Base de Datos (75.15 / 75.28 / 95.05)

Evaluación Parcial - Segundo Recuperatorio

	SQL		Fecha: 28 de junio de 2017
TEMA 2017131	AR		Padrón:
	MOD		Apellido:
	DR		Nombre:
Corrigió:			Cantidad de hojas:
Nota:			\square Aprobado \square Insuficiente

Criterio de aprobación: El examen está compuesto por 6 ítems, cada uno de los cuales se corrige como B/B-/Reg/Reg-/M. El examen se aprueba con nota mayor o igual a 4(cuatro) y la condición de aprobación es desarrollar al menos un ítem bien (B/B-) de entre los dos de SQL, un ítem bien de entre los dos de diseño relacional, y un ítem bien entre el de álgebra relacional y el de modelado. Adicionalmente, no deberá haber más de dos ítems mal o no desarrollados.

- 1. (SQL) Dados los siguientes esquemas sobre el envío de productos a clientes:
 - clientes (cod_cliente, nombre, tipo_cliente)
 - productos (nro_prod, descripción, unidad_medida, precio)
 - envíos (cod_envio, cod_cliente, dirección, ciudad, provincia)
 - detalles_envios (cod_envio, nro_prod, cantidad_enviada)

Resuelva cada una de las siguientes consultas con una única sentencia SQL:

- a) Para aquellos productos que hayan sido enviados al menos una vez a todos los clientes, devuelva su número de producto (columna nro_prod) y descripción.
- b) Para cada envío hecho al cliente de código 1000 (columna cod_cliente), indique el código de envío, la dirección a la que debe ser enviado, cuántos distintos productos se enviaron en el envío y la cantidad total enviada de todos los productos que conforman el envío.
- 2. (Álgebra relacional) Dados los mismos esquemas del ejercicio 1 y utilizando la siguiente notación para representar las operaciones del álgebra relacional: $\pi, \sigma, \times, \cup, -, \cap, \bowtie, \div$, resuelva la siguiente consulta:
 - Obtener los clientes (columnas cod_cliente, nombre y tipo_cliente) que hayan recibido productos cuya unidad de medida sea la tonelada (columna unidad_medida) tanto en la provincia de Santa Fé como en la del Neuquén (en ambas provincias, aunque no necesariamente el mismo producto en las dos).

Nota: En Cálculo Relacional de Tuplas esta consulta podría expresarse de la siguiente forma:

```
 \{ c \mid clientes(c) \land \\ ((\exists e_1)(\exists d_1)(\exists p_1)(envios(e_1) \land detalles\_envios(d_1) \land productos(p_1) \land \\ e_1.provincia = `Santa Fé' \land e_1.cod\_envio = d_1.cod\_envio \land \\ d_1.nro\_prod = p_1.nro\_prod \land p_1.unidad\_medida = `tonelada' \land \\ c.cod\_cliente = e_1.cod\_cliente)) \land \\ ((\exists e_2)(\exists d_2)(\exists p_2)(envios(e_2) \land detalles\_envios(d_2) \land productos(p_2) \land \\ e_2.provincia = `Neuquén' \land e_2.cod\_envio = d_2.cod\_envio \land \\ d_2.nro\_prod = p_2.nro\_prod \land p_2.unidad\_medida = `tonelada' \land \\ c.cod\_cliente = e_2.cod\_cliente)) \\ \}
```

3. (Modelado) Para el siguiente diagrama Entidad-Interrelación, realice el pasaje al modelo relacional indicando para cada relación cuáles son las claves primarias, claves candidatas, claves foráneas y atributos descriptivos.

- 4. (Diseño relacional)
 - a) Halle todas las claves candidatas para el siguiente esquema relacional R con el conjunto de dependencias funcionales F:
 - $\blacksquare R(A, B, C, D, E)$
 - $F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow AD\}$
 - b) Para el siguiente esquema relacional R con el conjunto de dependencias funcionales F, provea una descomposición en 3FN sin pérdida de información y que preserve todas las dependencias funcionales. Indique si la descomposición que encontró se encuentra en FNBC, y justifique su respuesta.
 - \blacksquare R(A, B, C, D, E, I)
 - $F = \{C \to E, D \to BI, EI \to A\}$