Introduction to Microprocessor

Microprocessor and Microcontroller

Session Objectives

- To explain the definition of Microprocessor
- To understand the components of 8086 trainer kit
- To understand the execution procedure

Session Outcomes

- At the end of the session, students will be able to
 - Understand basics of microprocessor.
 - Understand the components of 8086 trainer kit
 - Understand the execution procedure

Definition of Microprocessor

- Microprocessor (µP) is the Central Processing Unit of Microcomputer
- It can be implemented on single semiconductor chip.
- The word comes from the combination micro and processor.
- Processor means a device that processes whatever(binary numbers, 0's and 1's)
- To process means to manipulate. It describes all manipulation.

Classification of Microprocessor

- Microprocessor can be classified based on
 - The number of bits handled by the processor
 8 bit, 16 bit, 32 bit, etc. processors
 - Depending on the Instruction set of the processor
 - Reduced Instruction Set Computer (RISC)
 - Complex Instruction Set Computer (CISC)
 - Applications
 - General purpose,
 - special purpose such image processing, floating point calculations
 - And more ...

Block Diagram of Micro Computer

6

Evolution of Intel Microprocessor

8086	1979
286	1982
386	1985
486	1989
Pentium	1993
Pentium Pro	1995
Pentium MMX	1997
Pentium II	1997
Pentium II (Celeron)	1998
Pentium II (Zeon)	1998
Pentium III	1999
Pentium IV	2000
Petium IV Zeon	2001
Duo Core	2006

Example of other Processors

- Widely used processors
 - Mimic/68K
 - Introduced by Motorola
 - MIPS
 - RISC Machine
 - Developed by MIPS Technologies
 - ARM
 - Advanced RISC Machine
 - Acorn RISC Machine from Acorn Computers in 1990
 - ARM was established and ARM was renamed as Advanced RISC Machines.
 - PowerPC
 - Performance Optimization With Enhanced RISC Performance Computing, sometimes abbreviated as PPC
 - Apple-IBM-Motorola alliance known as AIM
 - Atmel AVR

8086 trainer kit

Features of the ESA -86/88 Microprocessor Trainer

- 8086 CPU operating at 8 MHz MAX mode.
- Provision for on-board 8087 (NDP) coprocessor.
- Provision for 256 KB of EPROM & 128 KB of RAM onboard
- Battery backup facility for RAM.
- 48 programmable I/O lines using two 8255"s
- Timer1 & Timer2 signals are brought out to header pins
- Priority Interrupt Controller (PIC) for eight input using 8259A
- In standalone mode using on board keypad or with PC compatible system through its RS-232 interface
- Display is 8 seven segment LED

Features of the ESA -86/88 Microprocessor Trainer

- Designed & engineered to integrate user"s application specific interface conveniently at a minimum cost.
- Powerful & user-friendly keyboard / serial monitor, support in development of application programs.
- Software support for development of programs on Computer, the RS-232C interface cable connecting to computer from the kit facilitates transfer of files between the trainer kit & computer for development & debugging purposes.
- High quality reliable PCB with solder mask on both sides & clear legend prints with maximum details provided for the user.

SPECIFICATIONS:

- CPU: Intel 8086 operating at 8 MHz in MAX mode.
- MEMORY: Total 1MB of memory is in the Kit provided.
- EPROM: 4 JEDEC compatible sockets for EPROM
- RAM: 4 JEDEC compatible sockets for RAM
- PARALLEL I/O: 48 I/O lines using two 8255
- SERIAL I/O: One RS-232C compatible interface Using UART 8251A
- TIMER: Three 16 bit counter / timers 8253ACounter 1 is used for serial I/O Baud rate generation.

EXECUTION PROCEDURE FOR 8086

- Check if DIP switches board is in serial or keyboard mode (Serial mode = 1 on, Board mode = 4 On)
- Press Reset Press "EB"(Examine Byte) Enter Starting Memory location (Ex: 2000)
- Press next button, Enter OP-Code value
- Then press next button
- Enter 2nd memory location and op code . . . Enter up to nth values

EXECUTION PROCEDURE FOR 8086

- Execution:
- Press Exec. Button Press Go enter starting memory location
- Press Exec.
- Press EB give input memory location and input values
- Press Exec.
- Press Go Give starting memory location Press Exec.
- Press Go Now observe the results in memory location.

Addition program with opcode

0000 0002 0005 0007 000A 000C 000E 0011	B1 00 BB 3000 8B 07 03 47 02 73 02 FE C1 89 47 04 88 4F 06	CODE SKIP:	SEGMENT ASSUME CS:CODE, DS:CODE MOV CL, 00H MOV BX, 3000H MOV AX, [BX] ADD AX, [BX]+02H JNC SKIP INC CL MOV [BX]+04H, AX MOV [BX]+06H, CL
0011 0014 0015	F4	CODE	HLT ENDS END

Subtraction program with opcode

0000		CODE	SEGMENT ASSUME CS:CODE, DS:CODE
0000 0002 0005	B1 00 BB 3000 8B 07		MOV CL, 00H MOV BX, 3000H MOV AX, [BX]
	2B 47 02 73 04		SUB AX, [BX]+02H JNC SKIP
000C 000E	F7 D8 FE C1		NEG AX INC CL
0010 0013	89 47 04 88 4F 06	SKIP:	MOV [BX]+04H, AX MOV [BX]+06H, CL
0016 0017	F4	CODE	HLT ENDS
			END

Multiplication program with opcode

0000		CODE	SEGMENT
0000 0003 0005 0008 000A 000D 0010 0011	BE 3000 8B 04 8B 4C 02 F7 E1 89 44 04 89 54 06 F4	CODE	ASSUME CS:CODE, DS:CODE MOV SI, 3000H MOV AX, [SI] MOV cX, [SI]+02H MUL cx MOV [SI]+04H, AX MOV [SI]+06H, DX HLT ENDS
			END

Division program with opcode

0000		CODE	SEGMENT
0000 0003 0005 0008 000B 000D 0010 0013 0014	BE 3000 8B 04 BA 0000 8B 4C 02 F7 F1 89 44 04 89 54 06 F4	CODE	ASSUME CS:CODE, DS:CODE MOV SI, 3000H MOV AX, [SI] MOV DX, 0000H MOV cX, [SI]+02H DIV CX MOV [SI]+04H, AX MOV [SI]+06H, DX HLT ENDS
			END

- CS cannot be the destination operand
- Only one of the operands can be a segment register

Segment	Offset	Special purpose
CS	IP	Instruction address
55	SP OR BP	Stack address
DS	BX, DI,SI	Data address
ES	DI for string	String destination address

Result = AX. NUM1 + NUM2' ⊕ BX + CX

DATA SEGMENT

AX1 DB 1111H

BX1 DB 2222H

CX1 DB 3333H

DX1 DB 4444H

NUM1 DB 0AAA

NUM2 DB 0CCCH

RESULT DB 0000H

DATA ENDS

Result = {AX. NUM1 + (NUM2' ⊕ BX) }+ CX
 CODE SEGMENT

ORG 2000H MOV AX, DATA MOV DS, AX LEA SI, AX1 MOV AX, [SI]

LEA SI, BX1 MOV BX, [SI]

Result = {AX. NUM1 + (NUM2' ⊕ BX) }+ CX

LEA SI, CX1 MOV CX, [SI]

LEA SI, NUM1 LEA DI, NUM2

NOT WORD PTR[DI] XOR BX, [DI]

Result = {AX. NUM1 + (NUM2' ⊕ BX) }+ CX

AND AX, [SI]
OR AX,BX
OR AX,CX

LEA SI, RESULT1 MOV [SI], AX

INT 3

Summary

- The basic operations of microprocessor.
- The components of 8086 microprocessor trainer kit
- The execution procedure of trainer kit

References

Walter A Triebel and Avatar Singh, The 8088 and 8086
 Microprocessors – Programming, Interfacing, Software,
 Hardware and Applications, Pearson, Fourth Edition, 2002.

Thank you

