- # Ray-cylinder intersection
 - Infinite cylinder along y axis of radius r axis has equation

$$x^2 + z^2 - r^2 = 0$$

 The equation for a more general cylinder of radius r oriented along a line c + n*t

where \boldsymbol{c} is the center of the one surface sphere and \boldsymbol{n} is the surface normal has

following:

 $(\mathbf{d} - \mathbf{n} * \mathsf{dot}(\mathbf{n}, \mathbf{d}))^2 - \mathsf{r}^2 = \emptyset$,where $\mathbf{d} = \mathbf{x} - \mathbf{c}$, x is a point on the cylinder

simplified LHS =
$$dot(\mathbf{d}, \mathbf{d}) - 2 dot(\mathbf{n}, \mathbf{d})^2 + dot(\mathbf{n}, \mathbf{d})^2$$

- r^2
= $dot(\mathbf{d}, \mathbf{d}) - dot(\mathbf{n}, \mathbf{d})^2 - r^2$

To find the intersection points with a ray **o** + t***dir**, substitute in:

$$d = x-c = t * dir + o - c$$
;

reduces to $A*t^2 + B*t + C = 0$ with following: 0 = normsq(t * dir + o - c) - dot(n, t * dir)

 $+ o - c)^2 - r^2$

 $= t^2 \operatorname{normsq}(\operatorname{dir}) + 2t \operatorname{dot}(\operatorname{dir}, o-c) +$

 $\frac{\text{normsq}(\mathbf{o}-\mathbf{c})}{-\det(\mathbf{n},\ \mathbf{o}-\mathbf{c})^2} - \frac{\mathsf{t}^2 \det(\mathbf{n},\ \mathbf{dir})^2 - 2 \ \mathsf{t} \ \det(\mathbf{n},\ \mathbf{dir}) \ \det(\mathbf{n},\ \mathbf{o}-\mathbf{c})}{-\det(\mathbf{n},\ \mathbf{o}-\mathbf{c})^2} - r^2$

 $= t^2 \left[normsq(dir) - dot(n, dir)^2 \right] + t \left[2 dot(dir, o-c) \right] + normsq(o-c) - dot(n, o-c)^2 - r^2$

$$-> A*t^2 B*t + C = 0$$

Thus, $A = dot(dir, dir) - dot(n, dir)^2 = (dir - n*dot(n, dir))^2$

B = 2 * dot(dir, o-c) - 2 * dot(n, dir)

dot(**n**, **dir**)

$$C = dot(o-c, o-c) - dot(n, o-c)^2 - r^2 = (o-c - n*dot(n, o-c))^2 - r^2$$

calculate t with A,B,C we get, then the intersection point.

Normal deriviations

Let ${\bf I}$ be the intersection point, and ${\bf T}$ be the point on the axis through center of cylinder

There is $dot(\mathbf{I}, \mathbf{T})^2 - r^2 = 0$ where $\mathbf{I} = t*dir + o$ and $\mathbf{T} = a*n + c$

To simplify, substitute in **I** and **T**, reduces to $A*t^2 + B*t + C = 0$ with following:

$$[t*dir + o - (a*n + c)]^2 - r^2 = 0$$

 $(t*dir + oc - a*n)^2 - r^2 = 0$
 $a^2 - 2n(t*dir + oc)*a + (t*dir + oc)^2 - r^2$

= 0

->
$$A*t^2 B*t + C = 0$$

Thus, $A = 1$
 $B = -2n(t*dir + oc)$
 $C = (t*dir + oc)^2 - r^2$

calculate a with A,B,C we get, then the point ${\bf T}$ on the axis ${\bf n}$ through ${\bf c}$.

With equation for points ${\bf I}$ and ${\bf T}$ we calculated above, the normal at intersection point ${\bf I}$ is:

Normal =
$$(I - T)/r$$