OO Quad 2-Input NAND Gates

 $Y = \overline{AB}$

5400 (J) 54H00 (J) 54L00 (J,W) 54LS00 (J,W)

54S00 (J,W)

7400 (N) 74H00 (N) 74L00 (N) 74LS00 (N) 74S00 (N)

5400 (W) 54L00 (W)

See page 5-4

O1 Quad 2-Input NAND Gates with Open-Collector Outputs

 $Y = \overline{AB}$

5401 (J) 54LS01 (J,W) 7401 (N) 74LS01 (N)

5401 (W) 54L01 (W)

54H01 (J); 74H01 (N)

DM54/DM74 Connection Diagrams

02 **Quad 2-Input NOR Gates**

5402 (J) 54L02 (J)

54LS02 (J,W) 54S02 (J,W)

54S03 (J,W)

54LS04 (J,W)

54S04 (J,W)

74L02 (N) 74LS02 (N) 74S02 (N)

See page 5-8

03 **Quad 2-Input NAND Gates with Open-Collector Outputs**

 $Y = \overline{AB}$

See page 5-6

04 **Hex Inverters**

 $Y = \overline{A}$

See page 5-4

74L04 (N) 74LS04 (N) 74S04 (N)

74S03 (N)

 $Y = \overline{A}$

05 Hex Inverters with Open-Collector Outputs

5405 (J) 54L05 (J) 54LS05 (J,W)

54S05 (J,W)

7405 (N) 74L05 (N) 74LS05 (N) 74S05 (N)

5405 (W) 54L05 (W)

See page 5-6

06 Hex Inverter Buffers with Open-Collector High Voltage Outputs

Y = Ā

5406 (J,W); 7406 (N)

See page 5-10

07 Hex Buffers with Open-Collector High Voltage Outputs

C2

B2

A2

A3

Logic Data Book

80 **Quad 2-Input AND Gates**

Y = AB

5408 (J.W) 54H08 (J) 54L08 (J,W)

7408 (N) 74H08 (N) 74L08 (N)

54LS08 (J,W) 54S08 (J,W)

5409 (J,W)

54L09 (J,W) 54LS09 (J,W)

54S09 (J,W)

74LS08 (N) 74S08 (N)

7409 (N)

74L09 (N)

74LS09 (N) 74S09 (N)

See page 5-12

09 **Quad 2-Input AND Gates with Open-Collector Outputs**

VCC **B3 B4** 14 13 12 **B2** Y2 GND **Y1** A2 **B1** A1

Y = AB

See page 5-14

10 **Triple 3-input NAND Gates**

 $Y = \overline{ABC}$

5410 (J) 54H10 (J) 54L10 (J) 54LS10 (J,W) 54S10 (J,W)

7410 (N) 74H10 (N) 74L10 (N) 74LS10 (N)

74S10(N)

54L10 (W)

C1

A1

5410 (W)

Y3

СЗ

GND

VCC

Y2

B3

10

11 Triple 3-Input AND Gates

Y = ABC

See page 5-12

12 Triple 3-Input NAND Gates with Open-Collector Outputs

 $Y = \overline{ABC}$

See page 5-6

13 Dual 4-Input NAND Schmitt Triggers

Y = ABCD

14 Hex Schmitt Triggers

See page 5-16

15 Triple 3-Input AND Gates with Open-Collector Outputs

. . .

Y = ABC

See page 5-14

 $Y = \overline{A}$

16 Hex Inverter Buffers with Open-Collector High-Voltage Outputs

5416 (J,W); 7416 (N)

Y = A

17 Hex Buffers with Open-Collector High-Voltage Outputs

5417 (J,W); 7417 (N)

See page 5-10

20 Dual 4-Input NAND Gates

Y = ABCD

5420 (J) 54H20 (J) 54L20 (J) 54LS20 (J,W) 54S20 (J,W)

74H2O (N) 74L2O (N) 74LS2O (N) 74S2O (N)

5420 (W) 54L20 (W)

See page 5-4

21 Dual 4-Input AND Gates

Y = ABCD

54H21 (J) 54LS21 (J,W) 74H21 (N) 74LS21 (N)

%

Logic Data Book

DM54/DM74 Connection Diagrams

22 Dual 4-Input NAND Gates with Open Collector Outputs

See page 5-6

23 Expandable Dual 4-Input NOR Gates with Strobe

Y1 = $\overline{G1}$ (A1+B1+C1+D1)+X Y2 = $\overline{G2}$ (A2+B2+C2+D2) X = output of 5460/7460

See page 5-18

5423 (J,W); 7423 (N)

25 Dual 4-Input NOR Gates with Strobe

5425 (J,W); 7425 (N)

 $Y = \overline{AB}$

26 **Quad 2-Input High-Voltage NAND Gates**

5426 (J)

54L26 (J)

74L26 (N) 74LS26 (N)

54LS26 (J,W) See page 5-10

27 **Triple 3-Input NOR Gates**

 $Y = \overline{A+B+C}$

See page 5-8

30 8-Input NAND Gates

NC G NC VCC 13 10 12 Y = ABCDEFGH D F **GND** 7430 (N) 5430 (J) 74H30 (N) 54H30 (J) 54L30 (J) 74L30 (N)

54LS30 (J,W)

54S30 (J,W)

See page 5-4

74LS30 (N) 74S30 (N)

DM54/DM74 Connection Diagrams

32 Quad 2-Input OR Gates

Y = A + B

5432 (J,W) 54L32 (J,W) 54LS32 (J,W) 54S32 (J,W) 7432 (N) 74L32 (N) 74LS32 (N) 74S32 (N)

See page 5-20

37 Quad 2-Input NAND Buffers

5437 (J,W) 54LS37 (J,W) 7437 (N) 74LS37 (N)

See page 5-22

 $Y = \overline{AB}$

38 Quad 2-Input NAND Buffers with Open-Collector Outputs

 $Y = \overline{AB}$

5438 (J,W) 54LS38 (J,W) 7438 (N) 74LS38 (N)

DM54/DM74 Connection Diagrams

40 Dual 4-Input NAND Buffers

5440 (J) 54H40 (J) 54LS40 (J,W) 54S40 (J,W)

7440 (N) 74H40 (N) 74LS40 (N) 74S40 (N)

5440 (W)

See page 5-22

 $Y = \overline{ABCD}$

41 Nixie Driver

See page 6-4

5441A (J,W); 7441A (N)

4 Line-to-10-Line Decoder

42 BCD-to-Decimal

5442A (J,W) 54L42A (J,W) 54LS42 (J,W) 7442A (N) 74L42A (N) 74LS42 (N)

22 L

Logic Data Book

DM54/DM74 Connection Diagrams

BCD-to-Decimal Decoder/Driver

45 Lamp, Relay, or MOS Driver 80-mA Current Sink Outputs Off for Invalid Codes

See page 6-10

5445 (J,W); 7445 (N)

BCD-to-Seven-Segment Decoders/Drivers

46 Active-Low, Open-Collector, 30-V Outputs

47 Active-Low, Open-Collector, 15-V Outputs

5446A (J,W) 5447 (J,W) 7446A (N)

54LS47 (J,W)

7447A (N) 74LS47 (N)

See page 6-12

BCD-to-Seven-Segment Decoders/Drivers

48 Internal Pull-Up Outputs

5448 (J,W) 54LS48 (J,W) 7448 (N) 74LS48 (N)

BCD-to-Seven-Segment Decoders/Drivers

49 Open-Collector Outputs

See page 6-12

54LS49 (J,W); 74LS49 (N)

50 Dual 2-Wide, 2-Input, AND-OR-INVERT Gates

51, S51Y = $\overline{AB+CD}$

Logic Data Book

DM54/DM74 Connection Diagrams

51 Dual 2-Wide, 2-Input AND-OR-INVERT Gates

5451 (J) 54S51 (J,W)

7451 (N) 74S51 (N)

L51, LS51 Y1 = $\overline{\text{(A1xB1xC1)} + \text{(D1xE1xF1)}}$ Y2 = $\overline{\text{(A2xB2)} + \text{(C2xD2)}}$

54L51 (J) 54LS51 (J,W) 74L51 (N) 74LS51 (N)

53 Expandable 4-Wide AND-OR-INVERT Gates

DM54/DM74 Connection Diagrams

54 4-Wide AND-OR-INVERT Gates

L54, LS54 Y = AB+CDE+FGH+IJ

Y = AB+CD+EF+GH

L54 Y = $\overrightarrow{ABC}+\overrightarrow{DE}+\overrightarrow{FG}+\overrightarrow{HIJ}$

55 2-Wide, 4-Input AND-OR-INVERT Gates

L55, LS55 $Y = \overline{ABCD + EFGH}$

14 13 12 11 10 9 8

VCC

54L55 (W)

 $Y = \overline{ABCD + EFGH}$

See page 5-24

60 Dual 4-Input Expanders

X = ABCD when connected to Xand \overline{X} inputs of 5423/7423, 5450/7450 or 5453/7453

5460 (W)

62 4-Wide AND-OR Expander

X = AB+CDE+FGH+IJ when connected to X and \overline{X} inputs of 54H50/74H50

See page 5-27

64 4-Wide AND-OR-INVERT Gates

 $Y = \overline{ABCD+EF+GHI+JK}$

54S64 (J,W); 74S64 (N)

GND

65 4-Wide AND-OR-INVERT Gates with Open-Collector Outputs

 $Y = \overline{ABCD+EF+GHI+JK}$

See page 5-28

70 AND-Gated J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear

Truth Table

		Out	puts			
PR	CLR	CLK	J	K	Q	ā
· L	Н	L	X	X	н	L
Н	L	L	X	X	L	Н
L	L	X	X	X	H.	Н•
Н	Н		L	L	Qo	Q0
H	н	À	Н	L	н	L
Н	н	i	L	н	L	н
н	н	i	Н	н	TOG	GLE
Н	Н	Ĺ.	X	X	QO	Qσ

 $J = J1 \cdot J2 \cdot \overline{J}$

 $K = K1 \cdot K2 \cdot \overline{K}$

If inputs J and K are not used, they must be grounded.

Preset or Clear Function can occur only when clock input is low.

*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level

71 AND-OR-Gated J-K Master-Slave Flip-Flops with Preset

Truth Table

	ŀ	Out	puts			
PR	CLR	CLK	S	R	Q	ā
L	Н	X	Х	×	Н	L
H	L	X	X	X	L	Н
Ĺ	Ĺ	X	X	X	н•	H*
H	H		L	L	Qo	Qο
Н	н	 _	Н	L	Н	L
Н	Н	小	L	Н	L	Н
Н	Н	<u> </u>	H	Н		TER-

R = R1 · R2 · R3 S = S1 · S2 · S3

54L71 (J); 74L71 (N)

___= high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

^{*}This configuration is nonstable, that is, it will not persist when preset and clear inputs return to their inactive (high) level.

72 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear

Truth Table

	li	Out	puts			
PR	CLR	CLK	J	K	Q	ā
L	н	×	Х	X	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	X	H.	н•
Н	н	工	L	L	Qo	Qο
Н	н	_	Н	L	н	L
Н	н	77	L	Н	L	Н
Н	H	工	Н	Н	TOG	GLE

 $J = J1 \cdot J2 \cdot J3$ K = K1 · K2 · K3

See page 5-29 (72), 5-31 (L72)

73 Dual J-K Flip-Flops with Clear

Truth Table

73, L73

	Inp	Out	puts		
CLR	CLK	J	K	Q	ā
L	Х	X	Х	L	Н
Н	工	Ł	L	QO	Q0
Н	╌	Н	L	Н	L
∃H.	┰	L	Н	L	Н
H	77	Н	Н	TOG	GLE

Truth Table

LS73A

	Inp	Out	puts		
CLR	CLK	J	K	Q	ā
L	X	Х	Х	L	Н
Н	į.	L	L	Qo	Qο
H	i	Н	L	Н	L
H	\	L	Н	L	H
H	#	Н	Н	TOG	GLE
Н	Н	X	X	Q0	Qο

ā CLK 2 CLR 2 VCC 5473 (J,W) 7473 (N) 54L73 (J,W) 74L73 (N) 54LS73 (J,W) 74LS73 (N)

 $\overline{\mathbf{Q}}_{\mathbf{2}}$

Ō1

See page 5-29 (73), 5-31 (L73), 5-33 (LS73)

Notes: ___= high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse. Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

DM54/DM74 Connection Diagrams

CLK2 PR2

D

Q1

Q1

7474 (N)

74H74 (N)

74L74 (N)

74S74 (N)

74LS74A (N)

GND

Q2 8

VCC CLR2 D2

14

CLR 1

D1

54LS74A (J,W)

54S74 (J,W)

5474 (J)

54H74 (J)

54L74 (J)

CLK 1 PR 1

74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear

Truth Table

	Inpu	Out	outs		
PR	CLR	Q	ā		
L	Н	X	X	Н	L
н	L	X	X	L	Н
L	L	X	X	H*	H*
Н	Н	ŧ	Н	Н	L
Н	Н	į	L	L	Н
Н	- H	Ĺ	X	QO	Qο

Notes: Q0 = the level of Q before the indicated input conditions were established.

Q2 PR 1 Q1 GND Q2 PR 2 Ω1 10 8 a ā Q PR CLR CLR PR CLK CLK 1 D1 CLR 1 VCC CLR 2 D2 CLK 2

5474 (W); 54L74 (W)

See page 5-29 (74), 5-38 (H74), 5-31 (L74), 5-33 (LS74A), 5-35 (S74)

75 4-Bit Bistable Latches

Truth Table (Each Latch)

Inp	uts	Out	puts
D	D G		ā
L	Н	L	н
Н	Н	Н	L
Х	L	Qo	\overline{Q}_0

H = high level, L = low level, X = irrelevant

Q₀ = the level of Q before the high-to-low transition of G

See page 6-18

5475 (J,W) 54L75A (J,W) 54LS75 (J,W)

74L75A (N) 74LS75 (N)

^{*}This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

76 Dual J-K Flip-Flops with Preset and Clear

Truth Table

	Inputs					outs
PR CLRCLK J K				Q	ō	
L	Н	Х	Х	Х	Н	L
н	L	X	X	X	L	Н
L	L	X	X	X	н.	н•
Н	Н	Γ	L	L	-Q0	$\overline{\mathbf{Q}}0$
Н	Н	Γ	Н	L	Н	L
Н	Н	几	L	Н	L	Н
н					TOG	GLE

Truth Table

	ı	nputs	Outp	outs		
PR	CLR	CLK	J	K	Q	ā
L	Н	Х	Х	Х	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	X	H.	H*
Н	H:	į.	L	L	Qo	Qο
Н	Н	į	Н	L	Н	L
Н	Н	į.	L	Н	L	Н
Н	Н	į	н	Н	TOG	GLE
Н	Н	Ĥ	X	X	QÓ	Qο

5476 (J,W) 54LS76A (J,W) 7476 (N) 74LS76A (N)

See page 5-29 (76), 5-33 (LS76A)

77 4-Bit Bistable Latches

Truth Table (Each Latch)

Inp	Inputs		outs
D	G	Q	ā
L	Н	L	Н
Н	Н	Н	L
X	L	Q ₀	Q 0

H = high level, L = low level, X = irrelevant

Q₀ = the level of Q before the high-to-low transistion of G

54LS77 (W); 74LS77 (W)

See page 6-18

Notes: ___ = high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

'This configuration is nonstable, that is, it will not persist when preset and clear inputs return to their inactive (high) level.

78 Dual J-K Flip-Flops with Preset, Common Clear, and Common Clock

Truth Table

L78

Inputs					Out	puts
PR	CLR	CLK	J	K	Q	ā
L	Н	X	х	Х	Н	L
Н	L	X	Χ.	_ X	L	Н
L	L	X	X	X	н•	н•
H.	н	乀	L	L	QO	$\overline{\mathbf{Q}}0$
н	Н	几	Н	L	н	L
н	Н	Γ	L	Н	L	н
Н	Н	┰	·H	Н	TOGGLE	

Truth Table

LS78

	1	Out	puts			
PR	CLR	CLK	J	K	a	ā
L	Н	х	Х	Х	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	X	н•	н•
Н	н	į.	L	L	QO	Q0
Н	Н	į	H	L	Н	L
Н	Н	į	L	Н	L	Н
Н	н	- i	Н	Н	TOG	GLE
Н	Н	H	X	X	QO	Qο

54L78 (J,W) 54LS78A (J,W) 74L78 (N) 74LS78A (N)

See page 5-31 (L78), 5-33 (LS78A)

83 4-Bit Binary Full Adders With Fast Carry

See page 6-21

Notes: The high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

^{*}This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

85 4-Bit Magnitude Comparators

See page 6-27

86 Quad 2-Input EXCLUSIVE-OR Gates

5486 (J,W) 54LS86 (J,W) 54S86 (J,W) 7486 (N) 74LS86 (N) 74S86 (N)

54L86 (J); 74L86 (N)

Truth Table (86,L86, L886, S86)

64-Bit Read/Write Memories

89 16 4-Bit Words

See page 6-33

Decade Counters

90 Divide-By-Two and Divide-By-Five

'90A, 'L90, 'LS90 BCD Count Sequence (See Note A) '90A, 'L90, 'LS90 Bl-Quinary (5-2) (See Note B)

0		Output					
Count	QD	QC	QB	QA			
0	L	. L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	·L	Н	н			
4	L	Н	L	L			
5	L	Н	L	н			
6	L	Н	Н	L			
7	L	Н	н	H			
8	Н	L	L	L			
9	н	L	L	Ή			

	Output					
Count	QA	QD	QC	QB		
0	L	L	L	L		
1	L	L	L	Н		
2	L	L	Н	L		
2 3	L	L	Н	H		
4	L	н	L	L		
5	н	·L	L	L		
6	H	L	L	Н		
7	Н	L	н	L		
8	Н	L	Н	Н		
9	Н	Н	L	L		
	1					

Note A: Output Q_A is connected to input B for BCD count. Note B: Output Q_D is connected to input A for bi-quinary count.

'90A, 'L90, 'LS90 Reset/Count Function Table

Reset Inputs			Output				
RO(1)	R _{O(2)}	R ₉₍₁₎	R ₉₍₂₎	QD	QC	QB	QA
Н	н	L	X	L	L	Ł	L
Н	Н	X	L	L	L	L	L
X	X.	Н	н	Н	L	L	Н
X	L	X	L		CO	UNT	
L	X	L	х		CO	UNT	
L	X	X	L		CO	UNT	
×	L	L	Х		CO	UNT	

INPUT

A NC QA QD GND QB QC

14 13 12 11 10 9 8

QA QD QB QC

RO(1) RO(2) R9(1)

B RO(1) RO(2) NC VCC R9(1) R9(2)

INPUT

5490A (J,W) 7490A (N) 54L90 (J,W) 74L90 (N) 54LS90 (J,W) 74LS90 (N)

NC—No internal connection (54LS90/74LS90)
NC—make no external connection (5490A/7490A)
(54L90/74L90)

8-Bit Shift Registers

91 Serial-In, Serial-Out Gated Input

Truth Table

inputs AT t _n		Outputs AT t _n +8		
A	В	QH	ΘH	
Н	Н	н	L	
L	X	L	Н	
×	L	L	Н	

H = high, L = low

X = irrelevant

 t_n = Reference bit time, clock low

t₊₈ = Bit time after 8 low-to-high clock transitions

54L91 (J); 74L91 (N)

NC

VCC

NC

NC

NC

NC

NC

NC-make no external connection

See page 6-42

Divide-By-Twelve Counters

92 Divide-By-Two and Divide-By-Six

'92A, 'LS92 Count Sequence (See Note C)

(See Hote C)							
Count	Output						
Count	QD	QC	QB	QA			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	. Н	Н			
4	L	Н	L	L			
5	L	Н	L	Н			
6	Н	L	L	L			
7	Н	L	L	Н			
8	Н	L	Н	L			
9	Н	L	н	Н			
10	Н	Н	L	L			
11	н	Н	L	Н			

'92A, 'LS92, Reset/Count Function Table

Reset Inputs		Output				
R _{O(1)}	R _{O(2)}	QD	QC	QB	QA	
Н	Н	L	L	L	L	
L	X		COUNT			
X	L		COUNT			

5492A (J,W) 54LS92 (J,W) 7492A (N) 74LS92 (N)

NC—No internal connection (54LS92/74LS92) NC—Make no external connection (5492A/7492A)

C. Output $\mathbf{Q}_{\boldsymbol{A}}$ is connected to input B.

4-Bit Binary Counters

93 Divide-By-Two and Divide-By-Eight

'93A, 'L93, 'LS93 Count Sequence (See Note C)

Count		Outp	ut	
Count	QD	QC	QB	QA
0	L	L	L	L
1 .	L	L L	L	н
2	L	L	Н	L
3	L	L	Н	н
4	L	н	L	L
5	L	Н	L	н
6	L	Н	н	L
7	L	. H	н	Н
8	Н	L	L	L
9	Н	L	L	Н
10	Н	L	Н	L
11	Н	L	H	Н
12	Н	н	L	L
13	H	Н	L	Н
14	Н	Н	Н	L
15	н	Н	Н	Н

'93A, 'L93, 'LS93 Reset/Count Function Table

Reset Inputs		Output			
RO(1)	R _{O(2)}	QD	QC	QB	QA
Н	Н	L	L	L	L
L	X	COUNT			
X	L		CO	JNT	

C. Output $\mathbf{Q}_{\mathbf{A}}$ is connected to input \mathbf{B} .

See page 6-36

5493A (J,W) 7493A (N) 54LS93 (J,W) 74LS93 (N)

54L93 (J,W); 74L93 (N)

NC—No internal connection (54LS93/74LS93) NC—Make no external connection (5493A/7493A) (54L93/74L93)

OUTPUTS

4-Bit Shift Registers

95 Parallel In/Parallel Out Shift Right, Shift Left Serial Input

QA QR QC QD (LOAD) 8 12 10 9 QC Q_D Q_{A} INPUT A CK2 SERIAL INPUT CK1 MODE D SERIAL ¥cċ MODE INPUT INPUT CONTROL R-SHIFT INPUTS

OUTPUTS CLOCK 2

I -SHIFT

5495 (J,W); 7495 (N)

54L95 (J,W); 74L95 (N)

See page 6-44

96 5-Bit Shift Register Asynchronous Preset

5496 (J,W); 7496 (N)

?

Logic Data Book

DM54/DM74 Connection Diagrams

4-Bit Data Selector/Storage Registers

98 Selects 1 of 2 4-Bit Words Parallel In/Out

See page 6-51

54L98 (J); 74L98 (N)

103 Dual J-K Negative-Edge-Triggered Flip-Flops with Clear

Truth Table

	INPU	OUT	PUTS		
CLR	CLK	J	K	Q	ā
L	×	X	X	L	Н
Н	į.	L	L	QO	Qσ
Н	ŧ	Н	L	Н	L
- H	ţ	L	Н	L	Н
Н	ŧ	Н	Н	TOGGLE	
Н	Н	X	X	QO	Qο

See page 5-42

106 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear

Truth Table

INPUTS					OUT	PUTS
PR	CLR	CLK	J	K	Q	ā
L	Н	Х	Х	X	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	X	H*	H*
Н	н	Į.	L	L	QO	<u>H</u> •
Н	Н	į	Н	L	Н	L
Н	н	į	L	Н	L	н
Н	н	į	Н	Н	TOG	GLE
Н	н	Ĥ	X	X	QO	Q٥

54H106 (J); 74H106 (N)

107 Dual J-K Master-Slave Flip-Flops with Clear

Truth Table

107

	Inp	Out	puts		
CLR	CLK	J	K	Q	ā
L	Х	Х	Х	L	Н
Н	J	L	L	QO	Q0
Н	\neg	Н	L	Н	L
Н	厂	L	Н	L	Н
Н	几	Н	Н	TOG	GLE

Truth Table LS107A

	Inp	Out	puts		
CLR	CLK	J	Κ	Q	ā
L	Х	Х	X	L	Н
Н	į.	L	L	QO	Qο
Н	į	Н	L	H	L
н	į	L	Н	L	Н
Н	ŧ	Н	Н	TOG	GLE
Н	Н	X	X.	QO	Q0

See page 5-29 (107), 5-33 (LS107A)

108 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Clock

Truth Table

	Inputs					puts
PR	CLR	CLK	J	Κ	Q	ā
L	Н	×	×	X	Н	L
Н	L	X	Χ	Χ	L	Н
L	L	Х	Χ	X	Н٠	H.
Н	н	į.	L	L	Qo	Qο
Н	Н	į.	Н	L	Н	L
Н	Н	į	L	Н	L	Н
Н	н	į	Н	Н	TOG	GLE
Н	Н	Ĥ	X	Χ	QO	Q0

See page 5-42

109 Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear

Truth Table

Inputs					Out	puts
PR	CLR	CLK	J	ĸ	Q	ā
L	Н	X	Х	Х	Н	L
н	L	X	X	X	L	Н
L	L	X	X	X	н•	н•
Н	н	4	L	L	L	н
Н	н	i	Н	L	TOG	GLE
Н	Н	i	L	Н	Qo	Q0
Н	Н	i	Н	Н	Н	L
Н	Н	Ĺ	X	X	QO	Q٥

See page 5-29 (109), 5-33 (LS109A)

Notes: ___ = high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

%

Logic Data Book

DM54/DM74 Connection Diagrams

VCC CLR 1 CLR 2 CLK 2

54S112 (J,W)

112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear

Truth Table

		Out	puts			
PR	CLR	CLK	J	K	Q	ā
L	Н	Х	Х	Х	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	X	H.	н٠
Н	н	ŧ	L	L	Qo	Q٥
н	н	į	Н	L	Н	L.
Н	н	į	L	Н	L	н
н	Н	į	Н	Н	TOG	GLE
Н	H	Ĥ	X	X	QO	$\overline{\mathbf{Q}}$ 0

CLK 1 K1 J1 PR 1 Q1 Q1 Q2 GND

54LS112A (J,W)

74LS112A (N)

10

74S112 (N)

See page 5-33 (LS112A), 5-35 (S112)

113 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset

Truth Table

	Inp	Out	puts		
PR	CLK	J	K	, O	ā
L	X	X	Х	н	L
Н	↓	L	L	QO	$\overline{\mathbf{Q}}0$
Н	į.	Н	L	H	L
H	į.	L	Н	L	Н
Н	į.	Н	Н	TOG	GLE
Н	H	X	X	QO	<u>Q</u> 0

See page 5-33 (LS113A), 5-35 (S113)

114 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Clock

Truth Table

Inputs					Out	puts
PR	CLR	CLK	J	K	Q	ā
L	Н	Х	Х	Х	Н	L
Н	L	X	X	X	L	Н
L	L	X	Х	X	H.	н٠
Н	• н	į.	L	L	QO	<u>0</u> 0 H.
Н	н	į	Н	L	Н	L
н	н	į	L	Н	L	Н
Н	Н	į	Н	Н	TOG	GLE
H	н	Ĥ	X	X	QO	Qo

See page 5-33 (LS114A), 5-35 (S114)

Notes: Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition of the clock.

*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

DM54/DM74 Connection Diagrams

121 One Shots

Logic Data Book

Truth Table

	Inputs	,	Out	puts
A1	A2	В	Q	ā
L	Х	H	L	Н
X	: L	Н	L	Н
Х	Х	L	L	Н
Н	Н	X	L	Н
Н	· •	Н		7_
1	Ĥ	Н		ŢŢ
1	į	Н		7_
L	X	. 🛉	1	ŢŢ
X	L	İ	1	7_

See page 5-44

122 Retriggerable One Shots with Clear

Truth Table

(ı	nputs			Out	puts
Clear	A1	A2	В1	B2	Q	ā
L	Х	Х	X	Х	L	Н
X	Н	н	X	Х	L	н
X	X	X	L	Χ.	L	Н
X	X	Χ	Χ	L	L	н
X	L	Χ	Н	Н	L	н
Н	L	Χ	ŧ	Н		٦٢
Н	L	Χ	Ĥ	†	1.	ır
Н	X	L	Н	Ĥ	L	Н
Н	Х	L	ŧ	Н		7_
Н	X	L	H	•		7
Н	Н	į.	н	Ĥ	1	
н	+		Н	н		7_5
н	į	Ĥ	Н	Н	1	7_5
1	Ĺ	X	Н	Н	1	7
1	X	L	Н	Н	1	بحد

54LS122 (J,W); 74LS122 (N)

See page 5-46

Notes: ___ = one high-level pulse, ___ = one low-level pulse.

To use the internal timing resistor of 54121/74121, connect R_{INT} to V_{CC}.

An external timing capacitor may be connected between C_{EXT} and R_{EXT}/C_{EXT} (positive).

For accurate repeatable pulse widths, connect an external resistor between R_{EXT}/C_{EXT} and V_{CC} with R_{INT} open-circuited. To obtain variable pulse widths, connect external variable resistance between R_{INT} or R_{EXT}/C_{EXT} and V_{CC}.

DM54/DM74 Connection Diagrams

123 Dual Retriggerable One Shots with Clear

Truth Table

123, L123A

	Input	Out	puts	
Α	В	CLR	Q	ā
Н	Х	Н	L	Н
X	L	н	L	н
L	ŧ	Н	工	7_
1	Ĥ	Н	1	7_
X	X	, L.	L	н

54123 (J,W) 54L123A (J,W) 74123 (N) 74L123A (N)

Truth Table LS123

In	Inputs			
Clear	A	В	Q	ā
L	Х	Х	L	Н
X	н	X	L	Н
Х	X	L	L	Н
. н	L	†	1	Ţ
н	+	Ĥ	17	┰
.†	L	Н	1	ᅶ

See page 5-46

54LS123 (J,W); 74LS123 (N)

125 TRI-STATE® Quad Buffers

Truth Table

Inp	uts	Output
A	С	Y
Н	L	Н
L	L	L
X	Н	Hi-Z

Y = A

See page 5-48

Notes: ___ = one high-level pulse, ___ = one low-level pulse. An external timing capacitor may be connected between C_{EXT} and R_{EXT}/C_{EXT} (positive). For accurate repeatable pulse widths, connect an external resistor between R_{EXT}/C_{EXT} and V_{CC} . To obtain variable pulse widths, connect external variable resistance between REXT/CEXT and VCC.

DM54/DM74 Connection Diagrams

.126 TRI-STATE® Quad Buffers

Truth Table

Inp	uts	Output
Α	С	Y
Н	Н	Н
L	Н	L
X	L	Hi-Z

Y = A

See page 5-48

132 Quad 2-Input NAND Schmitt Triggers

 $Y = \overline{AB}$

See page 5-16

133 13-Input NAND Gates

Y = ABCDEFGHIJKLM

%

Logic Data Book

DM54/DM74 Connection Diagrams

134 TRI-STATE® 12-Input NAND Gates

Y = ABCDEFGHIJKL

Output is off (disabled) when output control is high.

See page 5-48

135 Quad EXCLUSIVE-OR/NOR Gates

Truth Table

	nputs	Output	
A	′B	С	Y
L	L	L	L
L	Н	L	н
Н	L	L	Н
Н	Н	L	L
L	L	Н	Н
L	Н	Н	L
Н	L	Н	L
Н	Н	Н	н

$$Y = (A \oplus B) \oplus C =$$
 $A\overline{BC} + \overline{ABC} + \overline{ABC} + ABC$

See page 5-50

V_{CC} B4 A4 Y4 +C3, C4 B3 A3 Y3 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 A1 B1 Y1 C1, C2 A2 B2 Y2 GND

54S135 (J,W); 74S135 (N)

136 Quad EXCLUSIVE-OR Gates with Open-Collector Outputs

Truth Table

Inputs		Output
Α	В	Y
L	L	L
L	Н	н
Н	L	н
н	Н	L

$$Y = A \oplus B = \overline{A}B + A\overline{B}$$

138 3-to-8 Line Decoders/Multiplexers

54LS138 (J,W) 54S138 (J,W)

54S139 (J,W)

74LS138 (N) 74S138 (N)

74S139 (N)

See page 6-53

139 Dual 2-to-4 Line Decoders/Multiplexers

See page 6-53

 $Y = \overline{ABCD}$

140 Dual 50-Ohm Line Drivers

141 NIXIE® Driver

	Inp	Output		
D	С	В	A	ON.
L	٦	L	L	0
L	L	L	Н	1
L	L L	H	L	2
L	L	Н	н	3
	н	L	L	4
L	Н	L	Η '	5
L	н	Н	L	6
	н	Н	Н	7
Н	L	L	L	8
Н	L	L	н	9
	Over I	Range)	,
Н	L	Н	L	None
Н	L	Н	Н	None
Н	Н	L	L	None
Н	Н	L	Н	None
Н	н	Н	L	None
Н	Н	н	н	None

See page 6-4

BCD-To-Decimal Decoders/Drivers For Lamps, Relays, MOS

145 BCD-to decimal

54145 (J,W); 74145 (N)

DM54/DM74 Connection Diagrams

10-Line Decimal to 4-Line BCD Priority Encoders

147

54147 (J,W); 74147 (N)

See page 6-58

NC-No internal connection

8-Line-To-3-Line Octal Priority Encoders

148

See page 6-58

1-Of-16-Data Selectors/Multiplexers

150

1-Of-8 Data Selectors/Multiplexers

151

54151A (J,W) 54LS151 (J,W)

74151A (N)

54S151 (J,W)

74LS151 (N) 74S151 (N)

See page 6-62

Dual 4-Line To 1-Line Data Selectors/Multiplexers

153

54153 (J,W)

74153 (N)

54LS153 (J,W) 54S153 (J,W) 74LS153 (N) 74S153 (N)

4-Line to 16-Line Decoders/Demultiplexers

154

54154 (J,F) 54L154A (J,F) 54LS154 (J,W) 74154 (N) 74L154A (N) 74LS154 (N)

See page 6-71

Decoders/Demultiplexers

Dual 2- to 4-line decoder

Dual 1- to 4-line demultiplexer

3- to 8-line decoder

1- to 8-line demultiplexer

155 Totem-pole outputs

156 Open-collector outputs

54155 (J,W) 54LS155 (J,W) 54156 (J,W) 74155 (N) 74LS155 (N) 74156 (N) 74LS156 (N)

54LS156 (J,W) See page 6-75

Quad 2- To 1-Line Data Selectors/Multiplexers

157 Noninverted data outputs

158 Inverted data outputs

54157 (J,W) 74157 (N) 54L157A (J,W) 74L157A (N) 54LS157 (J,W) 74LS157 (N) 54S157 (J,W) 74S157 (N) 54LS158 (J,W) 74LS158 (N) 54S158 (J,W) 74S158 (N)

See page 6-78

Synchronous 4-Bit Counters

160 Decade, direct clear

161 Binary, direct clear

162 Decade, synchronous clear

163 Binary, synchronous clear

54160A (J,W)	74160A (N)
54LS160A (J,W)	74LS160A (N)
54S160 (J,W)	74S160 (N)
54161A (J,W)	74161A (N)
54LS161A (J,W)	74LS161A (N)
54S161 (J,W)	74S161 (N)
54162A (J,W)	74162A (N)
54LS162A (J,W)	74LS162A (N)
54S162 (J,W)	74S162 (N)
54163A (J,W)	74163A (N)
54LS163A (J,W)	74LS163A (N)
54S163 (J,W)	74S163 (N)

8-Bit Parallel Output Serial Shift Registers

164 Asynchronous clear

Truth Table

	Inputs				Out	outs	4
Clear	Clock	A	В	QA	QB		QH
L	Х	Х	Х	L	L		L
н	L	Х	X	QAO	Q_{BO}		QHO
Н	1	Н	Н	Н	QAn		QGn
Н	1 1	L	X	L	Q_{An}		QGn
Н	1	X	L	L	QAn		QGn

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

= transition from low to high level.

 $\begin{aligned} Q_{AO},\,Q_{BO},\,Q_{HO} = \text{the level of }Q_A,\,Q_B,\,\text{or }Q_H,\,\text{respectively, before the indicated steady-state input conditions were established.} \end{aligned}$

Q_{An}, Q_{Gn} = the level of Q_A or Q_G before the most-recent ∤ transition of the clock; indicates a one-bit shift.

54164 (J,W) 54L164A (J,W) 54LS164 (J,W) 74164 (N) 74L164A (N) 74LS164 (N)

See page 6-95

Parallel-Load 8-Bit Shift Registers With Complementary Outputs

165

Truth Table

inputs						rnal	_
Shift/	Clock	Clock	Serial	Parallel	Out	puts	Output QH
Load	inhibit	Olock	Jeria	AH	QA	QB	1 .
L	X	х	Х	ah	а	b	h
н	L	L	X	×	QAO	Q _{BO}	QHO
Н	L	•	Н	X	Н	QAn	QGn
Н	L	†	L	X	L	QAn	QGn
н	н	X	X	X	QAO	Q _{BO}	QHO

54165 (J,W) 54L165A (J,W) 54LS165 (J,W) 74165 (N) 74L165A (N) 74LS165 (N)

8-Bit Shift Registers

166 Parallel/serial input Serial output

54166 (J) 54LS166 (J,W) 74166 (N) 74LS166 (N)

See page 6-102

4-Bit Up/Down Synchronous Counters

168 Decade

169 Binary

54LS168A (J,W) 54LS169A (J,W) 74LS168A (N) 74LS169A (N)

4-By-4 Register Files

170

Separate read/write addressing Simultaneous read and write Open-collector outputs Expandable to 1024 words

54LS170 (J,W)

74170 (N) 74LS170 (N)

See page 6-113

4-Bit D-Type Registers

173 TRI-STATE® outputs

54173 (J,W) 54LS173 (J,W) 74173 (N) 74LS173 (N)

DM54/DM74 Connection Diagrams

Hex D-Type Flip-Flops

174 Single rail outputs
Common direct clear

Truth Table

(Each Flip-Flop)

	Outputs		
Clear	Q		
L	Х	X	L
Н	†	Н	Н
Н	į.	L	L
Н	Ĺ	X,	QO

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant
- + = transition from low to high level
- Q₀ = the level of Q before the indicated steady-state input conditions were established.

See page 6-122

54174 (J,W) 54LS174 (J,W) 54S174 (J,W) 74174 (N) 74LS174 (N) 74S174 (N)

Quad D-Type Flip-Flops

175 Complementary outputs Common direct clear

Truth Table (Each Flip-Flop)

	Outputs			
Clear	Clock	D	Q	ā
L	Х	X	L	Н
Н	†	Н	Н	L
Н	į.	L	L	Н
н	Ĺ	X	Qo	\overline{Q}_0

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant
- | = transition from low to high level
- Q₀ = the level of Q before the indicated steady-state input conditions were established.

54175 (J,W) 54L\$175 (J,W) 54S175 (J,W)

74LS175 (N) 74S175 (N) **Presettable Counters/Latches**

176 Decade (Bi-quinary)

177 Binary

Truth Tables

Decade (BCD) (See Note A)

(000							
Count		Output					
Count	QD	QC	QB	QA			
0	L	L	L	٦			
1	L	L	L	н			
2	L	L	Н	L			
3	L	L	Н	н			
4	L	Н	L	Ļ			
5	L	Н	L	н			
6	L	Н	Н	L			
7	L	Н	Н	Н			
8	Н	L	L	L			
9	Н	L	L	н			

Bi-Quinary (5-2) (See Note B)

Count		Output					
Count	QA	QD	QC	QB			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	. F	Н	Н			
4	L	Н	L	L			
5	Н	L	L	L			
6	H	L	L	Н			
7	Н	L	Н	L			
8	Н .	L	· H	H			
9	Н	Н	L	L			

H = high level, L = low level

Note A: Output $\mathbf{Q}_{\mathbf{A}}$ connected to clock-2 input.

Note B: Output QD connected to clock-1 input.

Truth Table (See Note A)

0	Output						
Count	QD	QC	QB	QA			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4	L	Н	L	L			
5	L	Н	L	Н			
6	L	Н	Н	L			
7	L	Н	* H	Н			
8	Н	L	L	L			
9	Н	L	L	Н			
10	Н	L	Н	L			
11	Н	L	Н	Н			
12	Н	H	L	L			
13	Н	Н	L	Н			
14	H	Н	Н	L			
15	Н	. H	Н	Н			

H = high level, L = low level

Note A: Output QA connected to clock-2 input.

See page 6-126

9-Bit Odd/Even Parity Generators/Checkers

180

Truth Table

	nputs	Outputs		
Σ of H's at A thru H	Even	Odd	Σ Even	Σ Odd
Even	Н	L	Н	L
Odd	Н	L	L	н
Even	L	н	L	Н
Odd	L	н	Н	L
X	Н	н	L	L
X	L	L	Н	Н

H = high-level, L = low level, X = irrelevant

OUTPUTS

 C_{n+z}

GND

9

10

Cn+z

Ē

OUT-

PUT

Cn+x Cn+y

Cn+x Cn+y

P3

 $\overline{\mathbf{G}}\mathbf{3}$

5

12

Logic Data Book

Arithmetic Logic Units/Function Generators

181 16 Arithmetic operations 16 Logic functions

54181 (J) 54S181 (J) 74181 (N) 74S181 (N)

VCC.

G1

INPUTS

G2

 $\overline{\mathbf{G}}\mathbf{0}$

Cn

Cn

13

See page 6-155

Look-Ahead Carry Generators

182

Truth Table

For G Output

	inputs							
Ğ3	G2	G1	Go	P3	P2	P1	Ğ	
L	X	Х	X	Х	X	X	L	
Х	L	X	X	L	X	X	L	
Х	×	L	X	L	L	X	L	
X	X	X	L	L	L	L	L	
	All other combinations						Н	

H = high level, L = low level, X = irrelevant

Any inputs not shown in a given table are irrelevant with respect to that output.

For P Output

	Inp	Output		
P3	P2	P1	ΡO	P
L	L	L	L	L
All other combinations			. н	

G1 Ē1 P3 ΡO G3 GO INPUTS 54S182 (J,W); 74S182 (N)

Code Converters

Cascadeable to N-Bits

184 BCD-to-Binary

185 Binary-to-BCD

54184 (J,W) 54185A (J,W) 74184 (N) 74185A (N)

See page 6-148

Synchronous Up/Down Counters

190 BCD

191 Binary

54190 (J,W) 54LS190 (J,W) 74190 (N) 74LS190 (N)

54191 (J,W) 54LS191 (J,W) 74191 (N) 74LS191 (N)

Synchronous Up/Down Dual Clock Counters

192 BCD with clear

193 Binary with clear

54192 (J,W)

54L192 (J,W) 54LS192 (J,W) 74L192 (N) 74LS192 (N)

54193 (J,W)

74193 (N)

54L193 (J,W) 54LS193 (J,W) 74L193 (N) 74LS193 (N)

See page 6-161

4-Bit Bidirectional Universal Shift Registers

194

Truth Table

			· In	puts						ļ	Out	outs	
	Mc	de		Se	rial		Par	allei					_
Clear	S1	S2	Clock	Left	Right	A	В	С	D	Q _A	QB	QC	Q _D
L	x	Х	х	X	×	X	×	×	×	L	L	L	L
н	X	x	L	l x	x	х	X	X	X	QAO	QBO	· aco	QDO
н	Н	н	1	x	X	а	ь	C	d	a	b	c	đ
н	L	н		x	н	х	X,	X	X	H	Q_{An}	QBn	QCn
H	L	н	;	x	L	x	χ.	X	X	L	QAn	QBn	QCn
н	н	L	i	Н	X	х	X	X	X	QBn	Q_{Cn}	Q_{Dn}	H.
н	н	L	i i	L	X	х	X	X	· X	QBn	QCn	Q_{Dn}	L
н	L	L	×	×	X	x	X	X	X	QAO	QBO	Q _{C0}	Q_{D0}

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- t = transition from low to high level
- a, b, c, d = the level of steady-state input at inputs
- A, B, C, or D, respectively.
- Q_{A0}, Q_{B0}, Q_{C0}, Q_{D0}, = the level of Q_A, Q_B, Q_C, or QD, respectively, before the indicated steady-
- state input conditions were established. Q_{An}. Q_{Bn}. Q_{Cn}. Q_{Dn} = the level of Q_A, Q_B, Q_C, respectively, before the most-recent | transition of
- the clock.

See page 6-169

54194 (J,W) 54LS194A (J,W) 54S194 (J,W)

74194 (N) 74LS194A (N) 74S194 (N)

4-Bit Parallel-Access Shift Registers

195

Truth Table

	Inputs										Outputs		
	Shift/		Se	rial		Par	allel						
Clear	Load	Clock	J	K	A	В	С	D	QA	OB	QC.	Q _D	Q D
L .	х	х	X	X	x	X	X	×	L	L	L	L	н
н	L	1 +	X	X	а	ь	С	d	a	ь	С	ď	₫
н	H	L	х	X	x	X	X	X	QAO	QBO	QCO	QDO	\overline{Q}_{D0}
н	н	1 1	L	н	x	X	X	X	QAO	QAO	QBn	QCn	\overline{Q}_{Cn}
н	н	1 1	L	L	X	X	X	. X	L	QAn	QBn	QCn	₫Cn
н	н	1 1	Н	н	X	X	X	X	н	QAn	QBn	Q _{Cn}	□Cn
Н	н	1 1	н	L	×	X	X	X	QAn	QAn	QBn	QCn	₫ _{Cn}

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

† = transition from low to high level

a, b, c, d = the level of steady-state input at inputs A, B,

C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} , = the level of Q_{A} , Q_{B} , Q_{C} , or Q_{D} , respectively, before the indicated steady-state in-

put conditions were established.

Q_{An}, Q_{Bn}, Q_{Cn} = the level of Q_A, Q_B, Q_C, respectively, before the most-recent transition of the clock.

See page 6-174

54195 (J,W) 54LS195A (J,W) 54S195 (J,W) 74195 (N) 74LS195A (N) 74S195 (N)

Presettable Counters/Latches

196 Decade/Bi-quinary

197 Binary

54196 (J,N) 54LS196 (J,W) 54S196 (J,W)

54197 (J) 54L\$197 (J,W) 54\$197 (J,W) 74196 (N) 74LS196 (N) 74S196 (N) 74197 (N) 74LS197 (N)

74S197 (N)

8-Bit Bidirectional Universal Shift Registers

198

See page 6-178

54198 (J); 74198 (N)

8-Bit Bidirectional Universal Shift Registers

199 J-K serial inputs

54199 (J); 74199 (N)

221 Dual One Shots with Schmitt-Trigger Inputs

Truth Table

jut	Inputs					
Clear	A	B,	Q	ā		
L	X	Х	L	Н		
X	Н	X	L	н		
X	X	L	L	Н		
Н	L	+	1	~		
H	į.	Ĥ	1	7		
†	Ĺ	Н	1	Ţ		

V_{CC} C_{EXT} 1 C_{EXT} 1 Q1 Q2 CLR 2 B2 A2

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

A1 B1 CLR 1 Q1 Q2 C_{EXT} 2 R_{EXT}/ GND

54LS221 (J,W); 74LS221 (N)

See page 5-44

Octal Buffers/Line Drivers/Line Receivers

240 Inverted TRI-STATE® Outputs

See page 5-53

Octal Buffers/Line Drivers/Line Receivers

241 Noninverted TRI-STATE Outputs

DM54/DM74 Connection Diagrams

Quadruple BUS Transceivers

Inverted TRI-STATE® Outputs

See page 5-57

Quadruple Bus Transceivers

243 **Noninverted TRI-STATE Outputs**

See page 5-57

Octal Buffers/Line Drivers/Line Receivers

244 **Noninverted TRI-STATE Outputs**

See page 5-53 ,

Octal Bus Tranceivers

245 Noninverted TRI-STATE® Outputs

See page 5-60

BCD-to-Seven-Segment Decoders/Drivers

Active-Low, Open-Collector, 15-V Outputs

See page 6-184

54LS247 (J,W); 74LS247 (N)

BCD-to-Seven-Segment Decoders/Drivers

248 Internal Pull-Up Outputs

249 Open-Collector Outputs

54LS248 (J,W) 54LS249 (J,W) 74LS248 (N) 74LS249 (N)

DM54/DM74 Connection Diagrams

Data Selectors/Multiplexers

251 True and Inverted TRI-STATE® Outputs

Truth Table

	1	Out	puts		
	Select		Strobe	V	w
С	В	Α	S	"	w
X	Х	Х	Н	Z	Z
L	L	L	L	DO	DO
L	L	Н	L	D1	D1
L	Н	L	L	D2	D2
L	Н	н	L	D3	$\overline{D3}$
Н	L	L	L	D4	D4
·H	L	Н	L	D5	D5
Н	Н	L	L	D6	D6
Н	Н	Н	L	D7	D7

H = high logic level, L = low logic level

X = irrelevant, Z = high impedance (off)

DO, D1 ... D7 = the level of the respective D input

See page 6-190

54251 (J,W) 54LS251 (J,W) 54S251 (J,W) 74251 (N) 74LS251 (N)

745251 (N)

Dual Data Selectors/Multiplexers

253 TRI-STATE Outputs

Truth Table

	ect uts		Data Inputs		Output Çontrol	Output	
В	A	СО	C1	C2	СЗ	G	Y
X	Х	Х	Х	Х	Х	Н	Z
L	L	Ĺ	X	X	X	L	L
L	L	H	. X	X	X	L	Н
L	Н	X	L	X	X	L	L
L	Н	X	Н	X	X	L	Н
Н	L	X	X	L	X	L	L
H	L	X	X	Н	X	L	Н
Н	H	X	X	X	L	L	L
Н	Н	X	X	Х	Н	L	Н

Address inputs A and B are common to both sections.

H = high level, L = low level, X = irrelevant, Z = high impedance (off)

See page 6-194

54LS253 (J,W) 54S253 (J,W) 74LS253 (N) 74S253 (N)

Quad Data Selectors/Multiplexers

257 Noninverted TRI-STATE Outputs

Truth Table

	Output Y			
Output Control	Select	A	В	'LS257A 'S257
Н	Х	х	X	Z
L	L	L	X	L
L	L	Н	X	Н
L	Н	X	L	L
L	Н	X	Н	Н

H = high level, L = low level, X = irrelevant, Z = high impedance, (off)

See page 6-197

54LS257B (J,W) 54S257 (J,W) 74LS257B (N) 74S257 (N)

DM54/DM74 Connection Diagrams

Quad Data Selectors/Multiplexers

258 Inverted TRI-STATE® Outputs

Truth Table

	Output Y			
Output Control	Select	A	В	'LS258A 'S258
Н	Х	Х	X	Z
L	L	L	' X	Н
L	L	Н	X	L
L	Н	Х	L	H =
L	Н	X	Н	L

H = high level, L = low level, X = irrelevant, Z = high impedance, (off)

54LS258B (J,W) 54S258 (J,W) 74LS258B (N) 74S258 (N)

See page 6-197

Eight-Bit Addressable Latches

259

Truth Table

Input	3	Output of Addressed	Each Other	Function
Clear	G	Latch	Output	runction
Н	L	D	QiO	Addressable Latch
, н	Н	QiO	QiO	Memory
L	L	D	L	8-Line Demultiplexer
L	Н	L	L	Clear

Latch Selection Table

Sele	ct In	puts	Latch
С	В	A	Addressed
L	L	L	0
L	L	Н	1
L	Н	L	2
L	Н	Н	3
Н	Ĺ	L	4
н	L	Н	5
Н	Н	L	6
Н	Н	Н	7

H = high level, L = low level

 ${\bf D}\equiv{\bf the}$ level at the data input

Q_{i0} = the level of Q_i (i = 0, 1 . . . 7, as appropriate) before the indicated steady-state input conditions were established.

%

Logic Data Book

DM54/DM74 Connection Diagrams

266 Quad EXCLUSIVE-NOR Gates with Open-Collector Outputs

Truth Table

Inp	uts	Output
A	В	Y
L	L	н
L	н	L
Н	L	L
Н	н	H ·

$$Y = \overline{A \oplus B} = AB + \overline{AB}$$

See page 5-52

Quad S-R Latches

279

Truth Table

Inp		Output
St	Ŕ	Q
Н	Н	Q ₀
L	н	. н
н	L	L
L	L	н•

H = high level

L = low level

 Q_0 = the level of Q before the indicated input conditions were established. This output level is pseudo stable; that is, it may not persist when the \overline{S} and \overline{R} inputs return to their inactive (high) level.

†For latches with double \overline{S} inputs:

H = both S inputs high

L =one or both \overline{S} inputs low

See page 5-63

54LS279 (J,W); 74LS279 (N)

9-Bit Odd/Even Parity Generators/Checkers

280 N-Bit Cascadeable

Truth Table

Number of Inputs A	Out	puts	
Thru I That Are High		Σ Odd	
0, 2, 4, 6, 8	Н	L	
1, 3, 5, 7, 9	L	Н	

H = high level, L = low level

54\$280 (J,W); 74\$280 (N)

4-Bit Binary Full Adders

283

Truth Table

						Out	put		
	Input			Whe	L	Vhen	Whe CO =	H	Vhen
A1/ A3	B1/ B3	A2/ A4	B2 B4	Σ1 Σ3	Σ2 /Σ4	C2/ C4	Σ1 Σ3	Σ2 /Σ4	C2/ C4
L	L	L	L	L	L	L	Н	L	L
Н	L	L	L	Н	L	L	L	н	L
L	Н	L	L	Н	L	L	L	Н	L
Н	Н	L	L	L	Н	L	Н	Н	L
L	L	Н	L	L	Н	L	Н	Н	L
Н	L	Н	L	Н	н	L	L	L	Н
L	H	Н	L	Н	Н	L	L	L	н
H	H	Н	L	L	L	Н	Н	L	н
L	L	L	Н	L	н	L	Н	Н	L
H	L	L	Н	Н	н	L	L	L	н
L	Н	L	Н	Н	н	L	L	L.	Н
Н	Н	L	Н	L	L.	Н	Н	L	н
L	L	Н	Н	L	L	H	Н	L	н
Н	L	Н	H	Н	L	Ĥ	L	Н	н
L	H	Н	Н	Н	L	Н	L	Н	Н
Н	Н	Н	Н	L	Н	Н	Н	Н	H

54\$283 (J,W)

74S283 (N)

H = high level, L = low level

Note: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs \$\Sigma1\$ and \$\Sigma2\$ and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs \$3, \$4, and \$C4.

See page 6-21

4-Bit Decade Counters

290 Divide-by-Two and Divide-by-5

54LS290 (J,W); 74LS290 (N)

NC-no internal connection

25

Logic Data Book

DM54/DM74 Connection Diagrams

4-Bit Binary Counters

293 Divide-by-Two and Divide-by-Eight

54LS293 (J,W); 74LS293 (N)

NC-no internal connection

See page 6-207

Quad 2-Input Multiplexers With Storage

298

Truth Table

Inp	uts		Out	puts	
Word Clock Select		QA	QB	QC	QD
L	+	a1	b1	c1	d1
Н	+	a2	b2	c2	d2
X	Н	Q _{AO}	Q _{B0}	Q _{C0}	QDO

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- = transition from high to low level
- a1, a2, etc. = the level of steady-state input at A1, A2, etc.
- ${\rm Q}_{A0},\,{\rm Q}_{B0},\,{\rm etc.}=$ the level of ${\rm Q}_A,\,{\rm Q}_B,\,{\rm etc.}$ entered on the most-recent ${\downarrow}$ transition of the clock input.

See page 6-211

54LS298 (J,W); 74LS298 (N)

8-Bit Bidirectional Universal Shift/Storage Registers

299 TRI-STATE® Outputs

DM54/DM74 Connection Diagrams

Dual 4-Line-to-1-Line Data Selectors/Multiplexers

352 Inverting Version of 'LS153

54LS352 (J,W); 74LS352 (N)

See page 6-220

Dual 4-Line-to-1-Line Data Selectors/Multiplexers

353 TRI-STATE® Outputs Inverting Version of 'LS253

See page 6-222

365 **TRI-STATE Hex Buffers**

Truth Table

1	Inputs	Output	
Ğ1	G2	Α	Υ Υ
Н	Х	X	Z
X	Н	X	Z
L	L	Н	н
L	L	L	L

Ğ2 **Y6** VCC 16 6 A2 **Y2** АЗ **Y3** GND 74365 (N) 54365 (J,W) 54LS365A (J,W) 74LS365A (N)

Y5

A5

DM54/DM74 Connection Diagrams

366 TRI-STATE® Hex Inverting Buffers

Truth Table

	Inputs	Output	
Ğ1	Ğ2	A	Y
Н	X	X	Z
X	Н	X	Z
L	L	Н	L .
L	L	L	н

See page 5-64

VCC Ğ2 **A6** Y6 A5 Ğ1 GND A1 A2 Y2 АЗ **Y3**

54366 (J,W) 54LS366A (J,W) 74366 (N) 74LS366A (N)

367 **TRI-STATE Hex Buffers**

Truth Table

inp	uts	Output
G	A	Y
Н	Х	Z
L	Н	н
L	L	L

See page 5-64

54LS367A (J,W)

74LS367A (N)

368 **TRI-STATE Hex Inverting Buffers**

Truth Table

Inp	uts	Output
Ğ	A	Y
Н	×	Z
L	н	L
L	L	Н

See page 5-64

54LS368A (J,W)

74LS368A (N)

DM54/DM74 Connection Diagrams

373 TRI-STATE® Outputs

Octal D-Type Flip-Flops

See page 6-225

374 TRI-STATE Outputs

See page 6-225

Arithmetic Logic Units/Function Generators

See page 6-230

54S381 (J); 74S381 (N)

Quad 2-Input Exclusive-OR Gates

386

Positive Logic:

 $Y = A \oplus B = \overline{A}B + A\overline{B}$

54LS386 (J,W); 74LS386 (N)

See page 5-40

Dual Decade Counters

390 Bi-Quinary or BCD Sequences

See page 6-234

54LS390 (J,W); 74LS390 (N)

Dual 4-Bit Binary Counters

393

4-by-4 Register Files

670 TRI-STATE® Outputs

See page 6-239

54LS670 (J,W); 74LS670 (N)

Buffers/Line Drivers/Line Receivers

940 Octal TRI-STATE®

See page 5-53

Buffers/Line Drivers/Line Receivers

941 Octal TRI-STATE®

Dual Rank 8-Bit TRI-STATE Shift Register

952 Synchronous Clear 962 Exchange Data Between Registers A & B

See page 6-243

Octal Buffers/Line Drivers/Line Receivers

71LS95A Noninverted TRI-STATE® Outputs

	Inpute	Output	
G1	Ğ2	A	Y
Н	Х	X	Z
X	н	X	Z
L	L	Н	н
L	L	L	L

71LS95A (J); 81LS95A (N)

DM54/DM74 Connection Diagrams

Octal Buffers/Line Drivers/Line Receivers

71LS96A Inverted TRI-STATE Outputs

	Inputs	Output	
Ğ1	G2	A	Y
Н	X	X	Z
X	Н	X	Z
L	L	Н	L
L-	L	Ĺ	l н

7 1LS96A (J); 81LS96A (N)

See page 7-32

Octal Buffers/Line Drivers/Line Receivers

71LS97A Noninverted TRI-STATE Outputs

Inp	uts	Output
G	A	Y
Н	X	Z
L	Н	н
L	L	L

See page 7-32

71LS98A Inverted TRI-STATE® Outputs

Inp	uts	Output
Ğ	A	Y
Н	X	Z
L	Н	L
L	L	Н

