Cohomología en topología algebraica

O cómo aprendí a dejar de preocuparme y amar los métodos algebraicos

José Cuevas Barrientos

1. Cohomología y comparación

Definición 1.1: Sea X un espacio topológico, A un DIP y M un A-módulo. Sea $C_q(X)$ el A-módulo libre generado por los q-simplejos singulares, vale decir, las funciones continuas $\Delta^q \to X$. Denotemos el grupo de q-cadenas singulares y q-cocadenas singulares de X a coeficientes en G como

$$C_q^{\mathrm{sing}}(X;G) := C_q(X) \otimes_A M, \qquad C_{\mathrm{sing}}^q(X;M) := \mathrm{Hom}_A(C_q(X);M).$$

Dada una q-cadena $a=\sum_{i=1}^m g_i f_i\in C_q^{\mathrm{sing}}(X;M)$, donde $f_i\colon \Delta^q\to X$ son simplejos, y dada una q-cocadena $c\in C_{\mathrm{sing}}^q(X;M)$ se define

$$\langle c, a \rangle = \left\langle c, \sum_{i=1}^{n} g_i f_i \right\rangle = \sum_{i=1}^{n} g_i c(f_i).$$

Más generalmente, si M,N son un par de A-módulos con una aplicación bilineal $\langle -,-\rangle\colon M\times N\to S$ definimos la aplicación bilineal siguiente sobre cadenas y cocadenas:

$$\langle -, - \rangle \colon C^n_{\operatorname{sing}}(X; M) \times C^{\operatorname{sing}}_n(X; N) \longrightarrow S$$

$$\left(c, \sum_{i=1}^n g_i f_i\right) \longmapsto \sum_{i=1}^n \langle g_i, c(f_i) \rangle.$$

Asociado a un q-simplejo Δ^q tenemos sus **caras** $\Gamma_j \colon \Delta^{q-1} \hookrightarrow \Delta^q$ con $0 \le j \le q$ dadas por

$$\Gamma_j(x_1,\ldots,x_{q-1}) := (x_1,\ldots,x_j-1,\underset{(j)}{0},x_j,\ldots,x_q),$$

las cuales son claramente continuas. Luego, asociamos operadores de borde:

$$\partial_q \colon C_q^{\text{sing}}(X; M) \longrightarrow C_{q-1}^{\text{sing}}(X; M)$$

$$\sum_{i=1}^n g_i f_i \longmapsto \sum_{i=1}^n g_i \left(\sum_{j=0}^q (-1)^j \Gamma_j \circ f_j \right)$$

Fecha: 7 de septiembre de 2023.

$$\delta^{q} \colon C^{q}_{\operatorname{sing}}(X; M) \longrightarrow C^{q+1}_{\operatorname{sing}}(X; M)$$
$$c \longmapsto \left(f \mapsto \sum_{j=0}^{q} (-1)^{j} \Gamma_{j} \circ f_{j} \right)$$

Proposición 1.2: Sea X un espacio topológico y M un módulo sobre un DIP A. Entonces $(C^{\text{sing}}_{\bullet}(X; M), \partial_{\bullet})$ es un complejo de cadenas llamado singular y $(C^{\bullet}_{sing}(X; M), \delta^{\bullet})$ es un complejo de cocadenas, también llamado singular.

Definición 1.3: Sea X un espacio topológico y M un módulo sobre un DIP A. Los grupos $H_q^{\text{sing}}(X;M) := H_q(C_{\bullet}^{\text{sing}}(X;M))$ y $H_{\text{sing}}^q(X;M) :=$ $H^q\big(C^{ullet}_{\mathrm{sing}}(X;M)\big)$ se llaman grupo de homología y de cohomología singular resp.

Proposición 1.4: Sea M un módulo sobre un DIP A y $h: X \to Y$ una función continua. Entonces se induce un funtor contravariante

$$H^q_{\mathrm{sing}}(h; M) \colon H^q_{\mathrm{sing}}(Y; M) \to H^q_{\mathrm{sing}}(X; M).$$

DEMOSTRACIÓN: Veamos primero que induce un funtor en el complejo de cocadenas singulares. En efecto, dada $c \in C^q_{\mathrm{sing}}(Y; M)$ y dado $f \colon \Delta^q \to X$ definimos $C^q_{\text{sing}}(h)(c)(f) := c(f \circ h)$. Es claro que $C^q_{\text{sing}}(h;M)$ es un homomorfismo de complejos de cocadenas y, por tanto, desciende a grupos de cohomología.

Como ya hemos estudiado a la homología, enfatizaremos en las características de la cohomología singular.

Proposición 1.5: Sea X un espacio topológico, M un módulo sobre un DIP $A \vee q$ entero. Se cumplen:

- 1. Si M es inyectivo (e.g., si $A = \mathbb{Z}$, podemos exigir divisible), entonces $H^q_{\mathrm{sing}}(X;M) = \mathrm{Hom}_A\left(H^{\mathrm{sing}}_q(X),M\right).$ 2. Si M es plano, entonces $H^q_{\mathrm{sing}}(X;M) = H^q_{\mathrm{sing}}(X) \otimes_A M$.

DEMOSTRACIÓN: Basta notar que dado un complejo de cadenas de grupos abelianos C_{\bullet} uno puede ir construyendo $H_q(C_{\bullet})$ mediante sucesiones exactas, que luego se preservan bajo $\text{Hom}_A(-,M)$. Para la segunda basta notar que $C^{\bullet}_{\mathrm{sing}}(X; M) \cong C^{\bullet}_{\mathrm{sing}}(X) \otimes M.$

La proposición anterior no es cierta en general y el fallo de este isomorfismo se mide por el siguiente teorema:

Teorema 1.6 (de coeficientes universales): Sea X un espacio topológico y M un módulo sobre un DIP A. Entonces tenemos las siguientes sucesiones exactas canónicas que se escinden:

$$0 \leftarrow \operatorname{Hom}_A(H_q^{\operatorname{sing}}(X), M) \leftarrow H_{\operatorname{sing}}^q(X; M) \leftarrow \operatorname{Ext}(H_{q-1}^{\operatorname{sing}}(X), M) \leftarrow 0$$

$$0 \longrightarrow H^q_{\mathrm{sing}}(X;A) \otimes_A M \longrightarrow H^q_{\mathrm{sing}}(X;M) \longrightarrow \mathrm{Tor}(H^{q+1}_{\mathrm{sing}}(X;A),M) \longrightarrow 0$$

DEMOSTRACIÓN: La demostración es análoga a la de los grupos de homología singular. Está detallado en FOMENKO y FUCHS [1, págs. 193-195]. □

Esto induce isomorfismos

$$\begin{split} H^q_{\mathrm{sing}}(X;M) &\cong \mathrm{Hom}(H^{\mathrm{sing}}_q(X),M) \oplus \mathrm{Ext}(H^{\mathrm{sing}}_{q-1}(X),M) \\ &\cong (H^q_{\mathrm{sing}}(X;A) \otimes M) \oplus \mathrm{Tor}(H^{q+1}_{\mathrm{sing}}(X;A),M), \end{split}$$

no obstante, estos no son canónicos, pues las secciones/retracciones de las sucesiones exactas del enunciado no son canónicos.

En general, nos gustaría trabajar con coeficientes en módulos M que no sean inyectivos, por lo que, una buena alternativa para asegurarse de que el $\operatorname{Ext}(H^{\operatorname{sing}}_{\bullet}(X), M) = 0$ es que los grupos de homología singular $H^{\operatorname{sing}}_{\bullet}(X)$ sean objetos proyectivos (e.g., libres). Así, tenemos nuestros primeros ejemplos:

Ejemplo: Sea $X=\mathbb{R}^q$ y M un A-módulo cualquiera. Entonces los grupos de cohomología singular a valores en M son:

$$H_q^{\text{sing}}(\mathbb{R}^n; M) = \begin{cases} M, & q = 0, \\ 0, & q \neq 0. \end{cases}$$

Ejemplo: Sea $X = \mathbb{S}^n$ y M un A-módulo cualquiera. Los grupos de cohomología son:

$$H_{\operatorname{sing}}^{q}(\mathbb{S}^{n}; M) = \begin{cases} M, & q \in \{0, n\}, \\ 0, & q \notin \{0, n\}. \end{cases}$$

Con un cálculo más también podemos sacar más ejemplos:

Lema 1.7: Sea $G = \mathbb{Z}^r \oplus G_{\text{tors}}$ un grupo abeliano finitamente generado. Entonces $\text{Ext}(G, \mathbb{Z}) \cong G_{\text{tors}}$.

Demostración: En primer lugar empleamos la sucesión exacta

$$0 \longrightarrow \mathbb{Z}^r \longrightarrow G \longrightarrow G_{\text{tors}} \longrightarrow 0$$

y le aplicamos $\text{Hom}(-,\mathbb{Z})$, de modo que obtenemos la sucesión exacta:

$$0 = \operatorname{Ext}(\mathbb{Z}^r, \mathbb{Z}) \longleftarrow \operatorname{Ext}(G, \mathbb{Z}) \stackrel{\sim}{\longleftarrow} \operatorname{Ext}(G_{\operatorname{tors}}, \mathbb{Z}) \longleftarrow \operatorname{Ext}^2(\mathbb{Z}^r, \mathbb{Z}) = 0,$$

donde el primero es cero pues \mathbb{Z}^r es libre, luego proyectivo y $\operatorname{Ext}(\mathbb{Z}^r, -) = 0$ (cfr. Hilton y Stammbach [2], cor. III.5.5) y el último es cero pues \mathbb{Z} es un DIP. Empleamos la presentación inyectiva de \mathbb{Z} :

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

y expandimos la sucesión exacta larga por $\text{Hom}(G_{\text{tors}}, -)$ (cfr. [2] thm. III.5.2):

$$0 \longrightarrow \operatorname{Hom}(G_{\operatorname{tors}}, \mathbb{Z}) \longrightarrow \operatorname{Hom}(G_{\operatorname{tors}}, \mathbb{Q}) = 0 \longrightarrow \operatorname{Hom}(G_{\operatorname{tors}}, \mathbb{Q}/\mathbb{Z}) -$$

$$\sim \longrightarrow \operatorname{Ext}(G_{\operatorname{tors}}, \mathbb{Z}) \longrightarrow \operatorname{Ext}(G_{\operatorname{tors}}, \mathbb{Q}) = 0 \longrightarrow \cdots$$

y finalmente es fácil ver que $\operatorname{Ext}(G_{\operatorname{tors}}, \mathbb{Z}) \cong \operatorname{Hom}(G_{\operatorname{tors}}, \mathbb{Q}/\mathbb{Z}) \cong G_{\operatorname{tors}}.$

Corolario 1.7.1: Sea X un espacio topológico tal que sus grupos de homología $H_q^{\text{sing}}(X)$'s son finitamente generados. Entonces:

$$H^q_{\mathrm{sing}}(X; \mathbb{Z}) \cong \underbrace{\frac{H^{\mathrm{sing}}_q(X)}{H^{\mathrm{sing}}_q(X)_{\mathrm{tors}}}}_{\mathrm{parte\ libre}} \oplus H^{\mathrm{sing}}_{q-1}(X)_{\mathrm{tors}}.$$

2. Un ejemplo geométrico

Como \mathbb{RP}^n es un complejo CW es fácil calcular que sus complejo de cadenas singulares es

$$C^{\operatorname{sing}}_{\bullet}(\mathbb{RP}^n)$$
: $\mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{\times 2} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{\times 2} \cdots$

(Comenzando en q=0.) De modo que sus grupos de homología singular son:

$$H_q^{\text{sing}}(\mathbb{RP}^n) = \begin{cases} \mathbb{Z}, & q = 0 \text{ y } q = n \text{ si es impar,} \\ \mathbb{Z}/2\mathbb{Z}, & 0 < q < n, \ q \text{ par,} \\ 0, & \text{en otro caso.} \end{cases}$$

Y el corolario 1.7.1 nos da que los grupos de cohomología singular son:

$$H^{q}_{\text{sing}}(\mathbb{RP}^{n}) = \begin{cases} \mathbb{Z}, & q = 0 \text{ y } q = n \text{ si es impar,} \\ \mathbb{Z}/2\mathbb{Z}, & 0 < q < n, \ q \text{ par,} \\ 0, & \text{en otro caso.} \end{cases}$$

Se puede obtener una mejor conclusión cambiando los coeficientes al cíclico $C_2 := \mathbb{Z}/2\mathbb{Z}$. Para ello tenemos que hacer un breve cálculo primero:

Ejemplo: $(\text{Tor}(C_2, C_2) = C_2)$ Considere la sucesión exacta de grupos abelianos

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \longrightarrow C_2 \longrightarrow 0.$$

Luego tensorizamos por C_2 :

Ahora, nótese que ω es inyectivo y como im $\omega = \ker(0) = C_2$ también es suprayectivo, por lo que es un isomorfismo.

Empleando esto con el teorema de coeficientes universales sobre los grupos de homologías obtenemos el muchísimo más lindo:

$$H_q^{\text{sing}}(\mathbb{RP}^n; C_2) = \begin{cases} C_2, & 0 \le q \le n, \\ 0, & q > n. \end{cases}$$

Empleando por última vez el teorema de coeficientes universales, ahora sobre cohomología, nos da

$$H_{\operatorname{sing}}^{q}(\mathbb{RP}^{n}; C_{2}) = \begin{cases} C_{2}, & 0 \leq q \leq n, \\ 0, & q > n. \end{cases}$$

Proposición 2.1: Sea $f: \mathbb{RP}^n \to \mathbb{RP}^m$ una función continua tal que $\pi_1(f): \pi_1(\mathbb{RP}^n) \to \pi_1(\mathbb{RP}^m)$ no es nulo. Entonces $n \leq m$.

DEMOSTRACIÓN: Como $\pi_1(\mathbb{RP}^1) = \mathbb{Z}$ y $\pi_1(\mathbb{RP}^m) = C_2$ con $m \geq 2$, la proposición es cierta en éste caso. Por el teorema de Hurewicz (cfr. MAY [3, pág. 118]) tenemos que $H_1^{\text{sing}}(f;\mathbb{Z}) \colon H_1^{\text{sing}}(\mathbb{RP}^n;\mathbb{Z}) \to H_1^{\text{sing}}(\mathbb{RP}^m;\mathbb{Z})$ es no nulo y, por el teorema de coeficientes universales, esto es válido cambiando los coeficientes y en cohomología.

Sea $x \in H^1_{\text{sing}}(\mathbb{RP}^m; C_2)$ el único elemento no nulo, de modo que $f^*(x) \in H^1(\mathbb{RP}^n; C_2)$ es no nulo. Luego, haciendo el producto de Kolmogorov-Alexander tenemos que

$$f^*(x)^n = f^*(x^n),$$

donde el elemento de la izquierda está en $H^n(\mathbb{RP}^n; C_2)$ y es no nulo, mientras que el de la derecha está en $H^n(\mathbb{RP}^m; C_2)$. Si m < n, entonces $H^n(\mathbb{RP}^m; C_2) = 0$ lo que es absurdo, luego necesariamente $m \ge n$.

Para el siguiente resultado necesitaremos el teorema siguiente:

Teorema 2.2 (fundamental de recubrimientos): Sea $p: (\tilde{X}, \tilde{x}) \to (X, x)$ un recubrimiento y sea $f: (Y, y) \to (X, x)$ una función continua. Entonces f admite una elevación $\tilde{f}: (Y, y) \to (\tilde{X}, \tilde{x})$ syss

$$f_*[\pi_1(Y,y)] \subseteq p_*[\pi_1(\tilde{X},\tilde{x})] \subseteq \pi_1(X,x).$$

En cuyo caso, es única.

Demostración: Cfr. May [3, pág. 28].

Teorema 2.3: Si $n > m \ge 1$, entonces no existen funciones continuas antipodales $g: \mathbb{S}^n \to \mathbb{S}^m$.

Demostración: Supongamos que g existe. Construyamos el siguiente diagrama conmutativo, donde las flechas verticales son recubrimientos:

$$\begin{array}{c|c}
\mathbb{S}^n & \xrightarrow{g} & \mathbb{S}^m \\
p_n \downarrow & & \downarrow p_m \\
\mathbb{RP}^n & \xrightarrow{f} & \mathbb{RP}^m
\end{array}$$

Luego $\pi_1(f) = 0 : \mathbb{RP}^n \to \mathbb{RP}^m$ por la proposición anterior. Como \mathbb{S}^m es un recubrimiento, existe $\tilde{f} : \mathbb{RP}^n \to \mathbb{S}^m$ tal que $f = \tilde{f} \circ p_m$ (por el teorema). Sea $s \in \mathbb{S}^n$, entonces $\tilde{f}(p_n(s)) = \tilde{f}(p_n(-s))$ debe ser g(s) o g(-s). Luego, para algún $t \in \{\pm s\}$ tenemos que $\tilde{f}(p_n(t)) = g(t)$, de modo que $g = p_n \circ \tilde{f}$ pues las elevaciones son únicas si coinciden en un punto, lo cual es absurdo pues $p_n \circ \tilde{f}$ manda antipodales en un solo punto, mientras que g preserva los antipodales.

Teorema 2.4 (Borsuk-Ulam): Para toda función continua $f: \mathbb{S}^n \to \mathbb{R}^n$ existe un $x \in \mathbb{S}^n$ tal que f(-x) = f(x).

DEMOSTRACIÓN: Si $f(x) \neq f(-x)$ para todo punto, entonces podemos construir $g: \mathbb{S}^n \to \mathbb{S}^{n-1}$ donde g(x) es el punto que corta a \mathbb{S}^{n-1} en el segmento desde $\vec{0}$ hasta f(x) - f(-x). Esta función es claramente continua y antipodal, lo cual es absurdo por el teorema anterior.

Referencias

- 1. Fomenko, A. T. y Fuchs, D. B. *Homotopical Topology* (Springer International Publishing, 2016).
- 2. Hilton, P. J. y Stammbach, U. A Course in Homological Algebra Graduate Texts in Mathematics 4 (Springer-Verlag New York, 1971).
- MAY, J. P. A Concise Course in Algebraic Topology (2022). Correo electrónico: josecuevasbtos@uc.cl

Departamento de Matemáticas, Pontificia Universidad Católica de Chile. Facultad de Matemáticas, 4860 Av. Vicuña Mackenna, Macul, RM, Chile URL : josecuevas.xyz

¹Es decir, tales que para todo $x \in \mathbb{S}^n$ se cumpla que g(-x) = -g(x).