

Description

The VSM95N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =95A

 $R_{DS(ON)}$ <5.1m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 8.5m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM95N03-T2	VSM95N03	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25[°]Cunless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _G s	±20	V A	
Drain Current-Continuous	I _D	95		
Drain Current-Continuous(T _C =100°C)	I _D (100°C) 67.2		Α	
Pulsed Drain Current (Note 1)	I _{DM}	380	Α	
Maximum Power Dissipation	P _D	100	W	
Derating factor		0.67	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	150	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	$R_{ heta JC}$	1.5	°C/W

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (TC=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1	1.5	2.2	V
Drain-Source On-State Resistance	В	V _{GS} =10V, I _D =20A	-	4.1	5.1	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =15A	-	5.5	8.5	
Forward Transconductance	G FS	V _{DS} =5V,I _D =20A	30	-	-	S
Dynamic Characteristics (Note4)	•					•
Input Capacitance	C _{lss}		-	1784	-	PF
Output Capacitance	C _{oss}	V _{DS} =15V,V _{GS} =0V, F=1.0MHz	-	266	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVIDZ	-	212	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V _{DD} =5V,I _D =20A	-	7	-	nS
Turn-on Rise Time	t _r		-	6	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =6 Ω	-	30	-	nS
Turn-Off Fall Time	t _f		-	8	-	nS
Total Gate Charge	Qg	\/ 45\/ L 00A	-	38.4	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =15V, I_{D} =20A, V_{GS} =10V	-	5.8	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	7.9	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	95	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, I _F = 20A	-	-	47	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	-	25	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				y LS+LD)

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=15V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

 T_C -Case Temperature($^{\circ}C$)

Figure 9 Power De-rating

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance