Àlgebra lineal. Curs 2015-2016

Llista 5. Aplicacions lineals.

1. Estudieu quines de les aplicacions següents són lineals:

$$1.f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \qquad f(x,y) = (x+y,x)$$

$$2.f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2; \qquad f(x,y) = (xy,x)$$

$$3.f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, \qquad f(x,y) = (x,y,x+y)$$

$$4.f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad f(x,y) = x^2y^2$$

2. Es consideren espais vectorials E, amb base e_1, e_2, e_3 , i F, amb base v_1, v_2, v_3, v_4 . Escriu la matriu, relativa a aquestes bases, de l'aplicació lineal

$$f: E \longrightarrow F$$

que compleix

$$f(e_1) = v_1 - v_2 + v_3$$

$$f(e_2) = 2v_1 + v_2 - v_4$$

$$f(e_3) = 3v_2 - 2v_3 - v_4.$$

Determina la imatge de $w = e_1 + 3e_2 + 2e_3$ i tots els vectors que tenen la mateixa imatge que w.

3. Es considera un espai vectorial E, amb base e_1, e_2, e_3 , i l'aplicació lineal

$$f: E \longrightarrow E$$

que compleix $f(e_1) = e_2$, $f(e_2) = e_3$ i $f(e_3) = 0$. Escriu-ne la matriu relativa a la base citada. Demostra que $f^3 = 0$.

4. Es considera un espai vectorial E, amb base e_1, e_2, e_3 , i l'aplicació lineal

$$f: E \longrightarrow E$$

que compleix

$$f(e_1) = e_1 - e_2 + e_3$$

 $f(e_2) = 2e_1 + e_2 - e_3$
 $f(e_3) = 3e_1 - 2e_2 - 6e_3$.

Escriu-ne la matriu relativa a la base citada. Determina els vectors $v \in E$ que compleixen $f^2(v) = f(v)$.

5. Sigui $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ l'aplicació lineal definida per

$$f(x, y, z, t) = (x + y - z, x + 2y + z + t, -x - 3y - 3z - 2t).$$

Trobeu la matriu de f en les bases estàndard de \mathbb{R}^4 i \mathbb{R}^3 i trobeu bases de Ker f i de Im f.

6. Sigui $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ l'aplicació lineal donada per

$$f(1,0) = (2,3,0), \quad f(0,1) = (-1,1,1)$$

i sigui $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ donada per

$$g(1,0,0) = (2,-1,0,0), \quad g(0,1,0) = (3,0,1,0), \quad g(0,0,1) = (0,0,0,1)$$

Trobeu l'expressió matricial de f, g i $g \circ f$, respecte de les corresponents bases canòniques de \mathbb{R}^2 , \mathbb{R}^3 i \mathbb{R}^4 .

7. Sigui f l'endomorfisme (aplicació lineal 'dun espai vectorial en ell mateix) de \mathbb{R}^3 que té

$$\left(\begin{array}{cccc}
3 & 2 & -1 \\
-2 & -1 & 0 \\
4 & 3 & 1
\end{array}\right)$$

per matriu associada en la base $\{e_1, e_2, e_3\}$. Proveu que $\{e_3, f(e_3), f^2(e_3)\}$ és una base de \mathbb{R}^3 i trobeu la matriu associada de f en aquesta nova base.

8. Sigui $f:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ una aplicació lineal amb matriu

$$\left(\begin{array}{ccc} 1 & -3 & 1 \\ 2 & 6 & 2 \end{array}\right)$$

en les bases estàndard. Comproveu que $\{(1,0,1),(1,0,0),(1,1,0)\}$ i $\{(1,-1),(2,0)\}$ són bases de \mathbb{R}^3 i \mathbb{R}^2 respectivament i trobeu la matriu de f en aquestes bases. Doneu Ker f i Im f en les bases estàndard i en les últimes bases.

9. Sigui $f:\mathbb{R}^4\longrightarrow\mathbb{R}^3$ l'aplicació lineal que té per matriu en les bases canòniques

$$\left(\begin{array}{cccc}
1 & 0 & -1 & 2 \\
2 & 1 & 0 & -1 \\
3 & 1 & -1 & 1
\end{array}\right)$$

- $\bullet\,$ Trobeu bases de Kerfi de Imf
- Té sol·lució l'equació f(x) = (2, 2, 4)?

10. La matriu associada a l'aplicació lineal $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ en les bases canòniques és:

$$\left(\begin{array}{cccc}
1 & 6 & 3 & 2 \\
-2 & -2 & -1 & 1 \\
1 & 2 & 1 & 0
\end{array}\right).$$

Donats els subespais $F = \{(x, y, z, t) \in \mathbb{R}^4 | x - 2y - 2t = 0\}$, F subespai vectorial de \mathbb{R}^4 , i el subespai $G = <(2, -1, 1), (1, -1, 1) > de <math>\mathbb{R}^3$. Trobeu una mase i les equacions implícites dels subespais f(F) i $f^{-1}(G)$.

11. Considerem els vectors de \mathbb{R}^3 , $e_1 = (1, 1, 1)$, $e_2 = (-1, 2, 1)$ i $e_3 = (0, 1, 1)$, i l'endomorfisme $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definit per

$$f(e_1 - e_2) = 0$$

$$f(e_1 + e_2 + e_3) = 4e_2 + 5e_3$$

$$f(e_2 + e_3) = 3e_2 + 3e_3$$

- a) Calculeu la matriu associada a f en la base $\{e_1, e_2, e_3\}$.
- b) Calculeu la matriu associada a f en la base canònica de \mathbb{R}^3 .
- **12.** Es considera l'aplicació lineal $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ que, respecte de les bases $\{e_1, e_2, e_3\}$ de \mathbb{R}^3 i $\{u_1, u_2, u_3, u_4\}$ de \mathbb{R}^4 , compleix:

$$e_1 + 2e_2 - 3e_3 \in Kerf$$
, $f(e_2) = u_1 + u_2 + u_4$, $f(3e_3) = 3u_1 + u_3$

Trobeu

- f(2,1,-3).
- Ker f i Im f.
- 13. Sigui $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'aplicació donada per

$$f(x_1, x_2, x_3) = (2x_1 - x_2 + x_3, x_2 + x_3, x_1 + x_2 + 2x_3).$$

- 1. Demostreu que f és una aplicació lineal.
- 2. Doneu la matriu de f en la base canònica de \mathbb{R}^3 .
- 3. Calculeu bases dels subespais Im(f) i Ker(f).
- 14. Sigui $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ l'aplicació definida per

$$f(x_1, x_2, x_3) = (x_1 + x_3, x_2, x_2, x_1 + x_2 + x_3).$$

- 1. Proveu que f és una aplicació lineal.
- 2. Trobeu la matriu de f en les bases canòniques de \mathbb{R}^3 i \mathbb{R}^4 .
- 3. Trobeu bases i dimensions del subespais Ker(f) i Im(f).
- 15. Sigui $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'aplicació lineal que té per matriu

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ -2 & -2 & 0 \\ 3 & 2 & -1 \end{array}\right).$$

- Calculeu g(2, -1, 3).
- Calculeu el rang de A.
- Siguin $S = \langle (1,1,1) \rangle$ i $T = \{(x_1, x_2, x_3) | 2x_1 + x_3 x_2 = 0\}$. Calculeu bases i equacions de q(S), $q^{-1}(S)$, q(T), $q^{-1}(T)$.
- Calculeu la matriu de $g \circ g$ en la base canònica de \mathbb{R}^3 .
- **16.** Sigui $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'aplicació lineal tal que la seva matriu en la base canònica és

$$\left(\begin{array}{ccc} 0 & 2 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right).$$

Calculeu la matriu de l'aplicació lineal $f \circ f$ en la base canòniques de \mathbb{R}^3 així com les dimensions dels subespais $\mathrm{Im}(f \circ f)$ i $\mathrm{Ker}(f \circ f)$.

17. Sigui \mathbb{V} un espai vectorial de dimensió 4, $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ una base de \mathbb{V} , i siguin

$$\mathbf{u}_1 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4, \quad \mathbf{u}_2 = \mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3 + \mathbf{v}_4,$$

$$\mathbf{u}_3 = \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 - \mathbf{v}_4, \qquad \mathbf{u}_4 = \mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3 - \mathbf{v}_4.$$

Demostreu que $\mathcal{B}' = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ és una base de \mathbb{V} i calculeu les matrius de canvi de base de \mathcal{B} a \mathcal{B}' , i de \mathcal{B}' a \mathcal{B} .

18. Sigui $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canònica de \mathbb{R}^3 i considereu els vectors

$$u_1 = e_1 + e_3$$

 $u_2 = e_2 + e_3$
 $u_3 = e_1 + e_2 + e_3$.

1. Demostreu que el conjunt $\mathcal{U} = \{u_1, u_2, u_3\}$ és una base de \mathbb{R}^3 .

- 2. Determineu les coordenades en la base \mathcal{U} del vector $v \in \mathbb{R}^3$ que té coordenades (1,2,1) en la base \mathcal{B} .
- 19. Sigui $f:\mathbb{R}^3 \to \mathbb{R}^3$ l'aplicació lineal que té com a matriu en la base canònica

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 2 & -1 \end{array}\right).$$

- (a) Calculeu la matriu de $f \circ f$ en la base canònica.
- (b) Calculeu la matriu de $f \circ f$ en la base $\mathcal{B} = \{(1,0,1),\, (1,1,0),\, (0,1,1)\}$
- **20.** Considerem l'aplicació lineal $f: \mathbb{R}^3 \to \mathbb{R}^2$ que té per matriu

$$\left(\begin{array}{ccc} 1 & 3 & 0 \\ 2 & 1 & 1 \end{array}\right).$$

Comprova que ((1,0,0),(1,1,0),(2,0,1)) i ((3,1),(2,0)) són bases de \mathbb{R}^3 i \mathbb{R}^2 respectivament, i troba la matriu de f en aquestes bases.

21. Sigui (v_1, v_2, v_3) una base de d'un espai vectorial E i sigui $f: E \to E$ un endomorfisme que compleix

$$v_1 + v_2 \in kerf$$
, $f(v_3) = v_1$, $i \quad f(v_1) = v_1 + v_2$.

- (i) Troba la matriu de f en la base (v_1, v_2, v_3) .
- (ii) Calcula $f(4v_1 v_2 + 2v_3)$
- (iii) Calcula el Ker i la imatge de f.