Interactive

September 4, 2019

Data Science Workflow < | > Hall of Fame

1 Exploring Subsets Interactively

In this notebook you can select criteria for a subset to inspect and compare to the entire dataset.

Instructions:

- 1. Run Cell 1, wait for "DONE IN <time>" message before continuing.
- 2. Run Cell 2, fill out criteria before continuing.
- 3. Run Cell 3, view report.
- 4. Repeat steps 2 and 3 with new criteria, if desired.

Prerequisites:

- four final CSV file local in ./data_final
- all aggregations created by aggregate.py local in ./analysis_data
- ipywidgets
 - pip install ipywidgets
- nodejs
 - conda install nodejs
- npm
 - pip install npm
- labextension
 - for jupyter lab: jupyter labextension install @jupyter-widgets/jupyterlab-manager)
 - for jupyter notebook: notebook extension (jupyter nbextension enable --py
 widgetsnbextension

1.1 Run Cell 1

This takes about 10 minutes. Wait for "DONE IN <time>" message before continuing!

```
[1]: import interactive
  import load_data
  import datetime
  from IPython.core.display import HTML
```

```
# 10 minutes to load data
start = datetime.datetime.now()
data_frames = interactive.data()
end = datetime.datetime.now()
print('\n'+'-'*80+'\n'+'DONE IN {0}'.format(end - start))
```

Repos loaded in 0:00:04.412145

Owners loaded in 0:00:00.694790

Notebook imports loaded in 0:00:41.461839

Errors loaded in 0:00:03.000942

Cell stats loaded in 0:00:01.782402

Cell order loaded in 0:00:27.241687

Outputs loaded in 0:00:01.941591

Statuses loaded in 0:00:00.993714

Cell stats loaded in 0:00:01.961678

Collaboration statuses loaded in 0:00:00.030213

Special functions loaded in 0:00:12.218296

Framework uses loaded in 0:00:08.789084

Educational status loaded in 0:00:00.219593

Notebooks loaded in 0:00:28.177134

DONE IN 0:09:19.337819

```
[7]: #query = interactive.interactive(data_frames)
```

1.2 Run Cell 3

This takes about 1 minute. View report! Repeat Cells 2 and 3 with different criteria.

```
[6]: data_frames_sub = interactive.subset(data_frames, query)
print('\n'+'-'*73+'\n')
interactive.report_comparisons(data_frames_sub, data_frames)
```

Subsetting to Python notebooks pushed between 2019-01-01 and 2019-07-14. 1,515,109 (39.01%) notebooks fit your criteria.

1.2.1 Summary Statistics

	num_cells	forks_count	open_issues_count	stargazers_count	\
mean	29.6	10.07	0.92	19.02	
median	19.0	0.00	0.00	0.00	
min	0.0	0.00	0.00	0.00	
max	1641.0	17634.00	2003.00	22831.00	

	subscribers_count	watchers_count	lines_of_code	num_words
mean	2.95	19.02	145.55	374.94
median	0.00	0.00	85.00	53.00
min	0.00	0.00	1.00	0.00
max	2446.00	22831.00	72415.00	200404.00

Compare to all:

	num_cells	forks_c	ount	open_issue	s_count	starga	zers_count	\
mean	28.76		5.56		0.49		9.88	
median	19.00		0.00		0.00		0.00	
min	0.00		0.00		0.00		0.00	
max	1641.00	1763	4.00		2003.00		22831.00	
	subscriber	s_count	watc	hers_count	lines_o	f_code	num_words	
mean		2.13		9.88		147.26	405.18	
median		1.00		0.00		88.00	60.00	
min		0.00		0.00		1.00	0.00	
max		2446.00		22831.00	462	118.00	200404.00	

1.2.2 Package Use

1.2.3 Framework Use

37.39% of these notebooks use at least one framework.

Compare to all:

35.48% of all notebooks use at least one framework.

1.2.4 Visualization Package Use

51.09% of these notebooks use at least one visualization package.

Compare to all:

50.71% of all notebooks use at least one visualization package.

1.2.5 AWS Package Use

0.629% of these notebooks import at least one of sagemaker, boto, or mxnet.

Compare to all:

0.493% of all notebooks import at least one of sagemaker, boto, or mxnet.

1.2.6 Number of Errors per Notebook

mean 0.2 median 0.0 min 0.0 max 9104.0

Name: num_errors, dtype: float64

Compare to all:

 mean
 0.22

 median
 0.00

 min
 0.00

 max
 9104.00

Name: num_errors, dtype: float64

1.2.7 Ratio of Markdown to Code

mean 6.26
median 0.66
min 0.00
max 18029.00

Name: ratio_wl, dtype: float64

Compare to all:

mean	6.45
median	0.69
min	0.00
max	18029.00

Name: ratio_wl, dtype: float64

1.2.8 Execution Order

74.71% of these notebooks have cells run in order.

83.96% of these notebooks have at least one output, 70.14% of which are run in order.

85.12% of these notebooks were able to be parsed with Python AST.

Of these, 12.05% had a function used before it was defined, 1.74% had a package used before it was imported, and 4.72% used a variable before it was defined.

Compare to all:

74.92% of all notebooks have cells run in order.

84.4% of all notebooks have at least one output, 70.58% of which are run in order.

86.41% of all notebooks were able to be parsed with Python AST. Of these, 13.0% had a function used before it was defined, 1.8% had a package used before it was imported, and 4.76% used a variable before it was defined.

1.2.9 Collaboration

15.63% of these repositories are collaborative, containing 21.19% of these notebooks.

Compare to all:

16.85% of all repositories are collaborative, containing 22.76% of all notebooks.

1.2.10 Educational Status

22.29% of these repos are educational, holding 27.47% of these notebooks

Compare to all:

23.67% of all repos are educational, holding 29.21% of all notebooks Data Science Workflow < | > Hall of Fame