Homework 4 Due Friday, November 25

- 1. Consider a superconductor at a finite temperature T.
 - (a) Show that the internal energy of the superconductor can be written as

$$E(T) = \sum_{\mathbf{k}} \left[\xi_{\mathbf{k}} - \left(E_{\mathbf{k}} - \frac{\Delta^2}{2E_{\mathbf{k}}} \right) (1 - 2n_F(E_{\mathbf{k}})) \right],$$

where $n_F(E) = \frac{1}{e^{E/T}+1}$ is the Fermi-Dirac distribution function.

- (b) Using the above expression for the internal energy, find explicitly the temperature dependence of the specific heat $C_V = \left(\frac{\partial E}{\partial T}\right)_V$ at low temperatures.
- (c) $C_V(T)$ for a superconductor is discontinuous at $T = T_c$. Find the magnitude of the discontinuity.
- (d) Using the above results, sketch $C_V(T)$ for all temperatures.
- 2. Consider a superconductor at a temperature near the critical temperature T_c .
 - (a) Find the Helmholtz free energy as a Taylor expansion with respect to the order parameter Δ , keeping terms of up to Δ^4 .
 - (b) Minimizing the free energy with respect to Δ , rederive the temperature dependence of the order parameter near T_c :

$$\Delta(T) \approx 3.1 \, T_c \sqrt{\frac{T_c - T}{T_c}}.$$

- (c) Verify your result from Problem 1 on the specific heat discontinuity at T_c .
- (d) Sketch the free energy as a function of Δ for both $T < T_c$ and $T > T_c$ and discuss.