EE2020 Digital Fundamentals

(L6: Logic IC families)

Prof. Massimo Alioto

Dept of Electrical and Computer Engineering Email: massimo.alioto@nus.edu.sg

EE2020 Digital Fundamentals - XU YP

1

Outline

- · Introduction to digital IC technologies
- · Logic gate characteristics
- CMOS logic gates
- · TTL logic gates
- Commercial logic families
- CMOS-TTL Interfacing

EE2020 Digital Fundamentals - XU YP

Logic gate characteristics

Static parameters

- $V_{OL} \rightarrow$ Maximum Logic LOW output voltage
- V_{OH} \rightarrow Minimum Logic HIGH output voltage
- V_{II} → Maximum Logic LOW input voltage
- V_{IH} → Minimum Logic HIGH input voltage
- NM_H → Noise margin high
- NM_L → Noise margin low
- I_{OL}/I_{OH} → Logic LOW/HIGH output currents
- $-I_{IL}/I_{IH}$ → Logic LOW/HIGH input currents (for TTL only)
- Power dissipation

Dynamic parameters

- Propagation delay
- Fan-out

EE2020 Digital Fundamentals - XU YP

3

$V_{OH}, V_{OL}, V_{IH}, V_{IL}$

- **V_{OH}** is minimum output voltage that establishes valid logic high to the following gate
- V_{oL} is the maximum output voltage that established valid logic low to the following gate
- V_{IH} is the minimum valid logic high input voltage
- V_{IL} is the maximum valid logic low input voltage

EE2020 Digital Fundamentals - XU YP

$I_{\mathrm{OH}},\,I_{\mathrm{OL}},\,I_{\mathrm{IH}},\,I_{\mathrm{IL}}$

- I_{OH} is maximum current that can flow out of an output when output voltage maintains a valid logic high
- I_{OL} is the maximum current that can flow into an output when output voltage maintains a valid logic low
- I_{IH} is the current flowing into or out of an input when the input voltage is a valid logic high
- I_{IL} is the current flowing into or output an input when the input voltage is a valid logic low

EE2020 Digital Fundamentals - XU YP

5

Noise margin (NM_H, NM_L)

EE2020 Digital Fundamentals - XU YP

Power Dissipation

- Represents the amount of power needed by the gate. Often expressed in mW (milliwatts).
- Calculated from the supply voltage V_{CC} and the current I_{CC} that is drawn by the circuit.
- Power dissipation $P_D = V_{CC} * I_{CC}$
- · Current drawn depends on the logic state of gate.

EE2020 Digital Fundamentals - XU YP

Propagation delay

7

50%

EE2020 Digital Fundamentals - XU YP

output waveform

Fan-Out

- Determines how many standard loads can be connected to the output of a gate
 - A standard load is defined as the amount of current needed by an input of another gate in the same logic family
 - Loading is also used to indicate fan-out.
- The output of a gate can supply a limited amount of current. Above that it is said to be overloaded.
- Each input of a gate also requires current
- · Each additional connection adds to the gate load
- Exceeding the maximum load may cause malfunction

EE2020 Digital Fundamentals - XU YP

9

Fan-Out

Output is logic HIGH:

I_{III} I_{III} To other

Output is logic LOW:

- Calculated from the amount of current available in the gate-output to that is needed in the input.
- Fan-out = $min(I_{OH}/I_{IH}, I_{OL}/I_{IL})$
- Example: standard TTL gates

 I_{OH} = 400 μ A, I_{IH} = 40 μ A, I_{OL} = 16 mA, I_{IL} = 1.6 mA

- Fan-out = min(400/40, 16/1.6) = 10
- The maximum number of gates that can be connected (or driven) is 10

EE2020 Digital Fundamentals - XU YP

Digital IC technologies

- Digital integrated circuits can be designed in different technologies
- Technology will impact on the performance of ICs
- · The two mainstream technologies are
 - CMOS IC technology
 - Bipolar IC technology
- CMOS IC technology is based metal-oxidesemiconductor field-effect transistors (MOSFET)
- Bipolar IC technology is based on bipolar junction transistors (BJT)

EE2020 Digital Fundamentals - XU YP

11

MOSFET

MOSFET

Logic ICs based on MOS technology

PMOS or NMOS

 The early MOS technology was based on either PMOS or NMOS only. It was later replaced by CMOS technology.

CMOS (Complementary MOS)

- Both NMOS and PMOS are used in the technology
- CMOS static logic is used to implement logic gates
- The advantages of CMOS static logic are
 - Full output swing from ground to supply voltage → high noise margin;
 - There is always a low impedance path from the output to ground or supply voltage
 - No static power dissipation (only one transistor is on)
 - No static input current → very high input impedance (input is capacitive)

EE2020 Digital Fundamentals - XU YP

Transistor as a switch

- In this part, we consider an MOS transistor (MOSFET) as a switch
- MOS transistors can be either NMOS or PMOS transistors
- We view a 3-terminal MOSFET as a blackbox whose drain and source terminals are equivalent to the two terminals of an ordinary switch and the gate controls the switch

NMOS transistor:

 $V_G = V_{DD}$ ("1") \rightarrow NMOS is **on** (switch closed) $V_G = 0V$ ("0") \rightarrow NMOS is **off** (switch open)

PMOS transistor:

 V_G = 0V ("0") \rightarrow PMOS is **on** (switch closed) V_G = V_{DD} ("1") \rightarrow PMOS is **off** (switch open)

EE2020 Digital Fundamentals - XU YP

15

CMOS logic gates

Recall → Features of CMOS static logic:

- Full output swing from ground to supply voltage → high noise margin;
- · There is always a low impedance path from the output to ground or supply voltage
- No static power dissipation (only one transistor is on)
- No static input current → very high input impedance (input is capacitive)

EE2020 Digital Fundamentals - XU YP

CMOS NOT Gate (Inverter) and Buffer

 $V_G = V_{DD}$ ("1") \rightarrow PMOS turns OFF (D and S open circuit) \rightarrow equivalent to an open switch $V_G = 0V$ ("0") \rightarrow PMOS turns ON (D and S short circuit) \rightarrow equivalent to a closed switch

 $V_G = V_{DD}$ ("1") \rightarrow NMOS turns ON (D and S short) \rightarrow equivalent to a closed switch $V_G = 0V$ ("0") \rightarrow NMOS turns OFF (D and S open circuit) \rightarrow equivalent to an open switch

EE2020 Digital Fundamentals - XU YP

17

CMOS NAND gate

 $V_G = V_{DD}$ ("1") \rightarrow PMOS turns OFF (D and S open circuit) \rightarrow equivalent to an open switch $V_G = 0V$ ("0") \rightarrow PMOS turns ON (D and S short circuit) \rightarrow equivalent to a closed switch

 $V_G = V_{DD}$ ("1") \rightarrow NMOS turns ON (D and S short) \rightarrow equivalent to a closed switch $V_G = 0V$ ("0") \rightarrow NMOS turns OFF (D and S open circuit) \rightarrow equivalent to an open switch

EE2020 Digital Fundamentals - XU YP

 $V_G = V_{DD}$ ("1") \rightarrow PMOS turns OFF (D and S open circuit) \rightarrow equivalent to an open switch $V_G = 0V$ ("0") \rightarrow PMOS turns ON (D and S short circuit) \rightarrow equivalent to a closed switch

 $V_G = V_{DD}$ ("1") \rightarrow NMOS turns ON (D and S short) \rightarrow equivalent to a closed switch $V_G = 0V$ ("0") \rightarrow NMOS turns OFF (D and S open circuit) \rightarrow equivalent to an open switch

EE2020 Digital Fundamentals - XU YP

1

Bipolar Junction transistor (BJT)

Bipolar Junction transistor – cont.

Logic ICs based on BJT IC technology

- TTL (Transistor-Transistor Logic)
 - Invented by <u>TRW Inc.</u> in US, first commercial TTL logic IC was introduced by Sylvania in 1963 and became popular with <u>Texas</u> <u>Instrument's</u> 5400 and 7400 series
- ECL (Emitter-Coupled Logic)
 - Invented by IBM, first commercial integrated-circuit ECL family was introduced by <u>Motorola</u> in 1962
 - Suitable for high-speed logic circuits

EE2020 Digital Fundamentals - XU YP

TTL logic gates

Features of TTL logic gates

- Based on BJTs
- Most widely used logic ICs at gate or MSI level
- Typically operated under 5V supply voltage
- Having different series that optimized for low power, high speed, etc
- Inputs of the gate draw static current
- Due to lack of prerequisite, we'll not discuss circuit details of TTL logic gates

EE2020 Digital Fundamentals - XU YP

Commercial logic families

- 74xxx Series
 - TTL family (Transistor-Transistor Logic)
 - Use Bipolar or CMOS technology
- Name convention
 - 1st field: 2 or 3 letters → Manufacturer (sometimes omitted)
 - 2nd field: 74 → Commercial temperature range (54 → Military)
 - 3rd field: 4 letters → Logic sub-family
 - 4th field: 2 or more digits → Type of device
 - 5th field: Type of package or other information (sometimes omitted)

DM 74 LS 14 N

National Semiconductor Commercial temperature range Low power shottky

Hex inverters with schmitt trigger inputs

EE2020 Digital Fundamentals - XU YP

74 series Logic Sub-families (3rd field)

