0.1 Lecture 6

0.1.1 Topics

- Open Sets
- Closed Sets
- Interior Points
- Closure of a set

Let's recall the Euclidean metric on \mathbb{C} :

$$d(z, w) = |\vec{z} - \vec{w}|.$$

For real vector spaces, we can identify \mathbb{C} with \mathbb{R}^2 using the map $\mathbb{C} \to \mathbb{R}^2$ with $\alpha + i\beta \to (\alpha, \beta)$. Thus, we can visualize \mathbb{C} using \mathbb{R}^2 .

Recall that definition of continuity for functions in \mathbb{R} .

Definition (continuity in \mathbb{R}). Let $f: \mathbb{R} \to \mathbb{R}$. We say that f is **continuous** for each $a \in \mathbb{R}$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - a| < \delta$ implies

$$|f(x) - f(a)| < \varepsilon.$$

Note that whenever we say $|x-a| < \delta$, we can also say that $x \in (a-\delta, a+\delta)$. Similarly, we have $|f(x)-f(a)| < \varepsilon$ is equivalent to $f(x) \in (f(a)-\varepsilon, f(a)+\varepsilon)$.

0.1.2 Open Sets

If we want to write the former using set notation, we can denote it as

$$\{x \in \mathbb{R} : d(x, a) < \delta\}$$

which is a more general statement than the one found in the definition above.

Definition (Open Ball). Consider the usual metric d(z, w) = |z - w| in \mathbb{C} . Let $\varepsilon > 0$ and $a \in \mathbb{C}$. By an **open ball** centered at a, and radius $\varepsilon > 0$, we mean the set

$$B(a,\varepsilon) = \{ z \in \mathbb{C} : d(z,a) < \varepsilon \}.$$

Definition (Open Set). Let $D \subseteq \mathbb{C}$. We say D is **open** if for each $a \in D$, we can find $\varepsilon > 0$ such that $B(a, \varepsilon) \subseteq D$.

Example. (i) \mathbb{C} is open.

- (ii) Let $\varepsilon > 0$ and $a \in \mathbb{C}$. Then $B(a, \varepsilon)$ is also open; that is, open balls are open.
- (iii) Let D_1 and D_2 be open sets. Show that $D_1 \cap D_2$ is open. Let $x \in D_1 \cap D_2$ To show that $D_1 \cap D_2$ is open, we need to find $\delta > 0$ such that $B(x, \delta) \subseteq D_1 \cap D_2$. Since $x \in D_1 \cap D_2$, then $x \in D_1$ and $x \in D_2$. Since D_1 and D_2 are open sets, we can find $\varepsilon > 0$ and $\varepsilon' > 0$ such that

$$B(x,\varepsilon)\subseteq D_1$$
 and $B(x,\varepsilon')\subseteq D_2$, respectively.

By definition, we see that $d(x,p) < \varepsilon$ for all $p \in D_1$ and $d(x,q) < \varepsilon'$. Then pick $\delta = \min\{d(x,p),d(x,q)\}$. Since x is in both D_1 and D_2 , we have that

$$B(x,\delta)\subseteq D_1\cap D_2.$$

Hence, $D_1 \cap D_2$ is open.

1. The empty set is open.

2. Let $\{D_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of open ets, where Λ is an indexing set. Define the set

$$\bigcup_{\lambda \in \Lambda} D_{\lambda} = \{ z \in \mathbb{C} : z \in D_{\lambda} \text{ for some } \lambda \in \Lambda \}.$$

Show that $\bigcup_{\lambda \in \Lambda} D_{\lambda}$ is also open.

0.1.3 Interior Points

Definition (Interior Point). Let $D \subseteq \mathbb{C}$ and $a \in D$. We say that a is an **interior point** of D if we can find $\varepsilon > 0$ such that $B(a, \varepsilon) \subseteq D$.

Proposition. D is open if and only if each $a \in D$ is an interior point of D.

Example. Consider the following intersection

$$\bigcap_{n=1}^{\infty} B(0, 1/n) \tag{1}$$

Let us compute (1). This is just the singleton $\{0\}$. Show that $\{0\}$ is not open. Note that the intersection of arbitrary many open sets may not be open.

0.1.4 Closed sets

Definition (Closed Set). We say $A \subseteq \mathbb{C}$ closed if its complement

$$\mathbb{C} \setminus A = \{ z \in \mathbb{C} : z \notin A \}$$

is open.

Example. Define a closed ball with center at $a \in \mathbb{C}$ and radius $\varepsilon > 0$ by

$$\overline{B}(a,\varepsilon) = \{ z \in \mathbb{C} : |z - a| \le \varepsilon \}.$$

Note that this is not the same thing as the closure of the open ball! Show that $\overline{B}(a,\varepsilon)$ is closed.

Example. • For any $a \in \mathbb{C}$, we say that the singleton $\{a\}$ is closed.

• If A_1, A_2, \ldots, A_n are closed sets. Then

$$\bigcup_{i=1}^{n} A_i \text{ is also closed.}$$

We can just show that the complement of this set is open.

• Let $\{A_{\Lambda}\}_{{\lambda}\in{\Lambda}}$ be a collection of closed sets. Define

$$\bigcap_{\lambda \in \Lambda} A_{\lambda} = \{z \in \mathbb{C} : z \in A_{\Lambda} \ \forall \lambda \in \Lambda\},\$$

then $\bigcap_{\lambda \in \Lambda} A_{\lambda}$ is closed.

Definition (Boundary Points). Let $D \subseteq \mathbb{C}$. We say $a \in \mathbb{C}$ is a **boundary point** of D if for all $\varepsilon > 0$, $B(a, \varepsilon) \cap D \neq \emptyset$ and $B(a, \varepsilon) \cap (\mathbb{C} \setminus D) \neq \emptyset$; that is, $B(a, \varepsilon)$ intersects D and $\mathbb{C} \setminus D$ non-trivially.

Example. Any point on the circle $\{z \in \mathbb{C} : |z-a| = \varepsilon\}$ is a boundary point of $B(a,\varepsilon)$, where $\varepsilon > 0$.

Example (Boundary Points of Singletons). • Note that the boundary point of the singleton is just the singleton itself.

• Let $D = \mathbb{C} \setminus \{a\}$. Just like the first item, the boundary points of this set is just $\{a\}$.

Definition (Accumulation Point). Let $D \subseteq \mathbb{C}$. We say $a \in \mathbb{C}$ is an **accumulation point** of D if for any $\varepsilon > 0$,

$$B(a,\varepsilon)\cap (D\setminus \{a\})\neq \emptyset.$$

Example. (i) Let $D = \mathbb{C}$. Then $\{0\}$ is an accumulation point of D.

- (ii) Let a such that |a| = 1. Then a is an accumulation point of $D = \{z : |z| < 1\}$.
- (iii) Let $D = \{1, i\}$. Then D has no accumulation points.

Definition (Closure). Let $D \subseteq \mathbb{C}$. We denote the closure of D by \mathbf{D} and define \overline{D} as

$$\overline{D} = D \cup \{x \in D : \exists \varepsilon > 0 \ B(x, \varepsilon) \cap D \neq \emptyset\}.$$

Lemma. (i) \overline{D} is closed in \mathbb{C} .

- (ii) The following statements are equivalent:
 - (a) $a \in \mathbb{C}$ is an accumulation point of D
 - (b) There is a sequence (z_n) with $z_n \in D$, $z_n \neq a$ for all $n \in \mathbb{Z}_+$ and $z_n \to a$.

Proof.

Definition (Bounded). We say $D \subseteq \mathbb{C}$ is **bounded** if there exists R > 0 such that $D \subseteq \overline{B}(0, R)$; that is, $|z| \leq R$ for all $z \in D$.