Resultado de aprendizaje

 Determina e interpreta las medidas de descriptivas de un conjunto de datos

Contenidos de la presentación

- Herramientas de estadística descriptiva
 - Estadígrafos de dispersión
 - Rango
 - Rango intercuartil
 - Varianza
 - Desviación estándar
 - Coeficiente de variación

FORMULARIO RESUMEN DE ESTADÍSTICA DESCRIPTIVA: Análisis exploratorio de datos (AED)

I. Tables de frecuencies: 1) Variables cuantitativas, a) discretas b) continuas

AC Chara	Variable o Close	Frecuencie Absoluta	Frecuencia Relativa	Absolute Acumulado	Frecuencia Relativa Acumulada
		106		EVEN.	
Creative reprises	×i	n,	h,	N,	H,
	X,	PT+	himmi /N	N n.	PE A.
2	×.	n _e	Huma /N	$N_{\mu} = n_1 + n_2$	$H_2 \equiv h_2 + h_3$
700	-	-	-	-	-
4.	*	~	han M	$N_m - \sum f_i - N$	$H_k = \sum_i h_i = 1$
-	Total	N	1		101

N	Inte	ervolo	Centro o Marco	Frecuencia	Frecuencia	Frecuencia	Frecuencia
Chair	Limite	Limite	de Clase	Absolute	Relativa	Absolute Acumulada	Refetive Acumulada
	/		Adec	50	710	644	
	346	8.80	X/	n	h,	N,	Hi
2	14	Lil	$X_1 = \frac{L_0 + L_0}{2}$	n	hyens /N	$N_2 = n_2$	$H_1 = h_1$
2	(L	1. (.2)	$X_2 = \frac{L_1 + L_2}{2}$	n ₂	h ₁ =n ₂ /N	$N_3 = n_3 + n_3$	$H_2 = H_1 + H_2$
		det.			-	20	460
4.	(Lo	utal	$X_{n} = \frac{L_{n-1} + L_{n}}{2}$	rt.	h===/N	$N_n = \sum_{i=1}^n f_i = N$	$H_n = \sum_i h_i =$
			1965-1973	1.40	120	1963	4.004

²⁾ Variables cualitativas nominales y ordinales en tablas de frecuencias; por convención no presentan frecuencias acumuladas. Para las variables ordinales, las clases se estructuran de acuerdo con el orden de la variable.

II. Estadigrafos o medidas de resumen

	Indicadores	estadísticos o estadíg	rafos	
	Posición	Dispersión		Forma
Tendencia central	Tendencia no central			
Media (X) Mediana (me) Media (mo)	Cuantiles o Fractiles: cuartiles (Q), quintiles (K), deciles (D), percentiles (P)	Rango Rango (ptersuartii (RIC)	Varianza (5°) Desviación estándar (5) Coeficiente de variación (CV)	Asimetria Curtosis

1. Datos seriados (sin estructura de agrupamiento en tablas de frecuencias)

Media	Mediana (datos en	orden ascendente)	Moda
	Datos n Impar	Datos n par	
$r = \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i}$	Xn+1	X = + X = + +	Dato que más se repite

Cuantil*	Contribidi (= 153	Quint((f)) = LESA	Deci (D) (=155 - N	Percenti (F) (= 1.03 - 99
Posición n par	$P_{Q_1}=\iota\!+\!\frac{n}{4}$	$P_{H_1}=\varepsilon\cdot\frac{n}{5}$	$P_{D_1}=t\cdot\frac{n}{10}$	$P_{p_i} = \iota \cdot \frac{n}{100}$
Posición n impar	$P_{0i} = i \cdot \frac{n+1}{4}$	$P_{K_i} = \iota \cdot \frac{n+1}{9}$	$P_{D_{\ell}} = x \cdot \frac{n+1}{10}$	$P_{P_k} = t \cdot \frac{n+1}{100}$

a) Si el resultado es un número entero, se toma la posición exacta.

- b) En caso de un resultado con un número decimal, el valor del cuantil buscado será la media proporcional
- entre x; y x_{i+1}. Sea un número de la forma 'e_d' donde 'e' es la parte entera y 'd' la parte decimal. Así el
- cuantil buscado, usando como ejemplo el cuantil \downarrow , será: $Q_i = x_i + d \cdot (x_{i+1} x_i)$ * Fórmulas también aplican para datos discretos agrupados en tables de frecuencias: en este caso el valor del cuantil corresponde a la clase, de la posición leida desde la frecuencia absoluta acumulada (este número acumulado debe ser igual o superior a la posición obtenida en el cálculo).

Rango	Varianza muestral*	Desviación estándar	Coeficiente de veriación
$t = X_{min} - X_{min}$	$S^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}$	$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \vec{x})^2}{n-1}} = \sqrt{S^2}$	CV(%) = (5/X) · 100

*Procedimiento de cálculo de la Varianza: Se calcula la diferencia de cada valor observado y la media (x; - 3).

- cada diferencia se eleva al cuadrado, $(x_1-\bar{x})^2$ luego se suman $\sum_{i=2}^n (x_1-\bar{x})^2$ y se dividen por (n -1).
- 2. Datos agrupados en tablas de frecuencias

a) Media $\overline{x} = \frac{\sum (x_i \pi_i)}{Variance} S^2 = \frac{\sum_{i=1}^n |(x_i - \overline{x}|)^2 \cdot n_i|}{Variance}$; Desviación estándar $S = \sqrt{S^2}$

ls) Cuantiles para datos agrupados en intervalos (tablas de frecuencias)

Cuerti(Q)	Quintil (II)		Decil (D)	Percenti (F)
$\mathbb{Q}_i \equiv \mathbb{X}_i + \frac{i\left(\frac{n}{4}\right) - F_{(i-1)}}{f_i} \cdot \mathbf{a} \ .$	$E_i = L_i + i \left(\frac{m}{6}\right) - F_i$	e-ii a	$D_i = L_i + \frac{i\left(\frac{n}{10}\right) - F_{(i+1)}}{f_i} \cdot n$	$P_i = I_1 + \frac{i\left(\frac{n}{100}\right) - F_{N-10}}{f_i} \cdot e$
(= 1.2.8	(=1.5.14		1=1.14484.789	i = 1,3.8 -,99
Donde, además: L _i : limbe inferior del intervalo o n tamaño de la muestra	pue contiene al cuartil		Frec. acumulada del intervalo ar Frecuencia absoluta del interval Amplitud del intervalo	

Estadística descriptiva: Estadígrafos de dispersión

- Son medidas que pretenden resumir un conjunto de valores
- Representan un centro en torno al cual se encuentra ubicado el conjunto de datos
- Tiene por finalidad cuantificar la variabilidad de los datos

Que tan separados o disimiles son uno de otro

 Medida del "Grado de concentración o densidad" de los datos en torno a su centro de gravedad

MEDIDAS DE DISPERSIÓN

Medida del "Grado de concentración o densidad" de los datos en torno a su centro de gravedad

- Rango
- Rango intercuartil (RIC)
- Varianza
- Desvío estándar o desviación estándar
- Coeficiente de variación

Rango

Es la diferencia entre el valor máximo y el valor mínimo de una serie de observaciones

 $Rango = valor \ m\'aximo - valor \ m\'inimo$

- Es fácil de comprender y obtener pero tiene limitaciones en la medición de la variabilidad:
 - Un valor alto o bajo determinaría una gran amplitud que no reflejaría la verdadera variabilidad de los datos
 - Posible solución ¿eliminar estos valores? ...este criterio es de difícil formulación e interpretación subjetiva

Rango

Presión Sanguínea

 Las presiones sistólicas (mm Hg) de seis hombres de mediana edad:

113 124 124 132 146 151 170

El rango muestral es 170 -113 = 57 mm Hg

Rango intercuartil (RIC - RQ)

Rango intercuartílico (IQR interquartile range)

Se refiere a la diferencia entre el tercer y el primer cuartil de una distribución

$$RQ = Q_3 - Q_1$$

A la mitad del rango intercuartil se le conoce como desviación cuartil (DQ)

$$DQ = RQ/2 = (Q3 - Q1)/2$$

- Es afectada muy poco por datos extremas
- Esto lo hace una buena medida de dispersión para distribuciones sesgadas

Se usa para construir los diagramas de caja y bigote (boxplot)

Varianza

Es la media de las diferencias con la media elevadas al cuadrado

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$
 $S^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$

Varianza poblacional

Varianza muestral

Otra definición: Media de los cuadrados de las desviaciones de los datos

 Como la varianza tiene las unidades de medidas elevadas al cuadrado, estas unidades no son intuitivamente claras o fáciles de interpretar

Desviación estándar (D.E.)

