Deep Learning Cheat Sheet

Evaluation Metrics

Evaluation Metrics
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TP}{TN + FP}$$

$$Fscore = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

$$macro\ average = \frac{1}{n} \sum_{i=1}^{n} avg_{i}$$

Activation Functions

Sigmoid: $f(z) = \frac{1}{1+e^{-z}}$ — Smooth and differentiable. Used in output layers for binary classification.

Hyperbolic Tangent (tanh) $f(z) = \tanh(z)$ — Smooth, differentiable, output centered around 0. Used in LSTM.

Rectified Linear Unit (ReLU) $f(z) = \max(0, z)$ — Non-linear, used as a standard, but has dying units problem for z < 0.

Leaky ReLU : $f(z) = \begin{cases} z & \text{if } z \ge 0 \\ \alpha z & \text{if } z < 0 \end{cases}$ Addresses dying units problem with a small α (typical $\alpha = 0.01$).

Exponential Linear Unit (ELU): $f(z) = \begin{cases} z & \text{if } z \geq 0 \\ \alpha(e^z - 1) & \text{if } z < 0 \end{cases}$ — Similar to Leaky ReLU but more computationally expensive.

Softmax: $f(z_i) = \frac{e^{z_i}}{\sum_{j=0}^{K-1} e^{z_j}}$ — Used in the last layer for multi-class classification, outputs a probability distribution.

Data Preparation

Min-max [0,1]:
$$x' = \frac{(x - x_{min})}{(x_{max} - x_{min})}$$

Min-max [-1,1]: $x' = 2 \cdot min_max(x) - 1$
min-max doesn't handle outliers.

Z-norm: $x' = \frac{(x-\mu)}{}$

Scaling & Centering

Scaling & Centering Scaling improves the numerical stability, the convergence speed and accuracy of the learning algorithms. Centering improves the robustness of the learning algorithms

Gradient Descent

- 1: Initialize parameter vector θ_0
- 2: repeat
- Compute the gradient of the cost function at current position $\theta_t : \nabla_{\theta} J(\theta_t)$
- Update the parameter vector by moving against the gradient : $\theta_{t+1} = \theta_t$ - $\alpha \cdot \nabla_{\theta} J(\theta_t)$
- where α is the learning rate.
- 6: **until** change in θ is small

_____MSE -

$$J_{MSE}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}(i) - y(i))^2$$

- $-\hat{y}(i) = h_{\theta}(x(i))$ is the prediction of the
- y(i) is the true outcome,
- m is the number of training examples.

$$\nabla_w J_{MSE}(w,b) =$$

$$\frac{1}{m} \sum_{i=1}^{m} \hat{y}(i) \cdot (1 - \hat{y}(i)) \cdot (\hat{y}(i) - y(i)) \cdot x(i)$$

$$\nabla_b J_{MSE}(w,b) =$$

$$\frac{1}{m} \sum_{i=1}^{m} \hat{y}(i) \cdot (1 - \hat{y}(i)) \cdot (\hat{y}(i) - y(i))$$

——— Cross Entropy –

$$J_{CE}(\theta) = -\sum_{i=1}^{m} y(i) \cdot \log h_{\theta}(x(i)) + (1 - y(i)) \cdot \log(1 - h_{\theta}(x(i)))$$

where:

- $p_{\theta}(y(i) \mid x(i))$ is the probability model parameterized by θ , predicting the probability of the true class y(i) given Convolutional Layer the input x(i).
- m is the number of observations or data points in the dataset.

$$\nabla_{w} J_{CE}(w, b) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}(i) - y(i)) \cdot x(i)
\nabla_{b} J_{CE}(w, b) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}(i) - y(i))$$

Performance Measures

Matrice de Confusion Confusion Table ROC Precision \mathbf{Recall}

Bias & Variance

Model Selection Variance

Theory

Compute Graph Universal Approximation Theorem

Curse of Dimensionality

Backpropagation

MLP Layer Matrix Notation Full Batch Batch Normalization

Vanishing Exploding Gradient

Saturation Variance Change Xavier & Heu Initialization Batch Normalization Non Saturating Activation Function Gradient Clipping

Optimizers

Momentum AdaGrad RMS Prop Adam Scheduler

Regularization

Weight Penalty Dropout Early Stopping

$\overline{\text{CNN}}$

Pooling Layer

Unbalanced Dataset

Bayesian Approach Discrete Continuous Medical Test

DeepCNN

Conf2D Params MaxPooling LeNet5 AlexNet VGGnet GoogleNet ResNet Pattern

Feature Visualization

Data Preparation Network Compile Evaluate Activation Map

Data Augmentation

Principle Types Strategies Keras

Functional API

Sequential vs Functionals Architecture 1 Architecture 2 Architecture 3

Transfer Learning

Principle Keras Code MobileNet Strategies

RNN

Use Case Model Category Recurrence Net Single Layer Many to Many Un exemple par catégorie Stacked RNN

Long Term Memory Unit Cell Gates Backprop Keras GŔĔ

Word Embedding

Word Training

Sentiment Classification

Autoencoder Definition Use Case

GenRNN

Many to Many Many to One

Attention

Sequence to Sequence Attention

Transformer
High-Level Architecture
Self-Attention
Full Architecture