UNIVERSIDADE FEDERAL DE PERNAMBUCO

DMAT INICIAÇÃO CIENTÍFICA

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS E CONTROLE

Primeiro relatório de projeto de pesquisa apresentado ao Programa de Iniciação Científica do Curso de Bacharelado em Matemática da Universidade Federal de Pernambuco.

Aluno: Daniel Alves de Lima

Professor orientador: Roberto de Almeida Capis-

trano Filho

Janeiro 2022

Conteúdo

1	Resumo	1
2	Apresentação	1
3	Descrição de atividades	1
4	Análise dos Resultados 4.1 Equações Lineares Não Autônomas	5 5 8
5	Trabalhos Futuros	12
Bi	ibliografia	12

1 Resumo

Os tópicos inicialmente estudados pelo aluno Daniel Alves foram uma introdução em Equações Diferenciais Ordinárias para que este pudesse obter conhecimento necessário para compreender os conceitos e aplicações no estudo de Controle. Este estudo tem por objetivo analisar o problema de determinar como e quando um estado específico pode ser atingindo por um sistema a partir da escolha de uma estratégia de controle.

2 Apresentação

Neste relatório será abordado os principais tópicos estudados em Equações Diferenciais Ordinárias para o estudo de Controle. O tema principal é Equações Lineares Não Autônomas, cujo objetivo é compreender melhor a obtenção de soluções de equações do tipo x' = A(t)x + b(t), que será estudado em controle. Veremos que as soluções dessas equações são únicas para cada condição inicial através do estudo em Espaços Métricos. Abordaremos Matriz fundamental e Resolvente, necessário para obtenção de soluções, na forma explicita, dessas equações lineares. Finalmente, faremos um estudo em Exponencial de Matrizes, onde definiremos este conceito e estabelecer propriedades que são necessárias para a resolução de problemas em Controle utilizando o Critério da Integral quando a matriz A(t), numa equação linear x' = A(t)x + Bu, não depende do tempo.

Por fim, definiremos Controlabilidade e veremos alguns exemplos.

3 Descrição de atividades

As atividades são através de seminários semanais onde o aluno faz uma exposição do que foi estudado durante a semana de acordo com a ementa e orientações dadas pelo professor. O estudo é realizado através de livros-texto e apostilas recomendadas pelo orientador de modo que um complemente o outro para que o entendimento dos assuntos seja o melhor possível.

4 Análise dos Resultados

4.1 Equações Lineares Não Autônomas

Considere a equação diferencial ordinária linear

$$x' = A(t)x + b(t)$$

em \mathbb{R}^n , onde $A: I \to M_{n \times n}(\mathbb{R})$ e $b: I \to \mathbb{R}^n$ são funções contínuas definidas num intervalo $I \subset \mathbb{R}$.

- Uma solução de x' = A(t)x + b(t) é uma função derivável $x: I \to \mathbb{R}^n$ que satisfaz a equação para cada $t \in I$.
- Qualquer solução x é de classe C^1 no \mathbb{R}^n .
- Uma condição inicial da equação se representa fixando $(t_0, x_0) \in I \times \mathbb{R}^n$ de modo que $x(t_0) = x_0$.

Sejam um espaço métrico M e uma aplicação $\omega: M \to M$. Definimos as iteradas de um ponto $x \in M$ indutivamente por $x_0 = x$ e $x_{n+1} = \omega(x_n)$ para $n \in \mathbb{N}$. Iteradas também são denominadas aproximações sucessivas. Note que $x_n = \omega^n(x)$, $\forall x \in \mathbb{N}$.

Um ponto $a \in M$ é um ponto atrator de ω se $\lim \omega(x_n) = a$ para as aproximações sucessivas de qualquer ponto $x \in M$.

Sejam M um espaço métrico e uma aplicação $\omega: M \to M$. Um ponto $a \in M$ é um ponto fixo de ω se $\omega(a) = a$.

Uma aplicação $\omega: M \to M$ (de um espaço métrico (M,d)) é uma contração se ω é lipschitziana de constante $\lambda < 1$,isto é, existe $\lambda > 0$ tal que $d(\omega(x),\omega(y)) \leq \lambda d(x,y), \ \forall x,y \in M \ \text{com} \ \lambda < 1$. Dizemos que neste caso λ é um fator de contração de ω .

Considere o seguinte resultado.

Teorema. Sejam um espaço métrico (M,d) e uma aplicação $\phi: M \to M$ tal que exista uma iterada de ϕ que é uma contração (isto é, ϕ^k é uma contração para algum inteiro $k \ge 1$). Então existe um único ponto fixo atrator de ϕ , ou seja, um único ponto $a \in M$ tal que $\lim \phi^n(x) = a$ para todo $x \in M$.

A demonstração deste teorema é muito extensa e segue do teorema do ponto fixo de contrações. Mas, está fora do escopo de estudo.

Considere o problema de valor inicial

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0 \end{cases}$$

onde $f: U \to \mathbb{R}^n$ é uma aplicação contínua no aberto $U \subset \mathbb{R} \times \mathbb{R}^n$.

Uma aplicação $f: U \to \mathbb{R}^n$ é lipschitziana na variavel espacial em $U \subset \mathbb{R}^{n+1}$, se existe k > 0 tal que $|f(t,x) - f(t,y)| \le k|x-y|$ para todo $(t,x), (t,y) \in U$ de mesma primeira coordenada t.

Suponhamos que $U \subset \mathbb{R}^{n+1}$ contém $I \times \mathbb{R}^n$, para algum intervalo $I \subset \mathbb{R}$. Sejam $f: U \to \mathbb{R}^n$ uma aplicação contínua e um ponto $(t_0, x_0) \in I \times \mathbb{R}^n$ qualquer. Então, um caminho derivável $x: I \to \mathbb{R}^n$ é uma solução do problema de valor inicial se, e somente se, $x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$, $\forall t \in I$. Isto, motiva a definição de uma função $\mathcal{L}: \mathcal{F} \to \mathcal{F}$, onde $\mathcal{F} = C(I, \mathbb{R}^n)$ (conjunto das funções contínuas de I para \mathbb{R}) tal que

$$\mathcal{L} = x_0 + \int_{t_0}^t f(s, x(s)) ds, \ \forall t \in I$$

Se I é um intervalo compacto, então (\mathcal{F},d) é um espaço métrico completo com métrica

$$d(\mu, \upsilon) = \sup_{t \in I} |\mu(t) - \upsilon(t)|$$

.

Lema. Se k > 0 é uma constante de lipschitz de f em $I \times \mathbb{R}^n$, então $|\mathcal{F}^m(\mu)(t) - \mathcal{F}^m(v)(t)| \leq \frac{k^m}{m!} |t - t_0|^m d(\mu, v)$ para quaisquer $\mu, v \in \mathcal{F}, m \geq 0$ e $t \in I$.

Demonstração. Evidente para m=0 pela definição de $d(\mu, v)$. Dadas funções $\mu, v \in \mathcal{F}$, temos que

$$\mathcal{L}(\mu)(t) - \mathcal{L}(v)(t) = x_0 + \int_{t_0}^t f(s, \mu(s)) ds - (x_0 + \int_{t_0}^t f(s, v(s)) ds) =$$

$$\int_{t_0}^t (f(s,\mu(s)) - f(s,\upsilon(s)))ds$$

Então, para cada $t \in I$,

$$kd(\mu, \upsilon) | \int_{t_0}^t ds | \le kd(\mu, \upsilon) |t - t_0|$$

onde k > 0 é uma constante de lipschitz de f. O lema está provado para n=1. Aplicando $\mathcal{L}(\mu)$ e $\mathcal{L}(v)$ em vez de μ e v na desigualdade $|\mathcal{L}(\mu)(t) - \mathcal{L}(v)(t)| \le k |\int_{t_0}^t |\mu(s) - v(s)| ds| \le k d(\mu, v) |t - t_0|$ temos que

$$|\mathcal{L}^{2}(\mu)(t) - \mathcal{L}^{2}(\upsilon)(t)| \leq k|\int_{t_{0}}^{t} |\mathcal{L}(\mu)(s) - \mathcal{L}(\upsilon)(s)|ds| \leq k^{2}d(\mu, \upsilon)|\int_{t_{0}}^{t} |s - t_{0}|ds| = k^{2}d(\mu, \upsilon)|\int_{t_{0}}^{t} |s - t_{0}|ds| = k^{2}d(\mu, \upsilon)|\mathcal{L}^{2}(\upsilon)(t)| \leq k|\int_{t_{0}}^{t} |\mathcal{L}(\mu)(s) - \mathcal{L}(\upsilon)(s)|ds| \leq k^{2}d(\mu, \upsilon)|\int_{t_{0}}^{t} |s - t_{0}|ds| = k^{2}d(\mu, \upsilon)|\mathcal{L}^{2}(\upsilon)(t)| \leq k|\int_{t_{0}}^{t} |\mathcal{L}(\mu)(s) - \mathcal{L}(\upsilon)(s)|ds| \leq k^{2}d(\mu, \upsilon)|\int_{t_{0}}^{t} |s - t_{0}|ds| = k^{2}d(\mu, \upsilon)|\mathcal{L}^{2}(\upsilon)(t)| \leq k|\int_{t_{0}}^{t} |\mathcal{L}(\mu)(s) - \mathcal{L}(\upsilon)(s)|ds| \leq k^{2}d(\mu, \upsilon)|\int_{t_{0}}^{t} |s - t_{0}|ds| = k^{2}d(\mu, \upsilon)|\mathcal{L}^{2}(\upsilon)(s)|ds|$$

$$k^2d(\mu,\nu)\frac{1}{2}|t-t_0|^2$$

que prova o lema para n=2. O lema segue por indução repetindo várias vezes as mesmas etapas.

Teorema. Seja $f: U \to \mathbb{R}^n$ contínua no aberto $U \subset \mathbb{R}^{n+1}$. Se $[a,b] \times \mathbb{R}^n \subset U$ e f é lipschitziana em $[a,b] \times \mathbb{R}^n$ então, para quaisquer $t_0 \in [a,b]$ e $x_0 \in \mathbb{R}^n$, existe uma única solução do problema de valor inicial

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

definida no intervalo [a, b].

Demonstração. Tome l=b-a. Como a série $\sum_{\substack{m \ m}} \frac{1}{m!} (kl)^m = e^{kl}$ é convergente, seu termo geral tende a zero, isto é, $\lim_{m\to 0} \frac{(kl)^m}{m!} = 0$. Portanto, podemos escolher m grande tal que $\frac{k^m}{m!} |t-t_0|^m \leq \frac{(kl)^m}{m!} = \eta < 1$, onde k>0 é uma constante de lipschitz de f. Pelo lema anterior, tem-se

$$d(\mathcal{L}^m(\mu), \mathcal{L}^m(v)) = \sup_{t \in I} |\mathcal{L}^m(\mu)(t) - \mathcal{L}^m(v)(t)| \le \nu d(\mu, v)$$

onde vemos que \mathcal{L}^m é uma contração do espaço métrico completo $\mathcal{F} = C(I, \mathbb{R})$. Pelo teorema acima, existe um único ponto fixo $x \in \mathcal{F}$ de \mathcal{L} , isto é, $\mathcal{L}(x) = x$. Mas, isto significa que x é a única solução do P.V.I. acima. \square

Teorema. Se $A: I \to M_{n \times n}(\mathbb{R})$ e $b: I \to \mathbb{R}^n$ são funções contínuas no intervalo $I \subset \mathbb{R}$, então para quaisquer $t_0 \in I$ e $x_0 \in \mathbb{R}^n$, a equação x' = A(t)x + b(t) possui uma única solução $x: I \to \mathbb{R}^n$ tal que $x(t_0) = x_0$.

Demonstração. Seja $[a,b] \subset I$. A aplicação f(t,x) = A(t)x + b(t) é contínua em $I \times \mathbb{R}^n$ e satisfaz

$$|f(t,x) - f(t,y)| < k|x - y|$$

onde $k = \sup_{t \in [a,b]} ||A(t)|| < \infty$ pois A(t) é limitado pela compacidade [a,b] e continuidade da função $A: I \to M_{n \times n}(\mathbb{R})$. O teorema anterior garante existência e unicidade de solução em [a,b]. Se o intervalo I é compacto, há nada para provar. Se o intervalo I for qualquer, fixemos $t_0 \in I$ e $x_0 \in \mathbb{R}^n$. Tomando uma sequência crescente de intervalos fechados $[a_m,b_m]$ tais que $a_m \leq t_0 \leq b_m$ e $I = \cup [a_m,b_m]$. Para cada $m \in \mathbb{N}$, obtém-se uma solução $x_m(t)$ em $[a_m,b_m]$ tal que $x_m(t_0) = x_0$. Pondo, em todo $t \in I$, $x(t) = x_m(t)$, a solução x vale para todo intervalo I por unicidade.

4.1.1 Espaço de Soluções

Agora, veremos que o espaço vetorial S_0 das soluções x' = (t)x é isomorfo ao \mathbb{R}^n e que $dimS_0 = n$, para podermos obter n soluções $x_1, \dots, x_n \in S_0$ linearmente independentes e definir matriz fundamental. É com esta matriz que iremos definir o resolvente de x' = A(t)x e obter uma solução explicita para x' = A(t)x + b(t). Mas antes, vejamos que o conjunto S de todas as soluções de x' = A(t)x + b(t) é um espaço vetorial afim em $C^1(I, \mathbb{R}^n)$ (conjunto de funções de classe C^1).

Seja $S_0 \subset C^1(I,\mathbb{R})$ o conjunto de todas soluções de x' = A(t)x. Note que, x = 0 é trivialmente solução. Dados $x_1, x_2 \in S_0$ e $c_1, c_2 \in \mathbb{R}$, temos que $c_1x_1+c_2x_2$ também é solução. Com efeito, para cada $t \in I$ vale $(c_1x_1+c_2x_2)' = c_1x_1'(t) + c_2x_2'(t) = c_1A(t)x_1 + c_2A(t)x_2 = A(t)(c_1x_1 + c_2x_2)(t)$. Logo, S_0 é subespaço vetorial de $C^1(I,\mathbb{R}^n)$.

Vejamos que S é afim. Sejam $x_p \in S$ e $x \in C^1(I, \mathbb{R}^n)$, vejamos que $S = x_p + S_0$. Com efeito, se $x \in S$ então para todo $t \in I$, $(x - x_p)'(t) = x'(t) - x'_p(t) = A(t)x(t) + b(t) - A(t)x_p(t) - b(t) = A(t)(x - x_p)(t)$, ou seja, $x - x_p \in S_0$. Então, $S - x_p \in S_0$. Reciprocamente, se $x - x_p \in S_0$ então $x'(t) = (x - x_p)'(t) + x'_p(t) = A(t)(x - x_p)(t) + A(t)x_p(t) + b(t) = A(t)x(t) + b(t)$ para todo $t \in I$, ou seja, $x \in S$. Então, $S_0 \subset S - x_p$ Logo, $S_0 = S - x_p$ ou seja $S = x_p + S_0$ para qualquer solução particular $x_p \in S$.

Fica provado então que S é um espaço vetorial afim. Note que, para encontrar todas as soluções de x' = A(t)x + b(t), basta encontrar uma solução particular sua e qualquer solução de x' = A(t)x.

Teorema. O espaço vetorial S_0 é isomorfo a \mathbb{R}^n e dim $S_0 = n$. Precisamente, para qualquer $t_0 \in T$ fixo, $T(x) = x(t_0)$ define um isomorfismo $T: S_0 \to \mathbb{R}^n$.

Demonstração. É fácil ver que T é uma transformação linear. Vejamos que T é uma bijeção. A existência de soluções com $x(t_0) = x_0$, para $x_0 \in \mathbb{R}^n$ qualquer, garante que T é sobrejetora. Pela unicidade das soluções, temos que se $x, y \in S_0$ com $x(t_0) = y(t_0)$ então x = y. Portanto, T é injetora. Logo, T é um isomorfismo.

Pelo teorema, as soluções $x_1, \dots, x_n \in S_0$ são L.I. se, e somente se, para algum $t_0 \in I$, os vetores $x_1(t_0), \dots, x_n(t_0) \in \mathbb{R}^n$ são L.I..

4.1.2 Matriz Fundamental e Resolvente

Uma equação diferencial matricial é escrita na forma X' = A(t)X onde X é uma matriz $n \times n$.

- Uma solução de X' = A(t)X é uma função derivável $X : I \to M_{n \times n}(\mathbb{R})$ que satisfaz X'(t) = A(t)X(t) para cada $t \in I$. Toda solução é de classe C^1 em $M_{n \times n}(\mathbb{R})$.
- Fixando $(t_0, x_0) \in I \times M_{n \times n}(\mathbb{R})$ com $X(t_0) = x_0$, temos uma condição inicial.
- Uma função X é solução se, e somente se, cada coluna de X é solução de x' = A(t)x. De fato, pondo $X = (x_1, \dots, x_n)$ em colunas $x_i = Xe_i \in \mathbb{R}^n$ ($\{e_i\}_{i=1}^{i=n}$ é a base canônica do \mathbb{R}^n), temos $(x'_1, \dots, x'_n) = X' = A(t)X = A(t)(x_1, \dots, x_n) = (A(t)x_1, \dots, A(t)x_n)$. Assim, X' = A(t)X equivale a um sistema de n equações

$$X' = A(t)X \iff \begin{cases} x'_1 = A(t)x_1, \\ x'_2 = A(t)x_2, \\ \vdots \\ x'_n = A(t)x_n \end{cases}$$

Portanto, existem e são únicos as soluções de X' = A(t)X.

Uma matriz fundamental da equação x' = A(t)x é uma solução $X : I \to M_{n \times n}(\mathbb{R})$ de X' = A(t)X que possui colunas x_1, \dots, x_n linearmente independentes em $C^1(I, \mathbb{R}^n)$.

Teorema. Seja $X: I \to M_{n \times n}(\mathbb{R})$ uma solução da equação matricial X' = A(t)X com colunas dadas por $x_1, \dots, x_n: I \to \mathbb{R}^n$. Equivalem as afirmações:

- 1. $X \notin uma \ matriz \ fundamental \ de \ x' = A(t)x$.
- 2. $det X(t_0) \neq 0$ para algum $t_0 \in I$.
- 3. $x_1(t_0), \dots, x_n(t_0)$ é uma base do \mathbb{R}^n para algum $t_0 \in I$.
- 4. $det X(t) \neq 0$ para todo $t \in I$.

Demonstração. Primeiro, note que uma matriz X é invertível se, e somente se, possui colunas linearmente independentes. Portanto, valem as seguintes equivalências: X é matriz fundamental $\iff x_1, \dots, x_n$ são L.I. em $C^1(I, \mathbb{R}^n) \iff \exists t_0 \in I; \ x_1(t_0), \dots, x_n(t_0)$ são L.I. em $\mathbb{R}^n \iff \exists t_0 \in I; \ X(t_0)$ possui colunas L.I. $\iff \exists t_0 \in I; \ X(t_0)$ é invertível $\iff \exists t_0 \in I; \ \det X(t_0) \neq 0$. Então, as três primeiras afirmações são equivalentes. Suponhamos que não vale a quarta afirmação, isto é, existe $t^* \in I$ tal que $X(t^*) = 0$. Pela unicidade, X é a solução trivial donde X(t) = 0, $\forall t \in I$. Em particular, $X(t_0) = 0$ contradizendo a segunda afirmação. Logo, a quarta afirmação deve valer.

Pondo $X(t_0) = I_d$ onde det $I_d \neq 0$, vemos que toda equação homogênea x' = A(t)x possui matriz fundamental.

Seja $X: I \to M_{n \times n}(\mathbb{R})$ uma matriz fundamental de x' = A(t)x. O resolvente de x' = A(t)x é uma função $R: I \times I \to M_{n \times n}(\mathbb{R})$, onde $R(t, u) = X(t)(X(u))^{-1}$.

Propriedades do Resolvente:

- $R(t,t) = I_d$, $\forall t \in I$ Prova: $R(t,t) = X(t)(X(t))^{-1} = I_d$
- R(t,u)R(u,z) = R(t,z)Prova: $R(t,u)R(u,z) = X(t)(X(u))^{-1}X(u)(X(z))^{-1} = X(t)I_d(X(z))^{-1} = X(t)(X(z))^{-1} = R(t,z)$
- $\begin{array}{l} \bullet \ \, \dfrac{\partial R(t,u)}{\partial t} = A(t)R(t,u) \\ \text{Prova: } \dfrac{\partial R(t,u)}{\partial t} = \dfrac{\partial (X(t)(X(u))^{-1})}{\partial t} = X'(t)(X'(u))^{-1} = A(t)X(t)(X(u))^{-1} = A(t)R(t,u) \end{array}$
- $\frac{\partial R(t,u)}{\partial u} = -R(t,u)A(u)$ prova: Derivando $X(t)(X(t))^{-1} = I_d$, temos que $X(t)(X(t)^{-1})' = -X'(t)(X(t))^{-1} \implies (X(t)^{-1})' = -(X(t))^{-1}X'(t)(X(t))^{-1}$. Então, $\frac{\partial R(t,u)}{\partial u} = \frac{\partial (X(t)(X(u))^{-1})}{\partial u} = -X(t)(X(u))^{-1}X'(u)(X(u))^{-1} = -R(t,u)A(u)$.

Proposição. Seja $X: I \to M_{n \times n}(\mathbb{R})$ uma matriz fundamental de x' = A(t)x e sejam $t_0 \in I$ e $x_0 \in \mathbb{R}^n$ dados. Então,

$$x(t) = R(t, t_0)x_0 + \int_{t_0}^t R(t, u)b(u)du, \ \forall t \in I$$

é a unica solução de x' = A(t)x + b(t) tal que $x(t_0) = x_0$.

Demonstração. Seja x a função definida como acima. Para $t=t_0$, temos que $x(t_0)=R(t_0,t_0)x_0=x_0$. Derivando x em relação a variável t, temos que para todo $t\in I$ vale $x'(t)=A(t)R(t,t_0)x_0+R(t,t)b(t)+\int_{t_0}^t A(t)R(t,u)b(u)du$ pela regra da cadeia. Mas, $\int_{t_0}^t A(t)R(t,u)b(u)du=x(t)-R(t,t_0)x_0 \Longrightarrow \int_{t_0}^t A(t)R(t,u)b(u)du=A(t)x(t)-A(t)R(t,t_0)x_0$. Então, x'(t)=A(t)x(t)+b(t) verificando a existência de solução. A unicidade segue do fato de haver solução trivial apenas quando $x_0=0$

4.2 Exponencial de Matrizes

Considere uma matriz $A \in M_{n \times n}(\mathbb{R})$ e a norma euclideana $|\cdot|$ de \mathbb{R}^n . A norma de operador é definida por

$$||A|| = \sup_{|x| \le 1} |Ax|$$

Note que $Ax \in \mathbb{R}^n$, pois $x \in \mathbb{R}^n$ e $\mathbb{R}^n \simeq M_{n \times n}(\mathbb{R})$.

Vamos verificar que esta é realmente uma norma: Seja $x \in \mathbb{R}^n$ tal que $|x| \leq 1$.

- 1. $|(\lambda A)x| = |\lambda(Ax)| = |\lambda||Ax| \implies ||(\lambda A)x|| = |\lambda|||Ax||$
- 2. $|(A+B)x| = |Ax+Bx| \le |Ax| + |Bx| \le ||A|| + ||B|| \implies ||A+B|| \le ||A|| + ||B||$
- 3. $||A|| = 0 \implies |Ax| = 0 \implies Ax = 0 \implies Ae_j = 0, \ j = 1, \dots, n \implies A = 0$

$$A = 0 \implies Ae_j = 0 \implies Ax = A(\sum \alpha_i e_i) = \sum \alpha_i (Ae_i) = \sum \alpha_i 0 = 0 \implies |Ax| = 0 \implies |A\| = 0.$$
 Então, $|A| = 0 \iff A = 0.$

Lema. Dados $A, B \in M_{n \times n}(\mathbb{R})$, valem

- 1. $|Ax| \leq ||A|||x|, \ \forall x \in \mathbb{R}^n$.
- $2. \|AB\| \le \|A\| \|B\|$

 $Demonstração. 1. Dado <math>x \in \mathbb{R}^n \text{ com } x \neq 0, \text{ tem-se } |\frac{x}{|x|}| = 1. \text{ Então},$ $\frac{|Ax|}{|x|} = |A\frac{x}{|x|}| \leq ||A|| \implies |Ax| \leq ||A|||x|.$

2. $|(AB)x| = |A(Bx)| \le ||A|||Bx| \le ||A|||B|||x|$, $\forall x \in \mathbb{R}^n$. Se $|x| \le 1$, então $|(AB)x| \le ||A|||B||$. Tomando o supremo, vale $||AB|| \le ||A|||B||$.

Pondo B = A e aplicando a segunda afirmação acima repetidas vezes, vale $||A^m|| \le ||A||^m$, $\forall m \in \mathbb{N}$, onde escrevemos $A^0 = I_d$, $A^1 = A$ e $A^{m+1} = A^m A$. Com efeito, temos $||A^0|| = ||I|| = ||A||^0 = 1$. Supondo $||A^m|| \le ||A||^m$, segue-se $||A^{m+1}|| = ||A^m A|| \le ||A^m|| ||A|| \le ||A||^m ||A|| = ||A||^{m+1}$.

A matriz exponencial de uma matriz $A \in M_{n \times n}(\mathbb{R})$ é

$$e^{A} = I_d + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots + \frac{1}{j!}A^j + \dots = \sum_{i=0}^{\infty} \frac{1}{j!}A^j$$

Para que isto fique bem definido precisamos saber se esta série converge.

Dizemos que uma série $\sum x_n$ em \mathbb{R}^n (ou $M_{n\times n}(\mathbb{R}) \simeq \mathbb{R}^{nm}$) é absolutamente convergente segundo a norma $|\cdot|$ se a série numérica $\sum |x_n|$ é convergente. Toda série absolutamente convergente é convergente. Vejamos que $\sum \frac{1}{j!}A^j$ é absolutamente convergente. Pondo $S_n = \sum_{j=0}^{j=n} \frac{1}{j!}A^j\|$, usando as propriedades acima, temos $S_n \leq \sum_{j=0}^{j=n} \frac{1}{j!}\|A\|^j$. Como o termo á direita da desigualdade converge com $\lim \sum \frac{1}{j!}\|A\|^j = e^{\|A\|}$, temos que S_n é limitada. Então, S_n é uma sequência monótona e limitada, logo convergente. Portanto, podemos concluir que $\sum \frac{1}{j!}A^j$ é absolutamente convergente segundo a norma $\|\cdot\|$, ou seja $\sum \frac{1}{j!}A^j$ converge. Assim, a exponencial e^A está bem definida para qualquer matriz $A \in M_{n \times n}(\mathbb{R})$.

Exemplo: Calculo da exponencial de uma matriz diagonal

$$D = diag(\lambda_1, \dots, \lambda_n) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ \vdots & \lambda_2 & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

Note que $D^j = diag(\lambda_1^j, \dots, \lambda_n^j), \ \forall j \in \mathbb{N}$. Assim, $e^D = \sum \frac{1}{j!} D^j = \sum \frac{1}{j!} diag(\lambda_1^j, \dots, \lambda_n^j) = diag(\sum \frac{1}{j!} \lambda_1^j, \dots, \sum \frac{1}{j!} \lambda_n^j) = diag(e^{\lambda_1}, \dots, e^{\lambda_n})$. Em particular, $e^0 = I_d$ e $e^{I_d} = diag(e, \dots, e) = eI_d$.

Proposição. Dados uma matriz $A \in M_{n \times n}(\mathbb{R})$ e $x_0 \in \mathbb{R}^n$, os caminhos $t \to e^{tA}$ em $M_{n \times n}(\mathbb{R})$ e $t \to e^{ta}x_0$ em \mathbb{R}^n são deriváveis com

$$\frac{d(e^{tA})}{dt} = Ae^{tA} \in M_{n \times n}(\mathbb{R}) \ e \ \frac{d(e^{tA}x_0)}{dt} = Ae^{tA}x_0 \in \mathbb{R}^n$$

Precisaremos de dois resultados para demonstrar a proposição:

1. Para cada $A \in M_{n \times n}(\mathbb{R})$, valem $||e^A|| \le e^{||A||}$, $||e^A - I_d|| \le e^{||A||} - 1 \le ||A||e^{||A||}$ e $||e^A - I_d - A|| \le e^{||A||} - 1 - ||A|| \le ||A||^2 e^{||A||}$.

Demonstração. Temos que,

•
$$S_n \le \sum_{j=0}^{j=n} \frac{1}{j!} ||A||^j \implies \lim S_n \le e^{||A||}$$

•
$$\|\sum_{j=0}^{j=n} A^j\| \le \sum_{j=0}^{j=n} \|\frac{1}{j!} A^j\| = S_n$$

Segue-se,
$$||e^A|| = ||\lim \sum \frac{1}{i!} A^j|| = \lim ||\sum \frac{1}{i!} A^j|| \le \lim S_n \le e^{||A||}$$
.

Vejamos que
$$||e^A - I_d|| \le e^{||A||} - 1 \le ||A||e^{||A||}$$
. Tem-se, $||\sum_{j=0}^{j=n} \frac{1}{j!} A^j - I_d|| \le \sum_{j=1}^{j=n} \frac{1}{j!} ||A||^j = \sum_{j=0}^{j=n} \frac{1}{j!} ||A||^j - 1 = ||A|| \sum_{j=1}^{j=n} \frac{1}{j!} ||A||^{j-1} \le ||A|| \sum_{j=1}^{j=n} \frac{1}{(j-1)!} ||A||^{j-1} \text{ pois } \frac{1}{j!} \le \frac{1}{(j-1)!}$. "Passando" o limite, temos $||e^A - I_d|| \le e^{||A||} - 1 \le ||A||e^{||A||}$. A última designaldade se mostra de modo análogo.

2. Seja $X: \mathbb{R} \to M_{n \times n}(\mathbb{R})$ um caminho contínuo de matrizes que é derivável em $0 \in \mathbb{R}$. Suponha que $X(0) = I_d$ e $X(t+u) = X(t)X(u), \ \forall t, u \in \mathbb{R}$. Então, X é derivavel em cada $t \in \mathbb{R}$ com X'(t) = X'(0)X(t).

$$Demonstração. \ \ \mathrm{Dado} \ t \in \mathbb{R}, \ \mathrm{temos} \ X'(t) = \lim_{u \to 0} \frac{X(u+t) - X(t)}{u} = \lim_{u \to 0} \frac{X(u)X(t) - X(0)X(t)}{u} = \lim_{u \to 0} \frac{X(u) - X(0)}{u}X(t) = X'(0)X(t).$$

Demonstração da proposição: Sejam $A \in M_{n \times n}(\mathbb{R})$ e $t \in R$. Escrevendo $X(t) = e^{tA}$, temos $X(0) = e^0 = I_d$. Afirmamos que, X(t+u) = X(t)X(u), $\forall t, u \in \mathbb{R}$. Com efeito, pela lei do binômio, temos

$$\frac{1}{j!}(tA + uA)^j = \frac{1}{j!}(t+u)^j A^j = (\sum_{r+s=j} \frac{t^r}{r!} \frac{u^s}{s!}) A^j = \sum_{r+s=j} \frac{t^r}{r!} A^r \frac{u^s}{s!} A^s$$

e portanto, $e^{tA+uA} = \sum_{j=0}^{\infty} \frac{1}{j!} (tA+uA)^j = \sum_{j=0}^{\infty} \sum_{r+s=j} \frac{1}{r!} (tA)^r \frac{1}{s!} (uA)^s$. Então, e^{tA+uA} é o produto de Cauchy das matrizes absolutamente convergentes $e^{tA} = \sum_{r=0}^{\infty} \frac{1}{r!} (tA)^r$ e $e^{uA} = \sum_{s=0}^{\infty} \frac{1}{s!} (uA)^s$, ou seja, e^{tA+uA} converge e $e^{tA+uA} = e^{tA}e^{uA}$. Assim, vale $X(t+u) = e^{(t+u)A} = e^{tA+uA} = e^{tA}e^{uA} = X(t)X(u)$. Agora, vejamos que X'(0) = A. Considere 0 < |t| < 1. Pelo primeiro item, temos que $\|\frac{1}{t}(e^{tA}-I_d)-A\|=\frac{1}{|t|}\|e^{tA}-I_d-tA\|\leq \frac{1}{|t|}\|tA\|^2e^{\|A\|}= |t|\|A\|^2e^{\|A\|}$ pois $e^{|t|\|A\|} \leq e^{\|A\|}$. "Passando" o limite, segue que $X'(0) = \lim_{t\to 0} \frac{X(t)-X(0)}{t} = \lim_{t\to 0} \frac{e^{tA}-I_d}{t} = A$. Pelo segundo

item, X é derivável e X'(t) = AX(t), ou seja, $\frac{d(e^{tA})}{dt} = Ae^{tA}$. Por outro lado, dado $x_0 \in \mathbb{R}^n$ a função $x(t) = X(t)x_0 = e^{tA}x_0$ é derivável com $x'(t) = X'(t)x_0 = AX(t)x_0 = Ae^{tA}x_0$.

Teorema. Sejam $A \in M_{n \times n}(\mathbb{R})$ e $x_0 \in \mathbb{R}^n$. O caminho $x(t) = e^{tA}x_0$, $t \in \mathbb{R}$, define a única solução de x' = Ax com condição inicial $x(0) = x_0$.

Teorema. Se $A, B, Q \in M_{n \times n}(\mathbb{R})$ são tais que AQ = QB, então $e^AQ = Qe^B$. Em particular, se Q é invertível, então $A = QBQ^{-1}$ e $e^A = e^{QBQ^{-1}} = Qe^BQ^{-1}$.

