Lecture 3: Multiple Linear Regression

Ailin Zhang

2023-05-16

Recap: Linear Regression Models

$$Y = \beta_0 + \beta_1 X 1 + \beta_2 X 2 + \dots + \beta_p X_p + \epsilon$$

More generally, linear regression can be categorized as a model is linear in its parameters $\beta_0, \beta_1, \dots, \beta_p$. For example, the following are linear regression models:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$$
$$Y = \beta_0 + \beta_1 \log(X) + \epsilon$$

even though the relationship between Y and X is not linear.

- Linear in parameters, not linear in predictors
- less restrictive than you might think

Recap: Multiple Linear Regression Model

	SLR		MLR					
	X	Y	-	X_1	X_2		X_p	Y
case 1:	x_1	<i>y</i> ₁		x_{11}	x_{12}		x_{1p}	<i>y</i> ₁
case 2:	x_2	y_2		x_{21}	x_{22}		x_{2p}	<i>y</i> ₂
	:	:		:	:	٠.	:	÷
case n:	x_n	y_n		x_{n1}	x_{n2}		x_{np}	y_n

- In simple linear regression (SLR), we observe one predictor X.
- In multiple linear regression (MLR), we observe p predictors (explanatory variables, covariates)
- Each row is called a case, a record, or a data point
- y_i is the response (or dependent variable) of the *i*th case
- x_{ik} is the value of the explanatory variable X_k of the ith case

Recap: Multiple Linear Regression Models in Matrix Notation

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n1} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

Or

$$Y = X\beta + \epsilon$$

Recap: Errors and Residuals

- Error (ϵ_i) can not be directly computed, $\epsilon_i = y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip}$
- The errors ϵ_i can be estimated by residuals e_i residual e_i = observed y_i predicted y_i

$$e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip})$$

- To estimate parameters, try to get $\hat{y_i}$ to be as close to y_i , so we want each $y_i \hat{y_i}$ to be close to 0
- To make all of these residuals on average close to zero, consider minimizing the sum of squares

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Least Squares Method

In SLR, the least squares estimate is the intercept and slope of the straight line with the minimum sum of squared vertical distances to the data points:

$$\operatorname{argmin}_{\beta_0,\beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

In MLR, the least squares estimate $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)$ is the intercept and slopes of the (hyper)plane with the minimum sum of squared vertical distance to the data points

$$\operatorname{argmin}_{\beta_0,\beta_1,\ldots,\beta_p} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \cdots - \beta_p x_{ip})^2$$

Least Squares Solution to SLR

• To find $(\hat{\beta}_0, \hat{\beta}_1)$ that minimize:

$$L(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

ullet One can set the derivatives of L with respect to \hat{eta}_0 and \hat{eta}_1 to 0

$$\frac{\partial L}{\partial \hat{\beta}_0} = -2\sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{\partial L}{\partial \hat{\beta}_1} = -2\sum_{i=1}^n x_i(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

Least Squares Solution to SLR

• This results in the 2 equations with 2 unknowns:

$$n\hat{\beta}_0 + \hat{\beta}_1 \underbrace{\sum_{i=1}^n x_i}_{n\bar{x}} = \underbrace{\sum_{i=1}^n y_i}_{n\bar{y}} \xrightarrow{\text{divide by n}} \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}}_{\text{T}} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i} \xrightarrow{\text{replace } \hat{\beta}_{0}} (\bar{y} - \hat{\beta}_{1} \bar{x}) n \bar{x} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i}$$

$$\iff \hat{\beta}_1 \left(\sum_{i=1}^n x_i^2 - n\bar{x}^2 \right) = \left(\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y} \right)$$

$$\iff \hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

Least Squares Solution to MLR

• To find $(\hat{\beta}_0, \hat{\beta}_1, \dots, \beta_p)$ that minimize:

$$L(\hat{\beta}_0, \hat{\beta}_1, \dots, \beta_p) = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip})^2$$

ullet One can set the derivatives of L with respect to \hat{eta}_j to 0

$$\frac{\partial L}{\partial \hat{\beta}_0} = -2\sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip}) = 0$$

$$\frac{\partial L}{\partial \hat{\beta}_{k}} = -2 \sum_{i=1}^{n} x_{ik} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i1} - \dots - \hat{\beta}_{p} x_{ip}) = 0, \ k = 1, 2, \dots, p$$

This results in a linear system of (p+1) equations in (p+1) unknowns.

Least Squares Solution to MLR

 Normal equations: a system of equations whose solution is the Ordinary Least Squares (OLS) estimator of the regression coefficients

$$\hat{\beta}_{0} \cdot n + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1} + \cdots + \hat{\beta}_{p} \sum_{i=1}^{n} x_{ip} = \sum_{i=1}^{n} y_{i} \\
+ \hat{\beta}_{0} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1} x_{i1} + \cdots + \hat{\beta}_{p} \sum_{i=1}^{n} x_{i1} x_{ip} = \sum_{i=1}^{n} x_{i1} y_{i} \\
\vdots \\
+ \hat{\beta}_{0} \sum_{i=1}^{n} x_{ik} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{ik} x_{i1} + \cdots + \hat{\beta}_{p} \sum_{i=1}^{n} x_{ik} x_{ip} = \sum_{i=1}^{n} x_{ik} y_{i} \\
\vdots \\
+ \hat{\beta}_{0} \sum_{i=1}^{n} x_{ip} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{ip} x_{i1} + \cdots + \hat{\beta}_{p} \sum_{i=1}^{n} x_{ip} x_{ip} = \sum_{i=1}^{n} x_{ip} y_{i}$$

Matrix Notation

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i1} & \sum_{i=1}^{n} x_{i2} & \dots & \sum_{i=1}^{n} x_{ip} \\ \sum_{i=1}^{n} x_{i1} & \sum_{i=1}^{n} x_{i1} x_{i1} & \sum_{i=1}^{n} x_{i1} x_{i2} & \dots & \sum_{i=1}^{n} x_{ip} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{ik} & \sum_{i=1}^{n} x_{ik} x_{i1} & \sum_{i=1}^{n} x_{ik} x_{i2} & \dots & \sum_{i=1}^{n} x_{ik} x_{ip} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{ip} & \sum_{i=1}^{n} x_{ip} x_{i1} & \sum_{i=1}^{n} x_{ip} x_{i2} & \dots & \sum_{i=1}^{n} x_{ip} x_{ip} \end{bmatrix} \begin{bmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \vdots \\ \hat{\beta}_{k} \\ \vdots \\ \hat{\beta}_{p} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i1} y_{i} \\ \vdots \\ \sum_{i=1}^{n} x_{ik} y_{i} \\ \vdots \\ \sum_{i=1}^{n} x_{ip} y_{i} \end{bmatrix}$$

- In matrix notation, the normal equation is $(X^TX)\hat{\beta} = X^TY$
- And the least squares estimate is $\hat{\beta} = (X^T X)^{-1} X^T Y$

Introducing Some Linear Algebra

Recall

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n1} & \dots & x_{np} \end{bmatrix} = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} = (X_1, X_2, \dots, X_p)$$

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 = (Y - X\beta)^T (Y - X\beta)$$

Introducing Some Linear Algebra

The minimizer is achieved when $\nabla_{\beta}RSS(\beta)=0$

$$\nabla_{\beta}RSS(\beta) = \nabla_{\beta} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2$$

$$= \sum_{i=1}^{n} \nabla_{\beta} (y_i - x_i^T \beta)^2$$

$$= \sum_{i=1}^{n} 2 \cdot (y_i - x_i^T \beta) \underbrace{\nabla_{\beta} (y_i - x_i^T \beta)}_{=-x_i \text{ dims:}(p+1) \times 1}$$

$$= -2 \sum_{i=1}^{n} (y_i - x_i^T \beta) x_i$$

We can also acquire normal equations: $\sum_{i=1}^{n} (y_i - x_i^T \hat{\beta}) x_i = 0$

Introducing Some Linear Algebra

Using the matrix notation, we have

$$LHS = \sum_{i=1}^{n} (y_i - x_i^T \hat{\beta}) x_i = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix} \begin{bmatrix} y_1 - x_1^T \hat{\beta} \\ y_2 - x_2^T \hat{\beta} \\ \vdots \\ y_n - x_n^T \hat{\beta} \end{bmatrix}$$
$$= X^T (Y - X \hat{\beta}) = 0$$
$$\Rightarrow X^T Y - X^T X \hat{\beta} = 0$$
$$(X^T X) \hat{\beta} = X^T Y$$

Existence of $\hat{\beta}$

Theorem

The OLS coefficient equals

$$\hat{\beta} = (\sum_{i=1}^{n} x_i x_i^T)^{-1} (\sum_{i=1}^{n} x_i y_i) = (X^T X)^{-1} (X^T Y)$$

if X^TX is non-degenerate.

The non-degeneracy of X^TX in the theorem requires that for any non-zero vector $\alpha \in \mathbb{R}^p$, $\alpha^TX^TX\alpha = ||X\alpha||^2 \neq 0 \Leftrightarrow X\alpha \neq 0$

i.e., the columns of X are linearly independent.

If X_1 can be represented by other columns $X_1 = c_2 X_2 + \cdots + c_p X_p$ for some $(c_2, ..., c_p)$, then $X^T X$ is degenerate.

Geometric Solution to OLS

Theorem

For any $b \in \mathbb{R}^p$, we have the following decomposition

$$||Y - Xb||^2 = ||Y - X\hat{\beta}||^2 + ||X(\hat{\beta} - b)||^2$$

where implies that $||Y-Xb||^2 \ge ||Y-X\hat{\beta}||^2$ with equality holding **if and** only if $b=\hat{\beta}$

Proof (on board)

Geometric Solution to OLS

- The OLS problem is to find the best linear combination of the column vectors of X to approximate the response vector Y
- By projection, the residual vector $\hat{\epsilon} = Y X\hat{\beta}$ must be orthogonal to C(X), or, equivalently, the residual vector is orthogonal to X_1, \ldots, X_p
- This geometric intuition in turn implies that $X_1^T(Y-X\hat{\beta})=0, X_2^T(Y-X\hat{\beta})=0, \ldots, X_p^T(Y-X\hat{\beta})=0$ which is essentially the normal equation

Revisit Assumptions about ϵ

1 The error ϵ is a random variable with mean of zero.

If X contains a column of intercepts $1_n = (1, 1, ..., 1)^T$, then

$$1_n^T \hat{\epsilon} = 0 \Rightarrow n^{-1} \sum_{i=1}^n \hat{\epsilon}_i = 0$$

So the residuals are automatically centered.

Review: Basics of vectors and matrices

ullet Euclidean space: The n-dimensional Euclidean space \mathbb{R}^n is a set of all n-dimensional vectors equipped with an inner product:

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$

where $x = (x_1, \dots, x_n)^T$ and $y = (y_1, \dots, y_n)^T$ are two n-dimensional vectors.

- Orthogonality: $x \perp y \Leftrightarrow \langle x, y \rangle = 0$
- Length of a vector x: $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x^T x}$
- Cauchy–Schwarz inequality: $|\langle x, y \rangle| \le ||x|| \cdot ||y||$

Review: Basics of vectors and matrices

- Column space of a matrix: Given an $n \times m$ matrix $A = (A_1, A_2, \dots, A_m)$, we define its column space as $C(A) = \{\alpha_1 A_1 + \dots + \alpha_m A_m : \alpha_1, \dots, \alpha_m \in \mathbb{R}\}$
 - which is the set of all linear combinations of the column vectors of A.
- Inverse of a matrix: Let I_n be the $n \times n$ identity matrix. An $n \times n$ matrix A is nonsingular if there exists an $n \times n$ matrix B such that $AB = BA = I_n$. We call B the inverse of A, denoted by A^{-1}
- Symmetric matirx: A is symmetric if $A^T = A$
- Orthogonal matrix: An $n \times n$ matrix is orthogonal if $A^T A = AA^T = I_n$, that is $A^T = A^{-1}$.
- Diagonal matrix: An $n \times n$ diagonal matrix A has zero off-diagonal elements, denoted by $A = \text{diag}\{a_{11}, \dots, a_{nn}\}$

