Deep Learning

Deep learning is a subfield of machine learning that is concerned with algorithms inspired by the structure and function of the brain called artificial **neural networks**.

Recap

- Linear Algebra;
- Probability and Statistics;
- Optimization;
- Machine Learning.

Syllabus

- 1. Linear Models linear regression, perceptron, logistic regression, regularization;
- 2. Neural Networks;
- 3. Representation Learning;
- 4. Convolutional Neural Networks;
- 5. Recurrent Neural Networks
- 6. Sequence-to-Sequence Models introduction to Attention Mechanisms;
- 7. Attention Mechanisms and Transformers;
- 8. Self-Supervised Learning and Large Pretrained Models;
- 9. Deep Generative Models;
- 10. Interpretability and Fairness.

The following is a summary of the course's contents.

Linear Models

Linear models are a class of regression and classification models in which the prediction is a linear function of the input variables.

Linear Regression: $y = w^T x + b$

- w is a d-dimensional vector of weights;
- b is a bias usually included in w as a constant feature $x_0 = 1$;
- Given training data $D = \{(x_n, y_n)\}_{n=1}^N$, we want to find the **best** w and b, so we use want to fit the model, i.e. find the best w and b, minimizing the loss function - usually, the square loss: $L(w,b) = \sum_{n=1}^{N} (y_n - y_n)$ $(w^T x_n + b)^2$;
- Closed-form solution: $w = (X^TX)^{-1}X^Ty$, where $X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}$ and

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix};$$

- Regularization is a technique used to reduce overfitting by constraining the weights of the model;
 - Ridge regression is a linear regression model with regulariza-

 - * $L(w,b) = \sum_{n=1}^{N} (y_n (w^T x_n + b))^2 + \lambda ||w||_2^2;$ * Closed-form solution: $w_{ridge} = (X^T X + \lambda I)^{-1} X^T y;$

Maximum A Posteriori (MAP) Estimation

- MAP estimation is a **Bayesian** approach to **estimation**, used to **esti**mate the parameters of a distribution - used in regularization;
- Bayes' rule: $P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$;
 - $-\hat{w}_{MAP} = argmax_w p(w|y) = argmax_w p(y|w)p(w)/p(y) = argmin_w \lambda ||w||_2^2 + \sum_{n=1}^N (y_n w^T \phi(x_n))^2;$
 - The **prior** $||w||_2^2$ is the **regularization term** regularizer;
 - The likelihood $\sum_{n=1}^{N} (y_n w^T \phi(x_n))^2$ is the loss function;
 - The regularization constant is $\lambda = \frac{\sigma^2}{\tau^2}$;

- Maximum likelihood estimation (MLE) is a Bayesian approach to estimation;
 - $-\hat{w}_{MLE} = argmax_w p(y|w) = argmin_w \sum_{n=1}^{N} (y_n w^T \phi(x_n))^2;$
 - The likelihood $\sum_{n=1}^{N} (y_n w^T \phi(x_n))^2$ is the loss function;
 - MLE is a special case of MAP estimation, where $\lambda = 0$;

Binary Classification -> Perceptron: $y = sign(w^Tx + b)$

- Perceptron is a linear model for binary classification;
- Usually, the **bias** b is included in w as a constant feature $x_0 = 1$, and the w vector is **augmented** with b;
- The x vector can be represented as $\phi(x)$, where ϕ is a **feature map**;
- Algorithm:
 - 1. Initialize w to zero: $w_0 = 0$;
 - 2. While not converged, for each (x_n, y_n) in D:
 - (a) Predict: $\hat{y} = sign(w^T x_n)$;
 - (b) If $\hat{y} \neq y_n$:
 - i. Update: $w_{t+1} = w_t + y_n x_n$;
 - ii. Go to step 2:
- Perceptron convergence theorem: if the training data is linearly separable, the perceptron algorithm will converge in a finite number of steps:
- It cannot be used for non-linearly separable data XOR problem;

Binary Classification -> Logistic Regression: $y = \sigma(w^T x + b)$

- Logistic regression is a linear model for binary classification differs from perceptron, because it uses a sigmoid function (continuous) instead of a sign function (discrete);
- $P_W(y|x) = \frac{exp(w_y^T x + b_y)}{\sum_{y' \in Y} exp(w_{y'}^T x + b_{y'})}$, where $W = \{w_y, b_y\}_{y \in Y}$;
 - Set weights to maximize conditional log-likelihood: $L(W) = \sum_{n=1}^{N} log P_W(y_n|x_n)$;
- No closed-form solution, so we use **stochastic gradient descent**;
- Update rule: $w_{y_n}^{k+1} = w_{y_n}^k + \eta x_n \eta \sum_{y' \in Y} P_{W^k}(y'|x_n) x_n$;

Multi-class Classification

- Multi-class classification is a classification task with more than two classes, but there are several strategies to reduce to binary classification;
- Parametrized by a weight matrix $W \in \mathbb{R}^{d \times |Y|}$ and a bias vector $b \in$
- $\hat{y} = argmax_{y \in Y}(W\phi(x) + b);$
- Multi-class perceptron algorithm:
 - 1. Initialize W to zero: $W_0 = 0$;
 - 2. While not converged, for each (x_n, y_n) in D:
 - (a) Predict: $\hat{y} = argmax_{y \in Y}(W\phi(x_n));$
 - (b) If $\hat{y_n} \neq y_n$:

 - i. Update: $W_{y_n}^{k+1} = W_{y_n}^k + \phi(x_n)$ ii. Update: $W_{\hat{y_n}}^{k+1} = W_{\hat{y_n}}^k \phi(x_n)$;
 - iii. Go to step 2;

Neural Networks

- Neural networks are a class of non-linear models that are inspired by the brain;
- Consist of **neurons** that are **connected** to each other;
- Pre-activation: $z(x) = w^T x + b = \sum_{i=1}^d w_i x_i + b;$
- Activation: h(x) = g(z(x)); g can be:
 - **Linear**: g(z) = z linear regression;
 - Sigmoid: $g(z) = \frac{1}{1+e^{-z}}$ logistic regression;
 - Rectified Linear Unit (ReLU): g(z) = max(0, z);
 - Hyperbolic Tangent (tanh): $g(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$;
 - Softmax: $g(z) = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}};$
 - Others:
- A feed-forward neural network is a neural network where the neurons are organized in layers - there are hidden layers between the input layer and the output layer;
 - **Input layer**: *x* vector of features;

- Hidden layers: $h^{(1)}, h^{(2)}, \dots, h^{(L)}$;
- **Output layer**: *y* vector of predictions;
- **Weights**: $W^{(1)}, W^{(2)}, \dots, W^{(L)}$ each weight matrix is between two layers;
- **Biases**: $b^{(1)}, b^{(2)}, \dots, b^{(L)}$ each bias vector is between two layers;
- Hidden layer pre-activation: $z^{(l)}(x) = W^{(l)}h^{(l-1)}(x) + b^{(l)}$;
- Hidden layer activation: $h^{(l)}(x) = g(z^{(l)}(x));$
- Output layer activation: $f(x) = h^{(L)}(x)$;
- Universal approximation theorem: a feed-forward neural network with a single hidden layer can approximate any function given enough neurons;
- Training consists of finding the best parameters θ weights and biases, that minimize the loss function: $L(\theta) := \lambda \omega(\theta) + \frac{1}{N} \sum_{n=1}^{N} l(f(x_n; \theta), y_n);$
 - $-\lambda$ is the **regularization constant**;
 - $-\omega(\theta)$ is the **regularization term**;
 - $l(f(x_n; \theta), y_n)$ is the **loss function**;
 - We use stochastic gradient descent to minimize the loss function: $\nabla_{\theta} L(\theta) = \lambda \nabla_{\theta} \omega(\theta) + \frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} l(f(x_n; \theta), y_n);$
 - Backpropagation is a technique used to compute the gradients of the loss function with respect to the parameters - chain rule.

Representation Learning

- Neural networks can be used to learn **representations** of the data;
- Distributed representations are exponentially more compact than one-hot representations;
- Deeper networks exhibit hierarchical compositionality: **higher layers** represent **higher-level concepts**;
- Auto-encoders are a class of neural networks that are used to learn representations of the data;
- Word embeddings are a type of representation used to represent words as vectors.

Convolutional Neural Networks

- Convolutional neural networks (CNNs) are a class of deep neural networks that are specialized for processing data that has a grid-like topology, such as images.
- Convolution layers are alternated with pooling layers convolution
 is a linear operation that preserves the grid-like topology of the
 input;
- Activation maps are the output of a convolutional layer;
- Stride is the step size of the convolution S;
- N of Channels K;
- N of Filters M;
- **Padding** is the **number of zeros** added to the **input** P;
 - A common padding size is $P = \frac{F-1}{2}$, which preserves the input size;
- Given an $N \times N \times D$ input, a $F \times F \times D$ filter, a stride S and padding P, the output will be a $M \times M \times K$ activation map, where $M = \frac{N F + 2P}{S} + 1$;
- Number of units in a convolutional layer: $M^2 \times K$;
- Number of trainable parameters in a convolutional layer: $M \times ((N^2 \times K) + bias);$
- Properties of CNNs:
 - Invariance the output is invariant to small translations of the input;
 - Locality the output is only affected by a small region of the input;
 - Sparse interactions each output value is the result of a small number of interactions with the input;
 - Parameter sharing the same parameters are used for different parts of the input.

