Parameter Estimation

Ahmet Sacan

Parameter Estimation

Simulation:

- Can generate predicted values
- Predictions are dependent on parameters

Experimental Data:

- "Real-world" measurements
- Noisy
- May be condition-dependent

Parameter Estimation:

- Reconcile simulation & experimental data
- Optimize model parameters so the simulation can replicate experimental data (as best as possible)

Error/Evaluation/Objective Function

- Define an error function that (for given parameters, θ) quantifies how well simulation values match experimental data
 - $eval(\theta) \rightarrow error$

Error Function Example

- Let θ be 2-dimensional, i.e., we can vary two parameters in the model.
- The error function can be visualized in 3D (surface) or in 2D (contour plot, level sets).

Function Optimization

- Find best θ that results in smallest error.
- If the minimum points of the error function could be calculated analytically, we would have the correct/exact answer.
- But for most problems, closed form solution not available.
- We cannot try all possible parameters (infinitely many!)

Function Optimization Ideas

- Try many different random values of θ , pick the best one.
- Try many equally spaced values of θ , pick the best one. (e.g., meshgrid)

- Start with a random initial θ , and repeatedly improve θ to give a smaller error.
 - How to improve?

Line Search Methods

- Start with an initial guess x_0
- Repeat:
 - Find a descent direction along which error function is reduced
 - Methods: Gradient Descent, Newton's method, Quasi-Newton method
 - Choose a step size and move by the step size along that direction.

Gradient Descent

- aka Steepest Descent
- $x_{n+1} = x_n \eta \nabla f(x_n)$
- Sometimes ∇f is available. When it's not, approximate from data

$$f(x_1, x_2) = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2$$

Demo: fminunc()

- fminunc: Unconstrained Nonlinear Optimization
- Objective function:
 - $f(x_1, x_2) = 100(x_1^2 x_2)^2 + (x_1 1)^2$

Demo: fmincon()

- fminunc: Constrained Nonlinear Optimization
- Objective function:

•
$$f(x_1, x_2) = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2$$

• Constraint:

•
$$x_1 + 2x_2 \le 1$$

- Rewrite constraint as: $Ax \le b$, A=[1,2], b=1.

Fmincon exercise

Nelder-Mead Simplex Method

- Keep track of n+1 points in n dimensions
 - -e.g., a triangle in 2D.
- At each iteration, do one of:
 - reflect, expand, contract, shrink

Nelder-Mead

- Basic operation: Reflect
 - Calculate f at each point
 - identify the x_{worst} , and its f_{worst}
 - $-x_m$: average of remaining points.
 - -Reflect: $x_{reflect} = x_{mean} + R(x_{mean} x_{worst})$

 x_{worst}

Is $f_{reflect}$ better than f_{worst} but worse than second worst?

Contract Inside:

$$x_{try} = x_{mean} + C(x_{reflect} - x_{mean})$$

Shrink if worse than $f_{reflect}$.

Shrink:
$$x_i = x_i + S(x_i - x_{best})$$

Nelder-Mead

Demo: Mass-Spring-Damper

- Integrator1: $\dot{x} \rightarrow x$
- Integrator2: $\dot{v} \rightarrow v = \dot{x}$
- Implement the equation:

•
$$\dot{v} = -\frac{k}{m}x - \frac{c}{m}\dot{x}$$

Mass-Spring-Damper - Steps

- Get experimental data (Extract from figure if numerical data not available)
- Decide which parameters of the model to vary
- Write an evaluation function that returns the error for a given parameter vector
 - Simulate the system for that parameter vector
 - Compare the simulated data with experimental data to calculate error.
- Use one of the optimization functions to find the best parameters & its error.

Comparing with real data

Have a Simulink or Simbiology Model to Optimize?

- No problem.
- Just write an objective function that takes in parameters, runs Simulink/Simbiology model with those parameters and returns the error.

Demo: massspringdamper_demo

Genetic Algorithms

