Assignment Project Exam Help Foundations of Computer Science UNSWITTER: //tutorcs.com

Outline

Assignment Project Exam Help

Linearity of Expectation

Experittips: //tutorcs.com

Standard Deviation and Variance

Assignment-Project Exam Help

Linearity of Expectation

Expehttps://tutorcs.com

Standard Deviation and Variance

Random Variables

Definition

An (integer) random variable is a function from Ω to \mathbb{Z} . So less made with the property of the content o

Random variables are often denoted by X, Y, Z, ...

We extend arithmetic, to random variables in the natural way.

Definition Definition

Given random variables X, Y and integer k:

WeChat: cstxtores

 $X - k : \omega \mapsto X(\omega) - k$

 $kX: \omega \mapsto k.X(\omega)$

4

Examples

Example

Random variable X: value of rolling one die

Assignment Project Exam Help

Example

Randattras x/studentres com

$$\Omega = \{(1,1),(1,2),\ldots,(6,6)\}$$

$$X_{s}((1,2)) = {}^{3} = X_{s}((2,1)) = 3$$

Question

Is $X_s = X + X$? No.

 $X_s = X + Y$ where X and Y are independent and identically distributed (i.i.d)

5

Expectation

Definition

a random variable X is

https://tutorcs.com

NB

Expectation is a truly universal concept; it is the basis of all decision making, of estimating gains and losses, in all actions under risk. Historically, a rudimentary concept of expected value arose long before the notion of probability.

Examples

Example

Assignment Project Exam Help

$$E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \dots + \frac{1}{6} \cdot 6 = 3.5$$
https://tutorcs.com

Example

The expected sum y hart rolling syloid teis TCS

$$E(X_s) = \frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \ldots + \frac{6}{36} \cdot 7 + \ldots + \frac{1}{36} \cdot 12 = 7$$

7

Assignment Project Exam Help

Example

RW: 9.3.3 Buy one lottery ticket for \$1. The only prize is \$1M. Each het psissifut orcs. com

$$\Omega = \{win, lose\}$$
 $X_L(win) = \$999, 999$ $X_L(lose) = -\$1$
 $E(X_L) = 6 \cdot 10^{-7} \cdot \$999, 999 + (1 - 6 \cdot 10^{-7}) \cdot -\$1 = -\$0.4$
WeChat: CStutorcs

Assignment Project Exam Help

Linearity of Expectation

Expehttps://tutorcs.com

Standard Deviation and Variance

WeChat: cstutorcs

9

Linearity of expectation

Assignmentes Project Exam Help

$$E(X + Y) = E(X) + E(Y)$$
 $E(k \cdot X) = k \cdot E(X)$

https://tutorcs.com

Example

The expected cum when rolling two dice can be computed as $E(X_s) = E(X) + E(Y) = 3.5 + 3.5 = 7$

Example

Example

Assignment Project Exam Help

$$E(S_n) = \sum_{k=0}^{n} P(S_n = k) \cdot k = \sum_{k=0}^{n} \frac{1}{2^n} {n \choose k} \cdot k$$

since there are $\binom{n}{k}$ sequences of n tosses with k HEADS, and each sequence has the probability $\frac{1}{2^n}$

$$= \frac{1}{2^n} \sum_{k=1}^n \frac{n}{k} \binom{n-1}{k-1} k = \frac{n}{2^n} \sum_{k=0}^{n-1} \binom{n-1}{k} = \frac{n}{2^n} \cdot 2^{n-1} = \frac{n}{2}$$

We Chating destruction $\sum_{k=0}^{n} {n \choose k} = 2^n$

• 'easy way'

$$E(S_n) = E(S_1^1 + \ldots + S_1^n) = \sum_{i=1\ldots n} E(S_1^i) = nE(S_1) = n \cdot \frac{1}{2}$$

Note: $S_n \stackrel{\text{def}}{=} |\text{HEADS in } n \text{ tosses}|$ while each $S_1^i \stackrel{\text{def}}{=} |\text{HEADS in } 1 \text{ toss}|$

Observations

Assignment Project Exam Help

If $X_1, X_2, ..., X_n$ are independent, identically distributed random variables, then $E(X_1/X_2) + E(nX_1) = nE(X_1)$.

NB

 $X_1 + X_2 + ... + X_n$ and nX_1 are very different random variables.

Exercises

Exercise

You face a quiz consisting of six true/false questions, and your plant is to guest the answer to each question (randomly) with Telp probability 0.5 of being right). There are no negative marks, and answering four or more questions correctly suffices to pass.

What is the probability of passing and what is the expected score?

Exercises

Exercise

RW: 9.3.7

As iro has meen to makes in a cred independent. A plue. Help

What is the expected number of red marbles drawn?

https://tutorcs.com

Outline

Assignment Project Exam Help

Linearity of Expectation

Expelitions: //tutores.com

Standard Deviation and Variance

Example

Example

Find the average waiting time for the first HEAD, with no upper bound on the 'duration' (pre allows for all possible sequences of Sosse regardes Colors half the Cits Calxiotaly). He like the colors of the colors

$$A = E(X_w) = \sum_{k=1}^{\infty} k \cdot P(X_w = k) = \sum_{k=1}^{\infty} k \frac{1}{2^k}$$
https://tutores.com

This can be evaluated by breaking the sum into a sequence of geometry processionst: CStutorcS

$$\begin{aligned} &\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots \\ &= \left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots\right) + \left(\frac{1}{2^2} + \frac{1}{2^3} + \dots\right) + \left(\frac{1}{2^3} + \dots\right) + \dots \\ &= 1 + \frac{1}{2} + \frac{1}{2^2} + \dots \\ &= 2 \end{aligned}$$

Expected time to success

There is also a recursive 'trick' for solving the sum

$$A = \sum_{\substack{k=2\\\text{Now}}}^{\infty} \frac{k}{2^k} = \sum_{\substack{k=1\\2\\k}}^{\infty} \frac{k-1}{2^k} + \sum_{\substack{k=1\\2\\k}}^{\infty} \frac{1}{2^k} = \frac{1}{2} \sum_{\substack{k=1\\2\\k-1}}^{\infty} \frac{k-1}{2^{k-1}} + 1 = \frac{1}{2}A + 1$$

$$A \underbrace{Signment}_{Now} Project = Exam^2 Help$$

NB https://tutorcs.com A much simpler but equally valid argument is that you expect 'half'

A much simpler but equally valid argument is that you expect 'half a HEAD in 1 toss, so you ought to get a 'whole' HEAD in 2 tosses.

WeChat: cstutorcs

Theorem

If the probability of success is p then:

- The expected number of (indep.) trials before 1 success is $\frac{1}{p}$
- The expected number of (indep.) trials before k successes is $\frac{k}{p}$

Assignment Project Exam Help

Exercise

RW: 14.12 A die is rolled until the first 4 appears. What is the expected waiting time LULOICS.COM

Example

To find an object \mathcal{X} in an unsorted list L of elements, one needs to search linearly through L. Det the probability of \mathcal{X} is p, there is p. The likelihood of \mathcal{X} being absent an expected number of comparison operations.

If the element is in the list, then the number of comparisons averages $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int$

The first case has probability p, the second 1 - p. Combining these we find

$$E_n = We hat p)$$
 estytores $n = (1 - \frac{p}{2})n + \frac{p}{2}$

As one would expect, increasing p leads to a lower E_n .

Success vs Expected value

Assignment Project Exam Help

Does high probability of success lead to a high expected value?

General typs://tutorcs.com

Example

Buying more tickets in the lottery increases your chances of winning that the expected value of winning decreases.

Example

Assignment Project Exam Help

Roulette (outcomes $0,1,\ldots,36$). Win: $35\times$ bet

stratet ps://tutorcs.com

- Probability of winning: $\frac{1}{37}$
- Expected winnings: $\frac{1}{37}$.(\$35) + $\frac{36}{37}$ (-\$1) \approx -2.7c

Example

Example

Roulette (outcomes $0, 1, \dots, 36$). Win: $35 \times \text{bet}$

ssignment Project, Exam Help to 36.

- Probability of winning: 24/27 865%. COM
 - If one of the numbers comes up, win \$35 from the bet on that number and lose \$23 from the bets on the remaining numbers,

Whus collecting \$12. This happen with probability to 10 S

• With probability $q = \frac{13}{37}$ none of the numbers appear, leading to loss of \$24.

So expected winnings are:

$$p \cdot \$12 - q \cdot \$24 = \$12\frac{24}{37} - \$24\frac{13}{37} = -\$\frac{24}{37} \approx -65c = 24 \times -2.7c$$

Gambler's ruin

Many so-called 'winning systems' that purport to offer a winning process of the section of the purport of the p

It turns out (it is a formal theorem) that there can be no system that converts an 'unfair' game into a fair' one. In the language of decision theory, 'unfair' denotes a game whose individual bets have negative expectation.

It can be easily cherken that any individual betson roulette, on lottery tickets or on just about any commercially offered game have negative expected value.

Assignment Project Exam Help

Linearity of Expectation

Expehttps://tutorcs.com

Standard Deviation and Variance

Standard Deviation and Variance

Definition

For random variable X with expected value (or: **mean**) $\mu = E(X)$,

Assignment Project Exam Help

$$\sigma = \sqrt{E((X-\mu)^2)}$$

and thttips://tiutorcs.com

Standard deviation and variance measure how spread out the values of a Candon variable are SThe smaller G the more confident we can be that $X(\omega)$ is close to E(X), for a randomly selected ω .

NB

The variance can be calculated as $E((X - \mu)^2) = E(X^2) - \mu^2$

Example Assignment Project Exam Help

https://tutorcs.com

$$E(X_d^2) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 9 + \frac{1}{6} \cdot 16 + \frac{1}{6} \cdot 25 + \frac{1}{6} \cdot 36 = \frac{91}{6}$$
WeChat: cstutorcs
Hence, $\sigma^2 = E(X_d^2) - \mu^2 = \frac{1}{12} \rightarrow \sigma \approx 1.71$

Exercises

Exercises

smannent Regiectri Examor Help

P(1st experiment succeeds) = 0.7

P(2nd experiment succeeds) = 0.2

Randim variable X/counts the number of successful experiments.

- a Expected value of X?
- Probability of exactly one success? CSTUTOTCS
 Probability of at most one success?
- Variance of X?