Here are some practice problems you might use in preparing for the final exam. I'm sorry to say that I won't have a chance to post solutions to these problems before the final. I will try to post solutions to the final itself by the evening of May 26, but I can't make that a definite promise.

- 1. Let E = (0,1), a subset of \mathbb{R} with the usual metric. Prove directly from the definition (without using the Heine-Borel theorem) that E is not compact. (This means you need to find a collection $\{U_{\alpha}\}$ of open subsets of \mathbb{R} so that E is contained in the union of all the $\{U_{\alpha}\}$, but E is not contained in the union of any finite subcollection of the $\{U_{\alpha}\}$.)
- 2. Let X be the metric space of all rational numbers in [0,1]. Find a subset E of X such that $E \neq X$, $E \neq \emptyset$, but E is both open and closed in X.
- 3. Give an example of a subset of \mathbb{R} having exactly two limit points.
- 4. Give an example of a real-valued differentiable function f on \mathbb{R} for which f' is not continuous.
- 5. (20 points) X is a metric space and

$$f: X \to X$$

is a function from X to X. A fixed point of f is a point $x \in X$ such that f(x) = x. Prove that every continuous function from [0,1] to [0,1] has a fixed point. (Hint: you want to show that the continuous function f(x) - x is equal to zero somewhere. Use the Intermediate Value Theorem.)

6. Suppose that $f: X \to X$ is any continuous function, and that $x_0 \in X$. Define a sequence $x_1, x_2, x_3 \ldots$ of points in X by

$$x_{n+1} = f(x_n) \qquad (n \ge 0).$$

Prove that if the sequence $\{x_n\}$ converges to a limit point $x \in X$, then f(x) = x.

7. This problem concerns Riemann sums for integrating the function x on the interval [a, b]. You may need to use the formula

$$\sum_{j=1}^{n} j = n(n+1)/2.$$

For each positive integer n, consider the partition of [a, b] into n equal parts:

$$P_n = (a = x_0 < x_1 < \dots < x_n = b), \qquad x_i = a + i(b - a)/n.$$

- a) Calculate the upper sum $U(P_n, x)$.
- b) Calculate the lower sum $L(P_n, x)$.
- c) Deduce from these two calculations (not using the Fundamental Theorem of Calculus) that $\int_a^b x dx = (b^2 a^2)/2$.

8. Suppose that f is a continuous function on $[0, 2\pi]$. Recall that the mth Fourier coefficient of f is by definition

$$c_m(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-imx} dx \qquad (m \in \mathbb{Z}).$$

Suppose that the series of real numbers

$$\sum_{n=1}^{\infty} |c_n| + |c_{-n}|$$

converges.

- a) Deduce that the Fourier series $\sum_{m=-\infty}^{\infty} c_m e^{imx}$ converges uniformly to a continuous function F(x).
- b) Show that $c_m(F) = c_m(f)$.
- 9. Suppose $\{s_n\}$ is a sequence of real numbers. Define a new sequence $\{\sigma_n\}$ by

$$\sigma_n = \frac{1}{n}(s_1 + \cdots s_n),$$

the average of the first n elements of the first sequence.

- a) Prove that if $\lim_{n\to\infty} s_n = s$, then $\lim_{n\to\infty} \sigma_n = s$.
- b) Find an example of a sequence $\{s_n\}$ that has no limit, for which $\{\sigma_n\}$ converges. (Hint: make $\{s_n\}$ bounce back and forth between two values.)
- c) Can there be an unbounded sequence $\{s_n\}$ for which $\{\sigma_n\}$ converges?