Algebraic Methods in Combinatorics

Instructor: Benny Sudakov

Assignment 6

To be completed by October 30th

The solution of each problem should be no longer than one page!

Problem 1. Let \mathcal{F} be a family of distinct proper subsets of $\{1, 2, ..., n\}$. Suppose that for every $1 \le i \ne j \le n$ there is a unique member of \mathcal{F} that contains both i and j. Prove that $|\mathcal{F}| \ge n$.

Problem 2. Let G be a complete graph with vertex set V, where |V| = n.

- (a) Let B_1, \ldots, B_m be subgraphs of G that are complete bipartite graphs, and suppose that every edge of G belongs to an odd number of B_i 's. Prove that $m \geq (n-1)/2$.
- (b)* Let B_1, \ldots, B_m be subgraphs of G that are complete bipartite graphs, and suppose that every edge of G belongs to exactly one of the B_i 's. Prove that $m \geq n-1$.

Problem 3. Let A_1, \ldots, A_m be subsets of [n] such that $|A_i \cap A_j|$ is divisible by 6 for every distinct $1 \le i, j \le m$, and $|A_i|$ is not divisible by 6 for every $1 \le i \le m$. Show that $m \le 2n$.

Problem 4. Let \mathcal{A} be a finite family of at least r+1 sets of size r, such that any r+1 sets in \mathcal{A} intersect. Show that all the sets in \mathcal{A} intersect.