تمرین رقم:01

انطلق برنامج البحث International Thermonuclear Experimental Reactor) ITER) بفرنسا لدراسة الإندماج النووي لنظيري الهيدروجين 2_1 ، 2_1 و ذلك من أجل التأكد من الإمكانية العلمية لإنتاج الطاقة عبر الإندماج النووي .

 $_{2}^{A}X$ و التريتيوم $_{1}^{3}H$ ، علما أن التفاعل ينتج نواة $_{1}^{2}X$ و التريتيوم التونا . و نيترونا .

ب- يتعلق زمن نصف العمر بـ:

- عدد الأنوية الإبتدائية N_0 للنظير المشع
 - درجة حرارة العينة المشعة
 - نوع النظير المشع .

اختر الإجابة الصحيحة من بين الإجابات السابقة .

- أ- عرف طاقة الربط للنواة $\mathrm{E}_{\ell}(^{\mathrm{A}}_{Z}\mathrm{X})$ ، ثم اكتب عبارتها .
- ب- احسب طاقة الربط للنواة و طاقة الربط لكل نوية : 2_1 ، 3_1 ، 3_2 بـ 4_3 ، ثم استنتج النواة الأكثر استقرارا .
- 3- الطاقة المحررة من تفاعل الإندماج الحادث هي $E_{\rm lib}=17,60~{
 m MeV}$. احسب مقدار الطاقة المحررة عن اندماج $^2_{
 m L}$ من $^2_{
 m L}$ و $^2_{
 m L}$ من $^2_{
 m L}$ من $^2_{
 m L}$ و رود المحروة عن اندماج الحادث هي $^2_{
 m L}$.

$$\begin{split} m(_0^1n) = &1.00866\,u \;\; ; \;\; m(_1^1p) = &1.00728\,u \;\; ; \;\; m(_1^2H) = 2.01355\,u \;\; ; \;\; m(_1^3H) = 3.0155\,u \; ; \\ m(_2^4He) = &4.00150\,u \;\; ; \;\; 1\,u = &931.5\frac{MeV}{c^2} \quad ; \;\; N_A = 6.02\,\,.\,\, 10^{23}\,\, mol^{-1} \end{split}$$

تمرین رقم:02

1- النشاط الإشعاعي ظاهرة عفوية لتفاعل نووي:

أ- عرف البيكرال .

ب- عرف ثابت التفكك λ ، ثم أوجد وحدته بالتحليل البعدي .

جـ توجد عدة مخاطر على الانسان و البيئة نتيجة مختلف التفاعلات النووية . أذكر خطرين .

2- بتطبيق قانون التناقص الإشعاعي أثبت أن:

. $\lambda = \frac{\ln 2}{t_{1/2}}$: العمر التفكك λ يعبر عنه بدلالة زمن نصف العمر $t_{1/2}$ بالعلاقة العمر λ

. $N=\frac{N_0}{2^n}$: يكون t=n $t_{1/2}$ عند اللحظة

- $N(t)=N_0 {
 m e}^{-\lambda t}$. ثم بين أن العلاقة السابقة $N(t)=N_0 {
 m e}^{-\lambda t}$. $N(t)=N_0 {
 m e}^{-\lambda t}$. $N(t)=N_0 {
 m e}^{-\lambda t}$. ثم بين أن العلاقة السابقة $N(t)=N_0 {
 m e}^{-\lambda t}$. كا لها
 - ن الشكل : $N_{\rm d}(t)$ هي من الشكل $N_{\rm d}(t)$ عدد الأنوية المتفككة $N_{\rm d}(t)$ هي من الشكل $N_{\rm d}(t)$

$$\frac{dN_d}{dt} + \lambda N_d = \lambda N_0$$

ما هو المدلول ، ما معادلة التفاضلية هو $N_d = Ae^{-\alpha t} + B$ ، حيث A ، B ، α عباراتها ، ما هو المدلول الفيزيائي لـ α و α .

تمرین رقم:03

تستخدم المفاعلات النووية لانتاج الطاقة الكهربائية عن طريق تفاعلات إنشطار بعض الأنوية الثقيلة ، في مفاعل نووي يحدث إنشطار نواة اليورانيوم حيث يتم قذفها بنترون 1_0 فتعطي نواة $^{94}_{38}$ و $^{94}_{54}$ مع تحرير عدد من النترونات وفق المعادلة : $^{94}_{54}$ $^{94}_{38}$ 94 $^{10}_{54}$ 10

1- أحسب الطاقة المحررة خلال هذا الانشطار بـ MeV ثم بالجول J .

