# Hierarchical Optimal Transport for Document Clustering

Pierre OSSELIN

Computational Optimal Transport

7 Janvier, 2019

### Contextualization

#### **NLP Tasks**

- Natural Language Processing : Achieve computer understanding of language
- Applications for documents: Includes Document Classification, Document Retrieval, Document Clustering, Sentiment Analysis, Multilingual Document Matching



Figure: Document Classification



Figure: Document Clustering

### **Problem**

#### How to Design Meaningful distances between documents?

- Characteristics: A distance between documents should be meaningful / computationaly viable / Interpretable
- Previous Works: Involves Bag-Of-Words representation, topic Modelling or Word embedding.
- **Limitations**: Lack of either representational power, computational viability or interpretability



# Proposed method: Hierarchical Optimal Transport

#### Word Mover's Distance

The 1-Wasserstein distance between p and q is

$$W_{1}(p,q) = \begin{cases} \min_{\Gamma \in \mathbb{R}_{+}^{n \times m}} & \sum_{i,j} C_{i,j} \Gamma_{i,j} \\ s.t & \sum_{j} \Gamma_{i,j} = p_{i} \text{ and } \sum_{i} \Gamma_{i,j} = p_{j} \end{cases}$$
(1)

- Γ can be interpreted as a transport plan
- **1** The Word Mover Distance (WMD) between documents is then  $WMD(d^1, d^2) = W_1(d^1, d^2)$ , where  $d^1$  and  $d^2$  are normalized word counts and the ground metric is Euclidean in some embedding space

## Proposed method: Hierarchical Optimal Transport

#### Hierarchical Optimal Transport (HOTT)

Topics  $t_i$  are inferred by LDA on the corpus, then the HOTT is defined as:

$$\mathbf{HOTT}(d^i, d^j) = W_1\left(\sum_{k=1}^{|T|} d^j_k \delta_{t_k}, \sum_{k=1}^{|T|} d^j_k \delta_{t_k}\right)$$
(2)

The cost matrix is computed one time per corpus with:

$$d(t_i, t_i) = WMD(t_i, t_i)$$
(3)

## Proposed method: Hierarchical Optimal Transport

#### Wasserstein Barycenter

Solves, where  $(a_k)$  are m measures and  $\sum_k \lambda_k = 1$ :

$$min_b \sum_k \lambda_k \times W_{\epsilon}(a_k, b)$$
 (4)

Where

$$W_{\epsilon}(p,q) = \begin{cases} \min_{\Gamma \in \mathbb{R}_{+}^{n \times m}} & \sum_{i,j} C_{i,j} \Gamma_{i,j} - \epsilon E(\Gamma) \\ s.t & \sum_{j} \Gamma_{i,j} = p_{i} \text{ and } \sum_{i} \Gamma_{i,j} = p_{j} \end{cases}$$
(5)

And

$$E(\Gamma) = -\sum_{i,j} \Gamma_{i,j}(log(\Gamma_{i,j}) - 1)$$
 (6)

Problem solved with Bregman Iteration algorithm.



## Theoretical analysis

#### Guarentees

Link between HOTT and WMD :

$$WMD(d^{i}, d^{j}) \leq HOTT(d^{i}, d^{j})$$

$$+ diam(X) \left[ \sqrt{\frac{1}{2} KL \left( d^{j} || \sum_{k=1}^{|T|} d_{k}^{j} t_{k} \right)} + \sqrt{\frac{1}{2} KL \left( d^{i} || \sum_{k=1}^{|T|} d_{k}^{i} t_{k} \right)} \right]$$
(7)

**Complexity**: HOTT complexity is  $\mathcal{O}(|T|^3 log(|T|))$  K-means clustering has a complexity of

$$\mathcal{O}(n_{iter} \times \underbrace{|D| \times k \times |T|^3 log(|T|)}_{\text{Pairwise Distances}} \times \underbrace{|D| \times \frac{|T|^2}{\epsilon^2}}_{\text{Computation Barycenters}})$$



# Numerical findings: K-means Clustering with Wasserstein Barycenters

#### The metrics are described in annex.

| Dataset  | Tf-Idf                 | LDA  | HOTT                              |
|----------|------------------------|------|-----------------------------------|
| bbcsport | $1.41 \pm 0.23$        | 1.35 | $\textbf{1.28} \pm \textbf{0.20}$ |
| twitter  | <b>1.16</b> $\pm$ 0.25 | 1.80 | $1.70 \pm 0.14$                   |
| classic  | $1.40 \pm 0.08$        | 0.62 | $0.66\pm0.15$                     |
| ohsumed  | <b>2.65</b> ± 0.3      | 3.76 | $3.74\pm0.02$                     |
| r8       | $1.69 \pm 0.14$        | 1.38 | $\textbf{1.39} \pm \textbf{0.12}$ |
| amazon   | $1.35 \pm 0.15$        | 1.08 | $\textbf{1.08} \pm \textbf{0.02}$ |

Table: Variation of Information

| Dataset  | Tf-Idf                            | LDA   | HOTT                               |
|----------|-----------------------------------|-------|------------------------------------|
| bbcsport | $\textbf{0.34} \pm \textbf{0.18}$ | 0.53  | $\textbf{0.648} \pm \textbf{0.08}$ |
| twitter  | $0.017 \pm 0.015$                 | 0.052 | $	extbf{0.053} \pm 	extbf{1e-17}$  |
| classic  | $0.11 \pm 0.07$                   | 0.76  | $\textbf{0.77} \pm \textbf{0.06}$  |
| ohsumed  | $0.12 \pm 0.03$                   | 0.122 | $0.131 \pm 0.005$                  |
| r8       | $0.31 \pm 0.07$                   | 0.59  | $\textbf{0.58} \pm \textbf{0.02}$  |
| amazon   | $0.17 \pm 0.2$                    | 0.58  | $\textbf{0.57} \pm \textbf{0.003}$ |

Table: NMI Score



# Numerical findings: K-means Clustering with Wasserstein Barycenters

| Dataset  | Tf-ldf            | LDA   | HOTT                                 |
|----------|-------------------|-------|--------------------------------------|
| bbcsport | $0.23 \pm 0.17$   | 0.50  | $0.639 \pm 0.09$                     |
| twitter  | $0.011 \pm 0.014$ | 0.045 | $\textbf{0.0468} \pm \textbf{1e-20}$ |
| classic  | $0.06\pm0.06$     | 0.75  | $0.73 \pm 0.07$                      |
| ohsumed  | $0.08 \pm 0.03$   | 0.113 | $\textbf{0.121} \pm \textbf{0.04}$   |
| r8       | $0.28\pm0.08$     | 0.49  | $\textbf{0.53} \pm \textbf{0.03}$    |
| amazon   | $0.11 \pm 0.17$   | 0.54  | $\textbf{0.54} \pm \textbf{0.003}$   |

Table: AMI Score

| Dataset  | Tf-Idf | LDA    | HOTT   |
|----------|--------|--------|--------|
| bbcsport | -2     | ≤ -300 | ≤ -300 |
| twitter  | -1     | -62    | -60    |
| classic  | -2     | ≤ -300 | ≤ -300 |
| ohsumed  | -140   | ≤ -300 | ≤ -300 |
| r8       | ≤ -300 | ≤ -300 | ≤ -300 |
| amazon   | -1     | ≤ -300 | ≤ -300 |

Table: log P Value Score



## Conclusion

- Leverages optimal transport, topic modeling, and word embedding and provide global semantic language information.
- The HOTT distance matches our intuition of how humans compare documents: by breaking down each document into easy to understand concepts, and then comparing the concepts
- Our k-means algorithm performs better or at least equally well on every data set.
- Necessity to gain insights into the nested metric HOTT to learn its representational capacity, and the nature of the Regularized Wassertstein Barycenters computed with performing k-means. These insights would allow us to design faster and more accurate adaptation of this algorithm.

## Annex

We evaluate our clusters with the true labels.

#### Evaluation of clusters

- **①** Variation of Information : VI(C, C') = H(C) + H(C') 2I(C, C')
- **3** Normalized Mutual Information :  $NMI(C, C') = \frac{2I(C, C')}{H(C) + H(C')}$
- **3** Adjusted Mutual Information :  $AMI(C,C') = \frac{I(C,C') \mathbb{E}(I(C,C'))}{(H(C) + H(C'))/2 \mathbb{E}(I(C,C'))}$
- P-value : P-value Chi-Square independence test.

Where 
$$P(k) = \frac{n_k}{n}$$
,  $P(k, k') = \frac{|C_k \cap C'_{k'}|}{n}$ ,  $H(C) = -\sum_{i=1}^K P(k) log(P(k))$  and  $I(C, C') = \sum_{k=1}^K \sum_{k'=1}^{K'} P(k, k') log(\frac{P(k, k')}{P(k)P(k')})$ 

