Algebraic Combinatorics

Symmetric function theory is starting to become a unifying theory of combinationics: there are 5 common bases of symmetric furctions, and the change of basis matrices count various things to particular, the Schur hasis is related to representation theory of the symmetric and writing groups, so the combinatories help us understand the representations and vice versa We will usually work ar Q, although the areflicient viry un be any commutative viry with unit. We work with infinitely many variables A homogeneous symmetric function of deg n is Z. c. 2, summing wer all weak composition & of n lie all M-sequences whose terms sum to n) such that f(x, x, ...) = f(xwis, xwis, ...) for all bijections w: N - N. (here, x denotes 2 22 and ca his in the coefficient ring) is it is invariant winder permutation The set of all such functions is N N is dosed under addition, and, for all FEN, gen, fgen & Den N, the symmetric functions, form a graded ring. A composition 2 is a partition of 2 >2 > ... (in particular, all the Os lie at the end). The length of a is the number of non-zero entries We will often write partitions like a monomial (3,2,2,2,1,0,...) is written 123 3 We can also draw a Young diagram for each partition: 2 11 has diagram II The transpose I of it is obtained by reflecting the toing diagram along the main diagonal, so be dumis and rave are switched (2,1,1) = 31 to the species of latter to appear a to be made of the We will use 3 orderings on partitions / compositions: · the natural partial ordering is dominance order 2 - u of 2,+2,+2, < u,+1,2+ v. t. in terms of diagrams 2 x if we can more black of 2 upwards to give y. · 2 = u if the diagram of 2 lies entirely riede the diagram of u, ie 2: < u: to · lexicographic ordering, which is a common referement of both partial orders above: 1 = 1 = 1 such that 2, = 4, 12=4, 2=1, 2<4

The monomial symmetric functions are my (x, x,)= I in where & new though all

distinct permutations of 2 is a occur if and only if x, x, = 2 ws, 2 ws, ... for some

bijection w:N→N. And Andrew = Z. x. Andrew was a second of the second of th $m_{2} = \sum_{i \in j} \times_{i} x_{i} + \sum_{i \in j} \times_{i} x_{i} \times_{j}$ It's clear that, across all partitions 2, m, are liseably independent Since every composition is a permutation of a varque patition, symmetry means that my span 1 - so my give a basis I are the self more at the first of a self or the self of the sense The elementary symmetric functions we en la)= [ic xin xi, xi, xi, xi, we will show that ex is a pair. Roposition set en=Zy m my Mu then = # natrices whose entries are each o or Poof: ansider the infinite matrix 12. 22 a term is e is obtained by chosing 2, entries from the first an In from the second row and taking the product of these the product is I where is is the number of chosen entries is column ; such a choice of entries is equivalent to filling the matrix with Is in the Losen entries and Os elsewhere so the number of times in appears in en is the number of 0-1 matrices with me sun 2 and aduran aim & as en is invariant under permutation, me appears the same number. of times x" does my is a basis of 1, Mich just the result. Since transposing a matrix exchanges its ow and whem sums, in in = in a The x2 y" term in T (1+ x; y;) is the number of [(i,j)] such that i occur 1: times and j occars u; times — ie is my by symmetry of T_j (1+x;y;) in x,y separately, T_j (1+x;y;) = $\sum_{x,y} m_{xy} m_{xy}(x) m_{y}(y) = \sum_{x,y} m_{xy}(x) e_{y}(y)$ The left hand side is easy to adoubt using the Fast Fourier Transform, so this colculates man early

Observe that en(2,2) is the generating function for putting in balls into infinitely many bexes without repetition, known to physicists as Fermi Dirac Meration. and I (1+x:t)=1+et+e,t+. Silver S. S. S. M. L. 1999 of the field of mile in sufficient Theorem: en is a vector space basis for 1, so e, e, are algebraically ordependent ie 1=Q[e,e,...] (this is the furtamental theorem of symmetric herctions) Prosof: we first beduce half of the Gold-Ryer Heaven. Suppose monto in there is a 0-1 nation A with raw sun & and aslum sum in. Push all the Is in A to the left, as for as they can go. The new solumn sum is 2" The first i columns now contain more to their they went to 22 >0 In ther words = = 0 if uz 2. Observe also that max = 1 Observe that, if 2 x n, then blacks of 2 more upwards to give u, but because of the shape of partitions, these blocks must move rightnesses so 2 - is equivalent to 2 - in. So, if the raws are ordered lexicographically increasing, the columns by the transpose of this ordering (so it is decreasing in somerance order), then the matrix in would have Is on the diagonal and be lower triangular (2"-row above u-row = u"-column to the left of 2-alumn entries to the right of up are O) so en is a basis. I there will note that the meller one if I may have in the San March of the Francisco h2 = h2 h2 ... is they are the versions of en where terms are allawed to repeat the same proofs as before show that:

if ha= \(\Sigma_{\text{in}} \frac{1}{2} \sigma_{\text{ TT (1-2:4:) = Zam(x) h, (y): 丁(1-xit)=1+h,也+h,t2+n and hola, az, is the generating function for Box- Einstein patting in balls into boxes possibly with repetition Define an involution who A by ween = h, (this is a well-defined algebra homomorphism as en we algebraically independent AS IT (1+2+4) IT (1+2+5) = 1, we have (1+e, t+e, t2+) (1+h, t+h, t2+)=1

Taking each coefficient of to 0 = [- (-1) e. hai ie h = [- (-1) in h n-i, en= [:=o(-1) = hn= This allows in to show inductively that w(h) = en so w is indeed in involution. So by is the image of the basis e, under an algebra isomorphism, and is therefore a basis of 1. Thus the house also algebraically independent forth we light before aft it is a super- while The paper sums are $p_0 = \sum_{i=1}^{n} \frac{1}{p_1} p_2 = p_2 p_2$. Set $z_1 = \prod_{i=1}^{n} \frac{1}{p_1} \frac{1}{p_2} \frac{1}{p_3} \frac{1}{p_4} \frac{1}{p_4} \frac{1}{p_4} \frac{1}{p_5} \frac{1}{p_$ (n'2) is the number of uples of type 2 in Samme) Proposition $T_{ij}(1-x_iy_i)^{-1}=e^{\sum_{n=1}^{\infty}\frac{1}{n}}\Pr(x)\Pr(y)=\sum_{n=1}^{\infty}\frac{1}{n}\Pr(x)\Pr(y)=\sum_{n=1}^{\infty}\frac{1}{n}\Pr(x)\Pr(y)=\sum_{n=1}^{\infty}\frac{1}{n}\operatorname{sgn}(x)\Pr(x)$ where egn (2) is the sign of a permutation of type 2, which is als (-1)

Proof: IT (1)=x;y;) = e^{-\sum_{i,j}} log (1-x;y;)

= E^{-\sum_{i,j}} \sum_{j} h(x;y;)^2 = e Zn + (Z, zi) (Zj yii) = Zn + pn(e) pn(y) By Polyais yele index theorem, the welficient of t^n in $e^{\sum_n x_n t^n}$ is Zam Za Tiziai Set t= pola) poly and zi= 1 ti. The second statement is proved analogously. Applying w in the y-variables to the first identity since $\sum_{z_a} z_a(z) \omega z_a(y) = \omega \prod_{i=1}^{n} (1-x_i y_i)^{-1} = \sum_{z_i \in m_a(z)} \omega h_u(y)$ $= \sum_{\lambda} m_{\lambda}(\alpha) e_{\lambda}(y)$ = Z, za' sgn(2) pa(2) pa(y) so wp = sgn(A)px since px(x) are liverly independent (use evere exchagraphic ordering to see this) define the Hall inver product on 1: <m2, hu> = 82m and extend linearly. This is indeed symmetric: <h2 hu> = 2 mgu = 2 mus = <hu ha> (mg = max by transposed the intering natrices is for en) That this is positive behitte will blow from the blowing lemma applied to un=P2, 1/2 = 2282

	Poposition: [uz], [vz] are lases for 1. There are dual (ie xuz, vu) = 5xm) if and only if
	$T_{ij} \left(1 - \chi_i y_j \right)^{-1} = \sum_{\lambda} u_{\lambda}(x) v_{\lambda}(y)$
	Proof: Write my = Zz uz, hu = Zx vur vr
	5 Szn= <mz, hu=""> = Der uze vurlez vr></mz,>
	and This (1-xi yi) = Enma(x) ha (y) = Exx (En azz var) uz (x) vr(y)
	now fulful are dual => San = It was ving => Siv = In mar var since a matrix
)	left-inverse is also a right-inverse, and substituting into the previous line shows II (1-2:45) = Zzucle) +2(4).
,	conversely, if The (1-2, 4,) = I , u, (e) v2(y), then equating coefficients (as u2, v, are bases)
	show $\delta_{\text{TV}} = \sum_{n} \frac{m_{n} t_{n}}{u_{n} t_{n} v_{n}}$ is in it the matrix inverse of t_{n} , so $t_{\text{UT, V}} > m_{\text{US, t}}$ be the identity matrix
	The application u=pa, v= z2p2 shows that p are othogonal <p2, p2="">= z2</p2,>
	(if we are working over R, we can rouse to get an orthonormal basis)
	Mso, the involution wix a self-adjoint isometry (wp, wp) = sgn(a) sgn(u) Sun = Sun
	and <upre>pard <upre>pard = sgr(u) &ux = sgr(2) &ux = <pre>cpuwpa></pre></upre></upre>
	will be added a supplied to the sould received.
	The Hall inver product is really "the same" is the over product on L'(U):
	given f & 1, define F & L'(U), F (a matrix) = f (its eigenvalues, 0, 0,)
	(since f is symmetric, the order of the eigenvalues does not matter)
\. \.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	now < f, g > = Su f (x) g(x) du where u is Hair measure
	This will be "shrious" once we establish that Solur functions are othercomal.
	the solid lettings in the desired with
	A eni-standard Young tableaux of shape & is a placement of integers into the Young
	diagram of I with weakly increasing rows and strictly increasing dumps
	e.a. 1112 is a semi-standard Young tableaux of share (3,22,1)
	59 Simple of the same of the s
	diagram of λ with weakly increasing rows and strictly increasing alumns. e.g. $\frac{ \cdot \cdot \cdot ^2}{ \cdot \cdot \cdot }$ is a semi-standard Young tableaux of shape $(3,22,1)$ The content of a semi-standard Young tableaux T is $A(T) = (\# d, 1_5, \# d, 2_5,)$
	For $\mu \leq \lambda$, the skew diagram of shape $\lambda \mu$ is the diagram of λ with the diagram of μ
	removed. Stew diagrams need not be connected. A semi-standard stew tableaux is the ambiguus thing e.g. 151 is a semi-standard stew tableaux.
	instrumenthing e. a. F. is a corni standard stow tableaux
•	
	The Schur huction $s_{2,\mu}(x) = \sum_{7} x^{(3)}$ where we aim over all semi-standard few tableaux T of shape $2/\mu$. We usually write $s_{2}(x)$ for $s_{2}(x) = \mu$ we sum over all semi-standard Young
	shope I've we usually write so (s) for so of (z) in one sum over all comi-standard Yours

tableaux of chape 2. Roperition: Som is a symmetric hinction Proof: us the transposition livery generate all permutations of N, it ashces to construct a sipertion, for each & semi-standed slew tableaux ; (semi-standed dew tableaux)

of slape 2 y and content & Colore 2 y and content (x, x, x; Each my has a segment which looks like it is it it it is Now replace in the bosed part (the is which do not have i+1's below them and the oil's which I not have is above them this is a continuous segment because the raws above and below this raw must be weakly increasing) the is with it I and the it is with i's, and then reserve so the raw stark westly increasing. So some is are now it is and some it's are now is, but the dumns stay strictly increasing since the dumns only entimed exterior in its All is which did not switch lie above an it, and all it's which did not switch lie below an i there is the same number of both so the content changes is the desired way. I we have a soft in the soft in the formal of the soft to be a Jerine the Kostka numbers Kny = # semi-standard stew tablaux of shape I've and content . So the wetherent of x is save is Karyer Since same is symmetric, this means same = Ir Kasurmy. e.g. $\lambda=2,1$, $\mu=\phi$: $\nu=3$ no possible tableaux V = 2,1:

[1] V = 2,0,0,0,0 = 1=1,1: [1] Kan,000=2 Proposition: if Ky, -= 0, then 2 = 1 Proof take a comi-standard Young tableaux with shipe I and content x.

As its dupor are strictly increasing, dis must be in the first i must $5 r_1 < \lambda_1, r_1 + r_2 < \lambda_1 + \lambda_2$ de The second and the second of the second of the second Observe that the whole inequalities are all equalities of and only of the first row is filled with is the second on with 20 etc. Hence 1 = 1,50 the change of basis matrix (from so to ma) is traingular with le in the diagonal -ie so give a basis for 1 a to see the locality of success and was marginally and There is no moun algorithm to efficiently calculate Kar except or some special values. If a semi-standard Young tableaux has content 1" lie the integers 12, and appear ma), then it is a standard Young telleaux. his at the second to all except, that is now. Proposition: K2,1 (where I:2:=n) enumerate / the standard Young tableaux of shape 2 index; saturated paths in the partition poset from 4 to 2 ii hillet sequences of n stee where the number of cardidates is the number of parts of 2, and cardidate it is always alead of iii lattice paths in R* morti in 2 from 0 to 2; staying inthin the region Proof: the it element of the path is the partition given by the boxes filled with 1,2,...i. Conversely, a path describes an order to fill in the boses with. ii the it rote goes to the cardidate whose now contains bur i iii take the it step in the direction of the raw containing i. is placed at time with the set there are the set of the are got it in the late till walnut the interest and high that if if anythe the the about out to be open by it is an out Consider the june of patrice-costing, which is played with the deck 1,2, 3. The cards are turned up one at a time, and a lawer and may be placed on a higher card It we turn up a could which is higher than all cards sharing, it starts a new pile. The object of the game is to finish with as few piles as possible e.g. If the deck is (in order) 5371264 then one possible play ends with 33 t Roposition let w derate the strong / permutation encoding the order of the raids in the deck The number of piles at the end is bounded below by the length of the longest increasing subsequence land this is achieved by the greety algorithm, where we

place each could on the smallest showing could that it can be placed on - the example where is played this way) Proof: The early belonging to an increasing subsequence must be placed on different piles In a greedy game that ended with a piles: the top and on pile or the top and on pile n-1 when the above and was played the top and on pile 1-2 when the above aid was played I'm it is to the state of the state of the state of the state of give a decreasing sequence (because thereine we would be placed it on the previous pile) going backmards in time -ie as increasing subsequence when read "formard" (in our example, this is 124) and the second of the second of the state time should be store So the greatly algorithm on patience costing gives an efficient way to find the length of the largest increasing squerce - in fact, it is provably the laxest way This is useful for computing the number of deletion-insertions necessary to transform one permutation into mother. This motivates Warre problem: find the distribution of this length when we sample uniformly from som The average length is 25. and the state of the state of a contract the state of the The original Robinson-Schensted-Knuth algorithm maps So bijectively to pair of standard Young tableaux of the same shape with n-boxes, by greedy patience sorting on each level as follows: turn up a card and put it on the first level, replacing the smallest and higher than it if possible thay the replaced and on the second level in the same way, and continue until a count does not replace anything. Now turn up the next and and repeat The end result after all cards are played is the first tableaux in the image. The second tubleaux bookkeeps the process put i in the slot where the last and is played when and i is turned up Example: w= 673154298 patience sorting game bookkeeping

13 replaces 6, which	<u>₹</u> 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
uppears in level 2 now)	<u> </u>	3	<u> </u>
appears in with 2 now)	the Section	NAME STATE	Salar Salar
(1 replaces 3 in level 1,	17 3	May 12	
3 replaces 6 in level 2,	3	3	
6 ends up in level 3)	Ь	4	
(5 replaces 7 in level 1,	15	12	
7 can't replace anything	3 7	35	
in level 2)	Ь	4	
: 11	14	3/2	lexisting numbers nev
Ž.	35	35	move in the bookley
	67	46	tableaux)
100			
Inste 5 changes	12	. 212	
columns here)	34	3 5	
1 11	57	46	
2.4	Ь	<u></u>	
	, 0	12.0	
	129	128	
<u> </u>		(2) (3) 5	
<u> </u>	57 6	78	
this live is the	120	128	3-483
unide of the	349	359	
insign of the	57	46	Part of man
and the same of the Version	6	7	100 Mg
The state of the s	ale line (c)	nis of ceni-standard bout and numbers live be not an), <u> </u>

	where the	e deek has a descer	equence, which increases strictly	AND THE REAL
	e.g. auch	echlo I Alama	has descents at 3 and 5	
	then:	sure proceeding segue	game bookkeeping	
		III	june morreiging	<u> </u>
				<u></u>
		1/3	- Di - Alles Cario	986
			The Marine and Section 1	
		133	111	
			1 25 35 3	
		123	111	1.
and the second	AN THINNY		2	A PART A PART A DESCRIPTION OF THE PART A DE
	A SAN	44		
		122	111	
		33	22 (2)	X (1)
		<u> </u>	111	
		23	, 22	
		<u> </u>	-3	
			<u> </u>	
		<u> । । । </u>	45 111 3	X
		` 23	<u> </u>	
No. 1,		3	. 3	<u> </u>
. NI AT SELECTION OF THE PROPERTY OF THE PROPE	1 17 /	· / /	451: 111:	
	ine was	contract the interior	paths: the cards that more when a	eard
· V	de land land	p. UDSENT THAT (NEWM)	paths always go to the lost as the	<u>y</u>
	tello	uning and all each ste	s we indeed have a semi-standard You	y.
	CAPUAUX - W	t will span this induction	ely, using this property of the oxertion within path, then the entry originally	1 peth

Now the proof that RSK indeed produces a pair of semi-standard Young tableaux: the patience-sorting rules mean that all rows are weakly increasing. The Sunne have a segment replaced (where it intersects the insertion path, this is a single segment decause the insertion path moves to the 6ft). Because a lover und replaces a higher eard, the regiment is strictly increasing, so we only need to check the top (5,5) and bottom (1,5) entries of this replaced regnert the new entry in (c) some from the right of (c-1,0) (as ingthin paths more to the left, and since we always play in the leftmost pile possible, this entry is strictly bigger than what in (c, s) The new (s, s) entry is smaller than what used to be there, so its still strictly smaller than entry (c'+1,s) As for the problekeeping tableaux, we always add numbers to the right or bottom, and since the sequence is weathy increasing, he was and alums are both weath increasing to show that the alumn are strictly increasing, we show that the slumms an't grow by more than I be when we turn up the cards in the positions libelled by the same number in the bookboging sequence. The key is that these cards are nearly increasing, so, by the weeky algorithm, the sequences of replacements that they generate we alse entrywas increasing to each insertion path is strictly to the right of the previous since there is no box immediately to the right of a newly-added box, an insection path arrest end below a path that it is to the right of

Next, we show that RCK is indeed sizertise to pain of semi-stardard Young tableaux of the same shape to exerce, the brokkeeping tableaux alons us to reconstruct the entire gamplay from the east result. From the last pangage, we know that, for the plays indexed by the came number in the brokkeeping expuence, the usertion path we are not the interpretation path there, out of the brokkeeping tableaux, the rightnost one was added last book at the and in this position (in the corresponding entry in the other tableaux). If this is in the fost level this must be the card we turned up, Otherwise, the and that replaced it is the level what is the rightnost and that is lawer than this and and we can retrace the invertion path like this to find the land that was turned up.

So the softicient of \tilde{x}^{β}_{y} in $\Sigma_{\alpha} \leq_{\alpha}(\tilde{x}) \leq_{\alpha}(y)$ is the number of pairs of semi-standard towns tableaux of same shape and content λ is respectively. Via RSK, this is the number of pairs of sequences that are permutations of λ , is respectively, with the second sequence weakly creasing and strictly increasing wherever the first sequence has a desert. We are

bjectively send such pile of sequence to N-native with an sun or and alumn sum & let a; be the number of times; access in the second sequence and; in the first sequence in the same positions (inverse stating from the top left and nothing along each raw in turn, put; a;; times in the second sequence, and; a;; times in the first sequence. So are example where some sponds to [52.25]) This number is also man; the preference of the first position are an oftlorormal basis.

There that the first row of the first pollumin is the result of we just played a single game of patience-sorting—so the largth of the first row in the

Observe that the first ow of the first pollunx is the result of we just played

a single game of patience-sorting so the length of the first ow is the

length of the langest weakly increasing subsequence 11222 in our example

plane) The lengths of the other and we also related to increasing subsequences.

In ordinary RSK, reserving the deads transposes the first tablians, so the

length of the first alumn must be the length of the langest dicreasing

subsequence. The un-standardisation (see below) of a decreasing subsequence

is strictly becreasing, so, is the extended one the length of the first

alumn of the first tableaux is the length of the langest strictly dicreasing

subsequence.

As $\sum_{\lambda} m_{\lambda}(\lambda) h_{\lambda}(y) = \prod_{\lambda} (1-x_{\lambda}y_{\lambda})' = \sum_{\lambda} \sum_{\mu} (x_{\lambda}) s_{\mu}(y) = \sum_{\mu} \sum_{\lambda} K_{\mu\lambda} m_{\lambda}(x_{\lambda}) s_{\mu}(y)$ equating webicients of $m_{\lambda}(\lambda)$ gives $k_{\lambda} = \sum_{\mu} K_{\mu\lambda} s_{\mu}$ Recall that the number of N-matrices with row sum λ and which sum μ is $\langle h_{\lambda}, h_{\mu} \rangle = \langle \sum_{\nu} K_{\nu\lambda} s_{\nu}, \sum_{\tau} K_{\tau\mu} s_{\tau\lambda} \rangle = \sum_{\nu} K_{\nu\lambda} K_{\nu\mu}$ species computing $\langle h_{\lambda}, h_{\mu} \rangle$ is provably laid, this suggests computing K_{λ} is also quite hard.

Take 2 = 1° Then Z in Knin sp = hin = (x, + x = + + +), and Z in Knin sn = Z in Knin Knin mr.

Equating coefficients of x, x = in! = Z in Knin Knin, which we also know him

applying original PSK.

Extended RSK can be detained from ordinary RSK via standardistion (which
is a weiful technique for extending standard havy tableaux results to semistandard burg tableaux). Given a deck with repeated cards, replace all is with 1,2...

A genetic interpretation of RSL pereals many symmetry properties for example, if the matrix is an expenses to the tableway (P, Q), then it is merpered to (Q, P). Transposing a permitation nature produces the inverse permitation to be the non-extended size, this says, if we correspond to (Q, P). So symmetric matrices correspond to semi-standard lower tableway and involution permutations correspond to standard lower tableway. The number of ways to fill a symmetric matrix with row sun it is precisely the sefficient of x^{∞} in $\Pi_{\Sigma}(1-x_{\Sigma})$, $\Pi_{\Sigma}(1-x_{\Sigma}x_{\Sigma})^{-1}$ [the list product chances the dependent entries, which counts towards both row and adumn because of symmetry). Hence $\Pi_{\Sigma}(1-x_{\Sigma})^{-1}$ $\Pi_{\Sigma}(1-x_{\Sigma}x_{\Sigma})^{-1} = \Sigma_{\Sigma} \lesssim_{2}$

sual RSK differs from RSK is that a and is allowed to hisplace one of equal value (or of higher value as before) to accommodate this, the bookleeping cognisce must increase at positions where the main sequence repeats, as well as at descents

e.g. 13213, bookleep with 11 233

a hora of the sound of the soun

Marie V sym with the commence of the second of all with the commence of

12 11 2

The self-and the supplies to specification of the self-and the supplies of the self-and the self

The first tableaux is now not semistanded, but its transpose is, because the new rule prevente regetation is rown tack insertion path still more to the left as it goes down, and is to the right of the nevirous if they are labelled by the care number in the bookening sequence. So the second tableaux is semi-standard As for RSK, we an reconstruct the whole game from the list two tablesux, and we never expenses of the equired form, a dual PSK is a figuration from 0-1 matrices to pairs (P,Q) of takeoux of the same shape, with PT and Q geni-standard. Recalling our generating function for O-1 matrices, Tr; (1+2:4;)= 2, sa(x)== (y) <u> 1904 - Marie M. Garanti Maria e Maria de Maria</u> As the indution w on the y anables and To (1-xiy) to To (1+xiy), equating wellowints of sales share w(sa)=sat forms of augustry use from I was to see Classically, Schur hisctions are defined via the alternant: for X=N, $a_{x}(x) = Z_{wes} \operatorname{sgn}(w) w(x^{x}) = \det(x_{i}^{x_{i}})$ If a = a, then the matrix x" has two alumns equal so a (2) =0. Swapping x; and x; exchanges two dumns of the matrix x; which changes the sign of an So it suffices to study an where &, >2, >2 > 2 > 2 > 10 where & = 2+8, where λ is a partition and $\delta = (n-1, n-2, ..., 1, 0)$ Excharging zi and zi swaps two rows of zi so charges the sign of a Hence a is an alternating polynomial, and is a multiple of II. (2:-2;) = as(x). Herce 0/05 is a symmetric phynomial since multiplication by as turns a symmetric polynomial into an antisymmetric one, an - alar is an isomorphism from artisymetric polynomials to symmetric ones [a 1 x-5 a partition? gives a basis of antisymmetric phyromials, so % of gives a basis of symmetric polynomials: we will see that, under the inclusion of such polynomials to 1, "dos mass practicly to sons. Jacobi-Trudi identity: " 2+5/25 = Let (h2-i+) where hx = 0 if k = 0, and stherwise he = Eineinen zi, whin he he symmetric phynomial is a variable whose inge is 1 is he). Once we know that anolas maps to say applying the involution w shows that so = det (ex-i+j).

In partice we find these metrices by filling the diagonal with his, and then filling each m so that the vidices increase by I along the raw e.g. sszz = det /hsh ha Proof Write of for the wefficient of to in It (1+tx) Recall that (1+h,t+h2t2+...) T(1-tx)=1 So (1+h,t+h,t+1)(1-e(1)+e2+2-1)=(1+t2) Take coefficients of t^{α_i} of both sides: $\sum_{n=1}^{\infty} h_{\alpha_i-n+j}(-1)^{n-j} e_{n-j} = x_k$ So $a_{\alpha_i} = \det(x_j^{\alpha_i}) = \det(h_{\alpha_i-n+j}) \det((-1)^{n-j} e_{n-j})$ (with $1 \leq i, j \leq n$) az+5 = det (hz,-i+j) det (-1)"en-i) Take & to be the empty partition as = det (h-i+j) det ((-1) enil) h-it; is upper tringular with ho=1 on the diagonal => det(h-it;)=1 so as = det (4) = a 2 to /as = det (h, inj) and the second of the second o We can show using an irrelation principle that let (hamistin) is the sum of the height-weights of all sets of k non-interecting lattice paths from (i,1) to (2 k+1-i+i, n) Fach such set of paths consepond to a constanded Young tableaux with knows where entries lie in 11,2,000, and a content is the weight of the set. By revering the knows and solumes of hanning it, we see that Let (hanning ti-i) = det (harjei) = sq. This proves antolas = sa (when restricted to a variables) Hore detail in my enumerative combinatories notes, constructive combinatories by startar and White, or Representation Theory of the Jonnatic Group by Sagar. Total Britishy by Former and Televinder discusses correction from lattice paths to hable habit cells and cluster algebras, and Vicious Walkers contains some applications to physics The analogue of Jacobi-Trudi for stew-schur functions says says = det (h 2,-4,-i-) The share the chan to describe and applying we to all terms (as we is an isometry) proves that w(say) = say yet A rim book lake called books, ribbons or border strips) is a stew-daye that is connected with no 2x2 blacks Rim hooks are specified by west compositions (the number of boxes in each row), since the conditions bree each raw to "acresp" with the previous at preciply one solvers. Here there are

2" rim books with n boxes The height of a rim book is the number of parts -1 Theorem: supon = Eig (-1) height (21/11) so summing over 2 for which 2/11 is a book with m boxes, was a second and a second and a second Proof: Work in a variables, with n > m + theres in a Recall that anto= Ewas son(w) w (x "+8) ladd Os to pit it has fener than n parts) write e: for the vector with I in entry i and o otherwise so a mes pm = Si wes, sgn(w) w(xm+8) (Sin mei) = [wes, egn(w) a(x 11+5) (5=1 w(6 me;))=[au+5+me; Remange the components of p+S+me in descending order-ie if (u+5+me) = mq+(n-q)+m & bygger than the earlier arradinates, more it up until we get the partition X+8 "representing" x+8+me: lif u+5+me; has two components, just larget it, because then an +5+me; =0 Suppose the reasoning places (u+8+me) , between the 6-17th and pth components -ie up-1+(n-p+1) > m + (n-q+n) > mp+n-p. Then 2 = (u,) mp-1, Mq+p-q+r, up+1, mq-1+1, mq-1, m) and and (-1) & Pantomer since each adjacent transposition vious a charge in sign Now 2 m has no squares in the first p-1 raws or raws gel n On rows p++ to q. The extends in so it is longer than the on above (of pi) - sich skein shapes are precisely hooks, and So anto Pm = 2 (-1) right (xxx) anto over the required set Divide both sides by as and note that since n=m+ # boxes in pu supon is uniquely determined by its preimage in symmetric functions is m variables. Land M. Land Broken Commencer Commencer Example: y=63,321, m=3. Take n=9 $=\mu+\delta=14,10,9,7,5,3,2,1,0$ 11+8+me, = 17, 10, 9, 7, 5, 3, 2, 10 which is already in order se corresponding 2=9,3,3,2,1 14-5+me, = 14, 10, 9, 10, 5, 3, 2, 1, 0 which has regented entries so we

you to

u+0+me= = 14,10,9,7,8,3,2,1,0 swap 7 and 8
: comesponding 2=6,3,3,33 appears with ign (-1)
11+8+me= 14,10,9,7,5,3,2,4,0 mue 4 up two places
: inexponding $\lambda = 6, 3, 3, 21, 1, 1$ appears with sign (+1)
The tapleaux for the as where are
LITTLE CITTED STREET
The Control of Section Chair
We wish to tente this instruction to calculate super for general .
Define a skew tableaux of hope 2 v and content & to be a horder stip tableaux of
It our and olymns are weakly increasing and the boves containing each i form a hork.
The height is the sun of the heighte of these books.
e.g. 1/2/2 is a border strip tablesux of shape (4,4,3,2) and
1113 3 atout 13 3 411 It has bount 1+0+2+0=3
3 3 3
[3 [4]
the second of th
Then super = \(\Sigma \text{X_2016}(r) \sigma \text{More \(\lambda_{2000}(r) = \(\mathcal{\infty}_{\pi}(r) = \sigma_{\pi}(r) \) summing over all border
strip takeoux of shape 2/u and content v.
Taking u = 0, we see Pr = 2, 2/2(v) so and su= 5 x < su pr z=>pr
$= \sum_{r} \langle s_{\mu}, \sum_{r} \chi_{2}(r) s_{r} z_{r}^{-1} \rangle_{Pr}$
this is the Murraghan-Nakayame rule = Zr Xu(r)znpr
5 Zy Xz(v) Xz(u) zr = Sur, Zr Xplv) Xz(v) zr = Szu - you might guess from this and
my suggestive notation that x be is the 2-character of so evaluated on the u-enjugacy
class land ex = 5.2 2(x) so is then a statement of Schur-Weyl dustity
Some and the second
To explain this character theory connection, look at the vector space & class functions on So.
Define the characteristic map from this space to symmetric hinctions:
ch (f) = n Zeco f(w) Peyelo type of w = Z za f (permutation of type 2) pg and extend linearly
With the usual inver product on the class functions (on each piece, < f, 9>=0 if f g from different
places), this an isometry: <alf) 1<="" \frac{1}{2}="" chigh="(\(\Sigma_{\pi}^2" td=""></alf)>
= In I was flow glow) = (Fig > (it suffices to work acr R, since all characters of & are real)

th is the ar algebra isomorphism, where multiplication on the class functions is determined by induction SxSm > Som: 1. Ch is a ring homomorphism:

Extend the Alimit Extend the westicient ring on the class functions of so to 1 - then Chilf) = < +, +> Where &(w) = pyde type of w. Then, by Frobenius reciprocity, (h(fg) = Inds seem frq, 4> = <frag Rescussiv> work at yelle lengths = 1 / Duesnives f(u)g(v)pup = clf chg 2 Ch(2m2)= hz where M2 is the permutation module on tabloids, which are allo be thought of a ordered set partitions The stabiliser of an element in M? is SXXSXXXXXXXXX XM2=1 52 1 522 where In denotes the trivial representation on H By 1, it suffices to show that cl (18) = h Ch(1s) = Zamzipa = ha since Zamzipat' = Zhat' by cycle-index theorem 3. Every so his a preimage under Ch (we already know Ch is injective, since it in isometry) $S_2 = \det(h_{2,+j-1}) = \operatorname{Ch}\left[\det\left(\mathbb{1}_{2,+j-1}\right)\right]$ (this can be thought of as "inversion" of 2) Othersmality of so mean that <det(12+ji) det(1+ji) = Sax det (12 min) is an integral livear combination of induced characters with "largth" 1 it is ± an ineducible character det (1 24-in) evaluated at 1 is Enes, IT (2:+wis-is! >0 so det (1 20+3-1) is an ineducible character But we shared previously that sn = \(\Sigma \chi_n(v) z^{-1} pv = ch(\chi_n) :. E. (-1) reight Tower all border strip tableaux of shape I and content u = $\chi_{\chi}(\mu) = \det(1_{\chi+j-1})(\mu)$ is an irreducible character. So the Murnaghan-Nakayama rule allows us to compute the character solves lathough this isn't efficient unless the conjugacy class and character correspond to "simple partitions" but is still well for obtaining bounds e.g. to calculate convergence rates of mudom walks in So, which we related to black holes)

	The state of the s
	eg. 28,3,3) (11234)(56) (789) is [-1) hight T summing over all] = 1
	which decompose as a 1-hook with 4 quares, a 2-hook with 2 equares
	and a 3-hook with 3 squares.
	To haid all such we assider the 3-hooks first there are 3 possible locations for
	an advardmost book of 3 squares, and after remains this book we have
	F F A FF
	H. H. A. H. A.
	Next, we remove the 2-book of 2 squares. The second shape above has no book of
	2 squares; the other chapes each have 2 possible beations for a hook of 2 squares,
	and remains those give respectively H. F. H.
	These must be the 1-hook first and last trapes are illegal
	: the border stip tableaux we require are 113 and 111
	1 22
	1 2 2 1 2 3 3 3 3 3 4 7 7
	which have height 2+1+2=5 and 1+0+0=1 respectively
	50 X(3,3,3) ((1234) (56)(7.89)) =-2
	eg. $\chi_{\lambda}(n-y)$ is $\sum_{\tau}(-1)^{reight\ \tau}$, summing over all λ -takeoux which is a
	single 1-hook : χ_{2} (n-cycle) = 0 unless $\lambda = (k, 1, 1,, 1)$, in which use χ_{2} (n-cycle) = (-1) reight of $\lambda_{2} = (-1)^{n+1}$.
	$\chi_2(n-aycle) = (-1)^{kight} of^{hi}_2 = (-1)^{n+1}$
	and the supplied the state of the state of the supplied to the
	The Ch map entegorities to V -> Homs (V, (C*) "), regarding the image as a
	GL representation
	The state of the s
	The contract of the state of th
***************************************	The said with the said the said to the said the said to the said the said to the said to the said to the said to
	The main references for what follows are Considered Robble shuffles and Quesi symmetric Function
	by starley, and combinatorial Hopf Mychas and Generalised Dehr-Sommerable Relations by
	The state of the s
	These are wrent hot topics of research, and attempt to write much of combinationes
	The state of the s
	A formal power series is quasi-symmetric of the coefficient of zin zin is equal to
	the coefficient of to wherever i, and is it could all symmetre functions
	are quasi-symmetric Sières is quasi-symmetric but not symmetric.

Given a composition $\alpha = (\alpha, \alpha, \alpha_k)$ of n, set $\delta_{\alpha} = [\alpha, \alpha, +\alpha_2, -\alpha_1 + +\alpha_{k-1}] = [n-1]$ The inverse map is S= {s, s, ..., s, . eg. $\alpha = (1,5,3)$, $S_{\alpha} = \{1,6\}$ For we S, we will do for the composition one gooding to the desart at & w Recall that is desert at if wif wir win) An drivus has is for Q, the cet of quasi-symmetric hirctions, a m= 5. 22 2 x across all compositions / IN-sequences & Another basis is given by La = Eigen in igning of 305 xi, xi, x. e.g. Lz = Ziejek xi xjxk = hz = mi,, + mz, + m, + mz L 2) = Ziejck x x x x = m2 + m, cc Lez = Dizjek Zizjzk = mis + misj $L_{i,i} = \sum_{k \leq j \leq k} z_i x_j x_k = m_{i,i,j}$ The La's are also denoted Ea, and one known as fundamental basis or By ansidering where the societ inequalities in ma can be relaxed, we see that Lx = Z seTe[0-1] mxT so, by inclusion-exclusion, mx = [2 seTe[0-1] (-1) LxT Hence Lx do indeed form a basis Quasi-symmetric functions are related to card-shuffling in the following way: we goverable as inverse shills to an inverse X hulle let X be a probability distribution on N, and give each and a number independently according to X. Then reorder the cards according to these number, keeping the cards with the same number is the same relative order as before The description of the forward process is slightly more conhising: again, label the cards according to X, then perform the permutation corresponding to the standardisation of this likeling. Equivalently, split the back into piles so that the size of the in pile his distribution (* ands marked when the back is labelled with distribution x) then shuffle these piles together For fixed pile sizes a, a, the forward shuffler are precisely the shortest length coset representatives for Sax Sax Sax Sa, while inverse shuffles

describe all permutations whose descent set = {a, a, +a, -a, +a, +... +a, -} Write is for the probability of runder X, Then the probability of steering we after a single X-shuffle is Law: w' has descent set [::w'(i) >w'(i+1)]=[::i+1 comes before in w) We want the probability that in (IID from X) standardies to we relabel the i's as a = iwis, so as is the number that, when standardized, becomes j. So we must have a = a= = = and with a = < air if i+1 amer bone is it is decent set of w? The probability this occur is xa, xa, xa for each sequence a satisfying the clove condition, and the sum of there possibilities is precisely to Specialising to the usual k-shuffle (X is uniform on $\{1,2,\dots,k\}$) chara $P(w) = \frac{1}{k^n} \left(k^{-\frac{n}{2}} descents in \omega^{\frac{n}{2}} + n-1 \right)$ Since repeating a schulle & times is equivalent to a 2t-shulle (in general, an X-duffle followed by a Y-shuffle is the suffle with distribution P(i) = xiyi), this can be used to calculate the convergence rate to a andom deck but the analogous problem for nonuniform X (c.g. x=p, x=1-p) & more complicated, a shap upper bound for the annagence rate is not brown. while the second of the second second of the be contracted in 18 not in a conflict if he a second like I then hill let k be a held with characteristic + 2 let R be the k-vector space with belief indexed by ranked posets (a finite poset with minimal element o, maximal element 1, and all chains having equal largets). The mark of the possets induce a grading on R before a product on B by taking the cartesian product of practic note that this respects the gading on R. Define a coproduct on R: AP = [0, 2] @ [z,] which also respectly grading the rank of the factors sum to the rank of P) The character on R & S(R)=1 for all posets P This is Rota's Hopf algebra The vector space on all posets also form a combinatorial Hopf algebra: the product is disjoint union, the approduct is $\Delta(P) = \sum_{r \in P} I \otimes P I$ where I is an order ideal in P (ie if yeI, x = y, then xeI). This is graded by the number of elements in each poset. The character is again the usual zeta function There is a combinational Hopf algebra norphism from the above to R, by taking the poset

of order ideals under inclusion

Montgomen's "Hopf Algebras and their retirns on Rings" is a good introduction to Hopf alpebras A graded thost algebra is a graded vector space A = A. . A. . with as useciative grading-preserving product and a linear reproduct A: A -> A. A. which is is acceptante if DIa)= Si an ear, then I DIa () ears = [and Nan or, in operator form (DOL) A = (LOD) A. This needs to respect grading in the way explained above, The conferm structure also induce a counit map E: A -> & which satisfies (EOL) = (60E) A. For a convected Hopf algebra, in A.= k, E=id on A. and E=0 on all other A: (Herce D(a) must contain the terms 100 and a 01) Finally, we need the algebra and coalgebra structure to be consistent: Alab) = Ala) Alb) I combinatorial Hopf algebra is a gaded Hopf algebra with a character 5 A -> k which is an algebra honomorphism The characters come with a multiplication operation & Fg(a) = \(\Sigma_i \) f(ai) g(ai) ie fg is the composition (multiplication in k) (eg) A. (This is associative by wassociativity of D, and is commutative if A is accommutative). Similarly the linear functionals on or algebra pave as induced esalgebra structure (though we have to be except of the sixting algebra is inhiste diversional)

The quasi-symmetric functions are an algebra under usual multiplication of power series. The coalgebra structure is given by: $\triangle(M_{\Delta}) = \sum_{p,p=2}^{\infty} M_{B} \otimes M_{p}$ e.g. $\triangle(M_{21}) = 1 \otimes M_{21} + M_{2} \otimes M_{1} + M_{21} \otimes 1$ The symmetric functions are also a Hopf algebra under the same operations.

Since $M_{W_{1}} = \sum_{i=1}^{\infty} e_{i} \otimes e_{i} \otimes e_{i}$ shown that $\triangle(e_{n}) = \sum_{i=0}^{\infty} e_{i} \otimes e_{i} \otimes e_{i}$

Lors where deg(H₁)= ω so a basis of the degree η subspace is H₂=H₄, H₄, H₄, where deg(H₁)= ω so a basis of the degree η subspace is H₃=H₄, H₄, H₄, and when all weak compositions of η Define a product by constantion and set $\Omega(H_n) = \sum_{i=0}^{\infty} H_i \otimes H_{i-1}$. This is the Hopf algebra NC sym, which is dual to Ω in that $\langle M_{\alpha}, H_{\alpha} \rangle = \delta_{\alpha \beta}$ (to be precise, we should complete NC sym, in take power sinces in H₁ s.) It can be shown that the abelianisation of NC sym (in the

quotient by the commutator subgroup) is A, and Ha has image his for any partition 2 Theorem: Q with count character, is the terminal Spect in the category of combinatorial Kept algebras. In other words, given any collection of combinatorial objects which can be combined and split up, and any character from such Sject to the file there is a unique way to assign a generating function to each diect (that is impatible with the character) In fact, this may is h > 2 3 0 k (by 2 projection of st h) Ma ie take only terms in 15th whome its nactor has degree & And A is the terminal object for commutative combinational Hof algebras eg let to be the vector space of graphs, with product given by disjoint union, and grading by the number of vertices, set DG) = Isea Soals where s her the induced sufgraph structure. Define the character as \$(6) = 1 an signete The generating function is this use is starleys schomatic polynomial: Na(x,) = the probability that no adjacent votices have the same show when each vertex is assigned abour i with probability x: (this is clearly symmetric) This is the generalised bithday problem, as X, computes the probability within a network that two people who know each other share a characteristic. eg given a convex polytope, consider += (fo, f,) where to it the number of vertices, t, the number of edges. The relations between these numbers are important for liveur programming for three dimensional polytopes, the possible values of for fifth are completely known (they are constructable from one starting set of values by repeatedly coning faces or flattering vertices) The other solved case is by simplicial polytopes, where h(x) = Zicof (x-1) where I is the dimension of the polytope. The wellicents his of this polynomial atithes the Dehr-Somewille relation his har, and together with two irequalities, give a necessary and sufficient condition to a phynomial to be his of some complicial polytope (see Ziegler's work) The faces of a sonvex polytope form a graded poset under inclusion, so we can enumerate flags instead of just face the flag enumerators admit a consolution, and constition preserves inequalities so new conditions can be deduced from previous over There is also an analogue of h(x) for flag enumerators. These data in the coefficients

of Ma and La in the generating function (image in Q) see Billera,
Flag enumeration is phytopes, Eulerian posets and locater groups The phynomial ning {[2] is a Hopf algebra under the usual product and $\Delta(p(x)) = p(lex + xel)$ so, by bright expansion, $\Delta(x^k) = \sum_{i=0}^{k} {k \choose i} x ex^{k-i}$ This structure is the divided paries algebra, I ten used in homological algebra before a Hopf map Q -> (5) by evaluation at (1,1,1,1,0,0,) where there are x 13. For example, if x has k path, they Ma maps to (2) So posteropozing the map from a combinatorial Hopf algebra to Q with this produces a cingle-variable prenating furctions starting watt the incidence algebra on posets, this gives the sets function the generating function of the z-dinersional analogue of partition is a place partition, a 2d anal of numbers such that each now and solvens is a partition eg 75532111 & a place partition of 58, with 18 parts, 655211 A shape (8,6,4), and some 14 6322 (He trace is the sun along the main disjoint) Beauce of the connection to physics, these we often thought of as tilings of a hexagon which as be viewed as a projection of 3-sinersional taxes of boxes, see "The Shape of a typical based Partition" by Cha, larson and Props. Menatively, place partitions are equivalent to order ideals in the chat is, I = M3 and that, if (ij, k) = I and i = i, j'=j, k'=k, then (ij, k') = I): is box; ; put the largest k such that (is,) et. This is a lijection since the order ideal relation is equivalent to the me and columns decreasing eg the plane partitions of 3 are 111 11 20 121 20 12 and the ornesponding order ideals are: ((1,1),) ((1,1),) ((111))(Ch) (20) / (Ch) (Ch) (Ch) (Ch) (Ch) (Ch) (اراً) ((E, 1,1)

let P(r,c) be the plane partitions with at nost rows and a columns.
So PU, c) are ordinary partitions with at most a parts
RI trincating the partition representing function we see
1 (1-q 21) = 2 a # mile + book over all partitions whose get me < c
There is $q = \sum_{\pi \in \mathcal{P}(i, c)} q^{\pi} = \sum_{\pi \in$
the we did not the work of the same solution
The generalization to ability reads Sincercial q to the # Lace in The [1-qx itj-1)
In particular, taking q=1 and re- on chars S # place partition of n x = II (1-x)
The proof goes as blane. First, given I, in partitions into distinct parts with the same
number of pats, build (the diagram of) a partition by shifting the it raws of the I and
In diagram to the right by it spaces, then transposing in and pasting them along the sommon
main disposal for example, (4,3,2) and (5,4,1) glue together to (4,4,4,2,2) Because I, usual distinct parts the duing include results in a (4,4,4,2,2) patition, and any partition as he hodes along the min
Became In had distinct parts the gling indeed resulte in
patition, and any partition as he hopes along the min
disjonal so this sometrution is dijective:
partitions of n into x partitions of m into partitions of m+n-s
a distinct patte a distinct patte
the second the second s
Next, take two reverse sent standard boury tableaux of the same shape hie fall them so
the raws are weakly decreasing and the slummy are strictly decreasing), to the above
construction with each corresponding pair of shunns, and put these as solumns of a
plane partition. Then view each row of this plane partition as a partition and transpose it.
ea 4421 1322
$\frac{3}{42}$ $\frac{422}{42}$ $\frac{4331}{42}$
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(above we calculated the first asum of the intermediate place postition. The second
Summ is Maried from pluing (4,1) to (3,2), etc. Very this as doing the above gluing in 3d,
with the content king the height in the final step (4,4,2,1) = (4,3,2,2), (4,2,21) = (4,3,3,1) etc)
The raws in the intermediate plane partition are weakly decreasing since the raws of the
two tableaux are And the final step produces decreasing dumns as the intermediate place
partition has decreasing advisors, which nears the raws (as partitions) are decreasing in =
ordering, which is preserved under transposition.

These steps are also reversible, so we have a sijection: pairs of everse emi-standard bring tableoux plans partitions of of shape I, of total content a and in respectively n+m- It boxes in I The number of ans in the resulting plane partition is the number of parts in the first glued partition, which is the top lost entry of the second tableaux. The number of slungs = length of first slung of partition in first raw of intermediate = top left entry of the first tableaux Now to interpret the trace in the entry = # entries in it may of intermediate that are > i = # glued partitions with it part > i = # dums in starting tablesing of length > i = leigth of an i the trace is the number of loves in the dusting tubleaux mari Secret are careful 1682 and 1846 she careful to 2 Firely, we muth the pain of reverse cent standard Young tableaux to IN-matrice in everce RSK, where one plays a light and on a laver and atematically, put minus sine in fant of the tableaux entries, and charge the signs back once you obtain the two sequences. Now the tookkeeping sequence is becarding, and the main sequence weally decience over where the backeeping sequence teeps the same value. Reading these sequences backwards jures equences with the usual andition, so these pair of takeoux emergend bijectively to N-matrices also Since the i, entry contributes a number to the sequences, the number of boxes in the tablesux is Day The wal untent of the first tuberies is Dian and that of the second tableaux is Signing. 6 N-matrices A correspond bijectively to place partitions of Elity-Day with trace I ais the number of raws if the plane partition is the last entry of the bookkeeping sequence, is the last nonzero low of A. The number of columns is the last entry of the main sequence, which is the last nemeno Since (c.e.) $q + r(\pi) = \sum_{x \in \mathbb{Z}} a_{x} + r(\pi) = \prod_{x \in \mathbb{Z}} \prod_{x \in \mathbb{Z}} \left(1 - q_{x} + j - 1 \right)^{-1} = \prod_{x \in \mathbb{Z}} \prod_{x \in \mathbb{Z}} \left(1 - q_{x} + j - 1 \right)^{-1}$

If we further finit the number is each box to be at most to then the number of plane partitions remaining in Place) is II II linguistics (if see)

S3 acts on the order ideals of N° by permuting the factors, so one can enumerate the plane partitions invariant under the induced s-action, or A-action. In total 10 groups act naturally on the set of place partitions, and their invariants are counted in "Enumeration of totally symmetric place partitions" by Stembridge Plya theory is the enumeration of orbits under group action. More formally, let Gact on D, Hact on R. Then GXH acts on Maps (D,R) by [(g,N)+](1) = h (f(g,l)) eg. let D be the four vertices of a square, R be two whoms, let 6 be the acting by rotation in the square, H be 1/22 then the GXH orbits on Maps (D, R) have representatives::;::;:: Asign a weight to each element of R-ie define a weight function R -> A where A is some algebra le g a polynomial risj) Then the weight of a function is given by w(f)= IT w(f(d)) We shall work with invariant weights: w(f)=w(f) if f, to are in the same G+H orbit (such orbits are also called patterns). Then, we have de Bruign's theorem: Zir son w(P)= Tallin Zan Zir fixed by (gh) w(f) for invariant weight w Roof: for each a con(w) = A, look at the functions: D -> R with weight a this is invariant under GXH-action since the neight is invariant. by Burnise, # patterns with weight a = # orbits of these hunctions = GIM Sigh (fix et of (gh)) Now Expatters w(P) = Each a # poterns with weight a = Tailth Doca Zgh a # of huntions of weight a fixed by (g, N) = IGIMI Zgn Zr pixed by Igh w(f) By specialising to H=id, we get tolyas theorem: I reatten w(P) = 151 2g I to g(F)=f w(f) The right hard side is usually expressed in terms of the cycle intex polynomial:

Por (2, 2) = 161 2 gog 2 #1-cycles in g 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por (2, 2) = 161 2 gog 2 **

Por where s=101, and the yele representation of g comes from viewing G = S. Observe that I is fixed by g if and only if I is constant on each orbit of g, and wf: D-> A can have any value in in w on such north. So we an rewrite Polya's theorem as

Is gettern w(A) = Pa (Zree w(r), Zr(w(r))) setting w=1, we see that # of patterns = Pa (IRI, IRI, W) Bure and the continue of the e.g. recall the previous example of your acting on the square. PG(x1, x2, x2, x8) = 4(x1 + x4 + x2 + x4) SO PG(IRI, IRI, IRI, IRI) = 7 (24+2+2+2)=6 ie there are 6 patterns, the mes we drew before and :: , :: (because H=id means we've now treating the about as different) To obtain the number of patterns with 2 points of each odour we take the y's coefficient when the image of w is y, and y, a the y's wellicient in 4 ((y,+y2)"+y,"+y2"+(y,+y2)+y,"+y") = y,"+y,"y=+2y,"y=+y,y=+y,y=+y,y= so those are two such patterns, as we can previously When applying this theory to the classification of chemical molecules up to rotation, the groups involved are typically and Do, which have agele index: Pc = + I A(d) x 1/2 where A(d) = # of integers between o and a coprine to d. $D_{20} = \frac{1}{2n} \left(n \times x \right)^{\frac{1}{2}} + \sum_{d \mid 0} \phi(d) \times x^{2d}$ $\frac{1}{2n} \left(\frac{n}{2} \frac{1}{2} + \frac{n}{2} \frac{1}{2} + \frac{n}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2$ If G, acts on D, and G, acts on D, then the yek type of (g., g.) on DILD is the cycle type of g, concatenated with the cycle type of g. So Para (x,y) = Pa,(x)Pa,(y) Sometimes we wish to dassify multiple objects up to station of each object and some symmetry amongst the objects: then we need the wreath product G. SG. Let I be the index st of the Lomains, each of which is D, and let G, act on I, G, act on D. Then G, I acts on D' componentives, and we can follow this with Graction permuting the amponents. So we have G.SG, = G, X G. I acting on D'I Then Passa(x, x,)= Pa (Pa(x, x, ...), Pa(x, x, ...), Pa(x, x, ...), see "Representation theory of symmetric groups" by James and Kerber, "Groups acting on sets" by kerber and Read's "Polyax theory of enumeration" Unfortunately, eycle index polynomials are in great had to compute, even by (922) this is the concern of computational Pour theory

Now we return to the case of general H. The case where H is cyclic with generator h i particularly well understood Despatten w(P) = Pa (P, (h), ... Pa(h)) where Ps(h) = Zrihs(r)=r w(r) w(h(r)) ... w(hs-'(h)) As before, if we are simply interested in the number of patterns with di elements of Souri, ther we give about it a weight of y; and then take the welficient of Thy: di of the This has been very successful in staining asymptotics for graph enumeration: fix a vertex set, let D be the pais of votices, R=50,13 lie whether there verticas are adjacent or not) and take &= So, H=id for the, if we want a graph to be equivalent to its complement) - see the work of Hardon and Refines Recall that GES, so we can unider the permutation representation of s, on the west of G. The character Travets of a (g) = Inda 1 (g) = 16, # [xES] xgz e G] = 161 # [Raydes in 6] stub of g in s.

= d! #[Raydes in 6]

[61 #[Raydes in 5] Then ch (Traset of G) = 1.] Dues Traset of G (W) payde type of W

= 1. [] # (2 cycle in G) # (2 cycles in S)] # (2 cycles in S) pa = 1/2 / # (2 ydes is G) P2 (200) $= Z_{G}(P_{1} \cdots P_{1})$ So, if [w(r): reR] is our variable set, ch (Tweets of G) = In pattern w(P), hence the pattern enunwator is a GL-character let G=S1; and view f:D -> R as an assignment of I balk to r boxes. Then the patterns are exactly the configurations of I unlabelled balls in r boxes. We know that the number of these is $\binom{d+r-1}{d}$, and Polya theory gives the same answer: # pattern = $P_{s_{+}}(r,r,...r) = \frac{1}{d!}\sum_{w \in S_{+}}r^{\#} e_{y}c_{w}e_{s_{+}}r^{\#} = \frac{1}{d!}r(r+1)...(r+d-1) = \binom{d+r-1}{d}$ E(TTy: * ball in the in the party = [in] \(\Suppose \text{(P)} = \frac{\text{(P)}}{\text{(P)}} \) \(\P_{s_s} \((\beta_1, \beta_2, \cdots \beta_s) \) It is much easier to work with $P_{s}(p_{1}, p_{2})$ across all is at once, using the cycle index theorem: $\sum_{d=0}^{d} t^{d} \binom{d+r-1}{2} E_{1}(Ty_{1})^{d} balls in index <math>(x,y_{1})^{d} = \prod_{j=1}^{d} \frac{1}{j-y_{j}+1} = \prod_{j=1}^{d} \frac{1}{j-y_{j}+1}$

= aethorest of (d+5-1)to is in in In I-yet | yi=1 = wetheriest of (der-1) to in (-t Ti-y.t) ly=1 To analyse the Bose-Einstein distribution (where all configurations of I unlabelled balls in r boxes are equally libely) we are work instead with independent geometric variables: if $P(x = j) = (1-t)t^{2}$, then $E(\pi_{y} \stackrel{\times}{:}) = \pi E(y \stackrel{\times}{:}) = \pi \sum_{i} F(x_{i} = j) = \pi \frac{1-t}{1-y_{i}t}$ $= \sum_{i} (1-t)^{2} t^{2} (\frac{d+r-1}{2}) E(\pi_{i} y) = \frac{\pi}{1-y_{i}t} \frac{dr}{1-y_{i}t} = \frac{\pi}{1-y_{i}t} \frac{dr}{1-y_{i}t} = \frac{\pi}{1-y_{i}t} \frac{dr}{1-y_{i}t} = \frac{\pi}{1-y_{i}t} \frac{dr}{1-y_{i}t} \frac{dr}{1-y_{i}t} = \frac{\pi}{1-y_{i}t} \frac{dr}{1-y_{i}t} \frac{dr}{1-y_{i}t} = \frac{\pi}{1-y_{i}t} \frac{dr}{1-y_{i}t} \frac$ We can early out similar analysis with subgroups of Se, to express the distributions where those patterns are equally likely as the result of filling the boxe's independently according to some other distribution. Very few results have been obtained in this area eg. G=id describes the dropping of labelled balls into labelled boxes. If X: have Paison distribution with parameter t, then $E(\pi_{y}; x_{i}) = \pi E(y_{i}; x_{i}) = \pi \sum_{i} y_{i} P(x_{i}; y_{i}) = \pi \sum_{i} y_{i} e^{t} = e^{-t} \pi e^{y_{i}t} = e^{-t} \sum_{i} e^{t} = e^{-t} \sum_{i} e^{t}$ Now we return to tableaux combinationes. liver a permutation lie a word in distinct letters), we are perform a Knuth move as follows: first a < be occurry in the stry is order acb, cab, bac, and be a lie a, c are adjacent, and switch a and c. Two permutations are Knuth equivalent if one can be transformed into the other via Knuth maves. Observe that Knith moves "commute" with reversing the string, so if u, we Knuth equivalent, so are u, v both read backwards

let Ix denote the maximal number of elements in the union of kincreasing subsequences

for example, for w=236145, I =4 (attained by 2345), I = 6 (attained by 236,145)

let De denote the maximal number of elements in the union of k decreasing subsequences

Shere that none of the subjequences attaining to have the maximal length
D=2 (attained by e.g. 21), D,= 4 (attained by e.g. 64, 31)
lemma 1: Ix and Dx are uncharged under Knuth moves
Proof Since De of a string is In of its revose, and Knuth mase "commute" with
exercity, it suffices to prove this for Ix
Suppose this is belien so I was with I (w) = m, I + m after a Knuth nove
Suppose this is the more acts - cats. Then ac must be put of an increasing
sequence attaining In for their relative order would not affect In) is must be in
another sequence attaining Ix, as otherwise we are replace ac with ab as bec,
and get a sequence of the same tergth that will affected by the known more
So we have ac and b in the sequences attaining In When we switch a
and a switch the tails of the sequences from b or a minute to obtain increasing
sequences whose when have the same number of elements, a contradiction (because
In carnot increase if we put a larger element in front of a smaller).
The case bac -> bea is completely analogous and the remaining two uses we
inverse of the above
Next, define the reading word of a tableaux to be the last raw (read left to right) followed
by the parultimete pow then the raw above e.g., if T= 1356
ther read (T) = 7824 1356.
If T is standard or semi-standard, we can 18
reconstruct I from its readily word by noting the positions of descents.
lemma 2: any ween is knuth equivalent to read (Plw), where Plw) is the first
tableaux obtained from w in RSK.
Proof: it suffices to prove that end (P) with & appended in Knuth equivalent to
read (+ with k inested the RSK way) - ie we consider one insertion at a time.
we also book at each ow at a time, to show that read (P) k = read (P) first raw).
read (first raw of P) · k = read (P) first raw). what k displaced from first raw read (new
first raw) = read (P \ first 2 raws). what k displaced from second raw read (new top two
one) = ie we show read (a row) k = what k displaced read (now row)
this reduces to a,a, a, k = a; a,a, a; k a; an where a, <a, <a,="" <a,<="" td=""></a,>
and the restricted Knuth marks are an ank - an kanna as k - an kann

a, a, t, x > a, k a, t, , a, -, a, k -> a, a, -, k, a, -, a, a, -, -> a, a, -, -, ... a, a, a, a, a, a lie move the k to behind a; they move a to the front) lemma 3: P(read (7))=T Proof: corrying out RSK to a reading word essentially fills T from the bottom raw upwards. Each and is insetted at the top of the solumn it came from, and the sounn slides four me spot (the insertion path carrot go to the left of you look at the tableaux two manes Combining these give Greenes theorem I = our of the leights of the first & rows Dx = sum of the lengths of the first k alumns of the tubleaux obtained under RSK. Proof by lemmas I and 2 In(w) = I read (P(w)), By lemma 3 P(read P(w)) = P(w) so it suffices to consider reading words - ie to show that I (read T) = sum of the lengths of the first & rows of T, and civilarly for D. Each par of T is an increasing sequence is read (T), and each column of Tis a decreasing requence in read (7) - I > lengths of first & raws, Pr > lengths of first & slumms Consider position k, L on the rim of T. (is there is nothing diagonally to the right and below k, (). So every box is either in the hist k rows on a se hist ludurans, and this acrocauts medicily kl boxes So In+DIZ n+kl. On the other hand, each increasing subsequence us intersect a decreasing sussequence at most once, so there are at most H interactions between the subsequences attaining to and Dr Hence Lx+Dx =n+kl. So we must have In = length of first k raws, D, = length of first Calumn for each pair k, L such that Lox k, L is on the rin. We can find such rim boxes for every k land of a row) and every & lend of a dumn) so there hold the

So the numbers Ix, Dx isompletely describe the shape of the tibliaux obtained

under RSK. Using lemma 1, we can deduce that the stage of the RSK tableaux depends only on its Knuth class In fact, more is true: Theorem: The first RSK tubleaux of v and w are equal if and only if they are in the same Knuth equisalence class Poof let up be with the number larger than k remared (so we es) then Plwx) is the subtableaux of Plws anolving 1,2, k, since playing higher eards does not affect the position of lower ones suppose we do a known mare on w. Wx is uncharged if c > k (as then a does't appear in we); otherwise, a, b, c all appear in we, so we do a known mave on we Hence we is knuth equivalent to is for each k. So P(we) and P(ve) have the some shape, for each & But the difference between P(w,) and P(w,) is the box containing k, hence k is in the same spot in Plw) as in Plv), and this holds for The first of the sea o Here's have to play Ten de Taquin on a semi-standard tong to bleaux with distinct entries lie one that us be relabeled to give a standard tableaux): - remare the lawest entry - slide the smallest adjacent entry into the ble - continue until what remains is the Young diagram of a partition For example: 125, 25, 25, 245, 34, 3We construct be execuation exacle) of a standard tring tableix a is follows: play Jen de Tacquin successively starting with Q, will rething remains. This gives a decreasing (under =) sequence of shapes (ignore the filling now) - evac (Q) is the booklesping tableaux of this sequence read backwards e.g. newscire games of Eu de Tacquir on 125 give the sequence of tableaux your mile of a mile by 34th which will a rise 5 SO EVAL (34) = 245 125 34 A turn out that applying RSK to w reversed (ie www. w.) gives (tableaux of w) T (as mentioned before) and evac (bookkeeping tableaux of w). Applying RSK to n+1-wn, n+1-wn=1, ... n+1-w, lie suttact the evere of w terrivise from n+1) gives the

12/2

1 " "

exacuation of both tableaux of w. The subject of Hall phynomials began with the enumeration of abelian groups. Given G in abelian p-group, by the structure theorem, G= @ " and i i then called the type of G. We are interested in giv (p), the number of subgroups of \$7.72 that are ismorphic to et To I whose quotient is of I. I Hall proved that give are phynomial is p - these are the Hall polynomials (We are ask the same question over any dievete valuation ving, where we replace of with a prine ideal) If y has a single part, then $g_{\mu\nu}^{\lambda}(t) = (1-\frac{1}{t})^{-1} t^{\sum (\lambda_i - \mu_i)_{i-1}} T(1-t^{-4\mu att})$ if I'm has at most one lox is each alumn, and we product over ; such that the just wolumn of 2 m has one hox, and the j+1th summ of 2 m has no boxes (This courts eyelic quotients) e.g. if $\lambda = (2,0,-)$, $\mu = (1,0,-)$, then $g_{xy}^{2} = 0$ unless $\nu = (1,0,-)$ (as the number of boxes in m and in a must total the number of boxes in 2).
Then, 2 m has shape Was, so give (t) = (1-\frac{1}{4}) \frac{1}{4} \cdot (1-t) \fr · (1-七) (1-七) =1 (2000) (and vided, there is a unique apy of the in The) eg. if 2=(1,0,...), n=(1,0,...), then giv = 0 where v=(1,0,...) Then, I'm has shape I so give (t) = (1-t) to 0+111 (1-t* mats of size 1 in 2) は、これをしてもり、七(1・七)、ニュナナー、 this counts the number of lives in a plane our Fo Fix a p, and let Go beste the p-group of type 2. Then Zan Autigal = Zan 162) -see lynn Batter, Subgroup lattices and symmetric functions Hall's great idea is to use the give as connection coefficients is what became knim as the Hall algebra H(E): it is a C(E)- vector space with basis uz indexed by partitions, under the product upur = En gar(t) ug.

H(t) turns act to be feely generated by $v_{1,1,0}$, $v_{2,2}$ we are define a map $v_{1,1,1,0}$, $v_{2,2}$. The images of v_{2} are then the Hall-littlewood polynomials $P_{2}(x,t)$ (in $\mathcal{Q}(t)\Lambda(x)$). They also have an explicit formula $P_{2}(x,t) = \sum_{w} w(x^{2}, \sum_{x = 2}^{\infty} \frac{1}{2} \sum_{x = 2}^{\infty} \frac{$

Then, Pr can be characterised as the orthogonal pairs of Q(+) A such that the charge of basis matrix from mr to Pr is upper traingular with diagonal entries 1. Equivalently, Pr is what we obtain from applying Gran-schuidt without scaling to mr, so each Pr is mr + have order terms.

 $P_{\lambda}(x,-1)$ are Solver's Q-functions, which are related to the projective representations of \leq_0 , the representation theory of Lie superalgebras, the cohomology of Chaumarians, etc. They also kelp un examinate the characters on $G_{\lambda}(\mathbb{F}_q)$, for analysis of the transvections absolute on $G_{\lambda}(\mathbb{F}_q)$, or to compute the probability of a random element of $G_{\lambda}(\mathbb{F}_q)$ being emissingly.

A further generalisation are the MacDonald polynomials, the unique orthogonal basis $P_{\lambda}(z,q,t)$ of $Q(q,t) \wedge Which has an upper triangular, himsend entries I change of basis nutrix from the <math>m_{\lambda}$, under the inner product $\langle P_{\lambda}, P_{\lambda} \rangle = Z_{\lambda} \prod_{i \neq \lambda-1}^{n} Z_{\lambda}$.

If q=t, then the inner product loses the extra sawing bactor, so $P_{\lambda}(z,q,q) = S_{\lambda}$.

If q=0, then the inner product reduces to the one in $Q(t) \wedge P_{\lambda}(z,0,t) = P_{\lambda}(z,t)$. It posticular, $P_{\lambda}(z)$ are the Torrel phynomials.

It is known that $P_2(x,q,t) = \frac{1}{2(1-qt)} \left[-(1+t)p_2 + (1-t)(1+q)p_{11} \right]$ and $P_{11}(x,q,t) = \frac{1}{2(1-qt)} \left[-(1-t^2)p_2 + (1+t^2)p_{11} \right]$

The Schur functions and Jack polynomials are be viewed as eigenfunctions of action difference operators, and Hackmald's original definition of his polynomials was as the agenfunction of an operator that generalized these $F \to Z$ $t^{(2)}$ $t^{(2$

Expand P2 (x, q t) as In Ku2 (q,t) su(x), and et 22 (q,t) = Ex 252 (p) Ku2 (q,t). They P2 (x,q,t) = Zp [zp T; (1-t) x2(q,t)] pp(x) So there is a let of interest in Kun (q, t), especially as Machinal shared that it is phyramial in q,t, or it is likely to enumerate something The work of Garain and Haining has shown the following: fix is a partition of a Define Duly y) = det (xi yis) where (a, b) we the coordinates of the squares of in For example, n=12,2,1) has wordinates (0,0), (0,1), (1,0), (1,1) and (2,0), & Do, 1,1(x,y) = det /1 y, x, x,y, x, 11 y, x z z z in the company of the state of 1 yen x4 x4y4 x42 (x 23 g 35 is as non matrix) There are in Sums with entires that have degree i-1 in x, so Dibery) has degree Suli-1) in a similarly the degree of Dulay in y is Dulic-1) let Du be the space of derivatives of Du, and Dur, she those elements of Du that have degree + is a and degree < is y Then, using Kilbert schemes (see J. Hogland's monograph), we have the no conjecture (now a theoren): dim on = n! for all u a partition of n. Furthermore Spaction, on by Chy permitting is and ys identically) is the regular representation since s-action presents the duble-grading or Dur, we can ask for the multiplicates of each irreducible in One. The generating furction for these turn out to be Itq (Xs2, Xomes) = Kan(qt) are die to find the last conference of the state of The theory of Hackmal polynomials allows us to analyse the bollaring Harkov chair on the partitions of k: if I'm currently at I flip a 1g-coin for each square of 2, and throw out a part of 2 if I don't get heads for all squares of that part. There is an analogous process to generate new parts out of the removed squares, using t instead of q. This is one example of an auxiliary variables chain, and another is block spin dynamics from physics, regarding random campling from Ising models For the partition walk, formulae of the eigenvalues are known, and the eigenfunctions are of (p) = 22 (g,t) T(1-q"), which is almost the wellicient in the expansion of P, in term of Pa