### RED: Recommendations Encouraging Diversity

Project check-in

25.03.2025 Clemence Reda





#### Background

- 1. Motivation: Pass Culture & drug repurposing
- 2. Objectives of the RED project
- 3. Data and diversity metrics
- 4. Intro to Multi-armed bandits
- 5. Intro to Determinantal Point Processes

## Pass Culture a phone app for French teens (<20yr) to browse and book cultural goods nearby with credits.

Diversification points obtained for each new category / subcategory / genre / location / type (a bit like set cover; achievement score); those are not visible to the user



Courtesy of Jill-Jenn Vie (Inria SODA).

### Drug repurposing First-in-class versus Best-in-class

First launched in that mechanistic class

Highest therapeutic advantage [...]



"The data indicated that it is slightly better to be first than to be best"

"[...] products that are firstto-launch increasingly tend to perform better [...]"

<sup>[1]</sup> Schulze, U., & Ringel, M. (2013). What matters most in commercial success: first-in-class or best-in-class?. *Nature Reviews Drug Discovery*, 12(6), 419-420.

<sup>[2]</sup> Spring, L., Demuren, K., Ringel, M., & Wu, J. (2023). First-in-class versus best-in-class: an update for new market dynamics. *Nat Rev Drug Discov*, *22*(7), 531-532.

# Objective of RED to design recommender systems for personalized good and diverse items.

taking into account the user's interests/item history

suggesting items with a high probability of positive feedback from the user

somewhat "controllable" recommendations: *e.g.*, out of the user's comfort zone

#### State-of-the-art some keywords

- Serendipity, diversity: metrics (see next slides)
- Contextual recommender systems: (logistic/cascading) multi-armed bandits (online), collaborative filtering (offline)



recommends



observes

#### Scientific challenges

- Incorporate a tradeoff between quality and diversity
- Versatile enough to be applicable in all use cases



# Data and diversity metrics different levels for development (D) and production (P)

Pass Culture data (P) Collection of events and item embeddings from the phone app for 6 months delta: diversity reward: diversity+booking

Synthetic data (D) Generate item embeddings  $x_i$  and  $\theta$  at random (Gaussian) to get trajectories (starting with context=0) where reward  $\sim$  Ber( $\sigma(z_{iu}^T\theta)$ ) for user u, item i mixture of context and item embedding

Pseudo-real MovieLens [1] data (D) Item embeddings: one-hot encoding of genre keywords, fit  $\theta$  using a shallow MLP [2]

| df[[ˈuse | er', 'i | tem', ' | context | ', 'event_name', 'cate   | gory_id', ' | delta' | , 'booki | .ng', 'r |
|----------|---------|---------|---------|--------------------------|-------------|--------|----------|----------|
|          | user    | item    | context | event_name               | category_id | delta  | booking  | reward   |
| 204770   | 17061   | 123583  | 0       | HasAddedOfferToFavorites | 5           | 1      | 0        | 0        |
| 670169   | 9374    | 47750   | 0       | BookingConfirmation      | 7           | 1      | 1        | 2        |
| 893131   | 39047   | 119265  | 4       | ConsultOffer             | 8           | 1      | 0        | 0        |
| 518769   | 35989   | 27319   | 128     | BookingConfirmation      | 7           | 0      | 1        | 1        |
| 482951   | 37074   | 9258    | 0       | ConsultOffer             | 7           | 1      | 0        | 0        |



<sup>[2]</sup> Papini, M., Tirinzoni, A., Restelli, M., Lazaric, A., & Pirotta, M. (2021). Leveraging good representations in linear contextual bandits. In *International Conference on Machine Learning* (pp. 8371-8380). PMLR.



<sup>[1]</sup> https://movielens.org/

### Data and diversity metrics item-embedding-driven diversity metrics: (log)-determinant, ridge leverage score



 $|K_{\{x1,x2\}}| \le |K_{\{x3,x4\}}|$ where  $\langle x_3, x_4 \rangle \leq \langle x_1, x_2 \rangle$  (cosine similarity) (Item embedding) kernel K  $K_{\{x,y\}} = \langle \Phi(x), \Phi(y) \rangle$ e.g., linear kernel:  $\Phi = Id$ , ~ similarity b/w items

(Log)-determinant of (a subset of) the kernel Volume in space occupied by a set S of items:  $|K_S|$ 

Effective dimension of (a subset of) the kernel for a ridge factor  $\lambda$  and a set S of items:

$$d_{eff}(S) = Tr(K_S(K_S + \lambda I_d)^{-1})$$

is the sum of (ridge) leverage scores for each i∈S

Drawn for all i  $|x_i|^2=1$ , K linear kernel in 2D ... but works for any # of dimension and # of points (and any symmetric kernel)



## Data and diversity metrics item-embedding-driven diversity metrics: (log)-determinant, ridge leverage score

The ridge leverage score for ith item in set S is

$$(K_S(K_S+\lambda I_d)^{-1})_{ii} \leq 1$$

and also the optimal value of the ridge regression problem [1]  $\min_{\psi} |\psi B_i|^2 + \lambda |\psi|^2$ find a linear combination of rows of B

where 
$$BB^T = K_S$$
 and  $B=[b_i]_{i \in S}$ 

(Item embedding) kernel K  $K_{\{x,y\}} = \langle \Phi(x), \Phi(y) \rangle$ e.g., linear kernel:  $\Phi = Id$ , ~ similarity b/w items

(Log)-determinant of (a subset of) the kernel Volume in space occupied by a set S of items: |K<sub>s</sub>|

Effective dimension of (a subset of) the kernel for a ridge factor  $\lambda$  and a set S of items:

$$d_{eff}(S) = Tr(K_s(K_s + \lambda I_d)^{-1})$$

is the sum of (ridge) leverage scores for each i∈S

The higher the effective dimension, the higher the number of "degrees of freedom", "uniqueness of items" in the set

[1] Musco, C., & Musco, C. (2017). Recursive sampling for the nystrom method. Advances in neural information processing systems, 30.



# (Stochastic, contextual) multi-armed bandits (MABs) online recommender systems for reward maximization



estimates the probabilities of positive feedback for each available item given the context













Definition of a MAB A MAB is defined by its sampling rule: highest probability of positive feedback?

Reward max/regret min Performance is compared to a deterministic oracle with access to the true probs

Regret = Perf(Oracle) - Perf(Algo)



It is a vast research domain, feel free to check out [1] Lattimore, T., & Szepesvári, C. (2020). *Bandit algorithms*. Cambridge University Press.



# (Finite) determinantal Point Processes (DPPs) sampling diverse set of points in a data-driven fashion

Point Process A distribution over finite subsets of a (finite) set  $X=\{x_1,x_2,...,x_N\}$ 

Definition of a DPP\* The probability of a subset is positively correlated to its diversity  $Prob(S \subseteq X) = |K_S|/|K+I_d|$  where K is the kernel built on  $\{x_1, x_2, ..., x_N\}$ 

There are algorithms in  $O(N^3)$  to sample k points out of N from a DPP [1]

If you want to test DPPs, check out the Python library DPPy

Finding a subset S maximizing Prob( $S \subseteq X$ ) is NP-hard

[1] Theorem 7 and Algorithm 18 in Hough, J. B., Krishnapur, M., Peres, Y., & Virág, B. (2006). Determinantal processes and independence.

It is (again) a vast research domain, feel free to check out

[2] Kulesza, A., & Taskar, B. (2012). Determinantal point processes for machine learning. *Foundations and Trends® in Machine Learning*, *5*(2–3), 123-286.

\* That definition is actually that of a L-ensemble, which matches the definition of kernel given earlier.



# (Finite) determinantal Point Processes (DPPs) leveraging the quality-diversity decomposition

Quality-decomposition Assume  $K = Q\Phi^T\Phi Q$  where  $\Phi$  is the item embedding matrix  $|\Phi_i|=1$  and  $Q = Diag(q_1, q_2, ..., q_N)$  where  $q_i \ge 0$  is the "quality" of item I  $Prob(S \subseteq X) \propto \Pi_{i \in S} |q_i|^2 |\Phi_S|^2$ 

Nyström approximation [1-2] If large dimension N of  $\Phi$ : assume that K is of rank m << N, choose m "representative" points and apply a SVD to find an approximation of K depending only on smaller matrices

Greedy algorithm for maximizing set-function [3] Under some conditions on  $f^*$ , argmax<sub>S</sub> f(S) is built greedily by setting  $S^* = \{s_1, s_2, ..., s_k\}$  where  $s_k = argmax_i$   $f(\{s_1, ..., s_{k-1}\}U\{i\})$  with a "small" approximation rate

[1] Drineas, P., & Mahoney, M. W. (2005). Approximating a gram matrix for improved kernel-based learning. In *International Conference on Computational Learning Theory* (pp. 323-337). Berlin, Heidelberg: Springer Berlin Heidelberg. [2] <a href="https://andrewcharlesjones.github.io/journal/nystrom-approximation.html">https://andrewcharlesjones.github.io/journal/nystrom-approximation.html</a>

[3] Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. In *Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 137-146).



<sup>\*</sup> monotone, submodular

### My progress on the project

- 1. Formalization of the problem
- 2. Implementation of baselines
- 3. First approaches

# Formalization of the problem gives a parametrization of the target function and how to learn from offline data



Translating into a doable ML problem the list of requirements and ideas from real-life applications

#### Key ("new") problems:

- 1. Diversity without hurting quality (too much)
- 2. Missing feedback
- 3. Large # of items
- 4. Do not recommend a visited item again (++ contexts and item embeddings)

Items normalized embeddings of size d Contextual setting

At time t, a (new or old) user appears with her context/history  $C_t$  on all items  $C_t^i > 0$  if i was liked =0 if not visited  $C_t^i < 0$  if i was disliked



Recommend K items  $\{r_t^1, r_t^2, ..., r_t^K\}$ Observations User outputs immediately her feedback  $Y_t^i > 0$  if i was liked  $Y_t^i = 0$  if i was not visited  $Y_t^i < 0$  if i was disliked Intrabatch diversity diversity among  $r_t^1, r_t^2, ..., r_t^K$  Interbatch diversity diversity across t's

Input

Output

# Formalization of the problem gives a parametrization of the target function and how to learn from offline data

#### Assumptions:

- Fixed random proba pvisit of visiting a recommended item
- Reward (feedback) for visited item i and context  $C_t$  is  $\sim Ber(\sigma(z_{it}^T\theta^*))$  where  $z_{it} = [C_t, x_i]$
- Diversity is deterministic with a function  $f^{div}(S_1, S_2)$  (e.g., log det or effective dimension)
- Feedbacks are iid

$$Prob(Y_t^i = y) = \begin{cases} 1-p^{visit} & \text{if } y=0\\ p^{visit} \times \sigma(z_{it}^T \theta^*) & \text{if } y=+1\\ p^{visit} \times (1-\sigma(z_{it}^T \theta^*)) & \text{if } y=-1 \end{cases}$$

Items normalized embeddings of size d Contextual setting

At time t, a (new or old) user appears with her context/history  $C_t$  on all items  $C_t^i > 0$  if i was liked =0 if not visited  $C_t^i < 0$  if i was disliked



Recommend K items  $\{r_t^1, r_t^2, ..., r_t^K\}$ Observations User outputs immediately her feedback  $Y_t^i > 0$  if i was liked  $Y_t^i = 0$  if i was not visited  $Y_t^i < 0$  if i was disliked Intrabatch diversity diversity among  $r_t^1, r_t^2, ..., r_t^K$  Interbatch diversity diversity across t's

Input Output

From now we assume that  $p^{visit} = 1$  to make things easier

# Formalization of the problem gives a parametrization of the target function and how to learn from offline data

Regret minimization Performance is compared to a deterministic oracle with access to the true probs (here,  $\theta^*$ )



Here we have three kinds of regrets!\*

Reward Oracle Given  $\theta^*$ , recommend  $\pi^{\text{rew}}(C_t) = \text{top K of } \{\sigma(z_{it}^T \theta^*)\}_i$ 

Interbatch Diversity Oracle Recommend  $\pi^{e-div}(C_t) = \text{top K-subset S for } f^{div}(S, C_t)$ 

Intrabatch Diversity Oracle Recommend  $\pi^{a-div}(C_t) = \text{top } K\text{-subset } S \text{ for } f^{div}(S, \emptyset)$ 

Computing those oracles is NP-hard \_\_\_\_\_ this is the link to DPPs

<sup>\*</sup> You could scalarize everything (e.g., linear combination) but... you might not find the full Pareto front: [1] Drugan, M. M., & Nowe, A. (2013). Designing multi-objective multi-armed bandits algorithms: A study. In *The 2013 international joint conference on neural networks (IJCNN)* (pp. 1-8). IEEE.

# Relevant baselines as the problem is related to logistic bandits and diversity/coverage literature

Adaptations of

Restriction to non-visited items

- $\varepsilon$ -greedy: (incrementally) regress on  $\theta$ , consider the top K items for  $\sigma(z_{it}^T\theta)$  Flip a coin for each and replace by random item with proba  $\varepsilon$
- "Logistic Regression": regress on  $\theta$ , apply Greedy on  $\mathbf{q}_i = \sigma(\mathbf{z}_{it}^T \theta)$ ,  $\Phi_i = \mathbf{x}_i$
- LogisticUCB1 [1]: regress on  $\theta$ , recommend K items with highest UCBs  $\sigma(z_{it}^T\theta) \leq \text{UCB}(i, t)$  for all i and t with high proba
- "LinOASM" [2]: regress on  $\theta$  (for logistic models), apply Greedy on  $q_i = UCB(i, t)$ ,  $\Phi_i = x_i$

<sup>[1]</sup> Faury, L., Abeille, M., Calauzènes, C., & Fercoq, O. (2020). Improved optimistic algorithms for logistic bandits. In *International Conference on Machine Learning* (pp. 3052-3060). PMLR.

<sup>[2]</sup> Gabillon, V., Kveton, B., Wen, Z., Eriksson, B., & Muthukrishnan, S. (2014). Large-scale optimistic adaptive submodularity. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 28, No. 1).

### First approaches given the formulation we proposed



#### Experimental results on synthetic data sets



### What happens next

- 1. See what happens on the MovieLens data set
- 2. Modify the estimator for  $\theta$  when  $p^{visit} < 1$
- 3. Make the implementation faster
- 4. Propose a final approach
- 5. Derive theoretical guarantees on (all) regrets