Finiteness theorems for reductions of Hecke orbits

Mark Kisin, Yeuk Hay Joshua Lam, Ananth Shankar, Padmayathi Sriniyasan

> JMM 2021 January 8th, 2021

- Lifting isogenies and endomorphisms of abelian varieties
- 2 A Galois-theoretic criterion for finiteness of Hecke orbits
- 4 Applications to CM-lifting theorems

Lifting p-isogenies from characteristic p to characteristic 0

K: finite extension of \mathbb{Q}_p

A/K: Abelian variety over K with good reduction

 $\overline{A}/\mathbb{F}_q$: Reduction of A

 $I_p(A)$: $\{B/K' \mid [K':K] < \infty, \ B \text{ is } p\text{-power isogenous to } A\}$

 $I_p(\overline{A})\colon \quad \{\overline{B}/\mathbb{F}_{q'}\mid [\mathbb{F}_{q'}:\mathbb{F}_q]<\infty,\ \overline{B} \ \text{is p-power isogenous to \overline{A}}\}$

Lifting p-isogenies from characteristic p to characteristic 0

K: finite extension of \mathbb{Q}_p

A/K: Abelian variety over K with good reduction

 $\overline{A}/\mathbb{F}_q$: Reduction of A

 $I_p(A)$: $\{B/K' \mid [K':K] < \infty, \ B \text{ is } p\text{-power isogenous to } A\}$

 $\textit{I}_{\textit{p}}(\overline{A}) \colon \quad \{\overline{B}/\mathbb{F}_{q'} \mid [\mathbb{F}_{q'} : \mathbb{F}_q] < \infty, \ \overline{B} \text{ is \textit{p}-power isogenous to \overline{A}} \}$

Note: All abelian varieties in $I_p(A)$ also have good reduction. $\overline{I_p(A)} := \text{Reductions of all the abelian varieties in } I_p(A)$.

Lifting p-isogenies from characteristic p to characteristic 0

K: finite extension of \mathbb{Q}_p

A/K: Abelian variety over K with good reduction

 $\overline{A}/\mathbb{F}_q$: Reduction of A

 $I_p(A)$: $\{B/K' \mid [K':K] < \infty, \ B \text{ is } p\text{-power isogenous to } A\}$

 $\textit{I}_{\textit{p}}(\overline{A})\colon\quad \{\overline{B}/\mathbb{F}_{q'}\mid [\mathbb{F}_{q'}:\mathbb{F}_q]<\infty,\ \overline{B}\ \text{is \textit{p}-power isogenous to}\ \overline{A}\}$

Note: All abelian varieties in $I_p(A)$ also have good reduction.

 $I_p(A) :=$ Reductions of all the abelian varieties in $I_p(A)$.

Main Question 1 (Lifting *p*-isogenies):

How large is the subset $\overline{I_p(A)}$ of $I_p(\overline{A})$?

Lifting endomorphisms from char. p to char. 0

Definition

Let A be a g-dimensional abelian variety over a characteristic 0 local field K. We say that A is a CM-abelian variety if there is an embedding

$$F \hookrightarrow \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$$

of a commutative, semisimple \mathbb{Q} -algebra F of dimension 2g.

Main Question 2 (Existence of CM-lifts):

For which $\overline{A}/\overline{F_p}$ does there exist a CM-abelian variety A over a characteristic 0 local field with reduction \overline{A} ?

History of lifting problems

- Honda-Tate (Lifting up to isogeny) Every $\overline{A}/\overline{\mathbb{F}_p}$ is isogenous to a $\overline{B}/\overline{\mathbb{F}_p}$ with a CM-lift.
- Serre-Tate (Canonical lifts for ordinary abelian varieties) Every ordinary abelian variety $\overline{A}/\overline{\mathbb{F}_p}$ admits a CM-lift A. All isogenies of such \overline{A} lift to isogenies of the canonical lift A.
- Oort/Conrad-Chai-Oort (Non-existence of CM lifts) There are supersingular abelian varieties $\overline{A}/\mathbb{F}_p$ with no CM lifts

Finiteness theorems for reductions of Hecke orbits Applications to CM-lifting theorems

Theorem (Kisin, Lam, Shankar, S.)

Fix a lift A/K of $\overline{A}/\overline{\mathbb{F}_p}$ to a characteristic 0 local field. Assume that \overline{A} is supersingular or that the p-adic Galois representation $\rho\colon G_K\to \mathrm{GL}(T_p(A))$ has reductive monodromy. Then, the subset $\overline{I_p(A)}$ of $I_p(\overline{A})$ is \underline{finite} .

Theorem (Kisin, Lam, Shankar, S.)

- **1** Only finitely many supersingular abelian varieties $\overline{A}/\overline{\mathbb{F}_p}$ of a given dimension admit CM-lifts.
- 2 Only finitely many supersingular K3 surfaces $\overline{X}/\overline{\mathbb{F}_p}$ admit \overline{CM} -lifts when $p \ge 5$.

^aWe also prove a common generalization of the results for ordinary/supersingular strata to other Newton strata.

- Lifting isogenies and endomorphisms of abelian varieties
- 2 A Galois-theoretic criterion for finiteness of Hecke orbits
- 4 Applications to CM-lifting theorems

Notation

K: finite extension of \mathbb{Q}_p

 G_K : absolute Galois group of K

 I_K : inertia subgroup of G_K

A: abelian variety over K with good reduction

 \mathscr{G} : p-divisible group over K with good reduction

V: rational p-adic Tate module of A or \mathscr{G}

 ρ : p-adic Galois representation $G_K \to GL(V)$

A Galois-theoretic criterion for finiteness

$$\rho \colon G_{\mathcal{K}} \to \operatorname{GL}(V) \cong \operatorname{GL}_{2g}(\mathbb{Q}_p).$$

Proposition ("Totally ramified up to finite index" criterion)

If $\rho(I_K)$ has finite index in $\rho(G_K)$, then the reduction of the p-Hecke orbit of the corresponding A or $\mathscr G$ is finite.

A Galois-theoretic criterion for finiteness

$$\rho \colon G_K \to GL(V) \cong GL_{2g}(\mathbb{Q}_p).$$

Proposition ("Totally ramified up to finite index" criterion)

If $\rho(I_K)$ has finite index in $\rho(G_K)$, then the reduction of the p-Hecke orbit of the corresponding A or \mathscr{G} is finite.

Proof sketch:

- All abelian varieties in the *p*-Hecke orbit of *A* are defined over the the fixed field K_{ρ} of ker(ρ).
- Assumption \Rightarrow The residue field of K_{ρ} is a finite field.
- The existence of the moduli space $A_g + Zarhin's$ trick \Rightarrow there are only finitely many isomorphism classes of abelian varieties of a given dimension defined over a fixed finite field.

- Lifting isogenies and endomorphisms of abelian varieties
- 2 A Galois-theoretic criterion for finiteness of Hecke orbits
- $oxed{3}$ Verifying Galois-theoretic criterion for supersingular \overline{A}
- 4 Applications to CM-lifting theorems

The unramified quotient T

$$\rho \colon G_K \to \operatorname{GL}(V).$$

Consider the exact sequence of algebraic groups by taking Zariski closures in $\operatorname{GL}(V)$.

$$1 \to \overline{\rho(I_K)} \to \overline{\rho(G_K)} \to T \to 1.$$

Sen $+ \epsilon \Rightarrow$ If T is finite, then $\rho(I_K)$ has finite index in $\rho(G_K)$.

$$\rho \colon G_K \to \operatorname{GL}(V)$$
.

Consider the exact sequence of algebraic groups by taking Zariski closures in $\operatorname{GL}(V)$.

$$1 \to \overline{\rho(I_K)} \to \overline{\rho(G_K)} \to T \to 1.$$

Sen $+ \epsilon \Rightarrow$ If T is finite, then $\rho(I_K)$ has finite index in $\rho(G_K)$.

Goal: Show T is finite if \overline{A} is supersingular.

 V_T : a faithful \mathbb{Q}_p -representation of T

 σ : image of a Frobenius element in $GL(V_T)$,

a generator for the image of T in $GL(V_T)$.

We will show σ is <u>semisimple</u> and its <u>eigenvalues</u> are roots of unity.

T is finite if \overline{A} is supersingular

$$1 \to \overline{\rho(I_K)} \to \overline{\rho(G_K)} \to T \to 1$$
,

 V_T a faithful repn. of T and $\langle \sigma \rangle = T \subset GL(V_T)$ (Frobenius).

Proof sketch:

- V_T is in the Tannakian category generated by $V(=V_p(A))$.
- V_T is unramified by the definition of T and crystalline, so the eigenvalues of σ are p-adic units.
- Since \overline{A} is supersingular, Frobenius acts semisimply on $\mathbb{D}(V)\otimes \mathbb{Q}_p$ with eigenvalues rational powers of p up to roots of unity.
- The only power of *p* that is a *p*-adic unit is 1.

- Lifting isogenies and endomorphisms of abelian varieties
- ② A Galois-theoretic criterion for finiteness of Hecke orbits
- \bigcirc Verifying Galois-theoretic criterion for supersingular \overline{A}
- Applications to CM-lifting theorems

Finiteness theorems for reductions of Hecke orbits Applications to CM-lifting theorems

Theorem (Kisin, Lam, Shankar, S.)

Fix a lift A/K of $\overline{A}/\overline{\mathbb{F}_p}$ to a characteristic 0 local field. Assume that \overline{A} is supersingular or that the p-adic Galois representation $\rho\colon G_K\to \mathrm{GL}(T_p(A))$ has reductive monodromy. Then, the subset $\overline{I_p(A)}$ of $I_p(\overline{A})$ is \underline{finite} .

Theorem (Kisin, Lam, Shankar, S.)

- **1** Only finitely many supersingular abelian varieties $\overline{A}/\overline{\mathbb{F}_p}$ of a given dimension admit CM-lifts.
- ② Only finitely many supersingular K3 surfaces $\overline{X}/\overline{\mathbb{F}_p}$ admit \overline{CM} -lifts when $p \ge 5$.

^aWe also prove a common generalization of the results for ordinary/supersingular strata to other Newton strata.

Only finitely many supersingular abelian varieties of a given dimension have CM-lifts

Proof strategy:

- ① There are only finitely many supersingular \overline{A} with a given p-divisible group $\mathscr{G} := \overline{A}[p^{\infty}]$. (Oort)
- ② For fixed dimension, finitely many choices for the CM-subalgebra F of $\operatorname{End}(\mathscr{G}) \otimes \mathbb{Q}_p$. For fixed F, only finitely many possibilities for the p-adic CM type $\Phi \colon F \to \prod_{i=1}^g \overline{\mathbb{Q}_p} = \operatorname{End}_F(\operatorname{Lie}\mathscr{G}_{\overline{\mathbb{Q}_p}})$.
- **3** Upto unramified twists, there is only one isogeny class \mathcal{G}_{Φ}/K of p-divisible group over local field with CM type Φ . (Conrad-Chai-Oort)
- **4** Since \mathcal{G}_{Φ} has CM, the reduction of its *p*-Hecke orbit is *finite* by our reductive monodromy theorem.