Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

курса «Информатика»

«Синтез помехоустойчивого кода» Вариант № 54

Выполнил студент:

Тюрин Иван Николаевич

группа: Р3110

Преподаватель:

Балакшин П. В.,

Рудникова Т. В.

Содержание

Синтез помехоустойчивого кода
1. Задание варианта № 54
2. Выполнение задания 1
1. Вариант 39
2. Вариант 71
3. Вариант 3
4. Вариант 23
3. Выполнение задания 2
4. Выполнение задания 3
5. Выполнение задания 4
6. Вывод
Список лиетратуры

Лабораторная работа 2

Синтез помехоустойчивого кода

1. Задание варианта № 54

	Вариант	$ r_1 $	r_2	11	r ₃	12	13	14
Задание 1:	39	1	1	0	0	0	1	0
	71	0	0	0	0	1	0	1
	3	0	0	1	1	0	0	0
	23	1	0	0	1	0	0	1

Задание 2.	Вариант	r_1	r_2	i_1	r_3	i_2	i_3	i_4	r_4	i_5	i_6	i_7	i_8	i ₉	i_{10}	i_{11}
	39	0	1	0	0	0	1	1	0	1	1	0	0	0	1	1

Задание 3. Принять число 720 как число информационных разрядов в передоваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэфициент изыточности.

Задание 4. Написать программу на любом языке программирования, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его налиции.

2. Выполнение задания 1

Рис. 1.1: Схема декодирования кода Хэмминга

2. 1. Вариант 39

$N_{\overline{0}}$	$ r_1 $	r_2	i_1	r_3	i_2	i_3	i_4
39	1	1	0	0	0	1	0

Вычислим значение синдрома:

$$S_1 = r_1 \otimes i_1 \otimes i_2 \otimes i_4 = 1 \otimes 0 \otimes 0 \otimes 0 = 1$$

$$S_2 = r_2 \otimes i_1 \otimes i_3 \otimes i_4 = 1 \otimes 0 \otimes 1 \otimes 0 = 0$$

$$S_3 = r_3 \otimes i_2 \otimes i_3 \otimes i_4 = 0 \otimes 0 \otimes 1 \otimes 0 = 1$$

 $(S_1,\ S_2,\ S_3)=(1,\ 0,\ 1)-5$ позиция, ошибка в символе i_2

Исходное сообщение: 1100110

2. 2. Вариант 71

$N_{\overline{0}}$	r_1	r_2	i_1	r_3	i_2	i_3	i_4
71	0	0	0	0	1	0	1

Вычислим значение синдрома:

$$S_1 = r_1 \otimes i_1 \otimes i_2 \otimes i_4 = 0 \otimes 0 \otimes 1 \otimes 1 = 0$$

$$S_2 = r_2 \otimes i_1 \otimes i_3 \otimes i_4 = 0 \otimes 0 \otimes 0 \otimes 1 = 1$$

$$S_3 = r_3 \otimes i_2 \otimes i_3 \otimes i_4 = 0 \otimes 1 \otimes 0 \otimes 1 = 0$$

 $(S_1, S_2, S_3) = (0, 1, 0) - 2$ позиция, ошибка в символе r_2

Исходное сообщение: 0100101

2. 3. Вариант 3

	$N_{\overline{0}}$	r_1	r_2	i_1	r_3	i_2	i ₃	i_4
ſ	3	0	0	1	1	0	0	0

Вычисляем значение синдрома:

$$S_1 = r_1 \otimes i_1 \otimes i_2 \otimes i_4 = 0 \otimes 1 \otimes 0 \otimes 0 = 1$$

$$S_2 = r_2 \otimes i_1 \otimes i_3 \otimes i_4 = 0 \otimes 1 \otimes 0 \otimes 0 = 1$$

$$S_3 = r_3 \otimes i_2 \otimes i_3 \otimes i_4 = 1 \otimes 0 \otimes 0 \otimes 0 = 1$$

 $(S_1,\ S_2,\ S_3)=(1,\ 1,\ 1)-7$ позиция, ошибка в символе r_1

Исходное сообщение: 0011001

2. 4. Вариант 23

$N_{\overline{0}}$	r_1	r_2	i_1	r ₃	i_2	i ₃	i_4
23	1	0	0	1	0	0	1

Вычисляем значение синдрома:

$$S_1 = r_1 \otimes i_1 \otimes i_2 \otimes i_4 = 1 \otimes 0 \otimes 0 \otimes 1 = 0$$

$$S_2 = r_2 \otimes i_1 \otimes i_3 \otimes i_4 = 0 \otimes 0 \otimes 0 \otimes 1 = 1$$

$$S_3 = r_3 \otimes i_2 \otimes i_3 \otimes i_4 = 1 \otimes 0 \otimes 0 \otimes 1 = 0$$

 $(S_1, S_2, S_3) = (0, 1, 0) - 2$ позиция, ошибка в символе r_2

Исходное сообщение: 1101001

3. Выполнение задания 2

Рис. 1.2: Схема декодирования кода Хэмминга

$N_{\overline{0}}$	r_1	r_2	i_1	r ₃	i_2	i_3	i_4	r_4	i ₅	i_6	i ₇	i ₈	i ₉	i_{10}	i_{11}
39	0	1	0	0	0	1	1	0	1	1	0	0	0	1	1

Вычисляем значение синдрома:

$$S_1 = r_1 \otimes i_1 \otimes i_2 \otimes i_4 \otimes i_5 \otimes i_7 \otimes i_9 \otimes i_{11} = 0 \otimes 0 \otimes 0 \otimes 1 \otimes 1 \otimes 0 \otimes 0 \otimes 1 = 1$$

$$S_2 = r_2 \otimes i_1 \otimes i_3 \otimes i_4 \otimes i_6 \otimes i_7 \otimes i_{10} \otimes i_{11} = 1 \otimes 0 \otimes 1 \otimes 1 \otimes 1 \otimes 0 \otimes 1 \otimes 1 = 0$$

$$S_3 = r_3 \otimes i_2 \otimes i_3 \otimes i_4 \otimes i_8 \otimes i_9 \otimes i_{10} \otimes i_{11} = 0 \otimes 0 \otimes 1 \otimes 1 \otimes 0 \otimes 0 \otimes 1 \otimes 1 = 0$$

$$S_4 = r_4 \otimes i_5 \otimes i_6 \otimes i_7 \otimes i_8 \otimes i_9 \otimes i_{10} \otimes i_{11} = 0 \otimes 1 \otimes 1 \otimes 0 \otimes 0 \otimes 0 \otimes 1 \otimes 1 = 0$$

 $(S_1,\ S_2,\ S_3,\ S_4)=(1,\ 0,\ 0,\ 0)$ — ошибка в 1 символе.

Исходное сообщение: 110001101100011

4. Выполнение задания 3

Вычислить для числа 720 минимальное число проверочных разрядов и коэфициент избыточности.

По формуле: $2^r \ge 720 + r + 1$

r = 9: 512 < 720 + 9 + 1 — недостаточно;

r = 10: 1024 > 720 + 10 + 1 — достаточно.

Количесво проверочных разрядов — r=10

Общее колиичество бит: n = r + i = 10 + 720 = 730

Коэфициент избыточности: $k = \frac{r}{n} = \frac{11}{730} \approx 0.0137$

5. Выполнение задания 4

Была написана программа на языке программирования Python, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдаёт правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Исходный код программы размещен в личном удаленном репозитории. Её исходный код можно найти по ссылке: https://github.com/e1turin/itmo-informatics/blob/main/lab-2/script.py.

6. Вывод

Научился работать с кодом Хэмминга, находить ошибки в сообщении и исправлять их. Узнал, как найти минимальное количество проверочных разрядов и коэффициент избыточности. Написал программу, реализующую код Хэмминга.

Литература

- [1] Код Хэмминга. Пример работы алгоритма. URL: https://habr.com/ru/post/140611/;
- [2] Избыточное кодирование, код Хэмминга. URL: https://neerc.ifmo.ru/wiki/index.php?title=%D0%98%D0%B7%D0%B1%D1%8B%D1%82%D0%BE%D1%87%D0%BD%D0%BE%D0%B5_%D0%BA%D0%BE%D0%B4%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B5,_%D0%BA%D0%BE%D0%B4_%D0%A5%D1%8D%D0%BC%D0%BC%D0%BC%D0%BC%D0%B8%D0%BB%D0%BB%D0%B0.