ממ"ך 11

```
1
```

Prove:

 $A\Delta B\subseteq D \wedge B\Delta C\subseteq D \rightarrow A\Delta C\subseteq D$

Since $(X \rightarrow Z) \land (Y \rightarrow Z) \equiv (X \lor Y) \rightarrow Z$, also: $(A \triangle B \subseteq D \land B \triangle C \subseteq D) \equiv (A \triangle B \cup B \triangle C) \subseteq D$. Proof:

 $\begin{array}{c} (X \rightarrow Z) \ \land \ (Y \rightarrow Z) \\ Z \lor \neg X \ \land \ Z \lor \neg Y \\ Z \lor \neg (X \lor Y) \\ (X \lor Y) \rightarrow Z \end{array}$

 $A\Delta B\subseteq D \land B\Delta C\subseteq D$ $(x\in (A\Delta B) \to x\in D) \land (x\in (B\Delta C) \to x\in D)$ $x\in (A\Delta B\cup B\Delta C) \to x\in D$ $(A\Delta B\cup B\Delta C)\subseteq D$ Therefore: $(A\Delta B\subseteq D \land B\Delta C\subseteq D)\equiv (A\Delta B\cup B\Delta C)\subseteq D$ // (1)

I'll prove that $A\Delta C \subseteq (A\Delta B \cup B\Delta C)$.

Expanding (A Δ B \cup B Δ C):

 $(\ \overline{B} \cap A) \cup (\ \overline{B} \cap C) \cup (B \cap \overline{A}\) \cup (B \cap \overline{C}\)$

 $[\overline{B} \cap (A \cup C)] \cup [B \cap (\overline{A} \cup \overline{C})]$

 $(\mathbf{A}\Delta\mathbf{B} \cup \mathbf{B}\Delta\mathbf{C}) \equiv [\overline{\mathbf{B}} \cap (\mathbf{A} \cup \mathbf{C})] \cup [\mathbf{B} \cap (\overline{\mathbf{A}} \cup \overline{\mathbf{C}})] \qquad //(2)$

Expanding $A\Delta C$:

 $(A \cap \overline{C}) \cup (\overline{A} \cap C)$ $(A \cup C) \cap (\overline{A} \cup \overline{C})$

 $\mathbf{A}\Delta\mathbf{C} \equiv (\mathbf{A}\cup\mathbf{C}) \cap (\overline{\mathbf{A}} \cup \overline{\mathbf{C}})$ // (3)

Define:

P = B; Q = (A \cup C); R = ($\overline{A} \cup \overline{C}$) So proving Q \wedge R \rightarrow (\neg P \vee Q \vee P \wedge R), will prove that A Δ C \subseteq (A Δ B \cup B Δ C)

Proving $Q \wedge R \rightarrow (\neg P \vee Q \vee P \wedge R)$ is always true:

Premise: $(Q \wedge R)$; Conclusion: $(\neg P \vee Q \vee P \wedge R)$.

Premise → Conclusion is always true if the following holds:

Whenever the Premise is true, also the Conclusion is true.

Assuming that Premise is true:

 $Q \wedge R \equiv T \Longrightarrow$

O≡T ∧ R≡T

Using that in the Conclusion:

 $(\neg P \lor Q \lor P \land R) \equiv (\neg P \lor T \lor P \land T) \equiv \neg P \lor P \equiv T$

Therefore the conclusion is dependent upon the premise, therefore

 $\mathbf{Q} \wedge \mathbf{R} \rightarrow (\neg \mathbf{P} \vee \mathbf{Q} \vee \mathbf{P} \wedge \mathbf{R}) \equiv \mathbf{T}$ // (4)

P, Q and R are placeholders (defined above), so I'll use their "real" values:

 $Q \wedge R \rightarrow (\neg P \vee Q \vee P \wedge R) \equiv$

 $(\mathsf{A} \cup \mathsf{C}) \cap (\,\overline{\mathsf{A}} \ \cup \ \overline{\mathsf{C}}\,) \to [\,\overline{\mathsf{B}} \cap (\mathsf{A} \cup \mathsf{C})] \cup [\mathsf{B} \cap (\,\overline{\mathsf{A}} \cup \ \overline{\mathsf{C}}\,)]$

// Using (3):

 $A\Delta C \subseteq [\overline{B} \cap (A \cup C)] \cup [B \cap (\overline{A} \cup \overline{C})]$

// Using (2):

 $A\Delta C \subseteq (A\Delta B \cup B\Delta C)$ // (5)

Since it's given that:

 $A\Delta B\subseteq D \wedge B\Delta C\subseteq D$

Using (1), it's equivalent to:

 $(A\Delta B \cup B\Delta C) \subseteq D$

And because of (5), we know that

 $A\Delta C \subseteq (A\Delta B \cup B\Delta C)$

Together with the transience of \subseteq , // $X\subseteq Y$ and $Y\subseteq Z\Rightarrow X\subseteq Z$

 $A\Delta B\subseteq D$ Λ $B\Delta C\subseteq D$ \rightarrow $A\Delta C\subseteq D$