Analyzing the Cost of Graphs Relative to Tournaments

Tynan Lazarus

Department of Mathematics
University of Hawaii at Hilo
Hilo, HI 96720, USA
tlazarus@hawaii.edu

Anna Payne
Mathematics and Computer Science Dept.
Ashland University
Ashland, OH 44805, USA
apayne1@ashland.edu

Aquia Richburg
Department of Mathematics
Morehouse College
Atlanta, GA 30314, USA
aqua101160@yahoo.com

July 19, 2012

Abstract

Let G be an undirected graph and let T be a tournament on the same vertex set as G. Define the cost of G relative to T to be $\sum_{u,v\in E(G)}(T(u,v)+T(v,u))+|E|$, where T(u,v)

denotes the number of two-step paths from u v, in T. In this paper, we determine for several classes of graphs which tournaments minimize the cost. Pelsmajer, et al. [5] conjecture that for each graph there is a transitive tournament that minimizes the graph's cost. We prove that a transitive tournament minimizes the cost for complete graphs, nearly complete graphs, paths, star graphs, and cycles.

1 Introduction

We first define some basic concepts of graph theory. A graph, G, consists of a vertex set V(G) and an edge set E(G), where each edge in E(G) is an unordered pair of vertices. If $\{x,y\} \in E(G)$ we will denote the edge as xy and say x and y are adjacent vertices. A directed graph (or digraph) D consists of a vertex set V(D) and an edge set E(D), where each edge is represented by an ordered pair of vertices showing a direction for each edge. If $(u,v) \in E(D)$ we will denote it as \overrightarrow{uv} and say u defeats v or v is defeated by u. A tournament v is a digraph where for all v is a digraph where for all v is in v in

In this paper we make free use of the fact that in a tournament $d^+(v) + d^-(v) = n - 1$ for any $v \in V(T)$. We will call the set of vertices that defeat vertex v the *in-neighborhood* of v, denoted $N^-(v)$, and call the set of vertices that are defeated by v the *out-neighborhood* of v, denoted $N^+(v)$. We will denote the *out-degree* and *in-degree* of a vertex v as $d^+(v)$ and

 $d^-(v)$, respectively. There are $\binom{n}{2}$ edges in any tournament. Since each edge in a tournament can point in one of two directions, there are $2^{\binom{n}{2}}$ possible tournaments on a particular set of vertices.

We will now describe three common, named tournaments. For the following three types of tournaments, consider all the edges not explicitly shown to be oriented in the direction of the large arrow:

• Transitive (TT_n) : Given any three vertices a, b and $c, if <math>\overrightarrow{ab}, \overrightarrow{bc} \in E(TT_n)$, then $\overrightarrow{ac} \in E(TT_n)$.

Figure 1: Two ways to display a TT_5

• One Major Upset $(OMUT_n)$: Starting with a transitive tournament on n vertices, we reverse the edge from the vertex of largest out-degree to the vertex of smallest out-degree. Thus, the nth vertex defeats the first vertex.

Figure 2: $OMUT_5$

• Path of Minor Upsets $(POmUT_n)$: Starting with a transitive tournament on n vertices, change the orientation on edges so that the kth vertex defeats the (k-1)th vertex, for all $k \in \{2, 3, \ldots, n\}$, where the kth vertex in the transitive tournament is the unique vertex of out-degree n-k.

Figure 3: $POmUT_5$

We study a problem introduced in [5] and [6] in which the edges of an undirected graph G are assigned costs based on a specific tournament T, where G and T have the same vertex sets. The cost of edge uv of G is T(u,v) + T(v,u) + 1, where T(x,y) is the number of two-step paths in T from x to y. A two-step path from u to v in T is a path uwv for some

 $w \in V(T) - \{u, v\}$. The cost of the entire graph G with respect to a given tournament T is then defined as the sum of the costs of the edges. We denote this sum as Cost(G, T), which equals $|E| + \sum_{uv \in E(G)} (T(u, v) + T(v, u))$. We let C(G) denote $min\{Cost(G, T)\}$ where the minimum cost of G over all choices of associated tournaments T. We can represent the two-step paths of a given tournament as a matrix of the number of two-step paths between each of the vertices, which we call the $cost\ matrix$.

By comparing cost matrices, it can be shown easily that $OMUT_n$ will never result in a lower cost on any graph when compared with TT_n . This is because the i, j entry of the cost matrix of $OMUT_n$ is at least as large as the i, j entry of the cost matrix of TT_n .

2 Complete and Nearly Complete Graphs

Following the work of [5], we start by studying complete graphs. A graph is complete if for every pair of distinct vertices u and v in the graph there is an edge between u and v. Removing a small number of edges from a complete graph results in what we refer to as a nearly complete graph.

Figure 4: The Complete Graph on Five Vertices

2.1 The Complete Graph (K_n)

Note that $Cost(K_n, T)$ is simply $\binom{n}{2}$ plus the number of two-step paths in T. So, in a complete graph we consider what happens to the number of two-step paths in an underlying tournament when we reverse the direction of an edge. We begin our discussion of this in order to improve upon the original proof given in [5] that a transitive tournament minimizes the cost of K_n .

Proposition 2.1.1 Let T' be obtained from tournament T by reversing the edge \overrightarrow{vu} to \overrightarrow{uv} for some $\overrightarrow{vu} \in E(T)$. The decrease in the number of two-step paths resulting from reversing \overrightarrow{vu} is $Cost(K_n, T) - Cost(K_n, T') = 2(d_T^+(u) - d_T^+(v) + 1)$.

Proof. The number of two-step paths using \overrightarrow{vu} equals $d_T^-(v) + d_T^+(u)$. Since the edge between v and u is reversed in T', v lost an out-edge, and u lost an in-edge. Thus, in T', $d_{T'}^+(v) = d_T^+(v) - 1$, and $d_{T'}^-(u) = d_T^-(u) - 1$.

The difference in number of two-step paths in T versus in T' is

$$\begin{split} & d_T^-(v) + d_T^+(u) - (d_{T'}^+(v) + d_{T'}^-(u)) \\ = & d_T^-(v) + d_T^+(u) - (d_T^+(v) - 1 + d_T^-(u) - 1) \\ = & 2(d_T^+(u) - d_T^+(v) + 1). \end{split}$$

Theorem 2.1.2 [5] The minimum tournament arrangement of K_n has value $\binom{n+1}{3}$.

Proof. Note that the minimum cost of K_n equals the minimum total number of two-step paths among choices of underlying tournament T. Thus for an optimal choice of T, there will be no two vertices of T with the same out-degree. Note that the out-degree of each vertex can only be $0, 1, 2, \ldots$, or n-1. Thus, there will be exactly one of each out-degree in the tournament. It is not hard to verify from here that T must be a transitive tournament. Notice that if we choose any three vertices in T, there is exactly one two-step path visiting all three vertices. Therefore the $Cost(K_n, TT_n) = \binom{n}{3} + \binom{n}{2}$. By "L-Law Identity" of Pascal's Triangle, this equals $\binom{n+1}{3}$. So, $Cost(K_n, T_n)$ can only be minimized by a transitive tournament. \square

2.2 The Complete Graph Minus One Edge $(K_n - e)$

From [6], we know that the minimum cost of a tournament on K_n is $\binom{n+1}{3}$. We will denote the minimum cost as $C(K_n)$. Between two vertices in T_n there can be at most n-2 two-step paths, one per choice of intermediary vertex in such a path. Yet $Cost(K_n-uv,TT_n)=\binom{n+1}{3}-(n-1)$ when u,v are the vertices of outdegree n-1 and 0 in TT_n . Thus $C(K_n) \leq \binom{n+1}{3}-(n-1)$. So we get the following theorem.

Theorem 2.2.1 The cost of
$$K_n - e$$
 is minimized by TT_n , when $C(K_n) = \binom{n+1}{3} - (n-1)$

Proof. Assume there is a non-transitive tournament, T, that minimizes the cost on $K_n - e$. Note that the upper bound for the minimum cost of $K_n - e$ is $\binom{n+1}{3} - (n-1)$. Assume for contradiction that T results in a cost less than or equal to $\binom{n+1}{3} - (n-1) - 1$. Note that if we put e back into the graph, e can have at most a cost of n-1. Thus the $C(K_n) \leq \binom{n+1}{3} - (n-1) - 1 + (n-1)$ under T. But then $C(K_n) = \binom{n+1}{3}$ and $Cost(K_n,T) \leq \binom{n+1}{3} - 1$. Thus we have a contradiction that T yields a cost that is less than the minimum cost of K_n .

2.3 The Complete Graph Minus Two Edges $(K_n - e - f)$

Now that we have proved TT_n yields a minimum cost for the $K_n - e$ graph, we can also show the same holds for $K_n - e - f$.

Theorem 2.3.1 The cost of $K_n - e - f$ is minimized by a transitive tournament.

Proof. Whether edges e, f share a vertex or not, it is easy to have TT_n underly K_n in such a way that n-1 is the cost of e and n-2 or n-3 is the cost of f. Thus $C(K_n-e-f \le \binom{n+1}{3}-(2n-4)$. Assume for contradiction that there is a non-transitive tournament, T_n , yielding cost on K_n-e-f lower still, with $C(K_n-e-f,T_n) \le \binom{n+1}{3}-(2n-4)-1$. Both removed edges have a cost of at most n-1 in the arbitrary tournament, so when replaced the maximum cost addition would be 2n-2. So $Cost(K_n,T_n) \le \binom{n+1}{3}-(2n-4)-1+(2n-2)$ or simply $\binom{n+1}{3}+1$. This yields a contradiction because as proven earlier, the transitive tournament is the only tournament that minimizes the cost of K_n , with all others having cost $\binom{n+1}{3}+2$ or larger. But the arbitrary T_n is not transitive, a contradiction. □

2.4 The Complete Graph Minus Three Edges $(K_n - e - f - g)$

The cost of an edge between vertices u and v can be defined as the number of two-step paths between u and v plus the count of the edge: $\sum_{u,v\in E(G)} (T(u,v)T(v,u)) + 1.$ Given a transitive tournament, a nearly transitive tournament is one where the edge between k and k-2 has its orientation reversed, for some k.

Lemma 2.4.1 A nearly transitive tournament has only one edge of cost n-1.

Proof. Assume there are two edges with cost n-1 in a nearly transitive tournament. Take two independent edges xy and uv. For xy and uv to have a cost of n-1, x must defeat either u or v, then y must defeat the vertex that x does not defeat. This creates two two-step paths between x and y and two between u and v. If u defeats v there is one 3-cycle, uvyu; however, no matter which direction the edge between x and y points, there will be another 3-cycle. Similarly, if v defeats u, there will be two 3-cycles regardless of the orientation of the edge between x and y. This yields a contradiction as a nearly transitive tournament has only one 3-cycle. If the two edges share a vertex, xy and xz consider an arbitrary vertex, w. For a cost of n-1, w must be used as an intermediary point in creating two-step paths for xy and xz. Using the edge xy or xz and an edge between y and z creates the other two-step paths. This leaves one edge left that no matter the orientation, creates two 3-cycles. This yields a contradiction. \square

Theorem 2.4.2 Suppose edges e, f, g of K_n neither form a cycle nor are independent. Then the cost of $K_n - e - f - g$ is minimized by a transitive tournament.

Proof. Assume for contradiction that there is a non-transitive tournament that yields a cost of $K_n - e - f - g$ better than the minimum transitive tournament. The highest cost of three edges on a transitive tournament is 3n-5 created by a path, so in order to have a cost better than a transitive tournament, $C(K_n - e - f - g, T_n)$ must be strictly less than $\binom{n+1}{3} - (3n-5)$. Replacing three edges can add at most 3(n-1) to the cost. Now the cost of K_n is less than $\binom{n+1}{3} - (3n-5) + (3n-3)$ or $\binom{n+1}{3} + 2$. Since this upper bound is too high there is another tournament that can be found by reversing an edge, which lowers the cost by two. This yields a contradiction. In the case where the three edges form a star, the maximum cost is (3n-6),

the new cost of K_n with the edges replaced is less than $\binom{n+1}{3}+3$. After flipping an edge, the cost is lowered by at least two. If this flipped edge creates a transitive tournament as proven earlier, it was not the case that there were three edges of cost n-1. Otherwise, we can flip another edge to lower the cost again. Reassessing the cost on this nearly transitive tournament would give us an upper bound of $\binom{n+1}{3}-(3n-6)+(3n-5)$ or $\binom{n+1}{3}+1$. Here we can flip an edge and lower the cost by two, yielding a contradiction. If the maximum cost of three edges removed is (3n-7), created by one independent edge and two edges that share a vertex, so that after replacing the edges, we find $\binom{Cost(K_n,T_n)<n+1}{3}+4$. By flipping an edge in the arbitrary tournament, we can lower the cost by at least two. If the cost savings in one flip is greater than or equal to 4, we are done. If not, then assuming the tournament is not nearly transitive, two flips can be made to lower the cost yielding a contradiction. If the tournament is nearly transitive, then $\binom{Cost(K_n,T_n)<n+1}{3}+2$. Here one edge can be flipped to lower the cost to yield a contradiction. \square

Conjecture 2.4.3 If the edges removed from a complete graph create a cycle or are independent, $K_n - e - f - g$ can be minimized on a transitive tournament.

3 More Types of Graphs

Now that we know that the transitive tournament minimizes the cost on complete and nearly complete graphs, we will consider other types of graphs: path graphs, star graphs, and cycle graphs. We prove the Pelsmajer conjecture for other simple families of graphs, as suggested in [6]. Note, in this section we do not consider |E| in the cost.

3.1 Cost of Graphs with More Than One Component

To begin, we show that the costs of the components of the graph determine the cost of the graph.

Lemma 3.1.1 Let G_1, G_2, \ldots, G_k be the connected components of graph G, and let T_1, T_2, \ldots, T_k be tournaments where $V(T_i) = V(G_i)$ for all i in $\{1, 2, \ldots, k\}$. Then there exists a tournament T on V(G) so that $Cost(G, T) = \sum_{i=1}^k Cost(G_i, T_i)$.

Proof. Let T be the tournament on vertex set V(G) and $E(T) = E(T_1) \cup E(T_2) \cup \cdots \cup E(T_k) \cup \{u_i u_j | u \in V(G), i < j\}$. Then $Cost(G, T) = Cost(G_1, T_1) + Cost(G_2, T_2) + \cdots + Cost(G_k, T_k)$.

Corollary 3.1.2 The minimum cost of a graph is equal to the sum of the minimum costs of the components.

Proof. Let G_1, G_2, \ldots, G_k be the connected components of graph G. Let T_1, T_2, \ldots, T_k be underlying tournaments on G_1, G_2, \ldots, G_k that minimize the cost on each respective component. Then $C(G) \leq C(G_1) + C(G_2) + \cdots + C(G_k) = \sum_{i=1}^k C(G_i)$.

Choose an arbitrary T. Consider the induced subgraphs on T_1, T_2, \ldots, T_k from restricting T to $V(G_1), V(G_2), \ldots, V(G_k)$. Then

$$C(G) \ge C(G_1, T_1) + C(G_2, T_2) + \dots + C(G_k, T_k) \ge C(G_1) + C(G_2) + \dots + C(G_k).$$

Therefore, $C(G) = \sum_{i=1}^{k} C(G_i)$. \square

3.2 Path Graphs

A path graph is a connected, acyclic graph in which each vertex has degree one or two.

Figure 5: Path Graph on Five Vertices

We want to show that every graph with cost zero is a subgraph of a path. To prove this, it will suffice to show that if a graph does have zero cost, it must be acyclic and have only vertices with degree two or less.

Lemma 3.2.1 If G is a graph for which C(G) = 0, then G does not contain a vertex of degree greater than two.

Proof. Consider a graph with $Cost(G, T_n) = 0$ for some T_n . Suppose for contradiction that vertex v has degree at least three in a graph G. Let x, y, and z be neighbors of v. Either the in-degree of v is greater than one, or the out-degree of v is greater than one. First suppose the in-degree of v is at least two, where without loss of generality v and v are in-neighbors of v. If there is an edge from v to v in v is a two-step path from v to v to v giving v a cost of at least one, which is a contradiction. Similarly, if v is an edge v, the two-step path from v to v leads to a contradiction. So the in-degree of v is at most one. But then the out-degree of v is at least two. By symmetric argument, we similarly obtain a contradiction.

Lemma 3.2.2 If G is a graph for which C(G) = 0, then G does not contain a cycle.

Proof. Consider a graph with $Cost(G, T_n) = 0$ for some T_n . Suppose for contradiction that G contains an undirected k-cycle, $C = v_0, v_1, ..., v_{k-1}$. Suppose without loss of generality that v_0 defeats v_1 . Since v_i and v_{i+1} are adjacent in G, in T_n there cannot be a two-step path between v_i and v_{i+1} . So if v_0 and v_1 both defeat v_i for some i, 1 < i < k-2, then v_0 and v_1 both defeat v_{i+1} . If v_0 and v_1 defeat all other vertices, there is a two-step path from either v_0 to v_1 to v_{k-1} . If v_0 and v_1 are defeated by all other vertices, there is a two-step path from v_2 to v_0 to v_1 . We reach a contradiction either way, showing that the undirected graph will have a cost greater than zero. Therefore, in order to have cost zero, there cannot be a cycle within G. \square

Using these two lemmas, the following theorem follows easily.

Theorem 3.2.3 Every component of a graph G for which C(G) = 0 is a path.

3.3 Star Graphs

The next simple graph family we consider is the star graph. These graphs have a central vertex that is connected to all other vertices, as shown. These graphs are acyclic, and at most one vertex has degree greater than one. Instead of the radial pattern, we will discuss the star graph as the graph on the right in the figure.

Figure 6: Two Representations of a Star Graph on Seven Vertices, S_7

The Pelsmajer conjecture is once again confirmed for this type of graph.

Theorem 3.3.1 The minimum cost of a tournament arrangement of a star graph is $\left\lfloor \frac{(n-2)^2}{4} \right\rfloor$.

Proof. Let v_0 be the central vertex of a star graph S_n , with underlying arbitrary tournament T_n of least cost. Since each edge in the star graph has an endpoint at v_0 , the only costs that will be assessed are the two-step paths in T_n that start or end at v_0 . If some vertex x of $N^+(v_0)$ defeats a vertex y of $N^-(v_0)$, replacing xy by yx will not increase the number of two-step paths that use v_0 as an endpoint. So, we may assume that every vertex of $N^-(v_0)$ defeats every vertex of $N^+(v_0)$. So, the only two-step paths that contribute to the total cost are the paths from v_0 to a vertex in $N^+(v_0)$ to another vertex in $N^+(v_0)$, and paths from a vertex in $N^-(v_0)$ to another vertex in $N^-(v_0)$ to v_0 .

Thus the cost of S_n relative to T_n is the number of edges in $N^+(v_0)$ plus the number of edges in $N^-(v_0)$. Let k be the number of vertices in $N^+(v_0)$, so n-k-1 is the number of vertices in $N^-(v_0)$. Thus,

$$Cost(S_n, T_n) = \binom{k}{2} + \binom{n-k-1}{2} = \frac{1}{2} \left[n^2 + 2k^2 - 3n - 2kn + 2k + 2 \right].$$

Using methods of calculus, we find the cost is minimized when $k = \frac{n-1}{2}$ if n is odd and when $k = \frac{n}{2}$ if n is even. So, when n is odd, the minimum is

$$\frac{1}{2} \left[n^2 + 2\left(\frac{n-1}{2}\right) - 3n - 2n\left(\frac{n-1}{2}\right) + 2\left(\frac{n-1}{2}\right) + 2 \right] = \frac{1}{4} \left[n^2 - 4n + 3 \right].$$

And when n is even the minimum is

$$\frac{1}{2} \left[n^2 + 2 \left(\frac{n}{2} \right) - 3n - 2n \left(\frac{n}{2} \right) + 2 \left(\frac{n}{2} \right) + 2 \right] = \frac{1}{4} \left[n^2 - 4n + 4 \right].$$

Therefore, the minimum cost is $\left| \frac{(n-2)^2}{4} \right|$ among underlying tournament structures. \square

Corollary 3.3.2 The minimum cost of a star graph can be obtained using a transitive tournament.

Proof. Let S_n be a star graph on n vertices. Let T_n be an underlying transitive tournament for S_n . If n is even, choose v_0 so that $d^+(v_0) = \frac{n}{2}$. If n is odd, choose v_0 so that $d^+(v_0) = \frac{n-1}{2}$. Note that every vertex in $N^-(v_0)$ defeats every vertex in $N^+(v_0)$ within T_n . So, by the proof of the previous theorem, the cost of S_n under this particular transitive tournament is minimized. \square

3.4 Cycle Graphs

Sometimes we will refer to the transitive tournament as a linear ordering of the vertices since we can create a function, $\phi: V \to \{1, 2, \dots, n\}$, that will label the vertices from the vertex with the highest number of wins to the lowest. Hence, by permuting ϕ we can obtain as close to a transitive tournament as possible.

Figure 7: Cyclic Graph on Five Vertices

In order to prove the conjecture for the cycle graph, we first prove a statement about the cost of cycles relative to transitive tournaments.

Theorem 3.4.1 The cost of a transitive tournament underlying a cycle C_n is at least n-2, including |E| in our count.

Proof. Let C_n be an undirected cycle in a graph G. Let T_n be a transitive tournament for C_n . Let x_0 and n be distinct vertices in C_n . There are two paths that travel around the cycle from x_0 to n. Let one path consist of the vertices $x_0, x_1, x_2, ..., x_k, n$ for some $k \le n-2$ and let the second path consist of $x_0, y_1, y_2, ..., y_{n-k-2}, n$. The cost of one path from x_0 to

n is $\sum_{i=0}^{k} |x_i - x_{i+1}|$. Using the Triangle Inequality, this value is greater than or equal to $|\sum_{i=0}^{k} x_i - x_{i+1}|$. Since this sum is telescoping,

$$\sum_{i=0}^{k} |x_i - x_{i+1}| \ge |x_0 - x_{k+1}| = n - 1.$$

By symmetric argument, the second path from x_0 to n also has total cost at least n-1. Therefore the cost of C_n is at least 2(n-1). \square

Note that if the vertices are not ranked in increasing order, the cost will be strictly greater than 2(n-1). So, for a transitive tournament, ranking the vertices in increasing order from x_0 to n will give G the lowest cost.

Theorem 3.4.2 The minimum cost of a cycle C_n is n-2.

Proof. This proof is by induction on n; the base case n=3 is easily verified. Let e be an edge on C_n with positive cost. Denote the vertices around the cycle as 1, 2, ..., n. And let e be the edge between 1 and e. Let e denote the set of vertices in the middle of 2-step paths between 1 and e. If |A|=n-2, then there is nothing left to prove. So we can suppose that there exist consecutive vertices e and e in e in

4 Maximizing Cost

Theorem 4.1.1: The maximum cost of a complete graph is $\frac{n(n-1)^2}{4}$ when n is odd and is obtained by a regular tournament, and the maximum cost is $\frac{n(n^2-2n)}{4}$ when n is even and is obtained by a nearly regular tournament.

Proof. We will start in the same manner as [5]. Let A denote the number of two-step paths in T. So

$$A = \sum_{uv \in E(T)} T(u, v) = \sum_{w \in V(T)} d^{+}(w)d^{-}(w).$$
(1)

We will denote the imbalance of w as $i(w) = d^+(w) - d^-(w)$. Then

$$B = \sum_{w \in V(T)} i(w)^2 = \left(\sum_w d^+(w)^2\right) + \left(\sum_w d^-(w)^2\right) - 2A.$$
 (2)

So

$$n(n-1)^2 = \sum_{w} (d^+(w) + d^-(w))^2 = \left(\sum_{w} d^+(w)^2\right) + \left(\sum_{w} d^-(w)^2\right) + 2A.$$
 (3)

Using (1.2) and (1.3), we obtain $4A = n(n-1)^2 - B$. In [5], we are to maximize B to get the lowest cost. Hence, we will minimize B to obtain the highest cost.

If B = i(w) = 0, then $d^+(w) = d^-(w)$ for all $w \in V(T)$. Thus we have a regular tournament on an odd number of vertices, and we can see that $A = \frac{n(n-1)^2}{4}$.

If i(w) = 1 for all $w \in V(T)$, then B = n for an even number of vertices. Thus we have that $A = \frac{n(n^2 - 2n)}{4}$.

5 Concluding Remarks

The conjecture of Pelsmajer et al. [5] has been proved for several families of simple graphs, but a general proof that would hold for all graphs has not been found. If the conjecture holds, the transitive tournament could then be used to analyze and find the cost of arbitrary graphs, so that one could look only at linear arrangements without having to consider non-transitive underlying tournaments. A counter example may be found by building a graph from the low cost edges relative to a cost matrix.

One possible direction for this topic would be to look at different cost systems. Instead of using the typical cost matrix in this case, one could square each cost entry to see how it would affect overall graph costs. Again it may be helpful to first know what tournaments minimize the cost for any graph.

Another research extension would be to look at similar problems with multigraphs or edge-weighted graphs. How is the cost on a multigraph minimized? Does the conjecture still hold? Using multigraphs would open this particular problem up to many new questions about even more families of graphs.

A suggestion for more research in this field could be to continue with the question of maximizing costs. It could be helpful to find and prove maximum cost values. If this cannot be solved in the general case, one could look into specific families of graphs.

6 Acknowledgements

The authors would like to thank all the staff of SUMSRI. We are grateful to our research advisor, Dr. Dan Pritikin for guiding us through the entire research process, and to our Graduate Assistant, Andrew Newman, who also contributed his time and ideas toward the project. In addition, our research would not have been possible without funding from the National Science Foundation, National Security Agency, and Miami University.

References

- [1] J. Bang-Jensen, Problems and conjectures concerning connectivity, paths, trees and cycles in tournament-like digraphs, *Discrete Mathematics*, **309**(2009), no. 18, 5655-5667.
- [2] G. Chartrand, Graphs as mathematical models, Prindle, Weber and Schmidt (1977), 155-161.
- [3] R. Gould, Graph theory, Benjamin-Cummings Publishing (1988), 284-296.
- [4] J.W. Moon, Topics on tournaments, Holt, Rinehart and Winston (1968).
- [5] M.J. Pelsmajer, M. Schaefer, D. Štefankovič, Crossing numbers of graphs with rotation systems, *Algorithmica*, **60**(2009), no. 3, 679-702.
- [6] M. Schaefer, Some unexpectedly open problems, Department of Computer Science, DePaul University, (2009).
- [7] D. West, Introduction to graph theory, Prentice Hall, ed. 2 (2001).