LLM, Yet Another Solution to RecSys?

Dr. Sun Aixin 孙爱欣 NTU Singapore

DataFunSummit # 2023

What is RecSys?

Stream/online Static/offline Data **Evaluation** Train/test split A/B testing HitRate, NDCG... CTR, CVR, GMV... Metric LLM? Model A single model Mixture of models?

- RecSys evaluation is challenging
- "The goal of the offline experiments is to filter out inappropriate approaches, leaving a relatively small set of candidate algorithms to be tested" online
- "it is necessary to simulate the online process where the system makes predictions or recommendations"

The 5 settings in offline evaluation

Leave-one-out

Random split

Case study: what train/split?

➤ Collection: 88 papers in RecSys conferences (2020 – 2022)

No. papers	Percentage	Train/test split	Global timeline?	
30	34%	Random split	No	
22	25%	Leave-one-out	No	
17	19.5%	Single time point	Partially	
15	17%	Simulation-based online	Yes	
4	4.5%	Sliding window	Yes	

Bandits and reinforcement learning for recommendation. Incremental learning or session-based learning.

Recommendation in practice

 \triangleright Users get recommendations when visiting a site or app, at current time t_c

 \blacktriangleright All historical interactions before t_c can be used as training data

- Learning from past interactions
- To predict users' preferred items in (near) future

RecSys in academic research: problem abstraction

One problem definition for many RecSys tasks

Global timeline not observed

Ignorance of global timeline: data leakage

- Recommenders access user-item interactions that "would happen" after the test time point
- Recommenders may recommend "future items"

Recommendation accuracies may not mean much

Applicable to Popularity and ML/DL-based models

Global timeline vs local timeline

- Number of item first interactions in each week
- Number of user last interactions in each week
- On 4 datasets for 10 years duration

Data leakage in offline evaluation of recommender system

(a) User-item interaction along global timeline.

 S_{AB} : items rated by both users A and B

 S_{BC} : items rated by both users B and C

X: test instance of user A

Y: test instance of user B

Z: test instance of user C

All interactions by user C happened after the test instance of A

Experiments: the impact of data leakage

Dataset	Time span selected	Data Filtering	#User	#Item	#Rating	Sparsity
MovieLens-25M	21 Nov 2009 to 20 Nov 2019	No filtering	62,202	56, 774	9, 808, 925	2.78e - 3
Yelp	13 Dec 2009 to 12 Dec 2019	10-core	116,655	61,027	3, 127, 215	4.39e - 4
Amazon-music	02 Oct 2008 to 01 Oct 2018	5-core	15,839	11,071	162,880	9.29e - 4
Amazon-electronic	05 Oct 2008 to 04 Oct 2018	10-core	141,633	49,325	2,365,483	3.38e - 4

Data partition: Leave-one-out splitting

Recommendation List

- Baselines: BPR, NeuMF, LightGCN, SASRec
- Evaluation metrics: HR@20, NDCG@20

Recommendation Accuracy

Experiment: to simulate different severity of data leakage

- Test set: test instances that happened in Year 5 (example test year)
- Training set: (Instances before Y5) + (training instances in Y5) + $(x \text{ year of future instances}), x \in [0,5]$

Impact of data leakage on recommendation list

- Future items: the items are exclusively available only after the specific time point of a given test instance.
- ➤ All models recommend "future items" → invalid recommendation

M - 1-1	Dataset Mo		MovieLens-25M		Yelp		Amazon-music		Amazon-electronic	
Model	Test year	Y5	Y7	Y5	Y7	Y5	Y7	Y5	Y7	
	Y5	0	_	0	_	0	_	0	_	
	Y6	0	_	421	_	615	_	79	_	
BPR	Y7	22	0	829	0	970	0	363	0	
	Y8	7	11	2,365	504	1,101	651	263	200	
	Y9	6	88	5,048	287	1,304	1,103	499	1,224	
	Y10	4	81	1,851	1,598	1,197	1,155	200	583	
	Y5	0	_	0	_	0	_	0	_	
	Y6	3	_	602	_	910	_	28	_	
NeuMF	Y7	7	0	1,631	0	1,501	0	1,303	0	
	Y8	27	31	3,260	130	1,733	878	549	0	
	Y9	22	6	3,542	1,177	1,491	1,276	729	216	
	Y10	15	1	5,205	1,791	1,577	1,573	2,655	326	
	Y5	0	_	0	_	0	_	0	_	
	Y6	11	_	369	_	626	_	37	_	
LightGCN	Y7	32	0	739	0	1,050	0	148	0	
	Y8	116	189	1,070	569	998	632	367	220	
	Y9	22	26	1,257	979	1,036	893	262	430	
	Y10	15	58	1,103	1,360	1,152	1,029	260	470	
	Y5	0	_	0	_	0	_	0	_	
	Y6	315	_	967	_	906	_	216	_	
SASRec	Y7	442	0	3,074	0	1,548	0	625	0	
	Y8	144	489	2,228	2,666	1,814	1,341	487	1388	
	Y9	342	403	3,162	2,893	1,982	1,376	20	3,209	
	Y10	993	386	1,741	3,014	1,980	1,662	12	2,479	

Impact of data leakage on recommendation accuracy

- The impact on recommendation accuracy can vary, and it is not predictable.
- The relative performance ordering of the evaluated models does not exhibit consistent patterns.

Static/offline dataset

Stream/online data

The **MovieLens** dataset

Two kinds of interactions

User-Movie Interaction

 There is a decision process to decide which movie to watch next

User-MovieLens Interaction

- MovieLens guides users to recall what movies he/she has watched
- Cold-start dataset for "static preference"

https://arxiv.org/abs/2307.09985

Computer Science > Information Retrieval

arXiv:2307.09985 (cs)

[Submitted on 19 Jul 2023]

Our Model Achieves Excellent Performance on MovieLens: What Does it Mean?

Yu-chen Fan, Yitong Ji, Jie Zhang, Aixin Sun

Download PDF

A typical benchmark dataset for recommender system (RecSys) evaluation consists of user-item interactions generated on a platform within a time period. The interaction generation mechanism partially explains why a user interacts with (e.g.,like, purchase, rate) an item, and the context of when a particular interaction happened. In this study, we conduct a meticulous analysis on the MovieLens dataset and explain the potential impact on using the dataset for evaluating recommendation algorithms. We make a few main findings from our analysis. First, there are significant

Dataset vs Reality

Computer Science > Information Retrieval

arXiv:2212.02726 (cs)

[Submitted on 6 Dec 2022 (v1), last revised 24 Mar 2023 (this version, v2)]

Dataset vs Reality: Understanding Model Performance from the Perspective of Information Need

Mengying Yu, Aixin Sun

Download PDF

Deep learning technologies have brought us many models that outperform human beings on a few benchmarks. An interesting question is: can these models well solve real-world problems with similar settings (e.g., identical input/output) to the benchmark datasets? We argue that a model is trained to answer the same information need for which the training dataset is created. Although some datasets may share high structural similarities, e.g., question-answer pairs for the question answering (QA) task and image-caption pairs for the

https://arxiv.org/abs/2212.02726

What is RecSys?

Dataset vs Reality? Offline dataset Stream data Data Simulation of online process? Train/test split A/B testing Evaluation CTR, CVR, GMV... Metric HitRate, NDCG... LLM? Model A single model Mixture of models?

LLM, Yet Another Solution to RecSys?

Application

Model Architecture

Word Embedding

- How to present a scenario to LLM for a decision-making in a dynamic (online) setting?
- > To what extent shall we trust the results on offline evaluation?

LLM, Yet Another Solution to RecSys?

- Disadvantages
 - Cannot consider business scenarios
 - Cannot access domain-specific user/item attributes
 - Unable to evaluate the business benefits brought by algorithms through offline evaluation

- Advantages
 - No need to consider implementation costs
 - No restrictions on the design of LLM-based recommenders
 - Potentially offer valuable insights for the industry

Academic Research

Acknowledgement

Ms. Ji Yitong

Mr. Fan Yu-chen

Dr. Zhang Jie

Dr. Li Chenliang

https://personal.ntu.edu.sg/axsun/

Recommender System Offline Evaluation

Authors: Nitong Ji, Aixin Sun, Jie Zhang, Chenliang Li Authors Info & Claims

ACM Transactions on Information Systems, Volume 41, Issue 3 • Article No.: 75, pp 1-27 • https://doi.org/10.1145/3569930

Computer Science > Information Retrieval

arXiv:2307.09985 (cs)

[Submitted on 19 Jul 2023]

Our Model Achieves Excellent Performance on MovieLens: What Does it Mean?

Yu-chen Fan, Yitong Ji, Jie Zhang, Aixin Sun

Download PDF

A typical benchmark dataset for recommender system (RecSys) evaluation consists of user-item interactions generated on a platform within a time period. The interaction generation mechanism partially explains why a user interacts with (e.g., like, purchase, rate) an item, and the context of when a particular interaction happened. In this study, we conduct a meticulous analysis on the MovieLens dataset and explain the potential impact on using the dataset for evaluating recommendation algorithms. We make a few main findings from our analysis. First, there are significant

