PCT/JP03/07534

SEQUENCE LISTING

<110>	BANYU	PHAI	RMACE	UTIC	CAL C		LTD								
<120>	Metho	d for	r pre	dict	ing	a dı	ug	trans	sport	car	oabil	ity	by A	ABCG2	polymorphisms
<130>	P2725	PCT-(GN												
	JP 20 2002-			3											
<160>	68														
<170>	Pater	tIn	vers	ion (3. 1										
<212>	1 1968 DNA Homo	sapi	ens												
<220><221>		(106	: ::\	٠,٠											
<222> <223>	(1)	(190	10)												
<400> atg to Met So 1	l ct tcc er Ser	agt Ser	aat Asn 5	gtc Val	gaa Glu	gtt Val	ttt Phe	atc Ile 10	cca Pro	gtg Val	tca Ser	caa Gln	gga Gly 15	aac Asn	48
acc a Thr A	at ggc sn Gly	ttc Phe 20	ccc Pro	gcg Ala	aca Thr	gct Ala	tcc Ser 25	aat Asn	gac Asp	ctg Leu	aag Lys	gca Ala 30	ttt Phe	act Thr	96
Glu G	ga gct ly Ala 35	Val	Leu	Ser	Phe	His	Asn	He	Cys	Tyr	Arg	gta Val	aaa Lys	ctg Leu	144
Lys S	gt ggc Ser Gly 50	ttt Phe	cta Leu	cct Pro	tgt Cys 55	cga Arg	aaa Lys	cca Pro	gtt Val	gag Glu 60	aaa Lys	gaa Glu	ata Ile	tta Leu	192
tcg a Ser A 65	at ato Asn Ile	aat Asn	ggg Gly	atc Ile 70	atg Met	aaa Lys	cct Pro	ggt Gly	ctc Leu 75	aac Asn	gcc Ala	atc Ile	ctg Leu	gga Gly 80	240
ccc a Pro 1	aca ggt Thr Gly	gga Gly	ggc Gly 85	aaa Lys	tct Ser	tcg Ser	tta Leu	tta Leu 90	gat Asp	gtc Val	t ta Leu	gct Ala	gca Ala 95	agg Arg	288
aaa g Lys <i>l</i>	gat cca Asp Pro	agt Ser	gga Gly	tta Leu	tct Ser	gga Gly	gat Asp	gtt Val	ctg Leu	ata Ile	aat Asn	gga Gly	gca Ala	ccg Pro	336

