Control System Competition1 Report

組員: b06901004 劉穎立、b06901005 林育萱、b06901014 李筠婕

一、目標

The transfer function of a satellite control system has been identified as:

$$P(s) = \frac{-1.202(s-1)}{s(s+9)(s^2+12s+56.25)}$$
(1)

Please design a controller C(s) to stabilize the open-loop plant P(s) (see Fig. 1 for the closed-loop feedback control architecture) and to optimize the closed-loop step response performance according to the given cost function J as defined below, i.e., design a controller C(s) that minimizes the cost J.

Figure 1: The architecture of closed-loop feedback control.

Cost Function The cost function J to be minimized is defined as

$$J := 10t_r + t_s + 20M_o + 100e_{ss} \tag{2}$$

 $(t_r:$ rise time [sec]; $t_s:$ settling time [sec]; $M_o:$ maximum overshoot, which is the positive peak value of the output y; $e_{ss}:$ steady-state error of tracking a unity step input.)

Open-loop step response:

二、控制策略

法一 直接 tune PID control

- 1. 將 K_P, K_I, K_D 皆設為 0 (initialize)。
- 2. 增加 K_P 直到 step response 出現一個逐漸收斂的 oscillation。
- 3. 增加 K_D 直到 oscillation 減小甚至消失。
- 4. 重複執行步驟 2.3.直到調整 K_D 不能使 oscillation 消失。
- 5. 將 K_P , K_D 的值固定在最後穩定的值。
- 6. 調整 K_I 的值嘗試將 settling time 變小。

我們最後調整出的最佳結果為 / = 6.8144

MATLAB 模擬的 code 如下:

```
%% Design the PID controller %J = 6.8144
Kp = 230.6;
Ki = 0;
Kd = 72;
C1 = pid(Kp,Ki,Kd);
H = feedback(C1*P,1);
S = stepinfo(H);
```

法二 先觀察 P,對應調整 C,再用 PID 做增進

觀察 P 的 Transfer function,先設計一控制器 C 消除 P 中造成系統不穩定的 pole 及 zero,再接一個 PID Controller,並依照法一的方式來調整 PID 參數。

我們最後調整出的最佳結果為 J = 0.0557

MATLAB 模擬的 code 如下:

```
%% Design the PID controller %J = 0.0557
Kp = 500;
Ki = 0;
Kd = 0;
C = -(s+9)*(s^2+12*s+56.25)/(s-1);
C1 = pid(Kp,Ki,Kd);
H = feedback(C*C1*P,1);
S = stepinfo(H);
```

三、控制結果

法一 J = 6.8144

cost function J中的各參數如下:

Rise time(s)	settling time(s)	maximum overshoot	steady-state error
0.3678	2.8975	0	0.0024

MATLAB 模擬:

法二 J = 0.0557

cost function J中的各參數如下:

Rise time(s)	settling time(s)	maximum overshoot	steady-state error
0.0037	0.0065	0	1.259e-04

MATLAB 模擬:

