Expectation-Maximization (and related learning methods)

Lecture 18 CS 689, Spring 2023

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Clustering with (hard) EM

- K-Means is the most basic example of a (basically) probabilistic unsupervised learning algorithm
 - 1. Randomly initialize cluster centroids
 - 2. Alternate until convergence:
 - ("E"): Assign each example to closest centroid
 - ("M"): Update centroids to means of these newly assigned examples

E-step: into labels

M-step: whate centrary

K-means clustering example

Slides from UMass alum Victor Lavrenko, U. Edinburgh: https://www.youtube.com/watch? v= aWzGGNrcic

Copyright © 2013 Victo

K-Means as Gaussian Mixture

- Observed data x1..xn
- Latent variables: cluster labels Z1..Zn
- Parameters: Gaussian centroids µ1..µK
- Assume Gaussian mixture model $p(x_i \mid z_i) \sim N(\mu_{z_i}, \text{ var})$

- ("E"): Assign each example to closest centroid $=> z_i := \operatorname{argmax}_k P(z_i = k \mid x, \mu_k)$
- ("M"): Update centroids to averages $=> \mu_k := \operatorname{argmax_m} P(x \mid z, \mu=m)$ $= (1/n_k) \sum_{i:zi=k} x_i$

M. Tom

Soft" EM (close variant) iteratively optimiz

* very close varian

Drenck 2: 65/... K}

Expectation-Maximization

- Observed x, latent z, parameters θ
- EM is a meta-algorithm for settings where
 MLE for **\theta** is easy, if only you knew **z**

Max
$$p(x|\theta)$$

max $p(x|\theta)$
 $p(x|\theta)$

Derivation of EM

• (new page)

Latent-variable generative models

(Sometimes) latent quantity to help explain the

- Real-valued embedding

Easy stuff

- Supervised learning: $argmax_{\theta} P(w^{train}, z^{train} | \theta)$
- Prediction (via posterior inference): $P(z \mid w^{input}, \theta)$

Unsupervised stuff with marginal inference

- Latent (unsupervised) learning: argmax_θ P(w^{train} | θ)
- Language modeling (via marginal inference): $P(w^{input} | \theta)$

EM performance

- Guaranteed to find a locally maximum likelihood solution. Guaranteed to converge.
 - But can take a while
- Dependent on initialization

Johnson 2007, "Why doesn't EM find good HMM POS-taggers?"

Figure 1: Variation in negative log likelihood with increasing iterations for 10 EM runs from different random starting points.

EM pros/cons

- Works best for a simple model with rapid E/M-step inference
- Requires probabilistic modeling assumptions
- Dependent on initialization
 - Many alternative methods (e.g. MCMC), but can similar issues with local optima
- EM originally invented for Hidden Markov Models in speech recognition
 - E-step infers structured posteriors
- General issue: Closed form M-steps only available for pretty simple models (Gaussians, count-based multinomials...)

EM versus direct gradients

- What if the M-step requires gradient ascent?
 - Running LBFGS or many iterations of GD inside the M-step can be slow

- Partial/incremental EM variants (Neal and Hinton, 1998): Why not just I gradient step? Gradient step on only a few examples?
- Or... consider the direct gradient. We can interpret it as an EM-like method itself.