Constructing a Neuron using Column Generation

Julian Yarkony

Experian Data Lab San Diego CA julian.e.yarkony@gmail.com

Abstract

We consider the problem of describing neurons in single neuron images. To do this we map the problem to a problem of constructing a lineage to one

1 Formulation

1.1 Tracks

- We describe the set of detections as \mathcal{D} which we index with d.
- We describe the set of tracks as \mathcal{P} which we index with p.
- We use $X \in \{0,1\}^{|\mathcal{D} \times \mathcal{P}|}$ to denote a mapping of detections to tracks where $X_{dp} = 1$ indicates that track d is associated with track p.
- A track consists of as sequence of sub-tracks each of k detections where k is a user defined hyper-parameter that trades off model complexity and efficiency of inference.
- We use $\bar{X} \in \{0,1\}^{|\mathcal{D} \times \mathcal{P}|}$ to denote a mapping of detections to tracks where $X_{dp} = 1$ indicates that track d is associated with track p and detection d is not in the first k-1 detections on the track.
- We define the set of subtracks as S which we index with s. A given subtrack has elements $\{s_1, s_2, s_3...s_k\}$ ordered in time from earliest to latest.
- We define a mapping of tracks to subtracks using a matrix $S^0 \in \{0,1\}^{|\mathcal{S}| \times |\mathcal{P}|}$. We use $S^0_{sp} = 1$ to indicate that track p contains subtrack s.
- In order to describe the first subtrack on a track we use matrix $S^+ \in \{0,1\}^{|\mathcal{S}| \times |\mathcal{P}|}$ which we index with s,p where $S^+_{sp}=1$ if and only if subtrack s is the first subtrack on track p
- In order to describe the first subtrack on a track we use matrix $S^- \in \{0,1\}^{|\mathcal{S}| \times |\mathcal{P}|}$ which we index with s,p where $S^+_{sp}=1$ if and only if subtrack s is the first subtrack on track p
- The subtracks in the sequence that describes a track overlap eachother. Hence if a sub-tracks s_1 is succeeded by another subtrack s_2 on a given track then the final k-1 elements on s_1 are the same as the earliest k-1 elements in s_2
- We use $Q \in \{0,1\}^{|S| \times |S|}$ which we index by s_1, s_2 respectively. We set $Q_{s_1 s_2} = 1$ if and only if subtrack s_1 can succeed s_2 .

1.2 Costs

We associate tracks with costs with costs usign the following noattion. We use $\Theta \in \mathbb{R}^{\mathcal{P}}$ which we index by p to associate tracks with costs. We use Θ_p to associate track p with a cost.

- We use $\theta \in \mathbb{R}^{|\mathcal{S}|,3}$ which we index by s/[+,-,0] respectively.
- We use θ_{s+} to denote the cost of starting a track at subtrack s.

- $\bullet\,$ We use θ_{s-} to denote the cost of terminating a track at subtrack s.
- \bullet We use θ_{s0} to denote the cost of including a subtrack s in a track .

We assocaite a track with cost with cost Θ_p as follows.

$$\Theta_p = \sum_{s \in \mathcal{S}} S_{sp}^+ \theta_{s+} + S_{sp}^- \theta_{s-} + S_{sp}^0 \theta_{s0}$$
 (1)

1.3 Collection of Tracks

We describe a collection of tracks that describe a neuron using a vector $\gamma \in \{0,1\}^{|\mathcal{P}|}$ which we index with p. We set $\gamma_p = 1$ if and only if track p is incuded in the neuron.

We use Γ to describe the set of all possible neurons. This a subset of $\gamma \in \{0,1\}^{|\mathcal{P}|}$ The cost associated with a nueron described by γ is defined by the sum of the tracks that compose it. The selection of the lowest cost neuron is thuse written below

$$\min_{\gamma \in \Gamma} \sum_{p} \gamma_p \Theta_p \tag{2}$$

1.4 Feasibility

We now define what makes a neuron feasibble. A neuron consists of a sequence of tracks.