

ENME 303 LAB

Week 9: Functions

Nameless Lab

Week 9: Functions

- I. User-defined Functions
- II. Defining: User-defined Functions
- III. Using: User-defined Functions
- IV. Vector Norm

TEST YOUR CODE

Before Submitting, Make sure to ...

1. Run your code

- Verify that your code does not result in any errors.
- Verify all variables are suppressed.
- Verify that the number of outputs and inputs are consistent with the prompt.

2. Verify the outputs

 Inspect the outputs. Does the answer make sense? Use your knowledge of linear algebra from lecture to check your answers.

I. User-defined Functions

Most non-trivial programs are written as a set of independent functions bc:

- 1. Breaking a large problem into smaller subproblems is easier to tackle
- 2. <u>Duplicate code can be **eliminated**</u>
- 3. Isolating the number of places a variable can change simplifies debugging

Simplify the main: Neater code!

```
%ENME 303
%Author: Karla Negrete
clc, clear all
%% Matrix Inverse
% For matrix to be invertible, it must:
%1.Be square
%2.det ~= 0
X = input('Enter your matrix X (in brackets): \n')
%[1 4 5; 9 9 3; 1 8 1]
[num row, num col]=size(X);
if (isequal(num row,num col) && det(X)~=0)
    InvX=inv(X);
    fprintf('The inverse of X is:\n')
    disp(InvX)
    if isequal(round(X*InvX), eye(num row))
    fprintf('Correct\n')
    end
end
```

```
%Author: Karla Negrete
 clc, clear all
 a = [1 4 5; 9 9 3; 1 8 1]
 aInv= matxInverse(a);
function [a output] = matxInverse(X)
 [num row, num col]=size(X);
 if (isequal(num row, num col) && det(X)~=0)
     InvX=inv(X);
     fprintf('The inverse of X is:\n')
     disp(InvX)
     if isequal(round(X*InvX), eye(num row))
     fprintf('Correct\n')
     end
 end
 a output=InvX;
 end
```


Functions defined either as separate files **or** at the end of script files

```
example.m × matxInverse.m × +
         %ENME 303
         %Author: Karla Negrete
         clc, clear all
         a = [1 4 5; 9 9 3; 1 8 1]
         aInv= matxInverse(a);
                                                        or
   example.m × matxInverse.m × +
     function [a output] = matxInverse(X)
       [num row, num col]=size(X);
       if (isequal(num row, num col) && det(X)~=0)
           InvX=inv(X);
           fprintf('The inverse of X is:\n')
           disp(InvX)
           if isequal(round(X*InvX), eye(num_row))
           fprintf('Correct\n')
           end
       end
12 -
       a output=InvX;
       end
```

```
%ENME 303
 %Author: Karla Negrete
 clc, clear all
 a = [1 4 5; 9 9 3; 1 8 1]
 aInv= matxInverse(a);
function [a output] = matxInverse(X)
 [num row, num col]=size(X);
 if (isequal(num row,num col) && det(X)~=0)
     InvX=inv(X);
     fprintf('The inverse of X is:\n')
     disp(InvX)
     if isequal(round(X*InvX), eye(num row))
     fprintf('Correct\n')
     end
 end
 a output=InvX;
 end
```


User-defined Function

Structure is key:

- 1. Function define line
- 2. Function body
- 3. End-command
 - a. If function is within the script

II. Defining: User-defined Functions

- Functions must be defined before they can be used
 - General syntax is:

function [output_argument] = Function_name (input_argument)

Function define line

% one or more staten entsinction body

end

 Function input and output arguments are used to pass information into and out of the function

Let's look at that example again

```
function [a output] = matxInverse(X)
 [num row, num col]=size(X);
 if (isequal(num row,num col) && det(X)~=0)
     InvX=inv(X);
     fprintf('The inverse of X is:\n')
     disp(InvX)
     if isequal(round(X*InvX), eye(num row))
     fprintf('Correct\n')
     end
 end
 a output=InvX;
end
```

- The function's name is matxInverse
- The function's <u>input</u> argument is X
- The function's <u>output</u> argument is a_output

User-defined Function: Inputs and Outputs

- Functions may have zero or more input arguments and zero or more output arguments. Ex:
 - function [mpay, tpay] = loan (amount, rate, years)
 - 3 input, 2 output
 - function [A] = RectArea(a,b)
 - 2 input, 1 output
 - function [V,A] = SphereVolArea(r)
 - 1 input, 2 output
 - o function trajectory (v, h, g)
 - 3 input, zero output

III. Using: User-defined Functions

- User-defined functions are called (used) in the same way as Matlab's built-in functions!
 - General syntax for calling your user-defined function is based on the input and output arguments:

```
Function_name()

Function_name(input_argument_list)

Function_name(input_argument_list)

output_argument = Function_name(input_argument_list)

[output_argument_list] = Function_name(input_argument_list)

[output_argument_list] = Function_name(input_argument_list)

[output_argument_list] = Function_name(input_argument_list)

% no input arguments
% one or more input arguments
% one output argument
% one or more input arguments
```

The input and output arguments used when a function is called are called actual arguments

What happens when I call a user-defined function?

The <u>actual input argument</u> "a" gets assigned to the function input argument "X"

Body of function executed

The function output argument "InvX" gets assigned to the <u>actual output argument</u> "alnv"

```
function [a_output] = matxInverse(X)
[num_row, num_col]=size(X);

if (isequal(num_row,num_col) && det(X)~=0)
    InvX=inv(X);
    fprintf('The inverse of X is:\n')
    disp(InvX)
    if isequal(round(X*InvX),eye(num_row))
    fprintf('Correct\n')
    end
end
a_output=InvX;
end
```

WUMBC

IV. Vector Norm

- The norm(a,p) function is used to find the p norm of the vector a where p =1,2 or inf.
- p = 1, gives first norm.
- p = 2, gives second norm.

Note: using norm (a) gives second norm.

• p = inf, gives infinity norm

Ex. $v = [-2 \ 3 \ -1];$ n = norm(v, 1)

Output:

$$n = 6$$

Acknowledgement

The lab slides you see are not made by one person. All the TA/TFs served for this course have contributed their effort and time to the slides. Below are the leading TFs for each semester:

- 2021 FA Karla Negrete (GTA)
- 2022 SP Justin Grahovac
- 2022 FA Kelli Boyer, Yisrael Wealcatch, Noelle Ray (GTA)
- 2023 SP Mahamoudou Bah and Matt Moeller
- 2024 SP Mohammad Riyaz Ur Rehman & Michael Mullaney