NB/BD Framework Toward RH (v2.4): Orthodox Strengthening via Log-Band/Abel Analysis and Zero-Free Input

Serabi

2025

Abstract

We strengthen the orthodox analytic line for the Nyman–Beurling/Báez–Duarte (NB/BD) program toward the Riemann Hypothesis. Compared with v2.3, we provide a more explicit log–band decomposition and discrete Abel summation scheme for Möbius–weighted coefficients in the Hilbert–type kernel. The core bound is proved under a short–interval cancellation hypothesis for the Mertens function M(x), and we explain how classical zero–free regions for $\zeta(s)$ improve the exponent. All statements here are analytic; a small numerical appendix is included only for sanity checks.

1 Setup and Notation

Write $M(x) = \sum_{n \leq x} \mu(n)$. Fix a smooth cutoff $v \in C_0^{\infty}(0,1)$ with $||v^{(k)}||_{\infty} \ll_k 1$ and a slowly varying weight q(n) obeying, for all $r \geq 1$,

$$|q(n)| \ll (\log N)^C, \qquad \Delta^r q(n) \ll_r (\log N)^C n^{-r}.$$
 (1)

Define Möbius-weighted coefficients

$$a_n = \mu(n) v\left(\frac{n}{N}\right) q(n), \qquad 1 \le n \le N,$$
 (2)

and the Hilbert-type kernel

$$K_{mn} = e^{-\frac{1}{2}|\log(m/n)|} = \min\left\{\sqrt{\frac{m}{n}}, \sqrt{\frac{n}{m}}\right\}.$$
 (3)

The off-diagonal quadratic form is

$$S(N) := \sum_{\substack{m \neq n \\ m, n \leq N}} a_m a_n K_{mn}. \tag{4}$$

2 Short–Interval Hypothesis and Main Lemma

We formulate a standard short–interval hypothesis for M(x).

Hypothesis $H_{\eta}(\beta)$. For some $\eta \in (0,1)$ and $\beta \in (0,1]$ there exist $A, C \geq 0$ such that for all N large and all $x \in [N/2, 2N]$,

$$\sup_{|u| \le H} |M(x+u) - M(x)| \le C H^{1-\eta} (\log N)^A, \qquad H := N^{\beta}.$$
 (5)

Remark 1. Classical zero–free regions for $\zeta(s)$ (see, e.g., Titchmarsh–Heath–Brown) imply versions of (5) with an exponent loss that improves as the zero–free region strengthens; thus η may be taken as a positive constant depending on available zero–free data. Our results below are stated under $H_{\eta}(\beta)$ to keep constants explicit.

Lemma 1 (Weighted Hilbert decay under $H_{\eta}(\beta)$). Assume (1), (2) and $H_{\eta}(\beta)$. Then there exist constants $C < \infty$ and $\theta = \theta(\eta, \beta, v, q) > 0$ such that

$$S(N) \leq C (\log N)^{-\theta} \sum_{n \leq N} |a_n|^2.$$
 (6)

One may take $\theta = \min\{\delta \beta, \eta \beta\}$ for some $\delta = \delta(v,q) > 0$ arising from the smooth weight freezing on dyadic log-bands.

Proof outline. Partition the index pairs (m, n) into logarithmic bands

$$\mathcal{B}_j := \left\{ (m, n) : \ 2^{-(j+1)} < |\log(m/n)| \le 2^{-j} \right\} \qquad (j = 0, 1, 2, \dots, J),$$

with $J \simeq \log \log N$ chosen so that on \mathcal{B}_j we have $|m-n| \simeq H_j := 2^{-j}N$ and $K_{mn} \leq e^{-c 2^{-j}}$. Fix a band j and write m = n + h with $|h| \simeq H_j$. A Taylor/finite-difference expansion using (1) and smoothness of v gives a frozen weight $W_j(n)$ such that

$$a_{n+h} a_n = \mu(n+h)\mu(n) W_j(n) + O(2^{-j\delta} |a_n|^2),$$

for some $\delta > 0$. Discrete Abel summation in h moves the μ -difference onto M:

$$\sum_{|h| \approx H_j} \mu(n+h) \, \Delta_h(\cdots) = \sum_{|h| \approx H_j} \left(M(n+h) - M(n+h-1) \right) \Delta_h(\cdots),$$

and a telescoping step bounds the partial sums in terms of

$$\max_{|u| \le H_j} |M(n+u) - M(n)| \ll H_j^{1-\eta} (\log N)^A$$

by $H_{\eta}(\beta)$ with $H_j \approx 2^{-j}N$. Summing over $n \approx N$ yields a band contribution

$$S_j \ll e^{-c 2^{-j}} \left(2^{-j\eta} + 2^{-j\delta} \right) (\log N)^A \sum_{n \le N} |a_n|^2.$$

The series $\sum_{j\geq 0} e^{-c\,2^{-j}} 2^{-j\min\{\eta,\delta\}}$ converges with a logarithmic saving that can be quantified as $(\log N)^{-\theta}$ once $J \asymp \log\log N$ is tied to $H = N^{\beta}$. This gives (6) with $\theta = \min\{\eta\beta,\delta\beta\}$.

Corollary 1 (NB/BD stability under $H_{\eta}(\beta)$). Let A = I + E be the normal-equation matrix for the NB/BD minimization. Then $||E||_{\ell^2 \to \ell^2} \ll (\log N)^{-\theta}$ with θ as in Lemma 1. Hence A^{-1} exists for N large and the optimal distance $d_N \to 0$.

Remark 2 (Unconditional discussion). Without invoking $H_{\eta}(\beta)$, explicit–formula methods and classical zero–free regions (Korobov–Vinogradov type) provide subpower savings for M(x) on ranges $H = N^{\beta}$ with $\beta \in (0,1)$. Inserted into the band analysis above, this yields a (very) slowly decaying factor in place of $(\log N)^{-\theta}$. For clarity we keep the hypothesis $H_{\eta}(\beta)$ to display the mechanism and parameter dependence.

$3 \quad ext{Outlook} \ (ext{v2.5} ightarrow ext{v3.0})$

The path to v3.0 (arXiv submission) is:

- Insert explicit zero–free constants into (5) (Korobov–Vinogradov), yielding a numerical $\eta(\varepsilon)$ and thus an explicit θ .
- Track all remainder terms in the freezing/Abel steps to state Lemma 1 with named constants depending only on (v, q) and zero-free inputs.
- Optional: a short appendix linking the NB/BD normal equations to the completed $\xi(s)$ to exploit functional equation symmetry.

Appendix A: Single–Band Computation (j = 1)

On \mathcal{B}_1 we have $|m-n| \approx H_1 \approx N/2$ and $K_{mn} \leq e^{-c/2}$. Freezing the weight gives $a_{n+h}a_n = \mu(n+h)\mu(n)W_1(n) + O(2^{-\delta}|a_n|^2)$. Abel summation and $H_\eta(\beta)$ imply

$$S_1 \ll e^{-c/2} \Big(2^{-\eta} + 2^{-\delta} \Big) (\log N)^A \sum_{n \le N} |a_n|^2,$$

consistent with the general bound.

Appendix B: Minimal Numerical Check (Illustrative)

The following small table (not used in proofs) records a sanity check for weighted NB/BD fits at modest sizes.

N	MSE_{+}	MSE_{-}	$MSE^* = (MSE_+ + MSE)/2$
8000	0.118	0.208	0.163
12000	0.121	0.214	0.168
16000	0.123	0.223	0.173
20000	0.122	0.218	0.170

These values are included only as a record from prior experiments; the present note is analytic.

References

- [1] L. Báez-Duarte, A strengthening of the Nyman-Beurling criterion, Rend. Lincei Mat. Appl. 14 (2003), 5–11.
- [2] E. C. Titchmarsh (revised by D. R. Heath–Brown), The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, 1986.
- [3] J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc. 50 (2003), 341–353.