Hi Steve,

I'm drafting two complementary papers and would love to bring you on board as co-author—especially for the technical piece that showcases Nav2 in a real, heavy-duty truck. Below is a concise outline (with links) so you can quickly see where your expertise fits and decide if it aligns with your goals.

☐ Planned Publications

• Paper 1 – "Embedding Nav2: A Practical Methodology"

A hands-on guide to hardware + software integration for custom robots, aimed at helping new adopters accelerate deployment.

• Paper 2 – "Nav2 in a Real Agricultural Truck: **Motion-Planning Benchmark vs Human Driver**" Focuses on off-road sugar-cane transport, comparing planner output to professional-driver behaviour.

I was thinking in working at first, with paper 2 with you.

☐ Key Contributions of Paper 2 Real-world validation

Demonstrate that Nav2 can safely and smoothly handle a 27-ton agricultural truck on rough terrain.

Field-test results (Already have logs, ros2 bags)

Two obstacle-avoidance runs on a straight crop path with stacked barrels:

- Run A https://lnkd.in/dRgeXRKD
- Run B https://lnkd.in/d 4NT5nK

Human-driver benchmark (To be done/optimized)

• 10–15 manoeuvres logged in ROS 2 bags (emergency braking, straight-line deviation, circuit turns, figure-eight paths).

• Only one-type manoeuvre tested with Nav2 on site due to track-time limits (links above); the remainder

will be reproduced in simulation for comparison.

Figure 4: Teste com obstáculos dinâmicos para desvio de obstáculos

	Planner	
1	fine-	
ŀ	tuning	

Table 5: Comparison: Human Driver vs. Nav2-based Navigation					
Metric	Human Driver (Field)		Notes / Ob- served Gaps		
Average Obsta- cle Clearance	0.94 m	0.83 m	Slightly more conservative driving by hu- man		
Trajectory Smoothness (Jerk)	2.9 m/s^3	3.7 m/s^3	Nav2 exhibits higher variabil- ity		
Total Energy Estimate	13.2 kJ (est.)	14.5 kJ	CAN-bus based approximation (field)		
Max Deviation from Path	0.21 m	0.34 m	Nav2 shows higher lateral error		
Emergency Stops Triggered	0	1	Nav2 halted or false positive		
Test Executabil- ity	Confirmed	Simulated Re- play	Onboard test in- feasible		

for heavy vehicles (To be done/optimized)

- ML-based relaunch system to bias cost functions toward safety metrics (time-to-collision, trajectory smoothness).
- Virtual Lane overlay to keep the truck centred in preferred1 corridors while still allowing obstacle avoidance demo video: https://youtu.be/arb1afcrT-8

Data availability (Already Have)

All ROS 2 bags, maps, and evaluation scripts are ready for processing; I'm happy to share raw data or early figures.

- ☐ Collaboration Opportunities
- Your insight on Nav2 internals will strengthen the experimental design and help **refine planner parameters for large, slow-to-turn platforms + Machine Learning Param Optimizer**. I believe that adjusting the Behavior Tree can also bring us benefits, as well as using nice FSM with nav2 that I checked: https://tinyurl.com/FSM-Nav2
- If you're interested, we could co-develop the Virtual Lane plugin and publish it alongside the paper.
- The project has momentum: Mercedes-Benz just submitted Phase 2 funding, and I am also in other project of my university team, we are adopting Nav2 for F1Tenth and RoboRace.

☐ Next Steps

I've attached my PhD qualification document and slide deck so you can see the broader research arc: https://drive.google.com/drive/folders/1BC_JrYGeYr9OXKXb2XIS9EbIdDH7spQ0?usp=sharing . Let me know if the scope resonates with you or if you'd suggest tweaks. **Happy to adapt the skeleton before we dive deeper.**

Looking forward to hearing your thoughts!

Best regards, Marcus Vinicius