

COHEN CHAP 12 ONE-WAY ANOVA

For EDUC/PSY 6600

MOTIVATING EXAMPLES

Dr. Vito randomly assigns 30 individuals to 1 of 3 study groups to evaluate whether one of **2 new approaches** to therapy for adjustment disorders with mixed anxiety and depressed mood are more effective than the **standard approach**. Participants are matched on current levels of anxiety and depressed mood at baseline. Scores from the BAI and BDI are collected after 2 months of therapy.

Dr. Creft wishes to assess differences in oral word fluency **among three groups** of participants: Right hemisphere stroke, left hemisphere stroke, and healthy controls. Scores on the COWAT are collected from 20 participants per group and the means of each group are compared.

DIFFERING RESEARCH DESIGNS

Fixed or random effects

- Fixed effects design: Levels of each factor systematically chosen by researcher
 - Individual therapy, group therapy, self-help/no-therapy
- Random factors design: Levels of each factor are chosen randomly from a larger subset (rarer)
 - Therapy groups coordinated by: Mrs. May, Mr. June, or Ms. July

Independent (Between-Subjects) or Repeated (Within-Subjects) factors

- Independent: Participants randomly allocated to each level of a factor
 - Chapter 12: one-way ANOVA
- Repeated measures design: Participants are paired or a dependency exists (multiple observations)
 - Chapter 15: Repeated measures ANOVA

Experimental design

- Participants are randomly assigned to levels and at least one factor is manipulated
 - Drug A, drug B, or placebo
- Participants are randomly selected from multiple preexisting populations
 - Single parent home, two parent home, does not live with parent

*Note: If the levels of the Dependent Variable are <u>highly ordinal or continuous</u> in nature, <u>regression</u> or a rank type test will be more powerful than ANOVA, which is appropriate in cases where the groups are more nominal in nature.

Some variables can be construed as both!!! (e.g. Grade level)... probably want to analyze both ways

ANOVA = "ANALYSIS OF VARIANCE"

ANOVA designs can be used for...

- Experimental research
- Quasi-experimental studies
- Field/observational research

1-way ANOVA (or AOV)

- Also called:
 - Single factor ANOVA
 - Univariate ANOVA
 - Simple ANOVA
 - Independent-ANOVA
 - Between-subjects ANOVA

ONE Dependent Variable (DV)

Continuous (interval/ratio) & normally distributed

ONE Independent Variable (IV)

Categorical (nominal) ≥ 3 independent samples or groups Factor with k levels or

groups levels can be chosen experimentally or occur naturally

Omnibus test for group (mean) differences

Overall pattern in the data

F-DISTRIBUTION

Sir Ronald A. Fisher (1920s) & agricultural experiments

F-distribution

- Continuous theoretical probability distribution
- Probability of ratios of variance <u>between</u> groups to variance <u>within</u> groups

Positively skewed

- Range: 0 to ∞
- one-tailed
- ullet More "normal" as $N\uparrow$
- Mean pprox 1 . . . $M=\frac{df_W}{df_W-2}$

- ullet Need 2 $d\!f$ and lpha to determine $F_{\it crit}$
 - df_{Within} and $df_{Between}$ (more later...)

df1 = 3, df2 = 10

Fisher at his desk calculator at Whittingehame Lodge, 1952

EXAMPLE: NOISE & WORDS MEMORIZED

Study to determine if noise inhibits learning

$$N = 15$$

Students randomized to 1 of 3 groups (n = 5)

- Group A: No noise (no music, quiet room)
- Group B: Moderate noise (classical music)
- Group C: Extreme noise (rock music)

Participants are given 1 minutes to memorize list of 15 nonsense words

DV = # of correct nonsense words recalled

HYPOTHESES OF ANOVA

Label sets of means and variances as...

$$\mu_1, \mu_2, \mu_3, \dots, \mu_k$$

$$\sigma_1^2, \sigma_2^2, \sigma_3^2, \dots, \sigma_k^2$$

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_k$

 H_1 : Not H_0

- \blacksquare Many ways to reject H_0
- NOT H_1 : $\mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_k$

Reject H_0 : low p(samples drawn from same population)

Retain H_0 : high p(samples drawn from same population)

EXAMPLE: NOISE & WORDS MEMORIZED

Group

Null Hypothesis:

SORT CASES by noise. TEMPORARY. SPLIT FILE by noise. FREQUENCIES words /FORMAT NOTABLE /STATISTICS MEAN STDDEV. SPLIT FILE off.

EXAMINE Words BY Noise /PLOT=BOXPLOT

Statistics

Words Number of nonsense words recalled

1 No noise (no music,	N	Valid	5
quiet room)		Missing	0
	Mear	1	9.20
	Std. [Deviation	.837
2 moderate noise	Ν	Valid	5
(classical music)		Missing	0
	Mear	1	6.60
	Std. [Deviation	1.517
3 extreme noise (rock	Ν	Valid	5
music)		Missing	0
	Mear	1	6.20
	Std. [Deviation	1.643

Noise in the environment

Alternative Hypothesis:

LINK: INDEPENDENT SAMPLE "T-TEST" & ANOVA

Same question as before...

- Do group means significantly differ?
- Or...Do mean differences on DV 'between' groups EXCEED differences 'within' groups?
 - Between-groups differences
 - Differences in DV due to IV (group)
 - Within-groups differences
 - Differences in DV due to pooled random error or variation

Same analysis approach as before...

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)}{s_{\overline{X}_{1} - \overline{X}_{2}}} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)}{\sqrt{\frac{s_{p}^{2}}{n_{1}} + \frac{s_{p}^{2}}{n_{2}}}} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

Could rewrite as...
$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right)}{\sqrt{s_p^2 \left(\frac{2}{n_j}\right)}},$$

Where n_i = sample size for any group j. Then....

$$t^{2} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)^{2}}{\frac{2s_{p}^{2}}{n_{j}}} = \frac{n_{j}\left(\overline{X}_{1} - \overline{X}_{2}\right)^{2}}{2s_{p}^{2}} = \frac{n_{j}\left(\overline{X}_{1} - \overline{X}_{2}\right)^{2}}{s_{p}^{2}} = F$$

LINK: INDEPENDENT SAMPLE "T-TEST" & ANOVA

2 samples, when $n_1 = n_2$

Numerator: Variation between (among) group means

'Variance' of 2 means multiplied by n_i Mean Square Between (MS_R) or Mean Square Treatment (MS_T)

$$t^{2} = \frac{n_{j} \left(\overline{X}_{1} - \overline{X}_{2}\right)^{2}}{2 + \frac{2}{s_{p}^{2}}} = F$$

Denominator: Pooled variation within groups

Pooled variance (s_p^2) = average of 2 variances when ns are equal Mean Square Within (MS_w) or Mean Square Error (MS_E)

'Mean Square' or MS
is a fancy statistical term for the variance

'Square': Refers to the sum of SQUARED (SS) deviations from the mean

Mean: AVERAGE of the SS deviations

SS is divided by N or N - 1 to yield variance So, <u>Mean</u> of the sum of <u>SQUARED</u> deviations = Variance

All we want to know is whether variation among group means exceeds that variation within groups

Will create a ratio of the MSs, the F-statistic, to see if this ratio is significantly different from 1

PRIOR EXAMPLE

Applying data from independent-samples t-test example (drug v. placebo and depression)

• Recall, t = 1.96, p = .085

Group 1 - Drug	Group 2 - Placebo
11	11
1	11
0	5
2	8
0	4

depression			
1 Drug	Ν	Valid	5
		Missing	0
	Mean	1	2.80
	Std. [Deviation	4.658
2 Placebo	Ν	Valid	5
		Missing	0
	Mean	1	7.80
	Std. [Deviation	3.271

$$t^{2} = \frac{n_{j} \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)^{2}}{2}}{s_{p}^{2}} = \frac{5 * \frac{\left(7.8 - 2.8\right)^{2}}{2}}{\left(\frac{3.27^{2} + 4.66^{2}}{2}\right)} = \frac{5 * 12.5}{\left(\frac{32.41}{2}\right)} = \frac{62.5}{16.21} = 3.84 = F$$

$$1.96^{2} = 3.84$$

$$t^2 = F$$

LINK: INDEPENDENT SAMPLE "T-TEST" & ANOVA

Same principle underlies many statistical tests

Measure of effect (or treatment)

assessed by examining variance $F = \frac{MS_B}{MS_W} = \frac{\text{(or differences) between groups}}{\text{Measure of random variation}}$ (or error) assessed by examining variance (or differences) within groups

How do we rearrange t-statistic equation to accommodate >2 samples with <u>equal</u> n_j ?

