Facultatea de Matematică și Informatică

Concursul de admitere iulie 2013 Domeniul de licență - *Informatică*

I. Algebră.

- (a) Fie $n \geq 2$ un număr natural. Considerăm n numere reale cu proprietatea că oricum am alege unul dintre ele, suma celorlalte n-1 numere rămase este 0. Să se arate că toate cele n numere sunt egale cu 0.
- (b) Câte elemente are mulţimea $\mathcal{M} = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \middle| a, b \in \mathbb{Z}_3 \right\}$?
- (c) Să se arate că mulțimea \mathcal{M} de la punctul precedent este parte stabilă în raport cu adunarea şi înmulțirea matricelor din $M_2(\mathbb{Z}_3)$ şi că \mathcal{M} este corp comutativ împreună cu aceste operații.

II. Analiză. Fie funcțiile
$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\} \to \mathbf{R}, f(x) = \frac{x}{\sin^2 x}$$
 și $g: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\} \to \mathbf{R}, g(x) = xf(x)$.

- (a) Determinați limitele laterale ale funcției f în punctul 0.
- (b) Arătați că ecuația $\sin x x \cos x = 0$ are o singură soluție în intervalul $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
- (c) Aflați mulțimea valorilor funcției g.
- (d) Calculați $I = \int_{\pi/6}^{\pi/2} f(x) dx$.

III. Geometrie.

- (a) Fie A(1,2) şi B(3,-1) două puncte în plan. Determinați ecuațiile dreptelor care trec prin punctul A şi sunt situate la distanța 2 față de punctul B.
- (b) Determinați numerele naturale a pentru care a, a+1 și a+2 sunt lungimile laturilor unui triunghi obtuzunghic.
- (c) Fie ABCDEF un hexagon regulat de latură 2. Să se calculeze norma vectorului $\overrightarrow{AC} + \overrightarrow{BD}$.

IV. Informatică. Fie n un număr natural nenul şi $m=2^n$. Se dă vectorul $0,1,2,3,\ldots,m,m+1$ şi p, cu $1 \le p \le m$. În acest vector, marcăm numerele 0, p şi m+1 ca fiind şterse. *Exemplu*: Pentru n=3 şi p=5, avem vectorul X,1,2,3,4,X,6,7,8,X unde elementele 0,5 și 9 sunt marcate cu X ca fiind şterse.

- (a) Scrieţi un program care să şteargă toate elementele vectorului, în n paşi, în aşa fel încât la pasul k să se şteargă 2^{k-1} elemente, dintre cele neşterse până la pasul respectiv. Programul va afişa m-1 perechi de forma (k,q) unde q este unul dintre elementele vectorului, diferit de p, iar k este pasul la care a fost şters q. Programul scris trebuie să aibă complexitatea timp liniară în funcție de m, adică numărul de instrucțiuni ale programului să fie aproximativ egal cu dimensiunea vectorului.
- (b) Scrieţi un program similar cu cel de la punctul (a), dar cu următoarea condiţie suplimentară: după pasul k, între oricare două elemente deja şterse consecutive să nu fie o distanţă mai mare de 2^{n-k} , unde prin distanţa dintre i şi j se înţelege |j-i|. Calculaţi complexitatea timp în funcţie de n a programului pe care l-aţi scris. Exemplu: Considerăm vectorul X, 1, 2, 3, 4, X, 6, 7, 8, X. Printr-o posibilă strategie de ştergere, conţinutul vectorului după fiecare pas k este: X, 1, X, 3, 4, X, 6, 7, 8, X (după pasul 1), X, 1, X, 3, X, X, 6, X, 8, X (după pasul 2), respectiv X, X (după pasul 3). Rezultatul afișat de program în acest caz este secvența (1,2),(2,4),(2,7),(3,1),(3,3),(3,6),(3,8).

Notă: Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal,C,C++). Pentru fiecare soluție se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instrucțiunilor condiționale.

Timp de lucru 3 ore.

Facultatea de Matematică și Informatică

Concursul de admitere iulie 2013 Domeniul de licentă - Matematică

I. Algebră.

- (a) Fie polinomul $P(X) = X^3 mX^2 + (2m-1)X 2 \in \mathbb{R}[X]$. Să se determine m pentru care P are rădăcina 1 şi în acest caz să se găsească toate rădăcinile complexe ale lui P.
- (b) Să se arate că mulțimea $\mathcal{M} = \left\{ \left(\begin{array}{cc} a & 2b \\ b & a \end{array} \right) \middle| a, b \in \mathbb{Z} \right\}$ este parte stabilă în raport cu adunarea şi înmulțirea matricelor și că \mathcal{M} este inel comutativ împreună cu aceste operații.
- (c) Matricea $\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \in \mathcal{M}$ este element inversabil în inelul \mathcal{M} dacă și numai dacă $|a^2 2b^2| = 1$.
- (d) Inelul \mathcal{M} are o infinitate de elemente inversabile.
- II. Analiză. Fie funcția $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{e^x}{e^x 1}$. (a) Calculați $\lim_{x \to 0} x f(x)$.

 - (b) Determinați ecuațiile asimptotelor graficului funcției f.
 - (c) Să se studieze convexitatea funcției f.
 - (d) Să se arate că $\int_{\ln 3}^{\ln 4} f(x) dx = \ln 3$.

III. Geometrie.

- (a) Fie ABC un triunghi cu laturile AB = 4, AC = 6 şi $m(\hat{A}) = \frac{\pi}{3}$. Să se calculeze înălţimea corespunzătoare laturii BC.
- (b) Pe laturile AB și AC ale unui triunghi ABC se consideră punctele D și respectiv E, astfel încât $4\overrightarrow{AD} = 3\overrightarrow{AB}$ şi $4\overrightarrow{AE} = 3\overrightarrow{AC}$. Pe dreptele BE şi CD se consideră punctele E' şi respectiv D', astfel încât $\overrightarrow{EE'} = 3\overrightarrow{BE}$ și $\overrightarrow{DD'} = 3\overrightarrow{CD}$. Să se arate că punctele D', A și E' sunt coliniare.
- (c) Să se determine parametrul real a pentru care dreptele de ecuații $d_1:y=x,\ d_2:y=2x+1$ și $d_3: x + ay + 1 = 0$ sunt concurente.
- IV. Informatică. Se consideră o secvență de numere naturale x_1, x_2, \ldots, x_n . Din această secvență se pot obține alte secvențe folosind următoarea operație: se extrage elementul de pe poziția i (i > 1), se mută toate elementele situate la stânga poziției i cu o poziție la dreapta, iar elementul de pe poziția i se plasează pe prima poziție a secvenței.
 - (a) Să se realizeze un program care primind o secvență de numere naturale x_1, x_2, \ldots, x_n afișează toate secvențele care se pot obține din aceasta folosind o singură dată operația definită mai sus. Ordinea în care sunt afișate secvențele rezultate nu contează. De exemplu din secvența 1,2,3 folosind o singură operație, mutând elementul de pe poziția 2 se pot obtine secvența 2,1,3 și mutând de pe poziția 3 se obtine secvența 3,1,2.
 - (b) Să se realizeze un program care primind două permutari x_1, x_2, \ldots, x_n şi y_1, y_2, \ldots, y_n ale mulțimii $\{1,\ldots,n\}$ afișează o secvență de operații de tipul de mai sus prin care permutarea x_1,x_2,\ldots,x_n se poate transforma în permutarea y_1, y_2, \dots, y_n . O operație va fi afișată prin acel element x_i care se mută pe prima poziție. De exemplu dacă se primesc permutările: 4,5,6,7,8,9,3,1,2 şi 4,9,6,5,7,8,3,1,2 o posibilă ieșire a programului este: 6,9,4 adică din prima permutare se extrage 6 și se pune în față, apoi se extrage 9 și se pune in față, iar apoi se extrage 4 si se pune in față.

Notă: Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal, C, C++). Pentru fiecare soluție se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instrucțiunilor condiționale.

Timp de lucru 3 ore.

Facultatea de Matematică și Informatică

Concursul de admitere iulie 2013Domeniul de licentă - Informatică

Barem

I. Algebră. Oficiu 1 punct.			
(a)	• Formalizarea algebrică a problemei		
	\bullet Toate numerele sunt 0 (demonstrație)		
(b)	• \mathcal{M} are 9 elemente		
(c)	• Parte stabilă		
	• \mathcal{M} este corp comutativ		
II. Analiză. Oficiu			
(a)	• $l_s(0) = -\infty$		
	• $l_s(0) = +\infty$		
(b)	• Ecuația are cel puțin o soluție		
	• $\sin x - x \cos x$ este strict crescătoare		
(c)	• Calculul lui g'		
	• $\operatorname{Im}(g) = \left(1, \frac{\pi^2}{4}\right]$		
(d)	• Aplicarea metodei integrării prin părți		
	• $I = \frac{\pi\sqrt{3}}{6} + \ln 2$		
III. Geometrie. Oficiu			
(a)	ullet Ecuațiile dreptelor d ce trec prin punctul A		
,	• Expresiile distanțelor de la punctul B la dreaptele d		
	• Finalizare		
(b)	\bullet Condiția de unghi obtuz (teorema cosinusului)		
	\bullet Determinarea valorilor posibile ale parametrulu i $a \in (-1,3)$		
	• Alegerea valorii lui a pentru care se poate construi un triunghi		
(c)	• Egalitatea $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BD}$		
	• Egalitatea $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$		
	• Egalitatea $\overrightarrow{AD} + \overrightarrow{BC} = 2\overrightarrow{BC} + \overrightarrow{BC} = 3\overrightarrow{BC}$ şi finalizare		
$R spunsuri:$ (a) $5x + 12y - 29 = 0$ și $x = 1$; (b) $a = 2$; (c) $ \overrightarrow{AC} + \overrightarrow{BD} = 6$			
IV. I	nformatică. Oficiu		
(a)	• Programul nu șterge un element deja șters		
	• Programul şterge toate elementele din vector		
	• Programul este liniar în m		
(b)	• Programul respectă cerința suplimentară		
	• Calculul complexității programului		
	Programele nu au greșeli de limbaj		
_ (Claritatea rezolvărilor		

Concursul de admitere iulie 2013 Domeniul de licentă - *Matematică*

Barem

I. Alge	bră. Oficiu	1 punct.
(a)	\bullet $m=2$	_
	• $x_1 = 1, x_2 = \frac{1+i\sqrt{7}}{2}, x_3 = \frac{1-i\sqrt{7}}{2}$	
(b)	• Rezolvare corectă	-
(c)	• Rezolvare corectă	•
(d)	• Rezolvare corectă	1 punct.
II. Ana	aliză. Oficiu	1 punct.
(a)	• Valoarea limitei egală cu 1	2 puncte.
(b)	• $x = 0$ asimptotă verticală	1 punct.
	• $y=1$ asimptotă orizontală spre $+\infty$	1 punct.
	• $y = 0$ asiptotă orizontală spre $-\infty$	1 punct.
(c)	• Calculul lui $f'(x)$ şi $f''(x)$	1 punct.
	• f concavă pe $(-\infty,0)$ și f convexă pe $(0,\infty)$	1 punct.
(d)	• Calculul integralei	2 puncte.
III. Ge	ometrie. Oficiu	1 punct.
(a)	• Calculul laturii $BC = 2\sqrt{7}$	1 punct.
, ,	• Calculul ariei triunghiului cu formula $S = \frac{bc \sin A}{2} = 6\sqrt{3}$	
	• Scrierea formulei $S = \frac{ah_a}{2}$ și finalizare	
(b)	• $DE \ AE' \text{ și } DE \ AD' \dots \dots$	
	• E', A, D' coliniare (unicitatea paralelei printr-un punct)	
(c)	• Punctul P de intersecție al dreptelor d_1 și d_2	1 punct.
	$ullet$ Condiția $P \in d_3 \ldots \ldots$	1 punct.
	• Finalizare	1 punct.
IV. Inf	ormatică. Oficiu	1 punct.
(a)	Programul generează o secvență corectă	1 punct.
, ,	Programul generează numai secvenţe corecte	2 puncte.
	Programul generează toate secvențele corecte	
(b)	Programul găsește o secvență corectă de operații	
` '	Programele nu au greșeli de limbaj	
_	Claritatea rezolvărilor	1 punct.