$NFA \rightarrow DFA$

Every DFA is an NFA, but not vice versa

L = { Set of all strings over (0,1) that starts with '0' }

Step 1: Write down the NFA state transition table

Step 2: Convert it to a DFA table (NFA table serves as a basis)

Step 3: Draw the new DFA diagram

L = { Set of all strings over (0,1) that ends with '1' }

NOTE:

- We combine 2 diff. states (union) if they point to the same state in the NFA $\,$
- Build upon the current DFA table but still use the NFA table as basis

Find the equivalent DFA for the NFA given by M= [$\{A,B,C\}$, $\{a,b\}$, $\{a,b\}$, $\{a,b\}$, where $\{a,b\}$ is given by:

$$\begin{array}{c|cccc} & a & b \\ \rightarrow A & A, B & C \\ & B & A & B \\ \hline & C & - & A, B \end{array}$$

$NFA \rightarrow DFA$

L = { Set of all strings over (0,1) that ends with '01' }. Construct its equivalent DFA

	0	1
→A	AB	Α
AB	AB	AC
* AC	AB	Α

Design an NFA for a language that accepts all strings over {0,1} in which the second last symbol is always '1'. Then convert it to its equivalent DFA.

	0	1
+ A	A	A.B
В	C	C
# C	ф	ф
ч		

	0	ı
→ A	A	AB
AB	AC	ABC
*AC	A	84
*ABC	AC	ABC

EXAMPLE 1

Convert the given NFA into DFA

EXAMPLE 2

• Find the equivalent DFA for the NFA given by $M = \{\{A,B,C\}, (a,b), \delta, A, \{C\}\}$ where δ is given by:

EXAMPLE 3

Design an NFA for a language and convert it to its equivalent DFA
L = set of all strings over {0,1} that contains 10

