ELECTRONICS 1
ELECTRONICS FOR INTERACTIVE MEDIA DESIGN

POWER CONSUMPTION

POWER CAPABILITY OF ARDUINO UNO

Pin 5V:

- Powered by USB: max 500mA
- Powered by external battery or power supply: max 1A

I/O pins: max 40 mA

Sum of all input/output pins combined (but NOT including the "5V" pin): 200mA

NodeMCU v2 - Power Pin

I/O pins: max 12 mA

Pin Vin:

- Powered by USB: max 500mA

Pin 3V3:

- Powered by USB: max 500mA
- Powered by external battery or power supply: max 1A

Low Power / High Power

VF: 2V

IF: MAX 20MA

Power: Vf * If

P = 0.04W

VF: 3.2-3.4V

IF: MAX 350MA

POWER: VF * IF

P = 1,05W

CAN YOU DRIVE IT WITH ARDUINO UNO?

CAN YOU DRIVE IT WITH NODEMCU?

POWER DEVICES: MOTORS

SERVO MOTORS

9 G

DC Motors

STEPPER MOTORS

POWER SUPPLY: 3V-6V CURRENT > 500MA

WHAT MAKES MOTORS MOVE?

ELECTROMAGNETISM

To create a magnet or magnetic field: current through a wire.

ELECTROMAGNET

A SOLENOID WITH CURRENT = MAGNET!!!!

ELECTROMAGNET

DC BRUSHED MOTOR

CURRENT PER SOLENOIDS: 70MA

https://nationalmaglab.org/education/magnet-academy/watch-play/ interactive/dc-motor

HIGH POWER DRIVERS DEVICES: TRANSISTORS

THE TRANSISTORS ARE ACTIVE DEVICES AND THE BASIC BLOCKS OF ANY ELECTRONICS CIRCUIT.

—> AMPLIFIER

-> <u>SWITCH CONTROLLED BY A VOLTAGE</u>

MOSFET N-CHANNEL

THREE TERMINALS: SOURCE GATE DRAIN

MOSFET N-CHANNEL

IF VGS = 0V=> OPEN LOOP, NO CURRENT IF VGS > 2V
=> CLOSE LOOP, CURRENT

DC Motor (BRUSHED) - SCHEMATIC - WRONG

DC Motor (BRUSHED) - SCHEMATIC - WRONG

DC Motor (BRUSHED) - SCHEMATIC

RELAY - 220V

A relay is an electromagnetic switch operated by a relatively small electric current that can turn on or off a much larger electric current. The heart of a relay is an electromagnet (a coil of wire that becomes a temporary magnet when electricity flows through it). You can think of a relay as a kind of electric lever: switch it on with a tiny current and it switches on ("leverages") another appliance using a much bigger current.

Mini SPDT Relay 12V 10A 250V

Mini SPDT Relay 5V 10A 250V

Mini SPDT Relay 24V 10A 250V

RELAY - INSIDE

RELAY - BREAKOUT BOARD

RELAY

MOSFET VS RELAY

ANALOG AND DIGITAL
ONLY DC POWER (400V)

DIGITAL

DC (24V) AND AC (220V)

ASSIGNMENT

Use NodeMCU to control a high power led and a motor. Preparation: solder the wires to the DC Motor

Ex 1:

Control the High Power led with the MOSFET N-channel. Fade the light of the led using "analogWrite" command and "for" loop. Use the same circuit and code to control the motor.

Ex 2:

Control the dc motor using the relay. Using digital write command. Use the same circuit and code to control the High Power Led.

Extra:

Use one of the circuit of the previous exercise and send to your thing speak account the information of when the output device is on/off.

Document ex1, ex2 (and extra): Document the process in your blog:

- -> schematic of the circuit
- -> code (readable)
- -> video

LICENCE

EXCEPT WHERE OTHERWISE NOTED, THIS WORK IS LICENSED UNDER: https://creativecommons.org/licenses/by/4.0/

