Essigsäure ist eine schwache Säure

- Wässrige Lösungen von Essigsäure zeigen die typischen Eigenschaften einer sauren Lösung:
 - Farbumschlag des Universalindikators nach
 - Neutralisation durch alkalische Lösungen. Dabei entsteht eine Salzlösung.
 - > leiten den el. Strom, d.h. sie enthalten
 - reagieren mit _____ Metallen unter Bildung von Wasserstoff
- → Essigsäuremoleküle sind
- Protonen_____
- in Wasser bildet Essigsäure _____lonen (H₃O⁺-lonen) als Folge der Protonenübertragung aus:

CH₃COOH+H₂O → ______ + H₃O⁺

→ Das Säurerest-Ion der Essigsäure ist das ______**-Ion**.

Eigenschaften der Essigsäure

- Jeweils zwei Essigsäuremoleküle lagern sich über die Ausbildung von H-Brücken zusammen. Sie bilden **Dimere** (Doppelmoleküle) aus.

$$\begin{array}{c|c} H & O & H \\ \hline H & O & H \\ \hline H & O & H \\ \hline \end{array}$$

- **Aggregatzustand** bei T < 17°C: fest *Bgr.*: Dimerbildung → hohe zwischenmolekulare WW

- Aggregatzustand bei T > 17°C: flüssig
- Löslichkeit:
- → in jedem Verhältnis mischbar mit Wasser (*Bgr.:* H-Brücken zwischen Dimeren werden aufgelöst und zwischen Wassermolekülen und der polaren Carboxyl-Gruppe neu ausgebildet) → mischbar mit Heptan (*Bgr.:* Doppelmoleküle sind unpolar)

Herstellung

Alkansäuren entstehen durch die **Oxidation** des entsprechenden **Aldehyds**.

Die bekannteste Alkansäure ist die **Essigsäure (Ethansäure)**. Sie entsteht, wenn z.B. Wein an der Luft stehen gelassen wird: Der im Wein enthaltene Ethanol wird durch Luftsauerstoff zu Essigsäure oxidiert.

Essig ist eine verdünnte Lösung von Essigsäure in Wasser.

Carbonsäuren

Carbonsäuren besitzen als typische funktionelle Gruppe eine

_____-Gruppe.

ACHTUNG! Verwechslungsgefahr:

R-OH _____-Gruppe

R¹ C Gruppe

R-COOH _____-Gruppe

<u>Alkansäuren</u> = Carbonsäuren, die sich von den Alkanen ableiten.

Sie bilden eine homologe Reihe: Methansäure HCOOH

_____ CH₃COOH

Propansäure

Langkettige Carbonsäuren

bezeichnet man auf Grund ihres Vorkommens auch als **Fettsäuren**. Besitzen sie keine Doppelbindung, sind also alle C-Atome mit H-Atomen "abgesättigt", bezeichnet man sie als

Fettsäuren.

Besitzen sie eine oder mehrere

bezeichnet man sie als

Fettsäuren.

Carbonsäuren mit mehreren funktionellen Gruppen

Dicarbonsäuren = Carbonsäuren mit Carboxyl-Gruppen.

Bsp.: Oxalsäure (______in Rhabarber.

Carbonsäuren mit mehreren Carboxyl-Gruppen nennt man

carbonsäuren.

Hydroxycarbonsäuren = Carbonsäuren, die neben der Carboxylgruppe noch ____

als funktionelle Gruppe beinhalten. Bsp.: Weinsäure (2,3-**Di**hydroxybutan**di**säure) in Früchten

Aminosäuren = Carbonsäuren mit einer oder mehreren

_____-Gruppen (-NH₂). Sie sind die Grundbausteine der Proteine.

Bsp.: Glycin (Aminoethansäure)

Zum Einkleben ins Heft

Carbonsäuren

