CLAIMS

What we claim is:

1. A compound of formula (I)

$$R^2$$
 R^3
 R^4
 $N=N$
 $N=N$

or a salt, ester or prodrug thereof;

where:

5

X is O or NR⁶:

 \mathbf{R}^6 is hydrogen or $C_{1\text{-4}}$ alkyl;

10 \mathbb{R}^1 is hydrogen, halo, or $-X^1\mathbb{R}^{11}$;

 X^1 is a direct bond, -CH₂=CH₂-, -O-, -NH-, -N(C₁₋₆alkyl)-, -C(O), -C(O)O, -OC(O)-, -NHC(O)-, -N(C₁₋₆alkyl)C(O)-, -C(O)NH or -C(O)N(C₁₋₆alkyl)-;

 $\mathbf{R^{11}}$ is hydrogen, or a group selected from $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{3\text{-}6}$ cycloalkyl, $C_{3\text{-}6}$ cycloalkenyl, heterocyclyl $C_{1\text{-}4}$ alkyl, heterocyclyl $C_{2\text{-}4}$ alkenyl and

heterocyclylC₂₋₄alkynyl which group is optionally substituted by 1 or 2 substituents independently selected from halo, hydroxy, C_{1-4} alkoxy, hydroxy C_{1-4} alkyl, $-NR^9R^{10}$, -C(O)R⁹, -C(O)NR⁹R¹⁰ and -C(O)OR⁹;

 \mathbb{R}^2 is hydrogen, halo, nitro, cyano or $-\mathbb{X}^2\mathbb{R}^{12}$;

 X^2 is a direct bond, -O-, -NH-, -N(C₁₋₆alkyl)-, -OC(O)- or -C(O)O-;

- R¹² is hydrogen, or a group selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkenyl, arylC₁₋₄alkyl, arylC₂₋₄alkenyl, arylC₂₋₄alkynyl, heterocyclyl, heterocyclylC₁₋₄alkyl, heterocyclylC₂₋₄alkenyl and heterocyclylC₂₋₄alkynyl, which group is optionally substituted by 1, 2 or 3 substituents independently selected from, halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy, -NR¹⁵R¹⁶, -NHC(O)NR¹⁵R¹⁶, -C(O)R¹⁵ and -C(O)OR¹⁵;
- 25 \mathbb{R}^3 is hydrogen, halo or $-X^3\mathbb{R}^{13}$;

 X^3 is a direct bond, $-CH_2=CH_2-$, -O-, -NH-, $-N(C_{1-6}alkyl)-$, -C(O)-, -C(O)O-, -OC(O)-, $-N(C_{1-6}alkyl)C(O)-$, -C(O)NH- or $-C(O)N(C_{1-6}alkyl)-$;

- R^{13} is hydrogen, or a group selected from $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{3\text{-}6}$ cycloalkyl, $C_{3\text{-}6}$ cycloalkenyl, aryl $C_{1\text{-}4}$ alkyl, aryl $C_{2\text{-}4}$ alkenyl, aryl $C_{2\text{-}4}$ alkynyl, heterocyclyl $C_{1\text{-}4}$ alkyl, heterocyclyl $C_{2\text{-}4}$ alkenyl and heterocyclyl $C_{2\text{-}4}$ alkynyl which group is optionally substituted by 1 or 2 substituents independently selected from
- 5 -NR⁷R⁸, -C(O)NR⁷R⁸, halo, hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy, hydroxyC₁₋₄alkyl, hydroxyC₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl, aminoC₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl and bis(C₁₋₄alkyl)aminoC₁₋₄alkylcarbonyl;
 - ${f R}^7$ and ${f R}^8$ are independently selected from hydrogen, heterocyclyl, heterocyclyl $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl, hydroxy $C_{1\text{-6}}$ alkyl, $C_{1\text$
- $C_{3\text{-}6}\text{cycloalkyl}C_{1\text{-}4}\text{alkyl}, \text{hydroxy}C_{3\text{-}6}\text{cycloalkyl}, \text{hydroxy}C_{1\text{-}4}\text{alkyl}C_{3\text{-}6}\text{cycloalkyl}, \text{hydroxy}C_{1\text{-}4}\text{alkyl}C_{3\text{-}6}\text{cycloalkyl}C_{1\text{-}4}\text{alkyl}, \text{hydroxy}C_{3\text{-}6}\text{cycloalkyl}C_{1\text{-}4}\text{alkyl}, C_{1\text{-}4}\text{alkoxy}C_{3\text{-}6}\text{cycloalkyl}C_{1\text{-}4}\text{alkyl}, \text{halo}C_{3\text{-}6}\text{cycloalkyl}, \text{halo}C_{3\text{-}6}\text{cycloalkyl}C_{1\text{-}4}\text{alkyl}, \text{halo}C_{3\text{-}6}\text{cycloalkyl}C_{1\text{-}4}\text{alkyl}, C_{2\text{-}6}\text{alkynyl}, \text{cyano}C_{1\text{-}4}\text{alkyl}, \text{amino}C_{1\text{-}6}\text{alkyl}, C_{1\text{-}4}\text{alkyl}\text{amino}C_{1\text{-}6}\text{alkyl}, \text{bis}(C_{1\text{-}4}\text{alkyl}), \text{hydroxy}C_{1\text{-}4}\text{alkyl}, \text{h$
- 4alkylcarbonyl, amino C_{1-4} alkylcarbonyl, C_{1-4} alkylcarbonyl and bis(C_{1-4} alkyl)amino C_{1-4} alkylcarbonyl;
 - or \mathbb{R}^7 and \mathbb{R}^8 together with the nitrogen to which they are attached form a heterocyclic ring which ring is moncyclic or bicyclic and comprises 4 to 7 ring atoms of which one is nitrogen and of which another is optionally selected from N, NH, O, S, SO and SO₂, and which ring is
- optionally substituted on carbon or nitrogen by 1 or 2 substituents independently selected from C₁₋₄alkyl, hydroxy, C₁₋₄alkoxy, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkoxyC₁₋₄alkoxyC₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl, aminoC₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl and
- bis(C_{1-4} alkyl)amino C_{1-4} alkylcarbonyl, and where a ring $-CH_2$ is optionally replaced with -C(O)-;
 - R⁴ is selected from hydrogen, halo or -X⁴R¹⁴;
 - X^4 is a direct bond, -O-, -NH- or -N(C₁₋₆alkyl)-;
 - $\mathbf{R^{14}}$ is selected from hydrogen, $C_{1\text{-6}}$ alkyl, $C_{2\text{-6}}$ alkenyl and $C_{2\text{-6}}$ alkynyl;
- R⁵ is aryl or heteroaryl optionally substituted by 1, 2 or 3 substituents independently selected from halo, hydroxy, cyano, nitro, amino, C₁₋₄alkylamino, bis(C₁₋₄alkyl)amino, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, -C(O)NHR¹⁷, -NHC(O)R¹⁸, -SR¹⁷, -S(O)R¹⁷ and -S(O)OR¹⁷;

WO 2004/113324 PCT/GB2004/002564

-70-

- R^9 , R^{10} , R^{15} and R^{16} are independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ cycloalkyl $C_{1\text{-}4}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, halo $C_{1\text{-}6}$ alkyl, amino $C_{1\text{-}6}$ alkyl, $C_{1\text{-}4}$ alkyl)amino $C_{1\text{-}6}$ alkyl;
- or \mathbb{R}^9 and \mathbb{R}^{10} together with the nitrogen to which they are attached form a heterocyclic ring which ring is monocyclic or bicyclic and comprises 4 to 7 ring atoms of which one is nitrogen and of which another is optionally selected from N, NH, O, S, SO and SO₂, and which ring is optionally substituted on carbon or nitrogen by 1 or 2 substituents independently selected from C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy, hydroxy C_{1-4} alkyl, C_{1-4} alkoxy C_{1-4} alkoxy, hydroxy C_{1-4} alkyl, C_{1-4} alkoxy C_{1-4} alkoxy, hydroxy C_{1-4} alkylcarbonyl, amino C_{1-4}
- 4alkylcarbonyl, C_{1-4} alkylamino C_{1-4} alkylcarbonyl and bis $(C_{1-4}$ alkyl)amino C_{1-4} alkylcarbonyl, and where a ring -CH₂- is optionally replaced with -C(O)-;
 - ${\bf R^{17}}$ and ${\bf R^{18}}$ are independently selected from hydrogen, $C_{1\text{-4}}$ alkyl, $C_{3\text{-6}}$ cycloalkyl, $C_{2\text{-4}}$ alkenyl and $C_{2\text{-4}}$ alkynyl.
- 15 2. A compound according to claim 1 or a salt, ester or prodrug thereof wherein X is NH.
 - 3. A compound according to claim 1 or a salt, ester or prodrug thereof wherein R⁴ is hydrogen.
- 20 4. A compound according to claim 1 or a salt, ester or prodrug thereof wherein R⁵ is aryl optionally substituted by 1 or 2 halo.
- A compound according to claim 1 or a salt, ester or prodrug thereof wherein R¹ is hydrogen or -OR¹¹ and R¹¹ is hydrogen, heterocyclyl selected from piperidinyl or pyrrolidinyl or C₁₋₄alkyl which C₁₋₄alkyl is optionally substituted by hydroxy, C₁₋₄alkoxy, amino, C₁₋₄alkylamino or bis(C₁₋₄alkyl)amino.
 - 6. A compound according to claim 1 or a salt, ester or prodrug thereof wherein R^2 is hydrogen or $-OR^{12}$ and R^{12} is hydrogen, C_{1-4} alkyl, heterocyclyl or heterocyclyl C_{1-4} alkyl.

- 7. A compound according to claim 1 or a salt, ester or prodrug thereof wherein R^3 is X^3R^{13} , X^3 is -CH₂=CH₂-, -O- or -NH-, and R^{13} is C₁₋₆alkyl substituted by -NR⁷R⁸, heterocyclyl or halo.
- 5 8. A compound according to claim 7 or a salt, ester or prodrug thereof wherein R⁷ and R⁸ are independently selected from hydrogen, heterocyclyl, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, hydroxyC₁₋₄alkylC₃₋₆cycloalkyl, C₁₋₄alkoxyC₁₋₄alkyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkylC₁₋₄alkyl, haloC₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, cyanoC₁₋₄alkyl and bis(C₁₋₄alkyl)aminoC₁₋₆alkyl; or R⁷ and R⁸ together with the nitrogen to which they are attached form a heterocyclic ring which ring comprises 4 to 7 ring atoms of which one is nitrogen and of which another is optionally NH or O and which ring is optionally substituted on carbon or nitrogen by a group selected from C₁₋₄alkyl, hydroxy, hydroxyC₁₋₄alkyl and hydroxyC₁₋₄alkoxyC₁₋₄alkyl, and where a ring CH₂- is optionally replaced with –C(O)-.

15 9. A compound of formula (IA)

$$R^{2'}$$
 $R^{3'}$
 R^{4}

or a salt or ester thereof

where X, X^1, X^2, X^3, R^4 and R^5 are as defined in relation to formula (I) in claim 1 and $R^{1'}$ is hydrogen, halo, or $-X^1R^{11'}$;

- R^{11'} is hydrogen, phosphonooxy or a group selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkenyl, heterocyclyl, heterocyclylC₁₋₄alkyl, heterocyclylC₂₋₄alkenyl and heterocyclylC₂₋₄alkynyl which group is optionally substituted by 1 or 2 substituents independently selected from halo, hydroxy, phosphonooxy, C₁₋₄alkoxy, hydroxyC₁₋₄alkyl, phosphonooxyC₁₋₄alkyl, -NR⁹R^{10'}, -C(O)R^{9'}, -C(O)NR^{9'}R^{10'} and -C(O)OR^{9'};
- 25 **R**²' is hydrogen, halo, nitro, cyano or -X²R¹²'; **R**¹²' is hydrogen, phosphonooxy or a group selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkenyl, aryl, arylC₁₋₄alkyl, arylC₂₋₄alkenyl, arylC₂₋₄alkynyl,

heterocyclyl, heterocyclyl C_{1-4} alkyl, heterocyclyl C_{2-4} alkenyl and heterocyclyl C_{2-4} alkynyl, which group is optionally substituted by 1, 2 or 3 substituents independently selected from halo, hydroxy, phosphonooxy, C_{1-4} alkyl, C_{1-4} alkoxy, $-NR^{15'}R^{16'}$, $-NHC(O)NR^{15'}R^{16'}$, $-C(O)R^{15'}$ and $-C(O)OR^{15'}$;

- 5 R³' is hydrogen, halo or -X³R¹³';

 R¹³' is hydrogen, phosphonooxy or a group selected from C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl,

 C₃-6cycloalkyl, C₃-6cycloalkenyl, aryl, arylC₁-4alkyl, arylC₂-4alkenyl, arylC₂-4alkynyl,

 heterocyclyl, heterocyclylC₁-4alkyl, heterocyclylC₂-4alkenyl and heterocyclylC₂-4alkynyl which
- group is optionally substituted by 1 or 2 substituents independently selected from -NR⁷'R⁸', 10 -C(O)NR⁷'R⁸', halo, hydroxy, phosphonooxy, C₁₋₄alkyl, C₁₋₄alkoxy, hydroxyC₁₋₄alkyl, phosphonooxyC₁₋₄alkyl, hydroxyC₁₋₄alkylcarbonyl, phosphonooxyC₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl, aminoC₁₋₄alkylcarbonyl, C₁₋₄alkylaminoC₁₋₄alkylcarbonyl and bis(C₁₋₄alkyl)aminoC₁₋₄alkylcarbonyl:
 - ${\bf R^{7'}}$ and ${\bf R^{8'}}$ are independently selected from hydrogen, heterocyclyl, heterocyclyl $C_{1\text{-4}}$ alkyl,
- 15 C_{1-4} alkylheterocyclyl C_{1-4} alkyl, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, phosphonooxy C_{1-6} alkyl, C_{1-4} alkoxy C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl, hydroxy C_{3-6} cycloalkyl, phosphonooxy C_{3-6} cycloalkyl, hydroxy C_{1-4} alkyl C_{3-6} cycloalkyl, phosphonooxy C_{1-4} alkyl C_{3-6} cycloalkyl, hydroxy C_{3-6} cycloalkyl C_{1-4} alkyl, phosphonooxy C_{3-6} cycloalkyl C_{1-4} alkyl, hydroxy C_{1-4} alkyl C_{3-6} cycloalkyl C_{1-4} alkyl,
- phosphonooxyC₁₋₄alkylC₃₋₆cycloalkylC₁₋₄alkyl, C₁₋₄alkoxyC₃₋₆cycloalkyl, C₁₋₄alkoxyC₃₋₆cycloalkylC₁₋₄alkyl, haloC₁₋₆alkyl, haloC₃₋₆cycloalkyl, haloC₃₋₆cycloalkylC₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, cyanoC₁₋₄alkyl, aminoC₁₋₆alkyl, C₁₋₄alkylaminoC₁₋₆alkyl, bis(C₁₋₄alkyl)aminoC₁₋₆alkyl, hydroxyC₁₋₄alkoxyC₁₋₄alkyl, phosphonooxyC₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkylcarbonyl,
- phosphonooxyC₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyl, aminoC₁₋₄alkylcarbonyl, C₁₋₄alkylaminoC₁₋₄alkylcarbonyl and bis(C₁₋₄alkyl)aminoC₁₋₄alkylcarbonyl; or R⁷ and R⁸ together with the nitrogen to which they are attached form a heterocyclic ring which ring is monocyclic or bicyclic and comprises 4 to 7 ring atoms of which one is nitrogen and of which another is optionally selected from N, NH, O, S, SO and SO₂, and which ring is optionally substituted on carbon or nitrogen by 1 or 2 substituents independently selected from C₁₋₄alkyl, hydroxy, phosphonooxy, C₁₋₄alkoxy, hydroxyC₁₋₄alkyl, phosphonooxyC₁₋₄alkyl,

 C_{1-4} alkoxy C_{1-4} alkyl, hydroxy C_{1-4} alkoxy C_{1-4} alkyl, phosphonooxy C_{1-4} alkoxy C_{1-4} alkyl,

 $C_{1\text{-4}alkoxy}C_{1\text{-4}alkoxy}, \ hydroxyC_{1\text{-4}alkylcarbonyl}, \ phosphonooxyC_{1\text{-4}alkylcarbonyl}, \\ C_{1\text{-4}alkylcarbonyl}, \ aminoC_{1\text{-4}alkylcarbonyl}, \ C_{1\text{-4}alkylamino}C_{1\text{-4}alkylcarbonyl} \ and \\ bis(C_{1\text{-4}alkyl})aminoC_{1\text{-4}alkylcarbonyl}, \ and \ where \ a \ ring -CH_2- \ is \ optionally \ replaced \ with -C(O)-;$

- 5 R⁹', R¹⁰', R¹⁵' and R¹⁶' are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkyl, hydroxyC₁₋₆alkyl, phosphonooxyC₁₋₆alkyl, haloC₁₋₆alkyl, aminoC₁₋₆alkyl, C₁₋₄alkylaminoC₁₋₆alkyl and bis(C₁₋₄alkyl)aminoC₁₋₆alkyl; or R⁹' and R¹⁰' together with the nitrogen to which they are attached form a heterocyclic ring which ring is monocyclic or bicyclic and comprises 4 to 7 ring atoms of which one is nitrogen
- and of which another is optionally selected from N, NH, O, S, SO and SO₂, and which ring is optionally substituted on carbon or nitrogen by 1 or 2 substituents independently selected from C₁₋₄alkyl, hydroxy, phosphonooxy, C₁₋₄alkoxy, hydroxyC₁₋₄alkyl, phosphonooxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkoxyC₁₋₄alkyl, phosphonooxyC₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkoxy, hydroxyC₁₋₄alkylcarbonyl, phosphonooxyC₁₋₄alkylcarbonyl,
- 15 C₁₋₄alkylcarbonyl, aminoC₁₋₄alkylcarbonyl, C₁₋₄alkylaminoC₁₋₄alkylcarbonyl and bis(C₁₋₄alkyl)aminoC₁₋₄alkylcarbonyl, and where a ring -CH₂- is optionally replaced with -C(O)-;

provided that a compound of formula (IA) contains at least one phosphonooxy group.

- 20 10. A compound according to claim 9 or a salt or ester thereof wherein the compound or salt or ester thereof contains only one phosphonooxy group.
 - 11. A compound according to claim 9 or a salt or ester thereof wherein X is NH.
- 25 12. A compound according to claim 9 or a salt or ester thereof wherein R⁴ is hydrogen.
 - 13. A compound according to claim 9 or a salt or ester thereof wherein R⁵ is aryl optionally substituted by 1 or 2 halo.
- 30 14. A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt, ester or prodrug thereof, or a compound of

formula (IA) as defined in claim 9 or a pharmaceutically acceptable salt or ester thereof in association with a pharmaceutically acceptable diluent or carrier.

- 15. A compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt,
 5 ester or prodrug or a compound of formula (IA) as defined in claim 9 or a pharmaceutically acceptable salt or ester thereof for use in therapy.
- 16. The use of a compound of formula (I) as defined in claim 1 or a pharmaceutically acceptable salt, ester or prodrug or a compound of formula (IA) as defined in claim 9 or a pharmaceutically acceptable salt or ester thereof in the preparation of a medicament for the treatment of a hyperproliferative disease such as cancer.
 - 17. The use as defined in claim 16 wherein the cancer is colorectal, breast, lung, prostate, bladder, renal or pancreatic cancer or leukaemia or lymphoma.
- 18. A method of treating a human suffering from a hyperproliferative disease such as cancer comprising the steps of administering to a person in need thereof a therapeutically effective amount of a compound of formula (I) as claimed in claim 1 or a pharmaceutically acceptable salt, ester or prodrug thereof or a compound of formula (IA) as claimed in claim 9 or a pharmaceutically acceptable salt or ester thereof.
 - 19. A process for the preparation of a compound of formula (I) as defined in claim 1 or a salt, ester or prodrug thereof, which process comprises reacting a compound of formula (II) wherein R^1 , R^2 , R^3 and R^4 are as defined in claim 1

$$R^2$$
 R^3
 R^4
(II)

25

15

where L is a suitable leaving group with a compound of formula (III) wherein \mathbb{R}^5 and X are as defined in claim 1

WO 2004/113324 PCT/GB2004/002564

in the presence of hydrochloric acid in dioxane under an inert atmosphere, and thereafter if necessary:

- 5 i) converting a compound of the formula (I) into another compound of the formula (I); and/or ii) removing any protecting groups; and/or
 - iii) forming a salt, ester or prodrug thereof.
- 20. A process for the preparation of a compound of formula (IA) as defined in claim 9 or a
 salt or ester thereof, which process comprises phosphorylation of a suitable compound of formula (I) followed by deprotection of the phosphate group.