Project Report

On

Car Sales Prediction

Submitted in partial fulfilment of the requirements for the award of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE & ENGINEERING

(Artificial Intelligence & Machine Learning)

by

Ms.YASHASWINY SRIPADA-22WH1A6607

Ms.R.ISHWARYA – 22WH1A6609

Ms.S.AISHWARYA-22WH1A6644

Ms.N.VAISHNAVI-22WH1A6645

Under the esteemed guidance of

Ms. A Naga Kalyani

Assistant Professor, CSE(AI&ML)

BVRIT HYDERABAD College of Engineering for Women

(UGC Autonomous Institution | Approved by AICTE | Affiliated to JNTUH)

(NAAC Accredited - A Grade | NBA Accredited B.Tech. (EEE, ECE, CSE and IT)

Bachupally, Hyderabad – 500090

2024-25

Department of Computer Science & Engineering

(Artificial Intelligence & Machine Learning)

BVRIT HYDERABAD COLLEGE OF ENGINEERING FOR WOMEN

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with A Grade

Bachupally, Hyderabad – 500090

2024-25

CERTIFICATE

This is to certify that the major project entitled "Car Sales prediction using python" is a bonafide work carried out by Ms. Yashaswiny Sripada (22wh1a6607), Ms. R.Ishwarya (22wh1a6609), Ms. S.Aishwarya (22wh1a6644), Ms. N.Vaishnavi (22wh1a6645) in partial fulfillment for the award of B. Tech degree in Computer Science & Engineering (AI&ML), BVRIT HYDERABAD College of Engineering for Women, Bachupally, Hyderabad, affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad under my guidance and supervision. The results embodied in the project work have not been submitted to any other University or Institute for the award of any degree or diploma.

Supervisor Ms. A Naga Kalyani Assistant Professor

Dept of CSE(AI&ML)

Head of the Department Dr. B. Lakshmi Praveena HOD & Professor

Dept of CSE(AI&ML)

External Examiner

DECLARATION

We hereby declare that the work presented in this project entitled "Car Sales prediction using python" submitted towards completion of Project work in IV Year of B.Tech of CSE(AI&ML) at BVRIT HYDERABAD College of Engineering for Women, Hyderabad is an authentic record of our original work carried out under the guidance of Ms. A Naga Kalyani, Assistant Professor, Department of CSE(AI&ML).

Sign with Date: Yashaswiny Sripada (22wh1a6607)

> Sign with Date: R.Ishwarya (22wh1a6607)

Sign with Date: S.Aishwarya (22wh1a6644)

Sign with Date:

N.Vaishnavi

(22wh1a6645)

ACKNOWLEDGEMENT

We would like to express our sincere thanks to **Dr. K. V. N. Sunitha**, **Principal**, **BVRIT HYDERABAD College of Engineering for Women**, for her support by providing the working facilities in the college.

Our sincere thanks and gratitude to **Dr. B. Lakshmi Praveena**, **Head of the Department, Department of CSE(AI&ML)**, **BVRIT HYDERABAD College of Engineering for Women**, for all timely support and valuable suggestions during the period of our project.

We are extremely thankful to our Internal Guide, Ms. A Naga Kalyani, Assistant Professor, CSE(AI&ML), BVRIT HYDERABAD College of Engineering for Women, for her constant guidance and encouragement throughout the project.

Finally, we would like to thank our Major Project Coordinator, all Faculty and Staff of CSE(AI&ML) department who helped us directly or indirectly. Last but not least, we wish to acknowledge our **Parents and Friends** for giving moral strength and constant encouragement.

Yashaswiny Sripada(22wh1a6607)

R.Ishwarya (22wh1a6609)

S.Aishwarya(22wh1a6644)

N.Vaishnavi(22wh1a6645)

ABSTRACT

This project analyzes car sales data using Python to provide insights into sales trends, popular car models, and pricing patterns. The report utilizes data manipulation libraries such as Pandas for organizing and processing data, along with Matplotlib and Seaborn for visualization. Key metrics like total sales, average prices, and sales distribution by brand or model are calculated. The project also explores relationships between variables like car price and features, enabling data-driven insights. The analysis aims to assist stakeholders in understanding market trends, optimizing inventory, making informed decisions to improve sales performance and customer satisfaction.

PROBLEM STATEMENT

The automotive industry generates vast amounts of sales data, which often remain underutilized due to the lack of efficient analytical tools. Businesses face challenges in identifying trends, understanding customer preferences, and optimizing inventory and marketing strategies. Key issues include:

- **1.Unorganized Data**: Difficulty in extracting meaningful insights from raw and complex datasets.
- **2.Lack of Visualization:** Absence of clear and intuitive representations of sales trends, customer behaviour, and regional performance.
- **3.Inefficient Decision-Making**: Limited ability to identify top-selling models, peak sales periods, and market demand due to inadequate analysis.

This project aims to address these challenges by developing a Car Sale Report using Python, which will provide a structured, visual, and actionable understanding of car sales data. The solution will empower stakeholders to make data-driven decisions and improve overall business efficiency.

DATA SET

Car Sales prediction – Kaggle

https://www.kaggle.com/datasets/missionjee/car-sales-report

SOURCE CODE

1#import pandas as pd
file_path = '/content/Car Sales.xlsx - car_data.csv'
data = pd.read_csv(file_path)

2# print(data.head())

3# from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error import pandas as pd

Data preprocessing

data['Engine'] = data['Engine'].astype('category').cat.codes data['Transmission'] = data['Transmission'].astype('category').cat.codes data['Company'] = data['Company'].astype('category').cat.codes data['Body Style'] = data['Body Style'].astype('category').cat.codes data['Color'] = data['Color'].astype('category').cat.codes

X = data[['Engine', 'Transmission', 'Company', 'Body Style', 'Color']] y = data['Price (\$)']

Split the data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train the model model = RandomForestRegressor() model.fit(X_train, y_train)

```
# Evaluate the model
 predictions = model.predict(X_test)
 mse = mean_squared_error(y_test, predictions)
print(f"Mean Squared Error: {mse}")
 4# from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LogisticRegression
 from sklearn.metrics import accuracy_score, classification_report
 # Create a binary target variable for price
 threshold = 25000
 data['Price_Label'] = (data['Price ($)'] > threshold).astype(int)
 # Encode categorical features
 data['Engine'] = data['Engine'].astype('category').cat.codes
 data['Transmission'] = data['Transmission'].astype('category').cat.codes
 data['Company'] = data['Company'].astype('category').cat.codes
 data['Body Style'] = data['Body Style'].astype('category').cat.codes
 # Select features and target
 X = data[['Annual Income', 'Engine', 'Transmission', 'Company', 'Body
 Style']]
 y = data['Price_Label']
 # Split the data into train and test sets
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
 random state=42)
 # Train a logistic regression model
```

model = LogisticRegression(max_iter=1000)

```
model.fit(X_train, y_train)
 # Evaluate the model
 y_pred = model.predict(X_test)
 accuracy = accuracy_score(y_test, y_pred)
 print(f"Accuracy: {accuracy}")
 print("Classification Report:")
print(classification_report(y_test, y_pred))
 5#from sklearn.neighbors import NearestNeighbors
 import numpy as np
 # Features for recommendation
 X = data[['Annual Income', 'Price ($)']]
 # Fit Nearest Neighbors model
 model = NearestNeighbors(n_neighbors=5, metric='euclidean')
 model.fit(X)
 # Example query for recommendation
 query = np.array([[50000, 20000]])
 distances, indices = model.kneighbors(query)
 # Recommended cars
 recommendations = data.iloc[indices[0]]
print(recommendations[['Company', 'Model', 'Price ($)']])
 6# [1:01 pm, 5/12/2024] Ishwarya Ravulapenta: from sklearn.decomposition
 import PCA
 from sklearn.preprocessing import StandardScaler
```

```
X = data[['Annual Income', 'Price ($)']]
 # Standardize the features
 scaler = StandardScaler()
 X_scaled = scaler.fit_transform(X)
 # Apply PCA
 pca = PCA(n_components=2)
 X_pca = pca.fit_transform(X_scaled)
 print("Explained Variance Ratio:", pca.explained_variance_ratio_)
 [1:02 pm, 5/12/2024] Ishwarya Ravulapenta: from sklearn.cluster import
 KMeans
 import matplotlib.pyplot as plt
 X = data[['Annual Income']]
 # Apply KMeans clustering
 kmeans = KMeans(n_clusters=3, random_state=42)
 data['Cluster'] = kmeans.fit_predict(X)
 # Visualize the clusters
 plt.scatter(X['Annual Income'], [0]*len(X), c=data['Cluster'], cmap='viridis')
 plt.title('Customer Segmentation')
 plt.xlabel('Annual Income')
plt.show()
 7# import matplotlib.pyplot as plt
 data['Date'] = pd.to_datetime(data['Date'])
 data.set_index('Date', inplace=True)
 # Aggregate monthly sales
 monthly_sales = data['Price ($)'].resample('M').sum()
```

Plot sales trends

```
plt.figure(figsize=(10, 6))
 monthly_sales.plot()
 plt.title('Monthly Sales Trends')
 plt.xlabel('Date')
 plt.ylabel('Total Sales ($)')
plt.show()
 8# [1:02 pm, 5/12/2024] Ishwarya Ravulapenta: import matplotlib.pyplot as plt
 # Calculating total sales for each company
 company_sales = data.groupby('Company')['Price
 ($)'].sum().sort_values(ascending=False)
 # Plot the bar chart
 plt.figure(figsize=(10, 6))
 company_sales.plot(kind='bar', color='skyblue')
 plt.title('Total Sales by Car Company')
 plt.xlabel('Car Company')
 plt.ylabel('Total Sales ($)')
 plt.xticks(rotation=45)
 plt.show()
 [1:02 pm, 5/12/2024] Ishwarya Ravulapenta: # Counting the number of cars sold
 by body style
 body_style_counts = data['Body Style'].value_counts()
 # Plot the pie chart
 plt.figure(figsize=(8, 8))
 body_style_counts.plot(kind='pie', autopct='%1.1f%%', startangle=140,
 colors=['lightblue', 'orange', 'green', 'red', 'purple'])
 plt.title('Car Sales by Body Style')
 plt.ylabel(")
 plt.show()
```

OUTPUT

Car_id Date Customer Name Gene	der Annual Inc	come \			
0 C_CND_000001 1/2/2022 Gera	ldine Male	13500			
1 C_CND_000002 1/2/2022	Gia Male	1480000			
2 C_CND_000003 1/2/2022 Gia	anna Male	1035000			
3 C_CND_000004 1/2/2022 Gis	elle Male	13500			
4 C_CND_000005 1/2/2022 G1	race Male	1465000			
Dealer_Nam	ne Company	Model \			
0 Buddy Storbeck's Diesel Service In	nc Ford	Expedition			
1 C & M Motors In	c Dodge	Durango			
Capitol KI	A Cadillac	Eldorado			
3 Chrysler of Tri-Cities	s Toyota	Celica			
4 Chrysler Plymouth	Acura	TL			
Engine Transmission	Color Pri	ce (\$) Deal	er_No \		
0 Double Overhead Camshaft	Auto Blac	ek 26000	06457-3834		
1 Double Overhead Camshaft	Auto Blac	ck 19000	60504-7114		
2 Overhead Camshaft	Manual Red	31500	38701-8047		
3 Overhead Camshaft	Manual Pale	Whit 14000	99301-3882		
4 Double Overhead Camshaft	Auto Rec	1 24500	53546-9427		
Body Style Phone Dealer_Region					
0 SUV 8264678 Middletown					

SUV 6848189

SUV 6257557

3

2 Passenger 7298798 Greenville

4 Hatchback 7081483 Janesville

Aurora

Pasco

Mean Squared Error

Mean Squared Error: 94325232.77855274

logistic regression model

Accuracy: 0.5696361355081556

Classification Report:

	pre	cision	recall	f1-score	suppo	rt
0)	0.57	1.00	0.73	2724	
1		0.00	0.00	0.00	2058	
accur	acy			0.57	4782	
macro	avg	5	0.28	0.50	0.36	4782
weighted avg		0.32	0.57	0.41	4782	

Company		Model Price (\$)		
23068	7	Ram Pickup	20000	
21344	21	Voyager	20000	
22319	5	Cavalier	20000	
20657	19	Frontier	20000	
22251	12	S-Type	20000	

Explained Variance Ratio

Explained Variance Ratio: [0.50603248 0.49396752]

Customer Segmention

Monthly Sales Trends

Total Sales by Car Company

Car Sales by Body Style

Car Sales by Body Style

