日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

26,07.00

#3

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 9月 9日

REC'D 14 SEP 2000

WIPO PÇT

出 願 番 号 Application Number:

平成11年特許顯第255772号

出 願 人 Applicant (s):

三井化学株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

JP00/04973

EKU

2000年 9月 1日

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

41990306

【提出日】

平成11年 9月 9日

【あて先】

特許庁長官 殿

【国際特許分類》

C09D-11/02

C09B 29/00

【発明者】

【住所又は居所】

神奈川県横浜市栄区笠間町1190番地 三井化学株式

会社内

【氏名】

松▲崎▼ ▲頼▼明

【発明者】

【住所又は居所】

神奈川県横浜市栄区笠間町1190番地 三井化学株式

会社内*

【氏名】

大井 龍

【発明者】

【住所又は居所】 神奈州県横浜市栄区笠間町1190番地● 三井化学株式

会社内

【氏名】

大熊 正

【発明者】

【住所又は居所】 神奈川県横浜市栄区笠間町1190番地 三井化学株式

会社内

【氏名】

高後 修

【特許出願人】

【識別番号】

000005887~

【氏名又は名称】 三井化学株式会社・

【代理人】

【識別番号】

100075247

【弁理士】

【氏名又は名称】 最上 正太郎

【手数料の表示】

【予納台帳番号】 011833

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 インクジェット記録用水系インク

【特許請求の範囲】

【請求項1】 少なくとも1種の下記一般式(1)(化1)で表される色素を含有することを特徴とするインクジェット記録用水系インク。

(化1)

$$R_3$$
 R_4
 R_5
 R_6
 R_6

【式中、 $R_1 \sim R_5$ はそれぞれ独立に、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基。 置換されていてもよいアリール基、置換されていてもよいアリールオキシ基。 水酸基、 $-NR_8$ R_9 、 $-OCOX_1$ 、 $-NHCOX_2$ 、 $-CONHX_3$ 、 $-COX_4$ 、または、 $-COO(CH_2)$ COX (但し、 R_8 、 R_9 はそれぞれ独立に、水素原子、置換されていてもよいアルキル基。アラルキル基。置換されていてもよいアリール基を表し、 $X_1 \sim X_3$ はそれぞれ独立に、置換されていてもよいアリール基を表し、 X_4 、 X_5 はそれぞれ独立に、置換されていてもよいアリールオキシ基を表し、 X_4 、 X_5 はそれぞれ独立に、置換されていてもよいアリールオキシ基を表し、 X_6 は置換されていてもよいアリールオキシ基を表し、 X_7 は置換されていてもよいアルコキシ基、または、置換されていてもよいアリールオキシ基、または、 X_7 に置換されていてもよいアルコキシ基、置換されていてもよいアルコキシ基、置換されていてもよいアリールオキシ基、または、 X_7 に置換されていてもよいアルコキシ基、置換されていてもよいアルコキシ基、置換されていてもよいアルカル基。アラルキル基。 置換されていてもよいアルキル基。アラルキル基。 置換されていてもよいアルキル基。アラルキル基。 置換されていてもよいアルキル基。アラルキル基。 置換されていてもよいアルキル基。 のは1または2を表す。〕

【請求項2】 インクが、さらに樹脂微粒子の分散体を含有していることを 特徴とする請求項1記載のインクジェット記録用水系インク。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、インクジェット記録方式に好適に用いられるインクジェット記録用 水系インクに関する。

[0002]

【従来の技術】

通常、インクジェット記録方式の記録用インクとしては水系インクが用いられている。水系インクは、基本的に色素、水及び有機溶剤から構成され、臭気、人体及び周辺環境への安全性の配慮から、水を主溶媒とするインクとなっている。また、色素としては、一般的には酸性染料、塩基性染料、反応性染料、及び直接性染料等の水溶性染料が使用されている。インクジェット記録用水系インク及び色素に関しては、以下に示す様々な要求特性、すなわち、

- (1) インクの粘度、表面張力、比電導度、密度、 p H等の物性値が適当である こと
- (2) インクの長期保存安定性が良好であること
- (3) 溶解成分の溶解安定性が高く、ノズルを目詰まりさせないこと
- (4)被記録材での速乾性が良好であること
- (5) 記録画像が鮮明であり、耐光性、耐水性が良好であること が挙げられるが、全ての特性を満足するに至っていないのが現状である。

[0003]

特に、通常使用されている水系インクの場合、水溶性染料を使用しているために、記録画像に水が掛かった場合、染料が溶出し、記録画像が滲んだり、消失してしまうなど耐水性に大きな問題があり、現在、耐水性向上に注力した様々な検討がなされている。

例えば、顔料あるいは油溶性染料を色素として用いるインクや、水溶性染料を用いた水性インクに有機溶剤や樹脂等を添加する方法等の検討がされている。しかし、顔料を用いた場合には、分散安定性が悪く保存安定性が不良であったり、ノズルの目詰まりを引き起こす等の問題があった。油溶性染料を用いた場合には有機溶剤を用いているため、臭気等の環境衛生等に問題があったり、インクの滲みが大きく画像品位の低下を招くなどの問題があった。また、添加剤を加えたイン

クの場合でも、保存安定性が不良であったり、ノズルの目詰まり、あるいはイン クが高粘度化しインクの飛翔が悪い等の問題点もあった。

[0004]

最近では、特開平6-340835号公報等に、染料または顔料によって着色されたポリエステル樹脂を分散質とする水系分散体を用いるインクが記載されている。しかし、顔料については、依然として前記の問題が残されており、染料についても樹脂との相溶性が悪いため、インク中に析出物が現れ、保存安定性が不良となり、ノズルの目詰まりを引き起こす等の問題を依然として抱えている。以上のように、特にインクジェット記録方式に用いられるインクの諸特性においては、色素固有の特性に影響されるところが大きく、これら諸条件を満たす色素の創出が極めて重要である。

[0005]

【発明が解決しようとする課題》

本発明の目的は、特に耐水性に優れ、耐光性、かつ保存安定性に優れたインクジェット記録方式に最適のインクジェット記録用水系インクを提供することである。

[0006]

【課題を解決するための手段】

本発明者らは、上記課題を解決するために鋭意検討した結果、本発明を完成するに到った。すなわち、本発明は、少なくとも1種の下記一般式(1)(化2)で表される色素を含有することを特徴とするインクジェット記録用水系インクに関するものである。

[0007]

【化2】

$$R_{3} \xrightarrow{R_{2}} R_{1} \xrightarrow{R_{6}} N \xrightarrow{R_{6}} CN_{r}$$

$$R_{3} \xrightarrow{R_{4}} R_{5} \qquad HO \qquad (CH_{2})_{n}COR_{7}$$

[式中、 $R_1 \sim R_5$ はそれぞれ独立に、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアリールオキシ基、水酸基、 $-NR_8$ R_9 、 $-OCOX_1$ 、 $-NHCOX_2$ 、 $-CONHX_3$ 、 $-COX_4$ 、または、 $-COO(CH_2)_m$ COX_5 (但し、 R_8 、 R_9 はそれぞれ独立に、水素原子、置換されていてもよいアルキル基、アラルキル基、置換されていてもよいアリール基を表し、 $X_1 \sim X_3$ はそれぞれ独立に、置換されていてもよいアルキル基、アラルキル基を表し、 X_4 、 X_5 はそれぞれ独立に、置換されていてもよいアリール本を表し、 X_4 、 X_5 はそれぞれ独立に、置換されていてもよいアリールオキシ基を表し、 X_6 は置換されていてもよいアリールオキシ基を表し、 X_7 は置換されていてもよいアルコキシ基、置換されていてもよいアリールオキシ基を表し、 X_7 は置換されていてもよいアルコキシ基、置換されていてもよいアリールオキシ基、または、 X_7 は置換されていてもよいアルコキシ基、置換されていてもよいアリールオキシ基、または、 X_7 は置換されていてもよいアルコキシ基、置換されていてもよいアルカスキシ基、置換されていてもよいアリールオキシ基、または、 X_7 に関換されていてもよいアルカストのである。

