Math 113 Assignment 5

The due date for this assignment is Friday December 26,2014.

1. (3 points) If it is exist find the local maximum and local minimum values of following functions:

(a)
$$f(x) = 3x^4 - 8x^3 - 6x^2 + 24x + 1$$

(b)
$$g(x) = \cos(x) - \sin(x)$$

(c)
$$h(x) = \tan(x)$$

2. (3 points) If it is exist find the absolute maximum and absolute minimum values of following functions in the given interval.

(a)
$$f(x) = 2x^3 - 15x^2 + 24x + 2$$
 on $[0, 2]$

(b)
$$h(x) = 2x + 3$$
 on $[-1, 4]$

(c)
$$t(x) = \cos(x)$$
 on $[-\frac{\pi}{2}, \frac{5\pi}{2}]$

3. (3 points) Determine the intervals where the following functions are concave up and concave down:

(a)
$$f(x) = x^4 + 4x^3 - 18x^2 + 25x + 33$$

(b)
$$g(x) = \arctan(\frac{2}{x})$$

(c)
$$h(x) = \frac{x}{x^2+2}$$

4. (9 points) Sketch the graph of following functions by getting informations from derivatives and asymmtotes.

(a)
$$f(x) = \frac{2x^2 - 3x}{x - 2}$$

(b)
$$g(x) = \frac{x^3 - 4x}{x^2 - 1}$$

(c)
$$h(x) = \frac{x^3}{x-1}$$

5. (2 points) Let the functions f and g be differentiable on (a,b) such that f'(x) = g(x) and g'(x) = f(x) for all $x \in (a,b)$, furthermore $f(x_0) = 1$ and $g(x_0) = 0$ for some $x_0 \in (a,b)$. Show that

$$f^{2}(x) - g^{2}(x) = 1$$
 for all $x \in (a, b)$

1) Q)
$$f(x) = 3x^4 - 8x^3 - 6x^2 + 24x + 1$$

$$f(x) = \{2x^3 - 24x^2 - 12x + 24 = 3\} \Rightarrow x^3 - 2x^2 - x + 2 = 0$$

$$\Rightarrow x^2(x-2) - 1(x-2) = 0 \Rightarrow (x^2 - 1)(x-2) = 0$$

$$\Rightarrow x^2(x-2) - 1(x-2) = 0 \Rightarrow (x^2 - 1)(x-2) = 0$$

$$g'(x) = -\sin x - \cos x = 3$$
 $\sin x = -\cos x$ $\Rightarrow \frac{\sin x}{\cos x} = 1$

$$\Rightarrow$$
 $X = \frac{3\pi}{4} + \xi.\pi$, $\xi = \mp 1, \pm 2, \pm 3$

$$h'(x) = 1 + tan^2x = 0 \Rightarrow tan^2x = -1 \Rightarrow \frac{sin^2x}{cas^2x} = -1$$

$$=$$
) $sin^2x = -cos^2x$

hixx=1+ tan2x denklens hisbirzonen D'a exit almaz.

2)
$$f(x) = 2x^3 - 15x^2 + 2ux + 2$$
 [0,2]

$$f(x) = 6x^2 - 30x + 24 = 0 \Rightarrow x^2 - 5x + 4 = 0 \Rightarrow x_1 = 0$$

c)
$$t(x) = cosx$$
, $\begin{bmatrix} -\frac{\pi}{2}, \frac{5\pi}{2} \end{bmatrix}$

3)
$$a) f(x) = x^{4} + 4x^{3} - 18x^{2} + 25x + 33$$

$$f''(x) = 12x^2 + 24x - 36 = 0 \Rightarrow x^2 + 2x - 3 = 0 \Rightarrow x = 1$$

b)
$$g(x) = \operatorname{orcton}\left(\frac{2}{x}\right)$$

$$g'(x) = \frac{-2 \cdot x^{-2}}{1 + \frac{u}{x^2}} = \frac{-2 \cdot x^{-4}}{x^2 + 4} = \frac{-2}{x^6 + 4 \cdot x^4}$$

$$g'(x) = -2 \cdot \left[\frac{-(6 \times 5 + 16 \times 3)}{(x^6 + (x^4)^2)} \right] = \frac{12 \cdot x^5 + 32 x^3}{x^{12} + 8 \cdot x^{12} + 16 x^8} = \frac{12 \cdot x^2 + 32}{x^9 + 8 \cdot x^7 + 16 x^5} = 0$$

$$\Rightarrow 12 \times^{2} + 32 = 0 \Rightarrow 3 \times^{2} + 8 = 0 \Rightarrow \times^{2} = -\frac{8}{3} \Rightarrow \times^{1} \text{ er yold}$$

$$\times^{5} \left(\times^{4} + 8 \times^{2} + 10 \Rightarrow \right) \times \left(\times^{2} + 4 \times^{2} \right) \Rightarrow \left(\times^{2}$$

C)
$$h(x) = \frac{x}{x^2+2}$$

$$h'(x) = \frac{(x^2+2)-x(2x)}{(x^2+2)^2} = \frac{2-x^2}{x^4+4x^2+4}$$

$$h''(x) = \frac{-2x (x^{4} + 4x^{2} + 4) - (2 - x^{2})(4x^{3} + 8x)}{(x^{4} + 4x^{2} + 4)^{2}} = 0$$

$$\frac{2 \times (x^{4} - 4x^{2} - 16)}{(x^{4} + 4x^{2} + 4)} = 0 \implies 2 \times (x^{4} - 4x^{2} - 8) = 0$$

(4) a)
$$f(x) = \frac{2x^2-3x}{x-2}$$

$$\lim_{x\to -\infty} \frac{2x^2-3x}{x-2} = -\infty$$
, $\lim_{x\to \infty} \frac{2x^2-3x}{x-2} = \infty$

$$\lim_{X \to T} \frac{2x^2 - 3x}{x - 2} = +\infty \qquad \lim_{X \to T} \frac{2x^2 - 3x}{x - 2} = -\infty$$

$$\lim_{x\to 2^-} \frac{2x^2-3x}{x-2} = -\infty$$

$$\int_{-\infty}^{\infty} (x) = \frac{(u_{x-3})(x-2) - 2x^{2} + 3x}{(x-2)^{2}} = \frac{2 \times ^{2} - 8x + 6}{x^{2} - 4x + 4} = \frac{2 \cdot (x-3)(x-1)}{(x-2)^{2}} = 0 \Rightarrow \begin{cases} x_{1} = 2 \\ x_{2} = 3 \end{cases}$$

$$f''(x) = \frac{(4x-8)(x^2-4x+4)-(2x-4)(2x^2-8x+6)}{(x-2)^4} = \frac{2.(x^2+4x+5)}{(x-2)^2} = x=2$$

f)
{(x1=g(x) re g(x)=f(x), f(xo)=1 re g(x)=0 re f2(x1-g2(x1=1 oldgru j)stein(z) 12(x)- g2(x)=1 = 2 f(x) f(x) - 2 g(x) g(x) = 0 =) $\int_{-\infty}^{\infty} (x) \int_{-\infty}^{\infty} (x) = g(x)$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x) = g(x)$ is Bex) fex= g'(x1-gex) f (x)= f(x) elw. 2) g1(x)=f(x) ise fly, fext - text gen f(x)= e(x) ohr.

