

Machine learning

Introduction

Mohammad-Reza A. Dehaqani

dehaqani@ut.ac.ir

Prerequisites

- Probability
 - Random Variables, Expectations, Distributions
- Statistical inference
 - Estimation Theory
 - Hypothesis Testing
- Linear Algebra & Multivariate/Matrix Calculus
 - Eigenvalue/vector
- Optimization
 - Gradient descent and Newton–Raphson algorithm
 - Lagrange multiplier
- Basic computer science principles
 - Complexity of algorithm
 - Comfortably write non-trivial code in Python/numpy

Meet the team

- Instructor:
 - Babak Nadjar Aarabi
 - Mohammadreza A. Dehaqani

- Head TAs:
 - Zahra Ebrahimian
 - Alireza hosseini

A. Dehagani, UT

Hands On

- Active participation rather than theory
- Providing direct practical experience of course materials on real-world data

Homework (~7 score)

- Approximately 5 homework assignments
- Homework includes:
 - Analytical questions
 - Computing exercises (using Python)
- Each homework assignment can have up to 10 extra points
- Delay Penalty:
 - Hard Delay Policy: 5% penalty per day
 - Soft Delay Policy: Up to 50%
- You can use just Python(Anaconda Jupyter Notebook)

Collaboration

You can discuss homework problems with your classmates, but you must submit your own individual homework write-up, in your own words and using your own code for the programming exercises. Please indicate at the top of your write-up the names of the students with whom you worked

Final Project (~4 score)

- Give you a chance to exercise what you learned in the course in some real-world problem and data.
- Students get involved in
 - Data Gathering
 - Problem Solving
 - Implementation
 - Documentation
- Competition on optional project (max 1 score)

Deadlines

- All deadlines Would be handled by your chief TA
 - Z.ebrahimian@ut.ac.ir
 - arhosseini77@ut.ac.ir

Exams

- Midterm (~4 score)
- Final (~5 score)

Course Preview

Lecture 6: Neural Network

- Neural networks (basic concepts)
- Neural networks (Learning)
- Convolutional Neural Networks

Lecture 7: Tree-Based Methods

- Decision Tree
- Ensemble learning
- Bagging and Boosting

Lecture 8: Support Vector Machines:

- SVM (hard, soft)
- SVM (dual problem)

Lecture 9: Unsupervised Learning

- Clustering:
- Dimensionality Reduction Methods
 - PCA
 - LDA

A. Dehaqani, UT

Course Preview

Lecture 10: Model and Feature Selection

Lecture 11: Reinforcement Learning

- MDPs & Value Functions
- Value & Policy Iteration
- Q-learning & Deep RL

Lecture 12: weakly supervised Learning (extra session)

- Self-Supervised Learning
- Semi-Supervised Learning
- Active Learning
- Contrastive learning

A. Dehaqani, UT

Data driven machine learning

Machine Learning Algorithms and Principles

- Classification: Naïve Bayes, Logistic Regression, Neural Networks,
- Support Vector Machines, k-NN, Decision Trees, Boosting
- Regression: Linear regression, Kernel regression, Nonparametric regression
- Unsupervised methods: Kernel density estimation, kmeans and hierarchical clustering, PCA
- Core concepts: Probability, Optimization, Theory, Model selection, overfitting, bias-variance tradeoffs

Pattern Classification

Book by David G. Stork, Peter E. Hart, and Richard O. Duda

Book preview

71/679 pages available

Pattern Recognition and Machine Learning

Book by Christopher Bishop

Machine Learning: A Probabilistic Perspective

Book by Kevin P. Murphy

Book preview 113/1102 pages available

Machine Learning: A multistrategy approach

Book by Tom M. Mitchell

The Elements of Statistical Learning

Book by Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie

Book preview 60/560 pages available

Machine Learning in Action

Computer vision

Machine Learning in Action

Machine Learning in Action

| 0.3s | 0.4s |
| I/shape/squared/compute.way | Daration: 1.14 seconds |
| Speech Recognition

Computer vision

Robotic control

Games & Reasoning

ML is ubiquitous

- Wide applicability
- Software too complex to write by hand
- Improved machine learning algorithms
- Improved data capture, networking, faster computers
- Demand for self-customization to user, environment

- AI: develop intelligent agents
- ML: learn to generalize using data

What is Machine Learning?

- Design and Analysis of algorithms that
 - improve their performance
 - at some task
 - with experience

Example

Task: Learning stage of protein crystallization

Predict the label of the test image?

Performance

Machine Learning Tasks

- Broad categories -
- Supervised learning
 - Classification, Regression
- Unsupervised learning
 - Density estimation, Clustering, Dimensionality reduction
- Graphical models: a probabilistic model for which a graph expresses the conditional dependence structure between random variables
- Semi-supervised learning: combination of a small amount of human-labeled data followed by a large amount of unlabeled data
- Active learning: a learning algorithm can interactively query a human user (or some other information source), to label new data points
- Bayesian optimization
- Reinforcement learning
- Many more ...

Supervised Learning

Market information

10500

Copyright 2010 Yahoo! Inc.

Discrete Labels Classification

Share Price Continuous Labels "\$ 24.50" Regression

Task: Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

 \equiv Construct **prediction rule** $f: \mathcal{X} \rightarrow \mathcal{Y}$

Unsupervised Learning

Aka "learning without a teacher"

Input
$$X \in \mathcal{X}$$

Word distribution (Probability of a word)

Task: Given $X \in \mathcal{X}$, learn f(X).

Unsupervised Learning

Clustering

Learning a Distribution

[Saul & Roweis '03]

Dimensionality Reduction/Embedding

Experience = Training Data

Crystal

Needle

Tree

Tree

Empty

Needle

Experience

Training Data vs. Test Data

Generalization & Overfitting

- A good ML algorithm:
 - should generalize aka perform well on test data
 - should not: overfit the training data

Critical to report test and NOT training data accuracy

HE HE

Understanding model complexity (theory of learning): The bias-variance tradeoff

(a) 0'th order polynomial

(b) 1'st order polynomial

(c) 3'rd order polynomial

(d) 9'th order polynomial

bias—variance tradeoff is the property of a set of predictive models whereby models with a lower bias in parameter estimation have a higher variance of the parameter estimates across samples, and vice versal

Performance Measure

• loss(Y, f(X)) as ure of **closeness** between label Y and prediction f(X) for test data X

Binary Classification

$$loss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$

0/1 loss

Regression

$$loss(Y, f(X)) = (f(X) - Y)^2$$
 squared loss

 We will talk about more performance measures including for unsupervised learning later in course

Signal vs. feature

Core material

- Finding patterns in data; using them to make predictions.
- Models and statistics help us understand patterns.
- Optimization algorithms "learn" the patterns.
- The most important part of this is the data. Data drives everything else.
 - You cannot learn much if you don't have enough data.
- Machine learning has changed a lot in the last decade because the internet has made truly vast quantities of data available.

An Example

"Sorting incoming fish on a conveyor according to species using optical sensing"

Problem Analysis

- Set up a camera (sensors) and take some sample images to extract features
 - Length
 - Lightness
 - Width
 - Number and shape of fins
 - Position of the mouth, etc...

 This is the set of all suggested features to explore for use in our classifier!

Preprocessing to obtain features

- Use a segmentation operation to isolate fishes from one another and from the background
- Information from a single fish is sent to a feature extractor whose purpose is to reduce the data by measuring certain features
- The features are passed to a classifier

Length feature for discrimination

No single **threshold value I*** (**decision boundary**) will serve to unambiguously discriminate between the two categories; **using length alone**, we will have some errors. The value I* marked will lead to the **smallest number of errors**, on average.

Select the lightness as a possible feature

Decision theory;

Threshold decision boundary and cost relationship

Move our **decision boundary** toward smaller values of lightness in order to minimize the **cost** (reduce the number of sea bass that are classified salmon!)

Task of decision theory

Multiple Features

Adopt the lightness and add the width of the fish

A. Deł

Representation of digits

Images are points in 16-dimensional space. Linear decision boundary is a hyperplane

How Many Features?

- Does adding more features always improve performance?
 - It might be difficult and computationally expensive to extract certain features.
 - Correlated features might not improve performance (i.e. redundancy).
 - "Curse" of dimensionality.

Curse of Dimensionality

- Adding too many features can, paradoxically, lead to a worsening of performance.
 - Divide each of the input features into a number of intervals, so that the value of a feature can be specified approximately by saying in which interval it lies.

- If each input feature is divided into **M** divisions, then the total number of cells is **M**^d (*d*: # of features).
- Since each cell must contain at least one point, the number of needed data grows exponentially with d.

Issue of generalization

This **decision boundary** may lead to perfect classification of our **training samples**, it would lead to poor performance on future patterns (overfitting).

the central aim of designing a classifier is to correctly classify novel input

Optimal tradeoff

The decision boundary shown might represent the optimal tradeoff between **performance on the training set** and **simplicity of classifier**.

Generalization

- Generalization is defined as the ability of a classifier to produce correct results on novel patterns.
- How can we improve generalization performance?
 - More training examples (i.e., better model estimates).
 - Simpler models usually yield better performance.

Har Haring

Understanding model complexity (theory of learning): The bias-variance tradeoff

(a) 0'th order polynomial

(b) 1'st order polynomial

(c) 3'rd order polynomial

(d) 9'th order polynomial

bias—variance tradeoff is the property of a set of predictive models whereby models with a lower bias in parameter estimation have a higher variance of the parameter estimates across samples, and vice versal

Underfitting vs. overfitting

- The bias error: (underfitting)
 - From erroneous assumptions in the learning algorithm.
 - High bias can cause an algorithm to miss the relevant relations between features and target outputs.
- The variance error: (overfitting).
 - From sensitivity to small fluctuations in the training set.
 - High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs

- Feat. Gen.: Want to reduce sensitivity to noise and reduce complexity but retain important Information
 - Big sensor information into small number of features
- Feat. Sel.: Want to **reduce complexity** and reduce **redundancy** but retain important information
 - Select small set of features that separates classes
- Classif. Des.: Want small generalization error and fast training and classification (i.e. low complexity)
- Sys. Eval.: Want to accurately estimate classier's generalization error
- Some stages might be combined

Feedback loops

Now we have 3 sets:

- training set used to learn model weights
- validation set used to tune hyperparameters, choose among different models
- **test set** used as FINAL evaluation of model. Keep in a vault. Run ONCE, at the very end.

Data Permitting: Training Validation Testing Training, Validation, Testing

A. Dehaqani

Joseph Nelson @josephofiowa

Classifier examples

nearest neighbor classifier,

linear classifier

15-nearest neighbor classifier,

Hyperparameters

- Most ML algorithms have a few hyperparameters that control over/underfitting, e.g. k in k-nearest neighbors.
- We select them by validation

Cross validation

Holdout methods

- K-Fold Cross Validation
- Leave P-out Cross Validation
- Leave One-out Cross Validation

Post Processing

- Feature extraction
 - Discriminative features
 - Invariant features with respect to translation, rotation and scale.

Classification

 Use a feature vector provided by a feature extractor to assign the object to a category

Post Processing

 Exploit context input dependent information other than from the target pattern itself to improve performance

Feature Choice

Depends on the characteristics of the problem domain.

Simple to extract

Invariant to irrelevant transformation

Insensitive to noise.

Missing Features problem

"Quality" of Features

- How to choose a good set of features?
 - Discriminative features

 Invariant features (e.g., invariant to geometric transformations such as translation, rotation and scale)

Missing Features

- Certain features might be missing (e.g., due to occlusion).
- How should we train the classifier with missing features ?
- How should the classifier make the best decision with missing features ?

Cost of miss-classifications

Fish classification: two possible classification errors:

- (1) Deciding the fish was a sea bass when it was a salmon.
- (2) Deciding the fish was a salmon when it was a sea bass.

• Are both errors equally important?

Cost of miss-classifications

- Suppose that:
 - Customers who buy salmon will object vigorously if they see sea bass in their cans. (false alarm; type I error)
 - Customers who buy sea bass will not be unhappy if they occasionally see some expensive salmon in their cans.
 (missed called; type II error)

• How does this knowledge affect our decision?

Computational Complexity

• What is the trade-off between computational ease (or complexity) and performance?

 (How an algorithm scales as a function of the number of features, patterns or categories?)

Time Complexity of Algorithms

- Big-Theta
 - The function g(n) is $\Theta(f(n))$ iff there exist two real positive constants $c_1 > 0$ and $c_2 > 0$ and a positive integer n_0 such that:

$$c_1 f(n) \ge g(n) \ge c_2 f(n)$$
 for all $n \ge n_0$

- Big-Oh
 - Upper bounds of complexity
- Big-Omega
 - Lower bound $(g(n) \ge cf(n))$ for all $n \ge n_0$

Ascending order of complexity

$$1 \leftarrow \log \log n \leftarrow \log n \leftarrow n \leftarrow n \log n \leftarrow n^{\alpha}; 1 < \alpha < 2 \leftarrow n^{2} \leftarrow n^{3}$$

$$\leftarrow n^{m}; m > 3 \leftarrow 2^{n} \dots$$

Running time T(n)	Complexity O(n)
$n^2 + 100 n + 1$	$O(n^2)$
$0.001n^3 + n^2 + 1$	$O(n^3)$
23 n	O(n)
$100000 \ n^2 + 10000 \ n$	$O(n^2)$
2^{3+n}	$O(2^n)$ as $2^{3+n} = 2^3 \cdot 2^n$
$2\cdot 3^n$	$O(3^n)$