Ejercicio: Extra teórico tema 1

Sea $A: \mathbb{R} \longrightarrow \mathcal{M}_d(\mathbb{R})$ continua y T-periódica dondde T>0 y sea $\phi: \mathbb{R} \longrightarrow \mathcal{M}_d(\mathbb{R})$ la matriz fundamental principal en t=0 de la EDO lineal homogénea

$$(*)x' = A(t)x.$$

Prueba:

- 1. Prueba que existe una matriz M, llamada matriz de monondromía, tal que $\phi(t+T)=\phi(t)\dot{M}$ para todo $t\in\mathbb{R}$.
- 2. Prueba que (*) es asintóticamente estable sii $\lim_{n \to \infty} M^n = 0$.
- 3. Prueba que (*) es estable sii $\{M^n : n \in \mathbb{N}\}$ es acotada.
- 4. Los valores propios de *M* reciben el nombre de multiplicadores de Floquet ¿Puedes caracterizar la estabilidad, inestabilidad y estabilidad asintótica de (*) en función de los multiplicadores de Floque?

0.1. Existencia matriz de monodromía

Por ser matriz fundamental sabemos que es invertible y además cumple que

 $\phi'(t) = A(t)\phi(t)$ despejamos $A(t) = \phi'(t)\phi^{-1}(t)$ (1).

Utilizando ahora la T-periodicidad tenemos que

 $\phi'(t+T) = A(t+T)\phi(t+T) = \hat{A}(t)\phi(t+T) \ (2).$

Sustituyendo el valor de A(t) de (1) en (2) llegamos a que :

$$\phi'(t+T) = \phi'(t)\phi^{-1}(t)\phi(t+T)$$

Multiplicando a la izquierda por la inversa de $\phi'(t)\phi^{-1}(t)$

$$\phi(t)\phi'(t)^{-1}\phi'(t+T) = \phi(t+T)$$

Si llamamos $M=\phi'(t)^{-1}\phi'(t+T)$ acabamos de encontrar la matriz de monodromía buscada.

0.2. Prueba que (*) es asintóticamente estable sii $\lim_{n\longrightarrow\infty}M^n=0$.

Veamos primero la siguiente observación:

Cuando t es lo suficientemente grande, podemos escribir $t = t_0 + nT$ con $t_0 \in [0, T)$ y

 $n \in \mathbb{N}$.

De donde podemos ver que:

$$\phi(t) = \phi(t_0 + nT) = \phi(t_0 + (n-1)T)M = \phi(t_0)M^n$$

Recordemos ahora caracterización equivalente de asintóticamente estable:

(*) será asintóticamente estable (un atractor) si la matriz fundamente de (**) converge hacia 0 cuantdo t tiende a infinito.

Como no tiene porqué darse el caso trivial de que $\phi(t_0)=0$ para todo $t_0\in[0,T)$, entonces necesariamente (y suficientemente) $\lim_{n\longrightarrow\infty}M^n=0$ sii $\lim_{t\longrightarrow 0}\phi(t)=0$

0.3. Prueba que (*) es estable sii $\{M^n : n \in N\}$ es acotada.

Recordemos que por las equivalencias de estabilidad, (*) será estable sii la matriz fundamental está acotada en $[0, \infty)$ (La estabilidad es invariante del punto seleccionado como extremo inferior, por ello he seleccionado el 0).

Sabemos que $\phi(t_0)$ está acotada en $t \in [0, T]$ por ser compacto.

Teniendo presente la observación anterior:

Para t > 0 podemos escribir $t = t_0 + nT \operatorname{con} t_0 \in [0, T)$ y $n \in \mathbb{N}$.

$$\phi(t) = \phi(t_0)M^n$$

Ya hemos visto que $\phi(t_0)$ está acotada, luego $\phi(t)$ estará acotada si y solo si $\{M^n:n\in\mathbb{N}\}$ lo está.

0.4. Caracterización de la estabilidad, inestabilidad y estabilidad asintótica de (*).

En los apartado 2 y 3 de la demostración ya hemos caracterizado la estabilidad y la estabilidad asintótica en función de *M*.

A partir de sus valores propios podemos ver $M = PJP^{-1}$ donde J es una matriz de Jordan y P su respectiva matriz de paso. Además $M^n = PJ^nP^{-1}$.

Podemos pues ligar el compartamiento asintótico de M^n al de J^n que depende exclusivamente de los valores propios de M.

Recordemao que si J_m una caja de jordan de la forma:

$$J_m = \begin{bmatrix} a & 1 & \dots & \dots & 0 \\ 0 & a & 1 & \dots & 0 \\ & & \dots & & & \\ 0 & \dots & \dots & 0 & a \end{bmatrix}_{m \times m}$$

Entonces con $\mathcal{X}_{n-(m-fila)>0}$ la función característica.

$$J_{m}^{n} = \begin{bmatrix} a^{n} & a^{n-1}n & \dots & \frac{a^{n-(m-1)}(n+m-fila)!}{(m-1)!} \mathcal{X}_{n-(m-fila)>0} \\ 0 & a^{n} & a^{n-1}n & \dots & \frac{a^{n-(m-fila)}(n+m-fila)!}{(m-fila)!} \mathcal{X}_{n-(m-fila)>0} \\ & \dots & \dots & \\ 0 & \dots & \dots & 0 & a^{n} \end{bmatrix}_{m \times m}$$

Asintóticamente los componentes de la matriz triangular superior dependen esclusivamente de a.

Finalemente y para estudiar el caso complejo podemos pensar los valores en su forma polar $\lambda = re^{i\theta}$ y está claro que $\lambda^n = r^n e^{in\theta}$. Donde $r = |\lambda|$ es el módulo, θ el ángulo que forman y n un número natural. Como la exponencial compleja nunca se anula, necesariamente el valor asíntótico también dependerá del módulo.

- 1. **Estabilidad asintótica.** Si M^n tiende a la matriz 0 cuando n tiende a infinito o equivalentemente si J^n tiende a la matriz 0 cuando n tiende a infinito. Esto será si $|\lambda| < 1$ para todo $\lambda \in \sigma(M)$.
- 2. **Estabilidad** Si $\{M^n : n \in N\}$ está acotada o quivalentemente si $\{J^n : n \in N\}$ está acotada. Esto será si $|\lambda| \le 1$ para cualquier $\lambda \in \sigma(M)$.
- 3. **Inestabilidad** Teniendo en cuenta los casos anteriores esto será si existe un valor propio de *M* con módulo estrictamente mayor que uno.

2