Answer Do NOT Print!!

NATIONAL UNIVERSITY OF SINGAPORE

CS2106 – INTRODUCTION TO OPERATING SYSTEMS

(Semester 1: AY2018/19)

ANSWER BOOKLET

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This answer booklet consists of SIX (6) printed pages.
- 2. Fill in your Student Number <u>clearly</u> on all odd-numbered pages.

STUDENT NUMBER					
(fill in with a <u>pen</u>):	Α				

For examiner's use only						
Questions	Total	Marks				
Q1-6 (page 2)	24					
Q7-11 (page 3)	22					
Q12-17 (page 4)	22					
Q18-22 (page 5)	24					
Q23-25 (page 6)	8					
TOTAL	100					

CS2106 AY1819S1 Final Assessment

1.	Semaphore P(1), Q(0)	
[4]	Task A:	Task B:
	wait (P)	wait (Q)
	signal(Q)	signal(P)
2. [4]	Independence: Task B can be blocked even though A is not anywhere near. Progress: Similarly, as there is no task not be blocked.	
3. [4]	Yes, when the memory load cause a brought in, i.e. disk I/O.	page fault. Swap pages need to be
4. [4]	Yes, OS / Library can have in-memory So, the file operation actually just realise. no disk I/O.	y buffer for file content to provide. ad from the buffer instead of the file,
5. [4]	The page directory only.	
6.	Cannot rename the file.	
[4]	Cannot delete the file.	
	Camiot delete the me.	

7.	A < B	3.				
[4]	Inter	nal fragmentation	on. A fil	e may not fully o	ccupy th	e last logical block.
8.	Yes,	reduce fragment	tation.			
[4]						
9. [5]	Sem	aphore Declaratior	n(s):			
[2]	Sen	naphore M(1)				
	A1	wait(M)	B1	NA	C1	wait(M)
	A2	signal(M)	B2	NA	C2	signal(M)
10. [5]	Α	Low / High	В	Medium	С	High / Low
	۸ (۱۵	w priority) lock	Mand k	alacks C P got to	run	
	A (lo	w priority) lock (M and b	olocks C. B get to	run.	

11. Task should release semaphores before blocking.

12. [2]	Memory frame replaced isframe 2
13. [5]	 Search through all process's PTE a. Find one with frame 2 b. Update to non-memory resident
	 Use current process's page table a. update page 8 to be memory resident and in frame 2

14. [2]	Memory frame replaced isframe 0						
15. [4]	0 B 13						
	1	Α	31				
	2	Α	08				
	3	A	17				
16.	1. Use Inverted table at index 2						
[5]	a. Locate affected PTE, change to non-memory resident						
	2. Use current process's page table						
	a. update page 8 to be memory resident and in frame 2						
17. [4]	The replacement algorithm isGlobal, because memory pages are kept in						
	one single chain in OS → a process can kick out another process's page.						

18. [4] They are essentially the same, assuming that the processes get to run fairly evenly. Only recently used pages are in the memory frame → working set of process are in the memory.

19.		+00	+01	+02	+03	+04	+05	+06	+07	+08	+09
[5]	00		-		FR						
	10				 	 	{ 	FR			
				. .		_					
	Data	BIOC	k modi	fied = _	1	-					
	Dire	ctory	Entry r	nodifie	d = [E5	HATE	0 3	1234			
20. [5]		+00	+01	+02	+03	+04	+05	+06	+07	+08	+09
[ی]	00										
	10										
	Data	. Bloc	k modi	fied =	15						
	Dire	ctory	Entry r	nodifie	d = ILC	OVE 0	3 1	234			
21.		+00	+01	+02	+03	+04	+05	+06	+07	+08	+09
[5]	00								END		
	10		FR				i				
	Data	Bloc	k modi	fied =	13, 18,	9. 2. 7	. 15				
									-		
	Dire	ctory	Entry r	nodiție	d = TIS	6 0 1	.3 433	33			
22.											
[5]	ı	+00	+01	+02	+03	+04	+05	+06	+07	+08	+09
[5]	00		END								
	10					01					
	Data	a Bloc	k modi	fied =	14,	1.5					
				_							
	Dire	ctory	Entry r	nodifie	d = FA	T08 0	0 0 5	567			

CS2106 AY1819S1 Final Assessment

23. [2]	Number of '1's is15
24. [2]	Number of '1's is5 (2 folders + 3 files)
25. [4]	Hardest to reach2/3/4 th Block of "/WHY/FAT08" Number of disk accesses =7 = 1 ("/" inode) + 1("/" DEs) + 1("WHY/" inode) + 1 ("WHY/" DEs) + 1 ("FAT08" inode) + 1 (single
	indirect) + 1 (file content)