Boundary effects in kernel regression

Xingyu Tao, Xuan Li, Sven Jacobs

January 19, 2022

Research Module in Econometrics & Statistics

- 1. Introduction
- 2. Local linear regression
- 3. Boundary kernels
- 4. Simulation
- 5. Application
- 6. Conclusion

Introduction

Kernel regression

Setting

- iid data: $\{(X_i, Y_i)\}_{i=1,...,n}$
- Random design: $X \sim f_X, X_i \in [a, b] \subset \mathbb{R}$

$$Y_i = \underbrace{m(X_i)}_{\text{target}} + \epsilon_i$$

- $m(X_i) = E[Y_i|X = X_i]$ (CEF)
- $E[\epsilon_i|X=X_i]=0, Var(\epsilon_i|X=X_i)=\sigma^2(X_i)$

Example

5/38

Nadaraya-Watson estimator

• Approximation of m(x) by a weighted local average of the Y_i 's:

$$\hat{m}_{\text{NW}}(x) = \sum_{i=1}^{n} w(x, X_i, h) Y_i = \sum_{i=1}^{n} \frac{K\left(\frac{x - X_i}{h}\right)}{\sum_{j=1}^{n} K\left(\frac{x - X_j}{h}\right)} Y_i$$

- Kernel K: Weight of Y_i smaller if $|x X_i|$ larger
 - Most often: symmetric density
- Bandwidth h: Smoothing parameter
 - Determines how fast weights decrease in $|x X_i|$

Selection of kernels

Uniform

$$\mathcal{K}(u) = egin{cases} rac{1}{2} & ext{if } |u| \leq 1 \ 0 & ext{else} \end{cases}$$

Gaussian

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}$$

Epanechnikov

$$\mathcal{K}(u) = egin{cases} rac{3}{4}(1-u^2) & ext{if } |u| \leq 1 \ 0 & ext{else} \end{cases}$$

Example continued: Nadaraya-Watson

Role of bandwidth

Introduction

Motivation

Example continued: Boundary effects

Solution approaches

- 1. Local linear regression
 - Automatic boundary adaption

Solution approaches

- 1. Local linear regression
 - Automatic boundary adaption
- 2. Special boundary kernels
 - Adjustment of NW estimator near boundaries

Local linear regression

Definition

Weighted local fitting of a line

$$\begin{split} \hat{m}_{\text{NW}}(x) &= \arg\min_{\beta_0} \sum_{i=1}^n (Y_i - \beta_0)^2 K\left(\frac{x - X_i}{h}\right) \\ \hat{m}_{\text{LL}}(x) &= \arg\min_{\beta_0} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1(X_i - x))^2 K\left(\frac{x - X_i}{h}\right) \\ &= \sum_{i=1}^n w(x, X_i, h) Y_i \end{split}$$

⇒ Weighted Least Squares (WLS)

Example continued: Local linear

Example continued: Local linear

Local linear regression

Theoretical comparison

Estimation in the interior: Assumptions

- (A1) *m* is twice continuously differentiable
- (A2) Regularity conditions on f, σ^2 and K

(A3)
$$h \to 0, nh \to \infty$$
 as $n \to \infty$

(A4)
$$x \in [a + h, b - h]$$

Estimation in the interior: Asymptotics

$$\begin{aligned} \mathsf{ABias}(\hat{m}_{\mathsf{NW}}(x)|\boldsymbol{X}) &= \frac{1}{2}\kappa_2(K)m''(x)\boldsymbol{h}^2 + \kappa_2(K)\frac{m'(x)f'(x)}{f(x)}\boldsymbol{h}^2 \\ &= \mathcal{O}\left(\boldsymbol{h}^2\right) \\ \mathsf{ABias}(\hat{m}_{\mathsf{LL}}(x)|\boldsymbol{X}) &= \frac{1}{2}\kappa_2(K)m''(x)\boldsymbol{h}^2 \\ &= \mathcal{O}\left(\boldsymbol{h}^2\right) \end{aligned}$$

$$\mathsf{AVar}(\hat{m}_{\mathsf{NW}}(x)|\boldsymbol{X}) = \mathsf{AVar}(\hat{m}_{\mathsf{LL}}(x)|\boldsymbol{X}) = \frac{R(K)\sigma^2(x)}{f(x)} \frac{1}{\mathsf{nh}} = \mathcal{O}\left(\frac{1}{\mathsf{nh}}\right)$$

- Bias of LL typically smaller but of same order
- Asymptotic variance is the same

Estimation at the boundary: Assumptions

```
(A1) m is twice continuously differentiable

• \lim_{x\downarrow a} m''(x) = m''(a) and \lim_{x\uparrow b} m''(x) = m''(b)
(A2) Regularity conditions on f, \sigma^2 and K
(A3) h \to 0, nh \to \infty as n \to \infty
(A4) x \in \{a, b\}
```

Estimation at the boundary: Asymptotics

$$\begin{aligned} \mathsf{ABias}(\hat{m}_{\mathsf{NW}}(a)|\boldsymbol{X}) &= 2\int_0^\infty u K(u) \, \mathsf{d} u \, m'(a) \boldsymbol{h} \\ &= \mathcal{O}(\boldsymbol{h}) \\ \mathsf{ABias}(\hat{m}_{\mathsf{NW}}(b)|\boldsymbol{X}) &= -2\int_0^\infty u K(u) \, \mathsf{d} u \, m'(b) \boldsymbol{h} \\ &= \mathcal{O}(\boldsymbol{h}) \\ \mathsf{ABias}(\hat{m}_{\mathsf{LL}}(a)|\boldsymbol{X}) &= \frac{1}{2} \kappa_2(\tilde{K}) m''(a) \boldsymbol{h}^2 \\ \mathsf{AVar}(\hat{m}_{\mathsf{LL}}(a)|\boldsymbol{X}) &= \frac{R(\tilde{K}) \sigma^2(a)}{f(a)} \frac{1}{n\boldsymbol{h}} \\ &= \mathcal{O}\left(\frac{1}{n\boldsymbol{h}}\right) \end{aligned}$$

- ABias of NW is $\mathcal{O}(h)$ instead of $\mathcal{O}(h^2)$
- LL preserves the order (but constants differ)

Local linear regression

Graphical comparison

Effective kernels

- NW and LL both linear smoothers: $\hat{m}(x) = \sum_{i=1}^{n} w(x, X_i, h) Y_i$
- $\{w(x, X_i, h)\}_{i=1}^n$: Effective kernel at x

Effective kernel in the interior

Effective kernel at the boundary

Boundary kernels

Idea

- Assume that supp(K) = [-1, 1] and w.l.o.g. $X_i \in [0, 1]$ \Rightarrow Boundary region: $[0, h) \cup (1 h, 1]$
- Idea: Construct asymmetric kernel that restores the original moment properties
- For $x = \rho h$ a left boundary kernel $K_l(u, \rho)$ satisfies for $\rho \in [0, 1]$

$$\int_{-1}^{
ho} u^j \mathcal{K}_\mathsf{l}(u,
ho) \, \mathrm{d}u = egin{cases} 1 & j=0 \ 0 & j=1 \ \kappa_{2,
ho}(\mathcal{K}_\mathsf{l})
eq 0 & j=2 \end{cases}$$

Note: Kernel shape changes with relative location of x to boundary!

Epanechnikov boundary kernels, Müller (1991)

Left boundary kernels

Right boundary kernels

Example continued: Boundary kernels

Simulation

Simulation set-up

- $m(x) = \sin(2\pi x)$
- $X \sim \mathcal{U}(0,1)$
- $\epsilon \sim \mathcal{N}(0, 0.25^2)$
- Target: Mean Integrated Squared Error (MISE) over boundary region
- Asymptotic optimal bandwidth: h_{AMISE}(n)
- 10000 Monte-Carlo repetitions
- Sample sizes from 50 to 5000

Simulation results

n	Boundary region	Change in MISE to NW [%]	
		Local linear	NW boundary adjusted
50	[0, 0.119)	789.29	1578.07
100	[0, 0.104)	- 41.90	1143.28
250	[0, 0.086)	- 65.13	1982.67
500	[0, 0.075)	- 72.98	14.92
1000	[0, 0.065)	- 78.80	- 63.95
2500	[0, 0.055)	- 85.12	-77 .80
5000	[0, 0.047)	-88.50	-83.76

Application

Regression discontinuity design (RDD), Lee (2008)

Regression discontinuity design (RDD), Lee (2008)

Conclusion

Take-away

- Often in econometrics the boundaries are of great interest
- NW with potentially severe boundary bias → Adjustment!
- Boundary kernels with asymptotic correction, but complicated and impractical
- LL regression as a simple and intuitive method to automatically reduce boundary effects
 - Plus favorable asymptotic properties in interior

⇒ Recommendation: Local linear regression

Contact

Slides and codes are hosted on GitHub.

For further questions contact us via email.

- github.com/svjaco
- ≤ s6xitaoo(at)uni-bonn.de (Xingyu)
- ≤ s6xuliii(at)uni-bonn.de (Xuan)
- s.jacobs(at)uni-bonn.de(Sven)

Local polynomial regression: Definition

$$\hat{m}_{LP}(x) = \arg\min_{\beta_0} \sum_{i=1}^n \left(Y_i - \sum_{j=0}^p \beta_j (X_i - x)^j \right)^2 K\left(\frac{x - X_i}{h}\right)$$

$$= \sum_{i=1}^n w(x, X_i, h) Y_i$$

Local polynomial regression: Motivation

Minimization of RSS

$$\sum_{i=1}^n (Y_i - \hat{m}(X_i))^2$$

• *p*-th order Taylor expansion:

$$m(X_i) \approx \sum_{i=0}^{p} \frac{m^{(j)}(x)}{j!} (X_i - x)^j$$

Local polynomial regression: Motivation

$$\sum_{i=1}^{n} \left(Y_i - \sum_{j=0}^{p} \underbrace{\frac{m^{(j)}(x)}{j!}}_{\equiv \beta_i} (X_i - x)^j \right)^2$$

• Weighting of observation (X_i, Y_i) using a kernel:

$$\hat{m}_{LP}(x) = \arg\min_{\beta_0} \sum_{i=1}^n \left(Y_i - \sum_{j=0}^p \beta_j (X_i - x)^j \right)^2 K\left(\frac{x - X_i}{h}\right)$$

Kernels: Prominent examples

Kernels: Efficiency

Kernel	Function	R(K)	$\kappa_2(K)$	Efficiency
Epanechnikov	$K_{E}(u) = \frac{3}{4}(1-u^2)$	<u>3</u> 5	$\frac{1}{5}$	100.0%
Biweight	$K_{\rm B}(u) = \frac{15}{16}(1-u^2)^2$	<u>5</u>	$\frac{1}{7}$	99.39%
Triangular	$\mathcal{K}_{T}(u) = 1 - u $	$\frac{2}{3}$	$\frac{1}{6}$	98.59%
Gaussian	$\mathcal{K}_{G}(u) = rac{1}{\sqrt{2\pi}}e^{-rac{u^2}{2}}$	$\frac{1}{2\sqrt{\pi}}$	1	95.12%
Uniform	$K_{U}(u) = \frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$	92.95%

$$\mathsf{Eff}(K) \equiv \frac{\kappa_2(K_\mathsf{E})^{\frac{1}{2}} R(K_\mathsf{E})}{\kappa_2(K)^{\frac{1}{2}} R(K)}$$

Example II: Boundary effects

Others: Assumptions Section 2

- (A1) *m* is twice continuously differentiable
- (A2) f is continuously differentiable and f(x) > 0
- (A3) σ^2 is continuous and $\sigma^2(x) > 0$
- (A4) K is a symmetric and bounded pdf with $\kappa_2(K) \equiv \int u^2 K(u) \, du < \infty$ (finite variance) and $R(K) \equiv \int K(u)^2 \, du < \infty$ (square integrability)
- (A5) $h \to 0, nh \to \infty$ as $n \to \infty$
- (A6) $x \in [a+h, b-h] / x \in \{a, b\}$

Effective kernels: Insights

 LL regression automatically modifies the kernel to correct the bias exactly to first order when there is asymmetry in the smoothing window

$$E[\hat{m}(x)|\mathbf{X}] = \sum_{i=1}^{n} w_i(x)m(X_i)$$

$$= m(x)\sum_{i=1}^{n} w_i(x) + m'(x)\sum_{i=1}^{n} w_i(x)(X_i - x) + R$$

$$= 0 \text{ for LL}$$

Others: Epanechnikov boundary kernel, Müller (1991, Table 1)

For $0 < \rho < 1$:

$$K_{\mathsf{I}}(u,\rho) = 6(1+u)(\rho-u)\frac{1}{(1+\rho)^3} \left\{ 1 + 5\left(\frac{1-\rho}{1+\rho}\right)^2 + 10\frac{1-\rho}{(1+\rho)^2}u \right\} \quad , u \in [-1,\rho]$$

$$K_{\mathsf{r}}(u,\rho) = K_{\mathsf{I}}(-u,\rho) \qquad \qquad , u \in [-\rho,1]$$

Others: Effective kernel at the boundary

Others: Optimal bandwidths

• Minimization of (weighted) AMISE:

$$h_{\mathsf{AMISE}} \equiv \operatorname*{arg\,min}_{h>0} \mathsf{AMISE}(\hat{m}|\boldsymbol{X})$$

$$h_{\text{AMISE}}^{\text{LL}}(n) = \left\{ \frac{R(K) \int \sigma^{2}(x) \, dx}{\kappa_{2}(K)^{2} \int (m''(x))^{2} f(x) \, dx} \right\}^{1/5} \cdot n^{-1/5}$$

$$h_{\text{AMISE}}^{\text{NW}}(n) = \left\{ \frac{R(K) \int \sigma^{2}(x) \, dx}{\kappa_{2}(K)^{2} 4 \int \left[\frac{1}{2} m''(x) + \frac{f'(x) m'(x)}{f(x)} \right]^{2} f(x) \, dx} \right\}^{1/5} \cdot n^{-1/5}$$

Simulation: Extended results

n	Boundary region	Change in MISE to NW [%]		
	Boundary region	Local linear	NW boundary adjusted	
50	[0, 0.119)	789.29	1578.07	
100	[0, 0.104)	- 41.90	1143.28	
250	[0, 0.086)	- 65.13	1982.67	
500	[0, 0.075)	- 72.98	14.92	
1000	[0, 0.065)	- 78.80	- 63.95	
2500	[0, 0.055)	- 85.12	- 77.80	
5000	[0, 0.047)	- 88.50	- 83.76	
10000	[0, 0.041)	- 91.14	-88.26	

Note: For n = 10000 the number of Monte-Carlo repetitions is 1000 instead of 10000.

Simulation: Robustness check h_{AMISE}

 $\ensuremath{\mathsf{CV}}\xspace$ optimal bandwidths for NW and LL compared to the asymptotically optimal bandwidths

n	$h_{\scriptscriptstyle{ extsf{CV}}}^{\scriptscriptstyle{ extsf{NW}}}$	$h_{\scriptscriptstyle ext{CV}}^{\scriptscriptstyle ext{LL}}$	h_{AMISE}	Change to hamise [%]		
				Nadaraya-Watson	Local linear	
50	0.097	0.128	0.119	-18.59	6.99	
100	0.080	0.105	0.104	- 22.96	1.25	
250	0.062	0.085	0.086	-28.44	- 1.55	

Note: $\mbox{CV-optimal bandwidths}$ are computed as a mean over 1000 repetitions.

Simulation: Robustness check MISE

n	Boundary region	Change in MISE to NW [%]		
11	Boundary region	Local linear	NW boundary adjusted	
	Results for o	cross-validated	bandwidths	
50	[0, 0.097)	703.01	3373.15	
100	[0, 0.080)	- 20.87	4561.98	
250	[0, 0.062)	- 41.54	443.39	
	Results for asym	ptotically opt	imal bandwidths	
50	[0, 0.119)	789.29	1578.07	
100	[0, 0.104)	- 41.90	1143.28	
250	[0, 0.086)	-65.13	1982.67	

Others: Cross Validation (CV)

■ Leave One Out Cross Validation (LOOCV):

$$CV(h) \equiv \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{m}_{-i}(X_i, h))^2$$

$$\hat{h}_{\mathsf{CV}} \equiv \operatorname*{arg\,min}_{h>0} \mathsf{CV}(h)$$

• \hat{h}_{CV} is essentially an unbiased estimator of h_{MISE}

Extensions

- Local polynomial regression (e.g. cubic)
- Multivariate regression
 - Boundary issues more severe
- Estimation of other functionals (e.g. derivatives)

Introductory literature

Monographs

- Fan, J. and I. Gijbels (1996). Local Polynomial Modelling and its Applications.
 Monographs on Statistics and Applied Probability 66. Boca Raton: Chapman & Hall/CRC.
- Wand, M. and M. Jones (1995). Kernel Smoothing. Monographs on Statistics and Applied Probability 60. Boca Raton: Chapman & Hall/CRC.

Papers

- Fan, J. (1992). "Design-adaptive nonparametric regression". *Journal of the American Statistical Association* 87 (420), pp. 998–1004.
- Müller, H.-G. (1991). "Smooth optimum kernel estimators near endpoints". Biometrika 78 (3), pp. 521–530.