Prodn. of methyl ester(s) of fatty acids - by esterification of corresp. fatty acids with methanol, at elevated temp. and pressure

Patent Number: SU-671223

International patents classification: C07C-069/24 C07C-067/08

SU-671223 A Esterification of 7-9C fraction or 10-16C fraction of fatty acids with methanol, at elevated temp. and pressure, is conducted at 125-135 deg.C and pressure 7-10 at. and at molar ratio of fatty acids to methanol as 1:2, with subsequent removal of water and additional esterification of remaining reaction mixt. with methanol, at temp. 125-135 deg.C and pressure 7-10 at., and at the molar ratio of reaction mass to methanol as 1:1. The mixt. of methanol and synthetic fatty acids at ratio as above, is supplied into 1st esterification reactor and esterified under conditions as above for 6 hrs., then the prods. pass to distn. column, where water and methanol are sepd. at atmos. pressure and temp. at the bottom of column 120-130 deg.C, and sepd. methyl ester(s) are mixed with equimolar amt. of methanol, heated to reaction temp. and supplied to 2nd esterification reactor, where they are again esterified for 6 hrs.

The method simplifies process technology owing to use of reduced temp. and pressure, elimination of need for use of acid-resistant equipment and redn. of number of side reactions.

USE/ADVANTAGE - As improved method of prodn. of methyl esters of fatty acids, used in synthesis of primary alcohols, alkylamides, plasticisers etc. The method simplifies process technology. Bul.39/23.10.9 (Dwg. 0/0)

• Publication data:

Patent Family: SU-671223 A1 19921023 DW1993-39 C07C-069/24 4p * AP: 1976SU-2430950 19761215

Priority nº: 1976SU-2430950 19761215

Covered countries: 1 Publications count: 1

Accession codes :

Accession No : 1993-309881 [39] Sec. Acc. n° CPI: C1993-138140 Derwent codes :

Manual code: CPI: A08-P04 E10-G02H Derwent Classes: A60 E19

Compound Numbers: 9339-E4101-P

• Patentee & Inventor(s):

Patent assignee : (DYSH/) DYSHLOVOI V I

Inventor(s): DYSHLOVÓI VI; LOGVINOVA NI; MAKAROV SV

• Update codes :

Basic update code:1993-39

Others:

API Access. Nbr

API 9354788

THIS PAGE BLANK (USPTO)

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

(19) <u>SU</u>(11) <u>671223A1</u>

(51)5 C 07 C 69/24, C 07 C 67/08

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ ВЕДОМСТВО СССР (ГОСПАТЕНТ СССР)

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

RANDERINEN - ONTBETAG BANDERINEN - ONTBETAG ANSTONNONG

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 2430950/04

(22) 15.12.76

(46) 23.10.92. Бюл. № 39

(72) В.И.Дышловой, С.В.Макаров, В.И.Бавика, Р.А.Горбачева, Н.И.Логвинова, В.Ф.Смовж, Е.С.Карюкин, А.Ш.Юсупов и А.С.Садыков (53) 547.458.82.07(088.8)

(56) СПОСОБ ПОЛУЧЕНИЯ МЕТИЛОВЫХ ЭФИРОВ ЖИРНЫХ КИСЛОТ путем этерифи-кации фракции жирных кислот, содержащей С₇-С₉ или С₁₀-С₁₆ метанолом

при нагревании и повышенном давлении, о т л и ч а ю щ и й с я тем, что, с целью упрощения технологии процесса, этерификацию проводят при температуре 125-135°С и давлении 7-10 ати, при мольном соотношении жирные кислоты : метанол - 1:2 с последующим удалением воды и доэтерификацией оставшейся реакционной массы метанолом при температуре 125 -135°С и давлении 7-10 ати, при молярном соотношении реакционная масса : метанол 1:1.

Изобретение относится к улучшенному способу получения метиловых эфиров жирных кислот, применяемых для производства первичных спиртов, алкиламидов, пластификаторов и т.д.

Известны способы этерификации жирных кислот метиловым спиртом в присутствии серной кислоты или других кислых катализаторов.

При каталитической этерификации возникает ряд трудностей, связанных с необходимостью применения кистлотоупорной аппаратуры. Кроме того этот процесс сопровождается побочными реакциями, приводящими к потере синтетических жирных кислот (СЖК) и ухудшению цвета продуктов этерификации.

Побочные реакции обусловлены наличием в жирных кислотах ненасыщенных кислот, которые взаимодействуют с серной кислотой по месту двойных связей. Образующиеся при этом про-

Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является способ термической этерификации фракции жирных кислот, содержащей C_7 - C_9 или C_{10} - C_{16} парообразным или жидким метанолом при температуре $300\,^{\circ}$ С и давлении от 0 до $300\,$ ати.

При парообразном способе этерификации процесс осуществляется при температуре 300° С и давлении 0-8 ати. Степень превращения составляет 70,5-83,1%.

При этерификации в жилкой фазег при соотношении жирные кислоты : метанол 1-7 степень превращения составляет 93-95%. (T = $200-300^{\circ}$ C и P = 150-300 ати).

При увеличении соотношения метанол: синтетические жирные кислоты 5U (ii) 67122

(СЖК) до 33,5:1 конверсия достигает 99.5%.

Известный способ характеризуется применением высоких температур и давления, большого избытка метанола, а также низкой степенью этерификатии (превращения).

Целью данного изобретения являтется упрощение технологии процесса.

Поставленная цель достигается описываемым способом получения метиловых эфиров жирных кислот этерификацией фракции жирных кислот, содержащей С7-С9 или С40-С6 метанолом при температуре 125-135°С и давлении 7-10 эти при мольном соотношении кислота: метанол 1:2.

Затем воду удаляют, а оставшуюся реакционную массу доэтерифицируют метанолом при тех же условиях, т.е. температуре 125-135°С и давлении 7-10 ати при мольном соотношении реакционная масса: метанол 1:1.

Выход метиловых эфиров составляет 98-98,8%.

Отличительными признаками заявляемого способа является проведение этерификации при температуре 125-135°С и давлении 7-10 ати при соотношении фракция кислот : метанол 1:2 с последующим удалением воды и доэтерификацией оставшейся реакционной массы метанолом в соотношении 1:1 при температуре 125-135°С и давлении 7-10 ати, что позволяет упростить технологию процесса.

Технология способа состоит в следующем.

Смесь метанола и жирных синтетических кислот, взятые в мольном соотношении 2:1, подавали в 1-ый этерификатор и выдерживали в течение 6 ч при температуре 130°С и давлении 8-9 ати. 45 Далее реакционную массу из первого этерификатора через дроссельный вентиль подавали в отгонную колонну, где при атмосферном давлении и темпе-

ратуре низа колонны 120-130°С отгоняли пары реакционной воды и метанола. Полученные метиловые эфиры анализировали на полноту этерификации, затем смешивали с эквимолярным количеством метанола, подогревали до температуры 130°С и подавали во 2-ой этерификатор, где при давлении 8-9 ати выдерживали: в течение 6 ч. Полученные эфиры выделяли вышеуказанным способом и анализировали на полноту этерификации.

Пример 1.10 кг синтетических жирных кислот С₇-С₉ насосомдозатором подавались на смешение с метанолом, который брался в 2-х кратном молярном избытке от стехиометрического и смесь с заданной производительностью поступала через подогреватель, где подогревалась до 130°С, в первый этерификатор.

Температура в этерификаторе поддерживалась 130±5°С, давление при этом составляло 8-9 ати. Время пребывания реагентов в зоне реакции составляло 6 часов, начиная от момента подогрева в подогревателе.

Из последней секции этерификатора реакционная масса поступала через дроссельный вентиль в отгонную колонну, где при атмосферном давлении и температуре низа колонны 120-130°C отгонялись пары метанола и воды. Полученные метиловые эфиры анализировались на полноту этерификации и затем насосом подавались на смешение с метанолом, количество которого соответствовало кратному количеству по отношению к исходным СЖК С7-С9 и далее через подогреватель, температура в котором составляла 130°С, смесь поступала во второй этерификатор. Температура во втором этерификаторе поддерживалась в лределах $130\pm5^{\circ}$ С, давление составляло 8-9 ати. Время пребывания реагентов в зоне реакции от подогревателя до выхода из этерификатора составляло 6 ч.

Расход и выход продуктов, в кг:

По стадии этерификации:

Взято: СЖК С₇-С₉ 10,0 Получено: Метиловые эфиры СЖК метанол 4,5 С₇-С₉ 9,86

СЖК C₇-C₉ 1,02 метанол 2,5 вода 1,12

		•
п_	CTOCKIA	доэтерефикации
טוו	CIGNIN	1100 Lebedaura dans

•			112121 100			
Взято:	метиловые	эфиры ,	Получено:	метиловые	эфиры	СЖК
	CXK C Ca	9.86		Cy-C9	10,76	•
	CXK C7-C3	1,02	•	CXK C7-C9	0,19	
•	метанол 7	2,28		метанол	2,10	٠.
: ••	•		•	вода	0.12	

Пример 2. Для переработки бычто и в примере 1, время этерифика-10 ции составляло по 4 ч на каждой ли использованы синтетические жирстадии. Расход и выход продуктов, ные кислоты фракции С о - С 6. Условия этерификации и установка те же, KT:

По стадии этерификации 10,0 Получено: метиловые эфиры СЖК Взято: СЖК С₁₀ -С₁₆ C 10 -C16. 3,02 метанол CWK C10 -C16 0,8 1,63 метанол вода

По сталии доэтерификации

		1.44641 MAG. 1. A.	h A
Взято:	метиловые эфиры	Получено:	метиловые эфиры
•	CWK C to -C to 9,8		CWK C40 -C1610,52.
<i>,</i> .	CXK C ₁₀ -C ₁₆ 0,8		CWK C 40 - C16 0, 12
, 1	метанол 1,2	•	метанол 1,1
•		· · · · · · · · · · · · · · · · · · ·	вода 0.06

использовалась олеиновая кислота. Условия этерификации и установка те

Пример 3. Для переработки же, что в примере 1, время этерификации составила по 3 ч на каждой стадии.

30 Расход и выход продуктов.

По стадии этерификации Получено: метиловые эфиры Взято: олеиновая 10,0 кислота олеиновой метанол 2,24 кислоты олеиновая кислота вода

По стадий доэтерификации:

	метиловые олеиновой		Получено:	метиловые олеиновой	эфиры	
	кислоты	9,6		кислоты	10,28	
	олеиновая	•	•	олеиновая:		
	кислота	0,85	_	кислота	0,2	
	метанол	0,96		метанол	0,89	
é		· .	•	вода	0,04	

В табл. представлены качественные 250 ции, полученных по предлагаемому карактеристики продуктов этерификаспособу.

Результаты термической этерминации синтетических жирных кислот фракции $\mathbb{C}_2^{-1}\mathbb{C}_9$, \mathbb{C}_{10} — \mathbb{C}_{10} —

Какиенование кислот	Исколные качественные показателя			Качественные показателы про- дуктов после I-го этерификат.			Качественные показатели продуктов после II этерификат.		
	ECHCHOT- HOR VAFCHO HETKOH/F	эфирмов числю нгКОН/г	инсло, г 1 ₂ /100 г	икслот- нов число, игкон/г	эфирнов число нгКОН/г	стелень этерифи- кации, \$	KHENOT" HOR WHENO, HEKOH/F	эфирнов число игКОН/г	степень этерифи- кации, %
1. Синтетические яир- ные кислоты фракции	392	2,4	-	39,6	322,5	89.8	7,1	352,4	98,1
Винтетические жириме Мислоты фракция Сто-Сес Винтетические жириме	265 196,5	3,1 1,9	88,6*	21,0 16,3	231,2 173,1	92,0 91,5	3.2 1.0	248,1 185,7	98,8 98,0

^{#&}lt;sup>5</sup>) Модное число метилових эфиров оленновой инслоты после этерификации до глубины 98% было равно 84,0 г мода/100 г, что близко к теоретическому

Редактор Е. Гиринская Техред М. Моргентал Корректор Т. Палий

Заказ 4571 Тираж Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина, 101