Computational Fluid Dynamics: Lecture 6 ME EN 6720

Prof. Rob Stoll

Department of Mechanical Engineering
University of Utah

Spring 2014

Fourier Analysis

A short intro to Fourier analysis:

Fourier analysis starts with the idea that <u>any signal can be decomposed into waves with different amplitudes and wavelengths</u>.

• given a discrete set of data:

Fourier Analysis

• Mathematically we can represent this process by the discrete Fourier transform pair:

recall:
$$e^{-ik_m x_j} = \cos(k_m x_j) + i\sin(k_m x_j)$$

- How is this used numerically?
 - -A Fourier series can be used to interpolate $f(x_i)$ at any point x in the flow and at any time t
 - -If we differentiate the Fourier representation of $f(x_j)$ (equation 8) with respect to x

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[\sum_{m=-N/2}^{N/2-1} \hat{f}(k_m) e^{ik_m x_j} \right] = \sum_{m=-N/2}^{N/2-1} \hat{f}(k_m) \frac{\partial e^{ik_m x_j}}{\partial x} = \sum_{m=-N/2}^{N/2-1} ik_m \hat{f}(k_m) e^{ik_m x_j}$$

Fourier Analysis

• if we compare this to equation we notice that we have:

$$\frac{\partial f}{\partial x} = g = \sum_{m=-N/2}^{N/2-1} i k_m \hat{f}(k_m) e^{ik_m x_j} = \sum_{m=-N/2}^{N/2-1} \hat{g}(k_m) e^{ik_m x_j}$$

- procedurally we can use this to find $\frac{\partial f}{\partial x}\Big|_i$ given $f(x_i)$ as follows:
 - -calculate $\hat{f}(k_m)$ from by a forward transform (equation (**)
 - -multiply by ik_m to get $\hat{g}(k_m)$ and then
 - -perform a backward (inverse) transform using equation \Re to get $\frac{\partial f}{\partial x}\Big|_{i}$.
- the method easily generalizes to any order derivative
- although Fourier methods are quite attractive do to the high accuracy and near exact representation of the derivatives, they have a few important limitations.
 - $-f(x_j)$ must be continuously differentiable
 - $-f(x_i)$ must be periodic
 - grid spacing must be uniform

Modified (effective) wave number analysis

- we want to use Fourier analysis to look at error and stability
- we can do this by taking finite difference schemes and comparing them to a Fourier representation
 - -for example: take a central difference scheme $\left| \frac{\partial f}{\partial x} \right| = \frac{u_{i+1} u_{i-1}}{2\Delta x}$
 - -expand u_i as a Fourier series using \mathfrak{R}

$$\frac{\hat{f}(k_m)e^{ik_m(x_j+\Delta x)} - \hat{f}(k_m)e^{ik_m(x_j-\Delta x)}}{2\Delta x}$$
 summation since this must hold for all wave numbers

Note we can drop the hold for all wave numbers

-we can rearrange using exponent rules and Euler's formula:

$$= \frac{\hat{f}(k_m)}{2\Delta x} \left[e^{ik_m(x_j + \Delta x)} - e^{ik_m(x_j - \Delta x)} \right]$$

$$= \frac{\hat{f}(k_m)}{2\Delta x} \left[e^{ik_m x_j} e^{ik_m \Delta x} - e^{ik_m x_j} e^{-ik_m \Delta x} \right]$$

$$= \frac{\hat{f}(k_m)}{2\Delta x} e^{ik_m x_j} \left[e^{ik_m \Delta x} - e^{-ik_m \Delta x} \right]$$

Modified (effective) wave number analysis

$$= \frac{\hat{f}(k_m)}{2\Delta x} e^{ik_m x_j} \Big[\cos(k_m \Delta x) + i \sin(k_m \Delta x) - \cos(k_m \Delta x) + i \sin(k_m \Delta x) \Big]$$

$$= \frac{\hat{f}(k_m)}{2\Delta x} e^{ik_m x_j} \Big[2i \sin(k_m \Delta x) \Big]$$

$$= \hat{f}(k_m) e^{ik_m x_j} \frac{\sin(k_m \Delta x)}{\Delta x} = ik_{eff} \hat{f}(k_m) e^{ik_m x_j}$$
Modified This is our Fourier wavenumber derivative at k_m

-where k_{eff} is our effective wave number for a CDS (as compared to our exact Fourier derivative)

Modified (effective) wave number analysis

• we can look at this graphically to examine the **effect of scale on our error term**:

- for a well resolved signals (i.e. $f(x_j)$ is smooth at wave numbers resolved by the grid) central differences will do a good job (small k_m/k_{max}).
- for a $f(x_j)$ that has significant energy content at high wave numbers even a high order of accuracy won't make a solution accurate!!

