位输入 0001 1000 的补码 1110 1000(对应的十进制数是 23),将将高位忠行的进位信号经风槽接至并行置数使能端,这样 在第 33 分数 除冲作用后,电路输出状态为 1111 1111,使进位信号 7C=1,将并行置数使能端置零。在第 24 个计数脉冲作用后,书 1110 1000 宽入两计数器,并从此状态开始重新计数。其电路如图题解6.5、20(1) 所完



