IARCHPV Correlates Analyses Report

IARCHPV Biostatistics Team November 20, 2023

Contents

3	Appendix	15
	M18 Univariate CoR: Logistic Regression Models 2.1 Odds ratios	11 11
1	Disclaimers	9

4 CONTENTS

List of Tables

2.1	Inference for M 18antibody marker covariate-adjusted correlates of risk of HPV pooled over	
	treatment arms: Odds ratios per 10-fold increment in the marker*	11
2.2	Inference for Day 18antibody marker covariate-adjusted correlates of risk of HPV pooled over	
	treatment groups: Odds ratios per SD increment in the marker*	11
2.3	Inference for Day 18antibody marker covariate-adjusted correlates of risk of HPV in the vaccine	
	group: Hazard ratios for Middle vs. Upper tertile vs. Lower tertile*	13
2.4	Number of cases and non-cases in ph2 or not	13

6 LIST OF TABLES

List of Figures

8 LIST OF FIGURES

Chapter 1

Disclaimers

Reproducibility Notice

This project integrates the virtual environments framework provided by the **renv** package for computational reproducibility. By taking this approach, all results are generated using a consistent versioning of both R and several R packages. This version of the report was built with R version 4.0.4 (2021-02-15), pandoc version 2.3.1, and the following R packages:

package	version	source
bookdown	0.21.7	Github (rstudio/bookdown@0cec2fd)
bslib	0.2.4.9002	Github (rstudio/bslib@c7835c2)
data.table	1.14.0	CRAN (R 4.0.4)
delayed	0.4.0	Github (tlverse/delayed@f415340)
devtools	2.3.2	CRAN (R 4.0.4)
dplyr	1.0.5	CRAN(R4.0.4)
ggplot2	3.3.3	CRAN(R4.0.4)
hal9001	0.4.0	Github (tlverse/hal9001@b41ed5d)
haldensify	0.1.5	Github (nhejazi/haldensify@16350cc)
here	1.0.1	CRAN (R 4.0.4)
kableExtra	1.3.4	CRAN (R 4.0.4)
knitr	1.31	CRAN (R 4.0.4)
latex2exp	0.5.0	CRAN (R 4.0.4)
mvtnorm	1.1-1	CRAN (R 4.0.4)
origami	1.0.3	CRAN (R 4.0.4)
readr	1.4.0	CRAN (R 4.0.4)
rmarkdown	2.7.4	Github (rstudio/rmarkdown@a11240d)
$_{\mathrm{skimr}}$	2.1.3	CRAN (R 4.0.4)
sl3	1.4.3	Github (tlverse/sl3@982f4d6)
stringr	1.4.0	CRAN (R 4.0.4)
SuperLearner	2.0 - 28	CRAN (R 4.0.4)
svyVGAM	1.0	CRAN (R 4.0.4)
tibble	3.1.1	CRAN (R 4.0.4)
tidyr	1.1.3	CRAN (R 4.0.4)
txshift	0.3.6	Github (nhejazi/txshift@c0f572a)
VGAM	1.1-5	CRAN (R 4.0.4)
xtable	1.8-4	CRAN (R 4.0.4)

To get started with using this project and its renv package library, we first recommend briefly reviewing the

renv collaboration guide.

Chapter 2

M18 Univariate CoR: Logistic Regression Models

The main regression model is the logistic regression model fit with osDesign unless specified otherwise. One model per row.

2.1 Odds ratios

Table 2.1: Inference for M 18antibody marker covariate-adjusted correlates of risk of HPV pooled over treatment arms: Odds ratios per 10-fold increment in the marker*

IARCHPV	No. cases /	OR per	r 10-fold incr.	P-value	q-value	FWER
Immunologic Marker	No. at-risk**	Pt. Est.	95% CI	(2-sided)	***	
Anti L1, L2 IgG HPV6 (AU/ml)	26/3,023	0.76	(0.44-1.33)	0.340	0.810	1.000
Anti L1, L2 IgG HPV11 (AU/ml)	26/3,023	0.91	(0.53-1.56)	0.724	0.810	1.000
Anti L1, L2 IgG HPV16 (IU/ml)	26/3,023	0.87	(0.51 - 1.50)	0.626	0.810	1.000
Anti L1, L2 IgG HPV18 (IU/ml)	26/3,023	0.62	(0.39-1.01)	0.052	0.405	0.525
Anti L1, L2 IgG HPV31 (AU/ml)	26/3,023	1.44	(0.54 - 3.86)	0.465	0.810	1.000
Anti L1, L2 IgG HPV33 (AU/ml)	26/3,023	4.01	(0.01-1770.99)	0.655		
Anti L1, L2 IgG HPV45 (AU/ml)	26/3,023	0.31	(0.04-2.63)	0.281		
Anti L1, L2 IgG HPV52 (AU/ml)	26/3,023	1.38	(0.27-7.06)	0.702		
Anti L1, L2 IgG HPV58 (AU/ml)	26/3,023	1.29	(0.24-7.11)	0.766		
Anti L1, L2 IgG Score	26/3,023	0.90	(0.55-1.47)	0.687		

^{*}Baseline covariates adjusted for: Age. *No. at-risk = estimated number in the population for analysis, i.e. trial participants entering or eligible to enter the sampling cohort post the M18 visit; no. cases = number of this cohort with an observed HPV endpoint. ***q-value and FWER (family-wide error rate) are computed over the set of p-values both for quantitative markers and categorical markers using the Westfall and Young permutation method (NA replicates).

Table 2.2: Inference for Day 18antibody marker covariate-adjusted correlates of risk of HPV pooled over treatment groups: Odds ratios per SD increment in the marker*

IARCHPV	No. cases /	OR per SD incr.	P-value q-value FWER
Immunologic Marker	No. at-risk** P	t. Est. 95% CI	(2-sided) ***

Anti L1, L2 IgG HPV6 (AU/ml)	26/3,023	0.83	(0.57-1.22)	0.340	0.810	1.000
Anti L1, L2 IgG HPV11 (AU/ml)	26/3,023	0.93	(0.64-1.36)	0.724	0.810	1.000
Anti L1, L2 IgG HPV16 (IU/ml)	26/3,023	0.91	(0.61-1.34)	0.626	0.810	1.000
Anti L1, L2 IgG HPV18 (IU/ml)	26/3,023	0.70	(0.49 - 1.00)	0.052	0.405	0.525
Anti L1, L2 IgG HPV31 (AU/ml)	26/3,023	1.16	(0.77-1.75)	0.465	0.810	1.000
Anti L1, L2 IgG $HPV33$ (AU/ml)	26/3,023	1.08	(0.78 - 1.50)	0.655		
Anti L1, L2 IgG $HPV45$ (AU/ml)	26/3,023	0.74	(0.43-1.28)	0.281		
Anti L1, L2 IgG $HPV52$ (AU/ml)	26/3,023	1.08	(0.72 - 1.63)	0.702		
Anti L1, L2 IgG HPV58 (AU/ml)	26/3,023	1.05	(0.75 - 1.47)	0.766		
Anti L1, L2 IgG Score	26/3,023	0.92	(0.60-1.39)	0.687		

*Baseline covariates adjusted for: Age. **No. at-risk = estimated number in the population for analysis, i.e. trial participants entering or eligible to enter the sampling cohort post the M18 visit; no. cases = number of this cohort with an observed HPV endpoint. ***q-value and FWER (family-wide error rate) are computed over the set of p-values both for quantitative markers and categorical markers using the Westfall and Young permutation method (NA replicates).

2.1. ODDS RATIOS

Table 2.3: Inference for Day 18antibody marker covariate-adjusted correlates of risk of HPV in the vaccine group: Hazard ratios for Middle vs. Upper tertile vs. Lower tertile*

IARCHPV	Tertile		Attack	Haz	. Ratio	P-value	Overall P-	Overall q-	Overall
Immunologic Marker		No. at-risk**	rate	Pt. Est.	95% CI	(2-sided)	value***	value †	FWER
Anti L1, L2 IgG HPV6 (AU/ml)	Lower	12/1,012	0.0119	1	N/A	N/A	0.327	0.810	1.000
	Middle	7/1,011	0.0069						
	Upper	6/1,000	0.0060	0.62	(0.27 - 1.43)	0.266			
Anti L1, L2 IgG HPV11 (AU/ml)	Lower	9/1,029	0.0087	1	N/A	N/A	0.810	0.810	1.000
	Middle	9/999	0.0090						
	$_{\mathrm{Upper}}$	7/995	0.0070	1.13	(0.45 - 2.83)	0.796			
Anti L1, L2 IgG HPV16 (IU/ml)	Lower	11/1,030	0.0107	1	N/A	N/A	0.675	0.810	1.000
	Middle	7/ 999	0.0070						
	$_{\mathrm{Upper}}$	7/994	0.0070	0.69	(0.27-1.78)	0.442			
Anti L1, L2 IgG HPV18 (IU/ml)	Lower	14/1,007	0.0139	1	N/A	N/A	0.081	0.405	0.729
	Middle	3/1,015	0.0030						
	$_{\mathrm{Upper}}$	9/1,001	0.0090	0.24	(0.07 - 0.83)	0.025			
Anti L1, L2 IgG HPV31 (AU/ml)	Lower	16/1,834	0.0087	1	N/A	N/A	0.798	0.810	1.000
	Middle	6/598	0.0100						
	$_{\mathrm{Upper}}$	4/591	0.0068	1.24	(0.48 - 3.18)	0.658			
Anti L1, L2 IgG HPV33 (AU/ml)	Lower	25/2,961	0.0084	1	N/A	N/A	0.521		
	Middle	1/62	0.0161						
	$_{\mathrm{Upper}}$	NA/ NA		2.14	(0.21-21.83)	0.521			
Anti L1, L2 IgG HPV45 (AU/ml)	Lower	24/2,524	0.0095	1	N/A	N/A	0.228		
	Middle	2/499	0.0040						
	$_{\mathrm{Upper}}$	NA/ NA		0.45	(0.12 - 1.65)	0.228			
Anti L1, L2 IgG HPV52 (AU/ml)	Lower	23/2,565	0.0090	1	N/A	N/A	0.620		
	Middle	- /	0.0066						
	$_{\mathrm{Upper}}$	NA/ NA		0.75	(0.24-2.37)	0.620			
Anti L1, L2 IgG HPV58 (AU/ml)	Lower	22/2,633	0.0084	1	N/A	N/A	0.626		
	Middle	4/390	0.0103						
	Upper	NA/ NA		1.31	(0.44 - 3.92)	0.626			
Anti L1, L2 IgG Score	Lower	11/1,008	0.0109	1	N/A	N/A	0.142		
	Middle	4/1,020	0.0039						
	Upper	10/ 995	0.0101	0.38	(0.13-1.08)	0.069			

*Baseline covariates adjusted for: Age. Cutpoints (on the log10 scale): M18bindL1L2_HPV6 [0.48, 1.15),M18bindL1L2_HPV11 [0.57, 1.24),M18bindL1L2_HPV16 [1.13, 1.78),M18bindL1L2_HPV18 [0.45, 1.13),M18bindL1L2_HPV31 [-0.1, 0.58),M18bindL1L2_HPV33 [0.18),M18bindL1L2_HPV45 [0.06),M18bindL1L2_HPV52 [-0.1),M18bindL1L2_HPV58 [0.04),M18bindL1L2_mdw [-0.41, 0.26) **No. atrisk = estimated number in the population for analysis, i.e. trial participants entering or eligible to enter the sampling cohort post the M18 visit; no. cases = number of this cohort with an observed HPV endpoint. ***Generalized Wald-test p-value of the null hypothesis that the hazard rate is constant across the Lower, Middle, and Upper tertile groups. † q-value and FWER (family-wide error rate) are computed over the set of p-values both for quantitative markers and categorical markers using the Westfall and Young permutation method (NA replicates).

Table 2.4: Number of cases and non-cases in ph2 or not

ph2	Event	Indicator
	0	1
FALSE	2871	1
TRUE	126	25

Chapter 3

Appendix

This report was built with code from:

 $https://github.com/youyifong/correlates_reporting 2-2/commits/c7ebff1ad87e235e0c748866b2e0d593f65f7624 \\ and data from:$