CS412 Final Review Classification (Chapters 8, 9)

Jia Wang 12/6/2015

Decision tree

- Tree structure
 - Leaf nodes: outcome
 - Non-leaf nodes: decision attribute
 - Branches below non-leaf nodes: predicate on the decision attribute, by which data is divided into disjoint sets
- Construction
 - Starting with a single node (root), which involves set of all data
 - At each node: select best attribute by some merit measure
 - E.g., information gain, Gini index
 - Stopping condition: all attributes used by parent nodes, or data have pure classes
- Easily works for both nominal and numerical attributes
 - For numerical attribute x_i , branches can correspond to, e.g., $x_i > 1.5$ and $x_i \le 1.5$
- Leads to interpretable decision rules
 - Each root-to-path corresponds can be converted into a rule

Naïve Bayes

- Not to confuse P(H|X) with P(X|H)
 - The former is **posterior probability** (of class given observations)
 - The latter is **likelihood** (of observations given class)
- Assumption: attribute values X_k conditionally independent given class H
 - Key assumption underlying Naïve Bayes
 - $P(X|H) = \prod_k P(X_k|H)$

K-Nearest Neighbor

- Given querying point *q*
 - Its class predicted by the majority class of its *k*-nearest neighbors
 - Distance measured by, e.g., Euclidean space
 - Optionally, contributions of nearest neighbors weighted by distance
 - ullet The further the neighbor is, the less it contributes to the class of q
- Curse of dimensionality (CoD)
 - In high dimensional space, nearest neighbors far away from q, hence less representative of q (premise of kNN classifier broken)
 - CoD also an issue for many other classification methods
- "Lazy" classifier
 - No overhead for training phase; higher cost for prediction

K-Nearest Neighbor

- Decision boundary of classifiers
 - Hypersurfaces that partitions feature space into subsets, one for each class
 - E.g., Curves in 2-D spaces, surfaces for 3-D spaces

A decision tree example

Perceptron

- Predict class +1 if $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} > 0$; otherwise class -1
 - ullet $oldsymbol{w}$ and b are parameters, $oldsymbol{x}$ is input vector
 - ullet Parameters w and b updated iteratively for each training tuple
- Linear decision boundary only

Multilayer Neural Network

- Topology
 - Input layer, hidden layer(s), output layer
 - Each layer consists of **units** (neurons)
 - Units linked to some units in the next layer
- Prediction by feedforwarding
 - Each neuron takes input as the **biased weighted sum** of outputs from neurons in the previous layer, and calculates output with the **activation function**
 - Examples of activation function: sign, threshold (step), sigmoid, tanh, etc.
- Parameter determined by **backpropagation**
 - Parameters include weights on the connections and biases on the units

Evaluating classifiers

- Training/testing data
 - Model built on training data
 - Evaluate classifier on the testing data

•
$$precision = \frac{TP}{TP+FP}$$
, $recall = \frac{TP}{TP+FN}$

- ROC curve
 - Larger the area under the curve
 → better accuracy

AdaBoost

- ullet Ensemble classifier combines a set of weak (base) classifiers h_i
- Algorithm in iterations
 - A data weight distribution $\mathbf{w}_i = (w_1, ..., w_N)$ in iteration i
 - h_i to minimize the weighted error ϵ_i on the training tuples
 - Weighted error rate: sum of weights on misclassified instances
 - Adjust weight distribution for next iteration
 - Decrease weights on correctly classified instances by factor $\frac{1-\epsilon_i}{\epsilon_i}$
 - Normalize weight distribution: weights sum to 1
- Final classifier has form $h(x) = \prod_i \alpha_i h_i(x)$
 - $\alpha_i = \ln \frac{1-\epsilon_i}{\epsilon_i}$ is the weight of weak classifier h_i