CLab3 Report

ENGN6528 You Li u6430173

 $24~\mathrm{May}~2019$

Contents

1	Task1 Two-View DLT based homography estimation.	1
	1.1 Selected points	1
	1.2 Source Code of <i>Homography</i>	
	1.3 $uvpointsand3 \times 3$ H matrix	
	1.4 Homography Result	7
	1.5 Factors of Homography Results	8
2	3D-2D Camera Calibration	9
	2.1 Implementation of Calibrate	9
	2.2 Experiment Result of 2012a	12
	$2.3 \ 3 \times 4 \ \text{Matrix C}$	13
	2.4 Matrix K, R, t	13
	2.5 Focal length and Angle	14

Chapter 1

Task1 Two-View DLT based homography estimation.

1.1 Selected points

Figure 1.1: task1.4

1.2 Source Code of Homography

```
function H = homography(u2Trans, v2Trans, uBase, vBase)
   % Computes the homography H applying the Direct Linear Transformation
   % The transformation is such that
   % p = H p', i.e.,:
   % (uBase, vBase, 1)'=H*(u2Trans, v2Trans, 1)'
  % INPUTS:
   ", u2Trans, v2Trans - vectors with coordinates u and v of the transformed image
   % uBase, vBase - vectors with coordinates u and v of the original base image po
10
  % OUTPUT
11
   % H - a 3x3 Homography matrix
12
13
   unit=ones(6,1);
14
   % image coordinates in the Base image planar
15
   p1=[uBase vBase unit]';
16
   % image coordinates in the Trans image planar
   p2=[u2Trans v2Trans unit]';
18
19
   [p1_norm, p1_trans] = normalise2dpts(p1);
20
   [p2_norm, p2_trans] = normalise2dpts(p2);
21
22
23
   % to compute the matrix H, we should construct matrix A
24
   A = []:
25
   tempA=[];
26
   % for every point, we have only two linearly independent equations
27
   % I combine them together and get a 12x9 matrix A
28
   for i=1:6
        tempA=[zeros(1,3) (-1)*p2_norm(:,i) | p1_norm(2,i)*p2_norm(:,i) |;
30
           p2_norm(:,i) ' zeros(1,3) -p1_norm(1,i)*p2_norm(:,i)'];
31
       A=[A ;tempA];
32
   end
33
34
   % conduct SVD on matrix A
35
   [U,S,V]=svd(A);
36
   % the right-most-column of V is the h with least squares
37
```

```
h=V(:,end);
38
   H=reshape(h,[3, 3])';
39
40
   % denormalise H, according to the transformation matrixs
41
   H = inv(p1_trans)*H*(p2_trans);
42
   end
43
44
   % NORMALISE2DPTS - normalises 2D homogeneous points
45
46
   % Function translates and normalises a set of 2D homogeneous points
   % so that their centroid is at the origin and their mean distance from
48
   % the origin is sqrt(2). This process typically improves the
49
   % conditioning of any equations used to solve homographies, fundamental
   % matrices etc.
51
52
               [newpts, T] = normalise2dpts(pts)
   % Usage:
53
54
   % Argument:
55
       pts - 3xN array of 2D homogeneous coordinates
56
57
   % Returns:
58
       newpts - 3xN array of transformed 2D homogeneous coordinates.
59
                  scaling parameter is normalised to 1 unless the point is at
   %
60
                  infinity.
                  The 3x3 transformation matrix, newpts = T*pts
62
63
   % If there are some points at infinity the normalisation transform
64
   % is calculated using just the finite points. Being a scaling and
   % translating transform this will not affect the points at infinity.
66
67
   function [newpts, T] = normalise2dpts(pts)
69
        if size(pts,1) \sim 3
70
            error('pts must be 3xN');
71
       end
73
        % Find the indices of the points that are not at infinity
74
       finiteind = find(abs(pts(3,:)) > eps);
75
76
```

```
if length(finiteind) ~= size(pts,2)
77
           warning('Some points are at infinity');
78
        end
79
80
        % For the finite points ensure homogeneous coords have scale of 1
81
        pts(1,finiteind) = pts(1,finiteind)./pts(3,finiteind);
82
        pts(2,finiteind) = pts(2,finiteind)./pts(3,finiteind);
83
        pts(3,finiteind) = 1;
84
        c = mean(pts(1:2,finiteind)')';
                                                  % Centroid of finite points
86
        newp(1,finiteind) = pts(1,finiteind)-c(1); % Shift origin to centroid.
87
        newp(2,finiteind) = pts(2,finiteind)-c(2);
88
89
        dist = sqrt(newp(1,finiteind).^2 + newp(2,finiteind).^2);
90
        91
        scale = sqrt(2)/meandist;
93
94
        T = [scale
                        -scale*c(1)
                   0
95
                   scale -scale*c(2)
             0
             0
                     0
                            1
                                   ];
97
98
        newpts = T*pts;
99
    end
100
101
    function im_warped = ImageWarping(im, H)
102
            [u_x, u_y] = GetPointsToTransform(size(im,2), size(im,1));
103
            [v_x, v_y] = TransformPointsUsingHomography(inv(H), u_x, u_y);
104
            im_warped = BuildWarpedImage(double(im), v_x, v_y);
105
            im_warped = uint8(im_warped);
106
    end
107
108
    function [u_x, u_y] = GetPointsToTransform(width, height)
109
            [u_x, u_y] = meshgrid(1:width, 1:height);
110
    end
111
112
    function [v_x, v_y] = TransformPointsUsingHomography(H, u_x, u_y)
113
           v_x = H(1,1)*u_x + H(1,2)*u_y + H(1,3);
114
            v_y = H(2,1)*u_x + H(2,2)*u_y + H(2,3);
115
```

```
v_z = H(3,1)*u_x + H(3,2)*u_y + H(3,3);
116
117
            v_x = v_x./v_z;
118
            v_y = v_y./v_z;
119
    end
120
121
    function im_warped = BuildWarpedImage(im, v_x, v_y)
122
            h = size(v_x, 1); w = size(v_x, 2);
123
             im\_warped(:,:,1) = reshape(interp2(im(:,:,1), v_x(:), v_y(:)), [h, w]);
             im_warped(:,:,2) = reshape(interp2(im(:,:,2), v_x(:), v_y(:)), [h, w]);
125
             im\_warped(:,:,3) = reshape(interp2(im(:,:,3), v_x(:), v_y(:)), [h, w]);
126
    end
127
```

end of matlab code.

1.3 $uvpoints and 3 \times 3$ H matrix

```
uv =
1
2
       59.6979
                113.1471
3
     475.3984
                131.5642
4
                165.7674
     172.8316
5
     235.9759
                173.6604
     199.1417
                202.6016
7
                315.7353
     456.9813
8
                152.7872
      30.5957
9
     467.6383
                152.7872
10
                197.2766
     205.9362
11
     284.4468
                194.6596
12
     239.9574
                220.8298
13
     467.6383
                249.6170
14
15
16
   H =
17
18
                            -14.6125
       -0.2992
                  -0.1447
19
        0.0745
                  -0.8213
                            41.9147
20
        0.0009
                  -0.0004
                             -0.7033
21
```

1.4 Homography Result

Figure 1.2: task1.4

1.5 Factors of Homography Results

1.5.1 Pointnumbers

In the case where there are more than 4 point correspondences available, I took 12 points to provide more references for calculating the H matrix. And this minimizes the error generated from points. Some experiments were tried and the factors were listed.

1.5.2 Distance of selected points

The simplest way to minimize the error is to minimize the algebraic distance of selected points. To ensure that the h selected isn't the zero vector we add the constraint that ||h|| = 1. The unit singular vector corresponding to the smallest singular value of A. This can be found using SVD. However, this is not so geometrically meaningful.

1.5.3 Geometric distance

The geometric distance measures the Euclidian image distance between where the homography maps a point and where the point's correspondence was originally found. This definces the transfer error.

