

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
—
PARIS

(11) N° de publication : **2 743 077**

(à n'utiliser que pour les commandes de reproduction)

(21) N° d'enregistrement national : **95 15878**

(51) Int Cl^e : C 08 G 69/08, C 08 L 77/02

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 29.12.95.

(30) Priorité :

(71) Demandeur(s) : NYLTECH ITALIA — IT et SNIARICERCHE — IT.

(43) Date de la mise à disposition du public de la demande : 04.07.97 Bulletin 97/27.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.

(60) Références à d'autres documents nationaux apparentés :

(72) Inventeur(s) : GUAITA CESARE, SPERONI FRANCO, CUCINELLA ANTONINO, ZHANG HAICHUM et DI SILVESTRO GIUSEPPE.

(73) Titulaire(s) :

(74) Mandataire : RHONE POULENC CHIMIE.

(54) POLYAMIDE ET UN PROCEDE DE FABRICATION DE CELUI-CI, ET DES COMPOSITIONS LE CONTENANT.

(57) La présente invention concerne un polyamide, un procédé de fabrication de celui-ci et des compositions le contenant.

Elle concerne plus particulièrement un polyamide obtenu par polymérisation d'un aminoacide ou un lactame tel que le caprolactame en présence d'un composé comprenant au moins trois fonctions capables de former une fonction amide par réaction soit avec une fonction amine soit une fonction acide. Le polyamide ainsi obtenu comprend au moins une partie de ces chaînes moléculaires sous une structure étoile, l'autre partie étant sous forme linéaire. Ce polymère est notamment utile pour la fabrication de compositions destinées, par exemple, à être moulées car il présente une faible viscosité en milieu fondu tout en conservant les propriétés mécaniques d'un polymère linéaire.

FR 2 743 077 - A1

4

**POLYAMIDE ET UN PROCEDE DE FABRICATION DE CELUI-CI,
ET DES COMPOSITIONS LE CONTENANT**

La présente invention concerne un polyamide comprenant des chaînes
5 macromoléculaires de structure chimique différente, et un procédé de fabrication de
celui-ci ainsi que des compositions le contenant..

Elle se rapporte plus particulièrement à un polyamide constitué par des unités
polymériques présentant une configuration d'étoile, et éventuellement des unités
linéaires polymériques.

10 L'utilisation de polyamides linéaires aliphatiques ou semi-aromatiques comme
matière plastique formant la matrice d'une composition destinée à être mis en forme est
connue depuis très longtemps. Pour améliorer les propriétés mécaniques de ces
matières plastiques, ces compositions comprennent des charges sous forme de poudre
ou de fibres, telles que par exemple des fibres de verre. Toutefois, ces charges
15 provoquent une augmentation de la viscosité de la composition en milieu fondu, ou plus
généralement limitent la vitesse d'écoulement de la composition quand celle-ci est
injectée dans un moule. Pour obtenir un remplissage correct des moules ou une
cadence de moulage rapide, il est nécessaire de limiter la quantité de charge dans la
composition. Ainsi, les concentrations maximales admissibles sont généralement
20 voisines de 40 % en poids.

Cet écoulement lent ou difficile des compositions chargées ou non a également
comme conséquence un mauvais aspect de surface des pièces moulées. En effet, les
charges telles que les fibres sont visibles en surface de la pièce. Pour remédier à ce
problème, il a été proposé d'ajouter un polymère amorphe ou présentant une cinétique
25 de cristallisation plus lente, à la matrice semi-cristalline, notamment quand cette
dernière est un polyadipamide d'hexaméthylène.

Il a également été proposé d'utiliser des polymères à faible poids moléculaire pour
ainsi améliorer le remplissage des moules, comme par exemple dans le brevet
US 5 274 033. Toutefois, les propriétés mécaniques du matériau sont diminuées.

30 Des polyamides présentant une structure étoile obtenus avec des composés
polyfonctionnels aromatiques sont décrits dans le brevet US 5346984. Cependant, ces
polymères présentent une structure totalement en étoile et ont des poids moléculaires
faibles. Ces deux caractéristiques limitent leur utilisation pour la fabrication de pièces
moulées ou dans des applications industrielles et techniques car leurs propriétés
35 mécaniques sont insuffisantes.

