Greedy Algorithms

Activity Selection

- ► Activity: an interval [s,f) where s≤f
 - > Starting time s and finish time f.
- Problem instance: A set of activities
 - \gt S={a₁,...,a_n}={[s₁,f₁),...,[s_n,f_n)}
- ▶ Goal: Find a maximum-size subset $S^*\subseteq S$ such that any two activities in S^* do not overlap.
 - ► $[s,f),[s',f') \in S^*$ implies $[s,f) \cap [s',f') = \emptyset$.

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

Optimal solution: $S^* = \{a_1, a_4, a_8, a_{11}\} = \{[1, 4), [5, 7), [8, 11), [12, 16)\}$

Solvable by DP

- ▶ Termination: If n=o, return o.
- ▶ Divide-and-Conquer: Let S—a denote the set $\{a' \in S: a' \cap a = \emptyset\}$
 - ▶ Solve subproblems $S_i=S-a_i$ for $a_i \in S$.
- ▶ Combine: return $\max_{1 \le i \le n} (opt(S_i)+1)$
- ▶ Time complexity: O(n2ⁿ)

More Efficient DP

- Preprocessing: Sort the activity in the ascending order of finished time.
- ▶ Termination: If n=o, return o.
- Divide-and-Conquer: Solve subproblems
 - ▶ $P_i = \{[s,f) \in S: f \le s_i\}$ and $Q_i = \{[s,f) \in S: s \ge f_i\}$.
- ▶ Combine: $\max_{1 \le i \le n} (opt(P_i) + opt(Q_i) + 1)$
- Time complexity: O(n³)
 - ▶ The number of subproblems is O(n²).

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

The subproblems are in the form $\{[s,f)\in S: s\geq f_i \text{ and } f\leq s_j\}$ for $i\leq j$.

More Efficient Method

- Strategy 1: reduce the number of total subproblems
- Strategy 2: reduce the number of dependent subproblems
- Greedy algorithms can achieve both of the above.
 - Many greedy algorithms are decreaseand-conquer algorithms. No overlapping subproblems.

Greedy Algorithm Values

- Preprocessing: Sort the activity in the ascending order of finished time.
- ▶ Termination: If n=0, return 0.
- ▶ Divide-and-Conquer: Solve the subproblem $S'=\{[s,f)\in S:s\geq f_1\}$.
- ▶ Combine: opt(S')+1
- Time complexity: O(nlogn)
 - ▶ The number of total subproblems: O(n)

Greedy Algorithm Solution

- Preprocessing: Sort the activity in the ascending order of finished time.
- ▶ Termination: If n=0, return $\emptyset = \{\}$.
- ▶ Divide-and-Conquer: Solve the subproblem $S'=\{[s,f)\in S:s\geq f_1\}$.
- ▶ Combine: opt(S') \cup {f₁}
- Time complexity: O(nlogn)
 - ▶ The number of total subproblems: O(n)

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

İ	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

İ	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

İ	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

Optimal solution: $S^* = \{a_1, a_4, a_8, a_{11}\} = \{[1, 4), [5, 7), [8, 11), [12, 16)\}$

Greedy algorithm

- Obviously, it is much more efficient!
 - Decrease-and-conquer
 - If the input is given in the ascending order of finished time, it is in O(n).
- ▶ But, is it correct?
 - Yes. You have to show this!
 - Optimal substructure
 - Greedy choice property

Optimal Substructure

- Similar to dynamic programming
- An optimal solution contains optimal solutions to the subproblems
 - Ex: if $a_1 \in \text{opt}(S)$, opt(S) contains the optimal solution to $S-a_1$. opt(S)\{ a_1 } is an optimal solution to $S-a_1$.
 - ▶ BWOC: $|opt(S-a_1)| > |opt(S)| -1$. It is clear that $opt(S-a_1) \cup \{a_1\}$ is a solution to S, thus $|opt(S-a_1) \cup \{a_1\}| > |opt(S)|$. A contradiction.

Greedy Choice

- We can assemble a global optimal solution by making locally greedy choices.
- Ex: $[s_1,f_1)$ must be in opt(S) if $f_1 \le f_2 \le ... \le f_n$.
- ▶ BWOC: Assume $[s_1,f_1)\notin opt(S)$ and let i>1 be the minimum index s.t. $[s_i,f_i)\in opt(S)$. opt(S) $\cup\{[s_1,f_1)\}\setminus\{[s_i,f_i)\}$ is still an optimal solution to S since $f_1\leq s_j$ for each activity $[s_j,f_j)\in opt(S)$ other than $[s_i,f_i)$. A contradiction.

Greedy Choice

$$[s_i,f_i)$$

$$[s_j,f_j)$$

$$[s_j,f_j)$$

$$[s_1,f_1)$$

Fractional Knapsack

- You can take fractions of items
 - ▶ 0-1 knapsack: to take or not to take, that's the question.
- Greedy algorithm works: take the most valuable (per kg) first.
- ▶ Homework: Give an instance of the o-1 knapsack problem which fails the greedy algorithm.

Fractional Knapsack

- Homework: Show that the greedy algorithm works for the fractional knapsack problem.
- Homework: Give an efficient implementation of the greedy algorithm solving the fractional knapsack problem.

Task Scheduling

- There are n tasks t₁,...,t_n.
 - ▶ To finish a task takes a day.
 - ▶ Deadline of t_i: d_i
 - Reward of t_i: r_i if finished no later than d_i.
- How can we achieve the maximum total rewards?

i	1	2	3	4	5	6	7
di	4	2	4	3	1	4	6
ri	50	60	20	40	30	70	10

1234567: we can get 130

2134765: we can get 140

4216735: we can get 230

1st Attempt: FAILED

- Greedy choice: task with earliest deadline
- ▶ Maintain a set S which is empty initially.
- ▶ Sort the tasks into t₁, ..., tn by their deadline decreasingly.
 - ▶ Tie-breaking: by reward decreasingly
- For i = 1 to n do if $d_i \le i$ then $S := S \cup \{i\}$
 - Output $\Sigma_{i \in S} r_i$

i	1	2	3	4	5	6	7
di	4	2	4	3	1	4	6
ri	50	60	20	40	30	70	10

i	5	2	4	6	1	3	7
di	1	2	3	4	4	4	6
ri	30	60	40	70	50	20	10

5246137: we can get 200

2nd Attempt: FAILED

▶ Observation: We don't need to do the task after its deadline!

```
 \begin{split} \text{For } i &= 1 \text{ to } n \text{ do} \\ \text{if } d_i &\leq j \text{ then } S := S \cup \{i\}, j = j + 1 \\ \text{Output } \Sigma_{i \in S} r_i \end{split}
```

i	1	2	3	4	5	6	7
di	4	2	4	3	1	4	6
r _i	50	60	20	40	30	70	10

i	5	2	4	6	1	3	7
di	1	2	3	4	4	4	6
ri	30	60	40	70	50	20	10

5246137: we can get 210

3rd Attempt: Success?

- An index set T is good iff we can finish every task t_j such that j∈T on time.
- Maintain a set S which is empty initially.
- ▶ Sort the tasks into t₁, ..., tn by their rewards decreasingly.
- For i = 1 to n do if $S \cup \{i\}$ is good then $S := S \cup \{i\}$ Output $\Sigma_{i \in S} r_i$

i	1	2	3	4	5	6	7
di	4	2	4	3	1	4	6
ri	50	60	20	40	30	70	10

i	6	2	1	4	5	3	7
di	4	2	4	3	1	4	6
ri	70	60	50	40	30	20	10

2416753: we can get 230

Homework

- ▶ Show that the 3rd attempt is correct.
- Give an implementation which runs in O(n²).
- Give an implementation which runs in O(nlogn).
- Note: You can prove these directly. But, 16.4 and 16.5 contain the answers to the first two problems.

Minimum Spanning Tree

- Suppose there is a power plant on a small island and some houses need to be connected to the plant properly.
 - A house is connected to the plant directed.
 - A house is connected to another house which is properly connected.
- What is the minimum total length of the power cables?

Minimum Spanning Tree

- Input: a graph G=(V,E) and a weight function w: $E\rightarrow R$.
- Output: a spanning tree with minimum total edge weight.
- ▶ Method: Greedy
 - Kruskal's algorithm
 - Prim's algorithm

Kruskal's Algorithm

- Sort the edges into $e_1,...,e_m$ in ascending order of weight: $w(e_i) \le w(e_j)$ iff $i \le j$.
- Maintain a partition P of V, initially $P=(\{v_1\},\{v_2\},...,\{v_n\}).$
- ▶ For i=1 to m do
 Let {s,t}=ei
 If s and t are in diff partitions S and T
 put ei into the output and Union(S,T)
 If there are n-1 edges in the output
 break

اے	i	Α	В	С	D	E	F	G	Η
5	r _i	Α	В	С	D	E	F	G	Η

ر	i	Α	В	С	D	E	F	G	Ι
5	ri	A	В	C	D	A	F	G	Ι

ر	i	Α	В	C	D	E	F	G	Η
5	ri	A	В	С	D	A	A	G	Η

C	i	Α	В	С	D	E	F	G	Н
5	ri	Α	В	С	D	A	A	D	Н

	i	Α	В	C	D	E	F	G	Η
5	r _i	Α	В	В	D	A	A	D	Н

C	i	A	В	C	D	E	F	G	Ι
.5	ri	A	В	В	В	A	A	В	Ι

C	i	A	В	C	D	Е	F	G	Η
5	ri	A	В	В	В	A	A	В	Η

C	i	Α	В	С	D	E	F	G	Н
5	ri	Α	В	В	В	A	A	В	Н

- C	i	A	В	C	D	E	F	G	Ι
.5	ri	A	A	В	В	A	A	В	Ι

C	Ï	A	В	C	D	E	F	G	Τ
.5	ri	A	A	В	В	A	A	В	Τ

C	i	Α	В	С	D	E	F	G	Н
5	ri	Α	A	В	В	A	A	В	Н

· C	i	A	В	\cup	D	Е	F	G	Ι
.5	ri	A	A	В	A	A	A	A	A

Prim's algorithm

- ▶ Maintain a connected subgraph G'=(V',E')
- For each vertex u∉V', maintain the minimum cost C[u] to connect u to G'.
- Initially, V'= $\{v\}$, E'= \emptyset , C[u]=w(u,v).
- ▶ For i=2 to n do
 Let u*=argmin_{u∉V}C[u]
 For each v*∈V\V' s.t. {u*,v*}∈E do
 update C[v*]
 update G' by adding u* into V'

V	Α	В	С	D	Е	F	G	Н
C[v]	0	8	8	8	1	7	8	8

V	A	В	С	D	Е	F	G	Η
C[v]	0	8	8	8	1	2	8	8

V	Α	В	С	D	Е	F	G	Н
C[v]	0	8	8	8	1	2	10	8

V	Α	В	С	D	E	F	G	Н
C[v]	0	8	4	8	1	2	10	8

V	A	В	С	D	Е	F	G	Н
C[v]	0	8	4	6	1	2	5	8

V	A	В	С	D	Е	F	G	Н
C[v]	0	8	4	3	1	2	5	11

V	A	В	С	D	Е	F	G	Н
C[v]	0	8	4	3	1	2	5	11

V	A	В	С	D	Е	F	G	Η
C[v]	0	8	4	3	1	2	5	11

Kruskal vs Prim

- Time
 - Kruskal: O(ElogV)
 - We'll discuss disjoint sets later
 - \blacktriangleright Prim: O(V²) or O(E+VlogV)
- ▶ Implementation
 - Kruskal: Disjoint sets & Sort
 - ▶ Prim: O(V²) by Arrays
 - ▶ Prim: O(E+VlogV) by Fibonacci heaps

Correctness

- Greedy choice property:
 - ▶ If e_v =minarg $_{v \in e}$ w(e), then e_v is in the MST.
- Optimal substructure:
 - Let (u,v) be an edge in the MST T_G of G=(V,E).
 - $V'=V\setminus\{u,v\}\cup\{v'\}$
 - \bullet f(u)=f(v)=v', f(p)=p for p\notin \{u,v\}.
 - $f(p,q)=\{f(p),f(q)\}, E'=\{f(p,q):\{p,q\}\in E\}$
 - G'=(V',E') and $T_{G'}$ =(V',{f(p,q):{p,q} $\in T_{G}$ }).
 - ▶ T_G' is the MST of G'.

Greedy Choice

- ▶ BWOC, assume $e_v=\{v,u\}$ is not in $T=(V,E_T)$ and e_v has strictly less weight than all the other edges incident to v.
- There is a path $p=(v,v_1,...,v_k,u)$ from v to u.
- ▶ Let T'=(V, E_T \{{v,v₁}}\∪{{v,u}}}).
- Since $w(v,v_1)>w(v,u)$, we have $cost(T)=cost(T')-w(v,v_1)+w(v,u)< cost(T')$. A contradiction.

Greedy Choice

Optimal Substructure

- ▶ BWOC, let $T'=(V',E_{T'})$ be the MST of G' s.t. $cost(T') < cost(T_{G'})$
- $f^{-1}(p',q') = minarg_{f(p,q)=\{p',q'\}}w(p,q)$
 - There might be multiple edges (p,q) such that $f(p,q)=\{p',q'\}$.
- ▶ Let T''=(V,{u,v}∪{f⁻¹(p',q'):{p',q'}}∈ $E_{T'}$ })
- $ightharpoonup \cos t(T') = \cos t(T') + w(u,v)$ $< \cos t(T_{G'}) + w(u,v) = \cos t(T_{G}).$ A contradiction.

Prim vs Kruskal

• Prim:

- ▶ Apply the greedy choice on a vertex.
- ▶ Solve the subproblem.

Kruskal:

- Check whether the remaining edge of the minimum weight is still a greedy choice.
- If yes, reduce the problem.

Homework

- MST related
 - What if there are two power plants on the island?
 - How to find the maximum spanning tree?
 - ▶ How to find the second minimum spanning tree in O(V²)-time?
 - ▶ How to count how many distinct MSTs?

Prefix Code

- Character code: each character c is represented by a unique (binary) string s_c.
- Variable length code: $|s_c|$ and $|s_{c'}|$ are not necessarily equal for $c \neq c'$.
- ▶ Prefix code: s_c is not a prefix of $s_{c'}$ for $c \neq c'$.
 - Prefix: abcd is a prefix of abcdefgh.
 - ▶ To avoid ambiguity

Character	a	b	С	d	е	f
Freq. in file	45	13	12	16	9	5
Fixed length code	000	001	010	011	100	101
Variable length code	0	101	100	111	1101	1100

FLC: $(45+13+12+16+9+5)\times 3=300$

VLC: $45 \times 1 + (13 + 12 + 16) \times 3 + (9 + 5) \times 4 = 224$

Prefix Encoding Tree

Huffman Code

- An optimal variable length prefix code
- Constructed by a greedy algorithm:
 - Merge two least frequent nodes na & nb
 - Generate a new node n_{ab} whose frequency is f_a+f_b.
 - Repeat the merge process until exact one node remains.

Huffman Encoding Tree

Huffman Encoding Tree

Huffman Encoding Tree

Correctness

- We need to show two things
 - Greedy choice property (Lemma 16.2)
 - The least frequent two characters have the same length in some optimal prefix code.
 - Optimal substructure (Lemma 16.3)
 - If we merge the least frequent two nodes, then the tree is still optimal to the subproblem.

Lemma 16.2

Let C be an alphabet in which each character c∈C has frequency f_c. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

- Let T be the encoding tree of some optimal prefix code of C.
- If the codewords for x and y in T have the same length and differ only in the last bit, then we are done!
- Let α be the character of the longest codeword, and β be α 's sibling in T.
 - Their codewords have the same length and differ only in the last bit!

- We exchange x and α to obtain T' from T.
- We exchange y and β to obtain T" from T'.

- ▶ Let d_c be the length of codeword of c.
- $\begin{aligned} & \operatorname{cost}(T') = \operatorname{cost}(T) + f_{\alpha} d_{x} + f_{x} d_{\alpha} f_{x} d_{x} f_{\alpha} d_{\alpha} \\ & = \operatorname{cost}(T) + (f_{\alpha} f_{x})(d_{x} d_{\alpha}) \leq \operatorname{cost}(T) \\ & \operatorname{cost}(T) + (\geq 0)(\leq 0) \end{aligned}$
 - T' is optimal, too.
- - T' is optimal, too. We are done.

Lemma 16.3

- ▶ Let C be a given alphabet with frequency f_c defined for each character c∈C.
- ▶ Let x and y be two characters in C with minimum frequency.
- Let C' be the alphabet C with the characters x and y removed and a new character z added, so that $C'=C\setminus\{x,y\}\cup\{z\}$.
- Define frequency of characters in C':
 - \rightarrow $f_z = f_x + f_y$
 - ▶ The frequency of other characters remain unchanged.
- Let T' be any tree representing an optimal prefix code for the alphabet C'. Then the tree T, obtained from T' by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for the alphabet C.

```
► cost(T)

=cost(T')-d_zf_z+d_xf_x+d_yf_y

=cost(T')-d_zf_z+(1+d_z)f_x+(1+d_z)f_y

=cost(T')+f_x+f_y-d_z(f_z-f_x-f_y)

=cost(T')+f_x+f_y
```


- ▶ BWOC, T is not optimal for C, but T* is.
- ▶ WLOG (by lemma 16.2), x and y are siblings in T*.
- By removing the leaves representing x and y in T*, we obtain T**.
- Similar to the previous argument: $cost(T^{**})=cost(T^{*})-f_x-f_y$ $< cost(T)-f_x-f_y=cost(T^{*})$, a contradiction.

Alternative: Lemma 16.3a

- ▶ The original version is somewhat tedious.
- We can focus on the optimal solutions exhibiting the greedy choice property.
- Let T be an optimal tree for alphabet C satisfying lemma 16.2 and T' be the tree obtained from removing the leaves representing x and y in T.
- ► Then T' is an optimal tree for alphabet $C'=C\setminus\{x,y\}\cup\{z\}$ where z is represented by the parent x and y of in T and $f_z=f_x+f_y$.

Homework

- How much space is needed to store a Huffman encoding tree?
- Design an algorithm to construct an optimal ternary (3-ary) prefix code.