+1/1/60+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et microscopique
- D macroscopique et mésoscopique

B uniquement mésoscopique

- E uniquement macroscopique
- C uniquement microscopique
- F microscopique et mésoscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

A aucun échange

- C uniquement les échanges de matière
- B uniquement les échanges d'énergie
- D les échanges d'énergie et de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

- A les échanges d'énergie et de matière
- C aucun échange
- B uniquement les échanges d'énergie
- D uniquement les échanges de matière

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

 $\boxed{\mathbf{A}} P_B = P_H + mg$

 $P_B = P_H + \frac{mg}{c}$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Le changement d'état de liquide à vapeur est la : Question 6

- A solidification
- C fusion

E liquéfaction

- B vaporisation
- D sublimation
- F condensation

Question 7 Le changement d'état de solide à liquide est la :

- A liquéfaction
- C sublimation
- E vaporisation

- B condensation
- D solidification
- F fusion

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} = \mathbf{0} = \mathbf{0}$
- $B \otimes = solide : \mathbf{0} = liquide : \mathbf{0} =$
- $\boxed{\mathbf{C}}$ 3 = liquide; 4 = vapeur; 5
- $D = \text{fluide supercritique}; \Theta =$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point A, le syst

100% à l'état vapeu

Question 13 Au point M, le syst

A 100% à l'éta

Feuille de	réponses	
------------	----------	--

Nom	et	pr€	no	m	:										

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J
	•••••

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C

+2/1/57+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et microscopique
- D microscopique et mésoscopique
- B macroscopique et mésoscopique
- E uniquement microscopique
- C uniquement macroscopique
- F uniquement mésoscopique

 ${\bf Question~2} ~~ {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~isol\'e~permet:}$

A aucun échange

- C uniquement les échanges d'énergie
- B les échanges d'énergie et de matière
- D uniquement les échanges de matière

 ${\bf Question~3} \hspace{0.5cm} \hbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:}$

- A uniquement les échanges d'énergie
- C les échanges d'énergie et de matière

B aucun échange

D uniquement les échanges de matière

 $\textbf{Question 4} \quad \text{Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiment contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :$

$$\boxed{\mathbf{A}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{C}} \ P_B = P_H + mg$$

$$\boxed{\mathbf{B}} P_B = P_H - \frac{mg}{S}$$

$$D P_B = P_B$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à gaz est la :

- A solidification
- C liquéfaction
- E vaporisation

B fusion

- D condensation
- F sublimation

 ${\bf Question}~{\bf 7}~~{\bf Le~changement~d'état~de~solide~à~liquide~est~la}:$

- A sublimation
- C fusion

E liquéfaction

- B solidification
- D condensation
- F vaporisation

Dans les trois questions suivai

Question 9 Les axes du diagram

$$oxed{A} oldsymbol{0} = P : oldsymbol{0} = V$$

$$\mathbf{B} \ \mathbf{0} = P \ ; \mathbf{0} = T$$

Question 10 Le point 6 est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

A 100% à l'état vapeu

Question 13 Au point M, le syst

A 100% à l'état liquid

Feuille de	réponses	
------------	----------	--

Nom	et	pr	éno	om	:											
					٠.	 ٠.		٠.	٠.	٠.	 	 ٠.				

QUESTION 1: A B C D E F

QUESTION 2: A B C DQUESTION 3: A B C D

QUESTION 4: A B C D

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+3/1/54+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

A uniquement mésoscopique

- D macroscopique et mésoscopique
- B macroscopique et microscopique
- E uniquement microscopique
- C microscopique et mésoscopique
- F uniquement macroscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D uniquement les échanges de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges de matière
- D uniquement les échanges d'énergie

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

 $\boxed{\mathbf{A}} P_B = P_H - \frac{mg}{S}$

 $\boxed{\mathbf{C}} P_B = P_H + mg$

 $\boxed{\mathrm{B}} P_B = P_H$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de liquide à vapeur est la :

A fusion

- C condensation
- E liquéfaction

- B sublimation
- D vaporisation
- F solidification

Question 7 Le changement d'état de solide à gaz est la :

- A sublimation
- C condensation
- E vaporisation

B fusion

- D solidification
- F liquéfaction

Dans les trois questions suivai

Question 9 Les axes du diagram

$$\boxed{\mathbf{A}} \mathbf{0} = T ; \mathbf{0} = P$$

$$\overline{\mathbf{B}}$$
 $\mathbf{0} = P$; $\mathbf{2} = T$

Question 10 Le point 8 est le p

A

Dans les trois questions suivant

Question 12 Au point A, le syst

100% à l'état liquie

Question 13 Au point B, le syste

A dans un état diphase

Feuille de	réponses	:
------------	----------	---

Nom	et	pr	éno	om	:											
					٠.	 ٠.		٠.	٠.	٠.	 	 ٠.				

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

QUESTION 4: A B C D

QUESTION 5:	F P J

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C

+4/1/51+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et microscopique
- D uniquement microscopique
- B macroscopique et mésoscopique
- E microscopique et mésoscopique

C uniquement mésoscopique

F uniquement macroscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges de matière
- D uniquement les échanges d'énergie

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D aucun échange

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} \ P_B = P_H$$

$$\begin{array}{|c|}\hline C & P_B = P_H + mg\\\hline D & P_B = P_H + \frac{mg}{S}\\\hline
\end{array}$$

$$\boxed{\mathbf{B}} P_B = P_H - \frac{mg}{S}$$

$$\boxed{\mathbf{D}} P_B = P_H + \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

A fusion

- C liquéfaction
- E solidification

- B condensation
- D sublimation
- F vaporisation

Question 7 Le changement d'état de liquide à vapeur est la :

- A condensation
- C solidification
- E liquéfaction

B fusion

- D vaporisation
- F sublimation

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} = \mathbf{0} = \mathbf{0}$
- $B = \text{liquide} : \mathbf{0} = \text{vapeur} : \mathbf{0}$
- $\overline{\mathbf{C}}$ $\mathbf{0}$ = solide : $\mathbf{0}$ = liquide : $\mathbf{0}$ =
- $D = \text{vapeur} ; \mathbf{0} = \text{fluide super}$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

100% à l'état vapeu

Au point B, le syste Question 13

A dans un état diphasé

Nom et p	rénom :	

QUESTION 1: A B C D E F

QUESTION 2: A B C D Question 3 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 4: A B C D

QUESTION 5:

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10 : A B

QUESTION 11: A B C D

QUESTION 12: A B C

+5/1/48+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et mésoscopique
- D uniquement mésoscopique
- B uniquement microscopique
- E macroscopique et microscopique
- C microscopique et mésoscopique
- F uniquement macroscopique

 $\mbox{\bf Question 2} \quad \mbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet :}$

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D aucun échange

 ${\bf Question~3} \qquad {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~ferm\'epermet~:}$

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière

B aucun échange

D uniquement les échanges d'énergie

 $\textbf{Question 4} \quad \text{Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiment contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :$

$$\boxed{\mathbf{A}} \ P_B = P_H + mg$$

$$\boxed{\mathbf{C}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{B}} \ P_B = P_H$$

$$\boxed{D} P_B = P_H - \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à gaz est la :

- A solidification
- C fusion

E condensation

- B sublimation
- D liquéfaction
- F vaporisation

Question 7 Le changement d'état de liquide à vapeur est la :

A fusion

- C solidification
- E condensation

- B sublimation
- D liquéfaction
- F vaporisation

Dans les trois questions suivai

Question 9 Les axes du diagram

$$oxed{A} oldsymbol{0} = T ; oldsymbol{0} = V$$

$$lacksquare$$
 \mathbf{B} $\mathbf{0}=P$; $\mathbf{0}=V$

Question 10 Le point 6 est le p

A

Dans les trois questions suivant

Question 12 Au point A, le syst

A 100% à l'état vapeu

Question 13 Au point M, le syst

A 100% à l'état

-	• • • • • • • • • • • • • • • • • • • •	1	réponses	
н	AIIIIA	α	rononcoc	•
т.	cume	ue	reponses	•

Nom	et	pr€	no	m	:										

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1 : \overline{A} \overline{B} \overline{C} \overline{D} \overline{E} \overline{F}

QUESTION 2: A B C DQUESTION 3: A B C D

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+6/1/45+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A microscopique et mésoscopique
- D uniquement macroscopique
- B macroscopique et microscopique
- E uniquement microscopique
- C macroscopique et mésoscopique
- F uniquement mésoscopique

 $\mbox{\bf Question 2} \quad \mbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet :} \label{eq:question 2}$

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière

B aucun échange

D uniquement les échanges d'énergie

 ${\bf Question~3} \hspace{0.5cm} \hbox{En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:} \\$

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges de matière
- D uniquement les échanges d'énergie

 $\textbf{Question 4} \quad \text{Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiment contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :$

 $\boxed{\mathbf{A}} P_B = P_H - \frac{mg}{S}$

 $\boxed{\mathbf{C}} P_B = P_H + mg$

 $\boxed{\mathrm{B}} P_B = P_H$

 $D P_B = P_H + \frac{mg}{S}$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

 ${\bf Question} \ {\bf 6} \quad \ \ {\bf Le} \ {\bf changement} \ {\bf d} \'{\bf e} {\bf tat} \ {\bf de} \ {\bf solide} \ {\bf \grave{a}} \ {\bf liquide} \ {\bf est} \ {\bf la} :$

- A sublimation
- C fusion

E liquéfaction

- B vaporisation
- D condensation
- F solidification

 ${\bf Question} \ {\bf 7} \qquad {\rm Le} \ {\rm changement} \ {\rm d}\'{\rm e}{\rm tat} \ {\rm de} \ {\rm solide} \ {\rm \grave{a}} \ {\rm gaz} \ {\rm est} \ {\rm la}:$

- A condensation
- C vaporisation
- E sublimation

- B liquéfaction
- D solidification
- F fusion

Dans les trois questions suivai

Question 9 Les axes du diagram

$$oxed{A} oldsymbol{0} = P ; oldsymbol{0} = V$$

$$\boxed{\mathrm{B}} \ \mathbf{0} = T ; \mathbf{0} = V$$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

A 100% à l'état liquie

Question 13 Au point A, le syste

A 100% à l'éta C dans

Feuille de	réponses	
------------	----------	--

Nom	et	pr	éno	om	:											
					٠.	 ٠.		٠.	٠.	٠.	 	 ٠.				

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J
	•••••

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C

+7/1/42+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement macroscopique
- D uniquement microscopique
- B macroscopique et microscopique
- E uniquement mésoscopique
- C macroscopique et mésoscopique
- F microscopique et mésoscopique

 ${\bf Question~2} \qquad \hbox{En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé} \\ {\bf permet:}$

A aucun échange

- C uniquement les échanges de matière
- B les échanges d'énergie et de matière
- D uniquement les échanges d'énergie

 ${\bf Question~3} \hspace{0.5cm} \hbox{En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:} \\$

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D aucun échange

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{C}} \ P_B = P_H + mg$$

$$\boxed{\mathbf{B}} \ P_B = P_H - \frac{mg}{S}$$

$$D P_B = P_H$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

- A solidification
- C condensation
- E fusion

- B sublimation
- D liquéfaction
- F vaporisation

 ${\bf Question} \ {\bf 7} \quad \ \ {\bf Le} \ {\bf changement} \ {\bf d} \'{\bf e} {\bf ta} \ {\bf ta} \ {\bf e} {\bf solide} \ {\bf a} \ {\bf gaz} \ {\bf est} \ {\bf la} \ {\bf .}$

- A sublimation
- C liquéfaction
- E vaporisation

B fusion

- D condensation
- F solidification

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} \ \mathbf{0} = \text{liquide} \ ; \mathbf{0} = \text{vapeur} \ ; \mathbf{0}$
- B = vapeur; $\Theta = \text{fluide super}$
- $\boxed{\mathbf{C}}$ $\mathbf{0}$ = fluide supercritique ; $\mathbf{0}$ =
- \overline{D} **3** = solide ; **4** = liquide ; **6** =

Question 10 Le point 3 est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

- A 100% à l'ét
 - C daı

Question 13 Au point A, le syste

A 100% à l'état

Feuille de	e réponses
------------	------------

Nom	et	pr	éno	om	:											
					٠.	 ٠.		٠.	٠.	٠.	 	 ٠.				

QUESTION 1 : \overline{A} \overline{B} \overline{C} \overline{D} \overline{E} \overline{F}

QUESTION 2: A B C DQUESTION 3: A B C D

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+8/1/37+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et mésoscopique
- D uniquement macroscopique
- B macroscopique et microscopique
- E uniquement microscopique
- C microscopique et mésoscopique
- F uniquement mésoscopique

 $\mbox{\bf Question 2} \quad \mbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet :}$

- A uniquement les échanges d'énergie
- C aucun échange
- B les échanges d'énergie et de matière
- D uniquement les échanges de matière

 ${\bf Question~3} \quad \hbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:}$

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D aucun échange

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{A} P_B = P_H + \frac{mg}{S}$$

$$C$$
 $P_B = P_H$

$$\boxed{\mathbf{B}} \ P_B = P_H - \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de liquide à vapeur est la :

- A vaporisation
- C solidification
- E fusion

- B condensation
- D sublimation
- F liquéfaction

 ${\bf Question} \ {\bf 7} \quad \ \ {\bf Le} \ {\bf changement} \ {\bf d'\acute{e}tat} \ {\bf de} \ {\bf solide} \ {\bf \grave{a}} \ {\bf gaz} \ {\bf est} \ {\bf la} :$

- A liquéfaction
- C solidification
- E vaporisation

B fusion

- D condensation
- F sublimation

Dans les trois questions suivai

Question 9 Les axes du diagram

$$\boxed{\mathbf{A}} \mathbf{0} = T ; \mathbf{0} = P$$

$$lacksquare$$
 $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

A 100% à l'état liquie

Question 13 Au point A, le syste

A 100% à l'état liquid

[

Feuille de	réponses	
------------	----------	--

Nom et prénom :	

QUESTION 1 : \overline{A} \overline{B} \overline{C} \overline{D} \overline{E} \overline{F}

QUESTION 2: A B C DQUESTION 3: A B C D

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J

Question 6: A B C D E F

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

Question 13 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+9/1/34+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement macroscopique
- D uniquement mésoscopique
- B uniquement microscopique
- E macroscopique et microscopique
- C microscopique et mésoscopique
- F macroscopique et mésoscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière
- B uniquement les échanges d'énergie
- D aucun échange

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

A aucun échange

- C uniquement les échanges d'énergie
- B les échanges d'énergie et de matière
- D uniquement les échanges de matière

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} \ P_B = P_H$$

$$\begin{array}{|c|}\hline C & P_B = P_H + mg\\\hline D & P_B = P_H - \frac{mg}{S}\end{array}$$

$$\boxed{\mathbf{B}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{D}} P_B = P_H - \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

- A sublimation
- C solidification
- E vaporisation

B fusion

- D liquéfaction
- F condensation

Question 7 Le changement d'état de liquide à vapeur est la :

- A solidification
- C vaporisation
- E liquéfaction

B fusion

- D sublimation
- F condensation

Dans les trois questions suivai

Question 9 Les axes du diagram

$$\boxed{\mathbf{A}} \ \mathbf{0} = P \; ; \; \mathbf{0} = V$$

$$\boxed{\mathbf{B}} \mathbf{0} = P ; \mathbf{0} = T$$

Question 10 Le point 8 est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

A dans un état dipha

Question 13 Au point M, le syst

100% à l'état vapeur

No	or	n	(et	,	r	1	É	er	10	0	n	n	:																			

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C

+10/1/31+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement microscopique
- D macroscopique et mésoscopique
- B microscopique et mésoscopique
- E uniquement macroscopique
- C macroscopique et microscopique
- F uniquement mésoscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D uniquement les échanges de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges de matière
- D uniquement les échanges d'énergie

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

 $\boxed{\mathbf{A}} \ P_B = P_H + mg$

 $P_B = P_H - \frac{mg}{c}$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Le changement d'état de liquide à vapeur est la : Question 6

- A solidification
- C condensation
- E liquéfaction

- B sublimation
- D fusion

F vaporisation

Question 7 Le changement d'état de solide à liquide est la :

- A condensation
- C liquéfaction
- E vaporisation

B fusion

- D sublimation
- F solidification

Dans les trois questions suivai

Question 9 Les axes du diagram

$$oxed{A} oldsymbol{0} = P : oldsymbol{0} = T$$

$$\boxed{\mathrm{B}} \ \mathbf{0} = T ; \mathbf{0} = P$$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point A, le syst

A dans un état dipha

Question 13 Au point B, le syste

> A 100% à l'éta C dans

Feuille de	réponses	
------------	----------	--

No	01	n	L	e	t])	r	é	n	C)]	Υ	1	:																																
٠.	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	

QUESTION 1 : \overline{A} \overline{B} \overline{C} \overline{D} \overline{E} \overline{F}

QUESTION 2: A B C D
QUESTION 3: A B C D

QUESTION 4: A B C D

QUESTION 5:	F P J
	• • • • • • • • •

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+11/1/28+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et microscopique
- D microscopique et mésoscopique
- B macroscopique et mésoscopique
- E uniquement macroscopique

C uniquement mésoscopique

F uniquement microscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière

B aucun échange

D uniquement les échanges d'énergie

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière

B aucun échange

D uniquement les échanges d'énergie

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} \ P_B = P_H$$

$$\begin{array}{|c|}\hline C & P_B = P_H + mg\\\hline D & P_B = P_H + \frac{mg}{S}\\\hline
\end{array}$$

$$\overline{\mathbf{B}} P_B = P_H - \frac{mg}{S}$$

$$\boxed{\mathbf{D}} P_B = P_H + \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Le changement d'état de solide à gaz est la : Question 6

- A solidification
- C condensation
- E fusion

- B sublimation
- D liquéfaction
- F vaporisation

Question 7 Le changement d'état de solide à liquide est la :

- A condensation
- C liquéfaction
- E solidification

- B sublimation
- D fusion

- F vaporisation

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}}$ $\mathbf{0}$ = solide; $\mathbf{0}$ = liquide; $\mathbf{0}$ =
- $B = \text{liquide} : \mathbf{0} = \text{vapeur} : \mathbf{0}$
- $\boxed{\mathbf{C}}$ **3** = vapeur ; **9** = fluide super
- $D = \text{fluide supercritique}; \Theta =$

Question 10 Le point 8 est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

- A 100% à l'ét
 - C daı

Au point A, le syste Question 13

> A 100% à l'état C dans

:

Nom et p	orénon	ı :		

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J
	•••••

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

QUESTION 11: A B C D

QUESTION 12: A B C

+12/1/23+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement microscopique
- D macroscopique et mésoscopique
- B uniquement macroscopique
- E macroscopique et microscopique

- C uniquement mésoscopique
- F microscopique et mésoscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

- A uniquement les échanges d'énergie
- C aucun échange
- B les échanges d'énergie et de matière
- D uniquement les échanges de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière
- B uniquement les échanges d'énergie
- D aucun échange

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} P_B = P_H - \frac{mg}{S}$$

$$\boxed{\mathbb{C}} P_B = P_H + mg$$

$$\boxed{\mathbf{B}} P_B = P_H$$

$$\boxed{D} P_B = P_H + \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Le changement d'état de liquide à vapeur est la :

- A liquéfaction
- C vaporisation
- E fusion

- B sublimation
- D condensation
- F solidification

Question 7 Le changement d'état de solide à gaz est la :

- A liquéfaction
- C fusion

E condensation

- B vaporisation
- D sublimation
- F solidification

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}}$ $\mathbf{0}$ = solide; $\mathbf{0}$ = liquide; $\mathbf{0}$ =
- $B = vapeur : \mathbf{0} = fluide super$
- $\boxed{\mathbf{C}}$ 3 = liquide; 4 = vapeur; 5
- $D = \text{fluide supercritique}; \Theta =$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

A dans un état diphas

Question 13 Au point M, le syst

- A 100% à l'état

Feuille	e de	réponses	:
LCuiii	uc	CPOLIDED	•

No	or.	n	(et	,	p	r	É	r	10)	n	1	:																			

QUESTION 1: A B C D E F

QUESTION 2: A B C D QUESTION 3: A B C D

QUESTION 4: A B C D

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C

+13/1/20+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A microscopique et mésoscopique
- D uniquement macroscopique

