

BÀI GIẢNG CƠ SỞ DỮ LIỆU Ứng dụng bao đóng của tập thuộc tính

Nguyễn Hải Châu

Khoa Công nghệ Thông tin Trường Đại học Công nghệ, ĐHQGHN

Định nghĩa bao đóng của tập thuộc tính

- Giả sử \mathcal{F} là một tập phụ thuộc hàm trên lược đồ quan hệ $R(A_1,A_2,...,A_n)$ và $X\subseteq\{A_1,A_2,...,A_n\}$ là một tập thuộc tính của R
- Bao đóng của tập thuộc tính X dưới F, ký hiệu là X⁺ được định nghĩa như sau:

$$X^+ = \{A, A \text{ là thuộc tính của } R, \mathcal{F} \models X \to A\}$$
 (1)

• Khi cần chỉ rõ tập phụ thuộc hàm, chúng ta ký hiệu bao đóng của X dưới $\mathcal F$ là $X^+_{\mathcal F}$

Tìm bao đóng của tập thuộc tính

```
Thuật toán 1: Thuật toán tìm bao đóng X^+ của X dưới \mathcal{F}
Vào: Lược đồ quan hê R, tập phụ thuộc hàm \mathcal{F} và tập thuộc tính X
Ra: Tập thuộc tính X^+ là bao đóng của X
X^{+} = X:
repeat
    OldX^+ = X^+:
    for mỗi phu thuộc hàm Y \rightarrow Z trong \mathcal{F} do
        if X^+ \supset Y then
        X^+ = X^+ \cup Z;
        end
    end
until OldX^+ = X^+;
```

4

5

Lược đồ quan hệ và các phụ thuộc hàm

Lược đồ quan hệ $R(A_1, A_2, A_3, A_4, A_5, A_6)$ có tập phụ thuộc hàm: $\mathcal{F} = \{\{A_1, A_2\} \rightarrow \{A_3, A_4, A_5, A_6\}, A_4 \rightarrow A_2, A_6 \rightarrow A_1\}$

Chương trình cài đặt thuật toán tìm bao đóng

```
$ ./introdb closure vidu 1 0 A6 # Chi in kết quả
Tâp thuộc tính của 'vidu' = {A1, A2, A3, A4, A5, A6}
Tâp thuộc tính X = \{A6\}
Tâp phu thuộc hàm = \{A1, A2\} - \{A3, A4, A5, A6\}; \{A4\} - \{A2\}; \{A6\} - \{A1\}
Bao đóng X+ = \{A6, A1\}
$ ./introdb closure vidu 1 1 A6 # In các bước thực hiện
Tâp thuộc tính của 'vidu' = {A1, A2, A3, A4, A5, A6}
Tâp thuộc tính X = \{A6\}
Tâp phu thuôc hàm = \{A1, A2\} - \{A3, A4, A5, A6\}; \{A4\} - \{A2\}; \{A6\} - \{A1\}
Khởi đông thuật toán tính bao đóng. Tập thuộc tính X = \{A6\}
X + = \{A6\}
```

Chương trình cài đặt thuật toán tìm bao đóng

```
Lăp 1:
oldX+ = \{A6\}
X + = \{A6\}
    Lặp 1.1:
X + = \{A6\}
Y->Z = \{A1, A2\}->\{A3, A4, A5, A6\}
X+ không chứa Y.
    Lăp 1.2:
X + = \{A6\}
Y -> Z = \{A4\} -> \{A2\}
X+ không chứa Y.
    Lăp 1.3:
X+ = \{A6\}
Y -> Z = \{A6\} -> \{A1\}
X+ chứa Y, do đó X+ = X+ hơp Z. Giá tri mới của X+ = \{A6, A1\}
X+ != oldX+, tiếp tuc.
```

Chương trình cài đặt thuật toán tìm bao đóng

```
Lăp 2:
oldX+ = \{A6, A1\}
X + = \{A6, A1\}
    Lăp 2.1:
X+ = \{A6, A1\}
Y->Z = \{A1, A2\}->\{A3, A4, A5, A6\}
X+ không chứa Y.
    Lăp 2.2:
X+ = \{A6, A1\}
Y -> Z = \{A4\} -> \{A2\}
X+ không chứa Y.
    Lăp 2.3:
X+ = \{A6, A1\}
Y -> Z = \{A6\} -> \{A1\}
X+ chứa Y, do đó X+ = X+ hợp Z. Giá trị mới của X+ = \{A6, A1\}
X+ == oldX+, dừng thuật toán.
Bao đóng X+ = \{A6, A1\}
```

Ứng dụng 1: Kiểm tra qui tắc suy diễn

- Qui tắc suy diễn $\mathcal{F} \models \{A_2, A_6\} \rightarrow A_5$ đúng hay sai?
- Ta cần kiếm tra {A₂, A₆}⁺_F có chứa A₅ hay không?
- Thực hiện thuật toán tính bao đóng:
 - \$./introdb closure vidu 1 0 A2 A6 Tập thuộc tính của 'vidu' = {A1, A2, A3, A4, A5, A6} Tâp thuộc tính $X = \{A2, A6\}$ Tập phụ thuộc hàm = $\{A1, A2\} - \{A3, A4, A5, A6\}; \{A4\} - \{A2\}; \{A6\} - \{A1\}$ Bao đóng $X + = \{A2, A6, A1, A3, A4, A5\}$
- $\{A_2, A_6\}_{\mathcal{I}}^+$ chứa A_5 , vây qui tắc suy diễn đúng

Ứng dụng 1: Kiểm tra qui tắc suy diễn

- Qui tắc suy diễn $\mathcal{F} \models A_6 \rightarrow A_5$ đúng hay sai?
- Ta cần kiểm tra $\{A_6\}_{\mathcal{F}}^+$ có chứa A_5 hay không?
- Thực hiện thuật toán tính bao đóng:
 - \$./introdb closure vidu 1 0 A6 Tập thuộc tính của 'vidu' = {A1, A2, A3, A4, A5, A6} Tâp thuộc tính $X = \{A6\}$ Tâp phu thuộc hàm = $\{A1, A2\} - \{A3, A4, A5, A6\}; \{A4\} - \{A2\}; \{A6\} - \{A1\}$ Bao đóng $X+ = \{A6, A1\}$
- $\{A_6\}_{\mathcal{F}}^+$ không chứa A_5 , vậy qui tắc suy diễn sai

Ứng dung 2: Kiểm tra tập thuộc tính là siêu khóa

• $\{A_2, A_6\}$ có là siêu khóa không?

```
$ ./introdb closure vidu 1 0 A2 A6
Tâp thuộc tính của 'vidu' = {A1, A2, A3, A4, A5, A6}
Tập thuộc tính X = \{A2, A6\}
Tập phụ thuộc hàm = \{A1, A2\} \rightarrow \{A3, A4, A5, A6\}; \{A4\} \rightarrow \{A2\}; \{A6\} \rightarrow \{A1\}
Bao đóng X+ = \{A2, A6, A1, A3, A4, A5\}
```

• $\{A_2, A_6\}_{\mathcal{F}}^+ = \{A_1, A_2, A_3, A_4, A_5, A_6\}$ do đó $\{A_2, A_6\}$ là siêu khóa

Ứng dụng 2: Kiểm tra tập thuộc tính là khóa

- $\{A_2, A_6\}$ là siêu khóa; $\{A_2, A_6\}$ có là khóa không?
- Tim $\{A_6\}_{\mathcal{F}}^+$:

```
$ ./introdb closure vidu 1 0 A6
Tập thuộc tính của 'vidu' = {A1, A2, A3, A4, A5, A6}
Tâp thuộc tính X = \{A6\}
Tập phụ thuộc hàm = \{A1, A2\} - \{A3, A4, A5, A6\}; \{A4\} - \{A2\}; \{A6\} - \{A1\}
Bao đóng X+ = \{A6, A1\}
```

• Tim $\{A_2\}_{\mathcal{F}}^+$:

```
$ ./introdb closure vidu 1 0 A2
Tâp thuộc tính của 'vidu' = {A1, A2, A3, A4, A5, A6}
Tập thuộc tính X = \{A2\}
Tập phụ thuộc hàm = \{A1, A2\} - \{A3, A4, A5, A6\}; \{A4\} - \{A2\}; \{A6\} - \{A1\}
Bao đóng X+ = \{A2\}
```

• $\{A_2\}_{\mathcal{F}}^+$ và $\{A_6\}_{\mathcal{F}}^+$ đều là tập con thực sự của $\{A_1, A_2, A_3, A_4, A_5, A_6\}$, do đó $\{A_2, A_6\}$ là siêu khóa tối thiểu \rightarrow là khóa

Ứng dụng 3: Tìm khóa của lược đồ quan hệ

Thực hiện thuật toán tìm một khóa:

Lần lặp	Tập thuộc tính	Bao đóng
1	A1, A2, A3, A4, A5, A6	A1, A2, A3, A4, A5, A6
2	A2, A3, A4, A5, A6	A2, A3, A4, A5, A6, A1
3	A3, A4, A5, A6	A3, A4, A5, A6, A2, A1
4	A4, A5, A6	A4, A5, A6, A2, A1, A3
5	A5, A6	A5, A6, A1
6	A4, A6	A4, A6, A2, A1, A3, A5
7	A4	A4, A2

• Khóa tìm được: $\{A_4, A_6\}$