

# Módulo Inteligente de Detecção de Dióxido de Carbono por Infravermelho

Manual do Usuário V1.01

Válido a partir de 24 Set 2015

Zhengzhou Winsen Electronics Technology CO., LTD.

# Módulo CO<sub>2</sub> MH-Z14A NDIR

#### Perfil



O módulo de gás infravermelho NDIR MH-Z14A é um tipo comum, sensor de tamanho pequeno, utilizando infravermelho (NDIR) não-dispersivo para detectar a existência de CO<sub>2</sub> no ar, com boa seletividade, não dependente do oxigênio e de longa vida. Possui compensação de temperatura, saída digital, saída analógica saída e saída PWM. Este sensor de gás infravermelho foi desenvolvido integrando tecnologia de detecção de gás absorvente ao infravermelho em um circuito óptico de precisão com design de circuito superior.

## Aplicações

Equipamentos de refrigeração (HVAC), equipamentos de monitoramento de qualidade de ar, sistemas de renovação de ar, purificação ar, casas

inteligentes, escolas, estufas de cultivo de plantas, etc.

## • Principais características funcionais

- Câmera dourada à prova d'água e com tratamento anti-corrosão;
- Alta sensibilidade, baixo consumo de potência;
- Boa estabilidade;
- Compensação de temperatura, excelente saída linerar;
- Saídas: UART (serial), analógica e onda PWM;
- Longa vida útil;
- Imune a interferência por vapor de água;
- Não tóxico.

## • Principais características técnicas

| Voltagem de trabalho        | 4,5V a 5,5 VDC                 |
|-----------------------------|--------------------------------|
| Consumo médio de corrente   | < 60mA (Vin = 5V)              |
| Consumo de pico de corrente | 150mA (Vin = 5V)               |
| Nível de interface (UART)   | 3,3V (compatível 5V)           |
| Faixa de medição            | 0 a 10.000ppm (opcional, vide  |
| i dixa de medição           | tabela n2)                     |
| Sinal de saída              | Porta Serial (UART, nível TTL) |
|                             | PWM                            |
|                             | Saída analógica (DAC) 0,4 a 2V |
| Tempo de aquecimento        | 3min                           |

| Tempo de resposta            | T <sub>90</sub> < 120s     |
|------------------------------|----------------------------|
| Temperatura de funcionamento | 0°C a 50°C                 |
| Umidade de funcionamento     | 0 a 90%RH (sem condesação) |
| Peso                         | 15g                        |
| Vida útil                    | 5 anos                     |

| Gás Detectado      | Faixa de Medição | Precisão               |
|--------------------|------------------|------------------------|
| Dióxido de Carbono | 0 a 2.000ppm     | ± (50ppm               |
| (CO <sub>2</sub> ) | 0 a 5.000ppm     | +3% valor de leitura)  |
|                    | 0 a 10.000ppm    | ± 10% valor de leitura |

# • Estrutura







# • Definição de Pinos



| PINO (pad)       | DESCRIÇÃO                      |  |
|------------------|--------------------------------|--|
| 1/ 15/ 17/ 23    | Vin (Entrada de tensão)        |  |
| 2/ 3/ 12/ 16/ 22 | GND                            |  |
| 4/ 21            | Saída analógica (0,4 a 2V)     |  |
| 6/ 26            | PWM                            |  |
| 8/ 20            | HD (calibração zero. Manter no |  |
|                  | nível zero por 7 segundos)     |  |
| 7/9              | Não conectado                  |  |
| 11/ 14/ 18/ 24   | UART (RX)                      |  |
| 10/ 13/ 19/ 25   | UART (TX)                      |  |

### Correção Automática (função ABC)

A função ABC refere-se ao próprio sensor que faz ajuste de ponto zero e calibração automática de forma inteligente após um período de operação contínua. O ciclo de calibração automática é a cada 24 horas depois de ligado. O ponto zero da calibração automática é de 400ppm. A partir de julho de 2015, a configuração padrão é com a função de calibração automática incorporada. Para a calibração o sensor deve ser colocado em ar limpo por mais de 1 hora.

Função ABC é adequada para escritório e ambiente doméstico etc., mas não para ambientes sem troca de ar, como estufas, frigoríficos, etc, em que é necessário desligar a função de calibração automática. O usuário pode fazer a detecção de zero regularmente e a calibração por comando ou manualmente.

#### Notas

- Evite pressionar a câmara de plástico dourada de qualquer direção, durante a soldagem, instalação e uso;
- Quando colocado em um espaço pequeno, o espaço deve ser bem ventilado, especialmente em direção à janela de difusão;
- O sensor deve estar longe do calor e evitar luz solar direta ou outra radiação de calor;
- Não use o sensor em ambientes com muita poeira por muito tempo;
- Para garantir o trabalho normal, a fonte de alimentação deve estar entre 4.5V a 5.5V DC. A corrente de fornecimento não deve ser inferior a 150mA. Fora desta faixa, resultará na falha de detecção;
- Durante o procedimento de calibração do ponto zero manual, o sensor deve trabalhar em ambiente de gás estável (400 ppm) por mais de 20 minutos. Ligue o pino HD a um nível baixo (0V) durante mais de 7 segundos.

#### • Exemplo de Programação para Arduino

Este exemplo utiliza o sinal de saída UART do sensor

```
void setup () {
    Serial.begin(9600);
}

void loop () {
    long valorCO2;
```

```
const byte comando[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
byte response[9];

for (int i=0; i < 9; i++) Serial.write(comando[i]);
delay(30);
if (Serial.available()) {
  for (int i=0; i < 9; i++) response[i] = Serial.read();
  int responseHigh = (int) response[2];
  int responseLow = (int) response[3];
  valorCO2 = ((responseHigh << 8) + responseLow);
}
Serial.println (valorCO2);
}</pre>
```

Dica: quando o sensor é desligado e ligado rapidamente, ele pode apresentar erro ou travamento, para contornar esse problema, verifique o valor medido e, se for fora da faixa de detecção, reinicie a comunicação do módulo, conforme código abaixo:

```
if ((gas <= 0) || (gas >= 5000)) {
    Serial.end();
    delay(1000);
    Serial.begin(9600);
}
```