Calcul matriciel

1 Opérations sur les matrices

Exercice No 1: Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note $\sigma(A)$ la somme des termes de A. On pose

$$J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (1) & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}).$$

Vérifier $JAJ = \sigma(A) \cdot J$.

Exercice N° 2 : Pour $i, j, k, \ell \in \{1, ..., n\}$, on note $E_{i,j}$ et $E_{k,\ell}$ les matrices élémentaires de $\mathcal{M}_n(\mathbb{K})$ d'indices (i,j) et (k,ℓ) . Calculer $E_{i,j} \times E_{k,\ell}$.

Exercice N° 3: Soient $\lambda_1, \ldots, \lambda_n$ des éléments de \mathbb{K} deux à deux distincts et $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec D.

Exercice Nº 4:

1. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que

$$(\forall B \in \mathcal{M}_n(\mathbb{K}), AB = BA) \Leftrightarrow (\exists \lambda \in \mathbb{K} / A = \lambda \cdot I_n).$$

2. Soit $A \in GL_n(\mathbb{K})$. Montrer que

$$(\forall B \in GL_n(\mathbb{K}), AB = BA) \Leftrightarrow (\exists \lambda \in \mathbb{K}^* / A = \lambda \cdot I_n).$$

3. Soit $A \in \mathcal{S}_n(\mathbb{K})$. Montrer que

$$(\forall B \in \mathcal{S}_n(\mathbb{K}), AB = BA) \Leftrightarrow (\exists \lambda \in \mathbb{K} / A = \lambda \cdot I_n).$$

4. Soient $n \ge 3$ et $A \in \mathcal{A}_n(\mathbb{K})$. Montrer que

$$(\forall B \in \mathcal{A}_n(\mathbb{K}), AB = BA) \Leftrightarrow (A = O_n).$$

Exercice No 5: Soit

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

avec $0 \le d \le c \le b \le a$ et $b+c \le a+d$. Pour tout $n \ge 1$, on note

$$M^n = \left(\begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array}\right)$$

1

Démontrer que, pour tout $n \ge 1$, $b_n + c_n \le a_n + d_n$.

2 Calcul des puissances d'une matrice

Exercice Nº 6: Calculer A^n pour $n \in \mathbb{N}$ et les matrices A qui suivent.

$$1. \ A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right).$$

$$2. \ A = \left(\begin{array}{cc} a & b \\ 0 & a \end{array}\right).$$

3.
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
.

Exercice Nº 7: On considère la matrice

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

et on pose B = A - I. Calculer B^n pour $n \in \mathbb{N}$ et en déduire l'expression de A^n .

Exercice $N^o 8$: Calculer A^n pour

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

de deux manières différentes.

Exercice Nº 9: On considère la matrice

$$A = \left(\begin{array}{cc} -1 & -2 \\ 3 & 4 \end{array}\right).$$

- 1. Calculer $A^2 3A + 2I$. En déduire que A est inversible et calculer son inverse.
- 2. Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 3. En déduire l'expression de la matrice A^n .

Exercice No 10: Soit

$$A = \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ 0 & 1 & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- 1. Soit $k \in \mathbb{N}^*$. Majorer les coefficients de A^k .
- 2. Calculer A^{-1} .
- 3. Calculer A^k pour $k \in \mathbb{N}$.

3 Inversion d'une matrice

Exercice Nº 11: Soit

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathcal{M}_2(\mathbb{K}).$$

Observer que

$$A^{2} - (a+d)A + (ad - bc)I = 0.$$

2

A quelle condition A est-elle inversible? Déterminer alors A^{-1} .

Exercice Nº 12 : Calculer l'inverse des matrices carrées qui suivent.

1.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$
.

$$2. \ B = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{array}\right).$$

3.
$$C = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
.

Exercice Nº 13: Justifier que

$$A = \begin{pmatrix} 1 & & (-1) \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

est inversible et déterminer A^{-1} .

