

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 345 (2019) 281–292

www.elsevier.com/locate/entcs

The Duality Theory of General \mathcal{Z} -continuous Posets

Zhenzhu Yuan^{1,3} Qingguo Li^{2,3}

College of Mathematics and Econometrics Hunan University Changsha, Hunan, 410082, P.R. China

Abstract

In this paper, we research further into \mathbb{Z} -predistributive and \mathbb{Z} -precontinuous posets introduced by Erné. We focus on duality theorems based on the application of Galois connections whenever \mathbb{Z} is a closed subset selection. For example, there is a duality between the categories \mathbb{Z} -PD $_G$ and \mathbb{Z} -PD $_D$ of all \mathbb{Z} -predistributive posets with weakly \mathbb{Z}^{\triangle} -continuous maps which have a lower adjoint, and maps preserve \mathbb{Z} -below relation that have an upper adjoint, respectively, as morphisms. We introduce the concept of \mathbb{Z}_0 -approximating auxiliary relation, and have made a slight improvement on \mathbb{Z} -precontinuity, so that there is a generalization of the classical equivalence between domains and auxiliary relations.

Keywords: poset, Z-predistributive, Z-precontinuous, Z-closed, Galois connection, auxiliary relation.

1 Introduction

The "way-below" relation is an essential ingredient in continuous posets and domains [1,10,11] and plays a central role in the applications of computer sciences. Continuous poset is based on the axiom of approximation, where the classical "way-below" relation is associated with all directed subsets which have supremum, but not for arbitrary subsets. In [16], Wright, J. B., Wagner, E. G. and Thatcher, J. W. introduced the concept of subset systems \mathcal{Z} , got rid of the restriction to directed subsets and replaced by " \mathcal{Z} -sets". After this, a theory of \mathcal{Z} -continuous posets was developed by Bandelt and Erné [3,4], Novak [13], Venugopalan [15]. The theory has been pursued by others, such as [2,8,9,19] and so on. \mathcal{Z} -continuity inherits the basic idea to use variants of the "way-below" relation, associated with \mathcal{Z} -sets which have a least upper bound.

¹ Email: yuanzhenzhuyzz@163.com

² Corresponding author, Email: liqingguoli@aliyun.com

³ This work is supported by National Natural Science Foundation of China (No. 11771134).

In [8], Erné used \mathcal{Z} to denote a subset selection, which assigns every poset P to a certain collection $\mathcal{Z}P$ of subsets and is more extensive than subset system. Some types of posets with " \mathcal{Z} -approximation" from below were put forward, for instance, \mathcal{Z} -predistributive and \mathcal{Z} -precontinuous posets. The " \mathcal{Z} -approximation" involves the cut operator Δ (others may use δ) of subsets instead of the existence of supremum. Erné characterized these posets by certain homomorphism properties and adjunctions. In recent years, there are other results about \mathcal{Z} -precontinuity, see [12,14,17,18], but none discussed the dual category on these posets. The purpose of our paper is to discuss that.

In Section 3, we give some statements of \mathbb{Z} -predistributive and \mathbb{Z} -precontinuous posets. Galois connections play an important role in the framework of category theory. Let \mathbb{Z} be a closed subset selection. A duality is built up between categories \mathbb{Z} - \mathbf{PD}_G and \mathbb{Z} - \mathbf{PD}_D of all \mathbb{Z} -predistributive posets with \mathbb{Z}^{\triangle} -morphisms and \mathbb{Z}^{\triangle} -comorphisms, as morphisms respectively, in particular the full subcategories \mathbb{Z} - \mathbf{PC}_G and \mathbb{Z} - \mathbf{PC}_D of all \mathbb{Z} -precontinuous posets. We also show that the image of a \mathbb{Z} -precontinuous poset under a \mathbb{Z}^{\triangle} -morphism is \mathbb{Z} -precontinuous. We characterize \mathbb{Z} -precontinuity with appropriate auxiliary relations in Section 4.

2 Preliminaries

Let us recall some basic definitions. For each poset P and $A \subseteq P$, we denote $\downarrow A := \{y \in P \mid (\exists x \in A) \ y \leq x\}$ and $\downarrow x := \downarrow \{x\}$, $\downarrow A$ is said to be the lower set generated by A. $A^u := \{x \in P \mid (\forall y \in A) \ y \leq x\}$ is called the upper bound set of A. The least element of A^u if it exists is called the supremum of A and is denoted by $\bigvee A$; $A^{\ell} := \{x \in P \mid (\forall y \in A) \ y \geq x\}$ is the lower bound set of A. The cut operator \triangle is written by $\triangle A := A^{u\ell}$. A subset selection $\mathcal Z$ denotes a function which assigns to each poset P a set $\mathcal ZP$ of subsets of P, and $\mathcal Z$ is called a subset system if

- (i) there exists a poset P such that $\mathcal{Z}P$ contains some nonempty set;
- (ii) if $f: P \to Q$ is a monotone map from P into a poset Q, then $f(Z) \in \mathcal{Z}Q$ for all $Z \in \mathcal{Z}P$.

By (ii), for any subset $B \subseteq P$, $Z \in \mathcal{Z}(B)$ implies $Z \in \mathcal{Z}(P)$. The frequently used examples of subset selections are:

- \mathcal{A} where $\mathcal{A}P$ is the collection of all lower sets;
- $\mathcal B$ where $\mathcal BP$ is the collection of all nonempty upper bounded subsets;
- C where CP is the collection of all nonempty chains;
- \mathcal{D} where $\mathcal{D}P$ is the collection of all directed subsets;
- \mathcal{E} where $\mathcal{E}P$ is the collection of all one-element subsets;
- \mathcal{F} where $\mathcal{F}P$ is the collection of all finite subsets;
- \mathcal{P} where $\mathcal{P}P$ is the collection of all subsets.

Among these, all except A are subset systems. But note that $\downarrow f(Z) \in AQ$ for all $Z \in AP$.

For any subset selection \mathcal{Z} , we denote by $\mathcal{Z}^{\wedge}P = \{\downarrow Z : Z \in \mathcal{Z}P \bigcup \mathcal{E}P\}$, the collection of all \mathcal{Z} -ideals. However, for \mathcal{A} and subset system \mathcal{Z} , $\mathcal{Z}^{\wedge}P$ is just the set $\{\downarrow Z : Z \in \mathcal{Z}P\}$. A subset selection \mathcal{Z} such that $Y \in \mathcal{Z}(\mathcal{Z}^{\wedge}P)$ implies $\bigcup Y \in \mathcal{Z}^{\wedge}P$ for all posets P is called *union-complete*. We denote

$$\mathcal{Z}^{\triangle}P := \{ Y \in \mathcal{A}P \mid Z \in \mathcal{Z}P \text{ and } Z \subseteq Y \text{ implies } \triangle Z \subseteq Y \},$$

this is called \triangle -ideal completion of poset P. Obviously, $\downarrow x \in \mathcal{Z}^{\triangle}P$ for $x \in P$ and $\triangle X \in \mathcal{Z}^{\triangle}P$ for $X \subseteq P$. The closure X^- of any subset X is defined by $X^- := \bigcap \{Y \in \mathcal{Z}^{\triangle}P \mid X \subseteq Y\}$. Let $\sigma_{\mathcal{Z}}(P) = \{P \setminus Y \mid Y \in \mathcal{Z}^{\triangle}P\}$, which generalizes the classical Scott topology. It is easy to show that $U \in \sigma_{\mathcal{Z}}(P)$ iff $U = \uparrow U$ and for all $Z \in \mathcal{Z}^{\wedge}P$, $\triangle Z \cap U \neq \emptyset$ implies $Z \cap U \neq \emptyset$.

The function f is called weakly \mathcal{Z}^{\triangle} -continuous if $f^{-1}(\downarrow x) \in \mathcal{Z}^{\triangle}P$ for all $x \in Q$; f is said to be \mathcal{Z} -closed if for every $Z \in \mathcal{Z}^{\wedge}P$ implies $\downarrow f(Z) \in \mathcal{Z}^{\wedge}Q$. The subset selection \mathcal{Z} is called closed if every monotone map is \mathcal{Z} -closed. Some tedious manipulation yields that all the subset systems are closed, including subset selection \mathcal{A} .

3 Duality of \mathcal{Z} -predistributive posets

In this paper, unless otherwise stated, $\mathcal Z$ denotes a subset selection. We will consider variants of $\mathcal Z$ -continuity: $\mathcal Z$ -predistributive and $\mathcal Z$ -precontinuous posets, some properties will be given. In order to make connections between categories, we need to define suitable morphisms, that is, $\mathcal Z^{\triangle}$ -morphisms and $\mathcal Z^{\triangle}$ -comorphisms which involve the Galois connections for any closed subset selection.

Now, we firstly recall the "way-below" relation on posets with respect to \mathcal{Z} -sets. The \mathcal{Z} -below ideal of an element x in a poset P is the set $\downarrow^{\mathcal{Z}} x = \bigcap \{Z \in \mathcal{Z}^{\wedge} P \mid x \in \Delta Z\}$. For $x,y \in P$, we write $y \ll^{\mathcal{Z}} x$ if $Z \in \mathcal{Z}^{\wedge} P$ and $x \in \Delta Z$ imply $y \in Z$, the relation $\ll^{\mathcal{Z}}$ is called \mathcal{Z} -below relation. Denote the set $\{v \in P \mid x \ll^{\mathcal{Z}} v\}$ by $\uparrow^{\mathcal{Z}} x$, and for $A \subseteq P$, $\downarrow^{\mathcal{Z}} A = \{u \in P \mid (\exists y \in A) \ u \ll^{\mathcal{Z}} y\}$, $\uparrow^{\mathcal{Z}} A = \{v \in P \mid (\exists y \in A) \ u \ll^{\mathcal{Z}} v\}$. The properties of the relation $\ll^{\mathcal{Z}}$ are as follows.

Proposition 3.1 For any poset P, the following statements hold for $x, y, u, v \in P$:

- (1) $x \ll^{\mathbb{Z}} y \text{ implies } x \leq y;$
- (2) $u \le x \ll^{\mathbb{Z}} y \le v \text{ implies } u \ll^{\mathbb{Z}} v;$
- (3) $0 \ll^{\mathbb{Z}} x$ whenever P has bottom element 0 and $x \neq 0$.

Remark 3.2 The empty set may confuse us. If $\emptyset \in \mathbb{Z}^{\wedge}P$ whenever P has bottom element 0, then $0 \in \triangle \emptyset$. Thus 0 is impossible to have \mathbb{Z} -below relationship with itself. Otherwise, $0 \ll^{\mathbb{Z}} x$ for all $x \in P$.

Proposition 3.3 Let P be a poset. Suppose that there exists a \mathbb{Z} -set $Z \subseteq \downarrow^{\mathbb{Z}} x$ with $x = \bigvee Z$. Then $\downarrow^{\mathbb{Z}} x \in \mathbb{Z}^{\wedge} P$ and $x = \bigvee \downarrow^{\mathbb{Z}} x$.

Definition 3.4 [8] Let P be a poset.

(i) P is called \mathbb{Z} -predistributive if $x = \bigvee \downarrow^{\mathbb{Z}} x$ for each $x \in P$;

(ii) P is called \mathbb{Z} -precontinuous if it is \mathbb{Z} -predistributive and $\downarrow^{\mathbb{Z}} x \in \mathbb{Z}^{\wedge} P$ for each $x \in P$.

Actually, \mathcal{Z} -predistributive posets were called completely \mathcal{Z} -distributive in [7]. If \mathcal{Z} is a subset system, then \mathcal{Z} -precontinuous is the Z_{δ} -continuous poset essentially (see [18]); for a subset system which requires the existence of a non-singleton \mathcal{Z} -set, \mathcal{Z} -predistributive is the weak s_Z -continuous, and \mathcal{Z} -precontinuous is s_Z -continuous in the sense of [14]. \mathcal{A} -precontinuous is just the completely precontinuous in [17], \mathcal{D} -precontinuous is s_Z -continuous in [5].

In a continuous poset, the classical "way-below" relation satisfies the *interpolation property*, that is, $x \ll y$ implies $x \ll u \ll y$. For any union-complete, lower fine subset system \mathcal{Z} , the interpolation property holds in \mathcal{Z} -precontinuous poset in the sense of [18]. We have a similar property for subset selections.

Proposition 3.5 Let \mathcal{Z} be a union-complete and closed subset selection. Then the \mathcal{Z} -below relation of a \mathcal{Z} -precontinuous poset P satisfies the interpolation property.

Proof. Take $x \ll^{\mathbb{Z}} y$ in P. Since P is a \mathbb{Z} -precontinuous poset, we have that $y = \bigvee_{\downarrow} \mathbb{Z} y$ and $\downarrow^{\mathbb{Z}} y \in \mathbb{Z}^{\wedge} P$. Note that $\triangle(\downarrow^{\mathbb{Z}} y) = \triangle(\bigcup_{a \ll^{\mathbb{Z}} y} \downarrow^{\mathbb{Z}} a)$ and the function $c \mapsto \downarrow^{\mathbb{Z}} c : P \to \mathbb{Z}^{\wedge} P$ is monotone. Then $\downarrow \{\downarrow^{\mathbb{Z}} a : a \ll^{\mathbb{Z}} y\}$ is a \mathbb{Z} -ideal of $\mathbb{Z}^{\wedge} P$ by \mathbb{Z} being closed. It suffices that there exists $\mathcal{U} \in \mathbb{Z}(\mathbb{Z}^{\wedge} P)$ such that $\downarrow \{\downarrow^{\mathbb{Z}} a : a \ll^{\mathbb{Z}} y\} = \downarrow \mathcal{U}$ in $\mathbb{Z}^{\wedge} P$. Thus $\bigcup \mathcal{U} \in \mathbb{Z}^{\wedge} P$ by union-completeness and $\triangle(\bigcup_{a \ll^{\mathbb{Z}} y} \downarrow^{\mathbb{Z}} a) = \triangle(\bigcup \mathcal{U})$. Hence, $x \in \downarrow^{\mathbb{Z}} a$ for some $a \ll^{\mathbb{Z}} y$.

Next, we use the relationship between elements to describe the variants of continuity.

Theorem 3.6 Let P be a poset. Then the following conditions are equivalent:

- (1) P is \mathbb{Z} -predistributive;
- (2) $A \subseteq \triangle(\downarrow^{\mathcal{Z}} A)$ for all $A \in \mathcal{Z}^{\wedge} P$;
- (3) there is a $u \in P$ such that $u \ll^{\mathcal{Z}} x$ with $u \nleq y$ whenever $x \nleq y$ for $x, y \in P$;
- (4) $P \setminus \downarrow y = \bigcup \{ \uparrow^{\mathbb{Z}} x \mid x \in P \setminus \downarrow y \} \text{ for each } y \in P;$
- (5) $P \setminus \triangle A = \uparrow^{\mathcal{Z}}(P \setminus A)$ for each $A \in \mathcal{Z}^{\wedge}P$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) and (5) \Rightarrow (4) \Rightarrow (3), are straightforward.

 $(3) \Rightarrow (5)$: For every $y \in \uparrow^{\mathbb{Z}} x$ where $x \in P \setminus A$. Assume that $y \in \triangle A$. Then $x \in A$ by the \mathbb{Z} -below relation, which is contradictory. On the other hand, $P \setminus \triangle A \subseteq \uparrow^{\mathbb{Z}}(P \setminus A)$ if the upper bound set of A is empty; otherwise, for any $y \in P \setminus \triangle A$, then we have $t \in A^u$ such that $y \nleq t$. According to (3), there exists $x \in \downarrow^{\mathbb{Z}} y$ such that $x \nleq t$, that is, x belongs to $P \setminus \downarrow t$ which contains in the complement of A. It follows that y is a member of $\uparrow^{\mathbb{Z}}(P \setminus A)$.

Galois connection is one of the most efficient tools in dealing with complete lattices. Moreover, Galois connections can be used as morphisms to define the functors between categories. It is a natural point in our study to use them to discuss duality theorems on the variants of \mathcal{Z} -continuity.

Definition 3.7 [10] Let P and Q be two posets. We say that a pair (g,d) of functions $g: P \to Q$ and $d: Q \to P$ is a Galois connection or an adjunction between P and Q provided that

- (i) both g and d are monotone, and
- (ii) the relations $g(s) \ge t$ and $s \ge d(t)$ are equivalent for all pairs of elements $(s,t) \in P \times Q$.

In an adjunction (g, d), the function g is called the *upper adjoint* and d the *lower adjoint*.

Lemma 3.8 Let (g,d) be a Galois connection between posets P and Q. Then $d(\triangle A) \subseteq \triangle d(A)$ for any subset A of Q.

Proof. Let A be a subset of poset Q. It is formed in case $\triangle A$ is an empty subset. For each $x \in \triangle A$, if $d(A)^u = \emptyset$, then $\triangle d(A) = P$; otherwise, note that $v \in d(A)^u$ is equivalent to $g(v) \in A^u$, then $x \leq g(v)$, that is, $d(x) \leq v$. Therefore $d(\triangle A) \subseteq \triangle d(A)$ holds in all situations.

The following proposition is needed for later proof, slightly different from in [12, Proposition 2] and [6, Proposition 1.8].

Proposition 3.9 Let f be a map between posets P and Q. Consider the following conditions:

- (1) f is a weakly \mathbb{Z}^{\triangle} -continuous map;
- (2) for every $Z \in \mathcal{Z}P$, $f(\triangle Z) \subseteq \triangle f(Z)$.

Then (1) implies (2) for any subset selection \mathcal{Z} ; if \mathcal{Z} is a subset system, then (1) \Leftrightarrow (2). If f is monotone, then conditions are equivalent for all subset selections.

Remark 3.10 For an arbitrary subset selection \mathcal{Z} , the condition of monotonicity of f is essential when (2) implies (1) in the above proposition. See the following example as $\mathcal{Z} = \mathcal{A}$. Let P be the set $\{a, b, \top\}$ with $a, b \leq \top$ and Q be the chain 2. Consider the function f which sends a, b to 1 and \top to 0, simple verification shows that $f(\Delta Z) \subseteq \Delta f(Z)$ for every lower set Z of P. However, a weakly \mathcal{A}^{\triangle} -continuous map is monotone but f is not.

From Lemma 3.8 and Proposition 3.9, a lower adjoint d of map g between posets is always weakly \mathcal{Z}^{\triangle} -continuous.

There is a well-known duality on posets. The categories \mathbf{POSET}_G and \mathbf{POSET}_D have the class of all posets with the order preserving maps g which have a lower adjoint d and the order preserving maps d having an upper adjoint g as morphisms, respectively. We know that the categories \mathbf{POSET}_G and \mathbf{POSET}_D are dual via functors D and G, where for any poset P we write simply D(P) = P and G(P) = P; for every morphism $g: P \to Q$ of \mathbf{POSET}_G , $D(g): Q \to P$ is the lower adjoint of g; for each morphism $d: Q \to P$ of \mathbf{POSET}_D , $G(d): P \to Q$

is the upper adjoint of d. Then our following task is to investigate other duality theories in the context of subset selections. First, we see how the functors D and G translate certain preservation properties of morphisms.

Proposition 3.11 Let \mathcal{Z} be a closed subset selection. If (g,d) is a Galois connection between posets P and Q. Then the following statements are equivalent:

- (1) g is weakly \mathbb{Z}^{\triangle} -continuous;
- (2) if $U \in \sigma_{\mathcal{Z}}(Q)$, then $\uparrow d(U) \in \sigma_{\mathcal{Z}}(P)$.

These conditions imply

(3) d preserves \mathcal{Z} -below relation $\ll^{\mathcal{Z}}$, that is, $x \ll^{\mathcal{Z}} y$ in Q implies $d(x) \ll^{\mathcal{Z}} d(y)$ in P.

and if Q is \mathbb{Z} -predistributive, we have all three conditions are equivalent.

- **Proof.** (1) \Rightarrow (2): Let U be an element of $\sigma_{\mathcal{Z}}(Q)$. We take a $A \in \mathcal{Z}^{\wedge}P$ with $\triangle A \cap \uparrow d(U) \neq \emptyset$ and should show that $A \cap \uparrow d(U) \neq \emptyset$. Then there exists $u \in U$ such that $d(u) \in \triangle A$ by $\triangle A \cap \uparrow d(U) \neq \emptyset$. Without loss of generality, let $A = \downarrow Z$ with $Z \in \mathcal{Z}P$. It is easy to see that $u \in \triangle g(Z) = \triangle(\downarrow g(A))$. Since \mathcal{Z} is closed and $U \cap \triangle(\downarrow g(A)) \neq \emptyset$, there exists $t \in A$ such that $g(t) \in U$. We obtain that $t \in \uparrow d(U)$, so $\uparrow d(U) \in \sigma_{\mathcal{Z}}(P)$.
- $(2)\Rightarrow (1)$: Assume that $v\in \triangle Z$ such that $g(v)\in g(\triangle Z)\backslash \triangle g(Z)$ for $Z\in \mathcal{Z}P$. This means that we have an element $x\in g(Z)^u$ such that $g(v)\nleq x$. Let $U=Q\setminus \downarrow x$. Then we have $U\in \sigma_{\mathcal{Z}}(Q)$ and $g(v)\in U$. By hypothesis (2) we know that $\uparrow d(U)\in \sigma_{\mathcal{Z}}(P)$. So, $v\in \uparrow d(U)$, we have a $t\in Z$ with $t\in \uparrow d(U)$, that is, $d(u)\leq t$ for some $u\in U$. It follows that $u\leq g(t)\leq x$, a contradiction.
- $(1)\Rightarrow (3)$: Suppose that $x\ll^{\mathbb{Z}}y$ in Q and $A\in \mathbb{Z}^{\wedge}P$ with $d(y)\in \triangle A$. It suffices to show that if $A=\downarrow Z$ for some $Z\in \mathcal{Z}P$, then $d(x)\in A$. By Proposition 3.9, $g(d(y))\in \triangle g(Z)=\triangle (\downarrow g(Z))$. Recall that $\downarrow g(Z)=\downarrow g(\downarrow Z)$ since g is monotone, thus $y\in \triangle (\downarrow g(A))$ due to $y\leq g(d(y))$. Because \mathcal{Z} is a closed subset selection, $\downarrow g(A)$ is a \mathcal{Z} -ideal, we have $x\in \downarrow g(A)$. Hence $d(x)\in d(\downarrow g(A))\subseteq A$. Therefore, $d(x)\ll^{\mathbb{Z}}d(y)$ in P.

It remains $(3) \Rightarrow (1)$. Suppose that Q is a \mathbb{Z} -predistributive poset. We claim $g(\triangle Z) \subseteq \triangle g(Z)$ for each $Z \in \mathbb{Z}P$. Assume there is an element $x \in g(\triangle Z) \setminus \triangle g(Z)$. Then we have an upper bound y of set g(Z) such that $x \nleq y$ in Q. Thus there exists u such that $u \in \downarrow^{\mathbb{Z}}x$ but $u \nleq y$ in Q by Theorem 3.6. It follows that $d(u) \ll^{\mathbb{Z}}d(x)$ by hypothesis (3). Naturally $d(u) \in \downarrow Z$ since $d(x) \in d(g(\triangle Z)) \subseteq \triangle(\downarrow Z)$, as a result, $u \in g(\downarrow Z) \subseteq \downarrow g(Z)$. Hence $u \leq y$ and this is the desired contradiction. \square

For simplicity of presentation, we assume that subset selection $\mathcal Z$ is closed throughout the rest of this section.

Definition 3.12 Let S, T be two posets.

- (i) A map $g: S \to T$ is said to be a \mathbb{Z}^{\triangle} -morphism if g is weakly \mathbb{Z}^{\triangle} -continuous and has a lower adjoint.
- (ii) A map $d: T \to S$ is called a \mathbb{Z}^{\triangle} -comorphism if d preserves \mathbb{Z} -below relation

and has an upper adjoint.

(iii) A map $f: S \to T$ is called a quasiopen if $U \in \sigma_{\mathcal{Z}}(S)$ implies $\uparrow f(U) \in \sigma_{\mathcal{Z}}(T)$.

Corollary 3.13 Let $g: P \to Q$ be a map between posets which has a lower adjoint d. If g is a \mathbb{Z}^{\triangle} -morphism, then d is a \mathbb{Z}^{\triangle} -comorphism. If Q is \mathbb{Z} -predistributive and d preserves \mathbb{Z} -below relation, then g is a \mathbb{Z}^{\triangle} -morphism.

We introduce the subcategories of \mathbf{POSET}_G and \mathbf{POSET}_D , in order to reformulate Proposition 3.11 in terms of duality.

Definition 3.14 We define the following categories.

- (i) \mathbb{Z} -POS_G is the category of posets with \mathbb{Z}^{\triangle} -morphisms.
- (ii) \mathbb{Z} -POS_D is the category of posets and maps d as morphisms which are quasiopen and have an upper adjoint.
- (iii) \mathcal{Z} - \mathbf{PD}_G and \mathcal{Z} - \mathbf{PD}_D have the same objects of all \mathcal{Z} -predistributive posets; the morphisms of \mathcal{Z} - \mathbf{PD}_G are \mathcal{Z}^{\triangle} -morphisms and the morphisms of \mathcal{Z} - \mathbf{PD}_D are \mathcal{Z}^{\triangle} -comorphisms.
- (iv) \mathbb{Z} - \mathbf{PC}_G is the full subcategory of \mathbb{Z} - \mathbf{PD}_G consisting of all \mathbb{Z} -precontinuous posets.
- (v) \mathcal{Z} -PC_D is the full subcategory of \mathcal{Z} -PD_D consisting of all \mathcal{Z} -precontinuous posets.

Theorem 3.15 The following categories are dual under the functors D and G given through the Galois connection of functions:

- (1) \mathbb{Z} -POS_G and \mathbb{Z} -POS_D;
- (2) \mathcal{Z} - \mathbf{PD}_G and \mathcal{Z} - \mathbf{PD}_D ;
- (3) \mathcal{Z} - \mathbf{PC}_G and \mathcal{Z} - \mathbf{PC}_D .

We explore the constructions of new \mathcal{Z} -precontinuous posets. The following example gives us some constructions of posets, and the Table 1 will show whether the \mathcal{Z} -precontinuity is preserved under these structures for a frequent subset selection \mathcal{Z} .

Example 3.16 Let P and Q be two posets. We have the following five kinds of "disjoint" sums: (1) (Disjoint sum) $P \sqcup Q$, the disjoint union of P and Q (with the obvious partial ordering: elements $x \in P$ and $y \in Q$ are incomparable); (2) (Coalesced sum) $P \oplus Q$, the disjoint sum $P \sqcup Q$ with the bottom elements identified, if they have them; (3) (Separated sum) $P + Q = (P \sqcup Q)_0$, that is, the disjoint sum with a new bottom element adjoined; (4) $P +_1 Q = (P \oplus Q)^1$, the coalesced sum with a new top element adjoined; (5) $P +_2 Q$, the coalesced sum with the top elements identified if they have them.

Suppose that P and Q are Z-precontinuous posets where Z is the subset selection \mathcal{B} , \mathcal{C} or \mathcal{D} respectively. Then it is easy to check that the sum corresponding to the first three is still Z-precontinuous. Pick P is the chain $\mathbf{3}$ and Q is a 4-element lattice. It is clear that \mathcal{A} , \mathcal{F} and \mathcal{P} -precontinuity may be destroyed under all these

constructions. If P and Q are poset \mathbb{N} , then $P +_1 Q$ and $P +_2 Q$ are not \mathcal{B} , \mathcal{C} or \mathcal{D} -precontinuous posets. As shown in Table 1.

sums Z	(1)	(2)	(3)	(4)	(5)
\mathcal{A}	no	no	no	no	no
\mathcal{B}	yes	yes	yes	no	no
\mathcal{C}	yes	yes	yes	no	no
\mathcal{D}	yes	yes	yes	no	no
${\mathcal F}$	no	no	no	no	no
\mathcal{P}	no	no	no	no	no

Table 1 The \mathcal{Z} -precontinuity of the sums

Lemma 3.17 Let (g,d) be an adjunction between posets P and Q. If g is surjective, then $\hat{g}: \mathcal{Z}^{\wedge}P \to \mathcal{Z}^{\wedge}Q$ defined by $\hat{g}(A) = \downarrow g(A)$ is surjective. Moreover, (\hat{g}, \hat{d}) is an adjunction between $\mathcal{Z}^{\wedge}P$ and $\mathcal{Z}^{\wedge}Q$, where \hat{d} is similarly defined.

Proof. \hat{g} is well-defined by \mathcal{Z} being closed. For all subsets A of P, $g(\downarrow A) \subseteq \downarrow g(A)$ by the monotonicity of g. Since $x \in \downarrow g(A)$ implies $d(x) \in \downarrow A$, we have $g(\downarrow A) = \downarrow g(A)$. Recall that $gd = \operatorname{id}_Q$ (see [10, Proposition O-3.7]). Then $\hat{g}(\downarrow d(B)) = \downarrow g(d(B)) = B$ for $B \in \mathcal{Z}^{\wedge}Q$. As a result, \hat{g} maps \mathcal{Z} -ideals of poset P onto \mathcal{Z} -ideals of Q. It is easy to show that (\hat{g}, \hat{d}) is an adjunction.

Theorem 3.18 Let $g: P \to Q$ be a \mathbb{Z}^{\triangle} -morphism from \mathbb{Z} -precontinuous poset P onto poset Q. Then Q is \mathbb{Z} -precontinuous. In particular, the image of a \mathbb{Z} -precontinuous poset under a \mathbb{Z}^{\triangle} -morphism is \mathbb{Z} -precontinuous.

Proof. Let d be the lower adjoint of g. First, we claim that $u \ll^{\mathbb{Z}} d(x)$ in P implies $g(u) \ll^{\mathbb{Z}} x$ in Q. If $x \in \triangle(\downarrow B) = \triangle B$ for $B \in \mathbb{Z}Q$, then $d(x) \in d(\triangle B) \subseteq \triangle d(B)$ by Lemma 3.8. Thus $u \in \downarrow d(B)$, this means that $g(u) \in g(\downarrow d(B)) = \downarrow B$. We obtain $g(\downarrow^{\mathbb{Z}} d(x)) \subseteq \downarrow^{\mathbb{Z}} x$, furthermore, $g(\downarrow^{\mathbb{Z}} d(x)) = \downarrow^{\mathbb{Z}} x$ in Q by Proposition 3.11. Since P is \mathbb{Z} -precontinuous, $\downarrow^{\mathbb{Z}} d(x)$ is a \mathbb{Z} -ideal of P. It follows that $\downarrow^{\mathbb{Z}} x \in \mathbb{Z}^{\wedge} Q$ due to Lemma 3.17. Hence, we have

$$x = g(d(x)) \in g(\triangle[\downarrow^{\mathcal{Z}} d(x)]) \subseteq \triangle g(\downarrow^{\mathcal{Z}} d(x)) = \triangle(\downarrow^{\mathcal{Z}} x),$$

i.e., $x = \bigvee \downarrow^{\mathcal{Z}} x$. So far, we reach the conclusion that Q is a \mathcal{Z} -precontinuous poset.

4 \mathcal{Z}_0 -approximating auxiliary relation

In this section, we take a closer look at the \mathcal{Z} -below relation and auxiliary relations. We use appropriate auxiliary relations to characterize the improved \mathcal{Z} -precontinuity.

Definition 4.1 [10] We say that a binary relation \prec on a poset P is an auxiliary relation, or an auxiliary order, if it satisfies the following conditions for all u, x, y, v:

- (i) $x \prec y$ implies $x \leq y$;
- (ii) $u \le x \prec y \le v$ implies $u \prec v$;
- (iii) if a bottom element 0 exists, then $0 \prec x$.

The set of all auxiliary relations on P is denoted by Aux(P).

Based on Remark 3.2, for any subset selection \mathcal{Z} , we denote the truncated selection \mathcal{Z}_0 by $\mathcal{Z}_0P = \mathcal{Z}P\setminus\{\emptyset\}$; \mathcal{Z}_0 -ideals by $\mathcal{Z}_0^{\wedge}P = \{\downarrow Z: Z \in \mathcal{Z}_0P \bigcup \mathcal{E}P\}$. For $x,y\in P$, we write $x\ll^{\mathcal{Z}_0}y$ if $Z\in\mathcal{Z}_0^{\wedge}P$ and $y\in\Delta Z$ imply $x\in Z$, the relation $\ll^{\mathcal{Z}_0}$ is called \mathcal{Z}_0 -below relation of poset P. Similarly, we may define \mathcal{Z}_0 -predistributive and \mathcal{Z}_0 -precontinuous posets. $\ll^{\mathcal{Z}}$ and $\ll^{\mathcal{Z}_0}$ are equal whenever $\emptyset \notin \mathcal{Z}P$. Obviously, the \mathcal{Z}_0 -below relation is an auxiliary relation.

We may introduce some definitions that help us to characterize \mathcal{Z}_0 -precontinuous posets with auxiliary relations.

Definition 4.2 An auxiliary relation \prec on a poset P is said to be \mathcal{Z}_0 -approximating iff the set $\downarrow_{\prec} x = \{y \in P : y \prec x\}$ is a \mathcal{Z}_0 -ideal and $x = \bigvee \downarrow_{\prec} x$ for all $x \in P$. The set of all \mathcal{Z}_0 -approximating auxiliary relations is written $\operatorname{App}_{\mathcal{Z}_0}(P)$.

Definition 4.3 A poset P is called \mathcal{Z}_0 -meet-precontinuous if $\downarrow x \cap Y^- \subseteq (\downarrow x \cap Y)^-$ for all $x \in P$ and $Y \in \mathcal{Z}_0^{\wedge} P$.

As what we have anticipated, every \mathcal{Z}_0 -precontinuous poset is \mathcal{Z}_0 -meet-precontinuous (see [12,14]). Let Low(P) denote the set of all lower sets of P. We know the assignment

$$\prec \mapsto s_{\prec} = (x \mapsto \{y : y \prec x\})$$

is an isomorphism from $\operatorname{Aux}(P)$ onto monotone functions $s: P \to \operatorname{Low} P$, whose inverse associates to each monotone function s the relation \prec_s given by $x \prec_s y$ iff $x \in s(y)$ in [10]. If P is a semilattice, then we consider for each $Z \in \mathcal{Z}_0 \cap P$ the monotone function $m_Z: P \to \operatorname{Low} P$ given by

$$m_Z(x) = \begin{cases} \downarrow x \cap Z = x \wedge Z, & \text{if } x \in \triangle Z, \\ \downarrow x, & \text{otherwise.} \end{cases}$$

Let P be a semilattice. The unary meet operation $\wedge_x: P \to P: y \mapsto x \wedge y$ is monotone for $x, y \in P$, we say that \wedge_x is \mathcal{Z}_0 -closed if for all $Z \in \mathcal{Z}_0 \wedge P$ implies $\wedge_x(Z) \in \mathcal{Z}_0 \wedge P$. The truncated selection \mathcal{Z}_0 is called \wedge -closed if each unary meet operation on all semilattices is \mathcal{Z}_0 -closed. There is no doubt that each closed subset selection \mathcal{Z}_0 is \wedge -closed. Let \mathcal{Z}_0 be the all nonempty Frink ideals. Then \mathcal{Z}_0 is a \wedge -closed subset selection but not closed.

Proposition 4.4 For any \land -closed subset selection \mathcal{Z}_0 , a semilattice P is \mathcal{Z}_0 -meet-precontinuous iff the unary meet operations $\land_x : P \to P : y \mapsto x \land y$ are weakly $\mathcal{Z}_0^{\triangle}$ -continuous.

Proof. For all $Z \in \mathcal{Z}_0 P$, $\triangle Z$ is equal to Z^- by [12, Lemma 1]. We have $\wedge_x(\triangle Z) = x \wedge Z^- = \downarrow x \cap (\downarrow Z)^-$ for a semilattice. Let P be a \mathcal{Z}_0 -meet-precontinuous. Then $\downarrow x \cap (\downarrow Z)^- \subseteq (\downarrow x \cap \downarrow Z)^- \subseteq \triangle(x \wedge Z)$. Thus \wedge_x is weakly $\mathcal{Z}_0^{\triangle}$ -continuous. Conversely, we just need to prove that $\downarrow x \cap (\downarrow Z)^- \subseteq (\downarrow x \cap \downarrow Z)^-$ for all $x \in P$ and $Z \in \mathcal{Z}_0 P$. Indeed,

$$\downarrow x \cap (\downarrow Z)^- = x \wedge (\triangle Z) \subseteq \triangle (x \wedge Z) = [\downarrow (x \wedge Z)]^- = (\downarrow x \cap \downarrow Z)^-,$$

the second inequality holds as the map \wedge_x is weakly $\mathcal{Z}_0^{\triangle}$ -continuous, third equation because \mathcal{Z}_0 is \wedge -closed. This completes the proof.

Lemma 4.5 Let \mathcal{Z} be a subset selection which truncated selection \mathcal{Z}_0 is \land -closed. Then for a \mathcal{Z}_0 -meet-precontinuous semilattice P, all relations \prec_{m_Z} for $Z \in \mathcal{Z}_0 \land P$ are \mathcal{Z}_0 -approximating.

Proof. Let $x \in P$. If $x \in \Delta Z$, then $\{y \in P : y \prec_{m_Z} x\} = x \wedge Z$. $x \wedge Z$ is a \mathcal{Z}_0 -ideal since \mathcal{Z}_0 is \wedge -closed. It follows that $\Delta(x \wedge Z) = (x \wedge Z)^-$. Thus $\Delta(x \wedge Z) = \downarrow x \cap Z^- = \downarrow x \cap \Delta Z = \downarrow x$ by \mathcal{Z}_0 -meet-precontinuity. If $x \notin \Delta Z$, then $\{y \in P : y \prec_{m_Z} x\} = \downarrow x$. We have $x = \bigvee \{y \in P : y \prec_{m_Z} x\}$ in all cases. \square

Proposition 4.6 Let P be a poset and \mathcal{Z}_0 a \wedge -closed subset selection. Then the \mathcal{Z}_0 -below relation $\ll^{\mathcal{Z}_0}$ is contained in all \mathcal{Z}_0 -approximating auxiliary relations, and is equal to their intersection if P is a \mathcal{Z}_0 -meet-precontinuous semilattice.

Proof. It is straightforward that $\ll^{\mathcal{Z}_0}$ is contained in all \mathcal{Z}_0 -approximating auxiliary relations. If P is a \mathcal{Z}_0 -meet-precontinuous semilattice, then by Lemma 4.5 we obtain

$$\bigcap \{s_{\prec}(x) \mid \prec \in \operatorname{App}_{\mathcal{Z}_0}(P)\} \subseteq \bigcap \{m_Z(x) \mid Z \in \mathcal{Z}_0^{\wedge} P\}
= \bigcap_{x \in \Delta Z} (\downarrow x \cap Z) \cap \bigcap_{x \notin \Delta Z} \downarrow x
= \downarrow x \cap \bigcap_{x \in \Delta Z} Z
= \downarrow^{\mathcal{Z}_0} x,$$

thus $\ll^{\mathcal{Z}_0}$ includes the intersection of all \mathcal{Z}_0 -approximating auxiliary relations. \square

For a poset, $\ll^{\mathcal{Z}_0}$ is itself not a \mathcal{Z}_0 -approximating relation necessarily. But we may now derive the following theorem.

Theorem 4.7 Let P be a poset and \mathcal{Z}_0 a \land -closed subset selection. Consider the following conditions:

- (1) P is \mathcal{Z}_0 -precontinuous;
- (2) $\ll^{\mathcal{Z}_0}$ is the smallest \mathcal{Z}_0 -approximating auxiliary relation on P;
- (3) there is a smallest \mathcal{Z}_0 -approximating auxiliary relation on P.

Then $(1) \Leftrightarrow (2) \Rightarrow (3)$, and if P is a \mathbb{Z}_0 -meet-precontinuous semilattice, then conditions are equivalent.

Proof. (1) \Leftrightarrow (2): Observe that P is a \mathcal{Z}_0 -precontinuous poset iff $\ll^{\mathcal{Z}_0}$ is a \mathcal{Z}_0 -approximating auxiliary relation. Then the equivalence follows from Proposition 4.6.

 $(2) \Rightarrow (3)$ is clear.

Let P be a \mathcal{Z}_0 -meet-precontinuous semilattice. Then \mathcal{Z}_0 -below relation is equal to the intersection of all \mathcal{Z}_0 -approximating auxiliary relations by Proposition 4.6. Thus, $\ll^{\mathcal{Z}_0}$ has to be the smallest \mathcal{Z}_0 -approximating auxiliary relation. Therefore we have $(3) \Rightarrow (1)$.

5 Conclusion

The collection of all directed subsets is a crucial subset selection in domain theory. The present paper has further exhibited some results of general \mathcal{Z} -continuity which enriches the \mathcal{Z} -theory, a generalization of domain theory. In closed subset selections, we investigated the duality theory for \mathcal{Z} -predistributive (\mathcal{Z} -precontinuous) posets. Finally, we used \mathcal{Z}_0 -approximating auxiliary relations to characterize \mathcal{Z}_0 -precontinuous posets. Naturally, it may take into consideration whether these results are suitable for more subset selections.

References

- Abramsky, S., and A. Jung, Domain theory, in: S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, eds., "Semantic Structures," in: Handbook of Logic in Computer Science 3 (1994), Clarendon Press, pp. 1–168.
- [2] Andrei, B., Z-continuous posets, Discrete Math. **152** (1996), 33–45.
- [3] Bandelt, H.-J., and M. Erné, The category of Z-continuous posets, J. Pure Appl. Algebra 30 (1983), 219–226.
- [4] Bandelt, H.-J., and M. Erné, Representations and embeddings of M-distributive lattices, Houston J. Math. 10 (1984), 315–324.
- [5] Erné, M., Scott convergence and Scott topology in partially ordered sets II, in B. Banaschewski and R.-E. Hoffmann, eds., "Continuous Lattices," in: Lecture Notes in Math. 871 (1981), 61–96.
- [6] Erné, M., Order extensions as adjoint functors, Quaestiones Math. 9 (1986), 149–206.
- [7] Erné, M., The Dedekind-MacNeille completion as a reflector, Order 8 (1991), 159-173.
- $[8] \ Ern\acute{e}, M., \mathcal{Z}\mbox{-}continuous\ posets\ and\ their\ topological\ manifestation, Appl.\ Categ.\ Struct.\ 7\ (1999), 31-70.$
- [9] Erné, M., and D. S. Zhao, Z-join spectra of Z-supercompactly generated lattices. Appl. Categ. Struct. 9 (2001), 41–63.
- [10] Gierz, G., K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, "Continuous Lattices and Domains," Cambridge University Press, 2003.
- [11] Goubault-Larrecq, J., "Non-Hausdorff Topology and Domain Theory," New Mathematical Monographs 22, Cambridge University Press, 2013.
- [12] Huang, M. Q., Q. G. Li, and J. B. Li., Generalized continuous posets and a new cartesian closed category, Appl. Categ. Struct. 17 (2009), 29–42.
- [13] Novak, D., Generalization of continuous posets, Trans. Amer. Math. Soc. 272 (1982), 645-667.
- [14] Ruan, X. J., and X. Q. Xu, s_Z-Quasicontinuous posets and meet s_Z-continuous posets, Topol. Appl. 230 (2017), 295–307.

- [15] Venugopalan, P., Z-continuous posets, Houston J. Math. 12 (1986), 275–294.
- [16] Wright, J. B., E. G. Wagner, and J. W. Thatcher, A uniform approach to inductive posets and inductive closure, Theor. Comput. Sci. 7 (1978), 57–77.
- [17] Zhang, W. F., and X. Q. Xu, Completely precontinuous posets, Electron. Notes Theor. Comput. Sci. 301 (2014), 169–178.
- [18] Zhang, Z. X., and Q. G. Li, A generalization of the Dedekind-MacNeille completion, Semigroup Forum 96 (2018), 553–564.
- [19] Zhou, Y. H., and B. Zhao, Z-abstract basis, Electron. Notes Theor. Comput. Sci. 257 (2009), 153–158.