"计算机组织结构"作业 03 参考答案

1. 计算机系统包含容量为 32K×16 位的主存,按字编址,每字 16 位。Cache 采用 4 路组关联的映射方式,数据区大小为 4K 字,主存块大小为 64 字。假设 Cache 初始时是空的,处理器顺序地从存储单元(每个存储单元中包含 1 个字)0,1,…,4351 中取数,然后再重复这一顺序 9 次,并且 Cache 的速度是主存的 10 倍,同时假设块替换用 LRU 算法。请说明使用 Cache 后的速度为原来的多少倍(精度:小数点后 1 位)。

主存地址为:标记5,组号4,块内地址6

4352/64=68,即在前 68 块中操作 10 次,第一个轮回 68 次全部未命中,第二个轮回 0,1,2,3 四个组分别有编号未命中,未命中号为: 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51,64,65,66,67 共 20 次(因为只有四路,所以读取 $64^{\sim}67$ 的时候替换 0,1,2,3 那一路,下一次读取 0,1,2,3 的时候因为是 LRU 就去替换 $16^{\sim}19$ 那一路。以下 类 推 , 轮 番 替 换 , 所 以 上 面 这 20 个 数 是 永 远 未 命 中 的) 得 命 中 率 为 P=(4352*10-68-20*9)/43520=99.43%

设 cache 的读取时间为 T,则主存的读取时间为 10T,则使用缓存后,系统效率提高到原来的 N 倍, N 为: N= 10T/(T+10*0.0057T)=9.5

2. 考虑一个每行 16 个字节的 4 行 Cache, 主存按每块 16 个字节划分, 即块 0 有地址 0 到 15 的 16 个字节, 等等。先考虑以程序, 它以如下地址顺序访问主存:

一次: 63~70

循环 10 次: 15~32, 80~95

- (a) 假设 Cache 组织成直接映射式。块 0、4、…指派到行 0,块 1、5、…指派到行 1,如此类推。请计算命中率(形式:小数,非百分数;精度:小数点后 3 位)。
- (b) 假设 Cache 组织成两路组关联映射式,共有两组,每组两行。偶序号块指派到组 0, 奇序号块指派到组 1。使用 LRU 替换策略,请计算命中率(形式:小数,非百分数; 精度:小数点后 3 位)。
- (a) 一次有 63,64 未命中,循环第一次有 15,16,32,80 未命中,以后 9 次有 16,80 未命中,所以命中率 P=(8+18*10+16*10-2-4-2*9)/348=0.931 [张鹤腾,121250206] (b) 前面一样,后 9 次循环都命中,所以 P=(348-6)/348=0.983
- 3. 考虑一个存取时间为 1ns 和命中率 H=0.95 的 L1 Cache。假设我们修改了此 Cache 的设计(Cache 的容量、组织),从而是命中率提升到 0.97,但也使存取时间增大到 1.5ns。如果要使得新设计能导致性能改善,cache 的速度必须是贮存的多少倍以上(精度:整数)?

设主存速度为 cache 的 1/T 倍,则主存读写所耗为 Tns,必须满足: T*(1-0.95)+1>T*(1-0.97)+1.5 算得 T>25,即 cache 的速度需要是主存的 25 倍以上。

- 4. 假设主存中的 5 个块 {1, 2, 3, 4, 5} 映射到 cache 的同一组,对于主存块访问地址流 {1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5}, 计算以下情况下的命中率(形式:小数,非百分数;精度:小数点后 3 位):
 - a) 采用 3-路组关联和 LRU 算法

- b) 采用 4-路组关联和 LRU 算法
- c) 采用 5-路组关联和 LRU 算法
- d) 采用 3-路组关联和 FIFO 算法
- e) 采用 4-路组关联和 FIFO 算法
- f) 采用 5-路组关联和 FIFO 算法

LRU 算法

3-路

1	1	1	4	4	4	5	5	5	3	3	3
	2	2	2	1	1	1	1	1	1	4	4
		3	3	3	2	2	2	2	2	2	5

P=2/12=1/6=0.167

4-路

1	1	1	1	1	1	1	1	1	1	1	5
	2	2	2	2	2	2	2	2	2	2	2
		3	3	3	3	5	5	5	5	4	4
			4	4	4	4	4	4	3	3	3

P=4/12=1/3=0.333

5-路

1	1	1	1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2	2	2	2
		3	3	3	3	3	3	3	3	3	3
			4	4	4	4	4	4	4	4	4
						5	5	5	5	5	5

P=7/12=0.583

FIF0 算法

3-路

1	1	1	4	4	4	5	5	5	5	5	5
	2	2	2	1	1	1	1	1	3	3	3
		3	3	3	2	2	2	2	2	4	4

P=3/12=0.25

4-路

1	1	1	1	1	1	5	5	5	5	4	4
	2	2	2	2	2	2	1	1	1	1	5
		3	3	3	3	3	3	2	2	2	2
			4	4	4	4	4	4	3	3	3

P=2/12=1/6=0.167

5-路

1	1	1	1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2	2	2	2
		3	3	3	3	3	3	3	3	3	3

	4	4	4	4	4	4	4	4	4
				5	5	5	5	5	5

P=7/12=0.583

5. 假设某处理器的时钟频率为 1. 2GHz, 当 L1 cache 无缺失时的 CPI 为 1 (即 CPU 可以快速地从 L1 cache 中读取指令,并在 1 个时钟周期内完成)。访问一次主存的时间为 100ns (包括所有缺失处理), L1 cache 的局部缺失率为 2%。若增加一个 L2 cache,并假定 L2 cache 的访问时间为 5ns,而且其容量足够大到使全局缺失率仅为 0.5%。分析增加 L2 cache 后处理器执行程序的效率为原来的多少倍 (精度:小数点后 3 位)?

CPU 时钟周期为 1/1. 2GHZ=0. 833ns 未增加 L2 时读一条指令平均耗时: T1=5/6+100*2%=2. 833ns 增加 L2 后: T2=5/6ns+2%*5ns+100*0. 5%ns=1. 433ns 则效率提高到了原来的 T1/T2=1. 977 倍

6. 某计算机的主存地址空间为 256MB, 按字节编址, 指令 Cache 分离, 均有 8 个 Cache 行, 每个 Cache 行的大小为 64MB, 数据 Cache 采用直接映射方式, 现有两个功能相同的程序 A 和 B, 其伪代码如下所示:

```
程序 A:
                                           程序 B:
int a[256][256];
                                           int a[256][256];
. . . . . .
                                           . . . . . .
int sum array 1() {
                                           int sum_array 2() {
  int i, j, sum=0;
                                             int i, j, sum=0;
  for (i=0; i<256; i++)
                                             for (j=0; j<256; j++)
  for (j=0; j<256; j++)
                                             for (i=0; i<256; i++)
       sum +=a[i][j];
                                                sum +=a[i][j];
   return sum;
                                             return sum;
```

假定int类型数据用32位补码表示,程序编译时i、j、sum均分配在寄存器中,数组a的首地址为320(十进制)。

- a) 若不考虑用于 Cache 一致维护和替换算法的控制位,则数据 Cache 的总容量为多少 (单位:字节)?
- b) 数组元素 a[0][31]和 a[1][1]各自所在的主存块对应的 Cache 行号分别是多少 (Cache 行号从 0 开始)?
- c) 程序 A 和 B 的数据访问命中率各是多少(形式:小数,非百分数;精度:小数点后 3 位)?
- a) 数据 Cache 有 8 个行,每个行为 64B,所以总容量为 64B*8=512B
- b) 内存大小为 256MB, 按字节寻址, 所以地址为 28 位; 每个块大小为 64B, 块内地址

为 6 位; Cache 有 8 行, 行号为 3 位; 所以标记位为 28-6-3=19 位。数组 a 首地址为 320,每个元素占 4 个字节,所以 a [0] [31] 的地址为: 320+4*31=444 (十进制),即 0···01101111100 (二进制),所以行号为 110 (二进制)即 6。 a [1] [1] 的地址为: 320+(256*1+1)*4=1348 (十进制),即 0···0 10101000100 (二进制),所以行号为 101 (二进制)即 5。

c) 数组 a 的大小为 256*256*4B=2¹⁸B,占 2¹⁸B/64=2¹²个内存块,按行优先存放。程序程序 A 逐行访问数组 a,未命中次数未 2¹² ,所以命中率为(2¹⁶- 2¹²⁾/ 2¹² = 0.938。程序 B 逐列访问数组 a,由于数组 a 一行的数据量 256*4B=1KB>64B,所以访问第 0 列时每个元素都不命中。由于数组 a 为 256 列,cache 仅有 8 行,当访问数组后续列时依然不命中。所以命中率为 0.000。

=======================================	分割线,	以下内容不在小程序上提交 ======	

7. 一个组关联 Cache 由 64 个行组成,每组 4 行。主存储器包含 4K 个块,每块 128 字,请表示主存地址的格式。

由每块 128 字得到块内地址长 7 位,64 行每组 4 行得一共 16 组,需要 4 位表示,标记需要 12 (4K) -4 (4H) =8 位

标记	组号	块内地址
8	4	7

8. 一个两路组关联的 Cache 具有 8K 字节的容量,每行 16 字节。64M 字节的主存时字节可 寻址的(即以字节为单位进行访问)。请给出主存地址格式。

根据每行 16 个字节,算出块内地址为 4; 根据 2^{9} 行和 2 路组,算出组号为 8 位;根据 2^{6} 16 个字,算出有 2^{6} 22 个块,从而标记的位数为 22^{6} 214。即:

标记	组号	块内地址
14	8	4

[花霞, 121250049]

- 9. 假设 Cache 有 4K 字,每行 32 字。对十六进制主存地址:111111、666666、BBBBBB,请用十六进制格式表示如下信息:(1)直接映射 Cache 的地址格式,(2)全关联映射 Cache 的地址格式,(3)两路组关联 Cache 的地址格式。(提示:每个映射方式下,需要将标记、块内地址等分开表示。)[刘璟 121250083]
 - 1) 共 6 位说明地址长 24, cache 一共有 4K/32=2⁷ 行,即标记 12 行号 7 块内地址 5

标记(12 位)	行号(7位)	块内地址(5位)
111	08	11
666	33	06
BBB	5D	1B

2) 块号19,块内地址5

块号(19位)	块内地址(5位)
08888	11
33333	06
5DDDD	1B

3) 7行两组表示,则组号6。即标记13,组号6,块内地址5

标记(13 位)	组号(6位)	块内地址(5位)
0222	08	11
0CCC	33	06
1777	1D	1B

10. 对一个有两级 Cache 的系统,定义: T_{C1} = 第一级 Cache 存取时间; T_{C2} = 第二级 Cache 存取时间; H_1 = 第一级 Cache 命中率; H_2 = 组合的第一/二级 Cache 命中率。请给出读操作时间的表示。(提示:需要假设主存的存取时间)

设主存存取时间为 Tm

 $T_{\rm read} = T_{\text{Cl}} + (1 - H_1) * T_{\text{C2}} + (1 - H_2) * T_{\text{m}}$