

중대형 육상화물운송수단의 친환경차량 도입방안 연구

2022년 05월 20일 순천대학교

김진호 - 한국해양대학교 해운항만물류학과

차재웅 - 한국해양대학교 물류시스템학과 박사과정

김율성 - 한국해양대학교 물류시스템학과 교수

1 . 서론

연구 배경 및 목적

친환경 전환

- 무역과 교역의 확대에 따른 운송 수요 증가는 경제적 수준 향상과 함께 환경적 부작용을 유발
- 지구환경 보호를 위해 친환경 에너지원에 대한 필요성 증가

운송

산업 영향

- ➤ 육상화물운송수단 분야는 전기 / 수소 / LNG / 하이브리드 화물차 도입을 위한 기술연구가 추진
- > 제도적으로도 연비 규제(미국, 일본 등) + 배출가스 규제(유럽 'EURO X')에 관한 정책들이 시행
- > 국내에서도 중대형 육상화물운송수단의 친환경 연료체계 전환 노력 가속화

연구

목적

- 그러나 선행 연구는 기술 개발자 및 정책 입안자의 관점에서 에너지 전환 및 차량 도입연구 추진
- 실제 수요자 관점에서 친환경 중대형 육상화물운송수단의 도입방안 및 대안 파악

연구 방법

연구 방법

- 관련 동향 및 선행연구 고찰을 통해 화물차 이용자 측면의 친환경차량 도입요인 선정
- ➤ 도입요인들을 활용해 AHP 모형을 구축하고 조사 및 분석 실시
- ➤ 요인별 가중치를 바탕으로 주요 대안(전기/수소/LNG/하이브리드)들의 우선순위 분석

국내 동향

미세먼지 관리 종합계획(2020~2024)

- ▶ 노후 경유차 퇴출 가속화: 2024년까지 노후경유차 80% 이상 퇴출 목표로 조기 폐차 지원
- ▶ 신규 경유차 수요 억제: 수송용 에너지 상대가격 조정, 생산업체 배출가스 인증기준 강화 등 추진
- > 저공해차 보급 확대: 저공해차 구매보조, 보급목표제 도입 등 저공해차 대중화 조기 실현 추진

2030년 국가 온실가스 감축목표 달성을 위한 기본 로드맵 수정안

> 2016년 수립된 기존 로드맵 감축방향 유지 + BAU 대비 국내 감축목표 상향 (25.7% → 32.5%, 약 2.7억톤)

(단위 : 백만톤, %)

800	lini.	219	부문별 감축량	276.5	
700		1	632	2/0.3	
600		96	잔여감축량	38.3	574 536
500					330
400	851	_	-		
300		536		536	
200	_			-	
100		_			
0					

	40	배출	수정(안
부문		배출 전망(BAU)	감축후 배출량(감축량)	BAU 대비 감축률
	산업	481.0	382.4	20.5%
	건물	197.2	132.7	32.7%
배출원	수송	105.2	74.4	29.3%
	폐기물	15.5	11.0	28.9%
감축	공공(기타)	21.0	15.7	25.3%
	농축산	20.7	19.0	7.9%
	탈루 등	10.3	7.2	30.5%
	전환	(333.2)1	(확정 감축량) -23.7	_
감축수단	22	(555.2)	(추가감축잠재량) -34.1 ²	
	E신산업/CCUS	-	- 10.3	-
활용	산림흡수원	-	20.2	4 50/
	국외감축 등	-	- 38.3	4.5%
기존	국내감축		574.3	32.5%
7	합계	850.8	536.0	37.0%

국내 동향

제2차 지속가능 국가교통물류발전 수정 기본계획

친환경차 보급 및 이용 확대 + 전기, 수소차 충전인프라 확대 + 물류수단의 친환경화 등 추진

	ы		전기차		수소차				
Τ'	구분 승용(63종) 버스(61종)		버스(61종)	화물(28종)	화물(28종) 승용(1종)		화물(미보급		
구매	정부 (최대)	800만원	8,000만원	1,600만원	2,250만원	15,000만원	20,000만원		
보조금	예시*		서울시) : 800년 1울) + 3,490만			서울시) : 2,250 서울) + 3,415			
			취득세 등 최대 요금 특례할인			네 취득세 등 최다 차 연료보조금			
인센	티브	· 고속도로 통행료 및 공영주차장 주차요금 50% 할인 · 전기·수소차를 이용한 택시운송사업은 부제대상에서 제외 · 시내버스운송사업의 면허 우대(수소버스의 경우 보유대수를 1.3배로 간주) · 노외주차장 친환경차 전용 주차구역 확대(5% 이상)							

구분(누적)		2020	2022	2025	2030
저기츠저기	급속	9,805	15,000	17,000	20,000이상
전기충전기 (기)	초급속	-	300	1,000	2,500
	완속	54,383	200,000	500,000	1,000,000이상
수소충전:	소(기)	70	310	450	660

제4차 친환경자동차 기본계획(2021~2025)

- 환경친화적 자동차의 개발 및 보급 촉진을 통해 자동차산업의 지속적인 발전과 국민 생활환경의 향상 도모
- 친환경차 확산을 가속화하는 사회시스템 구축
- ▶ 전기충전기 보급 및 하이브리드 스테이션 전환계획

차종	지자체별 수소상용차 보급목표
수소버스	경기 4,000대(~'30), 전북 400대(~'30), 광주 316대('30),
T_1	충남 200대(~'30), 울산 300대(~'35), 경남 2,000대(~'40)
수소화물차	경남 5톤 수소청소차 150대(~'40), 10톤 수소화물차 2,850대(~'40)

	현재(20.12월)	22년(누적)	25년(누적)
주유소 + 전기차충전기	119	265	609
LPG충전소 + 전기차충전기	6	12	21

^{*} 구매보조금, 자부담금은 단순 예시이며, 차량 판매가격, 보조금 정책 등에 따라 변동가능

^{** &#}x27;20년 기준 급속충전 기본요금 50%, 전력량요금 30% 할인 ('20.7부터 특례할인 단계적 축소)

해외 동향

독일 (Germany)

- > 2020년 기준 누적 신차 등록대수 중 52%가 배터리전기차(BEV)이며, 그 외 플러그인하이브리드(PHEV) 차량 수요도 증가 추세
- 친환경자동차 보급 확대를 위한 제도 및 보조금 지급 정책 추진 (e.g. 혁신 프리미엄/Innovationsprämie)

	배터리전기차 혹은 연료전지차						
		차량 순 지불가격이 € 40,000 미만인 경우의 국가보조금 규모	차량 순 지불가격이 € 40,000 이상인 경우의 국가보조금 규모	최소 보유기간			
	구매 시	6,000유로	5,000유로	6개월			
71.	6~11개월	1,500유로	1,250유로	6개월			
리스 기간	12~23개월	3,000유로	2,500유로	12개월			
기인	23개월 초과	6,000유로	5,000유로	24개월			

	플러그인하이브리드 전기차						
		차량 순 지불가격이 € 40,000 미만인 경우의 국가보조금 규모	차량 순 지불가격이 € 40,000 이상인 경우의 국가보조금 규모	최소 보유기간			
	구매 시	4,500유로	3,750유로	6개월			
71.4	6~11개월	1,125유로	937.50유로	6개월			
리스 기간	12~23개월	2,250유로	1,875유로	12개월			
7112	23개월 초과	4,500유로	3,750유로	24개월			

자료: NOW-GmbH(2020b), "Elektromobilität in der Praxis: Zweiter Ergebnisbericht des Zentralen Datenmoni 자료: BAFA(2020a), "Förderung von elektrisch betriebenen Fahrzeugen," p. 3; BAFA, "Einzelantrag stellen," torings des Förderprogramms Elektromobilität vor Ort," p. 21, https://www.now-gmbh.de/wp-content/ uploads/2020/09/now elektromobilitaet-in-der-praxis-zdm.pdf(검색일: 2021, 1, 18).

https://www.bafa.de/DE/Energie/Energieeffizienz/Elektromobilitaet/Neuen_Antrag_stellen/neuen_antrag_ stellen.html(검색일: 2021, 1, 18).

