Desenvolvimento de Rede Neural SOM Trabalho de Conclusão de Curso

Manoel Jorge Ribeiro Neto Evandro de Barros Costa Rômulo Nunes de Oliveira

Instituto de Computação Universidade Federal de Alagoas

30 de Março de 2007

Sumário

- Resumo
- 2 Introdução
- Redes Neurais
- Mapas Auto-Organizáveis
- Segmentação de perfis
- 6 Conclusão

Resumo

Neste trabalho, apresenta-se um estudo sobre Redes Neurais, com foco nas redes SOM (Self-Organizing Map, ou Mapa Auto-Organizável). Decorrente deste estudo, desenvolve-se um sistema de software capaz de agrupar os diferentes perfis de um domínio. O sistema de software criado é composto por um componente que implementa o algoritmo SOM. A visualização do mapa gerado pelo algoritmo, desta forma, é efetuada por um Mapa Contextual, por meio do qual é possível identificar os agrupamentos do domínio e, desta maneira, segmentar os diferentes grupos de perfis pertinentes ao mesmo.

Motivação

- Antes mesmo da popularização da informática, muitas instituições ofereciam serviços destinados a usuários em massa.
- Com a evolução da tecnología, os serviços passaram a agregar milhares (ou até milhões) de usuários, tornando humanamente impossível a tarefa de analisar os mais diversos perfis, classificando-os de acordo com suas similaridades.
- Diante disso, a Inteligência Artificial oferece muitas técnicas para abordar esse problema. Entre elas, está a utilização de redes SOM (Self-Organizing Map), que é um tipo especial de Rede Neural artificial, capaz de realizar agrupamentos e classificações em mapas belimensionais.

Motivação

- Antes mesmo da popularização da informática, muitas instituições ofereciam serviços destinados a usuários em massa.
- Com a evolução da tecnologia, os serviços passaram a agregar milhares (ou até milhões) de usuários, tornando humanamente impossível a tarefa de analisar os mais diversos perfis, classificando-os de acordo com suas similaridades.
- Diante disso, a Inteligência Artificial oferece muitas técnicas para abordar esse problema. Entre elas, está a utilização de redes SOM (Self-Organizing Map), que é un tipo especial de Rede Neural artificial, capaz de realizar agrupamentos e classificações em mapas bidimensionais

Motivação

- Antes mesmo da popularização da informática, muitas instituições ofereciam serviços destinados a usuários em massa.
- Com a evolução da tecnologia, os serviços passaram a agregar milhares (ou até milhões) de usuários, tornando humanamente impossível a tarefa de analisar os mais diversos perfis, classificando-os de acordo com suas similaridades.
- Diante disso, a Inteligência Artificial oferece muitas técnicas para abordar esse problema. Entre elas, está a utilização de redes SOM (Self-Organizing Map), que é um tipo especial de Rede Neural artificial, capaz de realizar agrupamentos e classificações em mapas bidimensionais.

Motivação Proposta

Proposta

A proposta do trabalho é, portanto:

- Pormenorizar o assunto, com o estudo de Redes Neurais SOM.
- Como estudo de caso, implementar um sistema segmentador de perfis.

Proposta

A proposta do trabalho é, portanto:

- Pormenorizar o assunto, com o estudo de Redes Neurais SOM.
- Como estudo de caso, implementar um sistema segmentador de perfis.

Arquiteturas de rede Formas de aprendizagem de máquina

Representação de um neurônio

- O neurônio é a base das Redes Neurais, sendo que os neurônios de uma rede são conectados por vínculos orientados.
- Um neurônio é constituído pelos seguintes elementos básicos:

Arquiteturas de rede Formas de aprendizagem de máquina

Representação de um neurônio

- O neurônio é a base das Redes Neurais, sendo que os neurônios de uma rede são conectados por vínculos orientados.
- Um neurônio é constituído pelos seguintes elementos básicos:

Conclusao Referências

- Um conjunto de sinapses: com cada sinapse associada a um peso w_{kj} , cujo valor é multiplicado pelo sinal de entrada x_j ;
- ② *Um adicionador:* que efetua a soma dos sinais de entrada (já devidamente multiplicados pelos pesos w_{kj} ;
- Uma função de ativação: que serve para "ativar" ou "desativar" o neurônio, dependendo de suas entradas

Representação de um neurônio Arquiteturas de rede Formas de aprendizagem de máqui

- Um conjunto de sinapses: com cada sinapse associada a um peso w_{kj} , cujo valor é multiplicado pelo sinal de entrada x_j ;
- ② Um adicionador: que efetua a soma dos sinais de entrada (já devidamente multiplicados pelos pesos w_{kj} ;
- Uma função de ativação: que serve para "ativar" ou "desativar" o neurônio, dependendo de suas entradas

- Um conjunto de sinapses: com cada sinapse associada a um peso w_{kj} , cujo valor é multiplicado pelo sinal de entrada x_j ;
- ② *Um adicionador:* que efetua a soma dos sinais de entrada (já devidamente multiplicados pelos pesos w_{kj} ;
- Uma função de ativação: que serve para "ativar" ou "desativar" o neurônio, dependendo de suas entradas.

Representação de um neurônio Arquiteturas de rede

- Além das sinapses, é também incluído um peso b_k , chamado de *peso de desvio*, cuja função é aumentar ou diminuir a entrada da função de ativação.
- Esse peso pode ser externo aos demais, ou contido em uma sinapse com entrada fixa igual a 1 e peso b_k.

- Além das sinapses, é também incluído um peso b_k, chamado de peso de desvio, cuja função é aumentar ou diminuir a entrada da função de ativação.
- Esse peso pode ser externo aos demais, ou contido em uma sinapse com entrada fixa igual a 1 e peso b_k .

Modelo matemático de um neurônio

Matematicamente, o neurônio é definido pelo seguinte par de equações:

- $u_k = \sum_{j=1}^m w_{kj} x_j$ $y_k = \varphi(u_k + b_k)$, caso b_k esteja "fora" das sinapses;
- $v_k = \sum_{j=0}^m w_{kj} x_j$ e $y_k = \varphi(v_k)$, caso b_k esteja "entre" as sinapses.

Modelo matemático de um neurônio

Matematicamente, o neurônio é definido pelo seguinte par de equações:

- $u_k = \sum_{j=1}^m w_{kj} x_j$ $y_k = \varphi(u_k + b_k)$, caso b_k esteja "fora" das sinapses;
- $v_k = \sum_{j=0}^m w_{kj} x_j$ $y_k = \varphi(v_k)$, caso b_k esteja "entre" as sinapses.

