1. 데이터 수집 방식

본 데이터는 'VEEM 디지털 바이오마커 기초연구실' 연구의 일환으로, 대상자 37 명의 '가상 키오스크 테스트' 수행 데이터셋입니다. 데이터는 '시선 추적 데이터'와 '몸 움직임 데이터' 두 가지 종류의 행동학적 데이터를 포함합니다.

2. 가상 키오스크 테스트

'가상 키오스크 테스트'는 가상 환경 속 키오스크를 이용하여 햄버거 세트를 주문하는 일상생활 수행능력을 측정하는 테스트입니다. 대상자가 HTC VIVE Pro Eye 를 착용하고 눈 보정을 마친 후 테스트를 수행하는 동안 시선 추적 데이터, 몸 움직임 데이터가 수집됩니다(그림 1 참고). 테스트는 시작과 끝을 제외한 다음의 여섯 단계(그림 2 참고)로 이루어져 있으며, 대상자는 각 단계에 필요한 목표 항목 외워서 테스트를 진행합니다(표 1 참고).

그림 1. 가상 키오스크 테스트 실험 환경

그림 2. 가상 키오스크 테스트의 1-6 단계

단계	내용	목표 항목
1 단계	식사 장소 선택	매장에서 식사
2 단계	햄버거 선택	새우 버거
3 단계	사이드 메뉴 선택	치즈 스틱
4 단계	음료 선택	코카콜라
5 단계	결제 방식 선택	카드 결제
6 단계	결제 비밀번호 입력	6289 누른 뒤 확인 누르기

표 1. 각 단계의 내용과 목표 항목

3. 대상자 정보('VEEM 대상자 정보.csv')

대상자의 인구통계학적 정보 및 메타 정보가 기재된 파일입니다. 아래는 각 칼럼의 의미입니다

- 번호: 각 대상자에 부여된 고유 번호입니다. 1, 5, 26 번 대상자는 제외되었습니다. VEEM SNSB 데이터의 칼럼과 동일합니다.
- 성명 코드: 각 대상자에 부여된 고유 성명 코드입니다. VEEM SNSB 데이터의 칼럼과 동일합니다.
- 집단: HC 혹은 MCI 가 기재되어 있으며, HC 는 정상인, MCI 는 경도인지장애로 진단된 대상자입니다. VEEM SNSB 데이터의 칼럼과 동일합니다.
- 성별: 여성 혹은 남성이 기재되어 있습니다.
- 나이: 만 나이가 기재되어 있습니다.
- 교육연한: 교육을 받은 기간이 연도 단위로 기재되어 있습니다.

4. VEEM VR 데이터

VEEM VR 데이터는 대상자 한 명 당 두 개의 데이터 파일(시선, 몸)을 포함합니다. 따라서, 37 명의 대상자에 대해 총 74 개의 데이터가 존재합니다.

시선 추적 데이터는 '기록일_번호_eyerpt', 몸 움직임 데이터는 '기록일_번호_rpt'의 파일명을 가지고 있습니다. 각각의 데이터는 100ms 당 하나의 row가 기록됩니다.

4.1 유니티 거리 단위(unit)와 실세계 거리 단위(meter)

시선 추적 데이터와 몸 움직임 데이터 중 일부는 유니티 거리 단위 unit 을 사용합니다(표 2 참고). x 축 1 unit 은 실세계 1.368508 meter 와 동일하며, y 축 1 unit 은 실세계 1.07012 meter 와, z 축 1 unit 은 실세계 1.0085215 meter 와 동일합니다(좌표계는 5.2 참고).

	x 축	y축	z축
unit	1	1	1
meter	1.368508	1.07012	1.0085215

표 2. unit 과 meter 의 단위 비교

4.2 시선 추적 데이터('번호_eyerpt.csv')

- time, beforOBJ, presentOBJ, Obeject_name, time stamp 칼럼은 사용되지 않습니다.
- Panel_num: 가상 키오스크 테스트의 단계를 의미합니다. 몸 움직임 데이터의 칼럼과 동일합니다.
 시작(0) → 1 단계(1) → 2 단계(2) → 3 단계(3) → 4 단계(4) → 5 단계(5) → 6 단계(7) → 종료(8)
- Panel_X, Panel_Y: 대상자가 바라본 패널의 X 축, Y 축 좌표가 기록되어 있습니다. 단위는 unit 입니다(좌표계는 5.2 참고).
- PupilDia_L, PupilDia_R: 대상자 좌안, 우안의 동공 크기입니다. 단위는 mm 이며, 눈의 깜박임 혹은 센서의 오류로 인해 결측치(-1)가 발생하기도 합니다.
- PanelOrNot: 대상자가 키오스크 패널을 바라보고 있는지 여부입니다. 패널을 바라볼 때 1, 바라보지 않을 때 0 이 기록됩니다. 단, 대상자의 시선이 손에 가려질 때도 0 으로 기록됩니다.
- eyeOpenness_L, eyeOpenness_R: 대상자 좌안, 우안의 안구 개방 정도를 의미합니다. 0부터 1까지의 값으로 정규화되어 있으며 0은 닫힘, 1은 열림을 의미합니다.
- start 칼럼부터 ok_count 칼럼까지: '변수명'은 각각 대상자가 해당 버튼을 바라본 기간의 초 단위 누적 합계이며, '변수명_count'(혹은 'count_숫자')은 대상자가 해당 버튼을 바라본 누적 횟수입니다. 각각의 칼럼명은 다음의 버튼과 대응됩니다(표 3 참고). 예를 들어, instore 는 1 단계의 '매장에서 식사'를 피험자가 바라본 기간의 누적 합이며, instore_count 는 1 단계의 '매장에서 식사'를 피험자가 바라본 누적 횟수를 의미합니다.

단, 이 칼럼의 value 는 unity 작동 방식으로 인해 불안정하므로 '5.3 각 패널의 버튼 경계 좌표 값'을 이용하여 바라본 기간과 횟수를 직접 계산하여 이용할 것을 권장드립니다.

단계	버튼	칼럼명
시작	시작	start
1 단계	매장에서 식사	instore
	테이크 아웃	takeout
2 단계부터 6 단계	이전 화면	back
2 단계	쇠고기 버거	ham1
	치즈 버거	ham2
	치킨 버거	ham3
	마늘 버거	ham4

	1	T
	불고기 버거	ham5
	양파 버거	ham6
	새우 버거	ham7
	토마토 버거	ham8
3 단계	감자튀김	side1
	치즈스틱	side2
	스트링 치즈	side3
	해시브라운	side4
	치킨 랩	side5
	사과 파이	side6
	핫케이크	side7
	치킨 너겟	side8
4 단계	코카콜라	bev1
	사이다	bev2
	환타 오렌지	bev3
	생수	bev4
	바닐라 쉐이크	bev5
	초코 쉐이크	bev6
	딸기 쉐이크	bev7
	우유	bev8
5 단계	카드 결제	card
	모바일 상품권	mobile
6 단계	1	n1
	2	n2
	3	n3
	4	n4
	5	n5
	6	пб
	7	n7
	8	n8
	9	n9
	한칸삭제	delete
	0	n0
	확인	ok
	l F 3 칵런면과 대우되느	nj =

표 3. 칼럼명과 대응되는 버튼

• error: 대상자가 목표 항목 아닌 다른 항목을 선택한 횟수의 누적 합계입니다. 단, '이전 화면' 버튼을 누르면 1 감소됩니다. 몸 움직임 데이터의 칼럼과 동일합니다.

4.3 몸 움직임 데이터('번호_rpt.csv')

- total_task_time_s, hand_x_rotation_deg, hand_y_rotation_deg, hand_z_rotation_deg, time stamp 칼럼은 사용되지 않습니다.
- panel_num: 가상 키오스크 테스트의 단계를 의미합니다. 시선 추적 데이터의 칼럼과 동일합니다.
 시작(0) → 1 단계(1) → 2 단계(2) → 3 단계(3) → 4 단계(4) → 5 단계(5) → 6 단계(7) → 종료(8)
- head_x_m, head_y_m, head_z_m: 대상자의 머리 좌표가 3 축 좌표계(5.2 참고)로 기록되어 있습니다. 단위는 unit 입니다.
- head_x_rotation_deg, head_y_rotation_deg, head_z_rotation_deg: 대상자의 머리 각도가 degree 단위, 3 축 좌표계(5,2 참고)로 기록되어 있습니다. 각도의 증가 방향은 '5,3 좌표계 회전'을 참고해주세요.
- hand_x_m, hand_y_m, hand_z_m: 대상자의 손 좌표가 3 축 좌표계(5.2 참고)로 기록되어 있습니다. 단위는 unit 입니다.
- error: 대상자가 목표 항목이 아닌 다른 항목을 선택한 횟수의 누적 합계입니다. 단, '이전 화면' 버튼을 누르면 1 감소됩니다. 시선 추적 데이터의 칼럼과 동일합니다.

baseline 설정 시를 제외하고는 Panel num 칼럼의 0 과 8 을 제외한 데이터 사용을 권장드립니다.

5. VEEM VR 패널

'VEEM VR 패널 이미지 폴더'에서는 시작과 종료를 제외한 여섯 가지 단계별 키오스크 패널 이미지를 제공합니다.

5.1 패널의 X, Y, Z 좌표

그림 3. 패널 3축 좌표

5.2 좌표계

모든 데이터는 그림 4의 3축 좌표계를 기준으로 하고 있습니다.

그림 4. 좌표계의 x, y, z 축

5.3 좌표계 회전

좌표계의 회전은 3 축 좌표계를 따릅니다(그림 5 참고). 그림 5 의 (A)와 같이, 3 축 회전의 기준점은 대상자가 키오스크를 정면으로 바라보고 있을 때입니다. 또한 축에 따른 회전량의 증감은 그림 5 의 (B)와 같습니다. 예를 들어, 대상자가 고개를 정면에서 오른쪽으로 회전할 경우 y 축의 회전량은 0°에서 증가된 값을 갖게 되며, 대상자가 고개를 기울이지 않은 상태에서 왼쪽으로 기울일 경우 z 축의 회전량은 0°에서 증가된 값을 갖게 됩니다. y 와 z 축의 회전 범위는 0°부터 360°까지입니다. 다만, Unity 가 오일러 각도를 Quaternion으로 변환시키기 때문에 x 축 회전의 범위와 증가 방식은 y, z 축과 상이합니다. 그림 5 의 (C)와 같이, x 축은 0°부터 90°, 270°부터 360°까지의 회전량으로 표현됩니다. 즉, 일반적인 0°부터 360°까지 선형적으로 표현하는 방식이 아닌, 0°부터 90°까지 증가하고, 다시 0°까지 감소한 후, 0°(=360°)부터 270°까지 감소하고, 다시 270°부터 360°까지 증가하는 방식으로 0°부터 360°까지가 표현됩니다.

그림 5. 좌표계 회전. (A) 3축 모두 0° (=360°)일 경우 (B) 회전 축에 따른 증감 (C) x 축의 증감 범위

5.4 각 패널의 버튼 경계 좌표 값

표 4. 각 패널의 버튼 경계 좌표

6. VEEM SNSB 데이터('VEEM SNSB 데이터.csv')

다섯 가지 인지 영역의 raw score 입니다.

- 번호: 각 대상자에 부여된 고유 번호입니다. 1, 5, 26 번 대상자는 제외되었습니다. 대상자 정보의 칼럼과 동일합니다.
- 성명 코드: 각 대상자에 부여된 고유 성명 코드입니다. 대상자 정보의 칼럼과 동일합니다.
- 집단: HC 혹은 MCI가 기재되어 있으며, HC는 정상인, MCI는 경도인지장애로 진단된 대상자입니다. 대상자 정보의 칼럼과 동일합니다.
- DST_F+B: 주의집중력을 측정하기 위한 Digit Span Test 의 Forward+Backward 점수입니다. 0-17점의 범위를 가지며 점수가 높을수록 관련 인지 기능이 높음을 의미합니다.
- S-K-BNT: 언어능력을 측정하기 위한 Short form of the Korean-Boston Naming Test 점수입니다. 0-15점의 범위를 가지며 점수가 높을수록 관련 인지 기능이 높음을 의미합니다.
- RCFT_copyscore: 시공간능력을 측정하기 위한 Rey Complex Figure Test 의 Copy Score 입니다. 0-36점의 범위를 가지며 점수가 높을수록 관련 인지 기능이 높음을 의미합니다.
- SVLT_delayedrecall: 기억력을 측정하기 위한 Seoul Verbal Learning Test-Elderly's version 의 Delayed Recall 점수입니다. 0-12 점의 범위를 가지며 점수가 높을수록 관련 인지 기능이 높음을 의미합니다.
- K-TMT-E_B: 전두엽/실행기능을 측정하기 위한 Korean-Train Making Test-Elderly's version 의 Part B 점수입니다. 0-300 초의 범위를 가지며 값이 높을수록 test 를 수행하는 시간이 오래 걸렸음을 의미합니다.

7. License

이 데이터는 'VEEM 디지털 바이오마커 기초연구실' 소유로 딥러닝 기말 term project 이외의 활용 및 배포를 금지합니다.