

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

1

•

· .

•

ROBINSON'S MATHEMATICAL SERIES

ELEMENTS

GEOMETRY,

AND

PLANE AND SPHERICAL TRIGONOMETRY;

NUMEROUS PRACTICAL PROBLEMS.

HORATIO N. ROBINSON, LL. D.,

IVISON, BLAKEMAN, TAYLOR & CO., PUBLISHERS,
NEW YORK AND CHICAGO

Both author and teacher must yield to the demands of the age, and by a judicious combination of the abstract and the concrete, the theoretical and the practical, make the student feel that what he learns with perhaps painful effort at first, may be made available in important applications.

In teaching Geometry and Trigonometry, questions should be asked, extra problems given, and original demonstrations required when the proper occasions arise; but care should be taken that the pupil's powers are not over-tasked. By helping him through his difficulties in such a way that he shall be scarcely conscious of having received assistance, he will be encouraged to make new and greater efforts, and will finally acquire a fondness for a study that may have been highly repugnant to him in the beginning.

A demonstration that is easily followed and comprehended by one, may be obscure and difficult to another; hence the advantage that will sometimes be gained by giving two or more demonstrations of the same proposition. When the student perceives that the same results may frequently be reached by processes entirely different, he will be stimulated to independent exertion, and in no respect can the teacher better exhibit his tact than in directing and encouraging such efforts.

Instances will be found throughout the work in which the more important propositions are twice and three times demonstrated; and as the methods of demonstration are in each case quite different, it is believed that extra space has not been thus occupied unprofitably.

Practical rules with applications will be found throughout the work, and in addition to these, there are in both the Geometry and the Trigonometry, full collections of carefully selected Practical Problems. These are given to exercise the powers and test the proficiency of the pupil, and when he has mastered the most or all of them. it is not likely that he will rest satisfied with present acquisition, but conscious of augmented strength and certain of reward, he will enter new fields of investigation.

The Author has been aided, in the preparation of the present work, by J. F. Quinby, A. M, of the University of Rochester, N. Y., late Professor of Mathematics in the United States Military Academy at West Point. The thorough Scholarship, and long and successful experience of this gentleman in the class-room, eminently qualify him for such a task; and to him the public are indebted for much that is valuable both in the matter and arrangement of this treatise.

October, 1860.

CONTENTS.

PLANE GEOMETRY.

DEFINITIONS.

Geometrical MagnitudesPAG	ı 9
Plane Angles	10
Plane Figures of Three Sides	12
Plane Figures of Four Sides	13
The Circle	14
Units of Measure	15
Explanation of Terms	16
Postulates	16
Axioms	17
Abbreviations	17
BOOK I.	
Of Straight Lines, Angles, and Polygons	19
BOOK II.	
Proportion, and its Application to Geometrical Investigations	59
BOOK III.	
Of the Circle, and the Investigation of Theorems dependent on its	
Properties	88
1* (v)	

CONTENTS.

BOOK IV.	
Problems in the Construction of Figures in Plane Geometry	111
BOOK V.	
On the Proportionalities and Measurement of Polygons and Circles.	130
Practical Problems	142
BOOK VI.	
On the Intersections of Planes, the Relative Positions of Planes,	
and of Planes and Lines	152
BOOK VII.	
Solid Geometry	172
Practical Problems	229
BOOK VIII.	
Practical Geometry. — Application of Algebra to Geometry, and	
also Propositions for Original Investigation	231
Miscellaneous Propositions in Plane Geometry	238
TRIGONOMETRY.	
PART I.	
PLANE TRIGONOMETRY.	
SECTION I.	
Elementary Principles 2	244
Definitions 2	
Propositions	
Equations for the Sines of the Angles 2	
Natural Sines, Cosines, etc	265
Trigonometrical Lines for Arcs exceeding 90°	270

SECTION II.	
Plane Trigonometry, Practically Applied	272
Logarithms	278
GENERAL APPLICATIONS WITH THE USE OF LOGARITHMS	•
I. Right-Angled Trigonometry	288
II. Oblique-Angled Trigonometry	
Practical Problems	295
SECTION III.	
Application of Trigonometry to Measuring Heights and Distances.	
Practical Problems	305
PART II.	
SPHERICAL GEOMETRY AND TRIGONOMETRY.	
SECTION I.	
Spherical Geometry	310
SECTION II.	
Right-Angled Spherical Trigonometry	330
Napier's Circular Parts	
SECTION III.	
Oblique-Angled Spherical Trigonometry	3 37
Napier's Analogies	

CONTENTS.

vii

SECTION IV.

Spherical Trigonometry Applied. — Solution of Right-Angled	
Spherical Triangles	353
Practical Problems	356
Solution of Quadrantal Triangles	3 58
Practical Problems	361
Solution of Oblique-Angled Spherical Triangles	362
Practical Problems	367
SECTION V.	
Spherical Trigonometry applied to Astronomy	370
Application of Oblique-Angled Spherical Triangles	373
Spherical Trigonometry applied to Geography	377
Table of Mean Time at Greenwich	379
SECTION VI.	
Regular Polyedrons	380

GEOMETRY.

DEFINITIONS.

1. Geometry is the science which treats of position, and of the forms, measurements, mutual relations, and properties of limited portions of space.

SPACE extends without limit in all directions, and contains all bodies.

- 2. A Point is mere position, and has no magnitude.
- 3. Extension is a term employed to denote that property of bodies by virtue of which they occupy definite portions of space. The dimensions of extension are length, breadth, and thickness.
- 4. A Line is that which has extension in length only. The extremities of a line are points.
- 5. A Right or Straight Line is one all of whose parts lie in the same direction.
- 6. A Curved Line is one whose consecutive parts, however small, do not lie in the same direction.

if any two of its points be joined by a straight line, every point of this line will lie in the surface.

- 10. A Curved Surface is one which is neither a plane, nor composed of plane surfaces.
- 11. A Plane Angle, or simply an Angle, is the difference in the direction of two lines proceeding from the same point.

The other angles treated of in geometry will be named and defined in their proper connections.

12. A Volume, Solid, or Body, is that which has extension in length, breadth, and thickness.

These terms are used in a sense purely abstract, to denote mere space — whether occupied by matter or not, being a question with which geometry is not concerned.

Lines, Surfaces, Angles, and Volumes constitute the different kinds of quantity called geometrical magnitudes.

13. Parallel Lines are lines which have ______the same direction.

Hence parallel lines can never meet, however far they may be produced; for two lines taking the same direction cannot approach or recede from each other.

Two parallel lines cannot be drawn from the same point; for if parallel, they must coincide and form one line.

PLANE ANGLES.

To make an angle apparent, the two lines must meet in a point, as AB and AC, which meet in the point A.

А

Angles are measured by degrees.

14. A Degree is one of the three hundred and sixty equal parts of the space about a point in a plane.

If, in the above figure, we suppose AC to coincide with AB, there will be but one line, and no angle; but if AB retain its position, and AC begin to revolve about the point A, an angle will be formed, and its magnitude will be expressed by that number of the

360 equal spaces about the point A, which is contained between AB and AC.

Angles are distinguished in respect to magnitude by the terms Right, Acute, and Obtuse Angles.

15. A Right Angle is that formed by one line meeting another, so as to make equal angles with that other.

The lines forming a right angle are perpendicular to each other.

- 16. An Acute Angle is less than a right angle.
- 17. An Obtuse Angle is greater than a right angle.

Obtuse and acute angles are also called oblique angles; and lines which are neither parallel nor perpendicular to each other are called oblique lines.

- 18. The Vertex or Apex of an angle is the point in which the including lines meet.
- 19. An angle is commonly designated by a letter at its vertex; but when two or more angles have their vertices at the same point, they cannot be thus distinguished.

For example, when the three lines AB, AC, and AD meet in the common point A, we designate either of the angles formed, by three letters, placing that at the vertex between those at the opposite extremities of the including lines. Thus, we say, the angle BAC, etc.

- 20. Complements. Two angles are said to be complements of each other, when their sum is equal to one right angle.
- 21. Supplements. Two angles are said to be supplements of each other, when their sum is equal to two right angles.

PLANE FIGURES.

- 22. A Plane Figure, in geometry, is a portion of a plane bounded by straight or curved lines, or by both combined.
- 23. A Polygon is a plane figure bounded by straight lines, called the sides of the polygon.

The least number of sides that can bound a polygon is three, and by the figure thus bounded all other polygons are analyzed.

FIGURES OF THREE SIDES.

24. A Triangle is a polygon having three sides and three angles.

Tri is a Latin prefix signifying three; hence a Triangle is literally a figure containing three angles. Triangles are denominated from the relations both of their sides and angles.

25. A Scalene Triangle is one in which no two sides are equal.

26. An Isosceles Triangle is one in which two of the sides are equal.

27. An Equilateral Triangle is one in which the three sides are equal.

28. A Right-Angled Triangle is one which has one of the angles a right angle.

29. An Obtuse-Angled Triangle is one laving an obtuse angle.

30. An Acute-Angled Triangle is one in which each angle is acute.
•
31. An Equiangular Triangle is one having its three angles equal.
Equiangular triangles are also equilateral, and vice versa.
FIGURES OF FOUR SIDES.
32. A Quadrilateral is a polygon having four sides and four angles. 33. A Parallelogram is a quadrilateral which has its opposite sides parallel. Parallelograms are denominated from the relations both of their sides and angles.
34. A Rectangle is a parallelogram having its angles right angles.
35. A Square is an equilateral rectangle.
36. A Rhomboid is an oblique-angled parallelogram.
37. A Rhombus is an equilateral rhomboid.
38. A Trapezium is a quadrilateral having two sides parallel.
39. A Trapezoid is a quadrilateral in which two opposite sides are parallel, and the other two oblique.
40. Polygons bounded by a greater number of sides 2

than four are denominated only by the number of sides. A polygon of five sides is called a *Pentagon*; of six, a *Hexagon*; of seven, a *Heptagon*; of eight, an *Octagon*; of nine, a *Nonagon*, etc.

41. Diagonals of a polygon are lines joining the vertices of angles not adjacent.

- 42. The Perimeter of a polygon is its boundary considered as a whole.
- 43. The Base of a polygon is the side upon which the polygon is supposed to stand.
- 44. The Altitude of a polygon is the perpendicular distance between the base and a side or angle opposite the base.
- 45. Equal Magnitudes are those which are not only equal in all their parts, but which also, when applied the one to the other, will coincide throughout their whole extent.
- 46. Equivalent Magnitudes are those which, though they do not admit of coincidence when applied the one to the other, still have common measures, and are therefore numerically equal.
- 47. Similar Figures have equal angles, and the same number of sides.

Polygons may be similar without being equal; that is, the angles and the number of sides may be equal, and the *length* of the sides and the size of the figures unequal.

THE CIRCLE.

48. A Circle is a plane figure bounded by one uniformly curved line, all of the points in which are at the same c distance from a certain point within, called the *Center*.

49. The Circumference of a circle is the curved line that bounds it.

- 50. The Diameter of a circle is a line passing through its center, and terminating at both ends in the circumference.
- 51. The Radius of a circle is a line extending from its center to any point in the circumference. It is one half of the diameter. All the diameters of a circle are equal, as are also all the radii.
- 52. An Arc of a circle is any portion of the circumference.
- 53. An angle having its vertex at the center of a circle is measured by the arc intercepted by its sides. Thus, the arc AB measures the angle AOB; and in general, to compare different angles, we have but to compare the arcs, included by their sides, of the equal circles having their centers at the vertices of the angles.

UNITS OF MEASURE.

54. The Numerical Expression of a Magnitude is a number expressing how many times it contains a magnitude of the same kind, and of known value, assumed as a unit. For lines, the measuring unit is any straight line of fixed value, as an inch, a foot, a rod, etc.; and for surfaces, the measuring unit is a square whose side may be any linear unit, as an inch, a foot, a mile, etc. The linear unit being arbitrary, the surface unit is equally so; and its selection is determined by considerations of convenience and propriety.

For example, the parallelogram ABDC is measured by the number of linear units in CD, multiplied by the number of linear units in AC or BD; the product is the square units in ABDC.

For, conceive CD to be composed of any number of equal parts—say five—and each part some unit of linear measure, and AC composed of three such units; from each point of division on CD draw lines parallel to CD or CD then it is as obvious

as an axiom that the parallelogram will contain $5 \times 3 = 15$ square units. Hence, to find the areas of right-angled parallelograms, multiply the base by the altitude.

EXPLANATION OF TERMS.

- 55. An Axiom is a self-evident truth, not only too simple to require, but too simple to admit of, demonstration.
- 56. A Proposition is something which is either proposed to be done, or to be demonstrated, and is either a problem or a theorem.
 - 57. A Problem is something proposed to be done.
- 58. A Theorem is something proposed to be demonstrated.
- 59. A Hypothesis is a supposition made with a view to draw from it some consequence which establishes the truth or falsehood of a proposition, or solves a problem.
- 60. A Lemma is something which is premised, or demonstrated, in order to render what follows more easy.
- 61. A Corollary is a consequent truth derived immediately from some preceding truth or demonstration.
- 62. A Scholium is a remark or observation made upon something going before it.
- 63. A Postulate is a problem, the solution of which is self-evident.

POSTULATES.

Let it be granted—

I. That a straight line can be drawn from any one pour t to any other point;

II. That a straight line can be produced to any distance, or terminated at any point;

III. That the circumference of a circle can be described about any center, at any distance from that center.

AXIOMS.

- 1. Things which are equal to the same thing are equal to each other.
 - 2. When equals are added to equals the wholes are equal.
- 3. When equals are taken from equals the remainders are equal.
- 4. When equals are added to unequals the wholes are unequal.
- 5. When equals are taken from unequals the remainders are unequal.
- 6. Things which are double of the same thing, or equal things, are equal to each other.
- 7. Things which are halves of the same thing, or of equal things, are equal to each other.
 - 8. The whole is greater than any of its parts.
 - 9. Every whole is equal to all its parts taken together.
- 10. Things which coincide, or fill the same space, are identical, or mutually equal in all their parts.
 - 11. All right angles are equal to one another.
- 12. A straight line is the shortest distance between two points.
 - 18. Two straight lines cannot inclose a space.

ABBREVIATIONS.

The common algebraic signs are used in this work, and demonstrations are sometimes made through the medium of equations; and it is so necessary that the student in geometry should understand some of the more simple operations of algebra, that we assume that he is acquainted with the use of the signs. As the terms circle, angle, triangle, hypothesis, axiom, theorem, corollary, and definition, are constantly occurring in a course of geometry, we shall abbreviate them as shown in the following list:

A

Addition is expressed by +
Subtraction " "
Multiplication " x
Equality and Equivalency are expressed by . =
Greater than, is expressed by >
Less than, " " <
Thus: B is greater than A, is written $B > A$
B is less than A , "" $B < A$
A circle is expressed by
An angle " "
A right angle is expressed by R.
Degrees, minutes, and seconds, are expressed
by
A triangle is expressed by
The term Hypothesis is expressed by (Hy.)
" Axiom " " (Ax.)
" Theorem " " (Th.)
" Corollary " " (Cor.)
" Definition " " (Def.)
" Perpendicular is expressed by
The difference of two quantities, when it is
not known which is the greater, is ex-
pressed by the symbol \dots \sim
Thus, the difference between A and B is written
~ B

BOOK I.

OF STRAIGHT LINES, ANGLES, AND POLYGONS.

THEOREM I.

When one straight line meets another, not at its extremity, the two angles thus formed are two right angles, or they are together equal to two right angles.

Let AB meet CD, and if AB is perpendicular to CD, it does not incline to either extremity of CD. In that case, the angle ABD is equal to the angle ABC, and is C B D a right angle, by Definition 15.

But if these angles are unequal, we are to show that their sum is equal to two right angles. Conceive the line BE to be drawn from the point B, so as not to incline toward either extremity of CD; then, by Def. 15, the angles CBE and EBD are right angles; but the angles CBA and ABD make the same sum, or fill the same angular space, as the two angles CBE and EBD, and are, consequently, equal to two right angles. Hence the theorem; when one straight line meets another, not at its extremity, the sum of the two angles is equal to two right angles.

Cor. Hence, the two angles ABC and ABD are supplementary to each other, (Def. 21).

THEOREM II.

From any point in a straight line, not at its extremity, the sum of all the angles that can be formed on the same side of the line is equal to two right angles.

Let CD be any line, and B any point in it.

We are to show that the sum of all the angles which can be formed at B, on one c side of CD, will be equal to two right angles

By Th. 1, any two supplementary angles, as ABD, ABC, are together equal to two right angles. And since the angular space about the point B is neither increased nor diminished by the number of lines drawn from that point, the sum of all the angles DBA, ABE, EBH, HBC, fills the same spaces as any two angles HBD, HBC. Hence the theorem; from any point in a line, the sum of all the angles that can be formed on the same side of the line is equal to two right angles.

Cor. 1. And, as the sum of all the angles that can be formed on the other side of the line, CD, is also equal to two right angles; therefore, all the angles that can be formed quite round a point, B, by any number of lines, are together equal to four right angles.

Cor. 2. Hence, also, the whole circumference of a circle, being the sum of the measures of all the angles that can be made about the center F, (Def. 53), is the measure of four right angles; consequently, a semicircumference, is the measure of two right angles; and a quadrant, or 90°, is the measure of one right angle.

THEOREM III.

If one straight line meets two other straight lines at a common point, forming two angles, which together are equal to two right angles the two straight lines are one and the same line.

Let the line AB meet the lines BD and BE at the common point B, making the sum of the two angles ABD, ABE, equal to two right angles; we are to prove that DB and BE are one straight line.

If DB and BE are not in the same line, produce DB to C, thus forming one line, DBC.

Now by Th. 1, ABD + ABC must be equal to two right angles. But by hypothesis, ABD + ABE is equal to two right angles.

Therefore, ABD + ABC is equal to ABD + ABE, (Ax. 1). From each of these equals take away the common angle ABD, and the angle ABC will be equal to ABE, (Ax. 3). That is, the line BE must coincide with BC, and they will be in fact one and the same line, and they cannot be separated as is represented in the figure.

Hence the theorem; if one line meets two other lines at a common point, forming two angles which together are equal to two right angles, the two lines are one and the same line.

THEOREM IV.

If two straight lines intersect each other, the opposite or vertical angles must be equal.

If AB and CD intersect each other at E, we are to demonstrate that the angle AEC is equal to the vertical angle DEB; and the angle AED, to the vertical angle CEB.

As AB is one line met by DE, another line, the two angles AED and DEB, on the same side of AB, are equal to two right angles, (Th. 1). Also, because CD is a right line, and AE meets it, the two angles AEC and AED are together equal to two right angles.

Therefore, AED + DEB = AEC + AED. (Ax. 1.)

If from these equals we take away the common angle AED, the remaining angle DEB must be equal to the remaining angle AEC, (Ax. 3). In like manner, we can prove that AED is equal to CEB. Hence the theorem; if the two lines intersect each other, the vertical angles must be equal.

Second Demonstration.

By Def. 11, the angle DEB is the difference in the direction of the lines ED and EB; and the angle AEC is the difference in the direction of the lines EC and EA.

But ED is opposite in direction to EC; and EB is opposite in direction to EA.

Hence, the difference in the direction of ED and EB is the same as that of EC and EA, as is obvious by inspection.

Therefore, the angle DEB is equal to its opposite AEC. In like manner, we may prove AED = CEB.

Hence the theorem; if two lines intersect each other, the vertical angles must be equal.

THEOREM V.

If a straight line intersects two parallel lines, the sum of the two interior angles on the same side of the intersecting line is equal to two right angles.

[Note. — By interior angles, we mean angles which lie between the parallels; the exterior angles are those not between the parallels.]

Let the line EF intersect the parallels AB and CD; then we are to demonstrate that the angles BGH + GHD = 2 R.

Because GB and HD are parallel, they are equally inclined to the line EF, or have

the same difference of direction from that line. Therefore, $\sqsubseteq FGB = \sqsubseteq GHD$. To each of these equals add the ! BGH, and we have FGB + BGH = GHD + BGH.

But by Th. 1, the first member of this equation is equal to two right angles; and the second member is the sum of the two angles between the parallels. Hence the theorem; if a line intersects two parallel lines, the sum of the two interior angles on the same side of the intersecting line must be equal to two right angles.

SCHOLLUM: -- As AB and CD are parallel lines, and EF is a line intersecting them, AB and EF must make angles equal to those made by CD and EF. That is, the angles about the point G must be equal to the corresponding angles about the point H.

THEOREM VI.

If a line intersects two parallel lines, the alternate intersor angles are equal.

Let AB and CD be parallels, intersected by EF at H and G. Then we are to prove that the angle AGH is equal to the alternate angle GHD, and CHG = HGB.

By Th. 5, $\lfloor BGH + \rfloor$ GHD = two right angles. Al-

That is, the exterior angle is equal to the interior opposite angle on the same side of the intersecting line.

In the same manner it may be shown that $\angle AGF = \angle EHD$.

Hence, the alternate exterior angles are equal.

THEOREM VII.

If a line intersects two other lines, making the sum of the two interior angles on the same side of the intersecting line equal to two right angles, the two straight lines are parallel.

Let the line EF intersect the lines AB and CD, making the two angles BGH + GHD= to two right angles; then we are to demonstrate that AB and CD are parallel.

AB and CD are parallel.

As EF is a right line and
BG meets it, the two angles

FGB and BGH are together equal to two right angles, (Th. 1). But by hypothesis, the angles, BGH and GHD, are together equal to two right angles. From these two equals take away the common angle BGH, and the remaining angles FGB and GHD must be equal, (Ax. 3). Now, because GB and HD make equal angles with the same line EF, they must extend in the same direction; and lines having the same direction are parallel, (Def. 13). Hence the theorem; if a line intersects two other lines, making the sum of the two interior angles on the same side of the intersecting line equal to two right angles, the two lines must be parallel.

Cor. 1. If a line intersects two other lines, making the alternate interior angles equal, the two lines intersected must be parallel.

Cor. 2. If a line intersects two other lines, making the

opposite exterior and interior angles equal, the two lines intersected must be parallel.

Suppose the $\ \ FGB = \ \ GHD$. Adding the $\ \ HGB$ to each, we have

$$| FGB + | HGB = | GHD + HGB.$$

But the first member of this equation is equal to two right angles; hence the second member is also equal to two right angles; and by the theorem, the lines AB and CD are parallel.

Cor. 3. If a line intersects two other lines, making the alternate exterior angles equal, the lines must be parallel.

That is, the alternate interior angles are equal; and hence (by Cor. 1) the two lines are parallel.

THEOREM VIII.

If two angles have their sides parallel, the two angles will be either equal or supplementary.

Let AC be parallel to BD, and AH parallel to BF or to BG. Then we are to prove that the angle DBF is equal to the angle CAH, and that the angle DBG is supplementary to the angle A. The angle CAH is formed by the difference in the direction of AC and AH; and the angle DBF is formed by the difference in the direction of BD and BF. But AC and AH have the same direction-

tions as BD and BF, because they are respectively parallel. Therefore, by Def. 11, CAH = DBF. But the line BG has the same direction as BF, and the angle DBG is supplementary to DBF. Hence the theorem; angles whose sides are parallel are either equal or supplementary.

THEOREM IX.

The opposite angles of any parallelogram are equal.

Let AEBG be a parallelogram. Then we are to prove that the angle GBE is equal to its opposite angle A.

Produce EB to D, and GB to F; then, since BD is par-

allel to AG, and BF to \overline{AE} , the angle DBF is equal to the angle A, (Th. 8).

But the angles GBE and DBF, being vertical, are equal, (Th. 4). Therefore, the opposite angles GBE and A, of the parallelogram AEBG, are equal.

In like manner, we can prove the angle E equal to the angle G. Hence the theorem; the opposite angles of any parallelogram are equal.

THEOREM X.

The sum of the angles of any parallelogram is equal to four right angles.

Let ARCD be a parallelogram. We are to prove that the sum of the angles A, B, C and D, is equal to four right angles, or to 360° .

Because AD and BC are parallel lines, and AB intersects them, the two interior angles A and B are together equal to two right angles, (Th. 5). And because CD intersects the same parallels, the two interior angles C and D are also together equal to two right angles. By addition, we have the sum of the four interior angles of the parallelogram ABCD, equal to four right angles. Hence the theorem; the sum of the angles of any parallelogram is equal to four right angles.

THEOREM XI.

The sum of the three angles of any triangle is equal to two right angles.

Let ABC be a triangle, and through its vertex Cdraw a line parallel to the base AB, and produce the sides AC and BC. Then the angles A and a, being exterior and interior opposite angles on

the same side of the line AC, are equal to each other. For the same reason, $\bot B = \bot b$. The angles C and c, being vertical angles, are also equal, (Th. 4). Therefore, the angles A, B, C are equal to the angles a, b, c respectively. But the angles around the point C, on the upper side of the parallel CD, are equal to two right angles, (by Th. 2). Hence the theorem; the sum of the three angles, etc.

Second Demonstration.

Let AEBG be a parallelogram. Draw the diagonal GE; thus dividing the parallelogram into two triangles, and the opposite angles G and E each into two angles.

Because GB and AE are parallel, the alternate interior angles BGE and GEA are equal, (Th. 6). Designate each of these by b.

In like manner, because EB and AG are parallel, the alternate interior angles, BEG and EGA, are equal. Designate each of these by a.

Now we are to prove that the three angles B, b, and a, and also that the three angles A, a, and b, are equal to two right angles

Because A and B are opposite angles of a parallelogram, they are equal, (Th. 9), and |A+|B=2|A.

And all the interior angles of the parallelogram are equal to four right angles, (Th. 10).

•Therefore,
$$2A + 2a + 2b = 4$$
 right angles.

Dividing by 2, and A + a + b = 2

That is, all the angles of the triangle AGE are together equal to two right angles.

Hence the theorem; the sum of the three angles, etc.

Scholium.—Any triangle, as AGE, may be conceived to be part of a parallelogram. For, let AGE be drawn independently of the parallelogram; then draw EB from the point E parallel to AG, and through the point G draw GB parallel to AE, and a parallelogram will be formed embracing the triangle; and thus the sum of the three angles of any triangle is proved equal to two right angles.

This truth is so fundamental, important, and practical, as to require special attention; we therefore give a

Third Demonstration.

Let ABC be a triangle. Then we are to show that the angles A, C, and ABC, are together equal to two right angles.

Let AB be produced to D, and from B draw BE parallel to AC.

Then, EBD and CAB being exterior and interior opposite angles on the same side of the line AD, are equal, (Th. 6, Cor. 1). Also, CBE and ACB, being alternate angles, are equal, (Th. 6).

By addition, observing that $\ \ CBE$, added to $\ \ EBD$, must make $\ \ CBD$, we have

To each of these equals add the angle CBA, and we shall have

But (by Th. 1), the sum of the first two is equal to two

right angles; therefore, the three angles, A, C, and CBA, are together equal to two right angles.

Hence the theorem; the sum of the three angles, etc.

THEOREM XII.

If any side of a triangle is produced, the exterior angle is equal to the sum of the two interior opposite angles.

Let ABC be a triangle. Produce AB to D; and we are to prove that the angle CBD is equal to the sum of the two angles A and C.

We establish this theorem by a course of reasoning in all respects the same as that by which we obtained Eq. (1.), third demonstration, (Th. 11).

- Cor. 1. Since the exterior angle of any triangle is equal to the sum of the two interior opposite angles, therefore it is greater than either one of them.
- Cor. 2. If two angles in one triangle be equal to two angles in another triangle, the third angles will also be equal, each to each, (Ax. 3); that is, the two triangles will be mutually equiangular.
- Cor. 3. If one angle in a triangle be equal to one angle in another, the sum of the remaining angles in the one will also be equal to the sum of the remaining angles in the other, (Ax. 3).
- Cor. 4. If one angle of a triangle be a right angle, the sum of the other two will be equal to a right angle, and each of them singly will be acute, or less than a right angle.
- Cor. 5. The two smaller angles of every triangle are acute, or each is less than a right angle.
- Cor. 6. All the angles of a triangle may be acute, but no triangle can have more than one right or one obtuse angle.

THEOREM XIII.

In any polygon, the sum of all the interior angles is equal to twice as many right angles, less four, as the figure has sides.

Let ABCDE be any polygon; we are to prove that the sum of all its interior angles, A+B+O+D+E, is equal to twice as many right angles, less four, as the figure has sides.

From any point, p, within the figure, draw lines pA, pB, pC, etc., to all the angles, thus dividing the polygon into as many triangles as it has sides. Now, the sum of the three angles of each of these triangles is equal to two right angles, (Th. 11); and the sum of the angles of all the triangles must be equal to twice as many right angles as the figure has sides. But the sum of these angles contains the sum of four right angles about the point p; taking these away, and the remainder is the sum of the interior angles of the figure. Therefore, the sum must be equal to twice as many right angles, less four, as the figure has sides.

Hence the theorem; in any polygon, etc.

From this Theorem is derived the rule for finding the sum of the interior angles of any right-lined figure:

Subtract 2 from the number of sides, and multiply the remainder by 2; the product will be the number of right angles.

Thus, if the number of sides he represented by S, the number of right angles will be represented by (2S-4).

The Theorem is not varied in case of a re-entrant angle, as represented at d, in the figure ABCdEF.

Draw lines from the angle d to the several opposite angles, making as many triangles as the figure has sides, less two, and the sum of the three angles of each triangle equals two right angles.

THEOREM XIV.

If the sides of one angle be respectively perpendicular to the sides of a second angle, these two angles will be either equal or supplementary.

Let BAD be the first angle, and from any point within it, as C, draw CB and CD, at right angles, the first to AB, and the second to AD, and produce CD in the direction CE, thus forming at C the supplementary angles BCE, BCD; then

will the angle BCE be equal to the angle A, and therefore BCD, which is the supplement of BCE, will also be the supplement of the angle A.

For since ABCD is a quadrilateral, the sum of the four interior angles is four right angles (Prop. 13), and because the angles ABC and ADC are each right angles, the sum of the angles BAD, BCD is two right angles. But the sum of the adjacent angles BCE, BCD is also two right angles. Hence, if in these last two sums we omit the common angle BCD, we have remaining the angle BCE, equal to the angle BAD, and consequently the angle BCD which is the supplement of the first of these equal angles is also the supplement of the other.

Hence the Theorem.

SCHOLIUM.—If the vertex of the second angle be without the first angle, we would draw through any assumed point within the first angle parallels to the sides of the second; the above demonstration will then apply to the first angle, and the angle formed by the parallels.

THEOREM XV.

From any point without a straight line, but one perpendicular can be drawn to that line.

From the point A let us suppose it possible that two perpendiculars, AB and AC, can be drawn. Now, because AB is a supposed perpendicular, the angle ABC is a right angle; and because AC is a supposed per-

pendicular, the angle ACB is also a right angle; and if two angles of the triangle ABC are together equal to two right angles, the third angle, BAC, must be infinitely small, or zero; that is, the two perpendiculars being drawn through the common point A, and including no angle, must necessarily coincide, and form one and the same perpendicular.

Hence the theorem; from any point without a straight line, etc.

Cor. At a given point in a straight line but one perpendicular can be erected to that line; for, if there could be two perpendiculars, we should have unequal righ angles, which is impossible.

THEOREM XVI.

Two triangles which have two sides and the included angle in the one, equal to two sides and the included angle in the other, each to each, are equal in all respects.

In the two \triangle 's, ABC and DEF, on the supposition that AB = DE, AC = DF, and A = DF, we are to prove that BC must EF, the B = EF, and the CF

Conceive the $\triangle ABC$ cut out of the paper, taken up, and placed on the $\triangle DEF$ in such a manner that the point A shall fall on the point D, and the line AB on the line DE; then the point B will fall on the point E, because the lines are equal. Now, as the A = DE, the line AC must take the same direction as DE, and fall on DE; and as AC = DE, the point C will fall on E. DE being on E and E on E must be exactly on EE, (otherwise, two straight lines would enclose a space, AE and BC = EE, and the two magnitudes exactly fill the same space. Therefore, BC = EE, B = EE, C = EE, and the two \triangle 's are equal, EE (Ax. 10).

Hence the theorem; two triangles which have two sides, etc.

THEOREM XVII.

When two triangles have a side and two adjacent angles in the one, equal to a side and two adjacent angles in the other, each to each, the two triangles are equal in all respects.

In two \triangle 's, as ABC and DEF, on the supposition that BC = EF, $\square B = \square E$, and $\square C = \square F$, we are to prove that AB = DE, AC = DF, and $\square A = \square D$.

Conceive the \triangle ABC taken up and placed on the \triangle DEF, so that the side BC shall exactly coincide with its equal side EF; now, because the angle B is equal to the angle E, the line BA will take the direction of ED, and will fall exactly upon it; and because the angle C is equal to the angle F, the line CA will take the direction of FD, and fall exactly upon it; and the two lines BA and CA, exactly coinciding with the two lines ED and FD, the point A will fall on D, and the two magnitudes will exactly fill the same space; therefore, by Ax. 10, they are equal, and AB = DE, AC = DF, and the A = AC = DE.

Hence the theorem; when two triangles have a side and two adjacent angles in the one, equal to, etc.

THEOREM XVIII.

If two sides of a triangle are equal, the angles opposite to these sides are also equal.

Let ABC be a triangle; and on the supposition that AC = BC, we are to prove that the A = BC.

Conceive the angle C divided into two equal angles by the line CD; then we have two \triangle 's, ADC and BDC, which have the two sides, AC and CD of the one, equal to the two sides, CB and CD of the other; and

the inc.uded angle ACD, of the one, equal to the included angle BCD of the other: therefore, (Th. 16), AD = BD, and the angle A, opposite to CD of the one triangle, is equal to the angle B, opposite to CD of the other triangle; that is, A = B.

Hence the theorem; if two sides of a triangle are equal, the angles, etc.

Cor. 1. Conversely: if two angles of a triangle are equal, the sides opposite to them are equal, and the triangle is isosceles.

For, if AC is not equal to BC, suppose BC to be the greater, and make BE = AE; then will $\triangle AEB$ be isosceles, and $\triangle EAB = \triangle EBA$; hence $\triangle EAB = \triangle CAB$, or a part is equal to the whole, which is absurd; therefore, CB cannot be greater than AC, that is, neither of the sides AC, BC, can be greater than the other, and consequently they are equal.

Cor. 2. As the two triangles, ACD and BCD, are in all respects equal, the line which bisects the angle included between the equal sides of an isosceles \triangle also bisects the base, and is perpendicular to the base.

SCHOLIUM 1.—If in the perpendicular DC, any other point than C be taken, and lines be drawn to the extremities A and B, such lines will be equal, as is evident from Th. 16; hence, we may announce his truth: Any point in a perpendicular drawn from the middle of a line, is at equal distances from the two extremilies of the line.

SCHOLIUM 2. — Since two points determine the position of a line, it tollows, that a line which joins two points each equally distant from the extremities of a given line, is perpendicular to this line at its middle point.

THEOREM XIX.

The greater side of every triangle has the greater angle opposite to it.

Let ABC be a \triangle ; and on the supposition that AC is greater than AB, we are to prove that the angle ABC is

greater than the $\lfloor C$. From AC, the greater of the two sides, take AD, equal to the less side AB, and draw BD, thus making two triangles of the original triangle. As AB = AD, the $\lfloor ADB =$ the $\lfloor ABD$, (Th. 18).

But the [ADB] is the exterior angle of the $\triangle BDC$, and is therefore greater than C, (Th. 12, Cor. 1); that is, the

Hence the theorem; the greater side of every triangle, etc.

Cor. Conversely: the greater angle of any triangle has the greater side opposite to it.

In the triangle ABC, let the angle B be greater than the angle A; then is the side AC greater than the side BC.

For, if BC = AC, the angle A must be equal to the angle B, (Th. 18), which is contrary to the hypothesis; and if BC > AC, the angle A must be greater than the angle B, by what is above proved, which is also contrary to the hypothesis; hence BC can be neither equal to, nor greater, than AC; it is therefore less than AC.

THEOREM XX.

The difference between any two sides of a triangle is kess than the third side.

Let ABC be a \triangle , in which AC is greater than AB; then we are to prove that AC—AB is less than BC.

On AC, the greater of the two sides, lay off AD equal to AB.

Now, as a straight line is the shortest distance between two points, we have

een two points, we have
$$AB + BC > AC$$
. (1)

From these unequals subtract the equals AB = AD, and we have BC > AC - AB. (Ax. 5).

Hence the theorem; the difference between any two sides of a triangle, etc.

THEOREM XXI.

If two triangles have the three sides of the one equal to the three sides of the other, each to each, the two triangles are equal, and the equal angles are opposite the equal sides.

In two triangles, as ABC and ABD, on the supposition that the side AB of the one = the side AB of the other, AC = AD, and BC = BD, we are to demonstrate that

Conceive the two triangles to be joined together by their longest equal sides, and draw the line *CD*.

Then, in the triangle ACD, because AC is equal to AD,

the angle ACD is equal to the angle ADC, (Th. 18). In like manner, in the triangle BCD, because BC is equal to BD, the angle BCD is equal to the angle BDC. Now, the angle ACD being equal to the angle ADC, and the angle BCD to the angle BDC, ACD + BCD = ADC + BDC, (Ax. 2); that is, the whole angle ACB is equal to the whole angle ADB.

Since the two sides AC and CB are equal to the two sides AD and DB, each to each, and their included angles ACB, ADB, are also equal, the two triangles ABC, ABD, are equal, (Th. 16), and have their other angles equal; that is, BAC = BAD, and ABC = ABD.

Hence the theorem; if two triangles have the three sides of the one, etc.

THEOREM XXII.

If two triangles have two sides of the one equal to two rides of the other, each to each, and the included angles unequal, the third sides will be unequal, and the greater thirs ride will belong to the triangle which has the greater included angle.

In the two \triangle 's, ABC and ACD, let AB and AC of the one \triangle be equal to AD and AC of the other \triangle , and the angle BAC greater than the angle DAC; we are to prove that the side BC is greater than the side CD.

Conceive the two \triangle 's joined together by their shorter equal sides, and draw the line BD. Now, as AB = AD, ABD is an isosceles \triangle . From the vertex A, draw a line bisecting the angle BAD. This line must be perpendicular to the base BD, (Th. 18, Cor. 2). Since the $\triangle BAC$ is greater than the $\triangle DAC$, this line must meet BC, and will not meet CD. From the point E, where the perpendicular meets BC, draw ED.

Now BE = DE, (Th. 18, Scholium 1).

Add EC to each; then BC = DE + EC.

But DE + EC is greater than DC.

Therefore BC > DC.

Hence the theorem; if two triangles have two sides of one equal to two sides of the other, etc.

Cor. Any point out of the perpendicular drawn from the middle point of a line, is unequally distant from the extremities of the line.

THEOREM XXIII.

A perpendicular is the shortest line that can be drawn from any point to a straight line; and if other lines be drawn from the same point to the same straight line, that which meets it farthest from the perpendicular will be longest; and lines at equal distances from the perpendicular, on opposite sides, are equal.

Let A be any point without the line DE; let AB be the perpendicular; and AC, AD, and AE oblique lines: then, if BC is less than BD, and BC = BE, we are to show,

1st. That AB is less than AC. 2d. That AC is less than AD. 3d. That AC = AE.

1st. In the triangle ABC, as AB is perpendicular to BC, the angle ABC is a right angle; and, therefore (by Theorem 12, Cor. 4); the angle BCA is less than a right angle; and, as the greater side is always opposite the greater angle, AB is less than AC; and AC may be any line not identical with AB; therefore a perpendicular is the shortest line that can be drawn from A to the line DE.

2d. As the two angles, ACB and ACD, are together equal to two right angles, (Th. 1), and ACB is less than a right angle, ACD must be greater than a right angle; consequently, the $\ \ D$ is less than a right angle; and, in the $\ \triangle ACD$, AD is greater than AC, or AC is less than AD, (Th. 19 Cor).

8d. In the \triangle 's ABC and ABE, AB is common, CB = BE, and the angles at B are right angles; therefore, AC = AE, (Th. 16).

Hence the theorem; a perpendicular is the shortest line etc.

Cor. Conversely: if two equal oblique lines be drawn

from the same point to a given straight line, they will meet the line at equal distances from the foot of the perpendicular drawn from that point to the given line.

THEOREM XXIV.

The opposite sides, and also the opposite angles of any parallelogram, are equal.

Let ABCD be a parallelogram. Then we are to show that AB = DC, AD = BC, A = C, and ADC = ABC.

Draw a diagonal, as BD; now, because AB and DC are parallel, the al-

ternate angles ABD and BDC are equal, (Th. 6). For the same reason, as AD and BC are parallel, the angles ADB and DBC are equal. Now, in the two triangles ABD and BCD, the side BD is common,

Therefore, the angle A = the angle C, and the two triangles are equal in all respects, (Th. 17); that is, the sides opposite the equal angles are equal; or, AB = DC, and AD = BC. By adding equations (1) and (2), we have the angle ADC = the angle ABC, (Ax. 2).

Hence the theorem; the opposite sides, and the opposite angles, etc.

- Cor. 1. As the sum of all the angles of a parallelogram is equal to four right angles, and the angle A is always equal to the opposite angle C; therefore, if A is a right angle, C is also a right angle, and the figure is a rectangle.
- Cor. 2. As the angle ABC, added to the angle A, gives the same sum as the angles of the $\triangle ADB$; therefore, the two adjacent angles of a parallelogram are together equal to two right angles.

THEOREM XXVIII,

Triangles on the same base and between the same parallels are equivalent.

Let the two \triangle 's ABE and ABF have the same base AB, and be between the same parallels AB and EF; then we are to prove that they are equal in surface.

From B draw the line BD, parallel to AF; and from A draw the line AC, parallel to BE; and produce EF, if necessary, to C and D; now the parallelogram ABDF = the parallelogram ABEC, (Th. 27). But the \triangle ABE is one half the parallelogram ABEC, and the \triangle ABF is one half the parallelogram ABDF; and halves of equals are equal, (Ax. 7); therefore the \triangle ABE = the \triangle ABF.

Hence the theorem; triangles on the same base, etc.

THEOREM XXIX.

Parallelograms on equal bases, and between the same par allels, are equal in area.

Let ABCD and EFGH, be two parallelograms on equal bases, AB and EF, and between the same parallels, AF and DG; then we are to prove that they are equal in area.

AB = EF = HG; but lines which join equal and parallel lines, are themselves equal and parallel, (Th. 26); therefore, if AH and BG be drawn, the figure ABGH is a parallelogram = to the parallelogram ABCD, (Th. 27); and if we turn the whole figure over, the two parallelograms, GHEF and GHAB, will stand on the same base, GH, and between the same parallels; therefore, GHEF = GHAB, and consequently ABCD = EFGH, (Ax. 1). Hence the theorem; Parallelograms on equal bases, etc.

Cor. Triangles on equal bases, and between the same parallels, are equal in area. For, draw BD and EG; the $\triangle ABD$ is one half of the parallelogram AC, and the $\triangle EFG$ is one half of the equivalent parallelogram FH; therefore, the $\triangle ABD$ = the $\triangle EFG$, (Ax. 7).

THEOREM XXX.

If a triangle and a parallelogram are upon the same or equal bases, and between the same parallels, the triangle is equivalent to one half the parallelogram.

Let ABC be a \triangle , and ABDE a parallelogram, on the same base AB, and between the same parallels; then we are to prove that the $\triangle ABC$ is equivalent to one half of the parallelogram ABDE.

Draw EB the diagonal of the parallelogram; now, because the two \triangle 's ABC and ABE are on the same base, and between the same parallels, they are equivalent, (Th. 28); but the \triangle ABE is one half the parallelogram ABDE, (Th. 25, Cor.); therefore the \triangle ABC is equivalent to one half of the same parallelogram, (Ax. 7).

Hence the theorem; if a triangle and a parallelogram,

eto
THEOREM XXXI.

The complementary parallelograms described about any point in the diagonal of any parallelogram, are equivalent to each other.

Let AC be a parallelogram, and BD its diagonal; take any point, as E, in the diagonal, and through this point draw lines parallel to the sides of the parallelogram, thus forming four parallelograms.

We are now to prove that the complementary parallelograms, AE and EC, are equivalent.

By (Th. 25, Cor.) we learn that the $\triangle ABD = \triangle DBC$. Also by the same Cor., $\triangle a = \triangle b$, and $\triangle c = \triangle d$; therefore by addition

$$\triangle a + \triangle c = \triangle b + \triangle d$$
.

Now, from the whole $\triangle ABD$ take $\triangle a + \triangle c$, and from the whole $\triangle DBC$ take the equal sum, $\triangle b + \triangle d$, and the remaining parallelograms AE and EC are equivalent, (Ax. 3).

Hence the theorem; the complementary parallelograms, etc.

THEOREM XXXII.

The perimeter of a rectangle is less than that of any rhomboid standing on the same base, and included between the sams parallels.

Let *ABCD* be a rectangle, and *ABEF* a rhomboid having the same base, and their opposite sides in the same line parallel to the base.

We are now to prove that the perimeter ABCDA is less than ABEFA.

Because AD is a perpendicular from A to the line DE, and AF an oblique line, AD is less than AF, (Th. 23). For the same reason BC is less than BE; hence AD + BC < AF + BE. Adding the sum, AB + DC, to the first member of this inequality, and its equal AB + FE to the second member, we have AB + BC + CD + DA, or the perimeter of the rectangle, less than AB + BE + EF + FA, or the perimeter of the rhombood. Hence the theorem; the perimeter of a rectangle, etc.

Thus far, areas have been considered only relatively and in the abstract. We will now explain how we may pass to the absolute measures, or, more properly, to the numerical expressions for areas.

THEOREM XXXIII.

The area of any plane triangle is measured by the product of its base by one half its altitude; or by one half of the product of its base by its altitude.

Let ABC represent any triangle, AB its base, and AD, at right angles to AB, its altitude; now we are to show that the area of ABC is equal to the product of AB by one half of AD; or one half of

AB by AD; or one half of the product of AB by AD.

On AB construct the rectangle ABED; and the area of this rectangle is measured by AB into AD (Def. 54); but the area of the \triangle ABC is equivalent to one half this rectangle, (Th. 30). Therefore, the area of the \triangle is measured by $\frac{1}{2}$ $AB \times AD$, or one half the product of its base by its altitude. Hence the theorem; the area of any plane triangle, etc.

THEOREM XXXIV.

The area of a trapezoid is measured by one half the sum of its parallel sides multiplied by the perpendicular distance between them.

Let ABDC represent any trapezoil; draw the diagonal BC, dividing it into two triangles, ABC and BCD: CD is the base of one triangle, and AB may be considered

as the base of the other; and EF is the common altitude of the two triangles.

Now, by Th. 33, the area of the triangle $BCD = \frac{1}{2}CD \times EF$; and the area of the $\triangle ABC = \frac{1}{2}AB \times EF$; but

by addition, the area of the two \triangle 's, or of the trapezoid, is equal to $\frac{1}{2}(AB+CD)\times EF$. Hence the theorem; the area of a trapezoid, etc.

THEOREM XXXV.

If one of two lines is divided into any number of parts, the rectangle contained by the two lines is equal to the sum of the several rectangles contained by the undivided line and the several parts of the divided line.

Let AB and AD be two lines, and suppose AB divided into any number of parts at the points E, F, G, etc.; then the whole rectangle contained by the two lines is AH, which is measured by AB

into AD. But the rectangle AL is measured by AE into AD; the rectangle EK is measured by EF into EL, which is equal to EF into AD; and so of all the other partial rectangles; and the truth of the proposition is as obvious as that a whole is equal to the sum of all its parts. Hence the theorem; if one of two lines is divided, etc.

THEOREM XXXVI.

If a straight line is divided into any two parts, the square described on the whole line is equivalent to the sum of the squares described on the two parts plus twice the rectangle contained by the parts.

Let AB be any line divided into any two parts at the point C; now we are to prove that the square on AB is equivalent to the sum of the squares on AC and CB plus twice the rectaugle contained by AC and CB.

On AB describe the square AD. Through the point C draw CM, par-

allel to BD; take BH = BC, and through H draw HKN, parallel to AB. We now have CH, the square on CB, by direct construction.

As AB = BD, and CB = BH, by subtraction, AB - CB = BD - BH; or AC = HD. But NK = AC, being opposite sides of a parallelogram; and for the same reason, KM = HD. Therefore, (Ax. 1), NK = KM, and the figure NM is a square on NK, equal to a square on AC. But the whole square on AB is composed of the two squares CH, NM, and the two complements or rectangles AK and KD; and since each of these latter is AC in length, and BC in width, each has for its measure AC into CB; therefore the whole square on AB is equivalent to $AC + BC^2 + BC^2 + 2AC \times CB$.

Hence the theorem; if a straight line is divided into any two parts, etc.

This theorem may be proved algebraically, thus:

Let w represent any whole right line divided into any two parts a and b; then we shall have the equation

$$w = a + b$$

By squaring, $w^2 = a^2 + b^2 + 2ab$.

Cor. If a = b, then $w^2 = 4a^2$; that is, the square described on any line is four times the square described on one half of it.

THEOREM XXXVII.

The square described on the difference of two lines is equivalent to the sum of the squares described on the two lines diminished by twice the rectangle contained by the lines.

Let AB represent the greater of two lines, CB the less line, and AC their difference.

We are now to prove that the square described on AC is equivalent to the sum of the squares on AB and BC diminished by twice the rectangle contained by AB and BC.

Conceive the square AF to be described on AB, and

the square BL on CB; on AC describe the square ACGM, and produce MG to K.

As GC = AC, and CL = CB, by addition, (GC + CL), or GL, is equal to AC + CB, or AB. Therefore, the rectangle GE is AB in length, and CB in width, and is measured by $AB \times BC$.

Also AH = AB, and AM = AC; by subtraction, MH = CB; and as MK = AB, the rectangle HK is AB in length, and CB in width, and is measured by $AB \times BC$; and the two rectangles GE and HK are together equivalent to $2AB \times BC$.

Now, the squares on AB and BC make the whole figure AHFELC; and from this whole figure, or these two squares, take away the two rectangles HK and GE, and the square on AC only will remain; that is,

$$\overline{AC^2} = \overline{AB^2} + B\overline{C^2} - 2AB \times BC.$$

Hence the theorem; the square described on the differ ence of two lines, etc.

This theorem may be proved algebraically, thus:

Let a represent the greater of two lines, b the less, and d their difference; then we must have this equation:

$$d = a - b$$

By squaring, $d^2 = a^2 + b^2 - 2ab$.

Cor. If d = b, then $d = \frac{a}{2}$, and $d^2 = \frac{a^2}{4}$; that is, the square described on one half of any line is equivalent to one fourth of the square described on the whole line.

THEOREM XXXVIII.

The difference of the squares described on any two lines is equivalent to the rectangle contained by the sum and difference of the lines.

Let AB be the greater of two lines, and AC the less, and on these lines describe the squares AD, AM; then, the

difference of the squares on AB and AC is the two rect-

angles EF and FC. We are now to show that the measure of these rectangles may be expressed by (AB + AC) $\times (AB - AC)$.

E D F

The length of the rectangle EF is ED, or its equal AB; and the length of the rectangle FC is MC, or its equal AC;

therefore, the length of the two together (if we conceive them put between the same parallel lines) will be AB + AC; and the common width is CB, which is equal to AB - AC; therefore, $\overline{AB}^2 - \overline{AC}^2 = (AB + AC) \times (AB - AC)$.

Hence the theorem; the difference of the squares described on any two lines, etc.

This theorem may be proved algebraically: thus,

Let a represent one line, and b another; Then a + b is their sum, and a - b their difference;

and $(a+b) \times (a-b) = a^2 - b^2$.

THEOREM XXXIX.

The square described on the hypotenuse of any right-angled triangle is equivalent to the sum of the squares described on the other two sides.

Let ABC represent any right-angled triangle, the right angle at B; we are to prove that the square on AC is equivalent to the sum of two squares; one on AB, the other on BC.

On the three sides of the triangle describe the three squares, AD, AI, and BM. Through the point B, draw BNE perpendicular to AC, and produce it to meet the line GI in K; also produce AF to meet GI in H, and ML to meet GI produced in K.

REMARK. — That the lines, GI and ML, produced, meet at the point K, may be readily shown. As the proof of this fact is not necessary for the demonstration, it is left as an exercise for the learner.

The angle BAG is a right angle, and the angle NAH

18 also a right angle; if from these equals we subtract the common angle BAH, the remaining angle, BAC, must be equal to the remaining angle GAH. The angle G is a right angle, equal to the angle ABC; and AB=AG; therefore, the two \triangle 's ABC and AGH are equal, and AH = AC. But AC =AF; therefore, AH =AF. Now, the two

parallelograms, AE and AHKB are equivalent, because they are upon equal bases, and between the same parallels, FH and EK, (Th. 29).

But the square AI, and the parallelogram AHKB, are equivalent, because they are on the same base, AB, and between the same parallels, AB and GK; therefore, the square AI, and the parallelogram AE, being each equivalent to the same parallelogram AHKB, are equivalent to each other, (Ax. 1). In the same manner we may prove that the square BM is equivalent to the rectangle ND; therefore, by addition, the two squares, AI and BM, are equivalent to the two parallelograms, AE and ND, or to the square AD.

Hence the theorem; the square described on the hypotreuse of a right-angled triangle, etc.

Cor. If two right-angled triangles have the hypotenuse, and a side of the one equal to the hypotenuse and a side of the other, each to each, the two triangles are equal.

Let ABC ard AGH be the two \triangle 's, in which we suppose AC = AH, and BC = GH; then will AG = AB

For, we have $\overline{AC^2} = \overline{AB^2} + \overline{BC^2}$, or, by transposing, $\overline{AC^3} - \overline{BC^2} = \overline{AB^2}$, and $\overline{AB^2} = \overline{AG^2} + \overline{GB^2}$,

or, by transposing, $\overline{AH}^2 - \overline{GH}^2 = \overline{AG}^2$.

But by the hypothesis $\overline{AC^2} - \overline{BC^2} = \overline{AH^2} - \overline{GH^2}$;

hence, $\overline{AB}^2 = \overline{AG}^2$, or, AB = AG.

SCHOLIUM.—The two sides, AB and BC, may vary, while AC remains constant. AB may be equal to BC; then the point N will be in the middle of AC. When AB is very near the length of AC, and BC very small, then the point N falls very near to C. Now as AE and ND are right-angled parallelograms, their areas are measured by the product of their bases by their altitudes; and it is evident that, as they have the same altitude, these areas will vary directly as their bases AN and NC; hence the squares on AB and BC, which are equivalent to those rectangles, vary as the lines AN and NC.

The following outline of the demonstration of this proposition is presented as a useful disciplinary exercise for the student.

We employ the same figure, in which no change is made except to draw through C the line CP, parallel to BK.

The first step is to prove the equality of the triangles AGH and ABC, whence AH = AC. But AC = AF; therefore AH = AF.

The parallelograms AFEN and AHKB are equivalent. Also, the parallelogram AHKB = the square ABIG, (Th. 27), and the parallelogram KBCP = NEDC =square BCML. Now, by adding the equals

AFEN = ABIG NEDC = BCML $\overline{AFDC} = \overline{ABIG} + BCML$.

we obtain

That is, the square on AC is equivalent to the sum of the squares on AB and BC.

The great practical importance of this theorem, in the extent and variety of its applications, and the frequency of its use in establishing subsequent propositions, renders it necessary that the student should master it completely. To secure this end, we present a

Second Demonstration.

Let ABC be a triangle right-angled at B. On the hypotenuse AC, describe the square ACED. From D and E let fall the perpendiculars Db and Ed, on AB and AB produced. Draw Dn and Ca, making right angles with Ed.

We give an outline only

of the demonstration, requiring the pupil to make it complete.

First Part.—Prove the four triangles ABC, AbD, DnE, and EaC, equal to each other.

The proof is as follows: The \triangle 's ABC and DnE are equal, because the angles of the one are equal to the angles of the other, each to each, and the hypotenuse AC of the one, is equal to the hypotenuse DE of the other. In like manner, it may be shown that the \triangle 's AbD and EaC are equal.

Now, the sum of the three angles about A, is equal to the sum of the three angles of the $\triangle ABC$; and if, from the first sum, we take $\ DAC + \ CAB$, and from the second we take $\ B + \ CAB = \ DAC + \ CAB$, the remaining angles are equal; that is, $\ DAb$ is equal to $\ ACB$; hence the $\ \Delta$'s $\ ABC$ and $\ DbA$ have their angles equal, each to each; and since $\ AC = \ DA$, the $\ \Delta$'s are themselves equal, and the four triangles $\ ABC$, $\ AbD$, $\ DnL$, and $\ EaC$, are equal to each other.

Second. — Prove that the square bDnd is equal to a square on AB. The square BdaC is obviously on BC.

Third.—The area of the whole figure is equal to the square on AC, and the area of two of the four equal right-angled triangles.

Also, the area of the whole figure is equal to two other

squares, bDnd and daCB, and two of the tour equal triangles, DnE and EaC.

Omitting or subtracting the areas of two of the four right-angled \triangle 's from each of the two expressions for the area of the whole figure, there will remain the square on AC, equal to the sum of the two squares, Dndb and daCB.

That is,
$$\overline{AB}^2 + \overline{BC}^2 = \overline{AC}^2$$
.

Hence the theorem; the square described on the hypotenuse of a right-angled triangle, etc.

SCHOLIUM.—Hence, to find the hypotenuse of a right-angled triangle, extract the square root of the sum of the squares of the two sides about the right angle.

THEOREM XL.

In any obtuse-angled triangle, the square on the side opposite the obtuse angle is greater than the sum of the squares on the other two sides, by twice the rectangle contained by either side about the obtuse angle, and the part of this side produced to meet the perpendicular drawn to it from the vertex of the opposite angle.

Let ABC be any triangle in which the angle at B is obtuse. Produce either side about the obtuse angle, as CB, and from A draw AD perpendicular to CB, meeting it produced at D.

It is obvious that CD = CB + BD.

By Th. 36 we have, $\overline{CD}^2 = \overline{CB}^2 + 2CB \times BD + \overline{BD}^2$, Adding \overline{AD}^2 to each member of this equation, we have

$$\overline{AD}^2 + \overline{CD}^2 = \overline{CB}^2 + \overline{BD}^2 + \overline{AD}^2 + 2CB \times BD.$$

But, (Th. 39), the first member of the last equation is equal to \overline{AC}^{2} , and

$$\overline{BD}^2 + \overline{AD}^2 = \overline{AB}^2.$$

Therefore, this equation becomes

$$\overline{A}\overline{C}^{2} = \overline{CB}^{2} + \overline{AB}^{2} + 2CB \times BD.$$

That is, the square on AC is equivalent to the sum of the squares on CB and AB, increased by twice the rectangle contained by CB and BD.

Hence the theorem; in any obtuse-angled triangle, the square on the side opposite the obtuse angle, etc.

Scholium.—Conceive AB to turn about the point A, its intersection with CD gradually approaching D. The last equation above will be true, however near this intersection is to D, and when it falls upon D the triangle becomes right-angled.

In this case the line BD reduces to zero, and the equation becomes $\overline{AC^2} = \overline{CB^2} + \overline{AB^2}$, in which CB and AB are now the base and perpendicular of a right-angled triangle. This agrees with Theorem 39, as it should, since we used the property of the right-angled triangle established in Theorem 39 to demonstrate this proposition; and in the equation which expresses a property of the obtuse-angled triangle, we have introduced a supposition which changes it into one which is right-angle 1.

THEOREM XLI.

In any triangle, the square on a side opposite an acute angle is less than the sum of the squares on the other two sides, by twice the rectangle contained by either of these sides, and the distance from the vertex of the acute angle to the foot of the perpendicular let fall on this side, or side produced, from the vertex of its opposite angle.

Jet ABC, either figure, represent any triangle; C an acute angle, CB the base, and AD the perpendicular, which falls either

w thout or on the base. Now we are to prove that

$$\overline{AB}^2 = \overline{CB}^2 + A\overline{C}^2 - 2CB \times CD.$$

From the first figure we get BD = CD - CB (1) and from the second BD = CB - CD (2)

Either one of these equations will give, (Th. 37),

$$\overline{BD}^2 = \overline{CD}^2 + \overline{CB}^2 - 2CD \times CB.$$

Adding \overline{AD}^2 to each member and reducing, we obtain, (Th. 39), $\overline{AB}^2 = \overline{AC}^2 + \overline{CB}^2 - 2CB \times CD$, which proves the proposition. Hence the theorem.

THEOREM XLII.

If in any triangle a line be drawn from any angle to the middle of the opposite side, twice the square of this line, together with twice the square of one half the side bisected, will be equivalent to the sum of the squares of the other two sides

Let ABC be a triangle, and M the middle point of its base.

Then we are to prove that $2\overline{AM}^2 + 2\overline{CM}^2 = \overline{AC}^2 + \overline{AB}^2$.

Draw AD perpendicular to the base, and make AD = p, AC = b, AB = c, CB = 2a,

$$AM = m$$
, and $MD = x$; then $CM = a$, $CD = a + x$, $DB = a - x$.

Now by, (Th. 39), we have the two following equations:

$$p^2 + (a - x)^2 = c^2 \tag{1}$$

$$p^2 + (a+x)^2 = b^2 (2)$$

By addition, $2p^2 + 2x^2 + 2a^2 = b^2 + c^2$. But $p^2 + x^2 = m^2$. Therefore, $2m^2 + 2a^2 = b^2 + c^2$.

This equation is the algebraic enunciation of the theorem.

THEOREM XLIII.

The two diagonals of any parallelogram bisect each other; and the sum of their squares is equivalent to the sum of the squares of the four sides of the parallelogram.

Let ABCD be any parallelogram, and AC and BD its diagonals.

We are now to prove,

1st. That AE = EC, and DE = EB.

2d. That
$$\overline{AC}^2 + \overline{BD}^2 = \overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{AD}^2$$
.

- 1. The two triangles ABE and CDE are equal, because AB = CD, the angle ABE = the alternate angle CDE, and the vertical angles at E are equal; therefore, AE, the side opposite the angle ABE, is equal to CE, the side opposite the equal angle CDE; also EB, the remaining side of the one \triangle , is equal to ED, the remaining side of the other triangle.
- 2. As ACD is a triangle whose base, AC, is bisected in E, we have, by (Th. 42),

$$2\overline{A}\overline{E}^2 + 2\overline{E}\overline{D}^2 = \overline{A}\overline{D}^2 + \overline{D}\overline{C}^2 \quad (1)$$

And as ACB is a triangle whose base, AC is bisected in E, we have

$$2\overline{A}\overline{E}^2 + 2\overline{E}\overline{B}^2 = \overline{A}\overline{B}^2 + \overline{B}\overline{C}^2 \quad (2)$$

By adding equations (1) and (2), and observing that

$$\overline{EB^2} = \overline{ED^2}, \text{ we have}$$

$$4\overline{A}\overline{E^2} + 4\overline{E}\overline{D^2} = \overline{A}\overline{D^2} + \overline{D}C^2 + \overline{A}\overline{B^2} + \overline{B}C^4$$

But, four times the square of the half of a line is equivalent to the square of the whole line, (Th. 36, Corollary); therefore $4\overline{A}\overline{E}^2 = \overline{A}C^2$, and $4\overline{E}\overline{D}^2 = \overline{D}B^2$; and by substituting these values, we have

$$\overline{AC^2} + \overline{BD^2} = \overline{AB^2} + \overline{BC^2} + \overline{DC^2} + \overline{AD^2},$$

which equation conforms to the enunciation of the

THEOREM XLIV.

If a line be bisected and produced, the rectangle contained by the whole line and the part produced, together with the square of one half the bisected line, will be equivalent to the square on a line made up of the part produced and one half the bisected line.

Let AB be any line, bisected in C and produced to D. On CD describe the square CF, and on BD describe the square BE.

The sides of the square BE being produced, the square GL will be form-

ed. Also, complete the construction of the rectangle ADEK.

Then we are to prove that the rectangle, AE, and the square, GL, are together equivalent to the square, CDFG.

The two complementary rectangles, CL and LF, are equal, (Th. 31). But CL=AH, the line AB being bisected at C; therefore AL is equal to the sum of the two complementary rectangles of the square CF. To AL add the square BE, and the whole rectangle, AE, will be equal to the two rectangles CE and EM. To each of these equals add EM, or the square on EM or its equal EM, and we have rectangle EM and square EM and EM and square EM and square

SCHOLIUM.—If we represent AB by 2a, and BD by x, then AD = 2a + x, and $AD \times BD = 2ax + x^2$. But $\overline{CB^2} = a^2$; adding this equation to the preceding, member to member, we get $AD \times BD + \overline{CB^2} = a^2 + 2ax + x^2 = \overline{a + x^2}$. But CD = a + x; hence this equation is equivalent to the equation $AD \times DB + \overline{CB^2} = \overline{CD^2}$, which is the algebraic proof of the theorem.

THEOREM XLV.

If a straight line be divided into two equal parts, and also into two unequal parts, the rectangle contained by the two unequal parts together with the square of the line between the points of division, will be equivalent to the square on one half the line.

Let AB be a line bisected in C, and divided into two unequal parts in D.

We are to prove that $AD \times DB + \overline{CD}^2 = \overline{AC}^2$, or \overline{CB}^2 .

We see by inspection that AD = AC + CD, and BD = AC - CD; therefore by (Th. 38), we have

$$AD \times BD = \overline{AC^2} - \overline{CD^2}$$

By adding $\overline{\mathit{CD}}^{i}$ to each of these equals, we obtain

$$AD \times BD + \overline{CD}^2 = \overline{AC}^2$$

Hence the theorem.

BOOK II.

PROPORTION.

DEFINITIONS AND EXPLANATIONS.

THE word Proportion, in its common meaning, denotes that general relation or symmetry existing between the different parts of an object which renders it agreeable to our taste, and conformable to our ideas of beauty or utility; but in a mathematical sense.

1. Proportion is the numerical relation which one quantity bears to another of the same kind.

As the magnitudes compared must be of the same kind, proportion in geometry can be only that of a line to a line, a surface to a surface, an angle to an angle, or a volume to a volume.

2. Ratio is a term by which the number which measures the proportion between two magnitudes is designated, and is the quotient obtained by dividing the one by the other. Thus, the ratio of A to B is $\frac{B}{A}$, or A:B,

in which A is called the antecedent, and B the consequent. If, therefore, the magnitude A be assumed as the unit or standard, this quotient is the numerical value of B expressed in terms of this unit.

It is to be remarked that this principle lies at the foundation of the method of representing quantities by numbers. For example, when we say that a body weighs twenty-five pounds, it is implied that the weight of this body has been compared, directly or indirectly, with that of the standard, one pound. And so of geometrica magnitudes; when a line, a surface, or a volume is said to be fifteen linear, superficial, or cubical feet, it is understood that it has been referred to its particular unit, and found to contain it fifteen times; that is, fifteen is the ratio of the unit to the magnitude.

When two magnitudes are referred to the same unit, the ratio of the numbers expressing them will be the ratio of the magnitudes themselves.

Thus, if A and B have a common unit, a, which is contained in A, m times, and in B, n times, then A = ma

and
$$B = na$$
, and $\frac{B}{A} = \frac{na}{ma} = \frac{n}{m}$.

To illustrate, let the line A contain the line a six times, and let the line B contain the same line a five times: then A=6a and B=5a, which

give
$$\frac{B}{A} = \frac{5a}{6a} = \frac{5}{6}$$
.

3. A Proportion is a formal statement of the equality of two ratios.

Thus, if we have the four magnitudes A, B, C and D, such that $\frac{B}{A} = \frac{D}{C}$, this relation is expressed by the proportion A:B::C:D, or A:B=C:D, the first of which is read, A is to B as C is to D; and the second, the ratio of A to B is equal to that of C to D.

- 4. The Terms of a proportion are the magnitudes, or core properly the representatives of the magnitudes compared.
- 5. The Extremes of a proport on are its first and fourth terms.
- 6. The Means of a proportion are its second and third verms.
 - 7. A Couplet consists of the two terms of a ratio. The

first and second terms of a proportion are called the first couplet, and the third and fourth terms are called the second couplet.

- 8. The Antecedents of a proportion are its first and third terms.
- 9. The Consequents of a proportion are its second and fourth terms.

In expressing the equality of ratios in the form of a proportion, we may make the denominators the antecedents, and the numerators the consequents, or the reverse, without affecting the relation between the magnitudes. It is, however, a matter of some little importance to the beginner to adopt a uniform rule for writing the terms of the ratios in the proportion; and we shall always, unless otherwise stated, make the denominators of the ratios the antecedents, and the numerators the consequents.*

- 10. Equimultiples of magnitudes are the products arising from multiplying the magnitudes by the same number. Thus, the products, Am and Bm, are equimultiples of A and B.
- 11. A Mean Proportional between two magnitudes is a magnitude which will form with the two a proportion, when it is made a consequent in the first ratio, and an antecedent in the second. Thus, if we have three magnitudes A, B, and C, such that A : B :: B : C, B is a mean proportional between A and C.
- 12. Two magnitudes are reciprocally, or inversely proportional when, in undergoing changes in value, one is multiplied and the other is divided by the same number. Thus, if A and B be two magnitudes, so related that when

A becomes mA, B becomes $\frac{B}{m}$, A and B are said to be inversely proportional.

^{*} For discussion of the two methods of expressing Ratio, see University Algebra.

- 13. A Proportion is taken inversely when the antecedents are made the consequents and the consequents the antecedents.
- 14. A Proportion is taken alternately, or by alternation, when the antecedents are made one couplet and the consequents the other.
- 15. Mutually Equiangular Polygons have the same number of angles, those of the one equal to those of the others, each to each, and the angles like placed.
- 16. Similar Polygons are such as are mutually equiangular, and have the sides about the equal angles, taken in the same order, proportional.
- 17. Homologous Angles in similar polygons are those which are equal and like placed; and
- 18. The Homologous Sides are those which are like disposed about the homologous angles.

THEOREM I.

If the first and second of four magnitudes are equal, and also the third and fourth, the four magnitudes may form a proportion.

Let A, B, C, and D represent four magnitudes, such that A = B and C = D; we are to prove that A : B :: C : D.

Now, by hypothesis, A is equal to B, and their ratio is therefore 1; and since, by hypothesis, C is equal to D, their ratio is also 1.

Hence, the ratio of A to B is equal to that of C to D; and, (by Def. 3),

Therefore, four magnitudes which are equal, two and two, constitute a proportion.

THEOREM II.

If four magnitudes constitute a proportion, the product of the extremes is equal to the product of the means.

Let the four magnitudes A, B, C, and D form the proportion A:B::C:D; we are to prove that $A \times D = B \times C$.

The ratio of A to B is expressed by $\frac{B}{A} = r$.

The ratio of C to D is expressed by $\frac{D}{C} = r$.

Hence, (Ax. 1),
$$\frac{B}{A} = \frac{D}{C}$$
.

Multiplying each of these equals by $A \times C$, we have $B \times C = A \times D$.

Hence the theorem; if four magnitudes are in proportion, etc.

Cor. 1. Conversely; If we have the product of two magnitudes equal to the product of two other magnitudes, they will constitute a proportion of which either two may be made the extremes and the other two the means.

Let the magnitudes $B \times C = A \times D$. Dividing both members of the equation by $A \times C$, we obtain $\frac{B}{A} = \frac{D}{C}$.

Hence the proportion A : B :: C : D.

Cor. 2. If we divide both members of the equation

$$A \times D = B \times C$$
 by A , we have $D = \frac{B \times C}{A}$.

That is, to find the fourth term of a proportion, multiply the second and third terms together and divide the product by the first term. This is the Rule of Three of Arithmetic.

This equation shows that any one of the four terms can be found by a like process, *provided* the other three are given.

THEOREM III.

If three magnitudes are continued proportionals, the product of the extremes is equal to the square of the mean.

Let A, B, and C represent the three magnitudes:

Then A:B::B:C, (by Def. 11).

But, (by Th. 2), the product of the extremes is equal to the product of the means; that is, $A \times C = B^2$.

Hence the theorem; if three magnitudes, etc.

THEOREM IV.

Equimultiples of any two magnitudes have the same ratio as the magnitudes themselves; and the magnitudes and their equimultiples may therefore form a proportion.

Let A and B represent two magnitudes, and mA and mB their equimultiples.

Then we are to prove that $A : B :: mA \cdot mB$.

The ratio of A to B is $\frac{B}{A}$, and of mA to mB is $\frac{mB}{mA} = \frac{B}{A}$, the same ratio.

Hence the theorem; equimultiples of any two magnetudes, etc.

THEOREM V.

If four magnitudes are proportional, they will be proportional when taken inversely.

If A : B :: mA : mB, then B : A :: mB : mA;

For in either case, the product of the extremes equals that of the means; or the ratio of the couplets is the same.

Hence the theorem; if four quantities are proportional, etc.

ť

THEOREM VI.

Magnitudes which are proportional to the same proportionals, are proportional to each other.

If
$$A:B=P:Q$$
 Then we are to prove that and $a:b=P:Q$ $A:B=a:b$.

From the 1st proportion, $\frac{B}{A} = \frac{Q}{P}$;

From the 2d " $\frac{b}{a} = \frac{Q}{P}$;

Therefore, by (Ax. 1), $\frac{B}{A} = \frac{b}{a}$, or $A:B=a:b$.

Hence the theorem; magnitudes which are proportional to the same proportionals, etc.

Cor. 1. This principle may be extended through any number of proportionals.

, Gor. 2. If the ratio of an antecedent and consequent of one proportion is equal to the ratio of an antecedent and consequent of another proportion, the remaining terms of the two proportions are proportional.

For, if
$$A:B::C:D$$
 and $M:N::P:Q$ in which $\frac{B}{A} = \frac{N}{M}$, then $\frac{D}{C} = \frac{Q}{P}$; hence $C:D::P:Q$.

THEOREM VII.

If any number of magnitudes are proportional, any one of the antecedents will be to its consequent as the sum of all the antecedents is to the sum of all the consequents.

Let A, B, C, D, E, etc., represent the several magnitudes which give the proportions

$$A:B::C:D$$

 $A:B::E:F$
 $A:B::G:H$, etc., etc.

To which we may annex the identical proportion,

$$A:B::A:B$$
.

Now, (by Th. 2), these proportions give the following equations,

$$A \times D = B \times C$$

 $A \times F = B \times E$
 $A \times H = B \times G$
 $A \times B = B \times A$, etc. etc.

From which, by addition, there results the equation,

$$A(B+D+F+H, \text{ etc.}) = B(A+C+E+G, \text{ etc.})$$

But the sums B + D + F, etc., and A + C + E, etc., may be separately regarded as single magnitudes; therefore, (Th. 2, Cor. 1),

$$A:B::A+C+E+G$$
, etc. $:B+D+F+H$, etc.

Hence the theorem; if any number of magnitudes are proportional, etc.

THEOREM VIII.

If four magnitudes constitute a proportion, the first will be to the sum of the first and second as the third is to the sum of the third and fourth.

By hypothesis, A:B::C:D; then we are to prove that A:A+B::C:C+D.

By the given proportion,
$$\frac{B}{A} = \frac{D}{C}$$
.

Adding unity to both members, and reducing them to the form of a fraction, we have $\frac{B+A}{A} = \frac{D+C}{C}$. Changing this equation into its equivalent proportional form, we have

$$A:A+B::C:C+D.$$

Hence the theorem; if four magnitudes constitute a proportion, etc.

Cor. If we subtract each member of the equation $\frac{B}{A}$ =

 $rac{ extcolor{black}{D}}{ extcolor{black}{C}}$ from unity, and reduce as before, we shall have

$$A:A-B::C:C-D.$$

Hence also; if four magnitudes constitute a proportion, the first is to the difference between the first and second, as the third is to the difference between the third and fourth.

THEOREM IX.

If four magnitudes are proportional, the sum of the first and second is to their difference as the sum of the third and fourth is to their difference.

Let A, B, C, and D be the four magnitudes which give the proportion

we are then to prove that they will also give the proportion

$$A + B : A - B :: C + D : C - D$$
.

By Th. 8 we have A:A+B=C:C+D.

Also by Corollary, same Th., A:A-B=C:C-D.

Now, if we change the order of the means in these proportions, which may be done, since the products of extremes and means remain the same, we shall have

$$A : C = A + B : C + D.$$

 $A : C = A - B : C - D.$

Hence, (Th. 6), we have

$$A + B : C + D = A - B : C - D$$
.

Or,
$$A + B : A - B = C + D : C - D$$
.

Hence the theorem; if four magnitudes are proportional, etc.

THEOREM X.

If four magnitudes are proportional, like powers or like roots of the same magnitudes are also proportional.

If the four magnitudes, A, B, C, and D, give the proportion

$$A : \overrightarrow{B} :: C : D$$

we are to prove that

$$A^n:B^n::C^n:D^n.$$

The hypothesis gives the equation $\frac{B}{A} = \frac{D}{C}$. Raising both members of this equation to the *n*th power, we have $\frac{B^n}{A^n} = \frac{D^n}{C^n}$, which, expressed in its equivalent proportional form, gives

$$A^n:B^n::C^n:D^n.$$

If n is a whole number, the terms of the given proportion are each raised to a power; but if n is a fraction having unity for its numerator, and a whole number for its denominator, like roots of each are taken.

As the terms of the proportion may be first raised to like powers, and then like roots of the resulting proportion be taken, n may be any number whatever.

Hence the theorem; if four magnitudes, etc.

THEOREM XI.

If four magnitudes are proportional, and also four others, the products which arise from multiplying the first four by the second four, term by term, are also proportional.

Admitting that A: B:: C: D, and X: Y:: M: N.

We are to show that $\overline{AX : BY :: CM : DN}$.

From the first proportion, $\frac{B}{A} = \frac{D}{C}$;

From the second, $\frac{Y}{X} = \frac{N}{M}$.

Multiply these equations, member by member, and

$$\frac{BY}{AX} = \frac{DN}{CM};$$

Or, AX : BY :: CM : DN.

The same would be true in any number of proportions. Hence the theorem; if four magnitudes are, etc.

THEOREM XII.

If four magnitudes are proportional, and also four others, the quotients which arise from dividing the first four by the second four, term by term, are proportional.

By hypothesis,
$$A:B::C:D$$
, and $X:Y::M:N$.

Multiply extremes and means, $AD=CB$, (1) and $XN=MY$. (2)

Divide (1) by (2), and $\frac{A}{X} \times \frac{D}{N} = \frac{C}{M} \times \frac{B}{Y}$.

Convert these four factors, which make two equal products, into a proportion, and we have

$$\frac{A}{X} : \frac{B}{Y} :: \frac{C}{M} : \frac{D}{N}$$

By comparing this with the given proportions, we find it is composed of the quotients of the several terms of the first proportion, divided by the corresponding terms of the second.

Hence the theorem; if four magnitudes are proportional, etc.

THEOREM XIII.

If four magnitudes are proportional, we may multiply the first couplet, the second couplet, the antecedents or the consequents, or divide them by the same quantity, and the results will be proportional in every case.

Let the four magnitudes A, B, C, and D give the propertion A:B::C:D. By multiplying the extremes and means we have

$$\cdot A.D = B.C \tag{1}$$

Multiply both members of this equation by any number, as a, and we have

$$aA.D = aB.C$$

By converting this equation into a proportion in four different ways, we have as follows:

$$aA : aB :: C : D$$

 $A : B :: aC : aD$
 $aA : B :: aC : D$
 $A : aB :: C : aD$

Resuming the original equation, (1), and dividing both members by a, we have

$$\frac{A.D}{a} = \frac{B.C}{a}$$

This equation may also be converted into a proportion in four different ways, with the following results:

$$\frac{A}{a} : \frac{B}{a} :: C : D$$

$$A : B :: \frac{C}{a} : \frac{D}{a}$$

$$\frac{A}{a} : B :: \frac{C}{a} : D$$

$$A : \frac{B}{a} :: C : \frac{D}{a}$$

Hence the theorem; if four magnitudes are in proportion, etc.

THEOREM XIV.

If three magnitudes are in proportion, the first is to the third as the square of the first is to the square of the second.

Let A, B, and C, be three proportionals.

Then we are to prove that $A: C = A^2: B^2$

By (Th. 3)
$$AC = B^2$$

Multiply this equation by the numeral value of A, and we have $A^{2}C = AB^{2}$

This equation gives the following proportion:

$$A: C=A^2: B^2.$$

Hence the theorem.

REMARK. — It is now proposed to make an application of the preculing abstract principles of proportion, in geometrical investigations

THEOREM XV.

If two parallelograms are equal in area, the base and perpendicular of either may be made the extremes of a proportion, of which the base and perpendicular of the other are the means.

Let ABCD, and HLNM, pe two parallelograms having equal areas,

Ì

by hypothesis; then we are to prove that

AB: LN:: MK: BF, in which MK and BF are the altitudes or perpendiculars of the parallelograms.

This proportion is true, if the product of the extremes

is equal to the product of the means; that is, if the equation

$$AB.BF = LN.MK$$
 is true.

But AB.BF is the measure of the rectangle ABFE, by (Definition 54, B. I.), and this rectangle is equal in area to the parallelogram ABCD, (B. I., Th. 27).

In the same manner, we may prove that LN.MK is the measure of the parallelogram NLHM. But these two parallelograms have equal areas by hypothesis.

Therefore, AB.BF = LN.MK is a true equation, and Th. 2, Cor. 1), gives the proportion

Hence the theorem; if two parallelograms are equal in area, etc.

THEOREM XVI.

Parallelograms having equal altitudes are to each other as their bases.

Since parallelograms having equal bases and equal altitudes are equal in area, however much their angles

may differ, we can suppose the two parallelograms under consideration to be mutually equiangular, without in the least impairing the generality of this theorem. There-

fore, let ABCD and AEFD be two parallelograms having equal altitudes, and let them be placed with

their bases on the same line AE, and let the side, AD, be common. First suppose their bases commensurable, and that AE being divided into nine equal parts, AB contains five of those parts.

If, through the points of division, lines be drawn parallel to AD, it is obvious that the whole figure, or the parallelogram, AEFD, will be divided into nine equal arts, and that the parallelogram, ABCD, will be composed of five of those parts.

Therefore, ABCD: AEFD:: AB: AE:: 5:9.

Whatever be the whole numbers having to each other the ratio of the lines AB and AE, the reasoning would remain the same, and the proportion is established when the bases are commensurable. But if the bases are not to each other in the ratio of any two whole numbers, it remains still to be shown that

$$AEFD:ABCD::AE:AB$$
 (1)

If this proportion is not true, there must be a line greater or less than AB, to which AE will have the

same ratio that AEFD has to ABCD.

Suppose the fourth proportional greater than AB, as AK, then,

AEFD:ABCD::AE:AK (2).

If we now divide the line AE into equal parts, each less than the line BK, one point of division, at least, will fall between B and K. Let L be such point, and draw LM parallel to BC.

This construction makes AE and AL commensurable; and by what has been already demonstrated, we have

AEFD: ALMD :: AE : AL. (3)

Inverting the means in proportions (2) and (3), they become

AEFD: AE :: ABCD: AK;

and AEFD: AE:: ALMD: AL.

Hence, (Th. 6),

ABCD : AK :: ALMD : AL.

By inverting the means in this last proportion, we have

ABCD : ALMD :: AK : AL.

But AK is, by hypothesis, greater than AL; hence, if this proportion is true, ABCD must be greater than ALMD; but on the contrary it is less. We therefore conclude that the supposition, that the fourth proportional, AK, is greater than AB, from which alone this absurd proportion results, is itself absurd.

In a similar manner it can be proved absurd to suppose the fourth proportional less than AB.

Therefore the fourth term of the proportion (1) can be neither less nor greater than AB; it is then AB itself, and parallelograms having equal altitudes are to each other as their bases, whether these bases are commensurable or not.

Hence the theorem; Parallelograms having equal altitudes, etc.

Cor. 1. Since a triangle is one half of a parallelogram having the same base as the triangle and an equal altitude, and as the halves of magnitudes have the same ratio as their wholes; therefore,

Triangles having the same or equal altitudes are to each other as their bases.

Cor. 2. Any triangle has the same area as a rightangled triangle having the same base and an equal altitude; and as either side about the right angle of a rightangled triangle may be taken as the base, it follows that

Two triangles having the same or equal bases are to each other as their altitudes.

Cor. 3. Since either side of a parallelogram may be taken as its base, it follows from this theorem that

Parallelograms having equal bases are to each other as their altitudes.

THEOREM XVII.

If lines are drawn cutting the sides, or the sides produced, of a triangle proportionally, such secant lines are parallel to the base of the triangle; and conversely, lines drawn parallel to the base of a triangle cut the sides, or the sides produced, proportionally.

Let ABC be any triangle, and draw the line DE dividing the sides AB and AC into parts which give the proportion

AD:DB::AE:EC.

We are to prove that DE is parallel to BC.

If DE is not a parallel through the point D to the line BC, suppose Dm to be that parallel; and draw the lines DC and Bm.

Now, the two triangles ADm and mDC, have the same altitude, since

D R E

they have a common vertex, D, and their bases in the same line, AC; hence, they are to each other as their bases, Am and mC, (Th. 16, Cor. 1).

That is, $\triangle ADm : \triangle mDC :: Am : mC$, Also, $\triangle AmD : \triangle DmB :: AD : DB$.

But, since Dm is supposed parallel to BC, the triangles DBm and DCm have equal areas, because they are on the same base and between the same parallels, (Th. 28, B. I).

Therefore the terms of the first couplets in the two preceding proportions are equal each to each, and consequently the terms of the second couplets are proportional. (Theorem 6).

That is, AD:DB::Am:mC

But AD:DB::AE:EC by hypothesis.

Hence we again have two proportions having the first couplets, the same in both, and we therefore have

AE : EC :: Am : mC

By alternation this becomes

AE : Am :: EC : mC

That is, AE is to Am, a greater magnitude is to a less, as EC is to mC, a less to a greater, which is absurd. Had we supposed the point m to fall between E and C, our conclusion would have been equally absurd; hence the suppositions which have led to these absurd results are themselves absurd, and the line drawn through the point D parallel to BC must intersect AC in the point E. Therefore the parallel and the line DE are one and the same line.

Conversely: If DE be drawn parallel to the base of the triangle, then will

AD:DB::AE:EC

For as before,

 $\triangle ADE : \triangle EDC :: AE : EC$

and $\triangle DEB : \triangle ADE :: DB : AD$

Multiplying the corresponding terms of these propor

tions, and omitting the common factor, $\triangle ADE$, in the first couplet, we have

 $\triangle DEB : \triangle EDC :: AE \times DB : EC \times AD.$

But the \triangle 's DEB and EDC have equal areas, (Th. 28, B. I); hence $AE \times DB = EC \times AD$, which in the form of a proportion is

AE : EC :: AD : DB

or, AD:DB::AE:EC

and therefore the line parallel to the base of the triangle, divides the sides proportionally.

It is evident that the reasoning would remain the same, had we conceived ADE to be the triangle and the sides to be produced to the points B and C.

Hence the theorem; if lines are drawn cutting the sides, etc.

Cor. 1. Because DE is parallel to BC, and intersects the sides AB and AC, the angles ADE and ABC are equal. For the same reason the angles AED and ACB are equal, and the \triangle 's ADE and ABC are equiangular.

Let us now take up the triangle ADE, and place it on ABC; the angle ADE falling on $\[\]$ B, the side AD on the side AB, and the side DE on the side BC

Now, since the angle A is common, and the angles AED and ACB are equal, the side AE of the \triangle ADE, in its new position, will be parallel to the side AC of the \triangle ABC.

The last proportion of this Th. gives (Th. 8 and Th. 5),

$$AD:AE::\overrightarrow{AB}:\overrightarrow{AC}$$

From the above construction we obtain, by a similar course of reasoning, the proportion

AD:DE::AB:BC

And in like manner it may be shown that

AE : ED :: AC : CB

That is, the sides about the equal angles of equiangular triangles, taken in the same order, are proportional, and the triangles are similar, (Def. 16)

Cor. 2. Two triangles having an angle in one equal to an angle in the other, and the sides about these equal angles proportional, are equiangular and similar.

For, if the smaller triangle be placed on the larger, the equal angles of the triangles coinciding, then will the sides opposite these angles be parallel, and the triangles will therefore be equiangular and similar.

THEOREM XVIII.

If any triangle have its sides respectively proportional to the like or homologous sides of another triangle, each to each, then the two triangles will be equiangular and similar.

Let the triangle abc have its sides proportional to the triangle ABC; that is, ac to AC as cb to CB, and ac to AC as ab to AB; then we are to prove that

angular and similar.

the \triangle 's, abc and ABC, are equi-

Therefore, ac: ab = AD: ABBy hypothesis, ac: ab = AC: AB

Hence, $\overrightarrow{AD}: \overrightarrow{AB} = \overrightarrow{AC}: \overrightarrow{AB}$, (Th. 6).

In this last proportion the consequents are equal; therefore, the antecedents are equal: that is,

$$AD = AC$$

In the same manner we may prove that

$$BD = CB$$

But AB is common to the two triangles; therefore, the three sides of the \triangle ABD are respectively equal to the three sides of the \triangle ABC, and the two \triangle 's are equal, (B. I, Th. 21).

But the \triangle 's ABD, and abc, are equiangular by construction; therefore, the \triangle 's, ABC, and abc, are also equiangular and similar.

Hence the theorem; if any triangle have its sides, etc.

Second Demonstration.

Let abe and ABC be two triangles whose sides are respectively proportional, then will the triangles be equiangular and similar.

If the $\lfloor c \rfloor$ be in fact equal to the $\lfloor C \rfloor$, the triangle abc can be placed on the triangle ABC, ca taking the direction of CA and cb of CB. The line ab will then divide

the sides CA and CB proportionally, and will therefore be parallel to AB, and the triangles will be equiangular and similar, (Th. 17).

But if the $\lfloor c \rfloor$ be not equal to the $\lfloor C \rfloor$, then place as on AC as before, the point c falling on C. Under the present supposition cb will not fall on CB, but will take another direction, CV, on one side or the other of CB Make CV equal to cb and draw aV.

Now, the \triangle abc is represented in magnitude and position by the \triangle a VC; and if, through the point a, the line ab be drawn parallel to AB, we shall have

Ca: CA:: ab:AB; ut by (Hy.) Ca: CA:: aV:AB.

Hence, (Th. o),

ab:AB::aV:AB;

which requires that ab = aV, but (Th. 22, B. 1) ab can not be equal to aV; hence the last proportion is absurd, and the supposition that the $\lfloor c \rfloor$ is not equal to the $\lfloor C \rfloor$, which leads to this result, is also absurd. Therefore, the $\lfloor c \rfloor$ is equal to the $\lfloor C \rfloor$, and the triangles are equiangular and similar.

Hence the theorem; if any triangle have its sides, etc.

THEOREM XIX.

If four straight lines are in proportion, the rectangle contained by the lines which constitute the extremes, is equivalent to that contained by those which constitute the means of the proportion.

Let A, B, C, D, represent the four lines; then we are to show, geometrically, that $A \times D = B \times C$.

AD

BC

Place A and B at right angles to each other, and draw the hypotenuse. Also place C and D at right angles to each other, and draw the hypotenuse. Then bring the two triangles together, so that C shall be at right angles to B, as represented in the figure.

Now, these two \triangle 's have each a R. \sqsubseteq , and the sides about the equal angles are proportional; that is, A:B::C:D; hence,

(Th. 17, Cor. 2), the two \triangle 's are equiangular, and the acute angles which meet at the extremities of B and C, are together equal to one right angle, and the lines B and C are so placed as to make another right angle; therefore, also, the extremities of A, B, C, and D, are in one right line, (Th. 3, B. I), and that line is the diag-

onal of the parallelogram bc. By Th. 31, B. I, the complementary parallelograms about this diagonal are equal; but, one of these parallelograms is B in length, and C in width, and the other is D in length and A in width; therefore,

$$B \times C = A \times D$$
.

Hence the theorem; if four straight lines are in proportion, etc.

Cor. When B = C, then $A \times D = B^2$, and B is the mean proportional between A and D. That is, if three straight lines are in proportion, the rectangle contained by the first and third lines is equivalent to the square described on the second line.

THEOREM XX.

Similar triangles are to one another as the squares of their homologous sides.

H

Let ABC and DEF be two similar triangles, and LC and MF perpendiculars to the sides AB and DE respectively. Then we are to prove that

$$\triangle ABC: \triangle DEF = AB^2: DE^2.$$

By the similarity of the triangles, we have,

AB:DE=LC:MF

But, AB : DE = AB : DE

Hence, $\overline{AB^2}: \overline{DE^2} = \overline{AB \times LC}: DE \times MF$.

But, (by Th. 30, B. I), $AB \times LC$ is double the area of the $\triangle ABC$, and $DE \times MF$ is double the area of the $\triangle DEF$.

Therefore, $\triangle ABC: \triangle DEF::AB \times LC:DE \times MF$ And, (Th. 6), $\triangle ABC: \triangle DEF = \overline{AB}^2: \overline{DE}^2$.

Hence the theorem; similar triangles are to one another, etc.

The following illustration will enable the learner fully to comprehend this important theorem, and it will also serve to impress it upon his memory.

Let abc and ABC represent two equiangular triangles.

Suppose the length of the side ac to be two units, and the length of the corresponding side AC to be three units.

Now, drawing lines through the points of

division of the sides ac and AC, parallel to the other sides of the triangles, we see that the smaller triangle is composed of four equal triangles, while the larger contains nine such triangles. That is,

the sides of the triangles are as 2:3, and their areas are as $4:9=2^2:3^2$.

THEOREM XXI.

Similar polygons may be divided into the same number of triangles; and to each triangle in one of the polygons there will be a corresponding triangle in the other polygon, these triangles being similar and similarly situated.

Let ABCDE and abcde be two similar polygons. Now it is obvious that we can divide each polygon into as many triangles as the figure has sides, less

two; and as the polygons have the same number of sides, the diagonals drawn from the vertices of the homologous angles will divide them into the same number of triangles

Since the polygons are similar, the angles EAB and cab, are equal, and

Hence the two triangles, *EAB* and *eab*, having an angle in the one equal to an angle in the other, and the sides about these angles proportional, are equiangular and similar, and the angles *ABE* and *abe* are equal.

But the angles ABC and abc are equal, because the polygons are similar.

Hence,
$$_ABC - _ABE = _abc - _abe$$
; that is, $|EBC = |ebc|$

The triangles, EAB and eab, being similar, their homologous sides give the proportion,

$$AB:BE::ab:be;$$
 (1)

and since the polygons are similar, the sides about the equal angles B and b are proportional, and we have

$$AB:BC::ab:bc;$$
 or, $BC:AB::bc:ab.$ (2)

Multiplying proportions (1) and (2), term by term, and omitting in the result the factor AB common to the terms of the first couplet, and the factor ab common to the terms of the second, we have

Hence the \triangle 's EBC and ebc are equiangular and similar; and thus we may compare all of the triangles of one polygon with those like placed in the other.

Hence the theorem; similar polygons may be divided, etc

THEOREM XXII.

The perimeters of similar polygons are to one another as their homologous sides; and their areas are to one another as the squares of their homologous sides.

Let ABCDE and abcde be two similar polygons; then we are to prove that AB is to the sum of all the sides

of the polygon ABCD, as ab is to the sum of all the sides of the polygon abcd.

We have the identical proportion

and since the polygons are similar, we may write the following:

$$AB:ab::BC:bc$$

 $AB:ab::CD:cd$

AB : ab :: DE : de, etc. etc.

Hence, (Th. 7),

AB: ab :: AB + BC + CD + DE, etc.: ab + bc + cd + de, etc.

Therefore, the perimeters of similar polygons are to one another as their homologous sides. This is the first part of the theorem.

Since the polygons are similar, the triangles EAB, eab, are similar, and if the triangle EAB is a part expressed by the fraction $\frac{1}{n}$, of the polygon to which it belongs, the triangle eab is a like part of the other polygon.

Therefore, EAB: eab:: ABCDEA: abcdea.

But, (Th. 20), $EAB : eab :: \overline{AB}^2 : \overline{ab}^2$.

Therefore, (Th. 6),

 \overrightarrow{ABCDEA} : \overrightarrow{abcdea} :: \overrightarrow{AB}^2 : \overrightarrow{ab}^2 .

Therefore, the similar polygons are to one another as the squares on their homologous sides. This is the second part of the theorem.

Hence the theorem; the perimeters of similar polygons are to one another, etc.

THEOREM XXIII

Two triangles which have an angle in the one equal to an angle in the other, are to each other as the rectangle of the sides about the equal angles

Let ABC and def be two triangles having the angles

A and d equal. It is to be proved that the areas ABC and def are to each other as AB.AC is to de.df.

Conceive the triangle def placed on the triangle ABC, so that d shall fall on A, and de on AB; then df will fall on AC, because the | 's A

also,

and d are equal. On AB, lay off Ae, equal to de; and on AC, lay off Af, equal to df, and draw ef. The triangle Aef will then be equal to the triangle def. Join B and f.

Now, as triangles having the same altitude are to each other as their bases, (Th. 16, Cor. 1), we have

Aef:ABf::Ae:ABABf:ABC::Af:AC

Multiplying these proportions together, term by term, omitting from the result ABf, a factor common to the terms of the first couplet, we have

Aef: ABC:: Ae . Af: AB . AC

But Aef is equal to def, Ae to de, and Af to df; therefore,

def:ABC::de.df:AB.AC

Hence the theorem; two triangles which have an angle, etc.

Scholium. — If we suppose that

the two triangles will be similar; and if we multiply the terms of the first couplet of this proportion by AC, and the terms of the second couplet by df, we shall have

 $AB \cdot AC : \overline{AC}^2 :: de \cdot df : \overline{df}^6$ $AB \cdot AC : de \cdot df :: \overline{AC}^2 : \overline{df}^6$ Comparing this with the last proportion in this theorem, and we have, (Th. 6);

 $def: ABC :: \overline{df}^2: \overline{AC}^2$

REMARK. — This scholium is therefore another demonstration of Theorem 20, and hence that theorem need not necessarily have been made a distinct proposition. We require no stronger proof of the certainty of geometrical truth, than the fact that, however different the processes by which we arrive at these truths, we are never led into inconsistencies; but whenever our conclusions can be compared, they will harmonize with each other completely, provided our premises are true and our reasoning logical.

It is hoped that the student will lose no opportunity to exercise his powers, and test his skill and knowledge, in seeking original demonstrations of theorems, and in deducing consequences and conclusions from those already established.

THEOREM XXIV.

If the vertical angle of a triangle be bisected, the bisecting line will cut the base into segments proportional to the adjacent sides of the triangle.

Let ABC be any triangle, and the vertical angle, C, be bisected by the straight line CD. Then we are to prove that

$$AD:DB=AC:CB.$$

Produce AC to E, making A D B CE = CB, and draw EB. The exterior angle ACB, of the $\triangle CEB$, is equal to the two angles E, and CBE; but the angle E = CBE, because CB = CE, and the triangle is isosceles; therefore the angle ACD, the half of the angle ACB, is equal to the angle E, and DC and BE

are parallel, (Cor. 2, Th. 7, B. I).

Now, as ABE is a triangle, and CD is parallel to BE,

we have AD:DB=AC:CE or CB, (Th. 17). Hence the theorem; if the vertical angle of a triangle be bisected, etc.

THEOREM XXV.

If from the right angle of a right-angled triangle, a perpendicular is drawn to the hypotenuse;

- 1. The perpendicular divides the triangle into two similar triangles, each of which is similar to the whole triangle.
- 2. The perpendicular is a mean proportional between the segments of the hypotenuse.
- 8. The segments of the hypotenuse are in proportion to the squares on the adjacent sides of the triangle.
- 4. The sum of the squares on the two sides is equivalent to the square on the hypotenuse.

Let BAC be a triangle, right angled at A; and draw AD perpendicular to BC.

- 1. The two \triangle 's, ABC and ABD, $\stackrel{B}{B}$ $\stackrel{D}{D}$ $\stackrel{C}{C}$ have the common angle, B, and the right angle BAC = the right angle BDA; therefore, the third \bot 's are equal, and the two \triangle 's are similar by Th. 17, Cor. 1. In the same manner we prove the \triangle ADC similar to the \triangle ABC; and the two triangles, ADB, ADC, being similar to the same \triangle ABC, are similar to each other.
- 2. As similar triangles have the sides about the equal angles proportional, (Def. 16), we have

or, the perpendicular is a mean proportional between the seyments of the hypotenuse.

8. Again,
$$BC: BA:: BA: BD$$

hence, $\overline{BA}^2 = BC.BD$ (1)
also, $BC: CA:: CA: CD$
hence, $\overline{CA}^2 = BC.CD$ (2)

Dividing Eq. (1) by Eq. (2), member by member, we obtain

$$\frac{\overline{BA}^{2}}{\overline{CA}^{2}} = \frac{BD}{CD}$$

which, in the form of a proportion, is

$$\overline{CA}^2:\overline{BA}^2::CD:BD$$
:

that is, the segments of the hypotenuse are proportional to the squares on the adjacent sides.

4. By the addition of (1) and (2), we have

$$\overline{BA}^2 + \overline{CA}^2 = BC(BD + CD) = \overline{BC}^2;$$

that is, the sum of the squares on the sides about the right angle is equivalent to the square on the hypotenuse. This is another demonstration of Theorem 39, B. L.

Hence the theorem, if from the right angle of a right angled triangle, etc.

BOOK III.

OF THE CIRCLE, AND THE INVESTIGATION OF THEOREMS DEPENDENT ON ITS PROPERTIES.

DEFINITIONS.

- 1. *A Curved Line is one whose consecutive parts, however small, do not lie in the same direction.
- 2. A Circle is a plane figure bounded by one uniformly curved line, all of the points of which are at the same listance from a certain point within, called the center
- 3. The Circumference of a circle is the curved line that bounds it.
- 4. The Diameter of a circle is a line passing through the center, and terminating at both extremities in the circumference. Thus, in the figure, C is the center of the circle, the curved line AGBD is the circumference, and AB is a diameter.

- 5. The Radius of a circle is a line extending from the center to any point in the circumference. Thus, CD is a radius of the circle.
- 6. An Arc of a circle is any portion of the circumference.

^{*} The first six of the above definitions have been before given among the general definitions of Geometry, but it was deemed advisable to reinsert them here.

- 7. A Chord of a circle is the line connecting the extremities of an arc.
- 8. A Segment of a circle is the portion of the circle on either side of a chord.

Thus, in the last figure, EGF is an arc, and EF is a chord of the circle, and the spaces bounded by the chord EF, and the two arcs EGF and EDF, into which it divides the circumference, are segments.

- 9. A Tangent to a circle is a line which, meeting the circumference at any point, will not cut it on being produced. The point in which the tangent meets the circumference is called the *point of tangency*.
- 10. A Secant to a circle is a line which meets the circumference in two points, and lies a part within and a part without the circumference.
- 11. A Sector of a circle is a portion of the circle included between any two radii and their intercepted arc.

Thus, in the last figure, the line HL, which meets the circumference at the point D, but does not cut it, is a tangent, D being the point of tangency; and the line MN, which meets the circumference at the points P and Q, and lies a portion within and a portion without the circle, is a secant. The area bounded by the arc BD, and the two radii CB, CD, is a sector of the circle.

12. A Circumscribed Polygon is one all of whose sides are tangent to the circumference of the circle; and conversely, the circle is then said to be *inscribed* in the polygon.

13. An Inscribed Polygon is one the vertices of whose angles are all found in the circumference

of the circle; and conversely, the circle is then said to be circumscribed about the polygon.

14. A Regular Polygon is one which is both equiangular and equilateral.

The last three definitions are illustrated by the last figure.

THEOREM I.

Any radius perpendicular to a chord, bisects the chord, and also the arc of the chord.

Let AB be a chord, C the center of the circle, and CE a radius perpendicular to AB; then we are to prove that AD = BD, and AE = EB.

Since C is the center of the circle, AC = BC, CD is common to the two \triangle 's ACD and BCD, and the angles

at D are right angles; therefore the two \triangle 's ADC and BDC are equal, and AD = DB, which proves the first part of the theorem.

Now, as AD = DB, and DE is common to the two spaces, ADE and BDE, and the angles at D are right angles, if we conceive the sector CBE turned over and placed on CAE, CE retaining its position, the point B will fall on the point A, because AD = BD and AC = BC; then the arc BE will fall on the arc AE; otherwise there would be points in one or the other arc unequally distant from the center, which is impossible; therefore, the arc AE = the arc EB, which proves the second part of the theorem.

Hence the theorem.

Cor. The center of the circle, the middle point of the chord AB, and of the subtended arc AEB, are three points in the same straight line perpendicular to the chord at its middle point. Now as but one perpendicular can be drawn to a line from a given point in that line, it follows:

1st. That the radius drawn to the middle point of any arc bisects, and is perpendicular to, the chord of the arc.

2d. That the perpendicular to the chord at its middle point passes through the center of the circle and the middle of the subtended arc.

THEOREM II.

Equal angles at the center of a circle are subtended by equal chords.

Let the angle ACE = the angle ECB; then the two isosceles triangles, ACE, and ECB, are equal in all respects, and AE = EB.

Hence the theorem.

THEOREM III.

In the same circle, or in equal circles, equal chords are equally distant from the center.

Let AB and EF be equal chords, and C the center of the circle. From C, draw CG and CH, perpendicular to the respective chords. These perpendiculars will bisect the chords, (Th. 1), and we shall have AG = EH. We are now to prove that CG = CH.

Since the \triangle 's ECH and ACG are right-angled, we have, (Th. 39, B. I),

and,
$$\overline{EH^2} + \overline{HC^2} = \overline{EC^2}$$

$$\overline{AG^2} + \overline{GC^2} = \overline{AC^2}.$$

By subtracting these equations, member from member, we find that

$$\overline{EH^2} - \overline{AG^2} + \overline{HC^2} - \overline{GC^2} = \overline{EC^2} - \overline{AC^2} \quad (1)$$

But the chords are equal by hypothesis, hence their halves, EH and AG, are equal; also EC = AC, being radii of the circle. Wherefore,

and,
$$\frac{\overline{E}\overline{H}^2 - \overline{A}\overline{G}^2 = 0}{\overline{E}\overline{C}^2 - \overline{A}\overline{C}^2 = 0}.$$

These values in Equation (1) reduce it to

or,
$$\frac{\overline{HC}^2 - \overline{GC}^2 = 0}{\overline{HC}^2 = \overline{GC}^2}$$
 and,
$$HC = GC.$$

Hence the theorem.

Cor. Under all circumstances we have

$$\overline{EH}^2 + \overline{HC}^2 = \overline{AG}^2 + \overline{GC}^2,$$

because the sum of the squares in either member of the equation is equivalent to the square of the radius of the circle.

Now, if we suppose HC greater than GC, then will \overline{HC}^2 be greater than \overline{GC}^2 . Let the difference of these squares be represented by d.

Subtracting \overline{GC}^2 from both members of the above equation, we have

$$\overline{EH}^2 + d = \overline{AG}^2$$
 whence, $\overline{AG}^2 > \overline{EH}^2$, and $AG > EH$.

Therefore, AB, the double of AG, is greater than EF, the double of EH; that is, of two chords in the same or equal circles, the one nearer the center is the greater.

The equation, $\overline{EH}^2 + \overline{HC}^2 = \overline{AG}^2 + \overline{GC}^2$, being true, whatever be the position of the chords, we may suppose GC to have any value between 0 and AC, the radius of the circle.

When GC becomes zero, the equation reduces to

$$\overline{EH}^2 + \overline{HC}^2 = \overline{AG}^2 = R^2;$$

that is, under this supposition, AG coincides with AC, and AB becomes the diameter of the circle, the greatest shord that can be drawn in it.

THEOREM IV

A line tangent to the circumference of a circle is at right angles with the radius drawn to the point of contact.

Let AC be a line tangent to the circle at the point B, and draw the radius, EB, and the lines, AE and CE.

Now, we are to prove that EB is perpendicular to AC. Because B is the only point in the line AC which meets the circle, (Def. 9, B. III), any other line, as AE or CE, must be greater than EB;

therefore, EB is the shortest line that can be drawn from the point E to the line AC; and EB is the perpendicular to AC, (Th. 23, B. I).

Hence the theorem.

THEOREM V.

In the same circle, or in equal circles, equal chords subtend m stand on equal portions of the circumference.

Conceive two equal circles, and two equal chords drawn within them. Then, conceive one circle taken up and placed upon the other, center upon center, in such a position that the two equal chords will fall on, and exactly coincide with, each other; the circles must also coincide, because they are equal; and the two arcs of the two circles on either side of the equal chords must also coincide, or the circles could not coincide; and magnitudes which coincide, or exactly fill the same space, are in all respects equal, (Ax. 10).

Hence the theorem.

THEOREM VI.

Through three given points, not in the same straight line, one circumference can be made to pass, and but one.

Let A, B, and C be three given points, not in the same straight line, and draw the lines AB and BC. If a circumference is made to pass through the two points A and B, the line AB will be a chord to such a circle; and if a chord is bisected by a line at right angles, the bisecting line will pass through

the center of the circle, (Cor., Th. 1); therefore, if we bisect the line AB, and draw DF, perpendicular to AB, at the point of bisection, any circumference that can pass through the points, A and B, must have its center somewhere in the line DF. And if we draw EG at right angles to BC at its middle point, any circumference that can pass through the points B and C must have its center somewhere in the line EG. Now, if the two lines, DF and EG, meet in a common point, that point will be a center, about which a circumference can be drawn to pass through the three points, A, B, and C, and DF and EG will meet in every case, unless they are parallel; but they are not parallel, for if they were, it would follow (Th. 5, B. I) that, since DF is intersected at right angles by the line AB, it must also be intersected at right angles by the line BC, having a direction different from that of AB; which is impossible, (Th. 7, B. I).

Therefore the two lines will meet; and, with the point H, at which they meet, as a center, and HB = HA = HC as a radius, one circumference, and but one, can be made to pass through the three given points.

Hence the theorem.

THEOREM VII.

If two rircles touch each other, either internally or externally, the two centers and the point of contact will be in one right line.

Let two circles touch each other internally, as represented at A, and conceive AB to be a tangent at the common point A. Now, if a line, perpendicular to AB, be drawn from the point A, it must pass through the center of each circle, (Th. 4);

and as but one perpendicular can be drawn to a line at a given point in it, A, C, and D, the point of contact and the two centers must be in one and the same line.

Next, let two circles touch each other externally, and from the point of contact conceive the common tangent, AB, to be drawn.

Then a line, AC, perpendicular to AB, will pass through the center of one circle, (Th. 4), and a perpendicular, AD, from the same point, A, will pass through the center of the other circle; hence, BAC and BAD are together equal to two right angles; therefore CAD is one continued straight line, (Th. 3, B. I).

Cor. When two circles touch each other internally, the distance between their centers is equal to the difference of their radii; and when they touch each other externally, the distance between their centers is equal to the sum of their radii.

THEOREM VIII.

An angle at the circumference of any circle is measured by one half the arx on which it stands.

In this work it is taken as an axiom that any angle whose vertex is at the center of a circle, is measured by

the arc on which it stands; and we now proceed to prove that when the arcs are equal, the angle at the circumference is equal to one half the angle at the center.

Let ACB be an angle at the center, and D an angle at the circumference, and at first suppose D in a line with AC. We are now to prove that the angle ACB is double the angle D.

The $\triangle DCB$ is an isosceles triangle, because CD = CB; and its exterior

angle, ACB, is equal to the two interior angles, D, and CBD, (Th. 12, B. I), and since these two angles are equal to each other, the angle ACB is double the angle at D. But ACB is measured by the arc AB; therefore the angle D is measured by one half the arc AB.

Next, suppose D not in a line with AC, but at any point in the circumference, except on AB; produce DC to E.

Now, by the first part of this theorem,

the angle

ECB = 2EDB,

also,

ECA = 2EDA,

by subtraction, ACB = 2ADB.

THEOREM IX.

An ungle in a semicircle is a right angle; an angle in a segment greater than a semicircle is less than a right angle; and an angle in a segment less than a semicircle is greater than a right angle.

If the angle ACB is in a semicircle, the opposite segment, ADB, on which it stands, is also a semicircle; and the angle ACB is measured by one half the arc ADB

(Th. 8); that is, one half of 180°, or 90°, which is the measure of a right angle.

If the angle ACB is in a segment greater than a semicircle, then the opposite segment is less than a semicircle, and the measure of the angle is less than one half of 180°, or less than a right angle. If the angle ACB is in a segment less than a

semicircle, then the opposite segment, ADB, on which the angle stands, is greater than a semicircle, and its half is greater than 90°; and, consequently, the angle is greater than a right angle.

Hence the theorem.

Cor. Angles at the circumference, and standing on the same arc of a circle, are equal to one another; for all angles, as BAC, BDC, BEC, are equal, because each is measured by one half of the arc BC. Also, if the angle BEC is equal to CEG, then the arcs BC and CG are equal, because their halves are the measures of

cause their halves are the measures of equal angles.

THEOREM X.

The sum of two opposite angles of any quadrilateral inscribed in a circle, is equal to two right angles.

Let ACBD represent any quadrilateral inscribed in a circle. The angle ACB has for its measure, one half of the arc ADB, and the angle ADB has for its measure, one half of the arc ACB; therefore, by addition, the sum of the two opposite angles at C and D, are together measured by one half of the whole circumference,

one half of the whole circumference, or by 180 degrees, = two right angles. Hence the theorem

THEOREM XI.

An angle formed by a tangent and a chord is measured by one half of the intercepted arc.

Let AB be a tangent, and AD a chord, and A the point of contact; then we are to prove that the angle BAD is measured by one half of the arc AED.

From A draw the radius AC; and from the center, C, draw CE perpendicular to AD.

Therefore, by subtraction, BAD - C = 0;

by transposition, the angle BAD = C.

But the angle C, at the center of the circle, is measured by the arc AE, the half of AED; therefore, the equal angle, BAD, is also measured by the arc AE, the half of AED.

Hence the theorem.

THEOREM XII.

An angle formed by a tangent and a chord, is equal to an angle in the opposite segment of the circle.

Let AB be a tangent, and AD a chord, and from the point of contact, A, draw any angles, as ACD, and AED, in the segments. Then we are to prove that $\[BAD = \[ACD \]$, and $\[GAD = \[AED \]$.

By Th. 11, the angle BAD is measured by one half the arc AED; and

as the angle ACD is measured by one half of the same arc, (Th. 8), we have $\lfloor BAD = \lfloor ACD \rfloor$.

Again, as AEDC is a quadrilateral, inscribed in a circle, the sum of the opposite angles,

$$ACD + AED = 2$$
 right angles. (Th. 10).

Also, the sum of the angles

$$BAD + DAG = 2$$
 right angles. (Th. 1, B. I).

By subtraction (and observing that BAD has just been proved equal to ACD), we have,

$$AED - DAG = 0.$$

Or, by transposition, AED = DAG.

Hence the theorem.

THEOREM XIII.

Arcs of the circumference of a circle intercepted by parallel chords, or by a tangent and a parallel chord, are equal.

Let AB and CD be parallel chords, and draw the diagonal, AD; now, because AB and CD are parallel, the angle DAB = the angle ADC (Th. 6, B. I); but the angle DAB has for its measure, one half of the arc BD; and the

angle ADC has for its measure, one half of the arc AC, (Th. 8); and because the angles are equal, the arcs are equal; that is, the arc BD = the arc AC.

Next, let EF be a tangent, parallel to a chord, CD, and from the point of contact, G, draw GD.

Since EF and CD are parallel, the angle CDG = 1 the angle DGF. But the angle CDG has for its measure, one-half of the arc CG, (Th. 8); and the angle DGF has for its measure, one half of the arc GD, (Th. 11); therefore, these measures of equals must be equal; that is, the arc CG=the arc GD.

Hence, the theorem.

THEOREM XIV.

When two chords intersect each other within a circle, the single thus formed is measured by one half the sum of the two intercepted arcs.

Let AB and CD intersect each other within the circle, forming the two angles, E and E', with their equal vertical angles.

Then, we are to prove that the angle E is measured by one half the sum of the arcs AC and BD; and

the angle E' is measured by one half the sum of the arcs AD and CB.

First, draw AF parallel to CD, and FD will be equal to AC, (Th. 13); then, by reason of the parallels, $\sqsubseteq BAF$ = $\sqsubseteq E$. But the angle BAF is measured by one half of the arc BDF; that is, one half of the arc BD plus one half of the arc AC.

Now, as the sum of the angles E and E' is equal to two right angles, that sum is measured by one half the whole circumference.

But the angle E, alone, as we have just proved, is measured by one half the sum of the arcs BD and AC; therefore, the other angle, E', is measured by one half the sum of the other parts of the circumference,

$$AD + CB$$
.

Hence the theorem.

THEOREM XV.

When two secants intersect, or meet each other without a sircle, the angle thus formed is measured by one half the difference of the intercepted arcs.

Let DE and BE be two secants meeting at E; and draw AF parallel to CD. Then, by reason of the parallels, the angle E, made by the intersection of the two secants, is equal to the angle BAF. But the angle BAF is measured by one half the arc BF; that is, by one half the difference between the arcs BD and AC.

Hence the theorem.

THEOREM XVI.

The angle formed by a secant and a tangent is measured by one half the difference of the intercepted arcs.

Let BC be a secant, and CD a tangent, meeting at C. We are to prove that the angle formed at C, is measured by one half the difference of the arcs BD and DA.

From A, draw AE parallel to CD; then the arc AD = the arc DE; BD - DE = BE; and the BAE = C. But the angle BAE is measured

by one half the arc BE, (Th. 8,) that is, by one half the difference between the arcs BD and AD; therefore, the equal angle, C, is measured by one half the arc BE.

Hence the theorem.

THEOREM XVII.

When two chords intersect each other in a circle, the rectangle contained by the segments of the one, will be equivalent to the rectangle contained by the segments of the other.

Let AB and CD be two chords intersecting each other in E. Then we are to prove that the rectangle $AE \times EB =$ the rectangle $CE \times ED$.

Draw the lines AD and CB, forming the two triangles AED and CEB. The angles B and D are equal, because they

are each measured by one half the arc, AC. Also the angles A and C are equal, because each is measured by one half the arc, DB; and AED = CEB, because they are vertical angles; hence, the triangles, AED and CEB, are equiangular and similar. But equiangular triangles have their sides about the equal angles proportional, (Cor. 1, Th. 17, B. II); therefore, AE and ED, about the angle E, are proportional to CE and EB, about the same or equal angle.

That is,
$$AE : ED :: CE : EB$$
; Or, (Th. 19, B. II), $AE \times EB = CE \times ED$.

Hence the theorem.

Cor. When one chord is a diameter, and the other at right angles to it, the rectangle contained by the segments of the diameter is equal to the square of one half the other chord; or one half of the bisected chord is a mean proportional between the segments of the diameter.

For, $AD \times DB = FD \times DE$. But, if AB passes through the center, C, at right angles to FE, then FD = DE (Th. 1); and in the place of FD, write its equal, DE, in the last equation, and we have

$$AD \times DB = \overline{DE}^{*},$$
 or, (Th. 3, B II), $AD : DE :: DE : DB.$

Put, DE = x, CD = y, and CE = R, the radius of the circle.

Then AD = R - y, and DB = R + y. With this note: ion,

$$AD imes DB = DE^{2}$$
 becomes, $(R - y)(R + y) = x^{2}$ or, $R^{2} - y^{2} = x^{2}$ or, $R^{2} = x^{2} + y^{3}$

That is, the square of the hypotenuse of the right-angled triangle, DCE, is equal to the sum of the squares of the other two sides.

THEOREM XVIII.

If from a point without a circle, a tangent line be drawn to the circumference, and also any secant line terminating in the concave arc, the square of the tangent will be equivalent to unrectangle contained by the whole secant and its external segment.

Let A be a point without the circle DEG, and let AD be a tangent and AE any secant line.

Then we are to prove that

$$AC \times AE = \overline{AD}^2$$
.

In the two triangles, ADE and ADC, the angles ADC and AED are equal, since each is measured by one half of the same arc, DC; the angle A is common to the two triangles; their

third angles are therefore equal, and the triangles are equiangular and similar.

Their homologous sides give the proportion

whence,
$$AE : AD :: AD : AC$$

 $AE \times AC = \overline{AD}^2$

Hence the theorem.

Cor. If AE and AF are two secant lines drawn from the same point without the circumference, we shall have

and,
$$AC \times AE = \overline{AD}^{2}$$

 $AB \times AF = \overline{AD}^{2}$
hence, $AC \times AE = AB \times AF$,
which, in the form of a proportion, gives
 $AC : AF :: AB : AE$.

That is, the secants are reciprocally proportional to their so ternal segments.

SCHOLIUM. — By means of this theorem we can determine the diameter of a circle, when we know the length of a tangent drawn from a point without, and the external segment of the secant, which, drawn from the same point, passes through the center of the circle.

Let Am be a secant passing through the center, and suppose the tangent AD to be 20, and the external segment, An, of the secant to be 2. Then, if D denote the diameter, we shall have

$$Am=2+D,$$

whence,
$$Am \times An = 2 (2 + D) = 4 + 2D = (20)^2 = 400$$
, $2D = 396$, and $D = 198$.

If An, the height of a mountain on the earth, and AD, the distance of the visible sea horizon, be given, we may determine the diameter of the earth.

For example; the perpendicular height of a mountain on the island of Teneriffe is about 3 miles, and its summit can be seen from ships when they are known to be 154 or 155 miles distant; what then is the diameter of the earth?

Designate, as before, the diameter by D. Then Am = 3 + D, and $Am \times An = 9 + 3D$. AD = 154.5; hence, $9 + 3D = (154.5)^2 = 23870.25$, from which we find D = 7953.75, which differs but little from the true diameter of the earth.

One source of error, in this mode of computing the diameter of the earth, is atmospheric refraction, the explanation of which does not belong here.

THEOREM XIX.

If a circle be described about a triangle, the rectangle contained by two sides of the triangle is equivalent to the rectangle contained by the perpendicular let fall on the third side, and the diameter of the circumscribing circle.

Let ABC be a triangle, AC and CB, the sides, CD the perpendicular let fall on the base AB, and CE the diameter of the circumscribing circle. Then we are to prove that

$$AC \times CB = CE \times CD$$
.

The two \triangle 's, ACD and CEB, are equiangular, because A = E, both

being measured by the half of the arc CB; also, ADC is a right angle, and is equal to CBE, an angle in a semi-circle, and therefore a right angle; hence, the third angle, $ACD = \bigcup BCE$, (Th. 12, Cor. 2, B. I). Therefore, (Cor. 1, Th. 17, B. II),

and,

$$AC \times BC = CE \times CD$$
.

Hence the theorem; if a circle, etc.

Cor. The continued product of three sides of a triangle is equal to twice the area of the triangle into the diameter of its sircumscribing circle.

Multiplying both members of the last equation by AB, we have,

$$AC \times BC \times AB = CE \times (AB \times CD).$$

But CE is the diameter of the circle, and $(AB \times CD)$ = twice the area of the triangle;

Therefore, $AO \times CB \times AB =$ diameter multiplied by twice the area of the triangle.

THEOREM XX.

The square of a line bisecting any angle of a triangle, together with the rectangle of the segments into which it cuts the opposite side, is equivalent to the rectangle of the two sides including the bisected angle.

Let ABC be a triangle, and CD a line bisecting the angle C. Then we are to prove that

$$CD^2 + (AD \times DB) = AC \times CB$$
.

The two \triangle 's, ACE and CDB, are equiangular, because the angles E and B are equal, both being in the same segment, and the $ACE \rightarrow ACE$

same segment, and the $\angle ACE = BCD$, by hypothesis. Therefore, (Th. 17, Cor. 1, B. II),

But it is obvious that CE = CD + DE, and by substituting this value of CE, in the proportion, we have,

$$AC: CD + DE:: CD: CB.$$

By multiplying extremes and means,

$$\overline{CD}^2 + (DE \times CD) = AC \times CB.$$

But by (Th. 17),

$$DE \times CD = AD \times DB$$

and substituting, we have,

$$\overline{CD}^2 + (AD \times DB) = AC \times CB.$$

Hence the theorem.

THEOREM XXI.

The rectangle contained by the two diagonals of any quadrilateral inscribed in a circle, is equivalent to the sum of the two rectangles contained by the opposite sides of the quadrilateral.

Let ABCD be a quadrilateral inscribed in a circle; then we are to prove that

$$AC \times BD = (AB \times DC) + (AD \times BC).$$

From C, draw CE, making the angle DCE equal to

the angle ACB; and as the angle BAC is equal to the angle CDE, both being in the same segment, therefore, the two triangles, DEC and ABC, are equiangular, and we have (Th. 17, Cor. 1, B. II),

$$AB:AC::DE:DC \quad (1)$$

The two \triangle 's, ADC and BEC, are equiangular; for the | DAC = | EBC,

both being in the same segment; and the | DCA -| ECB, for DCE = BCA; to each of these add the angle ECA, and DCA = ECB; therefore, (Th. 17, Cor. 1, В. П),

$$AD:AC::BE:BC$$
 (2).

By multiplying the extremes and means in proportions (1) and (2), and adding the resulting equations, we have,

$$(AB \times DC) + (AD \times BC) = (DE + BE) \times AC.$$

But, $DE + BE = BD$; therefore, $(AB \times DC) + (AD \times BC) = AC \times BD.$

Cor. When two adjacent sides of the quadrilateral are equal, as AB and BC, then the resulting equation is,

or,
$$(AB \times DC) + (AB \times AD) = AC \times BD$$
;
or, $AB \times (DC + AD) = AC \times BD$;
or, $AB : AC :: BD : DC + AD$.

That is, one of the two equal sides of the quadrilateral is to the adjoining diagonal, as the transverse diagonal is to the sum of the two unequal sides.

THEOREM XXII.

If two chords intersect each other at right angles in a circle, the sum of the squares of the four segments thus formed is equivalent to the square of the diameter of the circle.

Let AB and CD be two chords, intersecting each other at right angles. Draw BF parallel to ED, and draw DF and AF. Now, we are to prove that

$$\overline{AE}^2 + \overline{EB}^2 + \overline{EC}^2 + \overline{ED}^2 = \overline{AF}^2$$
.

As BF is parallel to ED, ABF is a right angle, and therefore AF is a diameter, (Th. 9). Also, because BF is parallel to CD, CB = DF, (Th. 13).

Because CEB is a right angle,

$$\overline{CE}^2 + \overline{EB}^2 = \overline{CB}^2 = \overline{DF}^2$$
.

Because AED is a right angle,

$$\overline{AE}^2 + \overline{ED}^2 = \overline{AD}^2.$$

Adding these two equations, we have,

$$\overline{CE}^2 + \overline{EB}^2 + \overline{AE}^2 + \overline{ED}^2 = \overline{DF}^2 + \overline{AD}^2.$$

But, as AF is a diameter, and ADF a right angle, (Th. 9),

$$\overline{DF}^2 + \overline{AD}^2 = \overline{AF}^2$$
;

therefore, $\overline{CE}^2 + \overline{EB}^2 + \overline{AE}^2 + \overline{ED}^2 = \overline{AF}^2$.

Hence the theorem.

SCHOLIUM. — If two chords intersect each other at right angles, in a circle, and their opposite extremities be joined, the two chords thus formed may make two sides of a right-angled triangle, of which the diameter of the circle is the hypotenuse.

For, AD is one of these chords, and CB is the other; and we have shown that CB = DF; and AD and DF are two sides of a right-angled triangle, of which AF is the hypotenuse; therefore, AD and CB may be considered the two sides of a right-angled triangle, and AF its hypotenuse.

THEOREM XXIII.

If two secants intersect each other at right angles, the sum of their squares, increased by the sum of the squares of the two segments without the circle, will be equivalent to the square of the diameter of the circle.

Let AE and ED be two secants intersecting at right angles at the point E. From B, draw BF parallel to CD, and draw AF and AD. Now we are to prove that

$$\overline{E}A^{2} + \overline{E}D^{2} + \overline{E}B^{2} + \overline{E}C^{4} = \overline{A}F^{4}$$

Because BF is parallel to CD, ABF is a right angle, and consequently AF is a diameter, and BC = DF; and because AF is a diameter, ADF is a right angle. As AED is a right angle,

Also,
$$\frac{\overline{AE}^2 + \overline{ED}^2 = \overline{AD}^2}{\overline{EB}^2 + \overline{EC}^2 = \overline{BC}^2 = \overline{DF}^2}$$
By addition,
$$\overline{AE}^2 + \overline{ED}^3 + \overline{EB}^3 + \overline{EC}^3 = \overline{AD}^3 + \overline{DF}^2 = \overline{AF}^3$$
Hence the theorem.

THEOREM XXIV.

If perpendiculars be drawn bisecting the three sides of a triangle, they will, when sufficiently produced, meet in a common point.

The three angular points of a triangle are not in the same straight line; consequently one circumference, and but one, may be made to pass through them.

Conceive a triangle to be thus circumscribed. The sides of the triangle then become chords of the circumscribing circle. Now if these sides be bisected, and at the points of bisection perpendiculars be drawn to the sides, each of these perpendiculars will pass through the center of the circle (Th. 1, Cor.); and the perpendiculars will therefore meet in a common point.

Hence the theorem.

THEOREM XXV.

The sums of the opposite sides of a quadrilateral circumscribing a circle are equal.

Let ABCD be a quadrilateral circumscribed about a circle, whose center is O. Then we are to prove that

$$AB + DC = AD + BC$$
.

From the center of the circle draw OE and OF to the points of contact of the sides AB and BC. Then,

the two right-angled triangles, OEB and OFB, are equal,

because they have the hypotenuse OB common, and the side OF = OE; therefore, BE = BF, (Cor., Th. 39, B. I).

In like manner we can prove that

$$AE=AH$$
, $CF=CG$, and $DG=DH$.

Now, taking the equation BE = BF, and adding to its first member CG, and to its second the equal line CF, we have,

$$BE + CG = BF + CF \quad (1)$$

The equation AE=AH, by adding to its first member DG, and to the second the equal line, DH, gives

$$AE + DG = AH + DH \quad (2)$$

By the addition of (1) and (2), we find that

$$BE + AE + CG + DG = BF + CF + AH + DH$$
.

That is,
$$AB + CD = BC + AD$$
.

Hence the theorem.

BOOK IV.

PROBLEMS.

In this section, we have, in most instances, merely shown the construction of the problem, and referred to the theorem or theorems that the student may use, to prove that the object is attained by the construction.

In obscure and difficult problems, however, we have gone through the demonstration as though it were a theorem.

PROBLEM I.

To bisect a given finite straight line.

Let AB be the given line, and from its extremities, A and B, with any radius greater than one half of AB, (Postulate 3), describe arcs, cutting each other in n and m. Draw the line nm; and C, where it cuts AB, will be the middle of the given line.

Proof, (B. I, Th. 18, Sch. 2).

PROBLEM II.

To bisect a given angle.

Let ABC be the given angle. With any radius, and B as a center, describe the arc AC. From A and C, as centers, with a radius greater than one half of AC, describe arcs, intersecting in n; join B and n; the joining line will bisect the given angle.

Proof, (Th. 21, B. I).

PROBLEM III.

From a given point in a given line, to draw a perpendicular to that line.

Let AB be the given line, and C the given point. Take n and m, at equal distances on opposite sides of C; and with the points m and n, as centers, and any radius greater than nC or mC, describe Aarcs cutting each other in S. Draw

SC, and it will be the perpendicular required. Proof, (B. I, Th. 18, Sch. 2).

The following is another method, which is preferable, when the given point, C, is at or near the end of the line.

Take any point, O, which is manifestly one side of the perpendicular, as a center, and with OC as a radius, describe a circumference, cutting AB in m and C. Draw mn through the points m and O, and meeting the arc again in n; mn is then a diameter to the circle. Draw On, and it will be the perpendicular required. Proof, (Th. 9, B. III).

PROBLEM IV.

From a given point without a line, to draw a perpendicular to that line.

Let AB be the given line, and Cthe given point. From C draw any oblique line, as Cn. Find the middle point of Cn by Problem 1, and with that point, as a center, describe a semicircle, having Cn as a diam- . T eter. From m, where this semi-cir-

cumference cuts AB, draw Cm, and it will be the perpen dicular required. Proof, (Th. 9, B. III).

PROBLEM V.

At a given point in a line, to construct an angle equal to a given angle.

Let A be the point given in the line AB, and DCE the given angle.

With C as a center, and any radius, CE, draw the arc ED.

With A as a center, and the radius AF = CE, describe an indefinite arc; and with F as a center, and FG as a radius, equal to ED, describe an arc, cutting the other arc in G, and draw AG; GAF will be the angle required. Proof, (Th. 2, B. III).

From a given point, to draw a line parallel to a given line.

Let A be the given point, and BC the given line. Draw AC, making an angle, ACB; and from the given point, A, in the line AC, draw the angle CAD = ACB, by Problem 5.

Since AD and BC make the same angle with AC, they are, therefore, parallel, (B. I, Th. 7, Cor. 1).

PROBLEM VII.

To divide a given line into any number of equal parts.

Let AB represent the given line, and let it be required to divide it into any number of equal parts, say five. From one end of the line A, draw AD; indefinite in both length and position. Take A any convenient distance in the di-

viders, as Aa, and set it off on the line AD, thus making the parts Aa, ab, bc, etc., equal. Through the last point, e, draw EB, and through the points a, b, c, and d, draw parallels to eB, by Problem 6; these parallels will divide the line as required. Proof, (Th. 17, Book II).

PROBLEM VIII.

To find a third proportional to two given lines.

Let AB and AC be any two lines. Place them at any angle, and draw CB. On the greater line, AB, take AD = AC, and through D, draw DE parallel to BC; AE is the third proportional required.

Proof, (Th. 17, B. II).

PROBLEM IX.

To find a fourth proportional to three given lines.

Let AB, AC, AD, represent the three given lines. Place the first two at any angle, as BAC, and draw BC On AB place AD, and from the point D, draw DE parallel to BC, by Problem 6; AE will be the fourth proportional required.

Proof, (Th. 17, B. II).

PROBLEM X.

To find the middle, or mean proportional, between two given lines

Place AB and BC in one right line, and on AC, as a diameter, describe a semicircle, (Postulate 3), and from the point B, draw BD at right angles to AC, (Problem 3); BD is the mean proportional required.

Proof, (B. III, Th. 17, Cor.).

PROBLEM XI.

To find the center of a given circle.

Draw any two chords in the given circle, as AB and CD, and from the middle points, m and n, draw perpendiculars to AB and CD; the point at which these two perpendiculars intersect will be the center of the circle.

Proof, (B. III, Th. 1, Cor.).

PROBLEM XII.

To draw a tangent to a given circle, from a given point, either in or without the circumference of the circle.

When the given point is in the circumference, as A, draw the radius AC, and from the point A, draw AB perpendicular to AC; AB is the tangent required.

Proof, (Th. 4, B. III).

When the given point is without the circle, as A, draw AC to the center of the circle; on AC, as a diameter, describe a semicircle; and from B, where the semi-circumference cuts the given circumference,

draw AB, and it will be tangent to the circle.

Proof, (Th. 9, B. III), and, (Th. 4, B. III).

PROBLEM XIII.

On a given line, to describe a segment of a circle, that shall contain an angle equal to a given angle.

Let AB be the given line, and C the given angle. At the ends of the given line, form angles DAB, DBA, each equal to the given angle, C. Then draw AE and BE

perpendiculars to AD and BD; and with E as a center, and EA, or EB, as a radius, describe a circle; then AFB will be the segment required, as any angle F, made in it, will be equal to the given angle, C.

Proof, (Th. 11, B. III), and (Th. 8, B. III).

PROBLEM XIV.

From any given circle to cut a segment, that shall contain a given angle.

Let C be the given angle. Take any point, as A, in the circumference, and from that point draw the tangent AB; and from the point A, in the line AB, construct the angle BAD = C, (Problem 5), and C AED is the segment required.

Proof, (Th. 11, B. III), and (Th. 8, B. III).

PROBLEM XV.

To construct an equilateral triangle on a given straight line.

Let AB be the given line; from the extremities A and B, as centers, with a radius equal to AB, describe arcs cutting each other at C. From C, the point of intersection, draw CA and CB; ABC will be the triangle required.

The construction is a sufficient demonstration. Or, (Ax. 1).

PROBLEM XVI

To construct a triangle, having its three sides equal to three jiven lines, any two of which shall be greater than the third.

Let AB, CD, and EF, represent the three lines. Take any one of them, as AB, to be one side of the triangle. From B, as a center, with a radius equal to CD, describe an arc; and from A, as a center, with a radius equal to EF, describe another arc, cutting the former in n. Draw An and Bn, and AnB will be the \triangle required. Proof, (Ax. 1).

PROBLEM XVII.

To describe a square on a given line.

Let AB be the given line; and from the extremities, A and B, draw AC and BD perpendicular to AB. (Problem 3.)

From A, as a center, with AB as radius, strike an arc across the perpendicular at C; and from C draw CD parallel to AB; ACDB is the square required. Proof, (Th. 26, B. I).

PROBLEM XVIII.

To construct a rectangle, or a parallelogram, whose adjacent sides are equal to two given lines.

Let AB and AC be the two given A_____C lines. From the extremities of one A_____B line, draw perpendiculars to that line, as in the last problem; and from these perpendiculars, cut off portions equal to the other line; and, by a parallel, complete the figure

When the figure is to be a parallelogram, with oblique angles, describe the angles by Problem 5. Proof, (Th 26, B. I).

PROBLEM XIX.

To describe a rectangle that shall be equivalent to a given square, and have a side equal to a given line.

Let AB be a side of the given square, and CD one side of the required rectangle.

Find the third proportional, EF, to CD and AB, (Problem 8). Then we shall have

CD:AB::AB:EF.

Construct a rectangle with the two given lines, *CD* and *EF*, (Problem 18), and it will be equal to the given square, (Th. 3, B. II).

PROBLEM XX.

To construct a square that shall be equivalent to the differ ence of two given squares.

Let A represent a side of the greater of two given squares, and B a side of the less square.

On A, as a diameter, describe a semicircle, and from one extremity, n, as a center, with a radius equal to B, describe an arc, and, from the point where it cuts the circumference, draw mp and np; mp is the side of a square, which, when constructed,

(Problem 17), will be equal to the difference of the two given squares. Proof (Th. 9, B. III, and Th. 39, B. I.)

To construct a square equivalent to the sum of two given squares, we have only to draw through any point two lines at right angles, and lay off on one a distance equal to the side of one of the squares, and on the other a distance equal to the side of the other. The straight line connecting the extremities of these lines will be the side of the required square, (Th. 39, B. I).

PROBLEM XXI.

To divide a given line into two parts, which shall be in the ratio of two other given lines.

Let AB be the line to be divided, and M and N the lines having the ratio of the required parts of AB. From the extremity A draw AD, making any angle with AB, and take AC = M, and CD = N. Join the points D and B by a straight line, and through C draw CG parallel to BD.

Then will the point G divide the line AB into pasts having the required ratio. (Proof, Th. 17, B. II).

Or, having drawn AD, lay off AC = M, and through B draw BV parallel to AD, making it equal to N, and join C and V by a line cutting AB in the point G.

Then the two triangles ACG and GBV are equiangular and similar, and their homologous sides give the proportion,

The line AB is therefore divided, at the point G, into parts which are in the ratio of the lines M and N.

PROBLEM XXII.

To divide a given line into any number of parts, having to each other the ratios of other given lines.

Let AB be the given M-line to be divided, and N-M, N, P, etc., the lines P-to which the parts of AB are to be proportional.

Through the point A CD D draw an indefinite line, making, with AB, any convenient angle, and on this line lay off from A the lines M, N, P, etc., successively. Join the extremity of the last line to the point B by a straight line, parallel to which draw other lines through the points of division of the indefinite line, and they will divide the line AB at the points C, D, etc., into the required parts. (Proof, Th. 17, B. II).

PROBLEM XXIII.

To construct a square that shall be to a given square, as a line, M, to a line, N.

Place *M* and *N* in a line, and on the sum describe a semicircle. From the point where the two lines meet, draw a perpendicular to meet the circumference in *A*. Draw *Am* and *An*, and produce them indefinitely.

and produce them indefinitely. On An or An produced, take AC = to the side of the given square; and from C, draw CB parallel to mn; AB is a side of the required square.

For, $\overline{Am^2}: \overline{An^2}: \overline{AB^2}: \overline{AC^2}$, (Th. 17, B. II). Also, $\overline{Am^2}: \overline{An^2}: \overline{M}: M: N$, (Th. 25, B. II). Therefore, $\overline{AB^2}: \overline{AC^2}: M: N$, (Th. 6, B. II).

PROBLEM XXIV.

To cut a line into extreme and mean ratio; that is, so that the whole line shall be to the greater part, as that greater part is to the less.

REMARK. — The geometrical solution of this problem is not immediately apparent, but it is at once suggested by the form of the equation, which a simple algebraic analysis of its conditions leads to.

Represent the line to be divided by 2a, the greater part by x, and consequently the other, or less part, by 2a - x.

Now, the given line and its two parts are required, to satisfy the following proportion:

$$2a:x::x:2a-x$$

whence,

$$x^2 = 4a^2 - 2ax$$

By transposition, $x^2 + 2ax = 4a^2 = (2a)^2$

If we add a^2 to both members of this equation, we shall have,

or,
$$x^2 + 2ax + a^2 = (2a)^2 + a^2$$

or, $(x+a)^2 = (2a)^2 + a^2$

This last equation indicates that the lines represented by (x + a), 2a, and a, are the three sides of a rightangled triangle, of which (x + a) is the hypotenuse, the given line, 2a, one of the sides, and its half, a, the other.

Therefore, let AB represent the given line, and from the extremity, B, draw BC at right angles to AB, and make it equal to one half of AB.

With C, as a center, and radius CB, describe a circle. Draw AC and produce it to F. With A as a center and AD as a radius, describe the arc DE; this arc will divide the line AB, as required.

We are now to prove that

By Th. 18, B. III, we have,

$$AF \times AD = \overline{AB}^2$$

or, AF:AB::AB:AD

Ther, (by Cor., Th. 8, Book II), we may have,

$$(AF-AB):AB::(AB-AD):AD$$

Since $CB = \frac{1}{2}AB = \frac{1}{2}DF$; therefore, AB = LF

Hence, AF - AB = AF - DF = AD = AE.

Therefore, AE : AB :: EB : AE

By taking the extremes for the means, we have,

AB : AE :: AE : EB.

PROBLEM XXV.

To describe an isosceles triangle, having its two equal angles each double the third angle, and the equal sides of any given length.

Let AB be one of the equal sides of the required triangle; and from the point A, with the radius AB, describe an arc, BD.

Divide the line AB into extreme and mean ratio by the last problem, and suppose C the point of division, and AC the greater segment.

From the point B, with AC, the greater segment, as a radius, describe another arc, cutting the arc BD in D. Draw BD, DC, and DA. The triangle ABD is the triangle required.

As AC = BD, by construction; and as AB is to AC as AC is to BC, by the division of AB; therefore

Now, as the terms of this proportion are the sides of the two triangles about the common angle, B, it follows, Cor. 2, Th. 17, B. II), that the two triangles, ABD and

BDC, are equiangular; but the triangle ABD is isosceles; therefore, BDC is isosceles also, and BD = DC: but BD = AC: hence, DC = AC, (Ax. 1), and the triangle ACD is isosceles, and the | CDA = | A. But the exterior angle, BCD = CDA + A, (Th. 12, B. I). Therefore, BCD, or its equal B = CDA + A; or the angle B=2|A. Hence, the triangle ABD has each of its angles, at the base, double of the third angle.

Scholium.—As the two angles, at the base of the triangle ABD, are equal, and each is double the angle A, it follows that the sum of the three angles is five times the angle A. But, as the three angles of every triangle are always equal to two right angles, or 180°, the angle A must be one fifth of two right angles, or 36°; therefore, BD is a chord of 36°, when AB is a radius to the circle; and ten such chords would extend exactly round the circle, or would form a decagon.

PROBLEM XXVI.

Within a given circle to inscribe a triangle, equiangular to a given triangle.

Let ABC be the circle, and abc the given triangle. any point, as A, draw ED tangent to the given circle at A, (Problem 12).

From the point A, in the line AD, lay off the angle DAC =

The triangle ABC is inscribed in the circle; it is equiangular to the triangle abc, and hence it is the triangle required.

Proof, (Th. 12, B. III).

c, and draw BC.

PROBLEM XXVII.

To inscribe a regular pentagon in a given circle.

1st. Describe an isosceles triangle, abc, having each of the equal angles, b and c, double the third angle, a, by Problem 25.

2d. Inscribe the triangle, ABC, in the given circle, equiaugular to the triangle abc, by

Problem 26; then each of the angles, B and C, is double the angle A.

3d. Bisect the angles B and C, by the lines BD and CE, (Problem 2), and draw AE, EB, CD, DA; and the figure AEBCD is the pentagon required.

By construction, the angles BAC, ABD, DBC, BCE, ECA, are all equal; therefore, (B. III, Th. 9, Cor.), the arcs, BC, AD, DC, AE, and EB, are all equal; and if the arcs are equal, the chords AE, EB, etc., are equal.

Scholium.—The arc subtended by one of the sides of a regular pensagon, being one fifth of the whole circumference, is equal to $\frac{360^{\circ}}{5}$ =72°.

PROBLEM XXVIII.

To inscribe a regular hexagon in a circle.

D aw any diameter of the circle, as AB, and from one extremity, B, draw BD equal to BC, the radius of the circle. The arc, BD, will be one sixth part of the whole circumference, and the chord BD will be a side of the regular polygon of six sides.

In the \triangle CBD, as CB = CD, and BD = CB by construction, the \triangle is equilateral, and of course equiangular.

Eince the sum of the three angles of every \triangle is equal to two right angles, or to 180 degrees, when the

three angles are equal to one another, each one of them must be 60 degrees; but 60 degrees is a sixth part of 360 degrees, the whole number of degrees in a circle; therefore, the arc whose chord is equal to the radius, is a sixth part of the circumference; and, if a polygon of six equal sides be inscribed in a circle, each side will be equal to the radius.

Schölium. — Hence, as BD is the chord of 60°, and equal to BC or CD, we say generally, that the chord of 60° is equal to radius.

PROBLEM XXIX.

To find the side of a regular polygon of fifteen sides, which may be inscribed in any given circle.

Let CB be the radius of the given circle; divide it into extreme and mean ratio, (Problem 24), and make BD equal to CE, the greater part; then BD will be a side of a regular polygon of ten sides, (Scholium to Problem 25). Draw BA = to CB, and

it will be a side of a polygon of six sides. Draw DA, and that line must be the side of a polygon which corresponds to the arc of the circle expressed by $\frac{1}{6}$ less $\frac{1}{10}$, of the whole circumference; or $\frac{1}{6} - \frac{1}{10} = \frac{4}{60} = \frac{1}{15}$; that is, one-fifteenth of the whole circumference; or, DA is a side of a regular polygon of 15 sides. But the 15th part of 360° is 24°; hence the side of a regular inscribed polygon of fifteen sides is the chord of an arc of 24°.

PROBLEM XXX.

In a given circle to inscribe a regular polygon of any number of sides, and then to circumscribe the circle by a similar polygon.

Let the circumference of the circle, whose certer is C, be divided into any number of equal arcs, as amb, bnc, cod, etc.; then will the polygon abcde, etc., bounded by

the chords of these arcs, be regular and inscribed; and the polygon ABCDE, etc., bounded by the tangents to these arcs at their middle points m, n, o, etc, be a similar circumscribed polygon.

First. — The polygon abcde, etc., is equilateral, because its sides are the chords of equal

arcs of the same circle, (Th. 5, B. III); and it is equal angular, because its angles are inscribed in equal segments of the same circle, (Th. 8, B. III). Therefore the polygon is regular, (Def. 14, B. III), and it is inscribed, since the vertices of all its angles are in the circumference of the circle, (Def. 13, B. III).

Second.—If we draw the radius to the point of tangency of the side AB of the circumscribed polygon, this radius is perpendicular to AB, (Th. 4, B. III), and also to the chord ab, (B. III, Th. 1, Cor.); hence AB is parallel to ab, and for the same reason BC is parallel to bc; therefore the angle ABC is equal to the angle abc, (Th. 8, B. I). In like manner we may prove the other angles of the circumscribed polygon, each equal to the corresponding angle of the inscribed polygon. These polygons are therefore mutually equiangular.

Again, if we draw the radii Om and On, and the line OB, the two \triangle 's thus formed are right-angled, the one at : and the other at n, the side OB is common and Om is equal to On; hence the difference of the squares described on OB and Om is equivalent to the difference of the squares described on OB and On. But the first difference is equivalent to the square described on OB, and the second difference is equivalent to the square described

on Bn; hence Bm is equal to Bn, and the two rightangled triangles are equal, (Th. 21, B. I), the angle BOm opposite the side Bm being equal to the angle BOn, opposite the equal side Bn. The line OB therefore passes through the middle point of the arc mbn; but because m and n are the middle points of the equal arcs amb and bnc, the vertex of the angle abc is also at the middle point of the arc mbn. Hence the line OB, drawn from the center of the circle to the vertex of the angle ABC, also passes through the vertex of the angle abc. By precisely the same process of reasoning, we may prove that OC passes through the point c, OD through the point d, etc.; hence the lines joining the center with the vertices of the angles of the circumscribed polygon, pass through the vertices of the corresponding angles of the inscribed polygon; and conversely, the radii drawn to the vertices of the angles of the inscribed polygon, when produced, pass through the vertices of the corresponding angles of the circumscribed polygon.

Now, since ab is parallel to AB, the similar \triangle 's abO and ABO, give the proportion

Ob:OB::ab:AB,

and the \triangle 's, bcO and BCO, give the proportion

Ob:OB::bc:BC.

As these two proportions have an antecedent and consequent, the same in both, we have, (Th. 6, B. II),

ab:AB::bc:BC.

In like manner we may prove that

bc : BC :: cd : CD, etc., etc.

The two polygons are therefore not only equiangular, but the sides about the equal angles, taken in the same order, are proportional; they are therefore similar, (Def. 16, B. II).

- Cor. 1. To inscribe any regular polygon in a circle, we have only to divide the circumference into as many equal parts as the polygon is to have sides, and to draw the chords of the arcs; hence, in a given circle, it is possible to inscribe regular polygons of any number of sides whatever. Having constructed any such polygon in a given circle, it is evident, that by changing the radius of the circle without changing the number of sides of the polygon, it may be made to represent any regular polygon of the same name, and it will still be inscribed in a circle. As this reasoning is applicable to regular polygons of whatever number of sides, it follows, that any regular polygon may be circumscribed by the circumference of a circle.
- Cor. 2. Since ab, bc, cd, etc., are equal chords of the same circle, they are at the same distance from the center, (Th. 3, B. III); hence, if with O as a center, and Ot, the distance of one of these chords from that point, as a radius, a circumference be described, it will touch all of these chords at their middle points. It follows, therefore, that a circle may be inscribed within any regular polygon.

SCHOLIUM.—The center, O, of the circle, may be taken as the center of both the inscribed and circumscribed polygons; and the angle AOB, included between lines drawn from the center to the extremities of one of the sides AB, is called the angle at the center. The perpendicular drawn from the center to one of the sides is called the Apothem of the polygon.

- Cor. 3. The angle at the center of any regular polygon is equal to four right angles divided by the number of sides of the polygon. Thus, if n be the number of sides of the polygon, the angle at the center will be expressed by $\frac{360^{\circ}}{n}$.
- Cor. 4. If the arcs subtended by the sides of any regular inscribed polygon be bisected, and the chords of these semi-arcs be drawn, we shall have a regular

inscribed polygon of double the number of sides. Thus, from the square we may pass successively to regular inscribed polygons of 8, 16, 32, etc., sides. To get the corresponding circumscribed polygons, we have merely to draw tangents at the middle points of the arcs subtended by the sides of the inscribed polygons.

Cor. 5. It is plain that each inscribed polygon is but a part of one having twice the number of sides, while each circumscribed polygon is but a part of one having one half the number of sides

BOOK V.

ON THE PROPORTIONALITIES AND MEASUREMENT OF POLYGONS AND CIRCLES.

PROPOSITION I.—THEOREM.

The area of any circle is equal to the product of its radius by one half of its circumference.

Let CA be the radius of a circle, and AB a very small portion of its circumference; then ACB will be a sector. We may conceive the whole circle made up of a great number of such sectors; and when each sector is very small, the arcs AB, BD, etc.,

each one taken separately, may be regarded as right lines; and the sectors CAB, CBD, etc., will be triangles. The triangle, ACB, is measured by the product of the base, AC, multiplied into one half the altitude, AB, (Th. 33, Book I); and the triangle BCD is measured by the product of BC, or its equal, AC, into one half BD; then the area, or measure of the two triangles, or sectors, is the product of AC, multiplied by one half of AB plus one half of BD, and so on for all the sectors that compose the circle; therefore, the area of the circle is measured by the product of the radius into one half the circumference.

PROPOSITION II.—THEOREM.

Circumferences of circles are to one another as their radu, and their areas are to one another as the squares of their radii.

Let *CA* be the radius of a circle, and *Ca* the radius of another circle. Conceive the two circles to be so placed upon each other so as to have a common center.

Let AB be such a certain definite portion of the circumference of the larger circle, that m times AB will represent that cir-

cumference.

But whatever part AB is of the greater circumference, the same part ab is of the smaller; for the two circles have the same number of degrees, and are of course susceptible of division into the same number of sectors. But by proportional triangles we have,

Multiply the last couplet by m, (Th. 4, B. II), and we have

That is, the radius of one circle is to the radius of another, as the circumference of the one is to the circumference of the other.

To prove the second part of the theorem, let C represent the area of the larger circle, and c that of the smaller; now, whatever part the sector CAB is of the circle C, the sector Cab is the corresponding part of the circle c.

That is, C: c :: CAB : Cab, but, $CAB : Cab :: (CA)^2 : (Ca)^2$, (Th. 20, B. II).

Therefore, $C: c :: (CA)^2 : (Ca)^2$, (Th. 6, B. II).

That is, the area of one circle is to the area of another, as

the square of the radius of the one is to the square of the radius of the other.

Hence the theorem.

Cor. If
$$C: c:: (CA)^2: (Ca)^2$$
, then, $C: c:: 4(CA)^2: 4(Ca)^2$.

But $4(CA)^2$ is the square of the diameter of the larger circle, and $4(Ca)^2$ is the square of the diameter of the smaller. Denoting these diameters respectively by D and d, we have,

$$C:c::D^2:d^2.$$

That is, the areas of any two circles are to each other, as the squares of their diameters.

SCHOLIUM.—As the circumference of every circle, great or small, is assumed to be the measure of 360 degrees, if we conceive the circumference to be divided into 360 equal parts, and one such part represented by AB on one circle, or ab on the other, AB and ab will be very near straight lines, and the length of such a line as AB will be greater or less, according to the radius of the circle; but its absolute length cannot be determined until we know the absolute relation between the diameter of a circle and its circumference.

PROPOSITION III.-THEOREM.

When the radius of a circle is unity, its area and semicircumference are numerically equal.

Let R represent the radius of any circle, and the Greek letter, π , the half circumference of a circle whose radius is unity. Since circumferences are to each other as their radii, when the radius is R, the semi-circumference will be expressed by πR .

Let m denote the area of the circle of which R is the radius; then, by Theorem 1, we shall have, for the area of this circle, $\pi R^2 = m$, which, when R = 1, reduces to $\pi = m$.

This equation is to be interpreted as meaning that the semi-circumference contains its unit, the radius, as many

times as the area of the circle contains its unit, the square of the radius.

REWARK. — The celebrated problem of squaring the circle has for its object to find a line, the square on which will be equivalent to the area of a circle of a given diameter; or, in other words, it proposes to find the ratio between the area of a circle and the square of its radius.

An approximate solution only of this problem has been as yet discovered, but the approximation is so close that the exact solution is no longer a question of any practical importance.

PROPOSITION IV .- PROBLEM.

Given, the radius of a circle unity, to find the areas of regular inscribed and circumscribed hexagons.

Conceive a circle described with the radius CA, and in this circle inscribe a regular polygon of six sides (Prob.

28, B. IV), and each side will be equal to the radius CA; hence, the whole perimeter of this polygon must be six times the radius of the circle, or three times the diameter. The chord bd is

bisected by CA. Produce Cb and Cd, and through the point A, draw BD parallel to bd; BD will then be a side of a regular polygon of six sides, circumscribed about the circle, and we can compute the length of this line, BD, as follows: The two triangles, Cbd and CBD, are equiangular, by construction; therefore,

Now, let us assume CA = Cd = the radius of the circle, equal unity; then bd = 1, and the preceding proportion becomes

$$Ca:1::1:BD$$
 (1)

In the right-angled triangle Cad, we have,

That is,
$$(Ca)^2 + (ad)^2 = (Cd)^2$$
, (Th. 39, B. I).
That is, $(Ca)^2 + \frac{1}{4} = 1$, because $Cd = 1$, and $ad = \frac{1}{2}$.

Whence, $Ca = \frac{1}{2} \sqrt{3}$. This value of Ca, substituted in proportion (1), gives

$$\frac{1}{2}\sqrt{3}:1::1:BD$$
; hence, $B.D = \sqrt{\frac{2}{3}}$.

But the area of the triangle Cbd is equal to bd (= 1,) multiplied by $\frac{1}{2}Ca = \frac{1}{4}\sqrt{3}$; and the area of the triangle CBD is equal to BD multiplied by $\frac{1}{2}CA$.

Whence, area,
$$Cbd = \frac{1}{4} \sqrt{3}$$
, and, area, $CBD = \frac{1}{\sqrt{3}}$.

But the area of the inscribed polygon is six times that of the triangle *Cbd*, and the area of the circumscribed polygon is six times that of the triangle *CBD*.

Let the area of the inscribed polygon be represented by p, and that of the circumscribed polygon by P.

Then
$$p = \frac{3}{2} \sqrt{3}$$
, and $P = \frac{6}{\sqrt{3}} = \frac{2 \times 3}{\sqrt{3}} = 2\sqrt{3}$.

Whence
$$p:P::\frac{3}{2}\sqrt{3}:2\sqrt{3}::\frac{3}{2}:2::3:4::9:12$$

$$p = \frac{8}{2}\sqrt{3} = 2.59807621$$
. $P = 2\sqrt{3} = 3.46410161$.

Now, it is obvious that the area of the circle must be included between the areas of these two polygons, and not far from, but somewhat greater than, their half sum, which is 3.03 +; and this may be regarded as the first approximate value of the area of the circle to the radius unity.

PROPOSITION V.—PROBLEM.

Given, the areas of two regular polygons of the same number of sides, the one inscribed in and the other circumscribed about, the same circle, to find the areas of regular inscribed and circumscribed polygons of double the number of sides.

Let p represent the area of the given inscribed polygon, and P that of the circumscribed polygon of the same

number of sides. Also denote by p' the area of the inscribed polygon of double the number of sides, and by P' that of the corresponding circumscribed polygon. Now, if the arc KAL be some exact part, as one-fourth, one fifth, etc., of the circumference of the circle, of which C is the center and CA the radius, then will KL be the side of a regular inscribed polygon, and the triangle KCL will be the same part of the whole polygon that the arc KAL is of the whole circumference, and the triangle CDB will be a like part of the circumscribed polygon. Draw CA to the point of tangency, and bisect the angles ACB and ACD, by the lines CG and CE, and draw KA.

It is plain that the triangle ACK is an exact part of the inscribed polygon of double the number of sides, and that the $\triangle ECG$ is a like part of the circumscribed polygon of double the number of sides. Represent the area of the $\triangle LCK$ by a, and the area of the $\triangle BCD$ by b, that of the $\triangle ACK$ by x,

and that of the $\triangle ECG$ by y, and suppose the \triangle 's, KCL and DBC, to be each the nth part of their respective polygons.

Then,
$$na = p$$
, $nb = P$, $2nx = p'$, and, $2ny = P'$;
But, by (Th. 33, B. I), we have
$$CM \cdot MK = a \qquad (1)$$

$$CA \cdot AD = b$$
 (2)

$$CA \cdot MK = 2x \quad (3)$$

Multiplying equations (1) and (2), member by member, we have

$$(CM \cdot AD) \times (CA \cdot MK) = ab$$
 (4)

From the similar \triangle 's CMK and C.4D, we have

CM : MK :: CA : AD

whence $CM \cdot AD = CA \cdot MK$

But from equation (3) we see that each member of this last equation is equal to 2x; hence equation (4) becomes

$$2x \cdot 2x = ab$$

If we multiply both members of this by $n^2 = n$, we shall have

$$4n^2x^2 = na.nb = p.P$$

or, taking the square root of both members,

$$2nx = \sqrt{p.P}$$

That is, the area of the inscribed polygon of double the number of sides is a mean proportional between the areas of the given inscribed and circumscribed polygons p and P.

Again, since CE bisects the angle ACD, we have, by, (Th. 24, B. II),

AE : ED :: CA : CD

:: CM: CK

:: CM : CA

hence, AE : AE + ED :: CM : CM + CA.

Multiplying the first couplet of this proportion by CA, and the second by MK, observing that AE + ED = AD, we shall have

$$AE.CA:AD.CA::CM.MK:(CM+CA)MK.$$

But AE.CA measures the area of the $\triangle CEG$, which we have called y, $AD.CA = \triangle CBD = b$, $CM.MK = \triangle CKL = a$, and $(CM + CA)MK = \triangle CKL + 2\triangle CAK = a + 2x$, as is seen from equations (1) and (3). Therefore, the above proportion becomes

$$y:b::a:a+2x.$$

Multiplying the first couplet by 2n, and the second by n, we shall have

That is, P': 2nb :: na : na + 2nx P': 2P :: p : p + p'whence, $P' = \frac{2Pp}{p + p'}$

and as the value of p' has been previously found equal to \sqrt{Pp} , the value of P' is known from this last equation, and the problem is completely solved.

PROPOSITION VI.-PROBLEM.

To determine the approximate numerical value of the area of a circle, when the radius is unity.

We have now found, (Prob. 4), the areas of regular inscribed and circumscribed hexagons, when the radius of the circle is taken as the unit; and Prob. 5 gives us formulæ for computing from these the areas of regular inscribed and circumscribed polygons of twelve sides, and from these last we may pass to polygons of twenty-four sides, and so on, without limit. Now, it is evident that, as the number of sides of the inscribed polygon is increased, the polygon itself will increase, gradually approaching the circle, which it can never surpass. And it is equally evident that, as the number of sides of the circumscribed polygon is increased, the polygon itself will decrease, gradually approaching the circle, less than which it can never become.

The circle being included between any two corresponding inscribed and circumscribed polygons, it will differ from either less than they differ from each other; and the area of either polygon may then be taken as the area of the circle, from which it will differ by an amount less than the difference between the polygons.

It is also plain that, as the areas of the polygons approach equality, their perimeters will approach coincidence with each other, and with the circumference of the circle.

Assuming the areas already found for the inscribed and circumscribed hexagons, and applying the formulæ of Prob. 5 to them and to the successive results obtained, we may construct the following table:

NUMBER OF SIDES.		INSCRIBED POLYGONS.	CIRCUMSCRIBED POLYGONS.	
6	$\frac{3}{2}$	$\sqrt{3} = 2.59807621$	$2\sqrt{3}$ =3.46410161	
12		3 = 3.0000000	$\frac{12}{2+\sqrt{3}} = 3.2153904$	
24	$\frac{6}{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2$	${\sqrt{3}} = 3.1058286$	8.1596602	
4 8		3.1326287	3.1460863	
96		3.1393554	3.1427106	
192		3.1410328	3.1418712	
384		3.1414519	3.1416616	
768		3.1415568	3.1416092	
1536		3.1415829	3.1415963	
3072		3.1415895	3.1415929	
6144		3.1415912	3.1415927	

Thus we have found, that when the radius of a circle is 1, the semi-circumference must be more than 3.1415912, and less than 3.1415927; and this is as accurate as can be determined with the small number of decimals here used. To be more accurate we must have more decimal places, and go through a very tedious mechanical operation; but this is not necessary, for the result is well known, and is 3.1415926535897, plus other decimal places to the 100th, without termination. This result was discovered through the aid of an infinite series in the Differential and Integral Calculus.

The number, 3.1416, is the one generally used in practice, as it is much more convenient than a greater number of decimals, and it is sufficiently accurate for all ordinary purposes.

In analytical expressions it has become a general custom with mathematicians to represent this number by the Greek letter π , and, therefore, when any diameter of a circle is represented by D, the circumference of the same circle must be πD . If the radius of a circle is represented by R, the circumference must be represented by $2\pi R$.

SCHOLIUM. — The side of a regular inscribed hexagon subtends an arc of 60°, and the side of a regular polygon of twelve sides subtends an arc of 30°; and so on, the length of the arc subtended by the sides of the polygons, varying inversely with the number of sides.

Angles are measured by the arcs of circles included between their sides; they may also be measured by the chords of these arcs, or rather by the half chords called *sines* in Trigonometry. For this purpose, it becomes necessary to know the length of the chord of every possible arc of a circle.

PROPOSITION VII.—PROBLEM.

Given, the chord of any arc, to find the chord of one half that arc, the radius of the circle being unity.

Let FE be the given chord, and draw the radii CA and CE, the first perpendicular to FE, and the second to its extremity, E.

Denote FE by 2c, and the chord of the half arc AE by x.

Then, in the right-angled triangle, DCE, we have $\overline{DC^2} = \overline{CE}^2 - \overline{DE}^2$. Whence, since CE = 1, $DC = \sqrt{1 - c^2}$.

If from CA = 1 we subtract DC, we shall have AD. That is, $AD = 1 - \sqrt{1 - c^2}$; but $AD^2 + \overline{DE}^2 = \overline{AE}^2$, and $\overline{AD}^2 = 2 - 2\sqrt{1 - c^2} - c^2$. Adding to the first member of this last equation \overline{DE}^2 , and to the second its value c^2 , we have

$$\overline{AD}^2 + \overline{DE}^2 = 2 - 2\sqrt{1 - c^2}$$
.

Whence, $AE = \sqrt{2-2\sqrt{1-c^2}}$, the value sought. By applying this formula successively to any known chord, we can find the chord of one half the arc, that of half of the half, and so on, to the chords of the most minute arcs.

Application.

The greatest chord in a circle is its diameter, which is 2 when the radius is 1; therefore, we may commence by making 2c = 2, and c = 1.

Then, $AE = \sqrt{2-2\sqrt{1-c^2}} = \sqrt{2-2\sqrt{1-1}} = \sqrt{2} = 1.41421356$, which is the chord of 90°.

Now make 2c = 1.41421356, and $c = .70710678 = \frac{1}{4}\sqrt{2}$. We shall then have,

chord of
$$45^{\circ} = \sqrt{2 - \sqrt{2}} = \sqrt{2 - 1.41421356} = \sqrt{.58578644} = .7653 + .$$

Again, placing 2c=.7653+, and applying the formula, we can obtain the chord of 22° 30′, and from this the chord of 11° 15′, and so on, as far as we please.

We may take, for another starting point, the chord of 60°, which is known to be equal to the radius of the circle, (Prob. 26, B. IV). If, as above, we make successive applications of the formula, putting first 2c = 1, we shall arrive at the results in the following

TABLE.

Chord	of	60°,	=	l of	i a	circumference,	1.0000000000
"	"	80°,	=	1 2	"	"	.5176380902
"	"	15°,	=	24	"	"	.2610523842
"	"	7° 30′,	=	1 48	"	u	.1308062583
"	"	3° 45′,	=		"	u	.0654381655
"	"	1° 52′ 30″,	=		"	"	.0327234632
"	"	56′ 15″,	= ;		"	"	.0163622792
"	"	28′ 7″ 30‴,	= ,	1 7 R R	"	"	.0081812080
"	"	14' 3" 45",		1 53 6	"	"	.0040906112
46	"	7' 1" 52½",		1 072		"	.0020453068
		etc.		etc.			

It is obvious that an arc so small as seven minutes of a degree can differ but very little from its chord; therefore, if we take .002045307 to be the true value of the $\frac{1}{3072}$ of the circumference, the whole circumference must be the

product of .002045307 by 3072, which is 6.283185104 = circumference whose radius is unity. The half of this, 3.141592552, is the semi-circumference, the more exact value of which, as stated, (Prop. 6), is 3.141592653.

The value of the half circumference being now determined, if that of any arc whatever be required, we have merely to divide 3.141592, etc., by 10800, the number of minutes in a semi-circumference, and multiply the quotient by the number of minutes in the arc whose length is required.

But this investigation has been carried far enough for our present purposes. It will be resumed under the subject of Trigonometry.

We insert the following beautiful theorem for the trisection of an arc, although not necessary for practical application. Those not acquainted with cubic equations may omit it.

PROPOSITION VIII.—THEOREM.

Given, the chord of any arc, to determine the chord of one third of such arc.

Let AE be the given chord, and conceive its arc divided into three equal parts, as represented by AB, BD, and DE.

Through the center draw BCG, and draw AB. The two \triangle 's, CAB and ABF, are equiangular; for, the angle FAB, being at the circumference, is

measured by one half the arc BE, which is equal to AB, and the angle BCA, being at the center, is measured by the arc AB; therefore, the angle FAB = the angle BCA; but the angle CBA or FBA, is common to both triangles; therefore, the third angle, CAB, of the one triangle, is equal to the third angle, AFB, of the other,

(Th. 12, B. I, Cor. 2), and the two triangles are equiangular and similar.

But the \triangle ACB is isosceles; therefore, the \triangle AFB is also isosceles, and AB = AF, and we have the following proportions:

CA:AB::AB:BF.

Now, let AE = c, AB = x, AC = 1. Then AF = x, and EF = c - x, and the proportion becomes,

1:
$$x :: x : BF$$
. Hence, $BF = x^{\bullet}$.

Also,
$$FG = 2 - x^2$$
.

As AE and BG are two chords intersecting each other at the point F, we have,

$$GF \times FB = AF \times FE$$
, (Th. 17, B. III).

That is,
$$(2 - x^2) x^2 = x (c - x)$$
;
or, $x^3 - 3x = -c$.

If we suppose the arc AE to be 60 degrees, then c=1, and the equation becomes $x^3-3x=-1$; a cubic equation, easily resolved by Horner's method, (Robinson's New University Algebra, Art. 464), giving x=.347296+ the chord of 20°. This again may be taken for the value of c, and a second solution will give the chord of 6° 40′, and so on, trisecting successively as many times as we please.

PRACTICAL PROBLEMS.

The theorems and problems with which we have been thus far occupied, relate to plane figures; that is, to figures all of whose parts are situated in the same plane. It yet remains for us to investigate the intersections and relative positions of planes; the relations and positions of lines with reference to planes in which they are not contained; and the measurements, relations, and properties of solids, or volumes. But before we proceed to this, it is deemed advisable to give some practical problems for the purpose of exercising the powers of the student,

and of fixing in his mind those general geometrical principles with which we must now suppose him to be acquainted.

- 1. The base of an isosceles triangle is 6, and the opposite angle is 60°; required the length of each of the other two equal sides, and the number of degrees in each of the other angles.
- 2. One angle of a right-angled triangle is 30°; what is the other angle? Also, the least side is 12, what is the hypotenuse?
 - Ans. { The hypotenuse is 24, the double of the least side. Why?
- 3. The perpendicular distance between two parallel lines is 10; what angles must a line of 20 make with these parallels to extend exactly from the one to the other?

 Ans. The angles must be 30° and 150°.
- 4. The perpendicular distance between two parallels is 20 feet, and a line is drawn across them at an angle of 45°; what is its length between the parallels?

Ans. $20\sqrt{2}$.

5. Two parallels are 8 feet asunder, and from a point in one of the parallels two lines are drawn to meet the other; the length of one of these lines is 10 feet, and that of the other 15 feet; what is the distance between the points at which they meet the other parallel?

Ans. 6.69 ft., or 18.69 ft. (See Th. 39, B. I).

6. Two parallels are 12 feet asunder, and, from a point on one of them, two lines, the one 20 feet and the other 18 feet in length, are drawn to the other parallel; what is the distance between the two lines on the other parallel, and what is the area of the triangle so formed?

Ans. { The distance on the other parallel is 29.416 feet, or 2.584 feet; and the area of the triangle is 176.496, or 15.504 square feet.

7. The diameter of a circle is 12, and a chord of the

circle is 4; what is the length of the perpendicular drawn from the center to this chord? (See Th. 3, B. III).

Ans. $4\sqrt{2}$.

8. Two parallel chords in a circle were measured and found to be 8 feet each, and their distance asunder was 6 feet; what was the radius of the circle?

Ans. 5 feet.

9. Two chords on opposite sides of the center of a circle are parallel, and one of them has a length of 16 and the other of 12 feet, the distance between them being 14 feet. What is the diameter of the circle?

Ans. 20 feet.

- 10. An isosceles triangle has its two equal sides, 15 each, and its base 10. What must be the altitude of a right-angled triangle on the same base, and having au equal area?
- 11. From the extremities of the base of any triangle, draw lines bisecting the other sides; these two lines intersecting within the triangle, will form another triangle on the same base. How will the area of this new triangle compare with that of the whole triangle?

Ans. Their areas will be as 3 to 1.

12. Two parallel chords on the same side of the center of a circle, whose diameter is 32, are measured and found to be, the one 20, and the other 8. How far are they as under?

Ans. $\sqrt{240} - \sqrt{156} = 3 + ...$

If we suppose the two chords to be on opposite sides of the center, their distance apart will then be $\sqrt{240} + \sqrt{156} = 15.49 + 12.49 = 27.98$.

- 13. The longer of the two parallel sides of a trapezoid is 12, the shorter 8, and their distance asunder 5. What is the area of the trapezoid? and if we produce the two inclined sides until they meet, what will be the area of the triangle so formed?
- Ans. Area of trapezoid, 50; area of triangle, 40; area of triangle and trapezoid, 90.

14. The base of a triangle is 697, one of the sides is 534, and the other 813. If a line be drawn bisecting the angle opposite the base, into what two parts will the bisecting line divide the base? (See Th. 24, B. II).

15. Draw three horizontal parallels, making the distance between the two upper parallels 7, and that between the middle and lower parallels 9; then place between the upper parallels a line equal to 10, and from the point in which it meets the middle parallel draw to the lower a line equal to 11, and join the point in which this last line meets the lower parallel, with the point in the upper parallel, from which the line 10 was drawn. Required the length of this line, and the area of the triangle formed by it and the two lines 10 and 11.

The adjoining figure will illustrate. Let A be the point on the upper parallel from which the line 10 is drawn. Then, AF = 7, AB = 10,F $FB = \sqrt{100 - 49} =$ $\sqrt{51}$. BH = FD = 9, BC $= 11, HC = \sqrt{121 - 81}$ $=\sqrt{40}$. Whence, $DC = \sqrt{51}$

The area of the triangle, ABC, can be determined by first find. ing the area of the trapezoid, ABHD, then the area of the triangle, BHC, and from their sum subtracting the area of the triangle, ADC.

16. Construct a triangle on a base of 400, one of the angles at the base being 80°, and the other 70°; and

+ √40.

determine the third angle, and the area of the triangle thus constructed.

Ans. The third angle is 30°, and as nearly as our scale of equal parts can determine for us, the side opposite the angle 80° is 787, and that opposite 70° is 740.

The exact solution of problems like the last, except in a few particular cases, requires a knowledge of certain lines depending on the angles of the triangle. The properties and values of these lines are investigated in trigonometry; and as we are not yet supposed to be acquainted with them, we must be content with the approximate solutions obtained by the constructions and measurements made with the plane scale.

17. If we call the mean radius of the earth 1, the mean distance of the moon will be 60; and as the mean distance of the sun is 400 times the distance of the moon, its distance will be 400 times 60. The sun and moon appear to have the same diameter; supposing, then, the real diameter of the moon to be 2160 miles, what must be that of the sun?

Let E be the center of the earth, M that of the moon, and S that of the sun, and suppose ENP to be a line from the center of the earth, touching the moon and the sun.

Then, EM : MN :: ES : SP; but MN is the radius of the moon, and SP that of the sun. Mu tiplying the consequents by 2, the above proportion becomes

EM: 2MN :: ES :: 2SP; or in numbers, $60: 2160 :: 400 \times 60: 2SP;$ whence, 2SP = sun's diameter = 864000 miles, Ans.

18. In Problem 15, suppose BC to be drawn on the other side of BH, what, then, will be the value of AC, and what the area of the triangle ACB?

Ans
$$\begin{cases} AC = 16,021; \\ \text{Area of triangle, } \frac{1}{2}(9\sqrt{51} + 7\sqrt{40}). \end{cases}$$

- 19. A man standing 40 feet from a building which was 24 feet wide, observed that when he closed one eye, the width of the building just eclipsed or hid from view 90 rods of fence which was parallel to the width of the building; what was the distance from the eye of the observer to the fefice?

 Ans. 2475 feet.
- 20. Taking the same data as in the last problem, except that we will now suppose the direction of the fence to be inclined at an angle of 45° to the side of the building which we see; what, in this case, must be the distance between the eye of the observer and the remoter point of the fence?

Let HF be the width of the house, E the position of the eye, and AB that of the fence. Draw BD perpendicular to EA produced; then, since the triangle ABD is right-angled and isosceles, we have AD = DB, and $2\overline{AD^2} = \overline{AB^2} = (90)^2$; BD = 63.64 rods, and the similar triangles EFH and EDB give the proportion

$$HF: EF:: BD: ED = 1750.1 \text{ feet};$$

and from this we find

$$\overline{EB}^2 = \overline{ED}^2 + \overline{BD}^2 = (63.64 \times \frac{83}{2})^2 + (1750.1)^2$$

Whence $EB = 2040.94 + Ans$.

21. In a right-angled triangle, ABC, we have AB = 493, AC = 1425, and BC = 1338; it is required to divide this triangle into parts by a line parallel to AB, whose areas are to each other as 1 is to 3. How will the sides AC and BC be divided by this line? (See Th. 20, B. II).

Ans. Into equal parts.

22. In a right-angled triangle, ABC, right-angled at B, the base AB is 320, and the angle A is 60°; required the remaining angle and the other sides.

Ans. { The angle
$$C = 30^{\circ}$$
; $AC = 640$; $BC = 554.24$.

23. A hunter, wishing to determine his distance from a village in sight, took a point and from it laid off two lines in the direction of two steeples, which he supposed equally distant from him, and which he knew to be 100 rods asunder. At the distance of 50 feet on each line from the common point, he measured the distance between the lines, and found it to be 5 feet 8 inches. How far was he from the steeples?

5 ft. 8 in.: 100 rods:: 50 ft.: distance. or, $68:100 \times \frac{33}{2} \times 12::50$: distance.

Ans. { 14,559 feet, or nearly 3 miles.}

24. A person is in front of a building which he knows to be 160 feet long, and he finds that it covers 10 minutes of a degree; that is, he finds that the two lines drawn from his eye to the extremities of the building include an angle of 10 minutes. What is his distance from the building?

Ans.

55,004 feet, or more than 10 miles.

REMARK.—The questions of distance, with which we are at present occupied, depend for their solution on the properties of similar triangles. In the preceding example we apparently have but one triangle, but we have in fact two; the second being formed by the distances unity on the lines drawn from the eye of the observer, and the line which connects the extremities of these units of distance. This last line may be regarded as the chord of the arc 10 minutes to the radius unity. We have seen that the length of the arc 180° to the radius 1, is 3.1415926; hence the chord of 1° or 60′ is 0.017453, and of 10′ it must be 0.0029089. Therefore, by similar triangles, we have

$$0.0029089:160::1:Ans. = \frac{160000}{2.9089}.$$

25. In the triangle, ABC, we have given the angles $A = 32^{\circ}$, and $B = 84^{\circ}$. The side AB is produced, and the exterior angle CBD thus formed, is bisected by the line BE, and the angle A is also bisected by the line AE, BE and AE meeting in the point E. What is the angle C, and what is the relation between the angles C and E?

Ans.
$$C = 64^{\circ}$$
; $E = \frac{1}{2}$ C.

26. Suppose a line to be drawn in any direction between two parallels. Bisect the two interior angles thus formed on either side of the connecting line, and prove that the bisecting lines meet each other at right angles, and that they are the sides of a right-angled triangle of which the line connecting the parallels is the hypotenuse.

27. If the two diagonals of a trapezoid be drawn, show that two similar triangles will be formed, the parallel sides of the trapezoid being homologous sides of the triangles. What will be the relative areas of these triangles?

Ans. $\begin{cases} \text{The triangles will be to each other} \\ \text{as the squares on the parallel sides} \\ \text{of the trapezoid.} \end{cases}$

28. If from the extremities of the base of any triangle, lines be drawn to any point within the triangle, forming with the base another triangle; how will the vertical angle in this last triangle compare with that in the original triangle?

Ans. { It will be as much greater than the angle in the original triangle as the sum of angles at the base of the new triangle is less than the sum of those at the base of the first.

29. The two parallel sides of a trapezoid are 12 and 20, respectively, and their perpendicular distance is 8. If a line whose length is 14.5 be drawn between the inclined sides and parallel to the parallel sides, what is the area of the trapezoid, and what the area of each part, respectively, into which the trapezoid is divided?

Area of the whole, 128 square units;

"smaller part, 33½ "

larger "94½ "

Dividing line at the distance of 2½ from shorter parallel side.

80. If we assume the diameter of the earth to be 13*

7956 miles, and the eye of an observer be 40 feet above the level of the sea, how far distant will an object be, that is just visible on the earth's surface. (Employ Th. 18, B. III, after reducing miles to feet.)

Ans. 40992 feet = 7 miles 4032 feet.

- 31. The diameter of a circle is 4; what is the area of the inscribed equilateral triangle?

 Ans. $3\sqrt{3}$.
- 32. Three brothers, whose residences are at the vertices of a triangular area, the sides of which are severally 10, 11, and 12 chains, wish to dig a well which shall be at the same distance from the residence of each. Determine the point for the well, and its distance from their residences.

REMARK. — Construct a triangle, the sides of which are, respectively, 10, 11, and 12. The sides of this triangle will be the chords of a circle whose radius is the required distance. To find the center of this circle, bisect either two of the sides of the triangle by perpendiculars, and their intersection will be the center of the circle, and the location of the well.

Ans. The well is distant 6.405 chains, nearly, from each residence.

33. The base of an isosceles triangle is 12, and the equal sides are 20 each. What is the length of the perpendicular from the vertex to the base; and what the area of the triangle?

Ans. Perpendicular, 19.07; area, $(19.07) \times 6$.

34. The hypotenuse of a right-angled triangle is 45 inches, and the difference between the two sides is 8.45 inches. Construct the triangle.

Suppose the triangle drawn and represented by ABC, DC being the difference between the two sides.

Now, by inspection, we discover the steps to be taken for the construction of the triangle As AD = AB,

the angle ADB, must be equal to the angle DBA, and each equal to 45° .

Therefore, draw any line, AC, and from an assumed point in it as D, draw BD, making the angle $ADB = 45^{\circ}$. Take from a scale of equal parts, 8.45 inches, and lay them off from D to C, and with C as a center, and CB = 45 inches as a radius, describe an arc cutting BD in B. Draw CB, and from B, draw BA at right angles to AC; then is ABC the triangle sought.

Ans. AB = 27.3; AC = 35.76, when carefully constructed.

35. Taking the same triangle as in the last problem, if we draw a line bisecting the right angle, where will it meet the hypotenuse?

Ans. 19.5 from B; and 25.5 from C.

36. The diameters of the hind and fore wheels of a carriage, are 5 and 4 feet, respectively; and their centers are 6 feet asunder. At what distance from the fore wheels will the line, passing through their centers, meet the ground, which is supposed level?

Ans. 24 feet.

37. If the hypotenuse of a right-angled triangle is 35, and the side of its inscribed square 12, what are its sides?

Ans. 28 and 21.

Ans. 20 and 21.

38. What are the sides of a right-angled triangle having the least hypotenuse, in which if a square be inscribed, its side will be 12?

Ans. { The sides are equal to 24 each, and the least hypotenuse is double the diagonal of the square.

39. The radius of a circle is 25; what is the area of a sector of 50°?

REMARK. — First find the length of an arc of 50° in a circle whose radius is unity. Then 25 times that will be the length of an arc of the same number of degrees in a circle of which the radius is 25.

Length of arc 1° radius unity = $\frac{3.14159265}{180}$.

" " 50° " " = $\frac{1.04719755}{6} \times 5$.

Area of sector = $\frac{1.04719755}{6} \times 125 \times \frac{25}{2} = 2727077$. Ans.

BOOK VI.

ON THE INTERSECTIONS OF PLANES, AND THE RELATIVE POSITIONS OF PLANES AND OF PLANES AND LINES.

DEFINITIONS.

A Plane has been already defined to be a surface, such that the straight line which joins any two of its points will lie entirely in that surface. (Def. 9, page 9.)

- 1. The Intersection or Common Section of two planes is the line in which they meet.
- 2. A Perpendicular to a Plane is a line which makes right angles with every line drawn in the plane through the point in which the perpendicular meets it; and, conversely, the plane is perpendicular to the line. The point in which the perpendicular meets the plane is called the foot of the perpendicular.
- 3. A Diedral Angle is the separation or divergence of two planes proceeding from a common line, and is measured by the angle included between two lines drawn one in each plane, perpendicular to their common section at the same point.

The common section of the two planes is called the edge of the angle, and the planes are its faces.

- 4. Two Planes are perpendicular to each other, when their diedral angle is a right angle.
- 5. A Straight Line is parallel to a plane, when it will not meet the plane, however far produced.

- 6. Two Planes are parallel, when they will not intersect, however far produced in all directions.
- 7. A Solid or Polyedral Angle is the separation or divergence of three or more plane angles, proceeding from a common point, the two sides of each of the plane angles being the edges of diedral angles formed by these plane angles.

The common point from which the plane angles proceed is called the *vertex* of the solid angle, and the intersections of its bounding planes are called its *edges*.

8. A Triedral Angle is a solid angle formed by three plane angles.

THEOREM I.

Two straight lines which intersect each other, two parallel straight lines, and three points not in the same straight line, will severally determine the position of a plane.

Let AB and AC be two lines intersecting each other at the point A; then will these lines determine a plane. For, conceive Aa plane to be passed through AB, and turned about AB as an axis

until it contains the point C in the line AC. The plane, in this position, contains the lines AB and AC, and will contain them in no other. Again, let AB and DE be two parallel straight lines, and take at pleasure two points, A and B, in the one, and two points, D and E, in the other, and draw AE and BD. The last lines, AB, AE, or the lines AB, DB from what precedes, determine the position of the parallels AB, DE. And again, if A, B, and C be three points not in the same straight line, and we draw the lines AB and AC, it follows, from the first part of this proposition, that these points fix the plane.

Cor. A straight line and a point out of determine the position of a plane.

THEOREM II.

If two planes meet each other, their common points will be found in, and form one straight line.

Let B and D be any two of the points common to the two planes, and join these points by the straight line BD; then will BD contain all the points common to the two planes,

and be their intersection. For, suppose the planes have a common point out of the line BD; then, (Cor. Th. 1), since a straight line and a point out of it determine a plane, there would be two planes determined by this one line and single point out of it, which is absurd. Hence the common section of two planes is a straight line.

REMARK.—The truth of this proposition is implicitly assumed in the definitions of this Book.

THEOREM III.

If a straight line stand at right angles to each of two other straight lines at their point of intersection, it will be at right angles to the plane of those lines.

Let AB stand at right angles to EF and CD, at their point of intersection A. Then AB will be at right angles to any other line drawn through A in the plane, passing through EF, CD, and, of course, at right angles to the plane itself. (Def. 2.)

Through A, draw any line, AG, in the plane EF, CD, and from any point G, draw GH parallel to AD. Take HF = AH, and join F and G and produce FG to D. Because HG is parallel to AD, we have

FH: HA :: FG : GD.

But, in this proportion, the first couplet is a ratic of equality; therefore the last couplet is also a ratio of equality,

That is, FG = GD, or the line FD is bisected in G. Draw BD, BG, and BF.

Now, in the triangle AFD, as the base FD is bisected in G, we have,

$$\overline{A}\overline{F}^2 + \overline{AD}^2 = 2\overline{AG}^2 + 2\overline{GF}^2$$
 (1) (Th. 42, B. I).

Also, as DF is the base of the $\triangle BDF$, we have by the same theorem,

$$\overline{BF}^2 + \overline{BD}^2 = 2\overline{BG}^2 + 2\overline{GF}^2 \tag{2}$$

By subtracting (1) from (2), and observing that \overline{BF}^2 — $\overline{AF}^2 = \overline{AB}^2$, because BAF is a right angle; and $\overline{BD}^2 - \overline{AD}^2 = \overline{AB}^2$, because BAD is a right angle, we shall have,

$$\overline{AB}^2 + \overline{AB}^2 = 2\overline{BG}^2 - 2\overline{AG}^2.$$

Dividing by 2, and transposing \overline{AG}^2 , and we have,

$$\overline{AB}^2 + \overline{AG}^2 = \overline{BG}^2$$
.

This last equation shows that BAG is a right angle. But AG is any line drawn through A, in the plane EF, CD; therefore AB is at right angles to any line in the plane, and, of course, at right angles to the plane itself

- Cor. 1. The perpendicular BA is shorter than any of the oblique lines BF, BG, or BD, drawn from the point B to the plane; hence it is the shortest distance from a point to a plane.
- Cor. 2. But one perpendicular can be erected to a plane from a given point in the plane; for, if there could be two, the plane of these perpendiculars would intersect the given plane in some line, as AG, and both the perpendiculars would be at right angles to this intersection at the same point, which is impossible.
- Cor. 3. But one perpendicular can be let fall from a given point out of a plane on the plane; for, if there can

be two, let BG and BA be such perpendiculars, then would the triangle BAG be right angled at both A and G, which is impossible.

THEOREM IV.

If from any point of a perpendicular to a plane, oblique lines be drawn to different points in the plane, those oblique lines which meet the plane at equal distances from the foot of the perpendicular are equal; and those which meet the plane at unequal distances from the foot of the perpendicular are unequal, the greater distances corresponding to the longer oblique lines.

Take any point B in the perpendicular BA to the plane ST, and draw the oblique lines BC, BD, and BE, the points C, D, and E, being equally distant from A, the foot of the perpendicular. Produce AE to F, and

draw BF; then will BC = BD = BE, and BF > BE.

For, the triangles BAC, BAD, and BAE are all right-angled at A, the side BA is common, and AC=AD=AE by construction, hence, (Th. 16, B. I), BC=BD=BE. Moreover, since AF > AE, the oblique line BF > BE.

Cor. If any number of equal oblique lines be drawn from the point B to the plane, they will all meet the plane in the circumference of a circle having the foot of the perpendicular for its center. It follows from this, that, if three points be taken in a plane equally distant from a point out of it, the center of the circle whose circumference passes through these points will be the foot of the perpendicular drawn from the point to the plane.

THEOREM V.

The line which joins any point of a perpendicular to a plane, with the point in which a line in the plane is intersected, at right angles, by a line through the foot of the per pendicular, will be at right angles to the line in the plane

Let AB be perpendicular to the plane ST, and AD a line through its foot at right angles to EF, a line in the plane. Connect D with any point, as B, of the perpendicular; and BD will be perpendicular to EF.

Make DF = DE, and join B to the points E and F. Since DE = DF, and the angles at D are right angles, the oblique lines, AE and AF, are equal; and, since AE = AF, we have, (Th. 4), BE = BF; therefore the line BD has two points, B and D, each equally distant from the extremities E and F of the line EF, and hence BD is perpendicular to EF at its middle point D.

Cor. Since FD is perpendicular to the two lines AD and BD at their intersection, it is perpendicular to their plane ADB, (Th. 3).

SCHOLIUM. — The inclination of a line to a plane is measured by the angle included between the given line and the line which joins the point in which it meets the plane and the foot of the perpendicular drawn from any point of the line to the plane; thus, the angle BFA is the inclination of the line BF to the plane ST.

THEOREM VI.

If either of two parallels is perpendicular to a plane, the other is also perpendicular to the plane.

Let BA and ED be two parallels, of which one, BA, is perpendicular to the plane ST; then will the other also be perpendicular to the same plane.

The two parallels determine a plane which intersects the given plane in AD; through D draw MN perpendicular to AD; then, (Cor., Th. 5,) will MN be perpendicular to the plane BAD, and the angle MDE is

therefore a right angle; but EDA is also a right angle, since BA and ED are parallel, and BAD is a right angle by hypothesis; hence, ED is perpendicular to the two lines MD and AD in the plane ST; it is therefore perpendicular to the plane, (Th. 3).

Cor. 1. The converse of this proposition is also true, that is, if two straight lines are both perpendicular to the same plane, the lines are parallel.

For, suppose BA and ED to be two perpendiculars; if not parallel, draw through D a parallel to BA, and this last line will be perpendicular to the plane; but ED is a perpendicular by hypothesis, and we should have two perpendiculars erected to the plane at the same point, which is impossible, (Cor. 2, Th. 3).

Cor. 2. If two lines lying in the same plane are each parallel to a third line not in the same plane, the two lines are parallel. For, pass a plane perpendicular to the third line, and it will be perpendicular to each of the others; hence they are parallel

THEOREM VII.

A straight line is parallel to a plane, when it is paralles to a line in the plane.

Suppose the line MN to be parallel to the line CD, in the plane ST: then will MN be parallel to the plane ST

For, CD being in the plane ST, and at the same time parallel to MN, it must be the intersection of the plane of these parallels with the plane ST; hence, if MN meet the plane ST, it must do so in the

line *CD*, or *CD* produced; but *MN* and *CD* are parallel, and cannot meet; therefore *MN*, nowever far produced, can have no point in the plane *ST*, and hence, (Def. 5), it is parallel to this plane.

THEOREM VIII.

If two lines are parallel, they will be equally inclined to any given plane.

Let AB and CD be two parallels, and ST any plane met by them in the points A and C; then will the lines AB and CD be equally inclined to the plane ST.

For, take any distance, AB, on one of these parallels, and make CD = AB, and draw AC and BD. From the points B and D let fall the perpendiculars, BE and DF, on the plane; join their feet by the line EF, and draw AE and CF.

Now, since AB is equal and parallel to CD, ABDC is a parallelogram, and BD is equal and parallel to AC, and $^{\bullet}BD$ is parallel to the plane ST, (Th. 7); and, since BE and DF are both perpendicular to this plane, they are parallel; but BD and EF are in the plane of these parallels; and as EF is in the plane ST, and BD is parallel to this plane, these two lines must be parallel and equal, and BDFE is also a parallelogram. Now

we have shown that BD is equal and parallel to AC, and EF equal and parallel to BD; hence, (Cor. 2, Th. 6), EF is equal and parallel to AC, and ACFE is a parallelogram, and AE = CF. The triangles ABE and CDF have, then, the sides of the one equal to the sides of the other, each to each, and their angles are consequently equal; that is, the angle BAE is equal to the argle DCF; but these angles measure the inclination of the lines AB and CD to the plane ST, (Scholium, Th. 5).

SCHOLIUM. — The converse of this proposition is not generally true; that is, straight lines equally inclined to the same plane are not necessarily parallel.

THEOREM IX.

The intersections of two parallel planes by a third plane, are parallel.

Let the planes QR and ST be intersected by the third plane, AD: then will the intersections, AB and CD, be parallel.

Since the lines AB and CD are in the same plane, if

they are not parallel, they will meet if sufficiently produced; but they cannot meet out of the planes QR and ST, in which they are respectively found; therefore, any point common to the lines, must be at the same time common to the planes; and since the planes are parallel,

they have no common point, and the lines, therefore, to not intersect; hence they are parallel.

THEOREM X.

If two planes are perpendicular to the same straight line, they are parallel to each other.

Let QR and ST be two planes, perpendicular to the line AB; then will these planes be parallel.

For, if not parallel, suppose M to be a point in their

hne of intersection, and from this point draw lines to the extremities of the perpendicular AB, thus forming a triangle, MAB. Now, since the line AB is perpendicular to both

planes, it is perpendicular to each of the lines MA and MB, drawn through its feet in the planes, (Def. 2); hence, the triangle has two right angles, which is impossible; the planes cannot therefore meet in any point as M, and are consequently parallel.

Cor. Conversely: The straight line which is perpendicular to one of two parallel planes, is also perpendicular to the other. For, if AB be perpendicular to the plane QR, draw in the other plane, through the point in which the perpendicular meets it, any line, as AC. The plane of the lines AB and AC will intersect the plane QR in the line BD; and since the planes are parallel by hypothesis, the lines AC and BD must be parallel, (Th. 9); but the angle DBA is a right angle; hence, BAC must be a right angle, and the line BA is perpendicular to any line whatever drawn in the plane through the point A; BA is therefore perpendicular to the plane ST.

THEOREM XI.

If two straight lines be drawn in any direction through parallel planes, the planes will cut the lines proportionally.

Conceive three planes to be parallel, as represented in the figure, and take any points, A and B, in the first and third planes, and draw AB, the line passing through the second plane at E.

Also, take any other two points, as C and D, in the first and third planes, and draw CD, the line passing through the second plane at F.

Join the two lines by the diagonal AD, which passes through the second plane at G. Draw BD, EG, GF, and AC. We are now to prove that,

For the sake of brevity, put AG=X, and GD=Y.

As the planes are parallel, BD is parallel to EG; from the two triangles ABD and AEG, we have, (Th. 17, B. II);

$$AE : EB :: X : Y$$
.

Also, as the planes are parallel, GF is parallel to AC, and we have,

By comparing the proportions, and applying Th. 6. B. II, we have

AE : EB :: CF : FD.

THEOREM XII.

If a straight line is perpendicular to a plane, all planes passing through that line will be perpendicular to the plane.

Let MN be a plane, and AB a perpendicular to it. Let BC be any other plane, passing through AB; this plane will be perpendicular to MN.

Let BD be the common intersection of the two planes, and from

the point B, draw in MN BE at right angles to DB.

Then, as AB is perpendicular to the plane MN, it is perpendicular to every line in that plane, passing through

B; (Def. 2,); therefore, ABE is a right angle. But the angle ABE, (Def. 3), measures the inclination of the two planes; therefore, the plane CB is perpendicular to the plane MN; and thus we can show that any other plane, passing through AB, will be perpendicular to MN.

Hence the theorem.

THEOREM XIII.

If two planes are perpendicular to each other, and a line be drawn in one of them perpendicular to their common intersection, it will be perpendicular to the other plane.

Let the two planes, QR and ST, be perpendicular to each other, and draw in QR the line CD at right angles to their common intersection, RV; then will this line be perpendicular to the plane ST.

In the plane ST draw ED, perpendicular to VR at the point D. Then, since the planes QR and ST are perpendicular to each other, the angle CDE is a right angle, and CD is perpendicular to the two lines, ED and VR, passing through

its foot in the plane ST. CD is therefore perpendicular to the plane ST, (Th. 3).

*Cor. Conversely: if we erect a perpendicular to the plane ST, at any point, D, of its intersection with the plane QR, this perpendicular will lie in the plane QR. For, if it be not in this plane, we can draw in the plane the line CD, at right angles to VR; and, from what has been shown above, CD is perpendicular to the plane ST, and we should thus have two perpendiculars erected to the plane, ST, at the same point, which is impossible, (Cor. 2, Th. 3).

THEOREM XIV.

The common intersection of two planes, both of which are perpendicular to a third plane, will also be perpendicular to the third plane.

Let MN be the common intersection of the two planes, QR and VX, both of which are perpendicular to the plane ST; then will MN be perpendicular to the plane ST. For, if we erect a perpendicular to the plane ST, at the point M, it will lie in both planes at the

same time, (Cor. Th. 13); and this perpendicular must therefore be their intersection. Hence the theorem.

THEOREM XV.

Parallel straight lines included between parallel planes, are equal.

Let AB and DC be two parallel lines, included by the two parallel planes, QR and ST; then will AB = DC.

For, the plane AC, of the parallel lines, intersects the planes, QR and ST, in the parallel lines, AD and BC,

(Th. 9); hence ABCD is a parallelogram, and its opposite sides, AB and DC, are equal.

Cor. It follows from this proposition, that parallel planes are everywhere equally distant; for, two perpendiculars drawn at pleasure between the two planes are parallel lines, (Cor. 1, Th. 6), and hence are equal; but these perpendiculars measure the distance between the planes.

THEOREM XVI.

Two planes are parallel when two lines not parallel, lying in the one, are respectively parallel to two lines lying in the other.

Let QR and ST be two planes, the first containing the two lines AB and CD which intersect each other at E, and the second the two lines LM and NO, respectively parallel to AB and CD; then will these planes be parallel.

For, if the two planes

are not parallel, they must intersect when sufficiently produced; and their common section lying in both planes at the same time, would be a line of the plane QR. Now, the lines AB and CD intersect each other by hypothesis; hence one or both of them must meet the common section of the two planes. Suppose AB to meet this common section; then, since AB and LM are parallel, they determine a plane, and AB cannot meet the plane ST in a point out of the line LM; but AB and LM being parallel, have no common point. Hence, neither AB nor CD can meet the common section of the two planes; that is, they have no common section, and are therefore parallel.

Cor. Since two lines which intersect each other, determine a plane, it follows from this proposition, that the plane of two intersecting lines is parallel to the plane of two other intersecting lines respectively parallel to the first lines

THEOREM XVII.

When two intersecting lines are respectively parallel to two other intersecting lines lying in a different plane, the angles formed by the last two lines will be equal to those formed by the first two, each to each, and the planes of the angles will be parallel.

Let QR be the plane of the two lines AB and CD, which intersect each other at the point E, and ST the plane of the two lines LM and NO, respectively parallel to AB and CD; then will the $_BED = _MPO$, and $_BEC = _MPN$, etc., and the planes QR and ST will be parallel.

That the plane of one set of angles is parallel to that of the other, follows from the Corollary to Theorem 16; we have then only to show that the angles are equal, each to each.

Take any points, B and D, on the lines AB and CD, and draw BD. Lay off PM, equal to and in the same direction with EB, and PO, equal to and in the same direction with ED, and draw MO. Now, since the planes QR and ST are parallel, and ED is equal and parallel to PO, EDOP is a parallelogram, and DO is equal and parallel to EP. For the same reason, BM is equal and parallel to EP; therefore, BDOM is a parallelogram, and MO is equal and parallel to BD. Hence the \triangle 's, EBD and PMO, have the sides of the one equal to the sides of the other, each to each; they are therefore equal, and

the $\lfloor MPO =$ the $\vert BED$. In the same manner it can be proved that $\vert BEC = \vert MPN$, etc.

- Cor. 1. The plane of the parallels AB and LM is intersected by the plane of the parallels CD and NO, in the line EP. Now, EB and ED are the intersections of these two planes with the plane QR, and PM and PO are the intersections of the same planes with the parallel plane ST. It has just been proved that the $_BED = _MPO$. Hence, if the diedral angle formed by two planes, be cut by two parallel planes, the intersections of the faces of the diedral angle with one of these planes will include an angle equal to that included by the intersections of the faces with the other plane.
- Cor. 2. The opposite triangles formed by joining the corresponding extremities of three equal and parallel straight lines lying in different planes, will be equal and the planes of the triangles will be parallel.

Let EP, BM, and DO, be three equal and parallel straight lines lying in different planes. By joining their corresponding extremities, we have the triangles EBD and PMO. Now, since EP and BM are equal and parallel, EBMP is a parallelogram, and EB is equal and parallel to PM; in the same manner, we show that ED is equal and parallel to PO, and BD to MO; hence the triangles are equal, having the three sides of the one, respectively, equal to the three sides of the other. That their planes are parallel, follows from Cor., Theorem 16.

THEOREM XVIII.

Any one of the three plane angles bounding a triedral angle, is less than the sum of the other two.

Let A be the vertex of a solid angle, bounded by the three plane angles, BAC, BAD, and DAC; then will any one of these three angles be less than the sum of the

other two. To establish this proposition, we have only to compare the greatest of the three angles with the sum of the other two.

Suppose, then, BAC to be the greatest angle, and draw in its plane B4 the line AE, making the angle CAE equal to the angle CAD. On

AE, take any point, E, and through it draw the line CEB. Take AD, equal to AE, and draw BD and DC.

Now, the two triangles, CAD and CAE, having two sides and the included angle of the one equal to the two sides and included angle of the other, each to each, are equal, and CE = CD; but in the triangle, BDC, BC < BD + DC. Taking EC from the first member of this inequality, and its equal, DC, from the second, we have, BE < BD. In the triangles, BAE and BAD, BA is common, and AE = AD by construction; but the third side, BD, in the one, is greater than the third side, BE, in the other; hence, the angle BAD is greater than the angle BAE, (Th. 22, B. I); that is, BAE < BAD; adding the EAC to the first member of this inequality, and its equal, the DAC, to the other, we have

$$\lfloor BAE + \lfloor EAC \rfloor = BAD + \lfloor DAC$$
.

And, as the $\bigsqcup BAC$ is made up of the angles BAE and EAC, we have, as enunciated,

THEOREM XIX.

The sum of the plane angles forming any solid angle, us always less than four right angles.

Let the planes which form the solid angle at A, be cut by another plane, which we may call the plane of the base, BCDE. Take any point, a, in this plane, and draw aB, aC, aD, aE, etc., thus making as many triangles on

the plane of the base as there are triangular planes forming the solid angle A. Now, since the sum of the angles of every \triangle is two right angles, the sum of all the angles of the \triangle 's which have their vertex in A, is equal to the sum of all angles of the \triangle 's which have their vertex in a. But, the angles BCA + ACD, are, together, greater than

the angles BCa + aCD, or BCD, by the last proposition. That is, the sum of all the angles at the bases of the \triangle 's which have their vertex in A, is greater than the sum of all the angles at the bases of the \triangle 's which have their vertex in a. Therefore, the sum of all the angles at a is greater than the sum of all the angles at A; but the sum of all the angles at a is equal to four right angles; therefore, the sum of all the angles at A is less than four right angles.

THEOREM XX.

If two solid angles are formed by three plane angles respectively equal to each other, the planes which contain the equal angles will be equally inclined to each other.

Let the $_ASC$ =the $_DTF$, the $_ASB$ = the $_DTE$, and the $_BSC$ = the $_ETF$; then will the inclination of the planes, ASC, ASB, be equal to that of the planes, DTF, DTE.

Having taken SB at pleasure, draw BO perpendicular

to the plane ASC; from the point O, at which that perpendicular meets the plane, draw OA and OC, perpendicular to SA and SC; draw AB and BC; next take TE = SB, and draw EP perpendicular to the plane DTF; from the

point P, draw PD and PF, perpendicular to TD and TF; lastly, draw DE and EF.

The triangle SAB, is right-angled at A, and the triangle TDE, at D, (Th. 5); and since the ASB =the $\bot DTE$, we have $\bot SBA = \bot TED$; likewise, SB = TE; therefore, the triangle SAB is equal to the triangle TDE; hence, SA = TD, and AB = DE. In like manner it may be shown that SC = TF, and BC = EF. granted, the quadrilateral SAOC is equal to the quadrilateral TDPF, for, place the angle ASC upon its equal, DTF, and because SA = TD, and SC = TF, the point A will fall on D, and the point C on F; and, at the same time, AO, which is perpendicular to SA, will fall on PD, which is perpendicular to TD, and, in like manner, OC on PF; wherefore, the point O will fall on the point P, and AO will be equal to DP. But the triangles, AOB, DPE, are right angled at O and P; the hypotenuse AB = DE, and the side AO = DP; hence, those triangles are equal, (Cor, Th. 39, B. I), and OAB = |PDE|. The angle OABis the inclination of the two planes, ASB, ASC; the angle PDE is that of the two planes, DTE, DTF; consequently, those two inclinations are equal to each other.

Hence the theorem.

SCHOLIUM 1.— The angles which form the solid angles at S and T, may be of such relative magnitudes, that the perpendiculars, BO and EP, may not fall within the bases, ASC and DTF; but they will always either fall on the bases, or on the planes of the bases produced, and O will have the same relative situation to A, S, and C, as P has to D, T, and F. In case that O and P fall on the planes of the bases produced, the angles BCO and EFP, would be obtuse angles; but the demonstration of the problem would not be varied in the least.

SCHOLIUM 2.—If the plane angles bounding one of the triedral angles be equal to those of the other, each to each, and also be similarly arranged about the triedral angles, these solid angles will be absolutely equal. For it was shown, in the course of the above demonstration, that the quadrilaterals, SAOC and TDPF, were equal; and on being applied, the point O falls on the point P; and since the triangles AOB and DPE are equal, the perpendiculars OB and PE are

also equal. Now, because the plane angles are like arranged about the triedral angles, these perpendiculars lie in the same direction; hence the point B will fall on the point E, and the solid angles will exactly coincide.

SCHOLIUM 3.— When the planes of the equal angles are not like disposed about the triedral angles, it would not be possible to make these triedral angles coincide; and still it would be true that the planes of the equal angles are equally inclined to each other. Hence, these triedral angles have the plane and diedral angles of the one, equal to the plane and diedral angles of the other, each to each, without having of themselves that absolute equality which admits of superposition. Magnitudes which are thus equal in all their component parts, but will not coincide, when applied the one to the other, are said to be symmetrically equal. Thus, two triedral angles, bounded by plane angles equal each to each, but not like placed, are symmetrical triedral angles.

BOOK VII.

SOLID GEOMETRY.

DEFINITIONS.

- 1. A Polyedron is a solid, or volume, bounded on all sides by planes. The bounding planes are called the faces of the polyedron, and their intersections are its edges.
- 2. A Prism is a polyedron, having two of its faces, called bases, equal polygons, whose planes and homologous sides are parallel. The other, or lateral faces, are parallelograms, and constitute the convex surface of the prism.

The bases of a prism are distinguished by the terms, upper and lower; and the altitude of the prism is the per pendicular distance between its bases.

Prisms are denominated triangular, quadrangular, penu angular, etc., according as their bases are triangles, quadrilaterals, pentagons, etc.

- 3. A Right Prism is one in which the planes of the lateral faces are perpendicular to the planes of the bases.
- 4. A Parallelopipedon is a prism whose bases are parallelograms.
- 5. A Rectangular Parallelopipedon is a right parallelopipedon, with rectangular bases.

- 6. A Cube or Hexaedron is a rectangular parallelopipédon, whose faces are all equal squares.
- 7. A Diagonal of a Polyedron is a straight line joining the vertices of two solid angles not adjacent.

8. Similar Polyedrons are those which are bounded by the same number of similar polygons like placed, and whose homologous solid angles are equal.

Similar parts, whether faces, edges, diagonals, or angles, similarly placed in similar polyedrons, are termed homologous.

9. A Pyramid is a polyedron, having for one of its faces, called the base, any polygon whatever, and for its other faces triangles having a common vertex, the sides opposite which, in the several triangles, being the sides of the base of the pyramid.

- 10. The Vertex of a pyramid is the common vertex of the triangular faces.
- 11. The Altitude of a pyramid is the perpendicular distance from its vertex to the plane of its base.
- 12. A Right Pyramid is one whose base is a regular polygon, and whose vertex is in the perpendicular to the base at its center. This perpendicular is called the axis of the pyramid.
- 13. The Slant Height of a right pyramid is the perpendicular distance from the vertex to one of the sides of the base.
- 14. The Frustum of a Pyramid is a portion of the pyramid included between its base and a section made by a plane parallel to the base.

Pyramids, like prisms, are named from the forms of their bases.

15. A Cylinder is a body, having for its ends, or bases, two equal circles, the planes of which are perpendicular to the line joining their centers; the remainder of its surface may be conceived as formed by the motion of a line, which constantly touches the circumferences of the bases, while it remains parallel to the line which joins their centers.

We may otherwise define the cylinder as a body generated by the revolution of a rectangle about one of its sides as an immovable axis.

The sides of the rectangle perpendicular to the axis generate the bases of the cylinder; and the side opposite the axis generates its convex surface. The line joining the centers of the bases of the cylinder is its axis, and is also its altitude.

If, within the base of a cylinder, any polygon be inscribed, and on it, as a base, a right prism be constructed, having for its altitude that of the cylinder, such prism is said to be *inscribed in the cylinder*, and the cylinder is said to *circumscribe the prism*.

Thus, in the last figure, ABCDEc is an inscribed prism, and it is plain that all its lateral edges are contained in the convex surface of the cylinder.

If, about the base of a cylinder, any polygon be circumscribed, and on it, as a base, a right prism be constructed, having for its altitude that of the cylinder, such prism is said to be circumscribed about the cylinder, and the cylinder is said to be inscribed in the prism.

Thus, ABCDEFe is a circum- F scribed prism; and it is plain that

the line, mn, which joins the points of tangency of the sides, EF and ef, with the circumferences of the bases of the cylinder, is common to the convex surfaces of the cylinder and prism.

16. A Cone is a body bounded by a circle and the surface generated by the motion of a straight line, which constantly passes through a point in the perpendicular to the plane of the circle at its center, and the different points in its circumference.

The cone may be otherwise defined as a body gene rated by the revolution of a right-angled triangle about one of its sides as an immovable axis. The other side of the triangle will generate the base of the cone, while the hypotenuse generates the convex surface.

The side about which the generating triangle revolves is the axis of the cone, and is at the same time its altitude.

If, within the base of the cone, any polygon be inscribed, and on it, as a base, a pyramid be constructed, having for its vertex that of the cone, such pyramid is said to be inscribed in the cone, and the cone is said to circumscribe the pyramid.

Thus, in the accompanying figure, V - ABCDE, is an inscribed pyramid, and it is plain that all its lateral edges are contained in the convex surface of the cone.

If, about the base of a cone, any polygon be circumscribed, and on it, as a base, a pyramid be constructed, having

of B y-a g yramid is said to be cone is said to be

for its vertex that of the cone, such pyramid is said to be circumscribed about the cone, and the cone is said to be inscribed in the pyramid.

- 17. The Frustum of a Cone is the portion of the cone that is included between its base and a section made by a plane parallel to the base.
- 18. Similar Cylinders, and also Similar Cones, are such as have their axes proportional to the radii of their bases.
- 19. A Sphere is a body bounded by one uniformly-curved surface, all the points of which are at the same distance from a certain point within, called the *center*.

We may otherwise define the sphere as a body generated by the revolution of a semicircle about its diameter as an immovable axis.

- 20. A Spherical Sector is that portion of a sphere which is included between the surfaces of two cones having a common axis, and their vertices at the center of the sphere. Or, it is that portion of the sphere which is generated by a sector of the generating semicircle.
- 21. The Radius of a Sphere is a straight line drawn from the

center to any point in the surface; and the diameter is a straight line drawn through the center, and limited on both sides by the surface.

All the diameters of a sphere are equal, each being twice the radius.

- 22. A Tangent Plane to a sphere is one which has a single point in the surface of the sphere, all the others being without it.
- 23. A Secant Plane to a sphere is one which has more than one point in the surface of the sphere, and lies partly within and partly without it.

Assuming, what will presently be proved, that the intersection of a sphere by a plane is a circle.

24. A Small Circle of a sphere is one whose plane does not pass through its center; and

- 25. A Great Circle of a sphere is one whose plane passes through the center of the sphere.
- 26. A Zone of a sphere is the portion of its surface included between the circumferences of any two of its parallel circles, called the *bases* of the zone. When the plane of one of these circles becomes tangent to the sphere, the zone has a single base.
- 27. A Spherical Segment is a portion of the volume of a sphere included between any two of its parallel circles, called the bases of the segment.

The altitude of a zone, or of a segment, of a sphere, is the perpendicular distance between the planes of its bases.

- 28. The area of a surface is measured by the product of its *length* and *breadth*, and these dimensions are always conceived to be exactly at right angles to each other.
- 29. In a similar manner, solids are measured by the product of their *length*, *breadth*, and *height*, when all their dimensions are at right angles to each other.

The product of the length and breadth of a solid, is the measure of the *surface* of its base.

Let P, in the annexed figure, represent the measuring unit, and AF the rectangular solid to be measured.

A side of P is one unit in length, one in breadth, and one in height; one inch, one fact one word or englished

foot, one yard, or any other unit that may be taken.

Then, $1 \times 1 \times 1 = 1$, the unit cube.

Now, if the base of the solid, AC, is, as here represented, 5 units in length and 2 in breadth, it is obvious that $(5 \times 2 = 10)$, 10 units, each equal to P, can be placed on the base of AC, and no more; and as each of these units will occupy a unit of altitude, therefore, 2 units of

altitude will contain 20 solid units, 3 units of altitude, 30 solid units, and so on; or, in general terms, the number of square units in the base multiplied by the linear units in perpendicular altitude, will give the solid units in any rectangular solid.

THEOREM I.

If the three plane faces bounding a solid anyle of one prism be equal to the three plane faces bounding a solid angle of another, each to each, and similarly disposed, the prisms will be equal.

Suppose A and a to be the vertices of two solid angles, bounded by equal and similarly placed faces; then will the prisms, ABCDE-N and abcde-n, be equal.

For, if we place the base, abcde, upon its equal, the base ABCDE, they will coincide; and since the solid angles, whose vertices are A and a, are equal, the lines ab, ae, and ap, respectively coincide with AB,

AE, and AP; but the faces, al and ao, of the one prism, are equal, each to each, to the faces, AL and AO, of the other; therefore pl and po coincide with PL and PO, and the upper bases of the prisms also coincide: hence, not only the bases, but all the lateral faces of the two prisms coincide, and the prisms are equal.

Cor. If the two prisms are right, and have equal bases and altitudes, they are equal. For, in this case, the rectangular faces, al and ao, of the one, are respectively equal to the rectangular faces, AL and AO, of the other; and hence the three faces bounding a triedral angle in the one, are equal and like placed, to the faces bounding a triedral angle in the other

THEOREM II.

The opposite faces of any parallelopipedon are equal, and their planes are parallel.

Let ABCD—E be any parallelopipedon; then will its opposite faces be equal, and their planes will be parallel.

The bases ABCD and FEGH are equal, and their planes are parallel, by definitions 2 and 4 of this Book; it remains for us, therefore, only to show that any two of the opposite lateral faces are equal and parallel.

Since all the faces of the parallelopipedon are parallelograms, AB is equal and parallel to DC, and AH is also equal and parallel to DF; hence the angles HAB and FDC are equal, and their planes are parallel, (Th. 17, B. VI), and the two parallelograms, HABG and FDCE, having two adjacent sides and the included angle of the one equal to the two adjacent sides and included angle of the other, are equal.

Cor. 1 Hence, of the six faces of the parallelopipedon, any two lying opposite may be taken as the bases.

Cor. 2. The four diagonals of a parallelopipedon mutually bisect each other. For, if we draw AC and HE, we shall form the parallelogram ACEH, of which the diagonals are AE and HC, and these diagonals are at the same time diagonals of the parallelopipedon; but the diagonals of a parallelogram mutually bisect each other. Now, if the diagonal FB be drawn, it and HC will bisect each other, since they are diagonals of the parallelogram FHBC. In like manner we can show that if DG be drawn, it will be bisected by AE. Hence, the four diagonals have a common point within the parallelopipedon.

Scholium.— It is seen at once that the six faces of a parallelopipedon intersect each other in twelve edges, four of which are equal to HA, four to AB, and four to AD. Now, we may conceive the parallel opipedon to be bounded by the planes determined by the three lines

AH, AB, and AD, and the three planes passed through the extremities, H, B, and D, of these lines, parallel to the first three planes.

THEOREM III.

The convex surface of a right prism is measured by the perimeter of its base multiplied by its altitude.

Let ABCDE - N be a right prism, of which AP is the altitude; then will its convex surface be measured by

$$(AB + BC + CD + DE + EA) \times AP$$
. For, its convex surface is made up of the rectangles AL , BM , CN , etc., and each rectangle is measured by the product of its base by its altitude; but the altitude of each rectangle is equal to AP , the altitude of the prism; hence the convex surface of the prism is measured by the pro-

duct of the sum of the bases of the rectangles, or the perimeter of the base of the prism, by the common altitude, AP.

Cor. Right prisms will have equivalent convex surfaces, when the products of the perimeters of their bases by their altitudes are respectively equal; and, generally, their convex surfaces will be to each other as the products of the perimeters of their bases by their altitudes. Hence, if the altitudes are equal, their convex surfaces will be as the perimeters of their bases; and if the perimeters of their bases are equal, their convex surfaces will be as their altitudes.

THEOREM IV.

The two sections of a prism made by parallel planes between its bases are equal polygons.

Let the prism ABCDE - N be cut between its bases by two parallel planes, making the sections QRS, etc..

and TVX, etc.; then will these sections be equal polygons.

For, since the secant planes are parallel, their intersections, QR and TV, by the plane of the face EAPO are parallel, (Th. 9, B. VI); and being included between the parallel lines, AP and EO, they are also equal. In the same manner we may prove that RS is equal and parallel to VX, and so on for the intersections of the secant planes by the other faces of

the prism. Hence, these polygonal sections have the sides of the one equal to the sides of the other, each to each. The angles QRS and TVX are equal, because their sides are parallel and lie in the same direction; and in like manner we prove $\lfloor RSY = \lfloor VXZ \rfloor$, and so on for the other corresponding angles of the polygons. Therefore, these polygons are both mutually equilateral and mutually equiangular, and consequently are equal.

Cor. A section of a prism made by a plane parallel to the base of the prism, is a polygon equal to the base.

THEOREM V.

Two parallelopipedons, the one rectangular and the other oblique, will be equal in volume when, having the same base and altitude, two opposite lateral faces of the one are in the planes of the corresponding lateral faces of the other.

Designating the parallelopipedons by their opposite diagonal letters, let AG be the rectangular, and AL the obsque, parallelopipedon, having the same base, AC, and the same altitude, namely, the perpendicular distance be-

tween the parallel planes, AC and EL. Also let the face, AK, be in the plane of the face, AF, and the face, DL, in the plane of the face, DG. We are now to prove that the oblique parallelopipedon is equivalent to the rectangular parallelopipedon.

As the faces, AF and AK, are in the same plane, and the parallelopipedons have the same altitude, EFK is a straight line, and EF = IK, because each is equal to AB. If from the whole line, EK, we take EF, and then from the same line we take IK = EF, we shall have the remainders, EI and FK, equal; and since AE and BF are parallel, AEI = | BFK; hence the \triangle 's, AEI and Since HE and MI are both parallel to BFK, are equal. DA, they are parallel to each other, and EIMH is a parallelogram; for like reasons, FKLG is a parallelogram, and these parallelograms are equal, because two adjacent sides and the included angle of the one are equal to two adjacent sides and the included angle of the other. parallelograms, DE and CF, being the opposite faces of the parallelopipedon, AG, are equal. Hence, the three plane faces bounding the triedral angle, E, of the triangular prism, EAI-H, are equal, each to each, and like placed, to the three plane faces bounding the triedral angle F, of the triangular prism, FBK-G, and these prisms are therefore equal, (Th. 1). Now, if from the whole solid, EABK—H, we take the prism, EAI—H, there will remain the parallelopipedon, AL; and, if from the some solid, we take the prism, FBK-G, there will remain the rectangular parallelopipedon, AG. Therefore, the oblique and the rectangular parallelopipedons are equivalent.

Cor. The volume of the rectangular parallelopipedor, AG, is measured by the base, ABCD, multiplied by the altitude, AE, (Def. 29); consequently, the oblique parallelopipedon is measured by the product of the same base by the same altitude.

SCHOLIUM.— If neither of the parallelopipedons is rectangular, but they still have the same base and the same altitude, and two opposite lateral faces of the one are in the planes of the corresponding lateral faces of the other, by precisely the same reasoning we could prove the parallelopipedons equivalent. Hence, in general, any two parallelopipedons will be equal in volume when, having the same base and altitude, two opposite lateral faces of the one are in the planes of the corresponding lateral faces of the other.

THEOREM VI.

Two parallelopipedons having equal bases and equal altitudes, are equivalent.

Let AG and AL be two parallelopipedons, having a common lower base, and their upper bases in the same plane, HF. Then will these parallelopipedons be equivalent.

Since their upper bases are in the same plane, and the lines IM and KL are parallel, and also EF and HG, these lines will intersect, when produced, and form the parallelogram NOPQ, which will be equal to the common lower base of the two parallelopipedons. Now, if a third parallelopipedon be constructed, having BD for its lower base, and OQ for its upper base, it will be equivalent to the parallelopipedon AG, and also to the parallelopipedon AL, (Th. 5, Scholium); hence, the two given parallelopipedons, being each equivalent to the third parallelopipedon, are equivalent to each other.

Hence, two parallelopipedons having equal bases, etc.

THEOREM VII.

The volume of any parallelopipedon is measured by the product of its base and altitude, or the product of its three limensions.

Let ABCD-G be any parallelopipedon; then will its volume be expressed by the product hH gG of the area of its base and altitude.

If the parallelopipedon is oblique, we may construct on its base a right E parallelopipedon, by erecting perpendiculars at the points A, B, C, and D, and making them each equal to the altitude of the given parallelopipedon; and the right parallelopipedon, thus

constructed, will be equivalent to the given parallelopip. edon, (Th. 6). Now, if the base, ABCD, is a rectangle, the new parallelopipedon will be rectangular, and measured by the product of its base and altitude, (Def. 29). But if the base is not rectangular, let fall the perpendiculars, Bc and Ad, on CD and CD produced, and take the rectangle ABcd for the base of a rectangular parallelopipedon, having for its altitude that of the given parallelopipedon. We may now regard the rectangular face, ABFE, as the common base of the two parallelopipedons, Ag and AG; and, as they have a common base, and equal altitude, they are equivalent. Thus we have reduced the oblique parallelopipedon, first to an equivalent right parallelopiped on on the same base, and then the right to an equivalent rectangular parallelopipedon on an equivalent base, all having the same alti-But the rectangular parallelopipedon, Ag, is measured by product of its base, ABcd, and its altitude; hence, the given and equivalent oblique parallelopipedon is measured by the product of its equivalent base and equal altitude.

Hence, the volume of any parallelopipedon, etc.

Cor. Since a parallelopipedon is measured by the product of its base by its altitude, it follows that parallelo pipedons of equivalent bases, and equal altitudes, are equiva or equal in volume.

THEOREM VIII.

Parallelopipedons on the same, or equivalent bases, are to each other as their altitudes; and parallelopipedons having equal altitudes, are to each other as their bases.

Let P and p represent two parallelopipedons, whose bases are denoted by B and b, and altitudes by A and a, respectively.

Now,
$$P = B \times A$$
, and $p = b \times a$, (Th. 7).

But magnitudes are proportional to their numerical measures; that is,

$$P:p::B\times A:b\times a.$$

If the bases of the parallelopipedons are equivalent, we have B = b; and if the altitudes are equal, we have A = a. Introducing these suppositions, in succession, in the above proportion, we get

and

P:p::B:b.

Hence the theorem; Parallelopipedons on the same, etc.

THEOREM IX.

Similar parallelopipedons are to each other as the cubes of their like dimensions.

Let P and p represent any two similar parallelopipedons, the altitude of the first being denoted by h, and the length and breadth of its base by l and n, respectively; and let h', l', and n', in order, denote the corresponding dimensions of the second.

Then we are to prove that

$$P:p::n^3:n'^3::l^3:l'^3::h^3:h'^3.$$

We have

$$P = lnh$$
, and $p = l'n'h'$ (Th. 7);

and by dividing the first of these equations by the second, member by member, we get

$$\frac{P}{p} = \frac{lnh}{l'n'h'};$$

which, reduced to a proportion, gives

But, by reason of the similarity of the parallelopipedons, we have the proportions

$$l : l' :: n : n'$$

 $h : h' :: n : n'$;

we have also the identical proportion,

$$n:n'::n:n'.$$

By the multiplication of these proportions, term by term, we get, (Th. 11, B. Π),

$$lnh : l'n'h' :: n^3 : n'^3.$$

That is,

$$P:p::n^3:n'^3.$$

By treating in the same manner the three proportions,

$$l: l':: h: h'$$

 $n: n':: h: h'$
 $h: h':: h: h'$

we should obtain the proportion

$$P:p::h^3:h'^3;$$

and, by a like process, the three proportions,

$$h: h':: l: l'$$

 $n: n':: l: l'$
 $l: l':: l: l'$

will give us the proportion

$$P:p::l^3:l'^3.$$

Hence the theorem; similar parallelopipedons are to each other, etc.

THEOREM X.

The two triangular prisms into which any parallelopipedon is divided, by a plane passing through its opposite diagonal edges, are equivalent.

Let ABCD - F be a parallelopipedon, and through the diagonal edges, BF and DH, pass the plane BH. dividing the parallelopipedon into the two triangular prisms, ABD-E and BCD-G; then we are to prove that these

prisms ar requivalent. Let us divide the diagonal, BD, in which the secant plane intersects the base of the parallelopipedon, into three equal parts, a and c being the points of division. In the base, ABCD, construct the complementary parallelograms, aC and aA, and in the parallelogram, badD, construct the complementary parallelograms, cd and cd, and conceive these, together with the parallelograms, cd and cd, to be the bases of smaller parallelopipedons, having their lateral faces parallel to the

lateral faces of, and their altitude equal to the altitude of, the given parallelopipedon, AG.

Now it is evident that the triangular prism, BCD-G, is composed of the parallelopipedons on the bases, aC and cd, and the triangular prisms, on the side of the secant plane with this prism, into which this plane divides the parallelopipedons on the bases, Ba, ac, and cD. The triangular prism, ABD-E, is also composed of the parallelopipedons on the bases, Aa and bc, together with the triangular prisms on the side of the secant plane with this prism, into which this plane divides the parallelopipedons on the bases, Ba, ac, and cD.

But the parallelograms, aC and aA, being complementary, are equivalent, (Th. 31, B. I); and for the same reason the parallelograms, cd and cb, are equivalent; and since parallelopipedons on equivalent bases and of equal altitudes, are equivalent, (Cor., Th. 7), we have the sum of parallelopipedons on bases aC and cd, equivalent to the sum of parallelopipedons on the bases, aA and cb. Hence, the triangular prisms, ABD - E and BCD - G.

differ in volume only by the difference which may exist between the sums of the triangular prisms on the two sides of the secant plane into which this plane divides the parallelopipedous on the bases, Ba, ac, and cd.

Now, if the number of equal parts into which the diagonal is divided, be indefinitely multiplied, it still holds true that the triangular prisms, ABD-E and BCD-G. differ in volume only by the difference between the sums of the triangular prisms on the two sides of the secant plane into which this plane divides the parallelopipedons constructed on the bases whose diagonals are the equal portions of the diagonal, BD. But in this case the sum of these parallelopipedons themselves becomes an indefinitely small part of the whole parallelopipedon, AG, and the difference between the parts of an indefinitely small quantity must itself be indefinitely small, or less than any assignable quantity. Therefore, the triangular prisms, ABD-E and BCD-G, differ in volume by less than any assignable volume, and are consequently equivalent.

Hence the theorem; the two triangular prisms into which, etc.

- Cor. 1. Any triangular prism, as ABD E, is one half the parallelopipedon having the same triedral angle, A, and the same edges, AB, AD, and AE.
- Cor. 2. Since the volume of a parallelopipedon is measured by the product of its base and altitude, and the trangular prisms into which it is divided by the diagonal plane, have bases equivalent to one half the base of the parallelopipedon, and the same altitude, it follows that, the volume of a triangular prism is measured by the product of its base and altitude.

The above demonstration is less direct, but is thought to be more simple, than that generally found in authors and which is here given as a

Second Demonstration

Let ABCD - F be a parallelopipedon, divided by the diagonal plane, BH, passing through the edges, BF and DH; then we are to prove that the triangular prisms, ABD - E and BCD - G, thus formed, are equivalent.

Through the points B and F, pass planes perpendicular to the edge, BF, and produce the lateral faces of the parallelopipedon to intersect the plane through B; then the sections Bcda and Fghe

are equal parallelograms. For, since the cutting planes are both perpendicular to BF, they are parallel, (Th. 10, B. VI); and because the opposite faces of a parallelopipedon are in parallel planes, (Th. 2), and the intersections of two parallel planes by a third plane are parallel, (Th. 9, B. VI), the sections, Bcda and Fghe, are equal parallelograms, and may be taken as the bases of the right parallelopipedon, Bcda—h. But the diagonal plane divides the right parallelopipedon into the two equal triangular prisms, aBd—e and Bcd—g, (Th. 1). We will now compare the right prism with the oblique triangular prism on the same side of the diagonal plane.

The volume ABD-e is common to the two prisms, ABD-E and aBd-e; and the volume eFh-E, which, added to this common part, forms the oblique triangular prism, is equal to the volume aBd-A, which, added to the common part, forms the right triangular prism. For, since ABFE and aBFe are parallelograms, AE=ae, and taking away the common part Ae, we have aA=eE; and since BFHD and BFhd are parallelograms, we have DH=dh; and from these equals taking away the common part Dh, we have dD=hH. Now, if the volume eFh-H

be applied to the volume aBd - D, the base eFh falling on the equal base aBd, the edges eE and hH will fall upon aA and dD respectively, because they are perpendicular to the base aBd, (Cor. 2, Th. 3, B. VI), and the point E will fall upon the point A, and the point H upon the point D; hence the volume eFh - H exactly coincides with the volume aBd - D, and the oblique triangular prism aBD - E is equivalent to the right triangular prism aBd - e.

In the same manner, it may be proved that the oblique triangular prism, BCDG, is equivalent to the right triangular prism, Bcdg. The oblique triangular prism on either side of the diagonal plane is, therefore, equivalent to the corresponding right triangular prism; and, as the two right triangular prisms are equal, the oblique triangular prisms are equivalent.

Hence the theorem; the two triangular prisms, etc.

THEOREM XI.

The volume of any prism whatever is measured by the product of the area of its base and altitude.

For, by passing planes through the homologous diagonals of the upper and lower bases of the prism, it will be divided into a number of triangular prisms, each of which is measured by the product of the area of its base and altitude. Now, as these triangular prisms all have, for their common altitude, the altitude of the given prism, when we add the measures of the triangular prisms, to get that of the whole prism, we shall have, for this measure, the common altitude multiplied by the sum of the areas of the bases of the triangular prisms: that is, the product of the area of the polygonal base and the altitude of the prism.

Hence the theorem; the volume of any prism, etc. Cor. If A denote the area of the base, and H the alti-

tude of a prism, its volume will be expressed by $A \times H$. Calling this volume V, we have

$$V = A \times H$$
.

Denoting by A', H', and V', in order, the area of the base, altitude, and volume of another prism, we have

$$V' = A' \times H'$$

Dividing the first of these equations by the second, u ember by member, we have

$$\frac{V}{V'} = \frac{A \times H}{A' \times H'},$$

which gives the proportion,

$$V: V':: A \times H: A' \times H'.$$

If the bases are equivalent, this proportion becomes

aul if the altitudes are equal, it reduces to

$$V: V' :: A : A'$$
.

Hence, prisms of equivalent bases are to each other as their altitudes; and prisms of equal altitudes are to each other as their bases.

THEOREM XII.

A plane passed through a pyramid parallel to its base, divides its edges and altitude proportionally, and makes a section, which is a polygon similar to the base.

Let ABCDE - V be any pyramid, whose base is in the plane, MN, and vertex in the parallel plane, mn; and let a plane be passed through the pyramid, parallel to its base, cutting its edges at the points, a, b, c, d, e, and the altitude, EF, at the point l. By joining the points, a, b, c, etc., we have the polygon formed by the intersection of the plane and the sides of the pyramid. Now, we are to prove that the edges, VA, VB, etc., and the altitude, FE, are divided proportionally at the points, a, b, etc., and l; and that the polygon, a, b, c, d, e, is similar to the base of the pyramid.

Since the cutting plane is parallel to the base of the pyramid, ab is parallel to AB, (Th. 9, B. VI); for the same reason, bc is parallel to BC, cd to CD, etc. Now, in the triangle VAB, because ab is parallel to the base AB, we have, (Th. 17, B. II), the proportion,

VA : Va :: VB : Vb.

In like manner, it may be shown that

VB:Vb::VC:Vc,

and so on for the other lateral edges of the pyramid. F being the point in which the perpendicular from E pierces the plane mn, and l the point in which the parallel secant plane cuts the perpendicular, if we join the points F and V, and also the points l and e by straight lines, we have in the triangle EFV, the line le parallel to the base FV; hence the proportion

VE: Ve:: FE: Fl.

Therefore, the plane passed through the pyramid parallel to its base, divides the altitude into parts which have

to each other the same ratio as the parts into which it divides the edges.

Again, since ab is parallel to AB, and bc to BC, the angle abc is equal to the angle ABC, (Th. 17, B. VI.); in the same manner we may show that each angle in the polygon, abcde, is equal to the corresponding angle in the polygon, ABCDE; therefore these polygons are mutually equiangular. But, because the triangles VBA and Vba are similar, their homologous sides give the proportion

and because the triangles Vbc and VBC are similar, we also have the proportion

Since the first couplets in these two proportions are the same, the second couplets are proportional, and give

By a like process, we can prove that

bc:BC::cd:CD,

and that cd : CD :: de : DE,

and so on, for the other homologous sides of the two polygons.

Hence, the two polygons are not only mutually equiangular, but the sides about the equal angles taken in the same order are proportional, and the polygons are therefore similar, (Def. 16, B. II).

Hence the theorem; a plane passed through a pyramid, etc.

Cor. 1. Since the areas of similar polygons are to each other as the squares of their homologous sides, (Th. 22, B. II), we have

area abcde : area $ABCDE : \overline{ab}^2 : \overline{AB}^2$.

But, ab:AB::Va:VA::Fl:FE;

hence, $a\overline{b}^2 : \overline{AB}^2 :: \overline{Fl}^2 : \overline{FE}^2$:

therefore, area abcde: area $ABCDE : \overline{Fl}^2 : \overline{FE}^2$.

That is, the area of a section parallel to the base of a pyramid, is to the area of the base, as the square of the perpendicular distance from the vertex of the pyramid to the section, is to the square of the altitude of the pyramid.

Cor. 2. Let V—ABCDE and X—RST be two pyramids, having their bases in the plane MN, and their vertices in the parallel plane mn; and suppose a plane to be passed through the two pyramids parallel to the common plane of their bases, making in the one the section abcde, and in the other the section rst.

Now, area ABCDE: area abcde: \overline{AB}^2 : \overline{ab}^2 , (Th.22, B.II),

and " RST: " $rst :: \overline{RS}^2 : \overline{rs}^2$

But, AB:ab::VB:Vb,

and RS: rs:: XR: Xr.

Because the plane which makes the sections is parallel to the planes MN and mn, we have, (Th. 11, B. VI),

VB:Vb::XR:Xr;

therefore, (Cor. 2, Th. 6, B. II), AB:ab::RS:rs.

By squaring, $\overline{AB}^2 : \overline{ab}^2 : \overline{RS}^2 : \overline{rs}^2$;

hence, area ABCDE: area abcde:: area RST: area rs.

That is, if two pyramids having equal altitudes, and their bases in the same plane, be cut by a plane parallel to the common plane of their bases, the areas of the sections will be proportional to the areas of the bases; and if the bases are equivalent, the sections will also be equivalent.

THEOREM XIII.

If two triangular pyramids have equivalent bases and equal altitudes, they are equal in volume.

Let V-ABC and v-abc be two triangular pyramids, having the equivalent bases, ABC and abc, and let the altitude of each be equal to CX; then will these two pyramids be equivalent.

l'lace the bases of the pyramids on the same plane, with their vertices in the same direction, and divide the altitude into any number of equal parts. Through the points of division pass planes parallel to the plane of the bases; the corresponding sections made in the pyramids by these planes are equivalent, (Th. 12, Cor. 2); that is, the triangle *DEF* is equivalent to the triangle *def*, the triangle *GHI* to the triangle *ghi*, etc.

Now, let triangular prisms be constructed on the triangles ABC, DEF, etc., of the pyramid V—ABC, these prisms having their lateral edges parallel to the edge, VC, of the pyramid, and the equal parts of the altitude, CX, for their altitudes. Portions of these prisms will be exterior to the pyramid V—ABC, and the sum of their volumes will exceed the volume of the pyramid.

On the bases def, ghi, etc., in the other pyramid, construct interior prisms, as represented in the figure, their lateral edges being parallel to vc, and their altitudes also the equal parts of the altitude, CX. Portions of the pyramid, v—abc, will be exterior to these prisms,

and the volume of the pyramid will exceed the sum of the volumes of the prisms.

Since the sum of the exterior prisms, constructed in connection with the pyramid V-ABC, is greater than the pyramid, and the sum of the interior prisms, constructed in connection with the pyramid v—abc, is less than this pyramid, it follows that the difference of these sums is greater than the difference of the pyramids themselves. But the second exterior prism, or that on the base DEF, is equivalent to the first interior prism, or that on the base def, and the third exterior prism is equivalent to the second interior prism, (Th. 10, Cor. 2), and so on. That is, beginning with the second prism from the base of the pyramid, V-ABC, and taking these prisms in order towards the vertex of the pyramid, and comparing them with the prisms in the pyramid, v-abc, beginning with the lowest, and taking them in order toward the vertex of this pyramid, we find that to each exterior prism of the pyramid, V-ABC, exclusive of the first or lowest, there is a corresponding equivalent interior prism in the pyramid, v-abc.

Hence the prism, ABCDEF, is the difference between the sum of the prisms constructed in connection with the pyramid, V-ABC, and the sum of the interior prisms constructed in the pyramid, v-abc. But the first sum being a volume greater than the pyramid, V-ABC, and the second sum a volume less than the pyramid, v-abc, it follows that the volumes of the pyramids differ by less than the prism, ABCDEF.

Now, however great the number of equal parts into which the altitude, CX, be divided, and the corresponding number of prisms constructed in connection with each pyramid, it would still be true that the difference between the volumes of the pyramids would be less than the volume of the lowest prism of the pyramid V-ABC; but when we make the number of equal parts into which

the altitude is divided indefinitely great, the volume of this prism becomes indefinitely small: that is, the difference between the volumes of the pyramids is less than an indefinitely small volume; or, in other words, there is no assignable difference between the two pyramids, and they are, therefore, equivalent.

Hence the theorem; if two triangular pyramids, etc.

THEOREM XIV.

Any triangular pyramid is one third of the triangul of prism having the same base and equal altitude.

Let F—ABC be a triangular pyramid, and through F pass a plane parallel to the plane of the base, ABC. In this plane, through F, construct the triangle, FDE, having its sides, FD, DE, and EF, parallel and equal to BC, CA, and AB, respectively. The tri-

angle, FDE, may be taken as the upper base of a triangular prism of which the lower base is ABC.

Now, this triangular prism is composed of the given triangular pyramid,

F—ABC, and of the quadrangular p ramid, F—ACDE. This last pyramid may be divided by a plane through the three points, C, E, and F, into the two triangular pyramids, F—DEC and F—ACE. But the pyramid, F—DEC, may be regarded as having the triangle, EFD, equal to the triangle, ABC, for its base, and the point, C, for its vertex. The two pyramids, F—ABC and C—DEF, have equal bases and equal altitudes; they are therefore equivalent, (Th. 13). Again, the two pyramids, F—DEC and F—ACE, have a common vertex, and equivalent bases in the same plane, and they are also equivalent. Therefore, the triangular prism, ABCDEF, is composed of

three equivalent triangular pyramids, one of which is the given triangular pyramid, F—ABC.

Hence the theorem; any triangular pyramid is one third of the triangular prism, etc.

Cor. The volume of the triangular prism being measured by the product of its base and altitude, the volume of a triangular pyramid is measured by one third of the product of its base and altitude.

THEOREM XV.

The volume of any pyramid whatever is measured by one third of the product of its base and altitude.

Let V—ABCDE be any pyramid; then will its volume be measured by one third of the product of its base and altitude.

In the base of the pyramid, draw the diagonals, AD and AC, and through its vertex and these diagonals, pass planes, thus dividing the pyramid into a number of triangular pyramids having the common vertex V, and the altitude of the given pyramid for their common altitude.

Now, each of these triangular pyramids is measured by one third of the product of its base and altitude, (Cor., Th. 14), and their sum, which constitutes the polygonal pyramid, is therefore measured by one third of the product of the sum of the trian-

gular bases and the common altitude; but the sum of the riangular bases constitutes the polygonal base, ABCDE

Hence the theorem; the volume of any pyramid whatever, etc.

Cor. 1. Denote, by B, H, and V, respectively, the base, altitude, and volume of one pyramid, and by B', H', and

V, the base, altitude, and volume of another; then we shall have

$$V = \frac{1}{3}B \times H,$$

$$V' = \frac{1}{3}B' \times H'.$$

and

Dividing the first of these equations by the second. member by member, we have

$$\frac{V}{V'} = \frac{B \times H}{B' \times H'},$$

which, in the form of a proportion, gives

$$V: V':: B \times H: B' \times H'.$$

From this proportion we deduce the following consequences:

- 1st. Pyramids are to each other as the products of their bases and altitudes.
- 2d. Pyramids having equivalent bases are to each other as their altitudes.
- 3d. Pyramids having equal altitudes are to each other as their bases.
- Cor. 2. Since a prism is measured by the product of its base and altitude, and a pyramid by one third of the product of its base and altitude, we conclude that any pyramid is one third of a prism having an equivalent base and equal altitude

THEOREM XVI.

The volume of the frustum of a pyramid is equivalent to the sum of the volumes of three pyramids, each of which has an altitude equal to that of the frustum, and whose bases are, respectively, the lower base of the frustum, the upper base of the frustum, and a mean proportional between these bases.

Let V—ABCDE and X—RST be two pyramids, the one polygonal and the other triangular, having equivalent bases and equal altitudes; and let their bases be placed on the plane MN, their vertices falling on the parallel plane mn. Pass through the pyramids a plane

parallel to the common plane of their bases, cutting out the sections abcde and rst; these sections are equivalent, (Th. 12, Cor. 2), and the pyramids, V—abcde and X—rst, are equivalent, (Th. 13). Now, since the pyramids, V—ABCDE and X—RST, are equivalent, if from the first we take the pyramid, V—abcde, and from the second, the pyramid, X—rst, the remainders, or the frusta. ABCDE—a and RST—r, will be equivalent.

If, then, we prove the theorem in the case of the frustum of a triangular pyramid, it will be proved for the frustum of any pyramid whatever.

Let ABC-D be the frustum of a triangular pyramid. Through the points D, B, and C, pass a plane, and through the points D, C, and E, pass another, thus dividing the frustum into three triangular pyramids, viz., D-ABC, C-DEF, and D-BEC.

Now, the first of these has, for its

base, the lower base of the frustum, and for its altitude the altitude of the frustum, since its vertex is in the upper base; the second has, for its base, the upper base of the frustum, and for its altitude the altitude of the frustum, since its vertex is in the lower base. Hence, these are two of the three pyramids required by the enunciation of the theorem; and we have now only to prove that the third is equivalent to one having, for its base, a mean proportional between the bases of the frustum, and an altitude equal to that of the frustum.

In the face ABED, draw HD parallel to BE, and draw HE and HC. The two pyramids, D-BEC and H-BEC, are equivalent, since they have a common base and equal altitudes, their vertices being in the line DH, which is parallel to the plane of their common base, (Th. 7, B. VI). We may, therefore, substitute the pyramid, H-BEC, for the pyramid, D-BEC. But the triangle, BCH, may be taken as the base, and E as the vertex of this new pyramid; hence, it has the required altitude, and we must now prove that it has the required base.

The triangles, ABC and HBC, have a common vertex, and their bases in the same line; hence, (Th. 16, B. II),

$$\triangle ABC : \triangle HBC :: AB : HB :: AB : DE. (1)$$

In the triangles, DEF and HBC, $\subseteq E = \subseteq B$, and DE = HB; hence, if DEF be applied to HBC, $\subseteq E$ falling on $\subseteq B$, and the side DE on HB, the point D will fall on H, and the triangles, in this position, will have a common vertex, H, and their bases in the same line; hence,

$$\triangle HBC : \triangle DEF :: BC : EF. \quad (2)$$

But, because the triangles, ABC and DEF, are similar, we have

$$AB \cdot DE :: BC : EF.$$
 (3)

From proportions (1), (2), and (3), we have, (Th. 6, B II),

 $\triangle ABC : \triangle HBC :: \triangle HBC : \triangle DEF;$

that is, the base, HBC, is a mean proportional between the lower and upper bases of the frustum.

Hence the theorem; the volume of the frustum of a pyramid, etc.

THEOREM XVII.

The convex surface of any right pyramid is measures by the perimeter of its base, multiplied by one half its slant height.

Let S—ABCDEF be a right pyramid, of which SH is the slant height; then will its convex surface have, for its measure,

$$\frac{1}{2}SH(AB+BC+CD+DE+EF+FA).$$

Since the base is a regular polygon, and the perpendicular, drawn to its plane from S, passes through its center, the edges, SA, SB, SC, etc., are equal, (Th. 4, B. VI), and the triangles SAB, SBC, etc., are equal, and isosceles, each having an altitude equal to SH.

Now, $AB \times \frac{1}{2}SH$ measures the area of the triangle, SAB; and $BC \times \frac{1}{2}SH$ measures the area of the triangle, SBC; and so on, for the other triangular faces of the pyramid. By the addition of these different measures, we get

$$\frac{1}{2}SH(AB+BC+CD+DE+EF+FA),$$

us the measure of the total convex surface of the pyramid. Hence the theorem; the convex surface of any right pyramid, etc.

THEOREM XVIII.

The convex surface of the frustum of any right pyramid is measured by the sum of the perimeters of the two bases, multiplied by one half the slant height of the frustum.

Let ABCDEF—d be the frustum of a right pyramid; then will its convex surface be measured by

$$\frac{1}{2}Hh(AB+BC+CD+DE+EF+FA+ab+bc+cd+de+ef+fa).$$

For, the upper base, abcdef, of the frustum is a section of a pyramid by a plane parallel to the lower base, (Def. 14), and is, therefore, similar to the lower base, (Th. 12). But the lower base is a regular polygon, (Def. 12); hence, the upper base is also a regular polygon, of the same name; and as ab and FAB are intersections of a face of the pyramid by two parallel planes,

they are parallel. For the same reason, bc is parallel to BC, cd to CD, etc., and the lateral faces of the frustum are all equal trapezoids, each having an altitude equal to Hh, the slant height of the frustum.

The trapezoid ABba has, for its measure, $\frac{1}{2}Hh(AB+ab)$, (Th. 34, Book I); the trapezoid BCcb has, for its measure, $\frac{1}{2}Hh(BC+bc)$, and so on, for the other lateral faces of the frustum.

Adding all these measures, we find, for their sum, which is the whole convex surface of the frustum,

 $\frac{1}{2}Hh(AB+BC+CD+DE+EF+FA+ab+bc+cd+de+ef+fa).$

Hence the theorem; the convex surface of the frustum,

THEOREM XIX.

The volumes of similar triangular prisms are to each other as the cubes constructed on their homologous edges.

Let ABC—F and abc—f be two similar triangular prisms; then will their volumes be to each other as the cubes, whose edges are the homologous edges

AB and ab, or as the cubes, whose edges are the homologous edges BE and be, etc. Since the prisms are similar, the solid angles, whose vertices are B and b, are equal; and the smaller prism, when so applied to the larger that these solid angles coincide, will take, within the larger, the position represented by the dotted lines. In this position of the prisms, draw EH perpendicular to the plane of the base ABC, and join the foot of the perpendicular to the point B, and in the triangle BEH draw, through e, the line eh, parallel to EH; then will EH represent the altitude of the larger prism, and eh that of the smaller.

Now, as the bases ABC and aBc, are homologous faces, they are similar, and we have, (Th. 20, Book II),

$$\triangle ABC : \triangle aBc :: \overline{AB^2} : \overline{aB^2}$$
 (1)

But the \triangle 's BEH and Beh are equiangular, and there fore similar, and their homologous sides give the proportion

$$BE:Be::EH:eh$$
 (2)

and from the homologous sides of the similar faces, ABED and aBed, we also have

$$BE : Be :: AB : aB$$
 (3)

Proportions (2) and (3), having an antecedent and consequent the same in both, we have, (Th. 6, B. II),

$$EH:eh::AB:aB \qquad (4)$$

By the multiplication of proportions (1) and (4), term by term, we get

$$\triangle ABC \times EH : \triangle aBc \times en :: \overline{AB}^{s} : \overline{aB}^{s}$$

But \triangle $ABC \times EH$ measures the volume of the larger prism, and \triangle $aBc \times eh$ measures the volume of the smaller.

Hence the theorem; the volumes of similar triangular prisms, etc.

Cor. 1. The volumes of two similar prisms having any bases whatever, are to each other as the cubes constructed on their homologous edges.

For, if planes be passed through any one of the lateral edges, and the several diagonal edges, of one of these prisms, this prism will be divided into a number of smaller triangular prisms. Taking the homologous edge of the other prism, and passing planes through it and the several diagonal edges, this prism will also be divided into the same number of smaller triangular prisms, similar to those of the first, each to each, and similarly placed.

Now, the similar smaller prisms, being triangular, are to each other as the cubes of their homologous edges; and being like parts of the larger prisms, it follows that the larger prisms are to each other as the cubes of the homologous edges of any two similar smaller prisms. But the homologous edges of the similar smaller prisms are to each other as the homologous edges of the given prisms; hence we conclude that the given prisms are to each other as the cubes of their homologous edges.

Cor. 2. The volumes of two similar pyramids having any bases whatever, are to each other as the cubes constructed on their homologous edges.

For, since the pyramids are similar, their bases are similar polygons; and upon them, as bases, two similar prisms may be constructed, having for their altitudes, the altitudes of their respective pyramids, and their lateral edges parallel to any two homologous lateral edges of the pyramids.

Now, these similar prisms are to each other as the cubes of their homologous edges, which may be taken as the homologous sides of their bases, or as their lateral edges, which were taken equal and parallel to any two arbitrarily assumed homologous lateral edges of the two pyramids; hence the pyramids which are thirds of their respective prisms, are to each other as the cubes constructed on any two homologous edges.

Cor. 3. The volumes of any two similar polyedrons are to each other as the cubes constructed on their homologous edges.

For, by passing planes through the vertices of the homologous solid angles of such polyedrons, they may both be divided into the same number of triangular pyramids, those of the one similar to those of the other, each to each, and similarly placed.

Now, any two of these similar triangular pyramids are to each other as the cubes of their homologous edges; and being like parts of their respective polyedrons, it follows that the polyedrons are to each other as the cubes of the homologous edges of any two of the similar triangular pyramids into which they may be divided. But the homologous edges of the similar triangular pyramids are to each other as the homologous edges of the polyedrons; hence the polyedrons are to each other as the cubes of their homologous edges.

THEOREM XX.

The convex surface of the frustum of a cone is measured by the product of the slant height and one half the sum of the circumferences of the bases of the frustum.

Let ABCD—abcd be the frustum of a cone; then will its convex surface be measured by $Aa \times \frac{(\text{circ. } OC + \text{circ. } oc)}{2}$, in which the expression, circ. OC, denotes the circumference of the circle of which OC is the radius. Inscribe in the lower base of the frustum, a regular polygon having any number of sides, and in the upper base a similar polygon, having its sides parallel to those of the polygon in the lower base.

These polygons

may be taken as the bases of the trustum of a right-pyramid inscribed in the frustum of the cone.

Now, however great the number of sides of the inscribed polygons, the convex surface of the frustum of the pyramid is measured by its slant height multiplied by one half the sum of the perimeters of its two bases, (Th. 18); but when we reach the limit, by making the number of sides of the polygon indefinitely great, the slant height, perimeters of the bases, and convex surface of the frustum of the pyramid become, severally, the slant height, circumferences of the bases, and convex surface of the frustum of the cone.

Hence the theorem; the convex surface of the frustum, etc.

- Cor. 1. If we make oc = OC, and, consequently, circ. oc = circ. OC, the frustum of the cone becomes a cylinder, and the half sum of the circumferences of the bases becomes the circumference of either base of the cylinder, and the slant height of the frustum, the altitude of the cylinder. Hence, the convex surface of a cylinder is measured by the circumference of the base multiplied by the altitude of the cylinder.
- Cor. 2. If we make oc = 0, the frustum of the cone becomes a one. Hence, the convex surface of a cone is measured by the circumference of the base multiplied by one half the slant height of the cone.
- Cor. 3. If through E, the middle point of Cc, the line Ff be drawn parallel to Oc, and Em perpendicular to Oc, the line oc being produced, to meet Ff at f, we have, because the \triangle 's EFC and Efc are equal,

$$Em = \frac{OC + oc}{2}.$$

If we multiply both members of this equation by 24, we have

$$2\pi.Em = \frac{2\pi.OC + 2\pi.oc}{2};$$

that is, circ. Em is equal to one half the sum of the circumferences of the two bases of the frustum. Hence, the convex surface of the frustum of a cone is measured by the circumference of the section made by a plane half way between the two bases, and parallel to them, multiplied by the slant height of the frustum.

Cor. 4. If the trapezoid, OCco, be revolved about Oo as an axis, the inclined side, Cc, will generate the convex surface of the frustum of a cone, of which the slant height is Cc, and the circumferences of the bases are circ. OC and circ. oc. Hence, if a trapezoid, one of whose sides is perpendicular to the two parallel sides, be revolved about the perpendicular side as an axis, it will generate the frustum of a cone, the inclined side opposite the axis generating the convex surface, and the parallel sides the bases of the frustum.

THEOREM XXI.

The volume of a cone is measured by the area of its base multiplied by one third of its altitude.

Let V—ABC, etc., be a cone; then will its volume be measured by area ABC, etc., multiplied by $\frac{1}{3}VO$.

Inscribe, in the base of the cone, any regular polygon, as ABCDEF, which may be taken as the base of a right pyramid, of which V is the vertex. The volume of this inscribed pyramid will have, for its measure, (Th. 15),

polygon $ABCDEF \times \frac{1}{2}VO$.

Now, however great the number of sides of the police gon inscribed in the base of the cone, it will still hold true that the pyramid of which it is the base, and whose vertex is V, will be measured by the area of the polygon, multiplied by one third of VO; but when we reach the limit, by making the number of sides indefi

nitely great, the polygon becomes the orcle in which it is inscribed, and the pyramid become the cone.

Hence the theorem; the volume of a cone, etc.

Cor. 1. If R denote the radius of the base of a cone, and H its altitude, or axis, its volume will be expressed by

 $\frac{1}{2}H \times \pi R^2$;

hence, if V and V' designate the volumes of two cones, of which R and R' are the radii of the bases, and H and H' the altitudes, we have

$$V: V':: \frac{1}{3}H \times \pi R^2: \frac{1}{3}H' \times \pi R'^2: H \times \pi R^2: H' \times \pi R'^2$$

From this proportion we conclude,

First. That-cones having equal altitudes are to each other as their bases.

Second. That cones having equal bases are to each other as their altitudes.

Cor. 2. Retaining the notation above, we have

$$\frac{V'}{V} = \frac{H'}{H} \times \frac{R'^2}{R^2}; \quad (1)$$

and, if the two cones are similar,

or,
$$\frac{H'}{H} = \frac{R'}{R}$$
; hence, $\frac{H'^2}{H^2} = \frac{R'^2}{R^2}$.

By substituting for the factors, in the second member of eq. (1), their values successively, and resolving into a proportion, we get

$$V: V' :: R^{\mathfrak{s}} : R^{\mathfrak{l}}{}^{\mathfrak{s}};$$
 and $V: V' :: H^{\mathfrak{s}} : H'^{\mathfrak{s}}.$

Hence, similar cones are to each other as the cubes of the radii of their bases, and also as the cubes of their altitudes.

Cor. 3. A cone is equivalent to a pyramid having an equivalent base and an equal altitude

THEOREM XXII.

The volume of the frustum of a cone is equivalent to the sum of the volumes of three cones, having for their common altitude the altitude of the frustum, and for their several bases, the bases of the frustum and a mean proportional between them.

Let ABCD—abcd be the frustum of a cone; then will its volume be equivalent to the sum of the volumes, having Oo for their common altitude, and for their bases, the circles of which, OC, oc, and a mean proportional between OC and oc, are the respective radii.

Inscribe in the lower base of the frustum any regular polygon, and in the upper base a similar polygon, having its sides parallel to those of the first.

A O C

These polygon

its sides parallel to those of the first. These polygons may be taken as the bases of the frustum of a right pyramid inscribed in the frustum of the cone.

The volume of the frustum of the pyramid is equivalent to the sum of the volumes of three pyramids, having for their common altitude the altitude of the frustum, and for their several bases the bases of the frustum, and a mean proportional between them, (Th. 16).

Now, however great the number of sides of the polygons inscribed in the bases of the frustum of the cone, this measure for the volume of the frustum of the pyramid, of which they are the bases, still holds true; but when we reach the limit, by making the number of the sides of the polygon indefinitely great, the polygons become the circles, the frustum of the pyramid becomes the frustum of the cone, and the three partial pyramids, whose sum is equivalent to the frustum of the pyramid, become three partial cones, whose sum is equivalent to the frustum of the cone.

Hence the theorem; the volume of the frustum of a cone, etc. Cor. 1. Let R denote the radius of the lower base, R' that of the upper base, and H the altitude of the frustum—of a cone; then will its volume be measured, (Th. 21), by

 $\frac{1}{3}H \times \pi R^2 + \frac{1}{3}H \times \pi R'^2 + \frac{1}{3}H \times \pi R \times R'$, since $\pi R \times R'$ expresses the area of a circle which is a mean proportional between the two circles, whose radii are R and R'.

Now, if the bases of the frustum become equal, or R = R', the frustum becomes a cylinder, and each of the last two terms in the above expression for the volume of the frustum of a cone will be equal to the first; hence, the volume of a cylinder, of which H is the altitude, and R the radius of the base, is measured by $H \times \pi R^2$.

Therefore, the volume of a cylinder is measured by the area of its base multiplied by its altitude.

- Cor. 2. By a process in all respects similar to that pursued in the case of cones, it may be shown that similar cylinders are to each other as the cubes of the radii of their bases, and also as the cubes of their altitudes.
- Cor. 3. A cylinder is equivalent to a prism having an equivalent base and an equal altitude.

THEOREM XXIII.

If a plane be passed through a sphere, the section will be a circle.

Let O be the center of a sphere through which a plane is passed, making the section AmBn; then will this section be a circle.

From O let fall the perpendicular Oo upon the secant plane, and draw the radii OA, OB, and Om, to different points in the intersection of the plane with the surface of the sphere. Now,

the oblique lines OA, OB, Om, are all equal, being radii of the sphere; they therefore meet the plane at equal distances from the foot of the perpendicular Oo, (Cor., Th. 4, B. VI); hence oA, oB, om, etc., are equal: that is, all the points in the intersection of the plane with the surface of the sphere are equally distant from the point O. This intersection is therefore the circumference of a circle of which o is the center.

Hence the theorem; if a plane be passed through a sphere, etc.

- Cor. 1. Since AB, the diameter of the section, is a chord of the sphere, it is less than the diameter of the sphere; except when the plane of the section passes through the center of the sphere, and then its diameter becomes the diameter of the sphere. Hence,
 - 1. All great circles of a sphere are equal.
- 2. Of two small circles of a sphere, that is the greater whose plane is the less distant from the center of the sphere.
- 3. All the small circles of a sphere whose planes are at the same distance from the center, are equal.
- Cor. 2. Since the planes of all great circles of a sphere pass through its center, the intersection of two great circles will be both a diameter of the sphere and a common diameter of the two circles. Hence, two great circles of a sphere bisect each other.
- Cor. 3. A great circle divides the volume of a sphere, and also its surface, equally.

For, the two parts into which a sphere is divided by any of its great circles, on being applied the one to the other, will exactly coincide, otherwise all the points in their convex surfaces would not be equally distant from the center.

Cor. 4. The radius of the sphere which is perpendicular to the plane of a small circle, passes through the center of the circle.

Cor. 5. A plane passing through the extremity of a radius of a sphere, and perpendicular to it, is tangent to the sphere.

For, if the plane intersect the sphere, the section is a circle, and all the lines drawn from the center of the sphere to points in the circumference are radii of the sphere, and are therefore equal to the radius which is perpendicular to the plane, which is impossible, (Cor. 1, Th. 8, B. VI). Hence the plane does not intersect the sphere, and has no point in its surface except the extremity of the perpendicular radius. The plane is therefore tangent to the sphere by Def. 22.

THEOREM XXIV.

If the line drawn through the center and vertices of two opposite angles of a regular polygon of an even number of sides, be taken as an axis of revolution, the perimeter of either semi-polygon thus formed will generate a surface whose measure is the axis multiplied by the circumference of the inscribed circle.

Let ABCDEF be a semi-polygon cut off from a regular polygon of an even number of sides by drawing the line AF through the center O, and the vertices A and F, of two opposite angles of the polygon; then will the surface generated by the perimeter of this semi-polygon revolving about AF as an axis, be measured by $AF \times$ circumference of the inscribed circle.

From m, the middle point, and the extremities B and C of the side BC, draw mn, BK, and CL, perpendicular to AF; join also m and O, and draw BH perpendicular to CL. The surface of the frustum of the cone generated by the trapezoid BKLC, has for its measure circ. $mn \times BC$, (Cor. 3, Th. 20). Since mO is perpendicular to BC, and mn to BH, the two \triangle 's, BCH and mnO, are similar, and their homologous sides give the proportion

$$mn: m0::BH (= KL):BC$$

and as circumferences are to each other as their radii, we have

circ.
$$mn : circ. m0 :: KL : BC$$

Hence, circ.
$$mn \times BC = \text{circ. } mO \times KL$$
.

But m0 is the radius of the circle inscribed in the polygon. Hence, the surface generated by BC during the revolution of the semi-polygon, is measured by the circumference of the inscribed circle multiplied by KL, the part of the axis included between the two perpendiculars let fall upon it from the extremities B and C. The surface generated by any other side of the semi-polygon will be measured, in like manner, by the circumference of the inscribed circle multiplied by the corresponding part of the axis.

By adding the measures of the surfaces generated by the several sides of the semi-polygon, we get

Circ.
$$mO \times (AK + KL + LN + NM + MF)$$

for the measure of the whole surface.

Hence the theorem; if the line drawn through the cen ver, etc.

Cor. It is evident that the surface generated by any portion, as CD and DE, of the perimeter, is measured by circ. $mO \times LM$.

THEOREM XXV.

The surface of a sphere is measured by the circumference of one of its great circles multiplied by its diameter.

Let a sphere be generated by the revolution of the semi-circle, AHF, about its diameter, AF; then will the surface of the sphere be measured by

Circ.
$$AO \times AF$$
.

Inscribe in the semi-circle any regular semi-polygon, and let it be revolved, with the semi-circle, about the axis

AF; the surface generated by its perimeter will be measured by

Circ.
$$mO \times AF$$
, (Th. 24),

and this measure will hold true, however great the number of sides of the in-H scribed semi-polygon. But as the number of these sides is increased, the radius mO, of the inscribed semi-circle, increases and approaches equality with

the radius, AO; and when we reach the limit, by making the number of sides indefinitely great, the radii and semi-circles become equal, and the surface generated by the perimeter of the inscribed semi-polygon becomes the surface of the sphere. Therefore, the surface of the sphere has, for its measure,

Circ.
$$AO \times AF$$
.

Hence the theorem; the surface of a sphere is measured, etc.

Cor. 1. A zone of a sphere is measured by the circumference of a great circle of the sphere multiplied by the altitude of the zone.

For, the surface generated by any portion, as CD and DE, of the perimeter of the inscribed semi-polygon has, for its measure, circ. $mO \times LM$, (Cor. Th. 24); and as the number of the sides of the semi-polygon increases, LM remains the same, the radius mO alone changing, and becoming, when we reach the limit, equal to AO: hence, the surface of the zone is expressed by

Circ.
$$AO \times LM$$
,

whether the zone have two bases, or but one.

Cor. 2. Let H and H' denote the altitudes of two zones of spheres, whose radii are R and R'; then these zones will be expressed by $2\pi R \times H$ and $2\pi R' \times H'$; and if the surfaces of the zones be denoted by Z and Z', we have

$Z:Z': 2\pi R \times H: 2\pi R' \times H': R \times H: R' \times H'$

Hence, 1. Zones in different spheres are to each other as their altitudes multiplied by the radii of the spheres.

- 2. Zones of equal altitudes are to each other as the radii of the spheres.
- 3. Zones in the same, or equal spheres, are to each other as their altitudes.
- Cor. 3. Let R denote the radius of a sphere; then will its diameter be expressed by 2R, and the circumference of a great circle by $2\pi R$; hence its surface will be expressed by

$$2\pi R \times 2R = 4\pi R^2.$$

That is, the surface of a sphere is equivalent to the area of four of its great circles.

Cor. 4. The surfaces of spheres are to each other as the equares of their radii.

THEOREM XXVI.

If a triangle be revolved about either of its sides as an axis, the volume generated will be measured by one third of the product of the axis and the area of a circle, having for its radius the perpendicular let fall from the vertex of the opposite angle on the axis, or on the axis produced.

First. Let the triangle ABC, in which the perpendicular from C falls on the opposite side, AB, be revolved about AB as an axis; then will *Vol. $\triangle ABC$ have, for its measure, $\frac{1}{3}AB \times \pi \overline{CD}^2$.

The two \triangle 's into which \triangle ABC is divided by the perpendicular DC, are right-angled, and during the revolution they will generate two cones, having for their

^{*} Vol. \triangle ABC, cone \triangle ADC, are abbreviations for volume generated by \triangle ABC, cone generated by \triangle ADC; and surfaces of revolution generated by lines will hereafter be denoted by like abbreviations.

common base the circle, of which DC is the radius, and for their axes the parts DA and DB, into which AB is divided.

Now, *Cone \triangle ADC is measured by $\frac{1}{3}AD \times \sqrt[\pi]{DC^2}$, (Th. 21), and cone \triangle BDC, by $\frac{1}{3}BD \times \sqrt[\pi]{DC^2}$; but these two cones compose Vol. \triangle ABC; and by adding their measures, we have, for that of Vol. \triangle ABC,

$$\frac{1}{2}AD \times \pi \overline{DC}^2 + \frac{1}{2}BD \times \pi \overline{DC}^2 = \frac{1}{2}AB \times \pi \overline{DC}^2$$
.

Second. Let the triangle EFG, in which the perpendicular from G falls on the opposite side EF produced, be revolved about EF as an axis; then will Vol. \triangle EFG

have, for its measure, $\frac{1}{3}EF \times \pi \overline{GH}^2$, GH being the perpendicular on EF produced. For, in this case it is apparent, that Vol. \triangle EFG is the difference between the cone \triangle EHG and the cone \triangle FHG. The first cone has, for its measure, $\frac{1}{3}EH \times \pi \overline{GH}^2$, and the second, for its measure, $\frac{1}{3}FH \times \pi \overline{GH}^2$; hence, by subtraction, we have

Vol.
$$\triangle EFG = \frac{1}{3}EH \times \pi \overline{GH}^2 - \frac{1}{3}FH \times \pi \overline{GH}^2 = \frac{1}{3}EF \times \pi \overline{GH}^2$$
.

Hence the theorem; if a triangle be revolved about either of its sides, etc.

Scholium.—If we take either of the above expressions for the measure of the volume generated by the revolution of a triangle about one of its sides, for example the last, and factor it otherwise, we have

$$\frac{1}{4}EF \times \pi \overline{GH}^2 = EF \times \frac{1}{2}GH \times \frac{1}{2}\pi \times 2GH = EF \times \frac{1}{2}GH \times \frac{2\pi \times GH}{3}$$

Now, $EF \times \frac{1}{2}GH$ expresses the area of the triangle EFG; and $\frac{2\pi \times GH}{3}$, one third of the circumference described by the point G during the revolution.

The expression, $\frac{1}{2}AB \times \pi \overline{DC}^2$, may be factored and interpreted in the

^{*} See note on the preceding page.

same manner. Hence, we conclude that the volume generated by the revolution of a triangle about either of its sides, is measured by the area of the triangle multiplied by one third of the circumference described in the revolution by the vertex of the angle opposite the axis.

THEOREM XXVII.

The volume generated by the revolution of a triangle about any line lying in its plane, and passing through the vertex of one of its angles, is measured by the area of the triangle multiplied by two thirds of the circumference described, in the revolution, by the middle point of the side opposite the vertex through which the axis passes.

Let the triangle ABC be revolved about the line AG, drawn through the vertex A, and lying in the plane of the triangle, and let HE be the perpendicular let fall from H, the middle point of BC, upon the axis AG; then will V

the axis AG; then will Vol. $\triangle ABC$ have, for its measure, $\triangle ABC \times \frac{2}{3}$ circ. HE.

From the extremities of BC, let fall the perpendiculars BF and CD, on the axis; and from A draw AK perpendicular to BC, or BC produced, and produce CB, until it meets the axis in G.

Now, it is evident that Vol. \triangle ABC is the difference between Vol. \triangle AGC and Vol. \triangle AGB. But Vol. \triangle AGC is expressed by \triangle $AGC \times \frac{1}{3}$ circ. CD; and Vol. \triangle AGB, by \triangle $AGB \times \frac{1}{3}$ circ. BF, (Scholium, Th. 26). Hence,

Vol. \triangle $ABC = \triangle$ $AGC \times \frac{1}{8}$ circ. $CD - \triangle$ $AGB \times \frac{1}{8}$ circ. BF.

Substituting for areas of \triangle 's, and for circumferences, their measures, we have

Vol.
$$\triangle$$
 $ABC = GC \times \frac{1}{2}AK \times \frac{2\pi \cdot CD}{3} - GB \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3}$
 $= GC \times \frac{1}{2}AK \times \frac{2\pi \cdot CD}{3} - (GC - BC) \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3}$
 $= GC \times \frac{1}{2}AK \times \frac{2\pi \cdot CD}{3} - GC \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3} + BC \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3}$
 $= GC \times \frac{1}{2}AK \times \frac{2\pi}{3}(CD - BF) + BC \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3}$.

But BN being drawn parallel to AG, we have

$$CN = CD - BF$$
;

hence, substituting this value for CD - BF, in the first term of the second member of the last equation, we have

$$Vol. \triangle ABC = GC \times \frac{1}{2}AK \times \frac{2\pi \cdot CN}{3} + BC \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3}$$

$$= GC \times CN \times \frac{1}{2}AK \times \frac{2\pi}{2} + BC \times \frac{1}{2}AK \times \frac{2\pi BF}{3},$$

by changing the order of factors in the first term of the second member. The homologous sides of the similar triangles, GCD and BCN, give the proportion

whence,
$$GC \times CN = CD \times BC$$

Substituting this value for $GC \times CN$, in the last equation above, and arranging the factors as before, it becomes

Vol.
$$\triangle ABC = BC \times \frac{1}{2}AK \times \frac{2\pi \cdot CD}{3} + BC \times \frac{1}{2}AK \times \frac{2\pi \cdot BF}{3}$$

= $BC \times \frac{1}{2}AK \times \frac{2\pi \cdot (CD + BF)}{3}$.

But CD + BF = 2HE; hence

Vol.
$$\triangle ABC = BC \times \frac{1}{2}AK \times \frac{4\pi \cdot HE}{3} = BC \times \frac{1}{2}AK \times \frac{2}{3} \cdot 2\pi \cdot HE$$
;
and since

 $BC \times \frac{1}{2}AK = \triangle ABC$, and $\frac{2}{3} \times 2\pi$. $HE = \frac{2}{3}$ circ. HE, this measure conforms to the enunciation.

It only remains for us to consider the case in which the axis is parallel to the base BC of the triangle. The

preceding demonstration will not now apply, because it supposes BC, or BC produced, to intersect the axis.

Let the axis AE, be parallel to the base BC, of the \triangle ABC. From B and C let fall on the axis the perpendiculars BE and CD.

culars BE and CD.

Now it is plain that

Vol.
$$\triangle ABC =$$
 cylinder rectangle $BCDE +$ cone $\triangle ADC -$ cone $\triangle AEB$.

Substituting in second member, for cylinder and cones, their measures, we have

Vol.
$$\triangle ABC = DE \times \pi \overline{CD}^2 + \frac{1}{3}AD \times \pi \overline{CD}^2 - \frac{1}{3}AE \times \pi \overline{BE}^3$$

=\frac{2}{3}DE \times \pi \overline{CD}^2 + \frac{1}{3}DE \times \pi \overline{CD}^2 + \frac{1}{3}AD \times \pi \overline{CD}^2 - \frac{1}{3}AE \times \pi \overline{BE}^3.

But BE = CD, and $\frac{1}{3}DE + \frac{1}{3}AD = \frac{1}{3}AE$. Reducing by these relations, we have

Vol.
$$\triangle ABC = \frac{2}{3}DE \times \pi \overline{CD}^2 = \frac{1}{3}DE \times \frac{1}{2}CD \times 4\pi.CD$$

= $DE \times \frac{1}{2}CD \times \frac{2}{3}.2\pi.CD = BC \times \frac{1}{2}CD \times \frac{2}{3}.2\pi.CD$.

And, since $BC \times \frac{1}{2}CD$ expresses the area of the triangle ABC, and $\frac{2}{3}.2\pi.CD$, two thirds of the circumference described by any point of the base, this expression also conforms to the enunciation.

Hence the theorem; the volume generated by the revolution, etc.

Cor. If the generating triangle becomes isosceles, the perpendicular from A meets the base at its middle point. In this case, if we resume the expression

$$BC \times \frac{1}{2}AK \times \frac{4\pi .HE}{3}$$

it becomes

$$BC \times \frac{1}{2}AK \times KE \times \frac{4}{3}$$

But, since AK is perpendicular to BC, and KE to BN, the \triangle 's AKE and CBN are similar, and their homologous sides give the proportion

whence,
$$BC \times KE = BN \times AK$$

Changing the order of factors in the last expression on the preceding page, and replacing $BC \times KE$ by its value, it becomes

$$\frac{1}{2}AK \times AK \times BN \times \frac{4}{3}\pi = \overline{AK}^2 \times BN \times \frac{2}{3}\pi$$
 Hence,

Vol.
$$\triangle ABC = \frac{2}{3}\pi \times \overline{AK^2} \times BN = \frac{2}{3}\pi \times \overline{AK^2} \times DF$$

That is, the volume generated by the revolution of an isosveles triangle about any line drawn through its vertex and lying in the plane of the triangle, is measured by $\frac{2}{3}\pi$ times the square of the perpendicular of the triangle multiplied by the part of the axis included between the two perpendiculars let fall upon it from the extremities of the base of the triangle.

Scholium .- If we resume the equation

Vol.
$$\triangle ABC = BC \times \frac{1}{2}AK \times \frac{4\pi . HE}{3}$$

and change the order of the factors in the second member, it may be put under the form

Vol.
$$\triangle ABC = BC \times 2\pi . HE \times \frac{1}{2}AK$$
.

But during the revolution of the triangle, the side BC generates the surface of the frustum of a cone, which surface has for its measure

$$BC \times 2\pi . HE$$
 (Th. 20, Cor. 3).

Hence, the above equation may be thus interpreted: The volume generated by the revolution of a triangle about any line lying in its plane and passing through the vertex of one of its angles, is measured by the surface generated, during the revolution, by the side opposite the vertex through which the axis passes multiplied by one third of the perpendicular drawn from the vertex to that side.

THEOREM XXVIII.

If the line drawn through the center and vertices of two opposite angles of a regular polygon, of an even number of sides, be taken as an axis of revolution, either semi-polygon thus formed will, during this revolution, generate a volume which has, for its measure, the surface generated by the perimeter of the semi-polygon multiplied by one third of its apothem.

Let ABCDE be a regular semi-polygon, cut off from a regular polygon of an even number of sides, by drawing a line through the center, O, and the vertices, A and E, of two opposite angles of the polygon; then will the column generated by the revolution of this semi-polygon about AE, as an axis, be measured by (Sur. AB + sur. BC + sur. CD + sur. DE) $\times \frac{1}{3}Om$, Om being the apothem of the polygon.

For, if from the center of O, the lines OB, OC, OD, be drawn to the vertices of the several angles of the semi-polygon, it will be divided into equal isosceles triangles, the perpendicular of each being the apothem of the polygon.

Now, the volume generated by $\triangle AOB$ has, for its measure,

Sur.
$$AB \times \frac{1}{3}Om$$
,

that by $\triangle BOC$, Sur. $BC \times \frac{1}{3}Om$,

" $\triangle COD$, Sur. $CD \times \frac{1}{3}Om$,

 $^{\prime}$ \triangle DOE, Sur. DE $\times \frac{1}{3}$ Om, (Scholium, Th. 27).

By the addition of the measures of these partial volumes, we find, for that of the whole volume,

Vol. semi-polygon $ABCDE = \text{sur. perimeter } ABCDE \times \frac{1}{2}Om$, and were the number of the sides of the semi-polygon

increased or diminished, the reasoning would be in no wise changed.

Hence the theorem; if the line drawn through the center, etc.

SCHOLIUM.—The volume generated by any portion of the semi-polygon, as that composed of the two isosceles \triangle 's BOC, COD, is measured by

Sur. perimeter $BCD \times \frac{1}{8}Om$.

THEOREM XXIX.

The volume of a sphere is measured by its surface multiplied by one third of its radius.

Let a sphere be generated by the revolution of the semicircle ACE, about its diameter, AE, as an axis; then will the volume of the sphere be measured by

sur. semi-circ. $OA \times \frac{1}{3}OA$.

For, inscribe in the semi-circle any regular semi-polygon, as ABCDE, and let it, together with the semi-circle, revolve about the axis AE. The

semi-polygon will generate a volume which has, for its measure,

Sur. perimeter $ABCDE \times \frac{1}{3}Om$, (Th. 28), in which Om is the apothem of the polygon.

Now, however great the number of sides of the inscribed regular semi-polygon, this measure for the volume generated by it, will hold true; but when we reach the limit, by making the number of sides indefinitely great, the perimeter and apothem become, respectively, the semi-circumference and its radius, and the volume generated by the semi-circle, that is, the sphere. Therefore,

Vol. sphere = sur. semi-circ, $OA \times \frac{1}{3}OA$.

SCHOLIUM 1.—If we take any portion of the inscribed semi-puly gon, as BOC, the volume generated by it is measured by sur. $BC \times iOm$, (Scholium, Th. 27); and when we pass to the limit, this volume becomes a sector, and sur. BC a zone of the sphere, which zone is the base of the sector. Hence, the volume of a spherical sector is measured by the zone which forms its base multiplied by one third of the radius of the sphere.

Scholium 2.—Let R denote the radius of a sphere; then will its diameter be represented by 2R. Now, since the surface of a sphere is equivalent to the area of four of its great circles, and the area of a great circle is expressed by πR^2 , we have

Vol. sphere =
$$4\pi R^2 \times \frac{1}{8}R = \frac{4}{3}\pi R^3$$
.

And since $R^3 = \frac{1}{8}(2R)^3$, we also have

Vol. sphere =
$$\frac{4}{3}\pi R^3 = \frac{1}{6}\pi (2R)^3$$
.

Hence, the volume of a sphere is measured by four thirds of π times the cube of the radius, or by one sixth of π times the cube of the diameter.

THEOREM XXX.

The surface of a sphere is equivalent to two thirds of the surface, bases included, and the volume of a sphere to two thirds of the volume, of the circumscribing cylinder.

Let AMD be a semi-circle, and ABCD a rectangle formed by B drawing tangents through the middle point and extremities of the semi-circumference, and let M the semi-circle and rectangle be revolved together about AD as an axis. The rectangle will thus generate a cylinder circumscribed

about the sphere generated by the semi-circle.

First. The diameter of the base, and the altitude of the cylinder, are each equal to the diameter of the sphere; hence the convex surface of the cylinder, being measured by the circumference of its base multiplied by its altitude, (Cor. 1, Th. 20), has the same measure as the surface of the sphere, (Th. 25). But the surface of the sphere is equivalent to four great circles, (Cor. 3, Th. 25). Hence, the convex surface of the cylinder is equivalent to four great circles; and adding to these the bases of the cylinder, also great circles, we have the whole surface of the cylinder equivalent to six great circles. Therefore, the surface of the sphere is four sixths = two thirds of the surface of the cylinder, including its bases.

Second. The volume of the cylinder, being measured by the area of the base multiplied by the altitude, (Cor. 1, Th. 22), is, in this case, measured by the area of a great circle multiplied by its diameter = four great circles multiplied by one half the radius of the sphere.

But the volume of the sphere is measured by four great circles multiplied by one third of the radius, (Scholium 2, Th. 29). Therefore,

Vol. sphere: Vol. cylinder:: $\frac{1}{3}$: $\frac{1}{2}$:: 2:3; whence, Vol. sphere = $\frac{2}{3}$ Vol. cylinder.

Hence the theorem; the surface of a sphere is equivalent, etc.

Cor. The volume of a sphere is to the volume of the circumscribed cylinder, as the surface of the sphere is to the surface of the cylinder.

Scholium.—Any polyedron circumscribing a sphere, may be regarded as composed of as many pyramids as the polyedron has faces, the center of the sphere being the common vertex of these pyramids, and the several faces of the polyedron their bases. The altitude of each pyramid will be a radius of the sphere; hence the volume of any one pyramid will be measured by the area of the face of the polyedron which forms its base, multiplied by one third of the radius of the sphere. Therefore, the aggregate of these pyramids, or the whole polyedron, will be measured by the surface of the polyedron multiplied by one third of the radius of the sphere.

But the volume of the sphere is also measured by the surface of the sphere multiplied by one third of its radius. Hence,

Sur. polyedron: Sur. sphere:: Vol. polyedron: Vol. sphere. hat is, the surface of any circumscribed polyedron is to the surj

That is, the surface of any circumscribed polyedron is to the surface of the sphere, as the volume of the polyedron is to the volume of the sphere.

TAEOREM XXXI.

The volume generated by the revolution of the segment of a circle about a diameter of the circle exterior to the segment, is measured by one sixth of a times the square of the chord of the segment, multiplied by the part of the axis included between the perpendiculars let fall upon it from the extremities of the chord.

Let BCD be a segment of the circle, whose center is O, and AH a part of a diameter exterior to the segment. Draw the chord BD, and from its extremities let fall the perpendiculars, BF, DE on AH; also draw Om perpendicular to BD. The spherical sector generated by the revolution of the circular sector BCDO about AH is measured by FO

BCDO about *AH*, is measured by zone $BD \times \frac{1}{8}BO$, (Scholium 1, Th. 29), $= 2\pi .BO \times EF \times \frac{1}{8}BO = \frac{2}{8}\pi \overline{BO}^2 \times EF$; and the volume generated by the isosceles triangle BOD is measured by

$$\frac{2}{3}\pi \overline{Om}^2 \times EF$$
, (Cor. 1, Th. 27).

The difference between these two volumes is that generated by the circular segment *BCD*, which has, therefore, for its measure,

$$\frac{2}{8}\pi EF(\overline{BO}^2 - \overline{Om}^2) = \frac{2}{8}\pi EF \times \overline{Bm}^2$$
, (Th. 39, B. I).

But since $Bm = \frac{1}{2}BD$, $\overline{Bm}^2 = \frac{1}{4}\overline{BD}^2$; hence, by substituting, we have

Vol. segment $BCD = \frac{2}{5}\pi EF \times \frac{1}{4}\overline{BD}^2 = \frac{1}{5}\pi \overline{BD}^2 \times EF$. Hence the theorem.

THEOREM XXXII.

The volume of a segment of a sphere has, for its measure, the half sum of the bases of the segment multiplied by its altitude, plus the volume of a sphere which has this altitude for its diameter.

Let *BCD* be the arc of a circle, and *BF* and *DE* perpendiculars let fall from its extremities upon a diameter, of which *AH* is a part; then, if the area *BCDEF* be revolved about *AH* be as an axis, a spherical segment will be generated, for the volume of which it is proposed to find a measure.

The circular segment will generate a volume measured by $\frac{1}{6}\pi \overline{B}\overline{D}^2 \times EF$, (Th. 31); and the frustum of the cone generated by the trapezoid BDEF will have, for its measure,

$$\frac{1}{3}\pi \overline{BF}^2 \times EF + \frac{1}{3}\pi \overline{DE}^2 \times EF + \frac{1}{3}\pi \overline{BF} \times DE \times EF, (Th. 22),$$

$$= \frac{1}{3}\pi EF (\overline{BF}^2 + \overline{DE}^2 + BF \times DE).$$

But the sum of these two volumes is the volume of the spherical segment, which has, therefore, for its measure,

$$\frac{1}{8}\pi EF(\overline{BD}^2 + 2\overline{BF}^2 + 2\overline{DE}^2 + 2BF \times DE)$$

From B let fall the perpendicular Bn on DE; then will

$$Dn = DE - nE = DE - BF;$$

hence,
$$\overline{Dn}^2 = \overline{DE}^2 - 2DE \times BF + \overline{BF}^2$$
;

and since
$$\overline{BD}^2 = \overline{Bn^2} + \overline{Dn^2} = \overline{EF}^2 + \overline{Dn^2}$$
,

we have
$$\overline{BD}^2 = \overline{EF}^2 + \overline{DE}^2 + \overline{BF}^2 - 2DE \times BF$$
.

By substituting this value for $\overline{BD^2}$, in the above measure for the volume of the segment, we find

$$\frac{1}{8\pi EF}(\overline{EF}^2 + \overline{DE}^2 + \overline{BF}^2 - 2DE \times BF + 2\overline{BF}^2 + 2\overline{DE}^2 + 2BF \times DE)}{-\frac{1}{8\pi EF}(\overline{EF}^2 + \overline{3DE}^2 + 3\overline{BF}^2) = \frac{1}{8\pi EF}\overline{EF}^3 + EF\left(\frac{\pi \overline{DE}^2 + \pi \overline{BF}^2}{9}\right)}.$$

Which last expression conforms to the enunciation.

Hence the theorem; the volume of a segment of a sphere, etc.

Cor. When the segment has but one base, BF becomes zero, and EF becomes EA; and the final expression

which we found for the volume of the segment reduces to

$$\frac{1}{6} \sqrt{E} A^{\circ} + EA \times \frac{\sqrt{D}E^{\circ}}{2}$$
.

Hence, A spherical segment having but one base, is equivalent to a sphere whose diameter is the altitude of the segment, plus one hal, of a cylinder having for base and altitude the base and altitude of the segment.

SCHOLIUM.—When the spherical segment has a single base, we may put the expression, $\frac{1}{6}\pi \overline{EA}^3 + EA \times \frac{\pi \overline{DE}^2}{2}$, under a form to indicate a convenient practical rule for computing the volume of the segment.

Thus, since the triangle DEO is right-angled, and OE = OA - EA, we have

$$\overline{DE^3} = \overline{DO^2} - \overline{OE^2} = \overline{OA^3} - \overline{OA^2} + 20A \times EA - \overline{EA^3}$$

$$= 20A \times EA - \overline{EA^2}.$$

By substituting this value for \overline{DE}^2 in the expression for the volume of the segment, we find

$$\frac{1}{8}\pi\overline{EA}^{8} + EA \times \frac{\pi}{2} \times (20A \times EA - \overline{EA}^{2})$$

$$= \frac{1}{8}\pi\overline{EA} + \overline{EA}^{2} \times \frac{\pi}{2} (20A - EA)$$

$$= \frac{1}{8}\pi\overline{EA}^{8} + \frac{1}{8}\pi . 3\overline{EA}^{2} (20A - EA)$$

$$= \frac{1}{8}\pi\overline{EA}^{2} (EA + 6.0A - 3EA)$$

$$= \frac{1}{8}\pi\overline{EA}^{2} (6.0A - 2EA)$$

$$= \frac{1}{8}\pi\overline{EA}^{2} (30A - EA)$$

Hence, the volume of a spherical segment, having a single base, is measured by one third of π times the square of the altitude of the segment, multiplied by the difference between three times the radius of the sphere and this altitude.

RECAPITULATION

Of some of the principles demonstrated in this and the preceding Books.

Let R denote the radius, and D the diameter of any circle or sphere, and H the aftitude of a cone, or of a segment of a sphere; then,

Circumference of a circle $=4\pi R^2$, or πD^2 . Sarface of a sphere Zone forming the base of a $= 2\pi R \times H$. segment of a sphere, Volume or solidity of a sphere = $\frac{4}{3}\pi R^3$, or $\frac{1}{8}\pi D^4$. Volume of a spherical sector = $\frac{2}{3}\pi R^2 \times H$. Volume of a cone, of which R is the radius of the $= \frac{1}{3}\pi R^3 \times H$. Volume of a spherical segment, of which R' is the $= \frac{1}{6}\pi H^2 + H \frac{(\pi R'^2 + \pi R''^2)}{9}$ radius of one base, and [R'' the radius of the other, and whose altitude is H, $=\frac{1}{6}\pi H^3 + H.\frac{\pi R'^2}{2}; \text{ or,}$ If the segment has but one base, R'' = zero, and the volume of the segment, $= \frac{1}{2}\pi H^2(3R - H).$

PRACTICAL PROBLEMS.

- 1. The diameter of a sphere is 12 inches; how many cubic inches does it contain?

 Ans. 904.78 cu. in.
- 2. What is the solidity of the segment of a single base that is cut from a sphere 12 inches in diameter, the altitude of the segment being 3 inches?

 Ans. 141.372 cu. in.
- 3. The surface of a sphere is 68 square feet; what is its diameter?

 Ans. D = 4.652 feet.
- 4. If from a sphere, whose surface is 68 square feet, a segment be cut, having a depth of two feet and a single base, what is the convex surface of the segment?

5. What is the solidity of the sphere mentioned in the two preceding examples, and what is the solidity of the segment, having a depth of two feet, and but one base?

6. In a sphere whose diameter is 20 feet, what is the solidity of a segment, the bases of which are on the same side of the center, the first at the distance of 3 feet from it, and the second of 5 feet; and what is the solidity of a second segment of the same sphere, whose bases are also on the same side of the center, and at distances from it, the first of 5 and the second of 7 feet?

Ans. Solidity of first segment, 525.7 cu. ft. second " 400.03 "

7. If the diameter of the single base of a spherical segment be 16 inches, and the altitude of the segment 4 inches, what is its solidity?*

Ans. 435.6352 cubic inches.

8. The diameter of one base of a spherical segment is 18 inches, and that of the other base 14 inches, these bases being on opposite sides of the center of the sphere, and the distance between them 9 inches; what is the volume of the segment, and the radius of the sphere?

Ans. { Vol. seg., 2219.5 cubic inches. Rad. of sphere, 9.4027 inches.

- 9. The radius of a sphere is 20, the distance from the center to the greater base of a segment is 10, and the distance from the same point to the lesser base is 16; what is the volume of the segment, the bases being on the same side of the center?

 Ans. 4297.7088.
- 10. If the diameter of one base of a spherical segment be 20 miles, and the diameter of the other base 12 miles, and the altitude of the segment 2 miles, what is its solidity, and what is the diameter of the sphere?

NOTE.—The Key to this work contains full solutions to all the problems in the Geometry and Trigonometry, and the necessary diagrams for illustration.

First find the radius of the sphere.

BOOK VIII.

PRACTICAL GEOMETRY.

APPLICATION OF ALGEBRA TO GEOMETRY, AND ALSO PROPOSITIONS FOR ORIGINAL INVESTIGATION.

No definite rules can be given for the algebraic solution of geometrical problems. The student must, in a a great measure, depend on his own natural tact, and his power of making a skillful application of the geometrical and analytical knowledge he has thus far obtained.

The known quantities of the problem should be represented by the first letters of the alphabet, and the unknown by the final letters; and the relations between these quantities must be expressed by as many independent equations as there are unknown quantities. To obtain the equations of the problem, we draw a figure, the parts of which represent the known and unknown magnitudes, and very frequently it will be found necessary to draw auxiliary lines, by means of which we can deduce, from the conditions enunciated, others that can be more conveniently expressed by equations. In many cases the principal difficulty consists in finding, from the relations directly given in the statement, those which are ultimately expressed by the equations of the problem. Having found these equations, they are treated by the known rules of algebra, and the values of the required magnitudes determined in terms of those given.

PROBLEM 1.

Given, the hypotenuse, and the sum of the other two sides of a right-angled triangle, to determine the triangle.

Let ABC be the \triangle . Put CB = y, AB = x, AC = h, and CB + AB = s. Then, by a given condition, we have

and,

$$x^{2} + y^{2} = h^{2}$$
, (Th. 39, B. I).

Reducing these two equations, and we have

$$x = \frac{1}{2}s \pm \frac{1}{2}\sqrt{2h^2 - s^2}; \qquad y = \frac{1}{2}s \pm \frac{1}{2}\sqrt{2h^2 - s^2}.$$

If
$$h = 5$$
 and $s = 7$, $x = 4$ or 3, and $y = 3$ or 4.

REMARK. — In place of putting x to represent one side, and y the other, we might put (x+y) to represent the greater side, and (x-y) the less side; then,

$$x^2 + y^2 = \frac{h^2}{2}$$
, and $2x = s$, etc.

PROBLEM II.

Given, the base and perpendicular of a triangle, to find the side of its inscribed square.

Let ABC be the \triangle . Put AB = b, the base, CD = p, the perpendicular.

Draw EF parallel to AB, and suppose it equal to EG,

a side of the required square; and put EF = x.

Then, by similar \triangle 's, we have

That is,

$$p-x:x::p:b.$$

Hence,
$$bp - bx = px$$
; or, $x = \frac{bp}{b+p}$.

That is, the side of the inscribed square is equal to the product of the base and altitude, divided by their sum.

PROFILEM III.

In a triangle, having given the sides about the vertical angle, and the line hisecting that angle and terminating in the base, to find the base.

Let ABC be the \triangle , and let a circle be circumscribed about it. Divide the arc AEB into two equal parts at the point E, and draw EC. This line bisects the vertical angle, (Cor., Th. 9, B. III). Draw BE.

Put AD = x, DB = y, AC = a, CB = b, CD = c, and DE = w. The two \triangle 's, ADC and EBC, are equiangular; from which we have

$$w + c : b :: a : c; \text{ or, } cw + c^2 = ab;$$
 (1)

But, as EC and AB are two chords that intersect each other in a circle, we have

$$cw = xy$$
, (Th. 17, B. III).
Therefore, $xy + c^2 = ab$. (2)

But, as CD bisects the vertical augle, we have

$$a:b::x:y, \text{ (Th. 24, B. II).}$$
Or,
$$x = \frac{ay}{b}. \quad (3)$$
Hence,
$$\frac{a}{b}y^2 + c^2 = ab; \text{ or, } y = \sqrt{b^2 - \frac{c^2b}{a}}$$
And,
$$x = \frac{a}{b}\sqrt{b^2 - \frac{c^2b}{a}}.$$

Now, as x and y are determined, the base is determined.

REMARK. — Observe that equation (2) is Theorem 20, Book III
20 *

PROBLEM IV.

To determine a triangle, from the base, the line bisecting the vertical angle, and the diameter of the circumscribing circle.

Describe the circle on the given diameter, AB, and divide it into two parts, in the point D, so that $AD \times DB$ shall be equal to the square of one half the given base, (Th. 17, B. III).

Through D draw EDG, at right angles to AB, and EG will be the given base of the triangle.

Put
$$AD = n$$
, $DB = m$, $AB = d$, $DG = b$.

Then,
$$n+m=d$$
, and $nm=b^2$;

and these two equations will determine n and m; therefore, we shall consider n and m as known.

Now, suppose EHG to be the required \triangle ; and draw HIB and HA. The two \triangle 's, ABH, DBI, are equiangular; and, therefore, we have

But HI is a given line, that we will represent by c; and if we put IB = w, we shall have HB = c + w; then the above proportion becomes,

$$d:c+w::w:m.$$

Now, w can be determined by a quadratic equation; and, therefore, IB is a known line.

In the right-angled $\triangle DBI$, the hypotenuse IB, and the base DB, are known; therefore, DI is known, (Th. 39, B. I); and if DI is known, EI and IG are known.

Lastly, let EH = x, HG = y, and put EI = p, and IG = q.

Then, by Theorem 20, Book III,
$$pq + c^* = xy$$
 (1)
But, $x : y :: p : q$ (Th. 24, B. II)

Or,
$$x = \frac{py}{q}$$
 (2)

Now, from equations (1) and (2) we can determine x and y, the sides of the \triangle ; and thus the determination has been attained, carefully and easily, step by step.

PROBLEM V.

Three equal circles touch each other externally, and thus inclose one acre of ground; what is the diameter in rods of each of these circles?

Draw three equal circles to touch each other externally, and join the three centers, thus forming a triangle. The lines joining the centers will pass through the points of contact, (Th. 7, B. III).

Let R represent the radius of these equal circles; then it is obvious that each side of this \triangle is equal to 2R. The triangle is therefore equilateral,

and it incloses the given area, and three equal sectors.

As the angle of each sector is one third of two right angles, the three sectors are, together, equal to a semicircle; but the area of a semi-circle, whose radius is R, is expressed by $\frac{\pi R^2}{2}$; and the area of the whole triangle must be $\frac{\pi R^2}{2} + 160$; but the area of the \triangle is also equal to R multiplied by the perpendicular altitude, which is $R\sqrt{3}$.

Therefore,
$$R^2\sqrt{3} = \frac{\pi R^2}{2} + 160.$$

Or, $R^2(2\sqrt{3} - \pi) = 320.$
 $R^2 = \frac{320}{2\sqrt{3} - 3.1415926} = \frac{320}{0.3225} = 992.248.$

Hence, R = 31.48 + rods, for the required result.

PROBLEM VI. — In a right-angled triangle, having given the base and the sum of the perpendicular and hypoteness, to find these two sides.

PROB. VII.—Given, the base and altitude of a triangle, to divide it into three equal parts, by lines parallel to the base.

PROB. VIII.—In any equilateral \triangle , given the length of the three perpendiculars drawn from any point within, to the three sides, to determine the sides.

PROB. IX.—In a right-angled triangle, having given the base, (3), and the difference between the hypotenuse and perpendicular, (1), to find both these two sides.

PROB. X.—In a right-angled triangle, having given the hypotenuse, (5), and the difference between the base and perpendicular, (1), to determine both these two sides.

PROB. XI.—Having given the area of a rectangle inscribed in a given triangle, to determine the sides of the rectangle.

PROB. XII.—In a triangle, having given the ratio of the two sides, together with both the segments of the base, made by a perpendicular from the vertical angle, to determine the sides of the triangle.

į

PROB. XIII.—In a triangle, having given the base, the sum of the other two sides, and the length of a line drawn from the vertical angle to the middle of the base, to find the sides of the triangle.

PROB. XIV.—To determine a right-angled triangle, having given the lengths of two lines drawn from the acute angles to the middle of the opposite sides.

PROB. XV.—To determine a right-angled triangle, having given the perimeter, and the radius of the inscribed circle.

PROB. XVI.—To determine a triangle, having given the base, the perpendicular, and the ratio of the two sides.

PROB. XVII.— To determine a right-ungled triangle, having given the hypotenuse, and the side of the inscribed square.

Prob. XVIII. — To determine the radii of three equal circles inscribed in a given circle, and tangent to each other, and also to the circumference of the given circle.

PROB. XIX.—In a right-angled triangle, having given the perimeter, or sum of all the sides, and the perpendicular let fall from the right angle on the hypotenuse, to determine the triangle; that is, its sides.

Prob. XX.—To determine a right-angled triangle, having given the hypotenuse, and the difference of two lines drawn from the two acute angles to the center of the inscribed circle.

PROB. XXI. — To determine a triangle, having given the base, the perpendicular, and the difference of the two other sides.

PROB. XXII. — To determine a triangle, having given the base, the perpendicular, and the rectangle, or product of the two sides.

PROB. XXIII.—To determine a triangle, having given the lengths of three lines drawn from the three angles to the middle of the opposite sides.

PROB. XXIV. — In a triangle, having given all the three sides, to find the radius of the inscribed circle.

PROB. XXV.—To determine a right-angled triangle, having given the side of the inscribed square, and the radius of the inscribed circle.

PROB. XXVI. — To determine a triangle, and the radius of the inscribed circle, having given the lengths of three lines drawn from the three angles to the center of that circle.

PROB XXVII. — To determine a right-angled triangle, having given the hypotenuse, and the radius of the inscribed rircle.

PROB. XXVIII.—The lengths of two parallel chords on the same side of the center being given, and their distance apart, to determine the radius of the circle.

PROD. XXIX. - The lengths of two chords in the same

circle being given, and also the difference of their distances from the center, to find the radius of the circle.

PROB. XXX.—The radius of a circle being given, and also the rectangle of the segments of a chord, to determine the distance of the point at which the chord is divided, from the center.

PROB. XXXI.—If each of the two equal sides of an isosceles triangle be represented by a, and the base by 2b, what will be the value of the radius of the inscribed circle?

Ans.
$$R = \frac{b\sqrt{a^2-b^2}}{a+b}$$
.

PROB. XXXII. — From a point without a circle whose diameter is d, a line equal to d is drawn, terminating in the concave arc, and this line is bisected at the first point in which it meets the circumference. What is the distance of the point without from the center of the circle?

It is not deemed necessary to multiply problems in the application of algebra to geometry. The preceding will be a sufficient exercise to give the student a clear conception of the nature of such problems, and will serve as a guide for the solution of others that may be proposed to him, or that may be invented by his own ingenuity.

MISCELLANEOUS PROPOSITIONS.

We shall conclude this book, and the subject of Geometry, by effering the following propositions,—some theorems, others problems, and some a combination of both,—not only for the purpose of impressing, by application, the geometrical principles which have now been established, but for the not less important purpose of cultivating the power of independent investigation.

After one or two propositions in which the beginner will be assisted in the analysis and construction, we shall leave him to his own resources, with the caution that a patient consideration of all the conditions in each case, and not mere trial operation, is the only process by which he can hope to reach the desired result.

1. From two given points, to draw two equal straight lines, which shall meet in the same point in a given straight line.

Let A and B be the given points, and CD the given straight line. Produce the perpendicular to the straight line AB at its middle point, until it meets CD in G. It is then easily proved that G is the point in CD in which the equal lines from A and B must meet. That is, that AG = BG.

If the points A and B were on opposite sides of CD, the directions C for the construction would be the same, and we should have this figure; but the reasoning by which we prove AG = BG would be unchanged.

2. From two given points on the same side of a given straight line, to draw two straight lines which shall meet in the given line, and make equal angles with it.

Let CD be the given line, and A and B the given points.

From B draw BE perpendicular to CD, and produce the perpendicular to F, making EF equal to BE; then draw AF, and from the point G, in which it intersects CD, draw GB. Now, $_BGE = _EGF = _AGC$. Hence, the angles BGD and AGC are equal, and the lines AG and BG meet

in a common point in the line CD, and made equal angles with that line.

- 3. If, from a point without a circle, two straight lines be drawn to the concave part of the circumference, making equal angles with the line joining the same point and the center, the parts of these lines which are intercepted within the circle, are equal.
- 4. If a circle be described on the radius of another circle, any straight line drawn from the point where they meet, to the outer circumference, is bisected by the interior one.
- 5. From two given points on the same side of a line given in position, to draw two straight lines which shall contain a given angle, and be terminated in that line.
- 6. If, from any point without a circle, lines be drawn touching the circle, the angle contained by the tangents is double the angle contained by the line joining the points of contact and the diameter drawn through one of them.
- 7. If, from any two points in the circumference of a circle, there be drawn two straight lines to a point in a tangent to that circle, they will make the greatest angle when drawn to the point of contact.
- 8. From a given point within a given circle, to draw a straight line which shall make, with the circumference, an angle, less than any angle made by any other line drawn from that point.

;

- 9. If two circles cut each other, the greatest line that can be drawn through either point of intersection, is that which is parallel to the line joining their centers.
- 10. If, from any point within an equilateral triangle, perpendiculars be drawn to the sides, their sum is equal to a perpendicular drawn from any of the angles to the opposite side.
- 11. If the points of bisection of the sides of a given trangle be joined, the triangle so formed will be one fourth of the given triangle.
- 12. The difference of the angles at the base of any triangle, is double the angle contained by a line drawn from the vertex perpendicular to the base, and another bisecting the angle at the vertex.

- 13. If, from the three angles of a triangle, lines be a rawn to the points of bisection of the opposite sides, these lines intersect each other in the same point.
- 14. The three straight lines which bisect the three angles of a triangle, meet in the same point.
- 15. The two triangles, formed by drawing straight times from any point within a parallelogram to the extremities of two opposite sides, are, together, one half the parallelogram.
- 16. The figure formed by joining the points of bisection of the sides of a trapezium, is a parallelogram.
- 17. If squares be described on three sides of a rightangled triangle, and the extremities of the adjacent sides be joined, the triangles so formed are equivalent to the given triangle, and to each other.
- 18. If squares be described on the hypotenuse and sides of a right-angled triangle, and the extremities of the sides of the former, and the adjacent sides of the others, be joined, the sum of the squares of the lines joining them will be equal to five times the square of the hypotenuse.
- 19. The vertical angle of an oblique-angled triangle inscribed in a circle, is greater or less than a right angle, by the angle contained between the base and the diameter drawn from the extremity of the base.
- 20. If the base of any triangle be bisected by the diameter of its circumscribing circle, and, from the extremity of that diameter, a perpendicular be let fall upon the longer side, it will divide that side into segments, one of which will be equal to one half the sum, and the other to one half the difference, of the sides.
- 21. A straight line drawn from the vertex of an equilateral triangle inscribed in a circle, to any point in the opposite circumference, is equal to the sum of the two lines which are drawn from the extremities of the base to the same point.
 - 22. The straight line bisecting any angle of a triangle

TRIGONOMETRY

PART I.

PLANE TRIGONOMETRY.

SECTION I.

ELEMENTARY PRINCIPLES.

TRIGONOMETRY, in its literal and restricted sense, has for its object the measurement of triangles. When it treats of plane triangles it is called *Plane Trigonometry*. In a more enlarged sense, trigonometry is the science which investigates the relations of all possible arcs of the circumference of a circle to certain straight lines, termed trigonometrical lines or circular functions, connected with and dependent on such arcs, and the relations of these trigonometrical lines to each other.

The measure of an angle is the arc of a circle intercepted between the two lines which form the angle—the center of the arc always being at the point where the two lines meet.

The arc is measured by degrees, minutes, and seconds; there being 360 degrees to the whole circle, 60 minutes in one degree, and 60 seconds in one minute. Degrees, minutes, and seconds, are designated by °, ', "; thus, 27° 14′ 21", is read 27 degrees 14 minutes 21 seconds.

The circumferences of all circles contain the same number of degrees, but the greater the radius the greater is the absolute length of a degree. The circumference of a carriage wheel, the circumference of the earth, or the still greater and indefinite circumference of the heavens, has the same number of degrees; yet the same number of degrees in each and every circumference is the measure of precisely the same angle.

DEFINITIONS.

- 1. The Complement of an arc is 90° minus the arc.
- 2. The Supplement of an arc is 180° minus the arc.
- 3. The Sine of an angle, or of an arc, is a line drawn from one end of an arc, perpendicular to a diameter drawn through the other end. Thus, BF is the sine of the arc AB, and also of the arc BDE. BK is the sine of the arc BD.
- 4. The Cosine of an arc is the perpendicular distance from the center of the circle to the sine of the arc; or, it is the same in magnitude as the sine of the complement of the arc. Thus, CF is the cosine of the arc AB; but CF = KB, which is the sine of BD.

- 5. The Tangent of an arc is a line touching the circle in one extremity of the arc, and continued from thence, to meet a line drawn through the center and the other extremity. Thus, AH is the tangent to the arc AB, and DL is the tangent of the arc DB.
- 6. The Cotangent of an arc is the tangent of the complement of the arc. Thus, DL, which is the tangent of the arc DB, is the cotangent of the arc AB.

REMARK.—The co is but a contraction of the word complement.

- 7. The Secant of an arc is a line drawn from the center of the circle to the extremity of the tangent. Thus, CH is the secant of the arc AB, or of its supplement BDE.
- 8. The Cosecant of an arc is the secant of the complement. Thus, CL, the secant of BD, is the cosecant of AB.

9. The Versed Sine of an arc is the distance from the extremity of the arc to the foot of the sine. Thus, AF s the versed sine of the arc AB, and DK is the versed sine of the arc DB.

For the sake of brevity, these technical terms are contracted thus: for sine AB, we write sin. AB; for cosine AB, we write cos. AB; for tangent AB, we write tan. AB, etc.

From the preceding definitions we deduce the following obvious consequences:

1st. That when the arc AB becomes insensibly small, or zero, its sine, tangent, and versed sine are also nothing, and its secant and cosine are each equal to radius.

2d. The sine and versed sine of a quadrant are each equal to the radius; its cosine is zero, and its secant and tangent are infinite.

3d. The chord of an arc is twice the sine of one half the arc. Thus, the chord, BG, is double the sine, BF.

4th. The versed sine is equal to the difference between the radius and the cosine.

5th. The sine and cosine of any arc form the two sides of a right-angled triangle, which has a radius for its hypotenuse. Thus, CF and FB are the two sides of the right-angled triangle, CFB.

Also, the radius and tangent always form the two sides of a right-angled triangle, which has the secant of the arc for its hypotenuse. This we observe from the right-angled triangle, CAH.

To express these relations analytically, we write

$$\sin^2 + \cos^2 = R^2 \tag{1}$$

$$R^2 + \tan^2 = \sec^2 \qquad (2)$$

From the two equiangular triangles CFB, CAH, we have

$$CF : FB = CA : AH.$$

That is,

cos. : sin. =
$$R$$
 : tan.; whence, tan. = $\frac{R.\sin}{\cos}$ (3)

Also, CF: CB = CA: CH.

That is,

 $\cos : R = R : \sec :$ whence, $\cos .$ sec. = R^2 . (4)

The two equiangular triangles, CAH and CDL, give

$$CA:AH=DL:DC.$$

That is,

$$R: \tan = \cot : R;$$
 whence, $\tan \cot = R^{2}$. (5)

Also, CF : FB = DL : DC.

That is,

cos. :
$$\sin = \cot : R$$
; whence, $\cos R = \sin \cot (6)$

From equations (4) and (5), we have

$$\cos$$
. \sec . = \tan . \cot . (7)

Or, $\cos : \tan = \cot : \sec$.

We also have ver. sin. =
$$R - \cos$$
. (8)

The ratios between the various trigonometrical lines are always the same for arcs of the same number of degrees, whatever be the length of the radius; and we may, therefore, assume radius of any length to suit our convenience. The preceding equations will be more concise, and more readily applied, by making the radius equal unity. This supposition being made, we have, for equations 1 to 6, inclusive,

$$\sin^2 + \cos^2 = 1.$$
 (1)

$$1 + \tan^2 = \sec^2$$
 (2)

$$\tan = \frac{\sin}{\cos} \quad (3) \qquad \cos = \frac{1}{\sec} \quad (4)$$

$$\tan x = \frac{1}{\cot x} \quad (5) \qquad \cos x = \sin x \cot x \quad (6)$$

Let the circumference, AEDH, be divided into four equal parts by the diameters, AD and EH, the one hori

zontal and the other vertical. These equal parts are called quadrants, and they may be distinguished as the first, second, third, and fourth quadrants.

The center of the circle is taken as the origin of distances, or the zero point, and the different directions in which distances are esti-

mated from this point are indicated by the signs + and -. If those from C to the right be marked +, those from C to the left must be marked -; and if distances from C upwards be considered plus, those from C downwards must be considered minus.

If one extremity of a varying arc be constantly at A, and the other extremity fall successively in each of the several quadrants, we may readily determine, by the above rule, the algebraic signs of the sines and cosines of all arcs from 0° to 360°. Now, since all other trigonometrical lines can be expressed in terms of the sine and cosine, it follows that the algebraic signs of all the circular functions result from those of the sine and cosine.

We shall thus find for arcs terminating in the

1st quadrant,		sin. +	008. +	tan. 十	∞L +	sec. +	cosec. +	TOTS.
-	"	+					+	+
3d	"			+	+			+
4th	"		+			+	_	+

PROPOSITION 1.

The chord of 60° and the tangent of 45° are each equal to radius; the sine of 30° , the versed sine of 60° , and the cosine of 60° are each equal to one half the radius.

With C as a center, and CA as a radius, describe the arc ABF, and from A lay off the arcs $AD = 45^{\circ}$, $AB = 60^{\circ}$, and $AE = 90^{\circ}$; then is $EB = 30^{\circ}$.

F B B

1st. The side of a regular inscribed hexagon is the radius of

the circle, (Prob. 28, B. IV), and as the arc subtended by each side of the hexagon contains 60°, we have the chord of 60° equal to the radius.

2d. The triangle CAH is right-angled at A, and the angle C is equal to 45°, being measured by the arc AD; hence the angle at H is also equal to 45°, and the triangle is isosceles. Therefore AH = CA = radius of the circle.

3d. The triangle ABC is isosceles, and Bn is a perpendicular from the vertex upon the base; hence An = nC = Bm. But Bm is the sine of the arc BE, Cn is the cosine of the arc AB, and An is the versed sine of the same arc, and each is equal to one half the radius.

Hence the proposition; the chord of 60°, etc.

PROPOSITION II.

Given, the sine and the cosine of two arcs, to find the sine and the cosine of the sum and of the difference of the same arcs expressed by the sines and cosines of the separate arcs.

Let G be the center of the circle, CD the greater arc, and DF the less, and denote these arcs by a and b respectively.

Draw the radius GD; make the arc DE equal to the arc DF, and draw the chord EF. From F and E, the extremities, and I, the middle point

of the chord, let fall the perpendiculars FM, EP, and IN, on the radius GC. Also draw DO, the sine of the arc CD, and let fall the perpendiculars IH on FM, and EK on IN.

Now, by the definition of sines and cosines, $DO = \sin a$; $GO = \cos a$; $FI = \sin b$; $GI = \cos b$. We are to find

$$FM = \sin(a+b)$$
; $GM = \cos(a+b)$; $EP = \sin(a-b)$; $GP = \cos(a-b)$.

Because IN is parallel to DO, the two \triangle 's, GDO, GIN, are equiangular and similar. Also, the \triangle FHI is similar to the \triangle GIN; for the angles, FIG and HIN, are right angles; from these two equals, taking away the common angle HIL, we have the angle FIH = the angle GIN. The angles at H and N are right angles; therefore, the \triangle 's FHI, GIN, and GDO, are equiangular and similar; and the side HI is homologous to IN and DO.

Again, as FI = IE, and IK is parallel to FM, FH = IK, and HI = KE.

By similar triangles we have

$$GD:DO=GI:IN.$$

That is,
$$R : \sin a = \cos b : IN$$
; or, $IN = \frac{\sin a \cos b}{R}$. (1)

Also,
$$GD: GO = FI: FH.$$

That is,
$$R : \cos a = \sin b : HF$$
; or, $FH = \frac{\cos a \sin b}{R}$. (2)

Also,
$$GD: GO = GI: GN$$
.

That is,
$$R: \cos a = \cos b$$
: GN ; or, $GN = \frac{\cos a \cos b}{R}$. (3)

Also,
$$GD:D0=FI:IH$$
.

That is,
$$R : \sin a = \sin b : IH$$
; or, $IH = \frac{\sin a \sin b}{R}$. (4)

By adding the first and second of these equations, we have

$$IN + FH = FM = \sin(a + b)$$
.

That is,
$$\sin (a + b) = \frac{\sin a \cos b + \cos a \sin b}{R}$$
.

By subtracting the second from the first, since

$$IN-FH = IN-IK = EP$$
, we have $\sin (a-b) = \frac{\sin a \cos b - \cos a \sin b}{R}$.

By subtracting the fourth from the third, we have $GN-IH = GM = \cos(a+b)$ for the first member.

Hence,
$$\cos (a+b) = \frac{\cos a \cos b - \sin a \sin b}{R}$$
. (5)

By adding the third and fourth, we have

$$GN + IH = GN + NP = GP = \cos(a - b)$$
.

Hence,
$$\cos(a-b) = \frac{\cos a \cos b + \sin a \sin b}{R}$$
. (6)

Collecting these four expressions, and considering the radius unity, we have

$$(A) \begin{cases} \sin.(a+b) = \sin.a \cos.b + \cos.a \sin.b & (7) \\ \sin.(a-b) = \sin.a \cos.b - \cos.a \sin.b & (8) \\ \cos.(a+b) = \cos.a \cos.b - \sin.a \sin.b & (9) \\ \cos.(a-b) = \cos.a \cos.b + \sin.a \sin.b & (10) \end{cases}$$

Formulæ (A) accomplish the objects of the proposition, and from these equations many useful and important deductions can be made. The following are the most essential:

By adding (7) to (8), we have (11); subtracting (8) from (7) gives (12). Also, (9) added to (10) gives (13), (9) taken from (10) gives (14).

$$(B) \begin{cases} \sin.(a+b) + \sin.(a-b) = 2\sin.a \cos.b & (11) \\ \sin.(a+b) - \sin.(a-b) = 2\cos.a \sin.b & (12) \\ \cos.(a+b) + \cos.(a-b) = 2\cos.a \cos.b & (13) \\ \cos.(a-b) - \cos.(a+b) = 2\sin.a \sin.b & (14) \end{cases}$$

If we put a + b = A, and a - b = B, then (11) becomes (15), (12) becomes (16), (13) becomes (17), and (14) becomes (18).

$$(C) \begin{cases} \sin A + \sin B = 2\sin \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right) & \text{(15)} \\ \sin A - \sin B = 2\cos \left(\frac{A+B}{2}\right)\sin \left(\frac{A-B}{2}\right) & \text{(16)} \\ \cos A + \cos B = 2\cos \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right) & \text{(17)} \\ \cos B - \cos A = 2\sin \left(\frac{A+B}{2}\right)\sin \left(\frac{A-B}{2}\right) & \text{(18)} \end{cases}$$

If we divide (15) by (16), (observing that $\frac{\sin \cdot}{\cos \cdot} = \tan \cdot$, and $\frac{\cos \cdot}{\sin \cdot} = \cot \cdot = \frac{1}{\tan \cdot}$ as we learn by equations (6) and (5), we shall have

$$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\sin \left(\frac{A+B}{2}\right)}{\cos \left(\frac{A+B}{2}\right)} \times \frac{\cos \left(\frac{A-B}{2}\right)}{\sin \left(\frac{A-B}{2}\right)} = \frac{\tan \left(\frac{A+B}{2}\right)}{\tan \left(\frac{A-B}{2}\right)} (19)$$

Whence,

$$\sin A + \sin B : \sin A - \sin B = \tan \left(\frac{A+B}{2}\right) : \tan \left(\frac{A-B}{2}\right)$$

That is: The sum of the sines of any two arcs is to the difference of the same sines, as the tangent of one half the sum of the same arcs is to the tangent of one half their difference.

By operating in the same way with the different equations in formulæ (C), we find,

$$(D) \begin{cases} \frac{\sin A + \sin B}{\cos A + \cos B} = \tan \left(\frac{A+B}{2}\right) & (20) \\ \frac{\sin A + \sin B}{\cos B - \cos A} = \cot \left(\frac{A-B}{2}\right) & (21) \\ \frac{\sin A - \sin B}{\cos A + \cos B} = \tan \left(\frac{A-B}{2}\right) & (22) \\ \frac{\sin A - \sin B}{\cos B - \cos A} = \cot \left(\frac{A+B}{2}\right) & (23) \\ \frac{\cos A + \cos B}{\cos B - \cos A} = \frac{\cot \left(\frac{A+B}{2}\right)}{\tan \left(\frac{A-B}{2}\right)} & (24) \end{cases}$$

These equations are all true, whatever be the value of the arcs designated by A and B; we may, therefore, assign any possible value to either of them, and if in equations (20), (21), and (24), we make B=0, we shall have,

$$\frac{\sin A}{1 + \cos A} = \tan \frac{A}{2} = \frac{1}{\cot \frac{1}{2}A}$$
(25)
$$\frac{\sin A}{1 - \cos A} = \cot \frac{A}{2} = \frac{1}{\tan \frac{1}{2}A}$$
(26)
$$\frac{1 + \cos A}{1 - \cos A} = \frac{\cot \frac{1}{2}A}{\tan \frac{1}{4}A} = \frac{1}{\tan^2 \frac{1}{4}A}$$
(27)

If we now turn back to formulæ (A), and divide equation (7) by (9), and (8) by (10), observing at the same time that $\frac{\sin x}{\cos x} = \tan x$, we shall have,

$$\tan(a+b) = \frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}$$
$$\tan(a-b) = \frac{\sin a \cos b - \cos a \sin b}{\cos a \cos b + \sin a \sin b}$$

By dividing the numerators and denominators of the second members of these equations by (cos.a cos.b), we find,

$$\tan(a+b) = \frac{\frac{\sin a \cos b}{\cos a \cos b} + \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b} + \frac{\sin a \sin b}{\cos a \cos b}} = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$
(28)
$$\tan(a-b) = \frac{\frac{\sin a \cos b}{\cos a \cos b} + \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b} + \frac{\sin a \sin b}{\cos a \cos b}} = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$
(29)

If in equation (11), formulæ (B), we make a = b, we shall have,

$$\sin 2a = 2\sin a \cos a \qquad (30)$$

Making the same hypothesis in equation (13), gives,

$$\cos 2a + 1 = 2\cos^2 a$$
 (31)

The same hypothesis reduces equation (14) to

$$1 - \cos 2a = 2\sin^2 a \tag{32}$$

The same hypothesis reduces equation (28) to

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$
 (33)

If we substitute a for 2a in (31) and (32), we shall have

$$1 + \cos a = 2\cos^{2}a. \tag{34}$$

and
$$1 - \cos a = 2\sin^{2} a$$
. (35)

PROPOSITION III.

In any right-angled plane triangle, we may have the following proportions:

1st. The hypotenuse is to either side, as the radius is to the sine of the angle opposite to that side.

2d. One side is to the other side, as the radius is to the tangent of the angle adjacent to the first side.

3d. One side is to the hypotenuse, as the radius is to the secant of the angle adjacent to that side.

Let *CAB* represent any rightangled triangle, right-angled at *A*,

(Here, and in all cases hereafter, we shall represent the angles of a triangle by the large letters A, B, C, and the sides opposite to them, by the small letters a, b, c.)

From either acute angle, as C, take any distance, as CD, greater or less than CB, and describe the arc DE. This arc measures the angle C. From D, draw DF parallel to BA; and from E, draw EG, also parallel to BA or DF.

By the definitions of sines, tangents, secants, etc, DF is the sine of the angle C; EG is the tangent, CG the secant, and CF the cosine.

Now, by proportional triangles we have,

CB: BA = CD: DF or, $a: c = R: \sin C$

CA:AB=CE:EG or, $b:c=R:\tan C$

CA: CB = CE: CG or, $b: a = R: \sec C$

Hence the proposition.

SCHOLIUM.—If the hypotenuse of a triangle is made radius, one side is the sine of the angle opposite to it, and the other side is the cosine of the same angle. This is obvious from the triangle CDF.

PROPOSITION IV.

In any triangle, the sines of the angles are to one another as the sides opposite to them.

Let ABC be any triangle. From the points A and B, as centers, with any radius, describe the arcs measuring these angles, and draw pa, CD, and mn, perpendicular to AB.

Then,

$$pa = \sin A$$
, and $mn = \sin B$.

By the similar \triangle 's, Apa and ACD, we have,

$$R: \sin A = b: CD$$
; or, $R(CD) = b \sin A$ (1)

By the similar \triangle 's, Bmn and BCD, we have,

$$R: \sin B = a: CD$$
; or, $R(CD) = a \sin B$ (2)

By equating the second members of equations (1) and (2)

$$b \sin A = a \sin B$$
.

Hence, \cdot sin. $A : \sin B = a : b$

Or, $a:b=\sin A:\sin B$.

SCHOLIUM 1.—When either angle is 90°, its sine is radius.

SCHOLIUM 2.—When CB is less than AC, and the angle B, acute, the triangle is represented by ACB. When the angle B becomes B', it is obtuse, and the triangle is ACB'; but the proportion is equally

true with either triangle; for the angle CB'D = CBA, and the sine of CB'D is the same as the sine of AB'C. In practice we can determine which of these triangles is proposed, by the side AB being greater or less than AC; or, by the angle at the vertex C being large, as ACB, or small, as ACB'.

In the solitary case in which AC, CB, and the angle A, are given, and CB less than AC, we can determine both of the \triangle 's ACB and ACB'; and then we surely have the right one.

PROPOSITION V.

If from any angle of a triangle, a perpendicular be let fall. on the opposite side, or base, the tangents of the segments of the angle are to each other as the segments of the base.

Let ABC be the triangle. Let fall the perpendicular CD, on the side AB.

Take any radius, as Cn, and describe the arc which measures the angle C. From n, draw qnp parallel to AB. Then it is obvious that np is the tangent of the angle DCB, and nq is the tangent of the angle ACD.

Now, by reason of the parallels AB and qp, we have,

qn: np = AD: DB

That is, tan.ACD : tan.DCB = AD : DB.

PROPOSITION VI.

If a perpendicular be let fall from any angle of a triangle to its opposite side or base, this base is to the sum of the other two sides, as the difference of the sides is to the difference of the segments of the base.

(See figure to Proposition 5.)

Let AB be the base, and from C, as a center, with the shorter side as radius, describe the circle, cutting AB in G, and AC in F; produce AC to E.

It is obvious that AE is the sum of the sides AC and CB, and AF is their difference.

Also, AD is one segment of the base made by the perpendicular, and BD = DG is the other; therefore, the difference of the segments is AG.

As A is a point without a circle, by Cor. Th. 18, B. III, we have

$$AE \times AF = AB \times AG$$

Hence, AB : AE = AF : AG.

PROPOSITION VII.

The sum of any two sides of a triangle is to their difference, as the tangent of one half the sum of the angles opposite to these sides, is to the tangent of one half their difference.

Let ABC be any plane triangle. Then, by Proposition 4, we have,

$$BC:AC=\sin A:\sin B.$$

Hence,

$$BC+AC:BC-AC=\sin A+\sin B:\sin A-\sin B$$
 (Th. 9, B. II).
But,

tan.
$$\left(\frac{A+B}{2}\right)$$
: tan. $\left(\frac{A-B}{2}\right) = \sin A + \sin B$: sin. $A - \sin B$, (eq. (19), Trig.)

Comparing the two latter proportions, (Th. 6, B. II), we have,

$$BU + AC:BC - AC = \tan\left(\frac{A+B}{2}\right) : \tan\left(\frac{A-B}{2}\right)$$

Hence the proposition.

PROPOSITION VIII.

Given, the three sides of any plane triangle, to find some relation which they must bear to the sines and cosines of the respective angles.

Let ABC be the triangle, and let the perpendicular fall either upon, or without the base, as shown in the figures.

By recurring to Th. 41, B. I, we shall find

$$CD = \frac{a^2 + b^2 - c^2}{2a}.$$
 (1)

Now, by Proposition 3, we have

$$R:\cos C=b:CD.$$

$$CD = \frac{b \cos C}{R}.$$
 (2)

Equating these two values of CD, and reducing, we have

cos.
$$C = \frac{R(a^2 + b^2 - c^2)}{2ab}$$
. (m)

In this expression we observe, that the part c, whose square is found in the numerator with the minus sign, is the side opposite to the angle; and that the denominator is twice the rectangle of the sides adjacent to the angle. From these observations we at once draw the following expressions for the cosine A, and cosine B:

$$\cos A = \frac{R(b^2 + c^2 - a^2)}{2bc}.$$
 (n)

cos.
$$B = \frac{R(a^2 + c^2 - b^2)}{2ac}$$
 (p)

As these expressions are not convenient for logarithmic computation, we modify them as follows:

If we put 2a = A, in equation (31), we have

$$\cos A + 1 = 2\cos^2 A.$$

In the preceding expression, (n), if we consider radius unity, and add 1 to both members, we shall have

cos.
$$A + 1 = 1 + \frac{b^2 + c^2 - a^2}{2bc}$$
.
Therefore, $2\cos^2 \frac{1}{2}A = \frac{2bc + b^2 + c^2 - a^2}{2bc}$
$$= \frac{(b+c)^2 - a^2}{2bc}.$$

Considering b+c as one quantity, and observing that $(b+c)^2-a^2$ is the difference of two squares, we have $(b+c)^2-a^2=(b+c+a)(b+c-a)$; but (b+c-a)=b+c+a-2a. Hence, $2\cos^2 A=\frac{(b+c+a)(b+c+a)(b+c+a-2a)}{2ba}$.

Or,
$$\cos^2 \frac{1}{2}A = \frac{\left(\frac{b+c+a}{2}\right)\left(\frac{b+c+a}{2}-a\right)}{bc}$$
.

By putting $\frac{a+b+c}{2} = s$, and extracting square root, the final result for radius unity is

$$\cos \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}.$$

For any other radius we must write

$$\cos_{\frac{1}{2}}A = \sqrt{\frac{R^2s(s-a)}{bc}}.$$

By inference, $\cos \frac{1}{2}B = \sqrt{\frac{R^2s(s-b)}{ac}}$

Also,
$$\cos \frac{1}{2}C = \sqrt{\frac{R^2s(s-c)}{ab}}$$
.

In every triangle, the sum of the three angles is equal to 180°; and if one of the angles is small, the other two must be comparatively large; if two of them are small, the third one must be large. The greater angle is always opposite the greater side; hence, by merely inspecting the given sides, any person can decide at once which is the greater angle; and of the three pre-

ceding equations, that one should be taken which applies to the greater angle, whether that be the particular angle required or not; because the equations bring out the cosines to the angles; and the cosines to very small arcs vary so slowly, that it may be impossible to decide, with sufficient numerical accuracy, to what particular arc the cosine belongs. For instance, the cosine 9.999999, carried to the table, applies to several arcs; and, of course, we should not know which one to take; but this difficulty does not exist when the angle is large; therefore, compute the largest angle first, and then compute the other angles by Proposition 4.

But we can deduce an expression for the sine of any of the angles, as well as the cosine. It is done as follows:

EQUATIONS FOR THE SINES OF THE ANGLES.

Resuming equation (m), and considering radius unity, we have

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}.$$

Subtracting each member of this equation from unity, gives

$$1 - \cos C = 1 - \left(\frac{a^2 + b^2 - \sigma^2}{2ab}\right). \tag{1}$$

Make
$$2a = C$$
, in equation (32); then $a = \frac{1}{2}C$, and $1 - \cos C = 2\sin^2 \frac{1}{2}C$. (2)

Equating the second members of (1) and (2),

$$2\sin^{2}\frac{1}{2}C = \frac{2ab - a^{2} - b^{2} + c^{2}}{2ab}$$

$$= \frac{c^{2} - (a - b)^{2}}{2ab}$$

$$= \frac{(c + b - a)(c + a - b)}{2ab}.$$

Or,
$$\sin^{\frac{1}{2}C} = \frac{\left(\frac{c+b-a}{2}\right)\left(\frac{c+a-b}{2}\right)}{ab}.$$
But,
$$\frac{c+b-a}{2} = \frac{c+b+a}{2} - a, \text{ and } \frac{c+a-b}{2} = \frac{c+a+b}{2} - b.$$
Put
$$\frac{a+b+c}{2} = s, \text{ as before; then,}$$

$$\sin^{\frac{1}{2}C} = \sqrt{\frac{(s-a)(s-b)}{ab}}.$$

By taking equation (p), and proceeding in the same manner, we have

$$\sin \frac{1}{2}B = \sqrt{\frac{(s-a)(s-c)}{ac}}.$$
From (n), $\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{ab}}.$

The preceding results are for radius unity; for any other radius, we must multiply by the number of units in such radius. For the radius of the tables we write R; and if we put it under the radical sign, we must write R^2 ; hence, for the sines corresponding with our logarithmic table, we must write the equations thus,

$$\sin_{\frac{1}{2}}A = \sqrt{\frac{R^{2}(s-b)(s-c)}{bc}}.$$

$$\sin_{\frac{1}{2}}B = \sqrt{\frac{R^{2}(s-a)(s-c)}{ac}}.$$

$$\sin_{\frac{1}{2}}C = \sqrt{\frac{R^{2}(s-a)(s-b)}{ab}}.$$

A large angle should not be determined by these equations, for the same reason that a small angle should not be determined from an equation expressing the cosine.

In practice, the equations for cosine are more generally used, because more easily applied.

The formulæ which we have thus analytically developed, express nearly all the important relations between the sines, cosines, and tangents of arcs or angles; and we have also demonstrated all the theorems required for the determination of the unknown parts of any plane triangle, three of the parts of which are given, one at least being a side.

Such relations might be indefinitely multiplied, but those already established are sufficient for most practical purposes, and when others are required, no difficulty will be found in deducing them from these.

The following geometrical demonstrations of many of the preceding relations, are offered, in the belief that they will prove useful disciplinary exercises to the student.

1st. Let the arc
$$AD=A$$
; then $DG=\sin A$; $CG=\cos A$, $DI=\sin \frac{1}{2}A$; $AD=2\sin \frac{1}{2}A$; $CI=\cos \frac{1}{2}A$; $CI=DO$; and $DB=2DO=2\cos \frac{1}{2}A$.

The angle, DBA, is measured by one half the arc AD; that is, by $\frac{1}{2}A$. Also, $ADG = DBA = \frac{1}{2}A$. Now, in the triangle, BDG, we have $\sin .DBG : DG = \sin .90^\circ : BD$. That is, $\sin .\frac{1}{2}A : \sin .A = 1 : 2\cos .\frac{1}{2}A$. Or, $\sin .A = 2\sin .\frac{1}{2}A \cos .\frac{1}{2}A$; which corresponds to equation (30).

In the same triangle,

 $\sin .90^{\circ}: BD = \sin .BDG : BG$; and $\sin .BDG = \cos .DBG$.

That is, $1:2\cos\frac{1}{2}A=\cos\frac{1}{2}A:1+\cos A$.

Or, $2\cos^2 \frac{1}{2}A = 1 + \cos A$, same as equation (34).

In the triangle, DGA, we have,

 $\sin .90^{\circ}: AD = \sin .GDA: GA.$

That is, $1: 2\sin \frac{1}{2}A = \sin \frac{1}{2}A: 1 - \cos A$.

Or, $2\sin^{2}\frac{1}{3}A = 1 - \cos A$, same as equation (35).

By similar triangles, we have,

$$BA:AD=AD:AG.$$

 $2:2\sin A=2\sin A:$ versed $\sin A.$ That is,

versed $\sin A = 2\sin^2 A$. Or,

2d. From C as the center, with CA as the radius. describe a circle. Take any arc,

AB, and call it A; and AD a less arc, and call it B; then BD is the difference of the two arcs, and must be designated by (A-B); arc AG= arc AB; therefore,

are
$$DG = A + B$$
; $EG = \sin A$;

$$En = \sin B$$
; $Gn = \sin A + \sin B$;

$$Bn = \sin A - \sin B$$

$$Fm = mD = CH = \cos B$$
; $mn = \cos A$;

therefore,
$$Fm + mn = \cos A + \cos B = Fn$$
;

$$mD - mn = \cos B - \cos A = nD$$
;

and
$$DG = 2\sin\left(\frac{A+B}{2}\right)$$
.

Because,
$$NF = AD$$
; $AB + NF = A + B$;
therefore, $180^{\circ} - (A + B) = \text{arc } FB$;

$$(A + B) = arc BB;$$

or,
$$90^{\circ} - \left(\frac{A+B}{2}\right) = \frac{1}{2} \text{are } FB.$$

But the chord, FB, is twice the sine of $\frac{1}{2}$ arc FB;

that is,
$$FB = 2\sin \left(90^{\circ} - \frac{A+B}{2}\right) = 2\cos \left(\frac{A+B}{2}\right)$$
.

The $\mid \dot{n}GD = \lfloor BFD \rangle$, because both are measured by one half of the arc BD; that is, by $\left(\frac{A-B}{2}\right)$, and the two triangles, GnD and FnB, are similar.

The angle,
$$GFn$$
, is measured by $\left(\frac{A+B}{2}\right)$.

In the triangle, FBG, Fn is drawn from an angle per

pendicular to the opposite side; therefore, by Proposition 5, we have,

 $Gn: nB = \tan GFn: \tan BFn.$

That is, $\sin A + \sin B : \sin A - \sin B = \tan \left(\frac{A+B}{2}\right)$: tan.

$$\left(\frac{A-B}{2}\right)$$
. This is equation (19).

In the triangle, GnD, we have,

 $\sin .90^{\circ}: DG = \sin .nDG: Gn; \sin .nDG = \cos .nGD.$

That is, 1: $2\sin(\frac{A+B}{2}) = \cos(\frac{A-B}{2})$: $\sin A + \sin B$.

Or, $\sin A + \sin B = 2\sin \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right)$, the same as equation (15).

3d. In the triangle, FnB, we have,

 $\sin.90: FB = \sin.BFn: Bn.$

That is, $1:2\cos\left(\frac{A+B}{2}\right)=\sin\left(\frac{A-B}{2}\right):\sin A-\sin B$.

Or, $\sin A - \sin B = 2\cos \left(\frac{A+B}{2}\right)\sin \left(\frac{A-B}{2}\right)$, the same as equation (16).

4th. In the triangle, FBn, we have,

$$\sin .90: FB = \cos .BFn: Fn.$$

. That is, 1: $2\cos(\frac{A+B}{2}) = \cos(\frac{A-B}{2}) : \cos A + \cos B$.

Or, $\cos A + \cos B = 2\cos \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right)$, the same as equation (17).

5th. In the triangle, GnD, we have,

 $\sin .90^{\circ}: GD = \sin .nGD: nD.$

That is, $1: 2\sin\left(\frac{A+B}{2}\right) = \sin\left(\frac{A-B}{2}\right) : \cos B - \cos A$, the same as equation (18).

6th. In the triangle, FGn, we have,

$$\sin GFn: Gn = \cos GFn: Fn.$$

That is, $\sin \frac{A+B}{2}$: $\sin A + \sin B = \cos \frac{A+B}{2}$: $\cos A + \cos B$.

Or, $(\sin A + \sin B)\cos \left(\frac{A+B}{2}\right) = (\cos A + \cos B)\sin \left(\frac{A+B}{2}\right)$.

Or,
$$\frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\sin \frac{A+B}{2}}{\cos \frac{A+B}{2}} = \tan \left(\frac{A+B}{2}\right)$$
, the

same as equation (20).

7th. In the triangle, FnB, we have,

Fn: nB:: 1: tan.BFn.

That is, $\cos B + \cos A : \sin A - \sin B :: 1 : \tan \frac{1}{2}(A - B)$.

Or,
$$\frac{\sin A - \sin B}{\cos A + \cos B} = \tan \left(\frac{A - B}{2}\right)$$
, the same as equation (22).

8th. In the triangle, GnD, we have,

That is,

$$\sin A + \sin B : \cos B - \cos A :: 1 : \tan \left(\frac{A - B}{2}\right),$$

or,
$$\frac{\cos B - \cos A}{\sin A + \sin B} = \tan \left(\frac{A - B}{2}\right).$$

NATURAL SINES, COSINES, ETC.

When the radius of the circle is taken as the unit of measure, the numerical values of the trigonometrical lines belonging to the different arcs of the quadrant, become natural sines, cosines, etc. They are then, in fact, but numbers expressing the number of times that these lines contain the radius of the circle in which they are taken. The tables usually contain only the sines and cosines, because these are generally sufficient for practi-

cal purposes, and the others, when required, are readily expressed in terms of them.

We proceed to explain a method for computing a table of natural sines and cosines.

It was shown, in Book V, that the linear value of the arc 180°, in a circle whose radius is unity, is

3.141592653.

This divided by 180×60 , the number of minutes in 180° , will give the length of one minute of arc, which is

.00029088820867.

But there can be no sensible difference between the length of the arc 1' and its sine; and, within narrow limits, that sine will increase directly with the arc.

Hence, $\sin 0.002908882.$ $\sin 0.002908882.$ $\sin 0.0008726646.$ $\sin 0.0008726646.$ $\sin 0.0008726646.$ $\sin 0.0008726646.$ $\sin 0.000908829.$ $\sin 0.000908829.$ $\sin 0.00090889.$ $\sin 0.000908889.$ $\sin 0.000908889.$

Beyond this, the error which would arise from taking the arc for its sine, upon which the above proceeds, would affect the final decimal figures; and we must, therefore, continue the computation of the series by other processes. To find the values of the cosines of arcs, from 1' to 10', we have

$$\cos = \sqrt{1 - \sin^2 n} = 1 - \frac{1}{2} \sin^2 n$$
, nearly.

That is, when the sines are very small fractions, as is the case for all arcs below 10', we can find the cosine by subtracting one half of the square of the sine from unity.

```
Whence, cos. 1' = .9999999577.
cos. 2' = .9999998308.
cos. 3' = .9999993204.
cos. 4' = .99999932304.
cos. 5' = .9999984290.
cos. 6' = .99999847753.
cos. 7' = .99999792735.
cos. 8' = .9999973035.
cos. 9' = .9999957703.
```

The natural sines of arcs, differing by 1', from 10 up to 1°, may be computed from those of arcs less 4 an 10', by means of equation (11), group B, which is

$$\sin. (a + b) = 2\sin. a \cos. b - \sin. (a - b);$$

And when a = b, this equation becomes

$$\sin 2a = 2\sin a \cos a$$
. Eq. (30).

To find the sine of 11', we make a = 6', and b = 5';

then
$$\sin . 11' = 2\sin . 6' \cos . 5' - \sin . 1' = .00319976 313$$

$$a = b = 6'$$
, $\sin 12' = 2\sin 6' \cos 6'$.

$$a = 7', b = 6', \sin 13' = 2\sin 7' \cos 6' - \sin 1'$$

$$a = b = 7$$
, $\sin 14' = 2\sin 7' \cos 7'$.

$$a = 8, b = 7, \sin 15' = 2\sin 8' \cos 7' - \sin 1'$$

And so on to the

$$\sin . 30' = 2\sin . 15' \cos . 15'.$$

 $\sin . 1^{\circ} = \sin . 60' = 2\sin . 30' \cos . 30'.$
 $\sin . 2^{\circ} = 2\sin . 1^{\circ} \cos . 1^{\circ}.$

 $\sin 3^{\circ} = 2\sin 2^{\circ} \cos 1^{\circ} - \sin 1^{\circ}$, etc., etc., etc.

This process may be continued until we have found the sixes and cosines of all arcs differing by 1', from 0 to 90°, the values of the cosines being deduced successively from those of the sines by means of the formula,

$$\cos = \sqrt{1 - \sin^2 n}$$

In this calculation, we began by assuming that, for small arcs, the sines and the arcs were sensibly equal. It must be remembered that this is but an approximation; and although the error in the early stages of the process is not sufficient to affect any of the decimal figures which enter the tables, it will finally become so, since it is constantly increased in the operations by which the sines and cosines of the larger arcs are deduced from those of the smaller. When the error has been thus increased until it reaches the order of the last decimal unit of the table, which assigns our limit of error, we must have the means of detecting and correcting it.

This consists in calculating the sines and cosines of certain arcs by independent processes, and comparing them with those found by the above method.

We have seen, for example, (Prop. 7, B. V), that the chord of

The following elegant method of deducing, from the sine of an arc, the sine and cosine of one half the arc, is given, assuming that the student is familiar with the simple algebraic principles upon which it depends.

Let us take the natural sine of 18°, which is .3090170, and make $x = \sin \theta$, and y the cosine of θ ° = $\frac{18^{\circ}}{2}$.

Then,
$$x^2 + y^2 = 1$$
; (1)
and $2xy = .3090170$ (2); Eq. (30)

Adding, we have

$$x^2 + 2xy + y^2 = 1.3090170;$$

Taking the square root, we have

$$x + y = 1.144123.$$
 (3)

Subtracting (2) from (1),

$$x^{2} - 2xy + y^{2} = .690983$$
;

taking the square root,

$$x - y = -.831254* \tag{4}$$

Adding (3) and (4), 2x = .312869,

hence, $x = \sin .9^{\circ} = .1564345$

Subtracting (4) from (3), 2y = 1.975377

hence, $y = \cos .9^{\circ} = .9876885$

Now, by making x = the sine of 4° 30′, and y = cosine of 4° 30′, and as before

$$x^2 + y^2 = 1 \\ 2xy = .1564845,$$

and

we obtain the sine and cosine of 4° 30'; and another operation will give the sine and cosine 2° 15', etc., etc.

We may in this manner compute the sines and cosines of all arcs resulting from the division of 18° by 2, and we may make their values accurate to any assigned decimal figure.

This has been carried far enough to show how a table of natural sines, etc., could be computed; but in consequence of the tedious numerical operations which the process requires, other methods are resorted to in the actual construction of the table.

The Calculus furnishes formulæ giving the values of the sines and cosines of arcs developed into rapidly converging series, and from these the sines and cosines of all arcs from 0° to 90°, can be determined with great

^{*} When an arc is less than 45°, the cosine exceeds the sine; and when the arc is between 45° and 90°, the sine exceeds the cosine. Hence, when the arc is 9°, y, its cosine, exceeds x, its sine; and we therefore placed the minus sign before the second member of Eq. (4).

accuracy and with comparatively little labor. In the last two columns on each page of Table II, will be found the values thus computed of the sines and cosines of every degree and minute of a quadrant.

TRIGONOMETRICAL LINES FOR ARCS EXCEEDING 90°.

From the annexed figure, the construction of which needs no explanation, are deduced by simple inspection the results given in the following

TABLE.

90° + a°	270° — a°		
$\sin = \cos a, \cos = -\sin a$	$\sin = -\cos a$, $\cos = -\sin a$		
$tan. = -\cot \cdot a, \cot \cdot = -\tan \cdot a$	tan. = cot. a, cot. = tan. a		
$\sec . = -\csc . a, \csc . = \sec . a$	$\sec x = -\cos x$, $\cos x = -\sec x$		
180° — a°	270° + a°		
$\sin = \sin a, \cos = -\cos a$	$\sin = -\cos a$, $\cos = \sin a$		
tan. = -tan. a, cot. = -cot. a	$tan. = -\cot a$, $\cot = -\tan a$		
$\sec . = -\sec . \ a, \csc . = \csc . \ a$	$\sec . = \cos ec. \ a, \cos ec. = -\sec. \ a$		
180° + a°	360° — a°		
$\sin = -\sin a$, $\cos = -\cos a$	$\sin = -\sin a$, $\cos = \cos a$		
tan.= tan.a, cot. = cot. a	tan. = -tan. a, cot. = -cot. a		
$\sec . = -\sec . a, \csc . = -\csc . a$	800. = 800. a, cosec. = -cosec. a		

By means of this table, the values of the trigonometrical lines of any arc between 90° and 360°, can be expressed by those of arcs less than 90°.

If, for example, the arc is 118°, we have

$$\sin . 118^{\circ} = \sin . (90^{\circ} + 28^{\circ}) = \cos . 28^{\circ};$$
 $\tan . 118^{\circ} = \tan . (90^{\circ} + 28^{\circ}) = -\cot . 28^{\circ};$
etc., etc., etc.

For the arc 230°, we have
 $\sin . 230^{\circ} = \sin . (270^{\circ} - 40^{\circ}) = -\cos . 40^{\circ};$
 $\sec . 230^{\circ} = \sec . (270^{\circ} - 40^{\circ}) = -\csc . 40^{\circ};$
etc., etc., etc.

In many investigations, it becomes necessary to consider the functions of arcs greater than 360°; but since the addition of 360° any number of times to the arc a, will give an arc terminating in the extremity of a, it is obvious that the arc resulting from such addition will have the same functions as the arc a. And hence it follows that the functions of arcs, however great, may be expressed in terms of the functions of arcs less than 90°.

SECTION II.

PLANE TRIGONOMETRY, PRACTICALLY APPLIED.

In the preceding section, the theory of Trigonometry has been quite fully developed, and the student should now be prepared for its various applications, were he acquainted with logarithms. But logarithms are no part of Trigonometry, and serve only to facilitate the numerical operations. Trigonometrical computations can be made without logarithms, and were so made long before the theory of logarithms was understood.

For this reason, we proceed at once to the solution of the following triangles.

1. The hypotenuse of a right-angled triangle is 21, and the base is 17; required the perpendicular and the acute angles.

Let CAB be the triangle, in which CB = 21, and CA = 17. With C as a center, and CD = 1 as a radius, describe the arc DE, of which the sine is DF, the tangent is EG, and the cosine is CF.

By similar triangles we have

$$CB: CA:: CD: CF;$$
 that is, $21:17::1:\cos C.$ Hence, $\cos C = \frac{17}{21} = .80952 + .$

We must now turn to Table II, and find in the last two columns the cosine nearest to .80952, and the corresponding degrees and minutes will be the value of the angle C.

On page 57, of Tables, near the bottom of the page, and in the column with cosine at the top, we find .80953, which corresponds to 35° 56' for the angle C. The angle B is, therefore, 54° 3'.

This Table is so arranged, that the sum of the degrees at the top and bottom of the page, added to the sum of the minutes which are found on the same horizontal line in the two side columns of the page, is 90°

Thus, in finding the angle C, the number .80953 was found in the column with cosine at the head. We therefore took the degrees from the head of the page, and the minutes were taken from the left hand column, counting downwards.

For the side AB, we have the proportion

CF:FD::CA:AB;

or, $\cos C : \sin C :: 17 : AB$;

that is, .80953 : .58708 :: 17 : AB.

From which we find $AB = .58708 \times 17 \div .80953$;

whence, AB = 12.328.

If we had formed a table of natural tangents, as well as of natural sines, AB could have been found by the following proportion.

CE : EG :: CA : AB

or, $1 : \tan C :: 17 : AB;$

whence, $AB = 17 \tan C$.

The perpendicular AB may also be found by the proportion

CD:DF::CB:AB;

or, $1 : \sin C :: 21 : AB$;

whence, $AB = 21 \sin C = 21 \times .58708 = 12.32868$.

2. The two sides of a right-angled triangle are 150 and 125; required the hypotenuse and the acute angles.

We may employ the same figure as in the preceding problem.

Then, from the similar triangles, CFD and CAB, we get

that is, cos.
$$C$$
: sin. C :: 150: 125:: 6: 5, which gives 6 sin. $C = 5$ cos. C ; hence, 36 sin. $C = 25$ cos. C .

Adding member to member, 36 cos. $C = 25$ cos. C .

we have $C = 25$ cos. $C = 25$ cos. C .

But sin. $C = 25$ cos. C .

Whence, $C = 25$ cos. C .

We have $C = 25$ cos. C .

The following cos. $C = 25$ cos. C .

 $C = 36$ cos. $C = 36$;

 $C = 36$;

To find the angle of which this is the cosine, we turn to page 60 of tables, and looking in the column having cosine at the head, we see that .76822 falls between .76828, which has 48' opposite to it in the left hand column, and .76810, which has 49' opposite to it in the same column. Now, the cosines of arcs less than 90° decrease when the arcs increase, and the converse; and while the increase of the arc is confined within the limits of 1', the increase of the arc will be sensibly proportional to the decrease of the cosine.

Hence,
$$0.76828 .76828 .76822 .76822 .76822 .76822 .76822 .76822 .76822 .76822 .76828 .76822 .7$$

The angle C is, therefore, equal to 39° 48′ 20″, and the angle $B = 90^{\circ} - 39^{\circ} 48' 20'' = 50^{\circ} 11' 40''$.

To find CB, we have

$$CF: CD:: CA: CB;$$
or, $cos. C: 1:: 150: CB;$
that is, $.76822: 1:: 150: CB;$
whence, $CB = \frac{150}{.76822} = 195.26$.

3. The base of a right-angled triangle is 150, and the m gle opposite the base is 50° 11′ 40″; required the hypotenuse and the perpendicular.

Let CAB be the triangle.

Then, (Prop. 4, Sec. I),

ein. 50° 11' 40" : sin. 90° :: 150 : CB.

Whence,

$$CB = \frac{150}{.76822} = 195.26,$$

the same as in the preceding example.

To find AB, we have

that is, $1 : \sin C$ or $\cos B :: 195.26 : AB$;

from which we find

$$AB = 195.26 \sin 39^{\circ} 48' 40'';$$

or,
$$AB = 125.0015$$
.

4. Two sides, the one 30 and the other 35, and the included angle 20°, of a triangle, are given, to find the other two angles and the third side.

Let BAC be the triangle, in which BC = 35, BA = 30, and the angle B = 20°. From A, the extremity of the shorter side, let fall on BC the perpendicular AD, thus dividing the triangle B into the two right-angled triangles BAD and CAD.

Then, from the triangle BAD, we have

1st, $\sin D : \sin B :: BA : AD$;

or, $1 : \sin 20^{\circ} :: 30 : AD = 30 \sin 20^{\circ}$

2d, $1 : \cos B :: BA : BD;$

or, $1 : \cos 20^{\circ} :: 30 : BD = 30 \cos 20^{\circ}$.

In the table of natural sines, we find sin. $20^{\circ} = .34202$, and the sos. $20^{\circ} = .93969$; hence, $AD = 30 \times .34202 = 10.26060$, and $BD = 30 \times .93969 = 28.19070$, and therefore DC = BC = BD = 6.8093.

From the triangle CAD, we have

1st,
$$AC = \sqrt{AD^2 + DC^2} = \sqrt{(10.26)^2 + (6.8+)^2} = 19^{-987}$$

2d, $AC : AD :: \sin .90^{\circ} : \sin .C$;

or,
$$12.367:10.26+::1:\sin C;$$
 whence, $\sin C = \frac{10.26}{12.367} = .83319.$

and the angle $C = 56^{\circ} 26'$.

If, now, we add angles B and C, and take the sum from 180° , the remainder will be the angle BAC.

Hence,
$$BAC = 180^{\circ} - (56^{\circ}26' + 20^{\circ}) = 103^{\circ}34'$$
.

5. Two sides, the one 18 and the other 21, and the angle opposite the side 24 equal to 76°, are given, to find the remaining side and the other two angles.

Let x denote the angle opposite the side 18. Then,

or, 4: 3::
$$\sin .76^{\circ}$$
: $\sin .x$.
 $\sin .x = \frac{3}{4} \sin .76^{\circ} = \frac{3}{4} \times .97030 = .72772$;

whence the angle opposite the side 18 is 46° 41′ 45″.

Adding this to the given angle, and taking the sum from 180°, we get 57° 18′ 15″ for the third angle.

To find the remaining side, denoted by y, we have

sin. 76°: sin. 57° 18′ 15″:: 24 : y;

or,
$$.97030 : .84155 :: 24 : y.$$

$$y = \frac{24 \times .84155}{.97030} = 20.815 = 3d \text{ side.}$$

6. The three sides of a triangle are 18, 24, and 20.815; required the angles.

This problem may be solved by Prop. 6, or by Prop. 8, Trigonometry.

In the triangle ABC, make CB = 24, AC = 20.815, and AB = 18. Then,

$$CD - BD = \frac{109.264225}{54} = 4.5527.$$

Rut
$$CD + BD = CB = 24$$
.
By addition, we get $2CD = 28.5527$;
dividing by 2, and $CD = 14.2763 +$.
And hence, $BD = CB - CD = 24 - 14.2763 = 9.7237$.
In the triangle ADB , we have
$$BA : BD :: 1 : \cos B$$
or, $18 : 9.7237 :: 1 : \cos B = .54020$

Table II, Page 53,
$$\begin{cases} \cos .57^{\circ} \ 18' = .54024 \\ \cos .57^{\circ} \ 19' = .54000 \end{cases}$$
 diff.
$$= \frac{.54000}{24 : 60'' :: 4 : 10''}$$

hence, $B = 57^{\circ} 18' 10''$.

It will be observed that Examples 5 and 6 refer to the same triangle, and that in Example 5 the angle B was 57° 18′ 15″. This slight discrepancy in the results should be expected, on account of the small number of decimal places used in the computations.

Second. By Prop. 8. Sum of the sides, half sum denoted by s, a = 31.4075 a = 24 s - a = 7.4075Formula, $\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}, \text{ radius being unity.}$ $s(s-a) = 31.4075 \times 7.4075 = 232.65105625$ $bc = 20.815 \times 18 = 374.67$ $\frac{s(s-a)}{bc} = .62095 \text{ very nearly.}$ $\sqrt{.62095} = .78800.$

Hence, cos. $\frac{1}{2}A$ = .78800, and $\frac{1}{2}A$ (Table II, page 59) = 38° very nearly; the angle A is therefore equal to 76°, which agrees with Example 5.

7. Given, the three sides, 1425, 1338, and 493, of a trangle; required, the angle opposite the greater side. using the formula for the sine of one half an angle.

Make a = 1425, b = 1338, and c = 493; then the A is opposite the side a, and the formula is

$$\sin^{2}\frac{1}{2}A = \frac{(s-b)(s-c)}{bc}$$

in which s denotes the half sum of the three sides.

Then we have s = 1628, s - b = 290, s - c = 1135, (s - b)(s - c) = 329150, bc = 659634, $\frac{(s - b)(s - c)}{bc} = .498988$

Hence, $\sin \frac{1}{2}A = \sqrt{.498988} = .70632$.

In the table we find $\sin 44^{\circ} 56' 28.5'' = .70638$.

Therefore, $\frac{1}{2}A = 44^{\circ}$ 56' 28.5", and $A = 89^{\circ}$ 52' 57"; — but little less than a right angle.

In these seven examples we have shown that it is possible to solve any plane triangle, in which three parts, one at least being a side, are given, without the aid of logarithms. But, when great accuracy is required, and the number of decimal places employed is large, the necessary multiplications and divisions, the raising to powers, and the extraction of roots, become very tedious. All of these operations may be performed without impairing the correctness of results, and with a great saving of labor, by means of logarithms; but, before using them, the student should be made acquainted with their nature and properties.

LOGARITHMS.

Logarithms are the exponents of the powers to which a fixed number, called the base, must be raised, to produce other numbers.

The exponent of a number is also a number expressing how many times the first number is taken as a factor.

Thus, let a denote any number; then a^s indicates that a has been used three times as a factor, a^s that it has been used four times as a factor, and a^n that it has been thus used a times.

Now, instead of calling these numbers 8, 4, --n, exponents, we call them the logarithms of the powers a^* , a^* , $--a^n$.

To multiply a^2 by a^5 , we have simply to write a, giving it an exponent equal to 2 + 5; thus, $a^2 \times a^5 = a^7$.

Hence, the sum of the logarithms of any number of factors is equal to the logarithm of the product.

To divide a^{12} by a^9 , we have only to write a, giving it an exponent equal to 12-9; thus, $a^{12} \div a^9 = a^3$; and, generally, the quotient arising from the division of a^m by a^n , is equal to a^{m-n} .

Hence, the logarithm of a quotient is the logarithm of the dividend diminished by the logarithm of the divisor.

If it is required to raise a number denoted by a^3 , to the fifth power, we write a, giving it an exponent equal to 3×5 ; thus, $(a^3)^5 = a^{15}$, and, generally, $(a^n)^m = a^{nm}$.

Hence, the logarithm of the power of a number is equal to the logarithm of the number multiplied by the exponent of the power.

To extract the 5th root of the number a^3 , we write a, giving it an exponent equal to $\frac{3}{5}$; thus, $\sqrt[5]{a^3} = a^{\frac{3}{5}}$, and, generally, to extract any root of a number, we divide the exponent of the number by the index of the root, and the quotient will be the exponent of the required root.

Hence, the logarithm of a root of a number is equal to the quotient obtained by dividing the logarithm of the number by the index of the root.

Now, understanding that by means of a table of logarithms we may find the numbers answering to given logarithms, with as much facility as we can find the logarithms of given numbers, we see from what precedes that multiplications, divisions, raising to powers, and the extraction of roots, may be performed by logarithms; and the utility of logarithms, in trigonometrical computations, mainly consists in the simplification and abridgment of these operations by their use.

The common logarithms are those of which 10 is the base; that is, they are the exponents of 10.

Thus,
$$10^1 = 10$$
 Hence the logarithm $10 = 1$.
 $10^2 = 100$ " " $100 = 2$.
 $10^2 = 1000$ " " $1000 = 3$.
 $10^4 = 10000$ " " " $10000 = 4$.
etc. etc. etc. etc. etc.

Since
$$\frac{10}{10} = 1 = 10^{1-1} = 10^{0}$$
, and generally $\frac{a^{m}}{a^{m}} = a^{0} = 1$, follows that in this as in all other systems, the logge

it follows that in this, as in all other systems, the logarithm of 1 = 0.

From what precedes, it is evident that the logarithm of any number between 10 and 100 must be found between 1 and 2; that is, its logarithm is 1 plus a number less than 1; and any number between 100 and 1000, will have for its logarithm 2 plus some number less than 1, and so on. The fractional part of the logarithm of a number is expressed decimally.

The entire number belonging to a logarithm is called its index. The index is never put in the tables, (except from 1 to 100), and need not be put there, because we always know what it is. It is always one less than the number of digits in the integer. Thus, the number 8754 has 3 for the index to its logarithm, because the number consists of 4 digits; that is, the logarithm is 3 and some decimal.

The number 347.921 has 2 for the index of its logarithm, because the number is between 347 and 348, and 2 is the index for the logarithms of all numbers over 100, and less than 1000.

All numbers consisting of the same figures, whether integral, fractional, or mixed, have logarithms consisting of the same decimal part. The logarithms differ only in their indices.

Thus,	the number	7956.	has	3.900695	for its log.
	the number	795.6	has	2.900695	"
	the number	79.56	has	1.900695	"
	the number	7.956	has	0.900695	"
	the number	.7956	has -	-1.900695	"
	the number	.07956	has -	-2.900695	"

From this we perceive that we must take the logarithm out of the table for a mixed number or a decimal, the same as if the figures expressed an entire number; and then, to *prefix* the index, we must consider the *value* of the number.

The decimal part of a logarithm is always positive; but the index becomes negative when the number is a decimal; and the smaller the decimal, the greater the negative index. Hence,

To prefix the index to a decimal, count the decimal point as 1, and every cipher as 1, up to the first significant figure, and this is the negative index.

For example, find the logarithm of the decimal .0000831.

Num. .0000831; log. —5.919601.

The point is counted one, and each of the ciphers is counted one; therefore the index is minus five.

The smaller the decimal, the greater the negative index; and when the number becomes 0, the logarithm is negatively infinite.

Hence, the logarithmic sine of 0° is negatively infinite, however great the radius.

A number being given, to find its corresponding logarithm.

The logarithm of any number consisting of four figures, or less, is taken out of the table directly, and without the least difficulty.

Thus, to find the logarithm of the number 3725, we 24 *

find 372 at the side of the table, and in the column marked 5 at the top, and opposite 372, we find .571126, for the decimal part of the logarithm.

Hence, the logarithm of 3725 is 3.571126. the logarithm of 37250 is 4.571126. the logarithm of 37.25 is 1.571126, etc.

Find the logarithm of the number 834785.

This number is so large that we cannot find it in the table, but we can find the numbers 8347 and 8348. The logarithms of these numbers are the same as the logarithms of the numbers 834700 and 834800, except the indices.

	834700	log.	5.921530
	834800	log.	5.921582
Difference,	100		52

Now, our proposed number, 834785, is between the two assumed numbers; and, of course, its logarithm lies between the logarithms of the two assumed numbers; and, without further comment, we may find it by proportion thus,

Or,
$$100:85=52:44.2$$

 $1.:.85=52:44.2$

Hence, for finding from the table the logarithm of a number consisting of more than four places of figures, we have the following

RULE.

Take from the table the log. of the number expressed by the the four superior figures; this, with the proper index, is the approximate logarithm. Multiply the number expressed by the remaining figures of the number, regarded as a decimal, by the tabular difference, and the product will be the correction to be added to the approximate log. to obtain the true log

EXAMPLES.

1. What is the log. of 357.32514?

The log. of 357.3 is 2.558033

No. not included, .2514

Tabular diff., 122

Prod., 30.6708; correction, 31

log. sought, 2.553064

The log. of 35732.514 is 4.553064 " .035732514 " -2.553064.

2. What is the log. of 7912532?

Approximate log., 6.898286
.532 × 55 = correction, 29

True $\log = 6.898315$.

A logarithm being given, to find its corresponding number.

For example, what number corresponds to the log. 6.898315?

The index 6 shows that the entire part of the number must contain seven places of figures. With the decimal part, .898315, of the log., we turn to the table, and find the next less decimal part to be .898286, which corresponds to the superior places, 7912.

The difference between the given log. and the one next less is 29. This we divide by the tabular difference, 55, because we are working the converse of the preceding problem. Thus,

$$29 \div 55 = 52727 + .$$

Place the quotient to the right of the four figures before found, and we shall have 7912527.27 for the number sought.

This example was taken from the preceding case, and the number found should have been 7912532; and so it would have been, had we used the true difference, 29.26, in place of 29.

When the numbers are large, as in this example, the

result is liable to a small error, to avoid which the logarithms should contain a great number of decimal places; but the logarithms in our table contain a sufficient number of decimal places for most practical purposes.

Hence, for finding the number corresponding to any given logarithm, we have the following

RULE.

Look in the table for the decimal part of the given logarithm, and if not found, take the decimal next less, and take out the four corresponding figures.

Take the difference between the given log. and the next less in the table; divide that difference by the tabular difference, and write the quotient on the right of the four superior figures, and the result is the number sought.

Point off the whole number required by the given index.

EXAMPLES.

1. Given, the logarithm 3.743210, to find its corresponding number true to three places of decimals.

Ans. 5536.177.

2. Given, the logarithm 2.633356, to find its corresponding number true to two places of decimals.

Ans. 429.89.

- 3. Given, the logarithm 3.291746, to find its corresponding number.

 Ans. .0019577.
 - 4. What number corresponds to the log. 3.233568?

 Ans. 1712.25.
 - 5. What is the number of which 1.532708 is the log.?

 Ans. 34.0963.
 - 6. Find the number whose log. is 1.067889.

Ans. 11.692.

EXPLANATION OF TABLE II.

Table I is merely a table of numbers and their corresponding logarithms, and requires no explanation other

than that which has been given in connection with the subject of logarithms.

Table II, with the exception of the last two columns, which contain natural sines and cosines, is a table in which are arranged the logarithms of the numerical values of the several trigonometrical lines corresponding to the different angles in a quadrant. The values of these lines are computed to the radius 10,000,000,000, and their logarithms are nothing more than the logarithms, each increased by 10, of the natural sines, cosines, and tangents, of the same angles; because the values of these lines, for arcs of the same number of degrees taken in different circles, are directly proportional to the radii of the circles.

The natural sines are made to the radius of unity; and, of course, any particular sine is a decimal fraction, expressed by natural numbers. The logarithm of any natural sine, with its index increased by 10, will give the logarithmic sine. Thus, the natural sine of 3° is .052336.

The logarithm of this decimal is	- 2.718800
To which add	10.
The logarithmic sine of 3° is, therefore,	8.718800

In this manner we may find the logarithmic sine of any other arc, when we have the natural sine of the same arc.

If the natural sines and logarithmic sines were on the same radius, the logarithm of the natural sine would be the logarithmic sine, at once, without any increase of the index.

The radius for the logarithmic sines is arbitrarily taken so large that the index of its logarithm is 10. It might have been more or less; but, by common consent, it is settled at this value; so that the sines of the smallest arcs ever used shall not have a negative index.

In our preceding equations, sin. a, cos. a, etc., refer to natural sines; and by such equations we determine their values in natural numbers; and these numbers are put in Table II, under the heads of N. sine and N. cos., as before observed.

When we have the sine and cosine of an arc, the tangent and cotangent are found by Eq. (3) and (6); thus,

$$\tan = \frac{R \sin.}{\cos.} \quad (6) \cot. = \frac{R \cos.}{\sin x};$$

and the secant is found by equation (4); that is,

$$\sec = \frac{R^2}{\cos}.$$

For example, the logarithmic sine of 6° is 9.019235, and its cosine 9.997614. From these it is required to find the logarithmic tangent, cotangent, and secant.

$R \sin$. Cos.	subtract	19.019235 9.997614
Tan. is		9.021621
R cos.		19.997614
Sin.	subtract	9.019235
Cotan. is		10.978379
R^2 is		20.000000
Cos.	subtract	9.997674
Secant is		10.002326

The secants and cosecants of arcs are not given in our table, because they are very little used in practice; and if any particular secant is required, it can be determined by subtracting the cosine from 20; and the cosecant can be found by subtracting the sine from 20.

The sine of every degree and minute of the quadrant is given, directly, in the table, commencing at 0°, and extending to 45°, at the head of the table; and from 45° to 90°, at the bottom of the table, increasing backward.

The column having sine at the top has cosine at the bottom, and the opposite, because angles read from above are complementary to those read from below. The differences of consecutive logarithms corresponding to 10" are given for both sine and cosine, but the tangents and cotangents have the same column of differences for the reason that log. tan. +log. cot.=log. R² and is therefore constant. Hence, by just as much as log. tan. increases, log. cot. decreases and the converse.

As cosines and cotangents decrease when arcs increase, and increase when arcs decrease, the proportional parts answering to seconds for them must be subtracted.

Example. Find the sine of 19° 17' 22".

The sine of 19° 17', taken directly from the table, is

The difference for 10" is 60.2; for 1" is 6.02; and
for $6.02 \times 22 =$ Hence, log. sine 19° 17' 22" is

9.518829

9.518829

9.518829

From this it will be perceived that there is no difficulty in obtaining the sine or tangent, cosine or cotangent, of any angle greater than 30'.

Conversely: Given, the logarithmic sine 9.982412, to find its corresponding arc. The sine next less in the table is 9.982404, which gives the arc 73° 48′. The difference between this and the given sine is 8, and the difference for 1″ is .61; therefore, the number of seconds corresponding to 8, must be discovered by dividing 8 by the decimal .61, which gives 13. Hence, the arc sought is 73° 48′ 13″.

These operations are too obvious to require a rule. When the arc is very small,—and such arcs are sometimes required in Astronomy,—it is necessary to be very accurate; for this reason we omitted the difference for seconds or all arcs under 30'. Assuming that the sines and tangents of arcs under 30' vary in the same proportion as the arcs themselves, we can find the sine or tangent of any very small arc, with great exactness, as follows:

The sine of 1', as expressed in the table, is Divide this by 60; that is, subtract logarithm	3.46 3726 1.778151
The logarithmic sine of 1", therefore, is Now, for the sine of 17", add the logarithm of 17	4.685575 1.230449
Logarithmic sine of 17", is	5.916024

In the same manner we may find the sine of any other small arc.

For example, find the sine of 14' 21½"; that is, 861.5".

The logarithmic sine of 1" is	4.685575
Add logarithm of 861.5,	2.935254
Logarithmic sine of 14' 21½",	7.620829

Two lines drawn, the one from the surface and the other from the center of the earth, to the center of the sun, make with each other an angle of 8.61". What is the logarithmic sine of this angle?

The log. of the sine 1" is		4.68557 5
Log. of 8.61,		0.935003
Log. sine of sun's horizontal parallax	=	5.620578

GENERAL APPLICATIONS WITH THE USE OF LOGARITHMS.

I. RIGHT-ANGLED TRIGONOMETRY.

One figure will be sufficient to represent the triangle m all of the following examples; the right angle being at B.

PRACTICAL PROBLEMS.

1. In a right-angled triangle, ABC, given the base AB, 1214, and the angle A, 51° 40′.30″, to find the other parts.

To find BC.

Radius,	10.000000
: tan. A, 51° 40′ 30″,	10.102119
:: AB, 1214,	3.084219
: BC, 1535.8,	3.186338

REMARK.—When the first term of a logarithmic proportion is radius, the required logarithm is found by adding the second and third logarithms, rejecting 10 in the index, which is dividing by the first term.

In all cases we add the second and third logarithms together; which, in logarithms, is multiplying these terms together; and from that sum we subtract the first logarithm, whatever it may be, which is dividing by the first term.

To find AC.

To find this resulting logarithm, we subtracted the first logarithm from the second, conceiving its index to be 13.

Let ABC represent any plane triangle, right-angled at B.

2. Given, AC 73.26, and the angle A, 49° 12′ 20″; required the other parts.

Ans. The angle C, $40^{\circ}47'40''$; BC, 55.46; and AB, 47.86.

3. Given, AB 469.34, and the angle A, 51° 26′ 17″, to **fnd** the other parts:

Ans. The angle C, 38° 33′ 43″; BC, 588.7; and AC, 752.9.

4. Given, AB 493, and the angle C, 20° 14'; required, the remaining parts.

Ans. The angle A, 69° 46'; BC, 1338; and AC, 1425.5.

5. Let AB = 331, and the angle $A = 49^{\circ} 14'$; what are the other parts?

Ans. AC, 506.9; BC, 383.9; and the angle C, 40° 46'.

6. If AC=45, and the angle $C=37^{\circ}22'$, what are the remaining parts?

Ans. AB, 27.31; BC, 35.76; and the angle A, 52° 38 25 \mathbf{r}

7. Given, AC = 4264.3, and the angle $A = 56^{\circ} 29' 13''$, to find the remaining parts.

Ans. AB, 2354.4; BC, 3555.4; and the angle C, 33° 30' 47".

8. If AB = 42.2, and the angle $A = 31^{\circ} 12' 49''$, what are the other parts?

Ans. AC, 49.34; BC, 25.57; and the angle C, 58° 47′ 11″.

9. If AB = 8372.1, and BC = 694.73, what are the other parts?

Ans. AC, 8400.9; the angle C, 85° 15' 23"; and the angle A, 4° 44' 37".

10. If AB be 63.4, and AC be 85.72, what are the other parts?

Ans. $\begin{cases} BC, 57.7; \text{ the angle } C, 47^{\circ} 42'; \text{ and the angle } A, 42^{\circ} 18'. \end{cases}$

11. Given, AC = 7269, and AB = 3162, to find the other parts.

Ans. $\begin{cases} BC, 6545; \text{ the angle } C, 25^{\circ} 47' 7''; \text{ and the angle } A, 64^{\circ} 12' 53''. \end{cases}$

12. Given, AC = 4824, and BC = 2412, to find the other parts.

Ans. The angle $A = 30^{\circ}$ 00', the angle $C = 60^{\circ}$ 00', and AB = 4178.

13. The distance between the earth and sun is 91,500,000. miles, and at that distance the semi-diameter of the sun subtends an angle of 16'. What is the diameter of the sun in miles?

Ans. 851,659.

In this example, let E be the center of the earth, S that of the sun, and EB a tangent to the sun's surface. Then the \triangle EBS is right-angled at B, and BS is the semi-diameter of the sun. The value of 2BS is required.

14. The equatorial diameter of the earth is 7925 miles, and the distance of the sun 91,500,000 miles. What angle will the semi-diameter of the earth subtend, as seen from the sun?

Ans. 8.94".

This angle is called, in astronomy, the sun's horizontal parallax. The preceding figure applies to this example, by supposing E to be the center of the sun, S that of the earth, and BS equal to 8956 miles.

15. The mean distance of the moon from the earth is 60.3 times 3960 miles, and at this distance the semi-diameter of the moon subtends an angle of 15' 32". What is the diameter of the moon in miles?

Ans. 2157.8 miles.

IL OBLIQUE-ANGLED TRIGONOMETRY.

PROBLEM I.

In a plane triangle, given a side and the two adjacent angles, to find the other parts.

In the triangle ABC, let AB = 376, the angle $A = 48^{\circ}$ 3', and the angle $B = 40^{\circ}$ 14', to find the other parts.

As the sum of the three angles of every $\frac{A}{B}$ triangle is always 180°, the third angle, C, must be 180° — 88° $17' = 91^{\circ} 43'$.

To find AC.

Sin. 91° 43',	9.999805
: AB, 376,	2.575188
:: sin. B 40° 14,	9.810167
	12.385355
: AC, 243,	2.385550

Observe, that the sine of 91° 43' is the same as the cosine of 1° 48'

To find BC.

Śin. 91° 43′,	9.999805
: AB, 376,	2.5 75188
:: sin. A, 48° 3',	9.871414
	12.446602
: sin. BC, 279.8,	2.446797

PROBLEM 11.

In a plane triangle, given two sides and an angle opposits one of them, to determine the other parts.

Let AD = 1751 feet, one of the given sides; the angle $D = 31^{\circ}$ 17' 19"; and the side opposite, 1257.5. From these data, we are required to find the other side and the other two angles.

In this case we do not know whether AC or AE represents 1257.5, because AC = AE. If we take AC for the other given side, then DC is the other required side, and DAC is the vertical angle. If we take AE for the other given side, then DE is the required side, and DAE is the vertical angle. In such cases we determine both triangles.

To find the angle
$$E = C$$
.

(Prop. 4.)
$$AC = AE = 1257.5$$
, log. 3.099508
: D , 31° 17′ 19″, sin. 9.715460
:: AD , 1751, log. 3.243286
 12.958746
 $E = C$, 46° 18′, sin. 9.859238

From 180° take 46° 18′, and the remainder is the angle DCA = 133° 42′.

The angle
$$DAC = ACE - D$$
, (Th. 11, B. I); that is, $DAC = 46^{\circ} 18' - 31^{\circ} 17' 19'' = 15^{\circ} 0' 41''$. The angles D and E , taken from 180° , give $DAE = 102^{\circ} 24' 41''$.

3.373778

To find DC.

Sin. D, 31° 17′ 19″, : AC, 1257.5, :: sin. DAC 15° 0′ 41″,	log. log. log.	$9.715460 \\ 3.099508 \\ 0.413317 \\ \hline 12.512825$
: DC, 626.86,		2.797165
To find DE.		
Sin. D, 31° 17′ 17″,		9.715460
: AE, 1257.5,		3.099508
:: sin. DAE, 102° 24′ 41″	,	9.989730
		13.089238

REWARK.—T) make the triangle possible, AC must not be less than AB the sine of the angle D, when DA is made radius.

: DE, 2364.7,

PROBLEM III.

In any plane triangle, given two sides and the included angle, to find the other parts.

Let AD = 1751, (see last figure), DE = 2364.5, and the included angle $D = 31^{\circ} 17' 19''$. We are required to find AE, the angle DAE, and the angle E.

Observe that the angle E must be less than the angle DAE, because it is opposite a less sade.

```
From 180°
Take D, 31° 17′ 19″,

Sum of the other two angles, = 148° 42′ 41″, (Th. 11, B. I),

½ sum = 74° 21′ 20″.

By Proposition 7,

DE + DA : DE - DA = \tan 74° 21′ 20″ : \tan \frac{1}{2}(DAE - E)

That is,

4115.5 : 613.5 = \tan 74° 21′ 20″ : \tan \frac{1}{2}(DAE - E)

25 *
```

Tan. 74° 21′ 20″,	10.552778
618.5,	2.787815
	13.340593
4115.5 log. (subtracted),	3.614423
$\tan \frac{1}{2}(DAE - E) \tan 28^{\circ} 1' 36''$,	9.726170

But the half sum plus the half difference of any two quantities is equal to the greater of the two; and the half sum minus the half difference is equal the less.

Therefore, to Add	74° 21′ 20″, 28° 1′ 36″,
DAE =	102° 22′ 56″,
E =	46° 19′ 45″,

To find AE.

10 mmu A.M.	
Sin. E, 46° 19′ 45″,	9.8593 23
: DA, 1751,	3.243286
:: sin. D, 31° 17′ 19″,	9.715460
•	12.958746
: AE, 1257.2,	3.099423

PROBLEM IV.

Given, the three sides of a plane triangle, to find the angles.

Let AC = 1751, CB = 1257.5, AB = 2364.5, to find the angles A, B, and C.

If we take the formula for cosines, we will compute the greatest angle, which is C. To correspond with the formula,

$$\cos \frac{1}{2}C = \sqrt{\frac{R^2s(s-c)}{ab}},$$

we must take a = 1257.5, b = 1751, and c = 2364.5. The half sum of these is,

$$s = 2686.5$$
; and $s - c = 322$.

$$R^2$$
 20.000000
 $s = 2686.5$ 3.429187
 $s - c = 322$ 2.507856

Numerator, log. 25.937048

a 1257.5 3.099508
b 1751. 3.243286

Denominator, log. 6.342794
2)19.594249
2 102 22 20

The remaining angles may now be found by Problem 4.

PRACTICAL PROBLEMS.

Let ABC represent any oblique-angled triangle.

1. Given, AB 697, the angle A 81° 30′ 10″, and the angle B 40° 30′ 44″, to find the other parts.

Ans. AC, 534; BC, 813; and C, 57° 59′ 6″.

2. If AC = 720.8, $A = 70^{\circ} 5' 22''$, $B = 59^{\circ} 35'$ 86'', required the other parts.

Ans. AB, 643.2; BC, 785.8; and C, 50° 19′ 2″.

3. Given, BC 980.1, the angle A 7° 6′ 26″, and the angle B 106° 2′ 23″, to find the other parts.

Ans. AB, 7283.8; AC, 7613.1; and C, 66° 51′ 11″.

4. Given, AB 896.2, BC 328.4, and the angle C 118° 45′ 20″, to find the other parts.

Ans.
$$\begin{cases} AC, 712; \ _A, 19^{\circ} 35' 46''; \\ \text{and } \ _B, 46^{\circ} 38' 54''. \end{cases}$$

5. Given, AC = 4627, BC = 5169, and the angle $A = 70^{\circ}$ 25' 12", to find the other parts.

Ans.
$$\begin{cases} AB, 4328; \ _B, 57^{\circ} 29' 56''; \\ \text{and } \ _C, 52^{\circ} 4' 52''. \end{cases}$$

6. Given, AB 793.8, BC 481.6, and AC 500.0, to find the angles.

Ans. $\left\{ \begin{array}{c} _A,\ 35^{\circ}\ 15'\ 32'';\ _B,\ 36^{\circ}\ 49'\ 18'';\ \ \text{and}\ \ _C,\ 107^{\circ}\ 55'\ 10''. \end{array} \right\}$

7. Given, AB 100.3, BC 100.3, and AC 100.3, to find the angles.

Ans. The angle A, 60°; the angle B, 60°; and the angle C, 60°.

8. Given, AB 92.6, BC 46.3, and AC 71.2, to find the angles.

Ans. $\left\{ \begin{array}{c} A, 29^{\circ} 17' 22''; \ B, 48^{\circ} 47' 30''; \ \text{and} \ C, \\ 101^{\circ} 55' 8''. \end{array} \right\}$

9. Given, AB 4963, BC 5124, and AC 5621, to find the angles.

Ans. $\left\{ \begin{array}{c} A, 57^{\circ} 30' 28''; \\ 54^{\circ} 46' 55''. \end{array} \right\}$

10. Given, AB 728.1, BC 614.7, and AC 583.8, to find the angles.

Ans. $\left\{ \begin{array}{l} A = 54^{\circ} \ 32' \ 52'', \ B = 50^{\circ} \ 40' \ 58'', \ \text{and} \ C'' \\ = 74^{\circ} \ 46' \ 10''. \end{array} \right.$

11. Given, AB 96.74, BC 83.29, and AC 111.42, to find the angles.

Ans. $\left\{ \begin{array}{c} A = 46^{\circ} 30' 45'', \quad B = 76^{\circ} 3' 46'', \text{ and } C' = 57^{\circ} 25' 29''. \end{array} \right\}$

12. Given, AB 363.4, BC 148.4, and the angle B 102° 18' 27", to find the other parts.

Ans. $\begin{cases} \triangle A = 20^{\circ} 9' 17'', \text{ the side } AC = 420.8, \text{ and } \triangle C = 57^{\circ} 32' 16''. \end{cases}$

13. Given, AB 632, BC 494, and the angle A 20° 16′, to find the other parts, the angle C being acute.

Ans. $\left\{ \begin{array}{l} C = 26^{\circ} \ 18' \ 19'', \ B = 133^{\circ} \ 25' \ 41'', \ \text{and} \\ AC = 1035.7. \end{array} \right.$

14. Given, AB 53.9, AC 46.21, and the angle B 58° 16', to find the other parts.

Ans. $A = 38^{\circ} 58'$, $C = 82^{\circ} 46'$, and BC = 34.16.

15. Given, AB 2163, BC 1672, and the angle C 112° 18′ 22″, to find the other parts.

Ans. AC, 877.2; LB, 22° 2′ 16″; and LA, 45° 39′ 22″. 16. Given, AB 496, BC 496, and the angle B 38° 16′, to find the other parts.

Ans. AC, 325.1; | A, 70° 52'; and | C, 70° 52'.

17. Given, AB 428, the angle C 49° 16′, and (AC + BC) 918, to find the other parts, the angle B being obtuse.

Ans. { The angle $A = 38^{\circ} 44' 48''$, the angle $B = 91^{\circ} 59' 12''$, AC = 564.5, and BC = 353.5.

18. Given, AC 126, the angle B 29° 46′, and (AB - BC) 43, to find the other parts.

Ans. { The angle $A = 55^{\circ}$ 51' 32", the angle $C = 94^{\circ}$ 22' 28", AB = 253.05, and BC = 210.05.

19. Given, AB 1269, AC 1837, and the angle A 53° 16' 20", to find the other parts.

Ans. $\begin{cases} B = 83^{\circ} 23' 47'', C = 48^{\circ} 19' 53'', \text{ and } BC \\ = 1482.16. \end{cases}$

SECTION III.

APPLICATION OF TRIGONOMETRY TO MEASURING HEIGHTS AND DISTANCES.

In this useful application of Trigonometry, a base line is always supposed to be measured, or given in length; and by means of a quadrant, sextant, circle, theodolite, or some other instrument for measuring angles, such angles are measured as, connected with the base line and the objects whose heights or distances it is proposed to determine, enable us to compute, from the principles of Trigonometry, what those heights or distances are.

Sometimes, particularly in marine surveying, horizontal angles are determined by the compass; but the varying effect of surrounding bodies on the needle, even in situations little removed from each other, and the general construction of the instrument itself, render it unfit to be employed in the determination of angles where anything like precision is required.

The following problems present sufficient variety, to guide the student in determining what will be the most eligible mode of proceeding, in any case that is likely to occur in practice.

PROBLEM I.

Being desirous of finding the distance between two listant objects, C and D, I measured a base, AB, of 384 rards, on the same horizontal plane with the objects C

and D. At A, I found the angles $D.4B = 48^{\circ}$ 12', and $CAB = 89^{\circ}$ 18'; at B, the angles ABC 46° 14', and ABD 87° 4'. It is required, from these data, to compute the distance between C and D.

From the angle CAB, take the angle DAB; the remainder, 41° 6′, is the angle CAD. To the angle DBA, add the angle DAB, and 44° 44′, the supplement of the sum, is the angle ADB. In the same way the angle ACB, which is the supplement of the sum of CAB and CBA, is found to be 44° 28′.

Hence, in the triangles ABC and ABD, we have

Sin. ACB, 44° 28', : AB, 384 yards,	9.845405 2.584381
:: sin. ABC, 46° 14',	9.858635
	12.442966
: AC, 395.9 yards,	2.597561
Sin. ADB, 44° 44',	9.847454
: AB, 384 yards,	2.584331
:: sin. ABD, 87° 4',	9.999431
	12.583762
: AD, 544.9 yards,	2.736308

Then, in the triangle CAD, we have given the sides CA and AD, and the included angle CAD, to find CD; to compute which we proceed thus:

The supplement of the angle CAD, is the sum of the angles ACD and ADC;

Hence,
$$\frac{ACD + ADC}{2} = 69^{\circ} 27'$$
; and, by proportion we have,
 $AD + AC = 940.8$; 2.973497
: $AD - AC = 149$; 2.173186
:: tan. $\frac{ACD + ADC}{2} = 69^{\circ} 27'$; 10.426108

12.599294

$\tan \frac{ACD - ADC}{2} (= 22^{\circ} 54')$	9.6257 97
the angle ACD, sum, 92°21'	
the angle ADC , diff., $46^{\circ}33'$	
Sin. ADC, 46° 33',	9.860922
: AC, 395.9 yards,	2.597585
:: sin. CAD, 41° 6',	9.817813
	12.415398
: CD, 358.5 yards,	2.554476

PROBLEM II.

To determine the altitude of a lighthouse, I observed the elevation of its top above the level sand on the seashore, to be 15° 32′ 18″; and measuring directly from it, 638 yards along the sand, I then found its elevation to be 9° 56′ 26″. Required the height of the lighthouse

Let CD represent the height of the lighthouse above the level of the sand, and let B be the first station, and A the second; then the angle CBD is 15° 32′ 18, and the angle CAB is 9° 56′ 26″; therefore, the angle ACB, which is the difference of the angles CBD and CAB, is 5° 35′ 52″.

BD and C	CAB, is 5° 35′ 52″.	2	
Hence,	Sin. A CB, 5° 35′ 52″,	8.989	201
	: AB, 638,	2.804	821
	:: $\sin angle A$, 9° 56′ 26″,	9.237	107
		12.041	928
	: BC, 1129.09 yards,	3.052	727
	Radius,	10.000	000
	· BC, 1129.09,	3.052	2727
	:: sin. CBD, 15° 32′ 18″,	9.427	945
		$\overline{12.480}$	672
	: DC, 302.46 yards,	2.480	672

PROBLEM III.

Coming from sea, at the point D I observed two headlands, A and B, and inland, at C, a steeple, which appeared between the headlands. I found, from a map, that the headlands were 5.35 miles apart; that the distance from A to the steeple was 2.8 miles, and from B to the steeple 3.47 miles; and I found, with a sextant, that the angle ADC was 12° 15, and the angle BDC, 15° 30'. Required my distance from each of the headlands. and from the steeple.

CONSTRUCTION.

The angle between the two headlands is the sum of 15° 30' and 12° 15', or 27° 45'. Take double this sum, 55° 30'. Conceive AB to be the chord of a circle, and the arc on one side of it to be 55° 30'; and, of course, the other will be 304° 30'. The point D will be somewhere in the circumference of this circle. Consider that point as determined, and draw CD.

In the triangle ABC, we have all the sides, and, of course, we can find all the angles; and if the angle ACB is less than 180°- $27^{\circ} 45' = 152^{\circ} 15'$, then the circle cuts the line CD in a point E, and C is without the circle.

Draw AE, BE, AD, and BD. AEBD is a quadrilateral in a circle, and $\triangle AEB + \triangle ADB = 180^{\circ}$.

The | ADE = the | ABE, because both are measured by one half the arc AE. Also, |EDB| = |EAB|, for a similar reason.

Now, in the triangle AEB, its side AB, and all its angles, are known; and from thence AE can be computed. Then, having the two sides, AC and AE, of the triangle AEC, and the included angle CAE, we can find the angle AEC, and, of course, its supplement, AED. Then, in the triangle AED, we have the side AE, and the two angles AED and ADE, from which we can find AD

The computation, at length, is as follows:

To find AE.

To find the angle BAC.

Angle
$$EAB = 15^{\circ} 30'$$
Angle $EAC = 19^{\circ} 53' 56''$
 180°

$$\frac{AEC + ACE}{2}$$

To find the angles AEC and ACE.

angle AEC,

101° 33′ 14″, sum.

angle ACE or ACD, 58° 32′ 50′′, diff. angle CDA, 12° 15′

70° 47′ 50′′, supplement 109° 12′ 10′′, angle *CAD*35° 23′ 56′′, angle *CAB*73° 48′ 14′′, angle *BAD*

To find AD.

Sin. ADC, 12° 15',	9.326700
: AC, 2.8,	.447158
:: sin. ACD 58° 32′ 50″,	9.930985
	10.378143
• AD 11.26 miles.	1.051443

PROBLEM IV.

The elevation of a spire at one station was 23° 50′ 17′, and the horizontal angle at this station, between the spire and another station, was 93° 4′ 20″. The horizontal angle at the latter station, between the spire and the first station, was 54° 28′ 36″, and the distance between the two stations was 416 feet. Required the height of the spire.

Let *CD* be the spire, *A* the first station, and *B* the second; then the vertical angle *CAD* is 23° 50′ 17″; and as the horizontal angles, *CAB* and *CBA*, are 93° 4′ 20″ and 54° 28′ 36″, respectively, the angle *ACB*, the supplement of their sum, is 32° 27′ 4″.

To find AC.

Sin. BCA, 32° 27′ 3″,	9.729634
: side AB, 416,	2.619093
:: sin. ABC, 54° 28′ 36″,	9.910560
	12.529653
: side A.C. 631.	2.800019

To find DC.

Radius,	10.000000
: side AC, 631,	2.800019
:: tan. DAC, 23° 50' 17",	9.645270
: DC, 278.8,	2.445289

By the application of Problem 4, we can compute the distance between two horizontal planes, if the same object is visible from both.

For example, let M be a prominent tree or rock near

the top of a mountain, and by observations taken at A, we can determine the perpendicular Mn. By like observations taken at B, we can determine the perpendicular Mm. The difference between these two perpendiculars is nm, or the difference in the elevation between the two points A and B. If the distances between A and n, or B and m, are considerable, or more than two or three miles, corrections must be made for the convexity of the earth; but for less distances such corrections are not necessary.

PRACTICAL PROBLEMS.

- 1. Required the height of a wall whose angle of elevation, at the distance of 463 feet, is observed to be 16° 21'.

 Ans. 135.8 feet.
- 2. The angle of elevation of a hill is, near its bottom, 31° 18′, and 214 yards further off, 26° 18′. Required the perpendicular height of the hill, and the distance of the perpendicular from the first station.

Ans. { The height of the hill is 565.2 yards, and the distance of the perpendicular from the first station is 929.6 yards.

- 3. The wall of a tower which is 149.5 feet in height, makes, with a line drawn from the top of it to a distant object on the horizontal plane, an angle of 57° 21'. What is the distance of the object from the bottom of the tower?

 Ans. 233.3 feet.
- 4. From the top of a tower, which is 138 feet in height, I took the angle of depression of two objects standing in a direct line from the bottom of the tower, and upon the same horizontal plane with it. The depression of the nearer object was found to be 48° 10′, and that of the further, 18° 52′. What was the distance of each from the bottom of the tower?

Ans. { Distance of the nearer, 123.5 feet; and of the further, 403.8 feet.

- 5. Being on the side of a river, and wishing to know the distance of a house on the opposite side, I measured 312 yards in a right line by the side of the river, and then found that the two angles, one at each end of this line, subtended by the other end and the house, were 31° 15' and 86° 27'. What was the distance between each end of the line and the house? Ans. 351.7, and 182.8 yards.
- 6. Having measured a base of 260 yards in a straight line, on one bank of a river, I found that the two angles, one at each end of the line, subtended by the

other end and a tree on the opposite bank, were 40° and 80°. What was the width of the river?

Ans. 190.1 yards.

- 7. From an eminence of 268 feet in perpendicular height, the angle of depression of the top of a steeple which stood on the same horizontal plane, was found to be 40° 3′, and of the bottom, 56° 18′. What was the height of the steeple?

 Ans. 117.76 feet.
- 8. Wanting to know the distance between two objects which were separated by a morass, I measured the distance from each to a point from whence both could be seen; the distances were 1840 and 1428 yards, and the angle which, at that point, the objects subtended, was 36° 18′ 24″. Required their distance. Ans. 1090.85 yards.
- 9. From the top of a mountain, three miles in height, the visible horizon appeared depressed 2° 13′ 27″. Required the diameter of the earth, and the distance of the boundary of the visible horizon.
 - Ans. $\begin{cases} \text{Diameter of the earth, 7958 miles; distance of the horizon, 154.54 miles.} \end{cases}$
- 10. From a ship a headland was seen, bearing north 39° 23′ east. After sailing 20 miles north, 47° 49′ west, the same headland was observed to bear north, 87° 11′ east. Required the distance of the headland from the ship at each station.
 - Ans. { At first station, 19.09 miles; at the second, 26.96 miles.
- 11. The top of a tower, 100 feet above the level of the sea, was seen as on the surface of the sea, from the masthead of a ship, 90 feet above the water. The diameter of the earth being 7960 miles, what was the distance between the observer and the object?

Ans. 23.92 plus $\frac{1}{13}$ for refraction = 25.76 miles.

12. From the top of a tower, by the seaside, 143 feethigh, it was observed that the angle of depression of a

ship's botom, then at anchor, measured 35°; what, then, was the ship's distance from the foot of the tower?

Ans. 204.22 feet.

- 13. Wanting to know the breadth of a river, I measured a base of 500 yards in a straight line on one bank; and at each end of this line I found the angles subtended by the other end and a tree on the opposite bank of the river, to be 53° and 79° 12′. What, then, was the perpendicular breadth of the river?

 Ans. 529.48 yards.
- 14. What is the perpendicular height of a hill, its angle of elevation, taken at the bottom of it, being 46°, and 200 yards further off, on a level with the bottom, 31°?

 Ans. 286.28 yards.
- 15. Wanting to know the height of an inaccessible tower, at the least accessible distance from it, on the same horizontal plane, I found its angle of elevation to be 58°; then going 300 feet directly from it, I found the angle there to be only 32°; required the height of the tower, and my distance from it at the first station.

· Ans. { Height, 307.54 feet. Distance, 192.18 "

- 16. Two ships of war, intending to cannonade a fort, are, by the shallowness of the water, kept so far from it, that they suspect their guns cannot reach it with effect. In order, therefore, to measure the distance, they separate from each other a quarter of a mile, or 440 yards, and then each ship observes and measures the angle which the other ship and fort subtends; these angles are 83° 45′, and 85° 15′. What, then, is the distance between each ship and the fort?

 Ans.

 { 2292.26 yards. 298.05 "
- 17. A point of land was observed by a ship, at sea, to bear east-by-south;* and after sailing north-east 12 miles,

^{*} That is, one point south of east. A point of the compass is 11° 15'.

it was found to bear south-east-by-east. It is required to determine the place of that headland, and the ship's distance from it at the last observation.

Ans. Distance, 26.0728 miles.

- 18. Wishing to know my distance from an inaccessible object, O, on the opposite side of a river, and having a chain or chord for measuring distances, but no instrument for taking angles; from each of two stations, A and B, which were taken at 500 yards asunder, I measured in a direct line from the object, O, 100 yards, viz., AC and BD, each equal to 100 yards; and I found that the diagonal AD measured 550 yards, and the diagonal BC 560. What, then, was the distance of the object 0 from each station A and B?

 Ans. $\begin{cases} AO, 536.27 \text{ yards.} \\ BO, 500.14 \end{cases}$
- 19. A navigator found, by observation, that the summit of a certain mountain, which he supposed to be 45 minutes of a degree distant, had an altitude above the sea horizon of 31' 20". Now, on the supposition that the earth's radius is 3956 miles, and the observer's dip was 4' 15", what was the height of the mountain?

Ans. 3960 feet.

REMARK.—This should be diminished by about one eleventh part of itself, for the influence of horizontal refraction.

20. From two ships, A and B, which are anchored in a bay, two objects, C and D, on the shore, can be seen. These objects are known to be 500 yards apart. At the ship A, the angle subtended by the objects was measured, and found to be 41° 25'; and that by the object D and the other ship was found to be 52° 12'. At the other ship, the angle subtended by the objects on shore was found to be 48° 10'; and that by the object C, and the ship A, to be 47° 40'. Required the distance between

the ships, and the distance from each ship to the objects on shore.

Ans. $\begin{cases} \text{Distance between ships,} & 395.7 \text{ yards.} \\ \text{From ship } A \text{ to object } D, 743.5 & \text{``} \\ \text{From ship } A \text{ to object } C, 467.7 & \text{``} \\ \text{From ship } B \text{ to object } D, 590.5 & \text{``} \end{cases}$

To solve this problem, suppose the distance between the ships to be 100 yards, and determine the several distances, including the distance between the objects, C and D, under this supposition; then multiply the values thus found for the required distances by the quotient obtained by dividing the given value of CD by the computed value.

PART II.

SPHERICAL GEOMETRY

AND

TRIGONOMETRY.

SECTION I.

SPHERICAL GEOMETRY.

DEFINITIONS.

- 1. Spherical Geometry has for its object the investigation of the properties, and of the relations to each other, of the portions of the surface of a sphere which are bounded by the arcs of its great circles.
- 2. A Spherical Polygon is a portion of the surface of a sphere bounded by three or more arcs of great circles, called the *sides* of the polygon.
- 3. The Angles of a spherical polygon are the angles formed by the bounding arcs, and are the same as the angles formed by the planes of these arcs.
- 4. A Spherical Triangle is a spherical polygon having but three sides, each of which is less than a semi-circumference.
- 5. A Lune is a portion of the surface of a sphere included between two great semi-circumferences having a common diameter.
- 6. A Spherical Wedge, or Ungula, is a portion of the solid sphere included between two great semi-circles having a common diameter.

- 7. A Spherical Pyramid is a portion of a sphere bounded by the faces of a solid angle having its vertex at the center, and the spherical polygon which these faces intercept on the surface. This spherical polygon is called the base of the pyramid.
- 8. The Axis of a great circle of a sphere is that diameter of the sphere which is perpendicular to the plane of the circle. This diameter is also the axis of all small circles parallel to the great circle.
- 9. A Pole of a circle of a sphere is a point on the surface of the sphere equally distant from every point in the circumference of the circle.
- 10. Supplemental, or Polar Triangles, are two triangles on a sphere, so related that the vertices of the angles of either triangle are the poles of the sides of the other

PROPOSITION I.

Any two sides of a spherical triangle are together greates than the third side.

Let AB, AC, and BC, be the three sides of the triangle, and D the center of the sphere.

The angles of the planes that form the solid angle at D, are measured by the arcs AB, AC, and BC. But any two of these angles are together greater

than the third angle, (Th. 18, B. VI). Therefore, any two sides of the triangle are, together, greater than the third side.

Hence the proposition.

PROPOSITION II.

The sum of the three sides of any spherical triangle is less than the circumference of a great circle.

Let ABC be a spherical triangle; the two sides, AB and AC, produced, will meet at the point which is diametrically opposite to A, and the arcs, ABD and ACD are

together equal to a great circle. But, by the last proposition, BC is less than the two arcs, BD and DC. Therefore, AB + BC + AC, is less than ABD + ACD; that is, less than a great circle.

Hence the proposition.

PROPOSITION III.

The extremities of the axis of a great circle of a sphere are the poles of the great circle, and these points are also the poles of all small circles parallel to the great circle.

Let O be the center of the sphere, and BD the axis of the great circle, Cm Am"; then will B and D, the extremities of the axis, be the poles of the circle, and also the poles of any parallel small circle, as FnE.

For, since BD is perpendicular to the plane of the circle, $Cm \ Am''$, it

is perpendicular to the lines OA, Om', Om'', etc., passing through its foot in the plane, (Def. 2, B. VI); hence, all the arcs, Bm, Bm', etc., are quadrants, as are also the arcs Dm, Dm', etc. The points B and D are, therefore, each equally distant from all the points in the circumference, Cm Am''; hence, (Def. 9), they are its poles.

Again, since the radius, OB, is perpendicular to the plane of the circle, $Cm \ Am''$, it is also perpendicular to the plane of the parallel small circle, FnE, and passes through its center, O'. Now, the chords of the arcs, BF, Bn, BE, etc., being oblique lines, meeting the plane of the small circle at equal distances from the foot of the

perpendicular, BO', are all equal, (Th. 4, B. VI); hence, the arcs themselves are equal, and B is one pole of the circle, FnE. In like manner we prove the arcs, DF, Dn, DE, etc., equal, and therefore D is the other pole of the same circle.

Hence the proposition, etc.

Cor. 1. A point on the surface of a sphere at the distance of a quadrant from two points in the arc of a great circle, not at the extremities of a diameter, is a pole of that arc.

For, if the arcs, Bm, Bm', are each quadrants, the angles, BOm and BOm', are each right angles; and hence, BO is perpendicular to the plane of the lines, Om and Om', which is the plane of the arc, mm'; B is therefore the pole of this arc.

Cor. 2. The angle included between the arc of a great circle and the arc of another great circle, connecting any of its points with the pole, is a right angle.

For, since the radius, BO, is perpendicular to the plane of the circle, Cm Am'', every plane passed through this radius is perpendicular to the plane of the circle; hence, the plane of the arc Bm is perpendicular to that of the arc Cm; and the angle of the arcs is that of their planes.

PROPOSITION IV.

The angle formed by two arcs of great circles which intersect each other, is equal to the angle included between the tangents to these arcs at their point of intersection, and is measured by that arc of a great circle whose pole is the vertex of the angle, and which is limited by the sides of the angle or the sides produced.

Let AM and AN be two arcs intersecting at the point A, and let AE and AF be the tangents to these arcs at this point. Take AC and AD, each quadrants, and draw the arc CD, of which A is the pole, and OC and OD are the radii.

Now, since the planes of the arcs intersect in the radius OA, and AE is a tangent to one arc, and AF a tangent

to the other, at the common point A, these tangents form with each other an angle which is the measure of the angle of the planes of the arcs; but the angle of the planes of the arcs is taken as the angle included by the arcs, (Def. 3).

Again, because the arcs, AC and AD, are each quadrants, the angles, AOC, AOD, are right angles; hence the radii, OC and OD, which lie, one in one face, and the other in the other face, of the

diedral angle formed by the planes of the arcs, are perpendicular to the common intersection of these faces at the same point. The angle, COD, is therefore the angle of the planes, and consequently the angle of the arcs; but the angle COD is measured by the arc CD.

Hence the proposition.

Cor. 1. Since the angles included between the arcs of great circles on a sphere, are measured by other arcs of great circles of the same sphere, we may compare such angles with each other, and construct angles equal to other angles, by processes which do not differ in principle from those by which plane angles are compared and constructed.

Cor. 2. Two arcs of great circles win form, by their intersection, four angles, the opposite or vertical ones of which will be equal, as in the case of the angles formed by the intersection of straight lines, (Th. 4, B. I).

PROPOSITION V.

The surface of a hemisphere may be divided into three rightangled and four quadrantal triangles, and one of these rightangled triangles will be so related to the other two, that two of its sides and one of its angles will be complemental to the sides of one of them, and two of its sides supplemental to two of the sides of the other.

Let ABC be a right-angled spherical triangle, right angled at B.

Produce the sides, AB and AC, and they will meet at A', the opposite point on the sphere. Produce BC, both ways, 90° from the point B, to P and P', which are, therefore, poles to the arc AB, (Prop. 3). Through A, P, and the center of the sphere, pass a plane, cutting the sphere into

two equal parts, forming a great circle on the sphere, which great circle will be represented by the circle PAP'A' in the figure. At right angles to this plane, pass another plane, cutting the sphere into two equal parts; this great circle is represented in the figure by the straight line, POP'. A and A' are the poles to the great circle, POP'; and P and P' are the poles to the great circle, ABA'.

Now, CPD is a spherical triangle, right-angled at D, and its sides CP and CD are complemental respectively to the sides BC and AC of the \triangle ABC, and its side PD is complemental to the arc DO, which measures the $\lfloor BAC$ of the same triangle. Again, the \triangle A'BC is right-angled at B, and its sides A'C, A'B, are supplemental respectively to the sides AC, AB, of the $\triangle ABC$. Therefore, the three right-angled \triangle 's, ABC, CPD, and A'BC, have the required relations. In the \triangle ACP, the side AP is a quadrant, and for this reason the \triangle is called a quadrantal triangle. So also, are the \triangle 's A'CP, ACP', and P'CA', quadrantal triangles. Hence the proposition.

SCHOLIUM.—In every triangle there are six elements, three sides and three angles, called the parts of the triangle.

Now, if all the parts of the triangle ABC are known, the parts of each of the \triangle 's, PCD and A'BC, are as completely known. And when the parts of the \triangle PCD are known, the parts of the \triangle 's ACP

and A'CP are also known; for, the side PD measures each of the $_$ 'e PAC and PA'C, and the angle CPD, added to the right angle A'PD, gives the $_A'PC$, and the $_CPA$ is supplemental to this. Hence, the solution of the $\land ABC$ is a solution of the two right-angled and four quadrantal \triangle 's, which together with it make up the surface of the hemisphere.

PROPOSITION VI.

If there be three arcs of great circles whose poles are the angular points of a spherical triangle, such arcs, if produced, will form another triangle, whose sides will be supplemental to the angles of the first triangle, and the sides of the first triangle will be supplemental to the angles of the second.

Let the arcs of the three great circles be GH, PQ, KL, whose poles are respectively A, B, and C. Produce the three arcs until they meet in D, E, and F. We are now to prove that E is the pole of the arc AC; D the pole of the arc BC; F the pole to the arc AB. Also, that the side EF, is supplemental to the angle A; ED to the angle C; and DF to the angle B; and also, the

and DF to the angle B; and also, that the side AC is supplemental to the angle E, etc.

A pole is 90° from any point in the circumference of its great circle; and, therefore, as A is the pole of the arc GH, the point A is 90° from the point E. As C is the pole of the arc LK, C is 90° from any point in that arc; therefore, C is 90° from the point E; and E being 90° from both A and C, it is the pole of the arc AC. In the same manner, we may prove that D is the pole of BC, and E the pole of AB.

Because A is the pole of the arc GH, the arc GH measures the angle A, (Prop. 4); for a similar reason, PQ measures the angle B, and LK measures the angle C.

Because E is the pole of the arc AC, $EH = 90^{\circ}$ Or, $EG + GH = 90^{\circ}$ For a like reason, $FH + GH = 90^{\circ}$ Adding these two equations, and observing that GF \blacksquare A, and afterward transposing one A, we have,

$$EG + GH + FH = 180^{\circ} - A.$$
Or, $EF = 180^{\circ} - A$
In like manner, $FD = 180^{\circ} - B$
And, $DE = 180^{\circ} - C$ (a)

But the arc $(180^{\circ} - A)$, is a supplemental arc to A, by the definition of arcs; therefore, the three sides of the triangle DEF, are supplements of the angles A, B, C, of the triangle ABC.

Again, as E is the pole of the arc AC, the whole angle E is measured by the whole arc LH.

But,
$$AC + CH = 90^{\circ}$$
Also,
$$AC + AL = 90^{\circ}$$
By addition,
$$AC + AC + CH + AL = 180^{\circ}$$
By transposition,
$$AC + CH + AL = 180^{\circ} - AC$$
That is,
$$LH, \text{ or } E = 180^{\circ} - AC$$
In the same manner,
$$F = 180^{\circ} - AB$$
And,
$$D = 180^{\circ} - BC$$

That is, the sides of the first triangle are supplemental to the angles of the second triangle.

PROPOSITION VII.

The sum of the three angles of any spherical triangle, is greater than two right angles, and less than six right angles.

Add equations (a), of the last proposition. The first member of the equation so formed will be the sum of the three sides of a spherical triangle, which sum we may designate by S. The second member will be 6 right angles (there being 2 right angles in each 180°) less the three angles A, B, and C.

That is,
$$S = 6$$
 right angles $-(A + B + C)$
By Prop. 2, the sum S is less than 4 right angles; $27*$

therefore, to it add s, a sufficient quantity to make 4 right angles. Then,

4 right angles = 6 right angles $-(A + B + C) + \epsilon$

Drop or cancel 4 right angles from both members, and transpose (A + B + C).

Then,
$$A + B + C = 2$$
 right angles + s.

That is, the three angles of a spherical triangle make a greater sum than two right angles by the indefinite quantity s, which quantity is called the *spherical excess*, and is greater or less according to the size of the triangle.

Again, the sum of the angles is less than 6 right angles. There are but three angles in any triangle, and each one of them must be less than 180°, or 2 right angles. For, an angle is the inclination of two lines or two planes; and when two planes incline by 180°, the planes are parallel, or are in one and the same plane; therefore, as neither angle can be equal to 2 right angles, the three can never be equal to 6 right angles.

PROPOSITION VIII.

On the same sphere, or on equal spheres, triangles which are mutually equilateral are also mutually equiangular; and, conversely, triangles which are mutually equiangular are also mutually equilateral, equal sides lying opposite equal angles.

For, drawing the radii to the vertices of the angles of these triangles, we may conceive O to be the common vertex of two triedral angles, one of which is bounded by the plane angles AOB, BOC, and AOC, and the other by the plane angles DOE, EOF, and DOF. But the plane angles bounding the one of these triedral angles, are equal to the plane angles bounding the other, each to each, since they are measured by the equal sides of the two triangles. The planes of the equal arcs in the two triangles are therefore equally inclined to each other, (Th. 20, B. VI); but the angles included between the planes of the arcs are equal to the angles formed by the arcs, (Def. 3).

Hence the $\lfloor A$, opposite the side BC, in the $\triangle AL$ is equal to the $\lfloor D$, opposite the equal side EF, in the other triangle; and for a similar reason, the $\lfloor B = \lfloor E \rfloor$, and the $\lfloor C = \lfloor F \rfloor$.

For, conceive two triangles, denoted by A'B'C' and D'E'F', supplemental to ABC and DEF, to be formed; then will these supplemental triangles be mutually equilateral, for their sides are measured by 180° less the of posite and equal angles of the triangles ABC and DEF, (Prop. 6); and being mutually equilateral, they are, as proved above, mutually equiangular. But the triangles ABC and DEF are supplemental to the triangles A'B'C' and D'E'F'; and their sides are therefore measured severally by 180° less the opposite and equal angles of the triangles A'B'C' and D'E'F', (Prop. 6).

Hence the triangles ABC and DEF, which are mutually equiangular, are also mutually equilateral.

SCHOLIUM.—With the three arcs of great circles, AB, AC, and BC, either of the two triangles, ABC, DEF, may be formed; but it is evident that these two triangles cannot be made to coincide, though they are both mutually equilateral and mutually equiangular. Spherical triangles on the same sphere, or on equal spheres, in which the sides and angles of the one are equal to the sides and angles of the other, each to each, but are not themselves capable of superposition, are called symmetrical triangles.

PROPOSITION IX.

On the same sphere, or on equal spheres, triangles having two sides of the one equal to two sides of the other, each to each, and the included angles equal, have their remaining sides and angles equal.

Let ABC and DEF be two triangles, in which AB = DE, AC = DF, and the angle A = the angle D; then will the side BC be equal to the side FE, the LB = L, and LC = LF.

side of DE that AB does of AC, the two triangles, ABC and DEE, may be applied the one to the other, and they may be proved to coincide, as in the case of plane triangles. But, if DE does not lie on the same side of DE that AB does of AC, we may construct the triangle which is symmetrical with DEE; and this symmetrical triangle, when applied to the triangle ABC, will exactly coincide with it. But the triangle DEE, and the triangle symmetrical with it, are not only mutually equilateral, but also are mutually equiangular, the equal angles lying opposite the equal sides, (Prop. 8); and as the one or the other will coincide with the triangle ABC, it follows that

the triangles, ABC and DEF, are either absolutely or symmetrically equal.

Cor. On the same sphere, or on equal spheres, triangles having two angles of the one equal to two angles of the other, each to each, and the included sides equal, have their remaining sides and angles equal.

For, if LA = LD, LB = LE, and side AB =side DE, the triangle DEF, or the triangle symmetrical with it, will exactly coincide with $\triangle ABC$, when applied to it as in the case of plane triangles; hence, the sides and angles of the one will be equal to the sides and angles of the other, each to each.

PROPOSITION X.

In an isosceles spherical triangle, the angles opposite the equal sides are equal.

Let ABC be an isosceles spherical triangle, in which AB and AC are the equal sides; then will B = C.

For, connect the vertex A with D, the middle point of the base, by the arc of a great circle, thus forming the two mutually equilateral triangles, ADB and ADC.

They are mutually equilateral, because AD is common, BD = DC by construction, and AB = AC by supposition; hence they are mutually equiangular, the equal angles being opposite the equal sides, (Prop. 8). The angles B and C, being opposite the common side AD, are therefore equal.

Cor. The arc of a great circle which joins the vertex of an isosceles spherical triangle with the middle point of the base, is perpendicular to the base, and bisects the vertical angle of the triangle; and, conversely, the arc of s

great circle which bisects the vertical angle of an isosceles spherical triangle, is perpendicular to, and bisects the base.

PROPOSITION XI.

If two angles of a spherical triangle are equal, the opposite sides are also equal, and the triangle is isosceles.

In the spherical triangle, ABC, let the $_B = _C$; then will the sides, AB and AC, opposite these equal angles, be equal.

For, let P be the pole of the base, BC, and draw the arcs of great circles, PB, PC; these arcs will be quadrants, and at right angles to BC, (Cor. 2, Prop. 3). Also, produce CA and BA to meet PB and PC, in the points E and F. Now, the angles, PBF and PCE, are equal, because the first is equal to 90° less the ABC, and the second is equal to 90° less the equal ACB; hence, the AC's, AC and AC are equal in all their parts,

since they have the P common, the PBF = PCE, and the side PB equal to the side PC, (Cor., Prop. 9). PE is therefore equal to PF, and PEC = PFB.

Taking the equals PF and PE, from the equals PC and PB, we have the remainders, FC and EB, equal; and, from 180°, taking the $_$'s PFB and PEC, we have the remaining $_$'s, AFC and AEB, equal. Hence, the \triangle 's, AFC and AEB, have two angles of the one equal to two angles of the other, each to each, and the included sides equal; the remaining sides and angles are therefore equal, (Cor., Prop. 9). Therefore, AC is equal to BA, and the $\triangle ABC$ is isosceles.

Cor. An equiangular spherical triangle is also equilateral, and the converse.

REMARK. —In this demonstration, the pole of the base, BC, is supposed to fall without the triangle, ABC. The same figure may be used for the case in which the pole falls within the triangle; the modification the demonstration then requires is so slight and (bvious, that it would be superfluous to suggest it.

PROPOSITION XII.

The greater of two sides of a spherical triangle is opposite the greater angle; and, conversely, the greater of two angles of a spherical triangle is opposite the greater side.

Let ABC be a spherical triangle, in which the angle A is greater than the angle B; then is the side BC greater than the side AC.

Through A draw the arc of a great circle, AD, making, with AB, the angle BAD equal to the angle ABD. The triangle, DAB, is isosceles, and DA = DB, (Prop. 11).

In the $\triangle ACD$, CD+AD>AC,

(Prop. 1.); or, substituting for AD its equal DB, we have, CD + DB > AC.

If in the above inequality we now substitute CB for CD+DB, it becomes CB > CA.

Conversely; if the side CB be greater than the side CA, then is the A > the B. For, if the A is not greater than the B, it is either equal to it, or less than it. The A is not equal to the B; for if it were, the triangle would be isosceles, and CB would be equal to CA, which is contrary to the hypothesis. The A is not less than the B; for if it were, the side CB would be less than the side CA, by the first part of the proposition, which is also contrary to the hypothesis; hence, the A must be greater than the B.

PROPOSITION XIII.

Two symmetrical spherical triangles are equal in area.

Let ABC and DEF be two \triangle 's on the same sphere, having the sides and angles of the one equal to the sides

and angles of the other, each to each, the triangles themselves not admitting of superposition. It is to be proved that these Δ 's have equal areas.

Let P be the pole of a small circle passing through the three points, ABC, and connect P with each of the points, A, B,

and C, by arcs of great circles. Next, through E draw the arc of a great circle, EP', making the angle DEP' equal to the angle ABP. Take EP' = BP, and draw the arcs of great circles, P'D, P'F.

The \triangle 's, ABP and DEP', are equal in all their parts, because AB=DE, BP=EP', and the $_ABP=_DEP'$, (Prop. 9). Taking from the $_ABC$ the $_ABP$, and from the $_DEF$ the $_DEP'$, we have the remaining angles, PBC and P'EF, equal; and therefore the \triangle 's, BCP and EFP', are also equal in all their parts.

Now, since the \triangle 's, ABP and DEP', are isosceles, they will coincide when applied, as will also the \triangle 's, BCP and EFP', for the same reason. The polygonal areas, ABCP and DEFP', are therefore equivalent. If from the first we take the isosceles triangle, PAC, and from the second the equal isosceles triangle, P'DF, the remainders, or the triangles ABC and DEF, will be equivalent.

REMARK.—It is assumed in this demonstration that the pole P falls without the triangle. Were it to fall within, instead of without, no other change in the above process would be required than to add the isosceles triangles, PAC, P'DF, to the polygonal areas, to get the areas of the triangles, ABC, DEF.

Cor. Two spherical triangles on the same sphere, or on equal spheres, will be equivalent — 1st, when they are mutually equilateral; — 2d, when they are mutually equiangular; — 3d, when two sides of the one are equal to two sides of the other, each to each, and the included angles are equal; — 4th, when two angles of the one are equal to two angles of the other, each to each, and the included sides are equal.

PROPOSITION XIV.

If two arcs of great circles intersect each other on the surface of a hemisphere, the sum of either two of the opposite triangles thus formed will be equivalent to a lune whose angle is the corresponding angle formed by the arcs.

Let the great circle, AEBC, be the base of a hemisphere, on the surface of which the great semi-circumfer.

ences, BDA and CDE, intersect each other at D; then will the sum of the opposite triangles, BDC and DAE, be equivalent to the lune whose angle is BDC; and the sum of the opposite triangles, CDA and BDE, will be equivalent to the lune whose angle is CDA.

Produce the arcs, BDA and

CDE, until they intersect on the opposite hemisphere at H; then, since CDE and DEH are both semi-circumferences of a great circle, they are equal. Taking from each the common part DE, we have CD=HE. In the same way we prove BD=HA, and AE=BC. The two triangles, BDC and HAE, are therefore mutually equilateral, and hence they are equivalent, (Prop. 13). But the two triangles, HAE and ADE, together, make up the lune

DEHAD; hence the sum of the \triangle 's, BDC and ADE, is equivalent to the same lune.

By the same course of reasoning, we prove that the sum of the opposite \triangle 's, DAC and DBE, is equivalent to the lune DCHAD, whose angle is ADC.

PROPOSITION XV.

The surface of a lune is to the whole surface of the sphere, as the angle of the lune is to four right angles; or, as the arc which measures that angle is to the circumference of a great circle.

Let ABFCA be a lune on the surface of a sphere, and BCE an arc of a great circle, whose poles are A and F, the vertices of the angles of the lune. The arc, BC, will then measure the angles of the lune. Take any arc, as BD, that will be contained an exact number of times in BC, and in the whole circum-

ference, BCEB, and, beginning at B, divide the arc and the circumference into parts equal to BD, and join the points of division and the poles, by arcs of great circles. We shall thus divide the whole surface of the sphere into a number of equal lunes. Now, if the arc BC contains the arc BD m times, and the whole circumference contains this arc n times, the surface of the lune will contain m of these partial lunes, and the surface of the sphere will contain n of the same; and we shall have,

Surf. lune: surf. sphere:: m:n.

But, m:n::BC: circumference great circle; Lence, surf. lune: surf. sphere:: BC: cir. great circle; or, surf. lune: surf. sphere:: BC: 4 right angles. This demonstration assumes that BD is a common measure of the arc, BC, and the whole circumference. It may happen that no finite common measure can be found; but our reasoning would remain the same, even though this common measure were to become indefinitely small.

Hence the proposition.

Cor. 1. Any two lunes on the same sphere, or on equal spheres, are to each other as their respective angles.

SCHOLIUM.—Spherical triangles, formed by joining the pole of an arc of a great circle with the extremities of this arc by the arcs of great circles, are isosceles, and contain two right angles. For this reason they are called bi-rectangular. If the base is also a quadrant, the vertex of either angle becomes the pole of the opposite side, and each angle is measured by its opposite side. The three angles are then right angles, and the triangle is for this reason called tri-rectangular. It is evident that the surface of a sphere contains eight of its tri-rectangular triangles.

Cor. 2. Taking the right angle as the unit of angles, and denoting the angle of a lune by A, and the surface of a tri-rectangular triangle by T, we have,

surf. of lune: 8T :: A : 4;

whence, surf. of lune = $2A \times T$.

Cor. 3. A spherical ungula bears the same relation to the entire sphere, that the lune, which is the base of the ungula, bears to the surface of the sphere; and hence, any two spherical ungulas in the same sphere, or in equal spheres, are to each other as the angles of their respective lunes.

PROPOSITION XVI.

The area of a spherical triangle is measured by the excess of the sum of its angles over two right angles, multiplied by the tri-rectangular triangle.

Let ABC be a spherical triangle, and DEFLK the circumference of the base of the hemisphere on which this triangle is situated.

Produce the sides of the triangle until they meet this circumference in the points, D, E, F, L, K, and P, thus forming the sets of opposite triangles, DAE, AKL; BEF, BPK; CFL, CDP.

Now, the triangles of each of these sets are together equal to a lune, whose angle is the cor-

responding angle of the triangle, (Prop. 14); hence we have,

$$\triangle DAE + \triangle AKL = 2A \times T$$
, (Prop. 15, Cor. 2).
 $\triangle BEF + \triangle BPK = 2B \times T$.
 $\triangle CFL + \triangle CDP = 2C \times T$.

If the first members of these equations be added, it is evident that their sum will exceed the surface of the hemisphere by twice the triangle ABC; hence, adding these equations member to member, and substituting for the first member of the result its value, $4T + 2\triangle ABC$, we have

$$4T + 2\triangle ABC = 2A.T + 2B.T + 2C.T$$
 or,
$$2T + \triangle ABC = A.T + B.T + C.T$$
 whence,
$$\triangle ABC = A.T + B.T + C.T - 2T.$$
 That is,
$$\triangle ABC = (A + B + C - 2) T.$$

But A + B + C - 2 is the excess of the sum of the angles of the triangle over two right angles, and T do notes the area of a tri-rectangular triangle.

Hence the proposition; the area, etc.

PROPOSITION XVII.

The area of any spherical polygon is measured by the excess of the sum of all its angles over two right angles, taken as many times, less two, as the polygon has sides, multiplied by the tri-rectangular triangle.

Let ABCDE be a spherical polygon; then will its area be measured by the excess of the sum of the angles, A, B, C, D, and E, over two right angles taken a number of times which is two less than the number of sides, multiplied by T, the tri-rectangular triangle. Through the vertex of any of the angles, as E, and the vertices of

the opposite angles, pass arcs of great circles, thus dividing the polygon into as many triangles, less two, as the polygon has sides. The sum of the angles of the several triangles will be equal to the sum of the angles of the polygon.

Now, the area of each triangle is measured by the excess of the sum of its angles over two right angles, multiplied by the tri-rectangular triangle. Hence the sum of the areas of all the triangles, or the area of the polygon, is measured by the excess of the sum of all the angles of the triangles over two right angles, taken as many times as there are triangles, multiplied by the tri-rectangular triangle. But there are as many triangles as the polygon has sides, less two.

Hence the proposition; the arez of any spherical polygon, etc.

Cor. If S denote the sum of the angles of any spherical polygon, n the number of sides, and T the tri-rectangular triangle, the right angle being the unit of angles; the area of the polygon will be expressed by

$$[S-2(n-2)] \times T = (S-2n+4) T.$$

SECTION II.

SPHERICAL TRIGONOMETRY.

A Spherical Triangle contains six parts—three sides and three angles—any three of which being given, the other three may be determined.

Spherical Trigonometry has for its object to explain the different methods of computing three of the six parts of a spherical triangle, when the other three are given. It may be divided into Right-angled Spherical Trigonometry, and Oblique-angled Spherical Trigonometry; the first treating of the solution of right-angled, and the second of oblique-angled spherical triangles.

RIGHT-ANGLED SPHERICAL TRIGONOMETRY.

PROPOSITION I.

With the sines of the sides, and the tangent of ONE SIDE of any right-angled spherical triangle, two plane triangles can be formed that will be similar, and similarly situated.

Let ABC be a spherical triangle, right-angled at B; and let D be the center of the sphere. Because the angle CBA is a right angle, the plane CBD is perpendicular to the plane DBA. From C let fall CH, perpendicular to the plane DBA; and as the

plane CBD is perpendicular to the plane DBA, CH will lie in the plane CBD, and be perpendicular to the line DB, and perpendicular to all lines that can be drawn in the plane DBA, from the point H (Def. 2, B. VI).

Draw HG perpendicular to DA, and draw GC; GG will lie wholly in the plane CDA, and CHG is a right-angled triangle, right-angled at H.

We will now demonstrate that the angle DGC is a right angle.

The right-angled $\triangle CHG$, gives $CH^2 + HG^2 = CG^2$ (1)

The right-angled $\triangle DGH$, gives $DG^2 + HG^2 = DH^2$ (2)

By subtraction, $CH^2 - DG^2 = CG^2 - DH^2$ (3)

By transposition, $CH^2 + DH^2 = CG^2 + DG^2$ (4)

But the first member of equation (4), is equal to CD^2 , because CDH is a right-angled triangle;

Therefore,
$$CD^2 = CG^2 + DG^2$$

Hence, CD is the hypotenuse of the right-angled triangle DGC, (Th. 39, B. I).

From the point B, draw BE at right angles to DA, and BF at right angles to DB, in the plane CDB extended; the point F will be in the line DC. Draw EF, and as F is in the plane CDA, and E is in the same plane, the line EF is in the plane CDA. Now we are to prove that the triangle CHG is similar to the triangle BEF, and similarly situated.

As HG and BE are both at right angles to DA, they are parallel; and as HC and BF are both at right angles to DB, they are parallel; and by reason of the parallels, the angles GHC and EBF are equal; but GHC is a right angle; therefore, EBF is also a right angle.

Now, as GH and BE are parallel, and CH and BF are also parallel, we have,

$$DH:DB=HG:BE$$

And,
$$DH:DB=HC:BF$$

Therefore, HG: BE = HC: BF (Th. 6, B. II), Or, HG: HC = BE: BF.

Here, then, are two triangles, having an angle in the one equal to an angle in the other, and the sides about the equal angles proportional; the two triangles are therefore equiangular, (Cor. 2, Th. 17, B. II); and they are similarly situated, for their sides make equal angles at H and B with the same line, DB.

Hence the proposition.

SCHOLIUM.—By the definition of sines, cosines, and tangents, we perceive that CH is the sine of the arc BC, DH is its cosine, and BF its tangent; CG is the sine of the arc AC, and DG its cosine. Also, BE is the sine of the arc AB, and DE is the cosine of the same arc. With this figure we are prepared to demonstrate the following propositions.

PROPOSITION II.

In any right-angled spherical triangle, the sine of one side is to the tangent of the other side, as radius is to the tangent of the angle adjacent to the first-mentioned side.

Or, the sine of one side is to the tangent of the other side, as the cotangent of the angle adjacent to the first-mentioned side is to the radius.

For the sake of brevity, we will represent the angles of the triangle by A, B, C, and the sides or arcs opposite to these angles, by a, b, c, that is, a opposite A, etc.

In the right-angled plane triangle EBF, we have,

$$EB:BF=R:\tan BEF$$

That is, $\sin c : \tan a = R : \tan A$,

which agrees with the first part of the enunciation. By reference to equation (5), Section I, Plane Trigonometry, we shall find that,

tan.
$$A \cot A = R^2$$
;
therefore, $\tan A = \frac{R^2}{\cot A}$.

Substituting this value for tangent A, in the preceding proportion, and dividing the last couplet by R, we shall have,

$$\sin c : \tan a = 1 : \frac{R}{\cot A}.$$

Or, $\sin c : \tan a = \cot A : R$.

Or,
$$R \sin c = \tan a \cot A$$
, (1)

which answers to the second part of the enunciation.

Cor. By changing the construction, drawing the tangent to AB, in place of the tangent to BC, and proceeding in a similar manner, we have,

$$R \sin a = \tan c \cot C. \tag{2}$$

PROPOSITION III.

In any right-ungled spherical triangle, the sine of the right angle is to the sine of the hypotenuse, as the sine of either of the other angles is to the sine of the side opposite to that angle.

The sine of 90° , or radius, is designated by R.

In the plane triangle, CHG, we have,

$$\sin . CHG : CG = \sin . CGH : CH$$

That is,

$$R : \sin b = \sin A : \sin a$$

Or,

Or,

$$R\sin a = \sin b \sin A \tag{3}$$

Cor. By a change in the construction of the figure, drawing a tangent to AB, etc., we shall have,

$$R : \sin b = \sin C : \sin c$$

$$R \sin c = \sin b \sin C.$$
 (4)

SCHOLIUM. — Collecting the four equations taken from this and the preceding proposition, we have,

- (1) $R \sin c = \tan a \cot A$
- (2) $R \sin a = \tan c \cot C$
- (3) $R \sin a = \sin b \sin A$

These equations refer to the right-angled triangle, ABC; but the principles are true for any right-angled spherical triangle. Let us apply them to the right-angled triangle, PDC, the complemental triangle to ABC.

Making this application, equation

(m)

- (1) becomes $R \sin . CD = \tan . PD \cot . C$
- (2) becomes $R \sin PD = \tan CD \cot P$
- (3) becomes $R \sin PD = \sin PC \sin C$ (0)
- (4) becomes $R \sin CD = \sin PC \sin P$ (p)

By observing that $\sin CD = \cos AC = \cos b$.

And that $\tan PD = \cot \Sigma \sigma = \cot A$, etc.; and by running equations (n), (m), (o), and (p), back into the triangle, ABC, we shall have,

- (5) $R \cos b = \cot A \cot C$
- (6) $R \cos A = \cot b \tan c$
- (7) $R \cos A = \cos a \sin C$
- (8) $R \cos b = \cos a \cos c$

By-observing equation (6), we find that the second member refers to sides adjacent to the angle A. The same relation holds in respect to the angle C, and gives,

(9)
$$R \cos C = \cot b \tan a$$
.

Making the same observations on (7), we infer,

(10)
$$R \cos C = \cos c \sin A$$
.

OBSERVATION 1. Several of these equations can be deduced geometrically without the least difficulty. For example, take the figure to Proposition 1. The parallels in the plane, DBA, give,

$$DB: DH = DE: DG$$

That is,
$$R: \cos a = \cos c : \cos b$$
.

A result identical with equation (8), and in words it is expressed thus: Radius is to cosine of one side, as the cosine of the other side is to the cosine of the hypotenuse.

OBSERVATION 2. The equations numbered from (1) to (10) cover every possible case that can occur in right-angled spherical trigonometry; but the combinations are

too various to be remembered, and readily applied to practical use.

We can remedy this inconvenience, by taking the complement of the hypotenuse, and the complements of the two oblique angles, in place of the arcs themselves.

Thus, b is the hypotenuse, and let b' be its complement. Then, $b + b' = 90^{\circ}$; or, $b = 90^{\circ} - b'$; and, $\sin b = \cos b'$, $\cos b = \sin b'$; $\tan b = \cot b'$. In the same manner, if A' is the complement to A,

Then, $\sin A = \cos A'$; $\cos A = \sin A'$; and, $\tan A = \cot A'$; and similarly, $\sin C = \cos C'$; $\cos C = \sin C'$; and $\tan C = \cot C'$.

Substituting these values for b, A, and C, in the foregoing ten equations (a and c remaining the same), we have,

NAPIER'S CIRCULAR PARTS.

- (11) $R \sin c = \tan a \tan A'$
- (12) $R \sin a = \tan c \tan C$
- (13) $R \sin a = \cos b' \cos A'$
- (14) $R \sin c = \cos b' \cos C'$
- (15) $R \sin b' = \tan A' \tan C'$
- (16) $R\sin A' = \tan b' \tan c$
- (17) $R\sin A' = \cos a \cos C'$
- (18) $R \sin b' = \cos a \cos c$
- (19) $R \sin C' = \tan b' \tan a$
- (20) $R \sin C' = \cos c \cos A'$

Omitting the consideration of the right angle, there are five parts. Each part taken as a middle part, is connected to its adjacent parts by one equation, and to its extreme parts by another equation; therefore, ten equations are required for the combinations of all the parts.

These equations are very remarkable, because the first members are all composed of radius into some sine, and the second members are all composed of the product of two tangents, or two cosines.

To condense these equations into words, for the purpose of assisting the memory, we will refer any one of them directly to the right-angled triangle, ABC, in the last figure.

When the right angle is left out of the question, a right-angled triangle consists of five parts—three sides, and two angles. Let any one of these parts be called a middle part; then two other parts will lie adjacent to this part, and two opposite to it, that is, separated from it by two other parts.

For instance, take equation (11), and call c the *middle* part; then A' and a will be adjacent parts, and C' and b' opposite parts. Again, take a as a *middle part*; then c and C' will be adjacent parts, and A' and b' will be opposite parts; and thus we may go round the triangle.

Take any equation from (11) to (20), and consider the middle part in the first member of the equation, and we shall find that it corresponds to one of the following *invariable and comprehensive rules*:

- 1. The radius into the sine of the middle part is equal to the product of the tangents of the adjacent parts.
- 2. The radius into the sine of the middle part is equal to the product of the cosines of the opposite parts.

These rules are known as Napier's Rules, because they were first given by that distinguished mathematician, who was also the inventor of logarithms.

In the application of these equations, the *accent* may be omitted if tan. be changed to cotan., sin. to cosin., etc. Thus, if equation (13) were to be employed, it would be written, in the first instance, $R \sin a = \cos b' \cos A'$, to insure conformity to the rule; then, we would change it into $R \sin a = \sin b \sin A$.

REMARK. — We caution the pupil to be very particular to take the complements of the hypotenuse, and the complements of the oblique angles.

SECTION III.

OBLIQUE-ANGLED SPHERICAL TRIGONOMETRY.

THE preceding investigations have had reference to right-angled spherical trigonometry only, but the application of these principles covers oblique-angled trigonometry also; for, every oblique-angled spherical triangle may be considered as made up of the sum or difference of two right-angled spherical triangles. With this explanatory remark, we give

PROPOSITION I.

In all spherical triangles, the sines of the sides are to each ther, as the sines of the angles opposite to them.

This was proved in relation to right-angled triangles in Prop. 3, Sec. II, and we now apply the principle to oblique-angled triangles.

Let ABC be the triangle, and let CD be perpendicular to AB, or to AB produced.

Then, by Prop. 3, Sec. II, we have,

 $R:\sin AC=\sin A:\sin CD$.

Also,

 $\sin . CB : R = \sin . CD : \sin . B.$

By multiplying these two proportions together, term by term, and omitting the common factor R, in the first couplet, and the common factor, sin. CD, in the second, we have

$$\sin .CB : \sin .AC = \sin .A : \sin .B.$$

PROPOSITION II.

In any spherical triangle, if an arc of a great circle be lest fall from any angle perpendicular to the opposite side as a base, or to the base produced, the cosines of the other two sides will be to each other as the cosines of the segments of the base.

By the application of equation 8, (Sec. II), to the last figure, we have,

$$R \cos AC = \cos AD \cos DC$$

Similarly,
$$R \cos BC = \cos DC \cos BD$$

Dividing one of these equations by the other, omitting common factors in numerators and denominators, we have,

$$\frac{\cos AC}{\cos BC} = \frac{\cos AD}{\cos BD}$$

Or, $\cos AC : \cos BC = \cos AD : \cos BD$.

PROPOSITION III.

If from any angle of a spherical triangle, a perpendiculace let fall on the base, or on the base produced, the tangents of the segments of the base will be reciprocally proportional to the cotangents of the segments of the angle.

By the application of Equation 2, (Sec. II), to the last figure, we have,

$$R \sin . CD = \tan . AD \cot . ACD$$
.

Similarly, $R \sin .CD = \tan .BD \cot .BCD$

Therefore, by equality,

$$tan.AD \cot ACD = tan.BD \cot BCD$$

Or, $\tan AD : \tan BD = \cot BCD : \cot ACD$.

PROPOSITION IV.

The same construction remaining, the cosines of the angles at the extremities of the segments of the base are to each other as the sines of the segments of the opposite angle.

Equation 7, (Sec. II), applied to the triangle ACD, given

$$R \cos A = \cos CD \sin ACD$$
 (s)

Also,
$$R \cos B = \cos CD \sin BCD$$
 (t)

Dividing equation (s) by (t), gives

$$\frac{\cos A}{\cos B} = \frac{\sin ACD}{\sin BCD}$$

Or, $\cos B : \cos A = \sin BCD : \sin ACD$.

PROPOSITION V.

The same construction remaining, the sines of the segments of the base are to each other as the cotangents of the adjacent angles.

Equation 1, (Sec. II), applied to the triangle ACD, gives

$$R \sin AD = \tan CD \cot A$$
 (8)

Similarly, $R \sin BD = \tan CD \cot B$ (t)

Dividing (s) by (t), gives

$$\frac{\sin AD}{\sin BD} = \frac{\cot A}{\cot B}$$

()r, $\sin BD : \sin AD = \cot B : \cot A$

PROPOSITION VI.

The same construction remaining, the cotangents of the two sides are to each other as the cosines of the segments of the angle.

Equation 9, (Sec. II), applied to the triangle ACD, gives

$$R \cos ACD = \cot AC \tan CD \quad (s)$$

Similarly,
$$R \cos BCD = \cot BC \tan CD$$
 (t)

Dividing (s) by (t), gives

$$\frac{\cos ACD}{\cos BCD} = \frac{\cot AC}{\cot BC}$$

Or, $\cot AC : \cot BC = \cos ACD : \cos BCD$.

PROPOSITION VII.

The cosine of any side of a spherical triangle, is equal to the product of the cosines of the other two sides, plus the product of the sines of those sides multiplied by the cosine of the included angle.

Let ABC be a spherical triangle, and CD a perpendicular from the angle C to the side AB, or to the side AB produced. Then, by Prop. 2,

$$\cos AC : \cos CB = \cos AD : \cos BD$$
 (1)

When CD falls within the triangle,

$$BD = (AB - AD);$$

and when CD falls without the triangle,

$$BD = (AD - AB).$$

Hence, $\cos BD = \cos (AD - AB)$

Now,
$$\cos(AB - AD) = \cos(AD - AB)$$
,

because each of them is equal to

 $\cos AB \cos AD + \sin AB \sin AD$, (Eq. 10, Prop. 2, Sec. I, Plane Trig.).

This value of cos. BD, put in proportion (1), gives $\cos AC$: $\cos .CB = \cos .AD$: $\cos .AD$ $\cos .AD + \sin .AB \sin .AD$ (2)

Dividing the last couplet of proportion (2) by cos. AD, observing that

$$\frac{\sin AD}{\cos AD} = \tan AD,$$

and we have

$$\cos AC : \cos CB = 1 : \cos AB + \sin AB \tan AD \quad (3)$$

By applying equation 6, (Sec. II), to the triangle ACD, taking the radius as unity, we have

$$\cos A = \cot A C \tan A D \quad (k)$$

But, $\tan AC \cot AC = 1$, (Eq. 5, Sec. I, Plane Trig.) (1)

Multiply equation (k) by tan. AC, observing equation (l), and we have

$$\tan AC \cos A = \tan AD$$

Substituting this value of tan. AD, in proportion (3), we have

$$\cos AC : \cos CB = 1 : \cos AB + \sin AB \tan AC \cos A$$
 (4)

Multiplying extremes and means, gives

 $\cos CB = \cos AC \cos AB + \sin AB (\cos AC \tan AC) \cos A$.

But,
$$\tan AC = \frac{\sin AC}{\cos AC}$$
, or, $\cos AC \tan AC = \sin AC$.

Therefore, $\cos .CB = \cos .AC \cos .AB + \sin .AB \sin .AC \cos .A$.

If the sides opposite the angles, A, B, and C, be respectively represented by a, b, and c, this equation becomes,

$$\cos a = \cos b \cos c + \sin b \sin c \cos A$$
.

This formula conforms to the enunciation in respect to the side a. Now, by interchanging b and a, and B and A, in the last equation, we get the formula for $\cos b$, which is,

$$\cos b = \cos a \cos c + \sin a \sin c \cos B$$
.

Interchanging c and a, and C and A, we get the formula for $\cos c$, which is,

 $\cos c = \cos a \cos b + \sin a \sin b \cos C$

Hence, we have the three symmetrical formulæ:

$$\cos.a = \cos.b \cos.c + \sin.b \sin.c \cos.A
\cos.b = \cos.a \cos.c + \sin.a \sin.c \cos.B
\cos.c = \cos.a \cos.b + \sin.a \sin.b \cos.C$$
(S)

From these, by simple transposition and division, we deduce the following formulæ for the cosines of the angles of any spherical triangle, viz:

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$

$$\cos B = \frac{\cos b - \cos a \cos c}{\sin a \sin c}$$

$$\cos C = \frac{\cos c - \cos a \cos b}{\sin a \sin b}$$
(S')

By means of these equations we can find the cosine of any of the three angles of a spherical triangle in terms of the functions of the sides; but in their present form they are not suited for the employment of logarithms, and we should be compelled to use a table of natural sines and cosines, and to perform tedious numerical operations, to obtain the value of the angle.

They are, however, by the following process, transformed into others well adapted to the use of logarithms.

In Eq. 34, Sec. I, Plane Trig., we have $1 + \cos A = 2\cos^2 A$.

Therefore,
$$2\cos^{\frac{1}{2}}A = 1 + \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$
.
$$= \frac{(\sin b \sin c - \cos b \cos c) + \cos a}{\sin b \sin c} (m).$$

• But, $\cos(b+c) = \cos b \cos c - \sin c \sin b$, (Equation 9. Section I, Plane Trig.). By comparing this equation

with the second member of equation (m), we perceive that equation (m) is readily reduced to

$$2\cos^{2}\frac{1}{2}A = \frac{\cos a - \cos(b+c)}{\sin b \sin c}.$$

Considering (b+c) as one are, and then making appliation of equation (18), Plane Trigonometry, we have,

$$2\cos^{2}\frac{1}{2}A = \frac{2\sin\left(\frac{a+b+c}{2}\right)\sin\left(\frac{b+c-a}{2}\right)}{\sin b \sin c}.$$

But,
$$\frac{b+c-a}{2} = \frac{b+c+a}{2} - a$$
; and if we put S to

represent $\frac{b+c+a}{2}$, we shall have,

$$\cos^{2} \frac{A}{2} = \frac{\sin S \sin (S-a)}{\sin b \sin c}.$$
Or,
$$\cos \frac{A}{2} = \sqrt{\frac{\sin S \sin (S-a)}{\sin b \sin c}}.$$

The second member of this equation gives the value of the cosine when the radius is unity. To a greater radius, the cosine would be greater; and in just the same proportion as the radius increases, all the trigonometrical lines increase; therefore, to adapt the above equation to our tables where the radius is R, we must write R in the second member, as a factor; and if we put it under the radical sign, we must write R^2 .

For the other angles we shall have precisely similar equations:

That is,
$$\cos \frac{A}{2} = \sqrt{\frac{R^2 \sin .S \sin .(S-a)}{\sin .b \sin .c}}$$

$$\cos \frac{B}{2} = \sqrt{\frac{R^2 \sin .S \sin .(S-b)}{\sin .a \sin .c}}$$

$$\cos \frac{C}{2} = \sqrt{\frac{R^2 \sin .S \sin .(S-c)}{\sin .a \sin .b}}$$
(T)

To deduce from formulæ (S), formulæ for the sines of the half of each of the angles of a spherical triangle, we proceed as follows:

From Eq. 35, Sec. I, Plane Trig., we have

$$2\sin^2 \frac{1}{2}A = 1 - \cos A$$
.

Substituting the value of $\cos A$, taken from formula (S), and we have,

$$2\sin^{2}\frac{1}{2}A = 1 - \frac{\cos a - \cos b \cos c}{\sin b \sin c}.$$

$$= \frac{(\sin b \sin c + \cos b \cos c) - \cos a}{\sin b \sin c}. \quad (6)$$

But, $\cos(b \circ c) = \sin b \sin c + \cos b \cos c$, (Eq. 10, Sec. I, Plane Trig.).

This equation reduces equation (0) to

$$2\sin^{2}\frac{1}{2}A = \frac{\cos((b \circ c) - \cos a}{\sin b \sin c}.$$

Considering $(b \circ c)$ as a single arc, and applying equation 18, Sec. I, Plane Trig., we have

$$2\sin^{2}\frac{1}{2}A = \frac{2\sin\left(\frac{a+b-c}{2}\right)\sin\left(\frac{a+c-b}{2}\right)}{\sin b \sin c}. (o')$$

But,
$$\frac{a+b-c}{2} = \frac{a+b+c}{2} - c = S-c$$
, if we put $S=\frac{a+b+c}{2}$.

Also,
$$\frac{a+c-b}{2} = \frac{a+b+c}{2} - b = S - b$$
.

Dividing equation (\circ) by 2, and making these substatutions, we have

$$\sin^2 \frac{1}{2}A = \frac{\sin(S-c)\sin(S-b)}{\sin b\sin c},$$

when radius is unity.

When radius is R, we have

$$\sin \frac{1}{2}A = \sqrt{\frac{R^2 \sin (S-c) \sin (S-b)}{\sin b \sin b}}$$
Similarly,
$$\sin \frac{1}{2}B = \sqrt{\frac{R^2 \sin (S-a) \sin (S-c)}{\sin a \sin c}}$$
And,
$$\sin \frac{1}{2}C = \sqrt{\frac{R^2 \sin (S-a) \sin (S-b)}{\sin a \sin b}}$$

$$(U)$$

The above equations are now adapted to our tables. We shall show the application of these formulæ, and those in group (T), hereafter.

PROPOSITION VIII.

The cosine of any of the angles of a spherical triangle, is squal to the product of the sines of the other two angles multiplied by the cosine of the included side, minus the product of the cosines of these other two angles.

Let ABC be a spherical triangle, and A'B'C' its supplemental or polar triangle, the angles of the first being denoted by A, B, and C, and the sides opposite these angles by a, b, c, respectively; A', B', C', a', b', c', denoting the angles and corresponding sides of the second.

By Prop. 6, Sec. I, we have the following relations be tween the sides and angles of these two triangles.

$$A' = 180^{\circ} - a$$
, $B' = 180^{\circ} - b$, $C' = 180^{\circ} - c$;
 $a' = 180^{\circ} - A$, $b' = 180^{\circ} - B$, $c' = 180^{\circ} - C$.

The first of formulæ (S), Prop. 7, when applied to the polar triangle, gives

$$\cos a' = \cos b' \cos c' + \sin b' \sin c' \cos A' \quad (1)$$

which, by substituting the values of a', b', c', and A', becomes

$$\cos.(180^{\circ} - A) = \cos.(180^{\circ} - B) \cos.(180^{\circ} - C) + \sin.(180^{\circ} - B) \sin.(180^{\circ} - C) \cos.(180^{\circ} - a),$$
 (2)
But,

 $\cos(180^{\circ}-A) = -\cos A$, etc., $\sin(180^{\circ}-B) = \sin B$, etc.; and placing these values for their equals in eq. (2), and changing the signs of both members of the resulting equation, we get

$$\cos A = \sin B \sin C \cos a - \cos B \cos C$$
,

which agrees with the enunciation.

By treating the other two of formulæ (S), Prop. 7, in the same manner, we should obtain similar values for the cosines of the other two angles of the triangle ABC; or we may get them more easily by a simple permutation of the letters A, B, C, a, etc.

Hence, we have the three equations

$$\cos A = \sin B \sin C \cos a - \cos B \cos C
\cos B = \sin A \sin C \cos b - \cos A \cos C
\cos C = \sin A \sin B \cos c - \cos A \cos B$$
(V)

By transposition and division, these equations become

$$\cos a = \frac{\cos A + \cos B \cos C}{\sin B \sin C}$$
(3)
$$\cos b = \frac{\cos B + \cos A \cos C}{\sin A \sin C}$$

$$\cos c = \frac{\cos C + \cos A \cos B}{\sin A \sin B}$$

From these we can find formulæ to express the sine or the cosine of one half of the side of a spherical triangle, in terms of the functions of its angles; thus:

Add 1 to each member of eq. (3), and we have

$$1 + \cos a = \frac{\cos A + \cos B \cos C + \sin B \sin C}{\sin B \sin C}$$

$$= \frac{\cos A + \cos (B - C)}{\sin B \sin C}$$

But, $1 + \cos a = 2\cos^2 \frac{1}{2}a$; hence,

$$2\cos^{2} \frac{1}{2}a = \frac{\cos A + \cos (B - C)}{\sin B \sin C}$$

and since $\cos A + \cos (B - C) = 2\cos \frac{1}{2}(A + B - C)\cos \frac{1}{2}(A + C - B)$ (Eq. 17, Sec. I, Plane Trig.), we have

$$2\cos^{2} \frac{1}{2}a = \frac{2\cos\frac{1}{2}(A + B - C)\cos\frac{1}{2}(A + C - B)}{\sin B \sin C}$$

Make A + B + C = 2S; then A + B - C = 2S - 2C, A + C - B = 2S - 2B, $\frac{1}{2}(A + B - C) = S - C$, and $\frac{1}{2}(A + C - B) = S - B$; whence

$$2\cos^{2}\frac{1}{2}a = \frac{2\cos.(S-C)\cos.(S-B)}{\sin.B\sin.C}$$
or,
$$\cos\frac{1}{2}a = \sqrt{\frac{\cos.(S-C)\cos.(S-B)}{\sin.B\sin.C}}$$
Similarly,
$$\cos\frac{1}{2}b = \sqrt{\frac{\cos.(S-A)\cos.(S-C)}{\sin.A\sin.C}}$$
and,
$$\cos\frac{1}{2}c = \sqrt{\frac{\cos.(S-A)\cos.(S-B)}{\sin.A\sin.B}}$$

To find the $\sin \frac{1}{2}a$ in terms of the functions of the angles, we must subtract each member of eq. (3) from 1, by which we get

$$1-\cos a = 1 - \frac{\cos A + \cos B \cos C}{\sin B \sin C}.$$

But, $1-\cos a = 2\sin \frac{1}{2}a$; hence we have,

$$2\sin^{2} \frac{1}{2}a = \frac{(\sin B \sin C - \cos B \cos C) - \cos A}{\sin B \sin C}.$$

Operating upon this in a manner analogous to that ly which cos. ½a was found, we get,

$$\sin_{\frac{1}{2}a} = \left\{ \frac{-\cos S \cos(S - A)}{\sin B \sin C} \right\}^{\frac{1}{2}}$$

$$\sin_{\frac{1}{2}b} = \left\{ \frac{-\cos S \cos(S - B)}{\sin A \sin C} \right\}^{\frac{1}{2}}$$

$$\sin_{\frac{1}{2}c} = \left\{ \frac{-\cos S \cos(S - C)}{\sin A \sin B} \right\}^{\frac{1}{2}}$$
(W)

If the first equation in (W) be divided by the first in (V^{τ}) , we shall have,

$$\tan_{\frac{1}{2}a} = \left\{ \frac{-\cos S \cos(S-A)}{\cos(S-B)\cos(S-C)} \right\}^{\frac{1}{2}}$$

And corresponding expressions may be obtained for $\tan \frac{1}{2}b$ and $\tan \frac{1}{2}c$.

NAPIER'S ANALOGIES.

If the value of $\cos c$, expressed in the third equation of group (S), Prop. 7, be substituted for $\cos c$, in the second member of the first equation of the same group, we have,

 $\cos a = \cos a \cos^2 b + \sin a \sin b \cos b \cos C + \sin b \sin c \cos A;$ which, by writing for $\cos^2 b$ its equal, $1 - \sin^2 b$, becomes, $\cos a = \cos a - \cos a \sin^2 b + \sin a \sin b \cos b \cos C + \sin b \sin c \cos A.$ Or, $0 = -\cos a \sin^2 b + \sin a \sin b \cos b \cos C + \sin b \sin c \cos A.$

Dividing through by $\sin b$, and transposing, we find, $\cos A \sin c = \cos a \sin b - \sin a \cos b \cos C$;

wence,
$$\cos A = \frac{\cos a \sin b - \sin a \cos b \cos C}{\sin c}$$
. (1)

$$\cos B = \frac{\cos b \sin a - \sin b \cos a \cos C}{\sin c}$$
 (2)

Adding equations (1) and (2), member to member, we have,

$$\cos A + \cos B = \frac{\sin(a+b) - \sin(a+b)}{\sin c} \frac{\cos C}{\sin c};$$

by remembering that $\sin a \cos b + \cos a \sin b = \sin (a+b)$. (See Eq. (7), Sec. I, Plane Trig.).

Whence,
$$\cos A + \cos B = (1 - \cos C) \frac{\sin (a+b)}{\sin c}$$
. (3)

In any spherical triangle we have, (Prop. I),

$$\sin A : \sin B :: \sin a : \sin b$$
;

And therefore, $\sin A + \sin B : \sin B :: \sin a + \sin b :$ $\sin b$.

Hence,
$$\sin A + \sin B = \frac{(\sin a + \sin b) \sin B}{\sin b}$$
.

But, $\frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$, which value of $\frac{\sin B}{\sin b}$, in the above equation, gives

$$\sin A + \sin B = \frac{(\sin a + \sin b) \sin C}{\sin c}.$$
 (4)

Dividing equation (4) by equation (3), member by member, we obtain,

$$\frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\sin C}{1 - \cos C} \times \frac{\sin A + \sin b}{\sin (a + b)}.$$
 (5)

Comparing this equation with Equations (20) and (26), Sec. I, Plane Trigonometry, we see that it can be reduced to

$$\tan \frac{1}{2}(A+B) = \cot \frac{1}{2}C \times \frac{\sin a + \sin b}{\sin (a+b)}$$
 (6)

Again, from the proportion,

$$\sin A : \sin B :: \sin a : \sin b$$
,

we likewise have,

$$\sin A - \sin B : \sin B :: \sin a - \sin b : \sin b;$$
80

hence, $\sin A - \sin B = (\sin a - \sin b) \frac{\sin B}{\sin b} = (\sin a - \sin b) \frac{\sin C}{\sin c}$.

Dividing this equation by equation (3), member by member, we obtain,

$$\frac{\sin A - \sin B}{\cos A + \cos B} = \frac{\sin C}{1 - \cos C} \times \frac{\sin a - \sin b}{\sin (a + b)}.$$

Comparing this with Equations (22) and (26), Sec. I, Plane Trigonometry, we see that it will reduce to

$$\tan \frac{1}{2}(A-B) = \cot \frac{1}{2}C \times \frac{\sin a - \sin b}{\sin (a+b)}.$$
 (7)

Now, $\sin a + \sin b = 2\sin \left(\frac{a+b}{2}\right)\cos \left(\frac{a-b}{2}\right)$; Eq. (15), Sec. I, Plane Trig.).

and, sin. $(a + b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a+b}{2}\right)$; Eq. (30), Sec. I, Plane Trig.).

Dividing the first of these by the second, we have

$$\frac{\sin a + \sin b}{\sin (a+b)} = \frac{\cos \left(\frac{a-b}{2}\right)}{\cos \left(\frac{a+b}{2}\right)}$$

Writing the second member of this equation for its first member in Eq (6), that equation becomes

$$\tan \frac{1}{2}(A+B) = \cot \frac{1}{2}C \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)}$$
. (8)

By a similar operation, Eq. (7) may be reduced to

$$\tan \frac{1}{2}(A - B) = \cot \frac{1}{2}C \frac{\sin \frac{1}{2}(a - b)}{\sin \frac{1}{2}(a + b)}.$$
 (9)

Equations (8) and (9) may be resolved into the proportions

$$\cos \frac{1}{2}(a+b) : \cos \frac{1}{2}(a-b) : \cot \frac{1}{2}C : \tan \frac{1}{2}(A+B);$$

 $\sin \frac{1}{2}(a+b) : \sin \frac{1}{2}(a-b) : \cot \frac{1}{2}C : \tan \frac{1}{2}(A-B).$

These proportions are known as Napier's 1st and 2d

Analogies, and may be advantageously used in the solution of spherical triangles, when two sides and the included angle are given.

When expressed in language, these proportions furnish the following rules:

- 1. The cosine of the half sum of any two sides of a spherical triangle is to the cosine of the half difference of the same sides, as the cotangent of half the included angle is to the tangent of the half sum of the other two angles.
- 2. The sine of the half sum of any two sides of a spherical triangle is to the sine of the half difference of the same sides, as the cotangent of half the included angle is to the tangent of the half difference of the other two angles.

The half sum, and the half difference of two angles of a spherical triangle, may be found by these rules, when two sides and the included angle are given; and by adding the half sum to the half difference, we get the greater of these two angles, and by subtracting the half difference from the half sum, we get the smaller. The third side may then be found by proportion.

We have analogous proportions applicable to the case in which two angles and the included side of a spherical triangle are given.

To deduce these, let us represent the angles of the triangle by A, B, and C, and the opposite sides by a, b, and c; A', B', C', a', b', c', denoting the corresponding angles and sides of the polar triangle.

Now, Eq. (9) is applicable to any spherical triangle, and when applied to the polar triangle, it becomes

$$\tan \frac{1}{2}(A'-B') = \cot \frac{1}{2}C' \frac{\sin \frac{1}{2}(a'-b')}{\sin \frac{1}{2}(a'+b')}.$$
 (n)

But by Prop. 6, Sec. I, Spherical Geometry, we have
$$A' = 180^{\circ} - a$$
, $B' = 180^{\circ} - b$, $C' = 180^{\circ} - c$, $a' = 180^{\circ} - A$, $b' = 180^{\circ} - B$, $c' = 180^{\circ} - C$.

Whence,
$$\frac{1}{2}(A'-B')=\frac{1}{2}(b-a)$$
, $\frac{1}{2}(a'+b')=180^{\circ}-\frac{A+B}{2}$, $\frac{1}{2}(a'-b')=\frac{1}{2}(B-A)$, $\frac{1}{2}C'=90^{\circ}-\frac{1}{2}c$.

By the substitution of these values in Eq (n), that equation becomes

$$\tan \frac{1}{2}(b-a) = \frac{\sin \frac{1}{2}(B-A)}{\sin \frac{1}{2}(A+B)} \tan \frac{1}{2}c,$$

or,
$$\tan \frac{1}{2}(a-b) = \frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)} \tan \frac{1}{2}c$$
, (p)

since
$$\tan \frac{1}{2}(b-a) = -\tan \frac{1}{2}(a-b)$$
, and $\sin \frac{1}{2}(B-A) = -\sin \frac{1}{2}(A-B)$.

By applying Eq. (8) to the polar triangle, and treating the resulting equation in a manner similar to the above, we find

$$\tan \frac{1}{2}(a+b) = \frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)} \tan \frac{1}{2}c, \qquad (q)$$

Equations (p) and (q) may be resolved into the following proportions.

$$\sin \frac{1}{2}(A+B) : \sin \frac{1}{2}(A-B) :: \tan \frac{1}{2}c : \tan \frac{1}{2}(a-b) : \cos \frac{1}{2}(A+B) :: \cos \frac{1}{2}(A-B) :: \tan \frac{1}{2}c : \tan \frac{1}{2}(a+b).$$

These proportions are called Napier's 3d and 4th Analogies, and when expressed in words become the following rules:

- 1. The cosine of the half, sum of any two angles of a spherical triangle is to the cosine of the half difference of the same angles, as the tangent of half the included side is to the tangent of the half sum of the other two sides.
- 2. The sine of the half sum of any two angles of a spherical triangle is to the sine of the half difference of the same angles, as the tangent of half the included side is to the tangent of the half difference of the other two sides.

The half sum, and the half difference of two sides of a spherical triangle, may be found by these rules, when two angles and the included side are given; and by adding the half sum to the half difference, we get the greater of these sides, and by subtracting the half difference from the half sum, we get the smaller.

SECTION IV.

SPHERICAL TRIGONOMETRY APPLIED.

SOLUTION OF RIGHT-ANGLED SPHERICAL TRIANGLES.

A good general conception of the sphere is essential to a practical knowledge of spherical trigonometry, and this conception is best obtained by the examination of an artificial globe. By tracing out upon its surface the various forms of right-angled and oblique-angled triangles, and viewing them from different points, we may soon acquire the power of making a natural representation of them on paper, which will be found of much assistance in the solution and interpretation of problems.

For instance, suppose one side of a right-angled spherical triangle to be 56°, and the angle between this side and the hypotenuse to be 24°. What is the hypotenuse, and what the other side and angle?

A person might solve this problem by the application of the proper equations or proportions, without really comprehending it; that is, without being able to form a distinct notion of the shape of the triangle, and of its relation to the surface of the sphere on which it is situated.

If we refer this triangle to the common geographical globe, the side 56° may be laid off on the equator, or on a meridian. In the first case, the hypotenuse will be the arc of a great circle drawn through one extremity of the side 56°, above or below the equator, and making with

it an angle of 24°; the other side will be an arc of a meridian. In the second case, the side 56° falling on a meridian, the hypotenuse will be the arc of a great circle drawn through one extremity of this side, on the right or left of the meridian, and making with it an angle of 24°; the other side will be the arc of a great circle, at right angles to the meridian in which the given side lies.

Generally speaking, the apparent form of a spherical triangle, and consequently the manner of representing it on paper, will differ with the position assumed for the eye in viewing it. From whatever point we look at a sphere, its outline is a perfect circle in the axis of which the eye is situated; and when the eye is, as will be hereafter supposed, at an infinite distance, this circle will be a great circle of the sphere. All great circles of the sphere whose planes pass through the eye, will seem to be diameters of the circle which represents the outline of the sphere.

We will now suppose the eye to be in the plane of the equator, and proceed to construct our triangle on paper.

Let the great circle, PASA', represent the outline of the sphere, the diameter AA' the equator, and the diameter PS the central meridian, or the meridian in whose plane the eye is situated. Let $AB = 56^{\circ}$, represent the given side, and AC, making with AB the angle $BAC = 10^{\circ}$

24°, the hypotenuse, then will BC, the arc of a meridian, be the other side at right angles to AB, and the triangle, ABC, corresponds in all respects to the given triangle.

Again measure off 56° from P to Q, draw the arc DQ, make the arc A'G equal to 24°, and draw the quadrant PRG. The triangle PQR will also represent the given triangle in every particular.

We know from the construction, that $DV_1 = 24^{\circ}$, is greater than BC_1 , and that AC_1 is greater than AB_2 , that is, greater than BC_2 .

In like manner, we know that A', = 24°, is greater than QR, and that PR is greater than PQ, because PR is more nearly equal to PG, =90°, than PQ is to PA, =90°

For illustration and explanation, we also give the following example:

In a right-angled spherical triangle, there are given, the hypotenuse equal to 150° 33′ 20″, the angle at the base, 23° 27′ 29″, to find the base and the perpendicular. Let A'BC in the last figure, represent the triangle in which $A'C = 150^{\circ}$ 33′ 20″, the $BA'C = 23^{\circ}$ 27′ 29″, and the sides A'B and BC are required.

This problem presents a right-angled spherical triangle, whose base and hypotenuse are each greater than 90°; and in cases of this kind, let the pupil observe, that the base is greater than the hypotenuse, and the oblique angle opposite the base, is greater than a right angle. In all cases, a spherical triangle and its supplemental triangle make a lune. It is 180° from one pole to its opposite, whatever great circle be traversed. It is 180° along the equator ABA', and also 180° along the ecliptic ACA'. The lune always gives two triangles; and when the sides of one of them are greater than 90°, we take the triangle having supplemental sides; hence in this case we operate on the triangle ABC.

AC is greater than AB, therefore A'B is greater than the hypotenuse A'C.

The $_ACB$ is less than 90°; therefore, the adjacent angle A'CB is greater than 90°, the two together being equal to two right angles.

These facts are technically expressed, by saying, that the sides and opposite angles are of the same affection.*

^{*} Same affection: that is, both greater or both less than 90°. Different affection: the one greater, the other less than 90°.

Now, if the two sides of a right-angled spherical triangle are of the same affection, the hypotenuse will be less than 90°; and if of different affection, the hypotenuse will be greater than 90°.

If, in every instance, we make a natural construction of the figure, and use common judgment, it will be impossible to doubt whether an arc must be taken greater or less than 90°.

We will now solve the triangle ACB. $AC = 180^{\circ} - 150^{\circ} 33' 20'' = 29^{\circ} 26' 40''$.

To find BC, we use Eq. (3) or (13), Prop. 3, Sec. II., thus:

To find AB, we use equation (1) or (11), thus:

PRACTICAL PROBLEMS IN RIGHT-ANGLED SPHERJCAL TRIGONOMETRY.

1. In the right-angled spherical triangle ABC, given $AB = 118^{\circ} 21'$ 4", and the angle $A = 23^{\circ} 40' 12"$, to find the other parts.

Ans.
$$\begin{cases} AC, 116^{\circ} 17' 55''; \text{ the angle } C, 100^{\circ} 59' 26''; \\ \text{and } BC, 21^{\circ} 5' 42''. \end{cases}$$

2. In the right-angled spherical triangle ABC, given AB 53° 14′ 20″, and the angle A 91° 25′ 53″, to find the other parts.

Ans.
$$\begin{cases} AC, 91^{\circ} 4' 9''; \text{ the angle } C, 53^{\circ} 15' 8''; \\ \text{and } BC, 91^{\circ} 47' 10'. \end{cases}$$

- 3. In the right-angled spherical triangle ABC, given AB 102° 50′ 25″, and the angle A 113° 14′ 37″, to find the other parts.
 - Ans. $\begin{cases} AC, 84^{\circ} 51' 36''; \text{ the angle } C, 101^{\circ} 46' 56''; \\ \text{and } BC, 113^{\circ} 46' 27''. \end{cases}$
- 4. In the right-angled spherical triangle ABC, given AB 48° 24′ 16″, and BC 59° 38′ 27″, to find the other parts.
 - Ans. $\begin{cases} AC, 70^{\circ} 23' 42''; \text{ the angle } A, 66^{\circ} 20' 40''; \\ \text{and the angle } C, 52^{\circ} 32' 56''. \end{cases}$
- 5. In the right-angled spherical triangle ABC, given AB 151° 23′ 9″, and BC 16° 35′ 14″, to find the other parts.
 - Ans. { AC, 147° 16′ 51″; the angle C, 117° 37′ 25″; and the angle A, 31° 52′ 49″.
- 6. In the right-angled spherical triangle ABC, given AB 73° 4′ 31″, and AC 86° 12′ 15,″ to find the other parts.
 - Ans. BC, 76° 51′ 20″; the angle A, 77° 24′ 23″; and the angle C, 73° 29′ 40″.
- 7. In the right-angled spherical triangle ABC, given AC 118° 32′ 12″, and AB 47° 26′ 35″, to find the other parts.
 - Ans. { BC, 134° 56′ 20″; the angle A, 126° 19′ 2″; and the angle C, 56° 58′ 44″.
- 8. In the right-angled spherical triangle ABC, given AB 40° 18′ 23″, and AC 100° 3′ 7″, to find the other parts.
 - Ans. { The angle A, 98° 38′ 53″; the angle C, 41° 4′ 6″; and BC, 103° 13′ 52″.
- 9. In the right-angled spherical triangle ABC, given AC 61° 3′ 22″, and the angle A 49° 28′ 12″, to find the other parts.
 - Ans. $\begin{cases} AB, 49^{\circ} & 36' & 6''; \text{ the angle } C, 60^{\circ} & 29' & 20''; \\ \text{and } BC, 41^{\circ} & 41' & 32''. \end{cases}$
 - 10. In the right-angled spherical triangle ABC, given

AB 29° 12′ 50″, and the angle C 37° 26′ 21″, to find the other parts.

Ans. Ambiguous; the angle A, 65° 27′ 57″, or its supplement; AC, 53° 24′ 13″, or its supplement; BC, 46° 55′ 2″, or its supplement.

11. In the right-angled spherical triangle ABC, given AB 100° 10′ 3″, and the angle C 90° 14′ 20″, to find the other parts.

Ans. $\begin{cases} AC, 100^{\circ} 9' 52'', \text{ or its supplement; } BC, \\ 1^{\circ} 19' 55'', \text{ or its supplement; and the angle } A, 1^{\circ} 21' 12'', \text{ or its supplement.} \end{cases}$

12. In the right-angled spherical triangle ABC, given AB 54° 21′ 35″, and the angle C 61° 2′ 15″, to find the other parts.

Ans. BC, 129° 28′ 28″, or its supplement; AC, 111° 44′ 34″, or its supplement; and the angle A, 123° 47′ 44″, or its supplement.

13. In the right-angled spherical triangle ABC, given AB 121° 26′ 25″, and the angle C 111° 14′ 37″, to find the other parts.

Ans. The angle A, 136° 0′ 5″, or its supplement; AC, 66° 15′ 38″, or its supplement; and BC, 140° 30′ 57″, or its supplement.

QUADRANTAL TRIANGLES.

The solution of right-angled spherical triangles includes, also, the solution of quadrantal triangles, as may be seen by inspecting the adjoining figure. When we have one quadrantal triangle, we have four, which with one right-angled triangle, fill up the whole hemisphere.

To effect the solution of either of the four quadrantal triangles, APC, AP'C, A'PC, or A'P'C, it is sufficient to solve the small right-angled spherical triangle ABC.

To the half lune AP'B, we add the triangle ABC, and we have the quadrantal triangle AP'C; and by subtracting the same from the equal half lune APB, we have the quadrantal triangle PAC.

When we have the side, AC, of the same triangle, we have its supplement, A'C, which is a side of the triangles A'PC, and A'P'C. When we have the side, CB, of the small triangle, by adding it to 90°, we have P'C, a side of the triangle A'P'C; and subtracting it from 90°, we have PC, a side of the triangles APC, and A'PC.

PROBLEM I.

In a quadrantal triangle, there are given the quadrantal side, 90°, a side adjacent, 42° 21′, and the angle opposite this last side, equal to 36° 31′. Required the other parts.

By this enunciation we cannot decide whether the triangle APO or AP'C, is the one required, for $AC = 42^{\circ} 21'$ belongs equally to both triangles. The angle $APC = AP'C = 36^{\circ} 31' = AB$ We operate wholly on the triangle ABC.

To find the angle A, call it the middle part.

Then,
$$R \cos .CAB = R \sin .PAC = \cot .AC \tan .AB$$
.
 $\cot .AC = 42^{\circ} 21'$. 10.040231
 $\tan .AB = 36^{\circ} 31'$. 9.869473
 $\cos .CAB = 35^{\circ} 40' 51''$ 9.909704
 90°
 $PAC = 54^{\circ} 19' 9''$
 $P'AC = 125^{\circ} 40' 51''$

To find the angle C, call it the middle part.

$$R \cos ACB = \sin CAB \cos AB.$$

 $\sin CAB = 35^{\circ} 40' 51''$ 9.765869
 $\cos AB = 36^{\circ} 31'$ 9.905085
 $\cos ACB = 62^{\circ} 2' 45''$ 9.670954
 180°
 $ACP = A'CP' = 117^{\circ} 57' 15''$

To find the side BC, call it the middle part.

 $R \sin_{\cdot} BC = \tan_{\cdot} AB \cot_{\cdot} ACB$.

$$\begin{array}{rcl}
\tan AB & = & 36^{\circ} \ 31' \ 0'' & 9.869473 \\
\cot ACB & = & 62^{\circ} \ 2' \ 45'' & 9.724835 \\
\sin BC & = & 23^{\circ} \ 8' \ 11'' & 9.594308 \\
\hline
PC & = & 66^{\circ} \ 51' \ 49'' \\
P'C & = & 113^{\circ} \ 8' \ 11''
\end{array}$$

We now have all the sides, and all the angles of the four triangles in question.

PROBLEM II.

In a quadrantal spherical triangle, having given the quadrantal side, 90°, an adjacent side, 115° 09′, and the included angle, 115° 55′, to find the other parts.

This enunciation clearly points out the particular triangle A'P'C. $A'P' = 90^{\circ}$; and conceive $A'C = 115^{\circ}$ 09'. Then the angle $P'A'C = 115^{\circ}$ 55' = P'D.

From the angle P'A'C take 90°, or P'A'B, and the remainder is the angle $OA'D = BAC = 25^{\circ} 55'$.

We here again operate on the triangle ABC. A'C, taken from 180°, gives

$$64^{\circ} 51' = AC.$$

To find BC, we call it the middle part.

$$R \sin BC = \sin AC \sin BAC$$
.

$$\sin AC = 64^{\circ} 51'$$
 . 9.956744
 $\sin BAC = 25^{\circ} 55'$. 9.640544
 $\sin BC = 23^{\circ} 18' 19''$. 9.597288
 90°
 $P'C = 113^{\circ} 18' 19''$

To find AB, we call it the middle part.

 $R \sin AB = \tan BC \cot BAC.$

$$tan.BC = 23^{\circ} 18' 19'' .$$
 $tan.BC = 25^{\circ} 55' .$
 $tan.BAC = 25^{\circ$

 $A'B = 117^{\circ} 33' 52'' =$ the angle A'P'C.

To find the angle C, we call it the middle part.

 $R \cos C = \cot A C \tan B C$.

$$\cot AC = 64^{\circ} 51' . 9.671634$$

$$\tan BC = 23^{\circ} 18' 19'' . 9.634251$$

$$\cos C = 78^{\circ} . 9.305885$$

$$180^{\circ} 19' 53'' .$$

$$P'CA' = 101^{\circ} 40' 7''$$

Thus we have found the side $P'C = 113^{\circ} 18' 19''$ The angle $A'P'C = 117^{\circ} 33' 52''$ Ans. $P'CA' = 101^{\circ} 40' 7''$

PRACTICAL PROBLEMS.

1. In a quadrantal triangle, given the quadrantal side, 30°, a side adjacent, 67° 3′, and the included angle, 49° 18′, to find the other parts.

Ans. { The remaining side is 53° 5′ 44″; the angle opposite the quadrantal side, 108° 32′ 29″; and the remaining angle, 60° 48′ 54″.

2. In a quadrantal triangle, given the quadrantal side, 90°, one angle adjacent, 118° 40′ 36″, and the side opposite this last-mentioned angle, 113° 2′ 28″, to find the other parts.

Ans. The remaining side is 54° 38′ 57″; the angle opposite, 51° 2′ 35″; and the angle opposite the quadrantal side 72° 26′ 21″.

8. In a quadrantal triangle, given the quadrantal side,

90°, and the two adjacent angles, one 69° 13′ 16″, the other 72° 12′ 4″, to find the other parts.

Ans. One of the remaining sides is 70° 8′ 39″, the other is 73° 17′ 29″, and the angle opposite the quadrantal side is 96° 13′ 23″.

- 4. In a quadrantal triangle, given the quadrantal side, 90°, one adjacent side, 86° 14′ 40″, and the angle opposite to that side, 37° 12′ 20″, to find the other parts.
 - Ans. { The remaining side is 4° 43′ 2″; the angle opposite, 2° 51′ 23″; and the angle opposite the quadrantal side, 142° 42′ 3″.
- 5. In a quadrantal triangle, given the quadrantal side, 90°, and the other two sides, one 118° 32′ 16″, the other 67° 48′ 40″, to find the other parts—the three angles.

Ans. The angles are 64° 32′ 21″, 121° 3′ 40″, and 77° 11′ 6″; the greater angle opposite the greater side, of course.

6. In a quadrantal triangle, given the quadrantal side, 90°, the angle opposite, 104° 41′ 17″, and one adjacent side, 78° 21′ 6″, to find the other parts.

Ans. { Remaining side, 49° 42′ 16″; remaining angles, 47° 32′ 38″, and 67° 56′ 13″.

SOLUTION OF OBLIQUE-ANGLED SPHERICAL TRIANGLES.

All cases of oblique-angled spherical trigonometry may be solved by right-angled Trigonometry, except two; because every oblique-angled spherical triangle is composed of the sum, or the difference, of two rightangled spherical triangles.

When a side and two of the angles, or an angle and two of the sides are given, to find the other parts, conform to the following directions:

Let a perpendicular be drawn from an extremity of a given si le, and opposite a given angle or its supplement; this will form two right-angled spherical triangles: and

one of them will have its hypotenuse and one of its adjacent angles given, from which all its other parts can be computed; and some of these parts will become as known parts to the other triangle, from which all its parts can be computed.

To facilitate these computations, we here give a summary of the practical truths demonstrated in the foregoing propositions.

- 1. The sines of the sides of spherical triangles are proportional to the sines of their opposite angles.
- 2. The sines of the segments of the base, made by a perpendicular from the opposite angle, are proportional to the cotangents of their adjacent angles.
- 3. The cosines of the segments of the base are proportional to the cosines of the adjacent sides of the triangle.
- 4. The tangents of the segments of the base are reciprocally proportional to the cotangents of the segments of the vertical angle.
- 5. The cosines of the angles at the base are proportional to the sines of the corresponding segments of the vertical angle.
- 6. The cosines of the segments of the vertical angle are proportional to the cotangents of the adjoining sides of the triangle.

The two cases in which right-angled spherical triangles are not used, are,

- 1st. When the three sides are given to find the angles; and,
- 2d. When the three angles are given to find the sides. The first of these cases is the most important of all, and for that reason great attention has been given to it, and two series of equations, (*T* and *U*, Prop. 7, Sec. III), have been deduced to facilitate its solution.

As heretofore, let ABC represent any triangle whose angles are denoted by A, B, and C, and sides by a, b,

and c; the side a being opposite [A], the side b opposite [B], etc.

EXAMPLES.

1. In the triangle ABC, $a = 70^{\circ}4'18''$; $b = 63^{\circ}21'27''$; and c, 59° 16' 23''; required the angle A.

The formula for this is the first equation in group T, Prop. 7, Sec. III, which is

$$\cos \frac{A}{2} = \left(\frac{R^2 \sin . S \sin . (S-a)}{\sin . b \sin . c}\right)^{\frac{1}{2}}.$$

We write the second member of this equation thus:

$$\sqrt{\frac{R}{\sin b} \left(\frac{R}{\sin c}\right) \left(\sin S\right) \sin (S-a)}$$

showing four distinct factors under the radical.

The logarithm corresponding to $\frac{R}{\sin b}$ is that of sin.s subtracted from 10; and of $\frac{R}{\sin c}$ is that of sin.s subtracted from 10, which we call sin.complement.

$$BC = a = 70^{\circ} 4' 18''$$
 $AB = c = 59^{\circ} 16' 23'' \sin. com.$.065697
 $AC = b = 63^{\circ} 21' 27'' \sin. com.$.048749
$$2)\overline{192^{\circ} 42' 8''}$$
 $S = 96^{\circ} 21' 4'' \sin.$ 9.997326
$$S - a = 26^{\circ} 16' 46'' \sin.$$
 9.646158
$$2)\overline{19.757930}$$

$$A = 40^{\circ} 49' 10'' \cos.$$
 9.878965
$$2$$

$$A = 81^{\circ} 38' 20''$$

When we apply the equation to find the angle A, we write a first, at the top of the column; when we apply the equation to find the angle B, we write b at the top of the column. Thus,

To find the angle B.

$$\begin{array}{c} \cos \frac{1}{2}B = \sqrt{\frac{R^2 \sin . S \sin . (S - b)}{\sin . a \sin . c}} \\ = \sqrt{\frac{R}{\sin . a} \left(\frac{R}{\sin . c}\right) \left(\sin . S\right) \sin . (S - b)} \\ b = 63^{\circ} 21' 27'' \\ c = 59^{\circ} 16' 23'' \sin . com. . . .065697 \\ a = 70^{\circ} 4' 18'' \sin026875 \\ 2)192^{\circ} 42' 8'' \\ S = 96^{\circ} 21' 4'' \sin 9.997326 \\ S - b = 82^{\circ} 59' 37'' \sin 9.736034 \\ 2)19.825872 \\ \frac{1}{2}B = 35^{\circ} 4' 49'' \cos . . . 9.912936 \\ B = 70^{\circ} 9' 38'' \end{array}$$

By the other equation in formulæ (T, Prop. 7, Sec. III), we can find the angle C; but, for the sake of variety, we will find the angle C by the application of the third equation in formulæ(U, Prop. 7, Sec. III).

$$\sin \frac{1}{2}C = \sqrt{\frac{R^2 \sin (S-b) \sin (S-a)}{\sin b \sin a}}$$

$$= \sqrt{\frac{R}{\sin b}} \left(\frac{R}{\sin a}\right) \sin (S-b) \sin (S-a)$$

$$c = 59^{\circ} 16' 23''$$

$$a = 70^{\circ} 4' 18'' \text{ sin.com.} .026817$$

$$b = 63^{\circ} 21' 27'' \text{ sin.com.} .048479$$

$$2)192^{\circ} 42' \cdot 8''$$

$$S = 96^{\circ} 21' 4''$$

$$S - a = 26^{\circ} 16' 46'' \sin 9.646158$$

$$S - b = 32^{\circ} 59' 37'' \sin . . . 9.736034$$

$$2)19.457488$$

$$\frac{1}{2}C = 32^{\circ} 23' 17'' \sin . . . 9.778744$$

$$C = 64^{\circ} 46' 34''$$

$$85^{*}$$

To show the harmony and practical utility of these two sets of equations, we will find the angle A, from the equation

$$\sin \frac{1}{2}A = \sqrt{\frac{R}{\sin b}} \left(\frac{R}{\sin c}\right) \sin (S - b) \sin (S - c).$$

$$a = 70^{\circ} 4' 18''$$

$$b = 63^{\circ} 21' 27'' \sin com. .048749$$

$$c = 59^{\circ} 16' 23'' \sin com. .065697$$

$$2) 192^{\circ} 42' 8''$$

$$S = 96^{\circ} 21' 4''$$

$$S - b = 32^{\circ} 59' 37'' \sin 9.736034$$

$$S - c = 37^{\circ} 4' 41'' \sin 9.780247$$

$$2) 19.630727$$

$$\frac{1}{2}A = 40^{\circ} 49' 10'' \sin 9.815363$$

$$A = 81^{\circ} 38' 20''$$

2. In a spherical triangle ABC, given the angle A, 88° 19′ 18″; the angle B, 48° 0′ 10″; and the angle C, 121° 8′ 6″; to find the sides a, b, c.

By passing to the triangle polar to this, we have, (Prop. 6, Sec. I, Spherical Geometry),

We now find the angles to the spherical triangle. the sides of which are these supplements.

$$60^{\circ} 47' 37\frac{1}{2}''$$
angle = 121° 35' 15"

supp. = $58^{\circ} 24' 45'' = a$ of the original triangle.

In the same manner we find $b = 60^{\circ} 14' 25''$; $c = 89^{\circ} 1 14''$.

It is perhaps better to avoid this indirect process of computing the sides of a spherical triangle when the angles are given, by the application of the equations in group V' or W, Prop. 8, Sec. III. We will illustrate their use by applying the second equation in group (W), for computing the side b. This equation is

$$\sin \frac{1}{2}b = \left(\frac{-\cos S \cos (S-B)}{\sin A \sin C}\right)^{\frac{1}{2}}$$

$$A = 38^{\circ} 19' 18''$$

$$B = 48^{\circ} 0' 10''$$

$$C = 121^{\circ} 8' 6''$$

$$2) 207^{\circ} 27' 34''$$

$$S = 103^{\circ} 43' 47'' - \cos S = + \sin 13^{\circ} 43' 47'' = 9.375376$$

$$B = 48^{\circ} 0' 10'' \cos (S-B) = 55^{\circ} 43' 37'' = 9.750612$$

$$(S-B) = 55^{\circ} 43' 37''$$

$$2) 19.125988$$

$$\text{square root} = 9.562994$$

$$\sin A = 38^{\circ} 19' 18'' = 9.792445$$

$$\sin C = 121^{\circ} 8' 6'' = 9.932443$$

$$2) 19.724888$$

$$\text{square root} = 9.862444 = 9.862444$$

$$\text{diff.} -1.700550$$

$$\text{Add } 10, \text{ for radius of the table, } 10$$

$$\text{Tabular } \sin \frac{1}{2}b = 30^{\circ} 7' 14'' = 9.700550$$

$$b = 60^{\circ} 14' 28'', \text{ nearly.}$$

PRACTICAL PROBLEMS.

1. In any triangle, ABC, whose sides are a, b, c, given $b = 118^{\circ} 2' 14''$, $c = 120^{\circ} 18' 33''$, and the included angle $A = 27^{\circ} 22' 34''$, to find the other parts.

Ans.
$$\begin{cases} a = 23^{\circ} 57' 13'', \text{ angle } B = 91^{\circ} 26' 44, \text{ and } C = 102^{\circ} 5' 52''. \end{cases}$$

2. Given, $A = 81^{\circ} 38' 17''$, $B = 70^{\circ} 9' 38''$, and $C = 64^{\circ} 46' 32''$, to find the sides a, b, c.

Ans.
$$\begin{cases} a = 70^{\circ} \text{ 4' } 13'', b = 63^{\circ} 21' 24'', \text{ and } c = 59^{\circ} 16' \\ 21''. \end{cases}$$

3. Given, the three sides, $a = 93^{\circ} 27' 34''$, $b = 100^{\circ} 4' 26''$, and $c = 96^{\circ} 14' 50''$, to find the angles A, B, and C.

Ans. $\begin{cases} A = 94^{\circ} 39' 4'', B = 100^{\circ} 32' 19'', \text{ and } C = 96^{\circ} \\ 58' 35''. \end{cases}$

4. Given, two sides, $b = 84^{\circ} 16'$, $c = 81^{\circ} 12'$, and the angle $C = 80^{\circ} 28'$, to find the other parts.

Ans. The result is ambiguous, for we may consider the angle B as acute or obtuse. If the angle B is acute, then $A = 97^{\circ} 13' 45''$, $B = 83^{\circ} 11' 24''$, and $a = 96^{\circ} 13' 33''$. If B is obtuse, then $A = 21^{\circ} 16' 43''$, $B = 96^{\circ} 48' 36''$, and $a = 21^{\circ} 19' 29''$.

5. Given, one side, $c=64^{\circ}$ 26', and the angles adjacent, $A=49^{\circ}$, and $B=52^{\circ}$, to find the other parts.

Ans.
$$\begin{cases} b = 45^{\circ} 56' 46'', a = 43^{\circ} 29' 49'', \text{ and } C = 98^{\circ} \\ 28' 4''. \end{cases}$$

6. Given, the three sides, $a = 90^{\circ}$, $b = 90^{\circ}$, $c = 90^{\circ}$, to find the angles A, B, and C.

Ans.
$$A = 90^{\circ}$$
, $B = 90^{\circ}$, and $C = 30^{\circ}$.

7. Given, the two sides, $a = 77^{\circ} 25' 11''$, $c = 128^{\circ} 13' 47''$, and the angle $C = 131^{\circ} 11' 12''$, to find the other parts.

Ans.
$$\begin{cases} b = 84^{\circ} 29' 20'', A = 69^{\circ} 13' 59'' \text{ and } B = 72^{\circ} 28' \\ 42''. \end{cases}$$

8. Given, the three sides, $a = 68^{\circ} 34' 13''$, $b = 59^{\circ} 21' 18''$, and $c = 112^{\circ} 16' 32''$, to find the angles A, B, and C.

Ans.
$$\begin{cases} A = 45^{\circ} \ 26' \ 38'', B = 41^{\circ} \ 11' \ 30', C = 134^{\circ} \ 53' \\ 55''. \end{cases}$$

9. Given, $a = 89^{\circ} 21' 37''$, $b = 97^{\circ} 18' 39''$, $c = 86^{\circ} 53' 46''$, to find A, B, and C.

Ans.
$$\begin{cases} A = 88^{\circ} 57' 20'', B = 97^{\circ} 21' 26'', C = 86^{\circ} 47' \\ 17''. \end{cases}$$

10. Given, $a = 31^{\circ} 26' 41''$, $c = 43^{\circ} 22' 13''$, and the angle $A=12^{\circ} 16'$, to find the other parts.

Ans. { Ambiguous;
$$b = 73^{\circ} 7' 34''$$
, or $12^{\circ} 17' 40''$; angle $B = 157^{\circ} 3' 44''$, or $4^{\circ} 58' 30''$; $C = 16^{\circ} 14' 27''$, or $163^{\circ} 45' 33''$.

11. In a triangle, ABC, we have the angle $A=56^{\circ}$ 18' 40'', $B=39^{\circ}$ 10' 38"; AD, one of the segments of the base, is 32° 54' 16". The point D falls upon the base AB, and the angle C is obtuse. Required the sides of the triangle and the angle C.

Ans.
$$\begin{cases} \text{Ambiguous} \; ; \; C = 135^{\circ} \; 25', \text{ or} \\ 135^{\circ} \; 57' \; ; \; c = 122^{\circ} \; 29', \text{ or} \\ 123^{\circ} \; 19' \; ; \; a = \; 89^{\circ} \; 40', \text{ or} \\ 90^{\circ} \; 20' \; ; \; b = \; 49^{\circ} \; 23' \; 41''. \end{cases}$$

12. Given, $A = 80^{\circ} 10' 10''$, $B = 58^{\circ} 48' 36''$, $C = 91^{\circ} 52' 42''$, to find a, b, and c.

Ans. $a = 79^{\circ} 88' 22''$, $b = 58^{\circ} 89' 16''$, $c = 86^{\circ} 12' 50''$.

Ans. $\begin{cases} a = 23^{\circ} 57' 13'', \text{ angle } B = 91^{\circ} 26' 44' \\ 102^{\circ} 5' 52''. \end{cases}$

2. Given, $A = 81^{\circ} 38' 17''$, $B = 70^{\circ}$ 64° 46′ 32″, to find the sides a, b, c.

Ans. $\begin{cases} a = 70^{\circ} 4' 13'', b = 63^{\circ} 21' \end{cases}$

Ans. $\begin{cases} a = 70^{\circ} \text{ 4' } 13'', b = 63^{\circ} \text{ 21'}, \\ 21''. \end{cases}$ 3. Given, the three sides, $a \neq a$

26", and $c = 96^{\circ}$ 14' 50", to Ans. $\begin{cases} A = 94^{\circ} 39' 4", \\ 58' 35". \end{cases}$

4. Given, two sid APHY. angle $C = 80^{\circ} 28'$

The r APPLIED TO ASTRONOMY.

Ans. TRIGONOMETRY becomes a science of incalcular and astronomy; for neither of these subjects can stion, and astronomy; for neither of these subjects can stion and of the science, we here attempt to give him a simple at some of its points of application.

Let the lines in the annexed figure represent circles in the heavens above and around us.

Let Z be the zenith, or the point just overhead, Hch the horizon, PZH the meridian in the heavens, and P the pole of the celestial equator; Ph is the latitude of the observer, and PZ is the

co.latitude. Qcq is a portion of the equator, and the dotted, curved line, mS'S, parallel to the equator, is the parallel of the sun's declination at some particular time; and in this figure the sun's declination is supposed to be north. By the revolution of the earth on its axis, the

is apparently brought from the horizon, at S, to the lian, at m; and from thence it is carried down on lian, at m; and from there it is carried down on lian, at m; and from the side of the meridian; and rent motion of the sun (or of any other celestial lies angles at the pole P, which are in direct limes of description.

it straight line, Zc, is what is denominated, ie prime vertical; that is, the east and west senith, passing through the east and west on.

Le latitude of the place is north, and the decli-Lon is also north, as is represented in this figure, the sun rises and sets on the horizon to the north of the east and west points, and the distance is measured by the arc, cS, on the horizon.

This arc can be found by means of the right-angled spherical triangle cqS, right-angled at q. Sq is the sun's declination, and the angle Scq is equal to the co.latitude of the place; for the angle Pch is the latitude, and the angle Scq is its complement.

The side cq, a portion of the equator, measures the angle cPq, the time of the sun's rising or setting before or after $six\ o'clock$, apparent time. Thus we perceive that this little triangle, cSq, is a very important one.

When the sun is exactly east or west, it can be determined by the triangle ZPS'; the side PZ is known, being the co.latitude; the angle PZS' is a right angle, and the side PS' is the sun's polar distance. Here, then, are the hypotenuse and side of a right-angled spherical triangle given, from which the other parts can be computed. The angle ZPS' is the time from noon, and the side ZS' is the sun's zenith distance at that time.

The following problems are given, to illustrate the important applications that can be made of the right-angled triangle cqS.

PRACTICAL PROBLEMS.

1. At what time will the sun rise and set in Lat. 48° N., when its declination is 21° N.?

In this problem, we must make $qS=21^{\circ}$, $Ph=48^{\circ}$ —the angle Pch. Then the angle $Scq=42^{\circ}$. It is required to find the arc cq, and convert it into time at the rate of four minutes to a degree. This will give the apparent time after six o'clock that the sun sets, and the apparent time before six o'clock that the sun rises, (no allowance being made for refraction).

Making cq the middle part, we have

$$R \sin .cq = \tan .21^{\circ} \tan .48^{\circ}$$
 $\tan .21^{\circ} = 9.584177$
 $\tan .48^{\circ} = 10.045563$
 $cq = 25^{\circ} 14' 5'' = 26.2346^{\circ}$
 9.629740 , rejecting 10.

4

1* $40^{m} 56^{s}$
Adding to
6*

Sun sets P. M., 7* $40^{m} 56^{s}$, apparent time,
From 6*
Taking 1* $40^{m} 56^{s}$

Sun rises A. M., 4^{h} 19^{m} 4', apparent time.

From this we derive the following rule for finding the apparent time of sunrise and sunset, assuming that the declination undergoes no change in the interval between these instants, which we may do without much error.

RULE.

To the logarithmic tangent of the sun's declination, add the logarithmic tangent of the latitude of the observer; and, after rejecting ten from the result, find from the tables the arc of which this is the logarithmic sine, and convert if into time at the rate of 4 minutes to a degree.

This time, added to 6 o'clock, will give the time of sunset, and, subtracted from 6 o'clock, will give the time of sunrise,

when the latitude and declination are both north or both south, but when one is north, and the other south, the addition gives the time of sunrise, and the subtraction the time of sunset.

- 2. At what time will the sun set when its declination is 23° 12′ N., and the latitude of the place is 42° 40′ N.?

 Ans. 7^h 33^m 4^s, apparent time.
- 3. What will be the time of sunset for places whose latitude is 42° 40′ N., when the sun's declination is 15° 21′ south?

 Ans. 5^h 1^m 23^s, apparent time.
- 4. What will be the time of sunrise and sunset for places whose latitude is 52° 30′ N., when the sun's declination is 18° 42′ south?

Ans.
$$\begin{cases} \text{Rises } 7^h 44^m 42^s, \\ \text{Sets } 4^h 15^m 18^s, \end{cases} \text{apparent time.}$$

5. What will be the time of sunset and of sunrise at St. Petersburgh, in lat. 59° 56′, north, when the sun's declination is 23° 24′, north? What will be its amplitude at these instants? Also, at what hours will it be due east and west, and what will be its altitude at such times?

Ans.
Sun sets at 9^h 13^m 30^s P.M. apparent Sun rises at 2^h 46^m 30^s A.M. time. Sun rises N. of east 52° 26' 18"
Sun sets N. of west Sun is east at 6^h 58^m 2^s A.M.
Sun is west at 5^h 1^m 58^s P.M.
Alt. when east and west is 27° 18' 57".

ON THE APPLICATION OF OBLIQUE-ANGLED SPHERICAL TRIANGLES.

One of the most important problems in navigation and astronomy, is the determination of the formula for 32

time. This problem will be understood by the triangle PZS. When the sun is on the meridian, it is then apparent noon. When not on the meridian, we can determine the interval from noon, by means of the triangle PZS; for we can know all its sides; and the angle at P, changed into

time at the rate of 15° to one hour, will give the time from apparent noon, when any particular altitude, as TS, may have been observed. PS is known, by the sun's declination at about the time; and PZ is known, if the observer knows his latitude.

Having these three sides, we can always find the sought angle at the pole, by the equations already given in formulæ (T, or U, Prop. 7, Sec. III); but these formulæ require the use of the co.latitude and the co.altitude, and the practical navigator is very averse to taking the trouble of finding the complements of arcs, when he is quite certain that formulæ can be made, comprising but the arcs themselves.

The practical man, also, very properly demands the most concise practical results. No matter how much labor is spent in theorizing, provided we arrive at practical brevity; and for the especial accommodation of seamen, the following formula for finding time has been deduced.

From the symmetrical formulæ (S'') Prop. 7, Sec. III, we have,

$$\cos P = \frac{\cos ZS - \cos PZ \cos PS}{\sin PZ \sin PS}$$

Now, in place of cos. ZS, we take sin. ST, which is, in

fact, the same thing; and in place of cos. PZ, we take sin.lat., which is also the same.

In short, let A = the altitude of the sun, L = the latitude of the observer, and D = the sun's polar distance.

Then,
$$\cos P = \frac{\sin A - \sin L \cos D}{\cos L \sin D}$$

But, $2\sin^2\frac{1}{2}P = 1 - \cos P$. (See Eq. 32, Prop. 2, Sec. I, Plane Trig.)

Therefore,

$$2\sin^{2}\frac{1}{2}P = 1 - \frac{\sin A - \sin L \cos D}{\cos L \sin D}$$

$$= \frac{(\cos L \sin D + \sin L \cos D) - \sin A}{\cos L \sin D}$$

$$= \frac{\sin(L + D) - \sin A}{\cos L \sin D}.$$

Considering (L + D) as a single arc, and (applying Equation 16, Sec. I, Plane Trig.), we have, after dividing by 2,

$$\sin^{2}\frac{1}{2}P = \frac{\cos\left(\frac{L+D+A}{2}\right)\sin\left(\frac{L+D-A}{2}\right)}{\cos L\sin D}$$
But,
$$\frac{L+D-A}{2} = \frac{L+D+A}{2} - A,$$
and if we assume $S = \frac{L+D+A}{2}$,

we shall have,
$$\sin^2 \frac{1}{2}P = \frac{\cos S \sin \cdot (S - A)}{\cos L \sin \cdot D}$$

Or,
$$\sin \frac{1}{2}P = \sqrt{\frac{\cos S \sin (S - A)}{\cos L \sin D}}$$
.

This is the final result, when the radius is unity; when the radius is R times greater, then the $\sin \frac{1}{2}P$ will be R times greater; and, therefore, the value of this sine, corresponding to our tables, is,

$$\sin \frac{1}{2}P = \sqrt{\frac{R}{(\cos L)(\sin D)\cos S \sin (S - A)}}$$

PRACTICAL PROBLEMS.

1. In lat. 39° 6′ 20" North, when the sun's declination was 12° 3′ 10" North, the true altitude* of the sun's center was observed to be 30° 10′ 40", rising. What was the apparent time?

Alt. 30° 10′ 30″

Lat. 39° 6′ 20″

P.D. 77° 56′ 50″

$$S = 73° 36′ 50″$$
 $S = 73° 36′ 50″$

cos. 0.09680

 $S = 73° 36′ 50″$

cos. 9.450416

 $S = 73° 36′ 50″$

cos. 9.450416

 $S = 73° 36′ 50″$

cos. 9.450416

 $S = 73° 36′ 50″$

sin. 9.837299

2) 19.407541

30° 22′ 5″

sin. 9.703770

This angle, converted into time at the rate of 15° to one hour, or 4 minutes to 1°, gives 4° 2^m 56' from apparent noon; and as the sun was rising, it was before noon or

If to this the equation of time were applied, we should have the mean time; and if such time were compared with that of a clock or watch, we could determine its error. A good observer, with a good instrument, can, in this manner, determine the local time within 4 or 5 seconds.

2. In lat. 40° 21' North, the true altitude of the sun, in the forenoon, was found to be 36° 12', when the declina-

^{*}The instrument used, the manner of taking the altitude, its correction for refraction, semi-diameter, and other practical or circumstantial details, do not belong to a work of this kind, but to a work on Practical Astronomy or Navigation.

tion of the sun was 3° 20' South. What was the apparent time?

Ans. 9^h 42^m 40° A. M.

3. In latitude 21° 2′ South, when the sun's declination was 18° 32′ North, the true altitude, in the afternoon, was found to be 40° 8′. What was the apparent time of day?

Ans. 2^h 3^m 57° P. M.

SPHERICAL TRIGONOMETRY APPLIED TO GEOGRAPHY.

If we wish to find the shortest distance between two places over the surface of the earth, when the distance is considerable, we must employ Spherical Trigonometry.

Suppose the least distance between Rome and New Orleans is required; we would first find the distance in degrees and parts of a degree, and then multiply that distance by the number of miles in one degree.

In the solution of this problem, it is supposed that we have the latitude and longitude of both places. Then the distances, in degrees, from the north pole of the earth to Rome and to New Orleans are the two sides of a spherical triangle, the difference of longitude of the two places is the angle at the pole included between these sides, and the problem is, to determine the third side of a spherical triangle, when we have two sides and the included angle given.

Let P be the north pole, R the position of Rome, and N that of New Orleans.

New Orleans, 29° 57′ 30″ N. 90° W. Rome, 41° 53′ 54″ N. 12° 28′ 40″ E. Whence,
$$PR = 48° 6′ 6″$$
, $PN = 60° 2′ 30″$.

We now employ Napier's 1st and 2d Analogies, and find the distance, in degrees, to be 78° 48′ 15″. This reduced to miles, at the rate of 69.16 miles to the degree, will make the distance 5450.1 miles.

The angle at N is 47° 48' 13" and at R, 59° 34' 47".

The third side of a spherical triangle can be found by a single formula, as we shall see by inspecting formulæ (S') Prop. 7, Sec. III.

Let C be the included angle, and c the unknown side opposite; then,

$$\cos C = \frac{\cos c - \cos a \cos b}{\sin a \sin b}.$$

Adding 1 to each member, and reducing, observing at the same time that $1 + \cos C = 2\cos^2 \frac{1}{2}C$, we have,

$$2\cos^{2} C = \frac{\sin a \sin b - \cos a \cos b + \cos c}{\sin a \sin b}$$

Whence, $2\cos^2 \frac{1}{2}C \sin a \sin b = \cos c - \cos(a+b)$; or, $\cos c = \cos(a+b) + 2\cos^2 \frac{1}{2}C \sin a \sin b$.

The second member of this equation is the algebraic sum of two decimal fractions, and expresses the value of the natural cosine of the side sought.

This case of Spherical Trigonometry, namely, that in which two sides and the included angle are given, to find the third side, is very extensively used in practical astronomy, in finding the angular distance of the moon from the sun, stars, and planets. For this purpose, the right ascension and declination of each body must be

found for the same moment of absolute time. Their

difference in right ascension gives the included angle, P, at the celestial pole. The declination subtracted from 90°, if it be north, and added to 90°, if it be south, will give the sides, PZ and PS.

In the following examples, we give the right ascension and declination of the bodies, and from

these the student is required to compute the distance between them.

The right ascensions are given in time. Their difference must be changed to degrees for the included angle.

MEAN TIME GREENWICH.

June 24, 1860.

	moon's	JUPITER'S	
R. A.	Dec.	R. A. Dec.	Distance.
h. m. s	. 0 / "	b. m. s. 0 / /	, 0, "
At ncon, 10 51 36	3.5 8 85 24 N.	8 4 27.6 20 51 86	3.8 N. 44 8 12
" 3 h., 10 58 1	2 47 43	8 4 34.2 20 51 1	7.8 45 53 47
" 6 h., 11 4 24	L6 1 59 56.2	8 4 40.8 20 50 58	8.7 47 39 18
'9 h., 11 10 47	7.6 1 12 6.1	8 4 47.4 20 50 3	9.6 49 24 48

October 6, 1860.

) R. A.	Dec.	O R. A.	Dec.	Distance.
h. m. s.	0 / #	h. m. s.	0 / "	0 / #
At noon, 5 41 20.8	26 8 0 N.	12 49 29.8	5 18 42.6 S.	107 37 2
" 3 h., 5 48 30.1	26 3 20	12 49 56.7	5 21 85.4	106 8 19
" 6 h., 5 55 40	25 57 19.4	12 50 24.1	5 24 28.2	104 39 19
" 9 h., 6 2 50.5	25 49 58.1	12 50 51.4	5 27 20.9	103 10 0
* 12 h., 6 10 1.8	25 41 15.8	12 51 19.0	5 80 18.5	101 40 28

SECTION VI.

REGULAR POLYEDRONS

A Regular Polyedron is a polyedron having all its faces equal and regular polygons, and all its polyedral angles equal.

The sum of all the plane angles bounding any polyedral angle is less than four right angles; and as the angle of the equilateral triangle is $\frac{2}{3}$ of a right angle, we have $\frac{2}{3} \times 3 < 4$, $\frac{2}{3} \times 4 < 4$, and $\frac{2}{3} \times 5 < 4$; but $\frac{2}{3} \times 6 = 4$, $\frac{2}{3} \times 7 > 4$, and so on. Hence, it follows that three, and only three, polyedral angles may be formed, having the equilateral triangle for faces; namely, a triedral angle and polyedral angles of four and of five faces.

There are, therefore, three distinct regular polyedrons bounded by the equilateral triangle.

- 1. The Tetraedron, having four faces and four solid angles.
- 2. The Octaedron, having eight faces and six solid angles.
- 3. The Icosaedron, having twenty faces and twenty solid angles. With right plane angles we can form only a triedral angle; hence, with equal squares we may bound a solid having six faces and eight equal triedral angles. This solid is called the Hexaedron.

The angle of the regular pentagon being \S of a right angle, we have $\S \times 3 < 4$; but $\S \times 4 > 4$; hence, with plane angles equal to those of the regular pentagon, we can form only a triedral angle. The solid bounded by twelve regular pentagons, and having twenty solid angles, is called the **Dodecaedron**.

There are, then, but five regular polyedrous, viz.: The tetraedron, the octaedron, and the icosaedron, each of which has the equilateral triangle for faces; the hexaedron, whose faces are equal squares, and the dodecaedron, whose faces are equal regular pentagons.

It is obvious that a sphere may be circumscribed about, or inaribed within, any of these regular solids, and conversely: and that these spheres will have a common center, which may also be taken as the center of the polyedron.

Any regular polyedron may be regarded as made up of a number of regular pyramids, whose bases are severally the faces of the polyedron, and whose common vertex is its center. Each of these pyramids will have, for its altitude, the radius of the inscribed sphere; and since the volume of the pyramid is measured by one third of the product of its base and altitude, it follows that the volume of any regular polyedron is measured by its surface multiplied by one third of the radius of the inscribed sphere.

PROBLEM.

Given, the name of a regular polyedron, and the side of the bounding polygon, to find the inclination of its faces; the radii of the inscribed and circumscribed spheres; the area of its surface; and its volume.

Let AB be the intersection of two adjacent faces of the polyedron, and C and D the centers of these faces, O being the center

of the polyedron. Draw the radii, OC and OD, of the inscribed, and the radii OA and OB, of the circumscribed sphere; also from C and D let fall the perpendiculars CE and DE, on the edge AB, and draw OE; then will the angle DEC measure the inclination of the faces of the polyedron, and the angle DEO is one half of this inclination.

Let I denote the inclination of the faces, m the number of faces which meet to form a polyedral angle, n the number of sides in each face, and suppose the edge of the polyedron to be unity.

The surface of the sphere of which O is the center, and radius unity, will form, by its intersections with the planes, AOE, AOD, DOE, the right-angled spherical triangle dae, right-angled at a. In the right-angled triangle DEO, the angle DOE is equal to

$$90^{\circ} - DEO = 90^{\circ} - \frac{1}{2}I_{1}$$

and is measured by the arc de. The angle dae, of the spherical triangle, is equal to $\frac{360^{\circ}}{2m}$, and the angle $ade = \frac{360^{\circ}}{2n}$.

Now, by Napier's Rules we have

cos.dae = sin.ade cos.de.

or,
$$\cos de = \frac{\cos dae}{\sin ade};$$
 (1)

and, $\cos ad = \cot dae \cot ade$ (2)

Substituting in eq. (1), for the angles dae and ade, their values, we find

$$\sin_{\frac{1}{2}}I = \frac{\frac{\cos 360^{\circ}}{2m}}{\frac{\sin 360^{\circ}}{2n}}$$
 (3)

Equation (3) gives the value of the sine of one half of the inclination of the planes; and by means of this equation we may readily find the radii of the inscribed and circumscribed spheres.

In the triangle BED, we have

$$DE = BE \cot BDE = \frac{1}{2}\cot \frac{360^{\circ}}{2n}$$

since AB = 1, and $BE = \frac{1}{2}AB$.

In the triangle DOE, we have

$$OD = DE \tan \frac{1}{2}I = \frac{1}{2}\cot \frac{360^{\circ}}{2n} \tan \frac{1}{2}I$$
 (4)

From the triangle AOD, we find

 $\cos DOA : 1 :: OD : OA$

whence

$$OA = \frac{OD}{\cos DOA}$$

But the angle DOA is measured by the arc ad; hence, substituting in this last equation the values of $\cos DOA$ and OD, taken from eqs. (2) and (4), we have

$$OA = \frac{1}{2} \tan \frac{360^{\circ}}{2n} \times \frac{1}{\frac{1}{\cot 360^{\circ}}} \times \frac{1}{\frac{1}{\cot 360^{\circ}}} \times \frac{1}{\frac{1}{\cot 360^{\circ}}}$$
$$= \frac{1}{2} \tan \frac{1}{2} I \tan \frac{360^{\circ}}{2m}, \tag{5}$$

by writing tan. for $\frac{1}{\cot}$, and reducing.

Equation (4) gives the value of OD, the radius of the inscribed sphere, and equation (5) gives that of OA, the radius of the circumscribed sphere. The area of one of the faces of the polyedron is equal to one half of the apothegm multiplied by the perimeter. The apothegm, as found above, is equal to $\frac{360^{\circ}}{2n}$; hence, we

have $\frac{1}{2}n \times \frac{1}{2}$ cot. $\frac{360^{\circ}}{2n}$, for the area of one of the faces; and multi-

plying this by the number of faces of the polyedron, we shall have the expression for its entire area. The expression for the surface multiplied by one third of the radius of the inscribed sphere, gives the measure of the volume of the polyedron.

In what precedes, we have supposed the edge of the polyedron to be unity. Having found the radii of the inscribed and circumscribed spheres, the surfaces, and the volumes of such polyedrons, to determine the radii, surfaces, and volumes of regular polyedrons having any edge whatever, we have merely to remember that the homologous dimensions of similar bodies are proportional; their surfaces are as the squares of these dimensions; and their volumes as the cubes of the same.

Formula (8) gives, for the inclination of the adjacent faces of

The Tetraedron, 70° 31′ 44″

" Hexaedron, 90° 00′ 00′′

" Octaedron, 109° 28′ 18″

" Dodecaedron, 116° 33′ 54″

" Icosaedron, 138° 11′ 23″

The subjoined table gives the surfaces and volumes of the regular solyedrons, when the edge is unity.

-	•	
	Surfaces.	Volumes.
Tetraedron,	1.7320508	0.1178513
Hexaedron,	6.0000000	1.0000000
Octaedron,	3.4641016	0.4714045
Dodecaedron,	20.6457288	7.6631189
Icosaedron,	8.6602540	2.1816950

. , •

LOGARITHMIC TABLES;

ALSO A TABLE OF

NATURAL AND LOGARITHMIC

SINES, COSINES, AND TANGENTS

TO EVERY MINUTE OF THE QUADRANT.

LOGARITHMS OF NUMBERS

7200

1 to 10000.

N.	Log.	N.	Log.	N.	Log.	N.	Log.
1	0 000000	26	1 414978	51	1 707570	76	1 880614
2	0 801030	27	1 431364	52	1 716003	77	1 886491
8	0 477121	28	1 447158	53	1 724276	78	1 892095
Ä	0 602060	29	1 462398	54	1 732394	79	1 897627
5	0 698970	80	1 477121	55	1 740363	80	1 903090
6	0 778151	81	1 491362	56	1 748188	81	1 905485
7	0 845098	32	1 505150	57	1 755875	82	1 913814
8	0 908090	33	1 518514	58	1 763428	83	1 919078
9	0 954243	34	1 531479	59	1 /70852	84	1 924279
10	1 000000	35	1 544068	60	1 778151	85	1 929419
11	1 041393	36	1 556303	61	1 785330	86	1 934498
12	1 079181	87	1 568202	62	1 792392	87	1 939519
13	1 113943	38	1 579784	63	1 799341	88	1 944488
14	1 146128	39	1 591065	64	1 806180	89	1 949390
15	1 176091	40	1 602060	65	1 812913	90	1 954243
16	1 204120	41	1 612784	66	1 819544	91	1 959041
17	1 230449	42	1 623249	67	1 826075	92	1 963788
18	1 255273	48	1 633468	68	1 832509	93	1 968483
19	1 278754	44	1 643453	. 69	1 838849	94	1 973128
20	1 301030	45	1 653213	70	1 845098	95	1 977724
21	1 322219	46	1 662758	71	1 851258	96	1 982271
22	1 342423	47	1 672098	72	1 857333	97	1 986772
23	1 361728	48	1 681241	73	1 863323	98	1 991226
24	1 880211	49	1 690196	74	1 869232	99	1 995635
25	1 897940	50	1 698970	75	1 875061	100	2 000000

N. B. In the following table, in the last nine columns of each page, where the first or leading figures change from 9's to 0's, points or dots are now introduced instead of the 0's through the rest of the line, to catch the eye, and to indicate that from thence the corresponding natural number in the first column stands in the next lower line, and 'is annexed first two figures of the Logarithms in the second column.

	L	0 G A	RIT	нм	s o	FN	UME	ERS	3.	3
N.	0	1	2	3	4	5	6	7	8	9
100	000000	0434	0868	1801	1734	2166	2598	3029	3461	3891
101	4321	4750	5181	5609	6038	6466	6894	7321	7748	8174
102	8600	- 9026	9451	9876	.300	.724	1147	1570	1993	2415
103	012837	3259	3680	4100	4521	4940	5360	5779	6197	6616
104	7033	7451	7868	8284	8700	9116	9532	9947	.361	.775
105	021189	1603	2016	2428	2841	3252	3664	4075	4486	4896
106	5306	5715	6125	6583	6942	7350	7757	8164	8571	8978
107	9384	9789	.195	.600	1004	1408	1812	2216	2619	3021
108	033424	3826	4227	4628	5029	5430	5830	6230	6629	7028
109	7426	7825	8223	8620	9017	9414	9811	.207	.602	.998
110	041393	1787	2182	2576	2969	3362	3755	4148	4540	4932
111	5323	5714	6105	6495	6885	7275	7664	8053	8442	8830
112	9218	9606	9993	.380	.766	1153	1538	1924	2309	2694
118	053078	3463	3846	4230	4613	4996	5378	5760	6142	6524
114	6905	7286	7666	8046	8426	8805	9185	9563	9942	.820
115	060698	1075	1452	1829	2206	2582	2958	3833	8709	4088
116	4458	4832	5206	5580	5953	6326	6699	7071	7443	7815
117	8186	8557	8928	9298	9368	38	.407	.776	1145	1514
118	071882	2250	2617	2985	3352	3718	4085	4451	4816	5182
119	5547	5912	6276	6640	7004	7368	7731	8094	8457	8819
120	9181	9543	9904	.266	.626	.987	1347	1707	2067	2426
121	082785	3144	8503	3861	4219	4576	4934	5291	5647	6004
122	6360	6716	7071	7426	7781	8136	8490	8845	9198	9552
123	9905	.258	.611	.963	1315	1667	2018	2370	2721	3071
124	093422	8772	4122	4471	4820	5169	5518	5866	6215	6562
125	6910	7257	7604	7951	8298	8644	8990	9335	9681	1026
126	100371	0715	1059	1403	1747	2091	2434	2777	3119	3462
127	8804	4146	4487	4828	5169	5510	5851	6191	6531	6871
128	7210	7549	7888	8227	8565	8903	9241	9579	9916	.253
129	110590	0926	1263	1599	1934	2270	2605	2940	3275	3609
180	3943	4277	4611	4944	5278	5611	5943	6276	6608	6940
181	7271	7603	7934	8265	8595	8926	9256	9586	9915	0245
132	120574	0903	1281	1560	1888	2216	2544	2871	3198	3525
133	3852	4178	4504	4880	5156	5481	5806	6131	6456	6781
134	7105	7429	7753	8076	8399	8722	9045	9368	9690	12
135	180334	0655	0977	1298	1619	1939	2260	2580	2900	3219
136	3539	3858	4177	4496	4814	5133	5451	5769	6086	6403
137	6721	7037	7354	7671	7987	8303	8618	8934	9249	9564
138	9879	.194	.508	.822	1136	1450	1763	2076	2389	2702
139	148015	3827	3630	3951	4263	4574	4885	5196	5507	5818
140	6128	6438	6748	7058	7867	7676	7985	8294	8603	8911
141	9219	9527	9835	.142	.449	.756	1068	1370	1676	1982
142	152288	2594	2900	5205	3510	3815	4120	4424	4728	5032
143	5336	5640	5 943	6246	6549	6852	7154	7457	7759	8061
144	8362	8664	8965	9266	9567	9868	.168	.469	.769	1068
145	161368	1667	1967	2266	2564	2863	3161	3460	3758	4055
146	4353	4650	4947	5244	5541	5838	6134	6430	6726	7022
147	7317	7613	7908	8203	8497	8792	9086	9380	9674	9968
148	170262	0655	0848	1141	1434	1726	2019	2311	2603	2895
149	3186	3478	3769	4060	4351	4641	4932	6 222	5512	5802

LOGARITHMS

	LOGARITHMS										
N.	0	1	2	3	4	5	6	7	8	9	
150	176091	6381	6670	6959	7248	7536	7825	8113	8401	8689	
151	8 97 7	9264	9552	9889	.126	.418	.699	.985	1272	1558	
152	181844	2129	2415	2700	2985	3270	3556	3839	4123	4407	
158	4691	4975	5259	5542	5825	6108	6391	6674	6956	7239	
154	7521	7803	8084	8366	8647 281	8928	9209	9490	9771	51	
155	190332	0612	0892	1171	1451	1780	2010	2289	2567	2846	
156	3125	3403	3681	3959	4237	4514	4792	5069	5346	5623	
157	5899	6176	6453	6729	7005	7281	7556	7832	8107	8382	
158	8657	8932	9206	9481	9755	29	.303	.577	.850	1124	
159	201397	1670	1943	2216	2488 273	2761	3033	8305	8577	3848	
160	4120	4391	4663	4934	5204	5475	5746	6016	6286	6556	
161	6826	7096	7365	7634	7904	8173	8441	8710	8979	9247	
162	9515	9783	51	.819	.586	.853	1121	1388	1654	1921	
163	212188	2454	2720	2986	8252	8518	8783	4049	4314	4579	
164	4844	5109	5373	5638	5902 264	6166	6480	6694	6957	7221	
165	7484	7747	8010	8273	8536	8798	9060	9823	9585	9846	
166	22 0108	0370	0631	0892	1153	1414	1675	1986	2196	2456	
167	2716	2976	3236	8496	3755	4015	4274	4533	4792	5051	
168	5309	5568	5526	6084	6342	6600	6858	7115	7372	7630	
169	7887	8144	8400	8657	8913 257	9170	9426	9682	9938	.198	
170	230449	0704	0960	1215	1470	1724	1979	2234	2488	2742	
171	2996	3250	3504	3757	4011	4264	4517	4770	5023	5276	
172	5528	5781	6033	6285	6587	6789	7041	7292	7544	7795	
173	8046	8297	8548	8799	9049	9299	9550	9800	50	.300	
174	240549	9799	1048	1297	1546 249	1795	2044	2293	2541	2790	
100	9099	3286	3534	3782	4030	4277	4525	4772	5019	5266	
175 176	3038 5513	5759	6006	6252	6499	6745	6991	7237	7482	7728	
177	7973	8219	8464	8709	8954	9198.	9443	9687	9932	.176	
178	250420	0664	0908	1151	1395	1638	1881	2125	2368	2610	
179	2853	3096	3338	3580	3822	4064	4306	4548	4790	5031	
		5514	,	*000	242	6477	6718	6958	7198	7439	
180 181	5273 7679	7918	5755 8158	5996 8398	6237 8637	8877	9116	9355	9594	9833	
182	260071	0310	0548	0787	1025	1263	1501	1739	1976	2214	
183	2451	2688	2925	3162	3399	3636	3873	4109	4346	4582	
184	4818	5054	5290	5525	5761	5996	6232	6467	6702	6937	
					235	0044	05.00	0010		0000	
185	7172	7406	7641	7875	8110	8344	8578	8812 1144	9046	9279	
186 187	9513 271842	9746 2074	9980 2306	.213 2538	.446 2770	.679 3001	·.912 3233	3464	1377 3696	1609 3927	
188	4158	4389	4620	4850	5081	5311	5542	5772	6002	6232	
189	6462	6692	6921	7151	7380	7609	7888	8067	8296	8525	
					229						
190	8754	8982	9211	9439	9667	9895	.123	.351	.578	.806	
191	281033	1261	1488	1715	1942	2169 4431	2396 4656	2622 4882	2849 5107	3075 5332	
192 193	3301 5557	3527 5782	3753 6007	3979 6232	4205 6456	6681	6905	7130	7854	7578	
193	7802	8026	8249	8473	8696	8920	9143	9366	9589	9812	
10-1	1002		3223	J.10	224	3020	31.10	3000	3000		
195	290035	0257	0480	0702	0925	1147	1369	1591	1813	2034	
196	2256	2478	2699	2920	3141	3363	3584	3804	4025	4246	
197	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	
198	6665	6884	7104	7323	7542	7761	7979	8198	8416 . 5 95	8635 .813	
199	8858	9071	9289	9507	9725	9943	.161	.378	.090	.010	
					ar management	2.4		-			

OF NUMBERS

			U	r N	UMB	EK	•			3
N.	0	1	2	3	4	5	6	7	8	9
200	801030	1247	1464	1681	1898	2114	2331	2547	2764	296 ა
201	8196	8412	3628	3844	4059	4275	4491	4706	4921	5136
202	53 51	5566	5781	5996	6211	6425	6639	6854	7038	7282
203	7496	7710	7924	8137	8351	8564	8778	8991	9204	9417 1542
204	9630	9843	56	.268	.481 212	.693	.906	1118	1330	1042
205	311754	1966	2177	2389	2600	2812	3023	3234	3445	3656
206	8867	4078	4289	4499	4710	4920	5130	5340	5551	5760
207	5970	6180	6890	6599	6809	7018	7227	7436	7646	7854
208	8063	8272	8481	8689	8898	9106	9314	9522	9780	9988
209	320 146	0354	0562	0769	0977 207	1184	1391	1598	1805	2012
210	2219	2426	2633	2839	8046	8252	3458	36 65	3871	4077
211	4282	4488	4694	4899	5105	5310	5516	5721	5926	6131
212	6336	6541	6745	6950	7155	7359	7563	7767	7972	8176
218	8380 830414	8583 0617	8787	8991 1022	9194	9398	9601 1630	9805 1832	8	.211
214	990414	0017	0819	1022	1225 202	1437	1030	1002	2034	2236
215	2438	2640	2842	8044	3246	8447	3649	3850	4051	4253
216	4454	4655	4856	5057	5257	5458	5658	5859	6059	6260
217	6460	6660	6860	7060	7260	7459	7659	7858	8058	8257
218	8456 340444	8656 0642	8855 0841	9054 1039	9253	9451	9650 1632	9849	47	.246
219		0042	0041	1109	1237 198	1435	F032	1830	2028	2225
220	2423	2620	2817	3014	8212	3409	3606	3802	3999	4196
221	4392	4589	4785	4981	5178	5374	5570	5766	5962	6157
222	6353	6549	6744	6939	7135	7330	7525	7720	7915	8110
223	8305 35024 8	8500 8442	8694 0636	8889 0829	9083	9278	9472	9666	9860	54
224	300243	9443	0030	0029	1023 193	1216	1410	1603	1796	1989
225	2183	2375	2568	2761	2954	3147	8339	3532	3724	3916
226	4108	4801	4493	4685	4876	5068	5260	5452	5643	5834
227	6026	6217	6408	6599	6790	6981	7172	7363	7554	7744
228 229	7935 9835	8125	8816	8506 .404	8696	8886	9076	9266	9456	9646
229		25	.215		.593 190	.783	.972	1161	1850	1539
230	361728	1917	2105	2294	2482	2671	2859	8048	8236	3424
231	8612	3800	8988	4176	4363	4551	4739	4926	5113	5301
232	5488 7356	5675	5862	6049	6236	6423	6610	6796	6983	7169
238 234	9216	7542 9401	7729 9587	7915 9772	8101	8287	8473	8659	8845	9030
204		5401	8001		9958 185	.143	.328	.513	.698	,883
235	371068	1253	1437	1622	1806	1991	2175	2360	2544	2728
236	2912	3096	3280	3464	3647	3831	4015	4198	4382	4565
237	4748 6577	4932	5115	5298 7124	5481	5664	5846	6029	6212	63 94
238 239	8398	6759 8580	6942 8761	8943	7306	7488	7670	7852	8034	8216
205		0000	9/01	0940	9124 182	9306	9487	9668	9849	80
240	A80211	0892	0573	0754	0934	1115	1296	1476	1656	1837
241	2017	2197	2377	2557	2737	2917	3097	3277	3456	3636
242	3815	3995	4174	4353 6142	4533	4712	4891	5070	5249	5428
243	5606 7390	5785	5964	7923	6321	6499	6677	6856	7034	7212
244		7568	7746		8101 178	8279	8456	8634	8811	8989
245	9166	9343	9520	9698	9875	51	.228	.405	.592	.759
246	890935	1112	1288	1464	1641	1817	1993	2169	23.45	2521
247	2697	2873	3048	3224	3400	3575	3751	3926	4101	
248	4452 6199	4627	4802	4977	5152	5326	5501	5676	5850	6025
249	0199	6374	6548	6722	6896	7071	7245	₩419	7592	7766

LOGARITHMS

N.	0	1	2	8	4	5	6	7	8	9
250	397940	8114	8287	8461	8634	8808	8981	9154	9328	9501
251	9674	9847	20	.192	.365	.538	.711	.883	1056	1228
252	401401	1578	1745	1917	2089	2261	2433	2605	2777	2949
253	3121	3292	3464	3635	3807	3978	4149	4320	4492	4663
254	4834	5005	5176	5346	5517	5688	5858	6029	6199	6370
		İ	ł	l	171	ł	l	İ		,
255	6540	6710	6881	7051	7221	7391	7561	7731	7901	8070
256	8240	8410	8579	8749	8918	9087	9257	9426	9595	9764
257 258	9933 411620	.102	.271	.440	.609	.777	.946	1114	1283	1451
259	3300	1788 3467	1956 8685	2124 8803	2293	2461	2629	2796	2964	3132
203	3300	0401	0000	0000	3970	4137	4305	4472	4639	4806
260	4973	F140	5807	5474	5641	5808	5974	6141	6308	6474
261	6641	6807	6973	7139	7806	1472	7638	7804	7970	8185
262	8801	₹467	8633	8798	8964	9129	9295	9460	9625	9791
263	9956	.121	.286	.451	.616	.781	.945	1110	1275	1439
264	421604	1788	1933	2097	2261	2426	2590	2754	2918	3082
	1			1						
265	8246	8410	3574	3737	3901	4065	4228	4892	4555	4718
266	4882	5045	5208	€371	£534	5697	5860	6023	6186	6349
267	6511	6674	6836	6999	7161	7324	7486	7648	7811	7973
268	8135	8297	8459	8621	8783	8944	9106	9268	9429	9591
269	9752	9914	. 475	.236	.398	.559	.720	.881	1042	1203
270	431364	1.00	1001	1040				0400	00.40	
270	2969	1525 3130	1685 3290	1846 3450	2007	2167 8770	2328 3930	2488	2649 4249	2809
272	4569	4729	4888	5048	3610 5207	5367	5526	4090 5685	5844	4409 6004
273	6163	6322	6481	6640	6800	6957	7116	7275	7433	7592
274	7751	7909	8067	8226	8384	8542	8701	8859	9017	9175
		1000			158		0.02	0000		02.0
275	9333	9491	9648	9806	9964	.122	.279	.437	.594	.752
276	440909	1066	1224	1381	1538	1695	1852	2009	2166	2323
277	2480	2637	2793	2950	3106	3263	3419	3576	3732	3889
278	4045	4201	4357	4513	4669	4825	4981	5137	5293	5449
279	5604	5760	591 5	6071	6226	6382	6537	6692	6848	7003
					ł	1		l .	1	
280	7158	7313	7468	7623	7778	7933	8088	8242	8397	8552
281	8706 450249	8861	9015	9170	9324	9478	9633	9787	9941.	95
282 283	1786	0403	0557	0711	0865	1018	1172	1326	1479	1633
284	8318	1940	2093	2247	2400	2553	2706	2859	3012	3165
204	9010	8471	3624	3777	8930	4082	4235	4387	4540	4692
285	4845	4997	5150	5302	5454	5606	5758	5910	6062	6214
286	6366	6518	6670	6821	6973	7125	7276	7428	7579	7731
287	7882	8033	8184	8336	8487	8638	8789	8940	9091	9242
288	9392	9543	9634	9845	9995	.146	.296	.417	.597	.748
289	460898	1048	1198	1348	1499	1649	1799	1948	2098	2248
			1	[l	1	1			
290	2398	2548	2697	2847	2997	3146	3296	3445	8594	3744
291	3893 5383	4042	4191	4340	4490	4639	4788	4936	5085	5234
292 293	6868	5532	5680	5829	5977	6126	6274	6428	6571	6719
293	8347	7016 8495	7164	7312 8790	7460 8938	7608 9085	7756 9233	7904	8052 9527	8200 9675
204	"	0480	2043	0190	147	9000	9233	9380	3021	2010
295	9822	9969	.116	.263	.410	.557	.704	.851	.998	1145
296	471292	1438	1585	1732	1878	2025	2171	2318	2464	2610
297	2756	2903	3049	3195	3341	3487	3633	3779	3925	4071
298	4216	4362	4508	4653	4799	4944	5090	5285	5381	5526
299	5671	5816	5962	6107	6252	6397	6542	6687	6832	6976
ساا	1			L			1	١		0

			0	F N	UMI	BER	8.			7
N.	0	1	2	8	4	5	6	7	8	· S
300	477121	7266	7411	7555	7700	7844	7989	8133	8278	8422
301 302	8566 480007	8711 0151	8855 0294	8999 0438	9143	9287 0725	9481 0869	9575 1012	9719 1156	9863 1299
803	1443	1586	1729	1872	2016	2159	2302	2445	2588	2731
304	2874	8016	8159	85v2	3445 142	8587	8780	3872	4015	4157
305	4300	4442	4585	4727	4869	5011	5158	5295	5437	5579
806	5721	5863	6005	6147	6289	6430	6572	6714	6855	6997
307 308	7138 8551	7280 8692	7421 8838	7568 8974	7704 9114	7845 9255	7986 9396	8127 9587	8269 9677	8410 9818
8)9	9959	99	.239	.880	.520	.661	.801	.941	1081	1222
810	491362	1502	1642	1782	1922	2062	2201	2341	2481	2621
811	2760	2900	8040	3179	8319	8458	8597	3787	3876	4015
312 318	4155 5544	4294 5683	4433 5822	4572 5960	4711 6099	4850 6238	4989 6376	5128 6515	5267 6653	5406 6791
314	6980	7068	7206	7844	7483	7621	7759	7897	8085	8178
815	8311	8448	5 58 6	8724	8862	8999	9187	9275	9412	9550
316 317	9687	9824	9962 1333	99	.236	.374 1744	.511	.648	.785	.922
318	501059 2427	1196 2564	2700	1470 2837	1607 2973	8109	1880 3246	2017 8382	2154 8518	2291 8655
819	8791	3927	4063	4199	4335	4471	4607	4743	4878	5014
820	5150	528 6	5421	5557	5693	5828	5964	609 9	6284	6370
321 322	6505	6640	6776	6911	7046	7181 8530	7816	7451	7586	7721
323	7856 9203	7991 9337	8126 9471	8260 9606	8395 9740	9874	8664	8799 .143	8934	9008
324	510545	0679	0813	0947	1081	1215	1849	1482	1616	1750
325	1883	2017	2151	2284	2418	2551	2684	2818	2951	3084
826	8218	8351	3484	3617	3750	3883	4016	4149	4282	4414
327 328	4548 5874	4681	4813 6139	4946	5079 6403	5211 6535	5344 6668	5476 6800	5609 6932	5741 7064
829	7196	6006 7328	7460	6271 7592	7724	1955	7987	8119	8251	8382
330	8514	8646	8777	8909	9040	9171	9303	9434	9566	9697
831 .	9828	9959	90	.221	.353	.484	.615	.745	.876	1007
332 333	521138	1269	1400 2705	1530	1661 2966	1792 3096	1922 3226	2053	2183 3486	2314 3616
384	2444 3746	2575 3876	4006	2835 4136	4266	4396	4526	3356 4656	4785	4915
885	5045	5174	5304	5434	5563	5693	5822	5951	6081	6210
836	6839	6469	6598 7888	6727	6856	6985 8274	7114	7248	7872	7501
837	7630 8917	7759 9045	9174	8016 9302	8145 9480	9559	8402 9687	8531 9815	8660 9943	8788 72
839	580200	0828	0456	0584	0712	0640	0968	1096	1223	1351
840	1479	1607	1784	1862	1960	2117	2245	2372	2500	2627
841 842	2754 4026	2882 4153	3009 42 6 0	3136 4407	3264 4534	3391 4661	8518 4787	3645 4914	8772 5041	3899 5167
843	5294	5421	5547	5674	5800	5927	6053	6180	6806	6432
344	6558	6685	6811	6937	7068 126	7189	7315	7441	7567	7693
845	7819	7945	8071	8197	8322	8448	8574	8699	8825	8951
846 847	9076 540329	9202	9327	9452	9578	9703 0955	9829	9954	79 1330	.204 1454
848	1579	0455 1704	0580 1829	1953	0830 2078	2203	1080 2327	1205 2452	2576	2701
849	2825	2950	3074	3199	3323	3447	8571	3696	3820	3944
L	<u> </u>	<u> </u>	1							<u> </u>

8	LOGARITHMS									
N.	0	1	2	8	4	5	6	7	8	9
350	544068	4192	4316	4440	4564	4688	4812	4936	5060	5183
351	5307	5431	5555	5578	5805	5925	6049	6172	6296	6419
352 353	6543 7775	6666 7898	6789 8021	6913 8144	7036 8267	7159 8389	7282 8512	7406 9635	7529 8758	7652 8881
354	9003	9126	9249	9371	9494	9616	9739	9861	9984	.196
30.		01.00	02.0		122	0010	0.00	100.	0001	
355	550228	0351	0473	0695	0717	0840	0962	1084	1206	1328
356	1450	1572	1694	1816	1938	2060	2181	2303	2425	2547
357	2668 3883	2790	2911	3033 4247	3155	8276	3393	3519	3640 4852	8762 4973
358 359	5094	4004 5215	4126 5846	5457	4368 5578	4489 5699	4610 5820	4781 5940	6061	6182
, 503	5001	0210	60.20	ow.	00.0	0033	0020	0020	0001	0102
360	6303	6423	6544	6664	6785	6905	7026	7146	7267	7387
361	7507	7627	7748	7868	7988	8108	8228	8349	8469	8589
362	8709	8829	8948	9068	9188	9308	9428	9548	9667	9787
363 364	9907 561101	26 1221	.146 1340	.265 1459	.385 1578	.504 1698	.624 1817	.743 1936	.863 2055	.982 2178
304	001101	1221	1020	1400	10/0	1030	1017	1900	2000	2110.
365	2293	2412	2531	2650	2769	2887	8006	8125	3244	3362
366	8481	8600	3718	3837	3955	4074	4192	4311	4429	4548
367	4666	4784	4903	5021	5189	5257	5376	5494	5612	5730
368	5848 7026	5966	6084 7262	6202 7379	6320 7497	6437	6555 7732	5673	6791 7967	6909 8084
369	1020	7144	1202	1918	1491	7614	1102	7849	1301	0004
370	8202	8319	8436	8554	8671	8788	8905	9023	9140	9257
371	9374	9491	9608	9725	9882	9959	76	.193	.309	.426
372	570548	0660	0776	0893	1010	1126	1243	1359	1476	1592
373	1709	1825	1942	2058	2174	2291	2407	2528	2639	2755
374	2872	2988	8104	8220	3336 116	3452	3568	8664	4800	3915
875	4031	4147	4263	4379	4494	4610	4726	4841	4957	5072
876	5188	5303	5419	5534	5650	5765	5880	6996	6111	6226
877	6341	6457	6572	6687	6802	6917	7032	7147	7262	7377
378 379	7492 8639	7607 8754	7722 8868	7836 8983	7951 9097	8066 9212	8181 9326	8295 9441	8410 9555	8525 9669
818	0000	0104	5000	0300	8031	5212	2020	0444	3000	3000
380	9784	9898	12	.126	.241	.855	.469	.583	.697	.811
381	580925	1039	1153	1267	1381	1495	1608	1722	1836	1950
382	2063	2177	-2291	2404	2518	2631	2745	1858	2972	8085
383	8199 4331	3312 4444	8426 4557	3539 4670	3652 4783	3765 4896	8879 6009	3992 6122	4105 5285	4218 5848
884	-001	4484		2010	4100		5005	"	V.400	V0-10
385	5461	5574	5686	5799	5912	6024	6137	£250	6862	6475
386	6587	6700	6812	6925	7037	7149	7262	7374	7486	7599
887	7711	7823	7935	8047	8160	8272	8384	8496	8608	8720
388 389	8832 9950	8944	9056	9167 .284	9279	9391	9503 .619	9615 .780	9726	9884
008	8000	01	.110	,201	.390		.013		.020	.505
390	591065	1176	1287	1399	1510	1621	1732	1843	1955	2066
391	2177	2288	2399	2510	2621	2732	2843	2954	8064	8176
392	3286	8397	3508	3618	3729	8840	8950	4061	4171	4289
393 394	4393 5496	4503 5606	4614 5717	4724 5827	4834 5937	4945 6047	6157	5165 6267	5276 6877	5886 6487
094	0450	3000	3,1,	3021	110	- SOZ.	3101	J	3011	V464
895	6597	6707	6817	6927	7087	7146	7256	7866	7476	7586
896	7695	7805	7914	8024	8134	8243	8353	8462	8572	8681
397	8791	8900	9009	9119	9228	9337	9446	£ 5 56	9666	9774
398	9883	9992	.101	.210	.819	.428 1517	.537 1625	.646 1734	.755 1843	.864 1951
399	660973	1082	1191	1299	1408	1017	1020	1104	1040	1901
تنصين										

OF NUMBERS.										
N.	0	1	2	3	4	5	6	7	8	9
400	602060	2169	2277	2386	2494	2603	2711	2819	2928	3036
401 402	3144 4226	3253	3361	3469	.3573	3686	3794	3902	4010	4118
403	5805	4334 5413	4442 5521	4550 5628	4658 5736	4766 5844	4874 5951	4982 6059	5089 6166	5197 6274
404	6381	6489	6596	6704	6811	6919	7026	7133	7241	7948
}					108	1				
405	7455	7562	7669	7777	7884	7991	8098	8205	8312	8419
406	8526 9594	8633 9701	8740 9808	8847 9914	8954	9061 .128	9167	9274	9381	9488
408	610660	0767	0873	0979	1086	1192	1298	1405	1511	1617
409	1723	1829	1936	2042	2148	2254	2360	2466	2572	2678
410	0004	0000	0000		0007	0010		0505		0700
410	2784 3842	2890 3947	2996 4053	3102 4159	3207 4264	8313 4370	3419 4475	3525 4581	3630 4686	3736 4792
412	4897	5003	5108	5213	5319	5424	5529	5634	5740	5845
413	5950	6055	6160	6265	6870	6476	6581	6686	6790	6895
414	7000	7105	7210	7315	7420	7525	7629	7734	7839	7943
415	8048	8153	8257	8362	8466	8571	8676	8780	8884	8989
416	9293	9198	9302	9406	9511	9615	9719	9824	9928	32
417	620136	0240	0344	0448	0552	0656	0760	0864	0968	1072
418	1176	1280	1384	1488	1592	1695	1799	1903	2007	2110
419	2214	2318	2421	2525	2628	2732	2835	2939	3042	3146
420	3249	3353	3456	3559	8663	8766	3869	8973	4076	4179
421	4282	4385	4488	4591	4695	4798	4901	5004	5107	5210
422	5312	5415	5518	5621	5724	5827	5929	6032	6135	6238
423 424	6340 7366	6443 7468	6546 7571	6648 7673	6751 7775	6853 7878	6956 7980	7058 8082	7161 8185	7263 8287
	1900	7400	1011	1013	103	1010	1900	0002	9100	0201
425	8389	8491	8593	8695	8797	8900	9002	9104	9206	9808
426	9410	9512	9613	9715	9817	9919	21	.123	.224	.326
427 428	630428	0530	0631	0733	0835	0936	1038	1139	1241	1342
429	1444 24 57	1545 2559	1647 2660	1748 2761	1849 2862	1951 2963	2052 3064	2153 8165	2255 3266	2356 3367
	220.		2000		2002	2000	5001	0100	0200	333.
430	8468	8569	3670	3771	3872	3973	4074	4175	4276	4876
431	4477	4578	4679	4779	4880	4981	5081	5182	5283	5383
432 433	• 5484 6488	5584 6588	5685 6688	5785 6789	5886 6889	5986 6989	6087 7089	6187 7189	6287 7290	63 8 8 7390
434	7490	7590	7690	7790	7890	7990	8090	8190	7290 8290	8389
										l.
435	8489	8589	8689	8789	8888	8988	9088	9188	9287	9887
436 437	9486	9586	9686	9785	9885	9984	84	.183	.283	.882
438	640481 1474	0581 1573	0680 1672	0779 1771	0879 1871	0978 1970	1077 2069	1177 2168	1276 2267	1375 2366
439	2465	2563	2662	2761	2860	2959	8058	3156	3255	3854
				1	1	1				
440 441	3453	3551	3650	3749	8847	3946	4044	4143	4242	4840
441	4439 5422	4537 5521	4636 5619	4734 5717	4832 5815	4931 5913	5029 6011	5127 6110	5226 6208	5324 6306
443	6404	6502	6600	6698	6796	6894	6992	7039	7187	7285
444	7383	7481	7579	7676	7774	7872	7969	8067	8165	8262
	0000	045			98					
445 446	8360 9335	8458 9432	8555 9530	8653 9627	8750 9724	8848 9821	5945 9919	9043	91 4 0 .113	9287 .210
447	650308	0405	0502	0599	0696	0793	0890	16 0987	1084	1181
448	1278	1375	1472	1569	1666	1762	1859	1956	2053	2150
449	2246	2343	2440	2530	2633	2730	2826	2923	3019	3116
				<u> </u>		<u>' </u>				

10	LOGARITHMS									
N.	0	1	2	3	4	5	6	7	8	9
450	658213	8309	3405	3502	3598	3695	3791	3888	3984	4080
451	4177	4273	4369	4465	4562	4658	4754	4850	4946	5042
452	5138	5285	5331	5427	5526	5619	5715	5810	5906	6002
453	6098	6194	6290	6386	6482	6577	6673	6769	6864	6960
454	7056	7152	7247	7343	7488 96	7534	7629	7725	. 7820	7916
455	8011	8107	8202	8298	8393	8488	8584	8679	8774	8970
456	8965	9060	9155	9250	9346	9441	9536	9631	9726	9821
457	9916	11	.106	.201	.296	.391	.486	.581	.676	.771
458	660865	0960	1055	1150	1245	1339	1484	1529	1623	1718
459	1813	1907	2002	2096	2191	2286	2880	2475	2569	2663
460	2758	2852	2947	3041	3135	3230	3324	8418	3512	3607
461	8701	3795	8889	3983	4078	4172	4266	4360	4454	4548
462	4642	4736	4830	4924	5018	5112	5206	5299	5893	5487
463	5581	5675	5769	5862	5956	6050	6143	6237	6331	6424
464	6518	6612	6705	6799	6892	6986	7079	7173	7266	7360
465	7453	7546	7640	7783	7826	7920	8013	8106	8199	8293
466	8386	8479	8572	8665	8759	8852	8945	9038	9131	9324
467	9317	9410	9503	9596	9689	9782	9875	9967	60	.153
468	670241	0339	0431	0524	0617	0 710	0802	0895	0988	1080
469	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005
470	2098	2190	2283	2375	2467	2560	2652	2744	2836	2929
471	3021	3113	3205	3297	8390	8482	3574	3666	3758	3850
472	8942	4034	4126	4218	4310	4402	4494	4586	4677	4769
473	4861	4958	5045	5137	5228	5320	5412	5503	5595	5687
474	5778	5870	5962	6053	6145 91	6236	6328	6419	6511	6602
475	6694	6785	6876	6968	7059	7151	7242	7333	7424	7516
476	7607	7698	7789	7881	7972	8063	8154	8245	8336	8427
477	8518	8609	8700	8791	8882	8972	9064	9155	9246	9337
478	9428	9519	9610	9700	9791	9882	9973	63	.154	.945
479	680336	0426	0517	0607	0698	0789	0879	0970	1060	1151
480	1241	1332	1422	1513	1603	1693	1784	1874	1964	2055
481	2145	2235	2326	2416	2506	2596	2686	2777	2867	2957
482	3047	3137	3227	3317	3407	3497	3587	3677	8767.	3857
483 484	8947 4854	4037 4935	4127 5025	4217	4307	4396 5294	4486	4576 5473	4666 5563	4756 5652
404	*800%	*200	0020	5114	5204	0294	5383		5000	0002
485	5742	5881	5921	6010	6100	6189	6279	6368	6458	6547
486	6636	6726	6815	6904	6994	7083	7172	7261	7351	7440
487	7529	7618	7707	7796	7886	7975	8064	8153	8242	8831
488	8420 9309	8509 9398	8598 9486	8687	8776	8865 9753	8953	9042	9131	9220 .107
489	8008	9096	3400	9575	9664	8103	9841	8300	19	.107
490	690196	0285	0373	0362	0550	0639	0728	0816	0905	0993
491	1081	1170	1258	1347	1435	1524	1612	1700	1789	1877
492	1965	2053	2142	2230	2318	2406	2494	2583	2671	2759
493 494	2847	2935	8023	3111	8199	8287	8375	3463 4342	3551 4430	3639
494	3727	8815	3903	3991	4078 88	4166	4254	12042	2400	4517
495	4605	4693	4781	4868	4956	5044	5131	5210	5307	5894
496	5482	5569	5657	5744	5832	5919	6007	6094	6182	6269
497	6356	5444	6531	6618	6706	6793	6880	6968	7055	7145
498	7229	7317	7404	7491	7578	7665	7752	7839	7926	8014
499	8101	8188	8275	8862	8449	8535	8622	8709	8796	8888

.

OF NUMBERS.									11	
N.	0	1	2	8	4	5	6	7	8	9
500	698970	9057	9144	9231	9317	9404	9491	9578	9664	9751
501	9838	9924	11	98	.184	.271	.358	.444	.531	.617
502	700704	0790	0877	0963	1050	1186	1222	1309	1895	1482
508	1568	1654	1741	1827	1913	1999	2086	2172	2258	2344
504	2431	2517	2603	2√89	2775	2861	2947	8083	3119	·8 2 06
					86		l			
505 506	3291	8877 4236	8463	8549	3685	8721	8807	3895	8979	4065
507	4151 5008	5094	4322 5179	4408 5265	4494 5350	4579 5436	4665 5522	4751	4837 5693	4922 5778
508	5864	5949	6385	6120	6206	6291	6376	5607 6462	6547	6632
509	6718	6803	6888	6974	7059	7144	7229		7400	7485
1	""		0000					10.0		
510	7570	7655	7740	7826	7910	7996	8081	8166	0251	8836
511	8421	8506	8591	8676	8761	8846	8931	9015	9100	9185
512	9270	9355	9440	9524	9609	9694	9779	9863	9948	33
518	710117	0202	0287	0371	0456	0540	0625	0710	0794	0879
514	0963	1048	1182	1217	1801	1885	1470	1554	1639	1723
										l
515	1807	1892	1976	2060	2144	2229	2313	2897	2481	2566
516	2650	2784	2818	2902	2986	8070	8154	8288	8326	8407
517 518	3491 4330	8575 4414	8659	8742 4581	8826 4665	8910	8994 4883	4078	4162 5 00 0	4246
619	5167	5251	4497 5885	5418	5502	4749 5586	4688 5669	4916	5836	5084 5920
013	5107	0201	0000	0410	0002	0000	0009	5753	0000	0920
520	6003	6087	6170	6254	6337	6421	6504	6588	6671	6754
521	6838	6921	7004	7068	7171	7254	7838	7421	7504	7587
522	7671	7754	7887	7920	8003	8086	8169	8253	8336	8419
523	8502	8585	8668	8751	8834	8917	9000	9083	9165	9248
524	9331	9414	9497	9580	9663	9745	9828	9911	9994	77
	}	t		1	82					
525	72 0159	0242	0325	0407	0490	0573	0655	0738	0821	0903
526	0986	1068	1151	1233	1816	1398	1481	1563	1646	1728
527	1811	1893	.975	2058	2140	2222	2305	2387	2469	2552
528 529	2634 8456	2716 3538	2798	2881	2963 3784	3045 3866	8127	8209	8291 4112	8374
028	0400	0000	8620	8702	0104	9000	8948	4030	4112	4194
530	4276	4358	4440	4522	4604	4685	4767	4849	4931	5018
531	5095	5176	5258	5340	5422	5503	5585	5667	5748	5830
532	5912	5993	6075	6156	6238	6320	6401	6483	6564	6646
533	6727	6809	6890	6972	7053	7134	7216	7297	7879	7460
534	7541	7623	7704	7785	7866	7948	8029	8110	8191	8273
535	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084
536 537	9165	9246	9327	9403	9489	9570	9651	9732	9813	9898
537 538	9974 7 3 0782	55 0863	.136 0944	.217 1024	.298 1105	.378 1186	.459 1266	.540 1347	.621 1428	.702 1508
539	1589	1669	1750	1880	1911	1991	2072	2152	2233	2313
	1	1 2003	1.00	1000	1011	1001	~	2103		~0.0
540	2394	2474	2555	2635	2715	2796	2876	2956	3087	8117
541	3197	3278	8358	8438	8518	8598	3679	8759	3839	3919
542	8999	4079	4160	4240	4320	4400	4480	4560	4640	4720
543	4800	4880	4960	5040	5120	5200	5279	5359	5489	5519
544	5599	5679	5759	5838	5918	5998	6078	6157	6287	6817
					80					
545	6397	6476	6556	6636	6715	6795	6874	6954	7034	7113
546	7198	7272	7352	7431	7511	7590	7670	7749	7829	7908 8701
547 548	7987 8781	8067 8860	8146 8939	8225 9018	8305 9097	8384 9177	8463 9256	8543 9335	8622 9414	9492
549	9572	9651	9731	9810	9889	9968	47	.126	.205	.284
ستا		1 3301	3.01	1 33.0	1 200	1 5555	1	1~	1 .500	

12		•	L	O G A	RIT	H M	8			
N.	0	1	2	8	4	5	6	7	8	9
550	740868	0442	0521	0560	0678	0757	0886	0915	0994	107
551	1152	1230	1309	1388	1467	1546	1624	1703	1782	186
552	1989	2018	2096	2175	2254	2332	2411	2489	2568	264
553	2725	2804	2882	2961	3039	3118	8196	8275	8353	843
554	8510	8558	3667	8745	382 3	8902	3960	4058	4136	421
555	4998	4871	4449	4598	4606	4684	4762	4840	4919	490
556	5075	5153	5281	5309	5887	5465	5543	5621	5699	677
557	\$855	5988	6011	6069	6167	6245	6323	6401	6479	655
558	6684	6712	6790	6868	6945	7028	7101	7179	7256	738
55 9	7419	7489	7567	7645	7722	7800	7878	7966	8038	811
560	8188	8266	8848	8421	8496	8576	8653	8731	8808	888
561 562	8963 9786	9040 9814	9118 9891	9196 9968	9272	9850 .123	9427	9504 .277	9582 .854	965
563	750508	0586	0668	0740	0817	0894	0971	1048	1125	120
564	1279	1856	1488	1510	1587	1664	1741	1818	1895	197
565	2048	2125	2202	2279	2356	2433	2509	2586	2668	274
566	2816	2893	2970	8047	8128	8200	8277	8358	8480	350
567	8582	3660	8786	8818	3889	3966	4042	4119	4195	427
568	4848	4425	4501	4578	4654	4780	4807	4888	4960	5080
569	5112	5189	5265	5841	5417	5494	5570	5646	5722	579
570	5875	5951	6027	6108	6180	6256	6382	6408	6484	656
571	6636	6712	6788	6864	6940	7016	7092	7168	7244	732
572	7896 8155	7472 8280	7548 8306	7694 8382	7700 8458	7775 8583	7851 8609	7927 8685	8003 8761	8079 888
578 574	8912	8988	9068	9189	9214	9290	9366	9441	9517	959
014					74					
575	9668	9743	9819	9894	9970	45	.121	.196	.272	.84
576	760422	0498	0578	0649	0724	0799	0875	0950	1025	110
577	1176 19 9 8	1251 2003	1826 2078	1402 2158	1477	1552 2303	1627 2878	1702 2458	1778 2529	185 260
578 579	2679	2754	2829	2904	2228 2978	8053	8128	2203	8278	385
0.0	20.0	2.01		2001	20.0	0000	0.20			
580	8428	8508	3578	3653	3727	8802	8877	8952	4027	410
581	4176	4251	4826	4400	4475	4550	4694	4699	4774	484
582 583	4928 5669	4998 5748	5072 5818	5147 5892	5221 5966	5296 6041	5370 6115	5445 6190	5520 6264	559- 638
584	6413	6487	6562	6686	6710	6785	6859	6988	7007	708
***	M120	MOSS	7004	gen		NEAR	mon.	near	PW 40	MOC-
585 586	7156 7898	7280 7972	7804 8046	7879 8120	7453 8194	7527 8268	7601 8342	7675 8416	7749 8490	782 856
587	8688	8712	8786	8860	8984	9008	9082	9156	9230	930
588	9377	9451	9525	9599	9678	9746	9820	9894	9968	4
589	770115	0189	0263	0336	0410	0484	0557	0681	0705	077
590	0862	0926	0999	1078	1146	1220	1293	1367	1440	151
591	1587	1661	1784	1808	1881	1955	2028	2102	2175	224
592	2822	2395	2468	8542	2615	2688	2762	2835	2908	298
598	8055	8128	8201	8274	8348	8421	8494	8567	8640	8713
594	8786	3860	3933	4006	4079 73	4152	4225	4298	4371	444
595	4517	4590	1668	4786	4809	4882	4955	5028	5100	617
596	5246	5819	5892	5465	5538	5610	5688	5756	5829	590
597	5974	6047	6120	6198	6265	6338	6411	6488	6556 7282	6629
598 599	6701 7427	6774 7499	6846 7572	6919 7644	6992	7064 7789	7187 7862	7209 7984	7282 8006	7354 8079
990	1921	1230	1012	1022	7717	1108	1002	1005	~~~	00/1

.

		a sale com his man	0	FN	J M B	ERS				13
N.	0	1	2	3	4	5	6	7	8	9
600	778151	8224	8296	8368	8441	8513	8585	8658	8730	8802
601	8874	8947	9019	9091	9163	9236	9308	9380	9452	9524
602	9596	6669	9741	9813	9885	9957	29	.101	.173	.245
608 604	780817 1037	0389 1109	0461	0583 1258	0605 1324	0677 1396	0749 1468	0821 1540	0893 1612	0965 1684
094	1057	1109	1181	1200	72	1990	1400	1040	1012	1004
605	1755	1827	1899	1971	2042	2114	2186	2258	2829	2401
606	2473	2544	2616	2683	2759	2831	2902	2974	3046	3117
607	3189	326 0 397 5	8332	8403	3475	8546	3618	8689	8761 4475	3832
608	8904 4617	4689	4046 4760	4118 4831	4189 4902	4261 4974	4382 5045	4403 5116	5187	4546 5259
"	401.	2000	4100	-001	2002	3017	0020	0110	010.	0.303
610	5330	5401	5472	5543	5615	5686	5757	5828	5899	5970
611	6041	6112	6183	6254	6325	6896	6467	6538	6609	6680
612 613	6751 7460	6822 7581	6893 7602	6964 7673	7035	7106 7815	7177 7885	7248 79J6	7819 8027	7390 8098
614	8168	8239	8310	8881	8451	8522	8593	8663	8784	8804
		0000		0002						
615	8975	8946	9016	9087	9157	9228	9299	9869	9440	9510
616	9581	9651	9722 0426	9792	9863	9983	4	74	.144	.215
617 618	790285 0988	0856 1059	1129	0496 1199	0567 1269	0687 1340	0707 1410	0778 1480	0848 1550	0918 1620
619	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322
620	2392	2462	2532	2602	2672	2742	2812	2882	2952	3022
621 622	8092	3162 3860	3231 3930	8301	8871 4070	3441	3511 4209	.8581	3651 4349	3721
623	8790 4488	4558	4627	4000 4697	4767	4139 4836	4906	4279 4976	5045	4418 5115
624	5185	5254	5324	5398	5463	5532	5602	5672	5741	5811
					69					
625	5880	5949	6019	6088	6158	6227	6297	6866	6436	6505
626 627	6574 7268	7837	6713 7406	6782 7475	6852 7545	6921	6990 7683	7060 7752	7129 7821	7198
628	7960	8029	8098	8167	8236	7614 8305	8374	8443	8513	7890 8582
629	8651	8720	8789	8858	8927	8996	9065	6134	9203	9272
680	9841	9409	9478	9547	9610	9685	9754	9823	9892	9961
681 682	800026 0717	0098	0167 0854	0236	0305	0373	0442	0511	0580	0648
683	1404	1472	1541	0923 1609	0992 1678	1061 1747	1129 1815	1198 1884	1266 1952	1335 2021
634	2069	2158	2226	2295	2363	2480	2500	2568	2637	2705
			٠ ا							
635 636	2774 8457	2842	2910	2979	8047	8116	8184	8252	8821	3389
637	4139	3525 4208	3594 4276	3662 4354	8780 4412	3798 4480	3867 4548	3935 4616	4003 4685	4071 4753
638	4821	4889	4957	5025	5093	5161	5229	5297	5365	5433
639	5501	5669	5687	5705	5773	5841	5908	5976	6044	6112
649	6180	6248	6316	6384	6451	6519	6587	6655	6723	6790
641	6858	6926	6994	7061	7129	7157	7264	7332	7400	7467
642	7535	7603	7670	7788	7806	7873	7941	8008	8076	8143
643	8211	8279	8346	8414	8481	8549	8616	8684	8751	8818
644	8886	8953	9021	9088	9156	9223	9290	9358	9425	9492
645	9560	9627	9694	9762	9829	9896	9964	31	98	.165
646	810233	0300	0367	0434	0501	0596	0636	0703	0770	0837
647	0904	0971	1039	1106	1173	1240	1307	1874	1441	1508
648	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178
649	2245	2312	2879	2445	2512	2579	2646	27 13	2780	2847

N. O 1 2 3 4 5 6 7 8 9	14			L	O G A	RIT	HM	s			
651 3581 3648 3714 4381 4447 4514 4581 4647 4714 4780 4480 4666 4681 4647 4714 4780 4840 5664 5678 5644 5711 5777 5543 5910 5976 6042 6109 6175 656 6341 6308 6374 6440 6506 6573 7607 77036 7702 7102 7109 7233 7801 7867 7433 7499 657 7565 7631 7698 7764 7830 7896 7962 8628 8024 8169 7666 868 8292 8358 8424 8490 8566 8623 6888 8764 8820 8681 9017 9073 9873 9893 4 70 .136 662 8683 8961 9017 9079 9873 9893 4 70 .136 662 8622 9680 9025 9021 <th>N.</th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th>	N.	0	1	2	3	4	5	6	7	8	9
652 4248 4814 4881 4447 4514 4581 4647 4714 4780 4847 653 4913 4980 5046 5113 5179 5246 5312 5378 5445 5511 656 657 5681 6308 8374 6440 6506 6573 6689 6765 677 7433 7499 657 7565 7631 7698 7764 7830 7896 7962 6028 8084 8160 668 82926 8292 8358 8424 8400 8566 8623 6888 7564 8820 669 8686 8961 9017 9083 9149 9216 9281 9346 9412 9478 660 9544 9610 9676 9741 9807 9873 9939 4 70 .136 661 9240 9891 0551 120 1186 1211 1317 <th>650</th> <th>812913</th> <th>2980</th> <th>3047</th> <th>8114</th> <th>3181</th> <th>3247</th> <th>8814</th> <th>8881</th> <th>3448</th> <th>3514</th>	650	812913	2980	3047	8114	3181	3247	8814	8881	3448	3514
653											
654 5578 5644 5711 5777 5843 5910 5976 6042 6109 6175 655 6241 6308 6374 6440 6506 6573 6639 6705 6771 6838 657 7566 7631 7698 7764 7330 7896 7962 8028 8094 8160 658 8226 8292 8368 8424 8400 8566 8622 9688 8754 8820 669 8584 9810 92676 9741 9807 9873 9939 4 70 136 661 820201 0267 0833 0399 0464 0530 0696 0661 0727 0792 662 0863 942 0989 1065 1120 1136 1297 2037 2193 663 1541 1579 1645 1710 1775 1841 1906 1972 2037 2											
685 6241 6308 6374 6440 6506 6573 6639 6705 6771 6838 6824 6806 6577 7665 7631 7698 7764 7830 7896 7962 8028 8094 8160 658 8326 8292 8358 8424 8490 8566 8622 8688 8754 8820 6688 8754 8820 6688 8754 8820 6688 8754 8820 6688 8754 8820 6688 8754 8820 6688 8754 8820 6688 8754 840 8668 8622 8688 8754 8820 868 8754 8820 9868 868 8754 8820 9478 9676 9412 9478 863 1818 1912 9478 966 6661 8620 9680 1065 1120 11186 1251 1317 1323 1438 2431 2495 2560 2696 2691 2756<											
855 6241 6308 6374 6440 6506 6873 6689 6775 7671 7683 7102 7169 7233 7801 7367 7433 7499 7496 8062 8088 8094 8160 6568 8296 8292 8363 8424 8490 8566 8622 8688 8754 8290 9469 8666 8622 8688 8754 8290 9469 8666 8622 8688 8754 8290 9478 9478 9478 660 9544 9610 9676 9741 9607 9873 9939 4 70 136 661 890201 9267 9333 0399 0464 0530 0696 0661 0727 70792 662 9688 0924 0989 1065 1120 1186 1251 1317 1323 1448 663 1514 1579 1645 1710 1775 1841	***	20.0	0011	0	٠		00.0	00.0	0023	0200	01.0
656 6904 6970 7086 7102 7169 7233 7801 7367 7433 7499 657 7565 7581 7698 7764 7830 7896 7962 8028 8094 8160 658 8226 8282 8368 8424 8440 8566 8622 8688 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8288 8764 8220 8281 8286 8261 8282 8284 8460 8666 829201 0267 0383 0399 0464 0530 0595 0661 0727 0792 662 0658 0924 0989 1065 1120 1186 1251 1317 1382 1482 663 1514 1579 1645 1710 1775 1841 1906 1972 2037 2103 664 2168 2233 2299 2364 2430 2495 2560 2526 2691 2756 665 3474 3539 3605 3670 3735 3800 3865 3390 3994 4061 667 4126 4191 4256 4321 4386 4451 4516 4581 4646 4711 668 4776 4841 4906 4971 5036 5101 5166 5231 5296 5361 669 5426 5491 5566 6621 5686 5761 5815 5880 5945 5945 6010 670 6705 6140 6204 6269 6334 6399 6464 6528 6593 6568 673 672 7369 7434 7499 7563 7628 7692 7757 7821 7886 7351 673 8015 8089 6653 0717 0781 0845 0909 9973 1097 1102 1166 679 1870 1934 1988 2062 2126 2189 2258 2317 2381 2445 680 2509 2573 2637 2700 2764 2828 2892 2956 3020 3083 684 5066 5120 5183 5247 5310 5373 5437 5600 5564 5627 685 689 5768 689 5764 6817 682 7715 7778 7841 7904 7967 8030 6894 4974 4567 6895 6716 6794 6860 8724 8789 8865 8910 9109 164 9207 9289 9362 9415 689 9319 9478 9478 9475 9485 9497 9488 9497 9478 9488 9497 9478 9489 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480 9480	655	6241	6308	6874	6440		6573	6689	6765	6771	6838
658 8292 8392 8368 8424 8490 8566 8622 8688 8754 8820 660 9442 9419 9215 9281 9346 9412 9478 660 9544 9610 9676 9741 9807 9673 9939 4 70 79 70792 661 890201 0267 0833 0399 0464 0530 0659 0661 0727 0792 663 1514 1579 1645 1710 1775 1841 1906 1972 2037 2103 664 2168 2283 2299 2364 2430 2495 2560 2661 2766 665 2822 2867 2962 3018 3083 3143 3213 3279 3344 3409 666 3474 3539 3605 3670 3735 3800 3965 3930 3996 4061 667 41					7102						7499
659 8885 8951 9017 9083 9149 9215 9281 9346 9412 9478 660 9544 9610 9676 9741 9807 9673 9939 4 70 136 661 890201 0267 0333 0399 0464 0530 0595 0661 0727 0792 662 0688 0924 0969 1055 1120 1186 1251 1317 1382 1448 663 1514 1579 1645 1710 1775 1841 1906 1972 2037 2103 664 2168 2233 2299 2364 2430 2495 2560 2562 2691 2756 665 2822 2867 2962 3018 3063 3148 3213 3279 3344 3409 4661 4464 4711 666 4764 4712 4366 4971 5056 5621 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
660 9544 9610 9676 9741 9607 9673 9939 4 70 136 661 890201 0267 0833 0399 0464 0630 0695 0661 0727 0792 662 0868 0924 0969 1055 1120 1186 1251 1317 1382 1448 663 1514 1579 1645 1710 1775 1841 1906 1972 2037 2103 664 2168 22887 2962 3018 3063 3143 3213 3279 3344 3409 666 3474 3539 3605 3670 3735 3800 3965 3930 3996 4061 667 4126 4191 4256 4321 4386 4451 4516 4681 4461 668 4776 4841 4906 4971 5036 5101 5166 5231 5396											
661 890201 0267 0833 0399 0464 0530 0695 0661 0797 0792 662 0868 0924 0989 1055 1120 1186 1251 1317 1382 1448 663 1514 1579 1645 1710 1775 1841 1906 1972 2037 664 2168 2283 2299 2364 2430 2495 2560 2696 2691 2756 665 2822 2887 2952 3018 3083 3148 3213 3279 3344 3409 666 3474 3539 3605 3670 3735 3800 3865 3930 3996 4061 667 4126 4191 4256 4391 4386 4451 4516 4581 4646 4711 668 4776 4841 4906 4971 5036 5101 5166 5281 5396 5361 669 5426 5491 5556 5621 5686 5751 5815 5880 5945 670 6075 6140 6204 6269 6334 6399 6464 6528 6593 6568 671 6723 6787 6852 6917 6981 7046 7111 7176 7240 7306 672 7369 7434 7499 7563 7692 77657 7821 7886 7951 673 8015 8080 8144 8209 8273 8338 8402 8467 8531 8596 674 8660 8724 8789 8853 8918 8982 9046 9111 9176 9239 675 9304 9368 9432 9497 9561 9625 9690 9754 8618 8596 677 830689 0653 0717 0781 0845 0909 0973 1037 1102 1166 679 1870 1934 1998 2062 2126 2189 2258 2317 2381 2445 680 2509 2573 2387 2700 2764 2828 2892 2956 3020 3083 681 3147 3211 3375 3388 3402 3466 3530 3593 3657 3721 682 3784 3848 3912 3975 4089 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4936 684 5056 5120 5183 5247 5310 5373 5437 5600 5564 5627 685 6691 6754 6817 6811 6817 6841 6707 6767 6830 6894 686 687 6894 6894 6894 6897 6957 7020 7063 7146 7210 7273 7336 7399 7462 7596 688 7588 7652 7715 7778 7841 7904 7967 8030 8093 8156 690 8849 8912 8975 9038 9109 9164 9227 9289 9352 9415	009	0000	0901	9017	8003	9149	9210	9201	3340	9412	94/0
661 890201 0267 0833 0399 0464 0530 0695 0661 0797 0792 662 0868 0924 0989 1055 1120 1186 1251 1317 1382 1448 663 1514 1579 1645 1710 1775 1841 1906 1972 2037 664 2168 2283 2299 2364 2430 2495 2560 2696 2691 2756 665 2822 2887 2952 3018 3083 3148 3213 3279 3344 3409 666 3474 3539 3605 3670 3735 3800 3865 3930 3996 4061 667 4126 4191 4256 4391 4386 4451 4516 4581 4646 4711 668 4776 4841 4906 4971 5036 5101 5166 5281 5396 5361 669 5426 5491 5556 5621 5686 5751 5815 5880 5945 670 6075 6140 6204 6269 6334 6399 6464 6528 6593 6568 671 6723 6787 6852 6917 6981 7046 7111 7176 7240 7306 672 7369 7434 7499 7563 7692 77657 7821 7886 7951 673 8015 8080 8144 8209 8273 8338 8402 8467 8531 8596 674 8660 8724 8789 8853 8918 8982 9046 9111 9176 9239 675 9304 9368 9432 9497 9561 9625 9690 9754 8618 8596 677 830689 0653 0717 0781 0845 0909 0973 1037 1102 1166 679 1870 1934 1998 2062 2126 2189 2258 2317 2381 2445 680 2509 2573 2387 2700 2764 2828 2892 2956 3020 3083 681 3147 3211 3375 3388 3402 3466 3530 3593 3657 3721 682 3784 3848 3912 3975 4089 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4936 684 5056 5120 5183 5247 5310 5373 5437 5600 5564 5627 685 6691 6754 6817 6811 6817 6841 6707 6767 6830 6894 686 687 6894 6894 6894 6897 6957 7020 7063 7146 7210 7273 7336 7399 7462 7596 688 7588 7652 7715 7778 7841 7904 7967 8030 8093 8156 690 8849 8912 8975 9038 9109 9164 9227 9289 9352 9415	ക്ക	9544	9610	9678	9741	0807	0873	9939	۱ ۵	70	196
662 0658 0924 0989 1055 1120 1186 1251 1317 1382 1448 663 1514 1579 1645 1710 1775 1841 1906 1972 2037 2103 664 2168 2233 2299 2364 2430 2495 2560 2696 2691 2756 665 2822 2887 2952 3018 3083 3148 3213 3279 3344 3409 666 3474 3539 3605 3670 3735 3800 3865 3930 3996 4061 667 4126 4191 4256 4321 4386 4461 4516 4581 4646 4711 668 4776 4841 4906 4971 5036 5101 5166 5231 5296 5361 670 6775 6140 6204 6269 6334 6399 6464 6528 6593 665									0661		
664 2168 2283 2299 2364 2480 2485 2560 2692 2691 2766 665 2822 2887 2952 3018 3083 3148 3213 3279 3344 3409 666 3474 3539 3605 3670 3785 3800 3865 3930 3996 4061 667 4126 4191 4256 4321 4386 4451 4516 4581 4646 4711 668 4776 4841 4906 4971 5686 5751 5815 5880 5945 6010 670 6075 6140 6204 6269 6334 6399 6464 6528 6693 6658 671 6723 6787 6852 6917 6981 7046 7111 7175 7240 7306 673 8015 8080 8144 8209 8273 8338 8402 8467 8531 </th <th>662</th> <th>0858</th> <th>0924</th> <th>0989</th> <th></th> <th></th> <th>1186</th> <th>1251</th> <th>1317</th> <th>1382</th> <th></th>	662	0858	0924	0989			1186	1251	1317	1382	
665 2822 2887 2952 3018 3083 3148 3213 3279 3844 3409 666 3474 3539 3605 3670 3735 3800 3953 3996 4061 667 4126 4191 4256 4321 4386 4451 4516 4684 4711 668 4476 4841 4906 4971 5036 5101 5166 5221 5296 5861 669 5426 5491 5556 5621 5686 5751 5815 5880 5945 6010 670 6075 6140 6204 6269 6334 6399 6464 6528 6593 6658 671 6723 6787 6852 6917 6981 7046 7111 7175 7240 7306 673 8015 8080 8144 8209 8273 8338 8402 8467 8531 8596 676 9947 .											
666 3474 3539 3605 3670 3735 3800 3865 3930 3996 4061 667 4126 4191 4256 4321 4386 4451 4516 4686 4711 668 4776 4841 4906 4971 5086 5101 5166 5221 5296 5861 5666 5751 5815 5880 5945 6010 670 6075 6140 6204 6269 6334 6399 6464 6528 5945 6010 670 6775 6877 6852 6917 6081 7046 7111 7175 7240 7306 672 7369 7434 7499 7563 7628 7692 7757 7821 7886 7951 673 8015 8080 8144 8209 8373 8388 8402 8467 8631 8595 674 8660 8724 8789 8853 8918 8962 9046 9111	664	2168	2283	2299	2364	2430	2495	2560	2626	2691	2756
666 3474 3539 3605 3670 3735 3800 3865 3930 3996 4061 667 4126 4191 4256 4321 4386 4451 4516 4686 4711 668 4776 4841 4906 4971 5086 5101 5166 5221 5296 5861 5666 5751 5815 5880 5945 6010 670 6075 6140 6204 6269 6334 6399 6464 6528 5945 6010 670 6775 6877 6852 6917 6081 7046 7111 7175 7240 7306 672 7369 7434 7499 7563 7628 7692 7757 7821 7886 7951 673 8015 8080 8144 8209 8373 8388 8402 8467 8631 8595 674 8660 8724 8789 8853 8918 8962 9046 9111	₽ĎE	9990	0004	OOKO	9010	0000	9140	9010	90770	2244	9400
667 4126 4191 4256 4321 4386 4451 4516 4581 4646 4711 668 4776 4841 4906 4971 5036 5101 5166 5231 5296 5861 5860 5945 6010 670 6075 6140 6204 6289 6334 6399 6464 6528 6593 6658 6711 7736 7787 6852 6917 6981 7046 7111 7175 7240 7306 672 7369 7434 7499 7563 7662 7672 77821 7886 7951 673 8015 8060 8144 8209 8273 8338 8402 8467 8531 8595 674 8660 8724 8789 8853 8818 8982 9046 9111 9175 9239 675 9304 9368 9432 9497 9561 9625 9690 9754 9818 9882 96767											
668 4776 4841 4906 4971 5036 5101 5166 5281 5296 5361 669 5426 5491 5556 5621 5686 5751 5815 5880 5945 6010 670 6075 6140 6204 6289 6334 6399 6464 6528 6593 6658 671 6723 6787 6852 6917 6981 7046 7111 7175 7240 7305 7305 6722 7757 7821 7886 7951 7861 692 8273 8388 8402 8467 8531 8595 674 8660 8724 8789 8853 8918 8962 9046 9111 9175 9239 675 9304 9368 9432 9497 9661 9625 9690 9754 9818 9882 676 9947 .11 .75 .139 .204 .268 .332 .396 .460											
670 6075 6140 6204 6269 6334 6399 6464 6528 6653 6658 671 6723 6787 6852 6917 6981 7046 7111 7175 7240 7306 672 7369 7434 7499 7563 7692 7757 7821 7886 7951 673 8015 8080 8144 8209 8273 8338 8402 8467 8531 8595 674 8660 8724 8789 8853 8918 8982 9046 9111 9175 9239 675 9304 9368 9432 9497 9561 9625 9690 9754 9818 9882 677 830689 9653 7017 0781 0845 9090 99731 1037 1102 1166 678 1230 1294 1358 1422 1466 1550 1614 1678 1102 116					4971				5281		
671 6723 6787 6862 6917 6981 7046 7111 7175 7240 7305 672 7363 7434 7499 7563 7692 7757 7821 7886 7951 673 8015 8060 8144 8209 8273 8338 8402 8467 8531 8591 8531 8591 8531 8592 8467 8531 8592 8467 8531 8592 9046 9111 9175 9239 926 676 9676 9625 9690 9754 9818 9882 676 9690 9754 9818 9882 676 9947 11 75 .139 .204 .268 .332 .396 .460 .525 677 830589 0653 0717 0781 0845 0909 0973 1037 1102 1166 678 1230 1294 1368 1422 1486 1550 1614 1678 1742 1806 679 <th>669</th> <th>5426</th> <th>5491</th> <th>5556</th> <th>5621</th> <th>5686</th> <th>5751</th> <th>5815</th> <th>5880</th> <th>5945</th> <th>6010</th>	669	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010
671 6723 6787 6862 6917 6981 7046 7111 7175 7240 7305 672 7363 7434 7499 7563 7692 7757 7821 7886 7951 673 8015 8060 8144 8209 8273 8338 8402 8467 8531 8591 8531 8591 8531 8592 8467 8531 8592 8467 8531 8592 9046 9111 9175 9239 926 676 9676 9625 9690 9754 9818 9882 676 9690 9754 9818 9882 676 9947 11 75 .139 .204 .268 .332 .396 .460 .525 677 830589 0653 0717 0781 0845 0909 0973 1037 1102 1166 678 1230 1294 1368 1422 1486 1550 1614 1678 1742 1806 679 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0000</th> <th>l</th> <th></th> <th></th> <th></th>							0000	l			
672 7369 7434 7499 7563 7628 7692 7757 7821 7886 7951 673 8015 8060 8144 8209 8273 8338 8402 8467 8531 8595 674 8660 8724 8789 8853 8918 8962 9046 9111 9175 9239 675 9304 9368 9432 9497 9561 9625 9690 9764 9818 9882 676 9947 .11 .75 .139 .204 .268 .332 .396 .460 .525 677 830689 9653 9717 7781 1084 5090 9073 1037 1102 1166 678 1230 1294 1358 1422 1486 1550 1614 1678 1742 1806 679 1870 1934 1998 2062 2126 2189 2253 2317 2381 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
673 8015 8080 8144 8209 8273 838 8402 8467 8531 8595 674 8660 8724 8789 8853 8918 8982 9046 9111 9175 9239 675 9304 9368 9432 9497 9661 9625 9690 9754 9818 9882 676 9947 .11 .75 139 .204 .268 .332 .396 .460 .525 677 830589 0653 0717 0781 0845 0909 9073 1037 1102 1166 678 1230 1234 1358 1422 1486 1550 1614 1678 1742 1806 679 1870 1934 1998 2062 2126 2189 2258 2317 2381 2445 680 2509 2573 2637 2700 2764 2828 2892 2956 3020 3083 681 3147 3211 3275 3338 3402 3466 3530 3593 3667 3721 682 3784 3848 3912 3975 4039 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 684 5056 5120 5188 5247 5310 5373 5437 5600 5564 5627 686 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 6957 7020 7083 7146 7210 7273 7336 7399 7462 7526 689 3219 6282 8345 8048 8471 8584 8597 8660 8723 8786 689 8219 8928 8345 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8849 8112 8975 9008 8471 8594 690 8492 9499 9408 9408 9408 8471 8594 6908 8499 9462 9460 8723 8786 691 9478 9541 9604 9667 9729 9729 9792 9899 9362 9415 691 9478 9541 9604 9667 9729 9729 9799 9899 9362 9415 691 9478 9541 9604 9667 9729 9729 9729 9899 9362 9415 691 9478 9541 9604 9667 9729 9729 9729 9899 9362 9415 691 9478 9541 9604 9667 9729 9729 9729 9899 9362 9415 693 0733 0796 0859 0921 0984 1046 1109 1172 1284 1297 1604 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922											
674 8660 8724 8789 8853 8918 8982 9046 9111 9175 9239 675 9304 9368 9432 9497 9561 9625 9690 9754 9818 9882 676 9947 11 75 .139 .204 .268 .332 .396 .460 .525 677 830689 0663 0717 0781 0845 0909 0973 1037 1102 1166 678 1230 1294 1368 1422 1486 1550 1614 1678 1742 1806 679 1870 1934 1998 2062 2126 2189 2258 2317 2381 2445 680 2509 2573 2637 2700 2764 2828 2892 2956 3020 3083 3667 3731 682 3784 3848 3912 3975 4039 4103 4166 4											
675 9304 9368 9432 9497 9561 9625 9690 9754 9818 9882 676 9947 .11 .75 1.39 .204 .268 .332 .396 .460 .525 677 830689 0663 0717 0781 0845 0990 9073 1037 1102 1166 679 1870 1934 1998 2062 2126 2189 2253 2317 2381 2445 680 2509 2573 2637 2700 2764 2828 2892 2956 3020 3083 681 3147 3211 3275 3338 3402 3466 3530 3593 3657 3721 682 3784 3848 3912 3975 4039 4103 4166 4230 4294 4357 683 4221 4484 4484 4461 4675 4739 4802 4892 4993 </th <th>674</th> <th>8660</th> <th>8724</th> <th>8789</th> <th>8853</th> <th></th> <th>8982</th> <th></th> <th></th> <th></th> <th></th>	674	8660	8724	8789	8853		8982				
676 9947 .11 .75 139 .204 .268 .332 .396 .460 .525 677 830589 0653 0717 0781 0845 0909 0973 1037 1102 1166 679 1870 1934 1998 2062 2126 2189 2258 2317 2381 2445 680 2509 2573 2637 2700 2764 2828 2892 2956 3020 3083 681 3147 3211 3275 3338 3402 3466 3530 3593 3667 3721 682 3784 3848 3912 3975 4089 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 684 5056 5120 5183 5247 5310 5373 5437 5600 5664 <th>1</th> <th></th> <th></th> <th></th> <th></th> <th>65</th> <th>Ì</th> <th></th> <th></th> <th></th> <th>1</th>	1					65	Ì				1
677 830689 0663 0717 0781 0845 0909 0973 1037 1102 1166 678 1230 1294 1358 1422 1486 1550 1614 1678 1742 1806 679 1870 1934 1998 2062 2126 2189 2258 2317 2381 2445 680 2509 2573 2637 2700 2764 2828 2892 2956 3020 3083 681 3147 3211 3275 3338 3402 3466 3530 3593 3657 3721 682 3784 3848 3912 3975 4039 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 684 5056 5120 5183 5247 5310 5373 5437 5500 5564			9368								
678			11								
679 1870 1934 1998 2062 2126 2189 2258 2317 2381 2445 680 2509 2573 2637 2700 2764- 2828 2892 2956 3020 3083 681 3147 3211 3275 3338 3402 3466 3530 3593 3657 3721 682 3784 3848 3912 3975 4039 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 684 5056 5120 5183 5247 5310 5373 5437 5600 5664 5627 685 5691 5754 5817 5881 5944 6007 6071 6134 6197 6261 686 6324 6387 6451 6514 6577 6641 6704 6767 6830<											
680 2509 2573 2687 2700 2764-2828 2892 2956 3020 3088 681 3147 3211 3275 3338 3402 3466 3530 3593 3657 3721 682 3784 3848 3912 3975 4089 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 684 5056 5120 5183 5247 5310 5373 5437 5500 5564 5627 685 5691 5754 5817 5881 5944 6007 6071 6134 6197 6961 686 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 7657 7020 7083 7146 7210 7273 7336 7399 7462 7											
681 8147 3211 3275 3338 3402 3466 3530 3593 3657 3721 682 3784 3848 3912 3975 4039 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 684 5056 5120 5183 5247 5310 5373 5437 5500 5564 5627 685 6824 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 6957 7020 7083 7146 7210 7273 7336 7399 7462 7526 688 7588 7652 7715 7778 7841 7904 7967 8030 8093 8156 689 3219 5282 8345 8408 8471 8584 8597 8660 8723 </td <th></th> <td>. !</td> <td></td> <td></td> <td></td> <td></td> <td>ł</td> <td> </td> <td></td> <td></td> <td></td>		. !					ł				
681 8147 3211 3276 3338 3402 3466 3530 3593 3667 3721 682 3784 3848 3912 3975 4089 4103 4166 4230 4294 4357 683 4421 4484 4548 4611 4675 4739 4802 4366 4929 4993 684 5056 5120 5183 5247 5310 5373 5437 5500 5564 5627 685 5691 5754 5817 5881 5944 6007 6071 6134 6197 6261 686 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 6957 7020 7083 7146 7210 7273 7336 7399 7462 7525 688 7588 7652 7715 7778 7841 7904 7967 8300 8993 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>2764-</th> <th></th> <th>2892</th> <th>2956</th> <th>3020</th> <th>3083</th>						2764-		2892	2956	3020	3083
683 4421 4484 4548 4611 4675 4739 4802 4866 4929 4993 684 5056 5120 5183 5247 5310 5373 5437 5600 5564 5627 685 5691 5754 5817 5881 5944 6007 6071 6134 6197 6961 686 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 6957 7020 7083 7146 7210 7273 7336 7399 7462 7525 688 7568 7652 7715 7778 7841 7904 7967 8030 8093 8156 689 8219 6282 8345 8408 8471 8584 8597 8660 8723 8786 690 8849 8912 8975 9038 9109 9164 9227 9889 9362 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>3721</th>											3721
684 5056 5120 5183 5247 5310 5373 5437 5500 5564 5627 685 5691 5754 5817 5881 5944 6007 6071 6134 6197 6261 686 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 6957 7020 7083 7146 7210 7273 7336 7399 7462 7525 688 7588 7652 7715 7778 7841 7907 7903 8093 8156 689 3219 5282 8345 8408 8471 8584 8597 8660 8723 8786 690 8849 8912 8975 9088 9109 9164 9227 9289 9352 9415 691 9478 9541 9604 9667 9729 9792 9855 9918 9981 .43 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
685 5691 5754 5817 5881 5944 6007 6071 6134 6197 6261 686 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 6957 7020 7083 7146 7210 7273 7336 7399 7462 7526 688 7588 7652 7715 7778 7841 7904 7967 8030 8093 8156 689 3219 5282 8345 8408 8471 8584 8597 8660 8723 8786 690 8849 8912 8975 9038 9109 9164 9227 9289 9352 9415 691 9478 9541 9604 9667 9729 9792 9855 9918 9981 43 692 840106 0169 0232 0294 0357 0420 0482 0545 0608											
686 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 6957 7020 7083 7146 7210 7273 7336 7399 7462 7525 688 7688 7652 7715 7778 7841 7904 7967 8030 8093 8156 689 8219 5282 8346 8408 8471 8584 8597 8660 8723 8786 690 8849 8912 8975 9038 9109 9164 9227 9889 9352 8415 691 9478 9541 9604 9667 9729 9792 9855 9918 9981 .43 692 840106 0169 0232 0294 0357 0420 0482 0645 0608 0671 693 0733 0796 0859 0921 0984 1046 1109 1172 1284<		-	0120	0100	021.	3010		0.00.	1000	0002	1 0021
686 6324 6387 6451 6514 6577 6641 6704 6767 6830 6894 687 6957 7020 7083 7146 7210 7273 7336 7399 7462 7595 688 7568 7652 7715 7778 7841 7904 7967 8030 8093 8156 689 8219 6282 8345 8408 8471 8584 8597 8660 8723 8786 690 8849 8912 8975 9038 9109 9164 9227 9889 9352 8786 691 9478 9541 9667 9729 9792 9855 9918 9415 9866 8923 8786 691 9478 9541 9604 9667 9729 9792 9855 9918 9981 .43 692 840106 0169 0232 0294 0357 0420 0482 0645<			5754	5817	5881	5944	6007	6071	6134	6197	6261
688 7588 7652 7715 7778 7941 7904 7967 8030 8093 8156 689 8219 6282 8345 8408 8471 8584 8597 8660 8723 8786 690 8849 8912 8975 9088 9109 9164 9227 9289 9352 9415 691 9478 9541 9604 9667 9729 9792 9855 9918 9981 43 692 840106 0169 0232 0294 0357 0420 0482 0645 0608 0671 693 0733 0796 0859 0921 0984 1046 1109 1172 1234 1297 694 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922 605 1985 2047 2110 2172 2235 2297 2360 2422 2484			6387	6451	6514	6577	6641	6704	6767	6830	6894
689 8219 6282 8345 8408 8471 8584 8597 8660 8723 8786 690 8849 8912 8975 9038 9109 9164 9227 9289 9352 9415 691 9478 9541 9604 9667 9729 9792 9855 9918 9981 43 692 840106 0169 0232 0294 0357 0420 0482 0545 0608 0671 693 0733 0796 0859 0921 0984 1046 1109 1172 1234 1297 694 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922 695 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547											
690 8849 8912 8975 9088 9109 9164 9227 9289 9352 9415 691 9478 9541 9604 9667 9729 9792 9855 9918 9981 .43 692 840106 0169 0232 0294 0357 0420 0482 0645 0608 0671 693 0733 0796 0859 0921 0984 1046 1109 1172 1284 1297 694 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922 605 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547											
691 9478 9541 9604 9667 9729 9792 9855 9918 9981 .43 692 840106 0169 0232 0294 0357 0420 0482 0645 0608 0671 693 0733 0796 0859 0921 0984 1046 1109 1172 1284 1297 694 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922 695 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547	000	0.013	0.40.4	3020	0.100	04/1	300-2	9097	0000	0123	9190
691 9478 9541 9604 9667 9729 9792 9855 9918 9981 .43 692 840106 0169 0232 0294 0357 0420 0482 0645 0608 0671 693 0733 0796 0859 0921 0984 1046 1109 1172 1284 1297 694 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922 695 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547	690	8849	8912	8975	9028	9109	9164	9227	9289	9352	9415
692 840106 0169 0232 0294 0357 0420 0482 0645 0608 0671 693 0733 0796 0859 0921 0984 1046 1109 1172 1234 1297 604 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922 605 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547	691	9478					9792				
694 1359 1422 1485 1547 1610 1672 1735 1797 1860 1922 695 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547			0169	0232	0294	0357	0420	0482	0545	0608	0671
695 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547											
695 1985 2047 2110 2172 2235 2297 2360 2422 2484 2547	09-1	1999	1422	1485	1547		1672	1735	1797	1860	1922
200 200 200 200 200 200 200 200	895	1085	9047	0110	0170		9907	0960	0400	0404	0.45
i 1990 i 2009 i2672, 2734 i2796 i9859 i2921 i9988 i2046 i2104 iot∉n i	696	2609	2672	2734	2796	2859	2921	2983	3046	3106	2547 3170
697 3233 3295 3357 3420 3482 3544 3606 3669 3731 3793	697	3233									
698 3855 3918 3980 4042 4104 4166 4229 4291 4353 4415			3918	3 980	4042	4104	4166	4229	4291		
699 4477 4539 4601 4664 4726 4788 4850 4912 4974 5036	699	4477	4539	4601	4664	4726	4788	4850	4912	4974	5036

