Solving Eternity II

An approach with Genetic Algorithms

FEUP / MIEIC MPES 2010

João Gradim Mário Carneiro

Summary

- Eternity II puzzle
- The problem
- Devised solution

Eternity II puzzle

Eternity II puzzle

- 16x16 board (256 pieces) 21 different patterns
- NP-Complete problem
- $256! * 4^{256} \approx 1.15 \times 10^{661}$ solutions
 - Our approach will be directed to simpler versions of the puzzle

The problem Context

- Very little work has been done in regards to Eternity
 II & Genetic Algorithms
- How can Eternity II be modeled as a Genetic
 Algorithm problem

Chromossome

The solution Fitness function

$$fitness = \frac{n_matching_edges}{total_matching_edges}$$

The solution Selection and breeding

Elitist selection

 Order the population by fitness, higher-to-lower, and keep the first half

Stochastic breeding

- Every selected individual has an equal chance of breeding with any other, creating two *children* boards
- Next generation is composed of the selected parents and children resulting from the breeding

The solution Crossover

- Features from each of the parent boards are extracted
- The best feature from parent A and a compatible feature from parent B are combined and vice-versa
- The remaining pieces (not present in any of the features) are then placed on the board using a simple constructive method

Crossover - features

Crossover - features

Crossover - features

Crossover - features

Crossover - features

The solution Mutations

- n-1 pieces are randomly selected from all the pieces in the board and rotated clockwise with a probability of 50%
- Once the board score reaches a certain threshold, all pieces are checked for rotation optimizations

ResultsPopulation size

7x7, 6 patterns

ResultsPopulation size

7x7, 6 patterns

ResultsPopulation size

7x7, 6 patterns

Results

Fitness evolution

7x7

Results

Fitness evolution

10x10

Results

Fitness evolution

11x11

Conclusions

- Genetic algorithms are more appropriate at optimizing problems then solving them
- We believe feature detection is appropriate for finding solutions to Eternity II
 - Perhaps better results could be achieved by using clusters of features instead of a single feature from each parent
- An appropriate data structure would greatly boost performance

Future Work

- Using better, more performant data structures
 - Index pieces in order to access them in O(1)
- Improve crossover and mutation strategies

