Mathematics for Data Science Lecture 5

Eva FEILLET¹

¹LISN Paris-Saclay University

M1[AI], Fall 2025

Previously covered topics

- (Lecture 1) Vector spaces, subspaces, linear transormations. Rank, image, kernel
- (Lecture 2) Matrices, link with linear transformations, linear systems
- Range, rank, kernel of a matrix, inverse of a matrix
- (Lecture 3) Determinant, diagonalization, eigendecomposition (part 1)
- (Lecture 4) Diagonalization, eigendecomposition (part 2).

Previously covered topics

- (Lecture 1) Vector spaces, subspaces, linear transormations. Rank, image, kernel
- (Lecture 2) Matrices, link with linear transformations, linear systems
- Range, rank, kernel of a matrix, inverse of a matrix
- (Lecture 3) Determinant, diagonalization, eigendecomposition (part 1)
- (Lecture 4) Diagonalization, eigendecomposition (part 2).

In this lecture: Normed spaces, metric spaces, inner product spaces. Orthogonal complement, orthogonal matrix (again!). Spectral theorem; positive (semi-)definite matrices, Gram matrix; Singular value decomposition.

Table of Contents

- Inner product spaces
- 2 Metric spaces
- Normed spaces
 - Matrix norms (bonus)
- Orthogonal Complement and Orthogonal Matrices
- Spectral theorem
 - Symmetric endormorphisms and matrices
 - Spectral theorem
 - Rayleigh quotients and the min-max theorem
 - Positive (semi-)definite matrices
 - Polar decomposition (bonus)
- Singular Value Decomposition

Table of Contents

- Inner product spaces
- 2 Metric spaces
- Normed spaces
- Matrix norms (bonus)
- Orthogonal Complement and Orthogonal Matrices
- Spectral theorem
 - Symmetric endormorphisms and matrices
 - Spectral theorem
 - Rayleigh quotients and the min-max theorem
 - Positive (semi-)definite matrices
 - Polar decomposition (bonus)
- 6 Singular Value Decomposition

Inner product

Definition

An **inner product** on a real vector space V is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ satisfying, for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and all $\alpha, \beta \in \mathbb{R}$:

- ${\color{red} \textcircled{0}} \quad \text{(positive-definite)} \ \langle \textbf{x}, \textbf{x} \rangle \geq \textbf{0}, \text{ with equality if and only if } \textbf{x} = \textbf{0}_{\textbf{V}}$

Vocabulary: A vector space endowed with an inner product is called an **inner product space**, or a **pre-Hilbert space** (FR: *espaces préhilbertiens*).

NB: in the above definition we have stated linearity in the first slot; with symmetry this implies linearity in the second.

Scalar product (dot product)

The usual **scalar product** (.|.) defined on \mathbb{R}^n is an inner product.

$$(.|.): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x_1, x_2, \dots x_n), (y_1, y_2, \dots y_n) \mapsto \sum_{i=1}^n x_i y_i$$

The inner product on \mathbb{R}^n is also often written $\mathbf{x} \cdot \mathbf{y}$ (hence the alternate name **dot product**).

NB: If $x, y \in \mathbb{R}^n$, the dot product can be expressed as:

$$\langle x, y \rangle = x^{\top} y.$$

i.e. this inner product is a special case of matrix multiplication where we regard the resulting 1×1 matrix as a scalar.

NB: for $\alpha_1, \dots \alpha_n \in \mathbb{R}^{*+}$ (strictly positive), the map defined on \mathbb{R}^n defined as follows is also an inner product.

$$(x_1,x_2,\ldots x_n),(y_1,y_2,\ldots y_n)\mapsto \sum_{i=1}^n\alpha_ix_iy_i$$

←□ → ←□ → ← = → ← = → ○

Properties of the Dot Product (\mathbb{R}^n)

Using the previous definition of the scalar/dot product in \mathbb{R}^n , prove the following properties.

Proposition (Properties of the Dot Product)

For all $x, y, z \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$:

- **1** Symmetry: $\langle x, y \rangle = \langle y, x \rangle$.
- **2** Homogeneity: $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$.
- **3** Linearity in the first argument: $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- Linearity in the second argument: $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$.

Proof: exercise.

Example with functions

Example with functions

Example

Take the vector space of continuous real-valued functions defined over a segment [a,b] of \mathbb{R} , $E=\mathcal{C}^0([a,b],\mathbb{R})$. Prove that the map (.|.) defined on E^2 as follows is an inner product .

$$(f|g) = \int_a^b f(x)g(x) dx$$

Example with functions

Example

Take the vector space of continuous real-valued functions defined over a segment [a,b] of \mathbb{R} , $E=\mathcal{C}^0([a,b],\mathbb{R})$. Prove that the map (.|.) defined on E^2 as follows is an inner product .

$$(f|g) = \int_a^b f(x)g(x) dx$$

NB: Symmetry, bilinearity, positive-definite.

 f^2 is continuous too on [a,b]. If $f \in \mathcal{C}^0([a,b])$ and $\int_a^b f(x)^2 dx = 0$, then by continuity f is the null function on [a,b].

4□ > 4□ > 4 = > 4 = > = 90

Example with matrices

Example with matrices

Example

Consider the vector space of real square matrices of size n, $\mathcal{M}_n(\mathbb{R})$. We define the following application from $\mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ to \mathbb{R} : $(A,B) \mapsto \operatorname{trace}(A^{\mathsf{T}}B)$. Prove that this application is an inner product on $\mathcal{M}_n(\mathbb{R})$.

Example with matrices

Example

Consider the vector space of real square matrices of size n, $\mathcal{M}_n(\mathbb{R})$. We define the following application from $\mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ to \mathbb{R} :

 $(A,B)\mapsto \operatorname{trace}(A^{\top}B)$. Prove that this application is an inner product on $\mathcal{M}_n(\mathbb{R})$.

NB: again prove symmetry, bilinearity, positive-definiteness.

Orthogonal vectors

Definition

Two vectors \mathbf{x} and \mathbf{y} are said to be **orthogonal** if their inner product is zero

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0$$

Notation : we can write $\mathbf{x} \perp \mathbf{y}$ for short.

NB: **Orthogonality** generalizes the notion of **perpendicularity** we use in 2D.

Writing the dot product using matrix notation

Let $x, y \in \mathbb{R}^n$. The dot product can be expressed as:

$$\langle x, y \rangle = x^{\top} y.$$

This is a special case of matrix multiplication where we regard the resulting 1×1 matrix as a scalar. Example: if $x = (x_1, x_2, x_3)^{\top}$ and $y = (y_1, y_2, y_3)^{\top}$, then

$$\langle x,y\rangle=x^{\top}y=\begin{bmatrix}x_1&x_2&x_3\end{bmatrix}\begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix}=x_1y_1+x_2y_2+x_3y_3.$$

Example

Let $A \in \mathcal{M}_n(\mathbb{R})$ a square matrix and $x, y \in \mathbb{R}^n$. Show that $\langle Ax, y \rangle = \langle x, A^\top y \rangle$.

→□▶→□▶→□▶→□▶ □ のQ()

Writing the dot product using matrix notation

Let $x, y \in \mathbb{R}^n$. The dot product can be expressed as:

$$\langle x, y \rangle = x^{\top} y.$$

This is a special case of matrix multiplication where we regard the resulting 1×1 matrix as a scalar. Example: if $x = (x_1, x_2, x_3)^{\top}$ and $y = (y_1, y_2, y_3)^{\top}$, then

$$\langle x, y \rangle = x^{\top} y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Example

Let $A \in \mathcal{M}_n(\mathbb{R})$ a square matrix and $x, y \in \mathbb{R}^n$. Show that $\langle Ax, y \rangle = \langle x, A^\top y \rangle$. $\langle Ax, y \rangle = (Ax)^\top y = x^\top A^\top y = \langle x, A^\top y \rangle$.

□ > < □ > < ē > < ē > ē < 9 < ○

E. Feillet (LISN) Mar

Table of Contents

- Inner product spaces
- 2 Metric spaces
- Normed spacesMatrix norms (bonus)
- Orthogonal Complement and Orthogonal Matrices
- Spectral theorem
 - Symmetric endormorphisms and matrices
 - Spectral theorem
 - Rayleigh quotients and the min-max theorem
 - Positive (semi-)definite matrices
 - Polar decomposition (bonus)
- 6 Singular Value Decomposition

Metric spaces

A **metric space** is <u>a set</u> together with a notion of **distance** between its elements, usually called **points**. The distance is measured by a function called a **metric** or **distance** <u>function</u>.

Definition (Metric)

A **metric** on a set S is a function $d: S \times S \to \mathbb{R}^+$ that satisfies, for all $x, y, z \in S$:

- ① (Positivity) $d(x,y) \ge 0$, with equality if and only if x = y
- \bigcirc (Symmetry) d(x, y) = d(y, x)
- (Triangle inequality) $d(x,z) \le d(x,y) + d(y,z)$

Metric spaces

A **metric space** is <u>a set</u> together with a notion of **distance** between its elements, usually called **points**. The distance is measured by a function called a **metric** or **distance** <u>function</u>.

Definition (Metric)

A **metric** on a set S is a function $d: S \times S \to \mathbb{R}^+$ that satisfies, for all $x, y, z \in S$:

- (Positivity) $d(x, y) \ge 0$, with equality if and only if x = y
- \bigcirc (Symmetry) d(x, y) = d(y, x)
- (Triangle inequality) $d(x,z) \le d(x,y) + d(y,z)$

Examples of metric spaces ?

Metric spaces - Examples

Example

- The real numbers with the distance function d(x, y) = |y x| given by the absolute difference between two real numbers
- For a given n > 0, the **Hamming distance** is a metric on the set of the words of length n, e.g. the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another.

NB: The Hamming distance actually comes from information theory, where it is used to count the minimum number of errors that could have transformed one string into the other.

Metric spaces - Examples

Example

The Euclidean plane \mathbb{R}^2 can be equipped with many different metrics:

- The usual Euclidean distance from high school : $d_2((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- The Manhattan (or "taxi-cab") distance : $d_1((x_1, y_1), (x_2, y_2)) = |x_2 x_1| + |y_2 y_1|$
- The maximum distance : $d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_2 x_1|, |y_2 y_1|\}$
- A discrete metric like the following : $d(p,q) = \begin{cases} 0, & \text{if } p = q, \\ 1, & \text{otherwise.} \end{cases}$

NB: More generally, we call **Euclidean space** a vector space defined over \mathbb{R} , that has a finite dimension and is endowed with an inner product.

Remarks

- Two different metrics will give us two different "measures" of distances.
- Not all metric spaces are vector spaces!
- A key motivation for metrics is that they allow limits to be defined for mathematical objects other than real numbers.
 - e.g. we say that a sequence $\{x_n\} \subseteq S$ converges to the limit x if for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \epsilon$ for all $n \ge N$.

Table of Contents

- Inner product spaces
- 2 Metric spaces
- Normed spaces
 - Matrix norms (bonus)
- 4 Orthogonal Complement and Orthogonal Matrices
- Spectral theorem
 - Symmetric endormorphisms and matrices
 - Spectral theorem
 - Rayleigh quotients and the min-max theorem
 - Positive (semi-)definite matrices
 - Polar decomposition (bonus)
- 6 Singular Value Decomposition

Normed spaces

Some (but not all !) metric spaces are **normed spaces**. They are defined on vector spaces and endowed with a **norm** function.

Definition (Norm)

A **norm** on a real vector space V is a function $\|\cdot\|:V\to\mathbb{R}^+$ that satisfies

- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (the triangle inequality again)

for all $\mathbf{x}, \mathbf{y} \in V$ and all $\alpha \in \mathbb{R}$.

A vector space endowed with a norm is called a **normed vector space**, or simply a **normed space**.

Norm induced by an inner product

Remark

Any inner product on V induces a norm on V:

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

NB: the axioms for norms are satisfied under this definition and follow from the axioms for inner products. Therefore any inner product space is also a normed space (and hence also a metric space).

Norms are useful to measure distances :

$$d(x,y) = \|\mathbf{x} - \mathbf{y}\| = \|\mathbf{y} - \mathbf{x}\|$$

Two different norms will give us two different "measures" of distances.

Norm induced by the dot product on \mathbb{R}^n

Example

Verify that the two-norm $\|\cdot\|_2$ (Euclidean norm) on \mathbb{R}^2 is induced by the dot product.

$$\langle x, x \rangle = ||x||_2^2$$
.

Examples of norms on \mathbb{R}^n

$$egin{aligned} \mathcal{L}_1: \|\mathbf{x}\|_1 &= \sum_{i=1}^n |x_i| \ \mathcal{L}_2: \|\mathbf{x}\|_2 &= \sqrt{\sum_{i=1}^n x_i^2} \quad ext{(Euclidean norm)} \ \mathcal{L}_p: \|\mathbf{x}\|_p &= \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p} (p \geq 1) \ \mathcal{L}_\infty: \|\mathbf{x}\|_\infty &= \max_{1 \leq i \leq n} |x_i| \end{aligned}$$

NB: The 1- and 2-norms are special cases of the p-norm, and the ∞ -norm is the limit of the p-norm as p tends to infinity.

We require $p \ge 1$ because the triangle inequality fails to hold for 0 .

E. Feillet (LISN) Maths for Data Science Fall 2025 21/59

Figure 1: Unit balls for different norms in \mathbb{R}^2

For each subfigure, give the corresponding norm.

E. Feillet (LISN)

Figure 1: Unit balls for different norms in \mathbb{R}^2

For each subfigure, give the corresponding norm. The unit ball for the 2-norm is a circle, for the 1-norm a square rotated by 45 degrees, and for the infinity norm a square aligned with the axes.

For the angle θ between x and y (vectors different from the null vector):

$$\langle x, y \rangle = \|x\|_2 \, \|y\|_2 \cos \theta.$$

Reminder : If $\langle x, y \rangle = 0$, the vectors x and y are said to be *orthogonal*.

Example

Let $v_1, v_2, \dots v_p \in \mathbb{R}^n$ be p orthogonal vectors. Show that they are linearly independent.

For the angle θ between x and y (vectors different from the null vector):

$$\langle x, y \rangle = \|x\|_2 \, \|y\|_2 \cos \theta.$$

Reminder : If $\langle x, y \rangle = 0$, the vectors x and y are said to be *orthogonal*.

Example

Let $v_1, v_2, \ldots v_p \in \mathbb{R}^n$ be p orthogonal vectors. Show that they are linearly independent. Consider a linear combination equal to zero: $\sum_{i=1}^p \alpha_i v_i = 0$. Taking the inner product with $v_j, 1 \leq j \leq p$ gives $\alpha_j \|v_j\|^2 = 0$, hence $\alpha_j = 0$ for all j. So the vectors are linearly independent (and $p \leq n$).

Pythagorean Theorem

The Pythagorean theorem generalizes to arbitrary inner product spaces.

Theorem (Pythagorean Theorem)

Let V a finite-dimensional inner-product vector space, and $x, y \in V$. If $\mathbf{x} \perp \mathbf{y}$, then

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

Proof:

Pythagorean Theorem

The Pythagorean theorem generalizes to arbitrary inner product spaces.

