Вопрос по выбору

Электромагнитные волны в волноводах

Киркича Андрей, Б01-202, МФТИ

Цель работы: знакомство с методами получения и анализа электромагнитных волн СВЧ-диапазона.

В работе используются: генератор СВЧ, измерительная линия, усилитель, заглушка, отрезок волновода с поглощающей нагрузкой, отрезки волноводов различных сечений, детекторная головка.

Теоретические сведения

В диапазоне сверхвысоких частот передача энергии с помощью двухпроводной линии или коаксиальных кабелей неэффективна из-за больших потерь: растёт сопротивление проводов из-за скин-эффекта, а кроме того усиливается излучение энергии в окружающее пространство ($\sim \nu^4$). В СВЧ-диапазоне энергия передаётся с помощью металлических труб, называемых волноводами.

Чтобы найти структуру э.м. поля в волноводе, сложим падающую и отражённые от стенок плоские волны.

Рассотрим отражение плоской э.м. волны от идеально проводящей, бесконечной плоскости x=0. Будем отсчитывать расстояния от начала координат, а время - от момента прихода падающей волны в точку 0.

В произвольную точку M приходят две волны: падающая $\boldsymbol{E}_{\text{пад}}$ и отражённая $\boldsymbol{E}_{\text{отр}}$. При этом

$$E_{ ext{mad}} = E_0 \cdot \exp(i(\omega t - \mathbf{k_1} \mathbf{r})),$$

 $E_{ ext{otd}} = -E_0 \cdot \exp(i(\omega t - \mathbf{k_2} \mathbf{r})),$

где $k_1=k_2=\omega/c$. Знак «—» в отражённой волне связан со сдвигом фаз на π при отражении.

 $\begin{array}{c|c}
 & X \\
 & H \\
 & E \\
 & H \\
 & E \\
 & R \\$

Рис. 1: Отражение плоской волны от проводящей плоскости

Суммарное поле в точке M имеет вид

$$E = E_0 \cdot (e^{(i(\omega t - \mathbf{k_1} \mathbf{r}))} - e^{i(\omega t - \mathbf{k_2} \mathbf{r})}).$$

Подставим $\boldsymbol{r}=[x,0,z],$ $\boldsymbol{k_1}=[-k\cos\theta,0,k\sin\theta],$ $\boldsymbol{k_1}=[k\cos\theta,0,k\sin\theta]:$ $E=2iE_0\sin(kx\cos\theta)\cdot e^{i\omega(t-z\sin\theta/c)}.$

Это выражение описывает волну с амплитудой $2iE_0\sin(kx\cos\theta)$, бегущую в направлении z с фазовой скоростью $\upsilon_{\Phi}=c/\sin\theta$. Ясно, что в результате интерференции в пространстве над проводящей поверхностью образуется система стоячих волн. Узлы стоячей волны наблюдаем в точках, где $kx\cos\theta=\pi n\ (n=0,1,2,...)$, т.е. там, где

 $x = \frac{\pi n}{k \cos \theta}.$

Таким образом, поверхность нулевого электрического поля - плоскость, параллельная отражающей поверхности. Расположим в этой плоскости вторую проводящую поверхность. Эта поверхность не исказит полученного распределения поля, т.к. на ней удовлетворяются граничные условия E(t)=0. Точно такие же плоскости можно поставить, например, при y=0 и y=b.

Условие распространения воли между параллельными плоскостями, расположенными на расстоянии a друг от друга:

$$cos\theta_n = \frac{\pi n}{ka} = \frac{n\lambda_0}{2a} = \frac{\pi nc}{a\omega} \le 1,$$

где λ_0 - длина волны в свободном пространстве. Существует наименьшая критическая частота, при которой волна ещё может проходить через волновод:

$$\omega_{\rm Kp} = \frac{\pi c}{a}.$$

Тогда выражение для фазовой скорости принимает вид:

$$v_{\Phi} = \frac{c}{\sin \theta} = \frac{c}{\sqrt{1 - \cos^2 \theta}} = \frac{c}{\sqrt{1 - (\omega_{\kappa p}/\omega)^2}},$$

а волновое число, описывающее распространение волны вдоль волновода, рассчитывается по формуле:

$$k_z = \frac{\omega}{v_{\Phi}} = \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_{\text{KP}}}{\omega}\right)^2}.$$

Преобразуем это соотношение, связав длины волн в волноводе (λ_B) , в открытом пространстве (λ_0) , и критическую (λ_{KP}) :

$$\frac{1}{\lambda_{\scriptscriptstyle \mathrm{B}}^2} = \frac{1}{\lambda_{\scriptscriptstyle 0}^2} - \frac{1}{\lambda_{\scriptscriptstyle \mathrm{Kp}}^2}.$$

Если в волноводе имеется какое-либо препятствие (в предельном случае волновод закрыт металлической пластиной), то в нём появляется отражённая волна. В результате интерференции образуется стоячая волна:

$$E_{ ext{пад}} = E_0 \cdot \exp(i(\omega t - k_z z)),$$
 $E_{ ext{orp}} =
ho E_0 \cdot \exp(i(\omega t + k_z z + arphi)),$

где ρ - коэффициент отражения по амплитуде, φ - фаза отражённой волны. Суммарное поле в волноводе равно

$$E(z) = E_{\text{пад}} + E_{\text{отр}} = E_0 e^{-ik_z z} \cdot (1 + \rho e^{i(2k_z z + \varphi)}) e^{i\omega t} = A_0 e^{i\omega t}.$$

Максимальное и минимальное значения поля равны соответственно

$$E_{max} = E_0(1 + \rho), \qquad E_{min} = E_0(1 - \rho),$$

а расстояние между соседними узлами (или пучностями) составляет

$$l = \frac{\pi}{k_z} = \frac{\lambda}{2}.$$

Это даёт удобный способ измерения длины волны λ в волноводе.

Отношение

$$K = \frac{E_{max}}{E_{min}}$$

называется коэффициентом стоячей волны. Через него можно выразить коэффициент отражения по амплитуде:

$$\rho = \frac{E_{max} - E_{min}}{E_{max} + E_{min}} = \frac{K - 1}{K + 1}.$$

Экспериментальная установка

Волны в волноводе при частоте выше критической

Рис. 2: Схема для исследования структуры волн СВЧ

Модулированный сигнал от высокочастотного генератора поступает на вход А измерительной линии, вдоль которой перемещается зонд S. Высокочастотный сигнал с зонда поступает на кристалический детектор D, с его нагрузки (RC-цепочки) снимается огибающая сигнала и подаётся на усилитель низкой частоты. Ручка С предназначена для согласования зонда (как антенны) со входом усилителя. Величина сигнала регистрируется вольтметром, вмонтированным в усилитель.

Устройство детекторной головки таково, что отклик вольтметра U на величину поля E в волноводе

$$U \sim E^n$$
.

где показатель степени n сам зависит от величины сигнала: при малых сигналах детектирование квадратичное, при больших - линейное.

Обработка результатов измерений

При подготовке приборов к работе были зафиксированы следующие параметры:

- ullet Рабочая частота выходного сигнала $u=9320\ \mathrm{M}\Gamma\mathrm{ц}$
- ullet Ослабление выходной мощности $\gamma=20$ дБ
- Размер стенки волновода a=23 мм
- Критическая частота $\nu_{\mathrm{kp}} = c/2a \approx 6500 \ \mathrm{M}\Gamma$ ц

В начале волновод с конца был закрыт металлической пластиной. Перемещая

зонд, мы настроились на пучность стоячей волны. Была снята зависимость показаний вольтметра U от положения зонда z, представленная в таблице и на графике ниже.

z, MM	10	0	4	8	12	16	20	24	28	32	36	40
U, мВ	2.7	3.2	0.1	1.1	5.3	8.9	6.6	1.1	0.0	2.4	7.3	8.7

Рис. 3: Зависимость показаний вольтметра от положения зонда

По графику можно определить длину волны в волноводе:

$$\lambda_{\rm B} \approx 2 \cdot (28 - 4) \, {\rm mm} = (48 \pm 4) \, {\rm mm}.$$

Рассчитаем $\lambda_{\rm B}$ теоретически: $\lambda_{\rm Kp} = 2a = 46$ мм, $\lambda_0 = 3.22$ см $\Rightarrow \lambda_{\rm B} = 45$ мм.

Значение, полученное практически, в пределах погрешности совпадает с теоретическим, что говорит об исправности зонда и точной настройке приборов.

Длина волны в свободном пространстве $\lambda_0=32.2$ мм меньше критической длины волны $\lambda_{\rm kp}=46.0$ мм.

Фазовая скорость равна $\upsilon_{\Phi} = (42 \pm 5) \cdot 10^4 \; {\rm кm/c}.$

Групповая скорость равна $v_{\rm rp} = \frac{c^2}{v_{\rm th}} = (21 \pm 2) \cdot 10^4 \ {\rm кm/c}.$

Затем зонд был установлен в узел стоячей волны. Мы сняли зависимость U от координаты зонда z вблизи минимума. Результаты измерений представлены в таблице ниже.

z, MM	25.5	26.0	26.5	27.0	27.5	28.0	28.5	29.0	29.5
U, MKB	546	312	144	54	12	36	120	246	432

По этим данным можно построить график зависимости $\ln U$ от $\ln(\sin(k_z\cdot\Delta z))$, где Δz - это абсолютное смещение от узла. В нашем случае $z_{\rm узла}=27.5$ мм.

Видно, что график отражает линейную зависимость. По наклону прямой можно определить характер детектирования: $\operatorname{tg}(\alpha) \approx 1.7 \Rightarrow n = 2$. Получили, что детектирование квадратичное.

На следующем шаге работы мы сняли заглушку с фланца измерительной линии. Перемещая зонд, измерили максимальное и минимальное напряжение в волне:

Рис. 4: График зависимости $\ln U$ от $\ln(\sin(k_z \cdot \Delta z))$ $U_{max} = 1860$ мкВ, $U_{min} = 540$ мкВ.

То же самое было проделано с надетым на фланец отрезком с поглощающей нагрузкой:

$$U_{max} = 1110 \text{ MKB}, \qquad U_{min} = 810 \text{ MKB}.$$

После этого мы определили коэффициенты отражения (считая детектирование квадратичным) для открытого (r_1) , закрытого (r_2) волновода и волновода с поглощающей нагрузкой (r_3) :

$$r_1 = (0.55 \pm 0.07), \qquad r_2 = (0.99 \pm 0.12), \qquad r_3 = (0.16 \pm 0.02).$$

При этом $r_2^{\text{теор}} = 1, \, r_3^{\text{теор}} = 0.$

Заключение

В закрытом волноводе мы действительно наблюдали стоячие волны. Были рассчитаны длина волны в волноводе $\lambda_{\rm B}=(48\pm4)$ мм (в пределах погрешности сходится с теоретическим предсказанием), фазовая скорость $\upsilon_{\rm \Phi}=(42\pm5)\cdot 10^4$ км/с, групповая скорость $\upsilon_{\rm rp}=(21\pm2)\cdot 10^4$ км/с. Мы определили характер детектирования - квадратичный. Также были рассчитаны коэффициенты отражения. Объяснить полученные результаты можно следующим образом: когда волновод наглухо закрыт металлической заглушкой, волна практически полностью отражается, при этом r близко к 1: $r_2=(0.99\pm0.12)$; когда на конце волновода находится вещество, поглощающее CBЧ-излучение, коэффициент отражения близок к 0: $r_3=(0.16\pm0.02)$; воздух не препятствует распространению CBЧ-волн, но в воздушной среде излучение становится менее интенсивным: $r_1=(0.55\pm0.07)$.

Список литературы

- 1. $Cueyxun\ \mathcal{A}.B.$ Общий курс физики. Т.III. Электричество. М.: Наука, 1983. §84.
- 2. Φ ейнмановские лекции по физике. Т. 6. Электродинамика. М.: Наука, 1966. Гл. 24.
- 3. Кингсеп А.С., Локшин Г.Р., Ольхов О.А. Основы Физики. Т.1. Механика, электричество и магнетизм, колебания и волны, волновая оптика. М.: ФИЗ-МАТЛИТ, 2001. Ч. II, Гл. 8, $\S 8.4$; Ч.III, Гл. 6, $\S 6.7$.

Работу провели

Киркича Андрей, Клименко Виталий, Гришин Михаил