

HMIN321 - Sociétés Virtuelles

Sélection Naturelle et Algorithmes Génétiques

Presenté par :

Thibault Odorico et Nicolas Calvet

Sommaire

Introduction

- 1. Mise en contexte et définitions
 - 1. Spéciation (sélection naturelle)
 - 2. Algorithmes génétiques
 - 3. Le Phalène du Bouleau
- 2. Modélisation et Implémentation
 - 1. FSM du phalène
 - 2. Mécanismes à implémenter

Conclusion

Introduction

Notre projet s'intéressera au mécanismes de **dérive génétique** et de **sélection naturelle** et tentera de les appliquer dans le cadre d'un système multi-agent.

Tout particulièrement nous essaieront de répondre au problématiques suivantes :

- Comment peut-on adapter les mécanisme à la base de la spéciation dans un système multi-agents?
- Comment un tel système évoluerait en modifiant ses paramètres ?

Nous tenteront de répondre à ces questions en simulant un cas concret, en l'occurrence la spéciation chez le **Phalène du bouleau.**

Spéciation

Processus évolutif par lequel de nouvelles espèces vivantes se forment.

L'apparition d'une espèce n'est pas instantané.

Deux groupes d'individus forment deux espèces **différentes** au-delà d'une **zone grise de 0.5% à 2%** de divergences moléculaires.

Résulte de la dérive génétique et de la sélection naturelle.

Spéciation

- 1. Allopatrique
- 2. Péripatrique
- 3. Parapatrique
- 4. Sympatrique

Large en matière de modélisation!

Spéciation

1. Allopatrique (aussi appelé vicariance)

Des populations interfécondes évoluent différemment à cause d'une barrière géographique (rivière, montagne, vallée, océan, glacier, etc ...).

2. Péripatrique

Semblable à l'allopatrique : un petit nombre d'individus fondent une **nouvelle population** en **marge** (ex : sur une Île).

La reproduction est parfois possible mais l'hybride a une survie/reproduction faible.

Spéciation

3. Parapatrique

Les populations sont en **contact étroit** mais vivent dans des **conditions environnementales différentes** (ex : climat). Ainsi la **reproduction** a lieu mais reste **limitée**.

4. Sympatrique

Des populations **non isolés** évoluent en espèces distincts. La **sélection naturelle** en est le principal acteur en amenant une **divergence génétique**.

Dans ces deux cas la sélection naturelle a un rôle important.

Sélection naturelle

- Mécanisme moteur de l'évolution des espèces.
- Aspect majeur de la biodiversité de la planète.
- L'avantage reproductif est procuré par les conditions de l'environnement.

Sélection naturelle

- Définie comme un "tri" naturel au sein d'une espèce.
- Reproduction des caractéristiques permettant de mieux survivre.
- Adaptation des espèces à leur environnement.
- Les traits qui favorisent la survie et la reproduction sont de plus en plus **fréquents**.

Sélection naturelle

1. Principe de variation

2. Principe d'adaptation

3. Principe d'hérédité

Sélection naturelle

1. Principe de variation

Il existe des **différences** entre individus d'une même espèces (appelés **caractères**).

Il existe plusieurs traits pour un même caractère.

L'homme est une espèce à très forte variabilité.

Sélection naturelle

2. Principe d'adaptation

Des individus ont des variations résultant en un avantage reproductif.

Exemples:

- Mieux échapper aux prédateurs
- Résistance aux maladies
- Accéder plus facilement à la nourriture
 - taux de reproduction de descendance

Sélection naturelle

3. Principe d'hérédité

Les caractères doivent être transmissibles à la descendance.

Moyen de transmission : les gènes lors de la reproduction.

Exemple non-héréditaires (ne dépendant pas du génotype) :

- Bronzage
- Culture

Sélection naturelle

Au fil du temps les variations désavantageuses disparaîtront :

- Coccyx (ou queue vestigiale)
- Tubercule de darwin

Et les variations avantageuses seront répandu à toute la population : la bipédie !

Sélection naturelle

Comment apparaissent les avantages sélectifs et reproductif?

La dérive génétique!

Algorithmes génétiques: Explication

Algorithmes génétiques

1. Sélection des individus (Sélection naturelle)

2. Croisement entre individus à la reproduction

3. Mutations

Algorithmes génétiques : Sélection des individus

1.1 Sélection par rang

Les individus reproducteur sont choisis parmis ceux possédant les meilleurs scores d'adaptation (ceux qui ont un meilleur rang). Si N individus constituent la population, la sélection appliquée consiste à conserver les K meilleurs individus (au sens de la fonction d'évaluation) suivant une probabilité qui dépend du rang (et pas de la fonction d'évaluation).

Pas de hasard : sélection déterministe.

1.2. Probabilité de sélection proportionnelle à l'adaptation

La probabilité qu'un individu soit sélectionné est proportionnelle à son adaptation au problème. On utilise le principe de la roue de la fortune biaisée dans laquelle chaque individus est représenté par une portion proportionnelle à son adaptation. Le tirage est ensuite effectué.

Algorithmes génétiques : Sélection des individus

1.3. Sélection uniforme

La sélection se fait aléatoirement, uniformément et sans intervention de la valeur d'adaptation. Chaque individu a donc une probabilité 1/P d'être sélectionnée, où P est le nombre total d'individus dans la population.

1.4. Sélection par tournoi

Cette technique utilise la sélection proportionnelle sur des paires d'individus, puis choisit parmi ces paires l'individu qui a le meilleur score d'adaptation.

Algorithmes génétiques

2. Croisement (ou Enjambement) Génétique

Lors de la reproduction, les deux chromosomes de la même paire se rapprochent et se **brisent**, une à plusieurs fois, aux mêmes niveaux pour en **échanger** les fragments résultants.

C'est un échange de gènes résultant en une recombinaison génétique.

De nouvelles **variations** de **caractères** apparaissent. C'est le principe de **variation** de la **sélection naturelle**.

Algorithmes génétiques

3. Mutation Génétique

La mutation est rare, accidentelle ou provoquée.

De façon aléatoire, un gène peut être substitué à un autre.

Parfois elles donnent un avantage, parfois un inconvénient.

Ainsi, de nouveaux caractères apparaissent.

On parle de mutation héréditaire si celle-ci est transmise à la descendance.

Algorithmes génétiques : Application concrète

Algorithmes génétiques : Application concrète

Exemple implémentation NetLogo

GenEvo 3 dans "Models Library"

Le Phalène du Bouleau

1. Caractéristiques

oeuf

chenille

chrysalide

papillon

Le Phalène du Bouleau

1.1. L'oeuf

- Les femelles peuvent pondres jusqu'à 2000 oeufs après fécondation
- Le temps d'incubation met plusieurs mois

Le Phalène du Bouleau

1.2. La chenille

- Le phalène reste pendant plusieurs mois à l'état de chenille, durant cette période il se gave en permanence de feuilles
- A ce stade il se camoufle en se faisant passer pour une branche

Le Phalène du Bouleau

1.3. La chrysalide

- Le phalène s'enterre dans le sol pour former sa chrysalide
- Il passera tout l'hiver sous cette forme

Le Phalène du Bouleau

1.4. Le papillon

- Après la sortie de sa chrysalide le phalène vivra entre 5 et 6 jours
- Les femelles copulent le jour de leur sortie de la chrysalide et pondent dans les deux jours qui suivent
- Les mâles volent la nuit attirés à des kilomètres par l'odeur des femelles

Le Phalène du Bouleau

2. Pression de l'environnement

- Les papillons femelle passeront la plupart de leurs temps camoufler dans les arbres.
- Les oiseaux vont régulièrement fouiller les arbres à la recherche de proies goutus.

bouleau

Le Phalène du Bouleau

2.2. Le camouflage

la couleur de l'arbre et du phalène aura un fort impact sur ses chances de survies

Le Phalène du Bouleau

2.2. La pollution

La forte pollution engendré dans les années 50 à 70 aurait eu un impact négatifs sur la croissance des lichens, favorisant les phalènes de couleurs sombres

Le Phalène du Bouleau

2.2. La pollution

Le pourcentage moyen de survie observé dans les zones dépolluées est :

- 68% pour les Phalènes blancs
- 78% pour les Phalènes noirs (carbonica)

L'impact de l'environnement est bien réel

Netlogo

- Bonne maîtrise de l'outils
- Simple
- Adapté aux Simulation
- Offre un grand contrôle
 - Paramétrage
 - Monitoring

PROJET

Netlogo

FSM du Phalène

FSM du Phalène

Mécanismes à implémentées

- Signaux (phéromones, champs de gradient)
- Sélection naturelle (pression engendré par les prédateurs)
- Cross-over (couleur)
- Mutation (couleur et diversité d'individu)
- Probabilité de détection pour les prédateurs (selon la couleur phalène / environnement)

Conclusion

De manière plus générale, les mécanismes que nous adapterons seront les suivants :

- Spéciation Sympatrique
- Principes de variations, d'adaptation et d'hérédité de la Sélection naturelle
- Sélection uniforme des individus reproducteurs
- Mutations ponctuelles

Merci pour votre attention!