

TECNOLOGÍA Y ARQUITECTURA ROBÓTICA

Tema 2. Tecnologías robóticas

Sesión 4

- Odometría
- Sensores externos (I)

Odometría

- Es el estudio de la estimación de la posición de vehículos con ruedas durante la navegación.
- Consiste en el cálculo de ecuaciones geométricas a partir de la información suministrada por los encoders.
- Tiene la ventaja que no requiere de sensores externos y es capaz de dar al robot una estimación de su posición.
- La desventaja es que el error de la posición crece exponencialmente a menos que se use una referencia externa (balizas, por ejemplo) periódicamente.

Odometría

- En algunos casos sin otras referencias externas, la odometría es la única información de navegación disponible para un robot.
- Se basa en la suposición de que las revoluciones de las ruedas se puede traducir en desplazamiento lineal con relación al suelo.
- Las posiciones estimadas a partir de la odometría no tienen nada que ver con la localización del robot con respecto al entorno, ya que son relativas al punto de inicio.

El robot diferencial

Estimación de la posición

Supongamos:

- D_I es el desplazamiento de la rueda izquierda
- D_r es el desplazamiento de la rueda derecha

Estimación de la posición

- □ **Paso 1**: Calcular la distancia recorrida por cada una de las ruedas, (D_l, D_r) , teniendo en cuenta la información de los encoders de cada motor.
- Paso 2. El desplazamiento lineal realizado por el punto que se encuentra justo en medio del eje es:

$$D_c = (D_l + D_r)/2$$

Estimación de la posición

Paso 3. Cuando las ruedas del robot giran a diferentes velocidades, hacen que el robot gire, el valor del ángulo (en radianes) de giro es:

$$D_{\theta} = (D_r - D_l)/d$$

Paso 4. Se conoce la situación del instante actual, t, y partir de esta se ha de determinar la posición en el instante siguiente, t+1:

$$\theta_{t+1} = \theta_t + D_\theta$$

$$x_{t+1} = x_t + D_c * \cos(\theta_{t+1})$$

$$y_{t+1} = y_t + D_c * \sin(\theta_{t+1})$$

Errores en odometría

- Dos principales fuentes de error:
 - Los diámetros de las ruedas no son iguales
 - Incertidumbre en el tamaño de la base del robot

- □ Por ejemplo:
 - \blacksquare Robot empieza en (x_0, y_0, θ_0)
- Se mueve en un cuadrado y no llega al mismo sitio

Errores en odometría

- No es posible determinar si los diámetros diferentes o la incertidumbre sobre la base son la fuente de error.
- No es posible saber si un error compensa al otro.

Errores en odometría

Materiales complementarios odometría

- □ https://www.youtube.com/watch?v=oeTxklWdd9l
- □ https://www.youtube.com/watch?v=Po1evB7CNiw
- □ https://www.youtube.com/watch?v=eQ9E0Zvp9jw
- https://es.coursera.org/lecture/mobilerobot/odometry-L4gPH
- http://www.hmc.edu/lair/ARW/ARW-Lecture01-Odometry.pdf
- https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/ class/16311/www/s19/labs/lab03/

Sensores externos

- Estos sensores dan información acerca del estado del mundo que rodea al robot, es decir, monitorizan dinámicamente la relación de un robot con su entorno, y el desarrollo de la ejecución de una tarea.
- Idealmente, deben alterar lo menos posible el entorno que monitoricen.

Sensores de proximidad

- Señalan la distancia entre el punto del robot, y otros objetos. Pueden ser de contacto, o sin contacto físico.
- La primera clase de sensores responde al contacto físico y suelen servir como indicadores de algún evento.
- Los sensores sin contacto se basan en la respuesta de un detector a las variaciones en la radiación electromagnética o acústica.
- Los ejemplos más destacados de los sensores sin contacto miden el alcance, la proximidad y las propiedades visuales de un objeto.

Sensores de contacto

- Son simples interruptores colocados en lugares concretos del robot donde se piense que puede existir un choque.
- □ Posibles usos:
 - Detectar el contacto entre el robot y objetos externos, como paredes.
 - Detectar el contacto con partes de movimiento interno del robot (como en un brazo robótico).
 - Elemento de Entrada pulsador o control "remoto".

Sensores de contacto

fuerza

Un interruptor simple

Sensores de luz

- Los sensores de luz miden la cantidad de luz que impacta en una fotocélula (normalmente, una fotoresistencia).
- La sensibilidad a la luz se refleja en cambios en el valor de la resistencia.
 - Bajo cuando hay iluminación: Vsens mide casi OV
 - Alto cuando hay oscuridad Vsens mide casi5V
- Es decir, los sensores de luz suelen ser sensores de "oscuridad"
- Pueden invertir la salida para que "bajo" signifique oscuro y "alto" signifique claro.

Sensores de luz

- Muchos de estos sensores constan, entre otras cosas, de una fuente de luz (normalmente un LED) y un receptor (fotodiodo o fototransistor), que medirá la intensidad de luz recibida.
- Dos posibilidades, dependiendo de las posiciones de emisor y receptor:
 - Sensores de reflexión: el emisor y el detector están uno al lado del otro; la luz se refleja del objeto hacia el detector.
 - Sensores de ruptura de haz: El emisor y el detector están uno enfrente del otro; se detecta un objeto si la luz emitida entre ambos se interrumpe.

Sensores de luz

Fototransistor

Dentro del sensor de luz hay un fototransistor.

El fototransistor actúa como una válvula para la electricidad. Cuanta más energía luminosa percibe, más electricidad fluye.

Sensores de color LEGO

- Se usa para la detección de objetos, seguir líneas, clasificar objetos, etc.
- Permite distinguir hasta 7 colores, así como la intensidad de la luz.
- Cuando se mide la intensidad de la luz reflejada por una superficie, se ha de tener en cuenta que colores claros (blanco, amarillo) reflejan mayor cantidad de luz (80-90%).
- Colores oscuros (negro, azul) reflejan menor cantidad de luz (10 -20%).

Sensores de reflexión

- □ Se usan en numerosas aplicaciones:
 - Detectar la presencia de un objeto
 - Detectar la distancia a un objeto
 - Detectar alguna característica de una superficie (pared o líneas para seguimiento)
- La reflexión depende del color y de la textura de la superficie.
 - Las superficies con colores claros reflejan mejor
 - Una superficie negra mate puede no reflejar en absoluto la luz
 - Objetos claros lejanos aparentan estar más cerca que objetos oscuros cercanos.
- La luz ambiental interfiere en la medida del sensor
 - ¿Cómo distingue un robot entre una mayor reflexión de un objeto y un incremento en la luminosidad del entorno del robot?

Sensores infrarrojos

- La luz IR trabaja a una frecuencia diferente que la luz ambiental
- Los sensores IR se usan de la misma manera que los sensores de luz visible, pero son más robustos
- El sensor mide la cantidad de iluminación global
 - luz ambiental y la que genera la fuente de luz
- Manera robusta de usar los sensores IR:
 - Modulación/demodulación: apagar y encender rápidamente la fuente de luz

Modulación/demodulación

 Los infrarrojos modulados se suelen usar con frecuencia en comunicaciones

- La modulación se realiza mediante una fuente de luz intermitente a una determinada frecuencia
- La señal se detecta por un demodulador sintonizado a esa misma frecuencia
- Este sistema ofrece gran inmunidad a la luz ambiental
 - Los flashes de luz se pueden detectar aunque sean débiles

Sensores de proximidad con IR

- Es una aplicación perfecta para los sensores IR con modulación/demodulación
- La luz del emisor se refleja en el detector desde un objeto cercano, indicando si un objeto está presente
 - El emisor y el detector LED apuntan en la misma dirección
- La luz modulada es mucho menos sensible a cambios en el entorno:
 - Ia luz ambiental
 - la reflexión en diferentes objetos

En Lego...

- Puede detectar la luz infrarroja reflejada por los objetos.
- Utiliza la luz reflejada por un objeto para calcular la distancia entre el sensor y el objeto.
- Informa la distancia mediante valores entre 0 (muy cerca) y 100 (muy lejos).
- El sensor puede detectar objetos que se encuentran a una distancia de hasta 70 cm, según el tamaño y la forma del objeto.