

Resource estimation and verification in Q‡

Mathias Soeken October 13, 2020

Majority-of-three 
$$f = \langle x_1 x_2 x_3 \rangle = [x_1 + x_2 + x_3 \ge 2]$$

Majority-of-three  $f = \langle x_1x_2x_3 \rangle = [x_1 + x_2 + x_3 \ge 2]$ 

*Task:* Implement Q# operation that maps  $|x_1x_2x_3\rangle|y\rangle \mapsto |x_1x_2x_3\rangle|y\oplus f\rangle$ 

## Majority-of-three $f = \langle x_1x_2x_3 \rangle = [x_1 + x_2 + x_3 \ge 2]$

*Task*: Implement Q# operation that maps  $|x_1x_2x_3\rangle|y\rangle \mapsto |x_1x_2x_3\rangle|y\oplus f\rangle$ 

## Truth table

| i | $\chi_3$ | $\chi_2$ | $\chi_1$ | f |
|---|----------|----------|----------|---|
| 0 | 0        | 0        | 0        | 0 |
| 1 | 0        | 0        | 1        | 0 |
| 2 | 0        | 1        | 0        | 0 |
| 3 | 0        | 1        | 1        | 1 |
| 4 | 1        | 0        | 0        | 0 |
| 5 | 1        | 0        | 1        | 1 |
| 6 | 1        | 1        | 0        | 1 |
| 7 | 1        | 1        | 1        | 1 |

Majority-of-three 
$$f = \langle x_1 x_2 x_3 \rangle = [x_1 + x_2 + x_3 \ge 2]$$

*Task:* Implement Q# operation that maps  $|x_1x_2x_3\rangle|y\rangle \mapsto |x_1x_2x_3\rangle|y\oplus f\rangle$ 

## Truth table

| i | $\chi_3$ | $\chi_2$ | $\chi_1$ | f |
|---|----------|----------|----------|---|
| 0 | 0        | 0        | 0        | 0 |
| 1 | 0        | 0        | 1        | 0 |
| 2 | 0        | 1        | 0        | 0 |
| 3 | 0        | 1        | 1        | 1 |
| 4 | 1        | 0        | 0        | 0 |
| 5 | 1        | 0        | 1        | 1 |
| 6 | 1        | 1        | 0        | 1 |
| 7 | 1        | 1        | 1        | 1 |
|   |          |          |          |   |

Boolean expression

$$f = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3$$

Majority-of-three 
$$f = \langle x_1x_2x_3 \rangle = [x_1 + x_2 + x_3 \ge 2]$$

*Task:* Implement Q# operation that maps  $|x_1x_2x_3\rangle|y\rangle \mapsto |x_1x_2x_3\rangle|y\oplus f\rangle$ 

## Truth table

| i | $\chi_3$ | $\chi_2$ | $\chi_1$ | f |
|---|----------|----------|----------|---|
| 0 | 0        | 0        | 0        | 0 |
| 1 | 0        | 0        | 1        | 0 |
| 2 | 0        | 1        | 0        | 0 |
| 3 | 0        | 1        | 1        | 1 |
| 4 | 1        | 0        | 0        | 0 |
| 5 | 1        | 0        | 1        | 1 |
| 6 | 1        | 1        | 0        | 1 |
| 7 | 1        | 1        | 1        | 1 |
|   |          |          |          |   |

Boolean expression

$$f = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3$$

Alternative Boolean expression  $f = (x_0, x_0, x_0)(x_0, x_0, x_0) \oplus x_0$ 

$$f = (x_1 \oplus x_2)(x_2 \oplus x_3) \oplus x_2$$



Resource estimation and verification in Q‡

Mathias Soeken October 13, 2020