$$\frac{dS}{dt} = -\frac{\beta s}{N}(E + A + \eta I)$$

$$\frac{dC}{dE} = \frac{\beta s}{N}(E + A + \eta I) - rE$$

$$\frac{dC}{dE} = \frac{dC}{dE} = \frac{dC}{dE$$

Escribiremos el sistema en términos de Cantidades acumulados para poder relacionarlo con los datos.

1) La ec.
$$\frac{dI}{dt} = (1-\alpha)\tau \in -\gamma I$$

es equivalente al par

 $\frac{dC_t}{dt} = (1-\alpha)\tau \in -\gamma I$
 $\frac{dR_t}{dt} = \gamma_t I$

 $I = C_L - R_I$

$$\frac{dC_{\mathrm{E}}}{dt} = Y_{\mathrm{E}}(C_{\mathrm{E}} - R_{\mathrm{E}})$$

2) La ecuación dA = ATE-XA es equivalente al par

Cinalmente, la ec.

 $\frac{\partial}{\partial t} : \frac{\beta}{N} s \left(E + A + \eta I \right) - \sigma E$

es equivalente a

 $\frac{dC_{E}}{dE} = \frac{p}{N}S(E + A + NI)$

dRe or E

E = CE - BE

4) Adicronal, vemos que

 $\frac{\partial C_{\epsilon}}{\partial t} = -\frac{\partial S}{\partial t}$

=> (== N - S => S = N - CE

Final mente, tenemos el

Sistema equivalente

(al CE = B (N-CE) [(E-RE) + (A-RA)+)(E-RE)

 $\frac{dR_{\epsilon}}{dt} = \mathcal{T}(C_{\epsilon} - R_{\epsilon})$

dca de = xo(CE-RE) dRa = YA(CA-RA) $\frac{\int_{\partial C_{\tau}} (I-\lambda) \tau (C_{E}-R_{E})}{\partial C_{E}}$

Notamos que las ec. estan en prelacionadas en

Por ejemplo:

 $\frac{dC_E}{dE} = (1-\alpha) T(C_E - k_E)$

 $\frac{dR_{\tau}}{dt} = \gamma_{t} \left(C_{t} - R_{t} \right)$

Esta relación nos permite expresar la solución de Pi

er térninos de la solución

Veamos:

de CI.

dR= + YERE = YECE

Ec. lineal no homogénea para RI cuya solución es

 $|S^{+}(\epsilon)| = S \int_{-\delta^{2}} \left\{ \int_{-\delta^{2}} \left(\int_{-\delta^{2}} \left($

Pedemos integral por partes: ((000 = 0.00 - Joda))

$$R_{\Sigma}(t) = Y_{\Sigma}e^{-t_{\Sigma}t} \int_{t}^{t} e^{-t_{\Sigma}t} \int_{t}^{t} \int_{t}^{t} e^{-t_{\Sigma}t} \int_{t}^{t} e^{-t_{\Sigma}t} \int_{t}^{t} e^{-t_{\Sigma$$

De manera similar $R_A(t) = C_A(t - \frac{1}{\delta_A})$ $R_{\varepsilon}(\epsilon) = C_{\varepsilon}(t - \frac{1}{\sigma})$ Los datos que se tienen son para la variable $C_{\rm I}^{(obs)} \sim C_{\rm I}$ Comorpose figure in formation Esto quiere decir, que si se fija l'ese prede dedecir la variable $I_{(0\rho^2)} = C_{(0\rho^2)}^{I} + C_{(0\rho^$ De marera análoga, Si se asume constante y se fija el valor de Y y final mente $E_{(ops)}(t) = C_{e}(t) - C_{op}(t - \frac{L}{L})$

èlero de donde sacamos (A (f) Y (E) Notamos que de = a der por lo que si a es constanta CA = d O Per que ambo Son cero ent = E y por lo tanto $C_{(6P^2)}^{V} = \frac{1-Y}{X} C_{(9P^2)}^{2}$ De marcra similar notamos 3 t = (1-x) 3 (I (s: x=cfe) $A^{(6bs)}(t) = C_A^{(6bs)}(t) - R_A(t - \frac{1}{8})$ $P_E = \frac{1}{1-x}C_E^{(6bs)}$ $P_{ara} t = 0$ Pero además sabiamos que $R_{\varepsilon}(t) = C_{\varepsilon}(\epsilon - \frac{1}{2})$ $C_{\varepsilon}(t - \frac{1}{2}) = \frac{1}{1-\alpha}C_{\varepsilon}(t)$

Conclusion. Con los datos que tenemos solo podemos ajustar de forma "sequ-a" $B(\epsilon)$ y $R(\epsilon)$.

1) Por hacer: Grafical y I prodicho con el ajuste

Nuevo esquema mas cencillo

2) Para predecir se prede ajustar B (n?) en un periodo de tiempo y tomar como condición inicial para el periodo de ajuste

 $S(\xi) = N - C_{\epsilon}(\xi)$ $E(\mathcal{L}_{i}) = C_{\varepsilon}^{\circ bs} (\mathcal{L}_{i}) - \mathcal{R}_{\varepsilon}^{\circ bs} (\mathcal{L}_{i})$

o de forma equivalente a justar e coacionez baid

CE, RE, Ct, Pt, Cz, Rz empleando (E / LE) (4 / LY) (5) (5) Esto permiting tener una prediccioni aceptable

- 2) Définimes costo en términer de moertes y infectados (solomente)
- 3) Definimos otro costo reconónicor en terminos
 de us
- (Bo + f(t) 0) = función periodica?

 (al culamos nuevamente oblite) m)
- Simolanos control óptimo "multiobjetivo" basado en el ajuste de las primeras semanas
- Simulamos MPC con giuste

$$M_{r}$$
 $J(u(\omega_s))$ subjet to $((u(\omega_s)) \in \omega_s)$

A PORT OF THE PROPERTY OF THE