Рт лаба №1

Сидорчук Максим

15 сентября 2023 г.

1 Часть 1: Делитель напряжения

В данной части работы был собран делитель напряжения из 2 резисторов с сопротивлением 20 кОм и 5.1 кОм. При подаче напряжения в 10 В на вход делителя, на выходе было получено напряжение $E^*=248.6 \mathrm{mB}*10=2.48\mathrm{B}$. Далее измерим внутреннее сопротивление получившегося источника, подключив к нему нагрузку в виде резистора с $R_l=10$ кОм. Получили $U_l=173.1 \mathrm{mB}*10=1.731$ В. Оценим внутреннее сопротивление источника по формуле $R^*=\frac{E^*-U_l}{U_l}*R_l=4.32$ кОм.

В следующей подчасти задания необходимо произвести измерение с синусоидальным входным сигналом. Амплитуда входного сигнала e=5B, амплитуда выходного $u=82.533*10*10^{-3}=0.8$ В. Тем самым получаем коеффициент передачи $k=\frac{u}{e}=0.16$.

2 Часть 2: Параллельный сумматор

Для начала по 2 параметрам $\alpha=0.4$ и $\beta=0.2$, а также $R_1=10$ кОм, найдем сопротивления $R_2=\frac{\alpha}{\beta}*R_1=20$ кОм и $R=\frac{3*(R_1||R_2)}{2}=R_1=10$ кОм.

 $ar{\Pi}$ одключим синусоидальное напряжение с амплитудой 2B к E_1 и постоянное напряжение 5B к E_2 . Результирующая амплитуда напряжения на выходе сумматора составляет $U_{
m amp}=1.18~{
m B}$ с постоянной составляющей $U_{
m const}=0.69~{
m B}$.

Найдем коеффициенты сумматора, замыкая правую и левую ветвь. Получаем $\alpha = 1.8/5.0 = 0.36$ и $\beta = 0.8/5.0 = 0.16$, которые достаточно близки к теоретическим.

Методом двух нагрузок найдем найдем эквивалентное сопротивление сумматора. $E^* = 2.88$ В, при $R_l = 5.1$ кОм найдем напряжение на нагрузочном резисторе $U_l = 1.02$ В. Отсюда получаем, что $R^* = \frac{(E^* - U_l) \cdot R_l}{U_l} = 9.3$ кОм.