МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №1.1.6

Изучение осциллографа

Пилюгин Л. С. Б02-212 10 ноября 2022 г.

1 Аннотация

Цель работы: ознакомиться с устройством и органами управления электронного и цифровогоосциллографа; научиться измерять амплитуды и частоты произвольных сигналов; изучить основные характеристики осциллографа и их влияние на искажение сигналов.

Оборудование: осциллограф, генераторы электрических сигналов, соединительные кабели.

2 Теоритические сведения

Осциллограф — регистрирующий прибор, в котором исследуется электрический сигнал (напряжение) преобразуется в видимый на экране график величины сигнала от времени.

В лабораториях используются электронно-лучевые и цифровые осциллографы.

В электронно-лучевом осциллографе входной сигнал подаётся на отклоняющие конденсаторы, вызывающие пропорциональные отклонение пучка электронов, попадающих на люминофор электронно-лучевой трубки (см рисунок) и вызывающих его свечение.

Электронно-лучевая трубка представляет собой колбу, откаченную до высокого вакуума, в которой расположены подогреватель катода 1, катод 2, модулятор 3, фокусирующий анод 4, ускоряющий анод 5, горизонтально и вертикально отклоняющие конденсаторы 6 и 7, ускоряющий анод 8, экран 9, покрытый флюоресцирующим веществом.

Подавая на отклоняющие пластины переменное напряжение, можно рисовать электронным пучком на экране.

В цифровых приборах аналоговый сигнал преобразуется в цифровой и обрабатывается компьютером.

Оба типа осциллографов не могут регистрировать колебания с частотами более 1 ГГц. В электронным осциллографах это связано с конечным временем пролёта электрона от катода до экрана, а в цифровых — с конечной тактовой частотой схем. На самом деле максимальная частота колебаний ,регистрируемых электронным осциллографом гораздо меньше 1 ГГц, потому что сигнал надо усиливать и усилители плохо усиливают его на высоких частотах. Диапазон частот, на котором осциллограф правильно отображает исследуемый сигнал, называется полосой пропускания.

Смещение луча относительно центра по вертикали и горизонтали пропорционально напряжению на вертикальном и горизонтальном конденсаторе. Чтобы отклонение луча было замет-

ным и он не выходил за пределы экрана, сигнал, идущий на пластины конденсаторов, усиливается или ослабляется.

Для получения изображение на экране нужно на вертикальные пластины подать сигнал, а на горизонтальные пилообразное напряжение развёртки (см. рисунок).

Это напряжение генерирует внутренний генератор. В течении времени прямого хода напряжение изменяется до максимального так, что луч идёт равномерно. Потом в течении времени обратного хода луч быстро возвращается назад. Потом в течении времени ожидания луч находится в покое и отрисовка сигнала синхронизируется.

При исследовании периодических сигналов необходимо получить неподвижное изображение. Для этого период развёртки должен быть кратен периоду изучаемого сигнала. В осциллографе генератор развёртки сам выбирает частоту изучаемого сигнала и работает на ней.

Наиболее часто синхронизация генератора с сигналом происходит по уровню. Сначала выставляется пороговый уровень сигнала (уровень синхронизации). После попадания в режим ожидания прямая развёртка не запускается до тех пор, пока не произойдёт пересечение уровня. Регулировка уровня позволяет выбрать фазу сигнала в начале развёртки.

Обычно предусмотрены два режима работы генератора развёртки: автоматический и ждущий. В ждущем генератор не запускается пока не произойдёт пересечение уровня. В автоматическом если некоторое время не происходит пересечение уровня, то генератор запускается без синхронизации.

Синхронизировать развёртку можно не только исследуемым сигналом.

Осциллограф также обладает АЧХ и ФЧХ. В широком диапазоне измерений (в полосе пропускания) АЧХ и ФЧХ — константы. Границы полосы пропускания определяются так, что в

них АЧХ меньше своего максимального значения в $\sqrt{2}$ раз. Зависимость АЧХ и ФЧХ от частоты может приводить к существенным искажениям изображения.

Входные каналы осциллографа могут работать в открытом (AC) и закрытом (DC) режимах. В закрытом режиме последовательно яко входу подключается конденсатор, который убирает постоянную составляющую напряжения. В открытом режиме сигнал передаётся без изменений. В закрытом режиме сильгно искажаются низкочастотные колебания. Осциллограф обладает большим внутренним сопротивлением.

При совместной подаче сигналов на вертикальные (U_y) и горизонтальные (U_x) конденсаторы сигналов

$$U_y(t) = U_{0y} \sin(2\pi\nu_y t + \varphi_y)$$

$$U_x(t) = U_{0x} \sin(2\pi\nu_x t + \varphi_x)$$

можно получить кривые, называемые фигурами Лиссажу (см. рисунок).

3 Результаты измерений

Таблица 1. Измерения частоты аналоговым осциллографом

$ u_0$, Гц	T, дел	TIME/DIV, MC	T, мс	ν , Гц	δT , мс	δu , Гц	$ u - u_0$, Гц
1000	1	1	1	1000	0,1	100	0
800	1,2	1	1,2	833	0,1	69	33
600	1,8	1	1,8	556	0,1	31	-44
400	2,4	1	2,4	417	0,1	17	17
200	5	1	5	200	0,1	4	0

Присоединим генератор к аналоговому осциллографу и измерим частоту сигнала, потом то же самое сделаем с цифровым.

Измерим максимальную и минимальную амплитуды при $\nu_0=1000\,\Gamma$ ц. $U_{max}=20\pm1\,\mathrm{B},$ $U_{min}=4\pm1\,\mathrm{mB}.$

Прямоугольные импульсы можно представить в виде суперпозиции бесконечного числа гармонических колебаний с разными частотами. Часть из этих частот очень велика и искажается АЧХ осциллографа, поэтому сигнал на границах ступенек осциллирует.

Рисунок 1. Отношение частот: 1:1

Рисунок 2. Отношение частот: 2:1

При частотах от 8 до $20\,\mathrm{MF}$ ц прямая переходит в эллипс, а потом в горизонтальную прямую. В интервале от 8 до $20\,\mathrm{MF}$ ц нельзя проводить измерения из-за большой разнотсти фаз.

Рисунок 3. Отношение частот: 3:1

Рисунок 4. Отношение частот: 3:2

Рисунок 5. Отношение частот: 4:3

Рисунок 6. Отношение частот: 5:2

Таблица 2. Изсмерения цифровым осциллографом (курсорами — величины с индексом 1, без них — с индексом 2)

$ u_0$, Гц	T_1 , мс	T_2 , MC	δT_1 , мс	δT_2 , MC	$ u_1$, Гц	$ u_2$, Гц	δu_1 , Гц	δu_2 , Гц
1000	1	1	0,01	0,00005	1000	1000	0,01	0,00005
800	1,25	1,25	0,01	0,0000625	800	800	0,008	0,00005
600	1,67	1,67	0,01	0,0000833	600	600	0,006	0,00005
400	2,5	2,5	0,01	0,000125	400	400	0,004	0,00005
200	5	5	0,1	0,00025	200	200	0,02	0,00005

Таблица 3. Измерение АЧХ цифрового осциллографа

U, \mathbf{B}
5
5.2
5.2
5.2
5.2
5.2
5.2
5
5.08
5.16
5.16
5.12
5.12
5.08
5.04
5.04
5.04

Таблица 4. Изучение сдвига фаз

ν , М Γ ц	y_0 , Мв	A_y , B	$\sin \Delta \phi$	$\Delta \phi$	$\lg \nu$
14	448,9	2,881	0,156	2,985	7,146
15	777,2	2,439	0,319	2,817	7,176
16	522,6	1,782	0,293	2,844	7,204
13	1394	4,663	0,299	2,838	7,114
12	1,96	7,37	0,0002	3,141	7,079

4 Вывод

Я изучил устройство цифрового и электронного осциллографа и научился изучать периодические процессы с их помощью.