

AD 608721

AR

FEASIBILITY DEMONSTRATION OF PYROLYTIC
GRAPHITE COATED NOZZLES

RPL-TDR-64-176

COPY	2	OF	3	ONE
HARD COPY			\$. 1 . 0 0	
MICROFICHE			\$. 0 . 5 0	

Contract No. AF 04(611)-9708

United States Air Force (AFSC)

Rocket Propulsion Laboratory

Edwards, California

20-P

Third Quarterly Progress Report
Period Covered: 1 August through 31 October 1964

ATLANTIC RESEARCH
CORPORATION

ARCHIVE COPY

**Best
Available
Copy**

ATLANTIC RESEARCH CORPORATION

HENRY G. SHIRLEY MEMORIAL HIGHWAY AT EDSALL ROAD
ALEXANDRIA, VIRGINIA FLEETWOOD 4-3400 TWX ALEX VA 1089

CHEMISTRY
PHYSICS
ELECTRONICS
ENGINEERING
RESEARCH
DEVELOPMENT
MANUFACTURING
CONSULTING

November 25, 1964

Commanding Officer
Air Force Rocket Propulsion Laboratory
Edwards, California 93523

Attention: RPMCH (Lt. R Schoner)

Subject: Contract AF 04(611)-9708

Gentlemen:

Attached are three (3) copies of the Third Quarterly Technical Report on the subject contract. Copies are also being distributed to the CPIA Distribution List including Category 2.

Very truly yours,

ATLANTIC RESEARCH CORPORATION

James D. Batchelor
James D. Batchelor
Project Director

JDE:ms
Enclosures
cc: (with enclosure)

DNCMD(RCHBA/S. W. Gralnick)
Wright-Patterson AFB, Ohio 45433 (1)

AFML(MAMC/C. A. Pratt)
Wright-Patterson AFB, Ohio 45433 (2)

ATLANTIC RESEARCH CORPORATION
ALEXANDRIA, VIRGINIA

FEASIBILITY DEMONSTRATION OF PYROLYTIC
GRAPHITE COATED NOZZLES

Contract No. AF 04(611)-9708
Project No. 3059 Program Structure No. 750G

RPL-TDR-64
Third Quarterly Progress Report
Period Covered: 1 August through 31 October 1964

Submitted to: Air Force Rocket Propulsion Laboratory
Edwards Air Force Base, California

Prepared by: Atlantic Research Corporation
Alexandria, Virginia

Author: James D. Batchelor, Project Director

November 25, 1964

ATLANTIC RESEARCH CORPORATION
ALEXANDRIA, VIRGINIA

Table of Contents

	<u>Page</u>
1.0 INTRODUCTION	1
2.0 SUMMARY	2
3.0 PROGRAM RESULTS	3
3.1 Stress Analysis	3
3.2 Deposition Work	6
3.2.1 Sub-Scale Inserts	6
3.2.2 Full-Scale Inserts	6
3.3 Motor Firing Tests	7
3.3.1 Sub-Scale Firings	7
3.3.2 Full-Scale Firings	8
4.0 FUTURE WORK	14

**ATLANTIC RESEARCH CORPORATION
ALEXANDRIA, VIRGINIA**

List of Tables

	<u>Page</u>
I. Stresses in Composite Cylinder with Coating on Outside. . .	4
II. Effect of Substrate Properties on Stresses in Composite Cylinders	5
III. Summary of Motor Firing Data.	9

List of Figures

1. Motor Pressure Trace for Firing EPb-3 (SS-3) Sub-Scale.	10
2. Motor Pressure Trace for Firing EPb-5 (Sub-Scale 4)	11
3. Motor Pressure Trace for Firing EPb-4 (FS-1) Full Scale	13

ATLANTIC RESEARCH CORPORATION
ALEXANDRIA, VIRGINIA

ABSTRACT

The objective of this program is to demonstrate the feasibility of pyrolytic graphite coatings for use in uncooled solid propellant rocket nozzles (in a size range of use for practical propulsion units) under very severe operating conditions. In prior work at Atlantic Research Corporation, the excellent serviceability of pyrolytic graphite coatings in 1/2-inch diameter nozzles was demonstrated with propellants having flame temperatures from 5500°F to 6500°F. In the current work, nozzles of 1.1-inch and 2.3-inch diameter are to be tested with a 6550°F propellant. This report describes the work of the third quarter of this program.

Improvements were made in preparing crack-free sub-scale coated inserts. Flaw-free coatings as thick as 54 mils were prepared. Application of this improved art to full-scale inserts is underway. Stress analysis indicated the merit of alternate substrate materials and deposition work with these is underway.

A successful 35-second sub-scale firing was made but during a 60-second firing discrete coating losses were observed. In the first full-scale motor firing excessive erosion was observed from a coating containing a known separation. This behavior was analogous to early sub-scale experience.

1.0 INTRODUCTION

Pyrolytic graphite is a unique form of graphite which exhibits excellent erosion resistance in solid propellant rocket nozzles. The high density and absence of a binder phase are believed to explain its exceptional serviceability. Sub-scale rocket motor tests of 1/2-inch diameter pyrolytic graphite coated nozzles carried out at Atlantic Research Corporation have shown that consistently good performance can be achieved in nozzle service with propellant having flame temperatures from 5600°F to 6550°F. The higher the flame temperature and the motor operating pressure the higher the erosion rate observed for pyrolytic graphite. Specifically, 1/2-inch diameter nozzles with 6550°F propellant have shown average erosion rates of less than 0.5 mil/sec at 700 psi. The feasibility of scaling up to 1-inch and 2.3-inch throats with 6550°F propellant is to be determined under this program.

The best erosion resistance can be achieved by using pyrolytic graphite as a coating so that the layer plane surfaces are exposed to the combustion gas environment. To achieve the higher erosion resistance of the coating, the difficulties in maintaining coating integrity must be accepted and suitable designs must be demonstrated by test firings nozzles of useful size. To demonstrate the capabilities of pyrolytic graphite coated nozzles for solid propellant rocket motors operating under severe conditions, the current program consists of the design, fabrication and motor testing of a series of nozzles with an advanced propellant of 6550°F flame temperature. This report covers the third quarter of the program.

2.0 SUMMARY

During the third quarter, work was continued in three areas, stress analysis of pyrolytic graphite coated substrates, preparation of both sub-scale and full-scale nozzle inserts, and motor firing tests.

Stress calculations were extended to include the effect of nozzle curvature in the axial direction, but no principal stresses sufficient to explain the observed delamination cracks were found. The shear stresses associated with the presence of edges appear to be the most likely cause of the flaws noted. The effect of the substrate properties on the principal stresses (which lead to shear near the edges) was calculated. Reductions of stress through the use of low modulus, fibrous graphite or anisotropic high density graphite were indicated.

Through deposition process control crack-free sub-scale coated inserts more than 50 mils thick were prepared on both molded and low modulus, fibrous graphite substrates. Cracks were observed in full-scale coated inserts at coating thicknesses comparable to those in the sub-scale units. Bond line failures were more prevalent so that an improved pretreatment procedure was adopted. It is anticipated that the process improvements and more suitable substrates defined in sub-scale and analysis work can be used to improve the full-scale coatings.

Three motor firing tests were carried out. A sub-scale test (SS-3) of a thin crack-free coating showed an acceptable erosion rate of 0.55 mil/sec in a 35-second firing. In a full duration, 60-second, sub-scale firing (SS-4) of a thicker crack-free coating partial coating loss was noted at 29-second burning time. Accelerated erosion and additional discrete loss of coating led to complete removal of the coating during the 65-second total firing time. This partial loss of a crack-free coating after 29 seconds is the most serious failure to date indicating the need for additional control of the stress levels in the coating. A full scale test (FS-1) of an insert with a known separation at the exit end showed excessive erosion but without discernible spallation in a fashion very similar to test SS-1 in which the coating had a similar flaw.

3.0 PROGRAM RESULTS

3.1 Stress Analysis

To investigate the effect of axial nozzle curvature on the stresses in a coated insert section calculations were made for a composite cylinder with the coating on the outside. The actual nozzle shape is a section of a torus surface. Thus, previous calculations for a cylindrical composite shape with the coating on the inside represented an idealization of the effect of nozzle throat radius on coating stresses. Looking at a coating on the outside of a cylinder is equivalent to straightening out the toroidal section and treating the nozzle radius of curvature as the cylinder radius. A total of twelve cases were calculated including the effect of two radii of curvature two thicknesses of a molded graphite substrate, and three pyrolytic graphite coating thicknesses. The maximum tensile stresses in each principal direction in both the coating and the substrate are listed in Table I. No principal stresses sufficient in magnitude to be considered the conclusive source of the observed delamination flaws were found, but those data do help to indicate the effects of the geometrical factors.

In an effort to identify preferred substrate graphites to reduce the stresses from thermal expansion mismatch, a series of calculations were made for a molded graphite (ATJ), an anisotropic, high density graphite (ZTA), and a low modulus fibrous graphite (PT-0114). The thermal expansion data for each of these types of graphite were taken from the most recent and complete source available, namely Air Force Report WADD TR61-74, Volume XXVI, which reports property data on newly developed grades of graphite. The data for ATJ, which are included as a reference standard, are somewhat different from those taken from the Industrial Graphite Engineering Handbook (National Carbon Company). A detailed review of the data on pyrolytic graphites also led to a modification of the values used earlier. The stress levels in both substrate and coating layers were calculated for composite cylinders of two diameters and three coating thicknesses for each of the three substrate materials. The results are summarized in Table II. The effect of substrate properties is apparent from examination of this table. The significant

Table I. Stresses in Composite Cylinder with Coating on Outside

Conditions: Molded substrate properties and coating properties as shown in QPR Number 2.

Coating Thickness (mil)	Maximum Tensile Stresses in Coating			Maximum Tensile Stresses in Substrate		
	Radial (psi)	Hoop (psi)	Axial (psi)	Radial (psi)	Hoop (psi)	Axial (psi)
A. Substrate radius = 1.600"; substrate thickness = 0.100"						
30	277	a	a	277	4440	2710
50	384			384	6210	3860
80	500			500	7900	5080
B. Substrate radius = 1.600"; substrate thickness = 0.400"						
30	382			382	1900	1050
50	610			610	2710	1580
80	925			925	3840	2290
C. Substrate radius = 3.200"; substrate thickness = 0.100"						
30	134			134	4300	2650
50	182			182	5820	3760
80	232			232	7370	4890
D. Substrate radius = 3.200"; substrate thickness = 0.400"						
30	188			188	1680	910
50	294			294	2470	1400
80	431			431	3510	2070

^aWhere no value is listed, stresses are entirely compressive.

