CS5823 Cryptography Project II

Denote the *i*-th prime by p_i . For example, $p_1 = 2$ and $p_2 = 3$. Let

$$M = \{ \lfloor 10^{100} \sqrt[5]{p_i} \rfloor | 1 \le i \le 100 \}.$$

Let S be $(ID/10^8)*100*10^{100} = ID*10^{94}$, where ID is your ID number, viewed as a decimal integer. Find a subset $T \subseteq M$ such that the sum of all the elements in T is greater than or equal to S.

- 1. Please submit a binary vector $[x_1, x_2, \dots, x_{100}]$ (formatted as a Sage list) so that x_i is 1 if and only if $\lfloor 10^{100} \sqrt[5]{p_i} \rfloor$ is in the subset T. Please discuss the strategy you use in the submission.
- 2. You should work independently. It is NOT a group project.
- 3. Your grade depends on the difference between the sum of the subset and S. The smaller the difference is, the better grade you will receive.