02-24-00201 Probability and Statistics II

DR. AHMED TAYEL

Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University

ahmed.tayel@alexu.edu.eg

Outline

- 1. Introduction.
- 2. The method of moments.

1. Introduction

Definition

الاستدلال الاحصائي

Statistical inference is the process by which information from **sample** data is used to draw conclusions about the **population** from which the sample was selected.

...but we Sample We want to Populationcan only Data learn about calculate Infer Statistics Parameter population sample parameters statistics

Statistical Inference

Parameter Estimation

Hypothesis testing

(Chapter 4)

Point Estimation (Chapter 2)

A point estimate is a single value estimate of a parameter.

Ex:
$$\widehat{\mu} = \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

→ Interval Estimation (Chapter 3)

An interval estimate gives you a range of values where the parameter is expected to lie. Ex: $L < \mu < U$ with confidence level 95%

Statistical Inference > Parameter Estimation > Point Estimation

Random sample:

Subset of the population selected randomly It is referred to

- The i.i.d. random variables
- or the observed data

Statistical Inference > Parameter Estimation > Point Estimation

Statistic:

- Any function of the random sample $X_1, X_2, ..., X_n$ is called a statistic.
- Does not depend on any unknown parameters.

Statistical Inference >> Parameter Estimation >> Point Estimation

Estimator vs Estimate:

- Assume a **population** with **unknown parameter** θ
- Let $X_1, X_2, ..., X_n$ be a random sample $\rightarrow X_i$ has PDF $f(x; \theta)$.
- The statistic $\hat{\theta} = t(X_1, X_2, ..., X_n)$ corresponding to θ

Statistical Inference >> Parameter Estimation >> Point Estimation

Estimation problems occur frequently in real life:

Unknown population parameter

- the mean μ of a single population
- the variance σ^2 (or standard deviation σ) of a single population
- the difference in means of two populations, $\mu_1 \mu_2$

Reasonable point estimate (By intuition)

- for μ , the estimate is $\hat{\mu} = \overline{X}$, the sample mean
- for σ^2 , the estimate is $\hat{\sigma}^2 = S^2$, the sample variance
- for μ_1 μ_2 , the estimate is $\hat{\mu}_1$ $\hat{\mu}_2 = \overline{X}_1$ \overline{X}_2 the difference between the sample means of two independent random samples

Statistical Inference > Parameter Estimation > Point Estimation

(This lecture)

(Next lecture)

Definition:

Population and sample moments

The k^{th} population moment of a RV (about the origin) is

$$\mu_k = E[X^k]$$

$$= \int_{-\infty}^{\infty} x^k f(x;\theta) \ dx \text{ "Continuous RV"}$$

$$= \sum_{x=-\infty}^{\infty} x^k f(x;\theta) \text{ "Discrete RV"}$$

The k^{th} sample moment is

$$m_k = \frac{1}{n} \sum_{i=1}^n X_{i}^k \qquad \text{Sample}$$

Joesn't Jeleng en benometer

The **Method of Moments** (MoM) consists of equating sample moments and population moments. If a population has t parameters, the MOM consists of solving the system of equations

$$m_k = \mu_k, \ k = 1, 2, \dots, t$$

for the t parameters.

If one parameter is unknown

$$\mu_1 = m_1$$

One equation in one unknown

If two parameters are unknown

$$\mu_1 = m_1$$

$$\mu_2 = m_2$$

Two equations in two unknown

•••

Example

Let X be uniformly distributed on the interval $(\alpha, 1)$. Given a random sample of size n, use the method of moments to obtain a formula for estimating the parameter α

Solution

The first population moment

first population moment
$$\mu_{1} = \mathbf{E}(\mathbf{X}) = \int_{-\infty}^{\infty} \mathbf{x} \ \mathbf{f}(\mathbf{x}; \alpha) \ d\mathbf{x} = \int_{\alpha}^{1} (\mathbf{x}) \cdot \frac{1}{1 - \alpha} \ d\mathbf{x} = \frac{1}{1 - \alpha} \left[\frac{\mathbf{x}^{2}}{2} \right]_{\alpha}^{1} = \frac{1 + \alpha}{2}$$

$$\frac{1}{1 - \alpha} \left[\frac{1}{2} - \frac{d^{2}}{2} \right]_{\alpha}^{1} = \frac{1 - \alpha^{2}}{2} = \frac{1}{2}$$

Example

Let **X** be uniformly distributed on the interval $(\alpha, 1)$. Given a random sample of size n, use the method of moments to obtain a formula for estimating the parameter α .

Solution

The first population moment

$$\mu_1 = \frac{1+\alpha}{2}$$

idea x better estimator min (Xi = .)

The first sample moment

Using MME

$$\mathbf{m}_{1} = \mathbf{X} = \frac{1}{n} \begin{pmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \end{pmatrix} \Rightarrow \hat{\mathbf{a}} = 2\mathbf{X} - \mathbf{m}_{1}$$

Estimater Por

Example

Given a random sample of size n from a Poisson population, use the method of moments to obtain a formula for estimating the parameter λ . Hint: $M_X(t) = e^{\lambda (e^t - 1)}$

What is this function?

Definition: The moment generating function (MGF)

Definition

$$M_X(t) = E(e^{tX})$$

$$E(X) = \left[\frac{d}{dt}M_X(t)\right]_{t=0}$$

$$E(X^2) = \left[\frac{d^2}{dt^2}M_X(t)\right]_{t=0}$$

$$E(X^n) = \left[\frac{d^n}{dt^n}M_X(t)\right]_{t=0}$$

MGF for important RV's

Binomial(n, p)
$$(1-p+pe^t)^n$$
Geometric(p) $\frac{pe^t}{1-(1-p)e^t}$
Poisson(λ) $e^{\lambda(e^t-1)}$
Uniform(a, b) $\frac{e^{bt}-e^{at}}{t(b-a)}$
Exponential(λ) $\frac{\lambda}{\lambda-t}$
 $N(\mu,\sigma^2)$ $e^{t\mu+\frac{1}{2}t^2\sigma^2}$

Example

Given a random sample of size n from a Poisson population, use the method of moments to obtain a formula for estimating the parameter λ . Hint: $M_X(t) = e^{\lambda (e^t - 1)}$ Solution

Solution

$$E(X) = \begin{bmatrix} \frac{d}{dt} & M_X(t) \\ \frac{d}{dt} & M_X(t) \end{bmatrix}_{t=0}$$

$$E(X) = \begin{bmatrix} e^{\lambda (e^t - 1)} & \lambda e^t \\ \frac{d}{dt} & \lambda e^t \end{bmatrix}_{t=0}$$

$$E(X) = \lambda$$

Example

Given a random sample of size n from a Poisson population, use the method of moments to obtain a formula for estimating the parameter λ . Hint: $M_X(t) = e^{\lambda (e^t - 1)}$

Solution

The first population moment

$$\mu_1 = \mathbf{E}(\mathbf{x}) = \lambda$$

The first sample moment

$$\mathbf{m}_{1} = \overline{\mathbf{X}}$$

Using MME

$$\mathbf{m}_1 = \boldsymbol{\mu}_1 \Rightarrow \overline{\mathbf{X}} = \hat{\lambda} = \frac{1}{N} \sum_{i=1}^{N} \lambda_i$$

$$\frac{1}{4}(\Box \Delta) = \Box \Delta + \Box \Delta$$

Example

Given a random sample of size n from a $N(\mu, \sigma^2)$ population, use the method of moments to obtain formulas for estimating the parameters μ and σ^2) 2 www. $\Delta \sim 2 \text{ eV}^{\frac{1}{2}}$.

Solution

Hint: $M_X(t) = e^{t \mu + \frac{1}{2}t^2 \sigma^2}$

The first two population moments

$$E(X) = \left[\frac{d}{dt} M_X(t)\right]_{t=0}$$

$$E(X) = \left[e^{t \mu + \frac{1}{2}t^2 \sigma^2} \left(\mu + t \sigma^2\right)\right]_{t=0}$$

$$E(X) = \left[e^{t \mu + \frac{1}{2}t^2 \sigma^2} \left(\mu + t \sigma^2\right)\right]_{t=0}$$

$$E(X) = \left[e^{t \mu + \frac{1}{2}t^2 \sigma^2} \sigma^2 + e^{t \mu + \frac{1}{2}t^2 \sigma^2} \left(\mu + t \sigma^2\right)^2\right]_{t=0}$$

$$E(X) = \left[e^{t \mu + \frac{1}{2}t^2 \sigma^2} \sigma^2 + e^{t \mu + \frac{1}{2}t^2 \sigma^2} \left(\mu + t \sigma^2\right)^2\right]_{t=0}$$

Example

Given a random sample of size n from a $N(\mu, \sigma^2)$ population, use the method of moments to obtain formulas for estimating the parameters μ and σ^2 .

Solution

The first two population moments

$$\mu_1 = \mathbf{E}(\mathbf{x}) = \mu ,$$

The first two sample moments

$$\frac{1}{n} \stackrel{>}{>} \stackrel{\times}{\sim} \stackrel{\times}{\sim} = \mathbf{m}_1 = \overline{\mathbf{X}}$$
 and

Using MME

$$\begin{aligned} \mathbf{m}_{1} &= \boldsymbol{\mu}_{1} & \Longrightarrow \overline{\overline{\mathbf{X}}} = \hat{\boldsymbol{\mu}} \\ \mathbf{m}_{2} &= \boldsymbol{\mu}_{2} & \Longrightarrow \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}^{2} = \hat{\boldsymbol{\sigma}}^{2} + \hat{\boldsymbol{\mu}} \end{aligned}$$

Hint:
$$M_X(t) = e^{t \mu + \frac{1}{2}t^2 \sigma^2}$$

$$\mu_{1} = \mathbf{E}(\mathbf{x}) = \mu , \qquad \mu_{2} = \mathbf{E}(\mathbf{x}^{2}) = \mathbf{\sigma}^{2} + \mu^{2}$$
sample moments
$$\mathbf{m}_{1} = \mathbf{m}_{1} = \mathbf{X} \qquad \text{and} \qquad \mathbf{m}_{2} = \frac{1}{\mathbf{n}} \sum_{i=1}^{n} \mathbf{X}_{i}^{2} \qquad \hat{\sigma}^{2} = \frac{1}{\mathbf{n}} \sum_{i=1}^{n} \mathbf{X}_{i}^{2} - \mathbf{X}^{2} = \frac{1}{\mathbf{n}} \sum_{i=1}^{n} \mathbf{X}_{i}^{2} - \mathbf{X}^{2}$$

Example

Given a random sample of size n from a $N(\mu, \sigma^2)$ population, use the method of moments to obtain formulas for estimating the parameters μ and σ^2 .

Solution

Hint:
$$M_X(t) = e^{t \mu + \frac{1}{2}t^2 \sigma^2}$$

$$\hat{\mu} = \overline{X}$$
 Similar to previous estimator

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \overline{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \Rightarrow E() + \delta^{2}$$

$$= \frac{1}{n} \left[\sum_{i=1}^{n} X_{i}^{2} + \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} + \sum_{i=1}^{n} (X_{i$$

More Examples

• Example: Find method of moments estimators (MME's) of θ based on a random sample $X_1, ..., X_n$ from the following pdf:

$$f(x;\theta) = (\theta+1)x^{-0-2}; (1 < x) \text{ zero otherwise}; \theta > 0.$$

$$1 < e^{-1}$$

$$= (\theta+1) \left(\frac{1}{x} \right) = \frac{\theta+1}{\theta} \left(\frac{1}{x} \right) = \frac{\theta+1}{\theta}$$

$$= (\theta+1) \left(\frac{1}{x}$$

• Example: Find method of moments estimators (MME's) of (θ) based on a random sample $X_1, ..., X_n$ from the following pdf:

$$f(x; \theta) = \theta^2 x e^{-\theta x}$$
; $0 < x$, zero otherwise; $\theta > 0$.

$$M_{1} = E(X) = \int_{0}^{2} x e^{-\theta x} ; 0 < x, \text{ zero otherwise}; \theta > 0.$$

$$M_{1} = E(X) = \int_{0}^{2} x e^{-\theta x} dx = \int_{0}^{2} x^{2} e^{-\theta x} dx$$

$$= \int_{0}^{2} \left[-\frac{1}{\theta} x^{2} e^{-\theta x} - \frac{2}{\theta^{2}} x e^{-\theta x} - \frac{2}{\theta^{3}} e^{-\theta x} \right]_{0}^{\infty}$$

$$= \int_{0}^{2} \left[0 - \left(-\frac{2}{\theta^{3}} \right) \right] = \int_{0}^{2} \frac{2}{\theta^{3}} = \frac{2}{\theta}$$

$$2x = \int_{0}^{2} \left[0 - \left(-\frac{2}{\theta^{3}} \right) \right] = \int_{0}^{2} \frac{2}{\theta^{3}} = \frac{2}{\theta}$$

$$2x = \int_{0}^{2} \left[0 - \left(-\frac{2}{\theta^{3}} \right) \right] = \int_{0}^{2} \frac{2}{\theta^{3}} = \frac{2}{\theta}$$

$$M_1 = \overline{X} = \frac{2}{6} \Rightarrow \overline{A} = \overline{X}$$

• Example: Find method of moments estimators (MME's) of θ based on a random sample $X_1, ..., X_n$ from Geometric distribution:

Hint:
$$\sum_{x=1}^{\infty} \otimes 2^{x} = \frac{z}{(1-z)^{2}}$$

$$M_{1} = \mathcal{E}(X) = \sum_{x=1}^{\infty} (1-\theta)^{x-1} = 0 \sum_{x=1}^{\infty} X \quad (1-\theta)^{x-1} = 0$$

$$M_{1} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{2} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{3} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{4} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{5} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{6} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{1} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{2} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{3} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{4} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{5} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{1} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{2} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{3} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{4} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{5} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

$$M_{7} = \frac{G}{1-\theta} \quad X = 1 \quad A$$

• Example: Let X be a random variable having a gamma distribution

$$f(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, \quad x \ge 0, \alpha > 0, \beta > 0$$

with unknown parameters α and β Find the moment estimators of the unknown parameters.

(Hint
$$A = E(X) = \alpha \beta$$
 and $Var(X) = \alpha \beta^2$)

Note:
$$Var(X) = E(X^2) - \mu^2$$

$$E(x^2) - (x\beta)^2 = x\beta^2 \Rightarrow E(x^2) =$$

$$M_1 = X = \frac{1}{2} \sum_{i=1}^{n} X_i$$

$$M_2 = \left(\frac{1}{n} \sum_{i=1}^{n} \chi_i^2\right)$$

 $\langle \beta \rangle = X \rightarrow 0$ $\langle \beta \rangle = X \rightarrow 0$ $\langle \beta \rangle = X \rightarrow 0$ $\langle \beta \rangle = X \rightarrow 0$ 2 egs. in 2 mks. Sub. from (1) in (2) $\frac{1}{X}(\hat{B}) + \hat{X}^2 = \frac{1}{N} \sum_{i=1}^{N} X_i = \frac{1}{N} \sum_{i=1}^{N} X$ Sub. in $\mathcal{Z} = \overline{X}$