1 Matrizen und Vektoren

1.1 Eingabe

1.2 Zugriff auf Matrixelemente

M(1,J)	Element aus Zeile i und Spalte j
M(i,:)	Alle Elemente der Zeile i
M(:,j)	Alle Elemente der Spalte j
M(L)	Alle Elemente aus M, die in der Matrix L den logischen Wert true haben
M(M>a)=b	Setzt alle Elemente die grösser als a sind auf b
I=find(L)	Index aller Elemente die in der Matrix L den logischen Wert true haben

1.3 Operationen

A+B

A-B	Matrizen-Subtraktion
A*B	Matrizen-Multiplikation
A.*B	elementweise Multiplikation: $a_{ij} \cdot b_{ij}$
A/B	Matrizen-Division: $A \cdot B^{-1}$
A./B	elementweise Division: a_{ij}/b_{ij}
Α'	Matrizen-Transponierung und Konjugation
A.,	Matrizen-Transponierung (ohne Konjugation)
A.^x	elementweise Potenzieren: a_{ij}^x

Matrizen-Addition

1.4 Spezielle Matrizen

Z = zeros(m,n)	Definition einer $m \times n$ -Matrix mit lauter Nullen
0 = ones(m,n)	Definition einer $m \times n$ -Matrix mit lauter Einsen
N = NaN(m,n)	Definition einer $m \times n$ -Matrix mit lauter NaN's (NaN = Not-a-Number)
E = eye(n)	Definition einer $n \times n$ -Einheitsmatrix
R = rand(m,n)	Definition einer $n \times n$ -Matrix mit gleichverteilten Zufallszahlen zwischen 0 und 1
RN = randn(m,n)	Definition einer $n \times n$ -Matrix mit normalverteilten Zufallszahlen mit Mittelwert 0
	und Standardabweichung 1

2 Funktionen

2.1 Matrizen-Dimensionen und Datentypen

[m,n] = size(A)	Anzahl Zeilen m und Spalten n einer Matrix
s = size(A)	Grössen aller Dimensionen der Matrix A mit beliebiger Dimensionalität
<pre>l = length(A)</pre>	Länge einer Matrix bzw. eines Vektors (grösste Dimension)
<pre>B = double(A)</pre>	Matrix A zu double typecasten
B = single(A)	Matrix A zu single (32-Bit floating point) typecasten
<pre>isa(A,'double')</pre>	Datentyp von A überprüfen

2.2 Elementare Mathematische Funktionen

```
y = sin(x),
                      trigonometrische Funktionen mit dem Argument x in Radiant
y = cos(x),
y = tan(x)
y = asin(x)
                      inverse trigonometrische Funktionen mit dem Rückgabewert y in Radiant
                      trigonometrische Funktionen mit dem Argument x in Grad
y = sind(x)
y = asind(x)
                      inverse trigonometrische Funktionen mit dem Rückgabewert y in Grad
y = exp(x)
                      Exponentialfunktion
y = log(x)
                      naturlicher Logarithmus
                      Logarithmus zur Basis 10
y = log10(x)
                      quadratische Wurzel
y = sqrt(x)
y = abs(x)
                      Absolutwert
y = round(x)
                      Rundung auf die nächste ganze Zahl
y = floor(x)
                      Abrunden auf die nächst kleinere ganze Zahl
                      Aufrunden zur nächst grössere ganze Zahl
y = ceil(x)
y = conj(x)
                      Konjugiert Komplexe Zahl von x
```

2.3 Funktionen zur Berechnung von Kennwerten

y = sum(x)	Summe der Elemente eines Arrays
ma = max(x)	grösster Wert in einem Arrays
mi = min(x)	kleinster Wert in einem Arrays
m = mean(x)	Mittelwert der Elemente eines Arrays
s = std(x)	Standardabweichung der Elemente eines Arrays
v = var(x)	Varianz der Elemente eines Arrays

2.4 Zeitmessung

2.5 Graphische Funktionen

figure(n)	setzt das Plot-Fenster mit Nummer n als aktiv oder erzeugt ein neues Fenster mit
	dieser Nummer
plot(x,y,'-o')	zeichnet die Werte des Vektors y (Ordinate) gegen diejenige des Vektors x (Abszisse),
	wobei die Punkte linear interpoliert werden und mit Kreisen markiert werden
plot(x1,y1,x2,y2)	zeichnet zwei Funktionen in die selbe Graphik
<pre>subplot(1,2,1)</pre>	Plot auf linker Seite des Feldes (1 Zeile, 2 Spalten, 1. Graph)
histogram(x)	Erzeugung eines Histogramm-Plots
stem(x)	Plotten von diskreten Datensequenzen
hold on	Einfrieren der aktuellen Graphik, um zusätzliche Graphen eintragen zu können
hold off	Einfrierung aufheben
<pre>axis([xs,xe,ys,ye])</pre>	Festlegung der Skalierung der x- und der y-Achse
<pre>title('Text')</pre>	Titel für die Graphik
<pre>xlabel('Text')</pre>	Beschriftung der x-Achse (Abszisse)
<pre>ylabel('Text')</pre>	Beschriftung der y-Achse (Ordinate)

3 Signale

3.1 Spektrum

y = fft(x)	Berechnung der diskreten Fourier-Transformation von x
x = ifft(y)	Berechnung der inversen diskreten Fourier-Transformation von y
y = fftshift(x)	Verschiebung der "DC-Frequenz" (Frequenz Null) in die Mitte des Spektrums.
x = ifftshift(y)	Invertierung der Verschiebung von fftshift().
9.9. T''	

3.2 Filterung

w = conv(u, v)	Berechnung der Faltung von zwei Vektoren u und v
y = filter(b,a,x)	Filterung des Eingangssignals x mit dem Filter:
	$H(z) = \frac{b(1) + b(2)z^{-1} + \dots + b(n_b + 1)z^{-n_b}}{a(1) + a(2)z^{-1} + \dots + a(n_a + 1)z^{-n_a}}$
y = cumsum(x)	Berechnung der kumulativen Summe: $y(n) = \sum_{i=1}^{n} x(n)$

4 Bilder

4.1 Laden und Speichern

<pre>I = imread('f')</pre>	Bild mit dem Filenamen 'f' einlesen
<pre>imwrite(I,'f')</pre>	Bild I im File 'f' speichern

4.2 Anzeigen

imshow(I)	Bild I anzeigen
<pre>image(I)</pre>	Bild I anzeigen. Verwendet eine colormap zum Anzeigen von Graubildern.
<pre>imagesc(I)</pre>	Skaliert die Bilddaten I zur vollständigen Farbpalette der aktiven colormap
colormap(m)	Jede Reihe in m ist ein RGB-Vektor, welcher eine Farbe definiert.
<pre>colormap('gray')</pre>	erzeugt und aktiviert eine lineare Graustuffen colormap
<pre>I = rgb2gray(RGB)</pre>	konvertiert das Farbbild RGB zum Graubild I

4.3 Filterung

C = conv2(A,B) zweidimensionale Faltung mit A und B

F = filter2(h,I) Bild I mit der zweidimensionalen Matrix h filtern

F = medfilt2(I, [m n]) Medianfilter mit m mal n Nachbarschaft

4.4 Spektrum

F = fft2(I) 2-dimensionale digitale Fouriertransformation

I = ifft2(F) inverse 2-dimensionale digitale Fouriertransformation

5 Kontrollstrukturen

5.1 for-Schleife

5.2 while-Schleife

5.3 If-Anweisung

5.4 Eigene Funktionen