Problem Set 4

Problem 1

$1.\forall x (P(x) \wedge R(x))$	(前提引入)
$2.P(c) \land R(c)$,任意 c	(全称实例,由1.)
3.P(c),任意 c	(化简,由2.)
$4.orall x(P(x) o (Q(x)\wedge S(x)))$	(前提引入)
$5.Q(c) \land S(c)$,任意 c	(全称假言推理,由3.4.)
6.S(c),任意 c	(化简,由5.)
7.R(c),任意 c	(化简,由2.)
$8.R(c) \land S(c)$,任意 c	(合取,由6.7.)
$9.\forall x (R(x) \wedge S(x))$	(全称引入,由8.)

Problem 2

$1.\exists x \neg P(x)$	(前提引入)
2. eg P(c)	(存在实例,由1.)
$3.\forall x (P(x) \vee Q(x))$	(前提引入)
$4.P(c) \vee Q(c)$	(全称实例,由3.)
5.orall x(eg Q(x)ee S(x))	(前提引入)
$6.\neg Q(c) \vee S(c)$	(全称实例,由5.)
$7.P(c) \vee S(x)$	(消解律,由4.6.)
8.S(c)	(析取三段论,由2.7.)
9.orall x(R(x) ightarrow eg S(x))	(前提引入)
$10. \neg R(c)$	(全称取拒式,由8.9.)
$11.\exists x \neg R(x)$	(存在引入,由10.)

Problem 3

该定理的表述为 $\forall x \forall y (P(x,y) \rightarrow Q(x,y))$ 其中P(x,y): x,y是实数, $Q(x): |x|+|y| \geq |x+y|$

使用直接证明法:

当x,y同号或x,y其中一个为0时:

 $|x + y| = |x| + |y| \le |x| + |y|$

当x,y异号时:

 $|x + y| = ||x| - |y|| \le |x| + |y|$

综上 $|x| + |y| \ge |x + y|$ 成立.

所以 $\forall x \forall y (P(x,y) \rightarrow Q(x,y))$ 为真.

Problem 4

a)

P(x): x是乌鸦.

Q(x): x是北京鸭.

R(x): x是白色的.

原题转化为:

如果 $\forall x (P(x) \to \neg R(x))$ 和 $\forall x (Q(x) \to R(x))$ 为真,则 $\forall x (Q(x) \to \neg P(x))$ 为真.

证明

$$1. \forall x (P(x) \to \neg R(x))$$
 (前提引入) $2. \forall x (\neg P(x) \lor \neg R(x))$ (德摩根律,由1.) $3. \neg P(c) \lor \neg R(c)$,任意 c (全称实例,由3.) $4. \forall x (Q(x) \to R(x))$ (前提引入) $5. \forall x (\neg Q(x) \lor R(x))$ (德摩根律,由3.) $6. \neg Q(c) \lor R(c)$,任意 c (全称实例,由5.) $7. \neg P(c) \lor \neg Q(c)$,任意 c (消解,由5.6.) $8. Q(x) \to \neg P(c)$,任意 c (德摩根律,由7.) $9. \forall x (Q(x) \to \neg P(x))$ (全称引入,由8.)

论域为人.

P(x): x喜欢步行.

Q(x): x喜欢乘汽车.

R(x): x喜欢骑自行车.

原题转化为:

如果 $\forall x(P(x) \to \neg Q(x))$, $\forall x(Q(x) \lor R(x))$ 和 $\exists x \neg R(x)$ 为真, 则 $\exists x \neg P(x)$ 为真.

证明:

(前提引入) $1.\exists x \neg R(x)$ $2.\neg R(c)$ (存在实例,由1.) (前提引入) $3. \forall x (Q(x) \lor R(x))$ $4.Q(c) \vee R(c)$ (全称实例,由3.) 5.Q(c)(析取三段论,由2.4.) $6. \forall x (P(x) \rightarrow \neg Q(x))$ (前提引入) $7.P(c) \rightarrow \neg Q(c)$ (全称实例) (取拒式,由5.7.) $8.\neg P(c)$ (存在引入,由8.) $9.\exists x \neg P(x)$

Problem 5

猜想:

$$orall xorall y(R(x)\wedge R(y)
ightarrow \sqrt{rac{x^2+y^2}{2}}\geq rac{x+y}{2}),$$
其中 $R(x):x$ 是实数.

证明:

使用直接证明法.

假设x, y都是实数.

当
$$\frac{x+y}{2} > 0$$
时候

$$\therefore (x-y)^2 = x^2 + y^2 - 2xy \ge 0$$

$$\therefore x^2 + y^2 \ge 2xy$$

$$\therefore 2x^2 + 2y^2 \ge x^2 + 2xy + y^2$$

$$\therefore \frac{x^2+y^2}{2} \geq \frac{x^2+2xy+y^2}{4}$$

$$\therefore \sqrt{\frac{x^2+y^2}{2}} \ge \frac{x+y}{2}$$

当
$$\frac{x+y}{2} \le 0$$
时候

$$\therefore \sqrt{\frac{x^2+y^2}{2}} \geq 0 \geq \frac{x+y}{2}$$

综上原式总是成立.

$$orall x orall y(R(x) \wedge R(y)
ightarrow \sqrt{rac{x^2+y^2}{2}} \geq rac{x+y}{2}$$
)成立.

Problem 6

原式可转化为:

 $P(x) \rightarrow Q(x), P(x) : x$ 是整数, Q(x) : x 的四次方的最后一位必然是0, 1, 5, 6中的一个.

证明:

使用直接证明法:

假设x是整数,不妨令x = 10a + b,其中b为一位整数,a为整数.

$$\therefore x^4 = (10a + b)^4$$

$$= (10a)^4 + 4(10a)^3b + 6(10a)^2b^2 + 4(10a)b^3 + b^4$$

$$= 10(1000a^4 + 400a^3b + 60a^2b^2 + 4ab^3) + b^4$$

易得 b^4 的个位数就是 x^4 的个位数.

 $b^4 = 0$ 或1或16或81或256或625或1296或2401或4096或6561

可看出x的四次方的最后一位必然是0,1,5,6中的一个.

$$P(x) \to Q(x)$$
成立.

Problem 7

原式可转化为:

$$orall a orall b(P(a) \wedge Q(b)
ightarrow \exists c (a < c < b \wedge P(c))) \ \wedge orall a orall b(Q(a) \wedge P(b)
ightarrow \exists c (a < c < b \wedge P(c)))$$

P(x): x是无理数, Q(x): x是有理数.

论域为实数.

证明:

使用归谬法.

假设a,b分别是无理数和有理数,c是个有理数,a < c < b,且 $c = \frac{a+b}{2}$

$$\therefore 2c - b = a$$

易知等式左边是个有理数,等式右边是个无理数,二者不可能相等,则假设不成立

:. c是无理数

$$\therefore a < \frac{a+b}{2} < b$$

 $\therefore orall a orall b (P(a) \wedge Q(b)
ightarrow \exists c (a < c < b \wedge P(c)))$ 成立

同理 $\forall a \forall b (Q(a) \land P(b) \rightarrow \exists c (a < c < b \land P(c)))$ 成立

:: 原式成立.

Problem 8

原式可转化为:

$$orall x N(x)
ightarrow
eg (n^2 + n^3 = 100)$$

N(x): x为正整数

证明:

使用直接证明法.

设数列 $\{a_n\}$ 的通项公式为 $a_n = n^3 + n^2$.

易知 $\{a_n\}$ 是个递增数列.

$$\therefore a_4 = 4^3 + 4^2 = 80, a_5 = 5^3 + 5^2 = 150$$

∴ 在4和5之间不存在另一个正整数m使得 $a_m = 100$

 $\therefore orall x N(x)
ightarrow
eg (n^2 + n^3 = 100)$ 成立

Problem 9

原式可转化为:

$$orall rQ(r)
ightarrow
eg (r^3 + r + 1 = 0)$$

Q(r): r是有理数

证明:

使用归谬法.

假设存在有理数r使得 $r^3 + r + 1 = 0$ 成立.

$$r^3 + r + 1 = 0$$

$$\therefore r_1 = \sqrt[3]{-rac{1}{2} + \sqrt{rac{1}{4} + rac{1}{27}}} + \sqrt[3]{-rac{1}{2} - \sqrt{rac{1}{4} + rac{1}{27}}}$$

$$r_2 = \omega \sqrt[3]{-rac{1}{2} + \sqrt{rac{1}{4} + rac{1}{27}}} + \omega^2 \sqrt[3]{-rac{1}{2} - \sqrt{rac{1}{4} + rac{1}{27}}}$$

$$r_2 = \omega^2 \sqrt[3]{-rac{1}{2} + \sqrt{rac{1}{4} + rac{1}{27}}} + \omega^3 \sqrt[3]{-rac{1}{2} - \sqrt{rac{1}{4} + rac{1}{27}}}$$

其中
$$\omega = \frac{-1+\sqrt{3}i}{2}$$

易知 r_1, r_2, r_3 都不是有理数.

 \therefore 与假设存在有理数r矛盾.

$$\therefore \forall r Q(r) \rightarrow \neg (r^3 + r + 1 = 0)$$
成立

Problem 10

原式转化为:

$$P(x) \to Q(x)$$
,其中 $P(x) : x$ 是 $\sqrt[3]{2}$, $Q(x) : x$ 是无理数.

论域为实数.

证明:

使用归谬法.

假设 $\sqrt[3]{2}$ 是有理数,则不妨令 $\sqrt[3]{2}=\frac{p}{q}$,其中p,q是不为零且互质的自然数.

$$\therefore 2 = \frac{p^3}{q^3}$$

$$\therefore 2q^3 = p^3$$

$$\therefore q^3 = \frac{p^3}{2}$$
是偶数

:. q是偶数

∴ p, q都是偶数, 不互质, 与题设矛盾

$$\therefore P(x) \rightarrow Q(x)$$
成立