- TTL (Bipolar)
 - 74L → Low power
 - 74H → High speed
 - 74LS → Low power Schotty
 - 74AS → Advanced low power schotty
 - 74ALS → Advanced low power schotty
 -
- CMOS (not TTL, but retains some compatibility)
 (same part numbers as bipolar are retained to identify the function)
 - 74C → CMOS 4-15V
 - 74HC → High speed
 - 74AC → Advanced CMOS
 - 74LVC → Low voltage, 1.65 to 3.3V
 - 74LVX → 3.3V with 5V tolerant inputs

-

EE2020 Digital Fundamentals - XU YP

25

Some 74 series Logic gates

CMOS logic family

4000(RCA)/14000 (Motorola)

- Very low power dissipation.
- Operate over wide power supply range (3 to 15V).
- Slow compared to TTL and other CMOS series.
- Very low output current capability.
- Not pin compatible with TTL
- This very first series of CMOS is rarely used now.

74C

- Pin compatible & functionally equivalent to TTL devices with same number.
- Many TTL functions are available in this series.
- Same performance as 4000 series.

EE2020 Digital Fundamentals - XU YP

27

CMOS logic family (cont.)

- 74HC/HCT (High speed CMOS)
 - Improved version of 74C series. Its speed about same as TTL 74LS series, much higher current capability than 74C series.
 - 74HCT devices are voltage compatible with TTL but 74HC devices are not.

74AC/ACT (Advanced CMOS)

- Functionally equivalent to various TTL series, but not pin compatible.
- Pin incompatibility because pin placements chosen for better noise immunity.
- ACT series offers better noise immunity, less propagation delay, and higher maximum clock speed.

74AHC (Advanced high-speed CMOS)

- Newest CMOS series, replacement for HC devices.
- For faster, lower power applications.

EE2020 Digital Fundamentals - XU YP

CMOS/TTL Comparison (static)

Input/output voltage levels (in volts) with $V_{\rm DD}$ = $V_{\rm CC}$ = +5 V.

	CMOS						TTL				
Parameter	4000B	74HC	74HCT	74AC	74ACT	74AHC	74AHCT	74	74LS	74AS	74ALS
V _{IH} (min)	3.5	3.5	2.0	3.5	2.0	3.85	2.0	2.0	2.0	2.0	2.0
$V_{\rm IL}$ (max)	1.5	1.0	8.0	1.5	8.0	1.65	0.8	0.8	0.8	8.0	8.0
V_{OH} (min)	4.95	4.9	4.9	4.9	4.9	4.4	3.15	2.4	2.7	2.7	2.7
V_{OL} (max)	0.05	0.1	0.1	0.1	0.1	0.44	0.1	0.4	0.5	0.5	0.4
V_{NH}	1.45	1.4	2.9	1.4	2.9	0.55	1.15	0.4	0.7	0.7	0.7
$V_{\rm NL}$	1.45	0.9	0.7	1.4	0.7	1.21	0.7	0.4	0.3	0.3	0.4
INL									$\overline{}$	/	

Noise margin H and L

EE2020 Digital Fundamentals - XU YP

29

CMOS/TTL Comparison (Dynamic)

Parameter	4000B	74HC/HCT	74AC/ACT	74AHC/T	74	74LS	74AS	74ALS	ECL		
Power dissipation Per gate (mW)											
Static	1.0x 10 ⁻³	2.5x 10 ⁻³	5.0x 10 ⁻³	9.0x 10 ⁻³	10	2	8	1.2	25		
at 100 kHz	0.1	0.17	0.08	0.006	10	2	8	1.2	25		
Propagation delay (ns)	50	8	4.7	3.7	9	9.5	1.7	4	1		
Speed-power (at 100 kHz) (pJ)	5	1.4	0.37	0.02	90	19	13.6	4.8	25		
Maximum clock rate (MHz)	12	40	100	130	35	45	200	70	300		
Worst-case noise margin (V)	1.5	0.9	0.7	0.55	0.4	0.3	0.3	0.4	0.25		

Summary

- Digital IC technology
 - BJT and MOSFET
 - BJT and CMOS technology
- CMOS logic gates
 - Implementation of NOT, NAND, NOR, AND and OR gates
- Commercial logic families
 - TTL and CMOS
- · Logic gate characteristics
 - $\ \ \text{Static parameters} \ (\text{V}_{\text{OH}}, \text{V}_{\text{OL}}, \text{V}_{\text{IH}}, \text{V}_{\text{IL}}, \text{I}_{\text{OH}}, \text{I}_{\text{OL}}, \text{I}_{\text{IH}}, \text{I}_{\text{IL}}, \text{NM}_{\text{H}}, \text{NM}_{\text{L}} \ \text{and} \ \text{P}_{\text{D}}) \\$
 - $\,-\,$ Dynamic parameters (t_p and fan-out)
 - CMOS/TTL comparison
- Logic family interfacing (TTL driving CMOS, CMOS driving TTL)

EE2020 Digital Fundamentals - XU YP