

Kemiske småforsøg-

Redigeret af Ole Bostrup

Kender De et sjovt forsøg?

Så send en kort beskrivelse til Dansk Kemi, Skelbækgade 4, 1717 København V:

Dannelse af komplekset $HgI_4^2 - og$ en variant af landoltreaktionen

Kemikalier: HgCl₂-opløsning (mættet). KI-opløsning (10 %). NaHSO₃-opløsning (0,15 M).

KIO₃-opløsning (0,15 M).

Stivelse.

A. Kviksølv (II)iodid og tetraiodomercurat (II).

Ved sammenblanding af vandige opløsninger af Hg^{2+} og I^- finder følgende reaktioner sted:

Underskud af I⁻: Hg²⁺ + 2 I⁻ → HgI₂
Det tungtopløselige kviksølv(II)-iodid udfældes.

Overskud af I^- : $HgI_2 + 2I^- \rightarrow HgI_4^{2-}$ Bundfaldet går i opløsning, idet den farveløse kompleksion tetraiodomercurat(II) dannes.

Procedure: Til nogle ml HgCl₂-opløsning sættes KI-opløsning først i underskud og derpå i overskud.

B. Iodat og hydrogensulfit.

En langsom produktion af I⁻ kan opnås ved reaktion mellem IO₃⁻ og HSO₃⁻:

(1) $IO_3^- + 3 HSO_3^- \rightarrow I^- + 3 SO_4^2 + 3 H^+$

(Det er vigtigt, at der er overskud af HSO_3^-).

Procedure: I en 1-liter konisk kolbe kommes i den nævnte rækkefølge:

400 ml H₂O

200 ml NaHSO3-opløsning

5 ml HgCl₂-opløsning

Kolben placeres på en magnetomrører, som startes, hvorpå der tilsættes 40 ml KIO₃-opløsning.

Efter et par minutters forløb dannes der et rød-orange bundfald af kviksølv(II)-iodid. Efter yderligere et par minutters forløb vil bundfaldet gå i opløsning under dannelse af tetraiodomercurat(II).

 $C.\ Envariant\ af\ Landolts\ reaktion.$

Reaktionen (I) under B er den hastighedsbestemmende reaktion i Landoltreaktionen, som imidlertid endvidere består af nedenstående reaktioner, der begge er hurtige:

(2) $IO_3^- + 5I^- + 6H^+ \rightarrow$

 $3I_2 + 3H_2O$

(3) $HSO_3^- + I_2 + H_2O \rightarrow$

 $2I^{-} + SO_4^{23} + 3H^{+}$

Det indses let, at (I) angiver bruttoreaktionsskemaet for hele reaktionskomplekset (1), (2), (3), hvilket betyder en vedvarende produktion af I-(jvnf. B), så længe både HSO₃-— og IO₃-er til stede i opløsningen. Slipper imidlertid HSO_3^- op før IO_3^- —; vil redaktionen (3) fra det tidspunkt ophøre, mens (2) fortsat vil forløbe, hvilket betyder, at der ophobes I_2 i systemet. Dette registreres ved hjælp af stivelse, hvor der dannes den bekendte blå-sorte farve.

En måling af den tid, der forløber, inden I_2 registreres, kan anvendes ved undersøgelser af reaktionshastigheden for (1).

Procedure: I en 1-liter konisk kolbe kommes i den nævnte rækkefølge:

400 ml H₂O

100 ml NaHSO3-opløsning

lidt stivelse.

Kolben placeres på en magnetomrører, som startes, hvorpå der tilsættes:

40 ml KIO₃-opløsning.

D. Endnu en variant af Landolts reaktion.

Et samtidigt forløb af processerne under B og C kan opnås på følgende måde.

Procedure: I en 1-liter konisk kolbe kommes i den nævnte rækkefølge:

400 ml H₂O

125 ml NaHSO₃-opløsning

3,5 ml HgCl2-opløsning

lidt stivelse

Kolben placeres på en magnetomrører, som startes, hvorpå der tilsæt-

50 ml KIO3-opløsning.

Her ser man et forløb fra farveløs væske til gult bundfald, farveløs væske og endelig blå-sort farve.

Carsten Kongegaard.