24 :				
(a) [A]				1
(b) [A]				
(C) for this table. we have for	42	art writ	ing the "Anal	ysis of Deviano
1 2 1 1 1 2	: that factor	-variable	The second secon	
number of levers Res-Df mod 0 736	85L. L8		15.04	P
mod 7500 ⇒ based on Apper			ore of St_is	23.68. So
we can't reject	the null hypoth	esis. Hen	ce, <u>m</u> 1 is	an adequate
simplification of	mo			· Annount very gaption and the service and published are made to read the first than the period methods

we repeat	the test s	modl	Res. Df 750	Ra.Dev 847-32	Df Df	Deviance 3.21	Pr()chi)
·		mad 2	751	820.23			
based on A	ppendix ta	ble, pi	s larger	than 5%	So we	cont re	ject the
	resis. Hence						,
For m3:							
mod 2	Res.DF 751	Res. Der 850. 5	/ 104 3 1			(>chi) P	
mod 3	752	850.5	5			•	
⇒ we can't	reject th	e null hypo	thesis =	- <u>m3</u> is	a simpli	fication o	f m2
for m4 ?		Res-Dev		Deviance			
mod 3		850.56			P	scar)	
mod 4		858.33			·		
⇒ based (n table,	P is les	s than	5%, So	we reject	the hu	11 hypotheris.
=> m4 is	not an	adequate Si	mplifi cati	on of m	13.		
Test the r	est of n	nodels wi	th m3	3			
mod 3	Res. D	P Re	5-Dev 5.56	Df	Deviance	pr(>cl	ni)
mods	756	86	4.09	4	13.53	reject l	1 0
mod 6	757	867	7.82	5	17.26	reject	Н.
mod 7	758	940.	66	6	90.1	rejec	H.
→ M3	is an	adequate	e Simpli	fication	of m	ond and	we cant
	it more.				,		
				7			

(d) $\log (M_{1-\mu}) = \beta_0 + \beta_1 (bmi) + \beta_2 (age) + \beta_3 (diastolic)$ $= \sum_{\substack{\text{odds of diabetes with (age+1)}\\\text{odds of diabetes with (age)}}} = c^{\beta_2} = 1.04$ $= \sum_{\substack{\text{increases}\\\text{increases}}} \log_{10} \log_$

(f) based on lecture notes, the χ_{n-p} approximation makes sense only under the when the grouped format is used.

Since we don't know the format of data entry, we can't tell if we can use goodness of fit test with χ_{756} [C]