## Escuela Rafael Díaz Serdán

Física - 2° de Secundaria (2022-2023) Guía de estudio para la evaluación de la Unidad 1



Nombre del alumno: \_



\_ Fecha: \_

| _ Ins               | strucciones —                                                                                 |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
| L                   | ee con atención cada pregunta y realiza lo que se te pide. De ser necesario, desarrolla tus   |  |  |  |  |  |
| res                 | puestas en el espacio determinado para cada pregunta o en una hoja en blanco por separado,    |  |  |  |  |  |
| and                 | otando en ella tu nombre completo, el número del problema y la solución propuesta.            |  |  |  |  |  |
|                     |                                                                                               |  |  |  |  |  |
|                     | Puntuación                                                                                    |  |  |  |  |  |
|                     | Pregunta 1 2 3 4 5 6 7 8 9 10 11 12 Total                                                     |  |  |  |  |  |
|                     | Puntos 15 10 10 15 10 5 5 5 5 10 5 100                                                        |  |  |  |  |  |
|                     | Puntos obtenidos                                                                              |  |  |  |  |  |
|                     |                                                                                               |  |  |  |  |  |
| 1. [15 <sub>]</sub> | puntos] Señala sobre la línea si los siguientes enunciados son verdaderos (V) o falsos (F).   |  |  |  |  |  |
| (a)                 | Las ondas mecánicas como el sonido no pueden viajar en el vacío.                              |  |  |  |  |  |
| (b)                 | La frecuencia de una onda se mide en Hertz.                                                   |  |  |  |  |  |
| (c)                 | Las ondas sonoras siempre viajan a la misma velocidad sin importar el material en el que      |  |  |  |  |  |
|                     | viajen.                                                                                       |  |  |  |  |  |
| (d)                 | El eco es un fenómeno acústico que le atribuimos a la reflexión de una onda.                  |  |  |  |  |  |
| (e)                 | Un ejemplo de refracción de una onda como luz se da cuando sumergimos parcialmente            |  |  |  |  |  |
|                     | un lápiz en un vaso con agua y la imagen de la parte sumergida parece no coincidir con la par |  |  |  |  |  |
|                     | fuera del agua.                                                                               |  |  |  |  |  |
| (f)                 | Todos los materiales absorben las ondas sonoras con la misma intensidad.                      |  |  |  |  |  |
| (g)                 | La velocidad y la rapidez se miden en unidades distintas.                                     |  |  |  |  |  |
| (h)                 | No es lo mismo desplazamiento que trayectoria.                                                |  |  |  |  |  |
| (i)                 | La rapidez tiene magnitud y dirección.                                                        |  |  |  |  |  |
| (j)                 | La rapidez es el cociente de la distancia recorrida por un objeto y el tiempo que tarda en    |  |  |  |  |  |
|                     | recorrerla.                                                                                   |  |  |  |  |  |
| (k)                 | La rapidez es el movimiento a gran velocidad.                                                 |  |  |  |  |  |
| (1)                 | La distancia siempre es una cantidad positiva.                                                |  |  |  |  |  |
| (m)                 | En la aceleración se recorren distancias iguales en tiempos iguales.                          |  |  |  |  |  |
| (n)                 | La aceleración es el cambio en el valor de la velocidad.                                      |  |  |  |  |  |
| $(\tilde{n})$       | La aceleración se mide en las mismas unidades que la velocidad.                               |  |  |  |  |  |
|                     |                                                                                               |  |  |  |  |  |

|          | puntos Escribe la respuesta para cada una de las siguientes preguntas.                                                                                                                       |         |          |              |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------|
| (a       | ) ¿Qué es el tiempo? y, ¿cuál es su unidad de medida fundamental de acu<br>Internacional)?                                                                                                   | erdo c  | on el S  | SI (Sistema  |
|          | internacionar).                                                                                                                                                                              |         |          |              |
|          |                                                                                                                                                                                              |         |          |              |
|          |                                                                                                                                                                                              |         |          |              |
|          |                                                                                                                                                                                              |         |          |              |
| (b       | ) ¿Cuántas horas hay en un siglo? (considera que no existen años bisiestos años tienen 365 días).                                                                                            | , es de | ecir, qu | ie todos los |
|          | Solución:                                                                                                                                                                                    |         |          |              |
|          | 1  siglo = 100  años                                                                                                                                                                         |         |          |              |
|          | =100 	imes 365 días                                                                                                                                                                          |         |          |              |
|          | $=100\times365\times24~\mathrm{horas}$                                                                                                                                                       |         |          |              |
|          | = 876,000  horas                                                                                                                                                                             |         |          |              |
|          |                                                                                                                                                                                              |         |          |              |
| 3. [10   | puntos] Relaciona con una línea recta el enunciado con las unidades de tie                                                                                                                   | mpo c   | ue las   | _            |
| (a       | ) $1,825$ días o $60$ meses son un                                                                                                                                                           |         |          | década       |
| (b       | ) La Tierra completa su período de rotación en esta unidad de tiempo.                                                                                                                        |         |          | ~            |
| (c       | ) Hay tortugas que llegan a vivir más de uno, el árbol más viejo del mu                                                                                                                      | ndo     |          | año          |
|          | hace poco que cumplió 5 y nuestro país es tan jóven que hace 9 años cum                                                                                                                      | plió    |          | día          |
| (d       | hace poco que cumplió 5 y nuestro país es tan jóven que hace 9 años cum<br>2. ¿De qué unidad de tiempo estamos hablando?                                                                     | _       |          |              |
| (d<br>(e | hace poco que cumplió 5 y nuestro país es tan jóven que hace 9 años cum: 2. ¿De qué unidad de tiempo estamos hablando?  Los hay de 28, ocasionalmente 29, 30 y 31 días, pero siempre son 12. |         |          | día          |

4. [15 puntos] Lee el (los) siguiente(s) problema(s) y contesta las preguntas para cada situación (deberás escribir todas las operaciones que te llevan al resultado, incluso si haces uso de la calculadora).

"En sus últimas vacaciones, Raúl y su familia decidieron hacer un viaje en carretera. Primero fueron a la ciudad de Querétaro. El viaje fue de 400 km y lo completaron en 3 horas. Posteriormente viajaron a Monterrey, que se encuentra a 600 km, y les tomó 4 horas llegar ahí."

(a) ¿Cuál es el valor de su velocidad media en la primera etapa de su viaje?

Solución:

De acuerdo con la definición de velocidad media v, se tiene:

$$v = \frac{d}{t}$$

donde d es la distancia recorrida en kilómetros y t el tiempo transcurrido al recorrer dicha distancia; la velocidad media en la primera etapa del viaje (Querétaro, d=400 km en t=3 h) es:

$$v = \frac{d}{t}$$

$$= \frac{400 \text{ km}}{3\text{h}}$$

$$= 133.\overline{3} \text{ km/h}$$

(b) ¿Cuál es el valor de su velocidad media en la segunda etapa?

(c) ¿Cuál es el valor de su velocidad media en todo el viaje?

5. [10 puntos] Completa las afirmaciones de acuerdo con la información que presenta la gráfica de la figrua 1.



Figura 1: La gráfica representa el desplazamiento de un atleta durante su entrenamiento.

(a) ¿Cuál fue la magnitud de la velocidad media durante el primer segundo de entrenamiento?

## Solución:

La velocidad media durante el primer segundo de entrenamiento (punto B) de calcula tomando la distancia recorrida (d=5 m) dividido entre el tiempo t=1 s de recorrido:

$$v = \frac{d}{t}$$
$$= \frac{5 \text{ m}}{1 \text{s}}$$
$$= 5 \text{ m/s}$$

(b) ¿Cuál fue la magnitud de la velocidad media durante los primeros 6 segundos de entrenamiento?

- (c) Después del primer esfuerzo, el atleta permaneció en reposo durante \_\_\_\_\_ segundos.
- (d) La distancia total recorrida fue de \_\_\_\_\_ metros.

- 6. [5 puntos] Todas las mañanas Montse y Ricardo se desplazan de sus casas a la escuela. A ella le gusta caminar y Ricardo utiliza su bicicleta. En la gráfica de la figura 2 se representan sus movimientos.
  - (a) ¿Qué tiempo le tomó llegar a Montse?
    - 20 min.
    - 25 min.
    - 30 min.
    - 35 min.
  - (b) ¿Qué distancia hay entre la casa de Montse y la escuela?
    - 4 km
    - 6 km
    - 8 km
    - (D) 10 km



Figura 2: La gráfica representa los viajes de Montse y Ricardo desde sus casa a la escuela.

- (c) ¿Cuál fue la rapidez media de Montse durante su recorrido?
- (A) 4 m/s (B) 2.86 m/s (C) 5.6 m/s (D) 6 m/s
- (d) ¿Qué significa que sus gráficas se crucen?
  - Que Montse y Ricardo se encontraron 25 minutos después de que ambos partieron de sus casas.
  - (B) Que Montse y Ricardo viajaron con la misma rapidez durante su recorrido a la escuela.
  - Que Montse y Ricardo tenían la misma velocidad después de 25 minutos de su recorrido.
  - (D) Ninguna de las anteriores.
- (e) ¿Quién llegó primero a la escuela?
  - Montse.
  - B) Ricardo.
  - Llegaron al mismo tiempo.
  - No puede determinarse

- 7. [5 puntos] Un mono trepa de manera vertical. Su movimiento se muestra en la siguiente gráfica (Fig. 7) de la posición vertical, y, en función del tiempo, t.
  - (a) ¿Cuál es la rapidez instantánea del mono en  $t=5~\mathrm{s}$ ?
    - (A) 5 m/s
    - (B) 0 m/s
    - $\bigcirc$  2.5 m/s
    - $\bigcirc$  0.4 m/s
  - (b) ¿Cuál es la rapidez instantánea del mono en t=6 s?
    - (A) 5 m/s
    - $\bigcirc$  0 m/s
    - $\bigcirc$  2.5 m/s
    - $\bigcirc$  0.4 m/s
  - (c) ¿Cuál es la rapidez promedio del mono t=4 s y t=7 s?
    - (A) -0.67 m/s
    - (B) 1.5 m/s
    - $\bigcirc$  0.67 m/s
    - $\bigcirc$  0 m/s
  - (d) ¿Cuál es la rapidez promedio del mono t = 4 s y t = 10 s?
    - $\bigcirc$  0.5 m/s
    - $\bigcirc$  1.5 m/s
    - © 0 m/s
    - (D) -0.5 m/s



Figura 3: La gráfica representa el movimiento del mono.

- 8. [5 puntos] Un tigre camina hacia adelante y hacia atrás a lo largo de un borde rocoso. Su movimiento se muestra en la siguiente gráfica (Fig. 8) de la posición vertical, y, en función del tiempo, t.
  - (a) ¿Cuál es la rapidez promedio del tigre entre t=0 s y t=12 s?
    - (A) -0.17 m/s
    - (B) 0 m/s
    - $\bigcirc$  0.17 m/s
    - (D) 12 m/s
  - (b) ¿Cuál es la rapidez promedio del tigre entre t=0 s y t=8 s?
    - (A) 4 m/s
    - (B) -0.25 m/s
    - $\bigcirc$  0.25 m/s
    - $\bigcirc$  2 m/s
  - (c) ¿Cuál es la rapidez instantanea del tigre en t=5 s?
    - $\widehat{\text{A}}$  2 m/s
    - (B) 5 m/s
    - $\bigcirc$  0.40 m/s
    - $\bigcirc$  0 m/s
  - (d) ¿Cuál es la rapidez instantanea del tigre en t = 9 s?
    - (A) -1 m/s
    - $\bigcirc$  0.5 m/s
    - $\bigcirc$  -0.5 m/s
    - (D) -0.1 m/s



Figura 4: La gráfica representa el movimiento del tigre.

- 9. [5 puntos] Elige la opción que conteste correctamente cada una de las siguientes preguntas.
  - (a) Al arrojar una roca en un lago te diste cuenta de que se produjeron unas ondas transversales de 0.8 m de longitud de onda y una frecuencia de onda de 4 hertz. ¿Cuál es la velocidad?
  - (b) ¿Cuánto tiempo tardaría la onda en recorrer una distancia de 96 m?
  - (c) ¿Cuál es la frecuencia de una onda que en un minuto tiene 180 vibraciones completas?
    - (A) 180 Hz (B) 3 Hz (C) 60 Hz (D) 30 Hz
  - (d) Si durante una tormenta eléctrica observas un relámpago y después de 10 segundos escuchas el trueno, ¿a qué distancia de ti se produjo la descarga eléctrica? Considera la velocidad del sonido como 340 m/s.
    - (A) 34 m (B) 340 km (C) 340 m (D) 3.4 km
- 10. [5 puntos] En la Figura 5, se encuentra un diagrama representativo de un comportamiento ondulatorio. Completa los espacios en blanco con la propiedad de las ondas a la que se refiere:

Longitud de onda Dilatación máxima Compresión máxima Propagación de la onda



Figura 5: Diagrama genérico de una onda y algunas de sus características.

- 11. [10 puntos] Relaciona con una línea recta los conceptos con su significado que las representa.
  - (a) Este tipo de ondas necesitan un medio físico para propagarse.
  - (b) Número de ondas que pasan por un punto en un tiempo dado. □
  - (c) El tiempo que le toma a una onda pasar por un punto.
  - (d) En este tipo de ondas, la perturbación se produce en la misma dirección en que viajan.
  - (e) Es la distancia entre dos crestas o dos valles.  $\hfill\Box$
  - (f) Máximo desplazamiento de una onda.  $\square$
  - (g) En este tipo de ondas, la perturbación se produce perpendicularmente a la dirección en que viajan.
  - (h) Cambio de velocidad de una onda al pasar de un medio físico a otro.  $\hfill\Box$
  - (i) Cambio de dirección de una onda cuando choca con un medio en el que no puede viajar.
  - (j) Este tipo de ondas se propagan en el vacío, por ejemplo, la luz. □

- ☐ Onda transversal
- Reflexión
- ☐ Onda longitudinal
- ☐ Longitud de onda
- Refracción
- Onda mecánica
- Período
- ☐ Frecuencia de onda
- ☐ Amplitud
- ☐ Onda electromagnética
- 12. [5 puntos] En la Figura 6, se encuentra un diagrama representativo de un comportamiento ondulatorio. Completa los espacios en blanco con la propiedad de las ondas a la que se refiere:



Figura 6: Diagrama genérico de una onda y algunas de sus características.