Table II. Effect of Substrate Properties on Stresses in Composite Cylinders

Conditions: PG expansion to 2000°C, with grain = 0.0049; across grain = 0.0500
 ATJ expansion to 2000°C, with grain = 0.00772; across grain = 0.01029
 ZTA expansion to 2000°C, with grain = 0.00587; across grain = 0.01827
 PT-0114 expansion to 2000°C, with grain = 0.00528; across grain = 0.00714

Inside Diameter (inch)	Coating Thickness (mil)	Maximum Tensile Stresses in Coating			Maximum Tensile Stresses in Substrate		
		Radial (psi)	Hoop (psi)	Axial (psi)	Radial (psi)	Hoop (psi)	Axial (psi)
A. ATJ substrate, 0.700" thick							
1.120	30	1.	638	a	a	322	567
1.120	50	93.	6010			262	900
1.120	80	425.	13,200		18		1310
2.300	30					380	680
2.300	50					505	1,070
2.300	80	18	2,670			565	1,560
B. ZTA substrate (anisotropy same orientation as PG); 0.700" thick							
1.120	30			1,680		3,770	
1.120	50					5,360	23.
1.120	80					6,880	154.
2.300	30			2,220		3,040	
2.300	50			655.		4,580	
2.300	80					6,360	124.
C. PT-0114 substrate; 0.700" thick							
1.120	30	111.	6,830		74		189.
1.120	50	271	10,800		154		256
1.120	80	608	16,500		280		310
2.300	30	22	2,980		9		220
2.300	50	61	5,050		28		297
2.300	80	151	8,040		66		363

^aWhere no value is listed, stresses are entirely compressive.

reduction in stresses for a low modulus, fibrous graphite substrate is particularly interesting. The suitability of such substrate material will be explored in deposition work and motor testing.

3.2 Deposition Work

Preparation of coated insert sections of both sub-scale and full-scale size was carried out on a continuing basis throughout the quarter. The improvements achieved for each size are outlined separately in the following sections.

3.2.1 Sub-Scale Inserts

A steady advance in our capability to prepare flaw-free coatings was made in the sub-scale system. The first flaw-free coated section prepared and fully machined for firing had a coating thickness of approximately 23 mils at the throat. This insert was tested in the third sub-scale firing (SS-3) discussed below. Following the preparation of this relatively thin, crack-free coating experimental work continued and coatings free of cracks as thick as 54 mils were successfully deposited on molded graphite substrates. The principal process changes responsible for this improvement were geometrical changes in the substrate and deposition chamber and more adequate thermal pretreatment of the substrates. The upper limit of coating thickness which can be made without cracking has not yet been determined for the current deposition technique.

Following the analysis of the stress conditions for different substrate materials, an experimental effort was made to coat fibrous graphite (low modulus) substrates. Coatings of nominal 50 and 80 mil thickness were prepared without delamination cracking. No visible separations or cracking was noted on the substrate in spite of its low cross grain strength. Again, the upper limit for crack-free conditions was not determined since coatings of adequate thickness were prepared.

3.2.2 Full-Scale Inserts

Less work was carried out on full-scale inserts since those represent a scale-up effort intended to apply sub-scale experience to hardware suitable for larger motors. Delamination cracking was observed on full-scale inserts at coating thicknesses of the same order as those which led to cracks in the

sub-scale inserts. This was somewhat surprising because, in general, the principal stresses caused by anisotropy are a function of the ratio of coating thickness to radius of curvature rather than to the absolute thickness value. Thermal expansion mismatch factors are more nearly dependent on the linear measurements of the various portions of a composite so that the observed behavior appears to indicate a predominate role of expansion mismatch stresses. Another factor worth note was the qualitative difference in the nature of the cracking observed in full-scale inserts compared to the sub-scale units. On the full-scale units cracking appeared largely at or very near the substrate-coating interface. On the sub-scale inserts the cracks were generally completely within the coating, most often two-tenths or more of the coating thickness away from the interface.

The observations described above caused an emphasis to be placed on two factors in full-scale deposition work. First, more extensive thermal pretreatment of substrates was adopted to prevent any surface effects during heat-up which would be detrimental to the bond strength between the coating and the substrate. Second, a renewed effort was made to reduce the incompatibility of the substrate and coating by considering different substrate graphites. At the end of the current quarter, work on these improvements was underway. Results since that time have indicated considerable success. These data will be reported after the current work is completed.

3.3 Motor Firing Tests

Three nozzles were tested in motor firings during this quarter. These three tests, which included the third and fourth sub-scale firings (SS-3 and SS-4) and the first full-scale firing (FS-1), are discussed below.

3.3.1 Sub-Scale Firings

The third sub-scale test (SS-3) was the first firing in which the pyrolytic graphite coating showed no visible cracks on microscopic examination of the polished section at each end of the insert. At the time of this firing, the 23.5 mil coating thickness on this insert (No. 357-17) was the thickest crack-free coating deposited on a molded graphite substrate. The erosion rate, calculated from the measured throat diameters before and after

firing, was 0.55 mil/sec. Although this firing was of only 35 seconds duration, it demonstrated the basic serviceability of a pyrolytic graphite coating when coating integrity is maintained. Due to the marginal thickness of the coating it was essentially destroyed at the throat section but the inlet portion of the coating remained to control nozzle erosion. The data from this test is included in Table III and a reproduction of the motor pressure trace is shown in Figure 1.

After further deposition work had resulted in the preparation of thicker coatings without visible cracks, another sub-scale firing was made. This firing which was an attempt to achieve a successful full duration (60-second) test in the sub-scale system, utilized a 54 mil thick coating on a molded graphite substrate (No. 357-32). The performance of this insert was disappointing. Discrete losses of coating occurred first at 29.5 seconds and again at 37 seconds. A final loss appears to have taken place at approximately 60 seconds. Data from this test are in Table III and the motor pressure trace is Figure 2. From calculations based on ballistic characteristics of the propellant, the erosion rate of the coating prior to the first discrete loss of coating appears to have been about 0.7 to 0.8 mils/sec although this calculation is necessarily approximate. The over all erosion rate, based on before and after test measurements was 1.8 mils/sec. It must be concluded that in this firing the cumulative effect of residual stresses from deposition and thermal stresses generated during firing caused progressive coating failure. One immediate means of reducing these effects is to reduce the stress problem by a more favorable choice of substrate. This approach is discussed above in the report on the deposition studies.

3.3.2 Full-Scale Firings

The first full-scale firing was made during the quarter. A 42-mil thick coating on molded graphite (No. 357-27) which contained a visible microscopic separation of the coating from the substrate at the exit end was tested. Because the nature of the flaw in this insert was quite different from those found in sub-scale units, a test of the effect of such a flaw on full-scale nozzle performance was indicated.

ATLANTIC RESEARCH CORPORATION
ALEXANDRIA, VIRGINIA

Table III. Summary of Motor Firing Data

<u>Program No.</u>	<u>Firing Designation</u>	<u>Duration (sec)</u>	<u>Motor Pressure</u>		<u>Nozzle Diameter</u>	
			<u>Max. (psi)</u>	<u>Ave. (psi)</u>	<u>Before (inch)</u>	<u>After (inch)</u>
SS-3	EPb-3	34.8	714	618	1.136	1.173/1.176
SS-4	EPb-5	64.9	812	590	1.111	1.330/1.365
FS-1	EPb-4	36.6	723	623	2.316	2.429/2.493

Figure 1 . Motor Pressure Trace for Firing EPb-3 (ss-3) Sub-Scale

ATLANTIC RESEARCH CORPORATION
ALEXANDRIA, VIRGINIA

Figure 2 . Motor Pressure Trace for Firing RB-5 (Sub-Scale 4)

The performance of this cracked full-scale insert was quite similar to results obtained earlier in sub-scale test of an insert with a crack at the exit end. The over all erosion rate, based on before and after diameter measurements, was somewhat over 2 mils/sec. A steady but excessive erosion pattern was indicated by the motor pressure trace, shown in Figure 3. The data from this test are included in Table III.

ATLANTIC RESEARCH CORPORATION
ALEXANDRIA, VIRGINIA

Figure 3 . Motor Pressure Trace for Firing EPB-4 (FS-1) Full Scale

4.0 FUTURE WORK

Deposition work is continuing in an effort to prepare thicker deposits free of cracks and serviceable under the severe motor test conditions selected for this program. Further motor tests should be scheduled based on reasonable technical expectations. The remaining sub-scale firing (SS-5) included in the current program schedule will be used to test a coating deposited on a low modulus fibrous graphite. It seems apparent that some reduction in the severity of the remaining full-scale firings will be necessary to maintain technical merit since the degree of success to date does not justify rapid advance to 100 second demonstration firings of full-scale nozzles. The proper schedule modifications are under current discussion with the Air Force.

C P I A Mailing List

Page 1
April 1964

U.S. Department of the Interior Bureau of Mines 4800 Forbes Avenue Pittsburgh, Pennsylvania 15213 Attn: M. M. Dolinar, Reports Librarian Explosives Research Center	CP-3 (1)	National Aeronautics & Space Administration Washington, D.C. 20546 Attn: R. W. Ziem (RPS)	CP-209 (1)	Wright-Patterson AFB Ohio 45433 Attn: AFML (MAAE)	CP-78 (1)
Central Intelligence Agency 2410 E Street, N.W. Washington, D.C. 20505 Attn: OCD, Standard Dist.	CP-6 (1)	National Aeronautics & Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Library	CP-210 (1)	Wright-Patterson AFB Ohio 45433 Attn: AFML (MAAM)	CP-79 (1)
Office of the Director of Defense Research and Engineering Washington, D.C. 20301 Attn: W. E. Sheehan, Office of Assistant Director (Chemical Technology)	CP-7 (1)	Defense Documentation Center* Cameron Station Alexandria, Virginia 22314	CP-61 (20)	Commander AFSC Foreign Technology Division Wright-Patterson AFB Ohio 45433 Attn: RTD (TD-E3b)	CP-80 (1)
National Aeronautics & Space Administration Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Library	CP-8 (1)	Air Force Systems Command Attn: SCTAP Andrews AFB Washington, D.C. 20331	CP-58 (1)	Commanding Officer Ballistic Research Laboratories Aberdeen Proving Ground Maryland Attn: AYBR-I 21005	CP-15 (2)
National Aeronautics & Space Administration Launch Operations Center Cocoa Beach, Florida 32931 Attn: Library	CP-9 (1)	Arnold Engineering Development Center Attn: AEOIM Air Force Systems Command Tullahoma, Tennessee 37389	CP-59 (1)	Commanding Officer Harry Diamond Laboratories Washington, D.C. 20438 Attn: AMXDO-TIB	CP-19 (1)
National Aeronautics & Space Administration Manned Spacecraft Center P.O. Box 1537 Houston, Texas 77001 Attn: Library	CP-10 (1)	AFRPL (RPR) Edwards, California 93523	CP-64 (1)	Commanding Officer U.S. Army Research Office (Durham) Box CM, Duke Station Durham, North Carolina 27706	CP-21 (1)
National Aeronautics & Space Administration George C. Marshall Space Flight Center Huntsville, Alabama 35800 Attn: Library	CP-11 (1)	AFRPL (RPM) Edwards, California 93523	CP-65 (1)	Commanding Officer U.S. Army Chemical Research and Development Laboratories Edgewood Arsenal, Maryland 21010 Attn: Chief, Physico- chemical Research Division	CP-22 (1)
National Aeronautics & Space Administration Langley Research Center Langley Air Force Base Virginia 23365 Attn: Library	CP-12 (3)	AFFTC (FIAT-2) Edwards AFB California 93523	CP-66 (1)	Commanding Officer Frankford Arsenal Philadelphia, Pennsylvania 19137 Attn: Propellant and Explosives Section 1331	CP-23 (1)
Scientific and Technical Information Facility P.O. Box 5700 Bethesda, Maryland 20014 Attn: NASA Representative	CP-14 (2)	Office of Research Analysis Attn: RRRT (OAR) Holloman AFB New Mexico 88330	CP-69 (1)	Commanding Officer Picatinny Arsenal Dover, New Jersey 07801 Attn: Library	CP-25 (2)
				Commanding Officer Picatinny Arsenal Liquid Rocket Propulsion Laboratory Dover, New Jersey 07801 Attn: Technical Library	CP-26 (2)

U.S. Army Missile Command Redstone Scientific Information Center Redstone Arsenal, Alabama 35808 Attn: Chief, Document Section	CP-29 (4)	Commanding Officer U. S. Naval Propellant Plant Head, Maryland 20640 A. Technical Library	CP-46 (2)	Aerospace Corporation P.O. Box 95085 Los Angeles, California 90045 Attn: Library-Documents	CP-88 (2)
Commanding General White Sands Missile Range New Mexico 88002 Attn: Technical Library	CP-30 (1)	Commanding Officer Office of Naval Research 103C E. Green Street Pasadena, California 91101	CP-51 (1)	Allied Chemical Corporation CP-91 General Chemical Division Research Laboratory P.O. Box 405 Morristown, New Jersey 07960 Attn: L. J. Wltrakia, Security Officer	CP-91 (1)
Bureau of Naval Weapons Department of the Navy Washington, D.C. 20360 Attn: DLI-3	CP-34 (2)	Department of the Navy Office of Naval Research Washington, D.C. 20360 Attn: Code 420	CP-52 (1)	Amcel Propulsion Company CP-92 Box 3049 Asheville, North Carolina 28802	CP-92 (1)
Bureau of Naval Weapons Department of the Navy Washington, D.C. 20360 Attn: RME-2	CP-35 (2)	Director (Code 6180) U.S. Naval Research Lab. Washington, D.C. 20390 Attn: H. W. Garhart	CP-53 (1)	American Cyanamid Company CP-93 1937 W. Main Street Stamford, Connecticut 06902 Attn: Security Officer	CP-93 (1)
Bureau of Naval Weapons Department of the Navy Washington, D.C. 20360 Attn: RMP-1	CP-36 (1)	Director Special Projects Office Department of the Navy Washington, D.C. 20360	CP-55 (1)	IIT Research Institute CP-98 Technology Center Chicago, Illinois 60616 Attn: C. K. Hersh, Chemistry Division	CP-98 (1)
Bureau of Naval Weapons Department of the Navy Washington, D.C. 20360 Attn: RMM-4	CP-37 (1)	Commanding Officer U.S. Naval Underwater Ordnance Station Newport, Rhode Island 02844 Attn: W. W. Bartlett	CP-56 (1)	ARO, Inc. CP-99 Arnold Engineering Development Center Arnold AF Station, Tennessee 37389 Attn: Dr. B. H. Boethert Director of Engineering	CP-99 (1)
Bureau of Naval Weapons Department of the Navy Washington, D.C. 20360 Attn: RRE-6	CP-38 (1)	Commander U.S. Naval Weapons Laboratory Dahlgren, Virginia 22448 Attn: Technical Library	CP-57 (1)	Atlantic Research Corp. CP-102 Western Division 48-506 Easy Street El Monte, California 91731 Attn: H. Niederman	CP-102 (1)
Commander U.S. Naval Missile Center Point Mugu, California 93041 Attn: Technical Library	CP-40 (2)	Commanding Officer (AD-2) U.S. Naval Air Development Center Johnsville, Pennsylvania 18474	CP-58 (1)	Battelle Memorial Institute CP-103 505 King Avenue Columbus, Ohio 43201 Attn: Report Library, Room 6A	CP-103 (1)
U.S. Naval Ordnance Laboratory Corona, California 91720 Attn: P. J. Slota, Jr.	CP-41 (1)	Aerojet-General Corporation P.O. Box 296 Azusa, California 91701 Attn: F. M. West Chief Librarian	CP-59 (2)	Bell Aerosystems CP-105 Bldg 1 Buffalo, New York 14205 Attn: T. Reinhardt	CP-105 (1)
Commander U.S. Naval Ordnance Laboratory White Oak Silver Spring, Maryland 20910 Attn: Library	CP-42 (2)	Aerojet-General Corporation 11711 South Woodruff Avenue Downey, California 90241 Attn: Florence Walsh, Librarian	CP-64 (1)	The Boeing Company CP-108 Aero Space Division P.O. Box 3707 Seattle, Washington 98124 Attn: R. R. Barber, Lib. Ut. Ch.	CP-108 (1)
Commander U.S. Naval Ordnance Test Station China Lake, California 93557 Attn: Code 48	CP-43 (5)	Aerojet-General Corporation P.O. Box 1947 Sacramento, California 95801 Attn: Technical Information Office	CP-85 (1)	Chemical Propulsion Information Agency Applied Physics Laboratory R621 Georgia Avenue Silver Spring, Maryland 20910	CP-114 (3)
Commander (Code 753) U.S. Naval Ordnance Test Station China Lake, California 93557 Attn: Technical Library	CP-44 (2)	Aeronutronic Division Philco Corporation Ford Road Newport Beach, California 92600 Attn: Dr. L. H. Linder, Manager Technical Information Department	CP-86 (1)	Defense Metals Information CP-120 Center Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201	CP-120 (1)
Superintendent U.S. Naval Postgraduate School Naval Academy Monterey, California 93900	CP-45 (1)	Aeroprojects, Inc. 110 East Rosedale Avenue West Chester, Pennsylvania 19380 Attn: Mr. D. McKinney	CP-87 (1)	Douglas Aircraft Co., Inc. CP-122 Santa Monica Division 3000 Ocean Park Boulevard Santa Monica, California 90405 Attn: Mr. J. L. Watson	CP-122 (1)

The Dow Chemical Company Security Section Box 31 Midland, Michigan 48641 Attn: Dr. R. S. Karplus 1710 Building	CP-121 (1)	Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 Attn: Library (TDS) Mr. N. E. Devereux	CP-147 (1)	North American Aviation, Inc. Space & Information Systems Division 12214 Lakewood Boulevard Downey, California 90242 Attn: W. H. Morita	CP-166 (1)
J.I. duPont deNemours and Company Cliffstown, New Jersey 08027 Attn: Mrs. Alice R. Steward	CP-125 (1)	Arthur D. Little, Inc. 15 Acorn Park Cambridge, Massachusetts 02140 Attn: W. H. Varley	CP-150 (1)	Rocketdyne 6633 Canoga Avenue Canoga Park, California 91304 Attn: Library, Dept. 596-306	CP-180 (3)
Esso Research and Engineering Company Special Projects Unit P.O. Box 8 Linden, New Jersey 07036 Attn: Mr. D. L. Baeder	CP-126 (1)	Lockheed Propulsion Company P.O. Box 111 Redlands, California 92374 Attn: Miss Belle Berlad, Librarian	CP-152 (3)	Kohm and Haas Company Redstone Arsenal Research Division Huntsville, Alabama 35808 Attn: Librarian	CP-182 (2)
Ethyl Corporation Research Laboratories 1800 West Eight Mile Road Benton, Michigan 48220 Attn: E. B. Rifkin, Assistant Director, Chemical Research	CP-128 (1)	Marquardt Corporation 16555 Saticoy Street Box 2013 - South Annex Van Nuys, California 91404	CP-155 (1)	Space Technology Laboratory, Inc. 1 Space Park Redondo Beach, California 90200 Attn: STL Tech Lib Doc. Acquisitions	CP-185 (2)
General Dynamics/Astronautics P.O. Box 1128 San Diego, California 92112 Attn: Library and Information Services (128-00)	CP-133 (1)	Martin Company Baltimore, Maryland 21203 Attn: Science - Technology Librarian - Mail 398	CP-156 (1)	Texaco Experiment Inc. P.O. Box 1-T Richmond, Virginia 23202 Attn: Librarian	CP-187 (1)
General Electric Company Flight Propulsion Division Evendale Cincinnati, Ohio 45215	CP-134 (1)	Martin Company Advanced Technology Library P.O. Box 1176 Denver, Colorado 80201	CP-157 (1)	Thiokol Chemical Corp. Alpha Division, Huntsville Plant Huntsville, Alabama 35800 Attn: Technical Director	CP-188 (2)
Allison Division General Motors Corporation Indianapolis, Indiana 46206 Attn: Plant P, Technical Library, Mr. L. R. Smith	CP-135 (1)	Martin Company Orlando, Florida 32800 Attn: Library	CP-158 (1)	Thiokol Chemical Corp. Alpha Division Space Booster Plant Brunswick, Georgia 31500	CP-190 (1)
Hercules Powder Company Allegany Ballistics Laboratory P.O. Box 210 Cumberland, Maryland 21501 Attn: Library	CP-138 (1)	Minnesota Mining & Mfg. Co. 900 Bush Avenue St. Paul, Minnesota 55106 Attn: Code 0013 R & D Via: H. C. Zeman Security Administrator	CP-159 (2)	Thiokol Chemical Corp. Elkton Division Elkton, Maryland 21921 Attn: Librarian	CP-192 (1)
Hercules Powder Company Kenvil, New Jersey 07847 Attn: Library	CP-139 (1)	Monsanto Research Corporation Boston Lab., Everett Station Chemical Lane Boston, Massachusetts 02149 Attn: Library	CP-161 (1)	Thiokol Chemical Corp. Reaction Motors Division Denville, New Jersey 07834 Attn: Librarian	CP-191 (1)
Hercules Powder Company Research Center Wilmington, Delaware 19800 Attn: Dr. Herman Skolnik, Manager, Technical Information Division	CP-142 (1)	New York University Research Building No. 3 233 Fordham Landing Road University Heights, New York 10468 Attn: Document Control-CJM	CP-164 (1)	Thiokol Chemical Corp. Rocket Operations Center P.O. Box 1640 Ogden, Utah 84401 Attn: Librarian	CP-194 (1)
Institute for Defense Analysis Research & Engineering Support Division Attn: Technical Information Office 1825 Connecticut Avenue Washington, D.C. 20009	CP-146 (1)	New York University Dept. of Chemical Engineering New York, New York 10053 Attn: P. F. Winternitz	CP-165 (1)	Thiokol Chemical Corp. Wasatch Division P.O. Box 524 Brigham City, Utah 84302 Attn: Library Section	CP-195 (2)

Thompson Ramo Wooldridge 21555 Euclid Avenue Cleveland, Ohio 44117 Attn: Librarian	CP-196 (2)	Defense Research Member Canadian Joint Staff (W) 2450 Massachusetts Avenue Washington, D.C. 20008 VIA: SEE NOTES BELOW	*P-2 (4)
		<u>CATEGORY*</u>	<u>COPIES**</u>
Union Carbide Chemicals Co. P.O. Box 8584 (Technical Center) South Charleston, W. Va. 25301 Attn: Dr. H. W. Schulz	CP-197 (1)	Commanding Officer Ammunition Procurement & Supply Agency Joliet, Illinois 60400 Attn: Engineering Library	CP-16 2 4 1
Union Carbide Corporation Union Carbide Plastics Co. Div. 1 River Road Bound Brook, New Jersey 08805 Attn: Librarian	CP-198 (1)	Headquarters, USAF Washington, D.C. 20330 Attn: AFRSTD	CP-68 1 3 1
United Aircraft Corp. Corporation Library 400 Main Street East Hartford, Conn. 06118 Attn: Dr. David Rix	CP-201 (1)	AFRPL (RPCL) Edwards California 93523	CP-62 1 3 1
United Aircraft Corporation Pratt & Whitney Florida Research & Development Center P.O. Box 2691 West Palm Beach, Florida 33402 Attn: Library	CP-202 (1)	AFRPL (RCPS) Edwards California 93523	CP-63 1 2 1
United Technology Center P.O. Box 358 Sunnyvale, California 94008 Attn: Librarian	CP-204 (1)	American Machine Foundry Company Mechanics Research Dept. 7501 North Natchez Avenue Niles, Illinois 60648 Attn: Phil Rosenberg	CP-94 2 4 1
General Electric Company Apollo Support Department P.O. Box 2500 Daytona Beach, Florida 32015	CP-211 (1)	Gallery Chemical Company Research and Development Gallery, Pennsylvania 16024 Attn: Document Control	CP-111 2 1
British Defense Staff British Embassy 3100 Massachusetts Avenue Washington, D.C. 20008 Attn: Scientific Information Officer VIA: SEE NOTES BELOW	*P-1 (4)	The Carborundum Company Box Number 162 Niagara Falls, New York 14302	CP-112 4 1

*Reports prepared under a Department of the Air Force contract or project will be transmitted VIA:

Headquarters
Air Force Systems Command
Attn: SCS-41 (3-1833)
Andrews AFB
Washington, D.C., 20331

Reports prepared under a Department of the Army contract or project will be transmitted VIA:

Commander
U.S. Army Missile Support Command
Attn: SHLDW-BI
Redstone Arsenal, Alabama 35809

Reports prepared under a Department of the Navy, Bureau of Naval Weapons contract or project, will be transmitted directly upon receipt of written authorization from the Bureau of Naval Weapons or the Chief of Naval Operations. Distribution of reports from Department of the Navy, Office of Naval Research contractors will be handled by separate arrangement.

Reports prepared under a National Aeronautics and Space Administration contract or project will be transmitted VIA:

National Aeronautics and Space Administration
Washington, D.C. 20546
Attn: Office of International Programs

**** RECIPIENTS FOR SPECIAL CATEGORIES**

- (1) Propellant Ingredient Synthesis Programs
- (2) Solid Propellant and Rocket Motor Programs
- (3) Liquid Propellant and Rocket Engine Programs
- (4) Structural Materials for Rocket Motors and Engines

<u>CATEGORY COPIES</u>				<u>CATEGORY COPIES</u>			
Chemical Research and Development Center FMC Corporation P.O. Box 8 Princeton, New Jersey 08540 Attn: Security Officer	CP-115	1	1	Pennsalt Chemicals Corp. Technological Center 900 First Avenue King of Prussia, Pennsylvania 19406	CP-170	1	1
Clevite Corporation Mechanical Research Division 540 East 105th Street Cleveland, Ohio 44108 Attn: Mr. Gail Davies	CP-117	4	1	Purdue University Lafayette, Indiana 47907 Attn: M. J. Zucrow	CP-174	2	1
Dow Chemical Company Western Division 2800 Mitchell Drive Walnut Creek, California 94958 Attn: P. D. Oja	CP-124	1	1	Rocketdyne, A Division of North American Aviation, Inc. Solid Propulsion Operations P.O. Box 548, McGregor, Texas 76657 Attn: Library	CP-181	2	1
Ethyl Corporation P.O. Box 3091 Istrouma Branch Baton Rouge, Louisiana 70805	CP-127	1	1	Shell Development Company 1400 53rd Street Emeryville, California 94608	CP-183	1	1
2	2	1		Southwest Research Institute Department of Structural Research 8500 Culebra Road San Antonio, Texas 78228 Attn: Dr. Robert C. DeHart, Director	CP-184	2	1
Hercules Powder Company Bacchus Works Magna, Utah 84044 Attn: Librarian	CP-140	4	1	Texaco, Inc. P.O. Box 509 Beacon, New York 12508 Attn: Dr. R. E. Conary Manager	CP-188	1	1
3	2	1		Walter Kidde Company 675 Main Street Belleville, New Jersey 07109 Attn: Security Librarian	CP-148	1	1
4	2	1		Union Carbide Corporation 270 Park Avenue New York, New York 10017 Attn: B. J. Miller	CP-200	3	1
Attn: Document Custodian Document Control Section	CP-163	3	1	Los Alamos Scientific Lab. University of California P.O. Box 1663 Los Alamos, New Mexico 87544	CP-154	4	1
National Research Corp. 70 Memorial Drive Cambridge, Massachusetts 02142 Attn: Document Custodian Document Control Section	CP-168	1	1	Aerojet-General Nucleonics Foot of Postoria Way San Ramon, California 94583 Attn: Dr. Carpenter	CP-213	1	1
Olin Mathieson Chemical Corporation Marion, Illinois 62959 Attn: Research Library Box 508	CP-169	2	1	Olin Mathieson Chemical Corporation Research Library I-K-3 275 Winchester Avenue New Haven, Connecticut 06511 Attn: Mail Control Room Miss Laura M. Kajuti	CP-214	1	1
Air Force Eastern Test Range Patrick Air Force Base Florida - 32925 Attn: ETLLG-1 (Classified) MU-115 (Unclassified)	CP-169	2	1	Purdue University Lafayette, Indiana 47907 Attn: Henry Feuer	CP-215	1	1
				Union Carbide Corporation P.O. Box 278 Tarrytown, New York 10592 Attn: Dr. R. G. Breckenridge, Dir.			

