PHYSICS 12th

(OBJECTIVE PART)

1.	If the	medium be		_		-		static force w		
_	(a)	Increase	(b)	Decrease		emain same		None of the	se	
2.		umber of el				_				
_	(a)	1.6×10- ¹⁹	(b)	6.25×10 ⁻¹⁹	(c)	6.25×10^{18}	(d)	6.25×10^{19}		
3.		ve permitti	• , ,			1 000 (/ 1)	200	0,		
	(a)	1.06	(b)	1.006	(c)	1.0006 (d)	1.6			
4.		erical value	_	ittivity of fi	-		202			
	(a)	9×10 ⁹ Nm ²			\ /	85×10 ⁻¹² N 1				
E	(c)	8.85×10 ⁻¹² N			\ /	10 ⁹ N ⁻¹ m ⁻²		dialaruia aCi	D., _0 1 l.	
5.					_	s 42 N. If w	ve piace a	dielectric of	Er =2.1 b	etween
	(a)	arges then t 42 N	(b)	88.2 N (c)	20 N	(d)) 2 N			
6.	` '	orce betwee	` '				,	rt in air ic		
0.	(a)	Zero	(b)	one N (c)						
7.	` '		` '		-	, ,		ce between tl	hem bec	omes:
, ,	(a)	Double	(b)	Half	(c)	four time		one fourth	iciii bee	omes.
8.	` '		\ /	A 10 /			\ /	permittivity 2	2.8 is intr	oduced
		en the char			-		_			
	(a)	25 N	_	20 N	(c)	15 N	(d)	10 N		
9.	` /	oppositely c	` /			t the third		hen place ne	ar them	turn by
	turn.	,	** (O)					-		
	(a)	Positively of	harged	(b)	Nega	tively char	ged			
	(c)	Electrically	neutral	(d)	Positi	ively and n	egatively	charged		
10.	The s	tudy of elec	tric char	ges at re <u>st ι</u>	ınder the	e action of	electric fo	rces is know	n as:	
	(a)	Electromag	netism	(b)		rostatics				
	(c)	Magnetic I		` '	Electric fi					
11.	The u	nit of electr								
	(a)	VA-1	(b)	Vm ⁻¹	(c)	VC ⁻¹	(d)	NC		
12.				-	•			intensity be	comes.	
	(a)	Half	(b)	1/4 times	(c)	double	(d)	4 time		
13.		it of strengt					. 1	- 12 -		
	(a)	J/C	()	C/V	(c)	N/C	(d)	J/N	-	
14.			on a pr	coton place	a betwee	en two par	allel plate	es containing	g equal p	oositive
	charg		(1,)	0 (v10 10 N	T (-\	0v10 10 NT	· /1\	Ev10-10 NT		
15	(a)	Zero	\ /	2.6×10 ⁻¹⁹ N	\ /	9×10 ⁻¹⁹ N	(d)	5×10 ⁻¹⁹ N		
15.		ept of an ele				•	Whotcom	# 0344599500:	5	ng 1
M	ustali	ai Sciiddi K	aia Siid	uiaii,Conta	ici # U 34 4	, 5005866	v natsapp	# 0344377300	3	pg. 1

Guess	s Paper Annual 2024	CLASS 12th	Mustafai school kala Shadian
	(a) Coulomb (b) Faraday	(c) Einstein	(d) Joseph Henry
16.	The electric fields created by positive	ve charge is:	<u></u>
	(a) Radically inward (b) Ze	` '	(d) Radically outward
17.	The direction of fields lines around	•	<u> </u>
		dically out ward (c)	* /
18.	A charge on 4 coulomb is in the fiel	•	G
	(a) 8N (b) 16N	(c) 4N	(d) 1N
19.	The force on an electron in a field o		
•		V (c) 1.6×10 ⁻¹⁹ N	N (d) 1.6×10 ⁻²⁷ N3
20.	Photo copier and inkjet printer are t	= =	
	(a) Magnetism	(b) Electricity	
21	(c) Electro-magnetism (d)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21.	Identity the practical application of (a) Inkjet printer		
	(a) Inkjet printer(c) laser	(b) Z-rays (d) Z.C gener	estor.
22.	The heart of a photo copy machine i		
22.	(a) Copper (b) Aluminiu		Cobalt
23.	The drum in photo copier is coated	` ,	Cobuit
	(a) Aluminium (b) Copper	(c) Selenium	(d) Silver
24.	Which one is photo conductor?		(1)
	(a) Copper (b) Selenium	(c) Mercury	(d) Aluminium
25.	SI unit of electric flux is:		,
	(a) $NmC^{-1}(b)$ $Nm_{-1}C_{-1}$ (c)	Nm_2C_{-1} (d)	Nm_3C_{-2}
26.	A changing electric flux creates:		
	(a) Electric fields (b)	Gravitational	
	(c) Magnetic field	(d) Electric ch	
27.	Which one of the following can be t	taken as measure of	_
	(a) $\frac{F}{A}$ (b) $\frac{\varphi_c}{A}$	(c) $\frac{\phi}{A}$	(d) $\frac{\phi \varepsilon_o}{A}$
28.	Equation $\phi = \overline{E} \cdot \overline{A}$ is applicable to s	urface.	
	(a) Spherical (b) Cylindric	al (c) Conical	(d) Flat
29.	For computation of electric flux, the	surface area should	be:
	(a) Parallel (b) Flat	(c) Curved	(d) Spherical
30.	The electric flux through closed sur	= =	-
	(a) Charge (b) Medium	(c) Geometry	d Charge and Medium
31.	Total flux through a closed surface		1 1 1
	(a) Shape of surface	<u> </u>	nclosed only
22	(c) Medium only		nd Medium
32.	Gauss's Law can only be applied to: (a) A curved surface		face
	(c) A surface of any shape	(b) A flat surf (d) A closed s	
22		' '	surface
33.	The statement $\Phi_{\mathbf{e}} = \frac{1}{\varepsilon_o} \mathbf{Q}$ was given l		
	(a) Faraday (b) Deserted	()	
34.	The electric field intensity due to an		arge:
	(a) $\bar{E} \cdot \frac{\sigma}{2\varepsilon_0} \hat{r}$ (b) $\bar{E} \cdot \frac{2\sigma}{2\varepsilon_0} \hat{r}$ (c) $\bar{E} \cdot \frac{2\sigma}{2\varepsilon_0} \hat{r}$	$\frac{1}{2\varepsilon_0}\hat{r}(d) \qquad E.\frac{\sigma}{\varepsilon_0}\hat{r}$	
	$-\epsilon_0$	-20	

Guess	s Paper Annual 2024		CLASS	5 12 th	<u>Mustafai school kala Shadian</u>	
35.		betweer	n points	on human s	skin gei	nerated by electric process in
	the heart:					
	(a) Heart beat (b)					
36.	Special organ called amp	oullae of loren	ızini tha	at are very se	ensitive	to electric field are found in:
	(1)		<i>(</i>)	7	(1)	O1 1
27	(a) Bats (b)		` '	Dogs	` /	Sharks
37.	If charged body is moved	_			gain:	(2 Time)
	(a) Elastic Potential En	O		0,)-la-Ha	117
20	(c) Gravitational Ener			Electrical F		
38.	The absolute electric pot $0 \times 10^2 \text{ M}$					_
20		$9 \times 10^3 V$			` '	9 × 10 ⁵ V
39.	A charge of 10-10C between (a) 10V (b)					104V 104V
40	(a) 10V (b) Electron volt is the unit of	10 ² V	(c)	10-γ	(d)	10-4
40.		JI;	(h)	Potential di	: Cf arang	
	\ /		(b)			
41.	(c) Electric current One electron volt is equa	al 400	(d)	Electric ene	rgy	(1 Time
41.	(a) 1.6×10^{-19} joule	11 10.	(b)	1.6×10^{-19}	Coulom	
	(c) $1.6 \times 10^{12} N$	(d)		1.0×10 10^{18} joule		.D
42.	Charge on electron is:	(4)	1.0 \(\tau \)	10 June		
14,	Charge on electron is: (a) $1.6 \times 10^{-19} C$	(b)	1.6 x	10 ¹⁹ C		
	(c) $1.6 \times 10^{-17} C$	(d)	1.6 ×	$10^{17}C$		
43.	\ /				nother.	the electric intensity will be:
10.						
	(a) $E = \frac{mg}{q}$ (b)					
44.	The charge on the oil ard	oplet in Millik	can's 01	l drop exper	iment c	calculated by using formula.
	(a) $q = \frac{mg}{d}$ (b)	$q = \frac{1}{mgd}$	(c)	$q = \frac{mg\omega}{V}$	(d)	$q = \frac{r}{mgV}$
45 .	A capacitor is perfect ins					
	(a) Alternating curren		_	~		
	(c) Eddy current	(d)	Direct	t current		
46.	Coulomb/ volt is called:			_		
_	(a) Farad (b)	Ampere	` '		(d)	Henry
47.	The net charge on a capa					
4.0	(a) Infinity (b)	2q	(c)	q/2	(d)	Zero
48.	The capacitance of a para					(1 Time)
	(a) $\frac{\varepsilon_o d}{A}$ (b)	$\frac{\varepsilon_0 A}{d}$	(c)	$\frac{A}{\varepsilon_0 d}$	(d)	$\frac{d}{\varepsilon_0 A}$
49.	Presence of dielectric bet			U		then its capacitance become:
	(a) Reduces the electri	-		_		_
	(c) Does not affect elec	ctric force	(d)	Double elec	ctric for	ce
50.	, ,					s a capacitance C. If the oil is
	removed then capacitano	ce of capacitor	becom	ies:		
	(a) C (b)	<u>C</u>	(c)	<u>C</u>	(d)	$\sqrt{2C}$
51.	Energy stored in the capa	_		V -	` '	
0	(a) $\frac{1}{2}\varepsilon_1\varepsilon_0E^2Ad$ (b)				1 - c. c.	F 2
E2			u		_	L
52.	The energy density in a d	-		_		# 02445005005
"	Austafai school kala Sha	auran, Comac	t# U344	5995005, WI	ıaısapp	# 03445995005 pg. 3

Gues	s Paper Annual 2024	CLASS 12th	Mustafai scho	ol kala Shadian
	(a) $\varepsilon_0 \varepsilon_r$ (b) E	()	(d) V^2	
53.	The product of resistance ar	d capacitance is:		
	(a) Velocity	(b) Acceleration	on	
	(c) Time	(d) Force		
54.	Drift velocity of electron is:	<u></u>		
	(a) 10^{-1} m/s (b)	10^{-2} m/s (c)	10^{-3} m/s (d)	$10^{-4} \mathrm{m/s}$
55.	A device which converts me	chanical energy into elec <u>tri</u> ca	al energy is called:	
	(a) D.C generator (b)	o) D.C motor (c)	A.C generator	(d)
	Transformer			
56.	Heat generated by a 50 watt	bulb in one hour is:		
	(a) 36000 J (b)) 48000 J (c)	18000 J (d)	180000 J
57.	One ohm device the graph b	etween V and I is:		•
	(a) VC^{-1} (b)	$) \qquad \text{CV}^{-1} \qquad \qquad \text{(c)}$	AC^{-1} (d)	VA-1
58.	The SI unit of temperature of	oefficient of resistivity is:		
	(a) ohm-m (b	k^{-1} (c)	K (d)	ohm
59.	Good conductors have cond		VV.0.	
			$10^2 (\Omega m)^{-1} (d) 10^{-7}$	$(\Omega m)^{-1}$
60.	Which one has negative tem	perature co-efficient of resis		
	(a) Carbon (b		Tungsten (d)	Gold
61.	The resistance of a conductor	r of length L, cross sectional	area 'A' and resistiv	ity is given by:
	(a) $R = \frac{\rho}{4L}$ (b)	$R = \rho A L \qquad (c)$	$R = \rho \frac{L}{A}$ (d)	$R = \rho \frac{A}{I}$
62.	112	wire specific resistance of th	Л	· L
-	(a) Increases	(b) Decreases		
	(c) Remains unchanged	(d) First increase then de	ecreases	
63.	If fourth band is missing on		7 01 00 10 00	
	(a) ±5% (b		$\pm 15\%$ (d)	±20%
64.	Resistance tolerance of silve			
	(a) 10% (k		7% (d)	5%
		bulbs has the least resistance?	()	
	(a) 100W (b	Y	500W (d)	1000W
65.		is delivered to a load resist		
	of the source is: (a) $r = \infty$ (b)		r=R/4	
66.		nanifestation of law of conse	ervation of:	
	(a) Momentum (b) Charge (c)	Energy (d)	Mass
67.		way of stating conservation	01	
	(a) Momentum (b		Energy (d)	Mass
68.	A current flowing towards t			
	(a) Positive sign (b) A bracket (c)	A dot (d)	Cross
69.	The S.I. unit of \overline{E} is NC-1 an	d that of \overline{B} is NA-1 m-1 than	the unit of E/B is:	
	(a) ms^{-2} (b)		ms^{-1} (d)	$m^{-1}s^{-1}$
70.	Write the S.I unit of magnet	·	, ,	
	(a) Tesla (b		Weber m ⁻² (d)	Tesla m ⁻²
71.		currents in the opposite dire	` ,	
) Attract each other (c)	Have no effect up	on each other (d)
	They cancel out their individ	,	1	,
72.	The S.I unit of magnetic ind	9		

Gues	s Paper Annual 2024	CLAS	S 12 th	Musta	ıfai schoo	ol kala Shadian
	(a) Weber (b	Tesla	(c)	Gauss	(d)	Newton
73.	A 5 m wire carrying current		e to uniform	magnetic fi	eld of 0.5	T. the force on
	the wire is:			(1 Time)		
	(a) 1.5 N (b	5 N	(c)	2.5 N	(d)	4 N
74.	The SI unit of magnetic indu	action "B" Tesla	is equal to:		(7 Tir	ne)
	(a) $NA^{-1}m^{-1}$ (b)) Nam ⁻¹	(c)	$NA^{-1}m$	(d)	NA^2m^{-1}
75.	The SI unit of magnetic perr	neability is:				(2 Time)
	(a) $WbA^{-1}m^{-1}$ (b)) Wbm ⁻²	(c)	WbmA ⁻¹	(d)	WbAm ⁻¹
76.	The value of permeability of	f free space in SI			(2 Tir	ne)
	(a) $4\pi \times 10^{-9} WbA^{-1}m^{-1}$	-	(b)	$4\pi \times 10^{-7}$ l	$WbA^{-1}m$	-1
	(c) $4\pi \times 10^{-10} WbA^{-1}m^{-1}$		(d)	$4\pi \times 10^7 W$	$bA^{-1}m^{-1}$	1
77.	The SI unit of flux density is	S:	,			(2 Time)
	(a) $NA^{-1}m^2$ (b)		(c)	Nm ⁻¹	(d)	$NA^{-1}m$
78.	The SI unit of magnetic indu		,			(2 Time)
	(a) Weber (b		(c)	Tesla	(d)	Nm
79.	The field inside a solenoid i	s given by:		100	(1 Tir	ne)
	(a) $\mu_o nl$ (b)		(c)	$\mu_o n l^2$	(d)	$\mu_o N l$
80.	If the number of turns become	,	, ,		` '	
	solenoid become:		♦ ♦		ime)	
	(a) Half (b	Double	(c)	Remain sa	me(d)	Zero
81.	Magnetic flux density at a po		nt carrying co	oil is determ	ined by:	
	, ,	4.			J	(2 Time)
	(a) Ampere's Law (b) Gauss's Law	7.			,
	(c) Faraday's Law (d					
82.	The relation $B = \frac{\mu_0 l}{2\pi r}$ is called					
	(a) Ampere's Law (b)		aw			
		l) Gauss's Law				
83.	Force on a charged particle is			e with magn	etic field	1.
	(a) 0^o (b)					270^{o}
84.	The magnetic force on an ele					
	2 is:	8		•		8
	(a) $10^5 N$ (b)	$10^{-10}N$	(c)	1.6×10^{-1}	$^{1}N(d)$	Zero
85.	If a charge is at rest in a mag	•	` '		(1 Tir	ne)
			(c)	•	`	qvΒcosθ
86.	The magnetic force on an ele	ectron travelling	with 106ms-1	parallel to a	` '	ength 1 Webm-
	2 is:	O		•		O
	(a) 10^{-12} N (b)	Zero	(c)	1.6×10^{-1}	$^{1}N(d)$	$10^{3}N$
87.	The Lorentz force on a charg	•	· /		` /	
	by:	•	(1 Ti		O	O
	(a) $F = F_E + F_B $ (b)	$F = F_{r} - F_{p}$	(c)	$F = \frac{F_B}{F}$	(d)F =	$=F_{r}\times F_{r}$
00		I = IE IB	(C)	F_E	(4)1	- 1 E × 1 B
88.	Lorentz force is given by: $(\overline{D} = \overline{V} \times \overline{D})$		`			
	(a) $q(\bar{E} - \bar{V} \times \bar{B})$ (b)	$q(E + V \times B)$)			
	(c) $q[\bar{E} \times (-\bar{V} \times \bar{B})]$ (d	, - :	-			
89.	The sum of electric and mag					
		Lorentz force				
_	` '	l) Centripetal		,	4800800	_
<i>^</i>	Mustafai school kala Shadia	an, Contact # 0344	15995005 , Wł	1atsapp # 034	45995005	pg. 5

Guess	Paper Ann	ual 2024		CLASS 12	2 th	Mustafa	ai schoo	l kala Shadian
90.	The value	e of e/m is smalle	st for:					
	(a) Pro	oton	(b)	Electron	(c)	β -particle	(d)	Positron
91.	The unit	of \overline{E} is NC-1 and	that of	f \overline{B} NA-1m-1 the	en the unit	of $\frac{\overline{E}}{\underline{E}}$:		
320	(a) ms		(b)	m ⁻¹ s ⁻¹	(c)	ms	(d)	ms ⁻¹
92.	` '	- ne on a charged p	` /		` '			1115
92.	VVOIK UUI	ie on a chargeu p	articic	inioving in a un	inomi ma	gnetic meru is	•	(1 Time)
	(a) Ma	ıximum	(b)	Zero	(c)	Minimum	(d) N	egative
93.	()	s in cathode ray	` /		` '	Willimitani	(a) 1V	eganve
<i>J</i> .		id (b) Filame		(c) Anode(d	•	nde		
94.	\ /	ntness of the spot		()	,			
74.	_	_		Cathode	(c)	Grid	(d)	Anode
95.		cay oscilloscope v	` /			Grid	(4)	THIOGE
<i>J</i> .		utrons	(b)	Protons	(c)	Electrons	(d)	Positron
96.	` '	ave form of swee	` '			Electrons	(4)	1 00111011
J 0.		w tooth wave	(b)	Digital wave	101 15.			
			(d)	Square wave		100		
97.	` '	aveform of built		-) is:		(2 Tir	ne)
] ,,	_	usoidal	(b)	Saw tooth	(c)	Rectangular	`	Square
98.	` '	y of a galvanome	` '			·	(4)	Square
100		creasing the valu						
		creasing number			1.0			
		creasing area of p						
		creasing magneti						
99.	` '	tivity of galvano						
	(a) $\frac{CAN}{B}$		(b)	C	(c)	$\frac{BAN}{C}$	(d)	$\frac{BN}{CA}$
100	_		` /	BAN	(c)	•	` /	\overline{CA}
100.		o measure poten			ter is aiwa	ys connected	ın:	
	(a) Ser	th A and B		Parallel				
101		m A and B m meter gives fu		Neither in serie		ranei	/1 T:	-a)
101.		- A A		infinite resistan			(1 Tin	ne)
	\ /	. (7.24)	(b) (d)					
102.	` '	is used in:	(u)	very high resist	ance			
102.		mmeter	(b)	Ammeter				
		lvanometer	(d)	Voltmeter				
103.	_ (/	rt a galvanomete	` '		σh resistat	nce is connect	ed.	
100.		series	(b)	in parallel	511 Tesistai	ice is connect	.cu.	
			(d)	Along tangent				
104.		e of the followin	` '	0 0	convert a	Galvanomete	er into :	an Ammeter?
101		gh resistance	(b)	Low resistance				
	`	unt	(d)	High resistance		0		
105.		istance is:	(4)	1116111colotalice	belieb wit	ii gaivanomet	(1 Tin	ne)
1001		w resistance	(b)	High resistance	•		(,
		ro resistance	(d)	Impedance				
106.	()	e has the least re	` '	*				
			(b)	Ammeter	(c)	Voltmeter	(d)Oh	m meter
107.	` /	evice to measure			` '		` /	
		chool kala Shad			_			

T magnetic field. The emf produced is: (a)	Guess	S Paper Annual 2024	CLASS 12	th	Mustaf	ai schoo	ol kala Sl	nadian
(1 Time) 108. A 20.0 cm wire charging a current of 10.0A is placed in a uniform magnetic field of 0.30T. If the wire makes Electromagnetic induction obeys law of conservation of: (a) Charge		(a) Voltmeter <u>(b)</u>	Ammeter					
108. À 20.0 cm wire charging a current of 10.0A is placed in a uniform magnetic field of 0.30T. If the wire makes Electromagnetic induction obeys law of conservation of: (a) Charge		(c) Ohmmeter (d)	Digital Multi me	eter				
the wire makes Electromagnetic induction obeys law of conservation of: (a) Charge		(1 Time)						
(a) Charge (b) Energy (c) Momentum (d) Mass 109. When a conductor move across a magnetic field, an emf is set up is called: (a) Variable (b) Constant emf (c) Back emf (d) Induced emf 110. The relation of emfs of two cells \(\frac{\frac{1}{k_2}}{k_2}\) is: (a) \(\frac{1}{k_2}\) \	108.	A 20.0 cm wire charging a curre	ent of 10.0A is pl	aced in a	uniform mag	gnetic f	ield of 0	.30T. If
109. When a conductor move across a magnetic field, an emf is set up is called: (a) Variable (b) Constant emf (c) Back emf (d) Induced emf 110. The relation of emfs of two cells \(\frac{\f		the wire makes Electromagnetic	c induction obeys	law of c	onservation o	f:		
(a) Variable (b) Constant emf (c) Back emf Induced emf 110. The relation of emfs of two cells $\frac{E_1}{E_2}$ is: (a) $\frac{I_2}{I_1}$ (c) $\frac{1}{I_1I_2}$ (d) $\frac{1}{I_2}$ 111. A metal rod of 1 m is moving at a speed of 1ms-1 in a direction making an angle 300 with 0.5 T magnetic field. The emf produced is: (a) 0.25 N (b) 2.5 N (c) 0.25 V (d) 2.5 V 112. The motional emf depends upon the: (a) Length of conductor (c) Strength of magnetic 113. Emf is induced due to change in: (a) Charge (b) Current (c) Magnetic flux (d) Electric field 114. Len's Law is in accordance with the law of conservation of: (a) Momentum (b) Angular momentum Energy (d) Charge (a) Magnitude of emf (b) Direction of induced current (a) Magnitude of emf (d) Resistance 116. Lenz's law deals with: (a) Direction of induced of current (d) Resistance 117. Mutual induction play role in: (a) Generator (c) Galvanometer (d) Resistance (2 Time) 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils Density of coils (c) Material of coils (b) Vs- $^{1}\Lambda$ (c) Vs- $^{3}\Lambda$ (d) Vs- $^{3}\Lambda$ (1 Time) (a) Weber (b) Tesla (d) Vs- $^{3}\Lambda$ (c) Vs- $^{3}\Lambda$ (d) Vs- $^{3}\Lambda$ (2) Unit of self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf (d) Farad (d) Farad (d) Cerrent (d) Farad (d) Farad (d) Cerrent (d) Farad (d) Farad (d) Cerrent (d) Current (d) Farad (d) Cerrent (d) Current (d) Cerrent (d) Current (d) Farad (d) Cerrent (d) Current (d) Cerrent (d) Current (d) Cerrent (d) Cerrent (d) Current (d) Cerrent (d) Cerre		(a) Charge (b)	Energy	(c)	Momentum	(d)	Mass	
110. The relation of emfs of two cells $\frac{F_1}{F_2}$ is: (a) $\frac{F_2}{F_1}$ (c) $\frac{1}{I_1 I_2}$ (d) $\frac{1}{I_2}$ 111. A metal rod of 1 m is moving at a speed of 1ms-1 in a direction making an angle 300 with 0.5 T magnetic field. The emf produced is: (a) 0.25 N (b) 2.5 N (c) 0.25 V (d) 2.5 V 112. The motional emf depends upon the: (a) Length of conductor (c) Strength of magnetic (d) All of these (1 Time) (a) Length of conductor (c) Strength of magnetic (d) All of these (1 Time) (a) Charge (b) Current (d) Magnetic flux (d) Electric field (a) Momentum (b) Angular momentum (e) Energy (d) Charge (2 Time) (a) Momentum (b) Angular momentum (e) Energy (d) Charge (2 Time) (a) Magnitude of emf (b) Direction emf (e) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of induced of current (d) Resistance (2 Time) (a) Direction of induced of current (d) Resistance (2 Time) (b) D.C motor (c) Galvanometer (d) Resistance (2 Time) 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer (d) Transformer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (c) Material of coils (d) Geometry of the coils (a) WsA-1 (b) VsA-1 (c) Vs-1A-1 (d) VsA-1 (d) VsA-	109.	When a conductor move across	a magnetic field,	an emf i	s set up is call	ed:		
(a) \(\frac{\frac		(a) Variable (b) C	onstant emf	(c) B	ack emf (d)	Induce	ed emf	
(a) \(\frac{\frac	110.	The relation of emfs of two cell	$s = \frac{E_1}{E}$ is:			_		
111. A metal rod of 1 m is moving at a speed of 1ms-1 in a direction making an angle 300 with 0.5 T magnetic field. The emf produced is: (a) 0.25 N (b) 2.5 N (c) 0.25 V (d) 2.5 V 112. The motional emf depends upon the: (a) Length of conductor (b) Speed of conductor (c) Strength of magnetic (d) All of these (d) I Time) (a) Charge (b) Current (d) Magnetic flux (d) Electric field 114. Len's Law is in accordance with the law of conservation of: (8 Time) (a) Momentum (b) Angular momentum (e) Energy (d) Charge (2 Time) (a) Magnitude of emf (b) Direction emf (c) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of induced current (d) Resistance (2 Time) (a) Direction of emf (b) Magnitude of emf (d) Transformer 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer (d) Transformer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (d) Density of coils (c) Material of coils (d) Vs-1A (c) Vs-1A (d) VsA (d)		_	- 4	(-)	1	(1)	1	
T magnetic field. The emf produced is: (a) 0.25 N (b) 2.5 N (c) 0.25 V (d) 2.5 V		<u> </u>					2	
(a) 0.25 N (b) 2.5 N (c) 0.25 V (d) 2.5 V (d) 112. The motional emf depends upon the: (a) Length of conductor (c) Strength of magnetic (d) All of these 113. Emf is induced due to change in: (a) Charge (b) Current (d) Magnetic flux (d) Electric field 114. Len's Law is in accordance with the law of conservation of: (a) Momentum (b) Angular momentum Energy (d) Charge (2 Time) (a) Magnitude of emf (b) Direction emf (d) Resistance 116. Lenz's law deals with: (a) Direction of induced current (d) Resistance (2 Time) 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer (d) Resistance (2 Time) 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (d) Resistance (2 Time) 121. Unit of self induction is: (a) Weber (b) Tesla (d) VsA 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	111.			in a dir	ection makin	g an an	gle 300 v	with 0.5
112. The motional emf depends upon the: (a) Length of conductor (b) Speed of conductor (c) Strength of magnetic 113. Emf is induced due to change in: (a) Charge (b) Current (c) Magnetic flux (d) Electric field 114. Len's Law is in accordance with the law of conservation of: (a) Momentum (b) Angular momentum (c) Energy (d) Charge (2 Time) 115. Lenz's law deal with: (a) Magnitude of emf (b) Direction emf (c) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of emf (b) Magnitude of emf (c) Direction of induced of current (d) Resistance 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (c) Material of coils (d) Geometry of the coils (e) Material of coils (f) Time) (a) Wokyli (b) Vs-lA (c) Vs-lA-l (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Flux (d) Self induction 121. Unit of self induction is: (a) Weber (b) Tesla (c) Flux (d) Self induction (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor (1 Time) (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor		_			0,0			
(a) Length of conductor (c) Strength of magnetic (d) All of these All of these (1 Time) (a) Charge (b) Current (c) Magnetic flux (d) Electric field 114. Len's Law is in accordance with the law of conservation of: (a) Momentum (b) Angular momentum (c) Energy (d) Charge (15. Lenz's law deal with: (a) Magnitude of emf (b) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of induced current (d) Resistance 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Uss-1A (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (a) Motional emf (b) Vss-1A (c) Vss-1A-1 (d) Vss-1 (d) Time) 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Flux (d) Self induction (a) Weber (b) Resistant (c) Flux (d) Self induction (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature (a) Number of turns of the coil (d) Area of cross-section of the core (c) Nature (d) Time) (e) Natural finductor per unit volume is:				(c)	0.25 V	(d)	2.5 V	
c) Strength of magnetic Indicated due to change in: (a) Charge (b) Current (c) Magnetic flux (d) Electric field 114. Len's Law is in accordance with the law of conservation of: (a) Momentum (b) Angular momentum Energy (d) Charge 115. Lenz's law deal with: (a) Magnitude of emf (b) Direction emf (a) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of emf (b) Magnitude of emf (a) Direction of induced of current (d) Resistance 117. Mutual induction play role in: (a) Generator (c) Galvanometer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (a) Weber (b) Tesla (c) Henry (d) Farad 121. Unit of self induction is: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	112.		n the:					
### 13. Emf is induced due to change in: (a) Charge (b) Current (c) Magnetic flux (d) Electric field ### 14. Len's Law is in accordance with the law of conservation of: (a) Momentum (b) Angular momentum (c) Energy (d) Charge ### 15. Lenz's law deal with: (a) Magnitude of emf (b) Direction emf (c) Direction of induced current (d) Resistance ### 16. Lenz's law deals with: (a) Direction of emf (b) Magnitude of emf (c) Direction of induced of current (d) Resistance ### 17. Mutual induction play role in: (a) Generator (c) Galvanometer ### 18. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) D.C motor (c) Material of coils (c) Material of coils (d) Geometry of the coils (e) Material of coils (f) Time) ### 19. SI unit of Henry which is: (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA ### 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf ### 121. Unit of self induction is: (a) Weber (b) Tesla (c) Flux (d) Self induction ### 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction ### 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature ### 141. Unit of self induction of the coil (d) Area of cross-section of the core (c) Nature ### 142. The energy stored in the inductor per unit volume is:				<u> </u>		nductor		
(a) Charge (b) Current (c) Magnetic flux (d) Electric field 114. Len's Law is in accordance with the law of conservation of: (8 Time) (a) Momentum (b) Angular momentum Energy (d) Charge 115. Lenz's law deal with: (2 Time) (a) Magnitude of emf (b) Direction emf (c) Direction of induced current (d) Resistance 116. Lenz's law deals with: (2 Time) (a) Direction of induced of current (d) Resistance (2 Time) 117. Mutual induction play role in: (6 Time) (a) Generator (b) D.C motor (c) Galvanometer (d) Transformer 118. The mutual inductance of the coils depend upon: (1 Time) (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (8 Time) (a) Motional emf (b) Vs-1A (c) Vs-1A-1 (d) Vs-A 120. The self induction emf is sometimes called: (4 Time) (a) Motional emf (b) Constant emf (c) Back emf (d)Variable emf 121. Unit of self induction is: (1 Time) (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (1 Time) (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:				(d)				
field 114. Len's Law is in accordance with the law of conservation of: (a) Momentum (b) Angular momentum (c) Energy (d) Charge 115. Lenz's law deal with: (a) Magnitude of emf (b) Direction emf (c) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of emf (b) Magnitude of emf (c) Direction of induced of current (d) Resistance 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer (d) Transformer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils (e) Material of coils (f) Time) (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad (d) Time) (a) Current (b) Resistant (c) Flux (d) Self induction (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor (d) Nature (e) Number of turns of the coil (f) Time) (o) Number of turns of the coil (d) Area of cross-section of the core (c) Nature (d) Number of turns of the coil (e) Current through inductor (f) Time)	113.	•	n:		,	•		
114. Len's Law is in accordance with the law of conservation of: (a) Momentum (b) Angular momentum Energy (d) Charge (2 Time)		` '	Current	(c)	Magnetic fl	ux	(d)	Electric
(a) Momentum (b) Angular momentum (c) Energy (d) Charge (2 Time) (a) Magnitude of emf (b) Direction emf (2 Time) (b) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of induced of current (d) Resistance 117. Mutual induction play role in: (a) Generator (b) Magnitude of emf (5 Time) (b) D.C motor (6 Time) (c) Galvanometer (d) Density of coils (c) Material of coils (b) Density of coils (c) Material of coils (b) Vs-1A (c) Vs-1A-1 (d) VsA 119. SI unit of Henry which is: (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (a) Back emf (d) Variable emf (1 Time) (a) Weber (b) Tesla (b) Henry (d) Farad 121. Unit of self induction is: (a) Current (b) Resistant (b) Resistant (c) Flux (d) Self induction (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:								
115. Lenz's law deal with: (a) Magnitude of emf (b) Direction emf (c) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of emf (b) Magnitude of emf (c) Direction of induced of current (d) Resistance 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (8 Time) (a) WsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (a) Motional emf (b) Tesla (a) Weber (b) Tesla (b) Resistant (c) Flux (a) Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor (d) Time (d) Self core (d) Current through inductor (d) Time (d) Nature of material of the core (d) Current through inductor (e) Nature of material of the core (d) Current through inductor	114.					`	,	
(a) Magnitude of emf (b) Direction emf (c) Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of emf (b) Magnitude of emf (c) Direction of induced of current (d) Resistance 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils (e) Material of coils (f) Material of coils (g) Time) (g) VsA-1 (g) VsA-1 (g) VsA-1 (g) VsA-1 (h) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad (d) Variable emf (d) Variable of the coils (a) Current (b) Resistant (c) Flux (d) Self induction (a) Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:			Angular momer	ntum(c)	Energy	(d)	0	
Direction of induced current (d) Resistance 116. Lenz's law deals with: (a) Direction of emf (b) Magnitude of emf (c) Direction of induced of current (d) Resistance (2 Time) 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils (1 Time) (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d)Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	115.					_	(2 Tim	e)
116. Lenz's law deals with: (a) Direction of emf (b) Magnitude of emf (c) Direction of induced of current (d) Resistance (2 Time) 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer (d) Transformer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (c) Material of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (8 Time) (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (a) Motional emf (b) Tesla (c) Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor (d) Time) (e) Nature of material of the core (d) Current through inductor (e) Time energy stored in the inductor per unit volume is:		<u> </u>				f		
(a) Direction of emf (b) Magnitude of emf (c) Direction of induced of current (d) Resistance (2 Time) 117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer (d) Transformer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d)Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:			ent	(d)	Resistance			
Direction of induced of current	116.			/4 \				
117. Mutual induction play role in: (a) Generator (b) D.C motor (c) Galvanometer (d) Transformer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (8 Time) (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:					0	of emf	,	
(a) Generator (c) Galvanometer Transformer 118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (8 Time) (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d)Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:			ırrent	(d)		-• \	(2 Tim	ıe)
(c) Galvanometer The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (8 Time) (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	117.			(1.)	`	,		
118. The mutual inductance of the coils depend upon: (a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (8 Time) (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (1 Time) (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:								
(a) Stiffness of the coils (b) Density of coils (c) Material of coils (d) Geometry of the coils 119. SI unit of Henry which is: (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	440		•1 1 1	` /	Transfor		`	
(c) Material of coils 119. SI unit of Henry which is: (a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf (d) VsA 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature (d) Time) (a) Number of turns of the coil (d) VsA (e) Back emf (d) Variable emf (f) Time) (a) Farad (c) Flux (d) Farad (d) Farad (e) Flux (f) Time) (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	118.					(1 11	me)	
119. SI unit of Henry which is: (a) VsA ⁻¹ (b) Vs ⁻¹ A (c) Vs ⁻¹ A ⁻¹ (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d)Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:			(b) Density of			.1 "	1	
(a) VsA-1 (b) Vs-1A (c) Vs-1A-1 (d) VsA 120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	110			(a)	•			
120. The self induction emf is sometimes called: (a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	119.		T 7 1 A	()	,		•	
(a) Motional emf (b) Constant emf (c) Back emf (d) Variable emf 121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	120			(c)	VS-1A-1	` '		
121. Unit of self induction is: (a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	120.			()	D 1 (`	,	C
(a) Weber (b) Tesla (c) Henry (d) Farad 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	101		Constant emr	(C)	back emr	` '		mr
 122. Henry is SI unit of: (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Flux (d) Self induction 124. The energy stored in the inductor per unit volume is: 	121.		т1-	(-)	T T	•	•	
 (a) Current (b) Resistant (c) Flux (d) Self induction 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Flux (d) Self induction (a) Number of turns of the coil (b) Area of cross-section of the core (c) Time) (d) Current through inductor 124. The energy stored in the inductor per unit volume is: 	100		resia	(C)	Henry	` /		
(c) Flux (d) Self induction 123. Self induction does not depend on: (1 Time) (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	122.		Dociotant			(2 111	nej	
 123. Self induction does not depend on: (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is: 		<u> </u>						
 (a) Number of turns of the coil (b) Area of cross-section of the core (c) Nature of material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is: 	100						(1 Time	۵)
material of the core (d) Current through inductor 124. The energy stored in the inductor per unit volume is:	123.	-		a.f	analis - Cul		`	,
124. The energy stored in the inductor per unit volume is:		` '	` '		-section of the	core (c)	Nature	e of
	104		_					
					natsann # N2//	5005004	.	ng. 7

Guess	Paper Annual	2024		CLASS 1	2 th		M	ustafa	i schoo	l kala Sl	<u>ıadian</u>
	(a) $\frac{1}{2} \frac{B^2}{A^2}$		(b)	$\frac{1}{2}\frac{B}{\mu}$		(c)	<u>1B</u>		(d)	1 <i>B</i>	
125	$2 \mu_0$	stored in indu				(-)	$\frac{2u_{0}^{2}}{2u_{0}^{2}}$		(4 Tir	$2u_o$	
123.	1			4		(a)	1, 21		`	$\frac{1}{2}L^{2}I^{2}$	
400			(b)	Z		(c)	$\frac{1}{2}L^2I$		(d)	4	,
126.		uctance of sole				()	т 2	ΑТ	/ 1 \ :	(2 Tim	,
107	(a) $L = \mu_0 n$		(b)	$L=\mu_0 N^2 AI$. Lla	(c)	•		` '	$L=\mu_o NA$	L
127.		-		00 mH inductor	r, tnei	_		a is: (•	
120	(a) 100 J		(b)	5 J	ou bl	(c)	20 J	T ofor	(d)	zero • basam	001
120.	vviien currer	it Howing thire	ougn a	ın inductor is d	ouble	eu, me	_	y store (1 Tin		t becom	es.
	(a) Half		(b)	Four times		(c)	One for	•	,	Double	د
129.	\ /			n magnetic field	d is c			4	(1 Tir		-
			(b)	Electric flux		(c)	Work	000	(d)	Power	
130.		or based upon	` '			()					
	(a) Lenz's	-		Maxwell's relat	tion		0				
	(c) Farada	ys Law of elec	troma	gnet induction			100				
	(d) Mutua	l induction				• .					
131.	Which one is	s not present i	n A.C	generator?			-	(5 Tin	ne)		
	(a) Armat	ture	<u>(b)</u>	Magnet							
	(c) Slip ri	ngs	(d)	Commutator	40						
132.		•		ting current gei	nerate	e is:			(2 Tir	ne)	
	(a) NωAI		(b)	$N\omega AB\cos\theta$							
	(c) N ω AF		(d)	$N\omega AB\cos 2\theta$							
133.			plane	e of coil is perp	pendi	icular 1	to magr	netic f	ield,	then ou	tput of
	generator is:		N 4 F		г .		(1)	7			
124	` '	\ /			Maxin	num	(d)	Zero			
134.		or was invente		Ousted							(a)
	(a) Henry Maxw		(b) (d)		2012						(c)
135.				William sturge construction o		and A	(Cis		(1 Tir	ne)	
100.	•		(b)	Coil	пъ.	and 1	1.0 13.		(1 111	iic)	(c)
	\ /		(d)	Magnetic field							(C)
136.				nsume electrica		ergy ar	e know	n as:			
	(a) Dissip		(b)	Generator		(c)	load		(d)	Motor	
137.			` '	l energy into m	necha	` /	nergy is	s calle	` '		
		former	(b)	A.C generator							(c)
	D.C M	lotor	(d)	D.C generator						(2 Time	·)
138.	When a moto	or is covered l	<u>oad</u> ed	then magnitud	le of 1	back e	mf:				
	(a) Increa		(b)	Decreases							(c)
			(d)	Zero							
139.		ck emf is zero	o, its d	raw:		4		(1 Tin	,		
	\ /	current		(1)		(b)	Minim		rrent		
140	` '	um current	· · · · · · ·	(d)	. C.	Steady	y curren	it			
140.			_	tude of back em	nt:						
	· /		(b)	Increases First increases	then	docres	606				
M	(c) decrea		(d) dian-C	First increases Contact # 034459				03445	995005	;	pg. 8
	astarar stric	o nala Silat		Junual II Votto)	J 2000	- , , , 110	ասբբ ու	JUTTU	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	75. U

Guess	Paper Annual 2024	CLASS	12 th	Mustaf	ai school kala Shadian
	When motor is just started, ba				(1 Time)
	(a) Maximum (b)	Zero	(c)	Minimum	(d) Infinite
i.	The working principle of trans	former is:	,		(1 Time)
	(a) Self induction		(b) E	lectromagneti	,
	(c) Mutual induction	(d)		day's Law	
142.	The core of transformer' is lar	` '		<i>j</i>	(1 Time)
	(a) Magnetic loss		(b)	Hysteresis 1	,
	(c) Eddy current loss	(d)		ric loss	
143.	Transformer is used to change		Licet	110 1000	(1 Time)
1101	(a) Electric power		(b)	Magnetic field	,
	(c) Alternating voltage	(d) Phase of	` '	wagnetie new	
144.	A real transformer does not ch	` /	n.c		(1 Time)
111.	(a) Voltage level	idiige.	(b)	Current lev	
			(d)	Power level	
1/15		not offeeted by		i ower level	
145.	Efficiency of transformer does	s not effected by:		Core of tran	afaum au
	(a) Input voltage	(d) Dogistan	(b)		siormer
116	(c) Insulation between sheet	` '			
146.		100% emcient, t	ne primary	and secondar	y winging would have
	the same:		(1-)		
	(a) Current		(b)	power	
1.45	(c) Voltage		(d)	Direction of	0
147.	During each cycle A.C voltage			(3 Ti	me)
140	, ,	rice (c) Twice	· ·	time	(4 T')
148.	The frequency of A.C sources				(1 Time)
440			70 Hz		
149.	The most common source of a			-	•.
450			Zero	(d) Infin	
150.	The most common source of a			TT1	(1 Time)
4 = 4	(a) Motor (b) Cell	(c) Genera	· /	Thermocou	.
151.	The sum of positive and nega			/ 1\ A	(2 Time)
450	(a) RMS value (b) P-P		Peak value	(d) Aver	age value
152.	Root mean square value of vo				(3 Time)
	(a) $V_{rms} = 2V_o$ (b) V_{rm}	$_{s}=\sqrt{2}V_{o}(c)$	$V_{rms} = \frac{v_o}{\sqrt{2}}$	(d) V_{rms}	$=\frac{v_0}{2}$
153.	The phase of A.C at positive p				(1 Time)
	(a) $\frac{3\pi}{2}$ (b) $\frac{\pi}{2}$	(c)	π	(d) π	,
15/	The basic circuit element in A	• •	4 2014-01 0 21 0	` '	m a)
154.				`	ille)
	(a) Resistor only		Capacitor o	шу	
155	(c) Inductor only	\ /	All of these		(2 Times)
155.	Direct current cannot flow the	_	T	(1)	(2 Time)
450		` ,	Transistor	(d) Capa	
156.			T 1	/ 1\	(2 Time)
	(a) Ohm (b) Mh	\ /	Farad	(d) Henr	5
157.	At high frequency the value of				
4= 0	(a) Small (b) Zer	` '	Large	(d) Infin	
158.	The device which allows the	-		_	
= -		. ,	Battery	\ /	mistor
. <i>M</i>	lustafai school kala Shadiar	7.Contact # 03445	995005 . Wh	atsapp # 0344	5995005 pg. 9