Un des buts de la présente invention est de remédier à ces inconvénients en
proposant un polyamide présentant une fluidité à l'état fondu élevée et des propriétés
mécaniques comparables ou améliorées par rapport à un polyamide linéaire classique

Ce polyamide peut être utilisé comme élément ou composant d'une matrice polymérique dans une composition contenant un taux de charge élevé. Une telle composition a une bonne aptitude à être injectée pour la fabrication de pièces moulées.

A cet effet, l'invention propose un polyamide constitué par un mélange de chaînes 5 macromoléculaires de formules I et II suivantes :

- dans lesquelles :
- 10 - Y est le radical $\begin{array}{c} \text{---} \\ | \\ \text{N} \\ | \\ \text{R}_5 \end{array}$ quand X et Z représentent le radical $\begin{array}{c} \text{---} \\ || \\ \text{C} \\ \parallel \\ \text{O} \end{array}$
- Y est le radical $\begin{array}{c} \text{---} \\ || \\ \text{C} \\ \parallel \\ \text{O} \end{array}$ quand X et Z représentent le radical $\begin{array}{c} \text{---} \\ | \\ \text{N} \\ | \\ \text{R}_5 \end{array}$

- 15 - A est une liaison covalente ou un radical hydrocarboné aliphatique comprenant de 1 à 6 atomes de carbone.
- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.

- R₃, R₄ représentent l'hydrogène ou un radical hydrocarboné comprenant un 20 groupement $\begin{array}{c} \text{---} \\ || \\ \text{C} \\ \parallel \\ \text{O} \end{array}$ ou $\begin{array}{c} \text{---} \\ | \\ \text{N} \\ | \\ \text{R}_5 \end{array}$
- R₅ représente l'hydrogène ou un radical hydrocarboné comprenant de 1 à 6 atomes de carbone

- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.
- 25 - m est un nombre entier compris entre 3 et 8 (bornes incluses)
- n est un nombre compris entre 100 et 200
- p est un nombre compris entre 100 et 200

- Selon une autre caractéristique préférée de l'invention, quand le radical R₁ n'est 30 pas un radical aromatique, le rapport massique entre le poids de chaînes polymériques de formule I et le poids total de chaînes polymériques de formules I et II est compris entre 0,10 et 1 .

Quand R₁ représente un radical aromatique, le rapport massique ci-dessus est inférieure à 1 de préférence compris entre 0,1 et 0,9.

Selon une caractéristique préférée de l'invention, le radical R₂ est un radical pentaméthylénique. Dans ce mode de réalisation le polyamide a une structure type 5 polycaproamide ou PA 6.

Toutefois, d'autres radicaux R₂ peuvent être utilisés tels que les radicaux undécaméthylénique qui conduit à un polyamide à structure type PA 12. Il est également possible d'obtenir des polyamides comprenant des radicaux R₂ comprenant 8 ou 10 atomes de carbone correspondant respectivement à des polyamides de 10 structure type PA9 et PA11.

Plus généralement, les radicaux R₂ qui sont des restes d'aminoacides ou de lactames sont convenables pour la présente invention.

Selon encore une autre caractéristique préférée de l'invention, le radical R₁ est un radical cycloaliphatique tel que le radical tétravalent de cyclohexanonyle.

15 Comme autres radicaux R₁ convenables pour l'invention on peut citer, à titre d'exemple, les radicaux trivalents de phényle et cyclohexanyle substitués ou non, les radicaux tétravalents de diaminopolyméthylène avec un nombre de groupes méthylène compris avantageusement entre 2 et 12 tels que le radical provenant de l'EDTA (acide éthylène diamino tétracétique), les radicaux octovalents de cyclohexanonyle ou 20 cyclohexadinonyle, et les radicaux provenant de composés issus de la réaction des polyols tels que glycol ou pentaérythritol avec l'acrylonitrile.

Le radical A est, de préférence, un radical méthylénique ou polyméthylénique tel que les radicaux éthyle, propyle ou butyle.

