

LM79XX

3-Terminal 1A Negative Voltage Regulator

Features

- Output Current in Excess of 1A
- Output Voltages of -5, -6, -8, -9, -10, -12, -15, -18 and -24V
- · Internal Thermal Overload Protection
- · Short Circuit Protection
- Output Transistor Safe Operating Area Compensation

Description

The LM79XX series of three terminal negative regulators are available in TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage	VI	-35	V
Thermal Resistance Junction-Case (Note1)	R _θ JC	5	°C/W
Thermal Resistance Junction-Air (Note1, 2)	$R_{\theta JA}$	65	C/VV
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	Tstg	-65 ~ +150	°C

Note:

- Thermal resistance test board Size: 76.2mm * 114.3mm * 1.6mm(1S0P) JEDEC standard: JESD51-3, JESD51-7
- 2. Assume no ambient airflow

Electrical Characteristics (LM7905)

(VI = -10V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		TJ = +25°C		-4.8	-5.0	-5.2	
Output Voltage		$I_{O} = 5mA \text{ to } 1A, P_{O} \le 15W$ $V_{I} = -7V \text{ to } -20V$		-4.75	-5.0	-5.25	V
Line Regulation (Note3)	ΔVο	T _J = +25°C	V _I = -7V to -25V	-	35	100	mV
Line Regulation (Notes)	ΔνΟ	11 = +25 C	V _I = -8V to -12V	-	8	50	IIIV
Load Regulation (Note3)	ΔVο	T _J = +25°C I _O = 5mA to 1.5	A	-	10	100	m\/
Load Regulation (Notes)	ΔνΟ	T _J =+25°C I _O = 250mA to 750mA		-	3	50	mV
Quiescent Current	lQ	TJ =+25°C		-	3	6	mA
Quicecent Current Change	$\Delta I_Q \qquad I_Q = 5\text{mA to 1A}$ $V_I = -8V \text{ to -25V}$	IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change		,	-	0.1	0.8	ША	
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	- 0.4	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k TA =+25°C	кНz	-	40	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J =+25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	TJ =+25°C		-	2.2	-	Α

Note

^{3.} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7906) (Continued)

(VI = -11V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		VO $T_{J} = +25^{\circ}C$ IO = 5mA to 1A, PO ≤ 15W VI = -9V to -21V		-5.75	-6	-6.25	
Output Voltage	Vo			-5.7	-6	-6.3	V
Line Regulation (Note1)	ΔVΩ	T _J = +25°C	V _I = -8V to -25V	-	10	120	mV
Line Regulation (Note1)	ΔνΟ	1J = +25 C	V _I = -9V to -13V	-	5	60	IIIV
Load Population (Note1)	ΔVΩ	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$	Α	-	10	120	mV
Load Negulation (Note 1)	pad Regulation (Note1) $\Delta V_O = \frac{1}{T_J = +2}$ $I_O = 25$		50mA	-	3	60	IIIV
Quiescent Current	IQ	TJ =+25°C		-	3	6	mA
Quiescent Current Change		IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change		V _I = -8V to -25V		-	0.1	1.3	IIIA
Temperature Coefficient of V _D	ΔVo/ΔΤ	IO = 5mA		-	-0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A =+25°C	Hz	-	130	-	μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	А

Note

^{1.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7908) (Continued)

(VI = -14V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		VO IO = 5mA to 1A PO < 15W		-7.7	-8	-8.3	
Output Voltage	Vo			-7.6	-8	-8.4	V
Line Regulation (Note1)	ΔVΩ	T _J = +25°C	V _I = -10.5V to -25V	-	10	160	mV
Line Regulation (Note1)	ΔνΟ	1J = +25 C	V _I = -11V to -17V	-	5	80	IIIV
Load Regulation (Note1)	۸۷۵	$\Delta V_O = \frac{I_O = 5 \text{mA to } 1.5 \text{A}}{T_J = +25^{\circ} \text{C}}$		-	12	160	mV
Load Negulation (Note 1)	ΔνΟ			-	4	80	IIIV
Quiescent Current	IQ	TJ =+25°C		-	3	6	mA
Quiescent Current Change	Alo.	ΔI_Q $I_O = 5 \text{mA to 1A}$ - $V_I = -10.5 \text{V to } -25 \text{V}$ -	-	0.05	0.5	mA	
Quiescent Current Change	ΔIQ		V _I = -10.5V to -25V	-	0.1	1	ША
Temperature Coefficient of VD	ΔVo/ΔΤ	IO = 5mA		-	-0.6	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100 T _A =+25°C	OkHz	-	175	-	μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V		54	60	1	dB
Dropout Voltage	VD	TJ = +25°C IO = 1A		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	Α

Note

^{1.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7909) (Continued)

(VI = -15V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		VO IO = 5mA to 1A PO < 15W		-8.7	-9.0	-9.3	
Output Voltage	Vo			-8.6	-9.0	-9.4	V
Line Regulation (Note1)	ΔVΩ	T _J = +25°C	VI = -11.5V to -26V	-	10	180	mV
Line Regulation (Note1)	ΔνΟ	1J = +25 C	V _I = -12V to -18V	-	5	90	IIIV
Load Regulation (Note1)	۸۷۵	T _J = +25°C I _O = 5mA to 1.5 <i>i</i>	4	-	12	180	mV
Load Regulation (Note 1)	on (Note1) ΔV_{O} $T_{J} = +25^{\circ}C$ $I_{O} = 250$ mA to 750mA		50mA	-	4	90	IIIV
Quiescent Current	IQ	TJ = +25°C		-	3	6	mA
Quiocaant Current Change	Alo	I _O = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	$V_{I} = -11.5V \text{ to } -26V$	-	0.1	1	IIIA	
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-0.6	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A = +25°C	Hz	-	175	-	μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V		54	60	-	dB
Dropout Voltage	VD	TJ = +25°C IO = 1A		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		ı	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7910) (Continued)

(VI = -17V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-9.6	-10	-10.4	
Output Voltage	Vo	IO = 5mA to 1A, Pd ≤ 15W VI = -12V to -28		-9.5	-10	-10.5	V
Line Regulation (Note1)	ΔVΩ	T _J = +25°C	V _I = -12.5V to -28V	-	12	200	mV
Line Regulation (Note1)	ΔνΟ	1J = +25 C	V _I = -14V to -20V	-	6	100	IIIV
Load Regulation (Note1)	ΔVΩ	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$	4	-	12	200	mV
Load Negulation (Note 1)	ΔνΟ	$T_{J} = +25^{\circ}C$ $I_{O} = 250 \text{mA to } 750 \text{mA}$		-	4	100	1111
Quiescent Current	IQ	TJ = +25°C		-	3	6	mA
Quiocoont Current Change	ΔlQ	IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change		V _I = -12.5V to -28V	-	0.1	1	IIIA	
Temperature Coefficient of VO	ΔVο/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	10Hz ≤ f ≤ 100kH T _A =+25°C	l z	-	280	-	μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7912) (Continued)

(VI = -19V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-11.5	-12	-12.5	
Output Voltage	Vo	IO = 5mA to 1A, $V_I = -15.5V \text{ to } -2$		-11.4	-12	-12.6	V
Line Regulation (Note1)	ΔVΩ	T _J = +25°C	V _I = -14.5V to -30V	-	12	240	mV
Line Regulation (Note1)	ΔνΟ	$V_{I} = -16V \text{ to } -22V$	-	6	120	IIIV	
Load Regulation (Note1)	ΔVΩ	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$	T _J = +25°C I _O = 5mA to 1.5A		12	240	mV
Load Regulation (Note I)	ΔνΟ	TJ = +25°C IO = 250mA to 750mA		-	4	120	
Quiescent Current	IQ	T _J = +25°C		-	3	6	mA
Quiescent Current Change	ΔlQ	IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change		$V_I = -14.5V \text{ to } -3$	0V	-	0.1	1	ША
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A = +25°C	Hz	-	200	-	μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7915) (Continued)

(VI = -23V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-14.4	-15	-15.6	
Output Voltage	Vo	·	$I_O = 5mA \text{ to } 1A, P_O \le 15W$ $V_I = -18V \text{ to } -30V$		-15	-15.75	V
Line Regulation (Note1)	ΔVο	T,j = +25°C	VI = -17.5V to -30V	-	12	300	mV
Line Regulation (Note 1)	ΔνΟ	1J = +25 C	V _I = -20V to -26V	-	6	150	IIIV
Load Regulation (Note1)	ΔVο	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5a$	A	-	12	300	mV
Load Negulation (Note 1)	Δ۷Ο	T _J = +25°C I _O = 250mA to 750mA		-	4	150	1
Quiescent Current	lQ	TJ = +25°C		-	3	6	mA
Quiescent Current Change	ΔlQ	IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change		$V_{I} = -17.5V \text{ to } -30V$	-	0.1	1	ША	
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-0.9	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A =+25°C	kHz	-	250	-	μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V		54	60	-	dB
Dropout Voltage	VD	TJ = +25°C IO = 1A		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7918) (Continued)

(VI = -27V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		VO IO = 5mΔ to 1Δ PO < 15W		-17.3	-18	-18.7	
Output Voltage	Vo			-17.1	-18	-18.9	V
Line Regulation (Note1)	ΔVΩ	T _J = +25°C	$V_I = -21V \text{ to } -33V$	-	15	360	mV
Line Regulation (Note 1)	ΔνΟ	11 = +23 C	$V_I = -24V \text{ to } -30V$	-	8	180	IIIV
Load Regulation (Note1)	ΔVΩ	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$	4	-	15	360	mV
Load Negulation (Note 1)	Δ۷Ο	T _J = $+25^{\circ}$ C I _O = 250 mA to 750 mA		-	5	180	IIIV
Quiescent Current	IQ	TJ = +25°C		-	3	6	mA
Quiescent Current Change	ΔlQ	I _O = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change		VI = -21V to -33V	/	-	0.1	1	ША
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A = +25°C	Hz	-	300	-	μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7924) (Continued)

(VI = -33V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-23	-24	-25	
Output Voltage	Vo	· ·	$I_O = 5mA \text{ to } 1A, P_O \le 15W$ $V_I = -27V \text{ to } -38V$		-24	-25.2	V
Line Regulation (Note1)	ΔVΩ	T _J = +25°C	V _I = -27V to -38V	-	15	480	mV
Line Regulation (Note1)	ΔνΟ	1J = +25 C	V _I = -30V to -36V	-	8	180	IIIV
Load Regulation (Note1)	۸۷۵	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5a$	A	-	15	480	mV
Load Negulation (Note I)	ΔνΟ	ΔV_O $T_J = +25^{\circ}C$ $I_O = 250 \text{mA to } 750 \text{mA}$		-	5	240	mv
Quiescent Current	IQ	TJ = +25°C		-	3	6	mA
Quiocoost Current Change	ΔlQ	IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change		$V_I = -27V \text{ to } -38$	V	-	0.1	1	IIIA
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A = +25°C	kHz	-	400	-	μV
Ripple Rejection	RR	f = 120Hz ΔV _I = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Perfomance Characteristics

Figure 1. Output Voltage

Figure 2. Load Regulation

Figure 3. Quiescent Current

Figure 4. Dropout Voltage

Figure 5. Short Circuit Current

Typical Applications

Figure 6. Negative Fixed output regulator

Figure 7. Split power supply (\pm 12V/1A)

- (1) To specify an output voltage, substitute voltage value for "XX"
- (2) Required for stability. For value given, capacitor must be solid tantalum. If aluminium electronics are used, at least ten times value shown should be selected. C_I is required if regulator is located an appreciable distance from power supply filter.
- (3) To improve transient response. If large capacitors are used, a high current diode from input to output (1N400l or similar) should be introduced to protect the device from momentary input short circuit.

Mechanical Dimensions

Package

Dimensions in millimeters

TO-220

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
LM7905CT	±4%	TO-220	0 ~ +125°C
LM7906CT			
LM7908CT			
LM7909CT			
LM7910CT			
LM7912CT			
LM7915CT			
LM7918CT			
LM7924CT			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com