# PREDECTIVE ANALYTICS PROJECT

SHIVANI NANAVATI DWIJ DUA

### **EXPLORATORY DATA ANALYTICS**

Our dataset has 43921 rows and 83 variables.

UCity - unadjusted city MPG for fuel type1 is the dependent variable and other 82 are independent variables.

We have numeric variables (for example charge, displ, cylinders, etc.), Categorical variables (for example trany, vClass, etc.) and others, such as model, id, etc.

I imported the data in SAS Studio carry our EDA and Data Cleaning.

### **VARIABLE UCity (Dependent)**



The variable is right skewed in nature.

The minimum and maximum values of UCity are 0 and 224.8 respectively. Values beyond 34 are outliers in our data, which are mostly coming from Electric cars. Thus, those records and the records where the value of UCity is 0 have not been considered for model building.



The above boxplot shows high number of outliers, which are increasing in value as we move down the timeline.



Most of the outliers were because of Electric cars. Another boxplot was created to look at outliers not coming from electric cars. Hybrid cars too were giving many outliers. Over the years, hybrid cars were gaining popularity, giving higher mileages.

A frequency graph for the outliers in our data not coming from Electric cars is shown above.

| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Location Variability       |          |                     |          |  |
| Mean                       | 22.90002 | Std Deviation       | 7.19209  |  |
| Median                     | 21.62420 | Variance            | 51.72615 |  |
| Mode                       | 20.00000 | Range               | 76.55980 |  |
|                            |          | Interquartile Range | 7.60000  |  |

| Moments         |            |                  |            |  |  |
|-----------------|------------|------------------|------------|--|--|
| N               | 43609      | Sum Weights      | 43609      |  |  |
| Mean            | 22.90002   | Sum Observations | 998646.97  |  |  |
| Std Deviation   | 7.1920893  | Variance         | 51.7261485 |  |  |
| Skewness        | 2.05257861 | Kurtosis         | 8.98410579 |  |  |
| Uncorrected SS  | 25124709.4 | Corrected SS     | 2255673.88 |  |  |
| Coeff Variation | 31.4064761 | Std Error Mean   | 0.03444031 |  |  |

We have summary statistics for UCity including mean, median, standard deviation, skewness, kurtosis, etc.

#### INDEPENDENT VARIABLES

### **Numeric Variables:**

1. Barrels – annual petroleum consumption in barrels for fuel type 1

| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Location Variability       |          |                     |          |  |
| Mean                       | 17.09953 | Std Deviation       | 4.68205  |  |
| Median                     | 16.48050 | Variance            | 21.92162 |  |
| Mode                       | 18.31167 | Range               | 47.02714 |  |
|                            |          | Interquartile Range | 5.05795  |  |

| Moments         |            |                  |            |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|
| N               | 43896      | Sum Weights      | 43896      |  |  |  |
| Mean            | 17.0995256 | Sum Observations | 750600.775 |  |  |  |
| Std Deviation   | 4.68205301 | Variance         | 21.9216204 |  |  |  |
| Skewness        | 0.33978267 | Kurtosis         | 2.12072942 |  |  |  |
| Uncorrected SS  | 13797166.7 | Corrected SS     | 962249.529 |  |  |  |
| Coeff Variation | 27.3811866 | Std Error Mean   | 0.02234724 |  |  |  |

The above tables give summary statistics for barrels.



We have the annual fuel consumption of petroleum in barrels for fuel type 1 over the years. There is a declining trend in the number of barrels over the years.

# 2. Cylinders – The number of engine cylinders in the vehicle.

|                      | Basic Statistical Measures |                     |          |  |  |
|----------------------|----------------------------|---------------------|----------|--|--|
| Location Variability |                            |                     |          |  |  |
| Mean                 | 5.707517                   | Std Deviation       | 1.76656  |  |  |
| Median               | 6.000000                   | Variance            | 3.12074  |  |  |
| Mode                 | 4.000000                   | Range               | 14.00000 |  |  |
|                      |                            | Interquartile Range | 2.00000  |  |  |

| cylinders               | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|-------------------------|-----------|---------|-------------------------|-----------------------|
| 2                       | 63        | 0.14    | 63                      | 0.14                  |
| 3                       | 348       | 0.80    | 411                     | 0.94                  |
| 4                       | 17160     | 39.35   | 17571                   | 40.29                 |
| 5                       | 774       | 1.77    | 18345                   | 42.07                 |
| 6                       | 15050     | 34.51   | 33395                   | 76.58                 |
| 8                       | 9328      | 21.39   | 42723                   | 97.98                 |
| 10                      | 187       | 0.43    | 42910                   | 98.40                 |
| 12                      | 682       | 1.56    | 43592                   | 99.97                 |
| 16                      | 14        | 0.03    | 43606                   | 100.00                |
| Frequency Missing = 290 |           |         |                         |                       |

Summary statistics display a total of 290 missing values.



From the above plot, it is clear that the lesser the number of cylinders, the higher the value of city MPG.

3. Highway – Gives information about unadjusted highway MPG.

We see that the variables are positively related to each other.

# 4. ATV Type – It describes the type of alternative fuel or advanced technology vehicle

| atvType | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|---------|-----------|---------|-------------------------|-----------------------|
| В       | 12        | 0.30    | 12                      | 0.30                  |
| c       | 44        | 1.08    | 56                      | 1 20                  |
| D       | 1131      | 27.82   | 110                     |                       |
| E       | 287       | -       | _                       |                       |
| F       |           |         |                         |                       |

The ATV types are as follows:

B: Bifuel, C: CNG, D: Diesel, E: EV, F: FVV, H: Hybrid and P: Plug-in hybrid

91.33% of observations are missing.



The graph depicts the decline in Diesel vehicles and a rise in hybrid vehicles.

# 5. City - city MPG for fuelType1

| Basic Statistical Measures |          |                     |           |  |  |
|----------------------------|----------|---------------------|-----------|--|--|
| Location Variability       |          |                     |           |  |  |
| Mean                       | 18.71521 | Std Deviation 8.874 |           |  |  |
| Median                     | 17.00000 | Variance            | 78.74944  |  |  |
| Mode                       | 15.00000 | Range               | 144.00000 |  |  |
|                            |          | Interquartile Range | 6.00000   |  |  |

| Moments         |            |                  |            |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|
| N               | 43896      | Sum Weights      | 43896      |  |  |  |
| Mean            | 18.7152132 | Sum Observations | 821523     |  |  |  |
| Std Deviation   | 8.87408839 | Variance         | 78.7494448 |  |  |  |
| Skewness        | 7.50596322 | Kurtosis         | 80.3659779 |  |  |  |
| Uncorrected SS  | 3456706.88 |                  |            |  |  |  |
| Coeff Variation | 47.4164429 | Std Error Mean   | 0.04235564 |  |  |  |

Above are the summary statistics.



We can see that over the years, both the frequency and value of outliers have increased. This might be because of the use of Electric and Hybrid cars, with give a greater value of mpg.

Further, a strong positive relationship can be seen between UCity and city08.

### 6. Fuel Type – We have the following types:

- fuelType: fuel type with fuelType1 and fuelType2 (if applicable)
- fuelType1: fuel type 1. For single fuel vehicles, this will be the only fuel. For dual fuel vehicles, this will be the conventional fuel.
- fuelType2: fuel type 2. For dual fuel vehicles, this will be the alternative fuel (e.g. E85, Electricity, CNG, LPG). For single fuel vehicles, this field is not used



co2 representstailpipe CO2 in grams/mile for fuelType.

The bar graph shows mean consumption of co2 (in grams per mile) for various fuel types, where 'Midgrad' has the highest value and Electric vehicles show the lowest value.

# 7. youSaveSpend – Money in \$ an individual saves or spends over 5 years compared to an average car

|                      | Basic Statistical Measures |                     |          |  |  |
|----------------------|----------------------------|---------------------|----------|--|--|
| Location Variability |                            |                     |          |  |  |
| Mean                 | -4358.31                   | Std Deviation 37    |          |  |  |
| Median               | -4250.00                   | Variance            | 13698825 |  |  |
| Mode                 | -4250.00                   | Range               | 39000    |  |  |
|                      |                            | Interquartile Range | 4500     |  |  |

|                 | Moments    |                  |            |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|
| N               | 43896      | Sum Weights      | 43896      |  |  |  |  |
| Mean            | -4358.3128 | Sum Observations | -191312500 |  |  |  |  |
| Std Deviation   | 3701.19231 | Variance         | 13698824.5 |  |  |  |  |
| Skewness        | -0.6817707 | Kurtosis         | 1.69512653 |  |  |  |  |
| Uncorrected SS  | 1.43511E12 | Corrected SS     | 6.0131E11  |  |  |  |  |
| Coeff Variation | -84.922594 | Std Error Mean   | 17.6656319 |  |  |  |  |

Summary statistics for the variable are given.



Maximum amount of money was spent by people in the years 2003-2009.



As the value of mpg reaches 50, that's when a person starts saving money. As the mileage value keeps increasing after 50, we see an exponential growth in savings.

# 8. Comb – combined MPG for fuelType1 (comb08).



The values for combined MPG for fuelType1 gradually increase over the years.



A strong positive relation exists between comb08 and UCity.

# 9. Displ – Represents combined volume of pistons inside the cylinders.

|                      | Basic Statistical Measures |                     |         |  |  |
|----------------------|----------------------------|---------------------|---------|--|--|
| Location Variability |                            |                     |         |  |  |
| Mean                 | 3.280616                   | Std Deviation       | 1.35679 |  |  |
| Median               | 3.000000                   | Variance            | 1.84087 |  |  |
| Mode                 | 2.000000                   | Range               | 8.40000 |  |  |
|                      |                            | Interquartile Range | 2.00000 |  |  |

| Moments         |            |                  |            |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|
| N               | 43608      | Sum Weights      | 43608      |  |  |  |  |
| Mean            | 3.28061594 | Sum Observations | 143061.1   |  |  |  |  |
| Std Deviation   | 1.35678721 | Variance         | 1.84087153 |  |  |  |  |
| Skewness        | 0.66461585 | Kurtosis         | -0.4808918 |  |  |  |  |
| Uncorrected SS  | 549603.41  | Corrected SS     | 80274.8847 |  |  |  |  |
| Coeff Variation | 41.3576972 | Std Error Mean   | 0.00649724 |  |  |  |  |

The summary statistics are given above.

The scatter plot shows an inverse relationship between the number of cylinders and city MPG.

# **Categorical Variables**

# 1. Trany – transmission type



The most common transmission type in our dataset is Automatic 4 and 4 Speed.

| _        |            |        |               | _        |           |                 | _   |
|----------|------------|--------|---------------|----------|-----------|-----------------|-----|
| <b>つ</b> | Valora     | Cirroa | inform        | <b>4</b> | about ED/ | A vehicle class | ~ ~ |
| 7.       | V (11366 — | TAIVES | 1111111111111 | 4114111  |           | a venicie cias  |     |

Compact cars are the most frequent in our data and Vans passenger vehicles have the least number of records.

# 3. Drive – Represents drive axle type



Thefrequency distribution of the variable is shown. There are maximum number of Front-Wheel driven vehicles and minimum number of Part-time 4-Wheel driven vehicles.

# **Correlation Analysis**

11 Variables: barrels08 city08 co2 comb08 cylinders displ fuelCost08 rangeHwy year youSaveSpend UCity

|              | Pearson Correlation Coefficients<br>Prob >  r  under H0: Rho=0<br>Number of Observations |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
|--------------|------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|              | barrels08                                                                                | city08                      | co2                         | comb08                      | cylinders                   | displ                       | fuelCost08                  | rangeHwy                    | year                        | youSaveSpend                | UCity                       |
| barrels08    | 1.00000<br>43896                                                                         | -0.71265<br><.0001<br>43896 | -0.13242<br><.0001<br>43896 | -0.76766<br><.0001<br>43896 | 0.73497<br><.0001<br>43606  | 0.78584<br><.0001<br>43608  | 0.91974<br><.0001<br>43896  | -0.24961<br><.0001<br>43896 | -0.28459<br><.0001<br>43896 | -0.92469<br><.0001<br>43896 | -0.69551<br><.0001<br>43896 |
| city08       | -0.71265<br><.0001<br>43896                                                              | 1.00000<br>43896            | 0.03506<br><.0001<br>43896  | 0.99150<br><.0001<br>43896  | -0.68024<br><.0001<br>43606 | -0.71384<br><.0001<br>43608 | -0.65031<br><.0001<br>43896 | 0.67630<br><.0001<br>43896  | 0.20503<br><.0001<br>43896  | 0.65128<br><.0001<br>43896  | 0.99808<br><.0001<br>43896  |
| co2          | -0.13242<br><.0001<br>43896                                                              | 0.03506<br><.0001<br>43896  | 1.00000<br>43896            | 0.05699<br><.0001<br>43896  | 0.09919<br><.0001<br>43606  | 0.06527<br><.0001<br>43608  | -0.03854<br><.0001<br>43896 | -0.03957<br><.0001<br>43896 | 0.70656<br><.0001<br>43896  | 0.03961<br><.0001<br>43896  | 0.03385<br><.0001<br>43896  |
| comb08       | -0.76766<br><.0001<br>43896                                                              | 0.99150<br><.0001<br>43896  | 0.05699<br><.0001<br>43896  | 1.00000<br>43896            | -0.68393<br><.0001<br>43606 | -0.72850<br><.0001<br>43608 | -0.70052<br><.0001<br>43896 | 0.66084<br><.0001<br>43896  | 0.23338<br><.0001<br>43896  | 0.70087<br><.0001<br>43896  | 0.98749<br><.0001<br>43896  |
| cylinders    | 0.73497<br><.0001<br>43606                                                               | -0.68024<br><.0001<br>43606 | 0.09919<br><.0001<br>43606  | -0.68393<br><.0001<br>43606 | 1.00000<br>43606            | 0.90507<br><.0001<br>43606  | 0.77628<br><.0001<br>43606  | 43606                       | 0.05232<br><.0001<br>43606  | -0.77578<br><.0001<br>43606 | -0.66154<br><.0001<br>43606 |
| displ        | 0.78584<br><.0001<br>43608                                                               | -0.71384<br><.0001<br>43608 | 0.06527<br><.0001<br>43608  | -0.72850<br><.0001<br>43608 | 0.90507<br><.0001<br>43606  | 1.00000<br>43608            | 0.76800<br><.0001<br>43608  | -0.01158<br>0.0156<br>43608 | 0.00476<br>0.3205<br>43608  | -0.76801<br><.0001<br>43608 | -0.69443<br><.0001<br>43608 |
| fuelCost08   | 0.91974<br><.0001<br>43896                                                               | -0.65031<br><.0001<br>43896 | -0.03854<br><.0001<br>43896 | -0.70052<br><.0001<br>43896 | 0.77628<br><.0001<br>43606  | 0.76800<br><.0001<br>43608  | 1.00000<br>43896            | -0.18420<br><.0001<br>43896 | -0.13482<br><.0001<br>43896 | -0.99853<br><.0001<br>43896 | -0.63205<br><.0001<br>43896 |
| rangeHwy     | -0.24961<br><.0001<br>43896                                                              | 0.67630<br><.0001<br>43896  | -0.03957<br><.0001<br>43896 | 0.66084<br><.0001<br>43896  | 43606                       | -0.01158<br>0.0156<br>43608 | -0.18420<br><.0001<br>43896 | 1.00000<br>43896            | 0.09121<br><.0001<br>43896  | 0.18324<br><.0001<br>43896  | 0.67081<br><.0001<br>43896  |
| year         | -0.28459<br><.0001<br>43896                                                              | 0.20503<br><.0001<br>43896  | 0.70656<br><.0001<br>43896  | 0.23338<br><.0001<br>43896  | 0.05232<br><.0001<br>43606  | 0.00476<br>0.3205<br>43608  | -0.13482<br><.0001<br>43896 | 0.09121<br><.0001<br>43896  | 1.00000<br>43896            | 0.13935<br><.0001<br>43896  | 0.20480<br><.0001<br>43896  |
| youSaveSpend | -0.92469<br><.0001<br>43896                                                              | 0.65128<br><.0001<br>43896  | 0.03961<br><.0001<br>43896  | 0.70087<br><.0001<br>43896  | -0.77578<br><.0001<br>43606 | -0.76801<br><.0001<br>43608 | -0.99853<br><.0001<br>43896 | 0.18324<br><.0001<br>43896  | 0.13935<br><.0001<br>43896  | 1.00000<br>43896            | 0.63330<br><.0001<br>43896  |
| UCity        | -0.69551<br><.0001<br>43896                                                              | 0.99808<br><.0001<br>43896  | 0.03385<br><.0001<br>43896  | 0.98749<br><.0001<br>43896  | -0.66154<br><.0001<br>43606 | -0.69443<br><.0001<br>43608 | -0.63205<br><.0001<br>43896 | 0.67081<br><.0001<br>43896  | 0.20480<br><.0001<br>43896  | 0.63330<br><.0001<br>43896  | 1.00000<br>43896            |

A correlation matrix was created for above mentioned numeric variables. The ones marked in red have a strong negative correlation and the ones marked in green display a strong positive correlation.

|       | Pearson Correlation Coefficients<br>Number of Observations |                   |                  |                  |                  |                  |                   |                  |                   |                  |
|-------|------------------------------------------------------------|-------------------|------------------|------------------|------------------|------------------|-------------------|------------------|-------------------|------------------|
|       | cylinders                                                  | barrels08         | city08           | cityA08          | co2              | comb08           | displ             | highway08        | fuelCost08        | youSaveSpend     |
| UCity | -0.66154<br>43606                                          | -0.69551<br>43896 | 0.99808<br>43896 | 0.09261<br>43896 | 0.03385<br>43896 | 0.98749<br>43896 | -0.69443<br>43608 | 0.93859<br>43896 | -0.63205<br>43896 | 0.63330<br>43896 |

The variables city08, comb08, highway08, year have a strong positive correlation with UCity.

### **Data Cleaning and Preparation**

The next step was to clean and prepare our data to build a model upon.

The procedure is as follows:

- Dropping records for Electric and Hybrid vehicles.
- Dropping all variables except Barrels08, Ucity, Uhighway, Vclass, city08, comb08, cylinders, displ, drive, fueltype, highway08, mpgData, fuelcost08, Trany, year and yousavespend.
- Rounding UCity, Barrels and UHighway to the nearest quarter.

Converting Categorical to Numeric variables using the following transformations:

- mpgData 1: 'Y', 2: otherwise.
- Fuel type 1 : CNG, 2 : Diesel, 3 : Midgrad, 4 : Premium and 5 : otherwise.
- Drive -1: Rear-wheel drive, 2: Two-wheel drive (Front wheel, 2-wheel and part time 4-wheel), 3: 4-wheel drive.
- Transmission 1 : Manual, 2 : otherwise.
- Vclass 1: Mini, 2: Vans, 3: Mid sized, 4: Small sized, 5: Standard sized, 6: Sports vehicles, 7: Special vehicles and 8: Large vehicles.
- Imputing outliers in UCity with mean.
- Imputing missing values in UHighway, barrels08, cylinders and displacement with their respective means.
- Exporting the dataset to be used for model building in SAS Miner



After loading the cleaned dataset, I portioned the dataset into training and testing using a 80:20 split.

Then, I made sure that the variables were not skewed and followed a normal distribution using the Transform variables step.

# Model 1 – Regression

| 788 |        | Summary of       | Stepwise | Selection |         |
|-----|--------|------------------|----------|-----------|---------|
| 789 |        |                  |          |           |         |
| 790 |        | Effect           |          | Number    |         |
| 791 | Step   | Entered          | DF       | In        | F Value |
|     | Pr > F |                  |          |           |         |
| 792 |        |                  |          |           |         |
| 793 | 1      | SQRT_comb08      | 1        | 1         | 488041  |
|     | <.0001 |                  |          |           |         |
| 794 | 2      | SQRT_highway08   | 1        | 2         | 14752.6 |
|     | <.0001 |                  |          |           |         |
| 795 |        | UHighway         | 1        | 3         | 25283.0 |
|     | <.0001 |                  |          |           |         |
|     |        | PWR_city08       | 1        | 4         | 1707.89 |
|     | <.0001 |                  |          |           |         |
| 797 |        | PWR_barrels08    | 1        | 5         | 1242.97 |
|     | <.0001 |                  |          |           |         |
| 798 | 6      | IMP_cylinders    | 1        | 6         | 541.15  |
|     | <.0001 |                  |          |           |         |
| 799 | 7      | PWR youSaveSpend | 1        | 7         | 683.90  |
|     | <.0001 |                  |          |           |         |
|     |        | FuelNum          | 1        | 8         | 1518.76 |
|     | <.0001 |                  |          |           |         |
| 801 | 9      | Transmission     | 1        | 9         | 352.28  |
|     | <.0001 |                  |          |           |         |
| 802 | 10     | IMP displ        | 1        | 10        | 243.91  |
|     | <.0001 | 570 570          |          |           |         |
| 803 | 11     | Vtype            | 1        | 11        | 144.80  |
|     | <.0001 |                  |          |           |         |
|     |        | DriveNum         | 1        | 12        | 15.67   |
|     | <.0001 |                  |          |           |         |
| 805 | 13     | PWR fuelCost08   | 1        | 13        | 7.09    |
|     | 0.0078 |                  |          |           |         |
| 806 |        | MPGdNum          | 1        | 14        | 1.30    |
|     | 0.2544 |                  |          |           |         |
|     |        |                  |          |           |         |



|            | Analysis | of Maximum | Likelihood | Estimates |         |
|------------|----------|------------|------------|-----------|---------|
|            |          |            | Standard   | l         |         |
| Parameter  | DF       | Estimate   | Error      | t Value   | Pr >  t |
| Intercept  | 1        | 1.1679     | 0.5400     | 2.16      | 0.0306  |
| DriveNum   | 1        | 0.0132     | 0.00325    | 4.06      | <.0001  |
| FuelNum    | 1        | 0.0392     | 0.00458    | 8.57      | <.0001  |
| UHighway   | 1        | 0.1844     | 0.00318    | 57.97     | <.0001  |
| Vtype      | 1        | 0.00381    | 0.00116    | 3.28      | 0.0010  |
| barrels08  | 1        | 0.0823     | 0.00231    | 35.56     | <.0001  |
| city08     | 1        | 0.9444     | 0.00499    | 189.42    | <.0001  |
| comb08     | 1        | 0.5740     | 0.00715    | 80.25     | <.0001  |
| fuelCost08 | 1        | 0.000061   | 0.000012   | 5.15      | <.0001  |
| highway08  | 1        | -0.3852    | 0.00480    | -80.21    | <.0001  |
| year       | 1        | -0.00296   | 0.000267   | -11.07    | <.0001  |

**Model 2 – Neural Network** 

| 282 |       | Number of    | Mean    | Mean      |
|-----|-------|--------------|---------|-----------|
| 283 | Depth | Observations | Target  | Predicted |
| 284 |       |              |         |           |
| 285 | 5     | 1590         | 38.2808 | 38.2949   |
| 286 | 10    | 1590         | 32.0425 | 31.9968   |
| 287 | 15    | 1603         | 29.2583 | 29.2348   |
| 288 | 20    | 1576         | 27.6218 | 27.6150   |
| 289 | 25    | 1593         | 26.3845 | 26.4171   |
| 290 | 30    | 1587         | 25.1348 | 25.1976   |
| 291 | 35    | 1662         | 24.1727 | 24.0970   |
| 292 | 40    | 1698         | 23.2842 | 23.2538   |
| 293 | 45    | 1432         | 22.5189 | 22.5381   |
| 294 | 50    | 1734         | 21.8408 | 21.8781   |
| 295 | 55    | 1459         | 21.0888 | 21.1850   |
| 296 | 60    | 1616         | 20.5476 | 20.5629   |
| 297 | 65    | 1588         | 19.9137 | 19.9093   |
| 298 | 70    | 1734         | 19.2823 | 19.2044   |
| 299 | 75    | 1385         | 18.6708 | 18.6489   |
| 300 | 80    | 1615         | 18.1297 | 18.1010   |
| 301 | 85    | 1574         | 17.1541 | 17.1966   |
| 302 | 90    | 1725         | 16.1919 | 16.1233   |
|     |       |              |         |           |
| 303 | 95    | 1452         | 14.6581 | 14.6634   |
| 304 | 100   | 1577         | 12.6623 | 12.6823   |



Neural Network gave the above model.

**Model Comparison** 

|      | Neural Network | Regression |
|------|----------------|------------|
| AIC  | -51529.62      | -4428282.6 |
| RMSE | 0.428          | 0.841      |

We can see that for Neural Network, the value for both AIC and RMSE is lower, meaning that Neural Network is a better performing model on our dataset.

I, Dwij Dua declare that the attached assignment is my own work in accordance with the Seneca Academic Policy. I have not copied any part of this assignment, manually or electronically, from any other source including web sites, unless specified as references. I have not distributed my work to other students.