

1. Принцип относительности Галилея.

При изложении механики предполагалось, что все скорости движения тел значительно меньше скорости света. Причина этого в том, что *механика* **Ньютона** (классическая) неверна, при скоростях движения тел, близких к скорости света $(\upsilon \rightarrow c)$

Правильная теория для этого случая, называется *релятивистской механикой* или специальной теорией относительности,

Механика Ньютона оказалась замечательным приближением к релятивистской механике, справедливым в области $\mathcal{U} << c$.

Большинство встречающихся в повседневной жизни скоростей значительно меньше скорости света. Но существуют явления, где это не так (ядерная физика, электромагнетизм, фотоэффект, астрономия).

По классической механике: механические явления происходят одинаково в двух системах отсчета, движущихся равномерно и прямолинейно относительно друг друга.

Рассмотрим две инерциальные системы отсчета k и k'. Система k' движется относительно k со скоростью $\mathcal{U} = \text{const}$ вдоль оси x. Точка M движется в двух системах отсчета:

Найдем связь между координатами точки M в обеих системах отсчета. Отсчет начнем, когда начала координат систем – совпадают, то есть t=t'. Тогда:

$$x = x' + \upsilon t$$

$$y = y'$$

$$z = z'$$

$$t = t'$$
(1)

Это т.н. *преобразования Галилея.*

В уравнениях (1) время $t = t^{\perp}$ т. е. в классической механике предполагалось, что время течет одинаково в обеих системах отсчета независимо от скорости. «Существует абсолютное время, которое течет всегда одинаково и равномерно», – говорил И. Ньютон.

В векторной форме *преобразования Галилея* можно записать так:

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}' + \vec{\mathbf{U}}t. \tag{2}$$

Продифференцируем это выражение по времени, получим: **закон сложения скоростей** в классической механике:

$$rac{\mathrm{d} ec{\mathbf{r}}}{\mathrm{d} t} = rac{\mathrm{d} ec{\mathbf{r}}'}{\mathrm{d} t} + ec{arphi}$$
 или,

$$\vec{\mathcal{U}}_{_{1}} = \vec{\mathcal{U}}' + \vec{\mathcal{U}} \tag{3}$$

Скорость движения точки M (сигнала) в системе k' $\vec{\mathcal{U}}$ 'и $\vec{\mathcal{U}}_{_{1}}$ в системе k различны.

Преобразования Галилея

Таким образом видим, что для однозначного определения кинематических параметров, описывающих движение материальной точки относительно CO K, по измерениям,

проведенным в ${f CO}\ {f K}'$, необходимо знать связь моментов времени t и t_0

В классической механике *проблема взаимосвязи моментов времени* в различных CO решается постулатом Галилея

Моменты времени в различных СО совпадают

с точность до постоянной величины,

определяемой процедурой синхронизации часов

Обычно считают часы синхронизированными таким образом, что const = 0, то есть

При таком способе синхронизации

Из последнего уравнения несложно получить связь ускорений в произвольных СО

где $oldsymbol{a}_0$ - ускорение системы \mathbf{K}_0 относительно системы \mathbf{K}

$$t = t' + const$$

$$\vec{r} = \vec{r}_0 + \vec{r}'$$

$$\vec{\mathbf{v}} = \vec{\mathbf{v}}_0 + \vec{\mathbf{v}}'$$

$$\vec{a} = \vec{a}_0 + \vec{a}'$$

Эти уравнения называют преобразованиями Галилея для произвольных СО

Законы природы, определяющие состояния движения изменение механических систем не зависят от того, к какой из двух инерциальных систем отсчета они относятся. принцип относительности Гапипея.

Из преобразований Галилея и принципа относительности следует, что взаимодействия в классической физике должны передаваться с бесконечно большой скоростью $C = \infty$

В противном случае можно было бы одну инерциальную систему отсчета отличить от другой по характеру протекания в них физических процессов.

Принцип относительности Галилея и законы Ньютона подтверждались ежечасно при рассмотрении любого движения, и господствовали в физике более 200 лет.

В 1865 г. появилась теория Дж. Максвелла, и уравнения Максвелла не подчинялись преобразованиям Галилея. Ее мало кто принял сразу, она не получила признания при жизни Максвелла. Но вскоре все сильно изменилось, когда в 1887 г. после открытия электромагнитных волн Герцем, были подтверждены все следствия, вытекающие из теории Максвелла – ее признали. Появилось множество работ, развивающих теорию Максвелла.

В теории Максвелла, скорость света (скорость распространения электромагнитных волн), конечна и равна

$$c = 299792458 \text{ m} \cdot \text{c}^{-1}$$
.

