Marek Petrik

Department of Computer Science University of New Hampshire

DLRL Summer School 2023

Safety in RL: Risk and Robustness

Objective: Deploy RL in high-stakes domains

- Health care: automating and improving ER care
- Finance: profitable and safe investments
- Agriculture: profitably grow crops mitigating failure

Safe RL: Compute policies that mitigate return variability

- 1. Aleatory uncertainty is inherent to the environment
- 2. Epistemic uncertainty about the model of environment

Markov Decision Process

Model (tabular in this talk)

States $S: s_1, s_2, s_3, \ldots$

Actions $A: a_1, a_2, \ldots$ Transition probabilities p

Rewards r

Solution: Policy $\pi: \mathcal{S} \to \mathcal{A}$ (randomized in general)

Return: Discounted random return (random over trajectories):

$$\tilde{\rho}(\boldsymbol{\pi}) = \sum_{t=0}^{\infty} \gamma^t r(\tilde{s}_t^{\boldsymbol{\pi}}, \tilde{a}_t^{\boldsymbol{\pi}})$$

Random variables: $\tilde{\rho}, \tilde{s}, \tilde{a}, \tilde{x}, \dots$ adorned with tilde

Managing Pest Population with RL

MDP Model

- States: Pest population, weather, ...
- Actions: How much and which pesticide
- Transitions: Pest population dynamics
- Reward: Crop yield minus pesticide cost

Challenges

- Stochastic environment, delayed rewards, no reliable simulator
- One episode = one year
- Crop failure can be catastrophic

Uncertainty

- Aleatory uncertainty: Weather, like temperatures and rain
- Epistemic uncertainty: Response of pest to pesticides

Limitation of Expected Return

Standard RL objective: $\max_{\pi} \mathbb{E}[\tilde{\rho}(\pi)]$

Intro

This Talk

Computing policies that mitigate return variability

Outline

- 1. Risk measures: Measure variability
- 2. Risk-averse RL: Mitigate aleatory uncertainty
- 3. Robust RL: Mitigate epistemic uncertainty

Caution: Mathematical precision matters because ordinary RL intuition fails with risk-aversion

Risk Measures

Measuring Variability of Random Variable

Variance $\mathbb{V}\left[\tilde{\rho}(\pi)\right]$: natural but inflexible and also penalizes upside

Expected utility $\mathbf{u}^{-1}(\mathbb{E}\left[\mathbf{u}(\tilde{\rho}(\pi))\right])$: powerful but difficult to interpret and optimize

Worst case $\min \left[\tilde{\rho}(\pi) \right]$: simple but inflexible and overly conservative

Monetary risk measure $\operatorname{Risk} \left[\tilde{\rho}(\pi) \right]$: generalize \mathbb{E} as a maps of random variable to \mathbb{R} .

Statistics of Random Variable

Probability $\mathbb{P}\left[\tilde{x}\right]$

CDF

$$F(z) = \mathbb{P}\left[\tilde{x} \le z\right]$$

Quantile

$$F^{-1}(\alpha) = \left\{ \mathbf{t} : \begin{array}{l} \mathbb{P}\left[\tilde{x} \leq \mathbf{t}\right] \geq \alpha, \\ \mathbb{P}\left[\tilde{x} \geq \mathbf{t}\right] \geq 1 - \alpha \end{array} \right\}$$

Basic Risk Measure: Value at Risk (VaR)

$$\operatorname{VaR}_{\alpha}\left[\tilde{x}\right] = \sup F^{-1}(\alpha) = \sup \left\{ t \in \mathbb{R} : \mathbb{P}\left[\tilde{x} \ge t\right] \ge 1 - \alpha \right\}$$

 $\mathrm{VaR}_{\alpha}\left[\tilde{x}\right]=$ best α -confidence lower bound on \tilde{x} $\mathrm{VaR}_{0.2}\left[\tilde{x}\right]=-1.2$ means that 80% of time return is at least -1.2

 $VaR_0[\tilde{x}] = essinf[\tilde{x}]$

 $\operatorname{VaR}_{\frac{1}{2}}\left[\tilde{x}\right] \approx \operatorname{median}\left[\tilde{x}\right]$

 $\operatorname{VaR}_{1}\left[\tilde{x}\right]=\infty$

Limitations of VaR

1. VaR ignores the tail and catastrophic risk

$$VaR_{0.2} [\tilde{x}] = -8.2$$

$$VaR_{0.2} [\tilde{x}] = -8.2$$

2. Difficult to optimize

Stock returns (equal probs.)

	\tilde{r}_1	\tilde{r}_2
ω_1	1	0
ω_2	1	-2
ω_3	0	2

$$\max_{\eta \in [0,1]} \text{VaR}_{0.4} \left[\eta \tilde{r}_1 + (1 - \eta) \tilde{r}_2 \right]$$

Concave Risk Measures

Easier to optimize and consider distribution's tail

CVaR: Conditional Value at Risk

$$CVaR_{\alpha}\left[\tilde{x}\right] = \sup_{z \in \mathbb{R}} \left(z - \frac{1}{\alpha} \mathbb{E}\left[z - \tilde{x} \right]_{+} \right)$$
$$\approx \mathbb{E}\left[\tilde{x} \mid \tilde{x} \leq VaR_{\alpha}\left[\tilde{x} \right] \right]$$

ERM: Entropic risk measure

$$\operatorname{ERM}_{\beta}\left[\tilde{x}\right] = -\beta^{-1}\log\mathbb{E}\left[\exp\left(-\beta\tilde{x}\right)\right], \quad \beta > 0.$$

EVaR: Entropic value at risk

$$EVaR_{\alpha}\left[\tilde{x}\right] = \sup_{\beta>0} \left(ERM_{\beta}\left[\tilde{x}\right] + \beta^{-1}\log\alpha\right).$$

Concave Risk Measures: Portfolio Example

Correct CVaR Definition

$$\begin{split} \text{CVaR}_{\alpha}\left[\tilde{x}\right] &= \sup_{z \in \mathbb{R}} \left(z - \frac{1}{\alpha} \mathbb{E}\left[z - \tilde{x}\right]_{+}\right) \\ &\neq \mathbb{E}\left[\tilde{x} \mid \tilde{x} \leq \text{VaR}_{\alpha}\left[\tilde{x}\right]\right] \text{ for discrete } \tilde{x} \end{split}$$

EVaR & CVaR: Approximate Value at Risk

$$\operatorname{VaR}_{\alpha}\left[\tilde{x}\right] = \inf\left\{t \in \mathbb{R} : \mathbb{P}\left[\tilde{x} \leq t\right] > \alpha\right\}$$
$$= \inf\left\{t \in \mathbb{R} : \mathbb{E}\left[f_{\operatorname{VaR}}(\tilde{x};t)\right] > \alpha\right\}$$

$$f_{\text{VaR}}(x;t) = \mathbb{1}_{x \le t}$$

CVaR Bounds VaR (Markov's Inequality)

$$\operatorname{VaR}_{\alpha}\left[\tilde{x}\right] \geq \sup_{\boldsymbol{z} \in \mathbb{R}} \inf \left\{t : \mathbb{E}\left[f_{\text{CVaR}}(\tilde{x}; t, \boldsymbol{z})\right] > \alpha\right\} = \operatorname{CVaR}_{\alpha}\left[\tilde{x}\right]$$

$$f_{\text{CVaR}}(x; t, z) = \frac{[z - x]_{+}}{[z - t]_{+}}$$

EVaR Bounds VaR (Chernoff Bound)

$$\operatorname{VaR}_{\alpha}\left[\tilde{x}\right] \geq \sup_{\beta \in \mathbb{R}} \inf \left\{ t \in \mathbb{R} \ : \ \mathbb{E}\left[f_{\operatorname{EVaR}}(\tilde{x};t,\beta) \right] > \alpha \right\} = \operatorname{EVaR}_{\alpha}\left[\tilde{x}\right]$$

$$f_{\text{EVaR}}(x;t,\beta) = e^{\beta t} \cdot e^{-\beta x}$$

Hierarchy of Risk Measures

For any r.v. $\tilde{\boldsymbol{x}}$ and $\alpha \in [0,1]$

 $\operatorname{VaR}_{\alpha}\left[\tilde{\boldsymbol{x}}\right] \geq \operatorname{CVaR}_{\alpha}\left[\tilde{\boldsymbol{x}}\right] \geq \operatorname{EVaR}_{\alpha}\left[\tilde{\boldsymbol{x}}\right]$

Common Risk Measures

Property	E, min	VaR	CVaR	ERM	EVaR
Translation invariance	✓	✓	✓	✓	✓
Monotonicity	✓	1	\checkmark	\checkmark	✓
Positive homogeneity	✓	✓	✓	X	✓
Concavity	✓	X	✓	✓	✓
Coherence	✓	X	✓	X	✓
Tower property	✓	X	X	✓	X

Risk-averse RL

Risk-averse Reinforcement Learning

Return: Discounted random return (random variable):

$$\tilde{\rho}(\boldsymbol{\pi}) = \sum_{t=0}^{\infty} \gamma^t r(\tilde{s}_t^{\boldsymbol{\pi}}, \tilde{a}_t^{\boldsymbol{\pi}})$$

Risk neutral RL: Maximize expected return

$$\max_{\boldsymbol{\pi}} \ \mathbb{E}\left[\tilde{\rho}(\boldsymbol{\pi})\right]$$

Risk-averse RL: Maximize high-confidence *guarantee* on the return

$$\max_{\pi} \operatorname{VaR}_{\alpha} \left[\tilde{\rho}(\pi) \right]$$

Risk-averse RL

$$\max_{\boldsymbol{\pi}} \operatorname{VaR}_{\alpha} \left[\tilde{\rho}(\boldsymbol{\pi}) \right]$$

Difference from ordinary RL:

- 1. Optimal policy is history-dependent
- 2. No optimal stationary policy
- 3. No notion of value function
- 4. No Bellman optimality equation
- 5. NP hard to compute optimal policy

Risk-Neutral RL: Dynamic Programming

Optimal value function

$$v_t^{\star}(s) = \max_{\boldsymbol{\pi}} \mathbb{E}\left[\sum_{t'=t}^{T} \gamma^{t'-t} r(\tilde{s}_{t'}, \boldsymbol{\pi}_t(\tilde{s}_{t'})) \mid \tilde{s}_t = s\right]$$

Dynamic program: Compute optimal v^* efficiently

$$v_t^{\star}(s) = \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \cdot v_{t+1}^{\star}(s') \right)$$

RL use of dynamic programs

- 1. (Fitted) value and policy iteration, TD, Q-learning
- 2. Actor-critic policy gradient methods, LP formulations

Why is Dynamic Programming Possible?

$$v_t^{\star}(s) = \max_{a \in \mathcal{A}} r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \cdot v_{t+1}^{\star}(s')$$

Dynamic program: Compute v_t from v_{t+1} (fixed a)

$$v_0(s) = \mathbb{E}\left[r(s, a) + \gamma \cdot r(\tilde{s}_1, a) + \gamma^2 \cdot r(\tilde{s}_2, a) \mid \tilde{s}_0 = s\right]$$

Use positive homogeneity and translation invariance

$$= r(s, a) + \gamma \cdot \mathbb{E} \left[r(\tilde{s}_1, a) + \gamma \cdot r(\tilde{s}_2, a) \mid \tilde{s}_0 = s \right]$$

Use tower property and translation invariance

$$= r(s, a) + \gamma \cdot \mathbb{E}\left[r(\tilde{s}_1, a) + \mathbb{E}\left[\gamma \cdot r(\tilde{s}_2, a) \mid \tilde{s}_1\right] \mid \tilde{s}_0 = s\right]$$

Recursive definition

$$= r(s, a) + \gamma \cdot \mathbb{E} \left[v_1(\tilde{s}_1) \mid \tilde{s}_0 = s \right]$$

Dynamic Programming for MDPs

1. Tower property

$$\mathbb{E}[\tilde{x}_1] = \mathbb{E}\left[\mathbb{E}[\tilde{x}_1 \mid \tilde{x}_2]\right]$$

2. Positive homogeneity for $\gamma \geq 0$

$$\mathbb{E}[\gamma \cdot \tilde{x}] = \gamma \cdot \mathbb{E}[\tilde{x}]$$

3. Translation invariance

$$\mathbb{E}[c + \tilde{x}] = c + \mathbb{E}[\tilde{x}]$$

Dynamic Programming for Risk-Averse RL

$$\max_{\boldsymbol{\pi}} \ \mathrm{Risk} \left[\sum_{t=0}^{T} \gamma^t \, r(\tilde{s}_t, \boldsymbol{\pi}_t(\tilde{s}_t)) \right]$$

Properties needed for a dynamic program

Property	E, min	VaR	CVaR	ERM	EVaR
Tower property	✓	X	X	✓	X
Positive homogeneity	✓	1	✓	X	✓
Translation invariance	✓	✓	\checkmark	✓	✓

Building Risk-averse Dynamic Programs

1. Use a nested risk measure

2. Use entropic risk measure (ERM)

3. Reduce to simpler risk measure

4. Dual decomposition

1. Nested Risk Measures: Pros

Nested risk measures (or Markov risk measure) for CVaR

$$\mathrm{nCVaR}_{\alpha}[\tilde{\rho}(\pi)] = \mathrm{CVaR}_{\alpha}\left[\tilde{r}_{0}^{\pi} + \mathrm{CVaR}_{\alpha}\left[\gamma\,\tilde{r}_{1}^{\pi} + \mathrm{CVaR}_{\alpha}\left[\gamma^{2}\,\tilde{r}_{2}^{\pi} + \dots\right]\right]\right]$$

Dynamic program and value function

$$v_t^{\star}(s) \ = \ \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \operatorname{CVaR}_{\alpha} \left[p(\tilde{s}' \mid s, a) \cdot v_{t+1}^{\star}(\tilde{s}') \right] \right)$$

Ruszczynski, Andrzej. "Risk-Averse Dynamic Programming for Markov Decision Processes." Mathematical Programming B, 2010

1. Nested Risk Measures: Cons

Poor approximation of static risk

NOT law invariant

$$\tilde{\rho}(\pi_1) = \tilde{\rho}(\pi_2)$$
 but $\mathrm{nCVaR}_{\alpha}[\tilde{\rho}(\pi_1)] \neq \mathrm{nCVaR}_{\alpha}[\tilde{\rho}(\pi_2)]$

Difficult to interpret

2. ERM is Special in RL

Properties needed for dynamic programming

Property	VaR	CVaR	ERM	EVaR	Nested
Tower property	X	X	✓	X	✓
Translation invariance	1	✓	✓	✓	✓
Law invariance	✓	✓	✓	✓	X

ERM is unique: No other risk measure checks all boxes

Note that $\mathbb{E}[\tilde{x}] = \mathrm{ERM}_0[\tilde{x}], \min[\tilde{x}] = \mathrm{ERM}_\infty[\tilde{x}]$

2. Formulating ERM DP

Challenge: ERM is NOT positively homogeneous

$$\operatorname{ERM}_{\beta}\left[\gamma \cdot \tilde{x}\right] \neq \gamma \cdot \operatorname{ERM}_{\beta}\left[\tilde{x}\right]$$

Solution: ERM is positive quasi-homogeneous

$$\mathrm{ERM}_{\beta}\left[\gamma\cdot\tilde{x}\right] \; = \; \gamma\cdot\mathrm{ERM}_{\gamma\cdot\beta}\left[\tilde{x}\right]$$

2. Dynamic Program for ERM-MDPs

ERM-MDP objective

$$\max_{\boldsymbol{\pi}} \operatorname{ERM}_{\beta} \left[\sum_{t=0}^{T} \gamma^{t} r(\tilde{s}_{t}, \boldsymbol{\pi}_{t}(\tilde{s}_{t})) \right]$$

ERM Dynamic Program: Time-dependent risk level

$$v_t^{\star}(s) = \max_{a \in \mathcal{A}} \text{ ERM}_{\beta \cdot \mathbf{\gamma}^t} \left[r(s, a) + \gamma \cdot v_{t+1}^{\star}(\tilde{s}') \right]$$

Hau, Jia Lin, Marek Petrik, and Mohammad Ghavamzadeh. "Entropic Risk Optimization in Discounted MDPs." In Artificial Intelligence and Statistics (AISTATS), 2023.

2. ERM-MDP Optimal Policies

$$\max_{\boldsymbol{\pi}} \ \mathrm{ERM}_{\boldsymbol{\beta}} \left[\sum_{t=0}^{T} \gamma^{t} \, r(\tilde{s}_{t}, \boldsymbol{\pi}_{t}(\tilde{s}_{t})) \right]$$

Theorem

Exist optimal policy that is

- 1. Markov (history independent)
- 2. **Deterministic** (no hedging)
- 3. More risk-neutral over time

ERM is often impractical because

- 1. Risk aversion depends on rewards scale (currency)
- 2. Hard to interpret

3. Reduce EVaR-MDP to ERM-MDP

Objective

$$\max_{\boldsymbol{\pi}} \text{ EVaR}_{\alpha} \left[\sum_{t=0}^{T} \gamma^{t} r(\tilde{s}_{t}, \boldsymbol{\pi}_{t}(\tilde{s}_{t})) \right]$$

Reformulate from EVaR definition

$$\sup_{\beta > 0} \max_{\pi} \left(\text{ERM}_{\beta} \left[\sum_{t=0}^{T} \gamma^{t} r(\tilde{s}_{t}, \pi_{t}(\tilde{s}_{t})) \right] + \frac{\log(1 - \alpha)}{\beta} \right)$$

$$= h(\beta)$$

Theorem

There exists EVaR-MDP optimal policy also optimal in ERM-MDP

Hau, Jia Lin, Marek Petrik, and Mohammad Ghavamzadeh. "Entropic Risk Optimization in Discounted MDPs." In Artificial Intelligence and Statistics (AISTATS), 2023.

3. EVaR-MDP Algorithm

Discretize the non-concave objective function:

$$h(\beta) = \max_{\pi} \left(\text{ERM}_{\beta} \left[\sum_{t=0}^{T} \gamma^{t} r(\tilde{s}_{t}, \pi_{t}(\tilde{s}_{t})) \right] + \frac{\log(1-\alpha)}{\beta} \right)$$

FPTAS algorithm when discretized properly

3. Numerical Results: EVaR-MDP

Method	MR	GR	INV1	INV2	RS
EVaR-MDP	-6.73	5.34	67.4	189	303
Risk neutral	-6.53	2.29	40.6	186	300
Nested CVaR	-10.00	-0.02	-0.0	132	217
Nested EVaR	-10.00	4.61	-0.0	164	217
ERM	-6.72	5.19	50.7	178	217
Nested ERM	-10.00	4.76	24.9	150	217
CVaR	-7.06	3.64	49.0	82	93

Similar reductions for VaR and CVaR

Bäuerle, Nicole, and Jonathan Ott. Markov Decision Processes with Average-Value-at-Risk Criteria. Mathematical

Methods of Operations Research 74, no. 3 (2011): 361–79.

Augment states with risk level, using

$$\max_{\pi \in \Pi} \operatorname{VaR}_{\alpha}[r(\tilde{s}, \tilde{a}, \tilde{s}')] =$$

$$= \sup_{\zeta \in \Delta_S} \left\{ \min_{s \in \mathcal{S}} \max_{d \in \Delta_A} \operatorname{VaR}_{\alpha \zeta_s \hat{p}_s^{-1}} \left[r(s, \tilde{a}, \tilde{s}') \mid \tilde{s} = s \right] : \alpha \cdot \zeta \leq \hat{p} \right\}.$$

Properties

- + A single DP for all risk levels α
 - Only optimal and practical for VaR
- Conceptually complex

Hau, Jia Lin, Erick Delage, Mohammad Ghavamzadeh, and Marek Petrik. On Dynamic Programming

Decompositions of Static Risk Measures in Markov Decision Processes. arXiv, 2023.

Building Risk-averse Dynamic Programs

1. Use a nested risk measure

2. Use entropic risk measure (ERM)

3. Reduce to simpler risk measure

4. Dual decomposition

Robust RL

MDP with Epistemic Uncertainty

Epistemic (model) uncertainty in RL: limited data, missing observations, violated Markov assumption, . . .

Random return: uncertain transitions \tilde{p} and \tilde{r}

$$\tilde{\rho}(\pi, \tilde{p}, \tilde{r}) = \sum_{t=0}^{\infty} \gamma^t \tilde{r}(\tilde{s}_t^{\pi}, \tilde{a}_t^{\pi}) \qquad \tilde{s}_{t+1}^{\pi} \sim \tilde{p}(\tilde{s}_t^{\pi}, \tilde{a}_t^{\pi})$$

Expected return: uncertain transition probabilities

$$\rho(\boldsymbol{\pi}, \tilde{p}, \tilde{r}) = \mathbb{E}\left[\tilde{\rho}(\boldsymbol{\pi}) \mid \tilde{p}, \tilde{r}\right]$$

Robust RI

Soft-robust RL: epistemic risk aversion

$$\max_{\pi} \operatorname{Risk} \left[\rho(\pi, \tilde{p}, \tilde{r}) \right] = \operatorname{Risk} \left[\mathbb{E} \left[\tilde{\rho}(\pi) \mid \tilde{p}, \tilde{r} \right] \right]$$

Robust RL: use min as the risk measure with some \mathcal{P} and \mathcal{R}

$$\max_{\boldsymbol{\pi}} \min_{\boldsymbol{p} \in \mathcal{P}, \, \boldsymbol{r} \in \mathcal{R}} \rho(\boldsymbol{\pi}, \boldsymbol{p}, \boldsymbol{r})$$

Difference from aleatory uncertainty

- Distribution over \tilde{p} and \tilde{r} is often unknown
- Model is unknown but does not change

Adversarial Robustness for RL

Robust optimization: Best π with respect to the inputs with *all* possible *small errors*:

$$\max_{\substack{\pi \\ \overline{p}, r}} \min_{\substack{p, r}} \ \left\{ \rho(\pi, p, r) \ : \ \frac{\|\bar{p} - p\| \leq \mathsf{small}}{\|\bar{r} - r\| \leq \mathsf{small}} \right\}$$

Game in which adversarial nature chooses p, r

Robust Representation

Nominal values: \bar{p} , \bar{r}

Robustness to rewards

$$\max_{\boldsymbol{\pi}} \min_{\boldsymbol{r}} \left\{ \rho(\boldsymbol{\pi}, \bar{p}, \boldsymbol{r}) : \|\boldsymbol{r} - \bar{r}\| \le \psi \right\}$$

Robustness to transitions

$$\max_{\pi} \min_{p} \left\{ \rho(\pi, p, \bar{r}) \ : \ \|p - \bar{p}\| \le \psi \right\}$$

Robustness to Reward Errors

Objective:

$$\max_{\boldsymbol{\pi}} \min_{\boldsymbol{r}} \left\{ \rho(\boldsymbol{\pi}, \bar{p}, \boldsymbol{r}) : \|\boldsymbol{r} - \bar{r}\| \leq \psi \right\}$$

Linear program reformulation ($\|\cdot\|_{\star}$ is dual norm):

$$\max_{u \in \mathbb{R}^{SA}} \quad \bar{r}^{\top} u - \psi \|u\|_{\star}$$
s. t.
$$\sum_{a} (I - \gamma P_a^{\top}) u_a = p_0$$

$$u > 0$$

Robustness to Transition Errors

Objective:

$$\max_{\pi} \min_{p} \left\{ \rho(\pi, p, \bar{r}) : \|p - \bar{p}\| \le \psi \right\}$$

Ambiguity set (aka uncertainty set):

$$\mathcal{P} = \{ p : \|p - \bar{p}\| \le \psi \}$$

- NP-hard to solve
- No value function, or dynamic program

Dynamic Program for Rectangular Robust RL

S-rectangular: \mathcal{P} constrained for each state separately

$$\max_{\pi} \min_{p} \left\{ \rho(\pi, p, \bar{r}) : \|p_s - \bar{p}_s\| \le \psi_s, \forall s \right\}$$

Nature sees last state

SA-rectangular: \mathcal{P} constrained for each state and action separately

$$\max_{\pi} \min_{p} \left\{ \rho(\pi, p, \bar{r}) : \| p_{s,a} - \bar{p}_{s,a} \| \le \psi_{s,a}, \, \forall s, a \right\}$$

Nature sees last state and action

Optimal Robust Value Function

Bellman operator in MDPs:

$$v(s) = \max_{a} \left(r_{s,a} + \gamma \cdot \bar{p}_{s,a}^{\top} v \right)$$

Robust Bellman operator: SA-rectangular ambiguity set

$$v(s) = \max_{a} \min_{p \in \Delta_S} \left\{ r_{s,a} + \gamma \cdot \mathbf{p}^\top v : \| \mathbf{p} - \bar{p}_{s,a} \| \le \psi_{s,a} \right\}$$

Robust Bellman operator: S-rectangular ambiguity set

$$v(s) = \max_{d \in \Delta_A} \min_{p_a \in \Delta_S} \Bigl\{ \sum_a d(s,a) (r_{s,a} + \gamma \cdot p_a^{\ \top} v) \ : \ \sum_a \|p_a - \bar{p}_{s,a}\| \leq \psi_s \Bigr\}$$

Solving Robust MDPs

Robust Bellman operator is:

- 1. A contraction in L_{∞} norm
- 2. Monotone elementwise

Algorithms

- 1. Value iteration works but slow
- 2. Naive policy iteration may loop forever
- 3. Approximate convex optimization formulation

Grand-Clément, Julien, and Marek Petrik, Towards Convex Optimization Formulations for Robust MDPs, 2022,

Solving Robust MDPs

Robust Bellman Optimality: SA-rectangular ambiguity set

$$v(s) = \max_{a} \min_{\mathbf{p} \in \Delta_S} \left\{ r_{s,a} + \mathbf{p}^{\top} v : \|\bar{p} - \mathbf{p}\|_1 \le \psi \right\}$$

How to solve for p?

Linear programming is polynomial time for polyhedral sets

Is it really tractable?

Benchmarking Robust Bellman Update

Bellman update: Inventory optimization, 200 states and actions

$$r_{s,a} + p^{\top}v$$

Time: 0.04s

Robust Bellman update: Gurobi LP

$$\min_{\mathbf{p} \in \Delta_S} \left\{ r_{s,a} + \mathbf{p}^\top v : \|\bar{p} - \mathbf{p}\|_1 \le \psi \right\}$$

Rectangularity	Time
SA-	1.1 min
S	16.7 min

Fast Robust RL Algorithms

Homotopy algorithm + PPI:

Rectangularity	Time
SA-	1.1 min / 0.6s
S-	16.7 min / 0.7s

- Ho, Chin Pang, Marek Petrik, and Wolfram Wiesemann. Robust Phi-Divergence MDPs, Neurips, 2023
- Derman, Esther, Matthieu Geist, and Shie Mannor. Twice Regularized MDPs and the Equivalence between Robustness and Regularization, Neurips, 2021
- Grand-Clément, Julien. From Convex Optimization to MDPs: A Review of First-Order, Second-Order and Quasi-Newton Methods for MDPs, 2021

Other Robust RL Results

Other notions of rectangularity

Goyal, V. and Grand-Clement, J., Robust Markov decision process: Beyond rectangularity, Mathematics of Operations Research, 2022.

Model free algorithms

Panaganti, K. et al., Robust reinforcement learning using offline data, NIPS, 2022).

Robust policy gradient

Qiuhao Wang, Chin Pang Ho, Marek Petrik, Policy Gradient in Robust MDPs with Global Convergence Guarantee, ICML, 2023.

Average reward criteria

Wang, Y. et al., Robust Average-Reward Markov Decision Processes, AAAI, 2023.

•

Summary

Risk and Robustness in RL

- Monetary risk measures: VaR, CVaR, EVaR, ERM
- Risk-aversion
 - 1. Aleatory: risk-averse RL
 - 2. Epistemic: (soft-)robust RL
- Formulating a dynamic program
 - 1. Make assumptions on the risk: nested risk measures, ERM, rectangular uncertainty
 - 2. Reduce to a simpler risk measure: EVaR to ERM
 - 3. Augment state space: VaR, CVaR

Research Questions

1. Scalable risk-averse RL with guarantees

2. Distributional RL for risk-aversion

3. Relaxing rectangularity in robust RL

4. Unifying risk-averse and robust RL

Thank You

Thanks to my collaborators: Bahram Behzadian, Erick Delage, Mohammad Ghavamzadeh, Julien Grand-Clement, Jia Lin Hau, Chin Pang Ho, Reazul Russel, Xihong Su, Wiuhao Wang, Wolfram Wiesemann

Appendix

SA-Rectangular Ambiguity

Example: For each state s and action a:

$$\left\{ \begin{array}{l} \pmb{p_{s,a}} \; : \; \| \pmb{p_{s,a}} - \bar{p}_{s,a} \|_1 \leq \psi_{s,a} \right\} = \left\{ \begin{array}{l} \pmb{p_{s,a}} \; : \; \sum_{s'} | p_{s,a,s'} - \bar{p}_{s,a,s'} | \leq \psi_{s,a} \right\} \end{array}$$

Sets are rectangles over s and a:

S-Rectangular Ambiguity

Example: For each state s:

$$\left\{ \begin{array}{l} \pmb{p_{s,a}} \; : \; \sum_{a} \| \pmb{p_{s,a}} - \bar{p}_{s,a} \|_1 \leq \psi_s \right\} = \left\{ \begin{array}{l} \pmb{p_{s,a}} \; : \; \sum_{a,s'} | \pmb{p_{s,a,s'}} - \bar{p}_{s,a,s'} | \leq \psi_s \end{array} \right\}$$

Sets are rectangles over s only:

