Exercices

S'entraîner

Cosinus d'un angle aigu

1 ABC et DEF sont deux triangles rectangles.

Recopier et compléter les phrases suivantes :

[BC] est ___ du triangle ABC rectangle en ___.

[AB] est le côté ___ à l'angle ___dans le triangle ABC ___en A.

--- est le côté --- à l'angle DEF dans le triangle --- rectangle en ---.

___ est l'hypoténuse du triangle ___ rectangle en D.

2 1 Construire un triangle RST rectangle en R.

2 Quel est le côté adjacent à l'angle \widehat{RST} ? Écrire le quotient de deux longueurs égal à $\cos \widehat{RST}$.

3 Quel est le côté adjacent à l'angle $\widehat{\mathsf{STR}}$? Écrire le quotient de deux longueurs égal à cos $\widehat{\mathsf{STR}}$.

3 Le triangle LMN ci-contre est rectangle en M.

Recopier et compléter les égalités suivantes :

 $cos_{--} = \frac{LM}{LN}$; $cos_{--} = \frac{NM}{NL}$

1 Citer tous les triangles rectangles de la figure ci-dessous.

2 En précisant le triangle considéré, écrire le quotient de deux longueurs égal à :

cos RST:

cos RTS:

cos SRH:

cos TRH.

5 Écrire $\cos \widehat{xOy}$ sous la forme d'un quotient de deux longueurs, de deux manières différentes.

6 Écrire $\cos \widehat{tAz}$ sous la forme d'un quotient de de gueurs, de deux manières différentes.

7 Dans la figure ci-dessous : OA = 4 cm et OB = 5 cm

1 a. Démontrer l'égalité : $\frac{OA}{OB} = \frac{OB}{OC}$ **b**. En déduire OC.

2 En suivant la même démarche que dans la question calculer OD et OE.

8 Vrai ou faux

a. $\cos 45^{\circ} = 2$.

b. $\cos 10^{\circ} \approx -0.984807753$.

c. $0 < \cos 12^{\circ} < 1$.

d. $\cos 80^{\circ} = 1,001$.

9 Recopier et compléter le tableau suivant en arrond se éventuellement les résultats au centième.

â	6°	14°	28°	45°	60°	83°
cos â						

Peut-on construire un triangle rectangle tel que le cosin de l'un de ses angles aigus soit égal à :

a. $\frac{5}{4}$

b. $-\frac{1}{2}$

Justifier les réponses.

Pour les exercices **11** à **15**, construire chaque triangle sans utiliser ni calculatrice, ni rapporteur.

ABC est un triangle rectangle en A tel que :

$$\cos \widehat{ABC} = \frac{1}{2}$$

LMN est un triangle rectangle en L tel que :

$$\cos \widehat{LMN} = \frac{5}{8}$$

13 RST est un triangle rectangle en S tel que :

$$\cos \widehat{SRT} = \frac{7}{10}$$

OUV est un triangle rectangle en V tel que :

$$\cos \widehat{UOV} = 0.6.$$

BOL est un triangle rectangle en O tel que :

$$OL = 5 \text{ cm et } \cos \widehat{OLB} = \frac{1}{2}$$

16 Construire un triangle GHI rectangle en I tel que :

$$\cos \widehat{GHI} = \frac{4}{5}$$
 et $GH = 6$ cm.

Calculs de mesures d'angles aigus

Recopier et compléter le tableau suivant.
On arrondira les résultats au dixième de degré.

$\cos \hat{a}$	0,234	0,423	0,56	0,7777	0,834	0,9563
â (en°)	1111 0					Danging

Déterminer, dans chaque cas, l'arrondi au dixième de la mesure, en degré, de l'angle COD.

a. $\cos \widehat{COD} = 0,60876$.

b.
$$\cos \widehat{COD} = 0,192.$$

c. $\cos \widehat{COD} = 0.976$.

d.
$$\cos \widehat{COD} = 0,444.$$

Déterminer, dans chaque cas, l'arrondi au dixième de la mesure, en degré, de l'angle \widehat{ANG} .

a. $\cos \widehat{ANG} = 0.21$.

b.
$$\cos \widehat{ANG} = 0.789$$
.

c. $\cos \widehat{ANG} = 0.5431$.

d.
$$\cos \widehat{ANG} = 0.451$$
.

10 Exprimer le cosinus de l'angle \widehat{HIJ} .

- ② Déterminer la mesure, en degré, de l'angle \widehat{HIJ} . On donnera l'arrondi au dixième.
- Calculer, dans chaque cas, la mesure, en degré, de l'angle colorié. On donnera l'arrondi au dixième.

a.

22 On considère le triangle rectangle OAB représenté ci-dessous.

- ① Calculer la mesure, en degré, de l'angle ÂBO. On donnera l'arrondi au dixième.
- 2 En déduire la mesure, en degré, de l'angle $\widehat{\mathsf{OAB}}$. On donnera l'arrondi au dixième.
- 23 Calculer, dans chaque cas, la mesure, en degré, de l'angle colorié. On donnera l'arrondi au dixième.

- 124 ① Construire un triangle SUR rectangle en S tel que : SU = 28 mm et RU = 45 mm.
 - **2** a. Calculer la mesure, en degré, de l'angle SUR. On arrondira au dixième.
 - **b**. En déduire la mesure, en degré, de l'angle ÛRS. On arrondira au dixième.
- 25 On considère le triangle TER tel que :

$$TE = 33$$
 mm, $RE = 56$ mm et $TR = 65$ mm.

- 1 Démontrer que le triangle TER est un triangle rectangle.
- ② Calculer la mesure, en degré, de chacun des angles aigus du triangle TER. On donnera les arrondis au dixième.
- 26 On considère le triangle TRI tel que :

$$IR = 14.4 \text{ cm}$$
, $IT = 27 \text{ cm}$ et $TR = 30.6 \text{ cm}$.

- Démontrer que le triangle TRI est un triangle rectangle.
- 2 Calculer la mesure, en degré, de chacun des angles aigus du triangle TRI. On donnera les arrondis au dixième.
- 27 REC est un triangle rectangle en R tel que :

$$RE = 18 \text{ cm}$$
 et $RC = 24 \text{ cm}$.

- ① Calculer la longueur de l'hypoténuse de ce triangle.
- 2 Calculer la mesure, en degré, de chacun des angles aigus du triangle REC. On donnera les arrondis au dixième.
- 28 1 Construire un rectangle DEFG tel que :

$$DE = 9 \text{ cm}$$
 et $DF = 12 \text{ cm}$.

- **2** a. Calculer la mesure, en degré, de l'angle EDF. On donnera l'arrondi à l'unité.
- b. En déduire la mesure, en degré, de l'angle FDG.

Exercices

Calculs de longueurs

29 Calculer AO. On donnera l'arrondi au millimètre.

- On considère un triangle ABC rectangle en A tel que : $\widehat{BCA} = 32^{\circ} \text{ et } BC = 5,4 \text{ cm.}$ Calculer AC. On donnera l'arrondi au millimètre.
- On considère un triangle DEF rectangle en D tel que : $\widehat{DEF} = 65^{\circ}$ et EF = 12 cm. Calculer DE. On donnera l'arrondi au millimètre.
- On considère un triangle DEF rectangle en D tel que : $\widehat{DEF} = 76^{\circ}$ et DE = 7,4 cm. Calculer EF. On donnera l'arrondi au millimètre.
- On considère un triangle GHI rectangle en G tel que : $\widehat{GHI} = 29.5^{\circ}$ et GI = 12 cm.
 - 1 Calculer la mesure, en degré, de l'angle HIG.
 - Calculer HI. On donnera l'arrondi au millimètre.
- On considère un triangle TRI rectangle en R tel que : $\widehat{RIT} = 2 \times \widehat{ITR} \text{ et RI} = 5 \text{ cm}$
 - lacktriangle Calculer la mesure, en degré, de chacun des angles $\widehat{\mathsf{RIT}}$ et $\widehat{\mathsf{ITR}}$.
 - 2 Calculer TI puis TR. On arrondira au millimètre.
- 35 On considère le triangle DEF représenté ci-dessous.

- 1 Calculer ED. On donnera l'arrondi au millimètre.
- 2 a. Calculer la mesure, en degré, de l'angle DEF. b. En déduire EF. On donnera l'arrondi au millimètre.
- **1** Construire un triangle ISO rectangle et isocèle en O dont l'hypoténuse a pour longueur 10 cm.
 - 2 Calculer OI et OS. On donnera l'arrondi au millimètre.
- 37 On considère un triangle GHI rectangle en G tel que : $\widehat{GHI} = 47^{\circ}$ et HI = 12 cm.
 - 1 Calculer GH. On donnera l'arrondi au millimètre.

- **2 a.** Calculer la mesure, en degré, de l'angle $\widehat{\mathsf{HIG}}$. **b.** En déduire Gl. On donnera l'arrondi au millimètre.
- On considère un triangle KLM rectangle en K tel que : $\widehat{KML} = 25^{\circ}$ et LM = 8,5 cm.
 - Calculer KM. On donnera l'arrondi au millimètre.
 - **2** Calculer KL de deux manières différentes. On donnera l'arrondi au millimètre.
- 39 **1** a. Construire un triangle ABC rectangle en A tel que : $\widehat{ACB} = 55^{\circ}$ et AC = 6 cm.

b. Tracer la hauteur issue de A ; elle coupe le côté [BC] en H.

2 a. Exprimer cos \widehat{ACB} en utilisant le triangle ABC. En déduire BC. On donnera l'arrondi au millimètre.

b. Exprimer cos \widehat{ACB} en utilisant le triangle ACH. En déduire HC. On donnera l'arrondi au millimètre.

3 a. Calculer la mesure, en degré, de l'angle ÂBC.

b. Exprimer cos \widehat{ABC} en utilisant le triangle ABC puis le triangle ABH.

c. En déduire AB et AH. On donnera l'arrondi de chaque longueur au millimètre.

40 CERF est un cerf-volant tel que :

 $\widehat{RCE} = 25^{\circ}$ et RC = 8 cm.

Ses diagonales se coupent en H avec RH = 2 cm.

Calculer la longueur de chacun des côtés du cerf-volant. On donnera les arrondis au millimètre.

Calculs de longueurs et de mesures d'angles aigus

41 On considère le triangle GHI représenté ci-dessous.

- 1 a. Calculer la mesure, en degré, de l'angle $\widehat{\mathsf{HGI}}$.
- b. En déduire une valeur approchée de l'angle GHI.
- 2 Calculer IH. On donnera l'arrondi au millimètre.

1 Quelle est la nature du triangle JKL ci-dessous ?

2 Calculer la mesure, en degré, de chacun des angles aigus du triangle JKL. On donnera les arrondis au dixième.

Vu au brevet

On considère un triangle ABC rectangle en A tel que : AB = 5 cm et BC = 7,5 cm.

- 1 Calculer la mesure de l'angle ÂBC au degré près.
- 2 Soit M un point appartenant à la droite (AB) tel que : M n'appartient pas au segment [AB] et AM = 2 cm. La parallèle à (BC) passant par M coupe la droite (AC) en N.
- a. Quelle est la nature du triangle AMN?
- b. Déterminer la mesure, en degré, de l'angle ÂMN.
- c. Calculer MN. On donnera l'arrondi au millimètre.

Vu au brevet

On considère un angle \widehat{xMy} de 120°.

O est un point de la demi-droite [Mx) tel que MO = 7,6 cm et N un point de la demi-droite [My) tel que MN = 4,8 cm. La droite passant par N et perpendiculaire à (OM) coupe (OM) en P.

- ① Déterminer la mesure, en degré, de l'angle $\widehat{\mathsf{NMP}}$ puis calculer MP. En déduire OP.
- 2 Déterminer la mesure, en degré, de l'angle MNP puis calculer NP. On donnera l'arrondi au millimètre.
- 3 Calculer NO. On donnera l'arrondi au millimètre.
- **(** Déterminer la mesure, en degré, de l'angle PON. On donnera l'arrondi à l'unité.
- ① Construire un losange HIJK de côté 4 cm tel que KI = 7 cm.
- **2** Calculer la mesure, en degré, de l'angle ÎKH. On donnera l'arrondi au degré.
- **3** En déduire la mesure, en degré, de chacun des angles de ce losange. On donnera les arrondis au degré.

u au brevet

Oconstruire un losange ABCD de centre O tel que : $AB = 3 \text{ cm et } \widehat{BAC} = 50^{\circ}.$

- **2** Calculer les longueurs des diagonales [AC] et [BD]. On donnera les arrondis au millimètre.
- 3 Calculer l'aire du losange ABCD. On donnera l'arrondi au mm².
- 47 On considère la figure ci-dessous, dans laquelle les points A, O, D d'une part, B, O, C d'autre part, sont alignés.

- ① Calculer la mesure, en degré, de l'angle \widehat{AOB} . En déduire la mesure, en degré, de l'angle \widehat{COD} . On donnera les arrondis au dixième.
- 2 Calculer OD. On donnera l'arrondi au mm.
- 48 On considère le quadrilatère ABCD ci-dessous.

- 1 Calculer BD. On donnera l'arrondi au millimètre.
- **2** Calculer la mesure, en degré, de chacun des angles ÂDB, BDC et DCB.
- 3 Calculer les longueurs AD, DC, BC. On donnera les arrondis au millimètre.
- **(A) a.** Calculer le périmètre du quadrilatère ABCD.
- **b.** Calculer l'aire du quadrilatère ABCD. On donnera l'arrondi au mm².
- On considère la figure ci-dessous, dans laquelle ABCD est un quadrilatère et K est le point d'intersection de la perpendiculaire à la droite (AB) passant par C.

Pour tous les calculs de longueur, on donnera l'arrondi au millimètre.

- 1 Calculer la mesure, en degré, de l'angle $\widehat{\mathsf{KCB}}$.
- 2 a. Calculer les longueurs KB et KC.
- **b**. En déduire les longueurs AB et AD.
- 3 a. Calculer le périmètre du quadrilatère ABCD.
- **b**. Calculer l'aire du quadrilatère ABCD.

On donnera l'arrondi au mm².

Exercices

faire le point

50 QCM Pour chaque question, indiquer la (les) réponse(s) exacte(s) parmi les quatre réponses proposées.

Agh	gure of the book ream laquelle let point	I On or Andrew In	(DC B Janes	in soryieC Farrano	D D
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OS OS'	OR OS	RR' OR	OS' OS
2	$ \begin{array}{c} B \\ C \end{array} $ $ \begin{array}{c} \cos \widehat{ABC} = \\ \end{array} $	BC BA	BA BC	CA CB	AB AC
3	Le cosinus d'un angle aigu est un nombre	positif.	supérieur à 1.	inférieur à 0.	compris entre 0 et 1.
4	cos 60° =	$-\frac{1}{2}$	1	1/2	0
5	cos 25° ≈	0,906	1,906	0,9	-0,906
6	Si $\cos \widehat{x0y} = 0.584$, alors:	$\widehat{x0y} = 54,26^{\circ}.$	$\widehat{x0y} \approx -54^{\circ}$.	$\widehat{x0y} \approx 54,26^{\circ}$.	$\widehat{x0y} \approx 54,3^{\circ}$.

Je rédige Pour les exercices suivants, on demande une solution rédigée.

- Construire un triangle rectangle connaissant le cosinus de l'un de ses angles aigus
- 51 Construire, sans utiliser ni calculatrice ni rapporteur, un triangle ABC rectangle en C tel que :

$$\cos \widehat{ABC} = \frac{11}{19}$$

- Déterminer une valeur approchée de la mesure d'un angle aigu dont on connaît le cosinus
- 52 On considère un triangle GHI rectangle en I tel que :

 IH = 12 cm et GH = 31,2 cm.

 Calculer la mesure, en degré, de chacun des angles aigus du triangle GHI. On donnera les arrondis au dixième.

- Calculer la longueur d'un côté d'un triangle rectangle
- 53 Calculer CA. On donnera l'arrondi au millimètre.

54 Calculer EF. On donnera l'arrondi au millimètre.

