图灵2201 张祎迪

5.1 根据表 5.1 所给的训练数据集,利用信息增益比(C4.5 算法)生成决策树

		表 5.1 货	贷款申请样本数据表			
ID	年龄	有工作	有自己的房子	信贷情况	类别	
1	青年	否	否	一般	否	
2	青年	否	否	好	否	
3	青年	是	否	好	是	
4	青年	是	是	一般	是	
5	青年	否	否	一般	否	
6	中年	否	否	一般	否	
7	中年	否	否	好	否	
8	中年	是	是	好	是	
9	中年	否	是	非常好	是	
10	中年	否	是	非常好	是	
11	老年	否	是	非常好	是	
12	老年	否	是	好	是	
13	老年	是	否	好	是	
14	老年	是	否	非常好	是	
15	老年	否	否	一般	否	

取 A_1, A_2, A_3, A_4 分别表示特征 [年龄、有工作、有自己的房子和信贷] D表示数据集

Step1: 计算加入每个特征带来的信息增益比

注 $g_R(D,A_i)$ 的计算值已经在书中给出

$$\begin{split} g_R(D,A_1) &= \frac{g(D,A_1)}{H_{A_1(D)}} = \frac{0.083}{-3*\frac{5}{15}log_2\frac{5}{15}} = 0.052 \\ g_R(D,A_2) &= \frac{g(D,A_1)}{H_{A_1(D)}} = \frac{0.324}{-\frac{5}{15}log_2\frac{5}{15} - \frac{10}{15}log_2\frac{10}{15}} = 0.353 \\ g_R(D,A_3) &= \frac{g(D,A_1)}{H_{A_1(D)}} = \frac{0.420}{-\frac{6}{15}log_2\frac{6}{15} - \frac{9}{15}log_2\frac{9}{15}} = 0.433 \\ g_R(D,A_4) &= \frac{g(D,A_1)}{H_{A_1(D)}} = \frac{0.363}{-\frac{5}{15}log_2\frac{5}{15} - \frac{6}{15}log_2\frac{6}{15} - \frac{4}{15}log_2\frac{4}{15}} = 0.232 \end{split}$$

- $max(g_R(D, A_i)) = g_R(D, A_3) = 0.433$
- :. 取特征 A_3 作为根结点的特征,将训练集分成两个子集 D_1 :是(有自己的房子) D_2 : 否(没有自己的房子)

Step2: 对划分后的子集依次递归地重复进行step1 知道满足终止条件,具体过程为

- D₁ 中只包含"是"的样本点,满足终止条件,所以可以直接作为叶子结点
- 对 D_2 进行进一步的划分 $g_R(D_2,A_1) = \frac{g(D_2,A_1)}{H_{A_1(D_2)}} = \frac{0.251}{-\frac{4}{9}log_2\frac{4}{9} \frac{2}{9}log_2\frac{2}{9} \frac{3}{9}log_2\frac{3}{9}} = 0.164$ $g_R(D_2,A_1) = \frac{g(D_2,A_1)}{H_{A_1(D_2)}} = \frac{0.918}{-\frac{3}{9}log_2\frac{3}{9} \frac{6}{9}log_2\frac{6}{9}} = 1.000$ $g_R(D_2,A_1) = \frac{g(D_2,A_1)}{H_{A_1(D_2)}} = \frac{0.363}{-\frac{4}{9}log_2\frac{4}{9} \frac{4}{9}log_2\frac{4}{9} \frac{1}{9}log_2\frac{1}{9}} = 0.340$

同理,选择 A_2 作为特征,并将 D_2 分割成两个子集 D_3 :是(有工作) D_2 : 否(没有工作) 而 D_3 , D_4 都只含有一类样本,所以终止条件。

最终决策树为:

5.2 已知如表 5.2 所示的训练数据,使用平方误差损失准则生成一个二叉回归树

表 5.2 训练数据表												
x_i	1	2	3	4	5	6	7	8	9	10		
y_i	4.50	4.75	4.91	5.34	5.80	7.05	7.90	8.23	8.70	9.00		

• x_i 为一维的,所以只需选择最优切分点

$$s = 1$$

$$\hat{c_1}=4.5,\hat{c_2}=6.8633$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 22.648$$

• 接下来的计算同理

$$s = 2$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 17.702$$

$$s=3$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 12.193$$

$$s=4$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 7.379$$

$$s = 5$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 3.359$$

$$s = 6$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 5.074$$

$$s = 7$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 10.052$$

$$s = 8$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 15.178$$

$$s = 9$$

$$\sum_{x_i \in R_1(l,s)} (y_i - \hat{c_1})^2 + \sum_{x_i \in R_2(l,s)} (y_i - \hat{c_2})^2 = 21.328$$

$$s = 10$$

• 输入空间不改变

易得,当s=5时,取得最小值,可以将输入空间分为两个区域 $x \le 5$ 和 x > 5 对得到的自区域迭代地进行计算,设定阈值为0.2,最终可以得到二叉回归树为

```
1 5

2 /\\
3 3 7

4 /\\/\\
5 4.72 5.57 6 8

6 /\\/\\
7 7.05 7.9 8.23 8.85
```

• 后面的计算由于原理类似,在计算时直接采用编程方法解决,结果如下