Étude des checkpoints du cycle cellulaire : spécification et vérification

Déborah Boyenval Gilles Bernot Jean-Paul Comet Franck Delaunay

Université Côte d'Azur, CNRS, I3S et IBV.

GTBIOSS 2020 - 6 novembre 2020

Modélisations dicrètes du cycle cellulaire des mammifères

www.chegg.com

Approches qualitatives :

- Diop O. et al., ECC 2019 (Booléen)
- Traynard P. et al., Bioinformatics 2016 (Multivalué)
- Behaegel J. et al., JBCB 2016 (Multivalué)
- Fauré A. et al., Bioinformatics 2006 (Booléen)

Le graphe de régulation :

- $\mathbf{m_1} [v_1 \ge 1] \rightarrow v_1 : v_1 \text{ s'autoactive}$
- $\mathbf{m_2} \ [\neg (v_2 \ge 1)] \rightarrow v_1 : v_2 \text{ inhibe } v_1$
- $\mathbf{m_3}$ $[(v_1 \ge 2) \land (v_2 \ge 1)] \rightarrow v_2$: le dimère $v_1 v_2$ activateur v_2

Le graphe de régulation :

États du système :

- η_1 : $|\bigcirc\bigcirc$
- η_2 :
- η_3 :
- η_4 :
- η_6 :

États des variables :

- $v_1 = 0$ $v_1 = 1$ $v_1 = 2$ $v_2 = 0$ $v_2 = 1$
- ∧ Choix des variables et seuils

- $\mathbf{m}_1 \ [v_1 \ge 1] \rightarrow v_1 : v_1 \text{ s'autoactive}$
- $m_2 [\neg (v_2 \ge 1)] \rightarrow v_1 : v_2 \text{ inhibe } v_1$
- $\mathbf{m_3} [(v_1 \ge 2) \land (v_2 \ge 1)] \rightarrow v_2$: le dimère $v_1 v_2$ activateur v_2

Graphe de régulation :

Cadre de modélisation 00000000000

Graphe de transition asynchrone:

Graphe de régulation :

Cadre de modélisation 00000000000

Ensemble des ressources:

- \bullet ω_{v_1} : m_1, m_2
- ω_{v_2} : m_3

Paramètres K:

$$\begin{array}{l} K_{v_1, \emptyset} = 0 \\ K_{v_1, m_1} = 0 \\ K_{v_1, m_2} = 1 \\ K_{v_1, m_1, m_2} = 2 \\ K_{v_2, \emptyset} = 0 \\ K_{v_2, m_3} = 1 \end{array}$$

Graphe de transition asynchrone:

Graphe de régulation :

Cadre de modélisation

000000000000

Ensemble des ressources:

- \bullet ω_{v_1} : m_1, m_2
- \bullet ω_{V_2} : m_3

Paramètres K:

$$\begin{array}{l} K_{v_1, \emptyset} = 0 \\ K_{v_1, m_1} = 0 \\ K_{v_1, m_2} = 1 \\ K_{v_1, m_1, m_2} = 2 \\ K_{v_2, \emptyset} = 0 \\ K_{v_2, m_3} = 1 \end{array}$$

Graphe de transition asynchrone:

- La dynamique du système dépend des paramètres K_{v,ω_v} où ω_v est l'ensemble des ressources de v.
- $\prod_{\nu} (d^{+(\nu)} + 1)^{2^{d^-(\nu)}}$ paramétrisations sont possibles, avec $d^+(\nu)$ et $d^-(\nu)$ resp. le degrés sortant et entrant de v.