Recurrent Neural Networks

- RNNs allow to take advantage of sequential data words in text, DNA sequences, sound waves, etc;
 - $-h_t = g(Vx_t + Uh_{t-1} + c) h_t$ is the **hidden state** at time t;
 - $-\hat{y}_t = Wh_t + b \hat{y}_t$ is the **output** at time t;

- Used to generate, tag and classify sequences, and are trained using back-propagation through time;
 - Parameters V, U, W, c and b are shared across time steps parameter sharing;
- Applications:
 - Sequence generation generate a sequence of words auto-regressive models:
 - Sequence tagging assign a label to each element in a sequence;
 - **Pooled classification** classify a sequence as a whole;
- Standard RNNs suffer from vanishing and exploding gradients alternative parameterizations like **LSTMs** and **GRUs** are used to avoid this problem;
- Gated Recurrent Units (GRUs) are a type of recurrent neural network that are simpler than LSTMs and perform better than standard RNNs idea is to create some shortcuts in the standard RNN;
 - $-u_t = \sigma(V_u x_t + U_u h_{t-1} + b_u)$ update gate;
 - $-r_t = \sigma(V_r x_t + U_r h_{t-1} + b_r)$ reset gate;
 - $\tilde{h}_t = tanh(vx_t + U(r_t \odot h_{t-1}) + b)$ candidate hidden state;
 - $-h_t = (1-z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$ hidden state;
- Long Short-Term Memory (LSTM) is a type of recurrent neural network that are more complex than GRUs and perform better than standard RNNs idea is to use memory cells c_t to store information;
 - $-i_t = \sigma(V_i x_t + U_i h_{t-1} + b_i)$ input gate;
 - $f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f)$ forget gate;
 - $-o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)$ output gate;
 - $-\tilde{c}_t = tanh(W_c x_t + U_c h_{t-1} + b)$ candidate cell state;
 - $-c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$ cell state;
 - $-h_t = o_t \odot tanh(c_t)$ hidden state.

Sequence-to-Sequence Models

- Sequence-to-sequence models are a class of neural networks that are used to map sequences to sequences encoder-decoder architecture;
 - Used for machine translation, speech recognition, image captioning, etc;

- A Neural Machine Translation (NMT) system is a sequence-tosequence model that is used to translate a sequence in one language to a sequence in another language - encoder-decoder architecture;
 - Encoder RNN encodes source sentence into a vector state $h_t = f(x_t, h_{t-1});$
 - **Decoder** RNN decodes the **vector state** into a **target sentence** $y_t = g(y_{t-1}, s_t)$;
- Representing the **input sequence** as a **single vector** is a **bottleneck attention mechanisms** are used to **improve performance** focus on different parts of the input.

Attention Mechanisms and Transformers

- Encoders/decoders can be RNNs, CNNs or self-attention layers;
- Self-attention is a linear operation that maps a sequence of vectors to a sequence of vectors encoder-decoder architecture;
 - **Query** vector q_t ;
 - **Key** vectors k_1, k_2, \ldots, k_n ;
 - Value vectors v_1, v_2, \ldots, v_n ;
 - Attention weights $\alpha_{t,i} = \frac{exp(q_t^T k_i)}{\sum_{j=1}^n exp(q_t^T k_j)}$;
 - Output vector $o_t = \sum_{i=1}^n \alpha_{t,i} v_i$;
- Transformers: encoder-decoder architecture with self-attention layers instead of RNNs;
 - Encoder: self-attention layers;
 - Decoder: self-attention layers + encoder-decoder attention layers;
- Multi-head attention is a self-attention layer with multiple heads
 parallel self-attention layers;
 - Query vectors q_t ;
 - **Key** vectors k_1, k_2, \ldots, k_n ;
 - Value vectors v_1, v_2, \ldots, v_n ;
 - Attention weights $\alpha_{t,i} = \frac{exp(q_t^T k_i)}{\sum_{j=1}^n exp(q_t^T k_j)}$;
 - **Output** vector $o_t = \sum_{i=1}^n \alpha_{t,i} v_i$.

Self-Supervised Learning and Large Pretrained Models

- Pretraining large models and fine-tuning them to a specific task is a common practice in deep learning:
 - Pretraining is a technique used to initialize the parameters of a neural network - self-supervised learning;
 - Fine-tuning is a technique used to adapt the parameters of a neural network to a specific task;
- Models: ELMo, BERT, GPT, etc;
- Adapters and prompting are other strategies more parameter-efficient than fine-tuning;
- Current models exhibit **few-shot learning** capabilities can be trained with **few examples**.