Vorlesungszusammenfassung

Homologische Algebra

gelesen von Prof. Dr. Marc Nieper-Wißkirchen

Maximilian Huber Stefan Hackenberg

Sommersemester 2014

Inhaltsverzeichnis

1	Simpliziale Mengen						
	1.1	Triang	gulierte Räume	1			
		1.1.1	Definitionen	1			
		1.1.2	Beispiele	3			
		1.1.3	Proposition	3			
		1.1.4	Skelett	4			
		1.1.5	Triangulation des Produktes zweier Simplizes	5			
Lit	teratı	ır		7			

Kapitel 1

Simpliziale Mengen

1.1 Triangulierte Räume

1.1.1 Definitionen

Definition 1.1 Ein *Triangulierter Raum* besteht aus

- Punkten,
- Kanten,
- Dreiecke,
- Tetraeder,
- . . .
- *n*-dimensionale Simplizes

und einer kombinatorischen Verklebevorschrift.

Definition 1.2 (topologischer n-Simplex, Ecke, I-Fläche) Der n-dimensionale topologische Simplex (oder topologischer n-Simplex) ist der topologische Raum

$$\Delta_n := \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n x_i = 1, \ x_i \ge 0\}.$$

Der Punkt $e_i \in \Delta_n$ mit $x_i = 1$ heißt die *i-te Ecke von* Δ_n . Für $I \subseteq [n] := \{0, ..., n\}$ ist die *I-Fläche von* Δ_n durch

$$\{(x_0,\ldots,x_n)\in\Delta_n\mid x_i=0\ \forall i\notin I\}$$

gegeben.

Bemerkung 1.3 Durch obige Definition einer Ecke erhält man eine Anordnung der Ecken!

Beispiel 1.4 (Veranschaulichung verschiedener topologischer n-Simplizes)

Bemerkung 1.5 Jedes $I \subseteq [n]$ mit |I| = m + 1 definiert genau eine streng monoton wachsende Abbildung $f:[m] \to [n]$ mit im f = I. Diese Konstruktion ist umkehrbar.

Definition 1.6 Die Abbildung

$$\Delta_f: \Delta_m \to \Delta_n$$

ist diejenige lineare Abbildung, welche die Ordnung der Ecken berücksichtigt und die I-Seite von Δ_n als Bild hat, wobei f und I nach obiger Bemerkung korrespondieren.

Beispiel 1.7 Für

$$f: \begin{bmatrix} 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \end{bmatrix} \quad \leftrightarrow \quad I = \{0, 2\}$$

$$0 \mapsto 0$$

$$1 \mapsto 2$$

erhalten wir $\Delta_f: \Delta_1 \to \Delta_2$: Bild

Definition 1.8 Ein Verklebedatum X ist eine Folge $X_{(0)}, X_{(1)}, \ldots$ von Mengen, wobei man $X_{(0)}$ als $Punkte, X_{(1)}$ als $Kanten, X_{(2)}$ als $Fl\ddot{a}chen, \ldots$ bezeichnet und für jede streng monotone Abbildung $f: [m] \to [n]$ eine Abbildung

$$X(f): X_{(n)} \to X_{(m)},$$

so dass Folgendes gilt:

- (1) $X(\operatorname{id}_{[n]}) = \operatorname{id}_{X_{(n)}}$
- (2) $X(g \circ f) = X(f) \circ X(g)$.

Beispiel 1.9 Für Δ_2 haben wir:

$$X_{(0)} \coloneqq \{\mathsf{Bild}\}\$$
 $X_{(1)} \coloneqq \{\mathsf{Bild}\}\$
 $X_{(2)} \coloneqq \{\mathsf{Bild}\}\$

Alle weiteren $X_{(3)} = X_{(4)} = \emptyset$ sind leer.

