Haonan Hu

2/4/2021

2863545

In-Class Problem

- Imagine we have a collection of 15 photos.
- Each photo shows one animal: either a cat, a dog, or a fox.
- You have designed a classifier that predicts which animal is shown in each photo.
- The test results of a k-fold cross-validation experiment you ran are:
- Fold 1: {(Cat,Dog),(Dog,Dog),(Fox,Fox),(Cat,Cat),(Fox,Dog)}
- Fold 2: {(Cat,Dog),(Dog,Dog),(Cat,Fox),(Cat,Cat),(Fox,Dog)}
- Fold 3: {(Cat,Dog),(Dog,Dog),(Fox,Fox),(Cat,Cat),(Dog,Cat)}
- 1. What is the k value in "k -fold cross-validation"?
- 2. Create a confusion matrix for the test results.
- 3. Show the formulas and calculate the value of the following metrics:
 - a. Accuracy
 - b. P_{Cat}
 - c. P_{Dog}
 - d. P_{Fox}
 - e. R_{Cat}
 - f. R_{Dog}
 - g. R_{Fox}
 - h. F1_{Cat}
 - i. F1_{Dog}
 - j. F1_{Fox}
- Supervised Learning

You may work together.

- You may ask me or the SI for help.
- •Turn in your problem when you are done:
- PDF submitted to BlackBoard before 11:59 PM
- You may leave when you are done.

David O. Johnson EECS 690 (Spring 2021)

1. What is the k value in "k -fold cross-validation"?

3

2. Create a confusion matrix for the test results.

46

	Actual Cat	Actual Dog	Actual Fox
Predict Cat	3	3	1
Predict Dog	1	3	0
Predict Fox	0	2	2

- 3. Show the formulas and calculate the value of the following metrics:
 - a. Accuracy = sum of diagonal / total samples = $(3 + 3 + 2) / 15 = 8 / 15 \sim 0.533$
 - b. Pcat = correct cat / total cat prediction = $3 / (3 + 3 + 1) = 3 / 7 \approx 0.429$
 - c. Pdog = correct dog / total dog prediction = 3 / (1 + 3 + 0) = 3 / 4 = 0.75
 - d. Pfox = correct fox / total fox prediction = 2 / (0 + 2 + 2) = 2 / 4 = 0.5
 - e. Rcat = correct cat / total actual cats = 3 / (3 + 1) = 3 / 4 = 0.75
 - f. Rdog = correct dog / total actual dogs = 3 / (3 + 3 + 2) = 3 / 8 = 0.375
 - g. Rfox = correct fox / total actual foxes = 2 / (1 + 2)= $2 / 3 \sim 0.67$
 - h. F1cat = 2(Pcat * Rcat) / (Pcat + Rcat) = 2*0.429*0.75 / (0.429 + 0.75) ~= 0.546
 - i. F1dog = 2(Pdog * Rdog) / (Pdog + Rdog) = 2 * 0.75 * 0.375 / (0.375 + 0.75) = 0.5
 - j. F1dox = 2(Pfox * Rfox) / (Pfox + Rfox) = 2 * 0.5 * 0.67 / (0.5 + 0.67) = 0.573