Network Security

Security Requirements:

- Confidentiality
- Integrity
- Availability

- Two types of attacks on network security:
 - Passive
 - Active

Security Threats:

Passive Attacks:

- Eavesdropping on transmissions to obtain information
- Two Types:
 - Release of message contents:
 - Outsider learns content of transmission
 - Traffic analysis:
 - By monitoring frequency and length of messages, even encrypted, nature of communication may be guessed
- Difficult to detect
- Can be prevented

Active Attacks:

Masquerade

- Pretending to be a different entity
- It includes one of the other types of active attack
- e.g. Capture authentication sequence and replay after valid authentication to get extra privileges

Replay:

- Capture of data units and retransmission

Modification of messages:

- Modify/delay/reordered the message

Denial of service:

- Block the services/slow down the access/overloading the network by sending with other messages

Easy to detect

- Detection may lead to deterrent

Conventional Encryption:

Symmetric/single-key encryption:

- Plain text
- Encryption algorithm
- Secret key
- Cipher text
- Decryption algorithm

Conventional Encryption:

Requirements for Security:

- Strong Encryption Algorithm:
 - Even if known, should not be able to decrypt or work out key
 - Even if a number of cipher texts are available together with plain texts of them
 - Sender and receiver must obtain secret key securely
- Once key is known, all communication using this key is readable

Attacking a Conventional Encryption:

Two Approaches:

- Cryptanalysis:
 - Rely on nature of algorithm plus some knowledge of general characteristics of plain text/cipher text
 - Attempt to deduce plain text or key
- Brute force
 - Try every possible key until plain text is achieved
 - On average, half of all possible keys must be tried to get success

Attacking a Conventional Encryption:

Average time required for exhaustive key search:

Key (bits)	size	Number of alternativ e keys	Time required at 1 decryption/ µs	Time required at 106 decryption/ µs
32		$2^{32} = 4.3 \text{ x}$ 10^9	2 ³¹ μs = 35.8 minutes	2.15 milliseconds
56		$2^{56} = 7.2 \text{ x}$ 10^{16}	$2^{55}\mu s = 1142$ years	10.01 hours
128		$2^{128} = 3.4 \text{ x}$ 10^{38}	$2^{127}\mu s = 5.4 x$ $10^{24} years$	
168		$2^{168} = 3.7 \text{ x}$ 10^{50}	$2^{167}\mu s = 5.9 x$ $10^{36} years$	

Algorithms:

- Most commonly used conventional algorithms are block ciphers:
 - Process plain text in fixed block sizes producing block of cipher text of equal size
 - Data encryption standard (DES)
 - Triple DES (TDES)
 - Advanced DES

Data Encryption Standard (DES):

- Data Encryption Algorithm
- Adopted by ANSI
- 64 bit plain text blocks
- 56 bit key

DES Encryption Algorithm:

DES Encryption Algorithm:

- Declared insecure in 1998
- Alternatives include TDES/ADES
- Advanced Encryption Algorithm:
 - RSA Encryption
 - Twofish encryption algorithm
 - Blowfish encryption algorithm
 - IDEA encryption algorithm
 - MD5 encryption algorithm
 - HMAC encryption algorithm

Triple Data Encryption Algorithm:

- ANSI X9.17 (1985)
- Incorporated in DEA standard 1999
- Uses 3 keys and 3 executions of DEA algorithm
- Effective key length 168 bit

Location of Encryption Devices:

- Two fundamental alternatives:
 - link encryption
 - end to end encryption

PSN = packet switching node

Key Distribution:

- Key could be selected by A and physically delivered to B
- Third party could select key and physically deliver to A and B
- Use old key to encrypt and transmit new key from A to B
- Use old key to transmit new key from third party to A and B

Automatic Key Distribution for connection oriented protocol:

Automatic Key Distribution:

Session Key

- Used for duration of one logical connection
- Destroyed at end of session
- Used for user data

Permanent key

- Used for distribution of keys
- Key distribution center
 - Determines which systems may communicate
 - Provides one session key for that connection

Front end processor

- Performs end to end encryption
- Obtains keys for host

Traffic Padding:

- Produce cipher text continuously
- If no plain text to encode, send random data
- Make traffic analysis impossible

Message Authentication:

- Protection passive attacks:
 - Encryption
- Protection against active attacks:
 - Falsification of data/transactions
 - Authentication
- Message is authentic if it is genuine and comes from the real source
- Authentication allows receiver to verify that message is authentic
 - Message has not altered
 - Message is from authentic source
 - Message timeliness

Authentication Using Encryption

- Assumes sender and receiver are only entities that know key
- Message includes:
 - error detection code
 - sequence number
 - time stamp

Authentication Without Encryption

- Authentication tag generated and appended to each message
- Message not encrypted
- Useful for:
 - Messages broadcast to multiple destinations
 - Have one destination responsible for authentication
 - One side heavily loaded
 - Encryption adds to workload
 - Can authenticate random messages

Message Authentication Code:

- Generate authentication code based on shared key and message
- Common key shared between A and B
- If only sender and receiver know key and if code matches:
 - Receiver assured message has not altered
 - Receiver assured message is from alleged sender
 - If message has sequence number, receiver assured of proper sequence

Message Authentication Using Message Authentication Code

One Way Hash Function:

- Accepts variable size message and produces fixed size tag (message digest)
- Advantages of authentication without encryption
 - Encryption is slow
 - Encryption hardware expensive
 - Encryption hardware optimized to large data
 - Algorithms covered by patents

Using One Way Hash:

Public Key Encryption:

- Based on mathematical algorithms
- Asymmetric
 - Use two separate keys
- Ingredients
 - Plain text
 - Encryption algorithm
 - Public and private key
 - Cipher text
 - Decryption algorithm

Public Key Encryption:

(b) Authentication

Public Key Encryption - Operation:

- One key made public
 - Used for encryption
- Other kept private
 - Used for decryption
- Infeasible to determine decryption key given encryption key and algorithm
- Either key can be used for encryption, the other for decryption

Steps:

- User generates pair of keys
- User places one key in public domain
- To send a message to user, encrypt using public key
- User decrypts using private key

Digital Signature:

- Sender encrypts message with their private key
- Receiver can decrypt using senders public key
- This authenticates sender, who is only person who has the matching key
- Does not give privacy of data
 - Decrypt key is public