Paleoclimate

source: NASA

Link to Slides

LINII Hoiversité de Lausanne

Yesterday's Summary

- Pleistocene Climate
- Glacial-Interglacial Cycles
- Glacial Ice Sheets
- The oceans in the climate system
 - ocean surface
 - deep ocean
 - ocean biochemistry
- Orbital Forcing
- The Mid-Pleistocene Transition

Unil Université de Lausanne

Lecture Progress

Monday	Introduction	Earth History
Tuesday	Proxies I	Cenozoic Hot & Warm House
Wednesday	Specific Climate System components	Pleistocene G-IG climate
Thursday	Proxies II & Climate System Interactions	Abrupt Climate Change
Friday	Current Climate Change	Future & Synthesis

Today's Overview

Ice Cores

- Ice cores for climate science
- The time machine
 - decay series dating
 - cosmogenic nuclide dating
 - application examples
 - surface exposure dating
- Abrupt climate change during the last glacial cycle
 - Dansgaard-Oeschger Events
 - Bipolar seesaw
 - Heinrich Events
 - Pa/Th proxy for ocean circulation rate

Last Glacial Cycle

Kohfeld & Chase (2017) Earth and Planetary Science Letters

Polar Ice Cores

Polar Ice Cores

Blunier et al. (1998), Nature

Polar Ice Cores

Polar Ice Cores

How old is the ice?

learning4kids.net

Polar Ice Cores

learning4kids.net

Polar Ice Cores

Australian Antarctic Program Photo: David Reilly

Polar Ice Cores

How to determine ages of other archives?

learning4kids.net

Heinrich Events Ice Cores Time Machine **DO Events** Pa/Th proxy

The time machine

dating time!

The time machine

A proper method for dating samples is essential

if only the archives had a clock built in...

The time machine

A proper method for dating samples is essential

if only the archives had a clock built in... well, they have!

The isotopic clock of radioactive decay!

Ice Cores Time Machine Pa/Th proxy **Heinrich Events** DO Events

The time machine

A proper method for dating samples is essential

if only the archives had a clock built in... well, they have!

The isotopic clocks of radioactive decay!

We only need to make sure that

- we know what the starting point is
- there is no exchange of material ("closed system")

The time machine

Tan (2016), Answers in Genesis

The time machine

U-Pb dating

great for old material with lots of U and little Pb

- e.g. zircon crystals in rocks
- both ²³⁸U-²⁰⁶Pb and ²³⁵U-²⁰⁷Pb can be used
- system often not closed, and zircons hard to dissolve
- usually concordia dating with LA-ICP-MS
- $T_{1/2} = 4.47$ Ga and 704 Ma
- precision usually few %

The time machine

Sm-Nd dating (and similar Rb-Sr and Lu-Hf dating)

great for old rocks and meteorites

- can trace age of rock formation from mantle
- Sm and Nd are similar rare earth elements, but fractionate during rock formation
- efficient, but often isochron dating necessary
- $T_{1/2} = 106 Ga$
- precision < 1 ‰ achievable

Time Machine DO Events Pa/Th proxy **Heinrich Events**

The time machine

K-Ar dating

Ice Cores

great for old rocks

- can trace age of rock formation from mantle
- Ar escapes from melts, but is captured in solids
- Ar must not have escaped
- ideal for volcanic material
- $T_{1/2} = 1.2 \text{ Ga}$
- precision ~ 1 % achievable

The time machine

Tan (2016), Answers in Genesis

The time machine

U-Th dating

great for material with lots of U and little Th

- e.g. carbonates (speleothems, corals)
- daughter ²³⁰Th is radioactive
- measure ²³⁸U/²³⁴U & ²³⁴U/²³⁰Th and evaluate how similar activities are
- measurements can be very precise
- very efficient with wet chemistry ICP-MS
- dating range ~ 1 350 ka
- precision < 1 ‰ achievable

The time machine

radiocarbon dating (14C)

The time machine

radiocarbon dating

Soil Carbon Information Hub international-soil-radiocarbondatabase.github.io

The time machine

radiocarbon calibration

The time machine

radiocarbon calibration

(a)

(b)

Lake Suigetsu

Cutler corals

Bard98 corals

The time machine

radiocarbon dating in the oceans

Soil Carbon Information Hub international-soil-radiocarbondatabase.github.io

The time machine

radiocarbon dating in the oceans

the marine reservoir effect

DO Events Ice Cores Time Machine Pa/Th proxy **Heinrich Events**

The time machine

radiocarbon dating in the oceans the marine reservoir effect

uncertainty at least centuries

Butzin et al. (2020) Radiocarbon

The time machine

radiocarbon dating in the oceans

sediment bioturbation

IINII I I Iniversité de Lausanne

The time machine

radiocarbon dating in the oceans

sediment bioturbation

The time machine

radiocarbon dating – young samples

The time machine

radiocarbon dating – U/Th dated carbonates

recall deep water "ages" dated with radiocarbon from water

we can use (deep water) corals and

- date them reliably with U/Th
- infer past radiocarbon "ages" with ¹⁴C

The time machine

the power of dating – example: Arctic permafrost

The time machine

the power of dating example:
Arctic permafrost

Vaks et al. (2020) Nature

The time machine

the power of dating – example: ¹⁴C + U/Th in corals

Time Machine DO Events Pa/Th proxy Heinrich Events

The time machine

Ice Cores

the power of dating: 14 C + U/Th + $\Delta 47$ in corals

UNIL | Université de Lausanne

The time machine

other types of dating: e.g. exposure dates

The time machine

other types of dating: e.g. exposure dates

Soil Carbon Information Hub international-soil-radiocarbondatabase.github.io

The time machine

other types of dating: e.g. surface exposure dates

~ constant or known rate

slow accumulation of rare cosmogenic nuclides

1SD precisions ~ >= 6 %

UNIL | Université de Lausanne

The time machine

other types of dating: e.g. surface exposure dates

UNIL | Université de Lausanne

The time machine

other types of dating: e.g. surface exposure dates

Abrupt Climate Change

Abrupt Climate Change

Dansgaar – Oeschger Events

Abrupt Climate Change

Dansgaar – Oeschger Events

Climate Etc. Blog judithcurry.com

Unil

Abrupt Climate Change

Ice Cores

Abrupt Climate Change

Sea surface salinity (SSS)

Abrupt Climate Change

Abrupt Climate Change

modelled climate effects from DO Events

Abrupt Climate Change

Abrupt Climate Change

UNIL | Université de Lausann

Abrupt Climate Change

Dansgaar – Oeschger Events

- (forcing) periodicity ~ 1500 years
- no regular orbital forcing at these frequencies
 - → internal system variations
- but how do they occur?

Abrupt Climate Change

NH winters

Omil

Abrupt Climate Change

Nordic Seas stadial – interstadial changes

Abrupt Climate Change

Heinrich Events

Sea surface salinity (SSS)

UNIL | Université de Lausanne

Heinrich Events Ice Cores Time Machine **DO Events** Pa/Th proxy

Abrupt Climate Change

Heinrich Events

Heinrich Events Ice Cores Time Machine **DO Events** Pa/Th proxy

Abrupt Climate Change

Heinrich Events

Abrupt Climate Change

Heinrich Events

| | UNIL | Université de Lausanne

Heinrich Events Ice Cores Time Machine **DO Events** Pa/Th proxy

Abrupt Climate Change

Heinrich Events

Abrupt Climate Change

Heinrich Events

| | UNIL | Université de Lausanne

Abrupt Climate Change

The Pa-Th proxy

Time Machine **DO Events** Pa/Th proxy **Heinrich Events**

Abrupt Climate Change

The Pa-Th proxy

Ice Cores

Abrupt Climate Change

DO and Heinrich Events

Abrupt Climate Change

The deglaciation

UNIL | Université de Lausanne

Time Machine DO Events Pa/Th proxy Heinrich Events

Today's Overview

Ice Cores

- Ice cores for climate science
- The time machine
 - decay series dating
 - cosmogenic nuclide dating
 - application examples
 - surface exposure dating
- Abrupt climate change during the last glacial cycle
 - Dansgaard-Oeschger Events
 - Bipolar seesaw
 - Heinrich Events
 - Pa/Th proxy for ocean circulation rate

Unil

Outlook

Monday	Introduction	Earth History
Tuesday	Proxies I	Cenozoic Hot & Warm House
Wednesday	Specific Climate System components	Pleistocene G-IG climate
Thursday	Proxies II & Climate System Interactions	Abrupt Climate Change
Friday	Current Climate Change	Future & Synthesis

| | | | | **UNIL** | Université de Lausanne