14 Espaces préhilbertiens réels

« Ce qui est simple est toujours faux. Ce qui ne l'est pas est inutilisable. » Paul Valéry (1871 – 1945)

Plan de cours

I	Généralités	1
II	Orthogonalité	4
III	Suites totales (pour votre culture, HP)	10
IV	Méthode des moindres carrés (pour votre culture, HP)	11

Dans tout ce chapitre, E désigne un \mathbb{R} -espace vectoriel de dimension quelconque.

I | Généralités

A - Produit scalaire

Définition 14.1 : Produit scalaire

On appelle produit scalaire sur E toute forme bilinéaire symétrique définie positive, c'est-à-dire toute application $\varphi: E \times E \to \mathbb{R}$ telle que :

• φ est *bilinéaire* : pour tous $x_1, x_2, y_1, y_2 \in E$ et $\lambda \in \mathbb{R}$,

$$\varphi(\lambda x_1 + x_2, y_1) = \lambda \varphi(x_1, y_1) + \varphi(x_2, y_1)$$
 et $\varphi(x_1, \lambda y_1 + y_2) = \lambda \varphi(x_1, y_1) + \varphi(x_1, y_2)$

- φ est symétrique : pour tous $x, y \in E$, $\varphi(x, y) = \varphi(y, x)$.
- φ est *définie positive*: pour tout $x \in E$, $\varphi(x, x) \ge 0$ et $\varphi(x, x) = 0$ si et seulement si $x = 0_E$.

On note généralement le produit scalaire $(\cdot|\cdot)$, $\langle\cdot|\cdot\rangle$ ou $\langle\cdot,\cdot\rangle$.

Il suffit de vérifier la linéarité à gauche et la symétrie pour justifier la bilinéarité.

Définition 14.2: Espaces préhilbertiens réels -

- On appelle espace préhilbertien réel tout \mathbb{R} -espace vectoriel muni d'un produit scalaire. Notation usuelle : $(E, (\cdot|\cdot))$.
- Un espace préhilbertien réel de dimension finie est appelé espace euclidien.

Voici quatre exemples fondamentaux d'espaces préhilbertiens réels, à connaître sur le bout des doigts.

Exemple $1 - \mathbb{R}^n$ muni de son produit scalaire canonique

Le produit scalaire canonique est défini par :

$$\forall X, Y \in \mathbb{R}^n$$
, $(X|Y) = X^\top Y = \sum_{i=1}^n x_i y_i$ en notant $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ et $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

L'application ainsi définie est clairement bilinéaire et symétrique.

De plus, l'application $(\cdot|\cdot)$ est définie positive car quel que soit $x \in \mathbb{R}^n$:

$$(X|X) = \sum_{i=1}^{n} x_i^2 \ge 0$$
 et $(X|X) = \sum_{i=1}^{n} x_i^2 = 0 \iff \forall i \in [1, n], x_i = 0 \iff X = 0_{\mathbb{R}^n}$

Exemple $2 - E = \mathcal{C}([a,b],\mathbb{R})$ muni de $(f,g) \mapsto \int_a^b f(t)g(t) dt$

Si $f,g \in \mathcal{C}([a,b],\mathbb{R})$, l'intégrale existe par continuité de fg sur le segment [a,b]. $(\cdot|\cdot)$ est à valeurs dans \mathbb{R} .

• $(\cdot|\cdot)$ est bilinéaire. Soient $f,g,h\in\mathcal{C}([a,b],\mathbb{R})$ et $\lambda\in\mathbb{R}$.

$$(\lambda f + g|h) = \int_a^b (\lambda f(t) + g(t))h(t) dt = \lambda \int_a^b f(t)h(t) dt + \int_a^b g(t)h(t) dt = \lambda (f|h) + (g|h)$$

par linéarité de l'intégrale; ce qui justifie la linéarité à gauche. On obtient la linéarité à droite par symétrie.

•
$$(\cdot|\cdot)$$
 est symétrique. Soient $f,g \in \mathcal{C}([a,b],\mathbb{R})$. $(f|g) = \int_a^b f(t)g(t) dt = \int_a^b g(t)f(t) dt = (g|f)$

• $(\cdot|\cdot)$ est définie positive. Soit $f \in \mathcal{C}([a,b],\mathbb{R})$. $(f|f) = \int_a^b f^2(t) dt \ge 0$ par positivité de l'intégrale et :

$$(f|f) = 0 \Longleftrightarrow \int_{a}^{b} f^{2}(t) dt = 0 \Longleftrightarrow_{\substack{f^{2} \text{ est continue} \\ \text{et positive sur } [a,b]}} \forall t \in [a,b], \quad f^{2}(t) = 0 \Longleftrightarrow f \text{ est nulle sur } [a,b]$$

Exemple $3 - E = \mathbb{R}[X]$ muni de $(P, Q) \mapsto \int_0^1 P(t)Q(t) dt$

Là aussi, l'intégrale est bien définie. $(\cdot|\cdot)$ est à valeurs dans $\mathbb R$ et de plus,

• $(\cdot|\cdot)$ est bilinéaire. Soient $P, Q, R \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$.

$$(\lambda P + Q|R) = \int_0^1 (\lambda P(t) + Q(t))R(t) dt = \lambda \int_0^1 P(t)R(t) dt + \int_0^1 Q(t)R(t) dt = \lambda (P|R) + (Q|R)$$

par linéarité de l'intégrale; ce qui justifie la linéarité à gauche. On obtient la linéarité à droite par symétrie.

