logistic regression: cost (loss function)

$$J(\theta) = -\left[\frac{1}{n} \sum_{i=1}^{n} y^{(i)} log(f(x^{(i)}, \theta)) + (1 - y^{(i)}) log(1 - f(x^{(i)}, \theta))\right]$$

We know that $y^{(i)}$ is either 0 or 1. If $y^{(i)}=1$ then the cost function J(heta) is incremented by

$$-log(f(x^{(i)}, \theta)).$$

Similarly, if $y^{(i)}=0$ then the cost function J(heta) is incremented by

$$-log(1-f(x^{(i)}, heta)).$$

logistic regression: cost (loss function)

- replace cost function by piecewise linear function
- if y = 1 then the contribution to the cost is

$$k_1(f(x,\theta)) = max(0, 1 - f(x,\theta))$$

- replace cost function by piecewise linear function
- o if y = 0 then the contribution to the cost is

$$k_0(f(x,\theta)) = max(0, 1 + f(x,\theta))$$

Fit a linear model

$$f(x, \theta) = \theta' x$$

such that

$$J(\theta) = \left[C \sum_{i=1}^{n} y^{(i)} k_1(\theta' x^{(i)}) + (1 - y^{(i)}) k_0(\theta' x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{m} \theta_j^2$$

with $k_1(heta'x) = max(0,1- heta'x)$ and $k_0(heta'x) = max(0,1+ heta'x)$

is minimized.

- In this case the contribution to the cost needs to be small when the model predicts high values (>0) and large when the model predicts low values (<0).
- For SVMs we see that the contribution to cost decreases linearly and becomes zero when

$$\theta'x \geq 1$$

- In this case the contribution to the cost needs to be large when the model predicts high values (>0) and small when the model predicts low values (<0).
- For SVMs we see that the contribution to the cost is zero for

$$\theta'x \leq -1$$

and then increases linearly.

$$J(\theta) = \left[C \sum_{i=1}^{n} y^{(i)} k_1(\theta' x^{(i)}) + (1 - y^{(i)}) k_0(\theta' x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{m} \theta_j^2$$

- Consider a train set with two classes that are perfectly linearly separable.
- The piecewise cost function can be made zero.
- The SVM objective can be written as

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{m} \theta_j^2$$
subject to $\theta' x^{(i)} \ge 1$ if $y^{(i)} = 1$

$$\theta' x^{(i)} \le -1$$
 if $y^{(i)} = 0$

Support vector machine: large margin classifier

Support vector machine: large margin classifier

- \circ red points statisfy $\theta' x^{(i)} \geq 1$
- \circ blue points satisfy $\theta' x^{(i)} \leq -1$
- o distance bewteen two dashed lines is

$$\frac{2}{\sqrt{\sum_{j=1}^m \theta_j^2}}$$

SVM objective was

$$\min_{ heta} rac{1}{2} \sum_{j=1}^m heta_j^2$$

Support vector machine: soft margin

$$\theta' x^{(i)} \ge 1 \text{ if } y^{(i)} = 1$$

 $\theta' x^{(i)} \le -1 \text{ if } y^{(i)} = 0$

Support vector machine: soft margin

Support vector machine: soft margin

Support vector machine: regularization hyperparameter

Support vector machine: kernels

Support vector machine: kernels

SVMs can also be formulated as a linear function of the samples (dual form) instead of the features as

$$f(x,\theta) = \sum_{i=1}^{n} \theta_i(x \cdot x^{(i)}) + \theta_0$$

that can be reformulated as a non-linear function using what is known as a kernel function

$$K(x^{(i)}, x^{(j)})$$

to become

$$f(x,\theta) = \sum_{i=1}^{n} \theta_i K(x, x^{(i)}) + \theta_0$$

The data points $x^{(i)}$ for which $\theta_i > 0$ are called the support vectors.

Support vector machine: polynomial kernel

$$f(x,\theta) = \sum_{i=1}^{n} \theta_i K(x, x^{(i)}) + \theta_0$$

$$K(x^{(i)}, x^{(j)}) = (x^{(i)} \cdot x^{(j)} + c)^d$$

Support vector machine: polynomial kernel

Support vector machine: RBF kernel

$$f(x,\theta) = \sum_{i=1}^{n} \theta_i K(x, x^{(i)}) + \theta_0$$

$$K(x^{(i)}, x^{(j)}) = \exp\left[-\frac{\|x^{(i)} - x^{(j)}\|^2}{2\sigma^2}\right]$$

Support vector machine: kernels

