Analysis Teil 3

- Extremwertaufgaben
- Steckbriefaufgaben
- Funktionsscharen
- Diskriminantenaufgaben

Extremwertaufgaben

Kaninchengehege

$$A(a) = a(8-2a)$$

= $-2a^2 + 89$

$$(3) A'(a) = -4a +8 = 0$$

=> $\alpha = 2$

$$A''(a) = -4 < 0 \Rightarrow HP$$

$$2a + 6 = 8$$

 $b = 8 - 2a$

Rezept

- 1. Skizze anfertigen, falls nicht in der Aufgabenstellung vorhanden
- 2. Funktionsterm für die zu maximierende/minimierende Größe mit *einer* Variable aufstellen
- 3. Extrema bestimmen
- 4. Ergebnis im Kontext interpretieren

Weiteres Beispiel

Sei P(u|v) ein Punkt auf dem Graphen von $f(x) = -x^2 + 4x$ mit $0 \le u \le 3$. Der Ursprung O, der Punkt P und der Punkt N(u|0) begrenzen ein Dreieck. Welchen Flächeninhalt A kann dieses Dreieck maximal haben?

$$A = \frac{1}{2} \cdot 9 \cdot 6$$

$$= \frac{1}{2} \cdot 4 \cdot V$$

$$= \frac{1}{2} \cdot 4 \cdot (-\alpha^2 + 4\alpha)$$

Extremwertaufgaben: Rechenblock

Schwierigkeit	Aufgaben
leicht	
mittel	
schwer	77, 78

Für Schnelle und Unterforderte:

- Aufgabe 87 ff.
- Altabitur 2020 Analysis
- Altabitur 2021 Analysis
- · Antgabenblutt Umfongreiche Antgaben

Steckbriefaufgaben

- 1. Allgemeinen Funktionsterm der gesuchten Funktionsart aufstellen und Ableitungen bilden
- 2. Informationen aus dem Aufgabentext in Gleichungen übersetzen und damit ein Gleichungssystem aufstellen
- 3. Gleichungssystem lösen

Beispiel

Bestimme den Term einer ganzrationalen Funktion 3. Grades, deren Graph Gf am Ursprung einen Extrempunkt und einen Wendepunkt in W(1|1) hat.

1.
$$f(x) = ax^3 + bx^2 + cx + d$$

 $f(x) = 3ax^2 + 26x + c$
 $f'(x) = 6ax + 26$

2. G_f geht durch Ursprung G_f hat Extrempunkt am Ursprung G_f hat Wendepunkt in W(1|1) G_f geht durch Punkt W(1|1)

$$G_f$$
 geht durch Ursprung $\Longrightarrow f(0)=0$ G_f hat Extrempunkt am Ursprung $\Longrightarrow f'(0)=0$ G_f hat Wendepunkt in $W(1|1)\Longrightarrow f''(1)=0$ G_f geht durch Punkt $W(1|1)\Longrightarrow f(1)=1$

3.
$$t(0) = a \cdot 0^{3} + 5 \cdot 0^{2} + (-0) + d = C$$
 = $\int d = 0$
 $f'(0) = 3a \cdot 0^{2} + 25 \cdot 0 + C = 0$ = $\int c = 0$
 $f'(1) = 6a + 25 = 0$
 $f(1) = a + b = 1$
 $f(1) = a + b = 1$
 $f(2) = -\frac{1}{2}x^{3} + \frac{3}{2}x^{2}$
 $f(3) = -\frac{1}{2}x^{3} + \frac{3}{2}x^{2}$

Beispielhaft Informationen

- "enthält den Punkt P(a|b)": f(a)=b
- "hat bei x=a eine einfache NST": f(a)=0
- "hat bei x=a eine doppelte NST": f(a)=0 und $^{\prime}(a)=0$
- ullet "hat bei P(a|b) einen Extrempunkt": f(a)=b und f'(a)=0
- "hat an der Stelle x=a die Steigung m": $f^{\prime}(a)=m$

Steckbriefe: Rechenblock

Schwierigkeit	Aufgaben
leicht	
mittel	
schwer	79, 80, 81, 85

Für Schnelle und Unterforderte:

- Aufgabe 87 ff.
- Aufgabenblatt Analysis Besondere Aufgabentypen
- Altabitur 2020 Analysis
- Altabitur 2021 Analysis

Funktionsscharen

Extrempunkte einer Schar

$$f_{t}(x) = x^{2} + 2tx + 2x + 1, \quad t \ge 0.$$

$$f'_{t}(x) = 2x + 2t + 2 = 0 \quad |-2\epsilon - 2|$$

$$2x = -2\epsilon - 2 \quad |\cdot 2$$

$$x = -t - 1$$

$$f''_{t}(x) = 2 > 0 \quad \forall \quad TP(-t - 1| - t^{2} - 2\epsilon)$$

$$Y = f(-\epsilon - 1) = [-\epsilon - 1]^{2} + 2t(-\epsilon - 1) + 1$$

$$= (-\epsilon - 1)^{2} + 2t(-\epsilon - 1) + 1$$

$$= (-\epsilon - 1)^{2} + 2(-\epsilon - 1) + 1$$

$$= (-\epsilon - 1)^{2} + 2(-\epsilon - 1) + 1$$

$$= (-\epsilon - 1)^{2} + 2(-\epsilon - 1) + 1$$

$$= (-\epsilon - 1)^{2} + 2(-\epsilon - 1) + 1$$

Gemeinsame Schnittpunkte

$$f_{t}(x) = x^{2} + tx + 1 - t$$
Suche ein x , sodass t and der function verschwindet
$$x = 1 \qquad P(112)$$

$$t_{t}(1) = x^{2} + t + 1 - t = 1$$

$$x^{2} + tx + 1 - t = x^{2} + 1 \qquad |-x^{2}| = 1$$

$$x^{2} + tx + 1 - t = x^{2} + 1 \qquad |-x^{2}| = 1$$

$$x^{2} + tx + 1 - t = x^{2} + 1 \qquad |-x^{2}| = 1$$

$$x^{2} + tx + 1 - t = x^{2} + 1 \qquad |-x^{2}| = 1$$

Scharen: Rechenblock

Schwierigkeit	Aufgaben
leicht	
mittel	
schwer	82, 83, 84

Für Schnelle und Unterforderte:

- Aufgabe 87 ff.
- Aufgabenblatt Analysis Besondere Aufgabentypen
- Altabitur 2020 Analysis
- Altabitur 2021 Analysis

Bestimme einen Parameter so, dass ein Problem keine/eine/zwei Lösungen hat

Gegeben sind die Funktion $f(x)=x^2+4$ und die Geradenschar $g_a(x)=ax$. Bestimme alle a für die f(x) und g(x) keinen Schnittpunkt haben.

Berechnung

$$f(x) = g(x)$$

$$x^{2} + 4 = \alpha x$$

$$x^{2} - \alpha x + 4 = 0$$

$$x_{1,2} = \frac{\alpha \pm \sqrt{-\alpha^{2} - 4 \cdot 1 \cdot 4}}{2} = \frac{\alpha \pm \sqrt{\alpha^{2} - 16}}{2}$$

$$\alpha^{2} - 16 = 0 \quad (\pm 16)$$

$$\alpha^{2} = 16 \quad (\pm 16)$$

$$4 + 16 \quad (\pm 16)$$

Diskriminante

Die Wurzel in der Mitternachtsformel $x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ heißt Diskriminante. Der Term b^2-4ac unter der Wurzel entscheidet darüber, wie viele Lösungen die Gleichung hat.

- $b^2 4ac < 0 \implies$ keine Lösung
- $b^2-4ac=0 \implies$ eine Lösung
- ullet $b^2-4ac>0 \implies$ zwei Lösungen

Es muss also eine Ungeichung, wie bei den Definitionsbereichen gelöst werden!

Rezept

- 1. Allgemein Lösungsgleichung aufstellen
- 2. Nach dem "Problemfall" in der Gleichung suchen (eingeschränkter Definitionsbereich)
- 3. Ungleichung je nach Lösung gewünscht oder unerwünscht aufstellen und Lösen (wie mit Definitionsbereichen)

Lösungsmengen: Rechenblock

- ullet Bestimme einen Bereich für a, sodass $f(x)=rac{1}{x}-2$ und $g_a(x)=ax$ keinen Schnittpunkt haben
- ullet Bestimme einen Bereich für a, sodass $f(x)=\sqrt{x-1}$ und $g_a(x)=ax$ mindestens einen Schnittpunkt haben

Für Schnelle und Unterforderte:

- Aufgabe 87 ff.
- Aufgabenblatt Analysis Besondere Aufgabentypen
- Altabitur 2020 Analysis
- Altabitur 2021 Analysis