NIS2312-1 2022-2023 Fall

信息安全的数学基础 (1)

Assignment 2

2022 年 9 月 20 日

Problem 1

RSA 公钥密码方案:

(1) 密钥生成:

随机选取两个大素数 p,q, 计算 $n=pq,\varphi(n)=(p-1)(q-1)$; 任意选取一个大整数 e 满足 $1 \le e \le \varphi(n)$ 且满足 $(e,\varphi(n))=1$; 计算 d, 满足 $de \equiv 1 \pmod{\varphi(n)}$. 以 $\{e,n\}$ 为公钥, $\{d,n\}$ 为私钥.

(2) 加密运算:

对明文 m < n 进行加密: $c = E(m) \equiv m^e \pmod{n}$.

(3) 解密运算:

接收方对 c 进行解密: $m = D(c) \equiv c^d \pmod{n}$.

那么:

- (1) 试证明解密运算的正确性;
- (2) 取素数 p = 3, q = 11, 则 $n = 33, \varphi(n) = 20$. 取 e = 7. 尝试计算密文 c = 29 对应的明文.

解:

- 1. $c^d = (m^e)^d = m^{de} = m^{k\varphi(n)+1} \pmod{n}$. 当 (m,n) = 1 时,欧拉定理可得到 $c^d = (m^{\varphi(n)})^k \cdot m \equiv m \pmod{n}$; 当 $(m,n) \neq 1$ 时,由于 m < n = pq,则 $p \mid m$ 或 $q \mid m$. 不妨假设 $p \mid m$,则 m = tp,其中 0 < t < q. 此时 (m,q) = 1,因此由欧拉定 理得 $m^{k\varphi(n)} = m^{k(p-1)(q-1)} = (m^{q-1})^{k(p-1)} \equiv 1 \pmod{q}$,故假设 $m^{k\varphi(n)} = k'q + 1$,则 $m^{k\varphi(n)+1} = k'qm + m = k'qtp + m \equiv m \pmod{n}$. 综上 $c^d \equiv m \pmod{n}$ 成立. Q.E.D.
- 2. e = 7, 则由 $de \equiv 1 \pmod{\varphi(n)}$ 可得到 d = 3, 因此 $m = D(c) \equiv c^d \pmod{n} \equiv 29^3 \pmod{33} \equiv 2$.

Problem 2

Rabin 数字签名方案:

随机选取两个大素数 p,q 且 $p \equiv q \equiv 3 \pmod{4}$, 令 n = pq. 以 $\{n\}$ 为公钥, $\{p,q\}$ 为私钥. 加密运算是将明文 m 加密为 $c \equiv m^2 \pmod{n}$. 那么:

- (1) 尝试设计一种 Rabin 密码算法的解密运算;
- (2) 证明你所设计的解密运算的正确性;
- (3) 取素数 p = 7, q = 11, 则 n = 77, 对明文 m = 20 进行加密得到 $c \equiv m^2 \pmod{n} = 15$, 尝试计算密文 c = 15 对应的明文.

解:

(1) 利用数论公式直接给出密文 c 的模 p 和模 q 平方根: $m_p = c^{(p+1)/4} \pmod{p}, m_q = c^{(q+1)/4} \pmod{q}$; 用欧几里得算法给出两个整数 y_p, y_q 使得 $y_p \cdot p + y_q \cdot q = 1$; 利用中国剩余定理给出 c 模 n 的四个平方根:

$$r_1 = y_p \cdot p \cdot m_q + y_q \cdot q \cdot m_p \pmod{n}$$

$$r_2 = n - r_1$$

$$r_3 = y_p \cdot p \cdot m_q - y_q \cdot q \cdot m_p \pmod{n}$$

$$r_4 = n - r_3,$$

注意到四个解中有一个是明文, 所以可以确定该明文是拥有 (p,q) 的用户发送的;

(2) 可以得到 $m_p^2 \equiv c \pmod{p} = k_1 p + c$, 同理 $m_q^2 = k_2 q + c$, 那么

$$r_1^2 \equiv (y_p \cdot p \cdot m_q + y_q \cdot q \cdot m_p)^2$$

$$\equiv (y_p \cdot p \cdot m_q)^2 + (y_q \cdot q \cdot m_p)^2$$

$$\equiv y_p^2 \cdot p^2 \cdot m_q^2 + y_q^2 \cdot q^2 \cdot m_p^2$$

$$\equiv (y_p^2 \cdot p^2 + y_q^2 \cdot q^2)c$$

$$\equiv ((y_p \cdot p + y_q \cdot q)^2 - 2y_p \cdot p \cdot y_q \cdot q)c$$

$$\equiv c \pmod{n}$$

同理, r_2 , r_3 , r_4 可以用同样的方法证明.

(3) 计算得到 $m_p \equiv 15^2 \pmod{7} = 1, m_q = 9$; 同时得到 $y_p = -3, y_q = 2$; 最终计算得 到 $r_1 = 64, r_2 = 13, r_3 = 20, r_4 = 57$;

Problem 3

本原根: 当 a 是满足 (a,n)=1 且 $a^{\varphi(n)}\equiv 1\pmod n$ 的最小正整数时, 称 a 是 n 的本原根.

ElGamal 公钥密码方案:

(1) 密钥生成:

随机选择一个大素数 p, 且要求 p-1 有大素数因子. 再选择一个模 p 的本原元 g. 随机取整数 x 满足 $2 \le x \le p-2$ 作为私钥, 计算出 $h \equiv g^x \pmod{p}$, 则公钥为 $\{p,g,h\}$.

(2) 加密运算:

随机选取 $1 \le y \le p-2$, 然后计算 $s \equiv h^y \pmod{p}$, 计算 $c_1 \equiv g^y \pmod{p}$, 同时明文 m < p 进行加密计算得到 $c_2 \equiv m \cdot s \pmod{p}$, 发送的密文为 (c_1, c_2) .

(3) 解密运算:

接收方接收到密文 (c_1, c_2) 后, 计算 $s \equiv c_1^x \pmod{p}$, 然后计算出 $s^{-1} \pmod{p}$ 的 值, 其中 $s \cdot s^{-1} \equiv 1 \pmod{p}$, 则明文 $m \equiv c_2 \cdot s^{-1} \pmod{p}$;

那么:

- (1) 证明上述解密运算的正确性.
- (2) 当 p = 2539, g = 2, x = 51, y = 15 时, 给出明文 m = 804 对应的密文 (c_1, c_2) 和 $(c_1 = 2300, c_2 = 224)$ 对应的明文 m.

解:

- (1) 由 $c_1 \equiv g^y \pmod{p}$, $s \equiv c_1^x \pmod{p}$ 可知 $s \equiv g^{xy} \pmod{p}$, 所以 $c_2 \cdot s^{-1} \equiv \frac{m \cdot h^y}{s} \equiv \frac{m \cdot g^{xy}}{g^{xy}} \equiv m \pmod{p}$.
- (2) 当 y = 15 时, $c_1 = 2300$, $c_2 = 224$, 密文为 (2300, 224); s = 1794, 则 $s^{-1} = 593$, m = 804.