

WIRTSCHAFTSINGENIEURWESEN HAMBURG

Masterarbeit

Optimization of on-demand line-based bus services

vorglegt von

Alexander Klaus

Matrikelnummer 7169020

Bereich:

1. Gutachter: Prof. Dr. Knut Haase

2. Gutachter: Prof. Dr. Malte Fliedner

vorgelegt am: 27. August 2025

Inhaltsverzeichnis

Αľ	Abbildungsverzeichnis				
Ta	Tabellenverzeichnis				
Αŀ	bkürzungsverzeichnis	v			
1	Einleitung1.1 Motivation1.2 Zielsetzung der Arbeit	1 1			
2	Stand der Forschung2.1Linienverkehr vs. Ridepooling vs. on-demand2.2Einordnung des zu betrachtenden Modells2.3Relevante Modelle & Literatur2.4Offene Forschungsfragen	2 2 2 2 2			
3	Methodik & Modellbeschreibung3.1Ziel des Modells3.2Erläuterung der drei Settings3.3Zentrale Modellannahmen, Eingaben & Nebenbedingungen	3 3 3			
4	Implementierung & Validierung des Modells4.1 Grundlagen der Implementierung4.2 Struktur der Implementierung4.3 Herausforderungen bei der Umsetzung4.4 Validierung der Implementierung4.5 Ergebnisvergleich & Plausibilität	4 4 4 4 5			
5	Erweiterungsmöglichkeiten & Diskussion5.1Limitierungen des aktuellen Modells5.2Mögliche Erweiterungen5.3Praxisrelevanz & Umsetzung	6 6 6			
6	Fazit & Ausblick	-7			
A	Beispielanhang	A -1			
В	Zweiter Beispielanhang	B-1			

Abbildungsverzeichnis

Tabellenverzeichnis

Abkürzungsverzeichnis

1 Einleitung

1.1 Motivation

- \rightarrow warum ist das Thema relevant?
 - CO₂-Reduktion & Individualmobilität: aktueller Zielkonflikt im ÖPNV
 - Herausforderungen im ländlichen Raum (geringe Auslastung, lange Taktzeiten)
 - Technologischer Fortschritt: Autonome Busse & digitale Nachfrageerfassung ermöglichen neue Konzepte
 - Klassischer Linienverkehr: fixe Zeiten & Routen, hohe Bündelung, geringe Flexibilität
 - Ridepooling: Tür-zu-Tür, aber hohe operative Komplexität, oft ineffizient
 - On-Demand-Linienbusse als Hybridform: planbare, aber flexible Nachfragebedienung

1.2 Zielsetzung der Arbeit

- Implementierung eines zu veröffentlichenden Optimierungsmodells
- Validierung durch Reproduktion der publizierten Ergebnisse
- Analyse von Anwendbarkeit, Stärken & Schwächen des Modells
- Aufbau der Arbeit (welche Inhalte in welchen Kapiteln)

2 Stand der Forschung

2.1 Linienverkehr vs. Ridepooling vs. on-demand

- \rightarrow warum ist das Thema relevant?
 - Definitionen & Merkmale
 - Anwendungsbereiche & typische Zielkonflikte
 - Literaturübersicht zu semi-flexiblen Systemen (z.B. MAST, Schulbusse)

2.2 Einordnung des zu betrachtenden Modells

- \rightarrow was gibt es schon?
 - Modell von Schulz & Vlćek: Kombination aus Linienverkehr & Bedarfssteuerung
 - Beitrag: Reduktion der Fahrtenzahl durch On-Demand-Verkürzung
 - Einordnung in die Forschung zur flexiblen Linienplanung

2.3 Relevante Modelle & Literatur

- \rightarrow evtl. 2.2 und 2.3 zusammenlegen....
 - Überblick über verwandte Optimierungsansätze (z.B. DARP, MIP, Netzwerkflussmodelle)
 - Besonderheiten des gewählten Modells (Netzwerkstruktur, einfache Erweiterbarkeit)
 - Überblick zur Methodik: LP/IP, Flow-Modelle, Erweiterbarkeit für verschiedene Szenarien

Hier evtl. dann die tabellarische Übersicht der gefundenen Literatur

2.4 Offene Forschungsfragen

- Kapazitätsfragen, Depotstruktur, Echtzeitfähigkeit
- Zukunftsperspektiven: adaptive Fahrpläne, Realtime-Demand
- Bewertung der Robustheit und Praktikabilität in Realanwendungen

3 Methodik & Modellbeschreibung

3.1 Ziel des Modells

Minimierung der Anzahl benötigter Busse unter Berücksichtigung echter Nachfrage Motivation: Ressourceneffizienz & Angebotsoptimierung

3.2 Erläuterung der drei Settings

- Homogene autonome Busse: Keine Fahrer, gleiche Kapazität. Fokus auf reine Tourenoptimierung.
- Heterogene Busse: Verschiedene Kapazitäten \to neue Zuordnungsprobleme. Selektive Tourabdeckung bei Bedarf.
- Busse mit Fahrerpausen: Zeitfenster für Einsetzbarkeit, gesetzliche Pausen. Auswirkungen auf Tourverläufe & Zuordnung.

Verweis auf 9 Szenarien im Paper, die diese Settings abdecken.

3.3 Zentrale Modellannahmen, Eingaben & Nebenbedingungen

- Fester Fahrplan & Linienstruktur
- Fahrzeugkapazität & Depotstruktur
- Statischer Demand (vor Fahrtbeginn bekannt)
- Kein Laden/Tanken, kein Fahrerwechsel außerhalb des Depots
- Übersicht zu relevanten Parametern (Stopps, Zeiten, Kapazität, Fahrzeiten)

4 Implementierung & Validierung des Modells

4.1 Grundlagen der Implementierung

- Hardware (Macbook Pro mit M1 Prozessor, 16 GB RAM, in VS Code)
- Programmiersprache (z.B. Julia/Python)
- Verwendete Solver (z.B. Gurobi, GLPK)
- Datenstrukturen: Graphenmodell, Knoten/Arc-Logik

4.2 Struktur der Implementierung

- Modularer Aufbau: Dateninput, Modellkonstruktion, Lösung, Output
- Relevante Klassen/Methoden (z.B. für Pfadgenerierung, Kapazitätsprüfung)
- Beispiel für den Workflow einer Instanz: Einlesen \rightarrow Modellaufbau \rightarrow Lösung \rightarrow Auswertung

4.3 Herausforderungen bei der Umsetzung

- Setaufbau
- Speicher-/Performanceprobleme bei großen Instanzen
- Umgang mit überlappenden Trips und Duplikaten (siehe Paper)

4.4 Validierung der Implementierung

Anhand der Originalergebnisse

Hier darauf achten, dass es 9 Szenarios gibt -> Referenz auf beschriebene Settings in Kapitel 3.3(?)

- Szenarien aus Schulz/Vlćek: Fahrplan aus Mecklenburg-Vorpommern
- Umsetzung von Settings 1 bis 3 (jeweils relevante Details nennen)
- Beispiel: Setting 1 mit künstlich hoher Geschwindigkeit \to Reproduzierbarkeit des theoretischen Optimums

4.5 Ergebnisvergleich & Plausibilität

- Tourenanzahl, Busanzahl, Tourverläufe: Vergleich Paper vs. eigene Lösung
- Abweichungen und deren mögliche Ursachen (z.B. Rundungsfehler, alternative Pfade)
- Qualität & Robustheit der eigenen Implementierung

5 Erweiterungsmöglichkeiten & Diskussion

5.1 Limitierungen des aktuellen Modells

- Nur ein Depot
- Statischer Demand
- Keine dynamische Tourenbildung, keine Live-Reaktionen
- Keine Betriebskostenbetrachtung

5.2 Mögliche Erweiterungen

- Mehrere Depots: Flexibilität bei der Tourenplanung, bessere Abdeckung
- Depotzuordnung optimieren
- Zeitfensterbasierte oder dynamische Nachfrage
- Realtime-Routing mit Rolling Horizon
- Erweiterung um Ladezeiten, Servicelevel-Bedingungen
- größerer Datensatz

5.3 Praxisrelevanz & Umsetzung

- Welche Erkenntnisse sind direkt anwendbar?
- Welche Modellannahmen müssen für reale Implementierung angepasst werden?
- Bewertung der Lösung hinsichtlich Kosten, Fahrgastkomfort, Nachhaltigkeit

6 Fazit & Ausblick

- 6.1 Wichtigste Erkenntnisse Implementierung gelungen / Modell nachvollziehbar repliziert Validierung zeigt Übereinstimmungen und Grenzen Modell zeigt Potenzial bei Ressourceneinsparung und Flexibilisierung
- 6.2 Bewertung der Zielerreichung Rückblick auf Ziele aus Kapitel 1.3 Welche Ziele wurden vollständig erreicht? Wo gab es Einschränkungen?
- 6.3 Zukunftsperspektiven Technische Weiterentwicklung des Modells Einsatz in kommunalen Verkehrsprojekten Integration in Planungssoftware / Fahrplangenerierungssysteme

A Beispielanhang

B Zweiter Beispielanhang

Versicherung über die Selbstständigkeit

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Masterarbeit ohne fremde Hilfe selbst-
ständig verfasst habe. Ich habe keine anderen als die angegebenen Hilfsmittel – insbesondere keine im
Quellverzeichnis nicht benannten Internet-Quellen – benutzt. Ich habe die Arbeit vorher nicht in einem
anderen Prüfungsverfahren eingereicht. Die schriftliche Fassung entspricht der auf dem elektronischen
Speichermedium.

Hamburg, den 15. Juli 2025		
Ort, Datum	Unterschrift	