Mide el grado de dispersión de los valores de la variable respecto a la media aritmética

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} = \sqrt{\sigma^2} \qquad S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}} = \sqrt{S^2}$$

Desviación estándar poblacional

Desviación estándar muestral

Crecimiento de Crisantemos

En un experimento sobre crisantemos, un botánico midió el tallo (mm):

76 72 65 70 82
$$\Rightarrow$$
 $\bar{x} = \frac{365}{5} = 73 \text{ mm}$

Para obtener S² y S:

Observ	aciones:	76	72	65	70	82	n = 5
Obs	servación	(x_i)					
x_1	76						
<i>x</i> ₂	72						
X4	65						
x ₅							
x_6	82						

Se obtienen las desviaciones

Se toma la raíz cuadrada

VARIANZA

Observación (x_i)	Desviación $(x_i - \overline{x})$	Desviación al cuadrado $(x_i - \overline{x})^2$
76	76 -73= 3	9
72	72 -73= -1	1
65	65 -73= -8	64
70	70 -73= -3	9
82	82 -73= 9	81
n		Y

$$\sum_{i=1}^{n} x_i = 365$$

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{365}{5} = 73$$

Observación (x_i)	Desviación $(x_i - \overline{x})$	Desviación al cuadrado $(x_i - \overline{x})^2$
76	76 -73= 3	9
72	72 -73= -1	1
65	65 -73= -8	64
70	70 -73= -3	9
82	82 -73= 9	81
$\sum_{i=1}^{n} x_i = 365$	3	$\sum_{l=1}^{n} (x_l - \bar{x})^2 = 164$

Se obtienen las desviaciones

• Se toma la raíz cuadrada

Observación
$$(x_i)$$
 Desviación $(x_i - \overline{x})$
 Desviación al cuadrado $(x_i - \overline{x})^2$

 76
 76 - 73 = 3
 9

 72
 72 - 73 = -1
 1

 65
 65 - 73 = -8
 64

 70
 70 - 73 = -3
 9

 82
 82 - 73 = 9
 81

$$\sum_{i=1}^{n} x_i = 365$$

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = 164$$

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{365}{5} = 73$$

$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} = \frac{164}{4} = 41$$

 • Se obtienen las desviaciones
 • Se elevan al cuadrado

Observación
$$(x_i)$$
 Desviación $(x_i - \overline{x})$
 Desviación al cuadrado $(x_i - \overline{x})^2$

 76
 76 -73 = 3
 9

 72
 72 -73 = -1
 1

 65
 65 -73 = -8
 64

 70
 70 -73 = -3
 9

 82
 82 -73 = 9
 81

$$\sum_{i=1}^{n} x_i = 365$$

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = 164$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{365}{5} = 73$$

$$S = \sqrt{S^2} = \sqrt{41} = 6,4$$

*Se obtienen las desviaciones

**Ose obtienen las desviaciones*

**Ose suman*

**Ose suman*

**VARIANZA*

**Ose dividen por n-1*

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**VARIANZA*

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación al cuadrado (x_i - \overline{x})^2

**Ose dividen por n-1*

**Desviación (x_i - \overline{x})^2

**Desviación (x_i - \

· Se toma la raíz cuadrada

Se toma la raíz cuadrada

Datos: 76 72 65 70 82

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{76 + 72 + 65 + 70 + 82}{5} = \frac{365}{5} = 73 \ mm$$

$$S^2 = \frac{\sum_{1=1}^{n} (x_i - \overline{x})^2}{n-1}$$

$$S^{2} = \frac{(76-73)^{2}}{4} + \frac{(72-73)^{2}}{4} + \frac{(65-73)^{2}}{4} + \frac{(70-73)^{2}}{4} + \frac{(82-73)^{2}}{4} = \frac{164}{4} = 41 \ mm$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \sqrt{S^2} \qquad \to \qquad S = \sqrt{41} = 6, 4 \ mm$$

Datos: 76 72 65 70 82

$$\sum_{l=1}^{n} x_{l} = 76 + 72 + 65 + 70 + 82 = 365$$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{76 + 72 + 65 + 70 + 82}{5} = \frac{365}{5} = 73 \text{ mm}$$

$$x = \frac{1}{n} = \frac{1}{5} = 73 \, \text{mm}$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

 $S^{2} = \frac{1}{5-1} \cdot \left[(76-73)^{2} + (72-73)^{2} + (65-73)^{2} + (70-73)^{2} + (82-73)^{2} \right]$

 $S^2 = \frac{1}{5-1} \cdot 164 = \frac{164}{4} = 41 \, mm$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \sqrt{S^2} \qquad \to \qquad S = \sqrt{41} = 6, 4 \ mm$$

Datos: 76 72 65 70 82

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{76 + 72 + 65 + 70 + 82}{5} = \frac{365}{5} = 73 \, mm$$

 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$

 $S^{2} = \frac{1}{5-1} \cdot \left[(76-73)^{2} + (72-73)^{2} + (65-73)^{2} + (70-73)^{2} + (82-73)^{2} \right]$

 $S^2 = \frac{1}{5-1} \cdot 164 = \frac{164}{4} = 41 \, mm$

 $S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \sqrt{S^2} \qquad \to \qquad S = \sqrt{41} = 6,4 \ mm$

Para 4, 8, 10, 11,17

Calcular: Media, Rango, Varianza y Desviación Estándar (dejar expresado)

Considerando las cinco observaciones: 4-8-10-11-17

$Xi - \overline{X}$	
-6	36
-2	4
0	0
1	1
7	49

$$\bar{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} = \frac{\sum_{i=1}^{5} X_{i}}{5} = \frac{50}{5} = 10$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}} = \sqrt{\frac{90}{4}} = \sqrt{22.5} = 4.74$$

$$S = \sqrt{varianza} \rightarrow S = \sqrt{S^2}$$

Crecimiento de Crisantemos

La varianza muestral S^2 es la D. E. al cuadrado.

Por lo tanto para obtener la desviación estándar S, se aplica raíz cuadrada

$$S = \sqrt{varianza}$$

- La varianza de los datos de crecimiento de crisantemos es $s^2 = 41 \ mm^2$
- La desviación estándar es $S = 6.4 \, mm$

Varianza y desviación estándar

Existe relación: ambas miden la dispersión de los valores observados con respecto a la media

- Diferencia: la varianza está dada en unidades al cuadrado, la D.E. tiene la misma unidad de medida que la media
- Para la presentación de resultados se prefiere D.E.: $73 \pm 6.4 \, mm$

Interpretación de la Desviación Estándar (D.E.)

Se puede interpretar como la distancia promedio de las observaciones respecto a la media muestral:

"En promedio cuanto se alejan los datos de la media"

La Figura muestra una gráfica de los datos donde se ha marcado cada distancia

Propiedades Varianza y desviación estándar

- 1. Ambas medidas son siempre un número no negativo.
 - La σ y σ^2 son cero sólo cuando todos los datos son iguales
- Si cada dato de una muestra se aumenta o se disminuye en una constante K la desviación estándar y la varianza originales no cambian.
- 3. Si cada dato de una muestra se multiplica por una constante K, entonces las nuevas σ y σ^2 son respectivamente $K \cdot \sigma$ y $K \cdot \sigma^2$

Coeficiente de variación (C.V.)

Cuando se desea hacer referencia a la relación entre el tamaño de la media y la variabilidad de las observaciones, se usa el coeficiente de variación muestral CV

Coeficiente de variación (C.V.)

Definición: Dada una muestra x_1 , x_2 ,..., x_n con media \overline{x} y desviación estándar S, el coeficiente de variación muestral se define como:

$$CV = S/\overline{x} \cdot 100$$

Esta medida es adimensional y permite comparar la variabilidad de características medidas en diferentes escalas

Coeficiente de variación (C.V.)

Establecer la homogeneidad o heterogeneidad de los datos mediante la D.E. requiere conocimiento y principalmente experiencia del fenómeno en estudio para una correcta interpretación

El CV es una medida útil porque mide la dispersión en forma relativa que permite una interpretación más sencilla de la variabilidad

Ejemplo: Calcular el Coeficiente de variación y concluir

En dos poblaciones A y B los pesos promedios recién nacidos y su correspondiente desviación estándar son 2515 \pm 40 g para la población A y 2630 \pm 380 g para la población B.

¿En cuál población los pesos al nacer son más homogéneos?

$$CV = \frac{S}{\overline{x}} * 100$$

Población A: $2515 \pm 40 \text{ g}$ \Rightarrow 40/2515*100% = 1,6%Población B: $2630 \pm 380 \text{ g}$ \Rightarrow 380/2630*100% = 14,4%

La población más homogénea es la A, dado su menor CV

Marca de Clase	Frecuencia Absoluta	Frecuencia Relativa	Frecuencia Absoluta Acumulada	Frecuencia Relativa Acumulada
MC	FA	FR	FAA	FRA
Xi	ni	hi	Ni	Hi
Xı	n ₁	h ₁ =n ₁ /N	$N_1 = n_1$	$H_I = h_I$
χ_2	n ₂	$h_2=n_2/N$	$N_2 = n_1 + n_2$	$H_2 = h_1 + h_2$
•••			n	TI.
X_i	n _i	$H_n=n_n/N$	$F_n = \sum_{i=1}^n f_i = N$	$H_n = \sum_{i} h_i = 1$
Total	N	1	I=1	1=1

ESTADÍGRAFOS PARA DATOS TABULADOS EN TABLAS DE FRECUENCIAS

Medidas de resumen para datos agrupados

Marca de Clase	Frecuencia Absoluta	$x_i \cdot n_i$	Frecuencia Relativa	Frecuencia Absoluta Acumulada	Frecuencia Relativo Acumulada
MC	FA		FR	FAA	FRA
Xi	n		hi	N _i	Hi
X ₁	nı	$X_1 \cdot n_1$	$h_1=n_1/N$	$N_1 = n_1$	$H_1 = h_1$
X ₁ X ₂	n ₂	$X_2 \cdot n_2$	$h_2=n_2/N$	$N_2 = n_1 + n_2$	$H_2 = h_2 + h_2$
	***		***	n	п
X_i	ni	$X_i \cdot n_i$	$H_a = n_a / N$	$F_n = \sum f_t = N$	$H_n = \sum h_t = 1$
Total	N	$\sum x_i n_i$	1	1=1	1=1

Media = Cociente entre la sumatoria del producto de cada frecuencia absoluta por su marca de clase y el número total de datos $\sum_{x} n_i x_i$

Moda = Valor de la clase con frecuencia absoluta más alta Mediana = Valor de la clase donde se iguala o sobrepasa el 50% de las observaciones

Ejemplo: Número de hermanos de estudiantes de una clase

		media
Marca de Clase	Frecuencia Absoluta	$x_i \cdot n_i$
x_i	n_i	1970 19
x_1 0	3	$0 \cdot 3 = 0$
x_{2} 1	5	$1 \cdot 5 = 5$
x_3 2	5	2 · 5 = 10
χ_4 3	4	3 · 4 = 12
X ₅ 4	2	4 · 2 = 8
x ₆ 5	1	5 · 1 = 5
	n	$\overline{x} = \frac{\sum x_i n_i}{n}$
	20	$\overline{x} = \frac{40}{20} = 2$

Medidas de resumen para datos agrupados

Marca de Clase	Frecuencia Absoluta				7
MC	FA	$x_i \cdot n_i$	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$(x_i-\overline{x})^2 \cdot n_i$
x_i	n_i				
X ₁	n ₁	$X_1 \cdot n_1$	$x_1 - \overline{x}$	$(x_1 - \overline{x})^2$	$(x_1-\overline{x})^2 \cdot n_1$
X ₁ X ₂	n ₂	$X_2 \cdot n_2$			

X	n,	$X_i \cdot n_i$			
	n	$\overline{x} = \frac{\sum x_i n_i}{n}$			$\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot n$

Cálculo de la varianza

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \cdot n_{i}}{n-1}$$

Ejemplo: Número de hermanos de estudiantes de una clase

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			media
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$x_i \cdot n_i$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x_i	n_i	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x_1 0	3	$0 \cdot 3 = 0$
x_{4} 3 4 3 4 3 4 = 1 x_{5} 4 2 4 2 = 8 x_{6} 5 1 5 1 = 5 x_{6} x_{6} x	x_{2} 1	5	$1 \cdot 5 = 5$
$x_5 4 \qquad 2 \qquad 4 \cdot 2 = 6$ $x_6 5 \qquad 1 \qquad 5 \cdot 1 = 5$ $n \qquad \overline{x} = \frac{\sum x_i}{n}$	χ_3 2	5	$2 \cdot 5 = 10$
$x_{6} = 5$ $x_{7} = 5$ $x_{1} = 5$ $x_{1} = 5$ $x_{2} = 5$ $x_{1} = 5$ $x_{2} = 5$ $x_{3} = 5$ $x_{4} = 5$	X ₄ 3	4	$3 \cdot 4 = 12$
$n \qquad \overline{x} = \frac{\sum x_i v_i}{n}$	x ₅ 4	2	$4 \cdot 2 = 8$
$\frac{n}{20}$ $=$ $\frac{40}{100}$	x ₆ 5	1	5 · 1 = 5
20 = -		n	$\overline{x} = \frac{\sum x_i n_i}{n}$
40		20	$\overline{x} = \frac{40}{20} = 7$

Ejemplo: Número de hermanos de estudiantes de una clase

		media	
Marca de Clase	Frecuencia Absoluta	$x_i \cdot n_i$	$x_i - \overline{x}$
x_i	n_i		
c_1 0	3	$0 \cdot 3 = 0$	0 - 2 = -2
c _{2 1}	5	$1 \cdot 5 = 5$	1-2=-1
C ₃ 2	5	$2 \cdot 5 = 10$	2 · 2 = 0
C ₄ 3	4	3 · 4 = 12	3-2=1
C ₅ 4	2	4 · 2 = 8	4 · 2 = 2
6 5	1	5 · 1 = 5	5 · 2 = 3
	n	$\overline{x} = \frac{\sum x_i n_i}{n}$	
	20	$\overline{x} = \frac{40}{20} = 2$	

	ĺ	media		
Marca de Clase	Frecuencia Absoluta	$x_i \cdot n_i$	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
x_i	n_i	- 20 - 20	***	
0	3	$0 \cdot 3 = 0$	0 - 2 = -2	4
1	5	$1 \cdot 5 = 5$	1 - 2 = -1	1
2	5	$2 \cdot 5 = 10$	2 - 2 = 0	0
3	4	3 · 4 = 12	3 - 2 = 1	1
4	2	4 · 2 = 8	4 - 2 = 2	4
5	1	$5 \cdot 1 = 5$	5 - 2 = 3	9

Ejemplo: Número de hermanos de estudiantes de una clase

		media			varianza
Marca de Clase	Frecuencia Absoluta	$x_i \cdot n_i$	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$(x_i - \overline{x})^2 \cdot n_i$
x_i	n_i				
0	3	$0 \cdot 3 = 0$	0 - 2 = -2	4	$4 \cdot 3 = 12$
1	5	1 · 5 = 5	1 - 2 = -1	1	1 · 5 = 5
2	5	$2 \cdot 5 = 10$	2 - 2 = 0	0	$0 \cdot 5 = 0$
3	4	$3 \cdot 4 = 12$	3 - 2 = 1	1	1 · 4 = 4
4	2	4 · 2 = 8	4 - 2 = 2	4	4 · 2 = 8
5	1	$5 \cdot 1 = 5$	5 · 2 = 3	9	9.1=9

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot n_i$$
38

Ejemplo: Número de hermanos de estudiantes de una clase

		media			varianza
Marca de Clase	Frecuencia Absoluta	$x_i \cdot n_i$	$x_i - \overline{x}$	$(x_i-\overline{x})^2$	$(x_i - \overline{x})^2 \cdot n_i$
x_i	n_i			27	25 25
0	3	$0 \cdot 3 = 0$	0 - 2 = -2	4	$4 \cdot 3 = 12$
1	5	$1 \cdot 5 = 5$	1 - 2 = -1	1	1 · 5 = 5
2	5	$2 \cdot 5 = 10$	2 - 2 = 0	0	$0 \cdot 5 = 0$
3	4	3 · 4 = 12	3 - 2 = 1	1	1 · 4 = 4
4	2	4 · 2 = 8	4-2=2	4	4 · 2 = 8
5	1	5 · 1 = 5	5 - 2 = 3	9	9 · 1 = 9

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot n_i$$
38

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \cdot n_{i}}{n-1} = \frac{38}{19} = 2$$

Obtención Varianza y Desviación estándar para datos tabulados o agrupados

Procedimiento para su obtención Primeramente se debe haber obtenido la media

ESTADÍSTICA DESCRIPTIVA Representaciones gráficas

Gráficos de frecuencias

Los gráficos obtenidos a partir de una tabla de frecuencias permiten visualizar la información contenida en las tablas de manera rápida y sencilla, mostrando con mayor claridad el comportamiento de los datos

Medidas de forma de un histograma

Es la apariencia externa de la distribución de frecuencias y se representa por el aspecto gráfico fundamentalmente

Dentro de la forma se incluye:

- la simetría o asimetría de la curva
- y el grado de aplanamiento de la curva

Son medidas relativas: cocientes o razones (no tienen unidad de medida).

