MA2102: LINEAR ALGEBRA

Lecture 33: Orthogonal Projection
17th November 2020

Let W be a subspace of an inner product space V. The inner product $\langle \cdot, \cdot \rangle$ when restricted to W induces an inner product on W.

- choose a basis $\gamma = \{w_1, \dots, w_k\}$ of W
- apply Gram-Schmidt to obtain an orthogonal basis of W

$$\tilde{\gamma} = \{v_1, \dots, v_k\}$$

- \circ $\tilde{\gamma}$ is linearly independent in V
- extend $\tilde{\gamma}$ to a basis $\beta = \{v_1, \dots, v_k, u_{k+1}, \dots, u_n\}$ of V
- apply Gram-Schmidt to β to obtain an orthogonal basis

$$\tilde{\beta} = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}.$$

Example Let $V = \mathbb{R}^4$ with the standard inner product. Let

$$W := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2020x_1 = x_2 + x_3 + x_4\}$$

be a 3-dimensional subspace.

Show that $\gamma = \{(1,2020,0,0),(1,0,2020,0),(1,0,0,2020)\}$ is a basis of W. We label the vectors in γ as w_1, w_2, w_3 , in order. Note the following:

$$||w_j||^2 = 1 + 2020^2 = c^2, \ \langle w_i, w_j \rangle = 1 \text{ if } i \neq j.$$

Applying Gram-Schmidt algorithm, we get $v_1 = w_1$ and

$$\begin{array}{rcl} v_2 & = & w_2 - \frac{\langle w_2, v_1 \rangle}{||v_1||^2} v_1 = w_2 - \frac{1}{c^2} w_1 \\ ||v_2||^2 & = & \langle w_2 - \frac{1}{c^2} w_1, w_2 - \frac{1}{c^2} w_1 \rangle = c^2 - \frac{1}{c^2} \\ v_3 & = & w_3 - \frac{\langle w_3, v_1 \rangle}{||v_1||^2} v_1 - \frac{\langle w_3, v_2 \rangle}{||v_2||^2} v_2 \\ & = & w_3 - \frac{1}{c^2} w_1 - \frac{1 - \frac{1}{c^2}}{c^2} (w_2 - \frac{1}{c^2} w_1) \end{array}$$

$$v_{3} = w_{3} - \frac{\langle w_{3}, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1} - \frac{\langle w_{3}, v_{2} \rangle}{\|v_{2}\|^{2}} v_{2}$$

$$= w_{3} - \frac{1}{c^{2}} w_{1} - \frac{1 - \frac{1}{c^{2}}}{c^{2} - \frac{1}{c^{2}}} (w_{2} - \frac{1}{c^{2}} w_{1})$$

$$= w_{3} - \frac{1}{c^{2} + 1} w_{2} - \frac{1}{c^{2} + 1} w_{1}.$$

To extend $\{v_1, v_2, v_3\}$ to a basis of \mathbb{R}^4 , it suffices to find u_4 such that $u_4 \notin W$. We may set $u_4 = (1, 1, 1, 1)$ and $\beta = \{v_1, v_2, v_3, u_4\}$. Applying Gram-Schmidt to β amounts to modifying u_4 :

$$v_4 = u_4 - \frac{\langle u_4, v_1 \rangle}{||v_1||^2} v_1 - \frac{\langle u_4, v_2 \rangle}{||v_2||^2} v_2 - \frac{\langle u_4, v_3 \rangle}{||v_3||^2} v_3.$$

Show that

$$\langle u_4, v_1 \rangle = 2021, \ \langle u_4, v_2 \rangle = \frac{c^2 - 1}{c^2} 2021, \ \langle u_4, v_3 \rangle = \frac{c^2 - 1}{c^2 + 1} 2021.$$

It is left as an exercise to normalize the orthogonal basis $\tilde{\beta} = \{v_1, v_2, v_3, v_4\}$. Note that the span of v_4 is a line which is orthogonal to W.

Definition [Orthogonal complement] Let W be a subspace of an inner product space V. The orthogonal complement W^{\perp} of W in V is defined as

$$W^{\perp} := \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}.$$

Note that $W \cap W^{\perp} = \{0\}$ due to positivity (exercise). In particular, dim $W^{\perp} \le n - k$.

Proposition The dimension of W^{\perp} is n-k, if W and V have dimension k and n respectively.

Proof.

Choose a basis $\gamma = \{w_1, \dots, w_k\}$ of W and extend this to a basis $\beta = \{w_1, \dots, w_k, u_{k+1}, \dots, u_n\}$ of V. Apply Gram-Schmidt to obtain an orthonormal basis $\tilde{\beta} = \{v_1, \dots, v_n\}$. By construction,

$$\operatorname{span}\{v_1,\ldots,v_k\} = \operatorname{span}\{w_1,\ldots,w_k\} = W$$

and each of v_{k+1}, \ldots, v_n lie in W^{\perp} . Thus, dim $W^{\perp} \ge n - k$, whence $\{v_{k+1}, \ldots, v_n\}$ is an orthonormal basis of W^{\perp} .

It follows that we have a direct sum decomposition $V = W \oplus W^{\perp}$.

Examples (1) In the previous example, W^{\perp} is the line spanned by v_4 .

(2) The orthogonal complement of $P_1(\mathbb{R})$ in $P_2(\mathbb{R})$ with respect to $\langle p,q\rangle=\int_0^1 p(t)q(t)dt$ must be a line. We had seen (cf. lecture 32) that $\{1,x-\frac{1}{2}\}$ is an orthogonal basis of $P_1(\mathbb{R})$ with $x^2-x-\frac{1}{6}$ being orthogonal to $P_1(\mathbb{R})$. Thus,

$$P_1(\mathbb{R})^{\perp} = \{c(x^2 - x - \frac{1}{6}) \mid c \in \mathbb{R}\}.$$

(3) Let Sym_n be the subspace of symmetric matrices in $V = M_n(\mathbb{R})$, equipped with $\langle A, B \rangle = \operatorname{trace}(B^t A)$. Let A be skew-symmetric, i.e., $A^t = -A$. By cyclicity and symmetry of trace and elements of Sym_n being symmetric,

 $\operatorname{trace}(B^t A) = \operatorname{trace}(AB^t) = \operatorname{trace}(AB) = \operatorname{trace}(B^t A^t) = -\operatorname{trace}(B^t A).$ It follows that $A \in \operatorname{Sym}_n^{\perp}$.

More generally, the subspace $Skew_n$ of skew-symmetric matrices is contained in Sym_n^{\perp} . However,

$$\dim \text{Sym}_n^{\perp} = n^2 - \frac{n^2 + n}{2} = \frac{n^2 - n}{2}$$

equals the dimension of Skew_n. Thus, Skew_n is the orthogonal complement of Sym_n. Give a geometric proof of this fact by interpreting the inner product on $M_n(\mathbb{R})$ as an appropriate inner product on \mathbb{R}^{n^2} .

Definition [Orthogonal Projection] Let W be a subspace of an inner product space V. Using the decomposition $V = W \oplus W^{\perp}$, every $v \in V$ can be written uniquely as w + w', where $w \in W$ and $w' \in W^{\perp}$. The map defined by

$$P: V \to V, P(v) = w$$

is called the orthogonal projection of V onto W.

Show that P is a linear map which is a projection. Moreover, null space of P is W^{\perp} and range of P is W. It follows that there is a unique orthogonal projection associated to a subspace.

Remark Not all projections are orthogonal. For instance, consider the (skew) projection

$$Q: \mathbb{R}^2 \to \mathbb{R}^2$$
, $Q(x,y) = (x-y,0)$.

If *Q* is an orthogonal projection, then nullity of *Q* must be the *y*-axis, the orthogonal complement of *x*-axis. However, this fails to hold.

We revisit example (3) and note that

$$A = \tfrac{1}{2}(A+A^t) + \tfrac{1}{2}(A-A^t) \in \operatorname{Sym}_n \oplus \operatorname{Skew}_n.$$

Thus,

$$P: M_n(\mathbb{R}) \to M_n(\mathbb{R}), \ P(A) = \frac{1}{2}(A + A^t)$$

is the orthogonal projection associated to Sym_n .