FA-3 R 7.1

Espiritu, Joseph Raphael M.

2025-02-17

Problem Statement 1:

A binary communication channel carries data as one of two sets of signals, denoted by 0 and 1. Due to noise, a transmitted 0 is sometimes received as a 1, and a transmitted 1 is sometimes received as a 0.

For a specific channel, the probabilities are as follows:

- A transmitted 0 is **correctly received** with probability **0.95**.
- A transmitted 1 is **correctly received** with probability **0.75**.
- 70% of all messages are transmitted as 0.

Questions:

- (a) Determine the probability that a 1 was received, i.e., P(R=1).
- (b) Determine the probability that a 1 was transmitted given that a 1 was received, i.e., P(T = 1|R = 1).

Solution

Using law of total probability, the probability of receiving 1 is:

$$P(R = 1) = P(R = 1|T = 0)P(T = 0) + P(R = 1|T = 1)P(T = 1)$$

Using Bayes' theorem, the probability that a 1 was transmitted given that a 1 was received is:

$$P(T = 1|R = 1) = \frac{P(R = 1|T = 1)P(T = 1)}{P(R = 1)}$$

Using \mathbf{R} we solve for the two problems:.

```
# Given probabilities
P_T0 <- 0.70  # Probability of transmitting 0
P_T1 <- 0.30  # Probability of transmitting 1

P_R1_given_T0 <- 0.05  # Probability of receiving 1 given 0 was sent
P_R1_given_T1 <- 0.75  # Probability of receiving 1 given 1 was sent

# Compute P(R=1)
P_R1 <- P_R1_given_T0 * P_T0 + P_R1_given_T1 * P_T1</pre>
```

Problem Statement 2:

In an **IT company**, three employees—**Jane**, **Amy**, and **Ava**—are responsible for programming. The proportion of work done by each and their respective error rates are given below:

- Jane does 10% of the programming, with an 8% error rate.
- Amy does 30% of the programming, with a 5% error rate.
- Ava does 60% of the programming, with a 1% error rate.

Questions:

- (a) What is the **overall probability of an error** occurring?
- (b) If a program is found with an error, who is the most likely person to have written it?

Solution

The overall probability of an error occurring can be calculated using the law of total probability:

$$P(E) = P(E|J)P(J) + P(E|A)P(A) + P(E|V)P(V)$$

where:

- P(E) = Probability that a program contains an error.
- P(E|J) = Probability of an error given Jane wrote the program.
- P(E|A) = Probability of an error given Amy wrote the program.
- P(E|V) = Probability of an error given Ava wrote the program.
- P(J), P(A), P(V) = Probability that Jane, Amy, or Ava wrote the program, respectively.

Using Bayes' Theorem, the probability that a specific programmer wrote a faulty program is:

$$P(J|E) = \frac{P(E|J)P(J)}{P(E)}$$

$$P(A|E) = \frac{P(E|A)P(A)}{P(E)}$$

$$P(V|E) = \frac{P(E|V)P(V)}{P(E)}$$

These values will determine who is most likely person for an error.

```
# Given probabilities
P_J <- 0.10 # Probability of Jane writing a program
P_A <- 0.30 # Probability of Amy writing a program
P_V <- 0.60 # Probability of Ava writing a program
P_E_given_J <- 0.08 # Error probability given Jane wrote it
P_E_given_A <- 0.05 # Error probability given Amy wrote it
P_E_given_V <- 0.01 # Error probability given Ava wrote it
#overall probability of error P(E)
P_E \leftarrow (P_E_{given_J} * P_J) + (P_E_{given_A} * P_A) + (P_E_{given_V} * P_V)
# Bayes' theorem
P_J_given_E <- (P_E_given_J * P_J) / P_E
P_A_given_E <- (P_E_given_A * P_A) / P_E
P_V_given_E <- (P_E_given_V * P_V) / P_E
# Display
P_E # Overall probability of an error
## [1] 0.029
P_J_given_E # Probability Jane wrote a faulty program
## [1] 0.2758621
P_A_given_E # Probability Amy wrote a faulty program
## [1] 0.5172414
P_V_given_E # Probability Ava wrote a faulty program
## [1] 0.2068966
```

The values have show that the **most likely person is Amy** at over 50% of the error probably been written by her.