semestre 1

Tangente à une courbe

Définition 1. Soit f une fonction continue et dérivable sur un intervalle $Iin\mathbb{R}$. La droite qui passe par les points distincts $(x_0, f(x_0))$ et (x, f(x)) a pour coefficient directeur $\frac{f(x)-f(x_0)}{x-x_0}$, dont on a vu que la limite, quand x tend vers x_0 , est $f'(x_0)$. On appelle **tangente** au point $(x_0, f(x_0))$ la droite d'équation :

$$y = (x - x_0)f'(x_0) + f(x_0)$$

Exercice 1. Déterminer une équation de la tangente au point d'abscisse x_0 donné, à la représentation graphique des fonctions suivantes:

1.
$$f_1(x) = \frac{x-1}{x+1}$$
, $x_0 = 0$.

3.
$$f_3(x) = \frac{x(\ln(x))^2 + 1}{1 + x^2}, x_0 = 1.$$

4. $f_4(x) = \frac{x - 1}{x^2 + 1}, x_0 = a.$

1.
$$f_1(x) = \frac{x-1}{x+1}, x_0 = 0.$$

2. $f_2(x) = \frac{x^3+x+1}{x^2}, x_0 = 1.$

4.
$$f_4(x) = \frac{x-1}{x^2+1}, x_0 = a$$

Droites asymptotes

Définition 2. Soit f une fonction continue sur un intervalle I, éventuellement non bornée, de \mathbb{R} et soient a et b deux nombres réels.

- 1. On dit que la droite d'équation x = a est une asymptote verticale à la courbe représentative de f en a si $\lim_{x\to a} f(x) = \pm \infty$.
- 2. On dit que la droite d'équation y=b est une **asymptote horizontale** à la courbe représentative de f si $\lim_{x\to\pm\infty} f(x) = b$.
- 3. On dit que la droite d'équation y = ax + b est une **asymptote oblique** à la courbe représentative de f si $\lim_{x\to\pm\infty} (f(x) - (ax+b)) = 0$.

- Pour déterminer les coefficients a et b d'une asymptote oblique, on commence par calculer $\lim_{x\to\pm\infty}\frac{f(x)}{x}=a$ puis $\lim_{x\to\pm\infty}f(x)-ax=b$.

- Dans le cas où $\lim_{x\to\pm\infty} f(x) - ax = \pm\infty$, on parlera alors de **branche parabolique** de direction y = ax.

- Exemple 1. Soit f définie par $\frac{x^2+x+1}{x+1}$ sur $\mathbb{R}\setminus\{-1\}$.

 On a $\lim_{x\to -1^+} f(x) = +\infty$ et $\lim_{x\to -1^-} f(x) = -\infty$ donc la droite d'équation x=-1 est une asymptote verticale à Γ_f en -1.

- Par ailleurs $\lim_{x \to +\infty} \frac{x^2 + x + 1}{x + 1} = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$. Comme de plus $\lim_{x \to +\infty} f(x) - x = 2$, on en déduit que la droite d'équation y = x + 2 est une asymptote oblique à Γ_f en $+\infty$.

On montre de même que la droite d'équation y = x + 2 est une asymptote oblique à Γ_f en $-\infty$.

Exercice 2. Déterminer les asymptotes à la représentation graphique de la fonction fdéfinie par $f(x) = \frac{x^2 - 2x + 5}{x - 1}$

Exercice 3. Faites l'étude complète de la fonction définie par $f(x) = (x+1)(1+e^{-x})$