B uniquement mésoscopique

- E macroscopique et microscopique
- C uniquement microscopique
- F macroscopique et mésoscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

- A uniquement les échanges de matière
- C aucun échange
- B les échanges d'énergie et de matière
- D uniquement les échanges d'énergie

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:

- A uniquement les échanges d'énergie
- C les échanges d'énergie et de matière
- B uniquement les échanges de matière
- D aucun échange

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} \ P_B = P_H$$

$$\boxed{\mathbf{C}} P_B = P_H - \frac{mg}{S}$$

$$\boxed{\mathbf{B}} \ P_B = P_H + mg$$

$$\boxed{\mathbf{D}} \ P_B = P_H + \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à gaz est la :

- A vaporisation
- C fusion

E sublimation

- B liquéfaction
- D solidification
- F condensation

Question 7 Le changement d'état de solide à liquide est la :

- A solidification
- C vaporisation
- E sublimation

B fusion

- D condensation
- F liquéfaction

Dans les trois questions suivai

Question 9 Les axes du diagram

$$\boxed{\mathbf{A}} \mathbf{0} = P ; \mathbf{0} = V$$

$$lacksquare$$
 $\mathbf{0} = T$; $\mathbf{0} = V$

Question 10 Le point 8 est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

A dans un état dipha:

Question 13 Au point M, le syst

100% à l'état vapeur

Feuille de	réponses	
------------	----------	--

No	m	е	t	p	ré	ér	ıc	n	1	:																											
• • •	٠.	•	٠.	•			٠	٠.	٠	•	٠	•	٠	•	•	٠	•	•	٠	•	•			•	٠	٠	٠	•	٠	•	•	•	•	 •	•	•	

QUESTION 1: A B C D E F

QUESTION 2: A B C D Question 3 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 4: A B C D

Question 5	:
------------	---

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10 : A B

QUESTION 11: A B C D

QUESTION 12: A B C

+14/1/17+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement macroscopique
- D macroscopique et microscopique

B uniquement mésoscopique

- E macroscopique et mésoscopique
- C microscopique et mésoscopique
- F uniquement microscopique

 ${\bf Question~2} \quad \ \ {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~ferm\'epermet:}$

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges de matière
- D uniquement les échanges d'énergie

 ${\bf Question~3} \qquad {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~ouvert} \\ {\bf permet~:}$

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière

B aucun échange

D uniquement les échanges d'énergie

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} \ P_B = P_H$$

$$\boxed{\mathbb{C}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{B}} \ P_B = P_H + mg$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de liquide à vapeur est la :

A fusion

- C sublimation
- E condensation

- B vaporisation
- D liquéfaction
- F solidification

Question 7 Le changement d'état de solide à gaz est la :

- A condensation
- C sublimation
- E vaporisation

B fusion

- D solidification
- F liquéfaction

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} \cdot \mathbf{0} = \text{vapeur} \; ; \; \mathbf{0} = \text{fluide super}$
- $\mathbf{B} \mid \mathbf{0} = \text{fluide supercritique} : \mathbf{0} =$
- $\boxed{\mathbf{C}}$ **3** = solide; **4** = liquide; **5** =
- $D = \text{liquide} ; \mathbf{0} = \text{vapeur} ; \mathbf{0}$

A

Dans les trois questions suivant

Question 12 Au point A, le syst

- A 100% à l'ét
 - C daı

Question 13 Au point B, le syste

A 100% à l'état vapeur

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 10 : A B

QUESTION 11: A B C D

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+15/1/14+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et mésoscopique
- D uniquement mésoscopique
- B uniquement macroscopique
- E microscopique et mésoscopique
- C uniquement microscopique
- F macroscopique et microscopique

 ${\bf Question~2} ~~ {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~isol\'e~permet:}$

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D uniquement les échanges de matière

 ${\bf Question~3} \qquad {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~ferm\'epermet~:}$

- A uniquement les échanges d'énergie
- C uniquement les échanges de matière

B aucun échange

D les échanges d'énergie et de matière

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} P_B = P_H$$

$$\boxed{\mathbb{C}} P_B = P_H - \frac{mg}{S}$$

$$\boxed{\mathbf{B}} \ P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{D}} \ P_B = P_H + mg$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

- A condensation
- C sublimation
- E fusion

- B vaporisation
- D solidification
- F liquéfaction

Question 7 Le changement d'état de liquide à vapeur est la :

- A solidification
- C vaporisation
- E sublimation

- B liquéfaction
- D fusion

F condensation

Dans les trois questions suivai

Question 9 Les axes du diagram

$$oxed{A} oldsymbol{0} = T ; oldsymbol{0} = V$$

$$\blacksquare$$
 $\mathbf{0} = T$; $\mathbf{2} = P$

Question 10 Le point 6 est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

C daı

Question 13 Au point A, le syste

Feuille de	réponses	
------------	----------	--

No	m	е	t	p	ré	ér	ıc	n	1	:																											
• • •	٠.	•	٠.	•			٠	٠.	٠	•	٠	•	٠	•	•	٠	•	•	٠	•	•			•	٠	٠	٠	•	٠	•	•	•	•	 •	•	•	

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

QUESTION 4: A B C D

QUESTION 5:	F P J

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

QUESTION 11: A B C D

QUESTION 12: A B C

+16/1/11+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement microscopique
- D uniquement macroscopique
- B microscopique et mésoscopique
- E uniquement mésoscopique
- C macroscopique et microscopique
- F macroscopique et mésoscopique

 $\begin{tabular}{ll} \bf Question~2 & En termes~d'échanges~avec~le~milieu~ext\'erieur,~un~syst\`em~ethermodynamique~ouvert~permet~: \\ \end{tabular}$

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges de matière
- D uniquement les échanges d'énergie

 ${\bf Question~3} \hspace{0.5cm} \hbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:} \\$

A aucun échange

- C uniquement les échanges de matière
- B les échanges d'énergie et de matière
- D uniquement les échanges d'énergie

 $\textbf{Question 4} \quad \text{Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiment contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :$

$$\boxed{\mathbf{A}} P_B = P_H + \frac{mg}{S}$$

$$C$$
 $P_B = P_H$

$$\boxed{\mathbf{B}} \ P_B = P_H - \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de liquide à vapeur est la :

- A vaporisation
- C liquéfaction
- $oxed{\mathbb{E}}$ solidification

B fusion

- D condensation
- F sublimation

 ${\bf Question} \ {\bf 7} \quad \ \ {\bf Le} \ {\bf changement} \ {\bf d'\acute{e}tat} \ {\bf de} \ {\bf solide} \ {\bf \grave{a}} \ {\bf gaz} \ {\bf est} \ {\bf la} \ :$

- A sublimation
- C condensation
- E fusion

- B solidification
- D vaporisation
- F liquéfaction

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} = \mathbf{S} = \mathbf{S} = \mathbf{A} = \mathbf{A}$
- $\mathbf{B} \mid \mathbf{0} = \text{fluide supercritique} \; ; \mathbf{0} =$
- C Θ = vapeur ; Θ = fluide super
- $D = \text{liquide} ; \bullet = \text{vapeur} ; \bullet$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point A, le syst

A dans un état diphas

Question 13 Au point M, le syst

A dans un état diphase

(

Feuille de	réponses	
------------	----------	--

No	m	е	t	p	ré	ér	ıc	n	1	:																											
• • •	٠.	•	٠.	•			٠	٠.	٠	•	٠	•	٠	•	•	٠	•	•	٠	•	•			•	٠	٠	٠	•	٠	•	•	•	•	 •	•	•	

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION	5	:
& CLDIIOI	9	•

QUESTION 5:	F P J

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C

Question 13 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+17/1/8+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement macroscopique
- D macroscopique et microscopique

B uniquement mésoscopique

- E microscopique et mésoscopique
- C uniquement microscopique
- F macroscopique et mésoscopique

 ${\bf Question~2} ~~ {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~isol\'e~permet:}$

A aucun échange

- C uniquement les échanges de matière
- B uniquement les échanges d'énergie
- D les échanges d'énergie et de matière

 ${\bf Question~3} \qquad {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur, un~syst\`eme~thermodynamique~ouvert~permet~:}$

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D aucun échange

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} \ P_B = P_H$$

$$\boxed{\mathbb{C}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathrm{B}} P_B = P_H - \frac{mg}{S}$$

$$\boxed{\mathbf{D}} \ P_B = P_H + mg$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

- A vaporisation
- C fusion

E solidification

- B sublimation
- D liquéfaction
- F condensation

 ${\bf Question} \ {\bf 7} \qquad {\bf Le} \ {\bf changement} \ {\bf d'état} \ {\bf de} \ {\bf liquide} \ {\bf \grave{a}} \ {\bf vapeur} \ {\bf est} \ {\bf la} :$

- A solidification
- C condensation
- E sublimation

- B liquéfaction
- D vaporisation
- F fusion

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} \bullet = \text{vapeur} \; ; \bullet = \text{fluide super}$
- $B \mid \mathbf{0} = \text{liquide} ; \mathbf{0} = \text{vapeur} ; \mathbf{0}$
- C fluide supercritique ; =
- $D | \mathbf{0} = \text{solide} ; \mathbf{0} = \text{liquide} ; \mathbf{0} =$

A

Dans les trois questions suivant

Question 12 Au point B, le syst

- A 100% à l'étε
 - C daı

Question 13 Au point A, le syste

- A 100% à l'éta
 - C dans

-	• • • • • • • • • • • • • • • • • • • •	1	réponses	
н	AIIIIA	α	rononcoc	•
Т.	cume	ue	reponses	•

Nom et préne	om:	

QUESTION 1 : A B C D E F

QUESTION 2: \overline{A} \overline{B} \overline{C} \overline{D} QUESTION 3: \overline{A} \overline{B} \overline{C} \overline{D}

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J

QUESTION 6 : [A] [B] [C] [D] [E] [F]

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+18/1/3+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et microscopique
- D microscopique et mésoscopique
- B macroscopique et mésoscopique
- E uniquement macroscopique

C uniquement mésoscopique

F uniquement microscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

- A uniquement les échanges de matière
- C uniquement les échanges d'énergie

B aucun échange

D les échanges d'énergie et de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:

- A uniquement les échanges de matière
- C uniquement les échanges d'énergie
- B les échanges d'énergie et de matière
- D aucun échange

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{A} P_B = P_H - \frac{mg}{S}$$

$$[C]$$
 $P_B = P_H$

$$\boxed{\mathbf{B}} P_B = P_H + \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à gaz est la :

- A liquéfaction
- C vaporisation
- E condensation

- B solidification
- D fusion

F sublimation

Question 7 Le changement d'état de solide à liquide est la :

- A sublimation
- C liquéfaction
- E condensation

- B vaporisation
- D fusion

- F solidification

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} = \mathbf{0} = \mathbf{0}$
- $B = solide : \mathbf{0} = liquide : \mathbf{0} =$
- $\boxed{\mathbf{C}}$ 3 = liquide; 4 = vapeur; 5
- $D = \text{fluide supercritique}; \Theta =$

Question 10 Le point 8 est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

100% à l'état liquie

Au point B, le syste Question 13

A dans un état diphasé

Feuille de	réponses	
------------	----------	--

Nom	et	pré	nor	n :									
					٠.	 	 	 	 	 	 		

QUESTION 1 : \overline{A} \overline{B} \overline{C} \overline{D} \overline{E} \overline{F}

QUESTION 2: A B C DQUESTION 3: A B C D

QUESTION 4: A B C D

QUESTION 5:	F P J

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+19/1/60+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A microscopique et mésoscopique
- D uniquement microscopique
- B macroscopique et mésoscopique
- E uniquement macroscopique
- C macroscopique et microscopique
- F uniquement mésoscopique

 ${\bf Question~2} \qquad {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~ferm\'epermet:}$

- A les échanges d'énergie et de matière
- C aucun échange
- B uniquement les échanges de matière
- D uniquement les échanges d'énergie

 ${\bf Question~3} \hspace{0.5cm} \hbox{En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:} \\$

- A les échanges d'énergie et de matière
- C uniquement les échanges d'énergie

B aucun échange

D uniquement les échanges de matière

 $\textbf{Question 4} \quad \text{Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiment contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :$

$$\boxed{A} P_B = P_H - \frac{mg}{S}$$

$$\square$$
 $P_B = P_B$

$$\boxed{\mathbf{B}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{D}} P_B = P_H + mg$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

- A sublimation
- C condensation
- E vaporisation

- B liquéfaction
- D solidification
- F fusion

 ${\bf Question} \ {\bf 7} \quad \ \ {\bf Le} \ {\bf changement} \ {\bf d'\acute{e}tat} \ {\bf de} \ {\bf solide} \ {\bf \grave{a}} \ {\bf gaz} \ {\bf est} \ {\bf la} \ :$

- A sublimation
- C condensation
- B solidification
- D liquéfaction
- F vaporisation
- E fusion

Dans les trois questions suivai

Question 9 Les axes du diagram

$$oxed{A} oldsymbol{0} = T : oldsymbol{0} = P$$

$$\blacksquare$$
 $\mathbf{0} = P ; \mathbf{0} = V$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

Question 13 Au point B, le syste

A 100% à l'état vapeur

Feuille	de	réponses	:

Nom	et	pré	nor	n :									
					٠.	 	 	 	 	 	 		

QUESTION 1 : [A] [B] [C] [D] [E] [F]

QUESTION 2 : \overline{A} \overline{B} \overline{C} \overline{D} QUESTION 3 : \overline{A} \overline{B} \overline{C} \overline{D}

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	FPJ

QUESTION 6 : [A] [B] [C] [D] [E] [F]

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+20/1/57+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement macroscopique
- D uniquement microscopique

B uniquement mésoscopique

- E macroscopique et mésoscopique
- C microscopique et mésoscopique
- F macroscopique et microscopique

 $\mbox{\bf Question 2} \quad \mbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet :} \label{eq:question 2}$

- A uniquement les échanges d'énergie
- C uniquement les échanges de matière
- B les échanges d'énergie et de matière
- D aucun échange

 ${\bf Question~3} \qquad {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~ferm\'epermet~:}$

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière

B aucun échange

D uniquement les échanges d'énergie

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} \ P_B = P_H$$

$$\boxed{\mathbf{C}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{B}} \ P_B = P_H + mg$$

$$\boxed{\mathbf{D}} P_B = P_H - \frac{mg}{S}$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de liquide à vapeur est la :

- A sublimation
- C condensation
- E solidification

B fusion

- D vaporisation
- F liquéfaction

Question 7 Le changement d'état de solide à gaz est la :

- A sublimation
- C liquéfaction
- E vaporisation

- B condensation
- D solidification
- F fusion

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} \cdot \mathbf{0} = \text{vapeur} \; ; \; \mathbf{0} = \text{fluide super}$
- $\mathbf{B} \mid \mathbf{0} = \text{fluide supercritique} : \mathbf{0} =$
- $\overline{\mathbf{C}}$ $\mathbf{3}$ = liquide; $\mathbf{4}$ = vapeur; $\mathbf{5}$
- $\boxed{\mathbf{D}}$ **3** = solide; **4** = liquide; **6** =

A

Dans les trois questions suivant

Question 12 Au point A, le syst

A dans un état dipha

Question 13 Au point M, le syst

A 100% à l'état

										_
										ı
Feuille de ré	ép	O	ns	es	S :	:				

Noi	n	et	t :	pı	é	n	01	n	:															
		٠.		٠.											 									

QUESTION 1: A B C D E F

QUESTION 2: A B C D Question 3: A B C D

QUESTION 4: A B C D

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

QUESTION 11: A B C D

QUESTION 12: A B C

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et mésoscopique
- D uniquement macroscopique
- B macroscopique et microscopique
- E microscopique et mésoscopique
- C uniquement microscopique
- F uniquement mésoscopique

 ${\bf Question~2} ~~ {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~isol\'e~permet:}$

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière

B aucun échange

D uniquement les échanges d'énergie

 ${\bf Question~3} \hspace{0.5cm} \hbox{En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:} \\$

- A uniquement les échanges d'énergie
- C aucun échange
- B uniquement les échanges de matière
- D les échanges d'énergie et de matière

 $\textbf{Question 4} \quad \text{Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :$

 $\boxed{\mathbf{A}} P_B = P_H + \frac{mg}{S}$

 \square $P_B = P_H - \frac{mg}{S}$

 $\boxed{\mathbf{B}} \ P_B = P_H + mg$

 $\boxed{\mathbf{D}} P_B = P_H$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

A fusion

- C solidification
- E sublimation

- B condensation
- D vaporisation
- F liquéfaction

Question 7 Le changement d'état de liquide à vapeur est la :

- A solidification
- C liquéfaction
- E fusion

- B condensation
- D sublimation
- F vaporisation

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}}$ $\mathbf{0}$ = solide; $\mathbf{0}$ = liquide; $\mathbf{0}$ =
- $\overline{\mathbf{B}}$ $\mathbf{0}$ = fluide supercritique ; $\mathbf{0}$ =
- $\boxed{\mathbf{C}}$ 3 = liquide; 4 = vapeur; 5
- $D = \text{vapeur} ; \mathbf{0} = \text{fluide super}$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

- A 100% à l'étε
 - C daı

Question 13 Au point A, le syste

A 100% à l'état liquid

[

Feuille de re	éponses
---------------	---------

Nom	et	pr	éno	om	:											
					٠.	 ٠.		٠.	٠.	٠.	 	 ٠.				

QUESTION 1 : [A] [B] [C] [D] [E] [F]

QUESTION 2: A B C D QUESTION 3: A B C D

QUESTION 4: A B C D

QUESTION 5:	F P J

QUESTION 6: A B C D E F

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+22/1/49+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A macroscopique et mésoscopique
- D uniquement mésoscopique
- B macroscopique et microscopique
- E uniquement microscopique
- C uniquement macroscopique
- F microscopique et mésoscopique

 ${\bf Question~2} ~~ {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~isol\'e~permet:}$

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière

B aucun échange

D uniquement les échanges d'énergie

 ${\bf Question~3} \qquad {\bf En~termes~d'\'echanges~avec~le~milieu~ext\'erieur,~un~syst\`eme~thermodynamique~ferm\'epermet~:}$

A aucun échange

- C uniquement les échanges d'énergie
- B uniquement les échanges de matière
- D les échanges d'énergie et de matière

 $\textbf{Question 4} \quad \text{Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiment contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :$

 $\boxed{\mathbf{A}} \ P_B = P_H + mg$

 \square $P_B = P_H + \frac{mg}{S}$

 $\boxed{\mathrm{B}} P_B = P_H - \frac{mg}{S}$

 $\boxed{\mathbf{D}} P_B = P_H$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de liquide à vapeur est la :

- A vaporisation
- C fusion

E liquéfaction

- B solidification
- D condensation
- F sublimation

Question 7 Le changement d'état de solide à liquide est la :

- A liquéfaction
- C sublimation
- E vaporisation

- B condensation
- D solidification
- F fusion

Dans les trois questions suivai

Question 9 Les zones du diagram

- $\overline{\mathbf{A}}$ **3** = solide; **4** = liquide; **6** =
- $\mathbf{B} \mid \mathbf{0} = \text{fluide supercritique} \; ; \mathbf{0} =$
- $\boxed{\mathbb{C}}$ \bullet = vapeur ; \bullet = fluide super
- $\overline{\mathbf{D}} \, \, \mathbf{0} = \text{liquide} \, ; \, \mathbf{0} = \text{vapeur} \, ; \, \mathbf{0}$

Question 10 Le point 3 est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

- $\boxed{\mathrm{A}}$ 100% à l'ét
 - C daı

Question 13 Au point A, le syste

A 100% à l'état vapeur

(

T3 •11	1	•	
HAIIIIA	α	rononcoc	•
reume	ue	réponses	•

Noi	n	et	t :	pı	é	n	01	n	:															
		٠.		٠.											 									

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

QUESTION 4: A B C D

QUESTION 5:	F P J
	• • • • • • • • •

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C

+23/1/44+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

A uniquement mésoscopique

- D uniquement microscopique
- B uniquement macroscopique
- E macroscopique et mésoscopique
- C microscopique et mésoscopique
- F macroscopique et microscopique

 $\mbox{\bf Question 2} \quad \mbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet :} \label{eq:question 2}$

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière

B aucun échange

D uniquement les échanges d'énergie

 ${\bf Question~3} \qquad \hbox{En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:}$

A aucun échange

- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D uniquement les échanges de matière

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$A$$
 $P_B = P_H$

$$\boxed{\mathbf{C}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{B}} P_B = P_H + mg$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à gaz est la :

- A sublimation
- C liquéfaction
- E vaporisation

- B solidification
- D condensation
- F fusion

 ${\bf Question} \ {\bf 7} \quad \ \ {\bf Le} \ {\bf changement} \ {\bf d'état} \ {\bf de} \ {\bf liquide} \ {\bf \hat{a}} \ {\bf vapeur} \ {\bf est} \ {\bf la} :$

- A sublimation
- C condensation
- E fusion

- B solidification
- D vaporisation
- F liquéfaction

Dans les trois questions suivai

Question 9 Les axes du diagram

$$oxed{A} oldsymbol{0} = P ; oldsymbol{0} = V$$

$$\blacksquare$$
 $\mathbf{0} = T$; $\mathbf{2} = P$

Question 10 Le point 3 est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

A 100% à l'état vapeu

Question 13 Au point B, le syste

A dans un état diphasé

Feuille de	réponses	
------------	----------	--

Nom	et p	réno	m:				

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

Question 4 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 5:	F P J
	•••••

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C

+24/1/41+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

A uniquement mésoscopique

- D microscopique et mésoscopique
- B macroscopique et mésoscopique
- E uniquement macroscopique
- C uniquement microscopique
- F macroscopique et microscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

- A uniquement les échanges d'énergie
- C les échanges d'énergie et de matière

B aucun échange

D uniquement les échanges de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D aucun échange

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

$$\boxed{\mathbf{A}} P_B = P_H + mg$$

$$\boxed{\mathbf{C}} P_B = P_H + \frac{mg}{S}$$

$$\boxed{\mathbf{B}} \ P_B = P_H$$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

- A vaporisation
- C condensation
- E liquéfaction

B fusion

- D solidification
- F sublimation

Question 7 Le changement d'état de solide à gaz est la :

- A sublimation
- C condensation
- E solidification

- B vaporisation
- D fusion

- F liquéfaction

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} = \mathbf{0} = \mathbf{0}$
- $B \otimes = solide : \mathbf{0} = liquide : \mathbf{0} =$
- $\boxed{\mathbf{C}}$ 3 = liquide; 4 = vapeur; 5
- $D = \text{fluide supercritique}; \Theta =$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point A, le syst

100% à l'état vapeu

Au point M, le syst Question 13

A dans un état diphase

Feuille de	réponses	
------------	----------	--

Nom	et p	réno	m:				

QUESTION 1 : \overline{A} \overline{B} \overline{C} \overline{D} \overline{E} \overline{F}

QUESTION 2 : \overline{A} \overline{B} \overline{C} \overline{D} QUESTION 3 : \overline{A} \overline{B} \overline{C} \overline{D}

Question $4: \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$

QUESTION 5:	F P J

Question 6: A B C D E F

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+25/1/38+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement microscopique
- D macroscopique et mésoscopique
- B macroscopique et microscopique
- E uniquement macroscopique
- C microscopique et mésoscopique
- F uniquement mésoscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière
- B uniquement les échanges d'énergie
- D aucun échange

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:

- A uniquement les échanges de matière
- C uniquement les échanges d'énergie

B aucun échange

D les échanges d'énergie et de matière

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

 $\boxed{A} P_B = P_H + \frac{mg}{S}$

 $\boxed{\mathrm{B}} P_B = P_H + mg$

 $\begin{array}{|c|c|}
\hline{C} P_B = P_H \\
\hline{D} P_B = P_H - \frac{mg}{S}
\end{array}$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Le changement d'état de solide à liquide est la : Question 6

A fusion

- C liquéfaction
- E solidification

- B sublimation
- D condensation
- F vaporisation

Le changement d'état de liquide à vapeur est la : Question 7

A fusion

- C vaporisation
- E solidification

- B sublimation
- D condensation
- F liquéfaction

Dans les trois questions suivai

Question 9 Les axes du diagram

$$oxed{A} oldsymbol{0} = P ; oldsymbol{0} = V$$

$$\boxed{\mathbf{B}} \mathbf{0} = P ; \mathbf{0} = T$$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point A, le syst

100% à l'état vapeu

Question 13 Au point B, le syste

100% à l'état vapeur

No	m	е	t	p	ré	ér	ıc	n	1	:																											
• • •	٠.	•	٠.	•			٠	٠.	٠	•	٠	•	٠	•	•	٠	•	•	٠	•	•	•	 	•	٠	٠	٠	•	٠	•	•	•	•	 •	•	•	

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

QUESTION 4: A B C D

QUESTION	5	:
& CLDIIOI	\circ	•

QUESTION 5:	F P J
	• • • • • • • •

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

QUESTION 11: A B C D

QUESTION 12: A B C

+26/1/35+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A microscopique et mésoscopique
- D macroscopique et microscopique
- B uniquement microscopique
- E macroscopique et mésoscopique

C uniquement mésoscopique

F uniquement macroscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

A aucun échange

- C uniquement les échanges d'énergie
- B les échanges d'énergie et de matière
- D uniquement les échanges de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière

B aucun échange

D uniquement les échanges d'énergie

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

 $\boxed{A} P_B = P_H - \frac{mg}{S}$

 $\boxed{\mathbb{C}} P_B = P_H + mg$

 $\boxed{\mathbf{B}} P_B = P_H$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à gaz est la :

- A solidification
- C liquéfaction
- E sublimation

- B vaporisation
- D condensation
- F fusion

Question 7 Le changement d'état de liquide à vapeur est la :

- A liquéfaction
- C fusion

E solidification

- B condensation
- D vaporisation
- F sublimation

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}}$ $\mathbf{0}$ = solide; $\mathbf{0}$ = liquide; $\mathbf{0}$ =
- $B = \text{liquide} : \mathbf{0} = \text{vapeur} : \mathbf{0}$
- $\boxed{\mathbf{C}}$ **3** = vapeur ; **9** = fluide super
- $D = \text{fluide supercritique}; \Theta =$

Question 10 Le point 8 est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

100% à l'état vapeu

Au point B, le syste Question 13

A dans un état diphase

Fauilla	do	réponses	
reume	ue	reponses	•

Nom et préne	om:	

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1 : A B C D E F

QUESTION 2: A B C D Question 3: A B C D

QUESTION 4: A B C D

QUESTION	5	:
Q C L D I I C I I	_	•

QUESTION 5:	F P J

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

QUESTION 9: A B C D

QUESTION 10: A B

Question 11 : [A] [B] [C] [D]

QUESTION 12: A B C

+27/1/32+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement mésoscopique
- D uniquement microscopique
- B macroscopique et microscopique
- E microscopique et mésoscopique
- C macroscopique et mésoscopique
- F uniquement macroscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet:

A aucun échange

- C uniquement les échanges de matière
- B uniquement les échanges d'énergie
- D les échanges d'énergie et de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

A aucun échange

- C uniquement les échanges d'énergie
- B les échanges d'énergie et de matière
- D uniquement les échanges de matière

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

 $\boxed{\mathbf{A}} P_B = P_H + mg$

 \square $P_B = P_H - \frac{mg}{S}$

 $B P_B = P_H$

 $\boxed{\mathbf{D}} P_B = P_H + \frac{mg}{S}$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à liquide est la :

- A condensation
- C solidification
- E fusion

- B liquéfaction
- D vaporisation
- F sublimation

Question 7 Le changement d'état de solide à gaz est la :

- A sublimation
- C fusion

E vaporisation

- B solidification
- D condensation
- F liquéfaction

Dans les trois questions suivai

Question 9 Les axes du diagram

$$\overline{\mathbf{A}} \ \mathbf{0} = P \; ; \; \mathbf{0} = T$$

$$lacksquare$$
 $\mathbf{0} = T$; $\mathbf{0} = V$

Question 10 Le point 8 est le p

A

Dans les trois questions suivant

Question 12 Au point A, le syst

dans un état diphas

Question 13 Au point M, le syst

100% à l'état liquid

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1: A B C D E F

QUESTION 2: \overline{A} \overline{B} \overline{C} \overline{D} QUESTION 3: \overline{A} \overline{B} \overline{C} \overline{D} QUESTION 4: \overline{A} \overline{B} \overline{C} \overline{D}

.....

QUESTION 5:	F P J

QUESTION 6 : [A] [B] [C] [D] [E] [F]

QUESTION 7: A B C D E F

Question 8 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+28/1/29+

Quiz TSI 1

Système thermodynamique à l'équilibre Durée : 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A uniquement microscopique
- D uniquement mésoscopique
- B microscopique et mésoscopique
- E macroscopique et microscopique
- C uniquement macroscopique
- F macroscopique et mésoscopique

 $\mbox{\bf Question 2} \quad \mbox{ En termes d'échanges avec le milieu extérieur, un système thermodynamique fermé permet :}$

- A uniquement les échanges de matière
- C les échanges d'énergie et de matière
- B uniquement les échanges d'énergie
- D aucun échange

 ${\bf Question~3} \hspace{0.5cm} \hbox{En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:} \\$

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière

B aucun échange

D uniquement les échanges d'énergie

 $\textbf{Question 4} \quad \text{Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiment contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :$

 $\boxed{\mathbf{A}} P_B = P_H + \frac{mg}{S}$

 $\boxed{\mathbf{C}} P_B = P_H + mg$

 $\boxed{\mathbf{B}} P_B = P_H$

 $D P_B = P_H - \frac{mg}{S}$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de liquide à vapeur est la :

- A condensation
- C solidification
- E liquéfaction

B fusion

- D sublimation
- F vaporisation

Question 7 Le changement d'état de solide à liquide est la :

- A solidification
- C sublimation
- E fusion

- B liquéfaction
- D condensation
- F vaporisation

Dans les trois questions suivai

Question 9 Les axes du diagram

$$\boxed{\mathbf{A}} \mathbf{0} = P ; \mathbf{0} = V$$

$$\blacksquare$$
 $\bullet = P ; \bullet = T$

Question 10 Le point @ est le p

A

Dans les trois questions suivant

Question 12 Au point B, le syst

Question 13 Au point A, le syste

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1: A B C D E F

QUESTION 2: A B C D
QUESTION 3: A B C D

QUESTION 4: A B C D

Question 5:	F P J

QUESTION 6 : [A] [B] [C] [D] [E] [F]

QUESTION 7: A B C D E F

QUESTION 8 : A B C D

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10: A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 12 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

+29/1/26+

TSI 1 Quiz

Système thermodynamique à l'équilibre Durée: 15 minutes

Question 1 Les résultats de la thermodynamique s'appliquent à des système de taille :

- A microscopique et mésoscopique
- D uniquement macroscopique
- B uniquement microscopique
- E uniquement mésoscopique
- C macroscopique et microscopique
- F macroscopique et mésoscopique

Question 2 En termes d'échanges avec le milieu extérieur, un système thermodynamique isolé permet:

A aucun échange

- C uniquement les échanges d'énergie
- B les échanges d'énergie et de matière
- D uniquement les échanges de matière

Question 3 En termes d'échanges avec le milieu extérieur, un système thermodynamique ouvert permet:

- A les échanges d'énergie et de matière
- C uniquement les échanges de matière

B aucun échange

D uniquement les échanges d'énergie

Question 4 Un cylindre vertical, de section S, est séparé en deux compartiments étanches par un piston mobile sans forttements de masse m. Chaque compartiement contient un gaz supposé parfait. On appelle P_H la pression exercée par le gaz contenu dans le compartiment du haut et P_B la pression exercée par le gaz contenu dans le compartiment du bas. L'accélération de la pesanteur est g. Le piston étant à l'équilibre, on a :

 $A P_B = P_H$

 $\begin{array}{|c|}\hline C & P_B = P_H + mg\\\hline D & P_B = P_H + \frac{mg}{S}\\\hline
\end{array}$

 $P_B = P_H - \frac{mg}{c}$

Question 5

Citer les deux hypothèses du modèle du gaz parfait.

Question 6 Le changement d'état de solide à gaz est la :

- A liquéfaction
- C vaporisation
- E sublimation

- B condensation
- D fusion

F solidification

Question 7 Le changement d'état de solide à liquide est la :

- A liquéfaction
- C solidification
- E condensation

B fusion

- D sublimation
- F vaporisation

Dans les trois questions suivai

Question 9 Les zones du diagran

- $\overline{\mathbf{A}} = \mathbf{0} = \mathbf{0} = \mathbf{0}$
- $B = \text{fluide supercritique} : \mathbf{0} =$
- $\boxed{\mathbf{C}}$ **3** = vapeur ; **4** = fluide super
- $D = \text{liquide} ; \mathbf{0} = \text{vapeur} ; \mathbf{0}$

Question 10 Le point 8 est le p

A

Dans les trois questions suivant

Question 12 Au point M, le sys

A dans un état diphas

Au point B, le syste Question 13

A dans un état diphase

No	01	n	L	e	t])	r	é	n	C)]	Υ	1	:																																
٠.	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1 : \overline{A} \overline{B} \overline{C} \overline{D} \overline{E} \overline{F}

QUESTION 2: A B C D QUESTION 3: A B C D

Question 4 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 5:	F P J

Question 6: A B C D E F

QUESTION 7: A B C D E F

QUESTION 8: A B C D

Question 9 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 10 : A B

Question 11 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QUESTION 12: A B C