Una **distribución es simétrica** cuando la curva que la representa es exactamente igual a ambos lados del punto de referencia.

Asimetría

Asimetría negativa: si los datos se concentran hacia valores altos de la variable (derecha)

Asimetría positiva: si los datos se concentran hacia valores bajos de la variable (izquierda)

Coeficiente de Asimetría de Bowley

Se basa en la posición de los cuartiles (Q) y la mediana (Me):

$$A_B = \frac{Q_3 + Q_1 - 2 Me}{Q_3 - Q_1}$$

- En una distribución **simétrica** Q_3 estará a la misma distancia de la mediana que Q_1 , así $A_B=0$
- $A_B > 0$: distribución **positiva**
- $A_B < 0$: distribución **negativa**

Coeficiente de Asimetría de Pearson

$$A_P = \frac{\overline{x} - Mo(X)}{S_x}$$

siendo \overline{x} la media, Mo(X) la moda y S_x la desviación típica

- Si A₂=0: la distribución es simétrica
- Si A_p>0: distribución asimetría positiva; la media es mayor que la moda
- Si A_P<0: distribución asimetría negativa; la media es menor que la moda

Coeficiente de Asimetría de Fisher

$$A_F = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^3 \cdot n_i}{N \cdot S_x^3}$$

Siendo x_i uno de los datos o, en datos agrupados en intervalos, la marca de clase, \overline{x} la media, n_i la frecuencia absoluta de x_i o de cada intervalo i i S_x la desviación típica

- Si A_F=0: la distribución es simétrica
- Si A_E>0: distribución positiva; se 'alarga' a valores mayores que la media
- Si A_F<0: distribución negativa; se 'alarga' a valores menores que la media

Curtosis

Indica el grado de apuntamiento o achatamiento del gráfico. Se toma como referencia la curva normal o de campana

Los indicadores de curtosis, miden el nivel de concentración de datos en la región central.

Curtosis

$$Curtosis = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^4}{N \cdot S_x^4} - 3$$

siendo \overline{x} la media y S_x la desviación típica

Para datos agrupados

$$Curtosis = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^4 \cdot n_i}{NS_x^4} - 3$$

 n_i la frecuencia absoluta de x_i o de cada intervalo i

Representaciones gráficas: Grafico de cajas o Boxplot

Diagrama de cajas o Box-Plot

El AED implica el uso de técnicas estadísticas para identificar patrones que pueden estar ocultos en un grupo de números

- La técnica Boxplot se utiliza para resumir visualmente y comparar grupos de datos
- Usa la mediana, los cuartiles y mínimos y máximos para transmitir el nivel, la dispersión y la simetría de una distribución de datos

Diagrama de cajas

- Se pueden identificar datos atípicos
- Una gran ventaja es que se puede construir fácilmente a mano

Es una herramienta que puede mejorar el razonamiento sobre información cuantitativa

Medidas de forma

Asimetría negativa

Peso (mg) de 100 larvas de cada estadio de una polilla
Estadio 1 Estadio 2 Estadio 3

