

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

устанавливающее требования и порядок разработки, внедрения и запуска создания автоматизированной системы: «Программный аппаратный комплекс управления, учета и контроля сетями электрических зарядных станции для электромобилей»

СОСТАВ И СОДЕРЖАНИЕ

1.	Определения назначения и сокращения	3
2.	Общие сведения	3
3.	Назначение и цели создания (развития) системы	4
4.	Характеристика объекта автоматизации	4
5.	Требования к системе	7
6.	Инфраструктура	7
7.	Структура системы	8
8.	Требования к функционированию системы	8
9.	Безопасность	8
10.	Требования к документированию	9
11.	Процедуры	9
12.	Функциональность Системы	10
13.	Модуль мониторинга и управления ЭЗС	10
14.	Модуль протоколирования и аудита событий	11
15.	Интерфейсы взаимодействия с системой	11
16.	Мобильное приложение пользователя (iOS и Android)	12
17.	Интерактивная карта ЭЗС	12
18.	Уведомление Абонента	13
19.	Пользователи системы	13
20.	Возможности партнера	13
21.	Компонент оплаты проездов	13

1. Определения назначения и сокращения

№ п/п	Определения и сокращения	Расшифровка
1.	Абонент	Потребитель электрической энергии, имеющий право на пользование услугами Системы
2.	Биллинг	Комплекс процессов и решений, ответственных за сбор информации об использовании услуг, их тарификацию, выставление счетов, обработку платежей
3.	Бухгалтерские документы	1. Электронная счет фактура, опубликованная в реестре электронных счет фактур 2. Накладная, подписанная электронной цифровой подписью Оператора
4.	Зарядка	Пропускание тока через батарею автомобиля для накопления энергии
5.	Карта авторизации	RFID карта, содержащая уникальный код и позволяющая идентифицировать Абонента на ЭЗС
6.	Клиент	Группа лиц, состоящая из Абонентов, владельцев ЭЗС и поставщиков электрической энергии
7.	Оператор	Представитель владельца Системы, который занимается организацией процессов для осуществления зарядки автомобиля, наладкой, техническим обслуживанием, ремонтом Системы
8.	Пользователь	Лицо или организация, которое использует действующую систему для выполнения конкретной функции
9.	AC	Автоматизированная система - совокупность взаимосвязанных аппаратно-программных средств для автоматизации процессов управления, накопления и обработки информации
10.	93C	Электрическая зарядная станция
11.	Работы	Разработка АС «Программный аппаратный комплекс управления, учета и контроля сетями электрических зарядных станции для электромобилей»

2. Общие сведения

Наименование автоматизированной системы:	Программный аппаратный комплекс управления, учета и контроля сетями электрических зарядных станции для электромобилей
Заказчик (пользователь) системы и их реквизиты:	Товарищество с ограниченной ответственностью «Оператор ЭЗС» (далее – Оператор ЭЗС) расположен по адресу: 010000, РК, г. Нур-Султан, проспект Мангилик Ел, здание 18 «Финансовый центр»
Разработчик системы и их реквизиты:	Товарищество с ограниченной ответственностью «Оператор ЭЗС»

Перечень документов, на основании которых создается система, кем и когда утверждены эти документы:	Приказ генерального директора Товарищества с ограниченной ответственностью «Оператор ЭЗС»
Плановые сроки начала и окончания работы по созданию системы:	Согласно тендерной документации
Сведения об источниках и порядке финансирования работ:	Оплату работы осуществляет Оператор ЭЗС на основании соответствующего договора

3. Назначение и цели создания (развития) системы

3.1. Назначение системы:

AC предназначена для автоматизированного измерения, коммерческого учета и управления технологическими процессами ЭЗС.

3.2. Цели создания системы:

Объединение всех ЭЗС в единую автоматизированную сеть;

Автоматизация процесса зарядки;

Автоматизация процессов учета электрической энергии;

Автоматизация процессов сбора, хранения и учета данных о состояниях и операциях ЭЗС;

Предоставление удаленного доступа к информации о выполненных Абонентом операциях.

4. Характеристика объекта автоматизации

Объектами автоматизации являются следующие два вида зарядных станций:

Зарядная станция для электромобилей F4-51:

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ			
Входные			
Источник питания переменного	3P + N + PE		
тока			
Напряжение переменного тока	400 B AC +/- 10%		
Номинальный входной ток	64 A		
Номинальная входная мощность	51 кВт		
Требуемая мощность	51 κBA		
электропитания			
Частота	50 / 60 Гц		
Выходные			
Максимальная выходная мощность	22 kW (Розетка B, C), 3.7 kW (Розетка A, D)		
Максимальный выходной ток	32 A (Розетка B, C), 16 A (Розетка A, D)		
Выходное напряжение переменного	400 VAC (3P + N + PE) Розетка В и С, 240 VAC (1P		
тока	+ N + PE) Розетка A и D		
Система зарядки			

Розетка А	Schuko (CEE 7/4)		
Розетка В	Туре 2 Розетка (IEC 62196-2) система замка Mode 3		
	(IEC 61851-1)		
Розетка С	Туре 2 Розетка (IEC 62196-2) система замка Mode 3		
	(IEC 61851-1)		
Розетка D	Schuko (CEE 7/4)		
Электрическая защита (по одной на р	розетку и электрическая работа)		
Безопасность	RCD 20 MA Type A		
	Счетчик энергии		
Класс точности в активной энергии	0,5		
1	,		
П	одключение к сети		
Сеть	GPRS, 3G		
	Общие		
Степень защиты	IP44 / IK10		
Материал корпуса	Нержавеющая сталь		
Замок крышки от корпуса	Спец болты		
Рабочая температура	-30 °C до +50 °C (-50°С до +50 °С) опционально		
Хранение при температуре	-30 °С до +60 °С		
Рабочая влажность	5 % to 95 % Без конденсации		
	ISO / IEC14443A / B		
Система RFID	MIFARE Classic,		
	MIFARE DESFire, MIFARE DESFire EV1, ISO		
	18092 / ECMA-340 (NFC) 13.56МГц		
Дисплей НМІ	Адресная LED лента		
Подсветка	Зеленая LED лента		
Ограничение мощности	Mode 3 PWM контроль согласно ISO/IEC 61851-1		
Протокол интерфейса	(OCPP) Open Charge Point Protocol протокол		
1 11	открытой зарядной точки — это протокол		
	прикладного уровня для организации связи		
	между зарядными станциями электротранспорта и		
	центральной системой управления, также известной		
	как сеть зарядных станций		
Размеры (Д х Ш х В)	1100 х 400 х 330 мм		
	П. 20		
Bec	До 20 кг		

Скоростная зарядная станция для электромобилей ТG50/100:

Скоростная зарядная станция для электромооилси 1 030/100.			
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ			
Входные			
Источник питания переменного тока	3P + N + PE		
Напряжение переменного тока	400 B AC +/- 10%		
Номинальный входной ток	80/160 A		
Номинальная входная мощность	50/100 κBτ		
Требуемая мощность	50/100 κBτ		
Частота	50 / 60 Гц		
Системы заземления	TN-S, TN-C, TN-C-S, TT and IT		
Входной предохранитель, RCD	Fuse, Type A RCD (or Type B RCD, depending on		
	national norms), either in Charging Device or		
	Installation		

Защита от сверхтока	Miniature Circuit Breaker (MCB), depending on		
	national norms.		
	Either in Charging Device or Installation		
Системы заземления	TN-S, TN-C, TN-C-S, TT and IT		
	Выходные		
Максимальная выходная мощность	DC50/100 kW (Кабель A,B,C), at Min. 92%		
	efficiency, AC 22 kW (Кабель D)		
Максимальный выходной ток	DC125 A (Кабель A,B,C), AC32 A		
	(Кабель D)		
Выходное напряжение переменного	400 VAC (3P + N + PE) Кабель D		
тока			
Выходное напряжение	230V-470 VDC Кабель A,B,C		
Система зарядки			
DC	Mode 4 (DC) стандарт CCS Combo2.Mode 4 (DC)		
	стандарт GB/T 20232, Mode 4 (DC) стандарт		
	CHAdeMO		
AC	ACx22kW Mode 3, Type 2.		
Кабель	Min. 3,2 Metres		
Электрическая защита (по одной на р	озетку и электрическая работа)		
Безопасность	RCD 20 мА Туре А		
Счетчик энергии			
Класс точности в активной энергии	2%		
П	одключение к сети		
Сеть GPRS, 3G			
Общие			
Степень защиты			
Материал корпуса Сталь			
Рабочая температура	−30 °C до +50 °C		
Хранение при температуре	-30 °С до +60 °С		
Рабочая влажность	5 % to 95 % Без конденсации		
Абсолютная высота	<2000M		
Система RFID	ISO / IEC14443A / B MIFARE Classic, MIFARE		
	DESFire, MIFARE DESFire EV1, ISO 18092 /		
	ECMA-340 (NFC) 13.56МГц		
Дисплей HMI	Сенсорная панель		
Подсветка	Зеленая LED лента		
Ограничение мощности	Mode 3 PWM контроль согласно ISO/IEC 61851-1		
Протокол интерфейса	(OCPP) Open Charge Point Protocol протокол		
	открытой зарядной точки — это протокол		
	прикладного уровня для организации связи		
	между зарядными станциями электротранспорта и		
	центральной системой управления, также известной		
	как сеть зарядных станций		
Размеры (Д x III x B)	900 х 400 х 1800 мм		
Вес	160 кг		
Стандарты	IEC61851, IEC62196, IEC62763, ISO15118 /		
Стапдарты	DIN70121, national		
	DIIV/0121, Hatioliai		

5. Требования к системе

Архитектура

- 5.1. Программный комплекс по управлению и использованию зарядных станций состоит из трёх компонентов:
 - Сервер управления
 - WEB-панель управления
 - Мобильные приложения (Android, iOS)

Система подразумевает 3 роли:

Администратор (владелец системы);

партнёр (владелец ЭЗС);

пользователь (абонент, клиент).

Администратор имеет доступ ко всем данным системы: управление всеми зарядными станциями, просмотр информации об использовании системы, персональных данных, зарядках, оплатах и т. д. Имеет неограниченный доступ к системе через панель управления.

Партнёр через панель управления имеет доступ только к тем зарядным станциям, владельцем которых он является. Может просматривать всю информацию, которая с ними связана: зарядные сессии, оплата использования его зарядных станций, статистика, история состояний и т. д. Партнёр не имеет доступа к информации о других зарядных станциях, а также к каким-либо персональным данным. Партнёр может быть, как физическое лицо, так и юридическое.

Администратор может назначить партнёру комиссию за пользование системой. В этом случае при каждом использовании зарядной станции партнёра со стоимости заряда будет списана комиссия в пользу владельца системы.

Пользователь имеет доступ к системе только через мобильное приложение для использования зарядной инфраструктуры.

- 5.2. Разработанное ПО и иное прикладное и специальное ПО должны размещаться на собственной или арендованной технологической площадке и вычислительных мощностях Оператора
- 5.3. Сервер управление представляет собой набор микро сервисов, которые реализуют логику системы и обеспечивают коммуникацию с зарядными станциями, панелью управления, мобильными приложениями, платёжными системами и т. д. Сервер поддерживает протоколы ОСРР 1.5/1.6 (SOAP, JSON), для коммуникации с пользователями, поддерживает обновления без остановки работы системы, свободные вертикальное и горизонтальное масштабирования, подробный мониторинг состояния системы и прочие возможности, соответствующие современным требованиям по функционированию серверных программ.
- 5.4. Система должна работать автономно, без привлечения программно-аппаратной инфраструктуры разработчика или третьих лиц, имеющих сертификаты на проведение соответствующего вида деятельности.

6. Инфраструктура

- 6.1. Должна быть предоставлена информация о расчетных требованиях к аппаратным ресурсам необходимым для Системы, с разделением на модули при их выделении, с прогнозом расширения Абонентской сети
- 6.2. Должна быть предоставлена информация об используемом программном обеспечении, расчетном количестве лицензий и подписок на обновления, с прогнозом расширения Абонентской сети
- 6.3. Должна быть предоставлена информация о требованиях к каналам связи, среднеарифметическом объеме трафика при мониторинге станции за единицу времени, а также среднеарифметическом объеме трафика при одной зарядке

6.4. Заказчику должны быть предоставлены административные доступы во все модули и подсистемы, для сервисного технического сопровождения должны быть созданы отдельные сервисные учетные записи.

7. Структура Системы

В состав Системы должны входить следующие функциональные подсистемы:

- 7.1. Абонентская подсистема подсистема, обеспечивающая информационное и технологическое взаимодействие между Системой и Клиентами ЭЗС
- 7.2. Процессинговый центр подсистема, обеспечивающая информационное и технологическое взаимодействие между участниками расчётов, предназначенная для обеспечения функционирования Системы в автоматическом режиме, обработки транзакций, формируемых при функционировании, обеспечения информационной безопасности
- 7.3. Подсистема управления ЭЗС подсистема, обеспечивающая информационное и технологическое взаимодействие между Системой и ЭЗС
- 7.4. Подсистема партнеров подсистема, обеспечивающая информационное и технологическое взаимодействие между Системой и поставщиками электрической энергии, владельцами ЭЗС
- 7.5. Подсистема протоколирования подсистема, обеспечивающая регистрацию всех производимых изменений, хранение событий и состояний оборудования, а также логи информационного взаимодействия

8. Требования к функционированию системы

- 8.1. Система должна функционировать круглогодично в автоматическом режиме, обеспечивая непрерывный круглосуточный режим работы, за исключением регламентных остановок для проведения технических и профилактических работ.
- 82. Должна быть обеспечена возможность функционирование станций в режиме Offline в течение установленного периода времени. Система должна иметь возможность полной синхронизации данных после возвращения станций в режим онлайн. Должна быть предусмотрена возможность обновления прошивки станций по воздуху.
 - 83. Система должна обеспечивать работу следующих показателей в разрезе времени:
 - Количество ЭЗС:

Rosm lectbo 33c.				
2020г.	2021г.	2022г.	2023г.	2024г.
109	480	1 000	2 136	5 700
- Количество зарегистрированных Пользователей:				
2020г.	2021г.	2022г.	2023г.	2024Γ.
500	2 000	4 950	14 950	40 000

- Количество регистраций в системе 15'000 шт. (с возможностью увеличения).
- Количество карт авторизации 20'000шт. (с возможностью увеличения).
- Количество различных типов станций не более 10 видов (с возможностью увеличения).
 - Количество менеджеров сети не более 50 человек (с возможностью увеличения).

9. Безопасность

9.1. Модули и подсистемы, опубликованные в сети Интернет, должны быть отделены от основной Системы, информационное взаимодействие между ними должно быть ограничено и регламентировано

- 9.2. Все используемое программное обеспечение должно иметь техническую поддержку и актуальную на данный момент версию, End of life используемого программного обеспечения должен быть не менее 5 лет
- 9.3. База данных, используемая в работе процессингового центра Системы, должна резервироваться в режиме реального времени. В случае использования сторонних систем (к примеру: My SQL, PostgreSQL, Clickhouse, REDIS, Elasticsearch) для хранения базы данных, должны исключаться дополнительные едино разовые и/или постоянные расходы.
- 9.4. Все действия несущие изменения в Системе, а также изменения состояний ЭЗС должны регистрироваться.
- 9.5. Пользовательский доступ к Системе должен быть организован на базе настраиваемых ролей, каждая роль может иметь разные уровня доступа как к модулю или подсистеме, так и к информации, содержащейся в ней.
- 9.6. Привязка платежных карт абонента к системе оплаты АС и/или полонение виртуального счета в личном кабинете абонента, должна проходить с соблюдением правил безопасности аутентификации 3-D Secure.
- 9.7. Организация инфраструктуры должна соответствовать требованиям безопасности согласно законодательству Республики Казахстан, в том числе защищенный канал взаимодействия.

10. Требования к документированию

- 10.1. Должно быть предоставлено описание логических элементов и основных конфигурационных настроек, необходимых для реализации Системы
- 10.2. Все необходимые сервисные учетные записи должны быть описаны с указанием прав, предоставленных в модулях и подсистемах
- 10.3. Должна быть предоставлена информация о рисках информационной безопасности внедряемой Системы и предпринятых мерах для их снижения
- 10.4. Должна быть предоставлена информация об осуществлении процедур и регламентов по восстановлению работоспособности Системы при сбоях
- 10.5. Должна быть предоставлена Пользовательская документация всех ролей для работы в Системе
 - 10.6. Должно быть предоставлено описание взаимодействия участников Системы

11. Процедуры

Зарядка

- 11.1. Абонент производит подключение автомобиля к ЭЗС.
- 11.2. Абонент сканирует QR код возле зарядной станции или запускает мобильное приложения «Оператора ЭЗС».
 - 11.3. Пользователь выбирает объем электрической энергии
 - 11.4. Пользователь вводит данные своей банковской карты для оплаты зарядки
 - 11.5. Пользователь активирует зарядку
- 11.6. В случае ошибки происходит выдача сообщения Пользователю, инициализирующего операцию, и Абоненту
- 11.7. По окончанию зарядки происходит выдача сообщения Пользователю, инициализирующего операцию, и Абоненту

11. Функциональность Системы

Модуль учета электрической энергии

- 12.1. Система должна обеспечить привязку ЭЗС к поставщику электрической энергии
- 12.1. Система должна учитывать объемы электрической энергии, предоставленной поставщиками, согласно тарификации поставщика
- 12.2. Система должна учитывать объемы потребленной Абонентами электрической энергии в разрезе владельца заправочной станции, Абонента, заправочной станции.
- 12.3. По завершению сессии заряда электромобиля система должна формировать квитанцию для Абонента.

12. Модуль мониторинга и управления ЭЗС

- 13.1. Функциональность администратора системы должна быть полной. Всё, что связано с пользователями, партнёру должно быть недоступно.
- 13.2. Добавление ЭЗС, с указанием владельца, типа, мощности, тарифа, страны, города, адреса, идентификатора, типа коннекторов.
- 13.3. Должно быть обеспечено использование стандартного, не привязанного к конкретному производителю ЭЗС, протокола управления и мониторинга ЭЗС
 - 13.1. Система должна осуществлять возможность управления списком ЭЗС
- 13.2. Система должна осуществлять получение информации о текущем состоянии ЭЗС как на периодической основе, так и по требованию.
- 13.3. Система должна обеспечивать просмотр состояний выбранной станции за определенный период времени
- 13.4. Система должна осуществлять получение информации об изменении состояния и/или выполнении операции, а также потребляемой мощности ЭЗС в режиме реального времени
 - 13.5. Система должна осуществлять оповещение о сбоях и неисправностях ЭЗС
- 13.6. Система должна осуществлять дистанционное управление ЭЗС, в зависимости от уровня доступа Пользователя:
 - 13.6.1. Блокировка розетки (если доступно по протоколу);
 - 13.6.2. Установка максимального тока;
 - 13.6.3. Разблокировка вилки (если доступно по протоколу);
 - 13.6.4. Сброс станции;
 - 13.6.5. Обновление прошивки;
 - 13.6.6. Запрос на получение текущей информации о состоянии ЭЗС
- 13.7. Система должна обеспечивать возможность отложенной передачи данных об ошибках и неисправностях, отчетов об выполненных операциях, изменений состояния при восстановлении связи или работоспособности ЭЗС
- 13.8. Система должна обеспечивать возможность выбора приоритетности операций приема/передачи данных.
- 13.9. Система должна обеспечивать возможность восстановление сеанса приема и передачи данных с места обрыва связи.
- 13.10. Система должна обеспечивать возможность ведения статистики по сеансам связи, учет трафика соединений, ведение истории трафика и статистики соединений
- 13.11. Система должна обеспечивать возможность автоматического формирования очереди приема данных в соответствии с требованиями предприятия.
- 13.12. Система должна обеспечивать возможность проверки принятых и переданных данных на корректность
- 13.13. Система должна обеспечивать просмотр всех зарядок за заданный период с различными фильтрами
 - 13.14. Система должна обеспечивать подробную информацию по каждой зарядке.

13.15. Система должна обеспечить возможность мониторинга потребления электроэнергии по каждой ЭЗС, согласно тарификации поставщика электроэнергии.

13. Модуль протоколирования и аудита событий

- 14.1. Все события, возникающие при передаче данных Участниками Системы, должны быть зарегистрированы, для будущего их анализа и принятия необходимых действий.
 - 14.2. Передаваемые данные должны быть сохранены в архиве в неизменном виде.
- 14.3. Период хранения информации в архиве должен определяться административными регламентами Системы.
- 14.4. Информация, регистрируемая по каждой заправке: дата, время, номер станции, тип розетки, номер Абонента, номер карты авторизации, количество заказанного и фактически отпущенного объема электрической энергии, цена, показания электронного суммирующего счетчика, идентификационный номер электромобиля
- 14.5. Информация, регистрируемая при финансовой транзакции внутри системы: дата, время, номер транзакции, номер Абонента, дебет счета, кредит счета, описание (код) операции, сумма, результат операции
 - 14.6. События ЭЗС, подлежащие обязательной регистрации:
 - 14.6.1. Старт и остановка ЭЗС
 - 14.6.2. Heartbeat присылаемые ЭЗС
 - 14.6.3. Возникновение ошибок в подсистеме управления ЭЗС
 - 14.6.4. Возникновение ошибок и предупреждений в работе ЭЗС
 - 14.6.5. Изменения настроек ЭЗС
 - 14.6.6. Установление защищенных сеансов связи и их прекращение
 - 14.6.7. Все команды, которые передаются на ЭЗС
- 14.7. Система должна формировать для Пользователей отчеты и статистику как по значениям на данный момент, так и формировать историю в соответствии с правами доступа в Системе, с возможностью фильтрации по разным критериям:
 - 14.7.1. Зарядки
 - 14.7.2. Объемы потребления электрической энергии
 - 14.7.3. Состояние ЭЗС и розеток
 - 14.7.4. Финансовые транзакции
 - 14.7.5. Команды управления ЭЗС

14. Интерфейсы взаимодействия с системой

Веб приложение

Веб приложение - гостевой доступ к Системе

- 15.1. Без использования регистрации должен быть обеспечен просмотр интерактивной карты ЭЗС, с указанием расположения и состояния ЭЗС
- 15.2. Система должна предоставлять информацию о тарифных планах (Tr/kBr*ч или Tr/ч).
 - 15.3. Система должна обеспечить процедуру самостоятельной регистрации Абонента
 - 15.4. Контроль уровня заряда аккумуляторной батареи
- 15.5. Вся информация, представленная Системой, должна выводится на казахском, русском и английском языках

15. Мобильное приложение пользователя (iOS и Android)

- 16.1. Используется пользователями для заряда электромобилей. Должны поддерживаться операционные системы Android версии 5.1+, iOS 12+.
- 16.2. Наличие демонстрационного режима для ознакомления с функциональностью приложения.
 - 16.3. Быстрая регистрация по номеру мобильного телефона по СМС.
- 16.4. Редактирование профиля личного кабинета с возможностью добавления информации: ФИО, ИИН, пол, e-mail, пароль, тип предпочитаемого разъема (коннектора), марка электромобиля(ей).
 - 16.5. Привязка банковских карт для автоматической оплаты.
- 16.6. Подробная информация о списании: стоимость, применённые тарифы (предварительный, итоговый, тариф простоя), продолжительность зарядки и простоя, полученная электроэнергия, время начала и завершения использования зарядной станции, быстрый переход к подробностям используемой зарядной станции.
 - 16.7. Список ЭЗС с возможностью добавления в список избранных.
- 16.8. Карта ЭЗС с настройками фильтров для выбора свободной зарядной станции, станции определенного типа, станции с нужным разъемом и выбора станции по типу электромобиля.
 - 16.9. Построение маршрута до ближайшей свободной электрозарядной станции.
 - 16.10. Бронирование ЭЗС, просмотр информации о бронировани.
 - 16.11. Быстрая активация зарядных станций
 - 16.12. Контроль уровня заряда аккумуляторной батареи в режиме реального времени.
- 16.13. Push-уведомления о начале зарядной станции, об окончание зарядной сессии и начале парковки, о статусе оплаты.
- 16.14. Информация о балансе: состояние внутреннего счёта, пополнение внутреннего счёта, информация о трёх последних списаниях и пополнениях с возможностью просмотра всего списка, а также с подробностями списаний.
- 16.15. Отметки наличия сервиса, удобств в местах расположения ЭЗС (ресторан, гостиница, торговый центр, супермаркет, туалет, платная парковка, бесплатная парковка, зона интернет).
- 16.16. Отображение статусов ЭЗС (активна/неактивна, публичная/ограниченный доступ, бесплатно/тариф)
- 16.17. Загрузка фотографий места ЭЗС с описанием (доступ модератора Оператор мониторинга системы)
- 16.18. Вся информация, представленная Системой, должна выводится на казахском, русском и английском языках

16. Интерактивная карта ЭЗС

- 17.1. Система должна отображать место расположения и текущее состояние ЭЗС как минимум на одном общедоступном картографическом сервисе (Google, Yandex, 2gis)
 - 17.2. Система должна отображать наличие и состояние розеток на ЭЗС
 - 17.3. Система должна обеспечивать прокладку маршрута до выбранной станции
 - 17.4. Система должна обеспечивать Оператору управление интерактивной картой ЭЗС:
 - 17.4.1. Добавление, редактирование и удаление ЭЗС
 - 17.4.2. Изменение данных о месторасположении ЭЗС
 - 17.4.3. Переназначение состояния ЭЗС

17. Уведомление Абонента

- 18.1. Система должна иметь возможность уведомлять Абонента посредством SMS и/или e-mail, а также в мобильном приложении о следующих событиях:
 - 18.1.1. Начало зарядки
 - 18.1.2. Завершение зарядки с последующим формированием квитанции
 - 18.1.3. Внезапное прерывание процесса зарядки с указанием причины.

18. Пользователи системы

Возможности Оператора

19.1. Оператор по работе с клиентами

- 19.1.1. Просмотр платежных транзакций
- 19.1.2. Работа с Абонентами по основным вопросам по работе с системой
- 19.1.3. Формирование бухгалтерских документов
- 19.1.4. Контроль объемов электрической энергии и оплаты по ним
- 19.1.5. Взаимодействие с поставщиками электрической энергии

19.2. Оператор мониторинга системы

- 19.2.1. Мониторинг состояния системы
- 19.2.2. Мониторинг станций
- 19.2.3. Мониторинг нагрузки
- 19.2.4. Мониторинг объемов электрической энергии

19.3. Инженер

- 19.3.1. Работа с техническими неисправностями
- 19.3.2. Наполнение ответов на основные технические неисправности для Операторов
- 19.3.3. Работа с техническими авариями
- 19.3.4. Взаимодействие с разработчиком системы и производителями ЭЗС

19.4. Сотрудник обеспечения безопасности

- 19.4.1. Обеспечение контроля действий Операторов и инженеров
- 19.4.2. Обеспечение контроля аномальных финансовых транзакций
- 19.4.3. Обеспечение контроля аномального поведения станций и ошибок в работе

19. Возможности партнера

- 20.1. Просмотр платежных транзакций
- 20.2. Просмотр потребленной электроэнергии

20. Компонент оплаты проездов

- 21.1. В целях оплаты проезда в маршрутном такси предполагается использовать систему билетов на основе QR-кодов. QR-код билета содержит в своей информационной структуре:
 - тайм-штамп покупки билета;
 - уникальный идентификатор транзакции.
- 21.2. Водитель маршрутного такси проверяет действительность билета и регистрирует поездку по предъявленному билету с помощью «Мобильного приложения Водителя». Одновременно с регистрацией поездки он «погашает» билет в системе оплаты.
- 21.3. Пассажир может предъявить билет как на бумажном носителе, так и с помощью «Мобильного приложения Пассажира», в котором он может получить билет для поездки, оплатив покупку при помощи банковской карты. Билет на бумажном носителе может быть

приобретен через специализированный терминал оплаты (аналогичный терминалам QIWI, Касса24 и т.д.).

21.4. Для генерации билетов, проверки их действительности, регистрации поездок, фискализации транзакций система должна содержать «облачный сервис», с которым будут взаимодействовать мобильные приложения водителей и пассажиров. Также, с этим сервисом будут взаимодействовать терминалы оплаты.