1. Tekintsük az alábbi mátrixot!

$$A = \begin{bmatrix} -3 & -3 & 7 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

- a, Invertálható-e az A mátrix? Ha igen, akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait!
- b, Milyen egyéb mátrixtulajdonságokra következtethetünk a kapott eredményből? (6 pont)
- 2. Legyen $A=[\underline{a}_1 \ \underline{a}_2 \ \underline{a}_3]_{3x3}$ egy mátrix, $\underline{b} \in R^3$. Az alábbi táblázatot ismerjük:

bázis	\underline{a}_1	\underline{a}_2	<u>a</u> ₃	<u>b</u>
\underline{a}_2	0	1	2	-3
<u>e</u> 2	0	0	х	у
<u>a</u> ₁	1	0	4	1

- a, Milyen számok írhatóak a táblázatba x és y helyére, hogy
 - az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszernek <u>ne</u> legyen megoldása;
 - az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszernek pontosan egy megoldásvektora legyen;
 - az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszernek végtelen sok megoldásvektora legyen!
- b, Legyen x = y = 0. Adja meg az egyenletrendszer megoldáshalmazát! (6 pont)

3.

$$A = \begin{bmatrix} 4 & -3 \\ 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -1 & 0 \\ 4 & 3 & 2 \\ 0 & 1 & 5 \end{bmatrix}, \qquad C = \begin{bmatrix} 6 \\ -2 \\ 4 \end{bmatrix}$$

Adja meg azon lineáris leképezések típusát és hozzárendelési szabályát, amelyeknek a mátrixa *A*, *B*, illetve *C*. (4 pont)

4. Tekintsük az alábbi lineáris transzformációkat:

$$\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2, (x_1, x_2) \mapsto (x_1 + 3x_2, 2x_1 + 6x_2),$$

 $\mathbf{B}: \mathbb{R}^2 \to \mathbb{R}^2, (x_1, x_2) \mapsto (x_1 + 2x_2, 3x_1 + x_2).$

- a, Írja fel a fenti lineáris transzformációk mátrixát!
- b, Adja meg a fenti lineáris transzformációk determinánsát! Melyik injektív?
- c, Adja meg a fenti lineáris transzformációk magterét!
- d, Legyen $\underline{b} = (5, 5)$. Igaz-e, hogy $\underline{b} \in \operatorname{im}(\mathcal{A})$. illetve $\underline{b} \in \operatorname{im}(\mathcal{B})$? Ha igen, akkor adja meg azon \underline{x} vektorokat, amelyekre $\mathcal{A}(\underline{x}) = \underline{b}$, illetve $\underline{\mathcal{B}}(\underline{x}) = \underline{b}$ teljesül!

(9 pont)

1. a, Tekintsük az alábbi mátrixot!

$$A = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & -1 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 0 & -2 & 0 \end{bmatrix},$$

Határozza meg az *A* mátrix determinánsát! Milyen egyéb mátrixtulajdonságokra lehet a determináns kiszámolt értékéből következtetni?

b, Legyen $\underline{a} = (2, 0, 3)$, $\underline{b} = (-2, 5, 1)$. Határozza meg az \underline{a} és \underline{b} vektoriális szorzatát! (6 pont)

2. Oldja meg bázistranszformáció alkalmazásával az alábbi lineáris egyenletrendszert!

$$x_1$$
 + $2x_2$ + $4x_3$ + x_4 = 5
 $2x_2$ + $2x_3$ + $2x_4$ = 4
 $2x_1$ + $3x_2$ + $7x_3$ + x_4 = 8

Adja meg a fenti egyenletrendszer homogén párjának a megoldáshalmazát! (7 pont)

3.

$$A = \begin{bmatrix} 2 & -3 \\ 0 & 5 \\ 1 & 4 \\ -2 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 3 & 2 \\ 1 & 4 & -6 \\ 2 & 0 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 5 & 1 & 4 \end{bmatrix}$$

Adja meg azon lineáris leképezések típusát és hozzárendelési szabályát, amelyeknek a mátrixa *A*, *B*, illetve *C*. (4 pont)

4. Tekintsük az alábbi lineáris transzformációkat:

$$\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2, (x_1, x_2) \mapsto (2x_1 + 3x_2, 4x_1 + 6x_2),$$

 $\mathbf{B}: \mathbb{R}^2 \to \mathbb{R}^2, (x_1, x_2) \mapsto (x_1 + 5x_2, -2x_1 + 3x_2).$

a, Írja fel a fenti lineáris transzformációk mátrixát!

b, Injektívek-e a fenti lineáris transzformációk? Amelyik injektív, annak adja meg az inverzét (az inverz transzformáció típusát és hozzárendelési szabályát)! (8 pont)

5. a, Tekintsük az alábbi mátrixot!

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & -1 & 1 & 0 \\ 3 & 1 & 0 & -2 \\ 2 & 1 & 1 & 0 \end{bmatrix},$$

Határozza meg az *A* mátrix determinánsát! Milyen egyéb mátrixtulajdonságokra lehet a determináns kiszámolt értékéből következtetni?

b, Legyen $\underline{a} = (2, -1, 3), \ \underline{b} = (0, 5, 1)$. Határozza meg az \underline{a} és \underline{b} vektoriális szorzatát! (6 pont)

6. Oldja meg bázistranszformáció alkalmazásával az alábbi lineáris egyenletrendszert!

$$x_1 + 2x_2 + x_3 + 5x_4 = 4$$

 $x_1 + x_3 + 3x_4 = 2$
 $x_2 + 2x_3 + 3x_4 = 3$

Adja meg a fenti egyenletrendszer homogén párjának a megoldáshalmazát! (7 pont)

7.

$$A = \begin{bmatrix} 5 & -2 & 3 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -3 \\ 1 & 0 \\ 4 & 2 \\ 0 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 4 & -2 & 1 \\ 3 & 5 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

Adja meg azon lineáris leképezések típusát és hozzárendelési szabályát, amelyeknek a mátrixa A, B, illetve C. (4 pont)

8. Tekintsük az alábbi lineáris leképezést!

$$\mathbf{A}: \mathbb{R}^4 \to \mathbb{R}^2$$
, $(x_1, x_2, x_3, x_4) \mapsto (x_1 + 2x_2 + 3x_3 - x_4, x_1 - x_2 + 2x_4)$,

- a, Írja fel a fenti lineáris leképezés mátrixát!
- b, Határozza meg az A lineáris leképezés rangját!
- c, Határozza meg az A lineáris leképezés magterét!
- d, Legyen \underline{b} = (4,1). Igaz-e, hogy \underline{b} ∈ im(\mathcal{A})? Ha igen, akkor adja meg azon \underline{x} vektorok halmazát, amelyekre $\mathcal{A}(\underline{x}) = \underline{b}$! (8 pont)

5. Tekintsük az alábbi mátrixokat!

$$A = \begin{bmatrix} 1 & c & 0 \\ 2 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$

- a, Milyen legyen a $c \in R$ paraméter értéke, hogy az A mátrix invertálható legyen? b, Adja meg a B mátrix adjungált mátrixát és inverz mátrixát! (6 pont)
- 6. Oldja meg bázistranszformáció alkalmazásával az alábbi lineáris egyenletrendszert!

$$x_1 + 2x_3 = 1$$

 $x_1 + 4x_2 + 6x_3 = 5$
 $2x_1 + x_2 + 5x_3 = 3$
 $-3x_1 + 2x_2 - 4x_3 = 1$

Adja meg a fenti egyenletrendszer homogén párjának a megoldáshalmazát! (7 pont)

7.

$$A = \begin{bmatrix} 2 & -1 & 4 \\ 0 & 5 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 \\ -3 \\ 4 \\ 6 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 & -5 \\ 2 & 4 & 3 \\ -1 & 2 & 5 \end{bmatrix}$$

Adja meg azon lineáris leképezések típusát és hozzárendelési szabályát, amelyeknek a mátrixa A, B, illetve C. (4 pont)

8. Tekintsük az alábbi lineáris transzformációkat:

$$\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2, (x_1, x_2) \mapsto (2x_1 + 3x_2, -x_1 + 4x_2),$$

 $\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^2, (x_1, x_2) \mapsto (4x_1 + 6x_2, -2x_1 - 3x_2).$

- a, Írja fel a fenti lineáris transzformációk mátrixát!
- b, Injektívek-e a fenti lineáris transzformációk? Amelyik injektív, annak adja meg az inverzét (az inverz transzformáció típusát és hozzárendelési szabályát)! (8 pont)