Formula Sheet for Physics 1D03

It is the students responsibility to know whether the formulae are correct and when they can be used.

$v \equiv \frac{dr}{dt}$	$W = \int F_x dx \text{ (motion along } x \text{ axis)}$	$s = r\theta$
$v \equiv \frac{1}{dt}$	$W = \mathbf{F} \cdot \mathbf{d}$ (constant force)	$v = r\omega$
$a \equiv \frac{dv}{dt}$	$P = \frac{dW}{dt} = F \cdot v$	$a_t = r\alpha$ $a_r = r\omega^2$
$a \equiv \frac{1}{dt}$	$F = \frac{1}{dt} = F \cdot V$	$\omega = \omega_0 + \alpha t$
$\boldsymbol{r}(t) = \boldsymbol{r}_0 + \boldsymbol{v}_0 t + \frac{1}{2} \boldsymbol{a} t^2$	$K = \frac{1}{2}mv^2$	$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$
$v_x = v_{0x} + a_x t$	$U_g = mgy \qquad U_s = \frac{1}{2}kx^2$	$\omega^2 - \omega_0^2 = 2\alpha(\theta - \theta_0)$
$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$ $v_x^2 - v_0^2 = 2a_x(x - x_0)$	$K_f + U_f = K_i + U_i + W_{n.c.}$ $p = mv$	$I = \sum_{i} m_i r_i^2$
$\vec{v}_{a,b} + \vec{v}_{b,c} = \vec{v}_{a,c}$	$m{I} \equiv \int_{t_1}^{t_2} \!\! m{F} dt \equiv m{ar{F}} \Delta t = \Delta m{p}$	$I = I_{cm} + MD^2$
$\sum \boldsymbol{F}_{ext} = m\boldsymbol{a}_{cm} = \frac{d\boldsymbol{p}}{dt}$	$Mr_{cm} = \sum_{i} m_i r_i$	$\tau = rF\sin\phi = Fd$ $\vec{\tau} = \vec{r} \times \vec{F}$
$f_s \le \mu_s N \qquad f_k = \mu_k N$	$Moldsymbol{v}_{cm} = \sum_i m_i oldsymbol{v}_i = oldsymbol{p}_{total}$	$L = I\omega$
$F_{\rm s} = -kx$	A (() ()	$L = mvr\sin\phi$
3	$x = A\cos(\omega t + \phi)$	$L = r \times p$
$a_r = \frac{v^2}{r}$	$\omega = 2\pi f = \frac{2\pi}{T}$	$\tau = I\alpha = \frac{dL}{dt}$
$a_t = \frac{d \boldsymbol{v} }{dt}$	$\omega = \sqrt{\frac{k}{m}}$ $\omega = \sqrt{\frac{g}{\ell}}$ $\omega = \sqrt{\frac{mgd}{I}}$	$K = \frac{1}{2}I\omega^2$
	Quadratic Equation: If: $ax^2 + bx + c = 0$	$K = \frac{1}{2}I_{cm}\omega^2 + \frac{1}{2}mv_{cm}^2$
	Then: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$W = au \Delta heta$
		$P = \tau \omega$

TABLE 10.2 Moments of Inertia of Homogeneous Rigid Objects with Different Geometries

