ELEC 341 – Graded Assignments

Assignment A2 2nd Order Approximations

100 Marks

Required Files

Available on Canvas

e341-a2.pdf

a2DSPlot.p

a2Submit.pe341-APE.pdf

Assignment description (this document)

Data-Sheet curve generator Grading script (LATEST version)

Instructions for submitting graded work (for reference)

Topics

Under-Damped 2nd Order Systems

performance metrics

Noise

analog & digital

Over-Damped 2nd Order Systems

effective time constant

When you use off-the-shelf (OTS) sub-components, you only have the information available in the data-sheet. This is called a "Black Box" system.

Data sheets often contain experimental curves, but rarely a linear model.

Use a2DSPlot.p to plot 3 experimental curves from a data-sheet.

Curve #1 is the step response of an ACTUAL 2nd order under-damped system

The time scale isn't long enough to show settle-time directly. This is a common problem.

Find the envelope, and from that estimate final value FV.

Find overshoot **OS**_{νν} and use it to find damping co-efficient **ζ**.

Find rise-time T_r and peak-time T_p , and use either to find natural frequency ω_n .

Use ζ and ω_n to find settle-time T_s .

1. 20 mark(s) Settle Time #1

•	Q1.FV	(V)	Scalar
•	Q1.OSy	(%)	Scalar
•	Q1.zeta	(pure)	Scalar
•	Q1.Tr	(s)	Scalar
•	Q1.Tp	(s)	Scalar
•	Q1.wn	(rad/s)	Scalar
•	Q1.Ts	(s)	Scalar

COW: **FV** and **Ts** are approximations. Some adjustments may be necessary.

Curve #2 is the step response of a higher order under-damped system.

The data is noisy so you cannot read off any values with much accuracy. You must estimate what the actual curve would be if there were no white noise.

Find Overshoot OS_v . Use it to find damping co-efficient ζ .

Find rise-time T_r . Use it to find natural frequency ω_{nr} .

Use ζ and ω_{nr} to find a 2nd order approximation G.

2. 25 mark(s) Rise Time #2

 Q2.OSy 	(%)	Scalar
 Q2.Tr 	(s)	Scalar
 Q2.zeta 	(pure)	Scalar
 Q2.wnr 	(rad/s)	Scalar
 Q2.G 	(V/V)	LTI

Find peak-time T_p . Use it to find natural frequency ω_{np} .

Use $\pmb{\zeta}$ and $\pmb{\omega}_{nn}$ to find a 2^{nd} order approximation $\pmb{G}.$

3. 15 mark(s) Peak Time #2

 Q3.Tp 	(s)	Scalar
 Q3.wnp 	(rad/s)	Scalar
 Q3.G 	(V/V)	LTI

Find settle-time $\textbf{T}_{\text{s}}.$ Use it to find natural frequency $\omega_{\text{ns}}.$

Use $\pmb{\zeta}$ and $\pmb{\omega}_{ns}$ to find a 2^{nd} order approximation $\pmb{G}.$

4. 15 mark(s) Settle Time #2

Q4.Ts (s) Scalar
 Q4.wns (rad/s) Scalar
 Q4.G (V/V) LTI

Curve #3 is the step response of a 2nd order over-damped system.

It is difficult to accurately read time values from sampled data. Estimate the continuous curve and get your time values from that.

Estimate the time constant τ , and modified rise-time **Tr1**.

Use τ and Tr1 to find damping co-efficient ζ .

5. 15 mark(s) Damping Coefficient

Q5.tau (s) Scalar
 Q5.Tr1 (s) Scalar
 Q5.zeta (pure) Scalar

COW: When data is sampled, it starts out accurate, and degrades as it is held.

Use modified rise-time **Tr1** to find natural frequency ω_{n1} .

Use $\pmb{\zeta}$ and $\pmb{\omega}_{n1}$ to find a 2^{nd} order approximation $\pmb{G}.$

6. 10 mark(s) Over-Damped Approx

Q6.wn1 (rad/s) Scalar
 Q6.G (V/V) LTI

COW: Would a 1st order approximation be just as accurate ???

Compute it, plot it and compare.