MATHEMATICAL METHODS (CAS)

Units 3 & 4 – Written examination 1

2014 Trial Examination

SOLUTIONS

Question 1

a. $f(x) = 2x^2 log_e(3x)$ $f'(x) = 2x^2 \times \frac{1}{3x} \times 3 + log_e(3x) \times 4x$ $f'(x) = 2x + 4x log_e(3x)$

M1+A1 2 marks

b.
$$f'(\frac{1}{3}) = \frac{2}{3}$$

A1 1 mark

c.
$$2x + 4x log_e(3x) = 0$$

 $2x(1 + 2log_e(3x)) = 0$
 $x = 0$, $log_e(3x) = -\frac{1}{2}$
 $x = 0$, $x = \frac{1}{3e^{\frac{1}{2}}}$

M1+A2 3 marks

© TSSM 2014 Page 1 of 4

2014 MATHMETH(CAS) EXAM 1

Question 2

a.
$$\frac{d}{dx}((2x-3)\sin(x)) = (2x-3)\cos(x) + 2\sin(x)$$

M1+A1 2 marks

b.
$$f'(x) = (2x - 3)cos(x) + 2sin(x)$$

 $f'(x) = 2xcos(x) - 3cos(x) + 2sin(x)$
Integrating both sides with respect to x
 $\int f'(x)dx = \int 2xcos(x)dx - 3\int cos(x) dx + 2\int sin(x) dx$
 $f(x) + c = 2\int xcos(x)dx - 3sin(x) - 2cos(x)$
 $2\int xcos(x)dx = (2x - 3)sin(x) + 3sin(x) + 2cos(x) + c$
 $\int xcos(x)dx = x sin(x) + cos(x) + c$

M3+A1 4 marks

Question 3

$$2\cos\left(\frac{x}{3}\right) + 1 = 0, \quad \frac{x}{3}\epsilon[\pi, 2\pi]$$

$$\cos\left(\frac{x}{3}\right) = -\frac{1}{2}, \quad \frac{x}{3}\epsilon[\pi, 2\pi]$$

$$\frac{x}{3} = \frac{4\pi}{3}$$

$$x = 4\pi$$

M1+A1 2 marks

Question 4

a. Discriminant = 0

$$k^{2} - 4 \times 4 \times 9 = 0$$

$$k^{2} = 144$$

$$k = \pm 12$$

M1+A1 2 marks

b.
$$4e^{2x} - 12e^x + 9 = 0$$

 $(2e^x - 3)^2 = 0$
 $e^x = \frac{3}{2}$
 $x = log_e(\frac{3}{2})$

M2+A1 3 marks

©TSSM 2014

2014 MATHMETH(CAS) EXAM 1

c.
$$y = 2e^{x} - 3$$
$$let \ x = 2e^{y} - 3$$
$$e^{y} = \frac{x+3}{2}$$
$$y = log_{e}\left(\frac{x+3}{2}\right)$$
$$g^{-1}(x) = log_{e}\left(\frac{x+3}{2}\right)$$

M1+A1 2 marks

d. Domain of g^{-1} is $(-3, \infty)$ Range of g^{-1} is R

> A2 2 marks

Question 5

$$\frac{1}{a} \int_0^a (4x+9) dx = \frac{1}{a}$$
$$2a^2 + 9a - 1 = 0$$
$$a = \frac{-9 \pm \sqrt{89}}{4}$$

M3+A1 4 marks

Question 6

a.
$$\frac{1}{2k} + \frac{k}{10} + \frac{k}{10} + \frac{3}{10k} + \frac{2}{5k} = 1$$

$$5 + k^2 + k^2 + 3 + 4 = 10k$$

$$2k^2 - 10k + 12 = 0$$

$$k^2 - 5k + 6 = 0$$

$$(k - 3)(k - 2) = 0$$

$$k = 3 \text{ or } k = 2$$

M3 3 marks

b.
$$E(X) = \left(0 \times \frac{1}{6}\right) + \left(1 \times \frac{3}{10}\right) + \left(2 \times \frac{3}{10}\right) + \left(3 \times \frac{1}{10}\right) + \left(4 \times \frac{2}{15}\right)$$

 $E(X) = \frac{3}{10} + \frac{6}{10} + \frac{3}{10} + \frac{8}{15} = \frac{26}{15}$

M1+A1 2 marks

©TSSM 2014

2014 MATHMETH(CAS) EXAM 1

c.
$$\Pr\left(X \le \frac{26}{15}\right) = \frac{1}{6} + \frac{3}{10} = \frac{7}{15}$$

A1 1 mark

Question 7

T has coordinates
$$\left(3ln4, \frac{1}{2}\right)$$

Area = $\frac{1}{2} \times 3ln4 \times \left(2 + \frac{1}{2}\right) - \int_0^{3ln4} 2e^{-x/3} dx$
Area = $\frac{15}{4}ln4 + \left(6e^{-x/3}\right)_0^{3ln4}$
Area = $\frac{15}{4}ln4 + 6 \times \frac{1}{4} - 6 = \left(\frac{15}{4}ln4 - \frac{9}{2}\right)$ square units

M3+A1 4 marks

Question 8

a.
$$\int_0^m \frac{1}{2} \sin(x) \, dx = \frac{1}{2}$$
$$(-\cos x)_0^m = 1$$
$$-\cos(m) + 1 = 1$$
$$\cos(m) = 0$$
$$m = \frac{\pi}{2}$$

M1+A1 2 marks

b. Mode =
$$\frac{\pi}{2}$$

A1 1 mark