BLUTA Momentum Algo

BTC Perpetual Future Contract

LAWRENCE CHANG

EXECUTIVE SUMMARY

Statistical Analysis

Trading Algo/Signal

Backtest Result

Appendix

STRATEGY CONCEPT

Bluta Momentum Algo:

The box theory breakout approach to momentum trading posits that when price data consistently trades within a well-defined "box" or range—captured by recent minimum and maximum levels—an eventual breach of those boundaries signals a potential momentum–driven move. Conceptually, the strategy identifies the prevailing "box" (the highest and lowest prices over a set lookback period), then classifies a break above the upper threshold as a bullish initiation (betting on further upside), and a break below the lower threshold as a bearish indication (anticipating continued downside). This framework couples simple boundary logic with market psychology: persistent confinement and subsequent release generate a "pressure cooker" effect, so that once the price escapes its prior box, momentum—fueled by stop triggers, trend-following orders, and renewed sentiment—may carry it substantially farther, aligning with core momentum principles.

STATISTICAL ANALYSIS

Target Result for Momentum Trading Algo:

- Beta > 0
- P-Value < 0.05
- High R-Square

Linear Regression Model

$$\mathrm{ret}t + lag \ = \ lpha \ + \ eta \mathrm{ret}t \ + \ \epsilon_{t+lag}$$

OLS Regression Results						
Dep. Variable Model: Method: Date: Time: No. Observat: Df Residuals Df Model: Covariance Ty	ions:	ret_ne 0 Least Squar Fri, 17 Jan 20 20:08: 25154 25154	LS Adj es F-s 25 Pro 04 Log 40 AIC 38 BIC	ob (F−statis j−Likelihood :	tic):	0.002 0.002 4251. 0.00 1.3764e+07 -2.753e+07 -2.753e+07
========	coef	std err	====== t	P> t	======= [0.025	 0.975]
const :	1.436e-06 0.0411	6.41e-07 0.001	2.239 65.200		1.79e-07 0.040	
Omnibus: Prob(Omnibus) Skew: Kurtosis:): <u>-</u>	11240433.5 0.0 145.0 104122.9	00 Jar 78 Pro	bin-Watson: que-Bera (J b(JB): d. No.	B): 113624	======================================

Improvement???

Multivariate Regression Model

$$\mathrm{ret}t + lag \ = \ lpha \ + \ eta_1 \, \mathrm{ret}t \ + \ eta_2 \, X_t^{(1)} \ + \ eta_3 \, X_t^{(2)} \ + \ \cdots \ + \ \epsilon_{t+lag}$$

Auto-Regression Regression Model

$$\mathrm{ret} t \ = \ lpha + \sum i = 1^p eta_i \, \mathrm{ret}_{t-i} + \epsilon_t$$

Logistic Regression Model

$$\operatorname{Prob}(\operatorname{ret} t + 1 > 0) \ = \ \sigma(lpha + eta_1 \operatorname{ret} t + eta_2 \, X_t^{(1)} + \ldots)$$

TRADING ALGO/SIGNAL

Rolling Min Return

 $\min\{x_1,\ldots,x_n\}= ext{smallest value among }x_1,\ldots,x_n.$

Rolling Max Return

 $\max\{x_1,\ldots,x_n\}= ext{largest value among }x_1,\ldots,x_n.$

Min-Max Indicator

$$\operatorname{MinMaxIndicator}(t) = \frac{P_t - \min_t}{\max_t - \min_t}.$$

Rolling Close Price

$$\min_t \ = \ \min\{P_{t-w+1}, \dots, P_t\}, \qquad \max_t \ = \ \max\{P_{t-w+1}, \dots, P_t\}.$$

Trading Signal

$$S(t) \; = \; egin{cases} +1, & ext{if } I(t) \; \geq \; T_{ ext{high}}, \ -1, & ext{if } I(t) \; \leq \; T_{ ext{low}}, \ 0, & ext{otherwise}. \end{cases}$$

```
# Min-Max Indicator

def calculate_min_max_indicator(btc, window):
    btc = np.array(btc)
    min_vals = pd.Series(btc).rolling(window=window).min().to_numpy()
    max_vals = pd.Series(btc).rolling(window=window).max().to_numpy()
    # DropNa
    range_vals = max_vals - min_vals
    range_vals[range_vals == 0] = np.nan

mm = (btc - min_vals) / (max_vals - min_vals)
    return mm
```

```
# Trading Algo
def generate_signals(min_max, threshold_high=0.8, threshold_low=0.2):
    signals = np.zeros(len(min_max))
    signals[min_max > threshold_high] = 1 # Long Position
    signals[min_max < threshold_low] = -1 # Short Position
    return signals</pre>
```

BACKTEST RESULT

Strategy Summary:

• Total Ret: 37,809.78%

• Total Ret(After Fee): 19,510.66%

• Benchmark Ret(Buy & Hold): 1,175.24%

• Trades: 228739

Avg Trade(Mean): 0.1653%

• Win Rate: 63.44%

• Max Loss: -4.2757%

• Taker Fee: 0.04%

APPENDIX

```
def simulate_trading(btc, signals, stop_loss_factor=0.02, take_profit_factor=0.04,
                   max_holding_time=10, trading_fee=0.0004):
   returns = []
   position_open = False
   entry_price = None
   holding_time = 0
   num_trades = 0 # To keep track of the number of trades
   for i in range(len(btc)): # Corrected from 'prices' to 'btc'
       if signals[i] != 0 and not position_open:
           position_open = True
           entry_price = btc[i]
           take_profit = entry_price * (1 + take_profit_factor * signals[i])
           stop_loss = entry_price * (1 - stop_loss_factor * signals[i])
           holding_time = 0
       elif position_open:
           holding_time += 1
           if signals[i] == 1: # Long Position
               if btc[i] >= take_profit or btc[i] <= stop_loss or holding_time >= max_holding_time:
                   trade_return = (btc[i] - entry_price) / entry_price
                   trade_return -= 2 * trading_fee # Subtract trading fees
                   returns.append(trade_return)
                   num_trades += 1
                   position_open = False
           elif signals[i] == -1: # Short Position
                if btc[i] <= take_profit or btc[i] >= stop_loss or holding_time >= max_holding_time:
                   trade_return = (entry_price - btc[i]) / entry_price
                   trade_return -= 2 * trading_fee # Subtract trading fees
                   returns.append(trade_return)
                   num_trades += 1
                   position_open = False
    return returns, num_trades
```

```
# Back-Test Strategy
  def run_strategy(
      btc, window, threshold_high=0.8, threshold_low=0.2,
      stop_loss_factor=0.02, take_profit_factor=0.04,
      max_holding_time=10, trading_fee=0.0004
  ):
      mm = calculate_min_max_indicator(btc, window)
      signals = generate_signals(mm, threshold_high, threshold_low)
      returns, num_trades = simulate_trading(
          btc, signals, stop_loss_factor, take_profit_factor,
          max_holding_time, trading_fee
      total_return = sum(returns)
      return total_return, num_trades
  # Define Parameters
  window = 15
  threshold_high = 0.8
  threshold_low = 0.2
  stop_loss_factor = 0.02
  take_profit_factor = 0.04
  max_holding_time = 10
  trading_fee = 0.0004
  btc = btc_df['close'].values
  # Run the Strategy
  total_return, num_trades = run_strategy(
      btc, window, threshold_high, threshold_low,
      stop_loss_factor, take_profit_factor,
      max_holding_time, trading_fee
  print(f"Strategy's Return after Fees: {total_return:.2%}")
  print(f"Number of Trades Executed: {num_trades}")
# Calculate rolling volatility (standard deviation)
rolling_volatility = returns_series.rolling(window=rolling_window).std()
# Calculate Win Rate
winning_trades = returns_series[returns_series > 0]
losing_trades = returns_series[returns_series <= 0]</pre>
```

win_rate = (len(winning_trades) / len(returns_series)) * 100 # Percentage

IMPROVEMENT?

- Out-Sample Backtest: ETH, SOL, etc
- Statistical Analysis Model
- Money Management