

一、图像分割问题

问题: 受到噪声影响的多相图像分割问题

模型: 基于模糊隶属函数和L1范数保真项的变分

多相图像分割模型

二、经典模型

二、图像分割经典模型

1, FCM

$$\min_{(\mathbf{U}, \mathbf{C}) \in \Delta \times \mathbb{R}^{sN}} \sum_{i=1}^{N} \int_{\Omega} |I(x) - c_i|^2 u_i^p(x) dx$$

2, FCM S2

$$\min_{(\mathbf{U},\mathbf{C})\in\Delta\times\mathbb{R}^{sN}}\sum_{i=1}^{N}\left\{\int_{\Omega}|I(x)-c_{i}|^{2}u_{i}^{p}(x)\,dx+\alpha\int_{\Omega}\left|\bar{I}(x)-c_{i}\right|^{2}u_{i}^{p}(x)\,dx\right\}$$

3、FLICM(局部信息):

$$\min_{(\mathbf{U}, \mathbf{C}) \in \Delta \times \mathbb{R}^{sN}} \sum_{i=1}^{N} \left\{ \int_{\Omega} |I(x) - c_i|^2 u_i^p(x) dx + \alpha \int_{\Omega} \int_{y \in \mathcal{N}(x)} (1 - u_i(y))^p |I(y) - c_i|^2 u_i^p(x) dy dx \right\}$$

图像分割经典模型

4, L2FS

$$\min_{(\mathbf{U},\mathbf{C})\in\Delta\times\mathbb{R}^{sN}}\sum_{i=1}^{N}\left\{\int_{\Omega}\|\nabla u_{i}(x)\|\,dx+\lambda\int_{\Omega}|I(x)-c_{i}|^{2}u_{i}(x)\,dx\right\}$$

5, L1SS

$$\min_{u_1, u_2 \in [0, 1], \mathbf{C} \in \mathbb{R}^{sN}} \left\{ \sum_{i=1}^{2} \int_{\Omega} \|\nabla u_i(x)\| \, dx + \lambda \sum_{j=1}^{4} \int_{\Omega} |I(x) - c_j| \, M_j(x) dx \right\}$$

6, L2L0:

$$\min_{u} \|\nabla u\|_{0} + \lambda \|u - I\|_{2}^{2}.$$

三、本文模型及算法

模型

给定图像:

$$I(x) = \sum_{i=1}^{N} c_i u_i(x) + n(x)$$

 C_i : 区域 Ω_i 给定的常值,n(x):噪声或缺失的数据

$$\min_{(\mathbf{U}, \mathbf{C}) \in \Delta \times \mathbb{R}^{sN}} E(\mathbf{U}, \mathbf{C}) = \sum_{i=1}^{N} \left\{ \int_{\Omega} \|\nabla u_i(x)\| \, dx + \lambda \int_{\Omega} |I(x) - c_i| u_i(x) \, dx \right\}$$

$$\Delta_0 := \left\{ (u_1, \dots, u_N) \middle| u_i \in BV(\Omega), u_i(x) \in \{0, 1\}, \sum_{i=1}^N u_i(x) = 1, \forall x \in \Omega \right\}$$

算法

Algorithm 1 The proposed L1FS algorithm

- Initialization: \mathbf{U}^0 and \mathbf{C}^0 are specified, $\Lambda^0_{\mathbf{D}} = \mathbf{0}$, $\Lambda^0_{\mathbf{W}} = \mathbf{0}$.
- For k = 0, 1, 2, ..., repeat until the stopping criterion is reached.

$$\mathbf{D}^{k+1} = \mathcal{S}\left(\nabla \mathbf{U}^{k} + \frac{\Lambda_{\mathbf{D}}^{k}}{r}, \frac{1}{r}\right),$$

$$\mathbf{W}^{k+1} = \Pi_{\Delta}\left(\mathbf{U}^{k} + \frac{\Lambda_{\mathbf{W}}^{k}}{r} - \frac{\lambda|I - \mathbf{C}^{k}|}{r}\right),$$

$$\mathbf{C}^{k+1} = \psi(\mathbf{W}^{k+1}),$$

$$\mathbf{U}^{k+1} = \left(\nabla^{T}\nabla + \mathbf{I}\right)^{-1}\left(\nabla^{T}\mathbf{D}^{k+1} + \mathbf{W}^{k+1} - \frac{\nabla^{T}\Lambda_{\mathbf{D}}^{k}}{r} - \frac{\Lambda_{\mathbf{W}}^{k}}{r}\right),$$

$$\Lambda_{\mathbf{D}}^{k+1} = \Lambda_{\mathbf{D}}^{k} + r\left(\nabla \mathbf{U}^{k+1} - \mathbf{D}^{k+1}\right),$$

$$\Lambda_{\mathbf{W}}^{k+1} = \Lambda_{\mathbf{W}}^{k} + r\left(\mathbf{U}^{k+1} - \mathbf{W}^{k+1}\right).$$

- Output: \mathbf{C}^{k+1} , \mathbf{U}^{k+1} .

