Reading: 7.0-7.5

Last time:

- Network flow defn
- Bipartite matching reduction.

Today:

- Network flow
- duality: max flow = min cut

Algorithm: Ford-Fulkerson

- $f \leftarrow$ null flow.
- $G_f \leftarrow G$.
- while exists s-t path P in G_f (by BFS)
 - augment f with P.
 - $G_f \leftarrow \underline{\text{residual graph}} \text{ for } G \text{ and } f.$
- return f.

Example:

Max flow = 30.

Network Flow

Example:

Max flow = 30.

Idea: repeatedly pus flow on *s-t* paths until can't push anymore.

Example: Push 20 on P = (s, a, b, t)

Note: when pushing flow, we can undo flow already pushed.

Def: the <u>residual graph</u> G_f for flow f on G is the graph that represents capacity constraints for flows after pushing f

Example: G_f

Construction: $G_f \stackrel{b}{=} (V, E_f), c_f(\cdot)$: For each $e = (u, v) \in E$,

(if
$$f(e) = c(e)$$
 discard e)

- if f(e) < c(e),
 - add e to E_f
 - $c_f(e) = c(e) f(e)$
- if f(e) > 0
 - let e' = (v, u)
 - add e' to E_f
 - $\bullet \ c_f(e') = c(e') + f(e)$

Def: the <u>residual capacity</u> of e in E_f is $c_f(e)$.

Def: the <u>bottleneck</u> capacity of s-t path P in G_f is minimm residual capacity of any edge in P.

Def: an augmenting path P in a residual graph G_f is a path with positive bottleneck capacity.

Example: G_f after pushing 20 on P = (s, a, b, t)

Augmenting path P = b(s, b, a, t) with bottleneck capacity 10.

Augment f with flow of 10 on P:

- $f(s,b) \leftarrow f(s,b) + 10$
- $f(a,b) \leftarrow f(a,b) 10$
- $f(a,t) \leftarrow f(a,t) + 10$

Note: can find augmenting paths with BFS.

Algorithm: Augment f with P

• b = bottleneck (P, G_f) .

- for e in P:
 - \bullet if e a foward edge:

$$f(e) \leftarrow f(e) + b$$

 \bullet if e a back edge:

let
$$e' = \text{back edge}$$

$$f(e') \leftarrow f(e) - b$$
.

Example: G_f after augmenting with P = (s, b, a, t)

No more augmenting paths!

Algorithm: Ford-Fulkerson

- $f \leftarrow$ null flow.
- $G_f \leftarrow G$.
- while exists s-t path P in G_f (by BFS)
 - augment f with P.
 - $G_f \leftarrow \text{residual graph for } G \text{ and } f.$
- return f.

Runtime

Each iteration:

- construct G_f : O(m).
- find P: O(m).
- augmentation: O(n).
- (Total: O(m))

Fact: the value of flow increases by bottleneck capacity in each iteration.

Theorem: if C is upper bound on max flow and all capacities are integral then algorithm terminates in O(C) iterations with runtime O(mC)

Proof: (by "measure of progress")

- 1. bottleneck capacities integral:
 - current residual capacities integral
 - \Rightarrow integral bottleneck capacity
 - \Rightarrow next residual capacities integral
 - induction!
- 2. bottleneck capacities ≥ 1
- 3. flow increases by 1 each iteration
- 4. terminates in $\leq C$ iterations.

QED

Note: $C \leq \sum_{e \text{ out of } s} c(e)$.

Note: Clever choice of augmenting paths gives runtime $O(m^2 \log C)$.

Correctness

- 1. f is feasible.
- 2. f is optimal.

Lemma: *f* is feasible.

Proof: induction!

Max flow = min cut

"duality: for maximization problem there is corresponding minimization problem"

Recall: an s-t cut (A, B) is partition of V into A and B with $s \in A$ and $t \in B$.

Def: the capacity of cut
$$(A, B)$$
 is $c(A, B) = \sum_{e \text{ from } A \text{ to } B} c(e)$

Goal: flow algorithm is optimal

Proof Approach: primal = dual.

Claim 1: any flow f and any cut (A, B)then $|f| \le c(A, B)$.

Claim 2: for flow f^* with no augmenting path in G_{f^*} then exists cut (A^*, B^*) with $|f^*| = c(A^*, B^*)$

Picture:

Proof: (of theorem)

• all flows
$$|f| \underset{\text{by Claim 1}}{\leq} c(A^*, B^*) \underset{\text{by Claim 2}}{=} |f^*|.$$

Corollary: value of max flow = capacity of min cut

Lemma: for any flow
$$f$$
, cut (A, B) then,
$$|f| = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

Proof: (by picture, see text for formal proof)

Proof: (of Claim 1)

From Lemma:

Hermite.
$$|f| = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

Proof: $(\overline{of} C(AB))$ no s-t path in G_f :

- let A^* be vertices connected to s. $(B^* = V \setminus A^*)$
- (A^*, B^*) is cut:
 - $s \in S^*$
 - $t \in B^*$
- for all e = (u, v) out of A^* in G:
 - $e \notin G_f$ $\Rightarrow f^*(e) = c(e)$
- for all e = (u, v) in to A^* in G:
 - $e' = (v, u) \notin G_f$ $\Rightarrow f^*(e) = 0$
- Lemma

$$\Rightarrow |f| = \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ in to } A^*} f(e)$$
$$= \sum_{e \text{ out of } A^*} c(e) - 0$$
$$= c(A^*, B^*)$$

Summary

- algorithm: augmenting paths in residual graph.
- correctness: max-flow min-cut theorem.
- many problems can be reduced to network flows.
- entire courses on network flows.