Algebra e Logica Matematica

Funzioni

Esercizio 2.1. Siano $A = \{1, 2, 3, 4, 5\}$ e $B = \{a, b, c, d, e\}$ due insiemi e sia ρ la relazione tra A e B definita da:

$$\rho = \{(1,c); (2,b); (3,d); (4,c); (5,a)\}.$$

Dire se ρ è un'applicazione da A a B. Dire se ρ^{-1} è un'applicazione da B a A. In caso di risposta affermativa, precisare se l'applicazione è iniettiva e/o suriettiva.

Esercizio 2.2. Per ogni funzione proposta dire se è iniettiva, suriettiva o biunivoca.

1)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto x^2$

6)
$$f: \mathbb{Z} \longrightarrow \mathbb{Z} \quad \text{con } n \in \mathbb{N}.$$

$$z \longmapsto nz$$

2)
$$f: \mathbb{R} \longrightarrow \mathbb{R}^+ \cup \{0\}$$

 $x \longmapsto x^2$

7)
$$f: \mathbb{Z} \longrightarrow \mathbb{P}$$
 (numeri interi pari) $z \longmapsto 2z$

3)
$$f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$$

 $x \longmapsto x^2$

8)
$$f: \mathbb{Z} \longrightarrow \mathbb{Z}$$

 $x \longmapsto x+1$

4)
$$f_a: \mathbb{R} \longrightarrow \mathbb{R} \quad \text{con } a \in \mathbb{R}^+.$$

$$x \longmapsto a^x$$

9) Sia
$$S = \{(a, b) \in \mathbb{Z} \times \mathbb{Z}/b > 0\}.$$

$$f: S \longrightarrow \mathbb{Z}$$

$$(a, b) \longmapsto a^{b}$$

5)
$$f: \mathbb{Z} \longrightarrow \mathbb{Z}$$

 $z \longmapsto z^2$

10)
$$f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$$

 $(a,b) \longmapsto 10a + 6b$

Esercizio 2.3. Siano $X=\{a,b,c,d\}$ e $Y=\{1,2,3\}$ due insiemi.

- 1) Quante sono le applicazioni da X in Y? Tra queste, quante sono suriettive? Quante iniettive? Quante biiettive?
- 2) Sia f l'applicazione da X in Y definita da:

$$f(a) = f(b) = 1$$
$$f(c) = 3$$

$$f(c) = 3$$

f(d) = 2

Determinare tutte le inverse sinistre di f.

3) Esitono inverse destre dell'applicazione f definita in 2) ? Giustificare la risposta.

Esercizio 2.4. Sia f l'applicazione di \mathbb{N} in \mathbb{N} definita da $f(n) = n + 1 \ \forall n \in \mathbb{N}$.

- 1) f ha un'inversa sinistra?
- 2) f ha un'inversa destra?
- 3) Si provi che f ha infinite inverse destre distinte.

Esercizio 2.5. Siano $A \in B$ due insiemi e $f: A \longrightarrow B$ un'applicazione. Dimostrare che

- 1) $\forall X, Y \subseteq A, f(X \cup Y) = f(X) \cup f(Y).$
- 2) $\forall X, Y \subseteq A, f(X \cap Y) \subseteq f(X) \cap f(Y)$.
- 3) f è iniettiva se e solo se $\forall X, Y \subseteq A, f(X \cap Y) = f(X) \cap f(Y)$.

Esercizio 2.6. Siano $X = \{a, b, c\}$ e $Y = \{1, 2, 3, 4, 5\}$ due insiemi. Sia R la relazione tra X e Y avente la seguente matrice d'incidenza:

$$\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)$$

Dimostrare che la relazione R^{-1} inversa di R è un'applicazione da Y ad X. Tale applicazione ammette un'applicazione inversa destra o sinistra? In caso di risposta affermativa, costruire almeno un esempio e dire in quanti altri modi è possibile costruirla.

Costruire la relazione di equivalenza su Y generata da $R^{-1}R$ e dare le classi di equivalenza.

Esercizio 2.7. (Tema d'esame) Sia $X = \{a, b, c, d\}$ ed R la relazione su X rappresentata dal grafo:

$$a \longrightarrow b$$

$$c \longleftarrow d$$

- 1) Dimostrare che ogni relazione su X che sia una funzione da X in X con inversa destra e che contenga R è una funzione biunivoca.
- 2) L'insieme S formato dalla funzione identica su X e dalle funzione biunivoche su X che contengono R è un sottogruppo delle sostituzioni su X?

Esercizio 2.8. (Tema d'esame) La relazione sull'insieme dei reali \mathbb{R} definita da $x \rho y$ se e solo se $y = 3x^2 + 1$ è una funzione da \mathbb{R} a \mathbb{R} ? Se sì, è una funzione suriettiva ? È iniettiva ? La relazione data, se pensata sull'insieme dei numeri naturali è una funzione ? È suriettiva ? È iniettiva ?

Esercizio 2.9. (Tema d'esame) Sia $X = \{a, b, c, d, e\}$ e sia R la relazione definita dalla seguente matrice d'incidenza:

$$M = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right)$$

- 1) Si dica di quali proprietà gode la relazione R e si costruisca la chiusura riflessiva e transitiva ρ di R. Si dica se ρ è una relazione di ordine. In caso di risposta affermativa, si dica se X rispetto a ρ è un reticolo.
- 2) È possibile trovare una funzione da X in X contenente R e che ammetta funzione inversa? Può esistere una funzione da X a X che ammetta inversa destra ma non inversa sinistra? Giustificare le risposte.

Esercizio 2.10. (Tema d'esame) Data la funzione $f: \mathbb{N} \longrightarrow \mathbb{N}$ definita da:

$$f(n) = \begin{cases} n^2 + 3 & \text{se } n \text{ è pari} \\ 2n + 4 & \text{se } n \text{ è dispari} \end{cases}$$

discutere l'esistenza di possibili inverse. Nel caso in cui un'inversa esiste, esibirne un esempio.