	IRRATIONALE FUNCTIE	GONIOMETR	ISCHE FUNCT	IE		CYCLOM	TRISCHE F	UNCTIE	
Functies		sin (x)	cos (x)	tan (x)	cot (x)	Bgsin x	Bgcos x	Bgtan x	Bgcot x
Domein & continuïteit	$f(x) = \sqrt{g(x)} + q$ > $g(x) > 0$ > Ongelijkheid oplossen: dom!	R	R	\mathbb{R} zonder $\frac{\pi}{2} + k \cdot \pi$	\mathbb{R} zonder $\pi + k . \pi$	[-1,1]	[-1,1]	R	\mathbb{R}
Bereik		[-1, 1]	[-1, 1]	\mathbb{R}	\mathbb{R}	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$
Asymptoten	VA: Nulwaarden van de noemer. > Let op: $0/0$ = géén asymptoot! HA: graad teller = graad noemer. > $\lim_{x \to +\infty} \frac{\sqrt{ax}}{x}$ > $\lim_{x \to -\infty} \frac{\sqrt{ax}}{x}$ HA: graad teller < graad noemer > $y = 0$ SA: graad teller > graad noemer > $m = \lim_{x \to +\infty} \frac{h(x)}{x \cdot g(x)}$ = $\lim_{x \to +\infty} \frac{h(x)}{x \cdot g(x)}$ > $q = \lim_{x \to \pm\infty} f(x) - m(x)$	Géén	Géén	$x = \frac{\pi}{2}$ => V.A. Herhaalt zich om de π	$x = \pi$ => V.A. Herhaalt zich om de π	Géén	Géén	$y = \pm \frac{\pi}{2}$ $=> \text{H.A.}$	$y = \pm \pi$ => H.A.
Grafieken	7-10	Begint vanaf oorsprong, maximum in $\frac{\pi}{2}$, π als nulwaarde.	Begint vanaf 1, $\frac{\pi}{2}$ als nulwaarde, maximum in π	Begint vanonder in $-\frac{\pi}{2}$, π als nulwaarde en stijgt.	Begint vanboven bij 0π , daalt, $\frac{\pi}{2}$ als nulwaarde.	Begint bij $(-1, -\frac{\pi}{2})$, stijgt met 0 als nulwaarde	Begint bij $(-1,\pi)$, daalt met $\frac{\pi}{2}$ als snijpunt met y-as	Begint bij x nadert $-\frac{\pi}{2}$, stijgt met 0 als nulwaarde	Begint bij x naderend tot π , daalt met $\frac{\pi}{2}$ als snijpunt y-as
Periodiciteit	Niet-periodiek	2π	2π	π	π	Niet-perio	odiek		
Even/oneven	Hangt er vanaf	Even	Oneven	Oneven	Oneven				
Uitgebreide functies		Algemene (co)sinusfunctie: $y = a \cdot \cos \sin(bx + c) + d$							
		a = amplia		b = pulsatie> Uitrekking t					

>	periode	=	$\frac{2\pi}{ b }$
---	---------	---	--------------------

c = geen naam

--> Verschuiving t.o.v. x-as.

$$fase = -\frac{c}{b}$$

- --> fase = negatief ==> naar links verschuiven.
- --> fase = positief ==> naar rechts verschuiven

d = even wichts stand

--> Verschuiving t.o.v. y-as.

y = d = evenwichtsstand

 \rightarrow Let op: je verschuift de rechte y = d!

Speciale betrekkingen

Rekenen met wortels:

$$\frac{\sqrt[n]{a^n} = \left(\sqrt[n]{a}\right)^n = a}{\sqrt[n]{a^n}}$$

$$*\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

$$*\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$*\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{n}\sqrt{a}$$

$$* \sqrt[k]{a^{k.m}} = \sqrt[n]{a^m}$$

$$* \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Rekenen met machten:

$$*a^p.a^q = a^{p+q}$$

$$*\frac{a^p}{a^q} = a^{p-q}$$

$$*(a^p)^q = a^{p \cdot q}$$

$$*(a.b)^p = a^p.b^p$$

$$*\left(\frac{a}{b}\right)^p = \frac{a^p}{b^p}$$

$$*\left(\frac{a}{b}\right)^{-p} = \left(\frac{b}{a}\right)^p$$

Basisbetrekkingen:

Grondformule goniometrie: $\sin^2 x + \cos^2 x = 1$

Definitie secans:
$$\sec x = \frac{1}{\cos x}$$

Definitie cosecans:
$$\csc x = \frac{1}{\sin x}$$

Definitie tangens:
$$\tan x = \frac{1}{\cot x} = \frac{\sin x}{\cos x}$$

Definitie cotangens: $\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$

(Enkel voor ingangsexamen GNK) -

verdubbelingsformules:

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$= 2 \cos^2 \alpha - 1$$

 $=1-\sin^2\alpha$

$$\tan 2\alpha = \frac{2t}{1-t^2}$$
$$\sin 2\alpha = \frac{2t}{1+t^2}$$

$$\cos 2\alpha = \frac{1+t^2}{1+t^2}$$

Deze, en alle andere formules kan je op het examen natuurlijk aflezen van je formuleblad goniometrie.

Speciale betrekkingen:

$$\cos^2 x = \frac{1}{1 + \tan^2 x}$$
$$\sin^2 x = \frac{1}{1 + \cot^2 x}$$

Eigenschappen cyclometrische functies:

sin(Basin x) = 1

--> Geld voor elke vorm maar geldt NIET omgekeerd: $Bgsin(\sin x) \neq 1$.

$$\sin(Bg\cos x) = \cos(Bg\sin x) = \sqrt{1 - x^2}$$

$$\tan(Bg\cot x) = \cot(Bg\tan x) = \frac{1}{x}$$

Vergelijkingen	Stappenplan: (1) Kwadrateren om zoveel mogelijk wortelvormen weg te werken. (2) Bij het kwadrateren de equivalentie (⇔) vervangen door een implicatie (==>) (3) Op het einde nachecken welke oplossingen vals zijn.	SINUSVERGELIJKING: $\sin \beta = \sin \alpha \Leftrightarrow \beta = \alpha + k . 2\pi \lor \beta = (\pi - \alpha) + k . 2\pi$ COSINUSVERGELIJKING: $\cos \beta = \cos \alpha \Leftrightarrow \beta = \pm \alpha + k . 2\pi$ TANGENSVERGELIJKING $\cos \beta = \cos \alpha \Leftrightarrow \beta = \alpha + k . \pi$	
Limieten	Hoofdeigenschap: $\lim_{x \to a} f(x) = f(a)$	Bijzondere limiet: $\lim_{x \to 0} \frac{\sin x}{x} = 1$	Alle limieten (idem goniometrische functies).
	Rekenregel: $\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}$	Andere limieten: Zoals elke bij alle functies> invullen> b/0> teken teller en noemer apart nachecken	Let op: bij cyclometrische functies zal je (vaker dan bij andere functies) soms moeten redeneren. Hou de asymptoten goed in je achterhoofd!
	Speciale rekenregels: $(-\infty)^{2n+1} \to tekens \ omkeren$ $(-\infty)^{2n} \to tekens \ behouden$ $(\infty)^{2n(+1)} \to tekens \ behouden$	voor + of – oneindig> 0/0> L'hôpital toepassen. = teller en noemer apart afleiden, daarna opnieuw invullen.	BGTAN: $x \to +\infty = \frac{\pi}{2}$ $x \to -\infty = -\frac{\pi}{2}$
	+ uitleg van 'andere limieten' bij goniometrische functies	> Limieten kunnen ook <u>numeriek</u> opgezocht worden, dit steunt op de grafische definitie van limieten, je gaat het getal naderen door een getal kortbij in te vullen (bij oneindig bv. een groot getal).	BGCOT: $x \to +\infty = 0$ $x \to -\infty = \pi$
Afgeleiden	Voor vierkantswortels: $D\sqrt{f(x)} = \frac{1}{2\sqrt{f(x)}} \cdot Df(x)$	Afgeleiden van de goniometrische functies: Dsin[f(x)] = cos[f(x)] . Df(x) Dcos[f(x)] = -sin[f(x)] . Df(x)	$DBgsin x = \frac{1}{\sqrt{1-x^2}}$ $DBgcos x = -\frac{1}{\sqrt{1-x^2}}$
	Voor alle n-demachtswortels: $D[f(x)]^q = q \cdot [f(x)]^{q-1} \cdot Df(x)$ > q = een rationale exponent> Kettingregel NIET vergeten	$Dtan [f(x)] = \frac{1}{\cos^2[f(x)]} . Df(x)$ $Dcot[f(x)] = -\frac{1}{\sin^2[f(x)]} . Df(x)$ > Kettingregel NIET VERGETEN!	$DBgtan x = \frac{1}{1+x^2}$ $DBgcot x = -\frac{1}{1+x^2}$ > Kettingregel NIET VERGETEN!

Inverse relatie Inverse ALG wise y.	f'(x) > 0: stijgen f'(x) = 0: extrema f'(x) < 0: dalen verse relatie: RAFISCH: spiegelen t.o.v. eerste	Merk op (makkelijkere werkwijze): $\sin(x) = \max als x = \frac{\pi}{2}$ $\sin(x) = \min als x = -\frac{\pi}{2}$ $\cos(x) = \max als x = 0$ $\cos(x) = \min als x = \pi$				
Inverse relatie Inverse selatie GRA biss ALG wiss y.	f'(x) < 0: dalen verse relatie:	$\sin(x) = \max als x = \frac{\pi}{2}$ $\sin(x) = \min als x = -\frac{\pi}{2}$ $\cos(x) = \max als x = 0$				
GRA biss ALG wiss y.		$sin(x) = min$ als $x = -\frac{\pi}{2}$ cos(x) = max als $x = 0$				
GRA biss ALG wiss y.		cos(x) = max als $x = 0$				
GRA biss ALG wiss y.						
GRA biss ALG wiss y.						
GRA biss ALG wiss y.		$\cos(x) = \min \ uts x = n$				
GRA biss ALG wiss y.		Goniometrische en cyclometrische functies zijn elkaars inverse relaties.				
biss ALG wiss y.	KNEIN E CNIGOGIGN FA V GORCTO	> Dit betekent dat je beide grafieken kan spiegelen t.o.v. de eerste bissectrice.				
ALG wiss y.	ssectrice (= rechte: y = x).	> Dit betekent dat je beide graneken kan spiegelen t.o.v. de eerste bissectrice.				
wiss y.	GEBRAÏSCH: x en y van plaats	Goniometrische functies maken van eenderwelke hoekgrootte een getal.				
y.	isselen, opnieuw afzonderen naar	> bv.: $\sin\left(\frac{\pi}{2}\right) = 1$				
	, , ,	-2 by $\sin\left(\frac{1}{2}\right) = 1$				
	Gevolg: $dom f = ber f^{-1}$					
	$ber f = dom f^{-1}$	Cyclometrische functies maken van eenderwelk getal een hoekgrootte.				
	, ,	> bv.: $Bgsin(1) = \frac{\pi}{2}$				
Spe	eciale gevallen:	>> Cyclometrische functies zijn in bereik beperkt om een functie te zijn.				
y =	$=x^n$					
	$\Rightarrow x = y^n$	2				
⇔ :	$y = \sqrt[n]{x}$					
	> n even = relatie					
	n oneven = functie					
y =	$=\sqrt{x}$	-6 -5 -4 -2 -2 -1 1 2 3 4 5				
⇔:	$\Rightarrow x = \sqrt{y}$					
	$y = x^2$					
	> dom f = \mathbb{R}^+ , domein moet					
	dus beperkt worden.					
Einde Dit	add beperkt worden.					