Lecture 12 Natural Language Processing

Natural Language Processing

- A sub-field of Artificial Intelligence (AI)
- An inter disciplinary subject
- . To build intelligent computers that can interact with human
- Natural Language Processing is a theoretically motivated range of computational techniques for analyzing and representing naturally occurring texts/speech at one or more levels of linguistic analysis for the purpose of achieving human-like language processing for a range of tasks or applications.
- The Natural Language Toolkit, or more commonly NLTK, is a suite
 of libraries and programs for symbolic and statistical natural language
 processing (NLP) for English written in the Python programming language

https://en.wikipedia.org/wiki/Natural_Language_Toolkit

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a *count vector* in \mathbb{N}^{\vee} : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words representation

- Represent a document by the occurrence counts of each word
- Ordering of words is lost
- John is quicker than Mary and Mary is quicker than John have the same vectors

CountVectorizer: count the number of times a word appears in the document

Document frequency

 We will use <u>document frequency</u> (df) to capture this in the score

- Terms that occur in many documents are weighted less, since overlapping with these terms is very likely
 - In the extreme case, take a word like the that occurs in EVERY document
- Terms that occur in only a few documents are weighted more

https://en.wikipedia.org/wiki/Tf-idf

Term Frequency

Term frequency, tf(t,d), is the frequency of term t,

$$\operatorname{tf}(t,d) = \frac{f_{t,d}}{\sum_{t' \in d} f_{t',d}},$$

the raw count itself: $tf(t,d) = f_{t,d}$

Inverse document frequency

$$idf_t = log N/df_t$$

N: No of sentences

df: No of sentences containing words

Term frequency—Inverse document frequency (tf-idf) Example of tf-idf: Example of tf-idf: Example of tf-idf:

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

- Can we put all of these together?
 - Define a weighting for each term
 - The tf-idf weight of a term is the product of its tf weight and its idf weight

TfidfVectorizer: overall document weightage of a word. It helps us in dealing with most frequent words

https://medium.com/swlh/sentiment-classification-for-restaurant-reviews-using-tf-idf-42f707bfe4₇4d

https://en.wikipedia.org/wiki/Word2vec

Word2vec (wiki)

https://en.wikipedia.org/wiki/Gensim

- Word2vec is a group of related models that are used to produce word embeddings.
- Word embedding is the collective name for a set of language modeling and feature learning techniques in natural language processing (NLP) where words or phrases from the vocabulary are mapped to vectors of real numbers
- Methods to generate this mapping include neural networks, dimensionality reduction on the word cooccurrence matrix, probabilistic models.
- Word2vec was created and published in 2013 by a team of researchers led by *Tomas Mikolov* at <u>Google</u> and patented.
- Efficient Estimation of Word Representations in Vector Space https://arxiv.org/pdf/1301.3781.pdf

Visualizing Word Embedding

• https://www.tensorflow.org/tutorials/text/word2vec

NN: Featured Representation: Word Embedding

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
1 Gender	-1	1	-0.95	0.97	0.00	0.01
300 Royal	0.01	0.62	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97
"I want a glass of					f orange _	11

I want a glass of apple _____

Word Representation

I want a glass of **orange**I want a glass of **apple**______

Embedding Matrix

Analogies Using Word Vectors

•
$$e_{Man}$$
 - $e_{Woman} \approx$

$$e_{King} - e_{??}$$
• $sim(e_w, e_{king} - e_{man} + e_{woman})$
• $e_{Woman} = e_{Woman} = e_{Wo$

Neural language model

GloVe (global vectors for word representation)

- GloVe is another algorithm for learning the word embedding.
 It's the simplest of them.
- This is not used as much as word2vec or skip-gram models, but it has some enthusiasts because of its simplicity.
- Let's use our previous example: "I want a glass of orange juice to go along with my cereal".
- We will choose a context and a target from the choices we have mentioned in the previous sections.
- Then we will calculate this for every pair: $X_{ct} = \#$ times t appears in context of c
- $X_{ct} = X_{tc}$ if we choose a window pair, In GloVe they use a window which means they are equal

Application using Word Embedding Sentiment Classification

 $x \longrightarrow y$

The dessert is excellent.

Service was quite slow.

Good for a quick meal, but nothing special.

Completely lacking in good taste, good service, and good ambience.

Simple sentiment classification model

Completely lacking in **good** taste, **good** service, and **good** ambience

What is sentiment analysis?

In a nutshell: extracting attitudes toward something from human language

SA aims to map *qualitative* data to a *quantitative* output(s)

This might be the most exciting NLP thing I've seen in awhile: => Positive (?) honnibal.github.io/spaCv/. Fast, advanced NLP in Python.

Data science can't be point and click buff.ly/1CzHbtd #DataScience => Negative (?)

(Or something else entirely?)

Example: Tweets

Why does averaging tweets work?

```
im so angry at myself
thanks for the great offer!! love your pizzas!!
                                                            model.most similar(positive=negative)
   model.most similar(positive=positive)
  [(u'great', 0.5085294246673584),
                                                            [(u'angry', 0.6087321043014526),
   (u'thanks', 0.4804477095603943),
                                                             (u'myself', 0.5472909808158875),
   (u'your', 0.43128225207328796),
                                                             (u'im', 0.4853784143924713),
   (u'love', 0.3773646056652069),
                                                             (u'so', 0.3929111957550049),
   (u'for', 0.33436131477355957),
                                                             (u'at', 0.3157612979412079),
   (u'appreciate', 0.26042619347572327),
                                                             (u'hopeless', 0.30349820852279663),
                                                             (u'tired', 0.2769174873828888),
   (u'homie!!!!!!', 0.24800431728363037),
   (u'thank', 0.24796560406684875),
                                                             (u'sick', 0.2688058316707611),
   (u'appreciated', 0.23802441358566284),
                                                             (u'fml', 0.2618246376514435),
                                                             (u'cuz', 0.2534986436367035)]
   (u'follow!', 0.23777809739112854)]
```

Example: Tweets

Tutorial at: http://districtdatalabs.silvrback.com/modern-methods-for-sentiment-analysis

Word2Vec trained on ~400,000 tweets gives us 73% classification accuracy

- Gensim word2vec implementation
- Sklearn Logit SGD classifier
- Improves to 77% using ANN classifier

Model	Error rate (Positive/ Negative)	Error rate (Fine- grained)
Naïve Bayes (Socher et al., 2013b)	18.2 %	59.0%
SVMs (Socher et al., 2013b)	20.6%	59.3%
Bigram Naïve Bayes (Socher et al., 2013b)	16.9%	58.1%
Word Vector Averaging (Socher et al., 2013b)	19.9%	67.3%
Recursive Neural Network (Socher et al., 2013b)	17.6%	56.8%
Matrix Vector-RNN (Socher et al., 2013b)	17.1%	55.6%
Recursive Neural Tensor Network (Socher et al., 2013b)	14.6%	54.3%
Paragraph Vector	12.2%	51.3%

Word2Vec Drawbacks

 Quality depends on input data, number of samples, and size of vectors (possibly long computation time!)

But Google released 3 million word vecs trained on 100 billion words!

It can be seen that after some point, adding more dimensions or adding more training data provides diminishing improvements. So, we have to increase both vector dimensionality and the amount of the training data together.

Efficient Implementation of Word Representations in Vector Space, *T. Mikolov, K. Chen, G. Corrado, and J. Dean,* 2013. http://arxiv.org/pdf/1301.3781.pdf