0.1 Condensadors

$$\frac{\text{Capacitat }}{\text{Càrrega }} \frac{\varepsilon \varepsilon_0 A/d}{q = CV}$$

$$\frac{\text{Energia electroestàtica:}}{W = E = \frac{1}{2}CV_C^2 = \frac{1}{2}\frac{Q^2}{C}}$$

Nombre d'Avogadro: $\overline{N_A} = 6, 22 \times 10^{23}$ Eq. de Shockley: $\overline{I} = I_0 \left(e^{\frac{V}{\eta V_\tau}} - 1 \right)$ $V_\tau = \frac{k_B T}{e}, \eta \approx 1$ Eq. de Plank: $E = h\nu$ $h = 6, 62 \times 10^{-34} \text{ [Js]}$

1 Transistors NMOS

2 Circuits RC

Càrrega:
$$q(t) = VC \left(1 - e^{-\frac{t}{\tau_C}}\right)$$
,
$$I(t) = \frac{\varepsilon}{R}e^{-\frac{t}{\tau_C}}$$
Descàrrega: $q(t) = VCe^{-\frac{t}{\tau_C}}$,
$$I(t) = -\frac{V}{R}e^{-\frac{t}{\tau_C}}$$

$$\tau_C = RC$$

2.1 Condensadors

 $\frac{\text{Capacitat}}{\text{Càrrega}} \frac{\varepsilon \varepsilon_0 A/d}{q = CV}$ $\frac{\text{Energia electroestàtica:}}{W = E = \frac{1}{2}CV_C^2 = \frac{1}{2}\frac{Q^2}{G}}$

3 Circuits RL

$$\underline{\text{Càrrega:}} I(t) = \frac{\varepsilon}{R_{\text{est}}} \left(1 - e^{-\frac{t}{\tau_L}} \right) \\
\underline{\text{Descàrrega:}} I(t) = \frac{V}{R_{\text{est}}} e^{-\frac{t}{\tau_L}} \\
\underline{\tau_L = \frac{L}{R}, R_{\text{est}} = R + r}$$

3.1 Solenoides

Energia $U = \frac{1}{2}LI^2$ Flux: $\Phi = NBS = \frac{\mu_0 N^2 SI}{l}$ Coeficient d'autoinducció: $L = \frac{\Phi}{I} = \frac{\mu_0 N^2 S}{l}$ $\varepsilon_L = -\frac{d\Phi}{dt} = -L\frac{dI}{dt}$

4 Corrent alterna

f.e.m. alterna:

$$\frac{I.e.m. \text{ atterna.}}{V(t) = V_0 \cos(\omega t + \varphi), T = \frac{2\pi}{\omega},}$$

$$I(t) = \frac{V(t)}{R} = \frac{V_0}{R} \cos(\omega t + \varphi) = I_0 \cos(\omega t + \varphi)$$

$$\underline{Flux}: \Phi = BSN \cos(\omega t + \theta), B$$
camp magnètic
$$\underline{Llei \text{ Faraday:}}$$

$$\underline{C(t) = V_0 \sin(\omega t + \theta_0)}$$

$$\underline{Voltatge \text{ eficaç:}} V_{ef} = \frac{V_0}{\sqrt{2}}$$

$$\underline{Intensitat \text{ eficaç:}} I_{ef} = \frac{I_0}{\sqrt{2}}$$

4.1 Circuit amb condensador

4.2 Circuit amb inducció

 $\begin{array}{|c|c|c|} \hline \text{Voltatge: } V(t) = V_0 \text{cos}(\omega t) \\ \hline \hline \text{Autoinducci\'o a la bobina:} \\ \hline \varepsilon_L = -L\frac{\mathrm{d}I}{\mathrm{d}t} \\ \hline \text{Segona llei Kirchhoff:} \\ \hline V(t) + \varepsilon_L = 0 \implies I(t) = \\ \hline \frac{V_0}{L\omega} \text{sin}(\omega t) = I_0 \text{cos}(\omega t - \frac{\pi}{2}) \\ \text{(desfase de } \frac{\pi}{2}) \\ V(t) = V_0 e^{i\omega t}, \implies I = \frac{V_0}{i\omega L} e^{i\omega t} \\ \hline \underline{\text{Llei d'Ohm:}} \quad V = IR_L, \\ \hline R_L = i\omega L, [L] = H \\ \hline \underline{\text{Reactancia inductiva:}} \\ \hline X_L = |R_L| = \omega L, R_L = iX_L \\ \hline \end{array}$

5 Impedància. Llei d'Ohm

 $\frac{\text{Llei d'Ohm: }V = IZ}{\text{Impedància: }\bar{Z} =}$ $R + iX \begin{cases} \text{Resistència: }R \\ \text{Condensador: } -iX_C \\ \text{Inducció: } iX_L \end{cases}$

5.1 Circuit LCR

Angle de fase:

$$\frac{\operatorname{tg}(\varphi) = \frac{X_L - X_C}{R}}{\operatorname{tg}(\varphi) = \frac{X_L - X_C}{R}}, ("I" + \varphi = "V")$$

$$\frac{\operatorname{Corrent \ maxim}}{\operatorname{Corrent \ maxim}}: I_0 = \frac{\varepsilon_0}{Z}$$

Frequència: $f = \frac{\omega}{2\pi}$

Ressonància:

$$Z = \operatorname{Re}[Z] \implies \omega^2 = \frac{1}{LC}$$

Potència

Potència instantània:

$$P(t) = V(t)I(t) =$$

 $V_0 I_0 \cos(\omega t) \cos(\omega t - \varphi)$

Potència mitja:

$$\frac{\overline{V_0 I_0}}{2\cos(\varphi)} = V_{\rm ef} I_{\rm ef} \cos(\varphi)$$

6.1 Potència en una resistència

No desfase: $\varphi = 0, V(t) =$ $V_0\cos(\omega t), I(t) = I_0\cos(\omega t)$ Potència instanània: P(t) = $V_0\cos(\omega t)I_0\cos(\omega t) = \frac{V_0^2}{R}\cos^2(\omega t)$

Potència mitja:
$$P = \frac{V_0^2}{2R}$$

Valors eficaços: $V_{\text{ef}} = \frac{V_0}{\sqrt{2}}$

 $I_{\rm ef} = \frac{I_0}{\sqrt{2}}$

Potència dissipada:

$$P = \frac{V_{\text{ef}}^2}{R} = RI_{\text{ef}}^2$$

6.2 Potència en un condensador

Desfase:

$$\varphi = -\frac{\pi}{2}, V(t) = V_0 \cos(\omega t), I(t) = I_0 \cos(\omega t + \frac{\pi}{2}) = -I_0 \sin(\omega t)$$

Potència instantània:

$$\overline{P(t) = -\frac{V_0^2}{X_C}\sin(\omega t)\cos(\omega t)} = -\frac{V_0^2}{2X_C}\sin(2\omega t)$$

Potència mitja: 0

6.3 Potència en una inducció

Desfase:

$$\varphi = \frac{\pi}{2}, V(t) = V_0 \cos(\omega t), I(t) = V_0 \cos(\omega t)$$

 $I_0\cos(\omega t - \frac{\pi}{2}) = I_0\sin(\omega t)$ Potència instantània: P(t) = $\frac{V_0^2}{X_L}\sin(\omega t)\cos(\omega t) = \frac{V_0^2}{2X_L}\sin(2\omega t)$ Potència mitja: 0

6.4 Potència complexa

 $\bar{V} = V_0 e^{i\omega t}, \bar{I} = I_0 e^{i(\omega t - \varphi)}, \bar{Z} =$ $Ze^{i\varphi}$

Potència complexa:

Potència activa [W]:

$$\overline{P = \operatorname{Re}[\bar{S}] = V_{\operatorname{ef}}I_{\operatorname{ef}}\operatorname{cos}(\varphi)}$$

Potència reactiva [VA]:

$$Q = \operatorname{Im}[\bar{S}] = V_{\text{ef}}I_{\text{ef}}\sin(\varphi)$$

Potència aparent [VA]:

 $\overline{S = |\bar{S}| = V_{\text{ef}}I_{\text{ef}}}$

6.5 Factor de potència

Factor de potència: $\cos(\varphi) = \frac{P}{\varsigma}$

Millora del f.d.p. en sèrie: $\overline{Z} = R + iX$, connectem X' = -X. $(X > 0, \varphi > 0) \implies C =$ $\frac{1}{\omega X}, (X < 0, \varphi < 0) \implies L = \frac{|X|}{\omega}$ Millora del f.d.p. en paral·lel: $X' = -\frac{(R^2 + X^2)}{X} = -\frac{|Z|}{\sin(\varphi)}$

Superposició de senyals. Amplada de banda

Senval sinusoidal:

$$\overline{F(t)} = A\sin(2\pi f_1 t + \varphi)$$

Espectre: Rang de frequències del senval.

Freqüència *n*-èssima harmònica:

$$f_n = \frac{n\omega_0}{2\pi} = \frac{n}{T}$$
Pols: Un cicle.

Velocitat de transmissió màxima:

$$\overline{v_{\text{max}} = \frac{1}{T_{\text{bit}}} = \frac{1}{2\tau} = \frac{f_b}{2}, T_{\text{bit}} = 2\tau}$$