

F. G. 1

Complex

FIG.2

Man \$1,4-GICNAC \$1,4-GICNAC Fucα 1,6 GicNAc β 1,2-Man α 1,3 Galβ1,4-GlcNAcβ1,2-Manα1,6.

FIG.4B

FIG. 11

FIG. 14

FIG. 15

FIG. 17

R=MeCONH I I R=BrCH₂CONH III R=N₂CH₂CONH IV

FIG. 19

FIG. 18A

FIG. 20

FIG. 21

CMP-SIALIC ACID

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

ATGGCCTTCCCAAAGAAGAAACTTCAGGGTCTTGTGGCTGCAACCATCACGCCAATGACTGAGAATGGAGAAATCAA CTTTTCAGTAATTGGTCAGTATGTGGATTATCTTGTGAAAGAACAGGGGAGTGAAGAACATTTTTGTGAATGGCACAA CAGGAGAAGGCCTGTCCCTGAGCGTCTCAGAGCGTCGCCAGGTTGCAGAGGAGTGGGTGACAAAAGGGAAGGACAAG CTGGATCAGGTGATAATTCACGTAGGAGCACTGAGCTTGAAGGAGTCACAGGAACTGGCCCAACATGCAGCAGAAAT AGGAGCTGATGGCATCGCTGTCATTGCACCGTTCTTCCTCAAGCCATGGACCAAAGATATCCTGATTAATTTCCTAA AGGAAGTGGCTGCCGCCCCTGCCCTTTTATTACTATCACATTCCTGCCTTGACAGGGGTAAAGATTCGT GCTGAGGAGTTGTTGGATGGGATTCTGGATAAGATCCCCACCTTCCAAGGGCTGAAATTCAGTGATACAGATCTCTT AGACTTCGGGCAATGTGTTGATCAGAATCGCCAGCAACAGTTTGCTTTCCTTTTTGGGGTGGATGAGCAACTGTTGA GTGCTCTGGTGATGGGAGCAACTGGAGCAGTGGGCAGTTTTGTATCCAGAGATTTATCAACTTTGTTGTCAAACTAG GTTTTGGAGTGTCACAGACCAAAGCCATCATGACTCTGGTCTCTGGGATTCCAATGGGCCCACCCCGGCTTCCACTG AAAGGATGGAAACTTGGAAGCTGGTAGCTAGTGCCTCTCTATCAAATCAGGGTTTGCACCTTGAGACATAATCTACC TTAÄATAGTGCATTTTTTCTCAGGGAATTTTAGATGAACTTGAATAAACTCTCCTAGCAAATGAAATCTCACAATA AGCATTGAGGTACCTTTTGTGAGCCTTAAAAAGTCTTATTTTGTGAAGGGGCAAAAACTCTAGGAGTCACAACTCTC AGTCATTCATTTCACAGATTTTTTTGTGGAGAAATTTCTGTTTATATGGATGAAATTGGAATCAAGAGGAAAATTGTA ATTGATTAATTCCATCTGTCTTTAGGAGCTCTCATTATCTCGGTCTCTGGTTCCTAATCCTATTTTAAAGTTGTCTA ATTTTAAACCACTATAATATGTCTTCATTTTAATAAATATTCATTTGGAATCTAGGAAAACTCTGAGCTACTGCATT TAGGCAGGCACTTTAATACCAAACTGTAACATGTCTCAACTGTATACAACTCAAAATACACCAGCTCATTTGGCTGC TCAGTCTAACTCTAGAATGGATGCTTTTGAATTCATTTCGATG

FIG.27

MAFPKKKLQGLVAATITPMTENGEINFSVIGQYVDYLVKEQGVKNIFVNGTTGEGLSLSVSERRQVAEEWVTKGKDKLDQ VIIHVGALSLKESQELAQHAAEIGADGIAVIAPFFLKPWTKDILINFLKEVAAAAPALPFYYYHIPALTGVKIRAEELLD GILDKIPTFQGLKFSDTDLLDFGQCVDQNRQQQFAFLFGVDEQLLSALVMGATGAVGSFVSRDLSTLLSN.VLECHRPKP S.LWSLGFQWAHPGFHCRKPPGSLLIVLKLN.RAWISFLSLI.RWETWKLVASASLSNQGFAPLRHNL

FIG.28

GCAGCGCAACTCTCGCGGCGGCCAGGGCCGAGGTGTGGAGAAGCCCCCGCACCTGGCAGCCCTAATTCTGGCCCGGGGAG GATTCAGGGGCCTTCCAGAGTGTATGGGTTTCGACAGACCATGATGAAATTGAGAATGTGGCCAAACAATTTGGTGCACA AGTTCATCGAAGAAGTTCTGAAGTTTCAAAAAGACAGCTCTACCTCACTAGATGCCATCATAGAATTTCTTAATTATYATA ATGAGGKTGACATTGTAGGAAATATTCAAGCTACTTCTYCATGTTTACATCCTACTGATCTTCAAAAAGTTGCAGAAATG ATTCGAGAAGAAGGATATGATTCTGKTTTCTCTGTTGTGAGACGCCCATCAGTTTCGATGGAGTGAAATTCAGAAAGGAGT TCGTGAAGTGACCGAACCTCTGAATTTAAATCCAGCTAAACGGCCTCGTCGACAAGACTGGGAGAATTATATGAAA ATGGCTCATTTTATTTTGCTAAAAGACATTTGATAGAGATGGGTTACTTGCAGGGTGGAAAATGGCATACTACGAAATGC CAGGAGACCAAAAAGAAATAATATCTTATGATGTAAAAGATGCTATTGGGATAAGTTTATTAAAGAAAAGTGGTATTGAG GTGAGGCTAATCTCAGAAAGGGCCTGTTCAAAGCAGACGCTGTCTTTTAAAACTGGATTGCAAAATGGAAGTCAGTGT ATCAGACAAGCTAGCAGTTGTAGATGAATGGAGAAAAGAAATGGGCCTGTGCTGGAAAGAAGTGGCATATCTTGGAAATG AAGTGTCTGATGAAGAGTGCTTGAAGAGAGTGGGCCTAAGTGGCCCTCCTGCTGATGCCTGTTCCTACGCCCAGAAGGCT GTTGGATACATTTGCAAATGTAATGGTGGCCGTGGTGCCATCCGAGAATTTGCAGAGCACATTTGCCTACTAATGGAAAA **AGTTAATAATTCATGCCAAAAATAG**

FIG.29

MDSVEKGAATSVSNPRGRPSRGRPPKLQRNSRGGQGRGVEKPPHLAALILARGGSKGIPLKNIKHLAGVPLIGWVLRAAL DSGAFQSVWVSTDHDEIENVAKQFGAQVHRRSSEVSKDSSTSLDAIIEFLNYXNEXDIVGNIQATSXCLHPTDLQKVAEM IREEGYDSXFSVVRRHQFRWSEIQKGVREVTEPLNLNPAKRPRRQDWDGELYENGSFYFAKRHLIEMGYLQGGKWHTTKC ELEHSVDIDVDIDWPIAEQRVLRYGYFGKEKLKEIKLLVCNIDGCLTNGHIYVSGDQKEIISYDVKDAIGISLLKKSGIE VRLISERACSKQTLSSLKLDCKMEVSVSDKLAVVDEWRKEMGLCWKEVAYLGNEVSDEECLKRVGLSGAPADACSYAQKA VGYICKCNGGRGAIREFAEHICLLMEKVNNSCQK

ATGCCGCTGGAGCTGGAGCTGTGTCCCGGGCGCTGGGTGGCCGGCAACACCCCGTGCTTCATCATTGCCGAGATCGGCCA
GAACCACCAGGGCGACCTGGACGTAGCCAAGCGCATGATCCGCATGGCCAAGGAGTGTGGGGCTGATTGTGCCAAGTTCC
AGAAGAGTGAGCTAGAATTCAAGTTTAATCGGAAAGCCTTGGAGAGGCCATACACCTCGAAGCATTCCTGGGGGAAGACG
TACGGGGAGCACAAACGACATCTGGAGTTCAGCCATGACCAGTACAGGGAGCTGCAGAGGTACGCCGAGGAGGTTGGGAT
CTTCTTCACTGCCTCTGGCATGGATGAGATGGCAGTTGAATTCCTGCATGAACTGAATGTTCCATTTTTCAAAGTTGGAT
CTGGAGACACTAATAATTTTCCTTATCTGGAAAAGACAGCCCAAAAAAGGTCGCCCAATGGTGATCTCCAGTGGGATGCAG
TCAATGGACACCATGAAGCAAGTTTATCAGATCGTGAAGCCCCTCAACCCCAACTTCTGCTTCTTGCAGTGTACCAGCGC
ATACCCGCTCCAGCCTGAGGACGTCAACCTGCGGGTCATCTCGGAATATCAGAAGCTCTTTTCCTGACATTCCCATAGCGT
ATTCTGGGCATGAAACAGGCATAGCGATATCTGTGGCCGCAGTGGCTCTGGGGGCCCAAGGTGTTGGAACGTCACATAACT
TTGGACAAGACCTGGAAGGGGAGTGACCACTCGGCCTCGCTGGAGCCTGGAGCACTGGCCGAACTTGCGCAAAGCTCGCCCAAC
TCTTGTGGACAAGACATGCCCAACCAACCAAGCACCTGCTGGAGCCTGGAGAACTGGCCGAAGAAGCTGGGCCAAAG
TCTTGTGGACAAAGTGAAAATTCCGGAAAGGCACCATTCTAACAATGGACATGCTCACCGTGAAGGTGGCCCAAA
GCCTATCCTCCTGAAGACATCTTTAATCTAGTGGGCAAGAAGGTCCTGGTCACTGTTGAAGAGGTGACACCATCATGGA
AGAATTGGTAGATAATCATGGCAAAAAAAATCAAGTCTTAA

FIG.31

MPLELELCPGRWVGGQHPCFIIAEIGQNHQGDLDVAKRMIRMAKECGADCAKFQKSELEFKFNRKALERPYTSKHSWGKT YGEHKRHLEFSHDQYRELQRYAEEVGIFFTASGMDEMAVEFLHELNVPFFKVGSGDTNNFPYLEKTAKKGRPMVISSGMQ SMDTMKQVYQIVKPLNPNFCFLQCTSAYPLQPEDVNLRVISEYQKLFPDIPIGYSGHETGIAISVAAVALGAKVLERHIT LDKTWKGSDHSASLEPGELAELVRSVRLVERALGSPTKQLLPCEMACNEKLGKSVVAKVKIPEGTILTMDMLTVKVGEPK AYPPEDIFNLVGKKVLVTVEEDDTIMEELVDNHGKKIKS

FIG.32

			23/40		
d hTf %) +GalT	10.1	5.5	23.5	5.5	13.4
Secreted hTf (mol%) -GalT +Gal	3.9	2.3	11.6	2.3	4.7
PA-oligosaccharide structure	Mana2-Mana6 Mana3 Mana2-Mana3	Mana6 Mana3 Mana2-Mana3	Mana2-Mana6 Mana2-Mana3 Mana2-Mana2-Mana3	Mana6 Mana3 Mana2-Mana3	Mana6 Mana3 Mana2-Mana3
Peak/code (G.U. ODS, amide)	A/M8.1 (4.9,9.0)	B1/M7.2 (5.1,8.1)	B2/M9.1 (5.2,9.7)	C/M7.1 (5.8,8.0)	D/M6.1 (6.1,7.1)

FIG.33A

		Secreted hTf	bd hTf	-
	PA-oligosaccharide structure	(mol%) GalT + C	1%) +GalT	
E1/M9.2 (6.3,10.3)	Mana2-Mana6 Mana2-Mana3 Glca3-Mana2-Mana3	1.3	3.7	·
· .	Mana2-Mana3 Mana2-Mana3 Mana2-Mana3-Mana3	0.3	0.8	
	Mana6 Mana3 Mana3 Mana3	4.6	2.4	24/40
F2/000.1 (7.4,4.3)	Mana3 Mana3	9.0	5.8	
F3/100.2 (7.4,4.7)	Mana6\Aana5\Manb4-GlcNAcb4-GlcNAc GlcNAcb2-Mana3	6.5	3.1	·
G1/M6.10 (7.9,6.8)	Mana6 Mana2-Mana3 Mana3		<u> </u>	1.1 FIG.33B

ed hTf 1%) +GalT			25/40		FIG.33C
Secreted hTf (mol%) -GalT +Gal	5.0	1.7	1.3	4.0	6.1
	ри	5.9	рu	23.4	15.7
PA-oligosaccharide structure	Mana6 Manb4-GicNAcb2-Mana3	Fuca 6 Mana6 Mana3 Mana3 Fuca 3	Fuca 6 Mana6 Manb4-GlcNAcb4-GlcNAc Galb4-GlcNAcb2-Mana3 Fuca 3	Fuca 6 Mana6 Manb4—GlcNAcb4—GlcNAc	Fuca 6 Mana6 Mana3
Peak/code	(8.0,5.7)	H/000.1FF (8.5,5.5)	1/100.4FF (8.9,7.0)	J1/010.0 (7.2,6.2)	J2/010.1 10.2,4.7)

		26/40	·
d hTf %) +GalT	pu	4.3	0.7
Secreted hTf (mol%) -GalT +Gal	3.5	Ъ	3.9
PA-oligosaccharide structure	Fuca 6	Fuca 6 Mana6\Annb4-GICNAcb4-GICNAc Galb4-GICNAcb2-Mana3	Fuca 6 ClcNAcb2-Mana6 Manb4-ClcNAcb4-GlcNAc
Peak/code (G.U. ODS, amide)	J3/110.2 (10.2,5.1)	K/110.4 (10.9,6.3)	L/110.1 (12.7,5.1)

FIG.33D

FIG.34

				10			20			30)			40			50			60)
1 1	CCG	ACC			GGT	AGT		GGC			CCC	CGA	GCC		GCA	M	P	CTG L	GAG E	CTG L 120	
			./	0			80			90			10	0			10			120	
	GAG E	CTG L		P	00G G	R	TGG W 140			GG G 150		CAC H	CCG P	С	TTC F	I	ATT I 170	GCC A	GAG E		120 25
			1.			•								•							
121	GGC	CAG	AAC	CAC	CAG	GGC	GAC	CIG	GAC	GTA	GCC	AAG	CGC	ATG	ATC	CGC	ATG	GCC	AAG	GAG	180
26	G	Q	N		Q		D	L	D		A	K	R		Ι	R		A	K	E	45
			19	90		2	200			210			22	20		2	230			240	
101	ىلمكك	œ	CCT	ሮእጥ	ىلىمىلل	ממי	774	ישורי	מאכ	770	λŒΤ	CZAC	CTA	(2)]	ייווי	ΔΔG	ىلىلى	ፐልል	ar.	AAA	240
	C	G	A		C			F			S		L		F	K		N	R	K	
10	Ŭ	Ū	25				260		~	270			28	30		2	290		-	300	
							•			•										•	
241	GCC	TTG	GAG	AGG	CCA	TAC							GGG								
66	A	L	E	R	P	Y		S	K	H	S	W	G	K	Т	Y.		E	H	K 360	85
			3.	LO			320			330		•	34	10		•	350			300	
301	CGA	САТ	CTG	GAG	TTC	AGC	CAT	GAC	CAG	TAC	AGG	GAG	CTG	CAG	AGG	TAC	GCC	GAG	GAG	GIT	360
86		Н	L	E	F	S	Н	D		Y	R	E		Q	R		A	E	E	V	105
			3'	70			380			390			4	00		•	410			420	
				•				~~~			~~ ~	3 ma	aa		G3.3			CD III	<i>(</i> 17, 7,	·	400
																TTC F					420 125
106	G	1		ъ 30			5 440		141	ע 450			A 40				470	11	15	480	
			-1.										1,								
421	AAT	GIT	CCA	TTT	TTC	AAA	GIT	GGA	TCT	GGA	GAC	ACT	AAT	AAT	TTT	CCT	TAT	CIG	GAA	AAG	480
126	N	V	P	F	F	K	V	G	S	G	D	T	N	N	F	P	Y	L	E	K	145

FIG. 35A

			49	90		ŗ	500			510			52	20		5	30			540	
481 146		GCC A	AAA K	K	GT G	R	CCA P 560	ATG M	V	ATC I 570		AGT S	G		Q	S		GAC D	ACC T		540 165
541	AAG	CAA			CAG		GTG				AAC	CCC						CAG	TGT	ACC	600
166				Y		Ι	V 520		P		N	P		F		F		Q	С		185
							CCT														
186	S	Α		P 70	L	~	P 680	E						V 00		_	E 710	Y	Q	K 720	205
	CIC L		CCT P			CCC P	ATA I							ACA T				ATA I	TCT S		720 225
				30			740 •			750 ·				60						780	
			V	A		G	GCC A			L	Ε	R	H	Ι	ACT T	L	D	AAG K	ACC T	W	245
				90 •			800	шоо	OTTO)	810			8	•	aaa		830	CHTC!	œ	840	
781 246		G	S	D	H	S	GCC A 860	S	L		P	G	E	L 80	A	E	L 890	V	R		265
841	GIG	CGI		•														TGT	'GAG	ATG	900
			L	V	E	R		L	G	S	P	T	K	Q	L	L	P	C	Ε	M	285
					AAG	CTO		AAG	TCI	GIG	GIG	GCC	: AAA								960
286	Α	С	N	E	K	L	G	K	S	٧	V	Α	K	٧	K	Ţ	P	Ľ	G	T	305

FIG. 35B

			97	70		9	980			990			100	00		10)10]	L020	
														•			•			•	
961	TTA	CTA	ACA	ATG	GAC	ATG	CTC	ACC	GTG	AAG	GTG	GGT	GAG	CCC	AAA	GCC	TAT	CCT	CCT	GAA	1020
306	Ι	L	Т	M	D	M	L	T	V	K	V	G	Ε	P	K	A	Y	P	P	E	325
			103	30		10)40			1050			106	50		10	70		-	1080	
										•				•			•			•	
1021	GAC	ATC	TTT	AAT	CTA	GTG	GGC	AAG	AAG	GTC	CTG	GTC	ACT	GTT	GAA	GAG	GAT	GAC	ACC	ATC	1080
326	D	Ι	F	N	L	V	G	K	K	V	L	V	T	V	E	E	D	D	T	Ι	345
			109	90		13	100			1110			112	20		11	L30			1140	
																				•	
1081	ATG	GAA	GAA	TIG	GTA	GAT	AAT	CAT	GGC	AAA	AAA	ATC	AAG	TCT	TAA	AAA	TAA	AGT	GCC	ATT	1140
346	M	E	E	L	V	D	N	Н	G	K	K	I	K	S	*						359
1141	CTC	TGA	1146	5																	

FIG. 35C

1	MPLELELCPGRWVGGQHPCFIIAEIGQNHQGDLDVAKRMIRMAKECGADCAKFQKSELEF
1	
61	KFNRKALERPYTSKHSWG-KTYGEHKRHLEFSHDQYRELQRYAEEVGIFFTASGMDEMAV
46	LISAIAPKAEYQIKNTGELESQLEMTKKLEMKYDDYLHLMEYAVSLNLDVFSTPFDEDSI
120	EFLHELNVPFFKVGSGDTNNFPYLEKTAKKGRPMVISSGMQSMDTMKQVYQIVK
106	DFLASLKQKIWKIPSGELLNLPYLEKIAKLPIPDKKIIISTGMATIDEIKQSVSIFINNK
174	PLNPNFCFLQCTSAYPLQPEDVNLRVISEYQKLFPDIPIGYSGHETGIAISVAAVALGAK
166	VPVGNITILHCNTEYPTPFEDVNLNAINDLKKHFPKNNIGFSDHSSGFYAAIAAVPYGIT
234	VLERHITLDKTWKGSDHSASLEPGELAELVRSVRLVERALGSPTKQLLPCEMACNEKLGK
226	FIEKHFTLDKSMSGPDHLASIEPDELKHLCIGVRCVEKSLGSNSKVVTASERKNKIVARK
294	SVVAKVKIPEGTILTMDMLTVKVGEPKAYPPEDIFNLVGKKVLVTVEEDDTIMEELVDNH
286	SIIAKTEIKKGEVFSEKNITTKRP-GNGISPMEWYNLLGKIAEQDFIPDELIIHS
354	G-KKIKS
340	EFKNOGE

FIG. 35D

ln \	⁄itro_		Pulse	Label	
pA2	pA2-SAS	Marker	A35	AcSAS	
	•			الرائد الدين والموسود الرائد الأثار الدين والموسود	
			en e		66 kD
					46 kD
		1982 A.S.	स्टब्स्ट कर के किया के स्टब्स्ट के किया के कि	- na taking ing sa taking s Sa taking ing sa taking sa	30 kD
				:	21.5 kD
	•	س			14.3 kD
1	2	3	4	5	
	FIC	1.30	6A		

FIG.36B

HOSER CLLUCEC

FIG. 39