LM-115 Suites et intégrales, MIME, deuxième semestre 2010-2011 Université Pierre et Marie Curie

Chapitre 4 (suite).

Exercice 1

Déterminer, si elles existent, les limites suivantes

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x, \quad \lim_{x \to 0} \frac{x}{2 + \sin\left(\frac{1}{x}\right)},$$

$$\lim_{x \to +\infty} \frac{x^3 - 3x^2 + 5x - 3}{4x^4 + x^2 + x - 6}, \quad \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin(x) + \cos(x)}{\sin(x) + \cos(x) - 1},$$

$$\lim_{x \to +\infty} \frac{\sqrt{1 + x} - 1}{\sqrt[3]{1 + x} - 1}.$$

Exercice 2

La fonction $x \mapsto \frac{x^x}{[x]^{[x]}}$ admet elle une limite en $+\infty$?

Exercice 3

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ vérifiant la condition : pour tout $\varepsilon > 0$, il existe $A \in \mathbb{R}$ tel que, pour tout $(x, y) \in \mathbb{R}^2$,

$$x \ge A \text{ et } y \ge A \Rightarrow |f(x) - f(y)| \le \varepsilon.$$

Montrer que f admet une limite finie en $+\infty$.

Dans le cadre des suites, que fait on lorsque l'on n'a aucune idée de "la limite"?

Exercice 4

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction croissante.

- 1. Pour tout $x \in]a,b[$, montrer que les deux quantités suivantes existent $\lim_{t\mapsto x^+} f(t)$ et $\lim_{t\mapsto x^-} f(t)$.
- 2. Démontrer que si x et y sont des éléments de [a,b] tels que $a \le x < y \le b$, alors $\lim_{t \mapsto x^+} f(t) \le \lim_{t \mapsto y^-} f(t)$.
- 3. Soient $p \ge 1$ et x_1, x_2, \le, x_p des éléments de]a, b[tels que $x_1 < x_2 < \ldots < x_p$. Démontrer que

$$\sum_{k=1}^{p} \left(\lim_{t \mapsto x_k^+} f(t) - \lim_{t \mapsto x_k^-} f(t) \right) \le f(b) - f(a).$$

- 4. Montrer que pour tout entier naturel n non nul, l'ensemble des éléments x de]a,b[tels que $\lim_{t\mapsto x^+}f(t)-\lim_{t\mapsto x^-}f(t)\geq \frac{1}{n}$ est fini.
- 5. Soit $x \in]a, b[$. Montrer que f est discontinue en x si et seulement si $\lim_{t \to x^+} f(t) \neq \lim_{t \to x^-} f(t)$.

6. Conclure que l'ensemble des points de discontinuité de f est au plus dénombrable. On utilisera le résultat qu'une union au plus dénombrable d'ensemble au plus dénombrable est au plus dénombrable.

Exercice 5

Soit f et g fonctions continues de $\mathbb R$ dans $\mathbb R$.

- 1. Montrer que l'application $\mathbb{R} \longrightarrow \mathbb{R}$, $x \mapsto \max(f(x), g(x))$.
- 2. Montrer que f,g dérivables n'implique pas que l'application précédente soit dérivable.

Exercice 6

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ une fonction continue telle que f(0) = 0 et

$$\forall x \in \mathbb{R}^+, \ \forall y \in \mathbb{R}^+, \ f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}.$$
 (1)

- 1. Montrer que pour tout $n \in \mathbb{N}$, $f(1/2^n) = f(1)/2^n$ puis que pour tout $k \in \mathbb{N}$, $f(k/2^n) = f(1)k/2^n$.
- 2. Montrer que pour tout $x \in \mathbb{R}^+$, f(x) = f(1)x.
- 3. Déterminer l'ensemble des fonctions continues de \mathbb{R}^+ dans \mathbb{R} qui vérifient (1).