填空 10% (每小题 2分)

1、设 $< A, \lor, \land, ->$ 是由有限布尔格 $< A, \le >$ 诱导的代数系统,S是布尔格 $< A, \le >$,中

2、集合 $S={\alpha, \beta, \gamma, \delta}$ 上的二元运算*为

*	α	β	γ	δ
α	δ	α	β	γ
β	α	β	γ	δ
γ	β	γ	γ	γ
δ	α	δ	γ	δ

那么,代数系统 $\langle S, * \rangle$ 中的幺元是 , α 的逆元是	c
--	---

3、设 I 是整数集合, Z₃ 是由模 3 的同余类组成的同余类集, 在 Z₃ 上定义+3 如下:

[i]	$+_{3}[j] = [(i+j) \mod 3]$,则 $+_{3}$ 的运算表为		;	
	<z+,+3>是否构成群</z+,+3>	o		
4、	设 G 是 n 阶完全图,则 G 的边数 m=	o		
5、	如果有一台计算机,它有一条加法指令,	可计算四数的和。现有 28 个数需要计	算和,它	_
	至少要执行	文个加法指令。		

二、 选择 20% (每小题 2分)

1、在有理数集 Q 上定义的二元运算*, $\forall x, y \in Q$ 有 x * y = x + y - xy,

则 Q 中满足()。

- A、 所有元素都有逆元;
- B、只有唯一逆元;
- C、 $\forall x \in Q, x \neq 1$ 时有逆元 x^{-1} ; D、所有元素都无逆元。

2、设 S={0, 1}, *为普通乘法,则<S,*>是()。

A、 半群, 但不是独异点; B、只是独异点, 但不是群;

C、群;

D、环, 但不是群。

3、图 0 给出一个格 L,则 L 是 ()。

A、分配格; B、有补格; C、布尔格; D、 A,B,C 都不对。

3、有向图 D=<V , E> v_2 ,则 v_1 到 v_4 长度为 2 的通路有()条。

A, 0; B, 1; C, 2; D, 3 .

4、在 Peterson 图 中,至少填加()条边才能构成 Euler 图。

A, 1; B, 2; C, 4; D, 5 .

三、 判断 10% (每小题 2分)

1、在代数系统<A,*>中如果元素 $a \in A$ 的左逆元 a_e^{-1} 存在,

则它一定唯一且 $a^{-1} = a_e^{-1}$ 。()

2、设<S,*>是群<G,*>的子群,则<G,*>中幺元 e 是<S,*>中幺元。(

3、设 $A = \{x \mid x = a + b\sqrt{3}, a, b$ 均为有理数 $\}$, +, • 为普通加法和乘法,则代数系统<A,

+,•>是域。()

4、设 G=<V,E>是平面图, |V|=v, |E|=e, r 为其面数,则 v-e + r=2。()

5、如果一个有向图 D 是欧拉图,则 D 是强连通图。()

四、证明 46%

- 1、 设<A,*>,是半群,e 是左幺元且 $\forall x \in A$, $\exists \hat{x} \in A$, 使得 $\hat{x} * x = e$,则<A,*>是群。(10分)
- 2、 循环群的任何非平凡子群也是循环群。(10分)
- 3、 设 aH 和 bH 是子群 H 在群 G 中的两个左陪集,证明:要末 $aH \cap bH = \Phi$,要末 aH = bH。(8 分)
- 4、 设<A,+, •>, 是一个含幺环, |A|>3, 且对任意 ∀a ∈ A, 都有 a·a = a, 则<A,+,•>
 不可能是整环(这时称<A,+,•>是布尔环)。(8分)
- 5、 若图 G 不连通,则 G 的补图 \overline{G} 是连通的。(10 分)

五、布尔表达式 8%

设 $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (x_2 \land x_3)$ 是布尔代数 $< \{0,1\}, \lor, \land, \ >$ 上的一个布尔表达式,试写出其的析取范式和合取范式。

六、图的应用 16%

- 1、构造一个结点 v 与边数 e 奇偶性相反的欧拉图。(6分)
- 2、假设英文字母, a, e, h, n, p, r, w, y 出现的频率分别为 12%, 8%, 15%, 7%, 6%, 10%, 5%, 10%, 求传输它们的最佳前缀码, 并给出 happy new year 的编码信息。(10 分)

一、 填空 10% (每小题 2 分)

 $1, <\mathcal{P}(S), \ \cup, \cap, {\sim}\,>; \ 2, \ \beta \ , \ \gamma \ ; \ 3,$

 $4, \frac{1}{2}n(n-1); 5, 9$

+3	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

是;

二、选择 10% (每小题 2分)

题目	1	2	3	4	5
答案	С	В	D	В	D

三、 判断 10% (每小题 2 分)

题目	1	2	3	4	5
答案	N	Y	Y	N	Y

四、证明 46%

1、(10分)证明:

事实上: $\Theta a*b = a*c$:: $\exists \hat{a} \ \text{使} \hat{a}*(a*b) = \hat{a}*(a*c)$ $(\hat{a}*a)*b = (\hat{a}*a)*c$,: e*b = e*c 即:b = c

(2) e 是<A, *>之幺元。

事实上: 由于 e 是左幺元, 现证 e 是右幺元。

$$\forall x \in A, x^*e \in A, \exists \hat{x} \ \hat{y}(x^*e) = (\hat{x}^*x)^*e = e^*e = e = \hat{x}^*x$$

由(1)即 $x^*e = x$, ∴ e 为右幺元

(3) $\forall x \in A$, $⋈ x^{-1} \in A$

事实上: $\forall x \in A \ (x^*\hat{x})^*x = x^*(\hat{x}^*x) = x^*e = x = e^*x$ $x^*\hat{x} = e$ 故有 $\hat{x}^*x = x^*\hat{x} = e$ ∴ x有逆元 \hat{x}

由(2),(3)知: <A,*>为群。

2、(10分)证明:

设<G,*>是循环群,G=(a),设<S,*>是<G,*>的子群。且 $S \neq \{e\}, S \neq G$,则存在最小正整数 m,使

得: $a^m \in S$, 对任意 $a^l \in S$, 必有 l = tm + r, $0 \le r < m$, t > 0,

故:
$$a^r = a^{l-tm} = a^l * a^{-tm} = a^l * (a^m)^{-t} \in S$$
 即: $a^l = a^r * (a^m)^t \in S$

所以 $a^r \in S$ 但 m 是使 $a^m \in S$ 的最小正整数,且 $0 \le r < m$,所以 r=0 即: $a^l = (a^m)^t$

这说明 S 中任意元素是 a^m 的乘幂。 所以< G, *> 是以 a^m 为生成元的循环群。

3、(8分)证明:

对集合aH 和bH, 只有下列两种情况:

(1) $aH \cap bH \neq \Phi$; (2) $aH \cap bH = \Phi$

对于 $aH \cap bH \neq \Phi$,则至少存在 $h_1,h_2 \in H$,使得 $ah_1 = bh_2$,即有 $a = bh_2h_1^{-1}$,这时任意 $ah \in aH$,有 $ah = bh_2h_1^{-1}h \in bH$,故有 $aH \subseteq bH$

同理可证: $bH \subseteq aH$ 所以 aH = bH

4、(8分)证明:

反证法: 如果<A,+,・>,是整环,且有三个以上元素,则存在 $a \in A, a \neq \theta, a \neq 1$ 且 $a \cdot a = a$ 即有: $a \neq \theta, a - 1 \neq \theta$ 但 $a \cdot (a - 1) = a \cdot a - a = a - a = \theta$ 这与整环中无零因子条件矛盾。因此<A,+,・>不可能是整环。

5、(10分)证明:

因为 G=< V,E>不连通,设其连通分支是 $G(V_1)$, Λ , $G(V_k)$ ($k \ge 2$), $\forall u, v \in V$,则有两种情况:

- (1) \mathbf{u} , \mathbf{v} , 分别属于两个不同结点子集 \mathbf{V}_i , \mathbf{V}_j , 由于 $\mathbf{G}(\mathbf{V}_i)$, $\mathbf{G}(\mathbf{V}_j)$ 是两连通分支,故(\mathbf{u} , \mathbf{v})在不 \mathbf{G} 中,故 \mathbf{u} , \mathbf{v} 在 \mathbf{G} 中连通。
- (2) \mathbf{u} , \mathbf{v} , 属于同一个结点子集 \mathbf{v} , 可在另一结点子集 \mathbf{v} , 中任取一点 \mathbf{w} , 故(\mathbf{u} , \mathbf{w}), (\mathbf{w} , \mathbf{v})均 在 $\overline{\mathbf{G}}$ 中,故邻接边(\mathbf{u} , \mathbf{w}) (\mathbf{w} , \mathbf{v}) 组成的路连接结点 \mathbf{u} 和 \mathbf{v} ,即 \mathbf{u} , \mathbf{v} 在 $\overline{\mathbf{G}}$ 中也是连通的。

五、布尔表达式 8%

函数表为:

x_1	x_2	<i>x</i> ₃	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0

0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

析取范式: $E(x_1, x_2, x_3) = (\bar{x}_1 \wedge \bar{x}_2 \wedge x_3) \vee (\bar{x}_1 \wedge x_2 \wedge x_3) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge x_3)$

 $\vee (x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$

合取范式: $E(x_1, x_2, x_3) = (x_1 \lor x \lor_2 x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

六、 树的应用 16%

1、(6分)解:

结点数5,边数6,每个 结点度数均为偶数,所 以它是欧拉图。

结点数6,边数7,每个 结点度数均为偶数,所 以它是欧拉图。

2、(10分)解:

根据权数构造最优二叉树:

传输它们的最佳前缀码如上图所示,happy new year 的编码信息为:

10 011 0101 0101 001 110 111 0100 001

111 011 000

附: 最优二叉树求解过程如下:

5	6	7	8	10	10	12	15
	11	7	8	10	10	12	15
	11		15	10	10	12	15
		11	15		20	12	15
			15		20	23	15
					20	23	30
						43	30
							73