MATHEMATICS OLYMPIAD TRAINING SESSIONS

2002 Senior Mathematics Contest Problems

1. Find all solutions of the following system of equations:

$$\frac{x_1}{x_1+1} = \frac{x_2}{x_2+3} = \frac{x_3}{x_3+5} = \dots = \frac{x_{1001}}{x_{1001}+2001}$$
 (1)

$$x_1 + x_2 + \dots + x_{1001} = 2002 \tag{2}$$

2. Determine all $x, y \in \mathbb{N}$ such that

$$x! + 24 = y^2 \tag{*}$$

- 3. For each pair (k, ℓ) of integers, determine all infinite sequences of integers a_1, a_2, a_3, \ldots in which the sum of every 28 consecutive numbers equals k and the sum of every 15 consecutive numbers equals ℓ .
- 4. Determine all functions f that have the properties:
 - (i) f is defined for all real numbers,

(ii)
$$|f(x)| \le 2002 \le \left| \frac{xf(y) - yf(x)}{x - y} \right|$$
 for all x, y with $x \ne y$.

5. For $\triangle ABC$, let D be the midpoint of BC, $\angle BAD = \angle ACB$ and $\angle DAC = 15^{\circ}$. Determine $\angle ACB$.