Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 05

- 1. In the following is W a subspace of V? Base field is taken as \mathbb{R} in all. Justify your answer.
 - (a) V = R[t] = vector space of all polynomials with real coefficients, W = set of all polynomials with integer coefficients.
 - (b) $V = \mathbb{R}^2$, $W = \{(x, y) : x + y \ge 0\}$.
 - (c) $V = \mathbb{R}^2$, $W = \{(x, y) : x^2 + y^2 \ge 0\}$.
- 2. Consider the space V of all 2×2 matrices over \mathbb{R} . Which of the following sets of matrices A in V are subspaces of V? Justify (prove) your answers.
 - (a) All upper triangular matrices (i.e. matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$).
 - (b) All A such that AB = BA where B is some fixed matrix in V.
 - (c) All A such that BA = 0 where B is some fixed matrix in V.
 - (d) Would the above results hold for all $n \times n$ matrices where n is a general positive integer (n > 2)?
- 3. Given the following vectors in \mathbb{R}^3 : $\mathbf{u}=(1,3,5), \mathbf{v}=(1,4,6), \mathbf{w}=(2,-1,3)$ and $\mathbf{b}=(6,5,17).$
 - (a) Does $\mathbf{b} \in W = \operatorname{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$?
 - (b) If the answer to (a) is yes, express **b** as a linear combination of **u,v,w**.
- 4. Let U and W be two subspaces of the vector space V. Show that $U \cap W$ is also a subspace of V.
- 5. Let U and W be two subspaces of the vector space V. We define $U+W=\{u+w:u\in U,w\in W\}$. Show that U+W is a subspace of V, and moreover, U+W is the smallest subspace of V which contains both U and W.
- 6. Prove Remark 6 related to linear dependence/independence: Any list which contains a linearly dependent list is linearly dependent.
- 7. Prove Remark 7 related to linear dependence/independence: Any subset of a linearly independent set is linearly independent.

8. Determine whether the given matrices in the vector space $\mathbb{R}^{2\times 2}$ are linearly dependent or linearly independent.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

9. In the vector space $V = C[0, 2\pi]$, determine whether the given vectors (i.e. functions) are linearly dependent or linearly independent:

$$f_1(x) = 1,$$
 $f_2(x) = \sin(x),$ $f_3(x) = \sin(2x).$

(You must justify your answer.)

- 10. Given the standard basis $B = \{e_1, e_2, e_3\}$ of \mathbb{R}^3 and the linearly independent vectors $v_1 = (0, 1, 1)$ and $v_2 = (1, 1, 1)$, apply the method of the Steinitz Exchange Lemma (Proposition 12) to exchange two of the vectors in B and obtain a basis C which includes v_1 and v_2 . Show your calculations in detail.
- 11. Prove Proposition 11: The subset $B = \{v_1, v_2, \dots, v_n\}$ is a basis of the vector space V if and only if every vector $v \in V$ is uniquely expressible as a linear combination of the elements of B.
- 12. Let V = C[0,1], the space of all continuous real-valued functions defined on the closed interval. Is V finite-dimensional? Justify your answer.
- 13. Let $V = \mathbb{R}^{\infty}$, $W = \{ \langle a_n \rangle : \text{ only finitely many of the terms in } \langle a_n \rangle \text{ are non-zero} \}$. Show that W is a subspace of V. Is W finite-dimensional? Justify your answer.
- 14. If (v_1, \dots, v_m) is linearly dependent and $v_1 \neq 0$, there exists an index $j \in \{2, \dots, m\}$ such that
 - (a) $v_j \in \operatorname{Span}(v_1, \dots, v_{j-1})$.
 - (b) If v_j is removed from (v_1, \dots, v_m) , then

$$Span(v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_m) = Span(v_1, \dots, v_{j-1}, v_j, v_{j+1}, \dots, v_m).$$