第3.5节 两个随机变量的函数的分布

- 一、问题的引入
- 二、离散型随机变量函数的分布
- 三、连续型随机变量函数的分布

四、小结

一、问题的引入

有一大群人,令 X 和 Y 分别表示一个人的年龄和体重, Z 表示该人的血压,并且已知 Z 与 X, Y 的函数关系 Z = f(X,Y),如何通过 X, Y 的 分布确定 Z 的分布.

为了解决类似的问题,下面我们讨论两个随机变量函数的分布.

二、离散型随机变量函数的分布

例1 设随机变量 (X,Y) 的分布律为

X	- 2	-1	0
	1	1	3
-1	12	12	12
1	2	1	0
$\frac{\overline{2}}{2}$	12	12	U
3	2	0	2
3	12	U	12

求 (1)X + Y, (2)|X - Y| 的分布律.

解

概率

XY	-	2	-1	0		
		1	1	3		
-1	1	2	12	12		
1		2	1	0	等化	介于
2	1	2	12	U	·4 D	
3		2	0	2		
3	1	2		12		
1	1	3	2	1	2	2
12	12	12	12	12	12	12

$$(X,Y)$$
 $(-1,-2)$ $(-1,-1)$ $(-1,0)$ $\left(\frac{1}{2},-2\right)\left(\frac{1}{2},-1\right)(3,-2)$ $(3,0)$

概率论与数理统计

概率 $\frac{1}{12}$ $\frac{1}{12}$ $\frac{3}{12}$ $\frac{2}{12}$ $\frac{1}{12}$ $\frac{2}{12}$ $\frac{2}{12}$

$$(X,Y)$$
 (-1,-2) (-1,-1) (-1,0) $\left(\frac{1}{2},-2\right)\left(\frac{1}{2},-1\right)$ (3,-2) (3,0)

$$X+Y-3$$
 -2 -1 $-\frac{3}{2}$ $-\frac{1}{2}$ 1 3

$$|X-Y|$$
 1 0 1 $\frac{5}{2}$ $\frac{3}{2}$ 5 3

所以X+Y, X-Y 的分布律分别为

结论

若二维离散型随机变量 的联合分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i, j = 1, 2, \dots$$

则随机变量函数 Z = g(X,Y)的分布律为

$$P\{Z = z_k\} = P\{g(X,Y) = z_k\}$$

$$= \sum_{z_k = g(x_i, y_i)} p_{ij} \qquad k = 1, 2, \dots.$$

例2 设两个独立的随机变量X与Y的分布律为

X	1	3	Y	2	4	
	0.3		P_{Y}	0.6	0.4	

求随机变量 Z=X+Y 的分布律.

解 因为X与Y相互独立,所以

$$P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\},$$

得 X 2 4 1 0.18 0.12 3 0.42 0.28

概率论与数理统计

T 7				P	(X,Y)	Z = X + Y
X	2	4		0.18	(1,2) $(1,4)$	3
1	0.18	0.12	一可侍			5
3	0.42	0.28			(3,2)	5
				0.28	(3,4)	7

所以 $\frac{Z = X + Y}{P}$ 3 5 7 0.18 0.54 0.28

例3 设相互独立的两个随机变量 X, Y 具有同一分布律,且 X 的分布律为

试求: $Z = \max(X, Y)$ 的分布律.

解 因为X与Y相互独立,

所以
$$P{X = i, Y = j} = P{X = i}P{Y = j}$$
,

于是

X^{Y}	0	1
0	1/2 ²	1/2 ²
1	1/22	1/2 ²

概率论与数理统计

$$P\{\max(X,Y)=1\}=P\{1,0\}+P\{0,1\}+P\{1,1\}$$

$$=\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=\frac{3}{2^2}.$$

故 $Z = \max(X, Y)$	\boldsymbol{Z}	0	1
的分布律为	P	1	3
	-	4	4

三、连续型随机变量函数的分布

当二维随机变量 (X, Y) 的联合分布已知时,如何求出它们的函数Z = g(X, Y) 的分布?

步骤:

- 1.求出Z的分布函数;
- 2.对于连续型随机变量,再求其概率密度函数。

几何直观:

$$F_{Z}(z) = P\{Z \le z\} = P\{g(X,Y) \le z\}$$

$$= P\{(X,Y) \in D\} = \iint_{D} f(x,y) dx dy$$

$$= \iint_{g(x,y) \le z} f(x,y) dx dy$$
其中 $D = \{(x,y) \mid g(x,y) \le z\}.$

1. Z=X+Y的分布

设(X,Y)的概率密度为f(x,y),则Z = X + Y的分布函数为

$$F_{Z}(z) = P\{Z \le z\} = \iint_{x+y \le z} f(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z-y} f(x, y) \, \mathrm{d} x \right] \, \mathrm{d} y$$

$$\underline{x = u - y} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z} f(u - y, y) du \right] dy$$

$$= \int_{-\infty}^{z} \left[\int_{-\infty}^{\infty} f(u - y, y) \, \mathrm{d} y \right] \, \mathrm{d} u.$$

$$F_{Z}(z) = P\{Z \le z\}$$

$$= \int_{-\infty}^{z} \left[\int_{-\infty}^{\infty} f(u - y, y) \, dy \right] du.$$

由此可得概率密度函数为

$$f_Z(z) = \int_{-\infty}^{\infty} f(z - y, y) dy.$$

由于
$$X$$
与 Y 对称, $f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$.

特别地,当X和Y独立,设(X,Y) 关于X,Y的边缘密度分别为 $f_X(x),f_Y(y)$,则上述两式化为:

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(z - y) f_{Y}(y) dy$$

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$
卷积公式

记为
$$f_X * f_Y$$
,即 $f_X * f_Y = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$

$$= \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy_{\circ}$$

例4 设两个独立的随机变量 X 与 Y 都服从标准正态分布,求 Z=X+Y 的概率密度.

解 由于
$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty,$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, -\infty < y < \infty,$$

曲公式
$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$
.

得
$$f_Z(z) = \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{x^2}{2}} e^{-\frac{(z-x)^2}{2}} dx$$

$$=\frac{1}{2\pi}e^{-\frac{z^2}{4}}\int_{-\infty}^{\infty}e^{-\left(x-\frac{z}{2}\right)^2}dx$$

$$\frac{t = x - \frac{z}{2}}{2\pi} \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{\infty} e^{-t^2} dt = \frac{1}{2\sqrt{\pi}} e^{-\frac{z^2}{4}}.$$

即 Z 服从 N(0,2) 分布.

说明

一般,设
$$X,Y$$
相互独立且 $X \sim N(\mu_1,\sigma_1^2),Y \sim N(\mu_2,\sigma_2^2)$.则 $Z = X + Y$ 仍然服从正态分布,且有 $Z \sim N(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2)$.

有限个相互独立的正态随机变量的线性组合仍然服从正态分布.

例6 若X和Y独立,具有共同的概率密度

$$f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{其它} \end{cases}$$
 求**Z=X+Y**的概率密度.

解: 由卷积公式

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

为确定积分限,先找出使被积函数不为0的区域

$$\begin{cases} 0 \le x \le 1 \\ 0 \le z - x \le 1 \end{cases}$$
 也即
$$\begin{cases} 0 \le x \le 1 \\ z - 1 \le x \le z \end{cases}$$

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

为确定积分限,先找出使被积函数不为0的区域

$$\begin{cases} 0 \le x \le 1 \\ 0 \le z - x \le 1 \end{cases}$$

$$\begin{cases} 0 \le x \le 1 \\ 0 \le z - x \le 1 \end{cases}$$
 也即
$$\begin{cases} 0 \le x \le 1 \\ z - 1 \le x \le z \end{cases}$$

如图示:

于是
$$\int_{0}^{z} dx = z, \quad 0 \le z < 1$$

$$f_{z}(z) = \begin{cases}
\int_{z-1}^{1} dx = 2 - z, \quad 1 \le z < 2
\end{cases}$$

$$0, \qquad$$
其它

2.
$$Z = \frac{X}{Y}$$
的分布

设(X,Y)的概率密度为f(x,y),则 $Z = \frac{X}{Y}$ 的

分布函数为

$$F_{Z}(z) = P\{Z \le z\} = P\{\frac{X}{Y} \le z\}$$

$$= \iint_{G_{1}} f(x, y) dx dy + \iint_{G_{2}} f(x, y) dx dy$$

$$= \int_{0}^{\infty} \int_{-\infty}^{yz} f(x, y) dx dy + \int_{-\infty}^{0} \int_{yz}^{\infty} f(x, y) dx dy,$$

$$\Rightarrow u = x/y,$$

$$G_{1}$$

$$x$$

$$G_{2}$$

$$\iint_{G} f(x, y) dx dy = \int_{0}^{\infty} \int_{-\infty}^{yz} f(x, y) dx dy$$

$$= \int_0^\infty \int_{-\infty}^z y f(yu, y) du dy = \int_{-\infty}^z \int_0^\infty y f(yu, y) dy du$$

同理可得

$$\iint_{G_2} f(x, y) dx dy = -\int_{-\infty}^{z} \int_{-\infty}^{0} y f(yu, y) dy du,$$

故有 $F_Z(z) = P\{Z \le z\}$

$$= \iint_{G_1} f(x, y) dx dy + \iint_{G_2} f(x, y) dx dy$$

$$= \int_{-\infty}^{z} \left[\int_{0}^{\infty} yf(yu, y) dy - \int_{-\infty}^{0} yf(yu, y) dy \right] du.$$

由此可得分布密度为

$$f_Z(z) = \int_0^\infty y f(yz, y) dy - \int_{-\infty}^0 y f(yz, y) dy$$
$$= \int_{-\infty}^\infty |y| f(yz, y) dy.$$

当X, Y独立时,

$$f_Z(z) = \int_{-\infty}^{\infty} |y| f_X(yz) f_Y(y) dy.$$

例7 设 X,Y 分别表示两只不同型号的灯泡的寿命,X,Y 相互独立,它们的概率密度分别为

$$f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & \text{其它}, \end{cases} \quad g(y) = \begin{cases} 2e^{-2y}, & y > 0, \\ 0, & \text{其它}. \end{cases}$$

试求 $Z = \frac{X}{Y}$ 的概率密度函数.

解 由公式

$$f_Z(z) = \int_0^\infty y f(yz, y) dy - \int_{-\infty}^0 y f(yz, y) dy,$$

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y}, & x > 0, y > 0, \\ 0, & \text{ \(\)$$

得所求密度函数 (当z > 0时)

$$f_Z(z) = \int_0^\infty 2 y e^{-yz} e^{-2y} dy = \int_0^\infty 2 y e^{-y(2+z)} dy = \frac{2}{(2+z)^2},$$

(当
$$z \le 0$$
时) $f_z(z) = 0$,

得
$$f_Z(z) = \begin{cases} \frac{2}{(2+z)^2}, z > 0, \\ 0, z \leq 0. \end{cases}$$

3.极值分布

设X,Y是两个相互独立的随机变量,它们的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$,

$$\diamondsuit M = \max(X, Y)$$
及 $N = \min(X, Y)$

1. M = max(X,Y) 的分布函数

$$F_M(z) = P\{M \le z\} = P\{X \le z, Y \le z\}$$

$$M \le z \Leftrightarrow \begin{cases} X \le z \\ Y \le z \end{cases}$$

由于X和Y相互独立,于是得到 $M = \max(X,Y)$ 的分布函数为:

$$F_M(z) = P\{X \le z\}P\{Y \le z\}$$

即有

$$F_M(z) = F_X(z) F_Y(z)$$

2. $N = \min(X, Y)$ 的分布函数

$$F_N(z) = P(N \le z) = 1 - P(N > z)$$

$$=1-P(X>z,Y>z)$$

$$N > z \Leftrightarrow \begin{cases} X > z \\ Y > z \end{cases}$$

由于 X和 Y相互独立,于是得到 $N = \min(X,Y)$ 的分布函数为:

$$F_N(z) = 1 - P(X > z)P(Y > z)$$

即有

$$F_N(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$$

设 $X_1,...,X_n$ 是n个相互独立的随机变量,它们的分布函数分别为

$$F_{X_i}(z)$$
 $(i=1,...,n)$

我们来求 $M=\max(X_1,...,X_n)$ 和 $N=\min(X_1,...,X_n)$ 的分布函数.

用与二维时完全类似的方法,可得 $M=\max(X_1,...,X_n)$ 的分布函数为:

$$F_{M}(z) = F_{X_{1}}(z)F_{X_{2}}(z)\cdots F_{X_{n}}(z)$$

 $N=\min(X_1,...,X_n)$ 的分布函数是

$$F_N(z) = 1 - [1 - F_{X_1}(z)][1 - F_{X_2}(z)] \cdots [1 - F_{X_n}(z)]$$

特别地,当 $X_1,...,X_n$ 相互独立且具有相同分布函数F(x)时,有

$$F_{M}(z) = [F(z)]^{n}$$

$$F_{N}(z) = 1 - [1 - F(z)]^{n}$$

例 设系统 L 由两个相互独立的子系统 上,上连接而成,连接的方式分别为 (i) 串联,(ii) 并联,(iii) 备用 (当系统 L_1 损坏时,系统 L_2 开始工作),如下图所示.设 L_1 , L_2 的寿命分别为 X, Y, 已知它们的概率密度分别为

$$f_X(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0, \\ 0, & x \le 0, \end{cases} \quad f_Y(y) = \begin{cases} \beta e^{-\beta y}, & y > 0, \\ 0, & y \le 0, \end{cases}$$

其中 $\alpha > 0$, $\beta > 0$ 且 $\alpha \neq \beta$. 试分别就以上三种连接方式写出 L的寿命 Z的概率密度.

概率论与数理统计

$$f_X(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0, \\ 0, & x \le 0, \end{cases} \quad f_Y(y) = \begin{cases} \beta e^{-\beta y}, & y > 0, \\ 0, & y \le 0, \end{cases}$$

解 (i)串联情况

由于当 L_1, L_2 中有一个损坏时,系统 L 就停止工作, 所以这时 L 的寿命为 $Z = \min(X, Y)$.

$$F_{\min}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$$

$$= \begin{cases} 1 - e^{-(\alpha + \beta)z}, z > 0, \\ 0, & z \le 0. \end{cases}$$

$$\Rightarrow f_{\min}(z) = \begin{cases} (\alpha + \beta)e^{-(\alpha + \beta)z}, z > 0, \\ 0, & z \le 0. \end{cases}$$

(ii)并联情况

由于当且仅当 L_1 , L_2 都损坏时,系统 L 才停止工作,

所以这时 L的寿命为 $Z = \max(X,Y)$.

 $Z = \max(X, Y)$ 的分布函数为

$$F_{\max}(z) = F_X(z) \cdot F_Y(z) = \begin{cases} (1 - e^{-\alpha z})(1 - e^{-\beta z}), z > 0, \\ 0, & z \le 0. \end{cases}$$

$$f_{\max}(z) = \begin{cases} \alpha e^{-\alpha z} + \beta e^{-\beta z} - (\alpha + \beta) e^{-(\alpha + \beta)z}, & z > 0, \\ 0, & z \leq 0. \end{cases}$$

(iii)备用的情况

由于这时当系统 L_1 损坏时,系统 L_2 才开始工作, 因此整个系统 L 的寿命 Z 是 L_1 , L_2 两者之和,即

$$Z = X + Y$$

当z > 0时, Z = X + Y的概率密度为

$$f(z) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy = \int_{0}^{z} \alpha e^{-\alpha(z - y)} \beta e^{-\beta y} dy$$

$$= \alpha \beta e^{-\alpha z} \int_0^z e^{-(\beta - \alpha)y} \, \mathrm{d} y$$

四、 $Z=X^2+Y^2$ 的分布

例 设X和Y是两个相互独立的随机变量,具有相同的分布 N(0,1),求 $Z=X^2+Y^2$ 的概率密度.

四、小结

1. 离散型随机变量函数的分布律

若二维离散型随机变量的联合分布律为

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \dots$$

则随机变量函数 Z = f(X, Y)的分布律为

$$P\{Z = z_k\} = P\{f(X,Y) = z_k\}$$

$$= \sum_{z_k = f(x_i, y_j)} p_{ij} k = 1, 2, \dots$$

2. 连续型随机变量函数的分布

(1)
$$Z = X + Y$$
 的分布

(2)
$$Z = \frac{X}{Y}$$
的分布

(3)
$$M = \max(X,Y)$$
及 $N = \min(X,Y)$ 的分布

备份题

例1 设随机变量 X与 Y相互独立,且其分布密 度分别为

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & 其它. \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & 其它. \end{cases}$

求随机变量 Z=2X+Y 的分布密度.

解 由于X与Y相互独立,所以(X,Y)的分布密 度函数为

$$f(x,y)=f_X(x)\cdot f_Y(y)=\begin{cases} e^{-y}, & 0 \le x \le 1, y > 0, \\ 0, & \exists \Sigma. \end{cases}$$

随机变量Z的分布函数为

$$F_{Z}(z) = P\{Z \le z\}$$

$$= P\{2X + Y \le z\}$$

$$= \iint_{2X+Y \le z} f(x,y) dx dy$$

$$= \iint_{2X+Y \le z} e^{-y} dx dy.$$

$$(0 \le x \le 1, y > 0)$$

 $2X+Y \leq z$

$$F_Z(z) = egin{cases} 0, & z \leq 0, \ \int_0^{rac{\pi}{2}} (1 - e^{2x - z}) \mathrm{d}x, & 0 < z \leq 2, \ \int_0^1 (1 - e^{2x - z}) \mathrm{d}x, & z > 2. \end{cases}$$
 所以随机变量 Z 的分布变度为

所以随机变量 Z 的分布密度为

$$f_Z(z) = F_Z'(z) = egin{cases} 0, & z \leq 0, \ (1 - e^{-z})/2, & 0 < z \leq 2, \ (e^2 - 1)e^{-z}/2, & z \geq 2. \end{cases}$$

例2 对某种电子装置的输出测量了5次,得到的观察值为 X_1, X_2, X_3, X_4, X_5 ,设它们是相互独立的随机变量,且都服从同一分布:

$$F(z) = \begin{cases} 1 - e^{-\frac{2ze^2}{8}}, & z \ge 0, \\ 0, & \sharp \stackrel{\sim}{\text{L}}. \end{cases}$$

试求: $\max(X_1, X_2, X_3, X_4, X_5) > 4$ 的概率.

解 设 $D = \max(X_1, X_2, X_3, X_4, X_5)$

因为
$$F_{\text{max}}(z) = [F(z)]^5$$
,

所以 $P\{D > 4\} = 1 - P\{D \le 4\}$

$$=1-F_{\max}(4)$$

$$=1-[F(4)]^5$$

$$=1-(1-e^{-e^2})^5.$$

例3 在一简单电路中,两电阻 R_1 和 R_2 串联联接,设 R_1 , R_2 相互独立,它们的概率密度均为

$$f(x) = \begin{cases} \frac{10 - x}{50}, & 0 \le x \le 10, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

求电阻 $R = R_1 + R_2$ 的概率密度.

解由题意知R的概率密度为

$$f_R(z) = \int_{-\infty}^{\infty} f(x)f(z-x) dx.$$

当
$$\begin{cases} 0 < x < 10, \\ 0 < z - x < 10, \end{cases}$$
 即 $\begin{cases} 0 < x < 10, \\ z - 10 < x < z, \end{cases}$ 时,

$$p_R(z) = \int_{-\infty}^{\infty} f(x) f(z - x) dx 中被积函数不为零.$$

此时
$$f_R(z) = \begin{cases} \int_0^z f(x)f(z-x) dx, & 0 \le z < 10, \\ \int_{z-10}^{10} f(x)f(z-x) dx, & 10 \le z \le 20, \\ 0, & 其它. \end{cases}$$

将
$$f(x) = \begin{cases} \frac{10-x}{50}, & 0 \le x \le 10, \\ 0, & 其它. \end{cases}$$

