

Preliminary Technical Information

TrenchP[™] Power MOSFET

IXTR210P10T

 $V_{DSS} = -100V$ $I_{D25} = -195A$ $R_{DS(on)} \le 8m\Omega$

P-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 150°C	-100	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{gs} = 1M\Omega$	-100	V	
V _{GSS}	Continuous	±15	V	
V _{GSM}	Transient	±25	V	
I _{D25}	T _C = 25°C (Chip Capability)	-195	A	
I _{LRMS}	Lead Current Limit, RMS $T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	-160 - 800	A A	
I _A E _{AS}	T _c = 25°C T _c = 25°C	-100 3	A J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	10	V/ns	
P_{D}	T _C = 25°C	595	W	
T _J T _{JM} T _{stg}		- 55 +150 150 - 55 +150	0° 0° 0°	
T _L T _{SOLD}	1.6mm (0.062 in.) from Case for 10s Plastic Body for 10s	300 260	°C °C	
V _{ISOL}	50/60 Hz, 1 Minute	2500	V~	
F _c	Mounting Force	20120/4.527	N/lb.	
Weight		5	g	

Symbol (T _J = 25°C,	SymbolTest ConditionsChara $T_J = 25^{\circ}C$, Unless Otherwise Specified)Min.		ecteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = -250\mu A$	-100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 2.5		- 4.5	V
I _{GSS}	$V_{GS} = \pm 15V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$	T _J = 125°C		- 25 - 300	•
R _{DS(on)}	$V_{GS} = -10V, I_{D} = -105A, Note$: 1		8	mΩ

G = Gate D = DrainS = Source

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- 2500V~ Electrical Isolation
- Avalanche Rated
- Extended FBSOA
- Fast Intrinsic Rectifier
- \bullet Low $R_{DS(ON)}$ and Q_{G}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High-Side Switching
- Push Pull Amplifiers
- DC Choppers
- Automatic Test Equipment
- Current Regulators
- Battery Charger Applications

Symbol			acteristic Values	
$(T_J = 25^{\circ}C$	Unless Otherwise Specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}	$V_{DS} = -10V, I_{D} = -60A, \text{ Note } 1$	90	150	S
C _{iss}			69.5	nF
C _{oss}	$ V_{GS} = 0V, V_{DS} = -25V, f = 1MHz $		4070	pF
C _{rss}			1100	pF
t _{d(on)}	Resistive Switching Times		90	ns
t _r	$V_{es} = -10V, V_{ps} = 0.5 \cdot V_{pss}, I_{p} = -105A$		98	ns
$\mathbf{t}_{d(off)}$	do		165	ns
t _f	$R_{_{G}} = 1\Omega \text{ (External)}$		55	ns
Q _{g(on)}			740	nC
\mathbf{Q}_{gs}	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = -105A$		200	nC
\mathbf{Q}_{gd}			155	nC
R _{thJC}				0.21 °C/W
R _{thCS}			0.15	°C/W

ISOPLUS247 (IXTR) Outline 1 = Gate 2,4 = Drain3 = Source MILLIMETERS MYZ MAX .205. MAX 5.2L MIN .190 Α A1 .090 .100 2,29 2,54 2.16 1.40 2.15 3.20 .045 .075 .055 .085 .115 .L26 .033 D.61 0.83 ,819 .84D .620

.81

.172 .244

.191 .540 .640

.080

,004

4.3B

4.85

16.26

1.65

.150 .220

.620

.065

Source-Drain Diode

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Typ.	Values Max.	
I _s	$V_{GS} = 0V$		- 210	Α
I _{SM}	Repetitive, Pulse Width Limited by $\mathrm{T_{_{JM}}}$		- 840	Α
$V_{_{\mathrm{SD}}}$	$I_F = -100A, V_{GS} = 0V, \text{ Note 1}$		-1.4	V
$\left\{egin{array}{ll} \mathbf{t}_{rr} & & \\ \mathbf{Q}_{RM} & & \\ \mathbf{I}_{RM} & & \end{array} ight\}$	$I_F = -105A$, $-di/dt = -100A/\mu s$ $V_R = -100V$, $V_{GS} = 0V$	930 -12.4	200	ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

 $\label{eq:Fig. 17.} \textbf{Resistive Turn-off Switching Times vs.}$

Fig. 18. Resistive Turn-off Switching Times vs.

Fig. 19. Maximum Transient Thermal Impedance

