Введение в Data Science Занятие 5. Машины Опорных Векторов

Николай Анохин Михаил Фирулик

29 марта 2014 г.

TEXHOCOEPA @mail.ru

План занятия

Идея maximum margin

Функции ядра

Мотивация

Обобщенные линейные модели

Обучающая выборка

$$X = (x_1, \ldots, x_N)$$

Значения целевой переменной

$$t_1, \ldots, t_N; \quad t_j \in \{-1, +1\}$$

Функция принятия решения

$$y(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + b$$

Разделяющая плоскость (РП)

$$y_i(\mathbf{x_i})t_i > 0$$

Решений много: как выбрать?

Максимальный зазор

Margin – наименьшее расстояние между РП и обучающим объектом.

$$d_j = \frac{|y(\mathbf{x}_j)|}{\|\mathbf{w}\|} = \frac{t_j y(\mathbf{x}_j)}{\|\mathbf{w}\|} =$$
$$= \frac{t_j (\mathbf{w}^\top \phi(\mathbf{x}_j) + b)}{\|\mathbf{w}\|}$$

Оптимальная РП

$$\max_{\mathbf{w},b} \left[rac{1}{\|\mathbf{w}\|} \min_{j} t_{j}(\mathbf{w}^{ op}\phi(\mathbf{x}_{j}) + b)
ight]$$

Задача оптимизации

Расстояние от точки x_i до РП

$$d_j = \frac{t_j(\mathbf{w}^\top \phi(\mathbf{x}_j) + b)}{\|\mathbf{w}\|}$$

Для точки x_j , лежащей на минимальном расстоянии от РП положим

$$t_j(\mathbf{w}^{\top}\phi(\mathbf{x}_j)+b)=1$$

Задача оптимизации

$$egin{align*} & rac{1}{2} \|\mathbf{w}\|^2 & o \min_{\mathbf{w}, b} \ \end{aligned}$$
 при условиях $t_j(\mathbf{w}^ op (\mathbf{x}_j) + b) \geq 1, \ \ orall j \in 1, \ldots, N$

Метод множителей Лагранжа $\mathbf{a} = (a_1, \dots, a_N)^\top, \ a_i \geq 0.$

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} a_j [t_j(\mathbf{w}^{\top} \phi(\mathbf{x}_j) + b) - 1]$$

Дифференцируем по \mathbf{w} и b

$$\mathbf{w} = \sum_{j=1}^{N} a_j t_j \phi(\mathbf{x}_j), \quad 0 = \sum_{j=1}^{N} a_j t_j$$

Подставляем w и b в лагранжиан

Сопряженная задача

Сорпяженная задача

$$ilde{L}(\mathbf{a}) = \sum_{j=1}^N a_j - rac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j t_i t_j \phi(\mathbf{x}_i)^ op \phi(\mathbf{x}_j) op \max_{\mathbf{a}}$$
 при условиях $a_j \geq 0, \ \ orall j \in 1, \dots, N$ $\sum_{i=1}^N a_j t_j = 0$

Наблюдения

- $lacktriangledown k(x_i,x_j) = \phi(\mathbf{x}_i)^ op \phi(\mathbf{x}_j)$ неотрицательно-определенная функция
- lacktriangle лагранжиан $ilde{L}(\mathbf{a})$ выпуклая и ограниченная сверху функция

Классификация

Функция принятия решения

$$y(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + b = \sum_{j=1}^{N} a_j t_j \phi(\mathbf{x}_j)^{\top} \phi(\mathbf{x}) + b = \sum_{j=1}^{N} a_j t_j k(\mathbf{x}_j, \mathbf{x}) + b$$

Условия Karush-Kuhn-Tucker

$$a_j \geq 0$$

$$t_j y(\mathbf{x_j}) - 1 \geq 0$$

$$a_j \{ t_j y(\mathbf{x_j}) - 1 \} = 0$$

Опорным векторам х $_{j} \in S$ соответствуют $a_{j} > 0$

$$b = \frac{1}{N_s} \sum_{i \in S} \left(t_i - \sum_{j \in S} a_j t_j k(\mathbf{x_i}, \mathbf{x_j}) \right)$$

Линейно-разделимый случай

Задача

Дана обучающая выборка

$$\begin{array}{c|ccccc} & x_1 & x_2 & t \\ \hline x_1 & 1 & -2 & 1 \\ x_2 & 1 & 2 & -1 \end{array}$$

Найти оптимальную разделяющую плоскость, используя сопряженную задачу оптимизации

Линейно-неразделимый случай

Смягчение ограничений

Переменные $\xi_j \geq 0$ (slacks):

$$\xi_j = egin{cases} 0, & ext{если } y(\mathbf{x_j})t_j \geq 1 \ |t_j - y(\mathbf{x}_j)|, & ext{иначе} \end{cases}$$

Задача оптимизации

$$C\sum_{i=1}^{N}\xi_{j}+\frac{1}{2}\|\mathbf{w}\|^{2}\rightarrow\min_{\mathbf{w},b}$$

Сопряженная задача

Сорпяженная задача

$$ilde{L}(\mathbf{a}) = \sum_{j=1}^{N} a_j - rac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j t_i t_j \phi(\mathbf{x}_i)^ op \phi(\mathbf{x}_j) op \max_{\mathbf{a}}$$
 при условиях $0 \leq a_j \leq C, \ \ orall j \in 1, \ldots, N$

$$\sum_{j=1}^{N} a_j t_j = 0$$

Наблюдения

- $ightharpoonup a_j = 0$ правильно проклассифицированные объекты
- $ightharpoonup a_j = C$ опорные векторы внутри отступа
- $ightharpoonup 0 < a_i < C$ опорные векторы на границе

Классификация

Функция принятия решения

$$y(\mathbf{x}) = \sum_{j=1}^{N} a_j t_j k(\mathbf{x}_j, \mathbf{x}) + b$$

Константа b

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{i \in \mathcal{M}} \left(t_i - \sum_{j \in \mathcal{S}} a_j t_j k(\mathbf{x_i}, \mathbf{x_j}) \right)$$

Связь с линейными моделями

Задача оптимизации

$$\sum_{j=1}^{N} \xi_j + \frac{1}{2} ||w||^2 \sim \sum_{j=1}^{N} E(y(\mathbf{x}_j), t_j) + \lambda ||w||^2 \to \min_{\mathbf{w}, b}$$

Hinge loss

Численные методы оптимизации

- ► Chunking (Vapnik, 1982)
- ▶ Decomposition (Osuna, 1996)
- Sequential Minimal Optimization (Platt, 1999)

Задача регрессии

Переменные $\xi_i \geq 0$, $\hat{\xi_i} \geq 0$ (slacks):

$$t_i \leq y(\mathbf{x}_i) + \epsilon + \xi_n$$

$$t_i \geq y(\mathbf{x}_i) - \epsilon - \hat{\xi}_n$$

Задача оптимизации

$$C\sum_{i=1}^{N}(\hat{\xi}_{j}+\xi_{j})+\frac{1}{2}\|\mathbf{w}\|^{2}\to\min_{\mathbf{w},b}$$

Функции ядра

 $\phi({\bf x})$ — функция преобразования ${\bf x}$ из исходного пространства в спрямляющее пространство

Проблема: количество признаков может быть очень велико

Идея Kernel Trick

В процессе тренировки и применения SVM исходные векторы \mathbf{x} используются только как аргументы в скалярном произведении $k(\mathbf{x}_i,\mathbf{x}_j)=\phi(\mathbf{x}_i)^\top\phi(\mathbf{x}_j)$. Но в этом случае можно избежать вычисления $\varphi(\mathbf{x})!$

Теорема Мерсера

Теорема

Функция $k(\mathbf{x}, \mathbf{z})$ является ядром тогда и только тогда, когда она

симметрична

$$k(\mathbf{x}, \mathbf{z}) = k(\mathbf{z}, \mathbf{x})$$

неотрицательно определена

$$\int_{\mathbf{x} \in \mathbf{X}} \int_{\mathbf{z} \in \mathbf{X}} k(\mathbf{x}, \mathbf{z}) g(\mathbf{x}) g(\mathbf{z}) d\mathbf{x} d\mathbf{z}, \ \forall g(\mathbf{x}) : \mathbf{X} \to R$$

Задача

Пусть $\mathbf{x} \in R^2$, а преобразование $\phi(\mathbf{x})$

$$\phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2).$$

Проверить, что функция $k(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x}^{\top} \mathbf{z})^2$ является функцией ядра для данного преобразования.

Некоторые стандартные функции ядра

Линейное ядро

$$k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$$

▶ Полиномиальное ядро степени d

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z} + r)^d$$

Radial Basis Function

$$k(\mathbf{x}, \mathbf{z}) = e^{-\gamma |\mathbf{x} - \mathbf{z}|^2}$$

Sigmoid

$$k(\mathbf{x}, \mathbf{z}) = \tanh(\gamma \mathbf{x}^{\top} \mathbf{z} + r)$$

Опять ирисы

SVM. Итоги

- + Нелинейная разделяющая поверхность
- + Глобальая оптимизация
- + Разреженное решение
- + Хорошая обобщающая способность
 - Не поддерживает $p(C_k|\mathbf{x})$
 - Чувствительность к выбросам
 - Нет алгоритма выбора ядра
 - Медленное обучение

Эксперименты над SVM

В задаче рассматриваются 4 алгоритма генерации обучающих выборок. Требуется разработать функцию, автоматически подбирающую параметры модели SVM в зависимости от полученной выборки.

Инструкция по выполнению задания

- 1. Выкачать в локальный репо код из ветки svm
- 2. Запустить хелп, при желании изучить

```
$ python svm.py -h
$ python svm.py cc -h
```

3. Запустить какой-нибудь пример, разобраться с картинкой

```
$ python svm.py gauss
```

4. Работать над кодом (функция select_model)

Домашнее задание 4

Машина опорных векторов

Использовать готовую имплементацию

- ▶ алгоритма SVM для задачи классификации
- ▶ алгоритма SVM для задачи регрессии

Ключевые даты

До 2014/04/05 00.00 предоставить решение задания

Спасибо!

Обратная связь