Vector Calculus

Foley & Van Dam, Appendix

Vector Calculus

- Scalars, points and vectors
- Fundamental operations
- Linear combination of vectors
- Dot product
- Cross product
- Vector representation in 3D
- Vector operations in orthonormal basis
- Parametric line representation
- Parametric plane representation

Mathematical Entities

In computer graphics most geometric objects can be defined using three basic entities: *Scalars, Points, and Vectors*

Scalar:

Serves as unit of measurements, such as length or degrees

Point:

Its attributes define a location in space (representation can be Cartesian, polar, cylindrical,...)

Points exist in space regardless of any coordinate system

Mathematical Entities

Vector:

A quantity with direction and magnitude (such as force, velocity, ..)

Vectors exist regardless of any coordinate system A vector does not have a fixed position

Identical vectors

Vector-scalar multiplication:

- A multiplication of scalar α with a vector v gives a vector
- The vectors αv and v have same direction

Point-vector addition:

Subtraction of two points P and Q gives a vector v:

$$v = P - Q$$

Adding a vector v to point Q gives a point P:

$$P = Q + v$$

If Q is located at the origin then P = v

Vector-vector addition:

- Adding two vectors u and v gives a new vector
- The resulting vector follows the head-to-tail rule

Linear Combination of Vectors

A linear combination of m vectors:

$$w = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_m v_m$$

The combination is Affine if the coefficients sum to 1

$$\alpha_1 + \alpha_2 + \cdots + \alpha_m = 1$$

Example:

Linear Combination of Vectors

The combination is *Convex* if the coefficients sum to 1, and are not negative: $\alpha_i \ge 0$, i = 1 ... m

Vector-vector dot product:

Dot product between vector v and vector u gives a scalar:

$$\mathbf{v} \cdot \mathbf{u} = |\mathbf{v}| |\mathbf{u}| \cos \theta$$

- If u and v are orthogonal v · u = 0
- The *magnitude* |v| of a vector can be given using a dot product: $|v| = \sqrt{v \cdot v}$
- The vector $\hat{v} = v / |v|$ is a unit vector having the same direction as v

Vector-vector cross product:

 Cross product between vector v and vector u gives a vector:

$$v \times u = \hat{n} |v| |u| \sin \theta$$

- n is a unit vector perpendicular to both u and v whose direction follows the right-hand rule
- If u and v are parallel v x u = 0

Vector Representation in 3D

Given 3 linearly independent vectors in 3D: v_1 , v_2 , and v_3 , we can represent any vector v in 3D as a linear sum:

$$V = \alpha_1 V_1 + \alpha_2 V_2 + \alpha_3 V_3$$

The scalars α_1 , α_2 , α_3 are the components of v with respect to the **basis** $[v_1, v_2, v_3]$

We write this as the column matrix: $v = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$

$$v_1$$
 v_2
 v_3

$$\mathbf{v} = \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \\ \mathbf{\alpha}_3 \end{pmatrix}$$

Vector Representation in 3D

- If the vectors v_1 , v_2 , v_3 are mutually orthogonal, i.e. $v_1 \cdot v_2 = v_1 \cdot v_3 = v_2 \cdot v_3 = 0$ and $|v_1| = |v_2| = |v_3| = 1$ the basis $[v_1, v_2, v_3]$ forms an orthonormal basis
- If $v_1 \times v_2 = v_3$ the basis is right-handed

Point Representation in 3D

 To represent a point P in 3D we have to add to the basis $[v_1, v_2, v_3]$ an additional point P_0 , such that:

$$P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$$

- A basis set of vectors and a particular point P₁ define a frame
- The point P₀ is the origin of the frame
 We write this as a column matrix: P = α₂
 α₃

$$P = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

Vector Operations in Orthonormal Basis

Scalar multiplication:

$$\alpha \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} \alpha \beta_1 \\ \alpha \beta_2 \\ \alpha \beta_3 \end{pmatrix}$$

Vector addition:

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 \\ \alpha_2 + \beta_2 \\ \alpha_3 + \beta_3 \end{pmatrix}$$

Dot product:

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \bullet \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}^T \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \alpha_3 \beta_3$$

Vector Operations in Orthonormal Basis

Cross product:

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \times \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} =$$

$$= \begin{pmatrix} \alpha_{2} \beta_{3} - \alpha_{3} \beta_{2} \\ \alpha_{3} \beta_{1} - \alpha_{1} \beta_{3} \\ \alpha_{1} \beta_{2} - \alpha_{2} \beta_{1} \end{pmatrix} = \begin{pmatrix} \hat{v}_{1} & \hat{v}_{2} & \hat{v}_{3} \\ \alpha_{1} & \alpha_{2} & \alpha_{3} \\ \beta_{1} & \beta_{2} & \beta_{3} \end{pmatrix}$$

Parametric Lines

A set of points of the form

$$P(t)=P_0+tv$$

defines a line passing through point P₀ and parallel to vector v

- A line segment from P_0 to P_1 can be defined as $P(t)=P_0+t$ (P_1-P_0), where t=0...1
- Convex sum: The above definition can be rewritten as: $P(t) = (1 t) P_0 + t P_1$

Parametric Planes

- A plane is defined by 3 points P, Q, and R
- The line segment between P and Q is defined by the convex sum:

$$S(\alpha) = (1 - \alpha) P + \alpha Q$$
, $\alpha = 0..1$

• Similarly, the line segment between $S(\alpha)$ and R is:

$$T(\alpha, \beta) = (1 - \beta) S(\alpha) + \beta R, \beta = 0...1$$

• $T(\alpha, \beta)$ defines all the points in the triangle PQR