А в теории Галилея скорость передачи сигнала \vec{U} бесконечна и зависит от системы отсчета $\vec{U}_1 = \vec{U}' + \vec{U}$)

Первые догадки о конечности распространения скорости света, были высказаны еще Галилеем. Астроном Рёмер в 1676 г. пытался найти скорость света. По его приближенным расчетам, она была равна

$$c = 214300000 \text{ M} \cdot \text{c}^{-1}$$

Скорость света – инвариант относительно инерциальных систем отсчёта

- Фундаментальный интерес представляет вопрос о величине скорости света.
- Впервые доказать конечность скорости распространения света удалось Рёмеру в 1676 г. Он обнаружил, что затмение Ио крупнейшего спутника Юпитера совершается не совсем регулярно со временем (нарушается периодичность затмения).
- При наблюдении затмения через 6 месяцев Земля находится в диаметрально расположенной точке своей орбиты вокруг Солнца, и свет должен пройти до Земли уже другой путь.

Затмение Юпитером своего спутника Ио происходит тогда, когда Юпитер находится между Солнцем и Ио. Земля в это время находится в точке 1. (Затмение происходит примерно через каждые 42 часа, в течение которых Ио совершает оборот вокруг Юпитера.)

На Земле затмение наблюдается через время $\Delta t = \frac{L}{c}$ после фактического затмения, когда Земля находится в точке 2.

Через 6 месяцев Земля в точке 3, путь, который должен пройти свет

$$L' \approx L + D \Longrightarrow$$

$$\Delta t' = \frac{L'}{c} = \frac{L}{c} + \frac{D}{c} = \Delta t + \frac{D}{c} \Longrightarrow$$

можно определить c. Рёмер получил значение c = 214300 км/c.

Нужна была экспериментальная проверка теории Максвелла. Он сам предложил идею опыта — использовать Землю в качестве движущейся системы (Известно, что скорость движения Земли

 $\upsilon_{3} \approx 30 \text{ km/c} \approx 3 \cdot 10^{4} \text{ m/c}$

В 1881г. были выполнены опыты, которые доказали независимость скорости света от скорости источника или наблюдателя.

Необходимый для опыта прибор изобрел военно-морской офицер США – А. Майкельсон

Опыт Майкельсона –Морли

Для измерения разности времён использовался интерферометр с двумя «плечами», расположенными под углом 90°. На экране наблюдается интерференционная картина. По мере движения Земли происходит изменение ориентации интерферометра относительно вектора $v_{
uparto}$

Следовательно, по мере изменения ориентации Интерферометра должна меняться интерференционная картина. Но это не наблюдалось.

Опыт Майкельсона –Морли

Эфир может двигаться со скоростью $v_{9\phi upa}$ – эфирный ветер.

Время распространения света от источника до приёмника будет зависеть от их ориентации относительно вектора $v_{9\phi upa}$.

Опыт Майкельсона –Морли

Следовательно, свет от источника в интерферометре всегда распространяется со скоростью *с* относительно источника света.

Вывод: скорость света *с* не зависит от движения источника или наблюдателя.

В результате, световые волны, пройдя указанные пути, должны были изменить интерференционную картину на экране. Майкельсон проводил эксперименты в течение семи лет с 1881 г. в Берлине и с 1887 г. в США совместно с профессором Морли.

Точность первых опытов была невелика $\pm 5~\mathrm{KM/c}$ Однако, опыт дал *отрицательный* **результат**: сдвиг интерференционной картины обнаружить не удалось. Таким образом, результаты опытов Майкельсона - Морли показали, что величина скорости света постоянна и не зависит от движения источника и наблюдателя.

Эти опыты повторяли и перепроверяли многократно. В конце 60-ых годов Ч. Таунс довел точность измерения до \pm 1 м/с. Скорость света осталась неизменной $c=3\cdot 10^8\,\mathrm{M}\cdot\mathrm{c}^{-1}$

Независимость скорости света от движения источника и от направления недавно была продемонстрирована с рекордной точностью в экспериментах, выполненных исследователями из университетов г. Констанц и г. Дюссельдорф в которых установлена лучшая на сегодняшний день точность

Эта точность в 3 раза выше Исследовалась достигнутой ранее. стоячая электромагнитная волна кристалла сапфира, полости охлажденного жидким гелием. Два таких резонатора были ориентированы под прямым углом друг к другу. Вся установка могла вращаться, что позволило установить независимость скорости света от направления.

Было много попыток объяснить отрицательный результат опыта Майкельсона-Морли. Наиболее известна гипотеза Лоренца о сокращении размеров тел в направлении движения. Он даже вычислил эти сокращения, использовав для этого преобразование координат, которые так и называются «сокращения Лоренца-Фитцджеральда». Дж. Лармор в 1889 г. доказал, что уравнения Максвелла инвариантны относительно преобразований Лоренца. Очень близок был к созданию теории относительности Анри Пуанкаре. Но Альберт Эйнштейн был первым, кто четко и ясно сформулировал основные идеи теории относительности.

А.Эйнштейн

Г. Минковский

Х.Лоренц

• Опыт Саде:

показано, что скорость рентгеновских лучей, испускаемых источником, который движется с $v \sim 0.5c$, остаётся постоянной независимо от скорости движения источника с точностью $\pm 10 \%$.

Опыт Бонч-Бруевича (1935 г.).

При помощи чувствительного модулирующего устройства сравнивались промежутки времени, в течение которых свет, идущий от одного или другого края Солнца (от одного c+v ; от другого c-v), проходит путь туда и обратно между двумя зеркалами, расположенными у поверхности Земли на расстоянии 1км друг от друга.

Опыт Бонч-Бруевича

$$\Delta t = \frac{L}{c - v} - \frac{L}{c + v} \approx 0.$$

 Δt оказалось меньше погрешности измерений.

c + v = c - v , следовательно, скорость света c не зависит от скорости источника и c = const.

Из опытов следует:

- 1. *с* инвариантна для всех инерциальных СО.
- 2. *с* максимальная возможная скорость передачи сигнала, движения частицы, полей взаимодействия.
- Эти выводы не согласуются с представлениями об абсолютном пространстве, абсолютном времени и бесконечной скорости передачи взаимодействия, на которых основана механика Ньютона.

Требовалось пересмотреть фундаментальные представления о пространстве, времени, скорости передачи взаимодействий для случая движения с $v \approx c$. Эта новая теория должна была переходить в механику Ньютона при v << c. Эйнштейн заложил основы специальной теории относительности (СТО).

Постулаты Эйнштейна

В основе СТО лежат постулаты Эйнштейна.

I. Принцип относительности.

Не только механические, но и электромагнитные, оптические и другие явления в инерциальных системах отсчета (ИСО) протекают одинаково.

ИСО равноправны, и нет таких опытов, с помощью которых их можно различить.

Принцип относительности

распространяется на все явления. Все законы природы инвариантны по отношению к переходу от одной ИСО к другой. Если явления наблюдаются из разных ИСО, то они могут отличаться только из-за различных начальных условий. Поэтому в законы природы начальные условия не входят.

Постулаты Эйнштейна

II. Принцип постоянства (инвариантности) скорости света в вакууме.

Скорость света в вакууме не зависит от скорости движения источника и приёмника, т.е. является инвариантом относительно ИСО

 $\widetilde{c} \pm \Delta \widetilde{c} = (2,997928 \pm 0,000004) \cdot 10^8 \frac{\mathcal{M}}{C}$. Постоянство скорости света — c фундаментальное свойство природы, констатируемое как опытный факт.

II постулат Эйнштейна, как следствие I постулата

- Объектом СТО является скорость передачи информации от одной точки в другую, т.е. скорость явлений, связанных причинно-следственной связью.
- Под скоростью передачи информации понимают скорость передачи взаимодействия (сигнала).
- Сигнал физическая порция энергии, переносимая каким-либо материальным объектом из одной точки в другую.

II постулат Эйнштейна, как следствие I постулата

Скорость света в вакууме *c* = *const* и максимальная скорость передачи информации, сигнала.

Если *с* — максимальная возможная скорость передачи сигнала, то она должна быть одинаковой во всех ИСО. Если бы она была разной, то тогда существовал бы способ различения ИСО.

Преобразования Лоренца

Классические преобразования Галилея несовместимы с постулатами Эйнштейна.

Постулатам Эйнштейна удовлетворяют преобразования Лоренца, предложенные им в 1904 г., как преобразования, относительно которых инвариантны уравнения Максвелла.

Преобразования Лоренца

Рассмотрим 2 ИСО: К и К'.

K' движется относительно K с v = const — равномерно и прямолинейно.

В начальный момент времени О и О' совпадают.

Пусть следим за точкой x' = 0' (начало отсчёта K') из системы $K \implies x = vt$.

Если следим за точкой x = 0 из системы K' $\Rightarrow x' = -vt'$.

- Преобразования координат и времени в системах K и K' должны быть такими, что если x обращается в ноль, то x' тоже обращается в ноль.
- В соответствии с принципом относительности все ИСО равноправны, пространственно-временная связь (связь пространства и t) должны во всех ИСО иметь одинаковый вид. Этому требованию отвечают только линейные преобразования:

$$x = A(x' + vt'), (1)$$

 $x' = A(x - vt). (2)$

Если предположить, что в этих системах распространяется световой сигнал, то в соответствии со II постулатом скорость света в вакууме – инвариант (постоянна).

$$x = ct; x' = ct'.(3)$$

С учётом уравнений (1), (2), перепишем (3):

$$ct = A(ct' + vt') = At'(c + v);$$

$$ct' = A(ct - vt) = At(c - v).$$
(4)

