NAME: MARIMUTHU RAJA

REG NO: 113019205029

PROJECT: RETAIL STORE STOCK INVENTORY ANALYTICS

ASSIGNMENT: 04

1.DOWNLOADING DATASET

Dataset Link : Abalone

2. LOADING THE DATASET

In []:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

In []:
df = pd.read_csv('/content/drive/MyDrive/abalone.csv')
In []:
df.head()

Out[]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

3.PERFORMING VISUALIZATION'S

- (i)Univariate Analysis
- (ii)Bi-Variate Analysis
- (iii) Multi-Variate Analysis

(i) UNIVARIATE

In[]:
countplot
sns.countplot(data=df, x="Rings")

#boxplot
df.boxplot(column=['Length'], grid=False, color='Red')

#histogram
df.hist(column='Rings', grid=False, edgecolor='Red')

 In []:

In []:

Out[]:

#kdeplot
sns.kdeplot(df['Rings'])

Out[]:

#histplot
sns.histplot(df.Rings,kde=True)

In []:

#histplot
sns.histplot(df['Rings'])

Out[]:

#heatmap
sns.heatmap(df.isnull())

In []:

#line plot
plt.plot(df['Rings'])

#piechart
plt.pie(df['Rings'].head(),autopct='%.1f')

In []:

Out[]:

```
Out[]:
```

```
([,
,
,
,
],
[Text(0.6111272563215626, 0.9146165735327998, ''),
Text(-0.8270237769092663, 0.725280409515335, ''),
Text(-1.041623153479572, -0.35358337932554523, ''),
Text(-5.149471704824549e-08, -1.09999999999988, ''),
Text(0.9865599777267362, -0.4865176362145796, '')],
[Text(0.33334213981176136, 0.4988817673815271, '31.2'),
Text(-0.4511038783141452, 0.39560749609927365, '14.6'),
Text(-0.5681580837161301, -0.1928636614502974, '18.8'),
Text(-2.8088027480861175e-08, -0.59999999999999, '20.8'),
Text(0.5381236242145833, -0.2653732561170434, '14.6')])
```


(ii) BIVARIATE

```
#countplot
sns.catplot(x="Sex",col="Rings",data=df, kind="count",height=4, aspect=.7)

Out[]:

**Rings-1**
**Tournell of the single of the sin
```

#boxplot
sns.boxplot(x='Sex',y='Height',data=df,palette='rainbow')

#violin plot
sns.violinplot(x="Sex", y="Length", data=df,palette='rainbow')

#strip plot
sns.stripplot(x="Sex", y="Length", data=df)

In []:

In []:

Out[]:

#scatter plot
sns.scatterplot(x = df["Length"],y = df["Diameter"])

#joint_plot
sns.jointplot(x="Length", y="Diameter", data=df)

In []:

In []:

Out[]:

(III) MULTI-VARIATE

fig=plt.figure(figsize=(10,5))
sns.heatmap(df.head().corr(),annot=True)

Out[]:

0.51

0.55

0.13

0.54

0.65

0.48

0.5

1

Length -	1	0.99	0.86	0.99	0.97	0.98	0.99
Diameter -	0.99	1	0.87	1	0.99	0.99	1
Height -	0.86	0.87	1	0.87	0.83	0.92	0.9
Whole weight -	0.99	1	0.87	1	0.99	0.99	1
Shucked weight -		0.99	0.83	0.99	1	0.98	0.98
Viscera weight -		0.99	0.92	0.99	0.98	1	1
Shell weight -		1	0.9	1	0.98	1	1
Rings -	0.51	0.55	0.13	0.54	0.65	0.48	0.5
	Length -	Diameter -	Height -	Whole weight -	Shucked weight -	Viscera weight -	Shell weight -

4. Perform descriptive statistics on the dataset

df

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Out[]:	
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15	
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9	
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10	

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••									
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12
4177 rows × 9 columns									
<pre>In [df.head()</pre>									
									Out[]:

In []:

									Ծաւլ յ.
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

df.info()

RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64

```
3
     Height
                         4177 non-null
 4
     Whole weight
                         4177 non-null
                                             float64
 5
     Shucked weight 4177 non-null
                                             float64
 6
     Viscera weight 4177 non-null
                                             float64
 7
      Shell weight
                         4177 non-null
                                             float64
 8
     Rings
                         4177 non-null
                                             int64
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
                                                                                       In []:
df.describe()
                                                                                      Out[]:
                                          Whole
                                                                            Shell
                                                   Shucked
                                                               Viscera
          Length
                   Diameter
                                Height
                                                                                      Rings
                                          weight
                                                     weight
                                                                weight
                                                                           weight
       4177.0000
                  4177.0000
                             4177.0000
                                        4177.0000
                                                  4177.0000
                                                             4177.0000
                                                                        4177.0000
                                                                                   4177.0000
  COII
   nt
             00
                        00
                                   00
                                             00
                                                        00
                                                                   00
                                                                              00
                                                                                         00
 mea
        0.523992
                   0.407881
                              0.139516
                                        0.828742
                                                   0.359367
                                                              0.180594
                                                                         0.238831
                                                                                    9.933684
   n
        0.120093
                   0.099240
                              0.041827
                                        0.490389
                                                   0.221963
                                                              0.109614
                                                                         0.139203
                                                                                    3.224169
  std
        0.075000
                   0.055000
                              0.000000
                                        0.002000
                                                   0.001000
                                                              0.000500
                                                                         0.001500
                                                                                    1.000000
 min
 25%
        0.450000
                   0.350000
                              0.115000
                                         0.441500
                                                   0.186000
                                                              0.093500
                                                                         0.130000
                                                                                    8.000000
 50%
        0.545000
                   0.425000
                              0.140000
                                         0.799500
                                                   0.336000
                                                              0.171000
                                                                         0.234000
                                                                                    9.000000
 75%
        0.615000
                   0.480000
                              0.165000
                                         1.153000
                                                   0.502000
                                                              0.253000
                                                                         0.329000
                                                                                   11.000000
        0.815000
                   0.650000
                              1.130000
                                         2.825500
                                                   1.488000
                                                              0.760000
                                                                         1.005000
                                                                                   29.000000
 max
                                                                                       In []:
numerical features = df.select dtypes(include = [np.number]).columns
categorical features = df.select dtypes(include = [object]).columns
                                                                                       In []:
df[numerical features].mean()
                                                                                      Out[]:
Length
                     0.523992
                     0.407881
Diameter
Height
                      0.139516
Whole weight
                     0.828742
Shucked weight
                     0.359367
Viscera weight
                      0.180594
Shell weight
                      0.238831
```

9.933684

Rings

dtype: float64

```
df[numerical features].median()
                                                                                        Out[]:
                    0.5450
Length
Diameter
                    0.4250
                     0.1400
Height
whole weight 0.7995
Shucked weight 0.3360
Viscers
Viscera weight 0.1710
Shell weight 0.2340
Rings
                      9.0000
dtype: float64
                                                                                         In []:
percentage = [df[numerical features].quantile(0),
                df[numerical features].quantile(0.25),
                df[numerical features].quantile(0.50),
                df[numerical features].quantile(0.75),
                df[numerical features].quantile(1)]
percentage
                                                                                        Out[]:
                      0.0750
[Length
 Diameter
Height
                     0.0550
0.0000
Whole weight 0.0020
Shucked weight 0.0010
Viscera weight 0.0015
Shell weight 0.0015
Rings 1.0000
 Name: 0.0, dtype: float64, Length 0.4500
 Diameter 0.3500
                      0.1150
 Height
 Whole weight 0.1150

Whole weight 0.4415

Shucked weight 0.1860

Viscera weight 0.0935

Shell weight 0.1300

Rings 8.0000
 Name: 0.25, dtype: float64, Length 0.5450
 Diameter 0.4250
 Height
                       0.1400
 Whole weight 0.7995
Shucked weight 0.3360
 Viscera weight 0.1710
Shell weight 0.2340
Rings 9.0000
 Name: 0.5, dtype: float64, Length
                                                         0.615
 Diameter 0.480
 Height
                       0.165
 Whole weight 1.153
Shucked weight 0.502
Viscera weight 0.253
Shell weight 0.329
Rings 11.000
                                                0.8150
 Name: 0.75, dtype: float64, Length
 Diameter 0.6500
Height 1.1300
                       1.1300
 Height
 Whole weight 2.8255
```

Content	Visce	ed weight ra weight weight	1.48 0.76 1.00	00				
In	Rings	_	29.00	00				
Commercial_features .value_counts()	Name:	1.0, dtype	e: float	64]				In [].
Length Diameter Height Whole weight Shucked weight Viscera weight Shucked Note Note Shell Weight Note Not	df[nume	erical_feat	tures].v	alue_counts	s ()			In []:
11 weight Rings 0.075 0.055 0.010 0.0020 0.0010 0.0005 0.0015 1 1 0.0590 0.465 0.155 1.1360 0.5245 0.2615 0.2730 1.1 1 0.590 0.465 0.155 1.1150 0.5165 0.2730 0.750 11 1 0.0150 1.0425 0.4635 0.2400 0.750 10 1 0.0170 1.0425 0.4635 0.2400 0.750 17 1 0.0155 1.0885 0.3685 0.1870 0.750 17 1 0.0155 0.9680 0.4190 0.2455 0.365 0.370 0.155 0.9680 0.4190 0.2455 0.365 0.375 0.110 0.4640 0.2015 0.0900 0.2455 0.365 0.375 0.110 0.4640 0.2015 0.0900 0.2455 0.525 8 1 0.125 0.5620 0.2505 0.1345 0.525 8 1 0.130 0.5535 0.2660 0.1120 0.605 0.250 0.2505 0.1345 0.605 0.250 0.2505 0.3420 0.575 14 1 1 Length: 4177, dtype: int64								Out[]:
0.075	_		Height	Whole we	ight Shucked	l weight Vi	scera weig	ght She
015	-		0.010	0.0020	0.0010	0 .	0005	0.0
750				0.0020	0.0010	••		0.0
0.165				1.1360	0.5245	0.	2615	0.2
750	750	11		1 1150	0 5165	0	2720	0.2
0.170	750	1.0		1.1150	0.5165	0.	2/30	0.2
0.195 1.0885 0.3685 0.1870 0.750 17 1 1 1 1 1 1 1 1	, 0 0			1.0425	0.4635	0.	2400	0.2
750 17 1 0.485 0.370 0.155 0.9680 0.4190 0.2455 0.365 9 1 0.375 0.110 0.4640 0.2015 0.0900 0.490 8 1 0.125 0.5620 0.2505 0.1345 0.525 8 1 0.130 0.5535 0.2660 0.1120 0.4200 0.570 8 1 0.815 0.650 0.250 2.2550 0.8905 0.4200 0.975 14 1 Length: 4177, dtype: int64 df[numerical_features].mode() Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0 0.550 0.45 0.15 0.2225 0.175 0.1715 0.275 9.0 1 0.625 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	700	10						
0.485 0.370 0.155 0.9680 0.4190 0.2455 0.365 9 1 0.375 0.110 0.4640 0.2015 0.0900 0.490 8 1 0.125 0.5620 0.2505 0.1345 0.525 8 1 0.130 0.5535 0.2660 0.1120 0.570 8 1 0.815 0.650 0.250 2.2550 0.8905 0.4200 0.975 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 50	1.0		1.0885	0.3685	0.	1870	0.3
0.485 0.370 0.155 0.9680 0.4190 0.2455 0.365 9 1 0.375 0.110 0.4640 0.2015 0.0900 0.490 8 1 0.125 0.5620 0.2505 0.1345 0.525 8 1 0.130 0.5535 0.2660 0.1120 0.570 8 1 0.815 0.650 0.250 2.2550 0.8905 0.4200 0.975 14 1 1 1 1 1 1 1 1 1 1 1 1	750	17	1					
365 9 1 0.375 0.110 0.4640 0.2015 0.0900 0 490 8 1 0.125 0.5620 0.2505 0.1345 0 525 8 1 0.130 0.5535 0.2660 0.1120 0 570 8 1 0.815 0.650 0.250 2.2550 0.8905 0.4200 0 975 14 1 Length: 4177, dtype: int64 df[numerical_features].mode() Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0 0.550 0.45 0.15 0.2225 0.175 0.1715 0.275 9.0 1 0.625 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		0 370	0 155	n 968n	0 /190	0	2455	0.2
0.375 0.110 0.4640 0.2015 0.0900 0.490 8				0.9000	0.4190	0.	2433	0.2
0.125 0.5620 0.2505 0.1345 0.5525 8 1 0.130 0.5535 0.2660 0.1120 0.570 8 1 0.815 0.650 0.250 2.2550 0.8905 0.4200 0.975 14 1 Length: 4177, dtype: int64 df[numerical_features].mode() Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0 0.550 0.45 0.15 0.2225 0.175 0.1715 0.275 9.0 1 0.625 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na				0.4640	0.2015	0.	0900	0.1
525 8 1	490	8						
0.130 0.5535 0.2660 0.1120 0.570 8 1 0.815 0.650 0.250 2.2550 0.8905 0.4200 0.975 14 1 Length: 4177, dtype: int64 df[numerical_features].mode() Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0 0.550 0.45 0.15 0.2225 0.175 0.1715 0.275 9.0 1 0.625 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	EOE	0		0.5620	0.2505	0.	1345	0.1
570 8 1 0.815 0.650 0.250 2.2550 0.8905 0.4200 0 975 14 1 Length: 4177, dtype: int64 df[numerical_features].mode() Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0 0.550 0.45 0.15 0.2225 0.175 0.1715 0.275 9.0 1 0.625 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	323	8		0.5535	0.2660	0.	1120	0.1
975	570	8					-	
Length: 4177, dtype: int64				2.2550	0.8905	0.	4200	0.7
Indf[numerical_features].mode()				64				
Cou Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0								In []:
Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0 0.550 0.45 0.15 0.2225 0.175 0.1715 0.275 9.0 1 0.625 NaN NaN NaN NaN NaN NaN NaN df[numerical_features].std() Outlength 0.120093 0.120093 Outlength	df[nume	erical_feat	tures].m	ode ()				0.451
0 0.550 0.45 0.15 0.2225 0.175 0.1715 0.275 9.0 1 0.625 NaN	Lan	oth Diameter	Height	Whole weight	Shucked weight	Viccara waight	Shall waight	Out[]:
1 0.625 NaN NaN NaN NaN NaN NaN NaN NaN Ir df[numerical_features].std() Outlength 0.120093	Len	gtii Diameter	Height	Whole Weight	Shuckeu weight	viscera weight	Shen weight	Kings
Irdf[numerical_features].std() Ou Length 0.120093	0 0.5	550 0.45	0.15	0.2225	0.175	0.1715	0.275	9.0
<pre>df[numerical_features].std() Ou Length 0.120093</pre>	1 0.0	625 NaN	NaN	NaN	NaN	NaN	NaN	NaN
Ou Length 0.120093	ما 4 [م			+ d ()				In []:
Length 0.120093	ar [nume	ericai_leat	ures].s	La ()				Ou+[1·
	Lenath		0.1200	93				Out[]:
Diameter 0.099240		er						
Height 0.041827								
Whole weight 0.490389	_	weight	0.4903	89				
Shucked weight 0.221963			0.2219	63				
Viscera weight 0.109614			0.1096	14				
Shell weight 0.139203	Shell v	weight	0.1392	03				

Rings 3.224169 dtype: float64 In []: df[numerical features].var() Out[]: 0.014422 Length Diameter 0.009849 Height 0.001750 Whole weight 0.049268
Viscera weight 0.012015
Shell weight 0.019377 Rings 10.395266 dtype: float64 In []: df[numerical features].skew() Out[]: -0.639873 Length Leng... Diameter -0.609198 Height 3.128817 Whole weight 0.530959
Shucked weight 0.719098
Viscera weight 0.591852
Shell weight 0.620927 Rings 1.114102 dtype: float64 In []: df[numerical features].kurt() Out[]: Length 0.064621 Leng... Diameter -0.045476 76.025509 Height Whole weight -0.023644
Shucked weight 0.595124
Viscera weight 0.084012 Shell weight 0.531926 Rings 2.330687

5. Check for Missing values and deal with them

df.isnull()

dtype: float64

Out[]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
•••									
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176 False False		False	False	False	False	False	False	False	
4177 r	ows × °	9 column	S						In [].
df.is	null().any()							In []: Out[]:
Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings			False False False False False False False False False						out J.
	<pre>dtype: bool df.isnull().sum()</pre>								In []:
Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight		0 0 0 0 0 0						Out[]:	

```
Rings 0 dtype: int64
```

6. Find the outliers and replace them outliers

```
In []:
#length
sns.boxplot(x=df['Length'])
                                                                          Out[]:
     0.1
            0.2
                   0.3
                          0.4
                                  0.5
                                         0.6
                                                0.7
                                                        0.8
                            Length
                                                                           In []:
q1 = df['Length'].quantile(0.25)
q2 = df['Length'].quantile(0.75)
iqr = q2-q1
q1, q2, iqr
                                                                          Out[]:
(0.45, 0.615, 0.1649999999999999)
                                                                           In [ ]:
upper_limit = q2 + (1.5 * iqr)
lower_limit = q1 - (1.5 * iqr)
lower_limit, upper_limit
                                                                          Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                           In []:
new df = df.loc[(df['Length'] <= upper limit) & (df['Length'] >=
lower limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new_df))
print('outliers:', len(df)-len(new df))
before removing outliers: 4177
after removing outliers: 4128
outliers: 49
                                                                           In []:
new df = df.copy()
new_df.loc[(new_df['Length']>upper_limit), 'Length'] = upper_limit
```


#Diameter
sns.boxplot(x=df['Diameter'])

q1 = df['Diameter'].quantile(0.25)
q2 = df['Diameter'].quantile(0.75)
iqr = q2-q1

In []:

Out[]:

```
q1, q2, iqr
                                                                         Out[]:
(0.45, 0.615, 0.16499999999999999)
                                                                          In []:
upper_limit = q2 + (1.5 * iqr)
lower_limit = q1 - (1.5 * iqr)
lower limit, upper limit
                                                                         Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                          In []:
new df = df.loc[(df['Diameter'] <= upper limit) & (df['Diameter'] >=
lower limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new df))
print('outliers:', len(df)-len(new df))
before removing outliers: 4177
after removing outliers: 4027
outliers: 150
                                                                          In []:
new df = df.copy()
new df.loc[(new df['Diameter']>upper limit), 'Diameter'] = upper limit
new df.loc[(new df['Diameter'] < lower limit), 'Diameter'] = lower limit</pre>
/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs
/stable/user guide/indexing.html#returning-a-view-versus-a-copy
  self. setitem single column(loc, value, pi)
                                                                          In [ ]:
sns.boxplot(x=new_df['Diameter'])
                                                                         Out[]:
```


#Height
sns.boxplot(x=df['Height'])

In []:

Out[]:

In []:

q1 = df['Height'].quantile(0.25)
q2 = df['Height'].quantile(0.75)
iqr = q2-q1
q1, q2, iqr

Out[]:

(0.45, 0.615, 0.1649999999999999)

```
upper_limit = q2 + (1.5 * iqr)
lower_limit = q1 - (1.5 * iqr)
lower limit, upper limit
                                                                        Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                         In []:
new df = df.loc[(df['Height'] <= upper limit) & (df['Height'] >=
lower limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new df))
print('outliers:', len(df)-len(new df))
before removing outliers: 4177
after removing outliers: 153
outliers: 4024
                                                                         In []:
new df = df.copy()
new df.loc[(new df['Height']>upper limit), 'Height'] = upper limit
new df.loc[(new df['Height'] < lower limit), 'Height'] = lower limit</pre>
/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs
/stable/user guide/indexing.html#returning-a-view-versus-a-copy
  self. setitem single column(loc, value, pi)
                                                                         In []:
sns.boxplot(x=new df['Height'])
                                                                        Out[]:
```


#Whole Weight
sns.boxplot(x=df['Whole weight'])

```
Out[]:
            0.5
                                1.5
                                         2.0
                                                   2.5
   0.0
                      1.0
                         Whole weight
                                                                           In []:
q1 = df['Whole weight'].quantile(0.25)
q2 = df['Whole weight'].quantile(0.75)
iqr = q2-q1
q1, q2, iqr
                                                                           Out[]:
(0.45, 0.615, 0.1649999999999999)
                                                                           In []:
upper limit = q2 + (1.5 * iqr)
lower limit = q1 - (1.5 * iqr)
lower limit, upper limit
                                                                           Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                           In []:
new df = df.loc[(df['Whole weight'] <= upper limit) & (df['Whole weight']</pre>
>= lower limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new df))
print('outliers:', len(df)-len(new_df))
before removing outliers: 4177
after removing outliers: 1872
outliers: 2305
                                                                           In []:
new_df = df.copy()
new_df.loc[(new_df['Whole weight']>upper_limit), 'Whole weight'] =
upper limit
new df.loc[(new df['Whole weight'] < lower limit), 'Whole weight'] =</pre>
```

/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

lower limit

gWithCopyWarning:

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyself. setitem single column(loc, value, pi)

ln []:

sns.boxplot(x=new_df['Whole weight'])

Out[]:

In []:

#Shucked weight
sns.boxplot(x=df['Shucked weight'])

Out[]:


```
q1 = df['Shucked weight'].quantile(0.25)
q2 = df['Shucked weight'].quantile(0.75)
iqr = q2-q1
q1, q2, iqr
                                                                         Out[]:
(0.45, 0.615, 0.16499999999999999)
                                                                          In []:
upper limit = q2 + (1.5 * iqr)
lower limit = q1 - (1.5 * iqr)
lower limit, upper limit
                                                                         Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                          In [ ]:
new df = df.loc[(df['Shucked weight'] <= upper limit) & (df['Shucked</pre>
weight'] >= lower_limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new df))
print('outliers:', len(df)-len(new df))
before removing outliers: 4177
after removing outliers: 2900
outliers: 1277
                                                                          In []:
new df = df.copy()
new df.loc[(new df['Shucked weight']>upper limit), 'Shucked weight'] =
upper limit
new df.loc[(new df['Shucked weight'] < lower limit), 'Shucked weight'] =</pre>
lower limit
/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs
/stable/user guide/indexing.html#returning-a-view-versus-a-copy
  self. setitem single column(loc, value, pi)
                                                                          In []:
sns.boxplot(x=new df['Shucked weight'])
                                                                         Out[]:
```


#Viscera weight
sns.boxplot(x=df['Viscera weight'])

q1 = df['Viscera weight'].quantile(0.25)
q2 = df['Viscera weight'].quantile(0.75)
iqr = q2-q1
q1, q2, iqr

(0.45, 0.615, 0.1649999999999999)

In []:

Out[]:

In []:

Out[]:

```
upper_limit = q2 + (1.5 * iqr)
lower_limit = q1 - (1.5 * iqr)
lower limit, upper limit
                                                                         Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                         In []:
new df = df.loc[(df['Viscera weight'] <= upper limit) & (df['Viscera</pre>
weight'] >= lower limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new df))
print('outliers:', len(df)-len(new df))
before removing outliers: 4177
after removing outliers: 1646
outliers: 2531
                                                                          In []:
new df = df.copy()
new_df.loc[(new_df['Viscera weight']>upper_limit), 'Viscera weight'] =
upper limit
new df.loc[(new df['Viscera weight'] < lower limit), 'Viscera weight'] =</pre>
lower limit
/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs
/stable/user guide/indexing.html#returning-a-view-versus-a-copy
  self. setitem single column(loc, value, pi)
                                                                          In []:
sns.boxplot(x=new df['Viscera weight'])
                                                                         Out[]:
```


gWithCopyWarning:

```
Out[]:
   0.0
              0.2
                                                         1.0
                        0.4
                                   0.6
                                              0.8
                          Shell weight
                                                                           In [ ]:
q1 = df['Shell weight'].quantile(0.25)
q2 = df['Shell weight'].quantile(0.75)
iqr = q2-q1
q1, q2, iqr
                                                                          Out[]:
(0.45, 0.615, 0.1649999999999998)
                                                                           In []:
upper limit = q2 + (1.5 * iqr)
lower limit = q1 - (1.5 * iqr)
lower_limit, upper_limit
                                                                          Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                           In [ ]:
new df = df.loc[(df['Shell weight'] <= upper limit) & (df['Shell weight']</pre>
>= lower limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new df))
print('outliers:', len(df)-len(new df))
before removing outliers: 4177
after removing outliers: 2373
outliers: 1804
                                                                           In []:
new df = df.copy()
new df.loc[(new df['Shell weight']>upper limit), 'Shell weight'] =
upper_limit
new df.loc[(new df['Shell weight'] < lower limit), 'Shell weight'] =</pre>
lower limit
/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1817: Settin
```

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyself._setitem_single_column(loc, value, pi)

In []:

sns.boxplot(x=new_df['Shell weight'])

Out[]:

In []:

#Rings
sns.boxplot(x=df['Rings'])


```
In []:
q1 = df['Rings'].quantile(0.25)
q2 = df['Rings'].quantile(0.75)
iqr = q2-q1
q1, q2, iqr
                                                                          Out[]:
(0.45, 0.615, 0.1649999999999999)
                                                                           In []:
upper limit = q2 + (1.5 * iqr)
lower_limit = q1 - (1.5 * iqr)
lower_limit, upper_limit
                                                                          Out[]:
(0.2025000000000004, 0.862499999999999)
                                                                           In []:
new_df = df.loc[(df['Rings'] <= upper_limit) & (df['Rings'] >=
lower limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new df))
print('outliers:', len(df)-len(new df))
before removing outliers: 4177
after removing outliers: 0
outliers: 4177
                                                                           In []:
new df = df.copy()
new df.loc[(new df['Rings']>upper limit), 'Rings'] = upper limit
new_df.loc[(new_df['Rings'] < lower_limit), 'Rings'] = lower_limit</pre>
                                                                        In [219]:
sns.boxplot(x=new_df['Rings'])
                                                                       Out[219]:
```


7. Check for Categorical columns and perform encoding

$$\label{eq:dfsex} \begin{split} &\text{df['Sex'].replace(\{'M':1,'F':0,'I':2\},inplace=True)} \\ &\text{df} \end{split}$$

									Out[]:
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

In []:

 $\textbf{from} \ \, \textbf{sklearn.preprocessing} \ \, \textbf{import} \ \, \textbf{LabelEncoder,OneHotEncoder,StandardScaler}$

In []:

label_encoder =LabelEncoder()
df['Sex'] = label_encoder.fit_transform(df['Sex'])
df

Out[]: Whole Shucked Viscera Shell Sex Length Diameter Height Rings weight weight weight weight 0.365 0.095 0.5140 0.2245 0.1010 0.1500 15 $\mathbf{0}$ 0.455M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.0700 7 1 M F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.2100 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.1550 3 M 10 I 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.0550 7 ••• 4172 F 0.565 0.450 0.165 0.8870 0.3700 0.2390 0.2490 11 4173 M 0.590 0.440 0.135 0.9660 0.4390 0.2145 0.2605 10 4174 M 0.600 0.475 0.205 1.1760 0.5255 0.2875 0.3080 9 4175 F 0.625 0.485 0.150 1.0945 0.5310 0.2610 0.2960 10 4176 0.710 0.555 0.195 1.9485 0.9455 0.3765 0.4950 12

4177 rows × 9 columns

```
In [ ]:
```

enc = OneHotEncoder(drop='first')

enc_df = pd.DataFrame(enc.fit_transform(df[['Sex']]).toarray())

df =df.join(enc_df)

df.head()

									Out[]:
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

8. Split the data into dependent and independent variables

x= df.iloc[:,1:8]

Χ

Out[]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550
•••							
4172	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight			
4173	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605			
4174	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080			
4175	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960			
4176	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950			
4177 rows × 7 columns										
y=df. Y	iloc[:,	8]						In []:		
0 1 2 3 4	15 7 9 10 7							Out[]:		
		Length:		dtype: int es	64			le Di		
<pre>In[]: scale = StandardScaler() scaledX = scale.fit_transform(x)</pre>										
_	(scaled		214879	-1.06442415	0.6076	8536 -0.7262	1157			
[-1.		5 -1.439	929	-1.18397831	1.1709	0984 -1.2052	2124			
[0.	2129873 0500330 2071390	9 0.122	213032	-0.10799087	0.4634	999 -0.3566	8983			
_	6329849 4969547		540943	1.56576738	0.7485	5917 0.9754	1324			
[0.	8411819 4107391	8 0.777	718745	0.25067161	0.7733	4105 0.7336	52741			
[1.	5490520 8404805	3 1.482 8]]			2.6409	9341 1.7874	4868			
10. Split the data into training and testing										

from sklearn.model_selection import train_test_split

```
In [ ]:
x train, x test, y train, y test = train test split(x,y, test size = 0.2)
                                                                          In [ ]:
print(x.shape, x_train.shape, x_test.shape,y_train.shape, y_test.shape)
(4177, 7) (3341, 7) (836, 7) (3341,) (836,)
11. Build the Model
                                                                         In []:
from sklearn.linear model import LinearRegression
                                                                         In []:
linearmodel = LinearRegression()
12. Train the Model
                                                                         In []:
linearmodel.fit(x train, y train)
                                                                         Out[]:
LinearRegression()
13. Test the Model
                                                                         In [ ]:
y train pred = linearmodel.predict(x train)
y test pred = linearmodel.predict(x test)
                                                                         In []:
y test pred
                                                                        Out[]:
array([ 8.70365574, 10.39057789, 9.40293106, 10.68158892, 7.57464889,
        4.79636131, 8.67332668, 14.02754984, 9.87864789, 7.25750569,
       10.85233616, 8.50778462, 7.15078854, 9.32393986, 5.76619464,
        7.49797457, 5.76688568, 6.2241946, 6.18696811, 9.25884721,
       11.5681706 , 12.13604097, 10.98303848, 11.69986211, 7.83702624,
        9.31462136, 10.40327259, 6.96378017, 5.81839663, 12.26690446,
       10.86817082, 9.02369275, 8.12760588, 8.83313399, 7.73292169,
        6.91592262, 6.07309496, 7.88643423, 9.63507119, 4.7209354,
       11.34436294, 10.57283751, 10.49665213, 12.88894543, 12.28423666,
        8.12974709, 7.58999374, 9.08527348, 10.6411015, 5.89349286,
        8.30141881, 7.24999833, 8.25347176, 9.08328759, 8.99010706,
        9.10730271, 14.52308851, 9.41403346, 10.23775522, 8.0477514,
        9.70375626, 11.03640036, 9.5435852 , 10.8850895 ,
                                                            8.08267684,
       10.57414181, 11.41222985, 7.2778873, 6.70117135, 9.80118094,
        7.10712737, 6.50572362, 11.70751204, 8.76972122, 6.96654951,
        6.47886711, \quad 6.93951927, \quad 7.458727 \quad , \quad 11.01554321, \quad 10.36006982,
        7.61624674, 9.16579141, 8.04761481, 12.29038942, 6.20248568,
       10.8963334 , 10.28472972, 14.8411801 , 13.2740434 , 7.49258174, 13.25230426, 10.63162313, 11.48753783, 9.12967209, 9.03018002,
       10.45067022, 8.82633807, 8.36808156, 8.1866462 , 10.24960421,
       10.21056392, 10.72719629, 9.7728592, 7.38834192, 8.51824041,
       10.75769027, 11.85414492, 12.87270151, 9.16270242, 9.16333672,
        7.67461895, 11.76874831, 10.16330431, 10.05005681, 9.51670308,
        9.62637671, 9.1479746, 10.34868794, 10.84331115, 7.357215,
       12.41355527, 14.38136393, 11.14666246, 12.38530452,
                                                             7.54358072,
        9.40835468, 9.88315837, 12.11159133, 7.94462274, 7.47162288,
        8.90032367, 10.43913282, 9.07962681, 9.73850771, 5.83375835,
        8.36362646, 10.9307715 , 6.82609483, 8.29060331, 9.69949734,
        8.89587123, 5.05902985, 12.66596704, 9.28710853, 12.5326091,
```

```
8.79671925, 9.49859385, 11.96474424, 11.52223318, 9.60091683,
 8.53619584, 15.32591088, 14.00301768, 8.97484674, 13.05508044,
 6.2030136 , 9.21207997, 7.936351 , 10.16988917, 11.47842671,
 7.46631576, 9.75499741, 10.27332107, 9.23986585, 5.9322595,
12.28408611, 7.92151313, 15.25635443, 8.21425868, 5.09784281,
8.64249299, 11.10284085, 7.78901197, 8.83090234, 9.1646292, 7.70480134, 9.88123776, 8.25763834, 10.09331237, 9.23862615, 7.90180974, 13.23613166, 9.26144527, 13.1751266, 10.4482136,
 8.92745413, 11.50202025, 8.43899771, 5.35863306, 11.15256721,
12.0758802 , 9.72580288, 8.61229334, 10.91349829, 14.60692034,
 9.87282727, 9.54625507, 8.67259558, 11.2890254 , 13.33908019,
11.02243873, 8.69347318, 9.8305109, 10.23686184, 11.2406998,
10.17177327, 13.30614216, 7.20501867, 11.59622094, 6.78619841,
11.79121352, 8.89281728, 8.17336191, 6.66181377, 7.88222639,
11.5961669 , 5.62055863, 10.95213761, 10.42565767, 6.91986363,
 8.22808635, 9.13631704, 10.60651687, 10.57288312, 12.48198032,
10.72400654, 7.94057143, 8.13184549, 9.72402567, 6.08561859,
10.35685691, 11.45185208, 6.12270113, 7.96196924, 9.67026482,
 8.41039006, 7.86133336, 13.70955472, 9.71358231, 12.30386605,
 9.45850521, 8.75621392, 7.18052467, 11.26230795, 10.62351901,
13.39193134, 10.66694535, 11.24857396, 7.31369597, 11.34385404,
 5.25197892, 9.59055659, 16.84346196, 11.16831052, 11.62804782,
 9.53833939, 10.24000367, 8.6230046, 9.30733633, 12.46773085,
13.64994481, 9.82838202, 10.0234437, 12.99484459, 10.45651057,
13.40761272, 8.77910533, 12.33978409, 10.67709288, 5.63536671,
 9.94034672, 7.14256339, 9.12794164, 9.21566578, 5.80513006,
10.6905346 , 11.97328277, 8.30889084, 10.60075702, 14.67068785,
11.09720556, 8.4771601 , 6.21293923, 8.24916844, 10.21094152,
 7.51466157, 11.06498401, 7.13865753, 15.10717164, 10.62721341,
10.7494065 , 9.36798918, 10.84697015, 6.19124128, 9.81320126,
 8.87149442, 12.25522958, 10.0180955 , 10.25697378, 10.63826128,
 8.83487496, 8.92686532, 10.00754949, 7.30269568, 12.07507174,
11.93297256, 10.38317051, 7.18057693, 8.41307958, 8.63722592,
 7.14923596, 9.24164041, 6.20876584, 13.52351759, 10.87929999,
10.40607483, 13.05707136, 12.39494182, 11.75230309, 12.42380122,
 9.49893263, 9.37433398, 7.94309167, 8.96190867, 7.62962106,
10.85825406, 11.77951614, 9.16274124, 12.18049248, 7.75075404,
 7.18890683, 7.57054635, 13.37668116, 7.99159672, 11.59558707,
 9.33023381, 8.65031741, 11.19050069, 12.56526943, 10.34615758,
10.14710918, 13.6822781 , 12.17950611, 5.05668754, 10.10464104,
 9.53755259, 9.472615 , 10.20387222, 6.9805034 , 10.36745308,
8.5797176 , 10.0305631 , 9.85976851, 14.7588884 , 10.33370292,
11.95220189, 10.73191172, 6.24084469, 7.94205021, 13.2574999,
7.4230356 , 9.69102779, 10.19306655, 7.69531367, 8.78069463,
 5.98531412, 9.64295733, 10.25986894, 10.43382077, 7.21469625,
11.13358543, 9.44012819, 9.03507192, 10.31114951, 6.41797086,
 7.45384674, 10.59417698, 8.63488075, 14.02982444, 10.65890459,
 9.86162823, 11.31451071, 12.59497748, 10.03074457, 7.334356 ,
11.35510583, 11.90079632, 8.12093928, 10.94441475, 9.51383607,
 8.61736287, 7.69098049, 10.88432917, 27.92119074, 7.30574213,
12.16580075, 9.99772607, 12.01395884, 8.46372125, 7.9846562,
 9.20938127, 10.81645842, 7.48697286, 7.84853701, 9.87249706,
12.42241391, 11.34890737, 10.50687099, 10.8923027 , 12.4523061 ,
 7.71112748, 6.89139266, 9.07208527, 13.33541534, 8.6100613,
 9.73762238, 8.02254027, 16.21679373, 6.7788581, 9.61586488,
 8.47538654, 12.61070772, 7.38898974, 7.94305825, 7.7085148,
10.61500173, 11.34651659, 13.33513797, 7.60626229, 20.23054277,
```

```
8.24406194, 10.52400655, 9.0689655, 10.45315667, 12.47231165,
 8.91146384, 8.67365154, 9.72583367, 12.30204789, 13.6415676,
 7.32722295, 8.25658547, 8.17855799, 11.49287729, 8.80588627,
12.25548643, 11.55860069, 10.76620005, 9.16792817, 13.80701665,
 8.25280724, 8.35282716, 7.55768412, 8.22063676, 9.44288372,
10.01885335, 7.49525516, 8.37458402, 10.92937369, 10.67946102,
13.86376797, 11.71283279, 5.9284063, 9.59255804, 7.57785783,
11.75865845, 10.29701554, 8.54738043,
                                      7.89933844, 8.3008639,
12.80214221, 7.16951618, 11.69354963, 9.23287449, 10.60070989,
 9.42484143, 13.39247208, 9.8366729, 9.79308612, 13.00791904,
 8.63395954, 8.02483998, 10.992329 , 14.02775855, 10.6388897 ,
 8.69134756, 9.46875832, 10.11163209, 9.7990431 , 13.32735769,
 7.15836617, 9.26216515, 10.95117648, 7.64664774, 9.26343679,
 9.24247868, 8.72541669, 8.42067421, 11.30720778, 10.19609633,
 8.51792098, 13.03157897, 8.10294818, 9.67571952, 10.06232263,
 8.75697612, 8.05067885, 7.67606892, 7.37637401, 8.98490732,
10.67321551, 12.18030627, 9.19320718, 8.25611386, 9.18938137,
 9.80104014, 10.7614641 , 14.97174085, 9.90863455, 8.49861268,
12.80830169, 9.12888331, 13.22419566, 9.38141091, 9.03719535,
11.28676378, 9.57368493, 14.15810132, 13.15299064, 13.64289594,
 9.14271472, 12.52896848, 9.85253211, 10.90763996, 11.91247162,
 6.9643063 , 7.04873926, 13.51089032, 8.52621657, 11.92054006,
12.85548554, 9.35432381, 6.75579742, 6.92536014, 11.06993434,
 5.09516196, 11.14055981, 10.02254804, 11.46143106, 11.6157383,
10.70537981, 11.34252457, 10.32964891, 6.40872558, 9.5230551,
 9.8754752 , 6.64957542, 11.08423954, 6.27526737, 8.93050687,
 7.0837962 , 10.98569946, 9.07710537, 6.54388388, 6.50684135,
13.92665521, 10.73419412, 9.62810419, 9.81485944, 14.28187178,
 9.74851442, 7.62655355, 8.06624002, 9.51162406, 9.37527001,
 6.28845065, 9.05904232, 12.31612411, 15.07632548, 11.07945243,
 8.14721185, 8.86368526, 10.75579173, 6.46670957, 11.46459375,
 7.89802408, 10.07334973, 7.59767402, 9.94794478, 7.25564624,
11.34876863, 9.26227404, 7.63153484, 8.78362146, 16.25490427,
 7.57095315, 13.33206439, 9.76916846, 5.65234174, 9.98095345,
 5.76281777, 5.75660541, 10.65527206, 9.52082376, 9.3706415,
11.20512028, 7.20216322, 13.40362951, 12.6176809 , 14.53097291,
7.3174256 , 11.16593252, 12.91316997, 7.21956333, 5.52607635,
10.70583405, 9.26550355, 11.67839413, 8.83346747, 9.35654145,
11.97737999, 10.96765731, 7.08959727, 11.88322075, 11.06567064,
 9.14221778, 10.10220632, 10.70128798, 6.76121354, 7.20030452,
 9.38367229, 7.60807592, 11.11285058, 7.55727594, 11.97387227,
10.70204789, 10.6971933, 8.84485399,
                                      9.69472299, 10.25602577,
14.82340733, 10.38255133, 9.34222692, 9.31530758, 9.13635225,
11.96187819, 6.01899495, 11.05520058, 8.73866757, 7.23769593,
10.9548119 , 10.0750424 , 10.74864677, 8.25101715, 9.48470442,
 5.00488978, 6.63414798, 6.53765429, 9.08694898, 8.49684584,
10.89150004, 7.36918906, 9.06168902, 9.62601824, 14.60100849,
 8.75334046, 11.68484866, 13.58737376, 9.39286917, 11.51447553,
 8.715134 , 13.98844699, 4.86099936, 11.82027244, 10.50426586,
10.45477875, 7.12948081, 9.17697908, 8.66316832, 11.29164479,
15.08124346, 11.80449459, 10.35175054, 10.5595011 , 9.76572868,
 9.65425563, 9.12745562, 11.3516656, 15.99314921, 5.89453211,
10.87219476, 8.92167285, 10.87637108, 13.90625374, 10.72846676,
10.04208441, 10.24592078, 9.80027847, 13.27309825, 12.05243747,
10.63385363, 13.083792 , 7.60719341, 8.99745186, 13.20899991,
12.5576303 , 11.40667332, 11.23953261, 17.23896893, 7.8531285 ,
 8.191757 , 9.48583202, 15.80286428, 11.94151263, 8.67917291,
```

```
10.54064953, 12.76740763, 8.52309521, 2.53887209, 10.16614663,
         7.92323818, 9.19001237, 8.68823114, 8.63952788, 8.6022473,
        12.43962035, 7.73106395, 6.83365054, 14.94736901, 8.61041768,
        10.17368467, 12.07550847, 10.94804622, 8.71201489, 7.51064335,
       11.60606233, 10.05915732, 7.69003357, 10.48004644, 10.8305406, 7.22124017, 12.05438669, 8.47989195, 14.50815848, 6.31579116, 9.10492219, 10.63327037, 7.24350042, 11.10935413, 12.34589553,
         6.37506037, 5.24088619, 10.72498267, 7.9826483, 7.85438097,
        15.50153207, 8.46753475, 8.42673243, 9.36593052, 9.47760882,
        10.90846718, 9.48600976, 11.37847124, 6.34064151, 12.22938785,
         9.44902029, 16.78152113, 12.63696271, 6.47978491, 11.74947815, 9.10400676, 14.6031103 , 16.66448936, 8.64201185, 12.33070086,
        12.51770165, 11.29289171, 10.53877233, 12.81078631, 11.8829119,
        10.06782342, 7.75963449, 10.65794249, 4.91459767, 9.56125876,
        10.68400691, 7.92487953, 8.61887237, 8.37453113, 10.68875889,
         7.62101595, 5.40351361, 6.13674007, 8.55510195, 8.26475414,
        11.17925161, 9.78725504, 12.07803016, 7.56853355, 6.76528288,
       12.84633503, 12.42805699, 11.76702009, 8.48417017, 13.91588076,
         9.28636427, 9.17181811, 12.22486462, 10.46930302, 10.88293772,
         8.06717046, 8.04262297, 9.49841394, 9.72765238, 11.91317785,
         9.48780322, 12.57409792, 8.56749496, 12.93945663, 8.40072518,
         9.26340918, 7.15536791, 7.33131294, 9.40044306, 13.30425143, 7.52907068, 12.11786607, 9.44871531, 12.64268462, 7.73734429,
        10.80140706])
14. Measure the performance using Metrics
                                                                                In []:
from sklearn.metrics import mean absolute error, mean squared error
s = mean squared error(y train, y_train_pred)
print('Mean Squared error of training set :%2f'%s)
                                                                                In []:
p = mean squared error(y test, y test pred)
print('Mean Squared error of testing set :%2f'%p)
Mean Squared error of testing set :4.869245
                                                                                In []:
# Build the Model
from sklearn.ensemble import RandomForestRegressor
                                                                                In []:
rfr = RandomForestRegressor(max depth=2, random state=0,
                                  n estimators=100)
                                                                                In [ ]:
rfr.fit(x train, y train)
rfr.fit(x test, y test)
                                                                               Out[]:
RandomForestRegressor(max depth=2, random state=0)
                                                                                In [ ]:
#Test the model
y train pred = rfr.predict(x train)
y test pred = rfr.predict(x test)
                                                                                In []:
#measure the performance using metrics
rfr.score(x test, y test)
```

7.38030287, 10.56161759, 9.5067371, 10.90686841, 9.52354238,

	Out[]:
0.4497726034378102 K Neighbors Regression	
K Neighbors Regression	l., [].
#Build the model	In []:
<pre>from sklearn.neighbors import KNeighborsRegressor</pre>	
	ln []:
<pre>knr = KNeighborsRegressor(n_neighbors =4)</pre>	
	ln []:
<pre>#Train the model knr.fit(x train, y train)</pre>	
knr.fit(x_test, y_test)	
	Out[]:
<pre>KNeighborsRegressor(n_neighbors=4)</pre>	
#Test the model	In []:
<pre>y_train_pred = knr.predict(x_train)</pre>	
<pre>y_test_pred = knr.predict(x_test)</pre>	
	ln []:
<pre>#Measure the performance using Metrics knr.score(x_train, y_train)</pre>	
	Out[]:
0.458628955466746	Out[].
Decision Tree Regression	
	In []:
#Build the model from sklearn.tree import DecisionTreeRegressor	
dtr = DecisionTreeRegressor(random_state=0)	
uti - Decision reenegressor (random_state-o)	l [].
#Train the model	In []:
dtr.fit(x_test,y_test)	
	Out[]:
DecisionTreeRegressor(random_state=0)	
m1 1 1	
Test the model	
y_train_pred = dtr.predict(x_train) y_test_pred = dtr.predict(x_test)	
	ln []:
<pre>#Mesure the performance using Metrics dtr.score(x_train, y_train)</pre>	
	Out[]:
0.15715160117393523	Ծանլ յ.
Lasso Regression	
	In [214]:
#Build the model from sklearn.linear model import Lasso	
	In [215]:
	111 [213].

lr=Lasso(alpha=0.01)

#Train the model
lr.fit(x_train,y_train)

Cut[216]:

Lasso(alpha=0.01)

In [217]:
y_train_pred = lr.predict(x_train)
y_test_pred = lr.predict(x_test)

#Measure the performance using Metrics
lr.score(x_train, y_train)

Out[218]:

0.5098141532900928