\star Sup - St Joseph/ICAM Toulouse \star -

2021-2022 -

lundi 10 janvier 2022 - Durée 4 h

On rappelle que pour $x \in \mathbb{R}$,

$$ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$

EXERCICE 1

On considère l'équation différentielle suivante :

$$y'' - 2y' - 3y = \frac{e^{4x} - e^{2x}}{e^x + e^{-x}} \quad (L)$$

- 1. Donner les solutions de l'équation différentielle homogène associée à (L).
- 2. Montrer que y est solution de (L) si et seulement si la fonction z définie sur \mathbb{R} par $z(x) = e^{-3x}y(x)$ est solution de l'équation différentielle

$$y'' + 4y' = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} \qquad (L_1)$$

et donc si et seulement si z^\prime est solution de l'équation différentielle :

$$y' + 4y = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} \qquad (L_2)$$

3. a. Déterminer les réels a, b et c tels que pour tout réel x on a:

$$e^{4x}\frac{e^{2x}-1}{e^{2x}+1} = e^{2x}\left(ae^{2x}+b+\frac{c}{1+e^{2x}}\right)$$

- **b.** Résoudre (L_2) .
- **4. a.** Déterminer les réels α, β et γ tels que pour tout réel u > 0 on a :

$$\frac{1}{u^2(1+u)} = \frac{\alpha}{u} + \frac{\beta}{u^2} + \frac{\gamma}{1+u}$$

- **b.** Déterminer $\int_{0}^{x} \frac{\ln(1+e^{2t})}{e^{4t}} dt$, à l'aide du changement de variable $u = e^{2t}$ et d'une intégration par parties.
- c. Résoudre (L_1) .
- 5. Déduire des questions précédentes l'ensemble des solutions de (L).

EXERCICE 2

1. Montrer que :

$$\operatorname{Arctan}\left(\frac{2x}{1-x^2}\right) = \left\{ \begin{array}{lll} 2\operatorname{Arctan}(x) & \operatorname{si} & x \in]-1,1[\\ 2\operatorname{Arctan}(x)-\pi & \operatorname{si} & x \in]1,+\infty[\\ 2\operatorname{Arctan}(x)+\pi & \operatorname{si} & x \in]-\infty,-1[\end{array} \right.$$

2. En déduire les solutions de l'équation :

$$Arctan\left(\frac{2x}{1-x^2}\right) = Arcsin(x)$$

EXERCICE 3

L'objectif de cet exercice est de déterminer l'ensemble E des fonctions f définies sur $\mathbb R$ satisfaisant l'équation fonctionnelle :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)}$$

1. a. Déterminer les fonctions constantes appartenant à E.

b. La fonction f appartenant à E, montrer que s'il existe $a \in \mathbb{R}$ tel que $f(a) = \pm 1$, alors f est constante.

2. On suppose désormais qu'il existe dans E une fonction f non constante.

a. Calculer f(0) et montrer que f est impaire.

b. En écrivant $x = \frac{x}{2} + \frac{x}{2}$, montrer que

$$\forall x \in \mathbb{R}, f(x) \in]-1,1[$$

3. a. Montrer que pour tout $n \in \mathbb{N}$, et tout $x \in \mathbb{R}$,

$$\frac{1+f(nx)}{1-f(nx)} = \left(\frac{1+f(x)}{1-f(x)}\right)^n$$

b. On pose $b = \frac{1+f(1)}{1-f(1)}$. Exprimer f(n) en fonction de b et de n, pour $n \in \mathbb{N}$.

c. Montrer que

$$\forall n \in \mathbb{N}^*, \quad f\left(\frac{1}{n}\right) = \frac{b^{\frac{1}{n}} - 1}{b^{\frac{1}{n}} + 1}$$

4. On suppose que f est dérivable en 0 et on pose f'(0) = k.

a. En utilisant le taux d'accroissement de f en 0, montrer que $k = \frac{\ln(b)}{2}$.

b. En utilisant le taux d'accroissement de f en x, montrer que f est dérivable en x et que

$$f'(x) = k (1 - (f(x))^2)$$

5. a. Déterminer les réels α et β tels que

$$\forall x \in]-1,1[, \frac{1}{1-x^2} = \frac{\alpha}{1-x} + \frac{\beta}{1+x}$$

2

b. Déduire de ce qui précède l'ensemble des éléments de E dérivables en 0.

EXERCICE 4

Soit n un entier naturel supérieur ou égal à 2. On note $\omega = e^{\frac{2i\pi}{n}}$.

1. Montrer que

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0$$

2. En déduire que

$$\sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = 0$$

3. Montrer que

$$\omega^k - 1 = 2i \sin\left(\frac{k\pi}{n}\right) e^{\frac{ik\pi}{n}}$$

4. A l'aide des questions précédentes, démontrer que

$$\sum_{k=0}^{n-1} \left| \omega^k - 1 \right|^2 = 2n$$

EXERCICE 5

Soient n un entier naturel non nul et a un réel de $\left]0,\frac{\pi}{2}\right[$. On souhaite résoudre l'équation

$$\left(\frac{1+\mathrm{i}z}{1-\mathrm{i}z}\right)^n = \frac{1+\mathrm{i}\tan a}{1-\mathrm{i}\tan a} \qquad (1)$$

1. Déterminer la forme exponentielle de

$$\frac{1 + i \tan a}{1 - i \tan a}$$

2. Résoudre dans \mathbb{C} l'équation d'inconnue $Z \in \mathbb{C}$,

$$Z^n = e^{2ia}$$

3. Démontrer que

$$\forall \theta \in]-\pi, \pi[, \quad \frac{e^{i\theta}-1}{i(e^{i\theta}+1)} = \tan\frac{\theta}{2}$$

4. Résoudre l'équation (1). On exprimera les solutions à l'aide de la fonction tangente.

EXERCICE 6

On considère la fonction f définie sur [0,1] par

$$f(x) = 2xe^x$$

1. a. Dresser le tableau de variations de f sur [0,1] et montrer que f réalise une bijection de [0,1] sur un ensemble que l'on déterminera.

On note f^{-1} la bijection réciproque de f.

b. Vérifier qu'il existe dans [0,1] un et un seul réel noté α tel que

$$\alpha e^{\alpha} = 1$$

Montrer que $\alpha \neq 0$.

c. Résoudre, pour $x \in [0,1]$:

$$f(x) = x$$

d. Résoudre, pour $x \in [0, 1]$:

$$f(x) \ge x$$

e. Justifier que

$$f^{-1}([0,1]) \subset [0,1]$$

2. On définit la suite (u_n) par

$$\begin{cases} u_0 = \alpha \\ \forall n \in \mathbb{N}, \ u_{n+1} = f^{-1}(u_n) \end{cases}$$

a. Montrer que pour tout $n \in \mathbb{N}$,

$$u_n \in [0, 1]$$

b. Montrer que la suite (u_n) est monotone.

c. Montrer que la suite (u_n) est convergente, et préciser sa limite.

3. On se propose de préciser ce résultat en montrant que $(2^n u_n)$ a une limite finie non nulle. On pose pour tout $n \in \mathbb{N}$:

$$S_n = \sum_{k=0}^n u_k$$

a. Montrer que pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{2} u_n e^{-u_{n+1}}$$

b. En déduire que pour tout $n \in \mathbb{N}$,

$$u_n = \frac{e^{-S_n}}{2^n}$$

c. Montrer que pour tout $k \in \mathbb{N}$,

$$u_k \le \left(\frac{1}{2}\right)^k$$

et en déduire une majoration de S_n .

d. En déduire que la suite (S_n) est convergente. En notant L sa limite, montrer que

$$\alpha \le L \le 2$$

e. Déterminer la limite de $(2^n u_n)$.

Fin de l'énoncé