文档版本: 1.0.1

保密级别: 内部

可编程仪表通讯协议设计说明

Communication Protocol for Programmable Instruments

引言

对于我公司大量的可编程(通过串口指令或其它接口进行二次开发)仪表,需要有一套标准、规范、统一、可扩展的编程协议。

随着技术的不断开发,业务逻辑的不断复杂,我公司第一版本串口通讯标准(见附录 I)处理起来已经不能满足当前的需求。鉴于此,经研发部的相关人员商定,在原通讯标准的基础上,要建立一套新的通讯协议。

出于平稳过渡及向下兼容的考虑,使用新标准的仪表必须兼容原通讯协议。

新规范的名称 Communication Protocol for Programmable Instruments(以下简称 CPPI),也即可编程仪表的通讯协议。

1. 协议介绍

CPPI 的建立基础是用于仪表间或上位机与仪表之间的编程通讯,我们要充分考虑规范的标准性、健壮性及可扩展的能力,以及规范的可读性。

CPPI 的指令(报文)以十六进制码为基础,而不是之前的 ASCCI 字串,及大的提高了通讯效率和编程效率。 在起草 CPPI 规范前,我们参考了 Modbus 通讯标准、HART/Profibus/FF 总线协议的报文结构,尽可能的扬长避短。 取各家之长再结合我公司的业务特点。

CPPI 除了规定通讯指令的标准格式,还将对通用指令、标准工程单位、标准错误代码进行约定。避免不同仪表在实现同一功能时,采用了五花八门的指令,给后期编程带来诸多不便。

2. 协议版本及标准报文

2.1 协议版本

当前协议版本为: CPPI 1.0.0。

2.2 标准报文的定义

标准报文(Telegram)由7部分构成,如下表所示:

Header	Address	Control	FC	Data-length	Data-block	CRC	Trailer
报头	地址	控制位	功能码	数据长度	数据块	校验码	报尾
4-byte	1-byte	1-byte	2-byte	2-byte	Data-length	2-byte	4-byte

报文说明:

1、报头(Telegram Header)

报文头的内容固定、长度固定: OxAA OxBB OxCC OxDD.

2、地址(Address)

地址为 1 个字符的无符号整型数(unsigned char),范围是 0-0xFF。地址的使用规则如下:

0x00、0xFF 特殊地址;

0x01 - 0x7F 为当前设备的有效地址;

0x80 - 0xFE 为当前设备从设备的地址;

3、控制字段(Control Field)

控制字段用于描述/控制报文的结构,为了适应不同的应用场合,可以通过控制位来调整报文的结构状态。 控制字段每一位(bit)的功能如下表所示(0-7的顺序是由低到高位):

Bit	Description		
0	Reserved		
1	CRC 校验是否生效		
I	0: 忽略 CRC 校验; 1: CRC 校验有效。		
2	Reserved		
3	Reserved		
4	Reserved		
5	Reserved		

6	Reserved
7	Reserved

4、功能码(Function Code)

功能码为 2 个字节的无符号整型数(unsigned short)构成,低 255 位(0x00-0xFF)为 CPPI 使用的基本指令区,设备只允许按标准协议实现指令,自定义的功能指令只能放到 0xFF 之后的区域。

5、数据长度(Data Length)

数据长度为 2 个字节的无符号整型数(unsigned short),用于指示数据区的字节数。如果数据块无内容,则数据长度为 0。

6、数据块(Data Block)

报文内容。

7、CRC 校验码(Cyclic Redundancy Check)

CRC 校验码为<u>地址、控制位、功能码、数据长度、数据区</u>五部分内容的校验和。CPPI 使用的 CRC 版本为CCITT CRC16,关于 CCITT CRC16 的详细内容参见附录五。

I 关于 CRC 校验的具体公式,参见附录五。

8、报尾(Telegram Trailer)

报文尾的内容固定、长度固定: 0xDD 0xCC 0xBB 0xAA

2.3 回读指令的定义

从设备收到 CPPI 指令后,发送回读数据的格式完全符合标准报文的定义。

除特殊约定外,回读数据报文的地址(Address)与功能码(FC)应与接收指令完全一致。如果指令响应正确,则功能码(FC)的最高位(Highest-bit)为零;如果指令响应错误,则功能码(FC)的最高位(Highest-bit)为 1,此时数据区(Data-block)为错误代码;

2.4 基本指令的定义

CPPI 1.0.0 版本的功能码使用 2 字节无符号整型数,原则上可以定义 65535 的功能指令。由于可编程仪表存在很多功能相同或相近的属性,特此我们将低功能码的低 255 位(0x00 – 0xFF)定义为基本指令区,任何终端都不能将自定义功能定义在基本指令区域。

