

Classification des tissus urbains à partir de données vectorielles – application à Strasbourg

Classification of urban fabrics from vector database – exemple on Strasbourg

<u>Anne PUISSANT¹</u>, Nicolas LACHICHE², Grzegorz SKUPINSKI¹, Agnès BRAUD², Julien PERRET³

The GEOpenSim Project

- ☐ funded by the French National Research Agency
 - The aim is to build an OpenSource GIS platform to analyze the evolution of urbanization and to simulate it on specific areas.
- ☐ 5 Modules
 - to build spatio-temporal databases
 - for spatial analysis and data enrichment
 - for the simulation
 - to build evolution rules
 - for evaluation

Context

BDOCS ©CIGAL, 2000

☐ Scales of analysis of urban area **Urban patch** 1:100,000 - 1:50,000 Urban area of **Urban fabric** Strasbourg 1:25,000 - 1:10,000**Urban object** 1:5,000 - 1:2,000BDTopo ©IGN, 2002 CLC ©IFEN, 2000

- ⇒ Needs on information at different scales
- ⇒ Needs of information on urban dynamics

Context

- □ Objectives
 - Using available vector database
 - Create database on urban fabric
 - Extract knowledge on urban pattern
 - => Characterize spatial evolution of urban fabric
 - => Simulate their dynamic (evolution rules)
- Questions
 - Which knowledge?
 - How to extract knowledge?
 - => Problem of data mining

Objectives

☐ Classification and knowledge extraction

Method

☐ Methodology in 5 steps:

- Step 1 : Typology of urban fabric
- Step 2: Building of urban blocks based on vector data
- Step 3: Measures on urban object and blocks
- Step 4 : Classification of urban blocks / validation
- Step 5 : Application on historic vector database
- => Knowledge extraction on urban pattern
- => Knowledge extraction on evolution
 - => rules for simulation

Step 1 – Urban fabric

☐ Typology in 9 classes based on their morphology

(1) Dense urban fabric

(2) Individual housing

(3) Collective housing

(4) Mixed housing fabric

(individual and collective)

(5) Industrial urban fabric

(6) Mixed urban zone (activities and housing)

(7) Low density of specialised area

- + (8) rail/road network
- + (9) hydrology network

Step 2 – Block level

☐ Building urban blocks

BDTopo ©IGN, 2002

Step 2 – Block level

☐ Building urban blocks

Step 3 - Measures

At the level of building:

Measures of area, length (L), width (I) and elongation (I/L), convexity ...

Distances between buildings and between buildings and roads

- At the level of block:
 - Number of buildings
 - Built area
 - Density

Step 4 - Classification

☐ Supervised classification scheme

- ☐ Protocol of test
 - Two objectives:
 - 1) Identify the best sampling method to classify the whole urban area
 - Apply the best model to classify historic vector database

Step 4 - Classification

☐ Test on sampling methods to classify a whole urban area

Test 1

- ✓ size of training set = 5 %
- ✓ samples chosen on the whole area
- ✓ min of 30 samples per class

Test 2

- ✓ size of training set = 5 %
- √ samples chosen on selected zone (zone 1 et zone 3)
- ✓ Block labelled = 60% of each zone

■ Zones of interest

Zone 3: first ring

Zone 1: second ring

- Diversity of urban fabric

- Evolution

2002	Test 1	Test 2		
2002		Test 2a	Test 2b	Test 2c
Classes	Urban area	Zone 1	Zone 3	Zone 1 et 3
Individual houses	40	56	22	78
Housing blocks	39	21	21	42
Mixed housing	71	15	16	31
Midex area	60	14	7	21
High density	30	4	23	27
of specialised areas				
Low density	34	11	25	36
of specialised areas				
Total number of blocks*	<i>5940</i>	133	201	354
Overall accuracy (%)	78%	71%	63%	77%

□ Classification

□ Classification

□ Classification

Classification test2c

Individual housing fabric
Collective housing fabric
Mixed housing fabric
Mixed urban area
Industrial urban fabric
Low density of specialised area

Classification test 1

□ Knowledge extraction on urban patterns by decision tree algorithm (TILDE) => rules

8 relevant rules based on:

- density
- number of building
- area of building
- area of built surfaces

=> Definition of tresholds useful for simulation (population process)

T1 : emp_pas_b si densite < 0.05

T3 : h_{indiv} si densite > 0.05 et |airebat<105| \leq 3 et |airebat<185| > 1 et maxairebat < 1710 et densite < 0.23 et moyairebat < 20

T7 : $h_coll\ si\ densite > 0.05\ et\ |airebat < 105| \le 3\ et\ |airebat < 185| \le 1\ et\ moyaire < 1200$

Step 5 – evolution

☐ Classification on historic database (model 2c)

Step 5 - results

☐ Overall accuracy (%) – without new traning data

Test 2c	Zone 1	Zone 2	Zone 3	Zone 4
2008	89	65	79	65
2002	/	63	/	58
1989	83	62	79	60
1976	84	71	76	56
1966	NA	NA	80	57
1956	79	93	83	53

- ☐ Knowledge extraction on evolution:
 - (1) Global => split of blocks, % of evolution by class
 - (2) Local => transition by period

Necessity to apply on large database!

Conclusions and perspectives

- ☐ Generic methodology to help end-users to classify urban area based on urban blocks (with vector data)
- □ Relevant to extract knowledge on urban pattern and evolution (threshold and transition)

BUT

- □ Application on other urban area and on large historic database
- □ Necessity to add other measures (spatial relations, vegetation pattern, ...)
- ☐ Relevance of the level block building by network data?

AND

□ Possibility to use this knowledge in image analysis to improve classification method (OBIA)