Un triplet de Hoare H

- H : {PRE} PATH {POST}
- PRE: a=0, b=1, c=0
- PATH: b-: a+: c+: a-: b+
- POST: a=0. b=1. c=1

Profils normalisés d'expression ou d'activité d'espèces biologiques

$$H_{\text{ex}}: \{a=0,b=1,c=0\}$$
 $b-; a+; c+; a-; b+ \{a=0,b=1,c=1\}$

$$\downarrow$$
Postcondition Q

Un triplet de Hoare H

- H : {PRE} PATH {POST}
- PRE: a=0. b=1. c=0
- PATH: b-; a+; c+; a-; b+
- POST: a=0, b=1, c=1

Profils normalisés d'expression ou d'activité d'espèces biologiques

$$H_{ex}$$
: { $a = 0, b = 1, c = 0$ } $b - ; a + ; c + ; a - ; b + { $a = 0, b = 1, c = 1$ }$

A genetically modified Hoare logic Bernot et al., 2019

Nouvelle postcondition
$$Q_1$$
:
 $\mathbf{K}_{\mathbf{b},\omega_1} \ge \mathbf{1} \land a = 0 \land b = 0 \land c = 1$

Un triplet de Hoare H

- H : {PRE} PATH {POST}
- PRE: a=0. b=1. c=0
- PATH: b-: a+: c+: a-: b+
- POST: a=0, b=1, c=1

Profils normalisés d'expression ou d'activité d'espèces biologiques

$$H_{ex}$$
: { $a = 0, b = 1, c = 0$ } $b - ; a + ; c + ; a - ; b + { $a = 0, b = 1, c = 1$ }$

Nouvelle postcondition Q_2 :

$$(\mathbf{K}_{\mathbf{b},\omega_1} \ge \mathbf{1}) \land (\mathbf{K}_{\mathbf{a},\omega_2} < \mathbf{1}) \land \mathbf{a} = \mathbf{1} \land \mathbf{b} = 0 \land \mathbf{c} = \mathbf{1}$$

Un triplet de Hoare H

- H : {PRE} PATH {POST}
- PRE: a=0. b=1. c=0
- PATH: b-; a+; c+; a-; b+

. . .

• POST: a=0, b=1, c=1

Profils normalisés d'expression ou d'activité d'espèces biologiques

$$H_{ex}$$
: { $a = 0, b = 1, c = 0$ } $b - ; a + ; c + ; a - ; b + { $a = 0, b = 1, c = 1$ }$

Nouvelle postcondition Q_2 :

$$(\mathbf{K}_{\mathbf{b},\omega_1} \ge 1) \land (\mathbf{K}_{\mathbf{a},\omega_2} < 1) \land a = 1 \land b = 0 \land c = 1$$

Un triplet de Hoare H

- H: {PRE} PATH {POST}
- PRE: a=0. b=1. c=0
- PATH: b-: a+: c+: a-: b+
- POST: a=0, b=1, c=1

Profils normalisés d'expression ou d'activité d'espèces biologiques

$$H_{\rm ex}$$
: { $a=0,b=1,c=0$ } $b-$; $a+$; $c+$; $a-$; $b+$ { $a=0,b=1,c=1$ } \bigvee_{Q_5}

Weakest Precondition (WP)

$$\left(\mathsf{K}_{b,\omega_{1}}\geq1\right)\wedge\left(\mathsf{K}_{a,\omega_{2}}<1\right)\wedge\left(\mathsf{K}_{c,\omega_{3}}\geq1\right)\wedge\left(\mathsf{K}_{a,\omega_{4}}\geq1\right)\wedge\left(\mathsf{K}_{b,\omega_{5}}<1\right)\wedge \underbrace{a=0}\wedge \underbrace{b=1}\wedge\underbrace{c=0}$$

TotemBioNet: un outil d'identification exhaustive des paramètres K

TotemBioNet: un outil d'identification exhaustive des paramètres K

- https://gitlab.com/totembionet/totembionet
- Boyenval et al., What is a cell cycle checkpoint? The TotemBioNet answer, CMSB20.
- www.i3s.unice.fr/~boyenval/video/CMSB20 DeborahBOYENVAL.flv

Behaegel, J. JBCB16: un modèle revu et enrichi

Cadre de modélisation

Graphe de régulation : variables impliquées dans la progression du cycle cellulaire

- **sk** (starting kinases) : CycE/Cdk2
- a : CycA/Cdk1 et CycA/Cdk2
- **b** : CycB/Cdk1
- en (enemies):APC-cdh1, Wee1, p21, p27,PP1 et PP2
- *ep* (*exit protein*) : APC-cdc20
- P53
- **gf** (growth factors): EGF, FGF. PDGF. ...

Cadre de modélisation

Phases du cycle cellulaire : succession canonique des événements

• PRE \equiv ($sk = 0 \land a = 0 \land b = 0 \land ep = 0 \land en = 1$)

Phases du cycle cellulaire : succession canonique des événements

- PRE \equiv ($sk = 0 \land a = 0 \land b = 0 \land ep = 0 \land en = 1$)
- Cyclines inactives, inhibiteurs activés et APC_{cdc20} (exit protein) inactive.

Cadre de modélisation

- PRE \equiv ($sk = 0 \land a = 0 \land b = 0 \land ep = 0 \land en = 1$)
- Cyclines inactives, inhibiteurs activés et APC_{cdc20} (exit protein) inactive.

Triplet du cycle cellulaire canonique H_c

sk+: en-: sk+: a+: sk-: sk-: a+: en+: b+: en-: b+: ep+: a-: a-: b-: b-: ep-: en+ {PRE} {POST}

Phases du cycle cellulaire : succession canonique des événements

Cadre de modélisation

- PRE \equiv ($sk = 0 \land a = 0 \land b = 0 \land ep = 0 \land en = 1$)
- Cyclines inactives, inhibiteurs activés et APC_{cdc20} (exit protein) inactive.
- \bullet POST \equiv PRE

Triplet du cycle cellulaire canonique H_c

 $\{PRE\}$ $sk+;en-;sk+;a+;sk-;sk-;a+;en+;b+;en-;b+;ep+;a-;a-;b-;ep-;en+ <math>\{POST\}$

Phases du cycle cellulaire : succession canonique des événements

 $PRE \equiv (sk = 0 \land a = 0 \land b = 0 \land ep = 0 \land en = 1)$

Triplet du cycle cellulaire canonique H_c

sk+; en-; sk+; a+; sk-; sk-; a+; en+; b+; en-; b+; ep+; a-; a-; b-; b-; ep-; en+ {PRE} {POST}

```
sk+: en-: sk+: a+: sk-: sk-: a+: en+: b+: en-: b+: ep+: a-: a-: b-: b-: ep-: en+
                                                                                  {POST}
```

- D'autres propriétés du cycle en CTL :
 - φ_1 : blocage en phase de quiescence
 - φ_2 : insensibilité aux facteurs de croissance

```
\{\text{PRE}\} \quad sk+; en-; sk+; a+; sk-; sk-; a+; en+; b+; en-; b+; ep+; a-; a-; b-; b-; ep-; en+ \\ \{\text{POST}\}\}
```

- D'autres propriétés du cycle en CTL :
 - $oldsymbol{arphi}_1$: blocage en phase de quiescence
 - φ_2 : insensibilité aux facteurs de croissance
- Si aucune identification de paramètres alors $> 7 \times 10^{18}$ modèles

```
\{\text{PRE}\} \quad sk+; en-; sk+; a+; sk-; sk-; a+; en+; b+; en-; b+; ep+; a-; a-; b-; b-; ep-; en+ \quad \{\text{POST}\}
```

- D'autres propriétés du cycle en CTL :
 - ullet $arphi_1$: blocage en phase de quiescence
 - φ_2 : insensibilité aux facteurs de croissance
- Si aucune identification de paramètres alors $> 7 \times 10^{18}$ modèles
- Résolution de $H_c \wedge \varphi_1 \wedge \varphi_2$ avec TotemBioNet : 32 modèles

```
sk+: en-: sk+: a+: sk-: sk-: a+: en+: b+: en-: b+: ep+: a-: a-: b-: b-: ep-: en+
                                                                                  {POST}
```

- D'autres propriétés du cycle en CTL :
 - φ_1 : blocage en phase de quiescence
 - φ_2 : insensibilité aux facteurs de croissance
- Si aucune identification de paramètres alors $> 7 \times 10^{18}$ modèles
- Résolution de $H_c \wedge \varphi_1 \wedge \varphi_2$ avec TotemBioNet : **32 modèles**
- Un paramètre booléen identifié a posteriori à partir de la littérature.

Triplet du cycle cellulaire canonique H_c

```
sk+; en-; sk+; a+; sk-; sk-; a+; en+; b+; en-; b+; ep+; a-; a-; b-; b-; ep-; en+
                                                                                  {POST}
```

- D'autres propriétés du cycle en CTL :
 - φ_1 : blocage en phase de quiescence
 - φ_2 : insensibilité aux facteurs de croissance
- Si aucune identification de paramètres alors $> 7 \times 10^{18}$ modèles
- Résolution de $H_c \wedge \varphi_1 \wedge \varphi_2$ avec TotemBioNet : **32 modèles**
- Un paramètre booléen identifié a posteriori à partir de la littérature.

16 modèles à soumettre à la vérification des checkpoints

Checkpoints du cycle cellulaire •0000000000000

Qu'est-ce qu'un checkpoint?

Un checkpoint en langage courant

- Tous les événements d'une phase doivent avoir lieu avant le début de la phase suivante.
- L'intégrité de l'ADN est menacée si tous les événements au sein d'une phase ne sont pas réalisés (e.g. en G1, S, G2 et M).

Checkpoints du cycle cellulaire

•0000000000000

Qu'est-ce qu'un checkpoint?

Un checkpoint en langage courant

- Tous les événements d'une phase doivent avoir lieu avant le début de la phase suivante.
- L'intégrité de l'ADN est menacée si tous les événements au sein d'une phase ne sont pas réalisés (e.g. en G1, S, G2 et M).
- Checkpoints G1/S et S/G2 : entrée et fin de réplication (S)
- Checkpoints G2/M et M/G1 : entrée et fin de *mitose* (M)

Qu'est-ce qu'un checkpoint ?

Un checkpoint en langage courant

- Tous les événements d'une phase doivent avoir lieu avant le début de la phase suivante.
- L'intégrité de l'ADN est menacée si tous les événements au sein d'une phase ne sont pas réalisés (e.g. en G1, S, G2 et M).
- Checkpoints G1/S et S/G2 : entrée et fin de réplication (S)
- Checkpoints G2/M et M/G1 : entrée et fin de *mitose* (M)

Contexte

AG(p53 = 0): pas d'altération physique de l'ADN (cassure, mutation)

Cadre de modélisation

Qu'est-ce qu'un checkpoint?

Permutations autorisées d'événements au sein d'une phase

L'ordre des événements à l'intérieur des phases est partiellement connu : exemple en phase M

Checkpoints du cycle cellulaire

Checkpoints du cycle cellulaire

00000000000000

Spécification d'un checkpoint du cycle cellulaire

Le prédicat checkpoint

 $\forall X, \forall Y, \text{ peutClore}(X, p_i) \land \text{ peutInitier}(Y, p_{i+1}) \Longrightarrow \text{ estRequis}(X, Y)$

Les prédicats peutClore et peutInitier

- $peutClore(X, p) \iff \exists p' \in permutations(p) \mid (wp(\{init_p\}p'\{final_p\}) \land X = dernier(p'))$
- $peutInitier(Y,p) \iff \exists p' \in permutations(p) \mid (wp(\{init_p\}p'\{final_p\}) \land Y = premier(p'))$

wp: weakest precondition

Implémentation de peutClore et peutInitier en Prolog

Les prédicats peutClore et peutInitier

• $peutClore(X, p) \iff \exists p' \in permutations(p) \mid (wp(\{init_p\}p'\{final_p\}) \land X = dernier(p'))$

Checkpoints du cycle cellulaire 000000000000000

• $peutInitier(Y, p) \iff \exists p' \in permutations(p) \mid (wp(\{init_p\}p'\{final_p\}) \land Y = premier(p'))$

Phase	Liste des événements	État initial de la phase	<pre>peutInitier (Liste,Y)</pre>	peutClore(Liste,X)
G1	[sk+,en-,sk+]	sk=0,ep=0,a=0,b=0,en=1	Y=[sk+]	X=[sk+]
S	[a+,sk-,sk-]	sk=2,ep=0,a=0,b=0,en=0	Y=[a+]	X=[sk-]
G2	[a+,en+,b+,en-]	sk=0,ep=0,a=1,b=0,en=0	Y=[a+]	X=[en-]
М	[b+,ep+,a-,a-,b-,b-,en+,ep-]	sk=0,ep=0,a=2,b=1,en=0	Y=[b+]	X=[a-,b-,en+,ep-]

H_c' : le triplet qui remplace H_c

Cadre de modélisation

```
{PRE}
                                      sk+:en-:sk+:
                                       a+;sk-;sk-;
                                     a+; en+; b+; en-;
Exists((b+;ep+;a-;a-;b-;ep-;en+),(b+;ep+;a-;a-;b-;ep-;en+),(b+;ep+;a-;b-;en+))
 (b+:ep+:a-:a-:b-:en+:b-:ep-), (b+:ep+:a-:a-:en+:b-:ep-), (b+:ep+:a-:b-:a-:b-:en+:ep-)
 (b+:ep+:a-:b-:a-:en+:b-:ep-), (b+:ep+:b-:a-:b-:en+:ep-), (b+:ep+:b-:a-:b-:en+:a-:ep-)
 (b+;ep+;a-;b-;b-;a-;en+;ep-),(b+;ep+;b-;a-;a-;b-;en+;ep-),(b+;ep+;a-;b-;en+;a-;ep-)
 (b+:ep+:b-:a-:a-:en+:b-:ep-), (b+:ep+:a-:a-:b-:en+:ep-), (b+:ep+:a-:a-:b-:ep-:en+:b-)
 (b+:ep+:a-:a-:en+:b-:ep-:b-), (b+:ep+:b-:a-:a-:en+:ep-:b-), (b+:ep+:a-:a-:en+:ep-:b-)
 (b+;ep+;a-;b-;a-;en+;ep-;b-),(b+;ep+;b-;a-;a-;ep-;en+;b-),(b+;ep+;a-;b-;a-;ep-;en+;b-)
  (b+:ep+:a-:a-:b-:en+:ep-:b-), (b+:ep+:a-:b-:a-:ep-:b-:en+), (b+:ep+:b-:a-:b-:a-:ep-:en+)
  (b+;ep+;a-;b-;b-;a-;ep-;en+),(b+;ep+;b-;a-;a-;ep-;en+),(b+;ep+;b-;a-;a-;ep-;b-;en+)
 (b+;ep+;a-;b-;en+;ep-;a-),(b+;ep+;a-;b-;ep-;en+;a-),(b+;ep+;a-;b-;en-;a-)
 (b+:ep+:b-:a-:b-:en+:ep-:a-), (b+:ep+:b-:a-:b-:ep-:en+:a-), (b+:ep+:b-:a-:ep-:b-:en+:a-)
                                         {POST}
```

Spécification d'un checkpoint du cycle cellulaire

Tous les événements d'une phase doivent avoir lieu avant le début de la phase suivante.

00000000000000

Spécification d'un checkpoint du cycle cellulaire

Le prédicat estRequis

- X = x + ou x -
- Y = v + ou v -
- η_{avant} = état du cycle cellulaire tel que état de y avant l'événement X
- η_{après} = état de y après l'événement X
- ω_{avant} = ressources de y dans η_{avant}
- $\omega_{après}$ = ressources de y dans $\eta_{après}$
- $estRequis(X,Y) \iff (K_{v,\omega_{avant}} \eta_{avant}) \times (K_{v,\omega_{après}} \eta_{après}) \leq 0$

000000000000000

Spécification d'un checkpoint du cycle cellulaire

Le prédicat estRequis

- X = x + ou x -
- Y = v + ou v -
- η_{avant} = état du cycle cellulaire tel que état de y avant l'événement X
- η_{après} = état de y après l'événement X
- ω_{avant} = ressources de y dans η_{avant}
- $\omega_{après}$ = ressources de y dans $\eta_{après}$
- $estRequis(X,Y) \iff (K_{V,\omega_{avant}} \eta_{avant}) \times (K_{V,\omega_{après}} \eta_{après}) \leq 0$

Vérification des checkpoints du cycle cellulaire

Prototype CalculCheckpoint

- automatise le calcul du prédicat checkpoint,
- implémenté en Prolog,
- prend en entrée un modèle, le triplet H_c initial, et un des 4 checkpoints.

Checkpoint	Évaluation	Paramètre(s) identifié(s)	Temps d'exécution ¹
G1/S	True	$K_{a,\{enIniOrMit\}} = 0$	1.9s
S/G2	True	-	11s
G2/M	True	-	1h10min
M/G1	False	-	1h12min

¹SWI-Prolog v7.2.3, Intel Core i7-8650U processor, 1.90GHz, 8 cores.

Vérification des checkpoints du cycle cellulaire

Le checkpoint M/G1 n'est satisfait par aucun modèle

• $\forall X, \forall Y$, peutClore(X, M) \land peutInitier(Y, G1) \Longrightarrow estRequis(X, Y)

Vérification des checkpoints du cycle cellulaire

Le checkpoint M/G1 n'est satisfait par aucun modèle

- $\forall X, \forall Y$, peutClore(X, M) \land peutInitier(Y, G1) \Longrightarrow estRequis(X, Y)
- X = [ep-, b-, en+, a-], Y = [sk+]

000000000000000

Vérification des checkpoints du cycle cellulaire

Le checkpoint M/G1 n'est satisfait par aucun modèle

- $\forall X, \forall Y$, peutClore $(X, M) \land \text{peutInitier}(Y, G1) \implies \text{estRequis}(X, Y)$
- X = [ep-, b-, en+, a-], Y = [sk+]
- $estRequis(X,Y) \Leftrightarrow C_{M/G1}$

$$(K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \times (K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \le 0 \land \\ C_{M/G1} : (K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \times (K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \le 0 \land \\ (K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \times (K_{sk,\{c46d_E2F_act\}} - 0) \le 0$$

00000000000000

Vérification des checkpoints du cycle cellulaire

Le checkpoint M/G1 n'est satisfait par aucun modèle

- $\forall X, \forall Y$, peutClore $(X, M) \land \text{peutInitier}(Y, G1) \Longrightarrow \text{estRequis}(X, Y)$
- X = [ep-, b-, en+, a-], Y = [sk+]
- $estRequis(X,Y) \Leftrightarrow C_{M/G1}$

$$(K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \times (K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \le 0 \land \\ C_{M/G1} : (K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \times (K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \le 0 \land \\ (K_{sk,\{a_ini_sk,c46d_E2F_act\}} - 0) \times (K_{sk,\{c46d_E2F_act\}} - 0) \le 0$$

Le checkpoint M/G1 n'est satisfait par aucun modèle

estRequis(X,Y) \leftarrow false : les événements ep-, b- et en+ (en M) ne sont pas requis avant sk+ (en G1).

M/G1 n'est pas un checkpoint au sens du prédicat

Le triplet alternatif du cycle cellulaire H_c''

```
\{sk = 1, a = 0, b = 0, ep = 0, ep = 1\}
                                                                                                                                         en-: sk+:
                                                                                                                                     a+:sk-:sk-:
                                                                                                                                a+; en+; b+; en-;
Exists((b+;ep+;a-;a-;b-;b-;ep-;sk+;en+),(b+;ep+;a-;a-;b-;ep-;b-;sk+;en+),(b+;ep+;a-;a-;b-;en+;sk+;ep-)
       (b+;ep+;a-;b-;a-;en+;b-;sk+;ep-),(b+;ep+;b-;a-;b-;a-;en+;sk+;ep-),(b+;ep+;b-;a-;b-;en+;a-;sk+;ep-),(b+;ep+;b-;a-;b-;en+;a-;sk+;ep-),(b+;ep+;b-;a-;b-;a-;b-;en+;a-;sk+;ep-),(b+;ep+;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-;b-;a-
        (b+;ep+;a-;b-;b-;a-;en+;sk+;ep-),(b+;ep+;b-;a-;a-;b-;en+;sk+;ep-),(b+;ep+;a-;b-;en+;a-;sk+;ep-)
        (b+;ep+;b-;a-;a-;en+;b-;sk+;ep-),(b+;ep+;a-;a-;b-;en+;ep-;sk+;b-),(b+;ep+;a-;a-;b-;ep-;en+;sk+;b-)
        (b+;ep+;a-;a-;en+;b-;ep-;sk+;b-), (b+;ep+;b-;a-;a-;en+;ep-;sk+;b-), (b+;ep+;a-;a-;en+;ep-;b-;sk+;b-)
        (b+;ep+;a-;b-;a-;en+;ep-;sk+;b-),(b+;ep+;b-;a-;a-;ep-;en+;sk+;b-),(b+;ep+;a-;b-;a-;ep-;en+;sk+;b-)
        (b+:ep+:a-:b-:a-:b-:a-:b-:a-:b-:a-:b-:a-:ep-:sk+:en+)
        (b+;ep+;a-;b-;b-;a-;ep-;sk+;en+),(b+;ep+;b-;a-;a-;b-;ep-;sk+;en+),(b+;ep+;b-;a-;a-;ep-;b-;sk+;en+)
                                                                                                              \{sk = 1, a = 0, b = 0, ep = 0, ep = 1\}
```

- En G1 et M, $sk+(0 \rightarrow 1)$ est associé au passage du point de restriction.
- Aucune donnée de la littérature en contradiction.

Formalisation discrète du cycle cellulaire

- H'_c et Hc": succession des événements de régulation des Cdks/Cycs et leurs inhibiteurs.
- Tous les chemins admissibles par la littérature (observés et non réfutés) sont inclus.

Formalisation discrète des checkpoints

La permutation de deux événements est :

- autorisée s'ils appartiennent à la même phase.
- interdite si le premier événement peut clore une phase et le second peut initier la phase suivante.

Résumé

Cadre de modélisation

8/16 modèles vérifient les checkpoints G1/S, G2/M, S/G2, 0/16 modèle vérifie le checkpoint M/G1.

Perspectives de modélisation

• Relocalisation du checkpoint M/G1 qui tel que défini n'est pas un checkpoint.

- Relocalisation du checkpoint M/G1 qui tel que défini n'est pas un checkpoint.
- Vérification de l'*irréversibilité* des passages de checkpoints.

- Relocalisation du checkpoint M/G1 qui tel que défini n'est pas un checkpoint.
- Vérification de l'*irréversibilité* des passages de checkpoints.
- Vers une définition logique des *phases* à plus faible contrainte.

- Relocalisation du checkpoint M/G1 qui tel que défini n'est pas un checkpoint.
- Vérification de l'*irréversibilité* des passages de checkpoints.
- Vers une définition logique des *phases* à plus faible contrainte.
- Vérification de blocages de phase dans le contexte $AG(p_{53} = 1)$

- Relocalisation du checkpoint M/G1 qui tel que défini n'est pas un checkpoint.
- Vérification de l'*irréversibilité* des passages de checkpoints.
- Vers une définition logique des *phases* à plus faible contrainte.
- Vérification de blocages de phase dans le contexte $AG(p_{53} = 1)$
- Le couplage cycle cellulaire métabolisme horloge circadienne et l'intégrité des checkpoints (Chen Z., et al., Science, 2007).

Annexe 1 - CTL et fair-path CTL

Cadre de modélisation

- p and q two properties
- Temporal modalities made up of 2 letters : a quantifier and a temporal operator
- ullet Quantifiers: A,E, Temporal operators: F,G,X,U

Annexe 2 - Le cycle cellulaire en privation de facteurs de croissance

Contexte

AG(gf = 0): constante privation de facteur de croissance

Blocage en phase de quiescence

$$\varphi_1: (G_0 \wedge \mathbf{AG}(\mathbf{gf} = \mathbf{0})) \Rightarrow AG(G_0)$$

où
$$G_0$$
 spécifie l'état $sk = 0, ep = 0, a = 0, b = 0, en = 1, gf = 0, p_{53} = 0$

Insensibilité aux facteurs de croissance en G1 tardif

$$\varphi_2: \{G1_{tardif}\} en-; sk+; a+; sk-; sk-; a+; en+; b+; en-; b+; ep+; a-; a-; b-; b-; en+; ep-\{G_0\}$$

où
$$G1_{tardif}$$
 spécifie l'état $sk = 1, ep = 0, a = 0, b = 0, en = 1, gf = 0, p_{53} = 0$.