Оглавление

Основные сведения из теории обыкновенных дифференциальны:	X
уравнений	4
Решение типовых задач	9
Практические задания2	4
Задача 1	4
Задача 2	5
Задача 3	6
Задача 4	8
Задача 5	0
Задача 6	1
Задача 7	2
Задача 8	3
Теоретические вопросы к экзамену	5
Список литературы	8

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (3 семестр) ТИПОВОЙ РАСЧЕТ

Основные сведения из теории обыкновенных дифференциальных уравнений.

Уравнение вида

$$F(x, y, y', \dots, y^{(n)}) = 0,$$
 (1)

или, в разрешенном относительно старшей производной виде,

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}), \tag{2}$$

называется дифференциальным уравнением n-го порядка. Решением уравнения (1) (или (2)) называется функция, определенная и n раз непрерывно дифференцируемая на некотором интервале $x \in (a,b)$, при подстановке которой в уравнение получается тождество, выполненное при всех $x \in (a,b)$. В общем случае уравнение (1) имеет бесконечное множество решений, которые описываются общим решением $y = y(x, C_1, C_2, \dots C_n)$ или общим интегралом $\Phi(x, y, C_1, C_2, \dots C_n) = 0$ (общее решение в неявном виде), где $C_1, C_2, \dots C_n$ произвольные константы. Дополняя уравнение (2) начальными условиями $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$, где x_0, y_0, \dots, y_{n-1} — заданные числа, приходим к задаче Коши.

Дифференциальные уравнения первого порядка.

1. *Уравнения с разделяющимися переменными* — это уравнения, имеющие вид (или приводящиеся к виду)

$$y' = f(x)g(y). (3)$$

Заменив производную отношением дифференциалов dy/dx, умножив обе части на dx и разделив на g(y), приходим к уравнению с разделенными переменными $\frac{dy}{g(y)} = f(x)dx$, беря интегралы от обеих частей которого, получаем общий интеграл уравнения (3).

2. Уравнения с однородной правой частью, или однородные уравнения— это уравнения вида (или приводящиеся к виду)

$$y' = f(y/x). (4)$$

Заменой y=ux, где u — новая неизвестная функция, уравнение (4) сводится к уравнению с разделяющимися переменными u'x+u=f(u).

3. *Линейные уравнения и уравнения Бернулли*. Уравнением Бернулли называется уравнение вида

$$y' + a(x)y = b(x)y^{\alpha}, \tag{5}$$

где α — некоторая действительная константа. При $\alpha=0$ уравнение Бернулли превращается в линейное уравнение

$$y' + a(x)y = b(x). (6)$$

Уравнение (5) (и, соответственно, (6)) может быть решено методом вариации произвольной постоянной или методом Бернулли. По сути, оба метода реализуют один и тот же способ решения, сводящий решение уравнения (5) (или(6)) к решению двух уравнений с разделяющимися переменными. Приведем описание метода Бернулли.

Будем искать решение уравнения (5) в виде произведения двух функций y=uv. Подстановка этого произведения в (5) приводит к уравнению $u'v+uv'+a(x)uv=b(x)u^{\alpha}v^{\alpha}$, или

$$u'v + u(v' + a(x)v) = b(x)u^{\alpha}v^{\alpha}.$$
 (7)

Находим функцию $v(x) \neq 0$ такую, что (v'+a(x)v) = 0 (последнее уравнение, называемое линейным однородным уравнением, допускает, как легко видеть, разделение переменных). Подставляя найденную функцию в (7), приходим к уравнению с разделяющимися переменными относительно $u: u'v(x) = b(x)v^{\alpha}(x)u^{\alpha}$.

4. Уравнения в полных дифференциалах — это уравнения вида

$$P(x,y)dx + Q(x,y)dy = 0, (8)$$

где функции P и Q удовлетворяют условию $\partial P/\partial y = \partial Q/\partial x$. Как известно, выполнение указанного условия обеспечивает существование функции U(x,y) такой, что $\partial U/\partial x = P$ и $\partial U/\partial y = Q$. Заменяя P и Q в уравнении (8) на $\partial U/\partial x$ и $\partial U/\partial y$, получаем: dU(x,y) = 0, откуда U(x,y) = C. Последнее равенство представляет собой общий интеграл уравнения (8).

Дифференциальные уравнения высших порядков.

1. Линейное уравнение *n*-го порядка — это уравнение вида

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x),$$
 (9)

где коэффициенты $a_0(x), a_1(x), \ldots, a_{n-1}(x)$ и правая часть b(x) представляют собой определенные на некотором интервале $x \in (a,b)$ непрерывные функции. Если $b(x) = 0 \ \forall x$, уравнение (9) называется однородным, в противном случае — неоднородным. Любое решение уравнения (9) определено на всем интервале (a,b).

а) Однородные линейные уравнения:

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = 0.$$
 (10)

Общее решение уравнения (10) имеет вид $y(x) = C_1y_1(x) + C_2y_2(x) + \ldots + C_ny_n(x)$, где C_1, C_2, \ldots, C_n — произвольные константы, а $y_1(x), y_2(x), \ldots, y_n(x)$ — фундаментальная система решений (ФСР) уравнения (10), т.е. совокупность любых n линейно независимых его решений.

Для уравнения с постоянными коэффициентами

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = 0, \tag{11}$$

где $a_0, a_1, \ldots, a_n = \text{const}, \Phi \text{CP}$ может быть найдена с помощью xapaкmepucmuчeckoго уравнения

$$\lambda^{n} + a_{n-1}\lambda^{n-1} + \ldots + a_{1}\lambda + a_{0} = 0.$$
 (12)

Именно, пусть λ_0 — действительный корень (12) кратности k. Тогда уравнение (11) имеет k линейно независимых решений вида $y_1 = e^{\lambda_0 x}, y_2 = x e^{\lambda_0 x}, \ldots, y_k = x^{k-1} e^{\lambda_0 x}$. Далее, если $\lambda_{1,2} = \alpha \pm i\beta$ — пара комплексно сопряженных корней кратности k (отметим, что мы рассматриваем только уравнения с действительными коэффициентами), то уравнение (11) имеет 2k линейно независимых решений $y_1 = e^{\alpha x} \cos \beta x, y_2 = e^{\alpha x} \sin \beta x, y_3 = x e^{\alpha x} \cos \beta x, \ldots, y_{2k-1} = x^{k-1} e^{\alpha x} \cos \beta x, y_{2k} = x^{k-1} e^{\alpha x} \sin \beta x$. Отыскав все корни характеристического уравнения (12) (напомним, что их ровно n с учетом кратности) и построив по ним решения дифференциального уравнения (12) в соответствии с описанными правилами, получим ФСР.

б) Неоднородные линейные уравнения. Общее решение неоднородного линейного уравнения имеет вид $y(x) = y_0(x) + C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x)$, где $y_0(x)$ — некоторое частное решение уравнения (9) (произвольное), а $y_1(x), y_2(x), \ldots, y_n(x)$ — фундаментальная система решений соответствующего однородного уравнения (10).

Для нахождения частного решения $y_0(x)$ уравнения (9) используются различные методы, среди которых отметим метод вариации произвольных постоянных, метод подбора решения в случае, когда b(x) является квазимногочленом, и использование преобразования Лапласа (операторный метод). Достаточно громоздкое описание перечисленных методов выходит за рамки настоящего краткого пособия. Мы отсылаем читателя, например,

к задачнику, где принят, как и у нас, конспективный способ изложения.

- 2. Уравнения, допускающие понижение порядка.
- а) Уравнение, не содержащее y, т.е. уравнение вида $F(x,y',\ldots,y^{(n)})=0$, сводится к уравнению (n-1)-го порядка путем замены y'=z(x) (соответственно, $y''=z',\ldots,y^{(n)}=z^{(n-1)}$).
- б) Уравнение, не содержащее x, т.е. уравнение вида $F(y,y',\ldots,y^{(n)})=0$, сводится к уравнению (n-1)-го порядка путем замены y'=p(y) (соответственно, $y''=\frac{d}{dx}p(y)=\frac{dp}{dy}\frac{dy}{dx}=p\frac{dp}{dy},\;y'''=\frac{d}{dx}\left(\frac{dp}{dy}p\right)=p^2\frac{d^2p}{dy^2}+p\left(\frac{dp}{dy}\right)^2$ и т.д.) В получаемом уравнении роль неизвестной функции играет p, а независимой переменной y.
- в) Уравнение, однородное относительно функции y и ее производных это уравнение вида $F(x,y,y',\ldots,y^{(n)})=0$, где функция F удовлетворяет для некоторого k условию $F(x,tz_0,tz_1,\ldots,tz_n)=t^kF(x,z_0,z_1,\ldots,z_n)$ $\forall t>0$, $x,z_0,z_1,\ldots,z_n\in\mathbb{R}$. Заменой y'=yz (соответственно, $y''=y(z^2+z')$ $y'''=y(z^3+3zz'+z'')$ и т.д.) сводится к уравнению (n-1)-го порядка относительно новой неизвестной функции z.
- г) Уравнение, приводящееся к виду $\frac{d}{dx}(G(x,y,y',\ldots,y^{(n)}))=0.$ Интегрированием по x сводится к уравнению (n-1)-го порядка $G(x,y,y',\ldots,y^{(n)})=C.$

Решение типовых задач

Задача 1

Найти общее решение линейного уравнения $y' + 4y = e^{-4x} + \sin x$ двумя способами:

- 1) методом вариации произвольной постоянной или Бернулли;
- 2) с помощью характеристического уравнения и подбора частного решения по правой части.

Найти также частное решение, удовлетворяющее условию y(0) = -1.

Решение

1) Общее решение будем искать методом Бернулли в виде y(x) = u(x)v(x). После подстановки в уравнение получим равенство

$$u'v + uv' + 4uv = e^{-4x} + \sin x,$$

ИЛИ

$$u'v + u(v' + 4v) = e^{-4x} + \sin x.$$

Функцию v определим из условия v' + 4v = 0. Это уравнение с разделяющимися переменными. Найдем его решение:

$$\int \frac{dv}{v} = \int -4 \, dx, \quad \ln|v| = -4x + \ln C, \quad v = Ce^{-4x}.$$

В качестве v(x) возьмем функцию $v(x)=e^{-4x}$. Тогда для нахождения u(x) нужно решить уравнение

$$e^{-4x}u' = e^{-4x} + \sin x,$$

ИЛИ

$$u' = 1 + e^{4x} \sin x.$$

Таким образом,

$$u(x) = \int (1 + e^{4x} \sin x) \, dx = x - \frac{1}{17} e^{4x} (\cos x - 4 \sin x) + C,$$

окончательно имеем

$$y(x) = u(x)v(x) = Ce^{-4x} + xe^{-4x} - \frac{1}{17}(\cos x - 4\sin x).$$

Интеграл $\int e^{4x} \sin x \, dx$ вычислен путем двукратного интегрирования по частям.

2) Пользуясь линейностью уравнения, его общее решение $y_{\text{он}}(x)$ будем искать в виде $y_{\text{он}}(x)=y_{\text{oo}}(x)+y_1(x)+y_2(x)$, где

 $y_{oo}(x)$ – общее решение однородного уравнения y'+4y=0, $y_1(x)$ – частное решение неоднородного уравнения $y'+4y=e^{-4x},$ $y_2(x)$ – частное решение неоднородного уравнения $y'+4y=\sin x.$

Общее решение однородного уравнения найдем, вычислив корни характеристического многочлена $\lambda + 4 = 0, y_{oo} = Ce^{-4x}$.

Частные решения y_1 , y_2 будем искать методом подбора при помощи неопределенных коэффициентов исходя из вида правой части.

Так как $\lambda = -4$ – корень характеристического многочлена, то $y_1 = Axe^{-4x}$. Подставляя y_1 в уравнение, получим

$$Ae^{-4x} - 4Axe^{-4x} + 4Axe^{-4x} = e^{-4x},$$

откуда

$$A=1,$$

и следовательно

$$y_1 = xe^{-4x}.$$

Решение y_2 имеет вид $y_2 = a \sin x + b \cos x$, подставляя в уравнение будем иметь

$$a\cos x - b\sin x + 4a\sin x + 4b\cos x = \sin x,$$

откуда после приведения подобных слагаемых получим

$$(a+4b)\cos x + (4a-b-1)\sin x = 0.$$

Приравнивая к нулю коэффициенты при $\sin x$ и $\cos x$, получаем систему уравнений для нахождения a и b:

$$\begin{cases} a+4b=0\\ 4a-b=1, \end{cases}$$

решением которой являются числа

$$a = \frac{4}{17}, \quad b = -\frac{1}{17}.$$

Таким образом,

$$y_2 = \frac{4}{17}\sin x - \frac{1}{17}\cos x.$$

Окончательно имеем

$$y_{\text{OH}}(x) = Ce^{-4x} + xe^{-4x} + \frac{4}{17}\sin x - \frac{1}{17}\cos x.$$

Найдем частное решение, удовлетворяющее условию y(0) = -1:

$$-1 = y(0) = C - \frac{1}{17}$$
, откуда $C = -1 + \frac{1}{17} = -\frac{16}{17}$.

Окончательно имеем

$$y_{\text{\tiny YH}}(x) = -\frac{16}{17}e^{-4x} + xe^{-4x} + \frac{4}{17}\sin x - \frac{1}{17}\cos x.$$

Задача 2

Найти общее решение уравнения второго порядка $yy'' - (y')^2 = 2y^3y'$.

Решение

Так как в уравнение не входит независимая переменная x, можно сделать замену y'(x) = p(y). Так как при этом

$$y''(x) = p'(y)p(y) \quad \left(p'(y) = \frac{dp}{dy}\right),$$

получим уравнение для p(y):

$$yp'p - p^2 = 2y^3p.$$

Функция p=0 является решением этого уравнения, а значит функции $y={\rm const}$ входят в общее решение.

Разделим полученное уравнение на $p \neq 0$. Получим линейное неоднородное уравнение первого порядка:

$$yp' - p = 2y^3,$$

решив которое методом Бернулли, будем иметь

$$p = y^3 + C_1 y$$
 или $y' = y^3 + C_1 y$.

Последнее уравнение является уравнением с разделяющимися переменными и его решение выражается из равенства

$$\int \frac{dy}{y^3 + C_1 y} = \int dx.$$

Значение интеграла в левой части равенства зависит от значения произвольной постоянной C_1 . Рассмотрим два случая:

1)
$$C_1 = 0$$
, тогда

$$\int \frac{dy}{y^3 + C_1 y} = \int \frac{dy}{y^3} = -\frac{1}{2y^2} + C.$$

Окончательно получаем

$$-\frac{1}{2y^2} = x + C_2.$$

2) $C_1 \neq 0$, тогда

$$\int \frac{dy}{y^3 + C_1 y} = \frac{1}{C_1} \int \left(\frac{1}{y} - \frac{y}{y^2 + C_1} \right) dy =$$

$$= \frac{1}{C_1} \ln|y| - \frac{1}{2C_1} \ln|y^2 + C_1| + C.$$

Окончательно получаем

$$\frac{1}{C_1} \ln|y| - \frac{1}{2C_1} \ln|y^2 + C_1| = x + C_2.$$

Задача 3

Найти общее решение уравнения $y'' + 4y' + 13y = \frac{\operatorname{tg}^2 3x}{e^{2x}}$, используя характеристическое уравнение и метод вариации произвольных постоянных.

Решение

Общее решение $y_{oo}(x)$ однородного уравнения y''+4y'+13y=0 получим, найдя корни характеристического многочлена

$$\lambda^2 + 4\lambda + 13 = 0$$
, $\lambda_{12} = -2 \pm 3i$.
 $y_{00}(x) = C_1 e^{-2x} \sin 3x + C_2 e^{-2x} \cos 3x$, $C_1 = \text{const}$, $C_2 = \text{const}$.

Решение $y_{\text{oh}}(x)$ неоднородного уравнения будем искать в виде

$$y_{\text{OH}}(x) = C_1(x)e^{-2x}\sin 3x + C_2(x)e^{-2x}\cos 3x.$$

Составим линейную систему для нахождения функций $C_1'(x)$, $C_2'(x)$

$$\begin{cases} C_1' e^{-2x} \sin 3x + C_2' e^{-2x} \cos 3x = 0 \\ C_1' e^{-2x} (3\cos 3x - 2\sin 3x) - C_2' e^{-2x} (3\sin 3x + 2\cos 3x) = \frac{\operatorname{tg}^2 3x}{e^{2x}}, \end{cases}$$

ИЛИ

$$\begin{cases} C_1' \sin 3x + C_2' \cos 3x = 0\\ 3C_1' \cos 3x - 3C_2' \sin 3x = \operatorname{tg}^2 3x. \end{cases}$$

Решением этой системы являются функции

$$C_1'(x) = \frac{\sin^2 3x}{3\cos 3x}, \quad C_2'(x) = -\frac{\sin^3 3x}{3\cos^2 3x}.$$

Интегрируя, находим

$$C_{1}(x) = \frac{1}{3} \int \frac{\sin^{2} 3x}{\cos 3x} dx = \frac{1}{9} \int \frac{\sin^{2} 3x}{\cos^{2} 3x} d\sin 3x =$$

$$= \frac{1}{9} \int \frac{t^{2}}{1 - t^{2}} dt = -\frac{t}{9} + \frac{1}{9} \int \frac{dt}{1 - t^{2}} dt = -\frac{t}{9} + \frac{1}{18} \ln \left| \frac{1 + t}{1 - t} \right| + \widetilde{C}_{1} =$$

$$= -\frac{\sin 3x}{9} + \frac{1}{18} \ln \left| \frac{1 + \sin 3x}{1 - \sin 3x} \right| + \widetilde{C}_{1},$$

$$C_2(x) = -\frac{1}{3} \int \frac{\sin^3 3x}{\cos^2 3x} dx = \frac{1}{9} \int \frac{\sin^2 3x}{\cos^2 3x} d\cos 3x =$$

$$= \frac{1}{9} \int \frac{1 - t^2}{t^2} dt = \frac{1}{9} \int \frac{dt}{t^2} - \frac{1}{9} \int dt = -\frac{1}{9t} - \frac{t}{9} + \widetilde{C}_2 =$$

$$= -\frac{1}{9\cos 3x} - \frac{\cos 3x}{9} + \widetilde{C}_2.$$

Окончательно получим

$$y_{\text{OH}}(x) = C_1(x)e^{-2x}\sin 3x + C_2(x)e^{-2x}\cos 3x =$$

$$= \widetilde{C}_1e^{-2x}\sin 3x + \widetilde{C}_2e^{-2x}\cos 3x -$$

$$-\frac{2}{9}e^{-2x} + \frac{1}{18}e^{-2x}\sin 3x \ln\left|\frac{1+\sin 3x}{1-\sin 3x}\right|.$$

Задача 4

1) Проверить, что $y_1(x) = x^3$ есть частное решение однородного

уравнения $x^2y'' - 6xy' + 12y = 0$. Зная это, найти общее решение этого уравнения.

2) Найти общее решение неоднородного уравнения $x^2y'' - 6xy' + 12y = 6x^5$, предположив, что одно из частных решений этого уравнения является многочленом.

Решение

1) Обозначим через $L(y)=x^2y''-6xy'+12y$. Так как $y_1'(x)=3x^2,\ y_1''(x)=6x,$ то

$$L(y_1) = 6x^3 - 18x^3 + 12x^3 = 0$$

и следовательно функция $y_1(x) = x^3$ является частным решением однородного уравнения L(y) = 0.

Найдем второе частное решение однородного уравнения $y_2(x)$. Для этого заметим, что

$$\left(\frac{y_2}{y_1}\right)' = \frac{W}{y_1^2},$$

где $W=y_1y_2'-y_1'y_2$ — определитель Вронского системы функций y_1,y_2 . Применяя формулу Лиувилля-Остроградского и учитывая, что $y_1(x)=x^3$, получим

$$\left(\frac{y_2}{x^3}\right)' = \frac{W}{x^6} = \frac{e^{\int \frac{6x}{x^2} dx}}{x^6} = 1$$

и следовательно

$$y_2(x) = x^4.$$

Так как функции $y_1(x) = x^3$ и $y_2(x) = x^4$ линейно независимы, то они образуют фундаментальную систему решений для линейного однородного уравнения второго порядка, а значит

$$y_{00} = C_1 x^3 + C_2 x^4$$
.

2) Будем искать частное решение неоднородного уравнения $y_{\text{чн}}(x)$ в виде многочлена 5-ой степени, поскольку при подстановке в левую часть уравнения многочлена степени $k \neq 3, 4$ получаем многочлен той же степени, а в правой части стоит многочлен степени 5:

$$y_{\text{YH}}(x) = Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F.$$

Подставив в уравнение, получим

$$x^{2}(20Ax^{3} + 12Bx^{2} + 6Cx + 2D) - 6x(5Ax^{4} + 4Bx^{3} + 3Cx^{2} + 2Dx + E) + 12(Ax^{5} + Bx^{4} + Cx^{3} + Dx^{2} + Ex + F) = 6x^{5},$$

Приведем подобные слагаемые

$$(2A - 6)x^5 + 2Dx^2 + 6Ex + 12F \equiv 0.$$

Приравнивая к нулю коэффициенты при степенях x, получим $A=3,\ D=E=F=0,\ B$ и C – произвольные. Таким образом, в качестве частного решение $y_{\rm чн}(x)$ неоднородного уравнения $L(y)=6x^5$ можно взять функцию

$$y_{\text{\tiny YH}}(x) = 3x^5,$$

а его общее решение $y_{\text{он}}(x)$ равно

$$y_{\text{OH}}(x) = C_1 x^3 + C_2 x^4 + 3x^5.$$

Задача 5

Решить задачу Коши

$$y'' + 4y' = e^{4x}, y(0) = 0, y'(0) = 0$$

а) с помощью формулы Дюамеля, решив предварительно вспомогательную задачу Коши

$$z'' + 4z' = 1$$
, $z(0) = 0$, $z'(0) = 0$;

б) методом неопределенных коэффициентов (подбором частного решения неоднородного уравнения по правой части).

Решение

а) По формуле Дюамеля имеем

$$y(x) = e^{4x} * z'(x),$$

где z(x)– решение вспомогательной задачи

$$z'' + 4z' = 1$$
, $z(0) = 0$, $z'(0) = 0$.

Функцию z'(x) будем искать операторным методом. Для этого обозначим $z(x) \doteqdot Z(p)$. Так как

$$z(0) = 0, \ z'(0) = 0, \ \text{To} \ z'(x) \doteqdot pZ(p), \ z''(x) \doteqdot p^2Z(p).$$

Функция Z(p) удовлетворяет уравнению

$$p^2Z + 4pZ = \frac{1}{p},$$

откуда

$$pZ = \frac{1}{p^2 + 4p} = \frac{1}{4} \left(\frac{1}{p} - \frac{1}{p+4} \right)$$

и следовательно, так как $z'(x) \doteq pZ(p)$,

$$z'(x) \doteqdot \frac{1}{4} \left(\frac{1}{p} - \frac{1}{p+4} \right)$$
. Отсюда $z'(x) = \frac{1}{4} (1 - e^{-4x})$.

Окончательно получим

$$y(x) = e^{4x} * z'(x) = e^{4x} * \left(\frac{1}{4} - \frac{e^{-4x}}{4}\right) =$$

$$= \frac{1}{4} \int_{0}^{x} e^{4(x-\tau)} (1 - e^{-4\tau}) d\tau =$$

$$= \frac{e^{4x}}{4} \int_{0}^{x} (e^{-4\tau} - e^{-8\tau}) d\tau =$$

$$= \frac{e^{4x}}{4} \left(\frac{e^{-8\tau}}{8} - \frac{e^{-4\tau}}{4}\right) \Big|_{\tau=0}^{\tau=x} =$$

$$= \frac{e^{4x}}{4} \left(\frac{e^{-8x}}{8} - \frac{e^{-4x}}{4} - \frac{1}{8} + \frac{1}{4}\right) =$$

$$= \frac{e^{4x}}{32} + \frac{e^{-4x}}{32} - \frac{1}{16}.$$

б) Найдем сначала $y_{\rm oh}(x)$ – общее решение неоднородного уравнения. Оно равно

$$y_{\text{oH}}(x) = y_{\text{oo}}(x) + y_{\text{чH}}(x).$$

Общее решение однородного уравнения $y_{oo}(x)$ найдем, составив характеристический многочлен и вычислив его корни:

$$\lambda^2 + 4\lambda = 0$$
, $\lambda_1 = -4$, $\lambda_2 = 0$, $y_{00} = C_1 e^{-4x} + C_2$.

Частное решение неоднородного уравнения $y_{\rm чн}(x)$ найдем методом подбора, при помощи неопределенных коэффициентов, исходя из вида правой части. Так как $\gamma=4$ – не корень характеристического многочлена, то $y_{\rm чн}(x)$ может быть найдено в виде

$$y_{\text{\tiny YH}}(x) = ae^{4x}.$$

Подставим эту функцию в неоднородное уравнение, получим

$$16ae^{4x} + 16ae^{4x} = e^{4x}.$$

Отсюда

$$a = \frac{1}{32}$$
, a $y_{\text{чн}}(x) = \frac{e^{4x}}{32}$.

Таким образом, общее решение неоднородного уравнения имеет вид

$$y_{\text{oH}}(x) = \frac{e^{4x}}{32} + C_1 e^{-4x} + C_2.$$

Так как

$$y'(x) = \frac{e^{4x}}{8} - 4C_1e^{-4x},$$

то для нахождения решения задачи Коши с начальными условиями y(0)=y'(0)=0 получим систему уравнений относительно неизвестных C_1 и C_2

$$\begin{cases} C_1 + C_2 = -\frac{1}{32} \\ 4C_1 = \frac{1}{8}. \end{cases}$$

Отсюда

$$C_1 = \frac{1}{32}, \quad C_2 = -\frac{1}{16},$$

и значит

$$y(x) = \frac{e^{4x}}{32} + \frac{e^{-4x}}{32} - \frac{1}{16}.$$

Задача 6

Найти изображение периодического оригинала с периодом T=4. На рисунке указан вид его графика на одном периоде.

Решение

По свойству преобразования Лапласа изображение F(p) периодического оригинала f(t) вычисляется по формуле

$$F(p) = \frac{1}{1 - e^{-pT}} \int_{0}^{T} e^{-pt} f(t) dt.$$

Для функции f(t), изображенной на рисунке, будем иметь

$$F(p) = \frac{1}{1 - e^{-4p}} \left(\int_{0}^{2} \frac{3}{2} t e^{-pt} dt + \int_{2}^{4} 3e^{-pt} dt \right) = \frac{1}{1 - e^{-4p}} (I_1 + I_2).$$

Вычислим интегралы I_1 и I_2 .

$$I_{1} = \int_{0}^{2} \frac{3}{2} t e^{-pt} dt = -\frac{3}{2p} t e^{-pt} \Big|_{t=0}^{t=2} + \frac{3}{2p} \int_{0}^{2} e^{-pt} dt =$$

$$= -\frac{3}{p} e^{-2p} - \frac{3}{2p^{2}} e^{-pt} \Big|_{t=0}^{t=2} =$$

$$= -\frac{3}{p} e^{-2p} + \frac{3}{2p^{2}} (1 - e^{-2p}),$$

$$I_2 = 3 \int_{2}^{4} e^{-pt} dt = -\frac{3}{p} e^{-pt} \Big|_{t=2}^{t=4} = -\frac{3}{p} e^{-4p} + \frac{3}{p} e^{-2p}.$$

Окончательно получим

$$F(p) = \frac{3}{2p^2(1+e^{-2p})} - \frac{3e^{-4p}}{p(1-e^{-4p})}.$$

Задача 7

Операторным методом найти решение задачи Коши

$$y'' + 6y' = xe^{-3x}, \quad y(0) = 1, \quad y'(0) = -1.$$

Решение

Обозначим преобразование Лапласа функции y(x) через Y(p). Тогда по теореме о дифференцировании оригинала будем иметь

$$y''(x) \doteq p^{2}Y - py(0) - y'(0) = p^{2}Y - p + 1,$$

$$y'(x) \doteq pY - y(0) = pY - 1,$$

а по теореме о дифференцировании изображения

$$xe^{-3x} \doteqdot \frac{1}{(p+3)^2}.$$

Таким образом, функция Y(p) находится из уравнения

$$p^{2}Y - p + 1 + 6pY - 6 = \frac{1}{(p+3)^{2}}$$

и равна

$$Y(p) = \frac{p+5}{p^2+6p} + \frac{1}{(p^2+6p)(p+3)^2}.$$

Разлагая полученные дроби в сумму простейших, получим

$$Y(p) = \frac{23}{27} \frac{1}{p} + \frac{4}{27} \frac{1}{p+6} - \frac{1}{9} \frac{1}{(p+3)^2},$$

откуда

$$y(x) = \frac{23}{27} + \frac{4}{27}e^{-6x} - \frac{1}{9}xe^{-3x}.$$

Задача 8

Используя теорему сравнения Штурма, оценить сверху и снизу число нулей решений уравнения $y'' + 2\sin(2x)y' + 2xy = 0$ на отрезке [6, 17].

Решение

Заменой

$$y = ze^{-\frac{1}{2}\int p(x) \, dx}$$

уравнение

$$y'' + p(x)y' + q(x)y = 0$$

приводится к виду

$$z'' + Q(x)z = 0,$$

где

$$Q(x) = -\frac{1}{4}p^2 - \frac{1}{2}p' + q.$$

Таким образом, уравнение $y'' + 2\sin(2x)y' + 2xy = 0$ после соответствующей замены приводится к виду

$$z'' + (2x - \sin^2 2x - 2\cos 2x)z = 0.$$

Заметим, что так как

$$e^{-\frac{1}{2}\int p(x)\,dx} \neq 0,$$

то нули функций y(x) и z(x) совпадают.

Функция $2x - \sin^2 2x - 2\cos 2x$ оценивается на отрезке [6, 17]

$$9 \leqslant 2x - \sin^2 2x - 2\cos 2x \leqslant 36.$$

Таким образом, количество нулей n решений уравнения $y'' + 2\sin{(2x)}y' + 2xy = 0$ на отрезке [6,17] оценивается сверху и снизу через количество нулей решений уравнений

$$y'' + 9y = 0$$
 и $y'' + 36y = 0$

на отрезке [6, 17] соответственно. Следовательно

$$10 \leqslant n \leqslant 22$$
.

Действительно, общее решение $y_1(x)$ уравнения y'' + 9y = 0 выражается формулой

$$y_1(x) = C_1 \sin(3x + \varphi_1),$$

а общее решение $y_2(x)$ уравнения y'' + 36y = 0 формулой

$$y_2(x) = C_2 \sin(6x + \varphi_2).$$

Так как расстояние между двумя соседними нулями у функции $y_1(x)$ равно $\frac{\pi}{3}$, а у функции $y_2(x) - \frac{\pi}{6}$, то у функция $y_1(x)$ на отрезке [6,17] имеет либо 10 либо 11 нулей, а функция $y_2(x)$ – либо 21 либо 22. Отсюда следует полученная оценка.

Практические задания

Задача 1. Найти общее решение линейного уравнения 1-го порядка двумя способами:

- 1) методом вариации произвольной постоянной или Бернулли;
- 2) с помощью характеристического уравнения и подбора частного решения по правой части.

Найти также частное решение, удовлетворяющее условию $y(0)=y_0.$

$N_{ar{o}}$	Уравнение	y_0	Nº	Уравнение	y_0
1	$y' - 2y = x^2 + x$	-1	16	$y' - 6y = xe^{-2x} + e^x$	-2
2	$y' + y = e^{-x} + 2x$	1	17	$y' + 4y = x^2 + 3x$	3
3	$y' - 3y = \sin x + e^x$	-1	18	$y' - 3y = e^{3x} - x$	-3
4	$y' - y = xe^{-x} + e^{2x}$	2	19	$y' - 4y = e^{4x} + \sin x$	-1
5	$y' + 3y = x^2 - 2x$	-2	20	$y' + 6y = x^2 + 1$	2
6	$y' + 3y = e^{-2x} + \sin x$	-3	21	$y' + 5y = e^{-5x} + \cos x$	1
7	$y' + 2y = e^{-2x} - xe^x$	3	22	$y' + y = e^{-x} - x$	4
8	$y' - y = e^{-x} - xe^{-2x}$	1	23	$y' + 6y = e^{2x} + \cos x$	-2
9	$y' - y = e^x + \cos x$	2	24	$y' - 6y = 3 - xe^{3x}$	-4

	Продолжение задачи 1									
$N_{\overline{0}}$	Уравнение у₀ № Уравнение									
10	$y' + y = xe^{2x} - e^{-x}$	-1	25	$y' + 2y = 2x^2 + 2x$	2					
11	$y' + 3y = x + e^{-3x}$	-2	26	$y' + y = xe^x + e^{2x}$	1					
12	$y' - 4y = xe^{-3x} - e^{2x}$	3	27	$y' - y = xe^{2x} - e^x$	1					
13	$y' + 4y = e^{-4x} + xe^x$	2	28	$y' - 4y = e^{4x} + xe^x$	2					
14	$y' + 5y = e^{4x} + x$	-3	29	$y' + 6y = xe^{-2x} + e^x$	-2					
15	$y' - 5y = \sin 2x - e^{-x}$	1	30	$y' + 4y = e^{-4x} + \sin x$	-1					

Задача 2. Найти общее решение уравнения второго порядка.

$N_{\overline{0}}$	Уравнение	$N_{\overline{0}}$	Уравнение
1	yy'' = y'(y'+4)	16	$yy'' - (y')^2 = y^2y'$
2	$yy'' + (y')^2 = \ln x$	17	$yy'' + 4y' = (y')^2$
3	$xy^2y'' = y'(1-y^2)$	18	$yy'' + yy' \operatorname{tg} x + 2(y')^2 = 0$
4	$xy'' - y' = x^2 e^y y'$	19	$1 + (y')^2 = 2yy''$

	Продолжение задачи 2								
№	Уравнение	$N_{\overline{0}}$	Уравнение						
5	$y''\sin y = (y')^2$	20	$yy'' - 2(y')^2 = 4y^2(y')^3$						
6	$yy'' = (y')^2 + 2$	21	$x^2yy'' = (xy' + y)^2$						
7	$y''(e^x + 1) + y' = 1$	22	$xy'' + x(y')^2 + y' = 0$						
8	$yy'' = 2(y')^2 - (y')^3$	23	$xy'' \ln x = y'$						
9	$2yy'' = 4y^2 + (y')^2$	24	$xyy'' + x(y')^2 + yy' = 0$						
10	$x^2y'' + xy' = e^{xy'}$	25	yy'' = y'(y'+1)						
11	$y'' = y'/x + 4x^2 + (y')^2$	26	$xy'' - 2y' = x^3 e^y y'$						
12	$yy'' + 3y = (y')^2$	27	$y''(e^x + 1) - y' = 1$						
13	$xyy'' - (x+1)yy' = x(y')^{2}$	28	$x^2y'' + xy' = e^{-xy'}$						
14	$yy'' - (y')^2 + y^2 \sin x = 0$	29	$xyy'' + x(y')^2 = (x+2)yy'$						
15	$5y''y(y')^3 = (y')^5 + 4$	30	$yy'' - (y')^2 = 2y^3y'$						

Задача 3. Найти общее решение уравнения

$$y'' + ay' + by = f(x),$$

используя характеристическое уравнение и метод вариации про-извольных постоянных.

$N_{\overline{0}}$	a	b	f(x)	Nº	a	b	f(x)
1	0	-1	$\frac{e^x}{e^x - 1}$	16	0	-1	$\frac{1}{e^x + 1}$
2	-2	1	$\frac{e^x}{\sqrt{x}} \ln x$	17	-2	1	$e^x x \ln x$
3	-5	6	$\frac{e^{3x}}{e^x + 2}$	18	5	6	$\frac{1}{e^{3x} - e^{4x}}$
4	0	1	$\frac{1}{\sin 2x}$	19	0	4	$\frac{1}{\sin 4x}$
5	-1	0	$\frac{e^{2x}}{\sqrt{1-e^{2x}}}$	20	1	0	$\frac{1}{e^{2x}\sqrt{e^{2x}+1}}$
6	-2	2	$\frac{e^x}{\sin^2 x}$	21	-2	5	$e^x \operatorname{tg} 2x$
7	0	-4	$\frac{e^{2x}}{e^{2x}+1}$	22	0	-4	$\frac{1}{e^{2x} - 1}$
8	2	1	$\frac{\ln(x+1)}{e^x}$	23	2	1	$\frac{x\ln(1-x)}{e^x}$
9		12	$\frac{e^{4x}}{e^x - 3}$	24	7	12	$\frac{1}{e^{4x} + 2e^{5x}}$
10	0	9	$\frac{1}{\cos^3 3x}$	25	0	16	$tg^2 4x$
11	-2	0	$e^{2x}\sqrt{1-e^{4x}}$	26	2	0	$\sqrt{e^{4x} + 1}$

	Продолжение задачи 3										
$N_{ar{0}}$	a	b	f(x)	$N_{ar{0}}$	a	b	f(x)				
12	2	2	$\frac{1}{e^x \cos^2 x}$	27	2	5	$\frac{\operatorname{ctg} 2x}{e^x}$				
13	0	-9	$\frac{e^{3x}}{2 - e^{3x}}$	28	0	- 9	$\frac{1}{2e^{3x}+1}$				
14	-6	9	$e^{3x}\ln(x^2+1)$	29	6	9	$\frac{\ln(x^2 - 2)}{e^{3x}}$				
15	-4	13	$\frac{e^{2x}}{\cos^2 3x}$	30	4	13	$\frac{\operatorname{tg}^2 3x}{e^{2x}}$				

Задача 4. L(y) = a(x)y'' + b(x)y' + c(x)y.

- 1) Проверить, что $y_1(x)$ есть частное решение однородного уравнения L(y)=0. Зная это, найти общее решение уравнения L(y)=0.
- 2) Найти общее решение неоднородного уравнения L(y) = f(x) с заданной правой частью f(x), предположив, что одно из частных решений уравнения L(y) = f(x) является многочленом.

№	a(x)	b(x)	c(x)	$y_1(x)$	f(x)
1	x^2	-4x	6	x^2	$2x^4$
2	x^2	x	-1	x	$3x^2 - 1$
3	x^2+1	-2x	2	x	$2x^3 + 6x$
4	x-1	-x	1	x	$x^3 - 3x$

Продолжение задачи 4									
$N_{\overline{0}}$	a(x)	b(x)	c(x)	$y_1(x)$	f(x)				
5	x^2	-x	1	x	$4x^3 - x^2$				
6	igg x	2	x	$(\sin x)/x$	x^3				
7	ig x	2	-x	e^x/x	$x^3 + 2x$				
8	x^4	0	-1	$xe^{1/x}$	$2x^4 - x^2$				
9	x^4	$2x^3$	-1	$e^{1/x}$	$6x^4 - x^2$				
10	x^2	-2x	2	x	$3x^4 - 1$				
11	x^2	-x	-3	x^3	$x^2 - 1$				
12	x^2	0	-2	x^2	$2x^3 - x$				
13	x^2	x	-4	$1/x^2$	$5x^3 + 3x$				
14	x^2	4x	2	1/x	$3x^2 - 2x$				
15	x^4	0	1	$x\sin(1/x)$	$6x^5 + x^3$				
16	x^2	-4x	6	x^3	$2x^4 + 2x$				
17	x^2	x	-1	1/x	$-3x^2 - 1$				
18	x^2+1	-2x	2	$x^2 - 1$	$6x^4 + 12x^2$				
19	x-1	-x	1	e^x	x^2-2x				
20	x^2	-x	1	$x \ln x$	x^2+1				

Продолжение задачи 4									
$N^{\underline{o}}$	a(x)	b(x)	c(x)	$y_1(x)$	f(x)				
21	x	2	x	$(\cos x)/x$	$x^2 + 2$				
22	x	2	-x	e^{-x}/x	$x^2 - 2$				
23	x^4	0	-1	$xe^{-1/x}$	$6x^5 - x^3$				
24	x^4	$2x^3$	-1	$e^{-1/x}$	$12x^5 - x^3$				
25	x^2	-2x	2	x^2	x^3				
26	x^2	-x	-3	1/x	$3x^2 + 4x$				
27	x^2	0	-2	1/x	$5x^4 - x$				
28	x^2	x	-4	x^2	$5x^3 - 4$				
29	x^2	4x	2	$1/x^{2}$	$x^2 + 2x$				
30	x^2	-6x	12	x^3	$6x^5$				

Задача 5. Решить задачу Коши

$$y'' + ay' + by = f(x), \ y(0) = 0, \ y'(0) = 0$$

а) с помощью формулы Дюамеля, решив предварительно вспомогательную задачу Коши

$$z'' + az' + bz = 1$$
, $z(0) = 0$, $z'(0) = 0$;

б) методом неопределенных коэффициентов (подбором частного решения неоднородного уравнения по правой части).

Nº	a	b	$\int f(x)$	№	a	b	f(x)	Nº	a	b	f(x)
1	-3	2	e^x	11	-1	-2	e^{-x}	21	-7	10	e^x
2	3	-4	$x^2 + 1$	12	0	-4	$\cos x$	22	1	-6	$x^2 + 2x$
3	3	2	e^{3x}	13	0	-1	$x^2 + x$	23	0	- 9	e^{3x}
4	0	-1	$\cos x$	14	1	0	$x^2 - 1$	24	1	-2	e^{2x}
5	3	0	xe^x	15	6	-7	e^{-4x}	25	-1	-2	$x^2 + 1$
6	0	-9	e^{-3x}	16	-2	1	e^x	26	-1	-30	e^{-x}
7	-1	0	e^{2x}	17	-2	-3	e^{2x}	27	0	1	$\sin x$
8	2	-3	x+1	18	-5	6	e^{-x}	28	0	-4	e^{2x}
9	0	-1	xe^x	19	-3	-4	e^{3x}	29	1	-2	x+1
10	3	-4	$\sin x$	20	0	- 9	x^2	30	4	0	e^{4x}

Задача 6. Найти изображение периодического оригинала с периодом T=2a. На рисунках указан вид его графика на одном периоде.

2a x

Выбор чисел а и b:

номера вариантов	a	b
1, 6, 11, 16, 21, 26	1	2
2, 7, 12, 17, 22, 27	1	1
3, 8, 13, 18, 23, 28	2	1
4, 9, 14, 19, 24, 29	2	2
5, 10, 15, 20, 25, 30	2	3

Задача 7. Операторным методом найти решение задачи Коши.

 $\overline{0}$

Для нечетных вариантов:

$$y'' - 2\alpha y' + (\alpha^2 + \beta^2)y = e^{\gamma x}, \quad y(0) = -1, \quad y'(0) = 1.$$

Для четных вариантов:

$$y'' + 2\alpha y' + (\alpha^2 - \beta^2)y = xe^{\gamma x}, \quad y(0) = 1, \quad y'(0) = -1.$$

$N_{ar{f o}}$	α	β	γ	$N_{\overline{0}}$	α	β	γ	$\mathcal{N}^{\underline{o}}$	α	β	γ
1,16	1	2	2	6,21	-2	1	-1	11,26	-1	3	2
2,17	-2	2	-1	7,22	1	1	2	12,27	-3	1	3
3,18	2	3	-2	8,23	-3	2	2	13,28	-1	2	2
4,19	-1	1	-1	9,24	3	2	-3	14,29	2	1	1
5,20	3	1	-1	10,25	2	2	-1	15,30	3	3	-3

Задача 8. Используя теорему сравнения Штурма, оценить сверху и снизу число нулей решений уравнения y'' + p(x)y' + q(x)y = 0 на отрезке [a,b].

№	p(x)	q(x)	a	b	№	p(x)	q(x)	a	b
1	-1	2x	5	20	16	3^{-x}	3^x	4	6
2	1/x	x^2	5	9	17	2x	$3x^2$	5	10
3	$-\sin x$	-x	-20	-10	18	-2x	$(x-2)^2$	-12	-6
4	e^x	e^{2x}	3	4	19	-3	x	12	22
5	2x	$2x^2$	4	7	20	$3/x^2$	$3x^2$	4	7
6	2x	$(x-1)^2$	-15	-5	21	$-\operatorname{arctg} x$	-2x	-20	-8
7	2	x^2	5	8	22	x	2^{-x}	-10	-8
8	-2/x	-x/2	-30	-20	23	-x	$x^2/2$	6	12
9	$\cos^2 x$	x+1	10	25	24	-4x	$(2x-1)^2$	-16	-10

	Продолжение задачи 8										
№	p(x)	q(x)	a	b	$\mathcal{N}_{ar{0}}$	p(x)	q(x)	a	b		
10	-x	2^x	6	8	25	-2	2x	5	13		
11	-x	x^2	-10	-6	26	$2\sin x$	x	3	8		
12	4 <i>x</i>	$(2x+1)^2$	8	16	27	2x	$2x^2 + 1$	1	5		
13	5	-4x	-15	-5	28	$2\cos^2 x$	x	3	8		
14	$1/x^2$	2x	12	20	29	2x	$(x+1)^2$	2	8		
15	$\sin 2x$	-3x	-20	-10	30	$2\sin 2x$	2x	6	17		

Теоретические вопросы к экзамену по дифференциальным уравнениям

- 1. Дифференциальное уравнение первого порядка. Частное и общее решение, общий интеграл, интегральная кривая. Поле направлений.
- 2. Методы решения дифференциальных уравнений с разделяющимися переменными и уравнений с однородной правой частью.
- 3. Методы решения линейных уравнений 1-го порядка и уравнений Бернулли. Уравнения в полных дифференциалах.
- 4. Доказательство теоремы существования и единственности решения задачи Коши для дифференциального уравнения 1-го порядка методом последовательных приближений.
- 5. Глобальная теорема единственности решения задачи Коши для дифференциального уравнения 1-го порядка.
- 6. Непродолжаемые решения, их свойства. Теорема о существовании непродолжаемых решений.
- 7. Нормальная система дифференциальных уравнений 1-го порядка. Формулировка основных теорем о существовании и единственности решений.
- 8. Сведение дифференциального уравнения n-го порядка к нормальной системе уравнений 1-го порядка. Формулировка основных теорем о существовании и единственности решений уравнения n-го порядка. Общее решение и общий интеграл уравнения n-го порядка.
- 9. Дифференциальные уравнения высших порядков. Методы понижения порядка.

- 10. Линейное дифференциальное уравнение n-го порядка, теорема о продолжении его решений.
- 11. Определитель Вронского, его свойства. Формула Лиувилля.
- 12. Теорема о множестве решений линейного однородного уравнения n-го порядка. Фундаментальная система решений и общее решение.
- 13. Линейное неоднородное уравнение n-го порядка. Структура общего решения. Принцип суперпозиции.
- 14. Метод вариации произвольных постоянных для линейного неоднородного уравнения n-го порядка.
- 15. Комплексные функции действительного аргумента, действия с ними. Комплексная экспонента, ее свойства.
- 16. Действие линейного дифференциального оператора с постоянными коэффициентами на функции вида $x^m e^{\lambda x}$.
- 17. Описание множеств комплексных и действительных решений линейного однородного уравнения n-го порядка с постоянными коэффициентами.
- 18. Теорема о существовании решения линейного уравнения с постоянными коэффициентами, являющегося квазимного-членом (случаи комплексного и действительного квазимного-гочленов в правой части).
- 19. Оригинал, его показатель роста. Действия над оригиналами.
- 20. Преобразование Лапласа. Область определения изображения и его поведение при $p \to +\infty$. Свойства смещения и запаздывания.

- 21. Свойства преобразования Лапласа: дифференцирование оригинала и изображения. Теорема об изображении свертки.
- 22. Схема решения линейного дифференциального уравнения операторным методом. Интеграл Дюамеля и его использование.
- 23. Нули решений линейного однородного дифференциального уравнения 2-го порядка, теорема о конечности их числа на конечных промежутках. Сведение трехчленного уравнения к двучленному.
- 24. Теорема Штурма.
- 25. Следствия из теоремы Штурма. Теорема Кнезера.
- 26. Краевые задачи для линейного дифференциального уравнения 2-го порядка. Корректные и некорректные краевые задачи. Теорема об альтернативе.

Вопросы к экзамену могут быть уточнены и дополнены лектором потока.

Список литературы

- 1. Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений. М.: ФИЗМАТЛИТ, 2009. 208 с. Электронный ресурс: http://e.lanbook.com/book/59554
- 2. Романко В. К. Курс дифференциальных уравнений и вариационного исчисления. М.: Лаборатория Базовых Знаний, 2011. 344 с.
- 3. Филиппов А. Ф. Сборник задач по дифференциальным уравнениям. М.: ЛИБРОКОМ, 2013. 237 с.