Correction - Devoir commun n°1

(Calculatrice autorisée)

Cette évaluation est composée de 4 exercices indépendants.

Exercice 1

Pour $n \ge 1$, on pose P_n : « $\sum_{k=1}^n k = \frac{n(n+1)}{2}$ ».

Montrons par récurrence que P_n est vraie pour tout $n \ge 1$.

Initialisation:
$$P_1: \left(\sum_{k=1}^{1} k = \frac{1 \times (1+1)}{2} \right)$$

On a $\sum_{k=1}^{1} k = 1$ et $\frac{1 \times (1+1)}{2} = \frac{2}{2} = 1$.

Donc
$$\sum_{k=1}^{1} k = \frac{1 \times (1+1)}{2}$$
 et ainsi, P_1 est vraie.

Hérédité : Supposons qu'il existe un entier $n \geq 1$ tel que P_n est vraie. C'est à dire :

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Montrons que P_{n+1} est vraie :

$$\sum_{k=1}^{n+1} k = 1 + 2 + \dots + n + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1) \quad \text{par hypothèse de récurrence}$$

$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2} \quad \text{par factorisation}$$

Donc P_{n+1} est vraie et (P_n) est héréditaire.

Conclusion : P_1 est vraie et (P_n) est héréditaire donc par principe de récurrence, P_n est vraie pour tout $n \ge 1$.

Donc pour tout
$$n \ge 1$$
, on a : $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

Exercice 2

1. D'après l'énoncé, on a $a_1 = (1+0, 10)a_0 = 1, 1 \times a_0 = 1, 1 \times 2000 = 2200$ et $a_2 = 1, 1 \times a_1 = 1, 1 \times 2200 = 2420$.

L'entreprise produit donc 2200 alarmes la semaine 1 et 2420 alarmes la semaine 2.

2. D'après l'énoncé, on a pour tout $n \in \mathbb{N}$ que $a_{n+1} = 1, 1 \times a_n$.

Donc (a_n) est une suite géométrique de raison q = 1, 1.

- **3.** Donc pour tout $n \in \mathbb{N}$, on a $a_n = a_0 \times q^n = 2000 \times (1,1)^n$.
- **4.** D'après la question précédente, on a $a_{20} = 2000 \times (1,1)^{20} \approx 13455$. Donc, au bout de 20 semaines, l'entreprise produit environ 13455 alarmes.

Exercice 3

Pour $n \in \mathbb{N}$, on pose $P_n : \ll 2000 \le w_{n+1} \le w_n$ ».

Montrons par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation: P_0 : « $2000 \le w_1 \le w_0$ »

On a $w_0 = 2500$ et $w_1 = 0.8w_0 + 400 = 0.8 \times 2500 + 400 = 2400$.

Donc $2000 \le w_1 \le w_0$ et ainsi, P_0 est vraie.

Hérédité : Supposons qu'il existe un entier $n \in \mathbb{N}$ tel que P_n est vraie. C'est à dire :

$$2000 \le w_{n+1} \le w_n$$

Montrons que P_{n+1} est vraie :

$$2000 \le w_{n+1} \le w_n \iff 0, 8 \times 2000 \le 0, 8w_{n+1} \le 0, 8w_n \quad \text{car } 0, 8 \ge 0$$

$$\iff 1600 + 400 \le 0, 8w_{n+1} + 400 \le 0, 8w_n + 400$$

$$\iff 2000 \le w_{n+2} \le w_{n+1}$$

Donc P_{n+1} est vraie et (P_n) est héréditaire.

Conclusion : P_0 est vraie et (P_n) est héréditaire donc par principe de récurrence, P_n est vraie pour tout $n \in \mathbb{N}$.

Donc pour tout $n \in \mathbb{N}$, on a : $2000 \le w_{n+1} \le w_n$

Exercice 4

1. Calculons d'abord u_5 : puisque il s'agit d'une suite géométrique de raison 1, 1 telle que $u_0 = 3$, alors $u_5 = 3 \times (1,1)^5 \approx 4,83$.

Ensuite, on rappelle que, concernant un suite géométrique de raison $q \neq 1$, pour tous entiers naturels $p \leq n$, on a :

$$\sum_{k=p}^{n} u_k = u_p \frac{1 - q^{n-p+1}}{1 - p}$$

En utilisant cette formule avec p = 5, n = 20 et q = 1, 1, on a alors :

$$\sum_{k=5}^{20} u_k = 4,83 \times \frac{1 - (1,1)^{16}}{1 - 1,1} \approx 173,64$$

2. On réutilise la formule de la question 1, avec p=0. Donc pour $n\in\mathbb{N}$, on a :

$$\sum_{k=0}^{n} u_k = u_0 \frac{1 - q^{n+1}}{1 - p} = 3 \times \frac{1 - (1, 1)^{n+1}}{1 - 1, 1} = 3 \times \frac{(1, 1)^{n+1} - 1}{0, 1}$$