

UNIVERSIDADE FEDERAL DO PARANÁ Departamento Informática – DInf

Disciplina: CI182 – Fundamento de Programação de Computadores

Professor: Jackson Antonio do Prado Lima

Trabalho da Disciplina

Objetivo

O objetivo deste trabalho é capacitar o discente em relação da manutenção e criação de novas funcionalidades para programas Python existentes.

Definição

Com base no esqueleto de código do arquivo Cl182-projeto-template.py, faça um programa que leia um arquivo com dados amostrais (contendo uma amostra decimal por linha), calcule e imprima:

- 1. Tabela de Frequência
- 2. Histograma de Frequência Relativa

O programa conterá as seguintes opções de menu:

- 1. Inserir novas amostras (à lista já presente em memória).
- 2. Listar as amostras (carregadas em memória).
- 3. Calcular a tabela de frequência (e imprimir tanto a tabela quanto o histograma de frequência relativa).
- 4. Sair (salva as amostrar e fecha o programa).

Desse modo, cada operação por meio das opções de menu é detalhada abaixo:

- 1. Inserir novas amostras à lista já presente em memória.
 - Esta opção deve permitir inserir várias amostras, até que o caractere "x" seja digitado (em vez da amostra).
 - Por exemplo, a seguir é mostrado uma mensagem informando o usuário de como utilizar o programa e em seguida o usuário informa várias amostras. Quando o usuário informa o caractere "x" ao invés de uma amostra o programa para de solicitar novas amostras.

Insira uma lista de amostras, ou digite x para finalizar a inserção.

- >21
- >47
- >70
- >92
- >85
- >80
- >90
- >73.5
- >75
- >x
- 2. Listar as amostras carregadas em memória.
 - Nesse caso, será mostrado todas as amostras, tanto as que estavam em arquivo quanto as que o usuário digitou.
 - Por exemplo, no exemplo anterior o usuário informou algumas amostras e no arquivo não havia nenhuma amostra, então, o programa deverá mostrar o seguinte:

UNIVERSIDADE FEDERAL DO PARANÁ

Departamento Informática - DInf

Disciplina: CI182 - Fundamento de Programação de Computadores

Professor: Jackson Antonio do Prado Lima

Lista de amostras:
Amostra [1]: 21.0
Amostra [2]: 47.0
Amostra [3]: 70.0
Amostra [4]: 92.0
Amostra [5]: 85.0
Amostra [6]: 80.0
Amostra [7]: 90.0
Amostra [8]: 73.5
Amostra [9]: 75.0

- 3. Calcular a tabela de frequência e imprimir tanto a tabela quanto o histograma de frequência relativa.
- Exemplo:

Tabela de Frequência:

Classe		[Ini,Fim)	- 1	Frequênc	ia	Acumulada	Relativa	a(%)		Densidade
1		21.00-35.20		1		1	11.	.1		0.01
2		35.20-49.40		1		2	11.	.1		0.01
3		49.40-63.60		0		2	0.0	3	- 1	0.00
4		63.60-77.80		3		5	33	.3		0.02
5	1	77.80-92.00	1	4	- 1	9	44	. 4	- 1	0.03

Histograma de Frequência Relativa:

- [1] ############
- [2] ##########
- [3]
- - Para mais informações sobre a tabela de frequência e o histograma, verificar a Seção Estatística – Histograma.

Para o que não estiver especificado acima, escolha uma estratégia de atuação e descreva com comentários no código e no relatório à solução que foi considerada, bem como qual o problema que exigiu essa solução.

Dicas:

- 1. No arquivo conterá apenas uma amostra (tipo decimal) por linha.
- Realizar a leitura as amostras presentes no arquivo ao iniciar o programa (antes de entrar nas opções de menu) e salvar antes de sair do programa (opção de menu Sair).

Forma de Entrega

O trabalho pode ser feito em grupos de até três alunos. A equipe deverá criar um relatório e entregar em formato PDF. Nesse relatório deverá contar com um título, nome dos alunos com suas respectivas matrículas, um resumo, mostrar cada parte implementada (por exemplo, a função e o que ela faz linha por linha) e o que motivou a utilizar tal estratégia, dificuldades encontradas durante o trabalho, sugestões de trabalhos para serem aplicados na disciplina.

UNIVERSIDADE FEDERAL DO PARANÁ Departamento Informática – DI nf

Disciplina: CI182 – Fundamento de Programação de Computadores

Professor: Jackson Antonio do Prado Lima

Devido a disciplina focar em linguagem de programação Python, o trabalho deverá ser desenvolvido em Python. Recomenda-se o uso de Python 3.

Avaliação

Serão avaliados os seguintes pontos:

- Entrega do código-fonte.
- O trabalho deve ser feito de forma que possa ser compilado e executado nos computadores.
- Entrega do relatório.
- O trabalho deve ser entregue no formato que foi especificado na Seção Forma de Entrega.
- Para cada defeito encontrado será descontado ponto.
- Corretude, o algoritmo realiza a funcionalidade exigida corretamente.
- Clareza do código e comentários.

Cronograma

Data da entrega do arquivo comprimido (zip) contendo o relatório e os arquivos fontes via e-mail: 29/06/2018 (até às 23:59) e via Google Classroom da turma.

E-mail para entrega: japlima@inf.ufpr.br

O trabalho deve ser enviado individualmente, ou seja, cada integrante da equipe deverá realizar o envio. Desse modo, é necessário deixar especificado no relatório e nos arquivos fontes quais os nomes e GRR de cada integrante.

Estatística - Histograma

As informações a seguir foram extraídas do site PortalAction.

Distribuição de frequência em intervalos de classes: Dados quantitativos contínuos

Para dados quantitativos contínuos, geralmente resultantes de medições de características da qualidade de peças ou produtos, dividimos a faixa de variação dos dados em intervalos de classes. O menor valor da classe é denominado limite inferior (l_i) e o maior valor da classe é denominado limite superior (L_i).

O intervalo ou classe pode ser representado das seguintes maneiras:

- 1. (l_i)⊢(L_i), onde o limite inferior da classe é incluído na contagem da frequência absoluta, mas o superior não;
- 2. (l_i)⊣(L_i) , onde o limite superior da classe é incluído na contagem, mas o inferior não.

Podemos escolher qualquer uma destas opções, mas é importante que deixemos claro no texto ou na tabela qual delas está sendo usada. Embora não seja necessário, os intervalos são frequentemente construídos de modo que todos tenham larguras iguais, o que facilita as comparações entre as classes.

UNIVERSIDADE FEDERAL DO PARANÁ Departamento Informática – DI nf

Disciplina: CI182 - Fundamento de Programação de Computadores

Professor: Jackson Antonio do Prado Lima

Na tabela de distribuição de frequência, acrescentamos uma coluna com os pontos médios de cada intervalo de classe, denotada por **x**_i. Esta é definida como a média dos

limites da classe $\mathcal{X}_{i} = \frac{l_i + L_i}{2}$. Estes valores são utilizados na construção de gráficos.

Algumas indicações na construção de distribuição de frequências são:

- Na medida do possível, as classes deverão ter amplitudes iguais.
- Escolher os limites dos intervalos entre duas possíveis observações.
- O número de intervalos não deve ultrapassar 20.
- Escolher limites que facilitem o agrupamento.
- Marcar os pontos médios dos intervalos.
- Ao construir o histograma, cada retângulo deverá ter área proporcional à frequência relativa (ou à frequência absoluta, o que dá no mesmo) correspondente.

Um ponto importante na construção da distribuição de frequência é o número de intervalos de classes. Uma forma de se obter o número de intervalos de classes é por meio da regra de Sturges.

$$k = 1 + 3,3log_{10}(n)$$

onde, *n* é o tamanho do conjuntos de dados.

Histograma

Histograma é uma representação gráfica (um gráfico de barras verticais ou barras horizontais) da distribuição de frequências de um conjunto de dados quantitativos contínuos. O histograma pode ser um gráfico por valores absolutos ou frequência relativa ou densidade.

No caso de densidade, a frequência relativa do intervalo i, (fri), é representada pela área de um retângulo que é colocado acima do ponto médio da classe i. Consequentemente, a área total do histograma (igual a soma das áreas de todos os retângulos) será igual a 1. Assim, ao construir o histograma, cada retângulo deverá ter área proporcional à frequência relativa (ou à frequência absoluta, o que é indiferente) correspondente.

No caso em que os intervalos são de tamanhos (amplitudes) iguais, as alturas dos retângulos serão iguais às frequências relativas (ou iguais às frequências absolutas) dos intervalos correspondentes.

Exemplo

Numa fábrica de motores elétricos, o gerente de produção precisa avaliar o problema de ruído excessivo do motor. Uma das possíveis causas está associada com variações no diâmetro do eixo. Assim, o gerente de produção mediu o diâmetro do eixo de 100 motores e o resultado está apresentado na Tabela a seguir. Os valores estão em milésimos de milímetros.

UNIVERSIDADE FEDERAL DO PARANÁ Departamento Informática – DInf

Disciplina: CI182 – Fundamento de Programação de Computadores

Professor: Jackson Antonio do Prado Lima

	Diâmetro do Eixo de 100 motores										
4,8	4,2	5,1	5,2	4,8	4,7	4,9	4,5	4,9	4,5		
4,9	5,1	4,8	4,9	4,8	5	5,3	4,9	5,5	5,2		
5,1	4,6	4,9	4,8	5,1	4,6	4,3	4,9	4,7	5,2		
4,8	4,4	5,6	5	5	5	4,8	5,2	4,5	5,1		
5,1	4,9	4,8	4,8	5	4,8	5,1	5,4	4,2	5,1		
4,9	4,6	5,4	4,9	4,3	4,6	4,7	4,7	5,3	4,4		
4,7	4,8	5,2	4,5	5,1	4,6	5,8	4,9	5,2	4,8		
4,9	4,9	4,4	4,7	4,8	5,1	5,4	5	4,4	5,1		
4,9	4,9	5,1	5,2	4,7	4,8	4,6	5,2	5,5	5,2		
4,2	4,9	4,9	4,8	4,2	5,2	4,7	4,8	4,6	5,2		

Considerando os dados do acima descritos, monte a distribuição de frequências e construa o histograma correspondente.

Como temos dados quantitativos contínuos, para construir a distribuição de frequências, vamos separar os dados em classes. Ao aplicarmos a regra de Sturges obtemos

$$k = 1 + 3,3log_{10}(100)$$

 $k = 7,6$

Assim, dividimos os dados em 8 classes de tamanhos iguais. A distribuição de frequências então é a seguinte:

Tabela de Frequências										
Classe	Frequência	Freq. Rel.	Freq. Perc.	Freq. Acum.	Densidades	Ponto Médio				
[4,2;4,4)	6	0,06	6	6	0,3	4,3				
[4,4;4,6)	8	0,08	8	14	0,4	4,5				
[4,6;4,8)	15	0,15	15	29	0,75	4,7				
[4,8;5)	33	0,33	33	62	1,65	4,9				
[5;5,2)	18	0,18	18	80	0,9	5,1				
[5,2;5,4)	13	0,13	13	93	0,65	5,3				
[5,4;5,6)	5	0,05	5	98	0,25	5,5				
[5,6;5,8)	2	0,02	2	100	0,1	5,7				

A seguir, apresentamos o histograma obtido com o software Action Stat.

UNIVERSIDADE FEDERAL DO PARANÁ Departamento Informática – DInf

Disciplina: CI182 – Fundamento de Programação de Computadores

Professor: Jackson Antonio do Prado Lima

Histograma

