상지기능 개선을 위한 스테퍼 모터 제어 기반 의디바이스 및 콘텐츠 개발

Development of Devices and Content Based on Stepper Motor Control for Improvement of Upper limb function

CONTENTS

01 지난 발표에서의 지적 사항 및 답변

05 시스템 구성도

09 데모 환경 설계

02 종합 설계 개요

06 시스템 모듈 상세 설계

10 업무 분담

03 관련 연구 및 사례

07 특허 출원

11 종합 설계 수행 일정

04 시스템 수행 시나리오

08 개발 환경 및 개발 방법

12 필요 기술 및 참고 문헌

01 지난 종합 설계 피드백

지난 발표에서의 지적 사항 및 답변

1

재활 콘텐츠 시나리오 보완

재활 시나리오를 각 자세에 따른 능동, 수동 운동으로 분류해 보완

2

feedback에 대한 시나리오가 없음

환자의 상지 가동범위에서 1~10도 씩 늘려 디바이스를 회전시킬 예정

3

power 조절 필요

환자의 상지 가동범위 내에서 power를 조절할 예정

02 종합설계 개요

연구 개발 배경

- 뇌졸중 환자의 약 75%가 후유증으로 상지 마비 장애를 동반하는 것으로 보고됨
- 뇌졸중 환자들의 꾸준하고 자발적인 재활 참여를 유도하는 것이 중요하다고 알려짐
- 회전근개 파열과 오십견 환자는 해마다 꾸준히 증가하는 추세임
- 오십견은 어깨 운동 전후 스트레칭만으로도 예방이 가능한 것으로 알려짐

02 종합 설계 개요

기존 상지 훈련 시스템의 문제점 및 해결 방안

기존 상지 훈련 시스템의 문제점

- 환자의 안전을 위한 재활 치료사가 필요하여꾸준한 재활 활동이 어려움
- 재활 결과에 대한 정량적인 피드백이 부족함
- 흥미를 유발하는 요소가 부족하여 환자들의집중을 유도하기 힘듦
- 4 상지 기능의 정도에 따라 세분화된 시스템이 부족함

해결 방안

- 1 치료사가 없더라도 환자가 정확한 자세로 재활을 수행할 수 있는 시스템이 필요
- 2 상지 가동범위 등의 정량적인 값으로 환자에게 성취감을 주는 시청각 피드백 시스템이 필요
- 3 사용자의 흥미를 유발하여 주도적으로 운동할 수
 있도록 다양한 콘텐츠 필요
- 4 뇌졸중 환자의 경우 상지 기능의 정도에 따라 차등적인 시스템 필요

02 종합 설계 개요 연구 개발 목표

- 스테퍼 모터를 활용한 디바이스 제작
 - ※ 모터의 사용 유무
 - 수동 운동 콘텐츠 (ON)
 - 능동 운동 콘텐츠 (OFF)
- 스테퍼 모터 기반 디바이스의 회전을 통해 사용자의 상지 가동범위를 정량적 측정 및 데이터를 시각화 하는 콘텐츠 제작

02 종합 설계 개요 연구 개발 목표

수행가능한 동작 | Flexion | Flexion | Adduction | H/외회전 | 굴곡/신전 | H/외전

- 콘텐츠에 환자의 참여를 유도할 수 있도록 흥미를 자 극시킬 수 있는 요소 포함
 ex) 콘텐츠 난이도 세분화, 시청각 피드백
- 자세 선택 가능

내/외회전 재활 콘텐츠 실행 예시

굴곡/신전, 내/외전 재활 콘텐츠 실행 예시

02 종합 설계 개요

연구 개발 효과

- 상지 기능의 정도에 따른 차등적인 시스템을 통해 보다 효과적인 재활 운동 가능
- 사용자의 상지 기능 개선에 대한 정량적인 측정과 시청각 피드백 가능
- 다양한 콘텐츠를 통해 사용자의 흥미를 유발시켜 자발적인 참여를 이끌어낼 수 있음
- 뇌졸중 후유증으로 인해 저하된 상지의 기능 향상 및 회전근개 손상으로 인한 질환 재활 기대

03 관련 연구 및 사례

국내외 논문 사례

그라마이저 운동이 뇌졸중 환자들의 팔 뻗기에 미치는 즉각적인 효과

그라마이저 사용 예시

어깨손상 환자의 자가 재활을 위한 기능성 게임 연구

자가 각도 측정

외전을 활용한 게임 디자인

03 관련 연구 및 사례

국내 논문 사례

어깨관절 근육 재활을 위한 다자유도 상지 외골격 로봇

내/외회전에 따른 재활 모습

어깨 재활을 위한 게임 기반 시스템

수제 숄더 휠

"Cupid's Arrow" 게임

로그인, 회원가입 시나리오

1. 로그인

- 01. 로그인 버튼 선택
- 02. 아이디 및 비밀번호 입력
 - -> 맞으면 로그인 성공
 - -> 틀리면 다시 입력

2. 회원가입

- 01. 회원가입 버튼 선택
- 02. 아이디 입력 후 중복 확인
 - -> 중복된 아이디가 없으면 사용 가능
 - -> 중복된 아이디가 있으면 다른 아이디 입력 후 재확인
- 03. 자신의 개인 정보 입력
- 04. 회원가입 완료

상지 가동범위 측정 시나리오

상지 가동범위 측정 화면

측정 결과 화면

1. 측정 과정

- 01. 측정하길 원하는 자세 선택
- **02.** 측정자세 및 각도, 속도 확인 및 데이터 저장
- 03. 측정 중 중단 및 자세 변경 가능

2. 측정 결과

- 01. 사용자는 시각화된 측정 결과 확인
- **02.** 측정 결과는 DB에 저장
- 03. 그 전의 기록을 선택해 데이터 비교 가능

콘텐츠 종류

숲 콘텐츠 시나리오

숲 콘텐츠 화면

숲 콘텐츠 결과 화면

01. 콘텐츠 개요

사용자가 콘텐츠 수행을 완료하면 나무가 심어지며, 모든 콘텐츠를 통합

02. 필요한 데이터

사용자가 수행 완료한 콘텐츠 자세 및 횟수

03. 기대효과

환자의 성취감 향상

04 시스템 시나리오

운동 방식과 자세에 따른 콘텐츠 분류

새 피하기 콘텐츠 시나리오

새 피하기 콘텐츠 실행 화면

새 피하기 콘텐츠 결과 화면

01. 콘텐츠 개요

독수리가 다른 새들을 피하며 날아다니는 콘텐츠

02. 콘텐츠 수행 자세 및 유형

능동 운동(Active Training), 수동 운동(passive Training) 굴곡/신전, 내/외전, 내/외회전

03. 측정

회전 각도, 회전 속도, 조절 능력

04. 기대효과

상지 가동범위 증가 환자의 흥미 유발

블록 쌓기 콘텐츠 시나리오

블록 쌓기 콘텐츠 시작 화면

블록 쌓기 콘텐츠 실행 화면

01. 콘텐츠 개요

모바일 게임 'Stack'을 배경으로 했으며, 블록을 움직여 최대한 밑에 있는 블록의 위치를 맞추는 콘텐츠

- **02.** 콘텐츠 수행 자세 및 유형 능동 운동(Active Training), 수동 운동(passive Training)
- **03.** 측정 회전 각도, 회전 속도, 조절 능력

내/외전, 내/외회전

04. 기대효과

상지 가동범위 증가 환자의 흥미 유발

새 피하기 콘텐츠 현황

05 시스템 구성도

H/W 시스템 구성도

05 시스템 구성도 H/W 시스템 구성도

- 사용자의 상지 가동범위에 따른 훈련 제공
- 스테퍼 모터 작동을 위한 회로 설계
- 디바이스-PC 간 시리얼 통신 구현 및 엔코더를
 활용한 스테퍼 모터 각도 조정
- ▶ 사용자의 흥미 요소를 포함한 시나리오 설계
- ▶ 시나리오 별 난이도를 적용한 콘텐츠 제작
- 콘텐츠 수행 결과 시각화

- 유니티와 연결
- 사용자 정보 관리
- 콘텐츠 수행 결과 데이터 관리

H/W 블록 다이어그램

H/W 시스템 회로도

Atmega128A

06 시스템 모듈 상세 설계 H/W 시스템 회로도 및 부품 설명

● 레벨 시프터

• 블루투스 임베디드 모듈

06 시스템 모듈 상세 설계 H/W 시스템 회로도 및 부품 설명

06 시스템 모듈 상세 설계 H/W 시스템 회로도 및 부품 설명

디바이스 – Unity 연동

시리얼 포트 연동위해 필요한 헤더

- using System.Collections;
- using System.Collections.Generic;
- using UnityEngine;
- using System.IO.Ports;
- using System.Text;
- using System;
- using System.IO;

SerialConnect()						
형식	private void SerialConnect()					
리턴 값	void					
설명	시리얼 포트와 Unity 연결 - Serial Port 세팅 후 port를 열어주는 역할 - TimeoutException, IOException 예외처리					
예시	SerialConnect()					

디바이스 – Unity 연동

환자의 상지 가동범위 데이터

SerialRead()						
형식	public void SerialRead()					
리턴 값	void					
설명	시리얼 포트를 통해 받은 데이터 읽기 - Port 열려 있는 지 확인 - 읽어 온 데이터 리스트에 저장					
예시	SerialRead()					

SerialWrite()					
형식	public void SerialWrite()				
리턴 값	void				
설명	시리얼포트를 통해 디바이스에 사용자 데이터 전송 - 사용자 데이터 : 맞춤형 콘텐츠 제공을 위해 측정해 놓은 사용자 가동범위				
예시	SerialWrite()				

DB 상세 설계

DB - 유니티 연동

DatabaseInsert()					
형식	public void DatabaseInsert(string query)				
리턴 값	void				
설명	Unity Client에서 로그인 및 콘텐츠 결과 데이터 - Query: 각 테이블에 환자 데이터 또는 콘텐츠 결과 데이터 삽입 - 데이터 삽입 성공 여부에 따라 true, false 반환				
예시	DatabaseInsert("Insert into reupex(userID, userPWD) VALUES(\W"ming\W",\W"ming0126 \W")");				

DB - 유니티 연동

 환자 정보 데이터 조회

 이전 콘텐츠 결과 데이터 조회

DataBaseRead()					
형식	public void DatabaseInsert(string query)				
리턴 값	void				
설명	Unity Client에서 로그인 및 콘텐츠 결과 데이터 - Query: 각 테이블에 환자 데이터 또는 콘텐츠 결과 데이터 조회 - 데이터 조회 성공 여부에 따라 true, false 반환				
예시	DataBaseRead("SELECT * FROM UserInfo");				

- 현재 산학협력단과 디바이스 특허 출원 협의 중
- 제작중인 디바이스의 모습

H/W, S/W 개발 환경

H/W소프트웨어AUTODESK 123D DESIGN개발 언어C주요 라이브러리AVR 라이브러리MCUAtmega 128A개발 언어C#, SQL		OrCad, PADS, Atmel Studio 7.0, AUTODESK 123D DESIGN				
	С					
	AVR 라이브러리					
	주요 라이브러리 AVR 라이브러리 MCU Atmega 128A 개발 언어 C#, SQL 사용 프레임워크 Unity	Atmega 128A				
	개발 언어	C#, SQL				
CAM	사용 프레임워크	크러리 AVR 라이브러리 Atmega 128A 어 C#, SQL 임워크 Unity 크러리 SqlClient(SQL 드라이버)				
S/W	주요 라이브러리					
	DB	SQLite				

개발 환경

하드웨어 개발 소프트웨어

- OrCAD
- PADS
- Atmel Studio
- AUTODESK 123D DESIGN

콘텐츠 개발 소프트웨어

- Unity를 사용해 상지 기능 개선 콘텐츠 제작
 - 수동 운동 콘텐츠
 - 능동 운동 콘텐츠

DB – SQLite

• SQLite를 이용해 DB 구축

S/W 개발 방법

VisualStudio를 사용해 C# 스크립트 작성

시리얼 포트를 사용해 디바이스 연동

콘텐츠 구현

SQLite로 DB 파일 및 테이블 추가

유니티 프로젝트에 DLL과 DB 파일을 추가해 유니티와 직접 연동

DB구현 및 Unity와 연동

H/W 개발 방법

부품 라이브러리

회로도면

회로도 작성

123D를 사용해 디바이스 설계 및 도면 작성

3D 프린터 도면 작성 및 주문

디바이스 설계

로직과 레이아웃 프로그램을 사용해 심볼을 만든 후 부품으로 정의

레이아웃을 사용해 부품을 배치하고 PCB Artwork

PCB 설계

Atmel Studio를 활용하여 펌웨어 구현 및 테스트

코딩

09 데모 환경 설계

자세에 따른 데모 환경 설계

데모 환경

- 1. 제작한 디바이스 설치
- 2. 유니티 소프트웨어와 디바이스 연동

데모 방법

- 1. 디바이스 전원 On
- 2. 유니티 소프트웨어와 디바이스 연동
- 3. 콘텐츠 수행

10 역할 분담 세분화 표

자료수집	- 기존의 상지 재활 운 동 방법 분석	- 기존의 재활 운동 시스템 분석	- 기존의 자가 재활 운 동 시스템 분석	- 기존의 상지 재활 운 동 기구 분석
설계	- DB 설계 - 콘텐츠 설계	- 콘텐츠 설계	- 디바이스 설계 - 콘텐츠 설계	- 통합 콘텐츠 설계 - 콘텐츠 설계
구현	- Unity 기반 게임 구현 - DB 구현	- Unity 기반 게임 구현	- Unity 기반 게임 구현 - 디바이스 구현	- Unity 기반 게임 구현 - Unity-기구 연동
테스트	- 디바이스-콘텐츠 연동 - 콘텐츠-DB간 통신 및 (- 콘텐츠 유지보수 및 통합	입출력 테스트		

11 종합 설계 수행일정

마일스톤 일정

항목	추진사항	12월	1월	2월	3월	4월	5월	6월	7월
요구사항 정의 및 분석	- 요구사항 정의 및 분석								
	- 요구사항 명세								
시스템 설계 및	- 시스템 설계								
상세 설계	- 상세 설계								
	- HW 제작								
구현	- 콘텐츠 제작								
	- DB 구축 및 연동								
테스트 및 보완	- 유니트 시험								
	- 시스템 통합시험								
	- 졸업작품 유지보수 및 안정성 보강								
졸업작품	- 졸업작품 최종보고서 작성								
최종보고서 작성	- 시스템 최종점검								
및 패키징	- 발표								

12 GitHub

- 졸업작품 GitHub 주소
 - > https://github.com/000/000
- 팀원별 GitHub ID
 - 팀장 :
 - 팀원 : ********

 - 팀원:
 - 팀원 :

12 필요 기술 및 참고 문헌

- 1. 유니티 엔진: https://unity3d.com/kr/5
- 2. SQLite: https://www.sqlite.org/index.html
- 3. OrCAD: https://www.orcad.com/orcad-free-trial
- 4. Autodesk 123D: https://www.autodesk.co.kr/solutions/123d-apps
- 5. 뇌졸중 환자의 가상현실 프로그램이 상지기능에 미치는 영향: <u>The Effect of Virtual Reality Programs on Upper Extremity</u> Function in Stroke Patients: A Meta-Analysis -Journal of the Korea Academia-Industrial cooperation Society | Korea Science
- 6. 시리얼 통신: https://docs.Microsoft.com/dotnet/api/system.io.ports.serialport?view=netframework-4.8
- 7. 스마트케어 기반의 자가 및 원격재활운동시스템: https://www.koreascience.or.kr/article/JAKO201301442489270.pdf
- 8. 오십견의 단계적 재활을 위한 가상현실 시뮬레이션: https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE08763526
- 9. 회전근개파열과 석회성 건염의 보존적 치료 : https://kmbase.medric.or.kr/KMID/0948920120110010001
- 10. "Upper-Limb Discoordination in Hemiparetic Stroke: Implications for Neurorehabilitation" https://www.tandfonline.com/doi/abs/10.1310/WA7K-NGDF-NHKK-JAGD
- 11. 오십견 2015-2019년 환자수 그래프 이미지: http://opendata.hira.or.kr/op/opc/olapMfrnIntrsIlnsInfo.do#none
- 12. 색채놀이 프로그램을 통한 노인의 색채선호 연구: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06614940