Отчет по лабораторной работе №5: Аппроксимация функции

Чигарев Дмитрий 381807-1

1. Исходные данные

x	0.351	0.664	0.978	1.291	1.605	1.918	2.232	2.546	2.859
у	0.605	0.265	0.064	0.116	0.415	0.728	1.673	3.138	5.092

Задана табличная функция y = f(x), требуется найти функцию F(x, p) наилучшим образом её аппроксимирующую:

$$\min_{p \in R^k} ||f(x) - F(x, p)||$$
 (1)

В качестве функций F(x, p) предложено использовать следующие варианты:

1)
$$y = ax^{2} + bx + c$$

2) $y = \frac{a}{x^{2}} + \frac{b}{x} + c$
3) $y = bx^{a} + c$
4) $y = be^{ax} + c$
5) $y = \frac{b}{x + a} + c$
6) $y = ax + be^{-x} + c$
7) $y = \frac{a}{x} + be^{x} + c$
8) $y = a\ln x + be^{x} + c$
9) $y = b\exp(-a(x + c)^{2}) + c$
10) $y = a\sqrt{x} + b\sin x + c$

2. SciLab datafit

SciLab имеет встроенную функцию datafit, которую можно использовать для аппроксимации функций. Метод принимает на вход функцию отклонения $G(p,x,y)\coloneqq y-F(x,p)$, таблично заданную функцию [x;y] и отыскивает вектор p путем минимизации следующей суммы неким не задокументированным способом:

$$\sum_{i=1}^{n} G(p, x_i, y_i)^{T} * G(p, x_i, y_i)$$

Запустим метод для 10 представленных функций и нарисуем, какие функции F(x,p) мы получили:

Помимо найденного вектора p метод возвращает среднее отклонение F(x,p) от f(x)

Функция	Невязка	std невязки	Datafit error	Коэффициенты
1	0.3001609	0.1937011	1.826231e-01	1.6159313
				-3.5713519
				1.8543995
2	10.589244	1.1505023	1.084704e+00	1.8548665
				-6.7461345
				4.9918623
3	0.2803654	0.1872049	1.764985e-01	5.0417897
				0.0248264
				0.2121952
4	0.4422643	0.2351234	2.216765e-01	1.9659115
				0.0184186
				0.1207107
5	8.7990524	1.0486536	9.887732e-01	20.087452
				-725.50576
				34.849521
6	1.2280867	0.3918046	3.693969e-01	4.7467913
				12.913721
				-9.8047619
7	0.3685086	0.2146243	2.023497e-01	0.7468319
				0.3725364
				-1.8836816

8	0.1070554	0.1156803	1.090644e-01	-1.2607352
				0.432039
				-1.2057716
9	22.617770	1.6808880	1.585271e+00	1.7350857
				-370.54299
				1.5030636
10	0.2665145	0.1825221	1.720835e-01	3.5257753
				-4.3356736
				0.0928693

Из полученных данных видно, что лучшее приближение дает 8-я по счету модель:

$$F(x, a, b, c) = alog(x) + be^{x} + c$$

Её можно выразить как линейную комбинацию некоторых базисных функций:

$$F(x,p) = \sum_{i=1}^{3} p_i g_i(x)$$
$$g_1(x) = \log(x)$$
$$g_2(x) = e^x$$
$$g_3(x) = 1$$

Оптимальное значения для коэффициентов можно получить, решив СЛАУ, задающую ограничение (1). Полученная СЛАУ будет выглядеть следующим образом:

$$\begin{cases} a\langle \log(x_1)|\log(x_1)\rangle + b\langle e^{x_1}|\log(x_1)\rangle + c\langle 1|\log(x_1)\rangle = \langle \log(x_1)|y_1\rangle \\ a\langle \log(x_2)|e^{x_2}\rangle + b\langle e^{x_2}|e^{x_2}\rangle + c\langle 1|e^{x_2}\rangle = \langle e^{x_2}|y_2\rangle \\ a\langle \log(x_3)|1\rangle + b\langle e^{x_3}|1\rangle + c\langle 1|1\rangle = \langle 1|y_3\rangle \end{cases}$$

Сформируем систему и решим её встроенным в SciLab методом linsolve:

```
>>> [A, b] = build system(bias_fn, X, Y)
>>> p = linsolve(A, -b)
>>> disp("Оптимальные параметры для модели 8:", p)

"Оптимальные параметры для модели 8:"
-1.260735569618991
0.43203908137157
-1.205771896320093
```

Посчитаем ошибку аппроксимации для полученной модели:

```
>>> predicted_vals = error_fn(p, [X; Y])
>>> disp("Значение невязок в исходных точках:", predicted_vals' * predicted_vals)
>>> disp("Средне-квадратичное отклонение ошибки:", stdev(predicted_vals))

"Значение невязок в исходных точках:"

0.1070554

"Средне-квадратичное отклонение ошибки:"

0.1156803
```

Приложения

1. Ссылка на исходный код: https://github.com/proxodilka/numerical-analysis-labs/blob/master/lab5 approximation/lab5.sce