A 2020 Vision of Linear Algebra

Gilbert Strang

MIT

2020

$$A = CR = \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ A = LU = \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$A = \mathbf{Q}\mathbf{R} = \begin{bmatrix} q_1 & q_n \end{bmatrix} \begin{bmatrix} \mathbf{Q} & \mathbf{Q} \end{bmatrix}$$

$$S = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathbf{T}} \quad Q^{\mathbf{T}} = Q^{-1}$$

Independent columns in
$$\ C$$

Triangular matrices L and U

Orthogonal columns in Q

Orthogonal eigenvectors $Sq = \lambda q$

$$A = X\Lambda X^{-1}$$
 Eigenvalues in Λ Eigenvectors in X $Ax = \lambda x$

$$A = U\Sigma V^{\mathbf{T}}$$
 Diagonal $\Sigma = \mathsf{Singular}$ values $\sigma = \sqrt{\lambda(A^{\mathbf{T}}A)}$

Orthogonal vectors in $U^{\mathrm{T}}U = V^{\mathrm{T}}V = I$

$$A_0 = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 4 & 12 & 8 \\ 2 & 6 & 4 \end{array} \right]$$

$$A_1 = \begin{bmatrix} 1 & 4 & 2 \\ 4 & 1 & 3 \\ 5 & 5 & 5 \end{bmatrix} \qquad S_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$S_3 = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \qquad S_4 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$Q_5 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad A_6 = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$

Column space of A / All combinations of columns

$$Ax = \begin{bmatrix} 1 & 4 & 5 \\ 3 & 2 & 5 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} x_1 + \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} x_2 + \begin{bmatrix} 5 \\ 5 \\ 3 \end{bmatrix} x_3$$

= linear combination of columns of A

Column space of A / All combinations of columns

$$Ax = \begin{bmatrix} 1 & 4 & 5 \\ 3 & 2 & 5 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} x_1 + \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} x_2 + \begin{bmatrix} 5 \\ 5 \\ 3 \end{bmatrix} x_3$$

= linear combination of columns of A

Column space of
$$A = C(A) =$$
 all vectors $Ax =$ all linear combinations of the columns

 R^3 ?

The column space of this example is plane?

line?

Column space of A / All combinations of columns

$$Ax = \begin{bmatrix} 1 & 4 & 5 \\ 3 & 2 & 5 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} x_1 + \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} x_2 + \begin{bmatrix} 5 \\ 5 \\ 3 \end{bmatrix} x_3$$

= linear combination of columns of A

Column space of
$$A = C(A) =$$
 all vectors $Ax =$ all linear combinations of the columns

 R^3 ?

The column space of this example is plane?

line?

Answer
$$C(A) = plane$$

Basis for the column space / Basis for the row space

Include column
$$\ 1=\begin{bmatrix}1\\3\\2\end{bmatrix}$$
 in C Include column $\ 2=\begin{bmatrix}4\\2\\1\end{bmatrix}$ in C

DO NOT INCLUDE COLUMN
$$3=\begin{bmatrix}5\\5\\3\end{bmatrix}=\begin{bmatrix}1\\3\\2\end{bmatrix}+\begin{bmatrix}4\\2\\1\end{bmatrix}$$

$$m{A} = m{C}m{R} = \left[egin{array}{ccc} 1 & 4 \\ 3 & 2 \\ 2 & 1 \end{array}
ight] \,\, \left[egin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}
ight] \,\, egin{array}{c} {\sf Row \ rank} = \\ {\sf column \ rank} = \\ r = 2 \end{array}$$

The rows of R are a basis for the row space

A=CR shows that column rank of $A=\operatorname{row}$ rank of A

- 1. The r columns of C are independent (by their construction)
- **2.** Every column of A is a combination of those r columns (because A = CR)
- **3.** The r rows of R are independent (they contain the r by r matrix I)
- 4. Every row of A is a combination of those r rows (because A = CR)

A=CR shows that column rank of $A=\operatorname{row}$ rank of A

- 1. The r columns of C are independent (by their construction)
- 2. Every column of A is a combination of those r columns (because $A\!=\!CR$)
- **3.** The r rows of R are independent (they contain the r by r matrix I)
- 4. Every row of A is a combination of those r rows (because A=CR)

Key facts

The r columns of C are a **basis** for the column space of A: **dimension** r

The r rows of R are a **basis** for the row space of A: **dimension** r

Basis for the column space / Basis for the row space

DO NOT INCLUDE COLUMN
$$3=\begin{bmatrix}5\\5\\3\end{bmatrix}=\begin{bmatrix}1\\3\\2\end{bmatrix}+\begin{bmatrix}4\\2\\1\end{bmatrix}$$

Basis has 2 vectors
$$A$$
 has rank $r=2$ $n-r=3-2=1$

Counting Theorem
$$Ax = 0$$
 has one solution $x = (1, 1, -1)$

There are n-r independent solutions to Ax=0

Matrix A with rank 1

If all columns of A are multiples of column 1, show that all rows of A are multiples of one row

Proof using A = CR

One column ${\boldsymbol v}$ in $C\Rightarrow$ one row ${\boldsymbol w}$ in R

$$A = \left[egin{array}{c} v \end{array}
ight] \left[egin{array}{c} w \end{array}
ight] \qquad \Rightarrow \quad ext{all rows are multiples of } w$$

A = CR is desirable + A = CR is undesirable -

C has columns directly from A: meaningful

R turns out to be the **row reduced echelon form of** A

 $\label{eq:Row rank} \mbox{Row rank} = \mbox{Column rank is clear} \colon C = \mbox{column basis, } R = \mbox{row basis} \quad + \\ C \mbox{ and } R \mbox{ could be very ill-conditioned} \qquad \qquad - \\$

If A is invertible then C = A and R = I: no progress A = AI

If
$$Ax = \mathbf{0}$$
 then $\begin{bmatrix} \operatorname{row} 1 \\ \vdots \\ \operatorname{row} m \end{bmatrix} \begin{bmatrix} x \\ \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ x is orthogonal to every row of A

Every ${\boldsymbol x}$ in the nullspace of A is orthogonal to the row space of A

Every ${m y}$ in the nullspace of $A^{\rm T}$ is orthogonal to the column space of A

$$\text{N}(A) \perp \text{C}(A^{\text{T}}) \qquad \text{N}(A^{\text{T}}) \perp \text{C}(A)$$
 Dimensions
$$n-r \quad r \qquad m-r \quad r$$

Two pairs of **orthogonal subspaces**. The dimensions add to n and to m.

Big Picture of Linear Algebra

This is the Big Picture—two subspaces in ${f R}^n$ and two subspaces in ${f R}^m$.

From row space to column space, A is invertible.

Multiplying Columns times Rows / Six Factorizations

A = BC = sum of rank-1 matrices (column times row: outer product)

New way to multiply matrices! High level! Row-column is low level!

$$A\!=\!LU \quad A\!=\!QR \quad S\!=\!Q\Lambda Q^{\mathrm{T}} \quad A\!=\!X\Lambda X^{-1} \quad A\!=\!U\Sigma V^{\mathrm{T}} \quad A\!=\!CR$$

Elimination on Ax = b Triangular L and U

$$2x + 3y = 7$$

$$4x + 7y = 15$$

$$2x + 3y = 7$$

$$y = 1$$

$$y = 1$$

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} = LU$$

If rows are exchanged then PA = LU: **permutation** P

Solve Ax = b by elimination: **Factor** A = LU

Lower triangular L times upper triangular U

Step 1 Subtract ℓ_{i1} times row 1 from row i to produce zeros in column 1

$$\textit{Result } A = \left[\begin{array}{c} 1 \\ \ell_{21} \\ \vdots \\ \ell_{n1} \end{array} \right] \left[\begin{array}{ccc} \mathsf{row} \ 1 \ \mathsf{of} \ A \ \right] \\ + \left[\begin{array}{ccc} 0 \ 0 \ 0 \ 0 \\ 0 \\ 0 \end{array} \right]$$

Step 2 Repeat Step 1 for A_2 then A_3 then A_4 ...

Step $n \mid L$ is lower triangular and U is upper triangular

$$A = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ \ell_{21} & 1 & & \\ \cdot & \cdot & 1 & 0 \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & 1 \end{array} \right] \left[\begin{array}{cccc} \text{row 1 of } A \\ 0 & \text{row 1 of } A_2 \\ 0 & 0 & \text{row 1 of } A_3 \\ 0 & 0 & 0 & \text{row 1 of } A_n \end{array} \right]$$

Orthogonal Vectors – Matrices – Subspaces

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y} = 0 \qquad \boldsymbol{y}^{\mathrm{T}}\boldsymbol{x} = 0 \qquad (\boldsymbol{x} + \boldsymbol{y})^{\mathrm{T}}(\boldsymbol{x} + \boldsymbol{y}) = \boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{y}^{\mathrm{T}}\boldsymbol{y} \quad \mathsf{RIGHT}$$

Orthonormal columns q_1, \dots, q_n of Q: Orthogonal unit vectors

$$Q^{\mathrm{T}}Q = \left[\begin{array}{ccc} & & & & \\ & & & \\ & & \vdots & \\ & & & q_n^{\mathrm{T}} \end{array} \right] \left[\begin{array}{cccc} & & & \\ & & & \\ & & & \end{array} \right] = \left[\begin{array}{cccc} 1 & & & 0 \\ & 1 & & \\ & & & \\ 0 & & 1 \end{array} \right] = I_n$$

Orthogonal Vectors - Matrices - Subspaces

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y} = 0 \qquad \boldsymbol{y}^{\mathrm{T}}\boldsymbol{x} = 0 \qquad (\boldsymbol{x} + \boldsymbol{y})^{\mathrm{T}}(\boldsymbol{x} + \boldsymbol{y}) = \boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{y}^{\mathrm{T}}\boldsymbol{y} \quad \mathsf{RIGHT}$$

Orthonormal columns q_1, \ldots, q_n of Q: Orthogonal unit vectors

$$Q = \frac{1}{3} \begin{bmatrix} -1 & 2 \\ 2 & -1 \\ 2 & 2 \end{bmatrix} \qquad Q^{\mathrm{T}}Q = I \quad \boxed{QQ^{\mathrm{T}} \neq I} \qquad \begin{array}{c} QQ^{\mathrm{T}}QQ^{\mathrm{T}} = QQ^{\mathrm{T}} \\ \text{projection} \end{array}$$

"Orthogonal matrix"

$$m{Q} = rac{1}{3} egin{array}{cccc} -1 & 2 & 2 \ 2 & -1 & 2 \ 2 & 2 & -1 \end{array} egin{array}{ccccc} ext{is square}. & ext{Then } QQ^{ ext{T}} = I ext{ and } Q^{ ext{T}} = Q^{-1} \ ext{.} \end{array}$$

If Q_1,Q_2 are orthogonal matrices, so are Q_1Q_2 and Q_2Q_1

"Orthogonal matrix"

$$Q = rac{1}{3} \left[egin{array}{cccc} -1 & 2 & 2 \ 2 & -1 & 2 \ 2 & 2 & -1 \end{array}
ight]$$
 is square. Then $QQ^{\mathrm{T}} = I$ and $Q^{\mathrm{T}} = Q^{-1}$

If Q_1,Q_2 are orthogonal matrices, so are Q_1Q_2 and Q_2Q_1

$$||Q oldsymbol{x}||^2 = oldsymbol{x}^{\mathrm{T}} Q^{\mathrm{T}} Q oldsymbol{x} = oldsymbol{x}^{\mathrm{T}} oldsymbol{x} = ||oldsymbol{x}||^2$$
 Length is preserved

Eigenvalues of
$$Q$$
 $Q x = \lambda x$ $||Q x||^2 = |\lambda|^2 \, ||x||^2$ $|\lambda|^2 = 1$

$$\text{Rotation } Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \begin{array}{l} \lambda_1 = \cos \theta + i \sin \theta \\ \lambda_2 = \cos \theta - i \sin \theta \end{array} \qquad |\lambda_1|^2 = |\lambda_2|^2 = 1$$

Gram-Schmidt Orthogonalize the columns of A

$$egin{aligned} A &= QR \ Q^{\mathrm{T}}A &= R \ oldsymbol{q}_i^{\mathrm{T}}oldsymbol{a}_k &= r_{ik} \end{aligned} egin{bmatrix} oldsymbol{a}_1 & \cdots & oldsymbol{a}_n \end{bmatrix} = egin{bmatrix} oldsymbol{q}_1 & \cdots & oldsymbol{q}_n \end{bmatrix} egin{bmatrix} r_{11} & r_{12} & \cdot & r_{1n} \ & r_{22} & \cdot & r_{2n} \ & & \cdot & \cdot \ & & & r_{nn} \end{bmatrix}$$

Columns a_1 to a_n are **independent** Columns q_1 to q_n are **orthonormal**!

Gram-Schmidt Orthogonalize the columns of A

$$A = QR$$

$$Q^{\mathsf{T}}A = R$$

$$q_i^{\mathsf{T}}a_k = r_{ik}$$

$$a_1 \cdots a_n$$

$$= \begin{bmatrix} q_1 \cdots q_n \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} \cdot r_{1n} \\ & r_{22} \cdot r_{2n} \\ & & r_{nn} \end{bmatrix}$$

Columns a_1 to a_n are **independent** Columns q_1 to q_n are **orthonormal**!

Column 1 of
$$Q$$
 $egin{aligned} m{a}_1 = m{q}_1 r_{11} & r_{11} = ||m{a}_1|| & m{q}_1 = rac{m{a}_1}{||m{a}_1||} \end{aligned}$

Row 1 of $R=Q^{\mathrm{T}}A$ has $r_{1k}=oldsymbol{q}_1^{\mathrm{T}}oldsymbol{a}_k$ Subtract (column) (row)

$$A - \boldsymbol{q}_1 \begin{bmatrix} r_{11} & r_{12} & \cdot & r_{1n} \end{bmatrix} = \begin{bmatrix} \boldsymbol{q}_2 & \cdot & \boldsymbol{q}_n \end{bmatrix} \begin{bmatrix} r_{22} & \cdot & r_{2n} \\ & \cdot & \cdot \\ & & r_{nn} \end{bmatrix}$$

Least Squares: Major Applications of A = QR

 $m{m}>m{n}$ m equations $Am{x}=m{b},\ n$ unknowns, minimize $||m{b}-Am{x}||^2=||m{e}||^2$

Least Squares: Major Applications of A = QR

m>n m equations Ax=b, n unknowns, minimize $||b-Ax||^2=||e||^2$

Normal equations for the best $\widehat{x}:A^{\mathrm{T}}e=\mathbf{0}$ or $A^{\mathrm{T}}A\widehat{x}=A^{\mathrm{T}}b$

If A=QR then $R^{\mathrm{T}}Q^{\mathrm{T}}QR\widehat{\pmb{x}}=R^{\mathrm{T}}Q^{\mathrm{T}}\pmb{b}$ leads to $R\widehat{\pmb{x}}=Q^{\mathrm{T}}\pmb{b}$

Least Squares: Major Applications of A = QR

m>n m equations Ax=b, n unknowns, minimize $||b-Ax||^2=||e||^2$

Normal equations for the best $\widehat{x}:A^{\mathrm{T}}e=\mathbf{0}$ or $A^{\mathrm{T}}A\widehat{x}=A^{\mathrm{T}}b$

If A = QR then $R^{\mathrm{T}}Q^{\mathrm{T}}QR\widehat{\pmb{x}} = R^{\mathrm{T}}Q^{\mathrm{T}}\pmb{b}$ leads to $R\widehat{\pmb{x}} = Q^{\mathrm{T}}\pmb{b}$

$S=S^{ m T}$ Real Eigenvalues and Orthogonal Eigenvectors

 $S = S^{\mathrm{T}}$ has orthogonal eigenvectors $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0}$. Important proof.

Start from these facts:
$$\boxed{S {\pmb x} = \lambda {\pmb x} \qquad S {\pmb y} = \alpha {\pmb y} \quad \lambda \neq \alpha \qquad S^{\rm T} = S }$$

How to show orthogonality $x^{\mathrm{T}}y=0$? Use every fact!

- 1. Transpose to $m{x}^{\mathrm{T}}S^{\mathrm{T}} = \lambda m{x}^{\mathrm{T}}$ and use $S^{\mathrm{T}} = S$ $\boxed{m{x}^{\mathrm{T}}Sm{y} = \lambda m{x}^{\mathrm{T}}m{y}}$
- 2. We can also multiply $S m{y} = lpha m{y}$ by $m{x}^{\mathrm{T}}$ $m{x}^{\mathrm{T}} S m{y} = lpha m{x}^{\mathrm{T}} m{y}$
- 3. Now $\lambda x^{\mathrm{T}}y = \alpha x^{\mathrm{T}}y$. Since $\lambda \neq \alpha$, $x^{\mathrm{T}}y$ must be zero

Eigenvectors of S go into Orthogonal Matrix Q

$$S\left[\begin{array}{ccc} \boldsymbol{q}_1 & \cdots & \boldsymbol{q}_n \end{array}\right] = \left[\begin{array}{ccc} \lambda_1 \boldsymbol{q}_1 & \cdots & \lambda_n \boldsymbol{q}_n \end{array}\right] = \left[\begin{array}{ccc} \boldsymbol{q}_1 & \cdots & \boldsymbol{q}_n \end{array}\right] \left[\begin{array}{ccc} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{array}\right]$$

That says
$$\mathit{SQ} = Q\Lambda$$
 $S = Q\Lambda Q^{-1} = Q\Lambda Q^{\mathrm{T}}$

$$S = Q\Lambda Q^{\mathrm{T}}$$
 is a sum $\lambda_1 q_1 q_1^{\mathrm{T}} + \cdots + \lambda_r q_n q_n^{\mathrm{T}}$ of rank one matrices

With
$$S = A^{\mathrm{T}}A$$
 this will lead to the singular values of A

$$m{A} = m{U} m{\Sigma} m{V}^{\mathrm{T}}$$
 is a sum $\sigma_1 m{u}_1 m{v}_1^{\mathrm{T}} + \cdots + \sigma_r m{u}_r m{v}_r^{\mathrm{T}}$ of rank one matrices

Singular values σ_1 to σ_r in Σ . Singular vectors in U and V

Eigenvalues and Eigenvectors of A: Not symmetric

$$A \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix} \qquad AX = X\Lambda$$

With n independent eigenvectors $A = X\Lambda X^{-1}$

Eigenvalues and Eigenvectors of A: Not symmetric

$$A \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix} \qquad AX = X\Lambda$$

With n independent eigenvectors $A = X\Lambda X^{-1}$

$$A^2, A^3, \ldots$$
 have the same eigenvectors as A

$$A^2 x = A(\lambda x) = \lambda(Ax) = \lambda^2 x$$
 $A^n x = \lambda^n x$

$$A^{2} = (X\Lambda X^{-1}) (XAX^{-1}) = X\Lambda^{2}X^{-1} \qquad \mathbf{A^{n}} = X\Lambda^{n}X^{-1}$$

$$A^n o 0$$
 when $\Lambda^n o 0$: All $|\lambda_i| < 1$

$\mathsf{PROVE} \colon A^{\mathrm{T}}A \mathsf{\ is\ square,\ symmetric,\ nonnegative\ definite}$

1.
$$A^{\mathrm{T}}A = (n \times m)(m \times n) = n \times n$$

Square

PROVE : $A^{T}A$ is square, symmetric, nonnegative definite 1. $A^{T}A = (n \times m) (m \times n) = n \times n$ Square

2. $(BA)^{\mathrm{T}} = A^{\mathrm{T}}B^{\mathrm{T}}$ $(A^{\mathrm{T}}A)^{\mathrm{T}} = A^{\mathrm{T}}A^{\mathrm{TT}} = A^{\mathrm{T}}A$ Symmetric

$\mathsf{PROVE}: A^{\mathsf{T}}A$ is square, symmetric, nonnegative definite

- 1. $A^{\mathrm{T}}A = (n \times m)(m \times n) = n \times n$ Square
- 2. $(BA)^{\mathrm{T}} = A^{\mathrm{T}}B^{\mathrm{T}}$ $(A^{\mathrm{T}}A)^{\mathrm{T}} = A^{\mathrm{T}}A^{\mathrm{TT}} = A^{\mathrm{T}}A$ Symmetric
- 3. $S = S^{T}$ is nonnegative definite IF

EIGENVALUE TEST 1: All eigenvalues ≥ 0 $Sx = \lambda x$

ENERGY TEST 2: $x^{\mathrm{T}}Sx \geq 0$ for every vector x

$\mathsf{PROVE}: A^{\mathsf{T}}A$ is square, symmetric, nonnegative definite

1. $A^{\mathrm{T}}A = (n \times m)(m \times n) = n \times n$

Square

- 2. $(BA)^{\mathrm{T}} = A^{\mathrm{T}}B^{\mathrm{T}}$ $(A^{\mathrm{T}}A)^{\mathrm{T}} = A^{\mathrm{T}}A^{\mathrm{TT}} = A^{\mathrm{T}}A$ Symmetric
- 3. $S = S^{T}$ is nonnegative definite IF

