Performance Summary

This report compares several machine learning models used for predictive maintenance on compressor monitoring data. The goal is to detect anomalies and potential failures before they cause equipment downtime.

Metrics Comparison

Model	ACCURACY	PRECISION	RECALL	F1	AUC_ROC	SPECIFICITY
QWEN2.5	99.82%	84.62%	100.00%	91.67%	50.04%	99.82%
LSTM	87.35%	2.86%	36.36%	5.30%	72.94%	87.85%
ANN	99.82%	90.91%	90.91%	90.91%	91.15%	99.91%
CNN	98.50%	25.00%	27.27%	26.09%	64.29%	99.20%

Visual Comparison

Understanding the Metrics

- ACCURACY: The percentage of all predictions (both normal and anomaly) that were correct. While a high accuracy is generally good, it can be misleading in imbalanced datasets where anomalies are rare.
- **PRECISION**: When the model predicts an anomaly, how often is it correct? High precision means few false alarms. • **RECALL**: What percentage of actual anomalies did the model detect? High recall means few missed anomalies.

• F1 SCORE: The harmonic mean of precision and recall, providing a single metric that balances both concerns.

- AUC-ROC: Area Under the Receiver Operating Characteristic curve, measuring the model's ability to discriminate between normal and anomaly classes across different threshold settings.
- **SPECIFICITY**: The proportion of actual normal samples correctly identified as normal.

For predictive maintenance, a balance between precision and recall is often critical. High precision reduces unnecessary maintenance checks, while high recall ensures fewer missed failures.

© 2025 UDOO Lab - Predictive Maintenance & LLMs