Digital Signal Processing Exercise 3: z-Transform TRAN Hoang Tung

Date: March 29, 2019

Sequence	Transform	ROC
$\delta(n)$	1	$\forall z$
u(n)	$\frac{1}{1-z^{-1}}$	z > 1
-u(-n-1)	$\frac{1}{1-z^{-1}}$	z < 1
$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
$-b^nu(-n-1)$	$\frac{1}{1-bz^{-1}}$	z < b
$\left[a^n\sin\omega_0n\right]u(n)$	$\frac{(a\sin\omega_0)z^{-1}}{1-(2a\cos\omega_0)z^{-1}+a^2z^{-2}}$	z > a
$\left[a^n\cos\omega_0 n\right]u(n)$	$\frac{1-(a\cos\omega_0)z^{-1}}{1-(2a\cos\omega_0)z^{-1}+a^2z^{-2}}$	z > a
$na^nu(n)$	$rac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-nb^nu(-n-1)$	$rac{bz^{-1}}{(1-bz^{-1})^2}$	z < b

1. Given that

$$H(z) = \frac{z+1}{z^2 - 0.9z + 0.81}$$

is a causal system, find

- (a) its frequency response representation
- (b) its difference equation representation
- (c) its impulse response (Octave function: filter)

2. Given a causal system

$$y(n) = 0.9y(n-1) + x(n)$$

- (a) Determine H(z) and sketch its pole-zero plot (Octave function: zplane)
- (b) Plot $H(e^{j\omega})$ and $\angle H(e^{j\omega})$
- (c) Determine the impulse response h(n)
- 3. Determine the z-transform of the following sequences. Indicate the region of convergence (ROC) for each sequence and verify the z-transform expression using Octave

(a)
$$x_1(n) = [3, 2, 1, -2, -3]$$

(b)
$$x_2(n) = (0.8)^n u(n-2)$$

(c)
$$x_3(n) = [(0.5)^n + (-0.8)^n]u(n)$$

(d)
$$x_4(n) = (n+1)3^n u(n)$$

