

Hydrostatic Equilibrium

• during most of a star's lifetime it fuses H into He in core

• gravity (inward) & fusion pressure (outward) compete

• for most of a star's life they are in balance

When Stars Die...

Mass (M _o)	Surface temperature (K)	Spectral class	Luminosity (L_)	Main-sequence lifetime (106 years)
25	35,000	0	80,000	4
15	30,000	В	10,000	1.5
3	11,000	A	60	800
1.5	7000	F	5	4500
1.0	6000	G	1	12,000
0.75	5000	K	0.5	25,000
0.50	4000	M	0.03	700,000

- Sun has ~ 5 billion more H-fusing years
- Q: What happens when all the core H is used up?
- fusion stops, and star is near the end of its "life"
- gravity is unopposed & collapses the star's core
- ultimate fate depends on *mass of star*

Stellar "Corpses"

- Sun-like stars \Rightarrow white dwarf (size of Earth)
- 1 tsp of white dwarf = mass of an elephant
- if star's core >1.5 $m_{sun} \Rightarrow neutron star (city size)$
- 1 tsp of neutron star = mass of a mountain
- if star's core $> 3 m_{sun} \Rightarrow black hole$

DVD: Cosmos-"Warped Space"

Evidence for Black Holes "Extraordinary claims require extraordinary proof." - Carl Sagan Q: So how do you look for "nothing"? • gravitational effects on other objects • gravitational lensing by the black hole • accretion disk emissions • a few dozen candidates found so far

Center of the Milky Way | Comparison of the Milky Way | Cobe of hot gas | Cobe of h

Black Hole Questions...

Q: If our Sun were to become a black hole, would the Earth fly off into space or get sucked in?

Q: Do black holes roam around the galaxy, sucking in unsuspecting objects (& possibly people)?

Q: Could the Sun become a Black Hole? Earth?

Q: Do black holes last forever?

- stars are born, live for a finite time, & die
- stars spends most of their lives fusing $H \Rightarrow He$
- when stars die, result depends on mass of core
- white dwarf, neutron star, black hole
- black holes are singular points in spacetime
- spacetime is so warped even light cannot escape
- black holes have strong influence at close range

