

CE-QUAL-W2 MODEL SETUP II CONTROL FILE

Isaac Mudge, MS

U.S. Army Corps of Engineers, New Orleans District

and

U.S. Army Engineer Research and Development Center, Environmental Laboratory

CE-QUAL-W2 Workshop

July 18 - 20, 2023

What is the control file?

- The control file is a central file that holds most model parameters.
- Information is separated into *cards*. (Punch cards were originally used to input data into computers.)

US Army Corps of Engineers • Engineer Research and Development Center

Cards: How they appear in the manual – 128 Cards

Title (TITLE C)
Grid Dimensions (GRID)
Inflow/Outflow Dimensions (IN/OUTFLOW)
Constituent Dimensions (CONSTITUENTS)
Miscellaneous (MISCELL)
Time Control (TIME CON)
Timestep Control (DLT CON)
Timestep Date (DLT DATE)
Maximum Timestep (DLT MAX)
Timestep Fraction (DLT FRN)
Timestep Limitations (DLT LIMIT)
Branch Geometry (BRANCH G)
Waterbody Definition (LOCATION)
Initial Conditions (INIT CND)
Calculations (CALCULAT)
Dead Sea (DEAD SEA)
Interpolation (INTERPOL)
Heat Exchange (HEAT EXCH)
Ice Cover (ICE COVER)
Transport Scheme (TRANSPORT)
Hydraulic Coefficients (HYD COEF)
Vertical Eddy Viscosity (EDDY VISC)
Number of Structures (N STRUC)
Structure Interpolation (STR INT)
Structure Top Selective Withdrawal Limit (STR TOP)
Structure Bottom Selective Withdrawal Limit (STR BOT)
Sink Type (SINK TYPE)
, ,

Structure Elevation (E STRUC)
Structure Width (W STRUC)
Pipes (PIPES)
Upstream Pipe (PIPE UP) Downstream Pipe (PIPE DOWN)
Downstream Pipe (PIPE DOWN)
Spillways (SPILLWAYS)Upstream Spillways (SPILL UP)
Upstream Spillways (SPILL UP)
Downstream Spillways (SPILL DOWN)
Spillway Dissolved Gas (SPILL GAS)
Gates (GATES)Gate Weir (GATE WEIR)
Gate Weir (GATE WEIR)
Upstream Gate (GATE UP)
Downstream Gate (GATE DOWN)
Gate Dissolved Gas (GATE GAS)
Pumps 1 (PUMPS 1) Pumps 2 (PUMPS 2)
Internal Weir Segment Location (WEIR SEG)
Internal Weir Top Layer (WEIR TOP)
Internal Weir Bottom Layer (WEIR BOT)
Withdrawal Interpolation (WD INT)
Withdrawal Segment (WD SEG)
Withdrawal Elevation (WD ELEV)
Withdrawal Top Layer (WD TOP)
Withdrawal Bottom Layer (WD BOT)
Tributary Inflow Placement (TRIB PLACE)
Tributary Interpolation (TRIB INT)
Tributary Segment (TRIB SEG)
Tributary Inflow Top Elevation (TRIB TOP)
Tributary Inflow Bottom Elevation (ELEV BOT).
Distributed Tributaries (DST TRIB)
Hydrodynamic Output Control (HYD PRINT)
Snapshot Print (SNP PRINT)
Snapshot Dates (SNP DATE)
Snapshot Frequency (SNP FREQ)
Snapshot Segments (SNP SEG)
Screen Print (SCR PRNT)
Screen Dates (SCR DATE)
Screen Frequency (SCR FREQ)
Profile Plot (PRF PLOT)
Profile Date (PRF DATE)
Profile Frequency (PRF FREQ)
Profile Segment (PRF SEG)Spreadsheet Profile Plot (SPR PLOT)
Spreadsheet Profile Plot (SPR PLOT)
Spreadsheet Profile Frequency (SPR FREQ)
opieausileet Profile Frequency (SPR FREQ)

Spreadsheet Profile Segment (SPR SEG)

