$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i}{\sqrt{2} \; (k+k^3) (2 r_1 + r_5)}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{k^2 (2 r_1 + r_5)}$	$\frac{1}{\sqrt{2} \; (k^2 + k^4) (2 r_1 + r_5)}$	$-\frac{i}{\sqrt{2}\;(k\!+\!k^3)(2r_1\!+\!r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha \beta$	$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$ au_1^{\#2} +^{lpha}$

_	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{\#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{lphaeta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$k^2 (2r_1 + r_5) + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$-\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	$\frac{i k t_1}{3}$	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}ikt_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ākt₁
$\omega_1^{\#2} \uparrow^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\bar{\imath}kt_1$	0	0	0

$\sigma_{2}^{\#1}$	$\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$		- ($-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$		0	
$ au_{2}^{\#1}$	$\dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$		$\frac{4k^2}{(1+2k^2)^2t_1}$		0		
$\sigma_{2}^{\#1}$ †	αβχ	0		0		$\frac{2}{2k^2r_1+t_1}$		
	$\sigma_{0}^{\#1}$	0	0)	0	0		
	47	_						

 $\tau_{2+\alpha\beta}^{\#1} = \sigma_{2-\alpha\beta\chi}^{\#1}$

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

$\sigma_{0}^{\#1} + \frac{1}{(1+2k^2)^2 t_1} \frac{t_0^{\#1}}{(1+2k^2)^2 t_1} \frac{t_0^{\#2}}{(1+2k^2)^2 t_1} 0 0$ $\tau_{0}^{\#1} + \frac{i\sqrt{2}k}{(1+2k^2)^2 t_1} \frac{2k^2}{(1+2k^2)^2 t_1} 0 0$ $\tau_{0}^{\#2} + \frac{0}{(1+2k^2)^2 t_1} \frac{0}{0} 0 0$ $\sigma_{0}^{\#1} + \frac{0}{0} 0 0 0 0 0$

Lagrangian density
$-t_1 \omega_{I}^{\alpha I} \omega_{K\alpha}^{K} - \frac{1}{3} t_1 \omega_{I}^{K\lambda} \omega_{K\lambda}^{I} + \frac{1}{3} t_1 \omega_{K\lambda}^{I} \omega_{K\lambda}^{K\lambda} + f^{\alpha\beta} \tau_{\alpha\beta} +$
$\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - r_5 \partial_i \omega^{\kappa\lambda}_{\ \kappa} \partial^i \omega_{\lambda}^{\ \alpha} - \frac{2}{3} r_1 \partial^\beta \omega^{\theta\alpha}_{\ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \kappa} - \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{\ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} +$
$\frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - r_5 \partial_{\alpha} \omega_{\lambda}^{ \alpha}_{ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} + r_5 \partial_{\theta} \omega_{\lambda}^{ \alpha}_{ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{ \alpha}_{ \theta} \partial_{\kappa} \omega^{\kappa\lambda\theta} +$
$2r_5\partial_\theta\omega_{\lambda\alpha\partial\kappa}^{\alpha\partial\kappa}\omega^{\kappa\lambda\theta}-\tfrac{1}{3}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\theta}-\tfrac{2}{3}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta}-\tfrac{1}{3}t_1\partial^\alpha f_{\kappa}^{}\partial^\kappa f_{\alpha\lambda}+$
$t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{,} + t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{,} + 2 t_1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{,} - t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{,} +$
$\frac{1}{3} t_1 \ \omega_{i\theta\kappa} \ \partial^{\kappa} f^{i\theta} + \frac{4}{3} t_1 \ \omega_{i\kappa\theta} \ \partial^{\kappa} f^{i\theta} - \frac{1}{3} t_1 \ \omega_{\theta i\kappa} \ \partial^{\kappa} f^{i\theta} + \frac{2}{3} t_1 \ \omega_{\theta \kappa i} \ \partial^{\kappa} f^{i\theta} -$
$t_1 \omega_{_{I}\alpha}^{\alpha} \partial^{_{K}} f^{_{_{K}}} - t_1 \omega_{_{I}\lambda}^{\lambda} \partial^{_{K}} f^{_{_{K}}} + \tfrac{1}{3} t_1 \partial^{_{\alpha}} f^{_{_{A}}}_{} \partial^{_{K}} f_{_{\lambda\alpha}} + \tfrac{1}{3} t_1 \partial_{_{K}} f_{\alpha}^{} \partial^{_{K}} f_{\alpha}^{} +$
$\frac{2}{3}t_1\partial_\kappa f^\lambda_{\ \theta}\partial^\kappa f_\lambda^{\ \theta}-t_1\partial^\alpha f^\lambda_{\ \alpha}\partial^\kappa f_{\lambda\kappa}+\frac{2}{3}r_1\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta}-\frac{2}{3}r_1\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta}+$
$\frac{2}{3} r_1 \partial^{\beta} \omega_{I}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} - \frac{8}{3} r_1 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}$

Source constraints			
SO(3) irreps	#		
$\sigma_0^{\#1} == 0$	1		
$\tau_{0^{+}}^{\#2} == 0$	1		
$\tau_{0^{+}}^{\#1} - 2 ik\sigma_{0^{+}}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	თ		
$\tau_1^{\#1\alpha} == 0$	3		
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3		
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5		
Total #:	17		

Massive particle					
Pole residue:	$-\frac{1}{r_1} > 0$				
Polarisations:	5				
Square mass:	$-\frac{t_1}{2r_1} > 0$				
Spin:	2				
Parity:	Odd				
	Pole residue: Polarisations: Square mass: Spin:				

, O dual:	
Quadratic pole	!
Pole residue:	$\frac{1}{2} > 0$
·	$\frac{(2r_1+r_5)t_1^2p^2}{(2r_1+r_5)t_1^2p^2} > 0$
Polarisations:	2
•	

Unitarity conditions $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$