final_pdf

April 17, 2022

```
[]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     from datetime import datetime
[]: def readData(filename):
         # Daten einlesen
         df = pd.read_csv(filename,
                                sep=';',
                                header=None,
                                names=['Personalnummer',
                                          'Anrede',
                                          'Vorname',
                                          'Nachname',
                                          'Geburtsdatum'],
                                 encoding='latin-1') # encoding auf latin-1 da sonstu
      →probleme mit Umlauten
         pd.set_option('display.max_columns', None)
         return df
[]: def clean(data):
         cleandata = data.copy()
         errorframe = cleandata.loc[pd.to_datetime(data['Geburtsdatum'], format='%d.

¬%m.%Y',errors='coerce').isna(), ['Personalnummer',
                                          'Anrede',
                                          'Vorname',
                                          'Nachname',
                                          'Geburtsdatum']]
         indizes = [23, 39, 41, 54, 64, 65, 73, 81, 100]
         cleandata = cleandata.drop(indizes)
         cleandata.at[7, 'Geburtsdatum'] = '16.02.1963'
         errorframe.loc[7, 'Datensatz?'] = 'Korrektur'
         errorframe.loc[7, 'Typ'] = 'Falsche Spalte'
         cleandata.at[21, 'Geburtsdatum'] = '01.02.1965'
         errorframe.loc[21, 'Datensatz?'] = 'Korrektur'
         errorframe.loc[21, 'Typ'] = 'Monat reicht für Alter'
         return cleandata, errorframe
```

```
[]: def from_dob_to_age(dob):
         st = datetime(2005, 12, 31)
         #st = datetime.today()
         a = st.year - dob.year - ((st.month, st.day) < (dob.month, dob.day))</pre>
         return a
     def get_gender_based_birthdays(data, gender=None):
         # Alle Geburtsdaten des angegebenen Geschlechts
         # Wenn kein Geschlecht angegeben ist gibt diese Funktion alle Geburtstageu
      \rightarrow zurück
         if gender is not None:
             data = data[data['Anrede'] == gender]
         # Alter ausrechnen
         age = pd.DataFrame(columns=['age'])
         age['age'] = pd.to_datetime(data['Geburtsdatum'], format="%d.%m.%Y").
      →apply(lambda x: from_dob_to_age(x) if from_dob_to_age(x) < 100 else np.nan)
         age = age.dropna()
         return age
[]: def age_average(data):
         # Berechne durchschnittliches Alter
         return data['age'].mean()
     def age_variance(data):
         # Berechne altersvarianz
         variance = data['age'].var()
         return variance
     def age_standard_deviation(data):
         # Berechne Standadabweichung
         return data['age'].std()
     def get median(data):
         # Berechne Median
         return data['age'].median()
     def get_range(data):
         # Berechne Range
         return data['age'].max() - data['age'].min()
[]: dt = readData('sr_aufg_1_35.txt')
```

[]: dt_clean, err = clean(dt)

[]: print(err.to_string()) # Ganzes frame ausgeben

Personalnummer	Anrede	Vorname	Nachname	Geburtsdatum
Datensatz?		Тур		
7 8	Herr	Siegfried Metzger	16.02.1963	NaN
Korrektur l	Falsche	Spalte		
21 22	Frau	Elisabeth	Rau	im Februar 1965
Korrektur Monat re	icht für	Alter		
23 24	Herr	Manfred	Wagner	${\tt VHVeHvZZXM}$
NaN	NaN			
39 40	Herr	Werner	Hartung	27.09.814
NaN	NaN			
41 42	Herr	Christoph	Weiß	
NaN	NaN			
54 55	Frau	Heike	Schneider	unbekannt
NaN	NaN			
64 65	Herr	Oliver	Berger	XXXX
NaN	NaN			
65 66	Herr	Thomas	Alt	20.11.
NaN	NaN			
73 74	Herr	Jochen	Walter	24.10.2824
NaN	NaN			
81 82	Frau	Dorothea	Seidel	XXXX
NaN	NaN			
100 101	Frau	Kerstin	Kaiser	12.12.2540
NaN	NaN			

	Nachname	Geburtsdatum	Datensatz?	Тур
7	16.02.1963	NaN	Korrektur	Falsche Spalte
21	Rau	im Februar 1965	Korrektur	Monat reicht für Alter
23	Wagner	VHVeHvZZXM	NaN	NaN
39	Hartung	27.09.814	NaN	NaN
41	Weiß		NaN	NaN
54	Schneider	unbekannt	NaN	NaN
64	Berger	XXXX	NaN	NaN
65	Alt	20.11.	NaN	NaN
73	Walter	24.10.2824	NaN	NaN
81	Seidel	XXXX	NaN	NaN
100	Kaiser	12.12.2540	NaN	NaN

```
[]: gbb = get_gender_based_birthdays(dt_clean, 'Herr')
     male_average = age_average(gbb)
     male_variance = age_variance(gbb)
     male_standard_deviation = age_standard_deviation(gbb)
     male_median = get_median(gbb)
     male_range = get_range(gbb)
    male_a020 = gbb[gbb['age'].apply(lambda y: y >= 0 and y < 20)]
    male_a2030 = gbb[gbb['age'].apply(lambda y: y >= 20 and y < 30)]
     male_a3040 = gbb[gbb['age'].apply(lambda y: y >= 30 and y < 40)]
     male_a4050 = gbb[gbb['age'].apply(lambda y: y >= 40 and y < 50)]
     male_a50 = gbb[gbb['age'].apply(lambda y: y >= 50)]
     male_all = gbb['age']
     gbb = get_gender_based_birthdays(dt_clean, 'Frau')
     female_average = age_average(gbb)
     female_variance = age_variance(gbb)
     female_standard_deviation = age_standard_deviation(gbb)
     female_median = get_median(gbb)
     female_range = get_range(gbb)
     female_a020 = gbb[gbb['age'].apply(lambda y: y >= 0 and y < 20)]
     female_a2030 = gbb[gbb['age'].apply(lambda y: y >= 20 and y < 30)]
     female_a3040 = gbb[gbb['age'].apply(lambda y: y >= 30 and y < 40)]
     female_a4050 = gbb[gbb['age'].apply(lambda y: y >= 40 and y < 50)]
     female_a50 = gbb[gbb['age'].apply(lambda y: y >= 50)]
     female_all = gbb['age']
     gbb = get_gender_based_birthdays(dt_clean)
     average = age_average(gbb)
     variance = age_variance(gbb)
     standard_deviation = age_standard_deviation(gbb)
     median = get_median(gbb)
     rng = get_range(gbb)
[]: averages = {0 : average, 1 : female_average, 2 : male_average}
     variances = {0 : variance, 1 : female_variance, 2 : male_variance}
     deviations = {0 : standard_deviation, 1 : female_standard_deviation, 2 :
     →male_standard_deviation}
     medians = {0 : median, 1 : female_median, 2 : male_median}
     ranges = {0 : rng, 1 : female_range, 2 : male_range}
     dat = [ averages.values(),
             variances.values(),
             deviations.values(),
             medians.values(),
             ranges.values() ]
[]: dataf = pd.DataFrame(dat, columns=['gesamt', 'Frauen', 'Männer'],
             index=['Mittelwert', 'Varianz', 'Std.-Abw', 'Median', 'Spannweite'])
```

```
[]: dataf = dataf.round(4)
     print(dataf.to_string())
                                     Männer
                  gesamt
                           Frauen
                                    43.8627
    Mittelwert
                 39.9412 36.0196
                153.7589 98.9796 180.2408
    Varianz
    Std.-Abw
                 12.4000
                          9.9488
                                    13.4254
    Median
                 39.0000 35.0000
                                    47.0000
    Spannweite
                 46.0000 45.0000
                                   46.0000
[]: labels = np.array(['(0,20]','(20,30]','(30,40]','(40,50]','(50,]'])
     male = np.array([
         len(male_a020.index),
         len(male a2030.index),
         len(male_a3040.index),
         len(male_a4050.index),
         len(male_a50.index)
     ])
     female = np.array([
         len(female_a020.index),
         len(female_a2030.index),
         len(female_a3040.index),
         len(female_a4050.index),
         len(female_a50.index)
     ])
     x = np.arange(len(labels))
     width = 0.35
     fig, ax = plt.subplots()
     rect1 = ax.bar(x-width/2,male,width,label="Männer")
     rect2 = ax.bar(x+width/2,female,width,label="Frauen")
     ax.set_ylabel("Häufigkeit")
     ax.set_title("Altersverteilung zum Stichtag 31.12.2005")
     ax.set_xticks(x)
     ax.set_xticklabels(labels)
     ax.legend()
     #ax.bar(rect1, padding=6)
     #ax.bar(rect2, padding=6)
     fig.tight_layout()
     plt.show()
```

Altersverteilung zum Stichtag 31.12.2005

