Essentials of the probability part of MASD

Torben Krüger

This is a summary of some important facts from the probability part of MASD. These essentials are not exhaustive and reading them is not a substitution for reading the lecture notes or exercise solutions.

1 Axioms of Probability Theory

DEFINITION 1.1 (Probability space). A probability space is a pair (Ω, \mathbb{P}) , where Ω is the sample space (set of all outcomes) and the probability distribution \mathbb{P} assigns the probability $\mathbb{P}(A) \in [0,1]$ to any event $A \subset \Omega$ and satisfies

- 1. $\mathbb{P}(\Omega) = 1$
- 2. For mutually exclusive events $A_1, A_2, \dots \subset \Omega$, additivity holds, i.e. $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

Theorem 1.2 (Properties of probability). Probability distributions satisfy the following properties:

- 1. Complement probability: $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ for any event A.
- 2. Inclusion-exclusion principle: For any events A_1, \ldots, A_n we have

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{\emptyset \neq I \subset \{1, \dots, n\}} (-1)^{1+\#I} \, \mathbb{P}(\cap_{i \in I} A_i) \,.$$

DEFINITION 1.3 (Binomial coefficient and Factorial). The binomial coefficient 'n choose k' is defined as

$$\binom{n}{k} := \frac{n!}{k!(n-k)!},$$

with the factorial 0! = 1! = 1, 2! = 2, 3! = 6 and $n! = n(n-1)(n-2) \dots 1$.

EXAMPLE 1.4 (Combinatorics). The number of k-tuples $(x_1, \ldots, x_k) \in \{1, \ldots, n\}^k$ is n^k . These model sampling k times out of n choices with replacement

The set of permutations (one-to-one maps) of $\{1, \ldots, n\}$ is denoted S_n and has n! elements. These model sampling n times out of n choices without replacement.

The number of subsets of $\{1, \ldots, n\}$ with k elements is $\binom{n}{k}$.

THEOREM 1.5 (Binomial theorem). For $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

2 Random variables and their distributions

DEFINITION 2.1 (Random variables). These are basic definitions concerning random variables.

• Random variables are functions $X: \Omega \to \Sigma$ on a probability space Ω .

- The probability distribution \mathbb{P}_X on Σ defined by $\mathbb{P}_X(A) := \mathbb{P}(X \in A)$ is called the distribution of X. We write $X \sim \mathbb{P}_X$ for "X has distribution \mathbb{P}_X ".
- If Σ is countable, then X (and also its distribution \mathbb{P}_X) is called discrete and

$$p_X: \Sigma \to [0,1], \ x \mapsto \mathbb{P}(X=x)$$

is called its probability mass function (pmf). This function determines the distribution of X via

$$\mathbb{P}(X \in A) = \sum_{x \in A} p_X(x) .$$

• If $\Sigma = \mathbb{R}^n$, then X (and also its distribution \mathbb{P}_X) is called continuous whenever there exists a probability density function (pdf) $\rho_X : \mathbb{R}^n \to \mathbb{R}$ such that

$$\mathbb{P}(X \in A) = \int_{A} \rho_X(x) dx = \int_{\mathbb{R}^n} \rho_X(x) \mathbb{1}_A(x) dx,$$

for all *n*-dimensional rectangles $A = A_1 \times \cdots \times A_n \subset \mathbb{R}^n$. In particular, for real continuous random variables X we have

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} \rho_X(x) dx.$$

For a continuous random 2-dimensional vector $X = (X_1, X_2)$ we have

$$\mathbb{P}(X \in [a, b] \times [c, d]) = \mathbb{P}(X_1 \in [a, b], X_2 \in [c, d]) = \int_a^b \int_c^d \rho_X(x, y) \, dy \, dx.$$

DEFINITION 2.2 (Joint and Marginal Distributions). For random variables X_1, \ldots, X_n we call the distribution \mathbb{P}_X of the tuple $X = (X_1, \ldots, X_n)$ the joint distribution of X_1, \ldots, X_n . Given the joint distribution, the (marginal) distribution of X_1 is computed by integrating out or summing over the other variables. If X is discrete this means that the pmf of X_1 is

$$p_{X_1}(x_1) = \sum_{x_2,\dots,x_n} p_X(x_1,\dots,x_n),$$

where the sum is over all values x_i that X_i takes with positive probability. If X is continuous, then the pdf of X_1 is

$$\rho_{X_1}(x_1) = \int \rho_X(x_1, \dots, x_n) dx_2 \dots dx_n.$$

For the marginal distribution of any other X_i the formulas are analogously obtained by integrating out or summing over all variables corresponding to X_j with $j \neq i$. In particular, if X, Y are real continuous random variables whose joint distribution has pdf $\rho_{(X,Y)} : \mathbb{R}^2 \to \mathbb{R}$, then

$$\rho_X(x) = \int_{-\infty}^{\infty} \rho_{(X,Y)}(x,y) dy, \qquad \rho_Y(y) = \int_{-\infty}^{\infty} \rho_{(X,Y)}(x,y) dx.$$

THEOREM 2.3 (Properties of cdf). The cumulative distribution function (cdf) of a real random variable X is $F_X : \mathbb{R} \to [0,1], x \mapsto F_X(x) = \mathbb{P}(X \leq x)$. The function $F = F_X$ satisfies

- 1. Monotonicity: $F(x) \leq F(y)$ for $x \leq y$
- 2. Right continuity: $F(x) = \lim_{u \downarrow x} F(y)$
- 3. Limits at infinity: $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$

Every function $F: \mathbb{R} \to [0,1]$ with these properties is the cdf of some random variable. Furthermore, if X is continuous with pdf ρ_X , then $F'_X(x) = \rho_X(x)$. If X is discrete with values in $\Sigma \subset \mathbb{R}$ and pmf ρ_X , then for every $x \in \Sigma$ we have

$$p_X(x) = \mathbb{P}(X = x) = F_X(x) - \lim_{\varepsilon \downarrow 0} F_X(x - \varepsilon).$$

3 Expectation and variance

DEFINITION 3.1 (Expectation). For a discrete real random variable X with pmf $p_X : \Sigma \to [0,1]$ we define its expectation through

$$\mathbb{E}X = \sum_{x \in \Sigma} x \, p_X(x) \, .$$

For a continuous real random variable X with pdf ρ_X we define its expectation through

$$\mathbb{E}X = \int_{\mathbb{R}} x \, \rho_X(x) \mathrm{d}x.$$

PROPOSITION 3.2 (Rules for computing expectations). We summarise a few rules for computing expectations.

• For a discrete random variable $X:\Omega\to\Sigma$ and a real valued function $f:\Sigma\to\mathbb{R}$ we have

$$\mathbb{E}f(X) = \sum_{x \in \Sigma} f(x) \mathbb{P}(X = x) = \sum_{x \in \Sigma} f(x) p_X(x).$$

• For a continuous random vector $X:\Omega\to\mathbb{R}^n$ with pdf ρ_X and $f:\mathbb{R}^n\to\mathbb{R}$ we have

$$\mathbb{E}f(X) = \int_{\mathbb{R}^n} f(x) \rho_X(x) dx.$$

In particular, for a real continuous random variable X with pdf ρ_X and $f: \mathbb{R} \to \mathbb{R}$ we have

$$\mathbb{E}f(X) = \int_{-\infty}^{\infty} f(x)\rho_X(x) dx.$$

• Linearity of expectation:

$$\mathbb{E}(\alpha X + Y) = \alpha \mathbb{E}X + \mathbb{E}Y.$$

• Relationship between probability and expectation of indicator function:

$$\mathbb{E}1(X \in A) = \mathbb{E}1_A(X) = \mathbb{P}(X \in A)$$

DEFINITION 3.3 (Variance and Covariance). For real random variables X, Y we define covariance and variance through

$$Cov(X,Y) := \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \mathbb{E}(XY) - (\mathbb{E}X)(\mathbb{E}Y),$$
$$Var X := \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}(X^2) - (\mathbb{E}X)^2.$$

PROPOSITION 3.4 (Properties of covariance and variance). Covariance and variance obey the following computational rules (Here X, Y, Z are random variables and $\alpha, \mu \in \mathbb{R}$).

1. Symmetry: Cov(X, Y) = Cov(Y, X)

2. Shift invariance: $Cov(X + \mu, Y) = Cov(X, Y)$

3. Bilinearity:

$$Cov(\alpha X + Z, Y) = \alpha Cov(X, Y) + Cov(Z, Y)$$
$$Cov(Y, \alpha X + Z) = \alpha Cov(Y, X) + Cov(Y, Z)$$

4. Relation between variance and covariance:

$$Cov(X, X) = Var X$$
.

5. Affine transformation:

$$Var(\alpha X + \mu) = \alpha^2 Var X$$
.

4 Conditional probability and independence

DEFINITION 4.1 (Conditional probability). The conditional probability of A, given B with $\mathbb{P}(B) > 0$ is

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

The assignment $A \mapsto \mathbb{P}(A|B)$ is a probability distribution.

THEOREM 4.2 (Law of total probability). Let B_1, \ldots, B_n be a partition of the sample space with $\mathbb{P}(B_i) > 0$. Then

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i), \quad \text{for any event } A.$$

THEOREM 4.3 (Bayes' rule). Let B_1, \ldots, B_n be a partition of the sample space with $\mathbb{P}(B_i) > 0$. Then

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum_{i=1}^n \mathbb{P}(A|B_i)\mathbb{P}(B_i)}, \quad \text{for any event } A \text{ with } \mathbb{P}(A>0).$$

DEFINITION 4.4 (Independence of two events). Two events A, B are called independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) .$$

DEFINITION 4.5 (Independence many random variables). Random variables X_1, \ldots, X_n are called independent if

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i)$$
(4.1)

holds for all possible choices of A_1, \ldots, A_n .

THEOREM 4.6 (Product rule). The random variables X_1, \ldots, X_n are independent if and only if

$$\mathbb{E}\prod_{i=1}^{n} f_i(X_i) = \prod_{i=1}^{n} \mathbb{E}f_i(X_i), \qquad (4.2)$$

holds for all possible choices of real valued functions f_i . In particular, for discrete random variables X_1, \ldots, X_n , independence is equivalent to factorisation of the joint pmf

$$p_X(x_1,\ldots,x_n)=p_{X_1}(x_1)\ldots p_{X_n}(x_n)$$

and for continuous random variables X_1, \ldots, X_n , independence is equivalent to factorisation of the joint pdf

$$\rho_X(x_1,\ldots,x_n)=\rho_{X_1}(x_1)\ldots\rho_{X_n}(x_n)\,,$$

where $X = (X_1, ..., X_n)$.

DEFINITION 4.7 (i.i.d.). We use the abbreviation i.i.d. for independent and identically distributed random variables, i.e. we say that X_1, \ldots, X_n are i.i.d. if they are independent and have all the same distribution $X_i \sim \mathbb{P}_{X_1}$ for all i.

LEMMA 4.8 (Convolution rule). Let X and Y be independent continuous random variables with pdf ρ_X and ρ_Y , respectively. Then X + Y has pdf

$$\rho_{X+Y}(z) = \int \rho_X(x)\rho_Y(z-x)dx.$$

LEMMA 4.9 (Bienaymé formula). Let X_1, \ldots, X_n be pairwise uncorrelated. Then

$$\operatorname{Var} \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} \operatorname{Var} X_i.$$

THEOREM 4.10 (Weak law of large numbers). Let X_1, \ldots, X_n be i.i.d. random variables and $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$\mathbb{P}(|\overline{X}_n - \mathbb{E}X_1| \ge \varepsilon) \le \frac{\operatorname{Var} X_1}{\varepsilon^2 n} \to 0, \qquad n \to \infty.$$

Examples of Distributions

- Discrete uniform distribution: $\mathbb{P}(A) = \frac{\#A}{\#\Omega}$ on finite sample space Ω with pmf $\mathbb{P}(\{\omega\}) = \frac{1}{\#\Omega}$.
- Bernoulli distribution: $\mathbb{P} = \text{Bern}(p)$ on $\{0,1\}$ with $\mathbb{P}(\{0\}) = 1 p$ and $\mathbb{P}(\{1\}) = p$ for $p \in (0,1)$.
- Binomial distribution: $\mathbb{P} = \text{Bin}(n, p)$ for $p \in (0, 1)$ on $\{0, \dots, n\}$ with pmf

$$\mathbb{P}(\{k\}) = \binom{n}{k} p^k (1-p)^{n-k}.$$

• Poisson distribution: $\mathbb{P} = \text{Poi}(\lambda)$ for $\lambda > 0$ on non-negative integers $\{0, 1, 2, 3, \dots\}$ with pmf

$$\mathbb{P}(\{k\}) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

• Continuous uniform distribution on $\Omega \subset \mathbb{R}^n$: $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$ with pdf $\rho(x) = \frac{1}{|\Omega|} \mathbb{1}_{\Omega}(x)$. In particular, we have the uniform distribution on the interval $[a, b] \subset \mathbb{R}$ with pdf

$$\rho(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x).$$

• Exponential distribution: $\mathbb{P} = \operatorname{Exp}(\alpha)$ for $\alpha > 0$ on \mathbb{R} (or more precisely on $(0, \infty)$) and pdf

$$\rho(x) = \alpha e^{-\alpha x} \mathbb{1}_{(0,\infty)}(x).$$

• Gaussian distribution: $\mathbb{P} = N(a, v)$ for $a \in \mathbb{R}$ and v > 0 on \mathbb{R} with pdf

$$\rho(x) = \frac{1}{\sqrt{2\pi v}} e^{-\frac{(x-a)^2}{2v}}.$$

Here, a is the expectation and v the variance of a N(a, v)-distributed random variable. The distribution N(0, 1) is called standard normal distribution.

• 2-dimensional Gaussian distribution: $\mathbb{P} = N(m, A)$ for $m \in \mathbb{R}^2$ and $A \in \mathbb{R}^{2 \times 2}$ positive definite on \mathbb{R}^2 with pdf

$$\rho_X(x) = \frac{e^{-\frac{1}{2}(x-m)^T A^{-1}(x-m)}}{2\pi\sqrt{\det A}}.$$

2-dimensional Gaussian random variables satisfy the following computational rules

PROPOSITION 4.11 (2-dimensional Gaussian). Let X be a 2-dimensional Gaussian vector with mean $m \in \mathbb{R}^2$ and covariance matrix $A = (a_{ij})_{i,j=1}^2$, i.e. $X = (X_1, X_2) \sim N(m, A)$. Then

- 1. The expectation of X_i is $\mathbb{E}X_i = m_i$ for i = 1, 2.
- 2. The covariances of the entries of X are $Cov(X_i, X_j) = a_{ij}$ for all i, j = 1, 2.
- 3. The marginals X_1 and X_2 are also Gaussian with $X_1 \sim N(m_1, a_{11})$ and $X_2 \sim N(m_2, a_{22})$.
- 4. X_1, X_2 are independent if and only if $Cov(X_1, X_2) = 0$
- 5. For any $T \in \mathbb{R}^{2 \times 2}$ and $b \in \mathbb{R}^2$ the affine transformation TX + b is a Gaussian vector.

Tools from Calculus

For the probability part we introduced the following additional tools from calculus.

• Gaussian integral formula for $\alpha > 0$ and $\beta \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} e^{-\frac{\alpha}{2}x^2 + \beta} dx = \sqrt{\frac{2\pi}{\alpha}} e^{\frac{\beta^2}{2\alpha}}.$$

• Convolution of two functions $f,g:\mathbb{R}\to\mathbb{R}$ defined through

$$(f \star g)(x) := \int_{\mathbb{R}} f(y)g(x - y) dy.$$

• Gamma function, defined through

$$\Gamma(s) := \int_0^\infty x^{s-1} e^{-x} dx$$

for s > 0 with the relation to factorials

$$\Gamma(k+1) = (-1)^k \left(\frac{\mathrm{d}^k}{\mathrm{d}\alpha^k} \int_0^\infty \mathrm{e}^{-\alpha x} \, \mathrm{d}x \right) \bigg|_{\alpha=1} = (-1)^k \left(\frac{\mathrm{d}^k}{\mathrm{d}\alpha^k} \frac{1}{\alpha} \right) \bigg|_{\alpha=1} = k! \,.$$