Theorem (Pythagorean Theorem)

Let V a finite-dimensional inner-product vector space, and $x, y \in V$. If $\mathbf{x} \perp \mathbf{y}$, then

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

Proof: Suppose $\mathbf{x} \perp \mathbf{y}$, i.e. $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. It follows:

$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

Cauchy-Schwarz inequality

Proposition

Let V be an inner product space. For all $\mathbf{x}, \mathbf{y} \in V$,

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|$$

NB: this equality holds exactly iff x and y are linearly dependent (i.e. are scalar multiples of each other, including the case when at least one of them is null).

Proof: exercise.

Cauchy-Schwarz inequality

Proposition

Let V be an inner product space. For all $\mathbf{x}, \mathbf{y} \in V$,

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|$$

NB: this equality holds exactly iff \mathbf{x} and \mathbf{y} are linearly dependent (i.e. are scalar multiples of each other, including the case when at least one of them is null).

Proof: exercise. Let \mathbf{x}, \mathbf{y} be two vectors in V. If $\mathbf{y} = 0$, the result is trivial. Otherwise, consider the vector $\mathbf{x} - \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2} \mathbf{y}$. Since

$$\langle \mathbf{x} - \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2} \mathbf{y}, \mathbf{x} - \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2} \mathbf{y} \rangle \geq 0$$
, we have

$$\|\mathbf{x}\|^2 - 2\frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\|\mathbf{y}\|^2} + \frac{\langle \mathbf{x}, \mathbf{y} \rangle^2}{\|\mathbf{y}\|^4} \|\mathbf{y}\|^2 \ge 0$$

and the result follows.

Equivalence of norms in a <u>finite-dimensional</u> vector space (bonus)

For any given finite-dimensional vector space V, all norms on V are equivalent in the sense that for all $\mathbf{x} \in V$, for two norms $\|\cdot\|_A$ and $\|\cdot\|_B$, there exist constants $\alpha, \beta > 0$ such that

$$\alpha \|\mathbf{x}\|_{A} \le \|\mathbf{x}\|_{B} \le \beta \|\mathbf{x}\|_{A}$$

NB: the constants depend on the norms, not on the vector. **Therefore** convergence in one norm implies convergence in any other norm.

This is not a general property e.g. may not apply in infinite-dimensional vector spaces such as function spaces!

E. Feillet (LISN)

"Entry-wise" matrix norms

"Entry-wise" matrix norms treat an $m \times n$ matrix as a vector of size $m \cdot n$, and use one of the familiar vector norms we have seen before. For example, using the L_p -norm for vectors:

$$||A||_{p,p} = ||\operatorname{vec}(A)||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{1/p}$$

This is a different norm from the induced p-norm (see after)

Example

The special case p = 2 is the **Frobenius norm**.

$$||A||_{\mathsf{F}} = \sqrt{\sum_{i}^{m} \sum_{j}^{n} |a_{ij}|^2}$$

Matrix norms induced by vector norms

Definition (matrix norm induced by a vector norm)

Given a vector norm $\|\cdot\|$ on \mathbb{R}^n , a matrix norm can be defined by:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}.$$

Consider a vector norm $\|\cdot\|_{\alpha}$ on \mathbb{R}^n and a vector norm $\|\cdot\|_{\beta}$ on \mathbb{R}^m . Recall that any $m \times n$ matrix A induces a linear map from \mathbb{R}^n to \mathbb{R}^m with respect to the standard basis. The corresponding **induced norm** on the space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices can be defined as follows:

$$||A||_{\alpha,\beta} = \sup\{||Ax||_{\beta} : x \in \mathbb{R}^n \text{ such that } ||x||_{\alpha} \le 1\}$$

where sup denotes the supremum.

NB: This norm can be interpreted as measuring how much the mapping induced by A "stretches" vectors.

4□ > 4□ > 4□ > 4□ > 4□ > 1□

Matrix norms induced by vector norms (bonus)

If the L_p -norm for vectors $(1 \le p)$ is used for both spaces \mathbb{R}^n and \mathbb{R}^m then the corresponding induced norm is:

$$||A||_p = \sup\{||Ax||_p : x \in \mathbb{R}^n \text{ such that } ||x||_p \le 1\}$$

Example

• Case p = 1: the maximum absolute *column sum* of the matrix

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

• Case $p = \infty$: the maximum absolute *row sum* of the matrix.

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{i=1}^{n} |a_{ij}|$$

4 D > 4 D > 4 E > 4 E > E 990

Matrix norms induced by vector norms (bonus)

Example

• Case p = 2: the **spectral norm**. Not to be confounded with the **Frobenius norm**!

$$\|A\|_2 = \sqrt{\lambda_{\mathsf{max}}(A^*A)}$$

$$\|A\|_2 = \sigma_{\max}(A) \le \|A\|_{\mathrm{F}}$$

NB: In the above example, A^* denotes the conjugate transpose of A and $\sigma_{\max}(A)$ the highest singular value of A (see section on SVD).