W2 Linkage File Output – (Vector Plot) (VPL PLOT)
Vector Plot Date (VPL DATE)
Vector Plot Frequency (VPL FREQ)
Contour Plot (CPL PLOT)
Contour Plot Dates (CPL DATE)
Contour Plot Frequency (CPL FREQ)
Kinetic Flux Output (FLUXES)
Kinetic Flux Date (KFL DATE)
Kinetic Flux Frequency (FLX FREQ)
Time Series Plot (TSR PLOT)
Time Series Date (TSR DATE)
Time Series Frequency (TSR FREQ)
Time Series Seament (TSR SEG)
Time Series Elevation (TSR ELEV)
Water Level Output (WL OUT)
Flow Balance Output (FB OUT)
N and P Mass Balance Output (NPB OUT)
Withdrawal Output (WITH OUT)
Withdrawal Output (WITH OUT)Withdrawal Output Date (WDO DATE)
Withdrawal Output Frequency (WDO FREQ)
Withdrawal Output Segment (WITH SEG)
Restart (RESTART)
Restart Date (RSO DATE)
Restart Frequency (RSO FREQ)
Constituent Computations (CST COMP)
Atmospheric Deposition (ATMDEP)
Active Constituents (CST ACTIVE)
Derived Constituents (CST DERIVE)
Constituent Kinetic Fluxes (CST FLUX)
Constituent Initial Concentration (CST ICON)
Constituent Output (CST PRINT)
Constituent Output (CST PRINT)Inflow Active Constituent Control (CIN CON)
Tributary Active Constituent Control (CTR CON)
Distributed Trib Active Constituent (CDT CON)
Precipitation Active Constituent Control (CPR CON)
Extinction Coefficient (EX COEF)
Algal Extinction (ALG EX)
Zooplankton Extinction (ZOO EX)
Macrophyte Extinction (MAC EX)
Generic Constituent (GENERIC)
Suspended Solids (S SOLIDS)
Bacteria
H2S
CH4
OT14

Fe(II) and FeOOH
Mn(II) and MnO2
Algal Rates (ALGAL RATE)
Algal Temperature Rate Coefficients (ALG TEMP)
Algal Stoichiometry (ALG STOICH)
Algal Stoichiometry (ALG STOICH)Epiphyte/Periphyton Control (EPIPHYTE)
Epiphyte/Periphyton Print (EPI PRINT)
Epiphyte/Periphyton Initial Density (EPI INI)
Epiphyte/Periphyton Rate (EPI RATE)
Epiphyte/Periphyton Half-Saturation (EPI HALF)
Epiphyte/Periphyton Temperature Rate Coefficients (EPI TEMP)
Epiphyte/Periphyton Stoichiometry (EPI STOICH)
Zooplankton Rate (ZOOP RATE)
Zooplankton Algal Preference (ZOOP ALGP)
Zooplankton Zooplankton Preference (ZOOP ZOOP)
Zooplankton Temperature Rate Coefficients (ZOOP TEMP)
Zooplankton Stoichiometry (ZOOP STOICH)
Macrophyte Control (MACROPHYT)
Macrophyte Print (MAC PRINT)
Macrophyte Initial Concentration (MAC INI)
Macrophyte Rate (MAC RATE)
Macrophyte Sediments (MAC SED)
Macrophyte Distribution (MAC DIST)
Macrophyte Drag (MAC DRAG)
Macrophyte Temperature Rate Coefficients (MAC TEMP)
Macrophyte Stoichiometry (MAC STOICH)
Dissolved Organic Matter (DOM)
Particulate Organic Matter (POM)
Organic Matter Stoichiometry (OM STOICH)
Organic Matter Temperature Rate Multipliers (OM RATE)
Turbidity and Secchi Disk (TURBSEC)
Carbonaceous Biochemical Oxygen Demand (CBOD)
CBOD Stoichiometry (CBOD STOICH)
Inorganic Phosphorus (PHOSPHOR)
Ammonium (AMMONIUM)Ammonium Temperature Rate Multipliers (NH4 RATE)
Nitrate (NITRATE)Nitrate Temperature Rate Multipliers (NO3 RATE)
Silica (SILICA)Sediment Carbon Dioxide Release (SED CO2)
Oxygen Stoichiometry 1 (STOICH 1)
Oxygen Stoichiometry 2 (STOICH 2)
Oxygen Stoichiometry 3 (STOICH 3)
Oxygen Stoichiometry 4 (STOICH 4)
Oxygen Stoichiometry 5 (STOICH 4)
Oxygen Limit (O2 LIMIT)
OAYGOT LITTLE LOC LIVIT I J

•••	Sediment Compartment (SEDIMENT)
	SOD Temperature Rate Multipliers (SOD RATE)
	Zero-Order Sediment Oxygen Demand (S DEMAND)
	Reaeration (REAERAT)
•••	Restart Input Filename (RSI FILE)
	Withdrawal Filename (QWD FILE)
	Gate Outflow Filename (QGT FILE)
	Wind Sheltering Filename (WSC FILE)
	Dynamic Shading Filename (SHD FILE)
•••	Bathymetry Filename (BTH FILE)
	Meteorology Filename (MET FILE)
	Light Extinction Filename (EXT FILE)
	Atmospheric Deposition Filename (ATD FILE)
	Vertical Profile Filename (VPR FILE)
	Longitudinal Profile Filename (LPR FILE)
	Branch Inflow Filename (QIN FILE)
	Branch Inflow Temperature Filename (TIN FILE)
	Branch Inflow Constituent Filename (CIN FILE)
	Branch Outflow Filename (QOT FILE)
	Tributary Inflow Filename (QTR FILE)
	Tributary Inflow Temperature Filename (TTR FILE)
	Tributary Inflow Concentration Filename (CTR FILE)
	Distributed Tributary Inflow Filename (QDT FILE)
	Distributed Tributary Inflow Temperature Filename (TDT FILE)
•••	Distributed Tributary Inflow Concentration Filename (CDT FILE)
•••	Precipitation Filename (PRE FILE)
	Precipitation Temperature Filename (TPR FILE)
	Precipitation Concentration Filename (CPR FILE)
	External Upstream Head Filename (EUH FILE)
•••	External Upstream Head Temperature Filename (TUH FILE)
	External Upstream Head Concentration Filename (CUH FILE)
	External Downstream Head Filename (EDH FILE)
	External Downstream Head Temperature Filename (TDH FILE)
	External Downstream Head Concentration Filename (CDH FILE)
	Time Series Plot Filename (TSR FILE)
	Withdrawal Output Filename (WDO FILE)
	Sample Control Input File

What kind of stuff does the control file contain?

- 1. Physical dimensions (GRID Card)
 - NWB Number of waterbodies
 - NBR Number of branches
 - IMX Maximum number of segments
 - KMX Maximum number of vertical layers
- 2. Physical features (INFLOW/OUTFLOW card)
 - NTR Number of tributaries
 - NST Number of structures
 - NIW Number of internal weirs
 - NWD Number of withdrawals
 - NGT Number of gates
 - NSP Number of spillways
 - NPI Number of pipes
 - NPU Number of pumps
- 3. What we are modeling? (CONSTITUENTS card)
 - NGC Number of generic constituents
 - NSS Number of suspended solids groups
 - NAL Number of algal groups
 - NEP Number of epiphyton groups
 - NBOD Number of BOD groups
 - NMC Number of macrophyte groups
 - NZP Number of zooplankton groups

External References:

- 1. Include file names for input and output files
 - Meteorological input or timeseries output...
- 2. Have on/off switches for accessory modules
 - Fish habitat, sediment-diagenesis

Time Series Inputs

Boundary conditions, meteorological inputs, etc.

File names - global	FILE NAMES					
QWD FILE QWDFN - withdrawals	qwd.npt					
QGT FILE QGTFN - gate	qgt.npt					
WSC FILE WSCFN - wind sheltering	wsc.npt					
SHD FILE SHDFN - shading	shade.npt					
VPLFN - W2 post output, DSI W2Post output file	degray.w2l					
Waterbody Dependent File names	WB1	WB2				
BTHFN bathymetry file	bth1.csv					
METFN meteorological file	met.npt					
EXTFN light extinction	ext_1.npt					
ATMDEPFN atmospheric deposition file name	atm_deposition_	_wb1.csv				
VPRFN vertical profile	vpr.npt					
LPRFN longitudinal profile	lpr.npt					
SNPFN snapshot	snp.opt					
PRFFN profile output	prf.opt					
CPLFN contour plot output	cpl.opt					
SPRFN spreadsheet output	spr.csv					
FLXFN flux output	flx.opt					
Branch Dependent File Names	BR1	BR2				
QINFN branch inflow	qin_br1_equal.n	pt				
TINFN branch temp inflow	tin_br1.npt					
CINFN branch conc inflow	cin_br1.csv					
QOTFN branch structure outflow	qot_br1_equal.n	pt				
QDTFN Distributed flow file	qin_br1.npt					
TDTFN Distributed temperature file	tdt_br1.npt					
CDTFN Distributed concentration file	cdt_br1.npt					
PREFN Precipitation flow file	pre_br1.npt					
TPRFN Precipitation temperature file	tpr_br1.npt	tpr_br1.npt				
CPRFN Precipitation concentration file	cpr_br1.npt					
EUHFN Upstream head file euh_br1.npt						
UHFN Upstream temperature file tuh_br1.npt						
CUHFN Upstream concentration file	cuh_br1.npt	cuh_br1.npt				
EDHFN Downstream head file	edh_br1.npt	edh_br1.npt				
TDHFN Downstream temperature file	tdh_br1.npt	tdh_br1.npt				
CDHFN Downstream concentration file	cdh_br1.npt	cdh_br1.npt				
END OF FILE						

t > DeGray Reservoir with sediment diagen	∨ 0	Search DeGray Reservoi	r with sediment dia
Name	Date modified	Туре	Size
atm_deposition_wb1.csv	7/26/2022 6:56 PM	Comma Separate	1 KB
bth1.csv	7/26/2022 6:56 PM	Comma Separate	15 KB
cin_br1.csv	7/26/2022 6:56 PM	Comma Separate	4 KB
🕞 con_converter.py	7/27/2022 10:20 AM	Python File	1 KB
dynpump1.npt	7/26/2022 6:56 PM	NPT File	1 KB
dynselective1.npt	7/26/2022 6:56 PM	NPT File	1 KB
<pre>el_stats.opt</pre>	7/26/2022 6:56 PM	OPT File	1 KB
met.npt	7/26/2022 6:56 PM	NPT File	144 KB
prf_dam.npt	7/26/2022 6:56 PM	NPT File	117 KB
ggt.npt	7/26/2022 6:56 PM	NPT File	1 KB
ain_br1.npt	7/26/2022 6:56 PM	NPT File	6 KB
🗐 qin_br1_equal.npt	7/26/2022 6:56 PM	NPT File	1 KB
got_br1.npt	7/26/2022 6:56 PM	NPT File	7 KB
got_br1_equal.npt	7/26/2022 6:56 PM	NPT File	1 KB
qwb.opt	7/26/2022 6:56 PM	OPT File	1 KB
shade.npt	7/26/2022 6:56 PM	NPT File	1 KB
tin_br1.npt	7/26/2022 6:56 PM	NPT File	7 KB
/// vpr.npt	7/26/2022 6:56 PM	NPT File	2 KB
w2_aerate.npt	7/26/2022 6:56 PM	NPT File	1 KB
w2_Algae_Toxin.csv	7/26/2022 6:56 PM	Comma Separate	1 KB
w2_AlgaeMigration.csv	7/26/2022 6:56 PM	Comma Separate	7 KB
w2_con.csv	7/26/2022 6:56 PM	Comma Separate	110 KB
w2_con_DeGray4.5.xIsm	7/26/2022 6:56 PM	Microsoft Excel M	280 KB
w2_diagenesis.npt	7/26/2022 6:56 PM	NPT File	9 KB
w2_envirprf.npt	7/26/2022 6:56 PM	NPT File	3 KB
w2_habitat.npt	7/26/2022 6:56 PM	NPT File	1 KB
w2_lake_river_contour.csv	7/26/2022 6:56 PM	Comma Separate	1 KB
w2_multiple_WB.npt	7/26/2022 6:56 PM	NPT File	1 KB
w2_selective.npt	7/26/2022 6:56 PM	NPT File	2 KB
w2_systdg.npt	7/26/2022 6:56 PM	NPT File	2 KB
w2_TDGtarget.csv	7/26/2022 6:56 PM	Comma Separate	2 KB
w2_tecplotbr.csv	7/26/2022 6:56 PM	Comma Separate	1 KB
wsc.npt	7/26/2022 6:56 PM	NPT File	1 KB

US Army Corps of Engineers • Engineer Research and Development Center

Accessory Modules Controlled in w2_con

- <u>SELECTC</u> suggests outlet controls based on water temperature
- HABITATC calculates volume of fish habitat based on dissolved oxygen
- ENVIRPC calculates amount of time and volume that reservoir meets certain conditions (i.e. constituent within certain range)
- <u>AERATEC</u> allows user to add oxygen mass to simulate aerator
- <u>INITUWL</u> calculates an initial velocity and normal depth for any non-zero slope waterbody
- ORGCC controls whether carbon is used as the metric for organic matter constituents such as LDOM, RDOM, etc.
- <u>SED DIAG</u> controls flux of constituents and temperature between sediment and waterbody
- AVERTM turns algal vertical migration on/off
- <u>w2 Algae Toxin.csv</u> controlled by ON/OFF switch in ACTIVE CONSTITUENT card, ratio of toxin production for different algal types
- <u>atm_deposition_wb1.csv</u> controlled by ON/OFF switch in ACTIVE CONSTITUENT card, sets atmospheric mass input for various constituents
- w2 tecplotbr.csv controlled by ON/OFF switch in the CPL PLOT card, controls which branches to output

Accessory Modules Controlled by Presence in File Directory

- w2 constriction.csv specifies maximum width between segments, affects right-hand-side face manual part 3, page 316
- w2 particle.csv specifies parameters to compute particle transport manual part 3, page 456
- <u>w2 multiple WB.npt</u> provides details for running simulations with multiple waterbodies manual part 3, page 467
- w2_systdg.npt sets parameters for setting up total dissolved gas modeling manual part 3, page 345
- w2_TDGTarget.csv sets spillway operation parameters that adjust based on TDG target manual part 3, page 349
- w2 lake river contour.csv sets parameters for contour plots that vary over time manual part 3, page 396

How does a control file look?

• CE-QUAL-W2 Versions 3.7, 4.0, 4.1, and 4.2 all use .npt input files (ASCII files):

```
w2_con.npt - Notepad
File Edit Format View Help
 W2 Model Version 3.72/4.0
TITLE C ......TITLE.....TITLE.....
       Degray Reservoir - March 4 through December 27, 1980
       Degray Reservoir - March 4 through December 27, 1980
       Density placed inflow, point sink outflow
       Default hydraulic coefficients
       Default light absorption/extinction coefficients
       Testing sensitivity of temperature predictions to vertical resolution
       2 m layer heights
GRID
                                        NPROC
                                               CLOSEC
                            32
IN/OUTFL
                           NIW
                             0
CONSTITU
            NGC
                                         NBOD
MISCELL
TIME CON TMSTRT
                          YEAR
                 TMEND
        64.5000 358.700
DLT CON
            NDT DLTMIN DLTINTR
              1 1.00000
DLT DATE
           DLTD
                          DLTD
                                                        DLTD
                                                                        DLTD
          64.50
         DLTMAX
                        DLTMAX
        3600.00
```

US Army Corps of Engineers • Engineer Research and Development Center

.npt file version

• 8-character width per entry

INIT CND WB 1 -				GRIDC					
CALCULAT					EVC	PRC			
WB 1		OFF		ON	OFF	OFF			
DEAD SEA WB 1		-	QOUTC ON						
INTERPOL BR1		DTRIC OFF	HDIC OFF						
HEAT EXCH WB 1						AFW 9.20000			
ICE COVE WB 1									
TRANSPOR WB 1 UL									
HYD COEF WB 1 1									
EDDY VISC WB 1						ARODI 0.430			
N STRUC BR1	NSTR 1								
STR INT BR 1	STRIC ON	STRIC	STRIC	STRIC	STRIC	STRIC	STRIC	STRIC	STRIC
STR TOP BR1	KTSTR 2		KTSTR	KTSTR	KTSTR	KTSTR	KTSTR	KTSTR	KTSTR

Fixed-Width (*.npt) File Version

 Setting which WQ constituents are computed in the model

CST COMP	ссс	LIMC	CUF
	ON	ON	3
CST ACTIVE	CAC		
TDS	ON		
Gen1	ON		
Gen2	ON		
Gen3	ON		
ISS1	ON		
P04	ON		
NH4	ON		
NO3	ON		
DSI	OFF		
PSI	OFF		
FE	ON		
LDOM	ON		
RDOM	ON		
LPOM	ON		
RPOM	OFF		
ALG1	ON		
DO	ON		
TIC	ON		
ALK	ON		
Z001	OFF		
LDOM_P	OFF		
RDOM_P	OFF		
LPOM_P	OFF		
RPOM_P	OFF		
LDOM_N	OFF		
RDOM_N	OFF		
LPOM_N	OFF		
RPOM_N	OFF		

US Army Corps of Engineers • Engineer Research and Development Center

The most up-to-date user interface is an .xslm file (m stands for macro). The macro converts the excel into an .csv file which is readable by the model.

Note COL A and B are not written out to w2_cor	w2_con.csv file format		CE-QUAL-W2	4.5							
		Control File ve	4.5								
Fixed length of file except when more than 5 alg	TITLE C		Title comments: next 10 lines								
5 macrophytes, 5 structures, 5 periphyton group	Any comment - this is written o	nly to the SNP fil	Bonneville D	am, Columbia	River"						
The # of rows though changes with the # of activ	ve water quality constituents.		"CRSO TRANS	TION MODEL 2	2011-2015"						
Do not change the file tab name for this sheet s	ince the output file name is tied	to the name of t	"NAVD88 -> N	GVD29+3.3"							
NWB: # of waterbodies			"GATE GAS G	ASGTC = ON, S	YSTDG is C	N"					
NBR: number of branches			"N2, DO> T[G"							
IMX: maximum number of segments including in	active segments	Export to CSV	""								
KMX: maximum number of vertical layers includi	ing inactive layers (top and botte	file	""								
NPROC: # of processors (INACTIVE at this time)			***								
CLOSEC: close dialog box after executing if =ON			"Zhong Zhang	"							
NTR: number of tributaries			"7/2021"								
NST: maximum # of structures in a branch											
NIW: # of internal weirs	GRID/NPROC/CLOSE DIALOG BO	OX	NWB	NBR	IMX	KMX	NPROC	CLOSEC			
NWD: # of withdrawals			1	1	77	56	1	ON			
NGT: # of gates											
NSP: # of spillways	IN/OUTFLOW		NTR	NST	NIW	NWD	NGT	NSP	NPI	NPU	
NPI: # of pipes			0	0	0	0	20	0	0	0	
NPU: # of pumps or water level control rules											
NGC: # of generic water quality constituents	CONSTITUENTS		NGC	NSS	NAL	NEP	NBOD	NMC	NZP		
Do not change bolded headers in COL C - these	are checked by the program		0	0	0	0	0	0	C	<mark>)</mark>	
NDAY:Maximum number of output dates or timestep re	elated changes										
SELECTC:Turn ON/OFF/USGS automatic port selection f	MISCELLANEOUS		NDAY	SELECTC	HABTATC	ENVIRPC	AERATEC	INITUWL	ORGCC	SED_DIAG	
HABITATC:Turn ON/OFF habitat analyses for fish and eu	utrophication variables		100	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
ENVIRPC:Turn ON/OFF environmental performance crit	eria										
AERATEC:Turn ON/OFF aeration to waterbody with diss	TIME CON		TMSTRT	TMEND	YEAR						
INITUWL:Turn ON/OFF initial water surface slope and v	These are computed from form	40544.000	40909.000	1900							
ORGCC simulates the organic matter as C rather than organic matter											
Fill in these with real dates and the Julian dates DLT CON			NDLT	DLTMIN	DLTINTER	1					
TMSTRT	Time step control parameters		1	1	OFF						
1/1/2011 0:00											

UNCLASSIFIED

11

- *.xlsm control file interface for the .csv control file
- Orientation changed from .npt: Parameters now sorted by row; waterbody/branch by columns.

UNCLASSIFIED

12

Both methods read the same .csv file, but notepad will show number of empty rows read in.

US Army Corps of Engineers • Engineer Research and Development Center

File explorer: where all external file inputs live for a model, including the control file:

Fortran code: assigns CON a file number, checks the name of variable CONFN, and then reads in file number 10 in specific patterns based on whether in .npt or .csv file format.

```
INTEGER :: CON=10,
```

```
IF(CONFN=='w2 con.npt')THEN
 READ (CON, '(//(:8X,A8,2F8.0,2I8))') (PPUC(JP),
                                             ETPU(JP), EBPU(JP), KTPU(JP),
 READ (CON, '(//(:8X,9I8))')
                                              JW=1,NIW)
                                  (IWR(JW),
 READ (CON, '(//(:8X,9F8.0))')
                                  (EKTWR(JW),
                                               JW=1,NIW)
                                                                     ! SW 3/18/16
 READ (CON, '(//(:8X,9F8.0))')
                                  (EKBWR(JW),
                                               JW=1,NIW)
                                                                     ! SW 3/18/16
                                  (WDIC(JW),
 READ (CON, '(//(:8X,9F8.0))')
                                              JW=1, NWD)
                                  (EWD(JW),
 READ (CON, '(//(:8X,9I8))')
                                  (KTWD(JW),
                                              JW=1,NWD)
 READ (CON, '(//(:8X,918))')
                                              JW=1,NWD); TRC=
                                                                    ' ! SW 9/27/13 INITIALIZATION SINCE ALLOCATION IS TO NTRT
                                  (KBWD(JW),
 READ (CON, '(//(:8X,9A8))')
                                  (TRC(JT),
                                              JT=1,NTR
 READ (CON, '(//(:8X,9A8))')
                                  (TRIC(JT),
                                              JT=1,NTR
           ! w2 con.csv file format
                                  JP=1,NPU);PPUC=ADJUSTR(PPUC)
 READ (CON,*) (PPUC(JP),
 READ (CON,*) (ETPU(JP),
                                  JP=1,NPU)
 READ (CON,*) (EBPU(JP),
                                 JP=1,NPU)
 READ (CON,*) (KTPU(JP),
                                  JP=1,NPU)
 READ (CON,*) (KBPU(JP),
                                  JP=1,NPU)
 READ (CON,*)
 READ (CON,*)
 READ (CON,*)
                            (IWR(JW),
                                            JW=1,NIW)
 READ (CON,*)
                          (EKTWR(JW),
                                            JW=1,NIW)
```

US Army Corps of Engineers • Engineer Research and Development Center

Cards: How they appear in the .xlsm – 80 Cards

1	Grid Dimensions	21	Eddy Viscosity	41	Flow Balance Output	61	Algal Rates
2	Inflow/Outflow Dimensions	22	Structures For Each Branch	42	N and P Mass Balance Output	62	Epiphyton
3	Constituent Dimensions	23	Pipes	43	Iron Constituents Output	63	Epiphyton Rates
4	Miscellaneous	24	Spillways	44	Restart	64	Zooplankton Rates
5	Time Control	25	Gates	45	Constituent Computations	65	Macrophytes
6	Timestep Control	26	Pumps	46	Atmospheric Deposition	66	Macrophyte Rates
7	Timestep Date	27	Internal Weir	47	Concentration State Variables	67	Dissolved Organic Matter
8	Maximum Timestep	28	Withdrawal	48	Derived Concentration State Variables	68	Particulate Organic Matter
9	Timestep Fraction	29	Trib Placement	49	Concentration State Variables Flux	69	Organic Matter Stoichiometry
10	Timestep Limitations	30	Distributed Trib	50	Extinction Coefficients	70	Turbidity
11	Branch Grid	31	Hydraulic Print	51	Algal Extinction	71	CBOD
12	Location	32	Snapshot Print		Zooplankton Extinction	72	Nutrients
13	Initial Conditions	33	Screen Print	53	Macrophyte Extinction	73	Sediment CO2
14	Calculation	34	Profile Output	54	Generic Constituent	74	Oxygen Limit
15	Dead Sea	35	Spreadsheet Output	55	Suspended Solids	75	SOD Rates
16	Interpolation	36	DSI W2Linkage	56	Bacteria	76	SOD Demand Zero Order
17	Heat Exchange	37	Contour Plot Output	57	Hydrogen Sulfide	77	Reaeration
18	Ice Cover	38	Fluxes	58	Methane	78	File Names – Global
19	Transport Scheme	39	Timeseries Plot Output	59	Iron Constituents	79	Waterbody Dependent File Names
20	Hydraulic Coefficients	40	Water Level Output	60	Manganese Constituents	80	Branch Dependent File Names

US Army Corps of Engineers • Engineer Research and Development Center

Grid Dimensions

Inflow/Outflow Dimensions

Constituent Dimensions

Miscellaneous

Time Control

Timestep Control

Timestep Date

Maximum Timestep

Timestep Fraction

Timestep Limitations

Branch Grid

Location

Initial Conditions

Calculation

Dead Sea

Interpolation

Heat Exchange

Ice Cover

Transport Scheme

Hydraulic Coefficients

2 NGC Integer Number of generic constituents

US Army Corps of Engineers • Engineer Research and Development Center

Eddy Viscosity				
Structures For Each Branch				
Pipes				
Spillways				
Gates				
Pumps				
Internal Weir				
Withdrawal				
Trib Placement				
Distributed Trib	3	NCPL	Integer	Number of contour plot dates
Hydraulic Print	3	NCPL	integer	Number of contour plot dates
Snapshot Print				
Screen Print				
Profile Output				
Spreadsheet Output				
DSI W2Linkage				
Contour Plot Output		_		
Fluxes				
Timeseries Plot Output				
Water Level Output				
US Army Corps of Engineers • F	-ngineer I	Research a	nd Develonme	nt Center

Flow Balance Output

N and P Mass Balance Output

Iron Constituents Output

Restart

Constituent Computations

Atmospheric Deposition

Concentration State Variables

Derived Concentration State Variables

Concentration State Variables Flux

Extinction Coefficients

Algal Extinction

Zooplankton Extinction

Macrophyte Extinction

Generic Constituent

Suspended Solids

Bacteria

Hydrogen Sulfide

Methane

Iron Constituents

Manganese Constituents

3 NRSO Integer Number of restart dates

US Army Corps of Engineers • Engineer Research and Development Center

Algal Rates

Epiphyton

Epiphyton Rates

Zooplankton Rates

Macrophytes

Macrophyte Rates

Dissolved Organic Matter

Particulate Organic Matter

Organic Matter Stoichiometry

Turbidity

CBOD

Nutrients

Sediment CO2

Oxygen Limit

SOD Rates

SOD Demand Zero Order

Reaeration

File Names – Global

Waterbody Dependent File

Names

Branch Dependent File Names

2 MP

Real

0.005

Stoichiometric equivalent between macrophyte biomass and phosphorus

US Army Corps of Engineers • Engineer Research and Development Center

Grid Dimensions

Inflow/Outflow Dimensions

Constituent Dimensions

Miscellaneous

Time Control

Timestep Control ←

Timestep Date

Maximum Timestep

Timestep Fraction

Timestep Limitations

Branch Grid

Location

Initial Conditions

Calculation

Dead Sea

Interpolation

Heat Exchange

Ice Cover

Transport Scheme

Hydraulic Coefficients

2 NDT Integer Number of timestep intervals

US Army Corps of Engineers • Engineer Research and Development Center

Eddy Viscosity Structures For Each Branch Pipes Spillways Gates Pumps Internal Weir Withdrawal Trib Placement Distributed Trib **PDGTC** DISTR Specifies how inflows enter the downstream gate 2 Character segment, DISTR, DENSITY, or SPECIFY Hydraulic Print Snapshot Print Screen Print Profile Output Spreadsheet Output DSI W2Linkage Contour Plot Output Fluxes Timeseries Plot Output Water Level Output

US Army Corps of Engineers • Engineer Research and Development Center

Flow Balance Output N and P Mass Balance Output Iron Constituents Output Restart Constituent Computations Atmospheric Deposition Concentration State Variables Derived Concentration State Variables Concentration State Variables Flux Sediment release rate of H2S, a fraction of SOD for 2 H2SR Real **Extinction Coefficients** the zero order SOD model only [-] Algal Extinction Zooplankton Extinction Macrophyte Extinction Generic Constituent Suspended Solids Bacteria Hydrogen Sulfide Methane Iron Constituents Manganese Constituents

US Army Corps of Engineers • Engineer Research and Development Center

Algal Rates Epiphyton Epiphyton Rates Zooplankton Rates Macrophytes Macrophyte Rates Dissolved Organic Matter Particulate Organic Matter Organic Matter Stoichiometry Turbidity CBOD Nutrients Sediment CO2 Oxygen Limit SOD Rates SOD Demand Zero Order Reaeration File Names – Global Waterbody Dependent File Names Branch Dependent File Names

2-10 PREFZ Real 0.0 Preference factor of zooplankton for zooplankton (dimensionless) from 0 to 1.

US Army Corps of Engineers • Engineer Research and Development Center

Grid Dimensions Inflow/Outflow Dimensions Constituent Dimensions Miscellaneous Time Control Timestep Control Timestep Date Maximum Timestep Timestep Fraction Timestep Limitations VBC Character ON Volume balance calculation, ON or OFF 2 Branch Grid Location **Initial Conditions** Calculation Dead Sea Interpolation Heat Exchange Ice Cover Transport Scheme Hydraulic Coefficients

US Army Corps of Engineers • Engineer Research and Development Center

Eddy Viscosity
Structures For Each Branch
Pipes
Spillways
Gates
Pumps
Internal Weir
Withdrawal
Trib Placement
Distributed Trib
Hydraulic Print
Snapshot Print
Screen Print
Profile Output
Spreadsheet Output
DSI W2Linkage
Contour Plot Output
Fluxes
Timeseries Plot Output
Water Level Output

2 FLXC Character OFF Specifies if information is sent to the kinetic flux output file, ON or OFF

US Army Corps of Engineers • Engineer Research and Development Center

Flow Balance Output

N and P Mass Balance Output

Iron Constituents Output

Restart

Constituent Computations

Atmospheric Deposition

Concentration State Variables

Derived Concentration State Variables

Concentration State Variables Flux

Extinction Coefficients

Algal Extinction

Zooplankton Extinction

Macrophyte Extinction

Generic Constituent

Suspended Solids

Bacteria

Hydrogen Sulfide

Methane

Iron Constituents

Manganese Constituents

2 CCC Character OFF Specifies if constituents are computed, ON or OFF

US Army Corps of Engineers • Engineer Research and Development Center

Algal Rates Epiphyton Epiphyton Rates Zooplankton Rates Macrophytes Macrophyte Rates Dissolved Organic Matter Particulate Organic Matter Organic Matter Stoichiometry Turbidity CBOD Nutrients Sediment CO2 Oxygen Limit SOD Rates SOD Demand Zero Order Reaeration File Names – Global Waterbody Dependent File Names Branch Dependent File Names

2 PO4R Real 0.001 Sediment release rate of phosphorus, fraction of SOD

US Army Corps of Engineers • Engineer Research and Development Center

Grid Dimensions Inflow/Outflow Dimensions Constituent Dimensions Miscellaneous Time Control Timestep Control Timestep Date Maximum Timestep Timestep Fraction Timestep Limitations Branch Grid Location **Initial Conditions** Calculation Dead Sea Interpolation Heat Exchange Ice Cover Transport Scheme Hydraulic Coefficients

8 FRICC Character CHEZY Bottom friction solution, MANN or CHEZY

US Army Corps of Engineers • Engineer Research and Development Center

Eddy Viscosity					
Structures For Each Branch					
Pipes					
Spillways					
Gates					
Pumps					
Internal Weir					
Withdrawal					
Trib Placement					
Distributed Trib					
Hydraulic Print	2	AZC	Character	TKE	Form of vertical turbulence closure algorithm, NICK, PARAB, RNG, W2, W2N, TKE, or TKE1
Snapshot Print					
Screen Print					
Profile Output					
Spreadsheet Output					
DSI W2Linkage					
Contour Plot Output					
Fluxes					
Timeseries Plot Output					
Water Level Output					

Flow Balance Output					
N and P Mass Balance Output					
Iron Constituents Output					
Restart					
Constituent Computations					
Atmospheric Deposition					
Concentration State Variables					
Derived Concentration State Variables					
Concentration State Variables Flux					
Extinction Coefficients	3	SEDRC	Real	OFF	Turns ON or OFF sediment resuspension
Algal Extinction					
Zooplankton Extinction					
Macrophyte Extinction					
Generic Constituent					
Suspended Solids		_			
Bacteria					
Hydrogen Sulfide					
Methane					
Iron Constituents					
Manganese Constituents					
US Army Corps of Engineers a Engineer	r Doogs	arch and [)ovolopm	acnt Contor	

	Algal Rates					
	Epiphyton					
	Epiphyton Rates					
-	Zooplankton Rates					
	Macrophytes					
	Macrophyte Rates					
	Dissolved Organic Matter					
	Particulate Organic Matter					
	Organic Matter Stoichiometry					
	Turbidity					
	CBOD	9	MINKL	Real	0.0	This is the minimum gas transfer coefficient in units of m/d for LAKES and units of day ⁻¹ for
	Nutrients					RIVER/ESTUARY
	Sediment CO2					
	Oxygen Limit					
	SOD Rates					
	SOD Demand Zero Order					
	Reaeration					
-	File Names – Global					
	Waterbody Dependent File Names					
	Branch Dependent File Names					

Model Setup: Control File - Questions?

US Army Corps of Engineers • Engineer Research and Development Center