

Algorithm Analysis Part 2

261217 Data Structures for Computer Engineers

Patiwet Wuttisarnwattana, Ph.D.

patiwet@eng.cmu.ac.th

Computer Engineering, Chiang Mai University

Algorithms

- A computer program should be totally correct, but it should also
 - execute as quickly as possible (time-efficiency)
 - use memory wisely (storage-efficiency)
- How do we compare programs (or algorithms in general) with respect to execution time?
 - various computer run at different speeds due to different processors
 - compilers optimize code before execution
 - the same algorithm can be written differently depending on the programming paradigm
 - Big-O (or order of the algorithm) is a good way to compare a program.

Analyzing Algorithms

- Worst Case
 - Case with maximum number of operations (slowest)
- Best Case
 - Case with minimum number of operations (fastest)
- Average Case
 - Average number of operations over all cases

Number of operations?

Search an array for a value

Counting Operations

- □ Let the x.length = n
- How many times is operation 1 executed?
- How many times is operation 5 and 6 executed in total?
- □ Total so far

Counting Operations

- □ Let the x.length = n
- How many times is operation 1 executed?
- How many times is operation 5 and 6 executed in total?
- □ Total so far

Worse Case

- Worst Case: The target is not in the array
- How many times is operation 2 executed?
- How many times is operation 3 executed?
- How many times is operation 4 executed?
- Total number of operations:

Worse Case

- Worst Case: The target is not in the array
- How many times is operation 2 executed? n+1
- How many times is operation 3 executed?
- How many times is operation 4 executed?
- Total number of operations:
 3n+3

Worst Case

n (size of array)	number of operations
10	33
20	63
30	93

Another look

What if we count just the comparison

```
public static int search(int []x, int target) {
    for (int i=0; i< x.length; i++) {
        if (x[i] == target)
            return i;
    }
    return -1;
}</pre>
```

Worst Case

- Worst Case: the target is not in the array
- ☐ How many times is the comparison executed?

Worst Case

- Worst Case: the target is not in the array
- How many times is the comparison executed? n

Number of operations as a function of *n*

n (size of array)	number of operations
10	10
20	20
30	30

Linear Algorithm

- In both cases, the amount of work we do is linearly proportional to the number of data values in the array
- If we have n data values in the array, and we double the size of the array, how much work will we do searching the new array in the worst case?

Best Case

How many comparisons are necessary in the best case for an array of n values?

```
public static int search(int []x, int target) {
    for (int i=0; i< x.length; i++) {
        if (x[i] == target)
            return i;
    }
    return -1;
}</pre>
```

Best Case

■ How many comparisons are necessary in the best case for an array of n values?

n (size of array)	number of operations
10	1
20	1
30	1

Average Case

■ How many comparisons are necessary in the average case for an array of n values (assuming the target is in the array)?

$$\frac{1+2+3+\dots+(n-1)+n}{n} = \frac{(n+1)}{2}$$

Average Case

Example

Consider the problem of summing

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$

Algorithm A	Algorithm B	Algorithm C
sum = 0 for i = 1 <i>to</i> n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2

Three algorithms for computing the sum 1 + 2 + ... + n for an integer n > 0

Example

```
// Computing the sum of the consecutive integers from 1 to n: long n=10000; // Ten thousand
```

Java code for the three algorithms

Example

```
// Computing the sum of the consecutive integers from 1 to n:
long n = 10000; // Ten thousand
// Algorithm A
long sum = 0;
for (long i = 1; i <= n; i++)
   sum = sum + i;
System.out.println(sum);
// Algorithm B
sum = 0;
for (long i = 1; i <= n; i++)
   for (long j = 1; j <= i; j++)
       sum = sum + 1;
} // end for
System.out.println(sum);
// Algorithm C
sum = n * (n + 1) / 2;
System.out.println(sum);
```

Java code for the three algorithms

- An algorithm has both time and space constraints that is complexity
 - Time complexity
 - Space complexity
- □ This study is called analysis of algorithms

Counting Basic Operations

- A basic operation of an algorithm
 - The most significant contributor to its total time requirement

	Algorithm A	Algorithm B	Algorithm C
Additions	n	n(n+1)/2	1
Multiplications			1
Divisions			1
Total basic operations	n	$(n^2 + n) / 2$	3

The number of basic operations required by the algorithms

Counting Basic Operations

The number of basic operations required by the algorithms

- When n is small, which algorithm is the fastest?
- When n becomes larger and larger, which algorithm is the fastest?

