Algoritmusok és adatszerkezetek II. Augmentált keresőfák

Szegedi Tudományegyetem

Bináris keresőfák műveletei

- h magas és n csúcsból álló bináris keresőfa esetén a Keres,
 Beszúr, Töröl műveletek O(h) időben végrehajthatók
- x csúcs rangja: a fában tárolt kulcsok között x hanyadik helyen áll < szerint
- Hogy keresnénk meg egy bináris keresőfa r rangú elemét?
- Hogyan határoznánk meg egy bináris keresőfa x csúcsának rangját?

Bináris keresőfák műveletei

- h magas és n csúcsból álló bináris keresőfa esetén a Keres,
 Beszúr, Töröl műveletek O(h) időben végrehajthatók
- x csúcs rangja: a fában tárolt kulcsok között x hanyadik helyen áll < szerint
- Hogy keresnénk meg egy bináris keresőfa r rangú elemét?
- Hogyan határoznánk meg egy bináris keresőfa x csúcsának rangját?

Általános ötlet

A fapontokban tárolt extra adattagok hozzásegíthetnek minket új műveletek hatékony (O(h) idejű) végrehajtásához

Új műveletek – adott rangú kulcs meghatározása

- Cél: $r \le n$ ranggal rendelkező elem megtalálása a fában
- Naiv (de működő) elgondolás: elkezdem bejárni a fát < szerinti sorrendben, és megállok az r-ediknek érintett csúcsnál

Új műveletek – adott rangú kulcs meghatározása

- Cél: $r \le n$ ranggal rendelkező elem megtalálása a fában
- Naiv (de működő) elgondolás: elkezdem bejárni a fát <
 szerinti sorrendben, és megállok az r-ediknek érintett csúcsnál
- O(h) helyett $\Theta(r)$ idejű algoritmus
 - ullet Kiegyensúlyozott fa és kellően nagy r estében pedig $r\gg h$

Új műveletek – adott kulcs rangjának meghatározása

- Naiv elgondolás: elkezdem bejárni a fát < szerinti sorrendben, és megállok, ha x kulcsot érintem
- A válasz az x megtalálásáig érintett kulcsok száma
- O(h) helyett O(n) idejű algoritmus

Új műveletek – adott kulcs rangjának meghatározása

- Naiv elgondolás: elkezdem bejárni a fát < szerinti sorrendben, és megállok, ha x kulcsot érintem
- A válasz az x megtalálásáig érintett kulcsok száma
- O(h) helyett O(n) idejű algoritmus

A megoldás

Minden csúcs tároljon el kiegészítő információt magáról!

Rendezett-minta fa implementációja

```
class Node {
    Object kulcs;
    int kiegeszito;
    Node *apa;
    Node *bal;
    Node *jobb;
```


Rendezett-minta fa implementációja

```
class Node {
    Object kulcs;
    int kiegeszito;
    Node *apa;
    Node *bal;
    Node *jobb;
}
```

Megjegyzés

A kiegészítő információ legyen az adott gyökerű részfa mérete (benne található kulcsok száma). Üres fa kiegészítő információja 0.

Adott rangú kulcs keresése

```
RANGKERES(x, i) {
  r = x.bal.kiegeszito + 1
  if (i < r) {
      RANGKERES(x.bal, i)
                                      h magas fa esetén O(h)
  } elseif (i > r) {
      RANGKERES(x.jobb, i - r)
  } else {
     return x
```


Adott kulcs rangjának meghatározása

```
RANGMEGHATÁROZ(x) {
  r = 0
  y = x
  while (y != nil) {
      if (x.kulcs >= y.kulcs) {
          r = r + y.bal.kiegeszito + 1
      }
      y = y.apa
  return r
```

Szövegesen

x-től a gyökérig lépkedve azon y gyökerű részfák gyökérelemeinek rangjait összegezzük, melyekre x.kulcs >= y.kulcs

A kiegészítő információk fenntartása

 A csúcsokban tárolt kiegészítő információknak mindig naprakészeknek kell legyenek

Példa: Töröl(40)

A kiegészítő információk fenntartása

 A csúcsokban tárolt kiegészítő információknak mindig naprakészeknek kell legyenek

A kiegészítő információk fenntartása

 A csúcsokban tárolt kiegészítő információknak mindig naprakészeknek kell legyenek

