Задача 25 (6 баллов)

Цилиндрический резонатор представляет собой бесконечный круговой цилиндр радиуса R из материала с диэлектрической проницаемостью ε_1 , помещенный в однородную среду с диэлектрической проницаемостью ε_2 . Собственные моды такого резонатора можно характеризовать волновым вектором вдоль оси цилиндра k_z и азимутальным квантовым числом m. Их электромагнитное поле зависит от координат как $E, H \propto \mathrm{e}^{\mathrm{i}k_z z + \mathrm{i}m\phi}$, где z – координата вдоль оси цилиндра, φ – угол в плоскости (x,y).

Рассмотрите запертые внутри цилиндра квазистационарные моды с $k_z=0$ и произвольным m. Получите уравнения на собственные комплексные частоты ТЕ- и ТМполяризованных мод. При каждом m уравнения имеют бесконечное число корней. Для $R=1\,\mu\mathrm{m},\ \varepsilon_1=2,\ \varepsilon_2=1,\ m=0,1,2,...10$ путем численного решения уравнений найдите их корень $\omega_{m,0}^{(\mathrm{TE},\mathrm{TM})}$, обладающий с наименьшей вещественной частью. Постройте графики зависимостей $\mathrm{Re}\ \omega_{m,0}^{(\mathrm{TE},\mathrm{TM})}$ и $\mathrm{Re}\ \omega_{m,0}^{(\mathrm{TE},\mathrm{TM})}$ от m.

 $У \kappa a з a н u e$. В соответствие с определением квазистационарной (утекающей) моды, ее электромагнитное поле при $\rho > R$ должно иметь вид расходящейся цилиндрической волны: $E, H \propto \mathrm{H}_m^{(1)}(\sqrt{\varepsilon_2}\,\omega \rho/c)\,\mathrm{e}^{\mathrm{i} m \phi}$, где $\mathrm{H}^{(1)}$ – функция Ганкеля, $\rho = \sqrt{x^2 + y^2}$.