Aula 6 – Seqüências e Limites

Metas da aula: Apresentar a definição rigorosa de limite de uma sequência de números reais bem como seu uso na demonstração de limites elementares e algumas propriedades básicas envolvendo esse conceito.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Usar a definição de limite de uma seqüência de números reais para demonstrar a convergência de uma seqüência convergente a um dado limite.
- Demonstrar certas propriedades básicas envolvendo o conceito de limite de uma seqüencia de números reais e usá-las na verificação de limites dados.

Sequências de Números Reais

Uma seqüência de elementos de um conjunto X qualquer é uma função $\mathbf{x}: \mathbb{N} \to X$, cujo domínio é \mathbb{N} e cujos os valores estão contidos no conjunto X. Nesta aula estaremos interessados em seqüências de números reais e no significado de convergência dessas seqüências.

Definição 6.1

Uma seqüência de números reais é uma função $\mathbf{x}: \mathbb{N} \to \mathbb{R}$, definida no conjunto $\mathbb{N} = \{1, 2, 3, \dots\}$ dos números naturais e tomando valores no conjunto \mathbb{R} dos números reais.

Se $\mathbf{x} : \mathbb{N} \to \mathbb{R}$ é uma seqüência, usaremos a notação x_n em lugar de $\mathbf{x}(n)$ para denotar seu valor em $n \in \mathbb{N}$. Os valores x_n são chamados os **termos** ou **elementos** da seqüência. Usaremos freqüentemente as notações $(x_n)_{n \in \mathbb{N}}$, (x_n) ou, simplesmente, x_n , como formas alternativas de representar a seqüência \mathbf{x} .

Claramente, poderão ser usadas outras letras, como $\mathbf{y}=(y_k)_{k\in\mathbb{N}}, \mathbf{z}=(z_j)_{j\in\mathbb{N}}, \mathbf{a}=(a_l)_{l\in\mathbb{N}}$ etc.

O uso de parênteses () em vez de chaves { } serve para distinguir a seqüência (x_n) do conjunto de seus valores $\{x_n : n \in \mathbb{N}\}$. Assim, por exemplo, a seqüência $(1+(-1)^n)_{n\in\mathbb{N}}$ tem infinitos termos $(x_1=0, x_2=2, x_3=0,\ldots, x_{100}=2, x_{101}=0,\ldots)$ ao passo que o conjunto $\{1+(-1)^n: n\in\mathbb{N}\}$ coincide com o conjunto $\{0,2\}$, que tem apenas dois elementos.

É muito comum definir-se uma seqüência dando-se uma fórmula para o n-ésimo termo x_n , como acabamos de fazer com $x_n = 1 + (-1)^n$. Quando tal fórmula pode ser facilmente deduzida a partir do conhecimento de seus primeiros termos, é também comum listar-se os termos da seqüência até que a regra de formação pareça evidente. Assim, a seqüência dos números ímpares pode ser apresentada na forma $(1,3,5,\ldots)$, que é o mesmo que $(2n-1)_{n\in\mathbb{N}}$.

Uma outra forma de se definir uma sequência é especificar o valor de x_1 e dar uma fórmula para x_{n+1} em termos de x_n , para $n \geq 1$, ou, de modo equivalente, dar uma fórmula para x_n em termos de x_{n-1} , para $n \geq 2$. Mais geralmente, podemos especificar os valores de $x_1,\,x_2,\ldots,\,x_p$ e dar uma fórmula para x_n em função de x_{n-1}, \ldots, x_{n-p} , para $n \ge p+1$. Dizemos, nesse caso, que a sequência está definida recursivamente ou indutivamente. Um exemplo disso é obtido se definirmos a següência $(1/2^n)$ na forma

$$x_1 = \frac{1}{2}$$
, $x_{n+1} = \frac{x_n}{2}$, para $n \ge 1$.

Outro exemplo é fornecido pela sequência definida por

$$y_1 = 1$$
, $y_2 = 1$, e $y_n = y_{n-1} + y_{n-2}$, para $n \ge 3$,

que é conhecida como sequência de Fibonacci, cuja importância reside em fatos alheios ao contexto do presente curso. E fácil verificar que os 10 primeiros termos da sequência de Fibonacci são os que aparecem na lista $(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots).$

Limite de uma Sequência

A noção de limite de uma sequência constitui o eixo fundamental de toda a Análise Matemática. Nesta aula apresentaremos esse conceito na sua forma mais básica que é aquela aplicada às seqüências de números reais.

Definição 6.2

Diz-se que uma sequência $\mathbf{x} = (x_n)$ em \mathbb{R} converge para $\bar{x} \in \mathbb{R}$, ou que \bar{x} é **limite** de (x_n) , se para todo $\varepsilon > 0$ existe um número natural $N_0(\varepsilon)$ tal que, para todo $n > N_0(\varepsilon)$, x_n satisfaz $|x_n - \bar{x}| < \varepsilon$.

Se uma sequência possui limite, dizemos que ela é convergente; caso contrário dizemos que ela é divergente.

Usaremos as seguintes notações para expressar que \bar{x} é limite de (x_n) :

$$\lim_{n\to\infty} x_n = \bar{x}, \quad \lim x_n = \bar{x} \quad \text{ou ainda} \quad x_n \to \bar{x} \quad \text{quando } n \to \infty.$$

Na definição que acabamos de dar denotamos $N_0(\varepsilon)$ e não, simplesmente, N_0 , apenas para enfatizar o fato de que o referido número natural N_0 dependerá em geral do número $\varepsilon > 0$ que tenha sido escolhido. Freqüentemente vamos usar a notação mais simples N_0 deixando de explicitar a dependência desse número em relação a ε . Como veremos nos exemplos que daremos a seguir, de modo geral, quanto menor for o ε escolhido, maior terá de ser o valor de N_0 , para que tenhamos, para todo $n > N_0$, $|x_n - \bar{x}| < \varepsilon$.

Apenas por curiosidade, observamos que a definição anterior de limite de uma sequência x_n pode ser escrita somente com símbolos matemáticos na forma

$$(\forall \varepsilon > 0)(\exists N_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n > N_0 \Rightarrow |x_n - \bar{x}| < \varepsilon),$$

ou, mais compactamente,

$$(\forall \varepsilon > 0)(\exists N_0 \in \mathbb{N})(\forall n > N_0)(|x_n - \bar{x}| < \varepsilon).$$

Em termos coloquiais, a definição de limite pode ser traduzida da seguinte maneira: à medida que os valores de n se tornam mais e mais altos, os elementos x_n se tornam mais e mais próximos de \bar{x} . Matematicamente, a verificação dessa sentença assume um formato semelhante ao de um jogo em que um jogador A, que afirma ser \bar{x} limite de x_n , é desafiado por um outro jogador B a provar tal afirmação. Sendo assim, B escolhe um $\varepsilon > 0$ arbitrariamente pequeno e desafia A a encontrar um número natural N_0 , não importando quão grande ele seja, tal que para todo $n > N_0$ valha que $|x_n - \bar{x}| < \varepsilon$. Se A conseguir mostrar que para qualquer $\varepsilon > 0$ escolhido ele é capaz de exibir N_0 verificando tal propriedade, então ele ganha o jogo, provando que \bar{x} é limite de x_n . Caso contrário, ele perde e quem ganha é B, ficando provado que \bar{x} não é limite de x_n .

O resultado seguinte afirma que se uma seqüência possui limite, então esse limite é único.

Teorema 6.1 (Unicidade dos Limites)

Uma sequência em \mathbb{R} pode ter no máximo um limite.

Prova: Suponhamos que \bar{x}' e \bar{x}'' sejam ambos limites de (x_n) . Para cada $\varepsilon > 0$ existe um N_0' tal que $|x_n - \bar{x}'| < \varepsilon/2$ para todo $n > N_0'$, e existe um N_0'' tal que $|x_n - \bar{x}''| < \varepsilon/2$ para todo $n > N_0''$. Seja $N_0 = \max\{N_0', N_0''\}$. Então, para $n > N_0$, temos

$$|\bar{x}' - \bar{x}''| = |\bar{x}' - x_n + x_n - \bar{x}''|$$

$$\leq |\bar{x}' - x_n| + |x_n - \bar{x}''| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Como $\varepsilon > 0$ pode ser tomado arbitrariamente pequeno, concluímos que \bar{x}' – $\bar{x}'' = 0.$

Decorre imediatamente da Definição 6.2 que a seqüência x_n converge a \bar{x} se, e somente se, a seqüência $y_n = x_n - \bar{x}$ converge a 0 (por quê?).

A desigualdade triangular implica diretamente o seguinte resultado.

Teorema 6.2

Se a sequência (x_n) converge para \bar{x} então a sequência $(|x_n|)$ converge para $|\bar{x}|$. Se $\bar{x}=0$ então vale também a recíproca, isto é, se $|x_n|\to 0$, então $x_n \to 0$. Em particular, $x_n \to \bar{x}$ se, e somente se, $|x_n - \bar{x}| \to 0$.

Prova: Pela desigualdade triangular, temos $||x_n| - |\bar{x}|| \le |x_n - \bar{x}|$. Dado $\varepsilon>0,$ se $x_n\to \bar{x},$ podemos obter $N_0\in\mathbb{N}$ tal que, para todo $n>N_0,$ $|x_n - \bar{x}| < \varepsilon$ e, portanto, $||x_n| - |\bar{x}|| < \varepsilon$. Logo, $|x_n| \to |\bar{x}|$.

No caso particular em que $\bar{x}=0$, suponhamos $|x_n|\to 0$. Dado $\varepsilon>0$, podemos encontrar $N_0 \in \mathbb{N}$ tal que se $n > N_0$ então $|x_n| = ||x_n| - 0| < \varepsilon$. Assim, para $n > N_0$, temos $|x_n - 0| = |x_n| < \varepsilon$ e, portanto, $x_n \to 0$.

Em particular, pelo que vimos anteriormente, $x_n \to \bar{x}$ se, e somente se, $x_n - \bar{x} \to 0$, que, por sua vez, vale se, e somente se, $|x_n - \bar{x}| \to 0$.

Exemplos 6.1
(a) $\lim_{n\to\infty} \frac{1}{n} = 0$.

Com efeito, seja $\varepsilon > 0$ arbitrariamente dado. Pela Propriedade Arquimediana dos números reais, existe $N_0 \in \mathbb{N}$ tal que $N_0 > 1/\varepsilon$. Assim, se $n > N_0$, então

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \frac{1}{N_0} < \varepsilon.$$

Portanto, 1/n converge para 0.

(b) $\lim_{n \to \infty} (1 + \frac{(-1)^n}{n}) = 1.$

Pelo Teorema 6.2, $(1+\frac{(-1)^n}{n}) \to 1$ se, e somente se, $|(1+\frac{(-1)^n}{n})-1|=$ $\frac{1}{n} \to 0$, o qual é verdadeiro pelo exemplo anterior.

(c)
$$\lim \frac{n}{n^2 + n + 2} = 0$$
.

Com efeito, seja $\varepsilon > 0$ arbitrariamente dado. Como $1/n \to 0$, podemos obter $N_0 \in \mathbb{N}$ tal que se $n > N_0$, então $1/n < \varepsilon$. Logo, para todo $n > N_0$, temos

$$\left| \frac{n}{n^2 + n + 2} - 0 \right| = \frac{n}{n^2 + n + 2} < \frac{n}{n^2} = \frac{1}{n} < \varepsilon,$$

o que prova a afirmação.

(d)
$$\lim \frac{5n+3}{n+2} = 5$$
.

De novo, pelo Teorema 6.2, basta provar que $\left|\frac{5n+3}{n+2}-5\right| = \frac{7}{n+2} \to 0$. Agora, dado $\varepsilon > 0$ qualquer, como $1/n \to 0$, podemos encontrar $N_0 \in \mathbb{N}$ tal que se $n > N_0$, então $1/n < \varepsilon/7$. Portanto, para todo $n > N_0$,

$$\frac{7}{n+2} < \frac{7}{n} < 7(\frac{\varepsilon}{7}) = \varepsilon,$$

o que prova a afirmação.

Procedimento análogo ao adotado neste exemplo nos leva a um resultado geral bastante útil descrito no exemplo a seguir.

(e) Seja (x_n) uma seqüência de números reais e $\bar{x} \in \mathbb{R}$. Se (a_n) é uma seqüência de números reais positivos com $\lim a_n = 0$ e se para alguma contante C > 0 e algum $M \in \mathbb{N}$ tivermos

$$|x_n - \bar{x}| \le Ca_n$$
 para todo $n > M$,

então $\lim x_n = \bar{x}$.

Com efeito, dado $\varepsilon>0$ qualquer, como lim $a_n=0$, sabemos que existe $N_0'\in\mathbb{N}$ tal que se $n>N_0'$, então

$$a_n = |a_n - 0| < \frac{\varepsilon}{C}.$$

Daí segue que se $n > N_0 := \max\{M, N_0'\}$, então

$$|x_n - \bar{x}| \le Ca_n < C(\frac{\varepsilon}{C}) = \varepsilon,$$

o que prova que $\lim x_n = \bar{x}$.

(f) Se a > 0, então $\lim \frac{1}{1 + na} = 0$.

De fato, temos

$$\left|\frac{1}{1+na}-0\right| \le \left(\frac{1}{a}\right)\frac{1}{n}$$
 para todo $n \in \mathbb{N}$.

Assim, o item (e), com C = 1/a > 0 e $a_n = 1/n$, juntamente com o item (a) implicam a afirmação.

(g) Se 0 < b < 1, então $\lim b^n = 0$.

De fato, como 0 < b < 1, podemos escrever b = 1/(1+a), onde a :=(1/b)-1>0. Pela desigualdade de Bernoulli, temos $(1+a)^n\geq 1+na$. Portanto,

$$0 < b^n = \frac{1}{(1+a)^n} \le \frac{1}{1+na} < \frac{1}{na}.$$

Assim, da mesma forma que no item anterior, concluímos que $\lim b^n =$ 0.

(h) Se c > 0, então $\lim c^{1/n} = 1$.

Se c=1, a afirmação é trivial, pois aí $(c^{1/n})$ é a seqüência constante $(1,1,1,\ldots)$, a qual obviamente converge para 1.

Se c>1, então $c^{1/n}=1+d_n$, onde $d_n:=c^{1/n}-1>0$. Portanto, pela desigualdade de Bernoulli, já usada no item anterior,

$$c = (1 + d_n)^n \ge 1 + nd_n$$
 para todo $n \in \mathbb{N}$.

Daí segue que $c-1 \ge nd_n$, de modo que $d_n \le (c-1)/n$. Consequentemente, temos

$$|c^{1/n} - 1| = d_n \le (c - 1)\frac{1}{n}$$
 para todo $n \in \mathbb{N}$.

De novo, usamos os itens (e) e (a) para concluir que $\lim c^{1/n} = 1$ quando c > 1.

Suponhamos, enfim, que 0 < c < 1. Então, $c^{1/n} = 1/(1 + h_n)$, onde $h_n := c^{-1/n} - 1 > 0.$ De novo, a desigualdade de Bernoulli $(1 + h_n)^n \geq$ $1 + nh_n$ implica que

$$c = \frac{1}{(1+h_n)^n} \le \frac{1}{1+nh_n} < \frac{1}{nh_n},$$

donde deduzimos que $0 < h_n < 1/nc$ para todo $n \in \mathbb{N}$. Daí obtemos

$$0 < 1 - c^{1/n} = \frac{h_n}{1 + h_n} < h_n < \frac{1}{nc}$$

de modo que

$$|c^{1/n} - 1| < \left(\frac{1}{c}\right) \frac{1}{n}$$
 para todo $n \in \mathbb{N}$.

De novo, aplicamos os itens (a) e (e) para concluir que $\lim c^{1/n} = 1$ também quando 0 < c < 1.

(i) $\lim n^{1/n} = 1$.

Primeiramente, recordemos a fórmula binomial

$$(1+h)^n = 1 + \binom{n}{1}h + \binom{n}{2}h^2 + \dots + \binom{n}{n-1}h^{n-1} + h^n,$$

onde, como de costume, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Como $n^{1/n} > 1$, para n > 1, podemos escrever $n^{1/n} = 1 + k_n$, onde $k_n = n^{1/n} - 1 > 0$, para n > 1. Pela fórmula binomial, se n > 1 temos

$$n = (1 + k_n)^n = 1 + nk_n + \frac{1}{2}n(n-1)k_n^2 + \dots \ge 1 + \frac{1}{2}n(n-1)k_n^2,$$

donde segue que

$$n - 1 \ge \frac{1}{2}n(n - 1)k_n^2.$$

Portanto, $k_n^2 \leq 2/n$ para n > 1. Dado $\varepsilon > 0$, segue da Propriedade Arquimediana de \mathbb{R} que existe um número natural N_0 tal que $N_0 > 2/\varepsilon^2$. Segue que se $n > N_0$, então $2/n < \varepsilon^2$, o que implica

$$0 < n^{1/n} - 1 = k_n < (2/n)^{1/2} < \varepsilon.$$

Como $\varepsilon > 0$ é arbitrário, concluímos que $\lim n^{1/n} = 1$.

(j) Dada a seqüência de números reais $\mathbf{x} = (x_n)$ e $m \in \mathbb{N}$, defina a seqüência $\mathbf{x}_m = (y_n)$ pondo $y_n := x_{n+m}$. A seqüência \mathbf{x}_m assim definida é às vezes chamada a m-cauda de \mathbf{x} . Seja $\bar{x} \in \mathbb{R}$. Provaremos que seqüência \mathbf{x} converge a \bar{x} se, e somente se, \mathbf{x}_m converge a \bar{x} .

Com efeito, suponhamos que \mathbf{x} converge a \bar{x} e seja dado $\varepsilon > 0$ qualquer. Então existe $N_0' \in \mathbb{N}$ tal que, para todo $n > N_0'$, $|x_n - \bar{x}| < \varepsilon$. Logo, para todo $n > N_0 := N_0' - m$, $y_n = x_{n+m}$ satisfaz $|y_n - \bar{x}| < \varepsilon$. Portanto, \mathbf{x}_m converge para \bar{x} .

Reciprocamente, suponhamos que \mathbf{x}_m converge a \bar{x} e seja dado $\varepsilon > 0$ qualquer. Então existe $N_0'' \in \mathbb{N}$ tal que, para todo $n > N_0''$, $|y_n - \bar{x}| = |x_{n+m} - \bar{x}| < \varepsilon$. Logo, para todo $n > N_0 := N_0'' + m$, temos $|x_n - \bar{x}| < \varepsilon$. Como $\varepsilon > 0$ é arbitrário, temos que \mathbf{x} converge para \bar{x} .

(l) Seja $\mathbf{x} = (x_n)$ uma seqüência de números reais tal que o conjunto de seus valores $\{x_n : n \in \mathbb{N}\}$ é um conjunto finito. Mostraremos que \mathbf{x} é convergente se, e somente se, existe $m \in \mathbb{N}$ tal que a m-cauda de \mathbf{x} , \mathbf{x}_m , é uma seqüência constante, isto é, $x_{n+m} = x_{1+m}$, para todo $n \in \mathbb{N}$.

Pelo item anterior, fica claro que se para algum $m \in \mathbb{N}$ a m-cauda de \mathbf{x}, \mathbf{x}_m , é uma seqüência constante, com $x_{n+m} = x_{n+1}$, para todo $n \in \mathbb{N}$, então \mathbf{x} converge para x_{1+m} .

Reciprocamente, suponhamos que $F := \{x_n : n \in \mathbb{N}\}$ é um conjunto finito e que $\mathbf{x} = (x_n)$ é convergente. Pelo menos um elemento do conjunto finito F é igual a x_n para todo n pertencente a um subconjunto infinito de N. Suponhamos que $\bar{x}' \in F$ e $\bar{x}'' \in F$ satisfazem $\bar{x}' = x_n$, para todo $n \in \mathbb{N}'$, e $\bar{x}'' = x_n$, para todo $n \in \mathbb{N}''$, onde \mathbb{N}' e \mathbb{N}'' são dois subconjuntos infinitos de \mathbb{N} . Como são infinitos, os conjuntos \mathbb{N}' e N" são ilimitados (por quê?). Assim, para qualquer $N_0 \in \mathbb{N}$, existem $n_1 > N_0$ tal que $n_1 \in \mathbb{N}'$, o que nos dá $x_{n_1} = \bar{x}'$, e $n_2 > N_0$ com $n_2 \in \mathbb{N}''$, o que implica $x_{n_2} = \bar{x}''$. Portanto, se $\bar{x}' \neq \bar{x}''$, tomando $\varepsilon < |\bar{x}' - \bar{x}''|/2$ obtemos uma contradição com o fato de que (x_n) é convergente, como demostramos a seguir.

De fato, supondo que $\lim x_n = \bar{x}$, para um certo $\bar{x} \in \mathbb{R}$, será impossível encontrar $N_0 \in \mathbb{N}$ tal que $|x_n - \bar{x}| < \varepsilon < |\bar{x}' - \bar{x}''|/2$, para todo $n > N_0$, pois nesse caso teríamos

$$|\bar{x}' - \bar{x}''| \le |\bar{x}' - x_{n_1}| + |x_{n_1} - x_{n_2}| + |x_{n_2} - \bar{x}''|$$

$$\le |\bar{x}' - x_{n_1}| + |x_{n_1} - \bar{x}| + |\bar{x} - x_{n_2}| + |x_{n_2} - \bar{x}''|$$

$$< 0 + \varepsilon + \varepsilon + 0 = 2\varepsilon < |\bar{x}' - \bar{x}''|,$$

o que é absurdo.

Logo, existe um único elemento $\bar{x} \in F$ tal que $x_n = \bar{x}$ para uma infinidade de índices $n \in \mathbb{N}$. Como $F' := F \setminus \{\bar{x}\}$ é finito, o conjunto $J := \mathbf{x}^{-1}(F') = \{n \in \mathbb{N} : x_n \in F'\}$ é um subconjunto finito de \mathbb{N} (por quê?), donde $m := \sup J < +\infty$. Portanto, $x_{n+m} = \bar{x}$, para todo $n \in \mathbb{N}$, isto é, \mathbf{x}_m é uma seqüência constante.

(m) A sequência $(1+(-1)^n)$ não é convergente.

Como $x_n = 0$ se n é impar, e $x_n = 2$ se n é par, segue do item anterior que $(1+(-1)^n)$ não é convergente.

Exercícios 6.1

1. Escreva os cinco primeiros termos da sequência (x_n) em cada um dos casos seguintes:

(a)
$$x_n := 1 + \frac{(-1)^n}{n}$$
,

(b)
$$x_n := \frac{1}{n(n+1)}$$
,

(c)
$$x_n := \frac{n}{n^2 + 3}$$
.

2. Liste os cinco primeiros termos das seguintes seqüências definidas indutivamente:

(a)
$$x_1 := 1, x_{n+1} = 3x_n + 1,$$

(b)
$$y_1 := 2$$
, $y_{n+1} = \frac{1}{2}(y_n + 2/y_n)$.

(c)
$$z_1 := 3$$
, $z_2 := 5$, $z_{n+2} := z_n + z_{n+1}$.

- 3. Para qualquer $b \in \mathbb{R}$, prove que $\lim \frac{b}{n} = 0$.
- 4. Use a definição de limite de uma seqüência para demonstrar a validade dos seguintes limites:

(a)
$$\lim \frac{n^2}{n^3 + 2} = 0$$
.

(b)
$$\lim \frac{3n}{n+4} = 3$$
.

(c)
$$\lim \left(\frac{2n+3}{5n+1}\right) = \frac{2}{5}$$
.

(d)
$$\lim \left(\frac{3n^2 - 1}{2n^2 + 1}\right) = \frac{3}{2}$$
.

5. Mostre que

(a)
$$\lim \frac{2}{\sqrt{3n+1}} = 0$$
.

(b)
$$\lim \frac{2\sqrt{n+3}}{n+1} = 0.$$

(c)
$$\lim \frac{(-1)^n n}{n^2 + 1} = 0.$$

(d)
$$\lim \frac{\sqrt{n+1}}{\sqrt{n+2}} = 1$$
.

- 6. Se $\lim x_n = \bar{x} > 0$, mostre que existe um número natural M tal que se $n \ge M$, então $x_n > \frac{1}{2}\bar{x}$.
- 7. Mostre que $\lim(\sqrt{n+1}-\sqrt{n})=0$. Dica: Multiplique e divida por $(\sqrt{n+1}+\sqrt{n})$.

- 8. Se 0 < b < 1, use a fórmula binomial como no exemplo 6.1 (i) para mostrar que $\lim(nb^n) = 0$.
- 9. Diz-se que uma seqüência (x_n) é periódica se existe $p \in \mathbb{N}$ tal que $x_{n+p} = x_n$ para todo $n \in \mathbb{N}$. Prove que toda seqüência periódica convergente é constante.
- 10. Diz-se que uma sequência \mathbf{x} satisfaz *ultimadamente* uma determinada propriedade, ou que a satisfaz para n suficientemente grande, se existe $M_0 \in \mathbb{N}$ tal que para todo $m > M_0$ a m-cauda \mathbf{x}_m satisfaz tal propriedade. Prove que toda sequência ultimadamente periódica convergente é ultimadamente constante.
- 11. Dado $\bar{x} \in \mathbb{R}$, definimos a ε -vizinhança de \bar{x} como o conjunto

$$V_{\varepsilon}(\bar{x}) := \{ x \in \mathbb{R} : |x - \bar{x}| < \varepsilon \} = (\bar{x} - \varepsilon, \bar{x} + \varepsilon).$$

Prove que a sequência \mathbf{x} converge a \bar{x} se, e somente se, para todo $\varepsilon > 0$, ultimadamente todos os elementos de **x** pertencem a $V_{\varepsilon}(\bar{x})$, ou, equivalentemente, para todo $\varepsilon>0,\,x_n\in V_\varepsilon(\bar x)$ para n suficientemente grande.