# 1 Введение

# 1.1 Электрический ток

| Электј      | рический ток —                        |
|-------------|---------------------------------------|
| –<br>Услові | ия возникновения электрического тока: |
| 1           |                                       |
| 2           |                                       |
| 3           |                                       |
|             |                                       |
|             | Сила тока                             |
| Сила т      | гока —                                |
| _<br>Ф      | Рормула силы тока:                    |
|             |                                       |
|             | Напряжение                            |
| папря       | жение —                               |
| 4           | Рормула напряжения:                   |
|             |                                       |
|             | ЭДС<br>                               |
| _           |                                       |
| Этлич       | ие напряжения от ЭДС:                 |
| 1           |                                       |
| 2           |                                       |
| _           |                                       |
| 1.5         | Закон Ома для участка цепи            |
|             | Ома для участка цепи —                |
| _           | 5                                     |
| Φ<br>       | Рормула:                              |
|             |                                       |
|             |                                       |
|             |                                       |

| 1.6   | Закон Ома для пол       | нои цепи |  |  |
|-------|-------------------------|----------|--|--|
| Закон | Ома для полной цепи — _ |          |  |  |

| Фор | мула: |  |  |  |
|-----|-------|--|--|--|
|     | -     |  |  |  |
|     |       |  |  |  |
|     |       |  |  |  |
|     |       |  |  |  |

## 1.7 Схематическое обозначение электронных компонентов



## Мультиметр

| Мультиметр —                                      |
|---------------------------------------------------|
| Измерение силы тока                               |
|                                                   |
|                                                   |
|                                                   |
| Мультиметр подключается —                         |
| Щупы вставляются в клемы при токе порядка 100 мА: |
| Черный –                                          |
| Красный –                                         |
| При токе порядка $1A$ :                           |
| Черный –                                          |
| Красный –                                         |
| Измерение напряжения                              |

| Мультиметр подключается – |  |
|---------------------------|--|
| Щупы вставляются в клемы: |  |
| Черный –                  |  |
| Красный –                 |  |
|                           |  |

#### 1.9 Первая цепь. Измерение силы тока и напряжения

- 1. Соберите схему, изображенную на рисунке 1.
- 2. Замкните ключ K.
- 3. Не размыкая ключ, выполните следующее задание:
  - (а) Измерьте силу тока и напряжение на лампе.
  - (b) Рассчитайте сопротивление лампы по закону Ома для участка цепи.
  - (с) Подождите 3-5 минут, еще раз проведите измерения и вычисления, сравните результаты.
  - (d) Занесите значения в таблицу 1.
- 4. Запишите вывод о проделанной работе, предполжите, почему сопротивление изменилось.



Рис. 1: Измерение силы тока и напряжения

Таблица 1: Измерение силы тока и напряжения

| $\mathcal{N}_{ar{\mathbf{e}}}$ | Сила тока I, А | Напряжение U, В | Сопротивление R, Ом |
|--------------------------------|----------------|-----------------|---------------------|
| Сразу после включения          |                |                 |                     |
| Через 5 минут после включения  |                |                 |                     |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |

### 2 Источники питания

#### 2.1 Последовательное подключение батарей.

- 1. Соберите по очереди схемы, изображенные на рисунке 2.
- 2. Сравните яркость лампы во всех трех случаях.
- 3. Укажите направление тока для каждой цепи.
- 4. Измерьте напряжение на лампе, напряжение на батарее, силу тока в цепи в каждом случае и занесите полученные значения в таблицу 2.
- 5. Запишите вывод о полученных результатах.



Рис. 2: Последовательное подключение источников тока.

Таблица 2: Последовательное подключение

| Схема | ЭДС Е, В | Сила тока I, А | Напряжение U, В |
|-------|----------|----------------|-----------------|
| a.    |          |                |                 |
| б.    |          |                |                 |
| В.    |          |                |                 |

| Быбод |  |
|-------|--|
|       |  |
|       |  |

#### 2.2 Параллельное подключение батарей.

- 1. Соберите по очереди схемы, изображенные на рисунке 3.
- 2. Для каждого случая выполните следующее задание.
  - (а) Замкните сначала один ключ, пронаблюдайте яркость лампы.
  - (b) Измерьте силу тока в цепи и напряжение на лампе. Занесите полученные данные в таблицу.
  - (с) Замкните оба ключа, сравните яркость с предыдущим случаем.
  - (d) Измерьте силу тока в цепи и напряжение на лампе. Занесите полученные данные в таблицу 3.
- 3. Запишите вывод о полученных результатах.



Рис. 3: Параллельное подключение источников тока.

Таблица 3: Параллельное подключение источников

| Схема | Положение ключей | Сила тока I, А | Напряжение U, В |
|-------|------------------|----------------|-----------------|
| 2.a.  | замкнут 1 ключ   |                |                 |
| Δ.α.  | замкнуто 2 ключа |                |                 |
| 2.6.  | замкнут 1 ключ   |                |                 |
| 2.0.  | замкнут 2 ключа  |                |                 |

| Вывод — | · |  |  |  |
|---------|---|--|--|--|
| , ,     |   |  |  |  |
|         |   |  |  |  |
|         |   |  |  |  |

#### 2.3 Внутреннее сопротивление батареи.

- 1. Соберите схему, изображенную на рисунке 4.
- 2. Замкните ключ
- 3. Измерьте ЭДС батареи и силу тока в цепи
- 4. Рассчитайте внутреннее сопротивление r по формуле:

$$r = \frac{\mathscr{E}}{I}$$

- 5. Занесите значение в таблицу 4.
- 6. Сделайте вывод о возможности пренебрежения внутреннего сопротивления, по сравнению с резисторами, входящими комплект.



Рис. 4: Внутреннее сопротивление источника.

Таблица 4: Внутреннее сопротивление

| raceinga ii ziij ipeiniee eenpeinisteinie |                                                        |                             |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------|-----------------------------|--|--|--|--|
| ЭДС батареи<br>&, В                       | Сила тока короткого замыкания $I_{\kappa_3},  {\rm A}$ | Внешнее сопротивление r, Ом |  |  |  |  |
|                                           |                                                        |                             |  |  |  |  |

| Вывод —         |    |  |  |
|-----------------|----|--|--|
| , ,             |    |  |  |
|                 |    |  |  |
|                 |    |  |  |
| *Порог включени | ıa |  |  |

#### 2.4 Порог включения

- 1. Придумайте и соберите схему для исследования разной силы тока и напряжения работающей лампы.
- 2. Нарисуйте вашу схему в прямоугольнике ниже.
- 3. Определите минимальное значение силы тока и напряжения работающей лампы. Занесите значения в таблицу 5.
- 4. Опишите в выводе принцип работы вашей схемы и метод нахождения и расчета значений.

| 1 |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| 1 |  |  |
| 1 |  |  |
|   |  |  |
| 1 |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

Рис. 5: Порог включения

Таблица 5: Порог включения

|   |               | P             |
|---|---------------|---------------|
|   | $I_{min}$ , A | $U_{min}$ , B |
| ĺ |               |               |
|   |               |               |
|   |               |               |

| Вывод — . |  |  |  |
|-----------|--|--|--|
| , ,       |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

|       | Источники света. Введение в теорию полупроводников.                                                             |
|-------|-----------------------------------------------------------------------------------------------------------------|
| Ламп  | 1a —                                                                                                            |
| Срож  |                                                                                                                 |
| Свето | одиод —                                                                                                         |
|       |                                                                                                                 |
|       |                                                                                                                 |
| 3.1   | РN-переход. Введение                                                                                            |
| Диод  | ( —                                                                                                             |
|       |                                                                                                                 |
| Полу  | проводники —                                                                                                    |
| Полу  | проводник N-типа —                                                                                              |
| Полу  |                                                                                                                 |
| Прям  |                                                                                                                 |
| прим  | пос и обратное подкуло тепие диода.                                                                             |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       | Главное свойство диода/светодиода —                                                                             |
| 0.0   |                                                                                                                 |
| 3.2   | Параллельное и последовательное подключение светодиода.                                                         |
|       | Соберите по очереди схемы, указанные на рисунке 6.                                                              |
|       | Измерьте ЭДС батареи.                                                                                           |
| 3.    | Укажите направление тока при всех замкнутых кнопках.                                                            |
| 4.    | Замкните ключ К.                                                                                                |
| 5.    | Для каждого случая выполните следующее задание:                                                                 |
|       | (a) Поочередно замыкая ключи (только для первого случая), измерьте напряжение и силу тока на каждом светодиоде. |
|       | (b) Поменяйте полярность источника на обратную.                                                                 |
|       | (с) Выполните пункт (а) еще раз.                                                                                |
| 6.    | Занесите все результаты в таблицу 6.                                                                            |
| 7.    | Сделайте выводы по наблюдениям.                                                                                 |
|       | Вывод —                                                                                                         |
|       |                                                                                                                 |



Рис. 6: Параллельное и последовательное подключение светодиода

Таблица 6: Прямое и обратное подключение светодиода.

|                 | 1 1        | 1 , ,            |                    | / 1 / 1              |                      |
|-----------------|------------|------------------|--------------------|----------------------|----------------------|
| Подключение     | Полярность | ЭДС батареи Е, В | $U_{\kappa p}$ , B | $U_{\text{жел}}$ , В | $U_{\text{зел}}$ , В |
| Параллельно     | Прямая     |                  |                    |                      |                      |
|                 | Обратная   |                  |                    |                      |                      |
| Последовательно | Прямая     |                  |                    |                      |                      |
| Последовательно | Обратная   |                  |                    |                      |                      |

#### 3.3 Подключение светодиода с различным сопротивлением.

- 1. Соберите схему, указанную на рисунке 7.
- 2. При замкнутом ключе измерьте напряжение на каждом светодиоде.
- 3. Занесите результаты в таблицу 7.
- 4. Запишите вывод о зависимости яркости светодиода от номинала сопротивления.



Рис. 7: Подключение светодиода с различным сопротивлением

Вывод — \_\_\_\_\_

#### 3.4 Поочередное свечение лампы и светодиода.

- 1. Соберите схему, указанную на рисунке 8.
- 2. Замкните ключ К1, пронабдюдайте горение лампы и светодиода.
- 3. Измерьте силу тока и напряжение на лампе и светодиоде. Занесите результаты в таблицу.
- 4. Замкните ключ К1 и К2, пронаблюдайте горение лампы и светодиода.

Таблица 7: Зависимость яркости светодиода от сопротивления.

| Схема        | $U_1$ , B | $U_2$ , B | $U_3$ , B | $U_4$ , B |
|--------------|-----------|-----------|-----------|-----------|
| Ключ замкнут |           |           |           |           |

- 5. Измерьте силу тока и напряжение на лампе и светодиоде. Занесите результаты в таблицу 8.
- 6. Запишите вывод о том, почему в одном случае горит только лампа, а в другом только светодиод.



Рис. 8: Поочередное свечение светодиода и лампы

Таблица 8: Поочередное свечение лампы и светодиода.

| Схема        | Сила тока             | Сила тока                     | Напряжение             | Напряжение                        |
|--------------|-----------------------|-------------------------------|------------------------|-----------------------------------|
|              | в лампе $I_{\pi}$ , А | в светодиоде $I_{\rm cb}$ , А | на лампе $U_{\pi}$ , В | на светодиоде $U_{\rm cb},{ m B}$ |
| К1 замкнут   |                       |                               |                        |                                   |
| К2 разомкнут |                       |                               |                        |                                   |
| К1 замкнут   |                       |                               |                        |                                   |
| К2 замкнут   |                       |                               |                        |                                   |

| Вывод — |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |