HW 4

Si Chen

10/31/2018

4.8

a)

SpecificGravity <c(0.499,0.558,0.604,0.441,0.550,0.528,0.418,0.480,0.406,0.467)
MoistureContent <- c(11.1,8.9,8.8,8.9,8.8,9.9,10.7,10.5,10.5,10.7)
Strength <- c(11.14,12.74,13.13,11.51,12.38,12.60,11.13,11.70,11.02,11.41)
plot(SpecificGravity, Strength, main = "Strength and Specific Gravity", xlab
= "Specific Gravity", ylab = "Strength")</pre>

Strength and Specific Gravity

plot(MoistureContent, Strength, main = "Strength and Moisture Content", xlab
= "Moisture Content", ylab = "Strength")

Strength and Moisture Content

Moisture(8.9,11.51), i.e., observation No. 4 seems to be influential.

```
b)
```

```
X= as.matrix(data.frame(c(rep(1,10)), SpecificGravity, MoistureContent))
H <- X %*% solve(t(X) %*% X) %*% t(X)
H[4,4]
## [1] 0.6043904
H[4,4] > 2 * (2 + 1) / 10
## [1] TRUE
```

Observation No. 4 is influential.

```
c)
```

```
## 4
## TRUE
```

Observation No. 4 is influential.

```
d)
```

```
fit str <- lm(Strength ~ SpecificGravity + MoistureContent)</pre>
summary(fit str)
##
## Call:
## lm(formula = Strength ~ SpecificGravity + MoistureContent)
##
## Residuals:
##
       Min
                  10
                       Median
                                    3Q
                                            Max
## -0.44422 -0.12780 0.05365 0.10521 0.44985
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                                         5.432 0.000975 ***
## (Intercept)
                    10.3015
                                1.8965
## SpecificGravity
                     8.4947
                                1.7850
                                         4.759 0.002062 **
## MoistureContent -0.2663
                                0.1237 -2.152 0.068394 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2754 on 7 degrees of freedom
## Multiple R-squared:
                       0.9, Adjusted R-squared: 0.8714
## F-statistic: 31.5 on 2 and 7 DF, p-value: 0.0003163
SpecificGravity_new <- SpecificGravity[c(-4)]</pre>
MoistureContent_new <- MoistureContent[c(-4)]</pre>
Strength new <- Strength[c(-4)]
fit_strnew <- lm(Strength_new ~ SpecificGravity_new + MoistureContent_new)</pre>
summary(fit strnew)
##
## Call:
## lm(formula = Strength_new ~ SpecificGravity_new + MoistureContent_new)
##
## Residuals:
##
       Min
                  10
                       Median
                                    3Q
                                            Max
## -0.33339 -0.05037 0.01127 0.05615 0.46579
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        12.4107
                                    2.9071
                                             4.269 0.00527 **
## SpecificGravity_new
                         6.7992
                                             2.702 0.03549 *
                                    2.5166
## MoistureContent new -0.3905
                                    0.1794 -2.177 0.07237 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.277 on 6 degrees of freedom
## Multiple R-squared: 0.9108, Adjusted R-squared: 0.8811
## F-statistic: 30.65 on 2 and 6 DF, p-value: 0.0007089
```

The R-squared improves and the fit changes.

4.10

All absolute values of correlations in the correlation matrix are less than 0.5 and thus there is not an indication of multicollinearity.

b)

 VIF_1 is 178.29, VIF_2 is 158.05, VIF_3 is 257.91, VIF_4 is 289.38 (maximum)

VIF's indicate serious multicollinearity

4.11

```
a)
x1 <- c(rep(1300,6),rep(1200,6),rep(1100,4))
x2 <-
c(7.5,9.0,11.0,13.5,17.0,23.0,5.3,7.5,11.0,13.5,17.0,23.0,5.3,7.5,11.0,17.0)
x3 <-
c(0.0120,0.0120,0.0115,0.0130,0.0135,0.0120,0.0400,0.0380,0.0320,0.0260,0.034
```

```
0,0.0410,0.0840,0.0980,0.0920,0.0860)
y <-
c(49.0,50.2,50.5,48.5,47.5,44.5,28.0,31.5,34.5,35.0,38.0,38.5,15.0,17.0,20.5,
29.5)
predictor <- data.frame(x1,x2,x3)
plot(predictor)</pre>
```


Corr(x1,x3) = -0.958, they are largely negative-correlated.

b)

```
x12 <- x1 * x2

x23 <- x2 * x3

x13 <- x1 * x3

x11 <- x1 * x1

x22 <- x2 * x2

x33 <- x3 * x3
```

```
predictor all <- data.frame(x1,x2,x3,x12,x13,x23,x11,x22,x33)</pre>
VIF <- solve(cor(predictor_all))</pre>
VIF
##
                                           х3
                                                       x12
                                                                     x13
                 х1
                              x2
        2856748.965
                       8897.3985
                                  2390899.263
                                                -3218.1250 -2013929.675
## x1
## x2
           8897.398
                      10956.1361
                                    14456.797 -10321.5214
                                                               -9999.968
## x3
        2390899.263
                      14456.7971
                                  2017162.536
                                               -9111.3951 -1696804.020
## x12
          -3218.125 -10321.5214
                                    -9111.395
                                                 9802.9028
                                                                5719.427
## x13 -2013929.675
                      -9999.9677 -1696804.020
                                                 5719.4269
                                                            1428091.893
## x23
                      -1593.9702
                                                 1488.7481
          -2991.046
                                     -3589.211
                                                                2689.011
## x11 -2673262.265
                      -6480.2702 -2235548.668
                                                 1300.1341
                                                            1883581.393
## x22
          -3991.378
                      -161.8378
                                     -3596.866
                                                   83.1922
                                                                2911.488
## x33
        -185160.442
                      -1968.4832
                                  -157998.496
                                                 1437.6079
                                                             132486.496
##
               x23
                             x11
                                          x22
                                                       x33
## x1
       -2991.04612 -2673262.265 -3991.37822 -185160.4420
## x2
       -1593.97025
                       -6480.270
                                  -161.83776
                                                -1968.4832
## x3
       -3589.21100 -2235548.668 -3596.86634 -157998.4958
## x12 1488.74812
                        1300.134
                                    83.19220
                                                 1437.6079
                                  2911.48790
## x13
        2689.01109
                    1883581.393
                                               132486.4956
## x23
         240.35938
                        2527.182
                                    31.55158
                                                  413.6923
## x11
        2527.18248
                     2501944.625
                                  3681.63234
                                               172870.4048
## x22
          31.55158
                        3681.632
                                    65.73359
                                                  352.2762
## x33
         413.69229
                      172870.405
                                   352.27622
                                                12667.0995
```

 VIF_1 is 2856748.965, VIF_2 is 10956.1361, VIF_3 is 2017162.536, VIF_{12} is 9802.9028, VIF_{13} is 1428091.893, VIF_{23} is 240.35938, VIF_{11} is 2501944.625, VIF_{22} is 65.73359, VIF_{33} is 12667.0995

All VIFs are larger than 10. There is a clear indication of multicollinearity among predictors.

c)

```
x1_c \leftarrow x1 - mean(x1)
x2_c \leftarrow x2 - mean(x2)
x3 c <- x3 - mean(x3)
x12_c <- x1_c * x2_c
x23_c <- x2_c * x3_c
x13 c <- x1 c * x3 c
x11_c <- x1_c * x1_c
x22_c <- x2_c * x2_c
x33_c <- x3_c * x3_c
predictor all c <-
data.frame(x1_c,x2_c,x3_c,x12_c,x13_c,x23_c,x11_c,x22_c,x33_c)
VIF c <- solve(cor(predictor all c))</pre>
VIF_c
##
                               x2_c
                                            x3_c
                                                        x12_c
                                                                    x13 c
                  x1_c
## x1 c
          375.2477589
                        -3.07020571
                                      503.120135
                                                   0.69112832 1416.40577
## x2 c
           -3.0702057
                         1.74063104 -3.920902 0.01146391 -28.18176
```

```
## x3 c
         503.1201353 -3.92090230 680.280039 -1.79605218 1926.77853
## x12 c
           0.6911283
                       0.01146391
                                    -1.796052 31.03705864
                                                           21.81725
## x13_c 1416.4057660 -28.18175565 1926.778533 21.81724905 6563.34519
## x23 c
           7.9156857 -0.60988977
                                    7.554270 32.24389120
                                                           70.16822
## x11 c 727.5163656 -14.51238927 995.470812 1.94171767 3389.25261
## x22_c
           1.6472929 -1.41404985
                                    1.816817
                                              1.02705081
                                                           43.30579
## x33 c 560.5223955 -13.25439701 755.819382 24.44486240 2714.19083
##
             x23 c
                         x11 c
                                  x22 c
                                             x33 c
## x1 c
         7.9156857 727.516366 1.647293 560.52240
## x2_c -0.6098898 -14.512389 -1.414050 -13.25440
## x3 c
        7.5542701 995.470812 1.816817 755.81938
## x12 c 32.2438912
                      1.941718 1.027051
                                          24.44486
## x13 c 70.1682154 3389.252609 43.305788 2714.19083
## x23_c 35.6112865
                     25.818731 2.664592
                                          48.11992
## x11_c 25.8187311 1762.575365 21.439854 1386.56384
## x22 c 2.6645924
                     21.439854 3.164318
                                          23.35683
## x33 c 48.1199242 1386.563839 23.356833 1156.76628
```

The centering makes the multicollinearity problem less severe.

5.4

install.packages("glmnet")

```
library(glmnet)
## Loading required package: Matrix
## Loading required package: foreach
## Loaded glmnet 2.0-16
ridgecv = cv.glmnet(as.matrix(predictor_all), y, lambda =
seq(0,100,0.1),alpha = 0)
## Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3
observations
## per fold
plot(ridgecv)</pre>
```



```
small.lambda.index <- which(ridgecv$lambda == ridgecv$lambda.min)</pre>
small.lambda.betas <- coef(ridgecv$glmnet.fit)[,small.lambda.index]</pre>
print(small.lambda.betas)
##
     (Intercept)
                            x1
                                           x2
                                                         х3
                                                                       x12
                                2.563943e-01 -9.277340e+01
## -8.300143e+01
                  6.484227e-02
                                                              3.260840e-05
             x13
                           x23
                                          x11
                                                                       x33
## -1.034145e-01
                  1.641786e+01 2.780714e-05 -2.013840e-02
                                                              1.788287e+02
lambdaridge = ridgecv$lambda.min
print(lambdaridge)
## [1] 0.2
ridgefit = glmnet(as.matrix(predictor_all), y, alpha = 0, lambda =
seq(0,100,0.01))
plot(ridgefit, xvar = "lambda", main = "Coeffs of Ridge Regressions", xlab =
expression("log_lambda"), ylab = "Coeff")
abline(h = 0); abline(v = log(ridgecv$lambda.min))
grid()
```


5.5 lassocv = cv.glmnet(as.matrix(predictor_all), y, alpha = 1, lambda = seq(0,10,0.01))

```
## Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3
observations
## per fold</pre>
```

plot(lassocv)


```
lambdalasso = lassocv$lambda.min
print(lambdalasso)

## [1] 0.05

lassofit = glmnet(as.matrix(predictor_all), y, alpha = 1, lambda =
seq(0,10,0.01))
plot(lassofit, xvar = "lambda", label = TRUE, main = "Coeffs of Lasso
Regression", xlab = expression("log_lambda"), ylab = "Coeff")
abline(h = 0)
abline(v = log(lassocv$lambda.min))
grid()
```



```
small.lambda.index <- which(lassocv$lambda == lassocv$lambda.min)</pre>
small.lambda.betas <- coef(lassocv$glmnet.fit)[,small.lambda.index]</pre>
print(small.lambda.betas)
##
     (Intercept)
                              x1
                                             x2
                                                            х3
                                                                         x12
   -4.523077e+01
                   0.000000e+00
                                  0.000000e+00
                                                 0.000000e+00
##
                                                                0.000000e+00
             x13
                            x23
                                            x11
                                                           x22
                                                                         x33
## -1.874581e-01
                   1.862793e+01
                                 5.678371e-05 -1.270771e-02
                                                                0.000000e+00
```

 $\beta_1, \beta_2, \beta_3, \beta_{12}, \beta_{33}$ are set to zero.