Selon un mode de réalisation préféré de l'invention, le nombre m est supérieur à 3 25 et avantageusement égal à 4.

Ainsi, les chaînes polymériques de formule I définissent un polyamide étoile comprenant des branches polyamides de type PA 6 dans un des modes de réalisation préférés de l'invention, et un noyau central constitué par un noyau cycloaliphatique.

Ces chaînes polymériques de formule I sont, dans un des modes préférés de 30 l'invention, en mélange avec des chaînes polyamides linéaires de formule II.

La longueur ou le poids moléculaire des chaînes linéaires de formule II ou des branches du polyamide étoile peut être élevé. Ainsi, le polymère linéaire comme la chaîne de chaque branche du polymère étoile présente un $\overline{M_n}$ avantageusement supérieur à 10 000.

L'invention a également pour objet un procédé de fabrication du polyamide décrit ci-dessus. Ce procédé de fabrication consiste à réaliser une polycondensation d'un aminoacide ou d'un lactame de formules III et IV suivantes :

5

en présence d'un composé polyfonctionnel de formule V

10

dans lesquelles les symboles R_1 , R_2 , A , X et m ont les significations indiquées précédemment.

Selon l'invention, cette polycondensation est réalisée en présence d'un initiateur de polycondensation.

15 La fonction réactive du composé multifonctionnel représentée par le symbole $\text{X}-\text{H}$ est une fonction capable de former une fonction amide.

les initiateurs de polycondensation sont ceux classiquement utilisés dans la synthèse des polyamides par polycondensation d'un lactame ou d'un aminoacide, tel que la synthèse du polycaproamide.

20 A titre d'exemple, on peut citer l'eau, les acides minéraux ou carboxyliques ou les amines primaires comme initiateur de polycondensation.

Ce composé est ajouté avantageusement pour obtenir une concentration pondérale comprise entre 0,5 et 5 % en poids par rapport au mélange total.

25 La polycondensation est réalisée selon les conditions opératoires classiques de polycondensation des aminoacides ou lactames de formule III ou IV, quand celle-ci est réalisée en absence du composé multifonctionnel de formule V.

Ainsi, le procédé de polycondensation comprend brièvement :

- un chauffage sous agitation et sous pression du mélange des monomères (composés de formule III et/ou IV) et du composé de formule V avec l'initiateur (généralement de l'eau),
- Maintien du mélange à cette température pendant une durée déterminée, puis décompression et maintien sous un courant de gaz inerte (par exemple de l'azote) pendant une durée déterminée à une température supérieure au point de fusion du mélange pour ainsi continuer la polycondensation par élimination de l'eau formée.

Selon le procédé de l'invention, la durée du maintien sous gaz inerte, ou en d'autres termes de finissage de la polycondensation permet de déterminer et contrôler la concentration en chaînes polymériques de formule I dans le mélange polyamide. Ainsi, plus le temps de maintien sera long plus la concentration en chaînes polymériques de 5 formule I sera élevée.

Il est également évident que la concentration en chaînes polymériques de formule I ou polyamide étoile est fonction de la quantité de composé multifonctionnel de formule V ajoutée dans le mélange.

Il est également possible, sans pour cela sortir du cadre de l'invention, d'ajouter au 10 mélange de polycondensation d'autres monomères comprenant des fonctions susceptibles de former des fonctions amides pour ainsi obtenir des copolyamides ou polyamides modifiés.

Toutefois, quand ces monomères sont des diacides ou diamines, ils ne pourront être ajoutés qu'en faible quantité avantageusement à une concentration pondérale 15 inférieure à 20 % par rapport au mélange total.

En sortie de polycondensation, le polymère est refroidi avantageusement par de l'eau, et extrudé sous forme de jonc. Ces joncs sont coupés pour produire des granulés.

Pour éliminer les monomères non polycondensés, notamment dans le cas où un 20 des monomères est du caprolactame, les granulés sont lavés à l'eau puis séchés sous vide.

Le polymère obtenu peut être mis en forme selon les techniques habituelles de moulage, extrusion, filage pour produire des pièces moulées, films, fils.

Avantageusement, le polyamide de l'invention est utilisé comme élément ou 25 composant d'une matrice en matière thermoplastique d'une composition destinée à être mise en forme pour la fabrication de pièces moulées.

Une telle composition est également un objet de l'invention.

Selon l'invention, la composition comprend une matrice polymérique, 30 avantageusement en matière thermoplastique et des charges modifiant les propriétés de la matrice telles que ses propriétés mécaniques, d'ignifugation, de conductivité thermique, électrique ou magnétique, ou analogues. Comme exemples de charges usuelles, on peut citer les charges de renfort ou charges de remplissage.

Selon l'invention, la matrice polymérique comprend comme constituant unique ou non le polyamide conforme à l'invention.

Comme le polyamide conforme à l'invention présente un indice de fluidité à l'état 35 fondu plus élevé que les polyamides linéaires connus, pour des masses moléculaires et des propriétés mécaniques similaires, la composition chargée peut être injectée plus facilement dans un moule, c'est-à-dire à des cadences plus élevées. Elle permet

également d'obtenir un remplissage plus homogène et complet des moules, notamment quand ceux-ci ont une forme complexe.

Le polyamide de l'invention permet également de réaliser des compositions contenant un taux de charges élevé pouvant être égal jusqu'à 80 % en poids par rapport à la composition totale.

Une telle composition peut être injectée grâce à l'indice élevé de fluidité à l'état fondu du polyamide de l'invention. Les propriétés mécaniques de cette composition sont élevées car elles sont généralement améliorées quand le taux de charge augmente.

Comme charges de remplissage ou de renfort convenables pour l'invention, on peut citer les charges utilisées habituellement pour renforcer les compositions en matière polymérique, telles que les charges fibreuses comprenant les fibres minérales telles que, par exemple, les fibres de verre, les fibres de carbone, les fibres de céramique, les fibres en matière synthétique telles que les fibres en polyaramides, les charges en poudre comme le talc, la montmorillonite, le kaolin par exemple.

Des charges en poudre sont également utilisées pour améliorer l'ignifugation de la composition. De telles charges sont par exemple, des composés métalliques tels que l'hydroxyde de magnésium ou l'hydroxyde d'aluminium.

Les fibres de verre sont la charge de renfort préférée de l'invention.

Selon une autre caractéristique préférée de l'invention la matrice polymérique de la composition est constituée par un mélange du polyamide selon l'invention avec un ou plusieurs autres polymères, de préférence polyamides ou copolyamides.

Comme autres polymères préférés de l'invention, on peut citer les polyamides semicristallins ou amorphes, tels que les polyamides aliphatiques, polyamides semi-aromatiques et plus généralement, les polyamides linéaires obtenus par polycondensation entre un diacide saturé aliphatique ou aromatique, et une diamine primaire saturée aromatique ou aliphatique, un lactame, un aminoacide ou un mélange de ces différents monomères.

A titre d'exemple, on peut citer comme autre polymères le polyadipamide d'hexaméthylène, les polyphthalamides obtenus à partir d'acide téraphthalique et/ou isophthalique tels que le polyamide commercialisé sous le nom commercial AMODEL, les copolyamides obtenus à partir d'acide adipique, d'hexaméthylène diamine et de caprolactame.

Dans ce mode de réalisation, la concentration pondérale en polyamide selon l'invention dans la matrice peut varier dans un domaine large et est avantageusement comprise entre 30 et 80 % de la masse totale de matrice polymérique.

Il est également avantageux, notamment dans ce cas, que le rapport massique en polyamide étoile (formule I) dans le polyamide de l'invention soit supérieur à 0,8, de préférence compris entre 0,9 et 1.

Les compositions de l'invention peuvent comprendre également tous les additifs usuels tels que ignifugeants, stabilisants chaleur et lumière, cires, pigments ou analogues.

De telles compositions sont utilisées pour réaliser des pièces moulées pour 5 l'industrie automobile, des composants électriques, des accessoires pour différentes activités telles que les activités sportives, par exemple.

D'autres détails, avantages de l'invention apparaîtront plus clairement au vu des exemples donnés ci-dessous uniquement à titre indicatif et d'illustration.