[0008]

【発明の実施の形態】

本発明は、少なくとも1種の前記一般式(1)で表される色素〔以下、インクジェット記録用色素ともいう〕を含有することを特徴とするインクジェット記録 用水系インクに関するものである。

[0009]

本発明の一般式(1)で表される色素において、式中、 $R_1 \sim R_5$ はそれぞれ独立に、水素原子、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、水酸基、 $-NR_8$ R_9 、 $-OCOX_1$ 、 $-NHCOX_2$ 、 $-CONHX_3$ 、 $-COX_4$ 、または、 $-COO(CH_2)_m$ COX_5 (但し、 R_8 、 R_9 はそれぞれ独立に、水素原子、置換されていてもよいアルキル基、アラルキル基、置換されていてもよいアリール基を表し、 $X_1 \sim X_3$ はそれぞれ独立に、置換されていてもよいアルキル基、アラルキル基、置換されていてもよいアルキル基、アラルキル基を表し、 X_4 、 X_5 はそれぞれ独立に、置換されていてもよいアル

コキシ基、または、置換されていてもよいアリールオキシ基を表し、mは1または2を表す)を表し、 R_6 は置換されていてもよいアルキル基、 R_7 は置換されていてもよいアルコキシ基、置換されていてもよいアリールオキシ基、または、 $-NR_{10}R_{11}$ (但し、 R_{10} 、 R_{11} はそれぞれ独立に、水素原子、置換されていてもよいアルキル基、アラルキル基、置換されていてもよいアリール基を表す)を表し、nは1または2を表す。

[0010]

置換されていてもよいアルキル基としては特に限定されるものではないが、例えば、メチル基、エチル基、nープロピル基、isoープロピル基、nーブチル基、isoーブチル基、tertーブチル基、nーペンチル基、isoーペンチル基、nーヘキシル基、isoーペンチル基、2ーエチルヘキシル基、3,5,5ートリメチルヘキシル基、nーヘプチル基、nーオクチル基、tertーオクチル基、nーノニル基、isoーノニル基等のアルキル基;

シクロペンチル基、シクロヘキシル基等のシクロアルキル基;

トリフルオロメチル基、クロロエチル基等のハロゲノアルキル基;

シアノエチル基等のシアノアルキル基;

メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基、
nープロポキシエチル基、isoープロポキシエチル基、nーブトキシエチル基
、isoーブトキシエチル基、tertーブトキシエチル基のアルコキシアルキ
ル基等が挙げられる。

アラルキル基としては特に限定されるものではないが、例えば、ベンジル基、フェネチル基等が挙げられる。

[0011]

置換されていてもよいアルコキシ基としては特に限定されるものではないが、例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n- プレポキシ基、iso- プレポキシ基、n- ペンチルオキシ基、iso- ペンチルオキシ基、iso- ペンチルオキシ基、n- ペンチルオキシ基、iso- ペンチルオキシ基、n- ペンチルオキシ基、n- ペンチルオキシ基、n- ペプチルオキシ基、n- ペプチルカキシ基、n- ペプチルカキシ

アルコキシ基;

シクロペンチルオキシ基、シクロヘキシルオキシ基等のシクロアルコキシ基; メトキシメトキシ基、エトキシメトキシ基、エトキシエトキシ基、nープロポキ シメトキシ基、isoープロポキシメトキシ基、nープロポキシエトキシ基、i soープロポキシエトキシ基、nーブトキシエトキシ基、isoーブトキシエト キシ基、tertーブトキシエトキシ基、nーペンチルオキシエトキシ基、is oーペンチルオキシエトキシ基、nーヘキシルオキシエトキシ基、isoーヘキ シルオキシエトキシ基、2ーエチルエヘキシルオキシエトキシ基、3,5,5ー トリメチルヘキシルオキシエトキシ基、nーヘプチルオキシエトキシ基、nーオ クチルオキシエトキシ基、nーノニルオキシエトキシ基等のアルコキシアルコキ シ基等が挙げられる。

[0012]

置換されていてもよいアリール基としては特に限定されるものではないが、例 えば、フェニル基、トリル基、キシリル基、ナフチル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基、トリフルオロメチルフェニル基等が挙げられる。

置換されていてもよいアリールオキシ基としては特に限定されるものではないが、例えば、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、メトキシフェノキシ基、クロロフェノキシ基、プロモフェノキシ基、フルオロフェノキシ基、トリフルオロメチルフェノキシ基、ナフチルオキシ基等が挙げられる。

[0013]

一般式(1)において、 $R_1 \sim R_5$ のいずれかが炭素数 $1 \sim 1$ 5 の置換されていてもよいアルキル基、炭素数 $1 \sim 1$ 5 の置換されていてもよいアルコキシ基、炭素数 $1 \sim 1$ 5 の置換されていてもよいアリール基、炭素数 $1 \sim 1$ 5 の置換されていてもよいアリールオキシ基、 $1 \sim 1$ $1 \sim 1$

炭素数 $1\sim4$ の置換されていてもよいアルキル基、 R_7 が炭素数 $1\sim3$ 0 の置換されていてもよいアルコキシ基、炭素数 $6\sim2$ 0 の置換されていてもよいアリールオキシ基、または、 $-NR_{10}R_{11}$ (但し、 R_{10} 、 R_{11} は炭素数 $3\sim2$ 0 の置換されていてもよいアルキル基が好ましい)であることが好ましい。

[0014]

前記一般式(1)で表されるイエロー色素の具体例を第1表(表1~4)に示すが、本発明は、これらの色素に限定されるものではない。なお、表中の「ph」はフェニル基を表す。

[0015]

【表1】

	R,	-0C ₄ H ₁₃ (n)	-00,H1, (n)	-0C ₈ H ₁ , (n)	-00,H1, (n)	-00,H1, (n)	ンクロヘキンルオキン	-0C, vHs, (n)	-0C, oHs, (n)	-OCH CH(CoH)CtH	スソンラギ サツ	-NHC e H , 7 (n)	-00,H,,(n)	-N[CH&CH(C&H&)C4H&]&	-00,H1,(n)	3-メチルフェノキン
	п		-		-	_	~	_	_		_				_	
	R	-CH _s	-CH3	-CH3	-CH	-CH3	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH3	-CH3
•	R	H	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	H	Ħ	Ħ	H	H	H	Ħ
(1)	R,	H	H	Ħ	H	H	H	H	H	H	Ħ	H	H	H	H	Ħ
一般对(1)	R,	-C ₈ H ₁ , (n)	-C,H, (n)	-C,H, (I)	-C,H, (t)	-C ₆ H ₁ s(n)	ンクロヘキシル	-0C ₈ H ₁ , (n)	ンクロヘキシルオキシ	-COOCH (1) (1)	-c00cH ₂ c00c ₆ H ₁₁ (1)	-cooch2cooc4111(n)	-c00CH c00C H1 (n)	-C00CH 2 C00C 2 H 5	-cooc*H*(1)	-cnc,H,,(1)
	R	Н	H	耳	I	Ħ	Н	H	Ħ	H	н	H	Ħ	Ħ	H	Ħ
	R ₁	н	I	Ħ	H	Ħ	H	Ħ	Ħ	Ħ	H	Ħ	Ħ	н	Ħ	;
金米			8	က	4	ري د	9	~	00	6	1 0	1	1 2	1 3	1 4	د .

[0016]

【表2】

無	第1表 (つづき)	(%)			:				
电器			一般式(1)				·	·	
No.	R ₁	Re	Rs	R.	R	R	ㅁ	Ä	
1 6	H	H	-c00C ₈ H ₁₈ (n)	Ħ	н	-CH ₈		4-(t-7+1)72/+>)71/‡9
1.7	. Д	Ħ	-c00C ₈ H _{1,7} (n)	:¤*	Н	-CH ₃	-	2,5-3/+117=/+>	11/49
1 8	*==	Ħ	-cooch.ch(c.h.)c.h.		H	-CH3	7	-0C4H9(I)	
1 9	# #	Ħ	-cooch cooch ch(CH) -cooch	Ħ	Н	-CH3		-OCH CH	-OCH CH(C He)C1He
2 0	Ħ	H	-c00c, H, CH(CH,) CH, C(CH;) \$	H	H	-CH3		-00, H1, 7(n)	(u)
2 1	Ħ	Ħ	-c00CH ₂ -ph	" ‡‡	Ħ	-CH3-		スソジラギキシ	ナキシ
2 2	H	H	-0000CH CH(C H) C H	<u>'</u> ئلٹ'	н	-CH3-		-00,H1,(n)	(u)
2 3	:II	Ħ	-0000.H.CH(CH.)CH?C(CH.).	*##	Ħ	-CH³		-0C,H,(i)	^
2 4	:	Ħ	(I) %H*0000-	'E	н	-CH ₈	1	-0C ₈ H ₁ , (n)	(u)
2 5	≒ ‡‡	H	-0000°C1, (n)		·H	-CH ₃		-0C1 0HB1	(u)
	-II	H	-CONHCH2CH(C2H5)C4H9	* I	Ή	-CH3		-N[CH2CH(-N[CH2CH(Czhs)c,H3]2
2 7	Ħ	H	-conhc ₈ H _{1,7} (n)	\$I	Ħ	-CH³		-NHC .H (1)	
2 8		H	-CONHC2H,CH(CH3)CH2C(CH3)3	T	Ħ	-CH _s	_	-0CH CH(C H) C 'H'	, H ,) C, H,
5 9	-C3H,(1)	H	H		-C.H.(1)	-CH ₈	-)HO #HOO-	-0сн в СН (С в Н в) С ч Н в
3 0	-CH3-	н	ж		3.5	-CH ₈	-	-0CH 2 CH(C	OCH SCH(CzHs)C4H9

[0017]

【表3】

朝業			一般以(1)						
No.	R.	R	R³		R,	R	Re	ជ	R,
3 1	-C,H,(t)	Н	н		-C4H,(t)	H	-CH3	1	-00,H1,(n)
3 2	-C,H,(1)	H	H		н	田	-CH3	-	-0C ₈ H ₁ , (n)
ლ		-C ₃ H ₇ (1)	Ħ		H	H	-CH3-	_	-00 gH 1 7 (n)
3 4		H	-CONHCH CH(C HE)C HB)C4H9	H	H	-CH3	8	-0CH 2 CH (C 2 H 5) C 4 H 9
<i>ა</i>		Ħ	-CONHCH CH(C H) C H	C,H,	H	н	-CH3	2	-N[CH ₈ CH(C ₈ H ₆)C ₄ H ₉] ₈
3		н	-CONHCH, CH(C, H,)C, H,)C,H,	H	H	J -CR,	-	-OCH CH (C H) C H)
3 7		Ħ	-CONHCH CH(C2H3)C4H3)C4H,	H		-C4H9(n)	-	-OCH2CH(C2H3)C4H3
တ		-CP3	H		Ħ	 #	-CH3	-	-0CeH: 1(n)
3 9		-CF ₃	H		Ħ	H	-CH3	23	-00,H,,(n)
4 0		-0C,H,(i)	Ţ		Ħ	H	-CH3	-	-0C ₆ H _{1,1} (n)
4 1		-C.H.	-CaHs		Ħ	H	-CH3	-	-0C ₈ H _{1,1} (n)
4 2	Ħ	-ОСН в	-0CH 8		I	н	-CH3	_	-00 H (n)
4	-C ₂ H ₃	H		Ħ	H	-C ₂ H ₃	-CH3	-	-N[CH3CH(C2H6)C4H6]
4	Ħ) -000CH2CH(C	12CH(CaHa)CaHa	H	Ħ	н	-CH3	-	-00 gH 1 7 (n)
5	H	-000C H CH(H,CH(CH3)CH2C(CH3)3	Ħ	H	н	-CH3	-	-0C ₁ (H ₂ 1 (n)

[0018]

【表4】

No. R.										
60. R; R; R; R; R; R; n 7 H -C00CH3CH(C3H5)C4H5 H<	旬業				一般共	(1)				
6 H -C00CH ₂ CH(C ₂ H ₅)C ₄ H ₉ H H	No.	ا	R,		%	R.	R,	R	u	R,
7 H -C00CH2COOCH2CH(C2H2)C.H. H H H H H H H H -CH3 1 8 -C,H,G(1) H H H H H -CH3 1 9 -CO,H,G(1) H H H H H -CH3 1 1 -CO,CH,CH,C(2,H,CH) H H H H H H -CH3 1 2 -CO,CH,CH,C(2,H,CH,CH) H H H H H H H H -CH3 1 4 -CO,CH,CH,CH,C,H,GH,GH,GH,GH,GH,GH,GH,GH,GH,GH,GH,GH,G	4 8	Н	н°2)нз«н2002-	6)C4H9	Ξ	Ħ	I	-CH _s	-	-OCH CH(C2H6)C1H9
8 -C,H ₉ (1) H H H H H H H -CH ₈ 1 9 -CO ₀ CH ₉ (C) H H H H H -CH ₈ 1 1 -CO ₀ CH ₈ CO ₀ C ₈ H ₁ , (n) H H H H H -CH ₈ 1 2 -CO ₀ CH ₈ CO ₀ C ₈ H ₁ , (n) H H H H H -CH ₈ 1 3 -CO ₀ CH ₈ CH ₁ C ₈ H ₂)C ₄ H ₂ H H H H H H -CH ₈ 1 4 -CO ₀ CH ₈ CH ₁ C ₂ H ₂ CH ₁ C ₂ H ₃)C ₄ H ₃ H H H H H H H -CH ₈ 1 5 -CO ₀ CH ₁ CO ₀ CH ₂ CH ₁ C ₂ H ₃)C ₄ H ₃ H H	4 7	H	-cooch cooch get (C.H.)C.H.	H	##	H	-CF ₃	-	-OCH CH(C'H)C'H
9 -0C,H ₉ (1) 1 -C00CH ₉ COOC ₉ H _{1,1} (n) 2 -0C0CH ₉ COOC ₉ H _{1,1} (n) 3 -0C0C ₉ H _{1,1} (n) 4 -C00CH ₉ CH(C ₉ H ₉)C,H ₉ 4 -C00CH ₉ CH(C ₉ H ₉)C,H ₉ 5 -C00CH ₉ CH(C ₉ H ₉)C,H ₉ 6 -C00CH ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ CH ₉ CH(C ₉ H ₉)C,H ₉ 6 -C00CH ₉ COOC ₉ CH ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ CH ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ CH ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ CH ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ COOC ₉ CH ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ COC ₉ H ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ COC ₉ H ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ COC ₉ H ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ COC ₉ H ₉ CH(C ₉ H ₉)C,H ₉ 7 -C00CH ₉ COOC ₉ COC ₉ H ₉ COC ₉ CH ₉ COC ₉ H ₉ COC ₉ CH ₉ COC ₉ COC ₉ CH ₉ COC	4 8	-C,H,(1)		æ	* I	, j.c.,	エ	-CH3		-OCH CH(C He)C He
0 -CÔCCHSCOCCSH1, (I) H H H H H -CHS 1 2 -OCOCCHSCH(CSHS)C4H, H H H H H H -CHS 1 4 -COCCHSCH(CSHS)C4H, H H H H H H -CHS 1 5 -COCCHSCH(CSHS)C4H, H H H H H -CHS 1 6 -COCCHSCOCCHSCOCCHSCHS)C4H, H H H H H -CHS 1 7 -COCCHSCOCCHSCOCCHSCHS)C4H, H H H H H H -CHS 1 6 -CONGCHSCOCCHSCOCCHSCHS)C4H, H H H H H H -CHS 1 7 -COOCHSCOCCHSCOCCHSCHS)C4H, H H H H H H -CHS 1		(i) °H') 0-		H	:H	; ;; ;	H	-CH3	-	-OCH CH(C He)C HB
1 - côốc s H · i (1) 2 - 0côc s H · i (1) 3 - 0côc s H · CH · C H · C H · H · H · H · H · H		JO 8 HOOOD-	00C H 1 7 (n)	Ħ	H	्राद्धः	E	-CH ₃	-	-OCH CH(C Ha)C H
2 -0c0ch2cH(c2H3)C4H3 H H H H H H -CH3 1 3 -0c0cH2cH(C3H3)C4H3 H H H H H H H -CH3 1 4 -c00cH2cH(C3H3)C4H3 H H H H H H H H H H H H H H H H H H	5	1 H 5 2002-		Ħ	Ħ	二	I	-CH3		-0¢ H1 , (n)
3 -0c0c, H, Ch(ch,) Chs C(Ch,), H H H H H -CH, 1 5 -c00ch, Ch(c, H,) C, H, H H H H H -CH, 1 6 -c00ch, COC, Ch(c, H,) C, H, H H H H H -CH, 1 7 -c00ch, c00c, H, Och(Ch,), H H H H H -CH, 1 7 -c00ch, c00c, H, Och(Ch,), H H H H -CH, 1		-000CH CH	H(C,H,)C,H,	н	II.	· I I	H	-CH3	-	-0¢,H,,(n)
4 -c00ch, cH(C, H,) C, H, H H H H H -CH, 1 5 -c00ch, c00ch, cH(C, H,) C, H, H H H H H H -CH, 1 6 -c0NHCH, CH(C, H,) C, H, H H H H H H H -CH, 1 7 -c00ch, c00c, H, 0cH(CH,), H H H H H H H H H		0000 H.C	ÖHCCH,)CH,C(CH,),	н	H	海.	Ħ	-CH3		-00°H1 7 (n)
5 -c00cH,c00cH,cH(C,H,)C,H, H H H H H H H H H H H H H H H H H H		-сооснась	1(C2H3)C4H3	н	Œ	<u>;</u>	Ħ	-CH3		-N[CH2CH(C2H3)C4H9]2
6 -conney cheers cheers H H H H -cH 1 7 -cooch cooc H CH H H H H H H H H H H H H H H H H H)2, HOODO-	JOCH CH(CaHa)CAH	H	æ	*	Ħ	-CH3		-OCH CH(CiH)CAH
7 H H H CH.		CONHCH (OH(CeHs)C4Hs	Ħ	Ħ	<u>ن</u> ت:	F	-CH3		-NHCH2CH(C2H3)C4H3
)0 H2000-	JOC. H.OCH(CHa)	щ	*E	*## #	エ	-CH3		-0C*H*0CH(CH*)

[0019]

本発明のインクジェット記録用水系インクで用いる一般式(1)で表される色素は、常法のアゾカップリングに従い、例えば、下記に示すルートのように、一般式(2)(化3)で表されるアニリン類と、一般式(3)(化3)で表されるピリドン類とのカップリングにより製造される。

[0020]

【化3】

$$R_{3}$$
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{7}
 R_{1}
 R_{6}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{7}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{7}
 R_{7

(式中、 $R_1 \sim R_7$ は、前記に同じである。)

[0021]

一般式(1)で表される色素は、具体的には、例えば、塩酸中で、一般式(2)で表されるアニリン類に、亜硝酸ナトリウム水溶液を加えて、ジアゾ化した後、該ジアゾ化物を一般式(3)で表されるピリドン類へ加え、アゾカップリング反応を行い、生成した化合物を濾別することで得られる。なお、一般式(1)の製造方法においては、前記の方法に限定されるものではない。

[0022]

本発明で用いる色素は、特にインクジェット記録方式用の色素として有用であるが、その他の各種インクに使用することもできる。該色素はそのままでも使用可能であるが、特にインクジェット記録方式用の色素として用いる場合、色素中に含まれる不純物や無機物等による記録装置の吐出ノズルの目詰まりを防止するために、例えば、イオン交換樹脂や限外濾過による脱塩処理や、その他の脱塩処理方法等、あるいはカラムクロマトグラフィーにより精製を行ってもよい。

[0023]

本発明のインクジェット記録用水系インクは、一般式(1)で表される色素を 有機溶剤に溶解させてインクを調製したり、あるいは親水性の有機溶剤と水との 混合溶剤に溶解させてインク化することも可能であるが、水系溶剤に樹脂微粒子 の分散体を含有することがより好ましい。

すなわち、本発明のインクジェット記録用水系インクは、一般式(1)で表される色素、水、樹脂が主成分であり、乳化工程により着色された樹脂微粒子の分散 したエマルションの形態をとっていることがより好ましい。

また、本発明のインクジェット記録用水系インクは、必要に応じて、有機溶剤、 添加剤等を含有していてもよい。一般式(1)で表される色素は、単独で用いて もよいし、2種類以上を混合して用いてもよく、また、本発明の効果を損なわな い範囲で、その他の構造の異なった色素を混合してもよい。

[0024]

本発明のインクジェット記録用水系インクにおいて、樹脂微粒子を構成する樹脂としては、その表面にイオン性基を有するものであれば良く、例えば、ポリエステル系樹脂、ビニル重合体、スチレン系樹脂、スチレンーアクリル共重合体、ポリウレタン系樹脂等の様々な樹脂を用いることができる。

[0025]

ポリエステル系樹脂としては、多価カルボン酸類と多価アルコール類から構成され、それらを単独で、あるいは二種類以上組み合わせて重合させた樹脂等が挙 げられる。

使用される多価カルボン酸類としては、特に限定されるものではなく、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5ーナフタルレンジカルボン酸、2,6ーナフタレンジカルボン酸、ジフェン酸、スルホテレフタル酸、5ースルホイソフタル酸、4ースルホフタル酸、4ースルホナフタレンー2,7ージカルボン酸、5〔4ースルホフェノキシ〕イソフタル酸、スルホテレフタル酸、pーオキシ安息香酸、pー(ヒドロキシエトキシ)安息香酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フマール酸、マレイン酸、イタコン酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸等で示される芳香族多価カルボン酸、芳香族オキシカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸等が挙げられ、これらは金属塩、アンモニウム塩等としても使用できる。

[0026]

多価アルコール類としては、特に限定されるものではなく、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、2,2,4-トリメチルー1,3-ペンタンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエルスリトール、1,4-シクロヘキサンジオール、1,4-シクロペキサンジメタノール、スピログリコール、トリシクロデカンジオール、トリシクロデカンジメタノール、メタキシレングリコール、オルトキシレングリコール、1,4-フェニレングリコール、ビスフェノールA、ラクトン系ポリエステルポリオール類等で示される脂肪族多価アルコール類、脂環族多価アルコール類、芳香族多価アルコール類等が挙げられる。

[0027]

なお、前記の多価カルボン酸類と多価アルコール類とを、単独あるいは二種類以上組み合わせて重合させたポリエステル樹脂は、通常知られている末端封止可能な化合物を用いて、高分子鎖の末端の極性基を封止したものを使用することもできる。

[0028]

ビニル重合体、スチレン系樹脂、スチレンーアクリル共重合体等の樹脂としては、特に限定されるものではなく、例えば、以下に挙げる重合性単量体から得られるものが挙げられる。

この重合性単量体としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、a-メチルスチレン、p-エチルスチレン、2, 4-ジメチルスチレン、p-tert-ブチルスチレン、p-クロルスチレン、ジビニルベンゼン等のビニル系芳香族炭化水素;

アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル

、アクリル酸 t ーブチル、アクリル酸 n ーペンチル、アクリル酸イソペンチル、アクリル酸ネオペンチル、アクリル酸 3 ー (メチル) ブチル、アクリル酸ー 2 ー エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸 n ープロピル、メタクリル酸イソプロピル、メタクリル酸 n ーブチル、メタクリル酸 t ーブチル、メタクリル酸 n ーペンチル、メタクリル酸イソプチル、メタクリル酸 c ーズンチル、メタクリル酸イソペンチル、メタクリル酸ネオペンチル、メタクリル酸 3 ー (メチル) ブチル、メタクリル酸ー 2 ーエチルヘキシル、メタクリル酸ヘキシル、メタクリル酸オクチル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ウンデシル、メタクリル酸ドデシル等等の (メタ) アクリル酸エステル系;

アクリル酸、メタクリル酸、イタコン酸、マレイン酸等の不飽和カルボン酸; (メタ)アクリルアミド、Nー置換マレイミド、無水マレイン酸。(メタ)アク リロニトリル、ビニルケトン、酢酸ビニル、塩化ビニリデン等が挙げられる。 樹脂としては、これらを単独で、あるいは二種類以上組み合わせて重合させた樹脂等が挙げられる。

[0029]

ポリウレタン系樹脂としては、イソシアネート類と、イソシアネート類と反応 し得る官能基を有する化合物から構成され、それらを単独で、あるいは二種類以 上組み合わせて重合させた樹脂等が挙げられる。

イソシアネート類としては、例えば、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、フナメチレンジイソシアネート、2,2ージメチルペンタシジイソシアネート、2,2,4ートリメチルヘキサメチレンジイソシアネート、ブテンジイソシアネート、ブテンジイソシアネート、1,3ーブタジエン-1,4ージイソシアネート、2,4,4ートリメチルヘキサメチレンジイソシアネート、1,6,11ーウンデカトリイソシアネート、1,3,6ーヘキサメチレントリイソシアネート、1,8ージイソシアナト、4ーイソシアナトメチルオクタン、2,5,7ートリメチル-1,8ージイソ

シアナト-5-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、1,4-ブチレングリコールジプロピルエーテルー ω , ω ' -ジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、2-イソシアナトエチル-2,6-ジイソシアナトエチル-2,6-ジイソシアナトエチル-2,6-ジイソシアナトスキサノエート、2-イソシアナトプロピル-2,6-ジイソシアナトへキサノエート、キシリレンジイソシアナート、ビス(イソシアナトエチル)ベンゼン、ビス(イソシアナトプロピル)ベンゼン、 α , α , α ' -テトラメチルキシリレンジイソシアナート、ビス(イソシアナトブチル)ベンゼン、ビス(イソシアナトメチル)ナフタレン、ビス(イソシアナトメチル)フタレート、メシチレントリイソシアネート、2,6-ジ(イソシアナトメチル)フラン等の脂肪族ポリイソシアネート;

[0030]

イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジ シクロヘキシルメタンジイソシアネート、シクロヘキサンジイソシアネート、メ チルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンジイソ シアネート、2,2-ジメチルジシクロヘキシルメタンジイソシアネート、ビス (4-イソシアナトーnーブチリデン) ペンタエリスリトール、ダイマ酸ジイソ シアネート、2-イソシアナトメチル-3-(3-イソシアナトプロピル)-5 ーイソシアナトメチルービシクロ[2,2,1]ーヘプタン、2ーイソシアナト メチルー3ー(3ーイソシアナトプロピル)-6ーイソシアナトメチルービシク ロ「2, 2, 1] -ヘプタン、2-イソシアナトメチルー2-(3-イソシアナ トプロピル)-5-イソシアナトメチル-ビシクロ[2,2,1]-ヘプタン、 2-イソシアナトメチルー2-(3-イソシアナトプロピル)ー6-イソシアナ トメチルービシクロ [2, 2, 1] ーヘプタン、2ーイソシアナトメチルー3ー (3-イソシアナトプロピル)-6-(2-イソシアナトエチル)ービシクロ[2, 2, 1] -ヘプタン、2-イソシアナトメチル-3-(3-イソシアナトプ ロピル) -6-(2-イソシアナトエチル) -ビシクロ[2, 1, 1] -ヘプタ ン、2-イソシアナトメチルー2-(3-イソシアナトプロピル)-5-(2イソシアナトエチル) ービシクロ [2, 1, 1] ーヘプタン、2ーイソシアナト メチルー2ー(3ーイソシアナトプロピル) ー6ー(2ーイソシアナトエチル) ービシクロ [2, 2, 1] ーヘプタン、ノルボルナンビス(イソシアナトメチル) 等の脂環族ポリイソシアネート;

[0031]

フェニレンジイソシアネート、トリレンジイソシアネート、エチルフェニレンジ イソシアネート、イソプロピレンフェニレンジイソシアネート、ジメチルフェニ レンジイソシアネート、ジエチルフェニレンジイソシアネート、ジイソプロピル フェニレンジイソシアネート、トリメチルベンゼントリイソシアネート、ベンゼ ントリイソシアネート、ナフタレンジイソシアネート、メチルナフタレンジイソ シアネート、ビフェニルジイソシアネート、トリジンジイソシアネート、4,4 'ージフェニルメタンジイソシアネート、3,3'ージメチルジフェニルメタン ー4、4'ージイソシアネート、ビベンジルー4,4'ージイソシアネート、ビ ス (イソシアナトフェニル) エチレン、3,3'ージメトキシビフェニルー4ー 4'ージイソシアネート、トリフェニルメタントリイソシアネラト、ポリメリッ クMDI、ナフタルントリイツシアネート、ジフェニルメタシー 2, 4, 4'ー トリイソシアネート、3ーメチルジフェニルメタンー4,6,4'ートリイソシ アネート、4 ーメチルージフェニルメタンー3, 5, 2', 4', 6'ーペンタ イソシアネート、フェニルイソシアナトメチルイソシアネート、フェニルイソシ アナトエチルエチルイソシアネート、テトラヒドロナフチレンジイソシアネート 、ヘキサヒドロベンゼンジイソシアネート、ヘキサヒドロジフェニルメタン-4 , 4'-ジイソシアネート、ジフェニルエーテルジイソシアネート、エチレング リコールジフェニルエーテルジイソシアネート、 1 , 3 ープロピレングリコール ジフェニルエーテルジイソシアネート、ベンソフェノンジイソシアネート、ジエ チレングリコールジフェニルエーテルジイソシアネート、ジベシゾフランジイソ シアネート、カルバゾールジイソシアネート、エチルカルバゾールジイソシアネ ート、ジクロロカルバゾールジイソシアネート等の芳香族ポリイソシアネート;

[0032]

チオジエチルジイソシアネート、チオジプロピルジイソシアネート、チオジヘキ

シルジイソシアネート、ジメチルスルフォンジイソシアネート、ジチオジメチル ジイソシアネート、ジチオジエチルジイソシアネート、ジチオプロピルジイソシ アネート、ジシクロヘキシルスルフィド-4, 4'ージイソシアネート等の含硫 脂肪族イソシアネート;

ジフェニルスルフィドー2, 4 $^{\prime}$ $^$

ジフェニルジスルフィドー4, 4'ージイソシアネート、2, 2'ージメチルジファニルジスルフィドー5, 5'ージイソシアネート、3, 3'ージメチルジフェニルジスルフィドー5, 5'ージイソシアネート、4, 4'ージメチルジフェニルジスルフィドー6, 6'ージイソシアネート、4, 4'ージメチルジフェニルジスルフィドー5, 5'ージイソシアネート、3, 3'ージメトキシジフェニルジスルフィドー4, 4'ージイソシアネート、4, 4'ージメトキシジフェニルジスルフィドー3, 3'ージイソシアネート等の脂肪族ジスルフィド系イソシアネート;

[0033]

ジフェニルスルホンー4, 4'ージイソシアネート、ジフェニルスルホンー3, 3'ージイソシアネート、ベンジディンスルホンー4, 4'ージイソシアネート、ジフェニルメタンスルホンー4, 4'ージイソシアネート、4ーメチルジフェニルメタンスルホンー2, 4'ージイソシアネート、4, 4'ージメトキシジフェニルスルホンー3, 3'ージイソシアネート、3, 3'ージメトキシー4, 4'ージイソシアネートジベンジルスルホン、4, 4'ージメチルジフェニルスルホンー3, 3'ージイソシアネート、4, 4'ージーtertーブチルジフェニルスルホンー3, 3'ージイソシアネート、4, 4'ーメトキシベンゼンエチレンジスルホンー3, 3'ージイソシアネート、4, 4'ージクロロジフェニルスルホンー3, 3'ージイソシアネート、4, 4'ージクロロジフェニルスルホンー3, 3'ージイソシアネート等の芳香族スルホン系イソシアネート;4ーメチルー3ーイソシアナトベンゼンスルホニルー4'ーイソシアナトフェノ

ールエステル、4ーメトキシー3ーイソシアナトベンゼンスルホニルー4'ーイソシアナトフェノールエステル等のスルホン酸エステル系イソシアネート; 4ーメチルー4'ーイソシアネート、ジベンゼンスルホニルーエチレンジアミンー4,4'ージイソシアネート、4,4'ーメトキシベンゼンスルホニルーエチレンジアミンー3,3'ージイソシアネート、4ーメチルー3ーイソシアナトベンゼンスルホニルアニリドー4ーメチルー3'ーイソシアネート等の芳香族スルホン酸アミド;

チオフェン-2, 5-ジイソシアネート、チオフェン<math>-2, 5-ジイソシアナトメチル、1, 4-ジチアン-2, 5-ジイソシアネート、<math>1, 4-ジチアン-2, 5-ジイソシアナトメチル等の含硫複素環化合物等が挙げられる。

[0034]

前記イソシアネート類と反応し得る官能基を有する化合物としては、例えば、 エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラ エチレングリコールトプロピレングリコール、ジプロピレングリコール、ブチレ ングリコール、ネオペシチルガリコール、グリセリン、トリメチロールエタン、 トリメチロールプロパンプブタシトリオ無ル。1,2-メチルグリコサイド。ペ ンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソ ルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キ シリトール、アリトール、マニトール、ドルシトール、イディトール、グリコー ル、イノシトール、ヘキサントリオール、トリグリセロース、ジグリペロール、 ポリエチレングリコール、ポリプロピレングリコール、ポリテトラエチレンエー テルグリコール、トリス(2-ヒドロキシエチル)イソシアヌレート、シクロブ タンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプ タンジオール、シクロオクタシジオール。シクロヘキサシジメタノール、ヒドロ キシプロピルシクロヘキサノール、トリシクロ「5, 2, 1, $0^{2,6}$] デカンー ジメタノール、ビジクロ [4, 3, 0] ーノナンジオール、ジシクロヘキサンジ オール、トリシクロ [5, 3, 1, 1] ドデカンジオール、ビシクロ [4, 3, 0] ノナンジメタノール、トリシクロ[5, 3, 1, 1] ドデカンーエタノール 、ヒドロキシプロピルトリシクロ[5,3,1,1]ドデカノール、スピロ[3

, 4] オクタンジオール、1, 1'ービシクロヘキシリデンジオール、シクロヘキサントリオール、マルチトール、ラクチトール等の脂肪族ポリオール;

[0035]

ジヒドロキシナフタレン、トリヒドロキシナフタレン、テトレヒドロキシナフタ レン、ジヒドロキシベンゼン、ベンゼントリオール、ビフェニルテトラオール、

ピロガオール、(ヒドロキシナフチル) ピロガロール、トリヒドロキシフェナントレン、ビスフェノールA、ビスフェノールF、キシリレングリコール、ジ(2ーヒドロキシエトキシ) ベンゼン、ビスフェノールAービスー(2ーヒドロキシエチルエーテル)、テトラブロムビスフェノールA、テトラブロムビスフェノールAービスー(2ーヒドロキシエチルエーテル)、ビスフェノールS等の芳香族ポリオール;

ジブロモネオペンチルグリコール等のハロゲン化ポリオール;

ポリエステルポリオール、ポリカプロラクトン、ポリチオエーテルポリオール、ポリアセタールポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール、ポリチオエーテルポリオール、ポリブタジエンポリオール、フランジメタノールの他に、シュウ酸、グルタミン酸、アジピン酸、酢酸、フタル酸、イソフタル酸、サリチル酸、ピロメリット酸等の有機酸と前記ポリオールとの縮合反応生成物;前記ポリオールとエチレンオキシドや、プロピレンオキシド等アルキレンオキシドとの付加反応生成物;アルキレンポリアミンとアルキレンオキシドとの付加反応生成物;2、2ージメチロールプロピオン酸、2、2ージメチロールブタン酸、2、2ージメチロール市草酸、3、4ージアミノブタンスルホン酸、3、6ージアミノー2ートルエンスルホン酸、及びこれらのカプロラクトン変性品;

[0036]

2-メルカプトエタノール、3-メルカプト-1, 2-プロパンジオール、グリセリンジ(メルカプトアセテート)、1-ヒドロキシ-4-メルカプトシクロヘキサン、2, 4-ジメルカプトフェノール、2-メルカプトハイドロキノン、4-メルカプトフェノール、1, 3-ジメルカプト-2-プロパノール、2, 3-ジメルカプト-1, 3-ブタンジオール、ペンタエリスリトールトリス(3-メ

ルカプトプロピオネート)、ペンタエリスリトールモノ(3ーメルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)、ペンタエリスリトールペンタキス(3ーメルカプトプロピオネート)、ヒドロキシメチルートリス(メルカプトエチルチオメチル)メタン、1ーヒドロキシエチルチオー3ーメルカプトエチルチオベンゼン、4ーヒドロキシー4'ーメルカプトジフェニルスルフォン、2ー(2ーメルカプトエチルチオ)エタノール、ジヒドロキシエチルスルフィドモノ(3ーメルカプトプロピオネート)、ジメルカプトエタンモノ(サルチレート)、ヒドロキシエチルチオメチルートリス(メルカプトエチルチオ)メタン等のポリオールが挙げられる。

[0037]

この他に、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、シクロヘキシレンジアミン、ピペラジン、2ーメチルピペラジン、フェニレンジアミン、トリレンジアミン、キシレンジアミン、α,α'ーメチレンビス(2ークロルアニリン)3,3'ージクロルーα,α'ーピフェニルアミン、エーキシレンジアミン、イソフォロンジアミン、Nーメチルー3,3'ージアミノプロピルアミン、ノルボルネンジアミン等のポリアミノ化合物;

ポリチオール化合物;

セリン、リジン、ヒスチジン等のα-アミノ酸; 更に、これら上記の活性水素化 合物のハロゲン置換体も使用することが出来る。

これらはそれぞれ単独で用いることも、また2種類以上混合して用いても良い。

[0038]

これらの樹脂は、単独あるいは二種類以上混合させて用いることもできるが、 なんらこれらに限定されるものではない。なお、これらの樹脂は、その表面にイ オン性基を含有することによって優れた水分散性を発現する。

このようなイオン性基としては、スルホン酸基、カルボン酸基、硫酸基、リン酸基、ホスホン酸基およびホスフィン酸基もしくはこれらのアルカリ金属塩基やアンモニウム塩基、または第1級~第3級アミン基等を例示することができ、カルボン酸アルカリ金属塩基、カルボン酸アンモニウム塩基、スルホン酸アルカリ金

属塩基およびスルホン酸アンモニウム塩基が好ましく、特にスルホン酸アルカリ金属塩基およびスルホン酸アンモニウム塩基が水分散安定性の点で好ましい。 イオン性基の導入には、樹脂の合成時に、イオン性基を有する単量体を添加すればよい。

[0039]

例えば、ポリエステル系樹脂に、イオン性基としてカルボン酸アルカリ金属塩 基またはカルボン酸アンモニウム塩基を導入する場合には、ポリエステルの重合 末期にトリメリット酸等の多価カルボン酸を系内に導入することにより、樹脂末 端にカルボキシル基を付加し、さらにこれをアンモニア、水酸化ナトリウム等に て中和することによりカルボン酸塩の基に交換する方法用いることができる。

また、ポリエステル系樹脂微粒子にイオン性基としてスルホン酸アルカリ金属塩基またはスルホン酸アンモニウム塩基を導入する場合には、スルホン酸アルカリ金属塩基またはスルホン酸アンモニウム塩基を有するモノまたはジカルボン酸を系内に導入することにより、これらのイオン性基をポリエステル樹脂に導入することができる。

塩としてはアンモニウム系イオン、Li、Na、K、Mg、Ca、Cu、Fe 等が挙げられ、特に好ましいものはKまたはNaである。

[0040]

本発明のインクジェット記録用水系インクは、

- ①前記の重合性単量体に、インクジェット記録用色素を溶解あるいは分散させた 後、乳化重合を行い、必要に応じて添加剤等を加えて、均一溶解あるいは均一分 散、さらに水を加えて水分散体とし乳化を行う方法、
- ②重合を行い前記の樹脂を得た後、インクジェット記録用色素を直接添加し、必要に応じて添加剤等を加えて、均一溶解あるいは均一分散、さらに水を加えて水分散体とし乳化を行う方法、
- ③水溶性有機溶媒(例えば、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン等)や通常知られている造膜助剤(例えば、テキサノール、N, N-ジメチルピロリドン等)にインクジェット記録用色素を溶解あるいは分散させものを、重合を行った前記の樹脂に加え、また、必要に応じて添加剤等を加え

て、均一溶解あるいは均一分散、さらに水を加えて水分散体とし乳化を行い、さらに必要に応じて水溶性有機溶媒を留去する方法、

④水不溶性有機溶媒(例えば、トルエン等)にインクジェット記録用色素を溶解 あるいは分散させたものを、重合を行った前記の樹脂に加え、また、必要に応じ て添加剤等を加えて、均一溶解あるいは均一分散、さらに水を加えて水分散体と し乳化を行うい、さらに必要に応じて水不溶性有機溶媒を留去する方法、

あるいは、⑤前記の樹脂の水系分散体を得た後、インクジェット記録用色素を加 えて、高温処理を行う高温染色法、等によって製造される。

なお、製造に際しては、不溶物を除去するため、メンブランフィルター等の微小 孔径のフィルターで濾過することもある。

[0041]

乳化して得られた水系分散体中の着色樹脂微粒子は、平均粒径が 0.01~1μmであることが好ましく、さらに 0.05~0.8μmであることが特に好ましい。平均粒径が小さすぎると画像濃度の低下や耐水性の低下を引き起こす可能性があり、また、大きすぎるとインク中における分散安定性が低下して沈降物が生じ保存安定性が悪くなる問題や、ノズルの目詰まり等の問題を引き起こす可能性がある。

[0042]

着色樹脂微粒子中の色素の含有量は、用途、目的、色素の種類、インク組成、インクの印字濃度、目詰まり性にもよるが、樹脂中に、1~90重量%、好ましくは5~50重量%である。色素の含有量が少ないと十分な記録画像を得ようとした際、多量のインクを必要とし、記録装置の印字ヘッドや記録紙に負荷がかかり、また、多いと色素が樹脂粒子から析出し易くなりインク中に析出物を生じ、印字ヘッドの目詰まり等を引き起こす。

また、本発明のインクジェット記録用水系インクには、インクの色調を調製する ために、その他の色素や、インク特性を損なわない程度に、公知の染料や顔料を エマルジョンあるいは微分散状態に処理したものを添加しても差し支えない。 また、インク中の着色樹脂微粒子の含有量は1~70重量%、好ましくは5~5

0 重量%である。

[0043]

本発明の水系インクには、必要に応じて、インクの保湿性、表面張力、粘度、乾燥速度等を調整するために、水溶性有機溶媒を含有させることが可能である。水溶性有機溶媒としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリプロピレングリコール、ポリプロピレングリコール、1,3ープロパンジオール、グリセリン、チオグリコール等の多価アルコール類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル等の多価アルコールエーテル類;アセトン、メチルエチルケトン等のケトン類;N,Nージメチルホルムアミド、N,Nージエチルホルムアミド、N,Nージメチルアセトアミド等のアミド類;2ーピロリドン、Nーメチルー2ーピロリドン、Nービニルー2ーピロリドン、1,3ージメチルー2ーイミダゾリジノン等の含窒素化合物;テトラヒドロフラン、ジオキサン等のエーテル類;メタノール、エタノール、1ープロパノール、2ープロパノール、1ーブタノール、2ーブタノール等のアルコール類等を用いることができる。

これらの水溶性有機溶媒を含有させる場合には、インク全量に対して1~30重量%含有させることが好ましい。

[0044]

また、インクの保存安定性を向上させるために、インクのpHを $7\sim10$ に調整することが好ましい。pH調整剤としては、 $NaHCO_3$ 、 $Na_2B_4O_7$ 、 エタノールアミン、ジエタノールアミンおよびトリエタノールアミン等のアルカノールアミン、水酸化カリウム及び水酸化リチウム等のアルカリ金属の水酸化物等が挙げられる。

[0045]

また、本発明の水系インクには、従来使用されている種々の添加剤を必要に応じて加えることができる。例えば、紫外線吸収剤、酸化防止剤、分散剤、分散安定剤、キレート化剤、水溶性ポリマー、マスキング剤、防かび剤、防腐剤、粘度調節剤、界面活性剤、表面張力調整剤、pH調整剤、比抵抗値調整剤、近赤外線

吸収剤、浸透剤等の添加剤が挙げられる。

[0046]

前記の各成分から構成される本発明の水系インクは、インクジェット記録方式のインクとして使用する以外に、筆記用具等のインクとしても使用可能であり、記録特性、保存安定性、被記録材への定着性、記録画像の鮮明性、耐光性、耐水性等に優れたものである。

さらに、本発明で使用する色素は、有機溶剤に対する溶解性が高いため、捺染用 途、印刷用途等の溶剤型インクジェットインクとしても利用可能である。

[0047]

【実施例】

以下に、本発明を実施例により具体的に説明するが、本発明は以下の実施例に 限定されるものではない。なお、実施例中の「部」は重量部を示す。

[0048]

実施例1

・着色樹脂微粒子分散液 *(A) の製造

温度計、攪拌機を備えたオートクレーブ中に、ジメチルテレフタレート180部、5ーナトリウムスルホイソフタル酸ジメチルエステル10部、エチレングリコール130部、トリシクロデカンジメタノール25部、テトラブトキシチタネート0.1部を装入し、180~220℃で約3時間加熱してエステル交換反応を行った。次いで、反応混合物を240℃まで加熱した後、オートクレーブ内の圧力を10mmHgまでゆっくりと下げ、1時間反応を続けた。オートクレーブ内の圧力を大気圧までもどし、共重合ポリエステル樹脂を得た。

次に、得られたポリエステル樹脂100部、メチルエチルケトン150部、テトラヒドロフラン150部、および、第1表のNo.1で表されるインクジェット記録用色素10部を混合した後、水600部を添加し、さらに混合した。

この混合物を、0.8ミクロンのメンブランフィルターで濾過し、加熱して溶剤を留去させた。冷却後、水を加えて固形分濃度を20重量%とし、着色樹脂微粒子分散液(A)を得た。

分散液中に分散している微小樹脂粒子は平均粒径0.2μmを有するイエロー色

に着色された樹脂の微小粒子であった。

[0049]

・特性の評価

該着色樹脂微粒子分散液にグリセリンおよび水を添加し、固形分15重量%を 含有するインクジェット記録用水系インクを得た。

この水系インクを、ピエゾ方式インクジェットプリンター用インクカートリッジ に充填し、同方式プリンターにより印字及び画像記録を行い、下記の項目につい てインクの特性評価を行った。その結果、

- (A) 画像評価: ◎、(B) 耐水性評価: ◎、(C) 耐光性評価: ◎、
- (D) インクの保存安定性評価: O と良好であった。

[0050]

なお、各試験項目の評価基準は下記の通りである。

(A) 画像評価:普通紙に画像を形成させ、滲み状態を目視により判定した。

評価基準:滲みがなく、濃度も高く鮮明 : ◎

滲みがあるが画像には影響なし: O

滲みが目立つ : ×

(B) 耐水性評価:試験の画像記録された普通紙の印字部分を、水に漬けて自然 乾燥後、反射濃度計(マクベス社製)を用い、印字濃度(OD値)を測定し、耐 水性評価を行った。

評価基準:OD値が100~80% : ◎

OD値が80~70% : O

OD値が70~50% : Δ

OD値が50%未満 : ×

(C) 耐光性評価:キセノンフェードメーター(スガ試験機社製)を用い、100時間照射した後、印字濃度(OD値)を測定し、耐光性評価を行った。

評価基準:OD値が100~80% : ◎

OD値が80~70% : O

OD値が70~50% : Δ

OD値が50%未満 : ×

評価基準:異常なし: ○

異常あり : ×

[0051]

実施例2

・着色樹脂微粒子分散液(B)の製造例

温度計、攪拌機を備えたオートクレーブ中に、ジメチルテレフタレート 15 0部、ジメチルイソフタレート 50部、5ナトリウムスルホイソフタル酸ジメ チルエステル5部、エチレングリコール 150部、ネオペンチルグリコール 250部、テトラブトキシチタネート 0.1部を装入し、180~220℃で 約3時間加熱してエステル交換反応を行った。

次いで、反応混合物を20 4.0 ℃まで加熱した後、オートクレーブ内の圧力を10 mmHgまでゆっくりと下げ、1時間反応を続けた。オートクレーブ内の圧力を大気圧までもどし、共重合ポリエステル樹脂を得た。

次に、得られたポリエステル樹脂は 00部&メチルエチルケトシ150部、テトラヒドロフラン150部、第1表のNo.5で表されるインクジェット記録用色素10部を混合した後、水600部を添加し、さらに混合した。この混合物を0.8ミクロンのメンブランフィルターで濾過し、加熱して溶剤を留去させた。冷却後、水を加えて固形分濃度を20重量%とし、着色樹脂微粒子分散液(B)を得た。分散液中に分散している微小樹脂粒子は平均粒径0.3μmを有するイエロー色に着色された樹脂の微小粒子であった。

該着色樹脂微粒子分散液に、グリセリンおよび水を添加し、固形分15重量%を 含有するインクジェット記録用水系インクを得た。

実施例1と同様にインクの特性評価を行った結果、

- (A) 画像評価: ◎、(B) 耐水性評価: ◎、(C) 耐光性評価: ◎、
- (D) インクの保存安定性評価: O と良好であった。

[0052]

実施例3~40

特平11-255772

第1表に記載の各種の色素を用い、実施例1あるいは2の方法でインクジェット記録用水系インクを作製し、該インク特性の評価を行い、その結果を、第2表 (表5)に示した。なお、第2表中の「インク製造法」は実施例1、2のいずれかの方法を示す。

[0053]

第2表

		Ĭ				 1
実施例	色素	インク		特性評価		
	No:	製造法	A	В	C	D.
3	6	実施例Ⅰ	0	0	O	0
	7		<u></u>	<u></u>	<u></u>	Õ ·
4 5 6	9	Û Û	©	©	©	Ō
6	1 1	Û	0	0	0	0
7	12	Û	0	0	0	0
8	14	Û	0	©	©	0
9	15	Û	0	©	0	0
1 0	17	Û	0	©	©	0
1 1 1 1 2	18	f f 実施例 2	0	0	©	0
1 2	20	l û	0	0	©	0
1 3	2 1	実施例2	©	000000000000000000000000000000000000000		O
1 4	2 2	ប ជ* ប	©	<u> </u>	©	O
15.	2 3 2 2 5	មិ 🐔	(2)	©	©	O-
1 6	2.5	ប្	0	(O)	©	\mathcal{O}
1 7	26	Û Û ੈ	(O)	(O)*	© :	0,‡
1 8	2 8 2 9	ि † कि के	07	O	0	Ö
1 9 2 0	29	1 . –	0.5		O *	0
2 0 2 1	31	े Û ** Û **	O *		Ø.* Ø)(
2 2	3 4	実施例1	0	0	0	
2 3	3 5	Î	0	0	(a):	00
2 4	3 6	Û	0.7	©	@ *-	O~
2 4 2 5 2 6	3 7	ıή	0	0	0	õ
2 6	3 8	Î .	0	0	0	Ŏ
2 7	3 9	l n}	0	<u></u>	Ó	Ö
2 8	4 0	l û	0	0	0	0
2 9	4 1	Û	©	0	0	0
3 0	4 3	Û	©	0	0	0
3 1	4 4	① ① ① ① ② 実施例 2	©	0	0	0
3 2	4 6	実施例2	0	0	0	0
3 3	4 7	1	©	0	©	0
3 4	5 0	Û	©	O ~	© .	0
3 5 ° 3 6	5 1	Î *	©**	©#:	©	O'
3 5 3 6 3 7 3 8	5 1 5 2 5 3 5 4 5 5	j Û	©	<u>©</u>	l ©	O
3 7	5 3	T T	©	© :		O.
3 8	5 4	Y Y **	©	©	©	l O
39	5 5	û * û * û û * û û *				000000000000000000000000000000000000000
4 0	5 6	l R	l O	Ø	[©]	

[0054]

なお、従来の水系インクについても、同様に評価したところ、

- (A) 画像評価:×、(B) 耐水性評価:×、(C) 耐光性評価:△、
- (D) インクの保存安定性評価: O であった。

従来の水系インクでは、水溶性色素を使用しているため、特に滲みがひどく、耐水性が極端に悪い結果となった。

[0055]

比較例

油溶性染料 C.I.Solvent Yellow 16を用い、実施例1の方法に従い、水系インクを作製したところ、色素の溶解性が低いため一部不溶物が見られた。

該水系インクをフィルターを通して不溶物を除去した後、同様に特性評価を行った。その結果、

- (A) 画像評価:O、(B) 耐水性評価:O、(C) 耐光性評価:×、
- (D) インクの保存安定性評価:× であった。

特にインクの保存安定性において、色素が一部析出し、安定性が極端に悪く、印 字ヘッドの目詰まりをおこすなど、本発明のインクジェット記録用色素に比べ、 著しく悪かった。

[0056]

【発明の効果】

一般式(1)で表される色素を用いて作製した本発明のインクジェット記録用 水系インクは、耐光性、保存安定性に優れた性能を示す。特にインクジェット記 録方式のインクとして使用する場合、高品位で滲みのない画像形成が可能となり 、得られた記録画像も耐水性に優れた特性を有するものである。

【書類名】 要約書

【要約】

【解決手段】 下記一般式(1)で表される色素を、少なくとも1種含有することを特徴とするインクジェット記録用インク。

$$R_{3} \xrightarrow{R_{4}} R_{5} \qquad R_{6} \qquad CN$$

$$R_{4} \qquad R_{5} \qquad HO \qquad (CH_{2})_{n}COR_{7}$$

【効果】 耐光性、保存安定性に優れた性能を示し、特にインクジェット記録方式のインクとして使用した場合、高品位で滲みのない画像形成が可能となり、得られた記録画像も耐水性に優れた特性を有するインクジェット記録用水系インクを提供する。

【選択図】なし

出願人履歴情報

識別番号

[000005887]

1. 変更年月日 1997年10月 1日

[変更理由] 名称変更

住 所 東京都千代田区霞が関三丁目2番5号

氏 名 三井化学株式会社

ć