Funciones | MRC

Víctor Peinado v.peinado@filol.ucm.es 23 de octubre de 2014

Referencias

• (Partee, et al., 1990, chap. 2) 1

• Wikipedia: Producto cartesiano ²

• Wikipedia: Relación matemática ³

• Wikipedia: Función matemática ⁴

Funciones

Una **función** es un tipo especial de relación que cumple las siguientes dos condiciones:

- 1. todos y cada uno de los elementos del dominio tienen correspondencia en el rango.
- 2. cada elemento del dominio se corresponde con uno solo de los elemento del rango.

- ¹ Partee, B.; ter Meulen, A.; Wall, R. Mathematical Methods in Linguistics Studies in Linguistics and Philosophy. Springer. 1990. http://books.google. es/books?id=qV7TUuaYcUIC
- 2 Producto cartesiano http: //es.wikipedia.org/wiki/Producto_ cartesiano
- ³ Relación matemática http://es. wikipedia.org/wiki/Relaci/%C3/%B3n_ matem/%C3/%Altica
- Función matemática http://es. wikipedia.org/wiki/Funci/%C3/%B3n_ matem/%C3/%Altica

Por lo tanto, cualquier relación que no cumpla estas condiciones no será una función.

Una **función** es un subconjunto del producto cartesiano $X \times Y$ si en la que todos y cada uno de los miembros de X aparecen una sola vez como primer coordenada del conjunto de pares ordenados.

Ejemplos de funciones

Sean los conjuntos $A = \{a, c, b\}$ y $B = \{1, 2, 3, 4\}$. Las siguientes relaciones sí son funciones:

$$P = \{ < a, 1 >, < b, 2 >, < c, 3 > \}$$

$$Q = \{ \langle a, 4 \rangle, \langle b, 4 \rangle, \langle c, 4 \rangle \}$$

$$R = \{ \langle a, 3 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \}$$

Por el contrario, las siguientes relaciones no son funciones. ¿Sabrías decir por qué?

$$S = \{ \langle a, 1 \rangle, \langle b, 2 \rangle \}$$

$$T = \{ \langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 3 \rangle, \langle c, 4 \rangle \}$$

$$V = \{ \langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 3 \rangle \}$$

Terminología

Como las funciones son un tipo especial de relaciones, mucha de la terminología es común. Una función que es un subconjunto de $A \times B$ es una función $desde\ A\ hasta\ B$. Una función que sea subconjunto de $A \times A$ es una $función\ en\ A$.

Utilizamos la notación $F:A\to B$ para indicar F es una función de A a B.

Fuera de las matemáticas, es habitual también utilizar las palabras *transformación, mapeo* y *correspondencia* como sinónimos de **función**. De hecho, en programación se suelen simbolizar las funciones con la metáfora de una máquina o *caja negra* que transforma argumentos de entrada en valores de salida.

Cuando hablamos de funciones fuera del campo de las matemáticas, los elementos del dominio se suelen denominar argumentos y su correspondencia en el rango valores.

De los ejemplos de la página anterior, podemos decir que la función P asigna el valor 3 al argumento c. Denotamos este hecho con la expresión P(c) = 3.

Tipos de funciones

Funciones suprayectivas (onto) y no suprayectivas (into)

A veces resulta interesante distinguir si el rango de una función F de X a Y es igual a Y o no. Decimos que una función es **suprayectiva**

(o sobreyectiva, epiyectiva, exhaustiva...) cuando todos los elementos del rango (el conjunto Y) están asignados a algún miembro del dominio (el conjunto X).

Por el contrario, decimos que una función es no suprayectiva cuando existe algún elementos del rango (el conjunto Y) que no está asignado a alguno de los miembros del dominio (el conjunto *X*).

Funciones inyectivas (one-to-one)

Una función $F: X \to Y$ es una **inyectiva* (one-to-one) cuando no hay ningún miembro de Y asignado a más de un miembro de X.

Por ejemplo, la función F(x)=x+1 es inyectiva ya que no existe ningún valor que pueda asignarse a más de una x.

Sin embargo, $G(x) = x^2$ no lo es, ya que p. ej., el valor 4 puede asignarse a G(2) y a G(-2).

Funciones no inyectivas (many-to-one)

Por el contrario, decimos que una función $F:X\to Y$ es **no inyectiva** cuando existe algún miembro de Y que está asignado a más de un miembro de X.

El diagrama muestra una función entre un conjunto de polígonos y números enteros, de manera que a cada polígono le corresponde el número de lados que tiene. Alguno de los enteros está emparejado con más de un polígono distinto.

Funciones biyectivas (suprayectivas + inyectivas)}

Una función $F:X\to Y$ que sea a la vez suprayectiva e inyectiva se denomina **función biyectiva**.

Este tipo de funciones son de especial interés, ya que sus inversas son también funciones. En este caso, $F:Y\to X$ es también una función biyectiva.

Resumen

función no inyectiva y no suprayectiva

función inyectiva y no suprayectiva

función no inyectiva y suprayectiva

función biyectiva (inyectiva y suprayectiva)

Función compuesta

Dadas dos funciones, $f: X \to Y y g: Y \to Z$, podemos formar una nueva función de X a Z, llamada función compuesta o composición de f y g y escrita $g \circ f$.

La función compuesta se puede definir como:

 $g \circ f =_{def} \{ \langle x, z \rangle \mid \text{para algún } y, \langle x, y \rangle \in f \text{ } y \langle y, z \rangle \in g \}$

En el ejemplo del diagrama, $(g \circ f)(c) = g(f(c)) = \#$. Volviendo a la metáfora de la máquina o la caja negra, podemos

representar la función compuesta como:

Función identidad

Una función del tipo $F: A \to A$ definida como $F = \{ \langle x, x \rangle | x \in A \}$ se denomina **función identidad**, escrita como id_A . Esta función

simplemente mapea todo elemento de A consigo mismo. La función composición entre cualquier función y la función identidad da como resultado la propia función identidad:

$$id_A \circ F = F \circ id_A = F$$

Para cualquier función $F: A \rightarrow B$ que sea biyectiva, se cumplen las siguientes afirmaciones:

- 1. La función compuesta de F con su inversa es igual a la función identidad de $A: (F^{-1} \circ F) = id_A$
- 2. La función compuesta de la inversa de F con F es igual a la función identidad de $B: (F \circ F^{-1}) = id_B$

Composición de relaciones

La definición de composición no se limita únicamente a funciones, sino que se puede generalizar y extender a las relaciones. Dadas las relaciones $R \subseteq AxB$ y $S \subseteq BxC$, la relación compuesta de R y S, escrita $S \circ R$ se puede definir como:

$$S \circ R =_{def} \{ \langle x, z \rangle \mid \text{para algún } y, \langle x, y \rangle \in R \text{ y } \langle y, z \rangle \in S \}$$
 Para cualquier relacion $R \subseteq AxB$

- La relación compuesta de R con la función/relación identidad de *B* es igual a R: $id_B \circ R = R$
- La relación compuesta de la función/relación identidad de A con R es igual a R: $R \circ id_A = R$

Para cualquier relacion de tipo 'uno-a-uno' $R: A \rightarrow B$

- La relación compuesta de R con su inversa es un subconjunto de la relación identidad de $A: R^{-1} \circ R \subseteq id_A$
- La relación compuesta de la inversa de R con R es un subconjunto de la relación identidad de $B: R \circ R^{-1} \subseteq id_R$

Ejercicios

Ejercicio 2 de (Partee, et al., 1990, chap. 2).