© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°03

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 - Fonction dilogarithme

Partie I – Définition et étude de la fonction dilogarithme

On pose pour $t \in]-\infty, 0[\cup]0, 1[$

$$f(t) = -\frac{\ln(1-t)}{t}$$

I.1 Justifier que f se prolonge en une fonction de classe \mathcal{C}^1 sur $]-\infty,1[$. Dans la suite, on notera encore f ce prolongement.

On note alors pour $x \in]-\infty, 1[$

$$L(x) = \int_0^x f(t) \, \mathrm{d}t$$

- **I.2** Justifier que L peut se prolonger en une fonction continue sur $]-\infty,1]$. On note encore L ce prolongement.
- **I.3** Justifier que L est de classe \mathcal{C}^1 sur $]-\infty,1[$ et donner sa dérivée.
- **I.4** Déterminer le sens de variation de L.
- **I.5** Déterminer la limite de L en $-\infty$.

Partie II – Relations fonctionnelles et valeurs particulières

$$L(1) = \int_0^{+\infty} \frac{x \, dx}{e^x - 1}$$

II.6.b On pose pour $k \in \mathbb{N}^*$,

$$I_k = \int_0^{+\infty} x e^{-kx} \, \mathrm{d}x$$

Justifier la convergence de cette intégrale et calculer I_k.

- **II.6.c** Montrer que pour tout $x \in \mathbb{R}_+^*$, $0 \le \frac{x}{e^x 1} \le 1$.
- **II.6.d** En déduire que pour tout $n \in \mathbb{N}^*$,

$$0 \le L(1) - \sum_{k=1}^{n} I_k \le \frac{1}{n}$$

II.6.e On admet que $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$. Déterminer la valeur de L(1).

II.7. II.7.a Montrer que pour tout $x \in [-1, 1]$,

$$L(x) + L(-x) = \frac{1}{2}L(x^2)$$

- **II.7.b** En déduire la valeur de L(-1).
- **II.8. II.8.a** Montrer qu'il existe une constante C telle que pour tout $x \in]0,1[$,

$$L(x) + L(1 - x) = C - \ln(x)\ln(1 - x)$$

puis déterminer la valeur de C.

II.8.b En déduire la valeur de $L\left(\frac{1}{2}\right)$.

Partie III - Une équation différentielle

On considère les équations différentielles

$$\mathcal{E}: xy'' + y' = \frac{1}{1-x}$$

et

$$\mathcal{E}': xz' + z = \frac{1}{1-x}$$

- **III.9** Résoudre \mathcal{E}' sur les intervalles $]-\infty,0[$ et]0,1[.
- **III.10** En déduire les solutions de \mathcal{E} sur les intervalles] $-\infty$, 0[et]0, 1[. On exprimera ces solutions à l'aide de la fonction L.
- **III.11** Déterminer les éventuelles solutions de \mathcal{E} sur l'intervalle $]-\infty,1[$.