ST2334

AY22/23 Sem 1

github.com/jasonqiu212

01. Basic Concepts of Probability

Event Operations

- Mututally Exclusive $-A \cap B = \emptyset$
- Contained $A \subset B$
- Equivalence $-A \subset B$ and $A \supset B \to A = B$
- Distributive $-A \cap (B \cup C) = (A \cup B) \cup (A \cup C)$
- **DeMorgan's** $(A \cup B)' = A' \cap B'$
- $\bullet \ A = (A \cap B) \cup (A \cap B')$

Counting Methods

- Multiplication Principle Given r experiments performed sequentially and each has n₁, n₂, ..., n_r outcomes. After r experiments, there are n₁n₂...n_r outcomes.
- Addition Principle Given experiment can be done in k different ways and each has $n_1, n_2, ..., n_r$ ways. There are $n_1 + n_2 + ... + n_k$ total ways.
- Permutation $_nP_r = \frac{n!}{(n-r)!}$
- Combination $-\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Probability

Axioms of Probability

- 1. For any event A, $0 \le P(A) \le 1$
- 2. P(S) = 1
- 3. If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
- P(A') = 1 P(A)
- $P(A) = P(A \cap B) + P(A \cap B')$
- $\bullet \ P(A \cup B) = P(A) + P(B) P(A \cap B)$
- If $A \subset B$, then P(A) < P(B)

Finite Sample Space with Equally Likely Outcomes

Given sample space $S=\{a_1,...,a_k\}$ and all outcomes are **equally likely**, i.e. $P(a_1)=...=P(a_k)$:

For any event $A \subset S$, $P(A) = \frac{\text{No. of sample points in A}}{\text{No. of sample points in S}}$

Conditional Probability

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

Independence

- $\bullet A \perp B \leftrightarrow P(A \cap B) = P(A)P(B)$
- $A \perp B \leftrightarrow P(A|B) = P(A)$

Law of Total Probability

- \bullet Partition $\,$ If $A_1,...,A_n$ are mutually exclusive events and $\bigcup_{i=1}^n A_i=S,$ then $A_1,...,A_n$ are partitions
- If $A_1,...,A_n$ are partitions of S, then for any event B:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Bayes' Theorem

Let $A_1, ..., A_n$ be partitions of S. For any event B:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_k)P(A_i)}$$

02. Random Variables

- Motivation: Assign value to outcome of experiment
- \bullet Random Variable $\:$ Let S be sample space. Function X which maps $\mathbb R$ to every $s\in S$

Probability Distribution

- ullet Probability assigned to each possible X
- Given RV X with range of R_x :

Discrete - Numbers in R_x are finite or countable **Continuous** - R_x is interval

Discrete Probability Distribution

• Probability Function - Given $R_x = \{x_1, ...\}$. For each x_i , there's some probability that $X = x_i$:

$$f(x) = P(X = x)$$

- *p.f.* must satisfy:
 - 1. $f(x_i) = P(X = x_i)$ for $x_i \in R_x$
 - 2. $f(x_i) = 0$ for $x_i \notin R_x$
 - 3. $\sum_{i=1}^{\infty} f(x_i) = 1$
 - 4. $\forall B \subseteq \mathbb{R}, P(X \in B) = \sum_{x_i \in B \cap R_x} f(x_i)$
- Probability Distribution Collection of pairs $(x_i, f(x_i))$

Continuous Probability Distribution

- Probability Function

 Given R_x is interval. Quantifies probability that X is in some range.
- p. f. must satisfy:
 - 1. f(x) > 0
 - 2. f(x) = 0 for $x \notin R_x$
 - 3. $\int_{R_x} f(x) dx = 1$
 - 4. $\forall a, b \text{ s.t. } a \leq b, P(a \leq X \leq b) = \int_a^b f(x) dx$
- Note: $P(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$

Cumulative Distributive Function

Given RV X, which can be discrete or continuous:

$$F(x) = P(X \le x)$$

- \bullet F(x) is non-decreasing and $0 \le F(x) \le 1$
- For discrete RV: Step function

$$F(x) = \sum_{t \in R_x; t \le x} f(t)$$

- $P(a \le X \le b) = F(b) \lim_{x \to a^-} F(x)$
- $0 \le f(x) \le 1$
- For continuous RV:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$
$$f(x) = \frac{d(F(x))}{dx}$$

