Reduction reaction

CH3-CH=CH2
$$\xrightarrow{\text{HBr}}$$
 CH3-CH-CH3 $\xrightarrow{\text{Br}}$ CH3-CH=CH2 $\xrightarrow{\text{HBr}}$ CH3-CH2-CH2Br $\xrightarrow{\text{H}_2\text{O}_2}$ CH3-CH2-CH2OH $\xrightarrow{\text{H}_2\text{O}_2}$

Reduction reaction

Reduction: decrease in oxidation state/addition of hydrogen related to the carbon atom

Source of reduction

Sodium Borohydride

Lithium Aluminum Hydride

Hydride Nucleophile

Reactivity difference

Lithium aluminium hydride ($LiAlH_4$) is more electropositive (more metallic) than boron in $NaBH_4$. The hydride from $LiAlH_4$ is therefore more electron rich and thus is a **stronger** base (in reaction with water) and **stronger** nucleophile (with carbonyl group).

Mechanism of LiAlH₄ reduction

Step 1: Nucleophilic attack of hydride ion

Step 2: Protonation of the alkoxide

NaBH₄ reduction mechanism

Primary, secondary, tertiary and quarternary carbon

Primary, secondary, and tertiary

The prefixes sec and tert are really short for secondary and tertiary, terms that refer to the carbon atom that attaches these groups to the rest of the molecular structure.

Reactivity of the hydrides

Reagent	Preferred Solvents	Functions Reduced	Reaction Work-up
Sodium Borohydride NaBH4	ethanol; aqueous ethanol 15% NaOH; diglyme avoid strong acids	aldehydes to 1°- alcohols ketones to 2°-alcohols inert to most other functions	1) simple neutralization 2) extraction of product
Lithium Aluminum Hydride LiAlH4	ether; THF avoid alcohols and amines avoid halogenated compounds avoid strong acids	aldehydes to 1°- alcohols ketones to 2°-alcohols carboxylic acids to 1°- alcohols esters to alcohols epoxides to alcohols nitriles & amides to amines halides & tosylates to alkanes most functions react	1) care ful addition of water 2) remove aluminum salts 3) extraction of product

Amide to amine

Mechanism depends slightly on whether amide has an N-H or not.

But the result is the same.

Carbonyl to Alcohol

NaBH₄ isn't as basic as LiAlH₄, so reaction can be conducted in protic solvent, and separate workup step isn't essential.

Versatility of LiAlH₄ as a reducing agent

