

Keys

Timothy el arquitecto ha diseñado un nuevo juego de escape. En este juego, existen n cuartos numerados de 0 hasta n-1. Inicialmente, cada cuarto contiene exactamente una llave. Cada llave tiene un tipo, el cual, es un entero entre 0 y n-1 inclusive. El tipo de llave en el cuarto i ($0 \le i \le n-1$) es r[i]. Note que múltiples cuartos pueden tener llaves del mismo tipo, es decir, los valores r[i] no son necesariamente distintos.

Existen también m conectores **bidireccionales** en el juego, numerados de 0 a m-1. El conector j ($0 \le j \le m-1$) conecta un par de cuartos diferentes u[j] y v[j]. Un par de cuartos puede estar conectado por múltiples conectores.

El juego es jugado por un solo jugador, el cual, recolecta las llaves y se mueve entre cuartos recorriendo los conectores. Decimos que el jugador **Recorre** el conector j cuando utiliza este conector para moverse del cuarto u[j] al cuarto v[j] o viceversa. El jugador puede recorrer el conector j si ha conseguido una llave de tipo c[j] antes.

En cualquier punto del juego, el jugador está en un cuarto x y puede realizar dos tipos de acciones:

- recolectar la llave en el cuarto x, cuyo tipo es r[x] (a menos que ya la haya recolectado antes),
- Recorrer el conector j, donde u[j] = x o v[j] = x, si el jugador ha recolectado una llave de tipo c[j] anteriormente. Note que el jugador **nunca** desecha una llave que ha recolectado.

El jugador **comienza** el juego en un cuarto s sin ninguna llave. Un cuarto t es **alcanzable** desde un cuarto s, si el jugador que comienza el juego en el cuarto s puede realizar alguna secuencia de acciones como las descritas anteriormente, y alcanzar el cuarto t.

Por cada cuarto i ($0 \le i \le n-1$), sea p[i] el número de cuartos alcanzables desde el cuarto i. Timothy quisiera saber el conjunto de índices i que obtengan el mínimo valor de p[i] para 0 < i < n-1.

Detalles de Implementación

Usted debe implementar el siguiente procedimiento:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: un arreglo de longitud n. Para cada i ($0 \le i \le n-1$), la llave en el cuarto i es de tipo r[i].
- u,v: dos arreglos de longitud m. Por cada j ($0 \le j \le m-1$), el conector j que conecta los cuartos u[j] y v[j].

- c: un arreglo de longitud m. Por cada j ($0 \le j \le m-1$), el tipo de llave necesaria para recorrer el conector j es c[j].
- El procedimiento debe retornar un arreglo s de longitud n. Por cada $0 \le i \le n-1$, el valor de s[i] debe ser 1 si por cada j tal que $0 \le j \le n-1$, $p[i] \le p[j]$. De otra manera, el valor de a[i] debe ser 0.

Ejemplos

Ejemplo 1

Considere la siguiente llamada:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Si el jugador comienza el juego en el cuarto 0, puede realizar la siguiente secuencia de acciones:

Cuarto Actual	Acción
0	Recolectar la llave de tipo 0
0	Recorrer el conector 0 al cuarto 1
1	Recolectar la llave de tipo 1
1	Recorrer el conector 2 al cuarto 2
2	Recorrer el conector 2 al cuarto 1
1	Recorrer el conector 3 al cuarto 3

Como consecuencia el cuarto $\,3\,$ es alcanzable desde el cuarto $\,0\,$. Del mismo modo, podemos construir secuencias para probar que todos los cuartos son alcanzables desde el cuarto $\,0\,$, lo que implica que $\,p[0]=4\,$. La tabla a continuación muestra los cuartos alcanzables comenzando desde cada cuarto:

Cuarto inicial i	Cuartos Alcanzables	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

El menor valor de p[i] a través de todos los cuartos es $\,2$, y esto se obtiene por $\,i=1$ o $\,i=2$. Entonces, el procedimiento debe retornar $\,[0,1,1,0]$.

Ejemplo 2

```
find_reachable([0, 1, 1, 2, 2, 1, 2],
        [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],
        [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],
        [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])
```

La tabla a continuación muestra los cuartos alcanzables:

Cuarto inicial i	Cuartos alcanzables	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

El menor valor de p[i] a través de todos los cuartos es 2, y esto se obtiene para $i \in \{1, 2, 4, 6\}$. Entonces, este procedimiento debe retornar [0, 1, 1, 0, 1, 0, 1].

Ejemplo 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

La tabla a continuacióon muestra los cuartos alcanzables:

Cuarto inicial i	Cuartos alcanzables	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

El menor valor de $\,p[i]\,$ a través de todos los cuartos es $\,1$, y esto se obtiene cuando $\,i=2.\,$ Entonces, el procedimiento debe retornar $\,[0,0,1].\,$

Restricciones

- $2 \le n \le 300\,000$
- $1 \le m \le 300000$
- $0 \le r[i] \le n-1$ para todo $0 \le i \le n-1$
- + $0 \leq u[j], v[j] \leq n-1$ y u[j]
 eq v[j] para todo $0 \leq j \leq m-1$

• $0 \leq c[j] \leq n-1$ para todo $0 \leq j \leq m-1$

Subtareas

- 1. (9 puntos) $\,c[j]=0$ para todo $\,0\leq j\leq m-1$ y $\,n,m\leq 200$
- 2. (11 puntos) $n, m \le 200$
- 3. (17 puntos) $n, m \leq 2000$
- 4. (30 puntos) $c[j] \leq 29$ (para todo $0 \leq j \leq m-1$) y $r[i] \leq 29$ (para todo $0 \leq i \leq n-1$)
- 5. (33 puntos) Sin restricciones adicionales.

Evaluador de ejemplo

El evaluador de ejemplo lee la entrada en el siguiente formato:

- línea 1: n m
- Iínea 2: r[0] r[1] \dots r[n-1]
- If u[j] If

El evaluador ejemplo imprime el valor de retorno de find reachable en el siguiente formato:

• Iínea 1: a[0] a[1] \dots a[n-1]