Programa de Asignatura

Historia del programa

	justificaciones)
. Nancy Aguas García	Creación del programa para incorporarse como asignatura básica de Ingeniería en Datos e Inteligencia Organizacional.
	C. Nancy Aguas García

Relación con otras asignaturas

Anteriores	Posteriores
	a) Métodos de desarrollo de software
	a) Metodologías de desarrollo de software
a) Teoría general de sistemas	b) Calidad del software
a) Sistemas	b)Administración del desarrollo de proyectos de
	software
	a) Modelos de madurez
	b) Métricas de calidad

Nombre de la asignatura	Departamento o Licenciatura
Ingeniería de software	Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 3	ID0307	6	Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	НІ
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir los conceptos y modelos principales de software para su uso en desarrollo de sistemas.

Objetivo procedimental

Evaluar una metodología para el desarrollo de sistemas.

Objetivo actitudinal

Fomentar el trabajo colaborativo y la responsabilidad en la resolución de ejercicios y la solución de problemas para el desarrollo de las habilidades requeridas.

Unidades y temas

Unidad I. FUNDAMENTOS

Revisar los conceptos y características principales en la ingeniería de software para el conocimiento de un marco contextual.

- 1) Conceptos básicos
- 2) Evolución de la industria del software
- 3) Características de los productos de software industrial
- 4) Procesos y ciclos de vida

Unidad II. MODELOS DE SOFTWARE

Describir los principales modelos y herramientas del proceso de software para su aplicación en la creación de sistemas.

- 1) Modelos de proceso de software
- 2) Tendencias en modelos
- 3) Lenguajes de modelado
- 4) Herramientas para creación de software

Unidad III. EL PROYECTO DE SOFTWARE

Emplear una metodología para el desarrollo de proyectos de software.

- 1) Análisis de sistemas
- 2) Requisitos de software
- 3) Diseño de software
- 4) Construcción, pruebas y documentación de software
- 5) Implantación y mantenimiento del software

Unidad IV. CALIDAD DEL SOFTWARE

Determinar los elementos de calidad en la construcción de software para la adopción de modelos de acuerdo al sistema.

- 1) Factores de calidad de los productos
- 2) Planificación, aseguramiento y control de la calidad
- 3) Estándares y métricas de calidad
- 4) Modelos de madurez

Actividades que promueven el aprendizaje

Docente

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos.

Estudiante

Realizar tareas asignadas Participar en el trabajo individual y en equipo Resolver casos prácticos Discutir temas en el aula Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

https://sg.com.mx/buzz/whitepapers

http://www.ingenierosoftware.com/

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Tareas	20
Evidencias individuales	30
Evidencias grupales	20
Total	100

Fuentes de referencia básica

Bibliográficas

Braude, E. (2003). Ingeniería de software: Una perspectiva orientada a objetos. 1ª edición. México: Pearson.

Combemale, B. et. Al. (2016) Engineering Modeling Languages: Turning Domain Knowledge into Tools. 1ª edición. EUA: Chapman & Hall.

Pressman, R.S. (2010). Ingeniería del Software un enfoque práctico. 7ª. Edición México: Mc Graw Hill.

Sánchez, S., Sicilia M. y Rodríguez D. (2012) Ingeniería del software - un enfoque desde la guía SWEBOK. 1ª. Edición. España: Alfaomega.

Sommerville, I. (2011). Ingeniería de Software. 9ª. Edición México: Pearson.

Web gráficas

Fuentes de referencia complementaria

Bibliográficas

Pantaleo, G. (2016) Calidad en el desarrollo de software. 2ª. Edición. España: Alfaomega.

Software Engineering Institute. (2010). CMMI for Development. 1^a. Edición. EUA: Carnegie Mellon University.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Ingeniería en Sistemas Computacionales con Maestría en ingeniería de software.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en desarrollo de software en la industria.