Combinational Logic

Jia Chen jiac@ucr.edu

Outline

- Two types of logics
- The theory behind combinational logics
- The building blocks of combinational logics

Types of circuits

Combinational v.s. sequential logic

- Combinational logic
 - The output is a pure function of its current inputs
 - The output doesn't change regardless how many times the logic is triggered — Idempotent
- Sequential logic
 - The output depends on current inputs, previous inputs, their history

When to use combinational logic?

- How many of the following can we simply use combinational logics to accomplish?
 - (1) Counters
 - (2) Adders
 - 3 Memory cells
 - 4 Decimal to 7-segment LED-decoders
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

When to use combinational logic?

- How many of the following can we simply use combinational logics to accomplish?
 - (1) Counters You need the previous input
 - Adders
 - (3) Memory cells You need to keep the current state
 - Decimal to 7-segment LED-decoders
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

Theory behind each

- A Combinational logic is the implementation of a Boolean Algebra function with only Boolean Variables as their inputs
- A Sequential logic is the implementation of a Finite-State Machine

Boolean Algebra

Boolean algebra

- Boolean algebra George Boole, 1815—1864
 - Introduced binary variables
 - Introduced the three fundamental logic operations: AND, OR, and NOT
 - Extended to abstract algebra with set operations: intersect, union, complement

Basic Boolean Algebra Concepts

- {0, 1}: The only two possible values in inputs/outputs
- Basic operators
 - AND (•) a b
 - returns 1 only if both a and b are 1s
 - otherwise returns 0
 - OR (+) a + b
 - returns 1 if a or b is 1
 - returns 0 if none of them are 1s
 - NOT (') a'
 - returns 0 if a is 1
 - returns 1 if a is 0

Truth tables

 A table sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables

AND

Inp	Output	
A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

OR

Inp	Output	
A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

NOT

Input A	Output
0	1
0	1
1	0
1	0

Let's practice!

- · X, Y are two Boolean variables. Consider the following function:
 - $X \cdot Y + X$

How many of the following the input values of X and Y can lead to an output of 1

- (1) X = 0, Y = 0
- (2) X = 0, Y = 1
- 3X = 1, Y = 0
- (4) X = 1, Y = 1
- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

Let's practice!

· X, Y are two Boolean variables. Consider the following function:

$$X \cdot Y' + X$$

How many of the following the input values of X and Y can lead to an output of 1

$$(1) X = 0, Y = 0$$

$$(2)X = 0, Y = 1$$

$$3X = 1, Y = 0$$

$$(4)$$
 X = 1, Y = 1

A. 0

B. 1

C. 2

D. 3

E. 4

Input					Outpu
X	Y	Y'	XY'	XY' + X	t
0	0	1	0	0	0
0	1	0	0	0	0
1	0	1	1	1	1
1	1	0	0	1	1

Derived Boolean operators

- NAND (a b)'
- \cdot NOR (a + b)
- XOR (a + b) (a' + b') or ab' + a'b
- XNOR (a + b') (a' + b) or ab + a'b'

NAND

NOR

XOR

XNOR

Inp	Output	
A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Inp	Output	
A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

ı	Inp	Input		
	A	В	Output	
	0	0	0	
	0	1	1	
	1	0	1	
	1	1	0	

Output	Input			
Output	В	A		
1	0	0		
0	1	0		
0	0	1		
1	1	1		

Express Boolean Operators/Functions in Circuit "Gates"

Boolean operators their circuit "gate" symbols

How to express y = e(ab+cd)

We can make everything NAND!

We can also make everything NOR!

How to express y = e(ab+cd)

How to express y = e(ab+cd)

How gates are implemented?

Two type of CMOSs

nMOS

- Turns on when G = 1
- When it's on, passes 0s, but not 1s
- Connect S to ground (0)
- Pulldown network

pMOS

- Turns on when G = 0
- When it's on, passes 1s, but not 0s
- Connect S to Vdd (1)
- Pullup network

NOT Gate (Inverter) Vdd

Input A	NMOS (passes 0 when on G=1)	PMOS (passes 1 when on G=0)	Output
0	OFF	ON	1
1	ON	OFF	0

GND

Inp	out	NMOS1	PMOS1	NMOS2	PMOS2	Output
A	В	(passes 0 when on G=1)	(passes 1 when on G=0)	(passes 0 when on G=1)	(passes 1 when on G=0)	Output
0	0	OFF	ON	OFF	ON	1
0	1	OFF	ON	ON	OFF	1
1	0	ON	OFF	OFF	ON	1
1	1	ON	OFF	ON	OFF	0

Output

Why use NAND?

- NAND and NOR are "universal gates" you can build any circuit with everything NAND or NOR
- Simplifies the design as you only need one type of gate
- NAND only needs 4 transistors gate delay is smaller than OR/AND that needs 6 transistors
- NAND is slightly faster than NOR due to the physics nature

How about total number of transistors?

However ...

Now, only 5 gates and 4 transistors each — 20 transistors!

How big is the truth table of y = e(ab+cd)

- How many rows do we need to express the circuit represented by y = e(ab+cd)
 - A. 5
 - B. 9
 - C. 25
 - D. 32
 - E. 64

How big is the truth table of y = e(ab+cd)

• How many rows do we need to express the circuit represented by y = e(ab+cd)

A. 5

B. 9

C. 25

D. 32

E. 64

$$2 \times 2 \times 2 \times 2 \times 2 = 2^5 = 32$$

Boolean expression is a lot more compact than a truth table!

Can We Get the Boolean Equation from a Truth Table?

Definitions of Boolean Function Expressions

- Complement: variable with a bar over it or a '— A', B', C'
- Literal: variable or its complement A, A', B, B', C, C'
- Implicant (Product term): product of literals ABC, AC, BC
- Implicate (Sum terms): sum of literals (A+B+C), (A+C),
 (B+C)
- Minterm: AND that includes all input variables ABC, A'BC, AB'C
- Maxterm: OR that includes all input variables (A+B+C), (A'+B+C), (A'+B'+C)

Canonical form — Sum of "Minterms"

	Inp	out	Output	
	X	Y	Output	
	0	0	0	
	0	1	0	
ĺ	1	0	1	
T	1	1	1	

XNOR

Input		Output	s/a D) aini an
A	В	Output	f(A,B) = A'B' + AB
0	0	1	
0	1	0	
1	0	0	
1	1	1	35

Canonical form — Product of "Maxterms" A "maxterm

Input		Output
X	Y	Output
0	0	0
0	1	0
1	0	1
1	1	1

$$f(X,Y) = (X+Y) (X+Y')$$
 ——Product of maxterms

XNOR

Input		Output	
A	В	Output	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Minterms and Maxterms

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}$	0 0 1 1 0 0 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

Sum-of-Products Form

- ☐ Represent a function f by a sum of minterms
- ☐ Each minterm is ANDed with the value of f

Row number	$ x_1 $	x_2	x_3	$ f(x_1, x_2, x_3) $
0	0		- 0	0
1		0		1
$\frac{2}{2}$	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	1	0	$\begin{bmatrix} 0 \end{bmatrix}$
$rac{3}{4}$	U 1	$\frac{1}{0}$	$\frac{1}{0}$	U 1
5	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	0	$\frac{0}{1}$	$\begin{vmatrix} & 1 \\ 1 & 1 \end{vmatrix}$
6	1	1	0	\parallel 1
7	1	1	1	0 '

- ☐ A logic expression in the sum-of-products (SoP) form:
 - Consisting of product (AND) terms that are summed (ORed)
- ☐ Canonical SoP: each product term is a minterm

Product-of-Sums Form

Row number	x_1	x_2	x_3	$\int f(x_1, x_2, x_3)$	
0	0	0	0	0	$f = M_0 M_2 M_3 M_7$
$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	0	0	0 1 0 1 0	1	$=\Pi (M_0, M_2, M_3, M_7)$
2	0	1	0	0	
3	0	1	1	$egin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$=\Pi M(0,2,3,7)$
4	$\mid 1 \mid$	0	0	1	$-\Pi$ (0.2.3.7)
5	1	0	1	1	$=\Pi_{x_1, x_2, x_3}(0, 2, 3, 7)$
6	1	1	0	1	
7	1	1	1	0	$=(x_1+x_2+x_3)(x_1+x_2'+x_3)(x_1+x_2'+x_3')(x_1'+x_2'+x_3')$

- ☐ A logic expression in the product-of-sums (PoS) form:
 - Consisting of sum (OR) terms that are the factors of a logical product
- ☐ Canonical PoS: each sum term is a maxterm

Let's design a circuit!

Binary addition

$$3 + 2 = 5$$
1 carry
0 0 1 1
+ 0 0 1 0

Output 0 1 0 1

3 + 3 = 6						
1, 1,						
0	0	1	1			
0	0	1	1			
0	1	1	0	ŀ		
		1.	1. 1.	0 0 1 1 0 0 1 1 0 1 1 0		

A	В	Cin	Out	Cout
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1

Input

full adder — adder with a carry as an input

half adder — adder without a carry as an input

Input		Output	
A	В	Out	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half adder

Inp	out	Output		
A	В	Out	Cout	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

The sum-of-product form of the full adder

 How many of the following minterms are part of the sum-of-product form of the full adder in generating the output bit?

2 Mins Poll

- 1 A'B'Cin'
- (2) A'BCin'
- (3) AB'Cin'
- (4) ABCin'
- (5) A'B'Cin
- 6 A'BCin
- (7) AB'Cin
- (8) ABCin
- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

The sum-of-product form of the full adder

 How many of the following minterms are part of the sum-of-product form of the full adder in generating the output bit?

	10	<u> </u>	
(2)	'B	()	n
		\smile .	

A.C

B. 1

C. 2

D. 3

E. 4

Input			Ou	tput
A	В	Cin	Out	Cout
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

sum-of-products/product-of-sums

- They can be used interchangeably
- Depends on if the truth table has more 0s or 1s in the result
- Neither forms give you the "optimized" equation. By optimized, we mean — minimize the number of operations

Can we simplify these functions?

Sum-of-minterms

- Different equations may represent the same function. Ex: y = a + b, and y = a + a'b, represent the same function. The sameness is not obvious, so a standard equation form is desirable.
- A canonical form of a Boolean equation is a standard equation form for a function.
- Sum-of-minterms form is a canonical form of a Boolean equation where the right-side expression is a sum-of-products with each product a unique minterm.
- A minterm is a product term having exactly one literal for every function variable.
- A literal is a variable appearance, in true or complemented form, in an expression, such as b, or b'.

Laws in Boolean Algebra

	OR	AND
Associative laws	(a+b)+c=a+(b+c)	(a·b) ·c=a·(b·c)
Commutative laws	a+b=b+a	a·b=b·a
Distributive laws	a+(b·c)=(a+b)·(a+c)	a·(b+c)=a·b+a·c
Identity laws	a+0=a	a·1=a
Complement laws	a+a'=1	a·a'=0

Duality: We swap all operators between (+,.) and interchange all elements between (0,1). For a theorem if the statement can be proven with the laws of Boolean algebra, then the duality of the statement is also true.

Some more tools

	OR	AND
DeMorgan's Theorem	(a + b)' = a'b'	a'b' = (a + b)'
Covering Theorem	a(a+b) = a+ab = a	ab + ab' = (a+b)(a+b') = a
Consensus Theorem	ab+ac+b'c = ab+b'c	(a+b)(a+c)(b'+c) = (a+b)(b'+c)
Uniting Theorem	a (b + b') = a	(a+b)·(a+b')=a
Shannon's Expansion		a'b' + bc + ab'c (1, b, c) + a' f(0,b,c)

Applying Theorems

Which of the following represents CB+BA+C'A?

A. AB+AC'

B. BC+AC'

C. AB+BC

D. AB+AC

E. None of the abov

	OR	AND
Associative laws	(a+b)+c=a+(b+c)	(a·b) ·c=a·(b·c)
Commutative laws	a+b=b+a	a·b=b·a
Distributive laws	$a+(b\cdot c)=(a+b)\cdot (a+c)$	a·(b+c)=a·b+a·c
Identity laws	a+0=a	a·1=a
Complement laws	a+a'=1	a·a'=0
DeMorgan's Theorem	(a + b)' = a'b'	a'b' = (a + b)'
Covering Theorem	a(a+b) = a+ab = a	ab + ab' = (a+b)(a+b') = a
Consensus Theorem	ab+ac+b'c = ab+b'c	(a+b)(a+c)(b'+c) = (a+b)(b'+c)
Uniting Theorem	a (b + b') = a	$(a+b)\cdot(a+b')=a$
Shannon's Expansion		o' + bc + ab'c b, c) + a' f(0,b,c)

Applying Theorems

Which of the following represents BC+BA+C'A?

A. AB+AC'

Consensus Theorem

ab+ac+b'c = ab+b'c

- B. BC+AC
- C. AB+BC
- D. AB+AC
- E. None of the above

```
CB + BA1 + C'A
= BC + BA (C'+C) + C'A
= BC + BAC' + BAC + C'A
= (1+A)BC + (B+1)AC'
= BC + AC'
```

How many "OR"s?

For the truth table shown on the right, what's the minimum

number of "OR" gates we need?

A	1
/ \	

B. 2

C. 3

D. 4

E. 5

Input			Output
A	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	0	0	1
1	1	1	0

How many "OR"s?

 For the truth table shown on the right, what's the minimum number of "OR" gates we need?

```
A. 1 F(A, B, C) =

B. 2 A'B'C'+ A'B'C+ A'BC'+ A'BC+ AB'C'+ ABC'

C. 3 = A'B'(C'+C)+ A'B(C'+C)+ AC'(B'+B)

D. 4 = A'B'+ A'B + AC'

E. 5 = A' + AC'= A'(1+C')+AC' Distributive Laws

= A' + A'C' + AC'
= A' + (A'+A)C'
= A' + C'
```

Input			Output
A	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0