

November 28,

of Dr. Eduardo Chan

<u>Team</u>

Deepak Halliyavar Lohitha Vanteru Mahe Jabeen Abdul Pranavi Sandrugu

Department of Applied Data Science, San Jose State University

Agenda

- Background
- Motivation
- Technology and Literature Survey
- Problem Statement
- Scope
- Project Requirements

- Deliverables
- Project Resource Requirements& Plan
- Data Preparation
- Machine Learning Models
- Conclusion & Future scope

"Recommendation systems have always been in demand in every industry and domain as matching a user's preference is always the most important thing in modern-day business"

Background

- What is a Recommendation System?
- Type of Recommendation System.
- What is Visual Similarity?

Motivation

Age of Pandemics and Digital gadgets:

User Preference – Online Shopping/E-commerce application.

Existing Recommendation Systems :

Rely on **keyword matching** techniques or **Past purchasing history**

- Drawbacks
 - -Not effective due to varying **semantic usage** across multiple websites.
 - -Quickly generate unnecessary suggestions.
- Motive:

To Provide consumers a similar enriched experience as in person retail shopping.

Technology and Literature Survey

References	Dataset	Summary	Results
Pandey et al. (2016) [1]	Several Datasets: ZuBuD -1005 images WANG – 1000 images Caltech101 – 8677 images Web images	 Uses agglomerative hierarchical clustering algorithm. The proposed clustering compares only the representative images of clusters at any time. Novel idea of tracking the loss of information to get clusters automatically using proportional reduction in error method. 	Best precision for all datasets. ZuBuD- 0.7 WANG – 0.57 Caltech101 – 0.35 Web Images – 0.80
Putri et al. (2020) [2]	Movielens – available online (Ratings, tags, films, users, genres etc.)	 Proposes a movie recommendation system using various unsupervised ML algorithms such as s K-Means, K-Means Mini Batch, Birch Algorithms & compares various performance measures. 	Best computation time 13.75ms- Minibatch Kmean is good (Calinski-Harabasz) -59.42 Birch of 1.24 (Davies-Bouldin)

References	Dataset	Summary	Results	
Pitolli et al. (2020) [3]	 Publicly available Windows malware. Samples between 2006 and 2016 – 4,100 samples. 	 MalFamAware uses BIRCH algorithm. Comparison how MalFamAware performs in terms of family identification (against other clustering algorithms) and malware classification 	 Good accuracy in family identification and high accuracy in malware classification Very low execution time 	
Ullah et al. (2019) [4]	 Amazon product image with 3.5million images of 20 classes; Randomly selected 100 images from each class (2000 images) 	 Deep learning Deep learning with RF 	 RF= 75% accuracy; RF with DL = 84%; 98% correct recommendations 	
Asiroglu et al. (2019) [5]	 Stanford University's Clothing Attributes Dataset(1856 images) Feature training; e survey with use google forms 	 Proposes a smart clothing recommendation system. The model used is inception based Deep learning. 	Accuracies 86%: Gender, clothes color prediction 98%: Clothes pattern prediction	

Problem Statement

- Detecting all products in an image and retrieve similar images from the database.
- Our goal is to increase the satisfaction of customers by displaying similar products and providing them with potentially superior outcomes by pulling out more relevant items from the provided images based on their features.

Scope and focus of this project

Project Requirements

Functional Requirements	Data Requirements	AI Requirements
Cloud storage to store imagesVirtual Machines with	 Collect High Definition Clothing Images with diverse categories. 	Dimensionality Reduction Techniques
enough computation power to process image data	 Important Parameters: Image id, Format, Resolution 	 Clustering Machine Learning Algorithms
Project Management Tool	 Target Labels : Shirt, Skirt, Top, Dress e.t.c., 	Similarity Measures

CRISP DM Approach

Deliverables

Work Breakdown Structure (WBS)

Project Resource Requirements and Plan

Resource	Туре	Purpose	Time Duration	Cost in USD
Google Cloud Storage Bucket	Hardware	Data Storage	~4 months	\$11.20
GC VM n1-standard-16 (vCPUs: 16, RAM: 60GB), NVIDIA TESLA T4 GPU:2	Hardware	Virtual Machine	~2.5 months	\$733.75
Google Colab Python 3.7 Version	Software	Data Preprocessing	~2.5 months	Free
ClickUp version 2.19	Tool	Project Management	~3 months	\$40
GitHub version 3.6.2	Tool	Data Redistribution	~2.5 months	Free
Zoom version 5.12	Tool	Project Work Collaboration	~3 months	Free
MS Office 365 Suite version 2209	Tool	Project Documentation	~3 months	Free (Student License)
Total Cost Estimation of the Project			\$784.95	

Data Preparation

Dataset collection process

Created a call for action to be shared on social media

Defined set of rules

7.07 GB

5000 +images

20 Categories

Created Air Table Forms to upload images

I own these picture and agree to share them under

@ Attach file (A) Drop files here

Email (optional)

will not be used for any other purpose

Toloka Crowdsourcing Platform

Tagias-Data **Collection Company**

F Edit label

If you want to get a notification when the dataset is ready. It

Source: https://medium.com/data-science-insider/clothing-dataset-call-for-action-3cad023246c1

Raw Data Set samples

	image	sender_id	label	kids
4376	90db4c3d-2d36-4086-9a2d-c1548b922787	50	T-Shirt	False
5230	5176fdc6-3c9b-4291-854e-487861248b4b	204	Shorts	False
2694	3c9c2f96-3e55-4c75-9a21-bbbc6c7d96e7	181	Longsleeve	False
3764	0637d9a1-60fa-4b26-86db-f2511a17db62	50	T-Shirt	False
4333	98424108-fcd3-46a4-8a27-fcf4db664f4c	181	Longsleeve	False

Data	columns	(total 4 columns):	
#	Column	Non-Null Count	

#	Column	Non-Null Count	Dtype
0	image	5384 non-null	object
1	sender_id	5403 non-null	int64
2	label	5403 non-null	object
3	kids	5403 non-null	bool
dtyp	pes: bool(1)	, int64(1), obj	ect(2)
memo	ory usage: 1	32.0+ KB	

In	age_Name	Resolution
d8445328-a318-434b-9c4e-fa29c	f04be41.jpg	1500x2000
ff8ca4c9-b3dc-4d84-8dba-09558	1f94dbe.jpg	3024x4032
39d92542-ffcb-4b3b-896f-d158e	ccf8172.jpg	3024x4032
e2e8ba7f-f36b-4ccf-b116-b0826	5f2ee84.jpg	4032x3016
a307671b-f4cd-4f75-bf32-5d4a72	2320b93.jpg	1456x2592
911a104e-2ca1-4983-a732-7cff5	9fcbec1.jpg	3024x4032
f341e492-7c08-49dd-ba45-b1095	d0239f1.jpg	3024x4032
e2dfcb33-19ba-4c82-998b-66f128	5086e63.jpg	3024x4032
f3ca5280-6e74-44c6-ad14-f04ca	laee182.jpg	3024x4032
769b4c86-0e6b-4576-8993-0fa92	7ace181.jpg	3000x4000

Data Pre-Processing

Issues Found	Suggested Fixes
Invalid Images	Duplicate images, other random object images, images directly downloaded from internet are discarded.
Raw and unlabeled data	Manually annotated the labels using domain knowledge and Python widget tool.
Labeling mistakes	Applied high learning rate neural network on data and corrected the labels that differs from model predictions
Irrelevant Columns	Dropping all the columns except "image" and "label".
Non uniform Image properties	Resize the images such that all are of same size, format, and resolution.
Noisy and Inconsistent data	Denoised and enhanced all the images to be consistent.

Pre-Processed Data Samples

Data	columns	(total 2 column:	s):
#	Column	Non-Null Count	Dtype
0	image	5384 non-null	object
1	label	5384 non-null	object
dtype	es: obje	ct(2)	

Image	_Name	Resolution
85dd32b5-b370-4547-9677-4e3c1e2a	477.jpg	600x600
74d4f5f3-d0fc-46df-80bd-c00f714	4feff.jpg	600x600
0b0457d9-32f9-4b34-915d-017e5525	d9f6.jpg	600x600
2b41ceef-e71c-4229-86fc-e7b50a6e	f8c5.jpg	600x600
fe94de4f-958b-4a4f-a8d9-37748a707	717d.jpg	600x600
ddc3da65-2ba7-4012-adf4-0b6e636fa	ad6b.jpg	600x600
74222128-e39b-4787-afb2-f88a92b8e	e537.jpg	600x600
7fa97b45-380a-4c9c-8de4-522976cb4	1972.jpg	600x600
fec3f552-e894-4737-8867-a9447f68	f6be.jpg	600x600
d9e84490-185d-48f9-ac16-4ef33606	16d5.jpg	600x600

Noisy Image

Transformed Data Samples

Data Reduction : Principal Component Analysis

Data Augmentation: Image Rotation and Flipping

Original and rotated images

Original and Reduced Images

Reduced to 50 Dimensions.

Note. Comparison between image before rotation and after rotation.

Data Preparation

• Considering only Top 10 labels of data to avoid class imbalance.

Data in each stage	Count
Raw data	5403
Pre Processed Data	5384
Transformed Data	17,286
Data for Modeling	11,343
Training Data	7940
Test Data	1702
Validation Data	1701

Machine Learning Models

We have used unsupervised clustering algorithms such as

Clustering models	Use cases	Limitations
K-Means++	K-means++ is a smart centroid initialization method for the K-means algorithm. It is both faster and provides better performance.	Not efficient to perform large datasets with limited resources like memory and slower CPU.
MiniBatch	It reduces the temporal and spatial cost of the algorithm.	Results are not better than standard algorithms.
Birch	For large datasets, Outlier removals	It can only process metric attributes. i.e., no categorical attributes should be present.
Agglomerative	Easy to use and implement, no need of information about no. of clusters.	Outliers can cause model less optimal. Time and Space complexity

Model Evaluation Methods

- Silhouette Coefficient (SC)
- Calinski-Harabasz score (CH)
- Davies-Bouldin score (DB)

Clustering Algorithm	SC Score	CH Score	DB Score
K-Means++	0.48034	2.26007e+06	0.70369
MiniBatch Birch	0.48152 0.67207	2.25916e+06 1.07556e+06	0.70162 0.32108
Agglomerative	-0.22688	29842.5	12.279

Silhouette Coefficient

Calinski-Harabasz coefficient

Davies-Bouldin index

Conclusions & Future Scope

- The purpose of our model is to fetch the similar images based on the user input image
- With dimensionality reduction technique, by using only 50 components, we can keep around 95% of the variance in the data.
- We have performed four unsupervised ML models such as K-means++, MiniBatch, Birch, Agglomerative clustering models.
- Among the three metrics evaluated with these models, SC (0.67) & DB (0.3) scores are good for Birch where as CH score is less in comparison to K-means++ and MiniBatch.
- The research can extend by including more images in various categories including human detection for images including persons.
- Also, the use case can be extended to Deep Learning Algorithms and can verify their accuracy over conventional machine learning algorithms.

Thank You!

Any questions?

References

- [1] Pandey, S., & Khanna, P. (2016). Content-based image retrieval embedded with agglomerative clustering built on information loss. *Computers & Amp; Electrical Engineering*, *54*, 506–521. https://doi.org/10.1016/j.compeleceng.2016.04.003.
- [2] Putri, D. C. G., & Leu, J. S. (2020b). Towards the Implementation of Movie Recommender System by Using Unsupervised Machine Learning Schemes. *Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering*, 99–113. https://doi.org/10.1007/978-3-030-52988-8_9
- [3] Pitolli, G., Laurenza, G., Aniello, L., Querzoni, L., & Baldoni, R. (2020). MalFamAware: automatic family identification and malware classification through online clustering. *International Journal of Information Security, 20*(3), 371–386. https://doi.org/10.1007/s10207-020-00509-4
- [4] Pitolli, G., Aniello, L., Laurenza, G., Querzoni, L., & Baldoni, R. (2017). Malware family identification with BIRCH clustering. 2017 International Carnahan Conference on Security Technology (ICCST), 1-6.
- [5] ASIROGLU, B., ATALAY, M. I., BALKAYA, A., TUZUNKAN, E., Dagtekin, M., & ENSARI, T. (2019). Smart Clothing Recommendation System with Deep Learning. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). https://doi.org/10.1109/ismsit.2019.8932738