FINANCIAL ECONOMETRICS

Problem Set-2

Q1.

a.

b. Akaike's information criterion and Bayesian information criterion

ar_0 96 92.69684 92.69684 1 -183.3937 -180.8293 ar_1 96 92.69684 94.58035 2 -185.1607 -180.032 ar_2 96 92.69684 94.71068 3 -183.4214 -175.7283							
ar_1 96 92.69684 94.58035 2 -185.1607 -180.032 ar_2 96 92.69684 94.71068 3 -183.4214 -175.7283	Model	N	ll(null)	ll(model)	df	AIC	BIC
_	ar_1	96 96	92.69684 92.69684	94.58035 94.71068	2	-185.1607 -183.4214	-180.032 -175.7283

Note: BIC uses N = number of observations. See [R] IC note.

AR(1) is selected by AIC since it has the lowest AIC Value (-185.1607)

AR(0) is selected by BIC since it has the lowest BIC Value (-180.8293)

Augmented Dickey-Fuller test for unit root Variable: y_t Number of obs = 98 Number of lags = 1 H0: Random walk without drift, d = 0 Dickey-Fuller Test critical value 1% statistic 5% 10% Z(t) -2.503 -3.513 -2.892 -2.581 MacKinnon approximate p-value for Z(t) = 0.1149. Regression table D.y_t Coefficient Std. err. P>|t| [95% conf. interval] t y_t L1. -.0663886 0.014 -.1190546 .0265286 -2.50 -.0137226 LD. .213392 .0979294 2.18 0.032 .0189775 .4078065 _cons .1125429 .0488938 2.30 0.024 .0154765 .2096093

Since the absolute value of the test statistic, which is |-2.503|, is less than the absolute value of the 10% Dickey-Fuller critical value, which is |-2.581|, we do not have enough evidence to reject the null hypothesis at a 10% significance level. Therefore, we fail to reject the null hypothesis, suggesting that yt follows a random walk (unit root).

ARIMA regression

	D.y t	Coefficient	OPG std. err.	z	P> z	[95% conf.	interval]
y_t							
	_cons	0109099	.012526	-0.87	0.384	0354605	.0136407
ARMA							
	ar						
	L1.	.1955817	.1042143	1.88	0.061	0086745	.399838
	/sigma	.0916716	.0060908	15.05	0.000	.0797339	.1036093

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

a.

. reg D.exchq L(1)D.exchq

Source	SS	df	MS		01 003	= 98
Model Residual Total	.033983147 .807228202	1 96 97	.033983147 .008408627	R-squa Adj R-	F ared squared	= 4.04 = 0.0472 = 0.0404 = 0.0304 = .0917
D.exchq	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
exchq LD.	.201976	.1004686	2.01	0.047	.0025473	.4014047
_cons	0076871	.0093245	-0.82	0.412	026196	.0108218

. ar2sim 100 0.2020 0.0917

Number of observations (_N) was 0, now 100.

Time variable: __000000, 1 to 100

Delta: 1 unit

(98 missing values generated)

(98 real changes made)

Augmented Dickey-Fuller test for unit root

H0: Random walk without drift, d = 0

Test — Dickey-Fuller critical value — 5% 10%

Z(t) -0.725 -3.513 -2.892 -2.581

MacKinnon approximate p-value for Z(t) = 0.8401.

b.

- . set seed 6219
- . quietly simulate pval=r(p), reps(5000): ar2sim 100 0.2020 0.0917
- . summarize

Variable	0bs	Mean	Std. dev.	Min	Max
pval	5,000	.501461	.2941342	2.41e-07	.998769

- . count if pval<=0.10 551
- . gen prob_1=551/5000
- . display prob
- .1102

Rejection Fraction = 11.02%

There were 551 observations with a p-value less than or equal to 0.10 out of a total of 5000 observations. Consequently, the estimated probability is calculated as 551/5000, resulting in a probability of approximately 0.1102. This implies that the fraction of rejections, which stands at 11.02%, is in close alignment with the significance level of 10%. These findings are consistent with our expectations because we were unable to reject the null hypothesis, indicating that the data exhibits a unit root.

. reg D.exchq L(1)exchq L(1)D.exchq

Source	SS	df	MS		er of obs	=	98
Model Residual	.083906618 .757304731	2 95	.041953309	R-sq	> F uared	= =	5.26 0.0068 0.0997
Total	.841211349	97	.008672282	_	R-squared MSE	=	0.0808 .08928
D.exchq	Coefficient	Std. err.	t	P> t	[95% cc	onf.	interval]
exchq L1. LD.	0663886 .213392	.0265286 .0979294		0.014 0.032	119054 .018977		0137226 .4078065
_cons	.1125429	.0488938	2.30	0.024	.015476	55	.2096093

. summarize

Variable	0bs	Mean	Std. dev.	Min	Max
pval	5,000	.205647	.1843937	4.34e-07	.9732851

Rejection Fraction = 37.22%

There were 1861 observations with a p-value less than or equal to 0.10 out of a total of 5000 observations. Consequently, the estimated probability is calculated as 1861/5000, resulting in a probability of approximately 0.3722. This implies that the fraction of rejections, which stands at 37.22%, is significantly higher than the significance level of 10%. These findings are consistent with our expectations because we have rejected the null hypothesis, indicating that the data does not exhibit a unit root.

d.

. summarize

Variable	Obs	Mean	Std. dev.	Min	Max
pval	5,000	.4961497	.289873	4.54e-06	.9987869

Rejection Fraction = 10.74%

. summarize

Variable	Obs	Mean	Std. dev.	Min	Max
pval	5,000	.0515017	.0682822	2.03e-06	.7604713

Rejection Fraction = 83.94%

Observing the data, we note that when the number of observations is doubled, the rejection fractions are 10.74% and 83.94%. In the case where the null hypothesis holds true, the increase in the sample size doesn't significantly impact the rejection rate, which remains close to 10%. However, for the second scenario, where the null hypothesis is false, the rejection fraction exceeds the significance level of 10% and actually grows as the sample size increases. These outcomes are consistent with our anticipated results.

STATA CODE

Q1.

```
a. clear all
   use http://fmwww.bc.edu/ec-p/data/Mills2d/exchq.dta
   twoway (line exchq qtr), name(graph1) xtitle("Quarter") ytitle("Exchange Rate")
   title("Dollar/Sterling Exchange Rate vs Quarter")
b. //Create two variables
   gen y_t = exchq
   gen dy t = y t - L.y t
   //AR(0) model:
   reg dy_t if qtr \geq tq(1973q1)
   estimate store ar_0
   //AR(1) model:
   reg dy_t L.dy_t if qtr \geq tq(1973q1)
   estimate store ar 1
   //AR(2) model:
   reg dy t L(1/2).dy t if qtr >= tq(1973q1)
   estimate store ar_2
   //AR(3) model:
   reg dy_t L(1/3).dy_t if qtr >= tq(1973q1)
   estimate store ar_3
   estimate stats ar 0 ar 1 ar 2 ar 3
c. dfuller y t, lags(1) regress
d. save y_t, replace
   drop if qtr \geq tq(1996q1)
   arima y_t, arima(1,1,0)
   tsappend, add(4)
   predict fory_t, y dynamic(tq(1995q4))
   drop y t
   merge m:1 qtr using y t
   gen qtr_trunc = qtr if qtr >= tq(1996q1)
   format qtr_trunc %tq
   gen actual = y t if qtr \Rightarrow tq(1996q1)
   gen forecasted = fory_t if qtr >= tq(1996q1)
```

```
twoway (line actual qtr trunc,title("Actual")) (line forecasted qtr trunc,title("Forecast")),
name(graph2) xtitle("Quarter") ytitle("Exchange Rate") title("Dollar/Sterling Exchange
Rate vs Quarter")
clear all
use http://fmwww.bc.edu/ec-p/data/Mills2d/exchq.dta
program ar2sim, rclass
       drop all
       set obs `1'
       tempvar time
       gen `time' = n
       tsset `time'
       tempvar e
       gen 'e' = rnormal()
       tempvar y
       gen y' = 0 in 1/2
       replace y' = (1+2')*L.y' - 2'*L2.y' + (3'*e') in 3/I
       dfuller 'y', lags(1)
       return scalar p = r(p)
end
reg D.exchq L(1)D.exchq
set seed 6219
ar2sim 100 0.2020 0.0917
set seed 6219
quietly simulate pval=r(p), reps(5000): ar2sim 100 0.2020 0.0917
summarize
count if pval <=0.10
gen prob 1=551/5000
display prob
clear all
use http://fmwww.bc.edu/ec-p/data/Mills2d/exchq.dta
```

Q2. a.

b.

c.

program ar2sim_2, rclass drop_all set obs `1'

```
gen `time' = _n
          tsset 'time'
          tempvar e
          gen 'e' = rnormal()
          tempvar y
          gen y' = 0 in 1/2
          replace y' = (1+2'+3')*L.y' - 2'*L2.y' + (4'*e') in 3/I
           dfuller 'y', lags(1)
          return scalar p = r(p)
   end
   reg D.exchq L(1)exchq L(1)D.exchq
   set seed 6219
   quietly simulate pval=r(p), reps(5000): ar2sim 2 100 0.2134 -0.0664 0.0893
   summarize
   count if pval<=0.10
   gen prob 2=1861/5000
   display prob_2
d.
   program ar2sim, rclass
          drop _all
          set obs `1'
          tempvar time
          gen `time' = n
          tsset 'time'
          tempvar e
          gen `e' = rnormal()
          tempvar y
          gen y' = 0 in 1/2
          replace `y' = (1+`2')*L.`y' - `2'*L2.`y' + (`3'*`e') in 3/l
          dfuller 'y', lags(1)
          return scalar p = r(p)
   end
   set seed 6219
   quietly simulate pval=r(p), reps(5000): ar2sim 200 0.2020 0.0917
   summarize
   count if pval <= 0.10
   gen prob 3=537/5000
   display prob_3
```

tempvar time

set seed 6219
quietly simulate pval=r(p), reps(5000): ar2sim_2 200 0.2134 -0.0664 0.0893
summarize
count if pval <=0.10
gen prob_4=4197/5000
display prob_4