

NORMAL RANDOM FUNCTIONS

Why

We want to have random functions with simple marginal distributions.

Definition

A normal random function (or normal process or gaussian process)¹ is a real-valued random function whose family of random variables has the property that the image of any finite set of indices is a normal random vector.

Notation

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space and A a set. Let $x : \Omega \to (A \to \mathbf{R})$ be a random function with family $y : A \to (\Omega \to \mathbf{R})$.

Then x is a normal random function if there exists $m: I \to \mathbb{R}$ and positive definite $k: I \times I \to \mathbb{R}$ with the property that if $J \subset I$, |J| = d, then $x_J \sim \mathcal{N}(m(J), k(J \times J))$. In other words, $x_J: \Omega \to \mathbb{R}^d$ is a Gaussian random vector. We call m the mean function and k the covariance function.²

Random function interpretation

Many authorities discuss a normal random function as "putting a prior" on a "space" (see, for example, Real Function Space) of

¹The choice of "normal" is a result of the Bourbaki project's convention to eschew historical names. Though here, as in Multivariate Normals the language of the project is nonstandard.

²Future editions will change this description.

functions. One samples functions by drawing an outcome $\omega \in \Omega$, and then defining the sample $f: I \to \mathbf{R}$ by $f(i) = x(i)(\omega)$.

Multivariate normal special case

If the index set is finite, and can be ordered, then the normal random function is a multivariate normal random vector.

