Analysis

Arif Hasanic

6. Januar 2021

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Differentialgelichungen allgemein		gelichungen allgemein	4		
2	Differentialgleichungen 1. Ordnung				
	2.1	Trennı	ing der Variabeln	4	
	2.2	Substi	tutionsmehtode	4	
		2.2.1	Typ: linear	5	
		2.2.2	Typ: quotient	5	
	2.3	lineare	DGL mit Störfunktion	5	
		2.3.1	Variation der Konstanten	6	
		2.3.2	Aufsuchen der partikulären Lösung	6	

1 Differentialgelichungen allgemein

Eine Differentialgleichung (DGL) ist eine Funktion in der Ableitung von genau dieser Funktion auftreten können und hat die Form:

$$y' + a(x) \cdot y = b(x) \tag{1}$$

Ist b(x) = 0 nennt man die DGL eine homgene DGL, ansonsten hat man eine inhomogene DGL. Die Ordnung einer DGL ist glecih der hächsten Aleitung, welche in der DGL zu finden ist.

Löst man eine DGL nach der höchsten Ableitung auf¹ hat man die DGL in die implizite Form gebracht; ansonsten hat man die implizite Form.

Eine DGL kann man entweder allgemein lösen oder man findet eine spezielle/partikuläre Lösung. bei der allgemeinen Lösung bleiben id
R. n Integrationskonstanten stehen, wenn n gleich der Ordnung der DGL ist. Möchte man die partikuläre Lösung, rechnet man zuerst die allgemein Lösung aus. Nun müssen bestimmte Werte vorgeben werden um die Werte der Integrationskonstanten errechnen zu können. Diese Werte heißen auch Anfangswerte und um eine spezielle Lösung zu finden werden auch n Werte gebraucht.

2 Differentialgleichungen 1. Ordnung

2.1 Trennung der Variabeln

Ein realtives einfaches Verfahren zum lösen von DGLs 1. Ordnung nennt sich TT-rennung der Variablen". Damit man das Verfahren anwenden kann muss die DGL aber seperabel sein, also alle x-Werte und alle y-Werte müssen jeweils auf einer Seite stehen können.

Da man ein DGL erster Ordnung hat ist die höchste vorkommende Ableitung y', was man aber auch als $\frac{dy}{dx}$ schreiben kann. Wenn man jetzt sowohl alle x-Werte als auch alle y-Werte auf einer Seite stehen hat, kann man beide nach x bzw. y integrieren. Nach der Integration kann alles nach y umstellen und hat die allgemeine Lösung der DGL gefunden. Beispiel:

$$y' = \frac{x}{y} \Leftrightarrow y' = x \cdot \frac{1}{y} \Leftrightarrow \frac{dy}{dx} = x \cdot \frac{1}{y} \Leftrightarrow$$

$$y \, dy = x \, dx \Leftrightarrow \int y \, dy = \int x \, dx \Leftrightarrow \frac{1}{2}y^2 = \frac{1}{2}x^2 + C$$

$$y = \sqrt{x^2 + 2C}$$
(2)

2.2 Substitutionsmehtode

Bei der Lösung durch Substitution muss man zuerst wider die Gleichung nach y' auflösen. Nun schauht man von welchen Typ die DGL ist. Die zwei Typen sind y'=f(ax+bx+c) und $y'=\frac{y}{x}$.

¹Falls überhaupt möglich

2.2.1 Typ: linear

Sei u die Variabel die zur Substitution genommen wird. Zuerst wird u der Gleichung gleichgesetzt: u = ax + by + c. Wenn man u nun differenziert erhält man u' = a + by'. u ist von x abhängig, da u nur von den variabeln x und y abhängig ist und y wiederum nur von x abhängig ist. Daraus folgt, dass $u' = \frac{du}{dx}$ gilt.

$$u' = \frac{du}{dx} = a + b \cdot y' \tag{3}$$

y' kann man wiederum durch f(u) ersezten, wodurch man eine DGL erhält, welche nur noch von u abhängig ist:

$$u' = \frac{du}{dx} = a + b \cdot f(u) \tag{4}$$

Diese DGL kann man dann durch Trennung der Variabeln lösen und rücksubstituiert das u mit den ursprünglichen Werten.

2.2.2 Typ: quotient

Es gilt dasselbe Prinzip wie bei der linearen Funktion. Man substitutiert nun $\frac{y}{x}=u$. Dementsprechend gilt auch $y=x\cdot u$.

Wird dies nun differenziert erhält man $y' = u + x \cdot u'$. Dabei gilt wiederum $y' = f(\frac{y}{x}) = f(u)$. Wird dies entsprechend eingesetzt gilt:

$$u' = \frac{du}{dx} = \frac{f(u) - u}{x} \tag{5}$$

2.3 lineare DGL mit Störfunktion

Eine lineare Differentialgleichung hat die Form:

$$y' + f(x) \cdot y = q(x) \tag{6}$$

Hier wird g(x) acuh als Störfunktion bezeichnet. Ist g(x) = 0 ist die DGL homgen, ansonten ist sie inhomogen. Eine homogene DGL lässt sich durch Trennung der Variabeln lösen. Dazu gibt es auch eine allgemein Lösungsform:

$$y' + f(x) \cdot y = 0 \Rightarrow \frac{dy}{dx} = -f(x) \cdot y \Rightarrow \frac{dy}{y} = -f(x) dx$$

$$\Rightarrow \int \frac{dy}{y} = -\int f(x) dx \Rightarrow \ln|y| = -\int f(x) dx + \ln|C|$$

$$\Rightarrow \ln|y| - \ln|C| = -\int f(x) dx \Rightarrow \ln\left|\frac{y}{C}\right| = \int f(x) \Rightarrow y - C = \int f(x) dx$$

$$\Rightarrow y = C \cdot e^{-\int f(x) dx}$$
(7)

Tauchen in der DGL konstante Vorfaktoren auf muss die Lösungsformel noch leicht verändert werden:

$$y' + ay = 0 \Rightarrow y_h = C \cdot e^{-ax} \tag{8}$$

2.3.1 Variation der Konstanten

2.3.2 Aufsuchen der partikulären Lösung

Inhomogene Differentialgleichungen (auch höherer Ordnung) können auch durchs Aufuschen der partikulären Lösung gelöst. Die Lösung einer DGL ist dann die Summer zwischen der homogenen Lösung y_0/y_h und der partikulären Lösung y_p , also:

$$y = y_h + y_p \tag{9}$$

Zuerst wird die homogene Lösung berechnent. Nun muss noch der richtige Ansatz gewählt werden um die partikuläre Lösung zu finden.

Störfunktion $g(x)$	Lösungsansatz $y_p(x)$
1. Konstante Funktion	$y_p = C_0$
2. Lineare Funktion	$y_p = C_1 x + C_0$
3. Quadratische Funktion	$y_p = C_2 x^2 + C_1 x + C_0$
4. Polynom Funktion mit Grad n	$y_p = C_n x^n + \dots + C_1 x + C_0$
$5. g(x) = C_1 \cdot \sin(\omega x)$	$y_p = C_1 \cdot \sin(\omega x) + C_2 \cdot \cos(\omega x)$
6. $g(x) = C_2 \cdot \cos(\omega x)$	oder
7. $g(x) = C_1 \cdot \sin(\omega x) + C_2 \cdot \cos(\omega x)$	$y_p = C \cdot \sin(\omega x + \varphi)$
O () A br	$y_p = C \cdot e^{bx} \text{ für } b \neq -a$
$8. \ g(x) = A \cdot e^{bx}$	$y_p = Cx \cdot e^{bx} \text{ für } b = -a$

Um nun die partikulöre Lösung zu finden nimmt den gefundenen Ansatz her und leitet diesen ab. y'_p und y_p werden nun in die ursprüngliche, inhomogene Gleichung eingesetzt. Nun muss man nur noch umformen und einen Koeffizientenvergleich vornehmen um die unbestimmeten Konstanten² zu finden.

Beim Koeffizientenvergleich schaut man auf beiden seiten, was als Vorfaktoren bei den x-Werten steht. Beispiel:

$$2C_1x^2 + (2C_1 + 2C_2)x + (C_2 + 3C_3) = 2x^2 + 0 \cdot x - 4$$

Auf beiden Seiten steht ein x^2 . Hier sihet man auch dass $C_1=1$ sein muss damit die Koeffizienten auf beiden Seiten übereinstimmen. Den "Vergleichführt man nun mit allen C_n durchgeführt. Zum Schluss werden die C_n -Werte in den zuvor gewählten Ansatz eingefügt und man erhält die partikuläre Lösung.

 $^{^2\}mathrm{Damit}$ sind die C_n aus der Tabelle gemeint