Package 'SPADE'

 $\mathrm{May}\ 29,\ 2023$

Title Spatially Expressed Pattern Investication Method With Spatial Transcriptomics Data

Type Package

Version 1.0
Date 2023-03-22
Authors Fei Qin, Feifei Xiao, Guoshuai Cai
Maintainer Fei Qin <fqin@email.sc.edu></fqin@email.sc.edu>
Description We developed SPADE, a spatial pattern investigation method, to identify spatially expressed genes within groups and between groups using spatial transcriptomics data.
License GPL-3
LazyData TRUE
Depends R (ξ = 4.0), mvtnorm, stats
URL https://github.com/thecailab/SPADE
RoxygenNote 7.2.3
VignetteBuilder knitr
Encoding UTF-8
Language en-GB
Suggests rmarkdown
R topics documented:
ComputeGaussianPL
Delta_fit 2 Get_Lambda 3
lengthscale_fit
lengthscale_fit_DE
LL
LL_combin
LL_DE
SPADE_DE
SPADE_estimate
SPADE_norm 9 SPADE_test 9

Delta_fit

Index 10

ComputeGaussianPL

Hyperparameter range.

Description

The range for the hyperparameter in the Gaussian Kernel, which was calculated from the coordinate of all spots.

Usage

```
ComputeGaussianPL(X, compute_distance = TRUE)
```

Arguments

 ${\tt X}$ Cell coordinates matrix n x 2 or kernel matrix computed already compute_distance

Compute the distance matrix using generic function dist, default=TRUE

Value

This function returns the range for the hyperparameter in the Gaussian Kernel.

lrang

The range for the hyperparameter in the Gaussian kernel

Delta_fit

Estimation of the optimal delta

Description

Estimation of the optimal delta in the variance function between groups.

Usage

```
Delta_fit(location, y, L)
```

Arguments

location Spatial coordinates for all spots.

y Read counts data for the gene.

L The length-scale hyperparameter in the kernel function.

Value

This function returns the optimal log transformed delta value.

delta Delta in the variance function.

Tao_hat Estimated optimal gamma value in the variance function.

Get_Lambda 3

 Get_Lambda

Eigenvalue for Kernel matrix

Description

Calculating the eigenvalue for the kernel matrix K.

Usage

```
Get_Lambda(K)
```

Arguments

K

Kernel matrix.

Value

This function returns eigenvalue for the Kernel matrix.

lambda

Eigenvalue for Kernel matrix.

 $length scale_fit$

 $Optimization\ of\ likelihood\ function\ within\ groups$

Description

Optimization of likelihood function within groups.

Usage

```
lengthscale_fit(location, y, L)
```

Arguments

location Spatial coordinates for all spots.

y Read counts data for a gene.

The length-scale hyperparameter in the kernel function.

Value

This function returns likelihood at the point of optimal delta.

results The likelihood with the optimal delta value.

4

lengthscale_fit_DE	Optimization	of likelihood	function	between	groups
--------------------	--------------	---------------	----------	---------	--------

Description

Optimization of likelihood function between groups.

Usage

```
lengthscale_fit_DE(location1, location2, y1, y2, L)
```

Arguments

location1	Spatial coordinates for all spots in group 1.
location2	Spatial coordinates for all spots in group 2.
y1	Read counts data for the gene in group 1.
y2	Read counts data for the corresponding gene in group 2.
L	The length-scale hyperparameter in the kernel function.

Value

This function returns likelihood at the point of optimal delta.

tween groups.

LL Log likelihood function within groups

Description

The log transformed multivariate normally distributed marginal likelihood to identify SE genes within groups.

Usage

```
LL(log_delta, UTy, UT1, S, n)
```

Arguments

log_delta	Log transformed delta in the variance function.
UTy	The expression UTy will need to be re-computed for each gene.
UT1	The expression UT1 only depends on the coordinates X and can be precomputed and reused for every gene.
S	A diagonal matrix used in the spectral decomposition of the covariance.
n	The number of spots for each gene.

Value

This function returns the log likelihood for each delta.

LL_res The log likelihood for each delta value.

LL_combin 5

LL_combin Log likelihood function between groups
--

Description

The log transformed multivariate normally distributed marginal likelihood to identify SE genes between groups.

Usage

```
LL_combin(log_delta, UTy1, UTy2, UT1, UT2, S1, S2, n1, n2)
```

Arguments

$\log_{-}delta$	Log transformed delta in the variance function.
UTy1	The expression UTy will need to be re-computed for the gene in group 1.
UTy2	The expression UTy will need to be re-computed for the gene in group 2.
UT1	The expression UT1 only depends on the coordinates X and can be precomputed and reused for the gene in group 1.
UT2	The expression UT1 only depends on the coordinates X and can be precomputed and reused for the gene in group 2.
S1	A diagonal matrix used in the spectral decomposition of the covariance in group 1.
S2	A diagonal matrix used in the spectral decomposition of the covariance in group 2.
n1	The number of spots for each gene in group 1.
n2	The number of spots for each gene in group 2.

Value

This function returns the log likelihood for each delta.

LL_res The log likelihood for each delta value.

LL_DE Log likelihood function

Description

The \log transformed multivariate normally distributed marginal likelihood .

Usage

```
LL_DE(delta, location, y, L)
```

6 mu_hat

Arguments

delta Delta in the variance function.

location Spatial coordinates for all spots.

y Read counts data for the gene.

L The length-scale hyperparameter in the kernel function.

Value

This function returns the log likelihood for each delta.

LL_res The log likelihood for each delta value.

 ${\sf mu_hat}$ The estimate of mu

Description

The estimate of mean expression level for each gene.

Usage

```
mu_hat(delta, UTy, UT1, S)
```

Arguments

Delta value in the variance function.
 UTy
 The expression UTy will need to be re-computed for each gene,
 UT1
 The expression UT1 only depends on the coordinates X and can be precomputed and reused for each gene.

S A diagonal matrix used in the spectral decomposition of the covariance.

Value

This function returns the estimate of mean expression level for each gene.

mu_h The estimate of mean expression level for each gene.

SPADE_DE 7

$SPADE_DE$ SPADE estimation and test between groups	
--	--

Description

Estimation of optimal parameter in the kernel function to identify SE genes between groups. P values will be provided based on a crossed likelihood ratio test.

Usage

```
SPADE_DE(
  readcounts1,
  readcounts2,
  location1,
  location2,
  mode = "Shape&Strength"
)
```

Arguments

readcounts1	Read counts data for identifying spatially expressed genes in group 1. Each row is a gene and each column is a spot.
readcounts2	Read counts data for identifying spatially expressed genes in group 2. Each row is a gene and each column is a spot.
location1	Spatial coordinates for all spots in group 1.
location2	Spatial coordinates for all spots in group 2.
mode	Different modes for testing including 1. "Strength" to compare pattern strength, 2. "Shape" to compare pattern shapes, 3. "Shape&Strength" to compare pattern shapes and strength together.

Value

This function returns the estimated parameters and some statistics of the SPADE method.

geneid	Gene index.
theta_Gau1	The estimated optimal length-scale hyperparameter in the Gaussian kernel for group $1.$
theta_Gau2	The estimated optimal length-scale hyperparameter in the Gaussian kernel for group 2 .
Gamma1	The estimated optimal Gamma1 for group 1.
Gamma2	The estimated optimal Gamma1 for group 2.
logLik11	The corresponding log likelihood calculated with optimal hyperparameter estimated above for group $1.$
logLik21	The corresponding log likelihood calculated with optimal hyperparameter estimated above for group 2 .
logLik10	The log likelihood calculated with expression value from group 1 and optimal hyperparameter estimated for group 2.

8 SPADE_estimate

logLik20 The log likelihood calculated with expression value from group 2 and optimal hyperparameter estimated for group 1.

Diff The likelihood ratio test statistic is given by $2*(\log \text{Lik}11 + \log \text{Lik}21 -$

logLik10 - logLik20).

Pvalue P values calculated with likelihood ratio test statistic using F test with

degree freedom of one.

Adjust.Pvalue Adjusted P values calculated with the Benjamini and Hochberg method.

 $SPADE_$ estimate SPADE estimation for hyperparameter within groups

Description

Estimation of optimal hyperparameter in the kernel function to identify SE genes within groups.

Usage

```
SPADE_estimate(expr_data, info)
```

Arguments

expr_data Read counts data for identifying spatially expressed genes. Each row is a

gene and each column is a spot.

info Spatial coordinates for all spots.

Value

This function returns the estimated parameters and some statistics of the SPADE method.

GeneID Gene index.

theta_Gau The estimated optimal length-scale hyperparameter in the Gaussian ker-

nel

Gamma_hat The estimated optimal Gamma_1 in the covariance function.

Lik_Gau The log likelihood using optimal hyparameter estimated above.

Examples

```
Y <- matrix(rnorm(10000, 10, 2),100, 100)
info <- matrix(runif(200, 1, 100), 100, 2)
output <- SPADE_estimate(expr_data=Y, info=)
output</pre>
```

SPADE_norm 9

SPADE_norm	SPADE normalization

Description

Normlization of read counts data into continuous data.

Usage

SPADE_norm(readcounts, info)

Arguments

readcounts Read counts data for identifying spatially expressed genes. Each row is a

gene and each column is a spot.

info Spatial coordinates for all spots.

Value

This function returns the normalized continuous data.

regdata The normlized continuous data

 $SPADE_test$ $SPADE\ test\ within\ groups$

Description

Test for identifying SE genes within groups

Usage

SPADE_test(object, location, para)

Arguments

object Read counts data for identifying spatially expressed genes. Each row is a

gene and each column is a spot.

location Spatial coordinates for all spots.

para Parameter data frame estimated from the SPADE_estimate function.

Value

This function returns the statistics and P values for the test

GeneID Gene index.

Q The Q statistics calculated using the SKAT method.

Pvalue P value calculated from the Q statistics based on the Davies method.

Adjust.Pvalue Adjusted P values calculated with the Benjamini and Hochberg method.

Index

```
ComputeGaussianPL, 2
Delta_fit, 2
Get_Lambda, 3
lengthscale_fit, 3
lengthscale_fit_DE, 4
LL, 4
LL_combin, 5
LL_DE, 5
mu_hat, 6
SPADE_DE, 7
SPADE_estimate, 8
SPADE_norm, 9
SPADE_test, 9
```