

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP1 - 1° semestre de 2008.

1) A descrição paramétrica de uma curva planar é definida por uma função $\gamma:I \subset R \to R^2$ tal que $\gamma(t)=(x(t),y(t))$. Explique com suas próprias palavras o que é uma curva paramétrica e ilustre com um exemplo.

Uma curva paramétrica planar é determinada através do mapeamento de um conjunto de valores em um intervalo na reta, descrito pelo parâmetro t da curva, em um par de coordenadas do plano x(t) e y(t), onde x e y são funções de t.

Uma curva paramétrica planar pode ser vista como a *trajetória* de um ponto que se desloca no plano, se interpretarmos o parâmetro t como o tempo. O conjunto de pontos de uma equação paramétrica planar $\gamma(t)$ descreve o que chamamos de traço da curva. Existem várias parametrizações possíveis para uma curva. Abaixo temos, como exemplos, o círculo e a espiral em representação paramétrica.

Círculo: $(\cos(t), \sin(t)), 0 \le t \le 2\pi$

Espiral: (at cos(t), at sen(t)), $0 \le t \le 2k\pi$, a,k $\in R$

2) Observe a figura abaixo:

Explique porque este objeto geométrico não pode ser considerado uma superfície.

Uma superficie é um subconjunto de pontos $S \subset \mathbb{R}^3$ que localmente se assemelha a um plano. Isto significa que para cada ponto $p \in S$ existe uma bola $B^3(p,\varepsilon)$, centrada em p de raio ε , tal que existe uma bijeção contínua do disco (ou semi-disco) aberto unitário em $B^3(p,\varepsilon) \cap S$.

Na figura acima, não é possível determinar um mapeamento contínuo um-para-um (bijeção) entre pontos de $B^3(p,\varepsilon) \cap S$, para todo p pertencente à aresta onde ocorre auto-interseção, e os pontos de um disco unitário (ou semi-disco no caso da borda).

3) Para uma superficie paramétrica f(u,v), como se pode determinar a normal de um ponto P pertencente à superficie?

O *vetor normal* pode ser obtido determinando-se o produto vetorial das derivadas parciais em relação aos parâmetros *u* e *v*.

$$\vec{n} = \frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}$$

4) O que são objetos volumétricos e onde costumam ser usados em computação gráfica?

Objetos volumétricos são objetos gráficos tridimensionais que possuem volume, diferentemente de superfícies. Objetos volumétricos possuem a mesma dimensão do espaço ambiente e nesse caso são análogos às regiões no plano. Matematicamente, um objeto volumétrico é um subconjunto de pontos $p \in V \subset \mathbb{R}^3$, tal que para todo p

existe uma vizinhança esférica aberta $B^3(p,\varepsilon)$ de modo que $B^3(p,\varepsilon) \cap V$ pode ser mapeada continuamente na:

Bola aberta unitária -
$$B^3(0,1) = \{(x,y,z) \in R^3; x^2 + y^2 + r^2 < 1\}$$

Semi-bola unitária - $B^3(0,1) = \{(x,y,z) \in R^3; x^2 + y^2 + r^2 < 1 \text{ e } z \ge 0\}$

- 5) O OpenGL funciona com uma arquitetura baseada numa máquina de estados. Explique esta afirmação e dê 2 exemplos.
 - O OpenGL funciona baseado em uma máquina de estados, pois antes de serem enviados polígonos para serem processados, estipula-se os estados referentes a diversos aspectos do *pipeline* gráfico, seguindo-se a sintaxe:

Na seqüência, quando a API for realizar a visualização, irá usar o estado préestabelecido para diversos parâmetros.

Exemplos:

```
glEnable(GL_TRIANGLE_STRIPS) glEnable(GL_FLAT)
```