Risultati

Francesco Fiaschi

November 2024

Contents

1	Risultato Paper OPS-SAT 1.1 Supervised								
2	Risultati XGBOD su OPS-SAT	3							
3	Risultati Rocket su OPS-SAT	3							
4	Riesecuzione del Paper	4							
5	Risultati Rocket su Dataset BakeOff (paper)								
6 Codici									
	6.1 XGBOD	6							
	6.1.1 Più Modelli Unsupervised	6							
	6.1.2 Più Modelli e Parametri	6							
	6.1.3 EarlyStopping (M+P)	6							
	6.1.4 Ricerca Grid								
	6.2 Rocket	8							
	6.2.1 Normale (unsupervised)								
	6.2.2 Rockad								
	6.2.3 Supervised RegressionCV								

1 Risultato Paper OPS-SAT

1.1 Supervised

Modello	Accuracy	Precision	Recall	F 1	MCC	AUC-PR	AUC-ROC	N-Score
LinearSVC	0.926	0.911	0.726	0.808	0.771	0.949	0.976	0.867
LogisticRegression	0.924	0.92	0.708	0.8	0.764	0.949	0.976	0.867
FCNN	0.96	0.926	0.885	0.905	0.88	0.963	0.982	0.903
AdaBoost	0.934	0.89	0.788	0.836	0.797	0.923	0.962	0.841
RF+ICCS	0.964	0.98	0.85	0.91	0.891	0.949	0.976	0.867
Linear+L2	0.902	0.969	0.558	0.708	0.69	0.889	0.95	0.814
XGBOD	0.968	0.953	0.894	0.922	0.903	0.969	0.99	0.912

1.2 Unsupervised

Modello	Accuracy	Precision	Recall	F 1	MCC	AUC-PR	AUC-ROC	N-Score
MO-GAAL	0.896	0.939	0.549	0.693	0.669	0.771	0.849	0.699
AnoGAN	0.594	0.296	0.655	0.408	0.19	0.403	0.651	0.239
SO-GAAL	0.89	0.937	0.522	0.67	0.649	0.858	0.919	0.761
IForest	0.701	0.297	0.292	0.295	0.105	0.347	0.635	0.301
KNN	0.849	0.78	0.407	0.535	0.489	0.658	0.852	0.593
OCSVM	0.837	0.721	0.389	0.506	0.447	0.659	0.788	0.655
ABOD	0.845	0.782	0.381	0.512	0.472	0.644	0.843	0.584
INNE	0.83	0.689	0.372	0.483	0.418	0.624	0.801	0.646
ALAD	0.819	0.667	0.301	0.415	0.361	0.537	0.7	0.451
LMDD	0.822	1.0	0.168	0.288	0.37	0.624	0.765	0.663
SOD	0.826	0.611	0.513	0.558	0.453	0.621	0.797	0.549
COF	0.834	0.667	0.442	0.532	0.449	0.603	0.774	0.593
LODA	0.83	0.689	0.372	0.483	0.418	0.549	0.692	0.522
LUNAR	0.819	0.743	0.23	0.351	0.313	0.541	0.797	0.46
CBLOF	0.802	0.569	0.292	0.386	0.304	0.45	0.574	0.372
DIF	0.788	1.0	0.009	0.018	0.084	0.494	0.805	0.522
VAE	0.794	0.532	0.292	0.377	0.283	0.446	0.687	0.513
GMM	0.783	0.482	0.239	0.32	0.225	0.426	0.713	0.389
DeepSVDD	0.788	0.509	0.239	0.325	0.241	0.344	0.55	0.336
PCA	0.779	0.464	0.23	0.308	0.21	0.373	0.612	0.363
COPOD	0.767	0.4	0.177	0.245	0.147	0.328	0.627	0.257
SOS	0.758	0.364	0.177	0.238	0.125	0.308	0.524	0.274
ECOD	0.767	0.396	0.168	0.236	0.14	0.34	0.637	0.345

2 Risultati XGBOD su OPS-SAT

Modello	Accuracy	Precision	Recall	F1	MCC	AUC-PR	AUC-ROC	N-Score
+Modelli e Param	0.97	0.945	0.912	0.928	0.909	0.973	0.992	0.92
EarlyStop (M+P)	0.97	0.971	0.885	0.926	0.909	0.969	0.99	0.912
Più Modelli	0.968	0.944	0.903	0.923	0.903	0.974	0.91	0.92
Con Parametri	0.964	0.943	0.885	0.913	0.891	0.972	0.991	0.912
Senza Parametri	0.962	0.935	0.885	0.909	0.886	0.977	0.992	0.912
Con Grid	0.947	0.989	0.761	0.86	0.839	0.898	0.945	0.969

