Análise de Expressão Gênica em Larga Escala

Microarrays (microarranjos)

Diego R. Mazzotti, Ph.D.

Pesquisador

Laboratório de Biologia Molecular do Sono Departamento de Psicobiologia Universidade Federal de São Paulo

Supervisor Molecular Core Associação Fundo de Incentivo à Pesquisa (AFIP)

E-mail: mazzottidr@gmail.com

Tópicos de hoje

- Definição de microarray
- Principais aplicações
- Vantagens e desvantagens
- Modelos experimentais
- Introdução à análise dos dados de microarray de expressão gênica

Microarrays (microarranjos)

- Desenvolvido na década de 1990
- Revolução na análise da expressão gênica
 - Monitoramento de RNA de milhares de genes de uma só vez
- Análise global da expressão gênica

Microarrays (microarranjos)

 Conjunto de centenas de milhares de sequências arranjadas em um suporte específico, interrogadas simultaneamente para uma amostra.

Microarrays (microarranjos)

 Metodologia baseada na hibridação de sequências contidas na amostra com oligonucleotídeos presentes e fixados em uma determinada superfície (chip ou lâmina)

http://en.wikipedia.org/wiki/File:NA_hybrid.svg

Principais aplicações

- Perfil de expressão gênica (transcriptoma)
- o Genotipagem de polimorfismos em larga escala
- Alterações genômicas estruturais
- o Detecção de número de cópias (CNVs)

Vantagens da metodologia

- Grande cobertura genômica
 - Análise simultânea de milhares de genes ou milhões de variações genéticas
 - Não restrito a genes candidatos
 - o Possibilidade de integração de dados em nível genômico
- Análise de vias biológicas
- Informação qualitativa e quantitativa
- Protocolo fácil e rápido
- Permitiu o desenvolvimento de diversas ferramentas em bioinformática

Desvantagens da metodologia

- Limitado a um experimento de triagem somente
- Limitado às sequências gênicas colocadas no suporte
- Necessidade de validação em muitos casos
- Necessidade de domínio para análise completa dos resultados
- Plataforma para rodar experimentos é cara

Tipos de experimentos

- Microarrays de dois canais (ou duas cores)
 - Perfil de Expressão gênica
 - Variações estruturais (Array-CGH)
 - Ex: Agilent Technologies
- Microarrays de um canal (ou uma cor)
 - Perfil de Expressão gênica
 - Genotipagem
 - Variações estruturais
 - Ex: Affymetrix

Tipos de experimentos

Microarrays de dois canais (ou duas cores)

Tipos de experimentos

Microarrays de um canal (ou uma cor)

Affymetrix Microarrays

When a target sequence is not in the sample.

No fluorescence on that feature

RNA fragments with fluorescent tags from sample to be tested

RNA/DNA labeled fragments hybridize with the DNA Probe on the GeneChip® array

Affymetrix Microarrays

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

Affymetrix Microarrays

Reagents

Microarray GeneChip®

Hybridization Oven 640

Software Data Analysis

Scanner

Fluidics Station

Modelos Experimentais

- o Perfil de expressão gênica
- Genotipagem em larga escala
- Variações estruturais e número de cópias

Modelos Experimentais

- o Perfil de expressão gênica
- Genotipagem em larga escala
- Variações estruturais e número de cópias

O "Dogma Central da Biologia Molecular"

Proteínas

Produtos gênico, componentes estruturais, enzimas, receptores, hormônios...

RNA

Transcrição

Moléculas transientes que representam atividade gênica

Tradução

- O que acontece se:
 - Manipularmos o ambiente em que a célula/ tecido se encontra?
 - Estudos experimentais
 - Avaliarmos o perfil de expressão de um tecido em determinada situação (ex: doença)?
 - Estudos observacionais identificação de biomarcadores

Célula em condição normal

Célula na presença de droga

Modelos Experimentais – Expressão Gênica

Perfil de expressão gênica

Célula Controle

Célula Tumoral

 Microarrays de expressão → avaliar o perfil transcricional da célula/ tecido em determinada

condição

 Desenho das sondas → diferentes estratégias de análise

Sondas 3' (Ex: HG-U133)

Sondas em Genes (Ex: Human Gene 1.0 ST)

Sondas em Éxons (Ex: Human Exon 1.0 ST)

Organização das sondas

Modelos Experimentais – Expressão Gênica

Como é mensurada a expressão gênica pelo *microarray*?

Análise dos dados de expressão gênica

Análise dos dados de expressão gênica

o Principais etapas da análise:

- Processamento da imagem
- Pré-processamento dos dados
 - Correção de background (ruído)
 - Normalização
 - Sumarização
- Checagem do pré-processamento (controle de qualidade)
- Análise exploratória dos dados
- Identificação dos genes diferencialmente expressos
- Análises funcionais (vias, ontologia gênica, etc.)

Análise dos dados – Expressão Gênica

Análise dos dados de expressão gênica

Processamento da imagem

 Etapa automatizada (Affymetrix), sem interferência do analista

Análise dos dados de expressão gênica

 Sinal é mensurado para cada "spot" (que representa uma sonda no microarray)

Amostra 1

Amostra 2

	Amostra1	Amostra2	Amostra3	
sonda1	0,957041	1960,81	0,149155	0,552391
sonda2	0,980226	959,1938	0,069077	0,673049
sonda3	0,959119	1649,556	0,076062	0,634061
	0,933941	2570,302	0,155557	1,297719

Amostra 3

"Dados Brutos"

Análise dos dados – Expressão Gênica

Análise dos dados de expressão gênica

- Um valor mensurado é atribuído para cada sonda
- No entanto, cada gene representado no microarray é composto por um conjunto de sondas (probeset)
- Dados brutos não leva em considerações "ruídos"

Análise dos dados – Expressão Gênica

Análise dos dados de expressão gênica

- Um valor mensurado é atribuído para cada sonda
- No entanto, cada gene representado no microarray é composto por um conjunto de sondas (probeset)
- Dados brutos não leva em considerações "ruídos"

Pré-processamento

- Etapas do pré-processamento:
 - Correção de background
 - Normalização
 - Sumarização

- Etapas do pré-processamento:
 - o Correção de background
 - Normalização
 - Sumarização

Análise dos dados de expressão gênica – Pré-processamento

Organização das sondas

Análise dos dados de expressão gênica – Pré-processamento

Organização das sondas – implicações na análise

Sinal mensurado = expressão do gene + ruído

Análise dos dados de expressão gênica – Pré-processamento

Organização das sondas – implicações na análise

Sinal mensurado = expressão do gene + ruído

Perfect Match

Fluorescência específica

Mismatch

Fluorescência inespecífica

 Correção de background → descontar o "ruído" de todos os sinais mensurados

- Etapas do pré-processamento:
 - Correção de background
 - Normalização
 - Sumarização

Análise dos dados de expressão gênica – Pré-processamento

Array 1

Array 2

Array 3

Análise dos dados de expressão gênica – Pré-processamento

Nem todos os arrays são comparáveis

Array 1

Será que há mais RNAm colocado no Array 1 e menos no Array 2?

Array 2

Será que a expressão global de todos os RNAm é maior na amostra colocada no Array 1 do que no Array 2?

Array 3

Será que o ar condicionado quebrou no dia que foi feita a leitura do Array 2?

- o Necessidade de torná-los comparáveis
 - Objetivo
 - Identificar diferenças de expressão dos genes entre as condições (efeito biológico)
 - o Não confundir efeito biológico com efeito técnico
 - Solução → normalização dos dados

- Estratégias de normalização:
 - Dye Bias (arrays de duas cores)
 - Median Scaling
 - Loess (LOcally WEighted Scatterplot Smoothing)
 - Quantile Normalization (mais usado)
 - **O** ...

- o Etapas do pré-processamento:
 - Correção de background
 - Normalização
 - Sumarização

Análise dos dados de expressão gênica – Pré-processamento

Sumarização

Análise dos dados de expressão gênica – Pré-processamento

Sumarização

- Sumarização:
 - É preciso "sumarizar" todas as sondas para que deem um valor único por *probeset*
 - É preciso "sumarizar" todos os probesets para que deem uma valor único por gene

Análise dos dados de expressão gênica – Pré-processamento

- Sumarização:
 - É preciso "sumarizar" todas as sondas para que deem um valor único por *probeset*
 - É preciso "sumarizar" todos os probesets para que deem uma valor único por gene

	Amostra1	Amostra2	Amostra3	
sonda1	0,957041	1960,81	0,149155	0,552391
sonda2	0,980226	959,1938	0,069077	0,673049
sonda3	0,959119	1649,556	0,076062	0,634061
	0,933941	2570,302	0,155557	1,297719

	Amostra1	Amostra2	Amostra3	•••
Gene1	1,196301	2451,013	0,186444	0,690489
Gene2	1,225283	1198,992	0,086346	0,841311
Gene3	1,198899	2061,945	0,095078	0,792576
•••	1,167426	3212,878	0,194446	1,622149

Número de linhas = milhões (spots no array)

Número de linhas = 30.000 (transcritos do genoma)

Análise dos dados de expressão gênica

- Principais etapas da análise:
 - Processamento da imagem
 - Pré-processamento dos dados
 - Correção de background (ruído)
 - Normalização
 - Sumarização
 - Checagem do pré-processamento (controle de qualidade)
 - Análise exploratória dos dados
 - Identificação dos genes diferencialmente expressos
 - Análises funcionais (vias, ontologia gênica, etc.)

Análise dos dados de expressão gênica – Controle de Qualidade

- Controle de qualidade
 - Será que o pré-processamento foi suficiente?
 - Existem outliers?
 - Existem grupos de amostras que se diferenciam drasticamente de outras?

Density plots

Antes

Density plots

Antes

Depois

Correlation plot

Correlation plot

Depois

Correlation plot

Análise dos dados de expressão gênica

- Principais etapas da análise:
 - Processamento da imagem
 - Pré-processamento dos dados
 - Correção de background (ruído)
 - Normalização
 - Sumarização
 - Checagem do pré-processamento (controle de qualidade)
 - Análise exploratória dos dados
 - Identificação dos genes diferencialmente expressos
 - Análises funcionais (vias, ontologia gênica, etc.)

Análise dos dados de expressão gênica – Análise exploratória

- Análise exploratória dos dados
 - Como é o perfil de expressão gênica global em todas as amostras?
 - Será que as amostras se agrupam de acordo com o perfil de expressão?
 - Quão "próximas" estão as amostras?

- Análise exploratória dos dados
 - Como é o perfil de expressão gênica global em todas as amostras?
 - Será que as amostras se agrupam de acordo com o perfil de expressão?
 - Quão "próximas" estão as amostras?

Redução de dimensionalidade "Clusterização"

Análise dos dados de expressão gênica – Análise exploratória

- Redução de dimensionalidade
 - o 30.000 transcritos → poucas variáveis
 - Exemplo de metodologia: Análise dos Componentes Principais (PCA)
 - Aplicada para agrupar amostras (arrays) diferentes

- Análise dos Componentes Principais
 - 3 variáveis
 - 3 dimensões

Análise dos Componentes Principais

- "Clusterização"
 - Agrupamento em categorias não previamente definidas
 - Diversas metodologias:
 - Hierarchical clustering
 - Self organizing maps
 - K means clustering
 - Pode ser feita tanto em relação aos genes quanto às amostras (arrays)

Agrupamento hierárquico

Agrupamento hierárquico

Agrupamento hierárquico

Agrupamento hierárquico + visualização (heat map)

Visualização (heat map)

Análise dos dados de expressão gênica – Análise exploratória

- Principais etapas da análise:
 - Processamento da imagem
 - Pré-processamento dos dados
 - Correção de background (ruído)
 - Normalização
 - Sumarização
 - Checagem do pré-processamento (controle de qualidade)
 - Análise exploratória dos dados
 - Identificação dos genes diferencialmente expressos
 - Análises funcionais (vias, ontologia gênica, etc.)

Análise dos dados de expressão gênica – Genes Diferencialmente Expressos

- Quais, dentre os 30.000 transcritos estão diferencialmente expressos?
 - Uso de testes estatísticos apropriados
 - Correção para múltiplos testes
 - Efeito da magnitude
- Identificação de um grupo de genes que atendem estes critérios
- o "Lista de Genes"

Análise dos dados de expressão gênica – Genes Diferencialmente Expressos

- Testes mais usados:
 - Teste t / ANOVA
 - Testes não-paramétricos (Rank-Prod)
 - Modelos lineares (LIMMA)
 - Significance Analysis of Microarray (SAM)

- Correção para múltiplos testes
 - False Discovery Rate
 - Correção de Bonferroni

Análise dos dados de expressão gênica – Genes Diferencialmente Expressos

- Caracterização de gene como diferencialmente expresso:
 - Valor de p menor do que nível de significância escolhido
 - Fold change (expressão relativa)

Análise dos dados de expressão gênica – Genes Diferencialmente Expressos

Genes diferencialmente expressos – Volcano plot

Fold Change

Análise dos dados de expressão gênica – Genes Diferencialmente Expressos

	Amostra1	Amostra2	Amostra3	
Gene1	1,196301	2451,013	0,186444	0,690489
Gene2	1,225283	1198,992	0,086346	0,841311
Gene3	1,198899	2061,945	0,095078	0,792576
	1,167426	3212,878	0,194446	1,622149

Número de linhas = 30.000 (transcritos do genoma)

90489 41311 92576
41311 92576
92576
22149
1,673193
47817
2,222442
71691
46315
,

Número de linhas = 113 genes diferencialmente expressos

Análise dos dados de expressão gênica – Genes Diferencialmente Expressos

Caracterização dos Genes Diferencialmente Expressos

Agrupamento ("supervisionado")

Hierarchical clustering

Self organizing maps

K means clustering

Análise Funcional

Pathway Analysis Gene Ontolgy

- Principais etapas da análise:
 - Processamento da imagem
 - Pré-processamento dos dados
 - Correção de background (ruído)
 - Normalização
 - Sumarização
 - Checagem do pré-processamento (controle de qualidade)
 - Análise exploratória dos dados
 - Identificação dos genes diferencialmente expressos
 - Análises funcionais (vias, ontologia gênica, etc.)

- O que fazer com uma lista de genes diferencialmente expressos?
- Como dar significado biológico para estes genes?
- Os genes participam de processos celulares em comum?
- Os genes interagem em uma cascata biológica?

- Principais Ferramentas:
 - Gene Ontology Analysis (www.geneontology.org/)
 - Pathway Analysis
 - Gene Set Enrichment Analysis

- Gene Ontology:
 - Banco de dados que mantém anotações de genes com base em 3 categorias (ontologias):
 - Molecular function (ex: fator de transcrição)
 - Biological process (ex: mitose)
 - Cellular components (ex: núcleo)
 - Lista de genes é confrontada com banco de dados para identificar quais dessas ontologias estão mais representadas

• Gene Ontology:

Enrichment Score

- Pathway Analysis
 - Biological Pathway ou via biológica → série de moléculas que interagem direta ou indiretamente como parte de um evento biológico (ex: cascata enzimática)
 - Lista de genes é confrontada para verificar quais vias biológicas estão enriquecidas de acordo com os genes presentes

Pathway Analysis

Network Analysis

 Exemplos da vida real – privação de sono em humanos

- Gene Set Enrichment Analysis (GSEA)
 - Subramanian et al, 2005
 - Estratégia semelhante, mas "sets" de genes são caracterizados por conhecimento biológico prévio
 - Informações publicadas sobre vias bioquímicas, coexpressão de moléculas, etc

Collections

The MSigDB gene sets are divided into 6 major collections:

- **c1** positional gene sets for each human chromosome and cytogenetic band.
- C2 curated gene sets from online pathway databases, publications in PubMed, and knowledge of domain experts.
- motif gene sets based on conserved cisregulatory motifs from a comparative analysis of the human, mouse, rat, and dog genomes.
- c4 computational gene sets defined by mining large collections of cancer-oriented microarray data.
- **C5** GO gene sets consist of genes annotated by the same GO terms.
- oncogenic signatures defined directly from microarray gene expression data from cancer gene perturbations.

- Principais etapas da análise:
 - Processamento da imagem
 - Pré-processamento dos dados
 - Correção de background (ruído)
 - Normalização
 - Sumarização
 - Checagem do pré-processamento (controle de qualidade)
 - Análise exploratória dos dados
 - Identificação dos genes diferencialmente expressos
 - Análises funcionais (vias, ontologia gênica, etc.)

		MR*	COR	symbol	function	
0	☑			PSMD14	proteasome (prosome, macropain) 26S subunit, non-ATPase, 14	
1	8	2.0	0.68	PSMC2	proteasome (prosome, macropain) 26S subunit, ATPase, 2	
2		2.5	0.66	PSMD12	proteasome (prosome, macropain) 26S subunit, non-ATPase, 12	
3		2.6	0.64	PSMD1	proteasome (prosome, macropain) 26S subunit, non-ATPase, 1	
4		4.5	0.62	OLA1	Obg-like ATPase 1	
5		4.7	0.61	EIF3J	eukaryotic translation initiation factor 3, subunit J	
6		5.0	0.64	PSMB7	proteasome (prosome, macropain) subunit, beta type, 7	
7		5.5	0.63	VBP1	von Hippel-Lindau binding protein 1	
8		5.7	0.68	RAN	RAN, member RAS oncogene family	
9		6.9	0.64	ZC3H15	zinc finger CCCH-type containing 15	
10		7.8	0.63	MRPL3	mitochondrial ribosomal protein L3	
11		7.8	0.64	PSMA1	proteasome (prosome, macropain) subunit, alpha type, 1	
12	8	8.8	0.64	PSMA5	proteasome (prosome, macropain) subunit, alpha type, 5	
13		9.0	0.63	MRPL47	mitochondrial ribosomal protein L47	
14		10.9	0.63	TIMM17A	translocase of inner mitochondrial membrane 17 homolog A (yeast)	
15	В	11.4	0.54	USP14	ubiquitin specific peptidase 14 (tRNA-guanine transglycosylase)	