EIGENVALUE TEST 1: All eigenvalues ≥ 0 $Sx = \lambda x$

ENERGY TEST 2: $x^{\mathrm{T}}Sx \geq 0$ for every vector x

TEST 1 IF
$$A^{\mathrm{T}}A\boldsymbol{x} = \lambda \boldsymbol{x}$$
 THEN $\boldsymbol{x}^{\mathrm{T}}A^{\mathrm{T}}A\boldsymbol{x} = \lambda \boldsymbol{x}^{\mathrm{T}}\boldsymbol{x}$ AND $\lambda = \frac{||A\boldsymbol{x}||^2}{||\boldsymbol{x}||^2} \geq 0$

TEST 2 applies to every \boldsymbol{x} , not only eigenvectors

Energy
$$oldsymbol{x}^{\mathrm{T}} S oldsymbol{x} = oldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A oldsymbol{x} = (A oldsymbol{x})^{\mathrm{T}} (A oldsymbol{x}) = ||A oldsymbol{x}||^2 \geq 0$$

Positive definite would have $\lambda > 0$ and $x^TAx > 0$ for every $x \neq 0$

 AA^{T} is also symmetric positive semidefinite (or definite)

In applications $\frac{AA^{\mathrm{T}}}{n-1}$ can be the sample covariance matrix

 AA^{T} has the same nonzero eigenvalues as $A^{\mathrm{T}}A$

Fundamental! If $A^{\mathrm{T}}Ax = \lambda x$ then $AA^{\mathrm{T}}Ax = \lambda Ax$

The eigenvector of AA^{T} is Ax $(\lambda \neq 0 \text{ leads to } Ax \neq 0)$

SINGULAR VALUE DECOMPOSITION

$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{\mathrm{T}}$ with $U^{\mathrm{T}} U = I$ and $V^{\mathrm{T}} V = I$

 $AV = U\Sigma$ means

$$A \left[egin{array}{cccc} oldsymbol{v}_1 & \cdots & oldsymbol{v}_r \end{array}
ight] = \left[egin{array}{cccc} oldsymbol{u}_1 & \cdots & oldsymbol{u}_r \end{array}
ight] \left[egin{array}{cccc} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r \end{array}
ight] ext{ and } Aoldsymbol{v}_i = \sigma_ioldsymbol{u}_i$$

SINGULAR VALUES $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ $r = \operatorname{rank} \text{ of } A$

 ${\cal U}$ and ${\cal V}$ are rotations and possible reflections. Σ stretches circle to ellipse.

How to choose orthonormal v_i in the row space of A?

The v_i are eigenvectors of $A^{\mathrm{T}}A$

$$A^{\mathrm{T}}Am{v}_i=\lambda_im{v}_i=\sigma_i^2m{v}_i$$
 The $m{v}_i$ are orthonormal. $m{V}^{\mathbf{T}}m{V}=m{I}$

How to choose orthonormal v_i in the row space of A?

The v_i are eigenvectors of $A^{\mathrm{T}}A$

$$A^{\mathrm{T}}Av_i=\lambda_iv_i=\sigma_i^2v_i$$
 The v_i are orthonormal. $V^{\mathrm{T}}V=I$

How to choose $oldsymbol{u}_i$ in the column space? $oldsymbol{u}_i = rac{A oldsymbol{v}_i}{\sigma_i}$

The $oldsymbol{u}_i$ are orthonormal $U^{\mathrm{T}} U = I$

$$\left(\frac{A\boldsymbol{v}_j}{\sigma_j}\right)^{\mathrm{T}} \left(\frac{A\boldsymbol{v}_i}{\sigma_i}\right) = \frac{\boldsymbol{v}_j^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{v}_i}{\sigma_j \sigma_i} = \frac{\boldsymbol{v}_j^{\mathrm{T}} \sigma_i^2 \boldsymbol{v}_i}{\sigma_j \sigma_i} = \begin{array}{cc} 1 & i = j \\ 0 & i \neq j \end{array}$$

How to choose orthonormal v_i in the row space of A?

The v_i are eigenvectors of A^TA

$$A^{\mathrm{T}}Av_i=\lambda_iv_i=\sigma_i^2v_i$$
 The v_i are orthonormal. $V^{\mathrm{T}}V=I$

How to choose $oldsymbol{u}_i$ in the column space? $oldsymbol{u}_i = rac{A oldsymbol{v}_i}{\sigma_i}$

The u_i are orthonormal $U^{\mathrm{T}}U=I$

$$\left(\frac{Av_j}{\sigma_j}\right)^{\mathrm{T}} \left(\frac{Av_i}{\sigma_i}\right) = \frac{v_j^{\mathrm{T}} A^{\mathrm{T}} A v_i}{\sigma_j \sigma_i} = \frac{v_j^{\mathrm{T}} \sigma_i^2 v_i}{\sigma_j \sigma_i} = \begin{array}{c} 1 & i = j \\ 0 & i \neq j \end{array}$$

Full size SVD
$$A = U\Sigma V^{\mathrm{T}}$$

$$m \times n \quad m \times m \quad n \times n$$

$$m{u}_{r+1}$$
 to $m{u}_m$: Nullspace of A^{T} $\Sigma = \left[egin{array}{ccc} \sigma_1 & & 0 \ & dots & & \ & \sigma_r & \ & & \sigma_r & \ & & & 0 \end{array}
ight]$

SVD of
$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$
 $A^{T}A = \begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix}$ $AA^{T} = \begin{bmatrix} 9 & 12 \\ 12 & 41 \end{bmatrix}$
$$\mathbf{U} = \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$$
 $\mathbf{\Sigma} = \begin{bmatrix} 3\sqrt{5} \\ \sqrt{5} \end{bmatrix}$ $\mathbf{V}^{T} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

$$egin{aligned} \sigma_1 oldsymbol{u}_1 oldsymbol{v}_1^{ ext{T}} + \sigma_2 oldsymbol{u}_2 oldsymbol{v}_2^{ ext{T}} = rac{3}{2} \left[egin{array}{ccc} 1 & 1 \ 3 & 3 \end{array}
ight] + rac{1}{2} \left[egin{array}{ccc} 3 & -3 \ -1 & 1 \end{array}
ight] = \left[egin{array}{ccc} 3 & 0 \ 4 & 5 \end{array}
ight] \end{aligned}$$

Low rank approximation to a big matrix

Start from the SVD

$$A = U\Sigma V^{\mathrm{T}} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\mathrm{T}}$$

Keep the k largest σ_1 to σ_k

$$A_k = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \dots + \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^{\mathrm{T}}$$

 A_k is the closest rank k matrix to A

$$||A - A_k|| \le ||A - B_k||$$

Norms

$$||A|| = \sigma_{\text{max}}$$
 $||A||_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$ $||A||_N = \sigma_1 + \dots + \sigma_r$

Randomized Numerical Linear Algebra

For very large matrices, randomization has brought a revolution

Example: Multiply AB with Column-row sampling $(AS)(S^{\mathrm{T}}B)$

$$AS = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} s_{11} & 0 \\ 0 & 0 \\ 0 & s_{32} \end{bmatrix} = \begin{bmatrix} s_{11}\mathbf{a}_1 & s_{32}\mathbf{a}_3 \end{bmatrix} \text{ and } S^{\mathrm{T}}B = \begin{bmatrix} s_{11} & b_1^{\mathrm{T}} \\ s_{32} & b_3^{\mathrm{T}} \end{bmatrix}$$

NOTICE SS^{T} is not close to I. But we can have

$$\boldsymbol{E}[SS^{\mathrm{T}}] = I$$
 $\boldsymbol{E}[(AS)(S^{\mathrm{T}}B)] = AB$

Norm-squared sampling Choose column-row with probabilities $\approx ||a_i|| \, ||b_i^{\mathrm{T}}||$

OCW.MIT.EDU and YouTube

Math 18.06 Introduction to Linear Algebra

Math 18.065 Linear Algebra and Learning from Data

Math 18.06 Linear Algebra for Everyone (New textbook expected in 2021 !!)

math.mit.edu/linearalgebra math.mit.edu/learningfromdata

MIT OpenCourseWare https://ocw.mit.edu

Resource: A 2020 Vision of Linear Algebra Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.