目 录

第 1	章 PoE配置	
	1.1 PoE简介	1-1
	1.1.1 PoE概述	
	1.1.2 协议规范	1-1
	1.2 PoE配置任务简介	1-2
	1.3 配置PoE接口	1-2
	1.3.1 通过命令行配置PoE接口	
	1.3.2 通过PoE配置文件配置PoE接口	1-3
	1.4 配置PD功率管理	1-4
	1.5 配置PSE的功率告警阈值	1-5
	1.6 在线升级PSE处理软件	1-6
	1.7 配置检测PD断开的方式	1-6
	1.8 使能PSE检测非标准PD功能	1-7
	1.9 PoE显示和维护	
	1.10 PoE典型配置举例	1-8
	1.11 常见配置错误举例	1-9
	1.11.1 配置PoE接口优先级为critical不成功	1-9
	1.11.2 应用PoE配置文件到PoE接口不成功	1-9

第1章 PoE 配置

1.1 PoE 简介

1.1.1 PoE 概述

PoE(Power over Ethernet,以太网供电,又称远程供电)是指设备通过以太网接口,利用双绞线对外接 PD(Powered Device,受电设备)设备(如 IP 电话、无线 AP、网络摄像头等)进行远程供电。

1. PoE 的优点

- 可靠: 电源集中供电,备份方便;
- 连接简捷:网络终端不需外接电源,只需要一根网线;
- 标准:符合 IEEE 802.3af 标准,使用全球统一的电源接口;
- 应用前景广泛:可以用于IP电话、无线 AP(Access Point,接入点)、便携设备充电器、刷卡机、网络摄像头、数据采集等。

2. PoE 系统组成

PoE 系统包括 PoE 电源、PSE 和 PD。

PoE 电源

PoE 电源为整个 PoE 系统供电,分为外置电源和内置电源两种类型。

PSE

PSE(Power Sourcing Equipment,供电设备)是单板(子卡)。每个 PSE 对单板(子卡)内的 PoE 接口进行独立管理。PSE 在 PoE 接口的线路上寻找、检测 PD,对 PD 分类,并向其供电。当检测到 PD 拔出后,PSE 停止供电。

具备 PoE 供电能力的以太网接口称为 PoE 接口,包括 FE 和 GE。

PD

PD 是接受 PSE 供电的设备。分为标准 PD 和非标准 PD,标准 PD 是指符合 IEEE 802.3af 标准的 PD 设备。PD 设备在接受 PoE 电源供电的同时,允许连接其他电源供电,进行电源冗余备份。

1.1.2 协议规范

与 PoE 相关的协议规范为: IEEE 802.3af。

1.2 PoE 配置任务简介

表1-1 PoE 配置任务简介

配置任务	说明	详细配置
配置 PoE 接口	必选	1.3
配置 PD 功率管理	可选	1.4
配置 PSE 的功率告警阈值	可选	1.5
在线升级 PSE 处理软件	可选	1.6
配置检测 PD 断开的方式	可选	1.7
使能 PSE 检测非标准 PD 功能	可选	1.8

1.3 配置 PoE 接口

配置 PoE 接口有两种方式,两种方式的作用一样,可以根据具体的需求选择,具体方式为:

- 通过命令行配置;
- 通过配置 PoE 配置文件,并将 PoE 配置文件应用到指定的 PoE 接口。

配置单独 PoE 接口时,一般采用命令行配置;而批量配置 PoE 接口时,一般采用 PoE 配置文件配置。

<u>/!</u>\ 注意:

对于同一 PoE 接口下的同一 PoE 配置参数,只能选择一种方式进行配置(包括修改和删除)。

PoE 接口远程供电有两种模式,为信号线供电和空闲线供电。

- 对于只有信号线的设备只能选择用信号线供电;
- 对于既有空闲线也有信号线的设备,需要根据设备的实际情况选择采用何种模式供电。

□ 说明:

S5500EI 系列以太网交换机不支持空闲线供电模式(spare),如果此时 PD 只支持空闲线供电模式,则需要转接才能给该 PD 供电。

1.3.1 通过命令行配置 PoE 接口

为能方便、清晰地辨别出 PoE 接口连接的具体 PD 设备,可以配置 PD 的描述信息。

操作 命令 说明 进入系统视图 system-view interface interface-type 进入 PoE 接口视图 interface-number 必选 使能 PoE 接口远程 poe enable 缺省情况下, PoE 接口远程供电功能为 供电功能 禁用状态 可选 配置 PoE 接口最大 poe max-power 缺省情况下, PoE 接口最大供电功率为 供电功率 max-power 15400 毫瓦 可选 配置 PoE 接口远程 poe mode signal 缺省情况下, PoE 接口远程供电的模式 供电模式 为采用信号线 (signal) 供电

表1-2 通过命令行配置 PoE 接口

1.3.2 通过 PoE 配置文件配置 PoE 接口

配置 PoE 接口连接

PD 的描述信息

PoE 配置文件用于对具有相同属性的批量 PoE 接口进行配置,以简化用户的操作。该配置方式是对普通的命令行配置的一种补充。

poe pd-description string

可选

缺省情况下, PoE 接口连接 PD 的描述

信息为空,即没有描述信息

PoE 配置文件中的命令被称为配置项。

表1-3 通过 PoE 配置文件配置 PoE 接口

操作	命令	说明
进入系统视图	system-view	-
创建 PoE 配置文件,并进入 PoE 配置文件视图	poe-profile profile-name [index]	必选
使能 PoE 接口远程供电功能	poe enable	必选 缺省情况下,PoE 接 口远程供电功能为禁 用状态
配置 PoE 接口最大供电功率	poe max-power max-power	可选 缺省情况下,PoE 接 口最大供电功率为 15400毫瓦

	操作	命令	说明
配置 PoE 接口远程供电模式		poe mode signal	可选 缺省情况下,PoE 接 口远程供电的模式为 采用信号线(signal) 供电
返回系统		quit	-
将 PoE 配置文	将 PoE 配置文件应用 到指定一个或多个 PoE 接口	apply poe-profile { index index name profile-name } interface interface-range	
件应用 到	Z用 在 PoE 接口视图下将 E PoE 配置文件应用到	interface interface-type interface-number	二者必选其一
PoE 接口		apply poe-profile { index index name profile-name }	

\wedge

<u>/!</u>\ 注意:

- 当 PoE 配置文件已被应用到某 PoE 接口后,该 PoE 接口不能再接受其它 PoE 配置文件的配置。
- 如果 PoE 配置文件已经应用,必须先在应用了该 PoE 配置文件的 PoE 接口上执 行 undo apply poe-profile 命令,取消 PoE 配置文件在该 PoE 接口上的应用后,才能删除或修改该 PoE 配置文件。
- 命令行对 PoE 接口进行过的配置不能再通过 PoE 配置文件进行配置。若用户想要通过 PoE 配置文件重新进行配置,必须先取消命令行对此 PoE 接口所做的配置。
- 命令 poe max-power max-power和 poe priority { critical | high | low }必须保证用同一种方式配置,即只能通过命令行配置或只能通过 PoE 配置文件配置。

1.4 配置 PD 功率管理

PD 供电优先级取决于 PoE 接口的优先级。PoE 接口的优先级按照高低顺序为: Critical,High 和 Low。PoE 接口能否得到供电要受 PD 功率管理策略的控制。 所有 PSE 都执行相同的 PD 功率管理策略。PSE 对接入的 PD 设备进行供电时:

- 在缺省情况下, PSE 功率过载时, 不对新接入的 PD 供电;
- 在优先级策略下, PSE 电源功率过载时,接入新的 PD,将对优先级低的 PD 断电,保证优先级高的 PD 供电。

□ 说明:

如果已接入的 PD 功率突然增加,造成 PSE 功率过载时,停止对连接在低优先级 PoE 接口上的 PD 的供电。

当 PSE 剩余保证功率(PSE 最大功率一该 PSE 中优先级为 Critical 的 PoE 接口所分配的功率,与 PoE 接口是否使能远程供电功能无关)小于该 PoE 接口最大供电功率时,设置 Critical 优先级不成功; 否则,该 PoE 接口优先级成功设为 Critical,并将抢占部分低优先级 PD 的功率,被抢占的 PD 断电,但是这些 PoE 接口的配置不变。将某个 PoE 接口的优先级从 Critical 降为其它优先级,可能导致其它 PoE 接口的 PD 得到供电。

1. 配置准备

使能 PoE 接口远程供电功能。

2. 配置 PD 功率管理

操作 命令 说明 进入系统视图 system-view interface interface-type 配置 在 PoE 接口视图下配置 interface-number 二者可选其一 PoE PoE 接口供电优先级 接口 poe priority { critical | high | low } 缺省情况下, PoE 供电 接口供电优先级 poe-profile profile-name [index] 优先 在PoE配置文件视图下配 为 low 级 置 PoE 接口供电优先级 poe priority { critical | high | low } 可选 缺省情况下,未配 配置 PD 功率管理优先级策略 poe pd-policy priority 置 PD 功率优先 级策略

表1-4 配置 PD 功率管理

1.5 配置 PSE 的功率告警阈值

当 PSE 在当前功率利用率首次超过或低于设置的功率阈值时,系统会发送 Trap 告警信息。

操作命令说明进入系统视图system-view-配置 PSE 的功率告警阈值poe utilization-threshold
utilization-threshold-value可选
缺省情况下, PSE 的功率告警
阈值为 80%

表1-5 配置 PSE 的功率告警阈值

1.6 在线升级 PSE 处理软件

在线升级 PSE 处理软件有两种模式:

- refresh 模式,该模式是在 PSE 中原有处理软件的基础上对其进行升级更新。 一般情况下使用 refresh 模式进行 PSE 处理软件的在线升级。
- full 模式,该模式是将 PSE 中原有处理软件彻底删除,再重新装入。PSE 处理 软件被损坏的情况下(表现为所有的 PoE 命令执行不成功),可用 full 模式进 行升级,使软件恢复。

如果 PSE 处理软件的在线升级过程因意外而中断(例如发生错误导致设备重启),重启后用 full 方式升级失败时,请将设备断电重启后再用 full 方式升级即可成功。升级后再手动重启设备,才能使原来的 PoE 配置恢复作用。

操作命令说明进入系统视图system-view-在线升级 PSE 处理软件poe update { full | refresh } filename可选

表1-6 在线升级 PSE 处理软件

1.7 配置检测 PD 断开的方式

为了检测 PD 是否与 PSE 断开,PoE 提供了两种方式可以检测,分别是交流方式和直流方式。交流方式相对于直流方式比较省电。

表1-7 配置检测 PD 断开的方式

操作	命令	说明
进入系统视图	system-view	-
配置 PD 断开检测 的方式	poe disconnect { ac dc }	可选 缺省情况下,检测 PD 断开方式为 AC

在设备运行过程中, 若调整 PD 断开的检测方式, 会导致连接的 PD 断电, 请慎重!

1.8 使能 PSE 检测非标准 PD 功能

PD 设备分为标准 PD 和非标准 PD。通常情况下,PSE 只能检测到标准 PD,并为 其供电。只有在使能 PSE 检测非标准 PD 功能后, PSE 才能检测到非标准 PD, 并 为其供电。

操作 命令 说明 进入系统视图 system-view 可选 使能 PSE 检测非标准 poe legacy PD 功能 enable 缺省情况下, PSE 检测非标准 PD 功能是禁止状态

表1-8 使能 PSE 检测非标准 PD 功能

1.9 PoE 显示和维护

在完成上述配置后,在任意视图下执行 display 命令可以显示配置后 PoE 的运行情 况,通过查看显示信息验证配置的效果。

表1-9 PoE 显示和维护

操作	命令
显示所有PSE的ID和模块以及槽位的对应关系	display poe device
显示设备指定 PoE 接口的供电状态	display poe interface [interface-type interface-number]
显示 PoE 接口的功率信息	display poe interface power [interface-type interface-number]
显示 PSE 信息	display poe pse
显示 PoE 配置文件的配置和应用的所有信息	display poe-profile [index index name profile-name]
指定 PoE 接口当前生效的 PoE 配置文件配置项和应用的所有信息	display poe-profile interface interface-type interface-number

1.10 PoE 典型配置举例

1. 组网需求

设备通过 PoE 接口为 PD 设备供电。

- GigabitEthernet1/0/1 与 GigabitEthernet1/0/2 接入 IP 电话。
- GigabitEthernet1/0/11 与 GigabitEthernet1/0/12 接入 AP 设备。
- GigabitEthernet1/0/2 的供电优先级为 critical,要求在新接入 PD 导致 PSE 功率过载时,停止对新接 PD 入供电(即采用 PD 功率管理的缺省策略)。
- GigabitEthernet1/0/11 下接的 AP 设备的功率不能超过 9000 毫瓦。

2. 组网图

图1-1 PoE 组网图

3. 配置步骤

使能 PoE 接口 GigabitEthernet1/0/1、GigabitEthernet1/0/2、GigabitEthernet1/0/11和 GigabitEthernet1/0/12 远程供电功能。

<Sysname> system-view
[Sysname] interface G.

[Sysname] interface GigabitEthernet 1/0/1

[Sysname-GigabitEthernet1/0/1] poe enable

 $[\, {\tt Sysname-GigabitEthernet1/0/1}] \ \, {\tt quit}$

[Sysname] interface GigabitEthernet 1/0/2

[Sysname-GigabitEthernet1/0/2] poe enable

 $[Sysname-Gigabit {\tt Ethernet1/0/2}] \ quit$

[Sysname] interface GigabitEthernet 1/0/11

[Sysname-GigabitEthernet1/0/11] poe enable

[Sysname-GigabitEthernet1/0/11] quit

[Sysname] interface GigabitEthernet 1/0/12

[Sysname-GigabitEthernet1/0/12] poe enable

[Sysname-GigabitEthernet1/0/12] quit

#配置 GigabitEthernet1/0/2 对外供电的优先级为 critical。

<Sysname> system-view

[Sysname] interface GigabitEthernet 1/0/2

[Sysname-GigabitEthernet1/0/2] poe priority critical

[Sysname-GigabitEthernet1/0/2] quit

#配置 PoE 接口 GigabitEthernet1/0/11 的最大供电功率为 9000 毫瓦。

[Sysname] interface GigabitEthernet 1/0/11

[Sysname-GigabitEthernet1/0/11] poe max-power 9000

[Sysname-GigabitEthernet1/0/11] quit

配置完成后, IP 电话和 AP 设备被供电,能够正常工作。

1.11 常见配置错误举例

1.11.1 配置 PoE 接口优先级为 critical 不成功

1. 原因分析

- PSE 剩余保证功率小于 PoE 接口的最大供电功率。
- PoE 接口的优先级已经通过其他方式进行配置。

2. 解决方法

- 对于第一种情况可以通过减小 PoE 接口的最大供电功率来解决。
- 对于第二种情况需先取消其他方式的配置。

1.11.2 应用 PoE 配置文件到 PoE 接口不成功

1. 原因分析

- 该 PoE 配置文件的某些配置项已经通过其他方式进行配置。
- 该 PoE 配置文件的某些配置项不符合 PoE 接口的配置要求。
- 已经存在 PoE 配置文件在该 PoE 接口的应用。

2. 解决方法

- 对于第一种情况,可以通过取消其他方式的配置来解决。
- 对于第二种情况,需修改该 PoE 配置文件的某些配置项。
- 对于第三种情况,先取消其他 PoE 配置文件在该 PoE 接口的应用。