Geometría de curvas y superficies Segundo de Matemáticas Curso 2020-2021

Hoja 4 (Superficies y segunda forma fundamental)

DIRECCIONES Y CURVAS ESPECIALES EN UNA SUPERFICIE

- 1. Halla las curvaturas y direcciones principales
 - a) en los vértices del hiperboloide de dos hojas $x^2 y^2 z^2 = 1$;
 - b) en el punto (1,1,1) del grafo z = xy.
- 2. Comprueba que si $\mathbf{p} \in S$ es un punto no planar con $H_{\mathbf{p}} = 0$, entonces \mathbf{p} es hiperbólico. Verifica que las direcciones asintóticas son perpendiculares.
- **3.** Sea $\mathbb{X}(u,v)$ una carta de una superficie S. Comprueba, en un punto $\mathbf{p}=\mathbb{X}(u,v)\in S$, la dirección $\mathbf{w}=a\mathbb{X}_u+b\mathbb{X}_v$ es principal si y sólo si $\begin{vmatrix}b^2-ab&a^2\\ E&F&G\\ e&f&g\end{vmatrix}=0$
- **4.** Determina las líneas asintóticas de la catenoide $\mathbb{X}(u,\theta) = (\cos(\theta)\cosh(u),\sin(\theta)\cosh(u),u)$.
- 5. Determina las curvas asintóticas y las líneas de curvatura de la superficie z = xy.
- **6.** Demuestra que las curvas coordenadas de una superficie son (a) líneas de curvatura si y sólo si F = f = 0; (b) líneas asintóticas si y sólo si e = g = 0.
- 7. Verifica que si una superficie S y un plano P son tangentes a lo largo de una curva, entonces los puntos de esa curva son parabólicos o planares.
- 8. Supongamos que una línea de curvatura α , que nunca es tangente a una dirección asintótica, es tal que su plano osculador y el plano tangente a la superficie forman ángulo constante. Verifica que α es plana.
- 9. Sea α una curva parametrizada por longitud de arco en una superficie S. Supongamos que α es línea de curvatura. Verifica que
 - a) α es asintótica si y sólo si α está contenida en un plano que es siempre tangente a S a lo largo de α .
 - b) α es geodésica si y sólo si α está contenida en un plano que es siempre ortogonal a S a lo largo de α .
- 10. Supongamos que dos superficies S_1 y S_2 se intersecan en una curva regular α formando ángulo $\theta(\mathbf{p})$, para cada $\mathbf{p} \in \alpha$. Supongamos que α es línea de curvatura de S_1 . Comprueba que también es línea de curvatura de S_2 si y sólo si el ángulo $\theta(\mathbf{p})$ es constante.

11. Sea γ una curva birregular (parametrizada por longitud de arco) contenida en una superficie S. Sean $\kappa > 0$, τ y $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ la curvatura, la torsión y el triedro de Frenet en cada punto de γ . Consideremos también el triedro de Darboux $\{\mathbf{t}, \mathbf{N}, \mathbf{C}\}$ y la curvatura normal k_n , la curvatura geodésica k_q y la torsión geodésica t_q .

(Ten a mano, en todo el ejercicio, las fórmulas para las derivadas, tanto en el caso del triedro de Frenet como en el Darboux).

- a) Comprueba que $k_n^2 + t_q^2 = 2Hk_n K$. (Sugerencia: ejercicio 8 de la hoja 3).
- b) Como $\mathbf{t}' = \kappa \mathbf{n} \ \mathbf{y} \ \mathbf{t}' = k_n \mathbf{N} + k_g \mathbf{C}$, esto nos da

$$\kappa = \sqrt{k_n^2 + k_g^2},$$
 y también que $\mathbf{n} = \underbrace{\frac{k_n}{\kappa}}_{=a} \mathbf{N} + \underbrace{\frac{k_g}{\kappa}}_{=b} \mathbf{C},$ con $a^2 + b^2 = 1$.

Comprueba que

$$\tau = \frac{k'_n \, k_g - k_n \, k'_g}{k_n^2 + k_g^2} + t_g \, .$$

(Sugerencia: escribe \mathbf{b} , y luego \mathbf{b}' , en términos del triedro de Darboux. Usa finalmente que $\tau = \mathbf{b}' \cdot \mathbf{n}$).

- c) Deduce que si γ es curva asintótica $(k_n = 0)$, entonces $\kappa = |k_g|$ y $\tau = t_g$. Y que si γ es curva geodésica $(k_g = 0)$, entonces $\kappa = |k_n|$ y $\tau = t_g$.
- d) Deduce que, si γ es curva asintótica, entonces $K = -\tau^2$ en los puntos de γ .
- 12. Sea $\gamma(t)$ una curva birregular (no necesariamente parametrizada por longitud de arco) contenida en una superficie S. Comprueba que, en cada punto t de la curva

$$k_n = \frac{\ddot{\gamma} \cdot \mathbf{N}}{\|\dot{\gamma}\|^2}$$
 y $k_g = \frac{\ddot{\gamma} \cdot (\dot{\gamma} \times \mathbf{N})}{\|\dot{\gamma}\|^3}$.

(Sugerencia: reparametriza γ por longitud de arco, $\gamma(t) = \eta(s(t))$, donde $\dot{s}(t) = ||\dot{\gamma}(t)||$).

13. Sea $\gamma: I \to \mathbb{R}^3$ una curva birregular parametrizada por longitud de arco. Sea $\{\mathbf{t}_{\gamma}(s), \mathbf{n}_{\gamma}(s), \mathbf{b}_{\gamma}(s)\}$ su triedro de Frenet en cada punto y sean $\kappa_{\gamma}(s)$ y $\tau_{\gamma}(s)$ su curvatura y su torsión.

Definimos, a partir de γ , la superficie S_{γ} parametrizada por

$$\mathbb{X}(s,\lambda) = \gamma(s) + \lambda \mathbf{n}_{\gamma}(s)$$
, para $s \in I$ y $\lambda \in I'$.

Calcula la curvatura gaussiana en cada punto de S_{γ} . ¿Es posible conseguir que S_{γ} tenga curvatura gaussiana nula en todos sus puntos?

14. Sea S una superficie regular en \mathbb{R}^3 y $\gamma(s)$ una curva birregular sobre la superficie, parametrizada por longitud de arco. Llamemos $\mathbf{N}(s)$ al vector normal a la superficie en el punto $\gamma(s)$ (esto es, $\mathbf{N}(s) = \mathbf{N}(\gamma(s))$).

Consideremos ahora la superficie S_{γ} parametrizada de la siguiente manera:

$$\mathbb{X}(s,\lambda) = \gamma(s) + \lambda \mathbf{N}(s)$$
.

Calcula la curvatura gaussiana en cada punto de S_{γ} . ¿Es posible que S_{γ} tenga curvatura gaussiana nula en todos sus puntos?