

ПРАКТИЧЕСКАЯ РАБОТА №1. АППАРАТНЫЕ РЕСУРСЫ ПЛИС. АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ

Преподаватель кафедры ВТ

Инженер лаборатории специализированных вычислительных систем

Дуксин Н.А.

ОЦЕНИВАНИЕ В РАМКАХ СЕМЕСТРА

	Отсутствие допуска	Допуск	Автомат
Лекции	< 12 посещений	12 <= посещений < 14	14-16
Практики	< 4 практик или cp.ap. по коллоквиуму < 3.5	4 практики и 3.5 <= ср.ар. По коллоквиуму <= 4.5	6 практик и >= 4.5 ср.ар. По коллоквиуму
Лабы	< 4 работ	1-3, (4 или 5 или 6)	1-6
СР		у	

Регламент выполнения работы озвучивается на занятии при выдаче работы

Билет 4 вопроса: 2 теоретических, 1 практический по курсу практик, 1 практический по курсу лабораторных

ОСНОВНЫЕ ВОПРОСЫ

- Маршрут проектирования
- Аппаратные ресурсы ПЛИС семейства Artix седьмой серии
- Арифметика. Примеры.
- Задание
- Выводы

МАРШРУТ ПРОЕКТИРОВАНИЯ

АППАРАТНЫЕ РЕСУРСЫ ПЛИС

Аппаратные ресурсы ПЛИС семейства Artix седьмой серии

- CLB
 - LUT
 - Carry chain
 - Мультиплексоры
 - Триггеры
- BRAM
- DSP

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. CLB

Configurable Logic Blocks

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. LUT

Look Up Table

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. CARRY CHAIN

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. МУЛЬТИПЛЕКСОРЫ

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. ТРИГГЕРЫ

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. BRAM

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. DSP

АППАРАТНЕ ПЛИС. DSP

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. DSP

АППАРАТНЫЕ РЕСУРСЫ ПЛИС. DSP

UG479

АРИФМЕТИКА. МАРШРУТ ПРОЕКТИРОВАНИЯ

ввод схемы **СИНТЕЗ** Имплементация Загрузка конфигурации

ОЗ АРИ

АРИФМЕТИКА. СЛОЖЕНИЕ

```
module sum(
    input a, b,
    output [1:0] sum
);

    assign sum = a + b;
endmodule
```


Resource	Utilization	Available	Utilization %
LUT	1	63400	0.01
10	4	210	1.90

АРИФМЕТИКА. СЛОЖЕНИЕ

```
module sum(
   input a, b,
   output [1:0] sum
);

assign sum = a + b;
endmodule
```


З АРИФ

АРИФМЕТИКА. ВЫЧИТАНИЕ

```
module sub(
   input a, b,
   output [1:0] res
);

assign res = a - b;
endmodule
```


Resource	Utilization	Available	Utilization %
LUT	1	63400	0.01
Ю	4	210	1.90

03

АРИФМЕТИКА. ВЫЧИТАНИЕ

```
module sub(
   input a, b,
   output [1:0] res
);

assign res = a - b;
endmodule
```



```
module add(
    input [2:0] a,
    input [2:0] b,
    output [3:0] res
);
assign res = a + b;
endmodule
```


Resource	Estimation	Available	Utilization %
LUT	3	63400	0.01
IO	10	210	4.76


```
module add(
    input [7:0] a,
    input [7:0] b,
    output [8:0] res
);
assign res = a + b;
endmodule
```


Ref Name	Used	Functional Category
IBUF	16	IO
OBUF	9	IO
LUT2	8	LUT
CARRY4	3	CarryLogic


```
module add(
    input [7:0] a,
    input [7:0] b,
    output [8:0] res
);
assign res = a - b;
endmodule
```



```
module add(
    input [7:0] a,
    input [7:0] b,
    output [8:0] res
);
assign res = a - b;
endmodule
```


В АРИФМЕТИКА.УМНОЖЕНИЕ

```
module mult (
    input [2:0] a,
    input [2:0] b,
    output [5:0] res
assign res = a * b;
endmodule
```


