Projeto Integrador Extensionista III

Ciência da Computação 1º Sem. 2024

Parte 1

Conceitos de Sistemas Operacionais

Prof. Alencar Melo Jr., Dr. Eng. IFTM – *Campus* Ituiutaba

alencar@iftm.edu.br

Sistema operacional

 Camada de software entre o hardware e as aplicações dos usuários

Funções do sistema operacional

- A partir da máquina real (hardware), criar uma máquina abstrata.
- Gerenciar os recursos de hardware disponíveis às aplicações, de modo conveniente e eficiente.
 - Qual aspecto é mais importante para um SO do lado servidor, conveniência ou eficiência? E do lado cliente?

O SO como máquina abstrata

- Ocultar a complexidade do hardware.
- Oferecer interfaces padronizadas de acesso ao hardware.
- Permitir uma visão homogênea de dispositivos distintos.

O SO como máquina abstrata

O SO como gerente de recursos

- Recursos da máquina
 - processadores
 - espaço em memória
 - arquivos
 - conexões de rede
 - dispositivos externos
- Controle de acesso
 - equilibrar uso
 - evitar conflitos

O SO como gerente de recursos

aplicação

aplicação

aplicação

Sistema operacional

O kernel

- Concentra o acesso ao hardware
 - drivers de dispositivo
 - gerência de acesso
- Provê funções básicas
 - operações de acesso ao hardware
 - noção básica de processos
 - comunicação entre processos (IPC)
- É executado em modo privilegiado
- A porta de entrada para o kernel são as chamadas para o Sistema (system calls).

Pro

Programas e processos

Programa:

- noção estática
- conjunto de instruções
- não possui um estado interno

Processo:

- noção dinâmica
- programa em execução
- possui um estado interno
- Processo é um programa em execução.

Estados dos processos

Compartilhamento de tempo

- Processos prontos compartilham CPU
- Ilusão de uma CPU por processo
- Cada processo recebe uma pequena fatia de tempo (< 20 ms)

t

4

Processo = contexto + atividade

- Contexto:
 - estruturas de dados (variáveis em memória)
 - descritores de arquivos e sockets
 - outros recursos exclusivos
- Atividade:
 - fluxo de execução
 - registradores, pilha de execução
- Alternar processos = trocar contextos

A troca de contexto

- A troca de contexto é uma operação cara (+/- 10% do tempo de CPU)
- Para trocar de atividade, precisamos sempre trocar de contexto ?
 - Aplicações com concorrência interna
- Solução = threads:
 - múltiplas atividades em um mesmo contexto

Threads

- Permitem separar contexto de tarefa
 - Processo: unidade de contexto
 - **Thread**: unidade de atividade

Vantagens das threads

- Menor custo para alternar atividades
 - Trocar de thread é muito mais rápido que trocar de processo
- Permite trocas mais frequentes
 - melhor tempo de resposta das aplicações
- Maior facilidade para construir aplicações com múltiplas atividades
 - Mais adequado para implementar diversas atividades que compartilham recursos comuns

Desvantagens das threads

- Nem todos os sistemas as suportam
- Falta de padronização
- Exigem maior controle de concorrência no acesso aos recursos comuns
- Risco de dados inconsistentes
- Aplicações menos robustas
 - se uma thread travar, a aplicação pode travar

Implementação de threads

No kernel:

- o núcleo do SO oferece os recursos para criar e gerenciar múltiplas threads por processo
- Presente nos sistemas operacionais modernos

Por bibliotecas:

- o núcleo do SO somente conhece processos
- trocas de contexto explícitas (programadas)
- Presente em SOs antigos (SunOS, Netware, AIX etc.)

Gerência de memória

- Proteger contexto dos processos
 - Cada processo tem sua área de memória
 - evitar interferências entre processos
 - evitar acessos de memória indevidos
- Flexibilizar o uso da RAM
 - aplicações usam muita memória
 - gerenciar memórias virtuais (discos)
 - compartilhar memória entre processos

Gerência de memória

- Computadores têm memória limitada
- Grandes sistemas e aplicações
 - Windows XP: ~ 100 Mbytes RAM
 - Outlook 2K: ~ 30 Mbytes RAM
 - Windows 10: ~ 1-2 Gbytes RAM
 - Ubuntu: ~ 0,7-1,5 Gbytes RAM

Em suma:

- Memória é um recurso escasso
- Seu uso deve ser otimizado

4

Memória real X virtual

Memória real:

- quantidade de RAM no computador
- acesso direto só permitido ao kernel
- dividida em "quadros" com ~ 4 Kbytes

Memória virtual:

- imagem da memória vista pelos processos
- maior que a RAM (CPUs 32 bits: 4 Gbytes)
- estruturada em "páginas" com ~ 4 Kbytes

Memória paginada

1

Memória paginada

- Relação entre páginas e quadros
 - tabelas mantidas pelo kernel
 - mapeamento pode ser trabalhoso
 - é necessário o auxílio do hardware
- Uso da RAM torna-se muito flexível
 - Toda a RAM é aproveitável (não há "buracos")
 - Processos vêem os mesmos endereços
 - Possibilidade de swapping em disco
 - Quadros de RAM podem ser compartilhados

Swapping em disco

Passos do swapping

Passos do swapping

- 1: O processo tenta acessar uma área de memória não mapeada em RAM, gerando um "page fault".
- 2: O kernel escolhe um frame de RAM a ser liberado, e envia sua página para a área de swap.
- 3: A tabela de páginas do processo "vítima" é atualizada (página enviada para o swap).
- 4: A página solicitada é carregada no quadro livre.
- 5: A tabela de página do processo é atualizada.
- 6: O processo acessa o endereço desejado.

Compartilhamento de memória

- Processos podem compartilhar páginas
 - vários processos com o mesmo código
 - processos que precisam compartilhar dados
- Manipulação das tabelas de páginas
 - mesma posição da RAM (mesmo quadro)
 - endereço distinto (página) em cada processo

Sistema de arquivos

Dispositivos com tecnologias variadas

- CD-ROM, DAT, HD, Floppy, ZIP
- SCSI, IDE, ATAPI, ...
- sistemas de arquivos em rede

Interfaces de acesso uniforme

- visão homogênea dos dispositivos
- transparência para as aplicações

Arquit. da gerência de arquivos

4

Dispositivos e drivers

Dispositivo físico:

- armazenamento dos dados
- estruturados em blocos de bytes (~ 512 bytes)
- CD-ROM, hard disk, floppy, fitas

Driver de dispositivo:

- acesso em baixo nível aos dispositivos
- gerencia interrupções e DMA (Direct Memory Access)
- mapeia acessos a trilhas/setores/cabeças em operações sobre portas de E/S do dispositivo

Visão dos dispositivos

- Visão física: cabeças, trilhas, setores
- Visão lógica: vetor de blocos idênticos
- Função do sistema de arquivos básico:

Discos magnéticos

Estrutura de um disco magnético

Cilindro vertical: definido pelas trilhas dos diferentes discos que ocupam a mesma posição vertical

Discos magnéticos

Tempo de acesso

Causa maior impacto no desempenho do disco: tempo de busca (seek time)

Discos magnáticos

- Formatação física: definida pelo fabricante, especifica o formato dos setores físicos
- Formatação lógica: definida pelo sistema de arquivos
- Entrelaçamento (Interleaving): numera-se os setores de forma não contígua
- Sistemas de arquivos com journaling: podem se restabelecer de modo automático após uma queda

1

Sistema de arquivos básico

- Aciona comandos de leitura/escrita nos drivers de dispositivos.
- Mostra o dispositivo como um vetor de blocos de mesmo tamanho.
 - Blocos lógicos entre 512 bytes e 8 Kbytes
- Pode efetuar buffering e caching:
 - *Buffering*: otimizar acessos reais em escrita.
 - *Caching*: otimizar acessos reais em leitura.

Buffering & caching

4

Escalonamento de disco

- Acesso ao disco por vários processos
 - processos acessam áreas distintas
 - o disco é um dispositivo LENTO
 - desempenho de I/O pode ser péssimo
- Acesso ao disco deve ser escalonado
 - escolher ordem de atendimento dos pedidos de acesso aos discos
 - buscar o melhor desempenho

Organização de arquivos

Problema:

- Como armazenar diversos arquivos dentro de um único vetor de blocos lógicos ?
- Cada arquivo também deve ser visto como uma sequência de blocos lógicos.

Restrições:

- flexibilidade de alocação
- rapidez de acesso (seqüencial e aleatório)
- eficiência no uso do espaço real em disco

Organização de arquivos

Técnicas de alocação

- Formas de mapear os blocos dos arquivos em posições no vetor de blocos lógicos
- Alocação contígua de arquivos
- Alocação em listas encadeadas
- Alocação indexada

Classificação dos SO

- Executar tarefas simultâneas
 - mono-tarefa, multi-tarefas
- Suporte a várias CPUs
 - mono ou multi-processados (SMP)
- Usuários simultâneos
 - mono-usuário, multi-usuários
- Tempo de resposta
 - batch, interativos, de tempo real

Consolidação de SOs

- Diversos SOs para psmartphones e netbooks surgiram, mas apenas dois sobreviveram:
 - Android
 - IPhone OS
 - Jolicloud
 - WebOS (Palm Pre)
 - Windows Mobile
 - Symbian OS
 - RIM OS (BlackBerry)
 - Chrome OS

Questões para debate

- Analise o potencial das tecnologias abertas para a realização de ações de extensão.
- 2) Dúvidas??