VIRTUALISATION: INTRODUCTION

MAJEURE INFRASTRUCTURE 2020

Plan

- Un peu d'histoire
- Concepts généraux
- Les techniques de virtualisation
- La virtualisation de serveurs et son environnement
- Le futur de la virtualisation
- Gérer un projet de virtualisation

Plan

- Un peu d'histoire
- Concepts généraux
- Les techniques de virtualisation
- La virtualisation de serveurs et son environnement
- Le futur de la virtualisation
- Gérer un projet de virtualisation

1

Définition (gartner) :

Abstraction de ressources qui permet de masquer leur caractère physique et leurs limites. Une ressource peut être un serveur, un PC, du stockage, du réseau, des applications, des OS. _

- Le concept n'est pas nouveau, les premières machines virtuelles datent du début des années 70 (mainframes IBM)
- L'hyperviseur VM-CP créait des VM identiques
- Début du temps partagé et de multics

Un peu d'histoire...

 NT supportait les machines virtuelles DOS (NTVDM)

 Windows 95 utilisait des machines virtuelles pour faire fonctionner des applications Windows 3.X et DOS

Quelques dates

- Années 60 : expérimentations
- Années 70 : hyperviseurs mainframe (CP/CMS en 1968)
- 1972 : mémoire virtuelle
- Années 90 : émulateurs « grand public »
- 1999 : VMware virtual platform

Quelques dates

2000 : Jails OpenBSD

□ 2001 : VMware ESX et GSX

2003 : Xen (opensource)

2005-2006 : Intel-VT et AMD-V

2008 : Hyper-V

2013 : Docker

Plan

- Un peu d'histoire
- Concepts généraux
- Les techniques de virtualisation
- La virtualisation de serveurs et son environnement
- Le futur de la virtualisation
- Gérer un projet de virtualisation

Avant

- □ Un serveur = une application
- Logiciels et plateformes matérielles sont liés
- Ressources sousutilisées = gaspillées

Après

- Abstraction du hardware (hyperviseur ou applicatif de virtualisation)
- On encapsule l'OS et les applications
- Suppression des barrières liées au hardware
- Optimisation des ressources

L'infrastructure virtuelle

Uniformisation

Réduction des coûts

 Le datacenter devient un « pool » de ressources : processeurs; stockage, réseau, électricité

La virtualisation en entreprise

- D'après Gartner, 75% des machines de type x86 sont des machines virtuelles (Juillet 2015)
- 20 millions de VM au niveau mondial (keynote Vmware 2012)
- Pourquoi les entreprises virtualisent :
 - Mieux utiliser les ressources des serveurs
 - Réduire les coûts d'exploitation
 - Déployer des environnements de tests
 - Réduire les temps de déploiement

Comment virtualiser

 Pour virtualiser, il faut utiliser une couche logicielle qui donne l'illusion aux machines virtuelles qu'elles fonctionnent sur de vraies machines.

C'est le rôle du Virtual Machine Monitor

Plan

- Un peu d'histoire
- Concepts généraux
- Les techniques de virtualisation
- La virtualisation de serveurs et son environnement
- Le futur de la virtualisation
- Gérer un projet de virtualisation

Anneau de protection

Emulateurs

Simulation complète du matériel (lent)

- On émule le matériel original (ou pas)
 - Ex : émulateurs de bornes d'arcade, développement android, ..

Emulateurs

Situation de base sur du x86 :

Emulateurs

Virtualisation complète

Simulation partielle du matériel (x86)

 Le VMM capture certaines instructions processeur

 Le système invité n'a pas conscience qu'il est virtualisé (pas de modifications)

Virtualisation complète non assistée

Virtualisation complète assistée (native)

Virtualisation assistées (Intel-VT, AMD-V)

 Permet de virtualiser complétement le processeur

Virtualisation complète assistée (native)

Paravirtualisation

 Le système invité a « conscience » qu'il est virtualisé

L'OS et ses drivers doivent être modifiés

Plus rapide que l'émulation

Paravirtualisation

Isolation (conteneurs)

 Le système invité a la même architecture que le système hôte

Les OS sont les mêmes (noyau)

Très forte consolidation

Limitations

Isolation (conteneurs), ex: Docker

Virtualisation d'applications

 On virtualise certains fichiers (dlls, ini) et on capture les appels à la base de registre

- Compilateurs just-in-time (java, python)
 - Utilisation de bytecode

Virtualisation du poste de travail

Le Virtual Desktops Infrastructure

- Portabilité
 - PC, tablette, smartphone

La puissance de calcul est déportée

Hosted Virtual Desktops = VDI dans le cloud

Hyperviseurs type 2

 L'hyperviseur fonctionne au dessus d'un système d'exploitation

- Exemples:
 - Virtualbox
 - VMware workstation

Hyperviseurs type 1

 L'hyperviseur fonctionne directement sur le matériel

- Exemples:
 - Vmware ESX
 - Hyper-V
 - Xen
 - KVM
 - □ IBM CP/CMS

La machine virtuelle

VM - BIOS

Une VM a son propre BIOS

Gestion des options de boot, ...

VM - réseau

 Une VM peut avoir de 0 à n cartes réseaux virtuelles

 Ces cartes réseaux sont connectées à un switch virtuel

 Les switchs virtuels sont connectés à des interfaces physiques

VM - stockage

 La machine voit un bus SCSI, SATA, SAS, IDE standard sur lequel est connecté 1 à n disque(s)

 En dehors de la VM, ces disques sont représentés par des fichiers

Gestion des licences

Dépend des constructeurs

Nécessite parfois d'isoler des VM

Plan

- Un peu d'histoire
- Concepts généraux
- Les techniques de virtualisation
- Scénarios d'utilisation
- La virtualisation des serveurs et son environnement
- Gérer un projet de virtualisation

Scénarios d'utilisation

Consolidation

Continuité d'activité

Gestion de la charge

Développement et tests

Consolidation

- Les serveur d'infrastructure sont de bonnes cibles, le web aussi
- Permet de faire cohabiter plusieurs générations d'OS sur une même plateforme
- Gestion des ressources par VM
- □ Hôtes moteurs de conteneurs (Docker, ...)

Continuité d'activité

Reprise après sinistre

Isolation de virus ou de bugs

Retour en arrière en cas de patch défectueux

Gestion de la charge

 On peut migrer vers une machine moins chargée en cas de besoin

 On peut déplacer tout un environnement d'une salle machine à une autre

Développement et tests

Déploiement rapide de plateformes

 Permet de reproduire des environnements complexes

Permet de tester plus de cas et de scénarios

Scale Up ou Scale Out?

Les deux !

- On peut facilement faire du scale up
 - Ajout de CPU de RAM, de stockage
- Scale out plus rapide, plus simple
 - Clone de VM, automatisation

Plan

- Un peu d'histoire
- Concepts généraux
- Les techniques de virtualisation
- Scénarios d'utilisation de la virtualisation
- La virtualisation des serveurs et son environnement
- Gérer un projet de virtualisation

L'environnement de la virtualisation

Les serveurs

Les salles machines

Le réseau

Le stockage

La gestion

Les serveurs

- Choisir les bons serveurs :
 - □ Contrôle à distance (iLo,iDrac, ..)
 - Nombreux cœurs (multicore, hyperthreading)
 - CPU récents avec support des instructions de virtualisation (AMD-v, VT-x, AMD-vi, VT-d) et protection matérielle Spectre/Meltdown/L1TF
 - Possibilité d'augmenter la RAM
 - Cartes réseaux (10-20-40 GbE, convergées)
 - Format des châssis

Les serveurs

 Augmentation de la densité = augmentation de la chaleur dégagée par U

Rack: (Dell r630)

Blades + châssis : (Dell M1000e)

Les serveurs

Solutions hyperconvergés

Dell r730xd (24 disques)

NX-3460 G4

Les salles machines

□ Placer ses serveurs chez un hébergeur :

Les salles machines

- Les salles machines évoluent
- 2 approches :
 - Mettre à jour sa salle machine :

- La virtualisation nécessite une bonne gestion de la séparation des flux
- Les ingénieurs réseaux et les ingénieurs systèmes doivent travailler ensemble : éviter les silos
- Généralisation du 10G, début 20-40G
- Gestion de la QoS importante en cas de convergence

4 x1Gigabit/s

2 x10 Gigabit/s

Même les équipements réseaux deviennent virtuels :

Exemple de switch virtuel

- Choisir les bons équipements réseaux :
 - Fonds de panier, taille des tampons
 - Protocoles réseaux: Trunking, Pvlan, VXlan, Jumbo Frame
 - □ Protocoles de stockage : iSCSI, FCoE, NFS
 - QoS
 - DCB (802.1Qbb, 802,Aqa, 802.1Qau, LLDP)

La virtualisation réseau

- Software Defined Network :
 - Evolution indispensable pour casser les silos
 - Séparation de la partie décisionnelle de la partie opérationnelle
 - Pilotage par API (OpenFlow est le standard)
 - Facilite la micro-segmentation

La virtualisation réseau

Dans un environnement virtualisé, la consolation du stockage est une nécessité!

 Le stockage est obligatoirement en mode partagé et/ou distribué

 Attention à ne pas créer de Single Point Of Failure

- Choisir le bon stockage :
 - Prendre en compte les besoins des applications :
 - Bases OLTP : petit I/O (4KB 8KB) et faible latence
 - Bases OLAP : gros I/O (64KB 1MB)
 - Prendre en comptes les besoins de disponibilité :
 - Quels sont les SLA?
 - Y'a-t-il plusieurs salles machines?
 - Prendre en compte le contexte et les compétences :
 - Utilisation historique de réseaux SAN ou NAS ?

- Les éléments qui caractérisent une baie de stockage :
 - Connectivité : Fibre Channel, Ethernet
 - Processeurs (SP)
 - Firmware/Software
 - Cache : Flash/SSD
 - Disques :
 - SSD: 1000-200 IOps(MLC), 6000-30000 IOps(EFD-SLC)
 - FC/SAS (15k), 150-160 IOps
 - FC/SAS (10k), 110-120 IOps
 - SATA (7200), 70-80 IOps
 - Fonctionnalités : réplication, déduplication, multipathing, snapshot, thin provisionning, QoS

- Les protocoles :
 - Fibre channel

- Les protocoles :
 - Fibre channel :
 - Utilisé historiquement dans les Storage Area Network
 - Utilise les commandes SCSI
 - QoS (6 + 1 classes de service)
 - Plusieurs topologies possibles
 - Host Bus Adapter (HBA): initiateur
 - Logical Units (LUN): cible
 - Débits :2, 4, 8, 10, 16 Gbps

- iSCSI
 - Standard IETF
 - Encapsulation de commandes SCSI dans des paquetsIP :

- iSCSI (suite)
 - Débits : 1-40 Gbps
 - QoS : Ethernet et TCP/IP
 - HBA :iSCSI initiator (matériel ou logiciel)
 - iSCSI target (baie cible)
 - Logical Unit (LUN) : cible
 - Redondance : multipathing du protocole + redondance réseau

FCoE :

- Encapsulation de commandes FC dans des trames
 Ethernet
- Débits : principalement le 10Gbps
- QoS: DCB

- Network File System
 - Développé par Sun (v1 en 1980)
 - 2 versions utilisées 3 et 4
 - □ Débits : 1-40 Gbps
 - QoS: TCP/IP niveaux 2 et 3
 - Redoncance : dépendante du réseau
 - Sécurité : ACL
 - Implémentation plus ou moins bonne coté serveur
 - Approche « fichier »

La gestion

Vue centralisée du datacenter virtuel

 Permet de gérer des politiques et des pools de serveurs (cluster)

Gestion centralisée de la sécurité

Gestion du cycle de vie des machines

La gestion

- Produits:
 - Microsoft System Center
 - VMware Virtual Center
 - Citrix XenCenter
 - Red Hat entreprise virtualization Manager

Plan

- Un peu d'histoire
- Concepts généraux
- Les techniques de virtualisation
- La virtualisation des serveurs et son environnement
- Gérer un projet de virtualisation
- Le futur de la virtualisation

- Identifier le périmètre et mesurer la charge
- Que peut on/veut on virtualiser?
- Définir l'architecture
- Pour les besoins actuels et futurs
- Choisir une solution
- Mise en place d'une maquette
- Former les administrateurs
- Mettre à jour ses procédures
- Migrer les serveurs / réinstaller
- Surveiller la montée en charge

Identifier le périmètre - mesurer

- Bien identifier les services virtualisables
 - Serveurs d'infrastructure
 - Attention aux chaines de dépendances
 - Serveurs Web
 - Serveurs d'applications
 - Profils d'I/O, CPU, mémoire, réseau
 - Support constructeur
 - Mesurer et tester avant de migrer!

Définir l'architecture

 Anticiper les besoins future pour obtenir un dimensionnement correct

- Utiliser des outils spécialisés
 - Vmware capacity planner, CiRBA, Veeam
- Prendre en compte le passé mais se tourner vers les technologies du futur

La planification

- Définir un chemin de migration :
 - Bigbang ?
 - Non remplacement des anciennes machines ?
 - □ P2V ?

- Des ajustements en cours de route sont souvent nécessaires :
 - □ Problème de passage à l'échelle
 - Augmentation du nombre de plateformes