Resource	Utilization	Available	Utilization %
LUT	5	63400	0.01
IO	12	210	5.71

В АРИФМЕТИКА.УМНОЖЕНИЕ

В АРИФМЕТИКА.УМНОЖЕНИЕ

```
module mult(
    input [7:0] a,
    input [7:0] b,
    output [15:0] res
);

assign res = a * b;
endmodule
```

Ref Name	Used	Functional Category
LUT6	37	LUT
LUT2	25	LUT
LUT4	21	LUT
OBUF	16	IO
IBUF	16	IO
CARRY4	10	CarryLogic
LUT5	3	LUT
LUT3	3	LUT

03

АРИФМЕТИКА. УМНОЖЕНИЕ

```
module mult(
    input [15:0] a,
    input [15:0] b,
    output [31:0] res
);
   assign res = a * b;
   endmodule
```

Resource	Utilization	Available	Utilization %
DSP	1	240	0.42
IO	64	210	30.48

В АРИФМЕТИКА.МАС

```
module s_mac(
    input signed [15:0] a0, a1,
    input signed [15:0] b0, b1,
    output signed [32:0] res
);

assign res = a0 * b0 + a1 * b1;
endmodule
```


Resource	Utilization	Available	Utilization %
DSP	2	240	0.83
IO	97	210	46.19

В АРИФМЕТИКА. ДЕЛЕНИЕ

```
module div(
    input [7:0] a,
    input [7:0] b,
    output [7:0] res
);

assign res = a / b;
endmodule
```

Ref Name	Used	Functional Category
LUT3	49	LUT
CARRY4	21	CarryLogic
IBUF	16	IO
LUT2	13	LUT
OBUF	9	IO
LUT4	7	LUT
LUT6	3	LUT
LUT5	3	LUT

ВЗЯ

АРИФМЕТИКА. ВЗЯТИЕ ОСТАТКА

```
module mod (
    input [7:0] a,
    input [7:0] b,
    output [7:0] res
);

assign res = a % b;
endmodule
```

Ref Name	Used	Functional Category
LUT3	49	LUT
CARRY4	21	CarryLogic
IBUF	16	10
LUT2	13	LUT
OBUF	9	10
LUT4	7	LUT
LUT6	3	LUT
LUT5	3	LUT

03

АРИФМЕТИКА. СДВИГ

```
module shift (
    input [6:0] a,
    input [2:0] b,
    output [6:0] c
);

assign c = a << b;
endmodule</pre>
```


Resource	Utilization	Available	Utilization %
LUT	8	63400	0.01
IO	17	210	8.10

В АРИФІ А

АРИФМЕТИКА. АРИФМЕТИКА СО ЗНАКОМ

```
module s_add (
   input signed [7:0] a,
   input signed [7:0] b,
   output signed [8:0] res
   );

   assign res = a + b;
endmodule
```


03


```
module s add(
    input signed [7:0] a,
    input signed [7:0] b,
    output signed [8:0] s res,
    output [8:0] u res
);
assign s res = a + b;
assign u res = a + b;
endmodule
```



```
module s_mult(
    input signed [15:0] a,
    input signed [15:0] b,
    output signed [31:0] res
);

assign res = a * b;
endmodule
```



```
module s add cin(
    input signed [3:0] a,
    input signed [3:0] b,
    input cin,
    output signed [4:0] res
);
assign res = a + b + cin;
endmodule
```



```
module s add cin(
    input signed [3:0] a,
    input signed [3:0] b,
    input cin,
    output signed [4:0] res
);
assign res = a + b + \$signed(cin);
endmodule
```



```
module s add cin(
    input signed [3:0] a,
    input signed [3:0] b,
    input cin,
    output signed [4:0] res
);
assign res = a + b + signed(\{1'b0, cin\});
endmodule
```



```
module s add part (
    input signed [3:0] a,
    input signed [3:0] b,
    input signed [3:0] c,
    output signed [6:0] res
);
assign res = a + b + c[3:0];
endmodule
```



```
module s add part (
    input signed [3:0] a,
    input signed [3:0] b,
    input signed [3:0] c,
    output signed [6:0] res
);
assign res = a + b + signed(c[3:0]);
endmodule
```


03

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ

```
«>» — первый операнд больше второго;

«<» — первый операнд меньше второго;

«==» — первый операнд со вторым равны;

«>=» — первый операнд больше или равен второму;

«<=» — первый операнд меньше или равен второму;

«!=» — первый операнд не равен второму.
```

03

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ

```
module more(
    input [3:0] a, b,
    output c
);
assign c = a > b;
endmodule
```

Resource	Utilization	
LUT		2
IO		9

Ref Name	Used	Functional Category
IBUF	8	IO
OBUF	1	IO
LUT6	1	LUT
LUT3	1	LUT

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ

```
module more(
    input [3:0] a, b,
    output c
);
assign c = a > b;
endmodule
```


03

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ. УВЕЛИЧЕНИЕ РАЗРЯДНОСТИ

```
module more(
    input [6:0] a, b,
    output c
);
assign c = a > b;
endmodule
```

Resource	Utilization
LUT	4
IO	15

Ref Name	Used	Functional Category
IBUF	14	IO
LUT4	6	LUT
LUT2	2	LUT
OBUF	1	IO
CARRY4	1	CarryLogic

03

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ. УВЕЛИЧЕНИЕ РАЗРЯДНОСТИ

```
module more(
    input [6:0] a, b,
    output c
);
assign c = a > b;
endmodule
```


З АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ. СТАРШИЙ РАЗРЯД

```
module more(
    input [6:0] a, b,
    output c
);
assign c = a > b;
endmodule
```


Cell Properties						
c_OBUF_inst_i_2						
I1	10	O=I0 & !I1				
0	0	0				
0 1 1						
1	0	0				
1 1 0						

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ. СТАРШИЙ РАЗРЯД

```
module more(
    input [6:0] a, b,
    output c
);
assign c = a < b;
endmodule</pre>
```


АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ. ПРОВЕРКА НА РАВЕНСТВО РАЗРЯДОВ ПРИ «>» И «<»

Cell Properties					
c_OBUF_inst_i_6					
10	O=!I0 & !I1 + I0 & I1				
0	1				
1	0				
0	0				
1	1				
	OBU IO 0				

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ ЧЕТЫРЁХРАЗРЯДНЫЙ КОМПАРАТОР

((==)

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ 11-РАЗРЯДНЫЙ КОМПАРАТОР «==»

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ КОМПАРАТОР «==». ТАБЛИЦЫ ИСТИННОСТИ ПРИ РАЗНОЙ РАЗРЯДНОСТИ

АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ СО ЗНАКОМ

```
module more(
    input signed [6:0] a, b,
    output c
);
assign c = a > b;
endmodule
```


АРИФМЕТИКА. СРАВНЕНИЕ ЧИСЕЛ СО ЗНАКОМ

OBU	c_OBUF_inst_i_2					
10	O=I0 & !I1					
0 0						
0 1 1						
0	0					
1	0					
	0 1 0					

Знаковый

Беззнаковый

АРИФМЕТИКА. НЕСИНТЕЗИРУЕМЫЕ КОНСТРУКЦИИ

```
module pow(
    input [7:0] a,
    input [1:0] b,
    output [31:0] res
);
assign res = a ** b;
endmodule
```

(B) [Synth 8-277] exponentiation is not supported [pow.v:11]

АРИФМЕТИКА. НЕСИНТЕЗИРУЕМЫЕ КОНСТРУКЦИИ

```
module div_real(
    input [31:0] a, b,
    output [31:0] res
);
real r;
always@*
    r = a / b;
assign res = r;
endmodule
```

(I) [Synth 8-27] real number expression not supported [div.v:33]

Знак			Мантисса	
энак	(в смещённом коде)	(в прямом коде)		
1 бит	$k_{ m cмещ}$ (m бит)	1,	f _(п бит)	

$$b = 2^{m-1} - 1$$

Знак	Порядок	Мантисса			
	(в смещённом коде)	(в прямом коде)			
1 бит	5 бит	1, 10 бит			
Знак	Порядок	Мантисса			
	(в смещённом коде)	(в прямом коде)			
1 бит	8 бит	1, 23 бита			
Знак	Порядок	Мантисса			
	(в смещённом коде)	(в прямом коде)			
1 бит	11 бит	1, 52 бита			

Тип числа	Знак (Sign)	Порядок (Exponent)	Целая часть (неявная) (Implicit Leading Bit)	Мантисса (Significand)
Нормализованное число (Normal)	+-	0 < E < max	1	Любой набор битов
Ненормализованное число (Subnormal)	+-	0	0	Любой ненулевой набор битов
Ноль	+-	0	0	0
Бесконечность (∞ — Infinity)	+-	Bce 1 (max)	1	0
He число (NaN — Not a Number)	+-	Bce 1 (max)	1	Любой ненулевой набор битов

$$0.01011_2 = 1.011_2 * 2^{-2}$$

$$k_{\text{смещ}} = -2_{10} + 15_{10} = 13_{10} = 01101_2$$

Знак	Порядок	Мантисса		
Shak	(в смещённом коде)	(в прямом коде)		
0	01101	1, 011000000000000000000		

- 1. Выровнять порядки чисел.
- 2. Произвести операцию суммирования или вычитания.

$$1,1101_2 * 2_{10}^{0_{10}} = 0,0111_2 * 2_{10}^{2_{10}}$$

АРИФМЕТИКА. ПЛАВАЮЩАЯ ТОЧКА. ИСКЛЮЧЕНИЯ ДЛЯ СЛОЖЕНИЯ

ОП2\ОП1	Не число	+∞	-∞	+0	-0	+Норм. число	-Норм. число
Не число	Не число	Не число	Не число	Не число	Не число	Не число	Не число
+∞	Не число	+∞	Не число	+∞	+∞	+∞	+∞
-∞	Не число	Не число	-∞	-∞	-∞	-∞	-∞
+0	Не число	+∞	-∞	+0	+0	+Норм. число	-Норм. число
-0	Не число	+∞	-∞	-0	-0	+Норм. число	-Норм. число
+Норм. число	Не число	+∞	-∞	+Норм. число	+Норм. число	+Норм. число или +∞ в случае переполнения	±Норм. число или +0
-Норм. число	Не число	+∞	-∞	-Норм. число	-Норм. число	±Норм. число или +0	-Норм. число или -∞ в случае переполнения

АРИФМЕТИКА. ПЛАВАЮЩАЯ ТОЧКА. ИСКЛЮЧЕНИЯ ДЛЯ ВЫЧИТАНИЯ

ОП2\ОП1	Не число	+∞	-∞	+0	-0	+Норм. число	-Норм. число
Не число	Не число	Не число	Не число	Не число	Не число	Не число	Не число
+∞	Не число	Не число	-∞	-∞	-∞	-∞	-8
-∞	Не число	+∞	Не число	+∞	+∞	+∞	+∞
+0	Не число	+∞	-∞	+0	-0	+Норм. число	-Норм. число
-0	Не число	+∞	-∞	+0	+0	+Норм. число	-Норм. число
+Норм. число	Не число	+∞	-∞	-Норм. число	-Норм. число	±Норм. число или +0	-Норм. число или -∞ в случае переполнения
-Норм. число	Не число +∞		-∞	+Норм. число	+Норм. число	+Норм. число или +∞ в случае переполнения	±Норм. число или +0

АРИФМЕТИКА. ПЛАВАЮЩАЯ ТОЧКА. УМНОЖЕНИЕ

При умножении нормализованных чисел порядки сомножителей складываются, а мантиссы перемножаются. Знак результата определяется путём сложения по модулю 2 знаков сомножителей. Результат подвергается операции нормализации.

03

АРИФМЕТИКА. ПЛАВАЮЩАЯ ТОЧКА. ИСКЛЮЧЕНИЯ ДЛЯ УМНОЖЕНИЯ

ОП2\ОП1	Не число	+∞	-∞	+0		-0	+Норм. число	-Норм. число
Не число	Не число	Не число	Не число	Не числ	ю Не	число	Не число	Не число
+∞	Не число	+∞	-∞	Не числ	ю Не	число	+∞	-∞
-∞	Не число	-∞	+∞	Не числ	ю Не	число	-∞	+∞
+0	Не число	Не число	Не число	+0		-0	+0	-0
-0	Не число	Не число	Не число	-0		+0	-0	+0
	Не число	+∞	-∞				+Норм. число	-Норм. число
+Норм.							или +∞	или +∞
число				+0		-0	(переполнение)	(переполнение)
							или +0 (потеря	или -0 (потеря
							значимости)	значимости)
	Не число	-∞	+∞				-Норм. число	+Норм. число
-Норм. число							или -∞	или +∞
				-0		+0	(переполнение)	(переполнение)
							или -0 (потеря	или +0 (потеря
							значимости)	значимости)

АРИФМЕТИКА. ПЛАВАЮЩАЯ ТОЧКА. ДЕЛЕНИЕ

При делении нормализованных чисел порядок делителя вычитается из порядка делимого, а мантиссы делимого делится на мантиссу делителя. Знак результата определяется путём сложения по модулю 2 знаков сомножителей. Результат подвергается операции нормализации.

АРИФМЕТИКА. ПЛАВАЮЩАЯ ТОЧКА. ИСКЛЮЧЕНИЯ ДЛЯ ДЕЛЕНИЯ

ОП2\ОП1	Не число	+	⊢ ∞	-∞		+0		-0	+Норм. число	-Норм. число
Не число	Не число	Неч	число	He	число	Неι	нисло	Не число	Не число	Не число
+∞	Не число	Неч	число	He	число	-	+0	-0	+0	-0
-∞	Не число	He प	число	He	число		-0	+0	-0	+0
+0	Не число	+	⊢ ∞		-∞	Не ч	нисло	Не число	+∞	-∞
-0	Не число	-	-∞		+∞	Не т	нисло	Не число	-∞	+∞
	Не число	+∞						+Норм. число	-Норм. число	
+Норм.					+0	-0	или	или		
			⊦ ∞				+∞	-∞		
число				'0	-0	(переполнение)	(переполнение)			
							или +0 (потеря	или -0 (потеря		
									значимости)	значимости)
	Не число	-∞							-Норм. число	+Норм. число
							или	или		
-Норм. число			+∞	-0	+0	-∞	+∞			
						(переполнение)	(переполнение)			
									или -0 (потеря	или +0 (потеря
									значимости)	значимости)

АРИФМЕТИКА. ПЛАВАЮЩАЯ ТОЧКА. СТАНДАРТЫ

IEEE Standard 754 for Binary Floating-Point Arithmetic (1985)

Recognized as an American National Standard (ANSI)

IEEE Std 754-1985

An American National Standard

IEEE Standard for Binary Floating-Point Arithmetic

Sponsor Standards Committee of the IEEE Computer Society

Approved March 21, 1985 Reaffirmed December 6, 1990

IEEE Standards Board

Approved July 26, 1985 Reaffirmed May 21, 1991

American National Standards Institute

IEEE Standard for Floating-Point Arithmetic (2008)

IEEE Standard for Floating-Point Arithmetic

IEEE Computer Society

Sponsored by the Microprocessor Standards Committee

ЗАДАНИЕ НА ПРАКТИЧЕСКУЮ РАБОТУ.

- 1. Создать проект в САПР Vivado для ПЛИС Artix-7 xc7a100tcsg324-1.
- 2. Повторить рассмотренные в течение занятия примеры.
- 3. Проанализировать результат, сравнив его с тем, что продемонстрировано в примерах.
- 4. Согласно выданному варианту:
 - 1. Создать файл для модуля верхнего уровня с именем main.
 - 2. В файле описать схему согласно выданному варианту.
 - 3. Произвести синтез и имплементацию описанного устройства.
 - 4. Проанализировать задействованные для устройства аппаратные ресурсы.
 - 5. Произвести серию изменений размеров входных и выходных шин, основываясь на теоретическом введении.
 - 6. Проанализировать результат синтеза и размещения каждого из вариантов.
 - 7. Произвести серию изменений правил выполнения арифметических операций, указывая, что операнды/результат знаковые.
 - 8. Проанализировать результат синтеза и размещения каждого из вариантов.
- 5. Составить отчёт.

ВОПРОСЫ

СПАСИБО ЗА ВНИМАНИЕ!