Review: Eigenvalues and eigenvectors

- Eigenvalue and Eigenvectors: For an $n \times n$ matrix A, if there exists a pair of n-dimensional vector x and a scalar λ such that $Ax = \lambda x$, then we call λ an eigenvalue and x an eigenvector of A. From the definition, eigenvalue and eigenvector come always in pair.
- Eigen-decomposition Theorem:

Theorem

If A is an $n \times n$ symmetric matrix, then there exists an orthogonal matrix P such that $P^TAP = diag\{\lambda_1, \ldots, \lambda_n\}$ Where the λ 's are the n eigenvalues of A, and the column vectors of $P = (\gamma_1, \ldots, \gamma_n)$ are the corresponding eigenvectors.

$$AP = P \operatorname{diag}\{\lambda_1, \dots, \lambda_n\} \iff A(\gamma_1, \dots, \gamma_n) = (\lambda_1 \gamma_1, \dots, \lambda_n \gamma_n).$$

Moreover, the eigen-decomposition in the theorem is unique up to the permutation of the columns of P and the corresponding λ_i 's.

Review: Eigenvalues and eigenvectors

Corollary

If
$$P^TAP = diag\{\lambda_1, \dots, \lambda_n\}$$
, then

$$A = P \operatorname{diag}\{\lambda_1, \dots, \lambda_n\} P^T, A^k = A \cdot A \dots A = P \operatorname{diag}\{\lambda_1^k, \dots, \lambda_n^k\} P^T$$

If the eigenvalues of A are nonzero, then $A^{-1} = P \operatorname{diag}\{\lambda_1^{-1}, \dots, \lambda_n^{-1}\}P^T$

- If the eigenvalues of A are nonnegative, $A^{1/2} = ?$
- From eigen-decomposition theorem, we can write A as:

$$A = P \operatorname{diag}\{\lambda_1, \dots, \lambda_n\} P^T$$

$$= (\gamma_1, \dots, \gamma_n) \operatorname{diag}\{\lambda_1, \dots, \lambda_n\} \begin{pmatrix} \gamma_1^T \\ \vdots \\ \gamma_n^T \end{pmatrix}$$

$$= \sum_{i=1}^n \lambda_i \gamma_i \gamma_i^T$$

Review: Rayleigh quotient and eigenvalues

Theorem

For an $n \times n$ symmetric matrix A, let $r(x) = x^T A x / x^T x$ be the Rayleigh quotient of x. The maximum and minimum eigenvalues of A are

$$\lambda_{max}(A) = \max_{x \neq 0} r(x), \qquad \lambda_{min}(A) = \min_{x \neq 0} r(x)$$

Review: Rank and Quadratic form

- Rank and determinant: For an $n \times n$ symmetric matrix, its rank equals the number of non-zero eigenvalues and its determinant equals the product of all eigenvalues. The matrix A is of full rank if all its eigenvalues are non-zero, which implies that its rank equals n and its determinant is non-zero.
- Quadratic form: For an $n \times n$ symmetric matrix $A = (a_{ij})$ and an n-dimensional vector x: $x^T A x = \langle x, A x \rangle = \sum_{j=1}^n \sum_{i=1}^n a_{ij} x_i x_j$
- Semi-definite and definite:

We call A positive semi-definite, denoted by $A \succeq 0$, if $x^T A x \ge 0$ for all nonzero x.

We call A positive definite, denoted by A > 0, if $x^T A x > 0$ for all nonzero x.

Review: Definite matrix and eigenvalues

Theorem

For a symmetric matrix A, it is positive semi-definite if and only if all its eigenvalues are nonnegative, and it is positive definite if and only if all its eigenvalues are positive.

- We can also define the partial order between matrices. We call $A \succeq B$ if and only if $A B \succeq 0$, and we call $A \succ B$ if and only if $A B \succ 0$.
- This is important in statistics because we often compare the efficiency of estimators based on their covariance matrices.

Review: Trace

• Trace: The trace of an $n \times n$ symmetric matrix $A = (a_{ij})$ is the sum of all its diagonal elements, denoted by

$$trace(A) = \sum_{i=1}^{n} a_{ii}$$

The trace operator has two important properties that can sometimes help to simplify calculations.

- Proposition 1: trace(AB) = trace(BA) as long as AB and BA are both square matrices.
- Proposition 2: The trace of an $n \times n$ symmetric matrix A equals the sum of its eigenvalues (Proof on board):

$$trace(A) = \sum_{i=1}^{n} \lambda_i.$$

Review: Projection matrix

In MLR: $\hat{Y} = HY$

An $n \times n$ symmetric matrix H is a projection matrix if $H^2 = H$. Based on the eigen-decomposition $H = \sum_{i=1}^n \lambda_i \gamma_i \gamma_i^T$, we have

$$H^{2} = H \Rightarrow \sum_{i=1}^{n} \lambda_{i}^{2} \gamma_{i} \gamma_{i}^{T} = \sum_{i=1}^{n} \lambda_{i} \gamma_{i} \gamma_{i}^{T}$$
$$\Rightarrow \sum_{i=1}^{n} (\lambda_{i}^{2} - \lambda_{i}) \gamma_{i} \gamma_{i}^{T} = 0$$
$$\Rightarrow \lambda_{i}^{2} - \lambda_{i} = 0, \qquad (i = 1, \dots, n)$$

which implies that the eigenvalues of H are either 1 or 0. So the trace of H equals its rank: trace(H) = rank(H)

• Question: What is the projection matrix in MLR?

Review: Matrix decomposition

• Cholesky decomposition: An $n \times n$ positive semi-definite matrix A can be decomposed as $A = LL^T$ where L is an $n \times n$ lower triangular matrix with non-negative diagonal elements.

Take an arbitrary orthogonal matrix Q, we have $A = LQQ^TL^T = CC^T$ where C = LQ. So we can decompose a positive semi-definite matrix A as $A = CC^T$, but this decomposition is not unique.

Review: Vector calculus

If f(x) is a function from \mathbb{R}^p to \mathbb{R} , then we use the notation:

$$\frac{\partial f(x)}{\partial x} \equiv \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_p} \end{pmatrix}$$

- If $f(x) = x^T a = a^T x$, with $a, x \in \mathbb{R}^p$, what is $\frac{\partial f(x)}{\partial x}$? $\frac{\partial f(x)}{\partial x} = a$
- ② If $f(x) = x^T A x$, with $x \in \mathbb{R}^p$, a symmetric $A \in \mathbb{R}^{n \times n}$, what is $\frac{\partial f(x)}{\partial x}$?

Review: Vector calculus

We can also exent the definition to vector functions. If $f(x) = (f_1(x), \dots, f_q(x))^T$ is a function from \mathbb{R}^p to \mathbb{R}^q , then we use the notation

$$\frac{\partial f(x)}{\partial x} \equiv \left(\frac{\partial f_1(x)}{\partial x}, \dots, \frac{\partial f_q(x)}{\partial x}\right) = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \dots & \frac{\partial f_q(x)}{\partial x_1} \\ \vdots & & \vdots \\ \frac{\partial f_1(x)}{\partial x_p} & \dots & \frac{\partial f_q(x)}{\partial x_p} \end{pmatrix}$$

• For $B \in \mathbb{R}^{q \times p}$ and $x \in \mathbb{R}^p$, we have $\frac{\partial Bx}{\partial x} = B$