Exercice Nº 14: Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ telle que

$$\forall 1 \leqslant i \leqslant n, \ \sum_{i \neq i} |a_{i,j}| < |a_{i,i}|.$$

Montrer que la matrice A est inversible.

Exercice Nº 15: Soient $n \in \mathbb{N} \setminus \{0,1\}$ et $\omega = \exp\left(\frac{2i\pi}{n}\right)$. On pose

$$A = \left(\omega^{(k-1)(\ell-1)}\right)_{1 \leqslant k, \ell \leqslant n} \in \mathcal{M}_n(\mathbb{C}).$$

Calculer $A\bar{A}$. En déduire que A est inversible et calculer A^{-1} .

Exercice No 16: Soit

$$A = \left(\begin{array}{ccc} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{array}\right).$$

- 1. Calculer $(A+I)^3$.
- 2. En déduire que A est inversible.

Exercice Nº 17: Soient $n \in \mathbb{N} \setminus \{0,1\}$ et $A = (1 - \delta_{i,j}) \in \mathcal{M}_n(\mathbb{R})$.

- 1. Calculer A^2 .
- 2. Montrer que A est inversible et exprimer A^{-1} .

Exercice No 18: Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que la matrice I + A soit inversible. On pose $B = (I - A)(I + A)^{-1}$.

- 1. Montrer que $B = (I + A)^{-1}(I A)$.
- 2. Montrer que I + B est inversible et exprimer A en fonction de B.

Exercice Nº 19: Soient $A, B, C \in \mathcal{M}_n(\mathbb{K})$ $(n \ge 2)$ non nulles vérifiant $ABC = O_n$. Montrer qu'au moins deux des matrices A, B, C ne sont pas inversibles.

Exercice N° 20 : Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ vérifiant AB = A + B. Montrer que A et B commutent.

4 Transposition

Exercice N° 21 : Déterminer une condition nécessaire et suffisante pour que le produit de deux matrices symétriques soit encore une matrice symétrique.

Exercice Nº 22 : Soit $T \in T_n^+(\mathbb{R})$.

Montrer que $T \in D_n(\mathbb{R})$ si, et seulement si, ${}^tTT = T{}^tT$.

Le résultat est-il vrai pour une matrice à coefficients complexes?

5 Structures formées de matrices

Exercice Nº 23: Soit

$$E = \left\{ M(a,b,c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \middle/ (a,b,c) \in \mathbb{R}^3 \right\}.$$

Montrer que E est une sous-algèbre (c'est-à-dire un sous-anneau et un sous-espace vectoriel) commutative de $\mathcal{M}_3(\mathbb{R})$ dont on déterminera la dimension.

Exercice N° 24 : Soit E l'ensemble des matrices de la forme

$$M(a, b, c) = \left(\begin{array}{ccc} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{array}\right)$$

avec $a, b, c \in \mathbb{R}$. Notre objectif est d'établir que l'inverse d'une matrice inversible de E appartient encore à E, sans pour autant calculer cet inverse.

- 1. Montrer que (E, +, .) est un \mathbb{R} -espace vectoriel dont on précisera la dimension.
- 2. Montrer que $(E, +, \times)$ est un anneau commutatif.
- 3. A quelle condition sur $(a, b, c) \in \mathbb{R}^3$, la matrice A = M(a, b, c) est-elle inversible dans $\mathcal{M}_3(\mathbb{R})$?
- 4. On suppose cette condition vérifiée. En considérant l'application $f: E \to E$ définie par f(X) = AX, montrer que $A^{-1} \in E$.

Exercice N° 25: Soit $n \in \mathbb{N} \setminus \{0,1\}$. Pour $\sigma \in \mathfrak{S}_n$, on note

$$P(\sigma) = (\delta_{i,\sigma(j)})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$$

appelée matrice de permutation associée à σ .

1. Montrer que

$$\forall (\sigma, \sigma') \in \mathfrak{S}_n^2, P\left(\sigma \circ \sigma'\right) = P(\sigma)P(\sigma').$$

- 2. En déduire que $E = \{P(\sigma) \mid \sigma \in \mathfrak{S}_n\}$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.
- 3. Vérifier que

$${}^t P(\sigma) = P(\sigma^{-1}).$$

Exercice N° 26: Soit E l'ensemble des matrices de $\mathcal{M}_2(\mathbb{K})$ de la forme

$$A = \begin{pmatrix} a+b & b \\ -b & a-b \end{pmatrix}$$
 avec $(a,b) \in \mathbb{K}^2$.

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{K})$, en donner une base.
- 2. Montrer que E est un sous-anneau commutatif de $\mathcal{M}_2(\mathbb{K})$.

- 3. Déterminer les inversibles de E.
- 4. Déterminer les diviseurs de zéro de E.

Exercice N° 27: On dit qu'une matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ est centro-symétrique si

$$\forall (i,j) \in [1,n]^2, a_{n+1-i,n+1-j} = a_{i,j}.$$

- 1. Montrer que le sous-ensemble C de $\mathcal{M}_n(\mathbb{K})$ formé des matrices centro-symétriques est un sousespace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
- 2. Montrer que le produit de deux matrices centro-symétriques de $\mathcal{M}_n(\mathbb{K})$ est aussi centro-symétrique.
- 3. Soit A centro-symétrique de $\mathcal{M}_n(\mathbb{K})$ et inversible. En considérant l'application $X \mapsto AX$ de C vers C, montrer que A^{-1} est centro-symétrique.

6 Calcul par blocs

Exercice N° 28: Soient $A \in \mathcal{M}_n(\mathbb{K})$ et

$$B = \left(\begin{array}{c|c} O_n & A \\ \hline I_n & O_n \end{array}\right) \in \mathcal{M}_{2n}(\mathbb{K}).$$

- 1. Montrer que A est inversible si, et seulement si, B l'est.
- 2. Calculer B^p pour tout $p \in \mathbb{N}$.

Exercice N° 29 : Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang r décomposée par blocs sous la forme

$$M = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$$

avec $A \in \mathcal{M}_r(\mathbb{K})$ supposée inversible.

1. Montrer que pour toute colonne $Y \in \mathcal{M}_{n-r,1}(\mathbb{K})$ il existe une colonne $X \in \mathcal{M}_{r,1}(\mathbb{K})$ telle que

$$M\begin{pmatrix} 0_r \\ Y \end{pmatrix} = M\begin{pmatrix} X \\ 0_{n-r} \end{pmatrix}.$$

2. En déduire que $D = CA^{-1}B$.

Exercice N° 30: Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ et $M = \left(\frac{A \mid B}{C \mid D}\right) \in \mathcal{M}_{2n}(\mathbb{K})$. On suppose que les matrices A, D et M sont inversibles. Exprimer M^{-1} .

Exercice No 31: Soit

$$A = \left(\begin{array}{cccc} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{array}\right).$$

Calculer A^n pour tout $n \in \mathbb{Z}$.

Exercice Nº 32: Montrer que la matrice

$$A = \left(\begin{array}{c|c} I_n & I_n \\ \hline I_n & -I_n \end{array}\right) \in \mathcal{M}_{2n}(\mathbb{K})$$

est inversible et donner son inverse.

Exercice Nº 33 : Soit $P \in GL_n(\mathbb{K})$. Montrer que la matrice

$$A = \left(\begin{array}{c|c} P & O_n \\ \hline O_n & P \end{array}\right) \in \mathcal{M}_{2n}(\mathbb{K})$$

est inversible et donner son inverse.

Exercice N° 34: Soient
$$P \in \mathbb{K}[X]$$
, $A \in \mathcal{M}_n(\mathbb{K})$ et $M = \left(\begin{array}{c|c} A & A^2 \\ \hline O_n & A \end{array}\right) \in \mathcal{M}_{2n}(\mathbb{K})$. Calculer $P(M)$.