Models & Estimation Merlise Clyde

STA721 Linear Models

Duke University

August 28, 2014

Outline

Readings: Christensen Chapter 1-2, Appendix A

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed)

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \mu + \epsilon$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

$$ullet$$
 $\mathsf{E}[\epsilon] = \mathbf{0}$

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

$$ullet$$
 $\mathsf{E}[\epsilon] = \mathbf{0} \quad \Rightarrow \mathsf{E}[\mathbf{Y}] = \mu \ (\mathsf{mean \ vector})$

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

- $\bullet \ \ \mathsf{E}[\epsilon] = \mathbf{0} \quad \Rightarrow \mathsf{E}[\mathbf{Y}] = \boldsymbol{\mu} \ (\mathsf{mean \ vector})$
- $Cov[\epsilon] = \sigma^2 I_n$

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

- $\bullet \ \ \mathsf{E}[\epsilon] = \mathbf{0} \quad \Rightarrow \mathsf{E}[\mathbf{Y}] = \boldsymbol{\mu} \ (\mathsf{mean \ vector})$
- $Cov[\epsilon] = \sigma^2 I_n$ $\Rightarrow Cov[Y] = \sigma^2 I_n$ (errors are uncorrelated)

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

- $\bullet \ \ \mathsf{E}[\epsilon] = \mathbf{0} \quad \Rightarrow \mathsf{E}[\mathbf{Y}] = \boldsymbol{\mu} \ (\mathsf{mean \ vector})$
- $Cov[\epsilon] = \sigma^2 I_n$ $\Rightarrow Cov[Y] = \sigma^2 I_n$ (errors are uncorrelated)
- $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

- $\bullet \ \mathsf{E}[\epsilon] = \mathbf{0} \quad \Rightarrow \mathsf{E}[\mathbf{Y}] = \boldsymbol{\mu} \ (\mathsf{mean \ vector})$
- $Cov[\epsilon] = \sigma^2 I_n$ $\Rightarrow Cov[Y] = \sigma^2 I_n$ (errors are uncorrelated)
- $\epsilon \sim \mathsf{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \quad \Rightarrow \mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

Usual assumptions?

- ullet $\mathsf{E}[\epsilon] = \mathbf{0} \quad \Rightarrow \mathsf{E}[\mathbf{Y}] = \mu \ (\mathsf{mean \ vector})$
- $Cov[\epsilon] = \sigma^2 I_n$ $\Rightarrow Cov[Y] = \sigma^2 I_n$ (errors are uncorrelated)
- $oldsymbol{\epsilon} \sim \mathsf{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \quad \Rightarrow \mathbf{Y} \sim \mathsf{N}(oldsymbol{\mu}, \sigma^2 \mathbf{I})$

The distribution assumption allows us to right down a likelihood function

The likelihood function for μ, σ^2 is proportional to the sampling distribution of the data

The likelihood function for μ, σ^2 is proportional to the sampling distribution of the data

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) \propto (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{(\mathbf{Y} - \boldsymbol{\mu})^T (\mathbf{Y} - \boldsymbol{\mu})}{\sigma^2}\right\}$$

The likelihood function for μ , σ^2 is proportional to the sampling distribution of the data

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) \propto (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{(\mathbf{Y} - \boldsymbol{\mu})^T (\mathbf{Y} - \boldsymbol{\mu})}{\sigma^2}\right\}$$
$$\propto (\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}\right\}$$

The likelihood function for μ , σ^2 is proportional to the sampling distribution of the data

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) \propto (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{(\mathbf{Y} - \boldsymbol{\mu})^T (\mathbf{Y} - \boldsymbol{\mu})}{\sigma^2}\right\}$$
$$\propto (\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}\right\}$$

Find values of $\hat{\mu}$ and $\hat{\sigma}^2$ that maximize the likelihood $\mathcal{L}(\mu, \sigma^2)$ for $\mu \in \mathbb{R}^n$ and $\sigma^2 \in \mathbb{R}^+$

The likelihood function for μ , σ^2 is proportional to the sampling distribution of the data

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) \propto (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{(\mathbf{Y} - \boldsymbol{\mu})^T (\mathbf{Y} - \boldsymbol{\mu})}{\sigma^2}\right\}$$
$$\propto (\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}\right\}$$

Find values of $\hat{\mu}$ and $\hat{\sigma}^2$ that maximize the likelihood $\mathcal{L}(\mu, \sigma^2)$ for $\mu \in \mathbb{R}^n$ and $\sigma^2 \in \mathbb{R}^+$

Clearly, $\hat{\boldsymbol{\mu}} = \mathbf{Y}$ but $\hat{\sigma}^2 = 0$ is outside the parameter space

Restrictions on μ

Linear model $\mu = \mathbf{X}\boldsymbol{\beta}$ for fixed \mathbf{X} $(n \times p)$ and some $\boldsymbol{\beta} \in \mathbb{R}^p$ restrict the possible values for μ

Restrictions on μ

Linear model $\mu = \mathbf{X}\boldsymbol{\beta}$ for fixed \mathbf{X} $(n \times p)$ and some $\boldsymbol{\beta} \in \mathbb{R}^p$ restrict the possible values for μ

• Oneway Anova Model j = 1, ..., J groups with n_j replicates in each group j

Restrictions on μ

Linear model $\mu = \mathbf{X}\boldsymbol{\beta}$ for fixed \mathbf{X} $(n \times p)$ and some $\boldsymbol{\beta} \in \mathbb{R}^p$ restrict the possible values for μ

- Oneway Anova Model j = 1, ..., J groups with n_j replicates in each group j
- "cell means" $Y_{ij} = \mu_j + \epsilon_{ij}$

$$oldsymbol{\mu} = \left[egin{array}{cccc} \mathbf{1}_{n_1} & \mathbf{0}_{n_1} & \dots & \mathbf{0}_{n_1} \ \mathbf{0}_{n_2} & \mathbf{1}_{n_2} & \dots & \mathbf{0}_{n_2} \ dots & dots & \ddots & dots \ \mathbf{0}_{n_J} & \dots & \mathbf{0}_{n_J} & \mathbf{1}_{n_J} \end{array}
ight] \left(egin{array}{c} \mu_1 \ \mu_2 \ dots \ \mu_J \end{array}
ight)$$

- $\mathbf{1}_{n_i}$ is a vector of length n_j of ones.
- $\mathbf{0}_{n_i}$ is a vector of length $n_i h$ of zeros.

Linear model $\mu = \mathbf{X} oldsymbol{eta}$ for fixed \mathbf{X} (n imes p) and some $oldsymbol{eta} \in \mathbb{R}^p$

Linear model $oldsymbol{\mu} = \mathbf{X}oldsymbol{eta}$ for fixed \mathbf{X} (n imes p) and some $oldsymbol{eta} \in \mathbb{R}^p$

• Oneway Anova Model j = 1, ..., J groups with n_j replicates in each group j

Linear model $oldsymbol{\mu} = \mathbf{X}oldsymbol{eta}$ for fixed \mathbf{X} (n imes p) and some $oldsymbol{eta} \in \mathbb{R}^p$

- Oneway Anova Model $j=1,\ldots,J$ groups with n_j replicates in each group j
- ullet "Treatment effects" $Y_{ij}=\mu+ au_j+\epsilon_{ij}$

$$m{\mu} = \left[egin{array}{ccccc} m{1}_{n_1} & m{1}_{n_1} & m{0}_{n_1} & \dots & m{0}_{n_1} \ m{1}_{n_2} & m{0}_{n_2} & m{1}_{n_2} & \dots & m{0}_{n_2} \ dots & dots & dots & \ddots & dots \ m{1}_{n_J} & m{0}_{n_J} & \dots & m{0}_{n_J} & m{1}_{n_J} \end{array}
ight] \left(egin{array}{c} m{\mu} \ & m{ au_1} \ & dots \ & m{ au_J} \end{array}
ight)$$

Linear model $oldsymbol{\mu} = \mathbf{X}oldsymbol{eta}$ for fixed \mathbf{X} (n imes p) and some $oldsymbol{eta} \in \mathbb{R}^p$

- Oneway Anova Model $j=1,\ldots,J$ groups with n_j replicates in each group j
- "Treatment effects" $Y_{ij} = \mu + au_j + \epsilon_{ij}$

$$oldsymbol{\mu} = \left[egin{array}{ccccc} \mathbf{1}_{n_1} & \mathbf{1}_{n_1} & \mathbf{0}_{n_1} & \dots & \mathbf{0}_{n_1} \ \mathbf{1}_{n_2} & \mathbf{0}_{n_2} & \mathbf{1}_{n_2} & \dots & \mathbf{0}_{n_2} \ dots & dots & dots & \ddots & dots \ \mathbf{1}_{n_J} & \mathbf{0}_{n_J} & \dots & \mathbf{0}_{n_J} & \mathbf{1}_{n_J} \end{array}
ight] \left(egin{array}{c} \mu \ au_1 \ dots \ au_J \end{array}
ight)$$

- Equivalent means $\mu_j = \mu + \tau_j$
- Should our inference for μ depend on how we represent or parameterize μ ?

$$ullet$$
 Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p \in \mathbb{R}^n$

- ullet Let $\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_p\in\mathbb{R}^n$
- The set of all linear combinations of $\mathbf{X}_1, \dots, \mathbf{X}_p$ is the space spanned by $\mathbf{X}_1, \dots, \mathbf{X}_p \equiv S(\mathbf{X}_1, \dots, \mathbf{X}_p)$

- Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p \in \mathbb{R}^n$
- The set of all linear combinations of $\mathbf{X}_1, \dots, \mathbf{X}_p$ is the space spanned by $\mathbf{X}_1, \dots, \mathbf{X}_p \equiv S(\mathbf{X}_1, \dots, \mathbf{X}_p)$
- Let $\mathbf{X} = [\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_p]$ be a $n \times p$ matrix with columns \mathbf{X}_j then the column space of \mathbf{X} , $C(\mathbf{X}) = S(\mathbf{X}_1, \dots, \mathbf{X}_p)$ space spanned by the (column) vectors of \mathbf{X}

- Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p \in \mathbb{R}^n$
- The set of all linear combinations of $\mathbf{X}_1, \dots, \mathbf{X}_p$ is the space spanned by $\mathbf{X}_1, \dots, \mathbf{X}_p \equiv S(\mathbf{X}_1, \dots, \mathbf{X}_p)$
- Let $\mathbf{X} = [\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_p]$ be a $n \times p$ matrix with columns \mathbf{X}_j then the column space of \mathbf{X} , $C(\mathbf{X}) = S(\mathbf{X}_1, \dots, \mathbf{X}_p)$ space spanned by the (column) vectors of \mathbf{X}
- $\mu \in C(\mathbf{X})$: $C(\mathbf{X}) = \{\mu \mid \mu \in \mathbb{R}^n \text{ such that } \mathbf{X}\beta = \mu \text{ for some } \beta \in \mathbb{R}^p\}$ (also called the Range of \mathbf{X} , $R(\mathbf{X})$

- Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p \in \mathbb{R}^n$
- The set of all linear combinations of $\mathbf{X}_1, \dots, \mathbf{X}_p$ is the space spanned by $\mathbf{X}_1, \dots, \mathbf{X}_p \equiv \mathcal{S}(\mathbf{X}_1, \dots, \mathbf{X}_p)$
- Let $\mathbf{X} = [\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_p]$ be a $n \times p$ matrix with columns \mathbf{X}_j then the column space of \mathbf{X} , $C(\mathbf{X}) = S(\mathbf{X}_1, \dots, \mathbf{X}_p)$ space spanned by the (column) vectors of \mathbf{X}
- $\mu \in C(\mathbf{X})$: $C(\mathbf{X}) = \{\mu \mid \mu \in \mathbb{R}^n \text{ such that } \mathbf{X}\boldsymbol{\beta} = \mu \text{ for some } \boldsymbol{\beta} \in \mathbb{R}^p\}$ (also called the Range of \mathbf{X} , $R(\mathbf{X})$
- $oldsymbol{\circ}$ $oldsymbol{eta}$ are the "coordinates" of $oldsymbol{\mu}$ in this space

- Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p \in \mathbb{R}^n$
- The set of all linear combinations of $\mathbf{X}_1, \dots, \mathbf{X}_p$ is the space spanned by $\mathbf{X}_1, \dots, \mathbf{X}_p \equiv S(\mathbf{X}_1, \dots, \mathbf{X}_p)$
- Let $\mathbf{X} = [\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_p]$ be a $n \times p$ matrix with columns \mathbf{X}_j then the column space of \mathbf{X} , $C(\mathbf{X}) = S(\mathbf{X}_1, \dots, \mathbf{X}_p)$ space spanned by the (column) vectors of \mathbf{X}
- $\mu \in C(\mathbf{X})$: $C(\mathbf{X}) = \{\mu \mid \mu \in \mathbb{R}^n \text{ such that } \mathbf{X}\boldsymbol{\beta} = \mu \text{ for some } \boldsymbol{\beta} \in \mathbb{R}^p\}$ (also called the Range of \mathbf{X} , $R(\mathbf{X})$
- $oldsymbol{eta}$ are the "coordinates" of μ in this space
- C(X) is a subspace of \mathbb{R}^n

A collection of vectors V is a real **vector space** if the following conditions hold: for any pair \mathbf{x} and \mathbf{y} of vectors in V there corresponds a vector $\mathbf{x} + \mathbf{y}$ and scalars $\alpha, \beta \in \mathbb{R}$ such that:

A collection of vectors V is a real **vector space** if the following conditions hold: for any pair \mathbf{x} and \mathbf{y} of vectors in V there corresponds a vector $\mathbf{x} + \mathbf{y}$ and scalars $\alpha, \beta \in \mathbb{R}$ such that:

 $\mathbf{0} \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (vector addition is commutative)

A collection of vectors V is a real **vector space** if the following conditions hold: for any pair \mathbf{x} and \mathbf{y} of vectors in V there corresponds a vector $\mathbf{x} + \mathbf{y}$ and scalars $\alpha, \beta \in \mathbb{R}$ such that:

- $\mathbf{0} \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (vector addition is commutative)
- 2 (x + y) + z = x + (y + z) (vector addition is associative)

A collection of vectors V is a real **vector space** if the following conditions hold: for any pair \mathbf{x} and \mathbf{y} of vectors in V there corresponds a vector $\mathbf{x} + \mathbf{y}$ and scalars $\alpha, \beta \in \mathbb{R}$ such that:

- $\mathbf{0} \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (vector addition is commutative)
- (x + y) + z = x + (y + z) (vector addition is associative)
- § there exists a unique vector $\mathbf{0} \in V$ (the origin) such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for every vector \mathbf{x}

- **1** $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (vector addition is commutative)
- 2 (x + y) + z = x + (y + z) (vector addition is associative)
- 3 there exists a unique vector $\mathbf{0} \in V$ (the origin) such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for every vector \mathbf{x}

- $\mathbf{0} \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (vector addition is commutative)
- 2 (x + y) + z = x + (y + z) (vector addition is associative)
- 3 there exists a unique vector $\mathbf{0} \in V$ (the origin) such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for every vector \mathbf{x}
- $\mbox{ \ \, of or every } {\bf x} \in V,$ there exists a unique vector $-{\bf x}$ such that ${\bf x} + (-{\bf x}) = {\bf 0}$
- **5** $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$ (multiplication by scalars is associative)

- **1** $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (vector addition is commutative)
- 2 (x + y) + z = x + (y + z) (vector addition is associative)
- 3 there exists a unique vector $\mathbf{0} \in V$ (the origin) such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for every vector \mathbf{x}
- $\ \, \bullet \ \,$ for every $\mathbf{x} \in V,$ there exists a unique vector $-\mathbf{x}$ such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$
- \circ $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$ (multiplication by scalars is associative)
- $\mathbf{0}$ $1\mathbf{x} = \mathbf{x}$ for every \mathbf{x}

- $\mathbf{1}$ $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (vector addition is commutative)
- (x + y) + z = x + (y + z) (vector addition is associative)
- $oldsymbol{0}$ there exists a unique vector $oldsymbol{0} \in V$ (the origin) such that $oldsymbol{x} + oldsymbol{0} = oldsymbol{x}$ for every vector $oldsymbol{x}$
- $\mbox{ \ \, of or every } {\bf x} \in V,$ there exists a unique vector $-{\bf x}$ such that ${\bf x} + (-{\bf x}) = {\bf 0}$
- $\mathbf{0}$ $1\mathbf{x} = \mathbf{x}$ for every \mathbf{x}
- $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$ (multiplication by scalars is distributive with respect vector addition)

- $\mathbf{0} \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (vector addition is commutative)
- 2 (x + y) + z = x + (y + z) (vector addition is associative)
- 3 there exists a unique vector $\mathbf{0} \in V$ (the origin) such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for every vector \mathbf{x}
- $\begin{tabular}{ll} \bullet & \text{for every } \mathbf{x} \in V \text{, there exists a unique vector } -\mathbf{x} \text{ such that} \\ & \mathbf{x} + (-\mathbf{x}) = \mathbf{0} \\ \end{tabular}$
- \circ $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$ (multiplication by scalars is associative)
- $\mathbf{0} \ \mathbf{1x} = \mathbf{x} \ \text{for every } \mathbf{x}$
- ② $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$ (multiplication by scalars is distributive with respect vector addition)
- **3** $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$ (multiplication by scalars is distributive with respect to vector addition)

Definition

Let V be a vector space and let V_0 be a set with $V_0 \subseteq V$. V_0 is a subspace of V if and only if V_0 is a vector space.

Definition

Let V be a vector space and let V_0 be a set with $V_0 \subseteq V$. V_0 is a *subspace* of V if and only if V_0 is a vector space.

Theorem

Let V be a vector space, and let V_0 be a non-empty subset of V. If V_0 is closed on vector addition and scalar multiplication, then V_0 is a subspace of V

Definition

Let V be a vector space and let V_0 be a set with $V_0 \subseteq V$. V_0 is a *subspace* of V if and only if V_0 is a vector space.

Theorem

Let V be a vector space, and let V_0 be a non-empty subset of V. If V_0 is closed on vector addition and scalar multiplication, then V_0 is a subspace of V

Theorem

Let V be a vector space, and let $\mathbf{x}_1, \dots, \mathbf{x}_r$ be vectors in V. The set of all linear combinations of $\mathbf{x}_1, \dots, \mathbf{x}_r$ is a subspace of V.

Definition

Let V be a vector space and let V_0 be a set with $V_0 \subseteq V$. V_0 is a *subspace* of V if and only if V_0 is a vector space.

Theorem

Let V be a vector space, and let V_0 be a non-empty subset of V. If V_0 is closed on vector addition and scalar multiplication, then V_0 is a subspace of V

Theorem

Let V be a vector space, and let $\mathbf{x}_1, \dots, \mathbf{x}_r$ be vectors in V. The set of all linear combinations of $\mathbf{x}_1, \dots, \mathbf{x}_r$ is a subspace of V.

The Column space of **X**, $C(\mathbf{X})$, is a subspace of \mathbb{R}^n

Definition

A finite set of vectors $\{\mathbf{x}_i\}$ is *linearly dependent* if there exist scalars $\{a_i\}$ (not all zero) such that $\sum_i a_i \mathbf{x}_i = \mathbf{0}$.

Definition

A finite set of vectors $\{\mathbf{x}_i\}$ is *linearly dependent* if there exist scalars $\{a_i\}$ (not all zero) such that $\sum_i a_i \mathbf{x}_i = \mathbf{0}$. Conversely $\sum_i a_i \mathbf{x}_i = \mathbf{0}$ implies that $a_i = 0 \ \forall i$ the set is *linearly independent*.

Definition

A finite set of vectors $\{\mathbf{x}_i\}$ is *linearly dependent* if there exist scalars $\{a_i\}$ (not all zero) such that $\sum_i a_i \mathbf{x}_i = \mathbf{0}$. Conversely $\sum_i a_i \mathbf{x}_i = \mathbf{0}$ implies that $a_i = 0 \ \forall i$ the set is *linearly independent*.

Definition

If V_0 is a subspace of V and if $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is a linearly independent spanning set for V_0 , then $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is a basis for V_0

Definition

A finite set of vectors $\{\mathbf{x}_i\}$ is *linearly dependent* if there exist scalars $\{a_i\}$ (not all zero) such that $\sum_i a_i \mathbf{x}_i = \mathbf{0}$. Conversely $\sum_i a_i \mathbf{x}_i = \mathbf{0}$ implies that $a_i = 0 \ \forall i$ the set is *linearly independent*.

Definition

If V_0 is a subspace of V and if $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is a linearly independent spanning set for V_0 , then $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is a basis for V_0

Theorem

If V_0 is a subspace of V, then all bases for V_0 have the same number of vectors

Definition

A finite set of vectors $\{\mathbf{x}_i\}$ is *linearly dependent* if there exist scalars $\{a_i\}$ (not all zero) such that $\sum_i a_i \mathbf{x}_i = \mathbf{0}$. Conversely $\sum_i a_i \mathbf{x}_i = \mathbf{0}$ implies that $a_i = 0 \,\forall i$ the set is *linearly independent*.

Definition

If V_0 is a subspace of V and if $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is a linearly independent spanning set for V_0 , then $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is a basis for V_0

Theorem

If V_0 is a subspace of V, then all bases for V_0 have the same number of vectors

Can both the collection of vectors in the cell means and the treatment effects parameterizations be a basis?

Rank

Definition

The rank of a subspace V_0 is the number of elements in a basis for V_0 and is written as $r(V_0)$. Similarly if **A** is a matrix, the rank of $C(\mathbf{A})$ is called the rank of **A** and is written $r(\mathbf{A})$.

Rank

Definition

The rank of a subspace V_0 is the number of elements in a basis for V_0 and is written as $r(V_0)$. Similarly if **A** is a matrix, the rank of $C(\mathbf{A})$ is called the rank of **A** and is written $r(\mathbf{A})$.

What is the rank of the subspace in the Oneway ANOVA model?

Orthogonality

Definition

An inner product space is a vector space V equipped with an inner product: $\langle \cdot, \cdot \rangle$ is a mapping $V \times V \to \mathbb{R}$. Two vectors are orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, written $\mathbf{x} \perp \mathbf{y}$

Orthogonality

Definition

An inner product space is a vector space V equipped with an inner product: $\langle \cdot, \cdot \rangle$ is a mapping $V \times V \to \mathbb{R}$. Two vectors are orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, written $\mathbf{x} \perp \mathbf{y}$ (usual $\mathbf{x}^T \mathbf{y} = 0$)

Definition

Two subspaces are orthogonal if $\mathbf{x} \in M$ and $y \in N$ imply that $\mathbf{x} \perp \mathbf{y}$

Orthogonality

Definition

An inner product space is a vector space V equipped with an inner product: $\langle \cdot, \cdot \rangle$ is a mapping $V \times V \to \mathbb{R}$. Two vectors are orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, written $\mathbf{x} \perp \mathbf{y}$ (usual $\mathbf{x}^T \mathbf{y} = 0$)

Definition

Two subspaces are orthogonal if $\mathbf{x} \in M$ and $y \in N$ imply that $\mathbf{x} \perp \mathbf{y}$

Definition

Orthonormal basis: $\{\mathbf{x}_1,\ldots,\mathbf{x}_r\}$ is an orthonormal basis (ONB) for M if $\langle \mathbf{x}_i,\mathbf{x}_j\rangle=0$ for $i\neq j$ and $\langle \mathbf{x}_i,\mathbf{x}_i\rangle=1$ for all i. Length $\mathbf{x}=\|\mathbf{x}\|=\sqrt{\langle \mathbf{x},\mathbf{x}\rangle}$. Distance of two vectors is $\|\mathbf{x}-\mathbf{y}\|$

Oneway Anova

Find an orthonormal basis for the oneway ANOVA model. Is it unique?

Oneway Anova

Find an orthonormal basis for the oneway ANOVA model. Is it unique?

Can also use Gram-Schmidt sequential orthogonalization

Definition

If M and N are subspaces of V that satisfy

•
$$M \cap N = \{0\}$$

Definition

If M and N are subspaces of V that satisfy

- $M \cap N = \{0\}$
- M + N = V where $M + N = \{ \mathbf{z} \mid \mathbf{z} = \mathbf{x} + \mathbf{y}, \ \mathbf{x} \in M, \mathbf{y} \in N \}$ $(M \oplus N = V)$ Direct Sum

Definition

If M and N are subspaces of V that satisfy

- $M \cap N = \{0\}$
- M + N = V where $M + N = \{ \mathbf{z} \mid \mathbf{z} = \mathbf{x} + \mathbf{y}, \ \mathbf{x} \in M, \mathbf{y} \in N \}$ $(M \oplus N = V)$ Direct Sum

then M and N are complementary spaces.

Definition

If M and N are subspaces of V that satisfy

- $M \cap N = \{0\}$
- M + N = V where $M + N = \{ \mathbf{z} \mid \mathbf{z} = \mathbf{x} + \mathbf{y}, \ \mathbf{x} \in M, \mathbf{y} \in N \}$ $(M \oplus N = V)$ Direct Sum

then ${\it M}$ and ${\it N}$ are complementary spaces. ${\it N}$ is the complement of ${\it M}$

Definition

If M and N are subspaces of V that satisfy

- $M \cap N = \{0\}$
- M + N = V where $M + N = \{ \mathbf{z} \mid \mathbf{z} = \mathbf{x} + \mathbf{y}, \ \mathbf{x} \in M, \mathbf{y} \in N \}$ $(M \oplus N = V)$ Direct Sum

then ${\it M}$ and ${\it N}$ are complementary spaces. ${\it N}$ is the complement of ${\it M}$

Definition

If M and N are complementary spaces $M+N=\mathbb{R}^n$ and M and N are orthogonal subspaces, then M is the orthogonal complement of N, N^{\perp} .

Definition

If M and N are subspaces of V that satisfy

- $M \cap N = \{0\}$
- M + N = V where $M + N = \{ \mathbf{z} \mid \mathbf{z} = \mathbf{x} + \mathbf{y}, \ \mathbf{x} \in M, \mathbf{y} \in N \}$ $(M \oplus N = V)$ Direct Sum

then ${\it M}$ and ${\it N}$ are complementary spaces. ${\it N}$ is the complement of ${\it M}$

Definition

If M and N are complementary spaces $M+N=\mathbb{R}^n$ and M and N are orthogonal subspaces, then M is the orthogonal complement of N, N^{\perp} .

If $\mathbf{z} \in \mathbb{R}^n = N + M$, then we can uniquely decompose it into a part $\mathbf{x} \in M$ and $\mathbf{y} \in N$ and r(M) + r(N) = n

Definition

P is an orthogonal projection operator onto C(X) if and only if

Definition

P is an orthogonal projection operator onto C(X) if and only if

ullet ullet $u \in C(X)$ implies Pu = u (projection)

Definition

P is an orthogonal projection operator onto $C(\mathbf{X})$ if and only if

- $\mathbf{u} \in C(\mathbf{X})$ implies $P\mathbf{u} = \mathbf{u}$ (projection)
- $\mathbf{v} \perp C(\mathbf{X})$ implies $P\mathbf{v} = \mathbf{0}$ (perpendicular)

Definition

P is an orthogonal projection operator onto $C(\mathbf{X})$ if and only if

- $\mathbf{u} \in C(\mathbf{X})$ implies $P\mathbf{u} = \mathbf{u}$ (projection)
- $\mathbf{v} \perp C(\mathbf{X})$ implies $P\mathbf{v} = \mathbf{0}$ (perpendicular)
- $C(\mathbf{X})$ and $C(\mathbf{X})^{\perp}$ are complementary spaces

Definition

P is an orthogonal projection operator onto C(X) if and only if

- $\mathbf{u} \in C(\mathbf{X})$ implies $P\mathbf{u} = \mathbf{u}$ (projection)
- $\mathbf{v} \perp C(\mathbf{X})$ implies $P\mathbf{v} = \mathbf{0}$ (perpendicular)
- C(X) and $C(X)^{\perp}$ are complementary spaces
- $\mathbf{y} = \mathbf{u} + \mathbf{v}$ for $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{u} \in C(\mathbf{X})$ and $\mathbf{v} \perp C(\mathbf{X})$ then $P\mathbf{y} = P\mathbf{u} + P\mathbf{v} = \mathbf{u}$

Definition

P is an orthogonal projection operator onto C(X) if and only if

- $\mathbf{u} \in C(\mathbf{X})$ implies $P\mathbf{u} = \mathbf{u}$ (projection)
- $\mathbf{v} \perp C(\mathbf{X})$ implies $P\mathbf{v} = \mathbf{0}$ (perpendicular)
- C(X) and $C(X)^{\perp}$ are complementary spaces
- $\mathbf{y} = \mathbf{u} + \mathbf{v}$ for $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{u} \in C(\mathbf{X})$ and $\mathbf{v} \perp C(\mathbf{X})$ then $P\mathbf{y} = P\mathbf{u} + P\mathbf{v} = \mathbf{u}$
- \mathbf{u} is the orthogonal projection of \mathbf{y} onto $C(\mathbf{X})$

More on Projections

Prop

P is an orthogonal projection operator on C(X) then C(X) = C(P)

More on Projections

Prop

P is an orthogonal projection operator on C(X) then C(X) = C(P)

Theorem

P is an orthogonal projection operator on C(P) if and only if

More on Projections

Prop

P is an orthogonal projection operator on C(X) then C(X) = C(P)

Theorem

P is an orthogonal projection operator on C(P) if and only if

•
$$P = P^2$$
 (idempotent)

More on Projections

Prop

P is an orthogonal projection operator on C(X) then C(X) = C(P)

Theorem

P is an orthogonal projection operator on C(P) if and only if

- $P = P^2$ (idempotent)
- $P = P^T$ (symmetry)

More on Projections

Prop

P is an orthogonal projection operator on C(X) then C(X) = C(P)

Theorem

P is an orthogonal projection operator on C(P) if and only if

- $P = P^2$ (idempotent)
- $P = P^T$ (symmetry)

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ operator onto $C(\mathbf{X})$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

• $P = P^2$ (idempotent)

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

 \bullet P = P² (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

 \bullet P = P² (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$
$$= X(X^T X)^{-1} X^T$$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

 \bullet P = P² (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

 $\bullet \ P = P^2 \ (idempotent)$

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

• $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$\mathsf{P}_{\mathbf{X}}^T = (\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)^T$$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

 \bullet P = P² (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$P_{\mathbf{X}}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$
$$= (\mathbf{X}^{T})^{T}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}(\mathbf{X})^{T}$$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

• $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$P_{\mathbf{X}}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$

$$= (\mathbf{X}^{T})^{T}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}(\mathbf{X})^{T}$$

$$= \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

• $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$P_{\mathbf{X}}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$

$$= (\mathbf{X}^{T})^{T}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}(\mathbf{X})^{T}$$

$$= \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$$

$$= P_{\mathbf{X}}$$

Claim: If **X** is $n \times p$ and $r(\mathbf{X}) = p$ then, $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is an orthogonal projection operator onto $C(\mathbf{X})$

• $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$P_{\mathbf{X}}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$

$$= (\mathbf{X}^{T})^{T}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}(\mathbf{X})^{T}$$

$$= \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$$

$$= P_{\mathbf{X}}$$

•
$$C(X) = C(P_X)$$

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

Claim: $\mathbf{I} - P_{\mathbf{X}}$ is an orthogonal projection onto $C(\mathbf{X})^{\perp}$

$$(\mathbf{I} - \mathsf{P}_{\mathbf{X}})^2 = (\mathbf{I} - \mathsf{P}_{\mathbf{X}})(\mathbf{I} - \mathsf{P}_{\mathbf{X}})$$

Claim: $\mathbf{I} - P_{\mathbf{X}}$ is an orthogonal projection onto $C(\mathbf{X})^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$
$$= I - P_X - P_X + P_X P_X$$

Claim: $\mathbf{I} - P_{\mathbf{X}}$ is an orthogonal projection onto $C(\mathbf{X})^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$
$$= I - P_X - P_X + P_XP_X$$
$$= I - P_X - P_X + P_X$$

Claim: $\mathbf{I} - \mathsf{P}_{\mathbf{X}}$ is an orthogonal projection onto $C(\mathbf{X})^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

$$= I - P_X - P_X + P_XP_X$$

$$= I - P_X - P_X + P_X$$

$$= I - P_X$$

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

idempotent

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

$$= I - P_X - P_X + P_X P_X$$

$$= I - P_X - P_X + P_X$$

$$= I - P_X$$

• Symmetry $\mathbf{I} - P_{\mathbf{X}} = (\mathbf{I} - P_{\mathbf{X}})^T$

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

$$= I - P_X - P_X + P_X P_X$$

$$= I - P_X - P_X + P_X$$

$$= I - P_X$$

- Symmetry $\mathbf{I} P_{\mathbf{X}} = (\mathbf{I} P_{\mathbf{X}})^T$
- ullet $\mathbf{u} \in C(\mathbf{X})^{\perp} \Rightarrow \mathbf{u} \perp C(\mathbf{X})$ and $(\mathbf{I} \mathsf{P}_{\mathbf{X}})\mathbf{u} = \mathbf{u}$ (projection)

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

$$= I - P_X - P_X + P_X P_X$$

$$= I - P_X - P_X + P_X$$

$$= I - P_X$$

- Symmetry $\mathbf{I} P_{\mathbf{X}} = (\mathbf{I} P_{\mathbf{X}})^T$
- ullet $\mathbf{u} \in C(\mathbf{X})^{\perp} \Rightarrow \mathbf{u} \perp C(\mathbf{X})$ and $(\mathbf{I} \mathsf{P}_{\mathbf{X}})\mathbf{u} = \mathbf{u}$ (projection)
- if $\mathbf{v} \in C(\mathbf{X})$, $(\mathbf{I} P_{\mathbf{X}})\mathbf{v} = \mathbf{v} \mathbf{v} = 0$

• Column space C(X)

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$
- Null space of \mathbf{X}^T is $(\mathbf{u} \mid \mathbf{X}^T \mathbf{u} = 0)$

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$
- Null space of \mathbf{X}^T is $(\mathbf{u} \mid \mathbf{X}^T \mathbf{u} = 0)$
- ullet $N(\mathbf{X}^T) = C(\mathbf{X})^{\perp}$ the orthogonal complement of $C(\mathbf{X})$

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$
- Null space of \mathbf{X}^T is $(\mathbf{u} \mid \mathbf{X}^T \mathbf{u} = 0)$
- $N(\mathbf{X}^T) = C(\mathbf{X})^{\perp}$ the orthogonal complement of $C(\mathbf{X})$
- $N(P_{\mathbf{X}}) = C(\mathbf{X})^{\perp}$

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$
- Null space of \mathbf{X}^T is $(\mathbf{u} \mid \mathbf{X}^T \mathbf{u} = 0)$
- $N(\mathbf{X}^T) = C(\mathbf{X})^{\perp}$ the orthogonal complement of $C(\mathbf{X})$
- $N(P_X) = C(X)^{\perp}$

$$u \in N(P) \Rightarrow P_X u = 0$$

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$
- Null space of \mathbf{X}^T is $(\mathbf{u} \mid \mathbf{X}^T \mathbf{u} = 0)$
- ullet $N(\mathbf{X}^T) = C(\mathbf{X})^{\perp}$ the orthogonal complement of $C(\mathbf{X})$
- $N(P_{\mathbf{X}}) = C(\mathbf{X})^{\perp}$

$$\begin{aligned} \textbf{u} \in \textit{N}(\textit{P}) & \Rightarrow & \textit{P}_{\textbf{X}} \textbf{u} = \textbf{0} \\ & \Leftrightarrow & \textbf{X} (\textbf{X}^{\textit{T}} \textbf{X})^{-1} \textbf{X}^{\textit{T}} \textbf{u} = \textbf{0} \end{aligned}$$

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$
- Null space of \mathbf{X}^T is $(\mathbf{u} \mid \mathbf{X}^T \mathbf{u} = 0)$
- $N(\mathbf{X}^T) = C(\mathbf{X})^{\perp}$ the orthogonal complement of $C(\mathbf{X})$
- $N(P_{\mathbf{X}}) = C(\mathbf{X})^{\perp}$

$$\begin{split} \textbf{u} \in \textit{N}(\textit{P}) & \Rightarrow & \textit{P}_{\textbf{X}} \textbf{u} = \textbf{0} \\ & \Leftrightarrow & \textbf{X} (\textbf{X}^{T}\textbf{X})^{-1} \textbf{X}^{T} \textbf{u} = \textbf{0} \\ & \Leftrightarrow & \textbf{u}^{T}\textbf{X} (\textbf{X}^{T}\textbf{X})^{-1} \textbf{X}^{T} = \textbf{0}^{T} \end{split}$$

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$
- Null space of \mathbf{X}^T is $(\mathbf{u} \mid \mathbf{X}^T \mathbf{u} = 0)$
- $N(\mathbf{X}^T) = C(\mathbf{X})^{\perp}$ the orthogonal complement of $C(\mathbf{X})$
- $N(P_{\mathbf{X}}) = C(\mathbf{X})^{\perp}$

$$\begin{aligned} \mathbf{u} \in \mathcal{N}(\mathsf{P}) & \Rightarrow & \mathsf{P}_{\mathbf{X}} \mathbf{u} = \mathbf{0} \\ & \Leftrightarrow & \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{u} = \mathbf{0} \\ & \Leftrightarrow & \mathbf{u}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = \mathbf{0}^T \\ & \Leftrightarrow & \mathbf{u}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{\beta} = \mathbf{0} \end{aligned}$$

- Column space C(X)
- $N(\mathbf{A})$: Null space of \mathbf{A} is $\{\mathbf{u} \mid \mathbf{A}\mathbf{u} = 0\}$
- Null space of \mathbf{X}^T is $(\mathbf{u} \mid \mathbf{X}^T \mathbf{u} = 0)$
- $N(\mathbf{X}^T) = C(\mathbf{X})^{\perp}$ the orthogonal complement of $C(\mathbf{X})$
- $N(P_{\mathbf{X}}) = C(\mathbf{X})^{\perp}$

$$\begin{aligned} \mathbf{u} \in \mathcal{N}(\mathsf{P}) & \Rightarrow & \mathsf{P}_{\mathsf{X}}\mathbf{u} = \mathbf{0} \\ & \Leftrightarrow & \mathsf{X}(\mathsf{X}^{T}\mathsf{X})^{-1}\mathsf{X}^{T}\mathbf{u} = \mathbf{0} \\ & \Leftrightarrow & \mathsf{u}^{T}\mathsf{X}(\mathsf{X}^{T}\mathsf{X})^{-1}\mathsf{X}^{T} = \mathbf{0}^{T} \\ & \Leftrightarrow & \mathsf{u}^{T}\mathsf{X}(\mathsf{X}^{T}\mathsf{X})^{-1}\mathsf{X}^{T}\beta = \mathbf{0} \\ & \Leftrightarrow & \mathsf{u}^{T}\mathbf{v} = \mathbf{0} \quad \mathbf{v} \in \mathcal{C}(\mathsf{X}) \end{aligned}$$

• $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$

- ullet $\mathbf{Y} \sim \mathsf{N}(oldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $oldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$

- ullet $\mathbf{Y} \sim \mathsf{N}(oldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $oldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is P_XY
- Log Likelihood:

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is P_XY
- Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $P_{\mathbf{X}}\mathbf{Y}$
- Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

• Decompose $\mathbf{Y} = P_{\mathbf{X}}\mathbf{Y} + (\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$

- ullet $\mathbf{Y} \sim \mathsf{N}(oldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $oldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is P_XY
- Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

- Decompose $\mathbf{Y} = P_{\mathbf{X}}\mathbf{Y} + (\mathbf{I} P_{\mathbf{X}})\mathbf{Y}$
- ullet Use $\mathsf{P}_{\mathsf{X}}\mu=\mu$

- ullet $\mathbf{Y} \sim \mathsf{N}(oldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $oldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is P_XY
- Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

- Decompose $\mathbf{Y} = P_{\mathbf{X}}\mathbf{Y} + (\mathbf{I} P_{\mathbf{X}})\mathbf{Y}$
- Use $P_X \mu = \mu$
- and Simplify

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^2$$

