Monetary Policy & Anchored Expectations

Laura Gáti

Boston College

October 1, 2019

Policymakers came out of the Great Inflation era with a clear understanding that it was essential to anchor inflation expectations at some low level.

Jerome Powell, Chairman of the Federal Reserve ¹

¹Federal Reserve "Challenges for Monetary Policy," August 23, 2019, Opening Remarks.

This project

 Combines a formal definition of an anchoring mechanism (AM) from econometric learning

with a general equilibrium New Keynesian (NK) model

- \Rightarrow Analyzes optimal monetary policy with AM, in contrast to rational expectations (RE)
 - theoretically
 - empirically

Today's talk

Related literature

Intuition: what is anchoring and why should it matter?

a A formal notion of anchoring

NK model with anchoring mechanism

Simulations

- 1 Related literature
- 2 Intuition: What is anchoring and why should it matter?
- 3 A FORMAL NOTION OF ANCHORING
- 4 NK MODEL WITH ANCHORING MECHANISM
- 5 SIMULATIONS

Related Literature

Optimal monetary policy in New Keynesian models
 Clarida, Gali & Gertler (1999), Woodford (2003)

Econometric learning
 Evans & Honkapohja (2001), Preston (2005), Graham (2011)

Anchoring
 Carvalho et al (2019), Svensson (2015), Hooper et al (2019)

- 1 Related literature
- 2 Intuition: What is anchoring and why should it matter?
- 3 A FORMAL NOTION OF ANCHORING
- 4 NK MODEL WITH ANCHORING MECHANISM
- 5 SIMULATIONS

NEW KEYNESIAN PHILLIPS CURVE

$$\pi_t = \beta \hat{\mathbb{E}}_t \pi_{t+1} + \kappa \mathbf{x}_t$$

- $\pi_t = \text{inflation}$
- $x_t = \text{output gap}$
- $\hat{\mathbb{E}}_t$ = expectation-operator (not necessarily rational)

Suppose a negative demand shock:

$$\pi_t = \beta \hat{\mathbb{E}}_t \pi_{t+1} + \kappa \mathbf{x}_t$$

If expectations do not move:

$$\pi_{t} = \beta \hat{\mathbb{E}}_{t} \pi_{t+1} + \kappa \mathbf{x}_{t} \downarrow$$

If seeing π_t , expectations adjust:

$$\pi_{t} = \beta \hat{\mathbb{E}}_{t} \pi_{t+1} + \kappa \mathbf{x}_{t}$$

$$\downarrow \downarrow \qquad \downarrow$$

Keeping expectations stable may be desirable

 \rightarrow "Anchored": notion of stable expectations

- 1 Related literature
- 2 Intuition: What is anchoring and why should it matter?
- 3 A FORMAL NOTION OF ANCHORING
- 4 NK MODEL WITH ANCHORING MECHANISM
- 5 SIMULATIONS

A LEARNING MODEL OF EXPECTATION FORMATION

Suppose firms and households

• observe everything up to time t

do not observe future variables

 $\bullet~$ KEY: are unsure about the long-run mean of inflation, $\bar{\pi}$

Agents construct one-period-ahead inflation forecasts as

$$\hat{\mathbb{E}}_t \pi_{t+1} = \bar{\pi}_{t-1} + bs_t \tag{1}$$

 $\bar{\pi} = \text{estimate of inflation drift (= long-run mean, "target")}$

 $\hat{\mathbb{E}} = \text{subjective}$ expectation operator (not rational expectations, $\mathbb{E})$

b = matrix of constants

s = shocks

DEFINITION: ANCHORING MECHANISM

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t \underbrace{\left(\pi_t - (\bar{\pi}_{t-1} + b s_{t-1})\right)}_{\text{short-run forecast error}} \tag{2}$$

$$k_{t} = \begin{cases} \frac{1}{k_{t-1}+1} & \text{if} \quad \widehat{|\hat{\mathbb{E}}_{t-1}\pi_{t} - \mathbb{E}_{t-1}\pi_{t}|/\sigma_{s}} \leq \bar{\theta} \\ \bar{g} & \text{otherwise} \end{cases}$$
 (3)

Equation (3): endogenous gain

- Carvalho et al (2019)
- Difference to standard econometric learning

	 _	_	_	
Expectations				

• Expectations unanchored = when agents choose **constant** gains

- 1 Related literature
- 2 Intuition: What is anchoring and why should it matter?
- 3 A FORMAL NOTION OF ANCHORING
- 4 NK MODEL WITH ANCHORING MECHANISM
- 5 SIMULATIONS

3-Equation New Keynesian Model

$$\mathbf{x}_{t} = -\sigma \mathbf{i}_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) \mathbf{x}_{T+1} - \sigma(\beta \mathbf{i}_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
 (4)

$$\pi_{t} = \kappa \mathbf{x}_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta \mathbf{x}_{T+1} + (\mathbf{1} - \alpha) \beta \pi_{T+1} + \mathbf{u}_{T} \right)$$
 (5)

Long-horizon forecasts"
$$o$$
 agents do not know the model

"Long-horizon forecasts" ightarrow agents do not know the model Preston (2005)

 $\mathbf{i}_t = \psi_{\pi} \pi_t + \psi_{\mathbf{v}} \mathbf{x}_t + \mathbf{i}_t$

(5)

(6)

- 1 Related literature
- 2 Intuition: what is anchoring and why should it matter?
- 3 A FORMAL NOTION OF ANCHORING
- 4 NK MODEL WITH ANCHORING MECHANISM
- 5 SIMULATIONS

CALIBRATION

β	0.98		
σ	0.5		
α	0.5		
ψ_{π}	1.5		
ψ_{X}	1.5		
ģ	1/0.145*		
$ar{ heta}$	5*		
ρ_{r}	0		
ρ_{i}	0.877*		
$\rho_{\sf u}$	0		
σ_{i}	0.359*		
σ_{r}	0.1		
$\sigma_{\sf u}$	0.277*		

^{*} Carvalho et al (2019)'s estimates. Exception: $\bar{\theta}=$ 0.029.

FIGURE: Rational expectations (RE), learning and anchoring mechanism (AM)

 $\operatorname{Figure}\colon$ Well anchored expectations: decreasing gain

Decreasing $\bar{\theta}$: an unanchored case

FIGURE: $\bar{\theta} = 1$. Unanchored expectations: constant gain

Figure: $\bar{\theta} =$ 0.029. Carvalho et al's estimate extremely unanchored!

GAIN WHEN VARYING TAYLOR-RULE COEFFICIENTS

FIGURE: Less aggressive on inflation

FIGURE: More aggressive on inflation

FIGURE: Too aggressive on inflation?

Today's conclusion and work ahead

- Formal definition of anchoring + New Keynesian model
 - \rightarrow investigation of new constraint on monetary policy
- Next steps
 - Write and solve monetary policy problem
 - Estimate model

Thank you!

Compact notation

$$\mathsf{s}_t = \mathsf{P}\mathsf{s}_{t-1} + \epsilon_t$$

 $z_t = A_1 f_{a,t} + A_2 f_{b,t} + A_3 s_t$

 $f_{a,t} \equiv \hat{\mathbb{E}}_t \sum_{t=-t}^{\infty} (\alpha \beta)^{T-t} z_{T+1}$ $f_{b,t} \equiv \hat{\mathbb{E}}_t \sum_{t=-t}^{\infty} (\beta)^{T-t} z_{T+1}$

(8)

(7)

where

$$z_t \equiv \begin{pmatrix} \pi_t \\ x_t \\ i_t \end{pmatrix} \qquad s_t \equiv \begin{pmatrix} \underline{r}_t^n \\ \overline{i}_t \\ I_t \end{pmatrix}$$

(9)

and

(10)