

TP Support de Transmission Mélageur à diode

Maxence LAURENT, Thibault VOLLERIN, Maxence NEUS

Contents

1	Préparation		
2	Mar	nipulations	
	2.1	Etalonage	
	2.2	Isolations	
	2.3	Pertes de conversion	
2	Con	clusion	

Abstract

1 Préparation

2 Manipulations

2.1 Etalonage

Il est nécessaire de calibrer les atténuateurs pour connaître la puissance injectée au mélangeur. Pour cela on fait varier la valeur de l'atténuateur pour avoir une puissance prédéfini à l'entrée du mélangeur.

2.2 Isolations

On visualise le spectre de puissance en voie IF autour des fréquences f_{RF} et f_{OL} :

Figure 1: Raies en voie IF

On a mesuré les puissances des raies :

$$P_{OL}(IF) = -22dBm$$

$$P_{RF}(IF) = -47dBm$$

On en déduit les isolations:

$$I_{RF_{I}F} = P_{RF}(RF) - P_{RF}(IF) = (-20dBm) - (-47dBm)$$

 $I_{RF_{I}F} = 27dB$

$$I_{OL_{I}F} = P_{OL}(OL) - P_{OL}(IF) = (7dBm) - (-22dBm)$$

 $I_{OL_{I}F} = 29dB$

2.3 Pertes de conversion

On a mesuré la puissance à $f=f_{RF}-f_{OL}$ pour déterminer les pertes de convertion :

$$P_{RF}(RF) - P_{RF-OL}(IF)$$

Figure 2: Pertes de convertions en fonction de f_{IF}

On voit que comme indiqué sur la datasheet, les pertes en convertion sont constantes pour f_{RF} à 200MHz autour de f_{OL} .

Figure 3: Pertes de convertions en fonction de P_{OL}

On observe que les pertes de convertion décroissent quand P_{OL} augmente, en effet plus P_{OL} est grand, plus le mélangeur oppère dans une plage non linéaire et est donc plus efficace.

Figure 4: Pertes de convertions en fonction de P_{RF}

Le point de compression correspond au point tel que les pertes de convertion se dégradent de 1dB. Ici on voit sur le graph que ce point se trouve autour de $P_{RF} = 0dBm$. Avant ce point, les pertes sont constantes autour de 6dB.

Figure 5: Spectre complet en voie IF à $P_{RF}=10dBm$

3 Conclusion