■ Documento Técnico del Proyecto SpaceFlight Data Pipeline

■ Estimación de Volumen de Datos

Datos Crudos (API SpaceFlight News)

- Tipo de datos: JSON
- Tamaño promedio por artículo: 1 KB 5 KB
- Estimación diaria:
 - o Articles: ~1,000 registros/día
 - o Blogs: ~500 registros/día
 - o Reports: ~300 registros/día
- Volumen total estimado:
 - \circ **Diario:** \sim 2 MB 5 MB
 - **Mensual:** ~60 MB 150 MB
 - **Anual:** ~720 MB 1.8 GB

Datos Procesados (Parquet)

- Formato: Parquet, particionado por published_date
- Reducción de tamaño: ~70% en comparación con JSON
- Volumen estimado procesado:
 - \circ **Diario:** $\sim 1 \text{ MB} 3 \text{ MB}$
 - **Mensual:** ~30 MB 90 MB
 - o **Anual:** ~360 MB − 1.1 GB

2 Estrategia de Almacenamiento y Búsqueda 🛎

Almacenamiento

- Amazon S3
 - Bucket spaceflight-data-pipeline: Almacena los datos crudos (raw/) y procesados (processed/).
 - o **Bucket** spaceflight-data-results: Almacena los resultados de consultas de Athena para visualización en Looker Studio.
- AWS Glue Catalog
 - o **Estructura del esquema:** Define tablas para facilitar las consultas SQL con Athena.
 - dim news source: Información de fuentes de noticias.

- dim topic: Clasificación por temas.
- fact_article: Datos detallados de los artículos, particionados por fecha (published date).

Búsqueda y Consulta

- Amazon Athena
 - o Consultas SQL sobre los datos procesados en formato Parquet.
 - o **Particionamiento:** Mejora el rendimiento al limitar las consultas por published date.

3 Plan de Contingencia **△**

Backup y Recuperación

- 1. Backup Automático:
 - o Copias de seguridad periódicas del bucket processed/ a otro bucket en una región secundaria de AWS.
- 2. Recuperación:
 - Restauración rápida desde el bucket de respaldo en caso de pérdida de datos o corrupción.
 - Comando para actualizar las particiones:
 - o MSCK REPAIR TABLE fact article;

Gestión de Errores en el Pipeline

- Lambda y Glue Job: Configuración de reintentos automáticos.
- EventBridge: Notificación de errores críticos a Amazon CloudWatch para activar alertas.

4 Sistema de Monitoreo 🌌

Amazon CloudWatch

- Monitoreo de Lambda: Logs de ejecución, tiempos de respuesta y errores. Monitorea métricas clave como el número de errores por ejecución, la latencia promedio y el número de reintentos.
- **Glue Job Logs:** Logs del Spark UI para analizar el proceso de transformación de datos y diagnosticar problemas de rendimiento.
- Alerta de Errores: Configuración de alertas en CloudWatch que notifican por correo electrónico o Slack en caso de fallos.

- Monitoreo de Lambda: Logs de ejecución, tiempos de respuesta y errores.
- Glue Job Logs: Logs del Spark UI para analizar el proceso de transformación de datos.
- **Alerta de Errores:** Configuración de alertas en CloudWatch que notifican por correo electrónico o Slack en caso de fallos.

Amazon S3 Metrics

• Monitoreo del uso de almacenamiento, accesos y tasas de error.

Amazon Athena Query History

• Historial de consultas para identificar consultas lentas o mal optimizadas.

Conclusión y Siguientes Pasos

El pipeline está diseñado para manejar volúmenes de datos moderados con escalabilidad en AWS. El sistema de monitoreo y el plan de contingencia garantizan una operación confiable y recuperación rápida en caso de fallos.

Optimización de Consultas en Athena:

- 1. Uso de Particiones: Particionar por published_date para reducir el volumen de datos escaneados y mejorar la velocidad de las consultas.
- 2. **Compresión de Datos:** Utilizar el formato Parquet con compresión para minimizar el almacenamiento y acelerar el procesamiento.
- 3. Índices y Filtrado: Aprovechar columnas clave como source_id y topic_id para filtrar y ordenar datos más eficientemente.
- 4. **Historial de Consultas:** Monitorear el historial de consultas en Athena para identificar patrones de uso y optimizar consultas frecuentes.

Siguientes Pasos:

- 1. Automatización completa del pipeline con Airflow DAG.
- 2. Optimización de consultas en Athena para mejorar el rendimiento.
- 3. Mejora de la visualización en Looker Studio para agregar gráficos adicionales y alertas de tendencias. El pipeline está diseñado para manejar volúmenes de datos moderados con escalabilidad en AWS. El sistema de monitoreo y el plan de contingencia garantizan una operación confiable y recuperación rápida en caso de fallos.

Siguientes Pasos:

- 1. Automatización completa del pipeline con Airflow DAG.
- 2. Optimización de consultas en Athena para mejorar el rendimiento.
- 3. Mejora de la visualización en Looker Studio para agregar gráficos adicionales y alertas de tendencias.