





# Pathway of Greenland Meltwater Revealed by Passive Tracers in a NEMO Simulation

#### **Xianmin Hu and Paul G. Myers**

Department of Earth and Atmosphere Sciences
University of Alberta

3rd Annual VITALS Science Meeting, Halifax, NS, Oct 19-21, 2015



Model configuration and experiment setup

- evolution of passive tracer content
- travel time to the Labrador Sea
- vertical distribution of passive tracers
- Summary and future work

Model configuration and experiment setup

- evolution of passive tracer content
- travel time to the Labrador Sea
- vertical distribution of passive tracers
- Summary and future work

# **Model Configuration**



**ANHA: Arctic and Northern Hemisphere Atlantic** 

# **Experiment Setup**



#### Initialization:

**3D T, S, U and V** (GLORYS2v3, Jan02) **SSH and Sea Ice** 

Atmospheric forcing (CGRF, hourly):

T2, Q2, U10, V10
Precipitation ~ 33km
Radiation (SW & LW)

#### Runoff:

Inter-annual Dai and Trenberth's runoff

+ Jonathan Bamber's Greenland melt

#### **OBC:**

U, V, T and S (GLORYS2v3)

NO temperature & salinity restoring

Jan 2002 - Dec 2013

**CGRF**: CMC GDPS reforecasts

**GDPS**: Global Deterministic Prediction System

**CMC**: Canadian Meteorological Centre

**GLORYS:** GLobal Ocean ReanalYses and Simulations

#### **How to Create the Runoff Data**



#### **How to Add the Passive Tracers**



- five passive tracers
- proportional to the amount of runoff
- start adding tracers from Jan 2004

$$\Delta c = \frac{\Delta t}{\rho_o \cdot e3t_1} \cdot rnf$$

$$\frac{s}{\frac{kg}{m^3} \cdot m} \cdot \frac{kg}{m^2 \cdot s} = unitless$$



Model configuration and experiment setup

- evolution of passive tracer content
- travel time to the Labrador Sea
- vertical distribution of passive tracers
- Summary and future work

## **Evolution of Total Passive Tracer Content**



#### **Travel Time to Reach the Labrador Sea**



## **Travel Time to Reach the Labrador Sea**











Model configuration and experiment setup

- evolution of passive tracer content
- travel time to the Labrador Sea
- vertical distribution of passive tracers
- Summary and future work

# **Summary and Future Work**

- passive tracers nicely show the pathway of Greenland meltwater
- Greenland meltwater, particularly from the southeast, can reach Labrador Sea continent shore and slope region within one year, then spread in the subpolar gyre.
- Labrador Sea interior is accumulating over the whole simulation period
- large amount of passive tracers accumulated within Baffin Bay, even the deep basin, why?
- how does the Greenland meltwater impact coastal currents