Walking through the City

Which strategy is faster?

San Francisco Science Fair 2023

Overview

- I had an argument with my father about whether different strategy details when choosing a route affect time delay
- I wrote a computer simulation to clarify this issue
- Specific question was whether choosing when to cross to the other side of the street affects time delay
- Another related question is whether the choice of longer vs. shorter blocks has any effect on overall travel time

Hypothesis

I hypothesised that:

- Longer blocks are more time effective than shorter blocks
- Going straight until you reach a red light is more time effective than crossing to the other side the moment a green light is available to do so

Model

Key assumptions:

- 1. Blocks of equal length
- 2. Random traffic light switching
- 3. Equal traffic light duration

Relative delay

$$R = \frac{t}{t_{gw}} = \frac{t}{N(1+W)}$$

Walk time relative to "green wave" time

City blocks model: N blocks of equal length separated by crosswalks with traffic lights. Block walking time is W times longer than crossing time.

Methodology

Simulation approach:

- Random traffic light distribution
- Traffic light at every crosswalk
- Street crossing time is the basic unit
- Each simulation run 100000 times

Strategies considered:

- Continue walking straight until reaching a red light
- 2. Cross to the other side as soon as you have a chance

Long or short blocks?

W	Ν	N(1 + W)	$R_{av}^{(1)}$	$R_{std}^{(1)}$	$R_{\it av}^{(2)}$	$R_{std}^{(2)}$
2	40	120	1.17	0.03	1.17	0.03
3	30	120	1.12	0.02	1.13	0.02
4	24	120	1.10	0.02	1.10	0.02
5	20	120	1.08	0.02	1.09	0.02
7	15	120	1.06	0.02	1.07	0.02

Average values and standard deviations of the relative walking delay computed for the Strategy 1 and Strategy 2 ($R_{av}^{(1)}$ and $R_{std}^{(1)}$, $R_{av}^{(2)}$ and $R_{std}^{(2)}$, respectively), for different combinations of block length parameter W and the number of blocks N. The total route distance N(1+W) is kept constant. 100000 simulations were performed for each combination of parameters to compute the averages and standard deviations.

Long or short blocks?

Walking strategies

Walking through the City

Walking strategies

Longer route limit

Finding: As the number of blocks grows, the delay approaches a constant value.

Probability perspective: about half of crosswalks will have red lights for larger *N* values.

Adding N/2 to the travel time:

$$R_{lim} = \frac{N(1+W) + N/2}{N(1+W)} = 1 + \frac{1}{2N(1+W)}$$

Summary and limitations

- Longer blocks over shorter blocks are preferred
- Cross to the other side only if you cannot continue going straight

Limitations and further research

- Can be extended to consider specific traffic light patterns
- Assumes that walking speed is constant
- Blocks of equal length along a single route
- Can be used for planning "green waves"
- Can also be used for planning slow streets

References

D. Brogan and N. Johnson (2003)

Realistic human walking paths

Proceedings 11th IEEE International Workshop on Program Comprehension, pp. 94-101.

R. L. Harrison (2010)

Introduction to Monte Carlo simulation

AIP Conference Proceedings, vol. 1204, no. 1, pp. 17-21.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah (2017) Julia: A fresh approach to numerical computing SIAM Review, vol. 59, no. 1, pp. 65–98.

S. Danisch and J. Krumbiegel (2021)

Makie.jl: Flexible high-performance data visualization for Julia *SIAM Review*, vol. 59, no. 1, pp. 65-98.

A. Cohen and S. Dalyot (2021)

Route planning for blind pedestrians using Openstreetmap

Environment and Planning B: Urban Analytics and City Science, vol. 48, no. 6, pp. 1511-1526.