Locally Euclidean Geometries

H.M. Khudaverdian

Following the book of Schafarevitch—Nikulin we will classify here locally Euclidean 2-dimensional Riemannian manifold. The answer is:

- 0) 1) Cylindre,
- 2) Twisted cylindre,
- 2) Lobachevsky plane of tori
- 3)

1 Locally Eucldean Geometry

Let (M, G) be a Riemannian manifold.

We say that it is locally Euclidean if in a vicinity of every point there are local coordinates u_i such that

$$G(u,v) = du_1^2 + \dots + du_n^2,$$

where n is dimension of manifold. We mostly consider here the case n=2.

The condition above means that for every point $\mathcal{D} \in M$ there exists small neighborhoud $O_{\varepsilon}(\mathcal{D})$ such that $O_{\varepsilon}(D)$ is isometric to the interior of the disc $O_{\varepsilon}(D)$, where D is an arbitrary point of Euclidean plane \mathbf{E}^2 .

The radius ε of the neighborhood depends on a point. Suppose that the following additional condition is fixed: there is r > 0 such that for every point $\mathcal{D} \in M$ the neighborhoud $O_r(D)$ is isometric to the interior of the disc $O_{\varepsilon}(D)$, where D is an arbitrary point of Euclidean plane \mathbf{E}^2 . This means that for every point \mathcal{D} there exist local coordinates $(u_{\mathcal{D}}, v_{\mathcal{D}})^1$ such that

$$G(u,v) = du_{\mathcal{D}}^2 + dv_{\mathcal{D}}^2, \quad u_{\mathcal{D}}(\mathcal{D}) = v_{\mathcal{D}}(\mathcal{D}) = 0, \qquad (1.1)$$

 $^{^{1}}$ now and later we will consider only 2-dimensional case. Sure these and many considerations can be easily generalised for an arbitrary n.

and the following additional condition is obeyed:

local coordinates
$$u_{\mathcal{D}}, v_{\mathcal{D}}$$
 run in the disc $0 \le u_{\mathcal{D}}^2 + v_{\mathcal{D}}^2 < r$, (1.2)

where radius r does not depend on a choice of a point D.

Riemannian manifold is locally Euclidean condition (1.1) is obeyed. If both conditions (1.1) and (1.2) are obeyed, then Riemannian manifold is uniforly locally Euclidean

In the case if M is compact manifold, then evidenly locally Euclidean Riemannian manifold is uniformly locally Euclidean. In general this is not true. E.g. the sheet -1 < x < 1 of \mathbf{E}^2 is evidently locally Euclidean in the sense but it is not uniformly locally Euclidean since the radius r becomes smaller and smaller when $x \to 1$).

We will call coordinates $(u_{\mathcal{D}}, v_{\mathcal{D}})$ Euclidean coordinates on M adjusted to the point \mathcal{D} .

2 Equivalence on E^2 and discontinuous action of group

Let r be an equivalence relation of points on \mathbf{E}^2 , and there exists $\delta > 0$ such that for every two r-equivalen distinct points A, B the distance between these points is greater than δ : $d(A, B) > \delta$ if ArB but $A \neq B$.

We say that an isometry q is an r- isometry, if it preserves r-equivalence:

$$ARB \Leftrightarrow A^g RB^g$$
.

Lemma 1. Let $\Gamma = \Gamma_r$ be a set of isometries of \mathbf{E}^2 such that

$$ArB \Leftrightarrow there \ exist \ g \in \Gamma \ such \ that \ B = A^g$$
,

WLOG choose an arbitrary point $A \in \mathbf{E}^2$, since ArA then there exists $F \in \Gamma$ such that F(A) = A. Hence F is identity. This follows from the lemma:

Lemma 2. If F is an isometry with a fixed point such that sends any point to the equivalent point, then F = identity.

Let F be an arbitrary isometry such that

for an arbitrary point D DrF(D).

One can prove that $F \in \Gamma_r$. Indeed choose an arbitrary point D. Since DrF(D), thus there exists an isometry $g \in \Gamma$ such that F(D) = g(D). Due to the lemma $g^{-1} \circ Fi = identity$, i.e. F = g.

Thus we see that the set Γ is a group.

It remains to prove the lemma. Let A be a fixed point of the isometry F, and BrF(B) for every point B. Consider the domain $O_{\frac{\delta}{2}}(A)$. For an arbitrary point X in this domain F(X) belongs to the domain too, since F is isometry, and F(A) = A. Let Y = F(X). Then YrX, but the distance between these points is less than δ . Hence F(X) = X. We proved that F is identity in the interior of the disc. Show that this is true for an arbotrary point X. Consider on the ray AX an arbitrary point B which is insider the disc $O_{\frac{\delta}{2}}(A)$. Isometry sends line to the line, and rays to the rays, and points A and B remain intact under the action of isometry F. Hence F(X) = X.

2.1 Properly discontinuous and uniformly discontinuous action

We say that group Γ acts on manifold M properly discontinuous if for arbitrary compact $K \subset M$, if the equation

$$g: K \cap g(K) \neq$$

has only finite number of solutions.

In the case if M is provided with metric, we say that group Γ acts on manifold M uniformly discontinuous if there exists δ such that $\delta > 0$ and for every point $A \in M$,

$$d(A, g(A)) \le \delta \Rightarrow g = identity$$

Theorem 1. For manifold with metric these two definitions are equivalent. Metric is iniformly discontinuous if and only if it is properly discontinuous

Proof. Let group Γ acts on manifold M with metric properly discontinuous. Show that its action is iniformly discontinuous. Pick an arbitrary point $A \in M$

Lemma 3. Let Γ be uniformly discontinuous subgroup of isometries, then an isometry $F \in \Gamma$ is identity if it has at least one fixed point

Lemma 4. (Chasles' lemma) Let F be an isometry of \mathbf{E}^2 . Then the following dichotomy is obeyed:

F preserves orientation, and F is rotation, i.e. there exists a point O such that for an arbitrary point B

$$F(B) = A + Rot_{\omega}(AB)$$

or

F changes the orientation, and there exist a line \mathbf{l} , and a vector \mathbf{N} directed along this line such that for arbitrary point B

$$F(B) = \text{Reflect}_{\mathbf{l}}(B) + \mathbf{N}$$

These two lemmas imply the Theorem:

Theorem 2.

We say that the subgroup Γ of isometries is *properly discontinuous* if for an arbitrary compact set K the equation

$$F: F \in \Gamma, K \cup F(K) \neq$$

there exist only finite number of isometries in Γ such that

Lemma 5. If F belongs to

These definitions are equivalent. Indeed let Γ be properly discontinuous. lee d $g \in \Gamma$ such that g(F(D)) = D, i.e. $F = g^{-1}$. Due to the lemma $g \circ F = \text{identity}$, i.e.

it follows from this lemma that the set Γ contains all isometries which send isometries which preserve relation r Indeed let H be an arbitrary r-isometry,

One can see that Γ_r is subroup of isometries.

We define the action of group $\Gamma = \Gamma_R$ on \mathbf{E}^2 in the following way.

Let Γ be a set of isometries of \mathbf{E}^2 such that for arbitrary two points $A, B \in \mathbf{E}^2$

$$ARB \Leftrightarrow \text{there exist } g \in \Gamma \text{ such that } B = A^g$$
,

i.e.

2.2 Uniformly discontinuous groups on plane

Let Γ be properly discontinuous group acting on \mathbf{E}^2 .

First suppose that Γ does not possess transformations changing orientation.

If Γ possesses at least one non-identity element, hence this element is a translation $T = T_{\mathbf{a}}$ since rotations (presence of fixed points) and Chasles' transformation (it changes orinetation) are forbidden. Choose a translation such that vector \mathbf{a} has minimal length. It can be maximum two elements of minimal length². Thus we come to groups

• **Z** group of translation $\{T_{ma}\}$:

$$\Gamma \ni A : A(\mathbf{x}) = \mathbf{x} + m\mathbf{a}, m = 0, 1, 2, 3, \dots$$

• $\mathbf{Z} \times \mathbf{Z}$ group of translation $\{T_{m\mathbf{a}+n\mathbf{b}}\}$:

$$\Gamma \ni A : A(\mathbf{x}) = \mathbf{x} + m\mathbf{a} + n\mathbf{b}, \ m, n = 0, 1, 2, 3, \dots$$

Now suppose that the group Γ possesses at least one element which does not preserve orientation, i.e. Chales' e lement

$$\Gamma \ni S \colon S(\mathbf{x}) = \mathbf{x}_{||} + \mathbf{x}_{\perp} + \mathbf{c} \tag{2.1}$$

where vector $\mathbf{c} = \mathbf{c}_{||}$. We have $S^2 = T_{2\mathbf{c}}$, i.e. our grop possess subgroup $\{T_{n\mathbf{a}}\}$ or subgroup $\{T_{m\mathbf{a}+m\mathbf{b}}\}$, where \mathbf{a}, \mathbf{b} are linearly independent.

I-case. Group Γ is generated by transformations S in (2.1) and translation $T_{\mathbf{a}}$, i.e.

$$S^2 = T_{2\mathbf{c}} = T_{m\mathbf{a}}, m = 0, 1, 2, 3, 4, \dots$$

If m is even, m=2k, then $ST_{-k\mathbf{a}}$ is reflection, and it possess fixed points, Hence m is odd, and we see that $\mathbf{c} = \frac{2k+1}{2}\mathbf{a}$. One can consider $\mathbf{c} = \frac{\mathbf{a}}{2}$ changing $S \mapsto ST_{k\mathbf{a}}$.

If we choose the basis \mathbf{e}, \mathbf{f} such that \mathbf{e} is parallel to the axis of Chasles' reflection, and \mathbf{f} is orthogonal to the axis of Chasles' reflection, then we come to

 $^{^2}$ if there are three vectors in general position, then equivalent points will be very close to each other

Thus we see that group G is equal to

$$\Gamma \ni A \colon A(x\mathbf{e} + y\mathbf{f}) = \left(x + \frac{m}{2}\right)\mathbf{e} + (-1)^m y\mathbf{f}$$

Now we consider the second case when group Γ possesses subgroup $\{T_{m\mathbf{a}+n\mathbf{b}}\}$. Show that in this case \mathbf{a} and \mathbf{b} have to be orthogonal to each other. In the same way like above we conclude that Chasles' element is reflection with respect to axis directed along \mathbf{a} and translation on the vector $\frac{\mathbf{a}}{2}$.

Now notice that

$$S \circ T_{m\mathbf{b}} = T_{m\mathbf{b}'} \circ S$$
, where $\mathbf{b}' = \mathbf{b}_{||} - \mathbf{b}_{\perp}$

and

$$S \circ T_{m\mathbf{b}} \circ S = T_{m\mathbf{b}'} \circ T_{\mathbf{a}}$$

This implies that vector **b** has to be parallel to **a** or orthogonal (not to priduce too dense lattice of equivalent points.)

3 Main statement

Theorem 3. Let (M,G) be locally Euclidean 2-dimensional manifold in stronger sense, i.e. both conditions (1.1) and (1.2) are obeyed. Then

We prove this Theorem in three steps.

I-st step. We will construct surjection $\pi \colon \mathbf{E}^2 \to M$ which is isometry for small distances (less than r)

II-step On the base of this surjection we will consider the subroup of isometries which preserve π

$$\Gamma_{\pi} = \{F \colon F \text{ is isometry and } \pi \circ F = \pi\}$$

and will prove that this group is uniformly discontinuous.

Proof. Then we will prove that the Riemannian manifold M is isometric to the factor of \mathbf{E}^2 with respect to the gropu Γ_{π} , i.e. M is plane \mathbf{E}^2 or cylindre, or twisted cylinder, or torus, or Klein bottle.

Choose two arbitrary points D on \mathbf{E}^2 and \mathcal{D} on M and consider the covering $\pi \colon \mathbf{E}^2 \to M$ such that $\pi(D) = \mathcal{D}$ and for every point $X \in \mathbf{E}^2$ $\pi(X)$ is defined in the following way

Consider the vector $\mathbf{X} = OX$.

Choose points $D = X_0, X_1, X_2, dots X_n = X$ on the segment DX such that the distance between these points is less than r, recurrently define $F(X_i)$ for i = 0, 1, 2, ..., n.

First define $\pi(X_1)$ as a point on manifold M with coordinates $u_{\mathcal{D}} = (X_1)_1, v_{\mathcal{D}} = (X_1)_2$ where $(u_{\mathcal{D}}, v_{\mathcal{D}})$ are Euclidean coordinates adjusted to the point $\pi(D) = \pi(X_0) = \mathcal{D}$ (see section), and $((X_1)_1, (X_1)_2)$ are components of the vector DX_1 , then recurrently: if we already have defined $\pi(X_i)$ for point X_i (i = 1, 2, ..., n - 1) we define $\pi(X_{i+1})$ as a point on manifold M with coordinates

$$u_{X_i} = (X_{i+1})_1 - (X_i)_1, v_{X_i} = (X_{i+1})_2 - (X_i)_2,$$

where (u_{X_i}, v_{X_i}) are Euclidean coordinates adjusted to the point X_i and $((X_{i+1})_1 - (X_i)_1, (X_{i+1})_2 - (X_i)_2)$ are components of the vector $X_i X_{i+1}$.

One can see that function π is well defined on all the plane, its value does not depend on a choice of partition $O = X_0, X_1, X_2, dots X_n = X$.

One can show that the map $\pi \colon \mathbf{E}^2 \to M$ preserves small distances:

$$d(\varphi(A), \varphi(B)) = d(A, B), \text{ if } d(A, B) < r$$

(here as always r is parameter which defines locality of geometry on M (see (1.2)))

This is evident for points which are at the distance < r from initial pointi D, and one can prove this recurrently for arbitrary close point A, B considering partitions $D = A_0, A_1, \ldots, A_n = A$ and $D = B_0, B_1, \ldots, B_n = B$ and 'small' trapecies $A_i B_i B_{i+1} A_{i+1}$.

(see details in Shaf) One can see that the map π is surjection.

Prove it. Let \mathcal{B} be an arbitrary point on M. Consider the set of points $\mathcal{B}_0\mathcal{B}_1\mathcal{B}_2\ldots\mathcal{B}_n$ such that $\mathcal{B}_n=\mathcal{B}$ and the distance between points is less tham r. Thus we will see recurrently that all these points are covered by π .

Choose an arbitrary point $\mathcal{B} \in M$.

Now we will consider a group Γ and will show that

$$M = \mathbf{E}^2 \backslash \Gamma$$

We define this group as a group of isometries which preserve the covering map π , i.e. Consider an arbitrary isometry F of \mathbf{E}^2 . We say that isometry F belongs to group Γ for arbitrary point $D \in \mathbf{E}^2$

$$\pi\left(F\left(D\right)\right) = \pi\left(D\right)\,,$$

i.e.

$$\Gamma = \{\text{isometries } F \text{ of } \mathbf{E}^2 \text{ such that } \pi \circ F \equiv \pi \}$$

One can see that this is a group. We still now nothing about the group Γ , except that it possesses identity element. However we can easy to prove that this group is uniformly discontinuous.

Let $F \in \Gamma$ be an arbitry non-identical element in Γ^3 , i.e there exists $B \in \mathbf{E}^2$ such that $B' = F(B) \neq B$.

Suppose that d(B, B') < r. Consider on manifold M points $\mathcal{B} = \pi(B)$ and $\mathcal{B}' = \pi(B')$. Then due to the properties of surjection π , $d(\mathcal{B}, \mathcal{B}') < r$ also, i.e. the point \mathcal{B}' belongs to the chart $(u_{\mathcal{B}}, v_{\mathcal{B}})$. π is local bijection, hence $\mathcal{B} \neq \mathcal{B}'$. On the other hand $\mathcal{B} = \mathcal{B}'$ since $F \in \Gamma$. Contradiction.

Theorem 4. The surjection π is a covering. The group Γ acts freely on the preimages $\pi^{-1}(\mathcal{D})$.

Consider preimages of the point $\mathcal{B} \in M$. Let $\{B_i\}$ be a set of the points such that

for every
$$B_i \pi(B_i) = \mathcal{B}$$

This set possesses at least one point.

Exercise

Consider

³notice that we still know nothing does this element exist or no.