BERT

(Pre-training of Deep Bidirectional Transformers for Language Understanding)

자연어처리 텍스트마이닝

BERT

BERT Overview (1)

Pre-training of Deep Bidirectional Transformers for Language Understanding

Pre-trained model + Fine tuning

Bidirectional Transformer (Encoder)

BERT Overview (2)

- BERT : Bidirectional Encoder Representations form
 Transformer
- "Attention is all you need (Vaswani et al., 2017)"에서 소 개한 Transformer 활용 Language Representation
- wiki나 book data 대용량 <u>unlabeled data로 모델을 미리</u> <u>학습</u> 시킨 후, 특정 task를 가지고 있는 labeled data로 transfer learning을 하는 모델
- Fine-tuning을 통해 task의 state-of-the-art를 달성

SQuAD1.1 Leaderboard

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Oct 05, 2018	BERT (ensemble) Google Al Language https://arxiv.org/abs/1810.04805	87.433	93.160
2 Sep 09, 2018	nInet (ensemble) Microsoft Research Asia	85.356	91.202
3 [Jul 11, 2018]	QANet (ensemble) Google Brain & CMU	84.454	90.490

https://arxiv.org/abs/1810.04805

BERT vs OpenAl GPT vs ELMo

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

Evaluation

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

BERT 의 구조

BERT 의 구조

position wise feed-forward network

$$FFN(x) = max(0, x \cdot W_1 + b_1)W_2 + b_2$$

• GELU

BERT 의 구조

BERT 의 입력값

특수 토큰

- [CLS] 토큰 (Classification Token)
 - 입력 값 제일 앞에 붙는 토큰이며, 분류 과제(Classification Task) 수행용
- [SEP] 토큰 (Separate Token)
 - [SEP] 토큰은 문장 구분용

- [PAD] 토큰
 - 입력 시퀀스의 길이를 맞춰주기 위해 사용하는 토큰

임베딩

- 토큰 임베딩(Token Embeddings)
 - 워드피스(WordPiece) 임베딩을 사용, 워드피스 임베딩은 BPE알고리즘에 기반

playing
$$\rightarrow$$
 p, l, a, y, i, n, g \rightarrow Play, laugh, ##ing l, a, u, g, h, i, n, g

- 세그먼트 임베딩(Segment Embeddings
 - 각 문장을 구분용
- 포지션 임베딩(Position Embeddings)
 - 입력 값의 위치 정보

BPE(Byte Pair Encoding) 알고리즘

- BPE(Byte pair encoding) 알고리즘은 1994년에 제안된 데이터 압축 알고리즘
- 자연어 처리의 단어 분리 알고리즘으로 응용

Word Piece Model (1)

■ BPE(Byte pair encoding) 알고리즘을 tokenizer에 적용

자연어 덮밥, 자연어 처리, 연어 덮밥 문장 ##연 ## H 덮 ##밥 자연 ##역어 덮밥 자 bigram 자 ##역 ##H 자연 ##역어 처리 ##리 연 덮 연어 덮밥 ##어 ##밥 자연 => 처음으로 등장한 최빈토큰을 선택 ##역어 Frequency 덮밥 여어

처리

Word Piece Model(2)

BPE(Byte pair encoding) 알고리즘을 tokenizer에 적용

문장	자연어 덮밥, 자연어 처리, 연어 덮밥
bigram	자연 ## 어 덮 ## 밥 자연 ## 어 처 ## 리 연 ## 어 덮 ## 밥 자연어 덮밥 자연어 처리 연어 덮밥
Frequency	자연어 2 => 처음으로 등장한 최빈토큰을 선택 덮밥 2 처리 1

연어

BERT 의 출력값

BERT 의 두가지 학습 구조

BERT 의 사전 학습 - MLM(Masked Language Mode)

BERT 의 사전 학습 - MLM

- 1. 80%의 단어는 [MASK] 토큰으로 바꾸고, BERT는 [MASK] 토큰에 들어갈 단어를 예측한다.
 - "My dog is [MASK]" \rightarrow hairy
- 2. 10%의 단어는 무작위 단어로 바꾸고, BERT는 해당 위치에 들어갈 정답 단어를 예측한다.
 - "My dog is apple" \rightarrow hairy
- 3. 10%의 단어는 그대로 두고, BERT는 해당 위치에 들어갈 정답 단어를 예측한다.
 - "My dog is <u>hairy</u>" \rightarrow hairy
 - ➡ pre training과 fine tuning 과의 불일치 문제 해결

BERT 의 사전 학습 - MLM

Ma	sking Ra	ates	Dev Set Results			
MASK	SAME	RND	MNLI Fine-tune	NER Fine-tune Feature-bas		
80%	10%	10%	84.2	95.4	94.9	
100%	0%	0%	84.3	94.9	94.0	
80%	0%	20%	84.1	95.2	94.6	
80%	20%	0%	84.4	95.2	94.7	
0%	20%	80%	83.7	94.8	94.6	
0%	0%	100%	83.6	94.9	94.6	

BERT 의 사전 학습 - NSP(Next Sentence Prediction)

```
 Input: [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP] label: IsNext
 Input: [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP]
```

label: NotNext

BERT 의 사전 학습 - NSP(Next Sentence Prediction)

	Dev Set					
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD	
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)	
BERT _{BASE}	84.4	88.4	86.7	92.7	88.5	
No NSP	83.9	84.9	86.5	92.6	87.9	
LTR & No NSP	82.1	84.3	77.5	92.1	77.8	
+ BiLSTM	82.1	84.1	75.7	91.6	84.9	

Fine-Tuning (1)

Fine-Tuning - Sequence Level

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-Tuning - Token Level

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Experiments

model 사이즈 비교

Ну	perpar	ams	Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2	
3 6 6 12 12 24	768 768 768 768 1024 1024	12 3 12 12 16 16	5.84 5.24 4.68 3.99 3.54 3.23	77.9 80.6 81.9 84.4 85.7 86.6	79.8 82.2 84.8 86.7 86.9 87.8	88.4 90.7 91.3 92.9 93.3 93.7	

Feature based approach

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
$\mathrm{BERT}_{\mathrm{LARGE}}$	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	_
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

Transfer Learning

VS

- Transfer learning: 전이 학습은 특정 환경에서 만들어진 AI 알고리즘을 다른 비슷한 분야에 적용
- Fine-Tuning : 사전에 학습된 모델의 파라미터를 task에 맞추어 정교하게 조정하여 활용

Traditional ML

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

Transfer Learning

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Transfer Learning

FIN INSIGHT Copyright FIN INSIGHT. All Right Reserved 가치를 높이는 금융 인공지능 실무교육

Insight campus

Transfer Learning

TRANSFER LEARNING

