Pumping-Lemma

Begründe jeweils, ob die folgenden Sprachen regulär sind oder nicht. ¹

- (a) $L_1 = \{w \in \{a, b\}^* \mid \text{ auf ein } a \text{ folgt immer ein } b\}$
 - $L_1 = L(b^*(ab)^*b^*)$ und damit regulär.
- (b) $L_2 = \{ w \in \{1\}^* \mid \exists n \in \mathbb{N} \text{ mit } |w| = n^2 \}$

L₂ ist nicht regulär.

Pumping-Lemma:

j sei eine Quadratzahl: Somit ist $1^j \in L_2$. Es gilt $|uv| \le j$ und $|v| \ge 1$. Daraus folgt, dass in v mindestens eine 1 existiert. Somit wird immer ein $i \in \mathbb{N}$ existieren, sodass $uv^iw \notin L$, weil die Quadratzahlen nicht linear darstellbar sind.

Begründung über die Zahlentheorie:

Angenommen, L_2 sei regulär, sei m die kleinste Zahl mit $m^2 > j$. Dann ist $x = 1^{m^2} \in L_2$. Für eine Zerlegung x = uvw nach dem Pumping-Lemma muss dann ein k existieren mit $v = 1^k$ und $m^2 - l + k^l$ ist eine Quadratzahl für jedes $l \geq 0$. Das kann offenbar zahlentheoretisch nicht sein, und somit haben wir einen Widerspruch zur Annahme.

(c) $L_3 = \{a^n b^m c^n \mid m, n \in \mathbb{N}_0\}$

 $L_3 = \{a^n b^m c^n \mid m, n \in \mathbb{N}_0\}$ ist nicht regulär. $a^j b^j c^j \in L_3$: $|uv| \le j$ und $|v| \ge 1$

 \rightarrow in uv sind nur a's und in v ist mindestens ein a

- $\rightarrow uv^2w \notin L_3$, weil dann mehr a's als c's in diesem Wort vorkommen
- (d) $L_4 = \{w \in \{a\}^* \mid \text{mod }_3(|w|) = 0\}$

 $L_4 = ((aaa)^*)$ und damit regulär.

 $^{^{1}} https://www.uni-muenster.de/Informatik/u/lammers//EDU/ws08/AutomatenFormaleSprachen/Loesungen/Loesung05.pdf$