1 Introdução à Teoria das Categorias

A teoria das categorias é uma área de matemática que relaciona diversas áreas, como por exemplo, Teoria dos Grupos, Teoria dos Anéis, Topologia, Teoria dos Grafos, etc. Cada uma dessas teorias tem em comum a definição de seus objetos (Grupos, Anéis, Espaços topológicos, grafos) e formas de relacionar esses objetos (Homomorfismos de grupos, homomorfismos de aneis, homeomorfismos, homomorfismos entre grafos).

1.1 Categorias

Para estudar categorias, primeiro é necessário defini-las:

Definição 1.1 (Categoria, (??)). Uma categoria C consiste em:

- Objetos: A, B, C, \dots
- Setas (Morfismos): f, g, h, \ldots
- Para cada seta f existem objetos:

chamados de domínio e contradomínio de f. A escrita

$$f:A\to B$$

indica que A = dom(f) e B = cod(f)

• Sejam setas $f: A \to B$ e $g: B \to C$ com:

$$cod(f) = dom(g)$$

existe uma seta $g\circ f:A\to C$ chamada de composição de f com g

 $\bullet\,$ Para cada objeto A existe uma seta

$$1_A:A\to A$$

chamada de seta identidade de A

Esses dados precisam satisfazer os seguintes axiomas:

• (Associatividade) Sejam $f: A \to B, g: B \to C$ e $h: C \to D$ setas, então:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

• (Identidade) Seja $f: A \to B$ uma seta, então

$$f \circ 1_A = f = 1_B \circ f$$

Para quaisquer objetos A e B em uma categoria C, a coleção de setas de A para B é escrito $Hom_C(A,B)$

Alguns exemplos de categorias são:

- A categoria Set que possui conjuntos como objetos e funções como morfismos.
- 2. Os conjuntos ordenados descritos na Definição 1.31 também podem formar uma categoria junto com os mapeamentos monótonos descritos na Definição 1.32, chamada de **Pos**
- 3. Um monóide é um conjunto M equipado com uma operação binária $\cdot : M \times M \to M$ e um elemento unitário $e \in M$ tal que para todo $x, y, z \in M$:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

e

$$e \cdot x = x = x \cdot e$$

. Por exemplo, o conjunto dos naturais \mathbb{N} , junto à operação de soma usual $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, pode ser considerado um monoide, com o 0 como elemento unitário.

Dois monóides (M,\cdot) e (N,\star) podem ser relacionados através de um homomorfismo $\phi:M\to N$ tal que

$$\phi(x \cdot y) = \phi(x) \star \phi(y)$$

 \mathbf{e}

$$\phi(e_M) = e_N$$

A categoria que possui monóides como objetos e homeomorfismos como morfismos é denominada de **Mon**

4. Um grupo G é um monóide onde para todo $a \in G$ existe um elemento $b \in G$ tal que $a \cdot b = e$. b é chamado de *inverso* de a e é escrito como a^{-1} . Um homomorfismo ϕ entre dois grupos (G, \cdot) e (H, \star) obedece as duas condições para homomorfismos entre monóides mais a seguinte:

$$\phi(a^{-1}) = \phi(a)^{-1}$$

A categoria que possui monóides como objetos e homomorfismos como morfismos é denominada de \mathbf{Grp}

5. ((??)) Um grupo G (e também um monóide) define uma categoria BG com um único objeto. Os elementos do grupo são seus morfismos e a composição é dada por \cdot . O elemento unitário $e \in G$ age como o morfismo identidade para o objeto único dessa categoria.

Por exemplo, para $(\mathbb{Z},+)$, e=0 e será representado por $0:\mathbb{Z}\to\mathbb{Z}$. Sendo $1:\mathbb{Z}\to\mathbb{Z}$ e $2:\mathbb{Z}\to\mathbb{Z}$, então a composição $1\circ 2$ é em $(\mathbb{Z},+)$ equivalente a 1+2 e $1\circ 2=3$.

