(21) International Application Number:

was filed:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

WO 93/17116

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: C12N 15/74, 1/21, 15/82 A1 (43) International Publication Date: C12N 15/52, 15/64, A01H 5/00

PCT/EP93/00463

2 September 1993 (02.09.93)

(74) Agents: HUYGENS, Arthur, Victor et al.; Gist-Brocades N.V., Patents and Trademarks Dept., Wateringseweg 1,

(22) International Filing Date: 25 February 1993 (25.02.93)

> (81) Designated States: JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

P.O. Box 1, NL-2600 MA Delft (NL).

(30) Priority data: 92200558.2 26 February 1992 (26.02.92) (34) Countries for which the regional or international application

NL et al.

(71) Applicants (for all designated States except US): MOGEN LEIDEN [NL/NL]; Stationsweg 46, NL-2312 AV Leid-

INTERNATIONAL N.V. [NL/NL]; Einsteinweg 97, NL-2333 CB Leiden (NL). RIJKSUNIVERSITEIT TE en (NL).

(72) Inventors; and (75) Inventors/Applicants (for US only): HOOYKAAS, Paul, Jan, Jacob [NL/NL]; Floris Vesterlaan 12, NL-2343 RS Leiden (NL). MOZO, Teresa [NL/DE]; Charlottenburger Ufer 11, D-1000 Berlin 10 (DE).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: AGROBACTERIUM STRAINS CAPABLE OF SITE-SPECIFIC RECOMBINATION

(57) Abstract

The invention provides Agrobacterium strains capable of producing a site-specific recombinase effecting site-specific recombination of a first and a second recombination site in said Agrobacterium strain, when present therein, comprising a structural DNA sequence encoding said recombinase and a DNA sequence capable of controlling expression in said Agrobacterium strains. Also provided are methods of use of said Agrobacterium strains, in particular for obtaining transformed plants.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinca	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal .
BR.	Brazil	iT	Italy	RO	Romania
CA	Canada	JР	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	•	•••	of Korea	SE	Sweden
	Congo Switzerland	KR	Republic of Korea	SK	Slovak Republic
CH		KZ	Knzakhstan	SN	Senegal
CI	Côte d'Ivoire	ᄔ	Liechtenstein	SU	Soviet Union
CM	Cameroon		••••	TD	Chad
cs	Czechoslovakia -	LK	Sri Lanka	TG	Togo
CZ	Czech Republic	ស	Luxembourg	UA	Ukraine `
DE	Germany	MC	Monaco		United States of America
DK	Denmark	MC	Madagascur	US	
ES	Spain	Mì.	Mali	VN	Viet Nam
FI	Finland	MN	Moneolia		

WO 93/17116 PCT/EP93/00463

AGROBACTERIUM STRAINS CAPABLE OF SITE-SPECIFIC RECOMBINATION

5

Ş.

FIELD OF THE INVENTION

The inv ntion concerns <u>Agrobacterium</u> strains which harbour recombinant DNA and which are capable of site-specific recombination, a method for obtaining said <u>Agrobacterium</u> strains, and methods of use of said <u>Agrobacterium</u> strains.

BACKGROUND OF THE INVENTION

Agrobacterium is a genus of gram-negative soil bacteria which cause neoplastic cell growth in dicotyledonous plants 15 by means of the natural system they possess for transferring phytohormone-producing DNA to plant cells. The T-(transferred) region is a segment of the large so-called Ti-(tumour inducing)plasmid (200 kb) harboured by all virulent Agrobacterium strains. (Occasionally, the T-region is also referred to as T-DNA). Mobilization of the T-region to the plant cells is mediated by another region of the Ti-plasmid, which is called the vir-(virulence) region, in a process that resembles bacterial conjugation (see for reviews: Melchers LS and Hooykaas PJJ (1987) In: Miflin BJ (ed) Oxford surveys of plant and cell biology, vol 4. Oxford Univ Press, London/New York, pp 167-220; Zambryski P (1988) Annu. Rev. Genet. 22:1-30; Zambryski P, Tempé J, Schell J (1989) Cell 56:193-201). This natural gene transfer system can be used to cotransfer DNA not naturally present in the T-region. The Tregion is flanked by two 24 bp imperfect direct repeats (T-DNA borders) which are the only cis-essential elements for the transfer process; i.e. the borders must be linked to the DNA to be transferred to the plant cell. An ideal vector system for transferring DNA to plant cells should comprise the DNA to be transferred into the plant cell flanked on both sides by T-DNA borders, although it has been established that the right T-DNA border, preferably in conjunction with a region just outside the T-region and referred to as "overdrive", suffices for the transfer of DNA. Although not essential, the presence of this overdrive increases the efficiency of transfer of the DNA flanking the right border. The second essential element, the vir region, can be

Ġ

provided in trans, i.e. not physically linked to the Tregion. This finding has originated in the development of a
binary vector system, in which the T-region, comprising DNA
to be co-transferred to the plant cell, is cloned into a

5 broad-host-range plasmid which is capable of replication in
Agrobacterium and E. coli, while the vir functions are
supplied by a disarmed helper plasmid which does not contain
a T-region (Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort
RA (1983) Nature 310:115-120; European Patent EP-B 120 516);

Bevan M (1984) Nucl. Acids. Res. 22:8711-8721). A binary
vector system wherein the T-region is located on the
chromosome of the Agrobacterium strain has also been
disclosed (EP-B 176 112).

Although a binary vector system is very versatile, broadhost-range plasmids are less suitable as routine cloning
vectors; they are large and generally have a low copy number.
Moreover, they are usually unstable in Agrobacterium in the
absence of selective pressure.

As an alternative to a binary vector system, one can use a 20 so-called cointegrate system. Typically, the <u>vir</u>-functions reside on a Ti-plasmid and the DNA to be co-transferred has to be recombined into this Ti-plasmid. All cloning steps can be done using an E. coli vector, whereafter this vector is introduced into Agrobacterium, for instance by triparental 25 mating or electroporation. Subsequently, homologous recombination between the vector and the acceptor Ti-plasmid has to take place, via a single or double cross-over, employing large regions of homology between the E. coli vector and the acceptor Ti-plasmid. The regions of homology 30 can for instance be engineered into the acceptor Ti-plasmid by replacing the DNA originally comprised between the T-DNA borders on said plasmid with cloning vector sequences, such as pBR322 (Van Haute E, Joos H, Maes M, Warren G, Van Montagu M, Schell J. (1983) EMBO J. 2:411-418; Zambryski P, Joos H, 35 Genetello C, Leemans J, Van Montagu M, Schell J. (1983) EMBO J 12:2143-2150; Deblaere R, Bytebier B, De Greve H, deboeck F, Schell J, Van Montagu M, Leemans J (1985) Nucl Acids Res 13:4777-4788). It is also possible to employ helper plasmids which are free of T-DNA borders as acceptor plasmids; in this

WO 93/17116 PCT/EP93/00463

- 3 -

case it will be necessary to provide at least the right T-DNA border operably linked to the DNA to be introduced into a plant cell on the cloning vector. A disadvantage of this system is that homologous recombination, especially the favoured double crossing over, is not a very efficient and precise process in <u>Agrobacterium</u> strains, necessitating tedious selection of the cells harbouring the desired cointegrates, before they can be used in plant transformation. An additional disadvantage of the resulting cointegrate plasmids resides in the fact that large regions of repetitive sequences occur, which may cause instability.

It is possible to perform the recombination steps in <u>E.</u>

<u>coli</u> instead of <u>Agrobacterium</u>, as described in EP-B 120 515,
and subsequently transferring the cointegrate plasmid to

<u>Agrobacterium</u> for use in plant transformation.

It would be advantageous if recombination can be performed in <u>Agrobacterium</u>, without the need for large regions of homology between the acceptor plasmid and the cloning vector.

20 <u>STATE OF THE ART</u>

30

Genetic recombination can be broadly divided into two categories: homologous recombination and site-specific recombination. With homologous recombination the actual site of recombination is not predictable in advance; large regions of homology are necessary to achieve recombination at a reasonable frequency, whereas with site-specific recombination the recombination site is precisely known; moreover, no extensive regions of homology are needed (for review: Craig et al., (1988) Annu. Rev. Genet. 22, 77-105).

A Cre-loxP site-specific recombination system of <u>E. coli</u> phage Pl has been dislosed (Sternberg N and Hamilton D (1981) J Mol Biol 150:467-486.); (lox: locus for recombination - <u>X</u> - from phage Pl; <u>cre</u>: <u>causing recombination</u>). The Cre recombinase recognizes the 34 bp <u>lox</u>P DNA sequence consisting of two 13 bp inverted repeats separated by a 8 bp non-symmetric sequence, and promotes its recombination with another <u>lox</u>P sequence. When the two <u>lox</u>P sites are present in different circular DNA molecules, the recombination event causes their cointegration, while when the two <u>lox</u>P sites are

in the same molecule, depending on their relative orientation (direct or inverted), the DNA lying in between is either excised or inverted (Abremski K, Hoess R, Sternberg N (1983) Cell 32: 13011-1311; Hoess RH, Wierzbicki A, Abremski K (1986) Nucl Acids Res 14: 2287-2300).

The system has been shown to work in yeasts (Sauer B (1987) Mol Cell biol 7:2087-2096) and mouse cultured cells (Sauer B and Henderson N (1989) Nucl. Acids. Res. 17:147-161.) and recently, it has been used for site-specific recombination in the genome of transgenic tobacco (Odell J, Caimi P, Sauer B, Russel S (1990) Mol Gen Genet 203:3669-378; International Patent Application WO91/09957).

Similar recombination systems, requiring only a single polypeptide enzyme and short specific DNA sequences (recombination sites) have been reviewed by Craig et al, (supra).

It is an object of the invention to provide Agrobacterium strains and vectors for use therein, which are capable of site-specific recombination, allowing for insertion of DNA not naturally present in said Agrobacterium strains.

SUMMARY OF THE INVENTION

The invention provides <u>Agrobacterium</u> strains capable of producing a site-specific recombinase capable of effecting site-specific recombination of a first and a second recombination site in <u>Agrobacterium</u> strains, when present therein, comprising a structural DNA sequence encoding said recombinase and a DNA sequence capable of controlling expression in <u>Agrobacterium</u> strains.

The invention also comprises <u>Agrobacterium</u> strains which further contain a first recombination site.

The invention further provides a method for producing a site-specific cointegrate in an Agrobacterium strain, comprising the steps of

- 35 introducing into an <u>Agrobacterium</u> strain which contains a first recombination site a DNA molecule harbouring a second recombination site compatible with said first recombination site, and
 - effecting production of the site-specific recombinase in

said Agrobacterium strain.

According to a preferred embodiment of the invention the said Agrobacterium strain harbours vir-functions, and said DNA molecule harbouring a second recombination site comprises

5 DNA not naturally present in a plant cell positioned to a right T-DNA border, or positioned between a left and a right T-DNA border, so as to allow co-transfer of said DNA with said right T-DNA border.

The invention further comprises site-specific cointegrates

10 and Agrobacterium strains comprising said site-specific
cointegrates.

The invention further comprises a method for obtaining a plant cell containing DNA not naturally present therein, comprising the steps of

-contacting plant cells with an <u>Agrobacterium</u> strain harbouring a site-specific cointegrate comprising virulence functions and DNA not naturally present in a plant cell positioned to a right T-DNA border, or positioned between a left and a right T-DNA border, so as to allow co-transfer of said DNA with said right T-DNA border, and -selecting a plant cell having obtained said DNA not natural. The present therein.

The ention further provides plant cells and plants as well a roducts and extracts obtained using a method accorded to the invention.

The invention further comprises Agrobacterium strains which comprise two compatible recombination sites which are in the same orientation and on the same molecule, so that upon production of the recombinase in said Agrobacterium

30 strains recombination is effected and the DNA in between the recombination sites is excised from said vector.

In another embodiment of the invention the latter

Agrobacterium strains comprise two compatible recombination

sites which are in the opposite orientation and on the same

molecule, so that upon production of the recombinase in said

Agrobacterium strains recombination is effected and the DNA

flanked by the recombination sites is inverted in said

molecule.

In a preferred embodiment of the invention said structural

DNA sequence is a <u>cre</u> coding gene sequence or a functional variant or portion thereof, and said DNA recombination site is a <u>lox</u>P locus, or functional variant or portion thereof.

DESCRIPTION OF THE FIGURES

Figure 1 shows schematically the construction of pRL756, harbouring the <u>cre</u> structural coding sequence under the control of the promoter from the <u>lac</u>-operon from <u>E. coli</u>, a tetracyclin resistance gene and a carbenicillin resistance gene on a plasmid which is unstable in <u>Agrobacterium</u> in the absence of selection.

Figure 2 shows the relevant features of pMOG621 and pMOG579.

15 Figure 3 shows schematically the construction of pAL1166, harbouring the <u>vir</u>-functions from pTiB6 and in which the T-region (including the T-DNA borders), has been exchanged with a DNA fragment containing a spectinomycin resistance gene and a <u>loxP</u> recombination site, via homologous recombination. This plasmid is useful for obtaining site-specific cointegrates which may subsequently be used for the transfer of DNA to plant cells. Since pAL1166 does no longer contain T-DNA borders, a second DNA molecule containing the DNA to be

introduced into plant cells should also provide at least a

25 right T-DNA border operably linked thereto.

Figure 4 schematically shows cointegration of pAL1166 and pRL754 via site-specific recombination of the loxP sites on both plasmids (upper right part); the lower part shows

30 potential cointegration of pRL754 and pRL756 via homologous recombination, due to the presence of regions of homology between these two plasmids. The latter event, if significant at all, can be avoided if the cre plasmid and the plasmid harbouring the DNA to be introduced share no homology or as little as possible.

Figure 5 represents a generalised scheme for obtaining cointegrates which contain a manipulated T-region for transfer to plant cells; The T-DNA comprises a gene of

interest, and, if desired, a marker gene allowing for selection or screening of transformed plant cells.

chr = Agrobacterium chromosome; M1 marker gene 1 for selection in Agrobacterium; pTi(&T-DNA) a disarmed (deleted T-DNA) Ti-plasmid harbouring vir-functions; M2 marker gene 2 for selection in Agrobacterium; M3 marker gene 3 for selection in Agrobacterium; M1 marker gene 3 for selection in Agrobacterium; M1 marker gene 2; LB = left border; RB = right border; incP = plasmid of incompatibility group P.

Figure 6 is a diagram of pMOG23, harbouring a chimeric kanamycin resistance gene for selection in plants, comprising promoter region from the nopaline synthase (nos) gene of

Agrobacterium tumefaciens, which is capable of controlling gene expression in plant cells, a structural coding sequence encoding the neomycin phosphotransferase, and the terminator region of the nos-gene.

Figure 7 diagrammatically illustrates the construction of pAL1766, a site-specific cointegrate, harbouring the chimeric plant expressible kanamycin resistance gene flanked on both sides by T-DNA borders, and the virulence functions from pAL1166. This plasmid was used to transfer the kanamycin resistance gene to tobacco cells and regenerate transformed tobacco plants.

Figure 8 represents a - non-exhaustive - overview of the various possibilities that are offered by the present invention. column A, B and C represent Agrobacterium strains having the cre* phenotype, e.g. by virtue of the presence of the cre recombinase gene on an incP plasmid (not drawn), or on a stable DNA molecule in Agrobacterium, provided that expression can be regulated through a repressor, an inducer or both; Roman figures represent process steps; Column B represents Agrobacterium strains obtained by either one of the process steps I - VI. Step VII indicates three alternatives (a) - (c) for changing the cre* phenotype into a cre* phenotype (absence of the recombinase); (a) represents

adding a repressor to silence otherwise constitutive expression of the recombinase gene; (b) represents the removal of an inducer of an otherwise repressed expression of the recombinase gene; and (c) represents the removal of the recombinase gene by removal of a plasmid that is unstable in said Agrobacterium strains.

Figure 9 is a autoradiograph of a Southern blot, showing the results obtained with the cointegrate experiments; for more detailed explanation see Example III-B.

DETAILED DESCRIPTION OF THE INVENTION

The steps that led to the findings of the present invention, as well as a number of the various ways of practicing the invention are worked out below, in more detail.

To establish whether it was possible to obtain

Agrobacterium strains capable of site-specific recombination,
the site-specific recombinase Cre and the recombination site

loxP were tested in Agrobacterium tumefaciens.

A DNA fragment encoding the structural coding sequence of the <u>cre</u> gene was cloned and positioned under the control of the promoter from the lac-operon from <u>E. coli</u>. This promoter is inducible in <u>E. coli</u> but known to be constitutive in the absence of the repressor in <u>Agrobacterium</u>. This <u>cre</u> gene construct was cloned into an incP plasmid, pNJ5000, yielding pRL756, which appeared unstable in <u>Agrobacterium tumefaciens</u> strain MOG101 in the absence of tetracycline or carbenicillin.

30 As a first substrate molecule for Cre-mediated sitespecific recombination a disarmed (without T-region) helper
plasmid was constructed from pTiB6. This was done in

Agrobacterium tumefaciens strain LBA1010, by exchanging the
T-region from pTiB6 with a DNA fragment containing a loxP35 site and a spectinomycin marker gene, via homologous
recombination (double crossing-over), employing regions of
homology outside the T-DNA borders on pTiB6. This plasmid,
derived from pTiB6, now harbouring the vir-functions for TDNA transfer to plant cells, a loxP locus, the spectinomycin

marker and no T-DNA borders, was called pAL1166. establish that Cre-mediated site-specific recombination between the loxP site of pAL1166 and a loxP site of a second DNA molecule can indeed take place in Agrobacterium 5 tumefaciens, a second DNA molecule, pRL754 harbouring a loxP site and a kanamycin resistance gene under the control of a promoter on a plasmid derived from pIC20H, was introduced into Agrobacterium strain that harboured both pRL756 and pAL1166, and cointegrate formation was checked by selecting 10 for kanamycin resistance. In the absence of the Cre plasmid pRL756, which was removed in the absence of selection for Carbenicillin and Tetracycline, the cointegrates appeared stable.

From these experiments it was concluded that Cre-mediated site-specific recombination between a first and a second <u>lox</u>P site is a very efficient process in Agrobacterium tumefaciens, and that the cointegrates remain stable, which opens new perspectives for the introduction of DNA into Agrobacterium which is not naturally present therein.

To find out whether cointegrates obtained via Cre-mediated site-specific recombination can also be used for plant transformation, the above experiment was repeated in a slightly modified way. Into plasmid pRL754, shown to be cointegrated into pAL1166 in the above experiment, a DNA 25 fragment containing a left T-DNA border, a plant expressible kanamycin resistance gene under the control of the promoter of the nopaline synthase gene of Agrobacterium tumefaciens, and a right T-DNA border. This plasmid was introduced into the Agrobacterium tumefaciens strain harbouring the Cre 30 plasmid pRL756 and plasmid pAL1166, and strains harbouring Cre-mediated site-specific cointegrates were selected as above.

To assess whether Agrobacterium strains harbouring these site-specific cointegrates are capable of co-transferring the 35 plant expressible kanamycin resistance gene located between the T-DNA borders to plant cells, the Km resistant Agrobacterium strains wer used for transformation of tobacco plants. It was found that Agrobacterium strains harbouring these site-specific cointegrates were equally capable of

effective transfer of T-DNA to plant cells as comparable strains harbouring the same manipulated T-region on binary vectors.

Transformed tobacco plants are now grown to maturity and allowed to set seed. It is predicted that the stability of the kanamycin resistant phenotype does not differ from conventionally transformed plants, and that the trait is transferred to the progeny.

It will be clear from the experiments above that site
10 specific recombination makes <u>Agrobacterium</u> a more versatile system, both if used as a plant transformation system and as a host for foreign DNA expression <u>per se</u>.

DNA to be introduced into <u>Agrobacterium</u>, <u>e.g.</u> modified Tregions for plant transformation harbouring gene cassettes to
be transferred to plant cells, or genes meant to be expressed
in <u>Agrobacterium</u> itself, can be cloned suitably in small and
sophisticated cloning vectors for any suitable host, said
vectors only requiring to comprise a recombination site,
which is easily inserted into said vector as a small DNA
fragment.

Since this site-specific recombination system is completely independent of conventional homologous recombination, large regions of homology are not necessary to achieve recombination, and one can even work in an Agrobacterium strain that is deficient for homologous recombination (rec), thus further reducing the occurrence of unwanted rearrangements which may be due to coincidental regions of homology.

As is reflected diagrammatically in figure 8, site-30 specific recombination according to the invention is intended to cover both cointegration, excision and inversion.

Cointegration, whereby at least two DNA molecules recombine to form at least one larger DNA molecule, is reflected in steps I, II, and III. Step I indicates the possibility to simultaneously introduce into Agrobacterium at least two DNA molecules capable of site-specific recombination. In this particular situation at least one of both DNA molecules should contain an origin of replication that is functional in Agrobacterium, should it be desired

and III indicate the formation of a cointegrate where at least one DNA molecule is resident and another DNA molecule is newly introduced, whereby the resident DNA molecule in step II is a chromosome of Agrobacterium, and in step III the resident molecule is a plasmid. Obviously, this is not indicated, it would be possible to introduce DNA molecules into cre Agrobacterium strains, and furnish the Crerecombinase for instance by introducing a plasmid containing the gene, simultaneously, or after the introduction of the said DNA molecules.

Step VII is a preferred step for stabilising a formed site-specific cointegrate obtained after steps such as I - III; (a) refers to adding to <u>Agrobacterium</u> a repressor for the <u>cre</u>-gene, alternatively, or additionally (b) the inducer of normally repressed gene can be removed, or (c) the gene encoding the Cre-recombinase can removed in its entirety by allowing an unstable plasmid to become lost from the <u>Agrobacterium</u> strains.

20 Steps IV - VI indicate the possibility to excise or invert fragments of DNA between two recombination sites.

According to a preferred embodiment of the invention the Agrobacterium strains according to the invention are used as a transfer system of DNA to plant cells.

Preferred DNA to be transferred to plant cells are genes encoding protein, and a expression controlling DNA sequence such that upon expression of the gene the protein is produced in a plant or plant cell at the desired stage and at the desired site in the plant. The gene of interest may also comprise genes which can be expressed in the form of an RNA sequence which does not encode protein, such as antisense genes, ribozyme genes and the like. The gene of interest not necessarily needs to be capable of being transcribed; it may as well be a recognition sequence that can be recognized by proteins, e.g. a recombinase, a nuclease and the like, or by

More specific examples of the use of a gene of interest include but are not limited to those involved with fungal resistance (EP-A 392 225, International Patent Application

man, serving as a genetic label.

W090/07001; EP-A 440 304), insect resistance (EP-A 193 259), nematode resistance (EP-A 352 052), virus resistanc (EP-A 223 452), altered carbohydrate composition (W090/12876; EP-A 438 904), altered oil composition (EP-A 225 377), seed storage proteins with altered amino acid composition (EP-A), male sterility (EP-A 329 308), modified flower color (EP-A 335 451), delayed fruit ripening (W091/01375), salt resistance (W091/06651), herbicide resistance (EP-A 218 571; EP-A 369 637), production of pharmaceutical products (EP-A 436 003) and the like.

Suitable DNA sequences for control of expression of genes of interest, or marker genes, such as promoters, enhancers, non-transcribed leaders and the like, may be derived from any gene that is expressed in a plant cell, including plant genes (EP-122 791), genes located on wild-type T-DNA of Agrobacterium (EP-A 126 546), plant virus genes (EP-B 131 623), including functional portions, hybrids, or synthetic copies thereof.

To select or screen for transformed cells, it is preferred 20 to include marker genes linked to the gene of interest in the T-region that is to be transferred to the plant cell. The choice of a suitable marker gene in plant transformation is well within the scope of the average skilled worker; some examples of routinely used marker genes are the neomycin-25 phosphotransferase genes conferring resistance to kanamycin (EP-B 131 623), the Glutathion-S-transferase gene from rat liver conferring resistance to glutathion derived herbicides (EP-A 256 223), glutamin synthetase confering upon overexpression resistance to glutamine synthetase inhibitors 30 such as phosphinotricin (WO87/05327), the acetyl transferase gene from Streptomyces viridochromogenes confering resistance to the selective agent phosphinotricin (EP-A 275 957), the gene encoding a 5-enolshikimate-3-phosphate synthase (EPSPS) conferring tolerance to N-phosphonomethylglycine, the bar 35 gene conferring resistance against Bialaphos (e.g. WO91/02071) and the like. The actual choice of the marker is not crucial as long as it is functional (i.e. selective) in combination with the plant cells of choice.

The marker gene and the gene of interest do not have to be

linked, since co-transformation of unlinked genes (U.S. Patent 4,399,216) is also an efficient proces in plant transformation.

Transformed cells obtained and selected according to the invention may be used as such, for instance for the production of a pharmaceutical compound in cell suspension cultures, or used to generate a whole new plant.

The choice of plant material for obtaining transformed plant cells and/or generation of whole new transformed plants is not critical to this invention as long as it is amenable to T-DNA transfer by Agrobacterium strains.

Especially preferred plant material, especially for dicotyledonous crops are leaf-discs which can be readily transformed and have good regenerative capability (Horsch R.B. et al., (1985) Science 227, 1229-1231).

Monocotyledonous plants are amenable to DNA transfer by

Agrobacterium strains (EP-B 159 418), including commercially
important crops such as corn (Gould J, Michael D, Hasegawa O,
Ulian EC, Peterson G, Smith RH, (1991) Plant. Physiol. 95,
20 426-434).

Recent reports suggest that <u>Agrobacterium</u> mediated DNA transfer may be combined with tissues that have been wounded by microprojectile bombardment (Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G, (1992), Plant Mol Biol <u>18</u>, 301-313).

It should be clear that the <u>Agrobacterium</u> strains according to the invention can be used for plant transformation just as 'conventional' <u>Agrobacterium</u> strains using the same techniques as employed with conventional

30 <u>Agrobacterium</u> strains. It is therefore clear that alternative ways of using <u>Agrobacterium</u> for plant transformation, not explicitly mentioned here, do not depart from the scope of the invention.

All references cited in this specification are indicative of the level of skill in the arts to which the invention pertains. All publications, whether patents or otherwise, referred to previously or later in this specification are herein incorporated by reference as if each of them was individually incorporated by reference.

The Examples given below are just given for purposes of enablement and do not intend in any way to limit the scope of the invention.

