# Chapter 2 Convex sets

Last update on 2025-02-24 14:15:08+08:00

# Table of contents

Affine and convex sets

Elementary examples

Operations preserving convexity

Separating and supporting hyperplanes

Generalized inequalities

Dual cones and generalized inequalities

#### Affine and convex sets

Elementary examples

Operations preserving convexity

Separating and supporting hyperplanes

Generalized inequalities

Dual cones and generalized inequalities

# three groups of concepts

| affine combination | convex combination | conic combination |
|--------------------|--------------------|-------------------|
| affine set         | convex set         | convex cone       |
| affine hull        | convex hull        | conic hull        |

## Convex combination

convex combination of  $x_1, \dots, x_k \in \mathbb{R}^n$ : points of the form

$$\theta_1 x_1 + \dots + \theta_k x_k$$
, where  $\theta_1, \dots, \theta_k \ge 0$  and  $\theta_1 + \dots + \theta_k = 1$ 

line segment between  $x_1$  and  $x_2$ : the set of all convex combinations of  $x_1$  and  $x_2$ 

$$\{x = \theta x_1 + (1 - \theta)x_2 \mid 0 \le \theta \le 1\}$$

### Convex set

convex set:  $C \subseteq \mathbb{R}^n$  is convex if contains line segment between any pair of points in C examples (one convex, two nonconvex)



# Convex hull

**convex hull** of  $C \subseteq \mathbb{R}^n$ : the set of all convex combinations of points in C

**conv** 
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C; \ \theta_1, \dots, \theta_k \ge 0; \ \theta_1 + \dots + \theta_k = 1\}$$





#### facts

- lacktriangle the convex hull of C is the smallest convex set containing C
- ightharpoonup if C is a convex set, then  $\operatorname{\mathbf{conv}} C = C$

# Affine combination

affine combination of  $x_1, \dots, x_k \in \mathbb{R}^n$ : points of the form

$$\theta_1 x_1 + \dots + \theta_k x_k$$
, where  $\theta_1 + \dots + \theta_k = 1$ 

line through  $x_1$  and  $x_2$ : the set of all affine combinations of  $x_1$  and  $x_2$ 

$$\{x = \theta x_1 + (1 - \theta)x_2 \mid \theta \in \mathbb{R}\}\$$



Affine set

affine set:  $C \subseteq \mathbb{R}^n$  is affine if it contains the line through any pair of points in C

#### example

- ▶ the solution set of linear equations  $\{x \mid Ax = b\}$  is an affine set
- conversely, every affine set can be expressed as the solution set of a system of linear equations

Affine hull

**affine hull** of  $C \subseteq \mathbb{R}^n$ : the set of all affine combinations of points in C

**aff** 
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1\}$$

#### facts

- ▶ the affine hull of C is the smallest affine set containing C
- ightharpoonup if C is an affine set, then  $\operatorname{aff} C = C$

# Conic combination

**cone**:  $C \subseteq \mathbb{R}^n$  is a cone if  $\theta x \in C$  for every  $x \in C$  and  $\theta \ge 0$ .

conic combination of  $x_1, \dots, x_k \in \mathbb{R}^n$ : points of the form

$$\theta_1 x_1 + \dots + \theta_k x_k$$
, where  $\theta_1, \dots, \theta_k \ge 0$ 



#### Convex cone

**convex cone**:  $C \subseteq \mathbb{R}^n$  is a convex cone if it is convex and a cone

fact

C is a convex cone  $\iff$  C contains all conic combinations of points in itself

## Conic hull

**conic hull** of  $C \subseteq \mathbb{R}^n$ : the set of all conic combinations of points in C

$$\{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C; \ \theta_1, \dots, \theta_k \ge 0\}$$



#### facts

- ▶ the conic hull of C is the smallest convex cone containing C
- ▶ if C is a convex cone, then its conic hull is itself

#### **Exercises**

► Study the following concepts from text:

affine dimension, relative interior.

- ▶ Suppose that  $C \subseteq \mathbb{R}^n$  is convex, then  $\operatorname{int} C$  and  $\operatorname{cl} C$  are also convex.
- ightharpoonup Suppose that  $C \subseteq \mathbb{R}^n$  is convex, then

$$\operatorname{int} C = \emptyset \iff C \text{ is contained in a hyperplane.}$$

▶ Suppose that  $C \subseteq \mathbb{R}^n$  is convex, and int  $C \neq \emptyset$ , then

$$\mathbf{cl}(\mathbf{int}\,C) = \mathbf{cl}\,C.$$

Look at d+1, the largest number of affinely independent points from C. Let  $x_0, \ldots, x_d$  one such affinely independent subset of largest size. Note that every other point is an affine combination of the points  $x_k$ , so lies in the affine subspace generated by them, which is of dimension d.

If d < n then this subspace is contained in an affine hyperplane.

If d=n, then C contains d+1 affinely independent points. Since C is convex, it will also contain the convex hull of those n+1 points. Now, in an n-dimensional space the convex hull of n+1affinely independent points has non-empty interior. So the interior of C is non-empty.

Affine and convex sets

### Elementary examples

Operations preserving convexity

Separating and supporting hyperplanes

Generalized inequalities

Dual cones and generalized inequalities

# four types of elementary examples

- ► LP type: hyperplanes, halfspaces, polyhedra
- ▶ ball type: Euclidean balls, ellipsoids, norm balls
- ▶ cone type: second-order cone, norm cones
- ► matrix type: positive semidefinite cone

# Hyperplanes

**hyperplane**: set of the form  $\{x \mid a^Tx = b\} \ (a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R})$ 



fact: hyperplanes are affine and convex

# Halfspaces

**halfspace**: set of the form  $\{x \mid a^Tx \leq b\} \ (a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R})$ 



fact: halfspaces are convex

# Polyhedra

polyhedron: solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \quad Cx = d$$

where  $A \in \mathbb{R}^{m \times n}$ ,  $C \in \mathbb{R}^{p \times n}$ ,  $\leq$  is componentwise inequality i.e. polyhedra are intersections of finite number of halfspaces and hyperplanes;



fact: polyhedra are convex (page 31)

# Euclidean balls

#### **Euclidean ball** with center $x_c$ and radius r: two equivalent representations

> set of the form

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$

set of the form

$$B(x_c, r) = \{x_c + ru \mid ||u||_2 \le 1\}$$

fact: Euclidean balls are convex

# Ellipsoids

ellipsoid: two equivalent representations

set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$
 with  $P \in \mathbb{S}_{++}^n$ 

> set of the form

$$\{x_c + Au \mid ||u||_2 \le 1\}$$
 with  $A$  square and nonsingular



fact: ellipsoids are convex

# Norm balls

**norm ball** with center  $x_c$  and radius r: set of the form

$$\{x \mid ||x - x_c|| \le r\}$$

fact: norm balls are convex

### Norm cones

second-order cone:

$$\{(x,t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x||_2 \le t\}$$



**norm cone**: for any norm  $\|\cdot\|$  on  $\mathbb{R}^n$ 

$$\{(x,t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t\}$$

fact: norm cones are convex cones

# Positive semidefinite cone

### positive semidefinite cone

$$\mathbb{S}^n_+ = \{ X \in \mathbb{S}^n \mid X \succeq 0 \}$$

**fact**: positive semidefinite cone  $\mathbb{S}^n_+$  is a convex cone



Affine and convex sets

Elementary examples

Operations preserving convexity

Separating and supporting hyperplanes

Generalized inequalities

Dual cones and generalized inequalities

# Establishing convexity

Practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. reconstruct C from known convex sets by operations preserving convexity:
  - intersection
  - affine functions
  - perspective function
  - ▶ linear-fractional functions

## Intersection

an arbitrary intersection of convex sets is convex

### example

the positive semidefinite cone  $\mathbb{S}^n_+$  is convex

## Affine function

affine function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is of the form

$$f(x) = Ax + b$$
 with  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$ 

ightharpoonup the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \qquad \Longrightarrow \qquad f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

lacktriangle the inverse image  $f^{-1}(C)$  of a convex set under f is convex

$$C \subseteq \mathbb{R}^m$$
 convex  $\Longrightarrow$   $f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\}$  convex

#### examples

ightharpoonup scaling and translation: if  $S \subseteq \mathbb{R}^n$  is convex,  $\alpha \in \mathbb{R}$  and  $a \in \mathbb{R}^n$ , then

$$\alpha S = \{ \alpha x \mid x \in S \}$$
 and  $S + a = \{ x + a \mid x \in S \}$ 

are convex

ightharpoonup projection: if  $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$  is convex, then

$$T = \{x_1 \in \mathbb{R}^m \mid (x_1, x_2) \in S \text{ for some } x_2 \in \mathbb{R}^n\}$$

is convex

ightharpoonup sum: if  $S_1, S_2 \subseteq \mathbb{R}^n$  are both convex, then

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$$

is convex

solution set of linear matrix inequality

$$\{x \in \mathbb{R}^n \mid x_1 A_1 + \dots + x_n A_n \leq B\}$$

where  $A_i, B \in \mathbb{S}^m$ , is convex

# proof

inverse image of the positive semidefinite cone under the affine function

$$f: \mathbb{R}^n \to \mathbb{S}^m, \qquad f(x) = B - (x_1 A_1 + \dots + x_n A_n)$$

hyperbolic cone

proof

inverse image of the second-order cone

 $\left\{ x \in \mathbb{R}^n \mid x^T P x \le \left(c^T x\right)^2, c^T x \ge 0 \right\}$ 

$$\in \mathbb{R}$$

where 
$$P \in \mathbb{S}^n_+$$
 and  $c \in \mathbb{R}^n$ , is convex

 $\{(z,t) \mid z^T z < t^2, t > 0\}$ 

under the affine function  $f: \mathbb{R}^n \to \mathbb{R}^{n+1}$  given by  $f(x) = (P^{1/2}x, c^Tx)$ 

# Perspective function

perspective function  $P \colon \mathbb{R}^{n+1} \to \mathbb{R}^n$  given by

$$P(x,t) = x/t,$$
 dom  $P = \mathbb{R}^n \times \mathbb{R}_{++} = \{(x,t) \mid t > 0\}$ 

- images of convex sets under perspective function are convex
- inverse images of convex sets under perspective function are convex
- prove it

# Linear-fractional functions

linear-fractional function  $f \colon \mathbb{R}^n \to \mathbb{R}^m$  given by

$$f(x) = \frac{Ax + b}{c^T x + d},$$
  $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$ 

it is the composition of an affine function g and the perspective function P, where

$$g(x) = \begin{bmatrix} A \\ c^T \end{bmatrix} x + \begin{bmatrix} b \\ d \end{bmatrix}$$

- images of convex sets under linear-fractional functions are convex
- inverse images of convex sets under linear-fractional functions are convex

### example

$$f(x) = \frac{x}{x_1 + x_2 + 1},$$
 dom  $f = \{(x_1, x_2) \mid x_1 + x_2 + 1 > 0\}$ 





Affine and convex sets

Elementary examples

Operations preserving convexity

Separating and supporting hyperplanes

Generalized inequalities

Dual cones and generalized inequalities

# two fundamental properties of convex sets

- separating hyperplane theorem
- supporting hyperplane theorem

# Separating hyperplane theorem

#### **Theorem**

If C and D are nonempty disjoint convex sets, then there exist  $a \neq 0$  and b such that

$$a^T x \le b$$
 for all  $x \in C$ ,  $a^T x \ge b$  for all  $x \in D$ .



Remark  $\{x \mid a^T x = b\}$  is called a separating hyperplane

## Sketch of proof

**Step 1.** Theorem holds if there exists  $c \in C$  and  $d \in D$  such that

$$||c - d||_2 \le ||u - v||_2$$

for all  $u \in C$  and  $v \in D$ .

Idea: take the perpendicular bisector of the line segment connecting c and d.

**Step 2.** If  $C = \{0\}$ , then there exists  $a \neq 0$  such that  $a^T x \geq 0$  for all  $x \in D$ .

Idea: if  $0 \notin \operatorname{cl} D$ , apply Step 1 to  $\{0\}$  and  $\operatorname{cl} D$ ; if  $\operatorname{int} D = \emptyset$ , D is contained in a hyperplane; if  $0 \in \operatorname{cl} D$  and  $\operatorname{int} D \neq \emptyset$ , shrink D by  $\varepsilon$  and let  $\varepsilon \to 0$ .

**Step 3.** Prove the general case.

Idea: apply Step 2 to  $\{0\}$  and  $S = \{y - x \mid x \in C, y \in D\}$ .

#### Step 1. Define

$$f(x) = (d - c)^T \left( x - \frac{d + c}{2} \right) = (d - c)^T x - \frac{1}{2} ||d - c||_2^2.$$

For any  $v \in D$ , we have  $tv + (1-t)d \in D$  for  $t \in [0,1]$ , hence the function

$$q(t) = ||tv + (1-t)d - c||_2^2$$

satisfies  $g(t) \geq g(0)$  for  $t \in [0,1]$ , which implies  $g'(0) \geq 0$ . Since

$$q'(t) = 2(tv + (1-t)d - c)^{T}(v - d)$$

we obtain  $q'(0) = 2(d-c)^T(v-d) > 0$ , therefore

$$f(v) = (d-c)^T \left( v - \frac{d+c}{2} \right) = (d-c)^T \left( v - d + \frac{d-c}{2} \right)$$
$$= (d-c)^T (v-d) + \frac{1}{2} ||d-c||_2^2 \ge 0.$$

Similarly we can show  $f(u) \leq 0$  for any  $u \in C$ .

Step 2. We first check two simple cases, then prove the remaining cases.

#### Case 1. Assume $0 \notin \operatorname{cl} D$ .

Note that  $\operatorname{cl} D$  is convex, and there exists some  $d \in \operatorname{cl} D$  such that  $\|d-0\|_2 \leq \|y-0\|_2$  for all  $y \in \operatorname{cl} D$  (why?). Applying Step 1 to  $\{0\}$  and  $\operatorname{cl} D$ , there exists  $a \neq 0$  and b such that  $a^T y \geq b \geq a^T 0 = 0$  for all  $y \in \operatorname{cl} D$ .

#### Case 2. Assume int $D = \emptyset$ .

In such a case D is contained in a hyperplane  $\{z \mid a^Tz=b\}$  for some  $a \neq 0$  and b. Assume wlog b > 0, then  $a^Ty=b > 0$  for all  $y \in D$ .

### Case 3. Consider the remaining cases.

For each sufficiently small  $\varepsilon>0$ , the set  $D_{-\varepsilon}=\{z\mid B(z,\varepsilon)\subseteq D\}$  is nonempty and convex, and  $0\notin\operatorname{cl} D_{-\varepsilon}$  (why?). By Case 1 there exists  $a_{\varepsilon}\neq 0$  such that  $a_{\varepsilon}^Tz\geq 0$  for all  $z\in D_{-\varepsilon}$ . Assume wlog  $\|a_{\varepsilon}\|_2=1$ . Choose any positive sequence  $\{\varepsilon_i\}$  converging to 0, a subsequence of  $\{a_{\varepsilon_i}\}$  converges to some  $\bar{a}$  with  $\|\bar{a}\|_2=1$ . Then  $\bar{a}^Tz\geq 0$  for all  $z\in\operatorname{int} D$  (why?) hence for all  $z\in D$  (why?).

### Step 3. The nonempty set

$$S = \{ y - x \mid x \in C, \ y \in D \}$$

is convex (why?) and disjoint from  $\{0\}$ . By Step 2, there exists  $a \neq 0$  such that

$$a^T(y-x) \ge 0 \qquad \Longleftrightarrow \qquad a^Tx \le a^Ty$$

for all  $x \in C$  and  $y \in D$ . It follows that

$$\sup\{a^T x \mid x \in C\} \le \inf\{a^T y \mid y \in D\}$$

whose both sides are finite. Then any b in between satisfies

$$a^T x \le b \le a^T y$$

for all  $x \in C$  and  $y \in D$ .

#### Remarks

- ▶ strict separation requires additional assumptions (e.g. point and closed convex set)
- converse separating theorem requires additional assumptions (e.g. one set is open)

# Supporting hyperplane theorem

A supporting hyperplane to a set C at a boundary point  $x_0$  is a hyperplane

$$\{x \mid a^T x = a^T x_0\}$$

where  $a \neq 0$ , such that  $a^T x \leqslant a^T x_0$  for all  $x \in C$ 



#### Theorem

If C is convex, then supporting hyperplane exists at every boundary point of C.

### Sketch of proof

**Step 1.** Assume int  $C \neq \emptyset$ . (Idea: use separating hyperplane for  $\{x_0\}$  and int C.)

Since int C is also convex (why?), we apply separating hyperplane theorem to int C and  $\{x_0\}$  to conclude the existence of  $a \neq 0$  and b such that  $a^Tx \leq b \leq a^Tx_0$  for all  $x \in \operatorname{int} C$ . Since  $\operatorname{cl} C = \operatorname{cl}(\operatorname{int} C)$  (why?) it follows that  $a^Tx \leq b$  for all  $x \in \operatorname{cl} C$ . In particular  $a^Tx \leq b = a^Tx_0$  for all  $x \in C$  and the given  $x_0 \in \operatorname{bd} C$ .

**Step 2.** Assume int  $C = \emptyset$ . (Idea: C is contained in a hyperplane.)

Then C is contained in a hyperplane  $\{x \mid a^Tx = b\}$  for some  $a \neq 0$  and b (why?). It follows  $a^Tx = b = a^Tx_0$  for all  $x \in C$ .

## Tasks Study the following extensions of both theorems from the text

- strict separation theorem
- converse of separating hyperplane theorem
- converse of supporting hyperplane theorem

Affine and convex sets

Elementary examples

Operations preserving convexity

Separating and supporting hyperplanes

Generalized inequalities

Dual cones and generalized inequalities

# Proper cones

## **proper cone**: a cone $K \subseteq \mathbb{R}^n$ satisfying

- ► *K* is convex
- ► *K* is closed (contains its boundary)
- ► *K* is solid (has nonempty interior)
- ightharpoonup K is pointed (contains no line, or equivalently,  $\pm x \in K \Longrightarrow x = 0$ )

### examples

- ▶ nonnegative orthant  $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \cdots, n\}$
- **positive semidefinite cone**  $K = \mathbb{S}^n_+$

# Generalized inequalities

**generalized inequality** on  $\mathbb{R}^n$  defined by a proper cone  $K \subseteq \mathbb{R}^n$ 

$$x \preceq_K y \iff y - x \in K$$
  
 $x \prec_K y \iff y - x \in \mathbf{int} K$ 

examples (similar for  $\prec$ ,  $\succeq$ ,  $\succ$ )

lacktriangle nonnegative orthant and componentwise inequality  $(K=\mathbb{R}^n_+)$ 

$$x \leq_{\mathbb{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

lacktriangle positive semidefinite cone and symmetric matrix inequality  $(K=\mathbb{S}^n_+)$ 

$$X \leq_{\mathbb{S}^n_+} Y \qquad \Longleftrightarrow \qquad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in  $\leq_K$ 

#### **properties** (same for $\prec$ , $\succeq$ , $\succ$ )

ightharpoonup many properties of  $\leq_K$  are similar to  $\leq$  on  $\mathbb{R}$ ; for example:

$$x \prec_K y, \quad u \prec_K v \implies x + u \prec_K y + v$$

partial ordering (not always a total/linear ordering)

pay attention to other subtleties

- it could happen that  $x \not\preceq_K y$  and  $y \not\preceq_K x$
- - for example:  $x \leq_K y$  does not imply  $x \prec_K y$  or x = y
- ightharpoonup if  $x \prec_K y$ , then for u and v small enough,  $x + u \prec_K y + v$

## Minimum and minimal elements

 $x \in S$  is the **minimum element** of S with respect to  $\leq_K$  if for all

$$y \in S \implies x \leq_K y$$

 $x \in S$  is a minimal element of S with respect to  $\leq_K$  if

$$y \in S, \quad y \leq_K x \implies \qquad y = x$$

Remark Minimum element, if exists, must be unique.

**property** A point  $x \in S$  is the minimum element of S if and only if

$$S \subseteq x + K$$
.

**property** A point  $x \in S$  is the minimal element of S if and only if

$$(x - K) \cap S = \{x\}.$$

# example for $K = \mathbb{R}^2_+$





 $x_1$  is the minimum element of  $S_1$   $x_2$  is a minimal element of  $S_2$ 

coming up criteria for determining minimum/minimal elements Affine and convex sets

Elementary examples

Operations preserving convexity

Separating and supporting hyperplanes

Generalized inequalities

Dual cones and generalized inequalities

# Dual cones

**dual cone** of a cone  $K \subseteq \mathbb{R}^n$ 

$$K^* = \{ y \in \mathbb{R}^n \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

$$K = \mathbb{R}^{n}_{+} \qquad \Longrightarrow \qquad K^{*} = \mathbb{R}^{n}_{+}$$

$$K = \mathbb{S}^{n}_{+} \qquad \Longrightarrow \qquad K^{*} = \mathbb{S}^{n}_{+} \text{ (example 2.24)}$$

$$K = \{(x,t) \mid ||x||_{2} \leq t\} \qquad \Longrightarrow \qquad K^{*} = \{(x,t) \mid ||x||_{2} \leq t\}$$

$$K = \{(x,t) \mid ||x||_{1} \leq t\} \qquad \Longrightarrow \qquad K^{*} = \{(x,t) \mid ||x||_{\infty} \leq t\}$$

first three examples are self-dual cones

# Properties of dual cones

- $ightharpoonup K^*$  is a cone, and is always convex, even when the original cone K is not convex
- $ightharpoonup K^*$  is closed and convex
- $ightharpoonup K_1 \subseteq K_2$  implies  $K_2^* \subseteq K_1^*$
- ▶ If K has nonempty interior, then  $K^*$  is pointed
- ▶ If the closure of K is pointed then  $K^*$  has nonempty interior
- ▶  $K^{**}$  is the closure of the convex hull of K. (Hence if K is convex and closed,  $K^{**} = K$ )
- If K is a proper cone, then so is its dual  $K^*$ , and moreover, that  $K^{**} = K$

# Dual generalized inequalities

- ▶ assume K is a proper cone, then  $K^*$  is also a proper cone, and  $K^{**} = K$
- ightharpoonup in such a case  $K^*$  also defines generalized inequalities
- lacktriangle generalized inequalities with respect to  $K^*$  can usually be interpreted via K

### examples

$$y \succeq_{K^*} 0 \iff y \in K^* \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$
$$y \succ_{K^*} 0 \iff y \in \mathbf{int} K^* \iff y^T x > 0 \text{ for all } x \succeq_K 0 \text{ and } x \ne 0$$

# Dual characterization of the minimum element

$$x$$
 is the minimum element of  $S$  with respect to  $\preceq_K$ 



x is the unique minimizer of  $\lambda^T z$  over  $z \in S$  for each  $\lambda \succ_{K^*} 0$ 

Geometrically, this means that for any  $\lambda \succ_{K^*} 0$ , the hyperplane

$$\{z|\lambda^T(z-x)=0\}$$

is a strict supporting hyperplane to S at x.

Note that convexity of S is **not required** 



## Sketch of proof

$$(\Longrightarrow)$$
 for each  $z \in S$  and  $z \neq x$ 

$$\blacktriangleright x$$
 is minimum  $\implies z - x \succeq_K 0$  and  $z - x \neq 0$ 

$$\lambda^T(z-x) > 0$$
 for each  $\lambda \succ_{K^*} 0 \implies x$  is the unique minimizer of  $\lambda^T z$ 

$$(\Leftarrow)$$
 for each  $z \in S$  and  $z \neq x$ 

$$\leftarrow$$
 ) To reactify  $z \in \mathcal{D}$  and  $z \neq x$ 

$$lacksquare$$
  $x$  is the unique minimizer of  $\lambda^T z \implies \lambda^T (z-x) > 0$  for each  $\lambda \succ_{K^*} 0$ 

▶ continuity 
$$\implies \lambda^T(z-x) \ge 0$$
 for each  $\lambda \succeq_{K^*} 0 \implies z-x \succeq_K 0$ 

### Dual characterization of a minimal element

There is a gap between the necessary and sufficient conditions. Compared to the minimum, there is no uniqueness in the condition.



$$x$$
 is a minimal element of  $S$  with respect to  $\preceq_K$  and  $S$  is **convex**

x minimizes  $\lambda^T z$  over  $z \in S$  for some nonzero  $\lambda \succeq_{K^*} 0$ 

# Sketch of proof

- $(\longleftarrow)$ 
  - ▶ suppose that x is **not** minimal, i.e., there exists a  $z \in S, z \neq x$ , and  $z \prec_K x$  (by def. 2.1 on page 45)
  - ▶ Then  $\lambda^T(x-z) > 0$  which is obtained from the second property relating a generalized inequality and its dual on page 53
  - ▶ However, this contradicts our condition that x is the minimizer of  $\lambda^T z$  over S

A point x can be minimal in S, but not a minimizer of  $\lambda^T z$  over  $z \in S$ , for any  $\lambda$  (see Fig. 2.25 on page 56). This suggests that convexity plays an important role in the converse, which is correct.

## Sketch of proof

$$(\Longrightarrow)$$

- $\blacktriangleright x \text{ is minimal} \implies ((x-K)\setminus\{x\})\cap S=\emptyset$
- ▶ Applying the separating hyperplane theorem to the disjoint convex sets  $((x-K)\backslash\{x\})$  and S, we conclude that there is a  $\lambda \neq 0$  and  $\mu$  such that  $\lambda^T(x-y) \leq \mu$  for all  $y \in K$ , and  $\lambda^Tz \geq \mu$  for all  $z \in S$
- From the first inequality, we have  $\lambda^T y \geq \lambda^T x \mu \geq 0$  since we take z = x in the second inequality  $\lambda^T z \geq \mu$  for all  $z \in S$ . We conclude  $\lambda \succeq_{K^*} 0$  based on page 53.
- ▶ Since  $x \in S$  and  $x \in x K$ , we have  $\lambda^T x = \mu$  on the separating hyperplane, so the second inequality implies that  $\mu$  is the minimum value of  $\lambda^T z$  over S.
- $\blacktriangleright$  x is a minimizer of  $\lambda^T z$  over S, where  $\lambda \neq 0$ ,  $\lambda \succeq_{K^*} 0$