Эконометрика

Лекция 1, часть 2

Повторение теории вероятностей и математической статистики

Демидова О.А.

https://www.hse.ru/staff/demidova_olga

E-mail:demidova@hse.ru

Теория вероятностей. Случайные величины

Опр. Случайными величинами называют числовые функции, определенные на множестве элементарных событий:

$$X:\Omega \to R$$

Теория вероятностей. Дискретные случайные величины

Опр. Если случайная величина принимает конечное или счетное множество значений, то она называется дискретной.

Дискретные случайные величины удобно задавать с помощью таблицы,

в первой строке которой перечислены значения, которые принимает случайная величина, а во второй – соответствующие вероятности:

X	X ₁	•••	X _n
Ρ	P ₁	•••	P _n

Пример дискретной случайной величины

Случайная величина X — количество очков на верхней грани брошенной кости

X	1	2	3	4	5	6
P	1/6	1/6	1/6	1/6	1/6	1/6

Функция распределения случайной величины

Опр. Функцией распределения $F_X(x)$ случайной величины X называется $F_X(x) = P(X \le x)$.

Свойства функции распределения:

1)
$$\lim_{x \to -\infty} F(x) = 0$$

2)
$$\lim_{x \to \infty} F(x) = 1$$

- 3) F(x) неубывающая функция
- 4) F(x) является непрерывной справа

Непрерывная случайная величина

Опр. Случайная величина называется непрерывной, если существует кусочно непрерывная функция f(x) такая, что F'(x) = f(x).

f(x) называется функцией плотности распределения.

Свойства функции плотности

1)
$$f(x) \ge 0$$

$$2) \quad \int_{-\infty}^{\infty} f(x) dx = 1$$

3)
$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

Математическое ожидание случайной величины

Существует две основных числовых характеристики случайных величин: математическое ожидание и дисперсия.

Опр. Математическое ожидание случайной величины:

$$E\left(X\right) = \sum_{i=1}^{n} X_{i} p_{i}$$
 ,если X – дискретная случайная величина,

$$E\left(X\right) = \int\limits_{-\infty}^{\infty} x f\left(x\right) dx$$
 ,если X – непрерывная случайная величина.

Дисперсия случайной величины

Опр. Дисперсией (обычно обозначаемой σ²) случайной величины называется:

$$Var(X) = \sigma_X^2 = E(X - E(X))^2.$$

Опр. Стандартным отклонением называется корень из дисперсии.

Ковариация и коэффициент корреляции случайных величин X и Y

Опр. Ковариацией случайных величин X и Y называется

$$Cov(X,Y) = E(X - E(X))(Y - E(Y))$$

Опр. Коэффициентом корреляции случайных величин X и Y называется:

$$r_{XY} = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y}$$

Свойства коэффициента корреляции:

- 1) |r_{XY}| ≤ 1
- 2) Если r_{XY} = 0, то не существует линейной связи между X и Y
- 3) Если $|r_{XY}| = 1$, то между случайными величинами X и Y существует

точная линейная связь: Y = aX + b

Свойства математического ожидания, дисперсии и ковариации

- 1) E(C) = C
- 2) E(CX) = CE(X)
- 3) E(X + Y) = E(X) + E(Y)
- 4) Var(C) = 0
- 5) $Var(CX) = C^2Var(X)$
- 6) Var(X + Y) = Var(X) + 2 Cov(X,Y) + Var(Y)
- 7) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
- 8) Cov(CX, Y) = CCov(X, Y)
- 9) Cov(X, Y) = Cov(Y, X)
- 10) Cov(X, X) = Var(X),
- 11) Cov(X, C) = 0

где C - константа, X,Y, Z – случайные величины.

Совместное распределение двух случайных величин

Пусть X, Y - случайные величины с совместным законом распределения.

Это может быть таблица, если X, Y принимают конечное или счетное множество значений. Закон совместного распределения непрерывных случайных величин может быть задан с помощью совместной функции плотности f(x,y).

Маржинальные распределения

Если задан совместный закон распределения случайных величин X и Y, то маржинальное распределение случайной величины X имеет вид:

$$P(X = X_i) = \sum_i P(X = X_i, Y = Y_i), i = 1,...,n$$
 для дискретного случая,

f_x(x) = ∫f(x,y)dy – функция плотности для непрерывной случайной величины.

Математическое ожидание и дисперсия случайных величин X, Y определяются как обычно.

Условные распределения

Условная плотность распределения определяется следующим образом:

$$P(Y = Y_j | X = X_i) = P(X = X_i, Y = Y_j)/P(X = X_i)$$
 в дискретном случае, $f(y|x) = f(x,y)/f_x(x)$ в непрерывном случае.

Независимость случайных величин

Если

 $P(Y = Y_j | X = X_i) = P(Y = Y_j)$ для всех і в дискретном случае, или f(y|x) = f(y) в непрерывном случае, то случайные величины X,Y называются независимыми.

В случае независимости случайных величин X, Y $P(X = X_i, Y = Y_j) = P(X = X_i) P(Y = Y_j)$ в дискретном случае, $f(x,y) = f_x(x) f_y(y)$ в непрерывном случае.

Условное математическое ожидание

Условное математическое ожидание

$$E(Y|X = X_i) = \sum_j Y_j P(Y = Y_j|X = X_i)$$
 в дискретном случае,

 $E(Y|X) = \int yf(y|x)dy$ в непрерывном случае.

Нормальное распределение

Опр. Случайная величина X имеет нормальное распределение с математическим ожиданием а и дисперсией σ^2 , сокращенно это обозначается

$$X \sim N (a, \sigma^2)$$

если функция плотности этой случайной величины имеет

вид
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\}$$

Нормальное распределение

Опр. Случайная величина X имеет стандартное нормальное распределение, если

$$X \sim N(0,1)$$

Функция плотности нормально распределенной случайной величины

"Хи - квадрат" распределение

Опр. Случайная величина Y имеет "Xи – квадрат" распределение с k степенями свободы (сокращенно $Y\sim\chi^2(k)$), если $Y=X_1^2+...+X_k^2$,

где случайные величины X_i – независимые нормально распределенные случайные величины с математическим ожиданием 0 и дисперсией 1.

Функция плотности распределения "Хи – квадрат"

Таблицы для "Хи – квадрат" распределения

χ^2 (хи-квадрат) распределение: Критические значения χ^2

Уровень значимости	5%	1%	0.1%
Число степеней			
свободы			
1	3.841	6.635	10.828
2	5.991	9.210	13.816
3	7.815	11.345	16.266
4	9.488	13.277	18.467
5	1.070	15.086	20.515
6	12.592	16.812	22.458
7	4.067	18.475	24.322
8	15.507	20.090	26.124
9	16.919	21.666	27.877
10	18.307	23.209	29.588

t - распределение

Опр. Случайная величина Z имеет t – распределение с k степенями свободы (сокращенно Z ~ t(k)),

если
$$Z = \frac{X}{\sqrt{Y / k}}$$

где X ~ N(0,1), Y имеет "хи – квадрат" распределение с k степенями свободы, X и Y независимы.

t - распределение: Критические значения t

Число степеней	Двусторонний тест 10%			5%	2%	1%	0.2%	0.1%
свободы	Одност	оронний т	ест 5%	2.5%	1%	0.5%	0.1%	0.05%
		•						
1			6.314	12.706	31.821	63.657	318.31	636.62
2			2.920	4.303	6.965	9.925	22,327	31.598
3			2.353	3.182	4.541	5.841	10.214	12.924
					_			
4			2.132	2.776	3.747	4.604	7.173	8.610
5			2.015	2.571	3.365	4.032	5.893	6.869
18			1.734	2.101	2.552	2.878	3.610	3.922
				_				
19			1.729	2.093	2.539	2.861	3.579	3.883
20			1.725	2.086	2.528	2.845	3.552	3.850
				•••				
120			1.658	1.980	2.358	2.617	3.160	3.373
120								
			1.645	1.960	2.326	2.576	3.090	3.291

Функция плотности t - распределения. Двусторонний тест

F - распределение

Опр. Случайная величина Z имеет F - распределение со степенями свободы m и n (сокращенно Z ~ F(m, n)),

если
$$Z=rac{X \ / \ m}{Y \ / \ n}$$
 ,

где случайная величина X имеет распределение "хи– квадрат" с m степенями свободы, случайная величина Y имеет распределение "хи– квадрат" с n степенями свободы, X и Y независимы.

F - распределение

F -распределение: Критические значения F (5% уровень значимости)										
	v ¹ 25	30	35	40	50	60	75	100	150	200
V ²										
1	249.26	250.10	250.69	251.14	251.77	252.20	252.62	253.04	253.46	253.68
2	19.46	19.46	19.47	19.47	19.48	19.48	19.48	19.49	19.49	19.49
3	8.63	8.62	8.60	8.59	8.58	8.57	8.56	8.55	8.54	8.54
4	5.77	5.75	5.73	5.72	5.70	5.69	5.68	5.66	5.65	5.65
5	4.52	4.50	4.48	4.46	4.44	4.43	4.42	4.41	4.39	4.39
6	3.83	3.81	3.79	3.77	3.75	3.74	3.73	3.71	3.70	3.69
7	3.40	3.38	3.36	3.34	3.32	3.30	3.29	3.27	3.26	3.25
8	3.11	3.08	3.06	3.04	3.02	3.01	2.99	2.97	2.96	2.95
9	2.89	2.86	2.84	2.83	2.80	2.79	2.77	2.76	2.74	2.73
10	2.73	2.70	2.68	2.66	2.64	2.62	2.60	2.59	2.57	2.56
11	2.60	2.57	2.55	2.53	2.51	2.49	2.47	2.46	2.44	2.43
12	2.50	2.47	2.44	2.43	2.40	2.38	2.37	2.35	2.33	2.32

Математическая статистика

Совокупность всех возможных значений случайной величины называется генеральной совокупностью. Подмножество генеральной совокупности называется выборкой.

Основная задача математической статистики – оценивание характеристик генеральной совокупности по выборке.

Обо всей генеральной совокупности мы, как правило, ничего не знаем точно и можем строить лишь догадки - гипотезы. Для проверки своих гипотез мы исследуем независимую выборку из генеральной совокупности и строим на основании выборки выборочные оценки неизвестных теоретических параметров.

Различают точечные и интервальные оценки.

Точечные оценки

Предположим, что мы имеем выборку X₁,...,X_n из распределения, зависящего от параметра θ.

Опр. Точечной оценкой (статистикой) называется любая числовая функция от выборки $\hat{\theta}(X_1,...,X_n)$.

Несмещенность, эффективность, состоятельность оценок

Точечные оценки считаются «хорошими», если они обладают определенными свойствами:

- несмещенностью (в этом случае математическое ожидание оценки совпадает с оцениваемым теоретическим параметром);
- состоятельностью (это означает, что для больших выборок вероятность значимых отклонений величины оценки от значения оцениваемого теоретического параметра равна нулю);
- эффективностью (чем меньше дисперсия оценки, тем она считается эффективнее).

Несмещенные оценки для математического ожидания и дисперсии

Предположим, $X_1,...,X_n$ - выборка из генеральной совокупности, _ $E(X_i) = \mu$, $D(X_i) = \sigma^2$, i = 1,...,n.

Несмещенные оценки для математического ожидания и дисперсии (выборочное среднее и выборочная дисперсия):

$$\hat{\mu} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\hat{\sigma}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Несмещенная оценка для ковариации

Для двух выборок X₁,...,X_n и Y₁,...,Y_n несмещенная оценка для ковариации случайных величин X и Y имеет вид:

$$\hat{cov}(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

Интервальные оценки

При интервальном оценивании конструируются две функции от

выборки:
$$\hat{\theta}_1(X_1,...,X_n)$$
 u $\hat{\theta}_2(X_1,...,X_n)$

$$1 - \alpha = P(\hat{\theta}_1 \le \theta \le \hat{\theta}_2)$$

Этот интервал называется (1 – α)100% доверительным интервалом для параметра θ.

Предположим, что мы имеем выборку X₁,...,X_n из распределения, зависящего от параметра θ.

Относительно параметра θ выдвигаются две гипотезы, основная H_0 и альтернативная H_1 , например:

$$H_0$$
: $\theta = \theta_0$

$$H_1$$
: $\theta \neq \theta_0$

Статистическим тестом (или просто тестом) называется процедура, основанная на наблюдениях X₁,...,X_n, результатом которой является одно из двух возможных решений:

- 1) Не отвергать основную гипотезу H_0 ,
- Отвергнуть нулевую гипотезу H₀ в пользу альтернативной гипотезы H₁.

При этом можно совершить две ошибки:

- 1) Ошибка первого рода отвергнуть нулевую гипотезу, когда она верна,
- 2) Ошибка второго рода не отвергнуть нулевую гипотезу, когда она не верна.

Вероятность ошибки первого рода обозначается α и называется уровнем значимости теста,

Вероятность ошибки второго рода обозначается β.

1 – β называется мощностью теста.

На практике для построения тестов часто используют следующий подход. Находят такую статистику $\mathbf{t}_n(\mathbf{X}_1,...,\mathbf{X}_n)$, что если гипотеза \mathbf{H}_0 верна, то распределение случайной величины \mathbf{t}_n известно. Тогда для заданного уровня значимости α можно найти такую область \mathbf{K}_{α} , что $\mathbf{P}(\mathbf{t}_n \in \mathbf{K}_{\alpha}) = 1 - \alpha$.

Тогда тест проводится следующим образом:

- 1) На основании наблюдений X₁,...,X_n вычисляется значение статистики t_n.
- 2) Для заданного уровня значимости α находится область K_{α} .
- 3) Если t_n Є К_a, то нулевая гипотеза не отвергается.
- 4) В противном случае нулевая гипотеза отвергается в пользу альтернативной.

Статистику \mathbf{t}_{n} называют критической статистикой, а область \mathbf{K}_{α} – критической областью.

На практике критические статистики часто имеют распределение N(0,1), t, «хи – квадрат», F.

В этих случаях для критической статистики легко рассчитать p-value (p-значение) – минимальный уровень значимости, при котором основная гипотеза отвергается.