12. 5. 2021 Jméno a příjmení: Místnost:	IZU	Skupina 3 Login:
	J E	and Charakka ar
1. Přeškrtněte vše, co nesouvisí s meto		
a. Seznam přípustných hodnotc. Gradient	b. d.	Stavy úlohy Konflikt
c. Gradiente. Obousměrné prohledávání	f.	Heuristika
-		
Zakroužkujte vše, co souvisí s metodou	-	
a. Rozklad na podproblémy	b.	Orientovaný graf
c. Ukládání uzlů do CLOSED	d.	AND/OR graf
e. Ohodnocení uzlů	f.	Cesta
2. Převeďte uvedené formule na klauz	ule a odvod	l'te jejich resolventu.
2. $\exists u \exists v \forall w (Q(u,v,g(w)) \lor \neg P(v,w,g(w)))$,u))	
3. V jazyku PROLOG zapište klauzulo	e pro průni	k tří množin.

4.	. Uvažujte desku s pěti poli v jedné řadě, na které jsou dva bílé (b) a dva če kameny. Stavy nechť popisují pětiprvkové seznamy, kde volné pole je ozmalým písmenem o, např. [c,b,b,o,c]. Úloha je dána počátečním stavem [b,b cílovým stavem [c,c,o,b,b] a čtyřmi operátory (pro prázdné pole o):					
	L1 - posun doleva	např.: $[c,b,b,o,c] \Rightarrow [c,b,o,b,c]$				

L1 - posun dolevanapř.: $[c,b,b,o,c] \Rightarrow [c,b,o,b,c]$ P1 - posun dopravanapř.: $[c,b,b,o,c] \Rightarrow [c,b,b,c,o]$ L2 - přeskok dolevanapř.: $[c,b,c,o,b] \Rightarrow [c,o,c,b,b]$ P2 - přeskok dopravanapř.: $[o,c,b,c,b] \Rightarrow [b,c,o,c,b]$

Úlohu řešte metodou BFS (slepé prohledávání do šířky) s použitím seznamů OPEN i CLOSED. Pořadí aplikace operátorů pro jednotlivé skupiny:

Skupina:	Pořadí operátorů:
1	L1 - P1 - L2 - P2
2	L2-P1-P2-L1
3	P1 - L2 - L1 - P2
4	P2 - L2 - L1 - P1
5	L1 - P2 - P1 - L2
6	P1 - L1 - P2 - L2

Vypište nalezenou cestu (5 bodů) a obsahy seznamů OPEN a CLOSED po expanzi třetího uzlu (5 bodů):

Cesta:	
OPEN:	
CLOSED:	

CLOSED:				
Prostor pro	poznámky			
		 	 	

5. Sítí perceptronů s lineární bázovou funkcí a s aktivační funkcí f(x)=1 pro x>0, f(0)=0, f(x)=-1 pro x<0 určete hodnoty na výstupu sítě (y1,y2) pro vstupní vektory (x1,x2), konkrétně pro vektor (0,0), (1,1), (0,1). Zapište jako (x1,x2)->(y1,y2), například (1,0)->(1,1).

6. Pro obraz daný maticí A a maskou danou maticí M proveďte konvoluci. Výsledný obraz uveďte opět jako matici.

A	A M					Konvoluce
8	7	5	4	3		
8	7	5	4	4	1/15 1/15 1/15	
7	7	5	5	4	1/15 3/15 1/15	
7	7	5	5	4	1/15 1/15 1/15	
7	7	7	5	5		

7. Popište princip genetických algoritmů. Pro jaké problémy se používají?