Numerator

 MS_B : Compute variance <u>between</u> (among) sample means, multiply by n_i

Denominator

MS_W: Compute average of sample variances

ASSUMPTIONS

Large or multiple violations will GREATLY increase risk of inaccurate p-values Increased probability of Type I or II error

Independent, Random Sampling (for the IV)

- For preexisting populations: randomly select a sample from each population
- For experimental conditions: randomly divide your sample (of convenience) for assignment to groups

Normally distributed (DV)

- Robust requirement...if samples are large, this isn't as important
- If not normal (or small samples)...alternatives : use the Krukal-Wallis H test

HOV: homogeneity of Variance (DV)

- Since an average variance is computed for denominator of F-statistic, variance should be similar for all groups: $\sigma_I^2 = \sigma_2^2 = \sigma_3^2 = \sigma_k^2$
- \square σ_e^2 , pooled or averaged variance, must be representative of each group so that MS_W is accurate
- Testing: F-test is rarely use, Levene's Test is more common
- All test for HOV are underpowered if samples are small, so you have to use judgement;)
- ☐ If NOT HOV...alternatives: Welch, Brown-Forsythe, ect.

LOGIC OF "ANOVA"

$$F_{Ratio}$$
 or $F_{Statistic} = \frac{NIS_B}{MS_W}$

In ANOVA, 2 <u>independent</u> estimates of <u>same</u> population (error) variance are computed: σ^2 , now called σ_e^2

- ullet MS_B : Variance <u>between</u> group means corrected by sample sizes (n_j)
- ullet MS_W : Average variance <u>within</u> groups

Ratio of 2 estimates of population variance

Hence the term Analysis of Variance, instead of something related to means comparisons (even though that is what we are interested in doing)

F-ratio increases as variance among means increases

Given within-group variance is constant

Increased variance among means indicates means are spread out &likely differ from one another or come from different populations

Large F-ratio indicates differences among means is $\underline{\mathsf{NOT}}$ likely due to chance

ANOVA is simply....

Between-Group Measure of Variation Due to Estimate of Random Variation (Error)

+

Effect of IV (Group)

Within-Group Estimate of Random Variation (Error)

F-STATISTIC: NUMERATOR = MS_B

Recall from CLT, relationship between

variance of population (σ^2) &

variance of SDM ($SE^2 = \sigma_{\bar{X}}^2$)

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n_j}} \rightarrow \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n_j} \rightarrow \sigma_{\bar{X}}^2 \cdot n_j = \sigma_e^2 = MS_B$$

One estimate of population variance: σ_e^2

Cannot compute population variance of all possible means as we only have a sample

Estimate population variance with sample means and multiply by sample size:

If H_0 true, $MS_B = \sigma_e^2$

Have drawn k independent samples From the SAME population (i.e. group differences = 0)

Equal Sample Sizes

$$MS_B = n \cdot s_{\bar{X}}^2$$

<u>UN-equal</u> Sample Sizes

$$MS_B = \frac{\sum n_j (\overline{X}_j - \overline{X}_G)^2}{k - 1}$$

If H_0 false, $MS_B \neq \sigma_e^2$

 MS_B reflects BOTH population variance

AND group differences

EXAMPLE: NOISE & WORDS MEMORIZED

1. Find grand mean:

2. Find the SD of the means:

3. Multiply by n

Equal Sample Sizes

$$MS_B = n \cdot s_{\bar{X}}^2$$

Statistics

Words Number of nonsense words recalled

1 No noise (no music,	N	Valid	5	
quiet room)		Missing	0	L
	Mean		9.20	
	Std. D	Deviation	.837	Γ
2 moderate noise	N	Valid	5	
(classical music)		Missing	0	L
	Mean		6.60	
	Std. D	Deviation	1.517	
3 extreme noise (rock	Ν	Valid	5	
music)		Missing	0	
	Mean		6.20	

F-STATISTIC: DENOMINATOR = MS_W

Second estimate of population variance: σ_e^2

Pooling sample variances yields best estimate

$$\sigma_1^2 = s_1^2$$
; $\sigma_2^2 = s_2^2$; ...; $\sigma_j^2 = s_j^2$

Average subgroup (j) variance: $\sigma_e^2 = s_e^2$

Equal Sample Sizes

$$MS_W = \sigma_e^2 = \frac{\sum s_j^2}{k}$$

<u>UN-equal</u> Sample Sizes

$$MS_W = \sigma_e^2 = \frac{\sum (n_j - 1)s_j^2}{n_T - k}$$

Goal should be to obtain equal ns BUT...