Asymptotic Notation

- □ Suppose there are two algorithms that running time depends on input size **n**.
- Which one is of the following algorithms is preferable?
- □ Algorithm 1: **100n + 300**
- Algorithm 2: 6n²

Rate of Growth from different order!

Asymptotic Notation

- Suppose there are two algorithms that running time depends on input size n.
- Which one is of the following algorithms is preferable?

Algorithm 1: **1000n + 3000**

15000000

Algorithm 2: **0.6n²**

Rate of Growth from different order!

п

Asymptotic Notation

Line B is the **upper bound** of the Line A and Line C Line C is the **lower bound** of the Line A and Line B

Running time or Order of the Algorithm

For $n > n_0$, if there exists k_1 and k_2 such that $k_1 n \le g(n) \le k_2 n$

We're saying that once n gets large enough, the running time is at least $\mathbf{k}_1 \mathbf{n}$ and at most $\mathbf{k}_2 \mathbf{n}$ OR

We're saying the running time is $\Theta(n)$ "Big Theta of \mathbf{n} " We're saying the algorithm has "an order of \mathbf{n} "

Big Theta © Notation

For $n > n_0$, if there exists k_1 and k_2 such that $k_1 \mathbf{f}(n) \le \mathbf{g}(n) \le k_2 \mathbf{f}(n)$

We're saying that once **n** gets large enough, the running time is at least $\mathbf{k}_1 \mathbf{f}(\mathbf{n})$ and at most $\mathbf{k}_2 \mathbf{f}(\mathbf{n})$ OR

We're saying the running time is $\Theta(f(n))$ or "Big Theta of f(n)" or "order of f(n)"

Examples

- □ What is the Big Theta notation of "3n + 100"
 - **□** ⊝(n)
 - There exist k_1 and k_2 such that k_1 n $\leq f(n) \leq k_2$ n Give examples?
 - \blacksquare $k_1 = 2$, $k_2 = 4$ such that $2n \le 3n + 100 \le 4n$ for n is a large number (n ≥ 100)
 - There are infinitely many k_1 and k_2 that satisfy the condition (e.g. $k_2>4$)
- \square What is the Big Theta notation of "6n² + 7n + 30"
 - \Box $\Theta(n^2)$
 - There exist k_1 and k_2 such that $k_1 n^2 \le f(n) \le k_2 n^2$ Give examples?
 - $k_1 = 5$, $k_2 = 7$ such that $5n^2 \le 6n^2 + 7n + 30 \le 7n^2$ for n is a large number (n≥10)

Functions in Asymptotic Notation

- What is the Big Theta Notation of an algorithm that has n inputs but always runs in a constant time.
 - For example, the algorithm requires "1000" seconds (or 1000 Bytes, 1000 machine instructions) regardless of the input size
 - Ans: Θ(1)
 - For example, $k_1 = 999$ and $k_2 = 1001$ (any n)
- What is the Big Theta Notation of an algorithm that runs in a logarithmic time.?
 - For example, the algorithm requires " $3 \times \log_2(n) + 4$ " seconds
 - Ans: $\Theta(\log_2(n))$ or $\Theta(\log(n))$
 - For example, $k_1 = 2$ and $k_2 = 4$ ($n \ge 2^4$)

Functions in Asymptotic Notation

- □ The algorithm takes " $3 \times \log_{10}(n) + 4$ " seconds. What is the Big Theta Notation?
 - Ans: $\Theta(\log_{10}(n))$ or $\Theta(\log(n))$

 - For example, $k_1 = 2$ and $k_2 = 4$ (n ≥ 10⁴)
- □ The algorithm takes " $3n\sqrt{n} + \sqrt{n} + 2n^2\sqrt{n} + n + 10$ " seconds. What is the Big Theta Notation?
 - \blacksquare Ans: $\Theta(n^{5/2})$
 - For example, $k_1 = 1$ and $k_2 = 3$ ($n \ge 9$?)

Functions in Asymptotic Notation

Commonly used functions in asymptotic notation

Slowest growth Fastest algorithm
Fastest growth Slowest algorithm

Order/Complexity	Time Adjective
⊝(1)	Constant
⊖(log n)	Logarithmic
$\Theta(\log^2 n)$	Log-squared
⊖(n)	Linear
⊖(n log n)	Log-linear
⊖(n²)	Quadratic
⊖(n² log n)	Log-quadratic
⊖(n³)	Cubic
Θ(a ⁿ), a>1	Exponential
⊖(n!)	Factorial

Comparing Big Theta Functions

Algorithmic Time

	$\Theta(n)$	$\Theta(n^2)$	⊖(n!)
n = 10	1 msec	1 msec	1 msec
n = 100	10 msec	100 msec	100! msec 10!
n = 1,000	100 msec	10 sec	
n = 10,000	1 sec	16 min 40 sec	
n = 100,000	10 sec	27.7 hr	
n = 1,000,000	1 min 40 sec	115.74 days	

Order of Complexity

Examples:

- $\Theta(\log N) + \Theta(N) = \Theta(N)$
- $\Theta(N \log N) + \Theta(N) = \Theta(N \log N)$
- $\Theta(\mathsf{N} \log \mathsf{N}) + \Theta(\mathsf{N}^2) = \Theta(\mathsf{N}^2)$
- $\bullet \quad \Theta(2^{N}) + \Theta(N^{2}) = \Theta(2^{N})$

Examples:

- $\Theta(\log N) * \Theta(N) = \Theta(N \log N)$
- $\Theta(N \log N) * \Theta(N) = \Theta(N^2 \log N)$
- $\bullet \quad \Theta(N) * \Theta(1) = \Theta(N)$

Asymptotically tight bound: Big-Theta Notation

- If we say that the running time of the algorithm is $\Theta(f(n))$, we imply that the running time is at least $k_1f(n)$ and at most $k_2f(n)$ for larger n's.
- Mathematically, this means the running time is tightly bound by the function f(n)

Asymptotic upper bounds: Big-O notation

Running time of the algorithm is "Big-O of f(n)"

If there is a k constant such that:

running time $\leq k \times f(n)$ for a larger n

Running time is at most $k \times f(n)$ Running time is O(f(n))

This notation is the most commonly used in the computer field.

Many times, people mistakenly use Big-O for Big-O fo

Example:

- $T(n) = 2n^2 + 3n^3 + 100$
- $T(n) = O(n^3)$
- $T(n) = (n+1)(1 + n \log n) + \log n^{20}$
- $T(n) = O(n^2 \log n)$

Asymptotic upper bounds: Big-O notation

Running time of the algorithm is "Big-O of f(n)"

If there is a k constant such that:

running time $\leq k \times f(n)$ for a larger n

Running time is at most $k \times f(n)$ Running time is O(f(n))

This notation is the most commonly used in the computer field.

Many times, people mistakenly use Big-O for Big-O fo

Examples:

- $T(n) = 2n^2 + 3n^3 + 100$
- $T(n) = O(n^3) -> k=4 (n \ge 6 ?)$
- $T(n) = (n+1)(1 + n \log n) + \log n^2$
- $T(n) = O(n^2 \log n) -> k=2 (n \ge 6 ?)$

Asymptotic upper bounds: Big-O notation

Order	Time Adjective
O(1)	Constant
O(log n)	Logarithmic
O(log² n)	Log-squared
O(n)	Linear
O(n log n)	Log-linear
$O(n^2)$	Quadratic
O(n² log n)	Log-quadratic
$O(n^3)$	Cubic
O(a ⁿ), a>1	Exponential
O(n!)	Factorial

Higher order is always an upper bound for the lower order

- 50000 = O(n)
- $n^2 = O(n^3)$
- $\log n = O(n)$
- $3^n = O(5^n)$

Asymptotic lower bounds: $Big-\Omega$ notation

Sometimes, we want to say that an algorithm takes at least a certain amount of time, without providing an upper bound.

Running time of the algorithm is "Big- Ω of $\boldsymbol{f}(\boldsymbol{n})$ "

If there is a k constant such that: running time $\geq k \times f(n)$ for a larger n

Lower order is always a lower bound for the higher order

- $n = \Omega(50000)$
- $n^3 = \Omega(n^2)$
- $n = \Omega(\log n)$
- $5^n = \Omega(3^n)$