28. a.	A trial on a single cylinder four stroke oil engine provides the following readings	10 3	3	1,2
	Cylinder diameter = 250 mm			
	Stroke length = 400 mm			
	Gross m.e.p = 7 bar			
	Engine speed 250 rpm, net load on the brake 1080 N, effective brake diameter			
	1.5 m, fuel used per hour 10 kg, calorific value of fuel 44300 kJ/kg.			
	Calculate			
	(i) Indicated power			
	(ii) Brake power			
	(iii) Mechanical efficiency			
	(iv) Indicated thermal efficiency			
	(OR)	10 2		1.0
b.	The following observation were required in a test of one hour duration on a single cylinder oil engine working on four stroke cycle.	10 3	3	1,2
	Bore 300 mm, stroke 450 mm, fuel used 8.8 kg, calorific value of fuel			
	41,8000 kJ/kg, average speed 200 rpm mep 5.8 bar, brake friction load 1860 N,			
	quantity of cooling water 650 kg, temperature rise 22°C, diameter of brake			
	wheel 1.22 m. Calculate mechanical efficiency, brake thermal efficiency and			
	draw the heat balance sheet.			
29. a.	A single acting, single stage reciprocating air compressor of 250 mm bore and	10 3	4	1,2
	350 mm stroke runs at 200 rpm. The suction and delivery pressures are 1 bar			
	and 6 bar respectively. Calculate the theoretical power required to run the			
	compressor under			
	(i) Isothermal compression			
	(ii) Polytrophic compression with index $n = 1.3$			
	(iii) Isentropic compression ($\gamma = 1.4$)			
	Neglect the effect of clearance and also calculate isothermal efficiency in each case.			
	case.			
	(OD)			
	(OR)	10 2		1.0
b.	With suitable sketches explain the working of two stage reciprocating air	10 3	4	1,2
	compressor. Derive an expression for the work required to compress air using			
	the above compressor with perfect intercooling.			
30. a.	With a neat schematic diagram explain the working of vapour absorption	10 3	5	1,2
	refrigeration system.			
	(OR)			
b.	An air conditioning system is designed under the following conditions:	10 4	5	1,2
	Out door conditions: 30°C dbt, 75% RH			
	Indoor conditions required: 22°C dbt, 70% RH			
	Amount of free air circulated: 3.33 m ³ /s			
	The required condition is achieved by first cooling and dehumidification and			
	then heating. Estimate			
	(ii) Capacity of heating coil in kW			
	(iii) Amount of water vapour removed in kg/s.			
	is a series of the series of t			
	* * * *			

Reg. No.			0°	T. W	envinc			
3	5-00-140	V.V. VI		1000		-	ALC: Y	

B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

18MEC107T - APPLIED THERMAL ENGINEERING

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

(i) (ii)		Part - A should be answered in OMR so over to hall invigilator at the end of 40 th r Part - B should be answered in answer b	ninut	e.	t shou	ld be	har	ıded
ime	e: 2!	½ Hours			Max			
		$PART - A (25 \times 1 =$			Marks	BL	СО	PO
	1	Answer ALL Que Determine the compression ratio of an			HE I W	2	1	1
	1.	60%	Oilo	cycle with an standard efficiency of			-	
		(A) 9.88	(B)	5.86				
		(C) 8.56	(D)	7.88				
	2.	If the pressure ratio is equal to one, the to that of	n the	efficiency of dual cycle is reduced	1	2	1	1
		(A) Otto cycle	(B)	Diesel cycle				
		(C) Brayton cycle	(D)	Rankine cycle				
	3	Compression ratio is equal to			1		1	1,2
2.	5.	(A) Swept volume/(swept volume +clearance volume)		(swept volume +clearance volume)/clearance volume Swept volume / clearance volume	ed.	Ä	b II	1,2
	4.	With increasing cut off ratio, the efficie (A) Decreases (C) Remains constant	ncy o (B) (D)	of diesel cycle Increases Can either increase or decrease	1	2	1	1,2
	5.	For the same compression ratio, the Bra (A) Equal to that of otto cycle (C) More than that of otto cycle	(B)		1	1	1	1,2
	6.	A chemical reaction accompanied reaction.	by	liberation of heat is called	1	1	2	1,2
		(A) Isothermal (C) Exothermic	(B) (D)	Endothermic Adiabatic				
	7.	The mass of oxygen required to con			1	1	2	1,7
		$\overline{\text{(A)}} \frac{3}{11} kg$	(B)	$\frac{11}{3}$ kg				
		(C) $\frac{3}{8}kg$	(D)	$\frac{8}{3}kg$				
	8.	The proximate analysis of fuel is the det (A) C, H ₂ , N ₂ , S and moisture		nation of percentage of Fixed carbon, ash, volatile matter and moisture	1	1	2	1
		(C) Higher calorific value	(D)					

	 9. In the orsat apparatus (A) CO₂ is absorbed in cuprous (B) CO is absorbed in caustic potash chloride solution (C) O₂ is absorbed in pyrogallic acid (D) N₂ is absorbed in hot nickel chrome compound 	1 2 2 1	21. One tonne of refrigeration is equal to (A) 211kJ/min (B) 220kJ/min (C) 420kJ/min (D) 620kJ/min 22. The ratio of high temperature to lower temperature for a reversed cannot	1		5 1	
	0. If methane undergoes combination with the stoichiometric quantity of air, the basis would be	1 2 2 1,7	refrigerator is 1.25. The COP will be (A) 2 (B) 3 (C) 4 (D) 5 23. How is the condensation process in vapour compression refrigeration cycle carried out?	1	1	5 1.	,2
	 The required air fuel ratio of a petrol engine is controlled by (A) Fuel injector (B) Fuel pump (C) Inlet valve (D) Carburetor 	1 1 3 1 -	(A) At constant volume (B) At constant pressure (C) At constant enthalpy (D) At constant entropy 24. The difference between dry bulb temperature and dew point temperature is	1	2	5	1
	2. In a four stroke diesel engine, during suction stroke is inducted. (A) Air-fuel mixture (B) Fuel (C) Air (D) Either air or fuel	1 1 3 1,2	called				
	 3. The operation of forcing additional air under pressure into the engine cylinder is known as (A) Scavenging (B) Turbulence (C) Solution (D) Projection 	1 1 3 1,2	25. The specific humidity during heating and humidification process (A) Remains constant (B) Increases (C) Decreases (D) First increases and the decreases	1	2	5 1	,2
	 (C) Supercharging (D) Pre ignition 4. A four stroke engine having a brake power of 105 kW is supplied with fuel at the rate of 4.4 kg per 10 minutes. The brake specific fuel consumption of the engine is 	1 2 3 1	PART – B (5 × 10 = 50 Marks) Answer ALL Questions 26. a.i Compare the efficiencies of Otto and diesel cycles for the same compression	Marks		CO P	
	(A) 0.18 kg/kWh (C) 0.36 kg/kWh (D) 0.42 kg/kWh 5. A spark ignition engine with compression ratio 8, volume before compression	1 2 3 1,2	ratio and for same engine capacity. ii. With suitable flow diagram and TS diagram explain the concept of regeneration in gas turbines and highlight its importance.	6	4	1 1	,2
	0.9m³ / kg has a net heat interaction of 1575 kJ/kg. What is the mean effective pressure? (A) 20 kPa (B) 20 bar (C) 2000 Pa (D) 2 bar 6. The work input to an air compressor is minimum, if the law of compression is		(OR)	10	3	1 1	.,2
	(A) $PV = C$ (C) $PV^{1.3} = C$ (B) $PV^{\gamma} = C$ (D) $PV^{1.2} = C$		 compression are 80°C and 0.9 bar. Determine the air standard efficiency of the cycle. Take γ = 1.4. 27. a.i. Illustrate how lower calorific valve of a fuel is different from higher calorific 	3	3	2 1	1,7
	7. To achieve isothermal compression, an air compressor should run at (A) Very high speed (C) Constant speed (D) High speed initially and then at low speed		valve. The ultimate analysis of a sample coal gave the following gravimetric analysis: $C = 65\%$, $H2 = 6\%$, $S = 1.5\%$, $O_2 = 18\%$. Apply Dulong's formula to find the calorific valve.	3	3	2 1	,7
	 (A) Vane blower (B) Roots blower (C) Centrifugal compressor (D) Lysholm compressor 	1 1 4 1,2	ii. Discuss how an Orsat apparatus is useful to analyze the constituents of exhaust gas emitted by an engine.	4	3	2 1	,7
	19. The clearance volume of a reciprocating compressor directly affects (A) Piston speed (B) Noise level (C) Volumetric efficiency (D) Temperature of air after compression	1 1 4 1	b. During a boiler trial, dry flue gas analysis by volume was reported as CO ₂ -13%, CO-0.3%, O ₂ -6%, N ₂ -80.7%. The coal analysis by mass was reported as C-62.4%, H ₂ -4.2%, O ₂ -4.5%, moisture 15% ash 13.9%. Estimate (i) Minimum air required to burn 1 kg of coal	10	4	2 1	.,7
Page 2	20. A two stage compressor takes in air at 1.1 bar and discharges at 20 bar. For minimum work input, the intermediate pressure must be (A) 10.55 bar (B) 7.33 bar (C) 5.5 bar (D) 4.7 bar	1 2 4 1,2 24MF418MEC107T	(ii) Mass of air actually supplied per kg or coal (iii) Amount of excess air supplied per kg of coal Page 3 of 4	24M	F418N	EC107	Т
1 250							