3-4 Notes: Direct Variation

equation y=kx

Direct Variation Equations A **direct variation** is described by an equation of the form y = kx, where $k \neq 0$. We say that *y varies directly as x*. In the equation y = kx, *k* is the **constant of variation**. Slope $= k = \frac{y}{x}$

Example 1: Name the constant of variation for the equation. Then find the slope of the line that passes through the pair of points.

Example 2: Suppose y varies directly as x, and y = 30 when x = 5.

a. Write a direct variation equation that relates x and y.

b. Use the direct variation equation to find x when y = 18.

Exercises

Slope = -2

Name the constant of variation for each equation. Then determine the slope of the line that passes through each pair of points.

Suppose y varies directly as x. Write a direct variation equation that relates x to y. Then solve.

4. If y = 4 when x = 2, find y when x = 16.

3.

6. If y = -4.8 when x = -1.6, find x when y = -24.

Example: TRAVEL A family drove their car 225 miles in 5 hours.

a. Write a direct variation equation to find the distance traveled for any number of hours.

Use given values for d and t to find r.

b. Graph the equation.

c. Estimate how many hours it would take the family to drive 360 miles.

Exercises

- 1. RETAIL The total cost C of bulk jelly beans is \$4.49 times the number of pounds p.
 - a. Write a direct variation equation that relates the variables.

b. Graph the equation on the grid at the right.

* Always start at (0,0)

c. Find the cost of
$$\frac{3}{4}$$
 pound of jelly beans.

$$C = 4.49 \quad \Rightarrow \quad C = 4.49 \quad (.75)$$

$$C = 4 \quad 3 \quad .37$$

- 2. CHEMISTRY Charles's Law states that, at a constant pressure, volume of a gas V varies directly as its temperature T/A volume of 4 cubic feet of a certain gas has a temperature of 200 degrees Kelvin.
 - a. Write a direct variation equation that relates the variables.

b. Graph the equation on the grid at the right.

Charles's Law Volume (cubic feet) 100 200 Temperature (K)

c. Find the volume of the same gas at 250 degrees Kelvin.

