Espaces euclidiens : exercices du chapitre 8

Transformations de \mathbb{R}^2 et de \mathbb{R}^3

- 1. ** a) Soit E l'ensemble des $\lambda \in \mathbb{R}$ tels que, pour toutes les matrices $M \in \mathcal{M}_2(\mathbb{R})$, on ait $\det(M) \leq \lambda \operatorname{tr}({}^t MM)$. Calculer inf E.
- b) Soit F l'ensemble des $\lambda \in \mathbb{R}$ tels que, pour toutes les matrices $M \in \mathcal{M}_2(\mathbb{R})$, on ait $[\operatorname{tr}(M)]^2 \leq \lambda \operatorname{tr}({}^t M M)$. Calculer inf F.
- **2.** * Donner la matrice de la symétrie orthogonale s_P par rapport à 2x y + z = 0 dans une base orthonormale.
- 3. *** Soit $M = \begin{pmatrix} a & b & c \\ b & x & y \\ c & y & z \end{pmatrix}$. Établir une condition sur a,b,c pour qu'il existe (x,y,z) tel que $M \in \mathcal{O}_3(\mathbb{R})$.

Automorphismes orthogonaux

- $\boxed{\mathbf{4.}}$ *** Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de E euclidien.
- a) Soit x_1, \ldots, x_n des vecteurs de E tels que $\sum_{i=1}^n ||x_i||^2 < 1$. Si $y_i = x_i + e_i$, montrer que (y_1, \ldots, y_n) est une base de E.
- b) Soit $\varepsilon_1, \ldots, \varepsilon_n$ des vecteurs unitaires de E tels que $\sum_{i=1}^n (e_i|\varepsilon_i) > n \frac{1}{2}$. Montrer qu'ils forment une base de E.
 - $\boxed{\mathbf{5.}}$ * Soit A et B symétriques réelles. Montrer que $[\operatorname{tr}(AB+BA)]^2 \leq 4\operatorname{tr}A^2\operatorname{tr}B^2$.

6. * Soit
$$A = (a_{ij}) \in \mathcal{O}(n)$$
 et $\varphi(A) = \sum_{1 \le i, j \le n} a_{ij}$. Trouver $\min_{A \in \mathcal{O}(n)} \varphi$ et $\max_{A \in \mathcal{O}(n)} \varphi$.

- 7. * Soit E euclidien et $u: E \to E$ avec u(0) = 0 et, $||u(x) u(y)||^2 = ||x y||^2$ pour tout $(x, y) \in E^2$. Montrer que $u \in \mathcal{O}(E)$.
 - 8. ** dim $E = n \ge 1$, E est euclidien.
- a) Soit $H \in GL(E)$ qui commute avec tous les éléments de O(E). Montrer que tout $x \neq 0$ est vecteur propre de H, puis que $H \in \mathbb{R}Id_E$.
 - b) Montrer que ${}^t\!UU\in \mathbb{R}Id_E$ si, et seulement si, pour tout $V\in O(E),\, UVU^{-1}\in O(E).$
 - **9.** ** Soit $\mathcal{M}_n(\mathbb{R})$ muni du produit scalaire $(A|B) = \operatorname{tr}({}^t AB)$.

- a) Soit $P \in O(n)$. Montrer que les applications $\varphi_P : A \mapsto AP$ et $\psi_P : A \mapsto P^{-1}AP$ sont orthogonales.
 - b) Réciproquement, si $P \in GL_n(\mathbb{R})$ et si φ_P ou ψ_P sont orthogonales, est-ce que $P \in O(n)$?
- **10.** * Soit $u \in E \setminus \{0\}$ (E est préhilbertien réel) et $\lambda \in \mathbb{R}$. On pose $f(x) = x + \lambda(x|u)u$. Déterminer λ pour que $f \in O(E)$, et reconnaître alors f.
- **11.** ** a) Soit $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices orthogonales. Montrer que $A + B = I_n$ équivaut à $\begin{cases} A = {}^t\!B \\ -1 \notin \operatorname{sp}(A) \\ A^3 = -I_n \end{cases}$
 - b) Lorsque n=2,3, trouver les matrices A orthogonales telles que $A^3=-I_n$ et $-1\notin \operatorname{sp}(A)$.

Endomorphismes et matrices symétriques

12. * Soit $A \in \mathcal{M}_n(\mathbb{R})$, nilpotente, et telle que ${}^t\!AA = A^t\!A$. Montrer que A est nulle.

13. * Soit
$$E$$
 euclidien de base $(\epsilon_1, \dots, \epsilon_n)$. Soit $u: E \to E, x \mapsto \sum_{k=1}^n (\epsilon_k | x) \epsilon_k$.

- a) Montrer que $u \in \mathcal{L}(E)$ est symétrique, et que $\mathrm{sp}(u) \subset \mathbb{R}_+^*$.
- b) Montrer qu'il existe $v \in \mathcal{L}(E)$ symétrique tel que $v^2 = u^{-1}$.
- c) Montrer que $(v(\epsilon_1), \dots, v(\epsilon_n))$ est une base orthonormée de E.
- 14. ** Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ de rang r > 0.
- a) Dire tout sur ${}^{t}AA$, notamment sur ses valeurs propres.
- b) Pour λ valeur propre strictement positive de tAA , on pose $\sigma = \sqrt{\lambda}$. Soit alors Σ la matrice diagonale $\mathrm{Diag}(\sigma_1,\ldots,\sigma_r)$. Montrer que $A=V\left(\begin{array}{cc} \Sigma & 0 \\ 0 & 0 \end{array}\right){}^tU$ avec V et U des matrices orthogonales.
 - **15.** * Réduction et éléments propres de $C = (a_i b_j + a_j b_i) \in \mathcal{M}_n(\mathbb{R}).$
- **16.** * Soit $A, B \in \mathcal{M}_n(\mathbb{R})$, avec A symétrique positive. On suppose que AB + BA = 0. Montrer que AB = BA = 0. Trouver un exemple où A et B ne sont pas nulles.
 - **17.** ** Soit E euclidien et $u \in \mathcal{L}(E)$, symétrique, tel que $\operatorname{tr}(u) = 0$.
 - a) Montrer qu'il existe $x \neq 0$ tel que (u(x)|x) = 0.
- b) En déduire qu'il existe une base orthonormale (e_1, \ldots, e_n) telle que $(u(e_i)|e_i) = 0$ pour tout i.
- **18.** ** Soit E euclidien, h symétrique, $x_0 \in E$ unitaire, p la projection orthogonale de sur $\mathbb{R}x_0$ et u = h + p. On note $\lambda_1 \leq \ldots \leq \lambda_n$ les valeurs propres de h, et $\mu_1 \leq \ldots \leq \mu_n$ celles de u. Montrer que $\lambda_1 \leq \mu_1 \leq \ldots \leq \lambda_n \leq \mu_n$.
 - **19.** * Résoudre $A^t A A = I_n$ dans $\mathcal{M}_n(\mathbb{R})$.

20. * Soit E euclidien de dimension $n \ge 1$ et $p \in \mathcal{L}(E)$ un projecteur. Montrer qu'il est orthogonal si, et seulement si, pour tout $x \in E$, $||p(x)|| \le ||x||$.

21. ** Soit A et S dans $\mathcal{M}_n(\mathbb{R})$ telles que $A^3 = A^2$ et ${}^t AA = A^t A = S$. Montrer que $S^2 = S$ puis que $A^2 = A$.

- **22.** * Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 + {}^tM = I_n$.
- \overline{a} Trouver un polynôme annulateur de M, et montrer que M est diagonalisable.
- b) 0 et 1 sont-elles valeurs propres de M?
- c) Montrer que M est symétrique.

23. * Soit
$$X \in \mathcal{M}_n(\mathbb{R})$$
 telle que $\operatorname{Sp}(X^tX - {}^tXX) \subset \mathbb{R}_+$. Montrer que $X^tX = {}^tXX$.

24. * Que dire de
$$A \in \mathcal{S}_n(\mathbb{R})$$
 telle que $A^3 - 2A^2 + 3A = 0$?

25. * Soit
$$A \in \mathcal{M}_n(\mathbb{R})$$
 telle que $\operatorname{sp}(A + {}^t A) \subset \mathbb{R}_+$. Montrer que $\ker {}^t A = \ker A$.

- **26.** ** Soit, dans E euclidien, u symétrique tel que tous les coefficients de la matrice de u dans une certaine base orthonormale \mathcal{B}_0 soit strictement positifs.
- a) Soit α la plus grande valeur propre de u. Montrer que $(u(x)|x) \leq \alpha ||x||^2$ pour tout x. Pour quels x a-t-on l'égalité ?
- b) Si x a pour coordonnées (x_1, \ldots, x_n) dans \mathcal{B}_0 , montrer à l'aide de x' de coordonnées $(|x_1|, \ldots, |x_n|)$ que $|(u(x)|x)| \leq \alpha ||x||^2$.
 - c) Montrer que $\alpha > 0$ et que pour tout $\lambda \in \operatorname{sp}(u), |\lambda| \leq \alpha$.
 - d) Montrer que, si $x \in E_{\alpha}(u)$, alors $x' \in E_{\alpha}(u)$, puis que dim $(E_{\alpha}(u)) = 1$.

27. ** Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$, symétrique, de valeurs propres (distinctes ou non) $\lambda_1, \ldots, \lambda_n$, et de trace nulle. Montrer que $\max(\lambda_1^2, \ldots, \lambda_n^2) \leq \left(1 - \frac{1}{n}\right) \sum_{i,j} a_{ij}^2$.