5

Experimental

Bacterial strains, plasmids and bacteriophage. E. coli MH1 (Goddard JM, Caput D, Williams SR, Martin Jr DW (1983) Proc Natl Acad Sci USA 80:4281-4285) and JM101 10 (Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103-119) were used for cloning. A. tumefaciens strains were: LBA1010 (C58, pTiB6, Rif) (Koekman et al., (1982) Plasmid 7, 119-132), MOG1010 (derived from LBA1010 by substitution of the T-DNA by a spectinomycin marker) and UIA143 (C58 recA 15 mutant, pTi-cured, Ery) (Farrand SK, O'Morchoe SP, McCutchan J (1989) J Bacteriol 171: 5314-5321). Plasmids used in this work were: pUC19 (Yanisch-Perron et al, 1985, supra), pIC20H (Marsh JL, Erfle M, Wykes EJ (1984) Gene 32:481-485; figure 3), pHP45ΩKm (pBR322 derivative containing a kanamycin gene) 20 (Fellay R, Frey J, Krisch H (1987) Gene 52:147-154), pMOG621 (pBR322 derivative containing two pTiB6 T-DNA flanking fragments), pMOG579 (pMOG621 with a spectinomycin cassette separating the two pTiB6 fragments; figure 2), pNJ5000 (RP4 unstable derivative, Tc; Figure 1) (Grinter NJ (1983) Gene 25 21:133-143), pBIN19 (incP binary vector, Km) (Bevan, 1984, <u>supra</u>), and pRK2013 (Ditta G, Stanfield S, Corbin D, Helinski D (1980) Proc Natl Acad Sci USA 77:7347-7351). Pl phage used was Piclr100Cm.

30

Culture conditions

E. coli cells were grown in LC medium (Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rorsch A (1977) J Gen Microbiol. 98:477-484) at 37 °C (Pl containment cells). Antibiotics were added to the following concentrations:
35 carbenicillin, 100 μg/ml; kanamycin, 25 μg/ml; spectinomycin, 50 μg/ml; tetracycline, 5 μg/ml; cloramphenicol, 50 μg/ml. Agrobacterium strains were grown in LC medium (Hooykaas et al, 1977, supra) at 29 °C. Antibiotic concentrations used were; carbenicillin, 75 μg/ml; kanamycin, 100 μg/ml;

spectinomycin, 250 μ g/ml; tetracycline, 2 μ g/ml; rifampicin, 20 μ g/ml; erythromycin, 100 μ g/ml.

DNA procedures

5 DNA isolation from E. coli, restriction, ligation, transformation, nick-translation of probes, and Southern blot to nitrocellulose filters were performed according to standard techniques (Sambrook J. Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, second 10 edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York). Plasmid DNA was isolated from Agrobacterium by a modification of the alkaline lysis procedure of Birnboim and Doly (Birnboim HC, Doly J (1979) Nucl. Acids Res. 7:1513-1523), in which an extra denaturing 15 step was included by the addition of a NaOH-phenol solution (2x 0.2 N NaOH, 1x Tris-saturated phenol) to the alkaline lysate (1/10 vol.). Hybridization was carried out at 42 °C in 50% formamide, 5x SSC, and the hybridized filters were washed at 42 °C in 2x SSC, 0.1% SDS.

20

Plasmid transfer to Agrobacterium strains.

Plasmids were routinely introduced into the <u>Agrobacterium</u> strains by electroporation, as described (Mozo T, Hooykaas PJJ (1991) Plant Mol. Biol. 16:917-918). Triparental matings according to Ditta et al. (<u>supra</u>) were used when a double cross-over was intended.

PCR amplification of the cre gene.

PCR was performed in a Biozym-PREM processor. The DNA

isolated form 0.5 ml of an overnight culture of Pl containing

<u>E. coli</u> cells was <u>Eco</u>RI digested (the <u>cre</u> gene has no <u>Eco</u>RI sites (Sternberg N, Sauer B, Hoess R, Abremski K (1986) J.

Mol. Biol 187:197-212), and used for PCR in a final volume of 100 μl. The reaction mixture contained: 50 mM KCl, 10 mM

Tris-HCl (pH 8.8), 1.5 mM MgCl₂, 100 μg/ml BSA, 50 μM of each nucleotide (Pharmacia), 0.45 μM of each primer and 5 U of Tag polymerase (Promega). Reactions were overlaid with 75 μl of mineral oil. The mixture was heated at 93 °C for 2 min to denature the DNA, cooled at 55 °C for 1 min to anneal the

primers, and heated again to 72 °C for 1 min to initiate the amplification. The actual amplification took place during 20 cycles of 93 °C - 1 min, 55 °C - 1 min, 72 °C - 1 min, followed by a final elongation step of 5 min at 72 °C. The mixture was finally extracted twice with chloroform to remove the oil. The primers were designed to obtain a final 5' SphI - 3' EcoRI cre gene, with no native promoter (Sternberg et al., supra). The sequence of the upstream primer was 5'-GGGCATGCGGAGTGTTAAATGTCC-3' (SEQIDNO: 1), and the downstream primer was 5'-GGGAATTCATGGCTAATCGCCATC-3' (SEQIDNO: 2) (start and stop codons are underlined).

LoxP sequence.

A 41 bp synthetic <u>BamHI-Eco</u>RI <u>lox</u>P sequence was

15 constructed from the oligonucleotides: P1, 5'
GGATCCATAACTTCGTATAATGTATGCTATACGAAGTTATG-3'(SEQIDNO: 3), and

P2, 5'-GAATTCATAACTTCGTATAGCATACATTATACGAAGTTATG-3' (SEQIDNO: 4).

20

Example I

Obtention of Agrobacterium strain MOG101

A helper plasmid conferring the <u>Agrobacterium tumefaciens</u> virulence functions derived from the octopine Ti-plasmid pTiB6 was constructed, MOG101. MOG101 is a <u>Agrobacterium</u>

25 <u>tumefaciens</u> strain carrying a non-oncogenic Ti-plasmid from which the entire T-region was substituted by a bacterial Spectinomycin resistance marker from transposon Tn 1831 (Hooykaas <u>et al.</u>, 1980 Plasmid <u>4</u>, 64-75).

The Ti-plasmid pTiB6 contains two adjacent T-regions, TL

(T-left) and TR (T-right). To obtain a derivative lacking the
TL- and TR-regions, we constructed intermediate vector
pMOG579. Plasmid pMOG621 is a pBR322 derivative, which
contains the 2 Ti-plasmid fragments that are located to the
left and right, outside the T-regions (Figure 2). In pMOG579

the 2 fragments (shown in dark) were separated by a 2.5 kb
BamHI - HindIII fragment from transposon Tn1831 (Hooykaas et
al., 1980 Plasmid 4, 64-75) carrying the spectinomycin
resistance marker (Figure 2). The plasmid was introduced into
Agrobacterium tumefaciens strain LBA1010 [C58-C9 (pTiB6) = a

cured C58 strain in which pTiB6 was introduced (Koekman et al. (1982), Plasmid 7, 119-132) by triparental mating from E.coli, using HB101 8pRK2013) as a helper. Transconjugants were selected for resistance to Rifampicin (20 mg/l) and spectinomycin (250 mg/l). A double recombination between pMOG579 and pTiB6 resulted in loss of carbenicillin resistance (the pBR322 marker) and deletion of the entire Tregion. Of 5000 spectinomycin resistant transconjugants replica plated onto carbenicillin (100 mg/l) 2 were found sensitive. Southern analysis showed that a double crossing over event had deleted the entire T-region (not shown). The resulting strain was called MOG101. This strain and its construction is analogous to strain GV2260 (Deblaere et al. 1985, Nucl. Acid Res. 13, 4777-4788).

