Plus courts chemins

 ${\sf Algorithmique-L3}$

François Laroussinie

7 décembre 2010

Plan

Définitions

2 Algorithme de Dijkstra

3 Algorithme de Floyd-Warshall

Plan

① Définitions

2 Algorithme de Dijkstra

Algorithme de Floyd-Warshall

Plus courts chemins

$$G = (S, A, w)$$
: orienté et valué $(w : A \to \mathbb{R})$.

Pour $\rho \stackrel{\text{def}}{=} v_0 \to v_1 \to \ldots \to v_k$, on note $w(\rho)$ sa longueur ou sa distance :

$$w(\rho) \stackrel{\mathsf{def}}{=} \sum_{i=1,\ldots,k} w(v_{i-1},v_i)$$

Plus courts chemins

$$G = (S, A, w)$$
: orienté et valué $(w : A \rightarrow \mathbb{R})$.

Pour $\rho \stackrel{\text{def}}{=} v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k$, on note $w(\rho)$ sa longueur ou sa distance :

$$w(\rho) \stackrel{\text{def}}{=} \sum_{i=1,\ldots,k} w(v_{i-1},v_i)$$

Définitions: Un chemin ρ de u à v est un plus court chemin (PCC) de u à v ssi, pour tout chemin π de u à v, on a $w(\pi) \geq w(\rho)$.

Un PCC de q_0 à q_8 ?

Un PCC de q_0 à q_8 ? $-\infty$! il n'en existe pas!!

Un PCC de q_7 à q_1 ?

Un PCC de q_7 à q_1 ? ∞ ! il n'en existe pas!!

Existence de PCC

Propriété : Existence d'un PCC

II existe un PCC entre u et v ssi

- (a) v est atteignable depuis u (i.e. $\exists u \rightarrow^* v$), et
- (b) il n'existe pas de cycle strictement négatif $c: z \to^* z$ et un chemin $u \to^* z \to^* v$.

Dans la suite jusqu'à l'algorithme de Floyd-Warshall, on suppose qu'il n'existe pas de cycle strictement négatif dans le graphe G.

Existence de PCC

Propriété :Existence d'un PCC

II existe un PCC entre u et v ssi

- (a) v est atteignable depuis u (i.e. $\exists u \rightarrow^* v$), et
- (b) il n'existe pas de cycle strictement négatif $c: z \to^* z$ et un chemin $u \to^* z \to^* v$.

Dans la suite jusqu'à l'algorithme de Floyd-Warshall, on suppose qu'il n'existe pas de cycle strictement négatif dans le graphe G.

On définit $\delta(s, u)$ la distance d'un PCC de s à u:

$$\delta(s, u) \stackrel{\mathsf{def}}{=} \begin{cases} \min\{w(\rho) \mid s \to_{\rho} u\} & \mathsf{si} \ \exists \ s \to^* u \\ \infty & \mathsf{sinon} \end{cases}$$

Propriété fondamentale des PCC

Propriété

Si $\rho: v_0 \to v_1 \to \ldots \to v_k$ est un PCC entre v_0 et v_k , alors tout sous-chemin $v_i \to \ldots \to v_j$ (avec $0 \le i < j \le k$) de ρ est un PCC de v_i à v_i .

Pourquoi?

Les problèmes de PCC

- les PCC à origine unique : On cherche tous les PCC depuis un sommet de départ s;
- les PCC à destination unique : On cherche tous les PCC menant à un sommet d'arrivée s; et
- les PCC pour toutes les paires de sommets de G.

Les problèmes de PCC

- les PCC à origine unique : On cherche tous les PCC depuis un sommet de départ s;
- les PCC à destination unique : On cherche tous les PCC menant à un sommet d'arrivée s; et
- les PCC pour toutes les paires de sommets de G.

Algo. de Dijkstra = pour les PCC à origine unique.

Algo de Floyd = pour les PCC entre tous les sommets.

Plan

Définitions

Algorithme de Dijkstra

Algorithme de Floyd-Warshall

Le cadre : les graphes orientés G=(S,A,w) et valués avec $w:A\to\mathbb{R}_+$ (évidemment sans cycle négatif!)

Le problème :

Etant donné un sommet s, trouver la distance d'un PCC entre s et tout autre sommet $u \in S$...

```
Le cadre : les graphes orientés G=(S,A,w) et valués avec w:A\to\mathbb{R}_+ (évidemment sans cycle négatif!)
```

Le problème :

Etant donné un sommet s, trouver la distance d'un PCC entre s et tout autre sommet $u \in S$... Et construire ces PCC!

Le cadre : les graphes orientés G=(S,A,w) et valués avec $w:A\to\mathbb{R}_+$ (évidemment sans cycle négatif!)

Le problème :

Etant donné un sommet s, trouver la distance d'un PCC entre s et tout autre sommet $u \in S$... Et construire ces PCC!

On va construire une arborescence des PCC T = (S, A'): T est un arbre de racine s et contenant tous les sommets x accessibles depuis s et tels que : tout chemin de s à x dans T est un PCC de G.

Arborescence des PCC

Arborescence des PCC

Arborescence des PCC


```
Table des prédécesseurs \Pi[q_0] = \text{undef} \Pi[q_1] = q_0 \Pi[q_2] = \text{undef} \Pi[q_3] = q_1 \Pi[q_4] = q_1 \Pi[q_5] = q_6 \Pi[q_6] = q_3
```

(Structure très proche de celle de l'algorithme de Prim)

On utilise une file de priorité F pour stocker les sommets :

la clé d[x] de x est sa distance minimale à s en ne passant que par des sommets dont on a déjà trouvé un PCC depuis s et qui ont été déjà extraits de F.

 \Rightarrow d[x] est une sur-approximation de $\delta(s,x)$: d[x] $\geq \delta(s,x)$

```
Procédure PCC-Dijkstra(G, s)
pour chaque u \in S faire
    \Pi[u] := \mathsf{nil}
 d[u] := \begin{cases} 0 & \text{si } u = s \\ \infty & \text{sinon} \end{cases}
F := File(S, d, IndiceDansF)
tant que F \neq \emptyset faire
      u := Extraire-Min(F)
      IndiceDansF[u] := -1
      pour chaque (u, v) \in A faire
 \begin{array}{|c|c|c|c|} \hline \textbf{si } d[v] > d[u] + w(u,v) \textbf{ alors} \\ & d[v] := d[u] + w(u,v) \\ & \Pi[v] := u \\ & MaJ-F-Dijkstra(F,d,v,IndiceDansF) \\ \hline \end{array}
return d, \Pi
```

```
Procédure MaJ-F-Dijkstra(F, d, v, IndiceDansF) begin  

//F[i] désigne le i-ième sommet de F.

i := \text{IndiceDansF}[v]

tant que (i/2 \ge 1) \land (d[F[i/2]] > d[F[i]]) faire 

F[i] \leftrightarrow F[i/2]

IndiceDansF[F[i]] := i

IndiceDansF[F[i/2]] := i/2

i := i/2;
```


Propriété de l'algorithme de Dijkstra

Soit $d^{i}(v)$ la valeur de d(v) au début de la *i*-ème itération de l'algo.

Propriété

• si v_j dénote le sommet extrait de F à l'itération j, et si $1 \le j < k \le |S|$, on a :

$$\mathsf{d}^j[v_j] \leq \mathsf{d}^k[v_k]$$

 Une fois extrait de F, le coefficient d[-] d'un sommet n'est plus jamais modifié.

Propriété de l'algorithme de Dijkstra

Soit $d^{i}(v)$ la valeur de d(v) au début de la i-ème itération de l'algo.

Propriété

• si v_j dénote le sommet extrait de F à l'itération j, et si $1 \le j < k \le |S|$, on a :

$$\mathsf{d}^j[v_j] \leq \mathsf{d}^k[v_k]$$

- Une fois extrait de F, le coefficient d[-] d'un sommet n'est plus jamais modifié.
- On montre que l'on a $d^{i}[v_{i}] \leq d^{i+1}[v_{i+1}]$ par induction sur le numéro d'itération.
- Après l'extraction de v_i , toute modification à l'itération j > i est conditionnée par $d^j[v_j] + w(v_j, v_i) < d^i[v_i]...$

Propriété de l'algorithme de Dijkstra

Propriété A tout moment de l'algorithme, on a d $[u] \ge \delta(s, u)$

c'est vrai lors de l'initialisation et c'est clairement maintenu à chaque itération. . .

Propriété de l'algorithme de Dijkstra

Propriété A tout moment de l'algorithme, on a $d[u] \ge \delta(s, u)$

c'est vrai lors de l'initialisation et c'est clairement maintenu à chaque itération. . .

Théorème :correction de l'algorithme de Dijkstra

G=(S,A,w) orienté et valué tel que $w:A o \mathbb{R}_+$.

L'algorithme de Dijkstra

- 1 termine,
- 2 à la fin, on a d[u] = $\delta(s, u)$ pour tout sommet $u \in S$, et
- **3** $\forall u \in S \setminus \{s\}$, si d[u] < ∞, alors il existe un PCC de s à u dont le dernier arc est (Π[u], u).

Complexité

L'algorithme PCC-Dijkstra prend un temps en $O\Big((|S|+|A|)\cdot \log(|S|)\Big)\dots$

c'est à dire en $O(|A| \cdot \log(|S|))$ lorsqu'on suppose $|S| \le |A|$.

Plan

Définitions

2 Algorithme de Dijkstra

3 Algorithme de Floyd-Warshall

Le problème

Objectif: calculer les PCC entre tous les sommets...

On suppose que G=(S,A,w) est donné sous forme matricielle : (M_G,w)

- $S = \{x_1, \dots x_n\}$
- $w:A\to\mathbb{R}$
- $M_G = (\alpha_{ij})_{1 \leq i,j \leq n} : \alpha_{ij}$ décrit l'arc entre x_i et x_j .

$$\alpha_{ij} \stackrel{\text{def}}{=} \begin{cases} 0 & \text{si } i = j \\ w(x_i, x_j) & \text{si } i \neq j \text{ et } (x_i, x_j) \in A \\ \infty & \text{si } i \neq j \text{ et } (x_i, x_j) \notin A \end{cases}$$

Dans la suite, on notera δ_{ij} la distance $\delta(x_i, x_j)$ d'un PCC entre x_i et x_j .

Exemple

L'arborescence des PCC?

Pour représenter les PCC entre tous les sommets, on utilise une fonction \ll prédécesseur $\gg \Pi$.

 Π est une matrice de taille $n \times n$ à valeurs dans S. Ses coefficients sont les π_{ij} :

$$\pi_{ij} \stackrel{\text{def}}{=} \begin{cases} \text{nil} & \text{si } i = j \text{ ou } x_i \not \to^* x_j \\ s & \text{si } s \text{ est le prédécesseur immédiat de } x_j \text{ le long} \\ & \text{d'un PCC entre } x_i \text{ et } x_j \end{cases}$$

Programmation dynamique

On utilise une famille de matrices $n \times n$ $D^{(k)}$ (k = 0, ... n) contenant les calculs intermédiaires.

Idée : $D^{(k)}[i,j]$ est la longueur d'un PCC entre x_i et x_j ne passant que par des états dans $\{x_1, \ldots, x_k\}$.

Programmation dynamique

On utilise une famille de matrices $n \times n$ $D^{(k)}$ (k = 0, ... n) contenant les calculs intermédiaires.

Idée : $D^{(k)}[i,j]$ est la longueur d'un PCC entre x_i et x_j ne passant que par des états dans $\{x_1, \ldots, x_k\}$.

$$D^{(k)}[i,j] \stackrel{\text{def}}{=} \min \left(D^{(k-1)}[i,j] ; D^{(k-1)}[i,k] + D^{(k-1)}[k,j] \right)$$

Algorithme de Floyd-Warshall

```
Procédure PCC-Floyd(G)
pour i = 1 \dots n faire
          pour j = 1 \dots n faire
\begin{array}{|c|c|} \hline d_{ij}^{(0)} := \alpha_{ij} \\ \textbf{si } \alpha_{ij} \neq \infty \textbf{ alors } \pi_{ij}^{(0)} := i \end{array}
pour k = 1 \dots n faire
          pour i = 1 \dots n faire
     \begin{array}{|c|c|} \textbf{pour } j = 1 \dots n \textbf{ faire} \\ & \textbf{si } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \textbf{ alors} \\ & d_{ij}^{(k)} := d_{ij}^{(k-1)} \\ & \pi_{ij}^{(k)} := \pi_{ij}^{(k-1)} \\ & \textbf{sinon} \end{array}
                    \begin{vmatrix} d_{ij}^{(k)} := d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ \pi_{i:}^{(k)} := \pi_{ki}^{(k-1)} \end{vmatrix}
```

Propriétés de l'algorithme

Soit $\rho: v_0 \to v_1 \to \ldots \to v_l$, l'intérieur de ρ est $\{v_1, \ldots, v_{k-1}\}$.

Propriété

Si G ne contient pas de cycle strictement négatif, alors pour tout k = 0, ..., n, on a :

- $d_{ij}^{(k)}$ est la distance d'un PCC entre x_i et x_j et d'intérieur inclu dans $\{x_1, \ldots, x_k\}$;
- $\pi_{ij}^{(k)}$ est le prédécesseur de x_j le long de ce PCC de x_i à x_j .

Par induction sur k.

Correction

Théorème : correction de l'algorithme de Floyd-Warshall Si G ne contient pas de cycle strictement négatif, alors $D^{(n)}$ contient les coefficients δ_{ii} des PCC.

Correction

Théorème : correction de l'algorithme de Floyd-Warshall Si G ne contient pas de cycle strictement négatif, alors $D^{(n)}$ contient les coefficients δ_{ii} des PCC.

Propriété G contient un cycle strictement négatif ssi il existe un coefficient $d_{ii}^{(n)}$ strictement négatif.

Algorithme simplifié

```
Procédure PCC-Floyd(G)
//On initialise D avec M:
pour i = 1 \dots n faire
 \begin{array}{|c|c|c|} \textbf{pour } j = 1 \dots n \textbf{ faire} \\ d_{ij} := \alpha_{ij} \\ \textbf{si } \alpha_{ij} \neq \infty \textbf{ alors } \pi_{ij} := i \end{array}
pour k = 1 \dots n faire
         pour i = 1 \dots n faire
 \begin{array}{|c|c|c|} \hline \textbf{pour } j = 1 \dots n \textbf{ faire} \\ \hline \textbf{si } d_{ij} > d_{ik} + d_{kj} \textbf{ alors} \\ \hline d_{ij} := d_{ik} + d_{kj} \\ \hline \pi_{ij} := \pi_{kj} \end{array}
return D, \Pi
```

Complexité de l'algorithme de Floyd-Warshall

 $O(n^3)!$

Construction des PCC

```
Procédure Construire-PCC(\Pi,i,j) 
//\Pi: une matrice de prédécesseurs. 
//1 \le i,j \le n: deux indices de sommets 
begin 
| si i \ne j alors 
| return Construire-PCC(\Pi,i,\Pi[i,j]) \oplus (\Pi[i,j],j) end
```