RINGS INTRO

COLTON GRAINGER (MATH 6130 ALGEBRA)

10. ASSIGNMENT DUE 2018-11-14

10.1. **[1, No. 7.1.7].** *Given.* R, a ring; Z, the center of R.

To prove. The center Z is a subring. If a R is a division ring, then Z is a field.

Proof. Let $r \in R$. Let $x, y \in Z$. Observe that the center is closed under subtraction.

$$r(y - x) = ry - rx = yr - xr = (y - x)r.$$

Observe that a product of elements in the center is also in the center.

$$rxy = xry = xyr$$
.

Thus the center is a subring. \Box

Given. Now suppose our ring is a division ring.

To prove. Z is a field.

Proof. The center is a commutative ring by above. Let $r \in R$. Then there's $a \in R$ such that $a = r^{-1}$. Let $z \in Z$.

$$az = za$$
 implies $(az)^{-1} = (za)^{-1}$ implies $z^{-1}r = rz^{-1}$.

So the center of the ring is closed under inverses. Thus the center is a division ring. \Box

10.2. **[1, No. 7.1.11].** Given. Suppose R is an entire ring. Suppose $x \in R$.

To prove. If $x^2 = 1$, then $x = \pm 1$.

Proof. Consider $x^2 = 1$ if and only if (x - 1)(x + 1) = 0. Since R has no zero divisors, the conclusion follows. \Box

10.3. [1, No. 7.1.14]. Given. Let R be a commutative ring with unity. Let $x \in R$ be a nilpotent element such that

$$m = \min\{n \in \mathbf{N} : x^n = 0\}.$$

To prove. (a) Either x is zero or a zero divisor. (b) The element rx is nilpotent for all $r \in R$. (c) The element 1 + x is a unit in R. (d) The sum of any unit u and a nilpotent element is a unit in R.

Proof. (a) If m = 1, then x = 0. If m > 1, then x and x^{m-1} are both nonzero. (b) Observe

$$(rx)^{m} = \underbrace{rx \cdots rx}_{m \text{ times}}$$

$$= r^{m}x^{m}$$

$$= r^{m}0$$

$$= 0.$$

Date: 2018-11-09. Compiled: 2018-11-13.

1

(c) Follows from (d) which is verified by

$$(u+x)\left(\sum_{n=0}^{m-1}\frac{(-1)^nx^n}{u^{n+1}}\right)=1.$$

10.4. **[1, No. 7.2.2].** Given. Let R be a commutative ring with unity $1 \neq 0$ and let p(x) be an element of the polynomial ring R[x].

To prove. The polynomial p(x) is a zero divisor if and only if there is a nonzero $b \in R$ such that bp(x) = 0.

Proof. (\Rightarrow) Clear. If $b \in R[x]$ is nonzero and bp(x) = 0, then p is a zero divisor. (\Leftarrow) Suppose g is a polynomial of minimal degree such that g(x)p(x) = 0. As a base case for induction consider a_n , b_m leading coefficients of p(x) and q(x) respectively. Then $a_nb_m = 0$. So

$$\underbrace{a_n g(x)}_{\text{deg } m-1} p(x) = 0.$$

But g was a minimal zero divisor of p(x), so $a_ng(x)=0$. We proceed by strong induction on i. Suppose $a_{n-k}g(x)=0$ for all k< i, where a_j is the coefficient of the jth term of p(x). Because g(x)p(x)=0, distributing we see $b_ma_{n-i}=0$. As

$$\underbrace{a_{n-i}g(x)}_{\text{deg} \le m-1}p(x) = 0$$

we have $a_{n-i}g(x) = 0$.

Since for all i < n, $a_{n-i}g(x) = 0$ implies $a_{n-i}b_m = 0$, we conclude $b_mp(x) = 0$. \square

10.5. **[1, No. 7.2.7].** Given. Let R be a commutative ring with unity, let $\mathcal{M}_n(R)$ be the ring of square n by n matrices with entries in the ring R, let Z be the center of $\mathcal{M}_n(R)$. Suppose $(z_{ij}) \in Z$.

To prove. The center Z is the ring of scalar matrices isomorphic to R.

Proof. Let E_{ij} be a "unit" matrix in $\mathcal{M}_n(R)$ with i,jth entry equal to 1, and all other entries 0. For all $i \in \{1,\ldots,n\}$, we have

$$E_{ii}(z_{ij}) = (z_{ij})E_{ii}$$
 implies $z_{ij} = 0$ if $|i - j| > 0$.

For all $k \in \{1, ..., n\}$, we have

$$E_{1k}(z_{ij}) = (z_{ij})E_{1k}$$
 implies $z_{11} = z_{kk}$.

So Z is in the subring of scalar diagonal matrices. It's trivial to check that λI , a scalar diagonal matrix, commutes with any element of $\mathcal{M}_n(R)$. Moreover, the homomorphism $\phi\colon R\to \mathcal{M}_n(R)$ given by $\lambda\mapsto \lambda I$ is an embedding and surjective onto the center Z. \square

10.6. **[1, No. 7.2.13].** Given. Let \mathcal{K} be one of the conjugacy classes (which will be denoted $\mathcal{K}_1, \ldots, \mathcal{K}_r$) of the finite group G. Let R be a commutative ring with unity. Consider the group ring RG, with center Z = Z(RG).

To prove. (a)
$$K=\sum_{k_i\in\mathscr{K}}k_i\in Z$$
. (b) $\alpha\in Z$ if and only if $\alpha=\sum \alpha_iK_i$ for $\alpha_i\in R$.

Proof.

(a) Each element $\sum r_g g \in RG$ commutes with K if and only if gK = Kg for all $g \in G$. The conjugation action of G on its powerset $\mathscr{P}(G)$ is an inner automorphism on elements, so the conjugacy class \mathscr{K} is fixed. Because G is finite, conjugation permutes the elements in \mathscr{K} . Thus $gKg^{-1} = K$.

(b) (\Rightarrow) Suppose $\alpha = \sum \alpha_i K_i$. Then

$$\sum_{i} \alpha_{i} K_{i} \sum_{g} r_{g} g = \sum_{i} \left(\sum_{g} r_{g} \alpha_{i} K_{i} g \right) = \sum_{i} \left(\sum_{g} r_{g} \alpha_{i} g K_{i} \right) = \sum_{g} r_{g} g \sum_{i} \alpha_{i} K_{i}$$

so $\alpha \in Z$. (\Leftarrow) Say $\alpha \in Z$. We can write α as the sum over conjugacy classes $\{k_{n_i}\}$ of elements in G:

$$\alpha = \sum_{i} \left(\sum_{n_i} a_{n_i} k_{n_i} \right).$$

For each i, G acts transitively on by conjugation on $\{k_{n_i}\}$. Fix i. For all n_i , transitivity of conjugation implies $a_{n_i} = a_i$ for some $a_i \in R$. We conclude $\alpha = \sum a_i K_i$. \square

10.7. **[1, No. 7.3.22].** Given. A ring R, an element $a \in R$, the sets $M = \{x \in R : ax = 0\}$ and $N = \{x \in R : xa = 0\}$, and a left ideal L.

To prove. (a) M is a right ideal, N is a left ideal. (b) I is an ideal.

Proof.

- (a) First to argue that M is a subring.
 - Nonempty: $0 \in M$.
 - Closed under subtraction and multiplication: If $x, y \in M$, then a(x y) = ax ay = 0 and also a(xy) = (ax)y = 0.

Moreover, if $r \in R$, then a(xr) = 0, so $xr \in M$. Thus M is a right ideal. That N is a left ideal follows similarly.

(b) For each $\alpha \in L$, let M_α be the right ideal of left annihilators of α . Observe

$$I = \bigcap_{\alpha \in L} M_{\alpha}$$

is a subring. Moreover, I is closed under right multiplication as the M_α are right ideals. Now let $r \in R$, $x \in I$, and $\alpha \in L$. Because $rx\alpha = 0$, $rx \in \cap M_\alpha = I$. \square

10.8. [1, No. 7.3.25]. Given. Let R be a commutative ring with unity.

To prove. The binomial theorem: for all $a,b\in R$, $(a+b)^n=\sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$.

Proof. Here's the crux of the argument: For all k < n, we have

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

We can proceed by induction and reindex the sums to exploit the above identity.

Base. Consider $(a+b)^1 = \binom{1}{0}a^0b^1 + \binom{1}{1}a^1b^0$.

Inductive step. Suppose true for $n \in \mathbf{N}$. Then

$$(a+b)^{n+1} = \left(\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}\right) (a+b)$$

$$= a^{n+1} + \sum_{k=1}^{n} \binom{n}{k-1} a^k b^{n+1-k} + \sum_{k=1}^{n} \binom{n}{k} a^k b^{n+1-k} + b^{n+1}$$

$$= a^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^k b^{n+1-k} + b^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}.$$

10.9. **[1, No. 7.3.29].** Given. Let R be a commutative ring with unity $1 \neq 0$, let $\Re(R)$ be its nilradical.

To prove. $\mathfrak{N}(R)$ is an ideal.

Proof. $0 \in \Re(R)$, so its nonempty. Let $x, y \in \Re(R)$. There exist $m, n \in \mathbb{N}$ such that $x^n = y^m = 0$. Let $\ell = 2 \max\{m, n\}$. Applying the binomial theorem,

$$(x+y)^{\ell} = \sum_{k=1}^{\ell} {\ell \choose k} x^k y^{\ell-k} = \underbrace{0+\dots+0}_{\ell \text{ times}}$$

as for all $k \in \{0, \dots, \ell\}$ either x^k or $y^{\ell-k}$ will be 0. Observe also $(xy)^{\min\{m,n\}} = 0$. So $\Re(R)$ is an ideal. \square

10.10. [1, No. 7.3.34]. Given. Let R be a ring with unity $1 \neq 0$. Let I, I be ideals of R.

To prove. (a) If K is an ideal such that $I \cup J \subset K \subset I + J$, then K = I + J. (b) IJ is an ideal contained in $I \cap J$. (c) The containment in (b) may be proper. (d) If R happens to be commutative, then we have equality in (b).

Proof.

- (a) $I, J \subset I + J$. Suppose K is as above. Let $x + y \in I + J$. Observe $x, y \in K$. So $x + y \in K$ and thus $I + J \in K$.
- (b) Immediately from its definition, IJ is nonempty and closed under addition. Let $\sum_1^n x_i y_i \in IJ$ an $r \in R$. Then

$$r\sum_{1}^{n}x_{i}y_{i}\sum_{1}^{n}\underbrace{(rx_{i})}_{\in I}y_{i}\in IJ.$$

So IJ is an ideal. Moreover, I,J are ideals, so $\sum_{i=1}^n \underbrace{x_iy_i}_{\in I\cup J} \in I\cup J$. Thus $IJ\subset I\cup J$.

- (c) Consider $I=J=n\mathbf{Z}$ for $n\in\mathbf{Z}_{\geqslant 2}$. Observe $IJ=n^2\mathbf{Z}$, yet $I\cap J=n\mathbf{Z}$.
- (d) Suppose R is a commutative¹ unital ring with comaximal ideals I and J. Let $z \in I \cap J$. Now $z \in I + J$ also, so there are x, y in I, J respectively such that x + y = z. Then $z = x1 + 1y \in IJ$. \square

¹Is this hypothesis necessary?

10.11. **[1, No. 7.4.10].** Given. Let R be commutative unital ring, let P be a prime ideal of R. Suppose P is entire (i.e., contains no zero divisors).

To prove. R is entire.

Proof. Say ab=0. Then with ab+P=(a+P)(b+P)=0. Since P is prime, R/P is entire. Wlog, a+P=P, so $a\in P$. As P is an ideal we have $ab\in P$. As P is entire ab=0 implies b=0. \square

10.12. **[1, No. 7.4.30].** Given. Let R be a commutative unital ring, let I be an ideal of R, let radI be the radical of I. To prove. (a) rad I is an ideal containing I. (b) rad $I/I = \Re(R/I)$.

Proof. (a) $I \subset \text{rad } I$ by definition. Let $x, y \in \text{rad } I$. Say that n and m are the minimal powers required such that $x^n, y^m \in \text{rad } I$. Let $\ell = \min\{n, m\}$ and $k = 2\max\{n, m\}$. Observe

$$(xy)^{\ell} = x^{\ell}y^{\ell} \in I, \quad (x+y)^k = \sum_{j=0}^k \binom{k}{j} x^j y^{k-j} \in I.$$

So rad I is a subring. Moreover, if $r \in R$, then $(rx)^n = r^n x^n \in I$. So rad I is an ideal. (b) Let $x + I \in \text{rad } I/I$. Then $(x + I)^n = x^n + I = I$. So $x + I \in \Re(R/I)$. To show the other containment, run the same argument in reverse. \square

10.13. [1, No. 7.4.37]. Given. Let R be a commutative unital ring.

To prove. R is a local ring with maximal ideal m if and only if $R \setminus m = R^*$ is the multiplicative group of units.

Proof. (\Rightarrow) Say R \ m is not a unit. Then the principal ideal generated by x is contained in another maximal ideal $n \neq m$, which is a contradiction, as R is a local ring. So x is a unit. (\Leftarrow) Suppose R \ R* is an ideal m. Consider α a proper ideal of R. We have

$$\mathfrak{a} \cap R^* = \emptyset$$
 implies $R \setminus R^* \supset \mathfrak{a}$.

Thus $\mathfrak{m} \supset \mathfrak{a}$, demonstrating \mathfrak{m} is the unique maximal ideal of R. \square

REFERENCES

[1] D. S. Dummit and R. M. Foote, *Abstract algebra*, 3rd ed. Hardcover; Prentice Hall, 2004 [Online]. Available: http://www.worldcat.org/isbn/0471433349