We assume the focusing is uniform and $K = B'/(B\rho) > 0$, which can be always obtained by an appropriate rotation in the x-y plane. For a uniform longitudinal field $B_z = B/(B\rho)$ with the length of the

for
$$1/\rho = 0$$
 is written as:
$$x = x_0 + \Delta x, \tag{20}$$

$$x = x_0 + \Delta x$$
, (20)
 $p_x = p_{x0} + pu_2 + B_z \left(v_2 - \frac{\Delta y}{2} \right)$, (21)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

$$p_{x} = p_{x0} + pu_{2} + B_{z} \left(v_{2} - \frac{\Delta y}{2} \right) , \qquad (21)$$

$$y = y_{0} + \Delta y , \qquad (22)$$

$$p_x = p_{x0} + pu_2 + B_z \left(v_2 - \frac{\Delta y}{2} \right) , (2)$$

$$x = x_0 + \Delta x, \qquad ($$

$$p_x = p_{x0} + pu_2 + B_z \left(v_2 - \frac{\Delta y}{2} \right), \qquad ($$

of
$$H_2$$
 for $1/\rho=0$ is written as:
$$x=x_0+\Delta x\,, \tag{}$$

for
$$1/\rho = 0$$
 is written as:
$$x = x_0 + \Delta x \,, \tag{}$$

for
$$1/\rho=0$$
 is written as:
$$x=x_0+\Delta x\,, \tag{2}$$

propriate rotation in the x-y plane. For a uniform longitudinal field
$$B_z = B/(B\rho)$$
 with the length of the section ℓ , the solution of H_2 for $1/\rho = 0$ is written as:

We assume the focusing is uniform and
$$K = B'/(B\rho) > 0$$
, which can be always obtained by an appropriate rotation in the x-y plane. For a uniform longitudinal field $B_z = B/(B\rho)$ with the length of the section ℓ , the solution of H_2 for $1/\rho = 0$ is written as:

we assume the focusing is uniform and
$$K = B/(B\rho) > 0$$
, which can be always obtained by an appropriate rotation in the x - y plane. For a uniform longitudinal field $B_z = B/(B\rho)$ with the length of the section ℓ , the solution of H_2 for $1/\rho = 0$ is written as:

$$x = x_0 + \Delta x$$
(20)

 $p_y = p_{y0} + pw_+v_1 + B_z \left(-\frac{u_1}{w_+} + \frac{\Delta x}{2}\right)$,

 $u_1 = aw_1(\cos\phi_1 - 1) + b\sin\phi_1$

 $u_2 = -aw_1\sin\phi_1 + b(\cos\phi_1 - 1),$

 $v_1 = cw_2(\cosh\phi_2 - 1) + d\sinh\phi_2$

 $v_2 = cw_2 \sinh \phi_2 + d(\cosh \phi_2 - 1),$

 $a = U \times \left(w_2 w_+ x_0 - \frac{B_z}{n^2} p_{ym} \right) ,$

 $b = \frac{w_1 U}{n} \times (w_+ p_{xm} - B_z w_2 y_0),$

 $d = U \times w_2 \left(-\frac{B_z}{n^2 w_\perp} p_{xm} + w_1 y_0 \right) ,$

 $V = \sqrt{(B_z/p)^4 + 4(K/p)^2} = w_1^2 + w_2^2$.

 $H_{2u} = -p - iw_1 u p_u - w_2 v p_v$

 $\begin{pmatrix} u \\ p_u \\ v \\ p_v \end{pmatrix} = \sqrt{U} \begin{pmatrix} \frac{w_1 + w_2}{2} & -\frac{i}{p} & -\frac{\sqrt{w_1^2 - w_2^2}}{2} & \frac{1}{p} \sqrt{\frac{w_1 - w_2}{w_1 + w_2}} \\ -\frac{ip}{4} (w_1 + w_2)^2 & \frac{w_1 + w_2}{2} & -\frac{p(w_1 - w_2)}{4} \sqrt{w_1^2 - w_2^2} & -\frac{w_1 - w_2}{2} \sqrt{\frac{w_1 - w_2}{w_1 + w_2}} \\ -\frac{\sqrt{w_1^2 - w_2^2}}{2} & \frac{1}{p} \sqrt{\frac{w_1 - w_2}{w_1 + w_2}} & \frac{w_1 + w_2}{2} & \frac{1}{p} \\ -\frac{p(w_1 - w_2)}{4} \sqrt{w_1^2 - w_2^2} & -i \frac{w_1 - w_2}{2} \sqrt{\frac{w_1 - w_2}{w_1 + w_2}} & -\frac{ip}{4} (w_1 + w_2)^2 & \frac{w_1 + w_2}{2} \end{pmatrix} \begin{pmatrix} x \\ p_x \\ y \\ p_y \end{pmatrix}$

 $z = z_0 + \left(-iup_u \frac{\partial w_1}{\partial p} - vp_v \frac{\partial w_2}{\partial p} + \Delta v\right)\ell$

 $= z_0 + \frac{U}{n} \left(i w_1^3 u_0 p_{u0} + w_2^3 v_0 p_{v0} + \Delta v \right) \ell \,,$

Note that H_{2u} is real. Thus the transformation of the longitudinal coordinate is obtained as

 $c = \frac{U}{p} \times \left(\frac{w_1 B_z}{w_\perp} x_0 + p_{ym} \right) \,,$

 $p_{xm} = p_{x0} + \frac{B_z}{2} y_0$,

 $p_{ym} = p_{y0} - \frac{B_z}{2} x_0$.

 $w_1 = \sqrt{\frac{(B_z/p)^2 + V}{2}}$,

 $\phi_1 = w_1 \ell$,

 $w_2 = \frac{K}{m_{\rm H}}$,

The subscript 0 above denotes the initial value.

in terms of a *complex* normal coordinate

using $up_u = u_0p_{u0}$ and $vp_v = v_0p_{v0}$.

The second order Hamiltonian H_2 can be rewritten to

 $w_+ = w_1 + w_2,$

 $\Delta x = \frac{u_1}{w_1} + \frac{v_1 B z}{p w_2} \,,$

 $\Delta y = \frac{u_2 B_z}{n w_1 w_+} + \frac{w_+ v_2}{w_2} \,,$

where

with

The parameters are:

we assume the focusing is uniform and
$$K = B/(B\rho) > 0$$
, which can be always obtained by an appropriate rotation in the x - y plane. For a uniform longitudinal field $B_z = B/(B\rho)$ with the length of th section ℓ , the solution of H_2 for $1/\rho = 0$ is written as: