CS 221 Logic Design

Fall 2021

By Wessam El-Behaidy & Salwa Osama

INTRODUCTION

Lecture 1

IMPORTANT RULES

• Cellular phones 'OFF'

No more than 10 min. delay

WHY STUDY LOGIC DESIGN?

Constructing large systems from small components

- It's the fundamental prerequisite to understand computer design and architecture.
- Digital computer is an interconnection of digital modules.

CS 221 OBJECTIVES

Students, by the end of the course, should be able to:

 Analyze, design and implement combinational and synchronous digital circuits.

READINGS

Text Book

- Mano, M. M. and Ciletti, M. D. (2007), Digital design,
 Upper Saddle River, NJ: Prentice-Hall, 5th ed.
- Course Handouts

GRADING POLICY

Mid-term Exam	20 %
---------------------------------	------

Semester Work	20 %
• Ochicator work	20 ,

Final-Exam (Written)60 %

HOW TO SUCCEED

- Attend the lecture
- Do your works
- We will learn together how to think.
 - Capture the essence about the topic
 - So you can solve similar problems based on what you learned!
 - [Thinking vs. Memorizing].
- Participate!
- Ask for help! First from your TA. then from me.

COURSE CONTENT

No.		Content	
1	Basic logic	Number Systems & Complements	
	concepts	Binary Codes & logic gates	
		Boolean Algebra & Boolean Functions	
		Canonical & Standard forms	
		K- Map	
2	Combina-tional	Analysis & design Combinational circuits	
	Logical Design	Binary adder-Subtractor	
		Midterm Exam (7 th week)	
		Decoder, Encoder, MUX	
3	Sequential	Latches & Flip-flop	
	Circuits	Analysis& design of Seq. circuits	
4	Reg.&Count	Registers & counters	
5	Memory	RAM & ROM	
		Final Exam	

JOIN OUR TEAM CLASS

 To communicate with us and get course materials (slides I sheets I textbook)

Team class code: xfemyc0

CHAPTER 1

12

Digital Systems and Binary Numbers

BINARY LOGIC

- Binary variables take on one of two values.
 - We use 1 and 0 to denote the two values.
 - Examples: A, B, y, z, or X₁
- The three basic <u>logical operations</u> are:
 - AND
 - Ex:
 - OR $z = x \cdot y$ Or z = xy "z is equal to $x \cdot AND \cdot y$ "
 - Ex:
 - NOT z = x + y "z is equal to x OR y"
 - Ex:

$$z = \overline{x}$$
 or $z = x'$ "z is equal to **NOT** x"

TRUTH TABLE

- It is a table of all possible combinations of the variables
- It shows the relation between
 - The values that the variables may take and
 - The result of the operation

Table 1.8 *Truth Tables of Logical Operations*

AN	ID		O	R	N	ЮТ
x y	<i>x</i> • <i>y</i>	\mathcal{X}	y	x + y	X	x'
0 0	0	0	0	0	0	1
0 1	0	0	1	1	1	0
1 0	0	1	0	1		1
1 1	1	1	1	1		

TIMING DIAGRAM

LOGIC GATES SYMBOLS

Denote True and False by 1 and 0 that represent V_∞ and 0 voltages.

z = x + y

- (a) Two-input AND gate
- (b) Two-input OR gate
- (c) NOT gate or inverter Figure 1.4

Gates with multiple inputs:

G = A + B + C + D G = A + B + C + D

- (a) Three-input AND gate
- (b) Four-input OR gate
- Figure 1.6

When F=1? and when G=1?

OTHER LOGIC GATES

			х	F
Buffer	F = x		0	0
			1	1
	x	0	0	1
NAND	y = F = (xy)'	0	1	1
	$= x \uparrow y$	1	0	1
		1	1	0
		х	у	F
NOD	F = (x + y)'	0	0	1
NOR	y —	0	1	0
	$= x \downarrow y$	1	0	0
		1	1	0
		х	у	F
Exclusive-OR	$x \longrightarrow F = xy' + x'y$	0	0	0
(XOR)	$ \begin{array}{ccc} x & & & \\ y & & & \\ \end{array} $ $F = xy' + x'y \\ = x \oplus y $	0	1	1
, ,		1	0	1
		1	1	0
		х	у	F
Exclusive-NOR	F = xy + x'y'	0	0	1
OF equivalence	$y \longrightarrow F = (x \oplus y)'$	0	1	0
equivalence		1	0	0

17

EXAMPLE

 Draw a logic gate circuit of A' +B and get their truth table

A	В	A'	Z= A' +B
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

TRY TO SOLVE

 Draw logic diagrams to implement the following Boolean expression

$$Y = A + B + B'(A + C')$$

Number Systems and Conversions

Review on sec. 1.2 \rightarrow sec. 1.4

COMPLEMENT

- It is used in digital computers to simplify
 - The subtraction operation
 - Logical manipulation
- Simplifying operations leads to:
 - Simpler, less expensive circuits to implement

(r)'s complement = $r^n - N$

• r=2

→ 2's complement=2ⁿ - N

Diminished Radix Complement

(r-1)'s complement=(rⁿ - 1) - N Ex:

- $r=2 \rightarrow r-1=1$
- → 1's complement

1's comp.= $(2^n - 1) - N$

$$2^2 = 4 = 100_2$$
 $-1 = 11_2$

$$2^3 = 8 = 1000_2 - 1 = 111_2$$

2ⁿ is a binary number represented by 1 followed by n 0's.
2ⁿ -1 is a binary number represented by n 1's.

Given a number **N** in base **r** having **n** digits

1-0= 1

1-1=0

Diminished Radix Complement

(r-1)'s complement= $(r^n - 1) - N$

Ex:

1's complement (1011000)

$$=(2^7-1)-1011000$$

or

Radix Complement

(r)'s complement = $r^n - N$

Ex:

2's Complement (101100)

$$=(2^6)-101100$$

= 1000000 - 101100 = 010100

or

= 1's complement (101100)+1

= 010100

or 010100 toggled

24

Diminished Radix Complement

(r-1)'s complement= $(r^n - 1) - N$

Ex:

- r= 10 **→** r-1=9
 - 9's complement (2380)
 - =9999-2380
 - =7619

Radix Complement

(r)'s complement = $r^n - N$

Ex:

- r= 10
 - 10's Complement (2380)
 - = 10000 2380 = 7620

or

- = 9's complement (2380)+1
- =7620

25

The **(r-1)'s complement** of **octal** and **hexadecimal** numbers is obtained by subtracting each digit from **7** or **F** (decimal 15), respectively.

SUBTRACTION WITH COMPLEMENT

• Example:

If x=21 and y=5, calculate x-y=? And y-x=? using 10's complement

SUBTRACTION WITH COMPLEMENT

Example 1.7 (pp.28-29)

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X using 2's complements.

(a)
$$X = 1010100$$

2's complement of $Y = + 0111101$

Sum = 10010001

Answer: $X - Y = 0010001$

(b) $Y = 1000011$

2's complement of $X = + 0101100$

Sum = 1101111

There is no end carry

Answer: Y - X = -(2's complement of 11011111) = -0010001

SUBTRACTION WITH COMPLEMENT (CONT.)

- Example 1.8: Previous problem using 1's complement.
- (a) X Y = 1010100 1000011 using 1's complement.

$$X = 1010100$$
1's complement of $Y = + 0111100$

$$Sum = 10010000$$
End-around carry $\rightarrow + 1$

$$Answer: X - Y = 0010001$$

(b) Y - X = 1000011 - 1010100 using 1's complement.

$$Y = 1000011$$
1's complement of $X = + 0101011$
Sum = 1101110

There is no end carry.

Answer: Y - X = -(1)'s complement of 1101110 = -0010001

SIGNED BINARY NUMBERS

Signed number last bit (one MSB) is sign bit

Assume: 8 bit number

Unsigned 9 :

0000 1001

- Positive number
 - Signed +9:

0000 1001

- Negative number
 - Signed magnitude -9: 1000 1001
 - Signed Complement:
 - 1's Complement of 9 = 1111 0110
 - 2's Complement of 9 = 1111 0111

Most used in signed binary arithmetic

SIGNED BINARY ARITHMETIC

Pay Attention:

- 1) Any carry out of the sign bit position→ Discard it
- 2) Overflow

Means negative result

Addition 11111010 00000110 +600001101 00001101 +13+1300010011 00000111 +192's complement of +6 00000110 11111010 11110011 11110011 -1311111001 1101101

Subtraction

2's complement of +13

$$(\pm A)$$
 - $(+B)$ = $(\pm A)$ + $(-B)$
 $(\pm A)$ - $(-B)$ = $(\pm A)$ + $(+B)$
Subtraction becomes addition

THANKS

We covered:

31

Ch.1 (sec. 1.2 \rightarrow sec. 1.6, sec.1.9)

Next Week : Boolean Algebra & binary codes