Effect of Ligands on Δ: Spectrochemical Series

- \Box An arrangement of ligands according to their increasing ability to split the d-orbitals or crystal field splitting parameter (Δ).
- **☐** Experimentally determined.

Weak Field

$$I^- < Br^- < S^2 - < SCN^- < Cl^- < NO_3^- < F^- < C_2O_4^2 - <$$

H₂O< NCS⁻< CH₃CN< NH₃< en < bipy< phen< NO₂⁻

< PPh₃< CN⁻< CO

Strong Field

Weak Field

- \square Spectrochemical Series cannot be entirely explained by Crystal Field Theory (CFT). Examples: why neutral molecules such as H₂O are stronger ligands than halides; why PPh₃ and CO are strong field ligands.
- ☐ Orbital interactions need to be invoked to rationalize the order of ligands. Thus, covalency is incorporated into CFT resulting in the Ligand Field Theory.
- We will not discuss detailed Molecular Orbital treatment but will focus on Ligand Field Theory as a tool to understand important concepts pertaining to the bonding in coordination compounds.

Observation: I⁻ < Br⁻ < Cl⁻ < F⁻ (Ligand Field strength)

 \Box In terms of CFT, the fluoride ion being much smaller, can approach closer to the metal ion thereby increasing the electronic repulsion leading to higher Δ .

Observation: F⁻ < OH⁻ < O² - < H₂O (Ligand Field strength)

- ☐ To explain the above series, let's look at the bonding modes between the ligand and the metal. We will consider simplified diagrams for clarity.
- \Box Initially, the ligands can be viewed as having a hybrid orbital or a *p* orbital pointing toward the metal to make σ bonds.
- \Box This is referred to as σ donation from the ligand to the metal.
- \Box Hence, all ligands are " σ donors".
- However, some ligands <u>may have</u> additional orbitals that can interact with other orbitals on the metal.
- ☐ Ligand Field Theory provides insights into these additional interactions as the reasons for the different strengths of ligands.

Sigma bonding interaction between two ligand orbitals and metal d_{z2} orbital

Sigma bonding interaction between four ligand orbitals and metal $d_{x^2-y^2}$ orbital

Observation: F⁻ < OH⁻ < O²⁻ < H₂O (Ligand Field strength)

Ligands which have filled p orbitals may act as π donors by interacting with suitable metal orbitals.

Interaction between d_{xy} of metal and p_y of halide: Reduces positive charge on metal Reduces Δ

☐ Water acts only as a sigma-donor ligand.

Observation: PPh₃, CN⁻, CO are strong field ligands

□ Ligands which have empty p or d orbitals may act as π acceptors by interacting with suitable metal orbitals.

 π -back-bonding of ligand with d_{xy} orbital Increases positive charge on metal Increases Δ

 $d\pi$ -p π back donation (back bonding)

 \square CO also has available π^* orbitals for back bonding.

CO-M sigma bond

M to CO pi backbonding

 \square PPh₃ has d π orbitals for back bonding.

- Accepts electrons from filled metal d-orbital to empty d-orbital of P in PPh₃ (π -back bonding)
- ☐ In low oxidation states, the electron density on the metal ion is very high.
- ☐ To stabilize low oxidation states, we require ligands, which can simultaneously bind the metal center and also withdraw electron density from it.

Summary of Ligand Bonding Modes

- 1. All ligands are σ donors. In general, ligands that engage solely in σ bonding are in the middle of the spectrochemical series.
- 2. Ligands with filled p or d orbitals can also serve as π donors. This results in a smaller value of Δ_0 .
- 3. Ligands with empty p, d or π^* orbitals can also serve as π acceptors. This results in a larger value of Δ_o .

I⁻<Br⁻<Cl⁻<F⁻<H₂O<NH₃<PPh₃<CO π donor< weak π donor<σ only< π acceptor

Examples of donor and acceptor ligands

Sigma donor	Pi donor*	Pi acceptor*
H ₂ O	RO-, R ₂ N-	CO, olefin
NR_3	F-, Cl-	CN⁻
	RCOO-	PR_3

These ligands also act as σ donors.

Significance of Spectrochemical Series

- Lets try to populate the t_{2g} and e_g orbitals for octahedral complexes of different metals (varying number of d-electrons).
- ☐ d¹-system: no impact of strong field or weak field ligand

 \Box d^3 -system: no impact of strong field or weak field ligand

 \Box d^2 -system: no impact of strong field or weak field ligand

d⁴-system: Two choices depending on the ligand

