

ISLAMIC UNIVERSITY OF TECHNOLOGY

Course Outline and Course Plan

Name of the Teacher	Mohammad Ridwan Kabir	Position	Lecturer			
Department	CSE	Program	B.Sc. Engineering in CSE			
Course Code	CSE 4501	Course Title	Operating System			
Academic Year	2021-22	Semester	Winter			
Contact Hours	3.00	Credit Hours	3.00			
Textbooks and Reference books	Operating System Concepts	Author of the Books	 Abraham Silberschatz Peter Baer Galvin Greg Gagne 			
Prerequisites	1. Computing Fundamentals 2. Basic Programming Skill Curriculum Requirement Compulsory					
Course Homepage	Google Classroom Code: apmj74q (<u>Classroom Link</u>)					
Teaching Methods/ Approaches	Lecture Demonstration Problem Solving					
Teaching Aids	Multimedia and OHP Board and Marker Video Conferencing Tool and Tablet					

Course Assessment Method									
Attendance (10%)	Qui	Quiz/Viva (30%) (Best 3 out of 4) Mid Exam (25%) Final Exam (35%)							
	1 st Quiz	2 nd Quiz	3 rd Quiz	4 th Quiz					
Throughout the Semester	Week/ Date	Week/ Date	Week/ Date	Week/ Date	Week/Date	Week/Date			
	4 th Week	7 th Week	11 th Week	14 th Week	8 th Week	16 th Week			

Course Contents and Objectives	 Contents Evolution of microprocessors and Operating System (OS), OS services, design and implementation, system boot, process, threads, scheduling, memory management, virtual memory, inter-process communication, synchronization, deadlocks. Objectives Understand fundamental OS principles, methodologies and theories. Interpret and analyze various OS principles and algorithms with C/C++/Python. Identify and resolve critical OS issues. Develop skillset, thought process, and competencies to cope with the industry requirements. 					
	CO1	Understand fundamental OS principles, methodologies and theories. (C2)				
	CO2	Identify critical OS issues. (C1, C4, A1, A4, P1)				
Course Outcomes	соз	Interpret different OS terms, principles and methodologies. (C2, C3, C5, A5)				
	CO4	Analyze different algorithms for addressing OS issues. (C4)				
	CO5	Develop necessary skills and competencies as per industry requirements. (C6)				

Weekly Plan for Course Content					
Weeks	Topics	Task/Reading			
1-2	Operating Systems (OS) Objectives, Formal Definition, Evolution, Types, DMA & Multiprogramming , OS Interfaces,- The Command-less command interpreter systems , Device drivers – Examples				
3-4	Operating System Structures				
5-7	Process Management				
8	Threads				
	Mid Term Examination				
9-10	Process Synchronization				
11-12	CPU Scheduling				
13-14	Deadlocks				

15	Main Memory	
16	Virtual Memory	
	Semester Final Examination	

Mapping of Course Outcomes (COs) and Program Outcomes (POs) and Evaluation Methods

	Marks	Mark Distributions (as %) on COs and POs						
Assessment Method		CO1	CO2	CO3	CO4	CO5		
		PO1	PO1, PO2	PO1	PO1, PO2	PO3		
Attendance (Class Participation)	10%							
Quiz 1/Quiz 2/Quiz 3/Quiz 4	30%							
Mid Semester Exam	25%							
Final Exam	35%							
Total	100%							

Mapping of COs and POs												
		Program Outcomes (POs)										
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	✓											
CO2	✓	√										
CO3	√											
CO4	✓	√										
CO5			✓									

	Program Outcomes (POs)				
Studer	Students graduating from the Bachelor of Science in Computer Science and Engineering (B. Sc. in CSE) program, upon graduation, will have the ability to:				
PO 1	Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO 2	Problem Analysis Identify, formulate, research, and analyze complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural sciences, and the engineering sciences.				
PO 3	Design/Development of Solutions Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal, and environmental concerns.				
PO 4	Investigation Conduct investigations of complex problems, considering experimental design, data analysis, and interpretation, and information synthesis to provide valid conclusions.				
PO 5	Modern Tool Usage Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of their limitations.				
PO 6	The Engineer and Society Apply to reason informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.				
PO 7	Environment and Sustainability Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.				
PO 8	Ethics Apply ethical principles and commit to the professional ethics, responsibilities and norms of the engineering practice.				
PO 9	Individual Work and Teamwork Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.				
PO 10	Communication Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.				
PO 11	Project Management and Finance Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.				

Life-Long Learning
Recognize the need for and have the preparation and ability to engage in independent, lifelong learning in the broadest context of technological change.

<u>K</u>

	Table: Knowledge Profile					
	Attribute					
K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline					
K2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline					
КЗ	A systemic, theory-based formulation of engineering fundamentals required in the engineering discipline					
К4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline					
K5	Knowledge that supports engineering design in a practice area					
К6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline					
К7	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability					
K8	Engagement with selected knowledge in the research literature of the discipline					

<u>P</u>

Table: Range of Complex Engineering Problem Solving						
Attribute Complex Engineering Problems have characteristic P1 and some or of P2 to P7						
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6, or K8 which allows a fundamentals-based, first principles analytical approach					
Range of conflicting requirements	P2: Involve wide-ranging or conflicting technical, engineering and other issues					
Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models					

Familiarity of issues	P4: Involve infrequently encountered issues
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering
Extent of stakeholder involvement and conflicting requirements	P6: Involve diverse groups of stakeholders with widely varying needs.
Interdependence	P7: Are high-level problems including many component parts or subproblems

Table: Range of Complex Engineering Activities		
Attribute	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:	
Range of resources	A1: Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)	
Level of interaction	A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues	
Innovation	A3: Involve creative use of engineering principles and research-based knowledge in novel ways	
Consequences for society and the environment	A4: Involve creative use of engineering principles and research-based knowledge in novel ways	
Familiarity	A5: Can extend beyond previous experiences by applying principles-based approaches	

Grading Policy				
Numeric Grade	Letter Grade	Grade Point		
80% and above	A+	4.00		
75% to less than 80%	А	3.75		
70% to less than 75%	A-	3.50		
65% to less than 70%	B+	3.25		
60% to less than 65%	В	3.00		
55% to less than 60%	B-	2.75		
50% to less than 55%	C+	2.50		

45% to less than 50%	С	2.25
40% to less than 45%	D	2.00
Less than 40%	F	0.00

Class Schedule				
Day	Section 1	Section 2		
Tuesday	08:00 AM	10:30 AM		
Thursday	10:30 AM	02:30 PM		

Contact Details:

Mohammad Ridwan Kabir

Lecturer,

Department of Computer Science and Engineering

Islamic University of Technology, Room #: 502, 2nd Academic Building.

Phone: 01731-842323

Email: ridwankabir@iut-dhaka.edu, cse.ridwankabir@iut-dhaka.edu,