

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=8; day=27; hr=11; min=54; sec=57; ms=562;]

=====

Application No: 10534081 Version No: 1.0

Input Set:

Output Set:

Started: 2008-08-23 06:09:18.527
Finished: 2008-08-23 06:09:20.489
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 962 ms
Total Warnings: 16
Total Errors: 0
No. of SeqIDs Defined: 26
Actual SeqID Count: 26

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (23)
W 213	Artificial or Unknown found in <213> in SEQ ID (24)
W 213	Artificial or Unknown found in <213> in SEQ ID (25)
W 213	Artificial or Unknown found in <213> in SEQ ID (26)

SEQUENCE LISTING

<110> FUKATSU, KOHJI
SASAKI, SHINOBU
HINUMA, SHUJI
ITO, YASUAKI
SUZUKI, NOBUHIRO
HARADA, MASATAKA
YASUMA, TSUNEO

<120> RECEPTOR FUNCTION REGULATOR

<130> 66530 (46590)

<140> 10534081

<141> 2008-08-23

<150> PCT/JP2003/014139

<151> 2003-11-06

<150> JP 2003-153986

<151> 2003-05-30

<150> JP 2003-16889

<151> 2003-01-27

<150> JP 2002-324632

<151> 2002-11-08

<160> 26

<170> PatentIn Ver. 3.3

<210> 1

<211> 300

<212> PRT

<213> Mus musculus

<400> 1

Met Asp Leu Pro Pro Gln Leu Ser Phe Ala Leu Tyr Val Ser Ala Phe
1 5 10 15

Ala Leu Gly Phe Pro Leu Asn Leu Leu Ala Ile Arg Gly Ala Val Ser
20 25 30

His Ala Lys Leu Arg Leu Thr Pro Ser Leu Val Tyr Thr Leu His Leu
35 40 45

Gly Cys Ser Asp Leu Leu Ala Ile Thr Leu Pro Leu Lys Ala Val
50 55 60

Glu Ala Leu Ala Ser Gly Ala Trp Pro Leu Pro Leu Pro Phe Cys Pro
65 70 75 80

Val Phe Ala Leu Ala His Phe Ala Pro Leu Tyr Ala Gly Gly Gly Phe
85 90 95

Leu Ala Ala Leu Ser Ala Gly Arg Tyr Leu Gly Ala Ala Phe Pro Phe
100 105 110

Gly Tyr Gln Ala Ile Arg Arg Pro Arg Tyr Ser Trp Gly Val Cys Val
115 120 125

Ala Ile Trp Ala Leu Val Leu Cys His Leu Gly Leu Ala Leu Gly Leu
130 135 140

Glu Thr Ser Gly Ser Trp Leu Asp Asn Ser Thr Ser Ser Leu Gly Ile
145 150 155 160

Asn Ile Pro Val Asn Gly Ser Pro Val Cys Leu Glu Ala Trp Asp Pro
165 170 175

Asp Ser Ala Arg Pro Ala Arg Leu Ser Phe Ser Ile Leu Leu Phe Phe
180 185 190

Leu Pro Leu Val Ile Thr Ala Phe Cys Tyr Val Gly Cys Leu Arg Ala
195 200 205

Leu Val Arg Ser Gly Leu Ser His Lys Arg Lys Leu Arg Ala Ala Trp
210 215 220

Val Ala Gly Gly Ala Leu Leu Thr Leu Leu Cys Leu Gly Pro Tyr
225 230 235 240

Asn Ala Ser Asn Val Ala Ser Phe Ile Asn Pro Asp Leu Gly Gly Ser
245 250 255

Trp Arg Lys Leu Gly Leu Ile Thr Gly Ala Trp Ser Val Val Leu Asn
260 265 270

Pro Leu Val Thr Gly Tyr Leu Gly Thr Gly Pro Gly Arg Gly Thr Ile
275 280 285

Cys Val Thr Arg Thr Gln Arg Gly Thr Ile Gln Lys
290 295 300

<210> 2
<211> 900
<212> DNA
<213> Mus musculus

<400> 2
atggacctgc ccccacagct ctccttcgct ctctatgtat ctgcctttgc gctgggcttt 60
ccattgaact tggtagccat ccgaggcgca gtgtcccacg ctaaaactgcg actcactccc 120
agcttggct acactctcca tctgggctgc tctgatctcc tactggccat cactctgccc 180
ctgaaggctg tggaggccct ggcttctgga gcctggcccc tgccgctccc cttctgcccc 240
gtctttgcct tggcccaactt tgctcccttc tacgcaggcg gaggttcct agctgcttc 300
agcgctggcc gctacctggg ggctgccttc cccttcgggt accaagccat ccggaggccc 360
cgcttattcct ggggtgtgtg tggggctata tggggcccttg tcctctgcca cctggggctg 420
gcccttggct tggagacttc cggaagctgg ctggacaaca gtaccagtcc cctggggatc 480
aacatacccg tgaatggctc cccggcttcgct ctggaaaggctt gggatccccga ctctgcccgc 540
cctgccccgtc tcagtttctc cattctgctc ttctttctgc ccttggcat cactgccttc 600

tgctatgtgg gctgcctccg ggccctggtg cgctcaggcc tgagccacaa acggaagctc 660
agggcagctt gggtgcccg aggcgctctc ctcacactcc tgctctgcct ggggcctat 720
aatgcctcca atgtggctag tttcataaac ccggacctag gaggctctg gaggaagttg 780
ggactcatca cagggcctg gagtggtta ctcaaccac tggtcactgg ctacttggga 840
acaggtcctg gacgggaaac aatatgtgtg acgaggactc aaagaggaac aattcagaag 900

<210> 3

<211> 300

<212> PRT

<213> Rattus norvegicus

<400> 3

Met Asp Leu Pro Pro Gln Leu Ser Phe Ala Leu Tyr Val Ser Ala Phe
1 5 10 15

Ala Leu Gly Phe Pro Leu Asn Leu Leu Ala Ile Arg Gly Ala Val Ser
20 25 30

His Ala Lys Leu Arg Leu Thr Pro Ser Leu Val Tyr Thr Leu His Leu
35 40 45

Ala Cys Ser Asp Leu Leu Leu Ala Ile Thr Leu Pro Leu Lys Ala Val
50 55 60

Glu Ala Leu Ala Ser Gly Val Trp Pro Leu Pro Leu Pro Phe Cys Pro
65 70 75 80

Val Phe Ala Leu Ala His Phe Ala Pro Leu Tyr Ala Gly Gly Phe
85 90 95

Leu Ala Ala Leu Ser Ala Gly Arg Tyr Leu Gly Ala Ala Phe Pro Phe
100 105 110

Gly Tyr Gln Ala Ile Arg Arg Pro Cys Tyr Ser Trp Gly Val Cys Val
115 120 125

Ala Ile Trp Ala Leu Val Leu Cys His Leu Gly Leu Ala Leu Gly Leu
130 135 140

Glu Ala Pro Arg Gly Trp Val Asp Asn Thr Thr Ser Ser Leu Gly Ile
145 150 155 160

Asn Ile Pro Val Asn Gly Ser Pro Val Cys Leu Glu Ala Trp Asp Pro
165 170 175

Asp Ser Ala Arg Pro Ala Arg Leu Ser Phe Ser Ile Leu Leu Phe Phe
180 185 190

Leu Pro Leu Val Ile Thr Ala Phe Cys Tyr Val Gly Cys Leu Arg Ala
195 200 205

Leu Val His Ser Gly Leu Ser His Lys Arg Lys Leu Arg Ala Ala Trp
210 215 220

Val Ala Gly Gly Ala Leu Leu Thr Leu Leu Cys Leu Gly Pro Tyr
225 230 235 240

Asn Ala Ser Asn Val Ala Ser Phe Ile Asn Pro Asp Leu Glu Gly Ser

245

250

255

Trp Arg Lys Leu Gly Leu Ile Thr Gly Ala Trp Ser Val Val Leu Asn

260

265

270

Pro Leu Val Thr Gly Tyr Leu Gly Thr Gly Pro Gly Gln Gly Thr Ile

275

280

285

Cys Val Thr Arg Thr Pro Arg Gly Thr Ile Gln Lys

290

295

300

<210> 4

<211> 900

<212> DNA

<213> Rattus norvegicus

<400> 4

atggacctgc ccccacagct ctccttcgct ctctatgtat cagcctttgc actaggcttt 60
ccattgaact tggtagccat ccgaggtgca gtgtcccacg cgaaaactgcg actcacccccc 120
agcttggctc acactctcca tttggcctgc tctgacacct tactggccat caccctgccc 180
ctgaaggctg tggaggccct ggcttctggg gtctggccccc tgccactccc cttctgcccc 240
gtctttgcct tggcccaactt tgcccccctc tatgcaggtg gaggcttcct ggctgctctc 300
agtgtggcc gctacactggg agctgccttc ccctttggat accaagccat ccggaggccc 360
tgctattcct ggggtgtgtg tgggtgtata tggcccttg tcctttgcca cctgggactg 420
gctcttggct tggaggctcc cagaggctgg gtggataaca ccaccagttc cctgggcatc 480
aacatacccg tgaatggctc cccggctcgtc ctggaaagcgt gggatcctga ctctgcccgc 540
cctgccccac tcagttctc gattctgctc ttctttctgc ccttggttat cactgctttc 600
tgctatgtgg gctgcctccg ggccctggtg cactcgggcc tgagccacaa acggaagctc 660
agggcagctt ggggtggctgg aggagcaactt ctcacactcc tgctctgcct gggggccctat 720
aatgcttcca atgtggctag tttcataaaac ccggacttag aaggctcctg gaggaagttg 780
gggctcatca caggaggctg gagtgtggtg ctcaacccac tggtaactgg ctacttggga 840
acaggtcctg gacaggggac aatatgtgtg accaggactc caagagggac aattcagaag 900

<210> 5

<211> 300

<212> PRT

<213> Homo sapiens

<400> 5

Met Asp Leu Pro Pro Gln Leu Ser Phe Gly Leu Tyr Val Ala Ala Phe

1

5

10

15

Ala Leu Gly Phe Pro Leu Asn Val Leu Ala Ile Arg Gly Ala Thr Ala

20

25

30

His Ala Arg Leu Arg Leu Thr Pro Ser Leu Val Tyr Ala Leu Asn Leu

35

40

45

Gly Cys Ser Asp Leu Leu Leu Thr Val Ser Leu Pro Leu Lys Ala Val

50

55

60

Glu Ala Leu Ala Ser Gly Ala Trp Pro Leu Pro Ala Ser Leu Cys Pro

65

70

75

80

Val Phe Ala Val Ala His Phe Phe Pro Leu Tyr Ala Gly Gly Gly Phe
85 90 95

Leu Ala Ala Leu Ser Ala Gly Arg Tyr Leu Gly Ala Ala Phe Pro Leu
100 105 110

Gly Tyr Gln Ala Phe Arg Arg Pro Cys Tyr Ser Trp Gly Val Cys Ala
115 120 125

Ala Ile Trp Ala Leu Val Leu Cys His Leu Gly Leu Val Phe Gly Leu
130 135 140

Glu Ala Pro Gly Gly Trp Leu Asp His Ser Asn Thr Ser Leu Gly Ile
145 150 155 160

Asn Thr Pro Val Asn Gly Ser Pro Val Cys Leu Glu Ala Trp Asp Pro
165 170 175

Ala Ser Ala Gly Pro Ala Arg Phe Ser Leu Ser Leu Leu Phe Phe
180 185 190

Leu Pro Leu Ala Ile Thr Ala Phe Cys Tyr Val Gly Cys Leu Arg Ala
195 200 205

Leu Ala Arg Ser Gly Leu Thr His Arg Arg Lys Leu Arg Ala Ala Trp
210 215 220

Val Ala Gly Gly Ala Leu Leu Thr Leu Leu Cys Val Gly Pro Tyr
225 230 235 240

Asn Ala Ser Asn Val Ala Ser Phe Leu Tyr Pro Asn Leu Gly Gly Ser
245 250 255

Trp Arg Lys Leu Gly Leu Ile Thr Gly Ala Trp Ser Val Val Leu Asn
260 265 270

Pro Leu Val Thr Gly Tyr Leu Gly Arg Gly Pro Gly Leu Lys Thr Val
275 280 285

Cys Ala Ala Arg Thr Gln Gly Gly Lys Ser Gln Lys
290 295 300

<210> 6
<211> 900
<212> DNA
<213> Homo sapiens

<400> 6
atggacctgc ccccgccagct ctccttcggc ctctatgtgg ccgcctttgc gctgggcttc 60
ccgctcaacg tcctggccat ccgaggcgcg acggcccacg cccggatccg tctcacccct 120
agcctggtct acgccctgaa cctgggctgc tccgacactc tgctgacagt ctctctgccc 180
ctgaaggcgg tggaggcgct agcctccggg gcctggcctc tgccggcctc gctgtgcccc 240
gtcttcgcgg tggcccaactt cttcccactc tatgccggcg ggggcttcct ggccgcctg 300
agtgcaggcc gctacacctggg agcagccctc cccttgggct accaaggcctt ccggaggccg 360
tgctattcct ggggggtgtg cgccggccatc tggccctcg tcctgtgtca cctgggtctg 420

gtcttggtt tggaggctcc aggaggctgg ctggaccaca gcaacacaccc cctgggcata 480
aacacacccgg tcaacacggctc tccggctctgc ctggaggccct gggaccggc ctctgcccggc 540
ccggcccgct tcagcctctc tctcctgctc tttttctgc cttggccat cacagccttc 600
tgctacgtgg gctgcctccg ggcactggcc cgctccggcc tgacgcacag gcggaaagctg 660
cgggccgcct gggtgccgg cgggggccctc ctcacgctgc tgctctgcgt aggaccctac 720
aacgcctcca acgtggccag cttcctgtac cccaatctag gaggctcctg gcggaaagctg 780
gggctcatca cgggtgcctg gagtggtggc cttaatccgc ttgtgaccgg ttacttggga 840
aggggtcctg gcctgaagac agtgtgtgcg gcaagaacgc aagggggcaa gtcccagaag 900

<210> 7

<211> 300

<212> PRT

<213> Macaca fascicularis

<400> 7

Met Asp Leu Pro Pro Gln Leu Ser Phe Ala Leu Tyr Val Ala Ala Phe
1 5 10 15

Ala Leu Gly Phe Pro Leu Asn Val Leu Ala Ile Arg Gly Ala Arg Ala
20 25 30

His Ala Arg Arg Arg Leu Thr Pro Ser Leu Val Tyr Ala Leu Asn Leu
35 40 45

Gly Cys Ser Asp Leu Leu Leu Thr Val Ser Leu Pro Leu Lys Ala Val
50 55 60

Glu Ala Leu Ala Ser Gly Ala Trp Pro Leu Pro Ala Ser Leu Cys Pro
65 70 75 80

Val Phe Gly Val Ala His Phe Ala Pro Leu Tyr Ala Gly Gly Gly Phe
85 90 95

Leu Ala Ala Leu Ser Ala Gly Arg Tyr Leu Gly Ala Ala Phe Pro Leu
100 105 110

Gly Tyr Gln Ala Phe Arg Arg Pro Cys Tyr Ser Trp Gly Val Cys Ala
115 120 125

Ala Ile Trp Ala Leu Val Leu Cys His Leu Gly Leu Val Phe Val Leu
130 135 140

Glu Ala Pro Gly Gly Trp Leu Asp His Ser Asn Thr Ser Leu Gly Ile
145 150 155 160

Asn Thr Pro Val Asn Gly Ser Pro Val Cys Leu Glu Ala Trp Asp Pro
165 170 175

Ala Ser Ala Gly Pro Ala Arg Phe Ser Leu Ser Leu Leu Phe Phe
180 185 190

Leu Pro Leu Ala Ile Thr Ala Phe Cys Tyr Val Gly Cys Leu Arg Ala
195 200 205

Leu Ala His Ser Gly Leu Thr His Arg Arg Lys Leu Arg Ala Ala Trp
210 215 220

Val Ala Gly Gly Ala Leu Leu Thr Leu Leu Leu Cys Val Gly Pro Tyr

225 230 235 240

Asn Ala Ser Asn Val Ala Ser Phe Leu Asn Pro Asn Leu Gly Gly Ser

245 250 255

Trp Arg Lys Leu Gly Leu Ile Thr Gly Ala Trp Ser Val Val Leu Asn

260 265 270

Pro Leu Val Thr Gly Tyr Leu Gly Arg Gly Pro Gly Leu Lys Thr Val

275 280 285

Cys Ala Ala Arg Thr Gln Gly Ser Thr Ser Gln Lys

290 295 300

<210> 8

<211> 900

<212> DNA

<213> Macaca fascicularis

<400> 8

atggacctgc ccccgccagct ctcccttgcc ctctatgtgg cggcctttgc gctgggcttc 60
ccgctcaacg tcctggccat ccgaggggcg agggcccacg cccggcgccg tctcaccccc 120
agcctggtct acgcctgaa cctgggctgc tccgacctgt tgctgacagt ctccctgccc 180
ctgaaggcgg tggaggcgct ggcctccggg gcctggcctc tgccggcctc actgtgccct 240
gtcttcgggg tggcccaactt tgctccactc tatgccggcg ggggcttcct ggccgcctg 300
agtgcaggcc gctacctggg agcggcattc cccttggctt accaagcattt ccggaggccg 360
tgctattcct ggggggtgtg tgccggccatc tggccctcg tcctgtgtca cctgggtctg 420
gtcttgcgt tggaggctcc gggaggctgg ctggaccaca gcaacacctc actgggcatc 480
aacacaccgg tcaacggctc tcccgtctgc ctggaggcct gggaccggc ctctgcccgc 540
ccggcccgct tcagcctctc tctcctgctt ttttccctgc cttggccat cacagcattc 600
tgctacgtgg gctgcctccg ggcactggcc cactccggcc tgaccacag gccaagactg 660
agggccgcct gggtagccgg cggggccctc ctacgctgc tgctctgcgt aggaccctac 720
aacgcctcca atgtggccag ctttctgaac cccaatctgg gaggctcctg gcggaaagctg 780
gggctcatca cgggtgcctg gagtggtgg tcaaccgc ttgtgaccgg ttacttggga 840
aggggtcctg gcctgaagac agtgtgtgcg gcaagaacgc aaggagcac gtcccagaag 900

<210> 9

<211> 300

<212> PRT

<213> Mesocricetus auratus

<400> 9

Met Ala Leu Ser Pro Gln Leu Phe Phe Ala Leu Tyr Val Ser Ala Phe

1 5 10 15

Ala Leu Gly Phe Pro Leu Asn Leu Leu Ala Ile Arg Gly Ala Val Ala

20 25 30

Arg Ala Arg Leu Arg Leu Thr Pro Asn Leu Val Tyr Thr Leu His Leu

35 40 45

Ala Cys Ser Asp Leu Leu Leu Ala Ile Thr Leu Pro Val Lys Ala Val

50 55 60

Glu Ala Leu Ala Ser Gly Ala Trp Pro Leu Pro Leu Pro Leu Cys Pro
65 70 75 80

Val Phe Val Leu Val His Phe Ala Pro Leu Tyr Ala Gly Gly Gly Phe
85 90 95

Leu Ala Ala Leu Ser Ala Gly Arg Tyr Leu Gly Ala Ala Phe Pro Phe
100 105 110

Gly Tyr Gln Ala Val Arg Arg Pro Arg Tyr Ser Trp Gly Val Cys Val
115 120 125

Ala Ile Trp Ala Leu Val Leu Cys His Met Gly Leu Val Leu Gly Leu
130 135 140

Glu Ala Pro Gly Gly Trp Leu Asn Thr Thr Ser Ser Ser Leu Gly Ile
145 150 155 160

Asn Thr Pro Val Asn Gly Ser Pro Val Cys Leu Glu Ala Trp Asp Pro
165 170 175

Asn Ser Ala Arg Pro Ala Arg Leu Ser Phe Ser Ile Leu Leu Phe Phe
180 185 190

Val Pro Leu Val Ile Thr Ala Phe Cys Tyr Val Gly Cys Leu Arg Ala
195 200 205

Leu Ala His Ser Gly Leu Ser His Lys Arg Lys Leu Arg Ala Ala Trp
210 215 220

Ala Ala Gly Gly Ala Phe Leu Thr Leu Leu Cys Leu Gly Pro Tyr
225 230 235 240

Asn Ala Ser Asn Val Ala Ser Phe Val Asn Pro Asp Leu Gly Gly Ser
245 250 255

Trp Arg Lys Leu Gly Leu Ile Thr Gly Ser Trp Ser Val Val Leu Asn
260