Definition 1.10 (topologische Realisierung) Die topologische Realisierung |X| von X ist der topologische Raum, dessen zugrunde liegende Menge durch

$$\left(\prod_{n=0}^{\infty} (\Delta_n \times X_{(n)})\right) / R$$

gegeben ist, wobei R die schwächste Äquivalenzrelation ist, für die

$$(s,x) R (t,y) \leftarrow \begin{cases} y = X(f)(x) \text{ und} \\ s = \Delta_f(t) \text{ für ein } f : [m] \to [n]. \end{cases}$$

Für (s,x)R(t,y) schreibe auch $(s,x) \stackrel{f}{\mapsto} (t,y)$. Die Topologie von |X| ist die feinste Topologie, so dass

$$\prod_{n=0}^{\infty} (\Delta_n \times X_{(n)}) \xrightarrow{\tau} \left(\prod_{n=0}^{\infty} (\Delta_n \times X_{(n)}) \right) / R = X$$

stetig ist, d.h. $\mathcal{U} \subseteq |X|$ offen $\Leftrightarrow \tau^{-1}(\mathcal{U})$ offen $\Leftrightarrow \tau^{-1}(\mathcal{U})$ in allen Δ_n offen.

Bemerkung 1.11 Die definierende Gleichung der Relation R in Definition 1.10 definiert zwar eine reflexive und transitive Relation, jedoch keine symmetrische!

1.1.2 Beispiele

Beispiel 1.12 (n-dimensionaler Simplex)

$$X_{(i)} = \{I \subseteq [n] \mid |I| = i+1\}$$

 $\cong \{f : [i] \rightarrow [n] \text{ streng monoton}\}$

$$X([i] \xrightarrow{f} [j]): (g:[j] \rightarrow [n]) \longmapsto (g \circ f:[i] \rightarrow [n]).$$

Damit ist der *n*-dimensionale Simplex also nichts anderes, als die geometrische Realisierung von obigem Verklebedatum: $\Delta_n \approx |X|$.

Beispiel 1.13 (n-dimensionale Sphäre) Die Einheitsspähre S^n lässt sich durch $\partial \Delta_n$ triangulieren und erhält damit als Verklebedatum:

$$X_{(i)} \; \coloneqq \; \begin{cases} X_{(i)}^{\Delta_n} = \{[i] \to [n] \text{ streng monoton wachsend}\} & i < n \,, \\ \varnothing & i \geq n \,, \end{cases}$$

wobei X^{Δ_n} das Verklebedatum des n-Simplex meint. Damit erhalten wir wiederum $S^n \approx |X|$.

Definition 1.14 (Inneres, induzierte Abbildung) Das *Innere von* Δ_n ist

$$\mathring{\Delta}_n := \begin{cases} \text{top. Inneres von } \Delta_n & n \ge 1 \\ \Delta_0 & n = 0 \end{cases}$$

$$= \{(x_0, \dots, x_n) \in \Delta^n \mid x_i > 0\}$$

Ferner heißt

$$\mathring{\tau}: \coprod_{n\geq 0} \Delta_n \times X_{(n)} \to |X|$$

die durch τ induzierte Abbildung.

1.1.3 Proposition

Proposition 1.15 $\mathring{\tau}$ ist eine mengentheoretische Bijektion.

Beweis Für ein $(s,x) \in \Delta_n \times X_{(n)}$ sei sein $Index\ k(s,x)$ als die minimale Dimension einer Seite gegeben, die s enthält. R-äquivalente Punkte haben den selben Index. Damit ist $k:|X| \to \mathbb{N}_0$ eine wohldefinierte Abbildung. Es gilt k(s,x) = k, wenn $s \in \mathring{\Delta}_k$.

Ist dann $p \in |X|$ mit k(p) = k, so gibt es (mind.) einen Repräsentanten (s, x) mit $(s, x) \in \mathring{\Delta}_k \times X_{(k)}$. Damit ist gezeigt, dass $\mathring{\tau}$ surjektiv ist.