15

Example II

Construction of pRL756 harbouring the cre gene on a plasmid unstable in Agrobacterium

The PCR fragment containing the cre gene was digested with SphI and EcoRI and cloned into the polylinker site of plasmid pUC19 (Fig. 1). The resulting construct contains the cre-gene under the control of the lac promoter. The resulting pUC19cre plasmid was subsequently cloned into the unique EcoRI site of the incP plasmid pNJ5000. The Cb marker of the pUC19 25 plasmid, allowing positive selection for the recombinant clones, made straightforward an otherwise highly difficult cloning step, given the large size (44 kb) and low copy number of the plasmid pNJ5000. The stability of the final cre-construct (pRL756) was checked in the Agrobacterium 30 strain MOG1010. In these experiments, between 50% and 70% of the population lost the plasmid after 24 hours of growth in liquid medium in the absence of both carbenicillin and tetracycline, while pRL756 was so bly maintained in the Agrobacterium cells when both ar biotics were included in 35 the culture medium (data not shown).

Example III

Construction of a pTi-loxP disarmed helper.

An EcoRI loxP-Spc cassette was constructed in two steps in plasmid pIC20H (details of the cloning procedures are shown in Fig. 3). This cassette was subsequently cloned into the EcoRI site of plasmid pMOG621. This plasmid contains two 5 fragments from pTiB6 which flank the T-DNA outside the left and right borders in the original pTiB6 and can therefore, be used as intermediate for T-DNA elimination or substitution by double homologous recombination at these two pTi fragments. The resulting plasmid pMOG622 was introduced by triparental 10 mating into Agrobacterium strain LBA1010, and double recombinants in which the T-DNA had been exchanged by the loxP-Spc cassette were selected by resistance to spectinomycin and sensitivity to carbenicillin (indicating loss of the pBR322 vector part of pMOG622). The presence of the loxP-Spc cassette in the resulting pLBA1010 (δT -DNA)::loxP-Spc disarmed helper was checked by Southern blot (Fig. 9). This plasmid was called pAL1166 (see figure 3).

EXAMPLE III-A

20

Cre-mediate cointegration experiments

In order to determine whether the two plasmids described above can actually mediate loxP-site specific recombination, a third plasmid was constructed by cloning a kanamycin resistance gene into the EcoRI site of plasmid pRL753 (Fig. 3). The resulting plasmid pRL754 was used to check cointegrate formation after electroporation into Agrobacterium strains containing the loxP system by selection for Km" colonies suggesting that site-specific recombination has taken place. The results are discussed more extensively in Example III-B.

EXAMPLE III-B

Control experiments and evidence for site-specific Cre
35 mediated cointegration

A number of experimetrs were carried out to provide evidence that Cre-loxP mediated site-specific recombination accounted for cointegrate formation.

Besides the strain containing both the pTi-loxP disarmed

helper pAL1166 and the Cre-plasmid pRL756, strains containing only pAL1166 or a n rmal pTi helper plus pRL756 wer used as control. In addition, a strain in which pRL757 had been integrated into MOG101 by single recombination at the Spc 5 marker gene was included in the experiments in order to compare the efficiency of the loxP-Cre mediated and the normal homologous recombination processes. In a parallel experiment and as a way to assess that all the Agrobacterium strains used had similar levels of competence for DNA uptake, 10 the same strains were also electroporated with the Km^r plasmid pBIN19. The results of these experiments are presented in Table 1A. As can be seen from the table, the strains used did not differ significantly in their competence for DNA uptake of the control plasmid pBIN19. However, none 15 or a just a single Km^r transformant was obtained when pRL754 was electroporated into the strains that did not contain any of the <u>lox</u>P-Cre elements or only contain the <u>lox</u>P site as homologous recombination between the common pIC20H-loxP sequences was apparent when pRL754 was introduced into the 20 strain containing pRL757 integrated into the pTi plasmid. A similar frequency of homologous recombination was observed for the strain containing pRL756 and no loxP site. In this case, the incoming plasmid and the resident pRL756 have in common the pUC replication and Cb regions (Fig. 4). The 25 homology between these two plasmids posed an important problem to assess loxP-Cre site-specific recombination in the strain containing both the pAL1166 helper and pRL756. Although a slightly higher transformation frequency was obtained by electroporation of pRL754 into that strain, this 30 increase was not enough to be attributed to the addition of loxP-Cre specific recombination events to the already shown highly efficient pUC-Cb mediated homologous recombination, considering that this strain also resulted in more Km^r transformants when electroporated with pBIN19. An indirect 35 approach was followed in order to check whether loxP-Cre site-specific recombination had actually occurred. The Km^r transformants obtained by electroporation of pRL754 into the strains containing pRL756 and either the normal helper

pMOG101 or the pTi-loxP helper pAL1166 were separately

pooled, grown overnight in liquid cultures with and without kanamycin, and plated in media without antibiotics, with kanamycin and with tetracycline to assay for the stability of the markers (Table 2). These experiments showed that, when 5 growing in antibiotic-free medium, Km and Tc were lost at the same rate (12%) in the case of the cells which did not include the loxP site, thus indicating that Km is linked to To in the unstable pRL756 plasmid. In contrast, in the case of the transformants obtained with the pAL1166 helper 10 containing strain, Tc was lost in a 91% of the cells, while the rate for the Km loss was only of 38%. In agreement with that, when this second group of transformants was grown in Km, only 13,5% of the cells retained the Tc marker. These results, showing that there is no linkage between Km and to 15 markers in the Km^r transformants obtained by electroporation of pRL753, demonstrate that the incoming plasmid is not cointegrated with pRL756 and suggest that the Km resistance is due to integration of pRL754 into pAL1166 by loxP-Cre mediated recombination.

The cointegration between the incoming plasmid and pRL756 may have also occurred, but since this would give rise to different <u>lox</u>P containing plasmids in the same cell, the situation would not be stable, unless the Cre plasmid pRL756 or a putative pRL756::pRL754 cointegrate plasmid would have been lost. This instability is also suggested by the higher rate of Km^r loss from this group of transformants when growing in antibiotic-free medium (38% vs. 12% in the <u>lox</u>P absent transformants).

In order to more definitively assess the loxP-Cre site30 specific recombination in our system, the above described electroporation experiments were repeated in a Recabackground (Table 1B), in which no homologous recombination events should occur. As expected, the transformation frequency in the case of the strain containing pRL757
35 integrated into the pTi was now reduced to the levels obtained when no homologous sequences or only the small loxP site were involved (this levels can be assimilated to the frequency of spontaneous mutations). However, despite the Recaback, the transformation frequencies in both strains

containing pRL756 was again similar, independent of the presenc of the loxP site. This unexpected result indicates that the Cre protein may mediate recombination at sites different from the loxP sequence. In an attempt to 5 discriminate between these two types of Cre-mediated recombination, the Km^r transformants obtained with both the loxP-present and absent strains were directly checked, without further culturing, for the presence of the Km and Tc resistance markers. While all MOG101(pRL756) transformants 10 were Km^r Tc^r, 50% of the pAL1166 transformants were Km^r Tc^s, thus indicating that pRL756 had been lost shortly after the loxP-Cre mediated cointegration of pRL754 into the pAL1166. The remaining 50% Km' Tc' transformants would likely include only pRL754::pRL756 cointegrates because of the stability 15 problems that the coexistence of different loxP containing plasmids in the same cell in the presence of the cre protein may cause, as discussed. The recombination events were checked by Southern blot analysis of four representatives of each type (Tcr and Tcs) of transformants (Fig. 4). The 20 plasmid DNA isolated from those transformants was HindIII digested and hybridized with labelled pRL754. In the case of all Tc transformants checked, three bands corresponding with the <u>HindIII</u> fragments of a putative pRL757::pRL754 cointegrate (Fig. 8) were observed, together with the HindIII 25 pAL1166 fragment which contains the <u>lox</u>P sequence (Fig. 3). The stronger hybridization signal in the upper band corresponding to the 44 kb pRL756 is likely due to the presence of non-cointegrated copies of this plasmid, since incP plasmids can exist in several copies per cell and the 30 cointegration of the Km-containing incoming plasmid in only one of them should be enough to confer Km resistance. In the Tc⁵ transformants this upper band was absent, as like the pAL1166 fragment containing the <u>lox</u>P site. Three bands were observed in this case corresponding to the expected HindIII 35 fragments of a pAL1166::pRL754 cointegrate obtained by recombination at the loxP site (Fig. 4). Again there is a difference in the relative intensity of the hybridizing bands which can be attributed to the integration of several copies of the incoming plasmid into the pTi-loxP helper plasmid

(pAL1166).

These results clearly show that <u>lox</u>P-Cre mediated sitespecific cointegrate formation works efficiently in the
<u>Agrobacterium</u> cells and is a useful alternative for obtaining
5 cointegrates using homologous recombination.

Example IV

Construction of a pTi::T-DNA cointegrate

- Having established the process of LoxP-Cre mediated cointegrate formation in Agrobacterium, we carried out experiments to introduce a modified T-region into the disarmed LoxP-helper plasmid pAL1166. To this aim we subcloned the T-region fragment as contained on the binary vector pMOG23 (in E. coli K-12 strain DH5α, deposited at the Centraal Bureau voor Schimmelcultures on Jan 29, 1990 under accession number CBS 102.90). As shown in Fig. 6, the entire T-region of pMOG23, carrying a chimeric NPTII gene between its left and right borders, is contained on a BGIIII- restriction fragment. This fragment was subcloned into
- 20 restriction fragment. This fragment was subcloned into plasmid pRL754 (Example III-A3) linearized with the enzyme BamHI.

The resulting plasmid pMOG623 was integrated into pAL1166 as shown in Figure 7. The <u>Agrobacterium</u> strain carrying pAL1166 25 and pRL756 (Example II) was electroporated with plasmid pMOG623 selecting for kanamycin resistance. This was followed for screening for loss of Tc^R, indicative for loss of pRL756. This process resulted in the formation of of a pAL1166-pMOG623 cointegrate, called pAL1766. Its structure is shown in Fig. 7.

Example V

Plant transformation

The <u>Agrobacterium</u> strain pAL1766 was used for transformation of tobacco plants, next to <u>Agrobacterium</u>

35 strain MOG101 carrying pMOG23. This was done to compare the transformation capability of strains constructed via <u>lox</u>P-Cre mediated cointegrate formation with strains carrying binary vectors.

Transformation of tobacco (Nicotiana tabacum cv. Petit

Havana SR1) was done via cocultivation of 50 leaf discs according to the procedure of Horsch et al. (Horsch et al., (1985), Science 227, 1229-1231). In experiments with both strains, the leaf discs were cocultivated with bacteria grown to OD550 of 0.5 during 48 hrs, and transferred to selective media (100 mgs/l kanamycin). After 4-6 weeks shoots were obtained and assayed for proper rooting on kanamycin (100 mgs/l), transferred to soil and allowed to selfpollinate and set seed. Seeds from individual transformants were pooled and germinated on kanamycin (200 mgs/l). From these experiments out of 50 leaf discs a total of 25-30 transgenic plants was recovered. No differences were observed in numbers or appearance of plants obtained via either vector system. Deposit of microorganisms

15 Agrobacterium tumefaciens strain LBAll66 harbouring pALl166 has been deposited at the NCC, Julianalaan 67, Delft, The Netherlands, on February 26, 1992, under deposit number cbs 147.92.

SEQUENCE LISTING

(1) GENERAL	INFORMATION:
-------------	--------------

5

25

(i) APPLICANT:

- (A) NAME: MOGEN International N.V.
- (B) STREET: Einsteinweg 97
- (C) CITY: LEIDEN
- 10 (D) STATE: Zuid-Holland
 - (E) COUNTRY: The Netherlands
 - (F) POSTAL CODE (ZIP): NL-2333 CB
 - (G) TELEPHONE: (0)31.71.258282
 - (H) TELEFAX: (0)31.71.221471
- 15 (I) TELEX: -
 - (A) NAME: Rijksuniversiteit te Leiden
 - (B) STREET: Stationsweg 46
 - (C) CITY: LEIDEN
- 20 (D) STATE: Zuid-Holland
 - (E) COUNTRY: The Netherelands
 - (F) POSTAL CODE (ZIP): NL-2312 AV
 - (ii) TITLE OF INVENTION: ACROBACTERIUM BACTERIA CAPABLE OF SITE-SPECIFIC RECOMBINATION
 - (iii) NUMBER OF SEQUENCES: 4
 - (iv) COMPUTER READABLE FORM:
- 30 (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- 35 (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: EP 92200558.2
 - (B) FILING DATE: 26-FEB-1992

(2)	INFORMATION	FOR	SEO	ID	NO:	1:
	TIT ON F TT TO!	7	~~~			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGIH: 24 base pairs

5 (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

10

(iii) HYPOTHETICAL: YES

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GGGCATGCGG AGTGTTAAAT GTCC

: 24

(2) INFORMATION FOR SEQ ID NO: 2:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

25

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (iii) HYPOTHETTCAL: YES

30

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
- 35 GGGAATTCAT GGCTAATCGC CATC

24

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:

30

	- 26 -						
	(A) IENGTH: 41 base pairs						
	(B) TYPE: nucleic acid						
	(C) STRANDEDNESS: single		`				
	· · · · · · · · · · · · · · · · · · ·						
_	(D) TOPOLOGY: linear				•		
5							
	(ii) MOLECULE TYPE: cDNA						
	(111)						
	(iii) hypothetical: Yes			-			
	·						
10							٠
	(all appropriate appropriate and TD No. 2.						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:			•			,
	COMPONED A CONTROL OF THE PROPERTY AND A CONTROL OF THE PROPERTY A				`		Д.
15	GGATOCATAA CITOGIATAA TGIATGCIAT ACGAAGITAT G					•	-1.
13	(2) INFORMATION FOR SEQ ID NO: 4:				ar.		
	(2) INFORMATION FOR SEQ ID No. 4.						
17.	(i) SEQUENCE CHARACTERISTICS:						
	(A) IENGIH: 41 base pairs						
20	(B) TYPE: nucleic acid						
20	(C) STRANDEDNESS: single	,					
							•
	(D) TOPOLOGY: linear						
-	(44) MOTEVETTE METER, APAR					-	
). 2E	(ii) MOLECULE TYPE: cDNA			•			
25	(444) INFORMATION - 1000						٠,
	(iii) HYPOTHETICAL: YES						
			ı				
,							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

GAATTCATAA CITCGIATAG CATACATTAT ACGAAGITAT G

35

CLAIMS

- An <u>Agrobacterium</u> strain capable of producing a site-specific recombinase capable of effecting site-specific recombination of a first and a second recombination site in said <u>Agrobacterium</u> strain, when present therein, comprising a structural DNA sequence encoding said recombinase and a DNA sequence capable of controlling expression in said <u>Agrobacterium</u> strains.
- 10 2. An <u>Agrobacterium</u> strain according to claim 1, further comprising a first recombination site.
 - 3. An <u>Agrobacterium</u> strain according to claim 2, wherein said recombination site is located on a plasmid.
 - 4. An <u>Agrobacterium</u> strain according to claim 3, wherein said plasmid is a helper plasmid harbouring <u>vir</u>-functions.
- 5. An <u>Agrobacterium</u> strain according to claim 4, wherein 20 said helper plasmid does not contain T-DNA borders.
 - An <u>Agrobacterium</u> strain according to any one of claim 1
 5, wherein said recombinase is Cre recombinase.
- 25 7. An <u>Agrobacterium</u> strain according to claim 2 6, wherein said recombination site is a <u>low</u>P site.
- 8. An <u>Agrobacterium</u> strain according to claim 6, wherein said structural DNA sequence encoding Cre is on a plasmid that is unstable in said <u>Agrobacterium</u> strain.
 - 9. An <u>Agrobacterium</u> strain according to claim 8, wherein said structural coding sequence is under the control of the <u>lac</u> promoter from <u>F. coli</u>.
 - 10. A method for producing a site-specific cointegrate in an Agrobacterium strain, comprising the steps of
 - introducing into an Agrobacterium strain according to any one of claims
 - 2 9 a DNA molecule harbouring a second recombination site compatible

therein.

with said first recombination site, and
- effecting production of the site-specific recombinase in said
Agrobacterium strain.

- A method according to claim 10, further comprising the steps of
 effecting a reduced production of the site-specific recombinase, and
 selecting <u>Agrobacterium</u> strains harbouring the site-specific cointegrate.
- 10 12. A method according to claim 10 or 11, wherein said

 Agrobacterium strain harbours vir-functions, and wherein said DNA

 molecule harbouring a second recombination site comprises DNA not

 naturally present in a plant cell positioned to a right T-DNA border so
 as to allow co-transfer of said DNA with said right T-DNA border.

12. A site-specific cointegrate obtained using a method of claim

- 13. A site-specific cointegrate obtained using a method of claim 10 20 or 11.
 - 14. A site-specific cointegrate obtained using a method of claim12.
- 25 15. <u>Agrobacterium</u> strains comprising a site-specific cointegrate of claim 10-13.
 - 16. A method for obtaining a plant cell containing DNA not naturally present therein, comprising the steps of
- -contacting plant cells with an <u>Agrobacterium</u> strain harbouring a site-specific cointegrate of claim 12,
 -selecting a plant cell having obtained said DNA not naturally present
- 35 17. A plant cell obtainded using the method of claim 16.
 - 18. A plant generated from a cell of claim 17.
 - Seed or progeny obtained from a plant of claim 18.

A product or extract originating from a plant according to 20. claim 19.

WO 93/17116 PCT/EP93/00463

Figure 3

Figure 5

Figure 6

Select Km-resistant, screen for loss of Tc

Figure 7

8/9

Figure 8

9/9

----- 4.8

2.7 — — — — — — — — 2.5

Figure 9

International Application No.

			International Application (No					
		CT MATTER (If several classifica						
	C12N15/74 C12N15/64		C12N15/82;	C12N15/52				
IL FIELDS SE	ARCHED							
		Minimum D	ocumentation Searched?	X				
Classification !	System		Classification Symbols					
Int.Cl. 5		C12N ; A01H						
	·		other than Minimum Documentation sents are Included in the Fields Searched ⁸					
III. DOCUME	NTS CONSIDERE	D TO BE RELEVANT ⁹						
Category °	Citation of Do	cument, 11 with indication, where ap	propriate, of the relevant passages 12.	Relevant to Claim No. ¹³				
P,X	vol. 236	R AND GENERAL GENET , no. 1, December 1	992, BERLIN DE	1-15				
	for the Agrobact transfor	- 7 , ET AL. 'Design of construction of vecerium-mediated plan mation' whole document	tors for					
·								
"A" docume consiste "E" enriter filing d "L" docume which is citation "O" docume "O" docume "P" docume	red to be of partice document but public site on which may throw a cited to establish to or other special rea ent referring to an o seans	eral state of the art which is not har relevance thed on or after the international doubts on priority claim(s) or the publication date of another uson (as specified) real disclosure, use, exhibition or to the international filing date but	or priority date and not in concided to understand the princip invention. "X" document of particular relevant cannot be considered novel or involve an inventive step. "Y" document of particular relevant cannot be considered to involve document is combined with on ments, such combination being in the art.	"X" document of particular relevance; the claimed invention cannot be considered nowel or cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled				
IV. CERTIFIC	ATION							
Date of the Act	• •	NE 1993	Date of Mailing of this Interns	ational Search Report -07- 1993				
International Se	EUROPEA	N PATENT OFFICE	Signature of Authorized Office MADDOX A.D.	er .				