2- لكي نتحصل على نترون بطيء لاستعماله في قذف اليورانيوم $^{235}_{92}$ ، نستعمل مزيجا من الأميريكيوم $^{243}_{92}$ Am و البيريليوم Be و البيريليوم $^{243}_{93}$ Nd ميريكيوم حسب نمط إشعاعي واحد و يعطى $^{93}_{93}$ Nd الجسيم الناتج لقذف أنوية البريليوم و الحصول على نترون و نواة $^{12}_{6}$.

أ- أكتب المعادلتين الموافقتين .

ب- نستعمل هذا المنبع فقط من أجل اقلاع التفاعل لماذا ؟

. $P=9 \cdot 10^9 \, \mathrm{W}$ سنويا لنووي استطاعة كهربائية $P=9 \cdot 10^9 \, \mathrm{W}$ سنويا $P=9 \cdot 10^9 \, \mathrm{M}$ سنويا .

أ- أحسب بالجول الطاقة المحررة من التفاعل النووي خلال سنة .

ب- أحسب الطاقة الكهربائية التي ينتجها المفاعل النووي خلال سنة .

جـ أحسب مردود المفاعل النووي r .

$$\begin{split} m(^{140}_{54}\,\mathrm{Xe}) = &139,\!89194\,u \,\, \cdot \,\, m(^{94}_{38}\mathrm{Sr}) = 93,\!89446\,u \,\, \cdot \,\, m(^{235}_{92}\,\mathrm{U}) = 234,\!99332\,u \,\, \vdots \,\, \\ 1an = &365\,\,\mathrm{Jours} \,\, \cdot \,\, 1u = 931,\!5 \frac{\mathrm{MeV}}{\mathrm{C}^2} \,\, \cdot \,\, N_\mathrm{A} = 6,\!023\,\,. \,\, 10^{23}\,\,\mathrm{mol}^{-1} \,\, \cdot \,\, m(^1_0\,\mathrm{n}) = 1,\!00866\,u \end{split}$$

تمرین رقم: 04

أصبح الطب النووي من بين أهم الاختصاصات في عصرنا الحالي. فهو يستعمل في تشخيص الأمراض وفي العلاج من بين التقنيات المعتمدة العلاج بالاشعاع النووي (Radiothérapie) ، يستعمل الإشعاع النووي في تدمير الأورام السرطانية حيث يقذف الورم المصاب بالاشعاع المنبعث من الكوبالت $\frac{60}{27}$

 $^{1}_{1}$ p يفسر النشاط الاشعاعي لنواة الكوبالت $^{60}_{27}$ Co بتحول النترون

1- حدد معللا جوابك نمط النشاط الاشعاعي لنواة الكوبالت.

 $_{28}{
m Ni} \;,\;_{26}{
m Fe} \;$ أكتب معادلة التفكك النووي و تعرف على النواة المتولدة من بين النواتين $_{28}{
m Ni} \;,\;_{26}{
m Fe}$

 $-\frac{\mathrm{dm}}{\mathrm{dt}}.10^{-3}(\mathrm{g/an})$ للكوبالت يخضع لها كتلة الأنوية غير المتفككة $\mathrm{m}(t)$ للكوبالت يخضع لها كتلة الأنوية غير المتفككة $\mathrm{m}(t)$

m(g)

51,2

4- بتطبيق قانون التناقص الاشعاعي بين أنه يمكن التعبير عن كتلة الكوبالت غير المتفككة في لحظة t بالعلاقة $m=m_0 \ e^{-\lambda t}$ ، حيث $m=m_0 \ e^{-\lambda t}$ ، حيث m_0 هي كتلة عينة الكوبالت الابتدائية (عند اللحظة m_0) .

هي حل للمعادلة $m=m_0~{
m e}^{-\lambda t}$ اثبت أن المعادلة التفاضلية السابقة

 $\frac{dm}{dt} = f(m)$ - نمثل $\frac{dm}{dt} = f(m)$ - ، حيث $\frac{dm}{dt} = f(m)$ فنحصل على البيان (الشكل)

- باستغلال هذا البيان استنتج ثابت التفكك λ ، زمن نصف العمر m_0 ، كتلة الكوبالت الابتدائية $t_{1/2}$

 $rac{A_{(t)}}{A_0} = 0.25$: تصبح عينة الكوبالت غير فعالة عندما يصبح

 A_0 حيث A(t) نشاط عينة الكوبالت عند اللحظة t و A_0 نشاط العينة عند اللحظة الابتدائية

. t=0 عند اللحظة A_0 .

 $^{60}_{27}{
m Co}$ بعينة جديدة من الكوبالت يجب فيها تزويد المستشفى بعينة جديدة من الكوبالت

. $1an = 365.25 \text{ jours} \cdot N_A = 6,02 \cdot 10^{23}$ و M(Co) = 60 g/mol . $M_A = 6,02 \cdot 10^{23}$ يعطى : الكتلة المولية للكوبالت: