Part I Syllabus

Lecture	Date	Subject
1	10/08/2016	Introduction
2	10/08/2016	Layered network architecture & Physical resilience
3	17/08/2016	Data link layer – flow control
4	17/08/2016	Data link layer – error control
5	24/08/2016	Data link layer – HDLC
6	24/08/2016	Local area network – introduction
7	31/08/2016	Local area network – MAC
8	31/08/2016	Local area network – Ethernet
9	07/09/2016	Local area network – WLAN
10	07/09/2016	Packet switch network - Introduction
11	14/09/2016	Packet switch network – queue analysis
12	14/09/2016	Review and examples

Lost in Translation

CE3005/CPE302 Computer Networks

Lecture 4 High-Level Data Link Control (HDLC)

Contents

High-Level Data Link Control (HDLC)

- Features and functions
- Station Type
- Channel Configuration
- Frame Format
- HDLC Operations: frame flow
- Bit stuffing
- Overview of Data Link Layer
 - Summary table

Data Link Control Protocols

- Advance Data Communication Control Procedures (ADCCP):
 - ANSI X3.66 adopted by the US National Bureau of Standards (FIPS PUB 71-1)
- Link access procedure balanced (LAP-B)
 - Adopted by CCITT, a part of x.25
- Synchronous data link control (SDLC): IBM
- Point-to-Point Protocol (PPP)
 - RFC 1661
- High level data link control (HDLC):
 - ISO-33009/ISO-4335, most widely used

HDLC Features

Reliable protocol

Selective Repeat or Go-Back-N

Full-duplex communication

- Receive and transmit at the same time

Bit-oriented protocol

Use bits to stuff flags occurring in data

Flow control

Adjust window size based on receiver capability

Synchronization

 physical layer clocking and synchronization to send and receive frames

HDLC Overview

Defines three types of stations

- Primary
- Secondary
- Combined

Defines three types of data transfer mode

- Normal Response mode
- Asynchronous Response mode
- Asynchronous Balanced mode

Three types of frames

- Unnumbered
- Information
- Supervisory

HDLC: Three Types of Stations

Primary station

- Has the responsibility of controlling the operation of data flow the link.
- Handles error recovery
- Frames issued by primary station called commands.

Secondary station

- Operates under the control of the primary station.
- Frames issued by a secondary station are called responses.
- The primary station maintains a separate logical link with each secondary station.

Combined station

- Acts as both as primary and secondary station.
- Does not rely on other for sending data

HDLC: Channel Configuration

Unbalanced Configuration

- Used with one primary and one or more secondary stations.
- Supports full duplex and half duplex operation.
- Symmetrical (hardly used in practice)
 - Essentially, two logical stations + unbalanced channels.
- Balanced Configuration
 - Communication between two combined stations.
 - Mostly with full duplex point-to-point channels.
 - The most commonly used one in practice.

HDLC: Channel Configuration

Unbalanced (point-to-multipoint)

Unbalanced (point-to-point)

Symmetrical

Balanced

HDLC: Modes for Data Transfer

Normal Response Mode (NRM)

- Mainly used in terminal-mainframe networks.
- Secondaries can only transmit when specifically instructed by the primary station in response to a polling
- Unbalanced configuration, good for multi-point links

Asynchronous Response Mode (ARM)

- Same as NRM except that the secondaries can initiate transmissions without direct polling from the primary
- Reduces overhead as no frames need to be sent to allow secondary nodes to transmit
- Transmission proceeds when channel is detected idle, used mostly in point-to-point-links

Asynchronous Balanced Mode (ABM)

Mainly used in point-to-point links, for communication between combined stations

HDLC: Modes of Data Transfer

HDLC: Frame Format

- Assumes synchronous transmission.
- Frames are enclosed by flags (011111110)
- There are three types of frames:
 - Information Frames: used to transfer data.
 N(S) carries the frame number (seq. #)
 N(R) provides the acknowledgement (with seq. #)
 - Supervisory Frames: used for positive and negative acknowledgements.
 - Unnumbered Frames: are used for link connection management, e.g. setting up the connection and protocol parameters.

HDLC: Frame Format

SC = Supervisory Code (2 bits)

UN = Unnumbered Code (5 bits)

N(S) = Send Sequence Number

N(R) = Receive Sequence Number

Poll/Final Bit

- Use depends on context
- Command frame
 - P bit : used for poll from primary
 - 1 to solicit (poll) response from peer
- Response frame
 - F bit : used for response from secondary
 - 1 indicates response to soliciting command

HDLC: I-frame

 Contains the sequence number of transmitted frames and a piggybacked ACK

> 1 2 3 4 5 6 7 8 0 N(S) P/F N(R)

HDLC: S-frame

Used for flow and error control

- •RR (00) --- receive ready
- •RNR (01) --- receive not ready
- •REJ (10) --- reject on frame N(R)
- •SREJ (11) --- selective reject on N(R)

HDLC: Supervisory Frames (SC)

- RR: Receive Ready (SC=00):
 - Station sends a RR frame to indicate it is ready to receive data.
 - Also used to acknowledge received frames.
- REJ: Reject (SC=01):
 - Used to provide negative acknowledgement in go-back-n ARQ.
- RNR: Receive Not Ready (SC=10):
 - To pause the flow of information frames.
- SREJ: Selective Reject (SC=11):
 - Used to provide negative acknowledgement in selective reject ARQ.

HDLC: U-frame

Mode setting, recovery, connect/disconnect

HDLC: Unnumbered Frames (UN)

- SARM: Set Asynch. Balanced Mode (11000)
 - To establish an ARM connection
- UA: Unnumbered ACK (00110)
 - To acknowledge a received command
- DISC: Disconnect (00010)
 - To terminate a connection
- SARME: Set ABM Extended (11110)
 - To establish an extended ARM connection (use 16-bit control field)
- More on textbook

HDCL: Address Field

- Each station has unique address.
- In unbalanced configuration, the address is always of the secondary station.
- In balanced configuration, the address is:
 - If it is a command (i.e., poll bit is set in the frame), then the address is of the destination station.
 - If it is a response (i.e., final bit is set in the frame), the address identifies the sending station.
 - If the P/F bit is not set, the address identifies destination station.
- More to be covered in LAN

HDLC: Information Field

- Only in information and some unnumbered frames
- Must contain integral number of octets
- Variable length

Frame Check Sequence Field

FCS

- Error detection
- 16 bit CRC
- Optional 32 bit CRC

HDLC Operations

Objective

Exchange of information,
 supervisory and
 unnumbered frames

Three phases

- Initialization
- Data transfer
- Disconnect

(a) Connection establishment and termination

HDLC Operations: Example

Additional Examples

HDLC: Bit Stuffing

- What happens if the data/control fields contains flag sequence, i.e., 01111110?
- Bit stuffing is used to avoid confusion.
 - 0 is inserted at the sending end after every sequence of five 1s.
 - If receiver detects five 1s it checks next bit.
 - → If 0, it is deleted.
 - → If 1 and seventh bit is 0, accept as flag.

Bit Stuffing in HDLC: Examples

Example-1: More than five consecutive 1's

Example-2: Five consecutive 1's

Example:

HDLC Derivatives

- Many modern data link protocols follow HDLC standard, including:
 - LAPB (Link Access Procedure-Balanced) used in X.25
 - LAPF-Core (LAP for Frame Mode Bearer Services)
 used in Frame Relay
 - PPP (Point-to-point Protocol, RFC 1661-1663) used in the Internet
 - LLC (Logical Link Control) used in LANs (Local Area Networks)

Overview of Data Link Layer

		Protocol Description	Link Utilization: Percentage of the time during which the link transmits useful information.	Bits for SN	Max Windo w Size	SN Range	Note
Flow Control	Stop-and- Wait	Source transmits frame Destination receives frame and replies with ACK Source waits for ACK before sending next frame Destination can stop flow by not sending ACK	$U = \frac{1}{1 + 2a}$	1	W = 1		$a = \frac{T_{prop}}{T_{frame}}$ $T_{prop} = \frac{Distance}{c}$ $T_{frame} = \frac{Length}{Bit\ Rate}$
	Sliding Window	Sender can send up to W frames without receiving ACK ACK includes number of next frame expected	$U = \begin{cases} 1, & W \ge 1 + 2a \\ \frac{W}{1 + 2a}, & W < 1 + 2a \end{cases}$	k	2 ^k	$[0, 2^k - 1]$	Note: • convert bytes to bits
ARQ	Stop-and- Wait	Destination sends an ACK if frame received correctly Source transmits next frame if ACK is received; otherwise, if no ACK is received within timeout, resource retransmits the frame	$U = \frac{1 - P}{1 + 2a}$	1	1		in calculation • unify all the units in calculation $U = \frac{T_{frame}}{T_{cycle}}$ $U = \frac{r}{R}$ Note: • U is normalized throughput • R is transmission rate
	Go-Back-N	Source transmits frames sequentially based on sliding window Destination sends ACK normally for errorfree frames; otherwise, it sends NAK Source retransmits that frame with all subsequent frames if NAK is received	$U = \begin{cases} \frac{1 - P}{1 + 2aP}, & W \ge 1 + 2a\\ \frac{W(1 - P)}{(1 + 2a)(1 - P + WP)}, & W < 1 + 2a \end{cases}$	k	$2^{k} - 1$	$[0, 2^k - 1]$	
	Selective- Reject	Receiver informs transmitter of rejected frame n by sending 'SREJ n' After receiving an erroneous frame, subsequent frames are accepted by receiver and buffered	$U = \begin{cases} 1 - P, & W \ge 1 + 2a \\ \frac{W(1 - P)}{(1 + 2a)}, & W < 1 + 2a \end{cases}$	k	2 ^{k-1}	$[0, 2^k - 1]$	• r is throughput

Learning Objectives

HDLC

- HDLC Overview
- Framework format: different fields
- SN/RN labeling in HDLC over noisy channel

DLL Overview

- Flow Control
- Error Control
- HDLC Operations

