Supplementary Material "Bayesian Subject-Specific Bi-Level Feature Selection Model"

Daniel R. Baer

1 Subject-Specific Group-Level Feature Selection Model

As motivated by Xu and Ghosh [1] and Liquet et al. [2], we present here a Bayesian subject-specific group-level feature selection model.

1.1 Model hierarchy

For $k = 1, \dots, K$ let

•
$$vec\left(\mathbf{Y}_{J\times n}^{T}\right)|_{nJ\times Jp}^{\mathbf{X}}, \underset{pJ\times 1}{\beta}, \sigma^{2}, \underset{nJ\times nq}{\mathbf{Z}}, \underset{nq\times 1}{\mathbf{b}} \sim$$

$$N_{Jn}\left(\mathbf{X}_{nJ\times Jp}^{\beta} + \mathbf{Z}_{nJ\times nq} \underset{nq\times 1}{\mathbf{b}}, \left(\sigma^{2} \mathbf{I}_{n} \otimes \mathbf{I}_{J}\right)\right),$$

$$\bullet \ vec\left(\mathbf{B}_{k}\atop p_{k}\times J\right)|\sum_{J\times J},\tau_{k}^{2},\pi_{0k}\stackrel{ind.}{\sim} \ \pi_{0k}N_{p_{k}J}\left(\mathbf{0}\atop p_{k}J\times 1},\tau_{k}^{2}\sum_{J\times J}\otimes\mathbf{I}_{p_{k}}\atop p_{k}\times p_{k}\right)+(1-\pi_{0k})\,\delta_{0}\left(vec\left(\mathbf{B}_{k}\atop p_{k}\times J\right)\right),$$

•
$$\tau_k^2 | \lambda_k^2 \stackrel{ind.}{\sim} Gamma\left(shape = \frac{p_k J + 1}{2}, rate = \frac{\lambda_k^2}{2}\right)$$
,

$$\bullet \ \ \underset{J\times J}{\boldsymbol{\Sigma}} | d, \ \underset{J\times J}{\mathbf{Q}} \sim \ Inverse \ Wishart \left(df = d, scale = \underset{J\times J}{\mathbf{Q}} \right),$$

- $\pi_{0k}|\theta_{\beta} \stackrel{iid}{\sim} Bernoulli(\theta_{\beta}),$
- $\theta_{\beta}|a,b \sim Beta(a,b)$,
- $\sigma^2 | \alpha, \gamma \stackrel{ind.}{\sim} Inverse \ Gamma \ (shape = \alpha, scale = \gamma),$
- $\lambda_k^2 | r, \delta \stackrel{ind.}{\sim} Gamma (shape = r, rate = \delta),$

•
$$\mathbf{b}_{na \times 1} | \mathbf{G}_{a \times a} \sim N_{nq} \left(\mathbf{0}_{na \times 1}, \mathbf{I}_{n \times n} \otimes \mathbf{G}_{a \times a} \right)$$
, and

•
$$\mathbf{G}_{q \times q} | \nu_o, \mathbf{C_0}_{q \times q} \sim Inverse \ Wishart \left(df = \nu_o, scale = \mathbf{C_0}_{q \times q} \right).$$

1.2 Gibbs sampler

Let

$$\bullet \ \, \underset{Jp_k \times Jp_k}{\boldsymbol{\Sigma}_k} \equiv \left[\tau_k^2 \underset{Jp_k \times nJ}{\mathbf{X}_k^T} \underset{nJ \times Jp_k}{\mathbf{X}_k} + \sigma^2 \Biggl(\underset{J \times J}{\boldsymbol{\Sigma}} \otimes \underset{p_k \times p_k}{\mathbf{I}_{p_k}} \right)^{-1} \right],$$

$$\bullet \ \ \mathbf{z}_{k} \\ J_{n\times 1} \equiv vec\left(\mathbf{Y}^{T}\right) - \left(\mathbf{X}_{\neg k} \ vec\left(\mathbf{B}_{\neg k} \\ p_{\neg k} \times J\right) + \mathbf{Z} \mathbf{b} \\ p_{\neg k} \times J\right),$$

$$\bullet \ \ \mathop{\mathbf{r}}_{Jn\times 1} \equiv vec\left(\mathbf{Y}^{T}\right) - \left(\mathbf{X} \underset{nJ\times Jp}{\beta} + \mathbf{Z} \underset{nJ\times nq}{\mathbf{b}} \right),$$

$$\bullet \ \ \underset{nq \times nq}{\boldsymbol{\Sigma_b}} \equiv \left[\mathbf{Z}^T \mathbf{Z} \\ {}_{nq \times nJ} \mathbf{Z}_{nJ \times nq} + \sigma^2 \bigg(\mathbf{I}_n \otimes \mathbf{G} \\ {}_{n \times n} \boldsymbol{S}_{q \times q} \bigg)^{-1} \right],$$

