

偏移寻址

基址寻址 EA=(BR)+A

変址寻址 EA=(IX)+A

相对寻址 EA=(PC)+A

基址寻址:以程序的起始存放地址作为"起点"

变址寻址:程序员自己决定从哪里作为"起点"
相对寻址:以程序计数器PC所指地址作为"起点"

基址寻址的作用 int a=2,b=3,c=1,y=0;void main(){ 基址寻址:将CPU中基址寄存器(BR)的内容加上指令格式中的形式地址A, y=a*b+c;而形成操作数的有效地址,即EA=(BR)+A。 低地址 主存 指令 注释 地址 地址码 操作码 000000101 取数a至ACC 000001 1 000100 0000000110 乘b得ab,存于ACC中 000011 0000000111 加c得ab+c,存于ACC中 2 000010 0000001000 将ab+c,存于主存单元 3 000110 000000000 4 停机 5 000000000000000000010 原始数据a=2 00000000000000011 原始数据b=3 6 00000000000000001 原始数据c=1主存 高地址 8 00000000000000000 原始数据y=0 王道考研/CSKAOYAN.COM

基址寻址 基址寻址:将CPU中基址寄存器(BR)的内容加上指令格式中的形式地址A, 而形成操作数的有效地址,即EA=(BR)+A。 寻址特征 BR为基址寄存器 寻址特征 OP 主存 OP R₀为基址寄存器 Α 主存 BR AĽU, R_1 通用寄存器 操作数 操作数 (b) 采用通用寄存器作为基址寄存器 (a) 采用专用寄存器BR作为基址寄存器 注:基址寄存器是面向操作系统的,其内容由操作系统或管理程序确定。在程序执行 过程中,基址寄存器的内容不变(作为基地址),形式地址可变(作为偏移量)。 当采用通用寄存器作为基址寄存器时,可由<mark>用户决定哪个寄存器作为基址寄存器</mark>, 但其内容仍由操作系统确定。 优点: 可扩大寻址范围(基址寄存器的位数大于形式地址A的位数); 用户不必考虑自 王道考研/CSKAOYAN.COM

注:此处未添加"寻址特征"位,但 实际上每条指令都会指明寻址方式。 此处讲解仅用口头描述

主存	主存 指令 地址 操作码 地址码		% 1
地址			注释
0	取数到ACC	#0 (立即数)	立即数 0 → ACC
1	ACC加法	12(a[0]地址)	$(ACC)+a[0] \rightarrow ACC$
2	ACC加法	13(a[1]地址)	$(ACC)+a[1] \rightarrow ACC$
•••	ACC加法	14	$(ACC)+a[2] \rightarrow ACC$
9		•••	•••••
10	ACC加法	21	$(ACC)+a[9] \rightarrow ACC$
11	从ACC存数	22	(ACC)→ sum变量
12	随便	什么值	a[0]
13	随便	什么值	a[1]
•••		•••	•••
21	随便	什么值	a[9]
22	初	始为0	sum变量

王道考研/CSKAOYAN.COM

是时候召唤 "变址寻址" 了!

变址寻址的作用					
		主存	<u></u> 主存 指令		<u>, N4~ 16∀</u>
for(int i=0; i<10; i++){		地址	^注 操作码 地址码 ^{注释}	注释	
sum += a[i];	立即寻址 -	0	取数到ACC	#0	立即数 0 → ACC
}		1	取数到IX	#0	立即数 0 → IX
	变址寻址	2	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
	立即寻址 —	3	IX加法	#1	$(IX) + 1 \rightarrow IX$
ACC 0		4	IX比较	#10	比较10-(IX)
		5	条件跳转	2	若结果>0则PC跳转到2
		6	从ACC存数	17	(ACC)→ sum变量
IX 10		7	随便	什么值	a[0]
		8	随便	什么值	a[1]
在数组处理过程中,可设定A为数组的			随便	什么值	a[2]
首地址,不断改变变址寄存器IX的内				•••	•••
容,便可很容易形成数组中任一数据			防有	什么值	a[9]

变址寻址

变址寻址:有效地址EA等于指令字中的形式地址A与变址寄存器IX的内容相加之和,即EA= (IX)+A,其中IX可为变址寄存器(专用),也可用通用寄存器作为变址寄存器。

注:变址寄存器是**面向用户**的,在程序执行过程中,**变址寄存器的内容可由用户改变** <mark>(作为偏移量),形式地址A不变(作为基地址)</mark>。

优点:在数组处理过程中,可设定A为数组的首地址,不断改变变址寄存器IX的内容,便可很容易形成数组中任一数据的地址,特别<mark>适合编制循环程序</mark>。

王道考研/CSKAOYAN.COM

	<i>'</i>	THAT	身址的作	11		
	for循环主体 直接寻址	主存			hile offity	
for(int i=0; i<10; i++){ sum += a[i]; }		地址	操作码	地址码	注释	
		0	取数到ACC	#0	立即数0→ACC	
		1	取数到IX	#0	立即数 0 → IX	
问题:随着代码越写越多,		2	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$	
你想挪动for循环的位置		3	IX加法	#1	$(IX) + 1 \rightarrow IX$	
		4	IX比较	#10	比较10-(IX)	
注:站在		5	条件跳转	2	若结果>0则PC跳转到2	
汇编语言 程序员的		6	从ACC存数	17	(ACC)→ sum变量	
角度思考		7	随便	什么值	a[0]	
		8	随便	什么值	a[1]	
			9	随便	什么值	a[2]
					•••	
		16	随便	什么值	a[9]	
		17	***	始为0	sum 变量	

		主存 指令		旨令	<i>ነነ</i> ጉ ቋል
for(int i=0; i<10; i++){	7	地址	操作码	地址码	注释
sum += a[i];		0	取数到ACC	#0	立即数 0 → ACC
}	_	1	取数到IX	#0	立即数 0 → IX
问题: 随着代码越写越	3名,	2		•••	其他代码
你想挪动for循环的位置		3		•••	其他代码
		4		•••	其他代码
注: 站在 汇编语言 程序员的 角度思考		5		•••	其他代码
		•••		•••	其他代码
		M	ACC加法	7(数组始址)	(ACC)+(<mark>7+(IX)</mark>)→ ACC
	for循环主体	M+1	IX加法	#1	(IX) + 1 → IX
	采用直接寻址	M+2	IX比较	#10	比较10-(IX)
	会出现错误	M+3	条件跳转	2	若结果>0则PC跳转到2
PC M+4		M+4			

本节回顾

寻址方式	有效地址	访 存 次 数(指令执行期间)
隐含寻址	程序指定	0
立即寻址	A即是操作数	0
直接寻址	EA=A	1
一次间接寻址	EA=(A)	2
寄存器寻址	EA=R _i	0
寄存器间接一次寻址	EA=(R _i)	1
转移指令 相对寻址	EA=(PC)+A	1
多道程序 基址寻址	EA=(BR)+A	1
循环程序 变址寻址 数组问题	EA=(IX)+A	1

偏移寻址

注意: 取出当前指令后, PC会指向下一条指令, 相对寻址是相对于下一条指令的偏移

王道考研/CSKAOYAN.COM

19

高级语言视角:

硬件如何实现数的"比较"

注: 无条件转移指令 jmp 2, 就 不会管PSW的各种标志位

if (a>b){ } else {

汇编语言中, 条件跳转指令有 很多种,如 je 2 表示当比较结 果为 a=b 时跳转到2

jg 2 表示当比较结果为a>b时跳

转到2

硬件视角:

}

• 通过"cmp指令"比较 a 和 b (如 cmp a, b) ,实质上是用 a-b

相减的结果信息会记录在程序 状态字寄存器中(PSW)

根据PSW的某几个标志位进行 条件判断,来决定是否转移

有的机器把 PSW称为"标 志寄存器"

PSW中有几个比特位记录上次运算的结果 • 进位/借位标志 CF: 最高位有进位/借位时CF=1

- 零标志 ZF: 运算结果为0则 ZF=1, 否则ZF=0
- 符号标志 SF: 运算结果为负, SF=1, 否则为0
- 溢出标志 OF: 运算结果有溢出OF=1否则为0

主存	指令		注释
地址	操作码	地址码	(土/ 件
0	取数到ACC	#0	立即数 0 → ACC
1	取数到IX #0		立即数 0 → IX
2	ACC加法 7(数组始址)		(ACC)+(7+(IX))→ ACC
3	IX加法 #1		$(IX) + 1 \rightarrow IX$
4	IX比较 #10		比较10-(IX)
5	条件跳转 2		若结果>0 则PC跳转到2
6	从ACC存数 17		(ACC)→ sum变量
7	随便	什么值	a[0]
8	随便	什么值	a[1]
9	随便	什么值	a[2]
16	随便	什么值	a[9]
17	初始为0		sum变量
			王道考研/CSKAOYAN.COM

