Metody Obliczeniowe

Mateusz Miotk Michał Kulesz Sylwia Kaczmarczyk

1 Treść zadania

Zadanie 1.14: Ustalić naturalną n_{max} . Wczytać $n \in \{1, 2, ..., n_{max}\}$, różne węzły $x_1.x_2, ..., x_n$ oraz dowolne wartości $A_1, A_2, ..., A_n$ i $B_1, B_2, ..., B_n$. Wyznaczyć w postaci Newtona wielomian interpolacyjny Hermite'a W = W(x) stopnia co najwyżej (2n-1) spełniający warunki: $W(x_i) = A_i$ oraz $W'(x_i) = B_i$ dla i = 1, 2, ..., n. Wynik przedstawić również w postaci ogólnej.

2 Podstawa teoretyczna

2.1 Wielomian w postaci Newtona:

Wielomian $p_k(x)$ można przedstawić w postaci: $p_k(x) = \sum_{i=0}^k c_i \prod_{j=0}^{i-1} (x-x_j)$ Współczynniki c_i to ilorazy różnicowe.

2.2 Definicja ilorazów różnicowych

Ogólnie liczbę c_i definiujemy w następujący sposób:

 $c_i = f[x_0,...,x_i] = \frac{f[x_1,x_2,...,x_{i-1}] - f[x_0,x_1,...,x_{i-1}]}{x_i - x_0}$ Jednak w naszych rozważaniach będziemy używać wzoru rekurencyjnego:

 $c_{ij} = \frac{c_{i+1,j-1} - c_{i,j-1}}{x_{i+j} - x_i}$

Jeśli jednak wartość c_i będzie wynosić $\frac{0}{0}$ to wpisujemy zamiast tego wartość pochodnej z x_i .

3 – Algorytm, który ma realizować zadanie

3.1 Pobieranie danych.

Na początku program zapyta nas o ilość RÓŻNYCH węzłów jakie chcemy wprowadzić do programu. Zostaną one wprowadzone do tablicy x[].

Następnie program zażąda od nas podania wartości funkcji w tych punktach. Zostaną one dodane do tablicy A[]. W tablicy A[] każda wartość zostanie podwójnie zapisanie w celu łatwiejszego policzenia tablicy różnic dzielonych.

Następnie program zażąda podania wartości pochodnych w danych węzłach. Zapisane one będą do tablicy $\mathbf{B}[]$.

3.2 Liczenie ilorazów różnicowych.

W tym kroku wykorzystamy tablicę D[], która będzie miała tyle samo wyrazów co tablica A[]. Wykorzystujemy to algorytm ,który wykorzystuje wzór rekurencyjny podany powyżej a w wyniku otrzymamy wyłącznie jeden wiersz tablicę, który odpowiada wartością c_{-i} wielomianu w postaci Newtona.

Jeżeli w wyniku obliczeń program napotka na działanie $\frac{0}{0}$ to w tym miejscu zapisywana jest wartość pochodnej w tym punkcie.

Wypisanie wielomianu w postaci Newtona.

Wykorzystywany jest wzór powyżej (Patrz 2.1).

Wypisanie wielomianu w postaci ogólnej.

Przykładowe rozwiązanie dla małych danych

Dla danych: p(1) = 2p'(1) = 3p(2) = 6p'(2) = 7Tworzymy tabelę ilorazów różnicowych: 1 2 3 1 2 $1 \ 2|4 \ 3$ 2 6 <u>7</u> 2|6|

Pogrubione i podkreślone wyrazy tablicy to wpisane wartości pochodnej w punkcie.

Wynika to, ponieważ:
$$f[x_0, x_0] = \frac{f[x_0] - f[x_0]}{x_0 - x_0} = \frac{2 - 2}{1 - 1} = \frac{0}{0} = f'(1) = 3$$

$$f[x_1, x_1] = \frac{f[x_1] - f[x_1]}{x_1 - x_1} = \frac{6 - 6}{2 - 2} = \frac{0}{0} = f'(2) = 7$$

Jest to pełna tabela. Program zapisze wyłącznie wiersz:

2 3 1 2

co jest równoznaczne ze wspólczynnikami wielomianu w postaci Newtona.

Co daje wielomian postaci:

Co daje wieroman postaci.
$$p(x) = 2 + 3(x - 1) + (x - 1)^2 + 2(x - 1)^2(x - 2) - \text{postać Newtona lub}$$

$$p(x) = 2x^3 - 7x^2 + 11x - 4 \text{ w postaci ogólnej}$$

$$p'(x) = 6x^2 - 14x + 11$$
 Sprawdzamy wyniki:
$$p(1) = 2 + 3(1 - 1) + (1 - 1)^2 + 2(1 - 1)^2(1 - 2) = 2$$

$$p'(1) = 6 - 14 + 11 = 3$$

$$p(2) = 2 + 3(2 - 1) + (2 - 1)^2 + 2(2 - 1)^2(2 - 2) = 6$$

p'(x) = 6 * 4 - 14 * 2 + 11 = 24 - 28 + 11 = -4 + 11 = 7