

MODELAR LA PROBABILIDAD DE PALABRAS CON UNA RED CONVOLUCIONAL UTILIZANDO PATRONES DE SONIDOS

INF659 - TÉCNICAS AVANZADAS DE DATA MINING Y SISTEMAS INTELIGENTES

JOHN EDWARD MILLER Y RICARDO JOSE LINARES
1-0CTOBRE-2019

CONTENIDO

- ◆Presentación de modelo base
- ◆Ejecución del modelo
- ◆Propuesta de proyecto

IDEA CENTRAL Y ARQUITECTURA

[Y. N. Dauphin et. al., Language modeling with gated convolutional networks]

- Sustituir capas recurrentes por capas convolucionales en modelo de lenguaje para:
 - Aumentar paralelismo
 - Reducir parámetros
 - Igualar exactitud
- Representar entradas con «embeddings»
- Calcular convoluciones causales y «gated»:
 - «Chunk» { «Block» { «Unit» $}^+$ } $\times m$
 - «Unit» [ancho, # filtros] «gated»
 - $h_l(X) = (X \cdot W + b) \otimes \sigma(X \cdot V + c)$
 - «Block» termina con «residual activation»
 - $H(X) = h_{l+b-1} \dots h_l(X) + X$
- Calcular probabilidades con softmax $(W \bullet H_L)$

CONVOLUCIONES CAUSALES Y CONFIGURACIONES DE MODELOS

[van den Oord, et. al., Wavenet: A generative model for raw audio]

Name	GCNN-13	GCNN-14B		GCNN-9	GCNN-8B	
Dataset	Google Billion Word					
Lookup	128					
Conv1	$[4, 1268] \times 1$	$[5,512] \times 1$		$[4, 807] \times 1$	$[1,512]\times 1$	
Conv2.x	$\left[\begin{array}{c} 4,1268\\4,1268 \end{array}\right] \times 12$	$ \begin{bmatrix} 1,128 \\ 5,128 \\ 1,512 \end{bmatrix} $	× 3	$\left[\begin{array}{c} 4,807\\ 4,807 \end{array}\right] \times 4$	$\begin{bmatrix} 1,128 \\ 5,128 \\ 1,512 \end{bmatrix}$	× 3
Conv3.x		$\begin{bmatrix} 1,512\\ 5,512\\ 1,1024 \end{bmatrix}$	× 3		$\begin{bmatrix} 1,256 \\ 5,256 \\ 1,512 \end{bmatrix}$	× 3
Conv4.x		1, 1024 5, 1024 1, 2048	× 6		1, 1024 1, 1024 1, 2048	× 1
Conv5.x		1, 1024 5, 1024 1, 4096	× 1			
Conv6.x						
Conv7.x						
AdaSoftmax	10k,40k,200k		4k,40k,200k			

- Causal implica direccion tal como en las capas recurrentes
 - Pero sin las capas!

- «Chunk» { «Block» $\{$ «Unit» $\}$ + $\} \times m$
- B «bottleneck» ayuda con generalización
 - Bloques terminancon ancho de 1

[Y. N. Dauphin et. al., Language modeling with gated convolutional networks]

EXPERIMENTACIÓN Y RESULTADOS

[Y. N. Dauphin et. al., Language modeling with gated convolutional networks]

GOOGLE BILLION WORD – PERPLEJIDAD

Model	Test PPL	Hardware
Sigmoid-RNN-2048 (Ji et al., 2015)	68.3	1 CPU
Interpolated KN 5-Gram (Chelba et al., 2013)	67.6	100 CPUs
Sparse Non-Negative Matrix LM (Shazeer et al., 2014)	52.9	-
RNN-1024 + MaxEnt 9 Gram Features (Chelba et al., 2013)	51.3	24 GPUs
LSTM-2048-512 (Jozefowicz et al., 2016)	43.7	32 GPUs
2-layer LSTM-8192-1024 (Jozefowicz et al., 2016)	30.6	32 GPUs
BIG GLSTM-G4 (Kuchaiev & Ginsburg, 2017)	23.3*	8 GPUs
LSTM-2048 (Grave et al., 2016a)	43.9	1 GPU
2-layer LSTM-2048 (Grave et al., 2016a)	39.8	1 GPU
GCNN-13	38.1	1 GPU
GCNN-14 Bottleneck	31.9	8 GPUs

GOOGLE BILLION WORD – EFICIENCIA

	Throughput		Responsiveness	
	(CPU)	(GPU)	(GPU)	
LSTM-2048	169	45,622	2,282	
GCNN-9	121	29,116	29,116	
GCNN-8 Bottleneck	179	45,878	45,878	

PENN TREE BANK - PERPLEJIDAD

Modelo	Perplejidad
GCNN	108.7
LSTM	109.3

Experimentación

- Configuraciones
 - «embedding»; capas de chunks, bloques, unidades; ancho y cantidad de filtros CNN
- Tipo de «gating»
- Tamaño de contexto
- «clipping» de gradiente
- normalización de pesos

EJECUCIÓN DE MODELO

PROPUESTA DE PROYECTO

Nombre

 Modelar la probabilidad de palabras con una red convolucional utilizando patrones de sonido.

Objectivo

- Desarrollar una red neuronal convolucional (causal y «gated») utilizando patrones de sonidos por palabra para predecir su probabilidad con el fin de discriminar entre palabras dentro o fuera el lenguaje.
- Conjuntos de datos a utilizar
 - Intercontinental Dictionary Series (IDS): Tablas de palabras de idiomas
 Amazónicas ~1,310 palabras por idioma.
 - World Loanword Database (WOLD): Tablas de palabras de idiomas variadas con indicador de «loan words» ~ 1,400 palabras por idioma.

ARTÍCULOS CIENTÍFICOS RELEVANTES

- Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. J. Mach. Learn. Res., 3:1137-1155, Mar. 2003.
- ▶ S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language modeling. Computer Speech & Language, 13(4):359-394, 1999.
- Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated convolutional networks. In Proceedings of the 34th International Conference on Machine Learning Volume 70, ICML'17, pages 933-941, Sydney, NSW, Australia, 09 2017. JMLR, JMLR.org.
- M. Silfverberg, L. J. Mao, and M. Hulden. Sound analogies with phoneme embeddings. In Proceedings of the Society for Computation in Linguistics (SCiL) 2018, pages 136-144, Salt Lake City, Utah, 01 2018. Society for Computation in Linguistics.
- T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based natural language processing. IEEE Computational intelligence magazine, 13(3):55-75, 2018.
- J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, et al. Recent advances in convolutional neural networks. Pattern Recognition, 77:354-377, 2018.
- N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck principle. CoRR, abs/1503.02406, 2015.
- A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and D. D. Cox. On the information bottleneck theory of deep learning. In International Conference on Learning Representations, 2018.
- M. R. Key and B. Comrie, editors. Intercontinental Dictionary Series (IDS). Max Planck Institute for Evolutionary Anthropology, Leipzig, 2015.
- M. Haspelmath and U. Tadmor, editors. World Loanword Database (WOLD). Max Planck Institute for Evolutionary Anthropology, Leipzig, 2009.