近世代数 (H) 第五周作业

涂嘉乐 PB23151786

2025年3月19日

Exercise 1 分别将 60 和 81 + 8i 在 $\mathbb{Z}[i]$ 中分解为不可约元之积

Solution 在 \mathbb{Z} 上有 $60 = 2^2 3^1 5^1$,因为 5 = (2+i)(2-i), 2 = (1+i)(1-i),且 3 为 4k+3 型素数,故为 Gauss 素数,所以

$$60 = (1+i)(1-i) \cdot 3 \cdot (2+i)(2-i)$$

在 \mathbb{Z} 上分解 $N(81+8i)=81^2+8^2=5^3\cdot 53$,因为 53=49+4=(7+2i)(7-2i),5=(1+2i)(1-2i),所以 81+8i 的因子只能在 $7\pm 2i$, $1\pm 2i$ 之间,经过尝试可得

$$81 + 8i = (7 + 2i)(11 - 2i)$$

对 (11-2i) 继续尝试可得

$$11 - 2i = (1 - 2i)(3 + 4i)$$

对 (3+4i) 继续尝试可得

$$3 + 4i = -(1 - 2i)^2$$

综上我们有

$$81 + 8i = -(1 - 2i)^3(7 + 2i)$$

Exercise 2 设 $p = a^2 + b^2$ 是 4k + 1 型素数, 求证 $\mathbb{Z}[i]/(a + bi) = \mathbb{F}_p$

Proof 易知 $a\pm bi$ 是高斯素数,首先证明 a,b 互素,否则存在素数 $q, \text{s.t. } q \mid \gcd(a,b)$,则在 $\mathbb{Z}[i]$ 中, $a+bi=q\left(\frac{a}{q}+\frac{b}{q}i\right)$,这与 a+bi 是高斯素数矛盾,所以 $\gcd(a,b)=1$ 考虑环同态

$$\varphi: \mathbb{Z} \longrightarrow \mathbb{Z}[i]/(a+bi)$$

$$m \longmapsto \overline{m}$$

它是两个环同态 $\mathbb{Z} \hookrightarrow \mathbb{Z}[i] \hookrightarrow \mathbb{Z}[i]/(a+bi)$ 的复合,因此还是环同态,接下来我们证明它是满同态,即证明对 $\forall x+yi \in \mathbb{Z}[i], \exists z \in \mathbb{Z}, \text{s.t.}$ $\overline{x+yi} = \overline{z}$,因为 $\gcd(a,b) = 1$,所以 $\exists u,v \in \mathbb{Z}, \text{s.t.}$ au+bv=1,故

$$(a + bi)(v + ui) = (av - bu) + (au + bv)i = (av - bu) + i$$

因此在 $\mathbb{Z}[i]/(a+bi)$ 中, $\overline{i}=\overline{bu-av}$, 所以

$$\overline{x+yi} = \overline{x+y(bu-av)} = \overline{x+ybu-yav}$$

即对 $\forall x + yi \in \mathbb{Z}[i], \exists x + ybu - yav \in \mathbb{Z}, \text{s.t.} \ \varphi(x + ybu - yav) = \overline{x + yi}, \ \text{故} \ \varphi \ 为满射$

接下来证明 $\operatorname{Ker} \varphi = (p)$,一方面 $\forall zp \in \mathbb{Z}, \varphi(zp) = \varphi(z)\varphi(p) = \overline{0}$,所以 $zp \in \operatorname{Ker} \varphi \Longrightarrow (p) \subseteq \operatorname{Ker} \varphi$; 另一方面假设 $z \in \operatorname{Ker} \varphi$,则 $\varphi(z) = \overline{z} = \overline{0} \Longrightarrow a + bi \mid z$,所以 $\exists \alpha \in \mathbb{Z}[i]$, s.t. $(a + bi)\alpha = z$,故

$$\alpha = \frac{z}{a+bi} = \frac{z(a-bi)}{a^2+b^2} = \frac{za-zbi}{p} \in \mathbb{Z}[i]$$

因此 $p\mid za, p\mid zb$,又因为 $1\leq a,b\leq p$,所以 a,b 中有一者为 1 时显然有 $p\mid z;\ a,b\geq 2$ 时, $p\neq 1$ 时, $p\nmid a, p\nmid b\Rightarrow p\mid z$,所以 $z\in (p)$,所以 $\mathrm{Ker}\varphi\subseteq (p)$

综上, φ 是满环同态且 $\mathrm{Ker}\varphi=(p)$, 由环同态基本定理, 我们有环同构

$$\mathbb{Z}/(p) \cong \mathbb{Z}[i]/(a+bi)$$

所以 $\mathbb{F}_p \cong \mathbb{Z}/(p) \cong \mathbb{Z}[i]/(a+bi)$

Exercise 3 求证: 设 $R \neq UFD$, $a = up_1^{n_1} \cdots p_r^{n_r} \neq a$ 的标准分解,则 a 的因子总形如 $vp_1^{m_1} \cdots p_r^{m_r}$, 其中 $v \in U(R)$, $0 \leq m_i \leq n_i$

Proof 设x为a的因子

 $Case\ 1.\ \exists\ x\in U(R)$,则 x 是 p 的平凡因子,则 $p=vp_1^{m_1}\cdots p_r^{m_r}$,其中 $v=x,m_1=\cdots=m_r=0$ $Case\ 2.\ \exists\ x$ 是素元,则 $x\mid a\Longrightarrow \exists p_i,1\leq i\leq r, \text{s.t. }x\mid p_i$,又因为 p_i 是不可约元,故 x 与 p_i 相伴,则 $x=vp_i=vp_1^{m_1}\cdots p_r^{m_r}$,其中 $v\in U(R),m_1=\cdots=m_{i-1}=m_{i+1}=\cdots=m_r=0,m_i=1$

 $Case\ 3.$ 若 x 非单位且可约,则 x 存在素因子 q,则 $q\mid x\mid a$,由 $Case\ 2$ 知, $\exists 1\leq i\leq r, \text{s.t. } q, p_i$ 相伴,可不妨设 $q=p_1$,我们固定 n_2,\cdots,n_r ,对 n_1 归纳

因为 $p_1 \mid x, p_1 \mid a$,所以 $\exists x_1 \in R, a_1 \in R, \text{s.t.} \ x = x_1 p_1, a = a_1 p_1$,再由 $x \mid a$ 可设 $x\beta = a, \beta \in R$,所以

$$x_1p_1\beta = a_1p_1 \Longrightarrow x_1\beta = a_1 \Longrightarrow x_1 \mid a_1$$

因为 $a=up_1^{n_1}\cdots p_r^{n_r}=a_1p_1$,由整环的消去律知 $a_1=up_1^{n_1-1}\cdots p_r^{n_r}$,由归纳假设知, a_1 的因子 x_1 形如

$$x_1 = vp_1^{\tilde{m}_1}, \cdots, p_r^{m_r}, \quad \tilde{m}_1 \le n_1 - 1, m_2 \le n_2, \cdots, m_r \le n_r$$

记 $m_1 = \tilde{m}_1 + 1$ 所以

$$x = x_1 p_1 = v p_1^{m_1}, \cdots, p_r^{m_r}, \quad m_1 \le n_1, \cdots, m_r \le n_r$$

Exercise 4 设 R 是 Noether 环,则其中理想升链 $I_1 \subset I_2 \subset \cdots$ 稳定,即 $\exists n_0 > 0, s.t.$

$$I_{n_0} = I_{n_0+1} = \cdots$$

Proof 考虑

$$I = \bigcup_{i=1}^{\infty} I_i$$

下证 $I \triangleleft R$

①. $\forall a,b\in I,\exists N_1,N_2,\text{s.t. }a\in I_{N_1}\subset I_{N_1+1}\subset\cdots,b\in I_{N_2}\subset I_{N_2+1}\subset\cdots$,取 $N=\max\{N_1,N_2\}$,则 $a,b\in I_N\Longrightarrow a+b\in I_N\subset I$

②. $\forall a \in I, \exists N \in \mathbb{N}^*, \text{s.t. } a \in I_N, \quad \forall r \in R, ra \in I_N \subset I$ 所以 $I \lhd R$, 由 R 是 Noether 环知 $\exists a_1, \cdots, a_m \in R, \text{s.t. } I = (a_1, \cdots, a_m), \text{ 即 } a_1, \cdots, a_m \in I = \bigcup\limits_{i=1}^{\infty} I_i,$ 取 N 足够大使得 $a_1, \cdots, a_m \in I_N$,所以 $I \subseteq I_N \subseteq I_{N+1} \subseteq I$,所以

$$I_N = I_{N+1} = I$$

进而 $\forall n \geq N, I_n = I$

Exercise 5 设 R 是环, $c \in R$, 求证

$$R[x]/(c) \cong (R/(c))[x]$$

Proof c=0 时是平凡的, $c\neq 0$ 时, 考虑环同态

$$\phi: R[x] \longrightarrow (R/(c))[x]$$
$$a_n x^n + \dots + a_1 x + a_0 \longmapsto \overline{a}_n x^n + \dots + \overline{a}_1 x + \overline{a}_0$$

首先由定义可以看出它是一个满环同态,接下来证明 $\mathrm{Ker}\phi=(c)$,设 $f(x)=a_nx^n+\cdots+a_1x+a_0$

$$f(x) \in \operatorname{Ker} \phi \iff \phi(f(x)) = 0 \iff \overline{a}_n = \dots = \overline{a}_0 = \overline{0}$$

 $\iff a_n, \dots, a_0 \in (c) \iff c \mid a_i, 0 \le i \le n$
 $\iff c \mid f(x) \iff f(x) \in (c)$

且 φ 是满环同态,由环同态基本定理,我们有环同构

$$R[x]/(c) \cong (R/(c))[x]$$

Exercise 6 设 $R \neq UFD$, K = Frac(R), $\neq f(x) \in R[x]$ 本原, 证明

f(x)在R[x]中不可约 $\iff f(x)$ 在K[x]中不可约

Proof (⇒): 证明逆否命题,假设 f 在 K[x] 中可约,则 f 在 K[x] 中存在非平凡分解 f = gh,其中 $g,h \in K[x]$,则通过谨慎通分,g,h 有本原分解,即 $\exists c_q,c_h \in K,g_0,h_0$ 本原,使得

$$g(x) = c_g g_0(x), h(x) = c_h h_0(x) \Longrightarrow f(x) = c_g c_h g_0(x) h_0(x)$$

由高斯引理知 g_0h_0 本原,又由 f 本原知 $c_gc_h\sim 1$,可不妨设 $c_gc_h=1$,所以 $f(x)=g_0(x)h_0(x)$,故 f(x) 在 R[x] 中可约

(\iff): 证明逆否命题,假设 f 在 R[x] 中可约,则 f 在 R[x] 中有非平凡分解 f=gh,其中 $g,h\in R[x]$,由 f 本原知,g,h 不是常值多项式,故 $\deg g,\deg h\geq 1$,此时 g,h 在 K[x] 中非单位,因此在 K[x] 中也有 f=gh,故 f 在 K[x] 中也可约

Exercise 7 设 $R \in UFD$, $b \in R$, $g(x) = a_n x^n + \dots + a_1 x + a_0 \in R[x]$, 定义 $g(x+b) = a_n (x+b)^n + \dots + a_1 (x+b) + a_0$ 展开后视为 x 的多项式,则有

- 1. g(x) 本原 $\iff g(x+b)$ 本原
- 2. g(x) 在 R[x] 中不可约 \iff g(x+b) 在 R[x] 中不可约

Proof 考虑环同态(嵌入) $\psi: R \hookrightarrow R[x], r \mapsto r$,由多项式环的泛性质知,存在唯一环同态 $\tilde{\psi}: R[x] \to R[x]$,满足 $\tilde{\psi}|_{R} = \psi, \tilde{\psi}(x) = x + b$,即

$$\tilde{\psi}: R[x] \longrightarrow R[x]$$

$$r \longmapsto r$$

$$x \longmapsto x + b$$

实际上, $\forall f(x) = a_n x^n + \dots + a_1 x + a_0 \in R[x], \tilde{\psi}(f(x)) = a_n (x+b)^n + \dots + a_1 (x+b) + a_0 = f(x+b),$ 即 $\tilde{\psi}$ 将 f(x) 打到 f(x+b), 接下来证明它是环同构,只需证明 $\tilde{\psi}$ 是双射即可

再次利用多项式环的泛性质, 存在唯一环同态 $\theta: R[x] \to R[x]$, 满足 $\theta|_R = \psi, \theta(x) = x - b$, 即

$$\theta: R[x] \longrightarrow R[x]$$

$$r \longmapsto r$$

$$x \longmapsto x - b$$

实际上, $\forall f(x) = a_n x^n + \dots + a_1 x + a_0 \in R[x], \theta(f(x)) = a_n (x - b)^n + \dots + a_1 (x - b) + a_0 = f(x + b),$ 即 $\tilde{\psi}$ 将 f(x) 打到 f(x - b)

因为 $\tilde{\psi}\circ\theta(x)=\tilde{\psi}(x-b)=x-b+b=x, \tilde{\psi}\circ\theta(r)=r, \forall r\in R$,所以 $\tilde{\psi}\circ\theta=\mathrm{Id}_{R[x]}$,同理 $\theta\circ\tilde{\psi}=\mathrm{Id}_{R[x]}$,因此 $\tilde{\psi}$ 是双射,且 $\tilde{\psi}^{-1}=\theta$

这就证明了 $\tilde{\psi}$ 是双射,进而 $\tilde{\psi}$ 是环同构,回到本题:

 $(1).(\Longrightarrow)$: 考虑逆否命题: 假设 g(x+b) 不是本原多项式,则 \exists 素元 p,使得 p 是 g(x+b) 所有系数的公因子,因此 $\exists g_1(x) \in R[x]$, s.t. $g(x+b) = pg_1(x)$,前面已证 $\tilde{\psi}^{-1} = \theta$,所以

$$g(x) = \tilde{\psi}^{-1}(g(x+b)) = \theta(pg_1(x)) = pg_1(x-b)$$

所以 $p \mid g(x)$, 这与 g(x) 本原矛盾! 所以 g(x+b) 是本原多项式

(〈二): 考虑逆否命题: 假设 g(x) 不是本原多项式,则 \exists 素元 p,使得 p 是 g(x) 所有系数的公因子,因此 $\exists g_2(x) \in R[x], \text{s.t.} g(x) = pg_2(x)$,所以

$$g(x+b) = \tilde{\psi}(pg_2(x)) = pg_2(x+b)$$

所以 $p \mid g(x+b)$, 这与 g(x+b) 是本原多项式矛盾! 所以 g(x) 是本原多项式

 $(2).(\Longrightarrow)$: 考虑逆否命题: 假设 g(x+b) 在 R[x] 中可约,则 $\exists m(x), n(x) \in R[x], \text{s.t. } g(x+b) = m(x)n(x)$,所以

$$g(x) = \tilde{\psi}^{-1}(g(x+b)) = \theta(m(x)n(x)) = m(x-b)n(x-b)$$

则 g(x) 在 R[x] 中可约

(\iff): 考虑逆否命题: 假设 g(x) 在 R[x] 中可约,则 $\exists m(x), n(x) \in R[x], \text{s.t. } g(x) = m(x)n(x)$,所以

$$g(x+b) = \tilde{\psi}(m(x)n(x)) = m(x+b)n(x+b)$$

则
$$g(x+b)$$
 在 $R[x]$ 中可约

Exercise 8 设 k 是域, R = k[t], 令 $S = \{f(t) \in R | f(t)$ 的 t^1 项系数为零 $\} \subset R$, 证明

- 1. $S \cong k[x,y]/(y^3 x^2)$
- 2. $\operatorname{Frac}(S) = k(t)$

Proof (1). 首先我们有 $k[x,y] \cong k[y][x]$, 只需将 $f(x,y) \in k[x,y]$ 视为系数属于 k[y] 的 x 的一元多项式即可,考虑环同态

$$\begin{split} \phi: k[x,y] &\longrightarrow S \\ x &\longmapsto t^3 \\ y &\longmapsto t^2 \\ r &\longmapsto r, \forall r \in k \end{split}$$

即 ϕ 将 $\forall f(x,y) \in k[x,y]$ 映为 $f(t^3,t^2)$,首先它是满环同态,只需证明 $\forall n \geq 2, t^n$ 均有原像: 因为 $t^2 = \phi(y), t^3 = \phi(x), \forall n = 2k, t^n = \phi(y^k), \forall n = 2k+1, t^n = \phi(xy^{k-1})$,故 ϕ 是满同态,下面证明 $\operatorname{Ker} \phi = (y^3 - x^2)$

设 $f(x,y) \in (y^3-x^2)$,则 $\exists g(x,y) \in k[x,y], \text{s.t. } f(x,y) = g(x,y)(y^3-x^2)$,所以

$$\phi(f(x,y)) = \phi(g(x,y))\phi(y^3 - x^2) = \phi(g(x,y))\cdot(t^6 - t^6) = 0$$

所以 $f(x,y) \in \text{Ker}\phi$, 进而 $(y^3 - x^2) \subseteq \text{Ker}\phi$

设 $f(x,y) \in \text{Ker}\phi$,则 $f(t^3,t^2) = 0$,我们可以将 f(x,y) 视为系数属于 k[x] 的 y 的一元多项式,因为 $x^2 - y^3$ 对 x 来说是首一多项式,所以可以对 $x^2 - y^3$ 做带余除法

$$f(x,y) = q(x,y)(x^2 - y^3) + r(x,y)$$

其中 r(x,y) 对 x 的系数为 0,1, 可设 $r(x,y)=r_1(y)x+r_0(y)$, 由 $f(t^3,t^2)=0$ 知, $r_1(t^2)t^3+r_0(t^2)=0$, 但是 $r_1(t^2)t^3$ 是 t 的奇数次幂, $r_0(t^2)$ 是 t 的偶数次幂,因此二者加起来等于零只能是 r_1,r_0 的系数为零,即 r(x,y)=0,所以 $f(x,y)=q(x,y)(x^2-y^3)\in (y^3-x^2)$,进而 $\mathrm{Ker}\phi\subseteq (y^3-x^2)$,故 $\mathrm{Ker}\phi=(y^3-x^2)$,结合 ϕ 是满同态,由环同态基本定理知

$$\tilde{\phi}: k[x,y]/(y^3 - x^2) \longrightarrow S$$

$$f(x,y) + (y^3 - x^2) \longmapsto f(t^3, t^2)$$

(2). 考虑典范同态 $S \overset{\text{can}}{\hookrightarrow} \operatorname{Frac}(S)$ 关于环单同态(嵌入) $\pi: S \hookrightarrow k(t), f(t) \mapsto f(t) = \frac{f(t)}{1}$ 的泛性质: 存在唯一的域嵌入 $\tilde{\pi}: \operatorname{Frac}(S) \to k(t)$,满足 $\tilde{\pi}\left(\frac{f(t)}{g(t)}\right) = \pi(f(t))\pi(g(t))^{-1}$

则 $\tilde{\pi}$ 是单射, 下证明 $\tilde{\pi}$ 是满射: 显然有 $\tilde{\pi}|_k = \mathrm{Id}_k$, 因为

$$\tilde{\pi}\left(\frac{t^3}{t^2}\right) = \pi(t^3)\pi(t^2)^{-1} = \frac{t^3}{t^2} = t \Longrightarrow t^n = \frac{t^{3n}}{t^{2n}} = \pi(t^{3n})\pi(t^{2n})^{-1} = \tilde{\pi}\left(\frac{t^{3n}}{t^{2n}}\right)$$

所以 $\forall \frac{f(t)}{g(t)} \in k(t)$, 设 $f(t) = a_n t^n + \dots + a_1 t + a_0, g(t) = b_m t^m + \dots + b_1 t + b_0 \in k[t]$, 则

$$f(t) = \tilde{\pi} \left(a_n \frac{t^{3n}}{t^{2n}} + \dots + a_1 \frac{t^3}{t^2} + a_0 \right)$$

$$= \tilde{\pi} \left(\frac{a_n t^{3n} + \dots + a_1 t^{2n+1} + a_0 t^{2n}}{t^{2n}} \right)$$

$$= \pi (a_n t^{3n} + \dots + a_1 t^{2n+1} + a_0 t^{2n}) \pi (t^{2n})^{-1}$$

同理

$$g(t) = \pi (b_m t^{3m} + \dots + b_1 t^{2m+1} + b_0 t^{2m}) \pi (t^{2m})^{-1}$$

所以

$$\frac{f(t)}{g(t)} = f(t)g(t)^{-1}$$

$$= \pi(a_n t^{3n} + \dots + a_1 t^{2n+1} + a_0 t^{2n}) \pi(t^{2m}) \pi(b_m t^{3m} + \dots + b_1 t^{2m+1} + b_0 t^{2m})^{-1} \pi(t^{2n})^{-1}$$

$$= \pi(a_n t^{3n+2m} + \dots + a_1 t^{2n+2m+1} + a_0 t^{2n+2m}) \pi(b_m t^{3m+2n} + \dots + b_1 t^{2m+2n+1} + b_0 t^{2m+2n})^{-1}$$

即 $\forall \frac{f(x)}{q(x)} \in k(t)$, 均可以写为 $\pi(a)\pi(x)^{-1} = \tilde{\pi}\left(\frac{a}{x}\right)$, 故 $\tilde{\pi}$ 是满射, 所以 $\tilde{\pi}$ 是同构! 即

$$Frac(S) \cong k(t)$$