Es	Estadio I		1	stadio 2		Estadio 3			
0.47	2.87	0.06	2.40	4.85	3.09	22.74	7.96	10.03	
0.05	0.24	0.63	3.48	4.46	9.22	3.63	11.19	4.54	
0.25	0.00	0.86	3.69	10.67	5.28	8.17	15.34	10.88	
1.43	0.00	0.00	5.35	1.75	2.25	9.82	5.14	4.68	
0.49	0.28	0.04	3.01	0.92	2.19	7.59	11.01	5.32	
4.52	0.39	0.00	1.98	1.46	3.97	8.33	7.48	14.40	
2.92	1.06	0.47	1.88	4.51	4.15	12.49	10.19	10.83	
0.14	0.11	0.12	12.47	2.35	2.81	7.74	10.95	5.54	
1.76	1.00	0.07	11.24	5.47	3.75	23.73	12.87	9.75	
0.18	0.01	2.94	5.43	4.07	0.73	6.79	13.67	6.51	
0.69	0.37	0.92	7.29	14.67	2.59	8.28	7.56	9.93	
0.00	0.56	0.03	3.88	1.40	3.83	6.46	9.12	9.10	
0.20	1.20	0.01	4.19	5.07	2.92	11.99	10.93	11.80	
0.75	0.40	0.05	3.34	3.43	6.40	14.52	22.87	15.05	
3.02	3.77	0.76	11.69	9.01	5.50	18.25	4.57	12.49	
0.29	0.28	0.39	2.98	6.09	7.22	13.62	11.30	5.48	
1.68	0.46	1.06	1.36	5.31	5.60	8.74	8.56	6.68	
0.37	0.31	0.84	2.97	9.54	4.29	8.53	3.93	10.45	
0.06	0.84	0.12	1.93	7.55	4.68	9.61	23.12	11.35	
0.72	0.91	0.51	3.84	8.33	2.32	2.83	5.44	9.58	
0.09	0.23	1.87	2.33	2.89	3.93	13.69	14.41	5.56	
0.10	0.06	0.75	3.02	4.64	5.11	10.83	2.63	8.52	
0.69	0.27	0.03	5.02	9.59	3.03	8.10	6.52	7.73	
0.00	1.87	1.80	6.25	7.13	3.46	9.49	17.35	7.02	
0.77	1.26	0.56	9.29	3.29	2.05	3.16	10.24	5.56	
0.10	0.82	0.85	2.83	7.16	1.67	10.64	12.34	16.14	
0.14	0.00	0.05	6.31	0.35	4.45	5.13	6.81	10.95	
0.90	0.00	0.05	1.61	2.81	3.47	10.18	4.17	5.22	
0.00	1.57	0.53	5.89	9.33	5.76	4.18	8.38	11.05	
1.25	0.04	0.02	6.49	3.01	1.75	6.04	4.87	20.70	
2.50	0.36	0.01	8.35	6.65	1.97	17.87	5.46	10.24	
2.05	0.01	0.04	4.22	6.44	9.41	5.97	10.45	7.97	
1.82	0.20	X-44-77.	2.95	5.94		5.18	17.90		
1.76	0.00		2.61	5.43		10.19	3.44		

Box-Plot

Procedimiento para elaborar un diagrama de caja

- Ordenar los datos y obtener el valor mínimo, máximo, y los cuartiles Q₁, Q₂ y Q₃
- 2. Dibujar un rectángulo con extremos Q_1 y Q_3 e indicar la posición de la mediana (Q_2) , mediante una línea horizontal
- 3. Obtener el rango intercuartil (RIC) que es la diferencia entre Q_{3} , Q_1 .

Procedimiento para elaborar un diagrama de caja

4. Calcular los límites admisibles superior e inferior, Li= límite inferior y Ls= límite superior.

Límites admisibles o vallas

$$LI = Q_1 - 1.5 \cdot RIC$$

$$LS = Q_3 + 1,5 \cdot RIC$$

Límites admisibles: $LI = Q_1 - 1.5 \cdot RIC$ $LS = Q_3 + 1.5 \cdot RIC$

Límites admisibles: $LI = Q_1 - 1.5 \cdot RIC$ $LS = Q_3 + 1.5 \cdot RIC$

Procedimiento para elaborar un diagrama de caja

- Calcular los límites admisibles superior e inferior, Li y Ls.
- Dibujar una línea que va desde cada extremo del rectángulo central hasta el valor más alejado no atípico, es decir, que está dentro del intervalo (Li, Ls).
- Identificar todos los datos que están fuera del intervalo marcándolos como atípicos.

Valores atípicos leves y extremos

- Se considera un valor atípico LEVE el que se encuentra 1,5 veces RIC de distancia a los cuartiles 1 o 3
- Y atípico EXTREMO aquel que se encuentra a 3 veces esa distancia

Leve:
$$q < Q_1 - 1,5 \cdot RIC$$
 o $q > Q_3 + 1,5 \cdot RIC$
Extremo: $q < Q_1 - 3 \cdot RIC$ o $q > Q_3 + 3 \cdot RIC$

RIC= rango intercuartil

Ejercicio de obtención de un diagrama de caja

Construir un diagrama de cajas a partir de los datos entregados:

peso de ratones de laboratorio (g)

35 40 31 50 53 40 49 28 30 42 57 35 45 46 46

Ejercicio de obtención de un diagrama de caja

1°	2°	3°	4°	5°	6°	7°	8°	9°	10°	11°	12°	13°	14°	15°
28	30	31	35	35	40	40	42	45	46	46	49	50	53	57

Ejercicio de obtención de un diagrama de caja

