Intro to dplyr

Jongbin Jung

Wrangling Data with dplyr

Exercise Solution

Reshape Data with tidyr

Exercise Solution

Combining Data with joins

Dependencies

- ► Latest version (≥ 3.1.2) of R (free from https://www.r-project.org/)
- ► Latest version of Rstudio (also *free* from https://www.rstudio.com/)
- ▶ tidyverse package

```
# tidyverse package now includes
install.packages("tidyverse")
```

Data Frames: Introduction

- Data frames are the primary representation of data in R
- You can think of a data frame as a two-dimensional table of data
- It helps your sanity to always think of data frames as a table where
 - Each column represents a variable/feature
 Each row represents an observation/instance
- Conceptually, a data frame is also a collection of vectors, i.e., each column is a vector that belongs to the (parent) data frame
- The fastest path to achieving R-ninja status is to get familiar with data frames

Data Frames: First Impression

Let"s load an existing data frame to take a look at

```
# install data package (only need to do once)
install.packages("nycflights13")
```

```
# load data package to workspace
library("nycflights13")
```

- ► The nycflights13 package contains a single data frame named flights
- Contains data (16 variables) on all 336,776 flights that departed NYC (i.e. JFK, LGA, or EWR) in 2013
- ▶ See documentation for details on what the 16 variables are

?flights

Wrangling Data with dplyr

Introduction to dplyr

- dplyr is a package that provides a convenient framework (along with a handful of useful functions) for wrangling data (frames)
- dplyr is a part of the tidyverse, so if you load tidyverse, dplyr is also loaded
- ► You can also, but don"t have to, install and load the dplyr as a standalone package like you would any other R package

```
# Install, if you haven"t already.
# Only need to do this once on a single machine.
install.packages("dplyr")
# load package into workspace
library("dplyr")
```

We"Il primarily use the diamonds data that"s included with tidyverse

Verbs

- A verb in the world of dplyr is a function that
 - takes a data frame as its first argument, and
 - returns another data frame as a result
- ▶ For example, the head() function can be considered a verb

head(flights, n = 10)

- Note that the result of the head() function is another data frame (in this case, with 3 rows)
- ► The core idea of dplyr is that most of your data manipulation needs can be satisfied with 5 basic verbs (or 4, depending on how you categorize them)

Five basic verbs

► The five basic verbs of dplyr and associated actions are presented below

select() sel	lect a subset of <i>rows</i> by specified conditions
	lect a subset of <i>columns</i>
mutate() cre	eate a new column (often from existing columns)
arrange() red	order (sort) rows by values of specified column(s)
summarize() ag	gregate values and reduce to single value

Some verbs have additional options or convenient wrappers

Selecting Rows: filter()

- Select a subset of rows
- Multiple conditions can be used
- Use & to specify AND conditions
- ▶ Use | to specify OR conditions
- ► AND(&)/OR(|) operations can be used together (where default behavior for multiple conditions is AND)

▶ Use %in% to match on a collection of values

```
filter(diamonds, cut %in% c("Fair", "Ideal"))
```

Selecting Rows: slice()

- ► To select rows by numerical index (position), use slice()
- ▶ For example, to select the first 10 rows

```
slice(flights, 1:10)
```

or to select the last 10 rows

```
slice(flights, (n() - 9):n())
```

Use n() inside a dplyr verb to to indicate the number of rows of the data frame

Selecting Columns: select()

- Select a subset of columns
- ▶ Either specify the columns that you want to select

```
select(flights, carrier, tailnum)
```

Or specify the columns you wish to drop

```
select(flights, -year, -month, -day)
```

Selecting Columns: select() (cont"d) - dplyr provides useful helper functions you can use to select() columns that match specific criteria such as - $starts_with(x)$: names that start with x - ends_with(x): names that end with x - contains(x): names that contain x - matches(x): names that match the (regular expression) x - See the documentation for more details

```
?dplyr::select
```

▶ While you can assign new column names with select() the convenience function rename() lets you rename columns while retaining the rest of the data frame

```
select(flights, tail_num = tailnum)
rename(flights, tail_num = tailnum)
```

Create New Columns: mutate()

- Create new columns, usually as a function of existing columns
- You can refer to new columns you just created, inside the same mutate() function

▶ Use transmute() to create a new data frame just from the new column(s)

```
transmute(flights, gain = arr_delay - dep_delay)
```

Sorting Rows by Column Value: arrange()

- ► Reorder the rows of a data frame by the specified column"s value
- ▶ Multiple conditions are arranged from left to right
- ► Use desc() to arrange in descending order

```
arrange(flights, year, month, day)
arrange(flights, year, desc(month), day)
arrange(flights, year, month, desc(day))
arrange(flights, year, desc(month), desc(day))
```

Aggregate Data: summarize()

- Aggregate/collapse the data into a single row
- Think of as applying a function to columns

▶ More useful as a grouped operation (see next)

Split-Apply-Combine

Figure 1: Illustration of SAC

Grouped Operations

- If a data frame is grouped, operations are applied to each group separately, and the results are combined back to a single data frame
- Use the group_by() verb to specify variables to use for generating groups

flights_by_day <- group_by(flights, day)</pre>

 Some verbs have specific behavior when applied to grouped data

verb	group specific action
arrange() slice() summarize()	sort rows within each group extract rows within each group aggregate values group-wise

Grouped slice()

Retrieve the first 2 departures (rows) of each day

slice(flights_by_day, 1:2)

```
## Source: local data frame [62 x 19]
   Groups: day [31]
##
##
                     day dep_time sched_dep_time
       vear month
##
      <int> <int> <int>
                             <int>
                                             <int>
## 1
       2013
                               517
                                               515
## 2 2013
                               533
                                               529
## 3
       2013
                       2
                                42
                                              2359
## 4
       2013
                               126
                                              2250
## 5
       2013
                       3
                                32
                                              2359
       2013
                       3
                                50
                                              2145
## 6
       2013
                       4
                                25
                                              2359
## 7
## 8
       2013
                       4
                               106
                                              2245
                       5
                                14
##
       2013
                                              2359
```

Grouped summarize()

 Retrieve (1) number of departures (observations), (2) average distance, and (3) average arrival delay for each day (i.e., for flights grouped by day)

```
## day count dist delay
## 1 1 11036 1039 7.3637
## 2 2 10808 1047 6.7681
## 3 3 11211 1041 4.4699
## 4 4 11059 1038 -1.7827
## 5 5 10858 1038 0.4925
## 6 6 11059 1041 -1.7489
```

Multiple (Chained) Operations

► Consider the following task

find days when the mean arrival delay OR departure delay was greater than 30

- ▶ We can achieve the desired result with three operations
 - 1. group_by date (year, month, day)
 - 2. **summarize** mean arrival/departure delay
 - filter summarized results (i.e., mean arr_delay > 30 | mean dep_delay > 30)
- ▶ Note that dplyr verbs do **not** modify the original data frame
 - ► This is generally a good thing, since it guarantees the integrity of your data
 - ▶ But it makes multiple operations on a data frame difficult
- ► There are two (acceptable) ways to apply multiple operations on a data frame, and one is definitely preferred to the other

Multiple Operations: The OK Way

- One way to perform multiple operations is to save intermediate data frames as new data frames
- This method delivers desired results, but makes your workspace quite messy (i.e., you"ll end up with a workspace full of intermediate results)

```
flights_by_date <- group_by(flights, year, month, day)
summary_by_date <- summarize(
  flights_by_date,
  arr = mean(arr_delay, na.rm=TRUE),
  dep = mean(dep_delay, na.rm=TRUE))
big_delay_dates <- filter(
  summary_by_date,
  arr > 30 | dep > 30)
```

- ► This method might be preferred if you need the intermediate results in the future
- If not, there is a better way to chain multiple operations with

The Pipe Operator %>%

▶ The pipe operator, aka the "magic" operator, takes the output from the verb on its left-hand side, and uses it as the first argument (data frame) for the verb on the right-hand side

- No need to save intermediate results
- ► Easier to read (i.e., you can follow the operations step-by-step without too much mental accounting)

The Pipe Operator %>% – Best Practice

 Always using the pipe operator – across multiple lines – makes it easier to add/remove/move things around, even for single expressions, i.e.,

```
flights_by_date <- flights %>%
  group_by(year, month, day)
```

dplyr: Exercise

- ▶ With the flights data
 - find the average speed (distance / air_time * 60) by each carrier (ignore NA), and sort the data in descending order of average speed
 - 2. find the number of flights and average flight time of all flights greater than 10 hours by each carrier in April

Exercise Solution

WARNING

- ▶ Solutions to the exercise are presented in the next slide
- ▶ Try the exercise before proceeding!

Solution 1

```
speed_by_carrier <- flights %>%
  group_by(carrier) %>%
  mutate(speed = distance / air_time * 60) %>%
  summarize(avg_speed = mean(speed, na.rm=TRUE)) %>%
  arrange(desc(avg_speed))
speed_by_carrier
```

```
## # A tibble: 6 × 2
##
    carrier avg_speed
##
      <chr> <dbl>
## 1
         HA
                480.4
         VX
                446.2
## 2
## 3
         AS
                443.7
## 4
         F9
                425.2
## 5
         IJΑ
                420.9
                418.5
## 6
         DI.
```

Solution 2

4

5

6

4

4

```
april long flights <- flights %>%
  group by (month, carrier) %>%
 filter(month == 4 & hour > 10) %>%
  summarize(avg = mean(hour, na.rm=TRUE), count = n())
april_long_flights
## Source: local data frame [6 x 4]
## Groups: month [1]
##
##
    month carrier avg count
    <int> <chr> <dbl> <int>
##
## 1
        4
               9E 16.68 1170
## 2
        4
               AA 15.55 1704
        4
               AS 18.00 30
## 3
```

4 B6 16.89 3012

DL 15.81 2747

EV 16.08 3048

Reshape Data with tidyr

Introduction to tidyr

▶ Recall, the prefered way to think about a data frame:

Each column represents a variable/feature
Each row represents an observation/instance

 Consider the following (fictional) data frame of students" homework grades

ID	HW1	HW2	HW3
jamie	6	7	3
cersei	8	5	2
hodor	9	10	9

- What are the variables of this data?
- ▶ What are the potential issues with this representation?
- ▶ What are the benefits of this representation?

Introduction to tidyr: An Example

- For data manipulation/visualization we often prefer to have data in the long form
- ▶ The *long* form of the previous data would be

ID	HW	Score
jamie	1	6
jamie	2	7
:	:	:
hodor	2	10
hodor	3	9

tidyr is a package that provides a tools for converting data between long and wide forms

Introduction to tidyr: Getting Started

- tidyr is also part of the tidyverse, so if you load tidyverse, tidyr is also loaded
- ► You can also, but don"t have to, install and load tidyr as a standalone package like you would any other R package

```
# Install, if you haven"t already.
# Only need to do this once on a single machine.
install.packages("tidyr")
```

```
# load package into workspace
library("tidyr")
```

Introduction to tidyr: Getting Started (cont"d) - Create some random data

```
## # A tibble: 3 × 5
## ID HW1 HW2 HW3 info
## <chr> <dbl> <dbl> <dbl> <chr>
## 1 jamie 1.462 8.051 6.853 male/lannister
## 2 cersei 5.798 8.816 9.162 female/lannister
## 3 hodor 5.573 8.110 8.247 male/stark
```

Create *long* data with gather()

With the grades data, we would like to create a data frame in the form of

ID	info	HW	score
	-	-	

- The verb for gathering multiple columns into key-value pairs in tidyr is gather()
- The syntax is

```
gather(data, key, value, ...)
```

where the ... should be replaced by column specifications

Create *long* data with gather() (cont"d)

```
grades_tidy <- gather(grades, HW, score, HW1:HW3)
grades_tidy</pre>
```

Split a Column to Multiple Variables with separate()

- Often, there will be column that you"d prefer to split into multiple variables, e.g., splitting a date column to year, month, and day
- ► From the grades data, notice that the info column combines two variables: sex and house
- We can split such columns to multiple variables with the separate() verb in tidyr

Split a Column to with separate() (cont"d)

```
grades_split <- separate(
  grades_tidy, info,
  into = c("sex", "house"),
  sep = "/"
  )
grades_split</pre>
```

```
## # A tibble: 3 × 5
## ID sex house HW score
## <chr> <chr> <chr> <chr> <chr> <chr> +# 1 jamie male lannister HW1 1.462
## 2 cersei female lannister HW1 5.798
## 3 hodor male stark HW1 5.573
```

Chaining tidyr verbs

- ► Note that tidyr operations are also verbs that can be chained with the pipe operator %>%
- For example, we can do the previous operations on the grades data with the chained operation

```
grades_final <- grades %>%
  gather(HW, score, HW1:HW3) %>%
  separate(info, into=c("sex", "house"), sep="/")
```

tidyr verbs can also be chained with dplyr verbs (and any other function that qualifies as a verb, i.e., takes a data frame as the first argument and results in a new data frame)

Exercise

Create some random data

```
address <- "https://goo.gl/0hFk2w"
finance <- read_tsv(address)
```

1. Tidy the data to fit the form

ID	type	year	amount
-	-	-	-

2. Find the mean and total Income/Expense for each ID across all years

Exercise Solution

WARNING

- ▶ Solutions to the exercise are presented in the next slide
- ▶ Try the exercise before proceeding!

