On Model Selection Consistency of Lasso

Ganchao Wei

December 15, 2021

1/22

Overview

Introduction

Ganchao Wei

2/22

Introduction

The Lasso estimates $\hat{\beta}^n$ are defined by:

$$\hat{\beta}^n(\lambda) = \operatorname{argmin}_{\beta} ||Y_n - X_n \beta||_2^2 + \lambda ||\beta||_1$$

However, if an irrelevant predictor is highly correlated with the predictors in the true model, Lasso may not be able to distinguish it from the true predictors, with any amount of data and any amount of regularization. E.g.

- For a fixed p and orthogonal designs, the optimal (i.t.o. parameter estimation) Lasso doesn't give consistent model selection
- When using Lasso for knot selection in spline regression, it tend to pick up knots in close proximity to one another.

Ganchao Wei MSC-LASSO December 15, 2021 3 / 22

Introduction

In this paper, they consider model selection consistency of the Lasso. Specifically, they focus on two problems:

- Whether there exists a deterministic amount of regularization that gives consistent selection.
- Whether there exists a correct amount of regularization that selects the true model, for each random realization.

They found there exists an **Irrepresentable Condition** that is almost necessary and sufficient for both types of consistency (estimation consistency + model selection consistency)

Two consistencies:

- Parameter estimation consistency: $\hat{\beta}^n \beta^n \rightarrow_p 0$, as $n \rightarrow \infty$
- Model selection consistency: $P(\{i: \hat{\beta}^n \neq 0\} = \{i: \beta^n \neq 0\}) \to 1$, as $n \to \infty$

To separate 2 consistencies, define the sign consistency that doesn't assume the estimates to be estimation consistent:

Definition 1 An estimate $\hat{\beta}^n$ is equal in sign with the true model β^n which is written

$$\hat{\beta}^n =_s \beta^n$$

if and only if

$$sign(\hat{\beta}^n) = sign(\beta^n)$$

where sign(·) maps positive entry to 1, negative entry to -1 and zero to zero, that is, $\hat{\beta}^n$ matches the zeros and signs of β .

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (C)

5/22

2 sign consistencies for Lasso, depending on how the amount of regularization is determined:

Definition 2 Lasso is **Strongly Sign Consistent** if there exists $\lambda_n = f(n)$, that is, a function of n and independent of Y_n or X_n such that

$$\lim_{n\to\infty} P(\hat{\beta}^n(\lambda_n) =_s \beta^n) = 1.$$

Definition 3 The Lasso is General Sign Consistent if

$$\lim_{n\to\infty} P(\exists \lambda \geq 0, \hat{\beta}^n(\lambda) =_s \beta^n) = 1.$$

We further partition the design matrix, based on the sparsity of parameters. Then we can define the strong/ weak irrepresentable condition (next page).

Ganchao Wei MSC-LASSO December 15, 2021 6 / 22

Without loss of generality, assume $\boldsymbol{\beta}^n=(\boldsymbol{\beta}_1^n,...,\boldsymbol{\beta}_q^n,\boldsymbol{\beta}_{q+1}^n,...,\boldsymbol{\beta}_p^n)^T$ where $\boldsymbol{\beta}_j^n\neq 0$ for j=1,...,q and $\boldsymbol{\beta}_j^n=0$ for j=q+1,...,p. Let $\boldsymbol{\beta}_{(1)}^n=(\boldsymbol{\beta}_1^n,...,\boldsymbol{\beta}_q^n)^T$ and $\boldsymbol{\beta}_{(2)}^n=(\boldsymbol{\beta}_{q+1}^n,...,\boldsymbol{\beta}_p^n)$. Now write $\mathbf{X_n}(1)$ and $\mathbf{X_n}(2)$ as the first q and last p-q columns of $\mathbf{X_n}$ respectively and let $C^n=\frac{1}{n}\mathbf{X_n}^T\mathbf{X_n}$. By setting $C_{11}^n=\frac{1}{n}\mathbf{X_n}(1)'\mathbf{X_n}(1), C_{22}^n=\frac{1}{n}\mathbf{X_n}(2)'\mathbf{X_n}(2), C_{12}^n=\frac{1}{n}\mathbf{X_n}(1)'\mathbf{X_n}(2)$ and $C_{21}^n=\frac{1}{n}\mathbf{X_n}(2)'\mathbf{X_n}(1)$. C^n can then be expressed in a block-wise form as follows:

$$C^n = \left(\begin{array}{cc} C_{11}^n & C_{12}^n \\ C_{21}^n & C_{22}^n \end{array}\right).$$

Assuming C_{11}^n is invertible, we define the following Irrepresentable Conditions **Strong Irrepresentable Condition.** There exists a positive constant vector η

$$|C_{21}^n(C_{11}^n)^{-1} \operatorname{sign}(\beta_{(1)}^n)| \leq 1 - \eta,$$

where ${\bf 1}$ is a p-q by 1 vector of 1's and the inequality holds element-wise. Weak Irrepresentable Condition.

$$|C_{21}^n(C_{11}^n)^{-1}\operatorname{sign}(\beta_{(1)}^n)| < 1,$$

where the inequality holds element-wise.

4 D F 4 D F 4 D F 9 0 0

Ganchao Wei MSC-LASSO December 15, 2021 7/22

We can put a lower bound on the probability of choosing the true model. This is quantitatively relates to:

- The probability of Lasso selecting the correct model.
- How well Strong Irrepresentable Condition holds.

Proposition 1. Assume Strong Irrepresentable Condition holds with a constant $\eta > 0$ then

$$P(\hat{\beta}^n(\lambda_n)) =_s \beta^n) \ge P(A_n \cap B_n)$$

for

$$\begin{split} A_n &= \{|(C_{11}^n)^{-1}W^n(1)| < \sqrt{n}(|\beta_{(1)}^n| - \frac{\lambda_n}{2n}|(C_n^{11})^{-1}\mathrm{sign}(\beta_{(1)}^n)|)\}, \\ B_n &= \{|C_{21}^n(C_{11}^n)^{-1}W^n(1) - W^n(2)| \le \frac{\lambda_n}{2\sqrt{n}}\eta\}, \end{split}$$

where

$$W^n(1) = \frac{1}{\sqrt{n}} \mathbf{X_n}(1)' \mathbf{\varepsilon}_n$$
 and $\frac{1}{\sqrt{n}} W^n(2) = \mathbf{X_n}(2)' \mathbf{\varepsilon}_n$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ Q ○

Some interpretations:

- A_n : the signs of those of $\beta_{(1)}^n$ are estimated correctly.
- Given A_n , B_n further imply $\hat{\beta}_{(2)}^n$ are shrunk to zero.
- λ_n trades off the size of these 2 events: smaller leas to larger A_n but smaller $B_n \Rightarrow$ more likely to have Lasso pick more irrelevant variables.
- larger $\eta \Rightarrow$ easier for Lasso to pick up true model (larger B_n but not impact on A_n)

Model Selection Consistency for Small q and p

We first consider q, p and β^n are fixed as $n \to \infty$. As usual, the regularity conditions:

- $C^n \to C$, as $n \to \infty$, where C is p.d.
- $\frac{1}{n} \max_{1 \leq i \leq n} ((x_i^n)^T x_i^n) \to 0$, as $n \to \infty$

Then,

Theorem 1. For fixed q, p and $\beta^n = \beta$, under regularity conditions (3) and (4), Lasso is strongly sign consistent *if* Strong Irrepresentable Condition holds. That is, when Strong Irrepresentable Condition holds, for $\forall \lambda_n$ that satisfies $\lambda_n/n \to 0$ and $\lambda_n/n^{\frac{1+c}{2}} \to \infty$ with $0 \le c < 1$, we have

$$P(\hat{\beta}^n(\lambda_n) =_s \beta^n) = 1 - o(e^{-n^c}).$$

 Ganchao Wei
 MSC-LASSO
 December 15, 2021
 10 / 22

Model Selection Consistency for Small q and p

They further show that Weak Irrepresentable Condition is also necessary for the weaker general sign sign consistency.

Theorem 2. For fixed p, q and $\beta_n = \beta$, under regularity conditions (3) and (4), Lasso is general sign consistent *only if* there exists N so that Weak Irrepresentable Condition holds for n > N.

Model Selection Consistency for Large q and p

Then ,we allow the dimension of the designs C^n and model parameters β_n grow as n grows (i.e. $p=p_n$ and $q=q_n$ are allowed to grow with n). Therefore, we need to modify the regularity conditions a bit:

- $\frac{1}{n}(X_i^n)'X_i^n \leq M_1$ for $\forall i$
- Bound the eigenvalues of C_{11}^n : $\alpha' C_{11}^n \alpha \geq M_2$, for $\forall ||\alpha||_2^2 = 1$
- Sparsity assumption: $q_n = O(n^{c_1})$
- Control the smallest entry of $\beta_{(1)}^n$: $n^{\frac{1-c_2}{2}} \min_{i=1,\dots,q} |\beta_i^n| \geq M_3$

Then we can give the following result:

Theorem 3. Assume ε_i^n are i.i.d. random variables with finite 2k'th moment $E(\varepsilon_i^n)^{2k} < \infty$ for an integer k > 0. Under conditions (5), (6), (7) and (8), Strong Irrepresentable Condition implies that Lasso has strong sign consistency for $p_n = o(n^{(c_2-c_1)k})$. In particular, for $\forall \lambda_n$ that satisfies $\frac{\lambda_n}{\sqrt{n}} = o(n^{\frac{c_2-c_1}{2}})$ and $\frac{1}{p_n}(\frac{\lambda_n}{\sqrt{n}})^{2k} \to \infty$, we have

$$P(\hat{\beta}^n(\lambda_n) =_s \beta^n) \ge 1 - O(\frac{p_n n^k}{\lambda_n^{2k}}) \to 1 \text{ as } n \to \infty.$$

December 15, 2021

12 / 22

Model Selection Consistency for Large q and p

In particular, fr Gaussian noise:

Theorem 4 (Gaussian Noise). Assume ε_i^n are i.i.d. Gaussian random variables. Under conditions (5), (6), (7) and (8), if there exists $0 \le c_3 < c_2 - c_1$ for which $p_n = O(e^{n^{c_3}})$ then strong Irrepresentable Condition implies that Lasso has strong sign consistency. In particular, for $\lambda_n \propto n^{\frac{1+c_4}{2}}$ with $c_3 < c_4 < c_2 - c_1$,

$$P(\hat{\beta}^n(\lambda_n) =_s \beta^n) \ge 1 - o(e^{-n^{c_3}}) \to 1 \text{ as } n \to \infty.$$

Ganchao Wei MSC-LASSO December 15, 2021 13 / 22

Analysis and Sufficient Conditions for Strong Irrepresentable Condition

In general, the Irrepresentable Condition is non-trivial. Therefore, they give 5 sufficient conditions, such that Strong Irrepresentable Condition is guaranteed.

Corollary 1. (Constant Positive Correlation) Suppose

$$C^n = \left(\begin{array}{ccc} 1 & \dots & r_n \\ \vdots & \ddots & \vdots \\ r_n & \dots & 1 \end{array}\right)$$

and there exists c > 0 such that $0 < r_n \le \frac{1}{1+ca}$, then Strong Irrepresentable Condition holds.

The design is symmetric, so that the covariates share a constant.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへで

 Ganchao Wei
 MSC-LASSO
 December 15, 2021
 14 / 22

Analysis and Sufficient Conditions for Strong Irrepresentable Condition

Corollary 2. (Bounded Correlation) Suppose β has q nonzero entries. C^n has 1's on the diagonal and bounded correlation $|r_{ij}| \leq \frac{c}{2q-1}$ for a constant $0 \leq c < 1$ then Strong Irrepresentable Condition holds.

When the design matrix is slightly correlated, Lasso works consistently.

Corollary 3. (Power Decay Correlation) Suppose for any i, j = 1, ..., p, $C_{ij}^n = (\mathbf{p}_n)^{|i-j|}$, for $|\mathbf{p}_n| \le c < 1$, then Strong Irrepresentable Condition holds.

Corollary 4. If

- the design is orthogonal, or
- q = 1 and the predictors are normalized with correlations bounded from 1, or
- p = 2 and the predictors are normalized with correlations bounded from 1

then Strong Irrepresentable Condition holds.

4 D F 4 D F 4 D F 9 O O

Ganchao Wei MSC-LASSO December 15, 2021 15 / 22

Analysis and Sufficient Conditions for Strong Irrepresentable Condition

Corollary 5. For a block-wise design such that

$$C^n = \left(\begin{array}{ccc} B_1^n & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & B_k^n \end{array}\right)$$

with β^n written as $\beta^n = (b_1^n, ..., b_k^n)$ to correspond to different blocks, Strong Irrepresentable Condition holds if and only if there exists a common $0 < \eta \le 1$ for which Strong Irrepresentable Condition holds for all B_j^n and b_j^n , j = 1, ..., k.

Ganchao Wei MSC-LASSO December 15, 2021 16 / 22

Simulation 1: Consistency and Inconsistency with 3 Variables Generate i.i.d. random variables x_{i1}, x_{i2}, e_i and ϵ_i , with variance 1 and mean 0, for i = 1, ..., n = 1000. x_i 3 is correlated with x_{i1} and x_{i2} :

$$x_{i3} = \frac{2}{3}x_{i1} + \frac{2}{3}x_{i2} + \frac{1}{3}e_i$$

The response:

$$Y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$$

Then two settings:

- Strong Irrepresentable Condition fails: $\beta_1 = 2, \beta_2 = 3$
- Strong Irrepresentable Condition holds: $\beta_1 = -2, \beta_2 = 3$

Another view:

If we define $Y^*(\lambda) = Y - X\hat{\beta}(\lambda)$, then:

$$|X_3'Y^*| = |(\frac{2}{3}X_1 + \frac{2}{3}X_2 + \frac{1}{3}e)'Y^*|$$

$$\geq \frac{4}{3}\min(|X_1'Y^*|, |X_2'Y^*|)(\frac{\operatorname{sign}(X_1'Y^*) + \operatorname{sign}(X_2'Y^*)}{2}) - \frac{1}{3}|e'Y^*|.$$

If $\hat{\beta}_3=0\Rightarrow$ signs of X_1 's and X_2 's inner products with Y agree with the signs of $\hat{\beta}_1$ and $\hat{\beta}_2\Rightarrow$ For Lasso to be sign consistent, the signs of β_1 and β_2 has to disagree. ("agree to" Strong Irrepresentalbe Condition)

18 / 22

Ganchao Wei MSC-LASSO December 15, 2021

Figure 1: An example to illustrate Lasso's (in)consistency in Model Selection. The Lasso paths for settings (a) and (b) are plotted in the left and right panel respectively.

Ganchao Wei MSC-LASSO December 15, 2021 19 / 22

Simulation 2: Quantitative Evaluation of Impact of Strong Irrepresentable Condition on Model Selection

Take
$$n=100, p=32, q=5, \beta_1=(7,4,2,1,1)^T$$
 and choose a small $\sigma^2=0.1$. Calculate $\eta_\infty=1-||C_{21}^n(C_{11}^n)^{-1}sign(\beta_{(1)}^n)||_\infty$.

 $\eta_{\infty}>0$ means the Strong Irrepresentable Condition holds. The larger, the stronger.

 Ganchao Wei
 MSC-LASSO
 December 15, 2021
 20 / 22

Figure 2: Comparison of Percentage of Lasso Selecting the Correct Model and η_{∞} . *X*-axis: η_{∞} . *Y*-axis: Percentage of Lasso Selecting the Correct Model.

Ganchao Wei MSC-LASSO December 15, 2021 21 / 22

Simulation 3: How Strong is Irrepresentable Condition

	$p = 2^3$	$p = 2^4$	$p = 2^{5}$	$p = 2^{6}$	$p = 2^{7}$	$p = 2^{8}$
$q = \frac{1}{8}p$	100%	93.7%	83.1%	68.6%	43.0%	19.5%
$q = \frac{2}{8}p$	72.7%	44.9%	22.3%	4.3%	< 1%	0%
$q = \frac{3}{8}p$	48.3%	19.2%	3.4%	< 1%	0%	0%
$q = \frac{4}{8}p$	33.8%	8.9%	1.3%	0%	0%	0%
$q = \frac{5}{8}p$	23.8%	6.7%	< 1%	0%	0%	0%
$q = \frac{6}{8}p$	26.4%	7.1%	< 1%	0%	0%	0%
$q = \frac{7}{8}p$	36.3%	12.0%	1.8%	0%	0%	0%

Table 1: Percentage of Simulated C^n that meet Strong Irrepresentable Condition.

- When the true model is very sparse (q small), Strong Irrepresentable Condition has some probability to hold (Corollary 2)
- For the extreme case: q = 1, it holds (Corollary 4)
- For large p and q, the Condition rarely holds.