PROFESSEUR : Zantour Hamdi 4 FÉVRIER 2017

 ${\it CLASSE}:4^e$ année

 ${\tt SECTION}: {\sf Informatique}$

EXERCICE 1

On a représenté dans le graphique ci-dessous les représentations graphiques \mathscr{C}_f et \mathscr{C}_g de deux fonctions f et g définies et dérivables sur \mathbb{R} .

Utiliser le graphique pour répondre aux questions suivantes.

- 1/a) Calculer f(0), g(0), f'(0) et g'(0).
 - b) Résoudre, dans \mathbb{R} , l'équation : g(x) = 0.
 - c) Résoudre, dans \mathbb{R} , l'inéquation : f(x) = g(x).
- 2/ Etudier la position relative de f et g sur \mathbb{R} .
- 3/a) Calculer $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} g(x)$ et $\lim_{x \to +\infty} g(x)$.
 - b) Etudier les variations des fonctions f et g.
 - c) Etudier les variations de la fonction h définie sur \mathbb{R} par : $h(x) = g \circ f(x)$.

EXERCICE 2

Soit f la fonction définie par :

$$f(x) = \begin{cases} 3x^2 + 6x + 4 & \text{si } x \ge -1\\ \frac{2}{x^2 + 1} & \text{si } x < -1 \end{cases}$$

- 1/a) Déterminer l'ensemble de définition de f.
 - b) Montrer que f est continue en -1.
 - c) Montrer que f est continue sur \mathbb{R} .
- 2/ Etudier la dérivabilité de f en -1 puis interpréter graphiquement les résultats obtenus.
- 3/ a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$. b) Calculer f'(x) pour tout $x \in \mathbb{R} \setminus \{-1\}$.

 - c) Dresser le tableau de variations de f.

EXERCICE 3

Soit f une fonction définie et dérivable dont le tableau de variation est donnée ci-dessous.

x	-5		-2		0		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	$\frac{4}{3}$		-1		$\frac{1}{2}$		$\sim \frac{1}{6}$

- 1/a) Déterminer l'ensemble de définition de f.
 - b) Calculer f'(-2) et f'(0) puis interpréter ces résultats.
 - c) Déterminer le nombre de solutions de l'équation : f(x) = 1.
- 2/ a) Calculer $\lim_{x\to +\infty} f(x)$ puis interpréter ce résultat graphiquement.
 - b) Montrer que l'équation f(x) = 0, admet deux solutions réelles α et β .
 - c) Dresser le tableau de signe de f puis résoudre l'inéquation : f(x) > 0.
 - d) Tracer \mathscr{C}_f la courbe représentative de f.

