

Práctica 0

Incertidumbre, unidades y vectores

Preguntas

Responda las siguientes preguntas, explicando con claridad sus razonamientos.

- 1) ¿Qué fenómenos físicos podrían servir para definir un estándar de tiempo?.
- 2) ¿Cuáles son las unidades de volumen?
- 3) Explique las diferencias entre exactitud y precisión.
- 4) ¿Puede encontrar dos vectores de distinta longitud y que su suma sea nula? ¿Qué restricciones de longitud son necesarias para que tres vectores tengan resultante cero?
- 5) Sean **A** y **B** dos vectores distintos de cero. Explique cuándo se anula el producto escalar y el producto vectorial entre ellos.
- 6) Sea **A** un vector cualquiera distinto de cero ¿Por qué **A**/A es un vector unitario y qué dirección tiene?
- De al menos tres ejemplos de magnitudes vectoriales y otros tres de magnitudes escalares.

Problemas

- 1) Conversiones de unidades: Realice las siguientes conversiones de unidades según se indique.
 - a) $0.473~\mathrm{L}$ a pulgadas cúbicas sabiendo que $1\mathrm{L}{=}1000\mathrm{cm}^3~\mathrm{y}$ $1\mathrm{in}{=}2.54\mathrm{cm}$
 - b) La densidad del plomo es 11.3 g/cm, exprese en kg/m³.
 - c) $327 \text{ in}^3 \text{ a L v m}^3$
 - d) La velocidad de la luz en el vacío es c=300 10^3 km/s expresar esta cantidad en m/s, km/h y millas por minutos (mi/min)
- 2) Calcule el tiempo en nanosegundos (ns) que tarda en viajar la luz 1km en el vacío.
- 3) Calcular las siguientes operaciones expresando el resultado en notación científica y redondeando al número correcto de cifras significativas.
 - a) $(2.00 \times 10^1) \times (6.10 \times 10^1)$
 - b) $3,141592 \times (4 \times 10^5)$
 - c) $(2.32 \times 10^3)/(1.16 \times 10^8)$
 - d) $(5.14 \times 10^3) + (2.78 \times 10^2)$
 - e) 27.153 + 138.2 11.74
- 4) Un trozo rectangular de aluminio mide $(5,10\pm0,01)$ cm de longitud y $(1,90\pm0,01)$ cm de ancho.
 - a) Calcule el área y la incertidumbre del área.
 - b) Verifique que la incertidumbre fraccionaria del área sea igual a la suma de las incertidumbres fraccionarias de la longitud y el ancho.

- 5) Para atravesar un descampado hay que caminar 120 m hacia el este y 60 m hacia el sur. Realice un esquema del recorrido. Si se pudiera atravesar el descampado en línea recta encuentre cuál es la distancia recorrida y la orientación.
- 6) Para un conjunto de vectores del plano: A=(1cm i, 2cm j), B=(-2cm i, 0cm j), C= (3.5cm i,-1cm j), D= (-1cm i, -1.5cm j)
 - a) Representarlos gráficamente.
 - b) Mediante métodos gráficos encontrar el vector suma. Representarlo gráficamente.
 - c) Encontrar la magnitud y dirección para cada uno de ellos, como así también para el vector suma.

- 7) Sean los vectores como se esquematizan en la figura. Las magnitudes de cada uno son: A = 10 cm, B = 0,25 cm, C = 8 cm y D = 9 cm. Los ángulos: α = 60°, β = 45°y γ =20°.
 - a) Encontrar las componentes en las direcciones x e y de cada uno de ellos. b) Encontrar las componentes, la magnitud y la dirección respecto del eje x
 - para el vector suma.
- 8) Para los vectores **A**=(1cm, 2cm, -2cm), **B**=(-2cm, 0cm,1cm), C=(3.5cm, -1cm, 1.5cm) realizar el producto escalar de ellos con los versores **i**, **j**, **k**. Explique el significado de realizar estos productos escalares.
- 9) Encuentre el producto vectorial $\mathbf{A} \times \mathbf{B} = \mathbf{C}$, con \mathbf{A} =(-1cm, 2cm, -2cm) y \mathbf{B} =(-2cm, -0.5cm, 1cm). Verifique que $\mathbf{B} \times \mathbf{A} =$ \mathbf{C}
- 10) Para la suma $\mathbf{A} + \mathbf{B} = \mathbf{C}$, el vector \mathbf{A} tiene una magnitud de 12 m y forma un ángulo de 40° respecto del semi-eje x positivo en sentido antihorario, y

el vector ${\bf C}$ tiene una magnitud de 15 m y forma un ángulo de 20° respecto del semi-eje x negativo, también medido en sentido antihorario.

- a) ¿cuál es la magnitud y el ángulo, relativo al semi-eje x positivo del vector ${\bf B}$?
- 11) Los vectores \mathbf{A} y \mathbf{B} tienen por coordenadas (en unidades arbitrarias), $\mathbf{A}\mathbf{x} = 3.2$, $\mathbf{A}\mathbf{y} = 1.6$, $\mathbf{B}\mathbf{x} = 0.5$ y $\mathbf{B}\mathbf{y} = 4.5$.
 - a) Encuentre el ángulo entre las direcciones de ambos vectores.
 - b) Encuentre las coordenadas de un vector \mathbf{C} que sea perpendicular a \mathbf{A} , esté en el plano xy y tenga una magnitud de 5.