VIGIWHEELS

Your autonomous sentine

Table of contents

00 - Introduction

01 - Sprint 2 summary

02 - Demonstrations

03 - Sprint 3 planification

What makes Vigiwheels so Amazing?

A connected autonomous vehicle that **ensures the security** of an industrial building

16 000 Fire incidents on average In industrial areas in a year

200 000 Attempts of break-in In 2022

Tahani team

Moad

Johann

Raphael

Oysho

Axel

Aïssatou

Eduardo

Sprint 2 summary

- Objectives
- What we have done
- Planning management

Objectives

Improve RPM control & speed control **Indoor Car Navigation &** Angular control turn **Smart patrol** Navigation system (ROS2 Nav) Camera rotation control **Instrument reading** Integration of camera (Jetson) Integration of Al **Fire Detection** Integration of fire sensors

What we have done

- Control the rotation speed of the wheels
- ✓ Integrate of the AI to the car
- Control the position of the camera
- Integrate the fire sensor to the car

Planning management

Explanation

I - ROS integration of the AI model

Approval Test

Detect a manometer about 20 cm

Inference rate of 8 frames per second

Demonstration

Demonstration

Manometer level detection

Read sensors

Objectives

- Communicate if there is a manometer in the image taken from the camera
 - Improve model inference speed
- Classify the pressure level of the manometer

How do we get the Motor to turn at the speed we want?

Follow the given instruction : 0.5 (instruction) -> 32 rpm (wheel speed)

→ Move with constant speed for about 5 – 10 –15 m.

React to constant disturbances by accelerating or decelerating under 2 seconds

Explanation

Simulation result

Real test values

Demonstration

Demonstration

Camera rotation control

Objectives

- ✓ Adjust camera position based on provided angles
- Create sequences of instructions for specific uses
- → Scan mode
- → fixed mode

Approval test

✓ The camera turn to the request angle (± 2°).

Integration of Sensors on the Car

Implementing another STM32 connected via USB to the Raspberry Pi

Transmitting data through a serial port

Gives the customer the ability to plug in a fire module or not, based on their preference.

Integration of Sensors on the Car

ROS/STM32 developed architecture

Approval Test

Front Right Sensor

Demonstration

Organization for sprint 3

Sprint 3

User Interface

- Create a web page
 - Communication User Vehicle

02

Fire Detection

The car must be able to detect smoke

03

Instrument reading

- Integration of AI model in ROS
- Intruder detection with QR code

Integration of the new Al model to ROS

Sprint 3

Story:

The car can read a pressure value and communicate it the level is critical using ROS. The car should also send the coordinates of the detected manometer.

> Set up the environnement for GPU inference ~2 days

Send manometer coordinates ~2 days

Create the ROS nodes and packages ~3 days

Perform the approval test and resolve bug ~4 days

Approval test:

- When a manometer is detected, its coordinates are published.
- The pressure level is read and sent.

Fire Detection

Sprint 3

Story

The car must be able to detect smoke along its path

Integration into the basic architecture ~1 days

Electrical wiring ~2 days

> Testing ~2 days

Approval test

Verification of the entire software architecture, from simulating a fire to triggering the alarm

Demonstration

The car will trigger an alarm when smoke is detected

Follow manometers with camera

Sprint 3

Story

When a manometer is detected, the camera move to keep it in the horizontal center of the image

Create a new mode for the controller ~4 days

Read the position of the detected manometer ~2 days

Compute the new camera angle ~3 days

Perform the approval test and resolve bug ~2 days

Approval test & Demonstration

- When the tracking mode is active, the camera follow a manometer while the car move at maximum speed
- > If a manometer enter in the field of view of the camera, the camera center it

Car Dashboard

Sprint 3

Story

As a user, I want all sensor and movement options summarized on a single web page for easy access and reference.

Dashboard Design: Create a user-friendly interface that visually organizes and displays car data. — 70% ~9 days

- Filtering and Sorting: Include options for filtering or sorting the information based on user preferences or specific criteria
- 90% ~2 days

Alerts: Show emergency alerts to the user (Fire detection, Intruder detection)

- 100% ~3 days
- Manometer Reading: Show when a manometer is detected and show the value
- 120% ~2 days

Approval Tests

- All information is available and accessible
- Car values are updated within a maximum of 3 seconds after the change.

Demonstration

> The web page is functional, the user can navigate between the different data received

Next Demonstrations!

Sprint 3

Virtual Dashboard

The website summarizes information and states of the car.

Read values from manometer

The can car read the value from manometer, to check if everything is fine

Smoke detection

The car use smoke sensors to identify and detect the presence of a fire

Manometer tracking

The car's cameras track the movement of the manometer detected during the vehicle's operation.

