D-02 (ANSYS)

Формулировка задачи:

Дано: Торсион постоянной жёсткости

нагружен сосредоточенным моментом \mathfrak{M} на конце (в точке C).

G – модуль сдвига материала;

 I_{κ} — геометрическая жёсткость при кручении поперечного сечения торсиона.

Вычислить: Эпюру внутреннего крутящего момента $M_{\kappa p}$;

Эпюру угловых перемещений поперечных сечений ϕ ;

Потенциальную энергию упругого деформирования торсиона U.

Аналитический расчёт (см. **D-02**) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же результаты методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Чёрное рабочее поле не всегда приятно для глаза. Кроме того, оно неудобно для печати рисунков. Меняем чёрный цвет фона на белый следующими действиями:

U_M > PlotCtrls > Style > Colors
> Reverse Video

В меню оставить только пункты, относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера ключевых точек и линий твердотельной модели, номера узлов модели конечноэлементной:

U_M > PlotCtrls > Numbering >
OTMETUTE KP, LINE, NODE;
YCTAHOBUTE Elem на "No numbering";
YCTAHOBUTE [/NUM] на "Colors&numbers"
> OK

Для большей наглядности увеличим размер шрифта:

U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > OK

U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > OK

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

Приравняв G, I_K , $\mathfrak M$ и I к единице, результаты получим в виде коэффициентов перед формулами, обозначенных на puc. I. красным цветом. Модуль упругости второго рода (модуль сдвига) G в свойствах материала явно не задаётся. По известной формуле, связывающей G, E и v изотропного материала для того, чтобы получить G=I при v=0,3 требуется задать E=2,6.

Площади поперечных сечений торсиона A зададим большими, дабы не присутствовало в результатах растяжение/сжатие, а их изгибные моменты инерции I_Y и I_Z для определённости приравняем к I_K .

№	Действие	Результат
1	Задаём параметры расчёта— базовые величины задачи: U_M > Parameters > Scalar Parameters > A=1e6	Scalar Parameters
2	Первая строчка в таблице конечных элементов — балочный тип BEAM44: M_M > Preprocessor C_P > ET,1,BEAM44 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Defined Element Types: Type 1 BEAM44 Add Options Delete Close Help

N₂	Действие	Результат
6	Ключевые точки — границы участков ($B \rightarrow 1$, $C \rightarrow 2$): M_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X,Y,Z пишем 0,0,0 > Apply > NPT пишем 2 X,Y,Z пишем l ,0,0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit	Y It X
7	Один участок — одна линия между точками:M_M > Preprocessor > Modeling > Create > Lines > Lines >> Straight Line >Левой кнопкой мыши нажать на ключевую точку 1, потом на 2> OK	Y L1 2
8	3аделка: M_M > Preprocessor > Loads > Define Loads > Apply > > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "All DOF" > OK	X I.1 2

No	Действие	Результат
12	Paбиваем линию на элементы (в данном случае, один элемент): M_M > Preprocessor > Meshing > Mesh > Lines > Pick All Oбновляем изображение: U_M > Plot > Multi-Plots Видим одновременно твердотельную и конечноэлементную модели. Номера узлов совпадают с номерами ключевых точек, цвет конечного элемента тот же, что и линии L1 — бирюзовый — поэтому в данном случае совмещение незаметно.	X I.1 ~ 2
13	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots:U_M > PlotCtrls > Multi-Plot Controls >Появляется первое окно Multi-Plotting> OK >Появляется второе окно Multi-Plotting >Оставляем в нём отметки тольконапротив Nodes и Elements> OKОбновляем изображение:U_M > Plot > Multi-PlotsВидим только конечноэлементную модель.	Multi-Plotting
14	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > > All Solid Lds > OK Обновляем изображение: U_M > Plot > Multi-Plots	X 2

N₂	Действие	Результат			
	Просмотр результатов				
17	Cunoвan cxema: U_M > PlotCtrls > Symbols > [/PBC] устанавливаем в положение "For Individual" Убираем галочку с "Miscellaneous" Surface Load Symbols устанавливаем Pressures Show pres and convect as устанавливаем Arrows > OK >	1 E-N M RMOM			
	B окне "Applied Boundary Conditions" U установить "Off" Rot установить "Off" F установить "Symbol+Value" M установить "Symbol+Value" > OK >				
	B окне "Reactions" NFOR установить "Off" NMOM установить "Off" RFOR установить "Symbol+Value" RMOM установить "Symbol+Value" > OK				
	Обновляем изображение: U_M > Plot > Elements При необходимости корректируйте масштаб кнопками				

Nº	Действие	Результат
18	Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK	Uniform Contours UCONTI Uniform Contours UCONTI Uniform Contours UCONTI Uniform Contours UNI Window number UNIFOR Number of Contours UNIFORM Number of Contours UNIFORM Number of Contours UNIFORM Number of Contours Uniform Specified intervals Uniform Specified intervals Uniform Specified Uniform Spec
19	Вычисление эпюры внутреннего крутящего момента M _{кp} : M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "4" > Apply > "By sequence num", "SMISC,", "10" > OK > > Close	State Addrows tweet Table beau State State of City owner State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.