

Controle Fuzzy de Sistemas Dinâmicos

Controle PI de um sistema simulado de tanques acoplados, baseado em fuzzy

Fernando Leandro Fernandes Rosenildo Pereira Aguiar Furtado Tiago Batista Silva Sousa

Professor: Fábio Meneghetti Ugulino de Araujo

LÓGICA FUZZY

Diferentemente da lógica booleana, as variáveis da lógica *fuzzy* podem assumir infinitos valores reais entre o completamente verdadeiro e/ou falso. Por causa disso, ela vem sendo, cada vez mais, utilizada em situações complexas, não-lineares, onde as variáveis assumem valores parciais, indeterminados.

LÓGICA FUZZY

A teoria dos conjuntos nebulosos foi idealizada em 1965 pelo matemático e pesquisador Lotfali Askar-Zadeh. É a base da teoria que modela sistemas que lidam com dados e regras imprecisas.

Ela consiste nas etapas de fuzzyficação, inferência e desfuzzyficação.

FUZZYFICAÇÃO

Na *fuzzyficação*, as variáveis e as funções de pertinências são definidas de forma subjetiva.

Diversos tipos de espaços podem ser definidos para as funções de pertinências: triangular, trapezoidal, Singleton e Shouldered.

BASE DE REGRAS, INFERÊNCIA

É o conjunto de regras que permitiram o sistema inferir uma resposta de saída a partir dos dados de entradas.

1.	. If	(erro	is E	EN) a	and	(Varerr	o is	VEN)	then	(output1	İS	descer) (1)
2.	. If	(erro	is E	:N) a	and	(Varerr	o is	VEZ)	then	(output1	İS	descer) (1)
3.	. If	(erro	is E	N) a	and ((Varerr	o is	VEP)	then	(output1	İS	descer) (1)
4.	. If	(erro	is E	ΞZ) ε	and ((Varerr	o is	VEN)	then	(output1	İS	descer) (1)
5.	. If	(erro	is E	:Ζ) ε	and	(Varerr	o is	VEZ)	then	(output1	İS	manter) (1)
6.	. If	(erro	is E	Z) a	and ((Varerr	o is	VEP)	then	(output1	İS	subir) (1)	
7.	. If	(erro	is E	EP) a	ınd ((Varerr	o is	VEN)	then	(output1	İS	subir) (1)	
8.	. If	(erro	is E	:P) a	ınd (Varerr	o is	VEZ)	then	(output1	İS	subir) (1)	
9.	. If	(erro	is E	EP) a	ınd ((Varerr	o is	VEP)	then	(output1	is:	subir) (1)	

		e(k)	e(k)		
$\Delta \mathbf{e}(\mathbf{k})$	Negativo	Nulo	Positivo		
Negativo	Descer	Descer	Subir		
Nulo	Descer	Manter	Subir		
Positivo	Descer	Subir	Subir		

DEFUZZYFICAÇÃO

É a etapa que converte as regiões *fuzzyficadas* em valores para as variáveis de saídas.

DEFUZZYFICAÇÃO

Centro de área: resultado numérico bom, porém não é viável em alguns casos, pois demanda muito esforço computacional;

Média dos máximos: Consegue uma boa aproximação para o resultado sem demandar tanto esforço computacional. Foi o método utilizado por nós para a defuzificação nos controladores Mamdani.

Objetivo

Definir os parâmetros de um controlador PI clássico, a partir de um sistema *fuzzy* para o controle de nível de uma planta de tanques acoplados, simulada no Matlab.

Ações de controle

- Manter: ação de controle fraca, que visa apenas a estabilização do sistema quando este está perto do referencial;
- Subir: ação de controle moderada, que é ativada quando o tanque está abaixo do nível desejado;
- Descer: ação de controle moderada, que é ativada quando o tanque está acima do nível desejado;
- Subir Forte: ação de controle intensa, que é ativada quando o tanque está abaixo do nível desejado e continuando a secar;
- Descer Forte: ação de controle intensa, que é ativada quando o tanque está acima do nível desejado e continuando a encher.

Obs: as ações de controle "Subir Forte" e "Descer Forte" não foram utilizadas em todos os controladores implementados.

EFEITO INTEGRATIVO

É o incremento do erro após a saturação do sinal de controle.

EFEITO INTEGRATIVO

Resultados - Mamdani

Resultados - Sugeno

Conclusões

- Analisando os resultados obtidos podemos inferir que, apesar de mais complexo o controlador Mamdani controlou o sistema com tempo de acomodação menor.
- O controlador Sugeno apresentou menor overshoot em relação ao controlador Sugeno.
- O controlador Mamdani apresenta uma oscilação em torno do setpoint, conehcida como oscilação de ciclo mínimo.
- A experimentação proporciona insights como o de deslocar o alinhamento das regras de inferência para compensar a vazão do orifício de saída.