Reinforcement Learning in Categorical Cybernetics

Jules Hedges, Riu Rodríguez Sakamoto

Mathematically Structured Programming group, Department of Computer and Information Sciences, University of Strathclyde

riu.rodriguez-sakamoto@strath.ac.uk

7th International Conference on Applied Category Theory, Oxford

June, 2024

Riu Rguez

Sakamoto

Introduction

and contro

Optics 101

Bellman operators
Policies

Model update: Iteration functo

Environments

Summa

Introduction

- 1. Search for optimal control solutions is difficult:
 - LQR: Linear system dynamics, quadratic cost.
 Analytic closed solution
 - MDP and nonlinear dynamics, arbitrary cost.
 Iterative solution
 - RL: Unknown environment dynamics, unknown cost.
 What is the structure for solution methods here?

[MuJoCo]

Riu Rguez Sakamoto

Introduction

Estimation and control

Optics 101 Bellman operators

Policies

Model update:

Iteration functor Model, Agent &

Environments

Summar

Introduction

Design of RL algorithms is a craft. There is a discrepancy in specificity between pseudocode and (informal) diagrams. Can we do better?

```
Sarsa (on-policy TD control) for estimating Q \approx q_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Loop for each step of episode:
Take action A, observe R, S'
Choose A' from A' using policy derived from A' (e.g., a'-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]
S \leftarrow S'; A \leftarrow A'; until A' is terminal
```


Figure 3.1: The agent–environment interaction in a Markov decision process.

Algorithm 1 PPO, Actor-Critic Style

```
\label{eq:formula} \begin{aligned} & \textbf{for iteration} = 1, 2, \dots \ \textbf{do} \\ & \textbf{for actor} = 1, 2, \dots, N \ \textbf{do} \\ & \text{Run policy } \pi_{\theta_{\text{old}}} \text{ in environment for } T \text{ timesteps} \\ & \text{Compute advantage estimates } \hat{A}_1, \dots, \hat{A}_T \\ & \textbf{end for} \end{aligned} \qquad \hat{d}_t = \delta_t + (\gamma \lambda) \delta_{t+1} + \dots + (\gamma \lambda)^{T-t+1} \delta_{T-1}, \\ & \text{where } \delta_t = r_t + \gamma V(s_{t+1}) - V(s_t) \end{aligned}
```

```
Optimize surrogate L wrt \theta, with K epochs and minibatch size M \leq NT
```

 $\theta_{\mathrm{old}} \leftarrow$ end for

Control problems

Riu Rguez Sakamoto

Introduction

Estimation

and control

Optics 101 Bellman operators

Policies

Model update: Iteration functo

Model, Agent &

Environments

Summa

Environment:
$$\begin{cases} \text{state space} & S \\ \text{action space} & A \end{cases}$$
 transition
$$t: S \times A \rightarrow S$$
 immediate reward
$$r: S \times A \rightarrow \mathbb{R}$$

Objective: Choose a policy $\pi: S \to A$ to optimize long-run reward. For a fixed $0 < \gamma < 1$, the long-run reward is given by a discounted sum

$$egin{align} V_\pi:S o\mathbb{R} &V_\pi(s_0)=\mathbb{E}_{s'\sim t(s,\pi(s))}\sum_{k=0}^\infty \gamma^k r(s_k,\pi(s_k))\ Q_\pi:S imes A o\mathbb{R} &Q_\pi(s_0,a_0)=\mathbb{E}_{s'\sim t(s,\pi(s))}\sum_{k=0}^\infty \gamma^k r(s_k,a_k) \end{aligned}$$

Riu Rguez Sakamoto

Introduction

Estimation and control

Ontics 101

Bellman operators

Policies

Models

Model update: Iteration functor

Model, Agent &

Environments

Summa

Control problems

Examples:

DP: Value improvement (MDP known)

$$V(s) \leftarrow \mathbb{E}_{(r,s') \sim t(s,\pi(s))}[r + \gamma V(s')]$$

$$V(s) \leftarrow \underbrace{\mathbb{E}_{(r,s') \sim t(s,\pi(s))}[r + \gamma V(s')]}_{\text{update target}} \qquad (\alpha = 1)$$

update target

• RL: The SARSA algorithm (MDP unknown, aka "model-free"): Sampling (s, a, r, s', a')

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \underbrace{[r + \gamma Q(s', a')]}_{\text{update target}}$$
$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \underbrace{[r + \gamma Q(s', a')]}_{\text{update target}}$$

Separation of concerns: Update target computation and update operation.

Riu Rguez Sakamoto

Introductio

Estimation

and con

Optics 101
Bellman operator

Policies

Models

Model update:

Iteration functor Model, Agent &

Environments

Summ

Optics 101

Lenses and optics a way to specify bidirectional processes as morphisms. 1

$$\begin{aligned} \mathbf{Lens}(\mathcal{C}) \left(\begin{pmatrix} X \\ X' \end{pmatrix}, \begin{pmatrix} Y \\ Y' \end{pmatrix} \right) &= \mathcal{C}(X,Y) \times \mathcal{C}(X \times Y', X') \\ \mathbf{Optic}(\mathcal{C}) \left(\begin{pmatrix} X \\ X' \end{pmatrix}, \begin{pmatrix} Y \\ Y' \end{pmatrix} \right) &= \int^{M:\mathcal{C}} \mathcal{C}(X,Y \otimes M) \times \mathcal{C}(M' \otimes Y', X') \end{aligned}$$

States and continuations: When the monoidal unit of \mathcal{C} is terminal (e.g. Markov categories),

$$\mathbf{Optic}\left(I, \begin{pmatrix} X \\ X' \end{pmatrix}\right) \cong \mathcal{C}(I, X) \qquad \mathbb{K} \begin{pmatrix} X \\ X' \end{pmatrix} = \mathbf{Optic}\left(\begin{pmatrix} X \\ X' \end{pmatrix}, I\right) \cong \mathcal{C}(X, X')$$

Let $\mathbb{K} : \mathbf{Optic}^{\mathrm{op}} \to \mathbf{Set}$ be the continuation functor, represented by I.

¹Here the forwards maps are above (sorry!)

Riu Rguez Sakamoto

Introduction

and contro

Bellman operators

Policies

Policies

Model update: Iteration functo

Environment

Environment

Summ

Bellman operators

$$\mathbf{Optic}\left(\binom{X}{X'},\binom{Y}{Y'}\right) = \int^{M:\mathcal{C}} \mathcal{C}(X,Y\otimes M) \times \mathcal{C}(M'\otimes Y',X')$$

The value improv. map is the evaluation of the Bellman operator on the state s.

$$egin{aligned} \mathfrak{B}_{\pi} &: L^{\infty}(S)
ightarrow L^{\infty}(S) & ext{in } \mathbf{CMet} \ \mathfrak{B}_{\pi} &: \mathbb{R}^{S}
ightarrow \mathbb{R}^{S} & ext{in } \mathbf{Set} \ \mathfrak{B}_{\pi}(V)(s) &= \mathbb{E}_{(r,s') \sim t(s,\pi(s))}[r + \gamma V(s')] \end{aligned}$$

A (linear) Bellman operator \mathfrak{B}_{π} is the \mathbb{K} -image of the Bellman operator optic.

Is there a similar construction for RL algorithms?

Riu Rguez Sakamoto

Introduction

Estimation and contro

Optics 101

Bellman operators

Policies

Policies

Model update:

Iteration functor

Environment

Liiviioiiiiei

Bellman operators

Bellman operator (Value Iteration)

parametric Bellman function (SARSA)

 $\mathsf{Para}_{\mathsf{Set}}(\mathbb{K})$ is the (external) Para lifting of \mathbb{K} .

A (linear) parametric Bellman function G is $Para_{Set}(\mathbb{K})$ -image of a parametrised optic.

$$\mathsf{Para}_{\mathsf{Set}}(\mathbb{K})(\mathfrak{B}): \Upsilon \times \mathbb{R}^{S \times A} \to S \times A \times \mathbb{R} \qquad \hookrightarrow \mathbb{R}^{S \times A} \quad \text{in Set}$$

$$((s, a, r, s', a'), Q) \mapsto (s, a, r + \gamma Q(s', a')) \qquad \mapsto I_{(s, a)}[r + \gamma Q(s', a')]$$

Policies

Riu Rguez Sakamoto

Policies

Model, Agent &

Recall the SARSA algorithm (MDP unknown):

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha[r + \gamma Q(s', a')]$$

How do we get the reward r', next state s', next action a' if the MDP is unknown?

$$P: \mathbb{R}^{S \times A} \to (DA)^S$$

$$Q \mapsto \pi(s) = \operatorname{argmax}_a Q(s, a)$$

When S = 1, $P : (S \to A \to \mathbb{R}) \to (S \to DA) \cong (A \to \mathbb{R}) \to DA$.

Riu Rguez Sakamoto

Introduction

Estimation and contro

Optics 101

Policies

Policies Models

Model update:

Iteration functor Model, Agent &

Environments

Summ

Learning structure of models:

Bootstrap (Dynamic Programming) Bootstrap + sample (Temporal Difference, like SARSA or Q-learning) $S \times A \times \mathbb{R} \hookrightarrow \Delta(\mathbb{R}^{S \times A})$ Sample (Monte Carlo)

Reinforcement Learning model lens

Riu Rguez Sakamoto

Models

Model update:

Model, Agent &

Summary

interaction with environment via an agent

Iteration contexts

Riu Rguez Sakamoto

Introduction

and contro

Optics 101 Bellman operators

Policies Models

Model update: Iteration functors

Model, Agent &

Environments

Summa

$$\mathbf{Optic}(\mathcal{C}) o \mathbf{Set} \hspace{0.5cm} \cong \hspace{0.5cm} \begin{cases} W: \mathcal{C} imes \mathcal{C}^\mathrm{op} o \mathbf{Set} \ W(M \otimes X, M \otimes Y) o W(X, Y) \hspace{0.5cm} \mathsf{nat.} \hspace{0.5cm} \mathsf{in} \hspace{0.5cm} X, Y \end{cases}$$

For a symm. mon. cat. C, an iteration context for C is \mathbb{I} : **Optic** $(C) \to \mathbf{Set}$,

$$\mathbb{I}\begin{pmatrix} X \\ X' \end{pmatrix} = \int^{M:\mathcal{C}} \mathcal{C}(I, M \otimes X) \times \mathcal{C}(M \otimes X', M \otimes X)$$

For a representative element $(M, x_0, i) \in \mathbb{I}{\binom{X}{X'}}$:

- M: state space
- $x_0: I \to M \otimes X$: initial state
- $i: M \otimes X' \to M \otimes X$: iterator

Riu Rguez Sakamoto

Introductio

and contro

Optics 101 Bellman operators

Policies Models

Model update: Iteration functors

Model, Agent & Environment

Environments

Summa

Let \mathcal{D} be a symm. mon. cat.,

 $W: \mathcal{D} \to \mathbf{Set}$ a symm. lax mon. functor.

The action of $\int W$ on $\mathcal D$ given by $(M,w) \bullet X = M \otimes X$ generates

- the bicategory $\mathbf{Para}^W(\mathcal{D})$ (morphism: $M \otimes X \to Y$)
- the 1-category $\pi_0^*(\mathbf{Para}^W(\mathcal{D}))$ by quotienting invertible 2-cells
 - UP: Freely extends \mathcal{D} with states $\forall X \in \mathcal{D}, \forall w \in F(X).w : I \to X$.

For $W = \mathbb{I} : \mathbf{Optic}(\mathcal{C}) \to \mathbf{Set}$, the symm. mon. cat. $\mathbf{Optic}^{\mathbb{I}}(\mathcal{C}) = \pi_0^*(\mathbf{Para}^{\mathbb{I}}(\mathbf{Optic}(\mathcal{C})))$ extends $\mathbf{Optic}(\mathcal{C})$ with states $I \to \begin{pmatrix} X \\ X' \end{pmatrix}$ defined by elements of $\mathbb{I}\begin{pmatrix} X \\ X' \end{pmatrix}$.

13/22

Reinforcement Learning model lens

Riu Rguez Sakamoto

Introduction

Estimation and control

O-ei-- 101

Bellman operato

Policies

Model update:

Iteration functors

Model, Agent &

- -

Summary

interaction with environment via an agent

Riu Rguez Sakamoto

Introduction

and cont

Ontics 101

Bellman operator

Policies Models

Model update: Iteration functors

Model, Agent & Environment

Environments

Summa

Reinforcement Learning model lens

interaction with environment via an agent

- Step-size update: $Q_{\text{new}} \leftarrow (1 \alpha)Q_{\text{old}} + \alpha(\text{target})$
- Gradient descent, momentum²

²Cruttwell, Gavranović, Ghani, Wilson, Zanasi: Categorical Foundations of Gradient-Based Learning (Proc.ESOP 2022)

Riu Rguez Sakamoto

Introductio

Estimation and control

and control

Bellman operators

Policies Models

Model update: Iteration functor

Model, Agent &

Environments

Summa

Model, Agent & Environment

- Model: Optic that parametrises an agent, extended with an update iteration
- Agent: (Model-)parametrised optic
- Environment: Iteration context for optics

DP: The data defining the environment is the same as the data defining the model.

RL: The model is an approximation of the environment.

Riu Rguez Sakamoto

Introduction

Estimation and contro

Bellman operators

Policies Models

Model update: Iteration functo

Model, Agent &

Environments

Summar

Environments: Iteration contexts for optics

The representable functor $\mathbb{I}_{\text{env}}: \mathbf{Optic}(\mathbf{Optic}^{\mathbb{I}}(\mathcal{C})) \to \mathbf{Set}$ maps an object (X, X', Y, Y') to a set with elements

$$(x_0, k, i) \in \mathbb{I}_{\text{env}}\left(\binom{X}{X'}, \binom{Y}{Y'}\right) \cong \int_{-\infty}^{M,M':\mathcal{C}} \mathcal{C}(I, M \otimes X) \times \mathcal{C}(M \otimes Y, M' \otimes Y') \times \mathcal{C}(M' \otimes X', M \otimes X)$$

Riu Rguez Sakamoto

Introduction

Estimation and control

Optics 101

Policies

Model update:

Iteration functor Model, Agent &

Environments

Summai

Environments: Examples

Online (MDP: M = S, POMDP)

Offline (dataset, ER)

Contextual bandit

Multi-armed bandit

String diagram: Putting the pieces together

Riu Rguez Sakamoto

Model update:

Model, Agent &

Environments

Riu Rguez Sakamoto

Bellman operators

Model update:

Model, Agent &

Environments

Summary

String diagram: Putting the pieces together

Summary

Riu Rguez Sakamoto

Introductio

Estimation and control

Optics 101 Bellman operators

Policies Models

Model update: Iteration functor Model, Agent &

Environments

Summary

Identified main building blocks of RL

• String diagrammatic syntax helps visualise design distinctions

- Target computation, update operation
- Linear/non-linear, parametric/non-parametric Bellman operators
- Learning: Bootstrap vs sampling

Dynamic Programming	Known environment	Backward induction
Reinforcement Learning	Unknown environment	RL lens

- Online vs offline environments
- ...
- Work in progress:
 - Compositional solution concepts. Relation to an open systems theory
 - Multi-agent RL
 - Convergence of Q-learning

Riu Rguez Sakamoto

Introduction

Estimation and contro

Optics 101

Bellman operator

Models

Model update:

Model, Agent &

Livitoiiiieii

Environment

Summary

Riu Rguez Sakamoto

Introduction

Estimation and control

Optics 101

Bellman operator Policies

Models

Model update:

Iteration functor Model, Agent &

Environmen

Summary

On-policy, off-policy algorithms

Figure 1: SARSA, an on-policy algorithm.

Riu Rguez Sakamoto

Introduction

Estimation and contro

Optics 101

Bellman operator

Models

Model update:

Iteration functors Model, Agent &

Environmer

Summary

On-policy, off-policy algorithms

Figure 2: Q-learning, an off-policy algorithm.

Policies

Model update:

Iteration functor

Environment

Summary

Feedback type for learning models

• Dynamic Programming: $\Upsilon = I$

$$V(s) \leftarrow \max_{a} \mathbb{E}_{(s',r) \sim t(s,a)}[r + \gamma V(s')]$$

• Monte Carlo: $\Upsilon = SA\mathbb{R}^n$ (*n*-step episodes)

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \sum_{t=0}^{n} \gamma^{t} r_{t}$$

• Temporal Difference: $\Upsilon = SA\mathbb{R}SA$

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha[r + \gamma Q(s', a')]$$

Riu Rguez Sakamoto

Introductio

Estimation and control

and contro

Bellman operators

Policies Models

Model update: Iteration functo

Model, Agent & Environment

Environmen

Summary

Ablation maps

Removing either the bootstrapping or the sampling component produces other existing algorithms:

Update	w/o bootstrap	w/o sampling
Q-learning	1-step Monte Carlo	Value iteration
Exp-SARSA	1-step Monte Carlo	Value improvement