

THE UNIVERSITY OF ZAMBIA School of Natural Sciences

Department of Computer Science

END OF YEAR EXAMINATION

CSC 2912 NUMERICAL ANALYSIS

Date:

Monday 28th December, 2020

Time:

14:00hrs - 16:00hrs

Duration: 2 Hours

Instructions

- 1. There are two (2) sections in this paper.
- 2. Answer all the questions in Section A and choose any two (2) questions from Section B

- 1. Let $f: X \longrightarrow Y$ be a function and x_0 be a point in X. Define the following.
 - a. f is continuous at x_0

[4 Marks]

b. f is differentiable at x_0

[4 Marks]

- 2. Let p* be the approximation of a value p. Define the following
 - a. Absolute error of approximating p by p^{*}

[4 Marks]

b. Relative error of approximating p by p^*

[4 Marks]

- 3. State the following
 - a. Rolle's theorem

[4 Marks]

b. Intermediate value theorem

[4 Marks]

c. Fixed-point theorem

[4 Marks]

- 4. Suppose (x_0, y_0) , (x_1, y_1) , and (x_2, y_2) , are points for a function f. Outline the appropriate approximations of the
 - a. three-point formulas for $f'(x_0)$, $f'(x_1)$, and $f'(x_2)$,

[6 Marks]

b. $\int_{x}^{x^2} f(x) dx$ Using the

i. Trapezoidal rule

[3 Marks]

ii. Simpsons

[3 Marks]

SECTION B: ANSWER TWO OF THE FOUR QUESTIONS. EACH QUESTION CARRIES 30 MARKS

1.

- a. Let $f: X \rightarrow Y$ be a function and x0 be a point in X.
 - i. Show that if f is differentiable on x_0 , then it is also continuous at x_0

[8 Marks]

ii. Suppose f is continuous in $[a, b] \subseteq X$, and $f'(x) \neq 0$ for all x in [a, b], show that f has at most one root in [a, b]. [Hint: assume f has two roots in [a, b] and show this lead to a contradiction using the Rolle's theorem

[6 Marks]

- b. Let $f: R \rightarrow R$ be a function defined as $f(x) = e^{x/2}$.
 - i. Derive P_4 , the 4th Taylor polynomial about $x_0=0$.

[8 Marks]

ii. Use P_4 to approximate \sqrt{e}

[4 Marks]

iii. What is the error bound for this approximation

[4 Marks]

- 2.
- a. Show that $f(x) = x^2 2$ has a root in [1, 2]

[6 Marks]

b. How many iterations are required to approximate $\sqrt{2}$ in [1, 2], to 10^{-3} accuracy using the Bisection method.

[6 Marks]

- c. Show that the fixed point of g(x) = 1 + 1/(x + 1), is the root of $f(x) = x^2 2$. [8 Marks]
- d. Hence use the fixed-point iteration to approximate $\sqrt{2}$

[10 Marks]

The following values are to be used in questions 3 and 4 below.

x	0.2	0.4	0.6	0.8	1.0
f(x)	0.31	0.65	0.94	1.32	1.46

- 3. Approximate f(0.5) using
 - a. Neville's iterated method

[15 Marks]

b. Newton's divided differences

[15 Marks]

4. V

a. Use the correct three-point formula to find f'(0.6)

[8 Marks]

b. Approximate

$$\int_{0.2}^{1.0} f(x) dx$$

c. Using the composite

i. Trapezoidal rule

[10 Marks]

ii. Simpsons rule.

[12 Marks]

[Ensure you use all the points in both cases]