Сравнение методов обновления LU-разложения для разреженных матриц типа ранг-1

Команда «LULU»

Артём Шейнов, Максим Смирнов, Марк Миргалеев, Семён Савоськин

Симплекс метод

Задача линейного программирования:

$$\min_{x \in \mathbf{R}^n} \langle c, x \rangle$$

s.t. $Ax = b$
$$\alpha \le x \le \beta$$

- Одним из методов решения является модифицированный симплекс метод
 - Выбор базисных векторов
 - Вычисляем остаток целевой ф-ии
 - Если целевая функция не уменьшилась, то решение найдено
 - Иначе заменяем базисный вектор, соответствующая переменная которой дает меньший вклад

Обновление LU разложения

- Обновляем матрицу B базисных векторов
- Заменяем вектор, соответствующая переменная которой дает меньший вклад
- Для вычислений достаточно обновить матрицу U

$$egin{aligned} PBQ' &= LU \ B &= B \, + \, (a_q \, - \, Be_p) \, e_p' \ L^{-1}B &= U \, + \, \left(L^{-1}a_q \, - \, Ue_p
ight) e_p' \ g &= L^{-1}a_q \end{aligned}$$

Матрица $\,L^{-1}B\,$

Метод Бартельса-Голуба

Описание метода

- 1. Переставить шип в последнюю позицию
- 2. Занулить элементы под диагональю
 - 2.1. Выбрать опорный элемент из диагонального и поддиагонального для лучшей устойчивости
 - 2.2. При необходимости поменять строки

Матрица после перестановки столбцов

Метод Форреста-Томлина

Описание метода

- 1. Переставить шип в последнюю позицию
- 2. Переставить строку на р позицию в конец
- 3. Занулить элементы в последней строке

Матрица после перестановки столбцов и строк

Метод Рида

Описание метода

Пусть шип имеет высоту до позиции r

- 1. Переставить шип в позицию r
- 2. Найти все столбцы «одиночки» и совершить «поворот» матрицы так, чтобы <u>столбец</u> перешел в начало «бугра» это уменьшит его размер
- 3. Найти все строки «одиночки» и совершить «поворот» матрицы так, чтобы <u>строка</u> перешла в конец «бугра» это уменьшит его размер
- 4. Занулить элементы под диагональю, если таковые имеются

Матрица после перестановки столбцов и «поворотов» матрицы

Метод Суль

Описание метода

Пусть шип имеет высоту до позиции r

- 1. Переставить шип в позицию r
- 2. Занулить все элементы строки p от позиции p до позиции r с помощью строк $(p+1), \ldots, (r-1)$
- 3. Переставить строку p в позицию r

а) Столбец в позиции р

с) Верхняя матрица Гейзенберга после зануления строки

b) Изначальная верхняя матрица Гейзенберга

d) Верхнетреугольная матрица после перестановки строк

Результаты Размер матрицы

Время работы алгоритмов

Результаты Размер матрицы

Отношение количества ненулевых элементов к общему числу элементов

Результаты Размер матрицы

Отношение разности между количествов ненулевых элементов в матрице U, полученной классическим LU, и их количеством в матрице U_update, полученной алгоритмами, к общему числу элементов

Результаты

Степень разреженности матрицы

Время работы алгоритмов

Результаты

Степень разреженности матрицы

Отношение количества ненулевых элементов к общему числу элементов

Результаты

Степень разреженности матрицы

Отношение разности между количествов ненулевых элементов в матрице U, полученной классическим LU, и их количеством в матрице U_update, полученной алгоритмами, к общему числу элементов

Области применения

Множество методов, решающих задачи линейного программирования (которых больше 300 на <u>SuiteSparseMatrixCollection</u>), используют модифицированный симплекс метод с обновлением LU

Выводы

- Реализовали 3 метода замены столбцов в разреженных матрицах
 - Бартельса-Голуба
 - Фореста-Томлина
 - о Суль
- Бартельса-Голуба показал себя лучше остальных (при этом будучи самым "старым")
- Метод Рида не был реализован из-за крайне низкой скорости работы при незначительных улучшениях и слишком сложной технической реализации с поворотами матрицы
- Что хотелось, но не успели:
 - Применить методы к известным задачам оптимизации с разреженными матрицами

Ссылки

- Репозиторий
 - https://github.com/Markm536/AIM_NLA_proj2
- Материалы:
 - https://link.springer.com/article/10.1007/BF02025534
 - https://staff.ulsu.ru/semushin/_index/_pilocus/_gist/docs/mycours eware/9-linprogram/6-tools/simplex-DemoCD/_SIMPLEX-DemoT ools/teor3/chapter2.htm#Figure%203
 - https://www.mathnet.ru/links/f0b4bfb866bd2d79b639d97c2338b2 80/sjvm587.pdf