





# ARQUITECTURA Y CONECTIVIDAD

Profesor: Jorge Morales

Alumno: Raúl Jara

Módulo I: Transmisión de Datos y Modulación en IoT

Informe trabajo práctico Nº2

## **Actividades:**

## Apartado 5) TPNº2:

¿Cómo se aplica las Modulaciones Digitales ASK, FSK, PSK en sistemas IoT?. ¿Dónde se usa?. Ejemplifique.

#### 1. Introducción teórica

Las **modulaciones digitales básicas** representan bits modificando una característica de la señal portadora:

- ASK (Amplitude Shift Keying): cambia la amplitud.
- FSK (Frequency Shift Keying): cambia la frecuencia.
- **PSK (Phase Shift Keying):** cambia la fase.

Estas técnicas son más simples que QAM y se aplican mucho en IoT por su **bajo consumo**, **simplicidad de implementación** y **robustez frente a condiciones del entorno** (en el caso de FSK y PSK).



Figura 1

Figura 1: Comparación visual de modulaciones digitales ASK, FSK y PSK

Esta imagen muestra cómo las tres modulaciones digitales básicas modifican una señal portadora para representar información binaria:

- ASK (Amplitude Shift Keying): La amplitud de la señal cambia entre dos niveles para representar los bits 0 y 1. Es una técnica simple, pero sensible al ruido, por lo que se usa en aplicaciones de corto alcance como RFID.
- FSK (Frequency Shift Keying): La frecuencia de la señal cambia entre dos valores distintos para codificar los bits. Es más robusta ante interferencias, lo que la hace ideal para comunicaciones a mayor distancia como LoRa y Bluetooth clásico.
- **PSK (Phase Shift Keying):** La fase de la señal cambia para representar los datos binarios. Esta modulación es más eficiente en términos de uso del espectro y consumo energético, por lo que se aplica en tecnologías como ZigBee y Bluetooth LE.

Cada forma de onda destaca visualmente la propiedad modificada (amplitud, frecuencia o fase), permitiendo una comprensión rápida de cómo se implementa la codificación digital en sistemas de comunicación IoT.

### 2. Aplicaciones en IoT

Estas modulaciones se usan según el balance entre consumo, velocidad y complejidad:

- ASK: muy usado en RFID, donde se necesita bajo costo y transmisión simple de pocos bits.
- FSK: común en redes como LoRa, Bluetooth clásico, ZigBee y Sistemas SCADA, por su buena inmunidad al ruido.
- **PSK**: especialmente en **ZigBee**, **Wi-Fi**, **Bluetooth LE**, donde se busca eficiencia y cierta velocidad manteniendo bajo consumo.

| Tipo de<br>modulación | Velocidad | Consumo | Inmunidad<br>al ruido | Ejemplos IoT                                       |
|-----------------------|-----------|---------|-----------------------|----------------------------------------------------|
| ASK                   | Baja      | Bajo    | Baja                  | RFID                                               |
| FSK                   | Media     | Medio   | Alta                  | LoRa,<br>Bluetooth,<br>Zigbee<br>Sistemas<br>SCADA |
| PSK                   | Alta      | Bajo    | Media                 | Zigbee,<br>Wi-Fi,<br>Bluetooth LE                  |

Figura 2 Tabla comparativa







### 3. Ejemplos prácticos

- ASK en RFID de acceso: Un lector RFID en una puerta lee una tarjeta usando ASK para detectar el código de identificación. Este sistema es muy económico y se implementa ampliamente en oficinas, clubes y transporte.
- **FSK en sensores ambientales LoRa:** En una red de monitoreo agrícola, los sensores de humedad del suelo envían datos a una estación base usando FSK, modulando la frecuencia de cada bit para mantener una comunicación robusta a varios kilómetros de distancia.
- PSK en domótica ZigBee: Un sistema de control de luces en una casa inteligente usa ZigBee (que emplea PSK) para encender/apagar luces desde un nodo central con comandos de bajo consumo y latencia mínima.