## pter 6

Find the indicated real nth root(s) of a.

1. 
$$n = 4$$
,  $a = 81 \pm 3$ 

**2.** 
$$n = 3$$
,  $a = 512$ 

3. 
$$n = 5, a = -243$$
 -3

Evaluate the expression without using a calculator.

6. 
$$(\sqrt[3]{216})^{-2}$$

7. 
$$(\sqrt[5]{-32})^4$$
 16

Solve the equation. Round the result to two decimal places when appropriate.

8. 
$$x^3 = -8$$

$$q r^4 + q = q0 +$$

**10.** 
$$(x-3)^5 = 60$$
 **5.2**

9. 
$$x^4 + 9 = 90 \pm 3$$
 10.  $(x - 3)^5 = 60$  5.27 11.  $-4x^6 = -400 \pm 2.15$ 

Simplify the expression.

12. 
$$4^{5/2} \cdot 4^{-1/2}$$

13. 
$$\frac{17^{3/7}}{17^{4/7}} \frac{1}{17^{1/7}}$$
 14.  $(\sqrt[4]{5} \cdot \sqrt{5})^4$  15.  $\frac{\sqrt[3]{135}}{\sqrt[3]{5}}$  3

15. 
$$\frac{\sqrt[3]{135}}{\sqrt[3]{5}}$$

**16.** 
$$5\sqrt[5]{7} - 7\sqrt[5]{7}$$
 **-2**  $\sqrt[5]{7}$  **17.**  $\sqrt[3]{2} + 2\sqrt[3]{128}$  **9**  $\sqrt[3]{2}$  **18.**  $\frac{324^{1/4}}{4^{-1/4}}$ 

17. 
$$\sqrt[3]{2} + 2\sqrt[3]{128}$$
 9 $\sqrt[3]{2}$ 

18. 
$$\frac{324^{1/4}}{4^{-1/4}}$$

19. 
$$4\sqrt[3]{108} \cdot 2\sqrt[3]{4}$$
 48 $\sqrt[3]{2}$ 

Write the expression in simplest form. Assume all variables are positive.

**20.** 
$$\sqrt{20x^6y^7}$$
 **2** $x^3y^3\sqrt{5y}$  **21.**  $\sqrt[5]{18x^3y^{14}z^{20}}$ 

21. 
$$\sqrt[5]{18x^3y^{14}z^{20}}$$
  
 $v^2z^4\sqrt[5]{18x^3v^4}$ 

22. 
$$\sqrt[4]{\frac{x^5}{y^{16}}} \frac{x}{y^4} \sqrt[4]{x}$$

23. 
$$\sqrt[3]{16x^7y^2} \cdot \sqrt[3]{6xy^5}$$
  
 $2x^2y^2 \sqrt[3]{12x^2y}$ 

Let f(x) = -x + 4,  $g(x) = x^3$ , and  $h(x) = \frac{x}{4}$ . Perform the indicated operation and state the domain. 24-31. See margin.

**24.** 
$$f(x) + g(x)$$

**25.** 
$$g(x) - f(x)$$

**26.** 
$$g(x) \cdot h(x)$$

**27.** 
$$\frac{f(x)}{g(x)}$$

**28.** 
$$f(g(x))$$

**29.** 
$$g(h(x))$$

**30.** 
$$h(f(x))$$

31. 
$$f(f(x))$$

Verify that f and g are inverse functions. 32-33. See margin.

**32.** 
$$f(x) = 2x - 4$$
,  $g(x) = \frac{1}{2}x + 2$ 

33. 
$$f(x) = 3x^2 + 1, x \ge 0; g(x) = \left(\frac{x-1}{3}\right)^{1/2}$$

Find the inverse of the function.

34. 
$$f(x) = 5x - 3$$
  $f^{-1}(x) = \frac{x+3}{5}$ 

35. 
$$f(x) = \frac{4}{3}x + 2$$
  
 $f^{-1}(x) = \frac{3}{5}x$ 

**36.** 
$$f(x) = \frac{1}{2}x^2, x \ge 0$$
  $f^{-1}(x) = \sqrt{2x}$ 

37. 
$$f(x) = -x^6 + 2, x \le 0$$

34. 
$$f(x) = 5x - 3$$
  $f^{-1}(x) = \frac{x+3}{5}$  35.  $f(x) = \frac{4}{3}x + 2$  36.  $f(x) = \frac{1}{2}x^2, x \ge 0$   $f^{-1}(x) = \sqrt{2x}$  37.  $f(x) = -x^6 + 2, x \le 0$  38.  $f(x) = \frac{4x^4 - 1}{18}, x \ge 0$   $f^{-1}(x) = \sqrt{\frac{18x + 1}{4}}$  39.  $f(x) = 32x^5 + 4$ 

$$39. \ f(x) = 32x^5 + 4$$

Graph the function. Then state the domain and range. 40-47. See margin for art.

**40.** 
$$y = -\frac{1}{2}\sqrt{x}$$

41. 
$$v = \frac{2}{3}\sqrt{x}$$

**42.** 
$$y = \frac{5}{6} \sqrt{x}$$

**43.** 
$$y = \sqrt{x+2} -$$

40.  $y = -\frac{1}{3}\sqrt{x}$  41.  $y = \frac{2}{5}\sqrt[3]{x}$  domain:  $x \ge 0$ , range:  $y \le 0$  See margin.

**42.**  $y = \frac{5}{6}\sqrt{x}$  **43.**  $y = \sqrt{x+2} - 3$  domain:  $x \ge 0$ , range:  $y \ge 0$  domain:  $x \ge -2$ , range:  $y \ge -3$ 

**44.**  $v = -2\sqrt[3]{x-1} + 2$  **45.**  $f(x) = 3\sqrt[3]{x}$ See margin. See margin.

**46.**  $g(x) = -\frac{1}{2}\sqrt{x-2}$  **47.**  $h(x) = -\sqrt{x+3} + 4$ domain:  $x \ge 2$ , range:  $y \le 0$  domain:  $x \ge -3$ , range:  $y \le 4$ 

Solve the equation. Check your solution.

48. 
$$\sqrt{2x+3}=7$$

**49.** 
$$-5\sqrt{x+1} + 12 = 2$$
 **3 50.**  $\sqrt[3]{5x-1} + 6 = 10$ 

**50.** 
$$\sqrt[3]{5x-1}+6=10$$

51. 
$$2\sqrt[3]{8x} + 9 = 5$$
 -1

**52.** 
$$7x^{4/3} = 175 \pm 5\sqrt{5}$$
 **53.**  $(x-2)^{3/4} = 1$ 

53. 
$$(x-2)^{3/4}=1$$

**54.** 
$$x - 8 = \sqrt{18x}$$

**55.** 
$$x = \sqrt{4x - 3}$$
 **1.3**

**56.** 
$$\sqrt{2x+1} + 5 = \sqrt{x+12} - 8$$

Extra Practice 1015

 $x^3 - x + 4$ , all real numbers

 $\frac{x^4}{a}$ , all real numbers

27.

except x = 0

28.  $-x^3 + 4$ , all real numbers

29.

32. 33. See Additional Answers beginning on p. AA1.

30.  $-\frac{x}{4}$  + 1, all real numbers





domain: all real numbers, range: all real numbers

EXTRA PRACTICE







domain: all real numbers, range: all real numbers



domain: all real numbers, range: all real numbers



