Cinemática:

M.R.U.: V= cte. y a=0;
$$x = x_0 + v.t$$

M.R.U.A.: $a = cte$. $x = x_0 + v_0 t + \frac{1}{2} a t^2$
 $v = v_0 + at$
 $v^2 = v_0^2 + 2a.\Delta x$

M.C.U.: $\omega = cte$. $y \alpha = 0$; $\varphi = \varphi_0 + \alpha t$
 $\omega = \frac{\varphi}{t}$

M.C.U.A.: $\alpha = cte$. $\varphi = \varphi_0 + \omega_0 t + \frac{1}{2} \alpha t^2$

$$\begin{aligned}
\varphi &= \varphi_0 + \omega_0 v + \frac{1}{2} \omega v \\
\omega &= \omega_0 + \alpha v v \\
S &= \varphi \cdot R \\
v &= \omega \cdot R \\
a_t &= \alpha \cdot R \\
a_n &= \frac{v^2}{R} = \omega^2 \cdot R
\end{aligned}$$

Si δ es el ángulo que forma la velocidad tangencial con la aceleración angular tendremos:

 $a_t = a \cdot \cos \delta$

 $a_n = a \cdot \sin \delta$

Siendo:

x, S: espacio recorrido en metros.

v = velocidad en m/s

 φ = ángulo en radianes.

 ω = Velocidad angular en rad/s

 α = aceleración angular en $\frac{rad}{s^2}$

R = radio de la trayectoria.

 a_t = aceleración tangencial en $m/_{S^2}$

 a_n = aceleración normal en m/s^2

M.A.S.: $\alpha = variable$

Elongación en función del tiempo: $x = A \sin(\omega t \pm \varphi_0)$,, $x = A \cos(\omega t \pm \varphi_0)$ Velocidad en función del tiempo: $v = A\omega\cos(\omega t \pm \varphi_0)$,, $v = -A\omega\sin(\omega t \pm \varphi_0)$ Aceleración en función del tiempo: $a = -A\omega\sin(\omega t \pm \varphi_0)$,, $a = -A\omega\cos(\omega t \pm \varphi_0)$ Con φ_0 fase inicial en radianes.

Velocidad en función de la elongación : $v=\pm\omega\sqrt{A^2-x^2}$

Velocidad máxima: $v_{Max} = A \cdot \omega$

Aceleración en función de la elongación: $a = -\omega^2 \cdot x$

Aceleración máxima: $a_{Max} = A \cdot \omega^2$

Vectorial:

Vector posición:
$$\vec{r} = r_x \vec{\imath} + r_y \vec{j} + r_z \vec{k}$$

Velocidad:

Velocidad instantánea:
$$\vec{v} = \frac{\vec{dr}}{\vec{dt}}; \quad \vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$

Velocidad media:
$$\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_f - \vec{r}_i}{t_f - t_i}$$

Velocidad total:
$$v^2 = v_x^2 + v_y^2 + v_z^2$$
;

Aceleración:

Aceleración instantánea:
$$\overrightarrow{a} = \frac{\overrightarrow{dv}}{\overrightarrow{dt}}$$
;

Aceleración media:
$$\vec{a}_m = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_f - \vec{v}_i}{t_f - t_i};$$

En función de sus componentes :
$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$
 ;

Aceleración total en función de sus componentes :
$$a^2 = a_x^2 + a_y^2 + a_z^2$$
;

Aceleración angular:

En función de sus componentes intrínsecas: $\vec{a} = a_t \; \vec{\tau} + a_n \vec{\eta}$;

Aceleración tangencial:
$$a_t = \frac{d | ec{v} |}{dt};$$

Aceleración normal o centrípeta :
$$a_n=\frac{v^2}{R}$$
;
Aceleración total angular : $a^2=a_t^2+a_n^2$;

Aceleración total angular:
$$a^2 = a_t^2 + a_n^2$$

Conversión de unidades:

De
$$\frac{Km}{h}$$
 a $\frac{m}{s}$: $\frac{Km}{h}$ x $\frac{1000}{3600}$ \Rightarrow $\frac{m}{s}$;

De rpm a
$$rad/_s$$
: rpm x $^{2\Pi}/_{60}$ \Rightarrow $^{rad}/_s$;

De rad a vueltas:
$$\frac{rad}{2\Pi}$$
 = Vueltas