Lista de exercícios

Curso: Computação Professor: Rodrigo Lambert

Questão 1) (a) Seja a função real $f(x) = -ax^2 + b$ a > 0, b > 0. Calcule o ponto de máximo de f.

(b) Use a letra (a) para resolver o exercício seguinte. Em uma apresentação aérea de acrobacias, um avião a jato descreve um arco no formato de uma parábola de acordo com a seguinte função $y = -x^2 + 60x$. Determine a altura máxima atingida pelo avião.

Questão 2) Seja X_1, \dots, X_n A.A. com $X_i \sim exp(\lambda)$. Calcule o EMV de λ . Questão 3) Seja X_1, \dots, X_n A.A. com $X_i \sim N(\mu, \sigma^2)$. Calcule o EMV de mu e o EMV de σ^2 .

Questão 4) Seja X_1, \dots, X_n A.A. com $X_i \sim Bin(n, p)$. Calcule o EMV de p.

Questão 5) Seja X_1, \dots, X_n A.A. com $X_i \sim Poisson(\lambda)$. Calcule o EMV de λ .

Questão 6) Seja X_1, \dots, X_n A.A. com $X_i \sim Unif[0, \theta]$. Calcule o EMV de θ .

Questão 7) (a) Seja X_1, \ldots, X_n uma amostra aleatória da variável aleatória exponencial com parâmetro $\theta > 0$, cuja função densidade de probabilidade é dada por $f(x) = \theta e^{-\theta}$, x > 0. Seja $X_{(1)} = min\{X_1, \ldots, X_n\}$. Detemine as densidade de $X_{(1)}$.

(b)Sejam X e Y duas variáveis aleatórias com distribuições exponenciais com parâmetros $\theta > 0$ e $\lambda > 0$, respectivamente. Calcule P(X > Y).

Questão 8) Seja X_1, \dots, X_n A.A. com X_i com densidade f(x) definida abaixo. Calcule o EMV de λ .

$$f(x) = \frac{x^2 e^{-x/\lambda}}{2\lambda^3} \; ; \; x > 0 \; , \; \lambda > 0$$
$$f(x) = 0 \; , \; \text{caso contrário}$$

Questão 8) Enuncie e prove o método dos mínimos quadrados.

Questão 9) Suponha que eu tenha, para $x \in f(x)$ os seguintes dois conjuntos observados: $x : \{0, 1, 2, 3\} \in f(x) : \{1, 2, 4, 8\}.$

Usando o método dos mínimos quadrados de maneira conveniente, aproxime os pontos da tabela acima por uma função do tipo a+bx.

Questão 10) Seja X_1, \ldots, X_n uma amostra aleatória da variável aleatória exponencial com parâmetro $\theta > 0$. Econtre o estimador de momentos para θ .

Questão 11) Seja X_1, \ldots, X_n uma amostra aleatória da distribuição de Poisson com parâmetro λ . Encontre o estimador de momentos (EM) para λ .

Questão 12) Seja X_1, \ldots, X_n uma amostra aleatória da distribuição uniforme em $(\mu - \sqrt{3}\sigma, \mu + \sqrt{3}\sigma)$. com μ e σ desconhecidos. Use o método dos momentos para estimar μ e σ .

Questão 13) Seja X_1, \ldots, X_n uma amostra aleatória da distribuição Bernoulli com parâmetro p. Use o método dos momentos para encontrar o estimador \hat{p}

Questão 14) Seja X_1, \ldots, X_n uma amostra aleatória da distribuição Binomial com parâmetros n e p. Use o método dos momentos para estimar n e p.