Задание

Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Метод 2

Линейная/логистическая регрессия Градиентный бустинг

Набор данных: https://www.kaggle.com/roysouravcu/forbes-billionaires-of-2021

Ход выполнения работы

Текстовое описание набора данных

Этот набор данных содержит список всех людей, отнесенных Forbes к категории миллиардеров 2021 года в их 35-м ежегодном списке миллиардеров мира.

Этот набор данных содержит «Имя каждого миллиардера», «Страна: они основаны!», «Источник их дохода / название компании», «Их собственный капитал, который делает их богаче, чем БЕДНЫЕ ЛЮДИ» и «Их глобальное положение с точки зрения их собственный капитал», «Отрасль»: в какой отрасли они работают? и их «Возраст».

Столбцы:

- Name имя милиардера
- NetWorth собственный капитал в миллиардах долларов США
- Country страна проживания
- Source источник дохода
- Rank номер в рейтинге милиардеров
- Age возраст милиардера
- Industry сектор/индустрия/сегмент рынка, над которым работает миллиардер

Основные характеристики набора данных

```
Подключаем все необходимые библиотеки
In [1]:import numpy as np
```

import pandas as pd import seaborn as sns

import matplotlib

import matplotlib_inline

import matplotlib.pyplot as plt

from IPython.display import Image

from io import StringIO

import graphviz

import pydotplus

from sklearn.model_selection import train_test_split

%matplotlib inline

%matplotlib inline

sns.set(style="ticks")

from IPython.display import set matplotlib formats

matplotlib inline.backend inline.set matplotlib formats("retina")

Подключаем Dataset

In [2]:data = pd.read csv('Billionaire.csv', sep=",")

Размер набора данных

In [3]:data.shape

Out[3]:(2755, 7)

Типы колонок

In [4]:data.dtypes

Out[4]:Name

object NetWorth object

Country object

Source object

Rank int64

Age float64

Industry object

dtype: object

Проверяем, есть ли пропущенные значения

In [5]:data.isnull().sum()

Out[5]:Name 0 NetWorth 0 Country Source Rank 0 Age 79 Industry 0 dtype: int64 Первые 8 строк датасета

In [6]:data.head(8)

Out[6]:	Name	NetWorth	Country	Source	Rank	Age	Industry
0	Jeff Bezos	\$177 B	United States	Amazon	1	57.0	Technology
1	Elon Musk	\$151 B	United States	Tesla, SpaceX	2	49.0	Automotive
2	Bernard Arnault & family	\$150 B	France	LVMH	3	72.0	Fashion & Retail
3	Bill Gates	\$124 B	United States	Microsoft	4	65.0	Technology
4	Mark Zuckerberg	\$97 B	United States	Facebook	5	36.0	Technology
5	Warren Buffett	\$96 B	United States	Berkshire Hathaway	6	90.0	Finance & Investments
6	Larry Ellison	\$93 B	United States	software	7	76.0	Technology
7	Larry Page	\$91.5 B	United States	Google	8	48.0	Technology

In [7]:total_count = data.shape[0]

print('Всего строк: {}'.format(total_count))

Всего строк: 2755

Процент пропусков в Аде

In [8]:(79 / 2755) * 100

Out[8]:2.867513611615245

Настройка отображения графиков

In [9]:# Задание формата графиков для сохранения высокого качества PNG from IPython.display import set_matplotlib_formats matplotlib_inline.backend_inline.set_matplotlib_formats("retina") # Задание ширины графиков, чтобы они помещались на А4 pd.set_option("display.width", 70)

Обработка прорпусков в данных

Поскольку процент пропусков очень маленький (pprox 3%), то строки, содержащие пропуски, можно удалить

In [10]:# Удаление строк, содержащих пустые значения data_no_null = data.dropna(axis=0, how='any') (data.shape, data_no_null.shape)

Out[10]:((2755, 7), (2676, 7))

Выведем первые 8 строк набора данных

In [11]:data_no_null.head(8)

Out[11]:	Name	NetWorth	Country	Source	Rank	Age	Industry
0	Jeff Bezos	\$177 B	United States	Amazon	1	57.0	Technology
1	Elon Musk	\$151 B	United States	Tesla, SpaceX	2	49.0	Automotive
2	Bernard Arnault & family	\$150 B	France	LVMH	3	72.0	Fashion & Retail
3	Bill Gates	\$124 B	United States	Microsoft	4	65.0	Technology
4	Mark Zuckerberg	\$97 B	United States	Facebook	5	36.0	Technology
5	Warren Buffett	\$96 B	United States	Berkshire Hathaway	6	90.0	Finance & Investments
6	Larry Ellison	\$93 B	United States	software	7	76.0	Technology
7	Larry Page	\$91.5 B	United States	Google	8	48.0	Technology

In [12]:total_count = data_no_null.shape[0] print('Всего строк: {}'.format(total_count))

Всего строк: 2676

Обрабогтка данных

Очистка лишних символов

```
В столбце NetWorth содерится доход, но он представлен в виде строки, а не числом. Кромие того, в строке имеются лишние символы $, В
```

```
In [13]:data_fix = data_no_null.copy()
```

data_fix['NetWorth'] = data_fix['NetWorth'].str.replace('\$', ", regex=False)

data_fix['NetWorth'] = data_fix['NetWorth'].str.replace(' B', ", regex=False)

In [14]:data_fix.head(8)

	=						
Out[14]:	Name	NetWorth	Country	Source	Rank	Age	Industry
0	Jeff Bezos	177	United States	Amazon	1	57.0	Technology
1	Elon Musk	151	United States	Tesla, SpaceX	2	49.0	Automotive
2	Bernard Arnault & family	150	France	LVMH	3	72.0	Fashion & Retail
3	Bill Gates	124	United States	Microsoft	4	65.0	Technology
4	Mark Zuckerberg	97	United States	Facebook	5	36.0	Technology
5	Warren Buffett	96	United States	Berkshire Hathaway	6	90.0	Finance & Investments
6	Larry Ellison	93	United States	software	7	76.0	Technology
7	Larry Page	91.5	United States	Google	8	48.0	Technology

Проверим типвы данных

In [15]:data_fix.dtypes

Out[15]:Name object
NetWorth object
Country object
Source object
Rank int64

Age float64
Industry object

dtype: object

Как видно, показатель дохода по прежнему является строкой не смотря на то, что он выглядит как число. Изменим тип дангных столбца.

 $In~[16]: data_fix['NetWorth'] = pd.to_numeric(data_fix['NetWorth'])$

In [17]:data_fix.dtypes

Out[17]:Name object
NetWorth float64
Country object
Source object
Rank int64
Age float64
Industry object
dtype: object

Как видно, теперь все поля имеют правильные типы

In [18]:data_fix.head(8)

Out[18]:	Name	NetWorth	Country	Source	Rank	Age	Industry
0	Jeff Bezos	177.0	United States	Amazon	1	57.0	Technology
1	Elon Musk	151.0	United States	Tesla, SpaceX	2	49.0	Automotive
2	Bernard Arnault & family	150.0	France	LVMH	3	72.0	Fashion & Retail
3	Bill Gates	124.0	United States	Microsoft	4	65.0	Technology
4	Mark Zuckerberg	97.0	United States	Facebook	5	36.0	Technology
5	Warren Buffett	96.0	United States	Berkshire Hathaway	6	90.0	Finance & Investments
6	Larry Ellison	93.0	United States	software	7	76.0	Technology
7	Larry Page	91.5	United States	Google	8	48.0	Technology

Кодирование категориальных признаков

Преобразуем имена, страны, ... в числовые зеачения (label encoding)

In [19]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder

In [20]:le = LabelEncoder()

"Name"

le.fit(data_fix.Name.drop_duplicates())

data_fix.Name = le.transform(data_fix.Name)

"Country"

le.fit(data_fix.Country.drop_duplicates())

data_fix.Country = le.transform(data_fix.Country)

"Source"

le.fit(data_fix.Source.drop_duplicates())

```
data_fix.Source = le.transform(data_fix.Source)
    #"Industry"
le.fit(data_fix.Industry.drop_duplicates())
data_fix.Industry = le.transform(data_fix.Industry)
```

Масштабирование данных

In [21]:from sklearn.preprocessing import MinMaxScaler
In [22]:sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data_fix)
data_scalled = data_fix.copy()
data_scalled[data_scalled.columns] = sc1_data
data_scalled

Out[22]:

	Name	NetWorth	Country	Source	Rank	Age	Industry
0	0.379865	1.000000	0.956522	0.006608	0.000000	0.481481	0.941176
1	0.223802	0.852273	0.956522	0.157489	0.000374	0.382716	0.000000
2	0.082710	0.846591	0.231884	0.094714	0.000748	0.666667	0.235294
3	0.089072	0.698864	0.956522	0.105727	0.001122	0.580247	0.941176
4	0.569237	0.545455	0.956522	0.052863	0.001496	0.222222	0.941176
2750	0.172530	0.000000	0.115942	0.387665	1.000000	0.382716	0.941176
2751	0.981287	0.000000	0.115942	0.055066	1.000000	0.580247	0.588235
2752	0.983907	0.000000	0.115942	0.486784	1.000000	0.493827	0.705882
2753	0.988398	0.000000	0.115942	0.331498	1.000000	0.493827	0.117647
2754	0.993638	0.000000	0.115942	0.145374	1.000000	0.444444	0.941176

2676 rows × 7 columns

Построим кореляционную матрицу

In [23]:ig, ax = plt.subplots(figsize=(10,5))

 $sns.heatmap(data_scalled.corr(method='pearson'),\ ax=ax,\ annot=\textbf{True},\ fmt='.3f')$

Out[23]:<Axes: >

Предсказание целевого признака

Предскажем значение целевого признака Rank .

Разделение выборки на обучающую и тестовую

In [24]:X = data_scalled.drop(columns='Rank')

Y = data_scalled['Rank']

Входные данные:

In [25]:X.head()

```
Out[25]:
                    NetWorth
             Name
                               Country
                                          Source
                                                             Industry
                                                       Age
         0.379865
                     1.000000 0.956522 0.006608 0.481481
                                                            0.941176
          0.223802
                     0.852273
                              0.956522 0.157489
                                                  0.382716
                                                            0.000000
          0.082710
                     0.846591
                               0.231884
                                         0.094714
                                                   0.666667
                                                             0.235294
          0.089072
                     0.698864
                               0.956522
                                        0.105727 0.580247
                                                            0.941176
          0.569237
                     0.545455  0.956522  0.052863  0.222222
                                                            0.941176
Выходные данные
In [26]:Y.head()
Out[26]:0 0.000000
         0.000374
      1
      2
         0.000748
         0.001122
      3
      4 0.001496
      Name: Rank, dtype: float64
```

In [27]:X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 2022, test_size = 0.1)

Входные параметры обучающей выборки

In [28]:X_train.head()

Out[28]:

	Name	NetWorth	Country	Source	Age	Industry
518	0.151946	0.025568	0.463768	0.371145	0.555556	0.470588
2521	0.994012	0.001136	0.115942	0.294053	0.469136	0.588235
425	0.770958	0.030114	0.115942	0.701542	0.493827	0.117647
661	0.296781	0.019318	0.608696	0.453744	0.111111	0.352941
2722	0.429266	0.000000	0.637681	0.781938	0.703704	0.117647

Входные параметры тестовой выборки

In [29]:X_test.head()

Out[29]: Industry Name NetWorth Country Source Age 0.032186 0.431818 0.797101 0.174009 0.827160 1109 0.949850 0.010795 0.115942 0.212555 0.395062 0.000000 **2483** 0.602171 0.001136 0.956522 0.865639 0.395062 0.941176 **1160** 0.730913

> **527** 0.307260 0.025000 0.956522 0.182819 0.753086 0.352941

Выходные параметры обучающей выборки

In [30]:Y_train.head()

Out[30]:518 0.187430

2521 0.889263

425 0.157127

0.244669 661

2722 1.000000

Name: Rank, dtype: float64

Выходные параметры тестовой выборки

In [31]:Y_test.head()

Out[31]:10 0.003741

1109 0.397681

2483 0.889263

1160 0.415264

527 0.194164

Name: Rank, dtype: float64

Линейная регрессия

In [32]:from sklearn.linear_model import LinearRegression

from sklearn.datasets import make_blobs

from sklearn.metrics import mean_absolute_error, mean_squared_error

In [33]:fig, ax = plt.subplots(figsize=(5,5))

sns.scatterplot(ax=ax, x=X['NetWorth'], y=Y)

Out[33]:<Axes: xlabel='NetWorth', ylabel='Rank'>

Обучим линейную регрессию

```
In [34]:reg1 = LinearRegression().fit(X, Y)
```

In $[35]:Y_pred_1 = reg1.predict(X_test)$

Проверим результат на 2 метриках

 $In~[36]: mean_absolute_error(Y_test,~Y_pred_1),~mean_squared_error(Y_test,~Y_pred_1)$

Out[36]:(0.2051862943868395, 0.05685141353401008)

Градиентный бустинг

In [37]:from sklearn.ensemble import AdaBoostRegressor

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz

Обучим регрессор на 4 деревьях

In [38]:ab1 = AdaBoostRegressor(n_estimators=4, random_state=2022)

ab1.fit(X, Y)

Out[38]:

AdaBoostRegressor

AdaBoostRegressor(n_estimators=4, random_state=2022)

Визуализируем обучающие деревья

In [39]:# Визуализация дерева

def get_png_tree(tree_model_param, feature_names_param):

dot_data = StringIO()

 $export_graphviz (tree_model_param, out_file=dot_data, feature_names=feature_names_param, out_file=dot_data, feature_names=fe$

filled=True, rounded=True, special_characters=True)

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())

return graph.create_png()

 $In~[40]: Image(get_png_tree(ab1.estimators_[0],~X.columns),~width \verb="500")$

In [41]:Image(get_png_tree(ab1.estimators_[1], X.columns), width="500")

In [42]:Image(get_png_tree(ab1.estimators_[2], X.columns), width="500")

In [43]:Image(get_png_tree(ab1.estimators_[3], X.columns), width="500")

In [44]:regressor = AdaBoostRegressor(n_estimators=4, random_state=2022)

regressor.fit(X_train, Y_train)
y_pred = regressor.predict(X_test)

In [45]:print('Mean Absolute Error:', mean_absolute_error(Y_test, y_pred))

print('Mean Squared Error:', mean_squared_error(Y_test, y_pred))

print('Root Mean Squared Error:', np.sqrt(mean_squared_error(Y_test, y_pred)))

Mean Absolute Error: 0.03210150688221961 Mean Squared Error: 0.0013426872745400903 Root Mean Squared Error: 0.036642697424454036

Как видно, градиентный бустинг показало намного более лучшие результаты, чем линейная регрессия. Несмотря на то, что масштабировавние

данных было выполнено (в обоих случаях).

In []: