Unsupervised Machine Learning Techniques for Anomaly Detection with Multi-Source Data

author: Filippo Pacinelli supervisor: Prof.ssa Elisabetta Ronchieri

Department of Statistics, University Of Bologna Second Cycle Degree in Statistical Sciences II Academic Session, Year 2021/2022

October 25, 2022

Problem

This work deals with anomaly detection in the Data Center of INFN-CNAF Institute.

+1000 machines \rightarrow 11 log services \rightarrow avg 1M message/machine

+1000 machines \rightarrow 18 monit metrics \rightarrow avg 300K values/metric

Main challenges:

- different types of data (textual and numerical)
- completely unsupervised task
- thousands of machines to analyze, therefore some automatic mechanism was necessary

Data Available:

- Log Data: log messages of softwares running on the machines of the data center
- Monitoring Data: numerical sequences representing metrics to check the health status of machines.

Process Adopted

Process Adopted

PCA For Dimensionality Reduction

PCA was used to:

- reduce dimensionality
- as an anomaly detection method itself trough decomposition and reconstruction

Dimensionality Reduction, 2 components

PCA And Reconstruction Error

Algorithm 1 PCA Anomaly Detection with Reconstruction Error

Methodology & Results

- 1: Reduce dimensionality trough PCA
- 2: Define threshold au
- 3: Using only the *n* principal components obtained, obtain an approximation of initial data trough transition matrix
- 4: Compute Reconstruction Error: R.E.
- 5: **for** *i in* **R.E. do**:
- 6: if $i \geq \tau$ then:
- 7: $i \leftarrow anomaly$
- 8: **else**:
- 9: $i \leftarrow regular$

Rationale: Reconstruction error is larger for uncommon, so less observed observations

DBSCAN Clustering

Density based clustering method which constructs clusters from highly populated area of observations, close at most a value ε from each other

Log Data

- $egin{array}{ll} \varepsilon & \text{obtained based on overall} \\ & \text{distances between} \\ & \text{word-vectors and parameter} \\ & \text{tuning} \\ \end{array}$
- Rationale: non-anomalous words are expected to be more and to concentrate closer between each other rather than potentially anomalous words.

Monitoring Data

- $oldsymbol{arepsilon}$ arepsilon obtained by means of elbow curve and and parameter tuning
- same rationale

DBSCAN Clustering

Specifically, serious anomalies correctly detected

K-Means Clustering

- clustering method based on centroids
- number of clusters obtained with parameter tuning
- rationale:
 expected large
 distances between
 anomalies and
 non-anomalies.
 Same example, in
 particular more
 serious anomalous
 words correctly
 detected

Mean & Variance Outlier Detection

Algorithm 2 Mean & Variance Outlier Detection

- 1: get message-vectors by averaging all the word-vectors ∈ message
- 2: get d = distances between consecutive message-vectors

Methodology & Results

- 3: **if** sliding windows = True **then**:
- 4: d = d[sliding window]
- 5: **else**:
- 6: d = d
- 7: end if
- 8: define threshold $\tau = \mu_d + k\sigma_d$ *
- 9: **for** *i in* **d do**
- 10: if $i \geq \tau$ then:
- 11: $i \leftarrow anomaly$
- 12: **else**:
- 13: $i \leftarrow regular$

Mean and Variance Outlier Detection

Anomaly Detection with sliding windows (above example) is more robust to change in patterns with respect to the algorithm without sliding windows

windows size = 20 and tolerance = 2 standard deviations on machine cloud-ctrl01

Validating Results

Log Data:

continuous anomaly score $\in [0,1]$ given to log messages. Applied after PCA, DBSCAN and K-Means algorithms results.

- PROS: more robust and safe (e.g. misclassified words have less impact).
- CONS: less precise and no more binary, intuitive classification.

Monitoring Data:

Mann-Whitney U Test to check for significant differences between anomalous and non-anomalous classified observations, for every metric

- PROS: It checks for significant difference between potential anomalous and non-anomalous samples
- CONS: It doesn't provide information about the quality of classification

Anomaly Score Example

daily database available for update (local version: 26052, remote version: 26053)

'daily', 'database', 'available', 'for', 'update', 'local', 'version', 'remote', 'version'

$$1 + 0 + 0 + 0 + 1 + 0 + 0 + 0 = 2/9 = 0.222$$

Process to compute the anomaly score of a message

Algorithm	dim.	n.	n. clus-	window size	Epsilon	tolerance
	reduc-	comps	ters			
	tion					
DBSCAN	TRUE,	2, 3, 10,	variable	N.A.	0.05%,	N.A.
	FALSE	20			0.1%,	
					0.25%,	
					0.5%	
K-Means	TRUE,	2, 3, 10,	2, 3	N.A.	N.A.	N.A.
	FALSE	20				
PCA	implicit	2, 3, 10,	N.A.	N.A.	N.A.	0.75, 0.85,
Decom-		20, 30				0.95
position						-
& Recon-						
struction						
Time-	N.A.	N.A.	N.A.	0, 10, 30, 60	N.A.	2, 3
Series				(0 means no		
Outlier				window parti-		
Detec-				tion)		1
tion						,
						1
						,

Algorithms and Hyperparameters Overview

Methodology & Results

Conclusion & Future Developments

Conclusion

- this work is a step forward anomaly detection mapping in a data center
- different types of data were successfully combined together to build more robust conclusion
- automatic implementation was also the key to deal with huge amount of data

Future Developments

- hopefully in the future also some semi-supervised or even fully supervised techniques might be employed
- feed together in a model textual and numerical data
- identify different types of anomalies and not only a binary classification (the anomaly score is a step forward in this regard)

Thank you!

15 / 15