Definição 1.2 (Isomorfismos, (??)). Em qualquer categoria C, um morfismo $f:A\to B$ é chamado de *isomorfismo* se existe um morfismo $g:B\to A$ em C tal que

$$g \circ f = 1_A \in f \circ g = 1_B$$

g é chamado de inverso de f e, por ser único, pode ser denotado por f^{-1} . Os objetos A e B são ditos isom'orficos e denotados por $A\cong B$ Exemplos:

- 1. Os isomorfismos em **Set** são bijeções
- 2. Os isomorfismos em **Grp** são os homomorfismos bijetivos

Definição 1.3 (Categorias pequenas, (??)). Uma categoria C é chamada de pequena se a coleção C_0 de objetos em C e a coleção C_1 de morfismos em C são conjuntos. Caso contrário, C é chamada de grande

Todas as categorias finitas são pequenas, assim como a categoria $Sets_{fin}$ de conjuntos finitos. Já a categoria Sets é grande (Pois caso a coleção de seus objetos fosse um conjunto, isso geraria o paradoxo de Russell)

Definição 1.4 (Categoria localmente pequena, (??)). Uma categoria C é chamada de localmente pequena se para quaisquer objetos X e Y em C, a coleção de morfismos $Hom_C(X,Y) = \{f \in C_1 | f : X \to Y\}$ é um conjunto (Chamado de hom-set)

1.2 Categorias novas das antigas

Dada a definição de categorias, é interessante analisar o que pode ser feito com uma categoria e como gerar novas categorias de categorias antigas

Definição 1.5 (Categoria oposta, (??)). A categoria oposta (ou "dual") C^{op} de uma categoria C possui os mesmos objetos que C, mas para cada morfismos $f: A \to B$ em C existe um morfismo $f: B \to A$ em C^{op}

A categoria oposta inverte todos os morfismos da categoria que parte. Então seja f^{op} o morfismo invertido, a composição na categoria oposta se torna: $f^{op} \circ g^{op} = (g \circ f)^{op}$

É interessante perceber que cada resultado na Teoria das Categorias terá um resultado dual ganho "de graça" ao fazer esse resultado nas categorias duais.

Também é possível ver que $(C^{op})^{op} = C$

Definição 1.6 (Categoria de setas, (??)). Seja uma categoria C, definimos a categoria de setas de C, denotada por C^{\rightarrow} , tendo:

- \bullet Objetos: morfismos $A \xrightarrow{f} B$ de C
- Morfismos: a partir de um objeto de C^{\rightarrow} $A \xrightarrow{f} B$ para outro $A' \xrightarrow{f'} B'$ um morfismo é um par $\langle A \xrightarrow{f} B, A' \xrightarrow{f'} B' \rangle$ de morfismos de C fazendo o diagrama

$$\begin{array}{ccc}
A & \xrightarrow{h} & A' \\
\downarrow^{f} & & \downarrow^{f'} \\
B & \xrightarrow{k} & B'
\end{array}$$

comutar. Ou seja, $k \circ f = f' \circ h$ em C

A composição das setas é feita ao colocar quadrados comutativos lado a lado da seguinte forma:

tal que $\langle l, m \rangle \circ \langle h, k \rangle = \langle l \circ h, m \circ k \rangle$

A identidade de um objeto $A \xrightarrow{f} B$ é dado pelo par $\langle id_A, id_B \rangle$

Outro tipo de categoria de interesse é a categoria slice:

Definição 1.7 (Categoria Slice, (??)). A categoria slice \mathbb{C}/C de uma categoria \mathbb{C} sobre um objeto $C \in \mathbb{C}$ possui:

- Objetos: todas as setas $f \in \mathbf{C}$ tal que cod(f) = C
- Morfismos: g de $f: X \to C$ e $f': X' \to C$ é uma seta $g: X \to X'$ em ${\bf C}$ tal que $f' \circ g = f$ como no diagrama:

A composição desses morfismos é basicamente a junção de desses triangulos

Também é possível definir a categoria (C/\mathbf{C}) chamada de categoria de coslice, onde os objetos são setas f de \mathbf{C} tal que dom(f) = C e uma seta entre $f: C \to X$ e $f': C \to X'$ é uma seta $h: X \to X'$ tal que $h \circ f = f'$ como no diagrama:

$$X \xrightarrow{f} \xrightarrow{C} \xrightarrow{f'} X'$$

Também é possível definir a noção de subcategoria:

Definição 1.8 (Subcategoria, (??)). Uma categoria **D** dita *subcategoria* de **C** é obtida restringindo a coleção de objetos de **C** para uma subcoleção (Ou seja, todo **D**-objeto é um **C**-objeto) e a coleção de morfismos é obtida restringindo a coleção de morfismos de **C** onde:

- Se o morfismo $f: A \to B$ está em **D**, então A e B estão em **D**
- Se A está em \mathbf{D} , então também está o morfismo identidade id_A
- Se $f:A\to B$ e $g:B\to C$ estão em $\mathbf D$, então $g\circ f:A\to C$ também está e também:

Definição 1.9 (Subcategoria cheia, (??)). Seja **D** uma subcategoria de **C**. ENtão **D** é uma subcategoria cheia de **C** quando **C** não possui setas $A \to B$ além dos que já existem em **D**. Ou seja para quaisquer objetos A e B em **D**, **C**:

$$Hom_{\mathbf{D}}(A, B) = Hom_{\mathbf{C}}(A, B)$$

Exemplo:

- A categoria FinSet de conjuntos finitos é uma subcategoria de Set.
- Um grupo (G,\cdot) é dito *abeliano*, ou comutativo, caso para quaisquer dois elementos $a,b\in G,\ a\cdot b=b\cdot a.$ A categoria de grupos abelianos \mathbf{Ab} é uma subcategoria (cheia) de \mathbf{Grp}

1.3 Funtores

Sendo categorias estruturas que se iniciam com objetos e morfismos entre esses objetos, é natural se perguntar se existem morfismos entre categorias. Esses morfismos deveriam também manter a estrutura entre categorias, como por exemplo os morfismos entre grupos mantém a estrutura do grupo, mesmo que mudando-se os objetos e os morfismos internos à categoria. Esse tipo de morfismo entre categorias é chamado de funtor e definido da seguinte forma:

Definição 1.10 (Funtor, (??)). Um funtor $F: \mathcal{C} \to \mathcal{D}$ entre categorias \mathcal{C} e \mathcal{D} é um mapeamento de objetos em objetos e setas em setas tal que:

1.
$$F(f: A \to B) = F(f): F(A) \to F(B)$$

2.
$$F(g \circ f) = F(g) \circ F(f)$$

3.
$$F(1_A) = 1_{F(A)}$$

A primeira parte define que para cada objeto A em \mathcal{C} , existe um objeto correspondente F(A) em \mathcal{D} . Também define que Funtores preservam os domínios e codomínios de cada morfismo.

A segunda parte define que existindo uma composição de morfismos em \mathcal{C} , também existira uma composição correspondente em mathcalD.

A terceira parte define que as identidades também são preservadas.

Em algumas partes da matemática porém, os funtores não preservam a ordem dos morfismos. Os funtores que preservam como da regra 1 da parte anterior são chamados de *funtores covariantes*. É interessante também definir os funtores *contravariantes*:

Definição 1.11 (Funtor Contravariante, (??)). Um funtor da forma $F: \mathcal{C}^{op} \to \mathcal{D}$ é chamado de funtor contravarinate em \mathcal{C} . Ou seja, as regras se tornam:

- 1. Seja $f: A \to B$ em \mathcal{C} , então: $F(f: A \to B): F(B) \to F(A)$
- 2. Seja $g \circ f$ em \mathcal{C} , então $F(g \circ f) = F(f) \circ F(g)$
- 3. $F(1_A) = 1_{F(A)}$

Um exemplo essencial de funtor contravariante são os pr'e-feixes, definidos da seguinte forma:

Definição 1.12 (Pré-feixe, (??)). Um *pré-feixe* (com valor de conjunto) em C, onde C é uma categoria pequena, é um funtor $C^{op} \to \mathbf{Set}$

O pré-feixe pode ser visto como uma atribuição de dados locais de acordo com a estrutura de \mathcal{C} .

Uma vez definidos funtores, o próximo passo é se perguntar se existe uma categoria que usa funtores como morfismos entre seus objetos, e a resposta é que existe tal categoria, onde objetos são categorias, definida da seguinte forma:

Definição 1.13 (Cat, (??)). A categoria de *categorias pequenas*, denotada por Cat, é a categoria que possui:

- objetos: categorias pequenas
- morfismos: funtores entre elas

Para demonstrar que essa é de fato uma categoria, é necessário definir um morfismo/funtor identidade e a ideia de composição entre morfismos/funtores.

