超声波在固体中的传输 - 实验报告

基本信息

• 姓名: 夏弘宇

• 学号: 2023011004

• 实验日期: 2025年3月19日

• 实验组/台号: L4

实验目的

1. 掌握超声波在固体中传播时的波速测量方法。

2. 观察超声波不同波型的转换。

3. 学习超声波探测的基本原理及应用。

实验仪器

- 超声波试验仪
- 超声试验仪衰减器
- 直探头、斜探头、可变角探头
- 测试样、纯净水

数据处理

1. 声速测量

方法: 脉冲波反射法

公式:
$$c_l=rac{2H}{t_2-t_1},c_s=rac{2(R-r)}{t_2-t_1}$$

波型	衰减分 贝 (dB)	示波器时间 分度 值 M(μs/div)	第1回波峰 位 t ₁ (μs)	第2回波峰 位 t ₂ (μs)	高度/半径 (mm)	声速 (m/s)
纵波	88	10	19.20	38.00	H=60	$egin{array}{l} c_l = \ 6.383 imes \ 10^3 \end{array}$
横波	75	10	24.80	44.00	$R_1=30$ \\$R_2=60\$	$c_s = \ 3.125 imes \ 10^3$

试样(铝)密度: ρ=2700 kg/m³

速度比值: $T=rac{c_I}{c_s}=2.04$

弹性模量: $E=rac{
ho c_s^2(3T^2-4)}{T^2-1}=7.077 imes 10^{10}~\mathrm{Pa}$

泊松系数: $\sigma = rac{T^2-2}{2(T^2-1)} = 0.342$

2. 波型转换观察及表面波测量

回波信号幅度、峰位随入射角的变化现象: 波列由宽到窄、幅度由大到小(峰位靠近)

表面波波速: $c_R=rac{2L}{t_2-t_1}$

方法	衰减分 贝 (dB)	示波器时间分度 值 M(μs/div)	第1回波峰 位 t_1 (µs)	第2回波峰 位 t_2 (µs)	距离I (mm)	表面波声速 $c_R({ m m/s})$
固定法	30	5	39.20	59.40	30	$2.970 imes 10^3$
移动法	30	5	39.80	53.80	20	$2.857 imes 10^3$

3. 超声波探测缺陷

3.1 直探头

衰减: 80 dB; **示波器**: 时间分度值 M=10 μs/div,幅度分度值 500 mV/div

公式:

• 扩散角: $\theta = 2 \arctan \frac{x_2 - x_1}{2H_B}$

• 缺陷深度: $H = 0.5c_l \times (t_2 - t_1)$

探头相对 位置 $x_0(mm)$	探头相对 位置 $x_1(mm)$	探头相对 位置 $x_2(mm)$	缺陷 回波 幅值 (V)	通孔B 距 测 试面距 离 H_B (mm)	扩 散 角 θ(°)	缺陷 回波 峰位 t ₁ (µs)	底面 回波 峰位 t ₂ (µs)	竖孔 C深 度 (mm)
49	45	53	1.74	50	9.14	14.4	18.4	12.77

3.2 45°斜探头

探头相对 位置 $x_A(mm)$	探头相对 位置 $x_B(mm)$	折射 角 β(°)	探头相对 位置 $x_D(mm)$	入射点到 探头前沿 的距离 $L_0(mm)$	A 孔 回 波位 路 破 位 (µs)	B 孔回 波位 路 波位 路 位 位 (µs)	D孔回 波峰 位映 陷回 波 位 (µs)
28	88	45	108	12	23	50	31

公式:

•
$$\beta = \tan^{-1}\left(\frac{(x_B - x_A) - (L_B - L_A)}{L_B - L_A}\right)$$

$$\bullet \ L_0 = H_B \tan \beta + L_B - x_B$$

$$ullet$$
 $rac{H_D-H_A}{t_D-t_A}=rac{H_B-H_A}{t_B-t_A}$ 可解得 $H_D=23mm$

•
$$L_D = x_D + L_0 - H_D tan \beta = 97mm$$

实验总结

本次实验主要分为声速测量与缺陷探测两大类任务,原理主要是几何关系与速度关系,难度在于调整探头使得幅度最大,需要反复调整。

缺陷探测的时候,尤其是用斜探头是,难点在于将波峰与响应的缺陷对应起来;这还得与直观上的距离远近来判断不同缺陷对应波峰的相对位置,方便判断。

通过本次实验,我掌握了超声波在固体中传播时的波速测量方法,以及通过示波器探测金属缺陷的方法。感谢助教老师在实验过程中对我的悉心指导与帮助,受益匪浅!

原始数据记录

附录 2 实验测量费现记录参考宏格

实验阻目: 波传精

姓名: 夏弘宁, 學母 2023011004 实验组号: <u>L04</u>, 实验台号: _____, 实验日期20250319

1. 声速测湿(纵波、横波)

班 型	蹇減分贝 (dB)	示波器时间 分度值 M(µs/div)	第1回波峰位 和 (µs)	第 2 回波峰位 カ (µs)	高度/半径 (mm)	声 <u>速</u> (m/s)
级人过	88	10	19.20	38.00	H= 60	c= 6.383×103
模议	75	10	24.80 25.65	44.00	$R_1 = 30$ $R_2 = 60$	c1=3.125×103

近伴(組)密度: $\rho = 2700 \text{kg/m}^3$ 速度比低: $T = \frac{c_I}{c_s} = 2.04$ 郊性根型: $E = \frac{\rho c_s^2 (3T^2 - 4)}{T^2 - 1} = 7.077 \text{x lo}^{10}$ 泊松系数: $\sigma = \frac{T^2 - 2}{2(T^2 - 1)} = 0.342$

2. 波型转换观察及表面波测量

回波信号幅度、峰位随入射角的变化现象:

波到由宽到窄、幅度由大到中 (峰位靠近)

表面波波速:

方法	衰减分贝 (dB)	示波器时间 分度值 M(μs/div)	第 1 回波峰位 t ₁ (μs)	第 2 回波峰位 t ₂ (μs)	距离 <i>l</i> (mm)	表面波声速 c _R (m/s)
固定法	30	5	39.20	59.40	30	2.970x103
移动法	30	5	39.80	53. %	20	2.857×103

3. 超声波探测缺陷

直探头——

探头相对位置		缺陷回波	通孔 B 距	扩散角	缺陷回波	底面回波	竖孔 C	
<i>x</i> ₀	x_1	<i>x</i> ₂	幅值 U _{max} (V)	测试面距离 H _B (mm)	θ(°)	峰位 t ₁ (μs)	峰位 t ₂ (μs)	深度(mm)
49	45	53	1-61.74	50	9.14	14.4	18.4	12.77

45° 斜探头——

扩散角测量及缺陷 D 的定位测量数据表格自拟。

 $808 \text{ Lo} \times 0 = \frac{\text{ta}}{23} \text{mm}$ $\Rightarrow \text{Hb} = 23 \text{ mm}$ $\Rightarrow \text{Hb} = 23 \text{ mm}$ $\Rightarrow \text{Lp} = 97 \text{ mm}$ Lo= 97 mm