بسم الله الرحمن الرحيم

تصميم الدوائر الرقية الجبر البولي الجبر البولي LOC (5)

جدول الصواب (Truth Table)

عبارة عن جدول يوضح جميع احتمالات الدخل للدائرة المنطقية و قيم الخرج المقابل لكل منها. مثلاً، لإنشاء جدول صواب للتعبير المنطقي

$$x = A + \overline{B} \cdot \overline{C}$$

A	В	С	\overline{B}	\overline{C}	$\overline{B} \cdot \overline{C}$	$x = A + \overline{B} \cdot \overline{C}$
0	0	0	1	1	1	1
0	0	1	1	0	0	0
0	1	0	0	1	0	0
0	1	1	0	0	0	0
1	0	0	1	1	1	1
1	0	1	1	0	0	1
1	1	0	0	1	0	1
1	1	1	0	0	0	1

و بالمثل حدول الصواب للتعبير المنطقي

$$x = (A + \overline{B}) \cdot \overline{C}$$

هو

A	В	С	\overline{B}	\bar{C}	$A + \overline{B}$	$x = (A + \overline{B}) \cdot \overline{C}$
0	0	0	1	1	1	1
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	1	0	0	0	0
1	0	0	1	1	1	1
1	0	1	1	0	1	0
1	1	0	0	1	1	1
1	1	1	0	0	1	0

ارسم المخطط المنطقي، و أكمل جدول الصواب، ثم ارسم الدائرة المنطقية للتعبير المنطقي $y = \overline{\overline{ABC} + \overline{AB}}$

المخطط المنطقى

جدول الصواب

A	В	С	\overline{A}	\overline{B}	AB C	– AB	$\overline{ABC} + \overline{AB}$	$x = \overline{\overline{ABC} + \overline{AB}}$
0	0	0	1	1	0	0	0	1
0	0	1	1	1	1	0	1	0
0	1	0	1	0	0	1	1	0
0	1	1	1	0	0	1	1	0
1	0	0	0	1	0	0	0	1
1	0	1	0	1	0	0	0	1
1	1	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	1

الدائرة المنطقية

النظرية المقابلة	النظرية	اسم النظرية	
= $A = A$	= $A = A$	عكس العكس	
$A \cdot 0 = 0$	A + 1 = 1	العمليات مع 1 و 0	
$A \cdot 1 = A$	A + 0 = A		
$A \cdot A = A$	A + A = A	المتغير مع نفسه	
$A \cdot \overline{A} = 0$	$A + \overline{A} = 1$	المتغير مع عكسه	
$A \cdot B = B \cdot A$	A + B = B + A	النظرية الإبدالية	
$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	(A+B)+C=A+(B+C)	النظرية التجميعية	
$A + B \cdot C = (A + B) \cdot (A + C)$	$A \cdot (B+C) = A \cdot B + A \cdot C$	النظرية التوزيعية	
$A \cdot (A+B) = A$	$A + A \cdot B = A$	الاستاد أ السادة	
$A \cdot (\overline{A} + B) = A \cdot B$	$A + \overline{A} \cdot B = A + B$	الامتصاص أو الابتلاع	
$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \cdot \overline{B}$	دي مورغان (De Morgan)	

استخدام نظريات الجبر البولياني في تبسيط التعبيرات المنطقية

الهدف من تبسيط التعبير المنطقي هو تبسيط الدائرة المنطقية، أي تقليل عدد البوابات المنطقية الداخلة في بنائها، و ذلك لتقليل تكلفتها. كما يعتبر تقليل تفرع الدخل للبوابات المنطقية المستخدمة في بناء الدائرة نوعاً من التبسيط أيضاً.

استخدم نظريات الجبر البولياني في تبسيط التعبير المنطقي

$$y = \overline{\overline{ABC} + \overline{AB}}$$

ثم ارسم الدائرة المنطقية قبل التبسيط و بعده.

الحل:

$$y=\overline{ABC}+\overline{AB}$$
 $y=(\overline{\overline{A}}+\overline{\overline{B}}+\overline{C})\cdot(\overline{\overline{A}}+\overline{B})$ $y=(\overline{A}+\overline{B}+\overline{C})\cdot(\overline{A}+\overline{B})$ $y=(A+B+\overline{C})\cdot(A+\overline{B})$ $y=A+(B+\overline{C})\cdot\overline{B}$ $y=A+\overline{CB}$ $y=A+\overline{CB}$

حل آخر:

$$y = \overline{ABC} + \overline{AB}$$

$$y = \overline{\overline{A} \cdot (\overline{B}C + B)}$$

$$y = \overline{\overline{A} \cdot (C + B)}$$

$$y = \overline{\overline{A}} + \overline{C}\overline{B}$$

$$y = A + \overline{C}\overline{B}$$

التوزيعية

الابتلاع

دي مورغان

عكس العكس

الدائرة قبل التبسيط:

الدائرة بعد التبسيط:

لاحظ أن الدائرة قبل التبسيط مكونة من 6 بوابات، و بعد التبسيط أصبحت مكونة من 4 بوابات فقط.

