TRI

LEVEL-I

1.	If sinθ + cosec (A) 2 (C) 1	$c\theta$ = 2, then the	e value of sin ⁿ θ	+ $cosec^n\theta$, $n \ge 2$, $n \in N$ equals (B) 2^n (D) none of these
2.	The maximum (A) 3 (C) 4	າ value of 1 + s	$ in\left(\frac{\pi}{4} + \theta\right) + 2c $	$\cos\left(\frac{\pi}{4} - \theta\right)$, $\theta \in \mathbb{R}$, equals (B) 5 (D) none of these
3.	The least value (A) $4 + \sqrt{10}$ (C) 0	te of $\cos^2\theta - 6$	$\sin\theta\cos\theta + 3$	$\sin^2\theta + 2$ is (B) $4 - \sqrt{10}$ (D) none of these
4.	If 0 < β < α ≤ (A) 1 (C) 2	$\frac{\pi}{4}$, $\cos(\alpha + \beta)$	$=\frac{3}{5}$ and $\cos(6)$	$(\alpha - \beta) = \frac{4}{5}$, then $\sin 2\alpha$ is equals (B) 0 (D) none of these
5.	The numerical (A) 1 (C) $\frac{1}{4}$	I value of $\sin \frac{\pi}{18}$	$\frac{5}{3}$. $\sin \frac{5\pi}{18}$. $\sin \frac{7}{1}$	$\frac{7\pi}{8}$ is equal to (B) $\frac{1}{8}$ (D) none of these
6.	If $\tan\theta$. $\tan\left(\frac{\pi}{3}\right)$ (A) 1 (C) $1/\sqrt{2}$	$+\theta$). $\tan\left(\frac{\pi}{3}-1\right)$	θ = -1, (0 < θ	$0 < \pi/2$), then value of $3 \sin\theta - 4 \cos^3\theta =$ (B) -1 (D) -1/ $\sqrt{2}$
7.		triangle (B) rig		en the triangle is gle (C) acute angle triangle
8.		•		$4 \cos x + 3\sqrt{5}$ is (D) none of these
9.		n value of 4 sin ² (B) $3 + \sqrt{2}$		$\sin x/2 + \cos x/2$ is (D) 4
10.	If $\tan \theta = \frac{1}{2}$,	$\tan \phi = \frac{1}{3}$, then	n θ + φ =	
	(A) 0 (C) π/4	(B) π/2(D) π		

24

25

26

The value of $\cos 10^{\circ} - \sin 10^{\circ}$ is

(A) positive (C) 0

	- J					
11.	The value of tan 15 ⁰ =					
12.	If $2 \sin \theta$. $\sec 3\theta = \tan 3\theta$ -tan θ , then $2[\sin \theta$. $\sec 3\theta + \sin 3\theta$. $\sec 3^2\theta + \dots + \sin 3^{n-1}\theta$. $\sec 3^n\theta] = \underline{\qquad}$					
13.	If $\tan \theta = \frac{b}{a}$, then a $\cos 2\theta + b \sin 2\theta =$					
14.	Maximum value of 2 cos θ + 3 sin θ + 4 is					
15.	If $\sec \theta$ -tan θ = 5, then $\sec \theta$ =					
16.	If $\pi < 2\theta < \frac{3\pi}{2}$, then $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$ equals to (A) $-2\cos\theta$ (B) $-2\sin\theta$ (C) $2\cos\theta$ (D) $2\sin\theta$					
17.	If $\tan \theta = \sqrt{n}$ for some non-square natural number n then $\sec 2\theta$ is (A) a rational number (B) an irrational number (C) a positive number (D) none of these.					
18.	If α and β are two distinct roots of the equation a tan x + b sec x = c, then tan $(\alpha + \beta)$ is equal to (A) $\frac{a^2 - c^2}{a^2 + c^2}$ (B) $\frac{a^2 + c^2}{a^2 - c^2}$ (C) $\frac{2ac}{a^2 + c^2}$ (D) $\frac{2ac}{a^2 - c^2}$					
19. 20	If $\sin \theta = 3 \sin (\theta + 2\alpha)$ then value of $\tan(\theta + \alpha) + 2 \tan \alpha$ is (A) 3 (B) 2 (C) 1 (D) 0 In a \triangle ABC, if \cot A \cot B \cot C > 0, then the \triangle is (A) acute angled (B) right angled (C) obtuse angled (D) does not exist					
21	If $\sin x = \cos^2 x$, then $\cos^2 x (1 + \cos^2 x)$ equals to (A) 0 (B) 1 (C) 2 (D) none of these					
22	The value of sin 15 ⁰ =					
23	Maximum value of 2 cos θ + 3 sin θ + 5 =					

If $\sin \alpha \sin \beta$ - $\cos \alpha \cos \beta$ = 1, then $\tan \alpha$ + $\tan \beta$ = ______

If $\tan \theta = \frac{x}{y}$, then $x \cos 2\theta + y \sin 2\theta = \underline{\hspace{1cm}}$

(B) negative

(D) 1

- 28. The value of $\sin 12^0 \sin 28^0 \sin 54^0 =$
- 29. If $\sin \alpha \sin \beta \cos \alpha \cos \beta + 1 = 0$, then $1 + \cot \alpha \tan \beta =$
- 30. The equation $\sin^2 \theta = \frac{x^2 + y^2}{2xy}$ is possible if

 (A) x = y (B) x = -y
- (C) 2x = y (D) none of these
- 31. $\sqrt{3} \sin x + \cos x \text{ is maximum when x is}$ (A) 30° (B) 45° (C) 60° (D) 90°
- 32. The minimum value of $3\tan^2\theta + 12 \cot^2\theta$ is (A) 6 (B) 15 (C) 24 (D) none of these .
- 33. If $\frac{\tan 3\theta}{\tan \theta} = 4$, then $\frac{\sin 3\theta}{\sin \theta}$ equals (A) 3/5 (C) 3/4 (D) none of these.
- 34. For any real θ , the maximum value of $\cos^2(\cos\theta) + \sin^2(\sin\theta)$ (A) is 1 (B) is $1 + \sin^2 1$ (C) is $1 + \cos^2 1$ (D) does not exist
- 35. If cosecA + cotA = 11/2, then tanA is equal to
 (A) 111/44
 (B) 44/117
 (C) 44/125
 (D) 117/125
- 36. If in $\triangle ABC$, $\angle A = \sin^{-1}(x)$, $\angle B = \sin^{-1}(y)$ and $\angle C = \sin^{-1}(z)$, then $x\sqrt{1-y^2}\sqrt{1-z^2}+y\sqrt{1-x^2}\sqrt{1-z^2}+z\sqrt{1-x^2}\sqrt{1-y^2}$ is equal to (A) xyz (B) x+y+z (C) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ (D) None of these
- 37. If $T_n = \sin^n \theta + \cos^n \theta$, then $\frac{T_6 T_4}{T_6} = m$ holds for values of m satisfying

 (A) $m \in \left[-1, \frac{1}{3} \right]$ (B) $m \in \left[0, \frac{1}{3} \right]$ (C) $m \in \left[-1, 0 \right]$ (D) None of these
- 38. If $4 \sin A + \sec A = 0$ then $\tan A$ equals to (A) $4 \pm \sqrt{2}$ (B) $-2 \pm \sqrt{3}$ (C) $2 \pm 4 \sqrt{3}$ (D) $4 \pm 2 \sqrt{3}$

	(A) $\frac{2}{3+\sqrt{3}}$ (C) $\frac{3+\sqrt{3}}{2}$			(B)	$\frac{2}{3}$	
	$(C) \ \frac{3+\sqrt{3}}{2}$			(D)	3 2	
51.	is equal to	second quadra	ant and 3 tanA			ne value of 2 cotA - 5 cosA + sinA
	(A) $\frac{37}{10}$			(B) -	23 10	
	(C) - $\frac{53}{10}$			(D) r	none of th	nese
52.	The minimum (A) 1 (C) 2	value of $\sec^2\theta$	$+\cos^2\theta$ is	(B) ((D) r) none of th	nese
53.	If $\sin \alpha = p$ the	en the equatior	whose solutio	n is ta	an $\frac{\alpha}{2}$ is	
	(A) $px^2 + 2$ (B) $x^2 + 2$	2xp - 1 = 0 $x - p = 0$			(B) (D)	$px^2 + 2x - p = 0$ None of these
	,		LEVE			
1.	$\sin^2\theta = \frac{(x+y)^2}{4xy}$	$\frac{)^2}{}$, where x, y	∈ R, gives rea	al θ if	and only	if
	(A) $x + y = 0$ (C) $ x = y \neq$	0		, ,	x = y none of th	nese
2.		+ cosB – cos(A	x + B) and b = 4	$\frac{A}{2}$	$\frac{A}{2}$. $\sin \frac{B}{2}$.	$cos \frac{A+B}{2}$. Then $a-b$ is equal to
	(A) 1 (C) – 1			(B) (D) r	0 none of th	nese
3.	If $3 \sin \theta + 4 c$ (A) 0 (C) 1	$\cos\theta = 5$, then 4	$\sin\theta - 3\cos\theta$ is	(B) 5		nese
4.	If in ∆ABC ∠ (A) 1/2	C = 90°, then th (B) 1	ne maximum va (C) 2	alue o		n B is
5.	If θ lies in four	rth quadrant, th	en $\sqrt{4\cos^4\theta}$ +	sin ² 2	<u>20</u> + 4 cos	$r^2\left(\frac{\pi}{2} + \frac{\theta}{2}\right)$ is equal to
			(C) -2	(D) (
6.	If $(\alpha + \beta + \gamma + (A))$	δ) = π then $\sum c$ (B) 2			n β = none of the	nese
7.	If $x + y = 2\alpha t$	hen minimum v	alue of sec x +	sec y	is, x,	$y \in \left(0, \frac{\pi}{2}\right)$
	(A) 2 cos α	(B) $\cos 2\alpha$	(C) 2 sec α	(D) r	none of th	nese

8.	tan 70° – tan 2	20 ⁰ =			
	4tan50 ⁰ (A) 1	(B) 1/2	(C) -1	(D) -1/2	
9.	In a triangle ABC maximum value of sin A + sin B + sin C is				
	(A) $\frac{3\sqrt{3}}{2}$	(B) $\frac{2\sqrt{3}}{2}$	(C) 3√3	(D) $\frac{\sqrt{3}}{2}$	
10.	If $1 + \sin \theta + \sin \theta$	$\sin^2\theta + \sin^3\theta$	+to ∞ = 4 +	$2\sqrt{3}$, $0 < \theta < \pi$, $\theta \neq \pi/2$ then	
	$(A) \theta = \frac{\pi}{6}$	(B) $\theta = \frac{\pi}{3}$	(C) $\theta = \frac{\pi}{6}$ or	$\frac{\pi}{3}$ (D) $\theta = \frac{\pi}{3}$ or $\frac{2\pi}{3}$	
11.	The value of tan 1° tan 2° tan 3°tan 89°				
12.	Value of $\sin\frac{\pi}{9}\sin\frac{2\pi}{9}\sin\frac{3\pi}{9}\sin\frac{4\pi}{9}$ is				
13.	If sinx +	$\sin^2 x = 1,$	then cos ¹²	$x + 3 \cos^{10} x + 3 \cos^{8} x + \cos^{6} x - 1 =$	
14.	If $\sin (\alpha + \beta)$ is	= 1, sin (α -)	$3) = \frac{1}{2} \text{ where}$	$\alpha, \beta \in \left[0, \frac{\pi}{2}\right]$, then tan $(\alpha + 2\beta)$ tan $(2\alpha + \beta)$	
15.	If in a ΔABC, (A) isosceles (C) acute ang	triangle	+ $\sin^2 C = 2$, th	en the triangle is (B) right angled triangle (D) obtuse angled triangle	
16.	If cot θ + tan θ	$\theta = x$ and sec θ	θ -cos θ = y then	n	
	(A) $\sin \theta \cos \theta$	$\theta = 1/x$ (B) sin	$\theta + \theta + \theta = y (C)$) $(x^2y)^{2/3} - (xy^2)^{2/3} = 1$ (D) $(x^2y)^{2/3} + (xy^2)^{2/3} = 1$	
17.	The minimum (A) 0 (C) cos1	value of cos(c	cosx) is (B) (D)		
18.	If $\sin \alpha$, s $x^2 + 2x \cot \beta +$ (A) equal (C) imagin	1 = 0 are alwa	osα are in ays. (B) (D)	G.P, then roots of the equation real greater than 1	
19.	If A + B = 45° , then (1 + tan A) (1 + tan B) =				
20.	If sin θ, cos θ, (A) 1 (C) 0	, tan θ are in G	.P, then $\cot^6\theta$	$-\cot^2 \theta$ is (B) -1 (D) 2	
21.	If $\sin x + \sin^2 x$	$x = 1$, then \cos^{8}	³ x + 2 cos ⁶ x +	cos ⁴ x is	

	(A) 0 (C) 2	(B) -1 (D) 1
22.	If $\tan \beta = \frac{2 \sin \alpha \sin \gamma}{\sin(\alpha + \gamma)}$ then $\cot \alpha$, $\cot \beta$, $\cot \gamma$	γ are in
	(A) AP (C) HP	(B) GP (D) none of these
23.	If $\tan^2\theta=2$ $\tan^2\phi+1$, then $\cos2\theta+\sin^2$ (A) 1 (C) 0	φ = (B) 2 (D) -1
24.	The value of expression $\sqrt{3}$ cosec 20° –sec (A) 2	c 20 ⁰ is equal to (B) 4
	(C) $\frac{2\sin 20^{\circ}}{\sin 40^{\circ}}$	(D) $\frac{4\sin 20^{\circ}}{\sin 40^{\circ}}$
25.	If sinx + cosx + tanx + cot x + secx + co ordered pair (a, b) can be,	$\sec x = 7$ and $\sin 2x = a - b\sqrt{7}$, then
	(A) (6, 2) (C) (22, 8)	(B) (8, 3) (D) (11, 4)
26.	If $tanx - tan^2x = 1$, then the value of $tan^4x - (A) 1$ (C) 3	$2\tan^3 x - \tan^2 x + 2\tan x + 1$ is (B) 2 (D) 4
27.	The minimum value of the expression $3^{\sin^6 x}$ (A) $2.3^{1/8}$ (C) $3.2^{1/8}$	(B) 2.3 ^{7/8} (D) None of these
28.	If $\sin\theta + \sin\phi = \sqrt{3} (\cos\phi - \cos\theta)$, then $\sin 3\theta$ (A) $\sqrt{3}$ (C) 1	+ sin3φ is equal to (B) 0 (D) None of these
29.	The minimum value of $(asec\theta$ - $btan\theta)^2$, $ a $ (A) 0 (C) ab	< b , is (B) $a^2 + b^2$ (D) $(1/2) (a^2 + b^2)$
30.	If $tanx + tan^2x + tan^3x = 1$ then the value of (A) 1/2 (C) 1	$2 \cos^6 x - 2 \cos^4 x + \cos^2 x$ equals to (B) 2 (D) none of these
31.	If $a \le 16 \sin x \cos x + 12 \cos^2 x - 6 \le b$ for a (A) $a = -5$, $b = 5$ (C) $a = -10$, $b = 10$	all $x \in R$ then (B) $a = -4$, $b = 4$ (D) none of these
32.	If $k\sin^2 x + \frac{1}{k}\csc^2 x = 2$, $x \in (0, \pi/2)$, then	cos ² x +5 sinx cosx + 6 sin ² x is equal to
	(A) $\frac{k^2 + 5k + 6}{k^2}$	(B) $\frac{k^2 - 5k + 6}{k^2}$
	(C) 6	(D) none of these

33.

1. 5.

LEVEL -III

Α

D

В

34.

2.

6.

С

D

Α

ANSWERS

LEVEL -I 2. С 3. 7. В 4. Α Α D 5. В 6. 8. $2-\sqrt{3}$ 9. Α 10. С 11. 12. $tan3^n\theta$ - $tan\theta$ 13 $\sqrt{13} + 4$ 15. 13. 14. 16. Α Α 5 17. Α 18. D 19. 20. Α D $\sqrt{3} - 1$ 21. D 22. $\sqrt{13} + 5$ 23. 24. 0 26. Α 25. sin180 27. В 28. 4 29. 0 30. Α 31. С 32. D 36. В 33. D В 35. 34. Α С 37. 38. В 39. Α 40. Α 43. 41. Α 42. Α 44. Α Α 45. Α 46. D 47. Α 48. D 49. D 50. D 51. С 52. 53. D LEVEL -II 1. С 2. Α В 4. Α 3. В В 6. С 7. 8. 5. С $\frac{3}{16}$ 12. 9. Α 10. D 11. 1 0 C В 16. C A 13. 14. 1 15. В 2 20. 17. 18. 19. D С В 21. 22. Α 23. 24. c 25. D 28. 26. 27. Α В С 29. Α Α 31. 32. D 30.

С

Α

4.

С

3.

7.