해외 동향

프랑스 (France)

▶ 2008년 이후 친환경자동차 구입시 보조금 및 각종 혜택 지원 + 온실가스 배출차량 구매 시 부담금 징수→ 보너스-맬러스 시스템

(CHOI: 02)

- 전기차 및 플러그인 하이브리드 자동차 구매 시 차량 가격을 기준으로 보조금 정액 지급
- > 공해차량 폐차 및 친환경차량 전환지원금 별도 지급
- ▶ 친환경차량 판매 비중은 2018년 2% 미만 → 2020년 10% 이상으로 증가

			(단위: 유토)	
차종	차량가격 기준	보조금		
시승	시당시역 기正	2021년 6월 30일까지	2021년 7월 1일부터	
	45,000유로 미만	7,000	6,000	
전기차	45,000유로 미만(법인)	5,000	4,000	
신기사	45,000~60,000유로	3,000	2,000	
	60,000유로 이상(수소차)	3,000	2,000	
플러그인하이브리드	50,000유로 미만	2,000	1,000	

자료: 프랑스 정부, "Comment fonctionne le bonus-malus sur l'achat d'un véhicule?" https://www.economie. gouv.fr/cedef/bonus-malus-automobile#:~:text=Le%20d%C3%A9cret%20du%207%20d%C3%A9cembre, du%20m%C3%AAme%20montant%20en%202022(검색일: 2021, 1, 19).

자료: EAFO, "France," https://www.eafo.eu/countries/france/1733/vehicles-and-fleet(검색일: 2021. 1. 30) 토대로 저자 작성.

해외 동향

미국 (USA)

- ➤ 전기차 구매자에게 세액 공제(Qualified PEV tax credit) 형식으로 보조금 지급
 - → 최소 2,500달러, 최대 7,500달러까지 차량 배터리 용량 및 중량에 따라 차등 지급
- ▶ 캘리포니아, 뉴욕, 시카고 등은 주(State) 자체적인 친환경차 전환 보조금 제도 운영
 - → 전기, 수소 트럭 전환 시 추가 비용의 80% 또는 전액 지원

프로그램명	캘리포니아 HVIP	뉴욕주 NYTVIP	시카고 Drive Clean Chicago
운영기관	CARB	NYSERDA, NYSDOT, NYCDOT	Chicago DOT
재원 출처	CA Cap-and-Trade Auction revenues	CMAQ	CMAQ
총예산(2019)	4억 4,400만 달러	1,900만 달러	1,400만 달러
대상차 종	Class1-8(총중량>5,000)	Class2b-8(총중량>8,500)	Class2b-8(총중량>8,500)
보조금 규모	전기·수소트력 추가비용 100% 지급, 상한액 30만 달러	전기자동차 추가비용 80% 지급, 상한액 15만 달러	트럭과 버스 전기자동차 추가비용 80% 지급, 상한액 15만 달러
지급조건	낙후지역은 추가 지원 재생연료 사용 요구	지급 차량은 반드시 30개 대기보전 카운티 중 한 곳에서 전체 운영시간의 70% 이상 운행해야 함	지급 차량은 반드시 시카고 지역 6개 카운티에서 운영, 전기충전소와 소형차도 지원 가능

자료: Welch and Mandel(2019), Voucher Incentive Program: A tool for clean commercial vehicle deployment

시사점

주요 시사점

- 배출허용기준과 관련된 국외 정책 및 기준 수립 사례를 비교해 보면, 국내 정책의 기준도 높은 편임을 확인
- 육상화물운송에 대한 수급관리 차원의 접근 고려 필요
 - → 유럽의 유류세 환급 사례에서 지적되는 시장 왜곡문제 및 환경오염 문제 등을 감안
 - → 국내에서도 유가보조금 제도를 단계적으로 조정 및 검토할 필요가 있음
- > 국내에서는 아직 화물차의 친환경차량 전환에 대한 경제성 및 수익성 등 보급 타당성이 부족
- ▶ 노후 운행차량의 오염물질 저감을 위해 경유 화물차에 대한 배출가스 관리 강화 필요
 - → 운행차량 배출가스 관리가 오염자 부담 원칙에 입각하여 추진되도록 제도 개선 필요
 - → 화물차 통행량이 많은 지점을 중심으로 수도권에서 시행 중인 공해차량 운행제한 제도 도입 검토 필요

Ⅲ. 선행연구 고찰

선행연구를 통한 AHP 평가항목 도출

AHP 평가항목 도출

▶ 친환경차량 도입과 관련된 선행연구를 검토하여 본 연구에서 활용할 AHP 평가항목 도출

		이용자 편의성	ļ		합리적 비용		:	기술적 완성도			정부 제도	
선행연구	적재가능 용량	충전시설 접근성	운전 쾌적성	차량구매 비	유지 보수비	연료비	배출가스 저감수준	안전성	주행가능 거리	보조금	규제	인센티브
남은빈 외 (2021)	✓	✓		✓	✓	✓		✓		✓		✓
이명복 외 (2010)			✓	✓		✓		✓		✓		✓
이광주 외 (2010)		✓	✓		✓		✓		✓			✓
박상민 외 (2012)	√				✓			✓				✓
손민희 외 (2016)		✓			✓	✓		✓			✓	
한진석 외 (2019)			✓	✓				✓		✓	✓	
오수영 외 (2021)	✓		✓			✓	✓			✓		√
유한솔 외 (2021)		✓		✓		✓	✓	✓	✓	✓		
김용기 외 (2021)		✓				✓		✓	✓			√
석주헌 (2018)		✓		✓					✓		✓	

Ⅳ. 실증 분석

AHP 모형 설계

Ⅳ. 실증 분석

AHP 모형 설계

AHP 평가항목별 의미

2계층 평가항목	3계층 평가항목	의미
	적재가능 용량	차량에 적재할 수 있는 용량 및 중량이 충분하다.
이용자 편의성	충전시설 접근성	충전시설이 적재적소에 위치하여 접근성이 좋다.
	운전 쾌적성	운전 시 승차감, 온도 등이 기존 차량 대비 쾌적하다.
	차량구매비	차량을 구매하는 비용적 부담이 적다.
합리적 비용	유지보수비	차량의 수리·관리 등 유지보수하는 비용적 부담이 적다.
	연료비	기존 석유 연료에 비해 연료비 부담이 적다.
	배출가스 저감수준	차량 운행 시 배출되는 배기가스가 적다.
기술적 완성도	안전성	차량이 기술적으로 매우 안전하다.
	주행가능 거리	차량의 주행가능한 거리가 충분히 길다.
	보조금	정부에서 차량구매, 연료비 등에 보조금을 준다.
정부 제도	규제	정부에서 노후차량 폐차, 배기가스 제한 등 규제를 한다.
	인센티브	정부가 친환경차량 운행 시 통행료 면제, 면세 혜택 등 각종 인센티브를 제공한다.

Ⅳ. 실증 분석

설문조사 결과

응답자 일반현황

구분	응답자 일반현황					
직급	①임원급 (00%)	②부서장 (00%)	③차장 (00%)	④과장 (00%)	⑤대리 이하 (00%)	⑥기타 (00%)
근무연수	①30년 이상 (00%)	②20~30년 (00%)	③10~20년 (00%)	④5~10년 (00%)	⑤5년 이하 (00%)	
근무지	①사무직 (00%)	②현장직 (00%)				
연령	①60세 이상 (00%)	②50~60세 (00%)	③40~50세 (00%)	④30~40세 (00%)	⑤30세 이하 (00%)	

설문지 배부 현황 및 응답자 일관성 검정

- ▶ 총 00부 중 00부를 회수하여 설문지 회수율 00%
- ▶ 응답자별 응답 일관성 검정을 위한 일관성 검정 결과 00부를 제외한 총 00부(00%)의 응답 일관성 확인
- ▶ 응답의 일관성이 확보된 00부의 설문지를 활용하여 각 항목별 기하평균을 최종 분석 데이터로 활용
- ▶ 분석결과 도출된 가중치를 통해 도입요소들의 우선순위 도출
- ➢ 응답자들이 전기화물차/수소화물차/LNG화물차/하이브리드화물차 등 4개 대안에 대한 평가에 가중치를 곱하여 대안들의 도입 우선순위(선호도) 파악

V. 결론

결과 요약

주요 결과 요약(설문 추가 진행 중)

▶ 친환경화물차 도입을 위한 평가요소들의 종합 우선순위 도출

종합가중치			최종 가중치(w)	순위
		적재가능 용량	0.041	9
이용자 편의성		충전시설 접근성	0.061	7
		운전 쾌적성	0.022	11
		차량구매비	0.191	1
합리적 비용		유지보수비	0.189	2
		연료비	0.137	3
		배출가스 저감수준	0.024	10
기술적 완성도		안전성	0.096	4
		주행가능 거리	0.085	5
	0.154	보조금	0.077	6
정부 제도		규제	0.021	12
		인센티브	0.056	8
		가중치 합계	1.000	

친환경화물차 대안평가

대안평가	가중치x평가점수	최종순위
전기 화물차	3.595	2
수소 화물차	2.340	4
LNG 화물차	3.249	3
하이브리드 화물차	3.839	1