"WHAT LIES BEHIND YOU AND WHAT LIES IN FRONT OF YOU, PALES IN COMPARISON TO WHAT LIES INSIDE OF YOU."

- RALPH WALDO EMERSON

BAYESIAN STATISTICS

CLASS 2

WHAT DID WE LEARN FROM CLASS 1?

- Terminology: Prior, Sampling distribution, Posterior
- How to define problem (decide sampling distribution of data, define priors for parameters, use Stan to generate posterior distribution of parameters)
- How to use posterior to answer questions about the parameter
- How data (sample size) and prior contribute to the posterior
- Why prior is VERY important when sample size is small

GOALS FOR TODAY

- MCMC Markov Chain Monte Carlo
 - What it is
 - Has it converged
 - Options to help convergence
- Options in running MCMC to get posterior distribution
- Another in-class example

SIMULATING A DISTRIBUTION

ANOTHER DISTRIBUTION

- > y=rbinom(2000,100,0.3)
- > hist(y)
- > plot(y,type='l')

SKEWED DISTRIBUTION

- > y=rbeta(2000,2,50)
- > hist(y)
- > plot(y,type='l')

Stan uses the Hamiltonian Monte Carlo method for its Markov Chain and its adaptive variant the no U-turn sampler (NUTS). For more details, see https://mc-stan.org/docs/2_19/reference-manual/hamiltonian-monte-carlo.html

In Python: Stan, PyMC3

MCMC

Posterior distribution

CONVERGENCE

NONCONVERGENCE

FIXES

- Improper posterior or bad prior
 - Fix: New prior distribution
- Hasn't converged yet
 - Let the chain run longer
- Chain continues to increase
 - Potentially a bad starting point...provide a new starting point (or change prior)
- Too much autocorrelation in chain
 - Thin the chain

OPTIONS FOR STAN CODE

```
binom.stan=stan(model_code = ex1,data=binom.data,seed=98763,
chains = 4,  # number of Markov chains
warmup = 3000,  # number of warmup iterations per chain
iter = 6000,  # total number of iterations per chain
refresh = 0,  # no progress shown
thin=3,  # will 'thin' the chains.help with autocorrelated posterior samples
init=0.3  #specify initial values)
```

Creates four chains; each chain has 6000 values, however, only every 3rd value is taken (now down to 2000 per chain that is useful); first 3000 (well, actually only 1000 since we are thinning) is burn-in meaning it is not used

End result will have a total of 4000 posterior values (1000 from each chain)

traceplot(binom.stan, inc_warmup = TRUE)

DIAGNOSTICS

print(binom.stan, pars=c("p", "lp___"), probs=c(.1,.5,.9))

```
10%
                                                   Rhat
                                 50% 90%
                                             n eff
            se_mean
                     sd
   mean
                                 0.40 0.46
                                             3268
            0.00
                     0.05
                           0.34
   0.40
p
                    0.72 -70.10 -68.96 -68.74 3290
lp -69.23
            0.01
```

Log posterior value (unnormalized)

Want these to be close to 1 (this means convergence); if greater than 1.1, then there could potentially be a problem (Rhat or potential scale reduction)

DIAGNOSTICS

print(binom.stan, pars=c("p", "lp___"), probs=c(.1,.5,.9))

	mean	se_mean	sd	10%	50%	90%	n_eff	Rhat
р	0.40	se_mean 0.00	0.05	0.34	0.40	0.46	3268	1
lp_	69.23	0.01	0.72	-70.10	-68.96	-68.74	3290	1

Log posterior value (unnormalized)

Effective sample size...bigger is better (more than 1000 is fine). If too small, would recommend trying to thin chains.

PROBABILITY INTERVAL

plot(binom.stan)

Inner is 80% probability interval Outer is 95% probability interval

CHECK AUTOCORRELATION

stan_ac(binom.stan,pars=c("p"))

ANOTHER POTENTIAL WARNING

Warning: There were 2 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

Fix: add this line to your options... control=list(adapt_delta=0.9)

ESTIMATE VALUE AT RISK

- Recall from Simulation and Risk calculating Value at Risk (VaR)
- Say we are interested in estimating VaR for Apple stock (AAPL) in Rate of Change (ROC) for one day
- If we assume Rate of Change (R_t) follows a Normal distribution with mean μ and standard deviation σ
- We then need to assign a distribution to μ and σ^2
 - Assume μ is distributed as Normal(0,100)
 - Assume σ^2 is distributed as Inv-Gamma(0.001,0.001)
- Once we get posterior for μ and σ^2 , we can use this to get the 1st quantile

DATA

```
library(quantmod)

tickers = c("AAPL")

getSymbols(tickers)

AAPL$aapl_r <- ROC(AAPL$AAPL.Close)

AAPL <- cbind(tail(AAPL$AAPL.Close, 500), tail(AAPL$aapl_r, 500))
```

STAN CODE

```
ex2 <- "
data {
    int <lower=0> n;
    real y[n];
parameters {
    real <lower=0> sigma2;
    real mu;
model {
    mu ~ normal(0,100);
    y ~ normal(mu,sigma);
sigma2 ~ inv_gamma(0.001,0.001);
```

RUN STAN CODE

```
stock.data=list(n=nrow(stocks), y=as.vector(stocks$aapl_r))
stock.stan=stan(model_code = ex2,data=stock.data,seed=15893, chains = 4, warmup = 3000, iter = 6000, refresh = 0, thin=3)
```

CHECK CONVERGENCE

traceplot(stock.stan,inc_warmup=F)
print(stock.stan, pars=c("mu", "sigma2"), probs=c(.1,.5,.9))

	mean	n_eff	Rhat
mu	0	3995	1
sigma2	0	2986	1

*** Values are VERY small!

USING POSTERIOR INFORMATION:

Posterior samples

post.params=extract(stock.stan)

new.mu=post.params\$mu

new.sigma2=post.params\$sigma2

head(cbind(new.mu,new.sigma2))

new.mu new.sigma2

- [1,] -0.0003626559 0.0003317394
- [2,] -0.0004120245 0.0003196366
- [3,] -0.0008917359 0.0003210392
- [4,] 0.0003888528 0.0003505453
- [5,] 0.0003630797 0.0003195843
- [6,] -0.0001102442 0.0003167621

VaR ROC at 99% confidence

- What we need is the 1st percentile for ROC:
- one_per=qnorm(0.01,new.mu,sqrt(new.sigma2))

USE THIS INFO FOR IN-CLASS ASSIGNMENT