MAC0338 - Entrega da lista 1

Gabriel Haruo Hanai Takeuchi - NUSP: 13671636

Exercício 1(b)

Lembre-se que lg n denota o logaritmo na base 2 de n. Prove os seguintes itens usando a definição de notação \mathcal{O} e escreva explicitamente a escolha de constantes c e n_0 .

(b)
$$\log_{10} n \in \mathcal{O}(\lg n)$$

Proof. Vamos provar que existem constantes positivas n_0 e c tal que, para todo $n \ge n_0$, $\log_{10} n \le c \lg n$. Note que

$$\log_{10} n = \frac{\lg n}{\lg 10} = \frac{1}{\lg 10} \lg n \implies \log_{10} n \le \frac{1}{\lg 10} \lg n.$$

Como $\log_{10} n = \frac{1}{\lg 10} \lg n$ é uma igualdade, podemos fixar $c = \frac{1}{\lg 10}$ e $n_0 = 1$, por exemplo, e está provado.

Exercício 2(d)

Prove os seguintes itens usando a definição de notação \mathcal{O} e escreva explicitamente a escolha de constantes c e n_0 .

(d)
$$n = \mathcal{O}(2^n)$$

Proof. Vamos provar que $n=\mathcal{O}(2^n)$, ou seja, que existem constantes positivas c e n_0 tais que, para todo $n\geq n_0$, $n\leq c$ 2^n . Note que para qualquer $c\geq 1$ e $n_0\geq 0$, é verdade que $n\leq 1\cdot 2^n$. Vamos provar rapidamente por indução em n, fixando c=1.

Base: Para $n = 0, 0 \le 1 \cdot 2^0 = 1$.

Passo: Fixe $n \geq 1$ e suponha verdade para n-1. Então

$$n-1 \le 1 \cdot 2^{n-1} \implies 2n-2 \le 2^n \implies n \le \frac{2^n+2}{2} \le 2^n.$$

Portanto, para c=1 e $n_0=0$, está provado.

Exercício 3(b)

Prove ou dê um contra-exemplo para as afirmações abaixo:

(b) Se
$$f(n) = \Theta(g(n))$$
 e $g(n) = \Theta(h(n))$, então $f(n) = \Theta(h(n))$.

Proof. Note que temos $f(n) = \Theta(g(n))$, ou seja, existem constantes positivas c_1, c_2 e n_0 tais que, para todo $n \ge n_0, c_1 g(n) \le f(n) \le c_2 g(n)$. Note também que $g(m) = \Theta(h(m))$, ou seja, existem constantes positivas k_1, k_2 e m_0 tais que, para todo $m \ge m_0, k_1 h(m) \le g(n) \le k_2 h(m)$. Combinando as afirmações acima, temos que

$$c_1(k_1 h(m)) \le c_1 g(n) \le f(n) \le c_2 g(n) \le c_2(k_2 h(m)).$$

Logo, adotando as constantes $t_1 = c_1 k_1$, $t_2 = c_2 h_2$ e $v_0 = n_0 + m_0$ (isto pois v_0 deve ser pelo menos maior que n_0), então temos que, para todo $v \ge v_0$,

$$t_1 h(v) \le f(v) \le t_2 h(v)$$

o que implica que $f(v) = \Theta(h(v))$, como queríamos.

Exercício 4(a)

Prove os seguintes itens. Para o item (a) escreva explicitamente a escolha de constantes c e n_0 .

(a)
$$\sum_{i=1}^n i^{10} \in \Theta(n^{11})$$

Vamos separar a prova em duas partes:

Parte I:
$$\sum_{i=1}^{n} i^{10} \in \mathcal{O}(n^{11})$$
.

Vamos provar que existem constantes positivas c e n_0 tal que, para todo $n \ge n_0$, $\sum_{i=1}^n i^{10} \le c n^{11}$. Note que

$$\sum_{i=1}^{n} i^{10} = 1 + 2^{10} + \dots + n^{10} \le \underbrace{n^{10} + n^{10} + \dots + n^{10}}_{n \text{ termos}} = n \cdot n^{10} = n^{11}.$$

Logo, temos as constantes $n_0=1$ e c=1, como queríamos.

Parte II:
$$\sum_{i=1}^{n} i^{10} \in \Omega(n^{11})$$
.

Vamos provar que existem constantes positivas c e n_0 tal que, para todo $n \ge n_0$, $\sum_{i=1}^n i^{10} \ge c n^{11}$. Note que