control of chlorine disinfection in off-grid rainwater tanks for potable use

ce 291 final project may 2016 harry durbin

off-grid rainwater tanks in rural developing areas often lack a disinfection system

bacteria in water has potential to cause illness

OBJECTIVE

investigate modeling and control options for chlorine disinfection

concentration should stay in range: 0.5 - 5 ppm

PDE diffusion - convection - reaction

$$u_t = \underbrace{[D * u_{xx}] - [c * u_x] - [r * u]}_{\text{\uparrow}} - \underbrace{[r * u]}_{\text{\uparrow}} - \underbrace{[r * u]}_{\text{\downarrow}}$$
diffusion / convection / reaction advection

generally cannot be solved by pen and paper

Option #1: inject into pipeline

completely automated, yet more expensive

how much contact time is needed?

To achieve this level of Inactivation		This much contact time (minutes) is required for this Pathogen		
Log	Percent	Cryptosporidium	Giardia	Virus
0.5	67 %	Ineffective	9	0.25 (15 sec)
1.0	90	Ineffective	19	0.5 (30 sec)
1.5	96.7	Ineffective	28	0.75 (45 sec)
2.0	99	Ineffective	37	1
2.5	99.67	Ineffective	47	1.5
3.0	99.9	Ineffective	56	2
3.5	99.97	Ineffective	65	2.5
4.0	99.99	Ineffective	75	3

some say 2-minutes, others 30-minutes

sizing pipe to ensure contact time

- + 40-mm diam \rightarrow 5 minutes \rightarrow 25-m long \rightarrow Volume = 7.5 gal
- + 30-min: (depends on usage rate)

Option #1: inject into pipeline

simulation of concentration in pipe

modeling concentration in pipe from 0 to 5 min

water stagnant for 24 hours

factors influencing concentration / decay

+ water temperature

+ pH

+ bacteria levels

+ desired contact time

+ flow continuity (daily usage)

In future could update model based on a usage pattern

proportional controller

Option #2: add to tank

less expensive, but harder to control

maybe we can precisely predict when to add chlorine

Option #2: adding to tank

free water height changes \rightarrow domain of problem, Ω , is time dependent

Domain Formulations: Eulerian is fixed, Lagrangian is moving

both methods have difficulties when boundary conditions need updating!

A HYBRID METHOD: Arbitrary Lagrangian-Eulerian (ALE) formulation

free surface velocity

$$v^{f} = \frac{d}{dt}H(t) e_{3} = \frac{1}{A(t)}[Q_{in}(t) - Q_{out}(t)]$$

domain velocity

$$v^d(x,t) = v^f(t)$$

convective velocity

$$C = V - V^d$$

$$u_t = [\nabla \cdot (D \nabla u)] - [c * \nabla u] - [r * u]$$

motion equations written w.r.t a reference

Equations coupled: Diffusion-Convection-Reaction & Navier-Stokes

Navier-Stokes
$$\frac{1}{r} * \frac{\partial (rv_r)}{\partial r} + \frac{1}{r} * \frac{\partial (v_\theta)}{\partial \theta} + \frac{\partial (v_z)}{\partial z} = 0$$

this modeling approach has been used by others on larger scale – may work for rain tanks too

chlorine disinfection simulation (Codina, 2014)

SUMMARY

- + chlorine can be modeled with diffusion-convection-reaction eqn
- + a model prepared for 5-minute min contact time in pipe
- + pipe dosing becomes complex for 30-min contact time in pipe, and irregular, low-volume flow
- + proportional controller can be used to tune dosage
- + chlorine dosing in the tank can be modeled using ALE method
- + with a tank model and sensor data, precise chlorine requirement could be displayed or automated