

Classification: More Classification Techniques

CS 418. Introduction to Data Science

© 2018 by Gonzalo A. Bello

k-Nearest Neighbors Classifier Preliminaries

- A k -nearest neighbors classifier assigns class labels to observations based on the class labels of the k "most similar" observations (k nearest neighbors).
- "If it walks like a duck, quacks like a duck, and looks like a duck, then it's probably a duck."
- Example:

1-Nearest Neighbor

2-Nearest Neighbors

3-Nearest Neighbors

k-Nearest Neighbors Classifier Algorithm

- Algorithm for k-nearest neighbors classifier:
 - 1. Choose a **proximity metric** and a **number of nearest neighbors** *k*.
 - For each observation z in the test set:
 - Compute the distance or similarity between z and every observation in the training set.
 - 2. Select the k observations most similar to z (k nearest neighbors).
 - 3. Assign a class label to z based on the class labels of its k nearest neighbors.
 - Use majority voting or weighted majority voting.
 - If there is a tie between classes, randomly choose one of them.
- How to choose k?
 - If **k** is **too small**, then the classifier may be susceptible to **overfitting** due to noise.
 - If k is too large, then the classifier may misclassify z by considering observations that are not similar to z.

k-Nearest Neighbors ClassifierDistance Metrics

- Distance metrics measure the dissimilarity between two observations.
 - For continuous attributes:
 - Euclidean distance:

$$d(x,y) = \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}$$

where p is the number of attributes and x_i and y_i are the ith attributes of observations x and y, respectively.

Manhattan distance:

$$d(x,y) = \sum_{i=1}^{p} |x_i - y_i|$$

 The Euclidean and the Manhattan distances can be generalized by the Minkowski distance:

$$d(x,y) = \left(\sum_{i=1}^{p} |x_i - y_i|^r\right)^{1/r}$$

where *r* is a parameter.

k-Nearest Neighbors Classifier Similarity Metrics

- Similarity metrics measure the similarity between two observations.
 - For binary attributes:
 - Jaccard coefficient:

$$S(x,y) = \frac{N_{11}}{N_{01} + N_{10} + N_{11}}$$

Simple matching coefficient:

$$S(x,y) = \frac{N_{00} + N_{11}}{N_{00} + N_{01} + N_{10} + N_{11}}$$

where N_{11} is the number of attributes where both x and y have a value of 1, N_{00} is the number of attributes where both x and y have a value of 0, N_{01} is the number of attributes where x has a value of 0 and y has a value of 1, and N_{10} is the number of attributes where x has a value of 1 and y has a value of 0.

• For more **distance** and **similarity metrics** available on Python, see <u>sklearn.neighbors.DistanceMetric</u>.

k-Nearest Neighbors Classifier Advantages and Disadvantages

- What are some of the advantages of k-nearest neighbors?
 - Does not require training a model.
 - Nonparametric. Makes no assumptions about the probability distribution of the data.
 - Applicable to categorical and numeric attributes.
 - Flexibility. Can produce decision boundaries of any shape.
- What are some of the disadvantages of k-nearest neighbors?
 - Classifying each observation from the test set can be computationally expensive.
 - Easy to overfit due to noise or high dimensionality.
 - Sensitive to redundant or irrelevant attributes.
 - Sensitive to the scale of the data.
 - No descriptive value. Does not provide a model of the relationship between the class label and the attributes.

Naïve Bayes Classifier Preliminaries (I)

 A Naïve Bayes classifier is a probabilistic model that uses Bayes' Theorem for classification.

The **probability** of observing class label y given attribute value X is

$$P(y|X) = \frac{P(X|y) P(y)}{P(X)} = \frac{P(X|y) P(y)}{P(X|y) P(y) + P(X|\neg y) P(\neg y)}$$

 Example: Suppose that we want to classify emails as spam or non-spam based on the appearance of the word "free" in the email. Using Bayes' Theorem we can compute:

$$P(spam|free) = \frac{P(free|spam) P(spam)}{P(free|spam) P(spam) + P(free|\neg spam) P(\neg spam)} P(\neg spam) P(\neg sp$$

Naïve Bayes Classifier Preliminaries (II)

What if we have more than one attribute?

$$P(y|X_1, X_2, ..., X_p) = \frac{P(X_1, X_2, ..., X_p|y) P(y)}{P(X_1, X_2, ..., X_p)}$$

Note that:

$$P(X_{1}, X_{2}, ..., X_{p} | y) = \frac{P(X_{1}, X_{2}, ..., X_{p}, y)}{P(y)}$$

$$= \frac{P(X_{1}, X_{2}, ..., X_{p}, y)}{P(X_{2}, X_{3}, ..., X_{p}, y)} \cdot \frac{P(X_{2}, X_{3}, ..., X_{p}, y)}{P(X_{3}, X_{4}, ..., X_{p}, y)} \cdot ... \cdot \frac{P(X_{p}, y)}{P(y)}$$

$$= P(X_{1} | X_{2}, ..., X_{p}, y) P(X_{2} | X_{3}, ..., X_{p}, y) ... P(X_{p} | y)$$

Let X_1 , X_2 , and Y be random variables. X_1 is conditionally independent of X_2 given Y if

$$P(X_1|X_2,Y) = P(X_1|Y)$$

Naïve Bayes Classifier Assumption

 Naïve Bayes classifiers assume that all attributes are conditionally independent. That is, if the class label y is known, then we consider the attributes to be independent of each other. That is:

$$P(X_1, X_2, ..., X_p | y) = P(X_1 | y) P(X_2 | y) ... P(X_p | y) = \prod_{i=1}^p P(X_i | y)$$

Then, the probability of observing a class label y is given by:

$$P(y|X_1, X_2, ..., X_p) = \frac{P(y) \prod_{i=1}^{p} P(X_i|y)}{P(X_1, X_2, ..., X_p)}$$

• Since $P(X_1, X_2, ..., X_p)$ is constant for every class label, then:

$$P(y|X_1,X_2,...,X_p) \propto P(y) \prod_{i=1}^p P(X_i|y)$$

• Thus, it is sufficient to choose the class label that maximizes $P(y) \prod_{i=1}^{p} P(X_i|y)$.

Naïve Bayes Classifier Advantages and Disadvantages

- What are some of the advantages of Naïve Bayes?
 - Descriptive value. Provides a probabilistic model of the relationship between the class label and the attributes, as well as probabilities that quantify the uncertainty in predictions.
 - Applicable to categorical and numeric attributes.
 - Robust to irrelevant attributes.
 - Robust to noise.
- What are some of the disadvantages of Naïve Bayes?
 - Sensitive to redundant attributes
 - Assumes that attributes are conditionally independent.
 This assumption often does not hold in practice.
- We can represent other forms of conditional independence among attributes using Bayesian Networks, which are probabilistic graphical models that do not assume that attributes are conditionally independent.

Support Vector Machines Preliminaries (I)

- A hyperplane is given by the equation $\mathbf{w}^T \mathbf{x} + \mathbf{b} = \mathbf{0}$ where \mathbf{x} are the attribute values and \mathbf{w} and \mathbf{b} are the parameters of the hyperplane.
- An observation can belong to either side of the hyperplane depending on the sign of $\mathbf{w}^T \mathbf{x} + \mathbf{b}$.
- A dataset is linearly separable if there exists a hyperplane that can perfectly separate observations from different classes.

if
$$\mathbf{w}^T \mathbf{x}_i + b < 0$$
,
then $\mathbf{y}_i = +$

There can be infinitely many hyperplanes to separate the classes. Which of these hyperplanes would you choose? Why?

- We would like to choose a hyperplane that is robust to small perturbations in the data. This can be achieved by choosing the hyperplane with the maximum margin.
- For every hyperplane B, there is a pair of parallel hyperplanes b_1 and b_2 that touch the closest observations of both classes.
- The distance between b_1 and b_2 is known as the margin of hyperplane B.

What happens if the margin is too small?

Support Vector Machines Definition

 A support vector machine (SVM) is a classifier that finds the separating hyperplane with the maximum margin by solving the following optimization problem:

$$\max_{\mathbf{w},b} M$$
subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge M||\mathbf{w}||$

where w and b are the parameters of the hyperplane, 2M is the margin, and $y_i \in \{-1, 1\}$.

- SVMs represent this hyperplane using only a subset of the observations in the training set that are most difficult to classify (known as the support vectors).
- If the number of support vectors is too large, the SVM is more likely to overfit.

Support Vector Machines Nonlinear SVM

- The previous definition of SVM learns a linear decision boundary to separate the classes.
- We can learn **nonlinear decision boundaries** by transforming the data from the original attribute space \mathbf{x} into a new space $\phi(\mathbf{x})$ where a **linear hyperplane** can be used to separate the classes.

$$\phi(x) = (x, x^2)$$

Support Vector Machines Kernel Trick

- Computing the transformation $\phi(\mathbf{u})$ for every observation \mathbf{u} can be computationally expensive.
- However, in order to solve the SVM optimization problem, we only need the inner products $\langle \phi(\mathbf{u}), \phi(\mathbf{v}) \rangle$.
- Therefore, we can use a **kernel function** $K(\mathbf{u}, \mathbf{v})$ to compute the **inner products** $\langle \phi(\mathbf{u}), \phi(\mathbf{v}) \rangle$ without explicitly computing the **transformations** $\phi(\mathbf{u})$ and $\phi(\mathbf{v})$.

$$K(\mathbf{u}, \mathbf{v}) = \langle \phi(\mathbf{u}), \phi(\mathbf{v}) \rangle = f(\mathbf{u}, \mathbf{v})$$

- This method is known as the kernel trick.
- Some commonly used kernel functions include:
 - Polynomial kernel: $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u}^T \mathbf{v} + \mathbf{1})^p$
 - Radial Basis Function (RBF) kernel: $K(\mathbf{u}, \mathbf{v}) = e^{-\left||\mathbf{u} \mathbf{v}|\right|^2/(2\sigma^2)}$

Support Vector Machines Advantages and Disadvantages

- What are some of the advantages of SVMs?
 - Uses optimization algorithms to find the optimal decision boundary.
 - Flexibility. Can learn both linear and nonlinear decision boundaries.
 - Applicable to numeric and categorical attributes (by using dummy variables).
 - Generally robust to irrelevant attributes (by assigning them a weight of zero).
 - Generally robust to redundant attributes (by assigning them a similar weight).
- What are some of the disadvantages of SVMs?
 - Training the model can be computationally expensive.

- Joel Grus. Data Science from Scratch (2015).
- Cathy O'Neil and Rachel Schutt. Doing Data Science (2013).
- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar. Introduction to Data Mining (2019).