RD:giangvien Ngày:	PD:pheduyet Ngày
Ký tên	Ký tên

	THI GIỮA KỲ	Kỳ/năm học		II	2022-2023	
EK.	IHI GIUA KY	Ngày thi	05/03/	3/2023		
Đại học Bách khoa-ĐHQG	Môn học	Môn Giải Tích 2				
TPHCM	Mã môn học	MT1005				
Khoa Khoa học Ứng dụng	Thời gian	50 phút	Mã đề	160	1	

Notes: - Sinh viên không được dùng tài liệu. Nộp lại đề thi và giấy nháp cho giám thị. - Mỗi câu đúng được 0.5 điểm, mỗi câu sai bị trừ 0.1 điểm, câu không chọn không tính điểm.

Câu 1. Cho bản đồ mức của hàm số z = f(x, y) như hình bên dưới. Tìm f(x, y) trong các biểu thức dưới đây.

A.
$$\frac{x^2}{4} - y$$

B.
$$\frac{x^2}{2} - y + 3$$

C.
$$x^2 - y + 3$$
.

B.
$$\frac{x^2}{2} - y + 3$$
. **C.** $x^2 - y + 3$. **D.** $\frac{x^2}{4} - y + 3$. **E.** $x^2 - 2y + 3$.

E.
$$x^2 - 2y + 3$$
.

Một công ty sản xuất 2 loại xe đạp thể thao: xe leo núi và xe đua đường trường. Tổng chi phí để sản $xu\hat{a}t \ x \ xe \ leo \ núi \ và \ y \ xe \ dua \ duờng trường là <math>C(x,y) = 14\sqrt{xy} + 150x + 200y + 692$ (bỏ qua đơn vitính). Hãy trả lời các câu hỏi từ Câu 2 đến Câu 3.

Câu 2. Xác định tốc độ thay đổi tổng chi phí theo số lượng xe leo núi khi x = 174 và y = 179 (bỏ qua đơn vị tính).

- **A**. 155.0999.
- **B**. 154.0999.
- **C**. 159.0999.
- **D**. 160.0999.
- **E**. 157.0999.

Câu 3. Ước tính độ biến thiên tổng chi phí khi sản xuất xe leo núi nhiều hơn 2 chiếc và sản xuất xe đua đường trường ít hơn 2 chiếc so với mốc x = 192 và y = 163 (bỏ qua đơn vị tính).

- **A**. Giảm 102.2950.
- **B**. Giảm 99.29500.
- **C**. Giảm 104.2950.

D. Tăng 728.0939.

E. Tăng 725.0939.

Cho hàm số $f(x,y) = \ln(x^2 + y^2 - 4x - 6y)$. Hãy trả lời các câu hỏi từ Câu 4 đến câu 6.

Câu 4. Điểm nào sau đây không thuộc miền xác định của hàm số f?

- **A**. (6,0).
- **B**. (0, -1).
- \mathbf{C} . (-2, -1).
- **D**. (4,6).
- **E**. (4, -2).

Câu 5. Đường mức f(x,y) = 0 là

- **A**. Đường tròn tâm (2,1) bán kính $r=\sqrt{14}$.
- **B**. Đường tròn tâm (4,1) bán kính $r = \sqrt{14}$.
- C. Đường tròn tâm (2,3) bán kính $r=\sqrt{14}$.
- **D**. Đường tròn tâm (2,6) bán kính $r=\sqrt{18}$.
- **E**. Đường tròn tâm (-4,1) bán kính $r=\sqrt{24}$

Câu 6. Điểm nào trong các điểm sau đây thuộc đồ thị hàm số f?

- **A**. $(6,0,\ln(12))$.
- **B**. $(4,2,\ln(2))$.
- C. $(4,2,\ln(9))$.
- **D**. $(2,1,\ln(7))$.
- **E**. $(2,1,\ln(4))$.

Hình vẽ bên dưới là bản đồ đường mức của hàm số z = f(x,y). Hãy trả lời các câu hỏi từ Câu 7 đến Câu 9.

Câu 7. Chọn khẳng định đúng.

A.
$$f(2,1) = 4$$
.

B.
$$f(-2,0) = 3$$
.

C.
$$f(-1,1) = 1$$
.

D.
$$f(-1,2) = 2$$
.

E.
$$f(2,2) = 4$$
.

Câu 8. Chọn khẳng định đúng.

$$\mathbf{A.} \ \frac{\partial f}{\partial x}(-1, -1) > 0.$$

$$\mathbf{B.} \ \frac{\partial f}{\partial x}(1,1) < 0$$

B.
$$\frac{\partial f}{\partial x}(1,1) < 0$$
. C. $\frac{\partial f}{\partial y}(1,1) < 0$.

$$\mathbf{D.} \ \frac{\partial f}{\partial y}(-1, -1) < 0.$$

$$\mathbf{E.} \ \frac{\partial f}{\partial x}(-2, -2) > 0.$$

Câu 9. Cho các vector $\mathbf{u} = \langle -1, -2 \rangle$ và $\mathbf{v} = \langle 0, -1 \rangle$. Chọn khẳng định đúng. A. $\frac{\partial f}{\partial \mathbf{u}}(2,1) < 0$. B. $\frac{\partial f}{\partial \mathbf{v}}(1,1) > 0$. C. $\frac{\partial f}{\partial \mathbf{u}}(-1,1) > 0$.

$$\begin{aligned} \mathbf{A}. & \frac{\partial f}{\partial \mathbf{u}}(2,1) < 0. \\ \mathbf{D}. & \frac{\partial f}{\partial \mathbf{v}}(-1,1) > 0. \end{aligned}$$

$$\mathbf{B.} \ \frac{\partial f}{\partial \mathbf{v}}(1,1) > 0$$

$$\mathbf{C.} \ \frac{\partial f}{\partial \mathbf{u}}(-1,1) > 0.$$

$$\mathbf{D.} \ \frac{\partial \widetilde{f}}{\partial \mathbf{v}}(-1,1) > 0.$$

$$\mathbf{E.} \ \frac{\partial f}{\partial \mathbf{v}}(-2, -1) < 0.$$

Cho các hàm số:

$$f_1(x,y) = 6x^2 + 6y^2 + 3x - 8y + 3,$$

$$f_2(x,y) = -6x^2 - 6y^2 + 3x - 8y + 3,$$

$$f_3(x,y) = 6x^2 - 6y^2 + 3x - 8y + 3,$$

$$f_4(x,y) = 6x^2$$

 $và f_5(x,y) = 6 - \sqrt{x^2 - 2y^2}$. Hãy trả lời các câu hỏi từ Câu 10 đến Câu 13.

Câu 10. Đồ thị của hàm số nào là mặt Ellipsoid?

- A. Không có hàm số nào.
- **B**. f_3 .

 \mathbf{C} . f_1 .

 \mathbf{C} . f_1 .

D. f_4 .

 \mathbf{E} . f_2 .

Câu 11. Hàm số nào chỉ có 1 cực tiểu?

A. f_4 .

B. Không có hàm số nào.

D. f_5 .

 \mathbf{E} . f_3 .

Câu 12. Xác định giá trị cực tiểu của hàm số tìm được trong Câu 11.

- **A**. 2.4931.
- **B**. -0.0417.
- **C**. 3.5069.
- **D**. 6.0417.
- **E**. 3.0417.

Câu 13. Xác định giá trị lớn nhất của đạo hàm theo hướng của f_3 tại (31, 26)

- **A**. 6006.571.
- **B**. 492.9757.
- **C**. 12.1843.
- **D**. 55.
- **E**. 243025.

Xét hàm số $f(x,y) = 3x^2 + 3y^2 + 18xy$ trên đường tròn $x^2 + y^2 = 4$. Hãy trả lời các câu hỏi từ Câu 14 đến Câu 15.

Câu 14. Khi dùng nhân tử Lagrange để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm f trên đường tròn, tọa độ tất cả các điểm nghi ngờ là

- **A**. (2,2); (-2,-2).
- **B**. (4,4); (-4,-4).
- $\mathbf{C}. \ \left(\sqrt{2},\sqrt{2}\right); \left(-\sqrt{2},\sqrt{2}\right); \left(-\sqrt{2},-\sqrt{2}\right); \left(\sqrt{2},-\sqrt{2}\right)$
- **D**. $(\sqrt{2}, \sqrt{2})$; $(-\sqrt{2}, -\sqrt{2})$.
- **E**. $(2\sqrt{2}, 2\sqrt{2})$; $(-2\sqrt{2}, 2\sqrt{2})$; $(2\sqrt{2}, -2\sqrt{2})$; $(-2\sqrt{2}, -2\sqrt{2})$.

Câu 15. Hàm f đạt giá trị nhỏ nhất trên đường tròn tại các điểm:

- **A**. $(\sqrt{2}, \sqrt{2})$; $(-\sqrt{2}, -\sqrt{2})$.
- **B**. (2,-2); (-2,2).
- C. $(2\sqrt{2}, 2\sqrt{2}); (-2\sqrt{2}, -2\sqrt{2}).$
- **D**. $(\sqrt{2}, -\sqrt{2}); (-\sqrt{2}, \sqrt{2}).$
- **E**. $(2\sqrt{2}, -2\sqrt{2}); (-2\sqrt{2}, 2\sqrt{2}).$

Cho $f(x,y)=3xy^2$. Gọi D là hình chữ nhật $-6 \le x \le 5$, $2 \le y \le 4$. Đường cong $y=3-(x+5)^3$ chia D thành D_1 (bên trái) và D_2 (bên phải) như hình bên dưới. Hãy trả lời các câu hỏi từ Câu 16 đến Câu 19.

Câu 16. Giá trị của $\iint_D f(x,y) \, \mathrm{d} \, x \, \mathrm{d} \, y$ là **A**. -306. **B**. -307. **C**. -311.

- E. -308.

Câu 17. Tích phân lặp nào dưới đây dùng để tính $\iint_{D_1} f(x,y) \, \mathrm{d} \, x \, \mathrm{d} \, y$

A.
$$\int_{-6}^{-4} \left(\int_{2}^{x^3} f(x, y) \, dy \right) dx$$
.

B.
$$\int_{-6}^{-4} \left(\int_{2}^{3-(x+5)^3} f(x,y) \, dy \right) dx.$$

C.
$$\int_{-6}^{5} \left(\int_{2}^{x^{3}} f(x, y) \, dy \right) dx$$
.

D.
$$\int_{-6}^{-4} \left(\int_{4}^{(x+5)^3} 4f(x,y) \, dy \right) dx.$$
E.
$$\int_{-6}^{5} \left(\int_{4}^{(x+5)^3} f(x,y) \, dy \right) dx.$$

E.
$$\int_{-6}^{5} \left(\int_{4}^{(x+5)^3} f(x,y) \, \mathrm{d} y \right) \, \mathrm{d} x$$

Câu 18. Giá trị của $\iint_{D_1} f(x,y) \, \mathrm{d} \, x \, \mathrm{d} \, y$ là A. -213.669. B. -215.939. C. -213.839. D. -214.589. E. -212.419.

$$A. -213.669.$$

$$\mathbf{B}^{1}$$
 -215.939.

$$\mathbf{C}$$
. -213.839 .

$$D. -214.589$$

$$\mathbf{E}$$
. -212.419 .

Câu 19. Giá trị của $\iint_{D_2} f(x,y) \, \mathrm{d} \, x \, \mathrm{d} \, y$ là **A**. -94.911. **B**. -93.991. **C**. -92.741. **D**. -94.161.

A.
$$-94.911$$
.

$$\ddot{\mathbf{B}}_{.}^{D_{2}}$$
 -93.991.

$$\mathbf{C}. -92.741.$$

$$\mathbf{E}$$
. -96.261 .

Câu 20. Cho hai hàm số $f(x,y) = y - 4 + \cos(4x + 5y)$ và $g(t) = e^t \sin(t^2 - \cos(t-1))$. Đặt u(x,y) = g(f(x,y)). Giá trị của $\frac{\partial u}{\partial y}(-5,4)$ là

$$\mathbf{A}$$
. $\cos(1)$.

B.
$$e + cos(1)$$
. **C**. $e + 1$.

C.
$$e + 1$$
.

D.
$$\cos(1) - 1$$
.

B

E

A

D

C

A

E

8 D

A

A

C

B

B

C

D

E

B

C

D

E