A Probabilistic Approach to Noether Normalization

Juliette Bruce Bruce (joint with Daniel Erman) University of Wisconsin - Madison

Definitions

• If $X \subset \mathbb{P}^r$ is a closed subscheme, $f_0, \ldots, f_k \in H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(d))$ are a **(partial) system of parameters** on X if

$$\dim \mathbb{V}(f_0,\ldots,f_k)\cap X=\dim X-(k+1).$$

Figure 1: A non-example of fiberwise parameters for $\mathbb{P}^1_{\mathbb{Z}}$.

• If $X \subset \mathbb{P}^r_B$ is a closed subscheme a **fiberwise system of parameters** on X is a collection $f_0, \ldots, f_k \in H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(d))$, which restrict to parameters on each fiber of X over B.

Example - Points in $\mathbb{P}^1_{\mathbb{Z}}$

- A fiberwise parameter for a set of points in $\mathbb{P}^1_{\mathbb{Z}}$ is a homogenous polynomial f such that $f=\pm 1$ at every point .
- For one point the **Euclidean algorithm** shows a linear parameter always exists.
- The points [4:5] and [1:8] have no fiberwise parameter f with deg f < 9. If deg(f) = 9 one can choose:

 $f(x,y) = 590316869666239369788336486577332627591x^9 - y^9$

- $-548058207864200020245777742687553134041x^8y$
- $+60895356429355557805086415854172570449x^7y^2$
- $-201231722866854045440755923284664255x^6y^3-99438623xy^8$
- $-30126091505240316687953753225193x^5y^4$
- $-1977608122820402x^2y^7 + 620958323405203261138096698x^4y^5$
- $-1230273968422817725004x^3y^6$.

Distribution of Parameters

Theorem 1. Let $X \subseteq \mathbb{P}^r_B$ be a closed subscheme of dimension \mathfrak{n} . The "probability" that random chosen forms $\mathfrak{f}_0,\ldots,\mathfrak{f}_k$ of degree \mathfrak{d} are a (fiberwise) system of parameters as $\mathfrak{d} \to \infty$ is:

	$B = \mathbb{F}_{q}$	$B = \mathbb{Z}$
k < n	1	1
k = n	$\zeta_X(n+1)^{-1}$	0

- The case $B = \mathbb{F}_q$ and k = n is due to Bucur and Kedlaya.
- We use an adaptation of Poonen's sieving argument, which when k < n, results in a description of the distribution of parameters in terms of a **higher dimensional analogue** of the Hasse-Weil zeta function.

Proposition 1. Let $X \subseteq \mathbb{P}^r_{\mathbb{F}_q}$ be a closed subscheme of dimension \mathfrak{n} . Then there is an explicit function $\mathfrak{f}(k,\mathfrak{n},d)$ such that

Prob
$$\begin{pmatrix} (f_0, \dots, f_k) \\ of \ degree \ d \ are \ not \\ parameters \ on \ X \end{pmatrix} \sim \# \begin{Bmatrix} (n-k)\text{-planes} \\ L \subset X \end{Bmatrix} \cdot f.$$

Example - Parameters on Surfaces

• Over **F**₄ the Fermat cubic surface

$$X = V(x^3 + y^3 + z^3 + w^3) \subset \mathbb{P}^3_{\mathbb{F}_4}$$

has 27 \mathbb{F}_4 -lines. Proposition 1 implies $\approx 0.66\%$ of pairs (f_0, f_1) of degree two should not be parameters. Simulating 10^5 such pairs we found 0.62% failed to be parameters.

• In \mathbb{P}^3 the surface $\mathbb{V}(xyz)$ contains substantially more lines than $\mathbb{V}(x^2+y^2+z^2)$. Selecting 10^6 random pairs (f_0,f_1) of degree two, the proportion that *failed* to be parameters were:

	V(xyz)	$V(x^2+y^2+z^2)$
\mathbb{F}_2	.2638	.1179
\mathbb{F}_3	.0552	.0059
\mathbb{F}_5	.0063	.0004

Application: Uniform Noether Normalization

• As an application we recover a recent result of Gabber-Liu-Lorenzini and Chinburg-More-Bailly-Pappas-Taylor.

Theorem 2. Let $X \subset \mathbb{P}^r_{\mathbb{Z}}$ be a closed subscheme. If every fiber of X over \mathbb{Z} has dimension \mathfrak{n} then there exists a linear series in $\mathcal{O}_X(d)$, for some d > 0, inducing a finite morphism:

$$\phi: X \to \mathbb{P}^n_{\mathbb{Z}}$$
.

- The existence of such ϕ is subtle, even potentially unexpected, as the sections $f_0, \ldots, f_n \in H^0(X, \mathcal{O}_X(d))$ defining such a finite map have **density zero**; even if we let $d \to \infty$.
- Step #1 (Probabilistic): By Theorem 1 we can find fiberwise parameters f_0, \ldots, f_{n-1} on X simply by picking high degree forms at random, and so reduce Theorem 2 to

$$X' = X \cap \mathbb{V}(f_0, \dots, f_{n-1}).$$

•Step #2 - (Arithmetic): Such X' is essentially a union of orders in number fields. Using the fact an order has a finite Picard group we show that Pic(X') is finite. This finiteness allows us to construct the last parameter.

Application: Effective Noether Normalization

• Applying Proposition 1 we also obtain an effective version of Noether normalization over \mathbb{F}_q .

Proposition 2. Let $X \subset \mathbb{P}^r_{\mathbb{F}_q}$ be a closed irreducible subscheme of dimension $\mathfrak{n} > 0$. There exist forms of degree $\mathfrak{d}^\mathfrak{n}$ defining a finite morphism $\pi: X \to \mathbb{P}^\mathfrak{n}_{\mathbb{F}_q}$ so long as:

$$d > \log_q \deg X + n \log_q d + \log_q n$$

 $d > \sqrt[n]{q \cdot \deg X}$.

Acknowledgments

The author was partially supported by the NSF GRFP under grant No. DGE-1256259; as well as The Graduate School and the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin with funding from the Wisconsin Alumni Research Foundation.