CSCI 338: Assignment 5 (6 points)

Elliott Pryor

April 3, 2020

This assignment is due on **Monday**, **April 20**, **11:30pm**. It is strongly encouraged that you use Latex to generate a single pdf file and upload it under *Assignment 5* on D2L. But there will NOT be a penalty for not using Latex (to finish the assignment). This is **not** a group-assignment, so you must finish the assignment by yourself.

Problem 1

We are given 5 matrices $M_1, ..., M_5$, their dimensions (i.e., rows by columns) are as follows: M_1 is 15 \times 20, M_2 is 20 \times 30, M_3 is 30 \times 10, M_4 is 10 \times 50, and M_5 is 50 \times 8.

(1.1) Run the dynamic programming algorithm for matrix chain multiplication that we covered in class to produce the table m[-,-].

$i \setminus j$	1	2	3	4	5
1	0	9000	9000	165000	13600
2	X	0	6000	16000	11200
3	X	X	0	15000	6400
4	X	X	X	0	4000
5	X	X	X	X	0

Table 1: Solution to 1.1

(1.2) What is the optimal solution value? Where do you find it?

The optimal number of multiplications is 13600. It is located at m[1,5] in the top right corner of the table.

Problem 2

We are given a context-free grammar G as follows:

$$G: S \to AS|SB$$

$$A \to AD|DA|a$$

$$B \to BB|BD|b$$

$$D \to DD|d$$
.

We are also given a string w = bdbdd.

(2.1) Run the dynamic programming algorithm for A_{CFG} that we covered in class to produce the table table[-,-].

$ \begin{array}{c} i \setminus j \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	1	2	3	4	5
1	В	В	В	В	В
2	X	D	\emptyset	Ø	\emptyset
3	X	X	В	В	В
4	X	X	X	D	D
5	X	X	X	X	D

Table 2: Solution to 1.1

(2.2) How do we know whether G generates w from the table?

G generates w if S is in the top right corner (table [1,5]).

So in this case, G cannot generate w since $S \notin table[1,5]$

Problem 3

Show that $ALL_{DFA} \in P$.

PROOF.

We construct a decideer for ALL_{DFA} that runs in $O(n^k)$ time. We know that ALL_{DFA} accepts \sum^* iff we arrive at an accept state in every possible configuration. So we construct the decider S as follows:

S: $\langle D \rangle$ where D is some DFA:

- 1. Perform Breadth First Search on D starting at the start state q_0
- 2. Test if only accepting states were visited.
- 3. If the test returns true \rightarrow accept Otherwise \rightarrow reject

Clearly S decides ALL_{DFA} as S visits all possible states and if S accepts each one is an accepting state, so $L(D) = \sum^*$. If S rejects then there is some non-accepting state that can be reached from q_0 so $L(D) \neq \sum^*$ because it can arrive at some non-accepting state.

Also, S runs in polynomial time as BFS runs in polynomial time. Therefore, we have found a decider for ALL_{DFA} that runs in polynomial time. And by definition, $ALL_{DFA} \in P$

Problem 4

Show that Independent Set \in NP.

Proof.

We construct a non-deterministic polynomial time turing machine S to decide Independent Set.

S: $\langle G, k \rangle$ where G is a graph G = (V, E) and k is an integer st. $k \leq |V|$

- 1. Non-deterministically select some subset c of k vertices from G
- 2. Test whether G contains any of the $\binom{k}{2}$ edges connecting nodes in c
- 3. If test returns true, then G has an edge connecting some $u, v \in c \to \text{Reject}$ Otherwise, G has no edges connecting $u, v \in c \to \text{Accept}$

S runs in $O(\binom{k}{2}) = O(n^2)$ time. So we have found a non-deterministic decider that runs in polynomial time. So Independent Set $\in NP$ by Theorem 7.20