INTRODUCTION TO AUTOMATA THEORY

Reading: Chapter 1

WHAT IS AUTOMATA THEORY?

- Study of abstract computing devices, or "machines"
- Automaton = an abstract computing device
 - Note: A "device" need not even be a physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can do and cannot do
 - The theory of computation
- Computability vs. Complexity

(A pioneer of automata theory)

ALAN TURING (1912-1954)

- Father of Modern Computer
 Science
- English mathematician
- Studied abstract machines called *Turing machines* even before computers existed
 - Heard of the Turing test?

BEHND

THEORY OF COMPUTATION: A HISTORICAL PERSPECTIVE

1930s	 Alan Turing studies Turing machines Decidability Halting problem
1940-1950s	 "Finite automata" machines studied Noam Chomsky proposes the "Chomsky Hierarchy" for formal languages
1969	Cook introduces "intractable" problems or "NP-Hard" problems
1970-	Modern computer science: compilers, computational & complexity theory evolve

LANGUAGES & GRAMMARS

An alphabet is a set of symbols:

Or "words"

{0,1}

Sentences are strings of symbols:

A language is a set of sentences:

$$L = \{000,0100,0010,..\}$$

A grammar is a finite list of rules defining a language.

$$S \longrightarrow 0A$$
 $B \longrightarrow 1B$
 $A \longrightarrow 1A$ $B \longrightarrow 0F$
 $A \longrightarrow 0B$ $F \longrightarrow \varepsilon$

- Languages: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
- Grammars: "A grammar can be regarded as a device that enumerates the sentences of a language" - nothing more, nothing less
- N. Chomsky, Information and Control, Vol 2, 1959

THE CHOMSKY HIERACHY

• A containment hierarchy of classes of formal languages

THE CENTRAL CONCEPTS OF AUTOMATA THEORY

ALPHABET

An alphabet is a finite, non-empty set of symbols

- We use the symbol \sum (sigma) to denote an alphabet
- Examples:
 - Binary: $\sum = \{0, 1\}$
 - All lower case letters: $\sum = \{a,b,c,..z\}$
 - Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\sum = \{a,c,g,t\}$
 - . . .

STRINGS

A string or word is a finite sequence of symbols chosen from \sum

- Empty string is ε (or "epsilon")
- Length of a string w, denoted by "|w|", is equal to the number of (non- ε) characters in the string
 - E.g., x = 010100 |x| = 6
 - $x = 01 \varepsilon 0 \varepsilon 1 \varepsilon 00 \varepsilon$ |x| = ?
- xy = concatentation of two strings x and y

POWERS OF AN ALPHABET

Let \sum be an alphabet.

- \sum^{k} = the set of all strings of length k

LANGUAGES

L is a said to be a language over alphabet Σ , only if $L \subset \Sigma^*$

 \rightarrow this is because Σ^* is the set of all strings (of all possible length including 0) over the given alphabet Σ

Examples:

Let L be the language of all strings consisting of n 0's followed by n 1's: $L = \{\epsilon, 01, 0011, 000111,...\}$

$$\mathbf{L} \stackrel{=}{=} \{ \varepsilon, 01, 0011, 000111, \ldots \}$$

Let L be the language of all strings of with equal number of 0's and 1's:

```
\mathbf{L} = \{ \epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, \ldots \}
```

Canonical ordering of strings in the language

Ø denotes the Empty language **Definition:**

• Let
$$L = \{\epsilon\}$$
; Is $L = \emptyset$?

THE MEMBERSHIP PROBLEM

Given a string $w \in \Sigma^*$ and a language L over Σ , decide whether or not $w \in L$.

Example:

Let w = 100011

Q) Is $w \in \text{the language of strings with equal number of 0s and 1s?}$

FINITE AUTOMATA

- Some Applications
 - Software for designing and checking the behavior of digital circuits
 - Lexical analyzer of a typical compiler
 - Software for scanning large bodies of text (e.g., web pages) for pattern finding
 - Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)

FINITE AUTOMATA: EXAMPLES

On/Off switch

Push action
Start on Push

 Modeling recognition of the word "then"

STRUCTURAL EXPRESSIONS

- Grammars
- Regular expressions
 - E.g., unix style to capture city names such as "Palo Alto CA":

Other space delimited words (part of city name)

FORMAL PROOFS

DEDUCTIVE PROOFS

From the given statement(s) to a conclusion statement (what we want to prove)

Logical progression by direct implications

Example for parsing a statement:

• "If $y \ge 4$, then $2^y \ge y^2$."

given

conclusion

(there are other ways of writing this).

EXAMPLE: DEDUCTIVE PROOF

Let Claim 1: If $y \ge 4$, then $2^y \ge y^2$.

Let x be any number which is obtained by adding the squares of 4 positive integers.

Claim 2:

Given x and assuming that Claim 1 is true, prove that $2^x \ge x^2$

Proof:

- 1) Given: $x = a^2 + b^2 + c^2 + d^2$
- 2) Given: $a \ge 1$, $b \ge 1$, $c \ge 1$, $d \ge 1$
- 3) $a^2 \ge 1, b^2 \ge 1, c^2 \ge 1, d^2 \ge 1$ (by 2)
- 4) $/ \Rightarrow x \ge 4$ (by 1 & 3)
- 5) $\rightarrow 2^x \ge x^2$ (by 4 and Claim 1)

ON THEOREMS, LEMMAS AND COROLLARIES

We typically refer to:

- A major result as a "theorem"
- An intermediate result that we show to prove a larger result as a "lemma"
- A result that follows from an already proven result as a "corollary"

An example:

Theorem: The height of an n-node binary tree is at least floor(lg n)

Lemma: Level i of a perfect binary tree has 2^i nodes.

Corollary: A perfect binary tree of height h has 2^{h+1} -1 nodes.

QUANTIFIERS

"For all" or "For every"

- Universal proofs
- Notation=

"There exists"

- Used in existential proofs
- Notation=

Implication is denoted by =>

• E.g., "IF A THEN B" can also be written as "A=>B"

PROVING TECHNIQUES

- By contradiction
 - Start with the statement contradictory to the given statement
 - E.g., To prove (A => B), we start with:
 - (A and ~B)
 - ... and then show that could never happen

What if you want to prove that "(A and B => C or D)"?

- By induction
 - (3 steps) Basis, inductive hypothesis, inductive step
- By contrapositive statement
 - If A then $B \equiv \text{If } \sim B \text{ then } \sim A$

PROVING TECHNIQUES...

- By counter-example
 - Show an example that disproves the claim

- Note: There is no such thing called a "proof by example"!
 - So when asked to prove a claim, an example that satisfied that claim is not a proof

DIFFERENT WAYS OF SAYING THE SAME THING

- "*If* H *then* C":
 - i. H implies C
 - ii. H => C
 - iii. C if H
 - iv. Honly if C
 - v. Whenever H holds, C follows

"IF-AND-ONLY-IF" STATEMENTS

- "A if and only if B" (A <==> B)
 - (*if part*) if B then A (<=)
 - (only if part) A only if B (=>)(same as "if A then B")
- "If and only if" is abbreviated as "iff"
 - i.e., "A iff B"
- Example:
 - Theorem: Let x be a real number. Then floor of x = ceiling of x if and only if x is an integer.
- Proofs for iff have two parts
 - One for the "if part" & another for the "only if part"

SUMMARY

- Automata theory & a historical perspective
- Chomsky hierarchy
- Finite automata
- Alphabets, strings/words/sentences, languages
- Membership problem
- Proofs:
 - Deductive, induction, contrapositive, contradiction, counterexample
 - If and only if
- Read chapter 1 for more examples and exercises

