

National Aeronautics and Space Administration Goddard Earth Science Data Information and Services Center (GES DISC)

README Document for the Tropical Rainfall Measurement Mission (TRMM) Version 7

Last Revised July 6, 2017

Goddard Earth Sciences Data and Information Services Center (GES DISC) https://disc.gsfc.nasa.gov NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

Prepared By:

Kyle MacRitchie	Collaborator's Name
Name	Name
GES DISC	Collaborator Address
GSFC Code 610.2	
8/31/2015	
Data	
Date	
	Reviewed By:
Reviewer Name	Date
Reviewer Name	Date
GES DISC	

GSFC Code 610.2

Goddard Space Flight Center Greenbelt, Maryland

Revision History

Revision Date	Changes	Author
August 31, 2015	ugust 31, 2015 This document was first created.	
December 8, 2015	Fixed some typos and missing information.	Kyle MacRitchie
December 16, 2015	Fixed some typos.	Kyle MacRitchie
July 6, 2017	Changes to section 1.2, p10	G. Huffman, D. Bolvin

Table of Contents

1.0 Introduction	5
1.1 Dataset/Mission Instrument Description	5
1.1.1 Dataset/Instruments	7
1.2 Algorithm Background	8
1.3 Data Disclaimer	11
1.3.1 Acknowledgement	11
1.3.2 Contact Information	11
2.0 Data Organization	12
2.1 File Naming Convention	12
2.2 File Format and Structure	13
2.3 Key Science Data Fields	14
3.0 Data Contents	14
3.1 Dimensions	14
3.2 Global Attributes	16
3.3 Products and Variables	18
4.0 Options for Reading the Data	61
4.1 Command Line Utilities and Programs	61
4.1.1 GrADS	61
4.1.2 MATLAB	62
4.1.3 Python	64
4.1.4 hdp and ncdump	65
4.2 Tools/Programming	67
5.0 Data Services	68
6.0 More Information	69
7.0 Acknowledgements	70

1.0 Introduction

This document provides basic information for using Tropical Rainfall Measurement Mission (TRMM) products.

The TRMM datasets consist of products generated for studying precipitation in the tropics. These products include observations of radiances, microwave temperature, radar reflectivity, rainfall rate, vertical rainfall profile, and convective and stratiform heating.

TRMM was launched on November 27, 1997 and decommissioned on April 15, 2015. It reentered Earth's atmosphere in June 2015.

1.1 Dataset/Mission Instrument Description

Each of the TRMM datasets listed below is created using algorithms that are explained in more detail in section 1.2.

Applicable Data Products

Table 1 below provides an overview of the 18 TRMM products discussed in this document.

	Product ID	Product Name	Temporal	Horizontal Resolution			
	1B01	Visible and Infrared Scanner (VIRS) Level 1 Raw	Resolution 16 orbits / day	(x and y) 2.2 km			
	1801	and Calibrated Radiance Products	10 Orbits / day	2.2 KIII			
	1B11	TRMM Microwave Imager (TMI) Level 1 Raw	16 orbits / day	4.4 km, 5.1 km			
		and Calibrated Radiance Product		, •			
	1B21	TRMM Precipitation Radar (PR) Level 1 Power	16 orbits / day	4.3 km, 5.0 km			
		and Reflectivity Products					
	1C21	TRMM Precipitation Radar (PR) Level 1 Power	16 orbits / day	4.3 km, 5.0 km			
		and Reflectivity Products					
tal	2A12	TRMM Microwave Imager (TMI) Level 2	16 orbits / day	4.4 km, 5.1 km			
Orbital		Hydrometeor Profile Product					
0	2A21	TRMM Precipitation Radar (PR) Level 2 Surface	16 orbits / day	4.3 km, 5.0 km			
	2A23	Cross-Section Product	16 orbits / day	4.3 km, 5.0 km			
	ZAZ3	TRMM Precipitation Radar (PR) Level 2 Rain Characteristics Product	16 Orbits / day	4.3 KIII, 5.0 KIII			
	2A25	TRMM Precipitation Radar (PR) Level 2 Rainfall	16 orbits / day	4.3 km, 5.0 km			
	LALS	Rate and Profile Product	10 orbits / day	4.5 km, 5.6 km			
	2B31	TRMM Combined Precipitation Radar (PR) and	16 orbits / day 4.3 km, 5.0 km				
		TRMM Microwave Imager (TMI) Rainfall Profile					
		Product					
	3A11	TRMM Microwave Imager (TMI) Gridded	Monthly	5.0°			
		Oceanic Rainfall Product					
	3A12	TRMM Microwave Imager (TMI) Level 3	Monthly	0.5°			
	2425	Monthly 0.5 degree x 0.5 degree Profiling V7		0.50 15.00			
	3A25	TRMM Precipitation Radar (PR) Gridded	Monthly	0.5° and 5.0°			
	3A26	Rainfall Product TRMM Precipitation Radar (PR) Gridded	Monthly	5.0°			
	3A20	Surface Rain Total Product	iviontiny	3.0			
þ	3B31	TRMM Combined Precipitation Radar (PR) and	Monthly	0.5°			
Gridded		TRMM Microwave Imager (TMI) Gridded	,				
Gri		Rainfall Product					
	3A46	TRMM Monthly 1 x 1 Degree SSM/I Rain Data	Monthly	1.0°			
		V2					
	3B42	TRMM/TMPA 3-Hourly 0.25 deg. TRMM and	3 hourly	0.25°			
		Others Rainfall Estimate Data					
	3B43	TRMM/TMPA and Other Sources Monthly	Monthly	0.25°			
	CCII	Rainfall Product	N. A. a. matha h. v	0.59			
	CSH	TRMM Level 3 Monthly 0.5 degree x 0.5 degree Convective and Stratiform Heating CSH	Monthly	0.5°			
L	Table 1. All horizontal resolutions are identical in the x and x directions (e.g., 2.2 km means 2.2 km x 2.2 km). Multiple						

Table 1. All horizontal resolutions are identical in the x and y directions (e.g. 2.2 km means 2.2 km x 2.2 km). Multiple resolutions refer to pre-boost (before 2001-08-07) and post-boost (after 2001-08-24) values respectively. Details on all these datasets can be found in Section 3.3.

1.1.1 Dataset/Instruments

The Tropical Rainfall Measurement Mission (TRMM) is a collaborative effort between NASA and the Japanese Aerospace Exploration Agency (JAXA). The TRMM observatory, which housed the first-ever precipitation radar in space, was launched in 1997 into a near circular orbit of approximately 350 kilometers with a period of 92.5 minutes (15.6 orbits per day). During the period of 2001/8/7 to 2001/8/14, the average operating altitude changed from 350 km to 403 km (referred to also as TRMM Boost). The datasets described in this document were created using data from the TRMM observatory and its partner satellites.

Multiple instruments are used throughout the TRMM satellite constellation. They are described briefly below.

Precipitation Radar (PR): The PR was the first spacebourne instrument designed to provide three-dimensional plots of storm structure. It has a horizontal resolution of about 5 km and a swath width of 247 km. It can provide vertical profiles of rain and snow from the surface to a height of 20 km and is sensitive to light rain rates as low as 0.5 mm/hr.

TRMM Microwave Imager (TMI): The TMI is a passive microwave sensor based on the Special Sensor Microwave/Imager (SSM/I). It measures the intensity of radiation at 10.7, 19.4, 21.3, 37, and 85.5 GHz.

Visible Infrared Scanner (VIRS): The VIRS senses radiation in the visible and infrared wavelengths of 0.63, 1.6, 10.8, and 12 micrometers. The VIRS has a horizontal resolution of 2.4 km and a swath width of about 833 km.

Below is a table summary of the instrument specifications adapted from the NASA Precipitation Measurement Missions website.

	PR	TMI	VIRS
Frequencies	13.8 GHz	Waveleng 3.8 GHz 10.7, 19.4, 21.3, 37, 85.5 GHz 0.63, 1.6, 10.8	
Resolution	5 km horizontal, 250 m vertical	11 km x 8 km at 37 GHz	2.4 km
Scanning	Cross-track	Conical	Cross-track
Swath Width	247 km	878 km	833 km

Table 2. Summary of instrument specifications.

1.2 Algorithm Background

This section describes how each dataset is created.

1B01: The TRMM Visible and Infrared Scanner (VIRS) Level 1B Calibrated Radiance Product contains calibrated radiances and auxiliary geolocation information from the five channels of the VIRS instrument for each pixel of each scan. The EOSDIS "swath" structure is used to accommodate the actual geophysical data arrays. Sixteen files of VIRS 1B01 data are produced each day.

For channels 1 and 2, Level 1B radiances are derived from the Level 1A (1A01) sensor counts by computing calibration parameters (gain and offset) derived from the counts registered during space and solar and/or lunar views. New calibration parameters are produced every one to four weeks. Channels 3, 4, and 5 are calibrated using the internal blackbody and the space view. These calibration parameters, together with a quadratic term determined pre-launch, are used to generate a counts vs. radiance curve for each band, which is then used to convert the earth-view pixel counts to spectral radiances.

Geolocation and channel data are written out for each pixel along the scan, whereas the time stamp, scan status (containing scan quality information), navigation, calibration coefficients, and solar/satellite geometry are specified on a per-scan basis. There are in general 18,026 scans along the orbit pre-boost and 18,223 post-boost, with each scan consisting of 261 pixels. The scan width is about 720 km pre-boost and 833 km post-boost.

1B11: This is the TRMM Microwave Imager (TMI) LEVEL 1B calibrated Brightness Temperature (T_b) data product. The TMI calibration algorithm (1B11) converts the radiometer counts to antenna temperatures by applying a linear relationship of the form $T_a = c_1 + c_2 \times count$. The coefficients are provided by the instrument contractor. Antenna temperatures are corrected for cross-polarization and spill over to produce brightness temperatures (T_b) , but no antenna beam pattern correction or sample to pixel averaging are performed. Temperatures are provided at 104 scan positions for the low frequency channels and 208 scan positions at 85 GHz. There are four samples per pixel (3 dB beam width) at 10 GHz, two samples at 19, 22, and 37 GHz, and one sample per pixel for the 85 GHz.

1B21: The PR calibration algorithm (1B21) converts the counts of radar echoes and noise levels into engineering values (power) and outputs the radar echo power and noise power separately. The algorithm also detects and flags the range bin with return power that exceeds a predetermined threshold value.

1C21: The PR reflectivity algorithm (1C21) converts the power and noise estimates from 1B21 to radar reflectivity factors (Z-factors). In order to reduce output data volume, only pixels with power that exceeds the minimum echo detected in 1B21 are converted and stored.

2A12: This product contains surface rainfall and vertical hydrometeor profiles on a pixel-by-pixel basis from the TMI brightness temperature data using the Goddard Profiling algorithm GPROF2008. Because the vertical information comes from a radiometer, it is not written in independent vertical layers like the TRMM PR. Instead, the output references the 100 typical structures for each hydrometeor or heating profile. These vertical structures are referenced as clusters in the output structure. Vertical hydrometeor profiles can be reconstructed to 28 layers by knowing the cluster number (i.e. shape) of the profile and a scale factor that is written for each pixel.

2A21: This is the sigma zero algorithm, which inputs the PR power (1B21) and computes estimates of the path attenuation and its reliability by using the surface as a reference target. It also computes the spatial and temporal statistics of the surface scattering cross section and classifies the cross sections into land/ocean and rain/no rain categories.

2A23: This dataset contains PR (13.8 GHz) precipitation characteristics at 5 km horizontal resolution over a 247 km swatch including rain/no-rain decision and freezing level.

2A25: The average rainfall rate between the two pre-defined altitudes is calculated for each beam position. Other output data include parameters of Z-R relationships, integrated rain rate of each beam, range bin numbers of rain layer boundaries, and many intermediate parameters.

2B31: This combined rainfall product is derived from vertical hydrometeor profiles using data from the PR radar and TMI. It also includes computed correlation-corrected, mass-weighted, mean drop diameter and its standard deviation, and latent heating.

3A11: This is the TMI Monthly 5° x 5° Oceanic Rainfall Product. Algorithm 3A11 estimates monthly rain from the histogram of the brightness temperatures obtained from TMI calibration (1B11). This histogram is matched to a log-normally distributed rain rate distribution via a rain rate-brightness temperature relation. A beam-filling correction is applied to account for the non-uniformly filled field-of-view of the TMI sensor. Outputs are monthly surface rain rates and freezing heights for 5° x 5° grid boxes.

3A12: This is a monthly version of the 2A12 data product.

3A25: This product consists of monthly statistics of the PR measurements at both a low (5° x 5°) and a high (0.5° x 0.5°) horizontal resolution. The low resolution grids are in the Planetary Grid 1 structure and include 1) mean and standard deviation of the rain rate, reflectivity, path-

integrated attenuation (PIA), storm height, Xi, bright band height and the NUBF (Non-Uniform Beam Filling) correction; 2) rain fractions; 3) histograms of the storm height, bright-band height, snow-ice layer, reflectivity, rain rate, path-attenuation and NUBF correction; 4) correlation coefficients. The high resolution grids are in the Planetary Grid 2 structure and contain mean rain rate along with standard deviation and rain fractions.

3A26: This dataset contains PR monthly surface rainfall. These data were derived from rain rate statistics and include the estimated values of the probability distribution function of the spacetime rain rates at four levels (2 km, 4 km, 6 km, and path-averaged) and the mean, standard deviation, and probability of rain derived from these distributions. Three different rain rate estimates are used as input to the algorithm: (1) the standard Z-R (or 0th-order estimate having no attenuation correction); (2) the Hitschfield-Bordan (H-B); and (3) the rain rates taken from 2A25.

3A46: This rainfall product contains data derived from the monthly SSM/I data averaged over 1° x 1° boxes each month. These data are used as input to the 3B43 monthly product described below.

3B31: This is a combined rainfall product. 3B31 uses the high quality retrievals done for the narrow swath in 2B31 to calibrate the wide swath retrievals generated in 2A12. For each 0.5° x 0.5° box and each vertical layer, an adjustment ratio is calculated for the swath overlap region for one month. Only TMI pixels with 2A12 pixelStatus equal to zero are included in monthly averages, which effectively removes sea ice.

3B42: The data product consists of TRMM Multi-Satellite Precipitation Analysis (TMPA) Rainfall Estimate Product 3B42 Version 7 (V7), which merges satellite rainfall estimates (S) with gauge data (G). First, all non-TRMM microwave precipitation estimates The 3B42 algorithm first combines microwave precipitation estimates from multiple low-earth-orbiting satellites are calibrated to the TRMM Microwave Imager precipitation (TMI; TRMM product 2A12) and then calibrated to the TRMM Combined Instrument precipitation (TCI; TRMM product 2B31). These are merged to produce a 3 hourly microwave-only best estimate. The infrared precipitation estimates (from multiple geosynchronous satellites) are then calibrated to the microwave estimate and used to fill in the regional gaps in the merged microwave field to produce a combined satellite rainfall estimate every 3 hours. These 3-hourly combined satellite estimates are then summed to the monthly scale and recalibrated with a monthly precipitation gauge analysis to provide the final SG-merged precipitation estimate as a Level 3 (L3) 3 hourly 0.25° x 0.25° quasi-global (50°N-S) gridded SG-rainfall database. Estimates of root-mean-square (RMS) precipitation error are also provided.

3B43: The data product consists of TRMM Multi-Satellite Precipitation Analysis (TMPA) Rainfall Estimate Product 3B43 Version 7 (V7), which merges satellite rainfall estimates (S) with gauge data (G) into gridded estimates on a calendar month temporal resolution and a 0.25° by 0.25° spatial resolution global band extending from 50°S to 50°N latitude. This algorithm is executed once per calendar month to produce the average best-estimate precipitation rate and RMS precipitation-error estimate field (3B43) described in 3B42 prior to recalibration of the 3 hourly product.

CSH: This is the convective and stratiform heating product. Convective and stratiform heating profiles are separated by comparing heating profiles from TRMM sensors to a lookup table of heating profiles mostly generated by the Goddard Cumulus Ensemble Cloud Resolving Model.

1.3 Data Disclaimer

1.3.1 Acknowledgement

If you use these data in publications, please acknowledge the Tropical Rainfall Measuring Mission (TRMM) as well as the Goddard Earth Sciences Data and Information Services Center (GES DISC) for the dissemination of the data. The standard for data citation can be found under the "Data Citation" tab on any of the TRMM product pages:

https://disc.gsfc.nasa.gov/datasets?project=TRMM

1.3.2 Contact Information

If you need assistance or wish to report a problem please use the following contact information:

Email: gsfc-help-disc@lists.nasa.gov

Voice: 301-614-5268 **Fax**: 301-614-5268

Address

Goddard Earth Sciences Data and Information Services Center (GES DISC) NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

2.0 Data Organization

All datasets are stored in files that correspond to their temporal resolution. For example, the 3-hourly 3B42 data are stored in eight files per day at 00 UTC, 03 UTC, 06 UTC, etc. and monthly files are stored in separate files for each month.

2.1 File Naming Convention

File names involve some combination of the following attributes:

- <date> The date is always in a format with the last 2 digits of the year following by the month and the day, always with a leading zero. An example for 4 August 2009 would be: 090804.
- <orbit number> This is the 5 digit orbit number.
- <pre

Product ID	File Naming Convention	Format
1B01	1B01. <date>.<orbit_number>.<product_version>.HDF</product_version></orbit_number></date>	HDF4
1B11	1B11. <date>.<orbit_number>.<product_version>.HDF</product_version></orbit_number></date>	HDF4
1B21	1B21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
1C21	1C21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A12	2A12. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A21	2A21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A23	2A23. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A25	2A25. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2B31	2B31. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
3A11	3A11. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A12	3A12. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A25	3A25. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A26	3A26. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3B31	3B31. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A46	3A46. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3B42	3B42. <date>.<hour>.<product_version>.HDF.Z</product_version></hour></date>	Compressed HDF4
3B43	3B43. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
CSH	CSH. <date>.<product_version>.HDF</product_version></date>	HDF4

Table 3. File naming conventions.

2.2 File Format and Structure

TRMM files are in the Hierarchical Data Format Version 4 (HDF-4), developed at the National Center for Supercomputing Applications (https://www.hdfgroup.org). These extensions facilitate the creation of Grid, Point, and Swath data structures, depending on whether the data are orbital or gridded.

Orbital (levels 1 and 2) data are stored in HDF-4 files that use the swath structure.

The variables within the orbital TRMM files (the product IDs that begin with a "1" or a "2") contain Swath data structures with dimensions of (nscan x nray). The gridded variables have dimensions of (longitude x latitude). Three-dimensional variables, found in the gridded files, have a third dimension of height above the surface, measured in kilometers.

Missing data are represented by values that are less than or equal to -99, -9999, -9999, -9999.9, and -9999.9 corresponding to 1-byte integers, 2-byte integers, 4-byte floats, and 8-byte floats.

Array dimensions are ordered so that the first dimension has the most rapidly varying index and the last dimension has the least rapidly varying index, which is sometimes called column-major

ordering. Languages such as Fortran, MATLAB, and R use column-major ordering naturally. If you use row-major languages such as C++ and Python, it is recommended that you reverse the order of the dimensions of the arrays for optimal performance.

2.3 Key Science Data Fields

Below are the variables, and the products in which they are found, that we expect to be the most popular.

Product ID	Variable Name	Description Dimension		Units
	surfaceRain	Surface Rainfall Rate	lat x lon mm hr ⁻¹	
	convectPreciptiation	Surface Convective Rain Rate	level x lat x lon	mm hr ⁻¹
	surfacePrecipitation	Surface Precipitation Rate	lat x lon	mm hr ⁻¹
3A12	cldIce	Cloud Ice Water Content	level x lat x lon	g m ⁻³
Monthly Data	cldWater	Cloud Liquid Water Content	level x lat x lon	g m ⁻³
	snow	Snow Liquid Content	level x lat x lon	g m ⁻³
	graupel	Graupel Liquid Water Content	level x lat x lon	g m ⁻³
	latentHeat	Latent Heat Release	level x lat x lon	K hr ⁻¹
	precipitation	Surface Precipitation Estimate	lat x lon	mm hr ⁻¹
3B42	HQprecipitation	Microwave Precipitation Estimate*	lat x lon	mm hr ⁻¹
3-Hourly Data	IRprecipitation	Infrared Precipitation Estimate*	lat x lon	mm hr ⁻¹
	relativeError	Random Error Estimate	lat x lon	mm hr ⁻¹
3B43	precipitation	Surface Precipitation Estimate	lat x lon	mm hr ⁻¹
Monthly Data	relativeError	Random Error Estimate	lat x lon	mm hr ⁻¹

Table 4. Description of popular variables.

Variables marked with a * are only found in version 7, not version 6.

3.0 Data Contents

3.1 Dimensions

The dimensions of the variables within the files vary by processing level, which refers to the "1", "2", or "3" at the beginning of the product ID. A summary of the dimensionality of the most common variables is given below. See section 3.3 for more details on each individual dataset.

Level 1 Data: 1XXX

Most of these variables have dimensions of *nscan* x *nray*. *nscan* refers to the number of scans in each granule, which varies by file. The second dimension, *nray* refers to the number of angle bins in each scan, which is always 49.

Level 2 Data: 2XXX

These variables have various numbers of dimensions made up of the ones listed below.

ncluster: number of clusters at each freezing height, always 100

nlayer: number of profiling layers, always 28 npixel: number of pixels in each scan, always 208 nfindex: number of freezing height indices, always 13

nspecies: number corresponding to the hydrometeor species. Table 5 below lists the species.

Species Number	Description	Units
1	Cloud liquid water content	g m ⁻³
2	Rain water content	g m ⁻³
3	Cloud ice water content	g m ⁻³
4	Snow water content	g m ⁻³
5	Graupel water content	g m ⁻³
6	Latent heating	K h ⁻¹

Table 5. Description of hydrometeor species.

Level 3 Data: 3XXX

These variables are on geographic grids and have various combinations of the dimensions listed below.

nlat: number of latitudes *nlon:* number of longitudes

nlayer: number of vertical layers denoting the height above the surface. There are 28 vertical layers beginning at 0.5 km and increasing in 0.5 km intervals to 10 km and then 1 km intervals to 18 km.

All 32-bit variables have units attributes to make them COARDS-compliant.

Resolution

TRMM data are available on a variety of grids depending on the products chosen. Table 1 shows the temporal and horizontal resolutions associated with each TRMM product.

Temporal resolutions vary between 16 orbits/day (90 minutes), 3-hourly, and monthly. 3-hourly data exist at the synoptic and intermediate synoptic times of 00, 03, 06, 09, 12, 15, 18, and 21 UTC. Sub-daily data represent observations taken at that instant whereas monthly data represent monthly averages.

The orbital data products (1XXX and 2XXX) have latitude and longitude variables contained within the HDF files to allow proper swath mapping. Gridded files (3XXX) do not have explicit latitude and longitude information. Instead, the gridded files contain the *LatitudeResolution*, *LongitudeResolution*, *NorthBoundingCoordinate*, *SouthBoundingCoordinate*, *EastBoundingCoordinate*, *WestBoundingCoordinate* metadata and generally span 50°S to 50°N and 180°W to 180°E. Some products only span 38°S to 38°N, see section 3.3 for specific details.

Gridded TRMM products use the center of grid boxes for their latitude and longitude coordinates. For example, the TRMM 3B42 dataset, which spans 50°S to 50°N and 180°W to 180°E has a grid that goes from 49.875°S TO 49.875°N and 179.875°W to 179.875°E. Consult the sample code in Section 4 of this Readme for specific examples.

Detailed information on data resolution can be found in the <u>PPS File Specification document</u> cited at the end of this Readme document.

3.2 Global Attributes

In addition to SDS arrays containing variables and dimension scales, global metadata are also stored in the files. Some metadata are required by standard conventions, some are present to meet data provenance requirements, and others as a convenience to users of TRMM products. A summary of global attributes present in all files is shown in Table 6.

Global Attribute	Description
AlgorithmID	The algorithm that generated the product.
AlgorithmVersion	The version of the algorithm specified as the AlgorithmID.
FileName	The file name.
GenerationDateTime	The date and time the granule was generated.
StartGranuleDateTime	The start time of the data in the granule.
StopGranuleDateTime	The stop time of the data in the granule.
GranuleNumber	The granule number.
NumberOfSwaths	The number of swaths in the granule.
NumberOfGrids	The number of grid structures in the granule.
GranuleStart	The granule's orbit starting place.
TimeInterval	The time interval covered by the granule. Possible values are: ORBIT,
TimeInterval HALFORBIT, HOUR, 3_HOUR, DAY, MONTH, and CONTACT.	
ProcessingSystem	The name of the processing system.
ProductVersion	The data version assigned by ProcessingSystem.
MissingData	The number of missing scans.

Table 6. Description of global attributes.

Name	Туре	Description
FillValue	float32	Floating-point value used to identify missing
		data. Will normally be set to
		1e15. Not included in every TRMM file.
Units	string	The units of the variable. Must be a string that
		can be recognized by
		UNIDATA's Udunits package.
Scale_factor	float32	If variable is packed as 16-bit integers, this is the
		scale_factor for
		expanding to floating-point.

Table 7. Key Metadata Items

viewed with the *ncdump* software: ncdump –h -c <TRMM file>.

A list of key metadata fields can be found in Table 7. Global attributes in a Data Set Name file can be

3.3 Products and Variables

1B01: Visible and Infrared Radiance

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Townsel Covered	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Horizontal Resolution	2.2 km	2.4 km
	Swath Width: 720 km	Swath Width: 833 km
	Pixels/Scan: 261	Pixels/Scan: 261
Scan Characteristics	Scans/Second (SS): 2*98.5/60	Scans/Second (SS): 2*98.5/60
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5490
	Average Scans/Orbit: nscan = 18026	Average Scans/Orbit: 5550 = 18223
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 137 MB	≈ 138 MB

1B01 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metada	ata					
Swath Structure	Char Attribute	5,000	-	-	-	-
Specifications for the sv	wath geometry					
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with ea	ach scan					
Latitude	Float SDS	4	261*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	261*scan	-	-	degree
Longitude information						
Scan Status	Vdata Table	19	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric in	nformation					
Solar Cal	Vdata Table	32	nscan	-	-	-
Solar unit vector in Geo	centric Inertial Co	ordinates and	the Sun-Earth dis	tance		
Calibration Counts	Integer SDS	2	5*2*3*nscan	-	-	-
Raw calibration counts	data					
Temperature Counts	Integer SDS	2	6*nscan	-	0 – 4095	counts
Primary and redundant temperatures for the black body, radiant cooler, and the electronics module						
Local Direction	Float SDS	4	2*2*27*nscan	-	-	degree
Angles to the satellite and sun from the IFOV pixel position on the earth						
Channels	Float SDS	4	5*261*nscan	depends	depends	mW cm ⁻² μm ⁻¹ sr ⁻¹
Scene data for the five	channels					

Solar Unit Vector					
Name	Name Format Description				
Solar Position	3 * 8-byte float	Sun Unit Vectors: x-, y-, and z-components			
Distance	8-byte float	Sun-Earth Distance (m)			

Raw Calibration Counts Data					
Dimension Data Stored					
1	Channel number				
2	Data word				
3	Blackbody, space view, solar diffuser				
4	Number of scans				

	Local Direction Angles				
Dimension	Data Stored	Description			
		The zenith angle is measured between the local pixel geodetic zenith and			
1	zenith, azimuth	the direction to the satellite. The azimuth angle is measure clockwise			
		from the local north direction toward the local east direction.			
2	ahiaat	The object to which the directions point, namely the satellite and the			
2	object	sun.			
2	nival nivale an	Angles are given only for every tenth pixel along a scan: e.g. pixels 1, 11,			
3	pixel number	21,, 261.			
4	scan number	Scan line number			

VIRS Range and Accuracy							
Channel	Minimum mW cm ⁻² μm ⁻¹ sr ⁻¹	Maximum mW cm ⁻² μm ⁻¹ sr ⁻¹	Accuracy	Spectral Region	Wavelength (µm)		
1	0	65.5	10%	Visible	0.63		
2	0	32.7	10%	Near IR	1.60		
3	0	0.111	2%	Near IR	3.75		
4	0	1.371	2%	Near IR	10.80		
5	0	1.15	2%	IR	12.00		

1B11: Microwave Brightness Temperature (TMI)

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Coographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Spatial Resolution	4.4 km at 85.5 GHz	5.1 km at 85.5 GHz
	Swath Width: 760 km	Swath Width: 878 km
	Pixels/Scan: 104 (low resolution)	Pixels/Scan: 104 (low resolution)
	208 (high resolution)	208 (high resolution)
Scan Characteristics	Scans/Second (SS): 36.100/60	Scans/Second (SS): 36.100/60
	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 2991	Average Scans/Orbit: nscan = 3023
	nscan = SS * SO + 100	nscan = SS * SO + 100
Average File Size	≈ 16 MB	≈ 16 MB

	1B11 Data Format Structure					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry					
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each sca	n					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informa	tion					
Calibration	Vdata Table	95	nscan	-	-	-
Calibration						
Calibration Counts	Integer SDS	2	16*2*9*nscan	-	-	-
Calibration measurement, in c	ounts. Dimensions	s are: samples, lo	ad, channel, and n	scan.		
Satellite Local Zenith Angle	Float SDS	4	12*nscan	-	-	degree
Angle between the local pixel	geodetic zenith an	d the direction t	o the satellite. This	angle is given fo	or every 20) th high
resolution pixel along a scan: p	oixel 1, 21, 41,, 20	01, 208.				
Low Resolution Channels	Integer SDS	2	7*104*nscan	(T-100)*100	-	K
Low resolution channels brigh	t temperature					
High Resolution Channels	Integer SDS	2	2*208*nscan	(T-100)*100	-	K
High resolution channels brigh	it temperature					

TRMM 1B11 Scan Time					
Name	Format	Description			
Year	2-byte integer	4-digit year, e.g., 1998			
Month	1-byte integer	The month of the year			
Day of Month	1-byte integer	The day of the month			
Hour	1-byte integer	The hour (UTC) of the day			
Minute	1-byte integer	The minute of the hour			
Second	1-byte integer	The second of the minute			
Day of Year	2-byte integer	The day of the year			

	TRMM 1B11 Channels						
Channel	Frequency	Polarization	Resolution				
1	10 GHz	Vertical	Low				
2	10 GHz	Horizontal	Low				
3	19 GHz	Vertical	Low				
4	19 GHz	Horizontal	Low				
5	21 GHz	Vertical	Low				
6	37 GHz	Vertical	Low				
7	37 GHz	Horizontal	Low				
8	85 GHz	Vertical	High				
9	85 GHz	Horizontal	High				

TRMM 1B11 Calibration						
Name	Format	Range				
Hot Load Temperature	3 x 2-byte integer	0 – 400 K				

The physical temperatures, in degrees Kelvin, for the 3 temperature sensors attached to the hot load. This temperature is reduced by 80 K, multiplied by 100, and stored in the file as a 2-byte integer. Stored value = (T - 80) * 100.

Hot Load Bridge 2-byte integer 0 – 4095

The positive bridge voltage of the hot load bridge reference.

Hot Load Bridge Reference near Zero
Voltage 2-byte integer 4 - 4095

The near zero voltage of the hot load bridge reference.

85.5 GHz Receiver Temperature 2-byte integer -273.15 – 126.85°C

The receiver shelf temperature of the 85.5 GHz channel. This temperature is increased by 200, multiplied by 100, and stored in the file as a 2-byte integer.

Top Radiator Temperature 2-byte integer -273.15 – 126.85°C

The temperature of the top of the radiator channel. This temperature is increased by 200, multiplied by 100, and stored in the file as a 2-byte integer.

Automatic Gain Control 9×1 -byte integer 0-15

Automatic gain control for the 9 channels in counts.

Calibration Coefficient A

Calibration coefficient A (degrees Kelvin / counts) for the 9 channels. Coefficient A for each channel is used in the following equation to convert counts, C, to antenna temperature, T_A : $T_A = A*C + B$

Calibration Coefficient B

Calibration coefficient B (degrees Kelvin) for the 9 channels. Coefficient B for each channel is used in the following equation to convert counts, C, to antenna temperature, T_A : $T_A = A*C + B$

1B21: Precipitation Radar Power

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Horizontal Resolution	4.3 km	5.0 km
	Swath Width: 215 km	Swath Width: 247 km
	Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Scan Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 67 MB	≈ 79 MB

	1B21	Data Format Sti	ructure: Part 1			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
PR Cal Coef	Vdata Table	4	18	-	-	-
Calibration coefficients for the R coefficient (unitless, 1 record), a			•	· ·	•	
Ray Header	Vdata Table	60	49	-	-	-
Information about each ray (ang Each record describes one ray a	•	•		mber represents	the angle bir	number.
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geom	netry					
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with the scan,	expressed as 8-byt	te float UTC seco	ond of the day.			
Latitude	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	15	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informati	on					
Powers	Vdata Table	6	nscan	-	-	-
Radar transmission power and t	transmitted pulse	width				
System Noise	Integer SDS	2	nray*nscan	100	-120 ~ -20	dBm
System Noise (dBm) is an average	ge of the 4 measu	red system noise	values. Missing da	ta are given the	value of -32,7	'34.
System Noise Warning Flag	Integer SDS	1	nray*nscan	-	-	-
System Noise Warning Flag indi	•		wer window noise	by high towers o	f rain. 1 mear	ıs
possible contamination; 0 mear	ns no possible cont	tamination.				

	1B21	Data Format Str	ucture: Part 2			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Minimum Echo Flag	Integer SDS	1	nray*nscan	-	-	-
Minimum echo flag indicates th	e presence of rain	in the ray (angle	e bin).			
Bin Storm Height	Integer SDS	2	2*nray*nscan	-	-	-
Bin storm height is the range bi	n number of the st	torm top.				
Satellite Local Zenith Angle	Float SDS	4	nray*nscan	-	-	-
Angle, in degrees, between the	local zenith and th	ne beam's center	line. The local (geo	detic) zenith at	the intersect	on of the
ray and the earth ellipsoid is use						
Spacecraft Range	Integer SDS	4	nray*nscan	-	-	m
Distance between the spacecra	ft and the center o	of the footprint o		earth ellipsoid.		
Bin Start of Oversample	Integer SDS	2	2*29*nscan	-	-	-
Starting range bin number of th	e oversample (eith	ner surface or ra	in) data, counting fi	om the top dov	vn.	
Land/Ocean Flag	Integer SDS	2	nray*nscan	-	-	-
Land or ocean information. The	values of the flag	are: 0 = water, 1	= land, 2 = coast, 3	= water (w/ lar	ge attenuatio	n), 4 =
land/coast (w/ large attenuatio	n).					
Surface Detect Warning Flag	Integer SDS	2	nray*nscan	-	-	-
Definition TBD by NASDA.						
Bin Surface Peak	Integer SDS	2	nray*nscan	-	-	-
Range bin number of the peak s	surface echo. This	peak is determin	ed by the post obs	ervation ground	processing, r	ot by the
on board surface detection. The	range bin numbe	r is defined in th	is volume in the sec	ction on Precipit	ation Radar,	
Instrument and Scan Geometry	•					
Bin Ellipsoid	Float SDS	2	nray*nscan	-	-	-
Range bin number of the earth	ellipsoid.					
Bin Clutter Free Bottom	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the lowes	t clutter free bin. (Clutter free bin n	umbers are given for	or clutter free co	ertain and pos	ssible,
respectively. The clutter free ce	rtain bin is always	less than or equ	al to the clutter fre	e possible bin n	umber.	
Bin DID Average	Integer SDS	2	nray*nscan	-	-	-
Mean range bin number of the	DID surface elevat	ion in a 5 km x 5	km box centered o	n the IFOV.		
Bin DID Top	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the maxim	num DID surface e	levation in a box	centered on the IF	OV. The first din	nension is the	box size,
with sizes of 5 km x 5 km and 13	l km x 11 km.					
Bin DID Bottom	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the minim	um DID surface el	evation in a box	centered on the IFO	DV. The first dim	ension is the	box size,
with sizes of 5 km x 5 km and 13	l km x 11 km.					
Normal Sample	Integer SDS	2	140*nray*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the nor	mal sample. Since	each ray has a d	ifferent size, the ele	ements after the	end of each	ray are
filled with a value of -32767. Ot	her bins where da	ta is not written	due to a transmissi	on, calibration,	or other prob	lem,
including an entire scan of miss	ing bins, have the	value of -32734.	The size of each ra	y is specified in I	Ray Header, v	vith an
accuracy of 0.9 dBm.						
Surface Oversample	Integer SDS	2	5*29*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the surf	ace echo oversam	ple for the centr	al 29 rays (rays #11	-39), with an ac	curacy of 0.9	dBm. Bins
where data is not written due to	a transmission of	alibration, or otl	ner problem, includ	ing an entire sca	an of missing	bins,
Which cada is not written auc to	Ja transinission, t	,				
			0 and Increment =	1.		
have the value of -32734. In the Rain Oversample			0 and Increment = 28*11*nscan	1. 100	-120 ~ -20	dBm
have the value of -32734. In the	CrossTrack dimer Integer SDS	nsion, Offset = -1 2	28*11*nscan	100		
have the value of -32734. In the Rain Oversample	CrossTrack dimer Integer SDS echo oversample	nsion, Offset = -1 2 for the central 1	28*11*nscan 1 rays (rays #20-30	100), with an accura	acy of 0.9 dBr	n. Bins

PR Powers				
Name	Format			
Radar Transmission Power	2-byte integer			
Total (sum) power of 128 SSPA	elements corrected with SSPA temperature in orbit, based on temperature test data of			
SSPA transmission power. The	units are dBm * 100. For this variable, the TSDIS Toolkit does not provide scaling.			
Transmitted Pulse Width	4-byte float			
Transmitted pulse width (s) cor	rected with FCIF temperature in orbit, based on temperature test data of FCIF.			

Minimum Echo Flag					
Value Mean					
0	No Rain				
10	Rain Possible				
11	Rain Possible (echo greater than rain threshold #1 in clutter range)				
12	Rain Possible (echo greater than rain threshold #2 in clutter range)				
20	Rain Certain				

1B21 Bin Storm Height Description

Bin Storm Height is Range Bin Number of the storm top. The first dimension is threshold, with values of possible rain threshold and certain rain threshold in that order. The Bin Storm Heights are generated in the procedure to determine the Minimum Echo Flag. The Bin Storm Height is the top range bin of the portion of consecutive range bins that flagged the ray as rain possible or rain certain. The range bin number is defined in this volume in the section on Precipitation Radar, Instrument and Scan Geometry.

1B21 Bin Start of Oversample Description

The first dimension is the Bin Start of Oversample and Surface Tracker Status. The second dimension is the ray. The number of rays is 29 because this information only applies to the rays that have oversample data (rays #11 to #39). The third dimension is the scan. The Surface Tracker Status has the value of 0 (Lock) or 1 (Unlock), where Lock means that (1) the on board surface detection detected the surface and (2) the surface detected later by processing on the ground fell within the oversample bins. Unlock means that Lock was not achieved. The range bin number is defined in this volume in the section on Precipitation Radar, Instrument and Scan Geometry.

1C21: Precipitation Radar Reflectivity

Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
remporar coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Horizontal Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scan Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 44 MB	≈ 44 MB	

1C21 Data Format Structure: Part 1							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-	-	
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-	-	
Product specific metadata							
PR Cal Coef	Vdata Table	4	18	-	-	-	
Calibration coefficients for the coefficient (unitless, 1 record),			•		•		
Ray Header	Vdata Table	60	49	-	-	-	
Information about each ray (an	gle bin) that is con	stant for every s	can. The record nu	mber represents	the angle bin	number.	
Each record describes one ray a	nd is defined in Ra	ay Header Table.					
Swath Structure	Char Attribute	5,000	-	-	-	-	
Specification of the swath geon	netry						
Scan Time	Vdata Table	8	nscan	-	-	-	
Time associated with the scan,	expressed as 8-byt	te float UTC seco	ond of the day.				
Latitude	Float SDS	4	nray*nscan	-	-	degree	
Latitude information							
Longitude	Float SDS	4	nray*nscan	-	-	degree	
Longitude information							
Scan Status	Vdata Table	15	nscan	-	-	-	
Status of each scan							
Navigation	Vdata Table	88	nscan	-	-	-	
Spacecraft geocentric informati	on						
Powers	Vdata Table	6	nscan	-	-	-	
Radar transmission power and	transmitted pulse	width					
System Noise	Integer SDS	2	nray*nscan	100	-120 ~ -20	dBm	
System Noise (dBm) is an avera	ge of the 4 measu	red system noise	values. Missing da	ta are given the	value of -32,7	34.	
System Noise Warning Flag	Integer SDS	1	nray*nscan	-	-	-	
System Noise Warning Flag indi	cates possible con	tamination of lo	wer window noise l	by high towers o	f rain. 1 mear	ıs	
possible contamination; 0 mean	ns no possible con	tamination.					

1C21 Data Format Structure: Part 2						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Minimum Echo Flag	Integer SDS	1	nray*nscan	-	-	-
Minimum echo flag indicates th	e presence of rain	in the ray (angle	e bin).			
Bin Storm Height	Integer SDS	2	2*nray*nscan	-	-	-
Bin storm height is the range bi	n number of the s	torm top.				
Satellite Local Zenith Angle	Float SDS	4	nray*nscan	-	-	-
Angle, in degrees, between the	local zenith and th	ne beam's center	line. The local (geo	odetic) zenith at	the intersect	ion of th
ray and the earth ellipsoid is use	ed.					
Spacecraft Range	Integer SDS	4	nray*nscan	-	-	m
Distance between the spacecra	ft and the center o	of the footprint o	f the beam on the	earth ellipsoid.		
Bin Start of Oversample	Integer SDS	2	2*29*nscan	-	-	-
Starting range bin number of th	ie oversample (eitl	her surface or rai	in) data, counting f	rom the top dov	vn.	
Land/Ocean Flag	Integer SDS	2	nray*nscan	-	-	-
Land or ocean information. The	•	are: 0 = water, 1	•	s = water (w/ lar	ge attenuatio	n), 4 =
land/coast (w/ large attenuatio	_	•	, ,	, , ,	S	,,
Surface Detect Warning Flag	Integer SDS	2	nray*nscan	-	-	-
Definition TBD by NASDA.			,			
Bin Surface Peak	Integer SDS	2	nray*nscan	-	-	-
Range bin number of the peak s	_		•	ervation ground	nrocessing r	ot by th
on board surface detection. The						.00 07 0
nstrument and Scan Geometry	_	i is defined in th	is volume in the set	ction on recipit	acion nadar,	
Bin Ellipsoid	Float SDS	2	nray*nscan	_	_	_
Range bin number of the earth		_	may nacan			
Bin Clutter Free Bottom	Integer SDS	2	2*nray*nscan	_		_
Range bin number of the lowes	_		•	or clutter free co	artain and no	ccihla
respectively. The clutter free ce			_		-	ssibic,
Bin DID Average	Integer SDS	2	nray*nscan	_	_	_
Mean range bin number of the	_	_		n the IEOV		
	Integer SDS	2		iii tile irov.		
Bin DID Top	•	-	2*nray*nscan	- 0\/ The finet din	- 	- . la av. ai=.
Range bin number of the maxin		ievation in a box	centered on the ir	ov. The first diff	nension is the	DOX SIZE
with sizes of 5 km x 5 km and 1						
	Integer SDS	2	2*nray*nscan	- 	-	- 11
Range bin number of the minim	num DID surface el			- OV. The first dim	- nension is the	- box size
Range bin number of the minim with sizes of 5 km x 5 km and 1.	num DID surface el 1 km x 11 km.	levation in a box	centered on the IFG			
Range bin number of the minim with sizes of 5 km x 5 km and 1: Normal Sample	num DID surface el 1 km x 11 km. Integer SDS	levation in a box	centered on the IFG	100	-120 ~ -20	dBm
Range bin number of the minim with sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the nor	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since	each ray has a di	centered on the IFO 140*nray*nscan ifferent size, the ele	100 ements after the	-120 ~ -20 e end of each	dBm ray are
Range bin number of the minim with sizes of 5 km x 5 km and 13 Normal Sample Return power (dBm) of the nor filled with a value of -32767. Ot	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da	2 each ray has a dita is not written	140*nray*nscan ifferent size, the eled	100 ements after the on, calibration,	-120 ~ -20 e end of each or other prob	dBm ray are llem,
Range bin number of the minim with sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the nor filled with a value of -32767. Ot including an entire scan of miss	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da	2 each ray has a dita is not written	140*nray*nscan ifferent size, the eled	100 ements after the on, calibration,	-120 ~ -20 e end of each or other prob	dBm ray are llem,
Range bin number of the minimulation with sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the norifilled with a value of -32767. Otincluding an entire scan of missaccuracy of 0.9 dBm.	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da ing bins, have the	2 each ray has a dita is not written value of -32734.	140*nray*nscan ifferent size, the ele due to a transmissi The size of each ra	100 ements after the on, calibration, y is specified in I	-120 ~ -20 e end of each or other prob Ray Header, v	dBm ray are llem, vith an
Range bin number of the minim with sizes of 5 km x 5 km and 1.2 Normal Sample Return power (dBm) of the normal size of -32767. Other of the control of the size of misses accuracy of 0.9 dBm. Surface Oversample	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da ing bins, have the	2 each ray has a dita is not written value of -32734.	140*nray*nscan ifferent size, the eledue to a transmissi The size of each ra	100 ements after the on, calibration, y is specified in l	-120 ~ -20 e end of each or other prob Ray Header, v	dBm ray are llem, vith an
Range bin number of the minim with sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the normal filled with a value of -32767. Otincluding an entire scan of miss accuracy of 0.9 dBm. Surface Oversample Return power (dBm) of the surf	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da ing bins, have the Integer SDS face echo oversam	2 each ray has a dita is not written value of -32734. 2 ple for the centr	140*nray*nscan ifferent size, the ele due to a transmissi The size of each ra 5*29*nscan al 29 rays (rays #11	100 ements after the on, calibration, y is specified in 100 -39), with an acc	-120 ~ -20 e end of each or other prob Ray Header, v -120 ~ -20 curacy of 0.9	dBm ray are llem, vith an dBm dBm. Biı
Range bin number of the minimuth sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the normal sizes of 32767. Other including an entire scan of miss accuracy of 0.9 dBm. Surface Oversample Return power (dBm) of the surfuther where data is not written due to with sizes of 5 km.	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da ing bins, have the Integer SDS face echo oversam o a transmission, o	2 each ray has a dita is not written value of -32734. 2 ple for the central calibration, or other	140*nray*nscan ifferent size, the ele due to a transmissi The size of each ra 5*29*nscan al 29 rays (rays #11 ner problem, includ	100 ements after the on, calibration, y is specified in 1 100 -39), with an accing an entire sca	-120 ~ -20 e end of each or other prob Ray Header, v -120 ~ -20 curacy of 0.9	dBm ray are lem, vith an dBm dBm. Bi
Range bin number of the minim with sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the norifilled with a value of -32767. Otincluding an entire scan of miss accuracy of 0.9 dBm. Surface Oversample Return power (dBm) of the surfwhere data is not written due to	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da ing bins, have the Integer SDS face echo oversam to a transmission, co	2 each ray has a dita is not written value of -32734. 2 ple for the central calibration, or other	140*nray*nscan ifferent size, the ele due to a transmissi The size of each ra 5*29*nscan al 29 rays (rays #11 ner problem, includ 0 and Increment =	100 ements after the on, calibration, y is specified in 1 100 -39), with an accing an entire sca	-120 ~ -20 e end of each or other prob Ray Header, v -120 ~ -20 curacy of 0.9 an of missing	dBm ray are lem, vith an dBm dBm. Bi
Bin DID Bottom Range bin number of the minim with sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the nore filled with a value of -32767. Ot including an entire scan of miss accuracy of 0.9 dBm. Surface Oversample Return power (dBm) of the surf where data is not written due to have the value of -32734. In the Rain Oversample	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da ing bins, have the Integer SDS face echo oversam o a transmission, o	2 each ray has a dita is not written value of -32734. 2 ple for the central calibration, or other	140*nray*nscan ifferent size, the ele due to a transmissi The size of each ra 5*29*nscan al 29 rays (rays #11 ner problem, includ	100 ements after the on, calibration, y is specified in 1 100 -39), with an accing an entire sca	-120 ~ -20 e end of each or other prob Ray Header, v -120 ~ -20 curacy of 0.9	dBm ray are lem, vith an dBm dBm. Bi
Range bin number of the minimulation with sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the normal silled with a value of -32767. Other countries of the silled with a value of silled with	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da ing bins, have the Integer SDS face echo oversam o a transmission, co e CrossTrack dimer Integer SDS	each ray has a dita is not written value of -32734. 2 ple for the central calibration, or othersion, Offset = -1	140*nray*nscan ifferent size, the ele due to a transmissi The size of each ra 5*29*nscan al 29 rays (rays #11 ner problem, includ 0 and Increment = 28*11*nscan	100 ements after the on, calibration, y is specified in 100 -39), with an accing an entire sca	-120 ~ -20 e end of each or other prob Ray Header, v -120 ~ -20 curacy of 0.9 an of missing	dBm ray are lem, vith an dBm dBm. Bi bins,
Range bin number of the minim with sizes of 5 km x 5 km and 1: Normal Sample Return power (dBm) of the normal silled with a value of -32767. Other normal silled with a value of -32767. Other scan of misses accuracy of 0.9 dBm. Surface Oversample Return power (dBm) of the surface where data is not written due to have the value of -32734. In the Rain Oversample	num DID surface el 1 km x 11 km. Integer SDS mal sample. Since ther bins where da ing bins, have the Integer SDS face echo oversam to a transmission, of the CrossTrack dimental	each ray has a dita is not written value of -32734. 2 ple for the central alibration, or other central 1 2 for the central 1	140*nray*nscan ifferent size, the ele due to a transmissi The size of each ra 5*29*nscan al 29 rays (rays #11 ner problem, includ 0 and Increment = 28*11*nscan 1 rays (rays #20-30	100 ements after the on, calibration, y is specified in 1 100 -39), with an accing an entire sca 1. 100), with an accura	-120 ~ -20 e end of each or other prob Ray Header, v -120 ~ -20 curacy of 0.9 an of missing -120 ~ -20 acy of 0.9 dBr	dBm ray are lem, vith an dBm dBm. Bi bins, dBm n. Bins

See TRMM 1B21 information (p. 23) for minimum echo flag and bin storm height information.

2A12: TMI Hydrometeor Profile

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
remporar Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Vertical Coverage	Surface – 18 km	Surface – 18 km
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Spatial Resolution	4.4 km at 85.5 GHz	5.1 km at 85.5 GHz
	0.5 km from surface to 4 km	0.5 km from surface to 4 km
Vertical Resolution	1.0 km from 4 km to 6 km	1.0 km from 4 km to 6 km
vertical Resolution	2.0 km from 6 km to 10 km	2.0 km from 6 km to 10 km
	4.0 km from 10 km to 18 km	4.0 km from 10 km to 18 km
	Swath Width: 760 km	Swath Width: 878 km
	Pixels/Scan: 208	Pixels/Scan: 208
Scan Characteristics	Scans/Second (SS): 36.100/60	Scans/Second (SS): 36.100/60
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 2991	Average Scans/Orbit: nscan = 3023
	nscan = SS * SO + 100	nscan = SS * SO + 100
Average File Size	≈ 11 MB	≈ 11 MB

2A12 Data Format Structure: Part 1						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry					
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each sca	n					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informa	tion					
Data Flag	Integer SDS	1	npixel*nscan	-	-	-
Indicates the quality of the da	ta					
Rain Flag	Integer SDS	1	npixel*nscan	-	-	-
Indicates if rain is possible. ≥0	= rain is possible,	< 0 = no rain				

	2A12 Data Format Structure: Part 2							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit		
Surface Flag	Integer SDS	1	npixel*nscan	-	0-3	-		
Indicates the type of surface	: 0 = ocean, 1 = la	nd, 2 = coast, 3	= other					
Surface Rain	Float SDS	4	npixel*nscan	-	0 - 3000	mm h ⁻¹		
Instantaneous rain rate at th	e surface for each	n pixel.						
Convective Precipitation	Float SDS	4	npixel*nscan	-	0 - 3000	mm h		
Instantaneous convective pr	ecipitation rate at	t the surface for	each pixel.					
Confidence	Float SDS	4	npixel*nscan	-	0 - 300	K		
Associated with the surface	rain, and measure	ed as an rms dev	viation in temperatures.					
Cloud Water	Float SDS	4	nlayer*npixel*nscan	see array	0 – 10	degree		
Cloud water content for each	h pixel at 28 layer	S.						
Rain Water	Float SDS	4	nlayer*npixel*nscan	see array	0 - 10	degree		
Rain water content for each	pixel at 28 layers.	ı						
Cloud Ice	Vdata Table	4	nlayer*npixel*nscan	see array	0 – 10	g m ⁻³		
Cloud ice content for each p	ixel at 28 layers.							
Snow Water	Vdata Table	4	nlayer*npixel*nscan	see array	0 – 10	g m ⁻³		
Snow water content for each	n pixel at 28 layer:	S.						
Graupel Water	Integer SDS	4	nlayer*npixel*nscan	see array	0 – 10	g m ⁻³		
Graupel water content for ea	ach pixel at 28 lay	ers.						
Latent Heating	Integer SDS	-256 – 256	nlayer*npixel*nscan	see array	0 – 10	g m ⁻³		
Latent heating release for ea	ach pixel at 28 lev	els.						

TRMM 2A12 Scan Time				
Name	Description			
Year	2-byte integer	4-digit year, e.g., 1998		
Month	1-byte integer	The month of the Year		
Day of Month	lonth 1-byte integer The day of the Month			
Hour	Hour 1-byte integer The hour (UTC) of the D			
Minute	1-byte integer	The minute of the Hour		
Second	Second 1-byte integer The second of the Minute			
Day of Year	2-byte integer	The day of the Year		

TRMM 2A12 Data Flag Specific Viewer				
Value	Description	Value		
0	Good data quality	0		
	Channel brightness			
-9	temperature outside valid	-9		
	range			
	The neighboring 5 x 5 pixel			
-15	array is incomplete due to edge	-15		
	or bad data quality			
-21	Surface type invalid	-21		
-23	Date time invalid	-23		
-25	Latitude or longitude invalid	-25		

2A21: Precipitation Radar Surface Cross-Section

Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Horizontal Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scan Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 11 MB	≈ 11 MB	

2A21 Data Format Structure							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-	-	
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-	-	
Product specific metadata							
Swath Structure	Other Attribute	5,000	-	-	-	-	
Specification of the swath geom	etry						
Scan Time	Vdata Table	5,000	-	-	-	-	
Time associated with the scan, e	expressed as 8-byte	float UTC secon	d of the day.				
Latitude	Float SDS	4	nray*nscan	-	-	degree	
Latitude information							
Longitude	Float SDS	4	nray*nscan	-	-	degree	
Longitude information							
Scan Status	Vdata Table	15	nscan	-	-	-	
Status of each scan							
Navigation	Vdata Table	88	nscan	-	-	-	
Spacecraft geocentric information	on						
Sigma-zero	Float SDS	4	nray*nscan	-	-50 – 50	dB	
Normalized surface cross sectio	n						
Pat Attenuation	Float SDS	4	nray*nscan	-	-50 – 50	dB	
Estimate of positive 2-way integ	rated attenuation (dB when rain is p	resent.				
Reliability Flag	Integer SDS	2	nray*nscan	-	-	-	
Various reliability information in	the form of single	digit flags.					
Reliability Factor	Float SDS	4	nray*nscan	-	-10 – 10	-	
Ratio of the estimated value of	path attenuation to	standard deviat	ion associated with	the mean value	e of the refere	ence	
estimate.							
Incident Angle	Float SDS	4	nray*nscan	-	-30 – 30	degree	
System Noise Warning Flag indi	cates possible conta	amination of low	er window noise by	y high towers of	rain. 1 means	s possible	
contamination; 0 means no pos	sible contamination	٦.					
Rain Flag	Integer SDS	2	nray*nscan	-	-	0 or 1	
Rain flag. 0 = no rain, 1 = rain pr	esent						

2A23: Precipitation Radar (PR) Rain Characteristics

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)	
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
remporar Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Coographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Spatial Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 7 MB	≈ 7 MB	

2A23 Data Format Structure: Part 1							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-		
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-	-	
Product specific metadata							
Swath Structure	Char Attribute	5,000	-	-	-	-	
Specification of the swath geo	metry						
Scan Time	Vdata Table	9	nscan	-	-	-	
Time associated with each sca	n						
Latitude	Float SDS	4	208*nscan	-	-	degree	
Latitude information							
Longitude	Float SDS	4	208*nscan	-	-	degree	
Longitude information							
Scan Status	Vdata Table	21	nscan	-	-	-	
Status of each scan							
Navigation	Vdata Table	88	nscan	-	-	-	
Spacecraft geocentric informa	tion						
Rain Flag	Integer SDS	1	nray*nscan	-	-	-	
Identical to minimum echo fla	g of 1C21. 0 = no r	ain; 10, 11, 12, 1	3, 15 = rain possibl	e; 20 = rain certa	ain		
Rain Type	Integer SDS	2	nray*nscan	-	-	-	
Rain type flag, -88 is a missing	value for no rain a	and -99 means da	ata are missing. See	e table on next p	age.		

	2A	23 Data Format	Structure: Part 2			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Shallow Rain Flag	Integer SDS	1	nray*nscan	-	-	-
The warm rain flag is set as f	follows: 10 = mayb	oe shallow, isola	ted; 11 = confidence in	shallow, isolate	ed; 20 = may	be
shallow but not isolated; 21	= confidence in sh	nallow but not is	olated; 0 = not shallow	;; < 0 = rain not	certain or m	issing
Status Flag	Integer SDS	1	nray*nscan	-	-	-
Indicates whether the data a	re obtained over	sea or land, and	the confidence in the	data		
Height of Bright Band	Integer SDS	2	nray*nscan	-	-	-
A positive height of bright ba	and is defined in n	neters above me	ean sea level. Negative	values are defin	ed as: -1111	l = no
bright band, -8888 = no rain,	, -9999 = data mis	sing				
Bright Band Intensity	Integer SDS	4	nray*nscan	-	-	-
The maximum value of the b	right band.					
Bright Band Peak Bin	Integer SDS	2	nray*nscan	-	-	-
A positive range bin number	that corresponds	to the peak of t	the bright band.			
Bright Band Boundary	Integer SDS	2	2*nray*nscan	-	-	-
Positive bin number of the b	oundary of the br	ight band. The f	irst index indicates the	bottom.		
Bright Band Width	Integer SDS	2	nray*nscan	-	-	m
The width of the bright band	l					
Bright Band Status	Integer SDS	2	nray*nscan	-	-	-
Indicates the status of the bi	right band detecti	on. The flag is a	composite of three inte	ernal status flag	S.	
Height of Freezing Level	Integer SDS	2	nray*nscan	-	-	m
A positive height of freezing	level is the height	of the 0°C isoth	nerm above mean sea le	evel, estimated	from climate	ological
surface temperature data. N	egative numbers	are defined as: -	-5555 = error occurred i	n estimation of	height of fr	eezing
level, -8888 = no rain, -9999	= missing data					
Height of Storm	Integer SDS	2	nray*nscan	-	-	m
A positive Height of Storm is	the height of the	storm top abov	e mean sea level in met	ers. A positive	Height of Sto	orm is
given only when rain is prese						
value of 2 [rain certain]). Ne	gative values are	defined as: -111	1 = Height of Storm not	calculated bec	ause rain is r	not
present with a high level of o	confidence in 1C2	1, -8888 = No ra	in, -9999 = Data missing	3		
Spare	Float SDS	2	nray*nscan	-	-	-
Spare will characterize the w	idth of the bright	band. Since this	characterization requi	res much resea	rch, the mea	ning is
not disclosed.						

	TRMM 2A23 Rain Type Flag				
Value	Meaning	Conditions			
100	Stratiform certain	When R_type_V = T_stra; (BB exists) and R_type_H = T_stra;			
110	Stratiform certain	When R_type_V = T_stra; (BB exists) and R_type_H = T_others;			
120	Probably stratiform	When R_type_V = T_others; and R_type_H = T_stra;			
130	Maybe stratiform	When R_type_V = T_stra; (BB detection certain) and R_type_H = T_conv;			
140	Maybe stratiform or maybe transition or something else	When R_type_V = T_others; (BB hardly expected) and R_type_H = T_stra;			
152	Maybe stratiform	Shallow isolated (type of warm rain) is detected. When R_type_V = T_others; R_type_H = T_stra; and shallowRain = 20 or 21;			
160	Maybe stratiform, rain hardly expected near surface	BB may exist but is not detected when R_type_V = T_others; R_type_H = T_stra;			
170	Maybe stratiform, rain hardly expected near surface	BB hardly expected. Maybe cloud only. When R_type_V = T_others; R_type_H = T_stra;			
200	Convective certain	When R_type_V = T_conv; (no BB) and R_type_H = T_conv;			
210	Convective certain	When R_type_V = T_others; and R_type_H = T_conv;			
220	Convective certain	When R_type_V = T_conv; and R_type_H = T_others;			
230	Probably convective	When R_type_V = T_conv; (BB exists) and R_type_H = T_conv;			
240	Maybe convective	When R_type_V = T_conv; and R_type_H = T_stra;			
251	Convective	Shallow isolated is detected. When R_type_V = T_conv, R_type_H = T_conv and shallowRain = 10 or 11;			
252	Convective	Shallow rain (non-isolated) is detected. When R_type_V = T_conv, R_type_H = T_conv and shallowRain = 20 or 21;			
261	Convective	Shallow isolated is detected. When R_type_V = T_conv; R_type_H = T_others; and shallowRain = 10 or 11;			
262	Convective	Shallow rain (non-isolated) is detected. When R_type_V[i] = T_conv, R_type_H[i] = T_others; and shallowRain[i] = 20 or 21;			
271	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_conv; and shallowRain = 10 or 11;			
272	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_conv; and shallowRain = 20 or 21;			
281	Convective	Shallow isolated is detected. When R_type_V = T_conv; R_type_H = T_stra; and shallowRain = 10 or 11;			
282	Convective	Shallow rain (non-isolated) is detected. When R_type_V[i] = T_conv, R_type_H[i] = T_stra; and shallowRain[i] = 20 or 21;			
291	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_stra; and shallowRain = 10 or 11;			
300	Others	When R_type_V = T_others; and R_type_H = T_others;			
312	Others	Shallow rain (non-isolated) is detected. When R_type_V = T_others, R_type_H = T_others; and shallowRain = 20 or 21;			
313	Others	If sidelobe clutter were not rejected, shallow isolated would be detected. When R_type_V = T_others, R_type_H = T_others; and shallowRain = 20 or 21;			
.					

where R_type_V: rain type classified by the V-profile method; R_type_H: rain type classified by the H-pattern method.

The above assignment of numbers has the following meaning:

(merged) Rain Type / 100 = 1: stratiform; 2: convective; 3: others.

(merged) Rain Type Flag % 100 = sub-category

(merged) Rain Type Flag % 10 = 0: usual; 1: shallow isolated; 2: shallow non-isolated; 3: sidelobe clutter only where Rain Type Flag % 10 means MOD.

	TRMM 2A23 Status Flag				
Value	Meaning	Where			
0	good	over ocean			
10	BB detection may be good	over ocean			
20	R-type classification may be good (BB detection is good or BB does not exist)	over ocean			
30	Both BB detection and R-type classification may be good	over ocean			
50	not good (because of warnings)	over ocean			
100	bad (possible data corruption)	over ocean			
1	good	over land			
11	BB detection may be good	over land			
21	R-type classification may be good (BB detection is good or BB does not exist)	over land			
31	Both BB detection and R-type classification may be good	over land			
51	not good (because of warnings)	over land			
101	bad (possible data corruption)	over land			
2	good	over coastline			
12	BB detection may be good	over coastline			
22	R-type classification may be good (BB detection is good or BB does not exist)	over coastline			
32	Both BB detection and R-type classification may be good	over coastline			
52	not good (because of warnings)	over coastline			
102	bad (possible data corruption)	over coastline			
4	good	over inland lake			
14	BB detection may be good	over inland lake			
24	R-type classification may be good (BB detection is good or BB does not exist)	over inland lake			
34	Both BB detection and R-type classification may be good	over inland lake			
54	not good (because of warnings)	over inland lake			
104	bad (possible data corruption)	over inland lake			
9	may be good	land/sea unknown			
19	BB detection may be good	land/sea unknown			
29	R-type classification may be good (BB detection is good or BB does not exist)	land/sea unknown			
39	Both BB detection and R-type classification may be good	land/sea unknown			
59	not good (because of warnings)	land/sea unknown			
109	bad (possible data corruption)	land/sea unknown			

When the status flag is "no rain" or "data missing", status flag contains -88 for no rain and -99 for missing data. Assignment of the above numbers are based on the following rules:

(Status/10) % 10	Meaning
0	good, may be good when status < 100 and not good when status ≥ 100
1	BB detection not so confident
2	R-type classification not so confident (but BB detection is good or doesn't exist)
3	BB detection and R-type classification both not confident
5	Overall quality of the processed data is not good
Status % 10	
0	over ocean
1	over land
2	over coastline
4	over inland lake
9	land/sea unknown

In other words, if the Status Flag is \geq 100, the data are untrustworthy; between 10 and 100 then the data are not confident, equal to 9 then the data may be good; and between 0 and 9 then the data are good.

2A25: Precipitation Radar (PR) Rainfall Rate and Profile

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)	
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
remporar coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Spatial Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 16 MB compressed, 253 MB original	≈ 16 MB compressed, 256 MB original	

	2A25 I	Data Format Stru	cture: Part 1			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Clutter Flag	Vdata Table	4	49	-	-	-
Mainlobe Clutter Edge and Sid	lelobe Clutter Rang	ge				
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry.					
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with the scan	, expressed as 8-b	yte float UTC sec	ond of the day.			
Latitude	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
scLocalZenith	Float SDS	4	nray*nscan	-	-	degree
Spacecraft local zenith angle.						
Scan Status	Vdata Table	15	nscan	-	-	-
Status of each scan.						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informa	tion.					
Rain Rate	Integer SDS	2	80*nray*nscan	100	0.0 ~ 300	mm/h
Estimate of rain rate at the rada 889) means ground clutter.	ar range gates fron	n 0 to 20 km alon	g the slant range. A	A value of -88.88	3 mm/hr (st	ored as -
Reliability	Integer SDS	1	80*nray*nscan	-	0 ~ 255	-
For estimated rain rates at the	radar range gates f	rom 0 to 20 km.	<u> </u>			

	2/	I	Structure: Part 2	T	1	1
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Uni
Corrected Z-factor	Integer SDS	2	80*nray*nscan	100	0 ~ 80	dBZ
Attenuation corrected refle	ctivity factor (Z) a	t the radar range	e gates from 0 to 20 km	along the sla	nt range. Valu	es of
reflectivity less than 0.0 dB2	Z are set to 0.0 dB	Z. A value of -88	.88 dB (stored as -8888) is a ground	clutter flag, -99	999 is for
missing data in reflectivity p	orofile.					
Parameter Node	Integer SDS	2	5*nray*nscan	-	0 ~ 79	-
Range bin numbers of the n	odes at which the	e values of Atten	uation and Z-R Paramet	ters are given	(see below). T	he value
of the parameters between	the nodes are lin	early interpolate	d.			
Attenuation Parameter α	Float SDS	4	5*nray*nscan	_	0.00010 ~	_
			•		0.00200	
It relates the attenuation co	oefficient, k (dB/kı	m) to the Z-facto	r: $k = \alpha^{\beta}$. α is computed	l at ncell2(5)	radar range ga	tes for
each ray.						
Attenuation Parameter ß	Float SDS	4	nray*nscan	-	0.5 ~ 2.0	-
It relates the attenuation co	oefficient, k (dB/ki	m) to the Z-facto	r: k = α *Z ^β . β is comput	ed for each r		
Z-R Parameter a	Float SDS	4	5*nray*nscan	_	0.0050 ~	_
		•	·		0.2000	
Parameter a for Z-R relation					to the freezing	level, th
non-uniformity parameter (tion factor (ε) for		technique.		
Z-R Parameter b	Float SDS	4	5*nray*nscan	-	0.5 ~ 1.0	-
Parameter a for Z-R relatior				_	to the freezing	level, th
non-uniformity parameter ((ζ) and the correct	tion factor (ε) for	the surface reference	technique.		
Precipitation Water	Float SDS	4	5*nray*nscan	_	_	
Parameter A	rioat 3D3	4	5 may nscan			
Parameter A in the $M = AZ^{\wedge}$	B relationship.					
Precipitation Water	Float SDS	4	5*nray*nscan	_	_	_
Parameter B	11001 303	-	5 may nacan			
Parameter B in the M = AZ^	B relationship.					
Precipitation Water	Float SDS	4	2*nray*nscan	_	_	_
Parameter Sum			·			
Vertically integrated value of						
precipitation liquid water co						
precipitation ice content fro	om the top of the	storm to the free	ezing height. Units are g	gkm/m3(kg/n	n2) and it range	es from
0.0 to 50.0.						
Maximum Z	Float SDS	4	nray*nscan	-	0 ~ 100	dBZ
Maximum value of measure	•	or at each IFOV.				
Rain Flag	Integer SDS	2	nray*nscan	-	-	-
Rain Flag indicates rain or n					ult value is 0 (r	no rain).
Bit 0 is the least significant		nd other bits =0		/alue is 2 ⁱ).		
Range Bin Numbers	Integer SDS	2	5*nray*nscan	-	0 ~ 79	-
Range Bin Number of variou	•	•	_		_	
from the NASDA definition	_			_	umbers in the	algorithr
range from 0 to 79 and have	e an interval of 25	0m. The earth e	llipsoid is defined as rar	nge bin 79.		
					(1)0.0 ~	
	Float SDS	4	2*nray*nscan	_	3000.0	mm/h
Averaged Pain Pate			∠ IIIay IISUdII	-	(2)0.0	111111/11
Averaged Rain Rate	rioat 3D3	-	,		(2)0.0 ~	
Averaged Rain Rate	rioat 3D3		<u>, </u>		300.0	
Averaged Rain Rate There are two kinds of Aver				ach ray betwe	300.0	edefined

	;	2A25 Data Form	at Structure: Part 3			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Precipitable Water Sum	Float SDS	4	2*nray*nscan	-	0 – 50	g km m ⁻³
Vertically integrated value o	f sum precipitation	on water conten	t calculated from Ze a	t each range b	oin. The first inc	lex is the
precipitation liquid water co	ntent from the fi	reezing height to	the actual surface. The	ne second ind	ex is the sum of	:
precipitation ice content fro	m the top of the	storm to the fre	ezing height.			
Method Flag	Integer SDS	2	nray*nscan	-	-	-
Method Flag indicates which	n method is used	to derive the rai	n rate. The default va	lue is 0 (includ	ding no rain cas	e). Bit 0 is
the least significant bit (i.e.,					J	,
Epsilon	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	_
Correction factor for the sur		·	may modern		0.0 100.0	
Epsilon_0	Float SDS	4	nray*nscan	_	0.0 ~ 100.0	_
The adjustment parameter of		•	· · · · · · · · · · · · · · · · · · ·	1 algorithm)	0.0 100.0	
Zeta	Float SDS	4	2*nray*nscan	i aigoritiiii).	0.0 ~ 100.0	_
Roughly represents the rain		•	•	ods -	0.0 100.0	-
	Float SDS	4	2*nray*nscan	ous.	0.0 ~ 100.0	
Zeta_mn Avorage of zota in the vicinit		•	•	throalFOVa		using two
Average of zeta in the vicinit methods.	ly or each beam p	Josition (average	e over tiffee scans and	i tillee irovs).	. it is calculated	using two
	Float SDS	4	2*nray*nscan		0.0 ~ 100.0	
Zeta_sd		•	-	- 		-
Standard deviation of zeta in	i the vicinity of e	ach beam position	on (using three scans)	and three IFO	vs). It is calcula	tea using
two methods.	El+ CDC	4	2*		0.0 % 00.0	
Xi	Float SDS	4	2*nray*nscan		0.0 ~ 99.0	-
Normalized standard deviati		ta_sd/Zeta_mn.	when Zeta_mn takes	on small valu	es (or zero) Xi is	s set to 99.0
It is calculated using two me			O. # #		4 - 40	
NUBF Correction Factor	Float SDS		3*nray*nscan	-	1~10	-
The Non-Uniform Beam Filli			ed as a correction to r	effectivity and	attenuation ca	aiculations.
t's range is between 1.0 and			¥		0 22767	
Quality Flag	Integer SDS	2	nray*nscan	-	0 ~ 32767	-
See note #1 below.						. 1
Near Surface Rain	Float SDS	4	nray*nscan	-	0 ~ 3000	mm hr ⁻¹
Rainfall rate near the surface						
Near Surface Z	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	dBZ
Reflectivity near the surface						
Estimated Surface Rain	Float SDS	4	nray*nscan	-	0 ~ 3000	mm hr ⁻¹
Reflectivity near the surface		9 mm hr ⁻¹ is a m				
PIA	Float SDS	4	3nray*nscan	-	-	-
Path Integrated Attenuation				-	estimate (2) Th	e difference
between the PIA at the surfa		ace range bins (om 2A21		
Error Rain	Float SDS	4	nray*nscan	-	-	dB
Error in Near Surface Rain R	ate.					
Error Z	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	dBZ
Error in Near Surface Z.						
Spares	Float SDS	4	2*nray*nscan	-	-	-
Contents and ranges are not	t public.					
Height of Freezing Level	Float SDS	4	nray*nscan	-	-	m
A positive Height of Freezing		tht of the 0°C iso	· · · · · · · · · · · · · · · · · · ·	a level in met	ers. estimated	from
climatological surface tempe						
					=0 00	1-
Sigma-zero	Float SDS	4	nray*nscan	-	-50 – 20	dB

Note #1: Quality Flag Description

The default value is 0 (normal). Bit 0 is the least significant bit (i.e., if bit i = 1 and other bits =0, the unsigned integer value is $2^{**}i$). The following meanings are assigned to each bit in the 16-bit integer if the bit = 1.

Correction Factor	Meaning
0	normal
1	unusual situation in rain average
2	NSD of zeta (xi) calculated from less than 6 points
4	NSD of PIA calculated from less than 6 points
8	NUBF for Z-R below lower bound
16	NUBF for PIA above upper bound
32	epsilon not reliable, epsi_sig less than or equal to 0.0
64	2A21 input data not reliable
128	2A23 input data not reliable
256	range bin error
512	sidelobe clutter removal
1024	probability=0 for all tau
2048	pia_surf_ex less than or equal to 0.0
4096	const Z is invalid
8192	reliabFactor in 2A21 is NaN
16384	data missing

TRMM PR 2A25 Clutter Flags				
Name	Format	Description		
Mainlobe Clutter Edge	1-byte integer	Absolute value of the difference in Range bin Numbers between the detected surface and the edge of the clutter from the mainlobe.		
Sidelobe Clutter Range	3 x 1-byte integer	Absolute value of the difference in Range Bin Numbers between the detected surface and the clutter position from the sidelobe. A zero means no clutter indicated in this field since less than 3 bins contained significant clutter.		

	TRMM 2A25 Reliability			
Bit	Meaning if bit=1			
0	rain possible			
1	rain certain			
2	bright band			
3	large attenuation			
4	weak return (Zm < 20 dBZ)			
5	estimated Z < 0 dBZ			
6	main-lobe clutter or below surface			

	TRMM 2A25 Rain Flag				
Bit	Meaning if bit=1				
0	rain possible				
1	rain certain				
2	Zeta^ Beta > 0.5 [Path Integrated Attenuation (PIA) larger than 3 dB]				
3	large attenuation (PIA larger than 10 dB)				
4	stratiform				
5	convective				
6	bright band exists				
7	warm rain				
8	rain bottom above 2 km				
9	rain bottom above 4 km				
10 - 13	not used				
14	data missing between rain top and bottom				
15	not used				

	TRMM 2A25 Method Flag				
	If all bits 0: no rain. Otherwise:				
Bit	Meaning when set (except bit 1)				
1	0: over ocean				
	1: over land				
2	over coast, river, etc.				
3	OIA from constant-Z-near-surface assumption				
4	spatial reference				
5	temporal reference				
6	global reference				
7	hybrid reference				
8	good to take statistics of epsilon				
9	HB method used, SRT totally ignored				
10	very large pia_srt for given zeta				
11	very small pia_srt for given zeta				
12	no ZR adjustment by epsilon				
13	no NUBF correction because NSD unreliable				
14	surface attenuation > 60 dB				
15	data partly missing between rain top and bottom				

2B31: Combined Rainfall Profile

Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08 Latitude: 38°S - 38°N Longitude: 180°W - 180°E /day ≈ 92.5 min/orbit = ≈ 16 orbits/day 5.0 km Swath Width: 247 km Rays/Scan: nray = 49 Scans/Second (SS): 1/0.6 Seconds/Orbit (SO): 5550	
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Horizontal Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	Average File Size ≈ 11 MB compressed ≈ 11 MB compressed		

	2B31	Data Format Str	ucture: Part 1			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geon	netry					
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each scan	ı					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Longitude information						
D-hat	Integer SDS	2	nray x nscan	100	0.7 - 1.8	mm**
Correlation-corrected mass-we	ighted mean drop	diameter.				
Sigma D-hat	Integer SDS	2	nray x nscan	100	0.0 - 2.0	mm**
RMS uncertainty in D-Hat. The	accuracy is 0.01 "n	ormalized" mm.				
Graupel	Integer SDS	2	nradarrange x nray x nscan	1000	0 – 10	g m ⁻³
graupel is defined as frozen hyd	drometeors with a	density of 600 K	g m ⁻³			
snow	Integer SDS	2	nradarrange x nray x nscan	1000	0 – 10	dBm
snow is defined as frozen hydro	meteors with a de	ensity of 100 Kg r	m ⁻³ .			
prSurf	Integer SDS	1	nray*nscan	-	0 – 500	mm hr ⁻¹
The surface precipitation rate (liquid plus solid). T	he accuracy is 0.	.1 mm hr ⁻¹ .			
** indicator normalized units /	\ normalized unit	V is defined as V	/ - V * D0.37D such +l	ant Vica norma	lizad varcion	of V D

^{**} indicates normalized units. A normalized unit, Y, is defined as Y = X * $R^{0.37}R$ such that Y is a normalized version of X. R represents rain rate.

The dimension *nradarrange* represents the number of radar range gates, up to about 20 km from the earth ellipsoid. The gates range from 0 to 79 and each gate is 250 m apart.

2B31 Data Format Structure: Part 2							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
R-hat	Integer SDS	2	nradarrange * nray*nscan	10	0 – 500	mm hr ⁻¹	
Instantaneous rain rate at the ra	adar range gates. ⁻	The accuracy is 0	.1 mm hr ⁻¹ .				
Sigma R-hat	Integer SDS	2	nradarrange * nray*nscan	10	-125 – 125	mm hr ⁻¹	
RMS uncertainty in the R-hat es possible" detection by the radal reserved for cases where the RI	r rather than the "	rain-certain" ass	ociated with positiv	ve values). The v	alues -125 an		
RR-Surf	Float SDS	4	nray*nscan	-	0 – 500	mm hr ⁻¹	
Surface rain rate.							
Sigma RR-Surf	Integer SDS	2	nray*nscan	100	-125 – 125	mm hr ⁻¹	
than the "rain-certain" associate	RMS uncertainty in RR-Surf. (The negative sign indicating estimates based on a "rain-possible" detection by the radar rather than the "rain-certain" associated with positive values). The values -125 and 125 are reserved for cases where the RMS uncertainty could not be accurately estimated. The accuracy is 0.5 mm/hr.						
latentHeadHH	Float SDS	4	nlayer*nray *nscan	-	-	K hr ⁻¹	
The "hydrometeor heating" cald	culated from the v	ertical fluxes of t	he different hydror	neteor species a	nd using aver	age	
archival temperature/ pressure/humidity soundings which depend on longitude and latitude only. In V7 all the precipitation							
is assumed to be liquid. Heating is listed for 13 layers.							
spare	Float SDS	4	4*nray*nscan	-	-	-	
Contents and ranges are not pu	blic.						

TRMM 2B31 Geolocation

Geolocation is the earth location of the center of the IFOV at the altitude of the earth ellipsoid. The first dimension is latitude and longitude, in that order. The next dimensions are numbers of pixels and scans. Values are represented as floating point decimal degrees. Off-earth is represented as -9999.9. Latitude is positive north, negative south. Longitude is positive east, negative west. A point on the 180° meridian is assigned to the western hemisphere.

TRMM 2B31 D-hat Description

D-hat is the correlation-corrected mass-weighted mean drop diameter. The accuracy is 0.01 "normalized" mm (the value 0 indicates no rain or bad data). The average value of dHat is around 1.1 "normalized" mm, a unit which comes from the fact that dHat is related to the true mass-weighted mean drop diameter D* mm by the formula dHat = D*rHat-0.155 (with rHat in mm/hr).

Layers and lower and upper boundaries used for calculating latent heat (specified as height above earth ellipsoid)

Layer 1: 16 km – 18 km

Layer 2: 14 km – 16 km

Layer 3: 12 km – 14 km

Layer 4: 10 km – 12 km

Layer 5: 8 km – 10 km

Layer 6: 7 km – 8 km

Layer 7: 6 km – 7 km

Layer 8: 5 km – 6 km

Layer 9: 4 km – 5 km

3A11: Monthly Oceanic Rainfall

Temporal Coverage	Start Date: 1997-12-01
	Stop Date: 2015-03-31
Congraphic Coverage	Latitude: 40°S – 40°N
Geographic Coverage	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	5° x 5°; nlat = 16, nlon = 72
Average File Size	≈ 23 KB compressed

	\$	BA11 Data Forma	at Structure			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
GridStructure	Char Attribute	5,000	-	-	-	-
GridStructure gives the specific	ation of the geome	etry of the grids.				
Monthly Rainfall	Float SDS	4	nlat*nlon	-	0 – 3000	mm
The Monthly Rainfall is the surf	ace rainfall over o	ceans in 5° x 5° b	oxes from 40°N x 4	0°S.		
Number of Samples	Integer SDS	4	nlat*nlon	-	0 – 500,000	-
The number of samples over th	e oceans in each 5	° x 5° box for on	e month.			
Chi Square Fit	Integer SDS	4	nlat*nlon	-	$1 - 10^9$	0
Indicates how well the histogra	m of brightness te	mperatures fits t	the lognormal distri	bution function.	i	
Freezing Level	Float SDS	4	nlat*nlon	-	0 – 6	km
Estimated height of the 0°C iso	therm.					
T_0	Float SDS	4	nlat*nlon	-	160- 180	K
The mean of non-raining bright	ness temperatures	S.				
r_0	Float SDS	4	nlat*nlon	-	0 – 15	mm h ⁻¹
Logarithmic mean rain rate.						
Sigma_r	Float SDS	4	nlat*nlon	-	0-1	mm h ⁻¹
Standard deviation of the logar	ithmic rain rate.					
Probability of Rain	Float SDS	4	nlat*nlon	-	0-1	-
Probability of rain in each 5° x 5	5° box.					
Quality Indicators 1 - 3	Integer SDS	2	nlat*nlon	-	-	
Spare	Integer SDS	2	nlat*nlon	-	-	
Note that this product only incl	udes data over oce	eans. Data over l	and are assigned th	e missing value	of -9999.	

3A12: Mean 2A12 Profile and Surface Rainfall

Temporal Coverage	Start Date: 1997-12-01
	Stop Date: 2015-03-31
Congraphic Coverage	Latitude: 40°S – 40°N
Geographic Coverage	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.5° x 0.5°; nlat = 160, nlon = 720
Average File Size	≈ 56 MB compressed

	3.4	12 Data Format	Structure			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
GridStructure	Char Attribute	5,000	-	-	-	-
GridStructure gives the specific	ation of the geom	etry of the grids.				
SurfaceRain	Float SDS	4	nlat*nlon	-	0 – 3000	mm h ⁻¹
Monthly mean of the instantan	eous rain rate for	each grid box.				
SurfacePrecipitation	Float SDS	4	nlat*nlon	-	0 – 3000	mm h ⁻¹
Monthly mean of the instantan	eous precipitation	rate at the surfa	ace for each grid box.			
ConvectPrecipitation	Float SDS	4	nlat*nlon	-	0 – 3000	mm h ⁻¹
Monthly mean of the instantan	eous convective ra	ain rate at the su	rface for each grid bo	OX.		
CldWater	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³
Monthly mean cloud liquid wat	er content for eac	h grid box.				
RainWater	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³
Monthly mean precipitation wa	iter content for ea	ch grid box.				
CldIce	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³
Monthly mean cloud ice water	content for each g	rid box.				
Snow	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³
Monthly mean snow liquid wat	er content for eac	h grid box.				
Graupel	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³
Monthly mean graupel liquid w	ater content for e	ach grid box.				
LatentHeat	Float SDS	4	nlat*nlon*nlevel	-	-256 – 256	K h ⁻¹
Monthly mean latent heating re	elease.					
NpixTotal	Integer SDS	4	nlat*nlon	-	0 – 10,000	-
Monthly number of pixels with	pixelStatus equal	to zero for each	grid, used to remove	sea ice.		
NpixPrecipitation	Integer SDS	4	nlat*nlon	-	0 – 10,000	-
Monthly number of pixels with	surfacePrecipitati	on greater than a	zero for each grid box	. Over the	oceans, each p	ixel is also
required to have a probabilityO						
Notes: nlevel represents the nu	mber of latent he	ating levels (28)	per grid box and <i>nlay</i>	<i>er</i> represe	nts the number	of
profiling layers per grid box.						

42

3A25: Spaceborne Radar Rainfall

Townsel Covered	Start Date: 1997-12-01
Temporal Coverage	Stop Date: 2015-03-31
Goographic Coverage	Latitude: 40°S – 40°N
Geographic Coverage	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	5° x 5° and 0.5° x 0.5°
Average File Size	≈ 38 MB compressed

3A25 Data Structure: Part 1						
Name	Turno	Record Size	Dim Size	Damas	Unit	
Name	Туре	(bytes)	(# of records)	Range	Offic	
rzStratPix2	Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-	
The number of R-Z coefficient p	ixel counts con	nditioned on stra	atiform rain for near-surfa	ace and 2km heigh	ts over 0.5° x 0.5°	
boxes for one month.						
rzConvPix2	Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-	
The number of R-Z coefficient p	ixel counts con	nditioned on con	vective rain for near-surf	ace and 2km heigh	its over 0.5° x 0.5°	
boxes for one month.						
rzPix2	Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-	
The number of R-Z coefficient p	ixel counts for	near-surface an	d 2km heights over 0.5° >	0.5° boxes for one	e month.	
surfRainStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of non-zero near-surface	e rain condition	ned on stratiforr	m rain over 0.5° x 0.5° box	kes for one month.		
surfRainConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of non-zero near-surface	e rain conditior	ned on convectiv	ve rain over 0.5° x 0.5° bo	xes for one month		
e_surfRainStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of non-zero estimated s	urface rain con	ditioned on stra	tiform rain over 0.5° x 0.5	5° boxes for one m	onth.	
e_surfRainConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of non-zero estimated s	urface rain con	ditioned on con	vective rain over 0.5° x 0.	.5° boxes for one m	nonth.	
e_surfRainPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of non-zero estimated s	urface rain ove	er 0.5° x 0.5° box	es for one month.			
shallowRainPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of shallow rain over 0.5°	x 0.5° boxes fo	or one month.				
shallowIsoPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of shallow isolated rain	over 0.5° x 0.5°	boxes for one r	month.			
epsilonOStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of epsilon0 conditioned	on stratiform r	ain and use of 2	A21 SRT over 0.5° x 0.5°	boxes for one mon	th.	
epsilon0ConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of epsilon0 conditioned	on convective	rain and use of	2A21 SRT over 0.5° x 0.5°	boxes for one mor	nth.	
epsilonStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of epsilon conditioned o	n stratiform ra	in and use of 2A	A21 SRT over 0.5° x 0.5° b	oxes for one mont	n.	
epsilonConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-	
Counts of epsilon conditioned o	n convective ra	ain and use of 2	A21 SRT over 0.5° x 0.5° b	oxes for one mont	h.	
Strat. Rain Pixel Number 2	Integer SDS	4	nlath*nlonh*nh3	0 to 2,000,000	-	
The number of non-zero rain ra	te pixels for str	ratiform rain ove	er 0.5° x 0.5° boxes for on	e month.		
Conv. Rain Pixel Number 2	Integer SDS	4	nlath*nlonh*nh3	0 to 2,000,000	-	
The number of non-zero rain ra	te pixels for co	nvective rain ov	er 0.5° x 0.5° boxes for or	ne month.		
Rain Pixel Number 2	Integer SDS	4	nlath*nlonh*nh3	0 to 2,000,000	-	
TI D : D: IN I D: II						
The Rain Pixel Number 2 is the r	monthly numb	er of non-zero ra	ain rate pixels for path-av	eraged rainfall and	I rainfall at the fixed	

		3A25 Data S	tructure: Part 2		
Name	Туре	Record Size	Dim Size	Range	Unit
Name	туре	(bytes)	(# of records)	Kange	Offic
surfRainPix2	Integer SDS	4	nlath*nlonh	0 to 2,000,000,000.	-
Near-surface rain counts at a ho	rizontal resolu	tion of 0.5° x 0.	5°		
Bright Band Pixel Number 2	Integer SDS	4	nlath*nlonh	0 to 2,000,000	-
The number of bright band cour	its over each 0	.5° x 0.5° box fo	r one month		
Total Pixel Number 2	Integer SDS	4	nlath*nlonh	0 to 2,000,000	-
The Total Pixel Number 2 is the	number of tota	al pixels over 0.5	5° x 0.5° boxes for one m	onth.	
rzStratB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle	-		_	R, Z pairs condition	ed on stratiform rain.
Computed for near-surface and	2km heights at	t a horizontal re	solution of 0.5° x 0.5°		
rzStratA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle				R, Z pairs condition	ed on stratiform rain.
Computed for near-surface and	2km heights at	t a horizontal re	solution of 0.5° x 0.5°		
rzConvB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle	-		_	•	ed on convective
rain. Computed for near-surface	_				
rzConvA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle	-		_	· · · · · · · · · · · · · · · · · · ·	ed on convective
rain. Computed for near-surface	and 2km heig	hts at a horizon	tal resolution of 0.5° x 0.	5°	
		_			. 1
rzB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle	-		fitting of instantaneous I	R, Z pairs. Compute	ed for near-surface
and 2km heights at a horizontal			1 1 1 1 1 1 1 1 1		. 1
rzA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle	-		fitting of instantaneous i	R, Z pairs. Compute	ed for near-surface
and 2km heights at a horizontal			1,141	0.01, 400.0	1 -1
surfRainStratDev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero					
surfRainStratMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero near-surface surfRainConvDev2		4	nlath*nlonh		mm h ⁻¹
Standard deviation of non-zero	Float SDS	•		0.0 to 400.0	
surfRainConvMean2			nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero near-surface					
e_surfRainStratdev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero		•			
stratiform rain at a horizontal re			lutter (see ZAZ3 algoriti	iiii usei guide) com	uitioned on
e surfRainStratMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur		•			
horizontal resolution of 0.5° x 0.		W clutter (see 27	125 digoritimi user guide	j conditioned on s	tratiform ram at a
e_surfRainConvdev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero					
convective rain at a horizontal re			(Jee 2/12) digoriti	aser garacy com	
e_surfRainConvMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur					
horizontal resolution of 0.5° x 0.			a.goemii asei galae	, 30	
e_surfRaindev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero		-			
of 0.5° x 0.5°			,	G,	

		3A25 Data St	tructure: Part 3		
Name	Туре	Record Size	Dim Size	Range	Unit
		(bytes)	(# of records)		
e_surfRainMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur					
shallowRaindev2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Standard deviation of shallow ra					
shallowRainMean2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Mean of shallow rain at a horizo					
shallowIsoRaindev2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Standard deviation of shallow is					
shallowIsoRainMean2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Mean of shallow isolated rain at		esolution of 0.5°	° x 0.5°		
epsilon0StratDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon0 of	onditioned on	stratiform rain	and use of 2A21 SRT at a	horizontal resolut	ion of 0.5° x 0.5°
epsilon0StratMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon0 conditioned o	n stratiform ra	in and use of 2A	121 SRT at a horizontal res	solution of 0.5° x 0).5°
epsilon0ConvDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon0 c	onditioned on	convective rain	and use of 2A21 SRT at a	horizontal resolu	tion of 0.5° x 0.5°
epsilon0ConvMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon0 conditioned o	n convective ra	ain and use of 2	A21 SRT at a horizontal re	solution of 0.5° x	0.5°
epsilonStratDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon co	nditioned on s	stratiform rain a	nd use of 2A21 SRT at a h	orizontal resolution	on of 0.5° x 0.5°
epsilonStratMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon conditioned on	stratiform rain	n and use of 2A2	21 SRT at a horizontal reso	olution of 0.5° x 0.	5°
epsilonConvDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon co	nditioned on o	convective rain a	and use of 2A21 SRT at a l	horizontal resoluti	on of 0.5° x 0.5°
epsilonConvMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon conditioned on	convective rai	n and use of 2A	21 SRT at a horizontal res	olution of 0.5° x 0	.5°
bbHeightDev2	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Standard deviation of bright bar	id height at a h	norizontal resolu	ition of 0.5° x 0.5°	•	
stormHeightDev2	Float SDS	4	nlath*nlonh*2	0.0 to 20,000.0	m
Standard deviation of storm heigh	ght at a horizo	ntal resolution o	of 0.5° x 0.5°		
sdepthDev2	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Standard deviation of snow dep	th at a horizon	ital resolution of	f 0.5° x 0.5°	•	
sdepthMean2	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Mean of snow depth at a horizo	ntal resolution	of 0.5° x 0.5°		·	
bbZmaxDev2	Float SDS	4	nlath*nlonh	0.0 to 100	dBZ
Mean of maximum reflectivity in		nt a horizontal re			
bbZmaxMean2	Float SDS	4	nlath*nlonh	0.0 to 100.0	dBZ
Mean of maximum reflectivity in	bright band a	nt a horizontal re			
surfRainDev2	Float SDS	4	nlath*nlonh	0.0 to 3000.0	mm h ⁻¹
Standard Deviation of non-zero		ain rate at a hor			
surfRainMean2	Float SDS	4	nlath*nlonh	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface		orizontal resolu			
BB Height Mean	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
BB Height Mean gives the month		7			•••
Storm Height Mean	Float SDS	4	nlath*nlonh*2	0.0 to 20,000.0	m
Storm Height Mean gives the mo		•		·	
convective rain over 0.5° x 0.5° §		or the storm ner	bire, anconardionea and co	onantioned for stre	atiloriii alia
	,a boxes.				

		3A25 Data S	tructure: Part 4		
Name	Tuno	Record Size	Dim Size	Pango	Unit
Name	Туре	(bytes)	(# of records)	Range	Oilit
Strat. Zt Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80	dBZ
The monthly means of the corre	cted reflectivit	ty of stratiform	rain over 0.5° x 0.5° grid	boxes.	
Conv. Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80.0	dBZ
Conv. Zm Mean 2 gives the mon	thly means of	the corrected re	eflectivity of convective i	rain at the fixed he	eights of 2 km, 4 km, 6
km, and path average over 0.5°	x 0.5° grid box	es.			
Zt Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80.0	dBZ
Zt Mean 2 gives the monthly me	ans of the cor	rected reflectivi	ty at the fixed heights of	f 2 km, 4 km, 6 km	, and path average
over 0.5° x 0.5° grid boxes.					
Strat. Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Strat. Zm Means gives the mont	hly means of t	he measured re	flectivity of stratiform ra	in at the fixed hei	ghts of 2 km, 4 km, 6
km, and path average over 0.5°	x 0.5° grid box	es.			
Conv. Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Conv. Zm Mean 2 gives the mon	thly means of	the measured r	eflectivity of convective	rain at the fixed he	eight levels of 2 km, 4
km, 6 km, and path average ove	-		•		
Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Zm Mean 2 gives the monthly m	eans of the me	easured reflecti	vity at the fixed height le	evels of 2 km, 4 km	n, 6 km, and path
average over 0.5° x 0.5° grid box			,	•	, , ,
Strat. Rain Rate Dev. 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Strat. Rain Rate Dev. 2 gives star					
month. The rain rates are determ					207.00 101 0110
Strat. Rain Rate Mean 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Strat. Rain Rate Mean 2 gives me		•			
rates are determined in 2A-25 a					
Conv. Rain Rate Dev. 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Conv. Rain Rate Dev. 2 gives star		•			
month. The rain rates are determ					
Conv. Rain Rate Mean 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Conv. Rain Rate Mean 2 gives m		<u>=</u>			
rates are determined in 2A-25 a					
Rain Rate Dev. 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Rain Rate Dev. 2 gives standard		-			
					e raili rates are
determined in 2A-25 and evalua					h-1
Rain Rate Mean 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Rain Rate Mean 2 gives means o				onth. The rain rate	s are determined in
2A-25 and evaluated at the fixed	_	(m, 4 km, 6 km,	and path average.		
GridStructure	Char	5,000	-	-	-
	Attribute				
GridStructure gives the specifica					
PIAs Corr. Coef.	Float SDS	4	nlat*nlon*nang*3	-1.000 to 1.000	-
This is the correlation coefficien	· ·	i-integrated atte	enuations (SRT, HB, and (Oth order PIAs) at	angles of 0, 5, 10 and
15 for a 5° x 5° box for one mon					
Strat. RR Corr. Coef.	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-
These are correlation coefficient					lation coefficient of
rain rates at 2 km vs 4 km, 2 km					
Conv. RR Corr. Coef.	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-
These are correlation coefficient					elation coefficient of
rain rates at 2 km vs 4 km, 2 km	vs 6 km, and 4	km vs 6 km) fo	or a 5° x 5° box for one m	onth.	

		3A25 Data S	tructure: Part 5		
Norma	Trend	Record Size	Dim Size	Danas	l leit
Name	Туре	(bytes)	(# of records)	Range	Unit
RR Corr. Coef.	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-
These are correlation coefficien	ts of non-zero	rain rates betwe	een 3 heights (i.e., corre	lation coefficient of	rain rates at 2 km vs
4 km, 2 km vs 6 km, and 4 km vs	6 km) for a 5°	x 5° box for one	e month. They are calcul	ated under convecti	ve condition,
stratiform condition or both.					
surfRainH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of near-surface rain r	ate at a horizo	ntal resolution	of 5 x 5		
epsilon0StratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon0 condition	ed on stratifor	m rain and use	2A21 SRT at a horizonta	l resolution of 5° x 5	0
epsilon0ConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon0 condition	ed on convect	ive rain and use	2A21 SRT at a horizonta	al resolution of 5° x 5	5°
epsilonStratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon conditione	d on stratiforn	n rain and use 2	A21 SRT at a horizontal	resolution of 5° x 5°	
epsilonConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon conditione	d on convectiv	e rain and use 2	2A21 SRT at a horizontal	resolution of 5° x 5°	
bbZmaxH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of maximum Zt in bri	ght band at a h	norizontal resolu	ution of 5° x 5°		
NUBF Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
NUBF (Non-Uniform Beam Fillin	g) Hist. gives th	ne histogram of	the NUBF correction for	Z-factor and rain ra	te of 30 different
categories over 5° x 5° grid boxe	es.				
Xi Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
The Xi Histograms is the histogra	am of non-unif	ormity paramet	ter determined in 2A-25	for 30 categories ov	er a 5° x 5° box for
one month.					
pia2A25H	Integer SDS	2	nlat*nlon*ncat2*nang	0 to 32,767	-
These are histograms of path-at	tenuation as d	etermined by 2	A25 at 4 incidence angle	es (0, 5, 10 and 15) fo	or 30 categories over
a 5° x 5° box for one month.					
PIA 0th Hist.	Integer SDS	2	nlat*nlon*ncat2*nang		-
PIA 0th Hist. is the histogram of					5° x 5°. This
histogram is calculated for 30 ca		lifferent inciden		•	
PIA hb Hist.	0	2	nlat*nlon*ncat2*nang		-
These are histograms of path-at					a k-Z relationship at
4 incidence angles (0, 5, 10 and		_			
PIA srt Hist.	Integer SDS		nlat*nlon*ncat2*nang	·	-
PIA srt Hist. gives histograms of	•		-	nce technique (SRT)	at 4 incidence
angles (0, 5, 10 and 15) for 30 ca		a 5° x 5° box for			
pia2a25ssH	Integer SDS	2	nlat*nlon*ncat2*nang		-
Histogram in counts of final PIA		setted 2A25 m	ethod flag at 5 angles (0,	, 5, 10, 15, and all 49	angle bins) for 30
categories over a 5° x 5° box for					
pia0ssH	Integer SDS	2	nlat*nlon*ncat2*nang		-
Histogram in counts of PIA from			2A25 method flag at 5 a	ngles (0, 5, 10, 15, a	nd all 49 angle bins)
for 30 categories over a 5° x 5° k					
piaHbssH	Integer SDS	2	nlat*nlon*ncat2*nang		-
Luictogram in counts of DIA from	HB method su	ibsetted 2A25 n	nethod flag at 5 angles (0, 5, 10, 15, and all 4	19 angle bins) for 30
_					
categories over a 5° x 5° box for	one month.				
categories over a 5° x 5° box for piaSrtssH	one month. Integer SDS	2	nlat*nlon*ncat2*nang		-
categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from	one month. Integer SDS SRT subsetted		_		bins) for 30
categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from categories over a 5° x 5° box for	one month. Integer SDS SRT subsetted one month.	I 2A25 method	flag at 5 angles (0, 5, 10,	15, and all 49 angle	- bins) for 30
categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from categories over a 5° x 5° box for SurfRainStratH	one month. Integer SDS SRT subsetted one month. Integer SDS	2 2A25 method	flag at 5 angles (0, 5, 10, nlat*nlon*ncat2	15, and all 49 angle 0 to 32,767	-
categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from categories over a 5° x 5° box for	one month. Integer SDS SRT subsetted one month. Integer SDS	2 2A25 method	flag at 5 angles (0, 5, 10, nlat*nlon*ncat2	15, and all 49 angle 0 to 32,767	-

		3A25 Data S	tructure: Part 6		
Nome	Tuno	Record Size	Dim Size	Danga	l lait
Name	Туре	(bytes)	(# of records)	Range	Unit
SurfRainConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767 -	
Histogram in counts of non-zero	near-surface	rainfall conditio	ned on convective rain	for 30 categories over	a 5° x 5° box for
one month.					
e_surfRainStratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767 -	
Histogram in counts of non-zero one month.	estimated su	rface rain condit	ioned on stratiform rai	n for 30 categories ove	er a 5° x 5° box for
e_surfRainConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767 -	
Histogram in counts of non-zero	estimated su	rface rain condit	cioned on convective ra	in for 30 categories ov	er a 5° x 5° box for
one month.					
e_surfRainH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767 -	
Histogram in counts of non-zero	estimated su	rface rain for 30	categories over a 5° x 5	s° box for one month.	
bbNadirZmaxH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767 -	
Histogram in counts of maximum	m Z in bright b	and from nadir i	ray for 30 categories ov	er a 5° x 5° box for one	month.
bbNadirWidthH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767 -	
Histogram in counts of bright ba	and width fron	n nadir ray for 30	O categories over a 5° x	5° box for one month.	
bbNadirHH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767 -	
Histogram in counts of bright ba	and heights fro	m nadir ray for	30 categories over a 5°	x 5° box for one montl	٦.
Strat. Rain Rate Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767 -	
These are histograms of non-zer	ro rain rate pix	els for stratiforr	n rain at five heights (2,	4, 6, 10 and 15 km) ar	nd path-average for
20 categories over a 5° x 5° box	for one month	า.			
Conv. Rain Rate Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767 -	
These are histograms of non-zer	ro rain rate pix	cels for convectiv	ve rain at five heights (2	, 4, 6, 10 and 15 km) a	nd path-average
for 20 categories over a 5° x 5° k	oox for one mo	onth.			
Rain Rate Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	•	
These are histograms of non-zer		cels at five heigh	ts (2, 4, 6, 10 and 15 km	n) and path-average fo	r 20 categories
over a 5° x 5° box for one month					
Strat. Zt Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767 -	
The Stratiform Zt Histograms are	-		•	form rain pixels at five	heights (2, 4, 6, 10
and 15 km) and path-average fo		s over a 5° x 5° b			
Conv. Zt Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767 -	
The Convective Zt Histograms a	_			ective rain pixels at five	e heights (2, 4, 6,
10 and 15 km) and path-average		ories over a 5° x			
Zt Hist.	U	2	nlat*nlon*ncat2*nh1	0 to 32,767 -	
The Zt Histograms are histogran				ve heights (2, 4, 6, 10 a	and 15 km) and
path-average for 20 categories of		oox for one mon			
Strat. Zm Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767 -	
The Stratiform Zm Histograms a	_			rain pixels at five heig	hts (2, 4, 6, 10 and
15 km) and path-average for 20					
Conv. Zm Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767 -	
The Convective Zm Histograms				e rain pixels at five hei	ghts (2, 4, 6, 10
and 15 km) and path-average fo					
Zm Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767 -	
The Zm Histograms are histogra			of rain pixels at five heig	ghts (2, 4, 6, 10 and 15	km) and path-
average for 20 categories over a			l ide l de la		
Snow-ice Layer Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767 -	
These are histograms of the dep					depth of snow-ice
layer is defined as the difference	e petween effe	ective storm hei	gnt and estimated heigh	nt of UC isotherm.	

		3A25 Data S	tructure: Part 7		
Nome	Tuna	Record Size	Dim Size	Danas	l lmit
Name	Type	(bytes)	(# of records)	Range	Unit
BB Height Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the brig	ht-band heigh	nts for 30 catego	ries over a 5 x 5 box for o	ne month, given	that the bright band is
detected.					
Strat. Storm Height Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'effe		neights for strati		es over a 5° x 5° b	ox for one month.
Conv. Storm Height Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'effe		neights for conve	ective rain for 30 categori		oox for one month.
Storm Height Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'effe					
epsilon0StratPix1	Integer SDS	4	nlat*nlon	0 to 32,767	-
Counts of epsilon0 conditioned					solution of 5° x 5°
epsilon0ConvPix1	Integer SDS	4	nlat*nlon	0 to 32,767	-
Counts of epsilon0 conditioned					esolution of 5° x 5°
epsilonStratPix1	0	2	nlat*nlon	0 to 32,767	
Counts of epsilon conditioned or					olution of 5° x 5°
epsilonConvPix1	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of epsilon conditioned or					solution of 5° x 5°
convCCoefPix	Integer SDS	2	nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficien					resolution of 5° x 5°
stratCCoefPix	Integer SDS	2	nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficien			-	ts at a horizontal i	resolution of 5° x 5°
rainCCoefPix	Integer SDS	2	nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficien					
pia2a25ssPix	0	2	nlat*nlon	0 to 32,767	-
Counts of final PIA from 2A25 fo		ata where the 2	A25 method flag has beer	n set (see 2A25/3 <i>i</i>	A25 algorithm users
guide) at a horizontal resolution					
pia0ssPix	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of PIA using 0th-order m			re the 2A25 method flag	has been set (see	2A25/3A25 algorithm
users guide) at a horizontal reso					
piaHbssPix	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of PIA using HB method		data where the	2A25 method flag has be	en set (see 2A25/	3A25 algorithm users
guide) at a horizontal resolution					
	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of PIA using SRT method		data where the	2A25 method flag has be	een set (see 2A25,	/3A25 algorithm users
guide) at a horizontal resolution		_			
rzStratPix1	Integer SDS	4	nlat*nlon*2	0 to 2,000,000	-
The number of R-Z coefficient pi	ixel counts for	stratiform rain i	near-surface and 2km hei	gnts, at a horizon	tal resolution of 5° x
5°	lete CDC	4		0+- 3 000 000	
rzConvPix1	Integer SDS	4	nlat*nlon*2	0 to 2,000,000	-
The number of R-Z coefficient pi 5°	ixer counts for	convective rain	near-surface and 2km ne	ngnis, at a norizor	ital resolution of 5 X
	Integer CDC	4	nlat*nlon*2	0 to 2,000,000	
rzPix1 The number of P-7 coefficient ni	Integer SDS				- f 5° v 5°
The number of R-Z coefficient pi	Integer SDS	near-surrace an			I J X J
e_surfRainStratPix1	_	•	nlat*nlon	0 to 2,000,000	tal recolution of E° v E°
The number of non-zero estimate					tai resolution of 5 x 5
e_surfRainConvPix1 The number of non-zero estimate	Integer SDS	4	nlat*nlon	0 to 2,000,000	- utal resolution of 5° v
5°	ieu suildte (di	ii pixei coulits C	onamonea on convective	raiii, at a HUHZOH	itai resulution of 3 X
3					

		3A25 Data S	tructure: Part 8		
	_	Record Size	Dim Size	_	
Name	Туре	(bytes)	(# of records)	Range	Unit
e_surfRainPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of non-zero estimat	ced surface rai	n pixel counts at	t a horizontal resolution o	of 5° x 5°	
surfRainStratPix1	Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of Near-surface rain fall of	conditioned or	stratiform rain	at a horizontal resolution	n of 5° x 5°	
surfRainConvPix1	Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of Near-surface rain fall of	conditioned or	convective rain	n at a horizontal resolutio	n of 5° x 5°	
surfRainPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
Near-surface rain counts at a ho	rizontal resolu	tion of 5° x 5°			
Rain Angle Pixel Number 1	Integer SDS		nlat*nlon*nang	0 to 30,000	-
Rain Angle Pixel Number 1 is the	_		_	x 5° latitude-longi	tude grid box for a
month. This parameter is accum				· ·	· ·
Total Angle Pixel Number 1	Integer SDS		nlat*nlon*nang	0 to 30,000	-
Total Angle Pixel Number 1 is the	_			•	a month. This
parameter is accumulated at fou		•		6	
Strat. Rain Pixel Number 1	Integer SDS	4	nlat*nlon*nh1	0 to 2,000,000	-
The Stratiform Rain Pixel Number		ber of non-zero			red heights of 2, 4, 6.
10 and 15 km and for path-avera					, , , , ,
Conv. Rain Pixel Number 1		4	nlat*nlon*nh1	0 to 2,000,000	-
The number of non-zero rain rat	_			· · · · · · · · · · · · · · · · · · ·	nd for path-average
over 5° x 5° boxes for one month	· ·			, _ .	
Rain Pixel Number 1	Integer SDS	4	nlat*nlon*nh1	0 to 2,000,000	-
The number of non-zero rain rat	_				over 5° x 5° boxes
for one month	c pincio de tire	integrite of	_, ., o, _o and _o and	a 101 patit a 101 ago	TOTOLO NO DONOS
bbNadirPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of bright band nadi	_	over each 5° x 5		, , , , , , , , , , , , , , , , , , , ,	
Bright Band Pixel Number 1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of bright band coun	•	° x 5° box for or	ie month		
Total Pixel Number 1		4	nlat*nlon	0 to 2,000,000	-
The number of total pixels over		or one month		, , , , , , , , , , , , , , , , , , , ,	
rzStratB1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle		R = AZ^B from			
Computed for near-surface and	-		_	, =	
rzStratA1				0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle					
Computed for near-surface and				, , , , , , , , , , , , , , , , , , , ,	
rzConvB1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle					
rain. Computed for near-surface	•		_	, pana sonanion	
rzConvA1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle		•			
rain. Computed for near-surface				, =	2 2 20.
rzB1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle		•			
and 2km, at a horizontal resoluti	-	5 6		, = paa. compate	
rzA1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle		•			
and 2km, at a horizontal resoluti	· · · · · · · · · · · · · · · · · · ·	AL BIIOIII	The state of the s	, = pairs. compate	Ja Tor ficur Surface
e_surfRainDev1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero		-			
Standard deviation of non-zero (zacimateu sum	ace raili below (natter contaitioned off Str	atii Oi iii i alii at a I	esolution of 3 x 3

Name Type Record Size (bytes) Dim Size (bytes) Range Unit			3A25 Data S	tructure: Part 9		
e_surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ horizontal resolution of 5° x.5° sdepthDev1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 mm h¹ horizontal resolution of 5° x.5° sdepthDev1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 mm horizontal resolution of 5° x.5° sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 mm horizontal presolution of 5° x.5° sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5° x.5° sb2maxMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5° x.5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h¹ horizontal resolution of 5° x.5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h¹ horizontal resolution of 5° x.5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h¹ horizontal resolution of 5° x.5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h¹ horizontal resolution of 5° x.5° su	Name	Type	Record Size	Dim Size	Pange	Unit
Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on stratiform rain at a horizontal resolution of 5° x 5°	Name	туре	(bytes)	(# of records)	Natige	
e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5* x 5* Ve_surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h² Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5* x 5* Ve_surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h² Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* Ve_surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h² Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* SdepthMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h² Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* SdepthMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Mean of non-zero setimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* SdepthMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Standard deviation of snow depth at a horizontal resolution of 5* x 5* bbZmaxWev1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5* x 5* bbZmaxMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Mean of maximum reflectivity in bright band at a horizontal resolution of 5* x 5* surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h² Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5* x 5* surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h² Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5* x 5* surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h² Standard d	_		•			
e_surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h² Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5* x 5* nlat*nlon 0.0 to 400.0 mm h² Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5* x 5* 0.0 to 400.0 mm h² Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* 0.0 to 400.0 mm h² Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* nlat*nlon 0.0 to 400.0 mm h² Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* nlat*nlon 0.0 to 400.0 mm h² Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h² Standard deviation of snow depth at a horizontal resolution of sow depth at a horizontal resolution of sow depth at a horizontal resolution of so x 5* sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 100.0		face rain belo	w clutter (See 2	A25 algorithm user guide) conditioned on s	tratiform rain at a
Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5° x 5° s e_surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h ⁻¹ Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5° x 5° s e_surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h ⁻¹ Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution 5° 5° x 5° s e_surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h ⁻¹ Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5° x 5° s e_surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h ⁻¹ Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5° x 5° s sdepthDev1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Standard deviation of snow depth at a horizontal resolution of 5° x 5° s sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° s bbZmaxMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° s bbZmaxMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° s surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° s surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface ra						
e_surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5* x 5* e_surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h² Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* e_surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h² Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* sdepthDev1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 mm h² Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5* x 5* sdepthDev1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 mm h² Standard deviation of snow depth at a horizontal resolution of 5* x 5* sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Mean of snow depth at a horizontal resolution of 5* x 5* sb2maxDev1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5* x 5* sb2maxMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5* x 5* surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h² standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5* x 5* surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h² Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5* x 5* surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h² Standard deviation of non-zero near-surface rain rate and horizontal resolution of 5* x 5* surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h² Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5* x 5* surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h² S	e_surfRainConvDev1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
e_surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5° x 5° e_surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5° x 5° e_surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 400.0 mm h¹ Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5° x 5° e_surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 mm h¹ Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5° x 5° sdepthDev1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Standard deviation of snow depth at a horizontal resolution of 5° x 5° sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Mean of snow depth at a horizontal resolution of 5° x 5° bb2maxDev1 Float SDS 4 nlat*nlon 0.0 to 100.0 dB2 Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° bb2maxMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dB2 Mean of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainGonvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainGonvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainGonvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm				clutter (See 2A25 algorith	m user guide) con	ditioned on
Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) conditioned on convective rain at a horizontal resolution of 5° x 5°	convective rain at a horizontal re	esolution of 5°	x 5°			
Rozizontal resolution of 5° x 5°	e_surfRainConvMean1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5° x 5°		face rain belo	w clutter (See 2	A25 algorithm user guide) conditioned on c	onvective rain at a
Sandard deviation of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5° x 5° e_surfRainMean1						
Section Sec	_					
e_surfRainMean1		estimated surf	ace rain below	clutter (See 2A25 algorith	m user guide) at a	horizontal resolution
Mean of non-zero estimated surface rain below clutter (See 2A25 algorithm user guide) at a horizontal resolution of 5° x 5°	of 5° x 5°					
StepthDev1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m	e_surfRainMean1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Standard deviation of snow depth at a horizontal resolution of 5° x 5° sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Mean of snow depth at a horizontal resolution of 5° x 5° bbZmaxDev1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° bbZmaxMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Mean of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° bbZmaxMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a hori	Mean of non-zero estimated sur	face rain belo	w clutter (See 2	A25 algorithm user guide) at a horizontal re	solution of 5° x 5°
sdepthMean1 Float SDS 4 nlat*nlon 0.0 to 20,000.0 m Mean of snow depth at a horizontal resolution of 5° x 5° bbZmaxDev1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° 5° 5° 5° bbZmaxMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Mean of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ¹ Mean of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ¹ Standard devi	•		•		0.0 to 20,000.0	m
Mean of snow depth at a horizontal resolution of 5° x 5°			tal resolution o	f 5° x 5°		
bbZmaxDev1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° bbZmaxMean1 Float SDS 4 nlat*nlon 0.0 to 100.0 dBZ Mean of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation			•	nlat*nlon	0.0 to 20,000.0	m
Standard Deviation of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° bbZmaxMean1	Mean of snow depth at a horizo	ntal resolution	of 5° x 5°			
Mean of maximum reflectivity in bright band at a horizontal resolution of 5° x 5°	bbZmaxDev1	Float SDS	4	nlat*nlon	0.0 to 100.0	dBZ
Mean of maximum reflectivity in bright band at a horizontal resolution of 5° x 5° surfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective r	Standard Deviation of maximum	reflectivity in	bright band at a	a horizontal resolution of	5° x 5°	
SurfRainStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainOonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0	bbZmaxMean1	Float SDS	4	nlat*nlon	0.0 to 100.0	dBZ
Standard deviation of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilonO conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilonO conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilonO conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon condition	Mean of maximum reflectivity ir	bright band a	nt a horizontal re	esolution of 5° x 5°		
surfRainStratMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5° surfRainConvDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	surfRainStratDev1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface rain rate conditioned on stratiform rain at a horizontal resolution of 5° x 5°	Standard deviation of non-zero	near-surface ra	ain rate conditio	ned on stratiform rain at	a horizontal resol	ution of 5° x 5°
surfRainConvDev1Float SDS4nlat*nlon0.0 to 3000.0mm h-1Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5°surfRainConvMean1Float SDS4nlat*nlon0.0 to 3000.0mm h-1Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5°surfRainDev1Float SDS4nlat*nlon0.0 to 3000.0mm h-1Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5°surfRainMean1Float SDS4nlat*nlon0.0 to 3000.0mm h-1Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5°epsilonOStratDev1Float SDS4nlat*nlon0.0 to 5.0-Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonOStratMean1Float SDS4nlat*nlon0.0 to 5.0-Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonOConvDev1Float SDS4nlat*nlon0.0 to 5.0-Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonOConvDev1Float SDS4nlat*nlon0.0 to 5.0-Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonStratDev1Float SDS4nlat*nlon0.0 to 5.0-Standard deviation of epsilon	surfRainStratMean1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	Mean of non-zero near-surface i	rain rate condi	tioned on strati	form rain at a horizontal	resolution of 5° x 5	5°
surfRainConvMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	surfRainConvDev1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface rain rate conditioned on convective rain at a horizontal resolution of 5° x 5° surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilonO conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilonO conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilonO conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilonO conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	Standard deviation of non-zero	near-surface ra	ain rate conditio	ned on convective rain a	t a horizontal reso	lution of 5° x 5°
surfRainDev1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilonO conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilonO conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilonO conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilonO conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°	surfRainConvMean1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilonOStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilonO conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilonO conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilonO conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonOConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilonO conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	Mean of non-zero near-surface i	rain rate condi	tioned on conve	ective rain at a horizontal	resolution of 5° x	5°
surfRainMean1 Float SDS 4 nlat*nlon 0.0 to 3000.0 mm h ⁻¹ Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5° epsilon0StratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0StratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	surfRainDev1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface rain rate at a horizontal resolution of 5° x 5°epsilon0StratDev1Float SDS4nlat*nlon0.0 to 5.0-Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilon0StratMean1Float SDS4nlat*nlon0.0 to 5.0-Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilon0ConvDev1Float SDS4nlat*nlon0.0 to 5.0-Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilon0ConvMean1Float SDS4nlat*nlon0.0 to 5.0-Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonStratDev1Float SDS4nlat*nlon0.0 to 5.0-Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonStratMean1Float SDS4nlat*nlon0.0 to 5.0-	Standard deviation of non-zero	near-surface ra	ain rate at a hor	izontal resolution of 5° x	5°	
epsilon0StratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0StratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	surfRainMean1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0StratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Float SDS 4 nlat*nlon 0.0 to 5.0 -	Mean of non-zero near-surface i	rain rate at a h	orizontal resolu	tion of 5° x 5°		
epsilon0StratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	epsilon0StratDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon0 conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	Standard deviation of epsilon0 c	onditioned on	stratiform rain	and use of 2A21 SRT at a	horizontal resolut	ion of 5° x 5°
epsilon0ConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	•		•			-
Standard deviation of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilon0ConvMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	Mean of epsilon0 conditioned or	n stratiform ra	in and use of 2A		solution of 5° x 5°	
epsilon0ConvMean1Float SDS4nlat*nlon0.0 to 5.0-Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonStratDev1Float SDS4nlat*nlon0.0 to 5.0-Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonStratMean1Float SDS4nlat*nlon0.0 to 5.0-	epsilon0ConvDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon0 conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 - Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	Standard deviation of epsilon0 c	onditioned on	convective rain	and use of 2A21 SRT at a	horizontal resolu	tion of 5° x 5°
epsilonStratDev1Float SDS4nlat*nlon0.0 to 5.0-Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°epsilonStratMean1Float SDS4nlat*nlon0.0 to 5.0-	epsilon0ConvMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5° epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	Mean of epsilon0 conditioned or	n convective ra	ain and use of 2	A21 SRT at a horizontal re	esolution of 5° x 5°	
epsilonStratMean1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	epsilonStratDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
	Standard deviation of epsilon co	nditioned on s	stratiform rain a	nd use of 2A21 SRT at a h	norizontal resolutio	on of 5° x 5°
	epsilonStratMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon conditioned on stratiform rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°	Mean of epsilon conditioned on	stratiform rain	n and use of 2A2	21 SRT at a horizontal rese	olution of 5° x 5°	
epsilonConvDev1 Float SDS 4 nlat*nlon 0.0 to 5.0 -	epsilonConvDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon conditioned on convective rain and use of 2A21 SRT at a horizontal resolution of 5° x 5°	Standard deviation of epsilon co	nditioned on o	convective rain a	and use of 2A21 SRT at a	horizontal resoluti	on of 5° x 5°

		3A25 Data St	ructure: Part 10		
Name	Туре	Record Size	Dim Size	Range	Unit
Name	туре	(bytes)	(# of records)		Oilit
epsilonConvMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon conditioned on					
bbNadirZmaxDev1	Float SDS	4	nlat*nlon	0.0 to 70.0	dBZ
Standard deviation of maximum					
bbNadirZmaxMean1	Float SDS	4	nlat*nlon	0.0 to 70.0	dBZ
Mean of maximum Z in bright ba					
bbNadirWidthDev1	Float SDS	4	nlat*nlon	0.0 to 10,000	m
Standard deviation of bright bar					
bbNadirWidthMean1	Float SDS	4	nlat*nlon	0.0 to 10,000	m
Width of bright band from nadir	•				
bbNadirHtDev1	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Standard deviation of bright bar					
bbNadirHtMean1	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Height of bright band from nadi	•		of 5° x 5°		
BB Height Dev.	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Monthly deviation of the bright					
BB Height Mean	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Monthly means of the bright ba					
NUBF Correction Factor Dev.	Float SDS	4	nlat*nlon	0.0 to 2.0	-
Monthly standard deviation of t					of 5° x 5°
NUBF Correction Factor Mean		4	nlat*nlon	0.0 to 2.0	-
Monthly mean of NUBF correction					
Xi Dev.	Float SDS	4	nlat*nlon	0.0 to 99.0	-
Monthly standard deviation of t	he horizontal n	non-uniformity	parameter of the rain field	d within a ray at a	horizontal resolution
of 5° x 5°	EL LODG	4	1 . 4 . 1	0.01.00.0	
Xi Mean	Float SDS	4	nlat*nlon	0.0 to 99.0	
Monthly means of the horizonta					
Storm Height Dev.	Float SDS	4	nlat*nlon*3	0.0 to 20,000.0	m - Luna ina
Standard deviation of the storm					
Storm Height Mean	Float SDS	4	nlat*nlon*3	0.0 to 20,000.0	m
Monthly mean of the storm heig	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
pia2a25ssDev		•			
Standard deviation of final PIA (_				
method flag has been set (see 2			•		
pia2a25ssMean Mean of final PIA (path-integrate	Float SDS	4	nlat*nlon	0.0 to 100.0	dB Emothod flag has
					method hag has
been set (see 2A25/3A25 algorit	Float SDS	4	nlat*nlon		dB
pia0ssMean Standard deviation of PIA (path-		=		0.0 to 100.0	
	_				ata where the ZAZ5
method flag has been set (see 2) pia0ssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of PIA (path-integrated at					
has been set (see 2A25/3A25 alg					c ZAZJ Methou nag
piaHbssDev	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Standard deviation of PIA (path-		•			-
flag has been set (see 2A25/3A2	_				CIC THE ZAZJ HICHIOU
piaHbssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of PIA (path-integrated at		-			
been set (see 2A25/3A25 algorit		7.7			method hag has
Decir set (see ZAZS/SAZS digorit	min users guide	cj. 11 11as a 110112	.ontai resolution of 3 X 5	•	

	1		ructure: Part 11		
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
piaSrtssDev	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Standard deviation of PIA (path-	integrated att	tenuation, one-v	vav) for SRT for a sub-se	t of data where the	2A25 method flag
nas been set (see 2A25/3A25 alg					
piaSrtssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of PIA (path-integrated at		e-way) for SRT fo			
see 2A25/3A25 algorithm users		* *			a riag rias beeri see
pia2a25Dev.	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
Monthly standard deviation of 2		•	_		
resolution of 5° x 5°.	7125 patri irre	.Bratea atteriaat	ion calculated at roar in	rea meraence angre	3. 16 11d3 d 1101120116d
oia2a25Mean	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
Monthly means of 2A25 path-in		-	_		·
$5^{\circ} \times 5^{\circ}$.	tegrated atter	idation calculate	d at lour lixed incluence	e angles. It has a no	rizoritar resolution
PIA 0th Dev.	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
Monthly standard deviation of t		=	_		
norizontal resolution of 5 x 5.	ne our-order p	outii-iiitegiateu	accentiación calculateu a	at rour rixeu illiciuell	ce angles. It lias d
PIA 0th Mean	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
Monthly means of the 0th-order					
resolution of 5° x 5°.	i patii-iiitegia	teu attenuation	calculated at Tour Tixed	incluence angles. It	ilas a ilorizoritai
PIA hb Dev.	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
Monthly standard deviation of F	HB path-integr	ated attenuation	n calculated at four fixed	d incidence angles.	It has a horizontal
esolution of 5° x 5°.					
PIA hb Mean	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
Monthly means of HB path-integ	grated attenua	ation calculated	_	angles. It has a horiz	ontal resolution of
, , , , , , , , , , , , , , , , , , ,	S			· ·	
PIA srt Dev.	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
IA SIL DEV.			U		
	RT path-integ	rated attenuation	n calculated at four fixe	ed incidence angles.	It has a horizontal
Monthly standard deviation of S	SRT path-integ	rated attenuation	on calculated at four fixe	ed incidence angles.	It has a horizontal
Monthly standard deviation of S resolution of 5° x 5° .		rated attenuatio			It has a horizontal
Monthly standard deviation of Stesolution of Stesolution of 5° x 5°. PIA srt Mean	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
Monthly standard deviation of Secolution of Secolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface	Float SDS reference tech	4	nlat*nlon*nang	0.0 to 100.0	dB
Monthly standard deviation of Secolution of Secolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5°	Float SDS reference tech x 5°.	4 nnique) path-into	nlat*nlon*nang egrated attenuation cald	0.0 to 100.0 culated at four fixed	dB I incidence angles.
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° strat. Zt Dev. 1	Float SDS reference tech x 5°. Float SDS	4 nnique) path-into	nlat*nlon*nang egrated attenuation calo nlat*nlon*nh1	0.0 to 100.0 culated at four fixed 0.0 to 80.0	dB I incidence angles. dBZ
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface leas a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of	Float SDS reference tech x 5°. Float SDS corrected rad	4 nnique) path-into 4 ar reflectivity fo	nlat*nlon*nang egrated attenuation cald nlat*nlon*nh1 r stratiform rain at a hor	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of	dB I incidence angles. dBZ of 5° x 5°. The path-
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of veraged standard deviation and	Float SDS reference tech x 5°. Float SDS corrected rad d those at the	4 nnique) path-into 4 ar reflectivity for fixed heights of	nlat*nlon*nang egrated attenuation cald nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution ce calculated using c	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25.
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface as a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of veraged standard deviation and trat. Zt Mean 1	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS	4 nnique) path-into 4 ar reflectivity for fixed heights of	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using 0.1 to 80.0	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface lass a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured rad	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity	4 ar reflectivity for fixed heights of 4 of for stratiform reflections.	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resolu	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using 0.1 to 80.0 ution of 5° x 5°. The	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface less a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured radiand means at the fixed heights and	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a	4 annique) path-into 4 ar reflectivity for fixed heights of 4 of for stratiform re and 15 km are cal	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resolution	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using 0.1 to 80.0 ution of 5° x 5°. The 12A-25.	dB I incidence angles. dBZ If 5° x 5°. The pathelata from 2A-25. dBZ path-averaged me
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured radiand means at the fixed heights of conv. Zt Dev. 1	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS	4 annique) path-into 4 ar reflectivity for fixed heights of 4 of for stratiform re and 15 km are cal	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resolu culated using data from nlat*nlon*nh1	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using 0.1 to 80.0 ution of 5° x 5°. The 12A-25. 0.0 to 80.0	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ path-averaged me
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface las a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured radiand means at the fixed heights of conv. Zt Dev. 1 Monthly standard deviations of	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad	4 ar reflectivity for fixed heights of 4 of for stratiform r. and 15 km are cal 4 ar reflectivity for	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0 crizontal resolution of 5° x 5°.	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface as a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of veraged standard deviation and trat. Zt Mean 1 Monthly means of measured rad and means at the fixed heights of the conv. Zt Dev. 1 Monthly standard deviations of veraged standard deviations of veraged standard deviation and veraged standard deviation and veraged standard deviation and sesolution of the solution	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the	4 annique) path-into 4 ar reflectivity for fixed heights of 4 of for stratiform re and 15 km are cal 4 ar reflectivity for	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using of 0.1 to 80.0 ution of 5° x 5°. The 22A-25. 0.0 to 80.0 rizontal resolution of e calculated using of e calculated using of the culated using of the cu	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path- lata from 2A-25.
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and trat. Zt Mean 1 Monthly means of measured radiand means at the fixed heights of conv. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and conv. Zt Mean 1	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the Float SDS	4 ar reflectivity for fixed heights of 4 of for stratiform rend 15 km are cal 4 ar reflectivity for fixed heights of 4	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using of 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution of e calculated using of 0.1 to 80.0	dB I incidence angles. dBZ of 5° x 5°. The path- data from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path- data from 2A-25. dBZ
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured radiand means at the fixed heights of conv. Zt Dev. 1 Monthly standard deviations of everaged standard deviations of everaged standard deviation and conv. Zt Mean 1 Monthly means of corrected radiance in the standard deviation and conv. Zt Mean 1 Monthly means of corrected radiance in the standard deviation and conv. Zt Mean 1	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the Float SDS	4 ar reflectivity for fixed heights of 4 of for stratiform red 15 km are cal 4 ar reflectivity for fixed heights of 4 for convective red 4	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using of 0.1 to 80.0 ution of 5° x 5°. The 12A-25. 0.0 to 80.0 rizontal resolution of e calculated using of 0.1 to 80.0 ution of 5° x 5°. The office calculated using of 0.1 to 80.0 ution of 5° x 5°. The	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path- lata from 2A-25. dBZ
Monthly standard deviation of Secolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° Strat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured radiand means at the fixed heights of everaged standard deviations of everaged standard deviations of everaged standard deviations of everaged standard deviation and everaged standard devia	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the Float SDS	4 ar reflectivity for fixed heights of 4 of for stratiform rend 15 km are cal 4 ar reflectivity for fixed heights of 4 of for convective rend 15 km are cal	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from	0.0 to 100.0 culated at four fixed 0.0 to 80.0 cizontal resolution of e calculated using 0.1 to 80.0 cizontal resolution of 5° x 5°. The 12A-25. cizontal resolution of e calculated using of 0.1 to 80.0 cizontal resolution of 5° x 5°. The 12A-25.	dB dincidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path lata from 2A-25. dBZ e path-averaged me
Monthly standard deviation of Secolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° Strat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured rade and means at the fixed heights of everaged standard deviations of everaged standard deviations of everaged standard deviations of everaged standard deviation and everaged standard devi	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS	4 annique) path-into 4 ar reflectivity for fixed heights of 4 of for stratiform red 15 km are cal 4 ar reflectivity for fixed heights of 4 of for convective red 15 km are cal 4	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using 0 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution of 5° x 5°. The 0.1 to 80.0 ution of 5° x 5°. The 0.2A-25. 0.0 to 80.0	dB dincidence angles. dBZ of 5° x 5°. The path- data from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path- data from 2A-25. dBZ e path-averaged me dBZ
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and format at the fixed heights of the conv. Zt Dev. 1 Monthly standard deviations of everaged standard deviations of everaged standard deviations of everaged standard deviations of everaged standard deviation and conv. Zt Mean 1 Monthly means of corrected race and means at the fixed heights of the conv. It Mean 1 Monthly means of corrected race and means at the fixed heights of the conv. It Mean 1 Monthly standard deviations of the convergence of the convergenc	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad corrected rad d those at the Float SDS corrected rad Float SDS	4 annique) path-inte 4 ar reflectivity for fixed heights of 4 of for stratiform re nd 15 km are cal 4 ar reflectivity for fixed heights of 4 for convective re nd 15 km are cal 4 ar reflectivity for	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using 0 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution of 5° x 5°. The 0.1 to 80.0 ution of 5° x 5°. The 0.2A-25. 0.0 to 80.0	dB dincidence angles. dBZ of 5° x 5°. The path- data from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path data from 2A-25. dBZ e path-averaged me dBZ
Monthly standard deviation of Secolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured radiand means at the fixed heights of everaged standard deviations of everaged standard deviations of everaged standard deviation and conv. Zt Dev. 1 Monthly standard deviation and conv. Zt Mean 1 Monthly means of corrected radiand means at the fixed heights of everaged standard deviations of everage over 5° x 5° boxes using everage over 5° x 5° boxes using	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad corrected rad d those at the Float SDS corrected rad Float SDS	4 annique) path-inte 4 ar reflectivity for fixed heights of 4 of for stratiform re nd 15 km are cal 4 ar reflectivity for fixed heights of 4 for convective re nd 15 km are cal 4 ar reflectivity for	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 culated using data from nlat*nlon*nh1 ctors at the fixed heights	0.0 to 100.0 culated at four fixed 0.0 to 80.0 rizontal resolution of e calculated using of 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0 ution of 5° x 5°. The calculated using of 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0 s of 2, 4, 6, 1 0 and	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path- lata from 2A-25. dBZ e path-averaged me dBZ c b b c c c c c c c c c c c c c c c c c
Monthly standard deviation of Sesolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° trat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and fixer. Zt Mean 1 Monthly means of measured radiand means at the fixed heights of everaged standard deviations of everaged standard deviations of everaged standard deviation and conv. Zt Mean 1 Monthly means of corrected radiand means at the fixed heights of the convious standard deviations of everage over 5° x 5° boxes using the Mean 1	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the Float SDS corrected rad grade to the float SDS corrected rad grade to the float SDS corrected rad grade to the float SDS corrected rad grade float SDS	4 annique) path-inter 4 ar reflectivity for fixed heights of 4 of for stratiform red 15 km are cale 4 ar reflectivity for fixed heights of 4 of convective red 15 km are cale 4 ar reflectivity for ar reflectivity for convective red 15 km are cale 4 ar reflectivity factors 4	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 convective rain at a ho 1, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 ctors at the fixed heights nlat*nlon*nh1	0.0 to 100.0 culated at four fixed 0.0 to 80.0 cizontal resolution of e calculated using of 0.1 to 80.0 cizontal resolution of 5° x 5°. The cizontal resolution of e calculated using of 0.1 to 80.0 cizontal resolution of 5° x 5°. The cizontal resolution of 5° x 5°.	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path- lata from 2A-25. dBZ e path-averaged me dBZ 15 km and for path-
Monthly standard deviation of Secolution of 5° x 5°. PIA srt Mean Monthly means of SRT (surface has a horizontal resolution of 5° Strat. Zt Dev. 1 Monthly standard deviations of everaged standard deviation and strat. Zt Mean 1 Monthly means of measured rade and means at the fixed heights of everaged standard deviations of everaged standard deviations of everaged standard deviations of everaged standard deviation and everaged standard devi	Float SDS reference tech x 5°. Float SDS corrected rad d those at the Float SDS dar reflectivity of 2, 4, 6, 10 a Float SDS corrected rad d those at the Float SDS corrected rad grade to the float SDS corrected rad grade to the float SDS corrected rad grade to the float SDS corrected rad grade float SDS	4 annique) path-inter 4 ar reflectivity for fixed heights of 4 of for stratiform red 15 km are cale 4 ar reflectivity for fixed heights of 4 of convective red 15 km are cale 4 ar reflectivity for ar reflectivity for convective red 15 km are cale 4 ar reflectivity factors 4	nlat*nlon*nang egrated attenuation calc nlat*nlon*nh1 r stratiform rain at a hor 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 convective rain at a ho 1, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluted using data from nlat*nlon*nh1 ctors at the fixed heights nlat*nlon*nh1	0.0 to 100.0 culated at four fixed 0.0 to 80.0 cizontal resolution of e calculated using of 0.1 to 80.0 cizontal resolution of 5° x 5°. The cizontal resolution of e calculated using of 0.1 to 80.0 cizontal resolution of 5° x 5°. The cizontal resolution of 5° x 5°.	dB I incidence angles. dBZ of 5° x 5°. The path- lata from 2A-25. dBZ path-averaged me dBZ of 5° x 5°. The path- lata from 2A-25. dBZ e path-averaged me dBZ 15 km and for path-

	3A25 Data Structure: Part 12					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit	
Strat. Zm Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ	
Monthly standard deviations of	measured rada	r reflectivity fo	r stratiform rain at a horiz	zontal resolution o	of 5° x 5°. The path-	
averaged standard deviation and	d those at the f	ixed heights of	2, 4, 6, 10 and 15 km are	calculated using d	ata from 1C-21.	
Strat. Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ	
Monthly means of measured rac	dar reflectivity f	for stratiform r	ain at a horizontal resolut	ion of 5° x 5°. The	path-averaged mean	
and means at the fixed heights of		d 15 km are cal		.C-21.		
Conv. Zm Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ	
Monthly standard deviations of						
averaged standard deviation and	d those at the f	ixed heights of		calculated using d	lata from 1C-21.	
Conv. Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ	
Monthly means of measured rac					e path-averaged	
mean and means at the fixed he	ights of 2, 4, 6,	10 and 15 km	are calculated using data	from 1C-21.		
Zm Dev.1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ	
Monthly standard deviations of	measured rada	r reflectivity at	the fixed heights of 2, 4,	6, 10 and 15 km a	nd for path-average	
over 5° x 5° boxes using data fro	m 1C-21					
Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ	
Monthly means of measured rac	dar reflectivity a	at the fixed hei	ghts of 2, 4, 6, 10 and 15 I	km and for path-a	verage over 5° x 5°	
boxes using data from 1C-21						
Strat. Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹	
Monthly standard deviations of	non-zero rain r	ates for stratifo	orm rain over 5° x 5° boxe			
Strat. Rain Rates Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹	
Monthly means of non-zero rain		form rain over				
Conv. Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹	
Monthly standard deviations of		ates for convec				
Conv. Rain Rate Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹	
Monthly means of non-zero rain		ective rain over				
Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹	
Monthly standard deviations of	non-zero rain r	ates over 5° x 5	° boxes			
Rain Rate Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹	
Monthly means of non-zero rain	rates over 5° x	5° boxes				
GridStructure	Char Att.	5,000	-	-	-	
GridStructure gives the specifica	ition of the geo	metry of the gr	ids.			
PS Metadata	Char Att.	10,000	-	-	-	
Product Specific Metadata						
ECS Core Metadata	Char Att.	10,000	-	-	-	
ECS Core Metadata						

Notes:

- The "scale by" column was omitted because none of the 3A25 variables are scaled.
- Missing data are given a value of -9999.
- The *nlat* and *nlon* dimensions refer to the 5° latitude and longitudes, respectively, whereas the *nlath* and *nlonh* dimensions refer to the 0.5° latitude and longitude dimensions, respectively.
- The dimension *nh1* refers to the number of fixed heights about the earth ellipsoid, in order: 2, 4, 6, 10, and 15 km.
- The dimension *nh3* refers to the number of fixed heights above the earth ellipsoid, in order: 2, 4, and 6 km
- The dimension *nang* refers to the number of crossed incidence angles at 0, 5°, 10°, and 15°, respectively.
- The dimension ncat2 refers to the second number of categories for histograms (a total of 30).

3A26: Surface Rain Total

Temporal Coverage	Start Date: 1997-12-01
	Stop Date: 2015-03-31
Geographic Coverage	Latitude: 40°S – 40°N
	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	5° x 5°; nlat = 16, nlon = 72
Average File Size ≈ 6 MB compressed	

		3A26 Data	Format Structure		
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata	Char Att.	10,000	-	-	-
ECS core metadata					
PS Metadata	Char Att.	10,000	-	-	-
Product specific metadata					
GridStructure	Char Att.	5,000	-	-	-
GridStructure gives the specific	cation of the geo	metry of th	e grids.		
Total Counts	Integer SDS	4	nlat*nlon	0 – 2,147,483,647	7 -
Total number of counts (measu	urements) per m	onth at eacl	n 5° x 5° boxes.		
Rain Counts	Integer SDS	4	nlat*nlon*nh2	0 – 2,147,483,647	7 -
Total number of rain counts (m	_	er month at	each 5° x 5° boxes. This is comp		
the path-average.	,,		·		
Zero Order pDf	Integer SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	7 -
	_		he zeroth order rain rate estima		
is computed at 2km, 4km, 6km					
HB pDf	Integer SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	7 -
•	_	•	he Hitschfield-Bordan (HB) rain		
boxes. The pDf is computed at				rate estimate at each	3
pDf2A25	Float SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	7 -
•		•	he Surface Reference Technique		
5° x 5° boxes. The pDf is compu				2 (Sitt) ruin rute estime	ite at each
Zero Order Fit	Float SDS	4	nlat*nlon*nh2*3*nthrsh	1 – 2,147,483,647	7 -
			the log-normal model obtained		
			e path-average. In addition, 5 thi		pb1.
HB Fit	Float SDS	4	nlat*nlon*nh2*3*nthrsh	-	_
		•	d from the HB pDf. Fitting param	neters are given at 2km	- n 1km
6km, and for the path-average				ieters are given at 2kii	i, 4Kiii,
fit2A25	Float SDS	4	nlat*nlon*nh2*3*nthrsh		
		•	d from the SRT pDf. Fitting parar	- motors are given at 2kr	n Alem
- ·	_	uei obtaine	u from the SKT pDL. Fitting parar	neters are given at 2ki	II, 4KIII,
6km, and for the path-average.			1.41 4134 11 1		
Reliability 0 th Order Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the Ot			1,41,41,34,11		
Reliability HB Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the H					
Reliability 2A25 Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the SF					
rainMeanTH	Float SDS	4	nlat*nlon*nh3	0 – 3000	mm h ⁻¹
			ermined from the threshold met		
determined from the fitting pa	rameters fro the	'-th-order រ	method' using a single 'Q' thresh	old for each height lev	el).

3B31: Combined Rainfall

Temporal Coverage	Start Date: 1997-12-01
	Stop Date: 2015-03-31
Geographic Coverage	Latitude: 40°S – 40°N
	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.5° x 0.5°; nlat = 160, nlon = 720
Average File Size ≈ 37 MB compressed	

		3B31 Data Form	at Structure		
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-
ECS core metadata					
PS Metadata	Char Attribute	10,000	-	-	-
Product specific metada	ata				
GridStructure	Char Attribute	5,000	-	-	-
GridStructure gives the	specification of the	geometry of the grid	ls.		
surfacePrecipTMI	Float SDS	4	nlat*nlon	0 – 3000	mm
Surface rain from 2A12	accumulated in each	า 0.5° x 0.5° box			
convectPrecipTMI	Float SDS	4	nlat*nlon	0 - 3000	mm
Convective surface rain	from 2A12 accumul	ated in each 0.5° x 0	.5° box		
rainWaterTMI	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Monthly mean rain wat	er content from 2A1	2 at each vertical lay	yer in each 0.5° x 0.5°	box	
snowTMI	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Monthly mean snow liq	uid content from 2A	12 at each vertical la	ayer in each 0.5° x 0.5	s° box	
graupelTMI	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Monthly mean graupel	liquid content from	2A12 at each vertica	l layer in each 0.5° x	0.5° box	
npixTotalTMI	Integer SDS	4	nlat*nlon	1 – 10000	-
The monthly number of	•	•	•	•	atus requirement
is to remove sea ice. np	ixTotalTMI is used to	compute the mont	hly means described	above.	
surfacePrecipCOMB	Float SDS	4	nlat*nlon	0 – 3000	mm
Surface rain from 2B31	accumulated in each	1 0.5° x 0.5° box			
rainWaterCOMB	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Rain water content at e	ach vertical layer fro	m 2B31 accumulate		юх	
snowCOMB	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³
Snow water content at each vertical layer from 2B31 accumulated in each 0.5° x 0.5° box					
graupelCOMB	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m-3
Graupel water content	at each vertical laye	r from 2B31 accumu	lated in each 0.5° x 0	.5° box	
npixTotalCOMB	Integer SDS	4	nlat*nlon	1 – 10000	-
The monthly number of	f pixels npixTotalCON	MB is used to compu	ite the monthly mean	s described above.	
surfAdjRatio	Float SDS	4	nlat*nlon	-	-
The ratio of 2B31 to 2A	12 surface rainfall, c	alculated from the s	wath overlap region f	or each 0.5° x 0.5° b	OX
surfAdjRatiooverlap	Float SDS	4	nlat*nlon	-	-
The ratio of 2B31 to 2A	12 surface rainfall, ca	alculated from the s	wath overlap region f	or each 0.5° x 0.5° b	OX

Notes:

- The "scale by" column was omitted because none of the 3B31 variables are scaled.
- The dimension *nlayer* represents the number of profiling layers per grid box. There are 28 vertical layers (nlayer) that span from 0.5 km to 10 km by 0.5 km and then from 10 km to 18 km by 1 km.

3A46: Special Sensor Microwave Imager Rainfall

Tomporal Coverage	Start Date: 1997-12-01
Temporal Coverage	Stop Date: 2015-03-31
Geographic Coverage	Latitude: 90°S – 90°N
	Longitude: 0° – 360°
Temporal Resolution	Monthly
Horizontal Resolution	1° x 1°; nlat = 80, nlon = 360
Average File Size	≈ 300 KB uncompressed

3A46 Data Format Structure					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-
ECS core metadata					
PS Metadata	Char Attribute	10,000	-	-	-
Product specific metad	ata				
GridStructure	Char Attribute	5,000	-	-	-
GridStructure gives the	GridStructure gives the specification of the geometry of the grids.				
SSMIdata	Float SDS	4	180*360*2	0 – 100 (1 st variable) 0 – 10 ⁹ (2 nd variable)	mm hr ⁻¹
SSM/I data averaged over 1° x 1° grid boxes and one month. The first variable is Precipitation Rate (mm/hr); the range is 0 to 100. The second variable is Number of Observations; the range is 0 to one billion.					

Note that the grids in SSM/I data are different than the standard TSDIS grids in the following ways:

- the longitude dimension precedes the latitude dimension;
- the longitude index begins at the Greenwich meridian;
- the latitude index begins at the northernmost row;
- the latitude range is -90° to +90°;
- Missing data are given the value of -9999.

3B42: TRMM and Other Satellites Precipitation

Temporal Coverage	Start Date: 1997-12-01
remporal Coverage	Stop Date: to present
Geographic Coverage	Latitude: 50°S – 50°N
	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.25° x 0.25°; nlat = 400, nlon = 1440
Average File Size ≈ 0.71 MB compressed, ≈ 11 MB uncompress	

3B31 Data Format Structure					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata ECS core metadata	Char Attribute	10,000	-	-	-
PS Metadata Product specific metada	Char Attribute ta	10,000	-	-	-
GridStructure GridStructure gives the s	Char Attribute specification of the g	5,000 eometry of the grid	- S.	-	-
precipitation TRMM Multi-satellite pre	Float SDS ecipitation analysis (4 TMPA) precipitation	nlat*nlon n estimate	0 – 100	mm hr ⁻¹
relativeError TMPA random error esti	Float SDS mate	4	nlat*nlon	0 – 100	mm hr ⁻¹
satPrecipitationSource Flag to show source of d	Float SDS ata in each box	4	nlat*nlon	-	-
HQprecipitation Float SDS 4 nlat*nlon 0 – 100 mm hr ⁻¹ Pre-gauge-adjusted microwave precipitation estimate in each grid box.					
IRprecipitation Pre-gauge-adjusted infra	Float SDS ared precipitation es	4 timate in each grid I	nlat*nlon oox.	0 – 100	mm hr ⁻¹
satObservationTime Satellite observation time	Integer SDS e minus the time of	1 the granule in each	nlat*nlon grid box.	-90 – 90	minute

Notes:

• Missing data are given the value of -9999.9.

3B43: TRMM and Other Sources Precipitation

T	Start Date: 1997-12-01
Temporal Coverage	Stop Date: to present
Geographic Coverage	Latitude: 50°S – 50°N
	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.25° x 0.25°; nlat = 400, nlon = 1440
Average File Size	≈ 4.95 MB compressed, ≈ 4.95 MB
	uncompressed

3B31 Data Format Structure					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-
ECS core metadata					
PS Metadata	Char Attribute	10,000	-	-	-
Product specific metadata					
GridStructure	Char Attribute	5,000	-	-	-
GridStructure gives the spe	ecification of the ge	ometry of the grids.			
precipitation	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹
Satellite/gauge precipitation	on estimate				
relativeError	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹
Satellite/gauge random error estimate					
gaugeRelativeWeighting Gauge relative weighting	Integer SDS	1	nlat*nlon	0 – 100	percent

CSH: Convective and Stratiform Heating

Tomporal Coverage	Start Date: 1997-12-01
Temporal Coverage	Stop Date: to present
Geographic Coverage	Latitude: 50°S – 50°N
	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.5° x 0.5°; nlat = 148, nlon = 720
Average File Size ≈ 8.0 MB uncompressed	

3B31 Data Format Structure					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-
ECS core metadata					
PS Metadata	Char Attribute	10,000	-	-	-
Product specific metadata					
GridStructure	Char Attribute	5,000	-	-	-
GridStructure gives the specification of the geometry of the grids.					
LatentHeating	Float SDS	4	nlat*nlon*nlayer	-50 – 100	K hr ⁻¹
Satellite/gauge precipitation estimate					

Note that the layers are the same as those described for 3B31.

4.0 Options for Reading the Data

Examples that show how to read TRMM data files are shown throughout section 4. For the sake of consistency, each example will use TRMM 3B42 3-hourly data from 24 August 2012 at 12 UTC. The name of this file is 3B42.20120824.12.7.HDF.Z and is described on page 55. This document will focus on the HQprecipitation variable. This tutorial assumes that the file is uncompressed, so its name ends in .HDF.

To uncompress the file on a UNIX-based system (including Mac OS X), use the following command: *uncompress 3B42.20120824.12.7.HDF.Z*.

Note that most of the gridded TRMM files do not include latitude or longitude metadata. The bounds for each product are specified in the preceding pages of this README as well as in the descriptions of each HDF file. TRMM data are stored as the center of grid boxes, so for example, 3B42 data that has latitude and longitude bounds of $50^{\circ}S - 50^{\circ}N$ and $180^{\circ}W - 180^{\circ}E$, respectively, can be represented by a latitude array from -49.875 to +49.875 and a longitude array of -179.875 to +179.875, both with a grid spacing of 0.25.

4.1 Command Line Utilities and Programs

4.1.1 GrADS

The Grid Analysis and Display System (GrADS) is well-suited for the visualization of TRMM data. However, since the TRMM files do not have embedded latitude and longitude data, they are not considered "self-describing". This means that latitude and longitude information must be specified in a separate file for GrADS to correctly interpret the data.

A data descriptor file must be created that tells GrADS information about the latitude and longitude data within the TRMM 3B42 data file. Below are the contents of a sample data descriptor file.

Note that the example below only includes the *precipitation* variable. Simply list other variables underneath (or instead of) the *precipitation* variable to read in different data.

DSET 3B42.20120824.12.7.HDF
UNDEF -9999.9
XDEF nlon 1440 LINEAR -179.875 0.25
YDEF nlat 400 LINEAR -49.875 0.25
TDEF nlat 1 LINEAR 12z24Aug2012 3hr
VARS 1
precipitation=>precip 0 3B42_Precipitation
ENDVARS

The following assumes that the contents above are saved in a file called *precip.ctl*. To open GrADS, type *grads* at the system prompt and then choose landscape or portrait mode.

At the GrADS prompt (ga->):

ga->xdfopen precip Scanning Descriptor File: precip SDF file 3B42.20120824.12.7.HDF is open as file 1 LON set to 0 360 LAT set to -49.875 49.875

LEV set to 0 0

Time values set: 2012:8:24:12 2012:8:24:12

E set to 11

The GrADS output should be the same as the text above in red.

To view an image of the precipitation data, type: ga-> d precip

To have GrADS shade the data instead of contouring, type: ga-> gxout shaded ga-> d precip

If you've already plotted the data with contours, you can clear before plotting the shaded data: ga-> clear graphics

There are numerous options for customizing plots in GrADS. For more information on using GrADS, or more information on Grads visit http://cola.gmu.edu/grads/.

4.1.2 MATLAB

MATLAB can be used to load, manipulate, and view TRMM precipitation data. To load the *precipitation* variable from the aforementioned TRMM file into MATLAB type:

```
>> precip = permute(hdfread('3B42.20120824.12.7.HDF', 'precipitation'),[2 1]);
```

This will load the data into a matrix called *precip*. Missing data are represented by -9999.9, but MATLAB doesn't know that this value refers to missing data. The simplest way to replace the missing numeric values with MATLAB's not-a-number (NaN) values, is to type:

```
>> precip(precip < 0) = NaN;
```

It is okay to set all values less than zero to NaN since precipitation rate is a positive quantity. Users with the Mapping Toolbox can plot the precipitation data on a map using the following code:

```
figure;
axesm('MapProjection','eqdcylin','maplatlimit',[-50 50],'maplonlimit',[-180 180],...
  'ParallelLabel', 'on', 'PlabelMeridian', 'west', 'MeridianLabel', 'on', 'MLabelParallel', 'south',...
  'FontSize',6,'FontWeight','bold','PLineLocation',20,'MLineLocation',20);
latitudes = -49.875:0.25:49.875; % These must be explicitly defined since they are not in the file.
longitudes = -179.875:0.25:179.875;
[latGrid, lonGrid] = meshgrat(latitudes,longitudes);
geoshow(latGrid,lonGrid,double(precip),'DisplayType','texturemap');
caxis([0 5]);
% There are lots of color maps to choose from, run the command "doc colormap" to see them
colormap(flipud(hot(21)));
chandle = colorbar('Location', 'EastOutside', 'FontSize', 6, 'FontWeight', 'bold'); % This line places the colorbar
set(get(chandle, 'ylabel'), 'String', 'Rain Rate (mm/hr)', 'FontSize', 10, 'FontWeight', 'Bold'); % Set the colorbar's label
set(chandle,'YTick',0:5);
% You should plot the continent boundaries after the shading is done.
states = geoshape(shaperead('landareas', 'UseGeoCoords', true));
geoshow(states,'DefaultFaceColor','none','DefaultEdgeColor','k');
tightmap
title('24 August 2012 1200 UTC Rain Rate', 'FontSize', 8, 'FontWeight', 'bold');
print -dpng sampleTRMMmap.png
```

The code above should save a .png file that looks like Figure 1 below.

Figure 1. Sample map created in MATLAB showing TRMM 3B42 precipitation data.

4.1.3 Python

Like GrADS and MATLAB, Python can be used to read, manipulate, and plot data. Below is a script that can be used as-is within Python to read and plot the TRMM data. It was written to be as similar to the aforementioned MATLAB script as possible. Please note that you must have the free numpy, matplotlib, basemap, and pyhdf packages to use this script.

```
# This is a test script that reads and plots the TRMM 3B42 3-hourly data.
from mpl toolkits.basemap import Basemap, cm
import matplotlib.pyplot as plt
import numpy as np
from pyhdf.SD import SD, SDC
dataset = SD('/path/to/3B42.20120824.12.7.HDF', SDC.READ)
precip = dataset.select('precipitation')
precip = precip[:]
precip = np.transpose(precip)
theLats = np.arange(-49.875,50,0.25)
theLons = np.arange(-179.875,180,0.25)
# Set all the missing values less than 0 to NaNs
np.putmask(precip,precip<0,np.nan)
# Plot the figure, define the geographic bounds
fig = plt.figure(dpi=300)
latcorners = ([-50,50])
loncorners = ([-180, 180])
m = Basemap(projection='cyl',\
# Draw coastlines, state and country boundaries, edge of map.
m.drawcoastlines()
m.drawstates()
m.drawcountries()
# Draw filled contours.
clevs = np.arange(0,5.01,0.5)
# Define the latitude and longitude data
x, y = np.float32(np.meshgrid(theLons, theLats))
cs = m.contourf(x,y,precip,clevs,cmap=cm.GMT drywet,latlon=True)
parallels = np.arange(-50.,51,25.)
m.drawparallels(parallels,labels=[True,False,True,False])
meridians = np.arange(-180.,180.,60.)
m.drawmeridians(meridians,labels=[False,False,False,True])
```

```
# Set the title and fonts
plt.title('24 August 2012 1200 UTC Rain Rate')
font = {'family' : 'normal', 'weight' : 'bold', 'size' : 6}
plt.rc('font', **font)

# Add colorbar
cbar = m.colorbar(cs,location='right',pad="5%")
cbar.set_label('mm/h')
plt.savefig('testTRMMmap.png',dpi=300)
```

The map shown below as Figure 2 results from the Python code above:

Figure 2. Sample map created in Python using TRMM 3B42 precipitation data.

4.1.4 hdp and ncdump

The HDF Toolkit ships with two binary executables, *hdp* and *ncdump*, that can be used to extract values from any HDF file. These are also available as standalone executable from the utilities folders found within each operating system at: ttp://ftp.hdfgroup.org/HDF/HDF Current/bin.

ncdump can only read HDF files if your local copy of netCDF was originally compiled with HDF support.

To dump the entire file: hdp <filename> or ncdump <filename>

To get just the header information: hdp dumpsds -h <filename> or ncdump -h <filename>

A partial example of output from *hdp dumpsds -h 3B42.20120824.12.7.HDF* is given below. (The *ncdump -h* output is similar.)

```
File attributes:
      Attr0: Name = FileHeader
             Type = 8-bit signed char
             Count=357
            Value = AlgorithmID=3B42;\012AlgorithmVersion=3B4
            2 7.0;\012FileName=3B42.20120824.12.7.HDF
            ;\012GenerationDateTime=2012-10-26T14:07:
            33.000Z;\012StartGranuleDateTime=2012-08-
            24T10:30:00.000Z;\012StopGranuleDateTime=
            2012-08-24T13:29:59.999Z;\012GranuleNumbe
            r=;\012NumberOfSwaths=0;\012NumberOfGrids
            =1;\012GranuleStart=;\012TimeInterval=3 H
            OUR;\012ProcessingSystem=PPS;\012ProductV
            ersion=7;\012MissingData=;\012
      Attr1: Name = FileInfo
             Type = 8-bit signed char
             Count= 253
             Value = DataFormatVersion=m;\012TKCodeBuildVersio
            n=1;\012MetadataVersion=m;\012FormatPacka
            ge=HDF Version 4.2 Release 4, January 25,
             2009;\012BlueprintFilename=TRMM.V7.3B42.
            blueprint.xml;\012BlueprintVersion=BV 13;
            \012TKIOVersion=1.6:\012MetadataStyle=PVL
            ;\012EndianType=LITTLE_ENDIAN;\012
      Attr2: Name = GridHeader
             Type = 8-bit signed char
             Count= 231
            Value = BinMethod=ARITHMETIC MEAN;\012Registratio
            n=CENTER;\012LatitudeResolution=0.25;\012
            LongitudeResolution=0.25;\012NorthBoundin
            gCoordinate=50;\012SouthBoundingCoordinat
            e=-50;\012EastBoundingCoordinate=180;\012
            WestBoundingCoordinate=-180;\012Origin=SO
            UTHWEST;\012
Variable Name = precipitation
      Index = 0
      Type= 32-bit floating point
      Ref. = 2
      Compression method = NONE
      Rank = 2
      Number of attributes = 1
      Dim0: Name=nlon
             Size = 1440
             Scale Type = number-type not set
             Number of attributes = 0
      Dim1: Name=nlat
             Size = 400
             Scale Type = number-type not set
             Number of attributes = 0
      Attr0: Name = units
             Type = 8-bit signed char
```

Count= 5 Value = mm/hr

... and so on ... This will list all of the variables in the same manner.

4.2 Tools/Programming

This section briefly explains some programs and websites that can be used for TRMM data access, manipulation, and viewing.

ncdump

The ncdump tool can be used as a simple browser for HDF data files, to display the dimension names and sizes; variable names, types, and shapes; attribute names and values; and optionally, the values of data for all variables or selected variables in a netCDF file. The most common use of ncdump is with the –h option, in which only the header information is displayed.

Command line syntax: ncdump [-c|-h] [-v ...] [[-b|-f] [c|f]] [-l len] [-n name] [-d n[,n]] filename Options/Arguments:

[-c] Coordinate variable data and header information

[-h] Header information only, no data

[-v var1[,...]] Data for variable(s) <var1>,... only data

[-f [c|f]] Full annotations for C or Fortran indices in data

[-I len] Line length maximum in data section (default 80)

[-n name] Name for netCDF (default derived from file name)

[-d n[,n]] Approximate floating-point values with less precision filename File name of input netCDF file

Note: the ncdump tool will only display variables whose ranks are great than 1. In other words, you will not see one dimensional vectors such as *satheight* using this tool.

The ncdump program can be found in bin directory of the HDF installation area. Consult your local computer system administrator for the specifics.

hdp

The hdp utility is a HDF dumper developed by HDF group at NCSA.

Command line syntax: hdp [-H] command [command options] <filelist>

-H Display usage information about the specified command.

If no command is specified, -H lists all commands.

Commands:

list lists contents of files in <filelist> dumpsds displays data of SDSs in <filelist> dumpvd displays data of vdatas in <filelist>. dumpvg displays data of vgroups in <filelist>. dumprig displays data of RIs in <filelist>. dumpgr displays data of RIs in <filelist>.

Giovanni 4

TRMM data can be found on NASA's data visualization website called Giovanni at https://giovanni.gsfc.nasa.gov/giovanni/. Giovanni allows users to create maps, animations, hovmöller diagrams, vertical cross sections, and more using a number of TRMM products including the 3B42, 3B43, and 3A12 products.

HDFView

HDFView is a Java based graphical user interface created by the HDF Group, which can be used to browse TRMM HDF files. HDFView allows users to view all objects in the HDF file hierarchy, which is represented as a tree structure. It also allows users to browse the data within each variable.

HDFView download and documentation can be found at: https://www.hdfgroup.org/products/java/hdfview/.

5.0 Data Services

You can familiarize yourself with TRMM data at: https://disc.gsfc.nasa.gov/datasets?project=TRMM.

Once you know which data you want, you can use the following services:

Mirador

Mirador (located at https://mirador.gsfc.nasa.gov)can be used to locate and download all of the TRMM data products described in this README document. In addition to basic data availability, Mirador allows users to convert some products, such as the 3B42 products, into NetCDF format before downloading.

OPENDAP

Many TRMM products can be found on the GES DISC OPENDAP website:

https://disc2.gesdisc.eosdis.nasa.gov/opendap/. OPeNDAP allows users to access and manipulate subsets of data without downloading the entire files.

Simple Subset Wizard (SSW)

Many of the TRMM products can be subset, and then downloaded, using the Simple Subset Wizard available here: https://disc.gsfc.nasa.gov/SSW/#keywords=TRMM.

If you need assistance or would like to report a problem:

Email: gsfc-help-disc@lists.nasa.gov

Voice: 301-614-5224 **Fax**: 301-614-5268

Address:

Goddard Earth Sciences Data and Information Services Center NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

6.0 More Information

The TRMM mission website is located at: https://pmm.nasa.gov/trmm.

Information on the TRMM instruments can be found at: https://pmm.nasa.gov/TRMM/trmm-instruments.

The GES DISC TRMM information portal can be found at:

https://disc.gsfc.nasa.gov/information/glossary?title=TRMM

TRMM Version 7 File Specifications:

https://pps.gsfc.nasa.gov/Documents/filespec.TRMM.V7.pdf

TRMM Anomalous Granule Table:

ftp://gpmweb2.pps.eosdis.nasa.gov/tsdis/AB/docs/anomalous.html

Other TRMM documents: http://pps.gsfc.nasa.gov/ppsdocuments.html

- J. Simpson, Adler, R.F., and North, G.R., 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. *Bull. Amer. Meteor. Soc.*, **69**, 278–295. (<u>Link</u>)
- C. Kummerow, Barnes, W., Kozu, T., Shiue, J., Simpson, J, 1998: The tropical rainfall measuring mission (TRMM) sensor package. *J. Atmos. Oceanic Technol.*, **15**, 809–817. (<u>Link</u>)

Liu, Z. D. Ostrenga, W. Teng and S, Kempler, 2012, Tropical Rainfall Measuring Mission (TRMM) Precipitation Data Services for Research and Applications, Bulletin of the American Meteorological Society, doi: http://dx.doi.org/10.1175/BAMS-D-11-00152.1 (Link)

7.0 Acknowledgements

The distribution of the TRMM dataset is funded by NASA's Science Mission Directorate.

Much of the information in this Readme document is from the Precipitation Measurement Mission (https://pmm.nasa.gov/) and the Precipitation Processing System (https://pps.gsfc.nasa.gov/) websites.