主管 领核 签字

哈尔滨工业大学(深圳)2019年秋季学期

自动控制理论 A 期末试题(A)

题	号	=	Ξ	四	五	六	七	八	九	总分
得	分									
阅卷人										

考生须知, 本次考试为闭卷考试, 考试时间为 120 分钟, 总分 100 分。

		´5 -	工灰和: 本认写成为内心写成,写成时间为120分下,心力100分。						
姓名		 2. 3. 	填空题 (每空 1 分,共 15 分) 对 自 动 控 制 系 统 的 基 本 要 求 可 以 概 括 为 四 个 方 面 , 即、						
			,相频特性为。						
李	對:::	5. 奈奎斯特稳定判据中, Z=P-2N, 其中 P 是指开环传函中具有正实部的极点的个数, Z 指, N 指, N 指							
		6.	系统的状态方程为齐次微分方程 $\dot{x} = Ax$,若初始时刻为 $0, x(0) = x_0$,则其解为,其中						
班号									
掛		_,	判断题(每题1分,共10分)						
I	绀	1. 3	1. 对于线性定常负反馈系统,						
		(1)	()它的传递函数随输入信号变化而变化。						
		(2)	()它的频率特性随输入信号变化而变化。						
			()它的稳态误差随输入信号变化而变化。						
		(4)	()它的特征方程是唯一的。						
		(5)	()劳斯判据是根据系统闭环特征方程系数判别闭环系统稳定性的						
		一禾	中准则。						
小	•	(6) 							
		一个	中准则。						

-)已知离散系统输入为r(k),输出为c(k),其差分方程为c(k+2)=3c(k+1)2. (-2c(k) + 3r(k+1) - r(k),则脉冲传递函数为 $\frac{3z-1}{z^2-3z+2}$.
- 3. ()对于线性定常系统 $\dot{x} = Ax$,其 Lyapunov 意义下的渐近稳定性和特征值都具 有负实部是一致的。
-)对于欠阻尼二阶系统,阻尼系数越小,超调量越大,平稳性越差。 4. (
- 5. () 如果一个系统的 Lyapunov 函数确实不存在,那么我们可以断定该系统是不稳 定的。
- 三、选择题(每题3分,共15分)
- 1. 两系统的开环 Nyquist 曲线如下图(a)、(b)所示,图中所标注的 P 表示开环不稳定极点的 个数,判断闭环系统的稳定性。(

- A. (a)稳定(b)不稳定 B. (a)稳定(b)稳定 C. (a)不稳定(b)稳定 D. (a)不稳定(b)不稳定
- 2. 若保持二阶系统的 ξ 不变,提高 ω_n ,则可以(
 - A. 提高上升时间和峰值时间

B. 减少上升时间和峰值时间

C. 提高上升时间和调整时间

- D. 减少上升时间和超调量
- 3. 设系统的特征方程为 $D(s) = 3s^4 + 10s^3 + 5s^2 + s + 2 = 0$,则此系统中包含正实部特征 根的个数为()个。
 - A.0
- B. 1 C.2
- D. 3
- 4. 关于奈氏判据及辅助函数 F(s) = 1 + G(s)H(s),错误的说法是()
- - A. F(s) 的零点就是开环传递函数的极点 B. F(s) 的极点就是开环传递函数的极点

 - C. F(s) 的零点数与极点数相同 D. F(s) 的零点就是闭环传递函数的极点
- 5. 已知单位反馈系统的开环传递函数为 $G(s) = \frac{10(2s+1)}{s^2(s^2+6s+100)}$, 当输入信号是r(t) = 2 + 2t + 2t
 - t^2 时,系统的稳态误差是()
 - A. 0
- B. ∞
- C. 10
- D. 20

五、(共 10 分) 已知单位负反馈系统的开环传递函数 $G(s) = \frac{4}{s(s+2)}$, 试求:

- 1. (5分) 绘制开环对数幅频特性曲线的渐近线。
- 2. (5 分) 输入为 $r(t) = 2\sin(2t+90^\circ)$ 时,闭环系统的稳态输出 $C_{ss}(t)$.

六、(10分)系统结构图如图所示:

- 1、(3分) 写出闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)}$ 表达式;
- 2、(3分) 要使系统满足条件: $\xi = 0.707$, $\omega_n = 2$, 试确定相应的参数 K和 β ;
- 3、(4分) 求此时系统的动态性能指标 $\sigma\%$, $t_s(\Delta=0.02)$ 。

七、(共 10 分)已知某单位反馈系统的开环传递函数为 $G(s) = \frac{K^*}{s(s+3)^2}$:

- 1. $(6 \, \beta)$ 绘制该系统以根轨迹增益 K^* 为变量的根轨迹(求出:渐近线、分离点、与虚轴的交点等);
- 2. (4分) 确定使系统满足 $0<\xi<1$ 的开环增益 K 的取值范围。

九、(10分)已知最小相位系统 Bode 幅频特性如图所示。试求取该系统的开环传递函数。

