Анализ опасности поражения током в различных электрических сетях

Прямое прикосновение — прикосновение к токоведущим частям:

- *двухфазное прикосновение* одновременное прикосновение к проводникам двух фаз действующей электроустановки
- *однофазное прикосновение* прикосновение к проводнику одной фазы действующей электроустановки

Косвенное прикосновение — прикосновение к нетоковедущим частям электроустановок, оказавшимся под напряжением в результате повреждения изоляции

Виды электрических сетей

Однофазная двухпроводная сеть изолированная от земли

Однофазная двухпроводная сеть с заземленным проводом

Однофазная однопроводная сеть (роль второго провода выполняет земля, рельс и т.д.)

Двухпроводные сети используют для питания малым напряжением (эл. переносной инструмент и т.п.), при более высоких напряжениях — 127 В и выше — для питания сварочных трансформаторов, испытательных установок и др. однофазных потребителей.

Однопроводные сети применяют на электрофицированном транспорте.

Виды электрических сетей

- а) трехфазная трехпроводная сеть с изолированной нейтралью
- б) трехфазная трехпроводная сеть с заземленной нейтралью
- в) трехфазная четырехпроводная сеть с изолированной нейтралью
- г) трехфазная четырехпроводная сеть с заземленной нейтралью

Основные термины

Нейтраль, или нейтральная точка обмотки источника или потребителя энергии — точка, напряжения которой относительно всех внешних выводов обмотки одинаковы по абсолютному значению

Нулевая точка - заземленная нейтральная точка

Глухозаземленная нейтраль — нейтраль, заземленная путем непосредственного присоединения к заземлителю или через малое сопротивление

Нулевой проводник — проводник, присоединенный к нулевой точке **Нейтральный проводник** — проводник, присоединенный к нейтральной точке.

При напряжении до 1000 В в нашей стране применяют в основном:

- трехпроводная сеть с изолированной нейтралью (36, 42, 127, 220, 380 и 660 В);
- четырехпроводная сеть с заземленной нейтралью (220/127, 380/220; 660/380 В).

При напряжениях выше 1000 В:

- трехпроводную с изолированной нейтралью при напряжениях до 35 кВ;
- трехпроводную с заземленной нейтралью, при напряжении 110 кВ и выше.

Буквенное обозначение сетей и систем заземления (ГОСТ 30331.1-2013)

Первая буква характеризует режим нейтрали, вторая – заземление открытых проводящих частей (ОПЧ) или корпуса электроустановки.

Первая буква:

I – изолированная нейтраль

Т – заземленная нейтраль

Вторая буква:

N – ОПЧ (корпус) занулен

Т - ОПЧ (корпус) заземлен

<u>Для обозначения сетей с заземленной нейтралью вводятся последующие буквы, обозначающие функции нулевых проводников:</u>

- S используются раздельно нулевой рабочий (N) и нулевой защитный (PE) проводники;
- С используется общий нулевой проводник (PEN), выполняющий функции защитного и рабочего;
- C-S нулевой проводник (PEN) в части сети разветвляется на рабочий (N) и защитный (PE).

Реальные значения параметров сетей

Активное сопротивление проводов фазы: r_{L1} , $r_{L2, L3}$ =0,01÷0,1 Ом

Сопротивление нулевого провода: r_{PEN} =0,02÷0,2 Ом

Сопротивление заземления нейтрали: r_0 =4 Ом

Сопротивление заземлителей: $R_3 = 1 \div 10 \text{ Om}$

Сопротивление замыкания на землю: $R_{_{3M}}$ =10÷100 Ом

Сопротивление изоляции проводов относительно земли: R_{L1} , L2, L3= $10\div100$ кОм

Емкость фазных проводов относительно земли: $C_{L1, L2, L3}$ =0,1÷1 мкФ

Сопротивление тела человека: R_h =1 кОм

Анализ опасности поражения током в сети IT (нормальный режим работы)

$$\underline{U_{00\prime}} = \frac{\underline{U_1} \cdot \left(\underline{Y_1} + \underline{Y_h}\right) + \underline{U_2} \cdot \underline{Y_2} + \underline{U_3} \cdot \underline{Y_3}}{\underline{Y_1} + \underline{Y_2} + \underline{Y_3} + \underline{Y_h}}$$

$$\underline{U_1} = U_{\phi}; \qquad \underline{U_2} = a^2 U_{\phi}; \qquad \underline{U_3} = a U_{\phi} \qquad \underline{Y_1} = \underline{Y_2} = \underline{Y_3} = \underline{Y} = \frac{1}{\underline{Z}}$$

$$\underline{U_{00'}} = U_{\phi} \frac{\underline{Y} + \underline{Y_h} + a^2 \cdot \underline{Y} + a \cdot \underline{Y}}{3 \cdot \underline{Y} + \underline{Y_h}} = U_{\phi} \frac{\underline{Y_h}}{3 \cdot \underline{Y} + \underline{Y_h}}$$

$$U_h = U_{\Phi} \frac{3 \cdot \underline{Y} + \underline{Y_h} - \underline{Y_h}}{3 \cdot \underline{Y} + \underline{Y_h}} = U_{\Phi} \frac{3 \cdot \underline{Y}}{3 \cdot \underline{Y} + \underline{Y_h}} = U_{\Phi} \frac{\frac{3}{\underline{Z}}}{\underline{Z}} + \frac{1}{\underline{Z}_h} = U_{\Phi} \frac{\underline{Z_h}}{\underline{Z_h} + \frac{Z}{3}}$$

Анализ опасности поражения током в сети IT (нормальный режим работы)

$$I_h = \frac{U_{\Phi}}{R_h + \frac{Z}{3}}$$

$$I_h = \frac{220}{1000 + \frac{63000}{3}} = 10 \text{ MA}$$

Анализ опасности поражения током в сети IT (аварийный режим работы)

Анализ опасности поражения током в сети IT (аварийный режим работы)

Анализ опасности поражения током в сети TN-C (нормальный режим работы)

Анализ опасности поражения током в сети TN-C (аварийный режим работы)

1) Если $r_{_{3M}}=0$

2) Если r₀=0

$$I_h = \frac{U_{\phi} \cdot \sqrt{3}}{R_h}$$

$$I_h = \frac{U_{\phi}}{R_h}$$

Таким образом:

$$\frac{U_{\Phi}}{R_h} \le I_h \le \frac{U_{\Phi} \cdot \sqrt{3}}{R_h}$$

Анализ опасности поражения током в сети TN-C (аварийный режим работы)

$$I_{\rm \tiny 3M} = \frac{U_{\rm \scriptsize \varphi}}{r_{\rm \tiny 3M} + r_{\rm \scriptsize \scriptsize 0}}$$

$$U_{\scriptscriptstyle \mathrm{3M}} = I_{\scriptscriptstyle \mathrm{3M}} \cdot R_{\scriptscriptstyle \mathrm{3M}}$$

$$I_h = \frac{U_{\text{3M}}}{R_h}$$

Анализ опасности поражения током в сети TN-C (аварийный режим работы)

$$I_{\rm 3M} = \frac{U_{\rm \phi}}{r_{\rm 3M} + r_{\rm 0}}$$

$$U_0 = I_{\rm 3M} \cdot r_0$$

$$I_h = \frac{U_0}{R_h}$$