MODEL

de test final la Algebră Liniară

- 1. Să se defineasca urmatoarele noțiuni: relație de ordine, funcție inversabilă, subinel, baza a unui spațiu vectoarial, aplicație liniară.
- b) Să se dea câte un exemplu de relație de ordine pe mulțimea \mathbb{C} a numerelor complexe, funcție inversabilă de la $A=\{1,2,\ldots,n\}$ la A, subinel netrivial al inelului \mathbb{Z} , bază a spațiului vectorial real \mathbb{R}^2 , aplicație \mathbb{R} -liniară de la \mathbb{R}^2 la \mathbb{R}^4 .
- c) Fie $f: \mathbb{R}^3 \to \mathbb{R}^4$ o aplicație liniară și $\{x,y\} \subseteq \mathbb{R}^2$ o bază în Ker(f). Dacă $z \in \mathbb{R}^3$ este ales astfel încât $\{x,y,z\}$ formează o bază în \mathbb{R}^3 să se arate că $\{f(z)\}$ este o bază în $\mathrm{Im}(f)$.
- 2. Se consideră funcțiile: $f: \mathbb{R} \to \mathbb{R}$ și $g: (0, \infty) \to \mathbb{R}$

$$f(x) = \begin{cases} x^2, & x \ge 2 \\ 3x - 2, & x < 2 \end{cases}$$
 şi $g(x) = x^2 - 6x + 5$.

- a) Să se studieze injectivitatea și surjectivitatea acestor funcții.
- b) Dacă există să se determine inversele acestor funcții.
- c) Dacă sunt definite să se calculeze compunerile $f \circ g$ și $g \circ f$.
- d) Să se găsească două funcții h_1, h_2 astfel încât $g \circ h_1$ și $g \circ h_2$ să fie definite, $g \circ h_1 = g \circ h_2$, dar $h_1 \neq h_2$.
 - 3. Fie $G = \{ z \in \mathbb{C} \mid |z| = 1 \}.$
- a) Să se arate că G este un subgrup al grupului \mathbb{C}^* .
- b) Să se arată că $f: \mathbb{R} \to G$, $f(x) = \cos(2\pi x) + i\sin(2\pi x)$ este un morfism surjectiv de grupuri și că relația $(\mathbb{R}, \mathbb{R}, \sim)$ dată prin $x \sim y \Leftrightarrow f(x) = f(y)$ este o relație de echivalență.
- c) Să se găsească un exemplu de subgrup H al lui \mathbb{C}^* astfel cu proprietatea că $G \cup H$ nu este subgrup al lui \mathbb{C}^* .
- 4. Se consideră $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 3x_3 = 2x_2 = x_1\}$ şi $T = \{(t, -t, 2t) \mid t \in \mathbb{R}\}$.
- a) Să se arate că S și T sunt subspații în \mathbb{R}^3 .
- b) Să se determine câte o bază și dimensiunea pentru S, T, S+T și $S\cap T$.
- c) Fie V un K-spațiu vectorial de dimensiune finită și V_1 , V_2 subspații ale lui V care verifică egalitatea $\dim_K(V1+V2)=\dim_K(V_1\cap V_2)+1$. Să se arate că $V_1\subseteq V_2$ sau $V_2\subseteq V_1$.
- 5. Se dă aplicația liniară $f \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^4)$ definită pe baza canonică $f(e_1) = (1, 2, 3, 4), f(e_2) = (4, 3, 2, 1), f(e_3) = (-2, 1, 4, 1)$. Să se determine:
- a) f(x) pentru orice $x \in \mathbb{R}^3$.
- b) Matricea lui f în perechea de baze canonice.
- c) Matricea aplicației f în perechea de baze (b,c) unde $b = [e_1, e_1 + e_2, e_1 + e_2 + e_3]^t$ și $c = [c_1, c_2, c_3, c_4]^t$, unde $c_1 = (1, 1, 1, 1), c_2 = (0, 1, 1, 1), c_3 = (0, 0, 1, 1), c_4 = (0, 0, 0, 1)$. (se va arăta și că b și c sunt baze în \mathbb{R}^3 , respec-
- $(0,0,1,1), c_4 = (0,0,0,1).$ (se va arăta şi că b şi c sunt baze în \mathbb{R}^3 , respectiv \mathbb{R}^4).
- d) Câte o baza şi dimensiunea pentru Ker(f) şi Im(f).