**Commanding Officer, AF Rocket Propulsion Laboratory,
Edwards, California 93423. FEASIBILITY DEMONSTRATION OF
PYROLYtic GRAPHITE COATED NOzzLES. Third Quarterly Prog-
ress Report 1 August through 31 October 1964. p. incl.
illus., tables, references.**

The objective of this program is to demonstrate the feasibility of pyrolytic graphite coatings for use in uncooled solid propellant rocket nozzles (in a size range of use for practical propulsion units) under very severe operating conditions. In prior work at Atlantic Research Corporation, the excellent serviceability of pyrolytic graphite coatings in 1/2-inch diameter nozzles was demonstrated with propellants having flame temperatures from 5500° to 6500°F. In the current work, nozzles of 1.1-inch and 2.3-inch diameter are to be tested with a 6550°F propellant. This report describes the work of the third quarter of this program.

Improvements were made in preparing crack-free sub-scale coated inserts. Flaw-free coatings as thick as 54 mils were prepared. Application of this improved art to full-scale inserts is underway. Stress analysis - indicated the merit of alternate substrate materials and deposition work with these is underway.

**Commanding Officer, AF Rocket Propulsion Laboratory,
Edwards, California 93423. FEASIBILITY DEMONSTRATION OF
PYROLYtic GRAPHITE COATED NOzzLES. Third Quarterly Prog-
ress Report 1 August through 31 October 1964, p. inc.
illus., tables, references.**

I. Rocket Nozzle Material

II. Contract No.

AF 04(611)-9708

III. Atlantic Research

Corporation

Alexandria, Virginia

IV. Dr. J. D. Batchelor

1. Rocket Nozzle Material

2. Pyrolytic Graphite

3. Third Quarterly Progress Report 1 August through 31 October 1964, p. inc.

4. Illus., tables, references.

I. Unclassified Report

II. Unclassified Report

The objective of this program is to demonstrate the feasibility of pyrolytic graphite coatings for use in uncooled solid propellant rocket nozzles (in a size range of use for practical propulsion units) under very severe operating conditions. In prior work at Atlantic Research Corporation, the excellent serviceability of pyrolytic graphite coatings in 1/2-inch diameter nozzles was demonstrated with propellants having flame temperatures from 5500° to 6500°F. In the current work, nozzles of 1.1-inch and 2.3-inch diameter are to be tested with a 6550°F propellant. This report describes the work of the third quarter of this program.

Improvements were made in preparing crack-free sub-scale coated inserts. Flaw-free coatings as thick as 54 mils were prepared. Application of this improved art to full-scale inserts is underway. Stress analysis - indicated the merit of alternate substrate materials and deposition work with these is underway.

A successful 35-sec sub-scale firing was made but during a 60-second firing discrete coating losses were observed. In the first full-scale motor firing erosion was observed from a coating containing a known separation. This behavior was analogous to early sub-scale experience.

I. Rocket Nozzle Material

II. Contract No.

AF 04(611)-9708

III. Atlantic Research Corporation

Alexandria, Virginia

IV. Dr. J. D. Batchelor

1. Rocket Nozzle Material

2. Pyrolytic Graphite

3. Third Quarterly Progress Report 1 August through 31 October 1964, p. inc.

4. Illus., tables, references.

I. Unclassified Report

II. Unclassified Report

The objective of this program is to demonstrate the feasibility of pyrolytic graphite coatings for use in uncooled solid propellant rocket nozzles (in a size range of use for practical propulsion units) under very severe operating conditions. In prior work at Atlantic Research Corporation, the excellent serviceability of pyrolytic graphite coatings in 1/2-inch diameter nozzles was demonstrated with propellants having flame temperatures from 5500° to 6500°F. In the current work, nozzles of 1.1-inch and 2.3-inch diameter are to be tested with a 6550°F propellant. This report describes the work of the third quarter of this program.

Improvements were made in preparing crack-free sub-scale coated inserts. Flaw-free coatings as thick as 54 mils were prepared. Application of this improved art to full-scale inserts is underway. Stress analysis - indicated the merit of alternate substrate materials and deposition work with these is underway.

A successful 35-sec sub-scale firing was made but during a 60-second firing discrete coating losses were observed. In the first full-scale motor firing erosion was observed from a coating containing a known separation. This behavior was analogous to early sub-scale experience.