Concours National Commun - Session 2012

Corrigé de l'épreuve de mathématiques II Filière MP

Résultat les matrices : Pour tout polynôme de degré $n \geq 2$ à coefficients dans $\mathbb{K}(\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C})$ et toute matrice $N \in \mathcal{M}_{n-1}(\mathbb{K})$ dont le polynôme minimal est de degré n-1, il existe une matrice $M \in \mathcal{M}_n(\mathbb{K})$ telle que N soit une sous-matrice de M et que le polynôme caractéristique de M soit égal à $(-1)^n P$. (résultat dû à FARHAT et LEDERMAN en 1958).

Corrigé par M.TARQI

PARIE I. UNE FONCTION DÉFINIE PAR UNE INTÉGRALE

- $1.1\,1.1.1\, \left(\begin{array}{cc} B & v \\ {}^tu & b \end{array}\right) = \left(\begin{array}{cc} B & 0 \\ {}^tu & 1 \end{array}\right) \left(\begin{array}{cc} I_n & w \\ 0 & \lambda \end{array}\right) \text{ si et seulement si } \, Bw = v \text{ et } {}^tuw + \lambda = b \text{ ou encore si et seulement si } \left\{\begin{array}{cc} w = B^{-1}v \\ \lambda = b {}^tuB^{-1}v \end{array}\right. \text{, car } B \text{ est inversible.}$
 - 1.1.2 Il est clair que $\left| \begin{array}{cc} B & 0 \\ {}^t u & 1 \end{array} \right| = \det(B) \times 1 = \det(B).$
 - 1.1.3 Puisque B est inversible, alors $\det(B) \neq 0$ et donc $B^{-1} = \frac{1}{\det(B)}^t \widetilde{B}$.
 - 1.1.4 D'après la question 1.1.1, on a : $\begin{pmatrix} B & v \\ {}^tu & b \end{pmatrix} \begin{pmatrix} = & B & v \\ {}^tu & 1 \end{pmatrix} \begin{pmatrix} I_n & w \\ 0 & \lambda \end{pmatrix}$, donc

$$\left|\begin{array}{cc} B & v \\ {}^tu & b \end{array}\right| = \left|\begin{array}{cc} B & 0 \\ {}^tu & 1 \end{array}\right|. \left|\begin{array}{cc} I_n & w \\ 0 & \lambda \end{array}\right| = |B| \times \lambda = |B| \left(b - \frac{1}{|B|} u^t \widetilde{B} v\right) = b|B| - t u^t \widetilde{B} v.$$

1.2

- 1.2.1 Soit $\lambda_1, \lambda_2, ..., \lambda_r$ les différentes valeurs propres complexes non nulles de B et $\varepsilon = \min_{i \in [\![1,r]\!]} |\lambda_i|$. Alors pour tout $x \in]0, \varepsilon[$, x n'est pas une valeur propre de B et donc $B xI_n$ est inversible.
- 1.2.2 L'application $A \longmapsto^t A$ est linéaire sur un espace vectoriel de dimension finie, donc elle est continue.

Soit \mathscr{B} la base canonique de \mathbb{K}^n . Pour tout matrice $A \in \mathscr{M}_n(\mathbb{K})$ on désigne par $A_1, A_2, ..., A_n$ les vecteurs colones de A. L'application $A \longmapsto |A|$ est la composée des applications :

- $A \longmapsto (A_1, A_2, ..., A_n)$ qui est linéaire, donc continue,
- et $(x_1, x_2, ..., x_n) \longmapsto \det_{\mathscr{B}}(x_1, x_2, ..., x_n)$, qui est n-linéaire, donc continue. Ainsi l'application $A \longmapsto |A|$ est continue.
- 1.2.3 Soit $B\in \mathscr{M}_n(\mathbb{K})$, d'après la question 1.2.1, il existe $\varepsilon>0$ tel que, pour tout $x\in]0,\varepsilon[$, la matrice $B_x=B-xI_n$ est inversible et d'après la question 1.1.4, on a :

$$(2) \quad \left| \begin{array}{cc} B_x & v \\ {}^t u & b \end{array} \right| = b|B_x| - {}^t u\widetilde{B_x} v.$$

et par continuité des applications précédentes et comme $\lim_{x\to 0} B_x = B$, alors le passage à la limite dans l'égalité (1) donne :

$$\left|\begin{array}{cc} B & v \\ {}^t u & b \end{array}\right| = b|B| - {}^t u \widetilde{B} v.$$

Ceci montre que la formule (1) est valable pour toute matrice de $\mathcal{M}_n(\mathbb{K})$.

PARIE II. RÉUNION DE SOUS-ESPACES VECTORIELS

2.1 Supposons $F_1 \nsubseteq E$ et $F_2 \nsubseteq E$. Donc il existe $x_1 \in E \setminus F_1$ et $x_2 \in E \setminus F_2$, on a $x_1 + x_2 \in E = F_1 \cup F_2$, donc $x_1 + x_2 \in F_1$ ou $x_1 + x_2 \in F_2$. Si $x_1 + x_2 \in F_1$ et comme $x_2 \in F_1$ alors $x_1 + x_2 - x_2 = x_1 \in F_1$ ce qui est absurde. De même la condition $x_1 + x_2 \in F_2$ conduit à une contradiction. En conclusion, si $E = F_1 \cup F_2$, alors nécessairement $E = F_1$ ou bien $E = F_2$.

2.2

- 2.2.1 On a $x \in E = F \cup F_r$ et $x \notin F$, donc $x \in F_r$. Supposons qu'il existe $\lambda \in \mathbb{K}$ tel que $y + \lambda x \in F_r$, alors $y + \lambda x \lambda x = y \in F_r$ ce qui est absurde, donc pour tout $\lambda \in \mathbb{K}$, $y + \lambda x \notin F_r$.
- 2.2.2 Pour tout $\lambda \in \mathbb{K}$, $y + \lambda x \in E = F \cup F_r$ et $y + \lambda x \notin F_r$, donc $y + \lambda x \in F$. Considérons la droite affine $D = y + \mathbb{K}x$, montrons qu'il existe $i \in \llbracket 1, r 1 \rrbracket$ tel que $D \cap F_k$ contient au moins deux éléments différents, en effet, supposons que, pour tout $i \in \llbracket 1, r 1 \rrbracket$, il existe $x_i \in E$ tel que $D \cap F_i \subset \{x_i\}$, donc

$$D = \bigcup_{i \in \llbracket 1, r-1 \rrbracket} (D \cap F_i) \subset \bigcup_{i \in \llbracket 1, r-1 \rrbracket} \{x_i\}.$$

Ceci est absurde, puisque D est un ensemble infini. Ainsi il existe $k \in [1, r-1]$ et deux scalaires α et β différents tels que $y + \alpha x \in F_k$ et $y + \beta x \in F_k$.

- 2.2.3 D'après la question précédente, $(\alpha \beta)x \in F_k \subset F$ et comme $\alpha \beta \neq 0$, $x \in F$ ce qui est absurde.
- 2.3 D'après la question 2.2 $E = F_r$ ou bien $E = F_1 \cup F_2 \cup ... \cup F_{r-1}$. Si $E = E_r$ la propriété est démontrée sinon $E = F_1 \cup F_2 \cup ... \cup F_{r-1}$ et le raisonnement de la question 2.2, montre qu'on a nécessairement $E = F_{r-1}$ ou bien $E = F_1 \cup F_2 \cup ... \cup F_{r-2}$, ce procédé se poursuit, à la dernière étape on aura $E = F_1 \cup F_2$ et la question 2.1 montre que $E = F_1$ ou $E = F_2$. En conclusion, au moins l'un des indices $i \in [1, r]$ vérifie $E = F_i$.

PARIE III. A PROPS DU DU POLYNÔME MINIMAL D'UNE MATRICE

3.1 D'après le théorème de Cayly-Hamilton toute matrice A est zéros de son polynôme caractéristique, et comme le polynôme minimal de A divise tout polynôme annulateur de A, π_A divise χ_A , ce dernier est de degré $\leq n$, donc $\deg \pi_A \leq n$.

- 3.2 Si $\deg \pi_A = n$, alors toute relation de la forme $\sum_{i=0}^{n-1} \alpha_i A^i = 0$, conduit à $\alpha_i = 0$ pour tout i, sinon on aura un polynôme non nul et de $\deg r \le n-1$, annulateur de A ce qui contredit la définition de π_A .
 - Si la famille $\{I_n, A, ..., A^{n-1}\}$ est libre, alors toute sous-famille de type $\{I_n, A, ..., A^k\}$ $(k \le n-1)$ est libre, et donc on peut trouver un polynôme non nul de degré $\le n-1$ tel que P(A)=0, autrement dit $\deg \pi_A \ge n$, et en tenant compte de la question 3.1, $\deg \pi_A=n$.

3.3

- 3.3.1 $I_{A,v}$ est une partie non vide de $\mathbb{K}[X]$, elle contient par exemple le polynôme minimal de A. Si $P,Q\in I_{A,v}, (P-Q)(A)v=P(A)v-Q(A)v=0$ et donc $P-Q\in I_{A,v}$, de même si $P\in I_{A,v}$ et $Q\in \mathbb{K}[X]$, $QP\in I_{A,v}$. Donc $I_{A,v}$ est un idéal non réduit à $\{0\}$, donc il existe un unique polynôme unitaire de $\mathbb{K}[X]$ engendrant $I_{A,v}$.
- 3.3.2 Puisque $\pi_A \in I_{A,v}$ alors $\pi_{A,v}$ divise π_A . L'ensemble de diviseurs de π_A étant fini, et comme pour tout $n \in \mathcal{M}_{n,1}(\mathbb{K})$, $\pi_{A,v}$ divise π_A , alors l'ensemble

$$\{\pi_{A,w} / w \in \mathscr{M}_{n,1}(\mathbb{K})\}$$

est fini. Donc on peut poser:

$$\{\pi_{A,w} \ / \ w \in \mathcal{M}_{n,1}(\mathbb{K})\} = \{\pi_{A,v_1}, \pi_{A,v_2}, ..., \pi_{A,v_r}\}.$$

3.3.3 Pour tout $k \in [1, r]$, $F_k = \ker(\pi_{A, v_k}(A))$, donc F_k est un sous-espace vectoriel de $\mathscr{M}_n(\mathbb{K})$. Soit $v \in \mathscr{M}_n(\mathbb{K})$, alors $i \in [1, r]$ tel que $\pi_{A, v} = \pi_{A, v_i}$, donc $v \in F_i$, d'où :

$$\mathcal{M}_n(\mathbb{K}) = F_1 \cup F_2 \cup ... \cup F_r.$$

- 3.3.4 D'après la deuxième partie, il existe $k \in \llbracket 1,r \rrbracket$ tel que $\mathscr{M}_n(\mathbb{K}) = F_k$. Ainsi pour tout $v \in \mathscr{M}_{n,1}(\mathbb{K})$, $\pi_{A,v_k}(A)(v) = 0$ et donc $\pi_{A,v_k}(A) = 0$ et par conséquent π_A divise π_{A,v_k} , et d'après la question 3.3.2, $\pi_{A,v_k} = \pi_A$.
- Le vecteur $w = v_k$ répond à la question.
- 3.4 Soit (e_1,e_2,e_3) la base canonique de $\mathcal{M}_{3,1}(\mathbb{R})$ et $e=e_1$. On a $(A^3-cA^2-bA-cI_3)(e)=0$, donc $X^3-cX^2-bX-c\in I_{A,e}$, donc π_A divise X^3-cX^2-bX-c .

Supposons que le polynôme de A est de degré ≤ 2 , donc il existe α, β et γ de $\mathbb R$ non tous nuls tels que $\alpha I_3 + \beta A + \gamma A^2 = 0$, en particulier

$$(\alpha I_3 + \beta A + \gamma A^2)(e) = \alpha e_1 + \beta e_2 + \gamma e_3 = 0,$$

ceci entraîne $\alpha=\beta=\gamma=0$ ce qui est absurde. Donc $\deg \pi_A=3$, donc forcément $\pi_A=X^3-cX^2-bX-a$. Le vecteur e convient.

3.5

3.5.1 D'après la question 3.3, il existe un vecteur $v \in \mathcal{M}_{n,1}(\mathbb{K})$ tel que $\pi_A = \pi_{A,v}$. Montrons que $(v, Av, ..., A^{n-1}v)$ est une base de $\mathcal{M}_{n,1}(\mathbb{K})$, en effet, soit $\alpha_0, \alpha_1, ..., \alpha_{n-1}$ tels que $\sum_{k=0}^{n-1} \alpha_i A^i v = 0$,

donc le polynôme $P=\sum_{k=0}^{n-1}\alpha_iX^i$ de degré $\leq n-1$ est dans $I_{A,v}$, donc $\deg \pi_A \leq n-1$ ce qui est

absurde, donc la famille $(v, Av, ..., A^{n-1}v)$ est bien libre.

Ceci montre que la matrice B dont les colones sont $v, Av, ..., A^{n-1}v$ est inversible, est donc pour chaque $x \in \mathbb{K}^n$, il existe un unique $u \in \mathscr{M}_{n,1}(\mathbb{K})$ tel que ${}^tBu = {}^tx$, égalité qui s'écrit encore sous forme :

$$x = {}^{t} uB = ({}^{t}uv, {}^{t}uAv, ..., {}^{t}uA^{n-1}v).$$

3.5.2 D'après la question 3.2, il suffit de montrer que la famille $(I_n,A,...,A^{n-1})$ est libre. Soit $x=(\alpha_0,\alpha_1,...,\alpha_{n-1})\in \mathbb{K}^n$ tel que

(3)
$$\sum_{k=0}^{n-1} \alpha_i A^i = 0.$$

Pour ce choix de x, il existe $(u, v) \in (\mathcal{M}_{n,1}(\mathbb{K}))^2$ tel que $\overline{x} = ({}^tuv, {}^tuAv, ..., {}^tuA^{n-1}v)$. La relation (3) entraîne, en multipliant à gauche par tu et à droite par v,

$$(4) \quad \sum_{k=0}^{n-1} \alpha_i^t u A^i v = 0$$

la relation (4) s'écrit encore sous la forme $\sum_{k=0}^{n-1} |\alpha_i|^2 = 0$, donc tous les α_i sont nuls, ainsi $(I_n, A, ..., A^{n-1})$ est bien libre.

PARIE IV. DÉMONSTRATION DU RÉSULTAT PROPOSÉE

- 4.1 Si A répond à la question, l'égalité $A=\begin{pmatrix} B&v\\t_u&b\end{pmatrix}$ entraı̂ne ${\rm Tr}\,A={\rm Tr}\,B+b$. Or ${\rm Tr}\,A=-c_1$ et ${\rm Tr}\,B=-\alpha_1$, donc $b={\rm Tr}\,A-{\rm Tr}\,B=\alpha_1-c_1$.
 - 4.2.1 On a, pour tout $p \in [0, n-2]$, $\deg U_p = n-2-p$ car $\alpha_0 \neq 0$, donc la famille $(U_0, U_1, ..., U_{n-2})$ est une famille de polynômes de $\mathbb{K}_{n-2}[X]$ de degrés échelonnés, donc elle forme une base de $\mathbb{K}_{n-2}[X]$.
 - 4.2.2 $(U_0,U_1,...,U_{n-2})$ étant une base de $\mathbb{K}_{n-2}[X]$, donc pour chaque $Q\in\mathbb{K}_{n-2}[X]$, il existe $x=(x_0,x_1,....,x_{n-2})\in\mathbb{K}^{n-1}$ tel que

$$Q = \sum_{k=0}^{n-2} x_k U_k.$$

 $\text{Mais } x \in \mathbb{K}^{n-1} \text{ peut s'écrire sous la forme } x = ({}^tyz, {}^tyBz, ..., {}^tyB^{n-2}z) \text{ avec } (y,z) \in (\mathscr{M}_{n-1,1}(\mathbb{K}))^2, \text{ donc } (y,$

$$Q = \sum_{k=0}^{n-2} {}^t y B^k z U_k.$$

4.3 Expression d'une matrice

4.3.1 Soit $(x, \lambda) \in \mathbb{K}^2$, on a :

$$\chi_B(x) - \chi_A(\lambda) = (-1)^{n-1} \sum_{k=0}^{n-2} \alpha_k \left(x^{n-1-k} - \lambda^{n-1-k} \right)$$

$$= (-1)^{n-1} (x - \lambda) \sum_{k=0}^{n-2} \alpha_k \left(\sum_{p=0}^{n-2-k} x^{n-2-k-p} \lambda^p \right)$$

$$= (-1)^{n-1} (x - \lambda) \sum_{p=0}^{n-2} \left(\sum_{k=0}^{n-2-p} \alpha_k x^{n-2-k-p} \right) \lambda^p$$

$$= (-1)^{n-1} (x - \lambda) \sum_{n=0}^{n-2} U_p(x) \lambda^p$$

4.3.2 Substituions B à λ dans l'égalité précédente, donc on obtient, grâce au théorème de Cayly-Hamilton :

$$\chi_B(x)I_{n-1} - \chi_B(B) = (-1)^{n-1}(xI_{n-1} - B)\sum_{n=0}^{n-2} U_p(x)B^p,$$

ou encore

$$\chi_B(x)I_{n-1} = (-1)^n (B - xI_{n-1}) \sum_{p=0}^{n-2} U_p(x)B^p.$$

4.3.3 Pour tout $x \in \mathbb{K}$, on a $|B - xI_{n-1}|I_{n-1} = (-1)^n(B - xI_{n-1})\sum_{p=0}^{n-2} U_p(x)B^p$, et par définition

$$|B - xI_{n-1}|I_{n-1} = (B - xI_{n-1})^t (\widetilde{B - xI_{n-1}})$$
 donc

$$(B - xI_{n-1}) \left[\widetilde{t}(B - xI_{n-1}) - (-1)^n \sum_{p=0}^{n-2} U_p(x)B^p \right] = 0.$$

L'ensemble des valeurs propres de B étant fini, donc pour tout $x \notin Sp(B)$,

$${}^{t}(\widetilde{B-xI_{n-1}}) = (-1)^{n} \sum_{p=0}^{n-2} U_{p}(x)B^{p}.$$

Il est clair que les coefficients de la matrice ${}^t(B-xI_{n-1})$ sont des polynômes en x, en travaillant coefficient par coefficient, on peut dire que les coefficients de même indice, qui coincident sur $\mathbb{K}\backslash \mathrm{Sp}(B)$, coincident sur \mathbb{K} , ainsi :

$$\forall x \in \mathbb{K}, \quad {}^{t}(\widetilde{B - xI_{n-1}}) = (-1)^{n} \sum_{p=0}^{n-2} U_{p}(x)B^{p}.$$

4.4 Résolution du problème

4.4.1 Soit
$$x \in \mathbb{K}$$
, on a : $A - xI_n = \begin{pmatrix} B - xI_{n-1} & v \\ tu & b - x \end{pmatrix}$, donc

$$\chi_A(x) = |A - xI_n| = (b - x)\chi_b(x) - u^t(B - xI_{n-1})v.$$

$$\text{Mais } \chi_B(x) = (-1)^{n-1} \sum_{k=0}^{n-1} \alpha_k x^{n-1-k} \text{ et } {}^t(\widetilde{B-xI_{n-1}}) = (-1)^n \sum_{p=0}^{n-2} U_p(x) B^p \text{, d'où}:$$

$$\chi_{A}(x) = (b-x)\chi_{b}(x) - {}^{t}u^{t}(B-xI_{n-1})v$$

$$= (b-x)(-1)^{n-1}\sum_{k=0}^{n-1}\alpha_{k}x^{n-1-k} - (-1)^{n}\sum_{p=0}^{n-2}U_{p}(x)^{t}uB^{p}v$$

$$= (-1)^{n}(x-b)(x^{n-1} + \alpha_{1}x^{n-2} + \sum_{k=2}^{n-1}\alpha_{k}x^{n-1-k}) - (-1)^{n}\sum_{p=0}^{n-2}U_{p}(x)^{t}uB^{p}v$$

$$= (-1)^{n}(x-b)\left(x^{n-1} + \alpha_{1}x^{n-2} + \sum_{k=2}^{n-1}\alpha_{k}x^{n-1-k}\right) - (-1)^{n}\sum_{p=0}^{n-2}U_{p}(x)^{t}uB^{p}v$$

$$= (-1)^{n}\left(x^{n} + (\alpha_{1} - b)x^{n-1} + H(x)\right) - (-1)^{n}\sum_{p=0}^{n-2}U_{p}(x)^{t}uB^{p}v,$$

où $H(x)=(x-b)\sum_{k=2}^{n-2}\alpha_kx^{n-1-k}$. On a bien $H\in\mathbb{K}_{n-2}[X]$ et ne depend que b et de χ_B .

- 4.4.2 Par identification, $\chi_A=(-1)^nP$ si et seulement si $\alpha_1-b=c_1$ ce qui est vérifié et, pour tout $x\in\mathbb{K}$, $(-1)^nH(x)-(-1)^n\sum_{p=2}^{n-2}U_p(x)^tuB^pv=(-1)^n\sum_{k=2}^nc_kx^{n-k}$ ou encore si et seulement si $H-\sum_{k=2}^{n-2}c_kX^{n-k}=\sum_{p=2}^{n-2}{}^tuB^pvU_p.$
- 4.4.3 Le polynôme $H \sum_{k=2}^{n-2} c_k X^{n-k}$ de $\mathbb{K}_{n-2}[X]$ permet de définir deux vecteurs u et v tels que $H \sum_{k=2}^{n-2} c_k X^{n-k} = \sum_{p=2}^{n-2} {}^t u B^p v U_p$ (la question 4.2.2), pour ces deux vecteurs u et v le polynôme caractéristique $\begin{pmatrix} B & v \\ {}^t u & b \end{pmatrix}$ est bien $(-1)^n P$.

$$(B \widetilde{-xI_{n-1}}) = (-1)^n \sum_{p=0}^{n-2} U_p(x)B^p.$$

• • • • • • • • • •