Перемножим уравнения системы (4):

$$c^2tt' = A^2tt'(c^2 - v^2)$$
.(5) $\Rightarrow A^2 = \frac{c^2}{c^2 - v^2} = \frac{1}{1 - \frac{v^2}{c^2}}$.(6) $A = \pm \frac{1}{\sqrt{1 - \frac{v^2}{oct}}}$, (7) т.к. оси направлены в $\sqrt{1 - \frac{v^2}{oct}}$ одну сторону, то

$$A = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}, (8) \quad \frac{v}{c} = \beta \Rightarrow A = \frac{1}{\sqrt{1 - \beta^2}}.(9)$$

Уравнение (9) подставляем в (1), (2):

$$x' = \frac{x - vt}{\sqrt{1 - \beta^2}}, (10) \quad x = \frac{x' + vt'}{\sqrt{1 - \beta^2}}. (10a)$$

В начальный момент времени: системы K и K' совпадают, движение происходит вдоль оси x: $\Rightarrow y = y', \quad z = z'.$

Найдём преобразование для времени.

Из уравнения (10а) следует:

$$x\sqrt{1-\beta^2} = x' + vt' = no\partial cmaeляem(10) =$$

$$=\frac{x-vt}{\sqrt{1-\beta^2}}+vt'\Longrightarrow$$

$$\frac{x(1-\beta^2)-x+vt}{\sqrt{1-\beta^2}}=vt'\Rightarrow t'=\frac{t-x\frac{v}{c^2}}{\sqrt{1-\beta^2}}.$$

Аналогично:
$$t = \frac{t' + x' - c^2}{\sqrt{1 - \beta^2}}$$

Прямые преобразования

Обратные преобразования

 $K \rightarrow K'$:

$$x' = \frac{x - vt}{\sqrt{1 - \beta^2}},$$

$$y'=y$$
,

$$z'=z$$
,

$$t' = \frac{t - x \frac{v}{c^2}}{\sqrt{1 - \beta^2}}.$$

$$K' \rightarrow K$$
:

$$x = \frac{x' + vt'}{\sqrt{1 - \beta^2}},$$

$$y = y'$$

$$z=z'$$

$$t = \frac{t' + x' \frac{v}{c^2}}{\sqrt{1 - \beta^2}}.$$

Классические преобразования Галилея:

$$x' = x - vt,$$
 $x = x' + vt,$
 $y' = y,$ $y = y',$
 $z' = z,$ $z = z',$
 $t' = t.$ $t = t'.$

При
$$v << c: \left(\frac{v}{c}\right)^2 = \beta^2 << 1$$
, преобразования Лоренца переходят в преобразования Галилея.

Следствия из преобразований Лоренца

1. Относительность одновременности.

Пусть в системе K в точках с координатами x_1 и x_2 в моменты времени t_1 и t_2 происходят 2 события.

В системе K' им соответствуют координаты x'_1 и x'_2 , время t'_1 и t'_2 .

Относительность одновременности

• Если $x_1 = x_2$, т.е. события происходят в одной точке и являются одновременными $t_1 = t_2$. Из преобразований Лоренца следует:

 $x'_1 = x'_2$, $t'_1 = t'_2$, т.е. эти события в системе

К' происходят в одной точке и являются одновременными. Следовательно, эти события для любых ИСО являются одновременными и пространственно совпадающими.

$$x' = \frac{x - vt}{\sqrt{1 - \beta^2}}, \quad t' = \frac{t - x \frac{\dot{c}}{c^2}}{\sqrt{1 - \beta^2}}.$$

Относительность одновременности

Если в системе К события: x₁ ≠ x₂ −
 пространственно разобщены,

но $t_1 = t_2$ — одновременны.

B системе K':

$$x'_1 = \frac{x_1 - vt}{\sqrt{1 - \beta^2}}, \qquad x'_2 = \frac{x_2 - vt}{\sqrt{1 - \beta^2}},$$

$$t_{1}' = \frac{t - \frac{vx_{1}}{c^{2}}}{\sqrt{1 - \beta^{2}}} \qquad t_{2}' = \frac{t - \frac{vx_{2}}{c^{2}}}{\sqrt{1 - \beta^{2}}},$$

т.е. $x'_1 \neq x'_2$, $t'_1 \neq t'_2$, события остаются пространственно разобщенными и оказываются неодновременными.

Относительность одновременности

События одновременные в одной системе отсчёта *не одновременны* в другой СО.

$$t'_{2} - t'_{1} = \frac{t - \frac{vx_{2}}{c^{2}} - t + \frac{vx_{1}}{c^{2}}}{\sqrt{1 - \beta^{2}}} = \frac{v(x_{1} - x_{2})}{c^{2}\sqrt{1 - \beta^{2}}} \neq 0.$$

Знак определяется знаком выражения

$$v(x_1 - x_2)$$
.

2. Длина отрезка (стержня) в различных системах отсчёта

Длина отрезка — разность координат его начала и конца, измеренных одновременно в выбранной системе отсчёта.

Отрезок (стержень) расположен вдоль оси x' и покоится относительно K'.

Его длина в K':

$$l'_0 = x'_2 - x'_1; \quad t'_1 = t'_2.(1)$$

2. Длина отрезка (стержня) в различных системах отсчёта

K' движется относительно K со скоростью V.

Длина отрезка в *K*:

$$l_0' = \frac{x_2 - vt_2}{\sqrt{1 - \beta^2}} - \frac{x_1 - vt_1}{\sqrt{1 - \beta^2}} = \frac{x_2 - vt_2 - x_1 + vt_1}{\sqrt{1 - \beta^2}}; (2)$$

$$npu \quad t_1 = t_2 \Rightarrow l' = \frac{l}{\sqrt{1 - \beta^2}}, (3) \Rightarrow l = l'_0 \sqrt{1 - \beta^2}, (4) \quad l'_0 > l.$$

Длина стержня l'_0 в системе, относительно которой он покоится, больше длины стержня l в системе, относительно которой он движется.

Стержень покоится в системе K, K' движется относительно K со скоростью V.

$$K: l_0 = x_2 - x_1; t_1 = t_2. \Rightarrow l_0 = \frac{x_2' - vt_2' - x_1' + vt_1'}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{1 - \beta^2}}$$

$$(npu \quad t_1' = t_2') = \frac{l'}{\sqrt{1 - \beta^2}} \implies$$

$$K'$$
: $l' = l_0 \sqrt{1 - \beta^2} \Longrightarrow l_0 > l'$.

Длина стержня l_0 в системе, относительно которой он покоится, больше длины стержня l' в системе, относительно которой он движется.

Длина отрезка (стержня) в различных системах отсчёта.

- Линейные размеры тела, движущегося относительно ИСО, уменьшаются в направлении движения в $\sqrt{1-\beta^2}$ раз.
- Длина отрезка, измеренная в системе отсчёта, в которой он покоится, называется его собственной длиной. Собственная длина всегда имеет наибольшее значение.
- Длина отрезка зависит от выбора системы отсчёта, т.е. *относительная*.

В классической механике:

$$v << c \Rightarrow \beta = \frac{v}{c} << 1 \Rightarrow l = l'_0; \quad l' = l_0.$$

Формула $l = l_{_0} \sqrt{1 - \beta^2}$ называется **Лоренцевым сокращением длины.**

Собственная длина тела, есть максимальная длина.

Длина движущегося тела короче, чем

покоящегося.

Причем, сокращается только проекция на ось *x*, т.е. размер тела вдоль направления движения.

3. Интервал времени в разных системах отсчёта

Собственное время показывают часы, которые покоятся относительно системы отсчёта в некоторой точке с координатой, в которой произошли 2 события.

Эти часы называются *покоящимися*.

Часы, которые движутся относительно системы отсчёта, в некоторой точке которой произошли 2 события, называются движущимися.

Интервал времени в разных системах отсчёта

$$K'$$
: $x_1' = x_2'$; $\tau_0' = t_2' - t_1'$ (1) — время между 2-мя событиями, которые показывают покоящиеся часы. $t_2' + \frac{vx_2'}{c^2} - t_1' - \frac{vx_1'}{c^2} = \frac{\tau_0'}{\sqrt{1-\beta^2}}$. (2) \Rightarrow $\tau \cdot \sqrt{1-\beta^2} = \tau_0'$. (3) $\tau > \tau_0'$.

Движущиеся часы показывают большее время.

Интервал времени в разных системах отсчёта

Собственное время всегда имеет наименьшее значение

Интервал времени в разных системах отсчёта

Интервал времени между событиями зависит от выбора системы отсчёта, т.е. время *относительно*.

В классической механике:

$$v << c \Rightarrow \beta = \frac{v}{c} << 1 \Rightarrow \tau' = \tau_0; \quad \tau'_0 = \tau.$$

Опыт с мюонами

Эти частицы рождаются на расстоянии 30 км от поверхности Земли и обнаруживаются вблизи поверхности Земли, т.е. проходят путь S = 30 км.

Их собственное время жизни $\tau'_0 = 2 \cdot 10^{-6}$ с.

Если принять, что мюоны движутся со скоростью света, то $S' = c \cdot \tau_0' = 3 \cdot 10^8 \cdot 2 \cdot 10^{-6} = 600 \text{м} << 30 \text{км}.$

В системе отсчёта, связанной с Землёй, существуют движущиеся часы. Поэтому время жизни мюона с точки зрения земного наблюдателя

$$\tau = \frac{\tau_0'}{\sqrt{1-\beta^2}}; \quad \tau > \tau_0' \Longrightarrow S > S'.$$

В механике Ньютона - теорема сложения скоростей Галилея:

$$K: \vec{u} = \vec{v} + \vec{u}'.$$

• Т.к. движение происходит вдоль оси *х* :

$$u_{x} = v + u'_{x}$$

$$u_{y}=u'_{y},$$

$$u_z = u'_z$$
.

В релятивистской механике.

Проекции скорости материальной точки на координатные оси в системе *K*:

$$u_x = \frac{dx}{dt}$$
; $u_y = \frac{dy}{dt}$; $u_z = \frac{dz}{dt}$.(1)

Проекции скорости материальной точки на координатные оси в системе K':

$$u'_{x} = \frac{dx'}{dt'}; \quad u'_{y} = \frac{dy'}{dt'}; \quad u'_{z} = \frac{dz'}{dt'}.(2)$$

Согласно преобразованиям Лоренца:

$$x' = \frac{x - vt}{\sqrt{1 - \beta^2}},$$

$$y' = y,$$

$$z' = z,$$

$$t - x \frac{v}{c^2},$$

$$t' = \frac{t - x \frac{v}{c^2}}{\sqrt{1 - \beta^2}}.$$

$$x' = \frac{x - vt}{\sqrt{1 - \beta^{2}}},$$

$$y' = y,$$

$$z' = z,$$

$$t' = \frac{t - x\frac{v}{c^{2}}}{\sqrt{1 - \beta^{2}}}.$$

$$u'_{x} = \frac{dx'}{dt'} = \frac{dx - vdt}{dt - \frac{vdx}{c^{2}}} \cdot \frac{\sqrt{1 - \beta^{2}}}{\sqrt{1 - \beta^{2}}} = \frac{dx}{dt} - v$$

$$= \frac{\frac{dx}{dt} - v}{\sqrt{1 - \beta^{2}}} = \frac{u_{x} - v}{1 - \frac{u_{x}v}{c^{2}}}.$$

$$1 - \frac{dt}{c^{2}}$$

$$x' = \frac{x - vt}{\sqrt{1 - \beta^2}},$$

$$y' = y,$$

$$z' = z,$$

$$=\frac{t-x\frac{v}{c^2}}{\sqrt{1-\beta^2}}$$

$$u'_{y} = \frac{dy'}{dt'} = \frac{dy\sqrt{1-\beta^{2}}}{dt - \frac{vdx}{c^{2}}} =$$

$$t' = \frac{t - x \frac{v}{c^2}}{\sqrt{1 - \beta^2}}.$$

$$= \frac{u_y \sqrt{1 - \beta^2}}{1 - \frac{u_x v}{c^2}}.$$
(4)

$$u'_{z} = \frac{dz'}{dt'} = \frac{dz\sqrt{1-\beta^{2}}}{dt - \frac{vdx}{c^{2}}} = \frac{u_{z}\sqrt{1-\beta^{2}}}{1 - \frac{u_{x}v}{c^{2}}}.(5)$$

$$u' = \sqrt{u'_{x}^{2} + u'_{y}^{2} + u'_{z}^{2}}.$$

Если материальная точка движется в системе K вдоль оси x со скоростью c:

$$u_{x} = c, \qquad u'_{x} = \frac{c - v}{1 - \frac{cv}{c^{2}}} = c,$$

т.е. скорость в системе *К'* равна *с*. Следовательно, объект, распространяющийся со скоростью *с*, будет иметь эту же скорость относительно других систем независимо от того, сколь быстро они движутся (согласие с II постулатом Эйнштейна).

- Систему отсчёта связывают с материальным объектом, у которого v < c.
- С фотоном систему отсчёта связывать нельзя, т.к. его v=c.

О скоростях, превышающих световую

Поверхность планеты

Скорость светового пятна на поверхности планеты:

$$v = \omega R > c$$
.

V – скорость перемещения состояния освещённости, а не скорость передачи информации из точки А в точку В.

Движения пятна из *A* в *B* не имеют причинно-следственную связь. Причиной является свет от прожектора.

Релятивистская динамика (3 закона Ньютона)

1. Постулат существования инерциальных систем отсчёта. Остаётся без изменения.

Релятивистская динамика (3 закона Ньютона)

2-й закон Ньютона:

Опыт Бертоцци: нельзя ускорить электрон до скорости, превышающей *с*.

Релятивистская динамика

Термопара – для определения кинетической энергии, переходящей в тепло при ударе по ней электронов.

$$E_{\kappa} = \frac{p^2}{2m} = \frac{mv^2}{2} \Longrightarrow v^2 = \frac{2}{m} \cdot E_{\kappa} \Longrightarrow v^2 \left(E_{\kappa}\right) - \frac{v^2(E_{\kappa})}{2}$$

линейная зависимость.

Свободное от поля пространство – для измерения времени и скорости пролёта электрона.

Релятивистская механика Релятивистское выражение для импульса

Найдем такое выражение импульса, чтобы закон сохранения импульса был инвариантен преобразованиям Лоренца при любых СКОРОСТЯХ (как мы уже говорили, уравнения Ньютона инвариантны к преобразованиям Лоренца и закон сохранения импульса в kвыполняется, а в k' – нет).

