22. Поперност спремо кранка от втора степен. В разлигрената равника спремо афинна координатна систена е дадена женизродената крива от втора степен k с уравжението ст k: f(x,y,t) = 0, където $f(x,y,t) = a_1 x^2 + 2a_2 xy + a_2 y^2 + 2a_3 xt + 2a_3 yt + a_3 t^2$. От условието, се k е неизродена, то за кая да е пока м от равнината поне една от попутроизводните $f_{i,i}$ - $p_{i,j}$, на попинома f не се андмира, т.е. $f_{i,j}$ (м) + $f_{i,j}$ (м) + $f_{i,j}$ (м) + $f_{i,j}$ (м) + 0 $f_{i,j}$ 0. Следователно за неизродена крива за вазка тогка м еднознатью е определена травата $f_{i,j}$ 1. (м) $f_{i,j}$ 2. (м) $f_{i,j}$ 3. (м) $f_{i,j}$ 4. Следователно за неизродена крива за вазка тогка м еднознать се определена травата.

Ясно е (темаго.), те когато тогката M е от k, то 22.2 д е дотерателната на k k M, т. е. M е инпреденина е полярата си. Хомогенните координати на правата д се определят еднознатью. Ако д E a, b, c I, то M (∞ , y, t, t) M (∞ , y, t) M (∞) Следовашенно жеизродената купива к торанида еднознателью обратимо оботвениемьне 4 менну тогките и правите в разимирената равжина, коемо се нарита полярност сирове ими толярна корелация, зададена от к.

4 се дефоница както следа:

4: $M_0(x_0, y_0, t_0) \longrightarrow g_0 [f_1(M_0), f_2(M_0), f_3(M_0)]$ $g_1 [a, b, c] \longrightarrow M_1(x_1, y_1, t_1),$ където $a = f_1(M_1)$, $b = f_2(M_1)$, $c = f_3(M_1).$ От дефоницията непосредствено получавате, се за всяка тогка Мо имаме $\Psi(M_0) = g_0$, $\Psi(g_0) = M_0$, и.е. $\Psi(\Psi(M_0)) = M_0$, което записвоме $\Psi^2(M_0) = M_0$. Следовотенно Ψ^2 е ідентитетом в равнината.

Записано подробно имаме $M_0 \longrightarrow g_0 \longrightarrow M_0$ Ψ M_0 $g_1 \longrightarrow M_1 \longrightarrow g_1$ Ψ g_1 .

Ясно е, те полярношта у запазва инцидентната

Миаме, те мицидентни тока и права три у се плобразват

стответно в мицидентни трава и тока. g_1 g_0 : $\Psi(M_0)$ $M_0 Z g_1 \iff$ $f_1(M_1) x_0 + f_2(M_1) y_0 + f_3(M_1) t_0 = 0$.

От тындествата на Огілер инаме $f_1(M_1) x_0 + f_2(M_0) y_1 + f_3(M_0) t_1$ Следователно $M_0 Z g_1$ токо тогава, когато $M_1 Z g_0$.

Казано с думи токата M_0 ленни на полярата на M_1 ,

токо тогава, когато M_1 ленни на полярата на M_0 .

Това специално отношение инсиду M_0 и M_1 отразяване

в следната деяринения: Токите M_0 и M_1 наригаме

спретнати спрямо E_1 ако $M_0 Z Y(M_1)$ (медоващенно $Y(M_0) Z M_1$, кодето Y е полярношта, породена от E.

 Следователно тангентите д, и д. кън к, съгливению в точките М, и М, се пресилат в таката Мо. Обранно, ако М, и М, са две разнични точки от к, то токрите им, които се явъяват такгенти кън ве се тресилат в точка Мо, казто е точко на правата Мимг.

За неизродека крпва от втора степен казвате, се точка М е външка за к, ако точкрата гі Ч(м) пресила к в две размитем точки. Казване, се М е вътрешна за к, ако помярата гі Ч(м) е външка за к. Следователно, през воника за к точка чта такгента, а през вътрешна за к точка няма единствена такгента, а през вътрешна за к точка няма реални такгенти.

Мо мо мо мо

22." Афольных свойства на кривите от втора степен.

Безкрайни тогки на крива от вигра степен.

Нека в в разнитрената равнина е о уравнение

(1) $f(x,y,t) = a_1 x^2 + 2a_{12} x y + a_{22} y^2 + 2a_{13} x t + 2a_{23} y t + a_{33} t^2 = 0$ Изследваме взаимното положение на безкрайнато права wс k. f(x) = 2. От уравнението на w: w: t = 0, то

общите за k тогки ще уавнениворяват уравнението на k и уравнението на wАко g(x) коефициентите g(x) аго са едновренение g(x) и и.е. g(x) и g(x) на g(x) о g(x) о

Безкрайната трава е образуваща за кронвата к.

Нека, оттук нататък скитаме, те к не съдържа безкрайнама права. Следователно поке един от коефилуиентите

Ано и Л k = 20 (1, μ , 0), (1, μ) \neq (0,0), то инаме

(2) 20 (3) 20 (3) 20 (4) 20 (4) 20 (5) 20 (6) 20 (6) 20 (6) 20 (7) 20 (8

импове кртви:

1. При D > 0 уравнението (3) има два различни реслени реорена S, и Sz, на които съответстват две различни безкрайни можи, мещидентни с к. В тоги случай крывата к се нарита крива от хиперболичен тип.

2. При D < 0 квадрашномо уравнение (3) няма реални корени (има два конплесно тречнати корена). Така, к няна безкрайни точки и в точи случай я наричаме крива от емитичен тип.

2. При D = 0 правнението (3) има единетвен реален корен на

3. При D = 0 уравнението (3) има единетвен реален корен на които съответства единствена безкрагіна тогка от кропвата к. в тоги слугагі кропвата се назтіга да е от маработитен тип Примери.

1. χ : $bx^2 - ay^2 - ab^2 = 0$; $\omega \Lambda x = M(1, \mu, 0)$, t = 0 = 7 $b^2x^2 - a^2y^2 = 0 = 7$ (bx - ay) (bx + ay) = 0 = 7 $M_1(a, b, 0)$ $M_2(a, -b, 0)$, както се отаква хипербилка χ пма две откратии токки. За дискупилинактога имане $D = a_{12}^2 - a_{11}a_{22} = 0 - (b^2(-a^2b^2)) = a^2b^4 > 0$ 2. k_1 : $x^2 - y^2 = 0$. Кривата k_1 е изродена кроива от вигора степен. Разпада се на двойката преситаци се приви l_1 : x - y = 0 l_2 : x + y = 0. Вискупилинантата i: е $D = a_{12}^2 - a_{11}a_{12} = 0 - (1(-i)) = 1 > 0$. Следователно k_1 е от жилероомичен тип. b случая несно се забелязво, се безкраліните ток и на k_1 (a с координати — $M_1(1, 1, 0)$ и $M_2(1, -1, 0)$.

3. $E: bx^2 + ax^2 - a^2b^2t^2 = 0.$, a > b > 0Вискупилинантата на елипсата е $D = 0 - b^2a^2 < 0$ Така te... E е от елиптитен тип.

4. $k_2: a^ex^2 + y^e = 0$ е $c \Delta_k = \begin{vmatrix} a^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} = a^2 \cdot 10 + ... = 0$ Тиле разпадализа се, изродена крива от вигра степне.

Дискупилинантича $D = D = 0 - a \cdot 1 = -a < 0 = 7 \cdot k_2$ е от елиптитен тип.

5. Параболата $y^2 - 2pxt = 0$ е c D = 0 - 0.1 = 0 е... от параболити тип.

6. $k_3: x^2 - c^2t^2 = 0$, $D = 0 - 10 = 0 = 7 \cdot k_3$ е от параболитен тип.

Ако $c \neq 0$, то k_3 се разпада на две устородки, в черазилурената равшила трави — x при c = 0 имане два ка равшила трави — x и при c = 0 имане два ка x = 0