Tópicos de Matemática

2° teste (3 de janeiro de 2018) —

____ duração: 2h00 ____

1. Seja $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ a função definida por

$$f(n) = \left\{ \begin{array}{ll} (2n, 2n+1) & \text{se } n \ge 0 \\ (-2n, -2n+1) & \text{se } n < 0 \end{array} \right.$$

(a) Determine $f(\{1,-1,0\})$ e $f^\leftarrow(\{(2,3),(2,5)\}$. Diga se existe algum conjunto $A\subseteq\mathbb{Z}\times\mathbb{Z}$ tal que $f^\leftarrow(A)=\{1\}$. Justifique.

Por definição de imagem de um conjunto tem-se

$$f(\{-1,1,0\}) = \{f(-1), f(1), f(0)\}\$$

e da definição da função f segue que

$$\begin{array}{ll} f(-1) = (-2 \times (-1), -2 \times (-1) + 1) = (2,3) & (\mathsf{pois} \ -1 < 0) \\ f(1) = (2 \times 1, 2 \times 1 + 1) = (2,3) & (\mathsf{pois} \ 1 \ge 0) \\ f(0) = (2 \times 0, 2 \times 0 + 1) = (0,1) & (\mathsf{pois} \ 1 \ge 0). \end{array}$$

Logo

$$f(\{-1,1,0\}) = \{(2,3),(0,1)\}.$$

Por definição de pré-imagem de um conjunto e atendendo à definição da função f, tem-se

$$f^{\leftarrow}(\{(2,3),(2,5)\}) = \{n \in \mathbb{Z} \mid f(n) = (2,3) \lor f(n) = (2,5)\} \\ = \{n \in \mathbb{Z} \mid f(n) = (2,3)\} \cup \{n \in \mathbb{Z} \mid f(n) = (2,5)\},$$

$$\{n \in \mathbb{Z} \mid f(n) = (2,3)\} = \{n \in \mathbb{Z} \mid ((2n,2n+1) = (2,3) \land n \ge 0) \lor ((-2n,-2n+1) = (2,3) \land n < 0)\} \\ = \{n \in \mathbb{Z} \mid (2n = 2 \land 2n + 1 = 3 \land n \ge 0) \lor (-2n = 2 \land -2n + 1 = 3 \land n < 0)\} \\ = \{n \in \mathbb{Z} \mid (n = 1 \land n \ge 0) \lor (n = -1 \land n < 0)\} \\ = \{-1,1\},$$

$$\{n \in \mathbb{Z} \mid f(n) = (2,5)\}) = \{n \in \mathbb{Z} \mid ((2n,2n+1) = (2,5) \land n \ge 0) \lor ((-2n,-2n+1) = (2,5) \land n < 0)\} \\ = \{n \in \mathbb{Z} \mid (2n = 2 \land 2n + 1 = 5 \land n \ge 0) \lor (-2n = 2 \land -2n + 1 = 5 \land n < 0)\} \\ = \{n \in \mathbb{Z} \mid (n = 1 \land n = 2 \land n \ge 0) \lor (n = -1 \land n = -2 \land n < 0)\} \\ = \emptyset.$$

Portanto.

$$f^{\leftarrow}(\{(2,3),(2,5)\}) = \{-1,1\} \cup \emptyset = \{-1,1\}.$$

Dos cálculos anteriores conclui-se facilmente que não existe qualquer conjunto $A\subseteq \mathbb{Z}\times \mathbb{Z}$ tal que $f^\leftarrow(A)=\{1\}$. De facto, se admitirmos que existe um conjunto A nas condições indicadas, tem-se $f(1)\in A$. Então $(2,3)\in A$ e, uma vez que f(1)=f(-1)=(2,3), segue que $\{-1,1\}\subseteq f^\leftarrow(A)$. Logo não existe qualquer conjunto A tal que $f^\leftarrow(A)=\{1\}$.

(b) Diga, justificando, se f é injetiva e se f é sobrejetiva.

Uma função $f:A\to B$ diz-se injetiva se a proposição

$$\forall_{a,b\in A} \ a\neq b \rightarrow f(a)\neq f(b)$$

é verdadeira.

Atendendo a que $1 \neq -1$ e f(1) = (2,3) = f(-1), concluímos que a função f não é injetiva.

Uma função $f:A\to B$ diz-se sobrejetiva se a proposição

$$\forall_{b \in B} \ \exists_{a \in A} \ f(a) = b$$

é verdadeira.

Ora, da resolução da alínea anterior é simples concluir que a função f não é sobrejetiva, pois $(2,5) \in \mathbb{Z} \times \mathbb{Z}$ e não existe $n \in \mathbb{Z}$ tal que f(n) = (2,5).

2. Seja $f:A\to B$ uma função sobrejetiva. Mostre que se $\{Y_i\}_{i\in I}$ é uma partição de B, então $\{f^\leftarrow(Y_i)\}_{i\in I}$ é uma partição de A.

Sejam $f:A\to B$ uma função sobrejetiva e $\{Y_i\}_{i\in I}$ uma partição de B.

Uma vez que f é sobrejetiva, para todo $b \in B$, existe $a \in A$ tal que f(a) = b.

Atendendo a que $\{Y_i\}_{i\in I}$ é uma partição de B, então:

- [P1] Para todo $i \in I$, $Y_i \neq \emptyset$;
- [P2] Para quaisquer $i, j \in I$, $Y_i \neq Y_j \Rightarrow Y_i \cap Y_j = \emptyset$;

$$[\mathsf{P3}] \bigcup_{i \in I} Y_i = B.$$

Das hipóteses anteriores segue que $\{f^{\leftarrow}(Y_i)\}_{i\in I}$ é uma partição de A, ou seja, que:

- [Q1] Para todo $i \in I$, $f^{\leftarrow}(Y_i) \neq \emptyset$;
- [Q2] Para quaisquer $i, j \in I$, $f^{\leftarrow}(Y_i) \neq f^{\leftarrow}(Y_j) \Rightarrow f^{\leftarrow}(Y_i) \cap f^{\leftarrow}(Y_j) = \emptyset$;

$$[\operatorname{Q3}] \bigcup_{i \in I} f^{\leftarrow}(Y_i) = A.$$

De facto:

[Q1] Uma vez que, para todo $i \in I$, $Y_i \subseteq B$ e, para todo $b \in B$, existe $a \in A$ tal que f(a) = b, então, para todo $i \in I$ e para todo $b \in Y_i$, existe $a \in A$ tal que f(a) = b. Logo, para todo $i \in I$, existe $a \in A$ tal que $a \in f^{\leftarrow}(Y_i)$ e, portanto, $f^{\leftarrow}(Y_i) \neq \emptyset$.

[Q2] Sejam $i,j \in I$ tais que $f^\leftarrow(Y_i) \neq f^\leftarrow(Y_j)$. Então $Y_i \neq Y_j$ (se $Y_i = Y_j$, tem-se $f^\leftarrow(Y_i) = f^\leftarrow(Y_j)$). Por redução ao absurdo, admitamos que $f^\leftarrow(Y_i) \cap f^\leftarrow(Y_j) \neq \emptyset$. Então existe $a \in A$ tal que $a \in f^\leftarrow(Y_i)$ e $a \in f^\leftarrow(Y_j)$, donde segue que $f(a) \in Y_i$ e $f(a) \in Y_j$ e, portanto, $Y_i \cap Y_j \neq \emptyset$ (o que contradiz P2, uma vez que $Y_i \neq Y_j$).

[Q3] Claramente, tem-se $\bigcup_{i\in I} f^\leftarrow(Y_i) \subseteq A$. A inclusão contrária também se verifica. Com efeito, para todo $a\in A$, $f(a)\in B$, pois f é uma função de A em B. Então de [P3] segue que $f(a)\in Y_j$, para algum $j\in I$ e, portanto, $a\in f^\leftarrow(Y_j)$. Logo $a\in\bigcup_{i\in I} f^\leftarrow(Y_i)$. Assim, $A\subseteq\bigcup_{i\in I} f^\leftarrow(Y_i)$. Das duas inclusões segue que $\bigcup_{i\in I} f^\leftarrow(Y_i)=A$.

3. Sejam S e T as relações binárias em $\mathbb N$ definidas por

$$S = \{(a,b) \in \mathbb{N}^2 \mid \exists_{k \in \mathbb{N}} \ b - a = 5k\} \ \mathbf{e} \ T = \{(4,7), (3,5), (4,2)\}.$$

(a) Determine Dom(S) e Im(S).

Atendendo a que

$$Dom(S) = \{a \in \mathbb{N} \mid \exists_{b \in \mathbb{N}} (a, b) \in S\}$$
$$= \{a \in \mathbb{N} \mid \exists_{b \in \mathbb{N}} \exists_{k \in \mathbb{N}} a = b - 5k\},$$

é imediato que $\mathrm{Dom}(S)\subseteq \mathbb{N}$. A inclusão contrária também é válida, pois, para todo $a\in \mathbb{N}$, existem $k=1\in \mathbb{N}$ e $b=a+5\times k\in \mathbb{N}$ tais que $(a,b)\in S$. Assim, para todo $a\in \mathbb{N}$, $a\in \mathrm{Dom}(S)$ e, portanto, $\mathbb{N}\subseteq \mathrm{Dom}(S)$. Logo $\mathrm{Dom}(S)=\mathbb{N}$.

Uma vez que

$$\operatorname{Im}(S) = \{b \in \mathbb{N} \mid \exists_{a \in \mathbb{N}} (a, b) \in S\} = \{b \in \mathbb{N} \mid \exists_{a \in \mathbb{N}} \exists_{k \in \mathbb{N}} b = a + 5k\},\$$

é imediato que $\operatorname{Im}(S) \subseteq \mathbb{N}$. Atendendo a que, para quaisquer $a,b \in \mathbb{N}$ tais que b < 5, $(a,b) \not\in S$ (pois $b \neq a+5k$, para todo $k \in \mathbb{N}$), então $\operatorname{Im}(S) \subseteq \mathbb{N} \setminus \{1,2,3,4,5\}$. Para todo $b \in \mathbb{N}$ tai que b > 5, existem $k=1 \in \mathbb{N}$ e $a=b-5k \in \mathbb{N}$ tais que $(a,b) \in S$. Logo, para todo $b \in \mathbb{N} \setminus \{1,2,3,4,5\}$, $b \in \operatorname{Im}(S)$. Assim, $(\mathbb{N} \setminus \{1,2,3,4,5\}) \subseteq \operatorname{Im}(S)$. Portanto, $\operatorname{Im}(S) = \mathbb{N} \setminus \{1,2,3,4,5\}$.

- (b) Diga, justificando, se a relação S é:
 - (i) simétrica:

Uma relação binária ρ num conjunto A diz-se simétrica se, para quaisquer $a,b\in A$,

$$(a,b) \in \rho \Rightarrow (b,a) \in \rho.$$

A relação S não é simétrica. De facto, $(1,6) \in S$ (pois $6-1=5 \times 1$ e $1 \in \mathbb{N}$), mas $(6,1) \notin S$ (uma vez que $1-6 \neq 5k$, para todo $k \in \mathbb{N}$).

(ii) transitiva.

Uma relação binária ρ num conjunto A diz-se transitiva se, para quaisquer $a,b,c\in A$,

$$((a,b) \in \rho \land (b,c) \in \rho) \Rightarrow (a,c) \in \rho.$$

A relação S é transitiva, pois, para quaisquer $a,b,c\in\mathbb{N}$,

$$((a,b) \in S \land (b,c) \in S) \quad \Rightarrow \quad (\exists_{k_1 \in \mathbb{N}} \ b - a = 5k_1) \land (\exists_{k_2 \in \mathbb{N}} \ c - b = 5k_2)$$

$$\Rightarrow \quad \exists_{k_1,k_2 \in \mathbb{N}} \ c - a = 5(k_1 + k_2)$$

$$\Rightarrow \quad \exists_{j=k_1+k_2 \in \mathbb{N}} \ c - a = 5j$$

$$\Rightarrow \quad (a,c) \in S.$$

(c) Determine $T \circ T^{-1}$. Diga se $T \circ T^{-1} \subseteq S$. Justifique a sua resposta.

Tem-se

$$T^{-1} = \{(b, a) \in \mathbb{N}^2 \mid (a, b) \in T\} = \{(7, 4), (5, 3), (2, 4)\}.$$

Logo

$$T \circ T^{-1} = \{(a,c) \in \mathbb{N}^2 \mid \exists_{b \in \mathbb{N}} \ (a,b) \in T^{-1} \land (b,c) \in T\}$$
$$= \{(7,7), (7,2), (5,5), (2,2), (2,7)\}.$$

$$\begin{split} &[(7,4)\in T^{-1} \text{ e } (4,7)\in T, \text{ logo } (7,7)\in T\circ T^{-1};\\ &(7,4)\in T^{-1} \text{ e } (4,2)\in T, \text{ logo } (7,2)\in T\circ T^{-1};\\ &(5,3)\in T^{-1} \text{ e } (3,5)\in T, \text{ logo } (5,5)\in T\circ T^{-1};\\ &(2,4)\in T^{-1} \text{ e } (4,7)\in T, \text{ logo } (2,7)\in T\circ T^{-1};\\ &(2,4)\in T^{-1} \text{ e } (4,2)\in T, \text{ logo } (2,2)\in T\circ T^{-1}. \end{split}$$

Uma vez que $(7,7) \in T \circ T^{-1}$ e $(7,7) \notin S$ (pois $7-7=0 \neq 5k$, para todo $k \in \mathbb{N}$), então $T \circ T^{-1} \nsubseteq S$.

4. Seja θ a relação de equivalência em $\mathbb R$ definida por

$$x \theta y$$
 se e só se $x - y \in \mathbb{Z}$.

(a) Indique três elementos distintos da classe $\left[\frac{1}{2}\right]_{\theta}$. Determine a classe de equivalência $[0]_{\theta}$.

Uma vez que

$$\begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\theta} = \{ y \in \mathbb{R} \mid \frac{1}{2}\theta y \}$$
$$= \{ y \in \mathbb{R} \mid \frac{1}{2} - y \in \mathbb{Z} \}$$

$$\mathrm{e}\ \tfrac{1}{2}-\tfrac{1}{2}=0\in\mathbb{Z}\text{, }\tfrac{1}{2}-\tfrac{3}{2}=-1\in\mathbb{Z}\text{, }\tfrac{1}{2}-\tfrac{5}{2}=-2\in\mathbb{Z}\text{, então }\tfrac{1}{2}\text{, }\tfrac{3}{2}\ \mathrm{e}\ \tfrac{5}{2}\ \mathrm{são}\ \mathrm{elementos\ de}\ \left[\frac{1}{2}\right]_{\theta}.$$

$$[0]_{\theta} = \{ y \in \mathbb{R} \mid 0\theta y \} = \{ y \in \mathbb{R} \mid 0 - y \in \mathbb{Z} \} = \mathbb{Z}.$$

(b) Dê um exemplo, ou justifique que não existe um exemplo, de elementos a e b tais que:

i.
$$a,b \in \mathbb{Z}$$
, $a \neq b$ **e** $[a]_{\theta} \cap [b]_{\theta} = \emptyset$.

Uma vez que θ é uma relação de equivalência, para quaisquer $x,y\in\mathbb{R}$, tem-se

$$[x]_{\theta} = [y]_{\theta}$$
 se e só se $x\theta y$.

Da resolução da alínea anterior sabe-se que, para qualquer inteiro x, $0 \theta x$. Logo, para qualquer inteiro x, $[x]_{\theta} = [0]_{\theta} = \mathbb{Z}$. Assim, não existem inteiros a e b tais que $[a]_{\theta} \cap [b]_{\theta} = \emptyset$.

ii.
$$a, b \in \mathbb{R}$$
, $[a]_{\theta} \neq [b]_{\theta}$ e $[2a]_{\theta} = [2b]_{\theta}$.

Sejam a=1 e $b=\frac{1}{2}$. Então $[a]_{\theta}\neq [b]_{\theta}$, pois $a-b\not\in\mathbb{Z}$ e, portanto, $(a,b)\not\in\theta$. No entanto, $[2a]_{\theta}=[2b]_{\theta}$, pois $2a\,\theta\,2b\,\left(2a-2b\in\mathbb{Z}\right)$.

- 5. Considere o c.p.o (A, ρ) , onde $A = \{(1,3), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (3,5), (4,3), (4,4), (5,1)\}$ e ρ é a relação de ordem parcial em A definida por $(a,b)\rho(c,d)$ se e só se $a \le c$ e $b \le d$.
 - (a) Diga, justificando, se o c.p.o. (A, ρ) é uma cadeia.

Um c.p.o. (P,\leq) diz-se uma cadeia se, para quaisquer $a,b\in P$, $(a,b)\in\leq$ ou $(b,a)\in\leq$. Uma vez que $(1,3),(2,2)\in A$, $((1,3),(2,2))\not\in\rho$ e $((2,2),(1,3))\not\in\rho$, então (A,ρ) não é uma cadeia.

(b) Desenhe o diagrama de Hasse de (A, ρ) .

(c) Indique os elementos maximais e minimais de A.

Dados um c.p.o. (P, \leq) , $X \subseteq P$ e $m \in P$, diz-se que:

- m é um elemento maximal de X se não existe $x \in X \setminus \{m\}$ tal que $m \le x$;
- m é um elemento minimal de X se não existe $x \in X \setminus \{m\}$ tal que $x \leq m$.

Atendendo a que:

- para todo $m \in \{(3,5), (4,4), (5,1)\}$, não existe não existe $x \in A \setminus \{m\}$ tal que $m \rho x$;
- para todo $a \in A \setminus \{(3,5), (4,4), (5,1)\}$, existe $x \in A \setminus \{a\}$ tal que $a\rho x$,

então (3,5), (4,4) e (5,1) são os elementos maximais de A.

Uma vez que

- para todo $m \in \{(1,3),(2,2),(5,1)\}$, não existe $x \in A \setminus \{m\}$ tal que $x \rho m$;
- para todo $a \in A \setminus \{(1,3),(2,2),(5,1)\}$, existe $x \in A \setminus \{a\}$ tal que $x \rho a$,

então (1,3), (2,2) e (5,1) são os elementos minimais de A.

(d) Indique, caso existam, $\sup(\{(1,3),(2,4),(3,2)\})$ e $\inf(\{(1,3),(2,4),(3,2)\})$. Justifique.

Dados um c.p.o. (P, \leq) , $X \subseteq P$ e $m \in P$, diz-se que:

- m é um supremo de X se m é um majorante de X (isto é, para todo $x \in X$, $x \le m$) e m é o menor dos majorantes de X;
- m é um ínfimo de X se m é um minorante de X (isto é, para todo $x \in X$, $m \le x$) e m é o maior dos minorantes de X;

Uma vez que $\operatorname{Maj}(\{(1,3),(2,4),(3,2)\}) = \{(3,4),(3,5),(4,4)\}$ e (3,4) é o menor dos majorantes de $\{(1,3),(2,4),(3,2)\}$, então $\sup(\{(1,3),(2,4),(3,2)\}) = (3,4)$.

Atendendo a que $Min(\{(1,3),(2,4),(3,2)\}) = \emptyset$, então não existe ínfimo de $\{(1,3),(2,4),(3,2)\}$.

- 6. Diga, justificando, se as afirmações seguintes são verdadeiras para quaisquer conjuntos não vazios A, B e C.
 - (a) Se $A \times C \sim B \times C$, então $A \sim B$.

A afirmação é falsa.

Contra-exemplo: Sejam $A=\{1\}$, $B=\mathbb{N}$ e $C=\mathbb{N}$. Então $A\times C\sim \mathbb{N}$, $B\times C\sim \mathbb{N}$ e, portanto, $A\times C\sim B\times C$. No entanto, $A\nsim B$.

(b) Se $A \cup B$ é numerável, então A é numerável ou B é numerável.

A afirmação é verdadeira.

Admitamos que $A \cup B$ é numerável. Então $A \cup B$ é contável e $A \cup B \sim \mathbb{N}$. Todo o subconjunto de um conjunto contável é um conjunto contável é um conjunto contável é um conjunto finito ou é numerável. Assim, como $A, B \subseteq A \cup B$ tem-se que: A é finito ou é numerável; B é finito ou é numerável. Uma vez que $A \cup B$ é infinito, A e B não podem ser ambos finitos (pois a união de dois conjuntos finitos é um conjunto finito). Logo A é numerável ou B é numerável.

Cotação: 1-(1,75+1,0); 2-(2,0); 3-(1,5+1,75+1,5); 4-(1,5+1,0+1,0); 5-(1,0+1,0+1,0+1,0+1,5); 6-(1,25+1,25).