EXHIBIT 34

U.S. Patent No. 8,273,308 Infringement Chart

Claim	Claim Language	Infringement Evidence	
1(a)	A system, comprising:	To the extent the preamble is limiting, the accused instruments are a system. *NeuMoDx** Molecular Systems, NeuMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)	
		NeuMoDx molecular	
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System	
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited	

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result."
		TM
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
		last visited May 31, 2019 (Exhibit 11)
		• "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and
		rapid turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our
		proprietary NeuDry TM reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that
		result in higher throughput, improved performance and increased efficiency by
		eliminating the waste associated with technologies that required reconstitution
		of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 288 Molecular System consists of

Claim	Claim Language	Infringement Evidence
		the instrument with touchscreen computer, accessories, and reagents and consumables." • "NeuMoDx TM Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/dr-steven-young-video-testimonial/ , last visited May 31, 2019, hyperlink at https://youtu.be/vukP6gbLBYE . (Exhibit 32)
		• "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint."
1(b)	a microfluidic device	The accused system comprises a microfluidic device.
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		Powerful. Simple. Diagnostics.* NeuMody Place 734 477 0111 Tax 734 477 (0)30 1 1250 Eleenbower Place Ann Arbor, MI 48108 www.neumody.com CARTRIDGE LED 1 10367 C. SCHOOL 2-31
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 24, 2019 (Exhibit 11) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from 'sample to result'. The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-

Claim	Claim Language	Infringement Evidence
		sample microfluidic cartridge . This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDxTM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."

Claim	Claim Language	Infringement Evidence
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples
		simultaneously." Id. at 1:49-1:59
		"Patents", http://www.neumodx.com/patents/ , demonstrating that NeuMoDx marks its products with US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165 9,452,430; 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 9,540,636; 9,499,896; 9,539,576; 9,637,775; and 10,093,963. (Exhibit 15)

Claim	Claim Language	Infringement Evi	idence	
		PATENT	S	
		Product	Patents	
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701, JP Patent No. 6061313.	
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.	
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.	
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.	
		platform the configured a liquid has vertically a nozzle of the heater, the first operary system is a cartridge of through the first portion of processed	sample, the molecular diagnostic system comprising: a cartrata supports the cartridge and comprising a magnet receiving to be aligned with the cartridge in a first operation mode; a andling subsystem; an optical subsystem; a cartridge heater; a aligned with the magnet receiving slot; and an actuator couple he liquid handling subsystem, the optical subsystem, and the actuator configured to vertically displace the cartridge platfortion mode to a position wherein: the nozzle of the liquid hand coupled to a fluid port of the cartridge, wherein the fluid port eceives fluids for processing the biological sample, the magnet magnet receiving slot of the cartridge platform and interfacts on of the cartridge, the optical subsystem interfaces with a section of the cartridge, wherein the second portion of the cartridge receivative of the nucleic acid volume, and a third region of the compressed between the cartridge heater and the cartridge	s slot nozzle of a magnet led to the c cartridge orm in the dling of the net passes ses with a cond seives a he

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 US9604213 (Exhibit 30) Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.
1(c)	a computer-controlled heat source; and	The accused system comprises a computer-controlled heat source. **NeuMoDx*** Molecular Systems*, NeuModd, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuModd, Molecular Systems Revolutionary Molecular Systems Revolutionary Molecular Diagnostic Solution Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuModd, Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuModd, continuous random-access analyzers that utilize our proprietary

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx TM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx TM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18
		US9539576 (Exhibit 29) • Claim 1. A system for thermocycling biological samples within detection

Claim	Claim Language	Infringement Evidence
		chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		 US9499896 (Exhibit 28) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating

Claim	Claim Language	Infringement Evidence
Ciailli	Claim Language	layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies is in thermal communication with a set of detection chambers. • U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an
		embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") • U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160

Claim	Claim Language	Infringement Evidence
		configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") • U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") • U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
1(d)	a detector;	The accused system comprises a detector. **NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) **FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." **NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 **FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of

Claim	Claim Language	Infringement Evidence		
		products of ampli	fication."	
		JFO_2018-10-25_8009-Re	ev-B_NeuMoDx-96-S	Spec-Sheet (Exhibit 21)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		NeuMoDx_288_Spec_She		
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecusupports the cartrid aligned with the car subsystem; an opti aligned with the mather liquid handling the actuator config	rtridge and separate a lar diagnostic system lge and comprising a rtridge in a first opera cal subsystem; a car agnet receiving slot; subsystem, the optic ured to vertically disp	a configured to process a biological nucleic acid volume from the biological comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first ne nozzle of the liquid handling system is

Claim	Claim Language	Infringement Evidence
		coupled to a fluid port of the cartridge, wherein the fluid port of the cartridge receives fluids for processing the biological sample, the magnet passes through the magnet receiving slot of the cartridge platform and interfaces with a first portion of the cartridge, the optical subsystem interfaces with a second portion of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. • Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.

Claim	Claim Language	Infringement Evidence
		 Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligned with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
1(e)	wherein the microfluidic device comprises: an upstream channel;	The accused system comprises a microfluidic device comprising an upstream channel. *NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A B Conserve Strategy of the Conserve Strategy
		 Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent port, the fluid port, and the detection chamber.

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region") U.S. Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") U.S. Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire rele

Claim	Claim Language	Infringement Evidence
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165
		may be occluded at the first occlusion position 142 to form an eighth
		truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
		diagnostic reagent with the released nucleic acid sample is complete and well
		mixed, the reconstituted mixture may then be dispensed through the
		reagent port 115, through the eighth truncated pathway, and to the
		detection chamber 117, by using a fluid handling system to push the
		seventh occlusion position [148] (normally closed) open. The detection
		chamber 117 is completely filled with the mixed reagent-nucleic acid
		sample, after which the fluidic pathway 165 is occluded at the third, sixth,
		seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth
		truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic
		pathways 165 may be similarly configured to receive a reagent-nucleic acid
		mixture. An external molecular diagnostic system and/or module may then
		perform additional processes, such as thermocycling and detection, on the
		volume of fluid within the detection chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		• U.S. Patent No. 9,738,887 at 23:36-41 ("Each detection chamber 117 of the specific embodiment is identical and comprised of three interconnected channels, configured in a circular arrangement, with each of the interconnected channels approximately 0.4 mm deep and 1.6 mm wide at its widest point, resulting in a total volume of -10 mL for each detection chamber 117.")
1(f)	[the microfluidic device comprises] a DNA manipulation module located downstream from the upstream channel;	The accused system comprises a microfluidic device comprising a DNA manipulation module located downstream from the upstream channel. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the

Claim	Claim Language	Infringement Evidence
	9 9	cartridge into three thin PCR chambers and the amplification process
		begins." <i>Id.</i> at 3:58-4:08
		A Company of the second of the
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."

Claim	Claim Language	Infringement Evidence
		"A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region.")

Claim	Claim Language	Infringement Evidence
		• U.S. Patent No. 9,738,887 at 2:36-3:5. ("As shown in FIGS. 1A-lC, an
		embodiment of a microfluidic cartridge 100 for processing and detecting
		nucleic acids comprises: a top layer 110 comprising a set of sample port-
		reagent port pairs 112 and a set of detection chambers 116; an intermediate
		substrate 120, coupled to the top layer 110 and partially separated from the top
		layer by a film layer 125, configured to form a waste chamber 130; an
		elastomeric layer 140 partially situated on the intermediate substrate 120; a
		magnet housing region 150 accessible by a magnet 152 providing a magnetic
		field 156; and a set of fluidic pathways 160, each formed by at least a portion of the top layer 110, a portion of the film layer 125, and a portion of the
		elastomeric layer 140 In a specific application, the microfluidic cartridge
		100 can be used to facilitate a PCR procedure for analysis of a sample
		containing nucleic acids.")
		• U.S. Patent No. 9,738,887 at 13:7-18. ("The top layer 110 of an embodiment
		of the microfluidic cartridge 100 functions to accommodate elements
		involved in performing a molecular diagnostic procedure (e.g. PCR), such
		that a sample containing nucleic acids, passing through the cartridge, can
		be manipulated by the elements involved in performing the molecular diagnostic
		procedure. The top layer 110 is preferably composed of a structurally rigid/stiff
		material with low autofluorescence, such that the top layer 110 does not
		interfere with sample detection by fluorescence or chemiluminescence
		techniques, and an appropriate glass transition temperature and chemical
		compatibility for PCR or other amplification techniques.")
		• U.S. Patent No. 9,738,887 at 13:35-42. ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular
		diagnostics protocol may be delivered, out of which waste fluids may be
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• U.S. Patent No. 9,738,887 at 15:29-39 ("The segments may be arranged in at
		least one of several configurations to facilitate isolation, processing, and

Claim	Claim Language	Infringement Evidence
Ciann	Claim Language	 amplification of a nucleic acid sample"). U.S. Patent No. 9,738,887 at 23:20-24 ("The top layer 110 of the specific embodiment of the microfluidic cartridge 100 functions preferably as described in Section 1.1, and is composed of polypropylene with low autofluorescence and a glass transition temperature suitable for PCR.") U.S. Patent No. 9,738,887 at 23:36-41 ("Each detection chamber 117 of the specific embodiment is identical and comprised of three interconnected channels, configured in a circular arrangement, with each of the interconnected channels approximately 0.4 mm deep and 1.6 mm wide at its widest point, resulting in a total volume of -10 mL for each detection chamber 117.") U.S. Patent No. 9,738,887 at 24:1-11 ("In the specific embodiment, the intermediate substrate 120 is composed of a polypropylene material to minimize cost and simplify assembly, and in the orientation shown in FIG. 11B, the top of the intermediate substrate 120 is 1.5 mm thick. The film layer 125, partially separating the intermediate substrate 120 from the top layer 110 is a polypropylene film with a nominal thickness of 50 microns. The film layer 125 is able to withstand temperatures of up to 95° C. encountered during fabrication and during an intended PCR procedure, while being thermally bondable to the top layer 110.")
1(g)	[the microfluidic device comprises] a DNA manipulation zone within the DNA manipulation module and configured to perform PCR amplification of a sample;	The accused system comprises a microfluidic device comprising a DNA manipulation zone within the DNA manipulation module and configured to perform PCR amplification of a sample. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) *NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." *"The NeuMoDx*** Molecular Systems are a family of scalable platforms that

Claim	Claim Language	Infringement Evidence
		fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge ."
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics.* NeuMody Interest Ann Arter, MI 48108 www.neumods.com CARTRIDGE CARTRID
		40600094 D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19)
		• "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx
		Cartridge contains 12 independent microfluidic circuits that enable the
		independent processing of up to 12 samples once housed appropriately in
		the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis,

Claim	Claim Language	Infringement Evidence
Ciaim	Claim Language	nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process

Claim	Claim Language	Infringement Evidence
		begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26
		US9403165 (Exhibit 27)
		• Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at
		least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second
		fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an
		elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the
		intermediate substrate.
		 Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first

Claim	Claim Language	Infringement Evidence
		sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 11. The cartridge of claim 10, further comprising 1) a heating region defined as a recessed region of the first layer that is parallel to the set of voids of the corrugated surface, and 2) a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber.
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample

Claim	Claim Language	Infringement Evidence
		port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module, transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, a

Claim	Claim Language	Infringement Evidence
		 wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:49-65 ("The cartridge heater 153 functions to

Claim	Claim Language	Infringement Evidence
		transfer heat to a heating region 224 of a microfluidic cartridge 210, for inducing a pH shift to release bound nucleic acids from magnetic beads within the heating region 224 The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
1(h)	[the microfluidic device comprises] a first valve disposed within the DNA manipulation module upstream of the DNA manipulation zone;	The accused system comprises a microfluidic device comprising a first valve disposed within the DNA manipulation module upstream of the DNA manipulation zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A B Constitution of the state o
		PCR First valve
		US9738887 (Exhibit 31)
		Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

fringement Evidence
guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of

Claim	Claim Language	Infringement Evidence
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may
		be occluded at the first occlusion position 142 to form an eighth truncated
		pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the
		reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detect ion chamber 117, by
		using a fluid handling system to push the seventh occlusion position [148]
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(i)	[the microfluidic device comprises] a second valve disposed within the DNA manipulation module	The accused system comprises a microfluidic device comprising a second valve disposed within the DNA manipulation module downstream of the DNA manipulation zone.

Claim	Claim Language	Infringement Evidence
	downstream of the DNA	NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6,
	manipulation zone; and	2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process
		begins." <i>Id.</i> at 3:58-4:08
		A Powerty Stroke
		Second valve PCR

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the el

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(j)	[the microfluidic device comprises] a vent disposed within the DNA manipulation module and separated from the	The accused system comprises a microfluidic device comprising a vent disposed within the DNA manipulation module and separated from the upstream channel by the first and second valves.

Claim	Claim Language	Infringement Evidence
Claim	Claim Language upstream channel by the first and second valves;	Infringement Evidence NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16)
		On information and belief, the accused cartridge comprises a vent disposed within the DNA manipulation module and separated from the upstream channel by the first and second valves. • <i>Id.</i> at 2:10

Claim	Claim Language	Infringement Evidence
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 13. The cartridge of claim 11, further comprising a heating region as a recessed region of the first layer that is parallel to the set of parallel voids of the corrugated surface, and a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber. • Claim 15. The cartridge of claim 13, wherein at least of the first fluidic pathway and the second fluidic pathway is coupled to an end vent configured to provide fine metering of fluid flow.
		 US9738887 (Exhibit 31) Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 Port, the fluid port, and the detection chamber. Claim 10. The cartridge of claim 1, wherein a terminal portion of the fluidic pathway is coupled to an end vent, configured to provide fine metering of fluid flow. U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection chamber 117.") • U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 8,738,887 at 15:4-6 ("A fluidic pathway 165 may also further comprise an end vent 199, which functions to prevent any fluid from escaping the microfluidic channel.")
1(k)	a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA	The accused system comprises a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA manipulation zone when amplification of the sample occurs.
	manipulation zone when amplification of the sample occurs,	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY
	occurs,	MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx TM Molecular Systems are a family of scalable platforms that

Claim	Claim Language	Infringement Evidence
		fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		"The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic

Claim	Claim Language	Infringement Evidence
		pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 U.S. Patent No. 9,339,812 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,339,812 at 3:41-46 ("The detection chamber heaters 157, optical subsystem 180 and valve actuation subsystem 170 of the molecular
		diagnostic module 130 then facilitate analysis of the set of nucleic acid- reagent mixtures by a processor configured to display information on a user interface.")
		 U.S. Patent No. 9,339,812 at 26:25-32 ("In a variation wherein the controller 272 is coupled to the molecular diagnostic module 130, the controller 272 preferably functions to automate reception of a microfluidic cartridge, heating of biological samples within the molecular diagnostic module 130 and the detection chambers 213, occlusion of fluidic pathways 220 by the valve actuation subsystem 170, and analysis of a set of nucleic acid-reagent mixtures by the optical subsystem 180.") U.S. Patent No. 9,339,812 at 33:3-39 ("Embodiments of the method 400 and

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	variations thereof can be embodied and/or implemented at least in part by a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the system 100 and one or more portions of the processor 273 and/or the controller 272. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions. The FIGURES illustrate the architecture, functionality and operation of possible implementations of systems, methods and computer program products according to preferred embodiments, example configurations, and variations thereof. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block can occur out of the order noted in the FIGURES. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block
		diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.")
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated

Claim	Claim Language	Infringement Evidence
Ciaini		surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • US Paten

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	bypass. The normally closed position may also be held closed by an occluding object, to prevent leakage even under pressure provided by a fluid delivery system, or under pressure experienced during a high temperature step (e.g., thermocycling) to prevent evaporation of a sample undergoing thermocycling.") • US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathways, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")
		,
		thermocycling and detection, on the volume of fluid within the detection

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running away from the detection chamber 163, and an eighth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and
		eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(1)	wherein the only ingress to and egress from the DNA manipulation zone is through the	In the accused system, the only ingress to and egress from the DNA manipulation zone is through the first and second valves.
	first and second valves, and	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

2010 2 50 DM 144 // 1 1 / 1 1 / 111 / GUDDO
2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
(Exhibit 16)
• "A series of microfluidic valves guides the PCR-ready solution through the
cartridge into three thin PCR chambers and the amplification process
begins." <i>Id.</i> at 3:58-4:08
A Page 17 Strate C
Second valve PCR

Claim	Claim Language	Infringement Evidence
		 US9339812 (Exhibit 26) Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway co

Claim	Claim Language	Infringement Evidence
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the el

Claim	Claim Language	Infringement Evidence
		pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathways as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(m)	wherein the computer-controlled heat source is in thermal contact with the DNA manipulation	In the accused system, the computer-controlled heat source is in thermal contact with the DNA manipulation zone.

Claim	Claim Language	Infringement Evidence
	zone; and	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/,
		last visited May 31, 2019 (Exhibit 11)
		• "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR
		DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		market-leading ease of use, true continuous random-access and rapid
		turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result".
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry™ reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge. This technology, combined with a
		platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the
		waste associated with technologies that required reconstitution of lyophilized
		reagents.
		 "The NeuMoDxTM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 NeuMoDxTM Molecular Systems, NEUMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/, last visited May 31, 2019, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint." "The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first

Claim	Claim Language	Infringement Evidence
		substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics

Claim	Claim Language	Infringement Evidence
		substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		 U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. 1A and 1B, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3
		microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply

Claim	Claim Language	Infringement Evidence
		 configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. 1A and 1B, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
1(n)	wherein the detector is configured to identify one or more polynucleotides within the DNA manipulation zone.	The accused system comprises a detector configured to identify one or more polynucleotides within the DNA manipulation zone. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) ** "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) ** "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		JFO_2018-10-25_8009-Rev-B_NeuMoDx-96-Spec-Sheet (Exhibit 21)

Claim	Claim Language	Infringement Evidence		
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1.	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		NeuMoDx_288_Spec_She	et_R2.pdf (Exhibit 2	2)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecus supports the cartrid aligned with the casubsystem; an opti aligned with the mathe liquid handling the actuator configure operation mode to coupled to a fluid preceives fluids for	rtridge and separate a dar diagnostic system lge and comprising a rtridge in a first opera cal subsystem; a car agnet receiving slot; subsystem, the optic ured to vertically disp a position wherein: the port of the cartridge, we processing the biolog	a configured to process a biological a nucleic acid volume from the biological a comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first the nozzle of the liquid handling system is wherein the fluid port of the cartridge gical sample, the magnet passes through
				e platform and interfaces with a first ystem interfaces with a second portion

Claim	Claim Language	Infringement Evidence
		 of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second
		further comprises an optical subsystem comprising a first unit and a sec unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligne

Claim	Claim Language	Infringement Evidence
		with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. • Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
18(a)	A device, comprising:	To the extent the preamble is limiting, the accused instrument is a device.
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)

Claim	Claim Language	Infringement Evidence
		NeuMoDx molecular NeuMoDx molecular
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result." NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"

Claim	Claim Language	Infringement Evidence
		platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab."

Claim	Claim Language	Infringement Evidence
		https://youtu.be/vukP6gbLBYE. (Exhibit 32)
		• "There's two systems that have been put into operation by NeuMoDx. One
		is the 288. It's a high-throughput instrument, versus the 96, which is a lower
		throughput instrument. The advantage is that both systems use all of the same
		chemistry and all of the same hardware. Its just a smaller footprint."
18(b)	a microfluidic process module;	The accused device comprises a microfluidic process module
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18)
		Describing "microfluidic cartridges capable of performing independent
		sample processing and real-time PCR."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited
		May 31, 2019 (Exhibit 10)
		• "NeuMoDx TM 288 and NeuMoDx TM 96 Molecular Systems are fully automated,
		continuous random-access analyzers that utilize our proprietary NeuDry TM
		reagent technology, which integrates magnetic particle affinity capture and real
		time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic

Claim	Claim Language	Infringement Evidence
		cartridge."
		 NeuMoDxTM Molecular Systems, NEUMoDx, https://www.neumodx.com/our-solutions/, last visited May 24, 2019 (Exhibit 11) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from 'sample to result'. The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDxTM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL- 25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx

Claim	Claim Language	Infringement Evidence
		Cartridge where Real-Time PCR occurs."
		K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber." NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		le le

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	US9604213 (Exhibit 30) • Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.
18(c)	a computer-controlled heat source; and	The accused device comprises a computer-controlled heat source. *NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		 platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result".

Claim	Claim Language	Infringement Evidence
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry TM reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-
		sample microfluidic cartridge. This technology, combined with a platform,
		uniquely incorporates robotics and microfluidics that result in higher
		throughput, improved performance and increased efficiency by eliminating the
		waste associated with technologies that required reconstitution of lyophilized
		 reagents. "The NeuMoDxTM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		 "The NeuMoDxTM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936.
		(Exhibit 16)
		 "The NeuMoDx Molecular N96 and N288 are fully automated sample to
		result molecular diagnostics platforms. They provide continuous random
		access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		US9539576 (Exhibit 29)

Claim	Claim Language	Infringement Evidence
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		 US9499896 (Exhibit 28) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating

Claim	Claim Language	Infringement Evidence
Ciailli	Claim Language	layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies is in thermal communication with a set of detection chambers. • U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an
		embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") • U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160

Claim	Claim Language	Infringement Evidence
		configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") • U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") • U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
18(d)	a detector;	The accused device comprises a detector. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." *NeuMoDx*** Molecular Systems*, NeuMoDx*, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of

Claim	Claim Language	Infringement Evidence		
		products of ampli	fication."	
		JFO_2018-10-25_8009-Re	ev-B_NeuMoDx-96-S	Spec-Sheet (Exhibit 21)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		NeuMoDx 288 Spec She		
		t	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecu supports the cartrid aligned with the ca	lar diagnostic system tridge and separate a lar diagnostic system lge and comprising a rtridge in a first opera	configured to process a biological nucleic acid volume from the biological comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling
		subsystem; an opti aligned with the ma the liquid handling the actuator config	cal subsystem; a car agnet receiving slot; a subsystem, the optic ured to vertically disp	tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first ne nozzle of the liquid handling system

Claim	Claim Language	Infringement Evidence
		coupled to a fluid port of the cartridge, wherein the fluid port of the cartridge receives fluids for processing the biological sample, the magnet passes through the magnet receiving slot of the cartridge platform and interfaces with a first portion of the cartridge, the optical subsystem interfaces with a second portion of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. • Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.

Claim	Claim Language	Infringement Evidence
		 Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligned with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
18(e)	wherein the microfluidic process module comprises: a zone configured to receive a sample and perform amplification of the sample;	The accused device comprises a microfluidic process module comprising a zone configured to receive a sample and perform amplification of the sample. *NeuMoDx*** Molecular Systems*, NeuModx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) * "NeuModx** Molecular Systems Revolutionary Molecular Diagnostic Solution Our patented, "sample to result" platform offers market-leading ease of use, *true continuous random-access* and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." * "The NeuModx** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuModx** 288 and the NeuModx** 96 Molecular Systems are fully automated, *continuous random-access* analyzers* that utilize our proprietary NeuDry** reagent technology, which integrates magnetic particle affinity capture and *real time Polymerase Chain Reaction (PCR) chemistry in a

Claim	Claim Language	Infringement Evidence
	8 8	multi-sample microfluidic cartridge."
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics.* NeuModx Tributes Diagnostics.* NeuModx Diagnostics. NeuModx Diagnostics.* NeuMod
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "The NeuMoDx Molecular N96 and N288 are fully automated sample to
		result molecular diagnostics platforms. They provide continuous random
		access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge
		contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." Id. at 1:49-1:59
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the

Claim	Claim Language	Infringement Evidence
		 second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. Claim 11. The cartridge of claim 10, further comprising 1) a heating region defined as a recessed region of the first layer that is parallel to the set of voids of the corrugated surface, and 2) a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber.
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate
		nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one
		 distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward
		slots to define at least one pathway configured to receive the magnetic bead- sample; and a liquid handling system configured to transfer the magnetic bead- sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the
		comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter.
		• Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the

Claim	Claim Language	Infringement Evidence
		detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:49-65 ("The cartridge heater 153 functions to
		transfer heat to a heating region 224 of a microfluidic cartridge 210, for inducing a pH shift to release bound nucleic acids from magnetic beads within
		the heating region 224 The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for
		sample processing.")

Claim	Claim Language	Infringement Evidence
		 U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
18(f)	[the microfluidic process module comprises] a first valve upstream of the zone;	The accused device comprises a microfluidic process module comprising a first valve upstream of the zone.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process
		begins." <i>Id.</i> at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A B Company of the state of the
		PCR First valve
		US9738887 (Exhibit 31)
		Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Claim	Claim Language	Infringement Evidence
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the detection
		chamber and comprises a first and second branch extending downstream from a
		junction, and is configured to be occluded at a set of occlusion positions upon
		manipulation of the elastomeric layer through the set of valve guides, wherein a
		first occlusion position of the set of occlusion positions is positioned along the
		fluidic pathway downstream of the junction and upstream of the first branch and
		a second occlusion position of the set of occlusion positions is positioned along
		the fluidic pathway downstream of the junction and upstream of the second
		branch, wherein the set of occlusion positions comprises a normally open
		position and a normally closed position, wherein the normally open position
		comprises a first surface of the fluidic pathway at the first layer and a second
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second
		branch and excluding the first branch, to the detection chamber is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		• U.S. Patent No. 9,/38,88/ at 1/:2/-49 ("Increatter in the first embodiment, as

Claim	Claim Language	Infringement Evidence
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
18(g)	[the microfluidic process module comprises] a second valve downstream of the zone; and	The accused device comprises a microfluidic process module comprising a second valve downstream of the zone.

