

Engenharia de Software

Aula 1

Apresentação

Alvaro Leiroz

alvaro.leiroz@univassouras.edu.br

- Pós-graduando em Gestão de Projetos e Negócios em TI pela IFRJ
- Pós-graduado em Análise e Desenvolvimento de Sistemas, e Tecnologias Aplicadas na Educação para Faculdade Descomplica
- Professor Universitário (UniVassouras)
- Analista de Sistemas Gerência de Sistemas FUSVE
- Coordenador da Gameficada

Ementa / Conteúdo Programático

Conceitos de Banco de Dados / Tipos de Banco de Dados / Sistemas de Gerenciamento de Banco de Dados / Projeto de Banco de Dados / Modelo de Entidades e Relacionamentos (MER) / Diagrama de Entidade e Relacionamento (DER) / Normalização de Dados / SQL, conceitos e funcionalidades / Linguagem de definição de dados (DDL)- Data Definition Language / Linguagem de manipulação de dados (DML)- Data Manipulation Language / Linguagem de consultas de Dados (DQL)- Data Query Language / Cláusulas e Operadores que servem como complemento para os comandos da linguagem SQL / Constraints / Consultas Avançadas com Joins e Subqueries / Linguagem de Controle de Dados (DCL)- Data Control Language / Linguagem de Transação de Dados (TCL)- Transaction Control Language

Ementa / Conteúdo Programático

Trabalho para composição da P1 (2,0 pontos)

Avaliação individual Prática P1 (8,0 pontos) – Realizada pela plataforma de Ensino e/ou Prova Fácil

Trabalho para composição da P2 (2,0 pontos)

Avaliação individual Prática P2 (8,0 pontos) – Realizada pela plataforma de Ensino e/ou Prova Fácil

Segunda chamada / Exame Final / Segunda época (10,0 pontos) – Realização de uma única Avaliação individual Prática – Realizada pela plataforma de Ensino e/ou Prova Fácil

BORA INICIAR?

ENTENDENDO OS DADOS

• O ser humano sempre desejou registrar acontecimentos de sua vida.

ENTENDENDO OS DADOS

ENTENDENDO OS DADOS

Contabilidade em tabuletas de argila na Mesopotâmia por volta de 4.000 a.C

ENTENDENDO OS DADOS

• Surgimento dos sistemas de Numeração.

I, II, III, IV, V... X... L... C... M (romanos)

1, 2, 3, 4, 5... 10... 50... 100... 1000 (arábicos)

ENTENDENDO OS DADOS

• Escambo e a manutenção de registros.

ENTENDENDO OS DADOS

- Calendários, censo, medidas de terras;
- Estoques, salários, produção;
- Grandes Navegações e a contabilidade (Séc. XIV);
- Prensa, Comércio, Balanço (Séc. XV a XVII)

ENTÃO, O QUE SÃO DADOS?

ENTÃO, O QUE SÃO DADOS?

Os dados sempre existiram como uma forma de registrar e transmitir informações. Desde as escrituras nas pedras até os livros e registros em papel, a necessidade de armazenar dados tem sido crucial para a evolução da sociedade.

Dados são fatos brutos, valores sem contexto que, quando organizados e processados, geram informação. Eles podem ser estruturados (como tabelas) ou não estruturados (como imagens e áudio).

IMPORTÂNCIA

Tomada de Decisão: Dados são essenciais para a tomada de decisões informadas.

Inovação: Dados impulsionam a inovação em diversas áreas, como saúde, educação, negócios, etc.

Personalização: Dados permitem a personalização de serviços e produtos.

- Valem mais que os equipamentos;
- Permitem obter vantagens competitivas;
- Precisam ser acompanhados;
- Devem estar protegidos;

INFORMAÇÃO

Fato útil que pode ser extraído diretamente ou indiretamente a partir dos dados.

Conjunto de dados organizados e contextualizados para tomada de decisão.

DADOS X INFORMAÇÃO

Dados: Elementos brutos que não possuem significado próprio.

Informação: Dados que foram organizados e processados para terem significado.

