Statistics for Data Science -1

Lecture 5.5: Combinations

Usha Mohan

Indian Institute of Technology Madras

Learning objectives

- 1. Understand basic principles of counting.
- 2. Concept of factorials.
- Understand differences between counting with order (permutation) and counting without regard to order (combination).
- 4. Use permutations and combinations to answer real life applications.

Combinations

Applications: Permutations or combinations

► Example: How many ways can we select two students from a group of three students?

- ► Example: How many ways can we select two students from a group of three students?
 - Let A, B, and C be the three students.
 - ▶ We can chose AB, AC, or BC.
 - Note, when we talked of permutations, the order was important, i.e., AB was different from BA.
 - In this case, they are the same- order is not important.

- Example: How many ways can we select two students from a group of three students?
 - Let A, B, and C be the three students.
 - ▶ We can chose AB, AC, or BC.
 - Note, when we talked of permutations, the order was important, i.e., AB was different from BA.
 - ▶ In this case, they are the same- order is not important.
- ► Each selection is called a combination of 3 different objects taken 2 at a time.

- Example: How many ways can we select two students from a group of three students?
 - Let A, B, and C be the three students.
 - We can chose AB, AC, or BC.
 - Note, when we talked of permutations, the order was important, i.e., AB was different from BA.
 - ▶ In this case, they are the same- order is not important.
- ► Each selection is called a combination of 3 different objects taken 2 at a time.
- ▶ In this case, the concern is only which of the 2 objects are chosen and not in the order in which they are chosen.

First place	Second place
А	В
А	С
В	С

Consider A, B, C- Possible combinations- taking two at a time

First place	Second place
А	В
А	С
В	С

▶ Note each combination gives rise to 2! arrangements.

First place	Second place
А	В
А	С
В	С

- ▶ Note each combination gives rise to 2! arrangements.
- ▶ All combinations give $3 \times 2 = 6$ arrangements.

First place	Second place
Α	В
А	С
В	С

- ▶ Note each combination gives rise to 2! arrangements.
- ▶ All combinations give $3 \times 2 = 6$ arrangements.
- Number of combinations \times 2! =

First place	Second place
А	В
А	С
В	С

- ▶ Note each combination gives rise to 2! arrangements.
- ▶ All combinations give $3 \times 2 = 6$ arrangements.
- Number of combinations \times 2! = Number of permutations

▶ In general, each combination of *r* objects from *n* objects can give rise to *r*! arrangements.

- ▶ In general, each combination of *r* objects from *n* objects can give rise to *r*! arrangements.
- ▶ The number of possible combinations of *r* objects

- ▶ In general, each combination of *r* objects from *n* objects can give rise to *r*! arrangements.
- ▶ The number of possible combinations of r objects from a collection of n distinct objects is is denoted by ${}^{n}C_{r}$ and is given by

- ▶ In general, each combination of *r* objects from *n* objects can give rise to *r*! arrangements.
- ▶ The number of possible combinations of r objects from a collection of n distinct objects is is denoted by ${}^{n}C_{r}$ and is given by

$$^{n}C_{r} =$$

- ▶ In general, each combination of *r* objects from *n* objects can give rise to *r*! arrangements.
- ▶ The number of possible combinations of r objects from a collection of n distinct objects is is denoted by ${}^{n}C_{r}$ and is given by

$${}^{n}C_{r}=\frac{n!}{r!(n-r)!}$$

- ▶ In general, each combination of r objects from n objects can give rise to r! arrangements.
- ▶ The number of possible combinations of r objects from a collection of n distinct objects is is denoted by ${}^{n}C_{r}$ and is given by

$${}^{n}C_{r}=\frac{n!}{r!(n-r)!}$$

Another common notation is $\binom{n}{r}$ which is also referred to as the binomial coefficient

- ▶ In general, each combination of r objects from n objects can give rise to r! arrangements.
- ▶ The number of possible combinations of r objects from a collection of n distinct objects is is denoted by ${}^{n}C_{r}$ and is given by

$${}^{n}C_{r}=\frac{n!}{r!(n-r)!}$$

Another common notation is $\binom{n}{r}$ which is also referred to as the binomial coefficient

1.
$${}^{n}C_{r} =$$

1.
$${}^{n}C_{r} = \frac{n!}{r!(n-r)!} =$$

1.
$${}^{n}C_{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!r!} =$$

1.
$${}^{n}C_{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!r!} = {}^{n}C_{(n-r)}$$

1.
$${}^{n}C_{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!r!} = {}^{n}C_{(n-r)}$$

In other words, selecting r objects from n objects is the same as rejecting $n-r$ objects from n objects.

- 1. ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!r!} = {}^{n}C_{(n-r)}$ In other words, selecting r objects from n objects is the same as rejecting n-r objects from n objects.
- 2. ${}^{n}C_{n}=1$ and ${}^{n}C_{0}=1$ for all values of n

- 1. ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!r!} = {}^{n}C_{(n-r)}$ In other words, selecting r objects from n objects is the same as rejecting n-r objects from n objects.
- 2. ${}^{n}C_{n} = 1$ and ${}^{n}C_{0} = 1$ for all values of n
- 3. ${}^{n}C_{r} = {}^{n-1}C_{r-1} + {}^{n-1}C_{r}; 1 \le r \le n$

▶ In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 7 and 5 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions ?

- ▶ In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 7 and 5 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
- ► Solution: ${}^7C_3{}^5C_5$

- ▶ In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 7 and 5 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions ?
- ► Solution: ${}^{7}C_{3}{}^{5}C_{5} + {}^{7}C_{4}{}^{5}C_{4}$

- ▶ In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 7 and 5 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions ?
- ► Solution: ${}^{7}C_{3}{}^{5}C_{5} + {}^{7}C_{4}{}^{5}C_{4} + {}^{7}C_{5}{}^{5}C_{3}$

- ▶ In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 7 and 5 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions ?
- Solution: ${}^{7}C_{3}{}^{5}C_{5} + {}^{7}C_{4}{}^{5}C_{4} + {}^{7}C_{5}{}^{5}C_{3} = 35 + 175 + 210 = 420$

Example: Game of cards

Lets consider the case of choosing four cards from a deck of 52 cards.

Example: Game of cards contd.

1. Total number of ways of choosing four cards from 52 cards =

Example: Game of cards contd.

1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = \frac{52!}{4!48!} =$

Example: Game of cards contd.

1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = \frac{52!}{4148!} = 2,70,725$

- 1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = \frac{52!}{4!48!} = 2,70,725$
- 2. All four cards are of the same suit

- 1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = \frac{52!}{4!48!} = 2,70,725$
- 2. All four cards are of the same suit ${}^4C_1 \times {}^{13}C_4 =$

- 1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = {}^{52!}_{41481} = 2,70,725$
- 2. All four cards are of the same suit ${}^4C_1 \times {}^{13}C_4 = 4 \times \frac{13!}{4!0!} =$

- 1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = \frac{52!}{4!48!} = 2,70,725$
- 2. All four cards are of the same suit ${}^{4}C_{1} \times {}^{13}C_{4} = 4 \times \frac{13!}{4!0!} = 2860$

- 1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = {}^{52!}_{41481} = 2,70,725$
- 2. All four cards are of the same suit ${}^4C_1 \times {}^{13}C_4 = 4 \times \frac{13!}{4!0!} = 2860$
- 3. Cards are of same colour

- 1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = \frac{52!}{4!48!} = 2,70,725$
- 2. All four cards are of the same suit ${}^4C_1 \times {}^{13}C_4 = 4 \times \frac{13!}{4!0!} = 2860$
- 3. Cards are of same colour ${}^2C_1 \times {}^{26}C_4 =$

- 1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = \frac{52!}{4!48!} = 2,70,725$
- 2. All four cards are of the same suit ${}^4C_1 \times {}^{13}C_4 = 4 \times \frac{13!}{4!0!} = 2860$
- 3. Cards are of same colour ${}^{2}C_{1} \times {}^{26}C_{4} = 2 \times \frac{26!}{4!22!} =$

- 1. Total number of ways of choosing four cards from 52 cards = ${}^{52}C_4 = \frac{52!}{4!48!} = 2,70,725$
- 2. All four cards are of the same suit ${}^4C_1 \times {}^{13}C_4 = 4 \times \frac{13!}{4!0!} = 2860$
- 3. Cards are of same colour ${}^2C_1 \times {}^{26}C_4 = 2 \times \frac{26!}{4!22!} = 2,99,00$

➤ Select a cricket team of eleven from 17 players in which only 5 players can bowl. The requirement is the cricket team of 11 must include exactly 4 bowlers? How many ways can the selection be done?

- ➤ Select a cricket team of eleven from 17 players in which only 5 players can bowl. The requirement is the cricket team of 11 must include exactly 4 bowlers? How many ways can the selection be done?
- Solution:
 - Total number of players available for selection: 17 Number of bowlers: 5

- ➤ Select a cricket team of eleven from 17 players in which only 5 players can bowl. The requirement is the cricket team of 11 must include exactly 4 bowlers? How many ways can the selection be done?
- Solution:
 - Total number of players available for selection: 17
 Number of bowlers: 5
 - ▶ Need four bowlers: This selection can be done in 5C_4 ways.

- ➤ Select a cricket team of eleven from 17 players in which only 5 players can bowl. The requirement is the cricket team of 11 must include exactly 4 bowlers? How many ways can the selection be done?
- Solution:
 - Total number of players available for selection: 17
 Number of bowlers: 5
 - Need four bowlers: This selection can be done in 5C_4 ways.
 - Remaining seven players can be selected from remaining twelve players in $^{12}C_7$ ways.

- ➤ Select a cricket team of eleven from 17 players in which only 5 players can bowl. The requirement is the cricket team of 11 must include exactly 4 bowlers? How many ways can the selection be done?
- Solution:
 - Total number of players available for selection: 17 Number of bowlers: 5
 - ▶ Need four bowlers: This selection can be done in 5C_4 ways.
 - Remaining seven players can be selected from remaining twelve players in ¹²C₇ ways.
 - Total number of ways the selection can be done is ${}^5C_4 \times {}^{12}C_7 =$

- ➤ Select a cricket team of eleven from 17 players in which only 5 players can bowl. The requirement is the cricket team of 11 must include exactly 4 bowlers? How many ways can the selection be done?
- Solution:
 - Total number of players available for selection: 17 Number of bowlers: 5
 - ▶ Need four bowlers: This selection can be done in 5C_4 ways.
 - Remaining seven players can be selected from remaining twelve players in ¹²C₇ ways.
 - Total number of ways the selection can be done is ${}^5C_4 \times {}^{12}C_7 = 5 \times 792 =$

- ➤ Select a cricket team of eleven from 17 players in which only 5 players can bowl. The requirement is the cricket team of 11 must include exactly 4 bowlers? How many ways can the selection be done?
- Solution:
 - Total number of players available for selection: 17 Number of bowlers: 5
 - ▶ Need four bowlers: This selection can be done in 5C_4 ways.
 - Remaining seven players can be selected from remaining twelve players in ¹²C₇ ways.
 - Total number of ways the selection can be done is ${}^5C_4 \times {}^{12}C_7 = 5 \times 792 = 3960$ ways

► Given *n* points on a circle, how many lines can be drawn connecting these points?

- Given n points on a circle, how many lines can be drawn connecting these points?
- ightharpoonup n = 2 points, one line can be drawn connecting the points

line segment: AB

- Given n points on a circle, how many lines can be drawn connecting these points?
- ightharpoonup n = 2 points, one line can be drawn connecting the points

line segment: AB

ightharpoonup n = 3 points, three line can be drawn connecting the points

line segments: AB, AC, and BC

- Given n points on a circle, how many lines can be drawn connecting these points?
- ightharpoonup n = 2 points, one line can be drawn connecting the points

line segment: AB

ightharpoonup n = 3 points, three line can be drawn connecting the points

line segments: AB, AC, and BC

▶ In general, given n points, number of line segments that can be drawn connecting the points is ${}^n C_{2}$

Section summary

- 1. Notation and formula for selecting r objects from n objects.
- 2. Some useful combinatorial identities.