P425/2 APPLIED MATHEMATICS Paper 2 Oct. 2023 3 HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION

APPLIED MATHEMATICS (PRINCIPAL SUBJECT) Set 11

Paper 2

TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES:

Answer all the Eight questions in Section A and Five questions from Section B. Any additional question(s) answered will not be marked.

All necessary working must be clearly shown.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

In numerical work, take g to be 9.8 ms^{-2} .

SECTION A: (40 MARKS)

Answer all the questions in this section

1. The probability that events A and B occur are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. If the probability that only one of them occurs is $\frac{5}{12}$, find the;

(i) P(AnB)

(ii) P(A'nB')

- 2. A particle of mass 2 kg resting on a rough horizontal plane is pulled by a force of magnitude of 11.3N inclined at an angle of 60° to the horizontal. If the particle does not move, find the minimum value of the coefficient of friction between the particle and the plane
- 3. Given that for a function f(x), f(0.9) = 0.2661, f(1.0) = 0.2420 and f(1.1) = 0.2179. Use linear interpolation or extrapolation to estimate;

(i) f(0.96)

(ii) $f^{-1}(0.2082)$

4. A biased coin is tossed six times. The coin is such that the ratio of showing a tail to that of a head is 3:1, find the probability of getting;

(i) At least 4 heads

(ii) Between 2 and 4 tails

- 5. A bullet is fired vertically upwards at a speed of 150ms⁻¹. Find the length of time for which the bullet is at least 900m above the ground level.
- 6. Given that X = 2.79, Y = 1.375 and Z = 1.4, find the limits within which $X \frac{Y}{Z}$ lies
- 7. A random variable X has a probability density function

$$f(x) = \begin{cases} \frac{2^x}{k}, & x = 1,2,3,4\\ 0, & otherwise \end{cases}$$

Find the:

(a) Values of k

(b) Mean of X

8. A particle moves such that its displacement at any time (t) is given by $r = t^2(2\hat{\imath} - 4\hat{k}) - t^3(3\hat{\jmath} - 2\hat{\imath}) + 2\sin(2t)\hat{k}$ metres. Find the magnitude of the acceleration of the particle at t = 3 seconds

2

SECTION B: (60 MARKS)

Answer any five questions in this section. All questions carry equal marks

- 9. The number of cows owned by residents in a village is assumed to be normally distributed. 15% of the residents have less than 60 cows while 90% of the residents have less than 100 cows
 - (a) Determine the value of the mean μ , and standard deviation σ of the cows
 - (b) If there are 200 residents, find how many have more than 80 cows
- 10.(a) Use the trapezium rule with 6 ordinates to find the approximate value of $\int_{0.5}^{1.5} \left(\frac{3}{x} + x^4\right) dx$, correct to 4 significant figures
 - (b) Calculate the exact value, hence find the absolute, relative and percentage error in your estimation in (i). Suggest how the error may be reduced
- 11. Two particles A and B move with velocities $(\lambda i + 3j + 30k)$ ms⁻¹ and (4i 2j 15k)ms⁻¹ respectively where λ is a constant. At t=0, the particles are located at points (2, 1, -15)m and (1, 4, 12)m respectively.
 - (a) Find the value λ such that A and B will colide and find the value of t when collision occurs
 - (b) When $\lambda = 2$, find the time after which the particles will be nearest to each other
- 12. The masses (x) in kg of 50 students were as follows.

<u> </u>	
Masses (x)	Number of students
$40 \le x < 45$	3
$45 \le x < 50$	2
$50 \le x < 60$	20
$60 \le x < 65$	18
$65 \le x < 70$	3
$70 \le x < 75$	4

- (a) Calculate the Mean and standard deviation
- (b) Construct an ogive and use it to estimate
 - (i) Median
 - (ii) Percentage of students who have a mass of 55kg and above
- 13.A particle of mass 2.4kg is held at rest on a rough horizontal surface AB with coefficient of friction of 0.5, it is connected by a light inextensible string passing over a smooth fixed pulley at B to a particle of mass 3.6kg. The slopping face BC is smooth and makes an angle of 30° to the horizontal

3

If the system is released from rest. Find the;

- (i) acceleration of the system and Tension in the string
- (ii) Force exerted on the pulley at B
- (iii) Velocity of the 3.6 kg mass after 2 seconds
- 14. A random variable X has probability density function

f(x)=
$$\begin{cases} kx; & 0 < x \le 3\\ 3k(4-x); & 3 < x \le 4\\ 0; & otherwise \end{cases}$$

- (a) Sketch f(x), hence find the value of the constant k
- (b) Find the;
 - (i) Mean, E(X)
 - (ii) Cumulative distribution function F(x), hence find P(X < 3.5)
- 15.(a) Use graphical method to show that the equation $e^x + x 4 = 0$ has a root between 1 and 2, correct to 1 decimal place
 - (b) Show that the Newton Raphson formula for finding the root of the equation (i) above

$$x_{n+1} = \frac{e^{x_n}(x_n-1)+4}{1+e^{x_n}};$$
 $n = 0,1,2,...$

- (c) Hence use the initial approximation x_o obtained in (a) above to find the root of the equation correct to 3 decimal places
- 16. A uniform plank of length 8m and mass 100kg rests in limiting equilibrium with the end A on a horizontal ground and the end B against vertical wall. If the coefficient of friction at each end of the plank is 0.3. Find the;
 - (a) Angle the plank makes with the vertical
 - (b) The plank is now placed at an angle of β to the horizontal where $\tan \beta = 2$ and a body of mass Mkg is attached to the plank at B causing the plank to slip. Find the maximum value of M and the magnitude of the corresponding normal reaction at A.