Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Definición de sucesión
- * Progresión aritmética
- * Progresión geométrica
- * Sumatorias

Indique el número que falta en cada una de las siguientes listas de términos:

- 0, 1, 1, 2, 3, 5, 8, 13, ?²
- 3, 7, 11, 15, 19,?
 2, 6, 18, 54, 162,?
 486
- 1, 2, 6, 42, 1806, ? 1806 × 1807

Indique el número que falta en cada una de las siguientes listas de términos:

- 0, 1, 1, 2, 3, 5, 8, 13, **21**
- 3, 7, 11, 15, 19, **23**
- 2, 6, 18, 54, 162, **486**
- 1, 2, 6, 42, 1806, **3263442**

Indique el número que falta en cada una de las siguientes listas de términos:

- 0, 1, 1, 2, 3, 5, 8, 13, **21**. 8+13=21
- 3, 7, 11, 15, 19, **23**. 19+4=23
- 2, 6, 18, 54, 162, **486**. 162 · 3=486
- 1, 2, 6, 42, 1806, **3263442**. 1806 · 1807 = 3263442

- 0, 1, 1, 2, 3, 5, 8, 13, 21. $a_n = ?$
- 3, 7, 11, 15, 19, 23
- 2, 6, 18, 54, 162, 486
- 1, 2, 6, 42, 1806, 3263442

- 0, 1, 1, 2, 3, 5, 8, 13, 21. $a_n = a_{n-1} + a_{n-2}$, donde $a_1 = 0$ y $a_2 = 1$
- 3, 7, 11, 15, 19, 23
- 2, 6, 18, 54, 162, 486
- 1, 2, 6, 42, 1806, 3263442

- 0, 1, 1, 2, 3, 5, 8, 13, 21. $a_n = a_{n-1} + a_{n-2}$, donde $a_1 = 0$ y $a_2 = 1$
- 3, 7, 11, 15, 19, 23. $a_n = a_{n-1} + 4$, donde $a_1 = 3$
- 2, 6, 18, 54, 162, 486.
- 1, 2, 6, 42, 1806, 3263442.

- 0, 1, 1, 2, 3, 5, 8, 13, 21. $a_n = a_{n-1} + a_{n-2}$, donde $a_1 = 0$ y $a_2 = 1$
- 3, 7, 11, 15, 19, 23. $a_n = a_{n-1} + 4$, donde $a_1 = 3$
- 2, 6, 18, 54, 162, 486. $a_n = a_{n-1} \cdot 3$, donde $a_1 = 2$
- 1, 2, 6, 42, 1806, 3263442.

- 0, 1, 1, 2, 3, 5, 8, 13, 21. $a_n = a_{n-1} + a_{n-2}$, donde $a_1 = 0$ y $a_2 = 1$
- 3, 7, 11, 15, 19, 23. $a_n = a_{n-1} + 4$, donde $a_1 = 3$
- 2, 6, 18, 54, 162, 486. $a_n = a_{n-1} \cdot 3$, donde $a_1 = 2$
- 1, 2, 6, 42, 1806, 3263442. $a_n = a_{n-1} \cdot (a_{n-1} + 1)$, donde $a_1 = 1$

Las siguientes son sucesiones:

- $\{a_n=a_{n-1}+a_{n-2}, donde a_1=0, a_2=1\}$
- $\{a_n = a_{n-1} + 4, \text{ donde } a_1 = 3\}$
- $\{a_n = a_{n-1} \cdot 3, \text{ donde } a_1 = 2\}$
- $\{a_n = a_{n-1} \cdot (a_{n-1} + 1), donde a_1 = 1\}$

Las siguientes son sucesiones:

- $\{a_n=a_{n-1}+a_{n-2}, donde\ a_1=0, a_2=1\}$ Lista de elementos: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
- {a_n=a_{n-1}+4, donde a₁=3}
 Lista de elementos 3, 7, 11, 15, 19, 23, ...
- {a_n=a_{n-1}·3, donde a₁=2}
 Lista de elementos: 2, 6, 18, 54, 162, 486, ...
- $\{a_n=a_{n-1}\cdot(a_{n-1}+1), donde\ a_1=1\}$ Lista de elementos: 1, 2, 6, 42, 1806, 3263442,

. . .

Indique la sucesión para cada una de las siguientes listas de elementos:

- \rightarrow $\frac{5}{3}$ $\frac{8}{3}$ $\frac{11}{11}$ $\frac{14}{3}$ $\frac{17}{3}$ $\frac{9}{3}$ $\frac{1}{3}$ $\frac{1}{3$
 - 2, -2, 2, -2, 2 $Q_{n} = (-1)Q_{n-1}$ $Q_{1} = 2$
 - 1, 2, 2, 4, 8, 32, 256 $Q_{n-1}(q_{n-1})(q_{n-2}) Q_{1-1} Q_{2-2}$ $Q_{3-1}(q_{n-1})(q_{n-2}) Q_{1-1} Q_{2-2}$

Indique la sucesión para cada una de las siguientes listas de elementos:

- 5, 8, 11, 14, 17. $\{a_n = a_{n-1} + 3, donde a_1 = 5\}$
- 2, -2, 2, -2, 2. $\{a_n = a_{n-1} \cdot (-1), donde a_1 = 2\}$
- 1, 2, 2, 4, 8, 32, 256. $\{a_n=a_{n-1} \cdot a_{n-2}, donde a_1=1, a_2=2\}$

Muestre la lista de elementos de las siguientes sucesiones dada por a_1 , a_2 , a_3 , a_4 a_4

•
$$\{a_n = 1/n\}$$
 $\{\frac{1}{4}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\}$

•
$$\{a_n = 3 \cdot 2^n\} \{6, 12, 24, 48\}$$

•
$$\{a_n = -1 + 4 \cdot n\} \{3, 7, 11, 15\}$$

Muestre la lista de elementos de las siguientes sucesiones dada por a_1 , a_2 , a_3 , a_4

- $\{a_n=1/n\}$. 1, 1/2, 1/3, 1/4, ...
- $\{a_n=3 \cdot 2^n\}$. 6, 12, 24, 48, ...
- $\{a_n = -1 + 4 \cdot n\}$. 3, 7, 11, 15, ...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 6, 18, 54, 162, 486,...

Considere la sucesión $\{a_n = 2 \cdot 3^n\}$ cuya lista de términos es 6, 18, 54, 162, 486,...

$$a_1 = 6$$
 $a_2 = 18$
 $a_3 = 54$
 $a_4 = 162$

 $a_5 = 486$

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 6, 18, 54, 162, 486,...

$$a_1=6$$
 $a_2=18$
 $a_3=54$
 $a_4=162$
 $a_5=486$

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 2, 6, 18, 54, 162, ...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 2, 6, 18, 54, 162, ...

$$a_0 = 2$$

$$a_1 = 6$$

$$a_2 = 18$$

$$a_3 = 54$$

$$a_4 = 162$$

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 2, 6, 18, 54, 162, ...

$$a_0=2$$

$$a_1 = 6$$

$$a_2 = 18$$

$$a_3 = 54$$

$$a_4 = 162$$

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 18, 54, 162, 486, ...

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 18, 54, 162, 486, ...

$$a_2 = 18$$

$$a_3 = 54$$

$$a_4 = 162$$

$$a_5 = 486$$

Considere la sucesión $\{a_n=2\cdot 3^n\}$ cuya lista de términos es 18, 54, 162, 486, ...

$$a_2=18$$
 $a_3=54$
 $a_4=162$

 $a_5 = 486$

Definición de sucesión

Una sucesión $\{a_n\}$ es una función de un subconjunto de los enteros a los términos de $\{a_n\}$

Indique el elemento que sigue en cada lista:

- 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ?65
- -1, 4, 9, 14, 19, 24, ? 29
- 4, 2, 0, -2, -4, -6, -8, ?-10

Indique el elemento que sigue en cada lista:

- 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 59+6=65
- \bullet -1, 4, 9, 14, 19, 24, 24+5=29
- 4, 2, 0, -2, -4, -6, -8, -8+(-2)=-10

$$Q_{n} = Q_{n-1} + 6, Q_{o-5}$$

5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ...
11-5=6
17-11=6
23-17=6
29-23=6

```
• 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ...

11-5=6

17-11=6

23-17=6

29-23=6
```

• 5, 5+6, 5+6+6, 5+6+6+6, 5+6+6+6, ...

```
5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ...
11-5=6
17-11=6
23-17=6
29-23=6
5, 5+6, 5+6+6, 5+6+6+6, 5+6+6+6, ...
```

• 5+0.6, 5+1.6, 5+2.6, 5+3.6, 5+4.6, ...

```
• 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, ...

11-5=6

17-11=6

23-17=6

29-23=6
```

- 5, 5+6, 5+6+6, 5+6+6+6, 5+6+6+6, ...
- 5+0.6, 5+1.6, 5+2.6, 5+3.6, 5+4.6, ...
- $a_n = 5 + n \cdot 6$

Progresión aritmética

Es una sucesión de la forma

$$t, t+d, t+2d, t+3d, t+4d, ...$$

donde el **término inicial t** y la **dif<u>erencia</u>** d son números reales

Progresión aritmética

Es una sucesión de la forma

$$t, t+d, t+2d, t+3d, t+4d, ...$$

donde el **término inicial t** y la **diferencia** d son números reales

· La progresión aritmética se puede expresar como

$$\{a_n = t + n \cdot d\}$$

- -1, 4, 9, 14, 19, 24, ... $\{a_n = -1 + n \cdot 5\}$
- 4, 7, 10, 13, 16, 20, 23, 26, no es progresión aritmética
- 4, 2, 0, -2, -4, -6, -8, ...
- 3, 6, 12, 24, 48, ...

- -1, 4, 9, 14, 19, 24, ... $\{a_n = -1 + n \cdot 5\}$
- 4, 7, 10, 13, 16, 20, 23, 26, no es progresión aritmética
- 4, 2, 0, -2, -4, -6, -8, $\{a_n = 4 + n \cdot (-2)\}$
- 3, 6, 12, 24, 48, no es progresión aritmética

- 2, 4, 6, 8, 10, 12, $\{a_n=2+n\cdot 2\}$
- 2, 4, 8, 16, 32, 64, ...no es progresión aritmética
- 3, 1, -1, -3, -5, -7, ...
- 1/2, 3/2, 5/2, 5/1, 9/2, 11/2

- 2, 4, 6, 8, 10, 12, $\{a_n=2+n\cdot 2\}$
- 2, 4, 8, 16, 32, 64, ...no es progresión aritmética
- 3, 1, -1, -3, -5, -7, ... $\{a_n = 3 + n \cdot (-2)\}$
- 1/2, 3/2, 5/2, 5/1, 9/2, 11/2.no es progresión aritmética

Indique el elemento que sigue en cada lista:

4, 8, 16, 32, 64, ? | 28
10, 50, 250, 1250, 6250, ? 5×6250

Indique el elemento que sigue en cada lista:

- 4, 8, 16, 32, 64, 64*2=128
- 10, 50, 250, 1250, 6250, 6250*5=31250

4, 8, 16, 32, 64, ...

```
4, 8, 16, 32, 64, ...
8/4=2
16/8=2
32/16=2
64/32=2
4, 4 · 2, 4 · 2 · 2, 4 · 2 · 2 · 2, 4 · 2 · 2 · 2 · 2
```

```
4, 8, 16, 32, 64, ...
8/4=2
16/8=2
32/16=2
64/32=2
4, 4 · 2, 4 · 2 · 2, 4 · 2 · 2 · 2, 4 · 2 · 2 · 2 · 2
```

• $4 \cdot 2^0$, $4 \cdot 2^1$, $4 \cdot 2^2$, $4 \cdot 2^3$, $4 \cdot 2^4$

```
• 4, 8, 16, 32, 64, ...
      8/4 = 2
       16/8 = 2
       32/16=2
       64/32=2

    4, 4 · 2, 4 · 2 · 2, 4 · 2 · 2 · 2, 4 · 2 · 2 · 2 · 2

• 4 \cdot 2^0, 4 \cdot 2^1, 4 \cdot 2^2, 4 \cdot 2^3, 4 \cdot 2^4
• \{a_n = 4 \cdot 2^n\}
```

Progresión geométrica

Es una sucesión de la forma

$$(t)$$
 $t \cdot r^2$, $t \cdot r^3$, $t \cdot r^4$, ...

donde el **término inicial t** y la **razón r** son números reales

Progresión geométrica

Es una sucesión de la forma

t,
$$t \cdot r$$
, $t \cdot r^2$, $t \cdot r^3$, $t \cdot r^4$, ...

donde el **término inicial t** y la **razón r** son números reales

La progresión geométrica se puede expresar como

$$\{a_n = t \cdot r^n\}$$

Indique cuáles son progresiones geométricas y en tal caso exprésalas en la forma {a_n = t·rⁿ}

- 10, 50, 250, 1250, 6250, ... $\{a_n = 10 \cdot 5^n\}$
- 3, 6, 12, 25, 50, 100, 200, ...no es progresión geométrica
- 1, 6, 8, 12, 25, ...
- 2, 2/3, 2/9, 2/27, 2/81, ...

- 10, 50, 250, 1250, 6250, ... $\{a_n = 10 \cdot 5^n\}$
- 3, 6, 12, 25, 50, 100, 200, ...no es progresión geométrica
- 1, 6, 8, 12, 25, no es progresión geométrica
- 2, 2/3, 2/9, 2/27, 2/81, ... $\{a_n = 2 \cdot (1/3)^n\}$

•
$$5, 10, 20, 40, \dots$$

- 5, 10, 20, 40, $\{a_n = 5 \cdot 2^n\}$
- -4, -2, 0, 2, 4, 6, no es progresión geométrica
- 3, -3, 3, -3, ...
- 1/2, 1/6, 1/12, 1/18, ...

- 5, 10, 20, 40, $\{a_n = 5 \cdot 2^n\}$
- -4, -2, 0, 2, 4, 6, no es progresión geométrica
- 3, -3, 3, -3, $\{a_n = 3 \cdot (-1)^n\}$
- 1/2, 1/6, 1/12, 1/18, no es progresión geométrica

- Dadas las siguientes sucesiones indique cuáles son progresiones aritméticas y cuáles progresiones geométricas
- Exprese las progresiones aritméticas en la forma $\{a_n=t+n\cdot d\}$ y las geométricas en la forma $\{a_n=t\cdot r^n\}$

Sucesión -1915	Progresió n aritmétic a	Progresió n geométri ca	No es ni progresión aritmética ni geométrica
-3, -7, -11, -15, -19,	Qn = -3+n(-4)		
-2, -7/3, -8/3, -3, -10/3,	Qn=-2+n(-3)		
3, 12, 48, 192, 768,		(On=3x4n)	
	•		

- Dadas las siguientes sucesiones indique cuáles son progresiones aritméticas y cuáles progresiones geométricas
- Exprese las progresiones aritméticas en la forma $\{a_n=t+n\cdot d\}$ y las geométricas en la forma $\{a_n=t\cdot r^n\}$

Sucesión	Progresión aritmética	Progresió n geométric a	No es ni progresión aritmética ni geométrica
-3, -7, -11, -15, -19,	$\{a_n = -3 + n \cdot (-4)\}$		
-2, -7/3, -8/3, -3, -10/3,	$\{a_n = -2 + n \cdot (-1/3)\}$		
3, 12, 48, 192, 768,		$\{a_n=3\cdot 4^n\}$	

Sumatorias

Carl Friedrich Gauss

- Contribuyó a la teoría de números, estadística, astronomía y óptica
- Encontró la fórmula para la sumatoria de 1 a n en una asignación de clase de primaria
- Inventó la aritmética modular

1777- 1855

Calcular la sumatoria

Calcular la sumatoria

$$1+2+3+4+5+...+10$$
 $i=1$

$$i = 1 + 2 + 3 + \dots + 98 + 99 + 100$$
 $i = 1$

Calcular la sumatoria
$$1+2+3+4+5+...+10 = i$$

donde la variable i se conoce como el **índice** de la sumatoria y toma los valores **enteros** entre el límite inferior y superior

Calcular la sumatoria
$$1+2+3+4+5+...+10 = 5050$$

a)
$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55$$

b)
$$\sum_{i=1}^{3} \left(\frac{1}{i}\right) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{1}{83333}$$

$$= 0$$

$$= 0$$

c)
$$\sum_{i=4}^{8} (-1)^{i} = (-1)^{i} + (-1)^{s} + (-1)^{i} + (-1)^{t} + (-1)^$$

a)
$$\sum_{i=1}^{5} i = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

b)
$$\sum_{i=1}^{3} \left(\frac{1}{i}\right) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$$

c)
$$\sum_{i=4}^{8} (-1)^{i}(-1)^{4} + (-1)^{5} + (-1)^{6} + (-1)^{7} + (-1)^{8} = 1$$

a)
$$\sum_{k=1}^{4} 1 = 1+1+1=4$$

b)
$$\sum_{k=0}^{3} 2^{k} = 2^{0} + 2^{1} + 2^{2} + 2^{2} = 1 + 2 + 4 + 8 = 15$$

c)
$$\sum_{j=5}^{9} (j-2) = (5-2) + (6-2) + (7-2) + (8-2) + (9-2)$$
$$3 + 4 + 5 + 6 + 7 = 25$$

d)
$$\sum_{k=2}^{5} 2 \cdot k \qquad 2(2) + 2(3) + 2(4) + 2(5)$$
$$4 + 6 + 8 + 10 - 28$$

a)
$$\sum_{k=1}^{4} 1 + 1 + 1 + 1 = 4$$

b)
$$\sum_{k=0}^{3} 2^{\frac{k}{2}} 2^{0} + 2^{1} + 2^{2} + 2^{3} = 15$$

c)
$$\sum_{j=5}^{9} (j-2)(5-2) + (6-2) + (7-2) + (8-2) + (9-2) = 25$$

d)
$$\sum_{k=2}^{3} 2 = k2 \cdot 2 + 2 \cdot 3 + 2 \cdot 4 + 2 \cdot 5 = 28$$

Forma cerrada

La forma cerrada de una sumatoria permite conocer el valor de la suma de forma directa

Forma cerrada

La forma cerrada de una sumatoria permite conocer el valor de la suma de forma directa

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{100} k = \frac{100(101)}{2} = 5050$$

$$\sum_{k=1}^{100} k = \frac{100(101)}{2} = 5050$$

Forma cerrada

La forma cerrada de una sumatoria permite conocer el valor de la suma de forma directa

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$1+2+3+4+5+...+10 = k = ?$$

Forma cerrada

La forma cerrada de una sumatoria permite conocer el valor de la suma de forma directa

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$1+2+3+4+5+...+10 = k = \frac{100 \cdot 101}{2} = 5050$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} c = c \cdot n$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

$$\sum_{k=1}^{100} k_1 = \frac{100(101)(501)}{6} = 338350$$

$$\sum_{k=0}^{n} ar^{k} = \frac{ar^{n+1} - a}{r - 1}, \text{ si } r \neq 1$$

$$\sum_{k=0}^{n} ar^{k} = (n+1)a, \text{ si } r = 1$$

a)
$$\sum_{j=0}^{(8)} (5)^{j} = \frac{3(5)^{9} - 3}{5 - 1} = \frac{3(5)^{9} - 1}{9} = 1969893$$
 $\sum_{j=0}^{n} (7)^{2j} = \frac{3(7)^{2j} - 2}{9} = \frac{3}{120}$

$$\sum_{i=0}^{n} \alpha r^{i} = \frac{\alpha r^{n+2} - \alpha}{r-1}$$

b)
$$\sum_{i=1}^{50} i^2 = \frac{50(51)(101)}{6} = \frac{42925}{6}$$

$$\sum_{i=1}^{k-1} k_{i} = U(U+1)(SU+1)$$

a)
$$\sum_{j=0}^{8} 3 \cdot (5)^{j} = \frac{3 \cdot 5^{9} - 3}{5 - 1} = 1464843$$

b)
$$\sum_{i=1}^{50} i^2 = \frac{50(51)(101)}{6} = 42925$$

a)
$$\sum_{j=0}^{8} 3 \cdot (5)^{j} = \frac{3 \cdot 5^{9} - 3}{5 - 1} = 1464843$$

b)
$$\sum_{i=1}^{50} i^2 = \frac{50(51)(101)}{6} = 42925$$

c)
$$\sum_{k=1}^{6} k^3 = \frac{25(36)}{4} = 225$$

d)
$$\sum_{j=1}^{5} (j+j^{2}) = \sum_{j=1}^{5} j + \sum_{j=2}^{5} j^{2} = \frac{5(6)}{2} + \frac{5(11)(6)}{8} \sum_{j=2}^{6} c = c \times 6$$

$$100$$

$$100$$

e)
$$\sum_{i=1}^{100} 3^{-300}$$

$$\sum_{i=1}^{0} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{i=1}^{0} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} c = c \times n$$

$$\sum_{i=1}^{n} c_{i} = c \times n$$

$$\sum_{i=1}^{n} c_{i} = c \times n$$

a)
$$\sum_{j=0}^{8} 3 \cdot (5)^{j} = \frac{3 \cdot 5^{9} - 3}{5 - 1} = 1464843$$

b)
$$\sum_{i=1}^{50} i^2 = \frac{50(51)(101)}{6} = 42925$$

c)
$$\sum_{k=1}^{5} k^3 = \frac{5^2(6)^2}{4} = 225$$

d)
$$\sum_{j=1}^{5} (j+j^2) = \sum_{j=1}^{5} j + \sum_{j=1}^{5} j^2 = \frac{5 \cdot 6}{2} + \frac{5 \cdot 6 \cdot 11}{6} = 70$$

e)
$$\sum_{i=1}^{100} 3 = 3.100 = 300$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=0}^{8} 3 \cdot (5)^{j} = \sum_{j=0}^{8} 3 \times 5^{j} - 3 \times 5^{0} = \frac{3 \times 5^{0} - 3}{4} = \frac{3(5^{0} - 1)}{4} = 1464843$$

$$\sum_{k=0}^{5} k^{3} = \sum_{k=1}^{5} k^{3} - \sum_{k=1}^{5} k^{3} = \frac{5^{2}(6)^{2}}{4} - \frac{2^{2}(3)^{2}}{4} = \frac{25 \times 36}{4} - \frac{4 \times 9}{4} = \frac{25 \times 36 - 4 \times 9}{4}$$

$$= 216$$

$$\sum_{j=0}^{6} ar^{j} = \frac{ar^{n+1} - 9}{r-1}$$

$$\sum_{i=1}^{n} K_{3} = \sqrt[n]{(n+1)^{2}}$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=1}^{8} 3 \cdot (5)^{j} = \sum_{j=0}^{8} 3 \cdot (5)^{j} - 3 \cdot (5)^{0} = 1464840$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=1}^{8} 3 \cdot (5)^{j} = \sum_{j=0}^{8} 3 \cdot (5)^{j} - 3 \cdot (5)^{0} = 1464840$$

c)
$$\sum_{k=3}^{5} k^3$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=1}^{8} 3 \cdot (5)^{j} = \sum_{j=0}^{8} 3 \cdot (5)^{j} - 3 \cdot (5)^{0} = 1464840$$

c)
$$\sum_{k=3}^{5} k^3 = \sum_{k=1}^{5} k^3 - 1^3 - 2^3 = 225 - 1 - 8 = 216$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=1}^{8} 3 \cdot (5)^{j} = \sum_{j=0}^{8} 3 \cdot (5)^{j} - 3 \cdot (5)^{0} = 1464840$$

c)
$$\sum_{k=3}^{5} k^3 = \sum_{k=1}^{5} k^3 - 1^3 - 2^3 = 225 - 1 - 8 = 216$$

d)
$$\sum_{k=3}^{10} 7 \cdot (-3)^{k} = \sum_{k=0}^{10} \frac{10}{4(-3)^{k}} = \sum_{k=0}^{2} \frac{10}{4(-3)^{k}} = \frac{2}{7} \times (-3)^{k} = \frac{7}{3} \times (-3)^{k} - \frac{7}{3} \times (-3)^{k}$$

a)
$$\sum_{i=2}^{50} i^2 = \sum_{i=1}^{50} i^2 - 1^2 = 42925 - 1 = 42924$$

b)
$$\sum_{j=1}^{8} 3 \cdot (5)^{j} = \sum_{j=0}^{8} 3 \cdot (5)^{j} - 3 \cdot (5)^{0} = 1464840$$

c)
$$\sum_{k=3}^{5} k^3 = \sum_{k=1}^{5} k^3 - 1^3 - 2^3 = 225 - 1 - 8 = 216$$

d)
$$\sum_{k=3}^{10} 7 \cdot (-3)^k = 310009 - (49) = 309960$$

a)
$$\sum_{k=2}^{10} k = (-2) + (-1) + (0) + \sum_{k=1}^{10} k = -3 + \frac{10 \cdot 11}{2} = \underline{52}$$

a)
$$\sum_{k=2}^{10} k = (-2) + (-1) + (0) + \sum_{k=1}^{10} k = -3 + \frac{10 \cdot 11}{2} = 52$$

b) $\sum_{k=3}^{20} k^2$

$$\begin{cases} k = -3 - 2 - 1 & 0 \\ 1 = 2 - 3 & 0 \\ 1 = 2 - 3 & 0 \end{cases}$$

$$\begin{cases} 1 = 2 - 3 + \frac{10 \cdot 11}{2} = 52 \\ 1 = 2 - 3 + \frac{10 \cdot 11}{2} = 52$$

a)
$$\sum_{k=2}^{10} k = (-2) + (-1) + (0) + \sum_{k=1}^{10} k = -3 + \frac{10 \cdot 11}{2} = 52$$

b)
$$\sum_{k=3}^{20} k^2 = (-3)^2 + (-2)^2 + (-1)^2 + (0)^2 + \sum_{k=1}^{20} k^2 = 2884$$

a)
$$\sum_{k=2}^{10} k = (-2) + (-1) + (0) + \sum_{k=1}^{10} k = -3 + \frac{10 \cdot 11}{2} = 52$$

b)
$$\sum_{k=3}^{20} k^2 = (-3)^2 + (-2)^2 + (-1)^2 + (0)^2 + \sum_{k=1}^{20} k^2 = 2884$$

a)
$$\sum_{k=2}^{10} k = (-2) + (-1) + (0) + \sum_{k=1}^{10} k = -3 + \frac{10 \cdot 11}{2} = 52$$

b)
$$\sum_{k=3}^{20} k^2 = (-3)^2 + (-2)^2 + (-1)^2 + (0)^2 + \sum_{k=1}^{20} k^2 = 2884$$

c)
$$\sum_{k=2}^{15} k^3 = (-2)^3 + (-1)^3 + (0)^3 + \sum_{k=1}^{15} k^3 = 14391$$

Calcule las siguientes sumatorias.

Muestre el procedimiento realizado

•
$$\sum_{k=3}^{16} 5 \cdot (-2)^k$$

•
$$\sum_{k=-3}^{15} k^2$$

•
$$\sum_{k=3}^{16} 5 \cdot (-2)^k$$

• $\sum_{k=3}^{16} 5 \cdot (-2)^k$

• $\sum_{k=3}^{16}$

$$\sum_{i=-5}^{100} (2i+2^{i}) \qquad (1) \qquad 3 = 10$$

$$\sum_{i=10}^{300} (3i^{2}-70) \qquad (2) \qquad 3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 10$$

$$3 = 1$$

$$\frac{300}{2!} - 3i^{2} = \frac{300}{2!} - \frac{300}{2!} = \frac{300}{2!} + \frac{300}{2!} + \frac{300}{2!} - \frac{300}{2!} + \frac{300}$$