Content

Opening

Part I. Satellite Image Time Series

Time Series

Time Series Classification

Part II. Deep learning for SITS

Introduction

Convolutional Neural Networks

Recurrent Neural Networks

Attention-based architectures

Closing remarks

From Machine Learning to Deep Learning

Features are extracted automatically in deep learning

Satellite image time series

From Machine Learning to Deep Learning

Features are extracted automatically in deep learning

Satellite image time series

Architecture design is the new feature engineering! One needs to choose

- the type of network,
- the number of layers (depth)
- the number of units per layer (width)
- the learning strategy (optimizer, learning rate)
- ♦ etc.

How to train a network?

Training a network = finding parameter values that minimize the cost function

$$y = g\left(\sum_{i} \omega_{i} \cdot x_{i} + b\right)$$
$$y = g(w^{T}x + b)$$

$$y = q(w^T x + b)$$

How to train a network?

Training a network = finding parameter values that minimize the cost function

1. Forward step: estimate the cost function

How to train a network?

Training a network = finding parameter values that minimize the cost function

2. Backward step: update the parameter values through gradient descent

A. Convolutional Neural Networks

Convolution for images

The convolution is a common image processing techniques for images and signals.

The result of applying a convolution filter (here an edge detection filter) on a Sentinel-2 image.

Convolution for time series

How it works?

The result of applying an edge detection on a time series:

Convolution for time series

How it works?

The result of applying an edge detection on a time series:

♦ A convolution (actually a cross-correlation) between a time series x and a filter w at instant t can be expressed as: $(x * w)(t) = \sum_{i+j=t} x_i \cdot w_j$

Convolution for time series

How it works?

The result of applying an edge detection on a time series:

- ♦ A convolution (actually a cross-correlation) between a time series x and a filter w at instant t can be expressed as: $(x * w)(t) = \sum_{i+j=t} x_i \cdot w_j$
- Hyperparameters: (i) filter size, (ii) stride, and (iii) padding

Convolutional Neural Networks

- Learn the weight of the convolution filter during the network training
- Stack several convolution layers
 - first convolution layers extract simple features such as edges
 - ♦ last convolution layers extract more complex features

LeNet architecture [1]

^[1] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11), 2278-2324.

CNN in remote sensing

Temporal Convolutional Neural Networks (TempCNN) [1]

- ⋄ fixed filter size
- no pooling layers between convolutional layers

[1] Pelletier, C., Webb, G. I., & Petitjean F. (2019). Temporal convolutional neural network for the classification of satellite image time series. *Remote Sensing*, 11(5), 523.

B. Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are intrinsically designed for sequence data:

- able to explicitly consider the temporal correlation of the data
- state-of-the-art architectures for forecasting tasks

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are intrinsically designed for sequence data:

- able to explicitly consider the temporal correlation of the data
- state-of-the-art architectures for forecasting tasks

A recurrent cell: at each timestamp t,

- \diamond the state of the recurrent cell is affected by past information h_{t-1} and the current time-series element x_t
- \diamond (W_x , W_h , b_h) are the trainable weights and bias learned with backpropagation through time

$$h_t = \tanh(W_x X_t + W_h h_{t-1} + b_h)$$

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are intrinsically designed for sequence data:

- able to explicitly consider the temporal correlation of the data
- state-of-the-art architectures for forecasting tasks

A recurrent cell: at each timestamp t,

- \diamond the state of the recurrent cell is affected by past information h_{t-1} and the current time-series element x_t
- \diamond (W_x , W_h , b_h) are the trainable weights and bias learned with backpropagation through time

$$h_t = \tanh(W_x X_t + W_h h_{t-1} + b_h)$$

RNNs are good at

- considering past (possibly future) information during computations
- considering time series of different lengths
- sharing weights across time

but they are slow to train due to backpropagation through time, and fail to extract long temporal dependencies

C. Attention-based architectures

Transformers

Attention mechanisms were initially proposed by [1], they become popular with Transformers in 2017 [2]

- make the most of GPU
- ♦ encoder-decoder architecture similar to RNNs
- develop for language translation or sentence generation

[1] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

[2] Waswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L & Polosukhin, I. (2017). Attention is all you need. In *Conference on Neural Information Processing Systems (NIPS)*

Attention mechanism

Objective: focusing on the relevant elements of the time series

- \diamond Given values $v \in \mathbb{R}^{L}$ as a sequence of observations .
- We want to calculate an output h based only on classification-relevant observations.
- \diamond This is realized by a weighted sum over **attention scores** $\alpha \in \mathbb{R}^{l}$.

$$\mathbf{h} = \operatorname{Attention}(\mathbf{\alpha}, \mathbf{v}) = \mathbf{\alpha}^{\mathsf{T}} \mathbf{v} = \sum_{t=1}^{L} \alpha_t \mathsf{v}_t,$$

$$\mathbf{\alpha} \in [0, 1]^L, \mathbf{v} \in \mathbb{R}^L$$

Attention mechanism

Objective: focusing on the relevant elements of the time series

- \diamond Given values $v \in \mathbb{R}^{L}$ as a sequence of observations .
- We want to calculate an output h based only on classification-relevant observations.
- \diamond This is realized by a weighted sum over attention scores $\alpha \in \mathbb{R}^{l}$.

$$\mathbf{H} = \operatorname{Attention}(\mathbf{A}, \mathbf{V}) = \mathbf{A}^{\mathsf{T}} \mathbf{V}, \quad \mathbf{A} \in [0, 1]^{L \times L}, \mathbf{V} \in \mathbb{R}^{L \times D_{\mathbf{V}}}$$

where D_{v} is the dimension of the time series v.

How to compute the attention scores?

 \diamond We calculate scores from one query $\mathbf{q} \in \mathbb{R}^{D_k}$ and L keys $\mathbf{K} = (\mathbf{k}_t)_{t \in [1,L]} \in \mathbb{R}^{L \times D_k}$

$$\alpha_t(\mathbf{q}, \mathbf{K}) = \frac{\exp\left(sim(\mathbf{q}, \mathbf{k}_t)\right)}{\sum_{\tau=1}^{L} \exp\left(sim(\mathbf{q}, \mathbf{k}_{\tau})\right)}$$

- ♦ The query q provides a semantic context that is compared to a key k_t for each sequence element t using a similarity measure sim.
- \diamond The softmax normalization $\frac{\exp(\cdot)}{\sum \exp(\cdot)}$ ensures that $\sum_{t=1}^{l} \alpha_t = 1$.

How to compute the attention scores?

 \diamond We calculate scores from one query $\mathbf{q} \in \mathbb{R}^{D_k}$ and L keys $\mathbf{K} = (\mathbf{k}_t)_{t \in [1,L]} \in \mathbb{R}^{L \times D_k}$

$$\alpha_t(\mathbf{q}, \mathbf{K}) = \frac{\exp\left(sim(\mathbf{q}, \mathbf{k}_t)\right)}{\sum_{\tau=1}^{L} \exp\left(sim(\mathbf{q}, \mathbf{k}_{\tau})\right)}$$

- ♦ The query q provides a semantic context that is compared to a key k_t for each sequence element t using a similarity measure sim.
- \diamond The softmax normalization $\frac{\exp(\cdot)}{\sum \exp(\cdot)}$ ensures that $\sum_{t=1}^{L} \alpha_t = 1$.

A variety of similarity measures:

cosine distance [1]
$$sim(\mathbf{q}, \mathbf{k}) = \frac{\mathbf{q}^{\mathsf{T}} \mathbf{k}}{\|\mathbf{q}\|_2 \|\mathbf{k}\|_2}$$
 dot-product [2] $sim(\mathbf{q}, \mathbf{k}) = \mathbf{q}^{\mathsf{T}} \mathbf{k}$ scaled dot-product [3] $sim(\mathbf{q}, \mathbf{k}) = \frac{\mathbf{q}^{\mathsf{T}} \mathbf{k}}{\sqrt{D_k}}$

Dot-Product Attention on Word Embeddings

Text example

- ♦ Each word is embedded into a 300-dimensional semantic Glove Vector,
 - e.g., $\mathbf{e}_{\text{structure}} = E(\text{"structure"}) \in \mathbb{R}^{300}$.
- Embeddings of two query words "structure" and "chaos" are compared to a sentence of keys "life is what happens when you are busy making other plans"

Core idea:

If two words point in the same direction ($\theta \approx 0$) attention is high.

Self-attention

How to determine the values, keys, and queries?

Attention
$$(K, Q, V) = \operatorname{softmax} \left(Q^{\mathsf{T}} K \right) V,$$

$$V \in \mathbb{R}^{L \times D_V}, Q, K \in \mathbb{R}^{D_k \times L}, A \in \mathbb{R}^{L \times L}$$

Self-attention

How to determine the values, keys, and queries?

 \diamond the self-attention mechanism uses linear projection of the input sequences X

$$\begin{split} \text{Attention}(\textit{K}, \textit{Q}, \textit{V}) &= \overbrace{\text{softmax}\left(\textit{Q}^\mathsf{T}\textit{K}\right)}^{\textit{A}^\mathsf{T}}\textit{V}, \\ \textit{V} &\in \mathbb{R}^{L \times D_{\textit{V}}}, \textit{Q}, \textit{K} \in \mathbb{R}^{D_{\textit{R}} \times L}, \textit{A} \in \mathbb{R}^{L \times L} \\ \text{Self-Attention}_{\textit{W}}(\textit{X}) &= \text{Attention}(\textit{XW}_{\textit{K}}, \textit{XW}_{\textit{Q}}, \textit{XW}_{\textit{V}}) \\ &= \text{softmax}\Big(\left(\textit{XW}_{\textit{Q}}\right)^\mathsf{T}\left(\textit{XW}_{\textit{K}}\right)\Big)\Big(\textit{XW}_{\textit{V}}\Big) \end{aligned}$$

Self-attention

How to determine the values, keys, and queries?

 \diamond the self-attention mechanism uses linear projection of the input sequences X

$$K V \longrightarrow A^{\mathsf{T}} \longrightarrow XW_{\mathsf{K}} \longrightarrow XW_{\mathsf{V}} \longrightarrow V \longrightarrow V \oplus \mathbb{R}^{L \times D_{\mathsf{V}}}, Q, K \in \mathbb{R}^{D_{\mathsf{R}} \times L}, A \in \mathbb{R}^{L \times L} \longrightarrow V \oplus XW_{\mathsf{V}} \longrightarrow V \oplus XW_$$

Self-attention is usually applied in parallel heads, which is known as multi-head attention.

Transformers encoder

The Transformers are composed of encoder blocks that map a D-dimensional input times series X of length L into a higher-level representation $H \in \mathbb{R}^{L \times D}$. Each block is composed of:

- 1. multi-head attention that mixes dimension L
- 2. feed-forward networks (convolutions of size 1 \times 1) that mixes dimension D

A block also includes skip connections and normalization.

Transformers in remote sensing

In SITS classification, we want to **predict one label** per time series, not a sequence of words as in sentence translation or generation.

 \Rightarrow No need to compute the full attention matrix

Transformers in remote sensing

In SITS classification, we want to **predict one label** per time series, not a sequence of words as in sentence translation or generation.

⇒ No need to compute the full attention matrix

Want to learn more?

- ♦ Join us on Monday at 2 pm.
- Loic Landrieux will discuss Temporal Attention For SITS in the special session on Satellite image time series analysis.

[1] Sainte Fare Garnot, V., & Landrieu, L. (2020, September). Lightweight temporal self-attention for classifying satellite images time series. In *International Workshop on Advanced Analytics and Learning on Temporal Data* (pp. 171-181). Springer, Cham.

Notebooks

Let us now move to the second notebook to put into practice deep learning for satellite image time series

Notebook 2: End-to-End Learning

Link for the notebooks: https://tinyurl.com/isprs2022