Kernel Node Embeddings

Abdulkadir Çelikkanat and Fragkiskos D. Malliaros

CentraleSupélec, Inria, Université Paris-Saclay

Introduction

- Network representation learning (NRL) aims to encode the structure of a network into low-dimensional vectors
- Applications in network analysis: visualization, classification, community detection and link prediction
- In this work:
- We propose a novel approach for learning node embeddings by incorporating kernel functions with models relying on weighted matrix factorization
- We perform extensive performance evaluation of the proposed method in two downstream tasks

Figure: Schematic representation of node embeddings

Proposed Approach

• We define the general objective function of our problem as a weighted matrix factorization:

$$\arg\min_{\mathbf{A},\mathbf{B}} \frac{1}{2} \left\| \mathbf{W} \odot (\mathbf{M} - \mathbf{A} \mathbf{B}^{\top}) \right\|_{F}^{2} \tag{1}$$

• By setting each term $W_{v,u}$ as the square root of the number of occurrences of u in the contexts of v, the objective in (1) becomes:

$$\underset{\mathbf{A},\mathbf{B}}{\operatorname{arg min}} \frac{1}{2} \left\| \sqrt{\mathbf{F}} \odot \left(\mathbf{M} - \mathbf{A} \mathbf{B}^{\top} \right) \right\|_{F}^{2}$$

$$= \underset{\mathbf{A},\mathbf{B}}{\operatorname{arg min}} \frac{1}{2} \sum_{v \in \mathcal{V}} \sum_{u \in \mathcal{V}} \mathbf{F}_{v,u} \left(\mathbf{M}_{v,u} - \langle \mathbf{A}_{v,:}, \mathbf{B}_{u,:} \rangle \right)^{2}$$

$$= \underset{\mathbf{A},\mathbf{B}}{\operatorname{arg min}} \frac{1}{2} \sum_{w \in \mathcal{W}} \sum_{w_{l} \in \boldsymbol{w}} \sum_{u \in \mathcal{V}} \left(\mathbf{M}_{w_{l},u}^{\mathbf{w}} - \langle \mathbf{A}_{w_{l},:}, \mathbf{B}_{u,:} \rangle \right)^{2}$$
(2)

- $\circ \mathbf{M}_{v,u}$ represents if u appears in the context of v in any walk
- $\circ \mathbf{F}_{v,u}$ is the number of occurrences of u in the contexts of v

$$(v_1, v_3, v_5, v_4, v_7, v_6, v_3) \longrightarrow (v_1, v_3, v_5, v_4, v_7, v_6, v_3)$$

Figure: Illustration of context and center nodes

Figure: Generation of random walks

• The inner product in Eq. (2) can be expressed in the feature space as follows:

$$\underset{\mathbf{A},\mathbf{B}}{\operatorname{arg \,min}} \frac{1}{2} \sum_{\mathbf{w} \in \mathcal{W}} \sum_{w_l \in \mathbf{w}} \sum_{u \in \mathcal{V}} \left(\mathbf{M}_{w_l,u}^{\mathbf{w}} - \langle \Phi(\mathbf{A}_{w_l,:}), \Phi(\mathbf{B}_{u,:}) \rangle \right)^2$$

$$= \underset{\mathbf{A},\mathbf{B}}{\operatorname{arg \,min}} \frac{1}{2} \sum_{\mathbf{w} \in \mathcal{W}} \sum_{w_l \in \mathbf{w}} \sum_{u \in \mathcal{V}} \left(\mathbf{M}_{w_l,u}^{\mathbf{w}} - \kappa(\mathbf{A}_{w_l,:}, \mathbf{B}_{u,:}) \right)^2$$

• We use the following universal kernels [1, 2] in our evaluation:

$$\kappa_G(x,y) = \exp\left(\frac{-\|x-y\|^2}{\sigma^2}\right) \quad \kappa_S(x,y) = \frac{1}{(1+\|x-y\|^2)^{\alpha}}$$

Experimenal Setup

- For optimization, we employ Stochastic Gradient Descent (SGD)
- We apply negative sampling: k negative instances u^- are sampled from the noise distribution p^- for each context node u^+ :

$$\left(1 - \kappa(\mathbf{A}_{v,:}, \mathbf{B}_{u^+,:})\right)^2 + \sum_{u^- \sim p^-} \left(\kappa(\mathbf{A}_{v,:}, \mathbf{B}_{u^-,:})\right)^2.$$

• We use logistic regression with L_2 regularization

	$ \mathcal{V} $	$ \mathcal{E} $	$ \mathcal{K} $	$ \mathcal{C} $	Avg. Degree	Type
CiteSeer	3,312	4,660	6	438	2.814	Citation
Cora	2,708	5,278	7	78	3.898	Citation
DBLP	27,199	66,832	4	2,115	4.914	Co-authorship
AstroPh	17,903	19,7031	_	1	22.010	Collaboration
HepTh	8,638	24,827	-	1	5.7483	Collaboration
Facebook	4,039	88,234	-	1	43.6910	Social
Gnutella	8,104	26,008	_	1	6.4186	Peer-to-peer

Table: Statistics of networks used in the experiments. $|\mathcal{V}|$: number of nodes, $|\mathcal{E}|$: number of edges, $|\mathcal{K}|$: number of labels and $|\mathcal{C}|$: number of connected components.

Numerical Tests

	2%	4%	6%	8%	10%	30%	50%	70 %	90%
DEEPWALK	0.416	0.460	0.489	0.505	0.517	0.566	0.584	0.595	0.592
Node2Vec	0.450	0.491	0.517	0.530	0.541	0.585	0.597	0.601	0.599
LINE	0.323	0.387	0.423	0.451	0.466	0.532	0.551	0.560	0.564
HOPE	0.196	0.205	0.210	0.204	0.219	0.256	0.277	0.299	0.320
NETMF	0.451	0.496	0.526	0.540	0.552	0.590	0.603	0.604	0.608
Gauss	0.479	0.514	0.535	0.548	0.560	0.603	0.615	0.623	0.630
SCH	0.482	0.519	0.538	0.552	0.561	0.599	0.613	0.620	0.627
2011	33.53								
			(a)	CiteS	eer				
	2%	4%	(a) 6%	CiteS 8%	eer 10%	30%	50%	70%	90%
DEEPWALK			· /	8%	10%	30% 0.626		70% 0.628	90% 0.633
			6%	8%	10% 0.613		0.628		
DEEPWALK	0.545	0.585	6% 0.600	8% 0.608	10% 0.613 0.622	0.626 0.636	0.628	0.628 0.639	0.633
DEEPWALK NODE2VEC	0.545	0.585 0.600	6% 0.600 0.611	8% 0.608 0.619	10% 0.613 0.622	0.626 0.636	0.628 0.638	0.628 0.639	0.633 0.639

(b) DBLP

Table: Micro- F_1 scores for the node classification task

GAUSS 0.611 0.621 0.626 0.628 0.630 0.637 0.641 0.642 0.644

SCH 0.610 0.616 0.622 0.624 0.625 0.633 0.636 0.637 0.638

		DEEPWALK	Node2Vec	LINE	HOPE	NETMF	GAUSS	SCH
Cite	eSecer	0.837	0.762	0.557	0.756	0.742	0.886	0.875
	Cora	0.778	0.724	0.554	0.728	0.755	0.819	0.814
-	DBLP	0.944	0.905	0.590	0.930	0.930	0.963	0.958
A	stroPh	0.960	0.935	0.679	0.967	0.897	0.978	0.970
I	HepTh	0.897	0.830	0.633	0.875	0.882	0.920	0.915
Fac	ebook	0.983	0.988	0.696	0.980	0.987	0.987	0.987
Gı	nutella	0.680	0.498	0.702	0.599	0.651	0.766	0.677

Table: Area Under Curve (AUC) scores for the link prediction task

Parameter Sensitivity

Figure: Dimension size

Figure: Kernel parameters

References

- [1] C. A. Micchelli et al., "Universal kernels," J. Mach. Learn. Res., vol. 7, 2006.
- [2] I. Steinwart, "On the influence of the kernel on the consistency of support vector machines," *J. Mach. Learn. Res.*, vol. 2, 2002.
- [3] D. Zhang *et al.*, "Network representation learning: A survey," *IEEE Transactions on Big Data*, 2018.