

CMPS 460 - Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by. WittySparks.com | Image source: Pixabay.com

Beyond Binary Classification

Chapter 6

Roadmap ...

- Using standard binary classifiers to solve other problems
 - Weighted classification
 - Multiclass classification

Fundamental ML concept: reduction

Learning with Imbalanced Data

Imbalanced Data Distributions

- Sometimes training examples are drawn from an imbalanced distribution.
- This results in an imbalanced training set.
 - "needle in a haystack" problems
 - e.g., find fraudulent transactions in credit card histories

Why is this a big problem for the ML algorithms we know?

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$
- 3. A training set D sampled from \mathcal{D}

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

to a-Weighted Binary Classification

TASK: α-WEIGHTED BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$
- 3. A training set D sampled from \mathcal{D}

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\alpha^{y=1}\left[f(x)\neq y\right]\right]$

We define cost of misprediction as: $\alpha > 1$ for y=+1 and 1 if y=-1

Given a good binary classifier, how can we solve the α-weighted binary classification?

Solution: Train a binary classifier on an "induced" distribution

Subsampling

Undersample the negative class.

- Positive examples: retain all
- Negative examples: retain only $1/\alpha$ fraction of them.

• Pass the induced distribution to binary classification.

Pros/Cons?

Oversampling

Oversample the positive class.

- Positive example: include α copies of it in the induced distribution.
- Negative example: include a single copy.

Pass the induced distribution to binary classification.

Pros/Cons?

 Efficient implementations incorporate weight in learning algorithm, instead of explicitly duplicating data!

Reduction (in this case ...)

Re-using simple and efficient algorithms for binary classification to perform more complex tasks

Subsampling Optimality

• Theorem: If the binary classifier used in subsampling (on the induced distribution) achieves a binary error rate of ε , then the error rate of the α -weighted classifier (on the original distribution) is $\alpha \varepsilon$.

Same for oversampling!

Both methods have same error rate?!

Multiclass Classification

Multiclass Classification

Real world problems often have multiple classes.

- How can we perform multiclass classification?
 - Decision trees?
 - kNN?
 - Perceptron?

Reduction to binary classification ...

Multiclass Classification

TASK: MULTICLASS CLASSIFICATION

Given:

- 1. An input space X and number of classes K
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times [K]$

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

- In most tasks, number of classes K < 100
- For much larger K
 - we need to frame the problem differently

CMPS 673: Machine Learning

Reduction 1: One Versus All (OVA)

aka "one versus rest"

- Train K binary classifiers
- Classifier k predicts whether an example belong to class k or not.

- At test time?
 - If only one classifier predicts positive, predict that class
 - Break ties randomly

Algorithm 13 OneVersusAllTrain(D^{multiclass}, BinaryTrain)

```
for i = 1 to K do

Dim \leftarrow relabel \mathbf{D}^{multiclass} so class i is positive and \neg i is negative

f_i \leftarrow \text{BINARYTRAIN}(\mathbf{D}^{bin})

end for

return f_1, \ldots, f_K
```

Algorithm 14 OneVersusAllTest $(f_1, \ldots, f_K, \hat{x})$

```
score \leftarrow \langle o, o, \ldots, o \rangle // initialize K-many scores to zero
for i = 1 to K do
y \leftarrow f_i(\hat{x})
score_i \leftarrow score_i + y
end for
return argmax_k score_k
```

Error Bound

• Theorem: Suppose that the average error of the K binary classifiers is ε , then the error rate of the OVA multiclass classifier is at most (K-1) ε .

Reduction 2: All Versus All (AVA)

aka all pairs

- Train a classifier for each pair of classes.
- How many binary classifiers does this require?

- At test time?
 - The class with the most votes wins.

Algorithm 15 ALLVERSUSALLTRAIN(D^{multiclass}, BINARYTRAIN)


```
If f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K

If f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K

If f_{ij} \leftarrow 0 for i = 1 to K - 1 do

If f_{ij} \leftarrow 0 for i = 1 to i = 1 for i = 1 to i = 1
```

Algorithm 16 AllVersusAllTest(all f_{ij} , \hat{x})

```
score \leftarrow \langle o, o, \dots, o \rangle // initialize K-many scores to zero
for i = 1 to K-1 do
for j = i+1 to K do
y \leftarrow f_{ij}(\hat{x})
score<sub>i</sub> \leftarrow score<sub>i</sub> + y
score<sub>j</sub> \leftarrow score<sub>j</sub> - y
end for
end for
return \underset{g}{\text{return}} \underset{g}{\text{return
```

Error Bound

• Theorem: Suppose that the average error of the K binary classifiers is ε , then the error rate of the AVA multiclass classifier is at most $2(K-1) \varepsilon$.

AVA is always worse than OVA?

Extensions

- Divide and conquer
 - Organize classes into binary tree structures
 - binary tree of classifiers

- Use confidence to weight predictions of binary classifiers
 - Instead of using majority vote