•
$$(\cdot|\cdot)$$
 est symétrique. Soient $P, Q \in \mathbb{R}[X]$. $(P|Q) = \int_0^1 P(t)Q(t) dt = \int_0^1 Q(t)P(t) dt = (Q|P)$

• $(\cdot|\cdot)$ est définie positive. Soit $P \in \mathbb{R}[X]$. $(P|P) = \int_0^1 P^2(t) dt \ge 0$ par positivité de l'intégrale et :

$$(P|P) = 0 \Longleftrightarrow \int_0^1 P^2(t) \, \mathrm{d}t = 0 \underset{\text{et positive sur } [0,1]}{\Longleftrightarrow} \forall t \in [0,1], \quad P^2(t) = 0 \underset{\text{infinité de racines}}{\Longleftrightarrow} P = 0_{\mathbb{R}[X]}$$

Exemple $4 - E = \mathcal{M}_n(\mathbb{R})$ muni de $(A, B) \mapsto \operatorname{Tr}(A^{\top} B)$

Rappelons tout d'abord que : $\forall (i,j) \in [1,n]^2$, $(AB)_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$ et $\operatorname{Tr}(AB) = \sum_{i=1}^n \sum_{k=1}^n a_{ik} b_{ki}$.

• (\cdot | \cdot) est bilinéaire. Soient $A, B, C \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$.

$$(\lambda A + B|C) = \text{Tr}((\lambda A + B)^{\top}C) = \lambda \text{Tr}(A^{\top}C) + \text{Tr}(B^{\top}C) = \lambda(A|C) + (B|C)$$

par linéarité de la trace; ce qui justifie la linéarité à gauche. La linéarité à droite est obtenue par symétrie.

• $(\cdot|\cdot)$ est symétrique. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$.

$$(A|B) = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(M^{\top}) = \operatorname{Tr}(M) = \operatorname{Tr}(A^{\top}B)^{\top} = \operatorname{Tr}(B^{\top}A) = (B|A)$$

• (·|·) est définie positive. Soit $A \in \mathcal{M}_n(\mathbb{R})$. $(A|A) = \text{Tr}(A^{\top}A) = \sum_{i=1}^n \sum_{k=1}^n a_{ik}^2 \ge 0$ et :

$$(A|A) = 0 \iff \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}^{2} = 0 \iff \forall (i,k) \in [[1,n]]^{2}, \ a_{ik}^{2} = 0 \iff A = 0_{\mathcal{M}_{n}(\mathbb{R})}$$

Exercice 1

Montrer que pour $n \in \mathbb{N}^*$, $(P,Q) \mapsto \sum_{k=0}^n P(k)Q(k)$ définit un produit scalaire sur $\mathbb{R}_n[X]$.

Exercice 2

Soit $\mathcal{L}^2(I)$ l'ensemble des fonctions définies sur un intervalle I, à valeurs dans \mathbb{R} et de carré intégrable.

- 1. Montrer que $\mathcal{L}^2(I)$ possède une structure d'espace vectoriel.
- 2. Montrer que l'application $(f,g) \mapsto \int_{I} f(t)g(t) dt$ définit un produit scalaire sur $\mathcal{L}^{2}(I)$.

Faire de même avec $\ell^2(\mathbb{N})$ muni de $(u, v) \mapsto \sum_{n=0}^{+\infty} u_n v_n$.

B – Norme euclidienne

Définition 14.3 : Norme euclidienne et distance

Soit $(E, (\cdot|\cdot))$ un espace préhilbertien réel.

On appelle norme (euclidienne) sur E l'application $\|\cdot\|: E \to \mathbb{R}_+$ définie par :

$$\forall x \in E, \quad ||x|| = \sqrt{(x|x)}$$

On appelle alors distance de x à y le réel positif d(x, y) = ||x - y|| pour $x, y \in E$.

Si $x \neq 0_E$, $\frac{x}{\|x\|}$ est de norme 1, il est dit unitaire.

Proposition 14.4: Identités remarquables

Soit $(E, (\cdot|\cdot))$ un espace préhilbertien réel. Pour tous $x, y \in E$

- (i) $||x + y||^2 = ||x||^2 + ||y||^2 + 2(x|y);$ (ii) $||x y||^2 = ||x||^2 + ||y||^2 2(x|y);$
- (iii) Identité du parallélogramme : $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2$;
- (iv) Identité de polarisation : $(x|y) = \frac{1}{4} (||x + y||^2 ||x y||^2)$.

Théorème 14.5: Inégalité de Cauchy-Schwarz

Soit $(E, (\cdot | \cdot))$ un espace préhilbertien réel. Alors,

$$\forall x, y \in E, \quad |(x|y)| \le ||x|| \cdot ||y||$$

Il y a égalité si et seulement si x et y sont colinéaires.

Démonstration 1

Soient $x, y \in E$ et $\lambda \in \mathbb{R}$.

- Si $x = 0_E$, le résultat est immédiat, y compris le cas d'égalité. Supposons désormais $x \neq 0_E$.
- $(\lambda x + y | \lambda x + y) \ge 0$ et $(\lambda x + y | \lambda x + y) = \lambda^2(x|x) + 2\lambda(x|y) + (y|y)$. C'est un trinôme en λ de signe constant donc son discriminant Δ est négatif ou nul.

$$\Delta = (2(x|y))^2 - 4(x|x)(y|y) = 4\left((x|y)^2 - (x|x)(y|y)\right) \le 0$$

Ainsi, $|(x|y)| \le \sqrt{(x|x)} \sqrt{(y|y)} = ||x|| \cdot ||y||$.

• Cas d'égalité : $\Delta = 0$ donc il existe une racine double notée λ_0 vérifiant $(\lambda_0 x + y | \lambda_0 x + y) = 0$. D'où $\lambda_0 x + y = 0$, soit $y = -\lambda_0 x$.

Démonstration 2

Soient $x, y \in E$.

• Si l'un des deux vecteurs est nul, le résultat est immédiat, y compris le cas d'égalité.

• Sinon, posons
$$x' = \frac{x}{\|x\|}$$
, $y' = \frac{y}{\|y\|}$ et enfin, $\varepsilon = \begin{cases} 1 & \text{si } (x|y) \ge 0 \\ -1 & \text{sinon} \end{cases}$

$$0 \le \|x' - \varepsilon y'\|^2 = \|x'\|^2 + \|y'\|^2 - 2\varepsilon(x'|y') = 2\left(1 - \frac{|(x|y)|}{\|x\| \cdot \|y\|}\right)$$

On retrouve bien $|(x|y)| \le ||x|| \cdot ||y||$. Le cas d'égalité est clair : $\frac{x}{||x||} = \varepsilon \frac{y}{||y||}$.

Exemple

Soit
$$P \in \mathbb{R}[X]$$
. Montrer que $\int_0^1 P(t) dt \le \sqrt{\int_0^1 P^2(t) dt}$.

On pose $E = \mathbb{R}[X]$ et $\langle P|Q\rangle = \int_0^1 P(t)Q(t) dt$. On applique l'inégalité de Cauchy-Schwarz avec Q = 1.

Exercice 3

Soient $a, b \in \mathbb{R}$ avec a < b. Montrer que si $f \in \mathcal{C}^1([a, b]; \mathbb{R})$, alors :

$$\left(\int_{a}^{b} f^{2}(t) dt\right) \cdot \left(\int_{a}^{b} f^{2}(t) dt\right) \ge \left(\frac{f(b)^{2} - f(a)^{2}}{2}\right)^{2}$$

Théorème 14.6: Norme

L'application $\|\cdot\|$ est une norme sur E.

Démonstration

Soient $x, y \in E$ et $\lambda \in \mathbb{R}$.

- $||x|| = (x|x) \ge 0$ donc $||\cdot||$ est bien à valeurs dans \mathbb{R}_+ .
- $||x|| = 0 \iff (x|x) = 0 \iff x = 0 \text{ et } ||\lambda x|| = \sqrt{(\lambda x | \lambda x)} = \sqrt{\lambda^2(x|x)} = |\lambda| \cdot ||x||.$
- D'après l'inégalité de Cauchy-Schwarz, $|(x|y)| \le ||x|| \cdot ||y||$. Donc :

$$||x + y||^2 = (x + y|x + y) = ||x||^2 + ||y||^2 + 2(x|y) \le ||x||^2 + ||y||^2 + 2 \cdot ||x|| \cdot ||y|| = (||x|| + ||y||)^2$$

D'où $||x + y|| \le ||x|| + ||y||$.

II | Orthogonalité

On considère un espace préhilbertien réel $(E, (\cdot | \cdot))$.

A – Vecteurs orthogonaux

Définition 14.7

Deux vecteurs x et y de E sont dits orthogonaux si (x|y) = 0.

Exemples

- 1. $E = \mathbb{R}^3$, $(x|y) = \sum_{i=1}^3 x_i y_i$. Les vecteurs x = (1,0,2) et y = (2,1,-1) sont orthogonaux.
- 2. $E = \mathscr{C}([0,2\pi],\mathbb{R}), \langle f|g\rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t) dt$.

Comme $\langle \cos, \sin \rangle = 0$, les vecteurs cos et sin sont orthogonaux.

Théorème 14.8: Pythagore

Soient $x, y \in E$. $||x + y||^2 = ||x||^2 + ||y||^2 \iff (x|y) = 0$.

Démonstration

$$| ||x + y||^2 = ||x||^2 + ||y||^2 + 2(x|y) \operatorname{donc} ||x + y||^2 = ||x||^2 + ||y||^2 \iff (x|y) = 0.$$

Illustration du théorème de Pythagore

L'aire du grand carré est égale à la somme de l'aire du petit carré et de l'aire des quatre triangles rectangles. Ainsi,

$$(a+b)^2 = c^2 + 4 \times \frac{ab}{2}$$

On trouve donc après simplification:

$$a^2 + b^2 = c^2$$

Théorème 14.9 -

Le vecteur nul est le seul vecteur orthogonal à tous les autres.

