Tutorial 11

EC103

(GATE Questions: ADC, DAC)

Question 1 (GATE)

In the Digital-to-Analog converter circuit shown in the figure below, $V_R=10\,V$ and $R=10k\Omega$

The current is

- (A) 31.25μ A
- (C) $125\mu A$

- (B) $62.5 \mu A$
- (D) 250μA

Option (B) is correct.

Since the inverting terminal is at virtual ground the resistor network can be reduced as follows

The current from voltage source is

$$I = \frac{V_R}{R} = \frac{10}{10k} = 1 \text{ mA}$$

This current will be divide as shown below

Now
$$i = \frac{I}{16} = \frac{1 \times 10^{-3}}{16} = 62.5 \ \mu \ A$$

Question 2 (GATE)

In the Digital-to-Analog converter circuit shown in the figure below, $V_R=10\,V$ and $R=10k\Omega$

The voltage V_0 is

$$(A) - 0.781 \text{ V}$$

(C)
$$-3.125$$
 V

(D)
$$-6.250 \text{ V}$$

Option (C) is correct.

The net current in inverting terminal of $\ensuremath{\mathsf{OP}}$ - amp is

$$I = \frac{1}{4} + \frac{1}{16} = \frac{5I}{16}$$

So that

$$V_0 = -R \times \frac{5I}{16} = -3.125$$

Question 3 (GATE)

The current I through resistance r in the circuit shown in the figure is

(A)
$$\frac{-V}{12R}$$

(C)
$$\frac{V}{6R}$$

(B)
$$\frac{V}{12R}$$

(D)
$$\frac{V}{3T}$$

• V/12R

Question 4 (GATE)

The circuit shown in the figure is a 4 bit DAC

The input bits 0 and 1 are represented by 0 and 5 V respectively. The OP AMP is ideal, but all the resistance and the 5 v inputs have a tolerance of $\pm 10\%$. The specification (rounded to nearest multiple of 5%) for the tolerance of the DAC is

 $(A) \pm 35\%$

(B) $\pm 20\%$

(C) $\pm 10\%$

(D) $\pm 5\%$

Option (A) is correct.

Tolerance

$$V_o = -V_1 \left[\frac{R}{R} b_o + \frac{R}{2R} b_1 + \frac{R}{4R} b_2 + \frac{R}{4R} b_3 \right]$$

Exact value when $V_1 = 5$, for maximum output

$$V_{oExact} = -5\left[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}\right] = -9.375$$

Maximum V_{out} due to tolerance

$$V_{o\text{max}} = -5.5 \left[\frac{110}{90} + \frac{110}{2 \times 90} + \frac{110}{4 \times 90} + \frac{110}{8 \times 90} \right]$$
$$= -12.604$$
$$= 34.44\% = 35\%$$

Question 5 (GATE)

The minimum number of comparators required to build an 8-bits flash ADC is

(A) 8

(B) 63

(C) 255

(D) 256

• (C) 255

Question 6 (GATE)

A 4 - bit DAC is connected to a free - running 3 - big UP counter, as shown in the following figure. Which of the following waveforms will be observed at V_0 ?

In the figure shown above, the ground has been shown by the symbol ∇

Option (B) is correct.

Q_2Q_1Q0	$D_3 = Q_2$	$D_2 = 0$	$D_1 = Q_1$	$D_0 = Q_0$	V_o
000	0	0	0	0	0
001	0	0	0	1	1
010	0	0	1	0	2
011	0	0	1	1	3
100	1	0	0	0	8
101	1	0	0	1	9
110	1	0	1	0	10
111	1	0	1	1	11
000	0	0	0	0	0
001	0	0	0	1	1

Question 7 (GATE)

The resolution of a 4-bit counting ADC is $0.5\,\mathrm{volts}$. For an analog input of $6.6\,\mathrm{volts}$, the digital output of the ADC will be

(A) 1011 (B) 1101

(C) 1100 (D) 1110

• (B) 1101

Question 8 (GATE)

The output of a 3-stage Johnson (twisted ring) counter is fed to a digital-to analog (D/A) converter as shown in the figure below. Assume all states of the counter to be unset initially. The waveform which represents the D/A converter output V_o is

Option (A) is correct.

All the states of the counter are initially unset.

State Initially are shown below in table :

Q_2	Q_1	Q_0	
0	0	0	0
1	0	0	4
1	1	0	6
1	1	1	7

Question 9 (GATE)

The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A is greater than the 2-bit input B. The number of combinations for which the output is logic 1, is

(A) 4

(B) 6

(C) 8

(D) 10

Option (B) is correct.

Y = 1, when A > B

$$A = a_1 a_0, B = b_1 b_0$$

$a_{\rm l}$	a_0	b_1	b_0	Y
0	1	0	0	1
1	0	0	0	1
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1

 $Total\ combination = 6$