

# **Evolutionary Hypergraph Partitioning**

**Presentation** · **December 7, 2017 Robin Andre** 

Institute of Theoretical Informatics · Algorithmics Group





- lacktriangleright H is reduced to a smaller problem  $H_C$
- only one node is contracted per step
- lacktriangleq until  $H_C$  is sufficiently small





- lacktriangleright H is reduced to a smaller problem  $H_C$
- only one node is contracted per step
- lacktriangle until  $H_C$  is sufficiently small





- lacktriangleright H is reduced to a smaller problem  $H_C$
- only one node is contracted per step
- lacktriangleq until  $H_C$  is sufficiently small





### Initial Partitioning:

An algorithm generates
 an Initial Partitioning for
 H<sub>C</sub>





#### Refinement

- The coarsening steps are reverted
- Local search algorithms try to improve the solution









Population P





Population P

3.1s 
$$time = 100s$$

 $\sim$  5 iterations





3.1s  $time = 100s \longrightarrow \sim 5$  iterations





3.1s 
$$time = 100s \longrightarrow \sim 5$$
 iterations





3.1s 
$$time = 100s \longrightarrow \sim 5$$
 iterations

*KaHyPar* generates multiple partitions dynamic allocation  $\delta = 15\%$ 

balances time/hypergraph size





3.1s  $time = 100s \longrightarrow \sim 5$  iterations

KaHyPar generates multiple partitions dynamic allocation  $\delta = 15\%$ 

high quality solutions

balances time/hypergraph size









select 2 random Individuals







select 2 random Individuals compare their fitness







select 2 random Individuals
compare their fitness
choose the better Individual







- $\blacksquare$  contractions must respect  $P_1 \& P_2$
- does not change solution quality





Valid Contraction



- contractions must respect P<sub>1</sub> & P<sub>2</sub>
- does not change solution quality





**Invalid Contraction** 



- $\blacksquare$  contractions must respect  $P_1 \& P_2$
- does not change solution quality







- $\blacksquare$  contractions must respect  $P_1 \& P_2$
- does not change solution quality







#### Initial Partitioning:

- Use the better parent partition  $(P_1)$
- Maintains solution quality





#### Refinement:

- Local search improvements
- will not decrease solution quality











#### Benefits:

- local search
- structure preservation



# **Replacement Strategy**





New individual has to be placed in *P* 



Population P

 $\lambda - 1$ 

### Replacement Strategy





Replace the worst element in *P* 



Population P

 $\lambda - 1$ 

### Replacement Strategy





### **Diversity**





|              |         |         | difference |
|--------------|---------|---------|------------|
| cut          | 1, 1, 1 | 1, 1, 1 | 0,0,0=0    |
| connectivity | 2,2,2   | 2,3,2   | 0,1,0=1    |

There are two approaches for difference:

- count the different cut edges
- count the different blocks of cut edges

### **Test Results**









We inspect the  $\sqrt{|P|}$  best individuals of P





































































- the frequency of e discourages contracting e
- low frequency edges are contracted first



Initial Partitioning and Refinement are performed as in KaHyPar







### V-Cycle (+ New Initial Partitioning)







- contractions must respect P
- does not change solution quality

### V-Cycle (+ New Initial Partitioning)





#### Initial Partitioning:

- V-Cycle can generate a new initial partitioning
- Or keep the current partition (maintains solution quality)



# V-Cycle (+ New Initial Partitioning)



A new initial partitioning can generate worse solutions









### **Results**





### **Results**



