

f(n==6)return; also fun would be fun (n+1)K B) factorial of a number: N= 5 Ans = 5! = 5×4×3×2×1 120 Fact (5) = 5 * Fact (4) = 5 x 4 x fact (3 3 * fact(2) 42*fact(1) 2 N* F(N-1) F(N) F(5) = 5* F(5-1) = 120 F(5) = 5* (F(4)) F(4) = 4* F(4-1 F(3) =3* (F(3-1) FQ) =(2* F(1) Base Care F (1) == action,

Code: ps vm () {

int ans = 5,

system out-println (factorial (ans)); static int factorial (int n) ℓ if $(n \ell = 1) \ell$ return 1, return n * factor (n-1); 9) Dun of digits = (+3+4+2=10)1+ sum of digitasun (342) $\frac{1342}{10} = 2 + F(42)$ $\frac{1342}{10} = 2 + \frac{134}{134} = 4$ F(N) = F (N/10) + F(N) = F(N/10)+ nemainder

Complexity: Olog(1) F (1342) netwn 2+ F (134) return (4 + F(13)) Code in mac n - - Vs n - - I finst pars n // n = n - 1Subtract first than pass for n = 5 for = 5 Reverse a number using recursion. N=1 to 5 return 05 to 1. OUN = 1825, to 5281 take the last it in \downarrow element put it in \downarrow \downarrow the first \downarrow F(N/10) base condition (F(N)= (N1/.10)

fun (n) & Ivoid 1625 5+8(162) if (n ==0){

return; (5*10+2)+f(18) 52+f(18) nemainder=n9/0/0; Sum= Oum # 10 + rem; 521 +8(8) fun (n/10); F(N, auguments)=

nem arguments-1

(N°/.10) 10 + N = 123455 * 10000 + 1234 5* 10 + + (1234) F(H/10, argument,-1) 4 X 10 + f(123) 3×100+f(12) 2×10 + f(1), return Here helper function is accated. In code line return remainder * (long) (Math. pour (10, digits-1) + helpen (n/10, digits-1);

8) Palindrome or not. H = 12321start of se end 1 2 3 21How can we solve this through recursion Code in the mas through recursione) Coart number of Zeuses en a number. N = 30204 (9hrs = 2) (1) I) we take count inside argument $F(N,0) \rightarrow f$ diget = 0 ex' $f(N/10) \leftarrow f(N/10) \leftarrow f(N/$ 7 = C+1= 0+1 F (30204, D) 302 230 $= \left(3020, 0\right)$ 302 WITI = 2 F (30,17)

F (30) 15)2 F (3) 2 20)2 P (0, 2) Juetnun ans public class (ount_0 &

psvm() (

Sout (count (30210)); static ent count (int n) E
vetuur helper(n, 0), Mospecial patterns, how to pass a value to above calls. static ant helper (int n, ant count){

i) (n = = 0) of

return count;

y int remainder = n% (0; if (remainder = = 0) { return helper(n/0, count +1)

return helpen (n/10, count),
A special example to retrum Same value to alcone function callo
S) liven an integer nums return the number of steps to reduce it to zero
In one step, the current number is
even, you have to denide it by 2, obtenvilse subtract one from Ost
Input num = 14 output = 6 1) 14 & even, divide by 2 obtain 7. 2) $4-1=6 \rightarrow 8e$ and $8tep$.
2) 7-1 = 6 > second step.
B) $6/2 = 3 - 3^{rd}$ step $3-1 = 2 - 9^{th}$ step 5) $2/2 = 1 \rightarrow 5^{th}$ step 6) $1-1 = 0 \rightarrow 6^{th}$ step 3+0p/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

helper function We need to pass these values in recurrion calls, that is nohy we need to put it in the argument (helper function) class Solution of
public in number 0 t Steps (int num) of
section helper (num, 0); static int helper (int num, Interest if (num = = 0) & return steps; If (num % 2 == 0) vietuen helper(num/2, (ount+1)'veturn helper(num-1, steps+1);