基本指令区的功能定义参见附录一。

2.5 标准参数的定义

CPPI 为了实现设备间通讯的参数标准化,对主变量、工程单位、传感器类型等参数进行统一编码(UUC: Unit

Unique Code)。遵循 CPPI 的设备在使用这些单位时必须严格按照 UUC 的规定进行定义。

4.1 主变量 (Primary Variable)

Value	Туре	Note
100	Voltage DC	
101	Voltage AC	
102	Current DC	
103	Current AC	
104	Resistance	
105	Frequency	
106	Pulse	
107	On/Off	
108	Gauge Pressure	
109	Differential Pressure	
110	Absolute Pressure	
111	Temperature	
112	Flow	
32768 - 65534	User-defined	

4.2 传感器类型 (Sensor Types)

Value	Туре	Note	
100	Pt10(385)	IEC 751	
101	Pt50(391)	GOST 6651-2009	
102	Pt100(385)	IEC 751	
103	Pt100(3916)	JIS 1604 (Japan, Obsolete)	
104	Pt100(391)	GOST 6651-2009	
105	Pt200(385)	IEC 751	
106	Pt500(385)	IEC 751	
107	Pt1000(385)	IEC 751	
108	Cu10(427)	Minco Application Aid #18	
109	Cu10(426)	GOST 6651-94 (Obsolete)	
110	Cu10(428)	GOST 6651-2009	

R&D Center			
111	Cu50(426)	GOST 6651-94 (Obsolete)	
112	Cu50(428)	GOST 6651-2009	
113	Cu50(428)	???	
114	Cu100(426)	GOST 6651-94 (Obsolete)	
115	Cu100(428)	GOST 6651-2009	
116	Cu100(428)	???	
117	Ni100(618)	DIN 43760	
118	Ni100(617)	GOST 6651-2009	
119	Ni120(672)	DIN 43760	
120	Ni1000	DIN 43760	
200	S	IEC 584, NIST 175	
201	R	IEC 584, NIST 175	
202	В	IEC 584, NIST 175	
203	К	IEC 584, NIST 175	
204	N	IEC 584, NIST 175	
205	E	IEC 584, NIST 175	
206	J	IEC 584, NIST 175	
207	Т	IEC 584, NIST 175	
208	С	ASTM E988, and NIST 175	
209	D	ASTM E988	
210	G	ASTM E1751	
211	L(DIN)	DIN 43710 (Germany, Obsolete)	
212	U(DIN)	DIN 43710 (German, Obsolete)	
213	L(GOST)	GOST R 8.585 – 2001 (Russia Standard)	
214	A(GOST)	GOST R 8.585 – 2001 (Russia Standard)	
32768 - 65534	User-defined		
65535	No-standard		
· · · · · · · · · · · · · · · · · · ·			

4.3 转函数数(Transfer Function Codes)

Value	Туре	Note

0	Linear	Equation y=mx+b
1	Square Root	Equation y=sqrt(x)
2	Square Root Third Power	Equation y=sqrt(x^3)
3	Square Root Fifth Power	Equation y=sqrt(x^5)
4	Special Curve	
5	Square	Equation y=x^2
230	Discrete(Switch)	Binary(on/off)
231	Square Root Plus Special Curve	Obsolete
232	Square Root Third Power Plus Special Curve	Obsolete
233	Square Root Fifth Power Plus Special Curve	Obsolete
240-249	User-defined	
250	Not Used	
251	None	
252	Unknown	
253	Special	

4.4 单位编码(Unit Code Index)

参见附录四:标准单位定义表。

4.5 基本错误码的定义

Value	Description	Note
0x00	Reserved	
100	CRC 校验错误	
101	无此指令	
102 当前状态不支持此操作		
103 密码错误		
5数格式错误		
105 参数超范围		

附录一:基本指令

No.	FC	功能说明	描述
0	0x00	Reserved	
	0x01	Reserved	
	0x02	读取设备型号	字符串
	0x03	设置设备型号	字符串
	0x04	读取设备编号	字符串
	0x05	设置设备编号	字符串
	0x06	读取设备固件版本	参见附录二
	0x07	设置设备固件版本	参见附录二
	0x08	读取设备硬件版本	参见附录二
	0x09	设置设备硬件版本	参见附录二
	0x0A	读取设备标签(Tag)	字符串
	0x0B	设置设备标签(Tag)	字符串
	0x0C	读取设备的版权信息	字符串
	0x0D	设置设备的版权信息	字符串
	0x0E	读取设备的生产日期	参见附录三
	0x0F	设置设备的生产日期	参见附录三
	0x10	读取设备的出厂日期	参见附录三
	0x11	读取系统日期	参见附录三
	0x12	设置系统日期	参见附录三
	0x13	读取系统时间	参见附录三
	0x14	设置系统时间	参见附录三

附录二:产品版本定义说明

1. 定义与限制

标准的产品版本信息由两部分组成:版本类型和版本号。

版本类型为固定长度的字符类型;

版本号为形如 A.B.C 的由"."所间隔开的 3 段字符组成。其中 A、B、C 段为从 0 开始的整数。

2. 何时更改

在项目进行到以下进程时,需要更改软件版本号:

- 测试中修改了部分缺陷需要提交测试时;
- 公开发布或者需要提交给用户时;
- 增加或更改了系统需求,软件重新进行开发时;
- 更改了系统的设计框架、重新进行开发时;

3. 如何更改

- 普通项目在产品开始测试阶段的初始软件版本号为 0.0.1, 如果是从原有系统上升级或其他特殊原因可 更改为其他初始版本号。
- 在每次提交测试时,需要更改软件版本号的 C 段,从 1 开始递增。
- 每次公开发布或者提交给用户时,初始软件版本号为1.0.0,产品升级规则如下表所示.

产品升级版本编号规则表:

	修改整体设计	修改需求	修改 BUG
需要升级版本号	A 段	B段	C段
各段初始值	0	0	0
升级规则	原版本号+1 递增	原版本号+1 递增	原版本号+1 递增
其他	同时归零 B、C、D 段	同时归零 C 段	-

4.版本结构定义

CPPI 对于软件版本的结构定义如下:

Category	A (Major)	B (Minor)	C (Revision)	User-defined
类型	主版本	次版本	修正版本	自定义
8-byte	1-byte	1-byte	1-byte	5-byte

版本类型(Category)的命名规则:

版本类型尽量以中性的产品系列进行命名,杜绝使用具体的产品型号,这会给产品管理及 **OEM** 带来麻烦。比如过程校验仪的版本名称为: **DPC 2.1.0**; DPC = Documenting Process Calibrator。

附录三: 日期时间格式

1. 日期结构定义

Year	Month	Day
年	月	日
2-byte	1-byte	1-byte

2. 时间结构定义

Hour	Minute	Second
时	分	秒
1-byte	1-byte	1-byte

附录四:标准单位定义表(目前只列部分)

Value	Display	Description	Equivalence*
1000	К	Kelvin	SI
			° C(temperature) =
1001	°C	degree Celsius	° K(temperature) +
			273.2
1002	°F	daguar Falasanlasit	° F(temperature) = (9/5)
1002	F	degree Fahrenheit	° C(temperature) +32
			1 °R = 1 °F
			(delta);°R(temperature
1003	°D.	dograo Dankino) = °F(temperature) -
1003	°R	degree Rankine	459.69
			° F(temperature) = (9/5)
			° C(temperature) +32
1077	Hz	hertz	
1078	THz	terahertz	
1079	GHz	gigahertz	
1080	MHz	megahertz	
1081	kHz	kilohertz	
1082	1/s	per second	
1083	1/min	per minute	
1209	А	ampere	
1210	kA	kiloampere	
1211	mA	milliampere	
1212	μΑ	microampere	
1213	nA	nanoampere	
1214	рА	picoampere	
1240	V	volt	
1241	MV	megavolt	

R&D Center			
1242	kV	kilovolt	
1243	mV	millivolt	
1244	μV	microvolt	
1281	Ohm	Ohm	
1282	GOhm	gigaOhm	
1283	MOhm	megaOhm	
1284	kOhm	kiloOhm	
1285	mOhm	milliOhm	
1286	μOhm	microOhm	
1130	Pa	pascal	
1131	GPa	gigapascal	
1132	MPa	megapascal	
1133	kPa	kilopascal	
1134	mPa	millipascal	
1135	μРа	micropascal	
1136	hPa	hectopascal	
1137	bar	bar	
1138	mbar	millibar	
1139	torr	torr	
1140	atm	atmospheres	
1141	psi	pounds per square inch	
1142	psia	pounds per square inch absolute	
1143	psig	pounds per square inch gauge	
1144	g/cm²	gram per square centimeter	
1145	kg/cm²	kilogram per square centimeter	
1146	inH2O	inches of water	
1147	inH2O (4°C)	inches of water at 4°C	
1148	inH2O (68°F)	inches of water at 68°F	
1149	mmH2O	millimeters of water 1 mmH2O = .098	
		hPa	
1150	mmH2O (4°C)	millimeters of water at 4°C	

4454	110.0 (500.5)		
1151	mmH2O (68°F)	millimeters of water at 68°F	
1152	ftH2O	feet of water	
1153	ftH2O (4°C)	feet of water at 4°C	
1154	ftH2O (68°F)	feet of water at 68°F	
1155	inHg	inches of mercury	
1156	inHg (0°C)	inches of mercury at 0°C	
1157	mmHg	millimeters of mercury	
1158	mmHg (0°C)	millimeters of mercury at 0°C	
1342	%	percent	

附录五: CRC 校验

CRC 校准使用 CRC16 的 CCITT 标准。