Észrevétel

Épp ezért nem a csúcsok rangjára tekintünk közvetlenül kiegészítő információként (hiszen azt költséges lehet aktualizálni)

Új művelet – Forgatás

A keresőfákat forgatásokkal fogjuk tudni kiegyensúlyozni

(a) x körüli balra forgatás előtt

Új művelet – Forgatás

A keresőfákat forgatásokkal fogjuk tudni kiegyensúlyozni

(a) x körüli balra forgatás előtt

(b) x körüli balra forgatás után

Új művelet – Forgatás

A keresőfákat forgatásokkal fogjuk tudni kiegyensúlyozni

(a) x körüli balra forgatás előtt

(b) x körüli balra forgatás után

A kiegészítő információ fenntartása

- Beszúrás esetén: a beszúrás helyétől a gyökérig menően a kiegészítő információk inkrementálása (O(h))
- Törlés esetén: a kieső csúcstól a gyökéig menően a kiegészítő információk dekrementálása (O(h))
- x körüli forgatás esetén (O(1))
 - *y.kiegeszito* = *x.kiegeszito*
 - x.kiegeszito = x.bal.kiegeszito + y.bal.kiegeszito + 1, azaz
 α-beli és β-beli csúcsok száma +1

Intervallumfák

Az intervallumfa sajátosságai

- A csúcsok [a; f] intervallumokat tárolnak
 - a és f az intervallum alsó,-és felső végpontjait jelöli
 - $a \le f$ feltehető
- < rendezést az intervallumok kezdőpontja szerint értelmezzük
 - [1; 4] < [5; 6]
 - [1; 4] < [3; 5]
 - [1; 4] < [2; 3]

Intervallumfák

Az intervallumfa sajátosságai

- A csúcsok [a; f] intervallumokat tárolnak
 - a és f az intervallum alsó,-és felső végpontjait jelöli
 - $a \le f$ feltehető
- < rendezést az intervallumok kezdőpontja szerint értelmezzük
 - [1; 4] < [5; 6]
 - [1; 4] < [3; 5]
 - [1; 4] < [2; 3]

Speciális művelet: átfedő intervallum keresése

El akarjuk tudni dönteni, hogy a fa tartalmaz-e valamely $I = [i_a; i_f]$ intervallummal átfedő intervallumot.

I és J intervallumok átfednek $\Leftrightarrow i_a \leq j_f$ és $i_f \geq j_a$

Intervallum trichotómia

- Az alábbi állítások közül pontosan egy teljesül bármely (I, J) intervallumpárra
 - a $I \cap J \neq \emptyset$, azaz I és J intervallumok átfedik egymást
 - b $i_a > j_f$
 - c $i_f < j_a$

Intervallum trichotómia

- Az alábbi állítások közül pontosan egy teljesül bármely (I, J) intervallumpárra
 - a $I \cap J \neq \emptyset$, azaz I és J intervallumok átfedik egymást
 - b $i_a > j_f$
 - c $i_f < j_a$

Intervallumfa implementációja

```
class Node {
    int also;
    int felso;
    int kiegeszito;
    Node *apa;
    Node *bal;
    Node *jobb;
```


Intervallumfa implementációja

```
class Node {
    int also;
    int felso;
    int kiegeszito;
    Node *apa;
    Node *bal;
    Node *jobb;
}
```

Ötlet

A kiegészítő információ legyen az adott gyökerű részfában található maximális felső végpont

Intervallumfa – példa

Átfedő intervallum keresése x gyökerű részfában

```
ÁTFEDŐKERES(x, i) {
 while (x != nil) {
   if (i.also <= x.felso és i.felso >= x.also) {
      return x // átfedést találtunk
   if (x.bal != nil és x.bal.kiegeszito >= i.also) {
     x = x.bal
                  // folytassuk balra a keresést
   } else {
     x = x.jobb // folytassuk jobbra a keresést
 return nil
                  // nem találtunk átfedő intervallumot
}
```

Átfedő intervallum keresésének helyessége

Tétel

Az ÁtfedőKeres(x,i) minden végrehajtása csak abban az esetben tér vissza nil-lel, ha az x gyökerű intervallumfában nem található i-vel átfedő intervallum.

