PTC (Fall 2018) – Assignment 2

徐翔哲

2018年11月21日

Give context free grammars that generate the following languages, and give a brief description of the functionality of each variable in your grammars (in natural language).

- a. $\{w \in \{a,b\}^* \mid \text{the number of } a\text{'s in } w \text{ is more than the number of } b\text{'s in } w\}$
- b. $\{a^ib^{2j}c^jd^k \mid i, j, k > 1, k > 2i\}$
- c. $\{w \in \{a,b\}^* \mid abb \text{ and } aab \text{ are substrings of } w\}$
- d. $\{a^i b^j c^k \mid i, j, k \ge 0 \land i + j > k\}$

a

It can be proved that for all string w having n more a than b, it can be divided into n substrings, say $w_0w_1w_2...$ For each w_i the number of a is exactly one more the number of b.

$$S
ightarrow AS|A \ A
ightarrow a|aB|bAA \ B
ightarrow aC|bA|\epsilon \ C
ightarrow bB|aCC|b$$

A is the language where #a = #b + 1, B is the language where #a = #b, C is the language where #b = #a + 1.

b

$$egin{aligned} S &
ightarrow aTdd \ T &
ightarrow aTdd |Td| B \ B &
ightarrow bbc |bbBc \end{aligned}$$

The functionality of the variables are clear.

 \mathbf{c}

$$S
ightarrow aS|bS|Sa|Sb|T|aabb \ T
ightarrow UV|VU \ U
ightarrow aU|bU|Ua|Ub|aab \ V
ightarrow aV|bV|Va|Vb|abb$$

U means the language whose substring contains aab, V means the language whose substring contains abb. And T means the language having aab and abb as substrings separately. Finally, consider one special case S, where the string contains aabb, which also has both aab and abb as substrings.

d

$$S
ightarrow aA|bB$$
 $A
ightarrow aAc|aA|B$ $B
ightarrow bB|bBc|\epsilon$

The main idea is that for every c in this language, there exists one related a or b. Also, since the number of a or b is strictly larger than the number of c, we can infer that for all the string in this language, there's at least one a or one b before any c is generated.

Problem 2

Consider the following CFG G:

$$S \to SS \mid T$$

$$T \to aTb \mid ab$$

Describe L(G) and show that G is ambiguous. Give an unambiguous grammar H where L(H) = L(G) and sketch a proof that H is unambiguous.

 $L(G) = \{a^i b^i | i \ge 1\}^+$ Consider the string ababab. There exists two different derivation trees.

Define grammar H as follows:

$$egin{aligned} S &
ightarrow ST|T \ T &
ightarrow aTb|ab \end{aligned}$$

Use structural induction:

- $oldsymbol{T}
 ightarrow oldsymbol{aTb} | oldsymbol{ab}$ is obvious unambiguous
- S o T is obvious unambiguous
- $S \to ST$: The variable S can only be generated on the left side of T, so for a serial of T, the only way to derivate it will be $S \to ST \to (ST)T$. So this constructor is unambiguous.

Up to now, we have proved that every production of H is unambiguous, so H is unambiguous.

Problem 3

Let G=(V,T,P,S) be a context free grammar such that $V=\{A,B\}$, $T=\{a,b\}$, S=B and P is

$$B \to aAA$$

$$A \rightarrow aB \mid bB \mid a$$

- a. Give parse trees, leftmost and rightmost derivations for the following strings.
 - 1. aabaaa
 - $2.\ abaaabaaa$
- b. Convert G to a PDA that accepts the same language by empty stack.

a

1

rightmost: $B \Rightarrow aAA \Rightarrow aAbB \Rightarrow$ $aAbaAA \Rightarrow aAbaAa \Rightarrow aAbaaa \Rightarrow aabaaa$ leftmost: $B \Rightarrow aAA \Rightarrow aaA \Rightarrow aabB \Rightarrow$ $aabaAA \Rightarrow aabaaA \Rightarrow aabaaa$ 2

rightmost: $B\Rightarrow aAA\Rightarrow aAbB\Rightarrow aAbaAA\Rightarrow aAbaAa\Rightarrow aAbaaa\Rightarrow abBbaaa\Rightarrow abaAAbaaa\Rightarrow abaAabaaa\Rightarrow abaaabaaa$

leftmost: $B\Rightarrow aAA\Rightarrow abBA\Rightarrow abaAAA\Rightarrow abaaAA\Rightarrow abaaaA\Rightarrow abaaabB\Rightarrow abaaabaAA\Rightarrow abaaabaaA\Rightarrow abaaabaaa$

b

$$PDA \ P = (Q, q_0, \Sigma, \Gamma, Z_0, \delta)$$

$$Q = \{q_0\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{A, B, S\} \cup \Sigma$$

$$Z_0 = S$$

$$\delta(q_0, \epsilon, S) \to (q_0, B)$$

$$\delta(q_0, \epsilon, B) \to (q_0, aAA)$$

$$\delta(q_0, \epsilon, A) \to (q_0, aB)$$

$$\delta(q_0, \epsilon, A) \to (q_0, bB)$$

$$\delta(q_0, \epsilon, A) \to (q_0, a)$$

$$\delta(q_0, a, a) \to (q_0, \epsilon)$$

$$\delta(q_0, b, b) \to (q_0, \epsilon)$$

Begin with the grammar:

$$S \rightarrow aAa \mid bBb \mid \epsilon$$

$$A \rightarrow C \mid a$$

$$B \rightarrow C \mid b$$

$$C \rightarrow CDE \mid \epsilon$$

$$D \rightarrow A \mid B \mid ab$$

- a. Eliminate ϵ -productions.
- b. Eliminate any unit productions in the resulting grammar of (a.).
- c. Eliminate any useless symbols in the resulting grammar of (b.).
- d. Put the resulting grammar of (c.) into Chomsky normal form.

a

The nullable variables are C, S, A, B, D, then we can get:

$$S
ightarrow aAa|bBb|aa|bb$$
 $A
ightarrow C|a$ $B
ightarrow C|b$ $C
ightarrow CDE|CE|DE|E$ $D
ightarrow ab|A|B$

b

$$egin{align*} S
ightarrow aAa|bBb|aa|bb \ A
ightarrow CDE|CE|DE|E|a \ B
ightarrow CDE|CE|DE|E|b \ C
ightarrow CDE|CE|DE|E \ D
ightarrow ab|CDE|CE|DE|E|a|CDE|CE|DE|E|b \ \end{align*}$$

c

$$oldsymbol{S}
ightarrow oldsymbol{a} oldsymbol{A} oldsymbol{a} oldsymbol{a} oldsymbol{a} oldsymbol{a} oldsymbol{b} oldsymbol{b} oldsymbol{a} oldsymbol{a} oldsymbol{b} oldsymbol{b}$$

$$m{A} o m{a}$$

$$m{B} o m{b}$$

d

$$S o AT_1|BT_2|AA|BB$$

$$T_1 o AA$$

$$T_2 o BB$$

$$m{A} o m{a}$$

$$oldsymbol{B}
ightarrow oldsymbol{b}$$

Problem 5

Given grammar G:

$$S \to AB \mid BC$$

$$A \to BA \mid a$$

$$B \to CC \mid b$$

$$C \to AB \mid a$$

Please use CYK algorithm to decide whether string ababa belongs to L(G).

ababa[0:0]:{A,C}

 $ababa[1:1]:\{B\}$

ababa[2:2]:{A,C}

 $ababa[3:3]:\{B\}$

ababa[4:4]:{A,C}

 $ababa[0:1]{:}\{S,\!C\}$

 $ababa[1:2]:\{A,S\}$

 $ababa[2:3]:\{S,C\}$

ababa[3:4]:{A,S}

 $ababa[0:2]:\{B\}$

 $ababa[1:3]{:}\{S,\!C\}$

 $ababa[2{:}4]{:}\{B\}$

 $ababa[0:3]:\{B\}$

 $ababa[1{:}4]{:}\{B\}$

 $ababa[0:4]: \{S\}$

Since ababa[0:4] contains S, this string belongs to L(G)

Problem 6

Use the CFL pumping lemma to show each of these languages are not context free.

- a. $\{a^i b^j c^k \mid i < j < k\}$
- b. $\{0^p \mid p \text{ is a prime}\}$
- c. $\{ww^Rw \mid w \in \{0,1\}^*\}$

a

 $\forall n$, choose $a^n b^n(n+1)c^n(n+2)$. Since $|vwx| \leq n$, so |vx| contains at least one of character a, b and c but not all.

If vx doesn't contain c, we repeat vx for 2n times. In such case, the number of a or b is larger than the number of c.

If vx contains c, then it cannot contain a. Then we remove vx from the origin string, which will cause either the number of b is not larger than the number of a or the number of b.

b

Suppose that |vx| = q, then we repeat |vx| for p+1 times. Then $|uv^{p+1}wx^{p+1}y| = p+p\cdot q = (1+q)p$, which is not a prime. So $uv^{p+1}wx^{p+1}y$ is not in this language.

c

Let |w| > n, also, choose w such that every w's prefix is not w's suffix. Since |vwx| < n, so |vx| can't contain both the beginning and the ending of w. Suppose that uwy=wab, where a isi one prefix of w^R and b is one suffix of w. If wab can be written as ss^Rs , it should be one of the following case:

	W		a		b
'	s	s^R		s	
0	w		а	b	
2	s	s^R			s

case 1 means $\operatorname{suffix}(s^R) = \operatorname{prefix}(a) \Rightarrow \operatorname{suffix}(w^R) = \operatorname{prefix}(w^R) \Rightarrow \operatorname{prefix}(w) = \operatorname{suffix}(w)$, which is a contradiction with our hypothesis.

case2 means w's suffix being w's prefix, which is a contradiction with our hypothesis.

Show that the CFL is closed under the following operations:

- a. $init(L) = \{w \mid \text{for some } x, wx \in L\}$. (**Hint**: Start with a CNF grammar for the language L)
- b. $cycle(L) = \{xy \mid yx \in L\}$ (Hint: Try a PDA-based construction)

Proof.

If L is regular, it satisfies pumping lemma for sure! But if a language satisfies pumping lemma, is it regular? Prove or disprove it.

Proof.