quiz1

January 23, 2023

0.1 The Gapminder bubble chart

We will use the Gapminder data that you are seen in lab and in the tutorials. I have kept the attributes that are relevant to this exercise

Column	Description			
country	Country name			
year	Year of observation			
population	Population in the country at each year			
region	Continent the country belongs to			
sub_region	Sub-region the country belongs to			
income_group	Income group as specified by the world bank in 2018			
income	GDP per capita (in USD) adjusted for differences in purchasing power			
children_per_womanAverage number of children born per woman				

```
[2]:
                         year
            country
                               population region
                                                      sub_region income_group
    0 Afghanistan 1800-01-01
                                            Asia Southern Asia
                                                                         Low
                                   3280000
    1 Afghanistan 1801-01-01
                                            Asia Southern Asia
                                   3280000
                                                                         Low
    2 Afghanistan 1802-01-01
                                   3280000
                                            Asia Southern Asia
                                                                          Low
```

3	Afghanistan 1803-01-01		3280000	Asia	Southern Asia	Low	
4	Afghanistan 1804-01-01		3280000	Asia	Southern Asia	Low	
	life_expectancy	income	children_pe	r_woman	child_mortality	pop_density	\
0	28.2	603		7.0	469.0	NaN	
1	28.2	603		7.0	469.0	NaN	
2	28.2	603		7.0	469.0	NaN	
3	28.2	603		7.0	469.0	NaN	
4	28.2	603		7.0	469.0	NaN	
	co2_per_capita	years_in	_school_men	years_	in_school_women		
0	NaN		NaN		NaN		
1	NaN		NaN		NaN		
2	NaN		NaN		NaN		
3	NaN		NaN		NaN		
4	NaN		NaN		NaN		

0.1.1 Question 1

Filter the dataframe to only keep observations from the year 2018 and from countries in the region of Asia and assign this to a new variable name gm_2018_asia. Dates can be matched as strings when filtering. Finally show the first 15 rows of the dataframe.

```
[3]: gm_2018_asia = gm.query("year == 2018 & region == 'Asia'")

# Print the top 15 rows of the data frame
gm_2018_asia.head(15)
```

	gm_2018_asia.head(15)						
[3]:		country	year	populatio	n region	sub_reg	ion \
	218	Afghanistan	2018-01-01	3640000	00 Asia	Southern As	sia
	1532	Armenia	2018-01-01	293000	00 Asia	Western As	sia
	2189	Azerbaijan	2018-01-01	992000	00 Asia	Western As	sia
	2627	Bahrain	2018-01-01	157000	00 Asia	Western As	sia
	2846	Bangladesh	2018-01-01	16600000	00 Asia	Southern As	sia
	4160	Bhutan	2018-01-01	81700	00 Asia	Southern As	sia
	5912	Cambodia	2018-01-01	1620000	00 Asia	South-eastern As	sia
	7226	China	2018-01-01	142000000	00 Asia	Eastern A	sia
	9197	Cyprus	2018-01-01	119000	00 Asia	Western A	sia
	12920	Georgia	2018-01-01	391000	00 Asia	Western A	sia
	15767	India	2018-01-01	135000000	00 Asia	Southern As	sia
	15986	Indonesia	2018-01-01	26700000	00 Asia	South-eastern As	sia
	16205	Iran	2018-01-01	8200000	00 Asia	Southern As	sia
	16424	Iraq	2018-01-01	3930000	00 Asia	Western A	sia
	16862	Israel	2018-01-01	845000	00 Asia	Western A	sia
		income_group	o life_expe	•		ildren_per_woman	\
	218	Lot	-	58.7	1870	4.33	
	1532	Upper middle	Э	76.0	8660	1.60	
	2189	Upper middle	Э	72.3 1	.6600	2.04	

2627	High	77.2	44300	1.99	
2846	Lower middle	73.4	3720	2.05	
4160	Lower middle	74.8	9930	1.99	
5912	Lower middle	69.3	3830	2.50	
7226	Upper middle	76.9	16000	1.64	
9197	High	80.8	32200	1.34	
12920	Lower middle	74.3	10100	1.98	
15767	Lower middle	69.1	6890	2.28	
15986	Lower middle	72.0	11700	2.31	
16205	Upper middle	76.5	17400	1.61	
16424	Upper middle	68.0	15900	4.25	
16862	High	82.4	33400	2.92	
	child_mortality	pop_density	co2_per_capita	years_in_school_men	\
218	65.90	55.7	NaN	NaN	
1532	12.90	103.0	NaN	NaN	
2189	30.30	120.0	NaN	NaN	
2627	7.10	2060.0	NaN	NaN	
2846	32.00	1280.0	NaN	NaN	
4160	29.50	21.4	NaN	NaN	
5912	27.00	92.0	NaN	NaN	
7226	9.95	151.0	NaN	NaN	
9197	2.45	129.0	NaN	NaN	
12920	10.60	56.2	NaN	NaN	
15767	41.10	455.0	NaN	NaN	
15986	25.00	147.0	NaN	NaN	
16205	13.90	50.4	NaN	NaN	
16424	29.20	90.6	NaN	NaN	
16862	3.33	391.0	NaN	NaN	
242	years_in_school_	='			
218		NaN			
1532		NaN			
2189		NaN			
2627		NaN			
2846		NaN			
4160		NaN			
5912		NaN			
7226		NaN			
9197		NaN			
12920		NaN NaN			
15767 15986		NaN NaN			
16205		NaN			
16424		NaN			
16862		NaN			
10007		IVaIV			

0.1.2 Question 2

Using the gm 2018 asia dataframe, create a bubble chart with the following use the circle mark

```
<code>income</code> using the vertical position channel (x) 
<code>income_group</code> using the horizontal position channel (y)
```

<code>children per woman</code>using the color channel (note depending on the data attrib

```
<code>sub_region</code> using the size channel
```

```
[30]: chart_fert_money = alt.Chart(gm_2018_asia).mark_point().encode(
          x = "income:Q", # vertical position channel
          y = "income_group:0", # horizontal position channel
          color = "children_per_woman:Q",
          size = "sub_region:N"
      # Show the plot
      chart_fert_money
```


0.1.3 Questions 3 - 6

Critique the visualization above by doing the following:

Describe the data attributes and the types used for each data

```
Discuss the benefits of using certain channels to encode specific attributes
```

- Name one question that the visualization is good at answering in its current state
- Name one question that the visualization is not good at answering

3 Describe the data attributes and the types used for each data

The data attributes here are income, income_group, children_per_woman, and sub_region. Each of their attribute meaning is the following:

• sub region Sub-region the country belongs to

- income group Income group [as specified by the world bank in 2018]
- income GDP per capita (in USD) adjusted for differences in purchasing power
- children_per_woman Average number of children born per woman

The types of each are quantitative, ordinal, quantitative, nominal, in that order. This would make sense, since income consists of actual or real-value quantity of money people earned, income_group has natural groupings of levels, where High is top, and Low is min; Children_per_woman also could be expressed by real-valued quantity, lastly, sub_region consists of different categories, where there's no such who comes first so nominal would be its type.

0.3 4 Discuss the benefits of using certain channels to encode specific attributes

Using bubble chart with a known scale of axis could already explain information on income quite well, the use of color and size channel could help us ilustrate which group of people belonging to a sub-region gains more than others.

0.4 5 Name one question that the visualization is good at answering in its current state

Describing the groups of people income of Asia in the year of 2018

0.5 6 Name one question that the visualization is not good at answering

What are the chareteristics of people with most income? (And not effective order in ordinal channel), and the axis are inverted

0.5.1 Question 7

Using, your answer for the last question (i.e., Q6) redesign the bubble chart (from Q2) by changing which attribute each of the 4 given channels encode.

[29]:

