Presuppositions (in DRT)

Week 10

Back to entailment

Recall: sentence A entails sentence B (A ⊨ B) iff whenever A is true, then B
must also be true

- Entailment is a relation between the *propositions* expressed by the sentences A and B:
 - "John and Mary failed the test" ⊨ "Mary failed the test"
 - "John or Mary failed the test" ⊨ "someone failed the test"
 - "John is an intelligent student" ⊨ "John is a student"
 - "every student works" ⊨ "every blond student works"

More examples of entailment?

- "the mathematician who proved Goldbach's conjecture wasn't a man"
 "someone proved Goldbach's conjecture"
- "Mary doesn't love her husband"
 "Mary has a husband" / "Mary is married"
- "it wasn't Mary who broke the typewriter"
 "somebody broke the typewriter"
- "John kissed every girl at the party"
 "there were girls at the party"

Entailment vs. Presupposition

- Entailment:
 - "Mary failed the test" ⊨ "Mary took the test"
 - "Mary <u>didn't</u> fail the test" ⊭ "Mary took the test"

Presupposition:

- "the mathematician who proved Goldbach's conjecture was a woman"
 - "someone proved Goldbach's conjecture"
- "the mathematician who proved Goldbach's conjecture <u>wasn't</u> a woman"
 - "someone proved Goldbach's conjecture"

What are presuppositions?

 Definition 1: A presupposition of a statement is a proposition that must be true in order for the statement to be interpretable (to make sense) in the first place

 Definition 2: A presupposition is an implicit assumption about the world whose truth is taken for granted by the speaker

Back to definite descriptions

Definite descriptions convey uniqueness:

"the chancellor decides"

- → "there is exactly one chancellor, and they decide"
- $\rightarrow \exists x(chancellor(x) \land \forall y(chancellor(y) \leftrightarrow x = y) \land decide(x))$

- "the chancellor" $\mapsto \lambda G. \exists x (chancellor(x) \land \forall y (chancellor(y) \leftrightarrow x = y) \land G(x))$
- "the" $\rightarrow \lambda F \lambda G. \exists x (F(x) \land \forall y (F(y) \leftrightarrow x = y) \land G(x))$

Definite descriptions and uniqueness

- This is a problem for compositionality, e.g.:
 - "it is not the case that the chancellor decides"
- Compositional analysis of the sentence leads to:
 - $\neg \exists x(chancellor(x) \land \forall y(chancellor(y) \leftrightarrow x = y) \land decide(x))$
 - "Either there is no chancellor, or more than one, or there is exactly one chancellor and they do not decide"
- But the correct representation should be:
 - $\exists x(chancellor(x) \land \forall y(chancellor(y) \leftrightarrow x = y) \land \neg decide(x))$
 - "There is exactly one chancellor, and they do not decide"

Presupposition vs. Assertion

- A sentence (e.g. one containing a definite description) contains meaning information of (at least) two different types:
 - Presupposition: the requirements that the context must satisfy for the sentence to be interpretable
 - Assertion: the claims that are made (based on the context)

"the chancellor decides"

- → "there is exactly one chancellor, and they decide"
- $\rightarrow \exists x(chancellor(x) \land \forall y(chancellor(y) \leftrightarrow x = y) \land decide(x))$

Presupposition projection

- Presuppositions are not affected by negation
 - Being in the syntactic scope of negation does not affect presuppositions
 - Presupposition projection: presuppositions are interpreted as if introduced outside the scope of the negation
 - We can use the property of projection to test for presuppositions.

"it is not the case that the chancellor decides"

- → "there is exactly one chancellor, and they do not decide"
- $\rightarrow \exists x(chancellor(x) \land \forall y(chancellor(y) \leftrightarrow x = y) \land \neg decide(x))$

Examples of presupposition triggers

- Definite descriptions:

 - "Mary doesn't love <u>her husband</u>" >> "Mary has a husband"
 - "<u>Mary's brother</u> didn't buy a house" ≫ "Mary has a brother"

- Universal quantifiers:
 - "John kissed <u>every</u> girl at the party" ≫ "there were girls at the party"

Examples of presupposition triggers

- Factive verbs ("regret", "realize", "love", "hate", "be aware", etc.)
 - "John regrets that Pola is married" >> "Pola is married"
 - "John realized that he was in debt" >> "John was in debt"

- Implicative verbs ("manage to", "forget to", ...)
 - "John forgot to close the door" >> "John intended to close the door"
 - "John managed to close the door" >> "John tried to close the door"

Examples of presupposition triggers

- Aspectual verbs and items:
 - "John has <u>stopped</u> smoking"
 - ≫ "John doesn't smoke anymore"
 - "John <u>used to</u> fly with Lufthansa"
 - ≫ "John doesn't fly with Lufthansa anymore"

- It-clefts:
 - "it was John who ate the cake"
 - ≫ "somebody ate the cake"

More presupposition projection

- Presuppositions not only "survive" negation, but also other kinds of embeddings:
 - "the chancellor or the ministers decide"
 - ≫ "there is a (exactly one) chancellor"
 - "John possibly regrets that Mary is married"
 - ≫ "Mary is married"
 - "Mary <u>believes that</u> John has <u>stopped</u> smoking"
 - ≫ "John used to smoke"

Presupposition filtering

- There are contexts that can "neutralise" or *filter* some presuppositions—they block projection of these presuppositions:
 - "if John is out of town, then his wife is unhappy"
 - "John has a wife" / "John is married"
 - "if John is married, then his wife is unhappy"
 - > "John is married"
 - "if John is married, then his daughter is unhappy"
 - ≫ "John has a daughter"

Presupposition cancellation

- In the context of negation, presuppositions can be overwritten or "cancelled" by explicitly claiming that they are false:
 - "John doesn't regret that Mary is married. In fact, Mary has no husband, and John knows that."
 - "It's not the case that the king of France is bald. France is a republic."
- Presuppositions are also cancelled when what is said, taken together with background assumptions (i.e. relevant world knowledge), is inconsistent with what is presupposed:
 - "John cried before finishing his thesis" >> "John finished his thesis"
 - \circ "John died $oldsymbol{\mathsf{before}}$ finishing his thesis" \gg "John finished his thesis"

Presupposition cancellation: theoretical questions

 The Projection Problem: under what conditions does a sentence containing a presupposition trigger inherit this presupposition?

 Presuppositions and Compositionality: how can we explain the presuppositions of complex sentences in terms of the presuppositions of their parts?

Summary

 Presuppositions are triggered by a number of different words and linguistic constructions, including definite noun phrases

 Presuppositions behave differently than assertions in semantics construction: they are typically projected unchanged, rather than used in functional application

 Projected presuppositions can be filtered in the semantic composition process, and can be cancelled by contextual knowledge

Presuppositions and Anaphora

- Parallelism between pronoun resolution and presuppositional filtering
- Pronoun resolution:
 - o "John owns a donkey. He beats it."
 - "If John owns a donkey, he beats it."
 - "Either John does not own a donkey or he beats it."
- Presuppositional filtering:
 - "Jack has children. All of Jack's children are bald."
 - "If Jack has children, then all of Jack's children are bald."
 - "Either Jack has no children or all of Jack's children are bald."

Presuppositions and Anaphora

- Presuppositions are anaphors, i.e. they want to bind to previously established discourse referents (van der Sandt, 1992)
 - "Pedro owns a donkey. Jane knows {it / that Pedro owns a donkey}"
 - "if Pedro owns a donkey, Jane knows {it / that Pedro owns a donkey}"
- Crucial difference between presuppositions and pronouns:
 - If a pronominal anaphor does not find a proper antecedent, interpretation of the sentence fails
 - If a presuppositional anaphor does not find a proper antecedent, its information is accommodated (added to the information state)
 - **"they are all bald"
 - "all of Jack's children are bald"

Presuppositions in DRS: basic principles

Introduce α-DRSs as a new type of complex condition

- DRS construction proceeds in two steps:
 - (i) The construction rules for definite noun phrases introduce α-DRSs—this yields a "proto-DRS"
 - (ii) The α-DRSs are resolved by means of binding and accommodation—this translates a proto-DRS into a standard DRS (with a model-theoretic interpretation)

Syntax for proto-DRSs

- **Proto-DRS**: a triple $(U_{\kappa}, C_{\kappa}, A_{\kappa})$ such that:
 - \circ U_{κ} is a set of discourse referents
 - \circ C_{κ} is a set of (atomic or complex) conditions
 - \circ A_K is a set of "anaphoric" (α-)DRSs of the form αzK', where z is a discourse referent and K' is a proto-DRS

• A DRS is a proto-DRS $(U_{\kappa}, C_{\kappa}, A_{\kappa})$ with $A_{\kappa} = \emptyset$

Definite Noun Phrases in DRT

• The DRS construction rules for all definite noun phrases introduce α-DRSs:

Definite descriptions ("the woman"):

Proper names ("Maria"):

Pronouns ("she"):

Possessives ("his book"):

Recap: DRS subordination

- DRS K_1 is an **immediate sub-DRS** of a DRS $K = (U_K, C_K)$ iff
 - C_K contains a condition of the form: $\neg K_1$, $K_1 \Rightarrow K_2$, $K_2 \Rightarrow K_1$, $K_1 \lor K_2$ or $K_2 \lor K_1$
- DRS K_1 is a **sub-DRS** of DRS K (notation: $K_1 \le K$) iff
 - \circ $K_1 = K$, or
 - \circ K_1 is an immediate sub-DRS of K, or
 - there is a DRS K_2 such that $K_1 \le K_2$ and K_2 is an immediate sub-DRS of K
- DRS K₁ is a proper sub-DRS of DRS K iff
 - \circ $K_1 \leq K$ and $K_1 \neq K$

Resolution by binding

- Let K, K', K_t be some DRSs such that $K' \le K$, $K_t \le K$, and:
 - $\circ \quad \eta = \alpha x K_s \in A_{\kappa'} (K_s \text{ is } \alpha \text{-free})$
 - \circ y $\in U_{\kappa_t}$ is a discourse referent that is accessible and suitable for η

• Binding:

- \circ $A_{K'} \leftarrow A_{K'} \{\eta\}$
- \circ $U_{Kt} \leftarrow U_{Kt} \cup U_{Ks}$
- $\circ \quad C_{Kt} \leftarrow C_{Kt} \cup C_{Ks} \cup \{x = y\}$
- Note: because K_s must be α -free, complex α -DRSs are always resolved from the inside out

Presupposition resolution by accomodation

- Let K, K', K_t be some DRSs such that $K' \le K$, $K_t \le K$, and:
 - $\circ \quad \eta = \alpha x K_s \in A_{\kappa'} (K_s \text{ is } \alpha \text{-free})$
 - \circ K_t is a DRS that is accessible for η

Accomodation:

- $\circ \quad A_{K'} \leftarrow A_{K'} \{\eta\}$
- $\circ \quad \boldsymbol{U}_{\mathsf{K}t} \leftarrow \boldsymbol{U}_{\mathsf{K}t} \cup \boldsymbol{U}_{\mathsf{K}s}$
- $\circ \quad \textbf{\textit{C}}_{\textit{Kt}} \leftarrow \textbf{\textit{C}}_{\textit{Kt}} \cup \textbf{\textit{C}}_{\textit{Ks}}$

Resolution by accomodation: example

"if Pedro works, he beats his donkey"

Resolution by accomodation: example

"if Pedro works, he beats his donkey"

Resolution by accomodation: example

"if Pedro works, he beats his donkey"

Presupposition resolution: preference principles

- Presupposition resolution in DRT is guided by the following principles:
 - Binding is preferred over accommodation
 - Binding works "upwards" along the accessibility relation: the closest possible antecedent is preferred
 - Accommodation works "downwards" along the accessibility relation: the highest possible DRS is preferred

Constraints on projection

 Free variable constraint: a resolved DRS may not contain any free discourse referents

 Consistency and informativity constraints: the resolved DRS must be consistent and informative

Invalid resolution: discourse referent z is free

Consistency and Informativity constraints

- Consistency: the resolved DRS must be satisfiable (taking background knowledge into account)
 - Local consistency: no sub-DRS can be inconsistent with any superordinate DRS

- Informativity: the resolved DRS should not be entailed by our background knowledge
 - Local informativity: no sub-DRS can be entailed by any superordinate DRS

"if John is out of town, his wife is unhappy" ≫ "John has a wife"

"if John is out of town, his wife is unhappy" ≫ "John has a wife"

The resolved DRS entails that John has a wife

"if John is married, his wife is unhappy" ≫ "John has a wife"

➤ Inadmissible: the top-level DRS entails the left-hand side of the conditional (⇒)

"if John is married, his wife is unhappy" ≫ "John has a wife"

