LECTURE 11:NETWORKS WITH SIGNED EDGES

Signed Networks

- Networks with positive and negative relationships
- Our basic unit of investigation will be signed triangles
- First we talk about undirected networks then directed
- Plan for this lecture:
 - Model: Consider two soc. theories of signed nets
 - Data: Reason about them in large online networks
- Application: Predict if A and B are linked with + or -

Signed Networks

- Networks with positive and negative relationships
- Consider an <u>undirected complete graph</u>
- Label each edge as either:
 - Positive: friendship, trust, positive sentiment, ...
 - Negative: enemy, distrust, negative sentiment, ...
- Examine triples of connected nodes A, B, C

Theory of Structural Balance

- Start with the intuition [Heider '46]:
 - Friend of my friend is my friend
 - Enemy of enemy is my friend
 - Enemy of friend is my enemy
- Look at connected triples of nodes:

Consistent with "friend of a friend" or "enemy of the enemy" intuition

Inconsistent with the "friend of a friend" or "enemy of the enemy" intuition

Balanced/Unbalanced Networks

- Graph is balanced if every connected triple of nodes has:
 - □ All 3 edges labeled +, or
 - Exactly 1 edge labeled +

Local Balance → Global Factions

- □ Balance implies global coalitions [Cartwright-Harary]
- If all triangles are balanced, then either:
 - The network contains only positive edges, or
 - Nodes can be split into 2 sets where negative edges only point between the sets

Analysis of Balance

Example: International Relations

- International relations:
 - Positive edge: alliance
 - Negative edge: animosity
- Separation of Bangladesh from Pakistan in 1971: US

supports Pakistan. Why?

- □ USS<u>R</u> was enemy of <u>C</u>hina
- <u>C</u>hina was enemy of <u>I</u>ndia
- □ India was enemy of Pakistan
- □ <u>U</u>S was friendly with <u>C</u>hina
- <u>C</u>hina vetoed<u>B</u>angladesh from U.N.

1872-1881

1891-1894

Balance in General Networks

So far we talked about complete graphs

Balanced?

Def 1: Local view

Fill in the missing edges to achieve balance

Def 2: Global view

Divide the graph into two coalitions

The 2 definitions

are equivalent!

Is a Signed Network Balanced?

- Graph is balanced if and only if it contains no cycle with an odd number of negative edges
- □ How to compute this?
 - □ Find connected components on + edges
 - If we find a component of nodes on +edges that contains a -edge ⇒ Unbalanced
 - For each component create a super-node
 - Connect components A and B if there is a negative edge between the members
 - Assign super-nodes to sides using BFS

Signed Graph: Is it Balanced?

Positive Connected Components

Reduced Graph on Super-Nodes

BFS on Reduced Graph

- Using BFS assign each node a side
- Graph is unbalanced if any two
 super-nodes are assigned the same side

EXPLORING REAL DATA

Real Large Signed Networks

- \square Each link $A \rightarrow B$ is **explicitly** tagged with a sign:
 - **Epinions:** Trust/Distrust
 - Does A trust B's product reviews? (only positive links are visible)
 - Wikipedia: Support/Oppose
 - Does A support B to become Wikipedia administrator?
 - Slashdot: Friend/Foe
 - Does A like B's comments?
 - Other examples:
 - Online multiplayer games

	Epinions	Slashdot	Wikipedia	
Nodes	119,217	82,144	7,118	
Edges	841,200	549,202	103,747	
+ edges	85.0%	77.4%	78.7%	
edges	15.0%	22.6%	21.2%	

Balance in Our Network Data

Does structural balance hold?

Compare frequencies of signed triads

in real and "shuffled" data

Unbalanced Balanced	Triad	E pinions		Wikipedia		Consistent with	
		P(T)	P _o (T)	P(T)	P _O (T)	Balance?	
	+ + +	0.87	0.62	0.70	0.49	✓	
	- - -	0.07	0.05	0.21	0.10	✓	
	+ + +	0.05	0.32	0.08	0.49	✓	
		0.007	0.003	0.011	0.010	×	

P(T) ... fraction of a triads

 $P_0(T)$... triad fraction if the signs would be random

Shuffled data

Global Structure of Signed Nets

- Intuitive picture of social network in terms of densely linked clusters
- How does structure interact with links?
- Embeddedness of link (A,B): Number of shared neighbors

Global Factions: Embeddedness

Embeddedness of ties:

Positive ties tend to be more embedded

- Positive ties tend to be more clumped together
 - Public display of signs (votes)in Wikipedia furtherattenuates this

Global Structure of Signed Nets

	Si	ze	Clustering		Component	
	Nodes	Edges	Real	Rnd	Real	Rnd
Epinions: —	119,090	123,602	0.012	0.022	0.308	0.334
Epinions: +	119,090	717,027	0.093	0.077	0.815	0.870
Slashdot: –	82,144	124,130	0.005	0.010	0.423	0.524
Slashdot: +	82,144	425,072	0.025	0.022	0.906	0.909
Wikipedia: –	7,115	21,984	0.028	0.031	0.583	0.612
Wikipedia: +	7,115	81,705	0.130	0.103	0.870	0.918

□ Clustering:

- +net: More clustering than baseline
- -net: Less clustering than baseline

□ Size of max. component:

 \Box +/-net: Smaller than the baseline

Evolving Directed Networks

New setting:

Links are directed and created over time

- \Box How many \triangle are now explained by balance?
 - Only half (8 out of 16)
- Is there a better explanation? Yes. Status.

16 signed directed triads

(in directed networks people traditionally applied balance by ignoring edge directions)

Alternate Theory: Status

- □ Status in a network [Davis-Leinhardt '68]
 - $\blacksquare A \longrightarrow B :: B \text{ has higher status than } A$
 - $\square A \longrightarrow B :: B \text{ has lower status than } A$
 - (Note the notion of status is now implicit)
 - Apply this principle_transitively_over paths
 - Can replace each $A \longrightarrow B$ with $A \longleftarrow B$
 - Obtain an all-positive network with same status interpretation

Status vs. Balance

Status and balance give different predictions!

Status vs. Balance

At a global level:

- □ Status ⇒ Hierarchy
 - All-positive directed network should be (approximately) acyclic

□ Balance ⇒ Coalitions

 Balance ignores directions and implies that subgraph of negative edges should be (approximately)
 bipartite

Theory of Status

- Edges are directed and created over time
 - X has links to A and B
 - Now, A links to B (triad A-B-X)
 - □ How does sign of A→B
 depend signs from/to X?
 P(A→B | X) vs. P(A→B)
- We need to formalize:
 - 1) Links are embedded in triads:
 Triads provide <u>context</u> for signs
 - 2) Users are <u>heterogeneous</u> in their linking behavior

1) Context: 16 Types

□ Link A→B
appears in
context X:

 $A \longrightarrow B \mid X$

□ 16 possible contexts:

2) Heterogeneity in linking behavior

- Users differ in frac. of + links they give/receive
- □ For a user U:
 - Generative baseline: Frac. of + given by U
 - Receptive baseline: Frac. of + received by U

Basic question:

- How do different link contexts cause users to deviate from their baselines?
 - Link contexts as modifiers on a person's predicted behavior
 - <u>Surprise</u>: How much behavior of A/B <u>deviates</u> from his/her <u>baseline</u> when A/B is in <u>context</u> X

Computing Surprise

- Surprise: How much behavior of user deviates from baseline in context X
 - Baseline: For every user A_i : $p_g(A_i)$... generative baseline of A_i
 - \blacksquare Fraction of times A_i gives a plus
 - Context: $(A_1, B_1 | X_1), ..., (A_n, B_n | X_n)$... all instances of triad context X
 - (A_i, B_i, X_i) ... an instance where when user A_i links to user B_i the triad of type X is created.
 - Say k of those triads closed with a plus
 - k out of n times: $A_i \rightarrow B_i$

Computing Surprise

- Surprise: How much behavior of user deviates from baseline in **context** X
 - Generative surprise of context X:

$$s_g(X) = \frac{k - \sum_{i=1}^{n} p_g(A_i)}{\sqrt{\sum_{i=1}^{n} p_g(A_i)(1 - p_g(A_i))}}$$

$$p_g(A_i) \dots \text{ generative baseline of } A_i$$

- **Context X:** $(A_1, B_1 | X_1), ..., (A_n, B_n | X_n)$
- k of instances of triad X closed with a plus edges
- \blacksquare Receptive surprise is similar, just use $p_r(A_i)$

Status: Two Examples

- □ Assume status is at work
- What happens?

Gen. surprise of A: – Rec. surprise of B: –

Gen. surprise of A: – Rec. surprise of B: –

Joint Positive Endorsement

- X positively endorses A and B
- □ Now A links to B

A puzzle:

- In our data we observe:Fraction of positive links deviates
 - Above generative baseline of A: $S_g(X) > 0$
 - Below receptive baseline of B: $S_r(X) < 0$
- □ Why?

A Story: Soccer Team

- Ask every node: How does skill of B compare to yours?
 - Build a signed directed network
- We haven't asked A about B
- But we know that X thinks
 A and B are both better than him

A Story: Soccer Team

□ A's viewpoint:

- Since B has positive evaluation,B is high status
- Thus, evaluation A gives is more likely to be positive than the baseline

How does A evaluate B?

A is evaluating someone who is better than avg.

→ A is more positive than average

A Story: Soccer Team

□ B's viewpoint:

- Since A has positive evaluation,A is high status
- Thus, evaluation B receives is less likely to be positive than the baseline

How is B evaluated by A?

B is evaluated by someone better than average.

→ They will be more negative to B than average

V R Δ

Sign of A→B deviates in different directions depending on the viewpoint!

Consistency with Status

- Determine node status:
 - Assign X status 0
 - Based on signs and directions of edges set status of A and B
- Surprise is status-consistent, if:
 - Gen. surprise is status-consistent if it has same sign as status of B
 - Rec. surprise is status-consistent if it has the **opposite** sign from the status of A
- □ Surprise is **balance**-consistent, if:
 - If it completes a balanced triad

Status-consistent if:

Gen. surprise > 0

Rec. surprise < 0

Status vs. Balance (Epinions)

□ Predictions:

t_i	count	P(+)	$S_g(t_i)$	$S_r(t_i)$	B_g	B_r	S_g	S_r
t_1	178,051	0.97	95.9	197.8	√	√	√	\checkmark
t_2	45,797	0.54	-151.3	-229.9	\checkmark	\checkmark	\checkmark	
t_3	246,371	0.94	89.9	195.9	\checkmark	\checkmark	•	\checkmark
t_4	25,384	0.89	1.8	44.9	0	0	\checkmark	\checkmark
t_5	45,925	0.30	18.1	-333.7	0	\checkmark	\checkmark	\checkmark
t_6	11,215	0.23	-15.5	-193.6	0	0	\checkmark	\checkmark
t_7	36,184	0.14	-53.1	-357.3	\checkmark	\checkmark	\checkmark	\checkmark
t_8	61,519	0.63	124.1	-225.6	\checkmark	0	\checkmark	\checkmark
t_9	338,238	0.82	207.0	-239.5	\checkmark	0	\checkmark	\checkmark
t_{10}	27,089	0.20	-110.7	-449.6	\checkmark	\checkmark	\checkmark	\checkmark
t_{11}	35,093	0.53	-7.4	-260.1	0	0	\checkmark	\checkmark
t_{12}	20,933	0.71	17.2	-113.4	0	\checkmark	\checkmark	\checkmark
t_{13}	14,305	0.79	23.5	24.0	0	0	\checkmark	\checkmark
t_{14}	30,235	0.69	-12.8	-53.6	0	0	\checkmark	
t_{15}	17,189	0.76	6.4	24.0	0	0	•	\checkmark
t_{16}	4,133	0.77	11.9	-2.6	\checkmark	0	✓	•
Number of correct predictions				8	7	14	13	

Mistakes:

Predicting Edge Signs

Edge sign prediction problem

- Given a network and signs on all but one edge, predict the missing sign
- Friend recommendation:
 - Predicting whether you know someone vs. Predicting what you think of them

Summary

- Signed networks provide insight into how social computing systems are used:
 - Status vs. Balance
 - Role of embeddedness and public display
 - More evidence that networks are globally organized based on status