An Improved Needleman-Wunsch Algorithm for Pairwise Sequence of Protein-Albumin

Lailil Muflikhah, Dian Eka R. Faculty of Computer Science, Brawijawa Universiy

Introducción

- Alineación Global
 - Needleman-Wunsch O(MN)
- Alineación Local
 - Smith-Waterman O(MN)
- Algoritmos que usan heurísticas
 - FASTA
 - BLAST (solo para alineación local)

Introducción

$$F(i,j) = max \begin{cases} F(i-1,j-1) + s(A_i, B_j, p) \\ F(i-1,j) \\ F(i,j-1) \end{cases}$$

EARDFNQYYSSIKRSGSI
.....EPKLFIQYYSSIKRTMGH

Figure 2. Global alignment

EARDFNQYYSSIKRSGSI ::::::: EPKLFIQYYSSIKRTMGH

Figure 1. Local alignment

A = GTASC-DG ::::::: B = GTASNND-

Figure 3. Sequence alignment

Algoritmo Propuesto (INWA)

Figure 4. Three main diagonal of 35x20 matrix

Algoritmo Propuesto (INWA)

D	D+1			
D-1	D	D+1		
	D-1	D	D+1	
		D-1	D	D+1
			D-1	D

Figure 5. Marked area for the same length of input sequences

D1	х	Х	х	D2	D2+1		
D1-1	D1	х	х	х	D2	D2+1	
	D1-1	D1	х	х	х	D2	D2+1
		D1-1	D1	х	х	х	D2

Figure 6. Marked area for the different length of input sequences

Algoritmo Propuesto

A.1. Marking area to fill in the matrix

	1	2	3	4	5	6	7
1		J	G	Т	Α	S	С
2	J						
3	G						
4	E						
5	S						
6	K						
7	C						

Figure 7. Marked area from case study 1

	1	2	3	4	5	6	7
1			G	T	Α	S	С
2	_	0	-2←				
3	G	-2↑					
4	E						
5	S						
6	K						
7	C						

Figure 8. Initialization from case study 1

	1	2	3	4	5	6	7
1			G	Т	Α	S	С
2	_	0	-2←				
3	G	-2↑	25	0←			
4	E		0↑	15	(-1(-)		
5	S			-1↑	70	15	
6	K				-2↑	(-1↑)	70
7	С					(3↑)	15

Figure 9. All marked area has been filled from case study 1

B.1. Marking area to fill in the matrix
The marked area in this case can be seen at Figure 11.

	1	2	3	4	5	6	7
1			G	Т	Α	S	С
2	_					,	
3	G					5	
4	P						
5	T						
6	G						
7	T						
8	G						
9	E						
10	S						
11	K		1				
12	С						

Figure 11. Marked area from case study 2

	1	2	3	4	5	6	7
1			G	Т	Α	S	С
2	J	0	-2←				
3	G	-2↑					
4	Р	-4↑					
5	Т	-6↑					
6	G	-8↑					
7	T	-10↑					
8	G	-12↑					
9	E						
10	S						
11	K						
12	С						

Figure 12. Initialization from case study 2

B.3. Filling the marked area in matrix

All marked cells of matrix are filled as in Figure 13.

	1	2	3	4	5	6	7
1			G	Т	Α	S	С
2	_	0	-2←	o.			
3	G	-2↑	21	0←			
4	P	-4↑	0个	15	-1←		
5	Т	-6↑	-2↑	2 17	0←	-2←	
6	G	-8↑	-4↑	0个	15	-1←	-3←
7	T	-10↑	-6↑	-2↑	-1↑	70	-2←
8	G	-12↑	-8↑	-4↑	-3↑	-2↑	-15
9	E		-10↑	-6↑	-5↑	-4↑	-3↑
10	S			-8↑	-7↑	-315	-5↑
11	K				-9↑	-5↑	-4K
12	C					-7↑	-31

Figure 13. All marked area has been filled from case study 2

	1	2	3	4	5	6	7
1			G	Т	Α	S	С
2	_	0	-2				
3	G	-2	2 1	0			
4	Р	-4	0个	1	-1		
5	T	-6	-2	25	0	-2	
6	G	-8	-4	0	15	-1	-3
7	Т	-10	-6	-2	-1↑	0	-2
8	G	-12	-8	-4	-3↑	-2	-1
9	Е		-10	-6	-5↑	-4	-3
10	S			-8	-7	-317	-5
11	K				-9	-5↑	-4
12	С					-7	-31

Figure 14. Backtracking path from case study 2

isoform CRA_q:

MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEE NFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADES AENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERN ECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLY EIARRHPYFYAPELLFFAACCQSSMNFGMKGRLRLPNRDSS VPVSKNLEKELSKHGQ

isoform CRA_p:

MSQLKICELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEV SRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKT PVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFT FHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMD DFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL

The both sequences are aligned globally using the proposed method with default parameter value (match=1; mismatch=-1; gap=-1) and the result is as below:

. Alignment score :-9
Length of sequence 1:221
Length of sequence 2:200

Sequence identity :29/274 (0.11%)
Positives :49/274 (0.18%)
Gaps :127/274 (0.46%)

HSSP :-9.74 (not similar)

Filled Matrix :4822 Execution Time : 49 ms

Table 1 The number of filled matrix areas

Pair sequence no.	Original NW	Proposed method (INWA)	The score of result
1	99645	52339	Same
2	89790	42484	Same
3	118479	71173	Same
4	94827	47521	Same
5	271998	224692	Same
6	114756	67450	Same
7	131400	84094	Sane
8	36792	9070	Same
9	76212	28906	Same
10	139941	92635	Same
***	•••	•••	•••
•••	• • •	•••	•••
1250	41925	37893	same

Resultados

- La evaluación se implementa mediante diez ensayos contra 1250 alineaciones secuenciales por pares de proteína humana-albúmina.
- Además, el tiempo computacional utilizando Needleman-Wunsch original es de 5.382 segundos y el otro con INWA de 3.988 segundos.
- Significa que hay una reducción de tiempo del 25.9% del método original.
- Los resultados de alineación por INWA son los mismos que Needleman-Wunsch.
- Esto significa que el tiempo computacional del método propuesto se reduce pero realiza el resultado de alineación óptimo.
- Además, la complejidad de tiempo y espacio del método propuesto (INWA) es 0 (N). Son menos que el método original NW de 0 (MN).

Conclusiones

- Se ha aplicado una mejora del algoritmo de Needleman-Wunsch (INWA) para alinear la secuencia de pares para la proteína-albúmina humana.
- La idea principal del método propuesto es omitir los datos no utilizados por el área restante en blanco a fin de obtener el menor tiempo de cálculo y reducir la complejidad del espacio.
- INWA solo llena parcialmente la celda de la matriz.
- Este algoritmo se puede aplicar a ambos tipos de alineación de secuencia, ya sea que las secuencias de entrada tengan la misma longitud o no.
- Además, la complejidad de espacio y tiempo de INWA es 0 (N).
- Es mejor que el algoritmo original de Needleman-Wunch que es 0 (MN).
- Además, el tiempo de ejecución de INWA es un 25.9% más rápido que el algoritmo original de Needleman-Wunsch.