第四节

高阶线性微分方程

高阶线性微分方程解的结构

- 二阶常系数线性齐次微分方程
- 二阶常系数非齐次线性微分方程

二、二阶常系数齐次线性微分方程

形式:
$$y'' + py' + qy = 0$$
 $(p, q$ 为常数) ①

因为r为常数时,函数 e^{rx} 和它的导数只差常数因子, 所以令①的解为 $y = e^{rx}$ (r 为待定常数),代入①得

$$(r^2 + pr + q)e^{rx} = 0$$

$$r^2 + pr + q = 0$$

称②为微分方程①的特征方程, 其根称为特征根.

1. 当 $p^2 - 4q > 0$ 时,②有两个相异实根 r_1, r_2 ,则微分方程有两个线性无关的特解: $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$,因此方程的通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

$$y'' + py' + qy = 0$$
 $(p, q$ 为常数) $r^2 + pr + q = 0$

2. 当 $p^2 - 4q = 0$ 时,特征方程有两相等实根 $r_1 = r_2 = \frac{-p}{2}$,则微分方程有一个特解 $y_1 = e^{r_1 x}$.

设另一特解 $y_2 = y_1 u(x) = e^{r_1 x} u(x)$ (u(x)) 待定) 代入方程得:

$$e^{r_1 x} [(u'' + 2r_1u' + r_1^2u) + p(u' + r_1u) + qu] = 0$$

 $u'' + (2r_1 + p)u' + (r_1^2 + pr_1 + q)u = 0$
注意 r_1 是特征方程的重根
 $u'' = 0$

取 u = x,则得 $y_2 = xe^{r_1x}$,因此原方程的通解为 $y = (C_1 + C_2x)e^{r_1x}$

3. 当 $p^2 - 4q < 0$ 时,特征方程有一对共轭复根 $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$

这时原方程有两个复数解:

$$y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$$
$$y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

利用解的叠加原理,得原方程的线性无关特解:

$$\overline{y_1} = \frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x$$

$$\overline{y_2} = \frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x$$

因此原方程的通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

小结:

$$y'' + p y' + q y = 0$$
 (p, q 为常数)

特征方程: $r^2 + pr + q = 0$, 特征根: r_1, r_2

特征根	通	解
$r_1 \neq r_2$ 实根	$y = C_1 e^{it}$	$^{r_1x}+C_2e^{r_2x}$
$r_1 = r_2 = -\frac{p}{2}$	$y = (C_1)$	$+C_2x)e^{r_1x}$
$r_{1,2} = \alpha \pm i \beta$	$y = e^{\alpha x}$	$(C_1 \cos \beta x + C_2 \sin \beta x)$

以上结论可推广到高阶常系数线性微分方程.

例1. 求方程 y''-2y'-3y=0 的通解.

解: 特征方程 $r^2 - 2r - 3 = 0$,

特征根: $r_1 = -1$, $r_2 = 3$,

因此原方程的通解为

$$y = C_1 e^{-x} + C_2 e^{3x}$$

例2. 求解初值问题
$$\begin{cases} \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + s = 0 \\ y|_{x=0} = 4, \quad \frac{dy}{dx}|_{x=0} = -2 \end{cases}$$

解: 特征方程 $r^2 + 2r + 1 = 0$

有重根 $r_1 = r_2 = -1$,

因此原方程的通解为 $y = (C_1 + C_2, x)e^{-x}$

利用初始条件得 $C_1 = 4$, $C_2 = 2$

于是所求初值问题的解为 $y=(4+2x)e^{-x}$

推广:

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0 (a_k 均为常数)$$

特征方程: $r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n = 0$

若特征方程含k重实根r,则其通解中必含对应项

$$(C_1 + C_2x + \dots + C_kx^{k-1})e^{rx}$$

若特征方程含 k 重复根 $r = \alpha \pm i \beta$,则其通解中必含对应项

$$e^{\alpha x}[(C_1 + C_2 x + \dots + C_k x^{k-1})\cos \beta x + (D_1 + D_2 x + \dots + D_k x^{k-1})\sin \beta x]$$

(以上 C_i , D_i 均为任意常数)

例4. 求方程 $y^{(4)} - 2y''' + 5y'' = 0$ 的通解.

解: 特征方程 $r^4 - 2r^3 + 5r^2 = 0$,

特征根:

$$r_1 = r_2 = 0$$
, $r_{3,4} = 1 \pm 2 i$

因此原方程通解为

$$y = C_1 + C_2 x + e^x (C_3 \cos 2x + C_4 \sin 2x)$$

例7. 解方程
$$y^{(4)} + 2y'' + y = 0$$
.

解: 特征方程:
$$r^4 + 2r^2 + 1 = 0$$

$$(r^2 + 1)^2 = 0$$

特征根为
$$r_{1,2} = \pm i$$
, $r_{3,4} = \pm i$

则方程通解:

$$y = (C_1 + C_3 x) \cos x + (C_2 + C_4 x) \sin x$$

内容小结

$$y'' + p y' + q y = 0$$
 (p, q) 为常数) 特征根: r_1, r_2

(1) 当
$$r_1 \neq r_2$$
 时,通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

(2) 当
$$r_1 = r_2$$
 时, 通解为 $y = (C_1 + C_2 x) e^{r_1 x}$

(3) 当
$$r_{1,2} = \alpha \pm \beta i$$
 时, 通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

可推广到高阶常系数线性齐次方程求通解.