CSE2209: Digital Electronics and Pulse Techniques

Course Conducted By:

Nowshin Nawar Arony Lecturer, Dept of CSE, AUST

Chapter 8

Field Effect Transistors

MOSFET (Metal-Oxide-Semiconductor Field-effect Transistor)

A metal—oxide—semiconductor field-effect transistor (MOSFET) is a field-effect transistor (FET) with an insulated gate, where the voltage determines the conductivity of the device. It is used for switching or amplifying signals.

- S: Source

- G: Gate

- D: Drain

- Body: Substrate

Classification of MOSFET

- The one way of classifying MOSFETs is depending upon the type of channel.
 Namely n-channel and p-channel shortly called as NMOS and PMOS respectively.
- The another way of classifying the MOSFETs is depending upon the availability of channel between source and drain terminals i.e. Enhancement mode MOSFETs and depletion mode MOSFETs.

MOSFET device types

Thus, there are four basic MOSFET device types there are:

- 1) n-channel enhancement mode MOSFET
- 2) n-channel depletion mode MOSFET
- 3) p-channel enhancement mode MOSFET
- 4) p-channel depletion mode MOSFET.

n-channel Depletion and Enhancement mode

Depletion Mode

Enhancement Mode

p-channel Depletion and Enhancement mode

NMOS in enhancement mode

G = High, D-S short G = Low, D-S open

PMOS in depletion mode

G = High, D-S open

G = Low, D-S short

NMOS Inverters

V _i	NMOS	V _o
V(0)	OFF	V_{DD}
V(1)	ON	GND

PMOS Inverters

V _i	PMOS	V _o
V(0)	ON	V_{DD}
V(1)	OFF	GND

Logic Gates Using MOSFET

NOT Gate using NMOS

- Here R is used to control the current flow.
- When $V_i = low$, then Q will be open and $V_0 = V_{DD}$
- When V_i = high, then Q will be short and V_0 = GND

NOT Gate using NMOS

- Q2 used instead of load.Q2 is always high as Gate is directly connected to Vcc.
- When $V_i = low$, then Q will be open and $V_0 = V_{DD}$
- When V_i = high, then Q will be short and V_0 = GND

NAND Gate using NMOS (\overline{AB})

A	В	Y
V_1	V_2	$V_{\mathfrak{d}}$
0	0	V_{DD}
0	V_{DD}	V_{DD}
V_{DD}	0	V_{DD}
V_{DD}	V_{DD}	0
$Y = \overline{AB}$		

NAND Gate using PMOS (\overline{AB})

NOR Gate using NMOS $(\overline{A} + \overline{B})$

A	В	Y
V_1	V_2	V_{\circ}
0	0	V_{DD}
0	V_{DD}	0
V_{DD}	0	0
V_{DD}	V_{DD}	- 0
$Y = \overline{A + B}$		

OR Gate using NMOS (A + B)

Draw Circuits using NMOS

- 1) F = A + B
- 2) F= A+BC
- 3) F = AB + CD
- 4) $F = A \cdot (\overline{B + C})$
- 5) $F = \overline{A} \cdot (\overline{B + C})$
- 6) $F = (\overline{A} + B)(A + \overline{B}) + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{(C + \overline{E})}$

CMOS (Complementary MOSFET)

It is possible to construct p-channel and n-channel enhancement MOS devices on the same chip. Such devices are called complementary MOSFETs or CMOS.

The circuit given here works as a CMOS inverter.

The driver is transistor Q_1 and Q_2 acts as the load.

CMOS

- V_i = V(0), then
 PMOS = short, NMOS = open
 V_o = V_{DD} = V(1)
- V_i = V(1), then
 PMOS = open, NMOS = short
 V_o = GND = V(0)

V _i	V _o
Low	V_{DD}
High	GND

CMOS NAND

V ₁	V ₂	V _o
0	0	1
0	1	1
1	0	1
1	1	0

CMOS NOR

V_1	V_2	V _o
0	0	1
0	1	0
1	0	0
1	1	0

Draw Circuits using CMOS

- 1) F = A + B
- 2) F= A+BC
- 3) F = AB + CD
- 4) $F = A \cdot (\overline{B + C})$
- 5) $F = \overline{A} \cdot (\overline{B + C})$

Properties/Advantages of CMOS

CMOS Properties

Millman chap 8 pg. 265

The desirable features of CMOS gates are the following.

- 1. The quiescent (static) power dissipation is extremely small (a few nanowatts). Appreciable power is absorbed only when switching from one state to the other. At 1-MHz switching rate the dynamic power increases to a few milliwatts in a 50-pF load (about the same as in a Schottky low-power gate).
- 2. The noise immunity is better than 40 percent of V_{DD} . Note that, for $V_{DD} = 10 \text{ V}$ in the inverter transmission characteristic of Fig. 8-26b, a noise voltage of 4V superimposed upon V(0) = 0 reduces the output from V(1) = 10 V by only a fraction of a volt.
- 3. Propagation delay is about 50 ns per gate, allowing 10-MHz clock rates. Hence, CMOS is faster than MOS but slower than TTL logic.
- 4. The fan-out is very high, in excess of 50.
- 5. The logic swing is V_{DD} , independent of the fan-out.
- 6. A single power supply is required, and it can be a simple and inexpensive system (because of the small standby current).
- 7. If $V_{DD} = 5$ V, then CMOS is TTL compatible.
- 8. The temperature stability is excellent (Fig. 8-26b).

The above advantages are offset by the increased cost because of the additional processing steps required. Also the density of gates for a given chip area is decreased since CMOS requires that PMOS and NMOS devices appear in pairs. For example, ¹⁶ a four-input NAND gate requires about 50 mil² for CMOS, 30 mil² for TTL (low power, Schottky), 11 mil² for PMOS, and 5.6 mil² for I²L (Sec. 9-13).

Millman chap 8 pg. 263 Reference of the Figure 8.26(b)

These diagrams are only for reference.
No need to draw in the Exam.

Figure 8-26 (a) Complementary MOS inverter (b) The transfer characteristics for three values of V_{DD} and two values of temperature. (Courtes) of Motorola Semiconductor Products, Inc.)