Claim	Claim Language	Infringement Evidence
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08
		A B ROMERTILL STATES
		Second valve PCR

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the el

Claim	Claim Language	Infringement Evidence
		truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
Ciaim	Ciaim Language	• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 148 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG.
		1C.")
18(h)	[the microfluidic process module comprises] a vent separated from the first valve by	The accused device comprises a microfluidic process module comprising a vent separated from the first valve by the second valve.
	the second valve;	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/2993079 (Exhibit 16) A B C D C
On information and belief, the accused cartridge comprises a vent disposed with the DNA manipulation module and separated from the upstream channel by the and second valves. • Id. at 2:10

Claim	Claim Language	Infringement Evidence
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 13. The cartridge of claim 11, further comprising a heating region as a recessed region of the first layer that is parallel to the set of parallel voids of the corrugated surface, and a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber. • Claim 15. The cartridge of claim 13, wherein at least of the first fluidic pathway and the second fluidic pathway is coupled to an end vent configured to provide fine metering of fluid flow.
		 Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent

Claim	Claim Language	Infringement Evidence
		port, the fluid port, and the detection chamber.
		• Claim 10. The cartridge of claim 1, wherein a terminal portion of the fluidic
		pathway is coupled to an end vent , configured to provide fine metering of fluid flow.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 8,738,887 at 15:4-6 ("A fluidic pathway 165 may also further comprise an end vent 199, which functions to prevent any fluid from escaping the microfluidic channel.")
18(i)	a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the zone	The accused device comprises a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the zone when amplification of the sample occurs in the zone
	when amplification of the sample occurs in the zone,	 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that

Claim	Claim Language	Infringement Evidence
		fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		"The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic

Claim	Claim Language	Infringement Evidence
		pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 U.S. Patent No. 9,339,812 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,339,812 at 3:41-46 ("The detection chamber heaters 157, optical subsystem 180 and valve actuation subsystem 170 of the molecular
		diagnostic module 130 then facilitate analysis of the set of nucleic acid- reagent mixtures by a processor configured to display information on a user interface.")
		 U.S. Patent No. 9,339,812 at 26:25-32 ("In a variation wherein the controller 272 is coupled to the molecular diagnostic module 130, the controller 272 preferably functions to automate reception of a microfluidic cartridge, heating of biological samples within the molecular diagnostic module 130 and the detection chambers 213, occlusion of fluidic pathways 220 by the valve actuation subsystem 170, and analysis of a set of nucleic acid-reagent mixtures by the optical subsystem 180.") U.S. Patent No. 9,339,812 at 33:3-39 ("Embodiments of the method 400 and

Claim	Claim Language	Infringement Evidence
		variations thereof can be embodied and/or implemented at least in part by
		a machine configured to receive a computer-readable medium storing
		computer-readable instructions. The instructions are preferably executed
		by computer-executable components preferably integrated with the system
		100 and one or more portions of the processor 273 and/or the controller
		272. The computer-readable medium can be stored on any suitable computer-
		readable media such as RAMs, ROMs, flash memory, EEPROMs, optical
		devices (CD or DVD), hard drives, floppy drives, or any suitable device. The
		computer-executable component is preferably a general or application specific
		processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.
		The FIGURES illustrate the architecture, functionality and operation of possible
		implementations of systems, methods and computer program products according
		to preferred embodiments, example configurations, and variations thereof. In
		this regard, each block in the flowchart or block diagrams may represent a
		module, segment, or portion of code, which comprises one or more executable
		instructions for implementing the specified logical function(s). It should also be
		noted that, in some alternative implementations, the functions noted in the block
		can occur out of the order noted in the FIGURES. For example, two blocks
		shown in succession may, in fact, be executed substantially concurrently, or the
		blocks may sometimes be executed in the reverse order, depending upon the
		functionality involved. It will also be noted that each block of the block
		diagrams and/or flowchart illustration, and combinations of blocks in the block
		diagrams and/or flowchart illustration, can be implemented by special purpose
		hardware-based systems that perform the specified functions or acts, or
		combinations of special purpose hardware and computer instructions.")
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection
		chamber; an elastomeric layer; an intermediate substrate including a set of valve
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		guides, wherein the intermediate substrate defines a chamber with a corrugated

surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally closed position and the first branch and excluding the second branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlu

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence bypass. The normally closed position may also be held closed by an occluding object, to prevent leakage even under pressure provided by a fluid delivery system, or under pressure experienced during a high temperature step (e.g., thermocycling) to prevent evaporation of a sample undergoing thermocycling.") • US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")
		, · · · · · · · · · · · · · · · · · · ·
		chamber 117.")US Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
18(j)	wherein the only ingress to and egress from the zone is through the first and second valves;	In the accused device, the only ingress to and egress from the zone is through the first and second valves NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6,

2010 2 70 DM 1 1 / 1 1 / 1 1 1 / 4 / 4 / 4 / 4 / 4 /
2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936.
(Exhibit 16)
• "A series of microfluidic valves guides the PCR-ready solution through the
cartridge into three thin PCR chambers and the amplification process
begins." <i>Id.</i> at 3:58-4:08
A Done Residence of the second
Second valve PCR

Claim	Claim Language	Infringement Evidence
		 US9339812 (Exhibit 26) Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field, and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway to

Claim	Claim Language	Infringement Evidence
Claim		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluid

Claim	Claim Language	Infringement Evidence
		pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
18(k)	wherein the computer-controlled heat source is in thermal contact with the zone; and	In the accused device, the computer-controlled heat source is in thermal contact with the zone. *NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ ,

Claim	Claim Language	Infringement Evidence
		last visited May 31, 2019 (Exhibit 11)
		• "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR
		DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		market-leading ease of use, true continuous random-access and rapid
		turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result".
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry™ reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge. This technology, combined with a
		platform, uniquely incorporates robotics and microfluidics that result in higher
		throughput, improved performance and increased efficiency by eliminating the
		waste associated with technologies that required reconstitution of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO

Claim	Claim Language	Infringement Evidence
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 NeuMoDxTM Molecular Systems, NEUMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/, last visited May 31, 2019, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint." "The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate

Claim	Claim Language	Infringement Evidence
		connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the

Claim	Claim Language	Infringement Evidence
		set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.")
		• U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.")
		• U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit.

Claim	Claim Language	Infringement Evidence
		 In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. 1A and 1B, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
18(1)	wherein the detector is configured to identify one or more polynucleotides within the zone.	In the accused device, the detector is configured to identify one or more polynucleotides within the zone. *NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." *NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) • "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		JFO_2018-10-25_8009-Rev-B_NeuMoDx-96-Spec-Sheet (Exhibit 21)

	Optical Wavelengths	Fortage of four	
		Excitation (nm)	Emission (nm)
	1)	470	510
	2	530	555
	3	585	610
	4	625	660
	5	680	715 long pass
	NeuMoDx_288_Spec_She	eet_R2.pdf (Exhibit 22	2)
	Optical Wavelengths	Excitation (nm)	Emission (nm)
	t	470	510
	2	530	555
	3	585	610
	4	625	660
	5	680	715 long pass
	sample within a car sample, the molecusupports the cartridaligned with the car subsystem; an opticaligned with the material with the material bandling the actuator configuration mode to coupled to a fluid process.	rtridge and separate a tlar diagnostic system lge and comprising a rtridge in a first opera tcal subsystem; a cart agnet receiving slot; a subsystem, the optical ured to vertically disp a position wherein: the port of the cartridge, v	configured to process a biological nucleic acid volume from the biological comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handlin tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first me nozzle of the liquid handling system wherein the fluid port of the cartridge ical sample, the magnet passes through

Claim	Claim Language	Infringement Evidence
		of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. • Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of
		excitation filters, a set of emission filters, a set of photodetectors aligned

Claim	Claim Language	Infringement Evidence
		with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. • Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
19(a)	A system, comprising:	To the extent the preamble is limiting, the accused instruments are a system. NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/ ,
		last visited June 5, 2019 (Exhibit 12)

Claim	Claim Language	Infringement Evidence
		NeuMoDx molecular NeuMoDx molecular
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result." NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11)
		• "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"

Claim	Claim Language	Infringement Evidence
		platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by climinating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDxTM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDxTM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDxTM Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab." NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/dr-steven-young-vi

Claim	Claim Language	Infringement Evidence	
		https://youtu.be/vukP6gbLBYE. (Exhibit 32)	
		• "There's two systems that have been put into operation by NeuMoDx. One	
		is the 288. It's a high-throughput instrument, versus the 96, which is a lower	
		throughput instrument. The advantage is that both systems use all of the same	
		chemistry and all of the same hardware. Its just a smaller footprint."	
19(b)	a microfluidic device;	The accused system comprises a microfluidic device.	
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18)	
		 Describing "microfluidic cartridges capable of performing independent 	
		sample processing and real-time PCR."	
		Powerful. Simple. Diagnostics." NeuModx Diffice 734 477.0111 Tax 734.477.013 0 11250 Etemburge Place Ann Arbor, MI 48108 www.neumodx.com CARTRIDGE Last respective debased and respective processing and respective proces	
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10)	
		"NeuMoDx TM 288 and NeuMoDx TM 96 Molecular Systems are fully automated,	
		continuous random-access analyzers that utilize our proprietary NeuDry TM	
		reagent technology, which integrates magnetic particle affinity capture and real	
		time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic	

Claim	Claim Language	Infringement Evidence
		cartridge."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 24, 2019 (Exhibit 11) • "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from 'sample to result'. The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx

ON DECISION TEMPLATE s, the NeuMoDx CR chamber (per ection of the ODX (Nov. 6, "VIDEO ideo/299307936. uidic cartridge up to 12 samples

Claim	Claim Language	Infringement Evidence
		 US10041062 (Exhibit 33) Claim 1. A molecular diagnostic system configured to process a biological sample within a cartridge and separate a nucleic acid volume from the biological sample, the molecular diagnostic system comprising: a cartridge platform that supports the cartridge and comprising a magnet receiving slot configured to be aligned with the cartridge in a first operation mode; a nozzle of a liquid handling subsystem; an optical subsystem; a cartridge heater; a magnet vertically aligned with the magnet receiving slot; and an actuator coupled to the nozzle of the liquid handling subsystem, the optical subsystem, and the cartridge heater, the actuator configured to vertically displace the cartridge platform in the first operation mode to a position wherein: the nozzle of the liquid handling system is coupled to a fluid port of the cartridge, wherein the fluid port of the cartridge receives fluids for processing the biological sample, the magnet passes through the magnet receiving slot of the cartridge platform and interfaces with a first portion of the cartridge, the optical subsystem interfaces with a second portion of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge platform.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a

Claim	Claim Language	Infringement Evidence
		magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater.
19(c)	a computer-controlled heat source; and	The accused system comprises a computer-controlled heat source. **NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) **"NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." *"The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry*** reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. *"The NeuMoDx*** 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx*** 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and

Claim Language	Infringement Evidence
	 "The NeuMoDxTM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
	 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
	 US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an
	Claim Language

second substrate surface, and wherein the electronics substrate glement and the sensing element of each of the edies to a controller; a set of heat-sink supports coupled to set of heater-sensor dies, through the set of apertures, and a substrate surface of the electronics substrate and configure generated by the set of heater-sensor dies, wherein at least sink supports includes an integrated cooling element, and wo of each of the set of heat-sink supports is coupled to an ela transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor diesection chambers upon alignment of the set of heater-sensor detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater one of the set of substrate connection points. US9499896 (Exhibit 28)	
dies to a controller; a set of heat-sink supports coupled to set of heater-sensor dies, through the set of apertures, and a substrate surface of the electronics substrate and configure generated by the set of heater-sensor dies, wherein at least sink supports includes an integrated cooling element, and we of each of the set of heat-sink supports is coupled to an elast transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor did detection chambers upon alignment of the set of heater-sensor of detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of he one of the set of substrate connection points. US9499896 (Exhibit 28)	-
set of heater-sensor dies, through the set of apertures, and a substrate surface of the electronics substrate and configure generated by the set of heater-sensor dies, wherein at least sink supports includes an integrated cooling element, and we of each of the set of heat-sink supports is coupled to an elast transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor dies, detection chambers upon alignment of the set of heater-sensor dies, detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor dies, wherein at least one of the set of heater-sensor dies, wherein at least supports including a detection chambers upon alignment of the set of heater-sensor dies, wherein at least supports is coupled to an elast transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor dies, wherein at least supports is coupled to an elast transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor dies, wherein at least supports is coupled to an elast transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor dies, wherein at least supports is coupled to an elast transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor dies, wherein at least supports is coupled to an elast supp	
substrate surface of the electronics substrate and configure generated by the set of heater-sensor dies, wherein at least sink supports includes an integrated cooling element, and vof each of the set of heat-sink supports is coupled to an ela transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor didetection chambers upon alignment of the set of heater-sensor of detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of ho one of the set of substrate connection points. US9499896 (Exhibit 28)	,
generated by the set of heater-sensor dies, wherein at least sink supports includes an integrated cooling element, and vof each of the set of heat-sink supports is coupled to an ela transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor didetection chambers upon alignment of the set of heater-sensor didetection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater one of the set of substrate connection points. US9499896 (Exhibit 28)	
sink supports includes an integrated cooling element, and we of each of the set of heat-sink supports is coupled to an ela transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor did detection chambers upon alignment of the set of heater-sensor did detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor did detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor did detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor did detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor did detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor did detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor did detection chambers.	
of each of the set of heat-sink supports is coupled to an ela transmits a biasing force through the electronics substrate, thermal communication between the set of heater-sensor didetection chambers upon alignment of the set of heater-sensor detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater one of the set of substrate connection points. US9499896 (Exhibit 28)	
thermal communication between the set of heater-sensor didetection chambers upon alignment of the set of heater-sensor didetection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor didetection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor didetection chambers upon alignment of the set of heater-sensor didetection chambers upon alignment of the set of heater-sensor didetection chambers upon alignment of the set of heater-sensor didetection chambers upon alignment of the set of heater-sensor didetection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor didetection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor didetection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of heater-sensor didetection chambers. US9499896 (Exhibit 28)	
detection chambers upon alignment of the set of heater-sen of detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of he one of the set of substrate connection points. US9499896 (Exhibit 28)	
of detection chambers; and a set of wire bonds, including a between the connection point of at least one of the set of he one of the set of substrate connection points. US9499896 (Exhibit 28)	
between the connection point of at least one of the set of he one of the set of substrate connection points. US9499896 (Exhibit 28)	
one of the set of substrate connection points. US9499896 (Exhibit 28)	
US9499896 (Exhibit 28)	cater-sensor dies and
Claim 1. A system for thermocycling biological samples w	vithin detection
chambers comprising: a set of heater-sensor dies, each heat	
set of heater-sensor dies comprising: an assembly including	g a first insulating
layer, a heating region comprising an adhesion material lay	
insulating layer and a noble material layer coupled to the a	
layer, and a second insulating layer coupled to the heating insulating layer through a pattern of voids in the heating re	•
pattern of voids in the heating region defines a coarse patter	•
global morphology at a first scale and associated with a hea	
heating region, and a fine pattern, comprising a local morp	phology at a second
scale smaller than the first scale, integrated into the coarse	*
associated with a sensing element of the heating region; an	
substrate configured to couple heating elements and set set of heater-sensor dies to a controller; and a set of elast	
to a second substrate surface of the electronics substrate on	-

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. • U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") • U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.")
		facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a
		microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit.
		In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an

Claim	Claim Language Infringement Evidence						
		input for PID con	trol.")				
		• U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. 1A and					
				oller 165, which functions to			
		automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures)					
			U 1	` • · · · · · · · · · · · · · · · · · ·			
10(1)			ng element(s) 115 of t	the system 100."			
19(d)	a detector;	The accused system compa	rises a detector				
		N M D TM M 1 1 C	NEWMODY				
		NeuMoDx TM Molecular Sy		9/ lost visited June 2, 2010 (Eyhibit 12)			
			 http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 1 five wavelength 				
				tions Real-time detection of			
		products of ampli	*	nons Real-time detection of			
		products of amph	iication.				
		NeuMoDx TM Molecular Sy	estems NeuMoDx				
				/, last visited June 3, 2019 (Exhibit 14)			
		·	_	rescence detection at five wavelengths			
				tions Real-time detection of			
		products of ampli	*				
		JFO_2018-10-25_8009-Re	ev-B_NeuMoDx-96-S	Spec-Sheet (Exhibit 21)			
		Optical Wavelengths	Excitation (nm)	Emission (nm)			
		t	470	510			
		2	530	555			
		3	585	610			
		4	625	660			

Claim	Claim Language	Infringement Evidence		
		NeuMoDx 288 Spec She	et_R2.pdf (Exhibit 2	2)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		sample within a car sample, the molecus supports the cartridaligned with the car subsystem; an opticaligned with the matheliquid handling the actuator configured to a fluid preceives fluids for put the magnet receiving portion of the cartridge, which derivative of the nucleon compressed between the cast one unit included to reflect the molecular configured to reflect the cartridge.	rtridge and separate and ardiagnostic system and comprising a rtridge in a first operated as the subsystem; a car agnet receiving slot; a subsystem, the opticured to vertically disparated as position wherein: the processing the biologing slot of the cartridge, wherein the second porticle acid volume, and the cartridge heated most claim 1, wherein the tridge and with the emission of the cartridge heated wi	a configured to process a biological a nucleic acid volume from the biological a comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handling tridge heater; a magnet vertically and an actuator coupled to the nozzle of all subsystem, and the cartridge heater, place the cartridge platform in the first he nozzle of the liquid handling system is wherein the fluid port of the cartridge gical sample, the magnet passes through a platform and interfaces with a first system interfaces with a second portion tion of the cartridge receives a processed and a third region of the cartridge is a rand the cartridge platform. In the optical subsystem comprises at filter, an emission filter, a on filter, and a dichroic mirror acitation filter toward the biological from the biological sample, through

Claim	Claim Language	Infringement Evidence
		the emission filter, and toward the photodetector.
Claim	Claim Language	the emission filter, and toward the photodetector. US9604213 (Exhibit 30) Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligned with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from
		with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic
		one of the set of nucleic acid-reagent mixtures, through at least one of the
		set of emission filters, and toward at least one of the set of photodetectors.
		• Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of
		detection chambers through the second surface of the cartridge, and wherein the

Claim	Claim Language	Infringement Evidence
		optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.
19(e)	wherein the microfluidic device comprises: an upstream channel;	The accused system comprises a microfluidic device comprising an upstream channel NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMODX (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 A B B B B B B B B B B B B B B B B B B
		• 0.5. I atchit ivo. 9,750,007 at Austract (A inicionfunctic carriage, configured to

Claim	Claim Language	Infringement Evidence
		facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region") • U.S. Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • U.S. Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.")

Claim	Claim Language	Infringement Evidence
		may be occluded at the first occlusion position 142 to form an eighth
		truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
		diagnostic reagent with the released nucleic acid sample is complete and well
		mixed, the reconstituted mixture may then be dispensed through the
		reagent port 115, through the eighth truncated pathway, and to the
		detection chamber 117, by using a fluid handling system to push the
		seventh occlusion position [148] (normally closed) open. The detection
		chamber 117 is completely filled with the mixed reagent-nucleic acid
		sample, after which the fluidic pathway 165 is occluded at the third, sixth,
		seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth
		truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic
		pathways 165 may be similarly configured to receive a reagent-nucleic acid
		mixture. An external molecular diagnostic system and/or module may then
		perform additional processes, such as thermocycling and detection, on the
		volume of fluid within the detection chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1K OCCLUDED • U.S. Patent No. 9,738,887 at 23:36-41 ("Each detection chamber 117 of the specific embodiment is identical and comprised of three interconnected channels, configured in a circular arrangement, with each of the interconnected channels approximately 0.4 mm deep and 1.6 mm wide at its widest point, resulting in a total volume of -10 mL for each detection chamber 117.")
19(f)	[the microfluidic device comprises] a DNA manipulation zone located downstream from the upstream channel and configured to perform PCR amplification of a sample;	The accused system comprises a microfluidic device comprising a DNA manipulation zone located downstream from the upstream channel and configured to perform PCR amplification of a sample *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx "MoRKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 A C C C C C C C C C C C C
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."

Claim Language	Infringement Evidence
Claim Language	 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08 U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer
	comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a detection chamber , comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste
	Claim Language

Claim	Claim Language	Infringement Evidence
		• U.S. Patent No. 9,738,887 at 2:36-3:5. ("As shown in FIGS. 1A-IC, an
		embodiment of a microfluidic cartridge 100 for processing and detecting
		nucleic acids comprises: a top layer 110 comprising a set of sample port-
		reagent port pairs 112 and a set of detection chambers 116; an intermediate
		substrate 120, coupled to the top layer 110 and partially separated from the top
		layer by a film layer 125, configured to form a waste chamber 130; an
		elastomeric layer 140 partially situated on the intermediate substrate 120; a
		magnet housing region 150 accessible by a magnet 152 providing a magnetic
		field 156; and a set of fluidic pathways 160, each formed by at least a portion of
		the top layer 110, a portion of the film layer 125, and a portion of the
		elastomeric layer 140 In a specific application, the microfluidic cartridge
		100 can be used to facilitate a PCR procedure for analysis of a sample
		containing nucleic acids.") LLS Potent No. 0.722 227 at 12.7.12 ("The ten lever 110 of an embediment
		• U.S. Patent No. 9,738,887 at 13:7-18. ("The top layer 110 of an embodiment of the microfluidic cartridge 100 functions to accommodate elements
		involved in performing a molecular diagnostic procedure (e.g. PCR), such
		that a sample containing nucleic acids, passing through the cartridge, can
		be manipulated by the elements involved in performing the molecular diagnostic
		procedure. The top layer 110 is preferably composed of a structurally rigid/stiff
		material with low autofluorescence, such that the top layer 110 does not
		interfere with sample detection by fluorescence or chemiluminescence
		techniques, and an appropriate glass transition temperature and chemical
		compatibility for PCR or other amplification techniques.")
		• U.S. Patent No. 9,738,887 at 13:35-42. ("The set of fluidic pathways 160 of
		the microfluidic cartridge 100 functions to provide a fluid network into which
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular
		diagnostics protocol may be delivered, out of which waste fluids may be
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• U.S. Patent No. 9,738,887 at 15:29-39 ("The segments may be arranged in at
		least one of several configurations to facilitate isolation, processing, and

Claim	Claim Language	Infringement Evidence
		 amplification of a nucleic acid sample"). U.S. Patent No. 9,738,887 at 23:20-24 ("The top layer 110 of the specific embodiment of the microfluidic cartridge 100 functions preferably as described in Section 1.1, and is composed of polypropylene with low autofluorescence and a glass transition temperature suitable for PCR.") U.S. Patent No. 9,738,887 at 23:36-41 ("Each detection chamber 117 of the specific embodiment is identical and comprised of three interconnected channels, configured in a circular arrangement, with each of the interconnected channels approximately 0.4 mm deep and 1.6 mm wide at its widest point, resulting in a total volume of -10 mL for each detection chamber 117.") U.S. Patent No. 9,738,887 at 24:1-11 ("In the specific embodiment, the intermediate substrate 120 is composed of a polypropylene material to minimize cost and simplify assembly, and in the orientation shown in FIG. 11B, the top of the intermediate substrate 120 is 1.5 mm thick. The film layer 125, partially separating the intermediate substrate 120 from the top layer 110 is a polypropylene film with a nominal thickness of 50 microns. The film layer 125 is able to withstand temperatures of up to 95° C. encountered during fabrication and during an intended PCR procedure, while being thermally bondable to the top layer 110.")
19(g)	[the microfluidic device comprises] a first valve disposed upstream of the DNA manipulation zone; and	The accused system comprises a microfluidic device comprising a first valve disposed upstream of the DNA manipulation zone *NeuMoDx Molecular N96 and N288 Overview and Animation*, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx *M* WORKFLOW** hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		PCR First valve
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Infringement Evidence
guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first bran

Claim	Claim Language	Infringement Evidence
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may
		be occluded at the first occlusion position 142 to form an eighth truncated
		pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic
		reagent with the released nucleic acid sample is complete and well mixed, the
		reconstituted mixture may then be dispensed through the reagent port 115,
		through the eighth truncated pathway, and to the detect ion chamber 117, by
		using a fluid handling system to push the seventh occlusion position [148]
		(normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165
		is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1J
		119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
19(h)	[the microfluidic device comprises] a second valve disposed downstream of the DNA manipulation zone;	The accused system comprises a microfluidic device comprising a second valve disposed downstream of the DNA manipulation zone NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		 (Exhibit 16) "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A B Commercial Strong
		Second valve PCR

Claim	Claim Language	Infringement Evidence
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection
		chamber; an elastomeric layer; an intermediate substrate including a set of valve
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the detection
		chamber and comprises a first and second branch extending downstream from a
		junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a
		first occlusion position of the set of occlusion positions is positioned along the
		fluidic pathway downstream of the junction and upstream of the first branch and
		a second occlusion position of the set of occlusion positions is positioned along
		the fluidic pathway downstream of the junction and upstream of the second
		branch, wherein the set of occlusion positions comprises a normally open
		position and a normally closed position, wherein the normally open position
		comprises a first surface of the fluidic pathway at the first layer and a second
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a
		closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second

Claim	Claim Language	Infringement Evidence
	8 3	branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as thermocycling and detect ion, on the volume of fluid within the detect ion chamber 117.")
		 U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence 165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1K OCCLUDED • U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163,
		and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
19(i)	a controller programmed to close the first and second valves to prevent gas and liquid from	The accused system comprises a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA manipulation zone and to isolate and confine the sample to a region between the first and second valves

Claim	Claim Language	Infringement Evidence
Claim	Claim Language flowing into or out of the DNA manipulation zone and to isolate and confine the sample to a region between the first and second valves accessible to the detector,	 Infringement Evidence accessible to the detector. NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multisample microfluidic cartridge. This technology combined with a platform
		NeuDry TM reagent technology, which integrates magnetic particle affinity
		 "The NeuMoDxTM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 24, 2019 (Exhibit 11) "The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 US9339812 (Exhibit 26) Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway;

Claim	Claim Language	Infringement Evidence
		capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		• U.S. Patent No. 9,339,812 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")

Claim	Claim Language	Infringement Evidence
		 U.S. Patent No. 9,339,812 at 3:41-46 ("The detection chamber heaters 157, optical subsystem 180 and valve actuation subsystem 170 of the molecular diagnostic module 130 then facilitate analysis of the set of nucleic acidreagent mixtures by a processor configured to display information on a user interface.") U.S. Patent No. 9,339,812 at 26:25-32 ("In a variation wherein the controller 272 is coupled to the molecular diagnostic module 130, the controller 272 preferably functions to automate reception of a microfluidic cartridge, heating of biological samples within the molecular diagnostic module 130 and the detection chambers 213, occlusion of fluidic pathways 220 by the valve actuation subsystem 170, and analysis of a set of nucleic acid-reagent mixtures by the optical subsystem 180.") U.S. Patent No. 9,339,812 at 33:3-39 ("Embodiments of the method 400 and variations thereof can be embodied and/or implemented at least in part by a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the system 100 and one or more portions of the processor 273 and/or the controller 272. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions. The FIGURES illustrate the architecture, functionality and operation of possible implementations of systems, methods and computer program products according to preferred embodiments, example configurations, and variations thereof. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, whic

Claim	Claim Language	Infringement Evidence
		shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.")
		 Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined

Claim	Claim Language	Infringement Evidence
		between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • US Patent No. 9,738,887 at 12:11-19 ("When not in operation, however, the normally closed position 43 is configured to prevent leakage and/or fluid bypass. The normally closed position may also be held closed by an occluding object, to prevent leakage even under pressure provided by a fluid delivery system, or under pressure experienced during a high temperature step (e.g., thermocycling) to prevent evaporation of a sample undergoing thermocycling.") • US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown i

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection

Claim	Claim Language	Infringement Evidence
		chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
19(j)	wherein the only ingress to and egress from the region accessible to the detector is through the first and second valves; and	In the accused system, the only ingress to and egress from the region accessible to the detector is through the first and second valves. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		 Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions
		defined by an elastomeric layer of the cartridge, the method comprising:
		aligning the cartridge at a cartridge platform of a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
		the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Claim	Claim Language	Infringement Evidence
		guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of

Claim Language	Infringement Evidence
	 U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") U.S. Patent No. 9,738,887 at Figs. 1J and 1K:
	Claim Language

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• U.S. Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
19(k)	wherein the computer-controlled heat source is in thermal contact with the DNA manipulation zone and	The accused system comprises a computer-controlled heat source in thermal contact with the DNA manipulation zone. *NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ ,

Claim	Claim Language	Infringement Evidence
		last visited May 31, 2019 (Exhibit 11)
		"NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR
		DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		market-leading ease of use, true continuous random-access and rapid
		turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result".
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry™ reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge. This technology, combined with a
		platform, uniquely incorporates robotics and microfluidics that result in higher
		throughput, improved performance and increased efficiency by eliminating the
		waste associated with technologies that required reconstitution of lyophilized
		reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO

Claim	Claim Language	Infringement Evidence
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		 NeuMoDxTM Molecular Systems, NeuMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/, last visited May 31, 2019, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) "There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint." "The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate

Claim	Claim Language	Infringement Evidence
		connection points at least at one of the first substrate surface, an aperture surface
		defined within at least one of the set of apertures, and the second substrate
		surface, and wherein the electronics substrate couples the heating element
		and the sensing element of each of the set of heater-sensor dies to a
		controller ; a set of heat-sink supports coupled to at least one of 1) the set of
		heater-sensor dies, through the set of apertures, and 2) the second substrate
		surface of the electronics substrate and configured to dissipate heat generated by
		the set of heater-sensor dies, wherein at least one of the set of heat-sink supports
		includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a
		biasing force through the electronics substrate, thereby maintaining thermal
		communication between the set of heater-sensor dies and a set of detection
		chambers upon alignment of the set of heater-sensor dies with the set of
		detection chambers; and a set of wire bonds, including a wire bond coupled
		between the connection point of at least one of the set of heater-sensor dies and
		one of the set of substrate connection points.
		ent et uit ett et sweekunt temmenten permet
		US9499896 (Exhibit 28)
		Claim 1. A system for thermocycling biological samples within detection
		chambers comprising: a set of heater-sensor dies, each heater-sensor die in the
		set of heater-sensor dies comprising: an assembly including a first insulating
		layer, a heating region comprising an adhesion material layer coupled to the first
		insulating layer and a noble material layer coupled to the adhesion material
		layer, and a second insulating layer coupled to the heating region and to the first
		insulating layer through a pattern of voids in the heating region, wherein the
		pattern of voids in the heating region defines a coarse pattern, comprising a
		global morphology at a first scale and associated with a heating element of the
		heating region, and a fine pattern, comprising a local morphology at a second
		scale smaller than the first scale, integrated into the coarse pattern and
		associated with a sensing element of the heating region; an electronics
		substrate configured to couple heating elements and sensing elements of the
		set of heater-sensor dies to a controller; and a set of elastic elements coupled

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. • U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further
		 against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers
		 for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage

Claim	Claim Language	Infringement Evidence
		 conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
19(1)	wherein the detector is configured to identify one or more polynucleotides within the DNA manipulation zone.	The accused system comprises a detector configured to identify one or more polynucleotides within the DNA manipulation zone. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) ** "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification." *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14) ** "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		JFO_2018-10-25_8009-Rev-B_NeuMoDx-96-Spec-Sheet (Exhibit 21)

	Optical Wavelengths	Fortage of four	
		Excitation (nm)	Emission (nm)
	1)	470	510
	2	530	555
	3	585	610
	4	625	660
	5	680	715 long pass
	NeuMoDx_288_Spec_She	eet_R2.pdf (Exhibit 22	2)
	Optical Wavelengths	Excitation (nm)	Emission (nm)
	t	470	510
	2	530	555
	3	585	610
	4	625	660
	5	680	715 long pass
	sample within a car sample, the molecusupports the cartridaligned with the car subsystem; an opticaligned with the material with the material bandling the actuator configuration mode to coupled to a fluid process.	rtridge and separate a tlar diagnostic system lge and comprising a rtridge in a first opera tcal subsystem; a cart agnet receiving slot; a subsystem, the optical ured to vertically disp a position wherein: the port of the cartridge, v	configured to process a biological nucleic acid volume from the biological comprising: a cartridge platform that magnet receiving slot configured to be ation mode; a nozzle of a liquid handlin tridge heater; a magnet vertically and an actuator coupled to the nozzle of al subsystem, and the cartridge heater, place the cartridge platform in the first me nozzle of the liquid handling system wherein the fluid port of the cartridge ical sample, the magnet passes through

Claim	Claim Language	Infringement Evidence
		of the cartridge, wherein the second portion of the cartridge receives a processed derivative of the nucleic acid volume, and a third region of the cartridge is compressed between the cartridge heater and the cartridge platform. • Claim 8. The system of claim 1, wherein the optical subsystem comprises at least one unit including an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the biological sample, and to transmit emitted light from the biological sample, through the emission filter, and toward the photodetector.
		 Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of
		excitation filters, a set of emission filters, a set of photodetectors aligned

Claim	Claim Language	Infringement Evidence
		 with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.

Exhibit 35

U.S. Patent No. 8,703,069 Infringement Chart

Claim	Claim Language	Infringement Evidence
1(a)	Claim Language 1. A method of amplifying a nucleic acid-containing sample within a microfluidic device, the method comprising:	To the extent the preamble is limiting, the accused workflow is a method of amplifying a nucleic acid-containing sample within a microfluidic device. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		NeuMoDx [™] Molecular Systems, NEuMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ 288 and NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."

Claim	Claim Language	Infringement Evidence
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/,
		last visited May 31, 2019 (Exhibit 11)
		• "The NeuMoDx™ Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result".
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry TM reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge."
		• "The NeuMoDx™ 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		• "The NeuMoDx™ 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		NeuMoDx TM Molecular Systems, NEUMoDx,
		http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13)
		• "FEATURES AND BENEFITS Fluorescence detection at five wavelengths
		enabling multiplexed amplification reactions Real-time detection of
		products of amplification."
		NeuMoDx TM Molecular Systems, NEuMoDx,
		http://www.neumodx.com/product/neumodx-96/, last visited June 3, 2019 (Exhibit 14)
		• "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of

Claim	Claim Language	Infringement Evidence
		products of amplification."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) ■ "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08 The cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Ev	idence
		products with US 9,050,594; 9,339,	www.neumodx.com/patents/, demonstrating that NeuMoDx marks its Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430; 812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 896; 9,539,576; 9,637,775; and 10,093,963. (Exhibit 15)
		Product	Patents
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701. JP Patent No. 6061313.
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.
		nucleic ac	ibit 31) A cartridge, configured to facilitate processing and detecting of a id, comprising: a first layer, defining a sample port, a reagent port, a and a detection chamber; an elastomeric layer; an intermediate

Claim	Claim Language	Infringement Evidence
		substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent port, the fluid port, and the detection chamber . • Claim 11. The cartridge of claim 1, wherein the detection chamber comprises a first, a second, and a third detection chamber segment wherein each of the first, the second, and the third detection chamber segment is a broad chamber of which a projection onto a plane is substantially rectangular, wherein a first end of the second detection chamber segment is connected to the first detection chamber segment by a first narrow fluidic channel, and wherein a second end of the second detection chamber segment is connected to the third detection chamber segment by a second narrow fluidic channel.
		• U.S. Patent No. 9,738,887 at FIG. 1A:

Claim	Claim Language	Infringement Evidence
		116
		117
		165
		160
		190
		440
		118
		195
		112
		113
		FIG. 1A
		LUC Detent No. 0.720.007 at Abetic at ("A missisflyidia contridae configurad
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer
		comprising a set of cartridge -aligning indentations, a set of sample port-reagent
		port pairs, a shared fluid port, a vent region, a heating region, and a set of
		detection chambers ; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the
		intermediate substrate; and a set of fluidic pathways, each formed by at least a
		portion of the top layer and a portion of the elastomeric layer, wherein each
		fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber , comprises a turnabout portion
		passing through the heating region, and is configured to be occluded upon
		deformation of the elastomeric layer, to transfer a waste fluid to the waste
		chamber, and to pass through the vent region.")
		• US Patent No. 9,738,887 at 2:36-3:5. ("As shown in FIGS. 1A-IC, an embodiment of a microfluidic cartridge 100 for processing and detecting
		nucleic acids comprises: a top layer 110 comprising a set of sample port-

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	reagent port pairs 112 and a set of detection chambers 116; an intermediate substrate 120, coupled to the top layer 110 and partially separated from the top layer by a film layer 125, configured to form a waste chamber 130; an elastomeric layer 140 partially situated on the intermediate substrate 120; a magnet housing region 150 accessible by a magnet 152 providing a magnetic field 156; and a set of fluidic pathways 160, each formed by at least a portion of the top layer 110, a portion of the film layer 125, and a portion of the clastomeric layer 140 In a specific application, the microfluidic cartridge 100 can be used to facilitate a PCR procedure for analysis of a sample containing nucleic acids.") • US Patent No. 9,738,887 at 13:7-18. ("The top layer 110 of an embodiment of the microfluidic cartridge 100 functions to accommodate elements involved in performing a molecular diagnostic procedure (e.g. PCR), such that a sample containing nucleic acids, passing through the cartridge, can be manipulated by the elements involved in performing the molecular diagnostic procedure. The top layer 110 is preferably composed of a structurally rigid/stiff material with low autofluorescence, such that the top layer 110 does not interfere with sample detection by fluorescence or chemiluminescence techniques, and an appropriate glass transition temperature and chemical compatibility for PCR or other amplification techniques.") • US Patent No. 9,738,887 at 13:35-42. ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • US Patent No. 9,738,887 at 15:29-39 ("The segments may be arranged in at least one of several configurations to facilitate isolation, pr
		embodiment of the microfluidic cartridge 100 functions preferably as described

Claim	Claim Language	Infringement Evidence
		in Section 1.1, and is composed of polypropylene with low autofluorescence and a glass transition temperature suitable for PCR .")
1(b)	moving the sample from an upstream channel of the microfluidic device into a DNA manipulation module located downstream of the upstream channel,	The accused workflow includes moving the sample from an upstream channel of the microfluidic device into a DNA manipulation module located downstream of the upstream channel. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx** WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. **(Exhibit 16)* **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer,
		wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an
		occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion

Claim	Claim Language	Infringement Evidence
		positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") • US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the s

Claim	Claim Language	Infringement Evidence
		sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
1(c)	the DNA manipulation module including a DNA manipulation zone configured to perform amplification of the sample,	The accused workflow includes a DNA manipulation module including a DNA manipulation zone configured to perform amplification of the sample. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08
		A Romand Strong
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 24, 2019 (Exhibit 11) The NeuMoDxTM Molecular Systems are a family of scalable platforms that

Claim	Claim Language	Infringement Evidence
		fully integrate the entire molecular diagnostic process from 'sample to result'. The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents." • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR." 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx System use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR." 0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."

Claim	Claim Language	Infringement Evidence
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		"A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins."

Claim	Claim Language	Infringement Evidence
		<i>Id.</i> at 3:58-4:08
		 U.S. Patent No. 9,738,887 Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated
		between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent port, the fluid port, and the detection chamber .
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge , configured to facilitate processing and detection of nucleic acids , comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of detection chambers ; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways , each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber , comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region")
		U.S. Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which

Claim	Claim Language	Infringement Evidence
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115 An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • U.S. Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144145 142 176 147146177199 149 164 117 FIG. 1J 165 119 115 144145 142 176 147146177199 149 164 117
		174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED

Claim Claim Language 1(d) a first valve disposed upstream of the DNA manipulation zone, NeuMoDx Molecular N96 and N288 Overview	disposed upstream of the DNA
2018, 3:50 PM), http://www.neumodx.com/or NeuMoDx TM WORKFLOW" hyperlink at htt (Exhibit 16)	our-solutions/ - linking to "VIDEO tps://player.vimeo.com/video/299307936. les the PCR-ready solution through the
	Romores Strate

Claim	Claim Language	Infringement Evidence
		PCR Pirst valve
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second

surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first
truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured

Claim	Claim Language	Infringement Evidence
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117
		174 114 175 143 166 179 148 163 178 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")

Claim	Claim Language	Infringement Evidence
1(e)	and a second valve disposed downstream of the DNA manipulation zone,	The accused workflow includes a second valve disposed downstream of the DNA manipulation zone.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A Romarcy Sirrot

Claim	Claim Language	Infringement Evidence
		Second valve PCR
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the leastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a

Claim	Claim Language	Infringement Evidence
		closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathways, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic

Claim	Claim Language	Infringement Evidence
		system and/or module may then perform additional processes, such as thermocycling and detect ion, on the volume of fluid within the detect ion chamber 117.")at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117
		FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(f)	the only ingress to and egress	In the accused workflow, the only ingress to and egress from the DNA manipulation

Claim	Claim Language	Infringement Evidence
	from the DNA manipulation	zone being through the first valve and the second valve.
	zone being through the first	
	valve and the second valve;	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A Powerful Sirrole
		C

Claim	Claim Language	Infringement Evidence
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads.
		• Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to

Claim	Claim Language	Infringement Evidence
		facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second

Claim	Claim Language	Infringement Evidence
		surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144,

Claim	Claim Language	Infringement Evidence
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")at Figs. 1J and 1K:
		165
		119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1J
		165
		119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as

Claim	Claim Language	Infringement Evidence
		shown in FIG. 1C.")
1(g)	receiving the sample in the DNA manipulation zone;	The accused workflow includes receiving the sample in the DNA manipulation zone. **NeuMoDx Molecular N96 and N288 Overview and Animation**, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) **A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.** at 3:58-4:08* A B B B B B B B B B B B B B B B B B B
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection

Claim	Claim Language	Infringement Evidence
		chamber; an elastomeric layer; an intermediate substrate including a set of valve
		guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines
		a set of voids external to the chamber and accessible from a direction
		perpendicular to a broad surface of the first layer, and wherein at least a portion
		of the corrugated surface defines the set of valve guides with a set of openings
		that provide access to the elastomeric layer; and a fluidic pathway, formed by at
		least a portion of the first layer and a portion of the elastomeric layer, wherein
		the fluidic pathway is fluidically coupled to the sample port and the
		detection chamber and comprises a first and second branch extending
		downstream from a junction, and is configured to be occluded at a set of
		occlusion positions upon manipulation of the elastomeric layer through the set
		of valve guides, wherein a first occlusion position of the set of occlusion
		positions is positioned along the fluidic pathway downstream of the junction and
		upstream of the first branch and a second occlusion position of the set of
		occlusion positions is positioned along the fluidic pathway downstream of the
		junction and upstream of the second branch, wherein the set of occlusion
		positions comprises a normally open position and a normally closed position,
		wherein the normally open position comprises a first surface of the fluidic
		pathway at the first layer and a second surface of the fluidic pathway at the
		elastomeric layer, wherein a void defined between the first surface and the
		second surface is configured to transition to a closed state upon occlusion by an
		occluding object applied to the elastomeric layer during operation; wherein the
		normally closed position is defined by a region of the fluidic pathway, at the
		first layer that extends toward and abuts the elastomeric layer in preventing fluid
		bypass at the region; wherein a first truncated pathway, including the normally
		open position and the first branch and excluding the second branch, is defined
		upon manipulation of the fluidic pathway at the first and second occlusion
		positions, and wherein a second truncated pathway, including the normally
		closed position and the second branch and excluding the first branch, to the
		detection chamber is defined upon manipulation of the fluidic pathway at the
		first and second occlusion positions.

Claim	Claim Language	Infringement Evidence
Ciaiii	Claim Language	 US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pa

Claim	Claim Language	Infringement Evidence
		pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 165 179 148 163 FIG. 1K OCCLUDED
1(h)	closing the first valve and the second valve such that gas and liquid are prevented from flowing into or out of the DNA manipulation zone; and	The accused workflow includes closing the first valve and the second valve such that gas and liquid are prevented from flowing into or out of the DNA manipulation zone. *NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx MoRKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process

Claim	Claim Language	Infringement Evidence
		begins." <i>Id.</i> at 3:58-4:08
		A Powerty Strong
		Second valve PCR First valve
		1100720007 (E.:L:L: 21)
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position a

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 US Patent No. 9,738,887 at 12:11-19 ("When not in operation, however, the normally closed position 43 is configured to prevent leakage and/or fluid bypass. The normally closed position may also be held closed by an occluding object, to prevent leakage even under pressure provided by a fluid delivery system, or under pressure experienced during a high temperature step (e.g., thermocycling) to prevent evaporation of a sample undergoing thermocycling.") US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 11. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
1(i)	thermal cycling the sample in the DNA manipulation zone.	The accused workflow includes thermal cycling the sample in the DNA manipulation zone. NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,

Claim	Claim Language	Infringement Evidence
		 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDxTM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08 "During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 24, 2019 (Exhibit 11)

Claim	Claim Language	Infringement Evidence
		• "The NeuMoDx TM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDxTM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		US9499896 (Exhibit 28) • A system for thermocycling biological samples within detection chambers

Claim	Claim Language	Infringement Evidence
		comprising: a set of heater-sensor dies, each heater-sensor die in the set of
		heater-sensor dies comprising: an assembly including a first insulating layer, a
		heating region comprising an adhesion material layer coupled to the first
		insulating layer and a noble material layer coupled to the adhesion material
		layer, and a second insulating layer coupled to the heating region and to the first
		insulating layer through a pattern of voids in the heating region, wherein the
		pattern of voids in the heating region defines a coarse pattern, comprising a
		global morphology at a first scale and associated with a heating element of the
		heating region, and a fine pattern, comprising a local morphology at a second
		scale smaller than the first scale, integrated into the coarse pattern and
		associated with a sensing element of the heating region; an electronics
		substrate configured to couple heating elements and sensing elements of the
		set of heater-sensor dies to a controller; and a set of elastic elements coupled
		to a second substrate surface of the electronics substrate opposing a first
		substrate surface of the electronics substrate interfacing with the assemblies of
		the set of heater-sensor dies and configured to bias each of the set of heater- sensor dies against a detection chamber in a configuration wherein the set of
		heater-sensor dies is in thermal communication with a set of detection chambers.
		neater sensor dies is in thermal communication with a set of detection chambers.
		US9101930 (Exhibit 25)
		Claim 10. A cartridge, configured to facilitate processing and detecting of
		nucleic acids, comprising: a first layer and an intermediate substrate, coupled to
		the first layer, wherein the intermediate substrate defines a waste chamber with a
		corrugated surface directly opposing the first layer, wherein the corrugated
		surface defines a set of parallel voids spanning a majority of a width of the
		intermediate substrate and external to the waste chamber, wherein the set of
		voids is accessible from a direction perpendicular to a broad surface of the first
		layer; a first fluidic pathway, formed by at least a portion of the first layer; and a
		second fluidic pathway in parallel with the first fluidic pathway, formed by at
		least a portion of the first layer, wherein the first fluidic pathway and the second
		fluidic pathway are each superior to the intermediate substrate, are each at least
		partially separated from the corrugated surface of the intermediate substrate by

Claim	Claim Language	Infringement Evidence
		an elastomeric layer and are each configured to transfer waste to the waste
		chamber through a set of openings of the intermediate substrate.
		• Claim 11. The cartridge of claim 10, wherein the first layer is a unitary
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. • Claim 22. The cartridge of claim 11, wherein at least one of the first detection chamber and the second detection chamber is configured to be optimized for volumetric capacity, thermocycling rates, optical detection, and filling in a manner that limits bubble generation.
		US9604213 (Exhibit 30)
		• Claim 1. A system for processing and detecting nucleic acids in cooperation with a cartridge comprising a heating region defined at a first surface, and a magnet housing region defined at a second surface in thermal communication with the first surface, the system comprising: a capture plate configured to facilitate combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate and separate nucleic acids from the set of magnetic beads, comprising: a cartridge platform configured to receive the cartridge and comprising a magnet receiving slot aligned with the second surface during operation, a heater configured to transmit heat to the heating region at the first surface during operation, and a magnet coupled to a magnet heating element that heats the magnet during operation with the magnet proximal the second surface, the magnet configured to pass through the magnet receiving slot into the magnet housing region during

Claim	Claim Language	Infringement Evidence
		 operation, thereby facilitating separation of a nucleic acid volume from the magnetic bead-sample and heating of the magnetic bead-sample in cooperation with the heater. Claim 11. The system of claim 1, wherein the molecular diagnostic module further comprises an optical subsystem comprising a first unit and a second unit, wherein each of the first unit and the second unit includes a set of excitation filters, a set of emission filters, a set of photodetectors aligned with the set of emission filters, and a set of dichroic mirrors configured to reflect light from the set of excitation filters toward one of a set of nucleic acid-reagent mixtures at the cartridge, and to transmit emitted light from one of the set of nucleic acid-reagent mixtures, through at least one of the set of emission filters, and toward at least one of the set of photodetectors. Claim 12. The system of claim 11, wherein the molecular diagnostic module further includes a set of detection chamber heaters configured to heat a set of detection chambers through the second surface of the cartridge, and wherein the optical subsystem is configured to receive light, emitted from the set of nucleic acid-reagent mixtures at the set of detection chambers, from the first surface of the cartridge.

EXHIBIT 36

U.S. Patent No. 7,998,708 Infringement Chart

Claim	Claim Language	Infringement Evidence
1(a)	An apparatus, comprising:	To the extent the preamble is limiting, the accused instruments are an apparatus. *NeuMoDx** Molecular Systems, NeuMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)
		NeuMoDx molecular NeuMoDx molecular
		#500200 NeuMoDx [™] 96 Molecular System NeuMoDx [™] 288 Molecular System
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result."
		TM
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
		last visited May 31, 2019 (Exhibit 11)
		• "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and
		rapid turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our
		proprietary NeuDry TM reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that
		result in higher throughput, improved performance and increased efficiency by
		eliminating the waste associated with technologies that required reconstitution
		of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 288 Molecular System consists of

Claim	Claim Language	Infringement Evidence
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDxTM Molecular Systems, NEUMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
1(b)	a multi-lane microfluidic cartridge, each lane comprising a PCR reaction zone;	The accused system comprises a multi-lane microfluidic cartridge, each lane comprising a PCR reaction zone. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
Ciaini	Claim Language	NeuMoDx NeuMoDx NeuMoDx NeuMoDx NeuMoDx NeuMoDx Molecular Systems, NeuMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11)
		 "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized

Claim	Claim Language	Infringement Evidence
		reagents.
		 NeuMoDxTM Molecular Systems, NeuMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		"This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 "Patents", http://www.neumodx.com/patents/ , demonstrating that NeuMoDx marks its products with US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430; 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 9,540,636; 9,499,896; 9,539,576; 9,637,775; and 10,093,963 (Exhibit 15)

Claim	Claim Language	Infringement Ev	idence
		PATENTS	S
		Product	Patents
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701. JP Patent No. 6061313.
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.
		opposing to voids externed to void externed to void externed to the same intermedial example port, a fluid example port, a fluid example port, a fluid voids externed to void example port voids example port, a fluid void example port voids example port, a fluid void example port void example port, a fluid void example port void example	the first layer, wherein the corrugated surface defines a set of parallel trial to the waste chamber; and a first fluidic pathway, formed by at trion of the first layer; and a second fluidic pathway in parallel first fluidic pathway and formed by at least a portion of the second thway, wherein the first fluidic pathway and the second fluidic re each at least partially separated from the corrugated surface by an ic layer, and each fluidic pathway is configured to transfer waste fluid aple into the waste chamber through a set of openings of the attention to the waste chamber through a set of openings of the attention to comprising a first sample port-reagent port pair including a first rt, a second sample port-reagent port pair including a second sample id port, a first detection chamber, and a second detection chamber
			he first fluidic pathway is coupled to the first sample port-reagent and the first detection chamber, wherein the second fluidic

Claim	Claim Language	Infringement Evidence
		pathway is coupled to the second sample port-reagent port pair and the
		second detection chamber, and wherein at least one of the first fluidic
		pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a biological sample to pro

Claim	Claim Language	Infringement Evidence
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic bead-
		sample; and a liquid handling system configured to transfer the magnetic bead-
		sample from the capture plate to the molecular diagnostic module, transfer the
		nucleic acid volume from the molecular diagnostic module to the assay strip,
		and transfer the nucleic acid-reagent mixture from the assay strip to the
		molecular diagnostic module.
		• Claim 18. The system of claim 16, wherein the molecular diagnostic module
		comprises an optical subsystem comprising at least one unit, wherein each unit
		includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the
		excitation filter toward the nucleic acid-reagent mixture, and to transmit light
		from the nucleic acid reagent mixture, through the emission filter, and toward
		the photodetector wherein each unit of the optical subsystem further comprises
		an LED aligned with the excitation filter, wherein the LED provides multiple
		wavelengths of light corresponding to at least one of the excitation filter, the
		dichroic mirror, and the emission filter.
		Claim 19. The system of claim 16, wherein the molecular diagnostic module
		further comprises a heater and a detection chamber heater , wherein the heater
		is configured to heat the magnetic bead-sample, and wherein the detection
		chamber heater is configured to individually heat the nucleic acid-reagent
		mixture, and wherein at least one of the heater and the detection chamber heater
		is a Peltier heater.
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing
		and detecting nucleic acids from a set of biological samples, comprising: a

Claim	Claim Language	Infringement Evidence
		capture plate and a capture plate module configured to facilitate binding of
		nucleic acids within the set of biological samples to magnetic beads; a molecular
		diagnostic module configured to receive nucleic acids bound to magnetic beads,
		isolate nucleic acids, and analyze nucleic acids, comprising a cartridge
		receiving module, a heating/cooling subsystem and a magnet configured to
		facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids,
		and an optical subsystem for analysis of nucleic acids; a fluid handling system
		configured to deliver samples and reagents to components of the system to
		facilitate molecular diagnostic protocols; and an assay strip configured to
		combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic
		pathway of the set of fluidic pathways, to a detection chamber of a set of
		detection chambers, which functions to deliver the set of nucleic acid-reagent
		mixtures to an isolated detection chamber for further processing and analysis.
		Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent

Claim	Claim Language	Infringement Evidence
		mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
1(c)	a receiving bay configured to receive the microfluidic cartridge;	The accused system comprises a receiving bay configured to receive the microfluidic cartridge.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		 (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18
		NeuMoDx Molecular N96 and N288 Overview and Animation, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibit 17)
		TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibited at 4:55-5:00

Claim	Claim Language	Infringement Evidence
		Outropic Contract Outropic Cont
		Receiving Bay Receiving Bay
		 US9050594 (Exhibit 24) Claim 1. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator

Claim Language	Infringement Evidence
	configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample.
	• U.S. Patent No. 9,050,594 at 2:6-7 ("FIG. 8 depicts an embodiment of a microfluidic cartridge and an embodiment of a cartridge platform.")
	• U.S. Patent No. 9,050,594 at Fig. 8
	144 -145 -143 -142 FIG. 8
	• U.S. Patent No. 9,050,594 at 7:53-8:35 "As shown in FIG. 9A, the cartridge
	receiving module 140 of the molecular diagnostic module 130 comprises a cartridge platform 141 including a cartridge loading guiderail 142, a cartridge
	Claim Language

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145; a linear actuator 146 configured to displace a microfluidic cartridge 210 resting on the cartridge platform 141, and a set of springs 148 coupled to the cartridge platform 141. The cartridge receiving module 140 thus functions to receive, align, and compress a microfluidic cartridge 210 for processing of a biological sample according to a molecular diagnostic assay protocol The cartridge platform 141 includes a cartridge loading guiderail 142, a cartridge stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145, and functions to receive and align a microfluidic cartridge 210, while providing access to the microfluidic cartridge 210 by a magnet 160 and a valve actuation subsystem 170. As shown in FIG. 8, an embodiment of the cartridge platform 141 includes a pair of parallel cartridge loading guiderails 142, initiating at a pair of inwardly tapering protrusions configured to guide a microfluidic cartridge toward the pair of parallel cartridge loading
		guiderails 142, and spanning two short edges of the cartridge platform 141. The embodiment of the cartridge platform 141 also includes a cartridge stop 143 comprising a vertical tab oriented perpendicular to the cartridge loading guiderails 142, and spanning a long edge of the cartridge platform. Preferably, the cartridge loading guiderails 142 and the cartridge stop 143 are configured such that a microfluidic cartridge 210 slides between the cartridge loading
1(d)	each PCR reaction zone comprising a separately controllable heat source thermally coupled thereto, wherein the heat source maintains a substantially uniform temperature throughout the PCR reaction zone and	guiderails 142 and hits the cartridge stop 143 to signal proper alignment." The accused system comprises a multi-lane microfluidic cartridge, each lane comprising a PCR reaction zone and each PCR reaction zone comprising a separately controllable heat source thermally coupled thereto, wherein the heat source maintains a substantially uniform temperature throughout the PCR reaction zone and thermal cycles the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone.
	thermal cycles the PCR reaction zone to carry out PCR on a polynucleotide-containing	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .

Claim	Claim Language	Infringement Evidence
	sample in the PCR reaction zone;	 (Exhibit 16) "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet

Claim	Claim Language	Infringement Evidence
		receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein movement of the cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to transfer the magnetic bead-sampl

Claim Clain	n Language Inf	fringement Evidence
Claim	n Language Inf	comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection cha
		· · · · · · · · · · · · · · · · · · ·
		 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chambe

Claim	Claim Language	Infringement Evidence
		pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28) • Claim 1. A system for thermocycling biological samples within detection
		chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable

Claim	Claim Language	Infringement Evidence
		rapid thermal cycling of samples while providing uniform heating and
Claim	Claim Language	· ·
		 U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")

Claim	Claim Language	Infringement Evidence
		US9539576 (Exhibit 29)
Ciaim	Claim Language	
		connection points. • U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be
		configured to control individual heater-sensor dies 111 in order to provide
		unique heating parameters for individual detection chambers and/or can be
		configured to provide common heating parameters for all heater-sensor

Claim	Claim Language	Infringement Evidence
		 dies 111 in the set of heater-sensor dies no.") U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240, individual heater-sensor dies of the set of heater-sensor dies can be coupled to one or multiple electronics substrates in order to provide uniform heating of individual sample containers with independent control of heating parameters provided at each of the set of heater-sensor dies.")
1(e)	a detector configured to detect the presence of an amplification product in the respective PCR reaction zone; and	The accused system comprises a detector configured to detect the presence of an amplification product in the respective PCR reaction zone. *NeuMoDx*** Molecular Systems*, NeuMoDx, https://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) * "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." * "The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry*** reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. * "The NeuMoDx*** 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by

Claim	Claim Language	Infringement Evidence		
Claim	Claim Language	fluorescence-base the instrument with consumables." • "The NeuMoDx TM extraction and iso amplification and fluorescence-base the instrument with consumables." NeuMoDx TM Molecular Sy http://www.neumodx.com • "FEATURES ANI enabling multiplex of amplification." NeuMoDx TM Molecular Sy http://www.neumodx.com • "FEATURES ANI FEATURES ANI **TEATURES ANI **TEATURES ANI **TEATURES ANI **TEATURES ANI **TEATURES ANI	1 288 Molecular Systems, NeuMoDx, Metalentian of nucleic acid detection of target in touchscreen computations. NeuMoDx, Metalentian reacides amplification reacides amplification reacides amplification reacides amplification. Pluo Detection of the stems	em is designed for the automated ls, as well as the automated lucleic acid sequences by Dx TM 288 Molecular System consists of er, accessories, and reagents and learn accessories, and reagents and learn accessories, and reagents and learn accessories. Real-time detection of products learn accessories at five wavelengths lions Real-time detection of products learn accessories. Real-time detection of products lions Real-time detection of products lions Real-time detection of products
JFO_2018-10-25_8009-Rev-B_NeuMoDx-96-S		pec-Sheet (Exhibit 21) Emission (nm)		
		1 470 510 2 530 555 3 585 610		510
				555
				610
		4	625	660

Claim	Claim Language	Infringement Evidence		
		NeuMoDx_288_Spec_She	eet_R2.pdf (Exhibit 22	2)
		Optical Wavelengths	Excitation (nm)	Emission (nm)
		1	470	510
		2	530	555
		3	585	610
		4	625	660
		5	680	715 long pass
		layer and an interm separated from the is configured to for opposing the first I voids external to the least a portion of with the first fluid fluidic pathway, we pathway are each a elastomeric layer, a of the sample into a intermediate substrection compassample port, a secon port, a fluid port, a wherein the first find pathway is coupled detection chamber.	first layer by a film layer as sealed waste charayer, wherein the corne waste chamber; and a lic pathway and formate the first layer; and a lic pathway and formate the seast partially separated and each fluidic pathway the waste chamber the first sample pand sample port-reage first detection characteristic pathway is corst detection chambed to the second sample	mple, the cartridge comprising: a first led to the first layer and partially ayer, wherein the intermediate substrate mber with a corrugated surface directly rugated surface defines a set of parallel a first fluidic pathway, formed by at second fluidic pathway in parallel med by at least a portion of the second c pathway and the second fluidic ated from the corrugated surface by an way is configured to transfer waste fluid rough a set of openings of the rein the first layer is a unitary ort-reagent port pair including a first and a second detection chamber, upled to the first sample port-reagent er, wherein the second fluidic le port-reagent port pair and the second to one of the first fluidic pathway and the fluid port.

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detection chamber, comprises a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molec

Claim	Claim Language	Infringement Evidence
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
1(f)	a processor coupled to the	The accused system comprises a processor coupled to the detector and the heat source,
	detector and the heat source,	configured to control heating of one or more PCR reaction zones by the heat sources.
	configured to control heating of	TM
	one or more PCR reaction zones	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
	by the heat sources.	last visited May 31, 2019 (Exhibit 11)
		• "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		market-leading ease of use, true continuous random-access and rapid
		turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result".
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry TM reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge. This technology, combined with a

Claim	Claim Language	Infringement Evidence
		platform, uniquely incorporates robotics and microfluidies that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx™ WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		footprint.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heater-sensor dies with the set of heater-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the s

Claim	Claim Language	Infringement Evidence
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		 U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. 1A and 1B, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies 110; an electronics substrate 140 that couple the set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-

Claim	Claim Language	Infringement Evidence
		7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heatersensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") • U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.")U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. 1A and 1B, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
33(a)	A method of carrying out PCR on a plurality of samples, the method comprising:	To the extent the preamble is limiting, the accused workflow is a method of carrying out PCR on a plurality of samples.
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		Powerful. Simple. Diagnostics. NeuMoDx artics 724 477,0111 1st 724 477,015 1250 Ettenhower Piece Ann Arber, MI 48108 www.neumodx.com CARTRIDGE CARTRIDGE Ext Industry Indu
		 NeuMoDx[™] Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized

Claim	Claim Language	Infringement Evidence
		reagents.
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDxTM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59
		 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic

Claim	Claim Language	Infringement Evidence
		pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. • Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste

Claim	Claim Language	Infringement Evidence
Claim		chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample portreagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to t

Claim Language	Infringement Evidence
	 dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
	• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids , comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
	 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
	independent control of 12 independent channels, corresponding to 12
	Claim Language

Claim	Claim Language	Infringement Evidence
		 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
33(b)	introducing the plurality of samples into a multi-lane microfluidic cartridge, wherein each lane comprises a PCR reaction zone configured to permit thermal cycling of a sample independently of the other samples;	The accused workflow includes introducing the plurality of samples into a multi-lane microfluidic cartridge, wherein each lane comprises a PCR reaction zone configured to permit thermal cycling of a sample independently of the other samples. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx **M WORKFLOW** hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." Id. at 3:47-3:57

Claim	Claim Language	Infringement Evidence
		Powerful, Simple
		US9101930 (Exhibit 25)
		• Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the

Claim	Claim Language	Infringement Evidence
		 intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate. Claim 11. The cartridge of claim 10, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second

Claim	Claim Language	Infringement Evidence
		sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module
		comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward

Claim	Claim Language	Infringement Evidence
		the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.")
		U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.") US9499896 (Exhibit 28) • Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region, and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heatersensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electron
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the
		set of heater-sensor dies comprising a heating surface configured to interface

Claim	Claim Language	Infringement Evidence
		with a detection chamber and an inferior surface, inferior to the heating surface,
		including a connection point, wherein each of the set of heater-sensor dies
		includes a heating element and a sensing element; an electronics substrate,
		comprising a first substrate surface coupled to the inferior surface of each of the
		set of heater-sensor dies, a set of apertures longitudinally spaced across the
		electronics substrate and providing access through the electronics substrate to
		the set of heater-sensor dies, and a second substrate surface inferior to the first
		substrate surface, wherein the electronics substrate comprises a set of substrate
		connection points at least at one of the first substrate surface, an aperture surface
		defined within at least one of the set of apertures, and the second substrate
		surface, and wherein the electronics substrate couples the heating element and
		the sensing element of each of the set of heater-sensor dies to a controller; a set
		of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies,
		through the set of apertures, and 2) the second substrate surface of the
		electronics substrate and configured to dissipate heat generated by the set of
		heater-sensor dies, wherein at least one of the set of heat-sink supports includes
		an integrated cooling element, and wherein a base surface of each of the set of
		heat-sink supports is coupled to an elastic element that transmits a biasing force
		through the electronics substrate, thereby maintaining thermal communication
		between the set of heater-sensor dies and a set of detection chambers upon
		alignment of the set of heater-sensor dies with the set of detection chambers; and
		a set of wire bonds, including a wire bond coupled between the connection point
		of at least one of the set of heater-sensor dies and one of the set of substrate
		connection points.
		• U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be
		configured to control individual heater-sensor dies 111 in order to provide
		unique heating parameters for individual detection chambers and/or can be
		configured to provide common heating parameters for all heater-sensor
		dies 111 in the set of heater-sensor dies no.")
		• U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240,
		individual heater-sensor dies of the set of heater-sensor dies can be coupled to
		one or multiple electronics substrates in order to provide uniform heating of

Claim	Claim Language	Infringement Evidence
		individual sample containers with independent control of heating parameters provided at each of the set of heater-sensor dies.")
33(c)	moving the plurality of samples into the respective plurality of PCR reaction zones; and	The accused workflow includes moving the plurality of samples into the respective plurality of PCR reaction zones. *NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx M WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 A B B B B B B B B B B B B B B B B B B
		US9738887 (Exhibit 31)

A cartridge, configured to facilitate processing and detecting of a cid, comprising: a first layer comprising a sample port and a detection an elastomeric layer; an intermediate substrate including a set of valve wherein the intermediate substrate defines a chamber with a corrugated irectly opposing the first layer, wherein the corrugated surface defines oids external to the chamber and accessible from a direction
cular to a broad surface of the first layer, and wherein at least a portion rrugated surface defines the set of valve guides with a set of openings ide access to the elastomeric layer; and a fluidic pathway, formed by at artion of the first layer and a portion of the elastomeric layer, wherein ic pathway is fluidically coupled to the sample port and the a chamber and comprises a first and second branch extending am from a junction, and is configured to be occluded at a set of a positions upon manipulation of the elastomeric layer through the set guides, wherein a first occlusion position of the set of occlusion is positioned along the fluidic pathway downstream of the junction and of the first branch and a second occlusion position of the set of a positions is positioned along the fluidic pathway downstream of the and upstream of the second branch, wherein the set of occlusion comprises a normally open position and a normally closed position, the normally open position comprises a first surface of the fluidic pathway at the ric layer, wherein a void defined between the first surface and the arface is configured to transition to a closed state upon occlusion by an gobject applied to the elastomeric layer during operation; wherein the closed position is defined by a region of the fluidic pathway, at the rathet extends toward and abuts the elastomeric layer in preventing fluid the region; wherein a first truncated pathway, including the normally ition and the first branch and excluding the second occlusion, and wherein a second truncated pathway, including the normally estition and the second branch and excluding the first branch, to the

Infringement Evidence
detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") • US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chambe
age

Claim	Claim Language	Infringement Evidence
		truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 167 FIG. 1K OCCLUDED
33(d)	amplifying polynucleotides contained with the plurality of samples in the PCR reaction zones while thermal cycling the PCR reaction zones, at least one PCR reaction zone separately thermally controllable from another PCR reaction zone.	The accused workflow includes amplifying polynucleotides contained with the plurality of samples in the PCR reaction zones while thermal cycling the PCR reaction zones, at least one PCR reaction zone separately thermally controllable from another PCR reaction zone. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers

Claim	Claim Language	Infringement Evidence
		market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx TM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR." Powerful Simple Diagnostics NeuMoDx NeuM

Claim	Claim Language	Infringement Evidence
		Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module

Claim	Claim Language	Infringement Evidence
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of p

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 Infringement Evidence and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Intringement Evidence nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")US9539576 (Exhibit 29) • Claim I. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface, inferior

Claim	Claim Language	Infringement Evidence
		comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies with the set of detection chambers; and a set of wire bonds, including a wire bond coupled between the connection points. • U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be configured to provide common heating parameters for all heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies no.") • U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240, individual heater-sensor dies of the set of heater-sensor dies can

EXHIBIT 37

U.S. Patent No. 8,323,900 Infringement Chart

Claim	Claim Language	Infringement Evidence
1(a)	An apparatus, comprising:	To the extent the preamble is limiting, the accused instrument is an apparatus. *NeuMoDx** Molecular Systems, NeuMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)
		NeuMoDx molecular NeuMoDx molecular
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/ , last visited

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result."
		TM
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
		last visited May 31, 2019 (Exhibit 11)
		• "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and
		rapid turnaround time while achieveing [sic] optimal operational and clinical
		performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our
		proprietary NeuDry TM reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that
		result in higher throughput, improved performance and increased efficiency by
		eliminating the waste associated with technologies that required reconstitution
		of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and
		consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR . The NeuMoDx TM 288 Molecular System consists of

Claim	Claim Language	Infringement Evidence
		the instrument with touchscreen computer, accessories, and reagents and consumables." • "NeuMoDx TM Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab." **NeuMoDx*** Molecular Systems**, NeuMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/ , hyperlink at https://youtu.be/vukP6gbLBYE . (Exhibit 32) • At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96,
		which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
1(b)	a plurality of multi-lane microfluidic cartridges, each lane comprising a PCR reaction	The accused apparatus comprises a plurality of multi-lane microfluidic cartridges, each lane comprising a PCR reaction zone.
	zone;	NeuMoDx Molecular N96 and N288 Overview and Animation, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibit 17) • at 4:55-5:00 (showing a plurality of multi-lane cartridges in the accused apparatus)

Claim	Claim Language	Infringement Evidence
		Outrope Contract Cont
		Receiving Bay Receiving Bay
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		"A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent
		sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		Powerful. Simple. Diagnostics. NeuMody orfice 724 477/0111 1st 724 477/0150 11250 Ettenhower Place Ann Arber, MI 48108 www.neumode.com CARTRIDGE CARTRIDGE
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized

Claim	Claim Language	Infringement Evidence
		reagents.
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample
		 microfluidic cartridge." 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDxTM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		"Patents", http://www.neumodx.com/patents/ , demonstrating that NeuMoDx marks its products with US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430; 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 9,540,636; 9,499,896; 9,539,576; 9,637,775; and 10,093,963 (Exhibit 15)

Product Patents CARTRIDGE Product Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430; AU Patent No. 2018227/01, JP Patent No. 6061913. PO2 (overall system and method) 10,010,888. CN Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and and method) EXTRACTION PLATE US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963. EXTRACTION PLATE US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963. US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a fire layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of paraly voids external to the waste chamber; and a first fluidic pathway, formed by least a portion of the first layer; and a second fluidic pathway in paralle with the first fluidic pathway and formed by at least a portion of the see fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by clastomeric layer, and each fluidic pathway is configured to transfer waste for the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comorrising a first sample port-reagent port pair including a first sample port-reagent port-reagent port pair including a first sample port-reagent port-reagent port pair including a first sample port-reagent port-reagen	Claim	Claim Language	Infringement Ev	idence	
CARTRIDGE US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701. JP Patent No. 6061313. PO2 (overall system and method) 10,010,888. CN Patent No. 2,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863. EXTRACTION PLATE US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963. US9403165 (Exhibit 27) • Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate subst is configured to form a sealed waste chamber with a corrugated surface direct opposing the first layer, wherein the corrugated surface defines a set of paral voids external to the waste chamber; and a first fluidic pathway, formed by least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the see fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by elastomeric layer, and each fluidic pathway is configured to transfer waste of of the sample into the waste chamber through a set of openings of the intermediate substrate. • Claim 10. The cartridge of claim 8, wherein the first layer is a unitary			PATENT	S	
Patent No. 2013221701. JP Patent No. 6061313. POZ (overall system and method) DS Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent Nos. 9,382,532; and 9,540,636. EXTRACTION PLATE US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963. US9403165 (Exhibit 27) • Claim 8. A cartridge for processing a sample, the cartridge comprising: a fire layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate configured to form a sealed waste chamber with a corrugated surface direct opposing the first layer, wherein the corrugated surface defines a set of paral voids external to the waste chamber; and a first fluidic pathway, formed by least a portion of the first layer; and a second fluidic pathway in paralle with the first fluidic pathway and formed by at least a portion of the set fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by elastomeric layer, and each fluidic pathway is configured to transfer waste floof the sample into the waste chamber through a set of openings of the intermediate substrate. • Claim 10. The cartridge of claim 8, wherein the first layer is a unitary			Product	Patents	
and method) 10,010,888. CN Patent No. ZL 2013 8 00092863. EXTRACTION PLATE US Patent Nos. 9,392,532; and 9,540,636. XPCR MODULE US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963. US9403165 (Exhibit 27) • Claim 8. A cartridge for processing a sample, the cartridge comprising: a fin layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrict is configured to form a sealed waste chamber with a corrugated surface direct opposing the first layer, wherein the corrugated surface defines a set of paraly voids external to the waste chamber; and a first fluidic pathway, formed by least a portion of the first layer; and a second fluidic pathway in paralle with the first fluidic pathway and formed by at least a portion of the sec fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by elastomeric layer, and each fluidic pathway is configured to transfer waste floof the sample into the waste chamber through a set of openings of the intermediate substrate. • Claim 10. The cartridge of claim 8, wherein the first layer is a unitary			CARTRIDGE	[마이 및 10 THE HEAD TO THE SELECT AND THE SELECT AND A SEL	
US9403165 (Exhibit 27) • Claim 8. A cartridge for processing a sample, the cartridge comprising: a firm layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate composing the first layer, wherein the corrugated surface direct opposing the first layer, wherein the corrugated surface defines a set of paral voids external to the waste chamber; and a first fluidic pathway, formed by least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the set fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by elastomeric layer, and each fluidic pathway is configured to transfer waste floof the sample into the waste chamber through a set of openings of the intermediate substrate. • Claim 10. The cartridge of claim 8, wherein the first layer is a unitary					
 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a fire layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate configured to form a sealed waste chamber with a corrugated surface direct opposing the first layer, wherein the corrugated surface defines a set of paralytoid external to the waste chamber; and a first fluidic pathway, formed by least a portion of the first layer; and a second fluidic pathway in paralle with the first fluidic pathway and formed by at least a portion of the sec fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by elastomeric layer, and each fluidic pathway is configured to transfer waste flof the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary 			EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.	
 Claim 8. A cartridge for processing a sample, the cartridge comprising: a firl layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substriate configured to form a sealed waste chamber with a corrugated surface direct opposing the first layer, wherein the corrugated surface defines a set of paralytic voids external to the waste chamber; and a first fluidic pathway, formed by least a portion of the first layer; and a second fluidic pathway in paralle with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by elastomeric layer, and each fluidic pathway is configured to transfer waste floof the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary 			XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.	
sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection cham		separated is configure opposing to voids externol seast a por with the findic part pathway and elastomerity of the same intermedian of the same intermedian construction sample points.	from the first layer by a film layer, wherein the intermediate substrated to form a sealed waste chamber with a corrugated surface direct the first layer, wherein the corrugated surface defines a set of paralytic pathway, formed by the first layer; and a first fluidic pathway in paralletist fluidic pathway and formed by at least a portion of the sect thway, wherein the first fluidic pathway and the second fluidic re each at least partially separated from the corrugated surface by a clayer, and each fluidic pathway is configured to transfer waste fluid into the waste chamber through a set of openings of the attention the substrate. The cartridge of claim 8, wherein the first layer is a unitary on comprising a first sample port-reagent port pair including a first reagent, a second sample port-reagent port pair including a second sample port-reagent port pair	ctly llel y at el cond an luid	

Claim	Claim Language	Infringement Evidence
		port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the
		second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular

	diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least o
	• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing

Claim	Claim Language	Infringement Evidence
		and detecting nucleic acids from a set of biological samples, comprising: a
		capture plate and a capture plate module configured to facilitate binding of
		nucleic acids within the set of biological samples to magnetic beads; a molecular
		diagnostic module configured to receive nucleic acids bound to magnetic beads,
		isolate nucleic acids, and analyze nucleic acids, comprising a cartridge
		receiving module, a heating/cooling subsystem and a magnet configured to
		facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids,
		and an optical subsystem for analysis of nucleic acids; a fluid handling system
		configured to deliver samples and reagents to components of the system to
		facilitate molecular diagnostic protocols; and an assay strip configured to
		combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic
		pathway of the set of fluidic pathways, to a detection chamber of a set of
		detection chambers, which functions to deliver the set of nucleic acid-reagent
		mixtures to an isolated detection chamber for further processing and analysis.

Claim	Claim Language	Infringement Evidence
		Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
1(c)	a plurality of receiving bays, each receiving bay configured to receive one of the plurality of microfluidic cartridges;	The accused apparatus comprises a plurality of receiving bays, each receiving bay configured to receive one of the plurality of microfluidic cartridges. *NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 *NeuMoDx Molecular N96 and N288 Overview and Animation*, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibit 17) • at 4:55-5:00

Claim	Claim Language	Infringement Evidence
		Outriged The second of the sec
		Receiving Bay Receiving Bay
		 US9050594 (Exhibit 24) Claim 1. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator

Claim	Claim Language	Infringement Evidence
		configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample.
		• U.S. Patent No. 9,050,594 at 2:6-7 ("FIG. 8 depicts an embodiment of a microfluidic cartridge and an embodiment of a cartridge platform.")
		• U.S. Patent No. 9,050,594 at Fig. 8
		144 -145 -143 -142 FIG. 8
		• U.S. Patent No. 9,050,594 at 7:53-8:35 "As shown in FIG. 9A, the cartridge receiving module 140 of the molecular diagnostic module 130 comprises a
		cartridge platform 141 including a cartridge loading guiderail 142, a cartridge

Claim	Claim Language	Infringement Evidence
		stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145; a linear actuator 146 configured to displace a microfluidic cartridge 210 resting on the cartridge platform 141, and a set of springs 148 coupled to the cartridge platform 141. The cartridge receiving module 140 thus functions to receive, align, and compress a microfluidic cartridge 210 for processing of a biological sample according to a molecular diagnostic assay protocol The cartridge platform 141 includes a cartridge loading guiderail 142, a cartridge stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145, and functions to receive and align a microfluidic cartridge 210, while providing access to the microfluidic cartridge 210 by a magnet 160 and a valve actuation subsystem 170. As shown in FIG. 8, an embodiment of the cartridge platform 141 includes a pair of parallel cartridge loading guiderails 142, initiating at a pair of inwardly tapering protrusions configured to guide a microfluidic cartridge toward the pair of parallel cartridge loading guiderails 142, and spanning two short edges of the cartridge platform 141. The embodiment of the cartridge platform 141 also includes a cartridge stop 143 comprising a vertical tab oriented perpendicular to the cartridge loading guiderails 142, and spanning a long edge of the cartridge platform. Preferably, the cartridge loading guiderails 142 and the cartridge stop 143 are configured such that a microfluidic cartridge 210 slides between the cartridge loading
1(d)	each PCR reaction zone comprising a separately controllable heat source thermally coupled thereto,	guiderails 142 and hits the cartridge stop 143 to signal proper alignment." In the accused apparatus, each PCR reaction zone comprises a separately controllable heat source thermally coupled thereto. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx "M WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . **Exhibit 16) **This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." *Id.** at 1:49-1:59*

Claim	Claim Language	Infringement Evidence
		NeuMoDx [™] Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at
		least one magnetic bead-sample obtained from the capture plate, and separate
		nucleic acids from magnetic beads, wherein the molecular diagnostic module
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator
		configured to displace the cartridge platform, a magnet, wherein an extended
		configuration of the actuator allows the magnet to pass through the magnet
		receiving slot to facilitate separation of the at least one nucleic acid volume, and
		a cam card contacting a set of pins, wherein the extended configuration of the
		actuator combined with movement of the cam card displaces a subset of the set
		of pins through a set of slots of the cartridge platform, to define at least one
		distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is
		configured receive and align a microfluidic cartridge comprising a set of sample
		port-reagent port pairs, a fluid port, a set of detection chambers, a waste
		chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		• Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic
		module comprises a cartridge platform including a set of parallel slots, a cam
		card, and a set of pins contacting the cam card, wherein movement of the cam
		card displaces a subset of the set of pins through a subset of the set of parallel
		slots to define at least one pathway configured to receive the magnetic b

Claim	Claim Language	Infringement Evidence
		sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows")
		independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		 U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of

Claim	Claim Language	Infringement Evidence
		the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")
1(e)	wherein the heat source thermal cycles the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone and	In the accused apparatus, each PCR reaction zone comprises a separately controllable heat source thermally coupled thereto wherein the heat source thermal cycles the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx "MoRKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		NeuMoDx [™] Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic beads configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set

Claim	Claim Language	Infringement Evidence
		sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of

Claim	Claim Language	Infringement Evidence
		the electronics substrate interfacing with the assemblies of the set of heater- sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
1(f)	maintains a substantially uniform temperature throughout the PCR reaction zone during each cycle;	In the accused apparatus, each PCR reaction zone comprises a separately controllable heat source thermally coupled thereto wherein the heat source thermal cycles the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone and maintains a substantially uniform temperature throughout the PCR reaction zone during each cycle.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/video/299307936 (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NeuMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet

Claim	Claim Language	Infringement Evidence
		receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein movement of the cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to transfer the magnetic bead-sampl

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 Infringement Evidence comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 11:56-58 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heat
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic

Claim	Claim Language	Infringement Evidence
		pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable

Claim	Claim Language	Infringement Evidence
		rapid thermal cycling of samples while providing uniform heating and
		preventing signal drift. In specific applications, the system 100 can be used to
		rapidly and controllably thermocycle nucleic acid samples during performance
		of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR),
		signal amplification techniques (e.g., bDNA, hybrid capture), and analytical
		techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can
		also provide rapid thermocycling without significant power requirements, ensure
		a closer correlation between the actual heating temperature and the temperature
		set-point by implementing an integrated heater-sensor die, and controllably and individually heat small sample volumes (e.g., picoliters, nanoliters) based upon
		a microfabrication technique that also enables mass production of the system
		100.")
		• U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110
		functions to controllably heat individual sample volumes. Preferably, each
		heater sensor die 111 is a thin-film die that can be deposited onto another
		substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics
		substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor
		die 111 can alternatively comprise any suitable geometry and/or
		configuration that enables controlled, uniform, and rapid heating of a
		detection chamber in thermal communication with the heater-sensor die
		111.")
		• U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in
		the set of heater sensor dies 110 comprises an assembly including: a first
		insulating layer 112a that functions to provide an insulating barrier to isolate the
		heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
		sample heating.)
1(g)	a detector configured to detect	The accused apparatus comprises a detector configured to detect the presence of an
	the presence of an amplification	amplification product in one or more PCR reaction zones.
	product in one or more PCR	
	reaction zones; and	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO

Claim	Claim Language	Infringement Evidence
Ciaiiii	Ciaini Language	NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		 US9499896 (Exhibit 28) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the

Claim	Claim Language	Infringement Evidence
		heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		 U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable rapid thermal cycling of samples while providing uniform heating and preventing signal drift. In specific applications, the system 100 can be used to rapidly and controllably thermocycle nucleic acid samples during performance of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR), signal amplification techniques (e.g., bDNA, hybrid capture), and analytical techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can also provide rapid thermocycling without significant power requirements, ensure a closer correlation between the actual heating temperature and the temperature set-point by implementing an integrated heater-sensor die, and controllably and individually heat small sample volumes (e.g., picoliters, nanoliters) based upon a microfabrication technique that also enables mass production of the system 100.") U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110
		functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die

Claim	Claim Language	Infringement Evidence
		 U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
		180 186 183 182 181 FIG. 12A
1(h)	a processor coupled to the detector and the heat sources, configured to control heating of one or more PCR reaction zones by the heat sources.	The accused apparatus comprises a processor coupled to the detector and the heat sources, configured to control heating of one or more PCR reaction zones by the heat sources. *NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) * "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." * "The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully

Claim	Claim Language	Infringement Evidence
		automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. • "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." • "The NeuMoDx™ 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx™ WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18
		NeuMoDx TM Molecular Systems, NEuMoDx, http://www.neumodx.com/dr-steven-

Claim	Claim Language	Infringement Evidence
		 young-video-testimonial/, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
		 US9539576 (Exhibit 29) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising a heating surface configured to interface with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection

Claim	Claim Language	Infringement Evidence
		detection chambers; and a set of wire bonds, including a wire bond coupled between the connection point of at least one of the set of heater-sensor dies and one of the set of substrate connection points.
		 US9499896 (Exhibit 28) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies is in thermal communication with a set of detection chambers. U.S. Patent No. 9,499,896 at 2:21-32 ("As shown in FIGS. IA and IB, an embodiment of a system 100 for thermocycling biological samples within detection chambers comprises: a set of heater-sensor dies to a controller; a set of heat sink supports 150 coupled to at least one of the electronics substrate and the set of heater-sensor dies; and a set of elastic elements 160 coupled to the

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	electronics substrate and configured to bias each of the set of heater-sensor dies against a detection 30 chamber. In some embodiments, the system 100 further comprises a controller 165 and/or a cooling subsystem 170 configured to actively cool the system 100.") • U.S. Patent No. 9,499,896 at 9:11-19 ("As shown in FIGS. 1, 4A-4B, and 7A-7C, the system 100 can further comprise an electronics substrate 140 configured to couple heating and sensing elements of the set of heater-sensor dies to a controller 165, a set of heat-sink supports 150 configured to facilitate heat dissipation within the system 100, a set of elastic elements 160 configured to bias the set of heater-sensor dies 110 against detection chambers for sample processing, and can additionally comprise the controller 165 and/or a cooling subsystem 170.") • U.S. Patent No. 9,499,896 at 12:20-31 ("In a specific example, the controller 165 comprises a Yokogawa UT750 PID controller, an Arduino UNO R3 microcontroller configured to cycle the UT750 through temperature stages and to control temperature holding, a resistance-to-voltage conversion circuit, and two power sup plies-a first power supply configured to supply power to the set of heater-sensor dies 110 and a second power supply configured to supply voltage to the resistance-to-voltage conversion circuit. In the specific example, the controller 165 comprises a resistance-to-voltage conversion circuit because the UT750 PID controller requires voltage as an input for PID control.") • U.S. Patent No. 9,499,896 at 11:63-12:4 "As shown in FIGS. IA and IB, the system 100 can further comprise a controller 165, which functions to automate and/or control heating parameters provided by the set of heater-sensor dies 110. The controller 165 can further be configured to provide heat parameter output commands to the heating element(s) 114, and/or configured to receive communication of heating parameters (e.g., detected temperatures) sensed at the sensing element(s) 115 of the system 100."
7(a)	A device for carrying out PCR on a plurality of samples, the	To the extent the preamble is limiting, the accused instrument is a device.

Claim	Claim Language	Infringement Evidence
	device comprising:	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)
		NeuMoDx molecular NeuMoDx molecular
		#500200 NeuMoDx [™] 96 Molecular System #500100 NeuMoDx [™] 288 Molecular System
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11)

Claim	Claim Language	Infringement Evidence
		"NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"
		platform offers market-leading ease of use, true continuous random-access and
		rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients."
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms
		that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic
		particle affinity capture and real time Polymerase Chain Reaction (PCR)
		chemistry in a multi-sample microfluidic cartridge. This technology,
		combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents.
		• "The NeuMoDx TM 96 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 96 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		• "The NeuMoDx TM 288 Molecular System is designed for the automated
		extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of
		the instrument with touchscreen computer, accessories, and reagents and consumables."
		• "NeuMoDx TM Molecular Systems are versatile; in addition to IVD tests, our
		system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab."

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/dr-steven-young-video-testimonial/, hyperlink at https://youtu.be/vukP6gbLBYE. (Exhibit 32) At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
7(b)	a plurality of multi-lane microfluidic cartridges, each lane comprising a PCR reaction zone;	The accused device comprises a plurality of multi-lane microfluidic cartridges, each lane comprising a PCR reaction zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx* TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603 . (Exhibit 17) • at 4:55-5:00 (showing a plurality of multi-lane cartridges in the accused apparatus)

Claim	Claim Language	Infringement Evidence
		Receiving Bay Receiving Bay
		NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. NeuMode John Arton Maria 1914 Art (0) 30 1 1250 Elsenhower Piece Ann Arbon, Mil 48108 www.naumode.com CARTRIDGE CARTRIDGE Last State 1940 (0) 1450 (1) 1
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11)
		 "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result".

Claim	Claim Language	Infringement Evidence
		The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully
		automated, continuous random-access analyzers that utilize our proprietary
		NeuDry TM reagent technology, which integrates magnetic particle affinity
		capture and real time Polymerase Chain Reaction (PCR) chemistry in a
		multi-sample microfluidic cartridge. This technology, combined with a
		platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the
		waste associated with technologies that required reconstitution of lyophilized
		reagents.
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10)
		• "NeuMoDx TM 288 and NeuMoDx TM 96 Molecular Systems are fully automated,
		continuous random-access analyzers that utilize our proprietary NeuDry TM
		reagent technology, which integrates magnetic particle affinity capture and real
		time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19)
		• "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx
		Cartridge contains 12 independent microfluidic circuits that enable the
		independent processing of up to 12 samples once housed appropriately in
		the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis,
		nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed
		clinical specimens prior to presenting the extracted nucleic acid for detection by
		Real-Time PCR."
		K173725.pdf (Exhibit 23)
		"510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION
		SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE
		Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx

Claim	Claim Language	Infringement Evidence
		System dispenses the prepared PCR-ready mixture into one PCR chamber
		(per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		control and target DNA sequences occur in FCR chamber.
		US9403165 (Exhibit 27)
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the
		second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		• Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from

Claim	Claim Language	Infringement Evidence
		 sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids , comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system

Claim	Claim Language	Infringement Evidence
		configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
7(c)	a plurality of receiving bays, each receiving bay configured to	The accused device comprises a plurality of receiving bays, each receiving bay configured to receive one of the plurality of microfluidic cartridges.

Claim	Claim Language	Infringement Evidence
	receive one of the plurality of microfluidic cartridges;	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 NeuMoDx Molecular N96 and N288 Overview and Animation, http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM TECHNOLOGY" hyperlink at https://player.vimeo.com/video/281470603. (Exhibit 17) • at 4:55-5:00

Claim	Claim Language	Infringement Evidence
		Receiving Bay Receiving Bay
		US9050594 (Exhibit 24)
		• Claim 1. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample.
		• U.S. Patent No. 9,050,594 at 2:6-7 ("FIG. 8 depicts an embodiment of a microfluidic cartridge and an embodiment of a cartridge platform.")
		• U.S. Patent No. 9,050,594 at Fig. 8

Claim	Claim Language	Infringement Evidence
		144
		 U.S. Patent No. 9,050,594 at 7:53-8:35 "As shown in FIG. 9A, the cartridge receiving module 140 of the molecular diagnostic module 130 comprises a cartridge platform 141 including a cartridge loading guiderail 142, a cartridge
		stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145; a linear actuator 146 configured to displace a microfluidic cartridge 210 resting on the cartridge platform 141, and a set of springs 148 coupled to the cartridge platform 141. The cartridge receiving module 140 thus functions to receive, align, and compress a microfluidic cartridge 210 for processing of a
		biological sample according to a molecular diagnostic assay protocol The cartridge platform 141 includes a cartridge loading guiderail 142, a cartridge stop 143, a magnet receiving slot 144, and a set of valve actuation slots 145, and functions to receive and align a microfluidic cartridge 210, while providing access to the microfluidic cartridge 210 by a magnet 160 and a valve actuation subsystem 170. As shown in FIG. 8, an embodiment of the cartridge

Claim	Claim Language	Infringement Evidence
		platform 141 includes a pair of parallel cartridge loading guiderails 142, initiating at a pair of inwardly tapering protrusions configured to guide a microfluidic cartridge toward the pair of parallel cartridge loading guiderails 142, and spanning two short edges of the cartridge platform 141. The embodiment of the cartridge platform 141 also includes a cartridge stop 143 comprising a vertical tab oriented perpendicular to the cartridge loading guiderails 142, and spanning a long edge of the cartridge platform. Preferably, the cartridge loading guiderails 142 and the cartridge stop 143 are configured such that a microfluidic cartridge 210 slides between the cartridge loading guiderails 142 and hits the cartridge stop 143 to signal proper alignment."
7(d)	a separately controllable heat source thermally coupled to each PCR reaction zone,	The accused device comprises a separately controllable heat source thermally coupled to each PCR reaction zone. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		NeuMoDx [™] Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic beads configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid-reagent mixture from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the magnetic bead-sample, and analyze the nucleic acid-reag

Claim	Claim Language	Infringement Evidence
		sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of

Claim	Claim Language	Infringement Evidence
		the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")
7(e)	wherein the heat source is configured to thermal cycle the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone and	In the accused device, the heat source is configured to thermal cycle the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx MoRKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		NeuMoDx [™] Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited May 31, 2019 (Exhibit 10) • "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic

Claim	Claim Language	Infringement Evidence
		bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic beads configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set

Claim	Claim Language	Infringement Evidence
		sample; and a liquid handling system configured to transfer the magnetic beadsample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12

Claim	Claim Language	Infringement Evidence
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of

Claim	Claim Language	Infringement Evidence
		the electronics substrate interfacing with the assemblies of the set of heater- sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
7(f)	to maintain a substantially uniform temperature throughout the PCR reaction zone during each cycle;	In the accused device, the heat source is configured to thermal cycle the PCR reaction zone to carry out PCR on a polynucleotide-containing sample in the PCR reaction zone and to maintain a substantially uniform temperature throughout the PCR reaction zone during each cycle *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx MoRKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."

Claim	Claim Language	Infringement Evidence
		US9050594 (Exhibit 24)
		• Claim 1: A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well configured to facilitate a combination
		of a set of magnetic beads with a biological sample, thus producing a magnetic
		bead-sample; and a molecular diagnostic module, configured to process at
		least one magnetic bead-sample obtained from the capture plate, and separate
		nucleic acids from magnetic beads, wherein the molecular diagnostic module
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator
		configured to displace the cartridge platform, a magnet, wherein an extended
		configuration of the actuator allows the magnet to pass through the magnet
		receiving slot to facilitate separation of the at least one nucleic acid volume, and
		a cam card contacting a set of pins, wherein the extended configuration of the
		actuator combined with movement of the cam card displaces a subset of the set
		of pins through a set of slots of the cartridge platform, to define at least one
		distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample
		port-reagent port pairs, a fluid port, a set of detection chambers, a waste
		chamber, an elastomeric layer, and a set of fluidic pathways, wherein each
		fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment
		configured to cross the magnet, and is configured to transfer a waste fluid to the
		waste chamber, and to be occluded upon deformation of the elastomeric layer.
		Claim 16. A system for processing and detecting nucleic acids, comprising: a
		capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		configured to process the magnetic bead-sample from the capture plate, separate
		the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic

Claim	Claim Language	Infringement Evidence
		 module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157,

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and

Claim	Claim Language	Infringement Evidence
		associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable rapid thermal cycling of samples while providing uniform heating and preventing signal drift. In specific applications, the system 100 can be used to rapidly and controllably thermocycle nucleic acid samples during performance of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR), signal amplification techniques (e.g., bDNA, hybrid capture), and analytical techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can also provide rapid thermocycling without significant power requirements, ensure a closer correlation between the actual heating temperature and the temperature set-point by implementing an integrated heater-sensor die, and controllably and individually heat small sample volumes (e.g., picoliters, nanoliters) based upon a microfabrication technique that also enables mass production of the system 100.")
		 U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110 functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die 111.") U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in

Claim	Claim Language	Infringement Evidence
		the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
7(g)	a detector configured to detect the presence of an amplification product in one or more PCR reaction zones;	The accused device comprises a detector configured to detect the presence of an amplification product in one or more PCR reaction zones. *NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx MORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." *Id.* at 1:49-1:59** **This is the NeuMoDx Tide and Ti

Claim	Claim Language	Infringement Evidence
		US9499896 (Exhibit 28)
		• Claim 1. A system for thermocycling biological samples within detection
		chambers comprising: a set of heater-sensor dies, each heater-sensor die in
		the set of heater-sensor dies comprising: an assembly including a first insulating
		layer, a heating region comprising an adhesion material layer coupled to the
		first insulating layer and a noble material layer coupled to the adhesion material
		layer, and a second insulating layer coupled to the heating region and to the first
		insulating layer through a pattern of voids in the heating region, wherein the
		pattern of voids in the heating region defines a coarse pattern, comprising a
		global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second
		scale smaller than the first scale, integrated into the coarse pattern and
		associated with a sensing element of the heating region; an electronics substrate
		configured to couple heating elements and sensing elements of the set of heater-
		sensor dies to a controller; and a set of elastic elements coupled to a second
		substrate surface of the electronics substrate opposing a first substrate surface of
		the electronics substrate interfacing with the assemblies of the set of heater-
		sensor dies and configured to bias each of the set of heater-sensor dies against a
		detection chamber in a configuration wherein the set of heater-sensor dies is in
		thermal communication with a set of detection chambers.
		• U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable
		rapid thermal cycling of samples while providing uniform heating and
		preventing signal drift. In specific applications, the system 100 can be used to
		rapidly and controllably thermocycle nucleic acid samples during performance
		of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR),
		signal amplification techniques (e.g., bDNA, hybrid capture), and analytical
		techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can
		also provide rapid thermocycling without significant power requirements, ensure
		a closer correlation between the actual heating temperature and the temperature
		set-point by implementing an integrated heater-sensor die, and controllably and
		individually heat small sample volumes (e.g., picoliters, nanoliters) based upon

Claim	Claim Language	Infringement Evidence
		 a microfabrication technique that also enables mass production of the system 100.") U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110 functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die 111.") U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
7(h)	a processor coupled to the	The accused device comprises a processor coupled to the detector.
/(n)	a processor coupled to the detector	
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		"NeuMoDx TM Molecular Systems provide the industry's first true continuous
		random-access solution and is scalable to meet the needs of the modern clinical
		laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable
		reagents and consumables dramatically reduce waste resulting in unmatched
		flexibility. Liquid handling and transport is achieved through proven robotic
		technologies. Our proprietary and unitized microfluidic cartridge features
		independent lanes allowing for simultaneous processing of sample types and
		varying assays."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936.
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner
		measures the level of fluorescence emitted, and converts it into the
		qualitative or quantitative results which are displayed as amplification
		curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access"

Claim	Claim Language	Infringement Evidence
		processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
7(i)	and a plurality of the separately controllable heat sources, configured to control heating of one or more PCR reaction zones by one or more of the plurality	The accused device comprises a plurality of the separately controllable heat sources, configured to control heating of one or more PCR reaction zones by one or more of the plurality of separately controllable heat sources.
	of separately controllable heat sources; and	 NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) ● Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		Powerful. Simple. Diognostics.** NeuModx Diofnes 734 477,0111 1ax 734 477,0130 1250 Disenhows Place Ann Arbor, MI 48108 www.neumodx.com
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		• "A scries of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a biological sample to pro

Claim	Claim Language	Infringement Evidence
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. • U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a
		capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads,

Claim	Claim Language	Infringement Evidence
		isolate nucleic acids, and analyze nucleic acids, comprising a cartridge
		receiving module, a heating/cooling subsystem and a magnet configured to
		facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids,
		and an optical subsystem for analysis of nucleic acids; a fluid handling system
		configured to deliver samples and reagents to components of the system to
		facilitate molecular diagnostic protocols; and an assay strip configured to
		combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.")
		• U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions
		to move a nozzle 149 coupled to the liquid handling system 250, in order to
		couple the liquid handling system 250 to a fluid port 222 of the microfluidic
		cartridge 210 The vertical displacement also allows the microfluidic cartridge
		210 to receive a magnet 160, which provides a magnetic field to facilitate a
		subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		protocols requiring heating and cooling of the nucleic acid (e.g. PCR).")
		• U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic
		pathway of the set of fluidic pathways, to a detection chamber of a set of
		detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis.
		Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent
		mixtures are transferred simultaneously to the set of fluidic pathways, but
		alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent
		mixtures may be transferred to a corresponding fluidic pathway independently
		inixities may be transferred to a corresponding fluidic pathway independently

Claim	Claim Language	Infringement Evidence	
		of the other nucleic acid reagent mixtures.")	
		•	
7(j)	an input device coupled to the	The accused device comprises an input device coupled to the processor and configured	
	processor and configured to	to permit concurrent or consecutive control of the plurality of multi-lane microfluidic	
	permit concurrent or consecutive	cartridges.	
	control of the plurality of multi-	N. M. D. TM M. L. L. C NEW MoDAY 1440 // 1450 m. /	
	lane microfluidic cartridges	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,	
		last visited May 31, 2019 (Exhibit 11)	
		"NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIACNOSTIC SOLUTION Our retented "seconds to result".	
		MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and	
		rapid turnaround time while achieveing [sic] optimal operational and clinical	
		performance for our customers and their patients."	
		• "The NeuMoDx TM Molecular Systems are a family of scalable platforms	
		that fully integrate the entire molecular diagnostic process from "sample to	
		result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems	
		are fully automated, continuous random-access analyzers that utilize our	
		proprietary NeuDry TM reagent technology, which integrates magnetic	
		particle affinity capture and real time Polymerase Chain Reaction (PCR)	
		chemistry in a multi-sample microfluidic cartridge. This technology,	
		combined with a platform, uniquely incorporates robotics and microfluidics that	
		result in higher throughput, improved performance and increased efficiency by	
		eliminating the waste associated with technologies that required reconstitution	
		of lyophilized reagents.	
		• "The NeuMoDx TM 96 Molecular System is designed for the automated	
		extraction and isolation of nucleic acids, as well as the automated	
		amplification and detection of target nucleic acid sequences by	
		fluorescence-based PCR . The NeuMoDx TM 96 Molecular System consists of	
		the instrument with touchscreen computer, accessories, and reagents and	
		consumables."	
		• "The NeuMoDx TM 288 Molecular System is designed for the automated	

Claim	Claim Language	Infringement Eviden	ice
		amplification fluorescence- the instrument consumables." • "NeuMoDx TM system can al Tests (LDTs)	d isolation of nucleic acids, as well as the automated and detection of target nucleic acid sequences by based PCR. The NeuMoDx TM 288 Molecular System consists of with touchscreen computer, accessories, and reagents and Molecular Systems are versatile; in addition to IVD tests, our so be used as an open system to process Laboratory Developed that have been created and validated by your lab."
		Sample capacity	96 Initial load; Continuous, Random-Access Thereafter
		Reagent capacity	320 initial load; Continuous, Random-Access Thereafter
		Operational flexibility	Continuous Random-Access Perform LDT Qualitative and Quantitative assays simultaneously on demand ⁴ Onboard inventory management Simultaneous use of multiple tube types and sizes Flexible specimen tube compatibility • Diameter: 11 mm - 18 mm • Height: 60 mm - 120 mm
		http://www.neumodx. • "The NeuMoD (IVD) use in p laboratories. T extraction and as the automat fluorescence-benable laboratories. NeuMoDx TM - • Instrument Inc.	com/product/neumodx-288/, last visited June 4, 2019 (Exhibit 13) Dx TM 288 Molecular System is intended for in vitro diagnostic performing NeuMoDx TM validated nucleic acid testing in clinical the NeuMoDx TM 288 Molecular System is capable of automated isolation of nucleic acids from multiple specimen types, as well red amplification and detection of target nucleic acid sequences by pased PCR. The system is capable of providing functionality to provided consumables and reagents.

Claim	Claim Language	Infringement Evidence
		Handheld barcode scanner
		 Keyboard and mouse
		 NeuMoDxTM Biohazard Waste Container
		o Carriers
		o Test Strip Carrier (6)
		o Buffer Carrier (2)
		o 32-tube Specimen Tube Carrier (9)
		o Tip, Extraction and Filter Carrier (2)
		o Cartridge Carrier (2)"
		$NeuMoDx^{TM}$ $Molecular$ $Systems$, $NeuMoDx$,
		http://www.neumodx.com/product/neumodx-96/, last visited June 4, 2019 (Exhibit 14)
		• "The NeuMoDx™ 96 Molecular System is intended for in vitro diagnostic
		(IVD) use in performing NeuMoDxTM validated nucleic acid testing in clinical
		laboratories. The NeuMoDx TM 96 Molecular System is capable of automated
		extraction and isolation of nucleic acids from multiple specimen types, as well
		as the automated amplification and detection of target nucleic acid sequences by
		fluorescence-based PCR. The system is capable of providing functionality to
		enable laboratories to develop qualitative and quantitative tests, which use
		NeuMoDx TM provided consumables and reagents.
		• Instrument Includes:
		o Uninterruptible power supply (UPS)
		 Handheld barcode scanner
		 Keyboard and mouse
		o Biohazard Waste Bin
		o Biohazard Tip Waste Bin
		o Biohazard Waste Container
		o Carriers
		o Test Strip Carrier (4)
		o Buffer Carrier (1)
		o 32-tube Specimen Tube Carrier (3)
		o Tip, Extraction and Filter Carrier (1)

Claim	Claim Language	Infringement Evidence
		o Cartridge Carrier (1)"
10(-)	A mostle 1 of committee and DCD	To the most of the constant in the limit of the constant of th
20(a)	A method of carrying out PCR on a plurality of samples, the method comprising:	To the extent the preamble is limiting, the accused workflow is a method of carrying out PCR on a plurality of samples. **NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-products/glast visited June 5">http://www.neumodx.com/our-products/glast visited June 5">http://www.neumodx.
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System

Claim	Claim Language	Infringement Evidence
		May 31, 2019 (Exhibit 10)
		• "The NeuMoDx™ Molecular Systems are a family of scalable platforms that
		fully integrate the entire molecular diagnostic process from "sample to result."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems
		are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents.
		 "The NeuMoDxTM 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDxTM 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDxTM 288 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated
		amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx TM 288 Molecular System consists of

Claim	Claim Language	Infringement Evidence
		the instrument with touchscreen computer, accessories, and reagents and consumables." • "NeuMoDx TM Molecular Systems are versatile; in addition to IVD tests, our system can also be used as an open system to process Laboratory Developed Tests (LDTs) that have been created and validated by your lab." **NeuMoDx** Molecular Systems*, NeuMoDx, https://www.neumodx.com/dr-steven-young-video-testimonial/ , hyperlink at https://youtu.be/vukP6gbLBYE . (Exhibit 32) • At 2:58-3:18 ("There's two systems that have been put into operation by NeuMoDx. One is the 288. It's a high-throughput instrument, versus the 96, which is a lower throughput instrument. The advantage is that both systems use all of the same chemistry and all of the same hardware. Its just a smaller footprint.")
20(b)	introducing the plurality of samples into a plurality of multilane microfluidic cartridges, wherein each lane comprises a PCR reaction zone configured to permit thermal cycling of a sample independently of the other samples;	The accused workflow comprises introducing the plurality of samples into a plurality of multi-lane microfluidic cartridges, wherein each lane comprises a PCR reaction zone configured to permit thermal cycling of a sample independently of the other samples *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx *M* WORKFLOW** hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." *Id. at 3:47-3:57

Claim	Claim Language	Infringement Evidence
		Powerful Simple
		US9101930 (Exhibit 25)
		• Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the

Claim	Claim Language	Infringement Evidence
		 intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate. Claim 11. The cartridge of claim 10, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second

Claim	Claim Language	Infringement Evidence
		sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward

Claim	Claim Language	Infringement Evidence
Ciaiiii	Claim Danguage	the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but

Claim	Claim Language	Infringement Evidence
		alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
20(c)	moving the plurality of samples into the respective plurality of PCR reaction zones; and	The accused workflow comprises moving the plurality of samples into the respective plurality of PCR reaction zones. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://pwww.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." *Id.* at 3:58-4:08 A B B B B B B B B B B B B B B B B B B

Claim Claim Language	Infringement Evidence
Claim Language	US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the set of occlusion positions is positioned along the fluidic pathway downstream of the set of occlusion positions opositions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the
	of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction at upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by a occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing flu

Claim	Claim Language	Infringement Evidence
		positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • US973887 (Exhibit 31) at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • US9738887 (Exhibit 31) at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") • US9738887 (Exhibit 31) at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to th

Claim	Claim Language	Infringement Evidence
		the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US9738887 (Exhibit 31) at Figs. 1J and 1K: 165 179 115 144 145 142 176 147146177199 149 164 117 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
20(d)	amplifying polynucleotides contained with the plurality of samples in the plurality of PCR reaction zones while thermal cycling the PCR reaction zones	The accused workflow comprises amplifying polynucleotides contained with the plurality of samples in the plurality of PCR reaction zones while thermal cycling the PCR reaction zones. *NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11)

Claim	Claim Language	Infringement Evidence
		 "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR." Powerful Simple Diagnostics NeuMoDx Powerful Simple Diagnostic

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19)
		• "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx
		Cartridge contains 12 independent microfluidic circuits that enable the
		independent processing of up to 12 samples once housed appropriately in
		the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a
		combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed
		clinical specimens prior to presenting the extracted nucleic acid for detection by
		Real-Time PCR."
		Teal Time Cit.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "The NeuMoDx Molecular N96 and N288 are fully automated sample to
		result molecular diagnostics platforms. They provide continuous random
		access processing with initial results in one hour and operator walk away time of
		 up to eight hours." <i>Id.</i> at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge
		contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." <i>Id.</i> at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A scries of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module

Claim	Claim Language	Infringement Evidence
Ciaini	Claim Language	comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of p

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 Infringement Evidence and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater. U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge
		isolate nucleic acids, and analyze nucleic acids , comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to
		control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to
		facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of

Claim	Claim Language	Infringement Evidence
		 nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
20(e)	and maintaining a substantially uniform temperature throughout each PCR reaction zone during each cycle,	The accused workflow comprises amplifying polynucleotides contained with the plurality of samples in the plurality of PCR reaction zones while thermal cycling the PCR reaction zones and maintaining a substantially uniform temperature throughout each PCR reaction zone during each cycle

Claim	Claim Language	Infringement Evidence
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended

Claim	Claim Language	Infringement Evidence
		configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample from the magnetic bead-sample; and a set of pins contacting the cam card, wherein movement of the cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to transfer the magnetic bead-sample; and a liq

Claim	Claim Language	Infringement Evidence
		 Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of

Claim	Claim Language	Infringement Evidence
		the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers.

Claim	Claim Language	Infringement Evidence
Ciam		 U.S. Patent No. 9,499,896 at 2:33-48 "The system 100 functions to enable rapid thermal cycling of samples while providing uniform heating and preventing signal drift. In specific applications, the system 100 can be used to rapidly and controllably thermocycle nucleic acid samples during performance of molecular diagnostic amplification techniques (e.g., PCR, RT-PCR), signal amplification techniques (e.g., bDNA, hybrid capture), and analytical techniques (e.g., gel electrophoresis, mass spectrometry). The system 100 can also provide rapid thermocycling without significant power requirements, ensure a closer correlation between the actual heating temperature and the temperature set-point by implementing an integrated heater-sensor die, and controllably and individually heat small sample volumes (e.g., picoliters, nanoliters) based upon a microfabrication technique that also enables mass production of the system 100.") U.S. Patent No. 9,499,896 at 2:61-3:3 ("The set of heater-sensor dies 110 functions to controllably heat individual sample volumes. Preferably, each heater sensor die 111 is a thin-film die that can be deposited onto another substrate (e.g., silicon, glass substrate) that can be packaged onto an electronics substrate 140 (e.g., printed circuit board, PCB); however, each heater-sensor die 111 can alternatively comprise any suitable geometry and/or configuration that enables controlled, uniform, and rapid heating of a detection chamber in thermal communication with the heater-sensor die 111.") U.S. Patent No. 9,499,896 at 3:23-27 ("Preferably, each heater-sensor die 111 in the set of heater sensor dies 110 comprises an assembly including: a first insulating layer 112a that functions to provide an insulating barrier to isolate the heaters and sensors and a heating region 113 that functions to provide uniform sample heating.")
20(f)	at least one PCR reaction zone separately thermally controllable from another PCR reaction zone.	The accused workflow comprises at least one PCR reaction zone separately thermally controllable from another PCR reaction zone. *NeuMoDx** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ ,

Claim	Claim Language	Infringement Evidence
		 "NeuMoDxTM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) ■ Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		40600094 D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		"The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of

Claim	Claim Language	Infringement Evidence
		 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second fluidic

Claim Language	Infringement Evidence
	second detection chamber, and wherein at least one of the first fluidic
	pathway and the second fluidic pathway is coupled to the fluid port.
	US9050594 (Exhibit 24)
	 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chambers, a waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to
	produce a nucleic acid-reagent mixture; a molecular diagnostic module,
	Claim Language

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heate
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of

Claim Language	Infringement Evidence
Claim Language	nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the se
	Claim Language

Claim	Claim Language	Infringement Evidence
		alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent
		mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")

Exhibit 38

U.S. Patent No. 8,415,103 Infringement Chart

Claim	Claim Language	Infringement Evidence
1(a)	A method of carrying out amplification independently on a plurality of polynucleotide-	To the extent the preamble is limiting, the accused workflow includes carrying out amplification independently on a plurality of polynucleotide-containing samples.
	containing samples, the method comprising:	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-products/ , last visited June 5, 2019 (Exhibit 12)
	comprising.	NeuMoDx molecular
		#500200 NeuMoDx 96 Molecular System #500100 NeuMoDx 288 Molecular System

Claim	Claim Language	Infringement Evidence
		 NeuMoDx™ Molecular Systems, NeuMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays." NeuMoDx™ Molecular Systems, NeuMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDx™ Molecular Systems, NeuMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDx™ Molecular Systems Revolutionary Molecular DiAGNOSTIC Solution Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) ■ Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		"The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of

Claim	Claim Language	Infringement Evidence
		up to eight hours." Id. at 0:00-0:18 • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Ev	idence
		products with US 9,050,594; 9,339,	www.neumodx.com/patents/, demonstrating that NeuMoDx marks its Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430; 812; 9,441,219; 10,041,062; 9,604,213; 10,010,888; 9,382,532; 896; 9,539,576; 9,637,775; and 10,093,963 (Exhibit 15)
		Product	Patents
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701. JP Patent No. 6061313.
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.
			ibit 27) A cartridge for processing a sample, the cartridge comprising: a first an intermediate substrate coupled to the first layer and partially

Claim	Claim Language	Infringement Evidence
		is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. • Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the second fluidic pathway is coupled to the second fluidic pathway and the second fluidic pathway is coupled to the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic

Claim	Claim Language	Infringement Evidence
		emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge

Claim	Claim Language	Infringement Evidence
		 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
1(b)	introducing the plurality of samples separately into a microfluidic cartridge;	The accused workflow includes introducing the plurality of samples separately into a microfluidic cartridge. *NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." Id. at 3:47-3:57

Claim	Claim Language	Infringement Evidence
		Powerful Simple
		US9101930 (Exhibit 25)
		• Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the

Claim	Claim Language	Infringement Evidence
		 intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate. Claim 11. The cartridge of claim 10, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second

Claim	Claim Language	Infringement Evidence
		sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer.

Claim	Claim Language	Infringement Evidence
1(c)	isolating the samples in the microfluidic cartridge;	The accused workflow includes isolating the samples in the microfluidic cartridge. NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads.
		• Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to

Claim	Claim Language	Infringement Evidence
		facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second

fringement Evidence
between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulation of the fluidic pathway at the first and second occlusion positions, and wherein a second truncated pathway, including the normally closed position and the second branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions.
• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured

Claim	Claim Language	Infringement Evidence
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")

Claim	Claim Language	Infringement Evidence
1(d)	placing the microfluidic cartridge in thermal communication with an array of independent heaters; and	The accused workflow includes placing the microfluidic cartridge in thermal communication with an array of independent heaters. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."

Claim Claim Language Infringement Evidence	
Claim Language NeuMoDx Molecular N96 and N288 Overview and Animation, NEU 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking· NeuMoDx™ WORKFLOW" hyperlink at https://player.vimeo.com (Exhibit 16) "A series of microfluidic valves guides the PCR-ready sol cartridge into three thin PCR chambers and the amplification begins. During a series of independent heat on-heat off se scanner measures the level of fluorescence emitted, and comqualitative or quantitative results which are displayed as amanalysis by the laboratorian." Id. at 3:58-4:26	ution through the ation process quences, an optical verts it into the

Claim	Claim Language	Infringement Evidence
		 US9050594 (Exhibit 24) Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module
		comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample.
		• Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways , wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment

Claim	Claim Language	Infringement Evidence
Ciaiii	Claim Language	configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to transfer the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem fur

Claim	Claim Language	Infringement Evidence
		is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157,
		which allows amplification of nucleic acids for molecular diagnostic
		 protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12
		different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection

Claim	Claim Language	Infringement Evidence
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple
		heaters are provided, each heater is preferably independent to allow
		independent control of heating time and temperature for each sample.")
		US9499896 (Exhibit 28)
		 Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heater-sensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be
		configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")
1(e)	amplifying polynucleotides in the plurality of samples by	The accused workflow includes amplifying polynucleotides in the plurality of samples by independent application of successive temperature cycles to each sample.

Claim	Claim Language	Infringement Evidence
	independent application of	
	successive temperature cycles to	NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ ,
	each sample.	last visited May 31, 2019 (Exhibit 11)
		"NeuMoDx™ MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR
		DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers
		 market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDxTM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDxTM 288 and the NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18)
		Describing "microfluidic cartridges capable of performing independent
		sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		"The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of

Claim	Claim Language	Infringement Evidence
		 up to eight hours." Id. at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the

Claim	Claim Language	Infringement Evidence
		second detection chamber, and wherein at least one of the first fluidic
		pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
		configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of

Claim Language	Infringement Evidence
Claim Language	nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.") • U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
	Claim Language

Claim	Claim Language	Infringement Evidence
		with a detection chamber and an inferior surface, inferior to the heating surface,
		including a connection point, wherein each of the set of heater-sensor dies
		includes a heating element and a sensing element; an electronics substrate,
		comprising a first substrate surface coupled to the inferior surface of each of the
		set of heater-sensor dies, a set of apertures longitudinally spaced across the
		electronics substrate and providing access through the electronics substrate to
		the set of heater-sensor dies, and a second substrate surface inferior to the first
		substrate surface, wherein the electronics substrate comprises a set of substrate
		connection points at least at one of the first substrate surface, an aperture surface
		defined within at least one of the set of apertures, and the second substrate
		surface, and wherein the electronics substrate couples the heating element and
		the sensing element of each of the set of heater-sensor dies to a controller; a set
		of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies,
		through the set of apertures, and 2) the second substrate surface of the
		electronics substrate and configured to dissipate heat generated by the set of
		heater-sensor dies, wherein at least one of the set of heat-sink supports includes
		an integrated cooling element, and wherein a base surface of each of the set of
		heat-sink supports is coupled to an elastic element that transmits a biasing force
		through the electronics substrate, thereby maintaining thermal communication
		between the set of heater-sensor dies and a set of detection chambers upon
		alignment of the set of heater-sensor dies with the set of detection chambers; and
		a set of wire bonds, including a wire bond coupled between the connection point
		of at least one of the set of heater-sensor dies and one of the set of substrate
		connection points.
		• U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be
		configured to control individual heater-sensor dies 111 in order to provide
		unique heating parameters for individual detection chambers and/or can be
		configured to provide common heating parameters for all heater-sensor
		dies 111 in the set of heater-sensor dies no.")
		• U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240,
		individual heater-sensor dies of the set of heater-sensor dies can be coupled to
		one or multiple electronics substrates in order to provide uniform heating of

Claim	Claim Language	Infringement Evidence	
		individual sample containers with ind provided at each of the set of heater-s	lependent control of heating parameters ensor dies.")
15(a)	A method of carrying out amplification independently on a plurality of polynucleotide-containing samples, the method comprising:	To the extent the preamble is limiting, the ac amplification independently on a plurality of NeuMoDx TM Molecular Systems, NEUMoDx last visited June 5, 2019 (Exhibit 12) NeuMoDx molecular	polynucleotide-containing samples.
		#500200 NeuMoDx [™] 96 Molecular System	#500100 NeuMoDx [™] 288 Molecular System

Claim	Claim Language	Infringement Evidence
		 NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDx™ Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays." NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "NeuMoDx™ MoLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent

Claim	Claim Language	Infringement Evidence
	8 8	sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. NeuModx orfice 73A 427,0111 Tax 73A 477,0130 1250 Elsenhower Place Ann Arbor, MI 48108 www.neumodx.com CARTRIDGE CARTRIDGE CARTRIDGE CARTRIDGE CARTRIDGE
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "The NeuMoDx Molecular N96 and N288 are fully automated sample to
		result molecular diagnostics platforms. They provide continuous random

Claim	Claim Language	Infringement Evidence
		 access processing with initial results in one hour and operator walk away time of up to eight hours." <i>Id.</i> at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59 "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." <i>Id.</i> at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second fluidic

Claim	Claim Language	Infringement Evidence
		second detection chamber, and wherein at least one of the first fluidic
		pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads
		configured to be combined with a biological sample to produce a magnetic
		bead-sample; an assay strip comprising at least one well containing a molecular
		diagnostic reagent configured to be combined with a nucleic acid volume to
		produce a nucleic acid-reagent mixture; a molecular diagnostic module,

Claim Language	Infringement Evidence
Claim Language	configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater.
	• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a

Claim	Claim Language	Infringement Evidence
		nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.")
15(b)	introducing the plurality of samples in to a microfluidic cartridge,	The accused workflow includes introducing the plurality of samples in to a microfluidic cartridge.

Claim	Claim Language	Infringement Evidence
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." Id. at 3:47-3:57

Claim	Claim Language	Infringement Evidence
		Rowerful, Simple
		US9101930 (Exhibit 25)
		• Claim 10. A cartridge, configured to facilitate processing and detecting of nucleic acids, comprising: a first layer and an intermediate substrate, coupled to the first layer, wherein the intermediate substrate defines a waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids spanning a majority of a width of the intermediate substrate and external to the waste chamber, wherein the set of voids is accessible from a direction perpendicular to a broad surface of the first layer; a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway, formed by at least a portion of the first layer, wherein the first fluidic pathway and the second fluidic pathway are each superior to the intermediate substrate, are each at least partially separated from the corrugated surface of the

Claim	Claim Language	Infringement Evidence
		 intermediate substrate by an elastomeric layer and are each configured to transfer waste to the waste chamber through a set of openings of the intermediate substrate. Claim 11. The cartridge of claim 10, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second

Claim	Claim Language	Infringement Evidence
		sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer.
		•

Claim	Claim Language	Infringement Evidence
15(c)	wherein the cartridge has a plurality of reaction chambers configured to permit thermal cycling of the plurality of samples independently of one another;	In the accused workflow, the cartridge has a plurality of reaction chambers configured to permit thermal cycling of the plurality of samples independently of one another. *NeuMoDx*** Molecular Systems*, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) * "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." * "The NeuMoDx*** Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx*** 288 and the NeuMoDx*** 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry*** reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) ■ Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		"The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of

Claim	Claim Language	Infringement Evidence
		up to eight hours." Id. at 0:00-0:18 • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the

Claim	Claim Language	Infringement Evidence
		second detection chamber, and wherein at least one of the first fluidic
		pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecul
		diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module,
		produce a nucleic acid-reagent infature, a morecular diagnostic module,

Claim	Claim Language	Infringement Evidence
		configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of

Claim Language	Infringement Evidence
Claim Language	nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple heaters are provided, each heater is preferably independent to allow independent control of heating time and temperature for each sample.") US9539576 (Exhibit 29) • Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the
	Claim Language

Claim Language	Infringement Evidence
Claim Language	with a detection chamber and an inferior surface, inferior to the heating surface, including a connection point, wherein each of the set of heater-sensor dies includes a heating element and a sensing element; an electronics substrate, comprising a first substrate surface coupled to the inferior surface of each of the set of heater-sensor dies, a set of apertures longitudinally spaced across the electronics substrate and providing access through the electronics substrate to the set of heater-sensor dies, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within at least one of the set of apertures, and the second substrate surface, and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set of heat-sink supports coupled to at least one of 1) the set of heater-sensor dies, through the set of apertures, and 2) the second substrate surface of the electronics substrate and configured to dissipate heat generated by the set of heater-sensor dies, wherein at least one of the set of heat-sink supports includes an integrated cooling element, and wherein a base surface of each of the set of heat-sink supports is coupled to an elastic element that transmits a biasing force through the electronics substrate, thereby maintaining thermal communication between the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies and a set of detection chambers upon alignment of the set of heater-sensor dies and one of the set of substrate connection points. • U.S. Patent No. 9,539,576 at 9:8-12 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating p
	Claim Language

Claim	Claim Language	Infringement Evidence
		individual sample containers with independent control of heating parameters provided at each of the set of heater-sensor dies.")
15(d)	moving the plurality of samples independently of one another into the respective plurality of reaction chambers;	The accused workflow includes moving the plurality of samples independently of one another into the respective plurality of reaction chambers. **NeuMoDx Molecular N96 and N288 Overview and Animation*, NeuMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx M WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		US9738887 (Exhibit 31)
Claim	Claim Language	 Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined
		between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric
		layer during operation; wherein the normally closed position is defined by a
		region of the fluidic pathway, at the first layer that extends toward and abuts the
		elastomeric layer in preventing fluid bypass at the region; wherein a first
		truncated pathway, including the normally open position and the first branch and
		excluding the second branch, is defined upon manipulation of the fluidic
		pathway at the first and second occlusion positions, and wherein a second
		truncated pathway, including the normally closed position and the second

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	branch and excluding the first branch, to the detection chamber is defined upon manipulation of the fluidic pathway at the first and second occlusion positions. • US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") • US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") • US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth

Claim	Claim Language	Infringement Evidence
Ciaini	Claim Language	truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at Figs. 1J and 1K: 165 119 115 144 145 142 176 147146177199 149 164 117 FIG. 1J 165 179 1148 163 FIG. 1J OCCLUDED
15(e)	isolating the samples within the plurality of reaction chambers;	The accused workflow includes isolating the samples within the plurality of reaction chambers. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) "A series of microfluidic valves guides the PCR-ready solution through the

Claim	Claim Language	Infringement Evidence
		cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A B Company Surprise C C C C C C C C C C C C C C C C C C C
		Second valve PCR First valve
		US9339812 (Exhibit 26) (Exhibit 26)
		 Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions

Claim	Claim Language	Infringement Evidence
Ciaini		defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the clastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber. US9738887 (Exhibit 31) • Claim 12. A cartridge, configured to facilitate processing and detecting of a
		nucleic acid, comprising: a first layer comprising a sample port and a detection

Claim	Claim Language	Infringement Evidence
	Claim Language	chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally closed position a

Claim	Claim Language	Infringement Evidence
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") at Figs. 1J and 1K:

		165 119 115 144 145 142 176 147146177199 149 164 117
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running away from the detection chamber 164. In the first embodiment, the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142,
		143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
15(f)	placing the microfluidic cartridge in thermal communication with an array of independent heaters; and	The accused workflow includes placing the microfluidic cartridge in thermal communication with an array of independent heaters. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18)

Claim	Claim Language	Infringement Evidence
		Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. NeuModx ministration of the Table ATT (0) 1 1250 Etenhower Place Ann Arbor, MI 48108 www.neumodx.com CARTRIDGE CARTRIDGE CARTRIDGE Reg 1 160 2 12 2 12 2 12 2 12 2 12 2 12 2 1
		 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins. During a series of independent heat on-heat off sequences, an optical scanner measures the level of fluorescence emitted, and converts it into the qualitative or quantitative results which are displayed as amplification curves for analysis by the laboratorian." Id. at 3:58-4:26

Claim	Claim Language	Infringement Evidence
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecul

Claim	Claim Language	Infringement Evidence
		acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater; wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads,

Claim	Claim Language	Infringement Evidence
		isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.")
		 US9499896 (Exhibit 28) Claim 1. A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die in the set of heater-sensor dies comprising: an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first

Claim	Claim Language	Infringement Evidence
		insulating layer and a noble material layer coupled to the adhesion material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in the heating region defines a coarse pattern, comprising a global morphology at a first scale and associated with a heating element of the heating region, and a fine pattern, comprising a local morphology at a second scale smaller than the first scale, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heatersensor dies to a controller; and a set of elastic elements coupled to a second substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate opposing a first substrate surface of the electronics substrate interfacing with the assemblies of the set of heatersensor dies and configured to bias each of the set of heater-sensor dies against a detection chamber in a configuration wherein the set of heater-sensor dies is in thermal communication with a set of detection chambers. • U.S. Patent No. 9,499,896 at 12:15-20 ("Furthermore, the controller 165 can be configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies 110.")
15(g)	amplifying polynucleotides contained within the plurality of samples, by application of successive temperature cycles independently to the reaction chambers.	The accused workflow includes amplifying polynucleotides contained within the plurality of samples, by application of successive temperature cycles independently to the reaction chambers. **NeuMoDx*** Molecular Systems*, NeuMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) "NeuMoDx*** MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result" platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients."

Claim	Claim Language	Infringement Evidence
		• "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics. NeuMode John Star 17,011 Day 734,477,0150 17250 Elsenhows Place Ann Arbor, MI 48108 www.neumedx.com
		CARTRIDGE PRODUCTION NEW MEDICAL PRODUCTION N
		40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the
		independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a

Claim	Claim Language	Infringement Evidence
		combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) "The NeuMoDx Molecular N96 and N288 are fully automated sample to result molecular diagnostics platforms. They provide continuous random access processing with initial results in one hour and operator walk away time of up to eight hours." Id. at 0:00-0:18 "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." Id. at 1:49-1:59
		• "A series of microfluidic valves guides the PCR-ready solution through the

Claim Language	Infringement Evidence
	cartridge into three thin PCR chambers and the amplification process
	begins. During a series of independent heat on-heat off sequences, an optical
	scanner measures the level of fluorescence emitted, and converts it into the
	qualitative or quantitative results which are displayed as amplification curves for
	analysis by the laboratorian." <i>Id.</i> at 3:58-4:26
	US9403165 (Exhibit 27)
	Claim 8. A cartridge for processing a sample, the cartridge comprising: a first
	layer and an intermediate substrate coupled to the first layer and partially
	separated from the first layer by a film layer, wherein the intermediate substrate
	is configured to form a sealed waste chamber with a corrugated surface directly
	opposing the first layer, wherein the corrugated surface defines a set of parallel
	voids external to the waste chamber; and a first fluidic pathway, formed by at
	least a portion of the first layer; and a second fluidic pathway in parallel
	with the first fluidic pathway and formed by at least a portion of the second
	fluidic pathway, wherein the first fluidic pathway and the second fluidic
	pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid
	of the sample into the waste chamber through a set of openings of the
	intermediate substrate.
	• Claim 10. The cartridge of claim 8, wherein the first layer is a unitary
	Claim Language

Claim	Claim Language	Infringement Evidence
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		 Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-
		reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer.

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	 Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture from the assay strip, wherein the molecular diagnostic module comprises a cartridge platform including a set of parallel slots, a cam card, and a set of pins contacting the cam card, wherein movement of the cam card displaces a subset of the set of pins through a subset of the set of parallel slots to define at least one pathway configured to receive the magnetic bead-sample; and a liquid handling system configured to transfer the magnetic bead-sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the excitation filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of t
		chamber heater is configured to individually heat the nucleic acid-reagent

Claim	Claim Language	Infringement Evidence
		mixture , and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		 U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows
		independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.")
		• U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters
		157 functions to individually heat detection chambers of a set of detection
		chambers 213 within a microfluidic cartridge 210.")
		• U.S. Patent No. 9,050,594 at 29:44-47 ("In embodiments wherein multiple

rs are provided, each heater is preferably independent to allow bendent control of heating time and temperature for each sample.") (Exhibit 29) 1. A system for thermocycling biological samples within detection
(Exhibit 29)
bers comprising: a set of heater-sensor dies, each heater-sensor die in the cheater-sensor dies comprising a heating surface configured to interface a detection chamber and an inferior surface, inferior to the heating surface, ding a connection point, wherein each of the set of heater-sensor dies ales a heating element and a sensing element; an electronics substrate, trising a first substrate surface coupled to the inferior surface of each of the cheater-sensor dies, a set of apertures longitudinally spaced across the onics substrate and providing access through the electronics substrate to at of heater-sensor dies, and a second substrate surface inferior to the first rate surface, wherein the electronics substrate comprises a set of substrate extinction points at least at one of the first substrate surface, an aperture surface and within at least one of the set of apertures, and the second substrate each and wherein the electronics substrate couples the heating element and the sensing element of each of the set of heater-sensor dies to a controller; a set at-sink supports coupled to at least one of 1) the set of heater-sensor dies, ghe the set of apertures, and 2) the second substrate surface of the onics substrate and configured to dissipate heat generated by the set of resensor dies, wherein at least one of the set of heat-sink supports includes egrated cooling element, and wherein a base surface of each of the set of sink supports is coupled to an elastic element that transmits a biasing force ghe the electronics substrate, thereby maintaining thermal communication ten the set of heater-sensor dies and a set of detection chambers upon ment of the set of heater-sensor dies with the set of detection chambers; and

Claim	Claim Language	Infringement Evidence
		 configured to control individual heater-sensor dies 111 in order to provide unique heating parameters for individual detection chambers and/or can be configured to provide common heating parameters for all heater-sensor dies 111 in the set of heater-sensor dies no.") U.S. Patent No. 9,539,576 at 12:59-64 ("Upon completion of Block S240, individual heater-sensor dies of the set of heater-sensor dies can be coupled to one or multiple electronics substrates in order to provide uniform heating of individual sample containers with independent control of heating parameters provided at each of the set of heater-sensor dies.")

EXHIBIT 39

U.S. Patent No. 8,709,787 Infringement Chart

Claim	Claim Language	Infringement Evidence
10(a)	A microfluidic substrate, comprising:	To the extent the preamble is limiting, the accused product is a microfluidic substrate.
		NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18)
		Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		Powerful. Simple. Diagnostics.* NeuMook John St. 144770011 See 754 477003 17250 Elsenhows Place I Ann Arbor, MI 48108 I was neumoda com CARTRIDGE LEGIT 1005772 JOHN ST. 11
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/ , last visited
		May 31, 2019 (Exhibit 10)
		• "NeuMoDx TM 288 and NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM
		reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample

Claim	Claim Language	Infringement Evidence
		microfluidic cartridge."
		 NeuMoDx™ Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/, last visited May 31, 2019 (Exhibit 11) "The NeuMoDx™ Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx™ 288 and the NeuMoDx™ 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry™ reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge." "The NeuMoDx™ 96 Molecular System is designed for the automated extraction and isolation of nucleic acids, as well as the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 96 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables." "The NeuMoDx™ 288 Molecular System is designed for the automated amplification and detection of target nucleic acid sequences by fluorescence-based PCR. The NeuMoDx™ 288 Molecular System consists of the instrument with touchscreen computer, accessories, and reagents and consumables."
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/product/neumodx-288/, last visited June 3, 2019 (Exhibit 13) "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		NeuMoDx TM Molecular Systems, NeuMoDx, http://www.neumodx.com/product/neumodx-96/ , last visited June 3, 2019 (Exhibit 14)

Claim	Claim Language	Infringement Evidence
		 "FEATURES AND BENEFITS Fluorescence detection at five wavelengths enabling multiplexed amplification reactions Real-time detection of products of amplification."
		• "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		0600101_Rev-D-IFU-NeuMoDx-RELEASE-Solution-US-ONLY-FINAL-25Oct2018.pdf (Exhibit 20) • "NeuMoDx™ RELEASE Solution INSTRUCTIONS FOR USE The NeuMoDx Systems mix the released nucleic acid with assay specific primers and probe(s) and the dried Master Mix contained in a NeuMoDx test strip. The System then dispenses the prepared RT-PCR-ready mixture into the NeuMoDx Cartridge where Real-Time PCR occurs."
		 K173725.pdf (Exhibit 23) "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber."
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59 • "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 "Patents", http://www.neumodx.com/patents/ , demonstrating that NeuMoDx marks its products with US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; 9,452,430;

Claim	Claim Language	Infringement Ev	idence
		PATENT	S
		Product	Patents
		CARTRIDGE	US Patent Nos. 9,738,887; 9,433,940; 9,101,930; 9,403,165; and 9,452,430. AU Patent No. 2013221701, JP Patent No. 6061313.
		P02 (overall system and method)	US Patent Nos. 9,050,594; 9,339,812; 9,441,219; 10,041,062; 9,604,213; and 10,010,888. CN Patent No. ZL 2013 8 00092863.
		EXTRACTION PLATE	US Patent Nos. 9,382,532; and 9,540,636.
		XPCR MODULE	US Patent Nos. 9,499,896; 9,539,576; 9,637,775; and 10,093,963.
		between the substrate of layer, when chamber a first layer, of opening wherein the port, the fluid of the second which a preserved of the second seco	coupled to the first layer, such that the elastomeric layer is situated the intermediate substrate and the first layer, wherein the intermediate defines a chamber with a corrugated surface directly opposing the first the corrugated surface defines a set of voids external to the and accessible from a direction perpendicular to a broad surface of the and wherein at least a portion of the corrugated surface includes a set go that provide access to the elastomeric layer; and a fluidic pathway, he fluidic pathway is fluidically coupled to the sample port, the reagent laid port, and the detection chamber. The cartridge of claim 1, wherein the detection chamber comprises a cond, and a third detection chamber segment wherein each of the first, and the third detection chamber segment is a broad chamber of rojection onto a plane is substantially rectangular, wherein a first end and detection chamber segment is connected to the first detection
			segment by a first narrow fluidic channel, and wherein a second end ond detection chamber segment is connected to the third detection

Claim	Claim Language	Infringement Evidence
		chamber segment by a second narrow fluidic channel.
		• U.S. Patent No. 9,738,887 at FIG. 1A:
		165
		118
		113 <u>FIG. 1A</u>
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate, and a set of fluidic pathyrays, each formed by at least a
		intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber , comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste

Claim	Claim Language	Infringement Evidence
		chamber, and to pass through the vent region.")
		• US Patent No. 9,738,887 at 2:36-3:5. ("As shown in FIGS. 1A-IC, an
		embodiment of a microfluidic cartridge 100 for processing and detecting
		nucleic acids comprises: a top layer 110 comprising a set of sample port-
		reagent port pairs 112 and a set of detection chambers 116; an intermediate
		substrate 120, coupled to the top layer 110 and partially separated from the top
		layer by a film layer 125, configured to form a waste chamber 130; an
		elastomeric layer 140 partially situated on the intermediate substrate 120; a
		magnet housing region 150 accessible by a magnet 152 providing a magnetic
		field 156; and a set of fluidic pathways 160, each formed by at least a portion of
		the top layer 110, a portion of the film layer 125, and a portion of the
		elastomeric layer 140 In a specific application, the microfluidic cartridge
		100 can be used to facilitate a PCR procedure for analysis of a sample
		containing nucleic acids.")
		• US Patent No. 9,738,887 at 13:7-18. ("The top layer 110 of an embodiment of
		the microfluidic cartridge 100 functions to accommodate elements involved
		in performing a molecular diagnostic procedure (e.g. PCR), such that a
		sample containing nucleic acids, passing through the cartridge, can be
		manipulated by the elements involved in performing the molecular diagnostic procedure. The top layer 110 is preferably composed of a structurally rigid/stiff
		material with low autofluorescence, such that the top layer 110 does not
		interfere with sample detection by fluorescence or chemiluminescence
		techniques, and an appropriate glass transition temperature and chemical
		compatibility for PCR or other amplification techniques.")
		• US Patent No. 9,738,887 at 13:35-42. ("The set of fluidic pathways 160 of the
		microfluidic cartridge 100 functions to provide a fluid network into which
		volumes of sample fluids, reagents, buffers and/or gases used in a molecular
		diagnostics protocol may be delivered, out of which waste fluids may be
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• US Patent No. 9,738,887 at 15:29-39 ("The segments may be arranged in at

Claim	Claim Language	Infringement Evidence
		least one of several configurations to facilitate isolation, processing, and amplification of a nucleic acid sample"). • US Patent No. 9,738,887 at 23:20-24 ("The top layer 110 of the specific embodiment of the microfluidic cartridge 100 functions preferably as described in Section 1.1, and is composed of polypropylene with low autofluorescence and a glass transition temperature suitable for PCR.")
10(b)	a plurality of sample lanes,	The accused microfluidic substrate comprises a plurality of sample lanes, NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"

Claim	Claim Language	Infringement Evidence
		platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx TM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge . This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents.
		 NeuMoDxTM Molecular Systems, NeuMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM 288 and NeuMoDxTM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDryTM reagent technology, which integrates magnetic particle affinity capture and real time polymerase chain reaction (PCR) chemistry in a multi-sample microfluidic cartridge."
		• "NeuMoDx™ Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	K173725.pdf (Exhibit 23) • "510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE Test Principle After reconstitution of the dried PCR reagents, the NeuMoDx System dispenses the prepared PCR-ready mixture into one PCR chamber (per specimen) of the NeuMoDx Cartridge. Amplification and detection of the control and target DNA sequences occur in PCR chamber." NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936. (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59
		• "A series of microfluidic valves guides the PCR-ready solution through the

Claim	Claim Language	Infringement Evidence
		cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		 US9403165 (Exhibit 27) Claim 8. A cartridge for processing a sample, the cartridge comprising: a first layer and an intermediate substrate coupled to the first layer and partially separated from the first layer by a film layer, wherein the intermediate substrate is configured to form a sealed waste chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of parallel voids external to the waste chamber; and a first fluidic pathway, formed by at least a portion of the first layer; and a second fluidic pathway in parallel with the first fluidic pathway and formed by at least a portion of the second fluidic pathway, wherein the first fluidic pathway and the second fluidic pathway are each at least partially separated from the corrugated surface by an elastomeric layer, and each fluidic pathway is configured to transfer waste fluid of the sample into the waste chamber through a set of openings of the intermediate substrate. Claim 10. The cartridge of claim 8, wherein the first layer is a unitary construction comprising a first sample port-reagent port pair including a first
		sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port.
		US9050594 (Exhibit 24)
		• Claim 1: A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well configured to facilitate a combination of a set of magnetic beads with a biological sample, thus producing a magnetic bead-sample; and a molecular diagnostic module, configured to process at

Claim	Claim Language	Infringement Evidence
		least one magnetic bead-sample obtained from the capture plate, and separate nucleic acids from magnetic beads, wherein the molecular diagnostic module comprises: a cartridge platform comprising a magnet receiving slot, an actuator configured to displace the cartridge platform, a magnet, wherein an extended configuration of the actuator allows the magnet to pass through the magnet receiving slot to facilitate separation of the at least one nucleic acid volume, and a cam card contacting a set of pins, wherein the extended configuration of the actuator combined with movement of the cam card displaces a subset of the set of pins through a set of slots of the cartridge platform, to define at least one distinct pathway configured to receive at least one magnetic bead-sample. • Claim 13. The system of claim 1, wherein the molecular diagnostic module is configured receive and align a microfluidic cartridge comprising a set of sample port-reagent port pairs, a fluid port, a set of detection chambers, a waste chamber, an elastomeric layer, and a set of fluidic pathways, wherein each fluidic pathway of the set of fluidic pathways is coupled to a sample port-reagent port pair, the fluid port, and a detection chamber, comprises a segment configured to cross the magnet, and is configured to transfer a waste fluid to the waste chamber, and to be occluded upon deformation of the elastomeric layer. • Claim 16. A system for processing and detecting nucleic acids, comprising: a capture plate comprising at least one well containing a set of magnetic beads configured to be combined with a biological sample to produce a magnetic bead-sample; an assay strip comprising at least one well containing a molecular diagnostic reagent configured to be combined with a nucleic acid volume to produce a nucleic acid-reagent mixture; a molecular diagnostic module, configured to process the magnetic bead-sample from the capture plate, separate the nucleic acid volume from the magnetic bead-sample, and analyze the nucleic acid-reagent mixture fr

Claim	Claim Language	Infringement Evidence
		sample from the capture plate to the molecular diagnostic module, transfer the nucleic acid volume from the molecular diagnostic module to the assay strip, and transfer the nucleic acid-reagent mixture from the assay strip to the molecular diagnostic module. • Claim 18. The system of claim 16, wherein the molecular diagnostic module comprises an optical subsystem comprising at least one unit, wherein each unit includes an excitation filter, an emission filter, a photodetector aligned with the emission filter, and a dichroic mirror configured to reflect light from the excitation filter toward the nucleic acid-reagent mixture, and to transmit light from the nucleic acid reagent mixture, through the emission filter, and toward the photodetector wherein each unit of the optical subsystem further comprises an LED aligned with the excitation filter, wherein the LED provides multiple wavelengths of light corresponding to at least one of the excitation filter, the dichroic mirror, and the emission filter. • Claim 19. The system of claim 16, wherein the molecular diagnostic module further comprises a heater and a detection chamber heater, wherein the heater is configured to heat the magnetic bead-sample, and wherein the detection chamber heater is configured to individually heat the nucleic acid-reagent mixture, and wherein at least one of the heater and the detection chamber heater is a Peltier heater.
		• U.S. Patent No. 9,050,594 at Abstract ("A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a capture plate and a capture plate module configured to facilitate binding of nucleic acids within the set of biological samples to magnetic beads; a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids , comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; a fluid handling system configured to deliver samples and reagents to components of the system to

Claim	Claim Language	Infringement Evidence
Ciaiii	Claim Language	facilitate molecular diagnostic protocols; and an assay strip configured to combine nucleic acid samples with molecular diagnostic reagents for analysis of nucleic acids.") • U.S. Patent No. 9,050,594 at 9:4-21 ("The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210 The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR).") • U.S. Patent No. 9,050,594 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.") • U.S. Patent No. 9,050,594 at 11:56-58 ("The set of detection chamber heaters 157 functions to individually heat detection chambers of a set of detection chambers 213 within a microfluidic cartridge 210.") • U.S. Patent No. 9,050,594 at 31:32043 ("Step S460 recites transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers, which functions to deliver the set of nucleic acid-reagent mixtures to an isolated detection chamber for further processing and analysis. Preferably, all nucleic acid-reagent mixtures in the set of nucleic acid-reagent mixtures are transferred simultaneously to the set of fluidic pathways, but alternatively, each nucleic acid-reagent mixture in the set of nucleic acid reagent mixtures may be transferred to a corresponding fluidic pathway independently of the other nucleic acid reagent mixtures.")
10(c)	wherein each of the plurality of sample lanes comprises a microfluidic network having, in	In the accused microfluidic substrate, each of the plurality of sample lanes comprises a microfluidic network having, in fluid communication with one another, an inlet.

Claim	Claim Language	Infringement Evidence
	fluid communication with one	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6,
	another: an inlet;	2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge
		contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." <i>Id.</i> at 1:49-1:59
		Second Channel
		Inlet First Channel Vent First valve Second valve
		• "The liquid handling robot aspirates the PCR-ready solution and transfers it back to the cartridge where it dispenses into the same P-port from which the sample was aspirated." <i>Id.</i> at 3:47-3:57

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A Company of the Comp
		 U.S. Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the microfluidic cartridge 100 functions to provide a fluid network into which volumes of sample fluids, reagents, buffers and/or gases used in a molecular diagnostics protocol may be delivered, out of which waste fluids may be eliminated, and by which processed nucleic acid samples may be delivered to a detection chamber for analysis, which may include amplification and/or detection.") U.S. Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection chamber 163 functions to deliver a processed sample fluid to the detection chamber 117 with a reduced quantity of gas bubbles, and the segment running away from the detection chamber 164 functions to deliver a fluid away from the detection chamber 117.") U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142,

Claim	Claim Language	Infringement Evidence
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165
		may be occluded at the first occlusion position 142 to form an eighth
		truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
		diagnostic reagent with the released nucleic acid sample is complete and well
		mixed, the reconstituted mixture may then be dispensed through the
		reagent port 115, through the eighth truncated pathway, and to the
		detection chamber 117, by using a fluid handling system to push the
		seventh occlusion position [148] (normally closed) open. The detection
		chamber 117 is completely filled with the mixed reagent-nucleic acid
		sample, after which the fluidic pathway 165 is occluded at the third, sixth,
		seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth
		truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic
		pathways 165 may be similarly configured to receive a reagent-nucleic acid
		mixture. An external molecular diagnostic system and/or module may then
		perform additional processes, such as thermocycling and detection, on the
		volume of fluid within the detection chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
10(d)	a first valve and a second valve;	In the accused microfluidic substrate, each of the plurality of sample lanes comprises a microfluidic network having, in fluid communication with one another, a first valve and a second valve. *NeuMoDx Molecular N96 and N288 Overview and Animation, NeuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." <i>Id.</i> at 1:49-1:59

Claim	Claim Language	Infringement Evidence
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08 (see below, with elements of the accused product marked for reference)

Claim	Claim Language	Infringement Evidence
		A Robertal Strate
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
		the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway passing through a magnetic field for controlling a flow through the fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Claim	Claim Language	Infringement Evidence
		guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, to the detection chamber is def

Claim	Claim Language	Infringement Evidence
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.")at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
10(e)	a first channel leading from the inlet, via the first valve, to a reaction chamber; and	The accused microfluidic substrate comprises a first channel leading from the inlet, via the first valve, to a reaction chamber.

Claim	Claim Language	Infringement Evidence
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 .
		(Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A B Converting Strong B Co
		US9738887 (Exhibit 31)
		• Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve guides, wherein the intermediate substrate defines a chamber with a corrugated
		surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction

Claim Language	Infringement Evidence
	perpendicular to a broad surface of the first layer, and wherein at least a portion
	of the corrugated surface defines the set of valve guides with a set of openings
	that provide access to the elastomeric layer; and a fluidic pathway, formed by
	at least a portion of the first layer and a portion of the elastomeric layer,
	wherein the fluidic pathway is fluidically coupled to the sample port and
	the detection chamber and comprises a first and second branch extending
	downstream from a junction, and is configured to be occluded at a set of
	occlusion positions upon manipulation of the elastomeric layer through the set
	of valve guides, wherein a first occlusion position of the set of occlusion
	positions is positioned along the fluidic pathway downstream of the junction and
	upstream of the first branch and a second occlusion position of the set of
	occlusion positions is positioned along the fluidic pathway downstream of the
	junction and upstream of the second branch, wherein the set of occlusion
	positions comprises a normally open position and a normally closed position,
	wherein the normally open position comprises a first surface of the fluidic
	pathway at the first layer and a second surface of the fluidic pathway at the
	elastomeric layer, wherein a void defined between the first surface and the
	second surface is configured to transition to a closed state upon occlus ion by an
	occluding object applied to the elastomeric layer during operation; wherein the
	normally closed position is defined by a region of the fluidic pathway, at the
	first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally
	open position and the first branch and excluding the second branch, is defined
	upon manipulation of the fluidic pathway at the first and second occlu sion
	positions, and wherein a second truncated pathway, including the normally
	closed position and the second branch and excluding the first branch, to the
	detection chamber is defined upon manipulation of the fluidic pathway at the
	first and second occlusion positions.
	 US Patent No. 9,738,887 at 13:35-42 ("The set of fluidic pathways 160 of the
	microfluidic cartridge 100 functions to provide a fluid network into which
	volumes of sample fluids, reagents, buffers and/or gases used in a molecular
	diagnostics protocol may be delivered, out of which waste fluids may be

Claim	Claim Language	Infringement Evidence
		eliminated, and by which processed nucleic acid samples may be delivered to
		a detection chamber for analysis, which may include amplification and/or
		detection.")
		• US Patent No. 9,738,887 at 15:31-35 ("The segment running to a detection
		chamber 163 functions to deliver a processed sample fluid to the detection
		chamber 117 with a reduced quantity of gas bubbles, and the segment
		running away from the detect ion chamber 164 functions to deliver a fluid away
		from the detect ion chamber 117.")
		• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as
		shown in FIG. 11, the occlusions at the first and third occlusion positions 142,
		144 may be reversed, defining a seventh truncated pathway, and the entire
		released nucleic acid sample (e.g20 microliters) may be aspirated out of the
		microfluidic cartridge through the reagent port 115. This released nucleic acid
		sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the
		sixth occlusion position 147 may be reversed, and the fluidic pathway 165
		may be occluded at the first occlusion position 142 to form an eighth
		truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular
		diagnostic reagent with the released nucleic acid sample is complete and well
		mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the
		detection chamber 117, by using a fluid handling system to push the
		seventh occlusion position [148] (normally closed) open. The detection
		chamber 117 is completely filled with the mixed reagent-nucleic acid
		sample, after which the fluidic pathway 165 is occluded at the third, sixth,
		seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth
		truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic
		pathways 165 may be similarly configured to receive a reagent-nucleic acid
		mixture. An external molecular diagnostic system and/or module may then
		perform additional processes, such as thermocycling and detection, on the
		volume of fluid within the detection chamber 117.")
		• US Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1K OCCLUDED
10(f)	a second channel leading from the reaction chamber, via the second valve, to a vent,	In the accused microfluidic substrate, each of the plurality of sample lanes comprises a microfluidic network having, in fluid communication with one another, a second channel leading from the reaction chamber, via the second valve, to a vent.
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)

Claim	Claim Language	Infringement Evidence
		On information and belief, in the accused microfluidic substrate, each of the plurality of sample lanes comprises a microfluidic network having, in fluid communication with one another, a second channel leading from the reaction chamber, via the second valve, to a vent. • Id. at 2:10

Claim	Claim Language	Infringement Evidence
		construction comprising a first sample port-reagent port pair including a first sample port, a second sample port-reagent port pair including a second sample port, a fluid port, a first detection chamber, and a second detection chamber, wherein the first fluidic pathway is coupled to the first sample port-reagent port pair and the first detection chamber, wherein the second fluidic pathway is coupled to the second sample port-reagent port pair and the second detection chamber, wherein the first fluidic pathway is substantially identical to the second fluidic pathway, and wherein at least one of the first fluidic pathway and the second fluidic pathway is coupled to the fluid port. Claim 13. The cartridge of claim 11, further comprising a heating region as a recessed region of the first layer that is parallel to the set of parallel voids of the corrugated surface, and a vent region, such that the first fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the first detection chamber, and the second fluidic pathway is configured to cross the heating region and to pass through the vent region upstream of the second detection chamber. Claim 15. The cartridge of claim 13, wherein at least of the first fluidic pathway and the second fluidic pathway is coupled to an end vent configured to provide fine metering of fluid flow.
		 Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent

Claim	Claim Language	Infringement Evidence
		port, the fluid port, and the detection chamber.
		• Claim 10. The cartridge of claim 1, wherein a terminal portion of the fluidic
		pathway is coupled to an end vent , configured to provide fine metering of fluid flow.
		• U.S. Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144,
		147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K.
		Other pathways of the set of fluidic pathways 165 may be similarly configured
		to receive a reagent-nucleic acid mixture. An external molecular diagnostic
		system and/or module may then perform additional processes, such as
		thermocycling and detection, on the volume of fluid within the detection
		chamber 117.")
		• U.S. Patent No. 9,738,887 at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		• U.S. Patent No. 8,738,887 at 15:4-6 ("A fluidic pathway 165 may also further comprise an end vent 199, which functions to prevent any fluid from escaping the microfluidic channel.")
10(g)	wherein the first valve and the second valve are configured to isolate the reaction chamber from the inlet and the vent to prevent movement of fluid into or out of the reaction chamber,	In the accused microfluidic substrate, the first valve and the second valve are configured to isolate the reaction chamber from the inlet and the vent to prevent movement of fluid into or out of the reaction chamber. *NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) "A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." Id. at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A Robertal Strate
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
		the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Claim	Claim Language	Infringement Evidence
		guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion position and upstream of the second branch, wherein the set of occlusion positions comprises a normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first branch and excluding the second branch, is defined upon manipulat

Claim	Claim Language	Infringement Evidence
Ciaiii		 US Patent No. 9,738,887 at 12:11-19 ("When not in operation, however, the normally closed position 43 is configured to prevent leakage and/or fluid bypass. The normally closed position may also be held closed by an occluding object, to prevent leakage even under pressure provided by a fluid delivery system, or under pressure experienced during a high temperature step (e.g., thermocycling) to prevent evaporation of a sample undergoing thermocycling.") US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 11. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 FIG. 1J 165 119 115 144 145 142 176 147146177199 149 164 117
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and
10(h)	wherein the first valve is spatially separated from the inlet and the second valve is spatially	eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.") In the accused microfluidic substrate, the first valve is spatially separated from the inlet and the second valve is spatially separated from the vent.

Claim	Claim Language	Infringement Evidence
	separated from the vent,	NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), https://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12
		samples simultaneously." Id. at 1:49-1:59 Second Channel
		"A series of microfluidic valves guides the PCR-ready solution through the cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08

Claim	Claim Language	Infringement Evidence
		A B Contract Strate
		Second valve PCR First valve
		US9339812 (Exhibit 26)
		• Claim 29. A method for processing and detecting nucleic acids within a cartridge having a fluidic pathway including a set of occlusion positions defined by an elastomeric layer of the cartridge, the method comprising: aligning the cartridge at a cartridge platform of a molecular diagnostic module,

Claim	Claim Language	Infringement Evidence
		the cartridge platform having a set of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots and an actuator that provides relative displacement between the cartridge platform and the set of pins; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a first subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway at a first subset of the set of occlusion positions, thus defining a first truncated fluidic pathway; capturing a sample of nucleic acids bound to magnetic beads within the first truncated fluidic pathway, by the magnetic field; and moving the cam module, thereby displacing a second subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude the fluidic pathway, through the elastomeric layer, at a second subset of the set of occlusion positions, thus defining a second truncated fluidic pathway containing the sample of nucleic acids bound to magnetic beads. • Claim 30. The method of claim 29, further comprising: delivering a wash solution into the second truncated fluidic pathway through a fluid port to facilitate production of a volume of nucleic acids delivering the volume of nucleic acids through a reagent port coupled to the fluidic pathway; receiving the volume of nucleic acids combined with a volume of molecular diagnostic reagents to produce a nucleic acid-reagent sample; occluding the fluidic pathway at a third subset of the set of occlusion positions, thus defining a third truncated fluidic pathway coupled to a detection chamber; and delivering the nucleic acid-reagent sample, through the third truncated fluidic pathway, to the detection chamber.
		 US9738887 (Exhibit 31) Claim 12. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer comprising a sample port and a detection chamber; an elastomeric layer; an intermediate substrate including a set of valve

Claim	Claim Language	Infringement Evidence
		guides, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface defines the set of valve guides with a set of openings that provide access to the elastomeric layer; and a fluidic pathway, formed by at least a portion of the first layer and a portion of the elastomeric layer, wherein the fluidic pathway is fluidically coupled to the sample port and the detection chamber and comprises a first and second branch extending downstream from a junction, and is configured to be occluded at a set of occlusion positions upon manipulation of the elastomeric layer through the set of valve guides, wherein a first occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the first branch and a second occlusion position of the set of occlusion positions is positioned along the fluidic pathway downstream of the junction and upstream of the second branch, wherein the set of occlusion position and upstream of the second branch, wherein the set of occlusion position somprises a normally open position and a normally closed position, wherein the normally open position comprises a first surface of the fluidic pathway at the first layer and a second surface of the fluidic pathway at the elastomeric layer, wherein a void defined between the first surface and the second surface is configured to transition to a closed state upon occlusion by an occluding object applied to the elastomeric layer during operation; wherein the normally closed position is defined by a region of the fluidic pathway, at the first layer that extends toward and abuts the elastomeric layer in preventing fluid bypass at the region; wherein a first truncated pathway, including the normally open position and the first

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	• US Patent No. 9,738,887 at 17:27-49 ("Thereafter in the first embodiment, as shown in FIG. 11, the occlusions at the first and third occlusion positions 142, 144 may be reversed, defining a seventh truncated pathway, and the entire released nucleic acid sample (e.g20 microliters) may be aspirated out of the microfluidic cartridge through the reagent port 115. This released nucleic acid sample is then used to reconstitute a molecular diagnostic reagent stored off of
		the microfluidic cartridge 100. During the reconstitution, the occlusion at the sixth occlusion position 147 may be reversed, and the fluidic pathway 165 may be occluded at the first occlusion position 142 to form an eighth truncated pathway, as shown in FIG. 1J. Once reconstitution of the molecular diagnostic reagent with the released nucleic acid sample is complete and well mixed, the reconstituted mixture may then be dispensed through the reagent port 115, through the eighth truncated pathway, and to the detection chamber 117, by using a fluid handling system to push the seventh occlusion position [148] (normally closed) open. The detection chamber 117 is completely filled with
		the mixed reagent-nucleic acid sample, after which the fluidic pathway 165 is occluded at the third, sixth, seventh and eighth occlusion positions 144, 147, 148, 149, defining ninth truncated pathway, as shown in FIG. 1K. Other pathways of the set of fluidic pathways 165 may be similarly configured to receive a reagent-nucleic acid mixture. An external molecular diagnostic system and/or module may then perform additional processes, such as thermocycling and detection, on the volume of fluid within the detection chamber 117.") • US Patent No. 9,738,887 at at Figs. 1J and 1K:

Claim	Claim Language	Infringement Evidence
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1J
		165 119 115 144 145 142 176 147146177199 149 164 117 174 114 175 143 166 179 148 163 178 FIG. 1K OCCLUDED
		• US Patent No. 9,738,887 at 16:4-25 ("In the first embodiment, the set of occlusion positions 141 also comprises a sixth occlusion position 147 located along the vent segment 177 upstream of the vent region 190, a seventh occlusion position 148 located along the segment running to the detection chamber 163, and an eighth occlusion position 149 located along the segment running away from the detection chamber 164. In the first embodiment, the first, second, third, fifth, and sixth occlusion positions 142, 143, 144, 146, 147 are normally open positions 42 and the fourth, seventh, and eighth occlusions positions 145, 148, 149 are normally closed positions 43, as shown in FIG. 1C.")
10(i)	wherein the reaction chamber, the first channel, and the second channel are formed in a first side of the microfluidic substrate,	On information and belief, in the accused microfluidic substrate, the reaction chamber, the first channel, and the second channel are formed in a first side of the microfluidic substrate.

Claim	Claim Language	Infringement Evidence
		US9738887 (Exhibit 31)
		 Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the reagent port, the fluid port, and the detection chamber. U.S. Patent No. 9,738,887 at Fig 1B
		113 110 195 125 190 117 198 140 136 130 127 135 120 170 137 152 FIG. 1B
		 U.S. Patent No. 9,738,887 at 13:65-14:2. ("A fluidic pathway 165 of the set of fluidic pathways 160 may comprise portions (i.e. microfluidic channels) that are located on both sides of the top layer 110, but is preferably located primarily on the bottom side of the top layer (in the orientation shown in FIG. 1B).") U.S. Patent No. 9,738,887 at 14:19-14:28. ("In one variation, in the orientation of the microfluidic cartridge 100 shown in FIG. 11B, a fluidic pathway 165 is preferably located primarily on the bottom side of the top layer 110, comprising a segment running to a vent region 190 on the top side of the top

Claim	Claim Language	Infringement Evidence
Claim	Craim Language	layer 110. All other segments of the fluidic pathway 165 are preferably located on the bottom side of the top layer 110, allowing the fluidic pathway 165 to be sealed by the film layer 125 without requiring a separate film layer to seal channels located on the top of the top layer 110.") • U.S. Patent No. 9,738,887 at 2:37-49. ("As shown in FIGS. 1A-1C, an embodiment of a microfluidic cartridge 100 for processing and detecting nucleic acids comprises: a top layer 110 comprising a set of sample port-reagent port pairs 112 and a set of detection chambers 116; an intermediate substrate 120, coupled to the top layer 110 and partially separated from the top layer by a film layer 125, configured to form a waste chamber 130; an elastomeric layer 140 partially situated on the intermediate substrate 120; a magnet housing region 150 accessible by a magnet 152 providing a magnetic field 156; and a set of fluidic pathways 160, each formed by at least a portion of the top layer 110, a portion of the film layer 125, and a portion of the elastomeric layer 140.") • U.S. Patent No. 9,738,887 at 3:26-31. ("As shown in FIGS. 1B and 1C, the top layer 110 preferably comprises a set of sample port-reagent port pairs 112, a fluid port 118, a vent region 190, a heating region 195 crossing a capture segment 166 of a fluidic pathway 165, and a set of detection chambers 116.") • U.S. Patent No. 9,738,887 at 5:66-6:17 ("In a first variation, as shown in FIGS. 1A and 11B, each detection chamber 117 in the set of detection chambers comprises a serpentine-shaped channel 16 for facilitating analysis of a solution of nucleic acids mixed with reagents In a specific example of the first variation, each serpentine-shaped channel 16 are each 1600 μm wide by 400 μm deep.")
10(j)	wherein the inlet and the vent are formed in a second side of	On information and belief, in the accused microfluidic substrate, the inlet and the vent are formed in a second side of the microfluidic substrate opposite the first side

Claim	Claim Language	Infringement Evidence
	the microfluidic substrate opposite the first side, and	
	opposite the inst stae, and	NeuMoDx Molecular N96 and N288 Overview and Animation, NEuMoDx (Nov. 6,
		2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO
		NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16)
		• "A series of microfluidic valves guides the PCR-ready solution through the
		cartridge into three thin PCR chambers and the amplification process begins." <i>Id.</i> at 3:58-4:08
		A Romanist Strate
		US9738887 (Exhibit 31)
		• Claim 1. A cartridge, configured to facilitate processing and detecting of a nucleic acid, comprising: a first layer, defining a sample port, a reagent port, a fluid port, and a detection chamber; an elastomeric layer; an intermediate substrate coupled to the first layer, such that the elastomeric layer is situated between the intermediate substrate and the first layer, wherein the intermediate substrate defines a chamber with a corrugated surface directly opposing the first layer, wherein the corrugated surface defines a set of voids external to the chamber and accessible from a direction perpendicular to a broad surface of the first layer, and wherein at least a portion of the corrugated surface includes a set of openings that provide access to the elastomeric layer; and a fluidic pathway, wherein the fluidic pathway is fluidically coupled to the sample port, the
		reagent port, the fluid port, and the detection chamber.
		• Claim 2. The cartridge of claim 1 wherein the fluidic pathway is formed by at

Claim	Claim Language	Infringement Evidence
		least a portion of the first layer and a portion of the elastomeric layer, is configured to be occlu ded upon manipulation of the elastomeric layer through the set of openings of the corrugated surface, and is configured to transfer a waste fluid to the chamber.
		 Claim 4. The cartridge of claim 2, wherein the chamber of the corrugated surface includes a waste inlet coupled to the fluidic pathway and a waste vent situated at a first side of the fluidic pathway, and wherein the cartridge further comprises a vent region directly opposed to the waste vent at a second side of the fluidic pathway. U.S. Patent No. 9,738,887 at Fig 1B
		Sample port- reagent port pair (113) (110) (190) (190) (190) 113 110 195 125 190 117 198 136 137 130 127 135 120 170 137 152 FIG. 1B
		• U.S. Patent No. 9,738,887 at Abstract ("A microfluidic cartridge, configured to facilitate processing and detection of nucleic acids, comprising: a top layer comprising a set of cartridge-aligning indentations, a set of sample portreagent port pairs, a shared fluid port, a vent region, a heating region, and a set of Detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a Detection chamber, comprises a turnabout portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	chamber, and to pass through the vent region") • U.S. Patent No. 9,738,887 at 14:19-14:28. ("In one variation, in the orientation of the microfluidic cartridge 100 shown in FIG. 11B, a fluidic pathway 165 is preferably located primarily on the bottom side of the top layer 110, comprising a segment running to a vent region 190 on the top side of the top layer 110. All other segments of the fluidic pathway 165 are preferably located on the bottom side of the top layer 110, allowing the fluidic pathway 165 to be sealed by the film layer 125 without requiring a separate film layer to seal channels located on the top of the top layer 110.") • U.S. Patent No. 9,738,887 at 14:35-42. ("In this variation, the fluidic pathway 165 thus crosses the thickness of the top layer 110 upstream of the first segment running to the detection chamber 163, and crosses the thickness of the top layer 110 downstream of the segment running away from the detection chamber 164, and crosses the thickness of the top layer 110 to couple to a sample port 114 and a reagent port 115 on the top side of the top layer 110.") • U.S. Patent No. 9,738,887 at 23:52-60 ("The injection molding process also defines the shared fluid port 118 of the top layer 110, and the vent region 190, which is recessed 0.5 mm into the top surface of the top layer 110 (in the orientation shown in FIG. 11B), and is covered with a polytetrafluoroethylene membrane, which is hydrophobic, gas permeable, and liquid impermeable. A paper label is bonded with adhesive to the top layer 110 over the vent region 190, which serves to identify the cartridge and protect the vent region 190, as shown in FIGS. 11A and 11B.")
10(k)	wherein the first valve in each of the plurality of sample lanes is operated independently of any other first valve.	In the accused microfluidic substrate, the first valve in each of the plurality of sample lanes is operated independently of any other first valve. NeuMoDx_Quant_HCV_CVS_2018.pdf (Exhibit 18) • Describing "microfluidic cartridges capable of performing independent sample processing and real-time PCR."

Claim	Claim Language	Infringement Evidence
		Powerful. Simple. Diagnastics.* NeuModx Interest 754 477 0130 1250 Elsenhower Place Ann Arbor, MI 48108 www.neumodx.com
		CARTRIDGE Let 1832
		NeuMoDx Molecular N96 and N288 Overview and Animation, NEUMoDx (Nov. 6, 2018, 3:50 PM), http://www.neumodx.com/our-solutions/ - linking to "VIDEO NeuMoDx TM WORKFLOW" hyperlink at https://player.vimeo.com/video/299307936 . (Exhibit 16) • "This is the NeuMoDx microfluidic cartridge. Each microfluidic cartridge contains 12 independent lanes which allows for processing of up to 12 samples simultaneously." Id. at 1:49-1:59

Claim	Claim Language	Infringement Evidence
Claim	Claim Language	Infringement Evidence
		 NeuMoDxTM Molecular Systems, NEUMoDx, http://www.neumodx.com/, last visited May 31, 2019 (Exhibit 10) "NeuMoDxTM Molecular Systems provide the industry's first true continuous random-access solution and is scalable to meet the needs of the modern clinical laboratory. The ability to load samples and testing consumables on the fly offers up to 8 hours of operator walkaway capability. Room temperature stable reagents and consumables dramatically reduce waste resulting in unmatched flexibility. Liquid handling and transport is achieved through proven robotic technologies. Our proprietary and unitized microfluidic cartridge features independent lanes allowing for simultaneous processing of sample types and varying assays."
		NeuMoDx TM Molecular Systems, NEUMoDx, http://www.neumodx.com/our-solutions/ , last visited May 31, 2019 (Exhibit 11) • "NeuMoDx TM MOLECULAR SYSTEMS REVOLUTIONARY MOLECULAR DIAGNOSTIC SOLUTION Our patented, "sample to result"

Claim	Claim Language	Infringement Evidence
		platform offers market-leading ease of use, true continuous random-access and rapid turnaround time while achieveing [sic] optimal operational and clinical performance for our customers and their patients." • "The NeuMoDx TM Molecular Systems are a family of scalable platforms that fully integrate the entire molecular diagnostic process from "sample to result". The NeuMoDx TM 288 and the NeuMoDx TM 96 Molecular Systems are fully automated, continuous random-access analyzers that utilize our proprietary NeuDry TM reagent technology, which integrates magnetic particle affinity capture and real time Polymerase Chain Reaction (PCR) chemistry in a multi-sample microfluidic cartridge. This technology, combined with a platform, uniquely incorporates robotics and microfluidics that result in higher throughput, improved performance and increased efficiency by eliminating the waste associated with technologies that required reconstitution of lyophilized reagents. 40600094_D-IFU-NeuMoDx-Cartridge-US-ONLY.pdf (Exhibit 19) • "NeuMoDx TM Cartridge INSTRUCTIONS FOR USE Each NeuMoDx Cartridge contains 12 independent microfluidic circuits that enable the independent processing of up to 12 samples once housed appropriately in the XPCR modules of the NeuMoDx System The NeuMoDx Systems use a combination of heat and proprietary extraction reagents to perform cell lysis, nucleic acid extraction and inactivation/reduction of inhibitors from unprocessed clinical specimens prior to presenting the extracted nucleic acid for detection by Real-Time PCR."
		 US9339812 (Exhibit 26) Claim 15. A method for processing and detecting nucleic acids from a set of biological samples with a cartridge having a set of fluidic pathways defined by an elastomeric layer, the method comprising: combining each biological sample of the set of biological samples with a quantity of magnetic beads to produce a set of nucleic acid-magnetic bead samples; aligning the cartridge at a cartridge platform of a molecular diagnostic module, the cartridge platform having a set

Claim	Claim Language	Infringement Evidence
		of slots, and the molecular diagnostic module having a cam module contacting a set of pins aligned with the set of slots; transferring substantially all of each nucleic acid-magnetic bead sample of the set of nucleic acid-magnetic bead samples to a corresponding fluidic pathway of a set of fluidic pathways ; moving the cam module by transitioning the actuator into an extended configuration, thereby displacing a subset of the set of pins through the set of slots of the cartridge platform, and thereby manipulating the elastomeric layer to occlude at least one fluidic pathway of the set of fluidic pathways at a subset of occlus ion positions for controlling a flow through the fluidic pathway; and detect ing nucleic acids using a set of detect ion chambers coupled to the set of fluidic pathways .
		• U.S. Patent No. 9,339,812 at 10:63-65 ("The preferred variation allows independent control of 12 independent channels, corresponding to 12 different pathways for sample processing.")