

Энкодинг — ==== категориальных данных

Подготовили ст.гр.5030102/10201: Дмитриев Михаил Хамидуллин Ильсаф

План выступления

01 → Введение

02 — Описание типов

03 — Код, реализация методов

04 → Заключние

01 →

Введение

Что, зачем и почему?

Энкодинг категориальных данных

– важный этап подготовки данных для задач машинного обучения, который напрямую влияет на эффективность и точность моделей.

В реальных данных часто встречаются **нечисловые**, **категориальные признаки**, такие как пол, профессия, место жительства, и т. д.

Эти данные, в отличие от числовых, не могут быть напрямую использованы многими алгоритмами машинного обучения, которые требуют числового представления для вычислений и анализа.

02 →

Методы кодирования категориальных данных

Разберем теорию с простыми примерами

01. One-Hot Encoding

(а) Описание --->

One-Hot Encoding создает новый столбец для каждого значения, где проставляется 1, если строка соответствует этому значению, и 0 в противном случае. Это наиболее распространенный метод для кодирования категориальных признаков.

(b) Пример → →

До кодирования: Цвет: Красный, Синий, Зелёный

После кодирования: Красный \rightarrow [1, 0, 0] Синий \rightarrow [0, 1, 0] Зелёный \rightarrow [0, 0, 1]

02. Label Encoding

(a) Описание —>

Label Encoding присваивает уникальное целое число каждой категории, независимо от порядка. Этот метод лучше всего подходит для данных, где категориальные признаки можно представить числовыми метками.

(b) Пример → →

До кодирования: Цвет: Красный, Синий, Зелёный

После кодирования: Красный → 0 Синий → 1 Зелёный → 2

03. Ordinal Encoding

(a) Описание →

Ordinal Encoding — присваивает каждому уникальному значению целое число в порядке их появления. Подходит для упорядоченных данных, таких как размер футболки (XS, S, M, L).

(b) Пример →

До кодирования: Размер: XS, S, M

После кодирования: XS \rightarrow 1, S \rightarrow 2, M \rightarrow 3

04. Frequency or Count Encoder

(а) Описание ---->

Frequency Encoding заменяет каждую категорию её частотой или количеством появлений в данных. Подходит для категорий с разной частотой, например, названия городов.

(b) Пример →

До кодирования: Город: Москва, Санкт-Петербург, Казань

После кодирования (частоты): Москва \rightarrow 1000; Санкт-Петербург \rightarrow 800; Казань \rightarrow 500

05. Binary Encoding

(а) Описание --->

Binary Encoding комбинирует Label Encoding и бинарное представление чисел. Этот метод полезен для категорий с большим количеством уникальных значений, таких как ID.

(b) Пример

До кодирования: Москва, Санкт-Петербург, Казань

После кодирования: Москва → 001; Санкт-Петербург → 010; Казань → 011

06. Base-N Encoder

(а) Описание --->

Base-N Encoding представляет категорию в произвольной системе счисления, например, в двоичной, троичной и т. д. Полезен для категорий с большим числом уникальных значений.

(b) Пример →

До кодирования: Категория: А, В, С

После кодирования (Base-3): A \rightarrow 001; B \rightarrow 002; C \rightarrow 010

07. Helmert Encoding

(a) Описание ——>

Helmert Encoding кодирует категорию как отклонение от среднего значения последующих категорий. Используется для анализа различных уровней категорий по сравнению с общей тенденцией.

(b) Пример → →

До кодирования: Категория: "Школьное", "Колледж", "Университет"

После кодирования: "Школьное" → [-1, -1]; "Колледж" → [1, -1]; "Университет" → [0, 2]

08. Mean Encoding или Target Encoding

(а) Описание ----

Mean Encoding заменяет категории на среднее значение целевой переменной для каждой категории. Часто используется в задачах предсказания.

(b) Пример →

До кодирования: Город: Москва, Санкт-Петербург

Средняя цена недвижимости: Москва → 15, Санкт-Петербург → 20

После кодирования: Москва → 15 Санкт-Петербург → 20

09. Weight of Evidence Encoding

(а) Описание --->

Weight of Evidence Encoding вычисляет логарифмическое отношение вероятностей каждой категории к целевому значению. Подходит для бинарных целевых переменных.

