Coordinate vector and matrix representation

Recall the definitions and a nice diagram

• Let $\alpha = (v_1, \dots, v_n)$ be an ordered basis of a vector space V over \mathbb{R} .

The coordinate vector of $v \in V$ is

$$[v]_{\alpha} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

if $v = a_1v_1 + \cdots + a_nv_n$ for $a_1, \cdots, a_n \in \mathbb{F}$

• Let V, W be vector spaces over \mathbb{F} . Assume $\alpha = (v_1, \dots, v_n)$ and $\beta = (w_1, \dots, w_m)$ are bases of V and W respectively. Let $T: V \to W$ be a linear transformation, then the matrix representation of T with respect to α and β is

$$[T]^{\beta}_{\alpha} = \begin{bmatrix} [T(v_1)]_{\beta} & \cdots & [T(v_n)]_{\beta} \end{bmatrix}$$

• Let V, W be vector spaces over \mathbb{F} with bases $\alpha = (v_1, \dots, v_n)$ and $\beta = (w_1, \dots, w_m)$ respectively. Let $T: V \to W$ be a linear transformation. Finish the diagram with the corresponding linear transformations. Assume that you are given $v \in V$.

V W

 \mathbb{R}^n

0.1 Discussions

1. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear transformation. Let $\alpha = \{1 + x + x^2, x + x^2, x^2\}$. Suppose that

$$[T]^{\alpha}_{\alpha} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \\ 0 & 3 & 2 \end{pmatrix}$$

Find T(x)

May.31 2021

2. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear transformation. Let $\alpha = \{1 + x + x^2, x + x^2, x^2\}$ and $\beta = \{1, x, x^2\}$. Suppose that

$$[T]^{\alpha}_{\alpha} = \begin{pmatrix} 1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 0 & 0 \end{pmatrix}$$

- (a) Find $[T]^{\beta}_{\alpha}$
- (b) If T is invertible, find $[T^{-1}]^{\alpha}_{\alpha}$. Use it to calculate $T^{-1}(ax^2 + bx + c)$
- (c) If T is invertible, find $[T^{-1}]^{\beta}_{\alpha}$ and $[T^{-1}]^{\alpha}_{\beta}$

- 3. Let V be a 3-dimensional vector space with a basis $\alpha = \{v_1, v_2, v_3\}$. Let $T: V \to V$ be a linear transformation such that $T(v_1) = v_1, T(v_2) = 2v_2$ and $T(v_3) = -v_3$.
 - (a) Find $[T]^{\alpha}_{\alpha}$
 - (b) Let $\beta = \{v_1 + v_2, v_2 + v_3, v_3 + v_1\}$. Find $[T]_{\beta}^{\beta}$

4. Let I_n be the $n \times n$ identity matrix. Let V be an n-dimensional vector space and λ be a nonzero real number. Define $T: V \to V$ by $T(v) = \lambda v$. Let α and β be ordered bases of V. Show that $[T]_{\alpha}^{\beta} = \lambda I_n$ if and only if $\alpha = \beta$.