 $f^{2}(x) - g^{2}(x) = 1 \iff (f(x) = 9(x)) \land (g(x) = f(x))$

ÖDEV – 2 Mate113 : Analiz – I

Sorular	Cevaplar
1. Aşağıdaki fonksıyonunun grafiğini çiziniza	lim f(x) = 1 lim f(x) = 1 = lim mod.
$\int_{-1}^{\infty} 1, x \leq -1$	
$f(x) = \begin{cases} -x, & -1 < x < 0 \\ 1, & x = 0 \\ -x, & 0 < x < 1 \end{cases}$	A X41
$= v, \qquad 0 < x < 1$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Daha sonra, detaylı olarak $x = -1$, 0. 1 noktalarında f niu limitini,	f(x) = f(x) = 0
tek-taraflı limitini, sürekliliğini ve tek-taraflı sürekliliğini incele-	The state of the s
yiniz. Bu noktalardan herhangi birinde kaldırılabilir süreksizlik var mıdır? Açıklayınız.	Ove 1 not larinda sürcksit dic
2. $\lim_{x\to 0^+} f(x) = 1/2 \text{ ve } \lim_{x\to 0^+} g(x) = \sqrt{2} \text{ olmak üzere, her } x \text{ için}$	() 2/2+1
$f(x)$ ve $g(x)$ tanımlı olsun, $x \to 0$ iken aşağıdaki fonksiyonların li-	1 1 - 2
mitterini bulunuz.	0 2
a. $-g(x) = -\sqrt{2}$ b. $g(x) \cdot f(x) = 2$	0/ -
$f(x) = \cos x C = \frac{1}{2}$	$\frac{1}{2} = \frac{1}{2} = -\frac{1}{2}$
B. $-g(x) = -\sqrt{2}$ C. $f(x) + g(x) = \frac{1}{2} + G + \frac{2G(x)}{2}$ D. $g(x) \cdot f(x) = \frac{\sqrt{2}}{2}$ C. $f(x) + g(x) = \frac{1}{2} + G + \frac{2G(x)}{2}$ D. $g(x) \cdot f(x) = \frac{\sqrt{2}}{2}$ C. $f(x) \cdot \cos xG = \frac{1}{2} + G$ C. $f(x) \cdot \cos xG = \frac{1}{2} + G$	1 12 0 6
3.	$\frac{4-g(x)}{2}=1$
verilen limit değerlerini sağlayacak şekilde	(u-g(x))
$\lim_{x\to 0} g(x)$ degerini bulunuz.	$u-g(x)=x$ $\lim_{x\to 0} \left(\frac{u-g(x)}{x}\right)-1 = 1 = 1 = 1 = 1$
$\lim_{x \to 0} \left(\frac{4 - g(x)}{x} \right) = 1$	g(x) = L - X
,	9(1)=47
4. Aşağıdaki fonksiyonlar hangi aralıklarda süreklidir?	a) 12-22至3, t=+1,+2,+3,=>(-37,-3/)(-3.3)
a. $f(x) = \tan x$ b. $g(x) = \csc x$	(-2) a = 1 \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
e. $h(x) = \frac{\cos x}{x - \pi}$ d. $k(x) = \frac{\sin x}{x}$	b) 12- {k T}, k=0,=1,=1,==============================
VOICE + YET for 9T. 00	
IN TO DE LOS	C) 12-5 T3,
d to GNX D	
(SMI-)	1) 12- {0}
a. $f(x) = \tan x$ b. $g(x) = \csc x$ c. $h(x) = \frac{\cos x}{x - \pi}$ d. $k(x) = \frac{\sin x}{x}$ d. $k(x) = \frac{\sin x}{x}$	
Limiti bulunuz, eğer limit yoksa nedenini açıklayınız.	
$x^2 - 4x + 4$ $0^2 - 4x + 4$	$\int \frac{L_{1}}{O}(?) = \frac{(x-2)^{2}}{x \cdot (x^{2}+5x-14)} = \frac{(x-2)^{x}}{x \cdot (x+2)(x+2)} = \frac{x-2}{x \cdot (x+4)} = \frac{-2}{(x+2)^{x}}$
$\frac{1111}{x^3 + 5x^2 - 14x}$) O (x.(x25x-14) x.(x+9)(xt) x.(x+9)
a) X O IÇIN.	
b) $x \to 2$ igin. $\Rightarrow \frac{2^2 - l_1 \cdot 2 + l_2}{2^2 + 5 \cdot 2^2 - l_{12} \cdot 2} = \frac{l_1}{l_2}$	2. (217)
6. $x^2 + x$. O $\times (x+1)$	x(x12) 1 00
$\lim \frac{x^2 + x}{x^5 + 2x^4 + x^3} \longrightarrow \frac{0}{0} \longrightarrow \frac{x(x^4 + x^3)}{x^3(x^2 + 2x^4)}$	$\frac{\chi(x)}{\chi^{2}(x+1)} = \frac{1}{\chi^{2}(x+1)} = 0$
b) x == 1 için. x(1-1)	Um = = = = = = 1
b) $x \rightarrow -i$ igin. $\longrightarrow \frac{x(x+1)}{x^3(x+1)^2} = \frac{1}{x^3(x+1)}$	X-5-1 Xr(x4,) O
7. $\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4} = \frac{(x-\alpha)(x+\alpha)}{(x-\alpha)(x+\alpha)(x+\alpha)}$	1
$x^2 - q^2$	7 3/8/
$\lim_{x \to a} \frac{1}{x^4 - a^4} = (x-a)(x+a)(x^2+a^2)$	x2462 2.00
	x 51 cs = 5.02 /
0 1	ő J
O.	

$\lim_{x \to 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x} \to \frac{0}{0}$	$\frac{\frac{1}{2+x} - \frac{1}{2}}{\frac{(2)}{(2)} + \frac{2-2-x}{(2+x)}} = \frac{\frac{2-2-x}{2+2}}{\frac{1}{2+2x} + \frac{2}{x}} = \frac{\frac{2}{2-x}}{\frac{1}{2+x} + \frac{1}{x}} = \frac{\frac{2}{2-x}}{\frac{1}{x} + \frac{1}{2x}} = \frac{1}{x}$
9. $\lim_{x \to 0} \frac{(2+x)^3 - 8}{x} \to 0$ 10. $\lim_{x \to 1} \frac{x^{1/3} - 1^3}{\sqrt{x} - 1^3} \to \sqrt[3]{x} - 1^3 \to 0$	$\frac{(2+x)^{2}-2^{2}}{x} = \frac{(2+x+2) \cdot ((2+x)^{2}+(0+x)-2)+4}{(2+x)^{2}-2} = \frac{(2+x+2) \cdot ((2+x)^{2}+(2+x)^{2}+(2+x)^{2}+2}{(2+x)^{2}-2} = \frac{(2+x+2) \cdot ((2+x)^{2}+(2+x)^{2}+2}{(2+x)^{2}-2} = \frac{(2+x+2) \cdot ((2+x)^{2}+2}{(2+x)^{2}-2} = \frac{(2+x+2) \cdot ((2+x)^{2}-2}{(2+x)^{2}-2} = \frac{(2+x+2) \cdot ((2+x)^{2}-2}{(2+$
$\lim_{x \to 64} \frac{x^{2/3} - 16}{\sqrt{x - 8}} = \lim_{x \to 64} \frac{\tan(2x)}{\tan(2x)}$	$\frac{(x''3-4)(x''3-12)}{(x''3-4)(x''3-12)} = \lim_{x \to b^{\frac{1}{4}}} \frac{(x'''3+1)(x'''3+1)(x'''3+1)(x'''3+1)(x'''3+1)}{(x-b_4)(x'''3+1)(x'''3+1)(x'''3+1)(x'''3+1)(x'''3+1)(x'''3+1)(x''''3+1)(x''''3+1)(x'''''3+1)(x''''''''''''''''''''''''''''''''''''$
$\lim_{x \to \pi} \sin\left(\frac{x}{2} + \sin x\right)$	Sin (90 -1 sin (50) = 7 CX (5111) = 5 1/
15. $\lim_{x \to 0} \frac{\cos 2x - 1}{\sin x} = 0$ $\cancel{a(x)} \text{ fonksiyonunun (belirtilen } x \text{ değ}$ 16. $\lim_{x \to 0^+} (4g(x))^{1/3} = 2$	Sind 1 lim 1 = lim 1 = lim 4 = lim 6
17. $\lim_{x \to \sqrt{5}} \frac{1}{x + g(x)} = 2$ 18. $\lim_{x \to 2} \frac{5 - x^2}{\sqrt{g(x)}} = 6^{1/3} + (x + 2)^2$ (x+2)	$\lim_{x \to \sqrt{3}} \frac{1}{x + g(x)} = \lim_{x \to \sqrt{3}} \frac{1}{x + g(x)} = 2 \implies \lim_{x \to \sqrt{3}} \frac{1}{x + g(x)} = 1 - 2 $
19. f(x) = v' - v - l olsan. a. Ara Değer Teoremi'ni kullanarak f'nin = l ve 2 : kökü olduğunu gösteriniz. 20. f(tt) = v - 20+ 2 olsan. Ara Değer Teoremi'ni kull -2 ven aralığında bir kökü olduğunu gösteriniz.	f(x) = x - 1 - 3 $f(x) = 0 = f(-1) \angle f(x) \angle f(x) = -1 \angle x \angle 2$

Ö D E V - I (Mate 113:Analiz – I)

