

Identifying Direct Causal Effects Under Unmeasured Confounding

Philippe Boileau*¹, Nima S. Hejazi*², Ivana Malenica*¹, Sandrine Dudoit¹, Mark J. van der Laan¹

¹University of California, Berkeley; ²Weill Cornell Medicine

Introduction

This is the background.

Statistical Problem

State the causal and statistical models, and estimand. The causal target parameter is

$$\Psi^{F}(P_{U,X,0}) = \int_{w,z} \mathbb{E}[Y(1,z) - Y(0,z) \mid W = w]$$

$$p_{Z}(z \mid A = 0, w)p_{W}(w) dz dw.$$

Identification

- (A1) No unmeasured endogenous pathways: $f_Y(Z, A, W, V, U_Y) \equiv f_Y(Z, A, W, U_Y).$
- (A2) Conditional expectation equivalence: $\mathbb{E}(Y \mid Z, A = 1, W, V) \equiv \mathbb{E}(Y \mid Z, A = 1, W)$

Theorem

Under assumptions A1 and A2, $\Psi^F(P_{U,X,0})$ is identified by

$$\Psi(P_0) = \mathbb{E}_{P_0} \mathbb{E}_{P_0} \{ \mathbb{E}_{P_0} \{ Y \mid W, A = 1, Z \} - \mathbb{E}_{P_0} \{ Y \mid W, A = 0, Z \} \mid A = 0, W \} .$$

Simulation Study

We consider the following data-generating distribution:

$$W_1 \sim \text{Unif}(-1,1), \ W_2, V \sim N(0,1)$$

 $A|W, V \sim \text{Bern}\left((1 + \exp\{-W_1 - W_2 - V\})^{-1}\right)$
 $Z|A, W, V \sim \text{Bern}\left((1 + \exp\{-W_1 - W_2 - \gamma V - 3A\})^{-1}\right)$
 $Y|Z, A, W, V \sim N(3A + W_1 + W_2 + Z, 1)$.

Inference

Statistical inference is possible using standard methods.

Funding

Thank you for paying my bills.

Conclusions

Here are the important takeaways.

References

List of references.

* indicates shared first-authorship