四、实验对比

实验对象

a、两相(20/128)灰度图像; b、五相(0/63/127/192/255)灰度图像; c、六相((12 11 242), (242 12 11), (242 241 242), (243 241 12), (12 12), (12 242 12))彩色图像

受到GN噪声影响的图像分割SA值对比

GN (σ)	10	20	30	40	50	60	70	80
FCM	1	0.9970	0.9642	0.9146	0.8627	0.8162	0.7811	0.7524
FLICM	1	0.9999	0.9996	0.9990	0.9975	0.9968	0.9960	0.9954
L2FS	1	1	1	1	1	1	0.9999	0.9998
LISS	1	1	1	0.9998	0.9996	0.9984	0.9975	0.9965
L1FS	1	1	1	1	1	1	1	0.9998

当 $GN噪声中\sigma=30、60时,直观分割结果$

受到SPIN(散粒)噪声影响的图像分割SA值对比

SPIN (%)	10	20	30	40	50	60
FCM	0.9480	0.8983	0.8478	0.7979	0.7486	0.6980
FLICM	0.9984	0.9921	0.9738	0.8002	0.7313	0.6554
L2FS	0.9999	0.9998	0.9982	0.9983	_	_
L1SS	0.9998	0.9990	0.9977	0.9967	0.9956	0.9953
L1FS	1	1	1	1	1	0.9995

当SPIN噪声影响为20%、40%时, 直观分割结果

受到RVIN(脉冲)噪声影响的图像分割SA值对比

RVIN (%)	10	20	30	40	50	60
FCM_S2	0.9985	0.9972	0.9945	0.9862	0.9630	0.9042
FLICM	0.9987	0.9985	0.9970	0.9958	0.9948	0.9919
L2FS	1	1	1	0.9998	0.9995	0.9974
L1SS	1	0.9995	0.9985	0.9979	0.9966	0.9891
L1FS	1	1	1	1	1	0.9976

当RVIN噪声影响为20%、40%时, 直观分割结果

对图像b的实验结果:

受到 GN 噪声影响的图像分割 SA 值对比↔

$GN(\sigma)$	10	20	30	40	50	60	70	80
FCM	0.9987	0.8191	0.6634	0.5849	0.5233	0.4718	0.4319	0.4017
L2FS	1	0.9999	0.9994	0.9978	0.9959	0.9950	0.9931	0.9918
L1FS	1	0.9999	0.9993	0.9980	0.9964	0.9950	0.9931	0.9905

受到 SPIN 噪声影响的图像分割 SA 值对比↔

SPIN (%)	10	20	30	40	50	60	_	-
FCM	0.9202	0.8431	0.7638	0.6847	0.6096	0.5296	_	22
L2FS	0.9926	0.9877	0.9713	0.9673	-	-	-	-
L1FS	0.9977	0.9948	0.9923	0.9894	0.9848	0.9782	-	100

受到 RVIN 噪声影响的图像分割 SA 值对比↔

RVIN (%)	10	20	30	40	-	-	-	-
FCM	0.9922	0.9809	0.96672	0.9248	-		_	5 2 9
L2FS	0.9949	0.9923	0.9880	0.9731	-	-	-	-
LIFS	0.9976	0.9957	0.9922	0.9868	-	- T	. =	-

直观分割结果:

对图像c的实验结果:

受到 GN 噪声影响的图像分割 SA 值对比↩

GN (σ)	10	20	30	40	50	60	*70	80
FCM	1	1	0.9998	0.9958	0.7927	0.7772	0.7488	0.7205
L2FS	1	1	1	1	0.9996	0.9992	0.9989	0.9978
L2L0	1	1	1	0.9999	0.9996	0.9991	0.9983	0.9967
L1FS	1	1	1	1	0.9998	0.9994	0.9985	0.9973

受到 SPIN 噪声影响的图像分割 SA 值对比↩

SPIN (%)	10	20	30	40	50	60	*-	-
FCM	0.8498	0.7294	0.6128	0.5092	0.4248	0.3501	=	-
L2FS	0.9960	0.9925	0.9883	0.9822	0.9772	-	-	-
L2L0	0.9951	0.9880	0.9819	0.9740	0.9401	0.8752	_	_
LIFS	0.9973	0.9937	0.9897	0.9854	0.9810	0.9732		-

受到 RVIN 噪声影响的图像分割 SA 值对比↩

RVIN (%)	10	20	30	40	50	60	-	-
FCM	0.8971	0.7992	0.6967	0.6085	0.5196	0.4294	-	-
L2FS	0.9974	0.9957	0.9899	0.9853	0.9841	0.8988	_	_
L2L0	0.9971	0.9955	0.9906	0.9856	0.9727	0.9488	-	_
L1FS	0.9988	0.9963	0.9939	0.9906	0.9881	0.9777	-	-

直观分割结果:

五、文章创新点

保真项: L1范数能够更好的处理被椒盐、脉冲噪声影响和缺失数据的图像

正则化项:使用模糊隶属函数保证了优化方法的收敛性和稳定性。可行集范围更大,从而使得分割结果更加精确。

求解c子问题时使用了模糊中值的方法,能够更好的处理缺失像素的图像,计算效率更高。

六、与研究课题结合