An example of medical treatment optimization under model uncertainty

Orlane Le Quellennec ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹ and Régis Sabbadin ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France

²John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia

³Univ Toulouse, INRAE-MIAT, Toulouse, France

June 30, 2023

A medical context

How can these issues be addressed in a simplified problem?

¹Data from IUC Oncopole, Toulouse, and CRCT, Toulouse, France

Markov Decision Process (MDP²)

- $s \in \mathcal{S}$ the state space
- $a \in \mathcal{A}$ the action space
- ${\cal P}$ the transition matrix
- ullet $c(s_t,a_t)$ the cost function

Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley-Interscience, pp. 78–9.

Orlane Le Quellennec

²ML Puterman (1994). "Finite-horizon Markov decision processes". In:

Markov Decision Process (MDP²)

- $s \in \mathcal{S}$ the state space
- $a \in \mathcal{A}$ the action space
- \mathcal{P} the transition matrix
- $c(s_t, a_t)$ the cost function

Orlane Le Ouellennec

Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley-Interscience, pp. 78-9. APS

²ML Puterman (1994), "Finite-horizon Markov decision processes". In:

Markov Decision Process (MDP²)

- $s \in \mathcal{S}$ the state space
- $a \in \mathcal{A}$ the action space
- \mathcal{P} the transition matrix
- $c(s_t, a_t)$ the cost function

Orlane Le Ouellennec

Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley-Interscience, pp. 78-9. APS

²ML Puterman (1994), "Finite-horizon Markov decision processes". In:

State transition

The transition matrix is partially known

Table: Transition matrix when patient has no treatment ($a = \emptyset$).

$s_t \setminus s_{t+1}$	(0, 0, 0)	(1, 0, 1)	(1, 0, 2)	(1, 1, 1)	(1, 1, 2)	(1, 2, 1)	(1, 2, 2)	(1, 3, 1)	(1, 3, 2)	(2, 4, 0)
(0, 0, 0)	$p_{(0,0,0)}^{\emptyset}$	$p_{(1,0,1)}^{\emptyset}$	$p_{(1,0,2)}^{\emptyset}$	0	0	0	0	0	0	0
(1, 0, 1)	0	0	0	1	0	0	0	0	0	0
(1, 0, 2)	0	0	0	0	0	0	1	0	0	0
(1, 1, 1)	0	0	0	0	0	1	0	0	0	0
(1, 1, 2)	0	0	0	0	0	0	0	0	1	0
(1, 2, 1)	0	0	0	0	0	0	0	1	0	0
(1, 2, 2)	0	0	0	0	0	0	0	0	0	1
(1, 3, 1)	0	0	0	0	0	0	0	0	0	1
(1, 3, 2)	0	0	0	0	0	0	0	0	0	1
(2,4,0)	0	0	0	0	0	0	0	0	0	1

Table: Transition matrix when patient has treatment ($a = \rho$).

$s_t \backslash s_{t+1}$	(0, 0, 0)	(1, 0, 1)	(1, 0, 2)	(1, 1, 1)	(1, 1, 2)	(1, 2, 1)	(1, 2, 2)	(1, 3, 1)	(1, 3, 2)	(2, 4, 0)
(0, 0, 0)	$p^{ ho}_{({f 0},{f 0},0)}$	$p^ ho_{(extbf{1}, extbf{0},1)}$	$p^{ ho}_{({f 1},{f 0},2)}$	0	0	0	0	0	0	0
(1, 0, 1)	1	0	0	0	0	0	0	0	0	0
(1, 0, 2)	1	0	0	0	0	0	0	0	0	0
(1, 1, 1)	1	0	0	0	0	0	0	0	0	0
(1, 1, 2)	1	0	0	0	0	0	0	0	0	0
(1, 2, 1)	0	0	0	1	0	0	0	0	0	0
(1, 2, 2)	0	0	0	0	1	0	0	0	0	0
(1, 3, 1)	0	0	0	0	0	0	0	1	0	0
(1, 3, 2)	0	0	0	0	0	0	0	0	1	0
(2, 4, 0)	0	0	0	0	0	0	0	0	0	1

Minimizing a cost

The list of costs:

• Treatment: 300

• Disease 1: 200

• Disease 2: 300

• Death: 1000

Policy π

Let $f: \mathcal{S} \to \mathcal{A}$ for all $s \in \mathcal{S}$ is a decision rule. A sequence of decision rules $\pi = (f_0, f_1, \dots, f_{H-1})$ is a policy.

Policy cost

$$J_H(\pi, s) = \mathbb{E}[\sum_{t=0}^{H-1} c(s_t, a_t) | \pi, s]$$

Minimizing a cost

The list of costs:

• Treatment: 300

• Disease 1: 200

• Disease 2: 300

• Death: 1000

Policy π

Let $f: \mathcal{S} \to \mathcal{A}$ for all $s \in \mathcal{S}$ is a decision rule. A sequence of decision rules $\pi = (f_0, f_1, \dots, f_{H-1})$ is a policy.

Policy cost

$$J_H(\pi, s) = \mathbb{E}[\sum_{t=0}^{H-1} c(s_t, a_t) | \pi, s]$$

Optimization criterion

$$V^*(s_t) = \min_{a \in \mathcal{A}} [c(s_t, a_t) + \sum_{s_{t+1} \in \mathcal{S}} \mathcal{P}(s_{t+1}|s_t, a_t)V^*(s_{t+1})]$$

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

⁴VP Vivek and Dr. Shalabh Bhatnagar (Aug. 2022). "Finite Horizon Q-learning: Stability, Convergence, Simulations and an application on Smart Grids". In: arXiv:2110.15093v3. DOI: 10.48550/arXiv.2110.15093. eprint: 2110.15093v3.

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

⁴VP Vivek and Dr. Shalabh Bhatnagar (Aug. 2022). "Finite Horizon Q-learning: Stability, Convergence, Simulations and an application on Smart Grids". In: arXiv:2110.15093v3. DOI: 10.48550/arXiv.2110.15093. eprint: 2110.15093v3.

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565, DOI: 10.1007/BF00992698.

⁴VP Vivek and Dr. Shalabh Bhatnagar (Aug. 2022). "Finite Horizon Q-learning: Stability, Convergence, Simulations and an application on Smart Grids". In: arXiv:2110.15093v3. DOI: 10.48550/arXiv.2110.15093. eprint: 2110.15093v3.

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565, DOI: 10.1007/BF00992698.

⁴VP Vivek and Dr. Shalabh Bhatnagar (Aug. 2022). "Finite Horizon Q-learning: Stability, Convergence, Simulations and an application on Smart Grids". In: arXiv:2110.15093v3. DOI: 10.48550/arXiv:2110.15093v3.

A bayesian approach

Remark:

•
$$P(.|s=(0,0,0),a=\emptyset) \sim \mathcal{M}(p_{(\mathbf{0},\mathbf{0},0)}^\emptyset,p_{(\mathbf{1},\mathbf{0},1)}^\emptyset,p_{(\mathbf{1},\mathbf{0},2)}^\emptyset)$$

• Conjugate distribution : $f(p^{\emptyset}|\Theta^{\emptyset}) \sim \mathcal{D}(\theta^{\emptyset}_{(\mathbf{0},\mathbf{0},0)},\theta^{\emptyset}_{(\mathbf{1},\mathbf{0},1)},\theta^{\emptyset}_{(\mathbf{1},\mathbf{0},2)})$

Bayes-Adaptive Markov Decision Process (BAMDP⁵)

- $s^+ \in S^+$ the hyper-state space
- \mathcal{P}^+ the transition matrix
- $\Theta_{t+1} = \Theta_t + \Delta^{a_t}_{s_{t+1}}$, with

$$\Delta_{s_{t+1}}^{a_t} = \begin{cases} 1 & \text{if } (s = (0, 0, 0), a_t, s_{t+1}), \\ 0 & \text{else.} \end{cases}$$

⁵Michael O'Gordon Duff (2002). "Optimal learning: Computational procedures for Bayes -adaptive Markov decision processes". PhD thesis. University of Massachusetts Amherst.

Bayes-Adaptive Markov Decision Process (BAMDP⁵)

- $s^+ \in S^+$ the hyper-state space
- \mathcal{P}^+ the transition matrix
- $\Theta_{t+1} = \Theta_t + \Delta^{a_t}_{s_{t+1}}$, with

$$\Delta_{s_{t+1}}^{a_t} = \begin{cases} 1 & \text{if } (s = (0, 0, 0), a_t, s_{t+1}), \\ 0 & \text{else.} \end{cases}$$

Optimization criterion

$$V^{\star}(s_t, \Theta_t) = \min_{a \in \mathcal{A}} [c(s_t, a_t) + \sum_{s_{t+1}^+ \in \mathcal{S}^+} \mathcal{P}^+(s_{t+1}^+ | s_t^+, a_t) V^{\star}(s_{t+1}, \Theta_{t+1})]$$

⁵Michael O'Gordon Duff (2002). "Optimal learning: Computational procedures for Bayes -adaptive Markov decision processes". PhD thesis. University of Massachusetts Amherst.

A model-based method

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁶)

⁶Arthur Guez, David Silver, and Peter Dayan (2012). "Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search". In: Advances in Neural Information Processing Systems, Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.

A model-based method

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁶)

⁶Arthur Guez, David Silver, and Peter Dayan (2012). "Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search". In: Advances in Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates. Inc.

A model-based method

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁶)

⁶Arthur Guez, David Silver, and Peter Dayan (2012). "Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search". In: Advances in Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.

The optimal policy exact cost: 888.89

Simulated patients	Q-learn	ing	ВАМСР		
	Cost	Time	Cost	Time	
10^{2}	1427.06 ± 1.05	0.07 sec	1302.58 ± 1.32	2.07 hours	
10^{3}	936.96 ± 0.70	2.48 min	1297.64 ± 1.32	2.22 hours	
10^{4}	936.93 ± 0.70	4.17 min	NC	4 days	
10^{6}	891.6 ± 0.68	10.21 min	NC	1.5 years	

Conclusion

- Mathemathical framework
- Model-free method
- Model-based method

- Mathemathical framework
- Model-free method
- Model-based method

Perspectives

 $\begin{array}{lll} \text{MDP model} & \to & \text{PDMP}^7 \text{ model} \\ \text{Finite state space} & \to & \text{Continuous state space} \\ \text{Markovian} & \to & \text{Semi-Markovian} \\ \text{Complete observations} & \to & \text{Hidden observations} \end{array}$

Unlike model-free methods and deep reinforcement learning, **bayesian approaches** do not require as much interaction with the environment.

⁷Mark H. A. Davis (1984). "Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models". In: Journal of the Royal Statistical Society Series B (Methodological) 46, pp. 353–376.