Arquiteturas de rede Formas de aprendizagem de máquina

Modelo matemático de um neurônio

Figura: Modelo matemático simples para um neurônio

Representação de um neurônio

Arquiteturas de rede Formas de aprendizagem de máquin

Funções de ativação

- A função de ativação define a saída do neurônio em termos do valor v (obtido pelo adicionador).
- Nesta seção, são identificados três tipos básicos de funções de ativação:

Representação de um neurônio

Arquiteturas de rede Formas de aprendizagem de máquina

Funções de ativação

- A função de ativação define a saída do neurônio em termos do valor v (obtido pelo adicionador).
- Nesta seção, são identificados três tipos básicos de funções de ativação:

Arquiteturas de rede Formas de aprendizagem de máquina

Funções de ativação I

• Função de limiar, que é dada pela seguinte função:

$$\varphi(v) = \begin{cases} 1, & \text{se } v \ge 0 \\ 0, & \text{se } v < 0 \end{cases} \tag{1}$$

Semi-linear:

$$\varphi(v) = \begin{cases} 1, & \text{se } v \ge +\frac{1}{2} \\ v, & \text{se } -\frac{1}{2} < v < +\frac{1}{2} \\ 0, & \text{se } v \le -\frac{1}{2} \end{cases} \tag{4}$$

Funções de ativação II

Função sigmóide:

$$\varphi(v) = \frac{1}{1 + exp(-av)}$$

E a sua derivada é definida por:

$$\frac{d\varphi}{dv} = a\varphi(v) \left[1 - \varphi(v) \right]$$

Arquiteturas de rede Formas de aprendizagem de máquina

Gráficos da função sigmóide e de sua derivada

Figura: Gráficos da função sigmóide e de sua derivada

Representação de um neurônio Arquiteturas de rede Formas de aprendizagem de máquin

- A maneira como os neurônios em uma Rede Neural estão estruturados está intimamente ligada com o algoritmo de aprendizado utilizado.
- Basicamente, existem duas categorias principais de estruturas de Redes Neurais:

- A maneira como os neurônios em uma Rede Neural estão estruturados está intimamente ligada com o algoritmo de aprendizado utilizado.
- Basicamente, existem duas categorias principais de estruturas de Redes Neurais:
 - Redes de alimentação direta;
 - Redes recorrentes.

- A maneira como os neurônios em uma Rede Neural estão estruturados está intimamente ligada com o algoritmo de aprendizado utilizado.
- Basicamente, existem duas categorias principais de estruturas de Redes Neurais:
 - Redes de alimentação direta;
 - Redes recorrentes.

- A maneira como os neurônios em uma Rede Neural estão estruturados está intimamente ligada com o algoritmo de aprendizado utilizado.
- Basicamente, existem duas categorias principais de estruturas de Redes Neurais:
 - Redes de alimentação direta;
 - Redes recorrentes.

- As redes de alimentação direta geralmente são organizadas em camadas, de tal forma que os neurônios de determinada camada recebem informações apenas dos neurônios da camada imediatamente precedente.
- Redes recorrentes têm pelo menos um ciclo, tornando suas respostas dependentes de seus estados anteriores, formando um sistema dinâmico.

- As redes de alimentação direta geralmente são organizadas em camadas, de tal forma que os neurônios de determinada camada recebem informações apenas dos neurônios da camada imediatamente precedente.
- Redes recorrentes têm pelo menos um ciclo, tornando suas respostas dependentes de seus estados anteriores, formando um sistema dinâmico.

Figura: Exemplos de redes de alimentação direta e recorrente

Representação de um neurônio Arquiteturas de rede Formas de aprendizagem de máquina

- As Redes Neurais são capazes de aprender a partir de um ambiente abordado.
- O seu aprendizado se dá através dos ajustes dos pesos sinápticos dos neurônios por meio de algum algoritmo de aprendizado.
- A aprendizagem de máquina geralmente ocorre de três formas:

- As Redes Neurais são capazes de aprender a partir de um ambiente abordado.
- O seu aprendizado se dá através dos ajustes dos pesos sinápticos dos neurônios por meio de algum algoritmo de aprendizado.
- A aprendizagem de máquina geralmente ocorre de três formas:

- As Redes Neurais são capazes de aprender a partir de um ambiente abordado.
- O seu aprendizado se dá através dos ajustes dos pesos sinápticos dos neurônios por meio de algum algoritmo de aprendizado.
- A aprendizagem de máquina geralmente ocorre de três formas:

Representação de um neurônio Arquiteturas de rede Formas de aprendizagem de máquina

- Supervisionada: Consiste em aprender a partir de exemplos de entradas e saídas.
- Não-supervisionada: Faz o aprendizado a partir de padrões de entrada quando os mesmos não possuem valores de saída.
- Por reforço: Aprende a partir de medidas de "recompensa".

- Supervisionada: Consiste em aprender a partir de exemplos de entradas e saídas.
- Não-supervisionada: Faz o aprendizado a partir de padrões de entrada quando os mesmos não possuem valores de saída.
- Por reforço: Aprende a partir de medidas de "recompensa".

- Supervisionada: Consiste em aprender a partir de exemplos de entradas e saídas.
- Não-supervisionada: Faz o aprendizado a partir de padrões de entrada quando os mesmos não possuem valores de saída.
- Por reforço: Aprende a partir de medidas de "recompensa".

- O Mapa Auto-Organizável de Kohonen (SOM, de Self-Organizing Map) é um tipo especial de Rede Neural, baseado em aprendizado competitivo e não-supervisionado.
- Nele, os neurônios competem entre si pelo direito de representar o dado apresentado, sendo que apenas um é o vencedor.
- Após a competição, o neurônio vencedor e seus vizinhos têm seus pesos sinápticos atualizados em direção ao dado.
- Como resultado, obtém-se um mapa topologicamente correto do ambiente após a apresentação dos dados de aprendizado repetidas vezas o em ordeno diferente.

- O Mapa Auto-Organizável de Kohonen (SOM, de Self-Organizing Map) é um tipo especial de Rede Neural, baseado em aprendizado competitivo e não-supervisionado.
- Nele, os neurônios competem entre si pelo direito de representar o dado apresentado, sendo que apenas um é o vencedor.
- Após a competição, o neurônio vencedor e seus vizinhos têm seus pesos sinápticos atualizados em direção ao dado.
- Como resultado, obtém-se um mapa topologicamente correto do ambiente após a apresentação dos dados de aprendizado repetidas vezes e em ordens digersas.

- O Mapa Auto-Organizável de Kohonen (SOM, de Self-Organizing Map) é um tipo especial de Rede Neural, baseado em aprendizado competitivo e não-supervisionado.
- Nele, os neurônios competem entre si pelo direito de representar o dado apresentado, sendo que apenas um é o vencedor.
- Após a competição, o neurônio vencedor e seus vizinhos têm seus pesos sinápticos atualizados em direção ao dado.
- Como resultado, obtém-se um mapa topologicamente correto do ambiente após a apresentação dos dados de aprendizado repetidas vezes e em ordens digersas.

- O Mapa Auto-Organizável de Kohonen (SOM, de Self-Organizing Map) é um tipo especial de Rede Neural, baseado em aprendizado competitivo e não-supervisionado.
- Nele, os neurônios competem entre si pelo direito de representar o dado apresentado, sendo que apenas um é o vencedor.
- Após a competição, o neurônio vencedor e seus vizinhos têm seus pesos sinápticos atualizados em direção ao dado.
- Como resultado, obtém-se um mapa topologicamente correto do ambiente após a apresentação dos dados de aprendizado repetidas vezes e em ordens diversas.

- No SOM, os neurônios são dispostos em um arranjo geralmente unidimensional ou bidimensional, totalmente conectados com a entrada.
- O algoritmo SOM realiza um projeção não-linear do espaço contínuo de entrada X para o espaço discreto de saída A.
- Quando a dimensão de A é menor que a de X, é realizada uma redução dimensional.
- A redução da dimensionalidade, em conjunto com a preservação topológica dos dados, tornam o algoritmo SOM apropriado como ferramenta de mineração de dado

- No SOM, os neurônios são dispostos em um arranjo geralmente unidimensional ou bidimensional, totalmente conectados com a entrada.
- O algoritmo SOM realiza um projeção não-linear do espaço contínuo de entrada X para o espaço discreto de saída A.
- Quando a dimensão de A é menor que a de X, é realizada uma redução dimensional.
- A redução da dimensionalidade, em conjunto com a preservação topológica dos dados, tornam o algoritmo SOM apropriado como ferramenta de mineração de dado

- No SOM, os neurônios são dispostos em um arranjo geralmente unidimensional ou bidimensional, totalmente conectados com a entrada.
- O algoritmo SOM realiza um projeção não-linear do espaço contínuo de entrada X para o espaço discreto de saída A.
- Quando a dimensão de A é menor que a de X, é realizada uma redução dimensional.
- A redução da dimensionalidade, em conjunto com a preservação topológica dos dados, tornam o algoritmo SOM apropriado como ferramenta de mineração de dado

- No SOM, os neurônios são dispostos em um arranjo geralmente unidimensional ou bidimensional, totalmente conectados com a entrada.
- O algoritmo SOM realiza um projeção não-linear do espaço contínuo de entrada X para o espaço discreto de saída A.
- Quando a dimensão de A é menor que a de X, é realizada uma redução dimensional.
- A redução da dimensionalidade, em conjunto com a preservação topológica dos dados, tornam o algoritmo SOM apropriado como ferramenta de mineração de dados.

Resumo Introdução Redes Neurais **Mapas Auto-Organizáveis** Segmentação de perfis Conclusão Referências

Introdução Algoritmo Resumo do algoritmo Interpretação do mapa produzido pelo SON

Exemplo de SOM

- O algoritmo responsável pelo aprendizado do SOM começa inicializando os pesos sinápticos dos neurônios do arranjo.
- Após a inicialização dos neurônios, os dados do conjunto de treinamento são apresentados repetidas vezes e em ordens diversas, com um número de iterações predeterminado ou até que não ocorram mudanças significativas no mapa.

- O algoritmo responsável pelo aprendizado do SOM começa inicializando os pesos sinápticos dos neurônios do arranjo.
- Após a inicialização dos neurônios, os dados do conjunto de treinamento são apresentados repetidas vezes e em ordens diversas, com um número de iterações predeterminado ou até que não ocorram mudanças significativas no mapa.

- Para a formação de um Mapa Auto-Organizável, há três processos principais, que são:
 - Competição: Para cada dado apresentado, os neurônios competem entre si pelo direito de representar o dado, sendo que apenas um é o vencedor;
 - Cooperação: O neurônio vencedor determina a localização espacial de sua vizinhança, de acordo com alguma regra;
 - Adaptação sináptica: Os neurônios da vizinhança são habilitados a alterarem os seus pesos sinápticos na direção do dado, de acordo com alguma regra pré-estabelecida.
- A seguir, há uma descrição mais detalhada desses processos.

- Para a formação de um Mapa Auto-Organizável, há três processos principais, que são:
 - Competição: Para cada dado apresentado, os neurônios competem entre si pelo direito de representar o dado, sendo que apenas um é o vencedor;
 - Cooperação: O neurônio vencedor determina a localização espacial de sua vizinhança, de acordo com alguma regra;
 - Adaptação sináptica: Os neurônios da vizinhança são habilitados a alterarem os seus pesos sinápticos na direção do dado, de acordo com alguma regra pré-estabelecida.
- A seguir, há uma descrição mais detalhada desses processos.

- Para a formação de um Mapa Auto-Organizável, há três processos principais, que são:
 - Competição: Para cada dado apresentado, os neurônios competem entre si pelo direito de representar o dado, sendo que apenas um é o vencedor;
 - Cooperação: O neurônio vencedor determina a localização espacial de sua vizinhança, de acordo com alguma regra;
 - Adaptação sináptica: Os neurônios da vizinhança são habilitados a alterarem os seus pesos sinápticos na direção do dado, de acordo com alguma regra pré-estabelecida.
- A seguir, há uma descrição mais detalhada desses processos.

- Para a formação de um Mapa Auto-Organizável, há três processos principais, que são:
 - Competição: Para cada dado apresentado, os neurônios competem entre si pelo direito de representar o dado, sendo que apenas um é o vencedor;
 - Cooperação: O neurônio vencedor determina a localização espacial de sua vizinhança, de acordo com alguma regra;
 - Adaptação sináptica: Os neurônios da vizinhança são habilitados a alterarem os seus pesos sinápticos na direção do dado, de acordo com alguma regra pré-estabelecida.
- A seguir, há uma descrição mais detalhada desses processos.

- Para a formação de um Mapa Auto-Organizável, há três processos principais, que são:
 - Competição: Para cada dado apresentado, os neurônios competem entre si pelo direito de representar o dado, sendo que apenas um é o vencedor;
 - Cooperação: O neurônio vencedor determina a localização espacial de sua vizinhança, de acordo com alguma regra;
 - Adaptação sináptica: Os neurônios da vizinhança são habilitados a alterarem os seus pesos sinápticos na direção do dado, de acordo com alguma regra pré-estabelecida.
- A seguir, há uma descrição mais detalhada desses processos.

Processo competitivo

ullet Seja m a dimensão do espaço de entrada. Cada padrão é denotado da seguinte forma:

$$x = [x_1, x_2, \dots, x_m]^T$$

 Os vetores de pesos sinápticos de cada neurônio, com dimensão igual ao do espaço de entrada, são denotados da seguinte maneira:

$$w_j = [w_{j1}, w_{j2}, \dots, w_{jm}]^T, \quad j = 1, 2, \dots, l$$

Onde l é o número de neurônios

Processo competitivo

ullet Seja m a dimensão do espaço de entrada. Cada padrão é denotado da seguinte forma:

$$x = [x_1, x_2, \dots, x_m]^T$$

 Os vetores de pesos sinápticos de cada neurônio, com dimensão igual ao do espaço de entrada, são denotados da seguinte maneira:

$$w_j = [w_{j1}, w_{j2}, \dots, w_{jm}]^T, \quad j = 1, 2, \dots, l$$

Onde l é o número de neurônios.

Processo competitivo

ullet O neurônio vencedor é aquele que possui a menor distância em relação ao dado x. Dessa forma, o neurônio vencedor i(x) é determinado pela seguinte condição:

$$i(x) = \arg\min_{j} ||x - w_{j}||, \quad j = 1, 2, \dots, l$$

- O neurônio vencedor deve determinar a localização espacial da sua vizinhança, segundo alguma regra.
- Uma escolha típica de função de vizinhança é a que segue:

$$h_{j,i(x)}(n) = \exp\left(-\frac{d_{j,i}^2}{2\sigma^2(n)}\right), \quad n = 0, 1, 2, \dots$$

Onde

- O neurônio vencedor deve determinar a localização espacial da sua vizinhança, segundo alguma regra.
- Uma escolha típica de função de vizinhança é a que segue:

$$h_{j,i(x)}(n) = \exp\left(-\frac{d_{j,i}^2}{2\sigma^2(n)}\right), \quad n = 0, 1, 2, \dots$$

Onde:

- n representa o tempo discreto de execução do algoritmo;
- $d_{j,i} = ||r_j r_i||$, é distância entre os neurônios no arranjo;
- σ(n) representa a largura da função de vizinhança e que muda com o passar do tempo, de acordo com a seguinte função:

$$\sigma(n) = \sigma_0 \exp\left(-\frac{n}{\tau_1}\right), \quad n = 0, 1, 2, \dots$$

Onde σ_0 é o valor de σ no início do algoritmo e τ_1 é uma constante temporal.

- n representa o tempo discreto de execução do algoritmo;
- $d_{j,i} = \|r_j r_i\|$, é distância entre os neurônios no arranjo;
- σ(n) representa a largura da função de vizinhança e que muda com o passar do tempo, de acordo com a seguinte função:

$$\sigma(n) = \sigma_0 \exp\left(-\frac{n}{\tau_1}\right), \quad n = 0, 1, 2, \dots$$

Onde σ_0 é o valor de σ no início do algoritmo e τ_1 é uma constante temporal.

- n representa o tempo discreto de execução do algoritmo;
- $d_{j,i} = ||r_j r_i||$, é distância entre os neurônios no arranjo;
- $\sigma(n)$ representa a largura da função de vizinhança e que muda com o passar do tempo, de acordo com a seguinte função:

$$\sigma(n) = \sigma_0 \exp\left(-\frac{n}{\tau_1}\right), \quad n = 0, 1, 2, \dots$$

Onde σ_0 é o valor de σ no início do algoritmo e τ_1 é uma constante temporal.

Gráfico da função de vizinhança

Figura: Gráfico da função de vizinhança

Processo adaptativo

- Nesse processo, os neurônios excitados têm seus pesos sinápticos alterados em direção ao dado de entrada x.
- A equação para a atualização dos pesos sinápticos do j-ésimo neurônio é a que segue:

$$w_j(n+1) = w_j(n) + \eta(n)h_{j,i(x)}(n) [x - w_j(n)], \quad j = 1, 2, \dots, l$$

Onde:

Processo adaptativo

- Nesse processo, os neurônios excitados têm seus pesos sinápticos alterados em direção ao dado de entrada x.
- A equação para a atualização dos pesos sinápticos do j-ésimo neurônio é a que segue:

$$w_j(n+1) = w_j(n) + \eta(n)h_{j,i(x)}(n) [x - w_j(n)], \quad j = 1, 2, \dots, l$$

Onde:

Processo adaptativo

• $\eta(n)$ é a taxa de aprendizado e que varia com o tempo de acordo com a seguinte função:

$$\eta(n) = \eta_0 \exp\left(-\frac{n}{\tau_2}\right), \quad n = 0, 1, 2, \dots$$

Onde η_0 é o valor de η no início do algoritmo e τ_2 é outra constante temporal.

Introdução Algoritmo Resumo do algoritmo

Interpretação do mapa produzido pelo SOM

- As partes integrantes do algoritmo SOM são:
 - Um espaço contínuo de padrões de entrada;
 - Um arranjo de neurônios;
 - Uma função de vizinhança;
 - Um parâmetro de aprendizado.
- O resumo do algoritmo, portanto, é o que segue

- As partes integrantes do algoritmo SOM são:
 - Um espaço contínuo de padrões de entrada;
 - Um arranjo de neurônios;
 - Uma função de vizinhança;
 - Um parâmetro de aprendizado.
- O resumo do algoritmo, portanto, é o que segue

- As partes integrantes do algoritmo SOM são:
 - Um espaço contínuo de padrões de entrada;
 - Um arranjo de neurônios;
 - Uma função de vizinhança;
 - Um parâmetro de aprendizado.
 - O resumo do algoritmo, portanto, é o que segue

- As partes integrantes do algoritmo SOM são:
 - Um espaço contínuo de padrões de entrada;
 - Um arranjo de neurônios;
 - Uma função de vizinhança;
 - Um parâmetro de aprendizado.
- O resumo do algoritmo, portanto, é o que segue

- As partes integrantes do algoritmo SOM são:
 - Um espaço contínuo de padrões de entrada;
 - Um arranjo de neurônios;
 - Uma função de vizinhança;
 - Um parâmetro de aprendizado.
- O resumo do algoritmo, portanto, é o que segue:

- As partes integrantes do algoritmo SOM são:
 - Um espaço contínuo de padrões de entrada;
 - Um arranjo de neurônios;
 - Uma função de vizinhança;
 - Um parâmetro de aprendizado.
- O resumo do algoritmo, portanto, é o que segue:

Algoritmo incremental

Algoritmo 1 Algoritmo de treinamento do SOM (incremental)

- 1: Inicialize os vetores de pesos $(w_j, j=1,2,\ldots,l)$ dos neurônios do arranjo com pequenos valores aleatórios para os pesos sinápticos (com a restrição de que os vetores devem ser diferentes). Faça n=0, o número de iterações $n_it=0$ e inicialize $\sigma(n_it)$ e $\eta(n-it)$;
- 2: while O número máximo de iterações pré-estabelecido não tiver sido atingido do
- 3: Faça V' = V;
 - while $V' \neq \emptyset$ do
- 5: Selecione aleatoriamente um vetor de dados x do conjunto V';
- 6: Faça $V' = V' \{x\};$
- 7: Selecione o neurônio vencedor $i(x) = \arg\min_{i} ||x w_{i}||, j = 1, 2, ..., l;$
- 8: Atualize os neurônios do arranjo, segundo a equação:
- 9: $w_j(n+1) = w_j(n) + \eta(n_it)h_{j,i(x)}(n_it)[x-w_j(n)], \ j=1,2,\ldots,l;$
- 10: Faça n = n + 1;
- 11: end while
- 12: Faça $n_it = n_it + 1$, n = 0 e ajuste $\sigma(n_it)$ e $\eta(n_it)$;
- 13: end while

4.

Algoritmo incremental

- Esta versão do algoritmo é conhecida como incremental, no qual os pesos sinápticos são atualizados para cada dado apresentado.
- Em outra versão, os pesos sinápticos são atualizados apenas ao final de uma época de treinamento. Ela é conhecida como em lote.
- O algoritmo em lote é o que segue:

Algoritmo incremental

- Esta versão do algoritmo é conhecida como incremental, no qual os pesos sinápticos são atualizados para cada dado apresentado.
- Em outra versão, os pesos sinápticos são atualizados apenas ao final de uma época de treinamento. Ela é conhecida como em lote.
- O algoritmo em lote é o que segue:

Algoritmo incremental

- Esta versão do algoritmo é conhecida como incremental, no qual os pesos sinápticos são atualizados para cada dado apresentado.
- Em outra versão, os pesos sinápticos são atualizados apenas ao final de uma época de treinamento. Ela é conhecida como em lote.
- O algoritmo em lote é o que segue:

Algoritmo em lote

Algoritmo 2 Algoritmo de treinamento do SOM (em lote)

- 1: Inicialize os vetores de pesos (w_j, j = 1, 2, ..., l) dos neurônios. Faça n = 0, o número de iterações n_it = 0, as contribuições parciais Δw_j = 0, j = 1, 2, ..., l e inicialize σ(n_it). A taxa de aprendizado η(n_it) recebe um valor fixo e pequeno (0,5 para a fase de ordenação e 0,05 para a fase de convergência);
- 2: while O número máximo de iterações pré-estabelecido não tiver sido atingido \mathbf{do}
- 3: Faça V' = V;
- 4: while $V' \neq \emptyset$ do
- Selecione um vetor de dados x do conjunto V';
- 6: Faca $V' = V' \{x\}$;
- 7: Selecione o neurônio vencedor $i(x) = \arg\min_{j} ||x w_{j}||, j = 1, 2, ..., l;$
- 8: Calcule a contribuição parcial do dado em cada neurônio, segundo a equação:
- 9: $\Delta w_j(n+1) = \Delta w_j(n) + h_{j,i(x)}(n_it) [x w_j(n)], \ j = 1, 2, \dots, l;$
- 10: Faça n = n + 1;
- 11: end while
- Atualize os pesos sinápticos dos neurônios, segundo a equação:
- 13: $w_j(n_it+1) = w_j(n_it) + \frac{1}{l}\eta(n_it)\Delta w_j, \ j=1,2,\ldots,l;$
- 14: Faca n it = n it + 1, n = 0 e a juste $\sigma(n$ it) e $\eta(n$ it);
- 15: end while

Interpretação do mapa produzido pelo SOM

- Após a fomação do mapa produzido pelo algoritmo SOM, o resultado é um conjunto de neurônios, cuja topologia é determinada pelas relações métricas entre os neurônios vizinhos no arranjo.
- Contudo, para que se consiga interpretar o conteúdo do mapa, é necessário a utilização de algum método de visualização.
- A seguir, dois desses métodos são descritos: a Matriz-U e o Mapa Contextual.

Interpretação do mapa produzido pelo SOM

- Após a fomação do mapa produzido pelo algoritmo SOM, o resultado é um conjunto de neurônios, cuja topologia é determinada pelas relações métricas entre os neurônios vizinhos no arranjo.
- Contudo, para que se consiga interpretar o conteúdo do mapa, é necessário a utilização de algum método de visualização.
- A seguir, dois desses métodos são descritos: a Matriz-U e o Mapa Contextual.

Interpretação do mapa produzido pelo SOM

- Após a fomação do mapa produzido pelo algoritmo SOM, o resultado é um conjunto de neurônios, cuja topologia é determinada pelas relações métricas entre os neurônios vizinhos no arranjo.
- Contudo, para que se consiga interpretar o conteúdo do mapa, é necessário a utilização de algum método de visualização.
- A seguir, dois desses métodos são descritos: a Matriz-U e o Mapa Contextual.

Matriz-U

- A matriz de distâncias unificada é uma matriz composta pelas distâncias entre os neurônios vizinhos no arranjo.
- Para o cálculo das distâncias, é necessário estabelecer alguma regra para a vizinhança.
- Duas formas de vizinhança utilizadas são: retangular e hexagonal.

Matriz-U

- A matriz de distâncias unificada é uma matriz composta pelas distâncias entre os neurônios vizinhos no arranjo.
- Para o cálculo das distâncias, é necessário estabelecer alguma regra para a vizinhança.
- Duas formas de vizinhança utilizadas são: retangular e hexagonal.

Matriz-U

- A matriz de distâncias unificada é uma matriz composta pelas distâncias entre os neurônios vizinhos no arranjo.
- Para o cálculo das distâncias, é necessário estabelecer alguma regra para a vizinhança.
- Duas formas de vizinhança utilizadas são: retangular e hexagonal.

Exemplos de Matriz-U

Figura: Exemplos de Matriz-U (com vizinhança retangular e hexagonal)

Mapas Contextuais

- O Mapa Contextual consiste em um mapa onde os neurônios são "rotulados" com valores de dados do espaço de entrada que eles melhor representam.
- No Mapa Contextual, os neurônios são rotulados de tal forma que o arranjo seja particionado em regiões coerentes.
- A seguir, o algoritmo para a formação de um Mapa Contextual e um exemplo deste método.

Mapas Contextuais

- O Mapa Contextual consiste em um mapa onde os neurônios são "rotulados" com valores de dados do espaço de entrada que eles melhor representam.
- No Mapa Contextual, os neurônios são rotulados de tal forma que o arranjo seja particionado em regiões coerentes.
- A seguir, o algoritmo para a formação de um Mapa Contextual e um exemplo deste método.

Mapas Contextuais

- O Mapa Contextual consiste em um mapa onde os neurônios são "rotulados" com valores de dados do espaço de entrada que eles melhor representam.
- No Mapa Contextual, os neurônios são rotulados de tal forma que o arranjo seja particionado em regiões coerentes.
- A seguir, o algoritmo para a formação de um Mapa Contextual e um exemplo deste método.

Algoritmo para a formação de um Mapa Contextual

Algoritmo 3 Algoritmo para a geração de um Mapa Contextual

- 1: Escolha um conjunto de padrões de teste, de tal forma que o número de elementos do conjunto seja menor ou igual ao número de neurônios. O nome do conjunto será chamado de T;
- 2: while Todos os neurônios não forem marcados do
- 3: Faça U = T;
- 4: while $U \neq \emptyset$ e Todos os neurônios não forem marcados do
- 5: Escolha um padrão x do conjunto U e faça $U = U \{x\}$;
- Apresente x à rede e marque o neurônio ainda não marcado que produzir a melhor resposta com o valor de rótulo do padrão;
- 7: end while
- 8: end while
- 9: Exiba o Mapa Contextual;

Exemplo de Mapa Contextual

cachorro	cachorro	raposa	raposa	raposa	gato	gato	gato	águia	águia
cachorro	cachorro	raposa	raposa	raposa	gato	gato	gato	águia	águia
lobo	lobo	lobo	raposa	gato	tigre	tigre	tigre	coruja	coruja
lobo	lobo	leão	leão	leão	tigre	tigre	tigre	falcão	falcão
lobo	lobo	leão	leão	leão	tigre	tigre	tigre	falcão	falcão
lobo	lobo	leão	leão	leão	coruja	pombo	falcão	pombo	pombo
cavalo	cavalo	leão	leão	leão	pombo	galinha	galinha	pombo	pombo
cavalo	cavalo	zebra	vaca	vaca	vaca	galinha	galinha	pombo	pombo
zebra	zebra	zebra	vaca	vaca	vaca	galinha	galinha	pato	ganso
zebra	zebra	zebra	vaca	vaca	vaca	pato	pato	pato	ganso

Figura: Exemplo de Mapa Contextual

Introdução

Segmentando perfis utilizando o algoritmo SON Segmentador

- Em muitos domínios, o conhecimento a respeito dos perfis com os quais esses domínios atuam é de fundamental importância.
- A análise dos perfis, em muitos casos não é trivial.
- Quando há um conhecimento prévio sobre o domínio abordado, podem ser utilizadas técnicas que empregam aprendizagem de máquina supervisionada. Por outro lado, quando há pouco ou nenhum conhecimento, é necessário empregar técnicas de agrupamento de perfis de forma não-supervisionada.
- A Rede Neural SOM de Kohonen é uma das técnicas não-supervisionadas mais utilizadas.

Introdução

Segmentando perfis utilizando o algoritmo SON Segmentador

- Em muitos domínios, o conhecimento a respeito dos perfis com os quais esses domínios atuam é de fundamental importância.
- A análise dos perfis, em muitos casos não é trivial.
- Quando há um conhecimento prévio sobre o domínio abordado, podem ser utilizadas técnicas que empregam aprendizagem de máquina supervisionada. Por outro lado, quando há pouco ou nenhum conhecimento, é necessário empregar técnicas de agrupamento de perfis de forma não-supervisionada.
- A Rede Neural SOM de Kohonen é uma das técnicas não-supervisionadas mais utilizadas.

Introdução

Segmentando perfis utilizando o algoritmo SON Segmentador

- Em muitos domínios, o conhecimento a respeito dos perfis com os quais esses domínios atuam é de fundamental importância.
- A análise dos perfis, em muitos casos não é trivial.
- Quando há um conhecimento prévio sobre o domínio abordado, podem ser utilizadas técnicas que empregam aprendizagem de máquina supervisionada. Por outro lado, quando há pouco ou nenhum conhecimento, é necessário empregar técnicas de agrupamento de perfis de forma não-supervisionada.
- A Rede Neural SOM de Kohonen é uma das técnicas não-supervisionadas mais utilizadas.

Introdução

iegmentando perfis utilizando o algoritmo SON iegmentador

Experimentos com o componente Segmentador

- Em muitos domínios, o conhecimento a respeito dos perfis com os quais esses domínios atuam é de fundamental importância.
- A análise dos perfis, em muitos casos não é trivial.
- Quando há um conhecimento prévio sobre o domínio abordado, podem ser utilizadas técnicas que empregam aprendizagem de máquina supervisionada. Por outro lado, quando há pouco ou nenhum conhecimento, é necessário empregar técnicas de agrupamento de perfis de forma não-supervisionada.
- A Rede Neural SOM de Kohonen é uma das técnicas não-supervisionadas mais utilizadas.

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Segmentando perfis utilizando o algoritmo SOM

- Escolha dos perfis de treinamento;
- Codificação dos atributos;
- Treinamento do SOM:
- Análise do mapa produzido pelo SOM.

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Segmentando perfis utilizando o algoritmo SOM

- Escolha dos perfis de treinamento;
- Codificação dos atributos;
- Treinamento do SOM;
- Análise do mapa produzido pelo SOM.

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Segmentando perfis utilizando o algoritmo SOM

- Escolha dos perfis de treinamento;
- Codificação dos atributos;
- Treinamento do SOM;
- Análise do mapa produzido pelo SOM.

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Segmentando perfis utilizando o algoritmo SOM

- Escolha dos perfis de treinamento;
- Codificação dos atributos;
- Treinamento do SOM;
- Análise do mapa produzido pelo SOM.

Introdução Segmentando perfis utilizando o algoritmo SON Segmentador Experimentos com o componente Segmentado

- O componente Segmentador, escrito na linguagem de programação C++, corresponde à implementação do algoritmo SOM.
- As classes do componente são:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentado

- O componente Segmentador, escrito na linguagem de programação C++, corresponde à implementação do algoritmo SOM.
- As classes do componente são:
 - Calculos:
 - Dado:
 - Neuronio
 - Arranio:
 - SOM
 - MapaContextual.

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentado

- O componente Segmentador, escrito na linguagem de programação C++, corresponde à implementação do algoritmo SOM.
- As classes do componente são:
 - Calculos;
 - Dado:
 - Neuronio
 - Arranjo
 - SOM
 - MapaContextual.

Introdução Segmentando perfis utilizando o algoritmo SOI Segmentador Experimentos com o componente Segmentado

- O componente Segmentador, escrito na linguagem de programação C++, corresponde à implementação do algoritmo SOM.
- As classes do componente são:
 - Calculos;
 - Dado;
 - Neuronio
 - Arranjo
 - SOM;
 - MapaContextual.

Introdução Segmentando perfis utilizando o algoritmo SON Segmentador Experimentos com o componente Segmentado

- O componente Segmentador, escrito na linguagem de programação C++, corresponde à implementação do algoritmo SOM.
- As classes do componente são:
 - Calculos;
 - Dado;
 - Neuronio;
 - Arranjo
 - SOM
 - MapaContextual.

Introdução Segmentando perfis utilizando o algoritmo SOI Segmentador Experimentos com o componente Segmentado

- O componente Segmentador, escrito na linguagem de programação C++, corresponde à implementação do algoritmo SOM.
- As classes do componente são:
 - Calculos:
 - Dado;
 - Neuronio;
 - Arranjo;
 - SOM:
 - MapaContextual

Introdução Segmentando perfis utilizando o algoritmo SOI Segmentador Experimentos com o componente Segmentado

- O componente Segmentador, escrito na linguagem de programação C++, corresponde à implementação do algoritmo SOM.
- As classes do componente são:
 - Calculos;
 - Dado;
 - Neuronio;
 - Arranjo;
 - SOM;
 - MapaContextual

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentado

- O componente Segmentador, escrito na linguagem de programação C++, corresponde à implementação do algoritmo SOM.
- As classes do componente são:
 - Calculos:
 - Dado;
 - Neuronio;
 - Arranjo;
 - SOM;
 - MapaContextual.

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Experimentos com o componente Segmentador

- Após o componente Segmentador ter sido implementado, foram feitos alguns experimentos.
- A seguir, dois dos experimentos realizados são descritos:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Experimentos com o componente Segmentador

- Após o componente Segmentador ter sido implementado, foram feitos alguns experimentos.
- A seguir, dois dos experimentos realizados são descritos:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Clientes de um supermercado

- Neste experimento, os perfis de clientes de um supermercado fictício foram codificados em 11 atributos.
- Dos 11 atributos, 5 representam dados pessoais de cada perfil e os 6 restantes representam a proporção do que cada pessoa comprou nos últimos 6 meses.
- Os dados codificados de 20 perfis serviram de entrada para o SOM, de tal forma como segue:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Clientes de um supermercado

- Neste experimento, os perfis de clientes de um supermercado fictício foram codificados em 11 atributos.
- Dos 11 atributos, 5 representam dados pessoais de cada perfil e os 6 restantes representam a proporção do que cada pessoa comprou nos últimos 6 meses.
- Os dados codificados de 20 perfis serviram de entrada para o SOM, de tal forma como segue:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Clientes de um supermercado

- Neste experimento, os perfis de clientes de um supermercado fictício foram codificados em 11 atributos.
- Dos 11 atributos, 5 representam dados pessoais de cada perfil e os 6 restantes representam a proporção do que cada pessoa comprou nos últimos 6 meses.
- Os dados codificados de 20 perfis serviram de entrada para o SOM, de tal forma como segue:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Tabela com os dados dos clientes do supermercado

	Idade	Bairro	Instr.	Renda	S.	Alim.	Beb.	Ves.	E/E	Livros	Div.
Aline	1	0	3	4	1	0,3	0	0,3	0,1	0,25	0,05
Antônio	1	0	3	4	0	0,3	0	0,2	0,3	0,1	0,1
Camila	1	9	3	2	1	0,4	0	0,2	0,1	0,15	0,15
Carla	0	0	1	3	1	0,2	0	0,3	0,1	0,3	0,1
Carlos	3	0	4	3	0	0,4	0,05	0,05	0,1	0,2	0,2
Cauã	0	1	1	4	0	0,35	0	0,3	0,2	0,05	0,1
Creuza	3	4	0	0	1	0,8	0,1	0	0	0	0,1
Fred	3	1	5	4	0	0,4	0,05	0,15	0,05	0,25	0,1
Isabel	4	3	2	2	1	0,4	0	0,2	0,2	0,1	0,1
Joana	1	1	3	4	1	0,2	0	0,4	0,15	0,05	0,2
Joaquim	5	6	3	3	0	0,5	0,1	0,05	0,1	0,1	0,15
José	3	3	1	1	0	0,75	0,1	0,05	0,05	0	0,05
Josefa	5	8	2	1	1	0,7	0,05	0,05	0	0,05	0,15
Júnior	3	2	3	3	0	0,4	0,1	0,1	0,1	0,05	0,25
Marcos	3	2	3	2	0	0,45	0,05	0,1	0,2	0,1	0,1
Maria	3	3	1	0	1	0,7	0,1	0,1	0,05	0	0,05
Teresa	4	6	4	3	1	0,3	0	0,3	0,2	0,05	0,15
Thiago	1	7	3	2	0	0,3	0	0,1	0,25	0,15	0,2
Vanessa	2	7	4	2	1	0,4	0	0,3	0,1	0,1	0,1
Vinícius	3	1	4	3	0	0,3	0,1	0,1	0,1	0,3	0,1

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2,5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2, 5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2, 5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2,5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2,5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2, 5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Mapa Contextual resultante

Carlos	Carlos	Fred	Fred	Antônio	Antônio	Aline	Aline	Carla	Carla
Carlos	Vinícius	Vinícius	Fred	Antônio	Antônio	Aline	Aline	Carla	Carla
Marcos	Vinícius	Carlos	Júnior	Fred	Antônio	Joana	Aline	Carla	Cauã
Marcos	Marcos	Júnior	Júnior	Vinícius	Joana	Joana	Joana	Cauã	Cauã
Isabel	Isabel	Marcos	Júnior	Carlos	Fred	Joana	Vinícius	Cauã	Cauã
Isabel	Isabel	Isabel	Joaquim	Marcos	Teresa	Júnior	Teresa	Thiago	Thiago
Maria	Maria	Joaquim	Joaquim	Maria	Teresa	Teresa	Vanessa	Thiago	Thiago
Maria	Maria	José	Joaquim	Joaquim	Teresa	Vanessa	Vanessa	Vanessa	Thiago
Creuza	Creuza	José	José	Josefa	Josefa	Josefa	Vanessa	Camila	Camila
Creuza	Creuza	José	José	Josefa	Josefa	Creuza	Camila	Camila	Camila

Resultados

- Clientes jovens, com boas condições financeiras;
- Clientes com baixo nível sócio-econômico;
- Clientes integrantes da classe média, do sexo masculino;
- Clientes mais velhos;
- Clientes jovens.

Resultados

- Clientes jovens, com boas condições financeiras;
- Clientes com baixo nível sócio-econômico;
- Clientes integrantes da classe média, do sexo masculino;
- Clientes mais velhos;
- Clientes jovens.

Resultados

- Clientes jovens, com boas condições financeiras;
- Clientes com baixo nível sócio-econômico;
- Clientes integrantes da classe média, do sexo masculino;
- Clientes mais velhos;
- Clientes jovens.

Resultados

- Clientes jovens, com boas condições financeiras;
- Clientes com baixo nível sócio-econômico;
- Clientes integrantes da classe média, do sexo masculino;
- Clientes mais velhos;
- Clientes jovens.

Resultados

- Clientes jovens, com boas condições financeiras;
- Clientes com baixo nível sócio-econômico;
- Clientes integrantes da classe média, do sexo masculino;
- Clientes mais velhos;
- Clientes jovens.

Análise epidemiológica

- Para este experimento, foi considerada uma pesquisa fictícia em alguns bairros de Maceió, cujo objetivo é saber quais as localidades onde há maior incidência das doenças dengue, dengue hemorrágica e malária.
- Os perfis foram codificados em 6 atributos, onde em 3 há informações pessoais das pessoas e os outros 3 são para determinar qual(is) doença(s) a pessoa contraiu no último ano.
- Os dados codificados de 20 perfis serviram de entrada para o SOM, assim como segue:

Análise epidemiológica

- Para este experimento, foi considerada uma pesquisa fictícia em alguns bairros de Maceió, cujo objetivo é saber quais as localidades onde há maior incidência das doenças dengue, dengue hemorrágica e malária.
- Os perfis foram codificados em 6 atributos, onde em 3 há informações pessoais das pessoas e os outros 3 são para determinar qual(is) doença(s) a pessoa contraiu no último ano.
- Os dados codificados de 20 perfis serviram de entrada para o SOM, assim como segue:

Análise epidemiológica

- Para este experimento, foi considerada uma pesquisa fictícia em alguns bairros de Maceió, cujo objetivo é saber quais as localidades onde há maior incidência das doenças dengue, dengue hemorrágica e malária.
- Os perfis foram codificados em 6 atributos, onde em 3 há informações pessoais das pessoas e os outros 3 são para determinar qual(is) doença(s) a pessoa contraiu no último ano.
- Os dados codificados de 20 perfis serviram de entrada para o SOM, assim como segue:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Tabela com os dados dos clientes do supermercado

	Sexo	Idade	Bairro	Dengue	Dengue Hemorr.	Malária
Adriana	1	2	5	1	0	0
Alfonso	0	5	3	1	1	0
Aline	1	3	3	1	1	0
Augusto	0	4	6	0	0	0
Bruno	0	0	7	0	0	0
Carlos	0	3	6	0	0	0
Caroline	1	2	4	1	0	0
Francisca	1	3	7	0	0	0
Henrique	0	2	4	0	0	0
José	0	3	4	1	0	0
Juliana	1	1	7	0	0	0
Leila	1	0	5	0	0	1
Maria	1	4	5	0	0	1
Mateus	0	1	5	0	0	1
Miguel	0	4	5	1	0	0
Paulo	0	2	6	0	0	0
Pedro	0	1	7	0	0	0
Sílvia	1	1	4	1	0	0
Tiago	0	0	3	1	0	0
Verônica	1	3	5	0	0	1

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2,5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2, 5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2, 5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2,5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2,5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue

- Para o treinamento do SOM, os seguintes parâmetros foram adotados:
 - Número de iterações: 20000;
 - Formato do arranjo: quadrado, de tamanho 10x10;
 - Largura inicial do parâmetro de vizinhança σ_0 : 2, 5;
 - Taxa inicial de aprendizado η_0 : 0, 1;
- O Mapa Contextual do Experimento é o que segue:

Introdução Segmentando perfis utilizando o algoritmo SOM Segmentador Experimentos com o componente Segmentador

Mapa Contextual resultante

Paulo	Paulo	Leila	Leila	Bruno	Bruno	Tiago	Tiago	Tiago	Tiago
Paulo	Paulo	Leila	Paulo	Bruno	Bruno	Bruno	Tiago	Leila	Sílvia
Juliana	Juliana	Juliana	Pedro	Pedro	Mateus	Leila	Sílvia	Sílvia	Sílvia
Francisca	Juliana	Paulo	Pedro	Pedro	Mateus	Mateus	Juliana	Caroline	Sílvia
Francisca	Francisca	Henrique	Henrique	Carlos	Mateus	Mateus	Caroline	Caroline	Caroline
Francisca	Francisca	Henrique	Henrique	Carlos	Henrique	Verônica	Caroline	Adriana	Adriana
Aline	Aline	Carlos	Carlos	Carlos	Augusto	Augusto	Alfonso	Adriana	Adriana
Aline	Aline	José	José	Augusto	Augusto	Augusto	Verônica	Aline	Adriana
Alfonso	Alfonso	Miguel	Miguel	José	Miguel	Maria	Maria	Maria	Verônica
Alfonso	Alfonso	Miguel	Miguel	José	José	Maria	Maria	Verônica	Verônica

Resultados

- Pessoas que não contraíram doença alguma;
- Pessoas que contraíram dengue hemorrágica;
- Pessoas que contraíram apenas dengue, homens:
- Pessoas que contraíram apenas dengue, mulheres
- Pessoas que contraíram apenas dengue, jovens;
- Pessoas que contraíram malária, jovens;
- Pessoas que contraíram malária, adultos

Resultados

- Pessoas que não contraíram doença alguma;
- Pessoas que contraíram dengue hemorrágica;
- Pessoas que contraíram apenas dengue, homens;
- Pessoas que contraíram apenas dengue, mulheres;
- Pessoas que contraíram apenas dengue, jovens;
- Pessoas que contraíram malária, jovens;
- Pessoas que contraíram malária, adulto

Resultados

- Pessoas que não contraíram doença alguma;
- Pessoas que contraíram dengue hemorrágica;
- Pessoas que contraíram apenas dengue, homens;
- Pessoas que contraíram apenas dengue, mulheres;
- Pessoas que contraíram apenas dengue, jovens;
- Pessoas que contraíram malária, jovens
- Pessoas que contraíram malária, adulto

Resultados

- Pessoas que n\u00e3o contra\u00earam doen\u00e7a alguma;
- Pessoas que contraíram dengue hemorrágica;
- Pessoas que contraíram apenas dengue, homens;
- Pessoas que contraíram apenas dengue, mulheres;
- Pessoas que contraíram apenas dengue, jovens;
- Pessoas que contraíram malária, jovens;
- Pessoas que contraíram malária, adultos

Resultados

- Pessoas que não contraíram doença alguma;
- Pessoas que contraíram dengue hemorrágica;
- Pessoas que contraíram apenas dengue, homens;
- Pessoas que contraíram apenas dengue, mulheres;
- Pessoas que contraíram apenas dengue, jovens;
- Pessoas que contraíram malária, jovens;
- Pessoas que contraíram malária, adultos

Resultados

- Pessoas que n\u00e3o contra\u00earam doen\u00e7a alguma;
- Pessoas que contraíram dengue hemorrágica;
- Pessoas que contraíram apenas dengue, homens;
- Pessoas que contraíram apenas dengue, mulheres;
- Pessoas que contraíram apenas dengue, jovens;
- Pessoas que contraíram malária, jovens;
- Pessoas que contraíram malária, adultos

Resultados

- Pessoas que n\u00e3o contra\u00earam doen\u00e7a alguma;
- Pessoas que contraíram dengue hemorrágica;
- Pessoas que contraíram apenas dengue, homens;
- Pessoas que contraíram apenas dengue, mulheres;
- Pessoas que contraíram apenas dengue, jovens;
- Pessoas que contraíram malária, jovens;
- Pessoas que contraíram malária, adultos.

- Neste trabalho, foi realizado um estudo sobre Redes Neurais, como foco nas Redes SOM.
- Como estudo de caso, foi desenvolvido um software segmentador de perfis.
- O objetivo do presente trabalho é, portanto, fornecer um embasamento teórico para o desenvolvimento de um sistema que implemente o algoritmo SOM.
- Nos experimentos realizados com o sistema desenvolvido constatou-se a sua capacidade de agrupar os diferentes perfis.

- Neste trabalho, foi realizado um estudo sobre Redes Neurais, como foco nas Redes SOM.
- Como estudo de caso, foi desenvolvido um software segmentador de perfis.
- O objetivo do presente trabalho é, portanto, fornecer um embasamento teórico para o desenvolvimento de um sistema que implemente o algoritmo SOM.
- Nos experimentos realizados com o sistema desenvolvido constatou-se a sua capacidade de agrupar os diferentes perfis.

- Neste trabalho, foi realizado um estudo sobre Redes Neurais, como foco nas Redes SOM.
- Como estudo de caso, foi desenvolvido um software segmentador de perfis.
- O objetivo do presente trabalho é, portanto, fornecer um embasamento teórico para o desenvolvimento de um sistema que implemente o algoritmo SOM.
- Nos experimentos realizados com o sistema desenvolvido constatou-se a sua capacidade de agrupar os diferentes perfis.

- Neste trabalho, foi realizado um estudo sobre Redes Neurais, como foco nas Redes SOM.
- Como estudo de caso, foi desenvolvido um software segmentador de perfis.
- O objetivo do presente trabalho é, portanto, fornecer um embasamento teórico para o desenvolvimento de um sistema que implemente o algoritmo SOM.
- Nos experimentos realizados com o sistema desenvolvido, constatou-se a sua capacidade de agrupar os diferentes perfis.

- No entanto, em alguns casos, apenas com o uso do Mapa Contextual não foi suficiente para uma boa compreensão dos agrupamentos do domínio estudado, evidenciando a necessidade de outros métodos de visualização do mapa produzido pelo SOM;
- Outro ponto a considerar é com relação ao tempo de execução, fazendo levar em consideração a pesquisa por algoritmos que implementem o SOM de forma otimizada.

- No entanto, em alguns casos, apenas com o uso do Mapa Contextual não foi suficiente para uma boa compreensão dos agrupamentos do domínio estudado, evidenciando a necessidade de outros métodos de visualização do mapa produzido pelo SOM;
- Outro ponto a considerar é com relação ao tempo de execução, fazendo levar em consideração a pesquisa por algoritmos que implementem o SOM de forma otimizada.

- Além disso, pode vir a ser considerada a paralelização do algoritmo, com a utilização dos algoritmos e estruturas de dados apropriadas.
- Como trabalho futuro, além dos supramencionados, poderá ser considerada a utilização de algum método derivado do SOM tradicional.

- Além disso, pode vir a ser considerada a paralelização do algoritmo, com a utilização dos algoritmos e estruturas de dados apropriadas.
- Como trabalho futuro, além dos supramencionados, poderá ser considerada a utilização de algum método derivado do SOM tradicional.

Referências I

- Haykin, S. (1999), *Neural Networks A Comprehensive Foundation*, 2 ed., Prentice-Hall, New Jersey, USA.
- Kohonen, T. (2006), 'Self-organizing neural projections', *Neural Networks* **19**, 723–733.
- Lingras, P., Hogo, M., Snorek, M. & West, C. (2005), 'Temporal analysis of clusters of supermarket customers: conventional versus interval set approach', *Information Sciences* **172**, 215–240.
- Luger, G. F. (2004), *Inteligência Artificial Estruturas e Estratégias para a Solução de Problemas Complexos*, 4 ed., Bookman, Porto Alegre, RS.

Referências II

Malone, J., McGarry, K., Wermter, S. & Bowerman, C. (2005), 'Data mining using rule extraction from kohonen self-organising maps', *Neural Computing & Applications* **15**, 9–17.

Russell, S. & Norvig, P. (2004), *Inteligência Artificial*, 2 ed., Elsevier, Rio de Janeiro.

Stroustrup, B. (2000), *A Linguagem de Programação C++*, 3 ed., Bookman, Porto Alegre.

Referências III

Zuchini, M. H. (2003), Aplicações de mapas auto-organizáveis em mineração de dados e recuperação de informação, (dissertação de mestrado), Faculdade de Engenharia Elétrica e de Computação (FEEC - UNICAMP), Campinas, SP.

