COMP2270/6270 – Theory of Computation Sixth week

School of Electrical Engineering & Computing The University of Newcastle

Exercise 1) Define the function $twice(L) = \{w : \exists x \in L \ (x \text{ can be written as } c_1c_2 \dots c_n, \text{ for some } n \ge 1, \text{ where each } c_i \in \Sigma_L, \text{ and } w = c_1c_1c_2c_2 \dots c_nc_n\}$.

- a) Let $L = (1 \cup 0)*1$. Write a regular expression for *twice(L)*.
- b) Are the regular languages closed under twice? Prove your answer.

Exercise 2) For each of the following claims, state whether it is *True* or *False*. Prove your answer.:

- a) The union of an infinite number of regular languages must be regular.
- b) The union of an infinite number of regular languages is never regular.
- c) If L_1 and L_2 are regular languages and $L_1 \subseteq L \subseteq L_2$, then L must be regular.
- d) The intersection of two nonregular languages must not be regular.
- e) The intersection of an infinite number of regular languages must be regular.
- f) If L is a language that is not regular, then L^* is not regular.
- g) If L^* is regular, then L is regular.
- h) Every subset of a regular language is regular.

Exercise 3) For each of the following languages L, state whether L is regular or not and prove your answer:

- a) $\{w \in \{a, b, c\}^* : \text{ in each prefix } x \text{ of } w, \#_a(x) = \#_b(x) = \#_c(x)\}\}.$
- b) $\{w \in \{a, b, c\}^* : \exists \text{ some prefix } x \text{ of } w (\#_a(x) = \#_b(x) = \#_c(x))\}.$
- c) $\{w \in \{a, b, c\}^* : \exists \text{ some prefix } x \text{ of } w (x \neq \epsilon \text{ and } \#_a(x) = \#_b(x) = \#_c(x))\}.$

Exercise 4) Define the following two languages:

```
L_a = \{ w \in \{ a, b \}^* : \text{ in each prefix } x \text{ of } w, \#_a(x) \ge \#_b(x) \}.

L_b = \{ w \in \{ a, b \}^* : \text{ in each prefix } x \text{ of } w, \#_b(x) \ge \#_a(x) \}.
```

- a) Let $L_1 = L_a \cap L_b$. Is L_1 regular? Prove your answer.
- b) Let $L_2 = L_a \cup L_b$. Is L_2 regular? Prove your answer.

Exercise 5) For each of the following languages L, state whether L is regular or not and prove your answer:

- a) $\{uww^{R}v: u, v, w \in \{a, b\}^{+}\}.$
- b) $\{xyzy^{R}x : x, y, z \in \{a, b\}^{+}\}.$

Exercise 6) Let $\Sigma = \{a, b\}$. For the languages that are defined by each of the following grammars, do each of the following:

- *i*. List five strings that are in *L*.
- *ii*. List five strings that are not in *L*.
- iii. Describe L concisely. You can use regular expressions, expressions using variables (e.g., a^nb^n , or set

theoretic expressions (e.g., $\{x: ...\}$)

- iv. Indicate whether or not L is regular. Prove your answer.
- a) $S \rightarrow aS \mid Sb \mid \epsilon$
- b) $S \rightarrow aSa \mid bSb \mid a \mid b$

Exercise 7) Consider the following context free grammar *G*:

```
S \rightarrow aSa

S \rightarrow T

S \rightarrow \varepsilon

T \rightarrow bT
```

 $T \to cT$ $T \to \varepsilon$

One of these rules is redundant and could be removed without altering L(G). Which one?

Exercise 8) Show a context-free grammar for each of the following languages *L*:

- a) BalDelim = $\{w : \text{ where } w \text{ is a string of delimeters: } (,), [,], \{, \}, \text{ that are properly balanced} \}.$
- b) $\{a^ib^j: 2i \neq 3j+1\}.$
- c) $\{w \in \{a, b\}^* : \#_a(w) = 2 \#_b(w)\}.$

REFERENCES

[1] Elaine Rich, Automata Computatibility and Complexity: Theory and Applications, Pearson, Prentice Hall, 2008.