• von Neumann analysis: example simple explicit 1-D heat equation

$$\frac{\partial u}{\partial x} = \alpha \frac{\partial^2 u}{\partial x^2} \quad \text{with} \quad \frac{u_i^{n+1} - u_i^n}{\Delta t} = \frac{\alpha}{\left(\Delta x\right)^2} \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n\right)$$

- Recall that any FDE can be expressed as: $FDE = D + \varepsilon \longrightarrow error$ $\hookrightarrow exact$
- The computed numerical solution must satisfy the FDE so plugging this into the above:

$$\frac{D_i^{n+1} + \varepsilon_i^{n+1} - D_i^n - \varepsilon_i^n}{\Delta t} = \frac{\alpha}{\left(\Delta x\right)^2} \left(D_{i+1}^n + \varepsilon_{i+1}^n - 2D_i^n - 2\varepsilon_i^n + D_{i-1}^n + \varepsilon_{i-1}^n\right)$$

ullet Since the solution D must satisfy the FDE the error must also independently satisfy it

$$\frac{\varepsilon_i^{n+1} - \varepsilon_i^n}{\Delta t} = \frac{\alpha}{\left(\Delta x\right)^2} \left(\varepsilon_{i+1}^n - 2\varepsilon_i^n + \varepsilon_{i-1}^n\right)$$

• if we assume that we can represent the error as a Fourier series:

$$\varepsilon_m(x,t) = b_m(t)e^{ik_mx}$$

time dependent Fourier coefficient

- Since the equation is linear, we can look at individual wavenumbers
- Here we will look for solutions of the form $z^n e^{ik_m x}$ (Fourier coefficients scale with timestep) and we will choose $z^n = e^{at}$ which is consistent for n=0, t=0 and therefore, our error should be of the form:

$$\varepsilon_m(x,t) = e^{at} e^{ik_m x}$$

We can subsitute this into our FDE error equation

$$e^{a(t+\Delta t)}e^{ik_mx} - e^{at}e^{ik_mx} = r\left(e^{at}e^{ik_m(x+\Delta x)} - 2e^{at}e^{ik_mx} + e^{at}e^{ik_m(x-\Delta x)}\right) \text{ where } r = \frac{\alpha \Delta t}{\left(\Delta x\right)^2}$$

• If we divide the equation by $e^{at}e^{ik_mx}$

$$e^{a\Delta t} - 1 = r\left(e^{ik_m\Delta x} - 2 + e^{-ik_m\Delta x}\right)$$

• Use the trig identity: $\cos \beta = \frac{e^{i\beta} + e^{-i\beta}}{2}$

$$e^{a\Delta t} = 1 + 2r \left[\cos(k_m \Delta x) - 1 \right]$$

• Using the trig identity: $\sin^2 \frac{\beta}{2} = \frac{1 - \cos(\beta)}{2}$

Our final reduced form is:

$$e^{a\Delta t} = 1 - 4r\sin^2\left(\frac{k_m \Delta x}{2}\right)$$

• Note that because $\mathcal{E}_i^{n+1} = e^{a\Delta t} \mathcal{E}_i^n$ for each wavenumber in the solution, it is clear that if $\left|e^{a\Delta t}\right| \leq 1$ the error will not grow in time \Longrightarrow

$$\left| 1 - 4r \sin^2 \left(\frac{k_m \Delta x}{2} \right) \right| \le 1$$

To evaluate this we must consider two cases:

1)
$$1 - 4r\sin^2\left(\frac{k_m\Delta x}{2}\right) \ge 0 \longrightarrow 4r\sin^2\left(\frac{k_m\Delta x}{2}\right) \ge 0$$

2)
$$1 - 4r\sin^2\left(\frac{k_m\Delta x}{2}\right) < 0 \rightarrow 4r\sin^2\left(\frac{k_m\Delta x}{2}\right) - 1 \le 1$$

- Condition 1) is always satisfied for $r \ge 0$
- Condition 2) is only satisfied if $r \le \frac{1}{2}$ this is the stability criteria for the method

• If we do the same analysis for the **simple implicit scheme**:

$$u_i^{n+1} - u_i^n = r \left(u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1} \right)$$

We can show that the amplification factor is:

$$\frac{1}{1 - 4r\sin^2\left(\frac{k_m \Delta x}{2}\right)}$$

The stability criteria:

$$\left| \frac{1}{1 - 4r \sin^2\left(\frac{k_m \Delta x}{2}\right)} \right| \le 1$$

• Is satisfied for all $r \ge 0$ and therefore, the simple implicit scheme is unconditionally stable