			0	F N	UMI	BER	s.			15
N.	0	1	2	3	4	5	6	7	8	9
700	845098	5160	5222	5284	5346	5408	5470	5532	5594	5656
701	5718	5780	5842	5904	5966	6028	6090	6151	6213	6275
702	6337	6399	6461	6523	6585	6646	6708	6770	6832	6894
703	6955	7017	7079	7141	7202	7264	7326	7388	7449	7511
704	7573	7634	7676	7758	7819	7831	7943	8004	8066	8128
	1010	1002	.0.0	1100	62		1020	3002		
705	8189	8251	8312	8374	8435	8497	8559	8620	8682	8743
706			8928		9051	9112	9174	9235	9297	9858
707	8805 9419	8866 9481	9542	8989	9665	9726	9788	9849	9911	9972
708	850033	0095	0156	9604	0279	0340	0401	0462	0524	0585
709	0646	0707	0769	0217 0830	0891	0952	1014	1075	1136	1197
103	0040	0707	0709	0030	0091	0302	1014	1010	1100	110.
	1000		4004		****	1004	1005	1000	1747	1000
710	1258	1320	1381	1442	1503	1564	1625	1686	1747	1809
711	1870	1931	1992	2053	2114	2175	2236	2297 2907	2358	2419
712	2480	2541	2602	2663	2724	2785	2846			3029
713	3090	3150	3211	3272	3333	3394	3455	3516	3577	3637
714	3698	3759	3820	3881	3941	4002	4063	4124	4185	4245
1	1	İ		l			١			
715	4306	4367	4428	4488	4549	4610	4670	4731	4792	4852
716	4913	4974	5034	5095	5156	5216	5277	5337	5398	5459
717	5519	5580	5640	5701	5761	5822	5882	5943	6003	6064
718	6124	6185	6245	6306	6366	6427	6487	6548	6608	6668
719	6729	6789	6850	6910	6970	7031	7091	7152	7212	7272
		l	1	į.	ŀ	l	l	1	l	l
720	7332	7393	7453	7513	7574	7634	7694	7755	7815	7875
721	7935	7995	8056	8116	8176	8236	8297	8357	8417	8477
722	8537	8597	8657	8718	8778	8838	8898	8958	9018	9078
723	9138	9198	9258	9318	9379	9489	9499	9559	9619	9679
724	9739	9799	9859	9918	9978	38	98	.158	.218	.278
					60				l	1
725	860338	0398	0458	0518	0578	0637	0697	0757	0817	0877
726	0937	0996	1056	1116	1176	1236	1295	1355	1415	1475
727	1534	1594	1654	1714	1773	1833	1893	1952	2012	2072
728	2131	2191	2251	2310	2370	2430	2489	2549	2608	2668
729	2728	2787	2847	2906	2966	3025	3085	3144	3204	3263
1.20		2.0.	201.	2000	1000					
730	3323	3382	3442	3501	3561	3620	3680	3739	3799	3858
731	3917	3977	4036	4096	4155	4214	4274	4333	4392	4452
732	4511		4630	4689	4148	4808	4867	4926	4985	5045
733	5104	4570	5222	5282	5341	5400	5459	5519	5578	5637
734	5696	5163 5755	5814	5874	5933	5992	6051	6110	6169	6228
10-1	5050	0100	0014	0074	0000	5552	5551		1	
FOF	2007	0040	CANE	CACE	6524	6583	6642	6701	6760	6819
735	6287	6346	6405	6465	7114	7173	7232	7291	7350	7409
736 737	6878	6937	6996 7585	7055	7703	7762	7821	7880	7939	7998
737	7467	7526		7644	8292	8350	8409	8468	8527	8586
738	8056 8644	8115	8174 8762	8233 8821	8879	8938	8997	9056	9114	9173
139	3044	8703	0102	0021	0019	5500	0001	"""	0117	"""
	0000		0040	0.00	0400	9525	0504	9642	9701	9760
740	9232	9290	9349	9408	9466	.111	9584	.228	.281	.345
741 742	9818	9877	9935 0521	9994	0638	0696	0755	0813	0879	0930
743	870404	0462		0579	1223	1281	1339	1398	1456	1515
743	0989 1573	1047	1106	1164	1806	1865	1923	1981	2046	2098
'44	10/8	1631	1090	1748	59	1.000	1020	1001	7020	~000
		00	00=0	0000		0440	0500	2564	2622	2681
745	2156	2215	2273	2331	2389	2448	2506	3146	3204	3262
746	2739	2797	2855	2913	2972	3030	3088	3727	3785	8844
747	3321	3379	3437	3495	3553	3611	3669	4308	4360	4424
748	3902	3960	4018	4076	4134	4192	4250 4830	4888	4945	5003
749	4482	4540	4598	4656	4714	4772	4000	4000	1020	J0000
	<u> </u>	<u></u>	<u></u>		`					

16			L	0 G A	RIT	нм	8			
N.	0	1	2	3	4	- 5	6	7	8	9
750	875031	5119	5177	5235	5293	5351	5409	5466	5524	5582
751	5640	5698	5756	5813	5871	5929	5987	6045	6102	6160
752	6218	6276	6333	6391	6449	6507	6564	6622	6680	6737
753	6795	6853	6910	6968	7026	7083	7141	7199	7256 7832	7314
754	7371	7429	7487	7544	7602 57	7659	7717	7774		7889
755	7947	8004	8062	8119	8177	8234	8292	8349	8407	8464
756	8522	8579	8637	8694	8752	8809	8866	8924	8981	9039
757	9096 9669	9153	9211 9784	9268 9841	9325 9898	9883 9956	9440 13	9497 70	9555 .127	9612 .185
758 759	880242	9726 0299	0356	0413	0471	9900 052 8	0580	0642	0699	0756
109	000223	0233	0000	0410		W20			0000	
760	0814	0871	0928	0985	1042	1099	1156	1213	1271	1328
761	1385	1442	1499	1556	1613	1670	1727	1784 2354	1841	1898 2468
762	1955 2525	2012 2581	2069 2638	2126 2695	2183 2752	2240 2809	2297 2866	2923	2411 2980	3037
763 764	3093	3150	3207	3264	3321	8377	3434	3491	3548	3605
765	8661	8718	8775	8832	3888	8945	4002	4059	4115	4172
766	4229 4795	4285	4342 4909	4399 4965	4455 5022	4512 5078	4569 5135	4625 5192	4682 5248	4739 5305
767 768	5361	4852 5418	5474	5531	5587	5644	5700	5757	5813	5870
769	5926	5983	6039	6096	6152	6209	6265	6321	6378	6434
	040			2222			0000	e00r	0040	~~~
770	6491	6547	6604	6660 7233	6716 7280	6773 7336	6829 7392	6885 7449	6942 7505	6998 7561
771	. 7054 7617	7111 7674	7167 7730	7786	7842	7898	7955	8011	8067	8123
773	8179	8236	8292	8348	8404	8460	8516	8573	8629	8655
774	8741	8797	8853	8909	8965	9021	9077	9134	9190	9246
				1	56	l			1	
775	9302	9358	9414	9470	9526	9582	9638	9694	9750	9806
776	9862	9918	0974	30	86	.141	.197	.253	.309	.365
777	890421	0477	0533	0589	0645	0700	0756	0812	0868 1426	0924 1482
778	0980 1537	1035 1593	1091 1649	1147	1203 1760	1259 1816	1314 1872	1370 1928	1983	2039
779	1007	1093	1049	l	1	1010				l
780	2095	2150	2206	2262	2317	2373	2429	2484	2540	2595
781	2651	2707	2762	2818	2873	2929	2985	3040	3096	3151
782	3207	3262	3318	8373 8928	3429	3484	3540 4094	8595	3651 4205	3706 4261
783 784	3762 4316	3817 4371	3873 4427	4482	3984 4538	4039 4593	4648	4150 4704	4759	4814
785	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367
786	5423 5975	5478	5533	5588 6140	5644 6195	6699	5754 6306	5809 6361	5864 6416	592(6471
787 788	6526	6030 6581	6085 6636	6692	6747	6251 6802	6857	6912	6967	7022
789	7077	7132	7187	7242	7297	7352	7407	7462	7517	7572
			1201			1.002			ļ	
790	7627	7683	7737	7792	7847	7902	7957	8012	8067	8122
791	8176	8231	8286	8341	8396	8451	8506	8561	8615	8670
792	8725	8780 9328	8835	8890 9437	8944 9492	8999 9547	9054 9602	9109 9656	9164 9711	9218 9766
793 794	9273 9821	9328	9383 9930	9985	89	94	,149	.203	.258	.312
			-		55					
795	900367	0422	0476	^531	0586	0640	9695	0749	0804	0859
796	0913	0968	1022	1077	1131	1186	1240	1295	1349	1404
797 798	1458	1513	1567	1622	1676	1736	1785	1840	1654	1948
798 799	2003 2547	2057 2601	2112 2655	2166 2710	2221 2764	2275 2818	2329 2873	2384 2927	2438 2981	2492 3036
133	2021	2001	2000	2,10	2104	2010	2013	2521	2001	3000
			_							

			0	FN	UMAB	ERS	3.			17
N.	0	1	2	3	4	5	6	7	8	9
800	903090	3144	3199	8253	3307	8361	3416	3470	3524	3578
801	3633	3687	3741	3795	3849	3904	3958	4012	4066	4120
802	4174	4229	4283	4337	4391	4445	4499	4553	4607	46G1
803	4716	4770	4824	4878	4932	4986	5040	5094	5148	5202
804	525 6	5310	5364	5418	5472 54	5526	5580	5634	5688	5742
805	5796	5850	5904	5958	6012	6066	6119	6173	6227	6281
806	6335	6389	6443	6497	6551	6604	6658	6712	6766	6820
807	6874	6927	6981	7035	7089	7143	7196	7250	7304	7358
808	7411	7465	7519	7573	7626	7680	7734	7787	7841	7895
809	7949	800%	8056	8110	8163	8217	8270	8324	8378	8431
810	8485	8539	8592	8646	8699	8753	8807	8860	8914	8967
811	9021	9074	9128	9181	9235	9289	9342	9396	9449	9503
812	9556	9610	9663	9716	9770	9823	9877	9930	9984	87
813	910091	0144	0197	0251	0304	0358	0411	0464	0518	0571
814	0624	0678	0781	0784	0838	0891	0944	0998	1051	1104
815	1158	1211	1264	1317	1371	1424	1477	1530	1584	1637
816	1690	1743	1797	1850	1903	1956	2009	2063	2115	2169
817	2222	2275	2323	2381	2435	2488	2541	2594	2645	2700
818	2753	2806	2859	2913	2966	3019	3072	3125	3178	3231
819	3284	3337	3390	3443	8496	3549	3602	3655	3708	3761
820	3814	8867	3920	3973	4026	4079	4132	4184	4237	4290
821	4343	4396	4449	4502	4555	4608	4660	4713	4766	4819
822	4872	4925	4977	5030	5083	5136	5189	5241	5294	5347
823	5400	5453	5505	5558	5611	5664	5716	5769	5822	5875
824	5927	5980	6033	6085	6138	6191	6243	6296	6349	6401
						1	ł			1
825	6454	6507	6559	6612	6664	6717	6770	6822	6875	6927
826	6980	7033	7085	7138	7190	7243	7295	7348	7400	7453
827	7506	7558	7611	7663	7716	7768	7820	7873	7925	7978
828	8030	8083	8185	8188	8240	8293	8345	8397	8450	8502
829	8555	8607	8659	8712	8764	8816	8869	8921	8973	9026
830	9078	9130	9183	9235	9287	9340	9392	9444	9496	9549
831	9601	9653	9706	9758	9810	9862	9914	9967	19	71
832	920123	0176	0228	0280	0332	0384	0436	0489	0541	0593
883	0645	0697	0749	0801	0853	0906	0958	1010	1062	1114
834	1166	1218	1270	1322	1374	1426	1478	1530	1582	1634
835	1686	1738	1790	1842	1894	1946	1998	2050	2102	2154
836	2206	2258	2310	2362	2414	2466	2518	2570	2622	2674
837	2725	2777	2829	2881	2933	2985	3037	3089	3140	3192
838	3244	3296	3348	3399	3451	3503	3555	3607	3658	3710
839	8762	3814	3865	8917	3969	4021	4072	4124	4147	4228
840	4279	4331	4383	4434	4486	4538	4589	4641	4693	4744
841	4796	4848	4899	4951	5003	5054	5106	5157	5209	5261
842	5312	5364	5415	5467	5518	5570	5621	5673	5725	5776
843	5828	5874	5931	5982	6034	6085	6137	6188	6240	6291
844	6342	6394	6445	6497	6548 52	6600	6651	6702	6754	6805
845	6857	6908	6959	7011	7062	7114	7165	7216	7268	7319
846	7370	7422	7473	7524	7576	7627	7678	7730	7783	7832
847	7883	7935	7986	8037	8088	8140	8191	8242	8293	8345
848	8396	8447	8498	8549	8601	8652	8703	8754	8805	8857
849	8908	8959	9010	9061	9112	9163	9216	9266	9317	9368

_	
1	1
	c

18			L	O G A	RIT	'н м	8			
N.	0	1'	2	8	4	5	6	7	8	9
850	929419	9473	9521	9572	9623	9674	9725	9776	9827	9879
851	9930	9981	32	83	.134	.185	.236	.287	.338	.389
852	930440	0491	0542	0592	0643	0694	0745	0796	0847	0898
853	0949	1000	1051	1102	1158	1204	1254	1305	1356	1407
854	1458	1509	1560	1610	1661	1712	1763	1814	1865	1915
		1		ļ	51		1	i		
855	1966	2017	2068	2118	2169	2220	2271	2322	2372	2423
856	2474	2524	2575	2626	2677	2727	2778	2829	2879	2930
857	2981	3031	8082	3133	3183	3284	3285	3335	3386	3437
858	8487	3538	3589	3639	3690	3740	8791	3841	3892	8943
859	3993	4044	4094	4145	4195	4246	4269	4847	4397	4448
i				1	ł	1		ł	ŀ	
860	4498	4549	4599	4650	4700	4751	4801	4852	4902	4953
861	5003	5054	5104	5154	5205	5255	5306	5356	5406	5457
862	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960
863	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463
864	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966
1					İ	į	i			
865	7016	7066	7117	7167	7217	7267	7317	7367	7418	7468
866	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969
867	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470
868	8520	8570	8620	8670	8720	8770	8820	8870 9369	8919	8970
869	9020	9070	9120	9170	9220	9270	9320	9309	9419	9469
	0=10	0500	0000					0000		
870	9519	9569 0068	9616	9669	9719	9769	9819	9869 0367	9918	9968
871	940018 0516	0566	0118 0616	0168	0218 0716	0267	0317 0815	0865	0417	0467
872 873	1014	1064	1114	0666 1163	1213	0765 1263	1813	1862	0915 1412	0964 1462
874	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958
014	1011	1001	1011	1000	1	1.00	-000	****	1000	1300
875	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455
876	2504	2554	2603	2653	2702	2752	2801	2851	2901	2950
877	3000	3049	3099	3148	3198	3247	3297	3346	3396	3445
878	3495	3544	3593	3643	3692	3742	3791	3841	3890	3939
879	3989	4038	4088	4137	4186	4236	4285	4335	4384	4433
	1	ľ	1				1	l		i
880	4483	4532	4581	4631	4680	4729	4779	4828	4877	4927
881	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419
882	5469	5518	5567	5616	5665	5715	5764	5813	5862	5912
883	5961	6010	6059	6108	6157	6207	6256	6305	6354	6403
884	6452	6501	6551	6600	6649	6698	6747	6796	6845	6894
Į.									İ	1
885	6943	6992	7041	7090	7140	7189	7238	7287	7336	7385
886	7434	7483	7532	7581	7630	7679	7728	7777	7826	7875
887	7924	7973	8022	8070	8119	8168	8217	8266	8315	8365
888	8413	8462	8511	8560	8609	8657	8706	8755	8804	8853
889	8902	8951	8999	9048	9097	9146	9195	9244	9292	9341
			0.400				0000	0501		
890	9390	9439	9488	9536	9585	9634	9683	9731	9780	9829
891	9878	9926	9975	24	73	.121	.170	.219 0706	.267	.816
892 893	950365 0851	0414	0462 0949	0511	0560 1046	0608	0657 1143	1192	0754 1240	0803
894	1338	1386	1435	0997 1483	1532	1095 1580	1629	1677	1726	1289 1775
034	1000	1000	1700	1400	48	1000	1023	20.7	1120	1110
one	1000	1070	1920	1000		0000	6114	2163	0011	DOCA
895 896	1823 2308	1872 2356	2405	1969 2453	2017 2502	2066 2550	2114 2599	2647	2211 5696	2260
897	2792	2841	2889	2938	2986	3034	3083	3131	3180	2744 3228
898	3276	3325	3373	3421	3470	3518	3566	3615	3663	8711
899	3760	3808	3856	3905	3953	4001	4049	4098	4146	4194
	1 3.00	1 - 3 4 5	1 - 3 - 3							

		•	0	F N	נאט	BER	s.			19
N.	0′	1	2	3	4	5	6	7	8	9
900	954243	4291	4339	4387	4435	4484	4532	4580	4628	4677
901 902	4725 5207	4773 5255	4821 5303	4869 5351	4918 5 3 99	4966 5447	5014 5495	5062 5543	5110 5592	5158 5640
903	5688	5736	5784	5832	5880	5928	5976	6024	6072	6120
904	6168	6216	6265	6313	63 61 48	6409	6457	6505	6553	6601
905	6649	6697	6745	6793	6840	6888	6936	6984	7032	7080
906	7128 7607	7176 7655	7224 7703	7272 7751	7320 7799	7368 7847	7416 7894	7464 7942	7512 7990	7559 8038
908	8086	8134	8181	8229	8277	8325	8373	8421	8468	8516
909	8564	8612	8659	8707	8755	8803	8850	8898	8946	8994
910	9041	9089	9137	9185	9232	9280	9328	9375	9423	9471
911	9518	9566 42	9614	9661	9709	9757 .233	9804	9852 .328	9900 .376	9947
912 913	9995 960471	0518	0566	.138 0613	.185 0661	0709	.280 0756	0804	0851	.423 0899
914	. 0946	0994	1041	1089	1136	1184	1231	1279	1326	1374
915	1421	1469	1516	1563	1611	1658	1706	1753	1801	1848
916	1895	1943	1990	2038	2085	2132	2180	2227	2275	2322
917 918	2369 2843	2417 2890	2464 2937	2511 2985	2559 3032	2606 3079	2653 3126	2701 3174	2748 3221	2795 3268
919	8316	8363	8410	3457	3504	3552	3599	3646	3693	3741
920	3788	3 835	3882	3929	8977	4024	4071	4118	4165	4212
921	4260	4307	4354	4401	4448	4495	4542	4590	4637	4684
922 923	4731 5202	4778 5249	4825 5296	4872 5343	4919 5390	4966 5437	5013 5484	5061 5531	5108 5578	5155 5625
924	5672	5719	5766	5813	5860	5907	5954	6001	6048	6095
925	6142	6189	6236	6283	6329	6376	6423	6470	6517	6564
926	6611	6658	6705	6752	6799	6845	6892	6939	6986	7033
927	7080	7127	7173	7220	7267	7314	7361	7408	7454	7501
928 929	7548 8016	7595 8062	7642 8109	7688 8156	7735 8203	7782 8249	7829 8296	7875 8343	7922 8390	7969 8 43 6
930	8483	8530	8576	8623	8670	8716	8763	8810	8856	8903
931	8950	8996	9043	9090	9136	9183	9229	9276	9323	9369
932	9416	9463	9509	9556	9602	9649	9695	9742	9789	9835
933 934	9882 970347	9928 0393	9975 0440	0486	0533	.114 0579	.161 0626	.207 0672	.254 0719	.300 0765
935 936	0812 1276	0858 1322	0904 1369	0951 1415	0997 1461	1044 1508	1090 1554	1137 1601	1183 1647	1229 1693
937	1740	1786	1832	1879	1925	1971	2018	2064	2110	2157
938	2203	2249	2295	2342	2388	2434	2481	2527	2573	2619
939	2666	2712	2758	2804	2851	2897	2943	2989	3035	3082
940	3128	8174	3220	3266	3313	3359	3405	3451	3497	3543
941	3590 4051	3636 4097	3682 4143	3728 4189	3774 4235	3820 4281	3866 4327	3913 4374	3959 4420	4005
942 943	4512	4558	4604	4650	4696	4742	4788	4834	4880	4466 4926
944	4972	5018	5064	5110	5156 46	5202	5248	5294	5340	5386
945	5432	5478	5524	5570	5616	5662	5707	5753	5799	5845
946	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304
947	6350	6396	6442	6488 6946	6533	6579 7037	6625 7083	6671	6717	6763
948 949	6808 7266	6854 7312	6900 7358	7403	7449	7495	7541	7129 7586	7175 7632	7920 7678
523	1,200	1012	1000	1 . 200	1.23	1.200	1.0.7	1,300	1002	1018

20			L	O G A	RIT	нм	s	,		
N.	0	1	2	3	4	5	6	7	-8	9
950	977724	7769	7815	7861	7906	7952	7998	8043	8089	8185
951	8181	8226	8272	8317	8 363	8409	8454	8500	8546	8591
952	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047
953 954	9093 9548	9138 9594	9184 9639	9230 9685	9275 9730	9321 9776	9366 9821	9412 9867	9457 9912	9503 99 58
33-1	8040	3034	9009	3000	46	9110	8021	3001	3312	3300
955	980003	0049	0094	0140	0185	0231	0276	0322	0367	0412
956	0458	0503	0549	0594	0640	0685	0730	0776	0821	0867
957	0912	0957	1003	1048	1093	1139	1184	1229	1275	1320
968	1366 1819	1411 1864	1456	1501	1547	1592	1637	1683 2135	1728 2181	1773 2226
959	1919	1004	1909	1954	2000	2045	2090	2135	2101	2220
960	2271	2316	2362	2407	2452	2497	2543	2588	2633	2678
961	2723	2769	2814	2859	2904	2949	2994	3040	3085	3130
962	3175	3220	3265	3310	8356	3401	3446	3491	8536	3581
963	8626	3671 4122	3716	3762	3807	3852	3897	3942	3987	4082
964	4077	4122	4167	4212	4257	43.52	4347	4392	4437	4482
965	4527	4572	4617	4662	4707	4752	4797	4842	4887	4982
966	4977	5022	5067	5112	5157	5202	5247	5292	5337	5382
967	5426	5471	5516	5561	5606	5651	5699	5741	5786	5830
968	5875	5920	5965	6010	6055	6100	6144	6189	6234	6279
969	6324	636 9	6413	6458	6503	6548	6593	6637	6682	6727
970	6772	6817	6861	6906	6951	6996	7040	7 0 85	7130	7175
971	7219	7264	7309	7353	7398	7443	7488	7532	7577	7622
972	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068
973	8113 8559	8157 8604	8202	8247 8693	8291	8336	8381 8826	8425 8871	8470 8916	8514 8960
974	6009	0004	8648	0093	8737	8782	8820	00/1	0910	8900
975	9005	9049	9093	9138	9183	9227	9272	9316	9361	9405
976	9450	9494	9539	9583	9628	9672	9717	9761	9806	9850
977	9895	9939	9983	28	72	.117	.161	.206	.250	.294
978	990339 0783	0383 0827	0428	0472	0516 0960	0561	0605 1049	0650 1093	0694 1137	0738 1182
979	0/03	U0#1	0871	0916	0900	1004	1049	1090	1101	1102
980	1226	1270	1315	1359	1403	1448	1492	1536	1580	1625
981	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067
982	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509
983	2554	2598 3039	2642 3083	2686 3127	2730 3172	2774	2819 3260	2863 3304	2907 3348	2951 3392
984	2995	3003	3003	3121	0112	3216	0200	0004	0040	0032
985	3436	3480	3524	3568	3613	3657	3701	3745	3789	3833
986	3877	3921	3965	4009	4053	4097	4141	4185	4229	4273
987	4317	4361	4405	4449	4493	4537	4581	4625	4669	4713
988	4757 5196	4801 5240	4845 5284	4886 5328	4933 5372	4977	5021	5065 5504	5108 5547	5152 5591
989	0190	5240	0204	0320	0312	5416	5460	0004	0041	0091
990	5635	5 679	5723	5767	5811	5854	5898	5942	5986	6030
991	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468
992	6512	6555	6599	6643	6687	6781	6774	6818	6862	6906
993	6949	6993 7430	7037	7080	7124	7168	7212	7255 7692	7299 7736	7343 7779
994	7386	1400	7474	7517	7561 44	7605	7648	1092	1100	1119
995	7823	7867	7910	7954	7998	8041	8085	8129	8172	8216
996	8259	8303	8347	8390	8434	8477	8521	8564	8608	8652
997	8695	8739	8792	8826	8869	8913	8956	9000	9043	9087
998	9131	9174	9218	9261	9305	9348	9392	9435	9479	9522
999	9565	9609	9652	9696	9739	9783	9826	9870	9913	9957

	TABLE II.	L	og. Sines	and T	angents. (0°) N	atural Sines	L.	2	1
,	Sine.	D.10"	Cosine.	D, 10'	Tang.	D.10"	Cotang.	N.sine.	N. cos.	
U	Neg.infinite		10.000000		0.000000		Infinite.	00000	100000	60
1	6.463726		000000		6.463726		13.536274	00029	100000	5
2	764756		000000		764756		235244	00058	100000	5
3	940847		000000		940847		059153		100000	
4	7.065786		000000		7.065786		12.934214	00116	100000	5
5	162696		000000		162696		837304		100000	
6	241877		9.999999		241878		758122		100000	
7	308824		999999		308825		691175	00204	100000	5
8	366816		999999	r e	366817		633183		100000	
9	417968		999999		417970		582030		100000	
10	463725		999998		463727		536273		100000	
11	7.505118		9.999998		7.505120		12.494880	90320		
12	542906		999997		542909		457091	00349		
13	577668		999997		577672		422328	00378		
14	609853		999996		609857		390143	00407	99999	
15	639816		999996		639820		360180	00436		
16	667845		999995		667849		332151	00465	99999	
17	694173		999995		694179		305821	00495		
18	718997		999994		719003		280997	00524	99999	
19	742477		999993		742484		257516	00553	99998	
20	764754	100	999993		764761		235239	00582		
21	7.785943	11.7	9.999992		7.785951		12.214049	00611	99998	
22	806146		999991		806155		193845	00640		
23	825451		999990		825460		174540	00669		
24	843934		999989		843944		156056	00698		
25	861663		999988		861674		138326	00727	99997	3
26	878695		999988		878708		121292	00756		
27	895085		999987		895099		104901	00785		3
28	910879		999986		910894		089106	00814		
29	926119		999985		926134		073866	00844		
30	940842		999983		940858		059142	00873		
31	7.955082	2298	9.999982	0.2	7.955100	2298	12.044900	00902		
32	968870	2227	999981	0.2	968889	2227	031111	00931	99996	
33	982233	2161	999980	0.2	982253	2161	017747	00960		12
34	995198	2098	999979	0.2	995219	2098	004781	00989		
35	8.007787	2039	999977	0.2	8.007809	2039	11.992191	01018		
36	020021	1983	999976	0.2	020045	1983	979955	01047	99995	2
37	031919	1930	999975	0.2	031945	1930	968055	01076		
38	043501	1880	999973	0.2	043527	1880	956473	01105		
39	054781	1832	999972	0.5	054809	1833	945191	01134	99994	
40	065776	1787	999971	0.5	065806	1787	934194	01164	99993	
41	8.076500	1744	9.999969	0.5	8.076531	1744	11.923469	01193		
42	086965	1703	899900	0.5	086997	1703	913003	01222	99993	
43	097183	1664	999900	0.2	097217	1664	902783	01251	99992	
44	107167	1626	999964	0.3	107202	1627	892797	01280		
45	116926	1591	999963	0.3	116963	1591	883037	01309	99991	
AR	196471	1031	0000001		196510		879490	01338		

OU	CO.T.O.O.T.W.		000000		6 X0000		CONTRA	200000		
31	7.955082	2000	9.999982		7.955100	2298	12.044900	00902	99996	29
32	968870	2298	999981	0.2	968889	2227	031111	00931	99996	28
33	982233	2227	999980	0.2	982253	2161	017747	00960	99995	27
34	995198	2161	999979	0.2	995219	2098	004781	00989	99995	26
35	8.007787	2098	999977	0.2	8.007809	2039	11.992191	01018	99995	25
36	020021	2039	999976	0.2	020045		979955	01047	99995	24
37	031919	1983	999975	0.2	031945	1983 1980	968055	01076	99994	23
38	043501	1930	999973	0.2	043527	1880	956473	01105	99994	
39	054781	1880		0.5	054809	1833	945191	01134	99994	
40	065776	1832	999971		065806	1787	934194	01164	99993	20
41	8.076500	1787	9.999969	0.5	8.076531	1744	11.923469	01193	99993	19
42	086965	1744	999968	0.5	086997	1703	913003	01222	99993	18
43	097183		999966	0'2	097217	1664	902783	01251	99992	
44	107167	1664 1626	999964		107202	1627	892797	01280	99992	
45	116926	1591	999963	0.3	116963	1591	883037	01309	00001	15
46	126471	1557	999961	0.3	126510	1557	873490	01338		14
47	135810	1524	999959		135851	1594	864149	01367	99991	13
48	144953	1492		0.3	144996	1493	855004	01396		
49	153907		999956	0.3	153952	1463	846048	01425	99990	
50	162681	1462 1433	999954	0.3	162727	1434	837273	01454	99989	10
	8.171280	1405	9.999952	0.3	8.171328	1406	11.828672	01483	99989	9
52	179713	1379		0.3	179763	1379	820237	01513	99989	8
53	187985	1353		0.3	188036	1353	811964	01542	99988	7
54	196102	1328			196156	1328	803844	01571	99988	6
55	204070	1304		0.3	204126	1304	795874	01600	99987	5
56	211895			0.3	211953	1281	788047	01629	99987	4
57	219581	1281	999940	0.4	219641	1201	780359	01658	99986	3

S.ne.

0.4

0.4

0.4

Cosine.

89 Degrees.

01745 99985

N. cos. N. sine

Tang.

	_					•		_		
						-i-E				1
16			L	0 G A	RIT	HM	8			Į.
J										
N.	0	1	2	3	4	- 5	6	7	8	9
750	875031	5119	5177	5235	5293	5351	5409	5466	5524	5582
751	5640	5698	5756	5813	5871	5929	5987	6045	6102	6160
752	6218	6276	6333	6391	6449	6507	6564	6622	6680 7256	6737
753 754	6795 7371	6853 7429	6910 7487	6968 7544	7026 7602	7083 7659	7141	7199 7774	7832	7314 7889
102		1425	1401	1011	57	1000		****		
755	7947	8004	8062	8119	8177	8234	8292	8349	8407	8464
756	8522	8579	8637	8694	8752	8809	88 66	8924	89 81	9039
757	9096	9153	9211	9268	9325	9383	9440	9497	9555	9612
758 759	9669 880242	9726 0299	9784 0356	9841 0413	9 6 98 0471	9956 0628	0580	70 0642	.127 0699	.185 0756
	000223	0255	0000	0410		4020	0000	0022	0000	0.00
760	0814	0871	0928	0985	1042	1099	1156	1213	1271	1328
761	1385	1442	1499	1556	1613	1670	1727	1784	1841	1898
762	1955 2525	2012	2069	2126	2183	2240	2297 2866	2354 2923	2411 2980	2468 3037
763 764	2020 3093	2581 3150	2638 3207	2695 3264	27 5 2 3321	2809 3377	3434	3491	3548	3605
104	•	3100	5201		0022	٠	0.0.	0.00	0020	
765	86 61	8718	3775	8832	3888	8945	4002	4059	4115	4172
766	4229	4285	4342	4399	4455	4519	4569	4625	4682	4739
767	4795	4852	4909	4965	5022	5078	5135	5192	5248	5305
768 769	5361 5926	5418 5983	5474 6039	5531 6096	5587 6152	5644 6209	5700 6265	5757 6321	5813 6378	5870 6434
709	0320	0903	0009	0050	0102	0203	0200	0021	00.10	0201
770	6491	6547	6604	6660	6716	6773	6829	6885	6942	6998
771	. 7054	7111	7167	7233	7280	7336	7392	7449	7505	7561
772	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123
773	8179 8741	8236	8292 8853	8348 8909	8404 8965	8460 9021	8516 9077	8578 9134	8629 9190	8655 9246
774	0141	8797	0000	0909	56	9021	30,,	3104	3130	0220
775	9302	9358	9414	9470	9526	9582	9638	9694	9750	9806
776	9862	9918	0974	30	86	.141	.197	.253	.309	.365
777	890421	0477	0533	0589	0645	0700	0756	0812	0868	0924
778	0980 1587	1035 1593	1091 1649	1147	1203	1259 1816	1314 1872	1370 1928	1426 1983	1482 2039
779	1001	1093	1049	1.00	1100	1010	1012	1020	1300	2000
780	2095	2150	2206	2262	2317	2373	2429	2484	2540	2595
781	2651	2707	2762	2818	2873	2929	2985	3040	3096	3151
782	8207	3262	3318	8373	8429	3484	3540	8595	8651	3706
783	8762 4316	8817	3873	8928 4482	3984 4538	4039	4094 4648	4150 4704	4205 4759	4261 4814
784	#910	4371	4427	2203	******	4593	1040	*****	2103	2014
785	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367
786	5423	5478	5533	5588	5644	5699	5754	5809	5864	592(
787	5975	6030	6085	6140	6195	6251	6306	6361	6416	6471
788	6526	6581	6636	6692 7242	6747	6802	6857 7407	6912 7462	6967	7022 7572
789	7077	7182	7187	1.5426	7297	7352	1401	1403	7517	1012
790	7627	7683	7737	7792	7847	7902	7957	8012	8067	8122
791	8176	8231	8286	8341	8396	8451	8506	8561	8615	8670
792	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218
798	9273	9328	9383	9437 9985	9492	9547	9602	9656 .203	9711	9766 .812
794	9821	9875	9930	9900	89 55	94	.149	,203	.258	.012
795	900367	0422	0476	^531	0586	0640	9695	0749	0804	0859
796	0913	0968	1022	1077	1131	1186	1240	1295	1349	1404
797	1458	1513	1567	1622	1676	1736	1785	1840	1864	1948
798	2003	2057	2112	2166	2221	2275	2329	2384	2438	2492 3036
799	2547	2601	2655	2710	2764	2818	2873	2927	2981	avao

1

.

,

			0	F N	UMB	ERS	3.			17
N.	0	1	2	3	4	5	6	.7	8	9
800	908090	3144	3199	8253	3307	8361	3416	8470	3524	8578
801	3633	3687	8741	3795	8849	8904	3958	4012	4066	4120
802	4174	4229	4283	4337	4391	4445	4499	4553	4607	4661
803	4716 5256	4770 5310	4824 5364	4878 5418	4932 5472	4986 5526	5040 5580	5094 5634	5148 5688	52(12 5742
804	0200	0010	0002	0410	54	0020	0000	0004	JU00 0	0142
805	5796	5850	5904	5958	6012	6066	6119	6178	6227	6281
806	6335	6389 6927	6443 6981	6497	6551	6604	6658	6712	6766	6820
807 808	6874 7411	7465	7519	7035 7573	7089 7626	7143 7680	7196 7734	7250 7787	7304 7841	7358 7895
809	7949	800%	8056	8110	8163	8217	8270	8324	8378	8431
000		1		00				30.00	30.0	
810	8485	8539	8592	8646	8699	8753	8807	8860	8914	8967
811	9021	9074	9128	9181	9235	9289	9342	9396	9449	9503
812	9556	9610	9663	9716	9770	9823	9877	9930	9984	87
818	910091	0144 0678	0197	0251	0304	0358	0411	0464	0518	0571
814	0624	U 070	0731	0784	0838	0891	0944	0998	1051	1104
815	1158	1211	1264	1317	1371	1424	1477	1530	1584	1687
816	1690	1743	1797	1850	1903	1956	2009	2063	2115	2169
817	2222	2275	2323	2381	2435	2488	2541	2594	2645	2700
818	2753 3284	2806 3337	2859 3390	2913	2966	3019 3549	3072 3602	3125 3655	8178 8708	8231 8761
819	9204	0001	9090	8448	8496	00-19	3002	2000	8700	8701
820	3814	3867	3920	8978	4026	4079	4132	4184	4237	4290
821	4343	4396	4449	4502	4555	4608	4660	4713	4766	4819
822	4872	4925	4977	5030	5083	5136	5189	5241	5294	5347
828	5400 5927	5453 5980	5505 6033	5558 6085	5611	5664	5716 6243	5769 6296	5822	5875 6401
824	0021	0000	0033	0000	6138	6191	0240	0230	6349	0401
825	6454	6507	6559	6612	6664	6717	6770	6822	6875	6927
826	6980	7033	7085	7138	7190	7243	7295	7348	7400	7453
827	7506	7558	7611	7663	7716	7768	7820	7873	7925	7978
828	8030	8083	8185	8188	8240	8293	8345	8397	8450	8502
829	8555	8607	8659	8712	8764	8816	8869	8921	8973	9026
830	9078	9180	9183	9285	9287	9340	9392	9444	9496	9549
831	9601	9653	9706	9758	9810	9862	9914	9967	19	71
832	920123	0176	0228	0280	0332	0384	0436	0489	0541	0593
833	0645	0697 1218	0749 1270	0801	0853	0906	0958 1478	1010 1530	1062	1114 1634
834	1166	1210	1210	1322	1374	1426	14/0	1000	1582	1004
835	1686	1738	1790	1842	1894	1946	1998	2050	2102	2154
836	2206	2258	2810	2362	2414	2466	2518	2570	2622	2674
837	2725	2777	2829	2881	2933	2985	3037	3089	3140	3192
836 839	3244 3762	3296 3814	3348 3865	3399	8451 8969	3503 4021	3555 4072	3607 4124	3658 4147	371(4228
209	0102	2014	9000	3917	9209	-20-01	2012	-2144	414/	-2220
840	4279	4331	4383	4484	4486	4538	4589	4641	4693	4744
841	4796	4848	4899	4951	5003	5054	5106	5157	5209	5261
842 843	5312 5828	5364 5874	5415 5931	5467	5518	5570 6085	5621 6137	5673 6188	5725 6240	5776 6291
844	6342	6394	6445	5982 6497	6034 6548	6600	6651	6702	6754	6805
J-19-12			J	, ear	52					~~~
845	6857	6908	6959	7011	7062	7114	7165	7216	7268	7319
846	7370	7422	7473	7524	7576	7627	7678	7730	7783	7832
847	7883	7935	7986	8037	8088	8140 8652	8191 8703	8242 8754	8293 8805	8345
848 849	8396 8908	8447 8959	8498 9010	8549 9061	8601 9112	9163	9216	9266	9317	8857 9368
030		0000	1 2010	3001	0112	0100	1 3213	1	10011	5555

18		•	L	O G A	RIT	нм	8	
N.	0	1'	2	8	4	5	6	7
850	929419	9473	9521	9572	9623	9674	9725	9776
851	9930	9981	32	83	.134	.185	.236	.287
852	930440	0491	0542	0592	0643	0694	0745	0796
853	0949	1000	1061	1102	1153	1204	1254	1305
854	1458	1509	1560	1610	1661	1712	1763	1814
		l	1		51	1	1	l
855	1966	2017	2068	2118	2169	2220	2271	2322
856	2474	2524	2575	2626	2677	2727	2778	2829
857	2981	3031	3082	3133	3183	3284	3285	3335
858	8487	3538	3589	3639	3690	3740	8791	3841
859	3993	4044	4094	4145	4195	4246	4269	4347
	ì	i	l	ł	i	l	i	l
860	4498	4549	4599	4650	4700	4751	4801	4852
861	5003	5054	5104	5154	5205	5255	5306	5356
862	5507	5558	5608	5658	5709	5759	5809	5860
863	6011	6061	6111	6162	6212	6262	6313	6363
864	6514	6564	6614	6665	6715	6765	6815	6865
301								1
865	7016	7066	7117	7167	7217	7267	7317	7367
300	.010			1.201		1.20.		1

88 i

RRR

. .24

051Ī

19

. .73

.121

.170

.219

.338

.267

.389

.316

		•	0	F N	U M.	BER	s.		3	19
N.	0′	1	2	3	4	5	6	7	8	9
900	954243	4291	4339	4387	4435	4484	4532	4580	4628	4677
901	4725	4773	4821	4869	4918	4966	5014	5062	5110	5158
902 903	5207 5688	5255 5736	5303 5784	5351 5832	5399 5880	5447 5928	5495 5976	5543 6024	5592 6072	5640 6120
904	6168	6216	6265	6313	63 61	6409	6457	6505	6558	6601
***	0.00		0.200	0020	48			5555		0002
905	6649	6697	6745	6793	6840	6888	6936	6984	7032	7080
906	7128	7176	7224	7272	7320	7368	7416	7464	7512	7559
907	7607	7655	7703	7751	7799	7847	7894	7942	7990	8038
908	8086	8134	8181	8229	8277	8325 88 9 3	8373 8850	8421 8898	8468	8516
909	8564	8612	8659	8707	8755	0043	9090	0090	8946	8994
910	9041	9089	9137	9185	9232	9280	9328	9375	9423	9471
910	9518		9614	9661	9709	9757	9804	9852	9900	9947
912	9995	9566 42	90	.138	.185	.233	.280	.328	.376	423
913	960471	0518	0566	0613	0661	0709	0756	0804	0851	0899
914	. 0946	0994	1041	1089	1136	1184	1231	1279	1326	1874
		1		ĺ				ĺ	l	ļ
915	1421	1469	1516	1563	1611	1658	1706	1753	1801	1848
916	1895	1943	1990	2038	2085	2132	2180	2227	2275	2322
917	2369	2417	2464	2511	2559	2606	2653	2701	2748	2795
918	2843	2890	2937	2985	3032	8079	3126	3174	3221	3268
919	8316	8363	3410	3457	3504	3552	8599	3646	3693	3741
920	3788	3835	3882	3929	3977	4024	4071	4118	4165	4212
921	4260	4307	4354	4401	4448	4495	4542	4590	4637	4684
922	4731	4778	4825	4872	4919	4966	5013	5061	5108	5155
928	5202	5249	5296	5343	5390	5437	5484	5531	5578	5625
924	5672	5719	5766	5813	5860	5907	5954	6001	6048	6095
		1							ŀ	1
925	6142	6189	6236	6283	6329	6376	6423	6470	6517	6564
926	6611	6658	6705	6752	6799	6845 7314	6892	6939	6986	7033
927 928	7080 7548	7127 7595	7173 7642	7220 7688	7267 7785	7782	7361 7829	7408 7875	7454	7501 7969
929	8016	8062	8109	8156	8203	8249	8296	8343	8390	8436
55		"""			1			1000		0.20
930	8483	8530	8576	8623	8670	8716	8763	8810	8856	8903
931	8950	8996	9048	9090	9136	9183	9229	9276	9323	9369
932	9416	9463	9509	9556	9602	9649	9695	9742	9789	9835
933	9882	9928	9975	21	68	.114	.161	.207	.254	.300
934	970347	0393	0440	0486	0533	0579	0626	0672	0719	0765
004	0812	0858	0904	0951	0997	1044	1090	1107	1100	1000
935 936	1276	1322	1369	1415	1461	1508	1554	1137 1601	1183 1647	1229 1693
937	1740	1786	1832	1879	1925	1971	2018	2064	2110	2157
938	2203	2249	2295	2342	2388	2434	2481	2527	2573	2619
939	2666	2712	2758	2804	2851	2897	2943	2989	3035	3082
		1		ļ	ļ	l				
940	3128	3174	3220	3266	3313	8359	3405	8451	3497	3548
941	3590	3636	3682	3728	3774	3820	3866	3913	3959	4005
942	4051 4512	4097 4558	4143 4604	4189 4650	4235	4281 4742	4327 4788	4374 4834	4420 4880	4466 4926
943	4972	5018	5064	5110	5156	5202	5248	5294	5340	4926 5386
777	20.0	3013	3004	71.0	46	3202		3204	3020	JJ000
945	5432	5478	5524	5570	5616	5662	5707	5753	5799	5845
946	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304
947	6350	6396	6442	6488	6533	6579	6625	6671	6717	6763
948	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220
949	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678
L				<u> </u>		!	<u> </u>	<u> </u>		

90			L	O G A	RIT	нм	S	•		
N.	0	1	2	3	4	5	6	7	8	9
950	977724	7769	7815	7861	7906	7952	7998	8043	8089	8135
951	8181	8226	8272	8317	8363	8409	8454	8500	8546	8591
952 953	8637 9093	8683 9138	8728 9184	8774 9230	8819 9275	8865 9321	8911 9366	8956 9412	9002 9457	9047 9503
954	9548	9594	9639	9685	9730	9776	9821	9867	9912	9958
1					46	****				
955	980003	0049	0094	0140	0185	0231	0276	0322	0367	0412
956	0458 0912	0503 0957	0549	0594	0640	0685	0730	0776	0821	0867
957 958	1366	1411	1003 1456	1048 1501	1093 1547	1139 1592	1184 1637	1229 1683	1275 1728	1320 1773
959	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226
			l		l	l			ŀ	ĺ
960	2271	2316	2862	2407	2452	2497	2543	2588	2633	2678
961	2723 3175	2769 3220	2814	2859	2904	2949	2994	3040 3491	3085 3536	3130
962 963	8626	3671	3265 3716	3310 3762	3356 3807	3401 3852	3446 3897	3942	8987	3581 4032
964	4077	4122	4167	4212	4257	43.52	4347	4392	4437	4482
			1							1
965	4527	4572	4617	4662	4707	4752	4797	4842	4887	4982
966	4977 5426	5022 5471	5067	5112	5157	5202	5247	5292 5741	5337 5786	5382 5830
967 968	5875	5920	5516 5965	5561 6010	5606 6055	5651 6100	5699 6144	6189	6234	6279
969	6324	6369	6413	6458	6503	6548	6593	6637	6682	6727
				1						
970	6772	6817	6861	6906	6951	6996	7040	7085	7130	7175
971	7219 7666	7264 7711	7309	7353 7800	7398	7443	7488	7532 7979	7577 8024	7622 8068
972 973	8113	8157	7756 8202	8247	7845 8291	7890 8336	7934 8381	8425	8470	8514
974	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960
				•						
975	9005	9049	9093	9138	9183	9227	9272	9316	9361	9405
976 977	9450 9895	9494 9939	9539 9983	9583 28	9628 72	9672	9717 .161	9761 .206	9806 .250	9850 .294
978	990339	0383	0428	0472	0516	0561	0605	0650	0694	0738
979	0783	0827	0871	0916	0960	1004	1049	1093	1187	1182
1						i				
980	1226	1270	1315	1359	1403	1448	1492	1536	1580	1625
981 982	1669 2111	1713 2156	1758 2200	1802 2244	1846 2288	1890 2333	1935 2377	1979 2421	2023 2465	2067 2509
983	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951
984	2995	3039	3083	3127	3172	3216	8260	8304	3348	3392
985	3436	3480 3921	3524	3568	3618	3657	8701	8745	3789 4229	3838 4278
986 987	3877 4317	4361	3965 4405	4009 4449	4053 4493	4097 4537	4141 4581	4185 4625	4669	4713
988	4757	4801	4845	4886	4933	4977	5021	5065	5108	5152
989	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591
990	5635	5679	5723	5767	5811	5854	5898	5942	5986	6030
990	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468
992	6512	65ŏ5	6599	6643	6687	6781	6774	6818	6862	6906
993	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343
994	7386	7430	7474	7517	7561 44	7605	7648	7692	7736	7779
995	7823	7867	7910	7954	7998	8041	8085	8129	8172	8216
996	8259	8303	8347	8390	8434	8477	8521	8564	8608	8652
997	9695	8739	8792	8826	8869	8913	8956	9000	9043	9087
998	9131	9174	9218	9261	9305	9348	9392	9435	9479	9522
999	9565	9609	9652	9696	9739	9783	9826	9870	9913	9957
				===						

•	CABLE II		-	and T	angents.	(0°) N	fatural Sine	8.	× ×	11
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D.10"	Cotang.	N.sine.	N. cos.	\sqcap
0	Neg.infinite		10.000000	}	0.000000	1	Infinite.		100000	
1	6.463726		000000		6.463726		18.536274	00029	100000	59
2	764756		000000		764756		235244	00058	100000	50
3	940847 7.065786	l	000000	ł	940847 7.065786		059153 12.934214	000007	100000 100000	KA
4	162696	1	000000	1	162696		837304		100000	
6	241877	i	9.999999	1	241878		758122		100000	
7	308824	l	999999	•	308825		691175	00204	100000	58
8	366816	Į .	999999	ı	366817		633183	00233	100000	52
9	417968		999999		417970		582030		100000	
10	463725	l	999998	ł	463727		536273		100000	
11	7.505118		9.999998		7.505120		12.494880	90320		
12 13	542906 577668	i	999997 999997	1	542909 577672		457091 422328	00349 00378		
14	609853	i	999996		609857	1	890143	00407		46
15	639816		999996	ļ	639820		360180	00436		45
16	667845	i	999995	l	667849	ł	332151	00465		44
17	694178	1	999995	l	694179	1	305821	00495		48
18	718997	1	999994	l	719003	1	280997	00524		42
19	742477		999993	1	742484	1	257516	00553	99998	41 40
$\frac{20}{21}$	764754 7.785948	1	999993 9.999992	l	764761 7.785951	j	235239 12.214049	00582 00611	99998 99998	
22	806146	ļ	999991		806155		193845	00640	99998	38
23	825451	ł	999990	1	825460		174540	00669	99998	37
24	843934	ı	999989		843944		156056	00698	99998	36
25	861663		999988		861674		138326	00727	99997	35
26	878695		999988	ľ	878708	l	121292	00756		34
27	895085		999987	l	895099		104901	00785	99997	33 32
28	910879 926119	1	999986		910894	ĺ	089106 073866	00814 00844	99997 99996	31
29 80	940842	· '	999985 999983	l	926134 940858	ĺ	0 59142	00873	99996	30
	7.955082		9.999982	١	7.955100		12.044900	00902	99996	29
32	968870	2298	999981	0.2	968889	2298 2227	031111	00931	99996	28
33	982233	2227 2161	999980	0.2	982253		017747	00960	99995	27
84	995198	2098	999979	0.2	995219	0000	004781	00989	99995	26
	8.007787	2039	999977	0.2	8.007809	2039	11.992191	01018	99995	25 24
36 37	020021 031919	1983	999976 999975	0.2	020045 031945	1983	979955 968055	01047 01076	99995 99994	23
38	043501	1930	999973	0.2	043527	1980	956473	01105	99994	22
89	054781	1880	999972	0.3	054809	1880	945191	01134	99994	21
40	065776	1832	999971	0.5	065806	1833 1787	934194	01164	99993	20
	8.076500	1787 1744	9.999969	0.5	8.076531	1744	11.923469	01193	99993	19
42	086965	1703	999968	0.2	086997	1703	913003	01222	99993	18
43	097188	1664	999966	0.5	097217	1664	902783	01251 01280	99992	17 16
44 45	107167 116926	1626	999964 999963	0.8	107202 116963	1627	892797 883037	01309	99992 99991	15
46	126471	1591	999961	0.8 0.8 0.3	126510	1591	878490	01338	99991	14
47	135810	1557	999959	0.8	135851	1557	864149	01367	99991	18
48	144953	1524 1492	999958	0.8	144996	1524 1493	855004	01396	99990	12
49	158907	1462	999956	0.8	153952	1463	846048	01425	99990	11
50	162681	1433	999954	0.8	162727	1484	887278	01454	99989	10
51 52	8.171280	1405	9.999952	0.8	8.171328	1406	11.828672	01488 01513	99989 99989	8
53	179713 187985	1379	999950 999948	0.8	179763 188036	1379	820237 811964	01542	99988	7
54	196102	1353	999946	0.3	196156	1353	803844	01571	99988	6
55	204070	1328	999944	0.8	204126	1328	795874	01600	99987	5
56	211895	1304	999942	0.8	211953	1304	788047	01629	99987	4
57	219581	1281 1259	999940	0.4	219641	1281 1259	780359	01658	999 86	8
58	227134	1237	999938	0.4	227195	1238	772805	01687	99986	2
59	234557	1216	999936	0.4	.234621	1217	765379	01716	99985	1
60	241855		999934		241921	1	758079 Tang.	01745 N. cos.	99985 N. sine	0

2	2		Lo	g. Sines a	nd Tax	ngents. (1º) Na	tural Sines.	TABLE I	ſ.
7	<u> </u>	Sine.	D. 10'	Cosine.	D. 10"	Tang.	D 10"	Cotang.	N. sine. N. cos.	
0	8	241855	****	9.999934	•	8.241921		11.758079	01742 99985	60
ĭ	Ĭ	249033	1196	999932	0.4	249102	1197	750898	01774 99984	59
2	Ì	256094	1177	999929	0.4	256165	1177	743835	01803 99984	
3	l	263042	1158	999927	0.4	263115	1158	736885	0183299983	57
4		269881	1140	999925	0.4	269956	1140	780044	01862 99983	56
5		276614	1122	999922	0.4	276691	1122	723309	01891 99982 01920 99982	55
6	ı	283243	1105	999920	0.4	283323	1105	716677	0192099982	54
7		289773	1088 1072	999918	0.4	289856	1089	710144	0194999981	53
8	ı	296207	1056	999915	0.4	296292	1057	703708	01978 99980	52
9	١	302546	1041	999913	0.4	302634	1042	697366	02007 99980	
10	١.	808794	1027	999910	104	308884	1027	691116	02036 99979	
11	8	.814954	1012	9.999907	0.4	8.315046	1013	11.684954	02065 99979	
12	l	321027	998	999905	0.4	321122	999	678878	02094 99978	
13	ı	327016	985	999902	0.4	827114	985	672886	02123 99977	47
14		332924	971	999 899	0.5	83302 5	972	666975	02152 99977	
15		888753	959	999897	0.5	333856	959	661144	02181 99976	45
16		344504	946	999894	0.5	844610	946	655390	02211 99976	
17	ŀ	350181	934	999891	0.5	35098 9	934	649711	02240 99975	43
18		355783	922	999888	0.5	3558 95	922	644105	02269 99974	42
19	1	861315	910	999885	0.5	861430	911	638 570	02298 99974	41
20	L	366777	899	999882	0.5	366895	899	633105	02327 99973	40
	8	.872171	888	9.999879	0.5	8.372292	888	11.627708	0235699972	39
22	ı	877499	877	999876	0.5	877622	879	622378	02385 99972	
23	١	382762	867	999873	0.5	382889	867	617111	0241499971	37
24	ı	387962	856	999870	0.5	388092	857	611908	02443 99970	36
25	ı	393101	846	999867	0.5	393234	847	606766	02472 99969	
26	l	898179	837	999864	0.5	398315	837	601685	02501 99969	
27	ı	403199	827	999861	0.5	403338	828	596662	02530 99968	
28	l	408161	818	999858	0.5	408304	818	591696	02560 99967	32
29	ļ	413068	809	999854	0.5	413213	809	586787	02589 99966	31
30	L	417919	800	999851	0.6	418068	800	581932	02618 99966	30
31	8	.422717	791	9.999848	0.6	8.422869	791	11.577181	02647 99965	29
82	l	427462	782	999844	0.6	427618	783	572382	02676 99964	
33	1	432156	774	999841	0.6	432315	774	567685	02705 99963	
34	1	436800	766	999838	0.6	436962	766	563038	02734 99963	
85	ı	441394	758	999834	0.6	441560	758	558440	02763 99962	25 24
36		445941	750	999831	0.6	446110	750	558890	02792 99961	1
37	l	450440	742	999827	0.6	450613 455070	743	549387 544930	02821 99960 02850 99959	
88	1	454893	735	999823	0.6		735		02879199969	
39	l	459301	727	999820	0.6	459481 463849	728	540519	02908 99958	
40	6	463665 .467985	720	999816 9.999812	0.6	8.468172	720	536151 11.531828	02938 99957	
41	١o	472263	712	999809	0.6	472454	713	527546	02967 99956	
42 43	1	472203 476498	706	999805	0.6	476693	707	523307	02996 99955	17
43		470498	699	999801	0.6	480892	700	519108	03025 99954	
44	1	484848	692	999797	0.6	485050	693	514950	03054 99953	
46 46	t	488963	686	999793	0.7	489170	686	510830	03083 99952	
47	1	493040	679	999790	0.7	493250	680	506750	03112 99952	
48	1	497078	673	999786	0.7	497293	674	502707	03141 99951	12
49	1	501080	667	999782	0.7	501298	668	498702	03170 99950	
50	1	505045	661	999778	0.7	505267	661	494733	03199 99949	
	2	.508974	655	9.99977	, 0.7	8.509200	655	11.490800	03228 99948	
52	۲	512867	649	999769	0.7	513098	650	486902	03257 99947	8
53	1	516726	040	999765	0.7	516961	644	483039	03286 99946	7
54	1	520551	637	999761	0.7	520790	638	479210	03316 99945	6
55	1	524343	632	999757	0.7	524586	633	475414	03845 99944	5
56	1	528102	626	999753	0.7	528349	627	471651	03374 99943	4
57	1	531828	621	999748	0.7	532080	622	467920	03403 99942	3
58	1	585523	616	999748	0.7	535779	616	464221	03403 99942	2
59	1	589186	611	999744	0.7 0.7	539447	611	460553	03461 99940	î
60	1	542819	605	999740	0.7	543084	606	456916	03490 99939	ô

88 Degrees.

7	ABLE II.	Lo	g. Since a	nd Ta	ngent s. (2	°) N	utural Sines.		23
_	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. co)S.
	8.542819	600	9.999735	0.7	8.543084	602	11.456916	03490 9993	
1 2	546422 549995	595	999731 999726	0.7	546691 550268	596	458309 449732	03519 9993 03548 9993	
3	553539	591	999722	0.7	553817	591	446183	03577 9993	
4	557054	586 581	999717	0.8	557336	587 582	442664	03606 9993	56
· 5	560540 563999	576	999713	0.8	560828	577	439172	03635 9993	
7	567431	572	999708 999704	0.8	564291 567727	573	435709 432273	03664 9993	
8	570836	567	999699	0.8	571137	568	428863	03723 9993	1 52
o	574214	563 559	999694	0.8 0.8	574520	564 559	425480	03752 9993	
1:	577566 8.580892	554	999689 9.999685	0.8	577877 8.581208	555	422123 11.418792	03781 9992 03810 9992	
12	584193	550	999680	0.8	584514	551	415486	03839 9992	
18	587469	546 542	999675	0.8 0.8	587795	547 543	412205	03868 9992	5 47
14	590721	538	999670	0.8	591051	539	408949	03897 9992	
15 16	593948 597152	534	999665 999660	0.8	594283 597492	535	405717 402508	03926 9992 03955 9992	
17	600332	530	999655	0.8	600677	531	899323	03984 9992	
18	603489	526 522	999650	0.8 0.8	603839	527 523	896161	04013 9991	9 42
19 20	606623	519	999645	0.8	606978	519	893022	04042 9991	8 41
	609734 8.612823	515	999640 9.999635	0.9	610094 8.613189	516	389906 11.886811	04071 9991 04100 9991	
22 23	615891	511	999629	v.y	616262	512	883738	03129 9991	
23	618937	508 504	999324	0.9	619313	508 505	880687	04159 9991	3 37
24 25	621962 624965	501	999619	0.9	622343	501	877657	04188 9991	
26	627948	497	999614 999608	0.9	625352 628340	498	374648 871660	04217 9991 04246 9991	
27	630911	494 490	999603	0.9	631308	495	368692	04275 9990	
28	633854	487	999597	0.9	634256	491 488	865744	04304 9990	7 39
29 30	636776 639680	484	999592	0.9	637184	485	362816 859907	04333 9990 04362 9990	6 31 5 30
	8.642563	481	999586 9.999581	0.9	640093 8.642982	482	11.357018	04302 5550	4 29
32	645428	477	999575	0.9	645853	478 475	854147	04420 9990	
33	648274	471	999570	0.9	648704	472	351296	04449 9990	
34 35	651102 653911	468	999564	0.9	651537 654352	469	848 463 845 648	04478 9990 04507 9989	0 26 8 25
36	656702	465	999558 999553	1.0	657149	466	842851	04536 9989	
87	659475	462 459	999547	1.0	659928	463 460	840072	04565 9989	6 23
38	662230	456	999541	1.0	662689	457	837311	04594 9989	
39 40	664968 667689	453	999535 999529	1.0	665433 668160	454	834567 331840	04623 9989 04653 9989	3 21 2 20
	8.670393	451	9.999524	1.0	8.670870	453	11.829130	0.4689 9989	n 10.
42	673080	448 445	999518	1.0	673563	449 446	826437	04711 9988 04740 9988 04769 9988 04798 9988	9 18
43 44	675751 678405	442	999512	1.0	676239	443	323761	04740 9988	8 17 6 16
45	681043	440	999506 999500	1.0	678900 681544	442	321100 318456	04798 9988	5 15
46	683665	437 434	999493	1.0	684172	438	315828	04227 5300	3 14
47	686272	432	999487	1.0	656784	435 433	818216	04856 9988	
48 49	688863 691438	429	999481	1.0	689381 691963	430	310619 308037	04885 9988 04914 9987	0 11
50	693998	427	999475 999469	1.0	694529	428	305471	04943 9987	8 10
	8.696543	424 422	9.999468	1.0	8.697081	425 423	11.302919	04943 9987 04972 9987	6 9
52	699073	419	999456	1.1	699617	420	300383	1.0000119301	ગઢા
58 54	701589 704090	417	999450 999443	1.1	702139 704246	418	297861 295354	05030 9987 05059 9987	3 7 2 6
55	706577	414	999437	1.1	707140	415	292860	05088 9987	0 5
56	709049	412 410	9 99431	1.1	709618	413 411	290382	05117 9986	9 4
57	711507	407	999424	i i	702083	408	287917	05146 9986 05175 9986	7 3 6 2
58 59	713952 716383	405	999418 999411	1.1	714534 716972	406	285465 283028	05205 9986	4 1
60	718800	408	999404	1.1	719396	404	280604	05234 9986	
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sin	
				1	7 Degrees				

•

-	14								
7	Sine.	D. 10	og. Smes a	nd Ta			atural Sines.		
_	·	D. 10	Cosine.	D. 10		D. 10'		N. sine N. co	-11
0	8.718800 721204	401	9.999404	1.1	8.719396 721806	402	11.280604	05234 998 6 05263 9986	
2	723595	398	999391	1.1	724204	399	278194 275796	05292 9986	
3	725972	396	999384	1.1	726588	397	273412	05321 9985	
4	728337	394 392	999378	1.1	728959	395 393	271041	05350 9985	
5	730688	390	999371	1.1	731317	391	268683	05379 9985	-1
6	733027	388	999364	1.2	733663	389	266337	05408 9985	
8	735854 787667	386	999357 999350	1.2	735996 738317	387	264004 261683	05437 9985	2 53 1 52
ğ	739969	384	999343	1.2	740626	385	259374	05466 9985 05495 9984	9 51
10	742259	382	999336	1.2	742922	383	257078	05524 9984	7 50
11	8.744536	380 378	9.999329	$\frac{1.2}{1.2}$	8.745207	381	11.254793	05553 9984	
12	746802	376	999322	1.2	747479	377	252521	05582 9984	4 48
l3 14	749055 751297	374	999315 999308	1.2	749740 751989	375	250260 248011	05611 9984 05640 9984	2 47
15	753528	372	999301	1.2	754227	373	245778	05669 9983	1 46 9 45
16	755747	370	999294	1.2	756453	371	248547	05698 9983	
17	757955	368 366	999286	1.2	758668	369	241332	05727 9988	6 43
18	760151	364	999279	1.2	760872	367	239128	05756 9988	
19 20	762337	362	999272	1.2	763065	364	236935	05785 9988	8 41
21	764511 8.766675	361	999265 9.999257	1.2	765246 8.767417	362	234754 11.232583	05814 9983 05844 9982	1 40 9 89
22	768828	359	999250	1.2	769578	360	230422	05878 9962	
23	770970	357	999242	1.8	771727	358	228273	05902 9982	
24	773101	355 353	999235	1.3 1.8	773866	356 355	226134	05931 9962	4 86
25	775223	352	999227	1.3	775995	853	224005	05960 9982	
26 27	777333	350	999220	1.8	778114	351	221886	05989 9982	
28	779434 781524	348	999212 999205	1.3	780222 782320	350	219778 217680	06018 9981 06047 9981	9 33 7 32
29	783605	347	999197	1.8	784408	348	215592	06076 9981	5 31
80	785675	345	999189	1.3	786486	346	213514	06105 9981	
31	8.787736	343 342	9.999181	1.3 1.3	8.788554	345 343	11.211446	06134 9981	2 29
32 33	789787	340	999174	1.3	790613	341	209387	06168 9981	
34	791828 793859	339	999166	1.3	792662 794701	840	207338 205299	06192 99800 06221 9980	
35	795881	337	999158 999150	1.8	796731	338	203269	06250 9980	
36	797894	335	999142	1.8	798752	837	201248	06279 9980	3 24
37	799897	334 332	999134	1.8	800763	835 834	199237	06308 9980	1 23
38	801892	331	999126	1.3 1.8	802765	332	197235	06337 9979	
39 40	803876	329	999118	1.3	804858	831	195242	06366 9979	
	805852 8.807819	328	999110 9.999102	1.8	806742 8.808717	329	193258 11.191283	06395 9979 06424 9979	
42	809777	326	999094	1.3	810683	328	189317	06458 9979	
43	811726	325	999086	1.4	812641	826	187359	06482 9979	
44	813667	323 322	999077	1.4	814589	325 323	185411	06511 9978	16
45 46	815599	320	999069	1.4	816529	822	183471	06540 9978	
47	817522 819436	319	999061 999053	1.4	818461	820	181539 179616	06569 9978 06598 9978	
48	821343	318	999003	1.4	820384 822298	319	177702	06627 9978	
49	823240	316	999036	1.4	824205	318	175795	06656 99778	
50	825130	315 313	999027	1.4	826103	316 315	173897	06685 99770	
51	8.827011	312	9.999019	1.4	8.827992	814	11.172008	06714 9977	
52 58	828884	311	999010	1.4	829874	312	170126	06743 99779	8
54	830749 832607	309	999002 998993	1.4	831748 833613	311	168252 166387	06778 9977 06802 9976	
55	834456	808	998984	1.4	885471	310	164529	06831 9976	
56	836297	807 206	998976	1.4	837321	308	162679	06860 9976	
57	838130	306 304	998967	1.4	839163	307 306	160837	06889 9976	2 8
58	839956	303	998958	1.5	840998	304	159002	06918 9976	
59 60	841774 843585	302	998950 998941	1.5	842825 844644	303	157175 155356	06947 9975 06976 9975	
<u></u>	Cosine.						Tang.	N. cos. N.sine	
	COMINE.		Sine.		Cotang.		rang.	11. 006.[17.810]	∥ــــ
_					B Degrees.				

7	ABLE II.	Lo	og. Sines a	nd Ta	ngents. (4	°) Na	nural Sines.		2	5
•	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	
0	8.843585	300	9.998941	1.5	8.844644	302	11.155356		99756	60
1	845397	299	998932	1.5	846455	801	153545	07005		59
2 3	847183 848971	298	998923 998914	1.5	848260 850057	299	151740 149943	07034 07063		58 57
4	850751	297	998905	1.5	851846	298	148154	07092		56
5	852525	295 294	998896	1.5	853628	297 293	146372	07121	99746	55
6	854291	293	998887	1.5	855403	295	144597	07150	99744	54
7	856049 857801	292	998878	1.5	857171	293	142829	07179	99742	53 52
8	859546	291	998869 998860	1.5	858932 860686	292	141068 139314	07208 07237	99738	51
10	861283	290 288	998851		862433	291 290	137567	07266	99736	50
	8.863014	287	9.998841	1.5	8.864173	289	11.135827	07295	99734	49
12	864738	286	998832	1.5	865906	288	134094	07324	99731	48
13 14	866455 868165	285	998823 998813	1.6	867632 869351	287	132368 130649	07353 07382	99729	47
15	869868	284	998804	1.6	871064	285	124936	07411	99725	45
16	871565	283 282	998795	1.6	872770	284 283	127230	07440	99723	44
17	873255	281	998785	1.6	874469	282	125531	07469	99721	43
18	874938 876615	279	998776 998766	1.6	876162 877849	281	123838 122151	07498	99719	42 41
19 20	878285	279	998757	1.6	879529	280	120471	07527 07556	99714	40
	8.879949	277 276	9.998747	1.6	8.881202	279	11.118798	07585	99712	39
22	881607	275	998738	1.6	882869	278 277	117131	07614	99710	38
23	883258	274	998728	1.6	884530	276	115470	07643	99708	37 36
24 25	884903 886542	273	998718 998708	1.6	886185 887833	275	113815 112167	07672	99705 99703	35
26	888174	272	998699	1.6	889476	274	110524	07730		34
27	889801	271 270	998689	1.6	891112	278 272	108888	07759	99699	33
28	891421	269	998679	1.6	892742	271	107258	07788	99696	32
29 30	893035 894643	268	998669 998659	1.7	894366 895984	270	105634	07817	99694	31 30
31	8.896246	267	9.998649	1.7	8.897596	269	104016 11.102404	07846 07875		29
32	897842	266 265	998639	1.7	899203	268 267	100797	07904	99687	28
33	899432	264	998629	1.7	900803	266	099197	07933	99685	27
84	901017	263	998619	1.7	902398	265	097602	07962	99688	26 25
35 3ก	902596 904169	262	998609 998599	1.7	903987 905570	264	096013 094430	08020	99680 99678	24
37	905736	261 260	998589	1.7	907147	263 262	092853	08049	99676	23
38	907297	259	998578	1.7	908719	261	091281	08078	99673	22
39	908853	258	998568	1.7	910285	260	089715	08107 08136	99671	21 20
40 41	910404 8.911949	257	998558 9.998548	1.7	9118 4 6 8.913 40 1	259	088154 11.086599	08165	99666	19
42	913488	257	998537	1.7	914951	258	085049	08194	99664	18
43	915022	256 255	998527	1.7	916495	257 256	083505	08223	99661	17
44	916550	254	998516	1.8	918034	256	081966	08252	99659	16 15
45 46	918073 919591	253	998506 998495	1.8	919 56 8 921096	255	080432 078904	08281 08310	99654	14
17	921103	252	998485	1.8	922619	254	077381		99652	13
48	922610	251 250	998474	1.8	924136	253 252	075864	08368	99649	12
49	924112	249	998464	1.8	925649	251	074351	08397		11
5(925609 6 .927100	249	998453 9.998442	1.8	927156 8.928658	250	072844 11.071342		99644 99642	10
51 52	928587	248	998431	1.8	930155	249	069845	08484	99639	8
53	930058	247 246	998421	1.8	931647	249 248	068353	08513	99637	7
54	931544	240	998410	1.8	933134	240	066866	08542	99635	6
55	933015	244	998399	1.8	934616	246	065384		99632	5 4
56 57	934481 935942	243	\$98388 998377	1.8	936093 937565	245	063907 062435		996 30 99 627	3
58	937398	243	998366	1.8	939032	244	060968	08658	99625	2
59	938850	242 241	998355	1.8 1.8	940494	244 243	059506	08687	99622	1
60	94√296	4-21	998344	1.0	941952		058048	08716		0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	
				- 5	5 Degrees.					

3	2	L	g. Sines an	d Tan	igents. (11) Na	tural Sines.	TABLE I	I.
7	Sine.	D. 10'	Cosme.	D. 10'	Tang.	D. 10	Cotaug.	N. sine. N. cos.	1
Ō.	9.280599		9.991947	1 ==	9.288652		10.711348	19081 98163	6
	281248	103	991922	4.1	259326	112	710674	19109 98157	5
1		103		4.1		112			
2	281897	108	991897	4.1	289999	112	710001	19138 98152	ő
3	282544	108	991873	4.1	290671	112	709329	19167 98146	5
4	283190	108	991848	4.1	291342	112	708658	19195 98140	5
5	283836	107	991823	4.1	292013	111	707987	19224 98135	5
6	284480	107	991799	4.1	292682	111	707318	19252 98129	5
7	285124		991774	4.1	293350		706650	19281 98124	5
8	285766	107	991749	4.2	294017	111	705983	19309 98118	5
9	286408	107	991724	4.2	294684	111	705316	19338 98112	5
10	287048	107	991699	4.2	295349	111	704651	19366 98107	5
11	9,287687	107	9.991674	4.2	9.296013	111	10.703987	19395 98101	4
	288326	106	991649	4.2	296677	111	703323	19423 98096	
12		106		4.2		110			4
13	288964	106	991624	4.2	297339	110	702661	19452 98090	4
14	289600	106	991599	4.2	298001	110	701999	19481 98084	4
15	290236	106	991574	4.2	298662	110	701338	19509 98079	4
16	290870	106	991549	4.2	299322	110	700678	19538 98073	4
17	291504	105	991524	4.0	299980	110	700020	19566 98067	4
18	292137		991498	4.2	300638		699362	19595 98061	4
19	292768	105	991473	4.2	301295	109	698705	19623 98056	4
20	293399	105	991448	4.2	301951	109	698049	19652 98050	4
21	9.294029	105	9.991422	4.2	9.302607	109	10.697393	19680 98044	3
22	294658	105	991397	4.2	303261	109	696739	19709 98039	3
	295286	105	991372	4.2	303914	109	696086		
23		104		4.3		109		19737 98033	3
24	295913	104	991346	4.3	304567	109	695433	19766 98027	3
25	296539	104	991321	4.3	305218	108	694782	19794 98021	3
26	297164	104	991295	4.3	305869	108	694131	19823 98016	3
27	297788	104	991270	4.3	306519	108	693481	19851 98010	3
28	298412		991244		307168		692832	19880 98004	3
29	299034	104	991218	4.3	307815	108	692185	19908 97998	3
30	299655	104	991193	4.3	308463	108	691537	19937 97992	3
31	9.300276	103	9.991167	4.3	9.309109	108	10-690891	19965 97987	2
32	300895	103	991141	4.3	309754	107	690246	19994 97981	2
	301514	103	991115	4.3	310398	107	689602	20022 97975	2
33		103	991090	4.3	311042	107	688958		
34	302132	103		4.3		107		20051 97969	2
35	302748	103	991064	4.3	311685	107	688315	20079 97963	2
36	303364	102	991038	4.3	312327	107	687673	20108 97958	2
37	303979	102	991012	4.3	312967	107	687033	20136 97952	2
38	304593	102	990986	4.3	313608	106	686392	20165 97946	2
39	305207	102	990960	4.3	314247	106	685753	20193 97940	2
40	305819		990934		314885	106	685115	20222 97934	2
41	9.306430	102	9 990908	4.4	9.315523		10.684477	20250 97928	1
42	307041	102	990882	4.4	316159	106	683841	20279 97922	
43	307650	102	990855	4,4	316795	106	683205	20307 97916	1
44	308259	101	990829	4.4	317430	106	682570	20336 97910	1
		101		4.4	318064	106			
45	308867	101	990803	4.4		105	681936	20364 97905	1
46	309474	101	990777	4.4	318697	105	681303	20393 97899	1
47	310080	101	990750	4.4	319329	105	680671	20421 97893	1
18	310685	101	990724	4.4	319961	105	680039	~0450 97887	1
49	311289	100	990697	4.4	320592	105	679408	20478 97881	1
50	311893	100	990671	4.4	321222	105	678778	20507 97875	1
51	9.312495		9.990644		9.321851		10.678149	20535 97869	
52	313097	100	990518	4.4	322479	105	677521	20563 97863	1
53	313698	100	990591	4.4	323106	104	676894	20592 97857	1
54	314297	100	990565	4.4	323733	104	676267	20620 97851	
		100		4.4		104			1
55	314897	100	990538	4.4	324358	104	675642	20649 97845	1
56	315495	100	990511	4.5	324983	104	675017	20677 97839	1
57	316092	99	990485	4.5	325607	104	674393	20706 97833	13
53	316689	99	990458	4.5	326231	104	673769	20734 97827	1
59	317284		990431		326853		673147	20763 97821	1
		99		4.5	I marie	104			
60	317879		990404	1000	327475		672525	20791 97815	1

,	PABLE II.	1	og. Sines a	nd Ta	ngents. (6	c) Na	tural Sines.		27
7	Sine.	D . 10"	Cosine.	D. 10"	Tang.	D. 10'	Cotang.	N. sine. N. cos	.
0	9.019235	200	9.997614	2.2	9.021620	202	10.978380	10453 99452	60
1	020435	199	997601		022834	202	977166	10482 99449	
2	021632	199	997588 997574	0 0	024044	201	975956 974749	10511 99446	
3	022825 024016	198	997561	2.2	025251 026455	201	973545	10540 99443 10569 99440	1 (
5	025203	198 197	997547	$\frac{2.2}{2.2}$	027655	200 199	972345	10597 99437	
6	026386	197	997534	2.3	028852	199	971148	10626 99434	
7	027567	196	997520	2.3	030046	198	969954	10655 99431	53
8	028744 029918	196	997507 997493	2.0	031237 032425	198	968763 967575	10684 99428 10713 99424	
10	031089	195 195	997480	$2.3 \\ 2.3$	033609	197 197	966891	10742 99421	
12	3.032257	194	9.997466	2.3	9.034791	196	10.965209	10771 99418	
15	033421	194	997452	2.3	035969	196	964031	10800 99415	
13 14	034582 035741	193	997439 997425	2.3	037144 038316	195	962856 961684	10829 99412 10858 99409	
15	036896	192	997411	2.3	039485	195 194	960515	1088: 99406	
16	038048	192 191	997397	$\substack{2.3 \\ 2.3}$	040651	194	959349	10916 99402	44
17	039197	191	997383	2.3	041813	193	958187	10945 99399	
18 19	040342 041485	190	997369 997355	$2 \cdot 3$	042973 044130	193	957027 955870	10973 993 9 6 11002 99393	
20	042625	190	997341	2.3	045284	192	954716	11031 99390	
21	9.043762	189 189	9.997327	$2.3 \\ 2.4$	9.046434	192 191	10.953566	11060 99386	39
22	044895	180	997313	2.4	047582	191	952418	11089 99383	
23 24	046026 047154	188	997299	2.4	048727 049869	190	951273 950131	11118 99380 11147 99377	
25	048279	187	997271	2.4	051008	190	948992	11176 99874	35
26	049400	187 186	997257	2.4 2.4	052144	189 189	947856	11205 99370	
27	050519	186	997242	2.4	053277	188	946723	11234 99367	33
28	051635	185	997228	2.4	054407 055535	188	945593 944465	11263 99364	
29 30	052749 053859	185	997214 997199	2.4	056659	187	943341	11291 99360 11320 99357	31 30
	9.054966	184	9.997185	2.4	9.057781	187 186	10.942219	11349 99354	29
32	056071	184	997170	$2.4 \\ 2.4$	058900	186	941100	11378 99351	28
33	057172	183	997156	2.4	060016	185	939984	11407 99347	27
34 35	058271 059367	183	997141 997127	2.4	061130 062240	185	938870 937760	11436 99344 11465 99341	26 25
36	060460	182 182	997112	$\frac{2.4}{2.4}$	063348	185 184	936652	11494 99337	24
37	061551	181	997098	2.4	064453	184	935547	11523 99334	23
38	062639	181	997083	2.5	065556	183	934444 933345	11552 99331	22
39 40	063724 064806	180	997068 997053	2.5	066655 067752	183	932248	11580 99327 11609 99324	
41	9.065885	180 179	9.997039	$2.5 \\ 2.5$	9.068846	182 182	10.931154	11638 99320	
42	066962	179	997024	2.5	069038	181	930062	11667 99317	18
43	068036	179	997009 996994	2.5	071027 072113	181	928973 927887	11696 99314	17
44	039107 070176	178	996994	2.5	073197	181	926803	11725 99310 11754 99307	
46	071242	178	996964	2.5	074278	180 180	925722	11783 99303	
17	072306	177	996949	$2.5 \\ 2.5$	075356	179	924644	11812 99300	13
48	073366	176	996934	2.5	076432	179	923568	11840 99297	
19 50	074424 075480	176	996919 996904	2.5	077505 078576	178	922495 921424	11869 99293 11898 99290	
51	9.076533	175	9.996889	2.5	9.079644	178 178	10.920356	11927 99286	
52	077583	175 175	996874	2.5 2.5	080710	177	919290	11956 99283	8
53 54	078631	174	996858	2.5	081773	177	918227	11985 99279	
55	079676 080719	174	996843 996828	2.5	082833 083891	176	917167 916109	12014 99276 12043 99272	
56	081759	173	996812	2.5	084947	176	915053	12043 99272	
57	082797	173 172	996797	2.6	086000	175 175	914000	12100 99265	
58	083832	172	996782	$\frac{2.6}{2.6}$	087050	175	912950	12129 99262	
59	084864 085894	172	996766 996751	2.6	088098 089144	174	911902 910856	12158 99258	
<u></u> '.	Cosine.	 	990751 Sine.		Cotang.			12187 99255	
	Cosine.	L	Sitte.	'		L	Tang.	N. cos. N.situ	
l					83 Degrees.				- 1

,

Section Color Co	=									_
0 9. 065894 171 996736 2.6 091293 173 906737 124159251 59 087947 170 996730 2.6 091293 173 906731 122459251 59 087947 170 996704 2.6 091293 173 906731 122459248 58 088970 170 996678 2.6 091293 173 906731 122459248 58 089906 170 996678 2.6 093902 173 906684 1233192924 56 091293 173 906784 127 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 173 906781 122459248 58 091293 174 906684 1247 906684 171 906664 1223192923 53 091294 12459 1245924 56 091293 174 906881 1247 906781 122459223 51 091294 12459 1245924 56 091293 174 906881 1247 906781 122459223 51 091294 12459 124594 12459223 51 091294 12459 124594 12459223 51 091294 12459 124594 12459223 51 091294 12459 124594 12459223 51 091294 12459 124594 12459223 51 091294 12459 124594 124594 12459223 51 091294 12459 124594 124594 1245923 124594923 51 091294 11477 12459 124594 124594 124594 1245924 1245924 12459	2	8	L	og. Sines a	nd Tai	ngents. (7º) Na	tural Sines.	TABLE I	L.
1	7	Sine.	D. 10'	Cosine.	D. 10"	Tang.	D. 10'	Cotang.	N. sine N. cos.	
1	0		171		0.6		174			
2					2.6					
4 689990 170 996678 2.6 094392 173 906688 12302/99240 56 6			170		2.6		173			
6										
6 094047 168 996641 2.6 096395 171 903605 12339 99230 53 8 094047 168 996652 2.6 097492 171 903605 12339 99230 53 9 095062 168 996630 2.6 096446 170 900632 12416 99292 51 10 096062 166 996563 2.7 101504 169 897481 12562 93206 47 11 9.097065 166 996540 2.7 103503 183 996439 2915 144 100062 166 996540 2.7 103503 183 996449 1276 101056 166 996540 2.7 103503 183 996468 12561 99204 46 11 10 10 10 10 164 996480 2.7 105656 168 89444 12678 99197 44 17 10 3037 164 996480 2.7 105656 168 89444 12678 99197 44 17 10 3037 164 996480 2.7 105656 168 89444 12678 99189 42 18 10 4025 164 996480 2.7 105656 168 89444 12766 99189 42 19 10 5010 164 996480 2.7 105656 166 891440 12764 99189 42 19 10 5011 163 996449 2.7 105656 166 891440 12764 99183 42 19 1.09571 163 996430 2.7 115651 166 891440 12764 99189 42 19 1.09571 163 996430 2.7 115651 166 891440 12764 99189 42 19 1.09571 163 996449 2.7 115651 166 891440 12764 99183 42 12 10 10 164 996381 2.7 115651 166 88449 12802 99167 36 23 10 10 162 996368 2.7 115651 166 886467 1280 99167 36 24 10 19901 162 996365 2.7 115651 166 886467 1280 99167 36 25 110 1673 169 99635 2.7 115651 164 88649 12906 89166 32 27 112809 161 996318 2.7 115651 164 88649 12906 89166 32 28 113774 160 996326 2.8 114621 164 88569 12906 89166 33 19 116686 169 996269 2.8 114621 164 88569 12966 89166 33 19 116686 169 996269 2.8 114621 164 88569 12966 89166 33 19 116686 169 996269 2.8 114621 164 88569 12966 89166 33 11 11 11 11 11 11 11 11 11 11 11 11 11		091008		996678					12331 99237	
8 094047 168 996692 2.6 093468 170 900532 12416 39226 52 9 095066 167 9.996502 2.7 101504 189 897481 170 10.89513 12504 39219 50 124 100906 166 996546 2.7 101504 189 897481 12502 99206 47 101504 166 996504 2.7 103503 189 896468 12591 99204 46 161 101056 166 996546 2.7 103503 189 896468 12591 99204 46 161 101056 166 996546 2.7 103503 189 896468 12591 99204 46 161 101056 165 996496 2.7 103503 189 896468 12591 99204 46 161 101056 164 996466 2.7 105506 167 893444 12706 99189 42 19 105010 162 996469 2.7 105506 167 893444 12706 99189 42 19 105010 162 996368 2.7 105656 166 893444 12706 99189 42 19 105010 162 996368 2.7 105656 166 893444 12706 99189 42 19 105010 162 996368 2.7 113503 165 886467 12829 99176 38 1313774 160 996368 2.7 113503 165 886467 12829 99173 37 12809 161 996368 2.7 113503 165 886467 12829 99173 37 12809 161 996368 2.7 113503 165 886467 12829 99173 37 1373 160 996252 2.8 118457 160 996252 2.8 118452 163 88509 12966 89166 33 111668 160 996228 2.8 118452 163 88509 12966 89166 33 111668 160 996228 2.8 118452 163 88509 12966 89166 33 111669 160 996228 2.8 118452 163 88509 12966 89166 33 111693 165 996068 2.9 113774 160 996228 2.8 118452 163 88509 12966 89166 33 111693 165 996269 2.8 112377 164 883509 12966 89166 33 111693 165 996269 2.8 112377 164 88369 12966 89166 33 111693 165 996269 2.8 112377 164 883509 12966 89166 33 111693 165 996269 2.8 123377 164 88369 12966 89166 33 111693 165 996068 2.9 13394 163 880671 13053 89144 30 12567 164 996968 2.9 13394 163 880671 13053 89144 30 12567 164 996968 2.9 13394 165 996068 2.9 13394 165 996068 2.9 13394 165 996068 2.9 13394 165 996069 2.9 13394 165 996069 2.9 13394 165 996069 2.9 13394 165 996069 2.9 13394 165 996069 2.9 13394 165 996069 2.9 133994 165 996069 2.9 133994 165 996069 2.9 133994 165 996069 2.9 133994 165 996069 2.9 133994 165 996069 2.9 133994 165 996069 2.9 133994 165 996069 2.9 133994 165 996069 2.9 133994 165 996069 2.9 133994 165 86601 130609 110 120 120 120 120 120 120 120 120 120										
9 096066 168 996514 2.6 098468 170 901654 12447 19922 51 19 096066 167 9965678 2.7 101604 168 9965678 167 100062 166 996564 2.7 10251 168 996564 170 100062 166 996564 170 10251 168 996466 170 10251 168 169 996466 170 10251 168 169 169 164 996465 170 10251 168 169 164 996465 170 10251 168 169 164 996465 170 10251 168 169 169 164 996465 170 10251 168 169 169 164 996465 170 10251 168 169 169 164 996465 170 10251 168 169 169 164 996465 170 10251 168 169 169 164 996465 170 10251 168 169 169 164 996465 170 10251 168 169 169 164 996465 170 10251 168 169 169 164 168 169 169 164 168 169 169 164 168 169 169 164 168 169 169 164 168 169 169 164 168 169 169 164 168 169 169 164 168 169 169 169 169 169 169 169 169 169 169										
10 0.96062 167 9.966578 2.7 105656 168 996486 170 10.89813 12562 99208 47 10.60656 166 996630 2.7 105532 168 896486 12533 99201 148 161 10.065 166 996496 2.7 105552 168 894450 12562 99200 47 10.60656 167 10.606 166 996496 2.7 105552 168 894450 12562 99200 47 10.60656 167 10.606 168 996496 2.7 10.60656 168 893444 12678 99193 43 19 10.607 164 996495 2.7 10.60656 167 892441 12706 99188 42 19 10.607 164 996496 2.7 10.60656 167 892441 12706 99188 42 19 10.607 164 996496 2.7 10.60650 167 892441 12706 99188 42 19 1.0070 164 996496 2.7 10.60650 168 893444 12678 99193 43 10.607 164 996496 2.7 10.60650 168 893444 12678 99193 43 10.607 164 996496 2.7 10.60650 168 893444 12678 99193 43 10.607 164 996496 2.7 10.60650 166 890441 12706 99188 42 19 1.0070 164 99638 2.7 10.6060 166 888449 12.607 169 99638 2.7 11.60650 166 888449 12.60 99638 2.7 11.60650 166 888449 12.60 10.89818 42 12.60 10.89818 4									12447 99222	
11 9			167							
13					2,7		169			
14 100062 166 996514 2.7 104542 168 896468 12591 99204 45 161 101056 166 996514 2.7 104542 168 894460 12649 99200 45 161 1010501 164 996462 2.7 104565 167 892441 12705 99189 42 17 1010501 164 996462 2.7 108560 167 892441 12705 99189 42 17 1010501 164 996443 2.7 108560 166 892441 12705 99189 42 17 1010501 164 996449 2.7 108560 166 892441 12705 99189 42 17 1010501 164 996449 2.7 108560 166 166 166 166 166 166 166 166 166 1					2.7					
16		100062		996530				896468	12591 99204	
10										
18 104025 164 996465 2.7 108569 167 891440 12735 99186 41 20 105992 168 996434 2.7 108569 166 890441 12765 99186 42 22 20 107951 163 996407 2.7 108569 166 880441 12765 99186 42 22 22 23 108927 163 996384 2.7 112643 165 886467 12861 99171 37 28 111673 162 996385 2.7 112643 165 886467 12861 99171 37 28 113774 160 996285 2.8 114737 160 996285 2.8 114737 160 996285 2.8 114747 160 996285 2.8 114743 161 996302 2.8 114626 163 996285 2.8 114626 163 996285 2.8 114629 163 880671 13053 99144 29 23 117613 159 996292 2.8 112448 161 165 996292 2.8 112417 168 996185 2.8 123377 162 37 162 37 162 37 162 38 12336 157 996187 2.8 123377 165 38 37 12861 9913 2.7 12861 99152 2.8 123377 163 165			165		2.7					
19				996465				892441		42
20 103992 168 996443 2.7 105056 166 10.889444 127399178 39 30 106927 163 996400 2.7 113531 165 886449 1283299175 38 38 106927 162 996363 2.7 113531 165 886467 1286099167 36 36 36 36 36 36 36	19									
22 10795i 163 996384 2.7 11185i 166 888449 12822 99175 38 108927 162 996385 2.7 113633 165 886477 12861 99171 37 1372 11861 162 996385 2.7 114621 164 884493 12937 99160 34 131774 160 996385 2.8 118452 163 881548 13937 99160 34 115686 160 996285 2.8 118452 163 881548 13024 99148 31 9.116666 159 996289 2.8 9.120404 133 115666 159 99629 2.8 129404 151 996332 2.8 12331 11561 159 99629 2.8 12331 115666 159 99629 2.8 12331 115666 159 99629 2.8 12331 115666 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 11569 159 99629 2.8 12331 165 159 99629 2.8 12331 165 159 99629 2.8 12331 165 159 99629 2.8 12331 165 159 99629 2.8 12331 165 159 99629 2.8 123317 162 877652 13139 99133 27 14248 157 99610 2.8 125949 160 874751 13226 99122 24 14187 156 996065 2.9 130994 158 158 159 996066 2.9 130994 158 158 159 996066 2.9 130994 158 158 159 996066 2.9 130994 158 158 159 996065 2.9 133934 158 158 159 996065 2.9 133934 158 158 159 996065 2.9 133934 158 158 159 996065 2.9 133934 158 158 159 996065 2.9 133934 158 158 159 996065 2.9 133539 157 156 156 99606 2.9 133934 158 157 158 158 159 99583 2.9 135126 157 158 158 159 99583 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 156 156 99607 2.9 135126 1			163		2.7		166			
108927 162			100		2.7				12822 99175	
24 109901 162 996365 2.7 1146521 164 884493 12937 89160 34 27 112809 161 996305 2.7 115607 164 883509 12966 996318 2.7 116491 164 883509 12966 996318 2.7 116491 164 883509 12966 996305 2.8 118452 163 881648 13024 99148 31 911666 160 996269 2.8 119429 162 882628 12995 99152 32 117613 159 996269 2.8 121377 160 996318 2.8 121377 162 879623 1310 99137 28 122348 161 16567 165 996219 2.8 122348 161 87667 13139 996202 2.8 122348 161 87668 13149 168 996185 2.8 122348 161 87668 13149 169	23					112543		887457	12851 99171	
26 110842 161 996301 2.7 116401 164 883509 12966 99156 32 32 113747 160 996302 2.8 118452 163 881548 12995 99152 32 32 117613 159 996202 2.8 119429 163 881548 13024 99148 31 11665 159 996202 2.8 12377 161 878623 1318567 159 996219 2.8 123317 161 878623 13189 99132 28 123478 162 878623 13189 99132 28 123478 162 878623 13189 99132 28 123478 161 876683 13189 99132 28 124484 161 876683 13169 996202 2.8 124284 161 876683 13169 99129 26 123317 161 876683 13189 99132 26 123317 161 876683 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 26 123484 161 8767652 13189 99132 27 131844 160 871870 13248 132										
27 112809 161 996318 2.7 116491 164 883509 12966 99156 33 113774 160 996302 2.8 119422 163 881548 13024 99143 31 31 16666 159 996269 2.8 9.120404 162 879658 13081 99133 21 17613 159 996219 2.8 123377 161 879658 13109 99133 23 117613 159 996219 2.8 123377 161 87663 13109 9137 28 12337 161 87663 13168 99133 27 12367 158 996168 2.8 125249 161 87663 13168 99122 24 248 47 123306 157 996104 2.8 126211 160 873789 13254 99118 23 127928 156 996068 2.8 129087 159 12966 99162 24 127060 156 996068 2.9 130941 159 158 996100 2.8 9913094 159 156 996068 2.9 130941 159 158 996085 2.8 129087 159 156 996060 2.9 130941 159 158 996085 2.9 130941 159 158 996085 2.9 130941 159 158 996085 2.9 130941 159 158 996085 2.9 130941 159 158 996085 2.9 130941 159 10.869969 133709102 19 10.869969 133709102 19 10.869969 133709102 19 10.869969 133709102 19 133587 156 995634 2.9 133587 156 9956946 2.9 133694 156 866161 13485 990671 150 13587 153 995963 2.9 136367 156 862395 136099071 150 135887 153 995984 2.9 136367 156 862395 136099071 11 156 862395 1360990971 11 156 139944 151 995883 2.9 136367 156 862395 1360990971 11 156 866661 13485 99065 2.9 140409 155 865601 13773 99047 5 140860 151 995883 2.9 145044 153 865216 13818 99039 3 147803 157 995861 2.9 145044 153 865216 13831 99039 3 147803 150 995788 2.9 145044 153 865216 13819 99039 3 147803 150 995788 2.9 145044 153 865800 13871 99047 5 147805 150 995781 2.9 145044 153 865216 13819 99039 3 147805 156 147665 150 995788 2.9 145044 153 866661 13869 1292 13971 150			162		2.7					
28										
29 114787 160 996285 2.8 116482 163 880671 13053 99144 29 31 9.116666 159 996285 2.8 9.120404 162 878623 13110 99137 28 33 118567 159 99629 2.8 123317 161 876683 13168 99147 28 34 119519 158 996185 2.8 123317 161 876683 13188 99133 27 34 119519 158 996185 2.8 123317 161 876683 13188 99129 26 37 122362 157 996185 2.8 126211 160 873789 13254 99118 23 39 12248 157 996117 2.8 127172 160 872828 13283 99113 23 39 124248 157 996114 2.8 129187 160 872828 13283 99114 22 22 22 22 23 23 23 2		113774		996302	2.7					
30 9.116666 159 9.96252 2.8 9.120404 161 878623 1310.99137 28 122348 161 876624 1310.99137 28 123317 162 876623 1310.99137 28 123317 162 876623 1310.99137 28 12341 161 876624 1310.99137 28 123317 162 876623 1310.99137 28 124147 162 876623 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99137 28 124147 162 876624 1310.99132 24 161 876716 13197.99125 25 162 161 876624 161 876716 13197.99125 25 162 161 876624 161 876716 13197.99125 25 162 161 876624 161 876716 13197.99125 25 162 161 876624 161 876716 13197.99125 25 162 161 876624 161 876716 13197.99125 25 162 161 876624 13264 161 876716 13197.99125 25 162 161 876624 13264 161 876716 13197.99125 24 127060 166 996062 2.9 130944 168 871870 13312.99110 21 141 141 141 141 141 141 141 141 141										
32 117613 159 996236 2.8 121377 162 877662 13139 99133 27 34 119519 158 99629 2.8 122348 161 876683 131688 99129 26 35 120469 158 996185 2.8 124284 161 876716 13197 99125 25 36 121417 158 996185 2.8 125249 160 873789 13254 99118 23 38 12336 157 996134 2.8 127172 160 873789 13254 99118 23 39 124248 157 996107 2.8 129107 160 871870 13312 99110 21 40 125187 156 996065 2.8 1230041 159 996066 2.9 130944 158 869005 13399 9998 18 41 127993 156 996066 2.9 130944 158 869005 13399 9998 18 41 128925 156 996032 2.9 131894 158 869006 13399 9998 18 41 131706 46 130781 154 995980 2.9 134784 157 866264 13485 99067 159 133537 159 99583 2.9 135126 157 86627 134470 158 995963 2.9 136676 157 86627 13688 99067 159 133537 153 995946 2.9 135542 156 99687 2.9 135542 157 8664274 13543 99079 13 13134470 153 995983 2.9 136676 156 866305 13600 99071 11 150 134470 153 995863 2.9 136676 156 866305 13600 99071 150 134470 153 995863 2.9 135542 156 99687 2.9 135542 156 866427 13668 99065 12 136303 152 995867 2.9 141340 155 865860 13773 99065 157 99587 2.9 141340 155 865860 13773 99065 7.9 141340 155 8658731 13744 99061 6 143656 150 995788 2.9 145044 153 865807 13600 99071 144121 154 154 154 995806 2.9 145044 153 865807 13600 13600 99071 144121 154 154 156 995788 2.9 145044 153 86509 13600 99073 144265 150 995788 2.9 145046 153 865017 13917 99047 6 144665 150 995753 147803 153 852197 13917 99027 0 10000000000000000000000000000000					2.8				13081 99141	
33 118567 159 996219 2.8 122348 161 876683 13183 99133 27 27 27 27 27 27 27			199						13110 99137	
34 11969 158 996185 2.8 124284 161 874751 13226 99122 24 22 24 23 23 23 23	33	118567								
36										
37 122362 157 996151 2.8 126211 160 8738789 13254 99118 23 23 123306 157 996134 2.8 127172 160 871870 13312 99110 21 21 21 21 21 21 21										
38 123306 157 996134 2.8 129172 160 871870 13312 99110 21 21 21 21 21 21 21								873789		
39 124240 125187 166 996060 2.8 129087 159 10.869959 13370 99102 19 12912 19 12912 156 996066 2.9 130994 158 156 996066 2.9 131944 158 866000 13399 99098 18 127998 156 996049 2.9 131944 158 866101 13455 99091 16 13455 99087 15 156 996015 2.9 132993 158 867107 13456 99091 16 13457 99094 17 131706 154 995998 2.9 1334784 157 866216 13514 99083 14 147 131706 154 995980 2.9 135126 157 864274 13543 99079 13 13351 153 995948 2.9 136126 157 863231 13672 99057 12 135387 153 995948 2.9 137505 156 862395 13600 99071 11 154 15										
41 9.126125 156 9.996083 2.9 1330944 159 86900¢ 1337099102 19 16 996066 2.9 1330994 158 86900¢ 133999098 18 17998 155 996062 2.9 1331944 158 868066 133427 99094 17 14 128925 155 996015 2.9 1338339 156 867107 13456 99017 15 15 15 99580 2.9 135194 157 866216 13514 99083 14 17 131706 154 995980 2.9 135196 157 864274 13543 99079 13 13551 153 995946 2.9 136 167 864274 13543 99079 13 13551 153 995946 2.9 136 167 864274 13543 99079 13 150 133551 153 995946 2.9 136 167 864274 13543 99079 13 150 153 153 995946 2.9 136 166 862395 1360099071 11 150 134470 153 995894 2.9 138542 156 862395 1360099071 11 150 134470 153 995894 2.9 138542 156 862395 1360099071 11 150 134470 153 153 152 995894 2.9 138542 156 862395 1360099071 11 150 134470 153 153 152 995894 2.9 143490 155 865860 13716 99057 150 134576 150 13			157		2.8					
42 127060 156 996066 2.9 130994 158 869006 13399 99098 18 18 127993 155 996049 2.9 131944 158 868066 13427 99094 17 18 18 18 18 18 18 18					2.8					19
43 127993 155 996049 2.9 132983 158 868100 13427 9994 17 4		127060	100	996066						
45 129864 156 996015 2.9 133339 167 866161 13485 99087 15 130781 154 99698 2.9 134784 167 865216 13514 99083 14 17 131706 154 995980 2.9 136 267 156 862335 13672 990.5 12 1351470 153 995946 2.9 136 267 156 862335 13672 990.5 12 1351470 150 13470					2.9		158			
46 130781 154 995988 2.9 134784 157 865216 13514 99083 14 47 131706 154 995980 2.9 136126 157 864274 13643 99075 13 48 132630 154 995963 2.9 136 367 156 86323 13672 990.5 12 49 133551 153 995942 2.9 137805 156 862395 13600 99071 11 50 134470 153 995998 2.9 137805 156 861458 13629 99067 10 51 9.135387 153 995991 2.9 1438470 155 861458 13629 99063 9 52 136303 152 995876 2.9 140409 155 889601 13687 99069 8 53 137216 152 995876 2.9 141340 155 889601 13687 99069 8 54 138128 152 995876 2.9 142269 154 885951 13687 99059 8 55 139037 151 995882 2.9 144269 154 865804 13773 99047 5 56 139944 151 995823 2.9 144121 154 855879 13802 99043 4 57 140850 151 995788 2.9 145044 153 854956 13831 99039 3 59 142655 150 995781 2.9 145966 153 854054 13836 99035 2 50 143555 150 995781 2.9 145966 153 854054 13886 99035 2 50 143555 150 995753 2.9 145966 153 852197 13917 99027 0 Cosine. Sine. Cotang. Tang. N. co. N.sine. /										
47 131706 154 995980 2.9 135 157 8642 13643 9975 13 13 14 155 156 13934 157 154 155 14 155 156		130781		995998	2.9	134784		865216	13514 99083	14
48 132630 163 995963 2.9 137605 156 862395 13600 99071 17 17 17 17 17 17 17										
50 134470 153 995928 2.9 138542 156 150 861458 13629 99067 10 10 10 10 10 10 10 1			153		2.9		156			
51 9.135387 152 9.995911 2.9 9 1.49476 155 859591 13688 99063 9 52 136303 152 995894 2.9 141940						138542		861458	13629 99067	10
52 136303 152 995894 2.9 149309 155 858660 13716 990587 529 149309 156 858660 13716 990587 529 142269 154 856860 13716 99058 55 139034 151 995806 2.9 143196 154 85687 13802 99047 56 139944 151 995806 2.9 145104 154 85687 13802 99043 4 57 140860 151 995788 2.9 145044 153 854034 13800 99035 2 14265 150 995771 2.9 145966 153 854034 13800 99035 2 14265 150 995753 2.9 147803 153 852197 13917 99027 0 143656 150 995753 147803 153 852197 13917 99027 0 143656 143656 158	51	9.135387		9.995911						
53 137216 152 995676 2.9 142269 155 3687731 1374499061 6 54 138128 152 995689 2.9 142269 154 856804 13773 99047 5 55 139037 151 995823 2.9 143196 164 856804 13773 99047 5 57 140850 151 995806 2.9 144121 154 854956 13831 99039 3 59 142665 150 995788 2.9 145966 163 854934 13860 99035 2 59 142665 150 995783 2.9 146885 163 853115 13889 99031 1 60 143555 150 995763 2.9 147803 153 852197 13917 99027 0 Cosine. Sine. Cotang. Tang. N. cos. N.sine. /							155			
55 139037 151 995821 2.9 143196 164 856804 13773 99047 5 140850 151 995806 2.9 144121 154 855879 13802 99043 4 157 140850 151 995806 2.9 145044 153 854956 13831 99039 3 145966 153 854034 13860 99035 2 145966 143555 150 995753 2.9 145865 153 852197 13917 99027 0 147803 153 852197 13917 99027 0 147803 153 852197 13917 99027 0			152		2.9					
56 139944 151 995823 2.9 144121 154 855879 13802 99043 4 57 140850 151 995806 2.9 145044 153 854956 13831 99039 3 59 142655 150 995788 2.9 145966 163 854034 13860 99035 2 60 143555 150 995753 2.9 147803 153 852197 13917 99027 0 Cosine. Sine. Cotang. Tang. N. cos. N.sine. /						143196		856804	13773 99047	5
57 140850 151 995806 2.9 145964 153 854960 1383199035 3 59 142655 150 995788 2.9 145966 153 854303 1383199035 3 59 142655 150 995773 2.9 146885 153 853115 13889 99031 1 60 143555 150 995753 2.9 147803 153 852197 13917 99027 0 Cosine. Sine. Cotang. Tang. N. cos. N.sine. /		139944								
59 142655 150 995771 2.9 146885 153 853115 13889 99031 1 143655 Cosine. Sine. Cotang. Tang. N. cos. N. sine. 7			151		2.9		153			
60 143555 150 995753 2.9 147803 153 852197 13917 99027 0 Cosine. Sine. Cotang. Tang. N. cos. N. sine. /									13889 99031	i
			150		2.9		103		13917 99027	
82 Degrees.	_	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	1
					8	2 Degrees.				

7	ABLE II.	I	og. Sines s	nd Ta	ngents. (8	°) Na	tural Sines.		2	9
三	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	
0	9.143555	150	9.995758	3.0	9.147803	153	10.852197		99027	60
1	144453	149	995735	3,0	148718	152	851282	13946		59 58
8	145349 146243	149	995717 995699	3.0	149632 150544	152	850368 849456	13975 14004		57
4	147136	149	995681	3.0	151454	152	848546	14033		56
5	148026	148 148	995664	3.0 3.0	152363	151 151	847637	14061		55
6	148915	148	995646	3.0	153269	151	846731	14090		54
8	149802 150686	147	995628 995610	3.0	154174 155077	150	845826 844923	14119		53 52
9	151569	147	995591	3.0	155978	150	844022			51
10	152451	147	995573	3.0 3.0	156877	150 1E0	843123	14205	98986	50
11	9.153330	147 146	9.995555	8.0	9.157775	149	10.842225	14234	98982	49
12	154208	146	995537 995519	8.0	158671 159565	149	841329 840435	14263 14292	98978	48 47
13 14	155083 155957	146	995501	3.0	160457	149	839543	14320		46
15	156830	145	995482	3.1	161347	148 148	838653	14349		45
16	157700	145 145	995464	3.1	162236	148	837764	14378		44
17	158569	144	995446	8.1	168123	148	836877	14407		43 42
18	159435 160301	144	995427 995409	3.1	164008 164892	147	835992 835108	14436 14464		41
19 20	161164	144	995390	3.1	165774	147	834226	14493		40
21	9.162025	144	9.995372	3.1	9.166654	147	10.833346	14522	98940	39
22	162885	143	995353	3.1	167532	146	832468	14551	98936	38
23	163743	143	995334	3.1	168409	146	831591	14580	98931	87
24	164600 165454	142	995316 995297	3.1	169284 170157	145	830716 8298 4 3	14608 14637	98923	36 35
25 26	166307	142	995278	3.1	171029	145	828971	14666	98919	34
27	167159	142	995260	3.1	171899	145 145	828101	14695	98914	33
28	168008	142	995241	3.2	172767	144	827233	14723		32
29	168856	141	995222	3.2	173634	144	826366 825501	14752	98906	31 30
30 31	169702 9.170547	141	995203 9.995184	3.2	174499 9.175362	144	10.824638	14781 14810	98897	29
32	171389	140	995165	3.2	176224	144	823776	14838	98893	28
33	172230	140 140	995146	3.2 3.2	177084	143 143	822916	14867	98889	27
34	173070	140	995127	3.2	177942	143	822058	14896	98884	26
35	173908 174744	139	995108 995089	3.2	178799 179655	142	821201 820345	14925	98876	25 24
36 37	175578	139	995070	3.2	180508	142	819492	14982	98871	23
38	176411	139	995051	$\frac{3.2}{3.2}$	181360	142 142	818640	15011	98867	22
39	177242	139 138	995032	3.2	182211	141	817789	15040	98863	21
40	178072	138	995013	3.2	183059	141	816941	15069	98858	20 19
41 42	9.178900 179726	138	9.994993	3.2	9.183907 184752	141	10.816093 815248		988 54 98849	18
43	180551	137	994955	3.2	185597	141	814403		98845	17
44	181374	137 137	994935	3.2 3.2	186439	140 140	813561	15184	98841	16
45	182196	137	994916	3.3	187280	140	812720		98836	15
46	183016	136	994896 994877	3.3	188120 188958	140	811880 811042		98832 98827	14
47 48	183834 184651	136	994857	3.3	189794	139	819206		98823	12
49	185466	136	994838	3.3	190629	139 139	809371		98818	ii
50	186280	136 135	994818	3.3	191462	139	803538	15356	98814	10
	9.187092	135	9.994798	3.8	9.192294	138	10.807706	15385	98809	9
52 53	187903 188712	135	994779 9947 5 9	3.3	193124 193953	138	806876 806047	1544	98805 98800	8 7
54	189519	135	994739	3.8	194780	138	805220		98796	6
55	190325	134	994719	8.8	195606	138	804394	15500		5
56	191130	134	994700	3.3 8.3	196430	137	803570	15529	98787	4
57	191933	134	994680	3 3	197253	137	802747		98782	8
58 59	192734 193534	133	994660 994640	3.3	198074 198894	137	801926 801106		98778 98773	2
60	194332	133	994620	3.8	199713	136	800287		98769	اة
-	Cosine.		Sine.		Cotang.		Tang.		N.sine.	
					Bl Degrees.	·				

3	0	L	ng. Sines a	nd Te	ngents. (9) Na	tural Sines.	TABLE I	I.
	Sine.	D. 10"	Cosine.	D . 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
0	9.194332	133	9.994620	3.3	9.199713	136	10.800287	15643 98769	60
1	195129	133	994600	3.3	200529	136	. 799471	15672 98764	59
2	195925	132	994580	3.3	201345	136	798655	15701 98760	58
3	196719	132	994560	3.4	202159	135	797841	15730 98755	57
4	197511	132	994540	3.4	202971	135	797029	15758 98751	56
5	198302	132	994519	3.4	203782	135	796218	15787 98746	55
6	199091	131	994499	3.4	204592	135	795408	15816 98741	54
7	199879	131	994479	3.4	205400	134	794600	15845 98737	53
8	200666	.131	994459	3.4	206207	134		15873 98732	52
9	201451	131	994438	3.4	207013	134	792987	15902 98728	51
0	202234	120	994418	9 4	207817	134	792183	15931 98723	50
	9.203017	130	9.994397	3.4	9.208619	133	10.791381	15959 98718	49
2	203797	130	994377	3.4	209420	133	790580	15988 98714	48
13	204577	130	994357	3.4	210220	133	789780 788982	16017 98709	47
4	205354	129	994336 994316	3.4	211018 211815	133	788185	16046 98704 16074 98700	46 45
15 16	206181 206906	129	994295	3.4	212611	133	787389	16103 98695	44
	207679	129	994274	3.4	213405	132	786595	16132 98690	43
17	208452	129	994254	3.5	214198	132	785802	16160 98686	42
9	209222	128	994233	3.5	214989	132	735011	16189 98681	41
20	209992	128	994212	3.5	215780	132	784220	16218 98676	40
	9.210760	128	9.994191	3.5	9,216568	131	10.783432	16246 98671	39
22	211526	128	994171	0.0	217356	131	782644	16275 98667	38
23	212291	127	994150	3.5	218142	131	781858	16304 98662	37
24	213055	127	994129	3.5	218926	131 130	781074	16333 98657	36
25	213818	127	994108	3.5	219710	130	780290	16361 98652	35
26	214579	127	994087	3.5	220492	130	779508	16390 98648	34
27	215338	127 126	994066	3.5	221272	130	778728	16419 98643	33
28	216097	126	994045	3.5	222052	130	777948	16447 98638	32
29	216854	126	994024	3.5	222830	129	777170	16476 98633	31
30	217609	126	994003	3.5	22360 3	129	776394	16505 98629	30
	9.218363	125	9.993981	3.5	9.224382	129	10.775618	16533 98624	29
32	219116	125	993960	3.5	225156	129	774844	16562 98619	28
33	219868	125	993939	3.5	225929	129	774071	16591 98614	27
14	220618	125	993918	3.5	226700	128	773300	16620 98609	26
35	221367	125	993896	3.6	227471	128	772529	16648 98604	25
36	222115	124	993875	3.6	228239	128	771761	16677 98600	24
37	222861	124	993854	3.6	229007	128	770993	16706 98595	23
8	223606	124	993832	3.6	229778	127	770227	16734 99590	22
39	224349	124	993811	3.6	230539	127	769461	16763 98585	21 20
10	225092	123	993789	3.6	231302	127	768698 10.767935	16792 98580	19
	9.225833 226573	123	9.993768	3.6	9.232065 232826	127	767174	16820 98575 16849 98570	18
12 13	226673	123	993725	3.6	233586	127	766414	16878 98565	17
ы 14	228048	123	993703	3.6	234345	126	765655	16906 98561	16
15	228784	123	993681	3.6	235103	126	764897	16935 98556	15
6	229518	122	993660	3.6	235859	126	764141	16964 98551	14
17	230252	122	993638	3.6	236614	126	763386	16992 98546	13
8	230984	122	993616	3.6	237368	126	762632	17021 98541	15
19	231714	122	993594	3.6	238120	125	761880	17050 98536	11
60	232444	122	993572	3.7	238872	125	761128	17078 98531	10
-	9.233172	121	9.993550	3.7	9.239622	125 125	10.760378	17107 98526	9
52	233899	121	994528	3.1	240371	125	759629	17136 98521	8
3	234625	121	993506	3.7	241118	124	758882	17164 98516	7
54	235349	121	993484	3.7	241865	124	758135	17193 98511	6
55	236073	120	993462	3.7	242610	124	757390	17222 98506	5
6	236795	120	993440	3.7	243354	124	756646	17250 98501	4
57	237510	120	993418		244097	124	755903	17279 98496	8
8	238235	120 120	993396	3.7	244839	123	755161	17308 98491	2
59	238953	119	993374	8.7	245579	123	754421	17336 98486	1
i0	239670	119	993351	0.1	246319	100	753681	17365 98481	0
ו שו									

80 Degrees.

											
1 2	ABLE IL	. 1	Log. Sines	and Ts	ngents. (1	.0°) N	atural Sines.		3	1	
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine.	N. cos.		
0	9.239670	119	9.993351	3.7	9.246319	123	10.753681	17365		60	
1 2	240386 241101	119	993329 993307	3.7	247057 247794	123	752943 752206	17393 9 17422 9		59 58	
3	241814	119 119	993285	3.7	248530	123 122	751470			57	
4	242526	118	993262	3.7	249264	122	750736	17479 9		56	
5 6	243237 243947	118	993240 993217	3.7	249998 250730	122	750002 749270			55 54	
7	244656	118	993195	3.8	251461	122	748539	17565 9		53	
8	245363	118	993172	3.8	252191	122 121	747809	175949	8440	52	
9 10	246069 246775	117	993149 993127	3.8	252920 253648	121	747080 746352	17623 9 17651 9		51 50	
lii	9.247478	117	9.993104	3.8	9.254374	121	10.745626	176809	8425	49	
12	248181	117	993081	3.8	255100	121 121	744900	17708 9	8420	48	
13 14	248883 249583	117	993059	3.8	255824 256547	120	744176	17737 9 17766 9		47 46	
15	250282	116	993036 993013	3.8	257269	120	743453 742731	177949		45	
16	250980	116 116	992990	3.8	257990	120	742010	17823 9	8399	44	
17	251677	116	992967	3.8 3.8	258710	120 120	741290	17852 9		43	
18 19	252373	116	992944	3.8	259429	120	740571	17880 9 17909 9		42 41	
20	253067 253761	116	992921 992898	3.8	260146 260863	119	739854 739137	17937 9		40	
21	9.254453	115	9.992875	3.8	9.261578	119 119	10.738422	17966 9		39	
22	255144	115	992852	3.8	262292	119	737708	179959	8368	38	
23 24	255834 256523	115	992829 992806	3.9	263005 263717	119	735995 736283	18023 9 18052 9		37 36	
25	257211	115	992783	3.9	264428	118	735572	18081 9		35	
26	257898	114	992759	3.9	265138	118	734862	181099	8347	34	
27	258583	114	992736	3.9	265847	118	734153	18138 9		83	
28 29	259268 259951	114	992713 992690	3.9	266555 267261	118	733445 732739	18166 9 18195 9		32 31	
30	260633	114	992666	3.9	267967	118	732033	18224 9	8325	30	
31	9.261314	113	9.992543	3.9	9.268671	117	10.731329	18252 9	8320	29	
32	261994	113	992619	3.9	269375	117	730625	18281 9		28 27	
33 34	262673 263351	113	992596 992572	3.9	270077 270779	117	729923 729221	18309 9 18338 9	8304	26	
35	264027	113	992549	3.9	271479	117	728521	18367 9	8299	25	
36	264703	112	992525	3.9 3.9	272178	116 116	727822	18395 9		24	
37 38	265377 266051	112	992501 992478	3.9	272876 273573	116	727124 726427	18424 9 18452 9		23 22	
89	266723	112	992454	4.0	274269	116	725731	18481 9		21	
40	267395	112 112	992430	4.0	274964	116	725036	18509 9	8272	20	
41	9.268065	111	9.992406	4.0	9.275658	116	10.724342	18538 9		19	
42 43	268734 269402	111	992382 992359	4.0	276351 277043	115	723649 722957	18567 9 18595 9		18 17	
44	270069	111	992335	4.0	277734	115	722266	18624 9		16	
45	270735	111	992311	4.0	278424	115	721576	18652 9	8245	15	
46 47	271400	iii	992287	4.0	279113 279801	115	720887	18681 9 18710 9		14 13	
48	272064 272726	110	992263 992239	4.0	280488	114	720199 719 5 12	18738 9		12	
49	273388	110	992214	4.0	281174	114	718826	18767 9	8223	11	
50	274049	110	992190	4.0	281858	114	718142	18795 9	8218	10	
51 52	9.274708 275367	110	9.992166 992142	4.0	9.282542 283225	114	10.717458 716775	18824 9 18852 9		9	
53	276024	110	992117	4.0	283907	114	716093	18881 9		7	
54	276681	109	992093	4.1	284588	113	715412	18910	8196	6	
55	277337	109	992069	4.1	285268 285947	113	714732	18938 9		5 4	
56 57	277991 278644	109	992044 992020	4.1	286624	113	714053 713376	18967 9 18995 9		3	
58	279297	109 109	991996	4.1	287301	113	712699	19024		2	
59	279948	108	991971	4.1	287977	113	712023	19052	8168	1	
60	280599		991947	<u> </u>	288652		711348	19081		0	
<u></u>	Osine.	<u> </u>	Sine.	L	Cotang.	<u> </u>	Tang.	N. cos.	N.rine.	7	
				7	9 Degrees.						

_	:			===					_
39			g. Sines an	d Tan		-	tural Sines.	TABLE I	I.
	Sinc.	D. 10'	Cosme.	D. 10"	Tang.	D. 10	(Ataug.	N. sine. N. cos.	
	9.280599	108	9.991947	4.1	9.288652	112	10.711348	19081 98163	60
1	281248	108	991922	4.1	259326	112	710674	19109 98157	59
2	281897 282544	108	991897 991873	4.1	289999 290671	112	710001 709329	19138 98152 19167 98146	58 57
4	283190	108	991848	4.1	291342	112	708658	19195 98140	56
5	283836	108	991823	4.1	292013	112	707987	19224 98135	55
6	284480	107	991799	4.1	292682	111 111	707318	19252 98129	54
7	285124	107	991774	4.2	293350	111	706650	19281 98124	53
8	285766 286408	107	991749 991724	4.2	294017 294684	111	705983 705316	19309 98118 19338 98112	52 51
9 10	287048	107	991699	4.2	295349	111	704651	19366 98107	50
11	9.287687	107	9.991674	4.2	9.296013	111	10.703987	19895 98101	49
12	288326	106 106	991649	4.2	296677	110	703323	19423 98096	48
13	288964	106	991624	4.2	297339	110	702661	19452 98090	47
14	289600 290236	106	991599 991574	4.2	298001 298662	110	701999 701338	19481 98084 19509 98079	46 45
15 16	290870	106	991549	4.2	299322	110	700678	19538 98073	44
17	291504	106	991524	4.2	299980	110	700020	19566 98067	43
18	292137	105	991498	4.2	300638	110 109	699362	19595 98061	42
19	292768	105	991473	4.2	301295	109	698705	19623 98056	41
20 21	293399 9,294029	105	991448 9.991422	4.2	301951 9.302607	109	698049 10.697393	19652 98050 19680 98044	40 39
22	294658	105	991397	4.2	303261	109	696739	19709 98039	38
23	295286	105	991372	4.2	303914	109	696086	19737 98033	37
24	295913	104	991346	4.3	304567	109 109	695433	19766 98027	36
25	296539	104	991321	4.3	305218	108	694782	19794 98021	35
26	297164 297788	104	991295 991270	4.3	305869 306519	108	694131 693481	19823 98016	34
27 28	298412	104	991244	4.3	307168	108	692832	19851 98010 19880 98004	33 32
29	299034	104	991218	4.3	307815	108	692185	19908 97998	31
30	299655	104 103	991193	4.3	308463	108 108	691537	19937 97992	30
31	9.300276	103	9.991167	4.3	9.309109	107	10.690891	19965 97987	29
32	300895	103	991141 991115	4.3	309754 310398	107	690246 689602	19994 97981	28
33 34	301514 302132	103	991090	4.3	311042	107	688958	20022 97975 20051 97969	27 26
35	302748	103	991064	4.3	311685	107	688315	20079 97963	25
36	303364	103 102	991038	4.3	312327	107 107	687673	20108 97958	24
37	303979	102	991012	4.3	312967	107	687033	20136 97952	23
38	304593 305207	102	990986 990960	4.3	313608 314247	106	686392	20165 97946	22
39 40	305819	102	990934	4.3	314885	106	685753 685115	20193 97940 20222 97934	21 20
41	9.306430	102	9 990908	4.4	9.315523	106	10.684477	20250 97928	19
42	307041	102 102	990882	4.4 4.4	316159	106 106	683841	20279 97922	18
43	307650	101	990855	4.4	316795	106	683205	20307 97916	17
44 45	308259 308867	101	990829 990803	4.4	317430 318064	106	682570 681936	20336 97910	16
46	309474	101	990777	4.4	318697	105	681303	20364 97905 20393 97899	15 14
47	310080	101 101	990750	4.4	319329	105 105	680671	20421 97893	13
48	310685	101	990724	4.4	319961	105	680039	-0450 97887	12
49	311289	100	990697	4.4	320592	105	679408	20478 97881	11
50 51	311893 9.312495	100	990671 9.990644	4.4	321222 9.321851	105	678778 10.678149	20507 97875	10
52	313097	100	990018	4.4	322479	105	677521	20535 97869 20563 97863	9 8
53	313698	100	990591	4.4	323106	104	676894	20592 97857	7
54	314297	100 100	990565	4.4	323733	104 104	676267	20620 97851	6
55	314897	100	990538	4.4	324358	104	675642	20649 97845	5
56 57	315495 316092	100	990511 990485	4.5	324983 325607	104	675017	20677 97839	4
58	316689	99	990458	4.5	326231	104	674393 673769	20706 97833 20734 97827	8 2
59	317284	99	990431	4.5	326853	104	673147	20763 97821	1
60	317879	99	990404	4.5	327475	104	672525	20791 97815	ô
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	
				7	8 Degrees.		·		·
<u> </u>									i

	TABLE II.	1	Log. Sines	and T	angents. (12º) N	atural Sines		33
17	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	Т
0	9.317879	99.0	9.990404	4.5	9.327474	103	10.672526	20791 97815	60
1	318473	98.8	990378	4.5	328095	103	671905	20820 97809	59
2 3	31905 319658	98.7	990351 990324	4.5	329334	103	671285 670566	20848 97803 20877 9 77 97	58 57
4	320249	98.6	990297	4.5	329953	103	670047	20905 97791	56
5	320840	98.3	990270	4.5	330570	103 103	669430	20933 97784	55
6 7	321430 322019	98.2	990243 990215	4.5	331187 331803	103	668813 668197	20962 97778 20990 97772	54 53
8	322607	98.0	990188	4.5	332418	102	667582	21019 97766	52
9	323194	97.9 97.7	990161	4.5	333033	102 102	666967	21047 97760	51
10	323780 9 324366	97.6	990134	4.5	333646 9.334259	102	666354 1C .665741	21076 97754 21104 97748	50
11 12	324950	97.5	990079	4.6	334871	102	665129	21132 97742	49 48
13	325534	97.3 97.2	990052	4.6 4.6	335482	109 102	664518	21161 97735	47
14	326117 326700	97.0	990025	4.6	336093	102	663907	21169 97729	46
15 16	327281	96.9	989997 989970	4.6	336702 337311	101	663298 662689	21218 97723 21246 97717	45 44
17	327862	96.8 96.6	989942	4.6	337919	101	662081	21275 97711	43
18	328442	96.5	989915	4.6	338527	101 101	661473	21303 97705	42
19 20	329021 329599	96.4	989887 989860	4.6	339133 339739	101	660867 660261	21331 97698 21360 97692	41
21	9.330176	98.2	9.989832	4.6	9.340344	101	10.659656	21388 97686	39
22	330753	96.1 96.0	989804	4.6	340948	101 101	659052	21417 97680	38
23 24	831329 831903	95.8	989777 989749	4.6	341552 342155	100	658448 657845	21445 97673 21474 97667	37 36
25	332478	95.7	989721	4.7	342757	100	657243	21502 97661	35
26	333051	95.6 95.4	989693	4.7	343358	100 100	656642	21530 97655	34
27	833624	95.3	989665	4.7	843958	100	656042	21559 97648	33
28 29	334195 334766	95.2	989637 989609	4.7	344558 345157	100	655442 654843	21587 97642 21616 97636	32 31
30	835337	95.0 94.9	989582	4.7	845755	100 100	654245	21644 97680	30
81	9.335906	94.8	9.989553	4.7	9.346353	99.4	10.653647	21672 97623	29
32 33	336475 337043	94.6	989525 989497	4.7	846949 347545	99.8	653051 652455	21701 97617 21729 97611	28 27
34	337610	94.5 94.4	989469	4.7	348141	99.2 99.1	651859	21758 97604	26
85	338176	94.3	989441	4.7	848735	99.0	651265	21786 97598	25
36 37	838742 839306	94.1	989413 989384	4.7	349329 349922	98.8	650671 650078	21814 97592 21843 97585	24 23
38	339871	94.0 93.9	989356	4.7	350514	98.7 98.6	649486	21871 97579	22
39	840434	93.7	989328	4.7	351106	98.5	648894	21899 97573	21
40 41	840996 9.84155 8	93.6	989300 9.989371	4.7	351697 9.352287	98.3	648303 10.647713	21928 97566 21956 97560	20 19
42	342119	93.5	989243	4.7	352876	98.2	647124	21985 97553	18
43	842679	93.4 93.2	989214	4.7	353465	98.1 98.0	646535	22013 97547	17
44	343239 343797	93.1	989186 989157	4.7	354053 354640	97.9	645947 645360	22041 97541 22070 97534	16 15
46	844355	98.0	989128	4.7	856 227	97.7	644773	22098 97528	14
47	344912	92.9 92.7	989100	4.8	355813	97.6 97.5	644187	22126 97521	13
48	845469	92.6	989071 989042	4.8	356398 356982	97.4	643602 643018	22155 97515 22183 97508	12 11
49 50	346024 346579	92.5	989042	4.8	357566	97.3	642434	22212 97502	10
51	9.347134	$92.4 \\ 92.2$	9.988985	4.8 4.8	9.358149	97.1 97.0	10.641851	22240 97496	9
52	347687	92.2	988956	4.8	358731	96.9	041309	22268 97489	8 7
53 54	348240 348792	92.0	988927 988898	4.8	359313 359893	96.8	640687 640107	22297 97483 22325 97476	6
55	849343	91.9	988869	4.8	860474	96.7 96.6	689526	22353 97470	5
56	34 9893	91.7 91.6	988840	4.8	361053	96.5	638947 638368	22382 97463 22410 97457	3
57 58	850443 850992	91.5	988811 988782	4.9	361632 362210	96.3	637790	22410 97457 22438 97450	2
59	351540	91.4 91.3	988753	4.9	362787	96.2 96.1	637213	22467 97444	1
60	852088	51.0	988724	7.5	363364	55.1	636636	22495 97437	0
	Cosine.		Sine.	<u> </u>	Cotang.	L	Tang.	N. cos. N.sine.	L
L				7	7 Degrees,				

		•							
3	4		g. Sines an	d Tan	gents. (15	7) Na	tural Sines.	TABLE I	L.
1	Sinc.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine N. sos.	
	9.352068	91.1	9.988724	4.9	9.363364	96.0	10.636636	22495 97437	60
1	352635 353181	91.0	988695	4.9	363940	95.9	636060	22523 97430 22552 97424	59
3	353726	90.9	988666 988636	4.9	364515 365090	95.8	635485 634910	22580.97417	58 57
4	354271	90.8	988607	4.9	365664	95.7	634336	22608.97411	5 6
5	354815	90.7 90.5	988578	4.9	3662 37	95.5 95.4	633763	22637,97404	55
6	355358	90.4	988548	4.9	366810	95.3	633190	22665,97398	54
8	356901 356443	90.3	986519 988489	4.9	367382 367953	95.2	682618 682047	22693 97391 22722 97384	53 52
9	356984	90.2	988460	4.9	368524	95.1	631476	22750 97378	51
10	357524	90.1 89.9	988430	4.9	369094	95.0 94.9	630906	2277865271	
	9.358064	89.8	9.988401	4.9	9.369663	94.8		22907 97365	49
12 13	358603 359141	89.7	988371 988342	4.9	370232 370799	94.6	629768 629201	22835 97358 22863 97351	48 47
14	359678	89.6	988312	4.9	371367	94.5	628633	22892 97345	46
15	360215	89.5 89.3	988282	5.0 5.0	871933	94.4 94.3	628067	22920 97338	45
16	360752	89.2	988252	5.0	372499	94.2	627501	22948 97331	44
17 18	361287 361822	89.1	988223 988193	5.0	373064 373629	94.1	626936 626371	22977 97325 23006 97318	43 42
19	364356	89.0	988163	5.0	374193	94.0	625807	23083 97311	41
20	362883	88.9 88.8	988133	5.0. 5.0	874756	93.9 93.8	625244	23062 97304	40
	9.363422	88.7	9.988103	5.0	9.375319	93.7	10.624681	23090 97298	39
22 23	363954 36448 5	88.5	988078 988043	5.0	375881 376442	93.5	624119 623558	23118 97291 23146 97284	38 37
24	365016	88.4	988013	5.0	377003	93.4	622997	23175 97278	36
25	365546	88.3 88.2	987983	5.0 5.0	377563	93.3	622437	23203 97271	35
26	866075	88.1	987953	5.0	878122	93.2 93.1	621878	23231 97264	34
27	366604	88.0	987922	5.0	378681	93.0	621319	23260 97257	33
28 29	367131 367659	87.9	987892 987862	5.0	379239 379797	92.9	620761 620203	23288 97251 23316 97244	82 81
30	368185	87.7	987832	5.0	380354	92.8	619646	23345 97237	30
	9.368711	87.6 87.5	9.987801	5.1 5.1	9.380910	92.7	10.619090	23373 97230	29
32	369236	87.4	987771	5.1	381466	92.6	618534	23401 97223	28
33	369761 370285	87.3	987740 987710	5.1	382020 382575	92 4	617980 617425	23429 97217 23458 97210	27 26 I
35	370808	87.2	987679	5.1	383129	92.3	616871	23486 97203	25
36	371330	87.1	987649	5.1	383682	92.2	616318	23514 97 96	24
37	371852	87.0 86.9	987618	5.1 5.1	384234	93.1 92.0	615766	23542 97189	23
38	372373	86.7	987588	5.1	384786	91.9	615214	23571 97182	22
39 40	372894 373414	86.6	987557 987526	5.1	385337 385888	91.8	614112	23599 97176 23627 97169	21 20
41	9.373933	86.5	9.987496	5.1	9.386438	91.7	10.613562	23656 97162	19
42	374452	86.4	987465	5.1 5.1	386987	91.5	613013	23684 97155	18
43	374970	86.3	987434	5.1	387536	91.4 91.3	612464	23712 97148	17
44	375487 376003	86.1	987403 987372	5.2	388084 388631	91.2	611916 611369	23740 97141 23769 97184	16 15
46	376519	86.0	987341	5.2	389178	91.1	610822	28797 97127	14
47	377035	85.9	987310	5.2 5.2	389724	91.0	610276	2382597120	เ้อ
48	377549	85.8 85.7	987279	5.2	390270	90.9 90.8	609780	23853 97113	12
49	378063 378577	85.6	987248	5.2	390815	90.7	609185	23882 97106	11,
50 51	9,379089	85.4	987217 9.987186	5.2	391360 9.391903	90.6	603640 10.608097	23910 97100 28938 07093	10 9
52	379601	85.3	987155	5.2	392447	90.5	607553	23966 97046	8
53	380113	85.2 85.1	987124	5.2 5.2	392989	90.4 90.3	607011	23995 97079	7
54	380624	85.0	987092	5.2	893531	90.3	606469	24023 97072	6
55 56	381134 381643	84.9	987061	5.2	394078 394614	90.1	605927 605386	24051 97065	5
57	382152	84.8	987030 986998	5.2	394614	90.0	604846	24079 970 5 3 24108 970 5 1	- 3
58	382661	84.7	936967	5.2	395694	89.9	604306	24136 97044	2
59	383168	84.6 84.5	936986	5.2 5.2	396233	89.8 89.7	603767	24164 97087	1
60	383675	37.0	986904	0.2	396771	08.7	603229	2419297030	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	7
L_				7	6 Degrees.				

,	ARLE II	TABLE II. Log. Sines and Tangents. (14°) Natural Sines. 35											
-		р, 10″		D. 10"		D. 10"		N. sine.		-			
0	9.383675		9.986904		9.396771		10.603229	241929		60			
i	384182	104.4	986873	0.2	397309	89.6	602691	242209		59			
2	384687	84.3	986841	5.3	397846	89.6	602154	24249 9		58			
3	385193	84.2 84.1	986809	5.3 5.3	398383	89.5 89.4	601617	24277 9		57			
4	385697	81.0	986778	5.3	398919	89.3	601081	24305 9		56			
5	386201	83.9	986746	5.3	399455	89.2	600545	24333 9		55 54			
6	386704 387207	93 B	986714 986683	5.3	899990 400524	89.1	600010 5 9 9476	24362 9 24390 9		53			
8	387709	85 7	986651	5.3	401058	89.0	598942	244189		52			
9	388210	83.6	986619	5.3	401591	88.9	598409	24446 9		51			
10	388711	83.5 83.4	986587	5.3	402124	88.8 88.7	597876	24474 9		50			
	9.389211	83.3	9.986555	5.3	9.402656	88.6	10.597344	24503 9		49			
12	389711	83.2	986523	5.3	403187	88.5	596813	24531 9		48			
13	390210	83.1	986491 986459	5.3	403718 404249	88.4	596282 595751	24559 9 24587 9	1603U	46			
14 15	390708 391206	83.0	986427	5.3	404778	88.3	595222	246159		45			
16	391703	82.8	986395	5.3	405308	88.2	594692	24644 9		44			
17	392199	82.7	986363	5.3	405836	88.1	594164	24672 9	6909	43			
18	392695	82.6 82.5	986331	5.4 5.4	406364	88.0 87.9	593 636	247009		42			
19	393 191	82.4	986299	5.4	406892	87.8	593108	24728 9		41			
20	393685	82.3	986266	5.4	407419 9.407945	87.7	592581 10.592055	24756 9 24784 9		40 39			
21 22	9.394179 394673	82.2	9.986234 986202	5.4	408471	87.6	591529	248139		38			
23	895166	82.1	986169	5.4	408997	87.5	591003	24841 9		37			
24	895658	82.0	986137	5.4	409521	87.4	590479	24869 9		36			
25	896150	81.9 81.8	986104	5.4 5.4	410045	87.4 87.3	589955	248979		35			
26	896641	81.7	986072	5.4	410569	87.2	589431	24925 9		34			
27	397132	81.7	986039	5.4	411092	87.1	588908 588385	24954 9 24982 9		33 32			
28 29	397621	81.6	986007 985974	5.4	411615 412137	87.0	587863	250109		31			
30	398111 398600	81.5	985942	5.4	412658	86.9	587342	250389		30			
31	9.399088	81.4	9.985909	5.4	9.413179	86.8	10.586821	25066 9		29			
32	899575	81.3 81.2	985876	5.5	413699	86.7 86.6	586301	250949		28			
33	400062	81.1	985843	5.5	414219	86.5	585781	25122 9		27			
34	400549	81.0	985811	5.5	414738 415257	86.4	585262 584743	25151 9 25179 9		26 25			
35 36	401035 401520	80.9	985778 985745	5.5	415775	86.4	584225	25207 9		24			
37	402005	80.8	985712	5.5	416293	86.3	583707	25235 9		23			
38	402489	80.7	985679	5. 5	416810	86.2	583190	25263 9		22			
39	402972	80.6 80.5	985646	5.5	417826	86.1 86.0	582674	252919		21			
40	403455	60 V	985613	~ =	417842	0 - 0	582158	253209		20			
	9.403938	80.3	9.935580	5.5	9.418358 418873	85.8	10.581642 581127	25348 9 25376 9		19 18			
42	404420 404901	80.2	985547 985514	5. 5	419387	85.7	580613	254049		17			
44	405382	80.1	985480	5.5	419901	85.6	580099	25432 9		16			
45	405862	80.0	985447	5. 5	420415	85.5	579585	25460 9	6705	15			
46	406341	79.9 79.8	985414	5.5 5.6	420927	85.5 85.4	579073	25488 9		14			
47	406820	79.7	985380	5.6	421440	85.3	578560	255169		13			
48 49	407299	79.6	985347	5.6	421952 422463	85.2	578048 577537	25545 9 25573 9		12 11			
50	407777 408254	79.5	985314 985280	5.6	422974	85.1	577026	25601 9		10			
51	9.408731	79.4	9.985247	5.6	9.423484	85.0	10.576516	256299		9			
52	409207	79.4 79.3	985213	5.6 5.6	423993	84.9 84.8	576007	25657 9	6653	8			
53	409632	79.3	985180	5.6	424503	84.8	575497	25685 9		7			
54	410157	79.1	985146	5.6	425011 425519	84.7	574989 574481	25713 9 25741 9		6 5			
55 56	410632	79.0	985113 985079	5.6	426027	84.6	573973	25766 9		4			
57	411106 411579	78.9	985045	5.6	426534	84.5	573466	257389		3			
58	412052	78.3	985011	5.6	427041	84.4 84.3	572959	258269	6608	2			
59	412524	78.7 78.6	984978	5.6 5.6	427547	84.3	572453	25854		1			
60	412996	1.0.0	984944	10.0	428052	1	571948	25882		0			
	Cosine.		Sino.		Cotang.	1	Tang.	N. cos.	N.sine.	7			
					5 Degrees.					J			

3	6	To	e Sines on	d Ten	mante (166	7) No.	tural Sines.	TABLE I	
-	Sine.	D. 10"		D. 10"	<u> </u>	D. 10"	Cotang.	N. sine. N. cos.	
0	9.412996		9.984944		9.428052		10.571948	25882 96593	60
li	413467	10.0	984910	5.7	428557	84 2 84	571443	25910 96585	59
2	413938	78.4 78.3	984876	5.7 5. 7	429062	84	570938	25935 96578	58
3	414408 414878	78.3	984842 984808	5.7	429566 430070	83.9	570434 569930	25966 96570 25994 96562	57 56
5	415347	79.5	984774	5.7	430573	83.8 83.8	569427	26022 96555	55
6	415815	78.1 78.0	984740	5.7 5.7	431075	83.7	568925		54
7	416283	77.9	984706	5.7	431577	83.6	568423	26079 96540 26107 96532	53 52
8	416751 417217	77.8	984637 984637	5.7	432079 432580	83.5		26135 96524	51
1ŏ	417684	77.7 77.6	984603	5.7 5.7	433080	83.4 83.8		26163 96517	50
	9.418150	77.5	9.984569	5.7	9.433580	83.2	10.566420	26191 96509	49
12	418615 419079	77.4	984535 984 500	5.7	434080 434579	83.2	565421	26219 96502 26247 96494	48
13 14	419544	77.8	984466	5.7	435078	83.1		26275 96486	46
15	420007	77.3 77.2	984432	5.7 5.8	435576	83.0 82.9	564424	26303 96479	45
16	420470	77.1	984397	5.8	436078	82.8	563927	26331 96471	44
17	420933 421395	77.0	984363 984328	5.8	436570 437067	82.8	563430 562933	26359 96463 26387 96456	43 42
18 19	421857	76.9	984294	5.8	437563	82.7	562437	26415 96448	41
20	422318	76.8 76.7	984259	5.8 5.8	438059	82.6 82.5	561941	26443 96440	40
	9.422778	76.7	9.984224	5.8	9.438554	82.4	10.561446	26471 96433	39
22 23	423238 423697	76.6	984190 984155	5.8	439048 439543	82.3	560952 560457	26500 96425 26528 96417	38 37
24	424156	76.5	984120	5.8	440036	82.3	559964	26556 96410	36
25	⊣24615	76.4	984085	5.8	440529	82.2 82.1	559471	26584 96402	35
26	425073	76.3 76.2	984050	5.8	441022	82.0	558978	26612 96394	34
27	425530 425987	76.1	984015 983981	5.8	441514 4420 0 6	81.9	558486 557994	26640 96386 26668 96379	33 32
28 29	426443	76.0	983946	5.8	442497	81.9	557503	26696 96371	31
30	426899	76.0	983911	5.8	442988	81.8 81.7	557012	26724 96363	30
31	9.427354	75.9 75.8	9.983875	5.8	9.443479	81.6	10.556521	26752 96355	29
32	427809 428263	75.7	983840 983805	5.9	143968 444458	81.6	556032 555542	26780 96347 26808 96340	28 27
33	428717	75.6	983770	5.9	444947	81.5	555053	26836 96332	26
35	429170	75.5	983735	5.9	445435	81.4 81.3	554565	26864 96324	25
36	429623	75.4 75.3	983:00	5.9 5.9	445923	81.2	554077	26892 96316	24
37	430075 430527	75.2	983664 983629	5.9	446411 446898	81.2	553589 553102	26920 96308 26948 96301	23 22
38 39	430978	75.2	983594	5.9	447384	81.1	552616	26976 96293	21
40	431429	75.1	983558	5.9	447870	81.0 80.9	552130	27004 96285	20
41	9.431879	75.0 74.9	9.983523	5.9 5.9	9.448356	80.9	10.551644	27032 96277	19
42	432329 432778	74.9	983487	5.9	448841 449326	80.8	551159	27060 96269 27088 96261	18
43	435226	74.8	983452 983416	5.9	449320	80.7	550674 550190	27116 96253	17 16
45	433675	74.7	983381	5.9	450294	80.6 80.6	549706	27144 96246	15
46	434122	74 6 74.5	983345	5.9 5.9	450777	80.5	549223	27172 96238	14
47	434569 435016	74.4	983309	5.9	451260 451743	80.4	548740	27200 96230 27228 96222	13 12
48 49	435462	74.4	983273 983238	6.0	452225	80.3	. 548257 547775	27256 96214	11
50	435908	74.3 74.2	983202	6.0	452706	80.2 80.2	547294	27284 96206	10
51	9.436353	74.1	9.983166	6.0	9.453187	80.1	10.546813	27812 96198	9
52 53	436798 437242	74.0	983130 983094	6.0	453668 454148	80.0	546332 545852	27340 96190 27368 96182	8
54	437686	74.0	983058	6.0	454628	79.9	545372	27396 96174	6
55	438129	73.9 73.8	983022	6.0	455107	79.9 79.8	544893	27424 96166	5
56	438572	73.7	982986	6.0	455586	79.7	541414	27452 96158	4
57 58	439014 439456	73.6	982950 982914	6.0	456064 456542	79.6	543936 543458	27480 96150 27508 96142	3 2
59	439897	73.6	982878	6.0	457019	79.6	542981	27536 96184	î
60	440338	73.5	982842	6.0	457496	79.5	542504	27564 96126	ō
	Cosine.	<u> </u>	Sine.		Cotang.	 	Tang.	N. cos. N.sine.	-
				7.	4 Degrees.			·	

74 Degrees.

	TABLE II. Log. Sines and Tangents. (16°) Natural Sines. 37										
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos	·I		
0	9.410338	73.4	9.982842	6.0	9.457496	79.4	10.542504	27564 96126			
1	440778	73.3	982805	6.0	457973	79.3	542027	27592 96118	59		
3	441218 441658	73.2	982769 982733	6.1	458449 458925	79.3	541551 541075	27620 96110 27648 96102			
4	442096	73 · 1	982696	6.1	459400	79 2	540600	27676 96094			
5	442535	73.1 73.0	982660	6.1	459875	79.1 79.0	540125	27704 96086	55		
3	442973	72.9	982624	6.1	460349	79.0	539651	27731 96078			
8	443410 443847	72.8	982587 982551	6.1	460823 461297	78.9	539177 538703	27759 96070 27787 96062			
9	444284	72.7	982514	6.1	461770	78.8	538230	27815 96054			
10	444720	72.7 72.6	982477	6.1	462242	78.9 78.7	537758	27843 96046	50		
	9 445155	72.5	9.982441	6.1	9.462714	78.6	10.537286	27871 96037			
12	445590 446025	72.4	982404 982367	6.1	463186 463658	78.5	536814 536342	27899 96029 27927 96021			
13 14	446459	72.3	982331	6.1	464129	78.5	535871	27955 96013			
15	446893	72.3	982294	6.1	464599	78.4	535401	27983 96005			
16	447326	$72.2 \\ 72.1$	982257	6.1 6.1	465069	78.3 78.3	534931	28011 95997			
17	447759	72.0	982220	6.2	465539 466008	78.2	534461	28039 95989			
18 19	448191 448623	72.0	982188 982146	62	466476	78.1	533992 533524	28067 95981 28095 95972			
20	449054	71.9	982109	6.2	466945	78.0	533055	28123 95964			
21	9.449485	$\frac{71.8}{71.7}$	9.982072	6.2 6.2	9.467413	78.0 7 7 .9	10.532587	28150 95956			
22	449915	71.6	982035	6.2	467880	77.8	532120	28178 95948			
23 24	450345 450775	71.6	981998 981961	16.2	468347 468814	77.8	531653 531186	28206 95940 28234 95931			
25	451204	71.5	981924	169	469280	77.7	530720	28262 95923			
26	451632	71.4 71.3	981886	$6.2 \\ 6.2$	469746	77.6	530254	28290 95915	34		
27	452060	71.3	981849	6.2	470211	77.5	52 9 789	28318 95907			
28	452488 452915	71.2	981812 981774	6.2	470676 471141	77.4	529324 528859	28346 95398 28374 95890			
29 30	453342	71.1	981737	6.2	471605	77.3	528395	28402 95882			
	9.453768	71.0	9.981699	6.2	9.472068	77.3	10.527932	28429 95874			
32	454194	71.0 70.9	981662	6.3 6.3	472532	$77.2 \\ 77.1$	527468	28457 95865			
33	454619	70.8	981625	6.3	472995 473457	77.1	527005	28485 95857	27 26		
34 35	455044 455469	70.7	981587 981549	6.3	473919	77.0	526543 526081	28513 95849 28541 95841	25		
36	455893	70.7	981512	6.3	474381	76.9	525619	28569 95832			
37	456316	70.6 70.5	981474	6.3	474842	76.9 76.8	525158	28597 95824			
38	456739	70.4	981436	6.3	475303 475763	76.7	524697	28625 95816			
39 40	457162 457584	70.4	981399 981361	6.3	476223	76.7	524237 523777	28652 95807 28680 95799			
41	9.458006	70.3	9.981323	6.3	9.476683	76.6	10.523817	28708 95791	19		
42	458427	70.2 70.1	981285	6.3	477142	76.5 76.5	522858	28736 95782	18		
43	458848	70.1	981247	6.3	477601	76.4	522399	28764 95774			
44	459268 459688	70.0	981209 981171	6.3	478059 478517	76.3	521941 521483	28792 95766 28820 95757	16 15		
46	460108	69.9	981133	6.3	478975	76.3	521025	28847 95749			
47	460527	69.8 69.8	981095	6.4	479432	76.2 76.1	520568	28875 95740	13		
48/	460946	69.7	981057	6.4	479889	76.1	520111	28903 95732			
49 50	461364 461782	69.6	981019 980981	6.4	480345 480801	76.0	519655 519199	28931 95724 28959 95715	11 10		
	9.462199	69.5	9.980942	6.4	9.481257	75.9	10.518743	28987 95707	9		
52	462616	69.5 69.4	980904	6.4	481712	75.9	518288	29015 95698	8		
53	463032	69.3	980866	6.4	482167	75.8 75.7	517833	29042 95690			
54 55	463448 463864	69.3	980827 980789	6.4	482621 483075	75.7	517379 516925	29070 95681 29098 95678	6		
56	464279	69.2	980750	6.4	483529	75.6	516471	29126 95664	4		
57	464694	69.1 69.0	980712	6.4	483982	75.5	516018	29154 95656	8		
58	465108	69.0	980673	6.4	484435	75.5 75.4	515565	29182 95647	2		
59 60	465522 465935	68.9	980635 980596	6.4	484887 485339	75.3	515113	29209 95639	1 0		
12	Cosine.		Sine.	<u> </u>			514661	29247 95630 N. cos. N.sine	I I		
-	COSIDA.		Bine.		Cotang. 3 Degrees.	L	Tang.	M. COS. N.SINE	-		

(T									_==
3	18	Lo	g. Sines an	d Tan	gents. (17	o) Ne	tural Sines.	. TABLE I	I.
7	Sine.	D. 10'	Cosine.	D . 10'	Tang.	D. 10'	Cotang.	N. sine N. cos.	L
0	9.465935	co 0	9.980596	6.4	9.485339	75.3	10.514661	29237 95630	60
1	466348	68.8 68.8	980558	6.4	485791	75.2	514209		
2	466761	68.7	980519	6.5	486242	75.1	513758	29293 95613 29321 95605	58 57
3	467173 467585	68.6	980480 980442	6.5	486693 487143	75.1	513307 512857	29348 95596	56
5	467996	68.5	980403	6.5	487593	75.0	512407	29376 95588	55
6	468407	68.5 68.4	980364	6.5 6.5	488043	74.9 74.9	511957	29404 95579	54
7	468817	68.3	980325	6.5	488492	74.8	511508	29432 95571	53
8	469227	68.3	980286 980247	6.5	488941 489390	74.7	511059 510610	29460 95562 29487 95554	52 51
1 9	469637 470046	68.2	980208	6.5	489838	74.7	510162	29515 95545	50
ii	9.470455	68.1	9.980169	6.5 6.5	9,490286	74.6 74.6	10.509714	29543 95536	49
12	470863	68.0 68.0	980130	6.5	490733	74.5	509267	29571 95528	48
13	471271	67.9	980091	6.5	491180 491627	74.4	508820 508373	29599 95519 29626 95511	47 46
14	471679 472086	67.8	980052 980012	6.5	492073	74.4	507927	2965-195502	45
16	472492	67.8	979978	6.5	492519	74.3	507481	29682 95493	44
17	472898	67.7 67.6	979934	6.5 6.6	492965	74.3 74.2	507035	29710 95485	43
18	473304	67.6	979895	6.6	493410	74.1	506590	29787 95476	42 41
19 20	473710 474115	67.5	979855 979816	6.6	493854 494299	74.0	506146 505701	29765 95467 29793 95459	40
21	9.474519	67.4	9.979776	6.6	9.494743	74.0	10.505257	29821 95450	39
22	474923	01.4	979737	6.6 6.6	495186	74.0 73.9	504 814	29849 95441	3 8
23	475327	67.3 67.2	979697	6.6	495630	73.8	504370	29876 95433	87
24 25	475730	67.2	979658	6.6	496073 496515	73.7 73.7	503927 503485	29904 95424 29932 95415	36 35
26	476133 476536	67.1	979618 979579	6.6	496967	73.7	503043	29960 95407	34
27	476938	67.0	979539	6.6 6.6	497399	73.6	502601	29987 95398	33
28	477340	66.9 66.9	979499	6.6	497841	73.6 73.5	502159		32
29	477741	66.8	979459	6.6	468282 498722	73.4	501718 501278	30043 95380 30071 95372	31 30
30 31	478142 9.478542	66 7	979420 9.979380	6.6	9.499163	73.4	10.500837	30098 95363	29
32	478942	00.7	979340	6.6	499603	73.3 73.3	500397	30126 95354	28
33	479342	66.6 66.5	979300	6.7	500042	73.2	499958	30154 95345	27
34	479741	66.5	979260	6.7	500481 500920	73.1	499519 499080	30182 95337 30209 95328	26 25
35 36	480140 480539	66.4	979220 979180	6.7	501359	73.1	498641	30237 95319	24
37	480937	66.3	979140	6.7	501797	73.0	498203	30265 95310	23
38	481334	66.3 66.2	979100	6.7 6.7	502235	73.0 72.9	497765	30292 95301	22
39	481731	66.1	979059	6.7	502672 503109	72.8	497328 496891	30320 95293 30348 95284	21 20
40 41	482128 9.482525	66.1	979019 9.978979	6.7	9.503546	72.8	10.496454	30376 95275	19
42	482921	66.0	978939	0.7	503982	72.7 72.7	496018	30403 95266	18
43	483316	65.9 65.9	978898	6.7	504418	72.6	495582	30431 95257	17
44	483712	65.8	978858	6.7	504854 505289	72.5	495146 494711	30459 95248 30486 95240	16 15
45 46	484107 484501	65.7	978817 978777	6.7	505724	72.5	494276	3051495231	14
47	484895	65.7	978736	6.7	506159	72.4	493841	30542 95222	13
48	485289	65.6	978696	6.7 6.8	506593	72.4 72.3	493407	30570 95213	12
49	485682	65.5 65.5	978655	6.8	507027	72.2	492973 4925-10	30597 95204 3062 5 95195	11 10
50 51	486075 9.486467	65.4	978615 9.978574	6.8	507460 9.507893.	72.2	10.492107	30653 95186	9
52	486860	66.3	978533	6.8	508326	72.1	491674	30653 95186 30680 95177	8
53	487251	65.3	978493	6.8	508759	$72.1 \\ 72.0$	491241	30708 95168	7
54	487643	65.2 65.1	978452	6.8	509191	71.9	490809	30736 95159	6 5
55 56	488034	65.1	978411	6.8	509622 510054	71.9	490378 489946	30763 95150 30791 95142	4
57	488424 488814	65.0	978370 978329	6.8	510485	71.8	489515	3081995183	3
58	489204	65.0	978288	6.8 6.8	510916	71.8 71.7	489084	30846 95124	2
59	489593	64.9 64.8	978247	6.8	511346	71.6	488654	3087495115	1
60	489982		978206		511776	I	488224	30902 95106	-
I	Cosine		Sine.		Cotang.	<u>!</u>	Tang.	N. cos. N.sime.	<u></u>
ll				7	9 Degrees.				

i

7	rable II.	I	og. Sines a	nd Ta	ngents. (1	8°) N	atural Sines.		39
_	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos	
0	9.489982	64.8	9.978206	6.0	9.511776	#1 C	10.488224	30902 95106	60
1	490371	64.8	978165	6.8	512206	71.6 71.6	487794	30929 95097	
2	490759	64.7	978124	6.8	512635	71.5	487365	30957 95088	
3	491147	64.6	978083	6.9	513064	71.4	486936	30985 95079	
4 5	491535 491922	64.6	978042 978001	6.9	513493 513921	71.4	486507 486079	31012 95070 31040 95061	56 55
6	492308	64.5	977959	6.9	514349	71.3	485651	31068 95052	
7	492695	64.4	977918	6.9	514777	71.3	485223	31095 95043	
8	493081	64.4	977877	6.9	515204	71.2	484796	31123 95083	
9	493466	64.3 64.2	977835	6.9 6.9	515631	71.2	484369	31151 95024	
10	493851	64.2	977794	6.9	516057	$71.1 \\ 71.0$	483943	31178 95015	
11	9.494236	64.1	9.977752	6.9	9.516484	71.0	10.483516	31206 95006	
12	494621	64.1	977711	6.9	516910	70.9	483090	31233 94997	
13 14	495005 495388	64.0	977669 977628	6.9	517385 517761	70.9	482665 482239	31261 94988 31289 94979	
15	495772	63.9	977586	6.9	518185	70.8	481815	31316 94970	
16	496154	63.9	977544	6.9	518610	70.8	481890	31344 94961	
17	496537	63.8	977503	7.0	519034	70.7	480966	31372 94952	43
18	496919	63.7	977461	7.0	519458	70.6 70.6	480542	31399 94943	42
19	497301	68.6	977419	7.0	519882	70.5	480118	31427 94933	
20	497682	63.6	977377	7.0	520305	70 5	479695	31454 94924	40
21 22	9.498064 498444	63.5	9.977385	7.0	9.520728 521151	70.4	10.479272 478849	31482 94915	39
23	498825	63.4	977293 977251	7.0	521573	70.3	478427	31510 94906 31537 94897	38 37
24	499204	63.4	977209	7.0	521995	70,3	478005	31565 94888	36
25	499584	63.3	977167	7.0	522417	70.3	477583	31593 94878	35
26	499963	68.2	977125	7.0	522838	70.2	477162	31620 94869	
27	500342	63.2 63.1	977083	7.0	523259	70.2 70.1	476741	31648 94860	
28	500721	63.1	977041	7.0	523680	70.1	476320	31675 94851	32
29	501099	63.0	976999	7.0	524100	70.0	475900	31703 94842	
80	501476	62.9	976957	7 0	524520 9.524939	69.9	475480	31730 94832	
31 32	9.501854 502231	62.9	9.976914 976872	7.0	525359	69,9	10 · 475061 474641	31758 94823 31786 94814	29 28
33	502507	62.8	976830	7.1	525778	69.8	474222	31813 94805	27
34	502984	62.8	976787	7.1	526197	69.8	473803	31841 94795	26
35	503360	62.7	976745	7.1	526615	69.7 69.7	473885	31868 94786	25
36	503735	62.6 62.6	976702	7.1 7.1	527033	69.7 69.6	472967	31896 94777	24
37	504110	62.5	976660	7.1	527451	69.6	472549	81923 94768	23
38	504485	62.5	976617	7.1	527868	69,5	472132	31951 94758	
39 40	504860 505234	62.4	976574	7.1	528285 528702	69.5	471715 471298	31979 94749 32006 94740	21 20
41	9,505608	62.3	976532 9.976489	7.1	9.529119	69,4	10.470881	32000 94740	
42	505981	62.3	976446	7.1	529535	69.3	470465	32061 94721	18
43	506354	62.2	976404	7.1	529950	69.8	470050	32089 94712	17
44	506727	62.2	976361	7.1	530366	69.3 69.2	469634	32116 94702	16
45	507099	62.1 62.0	976318	7.1	530781	69.1	469219	32144 94693	15
46	507471	62.0	976275	7.1	531196	69.1	468804	32171 94684	14
47 48	507843	61.9	976232	7.2	581611	69.0	468389	32199 94674	13
48	508214 508585	61.9	976189 976146	7.2	532025 532439	69.0	467975 467561	32227 94665 32250 94656	12
50	508956	61.8	976146	7.2	532853	68.9	467147	32282 94646	11 10
51	9.509326	61.8	9.976060	7.2	9.533266	68.9	10.466734	32309 94637	9
52	509696	61.7	976017	7.2	533679	68.8	466321	32337 94627	8
53	510065	61.6	975974	7.2	534092	68.8	465908	32364 94618	7
54	510434	61.6	975930	7.2	534504	$\begin{bmatrix} 68.7 \\ 68.7 \end{bmatrix}$	465496	32392 94609	6
55	510803	61.5	975887	7.2	534916	68.6	465084	32419 94599	5
56	511172	61.4	975844	7.2	535328	68.6	464672	32447 94590	4
57 58	511540	61.3	975800	7.2	535789	68.5	464261 463850	32474 94 580 32502 94 571	3 2
59	511907 512275	61.3	975757 975714	7.2	536150 536561	68.5	463439	32502 94571 32529 94561	1 1
60	512642	61.2	975670	7.2	536972	68.4	463028	32557 94552	0
<u> </u>	Cosine.		Sine.		Cotang.		Tang.	N. cos. N. sine	1-
_	COSTEG.	Ь—	I Sine.	<u> </u>		<u> </u>	Tank.	I to cord wante	اـــــــــــــــــــــــــــــــــــــ
L				7	1 Degrees.				_ J

40 Log. Sines and Tangents. (19°) Natural Sines. TABI							TABLE I	I.	
-	Sine.	D. 10"	Cosme.	D. 10"	Tang.	D. 10'	Cotang.	N. sine. N. cos	=
0	9.512642	23.0	9.975670	7 0	9.536972	68.4	10.463028	32557 94552	
1	513009	01.2	975627	7.3	537382	68.3	462618	32584 94542	
2	513375	61.1 61.1	975583	7.3	537792	68.3	462208	32612 94533	
8	513741	61.0	975539	7.3	538202	68.2	461798	32639 94523	
4	514107	60.9	975496	7.3	538611 539020	68.2	461389 460980	32667 94514 32694 94504	
5	514472	60.9	975452 975408	7.3	539429	68.1	460571	32722 94495	
6 7	514837 515202	60.8	975365	7.3	539837	68.1	460163	32749 94485	
8	515566	60.8	975321	7.3	540245	68.0 68.0	459755	32777 94476	
9	515930	60.7	975277	7.3 7.3	540658	67.9	459347	32804 94466	51
10	516294	60.7 60.6	975233	7.3	541061	67.9	458939	32832 94457	E0
	9.516657	60.5	9.975189	7.3	9.541468	67.8	10.458532	32859 94447	49
12	517020	60.5	975145	7.3	541875 542281	67.8	458125 457719	32887 94438 32914 94428	48
13	517382	60.4	975101	7.3	542688	67.7	457312	32942 94418	
14	517745 518107	60.4	975057 975013	7.3	543094	67.7	456906	32969 94409	45
15 16	518468	60.3	974969	7.3	543499	67.6	456501	32997 94399	
17	518829	60.3	974925	7.4	543905	67.6 67.5	456095	33024 94390	43
18	519190	60.2	974880	7.4 7.4	544310	67.5	455690	33051 94380	
19	519551	60.1 60.1	974836	7.4	544715	67.4	455285	33079 94370	41
20	519911	00 0	974792	7.4	545119	67.4	454881 10.454476	33106 94361 33134 94351	40 39
	9.520271	60.0	9.974748 974703	7.4	9.545524 545928	67.3	454072	33161 94342	88
22 23	520631 520990	59.9	974659	7.4	546331	67.3	453669	33189 94332	37
23 24	521349	59.9	974614	7.4	546735	67.2	453265	33216 94322	36
25 25	521707	59.8	974570	7.4	547138	67.2	452862	33244 94313	35
26	522066	59.8	974525	7.4	547540	67.1 67.1	452460	33271 94303	34
27	522424	59.7 59.6	974481	7.4	547943	67.0	452057	33298 94293	
28	522781	59.6	974436	7.4	548345	67.0	451655	33326 94284	
29	523138	59.5	974391	7.4	548747	66.9	451253 450851	33353 94274 33381 94264	31 30
30	523495	59.5	974347 9.974302	7.5	549149 9.549550	66.9	10.450450	33408 94254	29
31 32	9.523852 524208	59.4	974257	7.5	549951	66.8	450049	33436 94245	28
33	524564	59.4	974212	7.5	550352	66.8	449648	33463 94235	27
34	524920	59.3	974167	7.5	550752	66.7 66.7	449248	33490 94225	26
35	525275	59.3	974122	7.5 7.5	551152	66.6	448848	33518 94215	25
36	525680	59.2 59.1	974077	7.5	551552	66.6	448448	33545 94206	
37	525984	59.1	974032	7.5	551952	66.5	448048	33573 94196	
38	526339	59.0	973987	7.5	552351 552750	66.5	447649	33600 94186 33627 94176	21
39	526693	59.0	973942 973897	7.5	553149	66.5	446851	33655 94167	20
40 41	527046 9.527400	58.9	9.973852	7.5	9.553548	66.4	10.446452	33682 94157	19
42	527753	58.9	973807	7.5	553946	66.4	446054	33710 94147	18
43	528105	58.8	973761	7.5	554344	66.3	445656	38737 94137	17
44	528458	58.8	973716	7.5 7.6	554741	66.3 66.2	445259	33764 94127	16
45	528810	58.7 58 7	973671	7.6	555139	66.2	444861	33792 94118	15
46	529161	58.6	973625	7.6	555536	66.1	444464	33819 94108 33846 94098	14
47 48	529518	58.6	973580 973535	7.6	555933 556329	66.1	444067 443671	33874 94088	12
48 49	529864 530215	58.5	973489	7.6	556725	66.0	443275	3390104078	ii i
50	530565	58.5	973444	7.6	557121	66.0	442879	33929 94068	10
	9 4530915	58.4	9.973398	7.6	9.557517	65.9	10.442483	3395¢ 94058 33983 94049	9 '
52	531265	00.4	973352	7.6	557913	65.9 65.9	442087	33983 94049	8
53	531614	58·3 58·2	973307	7.6 7.6	558308	65.8	441692	34011 94039	7
54	531963	58.2	973261	7.6	558702	65.8	441298	34038 94029	6
55	532312	58.1	973215	7.6	559097	65.7	440903	34065 94019 34093 94009	5 4
56	532661	58.1	973169	7.6	559491 559885	65.7	440509 440115	34120 93999	3
57 58	533009 533357	58.0	973124 973078	7.6	560279	65.6	439721		2
59	533704	58.0	973032	7.6	560673	65.6	439327	84175 93979	ī
60	534052	57.9	972986	7.7	561066	65.5		34202 93969	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	

TABLE II. Log. Sines and Tangents. (20°) Natural Sines. 41												
	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. c	08.			
0	9.534052	57.8	9.972986	7.7	9.561066	65.5	10.438934	34202 939				
1	534399	57.7	972940	7.7	561459	65.4	438541					
2	534745 535092	57.7 57.7	972894 972848	7.7	561851 562244	65.4	438149 437756	34257 939 34284 939				
3 4	535438	57.7	972802	7.7	562636	65 3	437364	34311 939				
5	535783	57.6	972755	7.7	563028	65.3		34339 939				
6	536129	57.6 57.5	972709	7.7	563419	65.3 65.2	436581	34366 939	09 54			
7	536474	57.4	972663	7.7	563811	65.2	436189	34393 938	99 53			
8	536818	57.4	972617	7.7	564202	65.1	435798	34421 938	89 52			
9 10	537163 537507	57.3	972570 972524	7.7	564592 564983	65.1	435408 435017	34448 938 34475 938				
11	9.537851	57.3	9.972478	7.7	9.565373	65.0	10.434627					
12	538194	57.2	972431	7.7	565763	65.0	434237	34530 938				
13	538538	57.2 57.1	972385	7.8	566153	64.9 64.9	433847	34557 938				
14	538880	57.1	972338	7.8	566542	64.9	433458	34584 938				
15	539223	57.0	972291	7.8	566932	64 8	433068					
16	539565 539907	57.0	972245 972198	7.8	567320 567709	64.8	432680 432291	34639 938 34666 937				
17 18	540249	56.9	972151	7.8	568098	64.7	431902	34694 937				
19	540590	56.9	972105	7.8	568486	64.7	431514	34721 937				
20	540931	56.8 56.8	972058	7.8	568873	64.6 64.6	431127	34748 937				
	9.541272	56.7	9.972011	7.8	9.569261	64.5	10.430739	34775 937				
22	541613	56.7	971964	7.8	569648	64.5	430352	34803 937				
23 24	541953 542293	56.6	971917	7.8	570035	64.5	429965	34830 937 34857 937				
25	542632	56.6	971870 971823	7.8	570422 570809	64.4	429578 429191	34884 937				
26	542971	56.5	971776	7.8	571195	64.4	428805	34912 937				
27	543310	56.5	971729	7.8	571581	64.3	428419	34939 936				
28	543649	56.4 56.4	971682	7.9	571967	64.3 64.2	428033	34966 936				
29	543987	56.8	971635	7.9	572352	64.2	427648	34993 936				
30	544325	56.3	971588	7.9	572738	64.2	427262	35021 936				
31 32	9.544663 545000	56.2	9.971540 971493	7.9	9.573123 573507	64.1	10.426877 426493	35048 936 35075 936				
33	545338	56.2	971446	7.9	573892	64.1	426108	35102 936				
34	545674	56.1	971398	7.9	5 74276	64.0	425724	35130 936				
35	546011	56.1 56.0	971351	7.9	574660	64.0 63.9	425340	35157 936				
36	546347	56.0	971303	7.9	575044	63.9	424956	35184 936				
37	546683	55.9	971256	7.9	575427	63.9	424573	35211 935 35239 935				
38	547019 547354	55.9	971208 971161	7.9	575810 576193	63.8	424190 423807	35266 935				
40	547689	55.8	971113	7.9	576576	63.8	423424	35293 935				
	9,548024	55.8	9.971066	7.9	9.576958	63.7	10,423041	35320 935	55 19			
42	548359	55.7 55.7	971018	8.0 8.0	577341	63.7	422659	35347 935				
43	548693	55.6	970970	8.0	577723	63.6	422277	35375 935				
44	549027	55.6	970922 970874	8.0	578104 578486	63.6	421896 421514	35402 935 85429 935				
45 46	549360 549693	55.5	970874	8.0	578867	63.5	421514	35456 935				
47	550026	55.5	970779	8.0	579248	63.5	420752	35484 934				
48	550359	55.4	970731	8.0	579629	63.4	420371	35511 934				
49	550692	55.4 55.3	970683	8.0	580009	63.4 63.4	419991	35538 934				
50	551024	55.3	970635	8.0	580389	63.3	419611	35565 934				
	9.551356	55.2	9.970586	8.0	9.580769	63.3	10.419231	35592 934				
52 53	551687 552018	55.2	970538 970490	8.0	581149 581528	63.2	418851 418472	35619 934 35647 934				
54	552349	55.2	970442	8.0	581907	63,2	418093	35674 934				
55	552680	55.1	970394	8.0	582286	63.2	417714	35701 934	10 5			
56	553010	55.1 55.0	970345	8.0 8.1	582665	63.1 63.1	417335	35728 934	00 4			
57	553341	55.0	970297	8.1	583043	63.0	416957	35755 933				
58	558670	54.9	970249	8.1	583422	63.0	416578	35782 933				
59 60	554000 554329	54.9	970200 970152	8.1	583800 584177	62.9	416200 415823	35810 933 35837 938				
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.si	-			
conne. Sine. Coung. Tang. N. cos. N. sine. Coung. Coun												
i					a negrees.							

•

4	2	40	g. Sines an	d Tan	gents. (21	°) Ne	tural Sines.	TABLE 1	L.
エ	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
0	9.554329	54.8	9.970152	8,1	9.584177	62.9	10.415823	35837 93358	60
1	554658	54.8	970103	8.1	584555	62.9	415445	35864 93348	59
2	554987	54.7	970055	8.1	584932	62.8	415058 414691	35891 93337 35918 93327	58 57
3 4	555315 555643	54.7	970006 969957	8.1	585309 585686	62.8		35945 93316	56
5	555971	54.6	969909	8.1	586062	62.7	413938	35973 93306	55
6	556299	54.6	969860	8.1	586439	62.7	413561	36000 93295	54
7	556626	54.5	969811	8.1	586815	$62.7 \\ 62.6$	413185	36027 93285	53
8	556953	54.5 54.4	969762	8.1 8.1	587190	62.6	412810	36054 93274	52
9	557280	54.4	969714	8,1	587566	62.5	412434	36081 93264	51
10	557606	54 9	969665	8,1	587941	62.5	412059	36108 93253	50 49
11	9.557932	54.3	9.969616	8.2	9.588316 588691	62.5	10.411684 411309	36135 93243 36162 93232	48
12 18	558258 558583	54.3	969567 969518	8.2	589006	62.4	410934	36190 93222	47
14	558909	54.2	969469	8,2	589440	62.4	410560	36217 93211	46
15	559234	54.2	969420	8.2	589814	62.3	410186	36244 93201	45
16	559558	54.1	969370	8.2 8.2	590188	$62.3 \\ 62.3$	409812	36271 93190	44
17	559883	54.1 54.0	969321	8.2	590562	62.2	409438	36298 93180	43
18	560207	54.0	969272	8.2	590935	62.2	409065	36325 93169	42
19	560531	53.9	969223	8.2	591308	62.2	408692	36352 93159	41 40
20	560855	53.9	969173	8.2	591681 9.592054	62.1	408319 10.407946	36379 93148 36406 93137	39
21 22	9.561178	53.8	9.969124 969075	8.2	592426	62.1	407574	36434 93127	38
23	561501 561824	53.8	969025	8.2	592798	62.0	407202	36461 93116	37
24	562146	53.7	968976	8.2	593170	62.0	406829	36488 93106	36
25	562468	53.7	968926	8.2	593542	61.9	406458	36515 93095	35
26	562790	53.6	968877	8.3	593914	61.9	406086	36542 93084	34
27	563112	53.6 53.6	968827	8.3	594285	61.8 61.8	405715	36569 93074	33
28	563433	53.5	968777	8.3	594656	61.8	405344	36596 93063	32
29	563755	53.5	968728	8.3	595027	61.7	404973	36623 93052	31
30	564075	53.4	968678	8.3	595398 9.595768	61.7	404602 10.404232	36650 93042 36677 93031	30 29
31 32	9.564396 564716	53,4	9.968628 968578	8.3	596138	61.7	403862	36704 93020	28
33	565036	53.3	968528	8.3	596508	61.6	403492	36731 93010	27
34	565356	53.3	968479	8.3	596878	61.6	403122	36758 92999	26
35	565676	53.2	968429	8.3	597247	61.6	402753	36785 92988	25
36	565995	53.2 53.1	968379	8.3 8.3	597616	61.5	402384	36812 92978	24
37	566314	53,1	968329	8.3	597985	61.5	402015	36839 92967	23
38	566632	53.1	968278	8.3	598354	61.4	401646	36867 92956	22
39	566951	53.0	968228	8.4	59872 9 599091	61.4	401278 400909		21 20
40 41	567269 9.567587	53.0	968178 9.968128	8.4	9.599459	61.3	10.400541	36948 92926	19
42	567904	52.9	968078	8.4	599827	61.3		36975 92913	18
43	568222	52.9	968027	8.4	600194	61.3		37002 92902	17
44	568539	52.8	967977	8.4	600562	$61.2 \\ 61.2$		37029 92892	16
45	568856	$52.8 \\ 52.8$	967927	8.4 8.4	600929	61.1		37056 92881	15
46	569172	52.7	967876	8.4	601296	61.1		37083 92870	14
47	569488	52.7	967826	8.4	601662	61.1		37110 92859	13
48	569804	52.6	967775	8.4	602029 602395	61.0		37137 92849 37164 92838	12 11
49 50	570120 570435	52.6	967725 967674	8.4	602761	61.0		37191 92827	10
51	9.570751	52.5	9.967624	8.4	9.603127	61.0		37218 92816	9
52	571066	52.5	967573	8.4	603493	60.9		37245 92805	8 !
58	571380	52.4	967522,	8.4	603858	60.9 60.9	396142	37272 92794	7
54	571695	52.4 52.3	967471	8.5	604223	60.8	395777	37299 92784	6
55	572009	52.3	967421	3.5	604588	60.8		37326 92773	5
56	572323	52.3	967370	8.5	604953	60.7	395047		4
57	572636	52.2	967319	8.5	605317	60.7		37380 92751	3 2
58 59	572950	52.2	967268	8.5	605682	60.7	393954	37407 92740 37434 92729	1
60	573263 573575	52.1	967217 967166	8.5	606410	60.6		37461 92718	ō
								·	-
	Cosine.		Sine.	i	Cotang.		Tang.	N. cos. N.sine.	الـــــــــــــــــــــــــــــــــــــ

68 Degrees.

7	TABLE II.	1	og. Sines a	and Ta	ingents. (2	2°) N	stural Sines.		4	13
7	Sine.	D. 10	Cosine.	D. 10″	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	_
0	9.573575	50.1	9.967166	0.5	9.606410	CO. C	10.893590	37461	92718	60
1	573888	52.1 52.0	967115	8.5	606778	60.6 60.6	393227	37488		59
2	574200	52.0	967064	8.5	607137	60.5	392863	37515		5 8
3 4	574512 574824	51.9	967013 966961	8.5	607500 607863	60.5	392500 392137	37542 37569		57 56
5	575136	51.9	966910	8.5	608225	60.4	891775	37595		55
6	575447	51.9 51.8	966859	8.5 8.5	608588	60.4. 60.4	391412	37622	92653	54
7	575758	51.3	966808	8.5	608950	60.3	391050	37649		53
8 9	576069 576379	51.7	966756 966705	8.6	609312 609674	60.3	390688 390326	37676 37703		52 51
10	576689	51.7	966653	8.6	610036	60.3	389964	37730		50
11	9.576999	51.6 51.6	9.966602	8.6 8.6	9.610397	60.2 60.2	10.889603	37757		49
12	577309	51.6	966550	8.6	610759	60.2	389241	37784		48
13 14	577618 577927	51.5	966499 966447	8.6	611120 611480	60.1	388880 388520	37811 37838	92576	47
15	578236	51.5	966395	8.6	611841	60.1	888159	37865		46 45
16	578545	51.4	966344	8.6	612201	60.1 60.0	387799	37892		44
17	578853	51.4 51.3	966292	8.6	612561	60.0	387439	37919		43
18	579162	51.3	966240	8.6	612921	60.0	387079	37946		42
19 20	579470 579777	51.3	966188 966136	8.6	613281	59.9	386719 3863 5 9	37973 37999		41
21	9.580085	51.2	9.966085	8.6	9.614000	59.9	10.386000	38026		39
22	580392	51.2 51.1	966033	8.7 8.7	614359	59.8 59.8	385641	38053		38
23	580699	51.1	965981	8.7	614718	59.8	385282	38080		37
24 25	581005 581312	51.1	965928 965876	8.7	615077 615435	59.7	384923 884565	38107 38134		36 35
26	581618	51.0	965824	8.7	615793	59.7	384207	38161		34
27	581924	51.0 50.9	965772	8.7	616151	59.7	383849	38188	92421	33
28	582229	50.9	965720	8.7	616509	59.6 59.6	383491	38215		32
29 30	582535	50.9	965668	8.7	616867	59.6	383133	38241		31
31	582840 9.583145	50.8	965615 9.965 563	8.7	617224 9.617582	59.5	882776 10 - 382418	38268 38295		30 29
32	583449	50.8	965511	8.7	617939	59.5	382061	38322		28
33	583754	50.7 50.7	965458	8.7 8.7	618295	59.5 59.4	381705	38349	92355	27
34	584058	50.6	965406	8.7	618652	59.4	381348	38376		26
35 36	584361 584665	50.6	965353 965301	8.8	619008 619364	59.4	380992 380636	38403 38430		25 24
37	584968	50.6	965248	8.8	619721	59.3	380279	38456		23
38	585272	50.5 50.5	965195	8.8 8.8	620076	59.3 59.3	379924	38488		22
89	585574	50.4	965143	8.8	620432	59.2	379568	38510		21
40 41	585877 9.586179		965090 9.965037	8.8	620787 9.621142	59.2	379213 1J-378858	38537		20
42	586482	00.0	964984	8.8	621497	59.2	378503	38564 38591		19 18
43	586783	50.3	964931	8.8	621852	59.1	378148	38617		17
44	587085	50.3 50.2	964879	8.8 8.8	622207	59.1 59.0	377793	38644	92231	16
45 46	587386 587688	50.2	964826	8.8	622561	59.0	377439	38671		15
47	587989	50.1	964773 964719	8.8	622915 623269	59.0	377085 376731	38698 38725		14 13
48	588289	50.1	964666	8.8	623623	58.9	376377	38752		12
49	588590	50.1 50.0	964613	8.9 8.9	623976	58.9 58.9	376024	38778	92175	11
50	588890	50.0	964560	8.9	624330	58.8	375670	38805		10
51 52	9.589190 589489	49.9	9.964507 964454	8.9	9.624683 625036	58.8	10.375317 374964	38832 38859		9
53	589789	49.9	964400	8.9	625388	58.8	374612	38886		7
54	590088	49.9 49.8	964347	8.9 8.9	625741	58.7	874259	38912		6
55	590387	49.8	964294	8.9	426093	58.7 58.7	373907	38939		5
56 57	590686 590984	49.7	964240 964187	8.9	026445 626797	58.6	373555 373203	38966		4 3
58	591282	49.7	964133	8.9	627149	58.6	372851	38993 39020		2
59	591580	49.7 49.6	964080	8.9	.627501	58.6	372499	39046		ĩ
60	591878	29.0	964026	8.9	627852	58.5	372148	39073	92050	Õ
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	7
					7 Degrees.					

)

									_
4	4	Lo	g. Sines an	d Tan	gents. (23°) Na	tural Sines.	TABLE I	L.
<u></u>	Sine.	D. 10'	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
0	9.591878	49.6	9.964026	8.9	9.627852	58.5	10.372148	39073 92050	60
1	592176	49.5	963972	8.9	628203	58.5	371797 371446	39100 92039 39127 92028	59 58
2	592473 592770	49.5	963919 963865	8.9	628554 628905	58.5	371095	39153 92016	57
4	593067	49.5	963811	9.0	629255	58.4	870745	39180 92005	56
5	593363	49.4	963757	9.0	629606	58.4 58.3	870394	39207 91994	55
6	593659	49.4 49.3	963704	9.0	629956	58.3	370044	39234 91982	54
7	593955	49.3	963650	9.0	630306	58.3	369694	39260 91971 39287 91959	53 52
8	594251 594547	49.3	963596 963542	9.0	630656 631005	58.3	369344 36899ŏ	3931491948	51
9 10	594942	49.2	963488	9.0	631355	58.2	368645	39341 91936	50
	9.595137	49.2 49.1	9.963434	9.0 9.0	9.631704	58.2 58.2	10.368296	39367 91925	49
12	595432	49.1	963379	9.0	632053	58.1	867947	39394 91914	48
13	595727	49.1	963325	9.0	632401	58.1	367599 367250	39421 91902 39448 91891	47
14	596021 596315	49.0	963271 963217	9.0	632750 633098	58.1	866902	39474 91879	40
15 16	596609	49.0	963163	9.0	633447	58.0	866553	39501 91868	44
17	596903	48.9	963108	9.0 9.1	633795	58.0 58.0	366205	39528 91856	43
18	597196	48.9 48.9	963054	9.1	634143	57.9	365857	39555 91845	42
19	597490	48.8	962999	9,1	634490	57.9	365510 365162	39581 91833 39608 91822	41 40
20	597783	48.8	962945	9,1	634838 9.635185	57.9	10.364815	39635 91810	39
21 22	9.598075 598368	48.7	9.962890 962836	9.1	635532	57.8	364468	39661 91799	38
23	598660	48.7	962781	9.1	635879	57.8 57.8	364121	39688 91787	37
24	598952	48.7 48.6	962727	9.1 9.1	636226	57.7	863774	39715 91775	36
25	599244	48.6	962672	9.1	636572	57.7	363428	39741 91764	35
26	599536	48.5	962617	9.1	636919 637265	57.7	363081 362735	39768 91752 39795 91741	34 33
27 28	699827 600118	48.5	962562 962508	9.1	637611	57.7	362389	39822 91729	32
29	600409	48.5	962453	9.1	637956	57.6	362044	39848 91718	31
30	600700	48.4	962398	9.1 9 2	638302	57.6 57.6	361698	39875 91706	30
31	9.600990	48.4 48.4	9.962343	9.2	9.638647	57.5	10.361353	39902 91694	29
32	601280	48.3	962288	9.2	638992	57.5	361008 360663	39928 91683 39955 91671	28 27
33	601570 601860	48.3	962233 962178	9.2	639337 639682	57.5	360318	39982 91660	26
34 35	602150	48.2	962123	9.2	640027	57.4	359973	40008 91648	25
36	602439	48.2	962067	9.2 9.2	640371	57.4 57.4	359629	40035 91636	24
37	602728	48.2 48.1	962012	9.2	640716	57.3	359284	40062 91625	23
38	603017	48.1	961957	9.2	641060	57.3	358940	40088 91613	22
39	603305 603594	48.1	961902 961846	9.2	641404 641747	57.8	358596 358253	40115 91601 40141 91590	21 20
40 41	9,603882	48.0	9.961791	9.2	9.642091	57.2	10,357909	40168 91578	19
42	604170	48.0	961735	9.2 9.2	642434	57.2 57.2	357566	40195 91566	18
43	604457	47.9	961680	9.2	642777	57.2	357223	40221 91555	17
44	604745	47.9	961624	9.3	643120	57.1	356880 356537	40248 91543	16 15
45	605032 605319	47 8	961569 961513	9.3	643463 643806	57.1	856194	40275 91531 40801 91519	14
46	605606	47.8	961458	9.3	644148	57.1	855852	40328 91508	13
48	605892	47.8	961402	9.3 9.3	644490	57.0 57.0	355510	40355 91496	12
49	606179	47.7	961346	9.3	644832	57.0	355168	40381 91484	11
50	606465	47.6	961290	9.3	645174	56.9	354826 10.354484	40408 91472	10
	9.606751 607036	47.6	9.961235 961179	9,3	9.645516 645857	56.9	354143	40434 91461 40461 91449	8
52 53	607322	47.6	961179	9.3	646199	56.9	353801	40488 91437	7
54	607607	47.5 47.5	961067	9.3 9.3	646540	56.9 56.8	353460	40514 91425	6
55	607892	47.4	961011	9.3	646881	56.8	853119	40541 91414	5
56	608177	47.4	960955	9.3	647222	56.8	352778 352438	40567 91402	4
57	608461	47.4	960899	9.3	647562 647903	56.7	352436 352097	40594 91390 40621 91378	2
58 59	608745 609029	47.3	960843 960786	9.4	648243	56.7	351757	40647 91366	l î l
60	609313	47.3	930730	9.4	648583	56.7	351417	40674 91355	ō
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	
— <u>'</u>	, 50000000			·	6 Degrees.	·	<u> </u>	·	
					o DeRrees.				

7	TABLE II.	I	og. Sines s	and Ta	ngents. (2	4°) N	atural Sines		45
	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. co	8.
0	9.609313		9.960730	2.4	9.648583		10.351417	40674 9135	60
1	609597	47.3 47.2	960674	9.4 9.4	648923	56.6 56.6	351077	40700 91343	
2	609880	47.2	960618	9.4	649263	56.6	350737	40727 91331	
3	610164 610447	47.2	960561 960505	9.4	649602 649942	56 6	350398 350058	40753 91319	
5	610729	47.1	960448	9.4	650281	56.5	349719	40806 9129	55
, 6	611012	47.1 47.0	960392	9.4 9.4	650620	56.5 59.5	349380	40833 91283	
7	611294	47.0	960335	9.4	650959 651297	56.4	349041 348703	40860 91272 40886 91260	
8 9	611576 611858	47.0	960279 960222	9.4	651636	56.4	348364	40913 91248	
10	612140	46.9	960165	9.4	651974	56.4 56.3	348026	40939 91230	5 50
li	9.612421	46.9 46.9	9.960109	9.4	9.652312	56.3	10.347688	40966 91224	49
12	612702	46.8	960052	9.5	652650 652988	56.3	347350 347012	40992 91213 41019 91200	2 48
13 14	612983 613264	46.8	959995 959938	9.5	653326	56.3	346674	41045 9118	46
15	613545	46.7 46.7	959882	9.5	653663	56.2 56 2	846337	41072 91176	45
16	613825	46.7	959825	9.5	654000	56.2	346000	41098 9116	44 43
17	614105	46.6	959768 959711	9.5	654 3 37 654174	56.1	345663 345326	41125 91159	
18 19	614385 614665	46.6	959654	9.5	655011	56.1	344989	41178 91128	3 41
20	614944	46.6	959596	9.5	655348	56.1	344652	41204 91116	3 40
21	9.615223	46.5 46.5	9.959539	9.5	9.655684	56.1 56.0	10.344316	41231 91104	
22	615502	46.5	959482	9.5	656020	56.0	343980 343644	41257 91099 41284 91080	
23 24	615781 616060	46.4	959425 959368	9.5	656356 656692	56.0	343308	41310 91068	
25	616338	46.4	959310	9.5	657028	55.9	342972	41337 91056	35
26	616616	46.4 46.3	959253	9.6	657364	55.9 55.9	342636	41363 91044	1 34
27	616894	43.3	959195	9.6	657699	55.9	342301 341966	41390 91039 41416 91020	33
28 29	617172 617450	46.2	959138 959081	9.6	658034 658369	55.8	341631	41443 91008	
30	617727	46.2	959023	9.6	658704	55.8	341296	41469 90996	3 30
31	9.618J04	46.2 46.1	9.958965	9.6 9.6	9,659039	55.8 55.8	10,340961	41496 90984	
32	618281	46.1	958908	9.6	659373	55.7	340627 340292	41522 90979 41549 90960	
33 34	618558 618834	46.1	958850 958792	9.6	659708 660042	55.7	339958	41575 90948	
35	619110	46.0	958734	9.6	660376	55.7 55.7	339624	41602 90936	3 25
36	619386	46.0 46.0	958677	9.6	660710	55.6	339290	41628 90924	
37	619662	45.9	958619	9.6	661043	55.6	338957 338623	41655 9091 41681 9089	
38 39	619938 620213	45.9	958561 958503	9.6	661377 661710	55.6	338290	41707 9088	7 21
40	620488	45.9	958445	9.7	662043	55.5	337957	41734 9087	5 20
41	9.620763	45.8 45.8	9.958387	9.7	9.662376	55.5 55.5	10.337624	41760 90863	1 19
42	621038	45.7	958329	9.7	662709 663042	55.4	337291 336958	41757 90851 41813 90839	17
43 44	621313 621587	45.7	958271 958213	9.7	663375	55.4	336625	41840 90820	
45	621861	45.7 45.6	958154	9.7	663707	55.4 55.4	336293	41866 90814	1 15
46	622135	45.6	958096	9.7	664039	55.3	335961	41892 90802	14
47	622409	45.6	958038	9.7	664371 664703	55.3	335629 335297	41919 90790 41945 90778	
48 49	622682 622956	45.5	957979 957921	9.7	665035	55.3	334965	41972 90766	6 11
50	623229	45.5	957863	9.7	665366	55.3	334634	41998 90753	3 10
51	9.623512	45.5 45.4	9.957804	9.7 9.7	9.665697	55.2 55.2	10.334303	42024 90741	
52	623774	45.4	957746 957687	9.8	666029 666360	55.2	333971 333620	42051 90729 42077 90717	
53 54	624047 624319	45.4	957628	9.8	666691	55.1	333309	42104 90704	6
55	624591	45.3	957570	9.8	667021	55.1 55.1	332979	42130 90692	1 5
56	624863	45.3 46.3	957511	9.8 9.8	667352	55.1	332648	42156 90680 42183 90668	3 3
57 58	625135	45.2	957452 957393	9.8	667682 668013	55.0	332318 331987	42209 90655	2
59	625406 625677	45.2	957335	9.8	668343	55.0	331657	42235 90643	3 1 1
60	625948	45.2	957276	9.8	668672	55.0	331328	42262 90631	0
-	Cosine.		Sine.	_	Cotang,		Tang.	N. cos. N.sine	<u></u>
				(35 Degrees.				

_									=
4			g. Sines an				ural Sines.	TABLE I	L.
_	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	—
0	9.625948	45.1	9.957276	9.8	9.668673	55.0	10.331327	42262 90631	60
1	626219	45.1	957217	9.8	669002	54.9	330998	42288 90613	59 58
3	626490 626700	45.1	957158 957099	9,8	669332 669661	54.9	330668 330339	42315 90606 42341 90594	57
4	627030	45.0	957099	9,8	669991	54,9	330009	42367 90582	56
5	627300	45.0	956981	9.8	670320	54.8	329680	42394 90569	55
6	627570	45.0 44.9	956921	9.8	670649	54.8 54.8	329351	42420 90557	54
7	627840	44.9	956862	9.9 9.9	670977	54.8	329023	42446 90545	53
8	628109	44.9	956803	9.9	671306	54.7	328694	42473 90532	52
9 10	628378 628647	44.8	956744 955684	9.9	671634	54.7	328366 328037	42499 90520 42525 90507	51 50
11	9.628916	44.8	9.956625	9.9	671963 9.672291	54.7	10.327709	42552 90495	49
12	629185	44.7	956566	9.9	672619	54.7	327381	42578 90483	48
13	629453	44.7	9565.36	9.9	672947	54.6 54.6	327053	42604 90470	47
14	629721	44.6	956447	9.9	673274	54.6	326726	42631 90458	46
15	629989	44.6	956387	9.9	673602	54.6	326398	42657 90446	45
16	630257	44.6	956327	9.9	673929	54.5	326071	42683 90433	44
17 18	630524 630792	44.6	956268 956208	9.9	674257 674584	54.5	325743 325416	42709 90421 42736 90408	42
19	631059	44.5	956148	10.0	674910	54.5	325090	42762 90396	41
20	631326	44.5	956089	10.0 10.0	675237	54.4	324763	42788 90383	40
21	9.631593	44.5 44.4	9.956029	10.0	9.675564	54.4 54.4	10.324436	42815 90371	39
22	631859	44.4	955969	10.0	675890	54.4	324110	42841 90358	38
23	632125	44.4	955909	10.0	676216	54.3	323784	42867 90346	37
24	632392	44.3	955849	10.0	676543	54.3	323457	42894 90334 42920 90321	36 35
25 26	632658 632923	44.3	955789 955729	10.0	676869 677194	54.3	323131 322806	42920 90321	34
27	633189	44.3	955569	10.0	677520	54.3	322480	42972 90296	33
28	633454	44.2	955609	10.0	677846	54.2	322154	42999 90284	32
29	633719	44.2 44.2	955548	10.0 10.0	678171	54.2 54.2	321829	43025 90271	31
30	633984	44 1	955488	1 . 0	678496	54.2	821504	43051 90259	30
	9.634249	44.1	9.955428	10.1	9.678821	54.1	10.321179	43077 90246	29
32	634514	44.0	955368	10,1	679146	54.1	320854	43104 90233	28 27
33	634778 635042	44.0	955307 955247	10.1	679471 679795	54.1	320529 320205	43130 90221 43156 90208	26
35	635305	44.0	955186	10.1	680120	54.1	319880	43182 90196	25
36	635570	43.9	955126	10.1	680444	54.0	319556	43209 90183	24
37	635834	43.9 43.9	955055	10.1 10.1	680768	54.0 54.0	319232	43235 90171	23
38	636097	43.8	955005	10.1	681092	54.0	318908	43261 90158	22
39	636360	43.8	954944	10.1	681416	53.9	318584	43287 90146	21
40	636623 9.636 8 86	43.8	954883 9.954823	10.1	681740 9.682063	53.9	318260	43313 90133 43340 90120	20 19
41 42	637148	40,1	954762	10.1	682387	53.9	10.317937 317613	43366 90108	18
43	637411	43.7	954701	10.1	682710	53.9	317290	43392 90095	17
44	637673	43.7 43.7	954640	10.1	683033	53.8 53.8	316967	43418 90082	16
45	63793 5	43.6	954579	110.4	683356	53.8	316644	43445 90070	15
46	638197	43.6	954518	10.2	683679	53.8	316321	43471 90057	14
47	638458 638720	43.6	954457 954396	10.2	684001 684324	53.7	315999	43497 90045 43523 90032	13 12
49	638981	43.5	954335	10.2	684646	53.7	315676 315354	43549 90019	11
50	639242	43.5	954274	110 2	684968	53.7	315032	43575 90007	10
51	9.639503	43.5 43.4	9,954213	10.2	9.685290	53.7 53.6	10.314710	43602 89994	9
52	639764	43.4	954152	10.2 10.2	685612	53.6	314388	43628 89981	8
53	640024	43.4	954090	10.2	685934	53.6	314066	43654 89968	7
54 5 5	640284	43.3	954029	10.2	686255	53.6	313745	43680 89956	6
56	640544 640804	43.3	953 96 8 953906	10.2	686577 686898	53.5	313423 313102	43706 89943 43733 89930	5 4
57	641064	43.3	953845	10.2	687219	53.5	312781	43759 89918	3
58	641324	43.2	953783	10.2	687540	53.5	312460	43785 89905	2
59	641584	43.2 43.2	953722	10.2 10.3	687861	53.5 53.4	812139	4381189892	1
60	641842	40.2	953660		6881 8 2	50.4	311818	43837 89879	0
1	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sire.	7
					4 Degrees.				
	-								

1	ABLE IL	I	og. Sines a	nd Ta	ngents. (2	6°) N	atural Sines.		4	7
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	. cos.	
0	9.641842	43.1	9.953660	10.3	9.688182	53.4	10.311818	438378		60
1	642101	43.1	953599	10.3	688502	53.4	311498	438638		59
2 3	642360 642618	43.1	953537 953475	10.3	688823 689143	53.4	311177 310857	438898 439168		58 57
4	642877	43.0	953413	10.3	689463	53.3	310537	439428	9828	56
5	643135	43.0 43.0	953352	10.3 10.3	689783	53.3 53.3	310217	439688	9816	55
6	643393	43.0	953290	10.3	690103	53.3	309897	439948		54
7 8	643650 643908	42.9	953228 953166	10.3	690423 690742	53.3	309577 309258	440208	9790	53 52
9	644165	42.9	953104	10.3	691062	53.2	308938	440468 440728	9764	51
10	644423	42.9 42.8	953042	10.3 10.3	691381	53.2 53.2	308619	440988	9752	50
11	9.644680	42.8	9.952980	10.4	9.691700	53.1	10.308300	441248		49
12	644936 645193	42.8	952918 952855	10.4	692019 692338	53.1	307981 307662	441518		48 47
14	645450	42.7	952793	10.4	692656	53.1	307344	442038		46
15	645703	42.7 42.7	952731	10.4 10.4	692975	53,1 53,1	307025	442298	9687	45
16	645962	42.6	952669	10.4	693293	53.0	306707	442558		44
17 18	646218	42.6	952606	10.4	693612 693930	53.0	306388 306070	44281 8 44307 8	9662	43 42
19	646474 646729	42.6	952544 952481	10.4	694248	53.0	305752	443338	9636	41
20	646984	42.5	952419	10.4	694566	53.0	305434	443598		40
	9.647240	42.5 42.5	9.952356	10.4 10.4	9.694883	52.9 52.9	10.305117	443858		39
22	647494	42.4	952294	10.4	695201	52.9	304799	444118		38 37
23 24	647749 648004	42.4	952231 952168	10.4	695518 69 5 836	52.9	304482 304164	44437 8 44464 8		36
25	648258	42.4	952106	10.5	696153	52.9	303847	444908		35
26	648512	42.4	952043	10.5	696470	$52.8 \\ 52.8$	303550	445168	9545	34
27	648766	42.3 42.3	951980	10.5 10.5	696787	52.8	303213	445428		33
28	649020	42.3	951917	10.5	697103	52.8	302897	445688		32 31
29 30	649274 649527	42.2	951854 951791	10.5	697420 697736	52.7	302580 302264	445948 446208		30
31	9.649781	42.2	9.951728	10.5	9.698053	52.7	10.301947	446468		29
32	650J34	$\frac{42.2}{42.2}$	951665	10.5 10.5	698369	52.7 52.7	301631	446728	9467	28
33	650287	42.1	951602	10.5	698685	52.6	301315	446988		27
34 35	650539	42.1	951539	10.5	699001 699316	52.6	300999 300684	44724 8 44750 8	0498	26 25
36	650792 651044	42.1	951476 951412	10.5	699632	52.6	300368	447768		24
37	651297	42.0	951349	10.5	699947	52.6	300053	448028		23
38	651549	42.0 42.0	951286	10.6 10.6	700263	52.6 52.5	299737	44828 8		22
39	651800	41.9	951222	10.6	700578	52.5	299422	448548		21 20
40 41	652052 9.652304	41.9	951159 9.951096	10.6	700893 9.701208	52.5	299107 10. 2 98792	448808 449068		19
42	652555	41.9	951032	10.6	701523	52.4	298477	449328		18
43	652806	41.8	950968	10.6 10.6	701837	52.4 52.4	298163	449588	9324	17
44	653057	41.8 41.8	950905	10.6	702152	52.4	297848	449848		16
45 46	653308 653538	41.8	950841 950778	10.6	702466 7027 80	52.4	297534 297220	450108 450368		15 14
47	6538C8	41.7	950718	10.6	703095	52.3	296905	450528		13
48	654059	41.7	950650	10.6	703409	52.3 52.3	296591	450888	9259	12
49	654309	41.6	950586	10.6 10.6	703723	52.3	296277	451148		11
50	654558	41.6	950522	10.7	704036	52.2	295964	451408		10
51 52	9.654808 655058	41.6	9.950458 950394	10.7	9.704350 704663	52.2	10.295650 295337	45166 8 45192 8		9
53	655307	41.6	950330	10.7	704977	52.2	295023	452188		7
54	655556	41.5	950366	10.7 10.7	705290	$52.2 \\ 52.2$	294710	452488	9180	6
55	655805	41.5	950202	10.7	705603	52.1	294397	452698		5
56 57	656054	41.4	950138	10.7	705916	52.1	294084 293772	452 95 8 45321 8		4 3
58	656302 656 5 51	41.4	950074 950010	10.7	706 228 706 5 41	52.1	293459	45347 8		2
ŏ9	656799	41.4	949945	10.7	705854	52.1	293146	453738	9114	1
60	657047	41.3	949881	10.7	707166	52.1	292834	453998		0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. I	sine.	<u> </u>
					3 Degrees.					

4	8	L	og. Sines a	nd Tan	igents. (27	°) Na	tural Sines.	TABLE I	I.
7	Sine.	D. 10'	Cosine.	D. 10'	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
0	9.657047	41.0	9.949881	10.7	9.707166	-0.0	10.292834	45399 89101	60
1	657295	41.3	949816	10.7 10.7	707478	52.0 52.0	292522	45425 89087	59
2	657542	41.2	949752	10.7	707790	52.0	292210	45451 89074	
3	657790	41.2	949688	10.8	708102	52.0	291898	45477 89061	57
4	658037	41.2	949623	10.8	708414 708726	51.9	291586 291274	45503 89048 45529 89035	56 55
5 6	658284 658531	41.2	949558 949494	10.8	709037	51.9	290963	45554 89021	54
7	658778	41.1	949429	10.8	709349	51.9	290651	45580 89008	53
8	659025	41.1	949364	10.8	709660	51.9	290340	45606 88995	52
9	659271	41.1	949300	10.8 10.8	709971	51.9	290029	45632 88981	51
10	659517	41 0	949235	10 0	710282	51.8 51.8	289718	45658 88968	50
	9.659763	41.0	9.949170	10.8	9.710593	51.8	10.209401	45684 88955	49
12	660009	40.9	949105	10.8	710904	51.8	289096	45710 88942	48
13 14	660255 660501	40.9	949040 948975	10.8	711215 711525	51.8	288785 288475	45736 88928 45762 88915	47 46
15	660746	40.9	948910	10.8	711836	51.7	288164	45787 88902	45
16	660991	40.9	948845	10.8	712146	51.7	287854	45813 88888	44
17	661236	40.8	948780	10.8	712456	51.7	287541	45839 88875	43
18	661481	40.8	948715	10.9 10.9	712766	51.7	287234	45865 88862	42
19	661726	40.8	948650	10.9	713076	51.6 51.6	286924	45891 88848	41
20	661970	40 7	948584	10.9	713386	51.6	286614	45917 88835	40
	9.662214	40.7	9.948519	10.9	9,713696	51.6	10.286304	45942 88822	39
22 23	662459 662703	40.7	948454	10.9	714005 714314	51.6	285995 285686	45968 88808 45994 88795	38 37
24	662946	40.6	948388 948323	10.9	714624	51.5	285376	46020 88782	36
25	663190	40.6	948257	10.9	714933	51.5	285067	46046 88768	35
26	663433	40.6	948192	10.9	715242	51.5	284758	4607288755	34
27	663677	40.5	948126	10.9	715551	51.5	284449	46097 88741	83
28	663920	40.5	948060	10.9 10.9	715860	51.4	284140	46123 88728	32
29	664163	40.5	947995	11.0	716168	51.4 51.4	283832	46149 88715	31
30	664406	40 4	947929	11 0	716477	51.4	283523	46175 88701	30
31	9.664648	40.4	9.947863	11.0	9.716785	51.4	10.283215 282907	46201 88688	29
32	664891 665133	40.4	947797 947731	11.0	717093 717401	51.3	282599	46226 88674 46252 88661	28 27
34	665375	40.3	947665	11.0	717709	51.3	282291	46278 88647	26
35	665617	40.3	947600	11.0	718017	51.3	981983	46304 88634	25
36	665859	40.3	947533	11.0	718325	51.3	201010	46330 88620	24
37	666100	40.2	947467	11.0 11.0	718633	51.3 51.2	501901	46355 88607	23
38	666342	40.2	947401	11.0	718940	51.2	281060	46381 88593	22
39	666583	40.2	947335	11.0	719248	51.2	280752	46407 88580	21
40	666824	40 1	947269	11.0	719555	51.2	280445 10.280138	46433 88566	20 19
41 42	9.667065 667305	40.1	9.947203 947\36	11.0	9.719862	51.2	279831	46458 88553 46484 88539	18
43	667546	40.1	947070	11.1	720476	51.1	279524	46510 88526	17
44	667786	40.1	947004	11.1	720783	51.1	279217	46536 88512	16
45	668(127	40.0 40 0	946937	11.1	721089	51.1	278911	46561 88499	15
46	668967	40.0	946871	11.1 11.1	721396	51.1 51.1	278604	46587 88485	14
47	668506	39.9	946804	11.1	721702	51.0	278298	46613 88472	13
48	668746	39.9	946738	11.1	722009	51.0	277991	46639 88458	12
49 50	668986 669225	39.9	946671 946604	11.1	722315 722621	51.0	277685 277379	46664 88445 46690 88431	11 10
	9.669464	39.9	9,946538	11.1	9.722927	51.0	10.277073	46716 88417	9
52	669703	99.0	946471	11.1	723232	51.0	276768	46742 88404	8
53	669942	39.8	946404	11.1	723538	50.9	276462	46767 88390	7
54	670181	39.8 39.7	946337	11.1	723844	50.9 50.9	276156	46793 88377	6
55	670419	39.7	946270	11.2	724149	50.9	275851	46819 88363	5
56	670658	39.7	946203	11.2	724454	50.9	275546	46844 88349	4
57	670896	39.7	946136	11.2	724759	KA Q	275241	46870 88886	3 2
58 59	671134 671372	39.6	946069	11.2	725065	50.8	274935 274631	46896 88322	1
60	671609	39.6	946002 945935	11.2	725369 725674	50.8	274326	46921 88308 46947 88295	0
-	Coxine.		Sine.						<u> </u>
 —	, COMING.	Ь	bine.	ـــــــ	Cotang.	L	Tang.	N. cos. N.sine.	<u>'</u>
L				6	2 Degrees.				

Sine. D. 10" Cosine. D. 10" Tang. D. 10" Cotang. N. sine. N	49
0 9.671609 1 671847 39.6 945868 11.2 9.725674 50.8 274021 4697388 3673231 39.5 945868 11.2 725678 50.8 273716 4699988 50.7 273108 4702488 50.7 273	
1 671847 39.5 945868 11.2 725979 50.8 274021 46973 88 2 672084 39.5 945809 11.2 726588 50.7 273412 4699988 3 672321 39.5 945666 11.2 726588 50.7 273412 4702688 4 672568 39.5 945666 11.2 726882 50.7 273108 4705688 6 673023 39.4 945591 11.2 727501 50.7 272899 4707688 7 673268 39.4 945396 11.2 727501 50.7 272949 471018 8 673505 39.4 945396 11.3 728109 50.6 271891 471288 9 673741 39.3 945381 11.3 728109 50.6 271891 471288 11 9.674213 39.3 945193 11.3 72942412 50.6 271894 471288	cos.
1 6/1844 39.5 945808 11.2 726984 50.8 273716 4699988 3 672084 39.5 945808 11.2 726884 50.7 273412 4702488 4 672568 39.5 945666 11.2 726882 50.7 273108 4706088 6 673032 39.4 945591 11.2 727805 50.7 272499 4706088 8 673505 39.4 945361 11.2 727805 50.7 272499 47107688 8 673505 39.4 945396 11.3 728109 50.6 271891 4715188 9 673741 39.3 945261 11.3 728716 50.6 271884 471088 11 9.674213 39.3 945193 11.3 728716 50.6 271884 4720488 12 674448 39.2 944991 11.3 729902 50.6 10.270980 4722588	
3 672321 39.5 945733 11.2 722588 50.7 273412 4706088 4 672568 39.5 94573 945686 11.2 726892 50.7 273412 4706088 4706088 6 673032 39.4 945598 11.2 7277197 50.7 272499 4710188 7 673268 39.4 945396 11.2 727805 50.6 271295 4712788 8 673505 39.4 945396 11.3 728109 50.6 271295 4712788 9 673741 39.3 945396 11.3 728109 50.6 271294 4710188 10 673977 39.3 945193 11.3 728109 50.6 271284 471288 11 9.674213 39.3 945193 11.3 729029 50.6 271284 471288 12 674488 39.2 944593 11.3 729929 50.5 270074	
4 672558 39.5 945666 11.2 726892 50.7 273108 47060 88 5 673032 39.4 945598 11.2 727197 50.7 272499 47101 88 7 673268 39.4 945396 11.2 727501 50.7 272499 47101 88 8 673505 39.4 945396 11.3 728109 50.6 271291 47153 88 9 673741 39.3 945396 11.3 728109 50.6 271284 47153 88 10 673977 39.3 945193 11.3 728716 50.6 271284 47124 88 12 6744213 39.3 945193 11.3 729025 50.6 271284 47204 88 12 6744684 39.2 945058 11.3 729923 50.6 270677 47228 188 15 675153 39.2 944990 11.3 730638 50.5 269767 47338 88	
6 673932 39.4 945981 11.2 727501 50.7 272499 47101 [88 7 673268 39.4 945396 11.2 727501 50.7 272499 47101 [88 8 673505 39.4 945396 11.3 728109 50.6 271291 47157 [88 9 673741 39.3 945398 11.3 728109 50.6 271284 47158 [88 47127 [88 10 673977 39.3 945193 11.3 728716 50.6 271284 47204 [88 47127 [88 47127 [88 47127 [88 47127 [88 47127 [88 47127 [88 47127 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47128 [88 47124 [88 47128 [88 47125 [88 47125 [88 47125 [88 47125 [88 47125 [88 47125 [88 47125 [88 47125 [88 47125 [88 47229 [88 4725 [88	
0 6730268 7 673268 8 673505 9 673774 1 7 675624 39.1 1 675624 39.1 1 675624 39.1 1 8 675659 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 8 675652 39.1 1 944786 11.3 730233 50.5 269467 4733288 21 9 6767030 39.0 1 944514 11.4 732653 50.3 267045 47468 85 677498 38.9 944451 11.4 732655 50.3 266743 47468 85 677498 38.9 944490 11.4 733255 50.3 266743 47468 85 677498 38.9 944490 11.4 733255 50.3 266744 4758187 27 677964 38.9 944490 11.4 733255 50.3 266744 4758187 27 677964 38.9 944309 11.4 733255 50.3 266744 4758187 27 677964 38.9 944490 11.4 733255 50.3 266743 4758187 27 677964 38.9 9444104 11.4 733255 50.3 266743 4758187 27 677964 38.9 9444104 11.4 733255 50.3 266744 476387 47668 87 67819 38.8 9444036 11.4 733255 50.2 265838 47668 87 47668 87 944309 11.4 733463 50.2 265838 47668 87 47668 87 944309 11.4 734463 50.2 265858 47668 87 47668 87 944309 11.4 734463 50.2 265858 47668 87 47668 87 944309 11.4 734463 50.2 265858 47668 87 47668 87 944309 11.4 734463 50.2 265858 47668 87 47669 87 47668 87 4	
8 673505 39.4 94598 11.3 728109 50.6 271891 4715388 9 673741 39.4 945928 11.3 728109 50.6 271891 4717888 10 673777 39.3 945261 11.3 728105 50.6 271284 4717888 11 9.674213 39.3 9.945193 11.3 729922 50.6 270677 4725688 13 674684 39.2 9445058 11.3 729929 50.5 270071 4731688 16 675155 39.2 944892 11.3 730233 50.5 269767 4733688 16 675859 39.1 944718 11.3 730638 50.5 269162 4733888 18 675859 39.1 944718 11.3 731141 50.4 268859 4743488 20 676328 39.0 944854 11.3 731145 50.4 268856 4743488	
9 673741 39.3 3 945261 11.3 728716 50.6 271588 47178 88 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 271584 47204 88 11.3 728716 50.6 270677 47255 88 11.3 728716 50.5 270677 47255 88 11.3 730638 50.5 269767 47333 88 11.3 730638 50.5 2607649 474618 73265 50.3 2667649 474618 73265 50.3 2667649 476518 73267 50.3 266743 47668 87 11.4 733463 50.2 2656537 47669 87 47669 87 11.4 733463 50.2 2656537 47669 87 47669 87 473463 50.2 2656537 47669 87 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 47669 87 473463 50.2 2656537 47669 87 47669 87 473463 50.2 2656537 47669 87 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 473463 50.2 2656537 47669 87 47346	
10 673977 33-3 945261 11.3 728716 30-6 971284 4720488 4720488 11 9.674213 39.3 9.945193 11.3 9.72902 50.6 10.270880 4722988 13 674684 39.2 945058 11.3 729923 50.5 270374 4725688 15 675155 39.2 944990 11.3 729929 50.5 270071 4725688 16 675390 39.1 944786 11.3 730638 50.5 269465 4735888 18 675859 39.1 944786 11.3 731638 50.5 269465 4735888 19 676804 39.1 944478 11.3 731746 50.4 268856 4740988 21 9.676562 39.0 9444581 11.3 731746 50.4 268856 4743488 22 676796 39.0 9444581 11.4 732863 50.4 2687649	
11 674488 39.2 945193 11.3 729923 50.6 270677 4725188 13 674684 39.2 945058 11.3 729929 50.5 270677 4725188 16 675155 39.2 944990 11.3 729929 50.5 269767 4733688 16 675390 39.1 944786 11.3 730538 50.5 269465 4733888 18 675859 39.1 944786 11.3 730638 50.5 269465 4733888 19 6768094 39.1 944478 11.3 731141 50.4 268856 47440888 21 9.676562 39.0 944514 11.4 731746 50.4 268856 4743488 22 676796 39.0 944309 11.4 7329048 50.4 267649 4751187 24 677268 38.9 944309 11.4 732956 50.3 267649 4756187 <	
13 674684 39.2 945958 11.3 729926 50.5 270071 4728 88 47491 39.2 50.5 270071 47306 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47302 88 50.5 269767 47402 88 50.5 269762 47302 88 50.5 269762 47302 88 50.5 269762 47302 88 50.5 269762 47302 88 50.5 269762 47302 88 50.5 269762 47402 88 50.5 269762 47402 88 50.5 269762 47402 88 50.5 269762 47402 88 50.5 269762 47402 88 50.5 269762 47402 88 50.5 269762 47402 88 50.5 260742 47502 87 50.5 260742 47502 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47652 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742 47662 87 50.5 260742	144 49 130 48
15 675155 33.2 944892 11.3 730233 00.5 269767 47332 88 16 675893 39.1 944854 11.3 730535 50.5 269465 47358 88 18 675859 39.1 944781 11.3 730838 50.5 269162 47383 88 19 676094 39.1 944718 11.3 731141 50.4 268556 47403 88 20 676328 39.0 944514 11.3 731746 50.4 268556 47434 88 22 676796 39.0 944454 11.4 732048 50.4 10.267952 47460 88 23 677030 39.0 944304 11.4 732955 50.3 267347 47563 87 25 677498 38.9 944211 11.4 733568 50.3 266442 4763 87 26 677731 38.9 944172 11.4 733568 50.2 265838 4766887	117 47
15 675155 33.2 944892 11.3 730233 30.5 269767 47332 88 16 675893 39.1 944854 11.3 730535 50.5 269465 47358 88 17 675859 39.1 944781 11.3 730638 50.5 269162 47383 88 19 676904 39.1 944718 11.3 731141 50.4 268566 47403 88 20 676328 39.0 944514 11.3 731746 50.4 268556 47434 88 22 6767662 39.0 944446 11.4 732048 50.4 10.267952 47460 88 23 677030 39.0 944309 11.4 732955 50.3 267347 47563 87 25 67748 38.9 944241 11.4 733568 50.3 266442 4761487 26 6777961 38.9 944171 11.4 733568 50.3 266442 4763887	103 46
17 675624 39.1 944768 11.3 730638 50.5 268869 4740988 11.3 731041 50.4 268869 4740988 19. 676092 39.1 944650 11.3 731141 50.4 268869 4740988 21.9 676328 39.0 944514 11.4 9.732048 50.4 10.267962 4748688 22 676796 39.0 944514 11.4 732351 50.3 267347 4756187 24 677264 38.9 944309 11.4 73255 50.3 267347 4756187 26 677731 38.9 944104 11.4 73255 50.3 266742 4765187 27 677964 38.9 944104 11.4 73255 50.3 266442 4761887 27 677964 38.9 944104 11.4 73255 50.3 266140 4763887 27 677964 38.9 944104 11.4 73255 50.2 265838 4766187 29 678137 38.8 944308 11.4 73462 50.2 265838 4766187 4766187 38.8 944308 11.4 734162 50.2 265838 4766187 4766187 38.8 944308 11.4 734162 50.2 265838 4766187	
11 676859 39.1 944718 11.3 733141 50.4 268859 4740988 19 676094 39.1 944650 11.3 731141 50.4 268556 4743488 20 676328 39.0 944582 11.4 731746 50.4 268254 4746088 22 676796 39.0 9444514 11.4 7329048 50.4 2677692 474868 23 677030 39.0 944377 11.4 732653 50.3 267649 4751187 24 677264 38.9 944309 11.4 732955 50.3 267347 475287 26 677731 38.9 944172 11.4 733568 50.3 266442 4761487 27 677964 38.8 944104 11.4 733568 50.2 265838 4766588 28 678197 38.8 944306 11.4 734463 50.2 265838 4766987	
19	
20 676328 33.1 944582 11.4 9.732048 50.4 10.267952 47460/86 21 9.676596 39.0 9.44514 11.4 9.732048 50.4 10.267952 47436/86 23 677030 39.0 944307 11.4 732351 50.3 267649 47511/87 87 26 677798 38.9 944309 11.4 733257 50.3 266743 47658/87 26 677731 38.9 944104 11.4 733558 50.3 266442 4761/87 27 677964 38.8 944104 11.4 733568 50.2 265838 4766/88 28 678197 38.8 944906 11.4 734162 50.2 265838 4766/87 29 678430 88 943967 11.4 734463 50.2 2656537 4769/87	034 41
22 676796 39.0 944446 11.4 732351 50.4 267649 47511 87 233 677030 39.0 944377 11.4 732653 50.3 267347 47537 87 24 677264 38.9 944309 11.4 73255 50.3 266743 47568 87 26 677498 38.9 944104 11.4 733556 50.3 266442 47614 87 27 677964 38.8 944104 11.4 733568 50.2 265838 47665 87 29 678430 28 8 943967 11.4 734463 50.2 2656537 4769087	
23 677030 39.0 944377 11.4 732955 50.3 267347 47537 87 24 677264 38.9 944309 11.4 732955 50.3 267045 47568 87 25 677498 38.9 944241 11.4 733558 50.3 266442 4761487 27 677964 38.9 944104 11.4 733568 50.3 266140 4763987 28 678197 38.8 944306 11.4 734162 50.2 265838 47665 87 29 678430 28 943967 11.4 734162 50.2 265838 47665 87 4769087	
24 677264 38.9 944309 11.4 732955 50.3 267743 47562 87 26 677731 38.9 944172 11.4 733556 50.3 266743 47614 87 27 677964 38.8 944104 11.4 733568 50.3 266140 47639 87 28 678197 38.8 94404 11.4 733462 50.2 26538 47666 87 29 678430 38.8 943967 11.4 734463 50.2 265537 47690 87	
26 677731 38.9 944172 11.4 733558 50.3 266442 4761487 97 677964 38.8 944104 11.4 733860 50.2 265838 4766587 29 678430 38.8 944366 11.4 734162 50.2 265838 4766087 29 678430 38.8 943967 11.4 734463 50.2 265537 4769087	965 36
27 677964 38.8 944104 11.4 733860 50.3 266140 4763987 28 678197 38.8 944036 11.4 734162 50.2 265838 47666 87 29 678430 38.8 943967 11.4 734463 50.2 265537 47690 87	
28 678197 38.8 944366 11.4 734162 50.2 265838 47666 87 29 678430 88 943967 11.4 734463 50.2 265537 47690 87	937 34
29 678430 38.8 943967 11.4 734463 50.2 265537 47690 87	909 32
	396 31
30 678663 30 0 943899 11 4 734764 50 2 265236 47716 87	382 30
31 9.678895 92 7 9.943830 11 A 9.735000 50 0 10.204934 47741 07	368 29 354 28
33 679360 38.7 943693 11.4 735668 50.2 264332 47793 87	
34 679592 38.7 943624 11.5 735969 50.1 264031 47818 87	326 26
35 679824 36 943555 11 736269 6 263731 47844 87	
30 680056 22 6 943486 11 5 730670 50 1 203430 47809 07	
38 680510 38.6 94348 11.5 737171 50.1 263829 4792087	
39 680750 38.0 943279 11.5 737471 50.0 262529 47946 87	756 21
40 680982 38.5 943210 11.5 737771 50.0 262229 47931 87 41 9.681213 38.5 9.943141 11.5 9.738071 50.0 10.261929 47997 87	743 20
	729 19 715 18
42 001443 38.4 049002 11.5 730371 50.0 201023 40022 07	
44 681905 38.4 942934 11.5 738971 49.9 261029 48073 87	87 16
$\begin{vmatrix} 45 & 682135 \begin{vmatrix} 36.4 \\ 28.4 \end{vmatrix} = 942864 \begin{vmatrix} 11.5 \\ 11.5 \end{vmatrix} = 739271 \begin{vmatrix} 45.5 \\ 40.0 \end{vmatrix} = 260729 \begin{vmatrix} 48099 & 87 \end{vmatrix}$	573 15
40 002300 38 9 942790 11 6 739070 40 0 200450 4012407	
40 00200 38.3 04000 11.6 740100 49.9 050021 401500	
49 683055 38.3 942587 11.6 740468 49.9 259532 48201 87	317 11
00 003204 38 9 942017 11 6 740707 40 8 203200 4022007	
50 CO0740 38.2 0.10070 11.6 741365 49.8 058635 40077 87	575 8
53 683079 38.2 040308 11.6 741664 49.8 258336 48303 87	561 7
54 684201 38.2 942239 11.6 741962 49.8 258038 48328 87	546 6
55 684430 38 1 942169 11.6 742261 49.7 257739 48354 87	532 5
60 004000 38.1 040000 11.6 740060 49.7 057140 48405 87	
57 004007 38.0 942029 11.6 742156 49.7 256844 4843087	
59 685343 38.0 941889 11.6 743454 49.7 256546 48456 87	76 1
60 685571 38.0 941819 11.7 743752 49.7 256248 48481 87	
Cosine. Sine. Cotang. Tang. N. cos. N.	ine. '
61 Degrees.	

	-							
5	0	Log. Sines as	ed Tam	gents. (20) Nat	tural Since.	TABLE II	Ľ.
二	Sine.	D. 10" Cosine.	D. 10°	Tang.	D. 10"	Cotang.	N. sine. N. cos.	_
0	9.685571	38.0 9.941819		9.743752	49.6	10.256248	484 81 8 7462	60
1 2	685799 686027	37.9 941748	11.7	744050 744348	49.6	255950 255652	48500 57448 4853267434	59 56
3	686254	37.9 941609	111.4	744645	49.6 49.6	25535 5	48557 87420	57
1 4	686482 686709	37.9 941539 941469	11.7	744943 745240	49.6	255057 254760	48583 87406 48606 87391	56 55
6	686936	37.8 041206	11.7	745538	49.6	254462	48684 87377	54
7	687163	37.8 941328 37.8 941328		745835	49.5 49.5	254165	48669 87363	53
8 9	687389 687616	37.8 941200	11.7	746132 746429	49.5	253868 253571	48684 87349 48710 87335	52 51
10	687843	37 7 941117	111.7	746726	49.5 49.5	253274	48735 87321	50
11 12	9.688069 688295	37.7 040075	11.8	9.747023 747319	49.4	10.252977 252681	48761 87306	49 48
13	688521	31.1 040005	11.8	747616	49.4	252384	48786 87292 48811 87278	47
14	688747	37.6 940834 37.6 940834		747913	49.4 49.4	252087	48837 87264	46
15 16	688972 689198	37.6 940703	11.8	748209 748505	49.4	251791 251495	48862 87250 48888 87235	45 44
17	689 123	37.5 940622	11.8	748801	49.3 49.3	251199	48913 87221	43
18	689648 689873	37.5 940551 940480	11.8 11.8	749097	49.3	250903	48938 87207	42
19 20	690098	37.5 940409	11.8	749393 749689	49.3	250607 250311	48964 9 7193 489 6 9 87178	41
21	9,690323	37.5 9.940338		9.749985	49.3 49.3	10.250015	4901487164	39
22 23	690548 690772	37.4 940207	11.8	750281 750576	49.2	249719 249424	49040 87150 49065 87136	88
24	690996	37.4 040195	11.0	750872	49.2	249128	49090 87121	37 36
25	691220	37.4 940054 37.3 930089	11.9 11.9	751167	49.2	248833	49116 87107	85
26 27	691444 691668	37.3 939911	11.9	751462 751757	49.2	248538 248243	49141 87093 49166 87079	34 33
28	691892	37.3 939840	11.9	752052	49.2 49.1	247948	49192 87064	32
29	692115 692339	37.2 00000	11 0	752347 752642	49.1	247653	49217 87050	31
30 31	9.692562	37.2 0 020695	11.9	9.752937	49.1	247358 10.247063	49242 87086 49268 87021	30 29
32	692785	37.2 939554		753231	49.1 49.1	246769	49293 87007	28
33 84	693008 693281	37.1 939410	11.9	753526 753820	49.1	246474 246180	49318 86993 49344 86978	27 26
35	693453	37.1 939389		754115	49.0 49.0	245885	49369 86964	25
36	693676 693898	37.0 939267 939195	12.0	754409 754703	49.0	245591	49394 86949	24
37 38	694120	37.0 020102	12.0	754997	49.0	245297 245003	49419 86935 49445 86921	28 22
39	694342	37.0 939052 37.0 938080		755291	49.0 49.0	244709	49470 86906	21
40 41	6945 <u>64</u> 9.694786	36.9 038008	12.0	755585 9,755878	48.9	244415 10.244122	49495 86892 49521 86878	20
42	695007	938836	10.0	756172	48.9 48.9	243828	49546 86863	19 18
43 44	695229 695450	36.9 038601	12.0	756465 756759	48.9	243535	49571 86849	17
45	695671	36.8 938619	12.0	757052	48.9	243241 242948	49596 86834 49622 86820	16
46	695892	36.8 938547		757345	48.9 48.8	242655	49647 86805	14
47 48	696113 696334	36.8 938409	12.0	757638 757931	48.8	242362 242069	49672 86791 49697 86777	13 12
49	696554	36.7 938330	12.1	758224	48.8 48.8	241776	49723 86762	11
50	696775 9,696995	36.7 0 038185	119 1	758517	48.8	241483	49748 86748	10
51 52	697215	36.7 938113	12.1	9.758810 759102	48.8	10.241190 240898	49773 86788 49798 86719	8
53	697435	36.6 938040	12.1	759395	48.7 48.7	240605	49824 86704	7
54 55	697654 697874	36.6 937895	12.1	759687 759979	48.7	240313 240021	49849 86690 49874 86675	6
56	698094	36.6 937822	12.1	760272	48.7 48.7	239728	49899 86661	4
57	698313	36.5 937749 36.5 937676	12.1	760564	48.7	239436	49924 86646	8
58 50	698532 698751	36.5 937604	12.1	760856 761148	48.6	239144 238852	49950 86632 49975 86617	2
60	698970	36.5 937531	12.1	761439	48.6	288561	50000 86603	ō
	Cosine.	Sine.		Cotang.		Tang.	N. cos. N.sine.	1
			6	0 Degrees.				