The correspondences $\mathbf{x_i} \to \mathbf{x_i'}$ is:

$$\sum_{i} d\left(\mathbf{x}_{i}^{\prime}, H\mathbf{x}_{i}\right)^{2}$$

Where d is the gepmetry distance. With consider of forward and backward transpose,

$$\sum_{i} d\left(\mathbf{x}_{i}', H\mathbf{x}_{i}\right)^{2} + d\left(\mathbf{x}_{i}, H^{-1}\mathbf{x}_{i}'\right)^{2}$$

Chapter 2

3D-2D Camera Calibration

2.1 Implementation of Calibrate

```
%% Task 2
  img_a = imread('CLab3_Materiala/stereo2012a.jpg');
  XYZ = load(CLab3_Materiala/XYZ.txt)
  [u, v] = load(CLab3_Materiala/ux.txt)
   plot(u, v, 'ro');
   C = calibrate(img_a, XYZ, [u, v]);
8 disp(C);
  %% calc K, R, T
  [K, R, t] = vgg_KR_from_P(C);
11 disp('K = ');
   disp(K);
12
   disp('R = ');
   disp(R);
15 disp('t = ');
16 disp(t);
17 %calculate focal
   alpha = K(1,1);
18
  gama = K(1,2);
  thelta = acot(gama/-alpha);
1 fx = abs(alpha);
  fy = abs(K(2,2)*sin(thelta));
   f = sqrt(fx^2+fy^2);
```

```
disp(['fx: ',num2str(fx)]);
24
   disp(['fy: ',num2str(fy)]);
25
   disp(['focal: ',num2str(f)]);
26
27
   %% calibrate function
28
   function C = calibrate(im, XYZ, uv)
29
    [len,~] = size(uv);
30
31
   A = zeros(len*2,12);
32
33
   for tmp = 1:len
34
       *get the 3D vertices and their 2D corresponding points
35
       X = XYZ(tmp, 1);
36
       Y = XYZ(tmp, 2);
37
       Z = XYZ(tmp,3);
38
       u = uv(tmp, 1);
40
       v = uv(tmp, 2);
41
42
       A(tmp*2-1,:) = [X,Y,Z,1,0,0,0,0,-u*X,-u*Y,-u*Z,-u];
43
       A(tmp*2,:) = [0,0,0,0,X,Y,Z,1,-v*X,-v*Y,-v*Z,-v];
44
   end
45
    [^{\sim},^{\sim},V] = svd(A);
46
47
   C = V(:,end);
48
   C = C/C(end);
49
   C = reshape(C, [4 3]);
50
   C = C';
51
52
   imshow(im);
53
   hold on;
   plot(uv(:,1),uv(:,2),'ro');
   hold on;
56
   xyz1 = [XYZ, ones(tmp, 1)]';
57
   xy = C*xyz1;
58
59
   xy(1,:) = xy(1,:)./xy(3,:);
60
   xy(2,:) = xy(2,:)./xy(3,:);
61
62
```

```
distance = (xy(1:2,:) - uv').^2;
distance = mean(sum(distance));
disp(['Mean Square Error: ',num2str(distance)]);

plot(xy(1,:),xy(2,:),'g+');
end
```

2.2 Experiment Result of 2012a

Figure 2.1: task2

2.3 3×4 Matrix C

```
C =
1
  -15.5043
             -10.7309
                         -6.9259
                                   315.9230
             -10.9395
                         -7.3210
   -16.4116
                                   325.9015
   -0.0475
             -0.0323
                        -0.0234
                                    1.0000
4
5
  MSE =
  2.7535
```

2.4 Matrix K, R, t

Decompose the C matrix into K, R, t, such that C = K[R|t]

```
K =
1
                             323.7067
        5.4072
                    9.9570
2
                   10.9062
                             339.0619
              0
3
              0
                                1.0000
                          0
4
5
   R =
        0.4505
                   -0.8528
                                0.2642
7
       -0.4590
                    0.0326
                               0.8878
8
       -0.7657
                   -0.5213
                              -0.3767
9
10
   t =
11
       -2.2690
12
       19.8003
13
       20.0155
14
```

2.5 Focal length and Angle

2.5.1 what is the focal length of the camera, and in what unit of measurement?

1 fx: 5.4072 2 fy: 5.2047 3 focal: 7.5051

The focal length of the camera is 7.5 cm.

2.5.2 what is the pitch angle of the camera with respect to the X-Z plane in the world coordinate system?

theta = 2 88.995

The angle of the camera should be around 90 degree to X-Z plane.