

Indice

1.	INTRODUZIONE	3
	ESERCIZIO 1	
	ESERCIZIO 2	
4.	ESERCIZIO 3	6
5.	ESERCIZIO 4	7
6.	ESERCIZIO 5	8
7.	ESERCIZIO 6	9
8.	ESERCIZIO 7	11
RIRI	LIOGRAFIA	13

1. Introduzione

In questa unità didattica si presentano una serie di esercizi risolti di complessità crescente. Il lettore può trovare le tracce nel libro di testo proposto, al cap. 2. Gli esercizi sono:

- 2.1
- 2.2
- 2.3
- 2.8
- 2.9
- 2.11
- 2.13

Per ogni esercizio viene fornita almeno una soluzione compatibile con quanto richiesto dalla traccia.

Considerare le informazioni per la gestione dei prestiti di una biblioteca personale. Il proprietario presta libri ai suoi amici, che indica semplicemente attraverso i rispettivi nomi o soprannomi (così da evitare omonimie) e fa riferimento ai libri attraverso i titoli (non possiede 2 libri con lo stesso titolo).

Quando presta un libro, prende nota della data prevista di restituzione. Definire uno schema di relazione per rappresentare queste informazioni, individuando opportuni domini per i vari attributi e mostrarne un'istanza in forma tabellare. Indicare la chiave (o le chiavi) della relazione.

Soluzione 1:

Queste informazioni possono essere rappresentate da una sola relazione contenente i prestiti, perché non ci sono altre informazioni su amici e libri oltre ai nomi e ai titoli. Un possibile schema è il seguente:

PRESTITO (Titolo, Nome, DataRestituzione)

Gli attributi denotano rispettivamente il titolo del libro, il nome o il soprannome dell'amico e la data di restituzione prevista del libro. La chiave primaria è "Titolo" perché non possiede libri con lo stesso nome, quindi ogni libro è unico. Un amico invece può avere più libri e restituirli in date differenti.

Titolo	Nome	DataRestituzione
Il signore degli anelli	Vittorio	12/12/2003
Timeline	Danilo	10/08/2003
L'ombra dello scorpione	Angelo	05/11/2003
Piccolo mondo antico	Valerio	15/04/2004

Soluzione 2:

Questa soluzione inserisce anche la data del prestito. Questa informazione non è richiesta dal testo dell'esercizio iniziale ma è utile comunque per consolidare le competenze. Ovviamente basterà aggiungere un attributo:

PRESTITO (<u>Titolo</u>, Nome, DataRestituzione, DataPrestito)

Rappresentare per mezzo di una o più relazioni le informazioni contenute nell'orario delle partenze di una stazione ferroviaria: numero del treno, orario, destinazione finale, categoria, fermate intermedie, di tutti i treni in partenza. Ecco un possibile schema di relazioni:

PARTENZE (<u>Numero</u>, Orario, Destinazione, Categoria) FERMATE (<u>ID Treno</u>, Stazione, Orario)

La relazione PARTENZE rappresenta tutte le partenze della stazione; contiene il numero di treno che è la chiave primaria, l'orario, la destinazione finale e la categoria di treno. Le fermate sono rappresentate dalla seconda relazione FERMATE, perché il numero di fermate cambia per ogni treno, rendendo impossibile la rappresentazione delle fermate in PARTENZE, che deve avere un numero fisso di attributi. La chiave di questa relazione è composta da due attributi, "Treno" e "Stazione", che indicano il numero di treno e le stazioni in cui si fermano. È necessario introdurre un vincolo di integrità referenziale tra "Treno" in FERMATE e "Numero" in PARTENZE. Le tabelle finali con vincolo di integrità referenziale tra l'attributo Numero e l'attributo ID Treno sono illustrate in Figura 1.

Numero	Orario	Destinazione	Categoria
567	12:20	Messina	Regionale
881	15:04	Roma Termini	Intercity
654	16:00	Milano Centrale	Freccia Rossa

ID_Treno	Stazione	Orariofermata
567	Napoli Centrale	15:00
881	Firenze	14:00
654	Grosseto	17:30
654	Livorno	18:00

Figura 1: le relazioni FERMATE e PARTENZE.

Definire uno schema di base di dati per organizzare le informazioni di un'azienda che ha impiegati (ognuno con codice fiscale, cognome, nome e data di nascita) e filiali (con codice, sede e direttore, che è un impiegato). Ogni impiegato lavora presso una filiale. Indicare le **chiavi** e **i vincoli di integrità** referenziale dello schema. Mostrare un'istanza della base di dati e verificare che soddisfi i vincoli.

Soluzione:

Vi è un vincolo di integrità referenziale fra Filiale della relazione IMPIEGATI e la chiave della relazione FILIALI, così come appare dalle tabelle di Figura 2.

Impiegati				
<u>CF</u>	Cognome	Nome	DataNascita	Filiale
RSS MRA 76E27 H501 Z	Rossi	Mario	27/05/1976	GT09
BRN GNN 90D03 F205 E	Bruni	Giovanni	03/04/1990	AB04
GLL BRN 64E04 F839 H	Gialli	Bruno	04/05/1964	GT09
NRE GNI 64L01 G273 Y	Neri	Gino	01/07/1964	AB04
RSS NNA 45R42 D969 X	Rossi	Anna	02/10/1945	PT67
RGI PNI 77M05 M082 B	Riga	Pino	05/08/1977	AB04

Filiali				
<u>Codice</u> Sede Direttore				
AB04 Roma Tiburtina		NRE GNI 64L01 G273 Y		
GT09 Roma Monteverde PT67 Roma Eur		RSS NNA 45R42 D969 X		
		RSS MRA 76E27 H501 Z		

Figura 2: relazioni con vincoli di integrità referenziale.

Un vincolo di integrità referenziale fra Direttore della relazione FILIALI e la chiave della relazione IMPIEGATI.

Indicare quali tra le seguenti affermazioni sono vere in una definizione rigorosa del modello relazionale:

- 1. Ogni relazione ha almeno una chiave.
- 2. Ogni relazione ha esattamente una chiave.
- 3. Ogni attributo appartiene al massimo ad una chiave.
- 4. Possono esistere attributi che non appartengono a nessuna chiave.
- 5. Una chiave può essere sottoinsieme di un'altra chiave.
- 6. Può esistere una chiave che coinvolge tutti gli attributi.
- 7. Può succedere che esistano più chiavi e che una di esse coinvolga tutti gli attributi.
- 8. Ogni relazione ha almeno una superchiave.
- 9. Ogni relazione ha esattamente una superchiave.
- 10. Può succedere che esistano più superchiavi e che una di esse coinvolga tutti gli attributi.

Definire uno schema di basi di dati che organizzi i dati necessari a generare la pagina dei programmi radiofonici di un quotidiano, con stazioni, ore e titoli dei programmi; per ogni stazione sono memorizzati, oltre al nome, anche la frequenza di trasmissione e la sede.

Soluzione:

STAZIONE (Nome, Frequenza, Sede)

PROGRAMMA (<u>Titolo</u>, Stazione, Orario)

Questo schema presume che lo stesso titolo di un programma non possa essere utilizzato da due stazioni differenti. Se questo dovesse accadere, il campo chiave per PROGRAMMA dovrebbe essere composto da Titolo e Stazione. Le relazioni sono illustrate in forma tabellare in Figura 3.

<u>Nome</u>	Frequenza	Sede
RadioDJ	103,3	Roma
RadioBlu	97,700	Milano
RadioRossa	89,900	Firenze

<u>Titolo</u>	Stazione	Orario
Verdi	RadioDJ	10:30
Rossini	RadioBlu	23:15
Vivaldi	RadioRossa	11:55
Beethoven	RadioRossa	12:00
	†	

Figura 3: Le relazioni con la foreign key evidenziata.

Si supponga di voler rappresentare in una base di dati relazionale le informazioni relative al calendario d'esami di una facoltà universitaria, che vengono pubblicate con avvisi con la struttura mostrata in Figura 4.

	Calendario esami				
	Codice	Titolo	Prof	Appello	Data
	1	Fisica	Neri	1	01/06/2006
				2	05/07/2006
				3	04/09/2006
				4	30/09/2006
-	2	Chimica	Rossi	1	06/06/2006
				2	05/07/2006
	3	Algebra	Bruni		da definire

Figura 4: un avviso con il calendario d'esami.

Mostrare gli schemi delle relazioni da utilizzare (con attributi e vincoli di chiave e di integrità referenziale) e l'istanza corrispondente ai dati sopra mostrati.

Soluzione:

Gli schemi delle relazioni e le relative chiavi sono indicati nella Figura 5.

Corsi					
Codice	Codice Titolo Prof				
1	Fisica	Neri			
2	Chimica	Rossi			
3	Algebra	Bruni			

Appelli				
CodiceCorso	Appello	Data		
1	1	01/06/2006		
1	2	05/07/2006		
1	3	04/09/2006		
1	4	30/09/2006		
2	1	06/06/2006		
2	2	05/07/2006		

Figura 5: una base dati per l'esercizio.

Filippo Sciarrone - Esercitazione

Vi è un vincolo di integrità referenziale fra CodiceCorso nella relazione APPELLI e la relazione CORSI.

Supponendo di voler rappresentare una base di dati relazionale contenente le informazioni relative agli autori di una serie di libri raccolte secondo la struttura della Figura 6.

Mostrare gli schemi delle relazioni da utilizzare (con attributi, vincoli di chiave e vincoli di integrità referenziale) e l'istanza corrispondente ai dati mostrati.

Libri e Autori					
Codice Titolo Autore Telefo		Telefono	Data Pubblicazione		
1	Leggende	Neri Aldo	02 345	04/05/2006	
		Bianchi Ennio	02 487	04/05/2006	
2	Miti	Gialli Enzo	06 343	03/03/2009	
3	Fiabe	Neri Aldo	02 345	30/09/2008	
Verdi Lisa 08 467 30/09/2		30/09/2008			
		Marroni Ada	09 445	30/09/2008	
4 Racconti Rossi Anna 03 888		03 888	06/06/2006		
		Bianchi Ennio	02 487	06/06/2006	

Figura 6: dati raccolti su un insieme di libri ed i loro autori.

Soluzione:

Gli schemi delle relazioni e le relative chiavi sono indicati nella Figura 7. Sono presenti vincoli di integrità referenziale fra gli attributi Nome, Cognome della relazione PUBBLICAZIONI e la relazione AUTORI e fra l'attributo Libro della relazione PUBBLICAZIONI e la relazione LIBRI.

Filippo Sciarrone - Esercitazione

Libri				
Codice	Titolo	DataPubblicazione		
1	Leggende	04/05/2006		
2	Miti	03/03/2009		
3	Fiabe	30/09/2008		
4	Racconti	06/06/2006		

Autori				
Nome	Cognome	Telefono		
Anna	Rossi	03 888		
Aldo	Neri	02 345		
Ennio	Bianchi	02 487		
Enzo	Gialli	06 343		
Ada	Marroni	09 445		
Lisa	Verdi	08 467		

Pubblicazione		
Nome	Cognome	Libro
Anna	Rossi	4
Aldo	Neri	1
Aldo	Neri	3
Ennio	Bianchi	1
Ennio	Bianchi	4
Enzo	Gialli	2
Ada	Marroni	3
Lisa	Verdi	3

Figura 7: una base di dati per l'esercizio 2.13.

Bibliografia

- Serge Abiteboul, Richard B. Hull, Victor Vianu (1994). "9. Inclusion
 Dependency". Foundations of Databases. Addison-Wesley. pp. 192–199.
- Atzeni P., Ceri S., Fraternali P., Paraboschi S., Torlone R. (2018). Basi di Dati. McGraw-Hill Education.
- Batini C., Lenzerini M. (1988). Basi di Dati. In Cioffi G. and Falzone V. (Eds). Calderini.
 Seconda Edizione.

