- Combinatoria 3
 - Temas:
 - Principio de Inclusión-Exclusión

•

- Un elemento en algún conjunto
- Demostración de la fórmula
 - Un elemento en exactamente k conjuntos
 - Fórmula
- 1. Cumple menos de propiedades:
 - 2. Cumple exactamente propiedades:
 - 3. Cumple más de propiedades:
 - Un elemento en al menos k conjuntos
 - Fórmula

•

- Principio del Palomar
 - Ejemplo 1
 - Ejemplo 2
 - Ejemplo 3
- Ejercicios
 - Problema 1
 - Solución (Somoza)
 - Problema 2
 - Solución (Somoza)
 - Demostración
 - Problema 3
 - Solución
 - Problema 4
 - Solución
 - Problema 5
 - Solución
 - Problema 6
 - Solución

Combinatoria 3

Temas:

- 1. Principio de Inclusión-Exclusión
- 2. Principio del palomar

Principio de Inclusión-Exclusión

Siendo A y B dos conjuntos con intersección vacía, entonces la cantidad de elementos en $|A \cup B|$ es equivalente a |A| + |B|. Pero qué ocurriría si no hay garantía de que su intersección fuese vacía? En ese caso al contar |A| + |B| estamos contado doble $|A \cap B|$ por lo que:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Esta fórmula se cumple para cualesquiera dos subconjuntos A y B, pero y si en lugar de dos conjuntos tengo 3? Notemos que la cantidad de elementos en $A \cup B \cup C$ es equivalente a contar |A| + |B| + |C| pero $A \cap B, A \cap C, B \cap C$ las estamos contando dobles, ya que al contar |A| estamos contando $|A \cap B|$ y $|A \cap C|$ y así análogamente con los otros conjuntos, es decir que debemos restar esas intersecciones, y además, si analizamos la intersección $A \cap B \cap C$ nos damos cuenta que al contar |A|, |B|, |C| y $|A| \cap B$, $|A| \cap C$, $|A| \cap C$, $|A| \cap C$ en cada una contamos la intersección de los 3, por lo que al restarle a la suma de los elementos en los conjuntos las intersecciones dos a dos eliminamos la intersección, sin embargo nos interesa contarla, por lo que al final debemos añadirla \implies

$$|A \cup B \cup C| = |A| + |B| + |C| - (|A \cap B| + |A \cap C| + |B \cap C|) + |A \cap B \cap C|$$

Un elemento en algún conjunto

Y si ahora quisieramos contar los elementos que están en la unión de n elementos? Sean A_1, A_2, \ldots, A_m subconjuntos de un conjunto universo U, entonces se cumple que:

$$|A_1 \cup A_2 \cup ... \cup A_m| = \sum_{1 \le i \le m} |A_i| - \sum_{1 \le i < j \le m} |A_i \cap A_j| + \cdots + (-1)^{m-1} |A_1 \cap A_2 \cap ... \cap A_m|$$

O podemos verla también de esta forma, buscar la intersección de los complementos de cada conjunto, lo cual sería el universo menos su unión.

Demostración de la fórmula

Para demostrar la fórmula analicemos los siguientes casos:

- Los elementos que no cumplen ninguna propiedad: estos elementos no se cuentan, ya que en cada término se cuentan elementos que pertenecen al menos a un conjunto.
- 2. Los que aparecen solo en un conjunto se cuentan solamente una vez, en algún término $|A_i|$ porque en el resto de término no aparecería.
- 3. Los que aparecen en k subconjuntos a la vez aparecen en la sumatoria de un subconjunto, en la sumatoria de la intersección de dos subconjuntos y así sucesivamente hasta la sumatoria de las intersecciones de k subconjuntos, porque como aparecen solo en k subconjuntos no aparecen en k+1 a la vez, y por tanto en las sumatorias de las intersecciones de k+1 subconjuntos esos elementos no son contados. Luego, queda saber cuántas veces se cuenta k en $1,2,\ldots,k$ y esto no es más que $\binom{k}{1}-\binom{k}{2}+\cdots+(-1)^{k-1}\binom{k}{k}=P$. Como ya hemos demostrado en la clase anterior $\sum_{k=0}^n (-1)^k\binom{n}{k}=0$ y la dejar $\binom{n}{0}$ en un miembro y pasar el resto al otro resulta: $\binom{n}{0}=P\implies P=1$.

Hasta ahora hemos analizado que de un Universo en el que hay m conjuntos puedo saber cuántos elementos pertenecen al menos a un conjunto. Pero y si ahora quisieramos saber cuántos elementos pertenecen a exactamente k subconjuntos.

Un elemento en exactamente k conjuntos

Tengamos en cuenta la siguiente notación: sea U un Universo, p_1, p_2, \ldots, p_m m posibilidades a escoger y $N_{i,j,\ldots}$ la cantidad de elementos que cumplen las propiedades

 p_i, p_j, \ldots Sea S_0 la cardinalidad de U y S_k la suma de las cardinalidades de los elementos que cumplen k propiedades pero contadas de más, o sea, $\sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq m} N_{i_1, i_2, \ldots, i_k}.$

Fórmula

Sea U un conjunto finito de n elementos y P un conjunto de m propiedades, entonces los elementos que cumplen exactamente r propiedades son:

$$N(r) = \sum_{k=0}^{m-r} (-1)^k {k+r \choose r} S_{k+r}$$

Demostremos que los que cumplen r propiedades se cuentan una vez, y los que cumplen más o menos de r se cuentan cero veces. Analicemos los 3 casos:

1. Cumple menos de r propiedades:

Notemos que si el elemento cumple menos de r propiedades la fórmula no lo cuenta porque empieza en S_r , o sea, empieza a contar elementos que ya cumplen al menos r propiedades

2. Cumple exactamente r propiedades:

Si el elemento cumple exactamente r propiedades solo se cuenta en S_r y da $\binom{r}{r}=1$

3. Cumple más de r propiedades:

Si el elemento cumple t propiedades, con t > r ocurre que en S_{k+r} hay $\binom{t}{k+r}$ formas de repartir t propiedades en grupos de k+r, por tanto $N(r) = \sum_{k=0}^{t-r} (-1)^k \binom{k+r}{r} \binom{t}{k+r}$.

Analicemos ahora $\binom{k+r}{r}\binom{t}{k+r}$ para llevarlo a una forma más simple, pensemos la siguiente situación: tenemos t trabajadores de una empresa y queremos hacer grupos de k+r, pero en cada grupo que hagamos queremos saber de cuántas formas podemos seleccionar r delegados para asistir a una reunión, esto es evidente que

podemos hacerlo de $\binom{t}{k+r}\binom{k+r}{r}$ formas, lo cual es equivalente a que de los t trabajadores seleccionemos r delegados para asistir a la reunión y de los t-r restantes sacar los grupos de trabajadores que estos representarán en la reunión, y esto puede hacerse de $\binom{t}{r}\binom{t-r}{k}$.

Con la nueva expresión la fórmula quedaría $N(r) = \sum_{k=0}^{t-r} (-1)^k \binom{t}{r} \binom{t-r}{k}$, y como la sumatoria no depende de $r \implies N(r) = \binom{t}{r} \sum_{k=0}^{t-r} (-1)^k \binom{t-r}{k}$ y esta sumatoria da cero (probado en la clase anterior).

Un elemento en al menos k conjuntos

En este caso como no lo veremos mucho en el curso solo pondremos la fórmula, queda por parte del estudiante ampliar sus conocimientos al respecto.

Fórmula

$$\overline{N(r)} = \sum_{k=0}^{m-r} (-1)^k {k+r-1 \choose r-1} S_{k+r}$$

Principio del Palomar

Este principio es súper evidente, plantea que si tenemos n palomas para colocarlas en m palomares con $n > m \implies$ al menos en un palomar habrá más de una paloma.

Ejemplo 1

En todo grupo de n personas hay dos con la misma cantidad de conocidos.

Supongamos que en el grupo hay una persona que no conoce a nadie y nadie la conoce a ella, tenemos entonces que la cantidad de conocidos de cada una de las restantes n-1 personas debe ser un número entre 0 (que no conozca a nadie) y n-2 (que conozca a las otras n-2 personas), entonces hay n-1 posibilidades de conocidos, en caso que sea 0 el número de una de ellas es igual a la primera persona

que selecionamos, de lo contrario tendríamos que distribuir n-2 posibilidades de conocidos en n-1 personas, por lo que a dos personas le tocará la misma cantidad.

Si no hay ninguna persona con cero y como una persona no se conoce a sí misma tendríamos n personas para asignarle a cada una n-1 posibles conocidos, y por el *Principio de Palomar* habrá al menos dos con la misma cantidad.

Ejemplo 2

En un grupo de 6 o más personas hay un trío que se conoce o un trío que no se conoce.

Tomemos una persona, esta puede conocer o no a al menos 3 personas.

Supongamos que conoce a 3 personas, entonces esas 3 personas pueden haber 2 que se conozcan, en cuyo caso ya tendremos ellas dos con la primera que se conocen, o que los 3 no se conozcan, y en este caso tenemos el trío de desconocidos.

Ejemplo 3

En todo conjunto de n números hay un subconjunto cuya suma es múltiplo de n.

Sean a_1, a_2, \ldots, a_n , analicemos las siguientes sumas:

- 1. $S_1 = a_1$
- 2. $S_2 = a_1 + a_2$
- 3. $S_3 = a_1 + a_2 + a_3$
- 4. ...
- 5. $S_n = a_1 + a_2 + a_+ \cdots + a_n$

Tenemos a repartir en las sumas n posibles restos pero si alguna suma deja resto cero entonces es la suma buscada, de lo contrario tienes n sumas para asignarles n-1 restos \implies al menos dos sumas tendrán el mismo resto

Ejercicios

Problema 1

Sean A, B conjuntos finitos tal que |A| = n y |B| = m. Calcule el número de funciones totales sobreyectivas de A en B.

Solución (Somoza)

El problema podemos reducirlo a distribuir n objetos distintos en m categorías distintas pero que en cada categoría haya al menos un objeto, porque la función es sobreyectiva, y tienen que estar todos los objetos repartidos porque la función es total.

Vamos a proceder por el *Principio de Inclusión-Exclusión*, tomemos como universo S_0 la cantidad total de funciones que van de $A=\{a_1,a_2,\ldots,a_n\}$ a $B=\{b_1,b_2,\ldots,b_m\}$, lo cual es fácil computar la cantidad porque sería repartir n elementos diferentes del dominio en m categorías diferentes en la imagen de cualquier forma, lo cual sería $S_0=m^n$. Sea N_{c_1,\ldots,c_r} como la cantidad de funciones que no tiene como elemento en su imagen a los valores c_1,\ldots,c_r , lo cual tiene $(m-r)^n$, y S_r es todas las formas de hacer lo anterior con todos los grupos de r elementos del dominio y por cada una la cantidad de funciones que hay $\implies {m \choose r}(m-r)^n$. Entonces la fórmula quedaría: $N(r)=\sum_{k=0}^m S_{k+r}$ y como queremos saber cuántas no incumplen ninguna, o sea que sean sobreyectivas $\implies r=0$:

$$N(0) = \sum_{k=0}^{m} (-1)^{k} S_{k} = \sum_{k=0}^{m} (-1)^{k} {n \choose k} (m-k)^{n}$$

Problema 2

Sea n un entero positivo y (n, 10) = 1. Prueba que $\forall d \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ existen infinitos múltiplos de n que están compuestos únicamente por el dígito d.

Solución (Somoza)

Analicemos n+1 números formados solo con el dígito d con distinta cantidad de este:

- <u>d</u>
- \(\overline{d} \overline{d} \)
- ddd
- ...

• <u>ddd...dd</u>

Si alguno deja resto cero ya lo tenemos, de lo contrario en n+1 números al menos 2 tendrán el mismo resto, y al restarlos, el resultado será un número de la forma $\overline{dd...d*10^k}$ y será divisible por n, pero como $(n,10)=1 \implies n \div \overline{dd...d}$ podemos generar infinitos números que tengan solo d simplemente comncatenando el resultado anterior, lo cual sería también divisible por n.

Demostración

Tenemos $a = \overline{a_1 a_2 ... a_k}$ un número divisible entre n, como $n \div a \implies n \div (a * 10^k + a)$ y $(a * 10^k + a) = \overline{aa}$. Entonces si $n \div a \implies n$ divide a cualquier concatenación de a

Problema 3

Sea $A = \{1, 2, ..., 2n\}$ y S un subconjunto de A de tamaño n + 1. Prueba que existen dos elementos $a, b \in S$ tal que a divide a b.

Solución

Notemos que todo número puede ser expresado como $2^k * q$ y si queremos expresar cada elemento en el conjunto de esta forma $\implies 1 \le q \le n$ entonces q tendría n posibilidades pero hay más de n números \implies alguna pareja de números tendrán el mismo q y distinto k \implies uno es divisor del otro.

Problema 4

Calcule el número de permutaciones del conjunto $\{1,2,\ldots,n\}$ donde ningún elemento está en su posición inicial.

Solución

Procedamos por *Principio de Inclusión-Exclusión*, definimos nuestro universo N como todas las posibles ordenaciónes que podemos hacer en el array $\implies n!$ luego

analicemos los siguientes casos:

- 1. Cuando un número está en su posición hay (n-1)! formas porque el resto de los números permutan, y haciendo este análisis con los n elemento tenemos $S_1 = n(n-1)! = \binom{n}{1}(n-1)!$
- 2. Cuando r números están en su posición correcta tenemos (n-r)! formas permutando el resto de los elemento, y como son $\binom{n}{r}$ r—uplas resulta $S_r =$ $\binom{n}{r}(n-r)!$

Luego, teniendo en cuenta que $n! = \binom{n}{0}(n-0)!$, por el Principio de I-E resulta que la cantidad de formas en que ningún número se encuentre en su posición es N(0) = $\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} (n-k)!$

Problema 5

Determine el número de soluciones enteras de $x_1 + x_2 + x_3 + x_4 = 21$ con:

- $2 \le x_1 \le 5$
- 3 ≤ x₂ ≤ 7
 0 ≤ x₃ ≤ 6
- $2 \le x_4 \le 10$

Solución

Problema 6

Una compañía de baile tiene 11 semanas para prepararse para una competencia y decide practicar una vez al día pero no más de 12 veces por semana. Prueba que existe un intervalo de días en que la compañia practica exactamente 21 veces.

Solución

Tomemos A una lista de tamaño 77 donde en la posición i tendremos la cantidad total de veces que practicó la compañía hasta el día i. Como la compañía entrena al menos una vez al día esa lista A será estrictamente creciente y como cada semana practica a lo más 12 veces, la posición 21 de A será menor o igual que 36, por lo que, si

analicemos los primeros 21 días en A, entonces entre ellos habrá un múltiplo de 21, en cuyo caso será el propio 21, o dos números que dejen el mismo resto módulo 21, por lo que basta restarlos para que resulte un múltiplo de 21 y en ese intervalo de días la compañía habrá practicado exactamente 21 veces.