استحدم نظريات الجبر البولياني في تبسيط التعبير المنطقي

$$y = \overline{A}(A+B) + \overline{C} + CB$$

ثم ارسم الدائرة المنطقية قبل التبسيط و بعده.

الحل:

$$y = \overline{A}(A+B) + \overline{C} + CB$$

$$y = \overline{AB} + \overline{C} + CB$$
 الابتلاع

$$y = \overline{A}B + \overline{C} + B$$
 الابتلاع

$$y = \overline{A}B + B + \overline{C}$$
 الإبدالية

$$y = B + \overline{C}$$
 الابتلاع

الدائرة قبل التبسيط

الدائرة بعد التبسيط

استخدم نظريات الجبر البولياني في تبسيط التعبير المنطقي

$$y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

الحل:

لهذا المثال أهمية خاصة، و ذلك نظراً إلى أن التعبير المنطقي يظهر في صورة مميزة تسمى **صورة مجموع الحدود الصغرى**

$$y = \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

بعد إيجاد التشابحات ما بين الحدود نقوم بجمع كل حدين متشابحين في حد واحد هو عبارة عن العامل المشترك ما بين الحدين، أما المتغير المختلف فيتم اختصاره.

$$y=\overline{ABC}+\overline{ABC}+\overline{ABC}+ABC$$
 $y=\overline{AB}(\overline{C}+C)+BC(\overline{A}+A)$ $y=\overline{AB}(1)+BC(1)$ $y=\overline{AB}+BC$ $y=\overline{AB}+BC$ $y=\overline{AB}+BC$

 \overline{ABC} لاحظ في المثال السابق وجود تشابه إضافي بين الحدود، حيث أن الحد الثاني \overline{ABC} يشبه الحد الثالث \overline{ABC} ، و لكن لم نكن في حاجة لاستخدام هذا التشابه في عملية التبسيط.

استحدم نظريات الجبر البولياني في تبسيط التعبير المنطقي

$$y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

الحل:

التعبير هنا في صورة مجموع الحدود الصغرى، لذلك نبحث عن التشابهات ما بين الحدود. الحد الأول يشبه الحد الثاني، و الحد الرابع يشبه الحد الخامس، و الحد الثالث يشبه الحد الأول.

$$y = \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{ABC} + A\overline{\overline{BC}} + A\overline{\overline{BC}}$$

نلاحظ هنا وجود مشكلة تتمثل في أن الحد الأول يتشابه في نفس الوقت مع كل من الحدين الثاني و الثالث. في مثل هذه الحالات نقوم بتكرار الحد الأول (مستخدمين نظرية المتغير مع نفسه) بحيث يتم جمعه مع كلا الحدين الثاني و الثالث.

$$y=\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}$$
 $y=\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}+\overline{ABC}$ $y=\overline{AB}+\overline{AC}+\overline{AB}$ $y=\overline{AB}+\overline{AC}+\overline{AB}$ $y=\overline{AB}+\overline{AC}+\overline{AB}+\overline{AC}$ $y=\overline{B}+\overline{AC}$ $y=\overline{B}+\overline{AC}$ $y=\overline{B}+\overline{AC}$

استحدم نظريات الجبر البولياني في تبسيط التعبير المنطقي

$$y = \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + AB\overline{C}$$

الحل:

نلاحظ أن ما أسفل خط العكس المنطقي الخارجي هو عبارة عن تعبير في صورة مجموع الحدود الصغرى، لذلك نبحث عن التشابحات ما بين الحدود.

$$y = \overline{\overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C}}$$

$$y = \overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C}$$

$$y = \overline{BC} + A\overline{B}$$

$$y = \overline{(BC)} \cdot \overline{(AB)}$$

$$y = (\overline{B} + C) \cdot \overline{(A+B)}$$

بجمع كل حدين متشاهين بنظرية دي مورغان بنظرية دي مورغان

استحدم نظريات الجبر البولياني في تبسيط التعبير المنطقي

$$y = \overline{ABC + AB\overline{C} + ABC}$$

الحل:

نلاحظ أن ما أسفل خط العكس المنطقي الخارجي هو عبارة عن تعبير في صورة مجموع الحدود الصغرى، لذلك نبحث

عن التشابهات ما بين الحدود.

$$y = \overline{\overrightarrow{ABC} + AB\overline{C} + ABC}$$

$$y = \overline{ABC} + AB\overline{C} + ABC$$

$$y = \overline{ABC} + ABC + AB\overline{C} + ABC$$

$$y = \overline{BC + AB}$$

$$y = \overline{B(C+A)}$$

$$y = \overline{B} + \overline{(C+A)}$$

$$y = \overline{B} + \overline{CA}$$

بتكرار الحد الثالث

بجمع كل حدين متشابمين

بأخذ العامل المشترك

بنظرية دي مورغان

بنظرية دي مورغان

استخدم نظريات الجبر البولياني في تبسيط كل من التعبيرات المنطقية التالية

$$A = x + xyz + xyz + xw + xw + xy -1$$

$$B = (x + \overline{y} + xy)(x + \overline{y})\overline{x}y$$
 -2

$$C = (x + \overline{y} + x\overline{y})(xy + x\overline{z} + y\overline{z})$$
 -3