Pre-training and fine-tuning neural networks to reconstruct sparse satellite fields

Théo Archambault

LIP6, Sorbonne University

21/05/2024

Introduction

Objective: Sea Surface Height interpolation

- Used to derive surface currents to geostrophic approximation
- Measurement principle : return time of a radar pulse
- Nadir-pointing altimeters : only measure data along their ground tracks

Contextual information: Sea Surface Temperature

- Measurement principle : Direct infrared image with high resolution (1/25°)
- Clouds introduce gaps in data
- L4 SST fields: obtained through linear Optimal Interpolation combining several satellites and in-situ data.
- Noise: high-frequency instrumental errors and blurring.
- Advected by the currents

Method

Artificial Neural Network (ANN)

- Machine learning algorithm
 - Composed of layers: linear combination
 + unlinear activation
 - The connections ("weights") between inputs, layers and outputs are trainable parameters

Artificial Neural Network

Artificial Neural Network (ANN)

- Machine learning algorithm
 - Composed of layers : linear combination
 + unlinear activation
 - The connections ("weights") between inputs, layers and outputs are trainable parameters
- The weights are trained :
 - By showing multiple examples to the neural network
 - Computing a "loss" function comparing ANN estimations and "ground truth"
 - The weights are adjusted to learn the task
 - Supervised Learning: requires example of ground truth.

Artificial Neural Network

Oberving System Simulation Experiment

- Observing System Simulation Experiment (OSSE)
 - In geosciences the ground truth is not accessible
 - To train a NN, we replicate satellite observations on the outputs of a physical model (GLORYS12): $Y = \mathcal{H}(X) + \varepsilon$
 - \mathcal{H}_{ssh} : SSH along the satellite path + noise
 - \mathcal{H}_{sst} : SST blurred in cloudy area + noise
 - $f_{ heta}$: CNN inversion of $\mathcal{H}_{\mathit{SSh}}$ using SSH and SST observations

Domain Gap

- We have a 2 datasets:
 - OSSE (ground truth and pseudo observations)
 - Real-world observations
- Domain gap issue
 - Observing system is not perfectly simulated
 - The physical simulation is not perfect
- Adapt NN trained on OSSE to real data: transfer learning

Training method: pre-training and fine-tuning

Results

Real Observations dataset

Evaluation on the Ocean Data Challenge 2021

- 1 year of data on the Gulf Stream area
- Provides state-of-the-art reconstruction methods
- Evaluation on independent data
- Metrics : μ the RMSE score (in cm), σ_t its temporal std (in cm), λ_x the half-resolved spatial wavelength (in km)

We want to test:

- SST impact : training using SSH, SSH + nSST, SSH + SST
- The learning strategy

Comparing training strategies

Given the supervised and the unsupervised learning, we derive 3 strategies:

- Observations only: unsupervised training on real-world observations.
- **Simulation only:** supervised training on simulation and direct inference on realworld data.
- **Both**: Supervised pre-training on simulation and unsupervised fine-tuning on real-world observations.

Input data	SSH			SST+nSST			SSH+SST		
Learning method	μ	σ_t	λ_{x}	μ	σ_t	λ_x	μ	σ_t	λ_x
Observations	6.52	1.95	111	6.13	1.84	104	х	х	Х
Simulation	6.35	1.9	112	6.2	1.87	108	6.85	2.22	111
Both	6.27	1.85	110	5.77	1.64	102	5.77	1.6	103

Example of improvement brought by the SST

Conclusion