- Akkor lépünk jobbra, ha
 - Nincs bal részfa, vagy
 - Van bal részfa, de még a legnagyobb felső végpont is elmarad i intervallum alsó végpontjától (trichotómia b) esete)

- Akkor lépünk jobbra, ha
 - Nincs bal részfa, vagy
 - Van bal részfa, de még a legnagyobb felső végpont is elmarad i intervallum alsó végpontjától (trichotómia b) esete)
 - ⇒ jobbra lépéskor a bal részfában biztosan nincs átfedés

- Akkor lépünk jobbra, ha
 - Nincs bal részfa, vagy
 - Van bal részfa, de még a legnagyobb felső végpont is elmarad i intervallum alsó végpontjától (trichotómia b) esete)
 - ⇒ jobbra lépéskor a bal részfában biztosan nincs átfedés

Összegezve

Vagy fogunk jobbra lépve átfedő intervallumot találni, vagy balra lépve se találtunk volna

 Előfordulhat-e, hogy x-nél balra menve nem találunk i-vel átfedő intervallumot, jobbra menve azonban találhatnánk?

 $^{^1}x.bal$ az x csúcs bal fiát a gyökeréül tudó részfát jelöli $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$

- Előfordulhat-e, hogy x-nél balra menve nem találunk i-vel átfedő intervallumot, jobbra menve azonban találhatnánk?
 - Indirekt bizonyítás: tegyük fel, hogy előfordulhat ilyen
 - Balra mentünk, tehát $\exists y \in x.bal^1$, melyre y.felso > i.also

¹x.bal az x csúcs bal fiát a gyökeréül tudó részfát jelöli 🐵 🔻 🖘 😩 🔻 🔊 🧟

- Előfordulhat-e, hogy x-nél balra menve nem találunk i-vel átfedő intervallumot, jobbra menve azonban találhatnánk?
 - Indirekt bizonyítás: tegyük fel, hogy előfordulhat ilyen
 - Balra mentünk, tehát $\exists y \in x.bal^1$, melyre y.felso > i.also
 - Feltevésünk szerint x.bal-ban nincs i-vel átfedő intervallum → trichotómia c) esete

¹x.bal az x csúcs bal fiát a gyökeréül tudó részfát jelöli 🔞 > 😩 > 😩 > 🖎

- Előfordulhat-e, hogy x-nél balra menve nem találunk i-vel átfedő intervallumot, jobbra menve azonban találhatnánk?
 - Indirekt bizonyítás: tegyük fel, hogy előfordulhat ilyen
 - Balra mentünk, tehát $\exists y \in x.bal^1$, melyre y.felso > i.also
 - Feltevésünk szerint x.bal-ban nincs i-vel átfedő intervallum \rightarrow trichotómia c) esete $\rightarrow y.also > i.felso$
 - A keresőfa-tulajdonságból adódóan pedig $\forall y' \in x.jobb$ esetében y'.also > y.also teljesül

¹x.bal az x csúcs bal fiát a gyökeréül tudó részfát jelöli 🛷 🖎 🖘 😩 🔊 🤉

- Előfordulhat-e, hogy x-nél balra menve nem találunk i-vel átfedő intervallumot, jobbra menve azonban találhatnánk?
 - Indirekt bizonyítás: tegyük fel, hogy előfordulhat ilyen
 - Balra mentünk, tehát $\exists y \in x.bal^1$, melyre y.felso > i.also
 - Feltevésünk szerint x.bal-ban nincs i-vel átfedő intervallum \rightarrow trichotómia c) esete $\rightarrow y.also > i.felso$
 - A keresőfa-tulajdonságból adódóan pedig $\forall y' \in x.jobb$ esetében y'.also > y.also teljesül
 - Tehát ∀y' ∈ x.jobb az i intervallumra nézve c)-típusú (vele át nem fedő) lehet csupán

Összegezve

Ha balra lépve nem sikerül átfedő intervallumot találjuk, akkor jobbra lépve se találhattunk volna

¹x.bal az x csúcs bal fiát a gyökeréül tudó részfát∢jelöli∢ → ⟨ ३ ⟩ ⟨ ३ ⟩ ⟨ ३ ⟩

Összegzés

- Addicionális adattagok bevezetésével újfajta kérdések hatékony megválaszolása válhat lehetővé
- Adatszerkezetek kibővítésének fő lépései
 - Alap-adatszerkezet megválasztása (nem csak bináris keresőfa)
 - Alap-adatszerkezet kiegészítő információjának kijelölése
 - Kiegészítő információjának hatékony fenntarthatóságának igazolása
 - Új hatékony műveletek kifejlesztése

