Digitalna vezja UL, FRI

P7 Sekvenčna vezja (1)

Sekvenčna vezja

KOMBINACIJSKO VEZJE

• izhod je funkcija vhodov

SEKVENČNO VEZJE

- trenutni vhodi
- zgodovina prejšnjih vhodov

- Kombinacijsko ali odločitveno vezje določa naslednja stanja in izhode
- > Pomnilno vezje shranjena so stanja, ki hranijo zgodovino prejšnjih vhodov
- Delovanje:
 - Sinhronska vezja urin signal
 - Asinhronska vezja
- > Primeri: števci, registri, krmilniki, semaforji, ...

Povratna vezava (vrata NOT)

- Izhod $I_1 = 0 \rightarrow I_2$ ima na vhodu 0, izhod $I_2 = 1$
- Izhod $I_1 = 1 \rightarrow I_2$ ima na vhodu 1, izhod $I_2 = 0$

Problem: Kako spraviti podatek v takšen pomnilni element?

Nov podatek:

- VPIS zaprto stikalo
- POMNJENJE odprto stikalo

Shranjena vrednost:

- VPIS odprto stikalo
- POMNJENJE zaprto stikalo

neg_bistabilen element.circ

Zatič RS (vrata NOR)

- > Zatič RS ali je podatkovno shranjevalno vezje za 1 bit informacije.
- Povratna vezava dveh NOR vrat
- > Izhoda Q in negirani Q (oznaka ~Q) se odzivata na trenutne spremembe na vhodih.
- > Kontrolna vhoda:
 - \triangleright RESET (R) izhod Q se postavi na 0 (Q = 0, \sim Q = 1)
 - > SET (S) izhod Q se postavi na 1 (Q = 1, \sim Q = 0)

Funkcija vezja:

$$R=0, S=0 \rightarrow Q$$
 se ohrani

R	S	Q(t)	Q (t+1)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0,1-?
1	1	1	0,1-?

$$R=0, S=1 \rightarrow Q=1$$

$$R=1, S=0 \rightarrow Q=0$$

		<u>R</u>	_	
s	X	х	1	1
'			1	
)(t)	_

$$Q(t+1) = \overline{R}.Q(t) \vee \overline{R}.S$$
 $Q(t+1) = S \vee \overline{R}.Q(t)$

$$Q(t+1) = S \vee \overline{R}.Q(t)$$

Zatič RS (vrata NAND)

- Zatič RS ali je podatkovno shranjevalno vezje za 1 bit informacije.
- Povratna vezava dveh NAND vrat
- > Izhoda Q in negirani Q (oznaka ~Q) se odzivata na trenutne spremembe na vhodih.
- Kontrolna vhoda:
 - \triangleright RESET (\sim R) izhod Q se postavi na 0 (Q = 0, \sim Q = 1)
 - > SET (\sim S) izhod Q se postavi na 1 (Q = 1, \sim Q = 0)

$$Q = \overline{S}.\overline{Q}$$

$$= \overline{S}.(\overline{Q}.\overline{R})$$

$$= \overline{S} \vee \overline{Q}.\overline{R}$$

$$= S \vee \overline{R}.Q$$

R=0 in S=0 - ??

Q(t) ali Q – trenutno stanje Q(t+1) - naslednje stanje Na vhodih je dodan negator in dobimo rešitev za vhoda R in S

Zatič RS (vrata NAND)

$$\overline{S} = 0, \overline{R} = 1 \rightarrow Q = 1$$

$$\overline{S} = 1, \overline{R} = 0 \rightarrow Q = 0$$

$$\overline{S} = 1, \overline{R} = 1 \rightarrow Q = Q$$

R	\bar{S}	Q(t)	Q (t+1)
0	0	0	0,1-?
0	0	1	0,1-?
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

	R	-		
\overline{S}		1		
'	1	1	Х	Х
		Q	(t)	•

$$Q(t+1) = \overline{R}.Q(t) \vee \overline{R}.S$$
 $Q(t+1) = S \vee \overline{R}.Q(t)$

$$Q(t+1) = S \vee \overline{R}.Q(t)$$

R	S	Q(t+1)
0	0	Q(t)
0	1	1
1	0	0
1	1	x (R.S=0)

\overline{R}	\overline{S}	Q(t+1)
0	0	$X(\overline{R} \vee \overline{S} = 0)$
0	1	0
1	0	1
1	1	Q(t)

Časovni diagram izhoda Q v odvisnosti od sprememb vhodov R in S

Pomnilne celice in pomnilne enačbe

RS

R	S	Q(t+1)
0	0	Q(t)
0	1	1
1	0	0
1	1	Х

$$Q(t+1) = \overline{R}.Q(t) \vee \overline{R}.S$$

D

D	Q(t+1)
0	0
1	1

$$Q(t+1)=D$$

JK

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{Q}(t)$

$$Q(t+1) = \overline{K}.Q(t) \vee J.\overline{Q}(t)$$

Т

T (J=K)	Q(t+1)
0	Q(t)
1	$\overline{Q}(t)$

$$Q(t+1) = \overline{T}.Q(t) \vee T.\overline{Q}(t)$$

Vzbujevalna tabela

- \triangleright Poznamo trenutno stanje Q(t) in naslednje stanje Q(t+1)
- Določimo vhodne funkcije, ki zagotavljajo podane prehode 0 v 1 ali 1 v 0
- Za izračun uporabimo pomnilne tabele RS, JK, D in T pomnilnih celic na prejšnji prosojnici

Q(t)	Q(t+1)	R	S	J	K	D	T
0	0	X	0	0	X	0	0
		(0,1)			(0,1)		
0	1	0	1	1	X	1	1
					(0,1)		
1	0	1	0	X	1	0	1
				(0,1)			
1	1	0	X	X	0	1	0
			(0,1)	(0,1)			

Urin signal

Periodični signal – ponavljajoče zaporedje ničel in enic v podanem časovnem intervalu, z vsakim naslednjim impulzom enakim prejšnjemu.

 t_p – perioda - časovna dolžina med dvema prehodoma iz 0 v 1 ali 1 v 0

- prehod iz 0 v 1 (Pozitivna fronta)
- prehod iz 1 v 0 (Negativna fronta)

Frekvenca

f - frekvenca urinega signala:

- število ponavljajoćih dogodkov v sekundi (enota je *hertz* Hz).
- število ciklov v sekundi ali število impulzov v sekundi.

Primer: Izračun frekvence, če je perioda $t_p = 2\mu s$.

$$f = \frac{1}{t_p} = \frac{1}{2\mu s} = \frac{1}{2*10^{-6}} = 0.5*10^6 = 0.5MHz$$

Pomnilna celica D, ura (D flip-flop)

Celica deluje v povezavi z <u>urinim signalom (u)</u> - fronta

Asinhronska vhoda – izhod je določen neodvisno od urinega signala .

S	R	u	D	Q(t+1)	$\overline{Q}(t+1)$	Opis
0	1	Х	Х	1	0	Set – asinhronsko (S=1)
1	0	Х	Х	0	1	Reset – asinhronsko (R=1)
0	0	Х	Х	-	-	Ni uporabljeno
1	1	1	0	0	1	Izhod je enak vhodu (Q(t+1)=D=0)
1	1	↑	1	1	0	Izhod je enak vhodu (Q(t+1)=D=1)

Pomnilna celica JK, ura (JK flip-flop)

- > Pomnilna celica JK s fronto
- > Povezava s celico RS je naslednja: vhod J=Set in vhod K=Reset

J	K	Q(t+1)	$\overline{Q}(t+1)$
0	0	Q(t)	$\overline{Q}(t)$
0	1	0	1
1	0	1	0
1	1	$\overline{Q}(t)$	Q(t)

J=K	Q(t+1)	$\overline{Q}(t+1)$
0	Q(t)	$\overline{Q}(t)$
1	$\overline{Q}(t)$	Q(t)

Časovni diagram

Časovni diagram izhoda Q v odvisnosti od sprememb vhodov J in K in pozitivne fronte urinega signala -u (↑).

Pomnilna celica T, ura (T flip-flop)

> Pomnilna celica T s fronto

T	Q(t+1)	$\overline{Q}(t+1)$
0	Q(t)	$\overline{Q}(t)$
1	$\overline{Q}(t)$	Q(t)

Realizacija T pomnilne celice z uporabo JK

Primer: JK pomnilna celica

- Realizirajte sinhronsko JK pomnilno celico, če za rešitev uporabite povratno vezavo NAND in dodatna logična vrata NAND.
 - Zapišite pravilnostno tabelo
 - Definirajte MDNO krmilnih vhodov
 - Zapišite krmilni funkciji J in K z NAND operatorji
 - Narišite shemo vezja

J	K	Q(t)	Q (t+1)	\overline{R}	\bar{S}
0	0	0	0	Х	1
0	0	1	1	1	x
0	1	0	0	X	1
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	1	x
1	1	0	1	1	0
1	1	1	0	0	1

 $\overline{R} = \overline{K} \vee \overline{Q}(t) = K \uparrow Q(t)$

$$\overline{S} = \overline{J} \vee Q(t) = J \uparrow \overline{Q}(t)$$

Pomnilna celica s predpomnjenjem

- Pomnjenje poteka v dveh fazah:
 - ➢ Glavna celica (Master)
 - Delovna celica (Slave)
- > Urin signal:
 - ➢ Glavna celica (u)
 - > Delovna celica (u)

Primer: JK Master-Slave

- Realizacija JK z NAND vrati
- Povežemo dve celici izhoda glavne celice sta vhoda delovne celice

