5.2 Continuous random variables

It is often convenient to think of a random variable as having a whole (continuous) interval for its set of possible values.

The devices used to describe continuous probability distributions differ from those that describe discrete probability distributions.

Examples of continuous random variables:

5.2.1 Probability density functions and cumulative distribution functions

A probability density function (pdf) is the continuous analogue of a discrete random variable's probability mass function (pmf).

Definition 5.12. A probability density function (pdf) for a continuous random variable X is a nonnegative function f(x) with

$$\int_{-\infty}^{\infty} f(x) = 1$$

and such that for all $a \leq b$,

$$P[a \le X \le b] = \int_{a}^{b} f(x)dx.$$

- 1.
- 2.
- 3.

Example 5.17 (Compass needle). Consider a de-magnetised compass needle mounted at its centre so that it can spin freely. It is spun clockwise and when it comes to rest the angle, θ , from the vertical, is measured. Let

Y= the angle measured after each spin in radians

What values can Y take?

What form makes sense for f(y)?

If this form is adopted, that what must the pdf be?

Using this pdf, calculate the following probabilities:

1.
$$P[Y < \frac{\pi}{2}]$$

2.
$$P[\frac{\pi}{2} < Y < 2\pi]$$

3.
$$P[\frac{\pi}{6} < Y < \frac{\pi}{4}]$$

4.
$$P[Y = \frac{\pi}{6}]$$

Definition 5.13. The cumulative distribution function (cdf) of a continuous random variable X is a function F such that

$$F(x) = P[X \le x] = \int_{-\infty}^{x} f(t)dt$$

F(x) is obtained from f(x) by integration, and applying the fundamental theorem of calculus yields

$$\frac{d}{dx}F(x) = f(x).$$

That is, f(x) is obtained from F(x) by differentiation.

As with discrete random variables, F has the following properties:

1.

2.

3.

Example 5.18 (Compass needle, cont'd). Recall the compass needle example, with

$$f(x) = \begin{cases} \frac{1}{2\pi} & 0 \le y \le 2\pi \\ 0 & \text{otherwise} \end{cases}$$

Find the cdf.

For y < 0

For $0 \le y \le 2\pi$

For $y > 2\pi$

Calculate the following using the cdf:

$$P[Y \le \frac{4\pi}{5}]$$

$$P[\frac{\pi}{3} < Y \le \frac{\pi}{2}]$$

- 5.2.2 Means and variances for continuous distributions
- 5.2.3 Quantiles
- 5.2.4 The Normal distribution
- 5.2.5 Other special continuous distributions