polya-gamma

Bert van der Veen

2025-04-29

Let the marginal log-likelihood for a logistic GLLVM be:

$$\mathcal{L}(\Theta) = \sum_{i=1}^{n} \log \int \prod_{j=1}^{m} p(y_{ij}, \mathbf{z}_i) d\mathbf{z}_i$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \log \mathbb{E}_{\mathbf{z}_i} [\exp\{\eta_{ij}\}^{y_{ij}} / \{1 + \exp(\eta_{ij})\} h(\mathbf{z}_i)],$$
(1)

with $\eta_{ij} = \beta_{0j} + \mathbf{z}_i^{\top} \boldsymbol{\gamma}_j$. The above expectation of the first term does not possess a closed-form solution. Akin to Gibbs sampling of logistic regression, we apply a polya-gamma data augmentation and additional introduce the auxiliary variable $\omega \sim PG(b,c) = \frac{\exp(-c^2\omega/2)f(\omega;b,0)}{\mathbb{E}\{\exp(-\frac{1}{2}c^2\omega)\}}$, a polya-gamma random variable, so that the joint log-likelihood instead becomes:

$$\mathcal{L}(\Theta) = \sum_{i=1}^{n} \sum_{j=1}^{m} \log p(y_{ij}|\omega_{ij}, \mathbf{z}_i) + \log p(\omega; 1, 0) - \frac{1}{2} \mathbf{z}_i^{\mathsf{T}} \mathbf{z}_i, \tag{2}$$

with corresponding marginal log-likelihood:

$$\mathcal{L}(\Theta) = \sum_{i=1}^{n} \sum_{j=1}^{m} \log \mathbb{E}_{p(\mathbf{z}_i)} [\mathbb{E}_{p(\omega_{ij};1,0)} \{ p(y_{ij}, \omega_{ij}, \mathbf{z}_i) \}]. \tag{3}$$

Applying Jensen's inequality, we have the typical VA ELBO:

$$\mathcal{L}_{VA}(\Theta) = \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{E}_{\mathbf{z}_{i},\omega_{ij}} \{ \log p(y_{ij}|\omega_{ij}, \mathbf{z}_{i}) \} + \mathbb{E}_{\omega_{ij}} \{ \log p(\omega; 1, 0) \} - \mathbb{E}_{\mathbf{z}_{i}} (\frac{1}{2} \mathbf{z}_{i}^{\top} \mathbf{z}_{i}) - \mathbb{E}_{\omega_{ij}} \{ \log q(\omega) \} - \mathbb{E}_{\mathbf{z}_{i}} \{ \log q(\mathbf{z}_{i}) \},$$

$$(4)$$

where $\mathbb{E}_{\mathbf{z}_i}\{\log p(y_{ij}|\omega_{ij},\mathbf{z}_i)\} = -\log 2 + (y_{ij} - \frac{1}{2})\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}) - \frac{1}{2}\mathbb{E}_{\omega_{ij}}(\omega)\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2)$ under the assumption $q(\omega_{ij},\mathbf{z}_i) = q(\omega_{ij})q(\mathbf{z}_i)$.

it is straightforward to show that if we formulate $q(\mathbf{z}_i|\omega_{ij})q(\omega_{ij})$, the first distribution is conditionally normal and thus possesses a closed form solution w.r.t. integration of ω_{ij} . Thus, due to the polya-gamma augmentation, so we can assume (as usual) $q(\mathbf{z}_i) = \mathcal{N}(\mathbf{a}_i, \mathbf{A}_i)$ where \mathbf{a}_i and \mathbf{A}_i are free variational parameters to estimate. For $q(\omega_{ij})$:

$$\log q(\omega_{ij}) \propto \mathbb{E}_{\mathbf{z}_i} \{ \mathcal{L}(\Theta) \}$$

$$\propto -\frac{1}{2} \omega \mathbb{E}_{\mathbf{z}_i} (\eta_{ij}^2) + \log p(\omega; 1, 0),$$
(5)

which we recognize as the (unnormalized) exponentially tilted polya-gamma distribution with b=1 and $c=\sqrt{\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2)}$, i.e., $q(\omega_{ij})=PG\{1,\sqrt{\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2)}\}$. The terms due to the KL-divergence for ω_{ij} are given by:

$$\mathbb{E}_{\omega_{ij}}\{\log p(\omega_{ij}; 1, 0)\} - \mathbb{E}_{\omega_{ij}}\{\log q(\omega_{ij})\} = \mathbb{E}_{\omega_{ij}}\{\log p(\omega_{ij}; 1, 0)\} - \mathbb{E}_{\omega_{ij}}[\log \frac{\exp\{-\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2)\omega_{ij}/2\}p\{\omega_{ij}; 1, 0\}}{\cosh^{-1}\{\sqrt{\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2)}/2\}}]$$

$$= \frac{1}{2}\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2)\mathbb{E}_{\omega_{ij}}(\omega_{ij}) - \log[\cosh\{\sqrt{\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2)}/2\}],$$
(6)

where $\mathbb{E}_{\omega_{ij}}\{\log(p(\omega_{ij};1,0))\}$ from the prior cancels out with the same term from the entropy of the variational distribution written as an exponentially tilted polya-gamma variable with b=1 and c=0. Consequently, the ELBO is now:

$$\mathcal{L}_{VA}(\Theta) = -nm\log(2) + \sum_{i=1}^{n} \sum_{j=1}^{m} (y_{ij} - \frac{1}{2}) \mathbb{E}_{\mathbf{z}_{i}}(\eta_{ij}) - \frac{1}{2} \mathbb{E}_{\omega_{ij}}(\omega_{ij}) \mathbb{E}_{\mathbf{z}_{i}}(\eta_{ij}^{2}) + \frac{1}{2} \mathbb{E}_{\omega_{ij}}(\omega_{ij}) \mathbb{E}_{\mathbf{z}_{i}}(\eta_{ij}^{2}) - \log[\cosh\{\sqrt{\mathbb{E}_{\mathbf{z}_{i}}(\eta_{ij}^{2})}/2\}] + \sum_{i=1}^{n} \{\log \det(\mathbf{A}_{i}) - \operatorname{tr}(\mathbf{A}_{i}) - \mathbf{a}_{i}^{\top} \mathbf{a}_{i}\},$$

$$(7)$$

so that we see that the terms involving ω_{ij} cancel out, and we only need to calculate the normalising constant of the variational distribution w.r.t. $\omega \sim PG(1,0)$, which has the solution $\cosh^{-1}(c/2)$.

Finally, with
$$\eta_{ij} = \beta_{0j} + \mathbf{z}_i^{\top} \boldsymbol{\gamma}_j$$
, so that $\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}) = \tilde{\eta}_{ij}$, we have $\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2) = \tilde{\eta}_{ij}^2 + \operatorname{tr}(\boldsymbol{A}_i \boldsymbol{\gamma}_j \boldsymbol{\gamma}_j^{\top})$.

Plugging in the different results, with the well known results for $\mathbb{E}_{\mathbf{z}_i}(\frac{1}{2}\mathbf{z}_i^{\top}\mathbf{z}_i)$ and $\mathbb{E}_{\mathbf{z}_i}\{\log q(\mathbf{z}_i)\}$, equation (4) becomes:

$$\mathcal{L}_{VA}(\Theta) = -nm\log(2) + \sum_{i=1}^{n} \sum_{j=1}^{m} (y_{ij} - \frac{1}{2})\tilde{\eta}_{ij} - \log\{\cosh(\sqrt{\tilde{\eta}_{ij}^{2} + \boldsymbol{\gamma}_{j}^{\top} \boldsymbol{A}_{i} \boldsymbol{\gamma}_{j}}/2)\} + \frac{1}{2} \sum_{i=1}^{n} \{\log\det(\mathbf{A}_{i}) - \operatorname{tr}(\mathbf{A}_{i}) - \mathbf{a}_{i}^{\top} \mathbf{a}_{i}\}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (y_{ij} - \frac{1}{2})\tilde{\eta}_{ij} - \frac{1}{2}\sqrt{\tilde{\eta}_{ij}^{2} + \boldsymbol{\gamma}_{j}^{\top} \boldsymbol{A}_{i} \boldsymbol{\gamma}_{j}} - \log\{1 + \exp(-\sqrt{\tilde{\eta}_{ij}^{2} + \boldsymbol{\gamma}_{j}^{\top} \boldsymbol{A}_{i} \boldsymbol{\gamma}_{j}})\} + \frac{1}{2} \sum_{i=1}^{n} \{\log\det(\mathbf{A}_{i}) - \operatorname{tr}(\mathbf{A}_{i}) - \mathbf{a}_{i}^{\top} \boldsymbol{A}_{i} \boldsymbol{\gamma}_{j}\}$$

$$(8)$$

Finally, we note that for the quadratic model with $\eta_{ij} = \beta_{0j} + \mathbf{z}_i^{\top} \boldsymbol{\gamma}_j - \mathbf{z}_i^{\top} \mathbf{D}_j \mathbf{z}_i$ the solution to $\mathbb{E}_{\mathbf{z}_i}(\eta_{ij}^2) = \text{var}(\eta_{ij}) + \tilde{\eta}_{ij}^2$ is the same as for the probit model.