(b) Пример →

До кодирования: Клиенты: Платят, Не платят

После кодирования (WOE):

Платят \rightarrow log(P(Платят) / P(He платят)) He платят \rightarrow log(P(He платят) / P(Платят))

10. Sum Encoder (Deviation Encoding или Effect Encoding)

(а) Описание -----

Sum Encoding кодирует категории на основе отклонения от среднего значения всех категорий. Часто используется в линейных моделях.

(b) Пример → →

До кодирования: Категория: А, В, С

После кодирования: $A \rightarrow [-1, 1] B \rightarrow [1, -1] C \rightarrow [0, 0]$

11. Leave-one-out Encoder (LOO или LOOE)

(а) Описание --->

Leave-one-out Encoding аналогичен Target Encoding, но исключает текущее наблюдение при расчёте среднего. Это помогает избежать переобучения.

(b) Пример →

До кодирования: Категория: А = 70%, В = 50%, С = 40%

После кодирования: A \rightarrow 0.7, B \rightarrow 0.5, C \rightarrow 0.4

12. CatBoost Encoder

(а) Описание -----

CatBoost Encoder — это метод, встроенный в алгоритм CatBoost, оптимизированный для категориальных данных. Уменьшает вероятность переобучения.

(b) Пример →

До кодирования: Категория: A = 1, B = 0, A = 1, C = 0, B = 1

После кодирования:

Для категории "А" среднее значение целевой переменной: (1 + 1) / 2 = 0.67

Для категории "В" среднее значение: (0 + 1) / 2 = 0.50

Для категории "С" значение: 0 / 1 = 0.00

13. James-Stein Encoding

(a) Описание →

James-Stein Encoding использует комбинацию категории и среднего по всей выборке, уменьшая переобучение. Полезен для малых данных.

(b) Пример →

До кодирования: Категория: А, В, С

После кодирования: А → комбинация уникального и общего среднего

14. M-estimator Encoding

(а) Описание ---->

M-estimator Encoding — метод сглаживания, использующий параметр для учета малых категорий. Полезен для данных с редкими категориями.

(b) Пример →

До кодирования: Категория: А, В, С

После кодирования: $A \rightarrow$ (среднее по A * k + общее среднее) / (k + 1)

15. Hashing Encoding

(а) Описание ----

Hashing Encoding использует хеш-функцию для распределения категорий в фиксированное количество колонок. Экономит пространство, подходит для больших наборов данных.

(b) Пример →

До кодирования: Категория: А, В, С

После кодирования: $A \to x \ni u1$; $B \to x \ni u2$; $C \to x \ni u1$

16. Backward Difference Encoding

(а) Описание --->

Backward Difference Encoding кодирует каждую категорию, сравнивая её с последующей. Используется для анализа трендов.

(b) Пример →

До кодирования: Категория: А, В, С

После кодирования: А → сравнение с В и С В → сравнение с С

17. Polynomial Encoding

(а) Описание ---->

Polynomial Encoding расширяет Sum Encoding, добавляя полиномиальные признаки. Используется для анализа нелинейных зависимостей.

(b) Пример →

До кодирования: Категория: А, В, С

После кодирования: $A \to [1, x] B \to [1, x^2] C \to [1, x^3]$

18. MultiLabelBinarizer

(а) Описание ---->

MultiLabelBinarizer преобразует многозначные категории в бинарные столбцы. Полезен для работы с категориями с множественным выбором.

(b) Пример → →

До кодирования: ['A', 'B'], ['B'], ['A', 'C'], ['C', 'D']

После кодирования: [[1, 1, 0, 0], [0, 1, 0, 0], [1, 0, 1, 0], [0, 0, 1, 1]]

03 →

Код - реализация методов

Смотри на: https://github.com/Ilsaffff/categorial-data-encoding

04 →

Заключение

К чему мы пришли?

Источники

- https://medium.com/aiskunks/categorical-data-encoding-techniques-d6296
 697a40f
- https://github.com/alteryx/categorical_encoding
- https://github.com/scikit-learn-contrib/category encoders

Энкодинг — ==== категориальных данных

Подготовили ст.гр.5030102/10201: Дмитриев Михаил Хамидуллин Ильсаф

