Section 1: Cartesian Products

The result of a Cartesian Product is an ordered pair, such as (a, b) – like what you would see in Algebra.

For some sets of numbers A and B, the result of $A \times B$ will be a combination of all of each set's elements together. $A \times B = \{(a,b) : a \in A, b \in B\}$

For example, for $A = \{ 1, 2 \}$ and $B = \{ 4, 5, 6 \}$, The elements of $A \times B$ are:

B → A ↓	4	5	6
1	(1,4)	(1,5)	(1,6)
2	(2,4)	(2,5)	(2,6)

So $A \times B = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6)\}$

1. Given the following sets, calculate each Cartesian Product. Write it out as a table, like above. $A = \{1, 2\}$ $B = \{3, 4\}$

a. $A \times B$ (___/2)

$\begin{array}{ccc} B & \rightarrow & \\ A & \downarrow & \end{array}$	3	4
1		
2		

b. $B \times A$ (___/2)

$\begin{array}{ccc} A & \rightarrow \\ B & \downarrow \end{array}$	1	2
3		
4		

2. Calculate the Cartesian Product. Write it out as a table.

$$A = \{ 2, 4, 6 \}$$
 $B = \{ 1, 3 \}$

a. $A \times B$ (__/2)

$\begin{array}{ccc} B & \rightarrow & \\ A & \downarrow & \end{array}$	1	3
2		
4		
6		

b. *B*×*A* (___/2)

$\begin{array}{c} A \rightarrow \\ B \downarrow \end{array}$	2	4	6
1			
3			

3. Calculate the Cartesian Products. Write it out as a set of coordinate pairs.

$$A = \{ 2, 4 \}$$

$$B = \{ 1, 3 \}$$

$$C = \{ 3, 4, 5, 6 \}$$

a. $A \times B$ (___/2)

b. $A \times C$ (__/2)

c. $B \times C$ (__/2)

d. $C \times B$ (___/2)

e.
$$A^2$$
 (aka $A \times A$) (___/2)

4. For the given sets, find the intersections, unions, and differences.

$$A = \{1\}$$
 $B = \{3,5,7\}$ $C = \{3,5,9,11\}$ $A \times B = \{(1,3),(1,5),(1,7)\}$ $A \times C = \{(1,3),(1,5),(1,9),(1,11)\}$

a. $(A \times B) - (A \times C)$ remember, the result is the first set's elements, but none of the elements that are shared by the second set. (___/2)

b.
$$(A \times C) - (A \times B)$$

c.
$$A \times (B \cup C)$$

d.
$$A \times (B \cup C) \cap (A \times B)$$

e.
$$(A \times B) \cup (A \times C)$$

Section 2: Partitions

The Partition of a together, form the	a set, usually denoted by S , is a set of subsets that, when co ne original set.	mbined
Definition: For a set A, a par called a part of S	rtition of A is a set $S = \{ S_{1,}S_{2,}S_{3,} \}$ of subsets of A (each so), such that:	set S_i is
2. For all <i>i</i> and nothing in comm		rts have
1 2 3		{3, 4} }
_	n be any combination of subsets of whatever size, so long as sted in the partition.	all elements
5. For the given set,	write out all possible partitions. $A = \{1, 2\}$	(/1
Partition 1:	Partition 2:	
=	write out all possible partitions. $\mathbf{B} = \{1, 2, 3\}$. Remember that set do not matter. ($\{\{2, 3\}, \{1\}\}$ and $\{\{1\}, \{2, 3\}\}$ is the same	·
Partition 1:	Partition 2:	
Partition 3:	Partition 4:	
Partition 5:		

 $(_{/2})$

answer).	$A = \{ 1, 2, 3, 4, 5, 6 \}$		
a. Find a partition	where each part has the same s	size.	(/1)
b. Find a partition	where no two parts have the sa	ime size.	(/1)
c. Write out the pa	artition that has as many parts a	as possible.	(/1)
d. Write out the pa	artition that has as few parts as	possible.	(/1)
8. Which of the foll	lowing are partitions of the set A	A = { 1, 2, 4, 8, 16, 32, 64, 12	8 }? For those that

7. For the given set, find partitions that meet the requirements. (There could be more than one

are not, explain why.

a. { 1, 2, { 4, 8, 16 }, { 32, 64, 128 } }

Section 3: Power Sets

The Power Set of A is defined as $\wp(A) = \{S : S \subseteq A\}$. For example, A = $\{1, 2, 3, 4\}$, $\wp(A)$

$$= \{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\} \}$$

Essentially, all the possible subsets of A.

As a simpler example, the Power Set $\wp(\{1\}) = \{ \emptyset, \{1\} \}$

9. Find the Power Set for each set.

a.
$$\wp(\{1,2\})$$
 (___/1)

b.
$$\wp({3,4})$$

c.
$$\wp(\{1,2,3\})$$

Team Members:

1. 2.

3. 4.

Section: TR 12:30 pm T 6:00 pm

Team Rules:

- Work through these exercises with a team in class.
- **Only one answer sheet will be turned in.** Each member of the team will receive the same score.

Work Rules:

- Fill out your answers on the **answer sheet!**
- Write cleanly and linearly! If I can't make sense of your solution, you won't get credit. You can also type out your answers if you'd prefer.
- Write out each step If I can't see the logic you used to get from one step to another, you might get points off.
- <u>Don't scribble out cancellations</u> I can't read that. If a numerator / denominator cancel out, or if there is a +/- that cancels out, don't scribble just use a single slash, or add an extra step!

Grading:

Each question as a weight, and all questions can receive a score between 0 and 4:

Nothing written	Something attempted, but incorrect	Partially correct, but multiple errors.	Mostly correct, with one or two errors.	Perfect. Correct answer and notation
0	1	2	3	4

Answer Sheet

Exercise 1a				(/2)
$\begin{array}{ccc} B & \rightarrow & \\ A & \downarrow & \end{array}$	3	•	4	
1				
2				
Exercise 1b		1		(/2)
$\begin{array}{c} A \rightarrow \\ B \downarrow \end{array}$	1		2	
3				
4				
Exercise 2a		1		(/2)
$\begin{array}{c} A \rightarrow \\ B \downarrow \end{array}$	1		3	
2				
4				
6				
Exercise 2b		I		(/2)
$\begin{array}{ccc} A & \rightarrow \\ B & \downarrow \end{array}$	2	4	6	
1				
3				

CHAPTER 3.2 EXERCISE CS 210, Spring 2017

Page 10 of 12

Exercise 3a (___/2)

 $A \times B =$

Exercise 3b (___/2)

 $A \times C =$

Exercise 3c (___/2)

 $B \times C =$

Exercise 3d (___/2)

 $C \times B =$

Exercise 3e (___/2)

 $A^2 =$

Exercise 4a $(A \times B) - (A \times C)$ (___/2)

Exercise 4b $(A \times C) - (A \times B)$ (___/2)

Exercise 4c $A \times (B \cup C)$ (__/2)

Exercise 4d $A \times (B \cup C) \cap (A \times B)$ (___/2)

•

Exercise 5	(/1)
Partition 1:	
Partition 2:	
Exercise 6	(/2)
Partition 1:	
Partition 2:	
Partition 3:	
Partition 4:	
Partition 5:	
Exercise 7a	(/1)
Exercise 7b	(/1)
Exercise 7c	(/1)
Exercise 7c	(/1)

CHAPTER	3.2 EXE	ERCISE
CS 210,	Spring	2017

Page 12 of 12

Exercise 8a	/	2)	
-------------	---	----	--

Exercise 9a
$$\wp(\{1,2\})$$
 (___/1)

Exercise 9b
$$\wp({3,4})$$
 (__/1)

Exercise 9c
$$\wp(\{1,2,3\})$$
 (__/2)