_		Annual 2024				LASS 1	2 th		Mustafai school kala Shadian
159.		pure inductive					_		
	(a)	Lags behind			•		_	-	
	(c)	In phase wit		0	•	,	eads the		5
160.			Henry	inductand	e has	a reacta	ance 500	ohms, tł	nen the frequency required is
		oximately:		- 7			4)		
	(a)	50 Hz (b)				80 Hz (6	,) Hz	
161.		device which						(1)	
	(a)	Capacitors	` '			_	nductor	(d)	Generator
162.		combined effo							_
4.5	(a)	Inductance	` '		`	,		` '	*
163.	Whe	n 10V are app	lied to	an A.C ci	ircuit, t	the curi	rent flow	ving in i	t is 100mA. It impedance is:
	()	1000	(1.)	400	,	\ 4	0000 (1)	4.0	
464	(a)	100Ω	(b)	10Ω	`	,	$000\Omega(d)$		4,4,0°
164.		phase angle of π							
	(a)	2	(b)	zero	(0	c) $\frac{\pi}{4}$		(d)	π
165.	Powe	er dissipated i	in a pu	re induct	or is:			200	
	(a)	Large	(b)	Small	(0	c) I1	nfinite	(d)	Zero
166.	The 1	power factor i	n <u>A.</u> C	circuit is:					
	(a)	sin heta	(b)	$cos\theta$,	$an\theta$	(d)	$cot\theta$
167.	At re	sonance frequ						rcuit is:	
	(a)	Maximum	(b)	Minimu	`	c) Z	ero	(d)	Infinite
168.	Indu	ctive reactanc		ı inductor					
	(a)	$X_L = \pi f L$	` '	$X_L = 4\pi$			$T_L = 2\pi f I$		$X_L = 2\pi L$
169.	In R	LC series circu				*			
	(a)	Minimum	(b)	Maximu		•	ero	(d)	Infinite
170.	In R	LC parallel cir	cuit th	ne resonar	ice frec				
	(a)	$2\pi\sqrt{LC}$	(b)	$\frac{2\pi}{\sqrt{IC}}$		c) $\frac{1}{\sqrt{2}}$	$\frac{\overline{d}}{\overline{LC}}$ (d)	$\frac{1}{2\pi\sqrt{U}}$	<u>=</u>
1 7 1.	The S	SI unit of \sqrt{LC}	is:	VLC		V .			
	(a)	Second	1	(b) A	Ampere	e (c	c) He	rtz (d)	Farad
172.			genei	rator the p				` ,	pair of coil is:
	(a)	-	(b)	-			0o	(d)	120°
173.	` '	ree phase vol			`	,		(1 Ti	
	(a)	220 V		230 V			00 V	(d)	430 V
174.	` /	l detectors co	` /					()	
	(a)	L-C circuit	(b)	R-L circ	uit (c) R	-C circui	it (d)	RLC series circuit
175.	` /	ce consumes e	` '		`	,		()	
	(a)	Current	(b)	Charge		c) P	ower (d)	Pote	ential
176.	Resis	stance of Chol	ke is:	O		,	()		
	(a)	Zero	(b)	Large	(0	c) V	ery Sma	11 (d)	Infinite
177.	The .	A.M transmis		0	•	,	3	()	
	(a)	540 kHz to 1					40 kHz t	o 1600 k	Hz
	(c)	520 kHz to 1					20 kHz t	o 1400 k	Hz
178.	` '	frequency ra			`	,			
	(a)	Fluctuative				b) (Carrier w	ave	
	(c)	Matter wave	9	(6			ical wav		
179.	` '	amplitude mo		`	,				
M		_						/hatsapp	# 03445995005 pg. 10

Guess	Paper Annual 2024	CLASS 12th	Mustafai school kala Shadian
	(a) 540 kHz to 1600 kHz	(b) 88 kHz to 10	0.8 kHz
	(c) 88 MHz to 108 mHz (d)	540 MHz to 1600 N	ИHz
180.	Which one is not a crystalline solid?		
	(a) Zinc (b) Copper	(c) Nylon (d)	Zirconia
181.	In glass, molecules are irregularly arr		as:
	(a) Solid (b) Liquid (c)	Solid liquid(d)	Gas
182.	The SI unit of stress is same as that o		
	(a) Pressure (b) Force	(c) Momentum	(d) Work
183.	The young's modulus of steel is:	()	. ,
	(a) Zero (b) 1	(c) 2	(d) 3
184.		` '	
	(a) Ductile substance (b)	Brittle substance	
	(c) Soft substance	(d) Magnetic su	ubstance
185.	If stress is increased beyond the elast		
	this behavior of material is called:	(2 Time)	,
	(a) Strain (b) Stress (c) Elas	` ,	icity
186.		. ,	
2001	(a) Brittle substance	(b) Ductile subs	
	(c) Non magnetic substance (d)		
187.	Conductors have conductivities of the		7
107.	(a) $10^3 (\Omega \text{m})^{-1}$ (b) $10^7 (\Omega \text{m})^{-1}$		(d) $10^9 (\Omega \text{m})^{-1}$
188	The ratio of adding impurity in a sem		(4) 10 (2211)
100.	(a) $1 \text{ to } 10^3$ (b) $1 \text{ to } 10^4$	(c) $1 \text{ to } 10^5$	(d) $1 \text{ to } 10^6$
189	In "N" type material, the minority ch		
10).	(a) Free electrons	(b) Holes	
	(c) Protons	(d) Mesons	
190	Which one is pentavanlent impurity?		
170.	(a) Boron (b) Gallium (c)	Antimony (d)	Indium
101	In p-type substances, the minority car	2 ()	maram
191.			Noutrons
102	(a) Electrons (b) Protons	(c) Holes (d)	Neutrons
192.	The critical temperature of Aluminum (a) 3.72K (b) 1.18K		(4) 0 DV
102		\ /	(d) 8.2K
193.		6(c) $10^{15} \rightarrow 10^{20}$	$10^{12} \rightarrow 10^{20}$
104	(a) $10^8 \to 10^9$ (b) $10^{12} \to 10^1$	$^{\circ}(C)$ $10^{10} \rightarrow 10^{10}$	$(a) \qquad 10^{-2} \rightarrow 10^{-3}$
194.	Curie temperature for iron is:	(A) 7F0oC	(1) 70000
105	(a) 710°C (b) 730°C	(c) 750°C	(d) 780°C
195.	A device used to detect very weak ma	_	•
100	(a) MRI (b) CAT scans	· / · · /	CRO
196.	Potential difference across depletion	_	
4.05	(a) 0.7V (b) 0.5V	(c) 0.3V	(d) 0.9V
197.	Reverse current through a semi cond		(4 Time)
	(a) Majority charge carries	(b) Minority ch	arge carries
400	(c) Electrons	(d) Holes	1. 1.0
198.	Which factor does not affect the cond	•	
	(a) Doping (b) Temperatu	` '	(d) Pressure
199.	A p-n-junction cannot be used as:	(2 Ti	,
_	(a) Rectifier (b) Amplifier	, .	(d) LED
<i>M</i>	<i>ustafai school kala Shadian,</i> Contac	ct # 03445995005 , Wh	atsapp # 03445995005 pg. 11

Guess	s Paper Annual 2024		CLAS	S 12 th		Mustafai school kala Shadian
200.	In full wave rectification,	number of o	diodes	required are e	qual t	o:
	(a) 4 (b)	3	(c)	2	(d)	5
201.	For rectification we use:					
	(a) Transformer (b)	Diode (c)		• •		
202.	A device used for the con	version of A	.C into	D.C is called:		
	(a) An oscillator	<u>(b)</u>	Dete	ctor		
	(c) An amplifier	(d)	Recti			
203.	0 (ED) emits lig				
	(a) Reverse biased		(b)	Forward bia	sed	
	(c) Unbiased		(d)	None of thes	se	
204.	A photo diode can turn it	s current ON	I and C)FF in:		
	(a) Micro seconds		(b)	Mega second		
	(c) Nano seconds		(d)	Milli Second	S	
205.	The thickness of base in a		s of the			
	(a) 10^{-9} m (b)	10 ⁻⁷ m	(c)	10^{-8} m	(d)	10 ⁻⁶ m
206.					$\triangle \triangle$	
	(a) Base (b)	Emitter	(c)	Collector	(d)	Neutral
207.	U				1	
	(a) Volt (b)	Ampere	(c)	Coulomb	(d)	No unit
208.	O					
	(a) Transistor	_	(b)	LED		
	(c) Diode	(d)	U 1	t dependent re	sistan	ce
209.	The gain of transistor am	_	_ ,			
	(a) Resistance connecte					
	(b) Resistance connecte	ed with base				
	(c) Input Voltage		(d)	Output Volta	age	
210.	Greater concentration of i				(1)	
	(a) Base (b)	Emitter	(c)	Collector	(d)	LED
211.	The open loop gain of the	amplifier is	order	of:	(1)	4.00
	(a) 10 ⁶ (b)		(c)	10^{7}	(d)	10^{3}
212.		i op-amplific		т		
	(a) Zero		(b)	Low		
24.0	C High	11.61		Equal to out	_	
213.	Find the gain of inverting					
014	(a) -5 (b)	-10	(c)		(d)	50
214.		ne inverting	(-) and	a non-invertin	ig inp	uts is called input resistance
	and is the order of:	1 (-)	TT1	11 (1)	N	- 1
015	· · · <u></u>	, ,	Thou	ınds ohms(d)	Mega	a onms
215.	The gain of amplifier is g			R_2	. 1	R ₁
	(a) $1 + \frac{R_2}{R_1}$ (b)	$1 + \frac{R_1}{R_2}$	(c)	$-\frac{R_2}{R_1}$	(d)	$-\frac{R_1}{R_2}$
216.	For non-inverting amplif	ier if $R_1 = \infty$	ohm,	$R_2 = 0$ ohm th	en gai	n of amplifier is:
	(a) -1 (b)	0	(c)	+1	(d)	Infinite
217.	Which is not a basic logic	operation?				
	(a) NOT (b)	ĀND	(c)	OR	(d)	NAND
218.	Output of exclusive Or ga				-	
	(a) $\overline{A.B}$ (b)	$\bar{A}.B + \overline{A.\bar{B}}$	(c)	$A.\bar{B} + \bar{A}.B$	(d)	$\overline{A.B+B.A}$
M	ustafai school kala Sha					

	s Paper Annual 202				SS 12 th		Mustafai school kala Shadian	
219. The Boolean expression of Exclusive NOR gate is:								
	(a) $X = AB +$	BA	<u>(b)</u>	X = X	$A\bar{B} + \bar{B}A$			
	(c) $X = \overline{A}\overline{B} +$	$\overline{\overline{B}A}$	(d)	$X = \overline{x}$	$\overline{A\overline{B} + \overline{A}B}$			
220.	A diode characte	eristics c	urve is a \overline{plot}	betwe	en:			
	(a) Current ar	nd time		(b)	Voltage a	nd time		
	(c) voltage an	ıd currer	nt (d)	Curr	ent and time	e		
221.		ht emitt	ed by a LED	depend	ds on:			
	(a) Its forward biased (b) Its reverse biased							
	(c) Amount of forward current							
	(d) The type of semi conductor material used							
222.			_		-			
	(a) Inductor	(b)		(c)	Comparat		Emf	
223.							fight can be predicated about:	
	(a) 20m	(b)	50m	(c)	760m	(d)	780m	
224.	The length of a r				=			
	(a) $\frac{1}{2}c$	(b)	$\frac{3}{2}c$	(c)	$\frac{1}{\sqrt{2}}c$	(d)	$\frac{\sqrt{3}}{2}c$	
225.	2		2		V Z		2	
	(a) 10km /s	(b)	20 km/s	(c)	30 km/s	(d)	40 km/s	
226.	The special theo	` '	ativity based				,	
	(a) One postulate (b) Two postulate							
	(c) Three postulate (d) Four post					ulate		
227.	1 kg mass will be	e equiva	lent to energ	v:				
	(a) $9 \times 10^8 J$	(b)	$9 \times 10^{12} J$	(c)	$9 \times 10^{16} J$	(d)	$9 \times 10^{19} J$	
228.							e earth can be determined to	
	accuracy about:			_				
	(a) 20 ms^{-1}	(b)	10 ms ⁻¹	(c)	2 cms ⁻¹	(d)	2 ms ⁻¹	
229.	Platinum wire be					/ 4 \	- a a a	
	(a) 900°C	(b)	1300°C	(c)	1600°C	(d)	500°C	
230.	When platinum				1100°C	(1)	00000	
221	(a) 500°C			(c)	1100°C	(d)	900°C	
231.	A platinum wire			_		(4)	900oC	
232.	(a) 1600°C When platinum	` '	1300°C	(c)	1100°C	(d)	900°C	
232.	(a) 500°C	(b)	900oC (c)	nges to 1100	•	_		
233.			()		c (u)	1300	, C	
200.	h			•	<i>l. C</i>	(.)	$h\lambda$	
	(a) $\frac{n}{\lambda}$	(b)	$\frac{hc}{\lambda}$	(c)	hf	(d)	$\frac{h\lambda}{c}$	
234.	Stefen-Boltzman		-	()	n m-1	(1)	1	
225	(a) $E = hf$	(b)	$E = mc^2$			(d)	$\lambda \times T = constant$	
235.						14		
	(a) 6.67×10^{-1} (c) 6.67×10^{-1}		\ /		$\times 10^8 Wm^{-2}$ 5.67 × 10		14	
226	(c) $6.67 \times 10^{-}$ Joule-second is t			(d)	5.67 X 10	- w m -	K -	
236.		ne unit o	J1:	(b)	Wein's co	netant		
	(a) Energy (c) Planck's co	onstant		(b) (d)	Boyle's la			
237.			nn is oiven h	` '	,	vv		
	ustafai school k	-			-	hatsann	# 03445995005 pg. 13	
			,	• • • • •	,	PP	oc 1 10 > > 0 oc 1	

Guess	Paper Annual 2024		CLAS	S 12 th		Mustafai school kala Shadian		
	(a) $p = mv$ (b)	$p=\frac{h}{\lambda}$	(c)	$p = \frac{\lambda}{h}$	(d)	$p = h\lambda$		
238.	Who explained the phot			- n	` ,			
	(a) Max Planck(b)	Einstein	(c)	Henry (d)	Ruth	erford		
239.	The energy of photon is		(-)	()				
	m11 ²	hf	(a)	W O	(d)	$m_o c^2$		
240			(c)	v _o e	(u)	m _o c-		
240.	Albert Einstein was awa	_		_ •	(1)	1001		
244	(a) 1905 (b)	1911	(c)	1918	(d)	1921		
241.	Amount of energy release				_			
	(a) $9 \times 10^{16} J$ (b)	-	` '	=	(d)	$9 \times 10^8 J$		
242.	The quantity/factor $\frac{h}{m_o c}$ l	nas the dimen	sion of	•				
	(a) Length (b)	Time	(c)	Mass	(d)	Energy		
243.	The Compton shift in w	avelength wil	ll be ma	aximum when	angle	e of scattering is:		
	(a) 90° (b)	45°	(c)	180°	(d)	30°		
244.	Energy each position is	given by:			4.0			
	(a) 2MeV (b) 1.021	MeV (c)	0.51N	MeV (d)	5 Me	eV .		
245.	The minimum energy re	quired to crea	ate pair	production is	5:			
	(a) 0.51MeV (b)	1.02MeV	(c)	931 MeV	(d)	2.10MeV		
246.		is:						
	(a) Zero		(b)	1.67×10^{-27} 1.67×10^{-31}	'kg			
	(c) $9.1 \times 10^{-31} kg$		(d)	1.67×10^{-31}	kg			
247.	Wave nature of light app	ears in:						
	(a) Pair production		<u>(b)</u>	Compton ef				
	(c) Photo electric	A	(d)	Interference				
248.		s moving witl	h speed	'v' then de-B	roglie	wavelength λ associated with		
	it will be:							
	(a) $\lambda = \frac{3h}{mv}$ (b) $\lambda = \frac{3h}{mv}$	$\frac{2n}{nv}$ (c) $\lambda = \frac{1}{n}$	$\frac{n}{mv}$ (d)	$\lambda = \frac{n}{2mv}$				
249.	The life time of an electi	on in an excit	ted state	e is about 10-8	s. Wh	at is its uncertainty in energy		
	during this time:	(0)				,		
	(a) $6.63 \times 10^{-34} J$	(b)	9.1 ×	$10^{-31}J$				
	(c) $1.05 \times 10^{-26} J$	(d)	$7.2 \times$	$10^{-15}J$				
250.	Ballmer series lies i <u>n r</u> eg		magne	tic spectrum:				
	(a) Infrared (b)	Visible	(c)	Ultraviolet	(d)	Fra infrared		
251.	Ballmer series lies in:							
	(a) Visible green	, ,		ible region				
	(c) Ultraviolet region	, ,	Infra	red region				
252.	Rydberg constant has va	lue:		0.4				
	(a) $1.0974 \times 10^7 m^{-1}$			6.02×10^{-34}				
	(c) $3 \times 10^8 m^{-1}$	_	` '	$1.6 \times 10^{19} m$	-1			
253.	The shortest wavelength			equal to:		2		
	(a) R_H (b)	<u>R_H 2</u>	(c)	$\frac{1}{R\mu}$	(d)	$\frac{2}{3}R_H$		
254.	Which of the following	series of hyd	rogen s	pectrum lies i	in ultr	a violet region?		
	(a) Lyman series	(b)	_	ner series		~		
	(c) Paschen series	` '	(d)	Bracket serie	es			
255.	The longest wavelength	of Paschen se	eries is:					
Mustafai school kala Shadian, Contact # 03445995005 , Whatsapp # 03445995005 pg. 14								

Guess	Paper	Annual 2024			C	LASS	12 th		N	Iustafai schoo	l kala Shadian
	(a)	656nm(b)	1875nr	n (c) 2	2000 n	m	(d)	1094 n	m	
256.	Earth	orbital speed	is:								
	(a)	$10 \mathrm{km/s}$	(b)	20 km/s	((c)	30 km	ı/s	(d)	40 km/s	
257.	The v	value of radius	s of 1st	Bohr's or	bit is	:					
	(a)	0.53 nm	(b)	0.053 nm	ı ((c)	0.0053	3 nm	(d)	0.00053 nm	
258.	The e	energy of the 4	lth orbi	t in hydr	ogen	atom	is:		` '		
	(a)	-2.51eV		-3.50eV	_		-13.60	eV	(d)	-0.85eV	
259.	Ìn an	electronic tra	nsition	atom car	ınot e	mit:					
	(a)	Infrared radi	ations	(b) 7	Visible	radia	tions			
	(c)	Ultraviolet ra	adiatior	is `	<i></i>	(d)	Gama	radiati	ons		
260.	` '	uction of X-rav	ys is rev	erse pro							
	(a)	Photo-electri	•	1 (b			ton eff	ect			·
	(c)	Annihilation		(d	,	_	oduct			4,4,0	
261.	` /	etal stables sta		`	,	1					
	(a)	10 ⁻³ s or more		(b		10-3s o	r less		6		
	(c)	10-8s or more		(d		10-8 or	less			9	
262.	` '	elium-Neon la		`	,			Neon 2	as:	•	
	(a)	10%		15%			85%		(d)	90%	
263.	` /	adius of 10th					1	100	(-)		
	(a)	0.053 nm		0.53 nm	_	(c)	5.3 nn	n(d)	53 nm		
264.	` /	number of Ne	` /		N.	•					
_01,	(a)	92		238	7	c)	146		(d)	330	
265.	` '	number of neu	` ′ _		N.				(4)		
200.	(a)	3	(b)	7		c)	1		(d)	2	
266.	` /	number of iso	` /	cesium			1		(a)	_	
200.	(a)	4	(b)	32		(c)	22		(d)	36	
267.	` '	t is different i	` /		. ,	(C)			(0)	30	
207.	(a)	Number of p	_	(b	. (1	Viimh	er neu	trons			
	(c)	Number of p		,	,			ge Num	her		
268.	` '	binding energ		K 1			_	,c rvairi	DCI		
200.	(a)		(b)				Polon	ium	(d)	Radium	
269.	` ,	gy released by				. ,	1 01011	Idili	(a)	Radiani	
200.	(a)	$1.6 \times 10^{-19}e^{-1}$		Sation of			16×	$10^{-19}M$	οV		
	(c)	200MeV	,			. /	931M		CV		
270.	` /	e is no change	in A ar	nd 7 of a					w the e	mission of	
270.	(a)			β -partica	_		γ-part		(d)	X-rays	
271	` '	unit of decay o	` '		11	<u>(</u>)	y-part	icai	(u)	X-1ays	
2/1.	(a)	Second	(b)	(Second)	-1 ((c)	m-1		(4)	mk	
272.	` '		`	` ,	- ((c)	111 -		(d)	IIIK	
212.		charge on β-pa +e	(b)		((c)	-2e		(4)	None of thes	20
273.	(a)	ys emitted fro	` /	-e activo ole		. /		1.	(d)	Notic of thes	ee -
2/3.	-				_		-	ms ⁻¹	(4)	4×10 ¹⁹ ms ⁻¹	
274	(a)		` '	1×10 ¹⁸ m	_				(d)	4V10. III2 ,	
274.		vice that show	s me vi	_		_			u.	(a)	Scalar
	(a)	GM counter	147;100=	b) cloud cl	,		iale de	etector		(c)	Scalal
275	Tho	(d) dead time of C					the or	dor of			
		ai school kal	_							03445005005	na 15
1-1	ustai	a. School Kal	u Jiiau	iaii, Cull	ıacı π	UJ TT J.	,,,,,,,,,,	, ** 11a	տահհ 4	ひしててしょうりしひし	pg. 15

CLASS 12th **Guess Paper Annual 2024** Mustafai school kala Shadian Micro second(b) Millisecond (c) More than millisecond (d) Nanosecond (a) 276. Energy needed to produce an electron hole in solid state detector is: (a) 1 to 2eV (b) 3 to 4eV (c) 6 to 7eV (d) 8 to 9eV 277. Fission chain reaction is controlled by: Cadmium rods Iron rods (b) (c) Platinum rods (d) Steel rods 278. Hydrogen bomb is an example of: (b) Nuclear fusion Nuclear fission Chemical reaction (c) Chain reaction (d) 279. The particles equal in mass but greater than proton are: Mesons Baryons (c) Leptons (d) Hadrons 280. A proton consists of quarks which are: Two up, one down (a) (b) One up, two down All down All up (d) (c) The building blocks of protons and neutrons are called: 281. **Protons** (a) Muons (b) Mesons (c) Neutrons 282. Which pair belongs to hadrons? Protons and Neutrons (b) Neutrons and electrons (a) Positrons and electrons Photons and electrons (d) (c)

(SUBJECTIVE PART)

SECTION-I

SHORT QUESTIONS (SQs)

- 1. Define Coulomb's law, write its mathematical formula?
- 2. Describe five/four properties of electric field lines.
- 3. Define xerography and photoconductor?
- **4.** Distinguish between conductor and photo conductor.
- **5.** Define electric flux, Gaussian surface.
- **6.** State and write formula of Gauss's law.
- 7. Define Gaussian surface and electric lines of force.
- 8. Show that 1N/C=1V/m
- 9. Define potential gradient. Give its unit.
- **10.** What is meant by EEG and ERG?
- **11.** Define electric potential with unit.
- **12.** Differentiate between electric potential difference and electric potential at a point.
- **13.** Convert 1 joule electron volt.
- 14. Write two similarities and dissimilarities among electric force and gravitational force?
- **15.** Define Capacitor and Farad.
- **16.** Define capacitance and electric polarization.
- 17. What is the effect of polarization on the capacitance of a capacitor?
- **18.** What is time constant of a capacitor resistance circuit and prove that R.C=time constant.

CLASS 12th

Mustafai school kala Shadian

- 19. Define time constant for RC circuit also draw (q-t) graph for charging capacitor in RC circuit.
- **20.** The potential is constant throughout a given region of space. Is the electric field zero or non-zero in this region? Explain.
- 21. How can you identify that which plate of a capacitor is positively charged?
- **22.** Electric lines of force never cross. Why?
- 23. Is E necessarily zero inside a charged rubber if balloon is spherical? Assume that charge is distributed uniformly over the surface? Explain.
- 24. Do electrons tend to go to region of high potential or of low potential?
- 25. A particle carrying a charge of 2e falls through a potential difference of 3.0V. Calculate the energy acquired by it.
- **26.** Define Tesla. Write its mathematical formula.
- **27.** Define magnetic flux and its units.
- 28. Distinguish between magnetic flux and magnetic flux density. Write their SI units.
- 29. State Ampere's law and write it in mathematical form.
- 30. Why is \bar{B} non-zero outside a solenoid?
- 31. Write two uses of CRO (cathode ray oscilloscope).
- 32. What is cathode ray oscilloscope and galvanometer?
- 33. What is function of Sweep generator in cathode ray oscilloscope?
- 34. How can you explain the wave form of various voltage formed in CRO?
- 35. What is the function of grid in a cathode ray oscilloscope?
- **36.** A current rectangular coil is rotating in a magnetic field. What factor does the torque of coil depend?
- 37. Define galvanometer. Write its principle.
- **38.** Define current sensitivity of a galvanometer.
- 39. Distinguish between sensitive and dead beat galvanometers.
- 40. What modifications are required convert a galvanometer into ammeter?
- **41.** How can you convert a galvanometer into voltmeter?
- **42.** Define AVO meter and Ohm meter.
- 43. What is digital multi meter? Give its two advantages over AVO meter.
- 44. Suppose that a charge "q" is moving a uniform magnetic field with a velocity "v". Why is there no work done by the magnetic force that acts on the charge "q"?
- 45. If a charged particle moves in a straight line through some region of space can you say that magnetic field in the region is zero or non zero?
- **46.** Why does the picture on a T.V screen become distorted when a magnet is brought near the screen?
- 47. Is it possible to orient a current loop in a uniform magnetic fi9eld such that the loop will not tend to rotate? Explain.
- 48. How can a current loop be used to determine the presence of a magnetic field in a given region of space?
- **49.** How can you use a magnetic field to separate isotopes of chemical element?
- 50. Why the resistance of an ammeter should be very low?
- **51.** Why a voltmeter should have very high resistance.
- **52.** Differentiate between mass defect and binding energy.
- 53. Define decay constant and write its unit.
- **54.** Define radioactivity and half life.
- 55. Why Geiger counter is not suitable for fast counting?

- **56.** Define fission and fusion reaction.
- 57. Differentiate between controlled and un-controlled chain reaction.
- 58. State the advantages and disadvantages of fusion power from the point of safety pollution and resources.
- 59. What is meant by absorbed does, also write down the units of absorbed does?
- **60.** Write a short note on basic forces of nature.
- 61. What are baryons and mesons? How they are formed?
- **62.** What are Hadrons and Leptons. Explain with examples.
- 63. Why are heavy nuclei unstable? Explain.
- 64. If a nuclei has life of 1 year, does this mean that it will completely decay after 2 years? Explain.
- 65. What fraction of radioactive sample decays after two half lives has elapsed?
- 66. A particle which produces more ionization is less penetrating. Why?
- 67. What information is revealed by the length and shape of the tracks of an incident particle in Wilson could chamber?
- 68. What do you mean by the term critical mass?
- 69. What factors make a fusion reaction difficult to achieve?
- 70. What do you understand background radiations? State two sources.
- 71. If someone accidentally swallows an alpha source and Beta source. Which would be the more dangerous to him? Explain why?
- 72. What is radioactive trace? Describe one application in each case of medicine and agriculture.

- **1.** Define conventional current and electronic current.
- **2.** How the heating effect produced when current flows through the conductor.
- 3. Define Ohm's Law. Also define ohmic and non ohmic devices.
- **4.** A wire of length 10m has resistance 100 Ω . If the wire is stretched to increase its length three times what will be its new resistance.
- **5.** Define temperature coefficient of resistance. Give its units.
- **6.** Differentiate between resistance and resistivity.
- 7. What is meant by tolerance? Find the resistance of a resistor with red, green, orange and fourth and gold respectively band.
- **8.** What are thermistor? How are they made?
- **9.** How is rheostat used as potential divider?
- 10. Under what conditions emf of a cell and terminal potential difference become equal?
- **11.** State Kirchhoff's rule.
- **12.** A potential difference is applied across the ends of a copper wire. What is the effect on the drift velocity of free electrons by:
 - a) increasing the potential difference
 - b) Decreasing the length and temperature of the wire?
- **13.** Why does the resistance of a conductor rise with temperature?
- **14.** Is the filament resistance lower or higher in a 500W, 220V light bulb than in 100W, 220V bulb?
- **15.** Explain why the terminal potential difference of battery decreases when the current drawn from it is increased?

CLASS 12th

Mustafai school kala Shadian

- **16.** What is Wheatstone bridge? How can it be used to determine an unknown resistance?
- 17. Define peak value and peak to peak value of A.C voltage?
- 18. What do you mean by phase lag and phase lead?
- **19.** What is difference between A.C circuit and V.C circuit?
- **20.** What is meant by inductive and capacitive reactance?
- **21.** Define impedance and write the impedance expression for R-L series circuit.
- 22. In R-C series circuit will the current lag or lead the voltage. Illustrate your answer with diagram.
- **23.** Explain power factor.
- **24.** Write two properties of R-L-C series circuit.
- **25.** Write two/four properties of parallel resonance circuit.
- **26.** Write some/main advantages of three phase A.C supply.
- **27.** Define A.C and choke.
- **28.** Write down advantages and disadvantages of A.M and F.M.
- **29.** Define modulation and write names of its types.
- 30. How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50 Hz source?
- 31. How does doubling the frequency affect the reactance.
 (a) an inductor (b) a capacitor
- 32. In R-L circuit, will the current larger lead the voltage? Illustrate your answer by a vector diagram.
- 33. Explain the condition under which electromagnetic waves are produced from a source.
- 34. How the reception of a particular radio station is selected on your radio set?
- **35.** At what frequency will an inductor of inductance 1.0 Hz have a reactants of 500Ω?
- **36.** Define unit cell and crystal lattice.
- 37. Define tensile stress and volumetric stress?
- **38.** What is difference between ductile and brittle substance?
- **39.** Explain briefly the insulator on the basis of energy band theory.
- **40.** Define (a) Conduction band(b) Valence band
- **41.** Describe energy band picture of semi-conductors.
- **42.** Differentiate between insulators and conductors.
- **43.** Distinguish between soft magnetic materials and hard magnetic materials.
- **44.** Define saturation and Remanenece of Hysteresis loop.
- **45.** Distinguish between crystalline, amorphous and polymeric solids.
- **46.** Define modulus of elasticity. Show that units of modulus of elasticity and stress are the same. Also discuss its three types.
- 47. What is meant by strain energy? How can it be determined from the force-extension graph?
- **48.** Distinguish between intrinsic and extrinsic semi-conductors?
- **49.** What is meant by para, dia and ferromagnetic substances? Give example for each.
- **50.** Define depletion region and potential barrier.
- **51.** How will you obtain N-type and P-type material from pure silicon?
- **52.** What is potential barrier of germanium and silicon? Also define potential barrier.
- **53.** Define rectification. Draw a circuit diagram of half wave rectifier.
- **54.** What is photodiode? Write down its any two applications?
- **55.** What is LED? Write its operation.
- **56.** What do you know about photo-voltaic cell?
- 57. Define " β " for transistor. Also write its fundamental current equation.

CLASS 12th

Mustafai school kala Shadian

- **58.** Define open loop gain of an operational amplifier. Also give its formula.
- **59.** Name three basic characteristics of Op-Amp. Also give their approximately values.
- **60.** Write briefly about operational amplifier.
- **61.** Define digital system and logic gate.
- **62.** What is the mathematical expression of And gate? Write its truth table.
- **63.** What is OR-GATE? Write its relation.
- **64.** Write down the logic expression and logic table for exclusive NOR gate.
- **65.** Draw the symbol and truth table of NAND gate.
- **66.** Give two applications of gates in control system.
- 67. How does the motion of an electron in a n-type differ from the motion of holes in a p-type substances?
- **68.** What is net charge on N-type and P-type substances? Justify the answer.
- **69.** The anode of a diode is 0.2V positive with respect to its cathode. Is it forward biased?
- 70. Why charge carries are not present in depletion region?
- 71. What is effect of forward and reverse biasing of a diode on the width of depletion region?
- **72.** Why ordinary silicon diodes do not emit light?
- 73. Why a photo diode is operated in reverse biased state?
- **74.** Why is the base current in a transistor very small?
- **75.** What is the principle of virtual ground? Apply it to find the gain of an inverting amplifier.

SHORT QUESTIONS (SQs)

- **1.** Define induced emf and induced current:
- **2.** Write down two methods for determining the induced emf in a loop.
- **3.** How the induced current can be increased?
- **4.** What is motional emf? State the factors it depend upon.
- **5.** State Faraday's law of electromagnetic and write its mathematical expression.
- **6.** Define write hand rule for determining the direction of the magnetic field.
- 7. Verify that an ohm times faraday is equivalent to second.
- 8. State Faraday's law of electromagnetic induction.
- 9. Define lenz's law does it agree with the law of conservation of energy?
- **10.** Define mutual induction. On what factors does mutual inductance of the two coil depend?
- 11. Name the factors upon which the self -inductance of coil depends?
- **12.** Define self induction and self inductance.
- **13.** What is differences between motor and generator?
- **14.** How fluctuations of the output can be reduced in D.C generator?
- **15.** Write a note on back motor effect in generator?
- **16.** Define back emf effect in motor. Also tell what happens when is over loaded?
- **17.** Define step-up and step down transformers.
- **18.** Give the two techniques to improve the efficiency of transformer.
- **19.** How the power losses can be minimized in a transformer?

- **20.** Does the induced emf in a circuit depend on the resistance of the circuit? Does the induced current depend as the resistance of the circuit?
- **21.** Does the induced emf always act to decrease the magnetic flux through a circuit? Explain.
- **22.** How would you position a flat loop of wire in a changing magnetic field so that there is no emf induced in the loop?
- 23. In a certain region the earth's magnetic field point vertically down, when a plane flies due to north, which wingtip is positive charged?
- **24.** Show that emf ε and $\frac{\Delta \phi}{\Delta t}$ have the same units.
- **25.** Can a D.C motor be turned into a DC generator?
- **26.** Is it possible to change both the area of the loop and the magnetic field passing through the loop and still not have induced emf in the loop?
- **27.** Four unmarked wires energy from a transformer. What steps would you to determine turn ratio?
- 28. Can a step-up transformer increase the power level? Explain/Comment.
- **29.** In a transformer, there is no transfer of charge from the primary to the secondary. How is then the power transferred?
- **30.** When the primary of a transformer is converted to A.C current in it.
- **31.** Distinguish between inertial frame of reference and non-inertial frame of reference.
- **32.** Write down the postulates of special theory of relativity.
- 33. Distinguish between general theory relativity and special theory of relativity?
- **34.** Explain NAVSTAR Navigation system.
- 35. What are black body radiation? How can you get a black body?
- **36.** Define stopping potential and threshold frequency.
- 37. Define Compton effect. Write the formula of Compton shift for scattering angle.
- **38.** Define photoelectric effect and pair production.
- **39.** What is wave particle duality? Give its one practical use?
- **40.** State uncertainty principle. Give its two mathematical forms.
- **41.** What are the measurements on which two observers in relative motion will always agree upon?
- **42.** If the speed of light were infinite, what would be the equations of special theory of special theory of relativity reduce to?
- 43. As a solid is heated, it begins to glow? Why does it first appear red?
- **44.** What happens to total radiation from a black body if its absolute temperature is doubled?
- **45.** Which photon red, green or blue carries the most
 - (a) Energy
- (b) Momentum
- **46.** Which as the lower energy quanta? Radio waves or X-rays?
- 47. Will bright light eject more electrons from a metal surface than dimmer light of the same colour?
- **48.** When light shines on a surface, is momentum transferred to the metal surface?
- **49.** Why don't we observe a Compton effect with visible light?
- 50. Can pair production take place in vacuum? Explain.
- **51.** Is it possible to create a single electron from energy? Explain.
- **52.** If an electron and a proton have the same De-Broglie wavelength, which particle has greater speed?
- **53.** We do not notice the de Broglie wavelength for a pitched cricket ball. Explain why?
- 54. When does light behave as a wave? When does it behave as a particle?

CLASS 12th

Mustafai school kala Shadian

- **55.** Define spectroscopy, holography.
- **56.** Define Continuous spectra and line spectra.
- 57. State postulates of Bohr's model of hydrogen atom.
- 58. What do we mean when we say that the atom is excited?
- **59.** Define excitation energy and ionization energy.
- **60.** What is meant by CAT-Scanner?
- **61.** Write two properties and two uses of X-rays.
- **62.** What is meant by normal population and population inversion?
- **63.** Write down four uses of laser.
- **64.** Distinguish between stimulated emission and spontaneous emission.
- 65. What is meant by line spectrum. Example how line spectrum can be used for identification of elements?
- 66. Can an electron in the ground state of hydrogen atom absorb a photon of energy 13.6eV or greater than 13.6eV?
- 67. How can the spectrum of hydrogen contains many lines when hydrogen contains one electron?
- **68.** Is energy conserved when a atom emits a photon of light? Explain.
- **69.** Can X-ray be reflected, refracted, diffracted and polarized just like any other wave? Explain.
- **70.** What are the advantages of laser over ordinary light?
- 71. Explain why laser action could not occur without population inversion between atomic levels?

LONG QUESTION NO. 5

QUESTIONS

- State and explain Coulomb's Law.
- State Gauss's law. Find electric intensity due to an infinite sheet of charges.
- Derive the expression for energy stored in charged capacitor. Also calculate the energy and energy density stored in the electric field.
- Derive the relation for capacitance of parallel plate capacitor and hence define dielectric coefficient.
- Define electric potential. Derive the expression for electric potential at a certain point due to a point charge.
- Define capacitor and capacitance. Derive the formula for energy stored in a capacitor.
- State and explain ohm's law. Also explain the behavior of ohmic and non-ohmic devices with the help of graph.
- ❖ State Kirchhoff's Rules and explain the voltage rule.
- ❖ What is wheat stone bridge? Give its principle, construction and working. How it can be used to find unknown resistance of a write?
- What is potentiometer? Explain its principle and working.

NUMERICALS

- Two point charges $q_1 = 1.0 \times 10^6 C$, $q_2 = 4.0 \times 10^6 C$ are separated by distance of 3.0m. Find and justify the zero field location.
- Determine the electric field at the position r = (4i + 3j)m caused by a point charge $q = 5.0 \times 10^{-6}C$ placed at origin.
- 0.75A current flows through an iron wire where battery of 1.5V is connected across its terminal (ends).
- A platinum wire has resistance of 10Ω at 0° C and 20Ω at 273° C. Find the value of temperature coefficient of resistance.
- The resistance of an iron wire at 0oC is $1 \times 10^{-4}\Omega$. what is the resistance at 500°C if temperature. Coefficient of resistance of iron $5.2 \times 10^{-3} K^1$
- The potential difference between the terminals of a battery in open circuit is 2.2V. When it is connected across a resistance of 5 Ω . The potential falls 1.8V. Calculate the current and the internal resistance of the battery.
- Find the electric field strength required to hold suspended a particle of a mass 1.0×10^{-6} kg and charge 1.0μ C between two plates 10.0cm apart.
- A particle having a charge of 20 electron on it falls through a potential difference of 100 volts. Calculate the energy acquired by it an electron volt.

LONG QUESTION NO. 6

QUESTIONS

- State Ampere's law and find magnetic field (\bar{B}) due to current carrying solenoid.
- ❖ How can you find e/m of an electron? Explain.
- Derive the expression for torque on current carrying coil in uniform magnetic.
- What is galvanometer? How it is converted in to:
 - (a) An Ammeter (b) A Voltmeter
- State and drive Faraday's law of electromagnetic induction.
- Derive an expression for the energy stored in an inductor. Also define energy density.
- Define A.C. generator. Give its principle, construction and working derive an expression for induced emf.
- ❖ What is transformer, derive its equation. Also explain loses and power transmission in it.

NUMERICALS

- ♦ What should pass through a solenoid that is 0.5m long with 10,000 turns of copper wire so that it will have a magnetic field of 0.4T?
- An ideal step down transformer is connected to main supply of 240V. It is desired to operate a 12V, 30W lamp. Find current in the primary and the transformation ratio.
- \bullet A D.C motor operates at 240V and has a resistance of 0.5Ω when the motor is running at normal speed the armature is 15A. Find the back emf in the armature.
- A square coil of side 16cm has 200 turns and rotates in a uniform magnetic field of 0.05T. If the peak emf is 12V. What is the angular velocity of the coil.
- A coil of 10 turns and 35cm2 area is in a perpendicular magnetic field of 0.5T. The coil is pulled out of the field in 1.0sec. Find the induced emf in the coil as it is pulled out of the field.
- A metal rod of length 25cm is moving at a speed of 0.5ms⁻¹ in a direction perpendicular to 0.25T magnetic field. Find the emf produced in the rod?

- ♦ A 20.0 cm wire charging a current of 10.0A is placed in a uniform magnetic field of 0.30T. If the wire makes an angle of 40° with the direction of magnetic field. Find the magnitude of the force acting on the wire.
- ♦ How fast must a proton moves in a magnetic field of 2.50×10⁻³T. Such that magnetic force is equal to its weight.
- Alpha particles ranging in speed from 1000 ms⁻¹ to 2000ms⁻¹ enter a velocity selector, where the electric intensity is 300Vm⁻¹ and magnetic induction is 0.20T. Which particle will move undeviated through the field.

LONG QUESTION NO. 7

QUESTIONS

- ❖ Discuss the behavior of an inductor in an A.C circuit and write expression for the inductive reactance.
- ❖ What is an inductor? Derive the relation for energy stored in an inductor.
- ❖ Define impedance. Derive expression for impedance and phase angle in R-C and R-L series circuit excited by A.C voltage.
- Describe RLC series circuit. Draw its impedance diagram derive the relation for its resonance frequency "f". Also write down its two properties.
- What are electromagnetic waves? Discuss principle of generation transmission and reception of electromagnetic waves.
- ❖ What is reflection? Explain half wave full wave rectification with diagram.
- ❖ How the transistor can be used as an amplifier? Explain in detail with circuit diagram and calculate gain.
- ❖ What is operational amplifier? Describe the use of op-amp as non-inverting amplifier?
- ❖ What is operational amplifier? Discuss the action of op-amp as inverting and non-inverting amplifier. Also calculate voltage gain in each case.

NUMERICALS

- ❖ An A.C voltmeter reads 250v. What is its peak and instantaneous values if the frequency of alternating voltage is 50 Hz?
- \star A 100μF capacitor is connected to an alternating voltage of 24V and frequency 50Hz calculate. (i) Reactance of Capacitor (ii) Current is circuit
- Find the value of current flowing through a capacitance $0.5 \mu F$, when connected a source of 150V at 50 Hz.
- Find the value of current and inductive reactance when A.C voltage of 200 volts at 50 Hz is passed through an inductor of 10H.
- \clubsuit In a certain circuit the transistor has a collector current 10mA and has current of 40μA. What is the current again of the transistor?
- The current flowing into base of a transistor in $100\mu A$. Fid its ratio $\frac{I_c}{I_E}$ if the value of current gain β is 100.
- What is the resonant frequency of a circuit which includes a coil of inductance 2.5H and a capacitance $40 \,\mu F$?

LONG QUESTION NO. 8

- What is meant by strain energy? Draw force extension graph for a vertically suspended wire stretched by a variable weight at the lather end and by its graph derive a relation to calculate its value.
- What is meant by doping? Give the name of doped materials. How would you n-type and p-type material from pure silicon. Illustrate it by with their schematic diagram.
- What is energy band theory in solid? Distinguish between conductors insulators and semi conductors on the basis of this theory.
- Define extrinsic and intrinsic semi-conductors. How can obtain p-type and n-type substance?
- Write down the postulates of special theory of relativity and also describe the four results of special theory of relativity.
- ❖ Write a note on Compton effect.
- Discuss photoelectric effect on the basis of classical and quantum theory.
- Describe de-Broglie's hypothesis and explain its confirmation through Davission and Germer Experiment.
- State and explain uncertainty principle. Also give its two mathematical forms.

NUMERICALS

- A 1.25cm diameter cylinder is subjected to a load of 2500 kg. Calculate the stress on the bar in mega Pascal's.
- What stress would causes A. wire to increase in length by 0.01% if the young modulus of wire is $12 \times 10^{10} Pa$. What force would produce this stress if diameter of the wire is 0.56 mm.
- A 1.0 m long copper wire is subjected to stretching force and its length increases by 20 cm calculate The tensile strain and the percentage elongation which the wire under goes.
- The length of steel wire is 1.0m and its cross sectional area is $0.03 \times 10^{-4} m^2$. Calculate the work done in stretching the wire when a force of 100N is applied within the elastic region young's modulus of steel is $3.0 \times 10^{11} m^{-2}$
- ♦ What is mass of a 70 kg man in a space rocket travelling at 0.8c form us as measure form earth?
- A 90 keV X-rays photon is fired at a carbon target and Compton scattering occurs. Find the wavelength of the accidental photon and the wavelength of the scattered photon of scattering angle of 60°.
- An electron is placed in box about the size of an atom that is about $1.0 \times 10^{-10} m$. What is the velocity of the electron?
- An electron is accelerated through a potential difference of 50V. Calculate its de-Broglie's wavelength.

LONG QUESTION NO. 9

- Calculate the longest wavelength of radiation for the paschen series?
- Compute the shortest and longest wavelength of radiation for the Lyman series?
- ❖ Give three postulates of Bohr's model and calculate the radius of first orbit of hydrogen atom.
- What is meant by inner shell transitions and characteristics X-rays? How ray are produced? Write down any two properties and uses of X-rays.
- Define isotopes. Describe Aston's mass spectrograph and how it can be used to separate the isotopes of an element.

- ❖ What is radioactivity? Discuss emission of alpha and beta and gamma radiations from radioactive nuclei.
- ❖ Define and explain the principle construction and working of a solid state detector.
- Describe the principle, construction and working of a Wilson Cloud Chamber.

NUMERICALS

- If $^{233}_{92}$ *U* decays twice by α –emission what is the resulting isotopes?
- The half life of ${}_{38}^{91}Sr$ is 9.70 hours. Find its decay constant.
- A sheet of lead 5.0 mm thick reduces the intensity of a beam of $\gamma rays$ by a factor 0.4. Find half value thickness of lead sheet which will reduce the intensity to half of its initial value.
- ❖ A 75kg person receiver a whole body radiation dose of 24 m-rad, delivered by alpha particles for which RBE factor is 12. Calculate:
 - (a) The absorbed energy is joules.
- (b) The equivalent dose in rem.
- ❖ Find the mass defect and binding energy of the deuteron nucleus, the experiment mass of deuteron is 3.3435×10⁻²⁷ kg.
- Find the mass defect and the binding energy for Tritrium if the atomic mass of tritium is 3.016049μ .
- Electron in a X-ray tube are accelerated through a potential difference of 3000V. if these electrons were slow down in a target. What will be the minimum wavelength of the X-rays produced?
- A tungsten target is struck by electrons that have been accelerated from rest through 40kV potential difference. Find the shortest wave length of the bremsstrahlung radiation emitted.