DADO

"25", "João", "Rua A".

INFORMAÇÃO

"João tem 25 anos e mora na Rua A."

Entrada (dados) >> Processamento (análise dos dados) >> Saída (informação)

DISPOSITIVOS DE CÁLCULO

DISPOSITIVOS DE CÁLCULO

ARMAZENAMENTO DE DADOS

ARMAZENAMENTO DE DADOS

Discos ópticos removíveis;

AMBIENTES BANCO DE DADOS

- O papel sempre foi o meio mais usado para armazenar dados.
- Grandes volumes são difíceis de manter e manusear.
- Muito tempo para recuperar a informação desejada.

 Arquivos em papel passaram ao meio eletrônico. CODIGOALUND NOME SOBRENOME TRATAMENTO NOMETRATAMENTO NOMEPAI

ERA ANTES BANCO DE DADOS

Sistemas de Arquivos: Dados eram armazenados em arquivos físicos ou digitais, sem relacionamento entre eles.

Problemas: Redundância, inconsistência, dificuldade de acesso e manipulação.

Necessidade de um Sistema de Gerenciamento

Complexidade: Com o aumento do volume de dados, surgiu a necessidade de um sistema para gerenciá-los eficientemente.

Segurança: Proteção dos dados contra acesso não autorizado.

APLICAÇÕES BANCO DE DADOS

- Bancos
- Linhas Aéreas
- Universidades
- Telecomunicações
- Finanças
- Vendas
- Serviços On-Line
- Outros

BANCO DE DADOS

Década de 1960: Surgimento dos primeiros modelos banco de dados hierárquicos e de redes

BANCO DE DADOS

Modelo de Dados Hierárquicos

Primeiro modelo de dados a ser reconhecido. Usa uma estrutura de árvores onde cada registo é considerado uma coleção de campos ou atributos.

Modelo de Dados Relacional

Sucessor do modelo Hierárquico. Baseia-se no conceito de Entidades e Relacionamentos.

Melhorias nos SGBD's

Os Sistemas
Gerenciadores de
Banco de Dados
começam a ser
melhorados devido a
grande aceitação dos
usuários.

Modelo de Dados NoSQL

Surgem as primeiras alternativas aos modelos relacionais baseados em documentos, chavevalor ou famílias de colunas.

Modelo de Dados NoSQL

As bases de dados NoSQL começam a ser reconhecidas devido ao alto poder de performance e escalabilidade.

IMPORTÂNCIA

Eficiência: Armazenamento e recuperação eficiente de dados.

Integridade: Manutenção da consistência e precisão dos dados.

Segurança: Controle de acesso e proteção dos dados.

Facilitação da manipulação e análise de grandes volumes de dados.

CONCEITOS

Banco de Dados: Os bancos de dados são usados para armazenar e organizar dados, de modo que seja mais fácil gerenciá-los e acessá-los.

Sistema de Gerenciamento de Banco de Dados (SGBD): Software que facilita a interação com o banco de dados.

TIPOS

Relacional: Armazena dados em tabelas relacionadas.

NoSQL: Armazena dados em formatos não tabulares, como documentos, grafos, etc.

Orientado a Objetos: Armazena dados como objetos.

BANCO DE DADOS RELACIONAL X NOSQL

Característica	Banco de Dados Relacional	NoSQL
Modelo	Tabelas e	Documentos, Grafos,
	Relacionamentos	Chave-Valor
Estrutura	Estruturada	Flexível
Linguagem	SQL	Diversas
Escalabilidade	Vertical	Horizontal
Uso	Transações	Big Data, alta
	estruturadas	disponibilidade

BANCO DE DADOS RELACIONAL

1970: Edgar Frank Codd artigo Relational Model of Data for Large Shared Data Banks ou Modelo Relacional de Dados para Grandes Bancos de Dados Compartilhados.

1976: Dr. Peter Chen propõe o modelo Entidade-Relacionamento (ER) para projetos de banco de dados dando uma nova e importante percepção dos conceitos de modelos de dados.

1980: Surgimento dos primeiros SGBDs relacionais.

1990: Popularização do SQL como linguagem padrão para bancos de dados relacionais.

O QUE É BANCO DE DADOS RELACIONAL

Um banco de dados relacional é um conjunto de informações que organiza dados em relações predefinidas, em que os dados são armazenados em uma ou mais tabelas (ou "relações") de colunas e linhas, facilitando a visualização e a compreensão de como diferentes estruturas de dados se relacionam. Os relacionamentos são uma conexão lógica entre diferentes tabelas, que se estabelecem com base na interação entre elas.

O QUE É BANCO DE DADOS RELACIONAL

IMPORTÂNCIA BANCO DE DADOS RELACIONAL

Integridade Referencial: Garante a consistência dos dados entre tabelas relacionadas.

Flexibilidade: Permite consultas complexas e relatórios detalhados.

Segurança: Controle de acesso e permissões granulares.

Estrutura bem definida.

Uso de SQL para manipulação e consulta de dados.

TIPOS BANCO DE DADOS RELACIONAL

Oracle: Um dos mais populares e robustos.

MySQL: Amplamente usado em aplicações web.

PostgreSQL: Conhecido por sua extensibilidade e conformidade com padrões.

SQL Server: Desenvolvido pela Microsoft, popular em ambientes Windows.

CONCEITOS BANCO DE DADOS RELACIONAL

Modelagem de dados: Modelo ER e diagrama ER, identificação entidades, atributos e relacionamentos

Normalização de dados: Processo de organização de dados para reduzir redundância e inconsistência.

Sistemas de Gerenciamento de Banco de Dados (SGBD)

SQL (Structured Query Language): Linguagem para manipulação de dados.

- 1.O que são dados?
- 2.O que são informações?
- 3. Qual a diferença entre dado e informação?
- 4. Qual a importância dos dados na tomada de decisão?
- 5. Como os dados eram armazenados antes dos bancos de dados?
- 6. Qual significado de Banco de Dados?
- 7. Qual a diferença entre um banco de dados relacional e um banco de dados NoSQL?
- 8. Cite dois exemplos de bancos de dados relacionais.
- 9. Qual a importância dos bancos de dados relacionais?
- 10. Demonstre como é a estrutura de uma tabela do banco de dados relacional.

MODELAGEM DE DADOS

A modelagem de dados é o processo de **criar uma representação abstrata e estruturada dos dados** de um sistema ou organização, com o objetivo de definir como os dados serão armazenados, organizados, acessados e gerenciados. Ela envolve a identificação das entidades (objetos ou conceitos), seus atributos (características) e os relacionamentos entre eles.

OBJETIVOS MODELAGEM DE DADOS

- 1. Organizar os dados de forma lógica e estruturada
- 2. Garantir a integridade dos dados
- 3. Facilitar o acesso e a manipulação dos dados
- 4. Atender às necessidades do negócio
- 5. Reduzir redundâncias e inconsistências
- 6. Suportar a escalabilidade e manutenção
- 7. Melhorar a tomada de decisões
- 8. Documentar a estrutura dos dados

MODELOS DE BANCO DE DADOS

- Modelo de banco de dados é uma descrição dos tipos de informações que estão armazenadas em um banco de dados.
- Por exemplo, pode informar que o banco armazena informações sobre produtos e que, para cada produto, são armazenados seu código, preço e descrição.
- O modelo não informa QUAIS produtos estão armazenados, apenas que tipo de informações contém.

MODELOS DE BANCO DE DADOS

- Para construir um modelo de dados, usa-se uma linguagem de modelagem de dados.
- Existem linguagens textuais e linguagens gráficas.
- É possível descrever os modelos em diferentes níveis de abstração e com diferentes objetivos.
- Cada descrição recebe o nome de esquema de banco de dados.

MODELOS DE BANCO DE DADOS

Representação visual dos conceitos do banco de dados, criada para maior clareza e entendimento dos requisitos do sistema.

É aqui que representamos de forma gráfica as entidades, atributos e relacionamentos.

Modelo Lógico

Modelo de Dados que representa a estrutura de dados de um banco de dados conforme vista pelo usuário do SGBD.

Neste ponto, representamos entidades, atributos e relações em estruturas de tabelas.

Modelo Físico

Usado para projetar o esquema interno do banco de dados, descrevendo as tabelas, suas colunas e os relacionamentos entre elas.

Sua implementação acontece por meio da linguagem SQL, específica para criação de bancos de dados.

MER – MODELO ENTIDADE-RELACIONAMENTO

O Modelo Entidade-Relacionamento (MER) é uma abordagem para modelar dados de um sistema antes de implementá-los em um banco de dados. Ele permite visualizar a estrutura dos dados e seus relacionamentos, ajudando a evitar redundâncias e garantindo a integridade das informações.

Elementos do MER:

Entidade: Representa um objeto do mundo real, como Cliente, Pedido, Produto.

Atributos: Características de uma entidade, como nome, endereço ou preço.

Chave Primária: Identificador único da entidade (exemplo: CPF de um cliente).

Relacionamento: Define como as entidades se conectam (exemplo: um cliente pode fazer vários pedidos).

Cardinalidade: Indica a quantidade de ocorrências que uma entidade pode ter em um relacionamento (1:1, 1:N, N:M).

MER – MODELO ENTIDADE-RELACIONAMENTO

MODELO CONCEITUAL

Modelo Conceitual

Representamos "pessoa" através de um modelo conceitual, que identifica de forma objetiva os atributos daquele elemento "pessoa".

O atributo CPF é o que diferencia cada pessoa, e é conhecido como **atributo identificador**. Quando criamos qualquer modelo, é importante que a gente consiga, de alguma forma, fazer essa diferenciação.

Neste momento, ainda não estamos preocupados com o SGBD que será utilizado. Nossa preocupação é apenas representar, por meio de diagramas, cada entidade do negócio e quais atributos estão associados a ela.

MODELO LÓGICO

Modelo Lógico

Neste momento, traduzimos o diagrama conceitual em tabelas que vão armazenar as informações das entidades e seus respectivos atributos.

Cada linha (registro/tupla) da tabela corresponde a uma ocorrência de "pessoa". Importante reforçar que nenhuma linha dessa tabela, ou seja, nenhuma pessoa dessa tabela, pode se repetir. Por mais que uma pessoa tenha o mesmo nome, elas não podem ter um mesmo CPF. Isso significa que a coluna CPF identifica de forma única cada pessoa. Representamos a coluna identificadora com um sublinhado.

MODELO FÍSICO

PLANEJAMENTO DE DADOS E PROJETOS BD

ATIVIDADE

- 1. Uma biblioteca deseja informatizar seu sistema de empréstimos. Cada **livro** possui um **código único**, um **título** e um **autor**. Os **usuários** cadastrados na biblioteca possuem um **ID de usuário**, um **nome** e um **e-mail**. Um usuário pode pegar vários livros emprestados, e um livro pode ser emprestado para diferentes usuários ao longo do tempo. Para cada **empréstimo**, é registrado um **ID de empréstimo**, a **data de retirada** e a **data de devolução**.
- 2. Um hotel deseja criar um banco de dados para gerenciar suas reservas. O hotel possui quartos, cada um identificado por um número único e contendo um tipo (solteiro, duplo, suíte) e um valor por diária. Os hóspedes são identificados por um CPF, e possuem um nome e um telefone. Cada reserva é identificada por um ID de reserva e armazena a data de check-in e check-out. Cada reserva está associada a um hóspede e um ou mais quartos.
- 3. Uma escola quer informatizar seu controle de matrículas. A escola oferece cursos, e cada curso tem um código único, um nome e uma carga horária. Os alunos são cadastrados com um ID de matrícula, um nome e uma data de nascimento. Cada aluno pode se matricular em vários cursos, e cada curso pode ter vários alunos matriculados. Cada matrícula é identificada por um ID de matrícula, e registra a data da matrícula.