## Week 9

Machine Learning

### Leo Breiman's Two Cultures

the logic of data analysis





L. Breiman, Statistical Science (2001)

#### Leo Breiman's Two Cultures

Data Modeling Culture



e.g. linear regression

Focus on stochastic model to explain how f(x)-> y

98% of Statistics

#### Leo Breiman's Two Cultures

Algorithmic Modeling Culture (machine learning)



Ignore probabilistic generative model f(x)-> y

## Machine Learning!









# Discriminitive vs Generative Models

|                | Discriminative model         | Generative model                          |
|----------------|------------------------------|-------------------------------------------|
| Goal           | Directly estimate $P(y   x)$ | Estimate $P(x y)$ to then deduce $P(y x)$ |
| What's learned | Decision boundary            | Probability distributions of the data     |
| Illustration   |                              |                                           |
| Examples       | Regressions, SVMs            | GDA, Naive Bayes                          |



We are using a Support Vector Machine (SVM)

Given a set of N training (i.e. known, labelled) examples:

$$\{(x_1,y_1),...,(x_N,y_N)\}$$
 feature vector  $\mathbb{R}^M$  class label  $y\in\{-1,1\}$ 

we define a learning function:

$$g: X \to Y$$
 e.g.  $g(x) = P(y|x)$ 

and a loss function:

$$L: g(x) \times Y \to \mathbb{R}^{\geq 0}$$
 e.g.  $L(g(x), y) = \mathbb{1}(g(x) \neq y)$ 

then simply minimize a chosen risk function:

$$R(g) = \frac{1}{N} \sum_{i} L(y_i, g(x_i))$$

Support Vector Machines

general learning function:

$$g(\boldsymbol{x}) = sign(\boldsymbol{w}^T \boldsymbol{x} - b)$$

simplest form = "Hard Margin" i.e. all training points correctly classified

minimize  $|| oldsymbol{w} ||$  subject to,

$$y_i(\boldsymbol{w}^T\boldsymbol{x_i} - b) \ge 1$$



LOTS of variations on this e.g. soft margins, kernel trick for non-linear

Support Vector Machines

#### Image recognition via SVM



Happy S



Sad



Surprised



**Angry** 



## Decision Trees and Random Forests