Definição 1.14 ((??)). Dada uma categoria \mathcal{C} , o funtor identidade é o funtor $id_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$ que faz o esperado: leva um objeto a ele mesmo e um morfismos a ele mesmo tal que:

- $id_{\mathcal{C}}(c) = c$
- $id_{\mathcal{C}}(f) = f$

Para a composição, sejam \mathcal{C} , \mathcal{D} e \mathcal{E} categorias pequenas, e $F:\mathcal{C}\to\mathcal{D}$ e $G:\mathcal{D}\to\mathcal{E}$ dois funtores, a composição de G com F, o funtor composição $G\circ F:\mathcal{C}\to\mathcal{E}$, é definido tal que para objetos c em \mathcal{C} , $(G\circ F)(c)=G(F(c))$ e para um morfismo $f:c\to c'$ em \mathcal{C} $(G\circ F)(f)=G(F(f))$. Para definir que $G\circ F$ é um funtor é necessário pedir sua funtorialidade, ou seja, que ele obedeça às regras impostas na definição de funtores:

(1) Sejam f, g funtores em C tal que $g \circ f$ também está definido em C, então:

$$\begin{split} (G\circ F)(g\circ f) &= G(F(g\circ f)) \\ &= G(F(g)\circ F(f)) \\ &= G(F(g))\circ G(F(f)) \\ &= (G\circ F)(g)\circ (G\circ F)(f) \end{split}$$

onde a primeira e a última linha são a definição da composição de funtores e o méio é a derivação dessa composição.

(2) Seja c qualquer objeto em C, então:

$$(G \circ F)(1_c) = G(F(1_C))$$

$$= G(1_{F(c)})$$

$$= 1_{G(F(c))}$$

$$= 1_{(G \circ F)(c)}$$

A seguir estão alguns exemplos de funtores:

1. Ao tratar monoides como categorias por si só, é interessante entender o que seria equivalente a funtores nesse caso. Normalmente, as relações entre monoides são homomorfismos de monoides. Sejam dois monoides (M,e,\cdot) e (N,e',\star) , um homomorfismo $\phi:M\to N$ é um mapeamento tal que

$$\phi(m \cdot m') = \phi(m) \star \phi(m')$$

е

$$\phi(e) = e'$$

É possível ver que ϕ possui a estrutura de funtor entre monoides. ϕ seria contravariante se $\phi(m \cdot m') = \phi(m') \star \phi(m)$

- 2. Existe um funtor $Core : \mathbf{Mon} \to \mathbf{Grp}$ que pega um monoide e retorna um subconjunto desse monoide que possui elementos inversos, o que faz com que o monoide se torne um grupo, chamado de cerne (Core) do monoide.
- 3. Existe um funtor $U: \mathbf{Grp} \to \mathbf{Mon}$ chamado de Forgetful functor (Funtor esquecido) que pega um grupo e retorna o monoide correspondente, "esquecendo" a estrutura a mais que caracteriza os grupos.
- 4. Outro funtor esquecido é $U: \mathbf{Cat} \to \mathbf{Grph}$ que pega cada categoria e retorna o grafo correspondente a ela. Um Grafo G = (V, A, s, t) é composto de um conjunto de vertices V, um conjunto de arestas A que são direcionadas, e um par de funções $s, t: A \to B$ que codifica a direção das arestas ao assinalar a cada aresta $a \in A$ um inicio $s(a) \in V$ e um fim $t(a) \in V$.

A coleção de objetos de uma categoria \mathcal{C} será denotada por \mathcal{C}_0 e a coleção de morfismos será denotada por \mathcal{C}_1 na próxima definição:

Definição 1.15 ((??)). Um funtor $F: \mathcal{C} \to \mathcal{D}$ é dito:

- injetivo em objetos se a parte de objetos $F_0: \mathcal{C}_0 \to \mathcal{D}_0$ é injetiva, é sobrejetora em objetos se F_0 é sobrejetora
- De forma similar, F é *injetiva* (resp. *sobrejetora*) em *setas* se a parte de setas $F_1: \mathcal{C}_1 \to \mathcal{D}_1$ é injetiva (resp. sobrejetora)
- F é dito fiel (Faithful) se, para todo $A, B \in \mathcal{C}_0$, o mapa $F_{A,B} : Hom_{\mathcal{C}}(A, B) \to Hom_{\mathcal{D}}(FA, FB)$ definido por f : F(f) é injetivo
- Similarmente F é dito *cheio* (full) se $F_{A,B}$ é sempre sobrejetor

Exemplo: Seja o funtor esquecido $U: \mathbf{Grp} \to \mathbf{Set}.$ U_0 é basicamente o mapeamento dos conjuntos que forma o grupo para os próprios conjuntos, logo U_0 é injetivo e sobrejetor em objetos. U_1 mapeia os homomorfismos de grupo para as funções correspondentes. Mas dois homomorfismos de grupo com o mesmo domínio e codomínio são iguais se são dados pelas mesmas funções nos conjuntos internos. Porém, nem todas as funções em \mathbf{Set} são mapeadas por homomorfismos, logo U_1 é injetivo em setas mas não sobrejetor em setas. Os motivos para dizer que U_1 é injetor em setas podem ser usados para mostrar que U é fiel.

1.4 Transformações Naturais

Uma vez tendo definido morfismos entre categorias, se torna possível pensar morfismos entre esses morfismos. No caso, morfismos entre funtores:

Definição 1.16 (Transformação Natural, (??)). Sejam duas categorias \mathcal{C} e \mathcal{D} e funtores $F,G:\mathcal{C}\to\mathcal{D}$. Uma Transformação Natural $\alpha:F\Rightarrow G$ representado em relação a seus dados como: Consiste no seguinte:

- Para cada objeto $c \in \mathcal{C}$, um morfismo $\alpha_c : F(c) \to G(c)$ em \mathcal{D} chamado de c-componente de α , a coleção do qual (para todo objeto em \mathcal{C}) define os componentes da transformação natural
- Para cada morfismo $f: c \to c'$ em C o seguinte quadrado de morfismos, chamado de quadrado de naturalidade de f, que deve comutar em D:

A coleção de transformações naturais entre F e G é por vezes denotada por Nat(F,G)

É dito que morfismos em uma categoria possuem naturalidade quando possuem um comportamento parecido com o do quadrado de naturalidade, ou seja se $G(f) \circ \alpha_c = \alpha_{c'} \circ F(f)$.

Uma vez que as transformações naturais ajudam a comparar dois funtores entre si, é interessante saber quando os dois funtores são praticamente iguais. Para isso, vamos usar a seguinte definição:

Definição 1.17 (Isomorfismo natural, (??)). Um isomorfismo natural é uma transformação natural $\alpha: F \Rightarrow G$ para qual todo componente $\alpha_c: F(c) \to G(c)$ em \mathcal{D} é um isomorfismo (na categoria alvo). Ou seja, cada α_c possui um inverso $\alpha_c^{-1}: G(c) \to F(c)$ onde os inversos formam componentes de uma transformação natural α^{-1} de G para F.

Se α for um isomorfismo, usa-se a notação $\alpha: F \cong G$

Uma vez definida a equivalência entre funtores, é interessante definir equivalência entre categorias:

Definição 1.18 (equivalência de categorias, (??)). Uma equivalência de categorias consiste de um par de funtores $F: \mathcal{C} \to \mathcal{D}$ e $G: \mathcal{D} \to \mathcal{C}$ junto com os isomorfismos naturais $\eta: id_{\mathcal{C}} \cong G \circ F$ e $\epsilon: F \circ G \cong id_{\mathcal{D}}$. Outro jeito de dizer isso é que os funtores são inversos entre si "até o isomorfismo natural de funtores". As categorias \mathcal{C} e \mathcal{D} são ditas equivalentes se existe uma equivalência de categorias entre elas, isso é denotado por $\mathcal{C} \simeq \mathcal{D}$

Uma construção interessante é a categoria de setas que possui funtores como objetos e transformações naturais como morfismos, definida como:

Definição 1.19 ((??)). Para qualquer par fixo de categorias \mathcal{C} e \mathcal{D} , pode-se formar uma categoria de funtores denotada por $\mathcal{D}^{\mathcal{C}}$ (Ou também $Fun(\mathcal{C},\mathcal{D})$) que possui:

- \bullet objetos: todos os funtores de ${\mathcal C}$ para ${\mathcal D}$
- morfismos: todas as transformações naturais entre tais funtores

Para demonstrar o aspecto de morfismo das transformações naturais, é necessário definir a transformação natural identidade, dada simplismente por $id_F: F \Rightarrow F$, e a composição entre transformações naturais, dada pela seguinte definição:

Definição 1.20 ((??)). Sejam $\alpha: F \Rightarrow G \in \beta: G \Rightarrow H$ transformações naturais entre os funtores paralelos F, G, H entre $\mathcal{C} \in \mathcal{D}$ como no seguinte diagrama: Existe uma transformação natural $\beta \circ \alpha: F \Rightarrow H$, definida em cada componente como: $(\beta \circ \alpha)_c := \beta_c \circ \alpha_c$ dada pela composição de β e α .

Esse estilo de composição é denominado de compisição vertical Já a composição horizontal denotada pelo simbolo \diamond dado por $\beta \diamond \alpha : F_2 \circ F_1 \Rightarrow G_2 \circ G_1$, os quais cada componente em c de $\mathcal C$ é definido como o composto do seguinte diagrama comutativo: