Část I

Struktura pevných látek

1 Krysatlografické soustavy

AAAAAAA

2 Deformace

- typy:
 - tahem/tlakem
 - kroucením
 - ohybem
 - smykem

3 Deformace tahem/tlakem

• Normálové nápětí:

$$\sigma = F/S; [N/m^2] = [Pa]$$

• Změna délky:

$$\Delta l = l - l_0; \ [m]$$

užitečnější většinou relativní prodloužení:

$$\varepsilon = \Delta l/l_0$$
; [bezrozm.]

3.1 Deformační křivka

• lineární úsek (0 - A)

- pružná deformace
- vratná
- platí Hookův zákon:

$$\varepsilon \propto \sigma$$

tedy slovy: relativní prodloužení je přímo úměrné napětí (ano, to je symbol pro přímou úměrnost, zapamatujte si ho)

$$\sigma = E * \varepsilon$$

E - Youngův modul pružnosti (např. ocel = 220 GPa, cín = 55 GPa, tj. tlak potřebný, abychom objekt roztáhli na dvojnásobnou délku)

- nelineární deformace (A B)
 - plastická deformace
 - protažení bylo dost velké, aby přesunulo atomy v krystalické mřížce na jiné místo
 - materiál tedy ztráci schopnost se po deformaci vrátit do původního tvaru
 - při překročení meze pevnosti se materiál prostě trhá na dva kusy

3.1.1 Příklady

1. O kolik se protáhne ocelový drát když na něj zavěsíme závaží:

$$d = 1mm; l = 5m; m = 30kg; E = 220GPa$$

$$\sigma = \frac{F}{S} = \frac{300}{\pi * 0,0005^2}$$

$$\varepsilon = \frac{\sigma}{E}$$

$$\varepsilon = \frac{F}{S * E} = \frac{\Delta l}{l_0}$$

$$\Delta l = \frac{F * l * 0}{S * E} = 8,7 * 10^{-3}m = 8,7mm$$

2. Na ocelové lanko zavěsíme závaží. Jak těžké může být, aby se lanko nepřetrhlo:

$$d = 1mm; \sigma_p = 1, 3GPa; K = 5$$

- (a) závaží je v klidu
- (b) závaží se hýbe nahoru

$$a = 1m/s^2$$

(c) jako kyvadlo OBRAZEKOBRAZEK

Část II

Změny skupenství

Př.: OBRAZEKOBRAZEK m=0,2kg a) teplota varu: 50 stupnu b) c(kap.) $c=Q/(m*deltat)=200/(0,2*40)=25\ Jkg^{-1}K^{-1}$ c) c(plyn) $c=Q/(m*deltat)=200/(0,2*20)=50\ Jkg^{-1}K^{-1}$ d) L_v – skupenské teplo varu [J] $L_v=300J\ l_v=$ měrné skupenské teplo varu $l_v=L_v/m\ [Jkg^{-1}]\ l_v=300/0,2=1500Jkg^{-1}$

Pozn.: pro vodu: l_t (tání) = $332Jkg^{-1} l_v = 2257Jkg^{-1}$

Př.: 1 kg vody z teploty -20 stupnu -¿ pára 100 stupnu, P=1kW led -20 stupnu -¿ led 0 stupnu: $(c_{ledu}=2100Jkg^{-1})~Q=m*c*deltat=42kJ$ -¿ 42 s led 0 stupnu -¿ voda 0 stupnu: $L_t=m*l_t=332kJ$ -¿ 5 min 32 s voda 0 stupnu -¿ voda 100 stupnu $(c_{vody}=4180Jkg^{-1})~Q=m*c*deltat=418kJ$ -¿ 6 min 58 s voda 100 stupnu -¿ pára 100 stupnu: $L_v=m*l_v=2257kJ$ -¿ 37 min 37 s (to je šílený)

Pozn.: Hranaty graf plati u krystalickych latek, u amorfnich latek (kvuli nedokonalostem v uskupeni) je graf obly OBRAZEKOBRAZEK AAAAAAAA REALNE TOHLE NEMAM SANCI DODELAT

Část III

Kmitání

Oscilátor: cokoliv co kmitá, např. kyvadlo, pravítko (lol)

4 Kinematika oscilátoru

Zjednodušení: uvažujeme tzv. harmonický oscilátor – nemá ztráty, kmitá stále stejně (grafem je sinusoida) Značení: y – okamžitá výchylka y_m – maximální výchylka (max. amplituda), y je z $[-y_m;y_m]$ AAAAAA T – perioda [s] f – frekvence $[s^{-1}=\mathrm{Hz}]$, f*T=1 ω – úhlová frekvence (ekviv. úhlová rychlost), $\omega=\frac{\alpha}{t}=\frac{2\pi}{T}=2\pi f[s^{-1}]$ v – obvodová rychlost, $v=\frac{s}{t}=\frac{2\pi r}{T}=2\pi rf[ms^{-1}]$ Pozn.: Průmět přímoč. pohybu po kružnici na jedné ose je sinusoida – kmitání je točení v jedné ose Poloha: OBRAZEKOBRAZEK $y=y_m*sin(\alpha)$, přejmenujeme $\to y_m$, $\alpha=\omega t \Rightarrow y=y_m*sin(\omega t)$, popř. $y=y_m*sin(\omega t+\phi_0)$, ϕ_0 – počáteční fáze (případný offset na začátku od nul. úhlu) Př.: pružinový oscilátor: $y_m=10cm$, T=1,2s a) rovnice: $\omega=\frac{2\pi}{T}=\frac{5\pi}{3}s^{-1}$ $y=0,1*sin(\frac{5\pi t}{3})$ b) poloha v čase t=0,5 s: $y=0,1*sin(\frac{5\pi t}{6})$ POZOR RAD!!! y=5cm Př.: Rychlost oscilátoru $cos(\alpha)=v/v_0$ $v=v_0*cos(\alpha)$ 1) $\alpha=\omega*t$ 2) $v_0=\omega*r$ 3) $r=y_m\Rightarrow v=\omega*y_m*cos(\omega t+\phi_0)$ $v=\frac{2\pi}{11}*cos(t)$

Zrychlení: OBRAZEKOBRAZEK $v_1 = \omega * r \ a_d = \frac{v_1^2}{r} = \omega^2 * r = \omega^2 * y_m$ $a = a_d * sin(\omega t + \phi_0) \ a = \omega^2 * y_m * sin(\omega t + \phi_0) = \omega^2 * y \Rightarrow$ velikost zrychlení je přímo úměrná okamžité odchylce $a_{max} = \omega^2 * y_m$

AAAAAA hrozně moc pomooc

Př.: Závisí tuhost pružiny na počtu závitů ANO, k vlnovka $\frac{1}{n}$ AAAAAA progresivní pružina (damn liberals)

4.1 Fyzikální kyvadlo

- cokoliv zavěšeného mimo těžiště, tj. v rovnovážné poloze nad těžištěm
- mám těleso, jeho těžiště T, osu otáčení o a délku d mezi nimil

5 Tlumené kmitání

- kromě síly, která je $F \propto -y$ působí i odporová síla, $F_{ODP} \propto -v, F_{ODP} \propto -b * v;$ b součinitel linearního odporu [kg/s] OBRAZEKOBRAZEK
- $y = y_m * e^{-\frac{bt}{2m}} * sin(\omega' t + \phi_0)$
- důsledky
 - 1. je-li b malé $(b^2 \ll 4mk)$; AAAA Př.: tlumí se to velmi pomalu
 - 2. Je-li b velké $(b^2>4mk)$, kmitání je ztlumeno tak moc, že ani nekmitá, nemá to dost velkou sílu $\omega=$ sqrtzáporné číslo OBRAZEKOBRAZEK

6 Energie pružinového oscilátoru

- kinetická: $E_k=\frac{1}{2}mv^2=\frac{1}{2}m*y_m^2*\omega^2*cos^2(\omega t)=\frac{1}{2}k*y_m^2*cos^2(\omega t)$
- $cos(2x) = 2cos^2(x) 1$; $cos^2(x) = \frac{1 + cos(2x)}{2}$ OBRAZEKOBRAZEK y a Ek
- potenciální: $E_p = W = \frac{1}{2}F * y$

7 Vlnění

• $y(x,t) = y_m \sin\left(\frac{2\pi}{\lambda}x - 2\pi ft + \phi\right)$

7.1 Interference vlnění

- ullet skládání vlnění, když se vlny potkají, tak se jednoduše sečtou $y=y_1+y_2$ OBRAZEKOBRAZEK
- \bullet pro jednoduchost budeme skládat vlnění se stejnou $\lambda,$ f a s různou fází
- vlny můžeme jednoduše sčítat pomocí fázorů a kosinové věty
- speciální případy
 - fázory jsou identické konstruktivní interference, dvakrát větší amplituda, stejná frekvence, vln. délka
 - fázory jsou protilehlé destruktivní interference, nulová amplituda

7.2 Stojaté vlnění

- interference postupné a odražené vlny
- $y_1 = y_m sin(\omega t kx)$
- $y_2 = y_m sin(\omega t + kx)$
- $y = y_1 + y_2 = y_m(sin(\omega t kx) + sin(\omega t + kx)) = 2y_mcos(kx)sin(\omega t) = Y_msin(\omega t)$ OBRAZEKOBRAZEK
- najdeme tady uzly (vždy 0, čili $\cos(kx)=0$ čili v každém lichém násobku $\frac{\pi}{2}$) a kmitny (kmitají nejvíc, čili $\cos(kx)=\max$. čili v každém násobku π)
- odraz vlnění
 - pevný konec: po odrazu se otočí fáze, interferují tedy destruktivně a pevný konec je uzel (logicky)
 - volný konec: neotáčí se fáze, vznikne tedy kmitna
- Př.: stojaté vlnění na struně g

Část IV

Elektrostatika

• eletkrický náboj – Q [C – Coulomb] (analogie hmotnosti)

8 Elektrické pole

- \bullet intensita elektrického pole $E^{\rightarrow}=\frac{F_{c}^{\rightarrow}}{e}$ [N/C]
- $\bullet\,$ směr $E^{\rightarrow}=$ směr síly na kladný náboj OBRAZEKOBRAZEK

8.1 Typy elektrického pole

8.1.1 Homogenní pole

• $E^{\rightarrow} = \text{konst. OBRAZEKOBRAZEK}$

8.1.2 Radiální pole

•
$$E = \frac{k*\frac{Q_1Q_2}{r^2}}{Q_2} = k*\frac{Q_1}{r^2}$$
 OBRAZEKOBRAZEK

8.1.3 Dipólové pole

 $\bullet\,$ dva náboje opačného znaménka – $Q_1=Q_2$ OBRAZEKOBRAZEK

8.2 Potenciál elektrického pole

- $\phi = \frac{E_p}{O}$ [J/C]; E_p potenciální energie
- ekvipotenciální plochy místa se stejným potenciálem vždy kolmé na siločary

8.3 Práce, energie

•
$$W = F * s = F * s * cos\alpha$$

8.3.1 V homogenním poli

- $E = \frac{F}{Q} = konst.$
- F = EQ
- $W=E*Q*s=E*Q*s*cos\alpha=E*Q*d; djevzdálenostkolmánasiločary$ OBRAZEKOBRAZEK elektricka $_prace$ W = ΔE_p
- volba 0 u E_p : na záporné nebo uzemněné desce OBRAZEKOBRAZEK volt $_d$ eska $Potenciál: \phi = \frac{E_p}{Q} = \frac{W}{Q} = \frac{EQd}{Q} = E*d$
- Rozdíl potenciálů = napětí $U = \Delta \phi$ [J/C]=[V]
- Intenzita: $E = \frac{U}{d}$ [V/m]
- \bullet Pozn: elektron urychlený napětím 1 V získá energii: $E=W=U*e=1*1, 6*10^{-19}J=1eV$ elektronvolt

5

8.3.2 V radiálním poli

 \bullet OBRAZEKOBRAZEK z A do B: W=F*s,ale F v bodě A je jiná než v B \Rightarrow sílu nahradíme "průměrnou" (geometrický průměrnou) silou mezi A a B

•
$$F_A = k * \frac{Q}{r_A^2}; F_B = k * \frac{Q}{r_B^2} \Rightarrow F_{pr\mathring{u}m} = \sqrt{F_A * F_B} = \frac{kQ}{r_A r_B}$$

•
$$W = F_{pr\hat{u}m} * s = k * \frac{Q_1Q_2}{r_Ar_B} * (r_B - r_A) = -kQ_1Q_2 * \frac{1}{r} = E_p$$

Pozn.: $F = k * \frac{Q_1 Q_2}{r^2}$; $k = \frac{1}{4\pi\epsilon} \epsilon$ – permitivita prostředí – "prostupnost prostředí pro el. pole" $\epsilon_0 = 8,85 * 10^{-12} C^2 N^{-1} m^{-2} \epsilon >= \epsilon_0 \epsilon_r - -relativní permitivita vzduch – <math>\epsilon_r = 1,0006$ olivový olej – $\epsilon_r = 3,1$ sklo – $\epsilon_r = 5 - 16$ voda – $\epsilon_r = 82$

8.4 Látky v elektrickém poli

- A) vodiče: náboje se mohou pohybovat OBRAZEKOBRAZEK vodic.png
 - elektrostatická indukce rozdělím vodič, zůstává trvale nabitý OBRAZEKOBRAZEK skin $_effect.pngplošnáhustot$ $\sigma = \frac{Q}{S}$; z předch. vzorce: $E = \frac{Q}{S*\epsilon} \Rightarrow \sigma = E*\epsilon$
- B) nevodiče: OBRAZEKOBRAZEK nevodic.png \Rightarrow polarisuje se
 - některé molekuly jsou už "z výroby" polární, např. H_2O

8.5 Kapacita vodiče

• při nabíjení vodiče nábojem Q se zvyšuje jeho napětí U přímo úměrně

 $Q \propto U \ Q = C * U$

• C - kapacita vodiče [C/V] = [F] - farad

Př.: Určete kapacitu koule r = 10 cm $C = \frac{Q}{U} = \frac{Q}{k*^Q} = \frac{r}{k} = 4\pi\epsilon r = 4\pi*8,85*10^{-12}*0,1 = 11pF$

• koule s kapacitou 1 F by měla $9*10^9m$, protopoužívámepF, nF, $mkFsamostatnývodičmákapacitumalou <math>\Rightarrow$ vhodným tvarem ji můžeme zvětšit

6

- ⇒ KONDENSÁTOR
 - deskový
 - válcový OBRAZEKOBRAZEK kondensator.png

Př.: Deskový kondensátor: S = 20 cm², $d = 5cm, C = ?C = Q_{\frac{Q}{U = \frac{Q}{E*d}} = \frac{Q}{Q*d} = \epsilon_{pr.mezideskami} * \frac{S}{d}}$