On Hedberg's Theorem: Proving and Painting

Nicolai Kraus

25/05/12

Reminder: Equality

Definitional Equality

"Real" decidable equality for typechecking, computation; e.g. $(\lambda a.b)x =_{\beta} b[x/a]$

Reminder: Equality

Definitional Equality

"Real" decidable equality for typechecking, computation; e.g. $(\lambda a.b)x =_{\beta} b[x/a]$

Propositional Equality

Equality needing a proof, i. e. a term of the identity type

Formation

a, b : A

 $\overline{a \equiv b : type}$

Formation

 $\frac{a, b : A}{a \equiv b : type}$

Introduction

 $\frac{a:A}{refl_a:a\equiv a}$

Formation

$$\frac{a, b : A}{a \equiv b : type}$$

Introduction

$$\frac{a:A}{refl_a:a\equiv a}$$

Elimination (J)

$$P: (a, b: A) \to a \equiv b \to Set$$

$$m: \forall a. P(a, a, refl_a)$$

$$J_{(a,b,q)}: P(a, b, q)$$

Formation

$$\frac{a, b : A}{a \equiv b : type}$$

Introduction

$$\frac{a:A}{refl_a:a\equiv a}$$

Elimination (J)

$$P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$$

 $m: \forall a. P(a, a, refl_a)$
 $J_{(a,b,q)}: P(a, b, q)$

Computation (β)

$$J_{(a,a,refl_a)} =_{\beta} ma$$

Elimination: J versus K

Eliminator J

$$P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$$

$$m: \forall a. P(a, a, refl_a)$$

$$J_{(a,b,q)}: P(a, b, q)$$

Eliminator K

$$a : A$$

$$P : a \equiv a \rightarrow Set$$

$$\frac{P(refl_a)}{K_q : P(q)}$$

A: type

A: type

a, b : A

A: type

a, b : A

p: $a \equiv b$

A: type

a, b : A

 $p, q : a \equiv b$

A: type

a, b : A

 $p, q : a \equiv b$

 $H: p \equiv q$

Want to prove:

$$\forall p . p \equiv refl_a$$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$ $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$ $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$

 $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$

 $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$

 $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$ $P(refl_a)$

i (iciia)

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$

 $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$

 $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$

 $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$

 $P(refl_a)$

Want to prove:

$$\forall p . p \equiv refl_a$$

with K:

only need $refl_a \equiv refl_a$

so, indeed $p \equiv refl_a$

Eliminator K

a : A

 $P: a \equiv a \rightarrow Set$

 $P(refl_a)$

Okay, but what now?

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want: $(a, a, p) \equiv (a, a, refl_a)$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{: \Sigma(a, b: A). a \equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

J revisited

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

 $J_{(a,b,q)}: P(a,b,q)$

J revisited

Want:
$$(a, a, p) \equiv (a, a, refl_a)$$

J shows:

$$\forall (a, b, q)_{:\Sigma(a,b:A).a\equiv b}$$

$$(a, b, q) \equiv (a, a, refl_a)$$

Eliminator J

 $P: (a, b: A) \rightarrow a \equiv b \rightarrow Set$ $m: \forall a. P(a, a, refl_a)$

 $J_{(a,b,q)}: P(a,b,q)$

J versus K revisited

Fix *a* : *A*.

J (variant of Paulin-Mohring)

To show $\forall (b, q)_{:\Sigma(b:A).a\equiv b}$. P(b, q), just prove $P(a, refl_a)$.

K (reformulated)

$$\forall q_{:a\equiv a}$$
 . $q\equiv refl_a$

Fix a type A.

Decidable Equality

DecidableEquality := $\forall a, b \ (a \equiv b + \neg a \equiv b)$

Hedberg's theorem

 $DecidableEquality \longrightarrow K$

Hedberg's theorem

 $DecidableEquality \longrightarrow K$

Proof.

• Given dec: $(a, b : A) \rightarrow (a \equiv b + \neg a \equiv b)$.

Hedberg's theorem

 $DecidableEquality \longrightarrow K$

- Given dec: $(a, b : A) \rightarrow (a \equiv b + \neg a \equiv b)$.
- Given any a, b : A and $p : a \equiv b$.

Hedberg's theorem

$DecidableEquality \longrightarrow K$

- Given dec: $(a, b : A) \rightarrow (a \equiv b + \neg a \equiv b)$.
- Given any a, b : A and $p : a \equiv b$.
- $decab = inl q_1$ and $decaa = inl q_2$ for some q_1, q_2 .

Hedberg's theorem

$DecidableEquality \longrightarrow K$

- Given dec: $(a, b : A) \rightarrow (a \equiv b + \neg a \equiv b)$.
- Given any a, b : A and $p : a \equiv b$.
- $decab = inl q_1$ and $decaa = inl q_2$ for some q_1, q_2 .
- Claim: $p \equiv q_1 \circ q_2^{-1}$

Hedberg's theorem

$DecidableEquality \longrightarrow K$

- Given dec: $(a, b : A) \rightarrow (a \equiv b + \neg a \equiv b)$.
- Given any a, b : A and $p : a \equiv b$.
- $decab = inl q_1$ and $decaa = inl q_2$ for some q_1, q_2 .
- Claim: $p \equiv q_1 \circ q_2^{-1}$
- Proof with J: Just show $refl_a \equiv q_2 \circ q_2^{-1}$. That's true!

Hedberg's theorem

$DecidableEquality \longrightarrow K$

- Given dec: $(a, b : A) \rightarrow (a \equiv b + \neg a \equiv b)$.
- Given any a, b : A and $p : a \equiv b$.
- $decab = inl q_1$ and $decaa = inl q_2$ for some q_1, q_2 .
- Claim: $p \equiv q_1 \circ q_2^{-1}$
- Proof with J: Just show $refl_a \equiv q_2 \circ q_2^{-1}$. That's true!
- Special case: If $p : a \equiv a$, then $p \equiv refl_a$.

Corollary¹: The Circle type does not have decidable equality

$$dec: (a, b: A) \rightarrow (a \equiv b + \neg a \equiv b)$$

Nearly uncountable many things to be done . . .

- Higher Inductive Types (see Mike Shulman's work)
- Model construction with modern abstract (not point-set) homotopy theory
- Constructive Simplicial Sets (the combinatorial version of what I have shown; see Thierry Coquand's / Simon Huber's work)
- Univalent foundations / Univalence ("alternative" to K) in general (see Voevodsky)
- ... and possible computational properties (Thorsten?)

THANK YOU!