Table of Laplace and Z-transforms

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	_	-	Kronecker delta $\delta_0(k)$ $1 \qquad k = 0$ $0 \qquad k \neq 0$	1
2.	-	-	$ \begin{array}{ccc} \delta_0(n-k) \\ 1 & n=k \\ 0 & n \neq k \end{array} $	$z^{\cdot k}$
3.	$\frac{1}{s}$	1(<i>t</i>)	1(<i>k</i>)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e ^{-at}	e^{-akT}	$\frac{1}{1 - e^{-aT} z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$ \frac{1}{1-z^{-1}} $ $ \frac{1}{1-e^{-aT}z^{-1}} $ $ \frac{Tz^{-1}}{(1-z^{-1})^2} $ $ \frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3} $
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2 z^{-1} (1+z^{-1})}{(1-z^{-1})^3}$
7.	$\frac{6}{s^4}$	t ³	$(kT)^3$	$ \frac{T^{3}z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}} $ $ \frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})} $ $ \frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})} $ $ \frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})} $
8.	$\frac{a}{s(s+a)}$	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{\left(1-e^{-aT}\right)\!z^{-1}}{\left(1-z^{-1}\right)\!\left(1-e^{-aT}z^{-1}\right)}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{\left(e^{-aT}-e^{-bT}\right)\!z^{-1}}{\left(1-e^{-aT}z^{-1}\right)\!\left(1-e^{-bT}z^{-1}\right)}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-akT}	$rac{Te^{-aT}z^{-1}}{\left(1-e^{-aT}z^{-1} ight)^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$ \frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2} $ $ \frac{1-(1+aT)e^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2} $
12.	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^{2}e^{-aT}\left(1+e^{-aT}z^{-1}\right)z^{-1}}{\left(1-e^{-aT}z^{-1}\right)^{3}}\left[\left(aT-1+e^{-aT}\right)+\left(1-e^{-aT}-aTe^{-aT}\right)z^{-1}\right]z^{-1}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{\left[\left(aT - 1 + e^{-aT}\right) + \left(1 - e^{-aT} - aTe^{-aT}\right)z^{-1}\right]z^{-1}}{\left(1 - z^{-1}\right)^{2}\left(1 - e^{-aT}z^{-1}\right)}$
14.	$\frac{\omega}{s^2+\omega^2}$	sin <i>ox</i>	sin <i>wkT</i>	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2+\omega^2}$	cos ωt	cos wkT	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$	e ^{-at} sin <i>wt</i>	e ^{-akT} sin <i>ωkT</i>	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T+e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$	e ^{-at} cos <i>ot</i>	e ^{-akT} cos <i>wkT</i>	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.	_	_	a^k	$\frac{1}{1-az^{-1}}$
19.	-	_	a^{k-1} k = 1, 2, 3,	
20.	-	_	ka ^{k-1}	$\frac{z^{-1}}{\left(1-az^{-1}\right)^2}$
21.	-		k^2a^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.	-	-	k^3a^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.	-	-	k^4a^{k-1}	$\frac{z^{-1}\left(1+11az^{-1}+11a^{2}z^{-2}+a^{3}z^{-3}\right)}{\left(1-az^{-1}\right)^{5}}$
24.	-	-	$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$

x(t) = 0 for t < 0 x(kT) = x(k) = 0 for k < 0Unless otherwise noted, k = 0, 1, 2, 3, ...

Definition of the Z-transform

$$\mathcal{R}\lbrace x(k)\rbrace = X(z) = \sum_{k=0}^{\infty} x(k)z^{-k}$$

Important properties and theorems of the Z-transform

	x(t) or $x(k)$	$Z\{x(t)\}$ or $Z\{x(k)\}$
1.	ax(t)	aX(z)
2.	$ax_1(t) + bx_2(t)$	$aX_1(z) + bX_2(z)$
3.	x(t+T) or $x(k+1)$	zX(z)-zx(0)
4.	x(t+2T)	$z^2X(z)-z^2x(0)-zx(T)$
5.	x(k+2)	$z^2X(z)-z^2x(0)-zx(1)$
6.	x(t+kT)	$z^{k}X(z)-z^{k}x(0)-z^{k-1}x(T)zx(kT-T)$
7.	x(t-kT)	$z^{-k}X(z)$
8.	x(n+k)	$z^{k}X(z)-z^{k}x(0)-z^{k-1}x(1)-\ldots-zx(k1-1)$
9.	x(n-k)	$z^{-k}X(z)$
10.	tx(t)	$-Tz\frac{d}{dz}X(z)$
11.	kx(k)	$-z\frac{d}{dz}X(z)$
12.	$e^{-at}x(t)$	$X(ze^{aT})$
13.	$e^{-ak}x(k)$	$X(ze^a)$
14.	$a^k x(k)$	$X\left(\frac{z}{a}\right)$
15.	$ka^kx(k)$	$-z\frac{d}{dz}X\left(\frac{z}{a}\right)$
16.	x(0)	$\lim_{z\to\infty} X(z) \text{if the limit exists}$
17.	x(∞)	$\lim_{z \to 1} \left[(1 - z^{-1}) X(z) \right] \text{ if } \left(1 - z^{-1} \right) X(z) \text{ is analytic on and outside the unit circle}$
18.	$\nabla x(k) = x(k) - x(k-1)$	$(1-z^{-1})X(z)$
19.	$\Delta x(k) = x(k+1) - x(k)$	(z-1)X(z)-zx(0)
20.	$\sum_{k=0}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$
21.	$\frac{\partial}{\partial a}x(t,a)$	$\frac{\partial}{\partial a}X(z,a)$
22.	$k^m x(k)$	$\left(-z\frac{d}{dz}\right)^m X(z)$
23.	$\sum_{k=0}^{n} x(kT) y(nT - kT)$	X(z)Y(z)
24.	$\sum_{k=0}^{\infty} x(k)$	X(1)

Table A-1 Laplace Transform Pairs

(continues on next page)

Table A-1 (continued)

$\frac{1}{s(s+a)^2}$	$\frac{1}{s^2(s+a)}$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$	$\frac{s}{s^2 + 2\xi \omega_n s + \omega_n^2}$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$	$\frac{\omega^2}{s(s^2 + \omega^2)}$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$	$\frac{s}{\left(s^2+\omega^2\right)^2}$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	$\frac{s}{\left(s^2+\omega_1^2\right)\left(s^2+\omega_2^2\right)}$	$\frac{s^2}{\left(s^2+\omega^2\right)^2}$
$\frac{1}{a^2}\left(1-e^{-at}-ate^{-at}\right)$	$\frac{1}{a^2}(at-1+e^{-at})$	$e^{-\omega}\sin\omega t$	e ^{-at} cos od	$\frac{\omega_n}{\sqrt{1-\xi^2}} e^{-\zeta \omega_n t} \sin \omega_n \sqrt{1-\xi^2} t (0<\xi<1)$	$-\frac{1}{\sqrt{1-\xi^2}} e^{-\zeta \omega_t t} \sin(\omega_n \sqrt{1-\xi^2} t - \phi)$ $\phi = \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi}$ $(0 < \xi < 1, 0 < \phi < \pi/2)$	$1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\zeta \omega_{s'}} \sin(\omega_{n} \sqrt{1 - \xi^2} t + \phi)$ $\phi = \tan^{-1} \frac{\sqrt{1 - \xi^2}}{\xi}$ $(0 < \xi < 1, 0 < \phi < \pi/2)$	$1 - \cos \omega t$	$\omega t - \sin \omega t$	$\sin \omega t - \omega t \cos \omega t$	$\frac{1}{2\omega}t\sin\omega t$	l cosal	$\frac{1}{\omega_2^2 - \omega_1^2} \left(\cos \omega_1 t - \cos \omega_2 t \right) \qquad \left(\omega_1^2 \neq \omega_2^2 \right)$	$\frac{1}{2\omega}\left(\sin\omega t + \omega t\cos\omega t\right)$
18	19	20	21	22	23	24	25	26	27	28	29	30	31

Appendix A / Laplace Transform Tables

863

Appendix A / Laplace Transform Tables

Table A-2 Properties of Laplace Transforms

$\mathcal{L}[Af(t)] = AF(s)$	$\mathscr{L}[f_1(t)\pm f_2(t)]=F_1(s)\pm F_2(s)$	$\mathcal{G}_{\pm}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0\pm)$	$\mathcal{Q}_{\pm} \left[\frac{d^2}{dt^2} f(t) \right] = s^2 F(s) - s f(0\pm) - \dot{f}(0\pm)$	$\mathcal{Q}_{\pm}\left[\frac{d^{n}}{dt^{n}}f(t)\right] = s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f(0\pm)$	where $f(t) = \frac{d^{k-1}}{dt^{k-1}} f(t)$	$\mathcal{Z}_{\pm} \left[\int f(t) dt \right] = \frac{F(s)}{s} + \frac{1}{s} \left[\int f(t) dt \right]_{t=0\pm}$	$\mathcal{L}_{\pm} \left[\int \cdots \int f(t)(dt)^{n} \right] = \frac{F(s)}{s^{n}} + \sum_{k=1}^{n} \frac{1}{s^{n-k+1}} \left[\int \cdots \int f(t)(dt)^{k} \right]_{t=0\pm}$	$\mathscr{Z}\bigg[\int_0^{r} f(t) dt\bigg] = \frac{F(s)}{s}$	$\int_0^\infty f(t) dt = \lim_{s \to 0} F(s) \text{if } \int_0^\infty f(t) dt \text{ exists}$	$\mathcal{L}[e^{-at}f(t)] = F(s+a)$	$\mathcal{L}[f(t-\alpha)1(t-\alpha)] = e^{-\alpha s}F(s) \qquad \alpha \ge 0$	$\mathcal{L}[tf(t)] = -\frac{dF(s)}{ds}$	$\mathscr{L}[t^2f(t)] = \frac{d^2}{ds^2}F(s)$	$\mathcal{L}[l^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s)$ $(n = 1, 2, 3,)$	$\mathcal{L}\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s) ds \text{if } \lim_{t \to 0} \frac{1}{t}f(t) \text{ exists}$	$\mathcal{L}\left[f\left(\frac{1}{a}\right)\right] = aF(as)$	$\mathscr{L}\left[\int_0^t f_1(t-\tau)f_2(\tau)d\tau\right]=F_1(s)F_2(s)$	$\mathscr{L}[f(t)g(t)] = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(p)G(s-p) dp$
	2	С	4	v		9	7	∞	6	10	11	12	13	14	15	16	17	18

Finally, we present two frequently used theorems, together with Laplace transforms of the pulse function and impulse function.

Initial value theorem	$f(0+) = \lim_{t \to 0+} f(t) = \lim_{s \to \infty} sF(s)$
Final value theorem	$f(\infty) = \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$
Pulse function $f(t) = \frac{A}{t_0} 1(t) - \frac{A}{t_0} 1(t - t_0)$	$\mathscr{L}[f(t)] = rac{A}{t_0 s} - rac{A}{t_0 s} e^{-st_0}$
Impulse function	
$g(t) = \lim_{t_0 \to 0} \frac{A}{t_0}, \text{for } 0 < t < t_0$	$\mathscr{L}[g(t)] = \lim_{t_0 \to 0} \left[\frac{A}{t_0 \delta} (1 - e^{-st_0}) \right]$
$=0, for t < 0, t_0 < t$	$= \lim_{t_0 \to 0} \frac{d}{dt_0} [A(1 - e^{-st_0})]$ $= \lim_{t_0 \to 0} \frac{d}{dt_0} (t_0 s)$ $= \frac{As}{s} = A$

865

998