循环群与群同构

离散数学一代数结构

南京大学计算机科学与技术系

循环群与群同构

- 同构与同态
- 循环群与生成元
- 循环群的子群
- 无限循环群与整数加群同构
- 有限循环群与相应的剩余加群同构

群同构与同构映射

- 群(G_1 , •)与(G_2 , *)*同构* ($G_1 \cong G_2$) 当且仅当: 存在一一对应的函数(同构映射) $f: G_1 \to G_2$, 满足: 对任意 $x,y \in G_1$, $f(x \circ y) = f(x) * f(y)$ "先(G_1 中的)运算后映射等于先映射后运算(G_2 中的)"
- 例: 正实数乘群(R+,•)和实数加群(R,+)
 同构映射f: R+→R: f(x)=ln x

注意:可能有多个同构映射,如f(x)=lg x也是。

同构关系是等价关系

- 自反:对任意群(G,•), G≅G
 - 恒等映射 f(x)=x 是同构映射
- 对称:对任意群G₁, G₂, 若G₁≅G₂,则G₂≅G₁
 - 设从 G_1 到 G_2 的同构映射为 f_1 ,则从 G_2 到 G_1 的同构映射是 f^{-1}
- 传递: 对任意群 G_1 , G_2 , G_3 , 若 $G_1 \cong G_2$, 且 $G_2 \cong G_3$, 则 $G_1 \cong G_3$,
 - 设从 G_1 到 G_2 的同构映射为f,从 G_2 到 G_3 的同构映射为g,则设从 G_1 到 G_3 的同构映射 $f \circ g$

3阶群的唯一性

• 任意两个三阶群同构

0	1	2 3	
1	1	2 3	
2	2	3 1	
3	3	1 2	

$$1 \rightarrow a \quad 2 \rightarrow b \quad 3 \rightarrow c$$

*	a	b	c	
a	a	b	c	
b	b	5	a	
c	c	a	b	

2个四阶群

	1	2	3	4	
1	1	2	3	4	
2	2	3	4	1	
3	3	4	1	2	
4	4	1	2	3	
	四元	循环	、群		

		1	2	3	4	
]	1	1	2	3	4	
2	$2 \mid$	2	1	4	3	
3	3	3	4	1	2	
۷	4	4	3	2	1	
	1	Kle	in吗	元君	半	

同态与同态映射

• 系统(G_1 , •)与(G_2 ,*)*同态* (G_1 ~ G_2)当且仅当: 存在函数 $f: G_1 \rightarrow G_2$,满足:

对任意 $\mathbf{x},\mathbf{y} \in \mathbf{G}_1, f(\mathbf{x} \circ \mathbf{y}) = f(\mathbf{x}) * f(\mathbf{y})$

注意: 同态保持单位元与逆元: $f(e_1) = e_2$, $f(x^{-1}) = f(x)^{-1}$

- 如果上述f 是满射,则称为满同态
- 同构是同态的特例。
- 例:整数加系统(Z,+)和对3剩余加系统(Z3,+3)
 - 同态映射: $f: Z \rightarrow Z_3, f(3k+r)=r$,这是满同态

一个满同态的例子

定义系统: $(\{e,o\},*)$

运算"*"的运算表如下:

*	e	0	A SOL
e	e	0	
0	0	e	

则 $f: \mathbf{Z} \rightarrow \{e,o\}$:

$$f(x) = \begin{cases} e & x \in \mathbb{Z} \\ o & x \in \mathbb{Z} \end{cases}$$

是从(Z,+)到($\{e,o\}$,*)的满同态映射。

这可以用来证明: 1,2,...,1000这1000个自然数,按照任意的组合实施加/减,得到的结果不可能是1001。

如何证明两个群不同构

- 需要证明: (G₁,•)到(G₂,*)的*任何同态*都*不可能* 是同构映射!
- 例: 非零有理数乘群(Q-{0},•)和有理数加群(Q,+)
 不同构。

假设存在 $f: Q-\{0\} \rightarrow Q$,是同构映射,

注意: 必有f(1)=0,因为f(1-x)=f(1)+f(x)

 $\overline{\text{m}}f(-1)+f(-1)=f((-1)\bullet(-1))=f(1)=0$

因此: f(-1)=0=f(1), f 不是一对一的。

群中元素的阶

- 设a是群(G,*)中任一元素。正整数r是a的阶(记为 |a|=r):
 - $a^{r} = e (e$ 是群G的单位元素)
 - 对任意正整数k, 若 $a^k = e$, 则 $k \ge r$

如果这样的k不存在,则称a有无限阶

元素阶的性质

- 设a的阶是r,对任意正整数k,a^k=e⇔r能整除k
 - ⇒ 令 k = mr+i (m, i均为非负整数,且0≤i≤ r-1),则 a^{mr+i} = $(a^r)^{m*}a^i = a^i = e$ 因为i<r, i只能是0, 即k = mr
- 任何元素与其逆元素有相同的阶
 - 设|a|=r, (a⁻¹)^r=(a^r)⁻¹=e, 因此|a⁻¹|整除r, 即|a⁻¹|整除|a|。
 - 同理可得, |a|整除|a⁻¹|。

循环群与生成元素

- 定义
 - 设G是群,若存在 $a \in G$,使得 $G = \{a^k | k \in \mathbb{Z}\}$,则G称为 π 环群。
 - 记法: <a>。
 - a 称为 生成元。

循环群的阶与生成元素的阶

- 有限(n阶)循环群
 - 生成元a的阶为n,
 - $G=\{a^0, a^1, a^2, ..., a^{n-1}\}$, 其中 a^0 是单位元素。
- 无限循环群
 - 生成元素*a*为无限阶元,
 - G={ $a^0, a^{\pm 1}, a^{\pm 2}, ...$ }

循环群的例子

- 无限循环群
 - 整数加群 (Z,+): 1是生成元素,对任意整数 $i, i=1^i$ 。
 - 注意: (1) 这里"乘幂"是对加法而言的;
 - (2) *i* < 0时, 1^{*i*}是负数;
 - (3) -1同样是生成元素,如: 5=(-1)-5。
- 有限循环群
 - 剩余加群 (Z₆, +₆): [1]是生成元素。
 - 注意: [5]也是生成元:
 - $[5]^0 = [0], [5]^1 = [5], [5]^2 = [4], [5]^3 = [3], [5]^4 = [2], [5]^5 = [1]$.

无限循环群的生成元素

- 若a是无限循环群的生成元,则a-1(a的逆元素)也是。
 - $a^{k} = (a^{-1})^{-k}$ •
- 无限循环群只有两个生成元
 - 设G=<a>。 *若b 也是G 的生成元*。
 - 则存在整数m和t,满足: $a^{m}=b$, $b^{t}=a$ 。
 - 所以 $a=b^t=(a^m)^t=a^{mt}$,从而 $a^{mt-1}=e$ 。
 - a是无限阶元素,得mt-1=0,从而m=t=1或者m=t=-1。
 - 所以b=a或者 $b=a^{-1}$ 。

- 设G= $\langle a \rangle$,且|a|=n,则对任意不大于n的正整数r,gcd(n,r)= $1 \Leftrightarrow a^r$ 是G的生成元。
 - ⇒ 设gcd(n,r)=1, 则存在整数u,v, 使得: ur+vn=1,
 ∴a=a^{ur+vn}=(a^r)^u(aⁿ)^v=(a^r)^u。则: G中任意元素a^k可以表示为(a^r)^{uk}。
 - ← 设a^r是G的生成元, 令gcd(n,r)=d且r=dt, 则(a^r)^{n/d}=
 (aⁿ)^t=e, ∴ | a^r|整除(n/d), 但 | a^r|=n, ∴ d=1

n阶循环群的 生成元素的 阶必定是n

有限循环群的生成元

- 有限循环群不同的生成元素的个数
 - n阶循环群G的生成元的个数恰好等于不大于n的与n互 质的正整数的个数。
 - 这是n的函数,即欧拉函数φ(n)
 - 备注: φ(1)=1

$$\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1) = p^k \left(1 - \frac{1}{p}\right).$$

循环群的子群

- 循环群的子群仍然是循环群
 - 子群H中最小正方幂元即为H的生成元。
 - 设最小正方幂元素为a^m, 证明H=<a^m>
 - 任给a^t∈H, 令t=qm+r, 其中q为整数, 0≤r≤m-1。
 - 由子群的封闭性, a^{qm}∈H, ∴a^r=a^{t-qm}∈H。
 - 但H中最小正方幂元素为a^m,:r只能是0。
 - $\therefore a^t = a^{qm} = (a^m)^q$

无限循环群的生成元必是无限阶的

- 无限循环群只有唯一的有限子群: {e}
 - 假设G有t阶有限子群H, 且H≠{e}, 则设H的最小正方幂元为a^m,则a^{mt}=e,矛盾。
- n阶循环群中,对n的每一个整除因子d,n阶循环 群G恰好有一个d阶子群
 - 有:以an/d为生成元可构成一个d阶子群,设它为H。
 - 恰有一个:如果H₁=<a^m>也是d阶子群,则a^{md}=e,所以n|md,也就是n/d|m,因此: a^m=(a^{n/d})^k∈H,即H₁⊆H,又H₁与H等势(d阶),所以H₁=H

注意: d是n的整除因子

无限循环群与整数加群同构

• 定义 $G=\{a^0, a^{\pm 1}, a^{\pm 2}, ...\}$ 与 $Z=\{0, \pm 1, \pm 2, ...\}$ 之间的一一对应函数:

$$f:G\to Z$$
, 对任意 $a^k\in G$, $f(a^k)=k$ (k是整数)

- 只要 $a^k=a^h$,必有k=h,否则 $a^{k-h}=e$,a是有限阶的,矛盾。 因此f是函数。
- 易证f是双射
- $f(a^k \circ a^h) = f(a^{k+h}) = k + h = f(a^k) + f(a^h)$

n阶循环群与n阶剩余加群同构

• 定义 $G = \{a^0, a^1, ..., a^{n-1}\}$ 到 $Z_n = \{0, 1, ..., n-1\}$ 的一一对应的函数:

$$f:G\to Z$$
, 对任意 $a^k\in G$, $f(a^k)=[k]$ (k是整数)

- 注意: 只要 $a^k=a^h$,必有[k]=[h],否则,不妨设k>h, $k-h=qn+r(q是整数,r\in\{1,2,...,n-1\})$,则 $e=a^{k-h}=a^{qn+r}=a^r$,与a的阶是n矛盾。所以f是函数。
- 易证f是双射
- $f(a^k \circ a^h) = f(a^{k+h}) = [k+h]_n = [k]_n + [h]_n = f(a^k) + f(a^h)$

群的直积

给定两个群: (S, ∘), (T,*), 定义笛卡儿乘积S×T上的运算⊗如下:

$$\langle s_1, t_1 \rangle \otimes \langle s_2, t_2 \rangle = \langle s_1 \circ s_2, t_1 * t_2 \rangle$$

- (S×T, ⊗)是群
 - 结合律: $<(\mathbf{r}_1 \circ \mathbf{s}_1) \circ \mathbf{t}_1, (\mathbf{r}_2 * \mathbf{s}_2) * \mathbf{t}_2>$ $= <\mathbf{r}_1 \circ (\mathbf{s}_1 \circ \mathbf{t}_1), \mathbf{r}_2 * (\mathbf{s}_2 * \mathbf{t}_2)>$
 - 单位元素: <1_S, 1_T>
 - 逆元素: <s, t> 的逆元素是 <s⁻¹, t⁻¹>
 - (其中: $s, s^{-1} \in S, t, t^{-1} \in T$)

- C_m×C_n≅C_{mn} ⇔m与n互质。其中C_k表示k阶循环群。
 - ←若m与n互质,要证明C_m×C_n≅C_{mn}只需证明C_m×C_n是循 环群。这只需证明C_m×C_n含有阶为mn的元素。
 - $(a,b)^{mn} = e$, 其中a,b分别是 C_m 和 C_n 的生成元素。
 - 若 $(a,b)^k = e, k$ 必是m,n的公倍数,因m与n互质,故k是mn的倍数。所以,(a,b)的阶是mn。
 - ⇒若 $C_m \times C_n \cong C_{mn}$,则 $C_m \times C_n$ 是循环群,设其生成元是(s,t),则(s,t)的阶是mn,若gcd(m,n)=k>1,则(s,t)^{mn/k} =e, 这与(s,t)的阶是mn矛盾。

注意: $s^m = e_1$, $t^n = e_2$,

欧拉函数(phi)

• 如果m与n互质,则 $\varphi(mn) = \varphi(m)\varphi(n)$.

$$\begin{split} \varphi(n) &= \varphi(p_1^{k_1}) \varphi(p_2^{k_2}) \cdots \varphi(p_r^{k_r}) \\ &= p_1^{k_1} \left(1 - \frac{1}{p_1}\right) p_2^{k_2} \left(1 - \frac{1}{p_2}\right) \cdots p_r^{k_r} \left(1 - \frac{1}{p_r}\right) \\ &= p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r} \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_r}\right) \\ &= n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_r}\right). \end{split}$$

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right),$$

欧拉函数(phi)

• C_n 中元素按其阶分类,d阶元素共有 $\varphi(d)$ 个,d|n.

$$\sum_{d|n} \varphi(d) = n,$$

• (Euler定理) 若正整数a与n互质,则

$$a^{\varphi(n)} \equiv 1 \mod n$$
.

小于n且与n互质的正整数及乘法(模n)构成一个群

 $\liminf \frac{\varphi(n)}{n} \log \log n = e^{-\gamma}.$ 欧拉常数 $\gamma = 0.577215665...$

作业

- pp. 204
 - 25—28