Energy-momentum relation

$$E^2 = p^2c^2 + m^2c^4$$

$$E = mc^2$$
 if $p=0$

E = pc if m=0

Rest energy

photons

$$E = p^2/2m$$
 non-Rel KE

Electrons (non-Rel)

$$E = \frac{p^2}{2m} \qquad \hbar = h/(2\pi) \qquad k = 2\pi/\lambda$$

$$p = \sqrt{2mE}$$

$$p = h/\lambda = \hbar k \qquad \text{de Broglie}$$

$$\lambda = \frac{hc}{\sqrt{2 mc^2 E}}$$

 $\lambda = h/p$

Light

$$f \lambda = c$$

$$f \lambda = c$$
 $f = c/\lambda$

Photo effect

$$E = h f = h c/\lambda$$

$$E = (h/2\pi)(2\pi f)$$

$$E = \hbar \omega$$

$$E = pc$$

$$E = pc$$
 $p = h/\lambda$

$$f \lambda = c$$

$$\omega = 2\pi f$$
 $k = 2\pi/\lambda$ $\omega/k = f \lambda = c$

approximate

$$\hbar c = 200 \text{ eV} - \text{nm}$$
 $\text{hc} = 1240 \text{ eV} - \text{nm}$

$$mc^2 \approx 0.5 \; \mathrm{MeV}$$
 (electron)

$$\lambda = \frac{hc}{\sqrt{2 \ mc^2 \ E}}$$
 $E = 100 \ \text{eV}$
 $\lambda = \frac{1240 \ \text{eV} - \text{nm}}{\sqrt{10^6 \ \text{eV} \times 100 \ \text{eV}}} = 0.12 \ \text{nm}$

Energy-momentum relation

$$E^2 = p^2c^2 + m^2c^4$$

$$E = mc^2$$
 if $p=0$

$$E = pc$$
 if $m=0$

$$E = mc^2$$
 if p=0 $E = pc$ if m=0 $E=p^2/2m$ non-Rel KE

 $mc^2 \approx 0.5 \text{ MeV}$

Light

Waves
$$f \lambda = c$$

$$f \lambda = c$$

Photo effect
$$E = h f = hc /\lambda$$

$$E = h f = hc /\lambda$$

 $E = \hbar \omega$

$$E = pc$$

Electrons (non-Rel)

$$E = \frac{p^2}{2m}$$

$$p = \sqrt{2mE}$$

$$p=h/\lambda=\hbar k$$
 de Broglie

$$\lambda = \frac{hc}{\sqrt{2 mc^2 E}}$$

$$\omega = 2\pi f k = 2\pi/\lambda$$

$$\omega = 2\pi f k = 2\pi/\lambda$$
 $\hbar c = 200 \text{ eV} - \text{nm} \text{ hc} = 1240 \text{ eV} - \text{nm}$

$$E = 100 \text{ eV}$$

$$\lambda = \frac{1240 \text{ eV} - \text{nm}}{\sqrt{10^6 \text{ eV} \times 100 \text{ eV}}} = 0.12 \text{ nm}$$

Photon Energy is proportional to frequency: E = hf

$$E = hf$$

$$\lambda f = c$$
 $\frac{f}{c} = \frac{1}{\lambda}$

$$E = hf = hc\frac{f}{c} = \frac{hc}{\lambda}$$

 $hc \approx 1240 \text{ eV} \cdot \text{nm}$ Assume $\lambda = 500 \text{ nm}$

$$E = \frac{1240 \text{ eV} \cdot \text{nm}}{500 \text{ nm}} \approx 2.5 \text{ eV}$$

Figure 1.14 The maximum kinetic energy K of the photoelectrons vs. frequency for sodium. The data are from R. A. Millikan, *Phys. Rev.* 7, 355 (1916). The threshold frequency ($\nu_0 = 5.6 \times 10^{14}$ Hz) has been adjusted to allow for the contact potential between the anode and the cathode (see Section 8.2). Millikan obtained a value for h, Planck's constant, from the slope of the straight line.

$$\lambda$$
 = c/f = 3 10⁸/(0.6 10¹⁵) = 500 nm
E=hf = hc(f/c) = hc/ λ = 1240 eV-nm/(500 nm) = 2.5 eV

Work

Functions of Selected

Metals

Metal	φ (eV)
Na	2.46
Al	4.08
Fe	4.50
Cu	4.70
Zn	4.31
Ag	4.73
Pt	6.35
Pb	4.14

Photon Energy is proportional to frequency: E = hf

$$E = hf$$

$$\lambda f = c$$
 $\frac{f}{c} = \frac{1}{\lambda}$

$$E = hf = hc\frac{f}{c} = \frac{hc}{\lambda}$$

 $hc \approx 1240 \text{ eV} \cdot \text{nm}$ Assume $\lambda = 500 \text{ nm}$

$$E = \frac{1240 \text{ eV} \cdot \text{nm}}{500 \text{ nm}} \approx 2.5 \text{ eV}$$

electron energy (E_e) E_{γ} φ φ photon energy (E_{γ}) $E_{e} = E_{\gamma} - \varphi$

$$E_{\gamma}$$
= h f ϕ is the work function

Zinc work function = 4.31 eV

The threshold wavelength:

$$\lambda = \frac{hc}{\text{Energy}} = \frac{1240 \text{ eV} \cdot \text{nm}}{4.31 \text{ eV}} = 288 \text{ nm}$$

from graph the threshold frequency is

$$f = 1.05 \ 10^{15} \ \mathrm{Hz}$$
 $c \approx 3 \ 10^8 \ \mathrm{m/s}$

$$\lambda = \frac{c}{f} = \frac{3 \cdot 10^8}{1.05 \cdot 10^{15}} \cdot 10^9 \text{ nm}$$

$$\lambda \approx 285 \text{ nm}$$