Dive into Deep Learning

Chapter 8. Recurrent Neural Networks

Sequence models

Oscar bump

- After the Oscar awards, ratings for the corresponding movie go up, even though it is still the same movie.
- This effect persists for a few months until the award is forgotten. It has been shown that the effect lifts rating by over half a point.

Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017). Recurrent recommender networks. *Proceedings of the tenth ACM international conference on web search and data mining* (pp. 495–503).

SBS CNBC PICK | 2020.02.12. | 네이버뉴스

오스카 후광에 '**기생충** 마케팅' 시작...글로벌 수입 주목

또 아카데미 수상으로 말생하는 난기 매출 급등 효과를 말하는 '**오스카 펌프**'라는 용어가 있는데 요. **기생충**에도 적용될 것으로 보입니다. 지난해 **오스카** 작품상을 수상한 영화 '그린북'이 수...

뺇 하구익보 **PiCK** 나타 19면 1단 나 2020 02 10 나네이버뉴스

기생충'의 아카데미 수상 경제효과는? "**오스카 범프** 등 무궁무진"

기생충은 북미에서도 개봉한 지 4개월이 넘은 상태라 이미 영화를 본 관객이 많다면 오스카 프 규모가 크지 않을 수 있다. 하지만 지금은 영화의 수익이 영화관에서 끝나지 않는 시대다.

🥶 연합뉴스TV | 2020.02.12. | 네이버뉴스

오스카 특수 '**기생충**'...온·오프라인 휩쓴다

|모터] 봉준호 감독의 영화 **기생충이 오스카 4**관왕을 차지한 뒤, **오스카 범프**로 불리는 후광 과를 느리고 있습니다. 의식터포스트가 미구 바스오피스 실저을 언급하며 아지 보지 모하

YTN ↑ 2020.02.19. ↑ 네이버뉴스

[더뉴스-더쉬운경제] 아카데미 4관왕 '기생충'...경제적 효과는?

그것이 해당 영화뿐만 아니라 그게 만약에 외국일 경우에는 그 나라 전체의 문화산업 나아가서 국가 브랜드까지도 영향을 미친다고 해서 **오스카** 바운스, **오스카 범프** 이야기가 많이 나오는...

매일경제 **PiCK** | 🖭 A2면 TOP | 2020.02.11. | 네이버뉴스

전세계 퍼지는 기생충 `꿈의 5억달러` 넘길까

Sequence models

Data usually didn't IID

- Various data we have
 - Speech recognition
 - Sentiment classification
 - DNA sequence analysis
 - Machine translation
 - Action recognition
 - NER

Temperature sequence

Autoregressive Models

- Autoregressive model
 - inputs: $x_{t-1}, ..., x_1$
 - how to estimate $P(x_t | x_{t-1}, \dots, x_1)$ efficiently
- First, long sequence is not really necessary, instead, only use $x_{t-1}, \ldots, x_{t-\tau}$ ($t > \tau$)
 - # of args always the same, allowing us to train a deep network
 - Such models will be called autoregressive model
- Secondly, to keep some summary h_t of the past observations, and date the same time update h_t in addition to the prediction $\hat{x}_t (=P(x_t \mid h_t))$
 - These models are also called latent autoregressive models

In practice solve regression problem

$$\hat{x}_t = f(x_{t-\tau}, \dots x_{t-1})$$

e.g. train an MLP on previously seen data

• Latent state summarizes all the relevant information about the past. So we get $h_t = f(x_1, \dots x_{t-1}) = f(h_{t-1}, x_{t-1})$

Markov models

Next observation only depends on the past few terms

• First-order Markov model (if $\tau = 1$)

$$P(x_1, \dots, x_T) = \prod_{t=1}^T P(x_t \mid x_{t-1})$$
 where $P(x_1 \mid x_0) = P(x_1)$

• Such models are particularly nice whenever x_t assumes only a discrete value, since in this case dynamic programming can be used to compute values along the chain exactly.

For instance, we can compute $P(x_{t+1} \mid x_{t-1})$ efficiently:

$$P(x_{t+1} \mid x_{t-1}) = \frac{\sum_{x_t} P(x_{t+1}, x_t, x_{t-1})}{P(x_{t-1})}$$

$$= \frac{\sum_{x_t} P(x_{t+1} \mid x_t, x_{t-1}) P(x_t, x_{t-1})}{P(x_{t-1})} \qquad \frac{P(x_t \cap x_{t-1})}{P(x_{t-1})} = P(x_t \mid x_{t-1})$$

$$= \sum_{x_t} P(x_{t+1} \mid x_t) P(x_t \mid x_{t-1})$$
• First-order Markov model (if $\tau = 1$)

Casualty

It's clear that future events cannot influence the past

- Causality (physics) prevents the reverse direction
- 'wrong' direction often much more complex to model
- For instance, it has been shown that in some cases we can find $x_{t+1} = f(x_t) + \epsilon$ for some additive noise ϵ , whereas the converse is not true

Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. *Advances in neural information processing systems* (pp. 689–696).

 Typically forward direction that we're interested in estimating!

$$p(x) = p(x_1) \cdot p(x_2 | x_1) \cdot p(x_3 | x_1, x_2) \cdot \dots p(x_T | x_1, \dots x_{T-1})$$

$$p(x) = p(x_T) \cdot p(x_{T-1} | x_T) \cdot p(x_{T-2} | x_{T-1}, x_T) \cdot \dots p(x_1 | x_2, \dots x_T)$$

Training sequence model

```
[3] T = 1000 # Generate a total of 1000 points
    time = torch.arange(1, T + 1, dtype=torch.float32)
    x = torch.sin(0.01 * time) + torch.normal(0, 0.2, (T,))
    d21.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3))
```



```
[4] tau = 4
features = torch.zeros((T - tau, tau))
for i in range(tau):
    features[:, i] = x[i: T - tau + i]
labels = d2l.reshape(x[tau:], (-1, 1))
```

MLP with 2 FC layers, ReLU and squared loss

```
[7] def train(net, train_iter, loss, epochs, lr):
        trainer = torch.optim.Adam(net.parameters(), lr)
        for epoch in range(epochs):
            for X, y in train_iter:
                 trainer.zero grad()
                1 = loss(net(X), y)
                1.backward()
                 trainer.step()
            print(f'epoch {epoch + 1}, '
                  f'loss: {d21.evaluate_loss(net, train_iter, loss):f}')
    net = get net()
    train(net, train_iter, loss, 5, 0.01)
    epoch 1, loss: 0.054968
    epoch 2, loss: 0.055680
    epoch 3, loss: 0.058150
    epoch 4, loss: 0.049353
    epoch 5, loss: 0.050014
```

Training sequence model

1-step-ahead prediction

k-step-ahead prediction

```
[11] max steps = 64
```

```
[12] features = torch.zeros((T - tau - max_steps + 1, tau + max_steps))
# Column `i` (`i` < `tau`) are observations from `x` for time steps from
# `i + 1` to `i + T - tau - max_steps + 1`
for i in range(tau):
    features[:, i] = x[i: i + T - tau - max_steps + 1].T

# Column `i` (`i` >= `tau`) are the (`i - tau + 1`)-step-ahead predictions for
# time steps from `i + 1` to `i + T - tau - max_steps + 1`
for i in range(tau, tau + max_steps):
    features[:, i] = d21.reshape(net(features[:, i - tau: i]), -1)
```


Text Processing

Basic Idea - map text into sequence of IDs

- Character Encoding (each character has one ID)
 - Small vocabulary
 - Doesn't work so well (DNN needs to learn spelling)
- Word Encoding (each word has one ID)
 - Accurate spelling
 - Doesn't work so well (huge vocabulary = costly multinomial)
- Byte Pair Encoding (Goldilocks zone)
 - Frequent subsequences (like syllables)

Language Models and the Dataset

- Given x_1, x_2, \ldots, x_T (text sequence of length T), the goal of a language model is to estimate the joint probability of the sequence $P(x_1, x_2, \ldots, x_T)$
- For instance, an ideal language model would be able to generate natural text just on its own, simply by drawing one token at a time $x_t \sim P(x_t \mid x_{t-1}, \dots, x_1)$.
- LMs are of great service even in their limited form.
- the phrases "to recognize speech" and "to wreck a nice beach" sound very similar. (ambiguity)
- "dog bites man" vs. "man bites dog"
 "I want to eat grandma" vs. "I want to eat, grandma"

Language Models and the Dataset

 Tokenize text data at the word level, applying basic probability rules

$$p(w_1, w_2, ..., w_T) = \prod_{t=1}^{T} p(w_t | w_1, ..., w_{t-1})$$

- p(Statistics, is, fun, .)
- = p(Statistics)p(is | Statistics)p(fun | Statistics, is)p(. | Statistics, is, fun)
- In order to compute the LM, we need to calculate probability of words and the conditional probability of a word given the previous few words.

$$\hat{p}(\text{is} | \text{Statistics}) = \frac{n(\text{Statistics}, \text{is})}{n(\text{Statistics})}$$

(n(x)) and n(x, n') are the number of occurrences of singletons and consecutive word pairs)

Laplace smoothing

$$\hat{p}(w) = \frac{n(w) + \epsilon_1/m}{n + \epsilon_1}$$

$$\hat{p}(w'|w) = \frac{n(w, w') + \epsilon_2 \hat{p}(w')}{n(w) + \epsilon_2}$$

$$\hat{p}(w''|w', w) = \frac{n(w, w', w'') + \epsilon_3 \hat{p}(w', w'')}{n(w, w') + \epsilon_3}$$

Zipf's law: $n_i \propto \frac{1}{i^{\alpha}}$