Démonstration

Considérons un vecteur x orthogonal à tous les autres, c'est-à-dire que : $\forall y \in E$, (x|y) = 0. Il est en particulier orthogonal à lui-même, donc $(x|x) = ||x||^2 = 0$. Ainsi, $x = 0_E$.

B - Familles orthogonales et orthonormales

Définition 14.10 : Familles orthogonales et orthonormales —

(i) Une famille $(e_i)_{i \in I}$ quelconque de vecteurs de E est dite orthogonale si :

$$\forall (i,j) \in I^2, i \neq j \Longrightarrow (e_i|e_j) = 0.$$

(ii) Elle est dite orthonormale si elle vérifie de plus : $\forall i \in I, ||e_i|| = 1$.

Proposition 14.11: Pythagore « généralisé »

Soit (e_1, \dots, e_n) une famille orthogonale de vecteurs de E. Alors, $\left\|\sum_{i=1}^n e_i\right\|^2 = \sum_{i=1}^n \|e_i\|^2$.

Théorème 14.12

Une famille orthogonale constituée de vecteurs non nuls est libre. En particulier, toute famille orthonormale est libre.

Démonstration

Démontrons ce résultat dans le cas d'une famille finie (e_1, \ldots, e_n) de vecteurs.

• Soient $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tels que $\lambda_1 e_1 + \dots + \lambda_n e_n = 0_E$. Ainsi, quel que soit $j \in [1, n]$,

$$\left(\sum_{i=1}^{n} \lambda_{i} e_{i} \middle| e_{j}\right) = \sum_{i=1}^{n} \lambda_{i} \left(e_{i} \middle| e_{j}\right) = \lambda_{j} ||e_{j}||^{2} = 0$$

Le vecteur e_i étant non nul, $\lambda_i=0$. Et ceci, pour tout $j\in [\![1,n]\!]$. La famille est bien libre.

• Une famille orthonormale est orthogonale et ses vecteurs sont unitaires donc non nuls.

Une famille orthonormale contient donc au plus $\dim(E)$ vecteurs si E est de dimension finie. Si elle en contient précisément $\dim(E)$, c'est une base. On la qualifie de *base orthonormale* ou de *base orthonormée*.

Théorème 14.13: Décomposition dans une base orthonormée

Soient E un espace euclidien de dimension $n \in \mathbb{N}^*$ et (e_1, \dots, e_n) une base orthonormée de E.

$$\forall x \in E, \quad x = (x|e_1)e_1 + \dots + (x|e_n)e_n = \sum_{i=1}^n (x|e_i)e_i$$

Autrement dit, les coordonnées de x dans la base (e_1,\ldots,e_n) sont $((x|e_i))_{1\leqslant i\leqslant n}$.

Démonstration

Soient $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de E et $x \in E$.

Il existe
$$x_1, ..., x_n \in \mathbb{R}$$
 tels que $x = \sum_{i=1}^n x_i e_i$ donc pour tout $j \in [1, n]$,

$$(x|e_j) = \left(\sum_{i=1}^n x_i e_i | e_j\right) = \sum_{i=1}^n x_i (e_i|e_j) = \sum_{i=1}^n x_i \delta_{ij} = x_j$$

Ainsi,
$$x = (x|e_1)e_1 + \dots + (x|e_n)e_n = \sum_{i=1}^{n} (x|e_i)e_i$$
.

Proposition 14.14

Soit $\mathcal{B} = (e_1, ..., e_n)$ une base orthonormale de E. On considère $x, y \in E$ de coordonnées respectives $X = (x_1, ..., x_n)$ et $Y = (y_1, ..., y_n)$. Alors,

$$(x|y) = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} (x|e_i)(y|e_i) = X^{\top} Y$$
 et $||x||^2 = \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} (x|e_i)^2 = X^{\top} X$

Ce dernier résultat montre qu'en dimension finie, tous les produits scalaires se ramènent au produit scalaire canonique de \mathbb{R}^n via le choix d'une base orthonormale. Mais tout espace euclidien possède-t-il une base orthonormale?

Réponse : oui! Tout espace vectoriel de dimension finie (donc tout espace euclidien) possède une base. Dans le cas d'un espace euclidien, on peut même construire une base orthonormée à l'aide du *procédé* ou *algorithme d'orthonormalisation de Gram-Schmidt*. Ceci nous assure l'existence d'une base orthonormale.

Le procédé d'orthonormalisation repose sur l'idée fondamentale suivante :

On considère une famille libre $(\overrightarrow{u_1},\overrightarrow{u_2})$ de \mathbb{R}^2 .

- Commençons par poser $\overrightarrow{e_1} = \frac{\overrightarrow{u_1}}{\|\overrightarrow{u_1}\|}$ pour obtenir un vecteur unitaire
- On retranche ensuite à $\overrightarrow{u_2}$ sa composante suivant $\overrightarrow{e_1}$. On obtient alors un vecteur $\overrightarrow{e_2'} = \overrightarrow{u_2} - (\overrightarrow{u_2}|\overrightarrow{e_1})\overrightarrow{e_1}$ orthogonal à $\overrightarrow{e_1}$. Il ne reste plus qu'à le diviser par sa norme pour obtenir un vecteur unitaire :

$$\overrightarrow{e_2} = \frac{\overrightarrow{u_2} - (\overrightarrow{u_2}|\overrightarrow{e_1})\overrightarrow{e_1}}{\|\overrightarrow{u_2} - (\overrightarrow{u_2}|\overrightarrow{e_1})\overrightarrow{e_1}\|}$$

La famille $(\overrightarrow{e_1}, \overrightarrow{e_2})$ obtenue est orthonormale.

Théorème 14.15 -

Soient $n \in \mathbb{N}^*$ et $(u_1, ..., u_n)$ une famille libre de vecteurs de E. Il existe alors une famille orthonormale $(e_1, ..., e_n)$ de E telle que :

$$Vect(e_1, \ldots, e_n) = Vect(u_1, \ldots, u_n)$$

Démonstration

Démontrons ce résultat par récurrence sur n.

- Initialisation La famille (u_1) étant libre, u_1 est non nul. On pose alors $e_1 = \frac{u_1}{\|u_1\|}$.
- **Hérédité** Supposons la propriété vraie au rang n et montrons qu'elle l'est encore au rang n+1. Considérons pour cela la famille $(u_1, \ldots, u_n, u_{n+1})$ que l'on suppose libre. La famille (u_1, \ldots, u_n) étant libre, il existe une famille orthonormale (e_1, \ldots, e_n) telle que $\text{Vect}(u_1, \ldots, u_n) = \text{Vect}(e_1, \ldots, e_n)$. On pose alors :

$$e'_{n+1} = u_{n+1} - \sum_{i=1}^{n} \lambda_i e_i$$

(i) On souhaite que la famille $(e_1, ..., e'_{n+1})$ soit orthogonale.

$$\forall j \in [1, n], \quad (e'_{n+1}|e_j) = 0 \quad \Longleftrightarrow \quad \forall j \in [1, n], \quad (u_{n+1}|e_j) - \sum_{i=1}^n \lambda_i(e_i|e_j) = (u_{n+1}|e_j) - \lambda_j = 0$$

On pose donc $\lambda_j = (u_{n+1}|e_j)$ pour tout $j \in [1, n]$.

- (ii) e'_{n+1} est non nul. Dans le cas contraire, u_{n+1} serait combinaison linéaire de (e_1, \dots, e_n) donc de (u_1, \dots, u_n) . La famille (u_1, \dots, u_{n+1}) ne pourrait être libre! On peut donc poser $e_{n+1} = \frac{e'_{n+1}}{\|e'_{n+1}\|}$. La famille (e_1, \dots, e_{n+1}) est alors orthonormale.
- (iii) Enfin, puisque $\text{Vect}(u_1, \dots, u_n) = \text{Vect}(e_1, \dots, e_n)$ et que e_{n+1} est combinaison linéaire de e_1, \dots, e_n et de u_{n+1} , $\text{Vect}(u_1, \dots, u_n, u_{n+1}) = \text{Vect}(e_1, \dots, e_n, e_{n+1})$. Ceci achève la récurrence.

Quelques remarques:

- Une telle famille (e_1, \ldots, e_n) est unique à condition que $(u_k | e_k) > 0$ pour tout $k \in [1, n]$.
- La matrice de passage de la base $(u_1, ..., u_n)$ à $(e_1, ..., e_n)$ est triangulaire supérieure.
- On peut normaliser les vecteurs e'_k à chaque étape ou bien normaliser la famille (e'_1, \ldots, e'_n) une fois construite.

Théorème 14.16

Tout espace euclidien admet une base orthonormale.

Exercice 4

Montrer que la famille $\mathcal{B} = ((2,1,0),(0,1,1),(1,2,1))$ est une base de \mathbb{R}^3 puis construire une base orthonormée de \mathbb{R}^3 pour le produit scalaire usuel à l'aide du procédé vu précédemment.

Exercice 5

Soit E un espace vectoriel muni d'une base (e_1, \ldots, e_n) . Montrer qu'il existe un unique produit scalaire sur E tel que cette base est orthonormale.

C - Orthogonal d'un sous-espace vectoriel

E désigne toujours un espace préhilbertien réel de dimension quelconque.

Définition 14.17: Orthogonal -

Soit *F* un sous-espace vectoriel de *E*. On appelle orthogonal de *F* l'ensemble :

$$F^{\perp} = \{ x \in E \mid \forall y \in F (x|y) = 0 \}$$

8

Proposition 14.18 -

Soient F et G deux sous-espaces vectoriels de E.

- (i) F^{\perp} est un sous-espace vectoriel de E.
- (ii) Si $F \subset G$, alors $G^{\perp} \subset F^{\perp}$. De plus, $F \subset (F^{\perp})^{\perp}$.

Démonstration

- (i) Tout d'abord, F^{\perp} est non vide car il contient le vecteur nul.
 - Soient $x_1, x_2 \in F^{\perp}$ et $\lambda \in \mathbb{R}$. Alors, $\forall y \in F$, $(\lambda x_1 + x_2 | y) = \lambda \underbrace{(x_1 | y)}_{=0} + \underbrace{(x_2 | y)}_{=0} = 0$.

Donc F^{\perp} est stable par combinaison linéaire.

(ii) Soit
$$x \in G^{\perp}$$
. Pour tout $y \in F$, $(x|y) = 0$ car $y \in G$. Ainsi, $x \in F^{\perp}$. Comme attendu, $G^{\perp} \subset F^{\perp}$.

Assez facilement, $\{0_E\}^{\perp} = E$ et $E^{\perp} = \{0_E\}$. Attention, dire que deux sous-espaces vectoriels sont orthogonaux ne signifie pas que l'un est l'orthogonal de l'autre. Penser à l'exemple de deux droites orthogonales dans l'espace.

Exercice 6

Soit $u \in E$ non nul. Montrer que $\text{Vect}(u)^{\perp}$ est un hyperplan et en donner une équation.

Proposition 14.19 -

Soient F un sous-espace vectoriel de E et $u \in E$.

 $u \in F^{\perp}$ si et seulement si u est orthogonal aux vecteurs d'une base quelconque de F.

Démonstration

L'implication est immédiate, montrons simplement la réciproque dans le cas d'un espace de dimension finie. Supposons u orthogonal aux vecteurs d'une base $(e_1, ..., e_p)$ de F. Soit $y \in F$. Il existe donc $(\lambda_1, ..., \lambda_p) \in \mathbb{R}^p$

tel que
$$y = \sum_{i=1}^p \lambda_i e_i$$
. Ainsi, $(u|y) = \left(u \Big| \sum_{i=1}^p \lambda_i e_i\right) = \sum_{i=1}^p \lambda_i (u|e_i) = 0$. Donc $u \in F^{\perp}$.

Théorème 14.20 -

Soit *F* un sous-espace vectoriel de dimension finie de *E*. Alors, $E = F \oplus F^{\perp}$.

Démonstration

Soient $x \in E$ et $(e_1, ..., e_p)$ une base orthonormée de F. Raisonnons par analyse/synthèse.

• *Analyse* – On suppose que $x = x_F + x_{F^{\perp}}$ avec $x_F \in F$ et $x_{F^{\perp}} \in F^{\perp}$.

That ye = On suppose que
$$x = x_F + x_{F^{\perp}}$$
 avec $x_F \in F$ et $x_{F^{\perp}} \in F$.

$$x_F \in F \text{ donc } x_F = \sum_{i=1}^p (x_F|e_i)e_i \text{ et } x_{F^{\perp}} = x - x_F \in F^{\perp}. \text{ Ainsi,}$$

$$\forall i \in [1, p], \quad (x - x_F|e_i) = 0 \quad \text{c'est-\`a-dire} \quad x_F = \sum_{i=1}^p (x_i|e_i)e_i$$

• Synthèse –

On peut écrire
$$x = \underbrace{\sum_{i=1}^{p} (x|e_i)e_i}_{\in F} + \left(x - \sum_{i=1}^{p} (x|e_i)e_i\right).$$

Il reste à montrer que $x - \sum_{i=1}^{p} (x|e_i)e_i \in F^{\perp}$, ce qui est

bien le cas car :

$$\forall j \in [1, p], \quad \left(x - \sum_{i=1}^{p} (x|e_i)e_i \Big| e_j\right) = (x|e_j) - \sum_{i=1}^{p} (x|e_i)(e_i|e_j) = 0$$

© Mickaël PROST

Corollaire 14.21 : Inégalité de Bessel

Soient $(e_1, ..., e_p)$ une famille orthonormale de F et $x \in E$. Alors, $\sum_{i=1}^{p} (x|e_i)^2 \le ||x||^2$.

Il y a égalité si et seulement si $x \in \text{Vect}(e_1, \dots, e_p)$.

Corollaire 14.22 -

Soient E un espace euclidien (donc de dimension finie) et F un sous-espace vectoriel de E. F^{\perp} est un espace vectoriel de dimension finie et $\dim(F^{\perp}) = \dim(E) - \dim(F)$. De plus, $\left(F^{\perp}\right)^{\perp} = F$.

Démonstration

- Si $E = F \oplus G$ et que E est de dimension finie, alors $\dim(E) = \dim(F) + \dim(G)$.
- Il suffit de montrer que $F \subset (F^{\perp})^{\perp}$ puis on conclut par égalité des dimensions.

D - Projection orthogonale et distance

Définition 14.23 : Projecteur orthogonale

Soit F un sous-espace vectoriel de E de dimension finie. Alors, $E = F \oplus F^{\perp}$. On appelle projection orthogonale sur F la projection sur F parallèlement à F^{\perp} .

Représentation du projeté orthogonal de x sur F

Théorème 14.24

En notant p la projection orthogonale sur F, sous-espace vectoriel de E de dimension finie n,

- Si $x \in E$, p(x) est entièrement caractérisé par : $p(x) \in F$ et $x p(x) \in F^{\perp}$.
- Si (e_1, \dots, e_n) est une base orthonormale de F, alors $p(x) = (x|e_1)e_1 + \dots + (x|e_n)e_n$.

Démonstration

Redémontrons rapidement le deuxième point.

$$\forall i \in [1, n], (x|e_i) = (p(x) + (x - p(x))|e_i) = (p(x)|e_i) + (x - p(x)|e_i) = (p(x)|e_i)$$

On retrouve donc le fait que $p(x) = \sum_{i=1}^{n} (x|e_i)e_i$.

Exercice 7

Donner la matrice dans la base canonique de la projection orthogonale sur le plan d'équation x + y + z = 0.

Exercice 8

Soient *E* un espace préhilbertien réel et *p* la projection orthogonale sur une droite vectorielle *D* de *E*.

- Pour $x \in E$, exprimer p(x) en fonction de x.
- Même question lorsque p est la projection orthogonale sur un hyperplan H de E.

Exercice 9

On munit \mathbb{R}^n de sa structure euclidienne canonique et on note x un vecteur unitaire de \mathbb{R}^n .

- Déterminer la matrice dans la base canonique de la projection orthogonale sur Vect(x).
- Soit *M* la matrice dans la base canonique d'une projection orthogonale.

Montrer qu'il existe des vecteurs unitaires X_1, \dots, X_r de \mathbb{R}^n tels que $M = \sum_{k=1}^r X_k X_k^{\top}$.

Définition 14.25 : Distance

Soient $x \in E$ et F un sous-espace vectoriel de E de dimension finie. On appelle distance de x à F le réel $d(x,F) = \inf_{u \in F} d(x,u) = \inf_{u \in F} \|x - u\|$.

Intuitivement, la distance de x à F est la plus petite des distances entre x et les vecteurs de F. Cependant, rien ne nous garantit l'existence d'une *distance minimale*. Noter que la définition a bien un sens car $\{||x-u|| \mid u \in F\}$ est une partie de $\mathbb R$ non vide et minorée; elle admet une borne inférieure.

Théorème 14.26

Soient $x \in E$ et F un sous-espace vectoriel de E de dimension finie. $d(x,F) = \inf_{u \in F} \|x-u\| = \|x-p(x)\|$ où p est la projection orthogonale sur F.

La distance est donc un minimum qui est atteint pour u = p(x).

Démonstration

On peut à nouveau s'appuyer sur une simple figure.

Soit $u \in F$.

D'après le théorème de Pythagore,

$$||x - u||^2 = ||\underbrace{x - p(x)}_{\in F^{\perp}}||^2 + ||\underbrace{u - p(x)}_{\in F}||^2$$

Ainsi, $||x - u|| \ge ||x - p(x)||$ et la borne inférieure est atteinte pour $u = p(x) \in F$.

La borne inférieure est un minimum.

Exercice 10

Déterminer la distance du vecteur u = (1, 2, 3) au plan de \mathbb{R}^3 d'équation x + y + z = 0.

III | Suites totales (pour votre culture, HP)

 $(E,(\cdot|\cdot))$ désigne toujours un espace préhilbertien réel. Étant donné une famille orthonormale de vecteurs $(e_i)_{i\in\mathbb{N}}$, on cherche à généraliser l'expression $x=\sum_{i=1}^n(x|e_i)e_i$ valable en dimension finie.

Définition 14.27 : Suite totale -

On dit qu'une suite de vecteurs $(e_i)_{i\in\mathbb{N}}$ de E est totale si pour tout $x\in E$,:

$$\forall \varepsilon > 0, \quad \exists y \in \underset{i \in \mathbb{N}}{\text{Vect}}(e_i), \quad ||x - y|| < \varepsilon$$

Par caractérisation séquentielle de la limite, cela revient à dire qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de $\text{Vect}(e_i)$ qui converge vers x. En d'autres termes, $\text{Vect}(e_i)$ est dense dans E.

Théorème 14.28

Soient $(e_i)_{i\in\mathbb{N}}$ une suite orthonormale totale d'éléments de E et pour tout $n\in\mathbb{N}$, p_n le projecteur orthogonal sur $\text{Vect}(e_0,...,e_n)$. Alors, pour tout x de E, $(p_n(x))_{n\in\mathbb{N}}$ converge vers x.

Représentation du projeté orthogonal de x sur $Vect(e_0, ..., e_n)$

Démonstration

Soient $x \in E$ et $(e_i)_{i \in \mathbb{N}}$ une suite orthonormale totale d'éléments de E. On pose pour $n \in \mathbb{N}$, $F_n = \underset{0 \le i \le n}{\text{Vect}}(e_i)$ et l'on cherche à montrer que $||x - p_n(x)|| \longrightarrow 0$. On fixe $\varepsilon > 0$.

l'on cherche à montrer que $\|x-p_n(x)\| \xrightarrow[n \to +\infty]{} 0$. On fixe $\varepsilon > 0$. Par définition d'une famille totale, il existe $y \in \text{Vect}(e_i)$ tel que $\|x-y\| < \varepsilon$.

