Нильпотентные и разрешимые алгебры Ли

Виногродский Серафим

9 марта 2022 г.

Содержание

1	Введение		
	1.1	Основные понятия	2

1 Введение

1.1 Основные понятия

Определение 1.1. Векторное пространство L над полем F, дополненное операцией $L \times L \to L$, которая обозначается $(x,y) \mapsto [x,y]$ и называется *скобкой Ли* или *коммутатором* x и y, называется *алгеброй Ли* над полем F, если выполнен следующий ряд аксиом:

- (L1) Скобка Ли билинейна.
- $(L2) \ [x,x] = 0$ для любого $x \in L$.

(L3)
$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
 $(x, y, z \in L)$.

Аксиома (L3) называется тождеством Якоби. Из аксиом (L1) и (L2), применённых к скобке [x+y,x+y], следует антикоммутативность скобки Ли:

$$(L2') \ [x,y] = -[y,x]$$
 для любых $x,y \in L$.

Обратно, если $\operatorname{char} F \neq 2$, то из (L2') тривиально следует (L2) и потому для таких полей (L2) эквивалентна (L2').

Определение 1.2. Две алгебры Ли L, L' называются *изоморфными*, если существует такой изоморфизм векторных пространств $\phi: L \to L'$, что

$$\phi([x,y]) = [\phi(x), \phi(y)] \quad \forall x, y \in L.$$

Само отображение ϕ при этом называется *изоморфизмом* алгебр Ли.

Определение 1.3. Подпространство K алгебры Ли L называется *подалгеброй* алгебры L, если K замкнуто относительно скобки Ли, т.е.

$$\forall x, y \in K \quad [x, y] \in K.$$

Нетрудно показать, что само подпространство K вместе с индуцированными операциями также является алгеброй Ли.

Любая алгебра Ли L имеет как минимум две тривиальные (несобственные) подалгебры отвечающие тривиальным подпространствам: $\{0\}$ и L. Помимо этого любой ненулевой элемент $v \in L$, если таковой имеется, определяет одномерную подалгебру Fv с тривиальным умножением, поскольку в силу (L1) и (L2) имеем [x,y]=0 для любых $x,y\in Fv$.