Sorular	Cevaplar
6. Aşağıdaki fonksiyonların tanım kümesini bulunuz:	Q) ** 00 L X C + 00
	6) -00 C × C +00
a) $f(x) = 2e^{-x} - 3$	c) - DE x C + DO
b) $f(x) = 3^{2-x} + 1$ c) $f(x) = 2\sin(3x + \pi) - 1$	d) x ∈ 12/(33), ln(x-3) =) x-3+0=)x+3
	d) x ∈ 121(35)
у 2) б <u>үз (3</u> 86) (1 А)	
7. Aşağıdaki fonksiyonların değer kümesini bulunuz:	a) -06x <00 (b) 00>-x>-00 (d-)
	00 > 2 - x > 00
	$e^{\infty} > e^{-x} > e^{-x}$ $e^{\infty} > e^{-x} > e^{-x}$
a) $f(x) = 2e^{-x} - 3$	722-
b) $f(x) = 3^{2-x} + 1$	e 72e 119
$c) f(x) = 2\sin(3x + \pi) - 1$	e°>2e-x-3>-3 3°>32-x+1>,1
$d) f(x) = \ln(x-3) + 1$	e">f(x) >, -3 300 > f(x) >> f
8. $f(x) = \begin{cases} x+1, & -2 \le x \le 0 \\ x-1, & 0 < x \le 2 \end{cases}$ ve $-x-2, & -2 \le x \le -1 \\ g(x) = \begin{cases} x, & -1 < x \le 1 \\ -x+2, & 1 < x \le 2 \end{cases}$ parçalı-tanımlı fonksiyonları verilmektedir. Buna gore fog ve gof bileşke fonksiyonlarını bulunuz. 9. Aşağıdaki fonksiyonların artan olduğu en geniş aralığı bulunuz: a) $f(x) = x-2 + 1$ b) $f(x) = (x+1)^4$ c) $f(x) = (3x-1)^{1/3}$	$ \begin{pmatrix} -x-1 & , -2 \le x \le -1 \\ x+1 & , -1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x-3 & -2 \le x \le -1 \\ x+1 & -1 < x \le 0 \end{pmatrix} $ $ x-1 & 0 < x \le 1 $ $ -x+1 & , 1 < x \le 2 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 2 \\ -x+1 & , 1 < x \le 2 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 2 \\ -x+1 & , 1 < x \le 2 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 2 \\ -x+1 & , 1 < x \le 2 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 2 \\ -x+3 & , 1 < x \le 2 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 1 < x \le 0 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $ $ \begin{pmatrix} -x+1 & , 0 < x \le 1 \\ x-1 & , 0 < x \le 1 \end{pmatrix} $
$d) f(x) = \sqrt{2x - 1}$	
10. Aşağıda parçalı tanımlı fonksiyonun tanım ve değer kümesini bulunuz. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Tanim: $-2 \le x \le 2$ $\Rightarrow D: [-2,-1] \cup (-11] \cup (1,2]$ (bornain) $R:_{F}([-2,-1]) \cup_{F}([-1,1]) \cup_{F}([1,2])$ $Deger:_{F-1,0} \cup (-1,1] \cup [-1,1] \cup [-1,1]$ $(Range)$ $\Rightarrow = [-1,1]$

Sorular	Cevaplar
11. $f(x) = 2 - x$ ve $g(x) = \sqrt[3]{x+1}$ ise aşağıdaki değerleri hesaplayın.	_
a) $(f \circ f)(-1) = s(s(-1)) = 1 - (2$	-x) = 2-(2-(-1) = 1
a) $(fof)(-1) = g(g(n)) = 2 - (2$ b) $(gof)(2) = g(g(n)) = 3\sqrt{(2-x)+1}$	² √3-× = 1
d) $(g \circ g)(x) = g(g(x)) = g(g(x))$	· √3-X
se aşagıda verilen bionksiyon bileşke- erinin tanım ve değer kümelerini	$(f^{3}f)(x) = f(f(x)) = J - (2-X^{3})^{2} = J - (U - U X^{2} + X^{0}) = X^{1} + U X^{2} - 2 \frac{D}{R}^{1}$ (evopo) (-3,00)
a) (fof)(x)	(g of)(x)=g(f(x))=V(2-x2)+2=V-x2+4= [-2,12]
b) (gof)(x)	
c) $(f \circ g)(x)$	$g(g(x)) = 2 - \sqrt{x_1 x_2} = 2 - x_1 x_2 = x < -2$
d) (gog)(x)	$(9 \text{ of })(x) = g(f(x)) = \sqrt{(2-x^2)+2} = \sqrt{-x^2+4} = \frac{E_2 + 27}{E_0 + 47} = \frac{E_2}{E_0 + 27} = \frac{E_2}{E_$
13. $g(x) = \sqrt{x}$ olsun. Buna göre	0-) 9 (x)= \(\nabla \)
aşağıdaki işlemler altında elde edilen fonksiyonun grafiklerini çiziniz :	G-) 9 = 4. 9(x) = 4. √x stretch vertically 4
a) Dikey 4 çarpanı ile genişlet -) 🤞 📉	
J J J J J J	
b) Dikey 4 çarpanı ile daralt 🥎 💃	d-) 4=g(ux)=VLX Compress horizontally 4
**	d-) y=g(u×)= 1/2x Compress horwontally 4
b)Dikey 4 çarpanı ile daralt 🥎 🍾	d-) y=g(ux)=V Lx Compress horizontally 4
b) Dikey 4 çarpanı ile daralt \rightarrow \uparrow \downarrow	a) $y^{-1}_{2} = \sqrt{x-3}$
b) Dikey 4 çarpanı ile daralt \Rightarrow	a) $y - \frac{1}{3} = \sqrt{x - 3}$ b) $y + 2 = \sqrt{x + \frac{2}{3}}$
b) Dikey 4 çarpanı ile daralt \rightarrow \uparrow \downarrow	a) $y-1_2 = \sqrt{x-3}$ b) $y+2 = \sqrt{x} + \frac{2}{3}$ c) $y=-(\sqrt{x})$ $y=\sqrt{x}$
 b) Dikey 4 çarpanı ile daralt c) Yatay 4 çarpanı ile genişlet d) Yatay 4 çarpanı ile daralt 14. g(x) = √x olsun. Aşağıdaki öteleme(kaydırma) ve yansıma işlemleri altında elde edilen fonksiyon grafiklerini çizin: a) ½ birim yukarı, 3birim sağa ötele 	a) $y - \frac{1}{3} = \sqrt{x - 3}$ b) $y + 2 = \sqrt{x + \frac{2}{3}}$
b) Dikey 4 çarpanı ile daralt → (c) Yatay 4 çarpanı ile genişlet → (d) Yatay 4 çarpanı ile daralt → (d) Yatay 4 çarpanı ile daralt → (d) (d) Yatay 4 çarpanı ile daralt → (d) (d) Yatay 4 çarpanı ile daralt → (d)	a) $y-1_2 = \sqrt{x-3}$ b) $y+2 = \sqrt{x} + \frac{2}{3}$ c) $y=-(\sqrt{x})$ $y=\sqrt{x}$
 b) Dikey 4 çarpanı ile daralt c) Yatay 4 çarpanı ile genişlet d) Yatay 4 çarpanı ile daralt 14. g(x) = √x olsun. Aşağıdaki öteleme(kaydırma) ve yansıma işlemleri altında elde edilen fonksiyon grafiklerini çizin: a) ½ birim yukarı, 3birim sağa ötele b) 2 birim aşağı, ½ birim sola kaydır. c) x-eksenine göre yansıt (experi) d) y-eksenine göre yansıt. 	a) $y - 1_3 = \sqrt{x - 3}$ b) $y + 2 = \sqrt{x + \frac{2}{3}}$ c) $y = -(\sqrt{x})$ $y = \sqrt{x}$ d) $y = \sqrt{-x}$ $y = \sqrt{x}$
 b) Dikey 4 çarpanı ile daralt c) Yatay 4 çarpanı ile genişlet d) Yatay 4 çarpanı ile daralt 14. g(x) = √x olsun. Aşağıdaki öteleme(kaydırma) ve yansıma işlemleri altında elde edilen fonksiyon grafiklerini çizin: a) ½ birim yukarı, 3birim sağa ötele b) 2 birim aşağı, ² birim sola kaydır. c) x-eksenine göre yansıt d) y-eksenine göre yansıt 15. y = f(x) fonksiyonun grafiğini kullanılarak aşağıdaki fonksiyonların 	a) $y-1_3 = \sqrt{x-3}$ b) $y+2 = \sqrt{x+\frac{2}{3}}$ c) $y=-(\sqrt{x})$ $y=\sqrt{x}$ d) $y=\sqrt{-x}$ $y=\sqrt{x}$ y
 b) Dikey 4 çarpanı ile daralt c) Yatay 4 çarpanı ile genişlet d) Yatay 4 çarpanı ile daralt 14. g(x) = √x olsun. Aşağıdaki öteleme(kaydırma) ve yansıma işlemleri altında elde edilen fonksiyon grafiklerini çizin: a) ½ birim yukarı, 3birim sağa ötele b) 2 birim aşağı, ½ birim sola kaydır. c) x-eksenine göre yansıt d) y-eksenine göre yansıt 15. y = f(x) fonksiyonun grafiğini kullanılarak aşağıdaki fonksiyonların grafiğinin eldeedilmesi için hangi 	a) $y-1_3 = \sqrt{x-3}$ b) $y+2 = \sqrt{x+\frac{2}{3}}$ c) $y=-(\sqrt{x})$ $y=\sqrt{x}$ d) $y=\sqrt{-x}$ $y=\sqrt{x}$ y
 b) Dikey 4 çarpanı ile daralt c) Yatay 4 çarpanı ile genişlet d) Yatay 4 çarpanı ile daralt 14. g(x) = √x olsun. Aşağıdaki öteleme(kaydırma) ve yansıma işlemleri altında elde edilen fonksiyon grafiklerini çizin: a) ½ birim yukarı, 3birim sağa ötele b) 2 birim aşağı, ² birim sola kaydır. c) x-eksenine göre yansıt d) y-eksenine göre yansıt 15. y = f(x) fonksiyonun grafiğini kullanılarak aşağıdaki fonksiyonların grafiğinin eldeedilmesi için hangi işlemleri yapmak gerekir. 	a) $y-1_3 = \sqrt{x-3}$ b) $y+2 = \sqrt{x+\frac{2}{3}}$ c) $y=-(\sqrt{x})$ $y=\sqrt{x}$ d) $y=\sqrt{-x}$ $y=\sqrt{x}$ y
 b) Dikey 4 çarpanı ile daralt c) Yatay 4 çarpanı ile genişlet d) Yatay 4 çarpanı ile daralt 14. g(x) = √x olsun. Aşağıdaki öteleme(kaydırma) ve yansıma işlemleri altında elde edilen fonksiyon grafiklerini çizin: a) ½ birim yukarı, 3birim sağa ötele b) 2 birim aşağı, ² birim sola kaydır. c) x-eksenine göre yansıt (y/let) d) y-eksenine göre yansıt. 15. y = f(x) fonksiyonun grafiğini kullanılarak aşağıdaki fonksiyonların grafiğinin eldeedilmesi için hangi işlemleri yapmak gerekir. a) y = f(-3x) 	a) $y-1_2 = \sqrt{x-3}$ b) $y+2 = \sqrt{x+\frac{2}{3}}$ c) $y=-(\sqrt{x})$ $y=\sqrt{x}$ d) $y=\sqrt{-x}$ $y=\sqrt{x}$ b) $x=-3x$ b) $x=2x+1$ c) $x=\frac{x}{3}$, $y=y+4$ 3 and then reglect about $x=\frac{x}{3}$ 4 Shirt $\frac{1}{2}$ bnit to the le
 b) Dikey 4 çarpanı ile daralt c) Yatay 4 çarpanı ile genişlet d) Yatay 4 çarpanı ile daralt 14. g(x) = √x olsun. Aşağıdaki öteleme(kaydırma) ve yansıma işlemleri altında elde edilen fonksiyon grafiklerini çizin: a) ½ birim yukarı, 3birim sağa ötele b) 2 birim aşağı, ² birim sola kaydır. c) x-eksenine göre yansıt d) y-eksenine göre yansıt 15. y = f(x) fonksiyonun grafiğini kullanılarak aşağıdaki fonksiyonların grafiğinin eldeedilmesi için hangi işlemleri yapmak gerekir. 	a) $y-1_3 = \sqrt{x-3}$ b) $y+2 = \sqrt{x+\frac{2}{3}}$ c) $y=-(\sqrt{x})$ $y=\sqrt{x}$ d) $y=\sqrt{-x}$ $y=\sqrt{x}$ y

Sorular	Cevaplar
16. Aşağıdaki trigonometric	$\sin 0 = 3$ $\sin \frac{3\pi}{4} = \frac{12}{2}$ $\sin -\frac{\pi}{4} = \frac{12}{2}$ a) $y = \cos(2x) \Rightarrow [-\frac{\pi}{2}, \frac{\pi}{4}]$
fonksiyonların peryotlarını belirleyin:	cos 0 = 1
a) $y = \cos(2x)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
b) $y = \sin^2(\frac{x}{2})$	$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \sin \pi = 0 \sin \pi = 0$
277	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
c) $y = 2\cos^p(x - \frac{\pi}{3})$	$5/\sqrt{1}$ $1/\sqrt{1}$
d) $y = 1 + \sin(x + \frac{\pi}{4})$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17. $f(x) = \sin(x)$ ve $g(x) = \cos(x)$	6
Trigonometric fonksiyonların grafiklerini kullanarakaşağıdaki	y= a. f (b. (x+c)) +d 3=sin (2) => == 1/2
fonksiyonların grafiklerini çizin :	9-cm (2x) =) a= 0
a) $y = \cos(2x)$	b × 2
b) $y = \sin\left(\frac{x}{2}\right)$	$c=0$ $y=0, c=(x-\frac{\pi}{3})= > 9=2$ $b=1$
(c) $y = 2\cos(x - \frac{\pi}{2})$	2.05 (3x-T) => C=-T
d) $y = 1 + \sin(x + \frac{\pi}{4})$	b=1 53 d=0
$\frac{1}{3} = 1 = 1$	d-1
18.0°, 30°, 45°, 60° ve 90° deki	
trigonometric değerlerini kullanarak aşağıdaki değerleri hesaplayın:	$\frac{\cos^2 X + \sin^2 X}{\cos 2X} = \frac{1 - \cos \left(2, \frac{\pi}{6}\right)}{\cos 2X} = \frac{1 - \cos \left(\frac{\pi}{6}\right)}{2} = 1 - \cos \left(\frac$
, 8	$\cos 2 \times = 2 \cos^{9} \times -1$ 2 2 2 $2 + \sqrt{2}$
a) sin(22,5°)	b.) Cos (75°) = cos (45°+30°) = cos (5. 00520 - sin 45. sin 30
b) <i>cos</i> (75°)	$=\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{2}}{2}\cdot\frac{1}{2}=\frac{\sqrt{6}}{2}\cdot\frac{\sqrt{2}}{2}=\frac{\sqrt{6}-\sqrt{2}}{2}$
c) tan(15°)	- 1400 (115° 20°) - 400 (15° - 60.30° 1 - 1 50.1 5 50.1 5 60.1 1-20)
d) $sec(330^\circ) = \frac{1}{c_{25}(1)2^\circ}$ $sec(320^\circ) \cdot sec(0^\circ 20^\circ) = \frac{1}{c_{25}(1)2^\circ}$	c-)ten (45°-30°) - ten (6°- (6n30° 1 - 1/3 - 1/5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19. ABC is dik üçgenin C açısı diktir	R
A, B, C açılarına karşılık gelen	$\cos(\frac{\pi}{2}) = \frac{1}{2} = \frac{\alpha}{2} = \frac{\alpha}{2} = \frac{1}{2} = \frac$
kenarlar sırasıyla <i>a, b, c</i> olsun. Bu durumda aşağıdakileri hesaplayın :	(#) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)
a) a ve b eger $c = 2$ ve $B = \pi/3$ ise	(3) $\sin(3) - \frac{13}{2} = \frac{b}{c} = \frac{1}{2}$
b) 'a' yı 'A ve c' cinsinden	$\frac{a}{c} = \cos(A) = \frac{1}{2} a = \cos(A) = \frac{1}{2} \cos(A) $
c) 'a' yı ' B ve b' cinsinden	$= \cos(H)$
d) $sin(A)$ yı 'a ve c' cinsinden	Z-1 - 0,
-1	
20. $f(x) = \begin{cases} \dot{x} + 1, & -2 \le x \le 0 \\ x - 1, & 0 < x \le 2 \end{cases}$	514= 8 x12 -2 xxx0
parçalı tanımlı fonksiyon verilmektedir.	(X*2 0(X,(Y)
Buna göre f ve fof fonksiyonların	1/2
grafiklerini çizin.	12 ×
- 2	
	-24

$$f(x) = \begin{cases} 1, & x \leq -1 \\ -x, & -1 \leq x \leq 0 \\ -x, & 0 \leq x \leq 1 \\ 1, & x \geq 1 \end{cases}$$

$$\lim_{x \to -1^+} f(x) = 1 = \lim_{x \to -1^+} f(x)$$

$$\lim_{x\to 0^+} f(x) = 0 = \lim_{x\to 0^+} f(x) , \lim_{x\to 0} f(x) = 1$$

$$\lim_{x \to 1^{-}} f(x) = -1 \qquad \lim_{x \to 1^{+}} f(x) = 1 \qquad \begin{cases} \text{does not} \\ \text{exist limit.} \end{cases}$$

$$\lim_{x\to 0} \frac{x^2 - 4x + 4}{x^3 + 5x^2 - 14x} = \lim_{x\to 0} \frac{(x-2)^2}{x(x-1)(x+3)} = \lim_{x\to 0} \frac{x-2}{x(x+3)} = \frac{-2}{0.7} = -\infty$$

$$\lim_{x\to 2} \frac{x^2 - 4x + 4}{x^3 + 5x^2 - 16x} = \lim_{x\to 2} \frac{x - 2}{x(x + 7)} = \frac{0}{2.9} = 0$$

(a)
$$\frac{(x^2+x)}{x^5+2x^4+x^2} = \frac{x(x+1)}{x^3(x+1)^2} = \frac{1}{x^2} \cdot \frac{1}{(x+1)}$$

$$\lim_{X \to -1^{-}} \frac{1}{x^{2}, (x+1)} = \frac{1}{(-1)^{2}, (-1^{2}+1)} = -\infty$$

$$\lim_{X \to -1^{+}} \frac{1}{x^{2}(x+1)} = \frac{1}{(-1)^{2}, (-1^{4})} = \infty$$
exist

$$\lim_{x\to 0} \frac{x^2+x}{x^5+2x^4+x^3} = \lim_{x\to 0} \frac{1}{x^2} \cdot \frac{1}{x+1} = \frac{1}{0} = \infty$$

$$\lim_{X \to -1} \frac{x^2 + x}{x^5 + 1 \times u + x^2} = \lim_{X \to -1} \frac{1}{x^2} \frac{1}{x^4} = \frac{1}{0} = \infty$$

10-)
$$\lim_{x \to 1} \frac{x^{4/3} - 1^{3}}{\sqrt{x^{2} - 1^{3}}} \frac{\int_{a^{2}b^{2}}^{b^{2}} \frac{(x^{1/6})}{(x^{4/6} + 1)} (x^{4/6} + 1)}{\int_{a^{2}b^{2}}^{b^{2}} \frac{(x^{4/6})}{(x^{4/6} + 1)} (x^{4/6} + 1)} = \frac{2}{3}$$

11-) $\lim_{x \to 64} \frac{\frac{a^{2}-b^{2}}{x^{2/3} - 1b}}{\frac{x^{4/2}-8}{a^{2}-b^{2}}} = \frac{(x^{2/6}-4)(x^{2/6}+4)}{(x^{4/6}+2)(x^{2/6}+2)(x^{4/6}+4)} = \frac{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)}{(x^{4/6}-2)(x^{2/6}+2)(x^{4/6}+4)} = \frac{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)}{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)} = \frac{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)}{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)} = \frac{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)}{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)} = \frac{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)}{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)} = \frac{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+4)}{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+2)(x^{4/6}+4)} = \frac{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+2)}{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+2)(x^{4/6}+4)} = \frac{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+2)(x^{4/6}+2)}{(x^{4/6}-2)(x^{4/6}+2)(x^{4/6}+2)(x^{4/6}+2)} = \frac{(x^{4/6}-2)(x^{4/6}+2)$

berivative of the Trigonometric Functions	-fan (x)	
$\sin(\kappa)$ $\sin(\kappa) = \sin \kappa \cdot \cos \kappa$	400 = 200x	
$f(x) = \sin x \cdot \frac{f(x+h) - f(x)}{f(x+h) - f(x)} = \lim_{h \to 0} \frac{\sin x \cdot \cosh h + \sinh h \cdot \cosh x - \sin x}{h}$	$\frac{d}{dx} \left(\frac{\sin x}{\cos x} \right) = \cos x \cdot \frac{d}{dx} \left(\sin x \right) - \sin x \cdot \frac{d}{dx} \left(\cos x \right)$	(COSX) (COSX, COSX - SINX (- SINX)
$= \lim_{h \to 0} \frac{\sin x \left(\cosh - 1 \right) + \sinh \cos x}{h} = \lim_{h \to 0} \left(\frac{\sin x}{\ln x}, \frac{\cosh - 1}{\ln x} \right) + \lim_{h \to 0} \left(\frac{\cos x}{\ln x}, \frac{\sinh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x}, \frac{\sinh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x}, \frac{\sinh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \frac{\cosh x}{\ln x}, \frac{\sinh x}{\ln x}, \frac{\sinh x}{\ln x} \right) = \lim_{h \to 0} \left(\frac{\sinh x}{\ln x}, \sinh $	$\cos^2 x$ $\cos^2 x + \sin^2 x$	X 2 9 0 0 0
= sinx. 0 + cosx. 1 = cosx	Cos 2 X Cos 2 X	X = 560 2 X
$cos(x+h)$ = $cos x. cosh - sin x. sin h$ $f(x) = cosx \qquad f'(x) = -sin x$ $f(x) = cosx$	Kapalı Fankeyonlarda Türev - Fx Fy	
5'(x)= lm cas(x+h)-cas(x) h = lm cosx, cash - sinx, sinh - cosx (cash-1) - sinx and h = lm cosx, (cash-1) - sinx, sinh	cosx (esh-1) -sinvanh Ters Farbsydoninyon Türevi $ \frac{d}{dx} \left(\frac{1}{x} \right) = \frac{-1}{2} / x \neq 0 $	Kareksk forksiyanur Türevi d (X = 1
has has had had had a cosx. 0 - sinx, 1 = -sinx	1 ×	
$\frac{d}{dx} (t_{anx}) = \sec^2 x \qquad \frac{d}{dx} (\cot x) = -\cos^2 x$		
$\frac{d}{dx} (secx) = secx.donx \qquad \frac{d}{dx} (cosec x) = -cosec x.cot x$		
$\frac{d}{dx} \left(\tan x \right) = + an^{1} \times = 1 + + an^{2} \times$		

 $\cos 2 x = 2.\cos^2 x - 1$

Half Angle

= 1-2sin2X

 $J = a \cdot f \left(b \left(x + c \right) \right) + d$ Vertical Vertical Stretch or Shirt Shirt

Furthers $f(x) = \cos x \qquad f'(x) = -\sin x \qquad f(x) = -\cos x$ $f(x) = -\cos x \qquad d \qquad \text{footh}$ $f(x) = -\cos x \qquad d \qquad d \qquad d \qquad d \qquad d \qquad d \qquad \text{footh}$ $f(x) = -\cos x \qquad d \qquad$	$\frac{dx}{dx} (4x) = \frac{2\sqrt{x}}{2\sqrt{x^3}}$ $\frac{dx}{dx} (4x) = \frac{1}{2\sqrt{x^3}}$	$e^{\mu} \frac{d\mu}{dx}$ $= \int_{-\infty}^{\infty} \frac{e^{\ln x}}{dx}$ $\int_{-\infty}^{\infty} \frac{d\mu}{dx}$
Derivative of the Trigananetic $f(x) = \sin x \qquad f'(x) = \cos x$ $\frac{d}{dx} (4\cos x) = \sec x = 1 + 4$ $\frac{d}{dx} (\sec x) = \sec x + \tan x$ $\frac{d}{dx} (\sec x) = \sec x + \tan x$ $-1 + \cos x + \cos x + \cos x$	$\frac{d_{x}}{dx} \left(\frac{x}{x}\right) = \frac{1}{x^{2}}$ $\frac{d_{x}}{dx} \ln \frac{1}{10} = \frac{1}{10} \ln \frac{1}{10}$	$\frac{d}{dx} e^{x} = e^{x}$ $\frac{d}{dx} e^{y} = e^{x} \cdot \ln \alpha = \alpha^{x} \cdot \ln \alpha \cdot (x)^{x}$ $\frac{d}{dx} (\log_{0} u) = \frac{1}{\ln^{2}} \cdot \frac{1}{dx} \cdot \frac{du}{dx}$ $\frac{d}{dx} (\sin^{-1} u) = \frac{1}{(1-u^{2})^{2}} \cdot \frac{du}{dx}$
Limit $f'(x) = \lim_{h \to 0} f(x+h) - f(x)$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\lim_{x \to 0} \frac{s_{1n}x}{x} = 1$ $\lim_{x \to 0} \frac{s_{1n}x}{x} = 1$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$ $\lim_{x \to 0} \frac{s_{1n}x}{x} + \dots + \frac{s_{1n}x}{s_{1n}} = 0$	Horizontal Asymptote; $\lim_{x\to\infty}\frac{1}{x}=0$ Vertical Asymptote; $\lim_{x\to\infty}\frac{1}{x}=\pi\infty$ $\lim_{x\to\infty}\frac{1}{x}=\pi\infty$ $\lim_{x\to\infty}\frac{1}{x}=\pi\infty$ $\lim_{x\to\infty}\frac{1}{x}=\pi\infty$ $\lim_{x\to\infty}\frac{1}{x}=\pi\infty$ $\lim_{x\to\infty}\frac{1}{x}=\pi\infty$ $\lim_{x\to\infty}\frac{1}{x}=\pi\infty$ Oblique Asymptote; $\lim_{x\to\infty}\frac{1}{x}=\pi\infty$	But sont. Easini bulmot ion X ite y'nin yerler degistribi. $ \frac{1}{dx} \left(\frac{dx}{dx} + \frac{1}{dx} \right) = \frac{1}{dx} = \frac{1}{2} \cdot (3x+1)^{-1/2} \cdot 3 = \frac{3}{2\sqrt{3x+1}} $ $ \frac{d}{dx} \left(\frac{1}{(2ase^{-7}u)} \right) = \frac{1}{ u \sqrt{u^2-1}} \cdot \frac{du}{dx} = \cos u^{-1} \cdot \frac{1}{x} $ $ \frac{d}{dx} \left(\cos e^{-7}u \right) = \frac{-1}{ u \sqrt{u^2-1}} \cdot \frac{du}{dx} = \sin u^{-1} \cdot \frac{1}{x} $

Norday (0-204)	ovicting qualitative foliagion = 0			pilal's rule again.
one one named as indeforminate garms.	Assume functions $f(x)$ and $g(x)$ are continuous and differentiable on (a,b). Assume $f(a)$ = g(a)	2x 4 //	S = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 =	12. sin 28 0 case 14 Her we can apply the L'Haz
LIMITS of INDETERMINATE FORMS In general, 0,00,00,000 are named as indeformable garm in limiting processes. Also 100,00,000 are exponential type indeforminals garms. L'Hospitol's Rule	Assume functions $f(x)$ and $g(x)$ are continuous and degenertiable on (a,b). Assume $f(a)$ =0(a)=0(b)=4 then by then the first solution of the following above exist and finite above exist and the demotion process in L'Haspital's rule is not some as in qualient rule for demotive	$\frac{E \times P}{K_{3} - 2}$ $\lim_{x_{3} - 2} \frac{x_{42}}{(x_{42})^{1}} \xrightarrow{-1} \frac{0}{0} \cos \theta$ $\lim_{x_{3} - 2} \frac{(x_{42})^{1}}{(x_{42})^{1}} = \lim_{x_{3} - 2} \frac{1}{2x}$ $\lim_{x_{3} - 2} \frac{(x_{42})^{1}}{(x_{42})^{2}} = \lim_{x_{3} - 2} \frac{1}{2x}$ $\lim_{x_{3} - 2} \frac{\sin 5x}{x_{3}} \xrightarrow{-1} 0 \cos \theta$	$\lim_{x \to 0} \frac{(\sin 5x)^{1}}{(x ^{1}} = \lim_{x \to 0} \frac{1}{\cos 5x \cdot 5}$ $\lim_{x \to 0} \frac{1-\sin 6x}{1+\cos 26} \to 0 \cos e$	$\lim_{\theta \to \pi/2} \frac{(1-\sin\theta)^2}{(1+\cos2\theta)^2} = \lim_{\theta \to \pi/2} \frac{-\cos\theta}{-2 \cdot \sin2\theta} \to 0 \text{ case}$ $\lim_{\theta \to \pi/2} \frac{-\sin\theta}{u \cdot \cos2\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos2\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$ $\lim_{\theta \to \pi/2} \frac{\cos\theta}{u \cdot \cos\theta} = \frac{-1}{u \cdot (-1)} = \frac{1}{\mu}$
(1/x) = (1/x)		1 2 1 2	1 91	e)
○ Ⅱ — [×}	- U - V	1 (-1x)		
Z ×	1 to the total of	= =		1+1
$\lim_{x\to\infty} \frac{\ln x}{2(x)} \to \frac{\infty}{\infty} \text{form}$ $\lim_{x\to\infty} \frac{\ln x}{2(x)} \to \frac{1}{2(x)} \lim_{x\to\infty} \frac{1}{2(x)} = \lim_{x\to\infty} \frac{1}{2(x)} = 0$	11 - 1in	$\lim_{x\to\infty} \frac{x \cdot \sin\left(\frac{1}{x}\right)}{x^{2}} = \lim_{x\to\infty} \frac{1}{x^{2}} \cdot \cos\left(\frac{1}{x}\right)$ $\lim_{x\to\infty} \frac{\sin\left(\frac{1}{x}\right)}{x^{2}} = \lim_{x\to\infty} \frac{1}{x^{2}} \cdot \cos\left(\frac{1}{x}\right)$	8 1	1 - XX -
$\frac{\text{ExP}}{\text{x-y-o}} \text{ Alm} \qquad \frac{\text{Lnx}}{\text{x-y-o}} \rightarrow \frac{0.00}{24 \times 10^{-3}} \text{ form}$ $\frac{\text{lim}}{\text{x-y-o}} \frac{\text{lim}}{24 \times 10^{-3}} = \frac{1}{100} \frac{\text{x-y-o}}{\text{x-y-o}} \frac{24 \times 10^{-3}}{24 \times 10^{-3}} = \frac{1}{100} \frac{\text{x-y-o}}{\text{x-y-o}} = \frac{1}{100} \text$	$\lim_{t \to \infty} \frac{e^{t} + t^{2}}{e^{t} - t} = \lim_{t \to \infty} \frac{e^{t} + t^{2}}{e^{t} - t}$	$\lim_{x\to\infty} \frac{x \cdot \sin\left(\frac{1}{x}\right)}{x \cdot \cos\left(\frac{1}{x}\right)} = \lim_{x\to\infty} \frac{1}{x \cdot \cos\left(\frac{1}{x}\right)}$	$\frac{e^{x}P_{y}}{x_{y}\eta^{4}} \left[\frac{1}{x-1} - \frac{1}{\ln x} \right] \rightarrow \infty - \infty$ $\lim_{x_{y}\eta^{4}} \frac{\ln x - x + 1}{(v-1)(\ln x)} \rightarrow 0$	$\frac{1}{1-\frac{1}{x}} \times \frac{1}{1-\frac{1}{x}} = \frac{1}{1-\frac{1}{x}} \times \frac{1}{1-x$
EXP Aim X40	E STATE OF S	<u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> x x x x	ExP. lin	×

 $\ln \left(\lim_{x \to 0^+} (1+x)^{\frac{1}{2}} \right) = \ln L \qquad = \lim_{x \to 0^+} \left[\ln (1+x)^{\frac{1}{2}} \right] = \ln L \qquad = \lim_{x \to 0^+} \frac{1}{x} \cdot \ln (1+x) = \ln L \qquad = \lim_{x \to 0^+} \frac{1}{x} \cdot \ln (1+x) = \lim_{x \to 0^+} \frac{1}{x} \cdot \ln$ x. lv x | -|x | In f(x) = |x| whenever the f(x) is continuous then it can be written that $\ln\left(\lim_{x\to0^+}X^x\right)=\ln\left(\lim_{x\to0^+}\left(\ln X^x\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)$ =\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln\left(\lim_{x\to0^+}\left(x\cdot\ln X\right)\right)=\ln $\lim_{x \to 0^+} \frac{\ln x}{x} = \lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x}$ $\lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x}$ $\lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x}$ $\lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x}$ $\lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x}$ Exp. lim xx - 00 - Define xx = L inx = } If the lim f(x)= L exists then EXP: lim (1+x) 1/4 -> 100 $\begin{cases} \sin x \cdot \ln x \equiv \frac{1}{x + \alpha} & \text{oR } \sin x \cdot \ln x \equiv \frac{\sin x}{1} + \frac{\alpha}{3} \\ \sin x \cdot \ln x = \lim_{x \to 0^+} \frac{\ln x}{x + \alpha} = \lim_{x \to 0^+} \frac{1}{x + \alpha} = \lim_{x \to 0^+}$ lin (1+x) = e x2 tux-1 = 0 = In A = > A = 7 $|| \frac{x}{x} || = || \frac{x^{x+1}}{x^{4+2}} || = || \frac{x^{x+1}}{x^{4+2}} || = || \frac{x}{x} || = || = || \frac{x}{x} || = || \frac{x}{x} || = || = || = || = || = || = || = |$ $=\lim_{\lambda\to\infty} \left[\frac{1}{\lambda} \cdot \ln\left(\frac{x^2+1}{x+2}\right) \right] = \ln \beta$ $= \lim_{k \to \infty} \left[\ln \left(\frac{(k^2 + 1)}{(k + 2)} \right)^{2k} \right] = \ln \beta$ $\lim_{\kappa \to \infty} \left(\frac{\kappa^{2+1}}{\kappa_{4,2}} \right)^{1/\kappa} = A \Rightarrow \ln \left(\lim_{\kappa \to \infty} \left(\frac{\kappa^{2+1}}{\kappa_{4,2}} \right)^{1/\kappa} \right) = \ln A$ $2 \times (x+2) - (x^2H).1$ x2+1 X+2 $\begin{cases} \sin x \cdot \ln x &\equiv \frac{\ln x}{\sin x} & \Rightarrow & \infty \\ \sin x \cdot \ln x &\equiv \frac{1}{\sin x} & \Rightarrow & \infty \end{cases}$ $\frac{\text{ExP}}{\text{x+00}} \left(\frac{\text{x}^2 + 1}{\text{x} + 2} \right)^{\frac{1}{X}} \rightarrow 00^{\circ}$ ExP: line (SINX, INX) > 0,00

1 st /sec just when the bolloon is 65st obove the ground in bicycle moving 3 A bollon and a bicycle, A bolloon is rising vertical above of a constant rate of of a constant rate of 17 ft/sec passes under it. How fast is the distance S(t) between balloon and broycle increasing 3 sec later?

 $S^{2} = \chi^{2} + y^{2} = 5S^{2} = (68)^{2} + (51)^{2} + 517.5 = 85 \frac{dL}{dt} = \frac{1}{2} \cdot (x^{2} + y^{2})^{1/2} \cdot \left[2 \times (x)^{1} + 2y(y)^{2}\right]$ 2.5. ds = 2.x. dx + 2.9. dy

$$\frac{dx}{dt} = 1$$

$$\frac{dy}{dt} = 1$$

$$\frac{dy}{dt} = 1$$

$$\frac{dy}{dt} = 1$$

$$\frac{dx}{dt} = 1$$

$$\frac{dx}{dt} = 1$$

$$\frac{dx}{dt} = 1$$

Recorred Rates

+) If
$$d = \sqrt{x^2 4y^2}$$
, $\frac{d^2}{dt} = -1$ $\frac{dy}{dt} = 3$, Find $\frac{dL}{dt}$ when $\frac{x=5}{y^2}$ 12

L = (x2442) 42

85
$$\frac{dL}{dt} = \frac{1}{2} \cdot (x^2 + y^2)^{1/2} \cdot \left[2 \times (x)^2 + 2 y(y)^2 \right]$$

$$\frac{dL}{dt} = \frac{1}{2} \left(x^2 + y^2 \right)^{-1/2} \left[2x \cdot \frac{dx}{dt} + 2y \cdot \frac{dy}{dt} \right]$$

$$\frac{dL}{dt} = \frac{1}{2/169} \left[2.5.(-1) + 2.12(3) \right] = \frac{1}{2.13} \cdot 2.(31) = \frac{31}{13}$$

2.) If the original 24 m edge length X of a cube decreases at the rake of 5m/min when X=3 what rake does the cube's a-) Surface area change? b-) Volume change ?

V= 1.r2.h

 $V = \frac{\pi \cdot x^2 \cdot (443)}{3} \int f'(4) = \frac{\pi}{3} \cdot (-24(443) + (9.4^2) \cdot (1))$ $X^{2}+4J^{2}=9=7 \times ^{2}-9-4J^{2}$ $f'(4)=\frac{\pi}{3}, \left(-23^{2}-63+9-4^{2}\right)$ f'(4)= 3 .(-3). (42+24-3)

$$f'(y) = 0$$

 $f'(y) = -T, (y+3), (y-1) = 0$

$$f(1) = \frac{\pi \cdot (9-1)(1+3)}{3} = \frac{32\pi}{3}$$

$$f(1) = \frac{\pi \cdot (9-1)(1+3)}{3} = \frac{3.5}{3}$$

when 9=1 g (y) = is max

(2) find a positive number for which the sum of its reciprocal and LX its equore is the Smallest possible.

$$f(x) = \frac{1}{x} + ux^2$$
 $f'(x) = \frac{-1}{x^2} + 8x$

$$f'(x) = 0$$
 $\frac{-1}{x^2} + 8x = 0$ $\frac{-1+8x^3}{x^2} = 0$ $8x^3 - 1 = 0$ $x = \frac{1}{8}$

$$f\left(\frac{1}{2}\right) = \frac{1}{1 + 4\cdot \left(\frac{1}{2}\right)^2}$$

$$f(1/2) = \frac{1}{2} + 4 \cdot (\frac{1}{2})^2 = \frac{3}{2}$$

$$S = h \cdot w$$

$$S = (9 - \frac{w^2}{4})^{\frac{1}{2}} \cdot w$$

$$S = (9 - \frac{w^2}{4})^{\frac{1}{2}} \cdot w$$

$$S = (9 - \frac{w^2}{4})^{\frac{1}{2}} \cdot (w^2)$$

$$g = h^{2} + \left(\frac{\omega}{2}\right)^{2}$$

$$f(\omega) = \left(g - \frac{\omega^{2}}{4}\right)^{\frac{1}{2}} (\omega^{2})^{\frac{1}{2}}$$

$$h = \sqrt{g - \frac{\omega^{2}}{4}}$$

$$f(\omega) = \left(gw^{2} - \frac{\omega^{4}}{4}\right)^{\frac{1}{2}}$$

$$f'(w) = \frac{1}{2} \cdot \left(9w^2 - \frac{w^4}{L^4}\right)^{-1/2} \cdot \left[18w - \frac{uw^3}{L^4}\right]$$

$$f'(\omega) = \frac{18 \, \omega - \omega^3}{2 \cdot \sqrt{3 \omega^2 - \omega^2}}$$
 $f'(\omega) = 0$ $\omega^3 - 78 \, \omega = 0$ $\omega(\omega^2 - 18) = 0$ $(\omega - 18) = 0$

$$W(W^2-18)=0$$

W1=0 W2=3/2 W3=-8/2

Questions	Answers
	of y with respect to appropriate variable
1. $y \approx \ln(\sec^2 \theta)$	$y' \cdot \frac{(\sec^2 \theta')'}{\sec^2 \theta} = \frac{2 \cdot \sec^2 \theta \cdot \sec^2 \theta}{\sec^2 \theta} = \frac{2 \cdot \tan \theta}{\sec^2 \theta}$
2. $y = 9^{2t}$	$y' = (9^{24})' = (81')' - 81' \cdot \ln 81 = 81' \cdot \ln 3' = (4.81' \cdot \ln 3)$
3. $y = 2(\ln x)^{x/2}$	$\frac{y}{3} = (\ln x)^{\frac{1}{2}} = \left(\frac{x}{2}, \ln(\ln x)\right)^{\frac{1}{2}} = \frac{1}{2}, \ln(\ln x) + \frac{1}{2}$ $\ln \frac{y}{2} = \ln(\ln x)^{\frac{1}{2}} = \frac{1}{2}, \ln(\ln x) + \frac{x}{2}, \frac{1}{\ln x} = \frac{1}{2}, \ln(\ln x) + \frac{x}{2}, \frac{1}{2}, \frac{1}{2}$
4. $y = (x + 2)^{x+2}$	Use ln (x+2) 12. (c+x) . (c+x) 41) = (x+2) 17) Use ln (x+2) 1. (c+x) = (x+2) 17) Use ln (x+2) 1. (c+x) = (x+2) 17 = ln(x+2) 1. (x+2) 17
5. $y = z \cos^{-1} z - \sqrt{1 - z^2}$	$y' = 1 \cdot \cos^{-1} z + z \cdot \left(\frac{-1}{\sqrt{1 \cdot 2^{2}}}\right) - \frac{(-22)}{2\sqrt{1 \cdot 2^{2}}}$ $y' = \cos^{-1} z + \frac{(-22)}{2(\sqrt{1 \cdot 2^{2}})} + \frac{22}{2(\sqrt{1 \cdot 2^{2}})} = \arccos 2$
6. $y = (1 + t^2) \cot^{-1} 2t$	y'=2+, col ⁻¹ 2+ + (1+(2), -2 1+(1+2)
7. $y = 2\sqrt{x - 1} \sec^{-1}\sqrt{x}$	$y' = 2 \cdot \frac{1}{2\sqrt{x-1}} \cdot \sec^{-1}\sqrt{x'} + 2\sqrt{x-1} \cdot \frac{1}{2\sqrt{x'}} \cdot \frac{1}{x\sqrt{1-\frac{1}{x}}} = \frac{1}{\sqrt{x-1}} \cdot \sec^{-1}\sqrt{x} + \frac{\sqrt{x-1}}{x\sqrt{x-1}} = \frac{\sec^{-1}\sqrt{x}}{\sqrt{x-1}} \cdot \frac{1}{x\sqrt{x-1}} = \frac{\sec^{-1}\sqrt{x}}{\sqrt{x-1}} \cdot \frac{1}{x\sqrt{x-1}} = \frac{1}{\sqrt{x-1}} \cdot \frac{1}{\sqrt{x-1}} = \frac{1}{\sqrt{x-1}} =$
8. $y = (1 + x^2)e^{\tan^{-1}x}$	$y_{\pm}^{1} = 2 \times e^{4cn^{-1}x} + (1+x^{2}) \cdot (4an^{-1}x)^{1} \cdot e^{1cn^{-1}x}$
In exercises 9-12 use logarithmic d	$= 2 \times e^{ cn^{-1} } \times (14x^{2}) \cdot \frac{1}{x^{2}} \cdot e^{- cn^{-1} } \times = > \frac{(9x+1) \cdot e^{- cn^{-1} } \times (9x+1) \cdot e^{- cn^{-1} }}{ cn^{-1} } \times \frac{1}{x^{2}} \cdot e^{- cn^{-1} } \times \frac{1}{x^{2}} \cdot e^{-$
9. $y = \sqrt[10]{\frac{3x+4}{2x-4}}$	ifferentiation to find the derivative of y with respect to the appropriate variable
y = 0 (0x-4). (2x+4)	$\frac{96x-12\cdot6x-8}{2x+4} = \frac{1}{3y+4} = \frac{-26}{(2y+4)(3y+4)} = \frac{1}{16} = \frac{-1}{(2x+2)(3y+4)} = \frac{2x+4}{3y+4} = \frac{1}{(2x+4)(3y+4)} = \frac{1}$
10. $y = \left(\frac{(t+1)(t-1)}{(t-2)(t+3)}\right)^5$, t	> 2
$R_1 = \left(\frac{4}{5}, \frac{3}{1}, \frac{4}{1}, \frac{9}{1}\right) = \left(\frac{4}{5}, \frac{1}{1}, \frac{9}{1}, \frac{9}{1}\right) = \left(\frac{4}{5}, \frac{1}{1}, \frac{9}{1}\right) = \left(\frac{4}{5}, \frac{9}{1}, \frac{9}{1}\right) = \left(\frac{4}{5}, \frac{9}{1}\right) = \left(\frac$	1) (+2+1-6) = 3.10 (+2+1-6) = (2+1-6)
11. $y = (\sin \theta)^{\sqrt{\theta}}$	$\frac{y'}{y} = \frac{1}{2\sqrt{0}} \cdot \ln \sin \theta + \left(\frac{\theta'}{\theta'} \cdot \frac{(\sin \theta)}{\sin \theta} \right) = 1$
12. $y = (\ln x)^{1/(\ln x)}$	$\ln 9 = \frac{1}{\ln x}, \ln (\ln x) = 3 \frac{9}{9} = \frac{-1}{(\ln x)^2} \cdot \frac{1}{x} = \ln (\ln x) + \frac{1}{\ln x} \cdot \frac{1}{\ln x} \cdot \frac{1}{x}$
	$\frac{y'}{y} = \frac{1}{x} \cdot \frac{1}{\ln x^2} \cdot \left(1 - \ln \left(\ln x\right)\right) = y \cdot y' = (\ln x)^{1/(\ln x)} \cdot \left[\frac{1}{x} \cdot \frac{1}{\ln x^2} \cdot \left(1 - \ln (\ln x)\right)\right] = y \cdot y' = (\ln x)^{1/(\ln x)}$

olve the equations for y	
3. $4^{-y} = 3^{y+2}$ $\frac{\ln 4^{-y} = \ln 3^{\frac{y+2}{2}}}{-y \ln 4 = (\frac{y+2}{2}) \ln 3} = \frac{\ln 3 + \ln 4}{2 \ln 3} = \frac{\ln 12}{\ln \sqrt{9}}$	
-y.lny = (442).ln3 = yln3 +2.ln3 -2.ln3 1n1/9	
-21n3 = 4. (In3+Inu)	
$\ln (10 \ln y) = \ln 5x$ $10 \ln y = 5x$ $e^{\ln y} = e^{x/2}$	
$\ln y = \frac{5x}{10} = \frac{x}{2}$ $y = e^{x/2}$	
exercises 15-20 use L'Hopital's rule to find the limits	
$-1/2 \qquad \qquad \frac{\ln y}{y + 0^4} = \frac{1}{4} \frac{y}{\sqrt{y}} = \frac$	
$\lim_{y \to 0^{+}} e^{y} \ln y$ $\lim_{y \to 0^{+}} e^{y} \ln y$ $\lim_{y \to 0^{+}} \frac{1}{e^{1/y}} = \lim_{y \to 0^{+}} \frac{-y}{e^{1/y}} = \frac{0}{\infty} = 0$	
y2 370 E 3 20	
3	.2
$\lim_{x \to 0^{+}} \left(1 + \frac{3}{x}\right)^{x} = \lim_{x \to 0^{+}} \ln_{f}(x) = \lim_{x \to 0$	- = O
$\lim_{x\to 0^+} \left(1+\frac{3}{x}\right)^x$	
$\frac{1}{1000} \times 10^4 \qquad \frac{1}{1000} = \frac{1}{1000} \qquad \frac{1}{1000} = \frac{1}{1000} \times 10^4 = \frac{1}{1000} = $	
1 IIm	In (x) = 0
$x' = \frac{1}{1 + 3} \cdot \frac{-3}{x^2} \Rightarrow \frac{1}{x_1^3} \cdot \frac{-3}{x^2} = \frac{x}{x_1^4} \cdot \frac{2}{x^2} = \frac{-3}{x_1^2 + 2}$	In flex) for

by C'H=> lim = lim = ln3	e
$\lim_{\theta \to 0} \frac{3^{\theta} - 1}{\theta} \to \frac{1 \cdot 1}{Q} = \frac{Q}{Q}$	
	-
$\lim_{x\to 0^+} \sqrt{x} \sec x \qquad \lim_{x\to 0^+} \frac{\sqrt{x}}{\cos x} = \frac{\sqrt{0}}{\cos 0} = \frac{0}{1} = 0$	
$\lim_{x\to 0} \left(\frac{1}{x^4} - \frac{1}{x^2}\right) \qquad \lim_{x\to 0} \left(\frac{x^2 - x^4}{x^6}\right) \to \frac{0}{0} \qquad \qquad \text{if by L'Herr lim} \qquad \frac{2 - 12 x^2}{30 x^4} = \frac{2}{0} = \infty$	
(X" X2)	
by L'H=1 lim 2x-4x3 + 0	
	-
$\lim_{x\to\infty} \left(\frac{e^x+1}{e^x+1}\right)^{\ln x} \qquad \ln A = \ln x \cdot \ln \left(1 + \frac{2}{e^x-1}\right)$	
$(e^{x}-1)$	
A $\lim_{x\to\infty} \ln A = \lim_{x\to\infty} \frac{\ln x}{x} \cdot \lim_{x\to\infty} x \cdot \ln \left(1 + \frac{2}{e^{x}-1}\right)$	
В	
1 10× 20 1 1 1 - ×13	
B=lim x+00 =) by L'H -) B=lim 1 = 0 (C=lim x+00 × lox (ex-1))	
00	