1 group > 50% larger other group: too much

k = # subgroups"j" denotes the j-th subgroup

Regardless of whether H₀ true:

$$MS_W = \sigma_e^2$$

Not affected by group MEANS

EXAMPLE: NOISE & WORDS MEMORIZED

Equal Sample Sizes

$$MS_W = \sigma_e^2 = \frac{\sum s_j^2}{k}$$

Statistics

Words Number of nonsense words recalled

				_
1 No noise (no music,	N	Valid	5	1
quiet room)		Missing	0	l
	Mear	1	9.20	1
	Std. [Deviation	.837	Γ
2 moderate noise	N	Valid	5	Γ
(classical music)		Missing	0	
	Mear	1	6.60	
	Std. [Deviation	1.517	Ι
3 extreme noise (rock	N	Valid	5	Γ
music)		Missing	0	l
	Mear	١	6.20	l
	Std. [Deviation	1.643	

1. Average the <u>VARIANCES's</u>:

LOGIC OF "ANOVA"

When estimates of σ_e^2 are...

Equal: Fail to reject H₀

- All means come from same population
- ullet Both are estimates of the same population variance $\sigma_{\scriptscriptstyle
 ho}^{\ 2}$
- F-ratio ≈ 1

Unequal: Reject H₀

- Unlikely that all means come from same population
- Effect of IV surpasses random error/variation within groups
- F-ratio significantly > 1, $MS_B > MS_W$

Groups all same sample sizes $MS_{B} = \sigma_{e}^{2} = n_{j} \cdot s^{2} \bar{x}$ $MS_{W} = \sigma_{e}^{2} = \frac{\sum s_{j}^{2}}{k}$ $mS_{W} = \sigma_{e}^{2} = \frac{\sum s_{j}^{2}}{k}$ $mS_{W} = \sigma_{e}^{2} = \frac{MS_{B}}{MS_{W}}$

SUMMARY STATS KNOWN ← shown on previous few slides SUM OF SQUARES (SS) APPROACH ← alternate formulas here

CALCULATIONS:

$$SS = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Can 'partition' total variation in DV due to group effects (IV) and error

$$SS_{Total} = SS_{Between} + SS_{Within}$$

Total

How different are ALL individuals from the "GRAND MEAN"

Inner Sum: individuals in each subgroup

Outter Sum: subgroups in the whole

$$SS_{Total} = \sum_{j=1}^{k} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{GM})^2$$

$$df_T = \boldsymbol{n_T} - 1$$

$$F_{Ratio}$$
 or $F_{Statistic} = \frac{MS_B}{MS_W}$

Between

How different are "GROUP MEANS" from the "GRAND MEAN"

$$SS_{Between} = n_j \sum_{j=1}^{k} (\overline{X}_j - \overline{X}_{GM})^2$$

$$df_B = \mathbf{k} - \mathbf{1}$$

$$MS_{Between} = \frac{SS_B}{df_B} = \frac{n_j \sum_{j=1}^{k} (\overline{X}_j - \overline{X}_{GM})^2}{k - 1}$$

$$MS_{Within} = \frac{SS_W}{df_W} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n} (X_{ij} - \overline{X}_j)^2}{N - k}$$

Within

How different are individuals from their "GROUP's MEAN"

Inner Sum: individuals in each subgroup

Outter Sum: subgroups in the whole

$$SS_{Within} = \sum_{j=1}^{k} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})^{2}$$

$$df_{W} = \mathbf{n}_{T} - \mathbf{k}$$

$$dS_{Within} = \frac{SS_{W}}{df_{W}} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})^{2}}{N - k}$$

$$F_{Ratio}$$
 or $F_{Statistic} = \frac{MS_B}{MS_W}$

F-STATISTIC

 $F_{\text{crit}} \rightarrow F$ -distribution table

(different table per α)

- Across the top: find df_B
- Down the side: find df_W

If
$$H_0$$
 is true, $MS_B = MS_W$

F-statistic ≈ 1

Both are estimates of variance of same population

If
$$H_0$$
 is false, $MS_B > MS_W$

F-statistic exceeds $F_{\it crit}$ by some amount ${\bf At\ least\ one}$ mean significantly differs from another

	$\alpha = .0$	5
0	F	

df NUMERATOR

df Denominator	1	2	3	4	5	6	7	8	9	10	12	15
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07
27	4 24	2 25	0.00	0.70	A ==	0.40	2.27	2 24		2 22	2.12	

Statistics

EXAMPLE: NOISE & WORDS MEMORIZED

 $MS_B = 13.267$

 $MS_W = 1.90$

1 No noise (no music,	N	Valid	5
quiet room)		Missing	0
	Mear	١	9.20
	Std. [Deviation	.837
2 moderate noise	Ν	Valid	5
(classical music)		Missing	0
	Mear	١	6.60
	Std. [Deviation	1.517
3 extreme noise (rock	Ν	Valid	5
music)		Missing	0
	Mear	1	6.20
	Std. [Deviation	1.643
·			

Test statistic: F-score observed

Critical Value: F-crit for α =.05

Conclusion:

SPSS

ONEWAY Words BY Noise
/STATISTICS DESCRIPTIVES HOMOGENEITY
/PLOT MEANS
/MISSING ANALYSIS.

Descriptives

Words Number of nonsense words recalled

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
1 No noise (no music, quiet room)	5	9.20	.837	.374	8.16	10.24	8	10
2 moderate noise (classical music)	5	6.60	1.517	.678	4.72	8.48	5	8
3 extreme noise (rock music)	5	6.20	1.643	.735	4.16	8.24	4	8
Total	15	7.33	1.877	.485	6.29	8.37	4	10

	Noise	Words	var
1	1	8	
2	1	10	
3	1	9	
4	1	10	
5	1	9	
6	2	7	
7	2	8	
8	2	5	
9	2	8	
10	2	5	
11	3	4	
12	3	8	
13	3	7	
14	3	5	
15	3	7	

Test of Homogeneity of Variances

Words Number of nonsense words recalled

Levene Statistic	df1	df2	Sig.
2.821	2	12	.099

ANOVA

Words Number of nonsense words recalled

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	26.533	2	13.267	6.982	.010
Within Groups	22.800	12	1.900		
Total	49.333	14			

MEASURES OF ASSOCIATION

Term preferred over "Effect size" for ANOVA

- Amount or % of variation in DV explained/accounted for by knowledge of group membership (IV)
- Correlation between grouping variable (IV) and outcome variable (DV)

4 measures:

- Eta-squared (η^2)
- Omega-squared (ω^2)
- Cohen's f
- Intra-class Correlation Coefficients (ρ)

 ω^2 is least biased, but unfamiliarity and 'difficulty' of computation have limited use

 η^2 probably sufficient in many cases

MEASURES OF ASSOCIATION: ETA-SQUARED

$\underline{\eta^2}$: Measure of % reduction in error IN THIS DATA (SAMPLES)

- SS_{Total} = Error in DV around grand mean
- SS_{Within} = Error around group means
- ullet By knowing group membership we reduce error by $SS_{Between} = SS_{Total} SS_{Within}$

% reduction in error expressed as... η^2 can be biased with sample data

$$\eta^2 = \frac{SS_{B}}{SS_{T}} = \frac{df_{B} \cdot F}{df_{B} \cdot F + df_{W}}$$

• Adjusted
$$\eta^2 = 1 - \frac{MS_W}{MS_T}$$

Compute using information from ANOVA summary table

$$\bullet \eta^2 = SS_B / SS_T$$

$$\eta^2_{adj} = 1 - (MS_W / MS_T)$$

Range: 0 to 1

Small: .01 to .06 Medium: .06 to .14

Large: > .14

EXAMPLE: NOISE & WORDS MEMORIZED

$$df = (3 - 1, 15 - 3) = (2, 12)$$

$$F(2,12) = \frac{13.267}{1.90} = 6.98$$

$$MS_B = 13.267 \xrightarrow{"SS = MS/df} SS_B = 13.267 * (2) = 26.534$$

$$MS_W = 1.90 \xrightarrow{"SS = MS/df} SS_B = 1.9 * (12) = 22.8$$

$$\eta^2 = \frac{SS_{B}}{SS_{T}} = \frac{df_{B} \cdot F}{df_{B} \cdot F + df_{W}}$$

<u>Using SS</u>

Statistics

Words Number of nonsense words recalled

1 No noise (no music, quiet room)	N	Valid	5
		Missing	0
	Mean		9.20
	Std. Deviation		.837
2 moderate noise (classical music)	N	Valid	5
		Missing	0
	Mean		6.60
	Std. Deviation		1.517
3 extreme noise (rock music)	Ν	Valid	5
		Missing	0
	Mean		6.20
	Std. Deviation		1.643

Range: 0 to 1

Small: .01 to .06 Medium: .06 to .14

Large: > .14

Using F & df's

Conclusion:

MEASURES OF ASSOCIATION: OMEGA-SQUARED

Range: 0 to 1

Small: .01 to .06

Medium: .06 to .14

Large: > .14

ω^2 : Measure of % reduction in error IN THIS POPULATION (ESTIMATE TRUTH)

Alternative for "fixed-effects" ANOVA

- More conservative than η^2 (and less biased)
- Range: 0 to 1 (can be negative when F < 1)
 - Same interpretation as η^2
- Compute using information from ANOVA summary table
 - Equation for fixed effects ANOVA only

$$\omega^{2} = \frac{SS_{B} - (k-1)MS_{W}}{SS_{T} + MS_{W}} = \frac{(k-1)(F-1)}{(k-1)(F-1) + n_{j} \cdot k}$$

MEASURES OF ASSOCIATION: COHEN'S F

Range: 0 to infinity

Small: .10 to .25

Medium: .25 to .40

Large: > .40

Traditional effect size index

- Not a measure of association
- Generalization of Cohen's d to ANOVA
- Compute using ANOVA summary information

$$f = \sqrt{\frac{\omega^2}{1 - \omega^2}} = \sqrt{\frac{\frac{k - 1}{n_j \cdot k} (MS_B - MS_W)}{MS_W}}$$

Converting from f to $\omega^2 \rightarrow$

$$\omega^2 = \frac{f^2}{1 + f^2}$$

MEASURES OF ASSOCIATION: INTRA-CLASS CORRELATION COEFFICIENT (ICC)

Measure of association for random-effects ANOVA

At least 6 ICCs available

- Type selected depends on data structure
- Range: 0 to 1
- Commonly used measure of agreement for continuous data

$$\rho_{\text{intraclass}} = \frac{MS_B - MS_W}{MS_B + (n_j - 1)MS_W}$$

 Measures extent to which observations within a treatment are similar to one another relative to observations in different treatments

APA RESULTS

Methods

- Describe statistical and sample size analyses
- Describe factor and its levels
- Results of data screening

Results

- Reporting *F*-test:
 - $F(df_B, df_W) = F$ -statistic, p = / <, measure of association and effect/effect size, power (optional)
- ${\ }^{\bullet}$ Don't need to include MSE (or $MS_{W}\!)$ as Cohen suggests
- Discuss any follow-up tests, if any (next lecture)

EXAMPLE:

Method

"A 1-way ANOVA was used to test the hypothesis that the means of the three groups (Control, Moderate Noise, and Extreme Noise) were different following the experiment. A sample size analysis conducted prior to beginning the study indicated that five participants per group would be sufficient to reject the null hypothesis with at least 80% power if the effect size were moderate (Cohen's f = .95)."

Results

"Results indicated a significant difference among the group means, F(2, 12) = 6.98, p < .01, $\eta^2 = .54$ "

ANOVA VS. MULTIPLE T-TESTS

Why not run series of independent-samples t-tests?

Could, and will usually get same results, but this approach becomes more difficult under 2 conditions:

- Large k
 - k(k-1) / 2 different t-tests!
- Factorial designs

Danger of increased risk of Type I error when conducting multiple *t*-tests on same data set

In next lecture we explain ways to potentially limit this risk