Solution 1

```
finance <- finance %>%
  gather(year, amount, 2:7) %>%
  separate(year, c("type", "year"), sep="_")
finance
```

```
## # A tibble: 8 × 4
##
       ID
          type year amount
    <chr> <chr> <chr> <chr> <dbl>
##
    leia Income 2013 4174.3
## 1
## 2 han Income 2013 11064.9
## 3 luke Income 2013 11341.8
## 4
    leia Income 2014 17343.7
## 5 han Income 2014 - 5023.7
## 6 luke Income 2014 3547.0
## 7 leia Income 2015 3027.6
## 8 han Income 2015 -757.4
```

Solution 2

```
finance_summary <- finance %>%
  group_by(ID, type) %>%
  summarize(mean=mean(amount), total=sum(amount))
finance_summary
```

```
## Source: local data frame [6 x 4]
## Groups: ID [?]
##
##
       ID type mean total
##
    <chr> <chr> <dbl> <dbl>
## 1 han Expense 8170 24509
## 2 han Income 1761 5284
## 3 leia Expense 8818 26453
## 4 leia Income 8182 24546
## 5 luke Expense 12820 38461
     luke Income 8803 26408
## 6
```


Basic concatenations

- rbind: concatenate rows
- cbind: concatenate columns
- ► For data frames, bind_rows() and bind_cols() from dplyr is usually much faster.

Example (with matrix, but works with data frames too)

```
A <- matrix(1:4, 2, 2)
B <- matrix(5:8, 2, 2)
rbind(A, B)
```

```
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
## [3,] 5 7
## [4,] 6 8
```

cbind(A, B)

```
## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
```

Introduction to joins

- Sometimes, you will find relevant data across multiple datasets, e.g., a list of grades in one dataset and a list of contact information in another
- ▶ In such cases, you may want to join the two datasets into a single data frame prior to further analysis
- ► For a successful join you must determine
 - 1. One or more variables that uniquely identify matching observations (rows) in both datasets
 - 2. How you wish to join the data, i.e.,
 - Left/right join Retain one of the datasets entirely, while only keeping matching entries of the other, possibly resulting in a few missing values (NA)
 - Inner join Retain only complete matches, possibly dropping some rows of both datasets
 - Outer (full) join Retain all rows of both datasets, but potentially resulting in many missing values (NA)

Example Datasets

► For illustration, let"s create two data frames

```
info <- tibble(</pre>
  name=c("tony", "tony", "rey"),
  job=c("scientist", "tiger", "scavenger"),
  score=rnorm(3)
power <- tibble(</pre>
  name=c("tony", "hank", "rey"),
  job=c("scientist", "scientist", "scavenger"),
  strength=rexp(3)
```

▶ How is an observation (row) uniquely identified?

Left/Right join

Retain rows of one dataset, and match the rows of the other

```
left_join(info, power, by=c("name", "job"))
```

right_join(info, power, by=c("name", "job"))

Inner join

▶ Retain only the rows that have matches on both datasets

```
inner_join(info, power, by=c("name", "job"))
## # A tibble: 2 × 4
```

```
## name job score strength
## <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> = 0.3955 6.0759
## 2 rey scavenger -0.9967 0.5665
```

Outer (Full) join

Retain all rows

```
full_join(info, power, by=c("name", "job"))
```

Tip: Replace NA entries

To replace all NA entries in a data frame — assuming you know exactly what you want to change them to! — index by is.na and re-assign, e.g.,

```
everyone <- full_join(info, power, by=c("name", "job"))
# Replace the NAs with 0 (BAD IDEA!)
everyone[is.na(everyone)] <- 0
everyone</pre>
```

```
## # A tibble: 4 \times 4
##
                job score strength
     name
    <chr> <chr> <chr> <dbl>
                              <dbl>
##
    tony scientist -0.3955 6.0759
## 1
## 2
    tony
             tiger -0.1033 0.0000
## 3 rey scavenger -0.9967 0.5665
     hank scientist 0.0000
                             1.0291
##
```

Reference

► A great "cheat sheet" for wrangling data with dplyr and tidyr is available for free at https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf