- For more records, click the Records link at page and.
- To change the format of selected records, select format and allok Display Selected,
- To print/save clean copies of selected records from browser glick Print/Save Selected.

To have records sent as hardcopy or via email, click Send Results.

✓ Select All X Clear Sulectio

Format

1. 7 5/5/1 DIALOG(R)File 352:Derwent WPI (c) 2007 The Thomson Corporation, All rts. reserv.

0004252892

WPI Acc no: 1987-089883/198713

XRAM Acc no: C1987-037309

New beta-nitro-phenethyl derivs. – useful as agricultural fungicides Patent Assignee: HOKKO CHEM IND CO LTD (HOKK); UBE IND LTD (UBEI)

Inventor: HIROTA Y; IDE H; TSUJIMOTO K; WADA T

Patent Family (1 patents, 1 countries)

Patent Number	Kind	Date	Application Number Kind	Date	Update	Туре
JP 62039563	Α	19870220	JP 1985176997	Α	19850813	198713B

Priority Applications (no., kind, data): JP 1985176997 A 19850813 Patent Details

Patent Number	Kind	Lan	Pgs	Draw	Filing Notes
JP 62039563	Α	JΑ	19	0	

Alerting Abstract JP A

Beta-nitrophenethyl derivs, of formula (I) are new. R1 is H or lower alkyl; R2 is alkyl, OH, amino, alkoxycarbonyl, alkoxycarbonyloxy, alkylcarbonyloxy, triphenyl, benzoyloxy, phenoxycarbonyloxy, tri-lower alkoxysilyl-substd. lower alkyl; phenyl opt. substd. by halogen, amino, alkyl or nitro; benzyl opt, substd. by helogen; naphthyl; cyclohexyl; pyrimidinyl; N,N-di-lower alkylthiocarbamoyl; or 1-phenyl-2nitroethane-1-yl in which the phenyl nucleus may be substd. by halogen or lower alkyl. X is H, halogen, hydroxy, NO2; lower alkyl opt. substd. by halogen; lower alkoxy; lower alkoxycarbonyl; dialkylamine; or benzyloxy opt. substd. by halogen; n = 1-3. A typical (I) is 2-(hydroxyethylthio)- 2-phenyl-1-nitroethane.

USE/ADVANTAGE - (I) control of rust of wheat: rust of grape; powdery mildew of wheat; helminthosporium leaf spot of corn and rice; blast of rice; rust of poss; anthracnose of poss; powdery mildew of cucumber, sweet melon, egg plent late blight of grape, etc. (I) show little phytotoxicity to valuable plants, and do not show toxicity to humans, animals and fish.

Title Terms /Index Terms/Additional Words; NEW; BETA; NITRO; PHENYLETHYL; DERIVATIVE; USEFUL; AGRICULTURE; FUNGICIDE

Class Codes

International Patent Classification

IPC	Class Level	Scope	Position	Status	Version Date
A01N-033/20; A01N-037/10; A01N-043/54; A01N-047/06; C07C-145/00			Secondary		"Version 7<

File Segment: CPI DWPI Class: C03

Manual Codes (CPI/A-N): B; C05-B01B; C07-D12; C10-A11; C10-A11B; C10-A13; C10-B01A; C10-B02A; C10-E02; C10-E04; C10-G02; C10-G03; C12-A02C ; D

erk WPI (Dialog® File 352), (a) 2007 The Thomson Corporation. All rights reserved.

Format Select All X Clear Selections Print: Save Selected Send Results © 2007 Dialog a Thomson busin

- For more records, click the Records link at page end.
- To change the format of selected records, select format and click Display Selected.
- To print/save clean copies of selected records from browser click Print/Save Selected.
- To have records sent as hardcopy or via email, click Send Results.

✓ Select All

X Clear Selections Print/Save Selected Send Results Display Selected Free

1. 3/5/1 DIALOG(R)File 352:Derwent WPI (c) 2007 The Thomson Corporation. All rts. reserv.

0004252892

WPI Acc no: 1987-089883/ XRAM Acc no: C1987-037309

New beta-nitro-phenethyl derivs. - useful as agricultural fungicides

Patent Assignee: HOKKO CHEM IND CO LTD (HOKK); UBE IND LTD (UBEI)

Inventor: HIROTA Y; IDE H; TSUJIMOTO K; WADA T

Patent Family (1 patents, 1 countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update Ty	ре
JP 62039563	Α	19870220	JP 1985176997	Α	19850813	198713 B	

Priority Applications (no., kind, date): JP 1985176997 A 19850813

Patent Details

Patent Number	Kind	Lan	Pgs	Draw	Filing	Notes
JP 62039563	Α	JA	19	0		

Alerting Abstract JP A

Beta-nitrophenethyl derivs. of formula (I) are new. R1 is H or lower alkyl; R2 is alkyl, OH, ar benzoyloxy, phenoxycarbonyloxy, tri-lower alkoxysilyl-substd. lower alkyl; phenyl opt. subst cyclohexyl; pyrimidinyl; N,N-di-lower alkylthiocarbamoyl; or 1-phenyl-2-nitroethane-1-yl in halogen, hydroxy, NO2; lower alkyl opt. substd. by halogen; lower alkoxy; lower alkoxycarbor A typical (I) is 2-(hydroxyethylthio)- 2-phenyl-1-nitroethane.

USE/ADVANTAGE - (I) control of rust of wheat; rust of grape; powdery mildew of wheat; rust of grape; powdery mildew of cucumber, sweet melon, egg plant; late blight of gr toxicity to humans, animals and fish.

Title Terms /Index Terms/Additional Words; NEW; BETA; NITRO; PHENYLETHYL; DERIVA

Class Codes

International Patent Classification

IPC	Class Level	Scope	Position	Status	Version Date
A01N-033/20; A01N-037/10; A01N- 043/54; A01N-047/06; C07C-145/00			Secondary		"Version 7"

File Segment: CPI DWPI Class: C03

Manual Codes (CPI/A-N): B; C05-B01B; C07-D12; C10-A11; C10-A11B; C10-A13; C10-B

Derwent WPI (Dialog® File 352): (c) 2007 The Thomson

② 公 開 特 許 公 報 (A) 昭62-39563

int Cl.	識別記号	庁内整理番号	43公開	昭和62年(1987)2月20日
C 07 C 145/00 A 01 N 33/20 37/10 37/40 43/54 47/06 47/12	102	7188-4H 8519-4H 8519-4H 8519-4H 7215-4H C-8519-4H A-8519-4H※審査請求	未請求	発明の数 2 (全19頁)

βーニトロフエネチル誘導体および農園芸用殺菌剤 図発明の名称

> ②特 願 昭60-176997

願 昭60(1985)8月13日 ❷出

洋 二 郎 東京都千代田区霞が関3丁目7番2号 宇部興産株式会社 広 田 ⑫発 明 者 東京本社内

⑫発 明 者 辻 本 **一** 幸 厚木市温水1883番地の6

奏野市曽屋684番地の11 砂発 明 拓 雄 者 和田

鎌倉市西御門2丁目3番19号 ⑦発 明 者 井 出 陽郎

東京都中央区日本橋本石町 4 丁目 2 番地 北與化学工業株式会社 ⑪出 願 人

宇部與産株式会社 宇部市西本町1丁目12番32号 ⑪出 願 人

弁理士 八木田 茂 外2名 ②代 理 人

最終頁に続く

1. 発明の名称

β-ニトロフエネチル誘導体および.農園芸 用袋精制

2.特許請求の範囲

(式中、R.は水素原子または低級アルキル為を表 わし:R2はアルキル基,ヒドロキシー,アミノー, アルコキシカルポニル - ,アルコキシカルポニル オキシ・,アルキルカルポニルオキシ・,トリフ エニル・,ペンプイルオキシー,フエノキシカルポ ニルオキシ‐またはトリ低級アルコキシシリル‐ **置換低級アルキル港、ハロゲン、アミノ、アルキ** ルおよびニトロ蒸から選んだ世換基で催換されて いてもよいフェニル著,, ハロゲンで盥換されてい てもよいペンジル港,ナフチル港,シクロヘキシ ル共,ピリミジニル基、N、N-ジ低級アルキル チオカルパモイル基またはフエニル核上にハロゲ ンもしくは低級アルキル監換されていてもよい! - フエニル ユーニトロエタン・ノーイル若を扱 わし;Xは水素原子,ハロゲン原子,ヒドロキシ ル基,ニトロ基,ハロゲン世換されていてもよい 低級アルキル港,低級アルコキシ港,低級アルコ キシカルポニル芬,ジアルキルアミノ基またはハ ログン置換されていてもよいペンジルオキシ荘を 表わし:nは/~3の整数を表わす)で示される β-ニトロフエネチル誘導体。

活性成分として、一般式:

(式中、R₁は水素原子または低級アルキル基を表 わし:R2はアルキル基,ヒドロキシー,アミノー アルコキシカルポニルー, アルコキシカルポニル オキシー,アルキルカルポニルオキシー,トリフ エニル・, ペンソイルオキシ-, フェノキシカルボ ニルオキシ‐またはトリ低級アルコキシシリル‐

置換低級アルキル基、ハロゲン、アミノ、アルキ ルおよびニトロ基から選んだ置換券で置換されて いてもよいフェニル差,ハロゲンで置換されてい てもよいペンジル港,ナフチル港,シクロヘキシ ル若、ピリミジニル若、N、N・ジ低級アルキル チオカルバモイル巷またはフエニル核上にハロゲ ンもしくは低級アルキル濫換されていてもよい! - フェニル 2 - ニトロエタン・1 - イル基を表 わし;Xは水素原子,ハロゲン原子,ヒドロキシ ル基。ニトロ差。ハロゲン値換されていてもよい 低級アルキル弟,低級アルコキシ基,低級アルコ キシカルポニル若、ジアルキルアミノ若またはハ ロゲン監換されていてもよいペンジルオキシ燕を 表わし:nは/~3の整数を表わす)で示される β-ニトロフエネチル勝導体を含有することを特 徽とする農園芸用殺菌剤。

3. 発明の詳細な説明

産業上の利用分野

本発明は新規なβ-ニトロフェネチル誘導体及 びそれを活性成分とする農園芸用殺菌剤に関する

客を示さないものでも、長年の施用等によつて土壌中に蓄積する結果、業客を発生する等の問題もある。とのため、常に新しい農園芸用殺菌剤を開発、提供するととが要望されている。

問題点を解決するための手段。作用および効果

本発明者らは、上述したごとき機関芸用殺菌剤の分野でかかえている諸問題を解決し得る新規な 殺菌剤の開発を意図し、β・ニトロフェネチル系 化台物に着目して多数のこの系の化台物を新たに 台成し、それらについて機関芸分野での実用性を 鋭意検討した。その結果、一般式(1):

(式中、R1 は水素原子または低級アルキル基を表わし;R2 はアルキル基、ヒドロキシー、アミノー、アルコキシカルポニルー、アルコキシカルポニルオキシー、アルキルカルポニルオキシー、トリフエニルー、ペンゾイルオキシー、フエノキシカルポ

ものである。

従来の技術および問題点

従来 ターニトロフェネチル誘導体については医療用 殺菌剤 , 抗腫瘍剤としての生理活性を有することが知られている [たとえば、ジャーナル オプ・フ・アメリカン・ケミカル・ソサイエテイ (J. Am. Chem. Soc.) , フョ , ノ 4 2 - 5 (/95 /) 及び同誌 , ファ , 3 8 6 0 (/ 9 5 5) 参照] が、 農業用としては 数 ダニ活性の 報告 [ケミカル ア プストラクッ , 6 0 , 4 0 6 / c (/ 9 6 6)] があるのみで、 農業用 殺 菌剤としての 有用性ないしその 可能性についての 報告は 皆無である。

ととろで、養園芸用殺菌剤として従来多数の化台物が知られまたは実際に使用されているが、一つの化台物の使用ですべての植物病原菌の防除に有効であるわけではなく、抗菌スペクトラムは広狭さまざまであり、完全に満足できるとは限らない。また当初に有効であつた菌も耐性を獲得してとれて無効になる問題がある。さらに従来の殺菌剤化台物は薬害を示すものもあり、また当初に薬

ニルオキシ‐またはトリ低級アルコキシシリル‐ **散換低級アルキル基、ハロゲン、アミノ、アルキ、** ルおよびニトロ基から選んだ世換基で置換されて いてもよいフェニル苯、ハログンで愉換されてい てもよいペ ンジル基 ,ナフチル基 , シクロヘキシ ル基、ピリミジニル基、N,N-ジ低級アルキル チオカルパモイル粘またはフエニル核上にハロゲ ンもしくは低級アルキル監換されていてもよい! - フエニル 2 - ニトロエタン・1・イル基を喪 わし、Xは水素原子、ハロゲン原子、ヒドロキシ ル基,ニトロ基,ハロゲン酸換されていてもよい 低級アルキル若,低級アルコキシ菇,低級アルコ キシカルポニル芸,ジアルキルアミノ若またはハ ロゲン艦機されていてもよいペンジルオキシ基を 表わし; nは / ~3 の整数を表わす) で示される 新規β~ニトロフエネチル誘導体が提園芸用殺菌 剤として予想外に優れた効力を示し、前記した話 問題の解決に有用であることを見出した。

したがつて、第1の本発明の要旨とするところは、前記一般式(J)で扱わされ、特に農園芸用殺菌

剤として有用な新規 β - ニトロフエネチル誘導体 にある。

また第2の本発明の要旨とするところは、当該 誘導体を活性成分として含有することを特徴とす る農園芸用殺菌剤にある。

つぎに本発明のβ-ニトロフェネチル誘導体の 代表例を第1表にその物性値とともに示す。これ らの化合物の製造法の概要および具体例(実施例) は後述する。また化合物性は後配の実施例かよび 試験例においても参照される。

	物件官	nD 7.6216	23 ,54//	nD 1.517#	21 1.5997	aD 15666	, 25 , 5053	27 15339	25 / 505#	25 ,506#	mp. 108~11	25 1.5#1#	nD 1.5549	n 25 , 557 9	nD 1.5220	28 /5389 n	n _D ,3420	mp. 7 /~73C
-NO ₂	×	×	3	æ	Ħ	×	×	æ	Ħ	æ	н	æ	-0H ₂ 0.2(m,p设台)	-OH ₂ 0.4(m,p读台)	ж	Ħ	н	Ŧ
# / # R ² / K ¹ / K	R2	70-(0)-	-04Hg-n	-CH200204H9-n	-0H ₂ {(()}-04	-CH ₂ CH ₂ OH	-0 ₁₂ H ₂₅ -a	-0H ₂ CO ₂ O ₂ H ₅	-0H2CO2OBH17-1	-0H2002CH20H04H9-B	; (8)	-03H7-1	-0H200202H5	-03H7-1	O -OH2OH2OČO3H7-1	0 -0H20H20Q002H5	-0H20H2000H3	1-6HP0-Q
	E	×	×	x	Ŧ	×	Ħ	×	Ŧ	æ	Ħ	×	I	æ	I	I	×	Ħ
	化合物画		71	ľη	*	*1	•		•	٥.	0/	:	7,	13	*	1.5	9/	11

																		56 3 ((4)
砂件值	15 /380/	n _D 7.6262	nD /.5356	n 25 /5 \$ 50 /	25 1.575#	25 1.6044 nD	mp. /23~/25C	mp. / \$0~/53C	mp. /20~/22C	15 / 52#6	25,6207	n 7.5275	mp. 61~63C	n _D /.5582	21 7.6034	22 /\$600 D /\$600	n _D 7.5505	mp. 100~101C	nD 1.6029
×	ж	70-11	70-#	70-#	70-#	70-#	70-#	70-#	70-#	70-#	70-#	70- n	70-#	-OH ₂ CL(m,p强台)	-OH ₂ O.k(m,p强合)	ж	æ	70-#	70-7
R ₂	-(O)-04Hp-1		- CH ₂ 00 ₂ CH ₃	- C4H9-n	-CH ₂ CH ₂ OH	70-{Q}-ZHO-		02 -0(0 ₆ H ₅) ₃	8	-0H200208H17-1	70-(O)-	-08H ₁₇ -n	F	-CH ₂ CO ₂ CH ₃	-0H2-{O}-04	о -сн ₂ он ₂ ососн ₃	-CH ₂ CH ₂ OCOO ₃ H ₇ - i	04-(0)- 0HOH2NO2	OL O-CHCH2NO2
8	æ	Ή.	H	H	æ	æ	æ	Ħ	Ħ	Ħ	×	Ħ	×	H	æ	Ħ	Ħ	Ħ	Ħ
化合物用	2/	6/	70	77	77	£2.	7*	2.5	76	27	3.5	7.6	30	3/	3.2	3.3	34	e3 43	38
物件值	n 16391	25 /.5744	mp. \$9~6/C	mp. /35~/37C	n _D 7.5967	mp. \$3~57C	25 ,5754 nD ,5754	mp. /2#~/26C	mp. 55~38C	n 24 7.5542	nD 16092	n _D 16/55	n _D /.sfss	n 25 , 6070	n ²⁵ / 5492	mp. 57~60C	n _D 7.5766	n _D , 6 / 8 /	n 25 /.5 \$ 9 \$
×	#-Br	Ŧ	æ	x	Ħ	70-#	70-#	70-#	#-Br	70-#	70-7	70-7	70-r	70-7	70-2	70-2	70.7	70-7	7-07
R2	$8r < \bigcirc$ CHOH ₂ NO ₂ OH ₃		\	6 Q	, ©	∳ ₹	Cz. O ₄ H ₉ -1	° 693	, ©	-CH ₂ CO ₂ O ₂ H ₅		70 ·(O)			-0H200202H5	Se Se	-сн ₂ сн ₂ он	ڳ ڳ	-0H ₂ CO ₂ CH ₃
æ	Ħ	×	н	Ħ	Ħ	H	Ħ	Ħ	Ħ	r	н	H	Ħ	Ħ	æ	H	Ħ	H	æ
化合物用	37	40	δ£	0#	*	#3	£.4	# #	\$ 7	9#	47	8#	6 #	30	15	5.2	د ر در	\$#	ę.

															特開	18862	2-395	63 (8	5)
物件值	mp. 6/~6#C	mp. 7/~73C	nD 1.5827	n 26 1.5943	пр. 74~76С	nD 16307	nD 15636	n 26 1.5765	nD 1.5879	mp. /35~/37C	mp. 63~67C	nD 1.600#	n ²⁴ /.5937	nD 1.6171	n ²⁷ /624/	nD 1.6387	nD 1.6307	mp. /20~/23C	mp. //7~//9C
×	4-Br	4-Br	4-Br	#-Br	4-8r	4-Br	4-Br	4-8r	4-8r	4-81	4-Br	70-#	70-#	ж	#	70-#	70-#	H0- »	4-N(CH ₃) ₂
CL B2	Q:		-Q-04H9-1	-сн ₂ сн ₂ он	©	70 🗇	-0H ₂ CO ₂ O ₂ H ₅	-CH ₂ CO ₂ OH ₃					4	*	-	-Q-Br			©
# T	æ	×	×	æ	Ħ	H	Ħ	Ħ	Ħ	×	Ħ	Ħ	Ξ	æ	Ħ	×	I	Ŧ	2
化台物画	3.8	\$7	\$8	. 6 5	09	19	79	63	#9	\$9	99	69	19	69	70	<i>"</i>	7.7	73	74
物性值	mp. 83~87C	n _D 7.6270	mp. \$0~\$3C	n 25 1.5498	n _D 75477	nD 15627	nD /3558	n _D 7.5643	mp. 90~91C	n _D /.552/	n _D 7.5674	nD 1.5660	n 25 1.5794	u _D 7.5998	n _D /.s9ss	mp. /25~/27C	mp. 90~93C	mp. //9~/2/C	mp. \$3~\$\$C
×	9~00H³, 4-0H	70-7'5	3-NO ₂	HO- #	но-» ' €ноо- є	70-#'7	3-NO ₂	НО- #	#-N(GH ₃) ₂	3-00H ₃ , #-0H	70.4.2	3-y02	3-00H3, #-0H	70-1.2	3-NO ₂	HO-#	#-N(OH ₃) ₂	3-00H3, #-0H	79-+.2
R2	Ф	Ф	©	-CH2CO2C2H5	-CH ₂ CO ₂ C ₂ H ₅	-CH ₂ CO ₂ C ₂ H ₅	-0H200202H5	-0H2CO2CH3	-CH ₂ CO ₂ OH ₃	-0H ₂ CO ₂ OH ₃	-CH ₂ CO ₂ OH ₃	-CH ₂ CO ₂ CH ₃	-0H2CH2CH	-042сн2он	-042сн20н	.a.	-0} -8r	-@-Br	
M.	æ	æ	Ħ	æ	æ	æ	x	æ	æ	Ħ	æ	æ	I	Ħ	Ħ	Ħ	r	I	z
化台物品	7.5	7.6	77	78	28	0	18	82	7	**	\$	9.8	42	:	8	0.6	, , , , , , , , , , , , , , , , , , ,	67	8

	各种	.mp. 70~73C	25 ,633/ D	nD 1.6309	mp. 9/~9#C	mp. 63~87C	mp. fo~f2C	"D "C"."	mp. /30~/32C	mp. 85~97C	nD 1.5869	nD 15890	. 25 / 6/5 F	mp. 83~88C	mp. 9.2~94C	15 1,6241	mp. /65~/67C	mp. /60~/63C	nD 1.5981
	×	3-0CH ₃ , ¢-0H	70-#'2	3-NO ₂	H0-#	4-N(CH ₃) ₂	3-00H3, 4-0H	3-NO ₂	. HO-#	3-0CH ₃ , 4-0H	7,4-02	3-NO ₂	НО-⊅	4-N(CH ₃) ₂	70-#'7	3-NO ₂	#-N(CH ₃) ₂	3-ОСН ₃ , #-ОН	70-#
	B ₂	\$	2 3.	φ. 		Þ) # (G) # (o)	1- 6H30-	-O-04H9-1	-6H30-C	1-6H70-O	70-07	7	1	\$ \$\\phi\$	-C(0,H5)3	-0(C ₄ H ₅) ₃	(6)
	PE	Ħ	Ħ	æ	#	# ;	r	=	Ħ	æ	Ħ	Ħ	æ	æ	æ	Ħ	Œ	×	Ħ
	化合物用	*	\$	%	8	t 5	\$ \$	101	782	8/	8	१८	90/	01	104	80 /	011	11	1/13
物位值	пр. 93~96℃	n ²⁴ / 5 4 2 6	24 / 5 4 8 5	24 1.5617	24 / 6089	. 24 (. 599 /	n 74 / 59/2 D	n _D 7,6287	n _D 5 g / 6	n _D /, f f 7 3	n _D 1.5945	n _D 7.6374	mp. 89~9/C	23 / 59 48	n _D 7.5505	n 23 1.5516	n ²³ / \$ 6 4 /	23 / 5973	23 , (0,0
×	НО-#	70-7	70-#	70-#	70-#	70-#	70-#	3,5-Br,#-OH	3,5-Br,4-OH	3,5-Br,4-0H	3,5-Br,4-OH	HO-#, 18-\$,€.	3,5-8r,4-0H	2-0H,3-00H3	2-0H,3-0CH3	2-0H,3-00H ₃	2-0H,3-0CH3	2-0H,3-0CH3	100-6-60-6
B2	3 G	-CH ₂ CO ₂ C ₂ H ₅	-0H20020H3	-он ₂ он ₂ он	d ir	70 - (0)-	()		-0H2CO2C2H5	-0H ₂ CO ₂ CH ₃	-0H ₂ CH ₂ OH	-Br	70-{O}-	P	-CH ₂ OO ₂ O ₂ H ₅	-CH ₂ CO ₂ CH ₃	-сн ₂ сн ₂ он	-@-8r	70)-07
E.	Ħ	æ	×	OH 3	CH3	сн3	OH3	×	Ħ	H	Ħ	Ħ	æ	н	Ħ	н	×	Ħ	=
化合物用																			

物性值	123 1.5945	mp. 70~72C	mp. 67~69°C	nD 7.5986	mp. 70~72C	nD 1.5401	n _D 1.5466	nD 1.5635	n _D 7.622#	nD 1.6086	mp. ss~sec	n _D 7,6/69	nD 15620	nD 1.5716	n ²² /5852	n 22 / 6 3 £ 2	nD 16237	nD 1.607#	nD 1.6/4/
×	2-0H,3-00H ₃	μ - CH ₃ n	# - CH₃ n	u 70-£	7,4-0 <i>t</i>	#·OH₃ n	и-0H ₃ п	#-0H₃		#-0H3	#-CH3	n 70-9'7	70-9'7		u 70-9'7	а 70-9'7	u 70-9'7	u 70-9'E	u 70-£
R ₂	OH,		9	- PF	-0(0 ₆ H ₅) ₃	-CH200202H5 #	-0H2CO2OH3	+ сн₂сн₂он	* -a-(-)		HO CH'S		-CH ₂ CO ₂ O ₂ H ₅	-CH ₂ CO ₂ CH ₃		~		H. O	
E -	Ħ	Ħ	Ħ	×	æ	æ	æ	Ħ	Ħ	Ħ	æ	Ħ	æ	æ	æ	Ħ	Ħ	Ħ	æ
化合物和	132.	/33	#81	135	136	137	138	681	140	/#/	/#3	143	##/	1#5	1#6	147	8#/	6#1	051
物件值	n 21 1.5577	n ²¹ /568/	n 21 1.5752	n ²¹ ,6375	n _D 7,6220	21 1.6034	nD 1.6057	21 ,5432 nD ,5432	nD 1.5482	nD 1.56#5	nD 1.6249	nD 1,6//5	nD 1.5962	n 1 1.6192	nD 1.5889	nD 16161	n ²² ,63/2	21 ,6057	mp. #5~#8°C
×	30-E	3-01	3-07	70-€	3-62	₹9-€	2-0H ₃	2-CH3	2-CH ₃	2-0H ₃	2-0H3	2-CH ₃	2-CH ₃	2-0H3	2-0H3	2-0H3	70-€	70-#'7	≠-0H ₃
R2	-6H200202H5	-0H2CO2CH3	-сн ₂ сн ₂ он	- Br	70-{O}-			-CH ₂ CO ₂ C ₂ H ₅	-CH ₂ CO ₂ CH ₃	-CH ₂ CH ₂ OH	-0-8r	20-Q	\	70,00	i	70.00	70,00	^	O 04H9-1
æ	Ħ	x	н	Ħ	Ħ	I	Ξ	Ħ	Ħ	Ħ	ж	Ħ		=	Ħ	Ħ	æ	æ	Ħ
代中智西	/\$/	132	/ \$3	134	155	156	137	158	651	091	/9/	797	£9/	#9/	163	991	191	891	69/

															וחו ניר	14002	000	00 (•	•
物性價	n ²¹ 1.5997	n _D /.540/	nD 1.5438	n _D /. s 6 0 2	n ²¹ /,6223	n ²¹ 1.6065	nD 1.5948	nD 1.6161	21 1.5944 nD 1.5944	mp. 60~62C	nD 1.5355	nD 1.5464	n _D 7.552/	пр. 40-41С	nD 1.6036	nD 1.5895	nD 1.6156	nD 1.59//	nD 1.6045
×	3-0H ₅	3-0H3	3-0H3	3-0H ₃	3-0H ₃	3-0H ₃	3-0H ₃	3-0H ₃	3-0H ₃	4 - F	4 - P	¥-7	H - 7	₩ - *	4-F	£ - #	E	E- 7+	2,5-0H ₃
B ₂		-0H ₂ CO ₂ O ₂ H ₅	-сн ₂ 00 ₂ 0н ₃	-сн ₂ он ₂ он	-{O}-8r	70-0	· •	70 (O)	€H0-{(())		-0H ₂ 0O ₂ O ₂ H ₅	-0H ₂ CO ₂ OH ₃	-0H ₂ 0H ₂ 0H	P	70-0	é p	70 (O)	O ous	
E	Ħ	Ħ	Ħ	×	Ħ	×	Ħ	æ	æ	Ħ	æ	Ħ	æ	×	æ	Ħ	Ħ	×	H
化合物体	170	121	172	173	174	173	176	177	811	661	180	'\$ '	182	183	#8/	185	981	187	188
物件值	n 21 , 5 # 2 6 D	21 ,5517 nD	mp. 40-43C	21 1.5948 nD	n _D .6059	n _D 1.5918	n _D ,6/72	n _D 7.5996	n _D /.5562	n _D 7.5077	n _D 1,5/10	21 /52// nD	пр. 66~69℃	21 1.550 &	n 21 7.537/	21 1.5450	nD 1.5572	n _D 1,5941	n D 1,6/19
×	2,5-OH ₅	2,3-0H3	2,5-CH3	2,5-CH3	2,5-OH3	2,5-CH3	2,5-OH3	2,s-CH ₃	2-0F3	2-0F3	2-0F3	2-0F3	2-0F3	2-OF3	#-CH3	≠-CH₃	⊬-CH₃	4 - OH₃	70-#
B ₂	-0H200202H5	-0H2CO2CH3	-0H ₂ CH ₂ OH		70-{(0)-	G, G,	70 - 0	-(O)-0H3	©	-0H ₂ 00 ₂ 0 ₂ H ₅	-CH ₂ 00 ₂ GH ₃	-0Н2СН2ОН	70-O	O,H3	-CH2CO2C2H5	-CH26026H3	-0H2CH2OH	€	-(O)- cH ₃
R.	н	H	Ħ	ж	=	Ħ	Ħ	H	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	CH3	CH3	CH3	OH3	Ħ
化台物品	681	061	161	192	193	#61	195	961	181	861	861	700	707	707	203	704	205	708	202

			化布物面	ж. Г	$\frac{R_2}{}$	×	物性値
æ	>	1	208	Ħ	€H0-⟨O}-	7,4-62	n ²¹ ,6//6
# # # # # # # # # # # # # # # # # # #	- nuo-# nuo-#	17 , 40, 7	308	æ	€HO-COH,	4-0H ₃	mp. 66~69℃
10 00 no	2.000 2.000	"D	310	Ħ	€HO-OH	но- #' [°] ноо- £	mp. 108~110C
-cn2-02-0n3	3-00H3- 1-00H2	n _D /.563/	7/7	Ξ	-CH ₂ CO ₂ C ₂ H ₅	#-NO ₂	16 1.5694
-0H ₂ CO ₂ OH ₃	70-#'7	a ¹⁷ .5714					· ·
-CH ₂ 00 ₂ 0 ₂ H ₅	79-4-27	n 17 1.5662	7/7	Ħ	- CH ₂ CO ₂ CH ₃	#-N0 ₂	n
-CH ₂ CH ₂ OH	70-#'7	17 1.5875	2/3	H	-CH2CO2C4H9-n	70-#	n 18 7.5443
- CH.0.00.Hc	. 4.5-00H3	no. 68~70℃	7/4	Ħ	-0H200204H9-n	70-#'2	n 18 ,5 5 / 6
6 7 7 7	6		2/5	Ħ	-0H2CO2C4H9-n	4 - F	18 , s / 9 s n _D
-OH2OH2OH	3,4,5-0CH3	mp. #0~#3C	718	Ħ	ĭ́.	70-#'2	18 ,6456 n _D
HO S=	79-4.7	n 7,67,88	2/7	Ħ	-(0)-N0 ₂	70-#17	mp. 90~93C
-0-N' OH ₂	7,4-02	mp. /27~/29°C		:	HO 00 110	2 4-0/	0 5 5 4 1
-0H ₂ CH ₂ NH ₂ ·H0 <i>L</i>	70-#	mp. /30~/32C	* ``	r	-642002043		υς / ς / ς α
ξ	<u>.</u>	21	318	Ħ	$-0H_2^{00}2^{02}H_5$	70-5.	17 1.565/ nD
·	E .	n / 5570	220	Ħ	-CH200204H9-n	79-8'7	n, 1,5522
-сн²сн²оо	x	nD 1.5805	77/	H	-он,сн,он	7)-2'7	17 (5856
-CH ₂ OH ₂ Si(OO ₂ H ₅) ₃	H	n 26 1.4999			7		
о орожно-	н	, 22 / \$ 4.7 4	777	×	-CH ₂ OO ₂ O ₂ H ₅	#-60 ₂ 0H ₃	
On Caron No		a	223	H	-CH ₂ 00 ₂ 0 ₂ H ₅	3-00 ₂ Н ₅ ,4-0Н	162 + c + s + C o o
		пр. 94~96С 13	77#	×	-CH ₂ CO ₂ O ₂ H ₅	3-0CH ₃ , 4-0CH ₂	n _D 7.5782 68
OH3-(C)-UHOH2NO2	ı.	n	22.5	Ħ	-cH ₂ CH ₂ OH	#-0000H3	17 /3634 (a)
			778	Ħ	-0H20H20H	3-00 ₂ H ₅ , 4-0H	n _D /5657

7#7

Crewn R1

本発明に従り一般式(I)で扱わされるβ-ニトロフエネチル誘導体は下記反応式(/)に示されるどとくβ-ニトロソニトロエタン類にメルカプタン類を反応させる新規な方法によつて容易に製造するととができる。

本反応はエタノール, アセトニトリル, クロロホルムなどの極性溶媒中、トリエチルアミンまたはピリジンの触媒量添加により好適に進行する。 反応温度は特に限定されないが、室温~ 5 0 ℃が好ましく、0.5~3時間で反応は発結する。

また本発明の化合物はつぎの反応式(2) に従う & - ニトロスチレン誘導体にメルカプタン類を付加せしめる既知の方法(たとえば特開昭 5 2 -

次いで唇葉を減圧留去し、淡黄色油状の標配化 合物を得た。

収量 2 8.6 8 (2 - ニトロソ・2 - フェニル・ / - ニトロエタンに対する収率 9 9 5); n 22 / . 6 2 1 6

突施例 2

2 - (ヒドロキシエチルチオ) - 2 - フェニル - / - ニトロエタン(化台物 Ma 5 の化台物)の台

2 - 二トロソ・2 - フェニル・/・ニトロエタンタのタ(0.5 0 モル)をアセトニトリル200 mlに存解し、メルカプトエタノール409(0.5/モル)を満下した。続いてトリエチルアミンを3滴加え、40~50℃にて20分間加熱攪拌した。冷却後、存媒を減圧留去し、淡黄色油状の標記化台物を得た。

ュー (o - クロルフエニル) - 2 - (メトキン カルポニルメチルチオ) - / - ニトロエタン (化 9 3 7 3 0 号公報)によつても台成することがで きる。

$$\begin{array}{c} X_{n} \\ \\ X_{n} \\ \\$$

つぎに本発明の化台物の製造を代表的な実施例をあげてさらに説明する。

実施例/

2 - (p - クロルフエニルチオ) - 2 - フエニル - / - ニトロエタン(化合物 Ma / の化合物)の合成

2 - ニトロソ・2 - フェニル・1 - ニトロエタン18.09(0.10モル)をアセトニトリル 5 0 ml に答解し、p - クロルチオフエノール14.59(0.10モル)を満下、続いてピリジン2滴を加え、室温にて3時間攪拌した。

台物 14 5 5 の化台物) の台成

2-(o-クロルフエニル)-2-ニトロソ・ /-ニトロエタンの.7 より(の.0 の 3 まモル)を アセトニトリル 5 ml に 啓解し、チオグリコール 酸 メチルエステルの.3 8 り(の.0 の 3 まモル)を 滴 下、 次いでトリエチルアミン / 滴を加え、 室温に て 2.5 時間 攪拌後、 実施例 / に準じて処理し、 炎 黄色油状の 標記 化 台物 を 得た。

収量 1.0 g (2 - (o - クロルフエニル) - 2 - ニトロソ - / - ニトロエダンに対する収率 g g g) : np 25 / .5 s g g

実施例 4

/ - (p - クロルフエニル) - / - (ヒドロキシエチルチオ) - 2 - ニトロプロペン(化合物 Ma 1 1 6 の化合物)の台成

p-クロル・β-メチル・β-ニトロスチレン
2.0 0 g (0.0 / 0 モル) をメタノール / 0 mlに

密解し、メルカプトエタノール 0.7 g g (0.0 / 0

モル) を摘下、続いてトリエチルアミン / 滴を加

え、30~40℃にて / 0 分間攪拌後 2 時間窒温

下で撹拌した。次いで実施例!に従つて処理し、
淡黄色油状の標記化台物を得た。

実施例よ

2 - (p - プロムフエニルチオ) - 2 - (p -メチルフエニル) - 1 - ニトロエタン(化台物 Ma 1 4 7 の化台物)の台版

p・メチル・β・ニトロスチレン2.129 (.0.013モル)をアセトニトリル3 配に存解、 4・プロムチオフエノール2.469(0.013モ ル) およびトリエチルアミン1 滴を滴下し、室融 にて3時間攪拌した。次いで実施例1に従つて処 理し、淡黄色油状の標記化台物を得た。

収量 4.3 9 (p - メチル - β - ニトロスチレン に対する収率 9 4 5); n_D 22 1.6 2 2 4

一般式(J) で表わされる本発明の新規 & - ニトロフェネチル誘導体は展園芸用殺磨剤として、既知の多くの農園芸用殺磨剤化甘物と比較して優れた殺菌活性を示す。すなわち、本発明の化甘物は、

第2の本発明に従り段例芸用殺菌剤は、具体的には、前記一般式(I)の化合物をそのままか水または有機溶剤などの液体担体あるいは固体粉末担体その他適当な担体を用いて希釈し、必要に応じて健潤剤、展着剤、分散剤、乳化剤、固着剤などの補助剤を加えて水和剤、油剤、液剤、乳剤、ゾル(フロアブル)剤、粒剤、DL(ドリフトレス)

種子消毒剤として使用した場合、ムギ類の無被病、なまぐさ無穂病に消散効果を示し、また特にイネとま葉枯病、イネ馬庭苗病に対して優れた消毒効果を有する。またその他の植物病害に対しても防除効果を示す。たとえば

水和剤、液剤および乳剤などの製剤は、活性の分を / ~9 5 重量 5、通常は 2 ~ 7 5 重量 5 の範囲で含有し得る。これらの製剤は、水で希釈して一般に 0.0 0 0 / ~ / 0 重量 5 で使用される。また 粒剤、微粒剤および粉剤は、一般に 0./ ~ / 0 重量 5 の活性成分を含有する。また油剤、乳剤およびパル剤(フロアプル剤)などの濃厚液は、希釈 することなくそのまま 微量 散布剤として使用できる。 さらに 種子消毒剤として使用するには、水和剤または 粉剤をそのまま作物の 種子に粉衣処理するか、または水和剤、 プル剤、乳剤などを水で希釈して種子を浸債処理することが効果的である。

また本発明の化合物を農園芸用殺菌剤として使用するに際しては、殺虫剤、殺菌剤、除草剤、植物生育調節剤などを混合して適用性の拡大をはかることができ、また場合によつては、これらの混用により、相乗効果を期待することもできる。

つきに本発明の農園芸用教簡剤の製剤化の具体 例を実施例によつて説明するが、本発明はこれら の実施例に限定されるものではない。なお、実施 例中部とあるのはすべて重量部を示す。

実施例6 水和剤

化合物 & 2 6 の化合物 2 0 部、ポリオキシェチレンアルキルアリールエーテル 5 部、リグニンスルホン酸カルシウム 3 部および珪藻土 7 2 部を均一に粉砕混合して、活性成分 2 0 % を含む水和剤を得る。

実施例 / / 粒 剤

化合物 & 191の化合物 3部、リグニンスルホン酸カルシウム 1部、ベントナイト 30部かよびクレー 66部を均一に混合粉砕し、水を加えて造粒し、乾燥した後篩別して活性成分 3%を含む粒剤を得る。

つぎに本発明化合物の農園芸用殺菌剤としての 有用性、作用効果の具体例を試験例 / および 2 に 示す。

試験例 / イ木馬鹿苗病種子消毒効果試験

イネ(品質:近数33号)の開花期にイネ馬鹿苗病菌(フザリウム・モニリホルム)の薩摩胞子懸濁液を噴霧接種して得たイネ馬鹿苗病菌感染物を供試物とした。種子消毒は、実施例6に単じて調製した水和剤を用いて所定慶歴の希釈液を作成し、上配種物と薬液量比(v/v)を/対/として、20℃で24時間浸漬消毒した。消毒後の種物は、20℃で3日間浸漉した。消毒後の種物は、20℃で3日間浸漉した後、30℃で24時間催芽させ、鳩胸状になつた種物を箱育苗法に単じてクミアイ粒状培土(呉羽化学工業株式会社製)に

契施例 7 乳 剤

実施例 8 油 剤

化合物 & 4 8 の化合物 5 0 部とエチルセロソルプ 5 0 部とを均一に溶解混合して、活性 成分 5 0 %を含む油剤を得る。

実施例? グル剤(フロアプル剤)

10μ以下に粉砕した化合物 κ/ 56の化合物 40部、ラウリルサルフェート 2部、アルキルナ フタレンスルホン酸ナトリウム 2部、ヒドロキシ プロピルセルロース/部むよび水55部を均一に 混合して活性成分 40 5 を含むゾル剤を得る。

実施例 / 0 粉 剤

化合物 & / 8 9 の化合物 / 部、無水珪酸酸粉末 0.5 部、ステアリン酸カルシウム 0.5 部、クレー 5 0 部 かよび タルク 4 8 部を均一に混合粉砕して 活性成分 / 5 を含む粉剤を得る。

播程した。その後はガラス温室で栽培管理した。

発病調査は、揺ದ2 5 日後(4 葉期)に各処理区全苗をぬきとり、イネ 腸底苗病 発病苗 数を調査して発病苗 率例を求め、これより防除価例を算出した。本試験は、 / 区 3 連制で行ない、平均療子消毒率(例を求めた。またイネに対する薬害を次記の指標により調査した。その結果は第 2 表のとおりである。

楽害の調査指標

 5:微甚 4:甚 3:多 2:若干 /:わずか 0:なし

	第 2	表		化合物 /6	処理機能 (ppm)	種子消毒率(%)	楽書程度
化合物系	処理機能(ppm)	租子消毒率(5)	來害程度	2.2	1000	100	0
,	1000	100	0	23	•	,	0
2	•	•	0	24	•	•	0
3		92	o	25	•	•	0
4	,	94	0	26	•	•	0
5	•	100	0	27	•	•	0
6	•	99	0	28	•	•	0
7	•	100	0	29	•	76	0
8	•	•	0	30	•	100	0
9	•	94	0	3/	•	•	0
10	•	100	0	3.2	•	96	0
//	•	•	o	33	•	100	0
12	•	•	0	34	•	•	0
/ 3	•	•	0	35		•	0
14	•	•	0	36	•	•	0
15	•	•	0	37	•	•	0
16		•	0	38	•	-	0
17	•	•	0	39	•	-	0
18	•	•	0	40	•	•	0
19	•	•	0	41	•	•	0
20	•	•	0	42	,		0
2/	•	•	0	4 3	•	•	J
化合物系	処理機度 (ppm)	想子消毒率(%)	※客程度	化合物名	処理優度(ppm)	租子消毒率(利	楽客程度
化合物系	処理 没 度(ppm)	租子消费率(系) /00	※客程度 	化合物%	処理 農 度 (ppm)	租子消毒率(5) 100	楽客程度
44	1000	100	0	66	1000	100	0
44 45	1000	100	0	66	1000	100	0
48 43	1000	100	0 0	66 67 68	1000	100	0 0
44 45 46 47	,000	100	0 0 0	66 67 68 69 70	1000	100	0 0 0
44 45 46 47 48	,000	100	0 0 0 0	66 67 68 69 70 71	1000	100	0 0 0 0
44 45 46 47 48 49	,000	100	0 0 0 0	66 67 68 69 70 71 72	1000	100	0 0 0 0
44 45 46 47 48 49	,000	100	0 0 0 0 0	66 67 68 69 70 71 72 73	1000	100	0 0 0 0 0
44 45 46 47 48 49 50	,000	100	0 0 0 0 0	66 67 68 69 70 71 72 73 74	1000	100	0 0 0 0 0 0 0 0
44 45 46 47 48 49 50 51	,000	100	0 0 0 0 0 0	66 67 68 69 70 71 72 73 74 75	1000	100	0 0 0 0 0 0
44 45 46 47 48 49 50 51 52 53 54	,000	100	0 0 0 0 0 0 0	66 67 68 69 70 71 72 73 74 75 76	1000	100	0 0 0 0 0 0 0 0 0 0
44 45 46 47 48 49 50 51 52 53 54 55	,000	100		66 67 68 69 70 71 72 73 74 75 76 77	1000	100	0 0 0 0 0 0 0 0 0 0 0 0
44 45 46 47 48 49 50 51 52 53 54 55	,000	100		66 67 68 69 70 71 72 73 74 75 76 77	1000	100	
44 45 46 47 48 49 50 51 51 52 53 54 55 56 57	,000	100		66 67 68 69 70 71 72 73 74 75 76 77 78 79	1000	100	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	,000	100		66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	1000	100	
44 45 46 47 48 49 50 51 51 53 54 55 56 57 58 59 60	,000	100		66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	1000	100	
44 45 46 47 48 49 50 51 51 53 54 55 56 57 58 59 60	,000	100		66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	1000	100	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	,000	100		66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	1000	100	
44 45 46 47 48 49 50 51 51 53 54 55 56 57 58 59 60 61 62 63	,000	100		66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85	1000	100	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	,000	100		66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	1000	100	

化合物系	An son on o					行開昭 62-39	563 (14)
167076	処理侵度 (ppm)	衙子消毒率(匆	楽客程度	化合物准	処理機度 (ppm)	稳子消毒率(3)	薬容程度
88	1000	100	0	110	1000		
89	•	•	0	///	,,,,,	100	0
90	•	•	o	112		,	0
91	•	99	o	//3			0
92		100	o	//4	•		0
93	•	,	o	//5	•	70	0
94	•	,	0	116			0
95	•	•	0	//7	•	100	0
96	•	,	o	//8			0
97	•	•	o	119	•		0
98	•	•	0	120	•		0
99	•	•	0	121		7.2	0
100	•	•	o	122		74	0
101	,	•	0	/ 23	•	700	0
102	,	•	0	124	•	78	0
103	•	•	0	125	•	8/	0
104	•	,	0	126	•	89	0
105	• •	•	0	/ 27	•	100	0
106	,	•	0	128			0
107	,		0	129	•		0
108	,	•	0	130	•	-	0
109	,	,	0	/3/	•	•	0
						•	0
化合物系	処理機度(ppm)	穩子消毒率(利	楽客程度	化合物系	処理機度 (ppm)	種子消毒率(%)	來害程度
/32	1000	100	0	154	1000	100	
/ 33	•	•	o	/55	,		0
134	•	•	o	156	•		0
135	•	•	0	157	•		0
136	,	•	0	158	•		0
137	•	,	0	159		•	0
. /38	•	•	0	160	•		0
139	•	•	0	161	•		0
140	•	,	0	162	•		0
141	•	,	o	/63	•		0
142	•	,	o	164	,		0
143	•	•	0	165	•	•	0
144	,	•	o	166		•	0
145	•	•	o	167			0
146	•	•	0	168	•	•	0
147	•	•	0	169		•	0
148	,	•	0	170	•	•	0
149	,	•	0	171		98	0
150	•	,	0	/72	-		0
151	,	,	0		**	100	0
152			U	173	•	,	^
, , ,	,	•	0	/73 /74	•	,	0
153	•	,		/73 /74 /75		,	0 0 0

						特開昭62-395	63 (15)
化合物系	処理健康 (ppm)	租子消毒率(利	楽客程度	化合物ル	処理濃度 (ppm)	插子消毒率(%)	菜智程度
176	1000	100	o	198	1000	100	0
/77	•	•	0	199	•	79	0
178	•	•	0	200	,	100	0
179	•	•	0	201	,	93	0
180	•	•	0	202	,	100	0
181	•	•	0	203	•	,	0
182	,	•	0	204	,	•	0
183	•	•	0	205	•	,	0
184	•	•	0	206	•	,	0
185	•	•	0	207		•	0
186	•	•	0	208	,	•	0
187	•	•	0	209	•	,	0
188	•	•	0	2/0	,	,	0
189	,	•	0	2//	•	,	0
190	•	•	0	2/2	•	,	0
191	•	•	0	2/3	•	,	0
192		•	0	2/4	•	,	0
193	•	•	0	2/5	,	•	0
194	•	•	0	216	•	,	0
195	,	•	o	2/7	,	,	0
196	•	•	0	2/8	,	•	0
197	•	•	0	2/9		,	0
化合物系	処理優度(ppm)	種子消毒率(%)	楽容程度	化合物系	処理健度(ppm)	租子消毒率(匆	楽 客 程度
220	1000	100	0	242	1000	99	o
22/	•	•	0	比較薬剤供			
222	•	•	0	(ペノミル)	•	92	
223	•	•	0	無処理区	-	乳病苗率 64%	
224	•	8/	0				
225	•	100	0	()1- 1	ate Ric the state of		
776	•	89	0		市販薬剤ペノミ	•	
227	•	100	0	(:	プチルカルバモ	イル) - 2	ペン
2.28	•	87	0	<i>え</i> ・	イミダナール	カーペメイト)を
. 229	•	100	0	示:	t.		
230	•	•	0				
23/	•	•	0				
232	•	•	0				
233	•	,	0				
234	•	•	0				
235	•	•	0				
236	•	•	0				
237	,	9.2	0				
238	•	100	0				
239	•	•	0				
240	,		0				

241

試験例2 イネどま葉枯病種子消毒効果試験

イネどま葉枯病多発性物で、自然感染したイネ どま葉枯病菌(コクリオポルス・ミヤベアヌス) 感染物を採集して、供飲物とした。種子消毒法か よびその他操作手順は試験例/と同様に行なった。 発病調査は、播種20日後に行ない、イネとま葉 枯病発病苗数を調査し、イネ馬庭苗病種子消毒効 果試験の物合と同様にして種子消毒率例を算出し た。また試験例/と同一の基準により業害を調査 した。

本試験は、/区3連制で行ない、平均種子消毒 率例を求めた。その結果は第3表のとおりである。

第 3 表

化合物系	処理機度 (ppm)	程子消毒率(%)	來 害程度
/	1000	100	0
2	•	85	0
3	•	100	0
4	,	79	0
\$	•	100	0
6	•	75	0
7	•	100	0
Ė	•	•	0
9	•	89	0
10	•	90	0
//	•	100	0
12	•	•	0
/ 3	•	•	0
14	•	•	0
15	•	•	0
16	•	•	0
17	•	93	0
18	•	100	0
19	•	•	0
20	•	•	0
2/	•	•	0

化合物ル	処理濃度(ppm)	穩子消毒率(%)	楽客程度	化合物版	処理優度(ppm)	種子消毒率(%)	楽害程度

22	1000	100	0	44	1000	100	0
23	•	96	0	45	•	•	0
24	•	100	. 0	46	•	•	0
25	•	•	0	47	•	•	0
26	•	8 3	0	48	,	•	0
27	•	100	0	49	•	•	0
28	•	•	o	50	•	•	0
29	•	•	0	51	•	•	0
30	•	•	0	52	•	•	0
3/	•	,	0	53	•	•	0
3.2	,	•	0	54	•	,	0
33	•	•	0	3 5	•	•	0
34	•	•	0	56	•	•	0
35	•	•	0	57	•	•	o
36	•	•	0	58	•	•	0
37		•	0	59	•	•	0
38	•	•	0	60	•	,	o
39	•	•	0	61	•	•	0
40	•	•	0	62	•	•	0
41	•	•	0	63	•	,	0
4 ž	,	•	0	64	•	•	0
43	•	•	0	65	•	•	0

化合物ル	処理優度 (ppm)	租子消毒率(%)	來智程度	化合物ル	処理優度 (ppm)	種子消毒率(%)	楽客程度
66	1000	100	0	8.8	1000	100	o
67	,	•	0	89	•	•	0
68 .	•	•	0	90	,	,	0
69	•	•	0	91	,	•	0
70	•	•	0	92	•	•	o
7/	•	•	0	93	•	•	0
72	,	•	0	94	•	•	0
73	•	•	0	95	,	•	0
74	•	•	0	96	•	•	0
75	•	•	0	97	•	•	0
76	•		0	98	•	•	0
77	•	•	0	99	•	•	0
78	•	•	0	100	•	•	0
79	•	•	0	101	•	•	0
80	•	•	0	102	•	•	0
8/	•	•	0	103	•	•	0
8.2	•	•	0	104	•	•	0
83	•	•	0	105	•	•	0
84	,	•	0	106	•	•	0
85	•	•	0	107	•	•	0
86	•	•	0	108	•	•	0
87		•	0	109	•	•	0
化合物系	処理優度(ppm)	穩子消毒率(%)	来害程度	化合物ル	処理優度 (ppm)	種子消毒率(利	楽客程度
化合物系	処理 優 废 (ppm)		***************************************				
		類子消毒率(%) /00	楽 害程度 <i>o</i> <i>o</i>	化合物系 /32 /33	処理優度 (ppm) /000	種子消毒率(%) /00	0
110	1000	100	0	/32	1000	100	
//0	/000	100	0	/32	1000	100	0
110	1000	100	0 0	/32 /33 /34	1000	100	0 0
//0 /// //2 //3	/000	100	0 0 0	/32 /33 /34 /35	1000	,00	0 0 0
//0 /// //2 //3 //4	/000	100	0 0 0 0	/32 /33 /34 /35 /36 /37	1000	,00	0 0 0 0
//0 /// //2 //3 //4	/000	100	0 0 0 0	/32 /33 /34 /35 /36	1000	,00	0 0 0 0
//0 /// //2 //3 //4 //5	/000	100	0 0 0 0 0	/32 /33 /34 /35 /36 /37 /38	1000	,00	0 0 0 0 0
//0 /// /// /// /// /// /// /// /// ///	/000	100	0 0 0 0 0	/32 /33 /34 /35 /36 /37 /38 /39	1000	,00	0 0 0 0 0 0
//0 /// /// /// /// /// /// /// /// ///	/000	100	0 0 0 0 0 0	/32 /33 /34 /35 /36 /37 /38 /39 /40	1000	,00	0 0 0 0 0 0
//0 /// /// /// /// /// /// /// /// ///	/000	100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/32 /33 /34 /35 /36 /37 /38 /39 /40 /4/	1000	,00	0 0 0 0 0 0
//0 /// /// /// /// /// /// /// /// ///	/000	100		/32 /33 /34 /35 /36 /37 /38 /39 /40 /4/ /42	1000	,00	0 0 0 0 0 0 0
//0 /// //2 //3 //4 //3 //4 //3 /// //3 ///6 ///7 //8 ///7 //8 ///7 //8 ///0 //20 //2/	/000	100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/32 /33 /34 /35 /36 /37 /38 /39 /40 /4/ /42 /43	1000	,00	
//0 /// /// /// /// /// /// /// /// ///	/000	100 		/32 /33 /34 /35 /36 /37 /38 /39 /40 /4/ /42 /43	1000	,00	
//0 /// /// /// /// /// /// /// /// ///	/000	100 		/32 /33 /34 /35 /36 /37 /38 /39 /40 /41 /42 /43 /44	1000	,00	
//0 /// //2 //3 //4 //5 //6 //7 //8 //9 /20 /2/ /22 /23 /24	/000	100 		/32 /33 /34 /35 /36 /37 /38 /39 /40 /4/ /42 /43 /44 /45 /46	1000	,00	
//0 /// /// /// /// /// /// /// /// ///	/000	100 		/32 /33 /34 /35 /36 /37 /38 /39 /40 /41 /42 /43 /44 /45 /46 /47	1000	,00	
//0 /// //2 //3 //4 //3 //6 //7 //8 //9 /20 /2/ /22 /23 /24 /23 /24 /25 /26 /27 /28	/000	100 		/32 /33 /34 /35 /36 /37 /38 /39 /40 /41 /42 /43 /44 /45 /44 /45 /46 /47 /48	1000	,00	
//0 /// /// /// /// /// /// /// /// ///	/000	100 		/32 /33 /34 /35 /36 /37 /38 /39 /40 /4/ /42 /43 /44 /45 /45 /45 /47 /48 /49	1000	,00	
//0 /// //2 //3 //4 //3 //6 //7 //8 //9 /20 /2/ /22 /23 /24 /23 /24 /25 /26 /27 /28	/000	100 		/32 /33 /34 /35 /36 /37 /38 /39 /40 /41 /42 /43 /44 /45 /44 /45 /46 /47 /48 /49 /49	1000	,00	

化合物系	処理優度 (ppm)	種子消毒率(%)	薬害程度	化合物系	処理機度(ppm)	種子消毒率(%)	楽客程度
154	1000	100	o	176	1000	100	o
155	•	•	0	177	•	•	0
156	•	•	o	178	•	•	0
157	•	,	0	179	•	•	0
158	•	•	0	180	•	•	0
159	•	•	0	181	•	•	0
160	,	•	0	182	•	•	0
161	•	•	0	/83	•	•	0
162	•	•	0	184	•	•	0
163	•	•	0	185	•	•	o
164	,	•	0	186	•	•	0
165	•	•	0	187	•	•	0
166	•	•	0	188	•	•	0
167	•	•	0	189	•	•	0
168	•	•	0	190	•	•	0
169	•	•	0	191	•	•	0
170		•	0	192	•	•	0
171	•	•	0	193	•	•	0
172	•	•	0	194	•	•	0
173	•	•	0	195	•	•	0
174	•	•	0	196	•	•	0
175	•	•	0	197	•	•	0
化合物ル	処理優度(ppm)	種子消毒率(%)	楽客程度	化合物ル	処理濃度 (ppm)	標子消毒率(%)	楽書程度
198	1000	100	0	220	1000	100	0
199	,	•	0	22/	•	•	0
200	•	•	0	222	•	•	0
201	•	•	0	223	•	•	0
202	•	•	0	224	•	•	0
203	•	•	0	225	. •	•	0
204	•	•	0	226	•	•	0
205	•	•	0	227	•	•	o
206	•	•	0	228	•	•	0
207	•	•	0	229	•	•	0
208	•	•	0	230	•	•	0
209	•	•	0	23/	•	•	0
2/0	•	•	0	232	•	•	0
2//	•	•	0	233	•	•	0
2/2	•	•	0	234	•	•	0
2/3	•	•	0	235	•	•	0
2/4	•	•	0	236	•	•	0
2/5	•	•	0	237	•	94	0
2/6	•	•	0	238	•	88	0
2/7		•	0	239	-	77	0
2/8	-	•	0	240		100	0
219	•	•	0	241	•	•	0

化合物系	処理優度 (ppm)	種子消毒率(%)	楽 客程度
242	1000	100	0
比較薬剤 ^(生) (イプロジオン	·)	95	
無処理区		発病苗率45%	

(注) 市販薬剤イプロジオン〔3-(3, 3-ジクロロフエニル〕-N-イソプロピル-3,4-ジオキソイミダゾリジン-/-カルポキシアミド〕を示す。

第1頁の続き

<pre>⑤Int.Cl.</pre>	4	識別記号	厅内整理番号
C 07 C	149/273		Z - 7188 - 4H
	154/00		7419-4H
	161/00		7419—4H
C 07 D	239/38		7166-4C
C 07 F	7/18		8018-4H