Feuille 1 - Automates finis et expressions rationnelles

Informatique Théorique 2 - Unité J1INPW11 Licence 3 - Université Bordeaux 1

Exercice 1: Langage associé à une expression régulière

Donner tous les mots de tailles 0, 1, 2, 3, et 4 des langages réguliers suivants :

- 1. $(a + ba)^*$
- 2. $a(aa + b(ab)^*a)^*a$

Exercice 2: Expression régulière d'un langage

Sur l'alphabet $\{a, b\}$, donner une expression régulière pour

- 1. le langage des mots qui entre deux occurrences de la lettre a ont un nombre pair de b.
- 2. le langage des mots tels que toutes les (éventuelles) occurrences de a précèdent toutes les (éventuelles) occurrences de b.

Exercice 3: Langage reconnu par un automate

Donner tous les mots de longueurs 0, 1, 2, 3 et 4 reconnus par les automates de la figure 1 et 2.

FIGURE 1 – Automate A_1

FIGURE 2 – Automate A_2

Exercice 4: De l'automate à la définition mathématique

Pour les automates de la figure 1 et 2, donnez leurs définitions mathématiques.

Exercice 5: De la définition mathématique à l'automate

Pour chacune des deux définitions mathématiques suivantes, dessiner l'automate qui le représente.

$$\mathcal{A}_{3} = \begin{pmatrix} Q = \{1, 2, 3\}, & q_{i} = 1, & F = \{2, 3\}, & \delta : \begin{cases} (1, a) \to 2 \\ (1, b) \to 2 \\ (2, c) \to 2 \\ (2, a) \to 3 \\ (3, b) \to 1 \end{pmatrix}$$

$$\mathcal{A}_4 = \left(Q = \{1, 2, 3\}, \quad q_i = 2, \quad F = \{2\}, \quad \delta : \begin{cases} (1, a) \to 1 \\ (1, b) \to 2 \\ (3, a) \to 3 \\ (2, b) \to 1 \end{cases} \right)$$

Exercice 6: Quelques exemples d'automates

Donner, si possible, un automate et une expression régulière pour les langages suivants construits sur l'alphabet $\{a,b,c\}$:

- 1. tous les mots;
- 2. tous les mots sans b;
- 3. tous les mots contenant au plus une occurrence de la lettre a;
- 4. tous les mots contenant au moins une occurrence de la lettre a;
- 5. tous les mots dans lesquels chaque a est suivi d'un b;
- 6. pour un mot donné x, $\{x\}$;
- 7. tous les mots de longueur paire;
- 8. tous les mots avec le prefixe ab;
- 9. tous les mots avec le suffixe ab;

Démontrer que les automates donnés reconnaissent bien ces langages et les expressions régulières les décrivent.

Exercice 7: Exercice plus difficile et recommandé en travail personnel

Étant donné un alphabet A et un mot x de A^* , construire un automate déterministe à |x| états qui reconnaît A^*x .

Exercice 8: Quelques identités sur les langages

Soient K et L deux langages et $L^+ = \bigcup_{i>0} L^i$.

Est-ce que les identités suivantes sont-elles correctes?

- 1. $L^+ = LL^*$
- 2. $LL^* = L^* \setminus \{\epsilon\}$
- 3. $L^* = \epsilon + LL^*$
- 4. $(KL)^*K = K(LK)^*$

Justifier vos réponses.

Exercice 9: Expression régulière d'un automate

Donnez sous forme d'expressions régulières les langages reconnus par les automates de la figure 1 et 2. Vous calculerez ces expressions régulières avec deux méthodes différentes (algorithme de résolution des équations, l'algorithme McNaughton et Yamada, ...).

Exercice 10: Automate d'une expression régulière

A l'aide de l'algorithme de Glushkov, donnez des automates finis (sans transitions ϵ) qui reconnaissent les langages suivants :

1.
$$aa(a + ab)*b$$

- 2. $(a+ab)^*(\epsilon+ab)$
- 3. $aab^*(ab)^* + ab^* + a^*bba$
- 4. $a((ab)^*cb^*)^* + a(ababacb^*)^*a^*$

Exercice 11: Automate deterministe ou non déterministe?

Les automates suivant sont-ils déterministe ou non déterministe? Pourquoi?

Figure 3 – Automate \mathcal{A}_5

Figure 4 – Automate \mathcal{A}_6

Donner des exemples d'automate déterministe et non déterministe.

Exercice 12: Déterminisation d'un automate

- 1. Proposer un automate non deterministe qui reconnait les mots qui se terminent par *ab*. Determiniser cet automate.
- 2. Déterminiser les automates de l'exercice 11.