4.4 二阶常系数非齐次线性微分方程

形式:
$$y'' + py' + qy = f(x)$$
 (p, q 为常数) ①

根据解的结构定理,其通解为

$$y = Y + y^*$$

齐次方程通解 非齐次方程特解

求特解的方法 — 待定系数法

根据f(x) 的特殊形式,给出特解y*的待定形式, 代入原方程比较两端表达式以确定待定系数. **1.** $f(x) = P_m(x)e^{\lambda x}$ 型

引例1. 求方程 $y''-2y'-3y=(x+1)e^x$ 的解.

解:

- 1. $r^2 2r 3 = 0$ $\Rightarrow r_1 = -1$, $r_2 = 2$ 齐次方程通解 $y = C_1 e^{-x} + C_2 e^{2x}$
- 2. $\lambda = 1$ 不是特征方程的根 $\cdot (\lambda \neq -1, \lambda \neq 2)$ 设所求特解为 $y^* = (ax + b)e^x$
 - 3. 代入方程:

1. $f(x) = e^{\lambda x} P_m(x)$ 型

引例2. 求方程 $y''-3y'+2y=(2x-1)e^x$ 的解.

解:

1.
$$r^2 - 3r + 2 = 0$$
 $\Rightarrow r_1 = 1$, $r_2 = 2$
齐次方程通解 $y = C_1 e^x + C_2 e^{2x}$

- 2. $\lambda = 1$ 是特征方程的单根 $\cdot (\lambda = r_1 = 1)$ 设所求特解为 $y^* = \mathbf{x}(ax+b)e^x$
 - 3. 代入方程:

1.
$$f(x) = e^{\lambda x} P_m(x)$$
 型

引例3. 求方程 $y'' - 4y' + 4y = xe^{2x}$ 的解.

解:

1.
$$r^2 - 4r + 4 = 0 \implies r_1 = r_2 = 2$$

齐次方程通解 $y = (C_1 + C_2 x)e^{2x}$

- 2. $\lambda = 2$ 是特征方程的2重根 $\cdot (\lambda = r_1 = r_2 = 2)$ 设所求特解为 $y^* = x^2 (ax + b)e^{2x}$
 - 3. 代入方程:

1.
$$f(x) = e^{\lambda x} P_m(x)$$
 型

$$y'' + py' + qy = f(x)$$

 λ 为实数, $P_m(x)$ 为 m 次多项式.

设特解为 $y^* = e^{\lambda x}Q(x)$, 其中Q(x)为待定多项式,

$$y^{*'} = e^{\lambda x} [\lambda Q(x) + Q'(x)]$$

$$y*'' = e^{\lambda x} [\lambda^2 Q(x) + 2\lambda Q'(x) + Q''(x)]$$

代入原方程,得

$$e^{\lambda x} \left[\frac{\lambda^2 Q(x) + 2\lambda Q'(x) + Q''(x)}{+ e^{\lambda x} \left[p\lambda Q(x) + pQ'(x) \right] + e^{\lambda x} qQ(x) = e^{\lambda x} P_m(x)$$

$$Q''(x) + (2\lambda + p)Q'(x) + (\lambda^{2} + p\lambda + q)Q(x) = P_{m}(x)$$

1.
$$f(x) = e^{\lambda x} P_m(x)$$
型

$$y'' + py' + qy = f(x)$$

 λ 为实数, $P_m(x)$ 为 m 次多项式.

设特解为 $y^* = e^{\lambda x}Q(x)$, 其中Q(x)为待定多项式,

$$y^{*'} = e^{\lambda x} [\lambda Q(x) + Q'(x)]$$

$$y^{*''} = e^{\lambda x} [\lambda^2 Q(x) + 2\lambda Q'(x) + Q''(x)]$$

代入原方程,得

$$Q''(x) + (2\lambda + p)Q'(x) + (\lambda^2 + p\lambda + q)Q(x) = P_m(x)$$

(1) 若 λ 不是特征方程的根,即 $\lambda^2 + p\lambda + q \neq 0$,则取 Q(x) 为 m 次待定系数多项式 $Q_m(x)$,从而得到特解 形式为 $y^* = e^{\lambda x}Q_m(x)$.

$$Q''(x) + (2\lambda + p)Q'(x) + (\lambda^2 + p\lambda + q)Q(x) = P_m(x)$$

(2) 若λ是特征方程的单根,即

$$\lambda^2 + p \lambda + q = 0$$
, $2\lambda + p \neq 0$,

则Q'(x)为m 次多项式, 故特解形式为 $y^* = xQ_m(x)e^{\lambda x}$

(3) 若 λ 是特征方程的重根,即

$$\lambda^2 + p \lambda + q = 0, \quad 2\lambda + p = 0,$$

则 Q''(x) 是 m 次多项式, 故特解形式为 $y^* = x^2 Q_m(x) e^{\lambda x}$

小结 对方程①,当 λ 是特征方程的 k 重根 时,可设

特解
$$y^* = x^k Q_m(x) e^{\lambda x}$$
 $(k = 0, 1, 2)$

此结论可推广到高阶常系数线性微分方程.

例1. 求方程 y'' - 2y' - 3y = 3x + 1 的一个特解.

解: 特征方程为 $r^2 - 2r - 3 = 0$, $r_1 = -1$, $r_2 = 2$

 $\lambda = 0$ 不是特征方程的根.

设所求特解为 $y^* = ax + b$, 代入方程:

$$(2.0-2)a + (-3)(ax+b) = 3x+1$$

比较系数,得

$$\begin{cases}
-3a = 3 \\
-2a - 3b = 1
\end{cases} \quad a = -1, \ b = \frac{1}{3}$$

于是所求特解为 $y^* = -x + \frac{1}{3}$.

$$Q''(x) + (2\lambda + p)Q'(x) + (\lambda^2 + p\lambda + q)Q(x) = P_m(x)$$

例2. 求方程 $y'' - 5y' + 6y = x e^{2x}$ 的通解.

解: 特征方程为 $r^2 - 5r + 6 = 0$, $r_1 = 2$, $r_2 = 3$

对应齐次方程的通解为 $Y = C_1 e^{2x} + C_2 e^{3x}$

 $\lambda = 2$, 是特征方程的单根.

设非齐次方程特解为 $y^* = \mathbf{x}(ax+b)e^{2x}$

代入方程得 -2ax-b+2a=x

比较系数, 得
$$\begin{cases} -2a=1 \\ 2a-b=0 \end{cases} \longrightarrow a = -\frac{1}{2}, b = -1$$

因此特解为 $y^* = x(-\frac{1}{2}x-1)e^{2x}$.

所求通解为 $y = C_1 e^{2x} + C_2 e^{3x} - (\frac{1}{2}x^2 + x)e^{2x}$.

2.
$$f(x) = e^{\lambda x} \left[P_l(x) \cos \omega x + \tilde{P}_n(x) \sin \omega x \right]$$
型

引例1. 求方程 $y'' - y' - 2y = e^x \cos 2x$ 的解.

解:

2. $\lambda + \omega i = 1 + 2i$ 不是特征方程的根. $(\lambda + \omega i \neq -1, \lambda + \omega i \neq 2)$

设所求特解为 $y^* = e^x (a \cos 2x + b \sin 2x)$

3. 代入方程:

2.
$$f(x) = e^{\lambda x} \left[P_l(x) \cos \omega x + \tilde{P}_n(x) \sin \omega x \right]$$
型

引例2. 求方程 $y'' + 4y = 2 \sin 2x$ 的解.

解:

1.
$$r^2 + 4 = 0$$
 $\Rightarrow r_1 = -2i$, $r_2 = 2i$
齐次方程通解 $y = C_1 \cos 2x + C_2 \sin 2x$

2. $\lambda + \omega i = 2i$ 是特征方程的单根.

$$(\lambda + \omega i = r_2 = 2i)$$

设所求特解为 $y^* = x (a\cos 2x + b\sin 2x)$

3. 代入方程:

2.
$$f(x) = e^{\lambda x} \left[P_l(x) \cos \omega x + \tilde{P}_n(x) \sin \omega x \right]$$
型

引例3. 求方程 $y'' - y = (x+1)\sin x$ 的解.

解: 1.
$$r^2 - 1 = 0$$
 $\Rightarrow r_1 = -1$, $r_2 = 1$ 齐次方程通解 $y = C_1 e^{-x} + C_2 e^x$

2. $\lambda + \omega i = i$ 不是特征方程的根.

$$(\lambda + \omega i \neq -1, \lambda + \omega i \neq 1)$$

 $(\lambda + \omega i \neq -1, \lambda + \omega i \neq 1)$ 设所求特解为 $y^* = (ax+b)\cos x + (cx+d)\sin x$

3. 代入方程:

2.
$$f(x) = e^{\lambda x} \left[P_l(x) \cos \omega x + \tilde{P}_n(x) \sin \omega x \right]$$
型

对非齐次方程

$$y'' + py' + qy = e^{\lambda x} \Big[P_l(x) \cos \omega x + \tilde{P}_n(x) \sin \omega x \Big]$$

$$(p, q 为常数)$$

 $\lambda + i\omega$ 为特征方程的 k 重根 (k = 0, 1),则可设特解:

$$y^* = x^k e^{\lambda x} [R_m \cos \omega x + \tilde{R}_m \sin \omega x]$$

其中 $m = \max\{n, l\}$

上述结论也可推广到高阶方程的情形.

例3. 求方程 $y'' + y = x \cos 2x$ 的一个特解.

解: 本题
$$\lambda = 0$$
, $\omega = 2$, $P_l(x) = x$, $\tilde{P}_n(x) = 0$, 特征方程 $r^2 + 1 = 0 \Rightarrow r_1 = -i$, $r_2 = i$

$$\lambda + \omega i = 2i$$
 不是特征方程的根, 故设特解为 $y^* = (ax + b)\cos 2x + (cx + d)\sin 2x$

代入方程得

$$(-3ax - 3b + 4c)\cos 2x - (3cx + 3d + 4a)\sin 2x = x\cos 2x$$

比较系数,得
$$\begin{cases} -3a=1\\ -3b+4c=0\\ -3c=0\\ -3d+4a=0 \end{cases}$$
 $\therefore a=\frac{-1}{3}, d=\frac{4}{9}$

于是求得一个特解
$$y^* = \frac{-1}{3} x \cos 2x + \frac{4}{9} \sin 2x$$
.

例4. 求方程 $y'' + 9y = 18\cos 3x - 30\sin 3x$ 的通解.

解: 特征方程为 $r^2 + 9 = 0$, 其根为 $r_{1,2} = \pm 3i$ 对应齐次方程的通解为 $Y = C_1 \cos 3x + C_2 \sin 3x$ $\lambda + \omega i = 3i$ 为特征方程的单根, 设非齐次方程特解为 $y^* = x(a\cos 3x + b\sin 3x)$ 代入方程: $6b\cos 3x - 6a\sin 3x = 18\cos 3x - 30\sin 3x$ 比较系数, 得 a=5, b=3,

因此特解为 $y^* = x(5\cos 3x + 3\sin 3x)$ 所求通解为

 $y = C_1 \cos 3x + C_2 \sin 3x + x (5 \cos 3x + 3 \sin 3x)$

内容小结

1.
$$y'' + p y' + q y = P_m(x) e^{\lambda x}$$

 λ 为特征方程的 k (=0, 1, 2) 重根, 则设特解为

$$y^* = x^k Q_m(x) e^{\lambda x}$$

2.
$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos \omega x + \tilde{P}_n(x) \sin \omega x]$$

 $\lambda \pm i\omega$ 为特征方程的 k (=0,1)重根,则设特解为

$$y^* = x^k e^{\lambda x} [R_m(x) \cos \omega x + \tilde{R}_m(x) \sin \omega x]$$

$$m = \max\{l, n\}$$

3. 上述结论也可推广到高阶方程的情形.