T	ABLE IL	L	og. Sines a	nd Ta	ngents. (30)°) N	atural Sines.		5	1
٠-	Sine.	D . 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	
0	9.698970	22.4	9.937531		9.761439	40.0	10.238561	50000	86603	60
ĭ	699189	36.4 36.4	937458	$12.1 \\ 12.2$	761731	48.6 48.6	238269	50025		59
2	699407	36.4	937385	12.2	762023	48.6	237977	50050		58
3	699626 699844	36.4	937312 937238	12.2	762314 762606	48.6	237686 237394	50076 50101		57 56
4 5	700062	36.3	937165	12.2	762897	48.5	237103	50126		55
6	700280	36.3	937092	12.2	763188	48.5	236812	50151		54
7	700498	36.3 36.3	937019	12.2 12.2	763479	48.5 48.5	236521	50176		53
8	700716	36.3	936946	12.2	763770	48.5	236230 235939	50201 50227		52 51
9 10	700933 701151	36.2	936872 936799	12.2	764061 764352	48.5	235648	50252		50
11	9.701368	36.2	9.936725	12.2	9.764643	48.4	10.235357	50277		49
12	701585	36.2 36.2	936652	12.2 12.3	764933	48.4 48.4	235067	50302		48
13	701802	36.1	936578	12.3	765224	48.4	234776	50327		47
14	702019 702236	36.1	936505 936431	12.3	765514 765805	48.4	234486 234195	50352 50377		46 45
15 16	702452	36.1	-936357	12.3	766095	48.4	283905	50403		44
17	702669	36.1	936284	12.3	766385	48.4	233614	50428		43
18	702885	36.0 36.0	936210	12.3 12.3	766675	48.3 48.3	233325	50453		42
19	703101	36.0	936136	12.3	766965	48.3	233036	50478		41
20	703317	36.0	936062	12.3	767255	48.3	232745 10.232455	50503 50528		40 39
21 22	9.703533 703749	35.9	9.935988 935914	12.3	9.767545 767834	48.3	232166	50553		38
23	703964	35.9	935840	12.3	768124	48.3	231876	50578		37
24	704179	35.9 35.9	935766	12,3 12,4	768413	48.2 48.2	281587	50603		36
25	704395	35.9	935692	12.4	768703	48.2	231297	50628		35
26	704610	35.8	935618	12.4	768992	48.2	231008	50654		34 33
27 28	704825 705040	35.8	935543 935469	12.4	769281 769570	48.2	230719 230430	50679 50704		32
29	705254	35.8	935395	12.4	769860	48.2	230140	50729		31
30	705469	35.8	935320	12.4	770148	48.1	229852	50754		30
31	9.705683	35.7 35.7	9.935246	12.4 12.4	9.770437	48.1 48.1	10.229563	50779		29
32	705898	35.7	935171	12.4	770726	48.1	229274	50804		28
33 34	706112 706326	35.7	935097	12.4	771915 771303	48.1	228985 228697	50829 50854		27 26
35	706539	35.6	935022 934948	12.4	771592	48.1	228408	50879		25
36	706753	35.6	934873	12.4	771880	48.1	228120	50904	86074	24
37	706967	35.6	934798	12.4	772168	48.0 48.0	227832	50929		28
38	707180	35.6 35.5	934723	12.5 12.5	772457	48.0	227543	50954		22
39	707393	35.5	934649	12.5	772745	48.0	227255 226967	50979 51004		21 20
40 41	707606 9.707819	35.5	934574 9.934499	12.5	773033 9.773321	48.0	10.226679	51029		19
42	708032	35.0	934424	12.5	773608	48.0	226392	51054		18
43	708245	35.4	934349	12.5	773896	47.9 47.9	226104	51079	85970	17
44	708458	35.4 35.4	934274	12.5 12.5	774184	47.9	225816	51104		16
45	703670	35.4	934199	12.5	774471	47.9	225529 225241	51129 51154		15 14
46 47	708882 709094	35.3	934123 934048	12.5	774759	47.9	224954	51179		13
48	709393	35.3	933973	12.5	775333	47.9	224667	51204	85896	12
49	703518	35.3	933898	12.5	775621	47.9	224379	51229	85881	11
50	709730	35.3 35.3	933822	12.6 12.6	775908	47.8 47.8	224092	51254		10
	9.709941	35.2	9.933747	12.6	9.776196	47.8	10.223805	51279 51304		9
52 53	710153 710364	85.2	933671 933596	12.6	776482	47.8	223518 223231	51329		8 7
54	710304	35.2	933520	12.6	777055	47.8	222945	51354		6
55	710786	35.2	933445	12.6	777342	47.8	222658	51379	85792	5
56	710967	35.1 35.1	933369	12.6	777628	47.8 47.7	222372	51404		4
57	711208	35.1	933293	12.6	777915	47.7	222085	51429 51454		3 2
58 59	711419 711629	35.1	933217	12.6	778201 778487	47.7	221799 221512	51479		1
60	711629	35.0	933066	12.6	778774	47.7	221226	f 1504		ô
<u> </u>	Cosine.		Sine.		Cotang.	 	Tang.	N. cos.		一
 	- 00440	·		·	59 Degrees.		<u> </u>			

Since D. 10 Cosine D. 10 Tang. D. 10 Cotang. N. sine N. cos.	55	 ?	Lo	g. Sines an	d Tan	gents. (31) Na	tural Sines.	TAB	LE I	L.
0 9.711839 3 5.0 9 939990 12.6 9.778774 779360 47.7 179203 35.0 939990 12.7 779346 47.6 220054 5156486687 88 712469 34.9 939563 12.7 779346 47.6 220054 5156486687 88 712469 34.9 939563 12.7 780764 47.6 220054 5160486667 66 713968 34.9 939563 12.7 780764 47.6 220054 5160486667 66 713968 34.9 939563 12.7 780764 47.6 220054 5160486667 66 713968 34.9 939563 12.7 780764 47.6 220055 5160486667 66 713968 34.9 939563 12.7 780764 47.6 220056 5160486667 66 713968 34.9 939563 12.7 780764 47.6 220056 516048667 66 713976 34.8 932956 12.7 780764 47.6 220056 5170386697 60 713936 34.9 93256 12.7 781604 47.6 220056 5170386697 60 713936 34.9 93256 12.7 781604 47.6 220056 5170386697 60 713936 34.9 93256 12.7 781604 47.5 220056 5170386697 60 713936 34.9 93256 12.7 780761 47.5 220056 5170386697 60 713936 34.7 931996 12.7 780761 47.5 220056 5170386692 51 7280609 51 72	7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine.(N.	CO6.	-1
1 71260 35.0 93990 12.6 779040 47.7 929940 5163985702 55 3712409 34.9 932762 12.7 779932 47.6 920308 5157986672 57 47 13679 34.9 932651 12.7 780203 47.6 929197 5162886642 55 57 713306 34.9 932651 12.7 780203 47.6 929197 5162886642 55 57 713306 34.9 932531 12.7 780203 47.6 929197 5162886642 55 713517 34.8 932353 12.7 780203 47.6 929197 5162886642 55 713517 34.8 932353 12.7 781346 47.6 918940 5170386679 52 713736 34.8 933304 12.7 781346 47.6 918940 5170386679 52 713736 34.8 933304 12.7 781346 47.6 918940 5170386697 52 713736 34.8 933350 12.7 781346 47.6 918940 5170386697 52 713736 34.8 933350 12.7 781346 47.6 918940 5170386697 52 711395 34.8 933204 12.7 782201 47.5 918940 5170386692 5176386692 51 714978 34.7 931981 12.7 782201 47.5 217799 5180386563 48 47.5 47.5 217799 5180386563 48 47.5 47.5 217799 5180386563 48 47.5 47.5 217799 5180386563 48 47.5 47.5 217799 5180386563 48 47.5 217799 5180386563 48 47.5 47.5 217799 5180386563 47.5	-									!	60
2 112499 3-1,9 932838 12.7 779938 47.6 220082 5160486672 57 67 173893 4-9 932665 12.7 789203 47.6 220082 5160486677 66 67 13096 34.9 932665 12.7 780203 47.6 219571 5163386642 55 67 131617 34.9 932635 12.7 780203 47.6 219571 5163386647 56 77 13306 34.9 932635 12.7 780203 47.6 219571 5163386647 56 77 13305 34.8 932351 12.7 780276 47.6 219525 5167886612 53 8 713517 34.9 932451 12.7 781346 47.6 218940 5170386597 52 9 713793 34.8 932350 12.7 781346 47.6 218940 5170386597 52 110 713965 34.8 932304 12.7 781346 47.6 218940 5170386597 52 110 713963 34.8 932304 12.7 781346 47.6 218940 5170386592 51 12.7 127 127 127 127 127 127 127 127 127 12							47.7		51529 85	702	59
31 112409 34.9 932762 12.7 779918 47.6 2919797 56 712689 34.9 932669 12.7 780498 47.6 2919797 5662836642 55 7 713306 34.9 932689 12.7 780498 47.6 2919797 56628386642 55 8 713576 34.8 932890 12.7 781660 47.6 219255 51678386597 52 9 713796 34.8 932390 12.7 781660 47.6 218369 51753385697 52 10 713895 34.8 932304 12.7 781610 47.6 218369 51753385657 60 12 714369 34.7 931961 12.7 782486 47.5 217799 5180386521 47 12 7174661 34.7 931991 12.8 783716 47.5 217214 51754 518386521 50 12 716393 34.6 93167											
5 712899 34.9 93365 12.7 780203 47.6 21957 51663 86632 55 713306 34.9 93363 12.7 780489 47.6 219515 51663 86632 55 8 713517 34.9 93353 12.7 781346 47.6 219525 51678 86612 55 10 713936 34.8 932304 12.7 781346 47.6 218940 51703 86587 52 11 9.714144 34.8 9.83228 12.7 781346 47.6 218940 51703 86587 52 11 9.714143 34.8 9.83228 12.7 781346 47.6 218964 51703 86587 52 11 9.714144 34.8 9.83228 12.7 781346 47.5 218964 51778 86551 49 32 11 9.714563 34.7 933106 12.7 882486 47.5 217519 51803 86584 34 11 9.714563 34.7 931996 12.8 782486 47.5 217519 51803 86584 34 11 9.71589 34.7 931996 12.8 783241 47.5 217519 51803 86584 34 11 9.71589 34.6 931051 12.8 783910 47.5 21651 34 11 9.71589 34.6 93163 12.8 783910 47.5 21651 34 11 9.71589 34.6 93163 12.8 783910 47.4 216090 51952 86464 42 19.71589 34.6 93163 12.8 783910 47.4 216090 51952 86464 42 19.71589 34.5 93163 12.8 783910 47.4 216090 51952 86464 42 19.71589 34.5 931263 12.8 785048 47.4 216521 52002 86416 40 32 716027 34.6 931263 12.8 785048 47.4 216521 52002 86416 40 32 716433 34.5 931263 12.8 785048 47.4 216521 52002 86416 40 32 716433 34.5 931263 12.8 785048 47.4 216521 52002 86416 40 32 717469 34.4 930943 12.9 78668 47.4 214952 52002 86416 40 32 717469 34.4 930948 12.9 78668 47.4 214952 52002 86416 40 32 717469 34.4 930943 12.9 78668 47.4 214952 52002 86416 40 32 717469 34.4 930943 12.9 78668 47.2 211314 52299 585279 31 31 31 31.8 783910 47.3 212681 5220 86504 30 32 717893 34.4 930845 12.9 78686 47.2 211314 52299 585279 31 31 31 31.8 783910 47.3 212681 5220 86504 30 32 717893 34.4 930845 12.9 78686 47.2 211314 52299 585279 31 31 31 31 31 31.8 783910 47.3 212681 5220 86504 30 32 717893 34.4 930845 12.9 78686 47.2 211314 52299 585279 31 31 31 31 31 31 31 31 31 31 31 31 31											
6 713068 34.9 93469 12.7 78076 47.6 21955 1568386697 52 7 71308 34.9 93253 12.7 781660 47.6 218840 5170385697 52 9 713726 34.8 932361 12.7 781661 47.6 218864 5172886692 51 11 9.714144 34.8 9.93236 12.7 781631 47.5 10.218084 5177886561 49 12 714861 34.7 932961 12.7 782901 47.5 10.218084 5177886561 49 13 714561 34.7 93191 12.7 782901 47.5 10.218084 5177886561 49 13 714561 34.7 931921 12.8 783662 47.5 216924 517789 518085853 48 16 715163 34.7 931921 12.8 78366 47.5 216924 5180285650 64 16 715186 34.7 931921 12.8 78366 47.5 216924 5180285650 64 17 71529 34.6 93168 12.8 783861 47.5 216924 519028646 42 18 715602 34.6 93168 12.8 783861 47.5 216924 519028646 42 19 716017 34.6 93164 12.8 783910 47.4 216909 519928646 42 21 9.716224 34.5 931364 12.8 783910 47.4 216909 5199286446 42 21 9.716224 34.5 931361 12.8 783910 47.4 216909 5199286446 42 21 9.716224 34.5 931361 12.8 783910 47.4 216909 5199286446 42 21 9.716224 34.5 931363 12.8 78640 47.4 216909 5199286446 42 21 9.716224 34.5 931365 12.8 78660 47.4 216809 5199286440 33 22 716432 34.5 931365 12.8 78660 47.4 216809 5199286440 33 23 716639 34.5 931365 12.9 78660 47.4 214952 520088640 33 24 716846 34.4 930981 12.9 78660 47.4 214952 520088640 33 25 717053 34.5 931065 12.9 78660 47.3 214400 5612686340 39 27 717466 34.4 930981 12.9 78660 47.3 213400 6512686340 39 28 717673 34.4 930981 12.9 786762 47.3 213248 520088640 33 30 718065 34.3 930668 12.9 786806 47.3 213400 6512686340 39 27 71746 34.4 930981 12.9 786762 47.3 213248 520088640 33 31 9.718295 34.5 930673 12.9 786900 47.2 211146 5222985237 31 31 9.718291 34.3 930668 12.9 786806 47.3 213296 5222988230 32 31 718763 34.3 930668 12.9 786806 47.3 213296 5222988230 32 31 718763 34.3 930668 12.9 78690 47.2 211146 522298823 32 31 718763 34.3 930668 12.9 78690 47.3 213296 5222988230 32 31 718763 34.3 930668 12.9 78690 47.3 213296 5222988230 32 31 718763 34.3 930668 12.9 78690 47.3 213296 5222988230 32 31 718763 34.3 930686 12.9 78690 47.3 213297 5222588239 31 31 9.718291 34.9 92896 13.0 92896 13.0 92896 13.0 92896 13.0 92896 13.			34.9		12.7		47.6				
7 713306 34.9 932457 12.7 781607 47.6 218646 51728 55657 50 713726 34.8 932304 12.7 781631 47.5 218369 51738 55657 50 713726 34.8 932304 12.7 781631 47.5 218369 51738 55657 50 714978 34.7 931998 12.7 782901 47.5 21779 51803 55656 48 714978 34.7 931998 12.8 782971 47.5 216374 51878 55666 46 6716186 34.7 931912 12.8 783061 47.5 216324 51878 51878 55666 46 6716186 34.7 931912 12.8 783910 47.5 216324 51878 5187											
9 713726 34.8 932380 12.7 7813631 47.6 218854 51728 85652 51 19.714144 34.8 932394 12.7 781631 47.5 19.13804 51758 85652 51 19.714963 34.8 932398 12.7 781631 47.5 19.13804 51758 85652 51 19.714963 34.7 931998 12.8 783910 47.5 217299 51803 856536 48 14 714769 34.7 931991 12.8 783964 47.5 217229 51852 85664 46 16 716168 34.7 931991 12.8 783964 47.5 217229 51852 85664 46 17 715394 34.6 931614 12.8 783964 47.5 216659 51902 85466 42 19.716017 34.6 931631 12.8 783910 47.5 216659 51902 85466 42 19.716017 34.6 931631 12.8 784479 47.4 218806 5197785431 45 19.71692 54669 519785431 45 19.71692 54669 51978 5461 43 19.71692 54669 51978 5431 51 12.8 78449 47.4 218806 519778 5431 40 2182 51 19.71623 34.5 931383 12.8 78459 47.4 218806 519778 5431 40 2182 51 19.71623 34.5 931363 12.8 785048 47.4 218806 519778 5431 40 2182 51 19.71623 34.5 931363 12.8 785048 47.4 218806 519778 5431 40 2182 51 19.71623 34.5 931363 12.8 785048 47.4 218806 519778 5431 40 2182 51 19.71623 34.5 931363 12.8 785048 47.4 214668 52002 5266 55401 40 2182 51 19.71623 34.5 93162 12.9 786900 47.3 213234 5210 185355 38 27 717466 34.4 930921 12.9 786900 47.3 213234 5210 185355 38 27 717463 34.4 930921 12.9 786900 47.3 213366 52161 85355 38 27 718497 34.3 930643 12.9 786048 47.3 213366 52161 85355 38 27 718497 34.3 930643 12.9 786048 47.3 213248 5220 185354 32 29 717893 34.4 930921 12.9 786648 47.3 213248 5220 185354 32 39 300678 12.9 786648 47.3 213248 5220 5220 55204 30 32 718497 34.3 930648 12.9 786648 47.3 213248 5220 5220 55204 30 32 718497 34.3 930648 12.9 786648 47.3 213264 5220 5220 55204 30 32 718497 34.3 930648 12.9 786648 47.3 213248 5220 5220 55204 30 32 718497 34.3 930648 12.9 786648 47.3 213248 5220 5220 55204 30 32 718497 34.3 930648 12.9 786648 47.3 213248 5220 5220 55204 30 32 718497 34.3 930648 12.9 786648 47.4 210568 520 5220 5220 5220 520 520 520 520 520					12.7						
9 713728 34.8 932394 12.7 781836 47.5 218368 51738 58657 50 11 9.714144 34.8 9.392394 12.7 7818136 47.5 10.218084 51778 58557 50 11 9.714144 34.8 9.392395 12.7 781916 47.5 217794 51803 585536 48 13 714561 34.7 932975 12.7 782936 47.5 217794 51803 585536 46 15 714978 34.7 932975 12.8 783916 47.5 217229 51852 58566 46 16 716186 34.7 931845 12.8 783916 47.5 217229 51852 58566 46 17 715869 34.6 931691 12.8 783916 47.5 216659 51902 585476 44 18 716802 34.6 931691 12.8 783910 47.4 216000 51957 58541 41 19 718809 34.6 931691 12.8 783910 47.4 216000 51957 58541 41 21 9.716224 34.5 9.391637 12.8 784195 47.4 216000 51957 58541 41 21 9.71624 34.5 9.391831 12.8 784479 47.4 216000 51957 58541 41 21 9.71624 34.5 9.391831 12.8 784479 47.4 216000 51957 58541 41 22 71643 34.5 931162 12.9 785600 47.3 214565 5200285416 13.9 78560 47.3 214565 5200285410 13.9 785600 47.3 214565 5200285410 13.9 785600 47.3 214565 5200285410 13.9 785600 47.3 214565 5200285410 13.9 786616 47.3 214565 5200285410 13.9 786616 47.3 214565 5200285410 13.9 786616 47.3 214565 52002855401 32.9 786616 47.3 214566 52002855401 32.9 786616 47.3 214566 52002855401 32.9 787603 47.3 21256 5350 536 536 536 536 536 536 536 536 536 536											
10									5172885	582	
13					12.7		47.5		51778 85	551	
13 714561 34.7 935075 12.7 789486 47.5 217229 518528656681 47 14 714768 34.7 931998 12.8 783771 47.5 2162929 51852865664 47 16 716186 34.7 931845 12.8 783846 47.5 216944 5187785491 45 18 715602 34.6 931691 12.8 783910 47.4 216909 5195285466 42 20 716017 34.6 931614 12.8 783910 47.4 216909 5195285466 42 21 9.16624 34.6 931637 12.8 784479 47.4 215851 500686401 39 21 9.16632 34.5 931303 12.8 785332 47.3 214568 5206185355 38 24 716636 34.5 931075 12.9 786332 47.3 214395 5206185355 38 25 717653					12.7						
14					12.7						
16	14	714769		931998		782771			51852 85	506	
10 10 10 10 10 10 10 10											
11					12.8						
19					12.8		47.4				
21 27 716462 34.5 9313480 12.8 786048 47.4 114962 52051 563565 38 24 716863 34.5 931392 12.9 786048 47.3 214366 52076 563565 36 52076	20	716017		931537		784479		215521	52002 85	416	40
23					12.8						
24 716846 34.5 931929 12.8 786616 47.3 214884 52101 85355 36 25 717053 34.5 931152 12.9 786900 47.3 214884 52101 85355 36 26 717259 34.4 930981 12.9 786184 47.3 213816 52151 85320 33 28 717673 34.4 930981 12.9 7867684 47.3 213816 52215 85279 31 30 718085 34.3 930683 12.9 787306 47.3 212661 52250 85279 31 31 9.718291 34.3 930611 12.9 787863 47.2 212661 52250 85249 29 34 718903 34.3 930611 12.9 787863 47.2 211154 52294 85234 28 35 719114 34.2 930878 12.9 788763 47.2 211840 5232485234 28 36 7					12.8		47.4				
25 717053 34.5 931152 12.9 785900 47.3 914100 5912685340 35 26 717259 34.4 930968 12.9 786468 47.3 213362 5917585310 33 28 717673 34.4 930921 12.9 786468 47.3 213248 5920085294 32 30 718898 34.3 930643 12.9 7867634 47.3 212964 5922658279 31 31 9.71899 34.3 930661 12.9 7878603 47.2 212397 5227585249 29 33 718703 34.3 930653 12.9 78787603 47.2 211146 5292985234 28 35 719114 34.3 930051 12.9 788736 47.2 211547 5234985203 26 37 719525 34.2 930231 12.9 788736 47.2 211547 5234985203 26 37 719525			34.5		12.8		47.3				
66 717256 34.4 931075 12.9 786184 47.3 213532 521515 [85325] 33 28 717673 34.4 930998 12.9 786762 47.3 213532 52175 [85326] 33 30 718985 34.4 930921 12.9 787036 47.3 213248 52200 [85294] 30 31 9.718291 34.3 9.930681 12.9 7878603 47.2 212681 52250 [85264] 30 32 718497 34.3 9.930681 12.9 7878603 47.2 212114 52250 [85264] 30 34 718909 34.3 930630 12.9 788760 47.2 211145 52324[85214] 28 35 719114 34.2 9308061 12.9 788760 47.2 211647 52349[85203] 26 36 71930 34.2 930067 12.9 788760 47.2 211647 5234985167 32 37<					12.9						
717466 34.4 930921 12.9 786468 47.3 213248 5220856294 32 29 717879 34.4 930921 12.9 787362 47.3 213248 5220856294 32 32 718497 34.3 930688 12.9 787363 47.2 10.212397 52275 56249 29 787836 47.2 10.212397 52275 56249 29 787836 47.2 10.212397 52275 56249 29 787836 47.2 211241 522995523 42 29 788736 47.2 211241 522995523 42 29 788736 47.2 211247 522995523 42 29 788736 47.2 211247 522995523 42 29 788736 47.2 211247 522995523 42 29 788736 47.2 211247 522995523 42 29 788736 47.2 211247 522995523 42 29 788736 47.2 211247 522995523 42 29 788736 47.2 211247 522994 52245 56167 23 42 29 300456 13.0 789586 47.1 21032 52473 56167 23 40 720140 34.1 929869 13.0 789586 47.1 210415 52448 56142 22 39 78943 47.2 210548 52473 56167 23 40 720140 34.1 929869 13.0 789586 47.1 210415 52448 56142 22 40 41 9.72046 34.0 929575 13.0 79056 47.1 209849 52485 5617 21 47.1 209849 52485 5617 21 47.1 209849 52485 5612 20 44 72166 34.0 929575 13.0 79158 47.1 209849 52485 5612 20 44 721676 34.0 929575 13.0 79158 47.1 209849 525478 5606 17 47.71570 34.0 929561 13.0 79158 47.1 209849 525478 5606 17 49.7174 33.9 929561 13.0 79158 47.1 209849 525478 5606 17 49.7174 33.9 929561 13.0 79158 47.1 209849 525478 5606 17 49.7174 33.9 929561 13.0 79158 47.1 209849 525478 5606 17 49.7174 33.9 929561 13.0 79158 47.1 209849 525478 5606 17 49.7174 33.9 929561 13.0 79158 47.1 209679 52572 56066 17 49.7174 33.9 929561 13.0 79158 47.1 209679 52572 56066 17 49.7174 33.9 929561 13.0 79158 47.1 209679 52572 56066 17 49.7174 33.9 929581 13.1 792624 47.0 207626 52748 5609 19 52572 56066 17 49.7174 33.9 929581 13.1 792624 47.0 207626 52748 5606 18 5270 52648 56040 18 5270 52668 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52648 56040 18 52668 52649 52								213816	52151 85	325	34
171879 34.4 930643 12.9 787319 47.3 212964 52226 85274 30 31 9.718291 34.3 9.30766 12.9 787319 47.2 10.212397 52275 85249 29 787886 47.2 212114 52299 85234 28 29 787886 47.2 212114 52299 85234 29 787886 47.2 212114 52299 85234 29 788787 47.2 212114 52299 85234 28 27 719114 34.2 930631 12.9 788736 47.2 211247 52349 85203 26 37 37 71952 34.2 93023 13.0 7898736 47.2 211264 52374 85203 26 37 37 34.2 93023 13.0 789868 47.2 211264 52374 85167 23 38 719730 34.2 93023 13.0 789868 47.1 21088 52423 85167 23 39 34.2 39 30360 13.0 789868 47.1 210415 52448 85142 22 39 34.1 9.92981 13.0 789688 47.1 210132 52473 85167 23 47 200848 47 200848 47 200848 47 200848 47 200848 47 200848 47 200848 47 200848 47 200848 47 200848 47 200848 47 200848 47 200848 47 200849 47		717466		930998		786468					
30							47.3		52200 85	294	
31 9.71829 34.3 9.30688 12.9 787663 47.2 10.212397 562276/85234 28 718473 34.3 930611 12.9 788786 47.2 211144 52299/85234 28 718473 34.3 930456 12.9 788453 47.2 211547 52349/85234 28 719407 34.2 9308078 12.9 788736 47.2 211547 52349/85233 26 719320 34.2 9308078 12.9 7889019 47.2 211086 52374/85188 25 719730 34.2 9308078 12.9 7889019 47.2 211086 52374/85187 24 23 23 23 23 24 24 24			34.4		12.9		47.3				
32					12.9						
33 718703 34.3 930633 12.9 788170 47.2 211830 52324856203 26 34 718903 34.3 930456 12.9 788453 47.2 211247 52324856203 26 36 719320 34.2 930300 13.0 789019 47.2 211047 5237485188 25 37 719525 34.2 930300 13.0 789019 47.2 210981 52399 85173 24 39 719935 34.1 930145 13.0 789868 47.1 210415 52448 85142 22 39 719935 34.1 930067 13.0 789868 47.1 210132 52473 85172 21 41 9.720449 34.1 9299891 13.0 790151 47.1 20032 52473 85112 20 45 721162 34.0 9299677 13.0 791281 47.1 200964 55252 85066 17 46 7									52299 85	234	
34 718909 34.3 930456 12.9 788453 47.2 211547 5234985203 26 36 719320 34.2 930378 12.9 7889019 47.2 211264 5237485183 25 37 719525 34.2 9303023 13.0 789802 47.2 210681 52329816173 24 39 719935 34.1 930467 13.0 789868 47.1 210415 52423 85132 22 40 720140 34.1 9.29981 13.0 789868 47.1 210415 5244885122 22 42 720549 34.1 9.29981 13.0 789868 47.1 210132 52473 85127 21 20 44 720964 34.0 9.29951 13.0 790433 47.1 209849 52498 85112 20 45 72162 34.0 929567 13.0 791281 47.1 209645 52572 85066 17 47 <td< td=""><td>33</td><td>718703</td><td></td><td>930533</td><td></td><td>788170</td><td></td><td>211830</td><td>52324 85</td><td>218</td><td>27</td></td<>	33	718703		930533		788170		211830	52324 85	218	27
36 719320 34.2 930300 12.9 789919 47.2 210981 52339/86173 24 37 719525 34.2 930023 13.0 789902 47.1 210681 52339/86173 24 38 719730 34.2 930067 13.0 789868 47.1 210415 52448/85142 22 39 719935 34.1 929989 13.0 789868 47.1 210132 52473/85127 21 40 720140 34.1 9299891 13.0 790161 47.1 209849 52498/85112 20 42 720549 34.0 929891 13.0 790433 47.1 2099244 5522/85066 19 44 720968 34.0 929975 13.0 791281 47.1 209901 52572/85066 17 47 721360 34.0 9299591 13.0 79184 47.1 208719 5552185056 17 47 721					12.9				52349 85	203	
36 719325 34.2 93023 13.0 789302 47.2 210698 52438 56157 23 38 719730 34.2 930023 13.0 789686 47.1 210438 52473 86147 21 40 720140 34.1 929899 13.0 789686 47.1 210132 52473 86147 21 41 9.720345 34.1 929891 13.0 790433 47.1 209849 52498 86112 20 43 720764 34.0 929875 13.0 790433 47.1 209849 52498 86112 20 44 72068 34.0 929677 13.0 791281 47.1 209849 52498 86112 20 46 72166 34.0 929677 13.0 791281 47.1 208437 52621 85035 15 47 721570 34.0 9299591 13.0 791863 47.0 208437 52621 85035 15 48 721					12.9						
88 719730 34-2 930145 13.0 789585 47-1 210132 52478 8512 92 17 21 17 20140 40 720140 34-1 929989 13.0 789688 47-1 210132 52478 8512 72 17 21 17 20084 41 9.720345 34-1 929833 929879 13.0 790433 47-1 209868 55522 85096 19 42 720549 34-1 929833 929755 13.0 790433 47-1 209284 5252 85096 19 44 720958 34-0 929677 13.0 791281 47-1 208719 52572 85066 19 45 721163 34-0 929699 13.0 791281 47-1 208719 52572 85066 15 46 721366 34-0 929691 13.0 791846 47-0 208437 52621 85035 15 47 721570 34-0 9299364 13.0 792128 47-0 208437 52621 85035 15 49 721978 33-9 929364 13.1 792410 7929692 47-0 207590 52671 85006 13 50 722181 33-9 929207 13.1 793858 47-0 207590 52666 84989 10<			34.2		13.0		47.2				
39					13.0		47.1				
40 720145 34.1 9.29919 13.0 790143 47.1 2092667 5522286096 19 20 41 9.790345 34.1 929831 13.0 790716 47.1 209284 52547 85081 18 43 720764 34.0 929677 13.0 79181 47.1 209001 5252785061 16 45 721162 34.0 929677 13.0 791863 47.1 208167 5552785051 16 47 721573 34.0 929492 13.0 791846 47.0 208154 5562185035 15 46 721774 33.9 929242 13.0 791846 47.0 208154 5566185020 14 49 721978 33.9 9292861 13.1 792410 47.0 207590 5569684889 12 51 9.722385 33.9 9.929129 13.1 793568 47.0 207696 55768688489 12 <	39	719935		930067				210132	52473 85	127	
41 9 720549 34 .1 42 720549 34 .1 43 720754 34 .0 44 720958 34 .0 45 721162 34 .0 45 721162 34 .0 46 721366 34 .0 48 721774 34 .0 929599 13.0 791281 47 .1 208719 52527 85056 17 791281 47 .1 208719 52527 85056 17 791281 33 .9 49 721978 33 .9 49 721978 33 .9 52 722588 33 .1 722588 32 722588 33 .9 52 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 33 .1 722588 32 722588 32 722588 33 .1 722588 322588 32 722588 32 722588 32 722588 32 722588 32 722588 32 722588 32 722588 32 72258			94 1								
12 720764 34.1 929755 13.0 790999 47.1 209010 52572/85066 17 44 720968 34.0 929677 13.0 791281 47.1 208179 52527/85066 16 45 721126 34.0 929699 13.0 791281 34.0 208437 52621/85031 16 46 721366 34.0 929421 13.0 791281 34.0 208164 52646/85020 14 47 721570 34.0 929442 13.0 792128 47.0 207872 52671/85066 13 49 721978 33.9 929364 13.1 792692 47.0 207690 5266/88989 12 50 722181 33.9 929207 13.1 792692 47.0 207690 52761/85066 13 51 722258 33.9 9299129 13.1 792692 47.0 207606 5272084974 11 52 7225											
44 720968 34.0 929677 13.0 791281 47.1 208719 52597/85051 16 45 721163 34.0 929699 13.0 791281 47.0 208437 53621/85035 15 46 721366 34.0 929421 13.0 791286 47.0 207872 52671/85006 13 47 721570 34.0 929442 13.0 792184 47.0 207872 52671/85006 13 49 721978 33.9 9299364 13.1 792410 207650 52696/84989 12 50 722181 33.9 929207 13.1 7929692 47.0 207590 52696/84989 10 51 9.722385 33.9 9299129 13.1 793256 47.0 207690 52745/84959 10 52 722588 33.9 928971 13.1 793558 47.0 206662 52745/84959 10 54 7222994			34.1				47.1				
46 721162 34.0 929599 13.0 791868 47.1 928437 5262185035 15 46 721366 34.0 929521 13.0 791846 47.0 208154 5262185035 15 47 721570 34.0 929421 13.0 792184 47.0 207672 5267185006 13 49 721978 33.9 929286 13.1 792410 47.0 207590 5269684989 12 50 722181 33.9 929297 13.1 792404 47.0 207006 5274864974 11 51 9.722385 33.9 9292050 13.1 793584 47.0 207026 5274864999 10 52 722588 33.9 929050 13.1 793588 46.9 20662 5279484948 8 53 722791 33.8 928893 13.1 794538 46.9 206181 5281984913 7 56 723400							47.1				
46 721366 33.0 dt 929521 13.0 791846 47.0 207872 208164 52646 85020 14 27.0 207872 152646 85020 14 27.0 207872 152646 85020 14 27.0 207872 152671 85006 13 207872 152671 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 15271 85006 12 207872 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		721366	34.0	929521		791846		208154	52646 85	U20	14
12 13 14 15 15 15 15 15 15 15											
50 722181 33.9 929207 13.1 792974 47.0 207026 5274584959 10 51 9.722385 33.9 9.929129 13.1 9.732364 47.0 10.206744 5277084943 9 52 722588 33.9 928972 13.1 793588 47.0 10.206744 5277084943 9 53 722791 33.8 928871 13.1 793819 46.9 206181 5281984913 7 54 722994 33.8 928861 13.1 794864 46.9 205617 5286948489 5 56 723400 33.8 928867 13.1 7949464 46.9 205636 5298384866 4 57 723603 33.7 928578 13.1 7949464 46.9 205605 52918 84866 3 59 724007 33.7 928578 13.1 795789 46.9 204492 52943 84836 2 59 72			33.9		13.1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					13.1		47.0				
52 722588 33.9 929050 13.1 793538 47.0 206462 52794 84928 8 53 722791 33.8 928972 13.1 793519 46.9 206181 52819 784913 7 55 723197 33.8 928893 13.1 794881 46.9 206899 5284484897 6 56 723400 33.8 928736 13.1 794864 46.9 206317 5286984882 5 57 723806 33.7 928678 13.1 794945 46.9 206517 5286984882 5 59 724007 33.7 928499 13.1 795789 46.9 204773 5294848836 1 60 724210 33.7 928499 13.1 795789 46.8 204421 5296784800 0					13.1						
53 722791 33.8 928872 13.1 793819 46.9 206181 52819184913 7 54 722994 33.8 928893 13.1 794101 46.9 205899 5284484897 6 55 723400 33.8 928736 13.1 794864 46.9 2053617 52869184882 5 57 723603 33.7 928657 13.1 794945 46.9 205365 5298384866 4 58 723805 33.7 928578 13.1 794945 46.9 204773 5294384866 2 59 724007 33.7 928490 13.1 795789 46.9 204492 5294384836 2 60 724210 33.7 928420 13.1 795789 46.8 204492 5294384806 0	52	722588						206462	52794 84	928	8
54 7223197 33.8 928815 13.1 794101 46.9 205899 7824184897 6 56 723400 33.8 928736 13.1 794664 46.9 205336 5280384868 4 57 723603 33.7 928657 13.1 794945 46.9 205336 5280384866 4 58 723805 33.7 928678 13.1 795227 46.9 204773 5294384836 2 59 724210 33.7 928420 13.1 795789 46.8 204492 5296784820 1 60 724210 33.7 928420 13.1 795789 46.8 204492 5296784805 0				928972							
56 723400 33.8 928736 13.1 794664 46.9 205336 5287384866 4 57 723603 33.8 9288657 13.1 794664 46.9 205336 5287384866 4 58 723805 33.7 928578 13.1 795227 46.9 204773 529484836 2 59 724910 33.7 928420 13.1 795789 46.8 204492 5296784820 1 60 724210 33.7 928420 13.1 795789 46.8 204211 5299284806 0											
57 723603 33.8 928657 13.1 794945 46.9 205055 52918 84851 3 58 723805 33.7 928578 13.1 795227 46.9 204773 52943 84836 2 59 724007 33.7 928499 13.1 795508 46.8 204492 52967 84820 1 60 724210 33.7 928420 795789 46.8 204211 52992 84806 0			33.8		13.1		46.9				
58 723805 33.7 928578 13.1 795227 46.9 204773 52943 84836 2 59 724007 33.7 928499 13.1 795508 46.9 204492 52967 84820 1 60 724210 33.7 928420 795789 46.8 204211 52992 84806 0											
59 724007 33.7 928499 13.1 795508 46.8 204492 52967 84820 1 1 795789 46.8 204211 52992 84806 0											
00 124210 920420 790769 204211 82992 04806 0	59	724007		928499							1
Cosine. Sine. Cotang. Tang. N. cos. N. sine.	60	724210		928420	13.1		*0.0	204211	52992 84	806	0
		Cosine.		Sine.		Cotang.		Tang.	N. cos. N.	sine.	7
58 Degrees.					. 5	8 Degrees.					-

.

-	TABLE II.	1	Log. Sines	and Ta	ingents. (3	2°) N	atural Sines.	. 5	3
_	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	<u> </u>
0	9.724210	00.5	9.928420		9,795789	10.0	10.204211	52992 84805	60
1	724412	33.7	928342	13.2	796070	46.8	203930	53017 84789	59
2	724614	33.7	928263	13.2	796351	46.8	203649	53041 84774	58
3	724816	33.6	928183	13.2	796632	46.8	203368	53066 84759	57
4	725017	33.6	928104	13.2	796913	46.8	203087	53091 84743	56
5	725219	33.6	928025	13.2	797194	46.8	202806	53115 84728	55
6	725420	33.6 33.5	927946	13.2	797475	46.8	202525	53140 84712	54
7	725322	33.5	927867	13.2 13.2	797755	46.8	202245	53164 84697	53
8	725823	33.5	927787	13.2	798036	46.7	201964	53189 84681	52
9	726024	33.5	927708	13.2	798316	46.7	201684	53214 84666	51
10	726225	33.5	927629	13.2	798596	46.7	201404	53238 84650	50
	9.726426	33.4	9.927549	13.2	9.798877	46.7	10.201123	58263 84635	49
12	726626	33.4	927470	13.3	799157	46.7	200843	53288 84619	48
13	726827	33.4	927390	13.3	799437	46.7	200563	53312 84604	47
14	727027	33.4	927310	13.3	799717	46.7	200283	53337 84588	46
15	727228 727428	33.4	927231	13.3	799997	46.6	200003	53361 84573	45 44
16 17	727628	33.3	927151	13.3	800277	46.6	199723	53386 84557	43
18	727828	33.8	927071 926991	13.3	800557 800836	46.6	199443 199164	53411 84542 53435 84526	42
19	728027	33.3	926911	13.3	801116	46.6	198884	53460 84511	41
20	728227	33.3	926831	13.3	801396	46.6	198604	53484 84495	40
21	9.728427	33.3	9.926751	13.3	9.801675	46.6	10.198325	53509 84480	39
$\tilde{2}\hat{2}$	728626	33.2	926671	13.3	801955	46.6	198045	53534 84464	38
23	728825	33.2	926591	13.3	802284	46.6	197766	53558 84448	37
24	729024	33.2	926511	13.3	802518	46.5	197487	53583 84433	36
25	729223	33.2	926431	13.4	802792	46.5	197208	53607 84417	35
26	729422	33.1	926351	13.4	803072	46.5	196928	53632 84402	34
27	729621	33.1	926270	13.4	803351	46.5	196649	53656 84386	33
28	729820	33.1	926190	13.4	803630	46.5	196370	53681 84370	32
29	780018	33.1 33.0	926110	13.4 13.4	803908	46.5	196092	53705 84355	31
30	730216	33.0	926029	13.4	804187	46.5	195813	53730 84339	30
31	9.730415	33.0	9.925949	13.4	9.804466	46.4	10.195534	53754 84324	29
32	730613	33.0	925868	13.4	804745	46.4	195255	53779 84308	28
33	730811	33.0	925788	13.4	805023	46.4	194977	53804 84292	27
34	731009	32.9	925707	13.4	805302	46.4	194698	53828 84277	26
35	731206	32.9	925626	13.4	805580	46.4	194420	53853 84261	25
36 37	731404 731602	32.9	925545	13.5	805859	46.4	194141	5387784245	24 23
38		32.9	925465	13.5	806137	46.4	193863	53902 84230	22
39	731799 731996	32.9	925384 925303	13.5	806415	46.3	193585 193307	53926 84214	21
39 40	732193	32.8	925303	13.5	806693 806971	46.3	193029	53951 84198 53975 84182	20
41	9.732390	32.8	9.925141	13.5	9.807249	46.3	10.192751	54000 84167	19
42	732587	32.8	925060	13.5	807527	46.3	192473	54024 84151	18
43	732784	32.8	924979	13.5	807805	46.3	192195	54049 84135	17
44	732980	32.8	924897	13.5	808083	46.3	191917	54073 84120	16
45	733177	32.7 32.7	924816	13.5	808361	46.3	191639	54097 84104	15
46	733373		924735	13.5	808638	46.3	191362	54122 84088	14
47	733569	32.7 32.7	924654	13.6	808916	46.2	191084	54146 84072	13
48	733765	32.7	924572	13.6 13.6	809193	46.2 46.2	190807	54171 84057	12
49	733961	32.6	924491	13.6	809471	46.2	190529	54195 84041	11
50	734157	32.6	924409	13.6	809748	46.2	190252	54220 84025	10
51	9.734353	32.6	9.924328	13.6	9.810025	46.2	10.189975	54244 84009	9
52	734549	32,6	924246	13.6	810302	46.2	189698	54269 83994	8
53	734744	32,5	924164	13.6	810580	46.2	189420	54293 83978	3
54	734939	32.5	924083	13.6	810857	46.2	189143	54317 83962	6
55	735135	32.5	924001	13.6	811134	46.1	188866	54342 83946	5
56	735330	32.5	923919	13.6	811410	46.1	188590	54366 83930	4
57	735525	32.5	923837	13.6	811687	46.1	188313	54391 83915	3
58 59	735719	32.4	923755	13.7	811964	46.1	188036	54415 83899	2
60	735914 786109	32.4	923673 923591	13.7	812241 812517	46.1	187759 187483	54440 83883	0
w	1 toning	1 1	820031	ı	012017		101400	54464 83867	1 0

54	54 Log. Sines and Tangents. (88°) Natural Sines. TABLE II.										
	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.			
0	9.736109	32.4	9.923591	13.7	9.812517	46.1	10.187482	54464 83867	60		
1	736303	32.4	923509	13.7	812794	46.1	187206		59		
2	736498	32.4	923427	13.7	813070 813347	46 1	186930 186653	54513 83835 54537 83819	58 57		
8	736692 736886	32.3	923345 923263	13.7	813623	46.0	186377	54561 83804	56		
5	737080	32.3	923181	13.7	813899	46.0	186101	54586 83788	55		
6	737274	32.3 32.3	923098	13.7 13.7	814175	46.0 46.0	185825	54610 83772	54		
7	737467	32.3	923016	13.7	814452	46.0	185548	54635 83756	53		
8	737661	32.2	922933	13.7	814728	46.0	185272	54659 83740 54683 83724	52		
9	737855 738048	32.2	922851 922768	13.7	815004 815279	46.0	184996 184721	54708 83708	51 50		
10 11	9.738241	82.2	9.922686	18.8	9.815555	46.0	10.184445	54732 83692	49		
12	788434	32.2	922603	13.8	815831	45.9 45.9	184169	54756 83676	48		
13	738627	32.2 32.1	922520	13.8 13.8	816107	45.9	183893	54781 83660	47		
14	738820	32.1	922438	13.8	816382	45.9	183618	54805 83645 54829 83629	46 45		
15	739013 739206	32.1	922355 922272	13.8	816658 816933	45.9	183342 183067	54854 83613	44		
16 17	739398	32.1	922189	13.8	817209	45.9	182791	5487883597	43		
18	739590	32.1	922106	13.8	817484	45.9 45.9	182516	54902 83581	42		
19	739783	$32.0 \\ 32.0$	922023	13.8 13.8	817759	45.9	182241	54927 83565	41		
20	739975	20 0	921940	12 2	818035	45.8	181965 10.181 6 90	54951 83549 54975 83533	40 39		
21 22	9.740167 740359	32.0	9.921857 921774	13.9	9.818310 818585	45.8	181415	54999 83517	38		
23	740550	32.0	921691	13.9	818860	45.8	181140	55024 83501	37		
24	740742	31.9	921607	13.9	819135	45.8 45.8	180865	55048 83485	36		
25	740934	$\frac{31.9}{31.9}$	921524	13.9 13.9	819410	45.8	180590	55072 83469	35		
26	741125	31.9	921441	13.9	819684	45.8	180316	55097 83453	34		
27	741316	31.9	921357	13.9	819959 820234	45.8	180041 179766	55121 83437 55145 83421	33 32		
28 29	741508 741699	31.8	921274 921190	13.9	820508	45.8	179492	55169 83405	31		
30	741889	31.8	921107	13.9	820783	45.7	179217	55194 83389	30		
	9.742080	31.8	9.921023	13.9	9.821057	45.7 45.7	10.178943	55218 83373	29		
32	742271	31.8 31.8	920939	13.9 14.0	821332	45.7	178668	55:42 83356	28		
33	742462	31.7	920856	14.0	821606	45.7	178394 178120	55266 83340 55291 83324	27 26		
34 35	742652 742842	31.7	920772 920688	14.0	821880 822154	45.7	177846	55315 83308	25		
36	743033	31.7	920604	14.0	822429	45.7	177571	55339 83292	24		
37	743223	31.7	920520	14.0	822703	45.7 45.7	177297	55363 83276	23		
38	743413	31.7 31.6	920436	14.0 14.0	822977	45.6	177023	55388 83260	22		
39	743602	31.6	920352	14.0	823250	45.6	176750 176476	55412 88244 55436 83228	21 20		
40	743792 9,743982	31.6	920268 9.920184	14.0	823524 9.823798	45.6	10.176202	55460 83212	19		
41 42	744171	31.6	920099	14.0	824072	45.6	175928	55484 83195	18		
43	744361	31.6	920015	14.0	824345	45.6 45.6	175655	55509 83179	17		
44	744550	31.5	919931	14.0 14.1	824619	45.6	175381	55583 83163	16		
45	744739	31.5	919846	14.1	824893	45.6	175107 174834	55557 83147 55581 83131	15 14		
46	744928 745117	31.5	919762 919677	14.1	825166 825439	45.6	174561	55605 83115	13		
48	745117	31.5	919593	14.1	825713	45.5	174287	55630 83098	12		
49	745494	31.4	919508	14.1	825986	45.5 45.5	174014	5565483082	11		
50	745683	31.4 31.4	919424	14.1	826259	45.5	173741	L5678 83066	10		
	9.745871	31.4	9.919339	14.1	9.826532	45.5	10.173468 173195	5570283050 55726830 84	9		
52	746059	31.4	919254	14.1	826805 827078	45.5	172922	55750 88017	7		
53 54	746248 746436	31.3	919169 919085	14.1	827351	45.5	172649	55775 83001	6		
55	746624	31.8	919000	14.1	827624	45.5 45.5	172376	55799 82585	5		
56	746812	31.3 31.3	918915	14.1 14.2	827897	45.4	172103	55823 82969	4		
57	746999	31.3	918830	14.2	828170	45.4	171830	55847 829 5 3 55871 82936	3		
58	747187	31.2	918745	14.2	828442 82871 5	45.4	171558 1,1285	55895 82920	i		
59 60	747374 747562	31.2	918659 918574	14.2	828987	45.4	171013	55919 82904	ô		
-00	Cosine.	 	Sine.		Cotang.	 	Tang.	N. cos. N.sine.	-		
J—	, Cosine.	<u></u>	i pine.	<u> </u>					<u></u>		
1					6 Degrees.						

.

7	'A	BLE II.		og. Sines a			·	stural Sines.		_	5	
_	_	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N sine	N. cos.		
	9	747562	31.2	9.918574	14.2	9.828987	45.4	10.171013	55919	82904	60	
1	ĺ	747749 747936	31.2	918489 918404	14.2	829260 829532	45.4	170740 170468		82887 82871	59 58	
3		748123	31.2	918318	14.2	829805	45.4	170195		82855	57	
4		748310	31.1	918233	14.2 14.2	830077	45.4 45.4	169923	56016	82839	56	
5		748497	31.1	918147	14.2	830349	45.3	169651		82822	55	
6		748683	31.1	918032	14.2	830621	45.3	169379 169107		82806 82790	54 53	
8		748870 749056	31.7	917976 917891	14.3	830893 831165	45.3	168835		82773		
9		749243	31.0	917805	14.3	831437	45.3	168563		82757		
10		749426	31.0 31.0	917719	14.3 14.3	831709	45.3 45.3	168291		82741		
	9.	749615	31.0	9.917684	14.3	9.831981	45.3	10.168019		82724	49 48	
12	ì	749801 749987	31.0	917548 917462	14.3	832253 832525	45.3	167747 167475		82708 82692	47	
13 14		750172	30.9	917376	14.3	832796	45.3	167204		82675	46	
15		750358	30.9 30.9	917290	14.3 14.3	833068	45.3 45.2	166932		82659	45	
16		750543	30.9	917204	14.3	833339	45.2	166661		82643	44 43	
17		750729 750914	30.9	917118 917032	14.4	833611 833882	45.2	166389 166118		82626 82610	42	
18 19		751099	30.8	916946	14.4	834154	45.2	165846		82593	41	
20	i	751284	30.8	916859	14.4	834425	45.2 45.2	165575		82577	40	
	9.	751469	30.8 30.8	9.916773	14.4 14.4	9.834696	45.2	10.165304		82561	39	
22		751654	30.8	916687	14.4	834967	45.2	165033 164762		82544 82528	38 37	
23		751839 752023	30.8	916600 916514	14.4	835238 835509	45.2	164491		82511	36	
25		752208	30.7	916427	14.4	835780	45.2	164220		82495	35	
26		752392	30.7 30.7	916341	14.4 14.4	636051	45.1 45.1	163949		82478	34	
27		752576	30.7	916254	14.4	836322	45.1	163678		82462 82446	33 32	
28 29		752760 752944	30.7	916167 916081	14.5	836593 836864	45.1	163407 163136		82429	31	
30		753128	30.6	915994	14.5	837134	45.1	162866		82413	30	
81	9	753312	30.6	9.915907	14.5 14.5	9.837405	45.1 45.1	10.162595		82396	29	
32		753495	30.6 30.6	915820	14.5	837675	45.1	162325		82380	28	
83	١.	753679	30.6	915733	14.5	837946 838216	45.1	162054 161784	56736	82363	27 26	
34		753862 754046	30.5	915646 915559	14.5	838487	45.1	161513		82330	25	
36		754229	30.5	915472	14.5 14.5	838757	45.0 45.0	161243	56784	82314	24	
37		754412	30.5 30.5	915385	14.5	839027	45.0	160973		82297	23	
88		754595	30.5	915297 915210	14.5	839297 839568	45.0	160703 160432		82281 82264	22 21	
39 44	i	754778 754960	30.4	915123	14.5	839838	45.0	160162		82248	20	
41	9	755143	30.4	9.915035	14.6	9.840108	45.0	10.159892	56904	82231	19	
42		755326	30.4 30.4	914948	14.6 14.6	840378	45.0 45.0	159622		82214	18	
43		755508	30 4	914860	14.6	840647 840917	45.0	159353 159083		82198 82181	17 16	
44 45		755690 755872	30 4	914773 914685	14.6	841187	44.9	158813		82165	15	
46		756054	30 3	914598	14.6	841457	44.9 44.9	158543	57024	82148	14	
47		756236	30.3 30.3	914510	14.6 14.6	841726	44.9	158274		82132	13	
48		756418	30.3	914422	14.6	841996	44.9	158004 157734		82115 82098	12 11	
49 50	l	756600 756782	30.3	914334 914246	14.6	842266 842535	44.9	157465		82082	ió	
	9	756963	30.2	9.914158	14.7	9.842805	44.9	10.157195	57143	82065	9	
52		757144	$30.2 \\ 30.2$	914070	14.7 14.7	843074	44.9 44.9	156926	57167		2	
53		757326	30.2	913982	14.7	843343	44.9	156657 156388	57191 57215		7	
54	1	757507	30.2	913894 913806	14.7	843612 843882	44.9	156118	57238		5	
55 56		757688 757869	30.1	913718	14.7	844151	44.8	155849	57262		4	
57	١	758050	80.1	913630	14.7	844420	44.8 44.8	155580	57286	81965	8	
58		758230	30.1 30.1	913541	14.7 14.7	844689	44.8	155311		81949	2	
59	١	758411	30.1	913453	14.7	844958	44.8	155042 154773		81932 81915	1 0	
60	۱-	758591	1	913365		845227	 	li		N sine.	,	
- <u>-</u> -	_	Cosine.		Sine.	ــــــــــــــــــــــــــــــــــــــ	Cotang.	<u></u>	Tang.	14. 008.	to Bine.	<u> </u>	
1					5	5 Degrees.						

	6	L	og. Sines ar	ed Tar	igents. (35	°) Na	tural Sines.	TABLE I	ſ.	
~	Sine.	D. 10'	Cosme.	D. 10	Tang.	D. 10"	Cotang.	N. sine. N. cos.		
0	9.75S591	30.1	9.913365	14.7	9.845227	44.8	10.154773	57358 81915	60	
1	758772	30.0	913276	14.7	845493	44.8	154504	57381 81899	59	
2	758952	30.0	913187	14.8	845764	44.8	154236	57405 81882	58	
3	759132 759312	30 0	913099 913010	14.8	846033 846302	44.8		57429 81865 57453 81848	57 56	
5	759492	30.v	912922	14.8	846570	44.8		57477 81832	55	
6	759672	30.0	912833	14.8	846839	44.7		5750181815	54	
7	759852	29.9 29.9	912744	14.8 14.8	847107	44.7 44.7	15289	57524 81798	53	
8	760031	29.9	912655	14.8	847376	44.7	152624	57548 81782	52	
9	760211	29.9	912566	14.8	847644	144.7	152356	5757281765	51	
10 11	760390 9.760569	29.9	912477 9.912388	14.8	847913 9.848181	44.7	152087 10.151819	5759681748 5761981731	50 49	
12	760743	29.8	912299	14.8	848449	44.7	151551	57643 81714	48	
13	760927	29.8	912210	14.9	848717	44.7	151283	57667 81698	47	
14	761106	29.8 29.8	912121	14.9	848986	44.7	151014	57691 81681	46	
15	761285	29.8	912031	14.9 14.9	849254	44.7 44.7	150746	57715 81664	45	
16	761464	29.8	911942	14.9	849522	44.7	150478	57738 81647	44	
17	761642	29.7	911853	14.9	849790	44.6	150210	57762 81631	43	
18	761821	29.7	911763 911674	14.9	850058 850325	44.6	149942	57786 81614	42	
19 20	761999 762177	29.7	911584	14.9	850593	44.6	149675	5781081597 5783381580	41 40	
	9.762356	29.7	9.911495	14.9	9.850861	44.6	10.149139	57857 81563	39	
22	762534	29.7	911405	14.9	851129	44.6	148871	57881 81546	38	
23	762712	29.6 29.6	911315	14.9	851396	44.6		5790481530	37	
24	762889	29.6	911226	15.0 15.0	851664	44.6 44.6	148336	57928 81513	36	
25	763067	29.6	911136	15.0	851931	44.6	148069		35	
26	763245	29.6	911046 910956	15.0	852199	44.6	147801	5797681479	34	
27 28	76 3 422 763600	29.6	910566	15.0	852466 852733	44.6	147534 147267	57999,81462 58023,81445	33 32	
2 9	763777	29.5	910776	15.0	853001	44.5	146999	58047 81428	31	
3 0	763954	29.5	910686	15.0	853268	44.5	146732	58070,81412	30	
	9.764131	29.5	9.910596	15.0	9.853535	44.5	10 - 146465	58094 81395	29	
32	764308	29.5 29.5	910506	15.0 15.0	853802	44.5 44.5	146198	58118 81378	28	
33	764485	29.4	910415	15.0	854069	44.5	145931	58141 81361	27	
34	764662	29.4	910325	15.1	854336	44.5	145664	58165 81344		
35 36	764838	29.4	910235 910144	15.1	854603 854870	44.5	145397	58189 81327	25	
30 37	765015 765191	29.4	910054	15.1	855137	44.5	145130 144863	58212 81310 58236 81293	24 23	
3 8	765367	29.4	909963	15.1	855404	44.5	144596	58260 81276	22	
39	765544	29.4	909873	15.1	855671	44.5	144329	58283 81259	21	
40	765720	29.3 29.3	909782	15.1	855938	44.4	144062	58307 81242	20	
41	9.765896	29.3	9.909691	15.1 15.1	9.856204	44.4	10 143796	58330 81225	19	
42	766072	29.3	909601	15.1	856471	44.4	143529	58354 81208	18	
43 44	766247	29.3	909510	15.1	856737	44.4	143263	58378 81191	17	
44 45	766423 766598	29.3	909419	15.1	857004 857270	44.4	142996 142730	58401 81174 58425 81157	16 15	
46	766774	29.2	909237	15.2	857537	44.4	142463	58449 81140	14	
47	766949	29.2	909146	15.2	857803	44.4	142197	58472 81123	13	
48	767124	29.2 29.2	909055	$15.2 \\ 15.2$	858069	44.4 44.4	141931	58496 81106	12	
49	767300	29.2	908964	$15.2 \\ 15.2$	858336	44.4	141664	5851981089	11	
50	767475	29.1	908873	15.2	858602	44.3	141398	58543 81072	10	
51 52	9.767649	29.1	9.908781	15.2	9.858868	44.3	10.141132	58567 81055	9	
53	767824 767999	29.1	908539	15.2	859134 859400	44.3	140866 140600	58590 81038 58614 81021	8	
54	768173	29.1	908507	15.2	859666	44.3	140334	58637 81004	6	
55	768348	29.1	908416	15.2	859932	44.3	140068	58661 80987	5	
56	768522	29.0	908324	15.3	860198	44.3	139802	58684 80970	4	
57	768697	29.0 $ 29.0 $	908233	15.3	860464	44.3 44.3	139536	58708 80953	3	
5 8	768871	29.0	908141	15.3 15.3	860730	44.3	139270	58731 80∋36	2	
59	769045	29.0	908049	15.3	860995	44.3	139005	58755 80919	1	
6 0	769219		907958		861261		138739	58779 80902	0	
	Cosine.	<u> </u>	Sine.	<u> </u>	Cotang.	<u> </u>	Tang.	N. cos. N.sine.	1	
				5	4 Degrees.					

!	PABLE II.	1	og. Sines	and Ta	ngents. (3	6°) N	atural Sines.	, 5	7		
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cus.			
0	9.769219	29.0	9.907958	15.3	9.861261	44.3	10.138739	58779 80902	60		
1	769393	28.9	907866	15.3	861527	44.3	138473	58802 80885	59		
3	769566 769740	28.9	907774 907682	15.3	861792 862058	44 2	138208 137942	58826 80867 58849 80850	58 57		
4	769913	28.9	907590	15.3	862323	44.2	137677	58873 80833	56		
5	770087	28.9 28.9	907498	15.3	862589	44.2 44.2	137411	58896 80816	55		
6	770260	28.8	907406	15.3 15.3	862854	44.2	137146	58920 80799	54		
8	770433 770606	28.8	907314	15.4	863119 863385	44.2	136881	58943 80782 58967 80765	53 52		
9	770779	28.8	907129	15.4	863650	44.2	136615 136350	58990 80748	51		
10	770952	28.8 28.8	907037	15.4 15.4	863915	44.2 44.2	136085	59014 80730	50		
11	9.771125	28.8	9.906945	15.4	9.864180	44.2	10.135820	59037 80718	49		
12 13	771298 771470	28.7	906852 906760	15.4	864445 864710	44.2	185555 135290	59061 80696 59084 80679	48 47		
14	771643	28.7	906667	15.4	864975	44.2	135025	59108 80662	46		
15	771815	28.7 28.7	906575	15.4 15.4	865240	44.1	134760	59131 80644	45		
16	771987	28.7	906482	15.4	865505	44.1 44.1	184495	59154 80627	44		
17 18	772159 772331	28.7	906389	15.5	865770	44.1	184230	59178 80610 59201 80593	43 42		
19	772503	28.6	906296 906204	15.5	866035 866300	44.1	133965 133700	59225 80576	41		
20	772675	28.6 28.6	906111	15.5	866564	44.1	133436	59248 80558	40		
	9.772847	28.6	9.906018	15.5 15.5	9.866329	44.1 44.1	10.133171	59272 80541	39		
22	773018	28.6	905925	15.5	867094	44.1	182906	59295 80524	38 37		
23 24	773190 773361	28.6	905832 905739	15.5	867358 867623	44.1	132642 132377	59318 80507 59342 80489	36		
25	773533	28.5	905645	15.5	867887	44.1	132113	59365 80472	35		
26	773704	28.5 28.5	905552	15.5 15.5	868152	44.1 44.0	131848	59389 80455	34		
27	773875	28.5	905459	15.5	868416	44.0	131584	59412 80438	33		
28 29	774046 774217	28.5	905366 905272	15.6	868680 868945	44.0	131320 131055	59436 80422 59459 80403	32 31		
30	774388	28.5	905179	15.6	869209	44.0	. 130791	59482 80886	30		
31	9.774558	28.4 28.4	9.905085	15.6 15.6	9.869473	44.0 44.0	10.130527	59506 80368	29		
32	774729	28.4	904992	15.6	869737	44.0	130263	59529 80351	28		
33 34	774899 775070	28.4	904898 904804	15.6	870001 870265	44.0	129999 129735	59552 8 08 34 59576 8 0 316	27 26		
35	775240	28.4	904711	15.6	870529	44.0	129471	59599 80299	25		
36	775410	28.4 28.3	904617	15.6 15.6	870793	44.0 44.0	129207	59622 80282	24		
37	775580	28.3	904523	15.6	871057	44.0	128943	59646 80264	23		
38 39	775750 775920	28.3	904429 904335	15.7	871321 871585	44.0	128679 128415	59669 80247 59693 80230	22 21		
40	776090	28.3	904241	15.7	871849	44.0	128151	59716 80212	20		
41	9.776259	28.3 28.3	9.904147	15.7 15.7	9.872112	43.9 43.9	10.127888	59739 80195	19		
42	776429	28.2	904053	15.7	872376	43.9	127624	59763 80178	18		
43 44	776598 776768	28.2	903959 903864	15.7	872640 872903	43.9	127360 127097	59786 80160 59809 80143	17 16		
45	776937	28.2	903770	15.7	873167	43.9	126833	59832 80125	15		
46	777106	28.2 28.2	903676	15.7 15.7	873430	43.9 43.9	126570	59856 80108	14		
47	777275	28.1	903581	15.7	873694	43.9	126306	59879 80091	18		
48 49	777444	28,1	903487 903392	15.7	873957 874220	43.9	126043 125780	59902 80073 59926 80056	12 11		
49 50	777781	28.1	903392	15 8		43.9	125780	59949 80038	10		
51	9.777950	28.1 28.1	9.903202	15.8	874484 9.874747	43.9	10.125253	59972 80021	9		
52	778119	28.1	903108	15.8 15.8	010010	43.9 43.9	124990	59995 800^3	8		
53	778287	28.0	903014	15.8	875273	43.8	124727	60019 79986	7 6		
54 55	778455 778624	28.0	902919 902824	15.8	875536 875800	43.8	124464 124200	60042 79968 60065 79951	5		
56	778792	28.0	902729	15.8	876063	43.8	123937	60089 79934	4		
57	778960	28.0 28.0	902634	15.8 15.8	876326	43.8 43.8	123674	60112 79916	3		
58	779128	28 0	902539	15.9	876589	43.8	123411	60135 79899	2		
59 60	779295 779463	27 9	902444 902349	15.9	876851 877114	43.8	123149 122886	60158 79881 60182 79864	1 0		
	Cosine.		Sine.		Cotang.	 -	Tang.	N. cos. N.sine.			
_	Ooning.	'	Dine.	<u>' </u>		<u>'-</u>	1 vong.	; 11. COOGLITABLE.	'		
ــــــا					3 Degrees.						

,									-
50	8	Lo	g. Sines an	d Tan	gents. (37°) Nat	tural Sines.	TABLE I	ī.
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	ī
0	9.779 7 63	27.9	9.902349	15.9	9.877114	43.8	10.122886	60182 79864	60
1 2	779631 779798	27.9	902253 902158	15.9	877377 877640	43.8	122623 122360	60205 79846 60228 79829	58
3	779966	27.9 27.9	902053	15.9 15.9	877903	43.8 43.8	122097	60251 79811	57
4 5	780133 780300	27.9	901967 901872	15.9	878165 878428	43.8	121835 121572	60274 79793 60298 79776	56 55
6	780467	27.8	901776	15.9	878691	43.8 43.9	121309	60321 79758	54
. 7	780634	27.8 27.8	901681	15.9 15.9	878953	43.7	121047	60344 79741 60367 79723	53 52
8	780801 780968	27.8	901585 901490	15.9	879216 879478	43.7	120784 120522	60390 79706	51
10	781134	27.8 27.8	901394	15.9 16.0	879741	43.7 43.7	120259	60414 79688	50
11 12	9.781301 781468	27.7	9.901298 901202	16.0	9.880093 880265	43.7	10.119997 119735	60437 79671 60460 79658	49 48
13	781634	27.7 27.7	901106	16.0	880528	43.7	119472	60483 79635	47
14	781800	27.7 27.7	901010	16.0 16.0	880790	43.7 43.7	119210	C0506 79618	46
15 16	781966 782132	27,7	900914 900818	16.0	881052 881314	43.7	118948 118686	60529 79600 60553 79583	45
17	782298	27.7	900722	16.0	881576	43.7 43.7	118424	60576 79565	43
18	782464	27.6 27.6	900626	16 0 16 0	881839	43-7	118161	60599 79547 60622 79530	42 41
19 20	782530 782795	27,6	900529 900433	16.0	882101 882363	43.7	117899 117637	60645 79512	40
21	9,782961	27.6	9.900337	16.1 16.1	9.882625	43.6 43.6	10.117375	60668 79494	39
22 23	783127	27.6 27.6	900242	16.1	882887 883148	43.6	117113 116852	60691 79477 60714 79459	28 37
24	783292 783458	27.5	900144 900047	16.1	883410	43.6	116590	60738 79441	36
25	783623	27.5 27.5	899951	16.1 16.1	883672	43.6 43.6	116328	60761 79424	35
26 27	783788 783958	27.5	899854 899757	16,1	883934 884196	43.6	116036 115804	60784 79406 60807 79388	34 32
28	784118	27.5	899660	16.1	884457	43.6 43.6	115543	60830 79371	32
29	784282	27.5 27.4	899564	16.1 16.1	884719	43.6	115281	60853 79353	31 30
80 31	784447 9.784612	07 4	899467 9.899370	16.2	884980 9.885242	43.6	115020 10.114758	60876 79835 60899 79318	29
32	784776	27.4	899273	16.2	885503	43.6 43.6	114497	60922 79300	28
33	784941	27.4 27.4	899176	16.2 16.2	885765 886026	43.6	114235 113974	60945 79282 60968 79264	27 26
34 35	785105 785269	27.4	899078 898981	16.2	886288	43.6	113/12		25
36	785433	27.3 27.3	898884	16.2 16.2	886549	43.6 43.5	113451	61015 79229	24
37 38	785597 785761	27.3	898787 898689	16.2	886810 887072	43.5	118190 112928	61038 79211 61061 7 9193	23 22
39	785925	27.3	898592	16.2	887333	43.5 43.5	112667	61084 79176	21
40	786089	27.3 27.3	898494	16.2 16.3	887594	43.5	112406	61107 79158	20 19
41 42	9.786252 786416	27.2	9.898397 898299	16.3	9.88785 888116	43.5	10.112145 111884	6113 0 791 40 61153 791 2 2	18
43	786579	27.2	898202	16.3	888377	43.5 43.5	111623	61176 79105	17
44	786742	27.2 27.2	898104	16.3 16.3	888639	43.5	111361 111100	61199 79087 61222 79069	16 15
45 46	786906 787059	27.2	898006 897908	16.3	888900 889160	43.5	110840	61245 79051	14
47	787232	$\frac{27.2}{27.1}$	897810	16.3 16.3	889421	43.5 43.5	110579	61268 79033	13
48	787395 787557	27.1	897712 897614	16.3	889682 889943	43.5	110318 110057	61291 79016 61314 78998	11
50	787720	27.1	897516	16.3	890204	43.5 43.4	109796	61337 78980	10
	9.787883	27.1 27.1	9.897418	16.3 16.4	9.890465	43.4	10.109535 109275	61360 7 8962 61383 78944	9 8
52 53	788045 788208	27.1	897320 897222	16.4	890725 890986	43.4	109215	61406 78926	7
54	788370	27.1 27.0	897123	16.4 16.4	891247	43.4 43.4	108753	61429 78908	6
55	788532	27.0	897025	16.4	891507 891768	43.4	108232	61451 78891 61474 78873	5
56 57	788694 788856	27.0	896926 896828	16.4	892028	43.4	107972	61497 78855	3
58	789018	27.0 27.0	896729	16.4 16.4	892289	43.4 43.4	107711	61590 78837 61543 78819	2
60	789180 789342	27.0	896631 896532	16.4	892549 892810	43.4	107 451 107190		0
-	Cosine.		8ine.		Cotang.			N cos. N. sine.	7
					2 Degrees.				

fi						****				
	7	Sine.	D. 10"	og. Sines s	nd Ta	-	8°) N D. 10″	atural Sines.	N. sine. N. cos	59
H	_				D. 10		D. 10	₁		-
H	0	9.789342 789504	26.9	9.896532 896433	16.4	9.892810 893070	43.4	10.107190 106930	61566 78801 61589 78783	60 59
ı	2	789665	26.9	896335	16.5	893331	43.4	106669	61612 78765	
H	3	789827	26.9	896236	16.5	893591	43.4	106409	61635 78747	57
H	4	789988	26.9 26.9	896137	16.5 16.5	893851	43.4 43.4	106149	61658 78729	56
H	Б	790149	26.9	896038	16.5	894111	43.4	105889	61681 78711	55
II	6 7	790510 790471	26.8	895939	16.5	894371 894632	43.4	105629	61704 78694	
I	8	790632	26.8	895840 895741	16.5	894892	43.3	105368 105108	61726 78676 61749 78658	
I	9	790793	26.8	895641	16.5	895152	43.3	104848	61772 78640	
I	10	790954	26.8 26.8	895542	16.5 16.5	895412	43.3 43.3	104588	61795 78622	50
l		9.791115	26.8	9.895443	16,6	9.895672	43.3	10.104328	61818 78604	
I	12 13	791275 791436	26.7	895343 895244	16,6	895932 896192	43.3	104068 103808	61841 78586 61864 78568	48 47
I	14	791596	26.7	895145	16.6	896452	43.3	103548	61887 78550	46
I	15	791757	26.7 26.7	895045	16.6	896712	43.3	103288	61909 78532	
l	16	791917	26.7	894945	16.6 16.6	896971	43.3 43.3	103029	61932 78514	
I	17	792077	26.7	894846	16.6	897231	43.3	102769	61955 78496	
H	18 19	792237 792397	26.6	894746 894646	16.6	897491 897751	43.3	102509	61978 78478	
I	20	792557	26.6	894546	16,6	898010	43.3	102249 101990	62001 78460 62024 78442	41
I		9.792716	26.6	9.894446	16.6	9.898270	43.3	10.101730	62046 78424	39
li	22	792876	26.6 26.6	894346	16.7 16.7 16.7 16.7	898530	43.3 43.3	101470	62069 78405	88
H	23	793035	26.6	894246	16.7	898789	43.3	101211	62092 78887	87
H	24 25	793195 793354	26.5	894146	16.7	899049	43.2	100951	62115 78369	86
I	26	793514	26.5	894046 893946	10.7	899308 899568	43.2	100692 100432	62138 78351 62160 78333	35 34
I	27	793673	26.5	893846	16.7	899827	43.2	100173	62183 78315	33
H	28	793832	26.5 26.5	893745	16.7 16.7	900086	43.2 43.2	099914	62206 78297	32
li	29	793991	26.5	893645	16.7	900346	43.2	099654	62229 78279	31
I	30	794150 9.794308	96 4	893544	16.7	900605	43.2	099395	62251 78261	30
I	31 32	794467	20.4	9.893444 893343	16.8	9.900864 901124	43.2	10.099136 098876	62274 78243 62297 78225	29 28
I	33	794626	26.4	893243	16.8	901383	43.2	098617	62320 78206	27
i	34	794784	26.4 26.4	893142	16.8 16.8	901642	43.2 43.2	098358	62342 78188	26
H	35	794942	26.4	893041	16.8	901901	43.2	098099	62365 78170	25
I	36 37	795101 • 795259	26.4	892940 892839	16.8	902160 902419	43.2	097840	62388 78152	24
H	38	795417	26.3	892739	16.8	902419	43.2	097581 097321	62411 78134 62433 78116	23 22
I	39	795575	26.8	892638	16.8	902938	43.2		62456 78098	21
H	40	795733	26 · 3	892536	16.8 16.8	903197	43.2 43.1	096803	62479 78079	20
H	41	9.795891	26.3	9.892435	16.9	9,903455	43.1	10.096545	62502 78061	19
ĺ	42 43	796049 796206	26.3	892334 892233	16.9	903714	43.1 43.1	096286	62524 78043	18
	44	796364	26.8	892132	16.9	903973 904232	43.1	096027 095768	62547 78025 62570 78007	17 16
Į!	45	796521	26.2	892030	16.9	904491	43.1		62592 77988	15
	46	796679	26.2 26.2	891929	16.9 16.9	904750	43.1 43.1	095250	62615 77970	14
	47	796836	26.2	891827	16.9	905008	43.1	094992	62638 77952	13
H	48 49	796993 797150	26.2	891726	16.9	905267	43.1	094733 !	62660 77934	12
	20	797307	26.1	891624 891523	16.9	905526 905784	43.1	094474 094216	62683 77916 62706 77897	11
ı	ŏĭ	9.797464	26.1	9.891421	17.0	9.906043	43.I	10.093957	62728 77879	9
۱	52	797621	26·1 26·1	891319	17.0 17.0	906302	43.1 43.1	093698	62751 77861	
I	53	797777	26.1	891217	17.0	906560	43.1	093440	62774 77843	8 7
ı	54 55	797934	26 - 1	891115	17.0	906819	43.1	093181	62796 77824	6
I	56	798091 798247	26.1	891013 890911	17.0	90707 7 907336	43.1	092923 092664	62819 77806	5
I	57	798403	26.1	890809	17.0	907594	43.1	092406	62842 77788 62864 77769	3
1	5 8	796560	26.0 26.0	890707	17.0	907852	43.1	092148	62887 77751	10
I	59	798716	26.0	890605	17.0 17.0	908111	43.1 43.0	091889	62909 77733	1
ı	60	798872		890503		908369	20.0	091631	62932 77715	0
۱		Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine	厂
H						1 Degrees.				

,	_					<u> </u>				
6	0		Lo	g. Sines an	d Tan	gents. (39°) Nat	ural Sines.	TABLE I	r.
7	1	Sine.	D. 10 '	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
0	9	.798772	26.0	9.890503	17.0	9.903369	43.0	10.091631	62932 77715	60
1	1	799028	26.0	890400	17.1	908628	43.0	091372	62955 77696	59 58
2	1	799184	26.0	890298 890195	17.1	903886 903144	43.0	091114 090856	63000 77660	57
3 4	ı	799339 799495	25.9	893033	17.1	909402	43.0	090598	63022 77641	56
5	ı	799651	25.9	889990	17.1	909660	43.0	090340	63045 77623	55
6		799806	25.9 25.9	889888	17.1 17.1	909918	43.0 43.0	090082	63068 77605	54
7		799962	25.9	889785	17.1	910177	43.0	089823	63090 77586	53
8	١	800117	25.9	889632	17.1	910435	43.0	089565	63113 77568 63135 77550	52 51
9	1	800272 800427	25.8	889579 889477	17.1	910593 910951	43.0	089307 089049	63158 77531	50
10 11	۵	.800582	25.8	9.889374	17.1	9.911209	43.0	10.088791	93180 77513	49
12	ľ	800737	25.8	889271	17.2	911467	43.0	088533	63203 77494	48
13		800892	25.8	889168	17.2 17.2	911724	43.0 43.0	088276	63225 77476	47
14	l	801047	25.8 25.8	899054	17.2	911982	43.0	088018	63248 77458	46
15	l	801201	25.8	889961	17.2	912240	43.0	037760	63271 77439	45
16		801356	25.7	888858	17.2	912498	43.0	087502	63293 77421 63316 77402	44 43
17	1	801511	25.7	888755 888651	17.2	912756 913 0 14	43.0	087244 086986	63338 77884	42
18 19	1	801665 801819	25.7	888548	17.2	913271	42.9	036729	63361 77366	41
20	1	801973	25.7	988444	17.2	913529	42.9	086471	63383 77347	40
21	9	802128	25.7	9.888341	17.3	9.913787	42.9 42.9	10.086213	63406 77329	39
22	1	802282	25.7 25.6	888237	17.3 17.3	914044	42.9	085956	63428 77310	38
23		802436	25.6	888134	17.3	914302	42.9	085698	63451 77292	37
24		802589	25.6	888030	17.3	914560	42.9	085440	63473 77273	36 35
25		802743	25.6	887926	17,3	914817	42.9	085183 084925	63496 77255 63518 77236	34
26 27	ĺ	802897 803050	25.6	887822 887718	17.3	915075 915332	42.9	084668	63540 77218	33
28		803204	25.6	887614	17.3	915590	42.9	084410	63563 77199	32
29		803357	25.6	887510	17.3	915847	42.9	084153	63585 77181	31
30		803511	25.5	887406	17.3	916104	42.9 42.9	0 8 38 96	63608 77162	30
31	9.	803664	$25.5 \\ 25.5$	9.887303	17.4	9.916362	42.9	10.083638	63630 77144	29
32		803817	25.5	887198	17.4	916619	42.9	083381	63653 77125	28 27
33		803970	25.5	887093	17.4	916877	42.9	083123	63675 77107	26
34		804123	25.5	886989	17.4	917134 917391	42.9	082866 082609	63698 77088 63720 77070	25
35 36		804276 804428	25.4	885885 886780	17.4	917648	42.9	082352	63742 77051	24
37		804581	25.4	886676	17.4	917905	42.9	082095	63765 77033	23
38	l	804734	25.4	886571	17.4	918163	42.9	081837	63787 77014	22
39		804886	25.4 25.4	886466	17.4 17.4	918420	42.8 42.8	081580	63810 76996	21
40	L	805039	0- 4	886362		918677	42.8	081323	63832 76977	20
41	9.	805191	25.4	9.886257	17.5	9.918934	42.8	10.081066	63854 76959	19
42	ì	805343	25.3	886152	17.5	919191 919448	42.8	080809 080552	63877 76940 63899 76921	18 17
43 44		805495 805647	25.3	886047 885942	17.5	919705	42.8	080295	63922 76903	16
45		805799	25.3	885837	17.5	919962	42.8	080038	63944 76884	15
46		805951	25.3	885732	17.5	920219	42.8	079781	63966 768 6 6	14
47	l	806103	25.3	885627	17.5 17.5	920476	42.8 42.8	079524	63989 76847	13
48	ŀ	806254	25.3 25.3	885522	17.5	920733	42.8	079267	64011 76828	12
49		806406	25.2	885416	17.5	920990	42.8	079010	64033 76810	11
50	٦	806557	05 0	885311	10 0	921247 9.921503	42.8	078 7 53 10.078 4 97	64056 76791 64078 76772	10 9
51 52	υ.	806709	25.2	9.855205	17.6	921760	42.8	078240	64100 76754	8
53	1	806860 807011	25.2	885100 884994	17.6	922017	42.8	077983	64123 76735	7
54		807163	25.2	884889	17.6	922274	42.8	077726	64145 76717	6
55	ŀ	807314	25.2	884783	17.6	922530	42.8	077470	64167 76698	5
56	l	807465	25.2	884677	17.6 17.6	922787	$\frac{42.8}{42.8}$	077213	64190 76679	4
57		807615	$25.1 \\ 25.1$	884572	17.6	923044	42.8	076956	64212 76661	3
58	1	807766	25.1	884466	17.6	923300	42.8	076700	64234 76642	2
59		807917	25.1	884360	17.6	923557	42.7	076443 076187	64256 76623 64279 76604	0
60	_	808067		884254		923813				<u> </u>
		Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	
					5	0 Degrees.				!

,	TABLE II. Log. Sines and Tangents. (40°) Natural Sines. 61										
	Sine.	D. 10"	Cosine.	D . 10"	Tang.	D. 10"	Cotang.	N.sine.	V. cos.		
0	9.809037	07.1	9.884254		9.923813	40.5	10.076187	64279 7		60	
1	808218	25.1 25.1	884148	17.7 17.7	924070	42.7 42.7	075930	64301 7		59	
2	803368	25.1	884042	17.7	924327	42.7	075673	64328 7		58	
3	808519 808669	25.0	883936 883829	17.7	924583 924840	42.7	075417 075160	64346 7 64368 7		57 56	
5	808819	25.0	883723	17,7	925096	42.7	074904	643907		55	
6	808969	25.0 25.0	883617	17.7	925352	42.7 42.7	074648	64412 7	6492	54	
7	809119	25.0	883510	17.7 17.7	925609	42.7	074391	64435 7		53	
8	809269 809419	25.0	883404 883297	17.7	925865	42.7	074135	64457 7		52 51	
10	S09569	24.9	883191	17,8	926122 926378	42.7	073878 073622	64479 7 64501 7		50	
	9.809718	24.9	9.883084	17.8	9.926634	42.7	10.073366	64524 7		49	
12	809868	24.9 24.9	882977	17.8 17.8	926890	42.7 42.7	073110	64546 7	6380	48	
13	810017	24.9	882871	17.8	927147	42.7	072853	645687	6361	47 46	
14 15	810167 810316	24.9	882764 882657	17.8 17.8	927403 927659	42.7	072597 072341	64590 7 64612 7		45	
16	810465	24.8	882550	17.8	927915	42.7	072085	64635 7	6304	44	
17	810614	24.8 24.8	882443	17.8	928171	42.7 42.7	071829	64657 7	6286	43	
18	810763	24.8	882336	17.8 17.9	928427	42.7	071578	64679 7		42	
19 20	810912 811061	24.8	882229 882121	17.9	928683	42.7	071317	64701 7 64723 7	6248	41 40	
	9.811210	24.8	9.882014	17.9	928940 9.929196	42.7	071060 10.070804		6210	89	
22	811358	27.0	881907	17.9	929452	42.7	070548	64768 7		38	
23	811507	24.7 24.7	881799	17.9 17.9	929708	42.7 42.7	070292	647907	6173	37	
24	811655	24.7	881692	17.9	929964	42.6	070036	64812 7		36	
25 26	811804 811952	24.7	881584 881477	17.9	930220 930475	42,6	069780 069525	64834 7 64856 7		35 34	
27	812100	24.7 24.7 24.7	881369	17.9	980781	42.6	069269	64878 7		33	
28	812248	24.7	881261	17.9	930987	42.6	069013	64901 7		32	
29	812396	24.6	881153	18.0 18.0	931243	42.6 42.6	068757	64923 7		31	
30	812544 9.812692	24.6	881046	18.0	931499	42.6	068501	64945 7		30 29	
31 32	812840	24.6	9.880938 880830	18.0	9.931755 932010	42.6	10.068245 067990	64967 7 64989 7		28	
33	812988	24.6	880722	18.0	932266	42.6	067734	65011 7		27	
34	813135	24.6 24.6	880613	18.0 18.0	932522	42.6 42.6	067478	65033 7	5965	26	
35	813283	24.6	880505	18.0	932778	42.6	067222	65055 7	5946	25	
36 37	813430 813578	24.5	880397 880289	18.0	933033 933289	42.6	066967 066711	65077 7 65100 7	FOUN	24 23	
38	813725	24.5	880180	18.1	983545	42.6	066455	65122 7	5889	22	
39	813872	24.5	880072	18.1	933800	42.6	066200	65144		21	
40	814019	$24.5 \\ 24.5$	879963	18.1 18.1	934056	42.6 42.6	065944	65166 7	5851	20	
41 42	9.814166 814313	24.5	9.879855	18.1	9.934311	42.6	10.065689	651887	5832	19	
43	814460	24.5	879746 879637	18.1	934567 934823	42.6	065433 065177	65210 7 65232 7		18 17	
44	814607	24.4	879529	18.1	935078	42.6	064922	65254 7		16	
45	814753	24.4 24.4	879420	18.1 18.1	935333	42.6 42.6	064667	65276 7	5756	15	
46	814900	24.4	879311	18.1	935589	42.6	064411	65298 7		14	
47 48	815046 815193	24.4	879202 879093	18.2	935844 936100	42.6	064156 068900	65320 7 65342 7		18 12	
49	815339	24.4	878984	18.2	936355	42.6	068645	653647		ii	
50	815485	24.4 24.3	878875	18.2	936610	42.6 42.6	063390	65386 7		10	
51	9.815631	24.3	9.878766	18.2 18.2	9.936866	42.5	10.068134	65408 7		9	
52 53	815778 815924	24.3	878656	18.2	937121	42.5	062879	65430 7		8 7	
54	816069	24.3	878547 878438	18.2	937376 937632	42.5	062624	65452 7 65474 7		6	
55	816215	24.3	878328	18.2	937887	42.5	062113	65496 7		5	
56	816361	24.3 24.3	878219	18.2 18.3	938142	42.5 42.5	061858	65518 7	5547	4	
57	816507	24.2	878109	18.3	938398	42.5	061602	65540 7		3 2	
58 59	816652 816798	24.2	877999 877890	18.3	938653 938908	42.5	061347 061092	65562 7 65584 7		1	
60	816943	24.2	877780	18.3	938908	42.5	061092	656067		ô	
	Cosine.	 	Sine.	 	Cotang.		Tang.	N. cos. 1		7	
			•	4						-	

.

e	8	Lo	g. Sines an	d Ten	gents. (41°) Nat	ural Since.	TABLE I	L.
二	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Crtang.	N. sine. N. cas.	匚
0	9.816943	24.2	9.877780	18.3	9.939163	42.5	10.030937	65603 75471	60
1 2	817068 817233	24.2	877670 877560	18.3	939418 939673	42.5	060582 030327	65628 75452 65650 75433	59 58
8	817379	24.2 24.2	877450	18.3 18.3	939928	42.5 42.5	060072	65672 75414	57
5	817524 817668	24.1	877340 877230	18.3	940183 940438	42.5	059817 059562	65691 75395 65716 75375	56 55
6	817813	24.1	877120	18.4	940-594	42.5	059306	65738 75356	54
7	817958	24.1 24.1	877010	18.4 18.4	940349	42.5 42.5		65759 75337	53
8	818103 818247	24.1	876899 876789	18.4	941204 941458	42.5	058796 058542	6578175818 6580375299	51
10	818392	24.1 24.1	876678	18.4 18.4	941714	42.5 42.5	058286	65825 75280	50
11 12	9.818536 818681	24.0	9.876568 876457	18.4	9.941968 942223	42.5	10.058032 057777	65847 75261 65869 75241	49
13	818825	24.0	876347	18.4	942478	42.5 42.5	057522	65891 75222	
14	818 9 69	24.0 24.0	876236	18.4 18.5	942733	42 5	057267	65913 75203	46
15 16	819113 819257	24.0	876125 876014	18.5	942958 943243	42.5	057012 056757	65935 75184 65956 75165	44
17	819401	24.0 24.0	875904	18.5 18.5	943498	42.5 42.5	056502	65978 75146	43
18	819545	23.9	875793	18.5	943752 944007	42.5	056248 055993	66000 75126 66022 75107	42
19	819689 819832	23.9	875682 875571	18.5	944262	42.5	055738	66044 75088	40
21	9.819976	23.9 23.9	9.875459	18.5 18.5	9.944517	42.5 42.5	10.055483	66066 75069	39
22 23	820120 820263	23.9	875348 875237	18.5	944771 945026	42.4	055229 054974	66088 750 5 0 66109 750 3 0	38
24	82040s	23.9	875126	18.5 18.6	945281	42.4 42.4	054719	66131 75011	36
25	820550	23.9 23.8	875014	18.6	945535 945790	42.4	054465 054210	66153 74992 66175 74973	35 34
26 27	820693 820836	23.8	874903 874791	18.6	946045	42.4	058955	66197 74953	33
28	820979	23.8 23.8	874680	18.6 18.6	946299	42.4	063701	66218 74934	32
29 30	821122 821265	23.8	874568 874456	18.6	946554 946808	42.4	053446 053192	66240 74915 66262 748 9 6	31
31	9.821407	23.8	9.874344	18.6	9.947033	42.4 42.4	10.052937	66284 74876	29
32	821550	23.8 23.8	874232	18.6 18.7	947318	42.4	052682	66306 74857 66327 74838	28 27
33 34	821693 821835	23.7	874121 874009	18.7	947572 947826	42.4	052428 052174	66349 74818	26
35	821977	23.7 23.7	873896	18.7 18.7	948081	42.4 42.4		66371 74799	25
36 37	822120 822262	23.7	873784 873672	18.7	948336 948590	42.4	051664 051410	66393 74780 66414 74 7 60	24 23
38	822404	23.7	873560	18.7	948844	42.4	051156	66436 74741	22
39	822546	23.7 23.7	878448	18.7 18.7	949099	42.4	050901	66458 74722 66480 74703	21
40 41	822688 9.822830	23.6	878335 9.878223	18.7	949353 9.949607	42.4	050647 10_050393	66501 74683	19
42	822972	23.6	873110	18.7 18.8	949862	42.4	050138	66523 74663	18
43	823114	23.6 23.6	872998	18.8	960116 950370	42.4	049884 049630	66545 74644 66566 74625	17
44	823255 823397	23.6	872885 872772	18.8	950625	42.4	049375	66588 74606	15
46	823539	23.6 23.6	872659	18.8 18.8	950879	42.4	049121	6661074586	14
47	823680 823821	23.5	872547 872434	18.8	951133 951388	42.4	048867 048612	66632 74567 66653 74548	13
49	823963	23.5	872321	18.8 18.8	951642	42.4 42.4	048358	66675 74532	11
50	824104	23.5 23.5	872208	18.8	951896 9.952150	42.4	048104 10.0478 5 0	66697 74509 66718 74489	10
51 52	9.824245 824386	23.5	9.872095 871981	18.9	952405	42.4	047595	66740 74470	8
53	824527	23.5 23.5	871868	18.9 18.9	952659	42.4 42.4	047341	66762 74451	7
54 55	824668 824808	23.4	871755 871641	18.9	952913 953167	42.4	047087 046833	66783 74431 66806 74412	6
56	824949	23.4	871528	18.9	953421	42.3 42.3	046579	66827 74392	4
57	825090	23.4 23.4	871414	18.9 18.9	953675	42.3	046325	66848 74373 66870 74853	8
58 59	825230 825371	23.4	871301 871187	18.9	953929 954183	42.3	046071 045817	66891 74384	1
60	825511	23.4	871073	18.9	954437	42.3	045563	66913 74314	Ð
	Cosine.		Sine.		Cotang.		Tang.	N. cos N.sine.	匚
					48 Degrees.	_			

	fable II.		Log. Sines	and Te	ingents. (4	2°) N	stural Sines		63
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	1
0	9.825511	00.4	9.871073		9.954437	40.0	10.045563	66913 74314	60
1	825651	23.4 23.3	870960	19.0 19.0	954691	42.8 42.3	045309	66935 74295	59
3	825791	23.3	870846	19.0	954945	42.3	045055	66956 74276	58
3	825931 826071	23.3	870732 870618	19.0	955200 955454	42.5	044800 044546	66978 74256 66999 74237	57 56
5	826211	23.3	870504	19.0	955707	42.3	044298	67021 74217	55
6	826351	23.3 23.3	870390	19.0 19.0	955961	42.3 42.3	044039	67043 74198	54
7	826491	23.3	870276	19.0	956215	42.3	043785	67064 74178	53
8 9	826631 826770	28.3	870161 870047	19.0	956469 956723	42.3	043531 043277	67086 74159 67107 74139	52 51
10	826910	23.2	869933	19.1	956977	42.8	043023	67129 74120	50
11	9.827049	23.2 23.2	9.869818	19.1	9.957231	42.8	10.042769	67151 74100	449
12	827189	23.2	869704	19.1 19.1	957485	42.3	042515	67172 74080	
13 14	827328 827467	23.2	869589 869474	19.1	957739	42.3	049261 042007	67194 74061 67215 74041	47
15	827696	23.2	869360	19.1	957993 958246	42.3	042007	67237 74022	46
16	827745	23.2 23.2	869245	19.1	958500	42.3	041500	67258 74002	44
17	827884	23.2	869130	19.1 19.1	958754	42.3	041246	67280 73983	43
18	828023	23.1	869015	19.2	959008	42.3	040992	67301 73963	42
19 20	828162 828301	23.1	868900 868785	19.2	959262 959516	42.3	040738 040484	67323 73944 67344 73924	41 40
21	9.828439	23.1	9.868670	19.2	9.969769	42.3	10,040231	67366 73904	39
22	828578	23.1 23.1	868555	19.2 19.2	960023	42.3 42.3	039977	67387 73885	38
23	828716	23.1	868440	19.2	960277	42.3	039723	67409 73865	37
24 25	828855 828993	23.0	838324 868209	19.2	960531 960784	42.3	039469 039216	67430 73846	36 35
26	829131	23.0	868093	19.2	961038	42.3	038962	67452 73826 67473 73806	34
27	829269	23.0	867978	19.2	961291	42.3	038709	67495 73787	33
28	829407	23.0 23.0	867862	19.3 19.3	961545	42.3	038455	67516 73767	32
29 20	829545	23.0	867747	19.3	961799	42.3	038201	67538 73747	31
31	829688 9.829821	23.0	867631 9.86751 5	19.3	962052 9.962306	42.3	037948 10.037694	67559 73728 67580 73708	30 29
32	829959	22.9	867399	19.3	962560	42.3	037440	67602 73688	
33	830097	22.9 22.9	867283	19.8 19.8	962813	42.3 42.3	037187	67623 73669	27
84	830234	22.9	867167	19.3	963067	42.3	036933	67645 73649	26
35 36	830372 830509	22.9	867051 866935	19.3	963320 963574	42.8	036680 036426	67666 73629 67688 73610	25 24
37	830646	22.9	866819	19.4	963827	42.8	036173	67709 73590	
38	830784	22.9 22.9	866703	19.4	964081	42.3 42.3	035919	67730 73570	22
39	830921	22.8	866586	19.4 19.4	964335	42.8	035665	67752 73551	21
40	831058 9.831195	22.8	866470 9.866353	19.4	964588 9.964842	42.2	035412 10.035158	67773 73531 67795 73511	20 19
42	881332	22.8	866237	19.4	965095	42.2	034905	67816 73491	18
43	831469	22.8 22.8	866120	19.4	965349	42.2	034651	67837 73472	17
44	831606	22.8	866004	19.4 19.5	965602	42.2 42.2	034398	67859 73452	16
45 46	831742 831879	22.8	865887	19.5	965855	42.2	034145	67880 73432	15
47	832015	22.8	865770 865653	19.5	966109 966362	42.2		67901 78413 67923 73893	14 13
48	832152	22.7	865536	19.5	966616	42.2	033384	67944 73373	12
49	832288	22.7	865419	19.5 19.5	966869	42.2 42.2	033131	67965 73353	11
50 51	832425 9 832561	22.7	865302	19.5	967123	42.2	032877	67987 73333	10
₽57	9 832561 832697	22.7	9.865185 865068	19.5	9.967376 967629	42.2	10.032624 032371	68008 73314 68029 73294	9
53	832833	22.7	864950	19.5	967883	42.2	032117	68051 73274	8 7
54	832969	$\frac{22.7}{22.6}$	864833	19.5 19.6	968136	42.2 42.2	031864	68072 73254	6
55	833105	22.6	864716	19.6	968389	42.2	031611	68093 73234	5
56 57	833241 833377	22.6	864598 864481	19.6	968643 968896	42.2	031357	68115 73215	3
	833512	22.6	864363	19.6	969149	42.2	031104 030851	68136 73195 68157 73175	2
58									
59	833648	22.0	864245	19.6	969403	42.2	030597	68179 73155	ī
		22.0		19.6		42.2			

; ==									
6	4	Lo	g. Sines an		gents. (43°) Nat	ural Sines.	TABLE 1	I.
7	Sine.	D. 10	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	1_
0	9.83378	3 22.6	9.864127	19.6	9.969656	42.2	10.030344	68200 78135	60
1	83391	22.5	864010	19.6	969909	42.2	030091	68221 73116	59
2	83405	* 00 K	863892 863774	19.7	970162 970416	42.2	029838 029584	68242 73096 68264 73076	58 57
3	83418 83432	22.5	863656	19.7	970410	42.2	029331	68285 73056	56
5	83446	A 22.0	863538	19.7	970922	42.2	029078	68306 73036	55
6	83459		863419	19.7	971175	42.2 42.2	028825	68327 73016	54
7	83473	0 22.5	863301	19.7 19.7	971429	42.2	028571	68349 72996	53
8	83486	99 8	863183	19.7	971682	42.2	028318	68370 72976	52
9	83499	22.4	863064 862946	19.7	971935 972188	42.2	028065 027812	68391 72957 68412 72937	51 50
10 11	83513 9.83526	22.4	9.862827	19.8	9.972441	42.2	10.027559	68434 72917	49
12	83540	22.4	862709	19.8	972694	42.2	027306	68455 72897	48
13	83553	22.4	862590	19.8 19.8	972948	42.2 42.2	027052	68476 72877	47
14	83567		862471	19.8	973201	42.2	026799	68497 72857	46
15	83580	199 4	862353	19.8	973454	42.2	026546	68518 72837	45 44
16	83594	1 00 4	862234 862115	19.8	973707 973960	42.2	026293 026040	68539 72817 68561 72797	43
17 18	83607 83620	0 22.3	861996	19.8	974213	42.2	025787	68582 72777	42
19	83634	22.3	861877	19.8	974466	$ ^{42.2}_{42.2}$	025534	68603 72757	41
20	83647		861758	19.8 19.9	974719	42.2	025281	68624 72737	40
21	9.83661	1 22 3	9.861638	19.9	9.974978	42.2	10.025027	68645 72717	39
22	83674	0 00 3	861519	19.9	975226	42.2	024774	68666 72697	38 37
23	83687	99 3	861400	19.9	975479 975732	42.2	024521 024268	68688 72677 68709 72657	36
24 25	83701 83714	22.2	861280 861161	19.9	975985	42.2	024015	68730 72637	35
26	83727	u 22.2	861041	19.9	976238	42.2	023762	68751 72617	34
27	83741) 22.2	860922	19.9 19.9	976491	42.2 42.2	023509	68772 72597	33
28	83754	$6 _{22.2}^{22.2}$	866802	19.9	976744	42.2	023256	68793 72577	32
29	83767	9 00 0	860682	20.0	976997	42.2	023003	68814 72557	31
30	83781	2 00 9	860562 9.860442	20.0	977250 9.977503	42.2	022750 10.022497	68835 72537 68857 72517	30
31 32	9.83794 83807	22.2	860322	20.0	977756	42.2	022244	68878 72497	28
33	83821	1 22.1	860202	20.0	978009	42.2	021991	68899 72477	27
34	83834	4 22.1	860082	20.0 20.0	978262	42.2 42.2	021738	68920 72457	26
35	83847	7 22.1	859962	20.0	978515	42.2	021485	68941 72437	25
36	83861	ປຸດຄຸາ	859842	20.0	978768	42.2	021232	68962 72417	24 23
37	83874	2 90 1	859721 859601	20.1	979021 979274	42.2	020979 020726	68983 72397 69004 72377	23
38	83887 839 0 0	7 22.1	859480	20.1	979527	42.2	020120	69025 72357	21
40	83914	n 22. i	859360	20.1	979780	42.2	020220	69046 72337	20
	9.83927	2 22.0	9.859239	20.1 20.1	9.980033	42.2 42.2	10.019967	69067 72317	19
42	83940	4 22.0	859119	20.1	980286	42.2	019714	69088 72297	18
43	83953	99 0	858998	20.1	980538	42.2	019462 019209	6910 9 72277 6913 0 72257	17 16
44	83966	വരവ	858877 858756	20.1	980791 981044	42.1	019209	69151 72236	15
45 46	83980 83993	22.0	858635	20.2	981297	42.1	018703	69172 72216	14
47	84003	4 22.0	858514	20.2	981550	42.1	018450	69193 72196	13
48	84019	. 21.9	858393	$20.2 \\ 20.2$	981803	42.1 42.1	018197	69214 72176	
49	84032	B 21.9	858272	20.2	982056	42.1	017944	69235 72156	111
50	84045		858151	20.2	982309	42.1	017691 10.017438	69256 72136	10
	9.84059	01 0	9.858029 857908	20.2	9.982562 982814	42.1	017186	69277 72116 69298 72095	8
52 53	84072 84085	21.9	857786	20.2	983067	42.1	016933	69319 72075	7
54	84098	5 21.9	857665	20.2	933320	42.1	016680	69340 72055	6
55	84111	g 21.9	857543	20.3 20.3	983573	$42.1 \\ 42.1$	016427	69361 72035	5
56	84124	7 21.8	8574:22	20.3	983826	42.1	016174	69382 72015	4
57	84137	91 8	857300	20.3	934079	42.1	015921	69403 71995 69424 71974	3 2
58	84150	9 01 8	857178	20.3	984331 984584	42.1	015669 015416	69445 71974	1
59	84164 84177	U 21 8	957056 856934	20.3	984837	42.1	015163		i ô l
60		-	Sine.		Cotang.		Tang.	N. cos. N.sine.	
ı — '	(' sine.	<u> </u>	l Sille.	<u> </u>			1 410149.		
i				4	6 Degrees.				

	ABLE II.	T.	og Sines s	nd Ta	noents (4	נס) אנ	atural Sines.		6	5
-		D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.		
0	9.841771		9.856934		9.984837		10.015163	69466		60
1	841902	21.8	856812	20.3	985090	42.1	014910	69487		59
2	842033	21.8	856690	$\frac{20.3}{20.4}$	985343	42.1 42.1	014657	69508	71894	58
3	842163	$\frac{21.8}{21.7}$	856568	20.4	985596	42.1	014104	69529		57
4	842294	21.7	856446	20.4	985848	42.1	014152	69549		56
5	842424 842555	21.7	856323 856201	20.4	986101 986354	42.1	013899 013646	69570 69591		55 54
6	842685	21.7	856078	20.4	986607	42.1	013393	69612		53
8	842815	21.7	855956	20.4	986860	42.1	013140	69633		52
9	842946	21.7	855833	20.4 20.4	987112	42.1 42.1	012888	69654	71752	51
10	843076	21.7 21.7	855711	20.5	987365	42.1	012635	69675		50
11	9.843206	21.6	9.855588	20.5	9.987618	42.1	10.012382	69696		49 48
12 13	843336 843466	21.6	855465 855342	20.5	987871 988123	42.1	012129 011877	69717 69787	71671	47
14	843595	21.6	855219	20.5	988376	42.1	011624	69758		46
15	843725	21.6	855096	20.5	988629	42.1	011371	69779		45
16	843855	21.6	854973	20.5 20.5	988882	42.1 42.1	011118	69800		44
17	843984	21.6 21.6	854850	20.5	989134	42.1	010866	69821		43
18	844114	21.5	854727	20.6	989387	42.1	010613	69842		42
19 20	844243 844372	21.5	854603 854480	20.6	989640 989893	42.1	010360 010107		71549 71529	41 40
21	9.844502	21.5	9.854356	20.6	9.990146	42.1	10.009855	69904		39
22	844631	21.5	854233	20.6	990398	42.1	009602	69925		38
23	844760	21.5	854109	20.6 20.6	990651	42.1 42.1	009349	69946		37
24	844889	21.5 21.5	853986	20.6	990903	42.1	009097	69966		36
25	845018	21.5	853862	20.6	991156	42.1	008844 008591	69987		35
26 27	845147	21.5	853738	20.6	991409 991662	42.1	**************************************	70008 70029		34 33
28	845276 8454 0 5	21.4	853614 853490	20.7	991002	42.1	UUSU86	70049		32
29	845533	21.4	S53366	20.7	992167	42.1	007833	70070		31
30	845662	21.4	853242	20.7	992420	42.1	007580	70091	71325	30
31	9.845790	21.4	9.853118	20.7 20.7	9.992672	$\frac{42.1}{42.1}$	10.007328	70112	71305	29
32	845919	21.4 21.4	852994	20.7	992925	42.1	007075	70132		28
33	846047	21.4	852869	20.7	993178	42.1	006822 006570	70153 70174		27 26
34 35	846175 846304	21.4	852745 852620	20.7	993430 993683	42.1	006317	70174		25
36	846432	21.4	552496	20.7	993936	42.1	006064	70215		24
37	846560	21.3	852371	20.8	994189	42.1	005811	70236	71182	23
38	846688	21.3	852247	20.8 20.8	994441	42.1 42.1	005559	70257	71162	22
39	846816	21.8 21.3	852122	20.8	994694	42.1	005306		71141	21
40	846944	21.8	851997	~~ ~	994947	42.1	005053	70298		20
41 42	9.847071 847199	21.3	9.851872 851747	20.8	9.995199 995452	42.1	10.004801 004548	70319 70339		19 18
43	847327	21.8	851622	20.8	995705	42.1	004295	70360		17
44	847454	21.3	951497	20.8	995957	42.1	004043	70381	71039	16
45	847582	21.2	851372	20.9	996210	42.1 42.1	003790	70401	71019	15
46	847709	21.2 21.2	851246	20.9 20.9	996463	42.1	003537	70422		14
47	847836	21.2	851121	20.9	996715	42.1	003285	70448		18
48 49	847964	21.2	850996 850870	20.9	996968 997221	£2.1	003032 002779	70463 70484		12
50	848091 848218	21.2	850745	20.9	997473	42.1	002779	70505		10
	9.848345	21.2	9.850619	20.9	9.997726	42.1	10.002274		70896	9
52	848472	21.2	850493	20.9	997979	42.1	002021	70546		8
53	848599	21.1	850368	21.0 21.0	998231	42.1 42.1	001769	70567	70855	7
54	848726	21.1 21.1	850242	21.0	998484	42.1	001516	70587		6
55	8 48852	21.1	850116	21.0	998737	42.1	001263	70608		5
56 57	848979	21.1	849990 849864	21.0	998989 999242	42.1	001011 000758	70628 70649		4 8
58	849106 849232	21.1	849738	21.0	999495	42.1	000505	70670		2
59	849359	21.1	849611	21.0	999748	42.1	000253	70690		î l
60	849485	21.1	849485	21.0	10.000000	42.1	000000	70711		Ō
 	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.ripe.	1
				4	5 Degrees.					

TABLE III.

LOGARITHMS OF NUMBERS.

From 1 to 200,

INCLUDING TWELVE DECIMAL PLACES.

N.	Log.	N.	Log.	N.	Log.
1	J00000 000000	41	612783 856720	81	908485 018879
9	801029 995664	42	623249 290398	82	918813 852384
8	477121 254720	43	683468 455580	83	919078 092376
4	602059 991328	44	643452 676486	84	924279 286062
. 5	698970 004336	45	653212 513775	85	929418 925714
6	778151 250384	46	662757 831682	86	934498 451244
7	845098 040014	47	672097 857926	87	939519 252619
8	903089 986992	48	681241 237376	88	944482 672150
9	934242 509439	49	690195 080028	89	949390 006645
10	Mame as to 1.	50	Same as to 5.	90	Name as to 9.
11	041392 685158	51	707570 176098	91	959041 892321
12	079181 246048	52	716003 343635	92	963787 827346 968482 948554
13	113943 352307	53	724275 869601	93	978127 853600
14	146128 035678 176091 259056	54	732393 759823 740362 689494	94	977723 605889
15	170091 209000	5 5	140302 009494	95	911120 000009
16	204119 982656	56	748188 027006	96	982271 233040
17	230448 921378	57	755874 855672	97	986771 734266
18	255272 503103	58	763427 993563	98	991226 075692
19	278753 600953	59	770852 011642	99	995635 194598
20	Same as to 2.	60	Same as to 6	100	Same as to 10,
91	322219 2947	61	785329 835011	101	004321 373783
22	342422 680822	62	792391 69949 8	102	008600 171762
23	861727 836018	63	799340 549453	103	012837 224705
24	380211 241712	64	806179 973984	104	017033 339299
25	897940 008672	65.	812913 356643	105	021189 299070
26	414973 347971	66	819543 935542	106	025305 865265
97	431363 764159	67	826074 802701	107	029383 777685
28	447158 031349	68	832508 912706	108	033423 755487
29	462397 997899	69	838849 090737	109	037426 497941
80	Home as to 3.	70	Same as to 7.	110	Same as to 11.
81	491361 693884	71	851258 348719	111	045322 978787
82	505149 978390	72	857332 496431	112	049218 022670
83	518513 939878	73	863322 860120	113	053078 443483
84	531478 917042	74	869231 719781	114	056904 851336
85	544068 044350	75	875061 263392	115	060697 840354
-	•		000010 1000011		004454 000004
86	556302 500767	76	880813 592281	116	064457 989227
87	568201 724067	77	886490 725172	117	068185 861746 071882 007306
88	579788 596617	78	892094 602690	118	075546 961393
89	591064 607026	79 80	897627 091290	120	Same as to 12.
40	Same 1: to 4.	ייה	Same as to 8.	120	Dame as to is.

OF NUMBERS.					67		
N.	Log.	N.	Log.	N.	Log		
121	082785 870316	148	170261 715395	175	243038 048686		
122	086359 830675	149	173186 268412	176	245512 667814		
123	089905 111439	150	176091 259056	177	247973 266862		
124	098421 685162	151	178976 947293	178	250420 002309		
125	096910 013008	152	181843 587945	179	252853 030 98 0		
126	100370 545118	153	184691 430818	180	255272 505108		
127	103803 720956	154	187520 720836	181	257678 574869		
128	107209 969648	155	190331 698170	182	260071 387985		
129	110589 710299	156	193124 588354	183	262451 089780		
130	Same as to 13.	157	195899 652409	184	264817 828010		
181	117271 295656	158	198657 086954	185	267171 728403		
182	120573 931206	159	201397 124320	186	269512 944218		
183	123851 640967	160	204119 982656	187	271841 606536		
184	127104 798365	161	206825 876032	188	274157 849264		
135	130333 768495	162	209515 014543	189	276461 804173		
136	133538 908370	168	212187 604404	190	278753 600958		
187	136720 567156	164	214843 848048	191	281033 367248		
138	139879 086401	165	217483 944214	192	283301 228704		
189	143014 800254	166	220108 088040	193	285557 309008		
140	146128 035678	167	222716 471148	194	287801 729930		
141	149219 112655	168	225309 281726	195	290034 611362		
142	152288 344383	169	227886 704614	196	292256 071356		
143	155336 037465	170	230448 921378	197	294466 226162		
144	158362 492095	171	232996 110392	198	296665 190262		
145	161368 002235	172	235528 446908	199	298853 076410		
146	164352 855784	173	238046 103129				
147	167317 334748	174	240549 248283)j	!		
					<u>`</u>		

LOGARITHMS OF THE PRIME NUMBERS

From 200 to 1543,

INCLUDING TWELVE DECIMAL PLACES.

N.	Log.	N.	Log.	N.	Log.
201	303196 057420	277	442479 769064	379	578639 209968
203	807496 037913	281	448706 819905	383	583198 773968
207	815970 845457	283	451786 435524	389	589949 601326
209	320146 286111	293	466867 620354	397	598790 506763
211	324282 455298	307	487138 875477	401	603144 872620
				1	
228	848304 868048	811	492760 889027	409	611723 308007
227	356025 85719 8	313	495544 887546	419	622214 U22966
229	859835 482340	317	501059 262218	421	624282 095836
233	367355 921026	331	519827 993776	481	634477 270161
239	378397 900948	837	527629 900871	433	636487 896353
		H	1	ļ .	
241	382017 042575	847	540329 474791	439	642424 520242
251	399673 721481	849	542825 426959	443	646403 726223
257	409933 123331	853	647774 705388	449	652246 341003
268	419955 748490	359	555094 448578	457	659916 200070
269	429752 280002	867	564666 064252	461	663700 925390
1	i	l l			
271	482969 290874	873	671708 881809	463	665580 991018

68	· LOGARITH MS				
N.	Log.	N.	Log.	N.	Log.
467	639316 880566	821	914343 157119	1171	0685č6 895072
479	680335 513414	823	915399 835212	1181	072249 807613
457	687528 961215	827	917505 509553	1187	074450 718955
491 499	691081 492123 698100 545623	829 839	918554 530550 923761 960829	1193	076640 443670 079543 007385
459	030100 040023	009	320101 300023	1201	0,0010 001000
508	701567 985056	853	930949 031168	1213	083860 800845
509	706717 782337	857	932980 821923	1217	085290 578210
521	716887 728300	859	933993 163831 936010 795715	1223 1229	087426 458017 089551 882866
523 541	718501 688867 733197 265107	863 877	942999 593356	1229	090258 052912
711	150137 200101	""	02000 00000		
547	737987 326333	881	944975 908412	1237	092369 699609
557	745855 195174	883	945960 703578	1249	096562 438356 100025 729204
563	750508 394851	887	947923 619832 957607 287060	12 59 12 77	106190 896808
569 571	755112 266 39 5 756636 108246	907 911	959518 376973	1279	106870 542460
· · · ·	10000 100010			-	
577	761175 813156	919	963315 511386	1283	108226 656362
587	768638 101248	929	968015 713994	1289	110252 917337 110926 242517
593 599	773054 693364 777426 822389	937 941	971739 5 90888 973589 6 23427	1291 1297	112939 986066
601	778874 472002	947	976349 979003	1301	114277 296540
552	110011 112002	""			
607	783138 691075	953	979092 900638	1303	114944 415712
613	787460 474518	967	985426 474083	1307 1319	116275 587564 120244 795568
617 619	790285 164033 791690 649020	971 977	987219 229908 989894 563719	1321	120902 817604
631	800029 359244	988	992553 517832	1327	122870 922849
641	806858 029519	991	996073 654485	1361	133858 125188 135768 514554
643 647	808210 972924	997	998695 158 312 003891 166 237	1867 1373	137670 537223
653	810904 280669 814913 181275	1009 1013	005609 445360	1381	140193 678544
659	818885 414594	1019	008174 184006	1399	145817 714122
			00000# #4000#		148910 994096
661	810201 459486	1021	009025 742087 013258 665284	1409 1423	153204 896557
673 677	828015 064224 830588 668685	1031 1033	014100 321520	1423	154424 012366
683	834420 703682	1039	016615 547557	1429	155032 228774
691	839478 047374	1049	020775 488194	1433	156246 40218 4
m^*	045410 014004	10-1	021602 716028	1439	158060 793919
701 709	845718 017967 850646 235183	1051 1061	025715 383901	1447	160468 531109
719	856728 890383	1063	026533 264523	1451	161667 412427
727	861534 410859	1069	028977 705209	1453	162265 614286
733	865103 974742	1087	036229 544086	1459	164055 291883
739	868644 488395	1091	037824 750588	1471	167612 672629
743	870988 813761	1091	038620 161950	1481	170555 058512
751	855639 937004	1097	040206 627575	1483	171141 151014
757	879095 879500	1103	042595 512440	1487	172310 968489
761	881384 656771	1109	044931 546119	1489	172894 781332
769	885926 339801	1117	048053 173116	1493	174059 807708
773	888179 493918	1123	050379 756261	1499	175801 632866
787	895974 732359	1129	052693 941925	1511	179264 464329
797	901458 321396	1151	061075 323630	1523	182699 903324
809	907948 521612	1153	061829 307295	1531	184975 190807
811	909020 854211	1163	065579 714728	1543	188365 926053

٠,

AUXILIARY LOGARITHMS.

N.	Log.	N.	Log.
1.009	003891166237	1.0009	000390689248
1.008	003460532110	1.0008	000347296684
1.007	003029470554	1.0007	000303899784
1.006	002598080685	1.0006	000260498547
1.005	002166061756	1 1.0005	000217092970
1.004	001733712775	1.0004	000173683057
1.003	001300933020	1.0003	000130268804
1.002	000867721529	1.0002	000086850211
1.001	000434077479	1.0001	000043427277

C

1 N.	Log.	N.	Log.
1.00009	000039083266	1.000009	000003908628
1.00008	000034740691	1.000008	000003474338
1.00007	000030398072	1.000007	000003040047
1.00006	000026055410	1.000006	000002605756
1.00005	000021712704	1.000005	000002171464
1.00004	000017371430	1.000004	000001737178
1.00003	000013028638	1.000003	000001302880
1.00002	000008685802	1.000002	000000868587
1.00001		1.000001	000000434294
	I N. 1	Log.	1

N.	Log.	
1.0000001	000000043429	(n)
1.00000001	000000004343	(0)
	000000000434	(p)
	0000000000043	(g)

m=0.4342944819 log. -1.637784298.

By the preceding tables—and the auxiliaries A, B, and C, we can find the logarithm of any number, true to at least ten decimal places.

But some may prefer to use the following direct formula, which may be found in any of the standard works on algebra:

Log.
$$(z+1) = \log z + 0.8685889638 \left(\frac{1}{2z+1}\right)$$

The result will be true to twelve decimal places, if z be over 2000.

The log. of composite numbers can be determined by the combination of logarithms, already in the table, and the prime numbers from the formula.

Thus, the number 3083 is a prime number, find its logarithm.

We first find the log. of the number 3082. By factoring, we discover that this is the product of 46 into 67.

0	NU	J M	B	E	R

Log. 46, 1.6627578316 Log. 67, 1.8260748027

S.

Log. 3082 3.4888326343

 $\textbf{Log. 3083} = 3.4888326343 + \frac{0.8685889638}{6165}$

NUMBERS AND THEIR LOGARITHMS,

OFTEN USED IN COMPUTATIONS.

Circumference of a circle to dia. 1
Surface of a sphere to diameter 1
Area of a circle to radius 1

Log.

3.14159265 0.4971499

Area of a circle to diameter 1 = .7853982 -1.8950899 Capacity of a sphere to diameter 1 = .5235988 -1.7189986 Capacity of a sphere to radius 1 = 4.1887902 0.6220886

Arc of any circle equal to the radius = 57°29578 1.7581226

Arc equal to radius expressed in sec. = 206264"8 5.3144251

Length of a degree, (radius unity) = .01745329 -2.2418773

12 hours expressed in seconds, = 43200 4.6354837 Complement of the same, = 0.00002315 -5.3645163 360 degrees expressed in seconds, = 1296000 6.1126050

A gallon of distilled water, when the temperature is 62° Fahrenheit, and Barometer 30 inches, is $277.\frac{274}{1656}$ cubic inches.

$$\sqrt{277.274} = 16.651542$$
 nearly.
 $\sqrt{\frac{277.274}{.775398}} = 18.78925284$ $\sqrt{231} = 15.198684$.
 $\sqrt{\frac{282}{.785398}} = 18.948708$.

The French Metre=3.2808992, English feet linear measure, =39.3707904 inches, the length of a pendulum vibrating seconds.

liju

þ ; ; . • • • ۲.

, • •

. • . ļ. . • `

THE NEW YORK PUBLIC LIBRARY REFERENCE DEPARTMENT

This book is under no circumstances to be taken from the Building

