

Genomic Prediction in the era of Big Data

- Overview of methods
- & Selected computational and statistical challenges

Gustavo de los Campos

Whole-Genome Regression/ Prediction Methods [1]

[1]: Meuwissen Hayes & Goddard (2001)

Software (selected examples)

	Language	Penalized	Bayesian	Shrinkage	Variable Selection	Kernel Regression	Nueral Networks	Deep Lerning
glmnnet	R	Х		Х	Х			
rrBLUP	R	X		X		X		
ASREML		X		X				
BGLR	R		X	X	Х	X		
BLUP-f90		X		X				
GenSel			X	X	X			
Tensorflow	Python	X		Х	X		Х	X

- We have a diverse array of software for genomic regression
- Most of the available packages scale to very large problems
- Most packages are user friendly and open-source

Selected Computational & Statistical Challenges

- 1. Genomic prediction with big data
- 2. Dealing with imperfect LD and highly heterogeneous data sets (sometimes small is better...)
- 3. Modeling and leveraging GxE
- 4. Integrating high-dimensional phenotypes from high-throughput phenotyping

1: Genomic Prediction with Big Data

- Data sets are becoming increasingly large (hundreds of thousands of genotypes linked to phenotypic records)
- Handling these data sets requires becoming familiar with a few important concepts (e.g., memory mapping, distributed arrays, distributed computing, etc)
- But there is already software that can handle extremely large data sets
- The main challenge is how to train ourselves and our students to become proficient on big data analyses

2: Dealing with imperfect LD (sometimes small is beautiful!)

- SNPs are in imperfect LD with the alleles at causal loci.
- The models we use are at best good local approximations to highly complex problems (epistasis is pervasive)
- Therefore, across generations and meiosis, LD breaks, allele frequencies change and therefore additive effects change.
- For this reason, sometimes combining very large data sets with distantly related genotypes my harm prediction accuracy.
- How do we adequately balance the benefits and potential problems of Big Data?

How far should we go to train genomic prediction models?

	SET 1	SET 2	SET 3	SET 4	SET 5
Scenario A_4518	TRN	TRN	TRN	TRN	TST 4
Scenario A_4515	TRN	TRN	TRN	TST 3	TST 4
Scenario B	TRN	TRN	TST 2	TST 3	TST 4
Scenario C	TRN	TST 1	TST 2	TST 3	TST 4

Source: Wolc et al., Animal Frontiers, 2016

Predictive Correlation

Scenario	SET 1 (N=8,144)	SET 2 (1,655)	SET 3 (1,758)	SET 4 (3,400)	SET 5 (3,492)
I	ſ		0.451		
II	N=15	0.553	0.412		
III	N=11,636	0.514	0.429	0.348	
IV	N=8,144	0.436	0.392	0.367	0.308

3: Modeling and leveraging GxE

- Genetic-by-environmental interaction is very important in plants
- In principle we can use genomic information, linked to environmental data, to breed for target environments.
- There are several (old and new) approaches for dealing with GxE in genomic predictions, e.g.,
 - Marker-by-environment interactions (e.g., Lopez-Cruz et al., G3, 2015)
 - Reaction norm models for SNPs and environmental covariates (e.g., Jarquin et al., TAG, 2014)
 - Crop models (e.g., Cooper et al., Crop Sci, 2016)
- An important problem is how to integrate GxE when designing breeding strategies (an old problem).
- Predict the future from the past... how to leverage historical whether records with trial data?

DATA

DATA

of records: 28,554 (yield adjusted-by design)

of wheat lines: 601

of markers: 213,339

of year-locations: 875

of environmental covariates: 125.

CV-Correlation

Average Across Loc. Correlaion

Remarks

 Adding markers and environmental covariates increased the correlation by ~25%

Conceptual Framework/Pipeline

3: Modeling and leveraging GxE

3: Modeling and leveraging GxE

4: Leveraging High throughput phenotyping

4: Leveraging High throughput phenotyping

- HTP has been adopted in agricultural research and commercial production.
- There are large volumes of research on how to use HTP to predict phenotypes an to optimize management practices.
- However, there is much less research on how to incorporate HTP data on breeding schemes.
- HTP platforms generate high-dimensional phenotypes (hundreds or thousands of traits per unit being monitored)
- For example, hyper-spectral cameras (reflectance at hundreds of wavenumbers over many time-points).
- How do we integrate this information in breeding schemes?
- Two challenges:
 - **Breeding strategy**: at what steps of the breeding process and with what objective we integrate HTP?
 - **Statistical**: what methods can be used to integrate high dimensional phenotypes into genomic prediction models?

Integrating Hyper-Spectral Crop Imaging Into Breeding Using Penalized Selection Indices

Marco Lopez-Cruz

Penalized Selection Indices

LASSO

Ridge Regression

Compressed Sensing

Elastic Net

Graphical Lasso

Support Vector Machine

Penalized Selection Index

Accuracy of Indirect Selection of Canonical and Penalized SI for wheat yield

