Lecture 22-Gangrad number fields, IT

Proof of The I. The Sa action on Hallas through Ras and Ila (Cas) is a finite Ra-ned, so depths. H: (Ca) = depth, H; (Ca) = dim RaH; (Ca) = dim Ra = dim Sa - 5 (2) Claim depth 5 m Hg (Cs) = dim So- 5 Assuming this, all & in (m) are = and I follows. 2. If per Res lotting probes its pullback to Roo,

Hq. (Co)por # O by Ossumption

=> Hq. (Y(UI, O)p = Hq. (Coos, O)p

= (Coo, q. / (indq., 100))p = (Hg (Co)/ce)p = Hgo (Cas) pro/ cx + O by Nak 3. Since Ros is regular and clim Ha (Coo) = depth Roble (Coo), the Australia - Ruchs boun formula

=3 Ha (Coo) is a projective, herce free, Ros mad

=> Hao (Y(U), O) m is a free Roble - Made

This action of Roble Roble Robles through Roble - Roble - Roble

This action of Roble Robles through Roble - R After shifting the close tellows from the fellowing Lanna.

Lamma Lat S la ce local regular North ring, n= dim S.
Let P=P be a (handegreal) complex of first from 5-moels concentrated in clayrers [0,5]. Then dim Ho(P) = n-D and if = holds
1 clours s [C, J]. The din Ho(P) = n-J and if = holds
1 P is a proper resolution of Ha (P)
1. P is a proj resolution of Ho(P) 2. Ho(P) has dopth n-O.
Proof Lot dn: Pn > Pn-1 be the differentials and let
m30 batha large of the la (P) # C). The
m > 0 he the largest utsger s.t. Um (P) + 0. The O > Po -> Po -> Pm
is prost it to find them so is a prospective posolution of
13 2001 Mil 12 1/201 13010 30 13 0 1300 00 1710 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
is exact intil the final town, so is a projective resolution of M:= Pm/indm+, Thus projedin M = 5-m. On the other had Hm(P) = kordm/indm+, SM
H. (P) = Los d. (i. day SM
\leq_{C_2}
Then we has
din Am (P) > denth M
= N-Draz dia M by Auslander-Buchshown form
$\geq n - c + m$
Then we have din Hm (P) \geq drpth M Then we have din Hm (P) \geq depth M = $n - proj din M$ by Auslander-Buchshown form $\geq n - D + m$ Now if din H ₀ (P) $\leq n - D > th$ above = $m = D$, P is a proj resolution of the (P) and $\geq cre = in above$. \square
α oré psylvhie of lik (P) and \geq are $=$ in whom \Box
Subjection 1st 5 les a local Aboth Man out 1st C) & MCM
Sublemmes let 5 be a local Mosth may and let C7 NCM bs Anste 5-Meds. The dim N 3 dspth M.
NA 1)WILL DIVING INTO DISPINATE
Proof Let $p \in AssN$, so $p = Ann(x)$ for some $O \neq X \in N$,
1100 V3. 10 0 100 10 10 10 10 10 10 10 10 10 10

Autonosphic side
G==PGLz, X=G(IR)/(max gpt), U & G(/AF) suff small
W> Y(U) = G(F) X × G(AF)/U
,
Given a TW data Q, can still destas $U_Q \subseteq U_O(Q) \subseteq U$ I Trahewi at $v \in Q$ $U_O(Q)/U_Q \cong \Delta_Q$
$(I_{C_0} \leq (I_{C_0}(G)) \leq (I_{C_0}(G))$
7 25 mhair of ve O
11-(Q)/(10 \(\frac{1}{2}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
VIOL SIJ VIG
Con still desir mg & TE, un
,
Problem:
Problem: H. (Y(UC), O) mc O[Ac] O = H. (Yc(Q), O[Ac]) mc O[Ac] # H. (Yc(Q), O) m because H. col & clart commute if H. is not cocontrated in a single degree.
$\# H.(Y_{G}, O)_{m}$
bregus + It, and & clart community if It, is not accombinated in
a single dogree.
Solution: 2 Instrod use a complex Co of O[Ac]-mods That compute H. (Y/UG), O) ma. Ther Co O[Ac] O computes H. (Y/UG(Q)), O) ma.
That country H. (Y/1/6), O) on The Co. Dorn 10
Cupules 17. (Y(//2(Q)), O) ma
Problem Wout a tracks action, end then an action of
Re we a now Ro -> TSUG(?) Could has smaller
Problem Want a tracks action, and then an action of Re vivo a nop Re = IT sug (?). Could use singular chains for Co to get a Healis action.
Crusics 12 Co a garage actions

But For patching, nord Coste be a bounded camples of An Pros O[NQ]-meds. (went An Many 130 classes of lovel N patching deta").
Want Co to be both singular chains and simplicial chains caning from a firsts triangulation at the same time.
Solution: Work in DO, Nep. DOCAOI), the derived cot of O-mads, reg. OSAOI-mads
Some quiel foots Let R be a ring end let Ch(R) be the
(it is often convenient to identify a choin complex Co with the cochoin complex Co by C'= C.)
How K(R) = cot with Ch K(R) = Choch(R) ad How K(R) (X, Y) = How ch(R) (X, Y)/v, N= chon honotopy
The roughly D(R) is cat with sens objects and involve guass-ise
So As Hender (X, Y) is signal by
quarise char map
Also has $K(R)^-$ of $D(R)^-$ and $K(R)^{\prime}$ proj \rightarrow $D(R)^-$ is an equiv of cook

Cln	glse	doAn	K(P),	$\mathcal{D}(R)^{2}$,	D/B)p		