КОГНИТИВНЕ МОДЕЛЮВАННЯ

122 «Комп'ютерні науки» КНм-21 2021 / 2022 навчальний рік

КУРСОВИЙ ПРОЕКТ

ТЕМАТИКА КУРСОВОГО ПРОЕКТУ

Розробка програмного модуля на довільній мові (переважно Python), що реалізує штучну нейронну мережу для розпізнавання заданого класу графічних візуальних образів.

ЗАГАЛЬНЕ ЗАВДАННЯ

спроектувати і розробити програмний модуль штучної нейронної мережі розпізнавання визначеного класу зображень та дослідити його роботу

Обозначения

- $\cdot k$ эпоха (опустим для упрощения),
- •L количество слоев (у нас 3 (для начала)),
- (l) номер слоя, l=0,1,2.
- \cdot $N^{(l)}$ количество нейрон в l-ом слое,
- i номер нейрона в (l -1)-ом слое, i=1,...,N^(l-1)
- $\cdot j$ номер нейрона в (l)-ом слое,
- • $w_{ij}^{(l)}$ вес связи *i-го* нейрона в (*l-1*)-ом слое с *j-м* нейроном *l*-го слоя,
- $b_j^{(l)} = w_j^{(l)}$ -смещение *j- го* нейрона *l*-го слоя на (вес связи к 1-ому входу),
- $\{x_m, d_m\}$ пары (вход, выход) обучающих векторов, m номер пары, m = 1,...,P,
- •Р количество обучающих пар.

Алгоритм

Step 1. (первая эпоха). Задаем все пороги и веса равномерно распределенные на интервале (0, 1) или (-0.5 +0.5)

Step 2. Задаем первую обучающую пару $m=1\{x_1,d_1\}.$

Step 3. Прямой ход (*RUN*). Вычисление выходных сигналов каждого нейрона каждого слоя.

$$l = 1: S_j^{(1)} = \sum_{i=0}^{N^{(0)}} w_{ij}^{(1)} * y_i^{(0)}; y_j^{(1)} = f(S_j^{(1)})$$

$$l = 2: S_j^{(2)} = \sum_{i=0}^{N^{(1)}} w_{ij}^{(2)} * y_i^{(1)}; y_j^{(2)} = f(S_j^{(2)})$$

Алгоритм

Step 4. Вычисление ошибки

$$e_j = y_j^{(2)} - d_{m_j}$$

$$E = 0.5 \sum_{j=1}^{N^{(2)}} e_{j}^2$$

Step 5. Обратное распространение. Настраиваем синаптические веса

$$w[new]_{ij}^{(l)} = w[old]_{ij}^{(l)} + \Delta_{ij}^{(l)}; \Delta_{ij}^{(l)} = -\eta * \frac{\partial E}{\partial w_{ij}^{(l)}}$$

 η - параметр, задающий скорость обучения (спуска по антиградиенту), $0<\eta<1$.

Алгоритм

Step 6. Проверка условия завершения

- если все пары не перебрали, и то m=m+1, на step 3.
- •если перебрали все пары
- •и $^{1}/_{P}\sum_{1}^{P}E_{m}>\varepsilon$, то k=k+1 и на step 2 (следующая эпоха)
- •если перебрали все пары
- •и $^{1}/_{P}\sum_{1}^{P}$ $E_{m}<\varepsilon$, то stoр обучения.

ОПИСАНИЕ СЕТИ СЛОВАРЬ СПИСКОВ

'struct':layers --> список структуры сети.

'weight': weights_list --> список МАТРИЦ весов каждого слоя. МАТРИЦА для КАЖДОГО нейрона слоя содержит вектор весов, размерность = количество нейронов *L*-1 слоя + 1 (для смещения). 'outs': outs_list --> список ВЕКТОРОВ (! векторов) выходов нейронов каждого слоя.

'sums': sums_list --> список BEKTOPOB (! векторов) входов функций активации нейронов каждого слоя 'error': error_list --> список BEKTOPOB (! векторов) ошибок выходов нейронов каждого слоя

Формирование выходов нейронов

!!! Для каждого элмента списка (СЛОЯ!)

Net_Layers = [IN , HID1, HID2, OUT]

Run Forward

ЕТАПИ

- Архитектура та параметри нейронної мережі.
- Формати змінних: Data set / Train / Test Data, W, S, Y
- Файли Data set
- Функція RUN
- Функція **ERR**

поточне завдання

- Розробити та налаштувати функцію формування нейронної мережі **NET**.
- Розробити та налаштувати програмний модуль **RUN()**.
- Розробити та налаштувати програмний модуль **ERR()**.

End Curs Work 3