- The real number system is a set of numbers with:
 1) Two special numbers, 0 and 1 called the additive and multiplicative identities.
 2) Two binary operations of addition and multiplication.
 3) Two inverse "unary" operations and .-1.
 4) An order relation "<"
- Axiom of completeness: Suppose A and B are non-empty subsets of $\mathbb R$ with the property that if $a \in A$ and $b \in B$ then $a \leq b$. Then there exists $c \in \mathbb R$ such that for all $a \in A$ and $b \in B$, $a \leq c \leq b$.
- $L(f,P) = \sum_{n=1}^{N} (x_n x_{n-1}) \inf_{x \in [x_{n-1},x_n]} f(x)$ $U(f,P) = \sum_{n=1}^{N} (x_n - x_{n-1}) \sup_{x \in [x_{n-1},x_n]} f(x)$
- Principle of Bounded Monotone Convergence: If $(a_n)_{n\in\mathbb{N}}$ is an increasing sequence which is bounded above, then as $n\to\infty$ it converges to $\sup\{a_n:n\in\mathbb{N}\}.$
 - If $(a_n)_{n\in\mathbb{N}}$ is an decreasing sequence which is bounded below, then as $n\to\infty$ it converges to $\inf\{a_n:n\in\mathbb{N}\}$
- Uniqueness of Limits: Suppose $S \subseteq \mathbb{R}$, $f: S \to \mathbb{R}$, $x_0 \in \mathbb{R}$ and as $x \to x_0$, we have $f(x) \to L$ and $f(x) \to M$. We would expect to find that L = M: that limits are unique as they are for sequences.
- Thm 3.3: $\nexists x \in \mathbb{Q}$ s.t. $x^2 = 2$
- Thm 3.17: a non empty set I is an interval iff it has the intermediate value property: if $x \in I$ and $z \in I$ and x < y < z then $y \in I$.
- Density of rationals: Suppose $a,b \in \mathbb{R}$ with a < b. Then $\exists p/q \in \mathbb{Q}$ with a < p/q < b
- Existence of Predecessors: If $n \in \mathbb{N}$ then either n = 1 or $n 1 \in \mathbb{N}$
- Well ordering principle: Every non-empty subset of $\mathbb N$ has a minimal element.
- Thm 5.12: If there exists $N \in \mathbb{N}$ s.t. $a_n \geq b$ for n > N then $a \geq b$ pf: For any $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ s.t. if $n > N_{\varepsilon}$ then $|a_n a| < \varepsilon$ or $a \varepsilon < a_n < a + \varepsilon$. For $n > \max(N, N_{\varepsilon})$ we also have $a_n \geq b$. It follows that $b < a + \varepsilon$ for all $\varepsilon > 0$ and so $b \leq a$.
- Triangle inequality: $|x+y| \le |x| + |y|$ Reverse triangle inequality: $||x| - |y|| \le |x-y|$
- Algebra of limis/ Combination Rules: If a sequence tends to something then a combination of sequences tends to a combination of limits.
- Hierarchy of limits: fast \rightarrow slow as $n \rightarrow \infty$ $n^n, n!, x^n (x > 1), n^q (q \in \mathbb{Q} > 0) \rightarrow \infty$ $n^{-n}, 1/n!, x^n (|x| < 1), n^{-q} (q \in \mathbb{Q} > 0) \rightarrow 0$
- Limit comparison test: Suppose $(a_j)_{j\in\mathbb{N}}$ and $(b_j)_{j\in\mathbb{N}}$ are strictly positive sequences and a_j/b_j converges to L as $j\to\infty$. Then: 1) If $\sum b_j$ converges then $\sum a_j$ converges

- 2) If L > 0 then $\sum a_j$ and $\sum b_j$ either both converge or both diverge.
- Cauchy Criterion, Cauchy's general Principle of Convergence: Every convergent sequence is a Cauchy sequence. Every Cauchy sequence converges, so the Cauchy property is equivalent to convergence,
- Leibniz alternating series test: Suppose $(a_j)_{j\in\mathbb{N}}$ is a decreasing sequence tending to zero. Then $\sum_{j=1}^{\infty} (-1)^{j+1} a_j$ converges.
- Cauchy's Condensation Test: Suppose $(a_j)_{j\in\mathbb{N}}$ is a decreasing sequence of non-negative terms. Then the following are equivalent: 1) $\sum_{j=1}^{\infty} a_j$ converges; 2) $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.
- Absolute convergence implies convergence; the converse is not true.
- Comparison and limit comparison test for signed terms: Comparison test: if $|a_j| \leq b_j$ for all $j \in \mathbb{N}$ and $\sum_{j=1}^{\infty} b_j$ converges, then $\sum_{j=1}^{\infty} a_j$ converges absolutely and $\left|\sum_{j=1}^{\infty} a_j\right| \leq \sum_{j=1}^{\infty} |a_j| \leq \sum_{j=1}^{\infty} b_j$ Limit comparison test: if $b_j > 0$, $|a_j/b_j| \to L \in \mathbb{R}$ as $j \to \infty$ and $\sum_{j=1}^{\infty} b_j$ converges, then $\sum_{j=1}^{\infty} a_j$ converges absolutely.
- Ratio test: suppose a sequence of non-zero terms such that $|a_{j+1}/a_j| \to r$ as $j \to \infty$. Then $\sum_{j=1}^{\infty} a_j$ either converges absolutely (r < 1); diverges (r > 1) or we don't know (r = 1).
- Thm 19.6: $f(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ is continuous and converges on $(x_0 R, x_0 + R)$
- Bolzano's Thm: suppose $a < b, g : [a, b] \to \mathbb{R}$ is continuous and g(a) and g(b) have opposite signs. Then $\exists x_0 \in (a, b) \text{ s.t. } g(x_0) = 0.$
- Rolle's Thm: Suppose a < b and $g : [a,b] \to \mathbb{R}$ is continuous and differentiable on (a,b), and s.t. g(a) = g(b). Then $\exists x_0 \in (a,b)$ s.t. $g'(x_0) = 0$
- MVT: $\exists x_0 \in (a, b) \text{ s.t. } f'(x_0) = \frac{f(b) f(a)}{b a}$
- Taylor: $f(x_0 + h) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} h^n + \frac{f^{(N+1)}(c)}{(N+1)!} h^{N+1}$
- $\exp(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!}$
- Thm 29.6: Any partitions P & Q of an interval have a common refinement. eg: make a new partition R that contains all the points of P & Q discarding duplicates.
- if P & Q are partitions of [a,b] and P is a refinement of Q then: $L(f,P) \ge L(f,Q)$ and $U(f,P) \le U(f,Q)$.
- Cauchy Criterion for Riemann Integrability: A function is integrable iff for any h>0 $\exists P$ such that U(f,P)-L(f,P)< h
- FTC 1: $F(x) = \int_{p \in [a,b]}^{x} f$
- FTC 2: $\int_a^b = \int_a^b F' = F(b) F(a)$

• Use the property of Archimedes to show that if: $S_1 = \left\{ \frac{2n+1}{n+1} : n \in \mathbb{N} \right\}$, Then $\sup(S_1) = 2$ Soln: We have for $n \in \mathbb{N}$, (2n+1)/(n+1) < 1(2n+2)/(n+1) = 2, showing that 2 is an upper bound for S_1 . To show that 2 is the least upper bound, it is enough to show that any number 2 - h < 2 is not an upper bound, i.e. that there exists $n \in \mathbb{N}$ s.t. $\tfrac{2n+1}{n+1} > 2-h \iff 2n+1 > 2n+2-(n+1)h \iff$ $(n+1)h > 1 \iff n > \frac{1}{h} - 1$ Such n exists by Archimedes (otherwise 1/h-1 would be an upper bound for \mathbb{N}); all steps in the calculation

• Use Archimedes to show if: $S_2 = \{1 - \frac{n}{2} : n \in \mathbb{N}\}$ that S_2 is not bounded below. Suppose for contradiction that S_2 is bounded below. Then $\exists a \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, a \leq 1 - n/2.$ Rearranging, $n \leq 2(1-a), \forall n \in \mathbb{N}$ contradicting Archimedes.

least upper bound for S_1 , i.e. that $\sup(S_1) = 2$

being "if and only if", we conclude that 2 - h < 2 is

not an upper bound for S_1 , and hence that 2 is the

- let $a_n = 1 \frac{(-1)^n}{n}$ $(n \in \mathbb{N})$ Show directly from the definition of convergence of a sequence that as $n \to \infty$, $a_n \to 1$ Soln: To show that $1-(-1)^n/n \to 1$ as $n \to \infty$, we need to lead up to the inequality $|1-(-1)^n/n-1| < \varepsilon$, or equivalently $1/n < \varepsilon$. So, given $\varepsilon > 0$ we choose $N_{\varepsilon} \in \mathbb{N}$ s.t. $N_{\varepsilon} \geq 1/\varepsilon$ (Archimedes). Now, if $n > N_{\varepsilon}$ then $1/n > \varepsilon$; as seen above, this is equivalent to $|a_n-1|<\varepsilon$. We conclude that $a_n\to 1$ as $n\to\infty$
- let $b_n = 1 (-1)^n$ $(n \in \mathbb{N})$ show directly from the definition of convergence that b_n has no limit as $n \to \infty$. Soln: Note that, for even n, $b_n = 0$ and for odd, $b_n = 2$. If $b_n \to b$ as $n \to \infty$ then, because there are odd and even numbers greater than any N_{ϵ} , b would satisfy both $|b| < \varepsilon$ and $|b-2| < \varepsilon$. Equivalently, $-\varepsilon < b < \varepsilon$ and $2 - \varepsilon < b < 2 + \varepsilon$. But, if $\varepsilon = 1$ the first of these gives b < 1 and the second b > 1; this contradiction shows there is no limit b.
- Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{n!}{(2n)!} (x-1)^n$ $\left| \frac{((n+1)!)(x-1)^{n+1}}{(2n+2)!} \frac{(2n)!}{n!(x-1)^n} \right| = \frac{n+1}{(2n+2)(2n+1)} |x-1| =$ $\frac{1}{2(2n+1)!}|x-1| \to 0 < 1 \text{ as } n \to \infty.$ We thus have convergence $\forall x \in \mathbb{R} \text{ so } R = \infty$.
- Define $f: [-1,1] \to \mathbb{R}$; f(x) = |x| (a) Consider the partition P of the interval given by P = (-1, 0, 1/2, 1). Find the lower and upper sums L(f, P) and U(f, P). Soln: Subintervals: [-1,0], [0,1/2], [1/2,1] have widths 1, 1/2, 1/2 and infimums 0, 0, 1/2 and supremums 1, 1/2, 1 respectively. So the lower and upper sums are given by: $L(f, P) = 1 \times 0 + (1/2) \times 0 + (1/2) \times (1/2) = 1/4$

 $U(f, P) = 1 \times 1 + (1/2) \times (1/2) + (1/2) \times 1 = 7/4$

• Let P_N be the partition formed by dividing [-1,1]into 2N subintervals of equal width. Given that $L(f, P_N) = 1 - 1/N$ and $U(f, P_N) = 1 + 1/N$, show directly from the definition of the integral, and the basic fact that $L_{-1}^1 f \leq U_{-1}^1 f$, that f is integrable on [-1,1]. Find $\int_{-1}^{1} f$. Soln: We are given that $L(f, P_N) = 1 - 1/N \rightarrow 1$ as $N \to \infty$. Since this is an increasing sequence, it converges to $\sup \{L(f, P_N) : N \in \mathbb{N}\} \leq L_{-1}^1 f$; combining these, we have $1 \leq L_{-1}^1 f$. Similarly, we are given that $U(f, P_N) = 1 + 1/N \rightarrow 1$ as $N \rightarrow \infty$. Since this is a decreasing sequence, it converges to inf $\{U(f, P_N): N \in \mathbb{N}\} \geq U_{-1}^1 f$; combining these we have, $1 \ge U_{-1}^1 f$. Now using $L_{-1}^1 f \le U_{-1}^1 f$, we have $1 \leq L_{-1}^1 f \leq U_{-1}^1 f \leq 1$ showing that the lower and upper integrals are both 1, so the function is integrable, with integral 1.

- Suppose A is a bounded, non-empty set of real numbers and let $B = \{x - y : x, y \in A\}$, Show that $\sup(B) = \sup(A) - \inf(A)$. Soln: Suppose $z \in B$, so z = x - y for some $x, y \in A$. Then $x \leq \sup(A)$ and $y \geq \inf(A)$, so $z = x - y \le \sup(A) - \inf(A)$. This shows that $\sup(A) - \inf(A)$ is an upper bound for B. If h > 0then $\sup(A) - h/2$ is not an upper bound for A, so $\exists x \in A \text{ with } x > \sup(A) - h/2.$ Similarly, $\exists y \in A$ with $y < \inf(A) + h/2$. Subtracting, we find that $B \ni x - y > \sup(A) - \inf(A) - h$, showing that $\sup(A) - \inf(A) - h$ is not an upper bound for B. Combining these two, we see that $\sup(A) - \inf(A)$ is the least upper bound for B, and so $\sup(B) =$ $\sup(A) - \inf(A)$
- let $f(x) = \frac{x^4+3}{4}$ let $x_1 = 2$ and (for $n \in \mathbb{N}$) let $x_{n+1} = f(x_n)$. Show that $(x_n)_{n \in \mathbb{N}}$ is a bounded monotonic sequence, and find it's limit. Soln: Since $1 < x_1 < 3$, it follows that by (a) and induction that $1 < x_n < 3$ for all n, showing that $(x_n)_{n\in\mathbb{N}}$ is bounded. We also have from (a) that $f(x_n) - x_n < 0$, i.e. that $x_{n+1} < x_n$, showing that $(x_n)_{n\in\mathbb{N}}$ is strictly decreasing. Now, by the principle of bounded monotonic convergence, $(x_n)_{n\in\mathbb{N}}$ is convergent, say $x_n \to x$ as $n \to \infty$. Now on one hand, $x_{n+1} \to x$ as $n \to \infty$. But on the other hand, $x_{n+1} = (x_n^2 + 3)/4 \rightarrow (x^2 + 3)/4 \text{ as } n \rightarrow \infty.$ By uniqueness of limits, $x = (x^2 + 3)/4$. Finally we can solve this equation to give x = 1 or x = 3; but $x_1 = 2$ and $(x_n)_{n\in\mathbb{N}}$ is decreasing, so x=3 is impossible and we must have x = 1.
- Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies: $|f(x)| < C|x| \ \forall x \in \mathbb{R}$ and $C \geq 0$. use the " $\varepsilon - \delta$ " definition of continuity to show that f is continuous at 0. Soln: The inequality shows that $|f(0)| \leq 0$ so f(0) =0. Thus, $|f(x) - f(0)| = |f(x)| \le C|x|$. If $C \ne 0$ then, given $\varepsilon > 0$, we can let $\delta_{\varepsilon} = \varepsilon/C$; if $|x - 0| < \delta_{\varepsilon}$ then $|x| < \varepsilon/C$ so $|f(x) - f(0)| = |f(x)| \le C\varepsilon/C = \varepsilon$ Which shows that f continuous at 0. If C=0 then $f(x) = 0 \,\forall x \text{ so } f \text{ trivially continuous: any } \delta_{\varepsilon} \text{ works.}$