

Syllabus(2016-1)

Course Title	Smart Software Project	Course No.	37269-01	
Department/ Major	Computer Science and Engineering	Credit/Hours	3	
Class Time/ Classroom	Mon 2:00pm ~ 6:15pm (Asan Eng. 122)			
lastausta.	Name: Prof. HyungJune Lee	Department: (Computer Science & Engineering	
Instructor	E-mail: <u>hyungjune.lee@ewha.ac.kr</u>	: <u>hyungjune.lee@ewha.ac.kr</u> Telephone: 02-3277-6644		
Office Hours/ Office Location	Thu 3:30pm ~ 5pm (Asan Eng. 321-1)			

I. Course Overview

1. Course Description

This course is a hands—on embedded system programming and project course based on an Arduino hardware and software platform. The objective of this course is to provide students with the basics of designing, interfacing, configuring, and programming real—world embedded systems. Students will have valuable opportunities of applying the knowledge of computer architecture and embedded programming for implementing their own smart robot software as a term project. This course is intended to prepare students for cutting edge careers in research and industry.

2. Prerequisites

There are the following prerequisites for taking this course:

- Computer Programming and Lab(36339) or any C-language course is a prerequisite course.
- Computer Engineering Design(36503) is a prerequisite course.
- Computer Architecture(20493) is a recommended course.

Any prior knowledge of Android programming is not necessary.

3. Course Format

Lecture	Discussion/Presentation	Experiment/Practicum	Field Study	Other
40 %	10 %	50 %		%

(Instructor can change to match the actual format of the class.)

This course consists of a lecture class and a lab session each week:

- Lecture class: to provide fundamental and advanced concepts of low-level embedded hardware/software and high-level software algorithms
- Lab session: to practice in-lab programming exercises of controlling the SmartCAR Arduino platform

Arduino Mega 2560-based SmartCAR (Figure 1) with Nexus 7 Android tablet will be used for lab classes and a term project. Two students will form a team for the labs and the term project, and will share to use one SmartCAR robot within team.

Figure 1. Arduino Mega 2560-based SmartCAR Robot Platform

4. Course Objectives

The objective of this course is to provide students with the basics of designing, interfacing, configuring, and programming real—world embedded systems. Students will have valuable opportunities of applying the knowledge of computer architecture and embedded programming for implementing their own smart robot software as a term project. This course is intended to prepare students for cutting edge careers in research and industry.

5. Evaluation System

Midterm Exam	Final Exam	Quizzes	Presentation	Projects	Assignments	Participation	Other
25 %	%	%	%	50 %	20 %	5 %	%

(Instructor can change to match the actual format of the class.)

st Evaluation of group projects may include peer evaluations.

Explanation of evaluation system:

- There will be weekly lab assignments, midterm, project proposal, final report, and term project.
- Late homework submissions will be acceptable up to 3 days with the score penalty of -30%.
- This course syllabus is subject to change, and the instructor reserves the right to change the policy.

II. Course Materials and Additional Readings

1. Required Materials

Textbook:

■ There is no textbook required for this course. We will use lecture slides that will be posted prior to each class.

2. Supplementary Materials

References:

- Official Arduino website -http://www.arduino.cc/
- Arduino Mega 2560 website http://arduino.cc/en/Main/arduinoBoardMega2560/
- Any Arduino-related programming book

3. Optional Additional Readings

III. Course Policies

- * For laboratory courses, all students are required to complete lab safety training.
- This course will be offered in English.
- iPad will be used to provide students with dynamic education environments.

IV. Course Schedule (15 credit hours must be completed.)

Week	Date	Topics & Class Materials, Assignments
Week 1	(03/07)	Course introduction
	(03/07)	Arduino introduction: platform & programming environment
Week 2	(03/14)	Embedded system overview & Source management in collaborative repository (using GitHub)
	(03/14)	Lab 1: Arduino Mega 2560 board & SmartCAR platform
Week 3	(03/21)	ATmega2560 Micro-controller (MCU): architecture & I/O ports, Analog vs. Digital, Pulse Width Modulation
	(03/21)	Lab 2: SmartCAR LED control
	(03/28)	Analog vs. Digital & Pulse Width Modulation
Week 4	(03/28)	Lab 3: SmartCAR motor control (Due: HW on creating project repository using GitHub)
Wools F	(04/04)	ATmega2560 MCU: memory, I/O ports, UART
Week 5	(04/04)	Lab 4: SmartCAR control via Android Bluetooth

Week	Date	Topics & Class Materials, Assignments	
Week 6	(04/11)	ATmega2560 UART control &	
	(2.44)	Bluetooth communication between Arduino platform and Android device Lab 5: SmartCAR control through your own customized Android app	
	(04/11)	(Due: Project proposal)	
Week 7	(04/18)	Midterm exam	
HOOK 1	(04/18)		
Week 8	(04/25)	ATmega2560 Timer, Interrupts & Ultrasonic sensors	
Week o	(04/25)	Lab 6: SmartCAR ultrasonic sensing	
We als O	(05/02)	Infrared sensors & Buzzer	
Week 9	(05/02)	Lab 7: SmartCAR infrared sensing	
W1- 40	(05/09)	Acquiring location information from Android device & line tracing	
Week 10	(05/09)	Lab 8: Implementation of line tracer	
101 1 44	(05/16)	Gyroscope, accelerometer, and compass sensors	
Week 11	(05/16)	Lab 9: Using gyroscope, accelerometer, and compass sensors	
W 1 40	(05/23)	Project	
Week 12	(05/23)	Team meeting (for progress check)	
	(05/30)	Project	
Week 13	(05/30)	Team meeting (for progress check)	
	(06/06)	Course wrap-up & next steps (1)	
Week 14	(06/06)	Course wrap-up & next steps (2)	
	(06/13)	Project presentation & demo (1)	
Week 15	, , , , ,	(Due: source code, presentation slides, & poster slide)	
Malaansa	(06/13)	Project presentation & demo (2)	
Makeup Classes 1	(06/07)	Online Video Lecture Make-up for Jun 6	
Makeup Classes 2	(mm/dd)		

V. Special Accommodations

* According to the University regulation #57, students with disabilities can request special accommodation related to attendance, lectures, assignments, and/or tests by contacting the course professor at the beginning of semester. Based on the nature of the students' requests, students can receive support for such accommodations from the course professor and/or from the Support Center for Students with Disabilities (SCSD).

^{*} The contents of this syllabus are not final—they may be updated.