第十三組時間數列報告

目錄

前言
資料敘述
資料來源
預測資料
原始資料的時數圖、ACF與PACF圖
一階差分後的時數圖、ACF與PACF圖
季節性差分後的時數圖、ACF與PACF圖
一階季節性差分後的時數圖、ACF與PACF圖
參數模型表
殘差模型
程式碼

前言

使用1949年1月到1959年12月的數據來預測1960年紐約市與其他國際目的地之間每 月的航班乘客總數。

資料敘述

- 時間範圍:數據涵蓋了11年,從1949年1月到1959年12月
- 頻率:按月記錄。
- 測量內容:每月紐約市與其他國際目的地之間的航班乘客總數量,以千人為單位。
- 地區:數據主要代表了紐約市與其他國際目的地之間的航班。
- 季節性:數據顯示出明顯的季節性變化,乘客數量通常在夏季達到高峰,在冬季下降。
- 趨勢:有上升趨勢。

資料來源

資料來源:(1)

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976) *Time Series Analysis, Forecasting and Control.* Third Edition. Holden-Day. Series G.

-The classic Box & Jenkins airline data.

千人計乘客數量箱型圖

千人計乘客數量直方圖

1949-1961年間每月紐約市與其他國際目的地之間的航班乘客 (千人計)總數量的區間分布圖

原始資料的時數圖、ACF與PACF圖

原144筆, 去掉1960年分12筆資料後的訓練樣本的132筆資料(1949-01~1959-12)。

1949-1959年間每月紐約市與其他國際目的地之間的航班乘客總數量時間數列圖

有趨勢、季節性且震盪隨時間加劇,故不平穩。7、8月份通常是全年最高。

ACF圖與PACF圖

ACF下降緩慢, 有趨勢, 故不平穩。

一階差分後的時數圖、ACF與PACF圖

Lag=12時, ACF下降較慢, 有季節性, 故不平穩。

季節性差分後的時數圖、ACF與PACF圖

6

S

季節性差分後的ACF下降緩慢且波動範圍明顯超過-0.2與0.2之間, 故不平穩。

一階季節性差分後的時數圖、ACF與PACF圖

ACF在lag=1後切斷, PACF在lag=1後切斷, 沒有緩慢下降情形, 故平穩。

各差分後時間數列圖

由上述內容所知資料data.td1D12平穩, 並藉由data.td1D12的ACF及PACF配適模型, 因此選擇在d=1、D=1、p≤1、q≤2中找出最佳模型。

參數模型表

參數模型表是指data.fitpqQ以data.fit00就是一個有季節性與一階差分的AR(1)

SARIMA	AR	MA	SMA
$(0,1,0\times 0,1,1)_{12}$	AR: None	MA: None	SMA: -0.115
$(0,1,0\times 0,1,2)_{12}$	AR: None	MA: None	SMA: -0.129, 0.069
$(0, 1, 1 \times 0, 1, 0)_{12}$	AR: None	MA: -0.226	SMA: None
$(0, 1, 1 \times 0, 1, 1)_{12}$	AR: None	MA: -0.217	SMA: -0.084
$(0, 1, 1 \times 0, 1, 2)_{12}$	AR: None	MA: -0.249	SMA: -0.115, 0.134
$(1, 1, 0 \times 0, 1, 0)_{12}$	AR: -0.243	MA: None	SMA: None
$(1,1,0\times 0,1,1)_{12}$	AR: -0.232	MA: None	SMA: -0.079
$(1,1,0\times 0,1,2)_{12}$	AR: -0.268	MA: None	SMA: -0.11, 0.142

$(1,1,1\times 0,1,0)_{12}$	AR: -0.553	MA: 0.332	SMA: None
$(1,1,1\times 0,1,1)_{12}$	AR: -0.539	MA: 0.325	SMA: -0.074
$(1,1,1\times 0,1,2)_{12}$	AR: -0.513	MA: 0.268	SMA: -0.102, 0.135

殘差模型

模型一殘差

p-value≤0.05, 拒絕白噪音假設

模型二殘差

p-value≤0.05, 拒絕白噪音假設

模型六殘差

p-value>0.05, 不拒絕白噪音假設

模型11残差

p-value>0.05, 不拒絕白噪音假設

比較AIC和BIC

模型編號	SARIMA	是否滿足白噪音假設	AIC	BIC
1	$(0,1,0) \times (0,1,1)_{12}$	否	905.4189	910.9772
2	$(0,1,0) \times (0,1,2)_{12}$	否	906.8886	915.226
3	$(0,1,1) \times (0,1,0)_{12}$	是	900.6852	906.2435
4	$(0,1,1) \times (0,1,1)_{12}$	否	901.7211	910.0584
5	$(0,1,1) \times (0,1,2)_{12}$	是	901.7468	912.8633
6	$(1,1,0) \times (0,1,0)_{12}$	是	899.9021	905.4604
7	$(1,1,0) \times (0,1,1)_{12}$	否	901.0524	909.3898
8	$(1,1,0) \times (0,1,2)_{12}$	是	900.8583	911.9748
9	$(1,1,1) \times (0,1,0)_{12}$	是	900.9716	909.309
10	$(1,1,1) \times (0,1,1)_{12}$	是	902.2214	913.3379
11	$(1,1,1) \times (0,1,2)_{12}$	是	902.2385	916.1341

data.fit100是最適模型, AIC、BIC最小 data.fit100 是SARIMA(1,1,0),(0,1,0)12

方程式為
$$(1 - (-0.243B))(1 - B)(1 - B^{12})X_t = \omega_t$$
 其中 $\omega_t \sim N(0, \sigma^2)$, $\overset{\widehat{}}{\sigma}^2 = 108.9$

預測結果

預測資料

•	Month [‡]	X.Passengers [‡]
133	1960-01	417
134	1960-02	391
135	1960-03	419
136	1960-04	461
137	1960-05	472
138	1960-06	535
139	1960-07	622
140	1960-08	606
141	1960-09	508
142	1960-10	461
143	1960-11	390
144	1960-12	432

預測資料一共是12筆,時間從1960年1月到1960年12月。

模型一預測結果

模型二預測結果

模型六預測結果

模型十一預測結果

月份	1960年一月	1960年二月	1960年三 月	1960年四 月	1960年五月	1960年六月
	424.1099	407.0557	470.8257	460.8817	484.8681	536.8714
	1960年七月	1960年八月	1960年九 月	1960年十	1960年十一 月	1960年十二月
	612.8706	623.8708	527.8707	471.8707	426.8707	469.8707

1960年3月, 紐約經歷了一場嚴重的冬季風暴(東北風暴), 發生在3月3日至5日。這場風暴被評為"嚴重"級別, 帶來了暴風雪、強風和大量降雪。紐約市的降雪量達到歷史高位, 導致學校停課、航班取消, 並給通勤和居民生活帶來了極大困難。這場惡劣天氣可能是3月份班機乘客數量較少的主要原因之一。這也導致所有模型在1960三月都沒預測好。

結論

透過SARIMA(110)(010)s=12的時間數列模型,除了三月以外,1960年紐約來往的國際 航班數量都成功在信賴區域內,說明模型有良好的預測能力。

程式碼

```
##########ts_Final_report#####
```

```
file_path <- "C:/Users/User/Desktop/學/時間數列/AirPassengers.csv"
###讀CSV文件並檢視###
data <- read.csv(file_path)
head(data)
str(data)
summary(data)
##拆, 以1949-1959預測1960年##
n=length(data$X.Passengers)
data.t <- data[1:(n-12), ]
data.p <- data[(n-12+1):n, ]
head(data.t)
tail(data.t)
data.p
install.packages("ggplot2")
library(ggplot2)
ggplot(data.t, aes(x = X.Passengers)) +
geom_histogram(binwidth = 20, fill = "skyblue", color = "black") +
labs(title = "Histogram of X.Passengers in data.t",
   x = "Number of Passengers",
   y = "Frequency") +
theme_minimal()
ggplot(data.t, aes(y = X.Passengers)) +
geom_boxplot(fill = "skyblue", color = "black") +
labs(title = "Boxplot of X.Passengers in data.t",
   y = "Number of Passengers") +
theme_minimal()
Time <- 1:nrow(data.t)
ggplot(data.t, aes(x = Time, y = X.Passengers)) +
geom_line(color = "blue") +
labs(title = "Time Series of X.Passengers in data.t",
   x = "Time",
   y = "Number of Passengers") +
theme_minimal()
######這也可以########
ts.plot(data.t$X.Passengers)
par(mfrow=c(2,1))
acf(data.t$X.Passengers,60)
pacf(data.t$X.Passengers,60)
data.td1=diff(data.t$X.Passengers)
data.tD12=diff(data.t$X.Passengers,12)
data.td1D12=diff(data.td1,12)
```

```
#加載需要的庫
library(ggplot2)
#計算一階差分
data.td1 <- diff(data.t$X.Passengers)
#計算12期差分
data.tD12 <- diff(data.t$X.Passengers, lag = 12)
#計算一階差分再做12期差分
data.td1D12 <- diff(data.td1, lag = 12)
# 創建時間序列對象
ts_data.td1 <- ts(data.td1, start = start(data.t$X.Passengers), frequency = frequency(data.t$X.Passengers))
ts_data.tD12 <- ts(data.tD12, start = start(data.t$X.Passengers) + c(0, 12), frequency = frequency(data.t$X.Passengers))
ts_data.td1D12 <- ts(data.td1D12, start = start(data.t$X.Passengers) + c(0, 12 + 1), frequency =
frequency(data.t$X.Passengers))
par(mfrow = c(3, 1)) # 設置圖形排列方式
#繪製一階差分
plot(ts_data.td1, main = "一階差分", ylab = "差分值", xlab = "時間")
#繪製12期差分
plot(ts_data.tD12, main = "12期差分", ylab = "差分值", xlab = "時間")
#繪製一階差分再做12期差分
plot(ts_data.td1D12, main = "一階差分再做12期差分", ylab = "差分值", xlab = "時間")
par(mfrow=c(2,1))
acf(data.td1,60)
pacf(data.td1,60)
par(mfrow=c(2,1))
acf(data.tD12,60)
pacf(data.tD12,60)
par(mfrow=c(2,1))
acf(data.td1D12,60)
pacf(data.td1D12,60)
data.fit <- arima(data$X.Passengers[1:(length(data$X.Passengers)-12)], c(1, 1, 0), seasonal = list(order = c(0, 1, 0), period =
12))
tsdiag(data.fit,60)
data.fit
names(data.fit)
data.fit$coef
data.fit$sigma2
data.fit$aic
tsdiag(data.fit,60)
AIC(data.fit)
```

BIC(data.fit)

```
data.pre <- predict(data.fit, n.ahead = 12)
names(data.pre)
U <- data.pre$pred + 1.96 * data.pre$se
L <- data.pre$pred - 1.96 * data.pre$se
plot.ts(data$X.Passengers, xlim = c(120, length(data$X.Passengers)), ylim = c(300, 700),type = "o")
lines(data.pre$pred, col = "red", type = "o")
lines(U, col = "blue", Ity = "dashed")
lines(L. col = "blue". Itv = "dashed")
abline(v = (length(data$X.Passengers) - 11), lty = "dotted")
# Define a function to fit the model, generate predictions, plot the results, and store AIC/BIC values
fit_and_plot <- function(p, q, Q, data, model_name, aic_bic_table) {
 # Fit the ARIMA model
 data.fit <- arima(data$X.Passengers[1:(length(data$X.Passengers) - 12)],
           order = c(p, 1, q),
           seasonal = list(order = c(0, 1, Q), period = 12))
 # Assign the fitted model to a dynamically named variable
 assign(model_name, data.fit, envir = .GlobalEnv)
 # Print model details
 cat("\nModel:", model_name, "\n")
 print(data.fit)
 print(names(data.fit))
 print(data.fit$coef)
 print(data.fit$sigma2)
 print(data.fit$aic)
 print(AIC(data.fit))
 print(BIC(data.fit))
 # Append AIC and BIC to the table
 aic_bic_table <<- rbind(aic_bic_table, data.frame(Model = model_name, AIC = AIC(data.fit), BIC = BIC(data.fit)))
 # Predict the next 12 periods
 data.pre <- predict(data.fit, n.ahead = 12)
 U <- data.pre$pred + 1.96 * data.pre$se
 L <- data.pre$pred - 1.96 * data.pre$se
 # Plot the original data and the forecast
 plot.ts(data$X.Passengers, xlim = c(114, length(data$X.Passengers) + 12), ylim = c(300, max(data$X.Passengers, U)), type =
"o",
     main = paste("ARIMA(", p, ",1,", q, ")(0,1,", Q, ")[12]"))
 lines(data.pre$pred, col = "red", type = "o")
 lines(U, col = "blue", Ity = "dashed")
 lines(L, col = "blue", Ity = "dashed")
 abline(v = (length(data$X.Passengers) - 11), lty = "dotted")
 # Plot diagnostic plots
 tsdiag(data.fit, 60)
}
# Initialize the table to store AIC and BIC values
aic_bic_table <- data.frame(Model = character(), AIC = numeric(), BIC = numeric(), stringsAsFactors = FALSE)
```

```
# Loop through the values of p, q, and Q and fit the models
for (p in 0:1) {
    for (q in 0:1) {
        for (Q in 0:2) {
            if (p == 0 && q == 0 && Q == 0) next # Skip the case where p = q = Q = 0

            # Construct model name
            model_name <- paste0("data.fit", p, q, Q)

            # Fit and plot the model
            fit_and_plot(p, q, Q, data, model_name, aic_bic_table)
        }
    }
}</pre>
# Print the AIC and BIC table
print(aic_bic_table)
```