Проект

Единый государственный экзамен по МАТЕМАТИКЕ

Демонстрационный вариант

контрольных измерительных материалов единого государственного экзамена 2018 года по математике

Профильный уровень

подготовлен Федеральным государственным бюджетным научным учреждением

«ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 2/18

Единый государственный экзамен по МАТЕМАТИКЕ

Пояснения к демонстрационному варианту контрольных измерительных материалов для единого государственного экзамена 2018 гола по МАТЕМАТИКЕ

При ознакомлении с демонстрационным вариантом контрольных измерительных материалов ЕГЭ 2018 г. следует иметь в виду, что задания, включённые в него, не отражают всех вопросов содержания, которые будут проверяться с помощью вариантов КИМ в 2018 г. Полный перечень вопросов, которые могут контролироваться на едином государственном экзамене 2018 г., приведён в кодификаторе элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена 2018 г. по математике.

Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику $E\Gamma \ni$ и широкой общественности составить представление о структуре будущих КИМ, количестве заданий, об их форме и уровне сложности. Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, дают представление о требованиях к полноте и правильности записи развёрнутого ответа.

Эти сведения позволят выпускникам выработать стратегию подготовки к ЕГЭ.

^{© 2018} Федеральная служба по надзору в сфере образования и науки Российской Федерации

Демонстрационный вариант контрольных измерительных материалов для проведения в 2018 году единого государственного экзамена по МАТЕМАТИКЕ

Профильный уровень

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 8 заданий с кратким ответом базового уровня сложности. Часть 2 содержит 4 задания с кратким ответом повышенного уровня сложности и 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–12 записываются по приведённому ниже <u>образцу</u> в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1.

КИМ

Otret: <u>-0,8</u>.

Бланк

Ответ:

При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, или капиллярной, или перьевой ручек.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

$$\begin{aligned} \sin^2\alpha + \cos^2\alpha &= 1\\ \sin 2\alpha &= 2\sin\alpha \cdot \cos\alpha\\ \cos 2\alpha &= \cos^2\alpha - \sin^2\alpha\\ \sin(\alpha + \beta) &= \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta\\ \cos(\alpha + \beta) &= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \end{aligned}$$

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 4/18

Ответом к заданиям 1–12 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

Часть 1

1	Поезд отправился из Санкт-Петербурга в 23 часа 50 минут (время московское) и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?
	Ответ:
2	На рисунке точками показана средняя температура воздуха в Сочи за каждый месяц 1920 г. По горизонтали указаны номера месяцев; по вертикали — температура в градусах Цельсия. Для наглядности точки соединены линией.
	Сколько месяцев средняя температура была больше 18 градусов Цельсия? Ответ:
3	На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

	Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 5 / 18
4	В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.
	Ответ:
5	Найдите корень уравнения $3^{x-5}=81$.
	Ответ:
6	Треугольник ABC вписан в окружность с центром O . Угол BAC равен 32° . Найдите угол BOC . Ответ дайте в градусах.
	Ответ:
7	На рисунке изображён график дифференцируемой функции $y=f(x)$. На оси абсцисс отмечены девять точек: $x_1,\ x_2,\ \dots\ x_9$.
	$y = f(x)$ $y = f(x)$ $x_1 x_2 x_3 x_4 = 0 x_7 x_8 x_9 x$
	Найдите все отмеченные точки, в которых производная функции $f(x)$ отрицательна. В ответе укажите количество этих точек.
	Ответ:

8	В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. На какой высоте будет находиться уровень жидкости во втором сосуде? Ответ выразите в см.
	Не забудьте перенести все ответы в бланк ответов № 1.
	Часть 2
9	Найдите $\sin 2\alpha$, если $\cos \alpha = 0,6$ и $\pi < \alpha < 2\pi$.
	Ответ:
10	Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением $v = c \cdot \frac{f - f_0}{f + f_0},$
	где c =1500 м/с — скорость звука в воде; f_0 — частота испускаемого сигнала (в МГц); f — частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с. Ответ:
11	Весной катер идёт против течения реки в $1\frac{2}{3}$ раза медленнее, чем по течению.
	Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в $1\frac{1}{2}$ раза медленнее, чем по течению. Найдите скорость
	течения весной (в км/ч).
	Ответ:
12	Найдите точку максимума функции $y = \ln(x+4)^2 + 2x + 7$.
	Ответ:
	Не забудьте перенести все ответы в бланк ответов № 1.

© 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 6 / 18

Для записи решений и ответов на задания 13–19 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение $\cos 2x = 1 \cos \left(\frac{\pi}{2} x\right)$
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки M и N— середины рёбер AA_1 и A_1C_1 соответственно.
 - а) Докажите, что прямые *BM* и *MN* перпендикулярны.
 - б) Найдите угол между плоскостями ВМN и АВВ1.
- 15 Решите неравенство $\frac{9^x 2 \cdot 3^{x+1} + 4}{3^x 5} + \frac{2 \cdot 3^{x+1} 51}{3^x 9} \le 3^x + 5.$
- Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
 - а) Докажите, что прямые AD и BC параллельны.
 - б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
- 17 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
 - -1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r **целое** число;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

D COOLDCIALDIII CO C	тоду го що						
Дата	15.01	15.02	15.03	15.04	15.05	15.06	15.07
Долг (в млн рублей)	1	0,6	0,4	0,3	0,2	0,1	0

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 8 / 18

18 Найдите все положительные значения a, при каждом из которых система

$$\begin{cases} (|x|-5)^2 + (y-4)^2 = 9, \\ (x+2)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение.

- 19 На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно –3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно –8.
 - а) Сколько чисел написано на доске?
 - б) Каких чисел написано больше: положительных или отрицательных?
 - в) Какое наибольшее количество положительных чисел может быть среди них?

Система оценивания экзаменационной работы по математике (профильный уровень)

Каждое из заданий 1–12 считается выполненными верно, если экзаменуемый дал верный ответ в виде целого числа или конечной десятичной дроби. Каждое верно выполненное задание оценивается 1 баллом.

Ответы к заланиям 1–12

No	
	Ответ
задания	
1	8
2	4
3	6
4	0,08
5	9
6	64
7	4
8	4
9	-0,96
10	-0,96 751
11	5
12	-5

Решения и критерии оценивания заданий 13-19

Количество баллов, выставленных за выполнение заданий 13–19, зависит от полноты решения и правильности ответа.

Общие требования к выполнению заданий с развёрнутым ответом: решение должно быть математически грамотным, полным, все возможные случаи должны быть рассмотрены. Методы решения, формы его записи и формы записи ответа могут быть разными. За решение, в котором обоснованно получен правильный ответ, выставляется максимальное количество баллов. Правильный ответ при отсутствии текста решения оценивается в 0 баллов.

Эксперты проверяют только математическое содержание представленного решения, а особенности записи не учитывают.

При выполнении задания могут использоваться без доказательства и ссылок любые математические факты, содержащиеся в учебниках и учебных пособиях, входящих в Федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ среднего общего образования.

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 10 / 18

- 13 a) Решите уравнение $\cos 2x = 1 \cos\left(\frac{\pi}{2} x\right)$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2};-\pi\right)$.

Решение. а) Преобразуем обе части уравнения:

$$1-2\sin^2 x = 1-\sin x$$
; $2\sin^2 x - \sin x = 0$; $\sin x(2\sin x - 1) = 0$

откуда $\sin x = 0$ или $\sin x = \frac{1}{2}$.

Из уравнения $\sin x = 0$ находим: $x = \pi n$, где $n \in \mathbb{Z}$.

Из уравнения $\sin x = \frac{1}{2}$ находим: $x = (-1)^k \frac{\pi}{6} + \pi k$, где $k \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни уравнения, принадлежащие промежутку

$$\left[-\frac{5\pi}{2};-\pi\right).$$

Получаем числа: -2π ; $-\frac{11\pi}{6}$; $-\frac{7\pi}{6}$.

Other: a) πn , $n \in \mathbb{Z}$; $(-1)^k \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$.

6)
$$-2\pi$$
; $-\frac{11\pi}{6}$; $-\frac{7\pi}{6}$.

Баллы
2
1
0
2

14

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки M и N— середины рёбер AA_1 и A_1C_1 соответственно.

- а) Докажите, что прямые ВМ и МN перпендикулярны.
- б) Найдите угол между плоскостями BMN и ABB_1 .

Решение. а) Пусть точка H — середина AC. Тогда $BN^2 = BH^2 + NH^2 = \left(3\sqrt{3}\right)^2 + 6^2 = 63.$

Вместе с тем,

$$BM^2 + MN^2 = (3^2 + 6^2) + (3^2 + 3^2) = 63$$

а тогда по теореме, обратной теореме Пифагора, треугольник BMN является прямоугольным с прямым углом M .

б) Проведём перпендикуляр NP к прямой A_1B_1 . Тогда $NP \perp A_1B_1$ и $NP \perp A_1A$. Следовательно, $NP \perp ABB_1$. Поэтому MP — проекция MN на плоскость ABB_1 .

Прямая BM перпендикулярна MN, тогда по теореме о трёх перпендикулярах $BM \perp MP$. Следовательно, угол NMP — линейный угол искомого угла.

Длина *NP* равна половине высоты треугольника $A_1B_1C_1$, то есть $NP = \frac{3\sqrt{3}}{2}$.

Поэтому
$$\sin \angle NMP = \frac{NP}{MN} = \frac{3\sqrt{3}}{2 \cdot 3\sqrt{2}} = \frac{\sqrt{3}}{\sqrt{8}}.$$

Следовательно, $\angle NMP = \arcsin \sqrt{\frac{3}{8}}$.

Ответ: б) $\arcsin \sqrt{\frac{3}{8}}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в пунктах a и δ	2
Выполнен только один из пунктов a и δ	1
Решение не соответствует ни одному из критериев, приведённых	0
выше	
Максимальный балл	2

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 12 / 18

15

Решите неравенство
$$\frac{9^x - 2 \cdot 3^{x+1} + 4}{3^x - 5} + \frac{2 \cdot 3^{x+1} - 51}{3^x - 9} \le 3^x + 5.$$

Решение. Пусть $t = 3^x$, тогда неравенство примет вид:

$$\frac{t^2 - 6t + 4}{t - 5} + \frac{6t - 51}{t - 9} \le t + 5; \frac{(t - 1)(t - 5)}{t - 5} - \frac{1}{t - 5} + \frac{6(t - 9)}{t - 9} + \frac{3}{t - 9} \le t + 5;$$
$$-\frac{1}{t - 5} + \frac{3}{t - 9} \le 0; \frac{t - 3}{(t - 5)(t - 9)} \le 0,$$

откуда $t \le 3$; 5 < t < 9.

При $t \le 3$ получим: $3^x \le 3$, откуда $x \le 1$.

При 5 < t < 9 получим: $5 < 3^x < 9$, откуда $\log_3 5 < x < 2$.

Решение исходного неравенства: $x \le 1$; $\log_3 5 < x < 2$.

Ответ: $(-\infty;1]$; $(\log_3 5;2)$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного исключением	
точки 1,	
ИЛИ	1
получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	2

- Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
 - а) Докажите, что прямые AD и BC параллельны.
 - б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Решение. а) Обозначим центры окружностей O_1 и O_2 соответственно. Пусть общая касательная, проведённая к окружностям в точке K, пересекает AB в точке M. По свойству касательных, проведённых из одной точки, AM = KM и KM = BM. Треугольник AKB, у которого медиана равна половине стороны, к которой она проведена, прямоугольный.

© 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации

© 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации

б) Пусть, для определённости, первая окружность имеет радиус 4, а вторая — радиус 1.

Треугольники
$$BKC$$
 и AKD подобны, $\frac{AD}{BC} = 4$. Пусть $S_{BKC} = S$, тогда
$$S_{AKD} = 16S.$$

У треугольников AKD и AKB общая высота, следовательно, $\frac{S_{AKD}}{S_{AKB}} = \frac{DK}{KB} = \frac{AD}{BC}$, то есть $S_{AKB} = 4S$. Аналогично, $S_{CKD} = 4S$. Площадь трапеции ABCD равна 25S. Вычислим площадь трапеции ABCD. Проведём к AD перпендикуляр O_2H , равный высоте трапеции, и найдём его из прямоугольного треугольника O_2HO_1 :

$$O_2H = \sqrt{O_1O_2^2 - O_1H^2} = 4$$
.

Тогда

$$S_{ABCD} = \frac{AD + BC}{2} \cdot AB = 20$$
.

Следовательно, 25S = 20, откуда S = 0.8 и $S_{AKB} = 4S = 3.2$.

Ответ: 3,2.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обоснованно	3
получен верный ответ в пункте δ	
Получен обоснованный ответ в пункте δ ,	2
ИЛИ	
имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта a ,	1
ИЛИ	
при обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки,	
ИЛИ	
обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, приведённых выше	0
Максимальный балл	3

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 14/18

- 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
 - 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r **целое** число;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата	15.01	15.02	15.03	15.04	15.05	15.06	15.07
Долг	1	0,6	0,4	0,3	0,2	0,1	0
(в млн рублей)	-	0,0	٠,٠	0,5	٠,-	0,1	,

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

Решение. По условию, долг перед банком (в млн рублей) на 15-е число каждого месяца должен уменьшаться до нуля следующим образом:

Пусть $k = 1 + \frac{r}{100}$, тогда долг на 1-е число каждого месяца равен:

$$k$$
; 0,6 k ; 0,4 k ; 0,3 k ; 0,2 k ; 0,1 k .

Следовательно, выплаты со 2-го по 14-е число каждого месяца составляют:

$$k-0.6$$
; $0.6k-0.4$; $0.4k-0.3$; $0.3k-0.2$; $0.2k-0.1$; $0.1k$.

Общая сумма выплат составляет:

$$k(1+0.6+0.4+0.3+0.2+0.1) - (0.6+0.4+0.3+0.2+0.1) =$$

= $(k-1)(1+0.6+0.4+0.3+0.2+0.1) + 1 = 2.6(k-1) + 1.$

По условию, общая сумма выплат будет меньше 1,2 млн рублей, значит,

$$2,6(k-1)+1<1,2; 2,6\cdot\frac{r}{100}+1<1,2; r<7\frac{9}{13}.$$

Наибольшее целое решение этого неравенства — число 7. Значит, искомое число процентов — 7.

Ответ: 7.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено к иссле-	
дованию этой модели и получен результат:	2
— неверный ответ из-за вычислительной ошибки;	2
— верный ответ, но решение недостаточно обосновано	
Верно построена математическая модель, решение сведено к иссле-	1
дованию этой модели, при этом решение может быть не завершено	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	3

18

Найдите все положительные значения a, при каждом из которых система

$$\begin{cases} (|x|-5)^2 + (y-4)^2 = 9, \\ (x+2)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение.

Решение. Если $x \ge 0$, то уравнение $(|x|-5)^2+(y-4)^2=9$ задаёт окружность ω_1 с центром в точке $C_1(5;4)$ радиусом 3, а если x < 0, то оно задаёт окружность ω_2 с центром в точке $C_2(-5;4)$ таким же радиусом (см. рисунок).

При положительных значениях a уравнение $(x+2)^2+y^2=a^2$ задаёт окружность ω с центром в точке C(-2;0) радиусом a. Поэтому задача состоит в том, чтобы найти все значения a, при каждом из которых окружность ω имеет единственную общую точку с объединением окружностей ω_1 и ω_2 .

Из точки C проведём луч CC_1 и обозначим через A_1 и B_1 точки его пересечения с окружностью ω_1 , где A_1 лежит между C и C_1 . Так как $CC_1 = \sqrt{\left(5+2\right)^2+4^2} = \sqrt{65}$, то $CA_1 = \sqrt{65}-3$, $CB_1 = \sqrt{65}+3$.

При $a < CA_1$ или $a > CB_1$ окружности ω и ω_1 не пересекаются.

При $CA_1 < a < CB_1$ окружности ω и ω_1 имеют две общие точки.

При $a = CA_1$ или $a = CB_1$ окружности ω и ω_1 касаются.

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 16 / 18

Из точки C проведём луч CC_2 и обозначим через A_2 и B_2 точки его пересечения с окружностью ω_2 , где A_2 лежит между C и C_2 . Так как

$$CC_2 = \sqrt{(-5+2)^2 + 4^2} = 5$$
, To $CA_2 = 5 - 3 = 2$, $CB_2 = 5 + 3 = 8$.

При $a < CA_2$ или $a > CB_2$ окружности ω и ω_2 не пересекаются.

При $\mathit{CA}_2 < a < \mathit{CB}_2$ окружности ω и ω_2 имеют две общие точки.

При $a = CA_2$ или $a = CB_2$ окружности ω и ω_2 касаются.

Исходная система имеет единственное решение тогда и только тогда, когда окружность ω касается ровно одной из двух окружностей ω_1 и ω_2 и не пересекается с другой. Так как $CA_2 < CA_1 < CB_2 < CB_1$, то условию задачи удовлетворяют только числа a=2 и $a=\sqrt{65}+3$.

Ответ: 2; $\sqrt{65} + 3$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены оба верных значения	3
параметра, но	
– или в ответ включены также и одно-два неверных значения;	
 или решение недостаточно обосновано 	
С помощью верного рассуждения получено хотя бы одно верное	2
значение параметра	
Задача сведена к исследованию:	1
 или взаимного расположения трёх окружностей; 	
– или двух квадратных уравнений с параметром	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно -3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно -8.

- а) Сколько чисел написано на доске?
- б) Каких чисел написано больше: положительных или отрицательных?
- в) Какое наибольшее количество положительных чисел может быть среди них?

Решение. Пусть среди написанных чисел k положительных, l отрицательных и m нулей. Сумма набора чисел равна количеству чисел в этом наборе, умноженному на его среднее арифметическое, поэтому

$$4k-8l+0\cdot m = -3(k+l+m)$$
.

а) Заметим, что в левой части приведённого выше равенства каждое слагаемое делится на 4, поэтому k+l+m — количество целых чисел — делится на 4.

Демонстрационный вариант ЕГЭ 2018 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 17 / 18 По условию 40 < k + l + m < 48, поэтому k + l + m = 44. Таким образом, написано 44 числа.

- б) Приведём равенство 4k 8l = -3(k + l + m) к виду 5l = 7k + 3m. Так как $m \ge 0$, получаем, что $5l \ge 7k$, откуда l > k. Следовательно, отрицательных чисел больше, чем положительных.
- в) Подставим k + l + m = 44 в правую часть равенства 4k 8l = -3(k + l + m): 4k-8l=-132, откуда k=2l-33. Так как $k+l \le 44$, получаем: $3l-33 \le 44$; $3l \le 77$; $l \le 25$; $k = 2l - 33 \le 17$, то есть положительных чисел не более 17.

Приведём пример, когда положительных чисел ровно 17. Пусть на доске 17 раз написано число 4, 25 раз написано число -8 и 2 раза написан 0. Тогда $\frac{4\cdot 17 - 8\cdot 25}{44} = -3$; указанный набор удовлетворяет всем условиям задачи.

Ответ: а) 44; б) отрицательных; в) 17.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	
Верно получен один из следующих результатов:	1
— обоснованное решение пункта <i>a</i> ;	
— обоснованное решение пункта δ ;	
— искомая оценка в пункте θ ;	
$-$ в пункте ϵ приведён пример, обеспечивающий точность	
предыдущей оценки	
Решение не соответствует ни одному из критериев, приведённых выше	0
Максимальный балл	4

- В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минобрнауки России от 26.12.2013 № 1400 зарегистрирован Минюстом России 03.02.2014 № 31205)
- «61. По результатам первой и второй проверок эксперты независимо друг от друга выставляют баллы за каждый ответ на задания экзаменационной работы ЕГЭ с развёрнутым ответом...
- 62. В случае существенного расхождения в баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в баллах определено в критериях оценивания по соответствующему учебному предмету.

Эксперту, осуществляющему третью проверку, предоставляется информация о баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

- 1) Работа участника ЕГЭ направляется на третью проверку, если расхождение в баллах, выставленных двумя экспертами за выполнение любого из заданий 13-19, составляет 2 и более балла. В этом случае третий эксперт проверяет только то задание, которое было оценено двумя экспертами со столь существенным расхождением.
- 2) Работа участника ЕГЭ направляется на третью проверку при наличии расхождений хотя бы в двух из заданий 13-19. В этом случае третий эксперт проверяет ответы на все задания работы.