МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Отчёт о выполнении лабораторной работы 1.2.2

Экспериментальная проверка закона вращательного движения на крестообразном маятнике

Соболевский Фёдор Александрович Б03-109

1 Аннотация

В данной работе исследован крестообразный маятник и его вращательное движение при приложении к нему постоянного момента сил тяжести. Экспериментально получена зависимость углового ускорения от момента прикладываемых сил и момента инерции вращательной системы. Определён момент инерции маятника. Проанализировано влияние сил трения, действующих на ось вращения, на движение системы.

2 Теоретические сведения и экспериментальная установка

В данной работе экспериментально проверяется уравнение вращательного движения:

$$I\ddot{\varphi} = M. \tag{1}$$

Здесь $\ddot{\varphi} \equiv \dot{\omega} \equiv \beta$ - угловое ускорение системы, I — полный момент инерции тела относительно оси вращения, M — суммарный момент внешних сил относительной этой оси. Для экспериментального исследования закона вращательного движения (1) в работе использован крестообразный маятник, схематично изображённый на рисунке 1.

Рис. 1: Устройство крестообразного маятника

Маятник состоит из четырёх тонких стержней радиуса а, закреплённых на втулке под прямым углом друг к другу. Втулка и шкив насажены на общую ось. Ось закреплена в игольчатых подшипниках, так что вся система может свободно вращаться вокруг горизонтальной оси. Передвигая грузы $m_1 \dots m_4$ вдоль стержней, можно менять момент инерции маятника. На шкив намотана тонкая нить, к которой привязана лёгкая платформа массы m_{π} , служащая для размещения перегрузков m_{τ} . Установка также оснащена датчиком, фиксирующим моменты времени

прохождения концов стержней через него. Данные с датчика передаются на компьютер для последующей обработки и получения значения углового значения, а также зависимостей φ и его производных от времени.

Основной вращающий момент создаётся подвешенным на нити перегрузком вместе с платформой. Непосредственно на маятник действует момент силы натяжения нити M=rT, где r - радиус шкива. Силу T можно найти из второго закона Ньютона для платформы с перегрузком:

$$m\ddot{y} = mq - T$$

где $m=m_{\rm n}+m_{\rm r}$ - масса платформы с перегрузком. Ускорение платформы связано с угловым ускорением маятника соотношением $\ddot{y}=\beta r$. Отсюда момент силы натяжения нити

$$M = mr(g - \beta r). (2)$$

К оси вращения также приложен некоторый момент силы трения $M_{\rm TP}$. Таким образом, с учётом (2) уравнение (1) приобретает вид

$$(I + mr^2)\beta = mgr - M_{TD}$$
.

В проведённых опытах $mr^2 \ll I$, поэтому можно считать, что маятник раскручивается с постоянным угловым ускорением

$$\beta_0 = \frac{1}{I} mgr - \frac{M_{\rm TP}}{I} \tag{3}$$

Момент инерции системы I вычисляется с помощью теоремы Гюйгенса-Штейнера (грузы имеют форму полых цилиндров с внутренним и внешним радиусами a_1 и a_2 соответственно и образующей h:

$$I = I_0 + \sum_{i=1}^{4} \left(\frac{1}{12} m_i h^2 + \frac{1}{4} m_i (a_1^2 + a_2^2) + m_i R_i^2 \right). \tag{4}$$

3 Оборудование и инструментальные погрешности

Оборудование: крестообразный маятник, набор перегрузков, платформа для перегрузков, компьютер с измерительной программой, штангенциркуль, весы.

Инструментальные погрешности:

- Штангенциркуль: $\Delta_l^{\text{сист}} = 0.1 \text{ мм};$
- **Весы:** $\Delta_m^{\text{сист}} = 0.1 \text{ г};$

Погрешность вычисления программой углового ускорения вычисляется и автоматически выводится вместе с измеренным значением.

4 Результаты измерений и обработка экспериментальных данных

4.1 Оценка момента силы трения в подшипниках

Для оценки момента силы трения в подшипниках проверялось наличие движения в системе при отсутствии перегрузков на платформе, т.е. момент силы натяжения нити создавался исключительно платформой. Массы платформы оказалось достаточно, чтобы привести систему в движение, значит, момент силы трения мал $(M_{\rm TP} < m_{\rm B} gr)$ и его следует оценивать другим методом.

4.2 Измерение углового ускорения и момента силы трения

Измерения углового ускорения проводились для трёх разных положений R грузов на маятнике при 5 различных значениях массы перегрузков. Радиус шкива $r=17.5\,$ мм, масса подвеса $m_{\pi}=25.4\,$ г. Результаты измерений представлены в таблицах

			R = 50 mm		R = 100 mm		R = 150 mm	
$N_{\overline{0}}$	$m_{\scriptscriptstyle \Gamma}$, $_{\scriptscriptstyle \Gamma}$	$M, 10^{-4} \; \mathrm{H \cdot M}$	β , рад/ c^2	σ_{eta} , рад/ c^2	β	σ_{eta}	β	σ_{eta}
1	27,1	90,13	1,117	0,012	0,674	0,004	0,4206	0,0017
2	44,6	120,17	1,552	0,010	0,928	0,003	0,5590	0,0024
3	62,9	151,59	2,007	0,008	1,165	0,006	0,727	0,003
4	74,1	170,82	2,247	0,004	1,351	0,004	0,8234	0,0015
5	101,2	217,34	2,901	0,010	1,743	0,005	1,073	0,0021

Таблица 1: Значения углового ускорения при разных параметрах системы

По результатам измерений можно построить график зависимости β от M: $\beta = kM - b$, где $k = \frac{1}{I}, \ b = \frac{M_{\rm TP}}{I}$ (из уравнения (3)). Коэффициенты k и b и погрешности их вычисления определим методом наименьших квадратов:

$$k = \frac{\langle \beta M \rangle - \langle \beta \rangle \langle M \rangle}{\langle M^2 \rangle - \langle M \rangle^2}$$
$$-b = \langle \beta \rangle - k \langle M \rangle;$$
$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \beta^2 \rangle - \langle \beta \rangle^2}{\langle M^2 \rangle - \langle M \rangle^2} - k^2},$$
$$\sigma_b = \sigma_k \sqrt{\langle M^2 \rangle - \langle M \rangle^2}.$$

Отсюда можно найти значения момента инерции установки I и момента силы трения M_{TP} и их погрешности:

$$I = \frac{1}{k}, \ \sigma_I = I \frac{\sigma_k}{k};$$

$$M_{\rm \tiny TP} = Ib, \ \sigma_{M_{\rm \tiny TP}} = M_{\rm \tiny TP} \sqrt{(\frac{\sigma_b}{b})^2 + (\frac{\sigma_I}{I})^2};$$

	R, mm	$k, \frac{1}{\kappa_{\Gamma \cdot M}^2}$	$\sigma_k, \frac{1}{\kappa_{\Gamma \cdot M}^2}$	$b, \frac{H}{\kappa_{\Gamma \cdot M}}$	$\sigma_b, \frac{\mathrm{H}}{\mathrm{\kappa}_{\Gamma \cdot \mathrm{M}}}$	I, kg·m ²	σ_I , k Γ · M^2	$M_{\mathrm{Tp}},\mathrm{H}\cdot\mathrm{M}$	$\sigma_{M_{ ext{ iny Tp}}}, \mathbf{H} \cdot \mathbf{M}$
Γ	50	139,8	1,2	0,132	0,005	0,00715	0,00006	0,00094	0,00004
	100	83,9	1,1	0,087	0,005	0,01192	0,00015	0,00103	0,00006
	150	51,5	0,6	0,0523	0,0027	0,01941	0,00024	0,00101	0,00006

Таблица 2: Значения коэффициентов наилучших прямых, моментов инерции и момента силы трения

Полученные значения представлены в таблице 2. Графики зависимости β от M изображены на рисунке 2.

Рис. 2: Зависимость углового ускорения маятника от момента сил тяжести

4.3 Измерение момента инерции маятника

По вычисленному в пункте 4.2 значению момента инерции системы I при различных R можем найти момент инерции маятника без грузов. Для этого можно использовать формулу (4).

Параметры маятника:

- $m_1 = 151,7 \text{ r};$
- $m_2 = 158,2 \text{ r};$
- $m_3 = 152,6 \text{ r};$
- $m_4 = 157,0 \text{ } \Gamma;$
- $R_1 \approx ... \approx R_4$;
- h = 25 mm;
- $a_1 = 3.8 \text{ mm};$
- $a_2 = 17.5 \text{ MM};$

Выразим из формулы (4) момент инерции I_0 :

$$I_0 = I - \sum_{i=1}^{4} \left(\frac{1}{12} m_i h^2 + \frac{1}{4} m_i (a_1^2 + a_2^2) + m_i R_i^2 \right)$$

Погрешность вычисления I_0 по данной формуле

$$\sigma_{I_0} = \sqrt{\sigma_I^2 + (I - I_0)^2 \left(\left(\frac{2\Delta_m^{\text{chct}}}{\sum m_i} \right)^2 + \left(\frac{\frac{19}{6}\Delta_l^{\text{chct}}}{\frac{1}{12}h^2 + \frac{1}{4}(a_1^2 + a_2^2) + R^2} \right)^2 \right)}$$

R, mm	50	100	150
$I, 10^{-3} \text{kg} \cdot \text{m}^2$	7,15	11,92	19,41
$I_0, 10^{-3} \text{kg} \cdot \text{m}^2$	5,52	5,64	5,39
$\sigma_{I_0}, 10^{-3} \text{kg} \cdot \text{m}^2$	0,20	0,21	0,21

Таблица 3: Результаты вычисления собственного момента инерции маятника

В таблице 3 представлены найденные при разных R значения момента инерции маятника I_0 . Они не отличаются друг от друга больше, чем на $\approx \sigma_{I_0}$. Для проверки применимости формулы (4) было измерено угловое ускорение маятника без грузов при $m_{\rm r}=27.1~{\rm r}$: $\beta=1,63~{\rm pag/c^2},$ откуда из (3) $I_0=\frac{M-M_{\rm rp}}{\beta}\approx 5,3\cdot 10^{-3}{\rm kr\cdot m^2}$. Это значение близко к вычисленным по формуле (4), поэтому её можно считать применимой.

5 Обсуждение результатов и вывод

Полученные в ходе работы экспериментальные и теоретические значения собственного момента инерции маятника приблизительно равны и различаются в пределах погрешности измерений. Для разных моментов инерции маятника вычисленные моменты силы трения в оси оказались приблизительно равными, что соответствует действительности и подтверждает справедливость используемых формул и допустимых приближений. Точности эксперимента достаточно, чтобы проверить все рассмотренные в работе теоретические закономерности, однако для измерения моментов инерции предпочтительнее другие методы, так как ошибка в данном опыте может оказаться слишком большой для более точных измерений.