

Distilling Large Vision-Language Model with Out-of-Distribution Generalizability

Xuanlin Li*, Yunhao Fang*, Minghua Liu, Zhan Ling, Zhuowen Tu, Hao Su University of California San Diego

Overview

- Goal: Distill visual representations in large vision-language teachers into lightweight student models, while allowing students to possess strong open-vocabulary generalization ability towards out-of-distribution (OOD) concepts.
 - Potential for deployment on mobile / IoT devices and robotics scenarios.
- Experiments are conducted on small-to-medium datasets, allowing for fast research & development (R&D) cycles and is practical for lower-data regimes like 3D and robotics.
- Main Findings: 2 principles to enhance student's OOD generalizability:
- Better imitate teacher's visual representation space, and carefully promote better vision-language alignment coherence with the teacher.
- Enrich teacher's language representations with more finegrained & meaningful attributes to effectively distinguish between different labels, both during distillation and inference. This can be accomplished by prompting LLMs like ChatGPT.

Teacher-Student Visual Space Alignments

- Precisely matching teacher and student's highdimensional visual spaces is inherently challenging (with high MSE feature matching loss).
- In this case, minimizing student-teacher visual feature distance does NOT yield the best OOD generalization ability for students.

cheesecake

Language Space

$\mathcal{L}_{\text{cls}}(\mathbf{x}, y) = \sum_{y'} -1_{y'=y} \log P_S(y' \mathbf{x})$
$P_S(y \mathbf{x}) = \frac{\exp(\cos(S(\mathbf{x}), T_{txt}(l(y)))/\tau)}{\sum_{y' \in \mathcal{Y}} \exp(\cos(S(\mathbf{x}), T_{txt}(l(y')))/\tau)}$
$\mathcal{L}_{\text{mse}}(\mathbf{x}) = S(\mathbf{x}) - T_{\text{img}}(\mathbf{x}) _2^2$
$\mathcal{L}_{\text{im-cst}}(\mathbf{x}) = \frac{\exp(- S(\mathbf{x}) - T_{\text{img}}(\mathbf{x}) _2^2/\tau)}{\sum_{\mathbf{x}'} \exp(- S(\mathbf{x}) - T_{\text{img}}(\mathbf{x}') _2^2/\tau)}$
E 2 4101 CLIN207

	Food101	SUN397
$\mathcal{L}_{ ext{mse}}$	0.24 / 28.4°	0.36 / 34.9°
\mathcal{L}_{mse} (RN50)	0.24 / 28.4°	0.35 / 34.4°
$\mathcal{L}_{ ext{cls}} + \mathcal{L}_{ ext{mse}}$	0.45 / 39.2°	$0.71 / 49.8^{\circ}$
$\mathcal{L}_{cls} + \mathcal{L}_{mse} + \mathcal{L}_{im\text{-}cst}$	0.65 / 47.6°	0.82 / 53.8°
$\mathcal{L}_{cls} + \mathcal{L}_{im ext{-cst}}$	1.29 / 69.2°	1.28 / 68.9°

Average MSE / degree difference between student & teacher visual features for students trained with different strategies. Student: RN18; Teacher: CLIP ViT-L/14

- Thus, maintaining teacher-student coherence in local visual space structures and relative visual feature relationships becomes crucial for student OOD generalization, as they *implicitly* enhance vision-language alignments.
- We find that **contrastive losses** like L_{im-cst} are especially beneficial for student OOD generalization, as it **enables much better student-teacher proximity in both local and relative visual feature structures**.

Teacher-Student Vision-Language Alignments

- Explicitly enhance teacher-student vision-language alignment coherency.
- Carefully preserve teacher's vision-language alignment structure by accounting for teacher misalignments (through e.g., L_{vlprox}).

$$\mathcal{L}_{\text{vlprox}}(\mathbf{x}, k) = I(\mathbf{x}) \cdot \mathcal{D}_{\text{KL}}(P_{T, \text{topk}}(\cdot | \mathbf{x}) || P_{S, \text{topk}}(\cdot | \mathbf{x}))$$

$$I(\mathbf{x}) = \mathbf{1}[\operatorname{argmax}_{y} P_{T}(y | \mathbf{x}) = \operatorname{label}(\mathbf{x})]$$

$$P_{\cdot, \text{topk}}(y | \mathbf{x}) = \frac{\mathbf{1}_{y \in Y_{\text{topk}}} P_{\cdot}(y | \mathbf{x})}{\sum_{y \in Y_{\text{topk}}} P_{\cdot}(y | \mathbf{x})}; Y_{\text{topk}} = \operatorname{argtopk}_{y} P_{T}(y | \mathbf{x})$$

$\mathcal{M}_{ ext{vlalign}}\downarrow$	k=2	k = 3	k = 5
$ \begin{split} \mathcal{L}_{cls} + \mathcal{L}_{mse} \\ \mathcal{L}_{cls} + \mathcal{L}_{mse} + \mathcal{L}_{im\text{-cst}} \\ \mathcal{L}_{cls} + \mathcal{L}_{mse} + \mathcal{L}_{im\text{-cst}} + \mathcal{L}_{vlprox} \end{split} $	0.20 / 0.50	0.68 / 1.45	2.67 / 4.73
	0.18 / 0.43	0.62 / 1.3	2.52 / 4.24
	0.17 / 0.39	0.59 / 1.17	2.17 / 4.20

$$\mathcal{M}_{\text{vlalign}}(\mathcal{X}, k) = \frac{\sum_{i=1}^{|\mathcal{X}|} \text{\#reverse_pairs}(\text{arrS}(i, k))}{|\mathcal{X}|}$$

$$\text{arrS}(i, k) = [||S(\mathbf{x}_i) - T_{\text{txt}}(l(y_j))||_2]_{j \in \mathcal{I}(i, k)}$$

$$\mathcal{I}(i, k) = \text{argtopk}([-||T_{\text{im}}(\mathbf{x}_i) - T_{\text{txt}}(l(y_j))||_2)]_{j=1}^{|\mathcal{Y}|})$$

Language Representation Enrichment

- Prompt ChatGPT to enrich label descriptions: "Use a single sentence to describe the appearance and shape of {cls}. Only describe the shape and appearance."
- ChatGPT-enriched descriptions are significantly more informative than e.g., auxiliary captions generated by OFA, supplying comprehensive details to distinguish finegrained categories.

Original Description:

"A photo of an Acura Integra Type R 2001" ChatGPT-Enriched:

"A photo of an Acura Integra Type R 2001.
The 2001 Acura Integra Type R features a compact and sporty design with a sleek, aerodynamic body, sharp angles, and a distinctive rear spoiler."

Auxiliary Caption from OFA:

"A white car is parked in a field."

ChatGPT-enriched language representation space confers more independent & meaningful attributes to distinguish labels, allowing OOD text features to be more precisely aligned with image features.

Figure 4: Top 10 eigenvalu
of text features.

	Cos. Sim.
w/o enrichment	0.5156
ChatGPT	0.4462
Caption	0.5572

Table 6: Average cosine similarity between all pairs of text features.

Language Feature

No Language Enrichment

Applications (e.g., Robotics)

	\mathcal{X}_{id}	\mathcal{Y}_{id} on \mathcal{X}_{ood}	\mathcal{Y}_{ood} on \mathcal{X}_{ood}
Closed-Set	96.4 / 96.5	NA / 86.2	NA / 87.7
$\mathcal{L}_{ ext{cls}}$	96.9 / 97.2	79.3 / 85.3	71.7 / 87.3
+ $\mathcal{L}_{\text{im-cst}}$	99.2 / 99.2	84.0 / 91.9	76.3 / 88.3
$ \begin{aligned} & \text{Closed-Set} \\ & \mathcal{L}_{\text{cls}} \\ & + \mathcal{L}_{\text{im-cst}} \\ & + \text{Semantic Enrich} \end{aligned} $	98.2 / 99.0	84.3 / 92.0	83.0 / 89.6

(a) Overall accuracy over all YCB objects

	$\mathcal{X}_{\mathrm{id}}$	$\mathcal{Y}_{\mathrm{id}}$ on $\mathcal{X}_{\mathrm{ood}}$	\mathcal{Y}_{ood} on \mathcal{X}_{ood}
Closed-Set	91.6 / 91.9	NA / 57.8	NA / 35.9
$\mathcal{L}_{ ext{cls}}$	94.0 / 94.4	46.5 / 54.7	23.3 / 32.8
+ $\mathcal{L}_{\text{im-cst}}$	98.1 / 98.0	55.3 / 70.8	23.7 / 47.3
+ Semantic Enrich	97.2 / 97.4	55.6 / 70.8	11.7 / 50.7

(b) F1-measure over objects that exist in observations.