CS1231 Discrete Structures Semester 2, 2022/2023 Tutorial 1 Summary Sheet

Name: Joel Q. L. Chang

Email / Telegram: joel.qlc@nus.edu.sg / @joelkindiak Consultation Hours: Flexible through Telegram To be discussed: 1.1, 1.2, 1.3(iii), 1.4, 1.5, 1.6, 1.7

1 Propositions

Definition 1.1. A **proposition** is a declarative sentence that is true or false. Let p and q be propositions. We define the following propositions.

Proposition	$p \wedge q$	$p \lor q$	$\neg p$	p o q	$p \leftrightarrow q$	t	c
Notation	Conjunction	Disjunction	Negation	Conditional	Biconditional	Tautology	Contradiction

The truth values of each proposition is summarised as follows.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	t	c
T	T	F	T	T	T	T	T	F
T	F	F	F	T	F	F	T	F
F	T	T	F	T	T	F	T	F
F	F	T	F	F	T	T F F T	T	F

Two propositions are **logically equivalent** if their truth values are the same. Order of operations: $(\neg) > (\land, \lor) > (\rightarrow, \leftrightarrow)$.

Theorem 1.2 (Logical Equivalences). Let p, q, r be propositions. We have the following logical equivalences.

Name	Commutativity		Associativity		Distributivity		
Proposition	$p \wedge q$	$p \lor q$	$p \wedge (q \wedge r)$	$p \vee (q \vee r)$	$p \wedge (q \vee r)$	$p \lor (q \land r)$	
Equivalent	$q \wedge p$	$q \lor p$	$(p \wedge q) \wedge r$	$(p \lor q) \lor r$	$(p \wedge q) \vee (p \wedge r)$	$(p \lor q) \land (p \lor r)$	

Name	Implication	Double negation Absorption		rption	Negation	
Proposition	$p \rightarrow q$	$\neg(\neg p)$	$p \wedge (p \vee q)$	$p \lor (p \land q)$	$p \wedge (\neg p)$	$p \vee (\neg p)$
Equivalent	$\neg p \lor q$	p	p	p	false	true

Name	de Mo	rgan's	Identity		
Proposition	$\neg(p \land q)$	$\neg(p \lor q)$	$p \wedge \mathbf{true}$	$p \lor \mathbf{false}$	
Equivalent	$(\neg p) \lor (\neg q)$	$(\neg p) \wedge (\neg q)$	p	p	

Definition 1.3. Let $p \to q$ be a conditional statement. We define three related propositions.

Proposition	$\neg p \to \neg q$	$q \rightarrow p$	$\neg q \rightarrow \neg p$
Name	Inverse	Converse	Contrapositive

Theorem 1.4. We have $(p \to q) \equiv (\neg q \to \neg p)$ and $(\neg p \to \neg q) \equiv (q \to p)$.