EMINES - UM6P CI1A 2022-2023

TD 2 - Calcul Intégral

27 Septembre 2022

Exercice 1

Soient (X, d) et (Y, d') deux espaces métriques et $f: X \to Y$. Montrer que les assertions suivantes sont équivalentes.

- 1. f est continue sur X.
- 2. L'image réciproque par f d'un ouvert de Y est un ouvert de X.
- 3. L'image réciproque par f d'un fermé de Y est un fermé de X.

Donner un exemple d'une fonction continue dont l'image directe d'un ouvert (respectivement fermé) n'est pas un ouvert (respectivement fermé).

Exercice 2

Soit (X, \mathcal{A}) un espace mesurable et $f, g: (X, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On pose $F := (f, g): (X, \mathcal{A}) \to (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$.

- 1. Montrer que F est mesurable si et seulement si f et g sont mesurables.
- 2. On suppose dans cette question que f et g sont mesurbales. Montrer que f+g, fg, $\max(f,g)$ et $\min(f,g)$ sont mesurables.

Exercice 3

Soit (X, \mathcal{A}, μ) un espace mesuré où μ est une mesure de probabilité (i.e. $\mu(X) = 1$). On pose $\mathcal{F} := \{A \in \mathcal{A} \mid \mu(A) = 0 \text{ ou } \mu(A) = 1\}$. Montrer que \mathcal{F} est une tribu sur X.

Exercice 4

Soit (X, \mathcal{A}) un espace mesurable. Soient $f: X \to \mathbb{R}^n$ mesurable sur X et $g: \mathbb{R}^n \to \mathbb{R}$ borélienne étagée. Montrer que $g \circ f$ est étagée.