W O 03/10/242	2	/23	
100	105	110	
cga cct gcc aat ttc	aaa tgt aat tca ggt	tac gtg gta caa gat gat	384
Arg Pro Ala Asn Phe	Lys Cys Asn Ser Gly	Tyr Val Val Gln Asp Asp	
115	120	125	
gtt gtg atg ggc act	ctg acg gtg aga gaa	aac tta cag ttc tca gca	432
Val Val Met Gly Thr	Leu Thr Val Arg Glu	Asn Leu Gln Phe Ser Ala	
130	135	140	
gct ctt cgg ctt gca	aca act atg acg aa	cat gaa aaa aac gaa cgg	480
Ala Leu Arg Leu Ala	Thr Thr Met Thr Ass	1 His Glu Lys Asn Glu Arg	
145	150	155 160	
att aac agg gtc att Ile Asn Arg Val Ile 165	Gln Glu Leu Gly Le	g gat aaa gtg gca gac tcc 1 Asp Lys Val Ala Asp Ser) 175	528
aag gtt gga act cag	ttt atc cgt ggt gt	g tot gga gga gaa aga aaa	576
Lys Val Gly Thr Glr	Phe Ile Arg Gly Va	1 Ser Gly Gly Glu Arg Lys	
180	185	190	
agg act agt ata gga	a atg gag ctt atc ac	t gat cct tcc atc ttg ttc	624
Arg Thr Ser Ile Gly	7 Met Glu Leu Ile Th	r Asp Pro Ser Ile Leu Phe	
195	200	205	
ttg gat gag cct aca	a act ggc tta gac to	a agc aca gca aat gct gtc	672
Leu Asp Glu Pro Th	r Thr Gly Leu Asp Se	r Ser Thr Ala Asn Ala Val	
210	215	220	
ctt ttg ctc ctg aa	a agg atg tct aag ca	ng gga cga aca atc atc ttc	720
Leu Leu Leu Leu Ly	s Arg Met Ser Lys Gl	n Gly Arg Thr Ile Ile Phe	
225	230	235 240	
tcc att cat cag cc Ser Ile His Gln Pr 24	o Arg Tyr Ser Ile Pl	cc aag ttg ttt gat agc ctc ne Lys Leu Phe Asp Ser Leu 50 255	768
acc tta ttg gcc tc	a gga aga ctt atg t	tc cac ggg cct gct cag gag	816
Thr Leu Leu Ala Se	r Gly Arg Leu Met P	ne His Gly Pro Ala Gln Glu	
260	265	270	
gcc ttg gga tac tt	t gaa tca gct ggt t	at cac tgt gag gcc tat aat	864
Ala Leu Gly Tyr Ph	te Glu Ser Ala Gly T	yr His Cys Glu Ala Tyr Asn	
275	280	285	
aac cct gca gac ti	c ttc ttg gac atc a	tt aat gga gat tcc act gct	912
Asn Pro Ala Asp Pi	ne Phe Leu Asp Ile I	le Asn Gly Asp Ser Thr Ala	
290	295	300	
gtg gca tta aac ag	ga gaa gaa gac ttt a	aa gcc aca gag atc ata gag	960
Val Ala Leu Asn A	rg Glu Glu Asp Phe L	ys Ala Thr Glu Ile Ile Glu	

305					310					315					320	
cct Pro	tcc Ser	aag Lys	cag Gln	gat Asp 325	aag Lys	cca Pro	ctc Leu	ata Ile	gaa Glu 330	aaa Lys	tta Leu	gcg Ala	gag Glu	att Ile 335	tat Tyr	1008
gto Val	aac Asn	tcc Ser	tcc Ser 340	ttc Phe	tac Tyr	aaa Lys	gag Glu	aca Thr 345	aaa Lys	gct Ala	gaa Glu	tta Leu	cat His 350	caa Gln	ctt Leu	1056
t co Se i	ggg Gly	ggt Gly 355	gag Glu	aag Lys	aag Lys	aag Lys	aag Lys 360	atc Ile	aca Thr	gtc Val	ttc Phe	aag Lys 365	gag Glu	atc Ile	agc Ser	1104
	acc Thr 370															1152
t to Pho	aaa Lys	aac Asn	ttg Leu	ctg Leu	ggt Gly 390	aat Asn	ccc Pro	cag Gln	gcc Ala	tct Ser 395	ata Ile	gct Ala	cag Gln	atc Ile	att Ile 400	1200
g to Va	c aca l Thr	gtc Val	gta Val	ctg Leu 405	gga Gly	ctg Leu	gtt Val	ata Ile	ggt Gly 410	Ala	att Ile	tac Tyr	ttt Phe	ggg Gly 415	Leu	1248
aa Ly	a aat s Asn	gat Asp	tct Ser 420	Thr	gga Gly	atc Ile	cag Gln	aac Asn 425	Arg	gct Ala	ggg Gly	gtt Val	ctc Leu 430	Phe	ttc Phe	1296
	g acg u Thr		Asn					Ser					Glu			1344
gt Va	g gta 1 Val 450	Glı	aag Lys	aag Lys	ctc Leu	ttc Phe 455	Ile	cat His	gaa Glu	tac Tyr	ato 11e 460	Se i	gga Gly	tac Tyr	tac Tyr	1392
ag Ar 46	g Val	tca Sei	tct Ser	Tyr	ttc Phe 470	Leu	gga Gly	aaa Lys	ctg Leu	tta Leu 475	ı Sei	gal Ası	t tta Lei	tta Lei	ccc Pro 480	1440
a t Me	g agg	g ata g Me	g tta t Lei	cca Pro 485	Ser	ati Ile	t ata e Ile	tti Phe	acc Thi 490	Cys	t ata	a gta e Va	g tad I Ty:	tto Pho 49	atg Met	1488
t i Le	a gg eu Gly	a tt: y Le	g aag u Ly: 500	s Pro	a aag o Lys	g gca s Ala	a gai	t gcc Ala 50	a Phe	tto Phe	e Va	t ata l Me	g ats t Me 51	t Pho	t acc e Thr	1536
c i	t at eu Me	g at t Me	g gta t Va	g gct l Ala	t tai	t to	a gco r Ala	c ag	t too r Sei	c ata	g gc	act aLe	g gc u Al	c ata a Il	a gca e Ala	1584

515 520 525

gca ggt cag agt gtg gtt tct gta gca aca ctt ctc atg acc atc tgt 1632 Ala Gly Gln Ser Val Val Ser Val Ala Thr Leu Leu Met Thr Ile Cys 535 530 ttt gtg ttt atg atg att ttt tca ggt ctg ttg gtc aat ctc aca acc 1680 Phe Val Phe Met Met Ile Phe Ser Gly Leu Leu Val Asn Leu Thr Thr 555 550 545 att gca tct tgg ctg tca tgg ctt cag tac ttc agc att cca cga tat 1728 Ile Ala Ser Trp Leu Ser Trp Leu Gln Tyr Phe Ser Ile Pro Arg Tyr 570 575 565 gga ttt acg gct ttg cag cat aat gaa ttt ttg gga caa aac ttc tgc 1776 Gly Phe Thr Ala Leu Gln His Asn Glu Phe Leu Gly Gln Asn Phe Cys 585 580 cca gga ctc aat gca aca gga aac aat cct tgt aac tat gca aca tgt 1824 Pro Gly Leu Asn Ala Thr Gly Asn Asn Pro Cys Asn Tyr Ala Thr Cys 600 595 1872 act ggc gaa gaa tat ttg gta aag cag ggc atc gat ctc tca ccc tgg Thr Gly Glu Glu Tyr Leu Val Lys Gln Gly Ile Asp Leu Ser Pro Trp 620 615 610 ggc ttg tgg aag aat cac gtg gcc ttg gct tgt atg att gtt att ttc 1920 Gly Leu Trp Lys Asn His Val Ala Leu Ala Cys Met Ile Val Ile Phe 635 630 625 ctc aca att gcc tac ctg aaa ttg tta ttt ctt aaa aaa tat tct taa 1968 Leu Thr Ile Ala Tyr Leu Lys Leu Leu Phe Leu Lys Lys Tyr Ser 655 645

⟨210⟩ 2

<211> 655

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Ser Ser Asn Val Glu Val Phe Ile Pro Val Ser Gln Gly Asn 1 5 10 15

Thr Asn Gly Phe Pro Ala Thr Ala Ser Asn Asp Leu Lys Ala Phe Thr 20 25 30

Glu Gly Ala Val Leu Ser Phe His Asn Ile Cys Tyr Arg Val Lys Leu 35 40 45

Lys Ser Gly Phe Leu Pro Cys Arg Lys Pro Val Glu Lys Glu IIe Leu 50 55 60

Ser Asn Ile Asn Gly Ile Met Lys Pro Gly Leu Asn Ala Ile Leu Gly 65 70 75 80

Pro Thr Gly Gly Lys Ser Ser Leu Leu Asp Val Leu Ala Ala Arg 85 90 95

Lys Asp Pro Ser Gly Leu Ser Gly Asp Val Leu Ile Asn Gly Ala Pro 100 105 110

Arg Pro Ala Asn Phe Lys Cys Asn Ser Gly Tyr Val Val Gln Asp Asp 115 120 125

Val Val Met Gly Thr Leu Thr Val Arg Glu Asn Leu Gln Phe Ser Ala 130 135 140

Ala Leu Arg Leu Ala Thr Thr Met Thr Asn His Glu Lys Asn Glu Arg 145 150 155 160

Ile Asn Arg Val Ile Gln Glu Leu Gly Leu Asp Lys Val Ala Asp Ser 165 170 175

Lys Val Gly Thr Gln Phe Ile Arg Gly Val Ser Gly Gly Glu Arg Lys 180 185 190

Arg Thr Ser Ile Gly Met Glu Leu Ile Thr Asp Pro Ser Ile Leu Phe 195 200 205

Leu Asp Glu Pro Thr Thr Gly Leu Asp Ser Ser Thr Ala Asn Ala Val 210 215 220

Leu Leu Leu Lys Arg Met Ser Lys Gln Gly Arg Thr Ile Ile Phe 225 230 235 240

Ser Ile His Gln Pro Arg Tyr Ser Ile Phe Lys Leu Phe Asp Ser Leu 245 250 255

- Thr Leu Leu Ala Ser Gly Arg Leu Met Phe His Gly Pro Ala Gln Glu 260 265 270
- Ala Leu Gly Tyr Phe Glu Ser Ala Gly Tyr His Cys Glu Ala Tyr Asn 275 280 285
- Asn Pro Ala Asp Phe Phe Leu Asp Ile Ile Asn Gly Asp Ser Thr Ala 290 295 300
- Val Ala Leu Asn Arg Glu Glu Asp Phe Lys Ala Thr Glu Ile Ile Glu 305 310 315 320
- Pro Ser Lys Gln Asp Lys Pro Leu Ile Glu Lys Leu Ala Glu Ile Tyr 325 330 335
- Val Asn Ser Ser Phe Tyr Lys Glu Thr Lys Ala Glu Leu His Gln Leu 340 345 350
- Ser Gly Glu Lys Lys Lys Lys Ile Thr Val Phe Lys Glu Ile Ser 355 360 365
- Tyr Thr Thr Ser Phe Cys His Gln Leu Arg Trp Val Ser Lys Arg Ser 370 380
- Phe Lys Asn Leu Leu Gly Asn Pro Gln Ala Ser Ile Ala Gln Ile Ile 385 390 395 400
- Val Thr Val Val Leu Gly Leu Val Ile Gly Ala Ile Tyr Phe Gly Leu 405 410 415
- Lys Asn Asp Ser Thr Gly Ile Gln Asn Arg Ala Gly Val Leu Phe Phe 420 425 430
- Leu Thr Thr Asn Gln Cys Phe Ser Ser Val Ser Ala Val Glu Leu Phe 435 440 445
- Val Val Glu Lys Lys Leu Phe Ile His Glu Tyr Ile Ser Gly Tyr Tyr 450 455 460

Arg Val Ser Ser Tyr Phe Leu Gly Lys Leu Leu Ser Asp Leu Leu Pro 465 470 475 480

Met Arg Met Leu Pro Ser Ile Ile Phe Thr Cys Ile Val Tyr Phe Met 485 490 495

Leu Gly Leu Lys Pro Lys Ala Asp Ala Phe Phe Val Met Phe Thr 500 505 510

Leu Met Wet Val Ala Tyr Ser Ala Ser Ser Met Ala Leu Ala Ile Ala 515 520 525

Ala Gly Gln Ser Val Val Ser Val Ala Thr Leu Leu Met Thr Ile Cys 530 535 540

Phe Val Phe Met Met Ile Phe Ser Gly Leu Leu Val Asn Leu Thr Thr 545 550 555 560

Ile Ala Ser Trp Leu Ser Trp Leu Gln Tyr Phe Ser Ile Pro Arg Tyr 565 575

Gly Phe Thr Ala Leu Gln His Asn Glu Phe Leu Gly Gln Asn Phe Cys 580 585 590

Pro Gly Leu Asn Ala Thr Gly Asn Asn Pro Cys Asn Tyr Ala Thr Cys 595 600 605

Thr Gly Glu Glu Tyr Leu Val Lys Gln Gly Ile Asp Leu Ser Pro Trp 610 615 620

Gly Leu Trp Lys Asn His Val Ala Leu Ala Cys Met Ile Val Ile Phe 625 630 635 640

Leu Thr Ile Ala Tyr Leu Lys Leu Leu Phe Leu Lys Lys Tyr Ser 645 650 655

<210> 3 <211> 18

wo	03/107249	8/23	PCT/JP03/07534
<212> <213>	DNA Artificial Sequence		
<220> <223>	Exon 1 forward primer		
<400> gtgccc	3 actc aaaaggtt		18
<210> <211> <212> <213>	21		
<220> <223>	Exon 1 reverse primer		
<400> tccagt	4 caaa gcigiacici g		21
<210> <211> <212> <213>	22		
<220> <223>	Exon 2 forward primer		
<400> atgtai	5 tgtc acctagtgtt tg		22
<210> <211> <212> <213>	22		
<220> <223>	Exon 2 reverse primer		
<400> aaagt	6 gtgaa gccttgagca ga		22
<210> <211> <212> <213>	20 DNA		

20

<400> 11

ttccttcacc tttcttttcc

2010	10	
-	12	
	20	
	DNA	
(213>	Artificial Sequence	
<220>		
	Exon 5 reverse primer	
\460/	EXON 5 1CVC13C PITMOT	
<400>	12	
	aaa actggtccct	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Exon 6 forward primer	
<400>		90
gaggtg	cttt gtatcaggct ·	20
<210>	1/	
<211>		
<211>		
	Artificial Sequence	
(210)	Millional Southers	
<220>		
	Exon 6 reverse primer	
<400>		20
gatcag	gcca gtaggtcaac	20
<210>	15	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Exon 7 forward primer	
(400)	15	
<400>		25
Cilgia	aaata cttgcagatt acctg	
<210>	16	
⟨211⟩		

wo	03/107249	11/23	PCT/JP03/07534
<212> <213>	DNA Artificial Sequence		
<220> <223>	Exon 7 reverse primer		
<400> tgttca	16 agtg acagaataaa tggct		25
<210> <211> <212> <213>	20		
<220> <223>	Exon 8 forward primer		
<400> aaaggg	17 staaa attacgtggg		20
<210> <211> <212> <213>	20		
<220> <223>	Exon 8 reverse primer		
<400> gcaaac	18 caaac tgacgttitc	•	20
<210> <211> <212> <213>	20	,	
<220> <223>	Exon 9 forward primer		
<400> aatga	19 aggtg ttagggaagc		20
		•	

wo	03/107249	12/23	PCT/JP03/07534
<223>	Exon 9 reverse primer		
<400> ctggct	20 gaca cttctttcac		20
<210> <211> <212> <213>	22		
<220> <223>	Exon 10 forward primer	_	
<400> tctccc	21 caaa gcacagataa ct		22
<210> <211> <212> <213>	25		
<220> <223>	Exon 10 reverse primer		
<400> cattta	22 naaaa taattgggcc aggtg		25
<210> <211> <212> <213>	20		
<220> <223>	Exon 11 forward primer		
<400> ctaat	23 tacct tccaaagggc		20
<210> <211> <212> <213>	20		
<220> <223>	Exon 11 reverse primer		
<400> aaacc	24 agget getetttaet		20

<210>	25	
	20	
	DNA	
	Artificial Sequence	
<220>		
<223>	Exon 12 forward primer	
<400>	25	
	tatt tttcaaggat	20
80 688	tatt tttoaaggar	
<210>	26	
<211>	20 .	
<212>		
<213>	Artificial Sequence	
⟨220⟩	Dece 10 november maimor	
<223>	Exon 12 reverse primer	
<400>	26	
	tgca aaatggacag	20
404040		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
/000 \		
<220>	Exon 13 forward primer	
\660/	EXOII 15 TOTWATU PITMOT	
<400>	27	
	stage tetteatete	20
<210>		
<211>		
<212>	UNA	
<213>	Artificial Sequence	
<220>		
	Exon 13 reverse primer	
/440/	Mich II IV. Take Branch	
<400>	28	
	aggga accaaaatag	20
⟨210⟩		
<211>	25	

WO 0	3/107249	14/23	PCT/JP03/07534
<212> <213>	DNA Artificial Sequence		
<220> <223>	Exon 14 forward primer		
<400> ctttttg	29 gca gctttaaatg atagc		25
<210> <211> <212> <213>	25		
<220> <223>	Exon 14 reverse primer		
<400> aatctt	30 tctc ctttactagg aggta		25
<210> <211> <212> <213>	25		
<220> <223>	Exon 15 forward primer		
<400> tttact	31 tett tigtatigga ageca		25
<210> <211> <212> <213>	32 25 DNA Artificial Sequence		
<220> <223>	Exon 15 reverse primer		
<400> tagagg	32 gataa atcgattgat aggga		25
<210> <211> <212> <213>	DNA		

wo	03/107249	15/23	PCT/JP03/07534
<223>	Exon 16 forward primer		
<400> atctga	33 aggg gtaattatta aaggc		25
<210> <211> <212> <213>	25		
<220> <223>	Exon 16 reverse primer		
<400> tgttcc	34 agaa atggtgcaag aattc		25
<210><211><211><212><213>	18		
<220> <223>	Exon 1 sense primer		
<400> gtgcc	35 cactc aaaaggtt		18
<210> <211> <212> <213>	20		
<220> <223>	Exon 1 antisense primer		
<400> caaga	36 gtttt taccaaccca		20
<220> <223>	Exon 2 sense primer		
<400> atgta	37 tigtc acctagigt tg		22

<210>	38	
(211)	19	
	DNA	
	Artificial Sequence	
<220>		
<223>	Exon 2 antisense primer	
<400>	38	10
gtggcc	caat tatttcact	19
(0.1.0)	00	
<210>		
<211>		
<212>		
\213 >	Artificial Sequence	
<220>		
	Exon 3 sense primer	
(440)	non o bondo primor	
<400>	39	
	ttgg tttgtgcttg	20
		٠
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
(0.00)		
⟨220⟩	Dura O subjection mimor	
〈223 〉	Exon 3 antisense primer	
<400>	40	
	ggtca actgctacat	20
aacate	gica acigciacai	
<210>	41	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Exon 4 sense primer	
<400>		10
atgtt	ttggg gctttattg	19
(0.10)	40	
⟨210⟩		
<211>	19	

wo	03/107249	17/23	PCT/JP03/07534
<212> <213>	DNA Artificial Sequence		
<220> <223>	Exon 4 antisense primer		
<400> tattcc	42 agat tetecetge		19
<210><211><211><212><213>	19		
<220> <223>	Exon 5 sense primer		
<400> caggct	43 tigc agacateta	•	19
<210><211><211><212><213>	20		
<220> <223>	Exon 5 antisense primer		
<400> attgt	44 atgg aaagcaacca		20
<210> <211> <212> <213>	20		
<220> <223>	Exon 6 sense primer		
<400> gaggt	45 gcttt gtatcaggct		20
<210> <211> <212> <213>	19		

WO 0	3/107249	18/23	PCT/JP03/07534
<223>	Exon 6 antisense primer		
<400> 46 cacceteate acagacate		19	
<210> <211> <212> <213>	20		
<220> <223>	Exon 7 sense primer		
<400> ctgtcc	47 taga atctgcattt		20
<210> <211> <212> <213>	18		
<220> <223>	Exon 7 antisense primer		
<400> agctgg	48 stgct acaaaaat		18
<210> <211> <212> <213>	20		
<220> <223>	Exon 8 sense primer	·	
<400> aaagg	49 gtaaa attacgtggg		20
<210> <211> <212> <213>	20		
<220> <223>	Exon 8 antisense primer		
<400> tctgg	50 tigit getteetact		20

<210>	51	
	19	
-	DNA	
	Artificial Sequence	
(810)		
<220>		
	Exon 9 sense primer	
<400>		19
gttagg	gaag catccaaga	19
<210>	F 9	
<210> <211>		
<211>		
	Artificial Sequence	
(210)		
<220>		
	Exon 9 antisense primer	
<400>		20
agggaa	gctt tccaaaagta	40
	·	
<210>	5.9	
<210> <211>		
<211>		
	Artificial Sequence	
(510)		
<220>		
<223>	Exon 10 sense primer	
<400>	53	22
tetece	ccaaa gcacagataa ct	44
<210>	54	
(211)		
<212>		
<213>	Artificial Sequence	
(
<220>		
<223>	Exon 10 antisense primer	
<400>	54	20
tggtg	gtgga tgtctgtagt	<i>4</i> 0
/910\	55	
<210><211>		
\611/	40	

. WO 0	03/107249	20/23	PCT/JP03/07534
<212> <213>	DNA Artificial Sequence		
<220> <223>	Exon 11 sense primer		
<400> ctaatta	55 acct tccaaagggc		20
<210><211><211><212><213>	20		
<220> <223>	Exon 11 antisense primer		
<400> gctcag	56 gatt ttcttcccta		20
<210> <211> <212> <213>	20		
<220> <223>	Exon 12 sense primer		
<400> ctggac	57 Stgag tgttcaggag		20
<210><211><211><212><213>	20		
<220> <223>	Exon 12 antisense primer		
<400> agagag	58 gtgca aaatggacag		20
<210> <211> <212> <213>	20 DNA		

wo	03/107249	21/23	PCT/JP03/07534
<223>	Exon 13 sense primer		
<400> tgcctg	59 tagc tcttcatctc		20
<210> <211> <212> <213>	20		
<220> <223>	Exon 13 antisense primer		
<400> ataagg	60 gcaa agaggaaagt		20
<210> <211> <212> <213>	21		
<220> <223>	Exon 14 sense primer		•
<400> tttgtt	61 cttc ctttaaaacc g		21
<210> <211> <212> <213>	25 DNA		
<220> <223>	Exon 14 antisense primer		
<400> aatct	62 ttctc ctttactagg aggta		25
<210> <211> <212> <213>	25		
<220> <223>	Exon 15 sense primer		
<400> tttac	63 ttctt ttgtattgga agcca		25

<210>	64	
	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Exon 15 antisense primer	
<400>	64	
	ccca aaacaataag	20
<210>	65	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Exon 16-1 sense primer	
<400>	65	
atctga	aggg gtaattatta aaggc	25
<210>	66	
<211>		
<212>		
\213 >	Artificial Sequence	
<220>		
<223>	Exon 16-1 antisense primer	
<400>	66	
caggag	tttc cagaattcaa	20
<210>	67	
<211>		
<212>		
⟨213⟩	Artificial Sequence	
<220>		
<223>	Exon 16-2 sense primer	
<400>	67	
tgttg	ttttc tgttcccttg	20
<210>	68	
⟨211⟩		

23/23

PCT/JP03/07534

<212> DNA

<213> Artificial Sequence

<220>

<223> Exon 16-2 antisense primer

⟨400⟩ 68

tgttccagaa atggtgcaag aattc

25