Equivalência entre ERs e AFNs

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

05 de dezembro de 2017

Plano de Aula

Revisão

- 2 Instrução pelos Colegas
- 3 Equivalência entre ERs e AFNs

Sumário

- Revisão
- 2 Instrução pelos Colegas
- 3 Equivalência entre ERs e AFNs

Exemplos

Exemplo 1.51

 $(0 \cup 1)^*$

Outro exemplo...

 Σ^*

Outro exemplo...

 Σ^*1

Outro exemplo..

$$(0\Sigma^*) \cup (\Sigma^*1)$$

Definição de ER

Definição

Dizemos que R é uma expressão regular se R for

- **1** a para algum $a \in \Sigma$;
- \mathbf{e}
- **③** Ø;
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares;
- $(R_1)^*$, em que R_1 é expressão regular.

Cuidado!!!

Não confunda ϵ com \emptyset !!!

Exemplos

Exemplo 1.53

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- (ΣΣΣ)*
- 01 ∪ 10
- $0\Sigma^* \cup 1\Sigma^*1 \cup 0 \cup 1$
- $(0 \cup \epsilon)1^*$
- $(0 \cup \epsilon)(1 \cup \epsilon)$
- 1*∅
- Ø*

Sumário

- Revisão
- 2 Instrução pelos Colegas
- 3 Equivalência entre ERs e AFNs

Seja a expressão regular R=0. L(R) é igual a

- (A) 0
- (B) ∅
- (C) {0}
- (D) ϵ

Seja a expressão regular $R = (+ \cup - \cup \epsilon)(D^+ \cup D^+.D^* \cup D^*.D^+)$ em que $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. R pode gerar a cadeia...

- (A) 5.47
- (B) 6.000.000
- (C) 5.6 + 6.78
- (D) $-\epsilon$

Seja a expressão regular $R = (+ \cup - \cup \epsilon)(D^+ \cup D^+.D^* \cup D^*.D^+)$ em que $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. R pode gerar a cadeia...

- (A) 192.168.0.1
- (B) 045.
- (C) 47 +
- (D) Ø

Qual expressão regular gera a linguagem reconhecida por este AFN

- (A) a
- (B) a*
- (C) a^+
- (D) $a\Sigma^*$

Qual expressão regular gera a linguagem reconhecida por este AFN

- (A) a
- (B) Ø
- (C) $\{\epsilon\}$
- (D) ϵ

Qual expressão regular gera a linguagem reconhecida por este AFN

- (A) a
- (B) ∅
- (C) $\{\epsilon\}$
- (D) ϵ

Sumário

- Revisão
- 2 Instrução pelos Colegas
- 3 Equivalência entre ERs e AFNs

Teorema 1.54

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Teorema 1.54

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

• Lema 1.55: Uma linguagem é descrita por uma expressão regular, então ela é regular.

Teorema 1.54

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

- Lema 1.55: Uma linguagem é descrita por uma expressão regular, então ela é regular.
- Lema 1.60: Se uma linguagem é regular, então ela é descrita por uma expressão regular.

Lema 1.55

Uma linguagem é descrita por uma expressão regular, então ela é regular.

Lema 1.55

Uma linguagem é descrita por uma expressão regular, então ela é regular.

Prova

Vamos converter R num AFN N. Consideramos os seis casos na descrição formal de expressões regulares:

Lema 1.55

Uma linguagem é descrita por uma expressão regular, então ela é regular.

Prova

Vamos converter R num AFN N. Consideramos os seis casos na descrição formal de expressões regulares:

- Três casos básicos;
- Três casos gerais.

Prova do Lema 1.55

Prova do Lema 1.55

• R = a para algum a em Σ . Então $L(R) = \{a\}$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

• R = a para algum a em Σ . Então $L(R) = \{a\}$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

• R = a para algum a em Σ . Então $L(R) = \{a\}$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$, em que δ se divide em dois casos:

Prova do Lema 1.55

• R = a para algum a em Σ . Então $L(R) = \{a\}$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$, em que δ se divide em dois casos:

•
$$\delta(q_1, a) = \{q_2\}$$

Prova do Lema 1.55

Prova do Lema 1.55

 $R = \epsilon.$

Então $L(R)=\{\epsilon\}$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

Então $L(R) = \{\epsilon\}$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

Então $L(R) = \{\epsilon\}$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$, em que $\delta(r, b) = \emptyset$ para quaisquer r e b.

Prova do Lema 1.55

Prova do Lema 1.55

 \mathbf{O} $R = \emptyset$.

Então $L(R) = \emptyset$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

 \mathbf{o} $R = \emptyset$.

Então $L(R) = \emptyset$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

Então $L(R) = \emptyset$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$, em que $\delta(r, b) = \emptyset$ para quaisquer $r \in b$.

Prova do Lema 1.55

3 $R = \emptyset$. Então $L(R) = \emptyset$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$, em que $\delta(r, b) = \emptyset$ para quaisquer $r \in b$.

Casos gerais

- $Q R = R_1 \cup R_2$
- $R = R_1 \circ R_2$
- $R = R_1^*$

Para os três casos gerais, utilizamos as provas de que as linguagens regulares são fechadas sob as operações de regulares ■

Prova do Lema 1.55

Casos gerais

$$Q R = R_1 \cup R_2$$

5
$$R = R_1 \circ R_2$$

$$R = R_1^*$$

Prova do Lema 1.55

Casos gerais

- $Q R = R_1 \cup R_2$
- $R = R_1 \circ R_2$
- $R = R_1^*$

Para os três casos gerais, utilizamos as provas de que as linguagens regulares são fechadas sob as operações de regulares ■

Teorema 1.54

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

- **Lema 1.55**: Uma linguagem é descrita por uma expressão regular, então ela é regular. √
- Lema 1.60: Se uma linguagem é regular, então ela é descrita por uma expressão regular. ???

Equivalência entre ERs e AFNs

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

05 de dezembro de 2017

