也是一个隐藏病毒的好地方。真正有攻击性的病毒甚至可以为引导记录扇区和自身重新分配磁盘空间,并相应地更新磁盘分布位图或空闲表。这需要对操作系统的内部数据结构有详细的了解,不过Virgil有一个很好的教授专门讲解和研究操作系统。

当计算机启动时,病毒把自身复制到RAM中,要么隐藏在顶部,要么在未使用的中断向量中。由于此时计算机处于核心态,MMU处于关闭状态,没有操作系统和反病毒程序在运行,所以这对病毒来说是天赐良机。当一切准备就绪时,病毒会启动操作系统,而自己则往往驻留在内存里,所以它能够监视情况变化。

然而,存在一个如何获取今后对系统的控制权的问题。常用的办法要利用一些操作系统管理中断向量的技巧。如Windows系统在一次中断后并不重置所有的中断向量。相反,系统每次装入一个设备驱动程序,每一个都获取所需的中断向量。这一过程要持续一分钟左右。

这种设计给了病毒以可乘之机。它可以捕获所有中断向量,如图9-29a所示。当加载驱动程序时,部分向量被覆盖,但是除非时钟驱动程序首先被载入,否则会有大量的时钟中断用来激活病毒。丢失了打印机中断的情况如图9-29b所示。只要病毒发现有某一个中断向量已被覆盖,它就再次覆盖该向量,因为这样做是安全的(实际上,有些中断向量在启动时被覆盖了好几次,Virgil很明白是怎么回事)。重新夺回打印机控制权的示意图如图9-29c所示。在所有的一切都加载完毕后,病毒恢复所有的中断向量,而仅仅为自己保留了系统调用陷阱向量。至此,内存驻留病毒控制了系统调用。事实上,大多数内存驻留病毒就是这样开始运行的。

图9-29 a) 病毒捕获了所有的中断向量和陷阱向量后, b) 操作系统夺回了打印机中断向量, c) 病毒意识到打印机向量的丢失并重新夺回了控制权

6. 设备驱动病毒

深入内存有点像洞穴探险——你不得不扭曲身体前进并时刻担心物体砸落在头上。如果操作系统能够友好并光明正大地装入病毒,那么事情就好办多了。其实只要那么一点点努力,就可以达到这一目标。解决办法是感染设备驱动程序,这类病毒叫做设备驱动病毒(device driver virus)。在Windows和有些UNIX系统中,设备驱动程序是位于磁盘里或在启动时被加载的可执行程序。如果有一个驱动程序被寄生病毒感染,病毒就能够在每次启动时被正大光明地载人。而且,当驱动程序运行在核心态下,一旦被加载就会调用病毒,从而给病毒获取系统调用的陷阱向量的机会。这样的情况促使我们限制驱动程序运行在用户态,这样的话即使驱动程序被病毒感染,它们也不能像在内核态的驱动程序一样,造成很大的危害。

7. 宏病毒

许多应用程序,如Word和Excel,允许用户把一大串命令写入宏文件,以便日后一次按键就能够执行。宏可附在菜单项里,这样当菜单项被选中时宏就可以运行。在Microsoft Office中,宏可以包含完全用Visual Basic编程语言编写的程序。宏程序是解释执行而不是编译执行的,但解释执行只影响运行速度而不影响其执行的效果。宏可以是针对特定的文档,所以Office就可以为每一个文档建立宏。