

° Q1		\ ²
•	" de ste l'interior la T. By sur let it it it	200-1000/20
(4)	(in) At the lowest point let tousion be To. By symulty it is to Rosoloung horyantally for one half of the cable	Teve Corps
	$T_{cos} 30 = T_{o}$ $T_{o} = 981 \left(\frac{\sqrt{3}}{3}\right)$	
****	To = 850 N	5:
and have a graduate control of the	$(2) \circ (1 + 3) \circ (2) \circ (3) \circ $	<u> </u>
	(e)(i) Rotation speed in radians/min = 24x60 Speed of spot = 21 10 10 cons/min = 43-6 cons/min	į
	(Also 0'0436 in min or 2-62 in /hr) (Sive full walks for dist = 10 tan 0 m)	
	(give full walks for dist = 10 tand in)	
	(i) Jungeni merror 20.0 m fram løle in cerling Speed of spot is twice that in aus. to (i) = 8.73 cms/n	un !
	· · · · · · · · · · · · · · · · · · ·	<u> </u>
·	3	<i>h</i>
	1) Frections (med & bough, anti (electron) neutronos 2+2=	=
	(i) Frections (and Meny), anti (electron) aneutronos 2+2=	-
	(i) 20 protons	1/2
	(i) 20 protons 22 mentrons	1 2 1 2
	(i) 20 protons	1 2 1 2 1 3
	(ii) 20 protons 22 mentrons 19 electrons	3
	(i) 20 protons 22 mentrons	3
	(i) 20 protons 22 mentrons 19 electrons (g) bonditron for constructive interprence, as there is an addition hange of to at air-glass surface, 2t $\mu = (n+2) 1$	3
	(ii) 30 protons 19 electrons (g) bondition for constructive interprence, as there is an addition change of to at air-glass surface, 2t $\mu = (n+2) 1$ 2(1.52)(0.42×10 ⁻⁶) = (n+2) 1	3
	(ii) 10 protons 22 neutrons 19 electrons (g) bondition for constructive interprence, as there is an addition change of the air-glass surface, 2t $\mu = (n+2) \gamma$ 2(1.52)(0.42×10 ⁻⁶) = (n+2) γ 2(1.52)(0.42×10 ⁻⁶)	3
	(i) 20 protons 22 neutrons 19 electrons (g) bondition for constructive interprence, as there is an addition change of to at air-glass surface, 2t = (n+2) 1 2(1.52)(0.42×10 ⁻⁶) = (n+2) 1 2(1.52)(0.42×10 ⁻⁶) (n+3)	3
	(ii) 30 protens 22 neutrons 19 electrons (g) bondition for constructive interference, as itere is an addition change of to at air-glass surface, $2t \mu = (n+2) \Lambda$ $2(1.52)(0.42\times10^{-6}) = (n+2) \Lambda$ $2(1.52)(0.42\times10^{-6}) = (n+2) \Lambda$ $2(1.52)(0.42\times10^{-6}) = (n+2) \Lambda$ $2(1.52)(0.42\times10^{-6})$ $2(1.52)(0.42\times10^{-6})$ $3(1.52)(0.42\times10^{-6})$	3
	(ii) 30 protons 22 neutrons 19 electrons (g) bandition for anstructure interperence, as itere is an addition change of to at air-glass surface, 2t \(\mu = (n+2) \) \(\lambda \) 2t \(\mu = (n+2) \) \(\lambda \) 2(1.52)(0.42×10 ⁻⁶) = (n+2) \(\lambda \) (n+\frac{1}{2}) (n+\frac{1}{2}) (n+\frac{1}{2}) (n+\frac{1}{2})	3

01 (D(ii) For see and stage
Work due = (DO) (DE)
= (CE) (2E) Total work time = CE2+2CE2 = 3CE2

Thus energy lost = 3CE2-2CE2

= CE2 Tuns less energy lost by chaquing in two stages (M) Frequencies given Toy f= 1 /k / m; = 1.054 Hz = 0.953 Hz

Beat frequency = 1.054 - 0.953 = 0.10 Hz

Beat frequency = 1.054 - 0.953 = 0.10 Hz (n) let n bette number of complete revolutions, then equations heat generated to work done:

(0.4)(0.35×10)5 = 20(0.25)n 2 (c) Atmospheric dessure = weight of atmosphere above a square metric $1.01 \times 10^5 = 1.23 \text{ tg}$ t = hight of atm $t = 1.01 \times 10^5$ t = 8.37x10 m

give full mades for putting q as an energy in not a voltage \$ QT ix. putting & instead of e \$ (1) The photoelectric effect occurs when a photon of frequency f, and energy hef interacts with an electron in a metal, offen an alkali metal, giving up its energy to the (1) electron. If the electron has sufficient energy to overcome (a) the potential barrier of the metal, which for a metal with work function of is exp, it will excape from the metal. Thus photons, of light or EAR, incident on a metal, with affrobreate frequencies, can expel excetans from the metal. The incident shoton reperies an energy hef > work few. hu (2) to expellelectron from the metal with v, the electronis velocity; being greater than zero. If however ep>kf no electrons are emitted. The critical frequency is fo, where hop= eq. (ii) leonsewation of energy requires, for an electron, 1 mev2= Rf - ep = e/s stopping potential Classically FIR is a wave, not a beam of photor particles, The electron can, according to the wave theory, absorb any quantity of Erek. When it has absorbed sufficient to orecomethic potential barrier eq, it will escorbe from the metal. This is possible for all incident frequencies. Note that withe quantour theory only one photon can interact with an electron. Thus if of < for no electrons can be emitted - but derseally this should be possible if amplifue intensity great enough

Jakies of marked of Edit (v) Francis zmev - my -,
As $f = \frac{c}{\lambda}$, this becomes $\frac{1}{2}mev^2 = \frac{hc}{\lambda} - eq$ (a) Ploting V'against (7) gwes a strought line gradient 12he and inhercept (- 2ep) on the V-axis, on the (2) axis. Hence older We Washfure for (everyy) where &is a potatal.

QT

(b) Plot a graph of Vs against f.

e Vs = hf - exp

MARKS

Graph convertly drawn producing a straight line
In term of the chold frequency fo, O gives

eVs = hf - hfo.

Vs = (h) - (h)

i Gradient (b) and f= fo when $V_s=0$ (Also $V_s=\frac{1}{2}$ fo when $V_s=0$

fo = (4.4± 0.1) 10 Hz Correct value

CARABIENT AVS = (4.0 ± 001) 10 Vs borrect value

V.S Error estimate

 $h = e \frac{\Delta s}{\Delta f} = 6.4 \times 10^{-34} \text{ Ts}$ lemest value

8

(a) If vo speed in orbit then for circular motion K.E. m orbit T gwen by

T= ½ m/o = -1 GMEM (RE+1) ENERGY ET GIVEN BY IMPACT $E_{I} = \frac{1}{2}mV^{2} - \frac{GMem}{Re}$ $E_{I} = \frac{1}{2}m(2x10^{3})^{2} - \frac{GMem}{Re}$ Linerpy alosarbed En En = Eo - ET = - 1 GMEM - (1m(2x18) - GMEM)
(RE+1) (RE+1)

= 1047 × 1010 J

86

 $= \frac{(6.67 \times 10^{11})(5.97 \times 10^{14})(500)}{2} \left[\frac{-10^{7}}{0.743} + \frac{2 \times 10^{7}}{6.683} \right] \frac{800}{2} \left(2 \times 10^{10} \right)$

(b) The minimum initial velocity is that sufficient for the market to reach the point Z where the Enoth's all taction equals that of the Moon's affraction so that subsequently it is pulled by the Moon's grave fational force, which well be greater than that I the tarth to words the Moon be greater than that I the tarth to words the Moon leading to a crash landing. Hence at I the speed

i) $\frac{GMEMR}{GE} = \frac{GM_{MMR}}{(REN-ale)^{2}}$ $\frac{P_{EM}-dE}{dE} = \frac{M_{M}}{M_{R}}$ = 0.111 1.111 dE = REM = 3.83×10 dE = 8.45×108m

Q8 (b) (ii) Bonservotton of energy initially and at Z gives,

IMRV2-GMRME (RE)-GMRMM (REM-RE)

=-GMR[ME + (MM :)]

 $V^2 = 2GM_{\rm E} \left[\frac{1}{R_{\rm E}} - \frac{1}{d_{\rm E}} \right] - 2GM_{\rm M} \left[\frac{1}{R_{\rm EM}} - \frac{1}{d_{\rm E}} - \frac{1}{R_{\rm EM}} \right]$

 $= 2 \left(\frac{6.67 \times 10^{-11}}{5.97 \times 10^{9}} \right) \left[\frac{1.38 \times 10^{10}}{6.38 \times 10^{10}} - \frac{1.38 \times 10^{10}}{3.45 \times 10^{10}} \right]$

 $-2(6.67\times10^{11})(7.35\times10^{22})\left[\frac{1}{3.84\times10^{8}-3.45\times10^{8}}-\frac{1}{3.84\times10^{8}-6.38\times10^{6}}\right]$

= $2(6.67 \times 10^{-11}) \left\{ (5.97 \times 10^{-24}) \left(1.56 \times 10^{-7} - 2.90 \times 10^{-9} \right) - \left(7.35 \times 10^{-2} \right) \left(2.56 \times 10^{-8} - 2.65 \times 10^{-9} \right) \right\}$

= 1.334×10 {(5.97×10) (1-53×10) - (7.35×10) (2.29×10)}

= 1-334×10 { 9.13×10 - 1.68×1015.}

 $=1.334\times10^{17}$ $(9.11\times10^{17})=1.22\times10^{8}$

V = 1.1 ×104 ms-1

so these terms muy be neglicited, after judification

(9 (b) (h) Alternatively:

If be photons observed at 1.8 m with absorber passant, total number observed if "spherical" absorber present, taking into account all derections is $N' = \frac{4T (1.8)^{2} 60}{4 \times 10^{-4}} = 6.11 \times 10^{6}$ Thus to of Y rays absorbed $100 \times \frac{N-N'}{N} = |00 \times \frac{7.5 - 6.1}{7.5} = 19 \%$

(c) $N = N_0 = \frac{1}{2}$ $N = N_0 = \frac{1}{2}$ $N = N_0 = \frac{1}{2}$ $N_0 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $N_0 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $N_0 = \frac{1}{2} + \frac{1}$

