

Universidade Estadual de Maringá PROINTE - Programa de Integração Estudantil

3ª Lista de Física Geral III

Horários e Links		
Terça-Feira	17:15 - 19:15	meet.google.com/ian-jnzt-bpo
Quinta-Feira	17:15 - 19:15	meet.google.com/ian-jnzt-bpo
Sexta-Feira	17:15 - 19:15	meet.google.com/ian-jnzt-bpo

- 1 Calcule o potencial elétrico de uma carga puntual utilizando a definição de potencial e simplifique e expressão utilizando $V(r_1 \to \infty) = 0$. Por fim confirme o resultado calculando o campo elétrico a partir de $\vec{E} = -\vec{\nabla}V$.
- **2-** Qual é a velocidade de escape de um elétron inicialmente em repouso na superfície de uma esfera de raio 1 cm e uma carga uniformemente distribuída de $1,6 \times 10^{-15}$ C? Em outras palavras, que velocidade inicial um elétron deve ter para chegar a uma distância infinita da esfera com energia cinética zero?
- $\bf 3$ (a) Calcule o potencial de um anel de raio ρ uniformemente carregado num ponto P ao longo do eixo que passa perpendicularmente pelo centro do anel. (b) Confirme o resultado calculando o campo elétrico.
- ${\bf 4}$ (a) Calcule o potencial de um disco de raio a uniformemente carregado num ponto P ao longo do eixo que passa perpendicularmente pelo centro do disco. (b) Confirme o resultado calculando o campo elétrico.
- 5 (a) Calcule o potencial de um fio cilíndrico condutor infinito de raio a uniformemente carregado a uma distância ρ do fio.
- 6 Calcule o potencial elétrico de um dipolo elétrico assumindo que a distância do ponto P é muito maior que a distância entre as partículas.

Figura 1: Figura referente ao problema 6

7 - Use a equação de Laplace $\nabla^2 V = 0$ para encontrar o potencial entre duas placas

Universidade Estadual de Maringá PROINTE - Programa de Integração Estudantil

infinitas, paralelas e separadas por uma distância d. Verifique também que o campo produzido por essa configuração é uniforme.

Figura 2: Figura referente ao problema 7

- f 8 Calcule o potencial de uma casca esférica de raio R e carga Q, num ponto dentro e fora da casca.
- **9 -** Considere duas cargas puntiformes, 2q e -q separadas por uma distância l. Mostre que a superfície equipotencial V = 0 é uma esfera de raio 2l/3 centrada no ponto (4l/3, 0, 0).
- 10 Considere uma casca esférica (apenas um hemisfério), de raio R e densidade superficial de carga σ , como mostra na Figura 3 (a) Encontre o potencial V(O) no ponto O assumindo que $V(\infty) = 0$. (b) Se uma partícula em repouso, de massa m e carga q, for largada no ponto O, qual será sua velocidade quando estiver muito afastada da casca?

Figura 3: Figura referente ao problema 10

11 - No modelo dos quarks das partículas subatômicas, um próton é formado por três quarks: dois quarks "up" com carga de $\frac{2e}{3}$ cada um, e um quark "down" com carga de $\frac{-e}{3}$. Suponha que os três quarks estejam equidistantes no interior de um próton. Tome a distância entre os quarks como $1,32\times 10^{-15}~m$ e calcule a energia potencial elétrica do sistema (a) apenas para os dois quarks up e (b) para os três quarks.