JEE MAIN

MODERN PHYSICS - PART 1 FORMULAE

ATOMIC PHYSICS

Now that's how you REVISE

-Mohit Goenka, IIT Kharagpur

List of Content on Eduniti YouTube Channel:

- 1. PYQs Video Solution Topic Wise:
 - (a) JEE Main 2018/2020/2021 Feb & March
- 2. Rank Booster Problems for JEE Main
- 3. Part Test Series for JEE Main
- 4. JEE Advanced Problem Solving Series
- 5. Short Concept Videos
- 6. Tips and Tricks Videos
- 7. JEE Advanced PYQs

.....and many more to come

1. BOHR'S POSTULATES (for single et system)

12

2. BOHR'S MODEL (1et system)

3. ENERGY LEVEL OF HYDROGEN TYPE ATOM (1e system)

$$E_{\eta} = -13.6 \times \frac{Z^2}{\eta^2} \text{ eV}$$

 $\eta \rightarrow \infty$

E=0

$$-0.852^{2}$$
 $\eta=4$

$$-|.5|z^2$$
 $\eta = 3$

$$-3.4z^{2}$$
 $\eta = 2$

(EN) EDUNITI

4. EXCITATION OF ATOM

L, For eto absorb energy and excite from n, to n2, the energy absorbed must be exactly equal to Enz-En,

$$\mu = 3$$
 -1.51eV : $E_3 - E_1 = 12.09$ eV

5. A OF EMITTED RADIATION

$$\frac{hc}{d} = E_{\eta_2} - E_{\eta_1}$$

$$\frac{n_2}{n_1}$$

$$\Rightarrow \frac{1}{n} = RZ^{2} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right), R \sim 10^{7} m^{-1}$$

$$\Rightarrow Rydberg's$$
TMPORTANT: Constant

IMPORTANT:

(a)
$$\lambda = \frac{12430 \text{ A}}{\Delta E \text{ (in eV)}} \text{ or } = \frac{1243 \text{ nm}}{\Delta E \text{ (in eV)}}$$

(b)
$$\Delta E = 12430 \text{ eV}$$
 $\partial (A^{\circ})$

(EN) EDUNITI

6. NUMBER OF SPECTRAL LINES

La possible number of photon energies emitted due to de excitation of e from $n = n_2$ to n = 1 state $= n_{c_2} = n(n-1)$

7. HYDROGEN SPECTRAL SERIES