Ньютоновское выражение дл

импульса

$$\vec{p} = m\vec{v}$$

Вот это выражение надо сделать инвариантным. Это возможно если в него будут входить инвариантные величины.

$$\vec{p} = \frac{m\vec{\upsilon}}{\sqrt{1-\beta^2}}$$

Это и есть релятивистское выражение для импульса.

Из приведенного уравнения следует, что никакое тело не может двигаться со скоростью большей или даже равной скорости света (при $U \to C$

знаменатель стремится к нулю, тогда $p \to \infty$, что невозможно в силу закона сохранения импульса).

Релятивистская динамика

$$\vec{p} = \frac{m_0 \vec{v}}{\sqrt{1 - \frac{v^2}{c^2}}} - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

релятивистский импульс.

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

релятивистская масса (масса частицы в системе, относительно которой она движется).

 m_0 — масса покоя частицы (в системе отсчёта, относительно которой частица находится в покое).

Инертная масса не зависит от направления действия силы.

В релятивистской механике масса m(v) утрачивает смысл коэффициента пропорциональности между векторами \boldsymbol{a} и \boldsymbol{F} :

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d}{dt} \left(\frac{m_0 \vec{v}}{\sqrt{1 - \frac{v^2}{c^2}}} \right); \quad \vec{p} = f(v, \vec{v}). \Rightarrow$$

$$\vec{F} \perp \vec{v} \Rightarrow v^2 = const.$$

$$\vec{a} = \frac{d\vec{v}}{dt}, \quad \vec{F} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \vec{a} \Rightarrow m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\vec{F} \parallel \vec{v} \Longrightarrow$$

$$\vec{F} = \frac{m_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)^3}} \vec{a} \implies m = \frac{m_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)^3}}$$

Релятивистская динамика

- В отличие от Ньютоновской механики вектор силы **F** в релятивистской механике не является инвариантом (в различных СО **F** имеет различные модули и направления).
- В релятивистской механике понятие инертной массы теряет смысл, и поэтому 2 закон Ньютона записывается в виде:

$$\vec{F} = \frac{d}{dt} \left(\frac{m_0 \vec{v}}{\sqrt{1 - \frac{\vec{v}^2}{c^2}}} \right).$$

Релятивистская динамика

3-й закон Ньютона.

В релятивистской механике работает концепция близкодействия, в соответствии с которой взаимодействие передаётся от точки к точке с конечной v=c. Время передачи взаимодействия

$$t = \frac{S}{v}.$$

Релятивистская динамика. 3-й закон Ньютона.

В точке 2 рождается заряженная частица q_2 . В момент её рождения на q_2 действует сила со стороны q_1 , а на q_1 со стороны q_2 силы не действуют, т.к. для передачи взаимодействия требуется время t.

Следовательно, 3-й закон Ньютона нарушается.

Релятивистское выражение для энергии

По определению \vec{p} – импульс релятивистской частицы, а скорость изменения импульса

равна силе, действующей на частицу
$$\vec{\mathbf{F}} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}$$

Работа силы по перемещению частицы идет на увеличение энергии частицы:

$$dA = (\vec{F}, d\vec{r}) = \left(\frac{d\vec{p}}{dt}, d\vec{r}\right) = (d\vec{p}, \vec{\upsilon}) = dE.$$

После интегрирования этого выражения получим *релятивистское* выражение для энергии частицы:

$$E = \frac{mc^2}{\sqrt{1-\beta^2}} \tag{5.3}$$

где **Е** – **полная энергия**.

При $\upsilon = 0$ в системе координат, где частица покоится, выражение (8.5.3) преобразуется:

$$E_{\scriptscriptstyle 0} = mc^2$$

энергия покоя частицы.

Именно утверждение о том, что в покоящейся массе (материи) огромные запасы энергии, является главным практическим следствием СТО $\boldsymbol{E_0}$ – внутренняя энергия частицы (учитывающая все).

Полная энергия в теории относительности складывается из энергии покоя и кинетической энергии (*K*). Тогда

$$K = E - E_0 = \frac{mc^2}{\sqrt{1 - \beta^2}} - mc^2 = mc^2 \left(\frac{1}{\sqrt{1 - \beta^2}} - 1\right)_{83}$$

$$K = mc^2 \left(\frac{1}{\sqrt{1 - \beta^2}} - 1 \right)$$

Справедливость теории проверяется принципом соответствия: при $\mathcal{U} << c$

должно быть

$$K = \frac{m\upsilon^2}{2}$$

Получим еще одно очень важное соотношение, связывающее полную энергию с импульсом частицы.

Из уравнения

$$\vec{p} = \frac{m\vec{v}}{\sqrt{1 - \beta^2}}$$

получим:

$$E = c\sqrt{m^2c^2 + p^2}$$

Таким образом, получили *инвариантное выражение, связывающее энергию и импульс*

Взаимосвязь массы и энергии покоя

Масса и энергия покоя связаны соотношением:

$$E_{_{0}} = mc^{_{2}}$$
 (8.6.1)

из которого вытекает, что всякое изменение массы Δm сопровождается изменением энергии покоя ΔE_0 .

$$\Delta E_{_0} = c^2 \Delta m$$

Это утверждение носит название **взаимосвязь массы и энергии покоя** и стало **символом современной физики.** 86

Взаимосвязь между массой и энергией оценивалась А. Эйнштейном как самый значительный вывод специальной теории относительности. По его выражению, масса должна рассматриваться как доточение колоссального количества энергии». При этом масса в теории относительности не является более сохраняющейся величиной, а зависит выбора системы отсчета и характера взаимодействия между частицами.

Определим энергию, содержащуюся в 1 г. любого вещества, и сравним ее с химической энергией, получаемой при сгорании 1 г. угля равной $2.9 \cdot 10^4$ Дж . Согласно уравнению Эйнштейна $E = mc^2$ имеем

$$E_{0} = (10^{-3} \,\mathrm{Kr})(3 \cdot 10^{8} \,\mathrm{M} \cdot \mathrm{c}^{-1})^{2} = 9 \cdot 10^{13} \,\mathrm{Дж}.$$

Таким образом, собственная энергия в 3,1·10⁸ раз превышает химическую энергию. Из этого примера видно, что если высвобождается лишь одна тысячная доля собственной энергии, то и это количество в миллионы раз больше того, что могут дать обычные источники энергии.

88

При взаимодействии частиц суммарная масса взаимодействующих частиц не сохраняется.

Пример: пусть две одинаковые по массе частицы *m* движутся с одинаковыми по модулю скоростями навстречу друг другу и абсолютно неупруго столкнутся.

До соударения полная энергия каждой

частицы E равна: $E = \frac{mc}{\sqrt{1 - \beta^2}}$

Полная энергия образовавшейся частицы Mc^2 (эта новая частица имеет скорость $\upsilon=0$). Из закона сохранения энергии:

$$\frac{2mc^2}{\sqrt{1-\beta^2}} = Mc^2$$

откуда М равно:

$$M = \frac{2m}{\sqrt{1 - \beta^2}} > 2m \tag{6.2}$$

Таким образом, сумма масс исходных частиц 2m, меньше массы образовавшейся частицы M!

В этом примере, кинетическая энергия частиц превратилась в эквивалентное количество энергии покоя, а это привело к возрастанию массы

$$\Delta M = \frac{\Delta K}{c^2}$$

(это при отсутствии выделения энергии при соударении частиц).

Выражение «масса покоя» можно употребить как синоним «энергия покоя». Пусть система (ядро) состоит из N частиц с массами $m_1, m_2...m_i$. Ядро не будет распадаться на отдельные частицы, если они связаны друг с другом. Эту связь можно охарактеризовать энергией связи

Энергия связи — энергия которую нужно затратить, чтобы разорвать связь между частицами и разнести их на расстояние, при котором взаимодействием частиц друг с другом можно пренебречь:

$$E_{_{CB}} = c^2 \sum_{_{i=1}}^{n} m_{_i} - Mc^2 = c^2 \Delta M, \qquad (6.3)$$

где **ДМ – дефект массы**.

$$\Delta M = (m_1 + m_2 + ... + m_i) - M;$$

Видно, что $E_{\rm cs}$ будет положительна, если

$$M < \sum_{i=1}^{n} m_{i}$$

Это и наблюдается на опыте.

При слиянии частиц энергия связи высвобождается (часто в виде электромагнитного излучения).

Например, ядро U²³⁸ имеет энергию связи

 $E_{\rm CB} = 2,9 \cdot 10^{-10} \, \text{Дж} \approx 1,8 \cdot 10^9 \, \text{эВ} = 1,8 \, \text{ГэВ}.$

Частица с нулевой массой покоя

Законы Ньютоновской механики не допускают существование частицы с нулевой массой, т.к. для них даже при малых F ускорение $a \to \infty$.

Существование частиц с m_0 = 0 не противоречит законам релятивистской механики.

Частица с нулевой массой покоя

В соответствии с уравнениями

$$\vec{p} = \frac{m_0 \vec{v}}{\sqrt{1 - \frac{v^2}{c^2}}}, \qquad E = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

частица с m_0 = 0 обладает $p \neq 0$ и $E \neq 0$, т.к. если её v = c, то соотношение 0/0

представляет собой неопределённость, которая может равняться конечному числу.

Частица с нулевой массой покоя

Пример: фотон
$$m_0 = 0$$
, $E_0 = 0$,

$$E = pc; \quad E = h\upsilon = mc^2 \Longrightarrow$$

$$p = \frac{h\upsilon}{c}; \quad p = mc \Rightarrow$$

$$m=\frac{h\upsilon}{c^2}.$$