# $11a_{53} (K11a_{53})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle 2.81606 \times 10^{31} u^{49} + 5.08261 \times 10^{31} u^{48} + \dots + 4.27879 \times 10^{31} b - 1.93634 \times 10^{30}, \\ -4.15334 \times 10^{31} u^{49} - 1.01081 \times 10^{32} u^{48} + \dots + 5.34849 \times 10^{30} a + 8.37501 \times 10^{31}, \ u^{50} + 3u^{49} + \dots - 8u - 10^{30} u^{48} + \dots + 10^{30} u^{48} + \dots + 10^{30} u^{48} + \dots + 10^{30} u^{49} + \dots$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 52 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle 2.82 \times 10^{31} u^{49} + 5.08 \times 10^{31} u^{48} + \dots + 4.28 \times 10^{31} b - 1.94 \times 10^{30}, \ -4.15 \times \\ 10^{31} u^{49} - 1.01 \times 10^{32} u^{48} + \dots + 5.35 \times 10^{30} a + 8.38 \times 10^{31}, \ u^{50} + 3u^{49} + \dots - 8u - 1 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 7.76545u^{49} + 18.8989u^{48} + \cdots - 81.3213u - 15.6586 \\ -0.658144u^{49} - 1.18786u^{48} + \cdots + 4.71381u + 0.0452544 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 8.42359u^{49} + 20.0868u^{48} + \cdots - 86.0351u - 15.7039 \\ -0.658144u^{49} - 1.18786u^{48} + \cdots + 4.71381u + 0.0452544 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 16.5522u^{49} + 40.5819u^{48} + \cdots - 183.821u - 29.5368 \\ -0.186883u^{49} - 0.0491952u^{48} + \cdots - 0.958193u + 0.142958 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -15.7480u^{49} - 38.5171u^{48} + \cdots + 171.517u + 27.4764 \\ 0.344150u^{49} + 0.520346u^{48} + \cdots - 2.34513u - 0.685097 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -13.2353u^{49} - 30.8285u^{48} + \cdots + 140.710u + 20.3271 \\ 3.76331u^{49} + 9.12279u^{48} + \cdots - 33.9045u - 5.65366 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $24.5612u^{49} + 62.4649u^{48} + \cdots 284.357u 43.1928$

#### (iv) u-Polynomials at the component

| Crossings                | u-Polynomials at each crossing             |
|--------------------------|--------------------------------------------|
| $c_1, c_4$               | $u^{50} + 2u^{49} + \dots - 11u + 1$       |
| $c_2$                    | $u^{50} + 18u^{49} + \dots - 71u + 1$      |
| <i>C</i> <sub>3</sub>    | $u^{50} + 5u^{49} + \dots + 12u + 4$       |
| $c_5, c_6, c_9$ $c_{10}$ | $u^{50} - 3u^{49} + \dots + 8u - 1$        |
| $c_7$                    | $u^{50} - 2u^{49} + \dots - 293u - 41$     |
| <i>C</i> <sub>8</sub>    | $u^{50} + 13u^{48} + \dots + 3545u - 3881$ |
| $c_{11}$                 | $u^{50} + 3u^{49} + \dots - 2u - 1$        |

#### (v) Riley Polynomials at the component

| Crossings                | Riley Polynomials at each crossing                  |
|--------------------------|-----------------------------------------------------|
| $c_1, c_4$               | $y^{50} + 18y^{49} + \dots - 71y + 1$               |
| $c_2$                    | $y^{50} + 30y^{49} + \dots - 6727y + 1$             |
| $c_3$                    | $y^{50} - 15y^{49} + \dots + 24y + 16$              |
| $c_5, c_6, c_9$ $c_{10}$ | $y^{50} - 61y^{49} + \dots + 2y + 1$                |
| $c_7$                    | $y^{50} + 66y^{49} + \dots - 16723y + 1681$         |
| $c_8$                    | $y^{50} + 26y^{49} + \dots - 134903907y + 15062161$ |
| $c_{11}$                 | $y^{50} + 3y^{49} + \dots + 2y + 1$                 |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$        | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape        |
|-----------------------------|---------------------------------------|-------------------|
| u = 0.937098 + 0.462135I    |                                       |                   |
| a = 0.211512 + 0.192941I    | 4.82985 + 5.83927I                    | 0                 |
| b = 0.858299 - 0.573619I    |                                       |                   |
| u = 0.937098 - 0.462135I    |                                       |                   |
| a =  0.211512 - 0.192941I   | 4.82985 - 5.83927I                    | 0                 |
| b = 0.858299 + 0.573619I    |                                       |                   |
| u = -0.839672 + 0.647094I   |                                       |                   |
| a = -0.81593 - 1.41627I     | 3.56400 - 2.80079I                    | 0                 |
| b = 0.661316 - 0.821509I    |                                       |                   |
| u = -0.839672 - 0.647094I   |                                       |                   |
| a = -0.81593 + 1.41627I     | 3.56400 + 2.80079I                    | 0                 |
| b = 0.661316 + 0.821509I    |                                       |                   |
| u = 0.912689 + 0.553110I    |                                       |                   |
| a = -1.10695 + 1.60264I     | 3.32747 + 11.61540I                   | 0                 |
| b = 0.696189 + 1.071020I    |                                       |                   |
| u = 0.912689 - 0.553110I    |                                       |                   |
| a = -1.10695 - 1.60264I     | 3.32747 - 11.61540I                   | 0                 |
| b = 0.696189 - 1.071020I    |                                       |                   |
| u = -0.976441 + 0.595366I   |                                       |                   |
| a = 0.230649 + 0.449741I    | 3.35842 + 2.29493I                    | 0                 |
| b = 0.650338 + 0.887749I    |                                       |                   |
| u = -0.976441 - 0.595366I   |                                       |                   |
| a = 0.230649 - 0.449741I    | 3.35842 - 2.29493I                    | 0                 |
| b = 0.650338 - 0.887749I    |                                       |                   |
| u = 0.841656 + 0.047389I    |                                       |                   |
| a =  0.1347570 - 0.0218999I | 4.03403 + 1.68694I                    | 17.7316 - 3.8537I |
| b = -0.920135 - 0.479166I   |                                       |                   |
| u = 0.841656 - 0.047389I    |                                       |                   |
| a = 0.1347570 + 0.0218999I  | 4.03403 - 1.68694I                    | 17.7316 + 3.8537I |
| b = -0.920135 + 0.479166I   |                                       |                   |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.013239 + 0.817870I |                                       |                    |
| a = 0.14125 - 1.78357I    | 0.50489 - 7.07418I                    | 6.05066 + 7.49946I |
| b = 0.652193 - 1.000830I  |                                       |                    |
| u = -0.013239 - 0.817870I |                                       |                    |
| a = 0.14125 + 1.78357I    | 0.50489 + 7.07418I                    | 6.05066 - 7.49946I |
| b = 0.652193 + 1.000830I  |                                       |                    |
| u = 0.777120 + 0.168669I  |                                       |                    |
| a = 1.10335 - 1.09992I    | 2.23469 + 4.31809I                    | 12.5022 - 9.4172I  |
| b = -0.722164 - 1.091670I |                                       |                    |
| u = 0.777120 - 0.168669I  |                                       |                    |
| a = 1.10335 + 1.09992I    | 2.23469 - 4.31809I                    | 12.5022 + 9.4172I  |
| b = -0.722164 + 1.091670I |                                       |                    |
| u = 0.682472 + 0.374309I  |                                       |                    |
| a = 0.57023 - 1.65391I    | -1.85305 + 4.44722I                   | 3.76604 - 8.28097I |
| b = -0.099953 - 1.191010I |                                       |                    |
| u = 0.682472 - 0.374309I  |                                       |                    |
| a = 0.57023 + 1.65391I    | -1.85305 - 4.44722I                   | 3.76604 + 8.28097I |
| b = -0.099953 + 1.191010I |                                       |                    |
| u = -1.221480 + 0.183402I |                                       |                    |
| a = -1.080910 - 0.602437I | 1.05793 - 1.23765I                    | 0                  |
| b = 0.279012 - 0.809479I  |                                       |                    |
| u = -1.221480 - 0.183402I |                                       |                    |
| a = -1.080910 + 0.602437I | 1.05793 + 1.23765I                    | 0                  |
| b = 0.279012 + 0.809479I  |                                       |                    |
| u = -0.757757             |                                       |                    |
| a = -0.709973             | 1.34192                               | 6.63920            |
| b = -0.110317             |                                       |                    |
| u = -0.131668 + 0.739765I |                                       |                    |
| a = 0.376094 + 1.066140I  | 1.57561 - 1.87137I                    | 8.35358 + 3.09221I |
| b = 0.687246 + 0.639785I  |                                       |                    |
|                           |                                       |                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.131668 - 0.739765I |                                       |                     |
| a = 0.376094 - 1.066140I  | 1.57561 + 1.87137I                    | 8.35358 - 3.09221I  |
| b = 0.687246 - 0.639785I  |                                       |                     |
| u = -0.685724 + 0.043728I |                                       |                     |
| a = 4.76222 - 1.81115I    | 1.19764 - 2.12710I                    | -32.7806 - 10.7013I |
| b = -0.527660 + 0.858592I |                                       |                     |
| u = -0.685724 - 0.043728I |                                       |                     |
| a = 4.76222 + 1.81115I    | 1.19764 + 2.12710I                    | -32.7806 + 10.7013I |
| b = -0.527660 - 0.858592I |                                       |                     |
| u = 0.199761 + 0.536069I  |                                       |                     |
| a = -1.28134 + 2.18752I   | -3.29175 - 1.28959I                   | -1.33459 + 1.03958I |
| b = 0.039661 + 1.022140I  |                                       |                     |
| u = 0.199761 - 0.536069I  |                                       |                     |
| a = -1.28134 - 2.18752I   | -3.29175 + 1.28959I                   | -1.33459 - 1.03958I |
| b = 0.039661 - 1.022140I  |                                       |                     |
| u = -0.333573 + 0.304189I |                                       |                     |
| a = -1.30977 + 1.12638I   | 0.612959 - 1.077400I                  | 6.64880 + 6.13369I  |
| b = -0.233321 + 0.353112I |                                       |                     |
| u = -0.333573 - 0.304189I |                                       |                     |
| a = -1.30977 - 1.12638I   | 0.612959 + 1.077400I                  | 6.64880 - 6.13369I  |
| b = -0.233321 - 0.353112I |                                       |                     |
| u = 1.57172 + 0.04490I    |                                       |                     |
| a = -0.40787 - 1.60676I   | 7.32051 + 1.86287I                    | 0                   |
| b = -0.155069 - 0.894721I |                                       |                     |
| u = 1.57172 - 0.04490I    |                                       |                     |
| a = -0.40787 + 1.60676I   | 7.32051 - 1.86287I                    | 0                   |
| b = -0.155069 + 0.894721I |                                       |                     |
| u = -1.62108 + 0.08215I   |                                       |                     |
| a = 0.341548 + 1.070770I  | 6.10353 - 6.02446I                    | 0                   |
| b = -0.158199 + 1.345830I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -1.62108 - 0.08215I   |                                       |                    |
| a = 0.341548 - 1.070770I  | 6.10353 + 6.02446I                    | 0                  |
| b = -0.158199 - 1.345830I |                                       |                    |
| u = -0.345144 + 0.142770I |                                       |                    |
| a = -3.26141 - 2.20278I   | 0.63823 + 1.46904I                    | 4.89468 - 6.43467I |
| b = -0.487438 - 0.764766I |                                       |                    |
| u = -0.345144 - 0.142770I |                                       |                    |
| a = -3.26141 + 2.20278I   | 0.63823 - 1.46904I                    | 4.89468 + 6.43467I |
| b = -0.487438 + 0.764766I |                                       |                    |
| u = 1.63598 + 0.01535I    |                                       |                    |
| a = 2.27440 + 0.34670I    | 9.40555 + 2.37088I                    | 0                  |
| b = -0.602748 - 0.867884I |                                       |                    |
| u = 1.63598 - 0.01535I    |                                       |                    |
| a = 2.27440 - 0.34670I    | 9.40555 - 2.37088I                    | 0                  |
| b = -0.602748 + 0.867884I |                                       |                    |
| u = -1.65081 + 0.03847I   |                                       |                    |
| a = 0.853099 + 0.632218I  | 10.75670 - 5.06095I                   | 0                  |
| b = -0.82834 + 1.18201I   |                                       |                    |
| u = -1.65081 - 0.03847I   |                                       |                    |
| a = 0.853099 - 0.632218I  | 10.75670 + 5.06095I                   | 0                  |
| b = -0.82834 - 1.18201I   |                                       |                    |
| u = 1.65329               |                                       |                    |
| a = -0.266847             | 9.89733                               | 0                  |
| b = -0.430236             |                                       |                    |
| u = -1.66404 + 0.01144I   |                                       |                    |
| a = 0.376644 - 0.005262I  | 12.84420 - 1.90653I                   | 0                  |
| b = -1.132200 + 0.490348I |                                       |                    |
| u = -1.66404 - 0.01144I   |                                       |                    |
| a = 0.376644 + 0.005262I  | 12.84420 + 1.90653I                   | 0                  |
| b = -1.132200 - 0.490348I |                                       |                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -1.68368 + 0.15912I   |                                       |                    |
| a = -1.17332 - 1.00102I   | 12.2572 - 14.4160I                    | 0                  |
| b = 0.738252 - 1.117030I  |                                       |                    |
| u = -1.68368 - 0.15912I   |                                       |                    |
| a = -1.17332 + 1.00102I   | 12.2572 + 14.4160I                    | 0                  |
| b = 0.738252 + 1.117030I  |                                       |                    |
| u = -1.68783 + 0.12889I   |                                       |                    |
| a = -0.224075 - 0.279217I | 13.9293 - 8.1748I                     | 0                  |
| b = 0.973382 + 0.580176I  |                                       |                    |
| u = -1.68783 - 0.12889I   |                                       |                    |
| a = -0.224075 + 0.279217I | 13.9293 + 8.1748I                     | 0                  |
| b = 0.973382 - 0.580176I  |                                       |                    |
| u = 1.68474 + 0.18629I    |                                       |                    |
| a = -1.027680 + 0.904887I | 12.25070 + 6.06384I                   | 0                  |
| b = 0.706180 + 0.945723I  |                                       |                    |
| u = 1.68474 - 0.18629I    |                                       |                    |
| a = -1.027680 - 0.904887I | 12.25070 - 6.06384I                   | 0                  |
| b = 0.706180 - 0.945723I  |                                       |                    |
| u = 1.71548 + 0.13705I    |                                       |                    |
| a = -0.311148 - 0.002274I | 12.82000 + 0.55523I                   | 0                  |
| b = 0.740020 - 0.757612I  |                                       |                    |
| u = 1.71548 - 0.13705I    |                                       |                    |
| a = -0.311148 + 0.002274I | 12.82000 - 0.55523I                   | 0                  |
| b = 0.740020 + 0.757612I  |                                       |                    |
| u = -0.052112 + 0.257497I |                                       |                    |
| a = -2.38696 + 2.67757I   | -0.08326 - 2.77748I                   | 2.22169 + 1.37022I |
| b = -0.544579 + 0.964237I |                                       |                    |
| u = -0.052112 - 0.257497I |                                       |                    |
| a = -2.38696 - 2.67757I   | -0.08326 + 2.77748I                   | 2.22169 - 1.37022I |
| b = -0.544579 - 0.964237I |                                       |                    |

II. 
$$I_2^u = \langle b^2 - b + 1, \ a + 1, \ u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -b - 1 \\ b - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -b + 1 \\ b - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -b \\ b - 1 \end{pmatrix}$$

- $a_{11} = \begin{pmatrix} -1\\1 \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4b + 11

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1, c_2$            | $u^2 + u + 1$                  |
| $c_3$                 | $u^2$                          |
| $c_4, c_7, c_8$       | $u^2 - u + 1$                  |
| $c_5, c_6$            | $(u+1)^2$                      |
| $c_9, c_{10}, c_{11}$ | $(u-1)^2$                      |

## (v) Riley Polynomials at the component

| Crossings                        | Riley Polynomials at each crossing |
|----------------------------------|------------------------------------|
| $c_1, c_2, c_4$ $c_7, c_8$       | $y^2 + y + 1$                      |
| $c_3$                            | $y^2$                              |
| $c_5, c_6, c_9$ $c_{10}, c_{11}$ | $(y-1)^2$                          |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$     | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|--------------------------|---------------------------------------|--------------------|
| u = -1.00000             |                                       |                    |
| a = -1.00000             | 1.64493 + 2.02988I                    | 9.00000 - 3.46410I |
| b = 0.500000 + 0.866025I |                                       |                    |
| u = -1.00000             |                                       |                    |
| a = -1.00000             | 1.64493 - 2.02988I                    | 9.00000 + 3.46410I |
| b = 0.500000 - 0.866025I |                                       |                    |

III. u-Polynomials

| Crossings      | u-Polynomials at each crossing                            |
|----------------|-----------------------------------------------------------|
| $c_1$          | $ (u^2 + u + 1)(u^{50} + 2u^{49} + \dots - 11u + 1) $     |
| $c_2$          | $(u^2 + u + 1)(u^{50} + 18u^{49} + \dots - 71u + 1)$      |
| $c_3$          | $u^2(u^{50} + 5u^{49} + \dots + 12u + 4)$                 |
| $c_4$          | $(u^2 - u + 1)(u^{50} + 2u^{49} + \dots - 11u + 1)$       |
| $c_5, c_6$     | $((u+1)^2)(u^{50} - 3u^{49} + \dots + 8u - 1)$            |
| $c_7$          | $ (u^2 - u + 1)(u^{50} - 2u^{49} + \dots - 293u - 41) $   |
| c <sub>8</sub> | $(u^2 - u + 1)(u^{50} + 13u^{48} + \dots + 3545u - 3881)$ |
| $c_9, c_{10}$  | $((u-1)^2)(u^{50} - 3u^{49} + \dots + 8u - 1)$            |
| $c_{11}$       | $((u-1)^2)(u^{50}+3u^{49}+\cdots-2u-1)$                   |

IV. Riley Polynomials

| Crossings                | Riley Polynomials at each crossing                                                      |
|--------------------------|-----------------------------------------------------------------------------------------|
| $c_1, c_4$               | $(y^2 + y + 1)(y^{50} + 18y^{49} + \dots - 71y + 1)$                                    |
| $c_2$                    | $(y^2 + y + 1)(y^{50} + 30y^{49} + \dots - 6727y + 1)$                                  |
| $c_3$                    | $y^2(y^{50} - 15y^{49} + \dots + 24y + 16)$                                             |
| $c_5, c_6, c_9$ $c_{10}$ | $((y-1)^2)(y^{50} - 61y^{49} + \dots + 2y + 1)$                                         |
|                          | $(y^2 + y + 1)(y^{50} + 66y^{49} + \dots - 16723y + 1681)$                              |
| c <sub>8</sub>           | $(y^2 + y + 1)(y^{50} + 26y^{49} + \dots - 1.34904 \times 10^8y + 1.50622 \times 10^7)$ |
| $c_{11}$                 | $((y-1)^2)(y^{50}+3y^{49}+\cdots+2y+1)$                                                 |