10 Exemple 1 - Synthèse d'un polyamide conforme à l'invention

La polymérisation est réalisée dans un autoclave chauffé et comprenant des moyens d'agitation.

15 4444 g de caprolactame et 136 g de 2,2,6,6-tétra-(β-carboxyéthyl)cyclohexanone sont ajoutés dans l'autoclave avec 160 g d'eau distillée.

Le composé de cyclohexanone et son procédé de synthèse sont décrits dans l'article "The Chemistry of Acrylonitrile II - Reactions with Ketones" JACS 64 2850 (1942) de Herman Alexander Buisson et Thomas W. Riener.

20 Le mélange, mis sous agitation, est chauffé à une température de 265°C sous 6 bars.

Il est maintenu à cette température et pression pendant 2 heures.

La pression est ensuite diminuée, puis un balayage de l'autoclave par l'azote est réalisé pendant des durées variables, tout en maintenant la température à 265°C.

25 La concentration en polymère étoile de formule I est déterminée pour chaque durée de balayage.

Cette concentration est déterminée par la méthode mise au point par FARINA et al. et décrite dans le compte rendu de la 4° Convention Italienne sur la Science de la Macromolécule.

30 En résumé, cette méthode consiste à calculer le rapport massique de polymère étoile dans le mélange par détermination de la concentration en groupes terminaux amines et/ou acides et calcul de l'indice de polymolécularité D qui est égal à $\frac{M_w}{M_n}$.

En effet, d'après un article de W. SWEENEY et J. ZIMERMAN publié dans "ENCYCLOPEDIA OF POLYMER SCIENCE AND TECHNOLOGY Vol.10 pp194, l'équation classique du calcul de l'indice D pour un mélange de polymères est :

$$D = \frac{\overline{M_w}}{\overline{M_n}} = X_{W1}^2 D_1 + X_{W1}^2 D_2 + X_{W1} X_{W2} \left[D_1 \frac{\overline{M_n}_1}{\overline{M_n}_2} + D_2 \frac{\overline{M_n}_2}{\overline{M_n}_1} \right] \quad (1)$$

dans laquelle :

X_{W1} représente la fraction en poids du polymère de poids moléculaire en nombre $\overline{M_n}_1$ et d'indice de polymolécularité D_1 .

- 5 Cette équation convient également très bien pour les composés polymériques contenant un composant multifonctionnel. En fait, si on a un mélange de polymère linéaire de fonctionnalité (f) égale à 2 et de polymère étoile de fonctionnalité (f) supérieure à 2 on peut faire les hypothèses suivantes :

- le mélange est composé uniquement de chaînes totalement linéaires et de chaînes totalement de type étoile.
- 10 - la longueur des chaînes linéaires est égale à celle d'une branche du polymère étoile.

Selon ces hypothèses, l'équation (1) a été transformée par M. FARINA en une équation (2) suivante :

$$15 \quad D = 2 - \frac{(f-1)^2}{f} X_{W2}^2 + \frac{(f-1)(f-2)}{f} X_{W2} \quad (2)$$

avec : $\overline{M_n}_2 = f \cdot \overline{M_n}_1$, $D_1 = 2$, $D_2 = 1 + \frac{1}{f}$

- Avec une telle équation il est possible de calculer la relation entre D et la fraction en poids de X_{W2} de polymère étoile dans le mélange polymérique. Cette relation est une fonction du coefficient de fonctionnalité (f) du composé multifonctionnel comme représentée dans la figure 1 annexée.

- L'équation (2) peut être transformée en introduisant des paramètres expérimentaux tels que la concentration molaire C_o du composé multifonctionnel et la concentration exprimée en milliéquivalent par kilogramme des fonctions terminales NH_2 et $COOH$:

$$D = 2 - f(f-1)^2 \left(\frac{C_o}{f C_o + [NH_2]} \right)^2 + (f-1)(f-2) \frac{C_o}{f C_o + [NH_2]}$$

Ainsi, il est ais  de calculer D et d'autres param tres importants tels que :

$$\overline{M_n} = 10^6 / [Co + NH_2]$$

$$\overline{M_w} = 2 \cdot 10^6 [10Co + NH_2] / [4Co + NH_2]^2$$

$$X_{w2} = [COOH - NH_2] / [COOH]$$

- 5 Le polym re fondu est ensuite extrud  sous forme de jonc puis refroidi rapidement 脿 l'eau et d coup  en granul s.

Ces granul s sont lav s avec de l'eau distill e pendant environ 16 heures pour liminer le caprolactame non polym ris  et s ch   100°C sous vide pendant 48 heures.

- 10 Diff rents polym res ont t  fabriqu s avec des taux de polyamide toile variables.

Les conditions d'obtention et les caract ristiques de ces polym res sont rassembl es dans le tableau I ci-dessous.

15

Tableau I

Polym�re	% molaire de compos�s t�trafonctionnel	Dur�e de balayage	Rapport massique en polym�re toile	$\overline{M_n}$	$D = \frac{\overline{M_w}}{\overline{M_n}}$
A	0,5 %	60 min.	0,60	10343	2,04
B	0,5 %	90 min.	0,70	20630	1,97
C	0,5 %	120 min.	0,90	19400	1,46
D	0,5 %	140 min.	1,00	20900	1,25
E	0,3 %	90 min.	0,70	21152	1,8
F	0,8 %	100 min.	0,70	13661	1,3
ex. comparatif 1	0	90 min.	0,00	19550	2

Les propriétés rhéologiques et mécaniques de ces polymères sont rassemblées dans le tableau II ci-dessous.

Tableau II

	A	B	C	D	E	F	1
Viscosité relative (1)	2,07	2,06	2,02	2,15	2,56	1,77	2,7
Indice de fluidité en milieu fondu (2) (g/10min)	47	45	44	45	13,5	70,2	7,5
Température de fusion °C	-	218			219		221
Température de cristallisation °C	-	179			179		175
Tg °C		74			74		67
Choc Izod entaillé (J/m)		47			47,3	32	38,4
Module de flexion (MPa)		2400			3300	2700	2500
Allongement %		140			140	70	100
Résistance à la traction (MPa)		78			78		78

- 5 (1) Viscosité relative mesurée à partir d'une solution à 1% de polymère dans H₂SO₄ à 96%
 (2) Indice de fluidité (MFI) déterminé selon la norme ASTM D1238

Ces résultats montrent clairement que pour des masses moléculaires équivalentes, l'indice de fluidité en milieu fondu augmente de manière drastique quand la concentration en composé multifonctionnel atteint environ 0,50 %.

10

Exemple 2 : Compositions chargées

- Des compositions comprenant une matrice en polyamide sont chargées avec des fibres de verre par mélange à l'état fondu en extrudeuse bi-vis type WERNER et
 15 PFLEIDERER ZSK 40.

Ainsi des compositions contenant 50 % en poids de fibres de verre sont réalisées respectivement avec un PA 6 classique, ou un polyamide conforme à l'invention présentant un rapport massique en polymère étoile égal soit à 0,78, soit à 0,98.

- Les paramètres de réalisation du mélange et de l'extrusion sont rassemblés dans
 20 le tableau III suivant :

Tableau III

Matrice	PA 6	Polyamide avec rapport massique en polymère étoile égal à 0,78	Polyamide avec rapport massique en polymère étoile égal à 0,98
Température d'extrusion	250°C	250°C	250°C
Vitesse de rotation de la vis (tour par min.)	260	260	260
Débit de composition (Kg/h)	40	40	40
couple du moteur (N.m)	42	28	23
Puissance moteur absorbée exprimée en Ampère (A)	34	30	25

Les propriétés de ces compositions sont rassemblées dans le tableau IV ci-après.

5

Tableau IV

Matrice	PA 6	Polyamide avec rapport massique en polymère étoile égal à 0,78	Polyamide avec rapport massique en polymère étoile égal à 0,98
Module (MPa)	15350	15935	15792
Choc Izod entaillé (J/m)	124	139,3	128,3
Choc Izod non entaillé (MPa)	94	96	95
HDT (°C) (1)	215	214	215
Indice de viscosité fondu (g/10min)	6	12,5	12
Test spirale (cm) (2)	25	50	46

(1) mesurée selon la norme ASTM D648 sous une charge de 1,82 N/mm²

(2) Ce test consiste à injecter la composition dans un moule en forme de spirale d'épaisseur 1mm et de largeur 40 mm sous une presse BATTENFELD de 180 tonnes à une température de 270°C, une température de moule de 80°C et une pression d'injection de 80 Kg/cm². La durée d'injection est de 1,5 secondes. Le résultat du test est déterminé par la longueur de moule remplie correctement par la composition.

10

De même, une composition comprenant 60 % en poids de fibres de verre et comme matrice un polyamide de type PA6 avec un rapport massique en polymère étoile égal à 0,78 est préparée selon le procédé décrit précédemment avec des conditions de mélange et extrusion suivantes :

15

-Température : 250 °C

-Vitesse de rotation de la vis : 260 tours par min.

-Débit de la composition : 40 Kg/h

Les propriétés de cette composition sont indiquées dans le tableau V ci-dessous en comparaison avec une composition comprenant 60% en poids de fibres de verre et comme matrice un polyamide PA6 linéaire avec poids moléculaire identique :

5

Tableau V

Matrice	PA 6 avec 60% de fibre de verre	Polyamide avec rapport massique en polymère étoile égal à 0,78
Module (MPa)	18556	20251
Choc Izod entaillé (J/m)	123	118
Choc Izod non entaillé (MPa)	83	86
HDT (°C) (1)	215	215
Test spirale (cm) (2)	24	35
couple du moteur (N.m)	43	32
Puissance moteur absorbée exprimée en Ampère (A)	35	25

REVENDICATIONS

1.- Polyamide comprenant des chaînes macromoléculaires répondant aux formules suivantes :

5

dans lesquelles :

10

- Y est le radical $\begin{array}{c} \text{---N---} \\ | \\ \text{R}_5 \end{array}$ quand X et Z représentent le radical $\begin{array}{c} \text{---C---} \\ || \\ \text{O} \end{array}$

- Y est le radical $\begin{array}{c} \text{---C---} \\ || \\ \text{O} \end{array}$ quand X et Z représentent le radical $\begin{array}{c} \text{---N---} \\ | \\ \text{R}_5 \end{array}$

15

- A est une liaison covalente ou un radical hydrocarboné aliphatique comprenant de 1 à 6 atomes de carbone.

- R_2 est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.

20

- R_3, R_4 représente l'hydrogène ou un radical hydrocarboné comprenant un

groupement $\begin{array}{c} \text{---C---} \\ || \\ \text{O} \end{array}$ ou $\begin{array}{c} \text{---N---} \\ | \\ \text{R}_5 \end{array}$

- R_5 représente l'hydrogène ou un radical hydrocarboné comprenant de 1 à 6 atomes de carbone

- R_1 est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.

25

- m représente un nombre entier compris entre 3 et 8

- n représente un nombre compris entre 100 et 200

- p représente un nombre compris entre 100 et 200

30

2.- Polyamide selon la revendication 1, caractérisé en ce que le radical R_1 est un radical cycloaliphatique, ou aliphatique linéaire, le rapport massique entre le poids de

chaînes polymériques de formule I et le poids total de chaînes polymériques de formules I et II est compris entre 0,10 et 1.

5 3.- Polyamide selon la revendication 1, caractérisé en ce que le radical R₁ est un radical aromatique, le rapport massique entre le poids de chaînes polymériques de formule I et le poids total de chaînes polymériques de formules I et II est inférieur à 1, de préférence inférieur à 0,9.

10 4.- Polyamide selon l'une des revendications précédentes, caractérisé en ce que R₂ est un radical pentaméthylénique.

15 5.- Polyamide selon l'une des revendications 1, 2 ou 4, caractérisé en ce que R₁ représente le radical cyclohexanonyle.

15 6.- Polyamide selon l'une des revendications 1 à 5, caractérisé en ce que A représente un radical polyméthylénique.

20 7.- Polyamide selon l'une des revendications 1 à 6, caractérisé en ce que m est égal à 4.

20 8.- Procédé de fabrication d'un polyamide selon l'une des revendications 1 à 7, caractérisé en ce qu'il consiste à polycondenser un aminoacide de formule :

25 et/ou d'un lactame de formule

30 en présence d'un composé polyfonctionnel de formule

35 dans laquelle A, R₁, R₂, X et m ont les significations indiquées précédemment, en présence d'un composé initiateur de polycondensation.

9.- Procédé selon la revendication 8, caractérisé en ce que l'initiateur de polycondensation est de l'eau , un acide minéral ou carboxylique ou une amine primaire.

10. Procédé selon la revendication 8 ou 9, caractérisé en ce que la concentration pondérale dans la masse réactionnelle, en initiateur de polycondensation est comprise entre 0,5 % et 5 %.

11.- Composition comprenant une matrice polymérique et des charges, caractérisée en ce que la matrice polymérique comprend au moins un polyamide selon l'une des revendications 1 à 8.

12.- Composition selon la revendication 11, caractérisée en ce qu'elle comprend une matrice polymérique constituée par un polyamide selon l'une des revendications 1 à 8.

13.- Composition selon la revendication 11, caractérisée en ce qu'elle comprend une matrice polymérique constituée par un mélange d'un polyamide linéaire et d'un polyamide selon l'une des revendications 1 à 8.

14.- Composition selon la revendication 13, caractérisée en ce que le polyamide selon les revendications 1 à 8 est présent à une concentration pondérale comprise entre 30 % et 80 % par rapport à la masse totale de matrice polymérique.

15.- Composition selon la revendication 14, caractérisée en ce que le polyamide selon les revendications 1 à 8 présent a un rapport massique en polymère étoile supérieur à 0,8, de préférence compris entre 0,9 et 1.

16.- Composition selon l'une des revendications 13 à 15, caractérisée en ce que le polyamide linéaire est choisi parmi les polyamides obtenus par polycondensation entre un diacide saturé aliphatique ou aromatique, et une diamine primaire saturée aromatique ou aliphatique, un lactame, un aminoacide ou un mélange de ces différents monomères.

17.- Composition selon la revendication 16, caractérisée en ce que le polyamide linéaire est un polyamide ou copolyamide aliphatique et/ou semicristallin choisi dans le groupe comprenant PA 66, PA 6, PA 4.6, PA 12, ou un polyamide ou copolyamide semi-aromatique semicristallin choisi dans le groupe comprenant les polyphthalamides.

18.- Composition selon l'une des revendications 11 à 17, caractérisée en ce que la concentration pondérale en charge est inférieure à 80 % en poids de la composition.

19.- Composition selon l'une des revendications 11 à 18, caractérisée en ce que
5 les charges sont des charges de renfort ou de remplissage choisies dans le groupe
comprenant les charges fibreuses telles que fibres de verre, de carbone, minérale ou en
matière thermodurcissable, les charges en poudre telles que le talc.

20.- Composition selon l'une des revendications 11 à 19, caractérisée en ce que
10 les charges sont des charges ignifugeantes.

1/1

Fig. 1

REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL
de la
PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE
PRELIMINAIRE

établi sur la base des dernières revendications
déposées avant le commencement de la recherche

2743077
N° d'enregistrement
national

FA 525135
FR 9515878

DOCUMENTS CONSIDERES COMME PERTINENTS		Revendications concernées de la demande examinée
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	
A	EP-A-0 345 648 (INVENTA AG) 13 Décembre 1989	
A,D	US-A-5 346 984 (HASEGAWA NAOKI ET AL) 13 Septembre 1994	
A	US-A-3 549 601 (FOWELL PETER A) 22 Décembre 1970	

		DOMAINES TECHNIQUES RECHERCHES (Int. CL.6)
		C08G
1		
	Date d'achèvement de la recherche	Examinateur
	18 Septembre 1996	Leroy, A
CATEGORIE DES DOCUMENTS CITES X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : pertinent à l'encontre d'au moins une revendication ou arrière-plan technologique général O : divulgation non écrite P : document intercalaire		
T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant		