Exploratory Data Analysis: Google Play Store Apps

Snehitha Tadapaneni Sai Rachana Kandikattu Amrutha Jayachandradhara Pramod Krishnachari Wilona Nguyen

Methodology

Data Cleaning

- Removing columns/Handling
- Missing values

Data Visualisation

• Box Plot/KDE/Bar Plots

Descriptive Statistics

• Finding mean/median

SMART Questions and Tests

 Using statistical tests verify the SMART Questions

Dataset Overview

Variables

Source Kaggle

```
'data.frame':
               10841 obs. of 13 variables:
                : chr "Photo Editor & Candy Camera & Grid & ScrapBook" "Coloring book moana" "U Launcher Lite - FREE Live Cool Themes,
 $ App
Hide Apps" "Sketch - Draw & Paint" ...
                : chr "ART_AND_DESIGN" "ART_AND_DESIGN" "ART_AND_DESIGN" "ART_AND_DESIGN" ...
$ Category
$ Rating
                : num 4.1 3.9 4.7 4.5 4.3 4.4 3.8 4.1 4.4 4.7 ...
                      "159" "967" "87510" "215644" ...
$ Reviews
                : chr
                : chr "19M" "14M" "8.7M" "25M" ...
$ Size
$ Installs
                : chr "10,000+" "500,000+" "5,000,000+" "50,000,000+" ...
                      "Free" "Free" "Free" "Free" ...
$ Type
                : chr
                       "0" "0" "0" "0" ...
$ Price
                : chr
$ Content.Rating: chr "Everyone" "Everyone" "Everyone" "Teen" ...
                : chr "Art & Design" "Art & Design; Pretend Play" "Art & Design" "Art & Design" ...
$ Genres
$ Last.Updated : chr "January 7, 2018" "January 15, 2018" "August 1, 2018" "June 8, 2018" ...
                      "1.0.0" "2.0.0" "1.2.4" "Varies with device" ...
$ Current. Ver
$ Android. Ver
                : chr "4.0.3 and up" "4.0.3 and up" "4.2 and up" ...
```


Smart Question

What is the impact of content rating, required App version, category, size, last updated and pricing on predicting app success in terms of positive rating, high user reviews, as well as the number of installs, using data from Google Play Store apps from 2010 to 2018?

Data Cleaning

Removed Duplicated Apps Replaced missing value with mean

Dropped Rows with missing price values

Data Format Conversion

Dropped Irrelevant Columns

All Good!

After dropping duplicated Apps

Dropped Type Column

Variables

12

Smart Q1: Installs vs price

Does price significantly impact the popularity of an app in terms of installs?

Statistical Test: t-test

T-test Result:

→ Test Statistic (t): 29.042

→ Degrees of Freedom (df): 977.19

→ **P-value**: < 2.2e-16

Price Category	Mean Log(Installs)	App Count	
Free	11.002709	8898	
Paid	7.284829	746	

Since the p-value is extremely small, we reject the null hypothesis concluding that the difference in mean log installs between free and paid apps is statistically significant.

Genre, Current Version

Categories

118 Genres

Drop Genres, proceed with Category

"1.0 Super Ear Hearing" "PN.1.0" "1.0.51.0.3" "3.4.0.10" "Initial" "1.12" "10.4.1.000_00" "4.0.9" "2.5.0 b665" "0.6.88" "43.0" "4.4.3" "1.4.15-free" "1.9.0.0" "0.1.1" "4.95.4" "2.6.10" "2.1.3.2" "13.0" "1.8.19179" "4.81" "8.00.752746" "50.2 lite" "4.1.202" "7.3.1" "3.8.1" "14.0.13" "7.23.4" "4.6.2.0" "1.8.0" "10.6.3"

Inconsistent Formatting

Current.Ver

Drop Current. Ver, excluded from the analysis

Category

Category vs. Installs

Android Ver vs. Installs

Rating

1463 NA values

Replaced NA values

STEP 2:

Replaced NA values with mean value.

Majority Rating values ~[3-5]
Outliers ~ [1-3)

Rating vs Reviews

Statistical Test: ANOVA-test

ANOVA Result:

→ F value (f): 41.3

→ Degrees of Freedom (df): 11

→ P-value: < 2e-16

Review_Category	Mean_Rating	
0+	4.13	
100+	4.03	
500+	4.06	
1K+	4.11	
2.5K+	4.13	
5K+	4.19	
10K+	4.22	
25K+	4.23	
50K+	4.29	
100K+	4.33	
300K+	4.38	
1M+	4.43	

Since the p-value is extremely small, we reject the null hypothesis concluding that the difference in mean rating for different categories not the same.

Smart Q2: Installs vs Reviews

Does Reviews and Installs have significantly impact the popularity of an app in terms of installs?

	Df	Sum Sq	Mean Sq	F Value	Pr(>F)
Review_C ategory	11	6.94e+18	6.31e+17	290	<2e-16
Residuals	9647	2.10e+19	2.17e+15		

Since the p-value is extremely small, we reject the null hypothesis concluding that the difference in mean Installs for different Review categories not the same.

Content Rating

Data Cleaning:

- The `trimws()` function in R: To Remove Leading and Trailing spaces.
- Converted to lowerCase

Unique Values:

- Everyone: 7903
- Teen: 1036
- Mature 17+: 393
- Everyone 10+ : 322
- Adults only 18+: 3
- Unrated: 2

Smart Q3: Rating vs Last update

Does Update have significant impact on Rating?

Update Intensity by Content Rating

 The "Everyone" category peaks in update intensity during summer, while "Teen" and "Everyone 10+" show consistent updates year-round, slightly increasing in summer. "Adults only 18+" and "Unrated" apps have the lowest and most infrequent updates all year.

Smart Q4: Installs vs Content Rating vs Last Updated

Does Content Rating and Last Updated significantly impact the popularity of an app in terms of installs?

trend of average app installs over time for different content ratings

distribution of app installs across different content ratings, segmented by update recency (old vs. recent)

Statistical Test: ANOVA - test (Last Updated)

Days Since Last Update by Reviews:

- **F-value**: 41.95

- **p-value**: 9.82e-11

Days Since Last Update by Installs:

- **F-value**: 58.92

- **p-value**: 1.8e-14

Days Since Last Update by Ratings:

- **F-value**: 143.8

- **p-value**: <2e-16

All three factors—Reviews, Installs, and Ratings- all have very small p - value so they are strongly correlated to Last Updated Factor

Smart Q5: Size vs Installs

Does app size have significant impact on the number of Installs?

Statistical Test: correlation coefficient and p-value Install VS Size

T-test Result:

- → Test Statistic (t): 4.0069
- → Degrees of Freedom (df): 9657
- **P-value**: 6.198e-05
- → Correlation Coefficient: 0.0407
- **→ 95% Confidence Interval**: 0.0208 to 0.0606.

Since the p-value is extremely small, we reject the null hypothesis concluding that the difference in mean log installs for different sizes.

How do app installs vary by category and rating trends?

Conclusion

Review & Ratings VS Installs: High install counts are associated with a positive correlation with ratings and reviews. Hence, could conclude that:
 High Installs -> Positive Rating -> High Reviews
 HIGH POPULARITY -> HIGH INSTALLS

High Installs is seen in

Category: Top 3 categories (Entertainment, Education and Game)

Content Rating : Everyone, Everyone(10+) have highest number of installs

Last Updated(+ve Correlation): Latest the update, higher the Installs

Price(-ve Installs): Lesser the price, higher the installs

Size: This is could not be seen as higher size better, as the higher size might

also be correlated to categorical apps such as Gaming etc

Share your app idea with us, and we'll estimate its potential installs, reviews and rating.

Thank You!