3 Risultati Rocket su OPS-SAT

Modalità	Accuracy	Precision	Recall	F 1	MCC	AUC-PR	AUC-ROC	N-Score
Unsupervised	0.834	0.963	0.23	0.371	0.424	0.726	0.772	0.646
Supervised								
Rocket + RidgeCV	0.977	0.972	0.92	0.945	0.932	0.962	0.984	0.929
Rocket + LogisticReg	0.974	0.963	0.912	0.936	0.92	0.964	0.986	0.92
Rocket + RidgeReg	0.864	0.936	0.389	0.55	0.554	0.871	0.94	0.92
Rocket+KNN	0.834	0.963	0.23	0.371	0.424	0.726	0.772	0.646

 ${\tt RidgeClassifierCV} \rightarrow \grave{\rm e} \ il \ modello \ usato \ nella \ demo \ del \ paper \ di \ rocket \ ed \ ho \ riscontrato \ metriche \ migliori$

4 Riesecuzione del Paper

Dataset	Accuracy
Coffee	1.0
Computers	0.64
Adiac	0.634
ArrowHead	0.788
BeetleFly	0.8
CinCECGTorso	0.7898
CBF	0.971
ChlorineConcentration	0.590
GunPoint	0.9866
Ham	0.771
HandOutlines	0.935
InlineSkate	0.367
Lightning2	0.623
Mallat	0.928
MiddlePhalanxTW	0.558

5 Risultati Rocket su Dataset BakeOff (paper)

Sono i risultati della mia implementazione (presa dallo stesso paper ma leggermente modificata) con alcuni asset dei dataset di "BakeOff".

Dataset	Accuracy	Precision	Recall	F 1	MCC	AUC-PR	AUC-ROC
Coffee	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Computers	0.704	0.713	0.704	0.701	0.417	0.358	0.753
Adiac	0.777	0.823	0.777	0.761	0.773	0.79	0.978
ArrowHead	0.771	0.809	0.771	0.756	0.69	0.88	0.942
BeetleFly	0.85	0.885	0.85	0.847	0.834	0.331	1.0
CinCECGTorso	0.823	0.831	0.823	0.822	0.767	0.914	0.963
CBF	0.992	0.992	0.992	0.992	0.988	1.0	1.0
ChlorineConcentration	0.782	0.778	0.782	0.774	0.633	0.813	0.902
GunPoint	1.0	1.0	1.0	1.0	1.0	0.315	1.0
Ham	0.657	0.658	0.657	0.655	0.314	0.37	0.734
HandOutlines	0.916	0.917	0.916	0.915	0.817	0.963	0.96
InlineSkate	0.705	0.708	0.705	0.7	0.404	0.865	0.838
Lightning2	0.738	0.743	0.738	0.733	0.473	0.829	0.805
Mallat	0.943	0.951	0.943	0.944	0.936	0.977	0.994
MiddlePhalanxTW	0.552	0.516	0.552	0.523	0.419	0.438	0.822

6 Codici

6.1 XGBOD

6.1.1 Più Modelli Unsupervised

```
from pyod.models.xgbod import XGBOD
   from pyod.models.knn import KNN
   from pyod.models.iforest import IForest
   from pyod.models.lof import LOF
   from pyod.models.abod import ABOD
   from pyod.models.ocsvm import OCSVM
       # Definizione dei modelli unsupervised
9
   unsupervised_models = [ KNN(),
                           LOF().
                           ABOD()
                            OCSVM()
                        1
13
   # Inizializza e addestra XGBOD
14
   model = XGBOD(estimator_list=unsupervised_models)
   model.fit(X_train_scaled, y_train)
17
18
   # Prevedi gli outlier nel dataset di test
19
   y_pred = model.predict(X_test_scaled)
20
   y_predicted_score = model.decision_function(X_test_scaled)
21
22
   # Eseguiamo la valutazione delle metriche
   metrics = evaluate_metrics(y_test, y_pred, y_predicted_score)
23
   # Stampa i risultati
25
   print(model, metrics)
```

6.1.2 Più Modelli e Parametri

```
from pyod.models.xgbod import XGBOD
   from pyod.models.knn import KNN
   from pyod.models.lof import LOF
   from pyod.models.abod import ABOD
   from pyod.models.ocsvm import OCSVM
   # Definizione dei modelli unsupervised
   unsupervised_models = [ KNN(),
8
                            LOF(),
                            ABOD()
                             OCSVM()
13
14
   # Inizializza e addestra XGBOD
   model = XGBOD(estimator_list=unsupervised_models,
15
                  n_estimators=100,
16
17
                  max_depth=3,
                  learning_rate=0.2,
18
                  n_{jobs}=-1,
19
                  {\tt random\_state=SEED}
20
21
22
   model.fit(X_train_scaled, y_train)
23
24
   # Prevedi gli outlier nel dataset di test
25
   y_pred = model.predict(X_test_scaled)
26
   y_predicted_score = model.decision_function(X_test_scaled)
27
   # Eseguiamo la valutazione delle metriche
29
30
   metrics = evaluate_metrics(y_test, y_pred, y_predicted_score)
   print("")
   print(metrics)
```

6.1.3 EarlyStopping (M+P)

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from pyod.models.xgbod import XGBOD
from pyod.models.knn import KNN
from pyod.models.iforest import IForest
```

```
from pyod.models.lof import LOF
   from pyod.models.abod import ABOD
   from pyod.models.ocsvm import OCSVM
   # Definizione dei modelli unsupervised
10
   unsupervised_models = [ KNN(),
11
                           LOF(),
12
13
                           ABOD().
                            OCSVM()
14
16
   # Divisione del dataset di allenamento per avere un set di validazione
17
   X_train_sub, X_val, y_train_sub, y_val = train_test_split(X_train_scaled, y_train, test_size=0.2,
18
       random_state=SEED)
19
20
   # Inizializzazione del modello
   model = XGBOD(estimator_list=unsupervised_models, n_estimators=50, max_depth=3, learning_rate=0.2,
       n_jobs=-1, random_state=SEED)
22
   best_score = -np.inf
23
   patience = 10
                     # Numero di volte che il modello cercher di migliorarsi
24
   patience_counter = 0
25
   n_{iterations} = 100
                            # Numero massimo di cicli del'allenamento
26
27
   for i in range(n_iterations): # Numero massimo di iterazioni
29
       model.fit(X_train_sub, y_train_sub)
30
       # Predizione sul set di validazione
31
       y_val_pred = model.predict(X_val)
32
       val_score = accuracy_score(y_val, y_val_pred)
33
34
35
       # Controllo early stopping
36
       if val_score > best_score:
           best_score = val_score
37
38
           patience_counter = 0
39
           patience_counter += 1
40
41
            if patience_counter >= patience:
                print(f"Early stopping at iteration {i}")
42
43
                break
       model.n_estimators += 1  # Incrementa il numero di stimatori per la prossima iterazione
44
45
   # Predizione sul set di test
46
   y_pred = model.predict(X_test_scaled)
48
   y_predicted_score = model.decision_function(X_test_scaled)
49
   # Eseguiamo la valutazione delle metriche
50
51
   metrics = evaluate_metrics(y_test, y_pred, y_predicted_score)
   print("")
   print(metrics)
53
```

6.1.4 Ricerca Grid

```
from sklearn.model_selection import RandomizedSearchCV
   from pyod.models.xgbod import XGBOD
   import numpy as np
   # Definizione della griglia di parametri
6
   param_grid = {
       'n_estimators': [50, 100],
       'max_depth': [3, 5],
        'learning_rate': [0.01, 0.1]
9
10
   # Inizializza il modello
12
   model = XGBOD()
13
14
   # Randomized search con meno iterazioni e parallelizzazione
15
   random_search = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=10, cv=3,
16
        scoring='roc_auc', random_state=42, n_jobs=-1)
   random_search.fit(X_train_scaled, y_train)
17
   # Migliori parametri trovati
19
20 best_params = random_search.best_params_
21
   print(f"Best parameters found: {best_params}")
22
   # Riaddestramento del modello con i migliori parametri
   model = XGBOD(**best_params)
```

```
model.fit(X_train_scaled, y_train)
26
   # Prevedi gli outlier nel dataset di test
27
   y_pred = model.predict(X_test_scaled)
28
29
   y_predicted_score = model.decision_function(X_test_scaled)
30
   # Eseguiamo la valutazione delle metriche
31
32
   metrics = evaluate_metrics(y_test, y_pred, y_predicted_score)
33
   # Stampa i risultati
34
   print(model, metrics)
```

6.2 Rocket

6.2.1 Normale (unsupervised)

```
import numpy as np
   import pandas as pd
   from numba import njit, prange
3
   from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,
       matthews_corrcoef, average_precision_score, roc_auc_score
   # Funzioni gi definite in precedenza
   def generate_kernels(input_length, num_kernels):
        candidate_lengths = np.array((7, 9, 11), dtype=np.int32)
9
       lengths = np.random.choice(candidate_lengths, num_kernels)
10
        weights = np.zeros(lengths.sum(), dtype=np.float64)
        biases = np.zeros(num_kernels, dtype=np.float64)
13
        dilations = np.zeros(num_kernels, dtype=np.int32)
       paddings = np.zeros(num_kernels, dtype=np.int32)
14
        a1 = 0
17
        for i in range(num_kernels):
            _length = lengths[i]
18
            _weights = np.random.normal(0, 1, _length)
b1 = a1 + _length
19
20
21
            weights[a1:b1] = _weights - _weights.mean()
            biases[i] = np.random.uniform(-1, 1)
22
            dilation = 2 ** np.random.uniform(0, np.log2((input_length - 1) / (_length - 1)))
23
            dilation = np.int32(dilation)
24
25
            dilations[i] = dilation
            padding = ((_length - 1) * dilation) // 2 if np.random.randint(2) == 1 else 0
26
            paddings[i] = padding
27
28
            a1 = b1
29
       return weights, lengths, biases, dilations, paddings
30
31
32
   @njit(fastmath=True)
   def apply_kernel(X, weights, length, bias, dilation, padding):
33
        input_length = len(X)
34
35
        output_length = (input_length + (2 * padding)) - ((length - 1) * dilation)
        _ppv = 0
36
        _{max} = np.NINF
37
        _mean_sum = 0  # Per calcolare la media
38
        end = (input_length + padding) - ((length - 1) * dilation)
39
40
        for i in range(-padding, end):
41
            _sum = bias
            index = i
42
            for j in range(length):
43
44
                if index > -1 and index < input_length:</pre>
                    _sum += weights[j] * X[index]
45
                index += dilation
46
            _mean_sum += _sum # Aggiungi al totale per la media
47
            if _sum > _max:
48
                _max = _sum
            if _sum > 0:
50
51
                _ppv += 1
        mean_response = _mean_sum / output_length # Calcola la media
52
       return _ppv / output_length, _max, mean_response
53
54
   @njit("float64[:,:](float64[:,:],Tuple((float64[::1],int32[:],float64[:],int32[:],int32[:])))",
55
       parallel=True, fastmath=True)
       apply_kernels(X, kernels):
       weights, lengths, biases, dilations, paddings = kernels
57
58
       num_examples, _ = X.shape
59
       num_kernels = len(lengths)
```

```
_X = np.zeros((num_examples, num_kernels * 3), dtype=np.float64) # 3 features per kernel
60
        for i in prange(num_examples):
61
            a1 = 0  # Per i pesi
62
            a2 = 0 # Per le caratteristiche
63
64
            for j in range(num_kernels):
                b1 = a1 + lengths[j]
65
                b2 = a2 + 3
66
                _X[i, a2:b2] = apply_kernel(
67
                    X[i], weights[a1:b1], lengths[j], biases[j], dilations[j], paddings[j]
69
70
                a1 = b1
                a2 = b2
71
72
        return X
73
   def detect_anomalies_with_threshold(scores, threshold):
74
75
        return (scores > threshold).astype(int)
76
   # Genera kernel convoluzionali casuali
77
   input_length = X_train.shape[1]
78
    num_kernels = 10000
79
   kernels = generate_kernels(input_length, num_kernels)
80
81
    # Applica i kernel alle serie temporali
82
   features_train = apply_kernels(X_train2, kernels)
83
   features_test = apply_kernels(X_test2, kernels)
85
86
   # Sintesi delle caratteristiche per esempio
   anomaly_scores_train = np.mean(features_train, axis=1) # Media
87
   anomaly_scores_test = np.mean(features_test, axis=1) # Media
88
89
   # Rilevamento delle anomalie
90
91
   threshold = np.percentile(anomaly_scores_train , 95)
92
    anomaly_labels_train = detect_anomalies_with_threshold(anomaly_scores_train , threshold)
   anomaly_labels_test = detect_anomalies_with_threshold(anomaly_scores_test , threshold)
93
94
    # Visualizzazione dei risultati
95
   print("Anomalie rilevate nel training set:", anomaly_labels_train)
96
97
   print("Anomalie rilevate nel test set:", anomaly_labels_test)
98
99
   # Eseguiamo la valutazione delle metriche
   metrics = evaluate_metrics(y_test, anomaly_labels_test, y_proba=anomaly_scores_test)
   print("Metriche di valutazione sul test set:\n", metrics)
   # {'Accuracy': 0.832, 'Precision': 0.962, 'Recall': 0.221, 'F1': 0.36, 'MCC': 0.415, 'AUC_PR':
102
        0.726, 'AUC_ROC': 0.772, 'PREC_N_SCORES': 0.646}
```

6.2.2 Rockad

```
import numpy as np
    import pandas as pd
2
    from sklearn.neighbors import NearestNeighbors
    {\color{red} \textbf{from}} \ \ \textbf{sklearn.preprocessing} \ \ {\color{red} \textbf{import}} \ \ \textbf{StandardScaler}
    {\color{red} \textbf{from}} \hspace{0.2cm} \textbf{sklearn.preprocessing} \hspace{0.2cm} {\color{red} \textbf{import}} \hspace{0.2cm} \textbf{PowerTransformer}
    from sklearn.utils import resample
    from sktime.transformations.panel.rocket import Rocket
    from sklearn.metrics.pairwise import euclidean_distances
    from sklearn.metrics.pairwise import distance_metrics
10
11
    class NearestNeighborOCC():
13
14
         def __init__(self, dist="euclidean"):
              self.scores_train = None
16
              self.dist = None
18
19
              metrics = distance_metrics()
20
              if type(dist) is str and dist in metrics.keys():
21
                   self.dist = metrics[dist]
              elif dist in metrics.values():
23
                   self.dist = dist
24
              elif False:
25
                   # TODO: allow time series distance measures such as DTW or Matrix Profile
26
27
                   pass
              else:
28
                   raise Exception("Distance metric not supported.")
29
30
31
```

```
def fit(self, scores_train):
32
            _scores_train = scores_train
33
34
            if type(_scores_train) is not np.array:
35
36
                 _scores_train = np.array(scores_train.copy())
37
            if len(_scores_train.shape) == 1:
38
39
                 _scores_train = _scores_train.reshape(-1, 1)
40
            self.scores_train = _scores_train
41
42
            return self
43
44
45
        def predict(self, scores_test):
46
47
48
            Per definition (see [1]): 0 indicates an anomaly, 1 indicates normal.
            Here : -1 indicates an anomaly, 1 indicates normal.
49
50
51
            predictions = []
52
            for score in scores_test:
53
               predictions.append(self.predict_score(score))
54
55
            return np.array(predictions)
56
57
        def predict_score(self, anomaly_score):
58
            prediction = None
59
60
            anomaly_score_arr = np.array([anomaly_score for i in range(len(self.scores_train))])
61
62
63
            _scores_train = self.scores_train.copy().reshape(-1, 1)
            anomaly_score_arr = anomaly_score_arr.reshape(-1, 1)
            nearest_neighbor_idx = np.argmin(self.dist(anomaly_score_arr, _scores_train))
65
66
67
            _scores_train = np.delete(_scores_train, nearest_neighbor_idx).reshape(-1, 1)
68
            nearest_neighbor_score = self.scores_train[nearest_neighbor_idx]
69
            neares_neighbot_score_arr = np.array([nearest_neighbor_score for i in range(len(
70
                 _scores_train))])
            nearest_neighbor_score_arr = neares_neighbot_score_arr.reshape(-1, 1)
71
            nearest_nearest_neighbor_idx = np.argmin(self.dist(nearest_neighbor_score_arr, _scores_train
73
                ))
74
            nearest_nearest_neighbor_score = _scores_train[nearest_nearest_neighbor_idx][0]
75
            prediction = self.indicator_function(
76
77
                anomaly_score, nearest_neighbor_score, nearest_neighbor_score)
78
            return prediction
79
80
81
        def indicator_function(self, z_score, nearest_score, nearest_of_nearest_score):
82
83
84
            # make it an array and reshape it to calculate the distance
            z_score_arr = np.array(z_score).reshape(1, -1)
85
            nearest_score_arr = np.array(nearest_score).reshape(1, -1)
86
            nearest_of_nearest_score_arr = np.array(nearest_of_nearest_score).reshape(1, -1)
87
88
            numerator = self.dist(z_score_arr, nearest_score_arr)
89
            denominator = self.dist(nearest_score_arr, nearest_of_nearest_score_arr)
90
91
92
            # error handling for corner cases
93
            if numerator == 0:
                return 1
94
            elif denominator == 0:
95
96
                return -1
97
            else:
                return 1 if (numerator/denominator) <= 1 else -1</pre>
98
99
100
    class NN:
101
        def __init__(self,
                n_neighbors = 5,
                n_{jobs} = 1.
104
                dist = 'euclidean',
                random_state=42,
106
            ) -> None:
107
108
```

```
self.n_neighbors = n_neighbors
109
             self.n_jobs = n_jobs
             self.dist = dist
             self.random_state = random_state
113
114
        def fit(self, X):
115
             self.nn = NearestNeighbors(
116
                 n_neighbors = self.n_neighbors,
117
                 n_{jobs} = self.n_{jobs},
118
119
                 metric = self.dist,
                 algorithm = 'ball_tree',
120
             self.nn.fit(X)
        def predict_proba(self, X, y=None):
126
127
             scores = self.nn.kneighbors(X)
             scores = scores[0].mean(axis=1).reshape(-1,1)
128
129
130
             return scores
131
132
    class ROCKAD():
133
134
        def __init__(self,
135
                 n_estimators=10,
136
                 n_{kernels} = 100,
137
138
                 n_neighbors = 5,
                 n_{jobs} = 1,
139
140
                 power_transform = True,
141
                 random_state = 42,
             ) -> None:
142
             self.random_state = random_state
143
144
             self.power_transform = power_transform
145
146
             self.n_estimators = n_estimators
147
             self.n_kernels = n_kernels
             self.n_neighbors = n_neighbors
148
             self.n_jobs = n_jobs
149
            self.n_inf_cols = []
             self.estimator = NN
152
             self.rocket_transformer = Rocket(num_kernels = self.n_kernels, n_jobs = self.n_jobs,
                 random_state = self.random_state)
154
             self.scaler = StandardScaler()
             self.power_transformer = PowerTransformer(standardize = False)
156
        def init(self, X):
158
             # Fit Rocket & Transform into rocket feature space
160
161
            Xt = self.rocket_transformer.fit_transform(X)
162
             self.Xtp = None # X: values, t: (rocket) transformed, p: power transformed
163
164
             if self.power_transform is True:
165
166
                 Xtp = self.power_transformer.fit_transform(Xt)
167
168
                 self.Xtp = pd.DataFrame(Xtp)
169
170
171
             else:
172
                 self.Xtp = pd.DataFrame(Xt)
174
        def fit_estimators(self):
176
177
             Xtp_scaled = None
178
             if self.power_transform is True:
179
                 # Check for infinite columns and get indices
180
                 self._check_inf_values(self.Xtp)
181
182
183
                 # Remove infinite columns
                 self.Xtp = self.Xtp[self.Xtp.columns[~self.Xtp.columns.isin(self.n_inf_cols)]]
184
185
                 # Fit Scaler
186
```

```
Xtp_scaled = self.scaler.fit_transform(self.Xtp)
188
                 Xtp_scaled = pd.DataFrame(Xtp_scaled, columns = self.Xtp.columns)
189
190
191
                 self._check_inf_values(Xtp_scaled)
192
                 Xtp_scaled = Xtp_scaled.astype(np.float32).to_numpy()
193
194
             else:
195
                 Xtp_scaled = self.Xtp.astype(np.float32).to_numpy()
196
197
198
             self.list_baggers = []
199
200
             for idx_estimator in range(self.n_estimators):
201
202
                 # Initialize estimator
203
                 estimator = self.estimator(
                     n_neighbors = self.n_neighbors,
204
205
                     n_{jobs} = self.n_{jobs},
206
207
208
                 # Bootstrap Aggregation
                 Xtp_scaled_sample = resample(
209
210
                     Xtp_scaled,
                     replace = True,
211
                     n_samples = None,
212
                     random_state = self.random_state + idx_estimator,
213
214
                     stratify = None,
215
216
217
                 # Fit estimator and append to estimator list
218
                 estimator.fit(Xtp_scaled_sample)
219
                 self.list_baggers.append(estimator)
220
222
        def fit(self, X):
             self.init(X)
223
224
             self.fit_estimators()
225
             return self
226
227
228
        def predict_proba(self, X):
             y_scores = np.zeros((len(X), self.n_estimators))
230
231
232
             # Transform into rocket feature space
             Xt = self.rocket_transformer.transform(X)
233
234
235
             Xtp_scaled = None
236
             if self.power_transform == True:
                 # Power Transform using yeo-johnson
238
                 Xtp = self.power_transformer.transform(Xt)
239
240
                 Xtp = pd.DataFrame(Xtp)
241
                 \ensuremath{\text{\#}} Check for infinite columns and remove them
242
                 self._check_inf_values(Xtp)
243
                 Xtp = Xtp[Xtp.columns[~Xtp.columns.isin(self.n_inf_cols)]]
244
                 Xtp_temp = Xtp.copy()
245
246
                 # Scale the data
247
248
                 Xtp_scaled = self.scaler.transform(Xtp_temp)
                 Xtp_scaled = pd.DataFrame(Xtp_scaled, columns = Xtp_temp.columns)
249
250
                 # Check for infinite columns and remove them
251
                 self._check_inf_values(Xtp_scaled)
252
                 Xtp_scaled = Xtp_scaled[Xtp_scaled.columns[~Xtp_scaled.columns.isin(self.n_inf_cols)]]
253
                 Xtp_scaled = Xtp_scaled.astype(np.float32).to_numpy()
254
255
256
             else:
                 Xtp_scaled = Xt.astype(np.float32)
257
258
259
             for idx, bagger in enumerate(self.list_baggers):
260
                 # Get scores from each estimator
261
262
                 scores = bagger.predict_proba(Xtp_scaled).squeeze()
263
                 y_scores[:, idx] = scores
264
265
```

```
# Average the scores to get the final score for each time series
             y_scores = y_scores.mean(axis=1)
267
268
            return y_scores
269
271
272
        def _check_inf_values(self, X):
             if np.isinf(X[X.columns[~X.columns.isin(self.n_inf_cols)]]).any(axis=0).any() :
273
                 \verb|self.n_inf_cols.extend(X.columns.to_series()[np.isinf(X).any()])|\\
274
                 self.fit_estimators()
275
276
                 return True
277
    # Create the normal dataset (Normal class: Class 1)
278
             the anomaly dataset (Anomaly class: Class 2)
279
280
    RANDOM_STATE = 42
281
    # Initialize and fit ROCKAD
283
    # X_train_array = np.array([x.to_numpy().flatten() for x in X_train.iloc[:, 0]])
284
    # X_test_array = np.array([x.to_numpy().flatten() for x in X_test.iloc[:, 0]])
285
286
    # Create the normal dataset (Normal class: Class 1)
287
             the anomaly dataset (Anomaly class: Class 2)
288
    # print("X_train2: ", X_train2)
289
    # print("X_test: ", X_test)
290
    # print("X_test2: ", X_test2)
291
    # print("y_train: ", y_train)
292
    # print("y_test: ", y_test)
293
294
295
    X_normal_train = X_train[y_train == '1']
296
297
    X_normal_test = X_test[y_test == '1']
    X_anomaly_test = X_test[y_test == '2']
    y_normal_test = y_test[y_test == '1']
299
    y_anomaly_test = y_test[y_test == '2']
300
301
    # Merge the test sets
302
    X_test = pd.DataFrame(np.concatenate((X_normal_test, X_anomaly_test), axis=0))
303
    y_test = np.concatenate((y_normal_test, y_anomaly_test), axis=0)
304
305
    # X_test = np.concatenate((X_normal_test, X_anomaly_test), axis=0)
    # y_test = np.concatenate((y_normal_test, y_anomaly_test), axis=0)
307
308
    rockad = ROCKAD(n_estimators=10, n_kernels=10 ,random_state=RANDOM_STATE)
309
    rockad.fit(X_normal_train)
310
311
312
313
    # Predict anomaly scores
314
    scores = rockad.predict_proba(X_test)
315
316
    print("Score: ",scores)
317
    # Initialize and fit NearestNeigbor One Class Classifier
318
    decision_func = KNN().fit(scores)
319
320
321
    # Predict anomalies
    predictions = decision_func.predict(scores)
```

6.2.3 Supervised RegressionCV

```
import numpy as np
   import pandas as pd
   from sklearn.linear_model import RidgeClassifierCV
   from numba import njit, prange
   from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,
       matthews_corrcoef, average_precision_score, roc_auc_score
   from pyod.utils.data import precision_n_scores
   from scipy.special import softmax
   @njit("Tuple((float64[:],int32[:],float64[:],int32[:],int32[:]))(int64,int64)")
9
10
   def generate_kernels(input_length, num_kernels):
       candidate_lengths = np.array((7, 9, 11), dtype = np.int32)
       lengths = np.random.choice(candidate_lengths, num_kernels)
14
       weights = np.zeros(lengths.sum(), dtype = np.float64)
15
       biases = np.zeros(num_kernels, dtype = np.float64)
       dilations = np.zeros(num_kernels, dtype = np.int32)
17
```

```
paddings = np.zeros(num_kernels, dtype = np.int32)
18
19
20
        a1 = 0
21
        for i in range(num_kernels):
22
23
            _length = lengths[i]
24
25
            _weights = np.random.normal(0, 1, _length)
26
27
28
            b1 = a1 + _length
            weights[a1:b1] = _weights - _weights.mean()
29
30
            biases[i] = np.random.uniform(-1, 1)
31
32
            dilation = 2 ** np.random.uniform(0, np.log2((input_length - 1) / (_length - 1)))
33
34
            dilation = np.int32(dilation)
            dilations[i] = dilation
35
36
            padding = ((_length - 1) * dilation) // 2 if np.random.randint(2) == 1 else 0
37
            paddings[i] = padding
38
39
            a1 = b1
40
41
        return weights, lengths, biases, dilations, paddings
43
   @njit(fastmath = True)
44
   def apply_kernel(X, weights, length, bias, dilation, padding):
45
46
        input_length = len(X)
47
48
49
        output_length = (input_length + (2 * padding)) - ((length - 1) * dilation)
50
        _{ppv} = 0
51
        _{max} = np.NINF
52
53
        end = (input_length + padding) - ((length - 1) * dilation)
54
55
56
        for i in range(-padding, end):
57
            _sum = bias
59
            index = i
60
61
            for j in range(length):
62
63
                if index > -1 and index < input_length:</pre>
64
65
66
                     _sum = _sum + weights[j] * X[index]
67
                index = index + dilation
68
69
            if _sum > _max:
70
71
                _{max} = _{sum}
72
            if _sum > 0:
73
74
                _ppv += 1
75
        return _ppv / output_length, _max
76
   @njit("float64[:,:](float64[:,:],Tuple((float64[::1],int32[:],float64[:],int32[:],int32[:])))",
78
        parallel = True, fastmath = True)
79
   def apply_kernels(X, kernels):
80
        weights, lengths, biases, dilations, paddings = kernels
81
82
       num_examples, _ = X.shape
83
        num_kernels = len(lengths)
84
85
86
        _X = np.zeros((num_examples, num_kernels * 2), dtype = np.float64) # 2 features per kernel
87
        for i in prange(num_examples):
88
89
            a1 = 0 # for weights
90
            a2 = 0 # for features
91
92
            for j in range(num_kernels):
93
94
                b1 = a1 + lengths[j]
95
```

```
b2 = a2 + 2
96
97
98
                 _X[i, a2:b2] = \setminus
                 apply_kernel(X[i], weights[a1:b1], lengths[j], biases[j], dilations[j], paddings[j])
99
100
101
                 a1 = b1
                 a2 = b2
102
103
        return _X
104
106
    # Genera kernel convoluzionali casuali
107
    input_length = X_train.shape[1]
num_kernels = 1000
108
109
    kernels = generate_kernels(input_length, num_kernels)
110
112
    # Applica i kernel alle serie temporali
    features_train = apply_kernels(X_train2, kernels)
113
    features_test = apply_kernels(X_test2, kernels)
114
115
116
117
    # Addestramento del modello supervisionato
    model = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10))
118
    model.fit(features_train, y_train)
119
120
    # Predizione delle anomalie nei dati di test
121
    y_pred = model.predict(features_test)
122
123
        len(np.unique(y_test)) > 2:
    if
124
        y_proba = softmax(model.decision_function(features_test), axis=1)
125
126
127
        y_proba = softmax(model.decision_function(features_test), axis=0)
    # Visualizzazione dei risultati
129
    print("Predizioni nel test set:", y_pred)
130
131
    # Eseguiamo la valutazione delle metriche
132
133
    metrics = evaluate_metrics(y_test, y_pred, y_proba)
    print("Metriche di valutazione:\n", metrics)
# {'Accuracy': 0.977, 'Precision': 0.972, 'Recall': 0.92, 'F1': 0.945, 'MCC': 0.932, 'AUC_PR':
134
135
        0.962, 'AUC_ROC': 0.984, 'PREC_N_SCORES': 0.929}
```