on \mathbb{R}^n . As an exercise, the reader should write similar formulae for the Taylor–MacLaurin formula of order 2.

Another application of Taylor's formula is the derivation of a formula which gives the *m*-th derivative of the composition of two functions, usually known as "Faà di Bruno's formula." This formula is useful when dealing with geometric continuity of splines curves and surfaces.

Proposition 39.27. Given any normed affine space E, for any function $f: \mathbb{R} \to \mathbb{R}$ and any function $g: \mathbb{R} \to E$, for any $a \in \mathbb{R}$, letting b = f(a), $f^{(i)}(a) = D^i f(a)$, and $g^{(i)}(b) = D^i g(b)$, for any $m \ge 1$, if $f^{(i)}(a)$ and $g^{(i)}(b)$ exist for all $i, 1 \le i \le m$, then $(g \circ f)^{(m)}(a) = D^m(g \circ f)(a)$ exists and is given by the following formula:

$$(g \circ f)^{(m)}(a) = \sum_{\substack{0 \le j \le m \\ i_1 + 2i_2 + \dots + mi_m = m \\ i_1, i_2, \dots, i_m \ge 0}} \frac{m!}{i_1! \cdots i_m!} g^{(j)}(b) \left(\frac{f^{(1)}(a)}{1!}\right)^{i_1} \cdots \left(\frac{f^{(m)}(a)}{m!}\right)^{i_m}.$$

When m = 1, the above simplifies to the familiar formula

$$(g \circ f)'(a) = g'(b)f'(a),$$

and for m=2, we have

$$(g \circ f)^{(2)}(a) = g^{(2)}(b)(f^{(1)}(a))^2 + g^{(1)}(b)f^{(2)}(a).$$

39.8 Vector Fields, Covariant Derivatives, Lie Brackets

In this section, we briefly consider vector fields and covariant derivatives of vector fields. Such derivatives play an important role in continuous mechanics. Given a normed affine space (E, \overrightarrow{E}) , a vector field over (E, \overrightarrow{E}) is a function $X: E \to \overrightarrow{E}$. Intuitively, a vector field assigns a vector to every point in E. Such vectors could be forces, velocities, accelerations, etc.

Given two vector fields X, Y defined on some open subset Ω of E, for every point $a \in \Omega$, we would like to define the derivative of X with respect to Y at a. This is a type of directional derivative that gives the variation of X as we move along Y, and we denote it by $D_Y X(a)$. The derivative $D_Y X(a)$ is defined as follows.

Definition 39.20. Let (E, \overrightarrow{E}) be a normed affine space. Given any open subset Ω of E, given any two vector fields X and Y defined over Ω , for any $a \in \Omega$, the covariant derivative (or Lie derivative) of X w.r.t. the vector field Y at a, denoted by $D_YX(a)$, is the limit (if it exists)

$$\lim_{t\to 0,\,t\in U}\ \frac{X(a+tY(a))-X(a)}{t},$$

where $U = \{t \in \mathbb{R} \mid a + tY(a) \in \Omega, t \neq 0\}.$