Geometric Understanding of Linear Dependence

• Given two vectors \mathbf{v}_1 and \mathbf{v}_2 , Suppose Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is the plane on the right.

• When is the third vector \mathbf{v}_3 linearly dependent of \mathbf{v}_1 and \mathbf{v}_2 ?

• That is, $\mathbf{v}_3 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$?

Linear Dependence

- A linearly dependent vector does not increase Span!
- If $\mathbf{v}_3 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$, then

Span
$$\{v_1, v_2\}$$
 = Span $\{v_1, v_2, v_3\}$,

- Why?
- Suppose $\mathbf{v}_3 = d_1\mathbf{v}_1 + d_2\mathbf{v}_2$, then the linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 can be written as

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = (c_1 + d_1)\mathbf{v}_1 + (c_1 + d_1)\mathbf{v}_2$$

which is also a linear combination of v_1 and v_2 .

Linear Dependence and Linear System Solution

- Also, a linearly dependent set produces multiple possible linear combinations of a given vector.
- Given a vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$, suppose the solution is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, i.e., $3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = \mathbf{b}$.
- Suppose also $\mathbf{v}_3 = 2\mathbf{v}_1 + 3\mathbf{v}_2$, a linearly dependent case.
- Then, $3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2 + (2\mathbf{v}_1 + 3\mathbf{v}_2) = 5\mathbf{v}_1 + 5\mathbf{v}_2$, so $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}$ is another solution. Many other solutions exist.

Linear Dependence and Linear System Solution

Actually, many more solutions exist.

• e.g.,
$$3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2 + (2\mathbf{v}_3 - \mathbf{1}\mathbf{v}_3)$$

= $3\mathbf{v}_1 + 2\mathbf{v}_2 + 2(2\mathbf{v}_1 + 3\mathbf{v}_2) - \mathbf{1}\mathbf{v}_3 = 7\mathbf{v}_1 + 8\mathbf{v}_2 - \mathbf{1}\mathbf{v}_3$,

thus
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \\ -1 \end{bmatrix}$$
 is another solution.

Uniqueness of Solution for Ax = b

• The solution exists only when $\mathbf{b} \in \text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

- If the solution exists for $A\mathbf{x} = \mathbf{b}$, when is it unique?
- It is unique when a_1 , a_2 , and a_3 are linearly independent.
- Infinitely many solutions exist when \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 are linearly dependent.