

Unsupervised Anomaly Detection using H2O.ai

Agenda

- 1. Introduction
- 2. Problem Statement
- 3. Methodology
- 4. Experiments & Results
- 5. Conclusion

Anomaly Detection

Identify data points that do not fit the pattern of the data

Unsupervised Anomaly Detection

"Anomaly detection is about finding what you don't know to look for."

- Ted Duning¹

Fundamental assumption:

 Amount of normal data points exceeds the amount of anomalous data points by far

⁴

Problem Statement

Is a deep learning auto-encoder well suited for anomaly detection in an unlabeled dataset?

Problem Statement

ذ غ

Is a deep learning auto-encoder well suited for anomaly detection in an unlabeled dataset?

Foundations: Deep Learning Auto-Encoder

- Neural Net
- Desired output = input

- Auto-encoder learns a compressed representation of input
- Most commonly used for dimensionality reduction purposes

Dataset

- Provided by Kaggle.com
- 5.92 GB
- 2736 Driver
- 200 Trips each
- X- / Y-coordinates
- Folder- / File- based structure
- Anonymized by cropping & rotation
- Trips start at (0,0)

Methodology

1st Experiment

- One general model for all drivers
- Normalization of resulting confidence scores

Conclusions 1st Experiment

- Generalization of model too high
- Wide variance between drivers
- Finding optimal parameters is tough
 - No labels, means no feedback

2nd Experiment

 One single model for each driver

 Normalization of resulting confidence scores

Visual Exploration

- Find 15 trips with highest reconstruction error
- Visualize trips with matplot-lib

Visual Exploration

Visual Exploration

All trips of driver 1634

 ... that seem to be spoiling the model and / or predictions Dataset apparently still contains junk drives...

All trips but trip #136

Conclusions 2nd Experiment

- Noisy data seems to influence our model
- Noise is recognized as outliers, but seems to distort the confidence scores and thus probabilities

$$\hat{x_i} = \frac{x_i - \min(X)}{\max(X) - \min(X)}$$

3rd Experiment

- One single model for each driver
- Normalization of resulting confidence scores
- Discounting
 highest two
 confidence
 scores per driver

Conclusions 3rd Experiment

-		PeterSchrott	0.62390		Tue, 14 Jul 2015 12:48:38 Post-Deadline
951	↓13	Michael Maguire	0.62469	21	Sat, 28 Feb 2015 17:52:49 (-14.1d)
950	16	Sven Knoepfler	0.62529	36	Sat, 21 Feb 2015 10:04:51 (-23.7d)

Post-Deadline Entry

If you would have submitted this entry during the competition, you would have been around here on the leaderboard.

- Better results after accounting for an arbitrary number of junk drives per driver
- Noise is recognized as outliers, but seems to distort the confidence scores and thus probabilities

Conclusion

- AUC score of 0.62390 far from reliable outlier detection
- But still better than the 0.5 benchmark
- Spend more time on cleaning the data

Recommendations for future work:

- Use cleaner dataset
- If possible with features already given

Thank you for your attention!

Were you surprised by any of your findings?

I was surprised at the number of junk runs there were. Some of the drivers had 30, 40 or more junk runs!

- Scott Hartshorn (2nd place in the AXA Driver Telematics challenge on Kaggle.com)