게임 기획 및 디자인

MOBA 게임의 범위형 단발 스킬 연구: <이터널 리턴>을 중심으로**

고서연, 손기훈, 정내훈 한국공학대학교 게임공학과 {kodg2002, landmark72, nhjung}@tukorea.ac.kr

Korea Game Society

Seo-Yeon Ko, Kee-Hoon Sohn, Nai-Hoon Jung Dept. of Game Engineering, Tech University of Korea

요 약

본 연구에서는 배틀로얄 MOBA 게임 <이터널 리턴>의 '범위형 단발 스킬'의 성능을 정량적으로 분석하고, 게임 벨런스 조정을 위한 평가 기준을 제시하였다. 스킬의 성능을 결정하는 요소들을 적중률 관련 요소와 비관련 요소로 분류한 후 각 요소가 스킬 성능에 미치는 영향력을 회귀 분석을 통해 수치화했다. 이를 통해 스킬 성능을 평가하는 점수 체계를 구축하고, 게임 벨런스 조정에 참고할 수 있는 명확한 수치적 지침을 도출했다.

ABSTRACT

This study presents a quantitative analysis of area-of-effect (AoE) single-hit skills in <Eternal Return>, a battle royale MOBA game. We categorized skill performance factors into two groups: those affecting hit probability and those affecting other performance aspects. Through regression analysis, we quantified the impact of each factor on overall skill effectiveness. Based on these findings, we developed a scoring system for evaluating skill performance and established numerical guidelines for game balance adjustments.

Keywords : Game Design(게임 디자인), Game Balance(게임 밸런스), Battle System(전투시스템), Regression Analysis(회귀 분석)

Received: Revised: Accepted:

Corresponding Author: Kee-Hoon Sohn(Tech University of Korea)

F-mail: landmark72@fulkorea.ac.kr

ISSN: 1598-4540 / eISSN: 2287-8211

© The Korea Game Society. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.otg/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Korea Game Society JKGS 1

- MOBA 게임의 범위형 단발 스킬 연구: <이터널 리턴>을 중심으로-

1. 서 론

을 수치화하여 밸런스 조정의 근거를 마련하다.

MOBA(Multiplayer Online Battle Arena) 장르는 팀 기반의 전략적 전투를 핵심으로 하며, 게임 내 캐릭터 간의 균형, 즉 밸런스가 게임의 재미와 지속성에 큰 영향을 미치는 핵심 요소이다. 라이엇 게임즈의 <리그 오브 레전드(League of Legends, 이하 LoL)>는 정기적인 밸런스 패치를 통해 게임의 역동성을 유지하고 있으며, 이는 사용자 이탈 방지 및 게임 만족도 향상에 기여하는 것으로 나타났다 (참고: MOBA 게임 뉴시즌 Update를 위한 게임 만족 및 밸런스 연구 등 관련 통계자료). 특히, 밴(Ban) 시스템이 없는 님블뉴런의 <이터널 리턴(Eternal Return)>과 같은 배틀로얄 MOBA 게임에서는 캐릭터 간 밸런스가 더욱 중요한 의미를 갖는다.

<이터널 리턴>을 포함한 많은 MOBA 게임에는 '논타켓 스킬'이 존재한다. 논타켓 스킬은 타켓 팅 스킬이나 기본 공격과 달리, 사용자의 예측 및 조준 능력이 요구되며, 적중률이라는 별도의 성능지표를 갖는다. 논타켓 스킬의 작중률은 피해 범위, 사거리, 시전 시간, 쿨타임(재사용 대기시간), 투사체 속도 등 다양한 요소의 영향을 받기 때문에, 밸런스 조정이 더욱 까다롭다. 이러한 요소들의 미세한 변화가 스킬 성능에 큰 영향을 미칠 수 있으므로, 정량적 분석을 통한 밸런스 조정 기준 마련이필요하다.

본 연구는 <이터널 리턴>의 범위형 단발 스킬을 대상으로, 스킬 성능에 영향을 미치는 요소를 정량적으로 분석하고, 이를 기반으로 밸런스 조정을 위한 객관적인 지침을 제시하고자 한다. 이를위해 스킬 성능을 적중률, 피해량, 유틸리티의 세가지 범주로 나누고, 각 범주에 영향을 미치는 하위 요소를 분석한다. 특히, 적중률에 영향을 미치는 4가지 요소(피해 범위, 사거리, 시전 시간, 쿨타임)와 적중률 간의 상관관계를 회귀 분석을 통해규명하고, 각 요소의 변화가 적중률에 미치는 영향

2. 선행 연구

2.1 논타겟 스킬 유형 및 분류

논타켓팅 스킬은 다양한 기준에 따라 분류할 수 있다. 본 연구에서는 스킬의 적용 방식과 효과를 기준으로 다음과 같이 상위 4가지, 하위 2가지 유형으로 분류한다.

[Table 1] The Status of Dept. of Game (표 제목, 내용 영문표기) [8.5포인트, 줄간140]

Term	Number
two-year course	50
three-year course	50

2.2 범위형 단발 스킬의 정의 및 선정 이유

본 연구에서는 <이터널 리턴>의 스킬 중 다음 조건을 만족하는 스킬을 '범위형 단발 스킬'로 정 의한다.

- 1. 타격 범위: 스킬 사용 시 특정 범위(원형, 사 각형, 삼각형 등) 내의 적에게 피해를 입힌다.
- 2. 단발성 타격: 스킬 사용 시 단 한 번만 피해 를 입힌다(다단 히트, 지속 피해 제외).
- 3. 고유 사거리: 스킬 사용 시 고유의 사거리(스킬 지정 가능 범위)를 가지며 해당 범위 내에서 위치 지정이 가능하다.

범위형 단발 스킬을 분석 대상으로 선정한 이유 는 다음과 같다.

- 1. 단순성: 투사체 속도를 고려해야 하는 투사형 스킬, 기폭 시간을 고려해야 하는 설치형 스킬에 비해 상대적으로 분석이 용이하다.
- 2. 대표성: <이터널 리턴>에서 범위형 단발 스

킬은 상당수 존재하며, 게임 밸런스에 미치는 영향 이 크다.

3. 명확성: 다단 히트 스킬과 달리 공격 횟수, 공격 간 시간차 등의 추가적인 고려 없이 단일 공 격의 효과만을 분석할 수 있다.

2.3 범위형 단발 스킬의 구성 요소

범위형 단발 스킬은 다음과 같은 요소로 구성된다.

- 1. 데미지: 스킬 적중 시 적에게 입히는 피해량
- 2. 피해 범위: 스킬이 영향을 미치는 공간의 크기 (원형, 부채꼴, 직사각형 등)
- 3. 사거리: 스킬을 지정할 수 있는 최대 거리
- 4. 재사용 대기시간: 스킬을 다시 사용할 수 있을 때까지 걸리는 시간
- 5. 시전 시간: 스킬 키 입력부터 실제 피해가 발생하기까지 걸리는 시간

본 연구에서는 자원 소모량(스테미나, 체력, 고유 자원 등)은 분석 대상에서 제외한다. 자원 소모 량은 스킬의 성능에 영향을 미치는 요소이지만, 캐릭터별 자원 시스템의 다양성과 복잡성으로 인해별도의 연구 주제로 다루는 것이 적절하다고 판단하였다.

3. 연구 방법

3.1 연구 가설

본 연구에서는 범위형 단발 스킬의 적중률과 관 련하여 다음과 같은 가설을 설정하였다.

H1: 범위형 단발 스킬의 특성(피해 범위, 사거 리, 시전 시간, 쿨타임)은 스킬 적중률에 유의미한 영향을 미칠 것이다.

H1a: 범위형 단발 스킬의 피해 범위는 스킬 적중률에 양(+)의 영향을 미칠 것이다. H1b: 범위형 단발 스킬의 사거리는 스킬 적 중률에 양(+)의 영향을 미칠 것이다.

H1c: 범위형 단발 스킬의 시전 시간은 스킬 적중률에 음(-)의 영향을 미칠 것이다.

H1d: 범위형 단발 스킬의 재사용 대기시간 은 스킬 적중률에 음(-)의 영향을 미칠 것이다.

3.2 데이터 수집 및 분석

- 데이터 수집
- 1) 적중률: 최상위 티어 장인 플레이어들의 리플 레이 영상을 분석하여 각 범위형 단발 스킬별 100 회 사용 시 적중 횟수를 기록, 적중률을 산출한다.
- 2) 피해량: 게임 내 데이터를 기반으로 각 스킬 의 초반, 중반, 후반 피해량을 추출한다.
- 3) 피해 범위, 사거리, 시전 시간, 쿨타임: 게임 내 데이터를 기반으로 각 스킬의 해당 수치를 추 출한다.

2. 데이터 분석

- 1) 적중률 분석: 각 스킬별 적중률을 독립변수, 피해 범위, 사거리, 시전 시간, 쿨타임을 종속변수 로 설정하여 다중 회귀 분석을 실시한다.
- ① 회귀 분석 결과를 바탕으로 각 요소가 적중률에 미치는 영향력(회귀 계수)을 산출하고, 통계적 유의성을 검증한다.
- ② 적중률 점수 구간을 설정하고, 각 구간별로 4 요소의 적정 범위를 제시한다.
- 2) 피해량 분석: 초반, 중반, 후반 피해량 데이터 에 프리드먼-디아코니스 규칙을 적용하여 각 구간 별 적정 점수 기준(히스토그램 구간)을 설정한다.
- ① 각 구간에 해당하는 피해량 범위를 도출한다.
- 3) 유틸리티 분석: 각 스킬의 효과를 분석하여 점수화한다(하드 CC 또는 무적 부여: 3점, 기타 효과: 2점, 효과 없음: 1점).

3.2 밸런스 조정 가이드라인 제시

- 1. 적중률 회귀 분석 결과, 피해량 구간 설정 결과, 유틸리티 접수를 종합적으로 고려하여 범위형 단발 스킴의 밸런스 조정 지침을 도출한다.
- 2. 적중률, 피해량을 조정하기 위한 구체적인 수 치(피해 범위, 사거리, 시전 시간, 쿨타임, 피해량) 를 제안한다.

REFERENCES(10.5포인트, 줄간300)

(영문표기) [8.5포인트, 줄간140]

- [1] Soon-Sin Lee, "A Study on the development of the game industry", Korea Game Society, Vol. 2, No. 1, pp18-21, 2005.
- [2] Kil-Dong Hong, "A Study on the development of the domestic game industry", Korea Game Society, Vol. 3, No. 1, pp18-21, 2006.

홍길동(Hong, Kil Dong) [11포인트, 줄간130]

저자 사진

약 력: 2006

ㅇㅇ대학교 ㅇㅇ 박사 (특정 연도에 약력)

2010-2012 ㅇㅇ기업 대표

(특정 기간 내에 약력)

2014-현재 ㅇㅇ대학교 ㅇㅇㅇ과 교수

(특정 연도부터 <u>현재</u>까지의 약력)

관심분야: 기획, 그래픽[8포인트, 줄간130]