Geometria diferencial Curs 2017–18

Formes differencials. Differencial exterior

Exercici 1: (Per a repassar si no ha quedat clar a les classes de teoria)

Siguin $x_i : \mathbb{R}^n \to \mathbb{R}^n$ les funcions que a cada $p \in \mathbb{R}^n$ li fan correspondre la seva component i-èsima. Comproveu que les 1-formes dx_i donen, en cada punt, la base dual de la base canònica de \mathbb{R}^n

Solució:

El vector $e_i = (0, \dots, 1, \dots, 0)$ de la base canònica, que té el coeficient 1 en la posició i, en el punt $p = (x_1, \dots, x_n)$ és el vector tangent a la corba $\gamma_i(t) = (x_1, \dots, x_i + t, \dots, x_n)$. En general, si f és una funció definida en un entorn de p i v un vector tangent en aquest punt, el valor df(v) es calcularà prenent una corba $\alpha(t)$ tal que $\alpha'(0) = v$ i fent la derivada $\frac{d(f(\alpha(t)))}{dt}\Big|_{t=0}$. A partir d'aquí és clar que

$$dx_{j}(e_{i}) = \begin{cases} \frac{d(x_{i} + t)}{dt} \Big|_{t=0} = 1 & \text{quan } i = j \\ \frac{dx_{j}}{dt} \Big|_{t=0} = 0 & \text{quan } i \neq j \end{cases}$$

que correspon al que s'havia de demostrar.

Exercici 2: Determineu quines són les formes diferencials ω a \mathbb{R}^4 compleixen

$$\omega \wedge (dx \wedge dy + dz \wedge dt) = dx \wedge dy \wedge dz \wedge dt$$

i les que compleixen

$$\omega \wedge \omega = dx \wedge du \wedge dz \wedge dt$$

Solució:

Posant coeficients indeterminats a una 2-forma ω

$$\omega = a_1 dx \wedge dy + a_2 dx \wedge dz + a_3 dx \wedge dt + a_4 dy \wedge dz + a_5 dy \wedge dz + a_6 dz \wedge dt$$

la primera condició serà

$$dx \wedge dy \wedge dz \wedge dt = (a_1 + a_6) dx \wedge dy \wedge dz \wedge dt$$

de forma que en aquest cas l'única restricció és $a_1 + a_6 = 1$.

En el segon cas l'equació s'escriurà

$$dx \wedge dy \wedge dz \wedge dt = 2(a_1 a_6 - a_2 a_5 + a_3 a_4) dx \wedge dy \wedge dz \wedge dt$$

i la restricció correspondrà a $a_1 a_6 - a_2 a_5 + a_3 a_4 = 1/2$.

Exercici 3: Si en \mathbb{R}^3 es consideren les coordenades cilíndriques (r, θ, z) , quina és l'expressió de l'element de volum usual $\eta = dx \wedge dy \wedge dz$ en funció de dr, $d\theta$, dz? (Recordeu que, respecte les coordenades cilíndriques, $x = r \cos(\theta)$, $y = r \sin(\theta)$ i la coordenada z és la mateixa en els dos casos).

I si en comptes de les coordenades cilíndriques es consideren les esfèriques?

Solució:

Tenint en compte les expressions de (x, y, z) en funció de (r, θ, z) els càlculs es resumeixen en les manipulacions següents:

$$\eta = dx \wedge dy \wedge dz = d(r \cos(\theta)) \wedge d(r \sin(\theta)) \wedge dz$$
$$= (\cos(\theta) dr - r \sin(\theta) d\theta) \wedge (\sin(\theta) dr + r \cos(\theta) d\theta) \wedge dz$$
$$= r dr \wedge d\theta \wedge dz$$

En el cas de les coordenades esfèriques les relacions són

$$x = r \cos(\theta) \sin(\varphi)$$
$$y = r \sin(\theta) \sin(\varphi)$$
$$z = r \cos(\varphi)$$

de forma que

$$\eta = dx \wedge dy \wedge dz = (\cos(\theta) \sin(\varphi) dr - r \sin(\theta) \sin(\varphi) d\theta + r \cos(\theta) \cos(\varphi) d\varphi)$$

$$\wedge (\sin(\theta) \sin(\varphi) dr + r \cos(\theta) \sin(\varphi) d\theta + r \sin(\theta) \cos(\varphi) d\varphi)$$

$$\wedge (\cos(\varphi) dr - r \sin(\varphi) d\varphi)$$

$$= -r^2 \sin(\varphi) dr \wedge d\theta \wedge d\varphi$$

$$= r^2 \sin(\varphi) dr \wedge d\varphi \wedge d\theta$$

Exercici 4: Es considera a \mathbb{R}^3 una forma del tipus $\omega = x \, dy \wedge dz - 2 \, z \, f(y) \, dx \wedge dy + y \, f(y) \, dz \wedge dx$ amb f diferenciable tal que f(1) = 1. Determineu la funció f si

- (a) $d\omega = dx \wedge dy \wedge dz$,
- (b) $d\omega = 0$.

Solució:

Com que la diferencial de ω s'escriu com

$$d\omega = (1 - f(y) + y f'(y)) dx \wedge dy \wedge dz$$

(a) S'ha de complir

$$1 - f + yf' = 1$$

i no costa gaire veure que les solucions d'aquesta equació diferencial són totes de la forma f(y) = k y (k constant). Si ha de ser f(1) = 1 la funció és f(y) = y.

(b) En aquest cas l'equació diferencial és

$$1 - f + u f' = 0$$

i tampoc costa gaire veure que la solució amb f(1) = 1 ha de ser la funció constant f(y) = 1.