Will It Still Be True Tomorrow? Multilingual Evergreen Question Classification to Improve Trustworthy QA (arxiv)

Key Highlights

問題

- 核心問題: 大型語言模型 (LLMs) 在回答問題 (QA) 任務中經常會產生錯誤答案, 其中一個關鍵但未充分探索的因素是問題的時間性——即問題是常青的 (答案在時間 上穩定) 還是可變的 (答案會隨時間改變)。
- 現有方法與局限性:
 - 。關於時間性 QA 的大多數研究都僅限於小規模、僅限於英語的數據集
 - 。主要關注 OA 的準確性,而不考慮更廣泛的影響
 - 。現有方法如 RAG 和自我知識估計未明確考慮問題的時間性
 - 。之前的方法 (UAR, MULAN) 對訓練數據中的常青程度做出過於簡化的假設

解決方案

- 提出的解決方案: 引入 EverGreenQA 數據集和 EG-E5 分類器來進行多語言常青問題分類
- 主要組件:
 - EverGreenQA: 第一個多語言人類策劃的常青意識 QA 數據集 (共7種語言, 4,757個例子)
 - EG-E5: 基於 E5-Large 模型的輕量級多語言分類器,用於識別常青問題
- 理論基礎: 隨著時間答案穩定的問題 (常青) 應與隨時間變化的問題 (可變) 可區分, 從而改進 OA 系統設計和評估

實驗

- 性能結果:
 - $^{\circ}$ EG-E5 在所有語言中達到了最先進的性能 (平均 F1 為 0.906),大大超過了 LLMs 和之前的方法
 - 。最好的 LLMs (LLaMA 3.1 70B, Qwen 2.5 32B) 達到了約 0.875 的 F1, 而基線方法的表現要差得多
 - 不確定性指標顯示與常青程度的弱相關性 (0.20-0.35)
- 主要局限性:
 - 數據集規模相對有限 (4,757 個例子)
 - 。 語言家族的覆蓋率有限
 - 分類器在面對最高級詞和在世人物的傳記數據時顯示出混亂

創新

• 新發現:

- 。 首次在多語言環境中全面研究問題的常青性
- 。 證明常青概率是 GPT-4o 檢索行為的最強預測因子
- 。流行的 QA 數據集中包含 10-18% 的可變問題,破壞了公平的評估
- 常青分類一致地改進了多種不確定性指標中的自我知識估計

評論/批判

• 優點:

- 。 問題動機明確且具有實際應用價值
- 。 全面的評估涵蓋了多個模型和語言
- 。 在三種不同的下游任務中顯示出強實驗驗證

局限性:

- 。數據集規模上的限制已被承認但未完全解決
- 。 錯誤分析顯示在最高級詞和時間措詞上的系統問題
- 。 對分類器的架構探索有限
- 。某些應用 (如解釋 GPT-4o 行為) 更偏向於相關性而非因果性

Comprehensive Analysis

No section notes.

References

No references found.