$$C_{\Omega(x)}(x) \left[\Omega(x) = k\right]_{\delta} \sim 2\sqrt{2\pi \log \log x} \times \widehat{C}'_{k,*}(x) (1 + o(1)) =: \widehat{C}_{k,**}(x).$$

We have that

$$\widehat{C}_{k,**}(x) \sim -2\sqrt{2\pi \log \log x} \left[\frac{(\log \log x)^{k-1}}{(\log x)(k-1)!} \left(1 - \frac{1}{\log x} \right) + \frac{(\log \log x)^{k-2}}{(\log x)^2(k-2)!} \right].$$

Hence, integration by parts and Proposition A.2 yield the main term

$$\sum_{\substack{n \leq x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \sim \left| \int \widehat{C}_{k,**}(x) dx \right| \qquad (19)$$

$$\sim \frac{4\sqrt{2\pi} \cdot x (\log \log x)^{k-1/2}}{(2k-1)(k-1)!} + \frac{2\sqrt{2\pi} \cdot x \Gamma\left(k - \frac{1}{2}, \log \log x\right)}{(k-1)!} - \frac{2\sqrt{2\pi} \cdot x \Gamma\left(k - \frac{3}{2}, \log \log x\right)}{(k-1)!}$$

$$\sim \frac{4\sqrt{2\pi} \cdot x (\log \log x)^{k-1/2}}{(2k-1)(k-1)!}.$$

4.2 Average order of the unsigned sequences

Proposition 4.5. We have that as $n \to \infty$

$$\mathbb{E}\left[C_{\Omega(n)}(n)\right] = \frac{\sqrt{2\pi}(\log n)}{\sqrt{\log\log n}}(1+o(1)).$$

Proof. We first compute the following summatory function by applying Corollary 4.4 and Lemma A.5 from the appendix:

$$\sum_{k=1}^{2\log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \sim \frac{\sqrt{2\pi} \cdot x(\log x)}{\sqrt{\log\log x}}.$$
 (20)

We claim that

$$\frac{1}{x} \times \sum_{n \le x} C_{\Omega(n)}(n) = \frac{1}{x} \times \sum_{k \ge 1} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)$$

$$= \frac{1}{x} \times \sum_{k=1}^{2 \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)(1 + o(1)), \text{ as } x \to \infty.$$
(21)

To prove (21) it suffices to show that

$$\frac{1}{x} \times \sum_{k>2 \log \log x} \sum_{\substack{n \le x \\ \Omega(n)=k}} C_{\Omega(n)}(n) = O\left((\log x)^{0.613706} \times (\log \log x)\right), \text{ as } x \to \infty.$$
 (22)

We proved in Theorem 4.1 that for all sufficiently large x

$$\sum_{n \le x} (-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)} = \frac{x \widehat{F}(2, z)}{\Gamma(z)} (\log x)^{z-1} + O\left(x (\log x)^{\text{Re}(z) - 2}\right).$$

By (18) we have that the summatory function

$$\left| \sum_{n \le x} (-1)^{\omega(n)} \right| = \frac{x}{2\sqrt{2\pi \log \log x}} + O\left(\frac{x}{(\log \log x)^{3/2}}\right).$$

We can argue as in the proof of Corollary 4.4 using integration by parts with the Abel summation formula that whenever $1 < |z| < P(2)^{-1}$ and x > e is sufficiently large we have

$$\sum_{n \leq x} C_{\Omega(n)}(n) z^{\Omega(n)} \ll \frac{\widehat{F}(2, z)}{\Gamma(z)} \times \int_{e}^{x} \frac{\sqrt{\log \log t}}{t} \frac{\partial}{\partial t} \left[t(\log t)^{z-1} \right] dt$$

$$\ll \frac{x \widehat{F}(2, z)}{\Gamma(z)} \left[\frac{(\log x)^{z-1} (z + \log x)}{z} \sqrt{\log \log x} - \frac{\sqrt{\pi}}{2\sqrt{z-1}} \operatorname{erfi} \left(\sqrt{(z-1)\log \log x} \right) - \frac{\sqrt{\pi}}{2z^{3/2}} \operatorname{erfi} \left(\sqrt{z \log \log x} \right) \right]$$

$$\ll \frac{x \widehat{F}(2, z)}{\Gamma(1+z)} (\log x)^{z} \sqrt{\log \log x}. \tag{23}$$

The dropped error term in the last formula follows from the asymptotic series for erfi(z) in (24). Namely, as $|z| \to \infty$, the *imaginary error function*, denoted by erfi(z), has the following asymptotic expansion [19, §7.12]:

$$\operatorname{erfi}(z) := \frac{2}{\sqrt{\pi} \cdot i} \times \int_0^{iz} e^{t^2} dt = \frac{e^{z^2}}{\sqrt{\pi}} \left(z^{-1} + \frac{z^{-3}}{2} + \frac{3z^{-5}}{4} + \frac{15z^{-7}}{8} + O\left(z^{-9}\right) \right). \tag{24}$$

For all large enough x > e, we define

$$\widehat{B}(x,r) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) \ge r \log \log x}} C_{\Omega(n)}(n).$$

We argue as in the proof from the reference [13, cf. Thm. 7.20; §7.4] applying (23) that for $1 \le r < P(2)^{-1}$

$$\sum_{\substack{n \le x \\ \Omega(n) \ge r \log \log x}} C_{\Omega(n)}(n) r^{\Omega(n)} \ll x (\log x)^{-r \log r} \times \sum_{n \le x} C_{\Omega(n)}(n) r^{\Omega(n)}$$

$$\sim \frac{x \widehat{F}(2, z)}{\Gamma(1 + z)} \sqrt{\log \log x} (\log x)^{r - r \log r}.$$

Since $\widehat{F}(2,r) = \frac{\zeta(2)^{-r}}{1+P(2)r} \ll 1$ for $r \in [1,P(2)^{-1})$, and similarly since we have that $\frac{1}{\Gamma(1+r)} \gg 1$ for r taken within this same range, we obtain

$$\sum_{\substack{n \le x \\ \Omega(n) \ge r \log \log x}} C_{\Omega(n)}(n) r^{\Omega(n)} \ll x \sqrt{\log \log x} \times (\log x)^{r-r \log r}, \text{ for all } 1 \le r < P(2)^{-1}.$$

When $1 \le r < P(2)^{-1}$ we also have

$$x\sqrt{\log\log x}(\log x)^{r-r\log r}\gg \sum_{\substack{n\leq x\\\Omega(n)\geq r\log\log x}}C_{\Omega(n)}(n)r^{\Omega(n)}\gg \sum_{\substack{n\leq x\\\Omega(n)\geq r\log\log x}}C_{\Omega(n)}(n)r^{r\log\log x}.$$

This implies that for r := 2 we have

$$\widehat{B}(x,r) \ll x(\log x)^{r-2r\log r} \sqrt{\log\log x} = O\left(x(\log x)^{\mathbf{0.613706}} \times \sqrt{\log\log x}\right)$$
(25)

We wish to evaluate the limiting asymptotics of the sum

$$S_2(x) := \frac{1}{x\sqrt{\log\log x}} \times \sum_{k \ge 2 \log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \ll \widehat{B}(x, 2).$$

We have proved that $S_2(x)\sqrt{\log\log x} = O\left((\log x)^{0.61306}(\log\log x)\right)$ as $x \to \infty$, as claimed.