Progressão Geométrica (PG)

Limite de sequência

Definição de Limite de Sequência

Definição de Limite de Sequência

O limite de uma sequência (a_n) é o valor que os termos da sequência aproximam cada vez mais à medida que $n \to \infty$.

Em outras palavras, se os termos de uma sequência se aproximam de um número L quando n cresce indefinidamente, dizemos que o limite da sequência é L:

$$\lim_{n o\infty}a_n=L$$

• Se não existe tal número L, dizemos que a sequência **não tem limite** ou **diverge**.

Sequência Convergente e Divergente

Sequência convergente e divergente

Sequência convergente: possui limite finito L.

Exemplo:

$$a_n = \frac{1}{n} \implies \lim_{n \to \infty} a_n = 0$$

Sequência divergente: não possui limite finito.

Exemplo:

$$a_n=n\implies \lim_{n o\infty}a_n=\infty$$

Sejam $\lim_{n o\infty}a_n=A$ e $\lim_{n o\infty}b_n=B$, então:

1. Soma:

$$\lim_{n o\infty}(a_n+b_n)=A+B$$

2. Diferença:

$$\lim_{n o\infty}(a_n-b_n)=A-B$$

3. Produto:

$$\lim_{n o\infty}(a_n\cdot b_n)=A\cdot B$$

4. Quociente (se $B \neq 0$):

$$\lim_{n o\infty}rac{a_n}{b_n}=rac{A}{B}$$

5. Constante multiplicativa:

$$\lim_{n o\infty}(k\cdot a_n)=k\cdot A$$

6. Sequência de potência (quando |r| < 1):

$$\lim_{n\to\infty} r^n = 0$$

Propriedades Importantes dos Limites de Sequência

Exemplos de Limites de Sequência

Exemplo 1:

$$a_n = \frac{3n+2}{2n+5}$$

Dividindo numerador e denominador por n:

$$a_n = rac{3 + rac{2}{n}}{2 + rac{5}{n}}
ightarrow rac{3 + 0}{2 + 0} = rac{3}{2}$$

Solução: $\lim_{n o\infty}a_n=rac{3}{2}$

Exemplo 2:

$$a_n = \frac{(-1)^n}{n}$$

Como $rac{1}{n}
ightarrow 0$ e $(-1)^n$ oscila entre -1 e 1:

$$\lim_{n o\infty}rac{(-1)^n}{n}=0$$

Exemplo 3 (sequência divergente):

$$a_n=n^2$$

À medida que $n o \infty$, $a_n o \infty$. Portanto, a sequência **não tem limite finito**.

Exemplos de Limites de Sequência

Limite de Sequências Notáveis

Limite de sequências notáveis

$$\lim_{n o\infty}rac{1}{n^p}=0$$
, para $p>0$ $\lim_{n o\infty}q^n=0$, se $|q|<1$ $\lim_{n o\infty}q^n=\infty$, se $q>1$ $\lim_{n o\infty}\sqrt[n]{a}=1$, para $a>0$

Resumo Esquemático

Resumo esquemático

Conceito	Descrição
Limite	Valor que a sequência aproxima quando $n o \infty$
Convergente	Possui limite finito $oldsymbol{L}$
Divergente	Não possui limite finito
Propriedades	Soma, diferença, produto, quociente, constante multiplicativa
Exemplos clássicos	$rac{1}{n} ightarrow 0$, $r^n ightarrow 0$ (