TensorFlow: A system for large-scale machine Learning

Wen-Jen Hsieh, Eric Hsin, Kevin Chen 10/30/2017

Background

- A high-level overview of Deep Learning
- Deep Learning Frameworks
- Previous system: DistBelief
- Related work
- Design principles

- A powerful class of machine learning model
- Modern reincarnation of artificial neural networks
- Collection of simple, trainable mathematical functions

- A powerful class of machine learning model
- Modern reincarnation of artificial neural networks
- Collection of simple, trainable mathematical functions

Commonalities with real brains:

- Each neuron is connected to a small subset of other neurons.
- Based on what it sees, it decides what it wants to say.
- Neurons learn to cooperate to accomplish the task.

Each neuron implements a relatively simple mathematical function.

$$y = g(\vec{w} \cdot \vec{x} + b)$$

But the composition of 10⁶ - 10⁹ such functions is surprisingly powerful.

- A powerful class of machine learning model
- Modern reincarnation of artificial neural networks
- Collection of simple, trainable mathematical functions

Back propagation

- A powerful class of machine learning model
- Modern reincarnation of artificial neural networks
- Collection of simple, trainable mathematical functions

- A powerful class of machine learning model
- Modern reincarnation of artificial neural networks
- Collection of simple, trainable mathematical functions

Large datasets

Important Property of Neural Networks

Results get better with

more data + bigger models + more computation

(Better algorithms, new insights and improved techniques always help, too!)

Growing Use of DL at Google

DL frameworks

Comparison

	Static Graph	Dynamic Graph	Device API	Pretrained Model	Ease of use for researchers
Tensorflow	V	V _[1]	V	- (high-level API)	V
Theano	V			- (high-level API)	V
PyTorch		V	V	V	V
Caffe2	V		V (not supported in Caffe)	V	V
MXNet	V		V		

[1] Looks, Moshe, et al. "Deep learning with dynamic computation graphs." arXiv preprint arXiv:1702.02181 (2017).

Previous system: DistBelief

- Parameter Server architecture
- DAG structure and knowledge of the layers' semantics
- Most parameters only require weak consistency
 - Worker processes can compute updates independently
- Python-based interface
 - Simple requirements are fine

Parameter Sever (PS)

Model parameters are stored on PS machines and accessed via key-value interface (distributed shared memory)

Parameter Sever (PS)

PS vs Batch Processing Systems (MR)

William W. Cohen "ML with Large Datasets"

PS vs Batch Dataflow Systems

PS vs Batch Dataflow Systems

Previous system: DistBelief

- Parameter Server architecture
- DAG structure and knowledge of the layers' semantics
- Most parameters only require weak consistency
 - Worker processes can compute updates independently
- Python-based interface
 - o Simple requirements are fine

Problems of DistBelief

- Layers are C++ classes
 - Barrier for machine learning researchers
- Parameter Server
 - get() and put() interface for the PS is not ideal for all optimization methods
 - Sometimes more efficient to compute params on PS
- Workers follow a fixed execution pattern
 - RNN
 - Adversarial networks
 - Reinforcement learning
- Difficult to scale down to other environments

Design principles of Tensorflow

More flexible than DistBelief, while retaining its ability

- 1. Individual mathematical operators in dataflow graphs
- 2. Deferred execution
- 3. Common abstraction for heterogeneous accelerators

Dataflow Graphs

Simple

Dataflow Graphs

Deferred execution

Static graph

First **define** computational graph

Run the graph many times

```
# 1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784])
                                                    # Placeholder for input.
y = tf.placeholder(tf.float32, [BATCH_SIZE, 10])
                                                    # Placeholder for labels.
W_1 = tf.Variable(tf.random_uniform([784, 100]))
                                                   # 784x100 weight matrix.
b_1 = tf.Variable(tf.zeros([100]))
                                                    # 100-element bias vector.
layer_1 = tf.nn.relu(tf.matmul(x, W_1) + b_2)
                                                    # Output of hidden layer.
W_2 = tf.Variable(tf.random_uniform([100, 10]))
                                                   # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros([10]))
                                                    # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2
                                                   # Output of linear layer.
# 2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)
```

```
# 3. Execute the graph on batches of input data.
with tf.Session() as sess:  # Connect to the TF runtime.
sess.run(tf.initialize_all_variables())  # Randomly initialize weights.
for step in range(NUM_STEPS):  # Train iteratively for NUM_STEPS.
    x_data, y_data = ...  # Load one batch of input data.
    sess.run(train_op, {x: x_data, y: y_data})  # Perform one training step.
```


Common abstraction for devices

- At a minimum, a device must implement methods for
 - Issuing a kernel for execution
 - Allocating memory for inputs and outputs
 - Transferring buffers to and from host memory
- Target CPU, GPU or TPU (Tensor Processing Unit) on same program
- Use tensors as a common interchange format

Execution Model

Datagraph

- Vertex: computation
- Edges: dataflow in to / out from vertices

Tensors

- N-dimensional arrays of primitive types
- Alternative sparse coding for sparse tensor

Operations

- Inputs: tensors; outputs: tensors
- Stateful Operation (w/ mutable table)
 - Variable
 - Queue (blocking)

Execution Model (cont'd)

Partial and Concurrent Execution

- Multiple subgraphs can interact via stateful operations
- Mutable tables: blocked buffer provides back-pressure; synchronize when necessary
- Many ML algorithm allows weak consistency

Execution Model (cont'd)

Distributed Execution

- Each operation of a task resides on a **Device**
- Specified kernels to operation are implemented
- Per-device subgraph, where a Session is responsible for its manipulation
- Implicit / explicit constraints
 - Colocation operation
 - Device preferences
- Devices communicate with Send and Recv operations

Execution Model (cont'd)

- Dynamic control flow
 - Cases such as RNN requires dynamic control
 - Conditional & Iterative programming
 - Switch, demultiplexer
 - Merge, multiplexer
 - Dead value for either of two cases and merges branches when Merge is met

A simple figure for LSTM (long short term memory cell)

Extensibility Case Studies

- Differentiation and Optimization
 - Given FP, update parameters via BFS (BP) automatically
 - Conditional differentiation by adding vertices
 - Easy to extend optimization algorithm such as Momentum, RMSProp, Adam, etc.

Extensibility Case Studies (cont'd)

- Very Large Model
 - Distributed representation
 - Example: word embedding

$$X_{n,b}^T W_{n,d} = M_{b,d}$$

- Implemented **Sparse embedding** layer
 - Gather
 - Part
 - Stitch

Figure 4: Schematic dataflow for an embedding layer $(\S4.2)$ with a two-way sharded embedding matrix.

Extensibility Case Studies (cont'd)

Fault Tolerance

- Less likely to require backup for individual operations
- Plus, again, many ML algorithm doesn't require strong consistency
- Checkpoint states periodically
 - Save (one per task) -> Restore -> Assign
 - Customization
 - Synchronization / Asynchronization

** Often used case: Transfer Learning, eg. VGG16, Resnet50 in CNN

Extensibility Case Studies (cont'd)

Synchronous Replica Coordination

- Async SGD allows updates with stale parameters
- Sync SGD might be more efficient given current GPU utilization and corresponding scale
- Blocking queue is used to synchronize
- Backup Workers in replacement of stragglers

Figure 5: Three synchronization schemes for parallel SGD. Each color represents a different starting parameter value; a white square is a parameter update. In (c), a dashed rectangle represents a backup worker whose result is discarded.

Implementation

- C++
- OS: Works for Linux, Mac OSX, Windows, Android
- GPU: NVIDIA's KEPLER, MAXWELL, PASCAL

Component

- Distributed master
 - Pruning and partitioning
 - Compiler level optimization
 - Cache and reuse
- Dataflow executor
 - Handles requests from the master
 - Dispatch kernels to local devices

Other optimization

- cuDNN
- Quantization
- gRPC over TCP
- RDMA over converged ethernet.
- Fused kernel: ReLU

Evaluation - single machine performance

		Training step time (ms)				
	Library	AlexNet	Overfeat	OxfordNet	GoogleNet	
	Caffe [38]	324	823	1068	1935	
	Neon [58]	87	211	320	270	
Г	Torch [17]	81	268	529	470	
	TensorFlow	81	279	540	445	
		•				

Evaluation - single machine performance

		Training step time (ms)				
	Library	AlexNet	Overfeat	OxfordNet	GoogleNet	
	Caffe [38]	324	823	1068	1935	
1	Neon [58]	87	211	320	270	
7	Torch [17]	81	268	529	470	
T	ensorFlow	81	279	540	445	

Evaluation - Replica

Evaluation - image classification

- MXNet v.s. Tensorflow
- Inception-v3 model

Evaluation - image classification

Evaluation - Language model

Conclusion

- Incorporate parameter server
- Scalable
- Heterogeneous system
- Future work