b) The semigroup is right-sided differentiable in a fixed point t > 0 if and only if there exists c > 0 such that $\{\lambda \in \mathbb{C} :$ $|Im\lambda| > c \cdot e^{-tRe\lambda} \} \subset \rho(A)$.

Proof. The semigroup is right-sided differentiable in t if and only if $T(t)E \subset D(A)$ if and only if $e^{tm} \cdot f \cdot m \in E$ for all $f \in E$ if and only if $e^{tm} \cdot m$ is [essentially] bounded if and only if $e^{tRe \ m} \cdot Im \ m$ is [essentially] bounded if and only if there exists c > 0 such that [ess]-image(m) $\subset \{\lambda \in \mathbb{C} : e^{tRe\lambda} | Im\lambda| \le c\}$ if and only if there exists c > 0 such that $\{\lambda \in \mathbb{C} : |\text{Im}\lambda| > c \cdot e^{-t\text{Re}\lambda}\} \subset \rho(A)$.

c) $(T(t))_{t>0}$ is a bounded holomorphic semigroup of angle θ if and only if $S(\theta+\pi/2) \subset \rho(A)$.

Proof. The condition is necessary by Theorem 1.12. Conversely, if $S(\theta+\pi/2) \subset \rho(A)$, then one verifies directly that $(T(z)f)(x) = e^{z \cdot m(x)} f(x)$ (f(E, x(X)) defines a family $(T(z))_{z \in S(A)}$ of bounded operators satisfying conditions (1.4) and (1.5).

d) Choosing $X = \mathbb{N}$ and μ the counting measure we have $E = c_0$ or ℓ^p $(1 \le p < \infty)$. Then A has a compact resolvent if $\lim_{n \to \infty} |m(n)| = \infty$. [In fact, let $\lambda > s(A)$. Then $(R(\lambda,A)f)(n) = (\lambda-m(n))^{-1}f(n)$. Hence $R(\lambda,A)$ is compact if and only if $((\lambda-(m(n))^{-1})$ The semigroup is compact if and only if it is eventually compact if and only if $\lim_{n\to\infty} \operatorname{Re}(m(n)) = -\infty$.

e) Now it is easy to give concrete examples. Again let X = N, so that $E = C_0$ or ℓ^p $(1 \le p < \infty)$. Let $m(n) = -n + i \cdot \exp(n^2)$. Then the semigroup is compact and (consequently) norm continuous for t > 0, but it is not eventually differentiable. Let $m(n) = -n + ie^{t'n}$. Then the semigroup is differentiable for t > t' but not differentiable in t (0,t'). If $m(n) = -n + i \cdot n^2$, then the semigroup is differentiable but not holomorphic.

Perturbation of Generators

A useful way to construct new semigroups out of a given one is by additive perturbation.

П