IN THE CLAIMS:

1-15. canceled

16. (previously presented) A method of fabricating a non-volatile memory transistor comprising the steps of:

preparing a semiconductor substrate;

forming a gate stack on the substrate, as follows:

depositing a single layer of high-k dielectric material, without an underlying oxide insulator layer and an overlying oxide insulator layer;

exposing the high-k dielectric material to an ionized species;

in response to the ionized species exposure,
inducing trapping centers in the high-k dielectric material; and
forming an electrode layer overlying the high-k
dielectric with the charge trapping centers; and

forming drain and source regions on opposite sides of the gate stack.

17. (original) A method as in claim 16 wherein the high-k dielectric material comprises at least one of aluminum oxide (Al₂O₃), hafnium oxide (HfO₂), zirconium oxide (ZrO₂), titanium oxide (TiO₂), tantalum oxide (Ta₂O₅), cesium oxide (CeO₂), lanthanum oxide (La₂O₃), tungsten oxide (WO₃), yttrium oxide (Y₂O₃), bismuth silicon oxide (Bi₄Si₂O₁₂), barium strontium oxide (Ba_{1-x}Sr_xO₃), lanthanum aluminum oxide (LaAlO₃), hafnium silicate (HfSiO₄), zirconium silicate (ZrSiO₄), aluminum hafnium oxide (AlHfO), aluminum oxynitride (AlON), hafnium

BEST AVAILABLE COPY

silicon oxynitride (HfSiON), zirconium silicon oxynitride (ZrSiON), barium titanate (BaTiO₃), strontium titanate (SrTiO₃), lead titanate (PbTiO₃), barium strontium titanate (BST) (Ba_{1-x}Sr_xTiO₃), lead zirconium titanate, lead lanthanum titanate, bismuth titanate, strontium titanate, lead zirconium titanate (PZT (PbZr_xTi_{1-x}O₃)) barium zirconium titanate, strontium bismuth tantalate, lead zirconate (PbZrO₃), PZN (PbZn_xNb_{1-x}O₃), PST (PbSc_xTa_{1-x}O₃), or PMN (PbMg_xNb_{1-x}O₃).

18-19. canceled

- 20. (previously presented) A method as in claim 16 wherein exposing the high-k dielectric material to the ionized species includes exposing the high-k dielectric to a species selected from the group consisting of oxygen, nitrogen, and hydrogen.
- 21. (previously presented) A method as in claim 16 wherein exposing the high-k dielectric material to the ionized species includes exposing the high-k dielectric material to a plasma for an exposure time in the range of about 10 seconds and 100 seconds.
- 22. (previously presented) A method as in claim 16 wherein depositing the high-k dielectric material includes depositing using an ALD method.
- 23. (previously presented) A method as in claim 16 further comprising a densification anneal step after the deposition of the high-k dielectric material.

- 24. (original) A method as in claim 16 wherein the formation of the drain and source regions comprises an angle source and drain implantation.
- 25. (previously presented) A method as in claim 16 wherein the semiconductor substrate is selected from a group consisting of SOI substrate, bulk silicon substrate, and insulator substrate.
- 26. (original) A method as in claim 16 wherein the memory transistor is a multi-bit memory transistor.
- 27. (previously presented) A method as in claim 16 wherein exposing the high-k dielectric material to an ionized species includes using an ion energy in the range of about 10 to 300 keV and a dose in the range of about 1×10^{14} to 1×10^{17} .
- 28. (previously presented) A method as in claim 16 wherein exposing the high-k dielectric material to an ionized species includes generating a plasma using an inductively coupled plasma (ICP) source.