Задача 4. Пусть R и S – две различные точки на окружности Ω такие, что RS не является диаметром. Пусть ℓ – касательная к Ω в точке R. Точка T выбрана так, что S является серединой отрезка RT. Точка J выбрана на меньшей дуге RS окружности Ω так, что окружность Γ , описанная около треугольника JST, пересекает ℓ в двух различных точках. Пусть A – та, из общих точек Γ и ℓ , которая находится ближе к точке R. Прямая AJ вторично пересекает Ω в точке K. Докажите, что прямая KT касается Γ .

Решение.

Пусть O — центр Ω . Сделаем инверсию с центром R, переводящую S в T (т.е. радиус инверсии будет равен $\sqrt{2}\,RS$). Тогда, при данной инверсии, окружность Γ перейдет в себя, J перейдет в $J' \in \Gamma$, T в S, ℓ в себя. Так как Ω содержит центр инверсии R, то она перейдет в прямую, содержащие образы точек S и J, то есть в прямую J'T. Пусть SA пересекает J'T в точке

Q. Докажем, что Q – образ K при данной инверсии. Для этого заметим, что $J'T \parallel \ell$, так как по свойству инверсии $J'T \perp OR$ и $OR \perp \ell$ в силу того, что ℓ – касательная к Ω . Из того, что $J'T \parallel \ell$ и ST = RS следует, что TQRA – параллелограмм. Следовательно, $QR \parallel TA$. Теперь заметим, что $\angle KRS = \angle KJS = \angle STA = \angle RSA$, из чего следует параллельность KR и TA, откуда получаем, что Q, K и R лежат на одной прямой. Но ведь образом K при инверсии является пересечение KR и J'T, то есть Q.

Посмотрим, куда переводит TK данная инверсия. Мы уже знаем, что T перейдёт в S, а K перейдёт в Q. Ясно, что TK не содержит центр инверсии R, а значит перейдёт в окружность, содержащую R. Таким образом, TK перейдет в окружность, описанную около треугольника SQR, назовём её γ . Тогда заметим, что при гомотетии относительно S с коэффициентом -1 R переходит в T, Q в A, а S — неподвижна. Следовательно, при данной гомотетии γ перейдёт в Γ . Значит γ и Γ касаются в точке S, то есть угол между ними равен нулю. Тогда и угол между их прообразами равен нулю, то есть угол между KT и Γ равен нулю, а значит, KT касается Γ , что и требовалось.

Комментарий. Отметим, что в рассуждениях мы нигде не использовали условие «RS – не диаметр», то есть условие будет выполняться, даже если RS будет диаметром. Стоит отметить также, что и точка A может быть любой из двух точек пересечения Γ и ℓ – решение в обоих случаях будет аналогично вышеописанному. Более того, даже не обязательно, чтобы общих точек было две, она может быть и одна, все равно условие будет выполнятся.