Econometrics 2022-2023. Second Semester Final Exam, June 21, 2023

Part 1. (30 minutes). In each of 12 multiple choice tests indicate the correct answer.

- 1. For the Model $Y_i = \beta_2 X_i + u$ (Model A assumptions satisfied, $i = I_{n,n}$) the estimator $b_2 = \frac{((Y_1 + Y_n)/2) \overline{Y}}{((X_1 + X_n)/2) \overline{X}}$ is:
 - 1) the OLS estimator of β_2 ; 2) unbiased estimator of β_2 ; 3) efficient estimator of β_2 ;
 - 4) biased estimator of β_2 ; 5) not an estimator of β_2 .
- 2. In a simple regression with an intercept $\hat{Y} = b_1 + b_2 X$, the estimated slope coefficient b_2 is equal to zero. Then the determination coefficient R^2 if calculated as $R^2 = 1 RSS/TSS$, is
- 1) Always strictly positive;
- 2) Generally speaking, is positive, but can be equal to zero;
- 3) In some situations can be negative

4) Is equal to zero

- 5) Can not be calculated for that model.
- 3. If a new observation and a new explanatory variable are added in the Linear Regression Model, then for OLS-estimation, the following is true:
 - 1) The Residual Sum of Squares (RSS) decreases; the Determination Coefficient R^2 may increase, decrease or stay the same;
 - 2) The Residual Sum of Squares (RSS) increases; the Determination Coefficient R^2 may increase, decrease or stay the same;
 - 3) Both the Determination Coefficient R^2 and the Residual Sum of Squares (RSS) may increase, decrease or stay the same;
 - 4) The Determination Coefficient R^2 increases; the Residual Sum of Squares (RSS) may increase, decrease or stay the same;
 - 5) The Determination Coefficient R^2 decreases; the Residual Sum of Squares (RSS) may increase, decrease or stay the same;
- 4. If you have estimated the parameters of the following model using the OLS directly (Gauss-Markov conditions satisfied),

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + (\beta_2 - \beta_3) x_3 + u$$
, then:

- 1) you can get an unbiased estimate of β_3 ;
- 2) you can not get an unbiased estimate of β_3 , but can get a consistent estimate of it;
- 3) you can not get an unbiased, or biased but consistent estimate of β_3 ;
- 4) you can not get any estimate of β_3 ;
- 5) all the above statements are incorrect.
- 5. Which of the following correctly defines F statistic for testing linear restrictions if R_r^2 represents the coefficient of determination from the restricted model, R_{ur}^2 represents the

coefficient of determination from the unrestricted model, and q is the number of restrictions placed?

1)
$$F = \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k)}$$
 2) $F = \frac{(R_r^2 - R_{ur}^2)/q}{(1 - R_{ur}^2)/(n - k)}$ 3) $F = \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_r^2)/(n - k)}$

4)
$$F = \frac{(R_r^2 - R_{ur}^2)/q}{(1 - R_r^2)/(n - k)}$$
 5) None of the above

- 6. The following double-logarithmic model is estimated: $\log Y = \beta_1 + \beta_2 \log X_2 + u$. Interpretation of the coefficient β_2 is the following:
- 1) If X_2 increases by one unit then Y increases approximately by $100\beta_2$ per cent;
- 2) If X_2 increases by one unit then Y increases approximately by $\beta_2/100$ per cent;
- 3) If X_2 increases by one per cent then Y increases approximately by $100\beta_2$ per cent;
- 4) If X_2 increases by one per cent then Y increases approximately by β_2 per cent;
- 5) If X_2 increases by one per cent then Y increases approximately by β_2 units.
- 7. Econometric model is described by the following three equations:

(1)
$$y_1 = \alpha + \beta y_3 + \gamma x_1 + \sigma x_3 + \pi x_4 + u_1$$

$$(2) y_2 = \delta + \varepsilon y_1 + \lambda x_2 + u_2$$

(3)
$$y_3 = \mu + \theta y_1 + \omega y_2 + \rho x_3 + \chi x_4 + u_3$$

where y_1 , y_2 and y_3 are endogenous variables, x_1 , x_2 , x_3 and x_4 are exogenous variables; u_1 , u_2 and u_3 are disturbance terms (independent and satisfying the Gauss-Markov conditions). Choose the correct statement:

- 1) equation (2) is exactly identified;
- 2) equation (1) is overidentified;
- 3) equation (3) is underidentified; .
- 4) equation (1) is exactly identified
- 5) equation (2) is underidentified.
- 8. The model with the dependent variable P_i (monthly pension), as a function of Experience E_i and the average earnings $EARN_i$ is being considered:

$$P_i = \beta_1 + \beta_2 E_i + \beta_3 EARN_i + u_i$$

The value of pension is restricted by the value P_U from the top, but there are no actual observations in the sample with $P=P_U$. The student decided to estimate Tobit model with the truncated sample (all the observations on the upper bounds excluded). Please indicate the **correct** statement among the following ones:

- 1) The estimated coefficients are biased but consistent;
- 2) The estimated coefficients are biased and inconsistent;
- 3) The estimated coefficients are unbiased;
- 4) For the truncated sample, the OLS estimation would provide unbiased estimates;
- 5) None of the above.
- 9. The following model of determination of the size of dividends is considered:

$$(1) \quad D^*_t = \gamma P_t + u_t$$

(2)
$$\Delta D_t = \lambda (D_t^* - D_{t-1}) + \rho (P_t - P_{t-1})$$

where D_t^* is the desirable size of the dividends; P_t is the current profits; D_t is the actual size of the dividends; $\Delta D_t = (D_t - D_{t-1})$.

The following statement is correct. The model is

- 1) the adaptive expectations model and can be consistently estimated in the form of the Koyck distribution model
- 2) the partial adjustment model and can be consistently estimated in the form of the ADL(1,0) model
- 3) the partial adjustment model and can be consistently estimated in the form of the ADL(0,1)
- 4) the error correction model and can be consistently estimated in the form of the ADL(1,1) model
- 5) the error correction model and can be consistently estimated in the form of the ADL(1,0) model
- 10. Refer to the following model.

$$Y_t = \alpha_0 + \beta_0 S_t + \beta_1 S_{t-1} + \beta_2 S_{t-2} + \beta_3 S_{t-3} + u_t$$

 $(\beta_0 + \beta_1 + \beta_2 + \beta_3)$ represents:

- 1) the short-run change in *Y* given a temporary increase in *S*.
- 2) the long-run change in *Y* given a permanent increase in *S*.
- 3) the short-run change in *Y* given a permanent increase in *S*.
- 4) the long-run change in *Y* given a temporary increase in *S*.
- 5) none of the above.
- 11. Indicate **incorrect** statement among the following ones:
- 1) If X_t is a random walk with drift, the series of first differences $\Delta X_t = (X_t X_{t-1}) = \beta_1 + \varepsilon_t$ (where ε_t is white noise) is stationary;
- 2) The time trend $X_t = \beta_1 + \beta_2 t + \varepsilon_t$ is non-stationary series;
- 3) The MA(1) process $X_t = \varepsilon_t + \alpha_2 \varepsilon_{t-1}$ is stationary
- 4) The AR(1) process $X_t = \beta_2 X_{t-1} + \varepsilon_t$, with $-1 < \beta_2 < 1$, is asymptotically stationary;
- 5) The random walk without drift becomes stationary after taking logarithms.
 - 12. Which of the following is a reason for using the random effects approach instead of the fixed effects one?
- 1) It provides unbiased and consistent estimators when the disturbance terms are serially correlated.
- 2) It provides unbiased and consistent estimators when the disturbance terms are heteroskedastic.
- 3) It provides a more efficient estimates than the fixed effects approach.
- 4) It allows to take into account the unobserved heterogeneity, unlike the fixed effects.
- 5) It provides a way to include time-constant explanatory variables in a fixed effects analysis.