

Subject Index

9-Aminocamptothecin (9-AC). See also Camptothecins
anti-colon cancer activity of, 258
antitumor activity of, 10–11, 181–186
order of effectiveness, 181, 186
in xenograft systems, 181–182
blood chemistry of, 29–31
clinical pharmacology of, 237–239,
324–326
clinical responses to, 252–254
clinical trials of, 10–11, 231–233,
247–248
clinical efficacy, 251–252
21-day continuous infusion, 235–236
drug formulation, 233
72-hour continuous infusion, 233–237
oral delivery, 237
patient characteristics, 250
pharmacokinetics, 252
toxicity, 250–251
weekly 120-hour continuous infusion,
236
perspectives, 242–243
pharmacokinetic/pharmacodynamic
studies of, 315–317
preclinical trials, 231–233
next generation, 239–241
radiation therapy enhancement by,
312–314
Antitumor activity. *See under specific agents*
Apoptosis
anti-topo drugs and, 36
and camptothecin resistance, 63–64
CPT-induced, 93–96
concentration dependence of, 97–98
in HL-60 cells, 104–109
detection of
by DNA content changes, 103
methods for, 101–102
by regulatory proteins presence,
149–151
in situ, 103–104
DNA loss in, 104–109
in drug-resistant malignant cells,
143–153
9-NC-induced, 143–145
in oncology, 102
p53 and, 64
proteins regulating, 149–153
and resistant/sensitive leukemia assay,
136, 138
TPT-induced, 102, 106–109, 136–138

Breast cancer
CPT-11 activity against, 282, 288,
292–293
TPT activity against, 268
Camptotheca acuminata
fractionation of, 2–5
phytochemical screening and, 1
Camptothecin (CPT)
analogs of. *See also Camptothecins;*
specific analogs
biological activity of, 6
clinical trials of, 9–11
structure activity relationship studies,
7–8
antitumor activity of, 6–7, 20–22
apoptosis induction by, 93–99, 101–102
cell cycle effects of
and apoptosis, 93–96, 99
cell type and, 97–98
concentration dependence of, 97–98
and DNA transcription, 96–97
clinical studies of, 6–7, 224–225,
229–230
antitumor activity, 226–227
CPT formulation, 225–226
patient characteristics, 226
pharmacokinetics, 227–228
toxicity, 227
cytotoxicity of
anti-topo drugs and, 35–37
DNA relaxation and, 46–47
DNA synthesis and, 36, 129
fork collision model for, 44–46
mechanisms of, 49
PLDBs and, 74–89
replication-independent, 44–46
selectivity of, 98–99
S-phase specificity of, 44, 102
topo I multi-ubiquitination and, 48
discovery of, 2
and DNA damage, 44–49
pharmacokinetics of, 157–158
distribution in tumor-bearing mice,
158–159
form conversion rate, 184–186
lactone/salt equilibrium, 159–160
physical properties of, 5
resistance to
cell lines with, 75–76
PLDBs and, 76–82
topo I complexes and, 60–66
topo I down-regulation and, 82–89
sensitivity to
topo complexes and, 32–33

- topo mutations and, 33–35, 63
structure of, 5–6
synthesis of, 7
 via radical transannulation, 310–311
and topo I activity, 33
and topo I catalysis, 50–59
and topo I ubiquitination, 48–49
Camptothecin-11 (CPT-11). See also Camptothecins
antitumor activity of, 13, 24–26, 173–178
 against cervical cancer, 277
 against colorectal cancer, 257–258
 intravenously administered, 175–176
 against multidrug-resistant tumors, 177
 orally administered, 176
 against previously untreated colorectal cancer, 276–277
 against recurrent colorectal cancer, 274–276
clinical trials of, 9–11
current U.S. status of, 272, 280
 Phase I single agent trials, 272–274
 Phase I trial issues, 279
 Phase II single agent trials, 274
 Phase III trial issues, 279–280
European Phase I trials, 282–283, 289
antitumor activity in, 285
optimum administration schedule, 285–286
pharmacokinetic studies, 286
toxicity, 283–285
European Phase II trials, 286–287
breast cancer, 288
cancer of the cervix, 288
colorectal cancer, 287, 289
NSCLC, 288
pancreatic cancer, 287
SCLC, 288
European preclinical trials, 282
Japanese Phase I trials, 301
 in advanced NSCLC, 295
 of CPT-11, 292–293
 of CPT-11-cisplatin combination, 293–294
 of CPT-11-cisplatin-vindesine combination, 295
 of CPT-11-etoposide combination, 295
 in NSCLC, 296–297
Japanese Phase I/II trials
 of CPT-11-cisplatin-thoracic radiation therapy, 297–298
 pharmacokinetic studies, 299–300
 in stage III NSCLC, 298
Japanese Phase II trials, 301–302
 of CPT-11-cisplatin combination, 293–294
 of CPT-11-etoposide combination, 295–296
 in NSCLC, 294
 in SCLC, 294
Japanese Phase III trials, 298–299
multiagent trials, 277–278
NSCLC, 278
pharmacokinetics of, 177–178
antitumoral responses, 168–169
dose influence on, 166–167
patient characteristics influence on, 167–168
review of, 164–169
side effects, 168
treatment frequency influence on, 166
in tumor-bearing mice, 173–178
in vitro specificity, 174
in vivo efficacy, 174–177
resistance to, 62
schedule-dependent efficacy of, 188–190
dose intensification effect, 191–192, 194–199
extended therapy duration effect, 193–194, 196–199
systemic exposure, 194–195
second generation synthesis of, 310–311
SN-38 active ingredient of, 10
synthesis of, 13–26
Camptothecins
antitumor activity of, 2
 against colon cancer, 257
 preclinical rationale for, 256–257
and apoptosis, 93–99
biological activity of, 6–10
bloodchemistry of, 29–31
Camptotheca acuminata fractionation and, 2–5
cellular resistance to, 60–61, 65–66
apoptosis role in, 63–64
development of lines with, 75–76
DNA repair and, 64–65
with normal cleavable complexes, 63–65
PLDBs and, 74, 80–82
with reduced cleavable complexes, 61–63
topo I down-regulation and, 82–89
topo I levels and, 62–63
topo I mutations and, 63
clinical development issues, 217
cytokine dose-intensification, 217–218
pharmacodynamic response determinants, 218
pharmacokinetics and scheduling, 217
clinical response determinants of, 259–261
clinical studies of, 224–225, 228–230
antitumor activity, 226–227
patient characteristics and, 226

