CS 170

1. Study Group

None

2. Arbitrage

(a) Algorithm Description:

Create a weighted directed graph G where each vertex v_i represents one kind of currency c_i , and for any pair i, j create an edge from v_i to v_j with weight $log(1/r_{ij})$.

Then run Bellman-Ford algorithm from s on G to find the shortest path from s to t. This path is the most advantageous sequence of currency exchanges for converting currency s into currency t.

Correctness:

Let P be the set of all the possible ways to exchange from s to t. To find the most advantageous sequence of currency exchange, we need to maximize the exchange rate $rate_p$, where $p \in P$. For a particular exchange path $a_0 = t, a_1, a_2, ..., a_k = t$, the exchange rate is $\prod_{i=0}^{k-1} C_i^p$, where C_i^p is the exchange rate between a_i and a_{i+1} in path p.

Since maximize $\Pi_{i=0}^{k-1}C_i^p$ is equivalent to maximize $log(\Pi_{i=0}^{k-1}C_i^p) = \sum_{i=0}^{k-1}log(C_i^p) = -\sum_{i=0}^{k-1}log(1/C_i^p)$, which is also equivalent to minimize $\sum_{i=0}^{k-1}log(1/C_i^p)$. So if we let $log(1/C_i^p)$ be the weight between a_i and a_{i+1} , this is exactly a shortest-path problem on a weighted-directed graph which may have negative weight. So the Bellman-Ford algorithm is applied.

Runtime:

We can create the graph in $O(n^2)$, and run Bellman-Ford in $O(n^3)$. So the total runtime is $O(n^3)$.

(b) Algorithm Description:

Use the same graph representation as for part (a). Run Bellman-Ford algorithm to find if there exists a negative cycle in the graph. If so, there is possibility of arbitrage, and vice versa.

Correctness:

If there exists a negative cycle in the graph, then there is a path $p \in P$, so that $\sum_{i=0}^{k-1} \log(1/C_i^p) < 0$, which is equivalent to $\prod_{i=0}^{k-1} C_i^p > 1$, then $a_0, a_1, ..., a_k$ is a exchange path to arbitrage.

Runtime:

The same as part (a).

2. Money Changing

- (a) Let $D_n = \{x_i | i = 1, 2, ..., n\}$, you are able to do this decomposition for all integers A > 0 iff $1 \in D_n$. The proof is straightforward. To represent 1, you must have $1 \in D_n$. If you have $1 \in D_n$ and WLOG $x_1 = 1$, then for any A, you can express $A = \sum_{i=1}^n a_i x_i$ with $a_1 = A, a_i = 0, 2 \le i \le n$.
- (b) My greedy algorithm is as follows: always choose the bigger denomination if possible.
- (c) It is easy to prove by induction.
- (d) If the denomination is $\{1,6,7\}$, then for A=26, the *greedy algorithm* gives 8, while the optimal is 6.

3. Bounded Bellman-Ford

Algorithm description:

Define dist[u][i] as the shortest path from s to u with at most i path, then use dynamic programming. t **Pseudocode:**

```
for all u \in V: \operatorname{dist}[u] = [\infty] * k \operatorname{dist}[s][0] = 0 for j = 1 to k: \operatorname{for all } (u, v) \in E: \operatorname{dist}[v][j] = \min(\operatorname{dist}[v][j], \operatorname{dist}[u][j-1] + l(u, v)) return \operatorname{dist}[t][k] Runtime: \operatorname{O}(k|E|).
```

The Official-solution uses rolling-array to reduce the space-complexity.