

lesson 34 Bitwise operator AND

عندما نتعلم البرمجة فإننا نتعلم شيئين:

- الاول الأوامر البرمجية
- الثاني مهارة استخدام هذه الأوامر لعمل برنامج ما

فى هذا الكتاب ندرس أو امر لغة c، لكن لمعرفة استخدام تلك الأو امر بطريقة أمثل و نقوم بعمل برنامج سريع وقوى وليس به أخطاء لابد أن ندرس منال فى استخدامه ، لكن استخدامه سيظهر عند دراسة ال Algorithms

أى رقم لدينا عبارة عن:

Bit - byte

ال byte يتكون من 8 bit

و عرفنا أيضا أن ال int يحجز مساحة 4 bytes في الذاكرة، و بم أن ال byte يحتوى على 8 bits أذا ال int يحتوى على 8 bits 4×8 32 أيد ال

ال bit هي وحدة تخزين تستطيع أن تحمل 0, 1 فقط، أي أن الأرقام و الحروف و الرموز و الصور و الألوان و مقاطع الفيديو و الموسيقى و الألعاب و كل ما نستطيع تخزينه في الكمبيوتر يتحول إلى 0, 1 لكى يفهمه الكمبيوتر و يستطيع التعامل معه و تخزينه، و يتم ترجمة ال 0, 1 إلى الأنواع المختلفة من البيانات عند استدعائها.

و بم أن الارقام بالنسبة للكمبيوتر شكلين الصفر والواحد عندما نقوم بحجز int :

يتم ترجمته إلى 32 رقم بجانب بعضهم متكونين من 15 رقم بجانب بعضهم متكونين من 15 رقم وعلى سبيل المثال رقم 5 بالنسبة للكمبيوتر يكون كالتالى : 1 0 1 لكن هو يتم تخزينه كالتالى في الكمبيوتر:

لان int عبارة عن 32 رقم مقسمين الى 4 أجزاء كل جزء يحتوي على 8 أرقام يسمى byte

int =4 byte

کل جزء من 32 رقم یسمی bit یسمی digit کل جزء من 32

int = 32 bit

Byte = 8 bit

bitwise

من هذا الاسم يتضح لنا أنها تتعامل مع ال bit

إذا كان عندنا

int
$$x = 5$$
, $y = 6$;
int $z = x & y$;

لإجراء عملية ال & بين رقمين، أو لا نقوم بتحويل الرقمين إلى النظام ال binary ثم إجراء عملية ال & بينهم .

طريقة عمل علامة &:

إذا كان هناك 1 و 1 متقابلان هذا معناه true إذا يكون الناتج (1)

إذا كان هذاك 1 و 0 متقابلان هذا معناه false إذا يكون الناتج (0)

إذا كان هذاك 0 و 0 متقابلان هذا معناه false إذا يكون الناتج (0)

	<u>64</u>	<u>32</u>	<u>16</u>	8	4	2	1
int x = 5	0	0	0	0	1	0	1
int y = 6	0	0	0	0	1	1	0
int $z = x \& y$	0	0	0	0	1	0	0

الصف الثانى هو قيمة x ب Binary ب y الصف الثالث هو قيمة x ب x&y الصف الرابع هو ناتج قيمة x&y

decimal التي تساوى 4 بال binary تساوى 100 بنظام ال z=x & y وبالتالى

كنا في امر if نستخدم احياناً && وهو معناه ان لابد ان يكون الشرطين true لتنفيذ امر if امر

if(true && true)

أما إذا كان احد الشرطين false يكون الناتج

كذلك الأمر بالنسبة & في ال bitwise لكن نستخدم & and واحدة فقط وهنا تتعامل مع bit واحد فقط وليس قيمة x كلها

مثال أخر:

int
$$x = 11$$
, $y = 3$;
int $z = x & y$;

	<u>64</u>	<u>32</u>	<u>16</u>	<u>8</u>	<u>4</u>	<u>2</u>	1
int x = 11	0	0	0	1	0	1	1
int y = 3	0	0	0	0	0	1	1
int $z = x \& y$	0	0	0	0	0	1	1

هنا الناتج سيكون 3 ، كما ذكرنا & تتعامل مع كل bit

True & True = True
True & false = False