University of Texas at Arlington Computer Science and Engineering

CSE5334- QUIZ #2 Data Mining

Instructor: Prof. Won Hwa Kim

Name:	
Student Number:	

Distribution of Marks

Question	Points	Score
1	30	
2	10	
3	15	
4	20	
5	25	
Total:	100	

CSE5334 QUIZ #2

- 1. (True or False) Identify if the following statements are True or False.
 - (a) (3 points) A probability distribution function (pdf) p(x) is always positive.
 - (b) (3 points) The sum of a pdf is always equal to 1.
 - (c) (3 points) From a joint probability p(x,y), the marginal distribution of x is defined as $\sum_{x} p(x,y)$.
 - (d) (3 points) p(x, y) = p(x)p(y).
 - (e) (3 points) k-means is a classification algorithm for supervised learning.
 - (f) (3 points) Binomial distribution models the number of successes x in a sequence of n dependent experiments.
 - (g) (3 points) Decision tree branches out based on attributes/features of a dataset.
 - (h) (3 points) Insufficient data points or too simple model can cause overfitting.
 - (i) (3 points) If there are two prediction models that return the same result, then the more complex one is better than the simpler one.
 - (j) (3 points) Decision tree cannot learn oblique decision boundaries.
- 2. Bayes Theorem. Somewhere, 51% of the adults are males. (It doesn't take too much advanced mathematics to deduce that the other 49% are females.) One adult is randomly selected for a survey.
 - (a) (2 points) What is the prior probability that the selected person is a male? What is the prior that the person is a female?

(b) (8 points) It is later learned that the survey was asking whether you smoke a cigar or not. Based on a prior investigation, it is known that 10% of males and 2% of females smoke cigars. Use this additional information to find the probability that the selected adult is a male. Show your work.

3. For data arriving at three different nodes in a decision tree, the class labels are given as the tables below.

class 0	2
class 1	98

class 0	57
class 1	43

class 0	75
class 1	25

(a) (7 points) Calculate GINI Index for each table.

(b) (8 points) Compute Entropy for each table.

4. You are given with a training dataset as below:

index	Refund	Martial Status	Taxable Income	Cheat
1	yes	single	125k	no
2	no	married	100k	no
3	no	single	70k	no
4	yes	married	120k	no
5	no	divorced	95k	yes
6	no	married	60k	no
7	yes	divorced	220k	no
8	no	single	85k	yes
9	no	married	75k	no
10	no	single	90k	yes

(a) (15 points) Construct a decision tree that classifies 'Cheating on Tax' status by considering the attributes in the following order: Martial status (married or not), Refund and Taxble income (greater than 80k or not).

(b) (5 points) A testing object comes in with the following attributes. What would the decision be using the decision tree from (a)?

index	Refund	Martial Status	Taxable Income	Cheat
1	yes	divorced	95k	?
2	no	single	70k	?

5. The probability distribution function of a Bernoulli distribution with a parameter μ as the probability of x=1 is given as

$$Bern(x|\mu) = \mu^x (1-\mu)^{1-x}$$
 (1)

(a) (5 points) Given i.i.d samples $\mathbf{x} = \{x_1, x_2, \cdots x_N\}$ from a Bernoulli distribution, construct a likelihood function, i.e., $L(\mu|\mathbf{x})$. Show your work.

(b) (10 points) What is the log-likelihood function of the likelihood function from (a)? Show your work.

(c) (10 points) Compute the maximum likelihood estimator (i.e., μ_{mle}) of the i.i.d samples $\mathbf{x} = \{x_1, x_2, \dots x_N\}$. Show your work.

CSE5334 QUIZ #2

This page is intentionally left blank to accommodate work that wouldn't fit elsewhere and/or scratch work.