Summer-2019 UM-SJTU JI Ve311 Lab #2

Instructor: Dr. Chang-Ching Tu

Due: 10:00 am, July 04, 2019 (Thursday) in class

Note:

(1) Please use A4 size papers.

(2) Remember to obtain TA's signature after finishing the lab session.

1. [Common-Emitter Amplifier]

- (a) [40%] Design and build a common-emitter amplifier on breadboard which has a voltage gain $A_{\upsilon} > 10$, using npn BJT (S9013). Plot V_{OUT} vs V_{IN} . (Hint: First choose an appropriate R_C . Second, perform DC sweep to find out a V_{IN} at which the magnitude of slope is more than 10. At the same time, make sure the BJT is in the forward-active region. If not working, change for another R_C and repeat the DC analysis again.)
- (b) [30%] For $V_{in} = V_{IN} + 0.1 sin(2\pi 10^2 \cdot time)$, plot $V_{out} = V_{OUT} + \upsilon_{out}$ vs time. Confirm that the amplitude of υ_{out} is equal to $0.1 \times A_{\upsilon}$.
- (c) [30%] For $V_{in} = V_{IN} + 0.1 sin(2\pi 10^7 \cdot time)$, plot $V_{out} = V_{OUT} + \upsilon_{out}$ vs time. Is the amplitude of υ_{out} still equal to $0.1 \times A_{\upsilon}$? If not, explain the reasons.

TO-92 Plastic-Encapsulate Transistors

S9013 TRANSISTOR(NPN)

FEATURES

Power dissipation

Рсм: 0.625W (Tamb=25°С)

Collector current

Iсм: -0.5 A

Collector-base voltage

V_{(BR)CBO}: 40 V

Operating and storage junction temperature range

T_J,T_{stg:} -55℃ to + 150℃

ELECTRICAL CHARACTERISTICS

(Tamb=25℃ unless otherwise specified)

Parameter	Symbol	Test conditions	MIN	MAX	UNIT
Collector-base breakdown voltage	V(BR)CBO	lc= 100 μ A, I∈=0	45		V
Collector-emitter breakdown voltage	V(BR)CEO	Ic= 0.1 mA, I _B =0	25		٧
Emitter-base breakdown voltage	V(BR)EBO	I _E = 100 μ A, I _C =0	5		٧
Collector cut-off current	Ісво	V _{CB} = 40 V, I _E =0		0.1	μА
Collector cut-off current	ICEO	VcE= 20 V, IB=0		0.1	μА
Emitter cut-off current	Ієво	V _{EB} = 5 V, I _C =0		0.1	μА
DC current gain	hFE(1)	VcE= 1 V, Ic= 50 mA	64	300	
	hFE(2)	VcE= 1 V, Ic= 500 mA	40		
Collector-emitter saturation voltage	VCEsat	Ic= 500 mA, I _B = 50 mA		0.6	٧
Base-emitter saturation voltage	VBEsat	Ic= 500 mA, I _B = 50 mA		1.2	٧
Base-emitter voltage	VBE	IE= 100mA		1.4	٧٠
Transition frequency	fτ ,	VcE= 6 V, Ic= -20 mA f =30MHz	150		MHz

CLASSIFICATION OF hfe(1)

Rank	D	E	F	G	Н	ı
Range	64-91	78-112	96-135	112-166	144-202	190-300

Ic [mA], COLLECTOR CURRENT

Static Characteristic

Ic [mA], COLLECTOR CURRENT

DC current Gain

Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

Current Gain Bandwidth Product