Fourier- und Laplacetransformation

Eigenschaften und Rechenregeln

Wo nicht anders angegeben, sind a, t_0, ω_0 beliebige reelle und a_1, a_2 beliebige komplexe Zahlen.

	Fouriertransformation	Laplacetransformation (f ist kausal)
Transformation	$f(t) \circ - \bullet F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} dt$	$f(t) \circ \bullet F(s) = \int_0^\infty f(t) \cdot e^{-st} dt$
Rücktransf.	$F(\omega) \bullet \longrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \cdot e^{j\omega t} d\omega$	$F(s) \bullet - \frac{1}{2\pi j} \int_{x-j \cdot \infty}^{x+j \cdot \infty} F(s) \cdot e^{st} ds$ bzw. Tabelle
Linearität	$a_1 \cdot f_1(t) + a_2 \cdot f_2(t)$	$a_1 \cdot f_1(t) + a_2 \cdot f_2(t)$
	$\circ - \bullet a_1 \cdot F_1(\omega) + a_2 \cdot F_2(\omega)$	$\circ - \bullet a_1 \cdot F_1(s) + a_2 \cdot F_2(s)$
Verschiebung	$f(t-t_0) \circ - e^{-j\omega t_0} \cdot F(\omega)$	$\sigma(t-t_0)\cdot f(t-t_0) \circ - e^{-st_0}\cdot F(s) \text{ für } t_0 > 0$
Modulation	$F(\omega-\omega_0) \bullet - \circ e^{j\omega_0 t} \cdot f(t)$	
Dämpfung		$f(t) \cdot e^{at} \circ - \bullet F(s-a)$
Streckung	$f(a \cdot t) \circ \longrightarrow \frac{1}{ a } \cdot F\left(\frac{\omega}{a}\right) \text{ für } a \neq 0$	$f(a \cdot t) \circ \longrightarrow \frac{1}{a} \cdot F\left(\frac{s}{a}\right) \text{ für } a > 0$
Differentiation	$f'(t) \circ - \bullet j\omega \cdot F(\omega)$	$f'(t) \circ - \bullet s \cdot F(s) - f(0+)$
	$f''(t) \circ - \omega^2 \cdot F(\omega)$	$f''(t) \circ \longrightarrow s^2 \cdot F(s) - s \cdot f(0+) - f'(0+)$
	$f'''(t) \circ - j\omega^3 \cdot F(\omega)$	$f'''(t) \circ - s^3 \cdot F(s) - s^2 \cdot f(0+) - s \cdot f'(0+) - f''(0+)$
	:	:
	$f^{(n)}(t) \circ - \bullet (j\omega)^n \cdot F(\omega)$	$f^{(n)}(t) \circ - s^n F(s) - s^{n-1} f(0^+)$
		$-\dots-sf^{(n-2)}(0^+)-f^{(n-1)}(0^+)$
Integration		$\int_0^t f(u) du \circ - \bullet \frac{1}{s} \cdot F(s)$
Faltungsprodukt	$(f * g)(t) \circ - \bullet F(\omega) \cdot G(\omega)$	$(f * g)(t) \circ \longrightarrow F(s) \cdot G(s)$

Einige wichtige Korrespondenzpaare der Laplacetransformation

$$\sigma(t) \quad \circ \longrightarrow \quad \frac{1}{s}$$

$$\sigma(t) \cdot \cos(\omega t) \quad \circ \longrightarrow \quad \frac{s}{s^2 + \omega^2}$$

$$\sigma(t) \cdot t^n \quad \circ \longrightarrow \quad \frac{n!}{s^{n+1}}$$

$$\sigma(t) \cdot \sin(\omega t) \quad \circ \longrightarrow \quad \frac{\omega}{s^2 + \omega^2}$$

$$\delta(t) \quad \circ \longrightarrow \quad 1(s)$$