# Sistemi di Basi di Dati e Applicazioni

Angelo Chianese Vincenzo Moscato Antonio Picariello Lucio Sansone





# Libro di Testo



# Sistemi di basi di dati e applicazioni

Angelo Chianese Vincenzo Moscato Antonio Picariello Lucio Sansone









# Cap. 1-I sistemi informatici

La gestione dell'informazione - Basi di dati e sistemi di gestione -Caratteristiche dei sistemi di gestione

# Processi aziendali e sistema informativo

#### Processo aziendale

 Sequenza di attività aziendali finalizzate alla realizzazione di un prodotto o servizio che coinvolge più risorse: materiali, organizzative, informative.

#### Informalmente un Sistema Informativo ...

 Insieme di informazioni gestite dai processi aziendali





# Componenti di un Sistema informativo

#### Patrimonio di dati

 materia grezza con cui si producono informazioni

## Insieme di procedure

 per acquisizione, trattamento, produzione informazioni

#### Insieme di risorse umane

che sovraintendono alle procedure

#### Insieme di mezzi e strumenti

 Per l'archiviazione ed il trattamento di informazioni





# sistemi Informatici

# Componenti di un Sistema informativo



# Definizione di sistema informativo

Un sistema informativo è l'insieme delle componenti di un'organizzazione destinate a

- Acquisizione
- Elaborazione
- Memorizzazione
- Recupero
- Condivisione
- Trasmissione

dell'informazione.

# Definizione di sistema informatico

Un sistema informatico è la tecnologia a supporto del sistema informativo:

- Macchine hardware
- Programmi software
- Banche di dati e sistemi di gestione
- Reti di comunicazione

# La struttura del sistema azienda





# Produzione dell'informazione



# Esempio di sistema informativo ed informatico

Comune dotato di sistema informativo e informatico per il rilevamento del livello di smog.

#### Sistema informativo:

- Persone (dipendenti, sindaco, assessori)
- Mezzi e procedure per la produzione e gestione dell'informazione relativa all'inquinamento

#### Sistema informatico:

 Gestione automatica - da parte di opportuni addetti - delle informazioni a livello di smog mediante: macchine hardware, programmi software e apparati di rete



# Riassumendo

I sistemi informatici si basano sull' informatica per il trattamento dei dati e la produzione delle informazioni: le procedure sono automatizzate e costituite da programmi funzionanti su calcolatore.

Abitualmente e per varie motivazioni vi sono parti del sistema informativo aziendale che non sono "informatizzate" e pertanto le informazioni vengono prodotte senza l'ausilio delle tecnologie informatiche.

# Dati e Informazioni

- Le informazioni di un' organizzazione sono disponibili sotto forma di un insieme di dati memorizzati su apposito supporto.
- I dati devono essere opportunamente "interpretati" per dare luogo alle informazioni vere e proprie.
- Dato: una rappresentazione dell'informazione utile alla sua memorizzazione e gestione.
- Sia i dati grezzi che le regole per la loro interpretazione sono memorizzati sotto forma di dati e costituiscono pertanto il patrimonio informativo dell'azienda.



# Sistemi Informatici

## Dati e Informazioni

| <b>Attributo</b> | Tipo    | Valore      |
|------------------|---------|-------------|
| Cliente          | Stringa | Paolo Rossi |
| Data di Nascita  | Data    | 08/02/1964  |
| Titolo libro     | Stringa | Zarathustra |
| ×                | Reale   | 1.0         |

Esempi di informazioni "elementari" ricavate interpretando i dati di un' organizzazione

# Informazioni complesse

Le informazioni elementari sono correlate logicamente tra di loro associando una opportuna semantica ai legami: si ottengono così informazioni complesse.

# Sistemi Informatici

# Dati e Informazioni complesse



# ... interazioni con basi di dati

- Spesa in un supermercato
- Acquisto con carte di credito
- Prenotazione alberghiera presso agenzia
- Pagamento assicurazione
- Iscrizione ad un corso

#### Richiedono

- uso di "collezioni di dati"
- memorizzate in modo persistente
- relative ad una realtà di interesse
- a servizio di una data organizzazione



# Base di dati

Una base di dati è l'insieme di informazioni associato a collezioni di dati:

- tra loro correlati
- dotati di un' opportuna descrizione

#### Si tratta di:

- un unico e grande deposito di dati
- condiviso all' interno dell' azienda da tutte le applicazioni e gli utenti
- Persistente cioè con vita molto più lunga delle procedure di gestione
- che consente di lavorare sempre su uno stato consistente dei dati



# Base di dati a supporto delle attività di un'organizzazione





# Descrizione della base di dati

- La base di dati deve mantenere una propria descrizione.
- Si parla di un catalogo o dizionario contenente un insieme di dati detti metadati che servono a descrivere i dati stessi.
- Tutto questo è ottenuto mediante uno strato software detto DBMS che gestisce in maniera integrata tutti i dati garantendo la esecuzione delle operazioni in maniera efficiente ed efficace.



# Definizione di DBMS

# E' un insieme di programmi che permette di:

- Definire
  - □ Specificare tipi, strutture e vincoli sui dati
- Manipolare
  - □ Inserire, cancellare, aggiornare, recuperare i dati
- Controllare
  - □ Controllare l'accesso ai dati garantendo protezione da guasti, da accessi indesiderati

la base di dati

# L'importanza del DBMS

Un DBMS, pertanto, facilita gli utenti nell'utilizzo della propria banca dati

Prima dell'avvento dei DBMS, un archivio di dati era costituito da un insieme di file e tutte le operazioni e la logica di gestione delle informazioni erano a carico delle applicazioni che interagivano con l'archivio

Con l'introduzione dei DBMS, le applicazioni che interagiscono con la base di dati si semplificano notevolmente

# Gestione di una agenda telefonica

Registrazione degli innumerevoli nomi di amici con relativo indirizzo, numeri di telefono, di cellulare ...

#### Approccio personale....

 Gestendo con opportuni programmi scritti nel linguaggio preferito tutte le operazioni di accesso ai dati e garantendone la "persistenza" in archivi riservati.

#### Approccio mediante DBMS....

 Si utilizza un prodotto DBMS (gratuito, scaricato dal web) che permetta la definizione dei dati e la gestione mediante le operazioni classiche di SELECT, INSERT, DELETE, UPDATE.





# Definizione di sistema di basi di dati

Un <mark>sistema di basi di dati</mark> è l'insieme formato da una base di dati e da un DBMS







## Architettura a tre livelli ANSI-SPARC

- Una delle prime proposte di architettura generale per i sistemi di basi di dati fu introdotta nel 1971 dal Data Base Task Group (DBTG) costituitosi nella Conference on Data Systems and Languages (CODASYL).
- La commissione SPARC (Standards Planning and Requirement Committee) dell'American National Standards Institute (ANSI) propose un modello analogo (da allora detta architettura ANSI-SPARC) il cui scopo fondamentale era quello di garantire uno stretto isolamento tra i dati e i programmi/applicazioni che su di essi operano

## Architettura a tre livelli ANSI-SPARC



# Esempio di schema concettuale/logico



# Esempio di schema esterno

Una base di dati ha sempre un singolo schema concettuale ed un singolo schema fisico, può possedere differenti schemi esterni che costituiscono, in effetti, una o più viste delle informazioni





# Indipendenza dati applicazioni

Mediante la definizione a livelli è possibile ottenere che le applicazioni siano indipendenti dal modo in cui i dati sono organizzati.

## Indipendenza logica dei dati:

 Attraverso il meccanismo delle viste le applicazioni possono essere rese indipendenti dallo schema logico della base dei dati

## Indipendenza fisica dei dati:

 Attraverso lo schema logico si è garantiti dalla differente implementazione fisica dei dati



# sistemi Informatici

# Schema esterno

descrizione "esterna"



descrizione "logica"





#### Storia dei DBMS: i diversi modelli dei dati (1/3)

- modello gerarchico (anni '60): nel modello gerarchico i dati sono organizzati in gerarchie attraverso l'uso di strutture dati ad albero;
- modello reticolare (inizio anni '70): nel modello reticolare i dati sono organizzati in un reticolo attraverso l'uso di strutture dati a grafo;
- modello relazionale (definito inizio anni '70; implementato fine anni '70): i dati sono organizzati in relazioni, ovvero un insieme di record aventi la stessa struttura logica;

#### Storia dei DBMS: i diversi modelli dei dati (2/3)

- modello object oriented: i dati sono organizzati sotto forma di "oggetti" software e di legami tra di essi;
- modello object relational: il modello rimane relazionale (struttura tabellare) ma la struttura della tabella è generalizzata al fine di contenere oggetti oltre che valori elementari;

#### Storia dei DBMS: i diversi modelli dei dati (3/3)

modelli Not only SQL (NoSQL): si tratta di modelli alternativi al modello relazionale, introdotti per la gestione efficiente di grandi volumi di dati, provenienti da sorgenti eterogenee e con elevata variabilità (i cosiddetti Big Data) e comprendono modelli a grafo, colonnari, orientati ai documenti, chiave-valore ed altri.

# Funzionalità di un DBMS

Definire come i dati sono organizzati in informazioni attraverso un opportuno linguaggio di descrizione dei dati (DDL)

Interrogare e gestire i dati attraverso un opportuno linguaggio di manipolazione (DML)

INSERT, UPDATE, DELETE

Segue un esempio di interrogazione di una base di dati relativa alle prenotazioni di biglietti ferroviari.



# Sistemi Informatici

# Esempio di interrogazione







#### Transazioni

- Il DBMS esegue particolari programmi detti Transazioni.
- Una transazione è l'esecuzione di un programma utente in ambiente DBMS che costituisce sintatticamente e semanticamente un'unità atomica di modifiche "persistenti" fatte alla base di dati.
- Una transazione o termina in uno stato finale previsto dal programma (commit) o porta il sistema nello stato precedente all'inizio della transazione (abort)

# Operazioni nelle transazioni

- Operazioni di interrogazione (SELECT): garantiscono l'atomicità in quanto non modificano lo stato della base di dati
- Operazioni di INSERT: per inserire un nuovo oggetto nella base di dati
- Operazioni di UPDATE: per modificare un oggetto preesistente nella base di dati.
- Operazioni di DELETE: per cancellare un oggetto all'interno della base di dati.

# Proprietà ACID delle transazioni (1/2)

- Atomicità è la cosiddetta proprietà "tutto o niente": una transazione è atomica, se è eseguita nella sua interezza oppure non è eseguita per niente;
  - Consistenza una transazione è una trasformazione di uno stato consistente della base di dati in un altro stato consistente. Un DBMS, in particolare, deve assicurare che tutti i vincoli definiti sulla base di dati siano soddisfatti

# Proprietà ACID delle transazioni (2/2)

- Isolamento le transazioni devono essere eseguite in modo indipendente l'una dalle altre. Ciò sta a significare che gli effetti parziali di transazioni incomplete non devono essere visibili alle altre transazioni;
  - Durability o Persistenza gli effetti di una transazione che è terminata con un "commit" devono essere registrati in modo permanente nella base di dati e non devono essere mai persi per alcun motivo.

# Caratteristiche di un DBMS (1)

#### 1- Controllo della ridondanza e consistenza

- Un approccio basato su BD tende a eliminare inutili duplicazioni (ridondanza) dei dati.
- Si riduce così il rischio di "inconsistenza": se un dato è disponibile una sola volta nella BD una sua modifica risulta immediatamente disponibile a tutti.

#### 2- Condivisione

I dati di un' organizzazione sono condivisi da tutti gli utenti e da tutte le applicazioni di un' organizzazione.



# Caratteristiche di un DBMS (2)

# 3- Integrità dei dati

Ci si riferisce alla consistenza e alla validità dei valori contenuti nella BD. Questo viene ottenuto facendo gestire dal DBMS le "modifiche" delle informazioni mediante opportune regole di vincolo.

# 4- Gestione efficiente delle operazioni

 Il DBMS dispone di funzionalità per l'esecuzione efficiente delle interrogazioni e degli aggiornamenti.

#### 5- Gestione della concorrenza

■ Il DBMS garantisce transazioni concorrenti sui dati senza interferenze reciproche.





# Caratteristiche di un DBMS (3)

#### 6- Affidabilità

 Il DBMS dispone di funzionalità per il ripristino della base dati anche in caso di guasti o malfunzionamenti durante l'esecuzione delle transazioni

#### 7- Sicurezza

Per sicurezza si intende prevenzione dall'accesso ai dati ad utenti non autorizzati. Il DBMS consente di definire politiche di accesso ai dati per utente o per profilo di utente.



# Principali componenti di un DBMS (1)

# Gestore degli accessi

modulo di un DBMS che effettua il controllo degli accessi alla base di dati. Esso garantisce che solo utenti e applicazioni autorizzati abbiano accesso alle informazioni della base di dati e che le loro operazioni siano compatibili con i loro privilegi/ruoli.

# Gestore delle query

componente che si occupa della gestione delle richieste utente in termini di operazioni DDL e DML. In particolare, esso traduce i comandi DDL e DML in un formato interno al DBMS, trasformando, se possibile la richiesta utente in una equivalente ma più efficiente.





# Principali componenti di un DBMS (2)

#### Gestore della memoria

 componente che si occupa di definire le strategie di accesso alle informazioni presenti in memoria di massa e del relativo trasferimento di queste ultime in memoria centrale e viceversa.

#### Gestore dei file

 modulo che si occupa della gestione dei file su memoria di massa (file di dati, file di controllo, log file) contenenti la base di dati.

# Gestore dell'integrità

 modulo che ha il compito di verificare che all'interno della base di dati siano verificate le regole di integrità.



# Principali componenti di un DBMS (3)

#### Gestore della concorrenza

modulo che ha l'obiettivo di gestire l'accesso di transazioni concorrenti a risorse condivise della base di dati. Particolari meccanismi di lock (blocco sulle risorse) vengono utilizzati per serializzare le transazioni concorrenti, prevenendo queste ultime da anomalie nell'accesso alle informazioni..

#### Gestore dell'affidabilità

 modulo che si occupa del salvataggio delle operazioni sulla base di dati nei file di log e dell'avvio delle procedure di ripristino della base di dati stessa a valle di malfunzionamenti.



