Labsheet - 5

Support Vector Machine

Machine Learning

BITS F464

I Semester 2021-22

The e1071 library in R has implemented several statistical learning methods. The svm() method can fit a support vector classifier when the argument kernel='linear' is used. The cost argument allows us to specify the cost of a violation to the margin. Thus when the cost is small, the margins will be wide and there will be many support vectors.

```
set.seed(1)
#Create our own test data
x <- matrix(rnorm(20*2), ncol=2)
y <- c(rep(-1,10), rep(1,10))
x[y==1,]=x[y==1,] + 1</pre>
```

Let's take a look at these data

```
plot(x, col=(3-y))
```


To perform classification, we have to specify the response as a factor. The argument scale = FALSE tells the function not to scale each feature. Sometimes we may want to do this.

```
library(e1071)

dat <- data.frame(x=x, y=as.factor(y))
svm.fit <- svm(y ~., data=dat, kernel='linear', cost=10, scale=FALSE)
# Plot the SVC obtained
plot(svm.fit, dat)</pre>
```

SVM classification plot


```
summary(svm.fit)
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale =
FALSE)
Parameters:
    SVM-Type: C-classification
SVM-Kernel: linear
        cost: 10
Number of Support Vectors: 7
    ( 4 3 )
Number of Classes: 2
Levels:
-1 1
```

The summary lets us know there were 7 support vectors, four in the first class and three in the second. What if we used a smaller cost parameter instead?

```
svm.fit2 <- svm(y ~., data=dat, kernel = 'linear', cost=0.1, scale=FAL
SE)
plot(svm.fit2, dat)</pre>
```

SVM classification plot

Now analyze both plots?

```
summary(svm.fit2)
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 0.1, scale
= FALSE)
Parameters:
    SVM-Type: C-classification
SVM-Kernel: linear
    cost: 0.1

Number of Support Vectors: 16
    ( 8 8 )

Number of Classes: 2
Levels:
-1 1
```

What is the cost effect on margin?

With a smaller value of cost we obtain a margin number of support vectors via the larger margin.

```
set.seed(1)
tune.out <- tune(svm, y ~., data=dat, kernel='linear',</pre>
```

```
ranges=list(cost=c(0.001,0.01,0.1,1,5,10,100)))
summary(tune.out)
```

In the summary you can see that cost = 0.1 results in the lowest error rate. tune() also stores the best model obtained accessed through \$best.model, thus we can predict using test data. Here we create a simulated test set.

```
xtest=matrix(rnorm(20*2), ncol=2)
ytest=sample(c(-1,1), 20, rep=TRUE)
xtest [ ytest ==1 ,] = xtest [ ytest ==1 ,] + 1
testdat=data.frame(x=xtest, y=as.factor(ytest))
```

Then predict the class labels of the test observations from the cross validated results.

```
yhat <- predict(tune.out$best.model, testdat)
library(caret)
confusionMatrix(yhat, testdat$y)</pre>
```

Non Linear SVM

Again we use the svm() function, however now we can experiment with non-linear kernels. For polynomial kernels we use the parameter degree to adjust the polynomial order. For radial kernels we use the gamma parameter to adjust the y value.

```
# Generate some test data
set.seed (1)
x <- matrix(rnorm(200*2), ncol=2)
x[1:100,]=x[1:100,]+2
x[101:150,]=x[101:150,]-2

y <- c(rep(1,150),rep(2,50))
dat <- data.frame(x=x,y=as.factor(y))

plot(x, col=y)</pre>
```

Randomly split the data into training and testing groups and fit a radial kernel.

```
train <- sample(200, 100)
svm.fit <- svm(y ~., data=dat[train,], kernel='radial', gamma=1, cost=
1)</pre>
```


SVM classification plot


```
summary(svm.fit)
yhat <- predict(svm.fit, dat[-train,]) # Predict test data
confusionMatrix(yhat, dat[-train,'y'])</pre>
```

If we increase the value of cost, we can reduce the training errors, but we risk overfitting the data.

```
svm.fit <- svm(y ~., dat[train,], kernel='radial', gamma=1, cost=1e5)
plot(svm.fit, dat[train,])</pre>
```

SVM classification plot

This certainly is very irregular, and probably would over fit the test data. Let's try cross validating these parameters instead.

ROC Curves

Another way to choose between models is to use and ROC curve. We can do this using the ROCR package.

```
library(ROCR)
# function to handle the different models
rocplot <- function(pred, truth, ...) {
  predob = prediction(pred, truth)
  perf = performance(predob, 'tpr', 'fpr')
  plot(perf, ...)
}</pre>
```

Now, when we rebuild the SVMs we set decision.values=TRUE to obtain the fitted values.

Exercise

- Try linear and polynomial SVM model and predict whether a given car gets high or low gas mileage based on the Auto dataset. And analyze the difference between them.
- Learn about kernlab from:
 # https://cran.r-project.org/web/packages/kernlab/kernlab.pdf