Algoritmi e Strutture Dati

a.a. 2019/20

Prima prova intermedia del 13/01/2020

Cognome:	Nome:
Matricola:	E-mail:

- 1. a) Dare la definizione di **antenato** di un nodo in un albero T.
 - b) Sia T un albero binario di ricerca contenente n chiavi **distinte**. Siano inoltre k_1 , k_2 due chiavi contenute in T. Scrivere una funzione **efficiente in C** antenato(Tree t, int k_1 , int k_2) che restituisce I se k_1 è un antenato di k_2 in T, 0 altrimenti. Si devono scrivere le eventuali funzioni/procedure ausiliarie utilizzate.
 - c) Determinare e giustificare la complessità della soluzione proposta.
 - d) Scrivere i tipi in C Tree e Node.
- 2. Realizzare una funzione **efficiente** *triplo* che, dato un array A di n interi, verifica se esiste una coppia di indici i, j tali che A[j] = 3 * A[i]. Restituisce l e i corrispondenti indici se la coppia esiste, 0 altrimenti.

Analizzare la complessità e scrivere le eventuali funzioni/procedure ausiliarie utilizzate.

3. Per un certo problema sono stati trovati tre algoritmi risolutivi $(A_1, A_2 e A_3)$ con i seguenti tempi di esecuzione (dove n rappresenta la dimensione dei dati di ingresso):

A₁:
$$T(n) = n^2/2 + n^2 \log n$$

A₂:
$$T(n) = 4T(n/2) + n^2$$

A₃:
$$T(n) = 8T(n/2) + n^2 \log n$$

Si dica quale dei tre algoritmi è preferibile per *n* sufficientemente grande. <u>Si forniscano</u> giustificazioni formali. In caso contrario l'esercizio non verrà valutato pienamente, anche in presenza di risposte corrette.