E. Feillet (LISN)

Table of Contents

- Inner product spaces
- 2 Metric spaces
- Normed spaces
 - Matrix norms (bonus)
- Orthogonal Complement and Orthogonal Matrices
- Spectral theorem
 - Symmetric endormorphisms and matrices
 - Spectral theorem
 - Rayleigh quotients and the min-max theorem
 - Positive (semi-)definite matrices
 - Polar decomposition (bonus)
- 6 Singular Value Decomposition

Orthogonal basis

Definition

A set of vectors $\{e_1, \ldots, e_n\}$ from a finite-dimensional inner-product space E is an *orthogonal basis* of E if it is a basis and $\langle e_i, e_j \rangle = 0$ whenever $i \neq j$.

Theorem

Every finite-dimensional inner product space admits an orthonormal basis.

NB: orthogonal vs orthonormal.

Orthogonal complement

Definition

Let F be a subspace of a vector space E endowed with an inner product. The *orthogonal complement* of F, denoted F^{\perp} , is:

$$F^{\perp} = \{ x \in E \mid \langle x, v \rangle = 0 \text{ for all } v \in F \}.$$

Example

In \mathbb{R}^3 , what is the orthogonal complement of the subspace spanned by the vector (1,1,0) ?

Orthogonal complement

Definition

Let F be a subspace of a vector space E endowed with an inner product. The *orthogonal complement* of F, denoted F^{\perp} , is:

$$F^{\perp} = \{ x \in E \mid \langle x, v \rangle = 0 \text{ for all } v \in F \}.$$

Example

In \mathbb{R}^3 , what is the orthogonal complement of the subspace spanned by the vector (1,1,0)? It is the plane defined by the equation x+y=0, i.e. the set of vectors (x,y,z) such that x+y=0. So $span(1,1,0)^{\perp}=span((1,-1,0),(0,0,1))$.

Orthogonal complement

Proposition

Let F be a subspace of a finite-dimensional inner product space E. Then:

- \bigcirc F^{\perp} is a subspace of E.
- \bullet $F \cap F^{\perp} = \{ \mathbf{0}_E \}.$
- \oplus dim(F) + dim (F^{\perp}) = dim(E).
- $(F^{\perp})^{\perp} = F$.

Proof: exercise session.

Link with linear maps: Projectors

Definition (Projector)

A linear map $p \in \mathcal{L}(E)$ is called a **projector** if $p \circ p = p$.

Definition (Orthogonal projection)

Let E be a euclidean vector space, and F a subspace of E. We call **orthogonal projection** onto F the linear map $p_F: E \to F$ such that for all $\mathbf{x} \in E$, $p_F(\mathbf{x})$ is the unique vector in F satisfying:

$$\mathbf{x} - p_F(\mathbf{x}) \in F^{\perp}$$

NB: $p_F(\mathbf{x})$ is called the **projection** of \mathbf{x} onto F.

You can check that for all $\mathbf{x} \in E$,

$$p_F(p_F(\mathbf{x})) = p_F(\mathbf{x})$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Properties of projectors

Proposition (Bessel inequality)

For all $x \in E$,

$$\|p_F(\mathbf{x})\| \leq \|\mathbf{x}\|$$

with equality if and only if $\mathbf{x} \in F$.

Proof: exercise.

Properties of projectors

Proposition (Bessel inequality)

For all $x \in E$,

$$\|p_F(\mathbf{x})\| \leq \|\mathbf{x}\|$$

with equality if and only if $\mathbf{x} \in F$.

Proof: exercise. Let $x \in E$. We can write

$$x = p_F(x) + (x - p_F(x))$$

with $p_F(x) \in F$ and $x - p_F(x) \in F^{\perp}$. By the Pythagorean theorem, we have

$$||x||^2 = ||p_F(x)||^2 + ||x - p_F(x)||^2 \ge ||p_F(x)||^2$$

with equality if and only if $x - p_F(x) = 0$, i.e. $x \in F$.

◆ロト ◆個ト ◆重ト ◆重ト ■ 釣りで

Properties of projectors

Proposition

Let $p \in \mathcal{L}(E)$ a projector (i.e. $p \circ p = p$). The following are equivalent:

- lacktriangledown p is an orthogonal projector onto $F={\it range}(p)$ and ${\it Ker}(p)=F^\perp$
- ① For all $\mathbf{x}, \mathbf{y} \in E$, $\langle p(\mathbf{x}), y p(y) \rangle = 0$
- **1** For all $\mathbf{x}, \mathbf{y} \in E$, $\langle p(\mathbf{x}), y \rangle = \langle \mathbf{x}, p(y) \rangle$

Proof: exercise.

Projection onto a subspace (via an orthonormal basis)

Proposition

Let E be a euclidean vector space, F a subspace of E and $\{e_1, \ldots, e_k\}$ an orthonormal basis of F. For all $\mathbf{x} \in E$, the orthogonal projection of \mathbf{x} onto F is given by:

$$p_F(\mathbf{x}) = \sum_{i=1}^k \langle \mathbf{x}, e_i \rangle e_i$$

Distance to a subspace

Definition

Let E be a euclidean vector space, and F a subspace of E. The **distance** from a vector $\mathbf{x} \in E$ to the subspace F is defined as:

$$d(\mathbf{x}, F) = \inf_{\mathbf{y} \in F} \|\mathbf{x} - \mathbf{y}\|$$

Proposition

Let E be a euclidean vector space, F a subspace of E and p_F the orthogonal projection onto F. Then for all $\mathbf{x} \in E$, $p_F(\mathbf{x})$ is the unique vector in F satisfying:

$$d(\mathbf{x}, F) = \|\mathbf{x} - p_F(\mathbf{x})\|$$

.

Orthogonal endomorphism

Definition

An endomorphism $f \in \mathcal{L}(E)$ is said to be **orthogonal** if it preserves the inner product, i.e. for all $\mathbf{x}, \mathbf{y} \in E$,

$$\langle f(\mathbf{x}), f(\mathbf{y}) \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$$

Proposition

An endomorphism $f \in \mathcal{L}(E)$ is orthogonal if and only if it preserves the norm, i.e. for all $\mathbf{x} \in E$,

$$||f(\mathbf{x})|| = ||\mathbf{x}||$$

Proof: exercise.

Orthogonal endomorphism

Proof: orthogonal \implies norm-preserving:

$$||f(\mathbf{x})||^2 = \langle f(\mathbf{x}), f(\mathbf{x}) \rangle = \langle \mathbf{x}, \mathbf{x} \rangle = ||\mathbf{x}||^2$$

E. Feillet (LISN)

Orthogonal endomorphism

Proof: orthogonal \implies norm-preserving:

$$||f(\mathbf{x})||^2 = \langle f(\mathbf{x}), f(\mathbf{x}) \rangle = \langle \mathbf{x}, \mathbf{x} \rangle = ||\mathbf{x}||^2$$

norm-preserving \implies orthogonal: Remark

$$4\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 = \|f(\mathbf{x} + \mathbf{y})\|^2 - \|f(\mathbf{x} - \mathbf{y})\|^2$$
$$= \|f(\mathbf{x}) + f(\mathbf{y})\|^2 - \|f(\mathbf{x}) - f(\mathbf{y})\|^2 = 4\langle f(\mathbf{x}), f(\mathbf{y}) \rangle$$

E. Feillet (LISN)

Link with orthogonal matrices

Definition

Let $Q \in \mathcal{M}_n(\mathbb{R})$. Q is called an orthogonal matrix if the associated linear map $f_Q : \mathbb{R}^n \to \mathbb{R}^n$ defined by $f_Q(\mathbf{x}) = Q\mathbf{x}$ is an orthogonal endomorphism.

The columns of an orthogonal matrix Q are pairwise orthonormal. They form an orthonormal basis of \mathbb{R}^n . This definition also implies that

$$Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I_n$$

or equivalently, $Q^{\top} = Q^{-1}$.

Orthogonal matrices preserve inner products:

$$(Q\mathbf{x})^{\mathsf{T}}(Q\mathbf{y}) = \mathbf{x}^{\mathsf{T}}Q^{\mathsf{T}}Q\mathbf{y} = \mathbf{x}^{\mathsf{T}}\mathbf{I}_{n}\mathbf{y} = \mathbf{x}^{\mathsf{T}}\mathbf{y}$$

Table of Contents

- Inner product spaces
- 2 Metric spaces
- Normed spaces
- Matrix norms (bonus)
- 4 Orthogonal Complement and Orthogonal Matrices
- Spectral theorem
 - Symmetric endormorphisms and matrices
 - Spectral theorem
 - Rayleigh quotients and the min-max theorem
 - Positive (semi-)definite matrices
 - Polar decomposition (bonus)
- Singular Value Decomposition

Symmetric endomorphisms and matrices

Definition

Let E be a euclidean vector space. An endomorphism $f \in \mathcal{L}(E)$ is said to be **symmetric** if for all $\mathbf{x}, \mathbf{y} \in E$,

$$\langle f(\mathbf{x}), \mathbf{y} \rangle = \langle \mathbf{x}, f(\mathbf{y}) \rangle$$

NB: If $E = \mathbb{R}^n$ with the standard inner product, then f is symmetric if and only if its matrix in the standard basis is a symmetric matrix, i.e. $A^{\top} = A$.

Example

We have seen that the orthogonal projection onto a given subspace is a symmetric endomorphism.

Spectral theorem

Theorem (Spectral Theorem for endomorphisms)

Let E be a finite-dimensional euclidean vector space, and $f \in \mathcal{L}(E)$ a symmetric endomorphism. Then there exists an orthonormal basis of E consisting of eigenvectors of f.

Theorem (Spectral Theorem for matrices)

If A is a <u>symmetric</u> $n \times n$ matrix, then A is **orthogonally diagonalizable**, i.e. there exists an orthogonal matrix V and a diagonal matrix D such that:

$$A = VDV^T$$

where the diagonal entries of D are the n real eigenvalues of A.

Practical application: any symmetric matrix is diagonalizable in an orthonormal basis, a decomposition called **spectral decomposition**.

E. Feillet (LISN) Maths for Data Science Fall 2025 45 / 59

Spectral theorem

Proof: exercise.

Spectral theorem

Proof: exercise. Let E be a finite-dimensional euclidean vector space, and $f \in \mathcal{L}(E)$ a symmetric endomorphism. We want to prove that there exists an orthonormal basis of E consisting of eigenvectors of f.

The proof proceeds in three steps:

• First, we prove that the eigenspectrum of a symmetric endomorphism contains at least one eigenvalue that is real.

$$sp(f)_{\mathbb{R}} \neq \emptyset$$

- Then, we prove that if F is a stable subspace of E under f, then its orthogonal complement F^{\perp} is also stable under f.
- Finally, we prove the theorem by induction on n.

Rayleigh quotients

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

Definition

The expression $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$ is called a **quadratic form**.

The following quantity is called a **Rayleigh quotient**:

$$R_{\mathbf{A}}(\mathbf{x}) = \frac{\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathsf{T}} \mathbf{x}}$$

NB: the Rayleigh quotient is defined for all $\mathbf{x} \neq \mathbf{0}$.

Proposition

- **Scale invariance**: for any vector $\mathbf{x} \neq \mathbf{0}$ and any scalar $\alpha \neq 0$, $R_{\mathbf{A}}(\mathbf{x}) = R_{\mathbf{A}}(\alpha \mathbf{x})$.
- ① If x is an eigenvector of A with eigenvalue λ , then $R_A(x) = \lambda$.

→ロト→部ト→差ト→差 のQで

Rayleigh quotients

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

Proposition

For any **x** such that $\|\mathbf{x}\|_2 = 1$,

$$\lambda_{\mathsf{min}}(\mathbf{A}) \leq \mathbf{x}^{\! op} \mathbf{A} \mathbf{x} \leq \lambda_{\mathsf{max}}(\mathbf{A})$$

with equality if and only if x is a corresponding eigenvector.

Corollary: since $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = R_{\mathbf{A}}(\mathbf{x})$ for unit \mathbf{x} , the Rayleigh quotient is bounded by the largest and smallest eigenvalues of \mathbf{A} .

Theorem (Min-max theorem)

For all $\mathbf{x} \neq \mathbf{0}$,

E. Feillet (LISN)

$$\lambda_{\min}(\mathbf{A}) \leq R_{\mathbf{A}}(\mathbf{x}) \leq \lambda_{\max}(\mathbf{A})$$

Maths for Data Science

with equality if and only if x is a corresponding eigenvector.

4 □ > 4 蕳 > 4 혈 > 4 혈 > 4 혈 > 4 혈 > 4 혈 > 4 혈 > 4 현 > 4 Đ

Fall 2025

48 / 59

Positive (semi-)definite matrices

Definition

An $n \times n$ matrix A is positive definite if:

- A is symmetric $(A^T = A)$,
- ② For all $x \in \mathbb{R}^n \setminus \{0\}$, $x^T A x > 0$.

It is positive semi-definite if A is symmetric and $x^T A x \ge 0$ for all x.

NB: Similarly, A is negative definite if $x^T Ax < 0$ for all nonzero x.

E. Feillet (LISN)

Link with eigenvalues

Proposition

A symmetric matrix is

- positive semi-definite if and only if all of its eigenvalues are nonnegative,
- positive definite if and only if all of its eigenvalues are positive.

Positive definite matrices are invertible (since their eigenvalues are nonzero), whereas positive semi-definite matrices might not be. NB: if you already have a positive semi-definite matrix, it is possible to perturb its diagonal slightly to get a positive definite matrix. e.g. with **A** a positive semi-definite and $\epsilon>0$, $\mathbf{A}+\epsilon\mathbf{I}_n$ is positive definite, as for any $\mathbf{x}\neq\mathbf{0}$ we have:

$$\mathbf{x}^{\mathsf{T}}(\mathbf{A} + \epsilon \mathbf{I}_n)\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \epsilon \mathbf{x}^{\mathsf{T}}\mathbf{I}_n\mathbf{x} = \underbrace{\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}}_{\geq 0} + \underbrace{\epsilon \|\mathbf{x}\|_2^2}_{> 0} > 0$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Example: the Gram Matrix

Definition (Gram Matrix)

If A is an $m \times n$ matrix, its Gram matrix is:

$$G = A^T A$$
.

Proposition

The Gram matrix is symmetric and positive semi-definite.

Proof: exercise.

Example: the Gram Matrix

Definition (Gram Matrix)

If A is an $m \times n$ matrix, its Gram matrix is:

$$G = A^T A$$
.

Proposition

The Gram matrix is symmetric and positive semi-definite.

Proof: exercise. We have, $G^T = (A^T A)^T = A^T (A^T)^T = A^T A = G$. Moreover, for any $\mathbf{x} \neq \mathbf{0}$,

$$\mathbf{x}^{\mathsf{T}}G\mathbf{x} = \mathbf{x}^{\mathsf{T}}A^{\mathsf{T}}A\mathbf{x} = (A\mathbf{x})^{\mathsf{T}}(A\mathbf{x}) = \|A\mathbf{x}\|_{2}^{2} \ge 0$$

with equality if and only if $A\mathbf{x} = \mathbf{0}$, i.e. $\mathbf{x} \in \text{Ker}(A)$.

Following the previous remark, the matrix $\mathbf{A}^{\mathsf{T}}\mathbf{A} + \epsilon \mathbf{I}_n$ is positive definite (and in particular, invertible) for any matrix **A** and any $\epsilon > 0$. It is often used in practice in data science.

51 / 59

Polar decomposition (bonus)

Theorem (Polar Decomposition)

For any $n \times n$ matrix A, there exists an orthogonal matrix R and a symmetric positive semi-definite matrix F such that:

$$A = RF$$
.

One can take $F = (A^T A)^{1/2}$.

NB: If A is singular (non invertible), R is not unique; if A is invertible, R is unique.

Table of Contents

- Inner product spaces
- 2 Metric spaces
- Normed spaces
 - Matrix norms (bonus)
- 4 Orthogonal Complement and Orthogonal Matrices
- Spectral theorem
 - Symmetric endormorphisms and matrices
 - Spectral theorem
 - Rayleigh quotients and the min-max theorem
 - Positive (semi-)definite matrices
 - Polar decomposition (bonus)
- Singular Value Decomposition

Singular Value Decomposition

Theorem (Singular Value Decomposition)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then there exist orthogonal matrices $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$, and a diagonal matrix $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ with nonnegative diagonal entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)} \geq 0$ such that

$$A = U \Sigma V^{T}$$
.

The diagonal entries (σ_i) are the singular values of **A**. The columns of **U** (resp. **V**) are the left (resp. right) singular vectors of **A**.

NB: every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has an SVD (even non-square matrices)! Shapes: $\mathbf{U} = [u_1 \ldots u_m], \ \mathbf{V} = [v_1 \ldots v_n]$ orthogonal,

$$\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots) \in \mathbb{R}^{m \times n} \text{ with } r = \operatorname{rank}(\mathbf{A}).$$

◆ロト→御ト→きト→き → 9へ(~)

Remarks on SVD

By convention, the singular values are given in non-increasing order, i.e.

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)} \geq 0$$

Only the first r singular values are nonzero, where r is the rank of $\bf A$. We

can write the rank-r part as $\mathbf{A} = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}$. Remark that the SVD

factors provide eigendecompositions for $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\mathsf{T}}$:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}$$

$$\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}} = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}$$

Hence the columns of V (the **right-singular vectors** of A) are eigenvectors of A^TA , and the columns of U (the **left-singular vectors** of A) are eigenvectors of AA^T .

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

SVD — Geometric intuition

• Think of **A** as a three-step transform:

$$\mathbf{A} \ = \ \underbrace{\mathbf{V}}_{\text{rotate/reflect in } \mathbb{R}^m} \ \underbrace{\mathbf{\Sigma}}_{\text{axis-wise stretch rotate/reflect in } \mathbb{R}^n} \underbrace{\mathbf{V}^\top}_{\text{rotate/reflect in } \mathbb{R}^n}$$

- The unit sphere in \mathbb{R}^n is mapped by \mathbf{V}^{\top} to itself (rotation/reflection), then by Σ to an axis-aligned ellipsoid (semi-axes σ_i), then by \mathbf{U} to a rotated ellipsoid in \mathbb{R}^m .
- Right singular vectors v_i give the principal input directions, left singular vectors u_i give the principal output directions; σ_i are the semi-axis lengths (gains).
- For k < r, truncating after k terms keeps the k most amplifying directions.

SVD — Proof sketch (via spectral theorem)

Idea. Use that $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is symmetric positive semidefinite.

- **4 A** is symmetric \Rightarrow by the spectral theorem, there exists an orthonormal basis $\{v_1, \ldots, v_n\}$ of eigenvectors with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$. Set $\sigma_i = \sqrt{\lambda_i}$ and $\mathbf{V} = [v_1 \ldots v_n]$.
- ② Define $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(m,n)})$ (embedded in $\mathbb{R}^{m \times n}$ by padding zeros).
- **3** For each *i* with $\sigma_i > 0$, set

$$u_i = \frac{\mathbf{A}v_i}{\sigma_i} \in \mathbb{R}^m.$$

Then $||u_i||_2 = 1$ and $\langle u_i, u_j \rangle = \delta_{ij}$ for $\sigma_i, \sigma_j > 0$. Complete to an orthonormal basis $\{u_1, \ldots, u_m\}$ of \mathbb{R}^m and set $\mathbf{U} = [u_1 \ldots u_m]$.

3 By construction, $\mathbf{A}v_i = \sigma_i u_i$ for all i with $\sigma_i > 0$, and $\mathbf{A}v_i = \mathbf{0}$ when $\sigma_i = 0$. Hence $\mathbf{AV} = \mathbf{U} \mathbf{\Sigma}$, i.e.

$$A = U \Sigma V^{T}.$$

Applications of the SVD

- Low-rank approximation. The SVD provides the best low-rank approximations to a matrix in both the Frobenius norm and the 2-norm.
- Pseudoinverse. The SVD provides a way to compute the Moore-Penrose pseudoinverse of a matrix.
- Principal component analysis (PCA). PCA is a technique for dimensionality reduction that uses the SVD to find a low-dimensional representation of data that captures as much variance as possible.

Next class

Class 6 : Calculus

Exam: 24th of October, 2h. From 2pm to 4pm.

Warning

Check the timetable! Room is different from the usual one. (D101)