Bleibt noch die Injektivität von $\mathring{\tau}$ zu zeigen: Seien $(s,x), (s',x') \in \coprod_{n\geq 0} \mathring{\Delta}_n \times X_{(n)}$ mit $(s,x) \stackrel{R}{\sim} (s',x')$. Zu zeigen ist damit (s,x) = (s',x'). Nach obiger Vorüberlegung ist k(s,x) = k(s',x'), d.h. $x,x' \in X_{(k)}$. Wir haben

$$(s,x) \stackrel{f_1}{\longmapsto} (s_1,x_1) \stackrel{f_2}{\longleftarrow} (s_2,x_2) \stackrel{f_3}{\longmapsto} (s_3,x_3) \longleftarrow \ldots \longleftarrow (s',x')$$

mit $(s_i, x_i) \in \Delta_{l_i} \times X_{(l_i)}$ und $l_i \geq k$. Aus dieser Kette können wir eine Kette kleinerer Länge konstruieren $f_1 : [k] \to [l_1]$, $f_2 : [l_2] \to [l_1]$ streng monoton mit $s_1 = \Delta_{f_1}(s) = \Delta_{f_2}(s_2)$. Da $s \in \mathring{\Delta}_k$, liegt s_1 im Inneren der f_1 -Seite von Δ_{l_1} . Damit ist im $f_2 \supseteq \text{im } f_1$ und ergo $f_1 = f_2 \circ f$ für (genau) ein streng monotones $f : [k] \to [l_2]$.

Es gilt dann

$$\Delta_{f_2}\Delta_f(s) = \Delta_{f_2 \circ f}(s) = \Delta_{f_1}(s) = s_1 = \Delta_{f_2}(s_2)$$
.

Da Δ_{f_2} injektiv ist, folgt $\Delta_f(s) = s_2$. Außerdem ist

$$X(f)(x_2) = X(f)(X(f_2)(x_1)) = X(f_2 \circ f)(x_1) = X(f_1)(x_1) = x$$
.

Also folgt:

$$(s,x) \xrightarrow{f} (s_2,x_2) \xrightarrow{f_3} (s_3,x_3) \longleftrightarrow (s_4,x_4) \longleftrightarrow \dots$$

Nach endlich vielen Schritten erhalten wir also $(s,x) \xrightarrow{f} (s',x')$ mit $x,x' \in X_{(k)}$. Folglich ist $f:[k] \to [k]$ und damit die Identität, woraus die Injektivität folgt.

1.1.4 Skelett

Definition 1.16 (k-Skelett) Das k-Skelett einer Triangulierung $(X_{(i)}, X(f))$ ist die Triangulierung

$$(X_{(i)}, i \leq k; X(f)).$$

Der zugehörige topologie Raum $\operatorname{sk}_k |X|$ ist das k-Skelett von |X|.

Korollar 1.18 Es gilt:

- (1) $|X| = \operatorname{sk}_{\infty} |X| = \bigcup_{k>0} \operatorname{sk}_k |X|$
- (2) Die natürlichen Abbildungen $\operatorname{sk}_k |X| \to \operatorname{sk}_l |X|$ für $k \leq l$ sind abgeschlossene Einbettungen.
- (3) $\operatorname{sk}_{k+1}|X|$ entsteht aus $\operatorname{sk}_k|X|$ durch Hinzufügen offener (k+1)-Simplizes, deren Ränder mit $\operatorname{sk}_k|X|$ verklebt werden.

Beweis Klar mit Proposition 1.15.

1.1.5 Triangulation des Produktes zweier Simplizes

Wir wollen eine kanonische Triangulierung $(X_{(n)}, X(f) \text{ von } \Delta_p \times \Delta_q \text{ explizit angeben.}$

Beispiel 1.19 Für p = 1 und q = 1 können wir uns anschaulich folgende Triangulierung überlegen:

Definition 1.20 (kanonische Triangulierung von $\Delta_p \times \Delta_q$) Die kanonische Triangulierung $(X_{(n)}, X(f))$ von $\Delta_p \times \Delta_q$ ist gegeben durch:

(1) Ein Element von $X_{(n)}$ (multidimensionale Diagonale) ist eine Menge von (n+1) paarweise verschiedenen Paaren

$$\{(i_0,j_0),(i_1,j_1),\ldots,(i_n,j_n)\}$$

mit $0 \le i_0 \le i_1 \le \ldots \le i_n \le p$ und $0 \le j_0 \le j_1 \le \ldots \le j_n \le q$.

(2) Für $f:[m] \to [n]$ streng monoton sei

$$X(f)(\{(i_0,j_0),\ldots,(i_n,j_n)\}) = \{(i_{f(0)},j_{f(0)}),\ldots,(i_{f(m)},j_{f(m)})\}.$$

Definition 1.21

$$\vartheta_n: \Delta_n \times X_{(n)} \to \Delta_p \times \Delta_q$$

sodass $\vartheta_n(\underline{},x):\Delta_n\to\Delta_p\times\Delta_q\subseteq\mathbb{R}^{p+q+2}$ diejenige lineare, ordnungserhaltende Abbildung ist, deren Bild $\tilde{\Delta}_n$ ist, wobei $\tilde{\Delta}_n\subseteq\mathbb{R}^{p+q+2}$ derjenige n-Simplex ist, der durch (e_{ik},e'_{jk}) aufgespannt wird für $x=\{(i_0,j_0),\ldots,(i_n,j_n)\}.$

Lemma 1.22 Sei |X| die geometrische Realisierung von $(X_{(n)}, X(f))$. Dann existiert ein kommutatives Diagramm

wobei ϕ eine Bijektion ist.

Beweis Da τ surjektiv, existiert höchstens ein φ . Sei $(t,y) \stackrel{f}{\longmapsto} (s,x)$, d.h. $s = \Delta_f(t)$, y = X(f)(x).

$$\vartheta(s,x) = \vartheta(\Delta_f(t),x) = \vartheta(t,X(f)(x)) = \vartheta(t,y).$$

Also existiert genau ein φ .

Wir zeigen nun, dass ϑ surjektiv ist, damit ist auch φ surjektiv. Sei $\Delta_p = \{(x_0, \dots, x_p) \mid x_i \ge 0, \sum x_i = 1\}$ und $\Delta_q = \{(y_0, \dots, y_p) \mid y_j \ge 0, \sum y_j = 1\}$ Führe nun neue Koordinaten ein:

$$\xi_1 = x_0, \quad \xi_2 = x_0 + x_1, \quad \dots, \quad \xi_p = x_0 + \dots + x_{p-1}$$

 $\eta_1 = y_0, \quad \eta_2 = y_0 + y_1, \quad \dots, \quad \eta_q = y_0 + \dots + y_{q-1}$

In diesen Koordinaten gilt:

$$e_i = (\underbrace{0, \dots, 0}_{i}, \underbrace{1, \dots, 1}_{p-i}), \quad e_j = (\underbrace{0, \dots, 0}_{j}, \underbrace{1, \dots, 1}_{q-j})$$

Sei $x = \{(i_0, j_0), \dots, (i_{p+p}, j_{p+q})\} \in X_{(p+q)}$ mit $(i_0, j_0) = (0, 0)$ und $(i_{p+q}, j_{p+q}) = (p, q)$. Das Bild $\vartheta(\Delta_{p+q}, x)$ besteht aus allen Paaren $((\xi_1, \dots, \xi_p), (\eta_1, \dots, \eta_q)) \in \Delta_p \times \Delta_q$ mit $0 \le \xi_i, \eta_j \le 1$, wobei alle ξ_i, η_j angeordnet sind und gilt:

(i) Ist i < j, so steht ξ_i vor ξ_j und η_i vor η_j und ist $j_{k+1} = j_k$, so steht an (k+1)-ter Stelle ein ξ , sonst ein η .

Literatur

[1] S.I. Gelfand und Y. Manin. *Methods of Homological Algebra: Springer monographs in mathematics*. Springer Monographs in Mathematics. Springer, 2003. ISBN: 9783540435839. URL: http://books.google.de/books?id=pv94ATbagxEC.