Continuous distributions

Name	Symbol	Parameter	Definition range	Density	Mean, variance, mode
Continuous Uniform	$Y \sim \mathrm{U}(a,b)$	$a, b \in \mathbb{R}$ $a < b$	$y \in [a, b]$	$p(y a,b) = \frac{1}{b-a}$	$\mathbb{E}(Y a,b) = \frac{a+b}{2}$ $Var(Y a,b) = \frac{(b-a)^2}{12}$
Univariate Normal	$Y \sim \mathcal{N}(\mu, \sigma^2)$	$\mu \in \mathbb{R}$ $\sigma^2 > 0$	$y \in \mathbb{R}$	$p(y \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(y-\mu)^2}{\sigma^2}\right)$	$\mathbb{E}(Y \mu,\sigma^2) = \mu$ $Var(Y \mu,\sigma^2) = \sigma^2$
Multivariate Normal	$Y \sim N(\mu, \Sigma)$	$\mu \in \mathbb{R}^d$ $\Sigma \in \mathbb{R}^{d \times d} \text{ s.p.d.}^*$	$y \in \mathbb{R}^d$	$p(y \mu, \Sigma) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \cdot \exp\left(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)\right)$	$\mathbb{E}(Y \mu,\Sigma) = \mu$ $Var(Y \mu,\Sigma) = \Sigma$
Log- Normal	$Y \sim \text{LogN}(\mu, \sigma^2)$	$\mu \in \mathbb{R}$ $\sigma^2 > 0$	y > 0	$p(y \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}y} \exp\left(-\frac{(\log y - \mu)^2}{2\sigma^2}\right)$	$\mathbb{E}(Y \mu,\sigma^2) = \exp(\mu + \frac{\sigma^2}{2})$ $\operatorname{Var}(Y \mu,\sigma^2) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$
Noncentral Student	$Y \sim t_{\nu}(\mu, \sigma)$	$\mu \in \mathbb{R}$ $\sigma^2, \nu > 0$	$y \in \mathbb{R}$	$p(y \mu, \sigma^2, \nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\nu\pi}\sigma} \left(1 + \frac{(y-\mu)^2}{\nu\sigma^2}\right)^{-\frac{\nu+1}{2}}$	$\mathbb{E}(Y \mu, \sigma^2, \nu) = \mu \text{ für } \nu > 1$ $\operatorname{Var}(Y \mu, \sigma^2, \nu) = \sigma^2 \frac{\nu}{\nu - 2} \text{ für } \nu > 2$
Beta	$Y \sim \operatorname{Be}(a, b)$	a, b > 0	$y \in [0,1]$	$p(y a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1}$	$\mathbb{E}(Y a,b) = \frac{a}{a+b}$ $\operatorname{Var}(Y a,b) = \frac{ab}{(a+b)^2(a+b+1)}$ $\operatorname{mod}(Y a,b) = \frac{a-1}{a+b-2} \text{ für } a,b > 1$
Gamma	$Y \sim \operatorname{Ga}(a,b)$	a, b > 0	y > 0	$p(y a,b) = \frac{b^a}{\Gamma(a)} y^{a-1} \exp(-by)$	$\mathbb{E}(Y a,b) = \frac{a}{b}$ $\operatorname{Var}(Y a,b) = \frac{a}{b^2}$ $\operatorname{mod}(Y a,b) = \frac{a-1}{b} \text{ für } a \ge 1$
Inverse Gamma	$Y \sim \mathrm{IG}(a,b)$	a, b > 0	y > 0	$p(y a,b) = \frac{b^a}{\Gamma(a)} y^{-a-1} \exp\left(-\frac{b}{y}\right)$	$\mathbb{E}(Y a,b) = \frac{b}{a-1} \text{ für } a > 1$ $\operatorname{Var}(Y a,b) = \frac{b^2}{(a-1)^2(a-2)} \text{ für } a > 2$ $\operatorname{mod}(Y a,b) = \frac{b}{a+1}$
Dirichlet	$Y \sim \operatorname{Dir}(\alpha_1, \dots, \alpha_k)$	$\alpha_j > 0$ $\alpha_0 \equiv \sum_{j=1}^k \alpha_j$ $\mathbf{y} = \{y_1, \dots, y_k\}$	$y \in \Delta_k$ †	$p(\boldsymbol{y} \alpha_1,\dots\alpha_k) = \frac{\Gamma(\alpha_1+\dots+\alpha_k)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_k)} y_1^{\alpha_1-1}\cdots y_k^{\alpha_k-1}$	$\mathbb{E}(Y = y_j \alpha_1, \dots \alpha_k) = \frac{\alpha_j}{\alpha_0}, \mod(Y = y_j) = \frac{\alpha_j - 1}{\alpha_0 - k}$ $\operatorname{Var}(Y = y_j \alpha_1, \dots \alpha_k) = \frac{\alpha_j (\alpha_0 - \alpha_j)}{\alpha_0^2 (\alpha_0 + 1)}$ $\operatorname{Cov}(Y = y_i, Y = y_j \alpha_1, \dots \alpha_k) = -\frac{\alpha_i \alpha_j}{\alpha_0^2 (\alpha_0 + 1)}$
Exponential	$Y \sim \text{Exp}(\lambda)$	$\lambda > 0$	$y \ge 0$	$p(y \lambda) = \lambda \exp(-\lambda y)$	$\mathbb{E}(Y \lambda) = \frac{1}{\lambda}$ $\operatorname{Var}(Y \lambda) = \frac{1}{\lambda^2}$

^{*}s.p.d.: symmetric and positive definite ${}^\dagger(k-1)\text{-dimensional simplex: }\Delta_k=\{y\in\mathbb{R}^k|\sum_{j=1}^ky_j=1,y_j\geq 0\text{ for }j=1,2,\ldots,k\}$

Discrete distributions

Name	Symbol	Parameter	Definition range	PMF	Mean, variance, mode
Discrete Uniform	$Y \sim \mathrm{U}(\{y_1,, y_k\})$	-	$y \in \{y_1,, y_k\}$	$\mathbb{P}(Y=y_i) = \frac{1}{k}, \ i=1,\dots,k$	For $y_i = i$: $\mathbb{E}(Y) = \frac{k+1}{2}, \operatorname{Var}(Y) = \frac{k^2 - 1}{12}$
Binomial	$Y \sim \operatorname{Bin}(n,\pi)$	$n \in \mathbb{N}$ $\pi \in [0, 1]$	$y \in \{0, \dots, n\}$	$\mathbb{P}(Y=y \pi) = \binom{n}{y} \pi^y (1-\pi)^{n-y}$	$\mathbb{E}(Y \pi) = n\pi$ $\operatorname{Var}(Y \pi) = n\pi(1-\pi)$
Poisson	$Y \sim \operatorname{Poi}(\mu)$	$\mu > 0$	$y \in \mathbb{N}_0$	$\mathbb{P}(Y = y \mu) = \frac{\mu^y}{y!} \exp(-\mu)$	$\mathbb{E}(Y \mu) = \mu$ $Var(Y \mu) = \mu$
Multinomial	$Y \sim \mathrm{Multin}(n, p_1, \dots, p_k)$	$n \in \mathbb{N}$ $p_j \in [0, 1]$ $\sum_{j=1}^k p_j = 1$	$y \in \mathbb{N}_0$ $\sum_{j=1}^k y_j = n$	$\mathbb{P}(Y = y n, p_1, \dots, p_k) = \frac{n!}{y_1! \cdots y_k!} p_1^{y_1} \cdots p_k^{y_k}$	$\mathbb{E}(Y = y_j n, p_1, \dots, p_k) = np_j$ $\operatorname{Var}(Y = y_j n, p_1, \dots, p_k) = np_j(1 - p_j)$ $\operatorname{Cov}(Y = y_i, Y = y_j) = -np_i p_j$
Geometric	$Y \sim \text{Geom}(\pi)$	$\pi \in [0,1]$	$y \in \mathbb{N}_0$	$\mathbb{P}(Y = y \pi) = \pi (1 - \pi)^{y-1}$	$\mathbb{E}(Y \pi) = \frac{1}{\pi}$ $\operatorname{Var}(Y \pi) = \frac{1-\pi}{\pi^2}$
Negative Binomial	$Y \sim \text{NegBin}(\alpha, \beta)$	$\alpha, \beta > 0$	$y \in \mathbb{N}_0$	$\mathbb{P}(Y = y \alpha, \beta) = {\binom{\alpha + y - 1}{\alpha - 1}} {\left(\frac{\beta}{\beta + 1}\right)^{\alpha}} {\left(\frac{1}{\beta + 1}\right)^{y}}$	$\mathbb{E}(Y \alpha,\beta) = \frac{\alpha}{\beta}$ $\operatorname{Var}(Y \alpha,\beta) = \frac{\alpha}{\beta^2}(\beta+1)$

Relationships between different distributions

- $\log(Y) \sim N(\mu, \sigma^2) \Rightarrow Y \sim \text{LogN}(\mu, \sigma^2)$
- $Y | \theta \sim N(\mu, \frac{\sigma^2}{\theta}), \ \theta \sim Ga(\frac{\nu}{2}, \frac{\nu}{2}) \Rightarrow Y \sim t_{\nu}(\mu, \sigma^2).$
- $Y \sim \mathrm{IG}(a,b) \Leftrightarrow Y^{-1} \sim \mathrm{Ga}(a,b^{-1})$