1 Lezione del 15-04-25

1.0.1 Approssimazione del punto di crossover a 0 dB

Potrebbe esserci di interesse trovare quando il diagramma del modulo di una risposta in frequenza interseca l'asse a 0 dB.

Preso ad esempio l'esempio della scorsa lezione, che avevamo portato in forma di Bode:

$$G(s) = 20 \frac{(10s+1)}{(s+1)\left(\frac{s^2}{400} + \frac{s}{20} + 1\right)}$$

possiamo procedere in 2 modi:

• Calcolando il valore approssimato ottenuto nell'ultimo zero o polo agente, e l'ultima salita/discesa in dB/oct o dB/dec che osserviamo nel grafico, e quindi cercando l'intersezione del grafico.

Nell'esempio precedente avremo quindi l'ultimo punto fisso a 46 dB, con una discesa da questo in poi di -40 dB/dec. Avremo quindi che l'andamento della risposta in modulo da $\omega=200$ in poi:

$$|G(j\omega)|_{dB} = 46 - 40\log\left(\frac{\omega}{20}\right)$$

da cui imponendo a 0:

$$0 = 46 - 40 \log \left(\frac{\omega}{20}\right) \implies \omega^* = 20 \cdot 10^{\frac{46}{40}} \approx 282.51$$

cioè risulta che a $\sim 282.84 \text{ rad/s}$ si ha il punto di intersezione in 0 dB.

• Sommando (che in dB significa moltiplicando) le approssimazioni asintotiche di ogni termine al numeratore e denominatore, quindi ogni zero e polo, e imponendo il loro rapporto all'unità (come abbiamo detto, 0 dB significà unità).

Nell'esempio precedente vorremmo partire dalla costante:

$$G(s) \approx 20$$

e quindi moltiplicare per l'approssimazione asintotica dello zero, che è il solo termine in s, 10s:

$$\approx 20 \cdot 10s = 200s$$

Dividiamo quindi per il polo lineare, prendendo ancora solo il termine in *s*, cioè *s* stesso:

$$\approx \frac{200s}{s} = 200$$

e infine dividiamo per il polo quadratico, per cui come approssimazione asintotica prendiamo il termine di grado massimo in, $\frac{s^2}{400}$:

$$\approx 200 \cdot \frac{400}{s^2}$$

Imponendo qindi l'unità si ottiene:

$$\frac{80000}{s^2} = 1 \implies s = \sqrt{80000} \approx 282.84$$

cioè risulta a $\sim 282.84~{\rm rad/s}$ si ha il punto di intersezione in 0 dB, che è abbastanza vicino alla stima precedente.

1.1 Luogo delle radici

Il luogo delle radici è un metodo per studiare sul piano complesso l'effetto della reazione negativa sui poli del sistema in catena chiusa, assunto di conoscere la funzione di trasferimento in catena aperta G(s), cioè secondo quanto già visto in 15.2, da cui riportiamo il grafico:

assunto, come sempre, H(s) sensore all'unità e disturbi trascurabili.

Facciamo quindi l'ulteriore semplificazione di prendere il controllore come una costante proporzionale, cioè:

$$C(s) = K$$

Il luogo delle radici permette quindi l'analisi *grafico-visuale* delle variazioni dei poli in catena chiusa al variare di uno o più parametri (eventualmente introdotti da un controllore).

1.1.1 Equazione caratteristica

Avremo quindi che, sotto le ipotesi di cui sopra, le risposte saranno:

• In circuito aperto:

$$K \cdot G(s) = K \cdot \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} = K \cdot \frac{n(s)}{d(s)}$$

• In circuito aperto:

$$W(s) = \frac{K \cdot G(s)}{1 + K \cdot G(s)} = \frac{K \cdot n(s)}{d(s) + K \cdot n(s)}$$

I poli in catena chiusa saranno quindi le radici del polinomio:

$$d(s) + K \cdot n(s)$$

chiamiamo infatti la seguente equazione:

$$d(s) + K \cdot n(s) = 0$$

equazione caratteristica del sistema in catena chiusa.

Il **luogo delle radici** in sé per sé sarà quindi l'insieme delle radici dell'equazione caratteristica al variare di K.

1.1.2 Regole di tracciamento

Vediamo allora una serie di regole che possiamo usare per tracciare il luogo delle radici:

1. Varrà quindi la regola (1), cioè che il numero di radici in ciclo chiuso è uguale al numero di poli della funzione *G* in ciclo aperto. Questo significa che il numero di *rami* del luogo delle radici è uguale al numero di poli della funzione di trasferimento in ciclo aperto.

In particolare, diciamo che il numeratore n(s) ha grado m e il denominatore d(s) ha grado n, con $n \geq m$. Questo coincide con la definizione che abbiamo dato prima della G(s), che era:

$$G(s) = \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}$$

Avremo allora che l'equazione caratteristica ha grado n, cioè si hanno tante radici dell'equazione caratteristica quanti sono i poli della funzione di trasferimento in ciclo aperto.

Esempio

Introduciamo la funzione di trasferimento di esempio:

$$G(s) = \frac{1}{s(s+1)}$$

Cioè:

$$n(s) = 1, \quad d(s) = s(s+1)$$

in questo caso varrà che m=0 (non ci sono zeri) e n=2, cioè ci aspetteremo di trovare due rami.

2. La regola (2) riguarda la caratterizzazione geometrica del luogo delle radici. Riprendendo l'equazione caratteristica, potremo infatti dire:

$$d(s) + K \cdot n(s) = 0 \implies \frac{n(s)}{d(s)} = -\frac{1}{K}$$

Da questa ricaviamo due condizioni di appartenenza al luogo delle radici, rispettivamente in *fase* e in *modulo*.

• Si definisce la cosiddetta condizione di fase:

$$\begin{cases} \angle n(s) - \angle d(s) = -\pi \pm 2h\pi, & K > 0 \\ \angle n(s) - \angle d(s) = \pm 2h\pi, & K < 0 \end{cases}$$

Questa deriva dal fatto che. per le proprietà stesse del prodotto complesso, vale:

$$\angle \left(\frac{n(s)}{d(s)}\right) = \angle n(s) - \angle d(s)$$

mentre il termine a destra, essendo K un reale, sarà $-\pi$ se K>0, e 0 viceversa. I termini $2h\pi$, con $h\in\mathbb{Z}$, vengono introdotti perché ruotando di 360° gradi sul piano complesso si torna da dove si è partiti. Vediamo quindi che applicare la condizione di fase significa costruire il luogo delle radici, cioè questa condizione da sola basta a ricavare tutto il luogo.

Possiamo dare un'ulteriore interpretazione geometrica degli angoli. Si ha infatti che vale, sempre per le proprietà dei complessi, rispetto a un qualsiasi punto s:

$$\begin{cases} \angle n(s) = \arg \prod_{i=1}^{m} (s+z_i) = \sum_{i=1}^{m} (s+z_i) = \sum_{i=1}^{m} \theta_i \\ \angle d(s) = \arg \prod_{j=1}^{n} (s+p_j) = \sum_{j=1}^{n} (s+p_j) = \sum_{j=1}^{n} \phi_j \end{cases}$$

dove ϕ_j e θ_i rappresentano gli angoli le congiungenti con i poli in j e gli zeri in i formano con l'asse reale.

Esempio

Riprendiamo il polinomio:

$$G(s) = \frac{1}{s(s+1)}$$

possiamo anticipare che i suoi poli sono $p_1=0$ e $p_2=-1$. In questo caso, preso ad esempio il punto $s=-\frac{1}{2}+i$ si avranno gli angoli:

 Nessuno ci nega di costruire anche una condizione di modulo, cioè imporre ai soli moduli:

$$\left| \frac{n(s)}{d(s)} \right| = \frac{1}{|K|}$$

Vediamo che questa condizione non è indispensabile, ma invece applicarla significa "tarare" il luogo delle radici su un singolo valore di K.

Abbiamo anche qui un'interpretazione geometrica analoga a quella degli angoli. Potremo infatti dire:

$$|n(s)| = \prod_{i=1}^{m} |s + z_i|, \quad |d(s)| = \prod_{i=1}^{n} |s + p_i|$$

dove gli $|s^* + z_i| = \lambda_i$ e $|s^* + p_i| = \eta_i$ corrispondono alle distanze del generico punto nel luogo s^* , per cui:

$$|K| = \frac{\prod_{i=1}^{n} |s^* + p_i|}{\prod_{i=1}^{m} |s^* + z_i|} = \frac{\prod_{i=1}^{n} \eta_i}{\prod_{i=1}^{m} \lambda_i}$$

Cioè il guadagno K per un certo punto s^* corrisponde al rapporto fra il prodotto delle distanze dai poli e il prodotto delle distanze dagli zeri.

Esempio

Riprendiamo il polinomio:

$$G(s) = \frac{1}{s(s+1)}$$

conosciamo i suoi $p_1 = 0$ e $p_2 = -1$. In questo caso, preso lo steso punto $s = -\frac{1}{2} + i$ di prima (che anticipiamo far parte del luogo) si avranno le distanze:

3. Potremo quindi ricavare la regola (3), che riguarda l'andamento in funzione di *K* del luogo, cioè dire che preso:

$$d(s) + K \cdot n(s) = 0$$

ponendo K=0 si nota che il luogo parte dai **poli a ciclo aperto** del sistema (cioè da d(s)=0);

Di contro, preso:

$$\frac{1}{K} \cdot d(s) + n(s) = 0$$

ponendo $K=+\infty$ si nota che il luogo arriva agli **zeri a ciclo aperto** del sistema (cioè n(s)=0).

Si ha quindi la regola generale che il luogo *parte* dai **poli a ciclo aperto** e *arriva* agli **zeri a ciclo aperto**.

Questi ultimi, in particolare, possono essere al *finito* o all'*infinito*. In particolare, si ha che in presenza di m zeri, m dei rami trovati (ricordiamo $m \le n$) vanno a finire negli zeri del ciclo aperto, e gli altri n-m divergono ad infinito.

Esempio

Riprendiamo l'esempio:

$$G(s) = \frac{1}{s(s+1)}$$

da cui:

$$K \cdot G(s) = \frac{K}{s(s+1)}$$

e quindi l'equazione caratteristica:

$$s(s+1) + K = 0$$

Posto K=0 si trovano quindi i poli in ciclo aperto, cioè punti di partenza del luogo delle radici, $p_1=0$ e $p_2=-1$. Per quanto riguarda gli zeri, invece, abbiamo che questi non esistono, quindi dovrmo affidarci ad altre regole per capire l'estensione dei rami.

- 4. La regola (4) è che tutto l'asse reale appartiene al luogo delle radici, fatta la distinzione fra *Luogo Diretto* (LD) e *Luogo Inverso* (LI):
 - Luogo Diretto (LD): ne fanno parte i punti che rispettano la condizione di fase per K > 0;
 - **Luogo Inverso** (LI): ne fanno parte i punti che rispettano la condizione di fase per K < 0;

Notiamo che riguardo alla regola (1), gli n rami sono tali sia per il luogo diretto che per il luogo inverso, cioè l'unione del luogo diretto del luogo inverso conta 2n rami complessivi.

Si ha quindi che l'unione fra luogo diretto e luogo inverso di una certa funzione di trasferimento copre tutto l'asse reale.

In particolare, se K>0, il luogo lascia alla propria destra un numero *dispari* di punti critici (poli e zeri) sull'asse reale, mentre se K<0, il luogo ne lascia alla propria destra un numero *pari*.

Questa regola deriva direttamente dalla condizione di fase, che avevamo imposto come:

$$\begin{cases} \angle n(s) - \angle d(s) = -\pi \pm 2h\pi, & K > 0 \\ \angle n(s) - \angle d(s) = \pm 2h\pi, & K < 0 \end{cases}$$

Si ha quindi che un punto s nel piano di Gauss appartiene al luogo delle radici se la somma delle fasi dei vettori che partono dalle singolarità (poli o zeri) e terminano nel punto s è uguale a $-\pi$ (o 0, se K < 0).

Esempio

Nel nostro esempio consideravamo:

$$\angle \frac{1}{s(s+1)} = \angle 1 - \angle s(s+1) = -\angle s(s+1)$$

• Per K > 0 (luogo diretto) imponiamo quindi la condizione:

$$-\angle s(s+1) = -\pi \pm 2h\pi$$

che è rispettata per tutti gli $s \in \mathbb{R}$ con $p_2 \le s \le p_1$.

In questo caso si ha quindi la parte dell'asse reale:

Abbiamo quindi preso tutti gli s che hanno un numero **dispari** di poli a destra.

• Per K < 0 (luogo inverso) imponiamo invece la condizione:

$$-\angle s(s+1) = \pm 2h\pi$$

che è rispettata per tutti gli $s \in \mathbb{R}$ con $s \leq p_2$ o $s \geq p_1$. In questo caso si ha quindi la parte dell'asse reale:

Abbiamo quindi preso tutti gli s che hanno un numero **pari** di poli a destra.

5. La regola (4) afferma che il luogo delle radici è **simmetrico** rispetto all'*asse reale*. Questo deriva direttamnente dal fatto che l'equazione caratteristica è reale, quindi ammetterà soluzioni reali o complesse coniugate.

Vediamo quindi che dalla regola (2) rispetto agli angoli, tutto l'asse del segmento del luogo diretto sarà parte del luogo, in quanto avremo due angoli ϕ_1 e ϕ_2 ai poli

fra di loro complementari (è questo proprio il caso che abbiamo preso ad esempio della regola (2)).

Potremo quindi estndere il luogo diretto a (dove nel grafico si sono disegnati anche gli angoli complementari):

Notiamo che in ogni caso i rami sia del luogo diretto che del luogo inverso sono 2, come dalla regola (1).