Ligthweight Cryptography

Marc Beunardeau

April 28, 2015

Table of contents

Introduction

Software Requirements

State of the Art

Trivium

PRESENT

PRINCE

PRIDE

Presentation

The Linear Layer

Differential Attack

SPECK

Presentation

Fault Attack

Itroduction

- Developpement of tiny devices (RFID, wireless sensors....)
- ▶ Need for new algorithms (\neq AES)
- Pervasive environement (invasive attacks)

- ► Clock Cycles per encryption
- Memory
- Security
- Consumption

Generalities

- ▶ Introduced by Cannire and Preneel in 2005
- Stream cipher
- ▶ 1100 cycles for initialisation
- ▶ 1 cycle per bits
- 2 faults attack
- optimized for hardware

Structure

Generalities

- ▶ Bogdanov & Al in 2007
- SP-network
- ▶ 32 rounds
- ▶ 80, 128 bits keys, 64 bits block
- 32 cycles per block (hardware implementation)
- ▶ Cube attack : 2¹⁵ chosen plain text, 2³² encryption
- optimized for hardware

Structure

Generalities

- ▶ Introduced by
- ► SP-network
- Low latency
- Small aera when fully unrolled
- ▶ 128 bits key, 64 bits block
- ▶ 1 cycle per block (unrolled hardware implementation)
- α reflection : $Dec_{(k_0||k_0'||k_1)}(.) = Enc_{(k_0'||k_0||k_1 \oplus \alpha)}(.)$
- 3-4 faults attack

Structure

Generalities

- ▶ Introduced by Albrecht & Al in 2014
- SPN block cipher with focus on linear layer
- ▶ 64 bits blocks
- ▶ 128bits key
- ▶ 20 rounds

Performances

- ▶ 68 cycles per block
- ▶ 138 bytes of flash memory (943 flash + 33 S-RAM bytes, and 575 cycles for AES)

Structure

A Round of PRIDE

Key Scheduling

- $k = k_0 || k_1$
- $\qquad \qquad \mathbf{k}_1 = k_{1_0} ||k_{1_1}||k_{1_2}||k_{1_3}||k_{1_4}||k_{1_5}||k_{1_6}||k_{1_7}||$
- $f_i(k_1) = k_{1_0}||g_i^{(0)}(k_{1_1})||k_{1_2}||g_i^{(1)}(k_{1_3})||k_{1_4}||g_i^{(2)}(k_{1_5})||k_{1_6}||g_i^{(3)}(k_{1_7})$
- $g_i^j(x) = x + i \times C_j \mod 256$

S-boxes

Involution

▶ Differential : 1/4

▶ Linear : 1/2

20 Clock cycles

Interleaving

$$\begin{split} P^n_{b_1,...b_k}: (\mathbb{F}_2^{b_1} \times \mathbb{F}_2^{b_2} \times ... \mathbb{F}_2^{b_k})^n &\longrightarrow (\mathbb{F}_2^{b_1})^n \times (\mathbb{F}_2^{b_2})^n ... \times (\mathbb{F}_2^{b_k})^n \\ (x_1,...,x_n) &\longrightarrow ((x_1^{(1)},...,x_n^{(1)}),...,(x_1^{(k)},...,x_n^{(k)})) \end{split}$$
 where $x_i = (x_i^{(1)},...,x_i^{(k)})$ with $x_i^{(j)} \in \mathbb{F}_2^{b_j}$

Presentation The Linear Layer

Example k = 2, n = 3

Interleaving

- ▶ $G_i = [I|L_i^T]$ matrix generator of a $(2n, 2^n)$ code of minimal distance d_i over \mathbb{F}_2
- $L := P^{-1} \circ (L_1 \times L_2 \times L_3 \times L_4) \circ P$
- ▶ $[I|L^T]$ matrix generator of a $(2n, 2^n)$ code of minimal distance $mind_i$ over \mathbb{F}_2^4

Presentation The Linear Layer

frametitleFinding L_0

Principle

- Find differential characteristics :
- ▶ $\Delta X = X_1 \oplus X_2$ a constant
- ▶ $\Delta Y = Encr(X_1) \oplus Encr(X_2) = cst$ for a high number(>> $1/2^{|K|}$) of pair (X_1, X_2)
- Retrieve information on the key

Presentation

Generalities

- ▶ Introduced by Beaulieu & Al (NSA) in 2013
- Feistel network
- ▶ 48-128 bits blocks
- ▶ 96-256 bits key
- ▶ 22-34 rounds

Performances (64 bits block/128 bits key)

- ▶ 186 bytes of memory
- ▶ 150 cycles per block

Presentation

Structure

Key Scheduling

$$K = (I_{m-2}||I_{m-1}||...||I_0||k_0)$$

$$I_{i+m-1} = k_{i-1} + S^{-\alpha}(I_{i-1}) \oplus i$$

$$\qquad k_i = S^{\beta}(k_{i-1}) \oplus l_{i+m-1}$$

▶
$$l_i, k_0 \in \mathbb{F}_2^n$$

▶
$$m \in \{2, 3, 4\}$$

Principle

- ▶ Inject a fault in a chosen state of the computation
- ► Compare C and C* the correct and faulty cipher texts
- Retrive information on the key

Bit-Flip Attack Random Bit Fault

We control the position of the error (unrealistic)

$$x^T = (S^{-\alpha}(x^{T-1}) + y^{T-1}) \oplus k^{T-1}$$

$$y^T = S^{\beta}(y^{T-1}) \oplus x^T$$

$$c_j = (x_{j-1-\alpha \mod n} \& y_{j-1}) | (c_{j-1} \& (x_{j-1-\alpha \mod n} | y_{j-1}))$$

- $c_0 = 0$ is known
- ▶ Inject a fault in y_0^{T-1}
- ▶ Deduce x_{α}^{T-1} then k_0^{T-1}
- ▶ Inject a fault in higher bits of y^{T-1}

Bit-Flip Attack Random Bit Fault

We don't control the position of the error

Locate the error