Le vecteur y étant combinaison linéaire d'un nombre nécessairement fini de vecteurs e_i , il existe $n_0 \in \mathbb{N}$ tel que $y \in F_{n_0}$. Remarquons qu'alors, pour tout $n \ge n_0$, $y \in F_n$ et donc,

$$||x - p_n(x)|| = \inf_{u \in F_n} ||x - u|| \le ||x - y|| \le \varepsilon$$

On vient finalement d'établir que pour tout $x \in E$, $x = \lim_{n \to +\infty} p_n(x) = \lim_{n \to +\infty} \sum_{i=0}^n (x|e_i)e_i = \sum_{i=0}^{+\infty} (x|e_i)e_i$. On obtient alors la version « complète » de l'inégalité de Bessel.

Corollaire 14.29 : Égalité de Parseval

Si $(e_i)_{i\in\mathbb{N}}$ une suite orthonormale totale d'éléments de E, alors, pour tout $x\in E$, $||x||^2=\sum_{i=0}^{+\infty}(x|e_i)^2$.

Démonstration

Le théorème de Pythagore va encore une fois venir à notre rescousse. Il suffit d'écrire pour tout $x \in E$:

$$||x||^2 = ||p_n(x)||^2 + ||x - p_n(x)||^2 = \sum_{i=1}^n (x|e_i)^2 + ||x - p_n(x)||^2 \xrightarrow[n \to +\infty]{} \sum_{i=0}^{+\infty} (x|e_i)^2$$

Exercice 11

Montrer que la famille $(x \mapsto x^n)_{n \in \mathbb{N}}$ est une suite totale de l'espace $\mathscr{C}([0,1])$ pour un produit scalaire à préciser.

IV | Méthode des moindres carrés (pour votre culture, HP)

Il est courant, en physique-chimie, en sciences industrielles, ou plus généralement dans toute discipline expérimentale (biologie, chimie, économie, ...), d'avoir à comparer des données expérimentales et de conjecturer une éventuelle dépendance linéaire entre deux paramètres donnés (par exemple entre l'allongement d'un ressort et la force de traction exercée sur celui-ci).

Supposons que l'on dispose d'une série de n mesures de la forme (x_i, y_i) avec $i \in [\![1, n]\!]$. On cherche à trouver « la droite de meilleure approximation » de nos mesures, c'est-à-dire la droite qui décrit au mieux la tendance du nuage observé. C'est le principe de régression linéaire.

Mais quel sens donner à cette fameuse « droite de meilleure approximation »?

Si la droite recherchée a pour équation y = ax + b, l'écart ponctuel entre la mesure obtenue (x_i, y_i) et la mesure attendue $(x_i, ax_i + b)$ vaut $|y_i - ax_i - b|$. On peut dès lors chercher à minimiser l'écart global entre les points et la droite, écart qui peut être défini de différentes façons. Par exemple,

$$\max_{1 \le i \le n} |y_i - ax_i - b|; \quad \sum_{i=1}^n |y_i - ax_i - b|; \quad \sum_{i=1}^n (y_i - ax_i - b)^2$$

C'est cette dernière quantité que l'on souhaite minimiser dans la méthode dite des moindres carrés.

On peut déterminer $\inf_{(a,b)\in\mathbb{R}^2}\sum_{i=1}^n(y_i-ax_i-b)^2$ en l'interprétant comme la distance d'un vecteur à un certain sous-espace vectoriel de \mathbb{R}^n .

Posons
$$X = (x_1, ..., x_n)$$
, $Y = (y_1, ..., y_n)$, $Z = aX + b = (ax_1 + b, ..., ax_n + b)$ et $F = \text{Vect}(X, (1, ..., 1))$.
Il vient $\inf_{(a,b)\in\mathbb{R}^2} \sum_{i=1}^n (y_i - ax_i - b)^2 = \inf_{(a,b)\in\mathbb{R}^2} ||Y - Z||^2 = \inf_{Z \in F} ||Y - Z||^2 = d^2(Y, F)$.

D'après ce qui précède, $d^2(Y, F)$ vaut $||Y - p(Y)||^2$ où p est la projection orthogonale sur F.

Alors, $Y - Z = Y - p(Y) \in F^{\perp}$ c'est-à-dire :

$$\begin{cases} (Y - Z | X) = 0 \\ (Y - Z | (1, ..., 1)) = 0 \end{cases}$$

Cela nous conduit à résoudre le système suivant d'inconnues a et b:

$$\begin{cases} \sum_{i=1}^{n} (y_i - ax_i - b)x_i = 0\\ \sum_{i=1}^{n} (y_i - ax_i - b) = 0 \end{cases}$$

On obtient après simplification le système linéaire 2×2 suivant :

$$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + n b = \sum_{i=1}^{n} y_i \end{cases}$$

On obtient ainsi les coefficients a et b recherchés.

Une petite mise en garde cependant, rien ne nous garantit que la loi étudiée est linéaire!