

CTL, VIS & Verilog – 1. aud vježba

Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Fakultet elektrotehnike i računarstva, Zagreb

http://www.fer.hr

Sadržaj

- CTL sintaksa (definicija i zadaci)
- CTL semantika (definicija i zadaci)
- Traffic light controller
 - Primjer pretvorbe verilog koda u konačni automat
- Pretvorba Verilog modela u Kripke strukturu
- Pretvorba Kripke strukture u Verilog model

CTL sintaksa

- Sintaksa i sematika (razlika)
- BNF

$$\phi := \perp |T| p |(\neg \phi)| (\phi \land \phi)| (\phi \lor \phi)| (\phi \to \phi)| AX\phi |EX\phi|$$
$$A(\phi U\phi)| E(\phi U\phi)| AG\phi |EG\phi| AF\phi |EF\phi$$

- p,T,⊥ atom propozicija
- Ø formula u CTL-u
- ukoliko se uklone zagrade: prioritet –
 (negacija,AG,EG,AF,EF,AX,EX), konjukcija, disjunkcija,
 (implikacija,AU,EU)

CTL sintaksa zadaci

- Izgradi sintaksno stablo za formule
 - E(A(p1 U p2) U p3)
 - $-AG(p\rightarrow A(pU(\neg p\land A(\neg pUq))))$
 - EF EG $p \rightarrow AF r$
 - -A(p U EF r)
 - $-AG(q \rightarrow EG r)$

CTL semantika – Kripke definicija

Kripke struktura:

$$M = (S, \rightarrow, L)$$

 $\rightarrow \subseteq S \times S$
 $L: S \rightarrow P(Atoms)$

• M,s $\models \Phi$

CTL semantika - operatori

CTL semantika - zadaci

Odredi istinite formule za model sa slike

-
$$M,s_0 \models (p \land q)$$

-
$$M, s_0 = \neg r$$

-
$$M,s_0 \models T$$

-
$$M,s_0 = EX(q \wedge r)$$

-
$$M,s_0 \models \neg AX(q \land r)$$

-
$$M,s_0 \models EF(p \land r) \prec$$

-
$$M,s_2 \models EG(r)$$

-
$$M,s_2 = \neg AG(r)$$

-
$$M,s_0 = AF(r)$$

-
$$M,s_0 \models E((p \land q) \cup r)$$

-
$$M,s_0 = A(p U r)$$

Traffic light controller

Traffic light controller – pretvorba Verilog to FSM

Pretvorba Verilog modela u Kripke strukturu

Za dva zadana odsječka Verilog koda:

```
module main(clk);
                                                 module main(clk);
input clk;
                                                 reg a;
                                                 input clk;
reg a;
                                                      initial a=0;
wire b;
     initial a=0;
                                                      always @(posedge clk) begin
     assign b = \$ND(0,1);
                                                            a=!a;
     always @(posedge clk) begin
                                                      end
                                                 endmodule
          a=b;
     end
endmodule
```

odredi istinitost slijedećih CTL specifikacija: AG(a=0); EF(a=0); EG (a=0); AG(AF(a=0)).

Obrazloži odgovor.

Pretvorba Kripke strukture u Verilog model

- Potrebno je izgraditi jedan Verilog modul koji zadovoljava slijedeće CTL specifikacije:
 - AG(p->EX(EG(q)))
 - AG(q->EX(EG(p)))
 - $AG((p \land \neg q) \lor (\neg p \land q))$

Zadovoljava li izgrađeni modul specifikaciju AF(p)

- Potrebno je izgraditi jedan Verilog modul koji zadovoljava slijedeće CTL specifikacije:
 - AG(p->EX(q))
 - AG(q->EX(EG(r)))

Zadovoljava li izgrađeni modul specifikaciju AG(p->EF(r))