•
$$\mathbf{r_b}_{Jn \times 1} \equiv vec\left(\mathbf{Y}_{J \times n}^T\right) - \mathbf{X}_{nJ \times Jp} \frac{\beta}{p_J \times 1}$$

•
$$f_k \equiv \mathbf{z}_k^T \mathbf{X}_k \mathbf{\Sigma}_{h}^{-1} \mathbf{X}_k^T \mathbf{z}_k$$
, and $\mathbf{z}_k \mathbf{Z}_{h}^T \mathbf{z}_k \mathbf{Z}_{h}^T$, and

$$\bullet \ \eta_k^2 \equiv \frac{1}{\tau_k^2}.$$

Then, the full-conditional posterior distributions for our subject-specific group-level feature selection model Gibbs sampler are given below:

•
$$vec\left(\mathbf{B}_{k}\right)|rest \overset{ind.}{\sim} \pi_{0k}N_{p_{k}J}\left(\tau_{k}^{2}\sum_{k}^{-1}\mathbf{X}_{k}^{T}\mathbf{z}_{k},\sigma^{2}\tau_{k}^{2}\sum_{jp_{k}\times Jp_{k}}^{-1}\right) + (1-\pi_{0k})\delta_{0}\left(vec\left(\mathbf{B}_{k}\right)\right),$$

$$\bullet \ \eta_k^2|rest \overset{ind.}{\sim} \left\{ \begin{aligned} &Inverse\ Gaussian \left(\left(\frac{\lambda_k^2}{tr \left(\mathbf{B}_k \sum\limits_{J \times J} -1 \mathbf{B}_k^T \\ p_k \times J \xrightarrow{J \times J} \mathbf{J} \times p_k \right)} \right)^{\frac{1}{2}}, \lambda_k^2 \right) & if\ \pi_{0k} = 1 \\ &Inverse\ Gamma \left(shape = \frac{p_k J + 1}{2}, scale = \frac{\lambda_k^2}{2} \right) & if\ \pi_{0k} = 0 \end{aligned} \right.$$

•
$$\sum_{J \times J} |rest \sim Inverse \ Wishart \left(df = d + \sum_{k=1}^{K} \pi_{0k} p_k, scale = \mathbf{B}_{J \times p}^T diag \left(\frac{1}{\tau_k^2} \mathbf{I}_{p_k} \right) \mathbf{B}_{p \times J} + \mathbf{Q}_{J \times J} \right)$$

$$\bullet \ \pi_{0k}|rest \overset{ind.}{\sim} \ Bernoulli \left(\frac{\theta_{\beta}\left(\sigma^{2}\right)^{\frac{Jp_{k}}{2}} \det\left(\sum\limits_{J \times J} \otimes \mathbf{I}_{p_{k}}\right)^{-\frac{1}{2}} \exp\left\{\frac{\tau_{k}^{2}}{2\sigma^{2}}f_{k}\right\} \det\left(\sum\limits_{Jp_{k} \times Jp_{k}}\right)^{\frac{1}{2}}}{\left(1-\theta\right) + \theta_{\beta}\left(\sigma^{2}\right)^{\frac{Jp_{k}}{2}} \det\left(\sum\limits_{J \times J} \otimes \mathbf{I}_{p_{k}}\right)^{-\frac{1}{2}} \exp\left\{\frac{\tau_{k}^{2}}{2\sigma^{2}}f_{k}\right\} \det\left(\sum\limits_{Jp_{k} \times Jp_{k}}\right)^{\frac{1}{2}}}\right),$$

•
$$\theta_{\beta}|rest \sim Beta\left(a + \sum_{k=1}^{K} \pi_{0k}, b + K - \sum_{k=1}^{K} \pi_{0k}\right)$$
,

•
$$\sigma^2 | rest \sim Inverse \ Gamma \left(shape = \frac{nJ}{2} + \alpha, scale = \frac{\mathbf{r}^T \quad \mathbf{r}}{2} + \gamma \right)$$

•
$$\lambda_k^2 | rest \stackrel{ind.}{\sim} Gamma \left(shape = \frac{p_k J + 1}{2} + r, rate = \frac{\tau_k^2}{2} + \delta \right),$$

•
$$\mathbf{b}_{nq \times 1} | rest \sim N_{nq} \left(\sum_{\mathbf{b}}^{-1} \mathbf{Z}^T \mathbf{r}_{\mathbf{b}}, \sigma^2 \sum_{\mathbf{b}}^{-1} \right)$$
, and

•
$$\mathbf{G}_{q \times q} | rest \sim Inverse \ Wishart \left(df = n + \nu_o, scale = \sum_{i=1}^n \mathbf{b}_i \ \mathbf{b}_i^T + \mathbf{C_0} \right).$$

2 Alzheimer's Disease Neuroimaging Initiative (ADNI) Feature Data

Below is a table 1 detailing all of the p = 44 features we used for our applied analysis.

Bibliography

- [1] Xiaofan Xu and Malay Ghosh. Bayesian Variable Selection and Estimation for Group Lasso. *Bayesian Analysis*, 10(4):909–936, 2015.
- [2] Benoit Liquet, Kerrie Mengersen, Anthony Pettitt, and Matthew Sutton. Bayesian variable selection regression of multivariate responses for group data. *Bayesian Analysis*, 12(4):1039–1067, 2017.

Feature (l)	Feature Group (k)	p_k	Feature Description
ABETA	CSF biomarkers	2	Amyloid beta peptide
TAU	CSF biomarkers	2	Total tau protein
Age	Demographics	5	Age
Education	Demographics	5	Education level (in years)
Sex	Demographics	5	Sex (female vs. male)
Race	Demographics	5	Race (white vs. other)
Marriage	Demographics	5	Marital status (married vs. other)
MCI	Neurological diagnoses	2	MCI vs. cognitively normal diagnosis
Dementia	Neurological diagnoses	2	Dementia vs. cognitively normal diagnosis
APOE4 1	Genetic markers	2	1 vs. 0 APOE- $\epsilon 4$ alleles
APOE4 2	Genetic markers	2	2 vs. 0 APOE- $\epsilon 4$ alleles
Hippocampus	MRI measurements	7	Volumetric quantification of the hippocampus
Ventricles	MRI measurements	7	Volumetric quantification of the ventricles
Whole Brain	MRI measurements	7	Volumetric quantification of the whole brain
Entorhinal	MRI measurements	7	Volumetric quantification of the entorhinal cortex
Fusiform	MRI measurements	7	Volumetric quantification of the fusiform gyrus
MidTemp	MRI measurements	7	Volumetric quantification of the middle temporal gyrus
ICV	MRI measurements	7	Intracerebral volume
MOCA	NP assessments/ECog	24	Montreal Cognitive Assessment
CDRSB	NP assessments/ECog	24	Clinical Dementia Rating sum of boxes
ADAS11	NP assessments/ECog	24	Alzheimer's Disease Assessment Subscale (11 task version)
ADASQ4	NP assessments/ECog	24	Alzheimer's Disease Assessment Cognitive Delayed Recall Task
MMSE	NP assessments/ECog	24	Mini-Mental State Examination
RAVLT Learning	NP assessments/ECog	24	Rey's Auditory Verbal Learning Test Learning
RAVLT Forgetting	NP assessments/ECog	24	Rey's Auditory Verbal Learning Test Forgetting
RAVLT Percent Forgetting	NP assessments/ECog	24	Rey's Auditory Verbal Learning Test Percent Forgetting
FAQ	NP assessments/ECog	24	Functional Assessment Questionnaire
LDELTOTAL	NP assessments/ECog	24	Logical Memory – Delayed Recall
TRABSCOR	NP assessments/ECog	24	Trail Making B Digit Symbol Substitution Test of the Wechsler Adult Intelligence Scale–Revised
ECog Pt Memory	NP assessments/ECog	24	ECog Participant Memory
ECog Pt Language	NP assessments/ECog	24	ECog Participant Language
ECog Pt Visuospatial	NP assessments/ECog	24	ECog Participant Visuospatial Abilities
ECog Pt Planning	NP assessments/ECog	24	ECog Participant Planning
ECog Pt Organization	NP assessments/ECog	24	ECog Participant Organization
ECog Pt Divided Attention	NP assessments/ECog	24	ECog Participant Divided Attention
ECog Pt Total	NP assessments/ECog	24	Average ECog Participant Score
ECog SP Memory	NP assessments/ECog	24	ECog Study Partner Assessment of Memory
ECog SP Language	NP assessments/ECog	24	ECog Study Partner Assessment of Language
ECog SP Visuospatial	NP assessments/ECog	24	ECog Study Partner Assessment of Visuospatial Abilities
ECog SP Planning	NP assessments/ECog	24	ECog Study Partner Assessment of Planning
ECog SP Organization	NP assessments/ECog	24	ECog Study Partner Assessment of Organization
ECog SP Divided Attention	NP assessments/ECog	24	ECog Study Partner Assessment of Divided Attention
FDG	PET measurements	2	Average FDG PET of the angular, temporal, and posterior cingulate
AV45	PET measurements	2	Average Florbetapir F 18 PET of THE whole cerebellum

Table 1: Baseline feature data from the ADNI; we consider a total of p=44 features partitioned into K=7 feature groups. **Abbreviations**: **MCI**: mild cognitive impairment, **APOE**: Apolipoprotein E, **NP**: neuropsychological, **ECog**: Everyday Cognition, and **FDG**: Fluorodeoxyglucose.