 $\begin{array}{ll} \textit{Demonstração}. \text{ Primeiro, vejamos que } A^jQ = QB^j, \ \forall j \in \mathbb{N}. \text{ Temos, } AQ = B \text{ e } A^jQ = QB^j \implies A^{j+1}Q = A^jAQ = A^jQB = QB^jB = QB^{j+1} \text{ logo} \\ \text{vale por indução. Segue-se, } e^AQ = (\sum \frac{1}{j!}A^j)Q = \sum \frac{1}{j!}A^jQ = \sum \frac{1}{j!}QB^j = Q(\sum \frac{1}{j!}b^j) = Qe^B. \end{array}$

Os teoremas acima são necessários para estabelecer propriedades para exponencial de matrizes de modo análogo ao usual em \mathbb{R} , como $e^A e^B = e^{A+B} = e^B e^A$ e $(e^A)^{-1} = e^{-A}$.

Corolário. Sejam $A, B \in M_{n \times n}(\mathbb{R})$, temos:

- 1. Se AB = BA, então $e^A e^B = e^{A+B} = e^B e^A$.
- 2. A matriz e^A é invertível, com $(e^A)^{-1} = e^{-A}$.

Demonstração. Seja $t \in \mathbb{R}$. Se AB = BA, então B(tA) = t(BA) = t(AB) = (tA)B, e pelo teorema anterior, temos $Be^{tA} = e^{tA}B$. Fixando $x_0 \in \mathbb{R}^n$, definimos $x(t) = e^{tA}e^{tB}x_0$. Pela regra da derivada do produto, $x'(t) = Ae^{ta}e^{tB}x_0 + e^{tA}Be^{tB}x_0 = Ax(t) + Bx(t) = (A+B)x(t)$. Então, x(t) é solução de x' = (A+B)x com condição inicial $x(0) = x_0$. Pelo teorema acima, $x(t) = e^{t(A+B)}x_0 = e^{tA}e^{tB}x_0$. Tomando t = 1, vale $e^{A+B}x_0 = e^{A}e^{B}x_0$. Pondo $x_0 = e_j$, fica evidente que as colunas de e^{A+B} e $e^{A}e^{B}$ são as mesmas, isto é, que e^{A+B} e $e^{A}e^{B}$ são a mesma matriz e $e^{A+B} = e^{A}e^{B}$.

Em particular, $e^{A}e^{-A} = e^{A-A} = e^{0} = I_d$, ou seja, $(e^{A})^{-1} = e^{-A}$.

4.3 Controlabilidade

Sejam $A, B: [0,T] \to M_{n \times n}(\mathbb{R})$ funções contínuas no intervalo $[0,T] \subset \mathbb{R}$. Diremos que o sistema

$$\begin{cases} x'(t) = A(t)x(t) + B(t)u(t), \ \forall t \in [0, T] \\ x(0) = x_0 \end{cases}$$

é controlável se para todo $x_0, x_T \in \mathbb{R}^n$, existe função $u : [0, T] \to \mathbb{R}^m$ contínua tal que $x(T) = x_T$, onde x = x(t) é a solução do sistema. Chamaremos u de controle e diremos que u leva o sistema do estado inicial x_0 em t = 0 para o estado final x_T em t = T.

Exemplo: Seja uma função $f:[0,T]\to\mathbb{R}$ contínua tal que $f(t)\neq 0,\ \forall t\in[0,T].$

$$\begin{cases} x' = f(t)u \\ x(0) = x_0 \end{cases}$$

Então, o sistema é controlável. Com efeito, dado $x_T \in [0,T]$ tome $u = \frac{x_T - x_0}{Tf(t)}$. Então, $x(T) - x_0 = \int_0^T f(t)u(t)dt = \int_0^T \frac{x_T - x_0}{T}dt = T\frac{x_T - x_0}{T} = x_T - x_0 \implies x(T) = x_T$. Logo, o sistema é controlável.

Exemplo: Considere as matrizes

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} e B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

O sistema x' = Ax + Bu pode ser escrito como

$$\begin{cases} x_1' = x_1 + u \\ x_2' = x_{20}e^t \end{cases}$$

com dado inicial (x_{1_0}, x_{2_0}) . Este sistema não é controlável pois qualquer controle u que escolhermos não influencia no comportamento de x_2 que é determinado por x_{2_0} .

5 Trabalhos Futuros

Os próximos passos serão estudar dois resultados importantes na teoria de Controle tais como o Critério da Integral e o Critério de Kalman. Em seguida, o aluno estudará Controle Ótimo nos tópicos Problema de Tempo Mínimo e Princípio do Máximo de Pontryagin, e finalmente, o exemplo do carro com dois motores.

Bibliografia

- E. CERPA, P. GAJARDO, Control y optimización de sistemas dinámicos.
- C. I. Doering, A. O. Lopes, Equações Diferenciais Ordinárias.
- J.-M. Coron, Control and Nonlinearity.
- J. Baumeister, A. Leitão, Introdução à Teoria de Controle e Programação Dinâmica.