prdom3

April 11, 2021

[89]: df.info() # Rzeczywiście nie ma nulli w bazie danych

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 56420 entries, 0 to 56419
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	MinTemp	56420 non-null	float64
1	MaxTemp	56420 non-null	float64
2	Rainfall	56420 non-null	float64
3	Evaporation	56420 non-null	float64
4	Sunshine	56420 non-null	float64
5	${\tt WindGustSpeed}$	56420 non-null	float64
6	WindSpeed9am	56420 non-null	float64
7	WindSpeed3pm	56420 non-null	float64
8	Humidity9am	56420 non-null	float64
9	Humidity3pm	56420 non-null	float64
10	Pressure9am	56420 non-null	float64
11	Pressure3pm	56420 non-null	float64
12	Cloud9am	56420 non-null	float64
13	Cloud3pm	56420 non-null	float64
14	Temp9am	56420 non-null	float64
15	Temp3pm	56420 non-null	float64
16	RainToday	56420 non-null	int64
17	RainTomorrow	56420 non-null	int64
d+117	og: float6/(16)	in+64(2)	

dtypes: float64(16), int64(2)

memory usage: 7.7 MB

0.1 Analiza danych

[91]: df[df.RainTomorrow==0].describe()

Zacznijmy od podzielenia ramki danych względem ${\tt taretu}(RainTomorrow)$ i poszukajmy jakichś zależności między nimi.

		ζ J					
[90]:	df[df.	RainTomorrow==1	l].describe()				
[90]:		MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	\
	count	12427.000000	12427.000000	12427.000000	12427.000000	12427.000000	
	mean	14.520286	22.285129	5.487302	4.599026	4.529597	
	std	6.475014	6.866919	11.553907	3.155133	3.390385	
	min	-4.700000	7.000000	0.000000	0.000000	0.000000	
	25%	9.200000	16.800000	0.000000	2.200000	1.400000	
	50%	14.000000	21.400000	0.800000	4.000000	4.300000	
	75%	19.900000	27.800000	5.800000	6.400000	7.200000	
	max	29.800000	46.800000	206.200000	43.000000	13.900000	
		WindGustSpeed	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	\
	count	12427.000000	12427.000000	12427.000000	12427.000000	12427.000000	
	mean	46.727368	16.980204	21.209624	75.314959	66.905931	
	std	15.453586	9.031452	9.284455	15.746792	18.449353	
	min	11.000000	2.000000	2.000000	5.000000	1.000000	
	25%	35.000000	11.000000	15.000000	66.000000	55.000000	
	50%	44.000000	15.000000	20.000000	77.000000	68.000000	
	75%	56.000000	22.000000	28.000000	88.000000	81.000000	
	max	122.000000	65.000000	65.000000	100.000000	100.000000	
		Pressure9am	Pressure3pm	Cloud9am	Cloud3pm	Temp9am	\
	count	12427.000000	12427.000000	12427.000000	12427.000000	12427.000000	
	mean	1013.926909	1011.816834	5.946729	6.261930	17.980309	
	std	7.127063	7.163316	2.163760	1.840983	6.599997	
	min	980.500000	977.100000	0.000000	0.000000	-0.100000	
	25%	1009.300000	1007.000000	5.000000	6.000000	12.600000	
	50%	1013.800000	1011.600000	7.000000	7.000000	17.300000	
	75%	1018.600000	1016.500000	7.000000	7.000000	23.200000	
	max	1039.500000	1036.000000	8.000000	8.000000	36.400000	
		Temp3pm	RainToday	RainTomorrow			
	count	12427.000000	12427.000000	12427.0			
	mean	20.348869	0.462139	1.0			
	std	6.712269	0.498585	0.0			
	min	4.300000	0.000000	1.0			
	25%	14.900000	0.000000	1.0			
	50%	19.600000	0.000000	1.0			
	75%	25.400000	1.000000	1.0			
	max	46.100000	1.000000	1.0			

2

[91]:		${\tt MinTemp}$	${\tt MaxTemp}$	Rainfall	Evaporation	Sunshine	\
	count	43993.000000	43993.000000	43993.000000	43993.000000	43993.000000	
	mean	13.166611	24.765538	1.182149	5.758525	8.641254	
	std	6.368581	6.902305	4.617274	3.796570	3.338099	
	min	-6.700000	4.100000	0.000000	0.000000	0.000000	
	25%	8.400000	19.300000	0.000000	3.000000	6.700000	
	50%	13.000000	24.600000	0.000000	5.200000	9.500000	
	75%	18.000000	30.100000	0.200000	7.800000	11.000000	
	max	31.400000	48.100000	182.600000	81.200000	14.500000	
		WindGustSpeed	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	\
	count	43993.000000	43993.000000	43993.000000	43993.000000	43993.000000	
	mean	39.224877	15.296343	19.384857	63.207306	44.714023	
	std	12.174093	8.065273	8.234055	18.363871	17.847462	
	min	9.000000	2.000000	2.000000	0.000000	0.000000	
	25%	31.000000	9.000000	13.000000	53.000000	32.000000	
	50%	37.000000	15.000000	19.000000	64.000000	46.000000	
	75%	46.000000	20.000000	24.000000	76.000000	58.000000	
	max	124.000000	67.000000	76.000000	100.000000	100.000000	
		Pressure9am	Pressure3pm	Cloud9am	Cloud3pm	Temp9am	\
	count	43993.000000	43993.000000	43993.000000	43993.000000	43993.000000	
	mean	1018.175237	1015.637006	3.760075	3.779806	18.268420	
	std	6.549944	6.544964	2.767432	2.583256	6.557603	
	min	982.900000	983.200000	0.000000	0.000000	-0.700000	
	25%	1013.700000	1011.000000	1.000000	1.000000	13.300000	
	50%	1018.000000	1015.500000	3.000000	3.000000	17.900000	
	75%	1022.500000	1020.100000	7.000000	6.000000	23.300000	
	max	1040.400000	1038.900000	8.000000	9.000000	39.400000	
		Temp3pm	RainToday	RainTomorrow			
	count	43993.000000	43993.000000	43993.0			
	mean	23.377392	0.152729	0.0			
	std	6.722703	0.359730	0.0			
	min	3.700000	0.000000	0.0			
	25%	18.100000	0.000000	0.0			
	50%	23.100000	0.000000	0.0			
	75%	28.500000	0.000000	0.0			
	max	46.100000	1.000000	0.0			

Na pierwszy rzut oka najważniejszymi zmiennymi będą zachmurzenie, wilgotność oraz opady w dniu dzisiejszym, co raczej nikogo nie zdziwi. Co ciekawe ciśnienie spada, a pędkość wiatru rośnie w dni deszczowe.

```
[92]: df.hist(bins=30,figsize=(20,10))
```

```
[92]: array([[<AxesSubplot:title={'center':'MinTemp'}>,
                  <AxesSubplot:title={'center':'MaxTemp'}>,
                  <AxesSubplot:title={'center':'Rainfall'}>,
                  <AxesSubplot:title={'center':'Evaporation'}>],
                 [<AxesSubplot:title={'center':'Sunshine'}>,
                  <AxesSubplot:title={'center':'WindGustSpeed'}>,
                  <AxesSubplot:title={'center':'WindSpeed9am'}>,
                  <AxesSubplot:title={'center':'WindSpeed3pm'}>],
                 [<AxesSubplot:title={'center':'Humidity9am'}>,
                  <AxesSubplot:title={'center':'Humidity3pm'}>,
                  <AxesSubplot:title={'center':'Pressure9am'}>,
                  <AxesSubplot:title={'center':'Pressure3pm'}>],
                 [<AxesSubplot:title={'center':'Cloud9am'}>,
                  <AxesSubplot:title={'center':'Cloud3pm'}>,
                  <AxesSubplot:title={'center':'Temp9am'}>,
                  <AxesSubplot:title={'center':'Temp3pm'}>],
                 [<AxesSubplot:title={'center':'RainToday'}>,
                  <AxesSubplot:title={'center':'RainTomorrow'}>, <AxesSubplot:>,
                  <AxesSubplot:>]], dtype=object)
             4000
                                                                                     15000
                                                             40000
                                                                                     10000
                                     2000
                                                                                     5000
                                             WiddGust≸βeed
                                                                     50WindSpeed9arli50
                                                                                             <sup>20</sup>WindSpeed3pmf<sup>0</sup>
                       Sanshine 20
                                                                                     10000
                                                             10000
             4000
                                     4000
                                                             5000
                                                                                     5000
                     humid7ty9ah0 12.5 15.0
                                             40 Humfidity36m 100
                                                                                            <sup>20</sup> Pressufe3pm
                                                                     <sup>20</sup> Pressure 9am
                                                             6000
                                                                                     6000
                                                             4000
                                                                                     4000
                                     2000
                                                             2000
                                                                                     2000
                      Abuda fib
                                               doud3pM
                                                                  990 1009 e 1019 a 1020 1030 1040
                                                                                            990 10<del>90m1030</del>m1020 1030 1040
            15000
                                                             4000
            10000
                                     10000
                                                             2000
                                                                                     2000
                      RainToday
                                             Rain fomorro®
            40000
                                     40000
```

1 Modelowanie

20000

20000

1.1 Logistic Regression

Zaczniemy od regresji logistycznej z prametrami: - penalty=12, ponieważ chcemy aby model był zależny od jak najmniejszej liczby parametrów, - dual=False, ponieważ n_samples>n_features, - n_jobs=-1, ponieważ jeśli coś da się zrobić szybciej to nie ma co się oganiczać, - class_weight=balanced, ponieważ dni bez opadów jest sporo więcej, więc chcemy trochę bardziej to zrównoważyć tą dysproporcję.

```
[95]: model=LogisticRegression(penalty='12',dual=False,n_jobs=-1,max_iter=1500,random_state=72,class
[96]: model.fit(x_train,y_train)
[96]: LogisticRegression(class_weight='balanced', max_iter=1500, n_jobs=-1,
                         random_state=72)
[97]: y_pred=model.predict(x_test)
[98]: print(f"accurancy: {accuracy score(y test,y pred)}")
      print(f"recall score: {recall_score(y_test,y_pred)}")
      print(f"f1 score: {f1_score(y_test,y_pred)}")
      print(f"precision score: {precision_score(y_test,y_pred)}")
      confusion_matrix(y_test,y_pred)
     accurancy: 0.7983575564220725
     recall score: 0.7923526287838556
     f1 score: 0.636179511779128
     precision score: 0.531433659839715
[98]: array([[10529, 2631],
             [ 782, 2984]], dtype=int64)
```

2 RandomForestClassifier

Następnie sprawdzimy Las losowy z prametrami: - n_estimators=100, - min_samples_leaf=5.

3 VotingClassifier

Na koniec sprawdzimy VotingClassifier z prametrami: - estimators=[('LR',model),('RFC',model3)], ponieważ chcemy sprawdzić, czy Random Forest połączony z Regresją liniową dadzą wspólnie lepszy efekt, - voting='soft', - n_jobs=-1, ponieważ jeśli coś da się zrobić szybciej to nie ma co się oganiczać.

Wybranie najlepszego modelu jest dość subiektywne ze względu na subiektywność, która metryka jest najlepsza dla danego zadania. Jeśli patrzymy na f1 to wygrywa VotingClassifier, najlepsze accurancy osiąga Random Forest, w recall zwycięża regresja logistyczna, a w precision score Random Forest.

```
[]:
```