

Algebra

Alessandro D'Andrea

5. Il teorema di Lagrange

- $ightharpoonup \mathbb{Z}/n$ è un anello
- ▶ $(\mathbb{Z}/n)^{\times}$ è un gruppo rispetto alla moltiplicazione
- Oggi: Congruenza modulo un sottogruppo e teorema di Lagrange
 - ▶ Piccolo teorema di Fermat: se p è primo, $a^p \equiv a \mod p$;
 - ► Teorema di Eulero: se gli elementi invertibili in \mathbb{Z}/n sono in totale $\varphi(n)$, allora $a^{\varphi(n)} \equiv 1 \mod n$ non appena MCD(a, n) = 1.

Congruenza modulo n in \mathbb{Z}

Ripercorriamo il concetto di congruenza modulo *n*. Scriviamo

 $a \equiv b \mod n$

esattamente quando n divide b-a. Equivalentemente possiamo dire che $b-a\in(n)$, che è un sottogruppo di $(\mathbb{Z},+)$.

Proviamo ad adattare questa definizione a sottogruppi di gruppi più generali di $\ensuremath{\mathbb{Z}}$.

Congruenza modulo *H* < *G*

Se abbiamo H < G, scriviamo

$$a \equiv b \mod H$$

se $a^{-1}b \in H$. Verifichiamo che la congruenza modulo H è una relazione di equivalenza:

- ▶ $a \equiv a \mod H$ per ogni $a \in G$.
 - ▶ $a^{-1}a = 1 \in H$.
- ▶ Se $a \equiv b \mod H$, allora anche $b \equiv a \mod H$.
 - ▶ Se $a^{-1}b \in H$, allora anche $b^{-1}a = (a^{-1}b)^{-1} \in H$.
- ▶ Se $a \equiv b \mod H$ e $b \equiv c \mod H$, allora anche $a \equiv c \mod H$.
 - Sappiamo che $a^{-1}b, b^{-1}c \in H$. Moltiplicando, otteniamo $a^{-1}c = a^{-1}bb^{-1}c \in H$.

Come sono fatte le classi di congruenza?

Classi laterali sinistre

Dire $a \equiv b \mod H$ è lo stesso che dire $a^{-1}b \in H$.

Ma $a^{-1}b = h \in H$ è equivalente a b = ah, dove $h \in H$.

Gli elementi nella classe di congruenza di a sono tutti e soli quelli della forma ah, con $h \in H$.

L'insieme di questi elementi si indica con aH e si chiama classe laterale sinistra di H, o semplicemente laterale di H.

Partizione in classi laterali

Sono affermazioni equivalenti:

- $ightharpoonup a \equiv b \mod H$;
- a ∈ bH;
- b ∈ aH;
- ► aH = bH.

Se a, b sono elementi di G, allora sono possibili due situazioni:

- ▶ $a \equiv b \mod H$;
 - In questo caso aH = bH.
- ▶ $a \not\equiv b \mod H$;
 - ▶ In questo caso $aH \cap bH = \emptyset$.

Le classi laterali sinistre di *H* costituiscono una partizione di *G* in sottoinsiemi disgiunti.

Ciascuna classe laterale aH ha tanti elementi quanti ne possiede H. In effetti, se $ah_1 = ah_2$, allora $h_1 = h_2$.

Un esempio in S₃

Abbiamo già visto due elementi di S₃:

$$\sigma: egin{cases} 1\mapsto 2 \ 2\mapsto 1 \ 3\mapsto 3 \end{cases}, \qquad au: egin{cases} 1\mapsto 2 \ 2\mapsto 3 \ 3\mapsto 1 \end{cases}.$$

I 6 = 3! elementi di S₃ sono 1, τ , τ^2 , σ , $\tau\sigma$, $\tau^2\sigma$. Infatti:

$$\tau^2: \begin{cases} 1\mapsto 3 \\ 2\mapsto 1 \\ 3\mapsto 2 \end{cases}, \qquad \tau\sigma: \begin{cases} 1\mapsto 3 \\ 2\mapsto 2 \\ 3\mapsto 1 \end{cases}, \qquad \tau^2\sigma: \begin{cases} 1\mapsto 1 \\ 2\mapsto 3 \\ 3\mapsto 2 \end{cases}.$$

Il sottogruppo generato da σ è $H = \{1, \sigma\}$. I suoi laterali sinistri sono H, $\tau H = \{\tau, \tau \sigma\}$ e $\tau^2 H = \{\tau^2, \tau^2 \sigma\}$.

Struttura degli omomorfismi

Se $\phi: G \to H$ è un omomorfismo di gruppi, abbiamo già visto che

$$\phi(a) = \phi(b) \iff 1 = \phi(a)^{-1}\phi(b) = \phi(a^{-1}b) \iff a^{-1}b \in \ker \phi.$$

Ricordando che

$$a^{-1}b \in \ker \phi \iff a \equiv b \mod \ker \phi$$
,

vediamo che due elementi di G possiedono la stessa immagine attraverso ϕ se e solo se si trovano nella stessa classe laterale di $\ker \phi < G$.

Una volta ripartito G in classi laterali rispetto a ker ϕ , gli elementi di ciascun laterale hanno la stessa immagine, e ciascun laterale va in un elemento diverso.

Teorema di Lagrange

Consideriamo un gruppo finito G (\leftarrow questo vuol dire che G ha un numero finito di elementi), e un suo sottogruppo H < G.

Poiché G è ripartito nell'unione disgiunta dei laterali sinistri di H, il numero di elementi di G si ottiene sommando il numero di elementi di ciascun laterale di H.

Ricordando che i laterali possiedono tutti lo stesso numero di elementi, il numero di elementi di *G* si ottiene moltiplicando il numero di elementi di *H* per il numero dei laterali di *H* in *G*.

Gergo: il numero di elementi di un gruppo G è l'ordine di G, e si indica con |G|. Il numero dei laterali di un sottogruppo H < G si chiama indice di H in G e si indica con [G:H].

Teorema (Lagrange)

Se H < G sono gruppi finiti, allora |G| = [G : H]|H|.

Alcune conseguenze

Teorema (Lagrange)

Se H < G sono gruppi finiti, allora |G| = [G : H]|H|.

- ▶ Se H < G, allora |H| divide |G|.
- ▶ Se $g \in G$, allora l'ordine di g divide |G|.
 - Il sottogruppo (g) generato da g è un sottogruppo di G;
 - pertanto |(g)| divide |G|,
 - ma abbiamo visto che il numero di elementi di (g) è esattamente l'ordine di g.
- ▶ Se $g \in G$, $g^{|G|} = 1$.
 - ► Se d è l'ordine di g, sappiamo che $g^d = 1$;
 - ► Ma *d* divide |G|, quindi |G| = dn per qualche *n*,
 - e quindi $g^{|G|} = g^{dn} = (g^d)^n = 1^n = 1$.

Gruppi di ordine primo

Che possiamo dire di un gruppo G se |G| = p, con p primo?

Gli elementi di G hanno ordine che divide p, quindi hanno ordine 1 oppure ordine p.

L'unico elemento di ordine 1 è l'elemento neutro.

Se $g \neq 1$ è un elemento di G, allora deve avere ordine p. Allora (g) ha p elementi, e quindi (g) = G.

I gruppi di ordine primo sono ciclici. In particolare, sono abeliani.

Se 1 \neq $g \in G$, ogni elemento di G è una potenza di g. Ma sappiamo che $g^mg^n=g^{m+n}=g^ng^m.$

Indicheremo il gruppo ciclico con p elementi con C_p .

Piccolo teorema di Fermat

Se G è un gruppo finito e $g \in G$, allora $g^{|G|} = 1$. (in notazione additiva, |G|g = 0).

- $G = (\mathbb{Z}/n, +)$. Poiché |G| = n, allora $n\overline{a} = \overline{0}$.
 - ▶ Lo sapevamo già: $n\overline{a} = \overline{an} = \overline{0}$.
- ▶ $G = (\mathbb{Z}/p^{\times}, \cdot)$, con p primo. In questo caso |G| = p 1, quindi $\overline{a}^{p-1} = \overline{1}$ se $\overline{a} \in G$.
 - ▶ Se p non divide a, allora $a^{p-1} \equiv 1 \mod p$.
 - ► Moltiplicando per a, si ottiene $a^p \equiv a \mod p$, che è vero anche quando p divide a.

Teorema (Fermat)

Se p è un numero primo, $a^p \equiv a \mod p$ per ogni intero a.

La funzione φ di Eulero

L'ordine del gruppo moltiplicativo $(\mathbb{Z}/n)^{\times}$ si indica con $\varphi(n)$.

- $\varphi(p) = p 1$ quando p è primo.
 - ▶ Ogni elemento è invertibile tranne 0.
- $\varphi(mn) = \varphi(m)\varphi(n)$ se MCD(m, n) = 1.
 - Segue dal teorema cinese del resto. ā è invertibile in Z/mn se esiste h̄ tale che ā · h̄ = 1̄ in Z/mn.
 - Che ah ≡ 1 mod mn può essere verificato modulo m e modulo n separatamente.
 - Ma allora a deve essere invertibile modulo m (ci sono $\phi(m)$ scelte) e invertibile modulo n (ci sono $\phi(n)$ scelte). In conclusione, ho $\phi(m)\phi(n)$ scelte per \overline{a} .
- $\varphi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$ se p è primo.
 - ► MCD(a, p^k) = 1 è lo stesso che MCD(a, p) = 1. Gli elementi di \mathbb{Z}/p^k sono tutti invertibili tranne i multipli di p, che sono p^{k-1} .

Come calcolare $\varphi(n)$ - I

Le proprietà

- $\varphi(p^k) = p^{k-1}(p-1)$ se p è primo.
- $\varphi(mn) = \varphi(m)\varphi(n)$ se MCD(m, n) = 1.

permettono di calcolare facilmente $\varphi(n)$ per ogni n. Calcoliamo ad esempio $\varphi(5040)$.

- ► Fattorizziamo 5040 in primi: $5040 = 2^4 \cdot 3^2 \cdot 5 \cdot 7$.
- ▶ Calcoliamo φ su ciascuna potenza di primo:

•
$$\varphi(2^4) = 2^3(2-1) = 8;$$

$$\varphi(3^2) = 3^1(3-1) = 6;$$

•
$$\varphi(5) = 5^0(5-1) = 4;$$

$$\varphi(7) = 7^0(7-1) = 6.$$

Moltiplichiamo i valori ottenuti:

$$\varphi(5040) = \varphi(2^4)\varphi(3^2)\varphi(5)\varphi(7) = 8 \cdot 6 \cdot 4 \cdot 6 = 1152.$$

Come calcolare $\varphi(n)$ - II

Si può automatizzare questa procedura nella formula

$$\varphi(n) = n \cdot \prod_{p|n,p \text{ primo}} 1 - \frac{1}{p}.$$

Nel caso di n = 5040, i primi che dividono n sono 2, 3, 5, 7. Pertanto

$$\varphi(5040) = 5040 \cdot \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right)$$
$$= 5040 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} = 5040 \cdot \frac{48}{210} = 24 \cdot 48 = 1152.$$

Teorema di Eulero

Se G è un gruppo finito e $g \in G$, allora $g^{|G|} = 1$.

- ▶ Se $G = (\mathbb{Z}/n)^{\times}$, allora $|G| = \varphi(n)$.
- ▶ Pertanto, se $\overline{a} \in G$, $\overline{a}^{\varphi(n)} = \overline{1}$.

Teorema (Eulero)

Se MCD(a, n) = 1, allora $a^{\varphi(n)} \equiv 1 \mod n$.

Attenzione!!! Se *a* non è primo con *n*, l'enunciato è sicuramente falso!!!