Lorenzo Girotti

Pose estimation per identificare e valutare esercizi statici a corpo libero

Relatore: Prof. Andrea Asperti

Co-relatore: Dr. Giorgio Tsiotas

Corso di Informatica

Alma Mater Studiorum Università di Bologna

Il progetto

- 1. Dataset
- 2. Pose Estimation 3. Classificazione
- 4. Valutazione

Parte 1: Esercizi riconosciuti

Front Lever

Planche

Back Lever

Verticale

Parte 1: Creazione del dataset

Dataset contenente in totale 280 elementi raccolti online

- Esecuzioni sia di atleti amatoriali, sia di atleti professionisti
- Esercizi ripresi da più prospettive
- Estrazione delle pose da ogni immagine
- Split: 80% training, 10% validation, 10% test

Parte 2: Identificazione della posa

MediaPipe Pose

- Stima della posa 3D
- 33 punti rilevati
- Punti chiave rilevati già in forma normalizzata

Parte 3: Modelli di classificazione

<u>Modello Dense</u>

<u>Modello CNN</u>

Strato completamente connesso:

Strato convoluzionale:

• 8 neuroni

• 2 filtri, dimensione 3x3

• Regolarizzatore del Kernel (L2)

No padding

• ReLU

ReLU

Output Layer: strato Dense, 4 neuroni, funzione di attivazione softmax

Parte 3: Training dei modelli

Loss (Categorical Crossentropy)

Modello Dense

Modello CNN

Accuracy

Parte 3: Confronto tra i modelli

Metriche di performance

	Dense	CNN
Accuracy	0.9643	0.9762
Loss	0.4692	0.1530
F1score	0.9642	0.9761

Parte 3: Confusion Matrix

Parte 4: Analisi della correttezza

Straight body check

Body Slope check Slope: 3.12°

Straight arms check

Pointed feet check

Pointed feet check

Conclusioni e sviluppi futuri

Il <u>modello CNN</u> è risultato essere il migliore per questo tipo di problema

Sviluppi futuri

- Allargamento del dataset: più immagini, più esercizi
- Classificazione video: riconoscimento esercizi dinamici con LSTM
- Valutazione tramite IA: Anomaly Detection per identificare errori

Grazie per l'attenzione