- pharmacokinetics, 227–228
toxicity, 227
and CNS xenograft treatment, 210–212
cytotoxicity of
DNA relaxation and, 46–47
mechanism of action of, 44–49
PLDBs and, 80–82
replication collision model for, 44–46
S-phase specificity of, 44
topo I down-regulation and, 82, 84–85
topo I multi-ubiquitination and, 48
and DNA damage, 46–47, 50–59, 129
early clinical trial of, 6–7
pharmacokinetics of, 164–169
orally administered, 157–162, 176
in tumor-bearing mice, 173–178
second generation synthesis of, 310–311
sensitivity to
DNA elongation and, 308–309
factors affecting, 128–129
structure-activity-relationship of, 8–9
structures of, 5–6
synthesis of, 7, 9, 13–26
therapeutic indications of
for hematologic neoplasias, 216–217
for NHL, 216–217
for NSCLC, 215–216
for ovarian cancer, 213–214
for SCLC, 216
for uterine cervical cancer, 214–215
topo inhibition by, 7, 9
treatment protocols for tumor
xenografts, 181–186
treatment protocols with, 181–186
drugs used, 182–184
pharmacokinetics, 184–186
xenograft systems, 181–182
- Cervical cancer
clinical trials with CPTs, 214–215
CPT-11 activity against, 288, 292–293
Phase II trials in, 277
- Colorectal cancer
9-AC activity against, 258
camptothecins
clinical activity against, 257
rationale for, 256–257
CPT-11 activity against, 282, 287,
292–293
Phase II trials, 274–276
topo I inhibitors in, 256–261
TPT activity against, 258
- CPT. *See* Camptothecin
- D**NA
apoptosis-associated loss of, 104–109
cleavage of
topo I-mediated, 50–52
- topo I mutations and, 111–112,
116–121
CPT-induced relaxation of, 46–47
CPT selective toxicity for, 98–99
damage to
anti-topo agents and, 35–37
CPT and, 44–49, 57–61
mechanisms of, 44–49
PLDBs and, 74–89
ligation of
CPT-mediated inhibition of, 56–58
topo I catalysis and, 50–56
topo I mutations and, 121–123
repair of
and camptothecin resistance, 64–65
and camptothecin sensitivity, 308–309
topo I and, 37–40, 50–59
topo II and, 33–34
- G**1147211C
antitumor activity of, 205–206
as new CPT analog, 202–203
criteria for, 203–205
topo I inhibition by, 205
Phase I clinical trials, 208–209
preclinical research on, 206–207
and tumor cell cytotoxicity, 205
in vivo efficacy of, 206
- H**ydroxycamptothecin. *See also* SN-38
antitumor activity of, 6, 20–23, 25–26
synthesis of, 7, 9–10, 14–20
- I**rinotecan. *See* Camptothecin-11
- L**eukemia
camptothecins activity against, 2–5
cell topo I levels in, 130–131
TPT-combination efficacy in, 138–140
TPT-sensitivity of, 138–140
cell topo I content, 133–135
factors in, 128–130
leukemia type, 134
- N**NHL. *See* Non-Hodgkins lymphoma
9-Nitrocamptothecin (9-NC)
antitumor activity of, 181–186
order of effectiveness of, 181, 186
in xenograft systems, 181–182
apoptosis induction by, 143–153
clinical efficacy of
concentration dependence of, 143
suramin-enhanced, 144–153

- clinical studies of, 224–225, 229–230
antitumor activity, 226–227
9-NC formulation, 225–226
patient characteristics, 226
pharmacokinetics, 227–228
toxicity, 227
- pharmacokinetic studies of, 227–228
effect of administration route, 158–159
form conversion rate, 184–186
lactone/salt equilibrium, 159–160
orally administered, 157–158
suramin-enhanced cytotoxicity of, 143–145, 146–153
treatment protocols, 181–186
- Non-Hodgkins lymphoma (NHL)
clinical trials with CPTs, 216–217
CPT-11 for, 292–293
- Non-small cell lung cancer (NSCLC)
clinical trials with CPTs, 215–216
CPT-11 activity against, 282, 288, 292–293
CPT-11-cisplatin activity against, 294
CPT-11-cisplatin-vindesine activity against, 295
CPT-11-etoposide activity against, 296–297
multiagent trials in, 278
Phase I trials in, 294–296
Phase II trials in, 294
TPT activity against, 267–268
- NSCLC. *See* Non-small cell lung cancer
- O**varian cancer
clinical trials with CPTs, 213–214
CPT-11 activity against, 282, 292–293
TPT activity against, 265–266
- P**ancreatic cancer, CPT-11 activity against, 287
- Pharmacokinetics
of camptothecins, 184–186
orally administered, 157–162
of CPT-11
intravenously administered, 175–176
review of, 164–169
in tumor-bearing mice, 173–178
of SN-38, 177–178
- PLDBs. *See* Protein-linked DNA breaks
- Protein-linked DNA breaks (PLDBs)
CPT-induced, 74
formation of
replication fork collisions and, 74–75
steps after, 80–82
steps prior to, 76, 78–80
- S**CLC. *See* Small cell lung cancer
- Small cell lung cancer (SCLC)
- CPT-11 activity against, 288, 292–293
CPT-11-cisplatin combination for, 294
Phase II trials in, 294
therapeutic indications for
camptothecins in, 216
TPT activity against, 266–267
- SN-38. *See also* Camptothecins
antitumor activity of, 20–26
blood chemistry of, 29–31
as CPT-11 active ingredient, 10
pharmacokinetics of, 177–178
patient characteristics influence on, 167–168
side effects, 168
resistance to, 62
systemic exposure of, 194–195, 197–198
TI of, 20–22
water-soluble prodrugs of, 19–20
- Suramin
and 9-NC efficacy, 144–148
9-NC-resistant cell sensitivity to, 148–149
- T**herapeutic index (TI)
of camptothecins, 21–22
of SN-38, 20–22
- TI.** *See* Therapeutic index
- Topo I. *See* Topoisomerase I
- Topo II. *See* Topoisomerase II
- Topoisomerase I (Topo I)
catalysis
CPT effect on, 57–59
of DNA cleavage, 50–59
of DNA ligation, 53–56
down-regulation of
and CPT resistance, 74, 82, 84–85
in vivo analysis of, 85, 87–89
drugs targeting, 33
inhibition of
by CPT, 33–35
and DNA replication, 93–95
by GI14721IC, 202–209
inhibitors of
in colon cancer management, 256–261
cytotoxic efficacy of, 306–307
and DNA damage, 37–40
in systemic sclerosis treatment, 318–320
levels of
in leukemia cells, 130–131
in normal lymphohematopoietic cells, 130–131
in tumor cells, 60
multi-ubiquitination of, 48
mutations of
and DNA binding, 121–123
and DNA cleavage, 111–112

- and impaired DNA cleavage, 116–121
increased drug sensitivity of, 122–123
interactions with CPT, 123–126
and plasmid relaxation activity,
 115–116
and phosphorylation-reduced CPT
 sensitivity, 321–322
- Topoisomerase II (Topo II)
 CPT inhibition of, 32
 and DNA repair, 33–34
 and drug sensitivity/resistance, 32
drugs targeting, 32–33
 cell-killing mechanisms of, 35–37
 sensitivity/resistance genes and, 33–35
 yeast studies of, 32–40
- inhibitor combinations, cytotoxic
 efficacy of, 306–307
- inhibitors of. *See also* Camptothecins
 cytotoxic efficacy of, 306–307
- Topoisomerases
 anticancer drugs and, 32–33
 cell-killing mechanisms of, 35–37
 and DNA repair, 37–40, 50–59
 drugs targeting, 32–33
 and apoptosis, 36
 and CPT cytotoxicity, 35–37
 and sensitivity/resistance, 33–35
 yeast studies of, 32–40
- inhibition of, 7, 9
inhibitors of. *See also* Camptothecins
- levels in tumors, 60
- mutations in
 and CPT interaction, 111–112,
 115–126
 and drug sensitivity/resistance, 33–35
- Topotecan (TPT)
 anti-colon cancer activity of, 258, 268
 apoptosis induction by, 102, 106–109,
 136–138
 clinical studies of, 9–11, 264, 269
 in combination therapy, 268
 early clinical data from, 264
 in NSCLC and other tumor types,
 267–268
 by oral administration, 268
 in ovarian cancer, 265–266, 269
 Phase I combination studies, 264
 Phase I single-agent study, 131–132
 in SCLC, 266–267, 269
 treatment schedules and regimens, 268
 in combination therapy, 264, 268
 against HL-60 cells, 138–140
 prospects for, 140
 schedule-dependent efficacy of, 188–190
 second generation synthesis of, 310–311
 sensitivity to, 128–130
 assay of, 136–137
 factors affecting, 132–135
 of leukemia cell lines, 138–140
- TPT. *See* Topotecan