- $P(a \le X \le b) = P(a < X < b) = F(b) F(a)$
- $0 \le f(x)$ e.g. $f(x) = 3x^2$ is a valid p.f. since $\int_{R_x} f(x) dx = 1$

Expectation of Random Variable

• Mean of discrete RV:

$$\mu = E(X) = \sum_{x \in R_n} x_i f(x_i) = \sum_{i=1}^{\infty} P(X \ge i)$$

- Let g be some function. $E(g(x)) = \sum_{x \in R_x} g(x) f(x)$
- Mean of continuous RV:

$$\mu = E(X) = \int_{x \in R_x} x f(x) dx$$

- Let g be some function. $E(g(x)) = \int_{x \in R_x} g(x) f(x) dx$
- $\bullet \ E(aX+b) = aE(X) + b$
- Linearity of expectation: E(X + Y) = E(X) + E(Y)

Variance of Random Variable

$$\sigma_X^2 = V(X) = E((X - \mu_X)^2)$$

Variance of discrete RV:

$$V(X) = \sum_{x \in R_x} (x - \mu_X)^2 f(x)$$

Variance of continuous RV:

$$V(X) = \int_{x \in R_x} (x - \mu_X)^2 f(x) dx$$

- V(X) = 0 when X is a constant
- $V(aX + b) = a^2V(X)$
- $V(X) = E(X^2) (E(X))^2$
- Standard Deviation $\sigma_X = \sqrt{V(X)}$

03. Joint Distributions

04. Special Probability Distributions

Discrete Uniform Distribution

- \bullet If X has values $x_1, x_2, ..., x_k$ with $\mbox{\bf equal probability}$
- ullet p.f.: $f_X(x)=rac{1}{k}$ where $x=x_1,...,x_k$ and 0 otherwise
- Expectation: $\mu_X = E(X) = \sum_{i=1}^k x_i f_X(x_i) = \frac{1}{k} \sum_{i=1}^k x_i$
- \bullet Variance: $\sigma_X^2 = V(X) = E(X^2) (E(X))^2 = \frac{1}{k} \sum_{i=1}^k x_i^2 \mu_X^2$

Bernoulli

Bernoulli Trial - Random experiment with 2 possible outcomes (success and failure)

Bernoulli Random Variable

- Number of successes in Bernoulli trial (Either 1 or 0)
- ullet Let $0 \le p \le 1$ be the probability of success in Bernoulli trial

$$f_X(x) = P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & otherwise \end{cases}$$

- $f_X(x) = p^x(1-p)^{1-x}$ for x = 0 or 1
- Notation: $X \sim Ber(p)$ and q = 1 p
- $\mu_X = E(X) = p \text{ and } \sigma_X^2 = V(X) = p(1-p)$

Bernoulli Process

- Sequence of repeatedly performed independent and identical Ber. trials
- \bullet Generates sequence of independet and identically distributed (i.i.d.) Ber. RVs: X_1,X_2,\dots

Binomial Distribution

- Binomial RV Counts the number of successes in n trials in a Ber. process
- Given n trials with each trial having probability p of success:

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

- Notation: $X \sim B(n, p)$
- E(X) = np and V(X) = np(1-p)

Negative Binomial Distribution

• Let X = Number of i.i.d. Bernoulli(p) trials until kth success occurs

$$P(X = x) = {\binom{x-1}{k-1}} p^k (1-p)^{x-k}$$

- Notation: $X \sim NB(k, p)$
- $E(X) = \frac{1}{p}$ and $V(X) = \frac{(1-p)}{p^2}$

Geometric Distribution

• Let X = Number of i.i.d. Bernoulli(p) trials until 1st success occurs

$$P(X = x) = p(1 - p)^{x-1}$$

- Notation: $X \sim G(p)$
- \bullet $E(X) = \frac{1}{p}$ and $V(X) = \frac{1-p}{p^2}$

Poisson Distribution

• Poisson RV - Denotes number of events happening in fixed period of time

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

- • Notation: $X \sim Poisson(\lambda)$ where $\lambda > 0$ is expected number of occurences during some period
- $E(X) = \lambda$ and $V(X) = \lambda$
- Poisson Process Continuous time process, where we count number of correucesn within some internval of time