Algorithmes Séance 6

Les tableaux

Définition

Un tableau est une structure de données. Il est utilisé pour stocker <u>plusieurs valeurs de même type</u>. Les éléments d'un tableau sont accessibles grâce à leurs indices, commençant du zéro.

Exemple

Soit le tableau suivant :

tn	Amine	Israa	Sirine	Eya
	0	1	2	3

- 1. Quel est le nombre d'éléments du tableau tn?
 - 4 éléments
- 2. Quel est l'indice du premier élément ? Et quel est l'indice du dernier élément ? Le premier élément possède l'indice 0 et le dernier élément possède l'indice 3.
- 3. Est-ce qu'on peut insérer des valeurs numériques (de type entier ou réel) dans le tableau tn ? Tous les éléments d'un tableau doivent avoir le même type. Bien qu'en Python les listes peuvent des valeurs de n'importe quel type.

Déclaration

La déclaration d'un tableau se fait au niveau du T.D.O. de la façon suivante :

Objet	Туре
 nom_tableau	 tableau de nb_éléments type

Exemple

Pour déclarer le tableau tn utilisé précedemment on écrit :

Objet	Туре
tn	tableau de 4 chaîne

Activité 1

Dessiner le TDO relatif aux tableaux suivants :

moy	9.75	16.5	14.25	12.75	6.5
	0	1	2	3	4

Tableau moy contenant les moyennes, des réels, de 5 matières (0 : Arabe, 1 : Mathématiques, 2 : Techniques).

pieces	20	30	25	55	40	 88
	0	1	2	3	4	 29

Tableau pieces qui indique le nombres de pièces vendues par un marchand, pendant un mois.

absences	Faux	Faux	Vrai	Faux	Vrai	Faux
	0	1	2	3	4	5

Tableau absences qui indique les jours d'absences d'un élève pendant une semaine (0 : Lundi, 1 : Mardi, etc.). Vrai signifie que l'élève est absent.

Remplissage

Un tableau peut être rempli, explicitement, case par case par des constantes.

Pour remplir le tableau tn on peut écrire :

Exemple

```
tn[0] ← "Amine"
tn[1] ← "Israa"
tn[2] ← "Sirine"
tn[3] ← "Eya"
```

Un tableau peut être, aussi, rempli par des valeurs saisies par l'utilisateur.

Exemple

```
Pour i de 0 à 3 Faire
   Ecrire("Donner le nom de la ", i, "ème personne ? ")
   Lire(tn[i])
Fin Pour
```

Le tableau peut, encore, être rempli d'une façon aléatoire.

Exemple

Le code suivant rempli le tableau tn par des mots de passes composés de chaînes aléatoires.

```
Pour i de 0 à 3 Faire
    tn[i] ← ""
Pour j de 0 à 5 Faire
        tn[i] ← tn[i] + chr(aléa(48, 90))
Fin Pour
Ecrire("Mot de passe", i, ":", tn[i])
Fin Pour
```

Affichage

On veut souvent afficher le contenu d'un tableau. L'opération se fait de la façon suivante :

Exemple

Afficher les noms de tous les participants d'un Tombola :

```
Pour i de 0 à 3 Faire
   Ecrire("Participant", i, ":", tn[i])
Fin Pour
```

D'autres fois, on veut juste afficher quelques éléments du tableau. Par exemple ceux qui vérifient une condition.

Exemple

Afficher les noms des participants d'indices impaires :

```
Pour i de 0 à 3 Faire
Si (i mod 2 = 1) Alors
    Ecrire("Participant", i, ":", tn[i])
Fin Si
Fin Pour
```

Activités

Parking Vertical

Dans les villes on préfère les parking verticaux parce qu'il permettent de gagner de l'espace.

Un parking possède une capacité comptée en nombre de places n, avec 4 ≤ n ≤ 200

En supposant qu'un parking peut être représenté par un tableau qui contient les états suivants :

- 0 Emplacement vide
- 1 Emplacement occupé
- 2 Emplacement réservé

Travail demandé

On demande d'écrire un programme qui :

- 1. Remplit le parking.
- 2. Calcule le nombre d'étages occupés.
- 3. Déterminer l'indice du premier étage vide.
- 4. Insère un nouveau véhicule.
- 5. Affiche l'état du parking.

Solution

```
Algorithme Parking
Début
  // Question 1
  Répéter
    Ecrire("Nbre d'étages du parking (4 ≤ n ≤ 200) ? ")
    Lire(n)
  Jusqu'à (4 \le n \le 200)
  Pour i de 1 à n Faire
    Répéter
      Ecrire("L'état de l'étage n°", i, " ? ")
      Lire(park[i])
    Jusqu'à (0 \le park[i] \le 2)
  Fin Pour
  // Ouestion 2
  occ ← 0
  Pour i de 1 à n Faire
    Si park[i] # 0 Alors
      occ ← occ + 1
    Fin Si
  Fin Pour
  Ecrire("Il y'a", occ, "places occupées et",
         n-occ, "places libres")
  // Question 3
  p ← -1
  i ← 1
  TantQue (p = -1) et (i \le n) Faire
    Si park[i] = 0 Alors
      p ← i
    Sinon
      i \leftarrow i + 1
    Fin Si
  Fin TantQue
```

Objet	Туре
park	tableau de 201
n, i, occ,	entier
р	entier

```
Si p ≠ -1 Alors
    Ecrire("L'étage", p, "est vide")
    Ecrire("Aucun étage vide")
  Fin Si
  // Question 4
  Si p ≠ -1 Alors
    park[0] \leftarrow 1
    Pour i de p-1 à 0 Faire
      park[i+1] \leftarrow park[i]
    Fin Pour
    park[0] \leftarrow 0
  Fin Si
  // Question 5
  Pour i de 1 à n Faire
    Si park[i] = 0 Alors etat + "vide"
    Sinon Si park[i] = 1 Alors etat ← "occupé"
    Sinon etat ← "réservé"
    Fin Si
    Ecrire("L'étage",i,"est",etat)
  Fin Pour
Fin
```

Activité 2

Ecrire un programme qui saisit un tableau de n entiers non nuls ($5 \le n \le 20$) puis supprime les duplications.

Solution

```
Algorithme Activité2
Début
  Répéter
    Ecrire("Donner n (5 \le n \le 20)?")
    Lire(n)
  Jusqu'à (5 \le n \le 20)
  Pour i de 1 à n Faire
    Répéter
      Ecrire("t[", i, "] ? ")
      Lire(t[i])
    Jusqu'à (t[i] \neq 0)
  Fin Pour
  // Remplacer les duplications par des 0
  Pour i de 1 à n-1 Faire
    p ← -1
    j ← i-1
    TantQue (p = -1) et (j \ge 0) Faire
      Si t[i] = t[j] Alors
         t[i] ← 0
         p ← j
      Sinon
        j ← j - 1
      Fin Si
    Fin TantQue
  Fin Pour
```

Objet	Туре
t	tableau de 20 entier
n, i, j, p	entier

```
// Supprimer les cases vides
j ← -1
Pour i de 0 à n-1 Faire
   Si t[i] ≠ 0 Alors
        j ← j + 1
        t[j] ← t[i]
   Fin Si
Fin Pour
// Afficher le nouveau tableau sans duplications
n ← j + 1
Pour i de 0 à n-1 Faire
   Ecrire(t[i], ", ")
Fin Pour
Fin
```

Tableau Symétrique

Partie 1

Le tableau [1,2,3,2,1] est symétrique alors que le tableau [1,2,3,1,2] n'est pas symétrique. Ecrire un programme qui saisit un tableau de n entiers ($5 \le n \le 20$) puis détermine si le tableau est symétrique ou non.

Partie 2

Le tableau [1,2,3,8,2,1] n'est pas symétrique en supprimant la valeur 8 il devient symétrique. Ecrire un programme qui détermine si le tableau saisit précédemment peut devevnir symétrique en supprimant exactement un seul de ses éléments.

Top 5 Scores

Hachem a conçu un clone du jeu snake. Il veut maintenir un Top 5 des scores des joueurs. Pour celà on veut écrire un programme qui :

- Saisit le score d'un joueur, score ≥ 0.
- Saisit le nom d'un joueur, composé uniquement de lettres majuscules.
- Insère les données dans deux tableaux sj et nj, le premier est utilisé pour stocker les scores des joueurs et le second est utilisé pour stocker leurs noms.
- Répète les opérations précédentes tant que le score est positif.
- Affiche le Top 5 Scores : Les noms des joueurs ainsi que leurs scores.

Montagne la plus culminente

Un chercheur veut déterminer les deux montagnes les plus hautes dans un relief montagneux. Pour celà il a pris des mesures de l'hauteur de la croute terrestre sur une ligne de n points, $3 \le n \le 15$ dans un tableau haut.

Ecrire un programme qui :

- Saisit les hauteurs de n points du relief étudié dans un tableau haut
- Détermine le point le plus haut de ce relief montagneux.
- Détermine le 2^{ème} point le plus haut.