Fine-tuning with implicit loss

Łukasz Adamowicz

M2 Mathématiques, Modélisation et Apprentissage Université Paris Cité Internship at Hamprecht Lab, IWR Heidelberg

September 4, 2025

Outline

- Problem Statement
- 2 Jacobian Approach
- Sequilibrium Propagation
- 4 Stability Issues and Fixed Point Correction
- Conclusions

General Optimization Problem

- Our model: $E(\theta, M, p)$.
- $p_{\theta,i}$ are fixed points:

$$p_{\theta,i} = \arg\min_{p:\langle w_i,p\rangle=N_i} E(\theta,M_i,p).$$

- Loss: $L(\theta) = \sum_{i=1}^{n} L_i(p_{\theta,i}) = \sum_{i=1}^{n} \frac{1}{2} ||p_{\theta,i} p_{gs,i}||^2$.
- Keywords: bilevel optimization, stochastic bilevel optimization, Deep Equilibrium Models

Single Molecule Optimization Problem

- For a single molecule M:
- Fixed point :

$$p_{\theta} = \arg\min_{p:\langle w,p\rangle=N} E(\theta,p)$$

.

- Loss: $L(\theta) = L(p_{\theta}) = \frac{1}{2} ||p_{\theta} p_{gs}||^2$.
- Goal: Minimize loss function $L(\theta)$.
- In bilevel optimization terms minimizing $L(p_{\theta})$ is called an outer problem and minimizing $E(\theta, p)$ is an inner problem.

Jacobian Approach

• Formula for gradient of the loss is:

$$\frac{\partial L(p_{\theta})}{\partial \theta} = -(p_{\theta} - p_{gs}) \cdot \left(\frac{\partial}{\partial p} \mathcal{P}(\nabla_{p} E(\theta, p))\right)^{-1} \cdot \frac{\partial}{\partial \theta} (\mathcal{P} \nabla_{p} E(\theta, p))$$

- \mathcal{P} is the projection operator onto subspace $\langle w, p \rangle = 0$.
- Hessian $\left(\frac{\partial}{\partial p} \mathcal{P}(\nabla_p E(\theta, p))\right)$ is **not** invertible, we utilize pseudoinverse instead.
- In practice, we solve the linear equation $y \cdot \left(\frac{\partial}{\partial p} \mathcal{P} \nabla_p E(\theta, p)\right) = -(p_{\theta} p_{gs}).$
- This is done with matrix-free methods, because materializing the matrix is slow.

Jacobian Results

- Training is very unstable, depends on inner problem hyperparameters.
- Conjugate gradient method failed to solve linear equation
- Even when training loss decreased, it did not improve network metrics.
- Hessian has big both big (\approx 1000) and small (\approx 0.001) eigenvalues, plain gradient descent on $\|y\cdot\left(\frac{\partial}{\partial p}\mathcal{P}\nabla_{p}E(\theta,p)\right)+(p_{\theta}-p_{gs})\|^{2}$ fails, resorted to ADAM.
- Overall, Jacobian approach did not work.

Equilibrium Propagation

- Alternative gradient estimation method (see bibliography for details).
- Define total energy: $T(\theta, p, \beta) = E(\theta, p) + \beta \frac{1}{2} ||p p_{gs}||^2 = E(\theta, p) + \beta L(p)$
- Define p_{θ}^{β} as the fixed point of T.

$$p_{\theta}^{\beta} = \arg\min_{p:\langle w,p\rangle = N} T(\theta, p, \beta)$$

• Gradient formula:

$$\frac{d}{d\theta}L(p_{\theta}) = \lim_{\beta \to 0} \frac{1}{\beta} \Big[\partial_{\theta} T(\theta, p_{\theta}^{\beta}, \beta) - \partial_{\theta} T(\theta, p_{\theta}^{0}, 0) \Big].$$

• Approximate gradient as finite difference of right-hand side (numerical derivative)

Equilibrium Propagation Results

- Fine-tuned single molecule succesfully.
- Can work, when Jacobian approach fails
- Slower than Jacobian approach.
- Original contribution: implement in DFT setting, comparison with Jacobian (IFT) approach
- More details and derivation in the report.

Stability Issues

- Training stability deteriorates over time (known issue in DEQ models).
- Fixed point search takes longer and longer during training.
- There are techniques for alleviating the issue
- Appears both in Jacobian and EqProp approaches.
- Appears only, when trying to fine-tune on multiple molecules.

Fixed Point Correction

- Technique: include intermediate trajectory points in loss. Taken from DEQ literature.
- Inner problem trajectory is $p_1, \ldots, p_T \approx p_\theta$.
- Uniformly choose n intermediate points and modify the loss function as

$$L_{FPC}(\theta) = \sum_{k=1}^{n} \gamma^{n-k} L(p_{i_k}),$$

- Treat p_{i_k} as fixed points and calculate gradient using Jacobian approach.
- Helps stabilize training, but may reduce performance.
- Original contribution: Adapt to EqProp, add stochasticity.

Conclusions

- Jacobian approach: not working right now, badly conditioned problem.
- Equilibrium propagation: works on single molecules.
- Biggest problem is training stability, additional treatment is needed.
- Training is very slow

End

Thank You for coming

References I

- Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico Kolter. Deep equilibrium optical flow estimation.
 - In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 620–630, 2022.
- Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Stabilizing equilibrium models by jacobian regularization. arXiv preprint arXiv:2106.14342, 2021.
- Andreas Burger, Luca Thiede, Alan Aspuru-Guzik, and Nandita Vijaykumar. DEQuify your force field: More efficient simulations using deep equilibrium models.
 - In AI for Accelerated Materials Design ICLR 2025, 2025.
- Asen L Dontchev and R Tyrrell Rockafellar. Implicit functions and solution mappings, volume 543. Springer, 2009.

References II

- Zhengyang Geng and J Zico Kolter. Torchdeg: A library for deep equilibrium models. arXiv preprint arXiv:2310.18605, 2023.
- Roman Remme, Tobias Kaczun, Tim Ebert, Christof A Gehrig, Dominik Geng, Gerrit Gerhartz, Marc K Ickler, Manuel V Klockow, Peter Lippmann, Johannes S Schmidt, et al. Stable and accurate orbital-free dft powered by machine learning. arXiv preprint arXiv:2503.00443, 2025.
- Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.
- Feitong Song and Ji Feng. Neuralscf: Neural network self-consistent fields for density functional theory. arXiv preprint arXiv:2406.15873, 2024.

16/21

References III

He Zhang, Siyuan Liu, Jiacheng You, Chang Liu, Shuxin Zheng, Ziheng Lu, Tong Wang, Nanning Zheng, and Bin Shao. Overcoming the barrier of orbital-free density functional theory for molecular systems using deep learning.

Nature Computational Science, 4(3):210-223, 2024.

Nicolas Zucchet and Joao Sacramento. Beyond backpropagation: bilevel optimization through implicit differentiation and equilibrium propagation.

Neural Computation, 34(12):2309-2346, 2022.

Jacobian Gradient Derivation - Part 1

- Starting from loss function: $L(\theta) = \frac{1}{2} ||p_{\theta} p_{gs}||^2$.
- Using chain rule: $\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial p_{\theta}} \cdot \frac{\partial p_{\theta}}{\partial \theta}$.
- First term is straightforward: $\frac{\partial L}{\partial p_{\theta}} = (p_{\theta} p_{gs})$.
- For second term, we need the implicit function theorem.

Jacobian Gradient Derivation - Part 2

- At fixed point, we have: $\mathcal{P}\nabla_{p}E(\theta,p_{\theta})=0$.
- Differentiating this constraint with respect to θ :

$$\frac{\partial}{\partial \theta} \left[\mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta}) \right] = 0 \quad (1)$$

$$\frac{\partial}{\partial p} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta}) \cdot \frac{\partial p_{\theta}}{\partial \theta} + \frac{\partial}{\partial \theta} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta}) = 0 \quad (2)$$

• Solving for $\frac{\partial p_{\theta}}{\partial \theta}$:

$$\frac{\partial p_{\theta}}{\partial \theta} = -\left(\frac{\partial}{\partial p} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta})\right)^{-1} \cdot \frac{\partial}{\partial \theta} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta})$$
(3)

Jacobian Gradient Derivation - Part 3

Substituting back into our chain rule formula:

$$\frac{\partial L}{\partial \theta} = (p_{\theta} - p_{gs}) \cdot \frac{\partial p_{\theta}}{\partial \theta} \tag{4}$$

$$= -(p_{\theta} - p_{gs}) \cdot \left(\frac{\partial}{\partial p} \mathcal{P} \nabla_{p} E(\theta, p_{\theta})\right)^{-1} \cdot \frac{\partial}{\partial \theta} \mathcal{P} \nabla_{p} E(\theta, p_{\theta}) \quad (5)$$

Equilibrium Propagation Derivation - Part 1

- Define perturbed energy function: $T(\theta, p, \beta) = E(\theta, p) + \beta L(p)$.
- Define p_{θ}^{β} as the fixed point of this perturbed energy:

$$p_{ heta}^{eta} = rg \min_{oldsymbol{p}: \langle w, p
angle = N} \mathcal{T}(heta, oldsymbol{p}, eta)$$

- Note that $p_{\theta}^0 = p_{\theta}$ (the original fixed point).
- Our goal: compute $\frac{d}{d\theta}L(p_{\theta})$.

Equilibrium Propagation Derivation - Part 2

- Define function $G(\theta, \beta) = T(\theta, p_{\theta}^{\beta}, \beta)$.
- There's symmetry of second derivatives $\frac{d}{d\beta}\frac{d}{d\theta}$ at $\beta=0, \theta=\theta$

Equilibrium Propagation Derivation - Part 3

- $\frac{dG}{d\beta} = \frac{\partial T}{\partial \beta} + \frac{\partial T}{\partial p} \frac{dp_{\theta}^{\beta}}{d\beta}$, but the second term vanishes at $p = p_{\theta}^{\beta}$.
- $\bullet \ \frac{\partial T}{\partial \beta}\big|_{\beta=0} = L(p_{\theta})$