Определение 1. Первообразная или неопределённый интеграл функции f — это такая дифференцируемая функция F, что F' = f. Обозначение: $\int f(x) dx$. Обратите внимание: первообразная определена неоднозначно!

Задача 1. Пусть F_1 и F_2 — первообразные функции f на неком интервале. Докажите, что F_1 — константа.

Задача 2. а) Пусть функция f непрерывна на некотором интервале. Зафиксируем точку a из этого интервала. Рассмотрим функцию $F(x)=\int\limits_{-\infty}^{x}f(t)\,dt$. Докажите, что функция F дифференцируема. Чему равна её производная? б) Докажите, что у каждой функции, непрерывной на интервале, существует первообразная. в)* Приведите пример разрывной функции, у которой существует первообразная.

Задача 3. Пусть на некотором интервале существуют $\int f(x) dx$ и $\int g(x) dx$. Тогда для любых постоянных α и β на этом интервале существует $\int (\alpha f(x) + \beta g(x)) dx$ причём $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$.

Задача 4. Найдите все первообразные функций (на их области определения): **a)** f=1; **b)** f=x; **b)** $f=x^k$, $k \in \mathbb{N}$; г) f = 1/x; д) $f = x^k$, $k \in \mathbb{Z}$; е) $f = e^x$; ж) $f = \sin x$; з) $f = \cos x$; и) $f = \operatorname{tg} x$; к) $f = \operatorname{ctg} x$.

 ${f 3}$ адача ${f 5}^{\circ}$. (${\it \Phi opmyna}$ ${\it Hbiomona-Neŭбhuцa}$) Пусть f — непрерывная функция и F — её первообразная. Докажите, что $\int_{a}^{a} f(x) dx = F(a) - F(b).$

Задача 6. Найдите площадь фигуры, ограниченной осью абцисс и одной дугой синусоиды.

Формула замены переменных

Задача 7. Пусть $\int f(x) dx = F(x)$. Докажите, что $\int f(ax+b) dx = \frac{1}{a} F(ax+b)$.

Задача 8°. Пусть $\omega(x)$ — дифференцируемая функция с непрерывной производной. Пусть f — непрерывная функция, и $\int f(x) dx = F(x)$. Докажите, что существует $\int f(\omega(x))\omega'(x) dx$ и $\int f(\omega(x))\omega'(x) dx = F(\omega(x))$.

Задача 9. Вычислите: а) $\int e^{e^x+x} dx$; б) $\int xe^{x^2} dx$; в) $\int \frac{\ln x}{x} dx$; г) $\int \sin x \cos x dx$; д) $\int \frac{\sin x}{\cos^3 x} dx$. Задача 10. а) Пусть $\omega(x)$ монотонна и дифференцируема на отрезке [a,b], а её производная $\omega'(x)$ непрерывна на [a,b]. Пусть ещё $\omega(a)=c$, $\omega(b)=d$. Докажите, что $\int_a^b f(t) dt = \int_a^b f(\omega(x))\omega'(x) dx$ для любой непрерывной на отрезке [c;d] функции f. **6)** Верно ли утверждение пункта a), если $\omega(x)$ не является монотонной?

Задача 11. Вычислите интегралы **a)** $\int_{0}^{1} \sqrt{1-x^2} \, dx$; **б)** $\int_{0}^{\ln 2} \sqrt{e^x-1} \, dx$.

Интегрирование по частям.

Задача 12°. а) Пусть u(x) и v(x) — дифференцируемые функции. Пусть существует интеграл $\int u(x)v'(x)\,dx$. Докажите, что существует интеграл $\int u'(x)v(x)\,dx$ и $\int u'(x)v(x)\,dx = u(x)v(x) - \int u(x)v'(x)\,dx$.

б) Пусть u'(x) и v'(x) непрерывны на [a,b]. Докажите, что $\int_{a}^{b} u'(x)v(x) \, dx = u(x)v(x)\big|_{a}^{b} - \int_{a}^{b} u(x)v'(x) \, dx$.

Задача 13. Найдите $(k \in \mathbb{N})$: a) $\int \ln x \, dx$; б) $\int x^k e^x \, dx$; в) $\int e^x \sin x \, dx$; г) $\int \ln^k x \, dx$; д) $\int_0^\pi x \sin x \, dx$.

Задача 14°. (*Формула Тейлора*) Пусть f(x) — функция с непрерывной n+1 производной. Докажите, что $f(x) = f(x_0) + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{1}{n!} \int\limits_{x_0}^x (x-t)^n f^{(n+1)}(t) \, dt.$

Разные задачи.

Задача 15. Приведите пример функции, определённой на интервале и не имеющей на нём первообразной.

Задача 16. а) (Интегральный признак сходимости) Пусть $f:[1,+\infty] \to \mathbb{R}$ неотрицательна, монотонна и непрерывна. Докажите, что ряд $\sum_{n=1}^{+\infty} f(n)$ сходится, если и только если существует $\lim_{x\to +\infty} \int\limits_1^x f(t)dt$.

Задача 17. Пусть M — максимум |f'| на отрезке $[0;2\pi], n \in \mathbb{N}$. Докажите, что $\left|\int\limits_{x}^{2\pi} f(x) \cos nx \, dx\right| \leqslant 2\pi M/n$.

Задача 18. а) Найдите точную верхнюю грань чисел $\int\limits_{0}^{1}xf(x)\,dx$ по всем непрерывным неотрицательным на

[0;1] функциям f, для которых $\int f(x) dx \le 2$. **б)** Найдите ответ, если не требовать неотрицательность f.

Задача 19. Пусть $n \in \mathbb{N}$. Разделите отрезок [-1;1] на черные и белые отрезки так, чтобы суммы определённых интегралов любого многочлена степени n по белым отрезкам и по чёрным были бы равны друг другу.

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	3	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	4 B	4 г	4 д	4 e	4 ж	4	4 и	1	11	6	7	7	8	9 a	9 б	9 B	9 Г	9 д	1(a	ე10 ნ	1	1 а б	$\begin{array}{c c} 1 & 1 \\ 5 & 6 \end{array}$	2 1	2	13 a	13 б	13 B	13 г	13 д	14	15	$\begin{bmatrix} 1 \\ i \end{bmatrix}$	6 a 6	6 5	l6 В	17	18 a	18 б	19	
																											П											П	П							П	ſ