Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}$	0	0	0	$-\frac{4ik}{\alpha_0+2\alpha_0k^2}$	$-\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$	0	$-\frac{4 k^2}{\alpha_0 (1+2 k^2)^2}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+2 k^2)^2}$	0	$\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	0	$\frac{4ik}{\alpha_0 + 2\alpha_0 k^2}$
$\tau_1^{\#1}_+ \alpha \beta$	$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2ik}{\alpha_0(1+k^2)^2}$	$-\frac{2k^2}{\alpha_0(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+k^2)^2}$	$\frac{2ik}{\alpha_0(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	0	0	0	0
	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+^{\alpha\beta}$	<u>-</u> 1 +α	$\sigma_{1}^{\#2} +^{\alpha}$	$-1+\alpha$	-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄

Quadratic (free) action

$$S_{\mathsf{F}} == \iiint (-\frac{1}{2} \alpha_0 \ \omega_{\alpha\zeta\beta} \ \omega^{\alpha\beta\zeta} - \frac{1}{2} \alpha_0 \ \omega^{\alpha\beta}_{\alpha} \ \omega_{\beta\zeta}^{\zeta} + f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - \alpha_0 \ f^{\alpha\beta}$$

$$\partial_{\beta}\omega_{\alpha\zeta}^{\zeta} + \alpha_0 \partial_{\beta}\omega^{\alpha\beta}_{\alpha} + \alpha_0 \ f^{\alpha\beta} \partial_{\zeta}\omega_{\alpha\beta}^{\zeta} - \alpha_0 \ f^{\alpha}_{\alpha} \partial_{\zeta}\omega^{\beta\zeta}_{\beta})[t, x, y, z] dz dy dx dt$$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{\alpha_0}{2}$
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	$-\frac{i\!\!\!/}{\sqrt{2}}$	0	0	0
$\omega_{0}^{\#1}$	$\frac{\alpha_0}{2}$	$\frac{i\alpha_0 k}{\sqrt{2}}$	0	0
·	$\omega_{0}^{\#1}$ †	$f_{0}^{\#1} +$	$f_0^{\#2} \uparrow$	$\omega_{0}^{\#1}\dagger$

	$\sigma_{0^{+}}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{\#1}$
$\sigma_{0}^{\#1}$ †	0	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_0^{\#1}$ †	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$ au_{0}^{\#2} +$	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	0	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{4}{\alpha_0}$

$\omega_{2}^{\#1}$ $\qquad \qquad \qquad$	0	0	$-\frac{\alpha_0}{4}$
$f_{2}^{\#1}$	$\frac{i\alpha_0k}{2\sqrt{2}}$	0	0
$\omega_2^{\#1}_{+\alpha\beta}$	$-\frac{\alpha_0}{4}$	$-\frac{i\alpha_0k}{2\sqrt{2}}$	0
·	$\omega_2^{\#1} + ^{\alpha \beta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2^{-}}^{\#1} \dagger^{lphaeta\chi}$

Source constraints/gauge generators

SO(3) irreps	Multiplicities		
$\tau_{0^{+}}^{\#2} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_{1}^{\#1\alpha} == 0$	3		
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	3		
Total constraints:	10		

Massive and massless spectra

(No massive particles)

Unitarity conditions