	1
OBJECT-ORIENTED	
Chapter 7 Chapter 7 Chapter 7	
FOURTH SOSTION	
The	
Binary	
Search Tree	
ADT	
ADI	
]
Section 1	
AN OVERVIEW OF TREES	
	_
Objectives	-
Review tree terminology	
Troview tree terminology	
з	

Trees

- A tree is a nonlinear, two-dimensional data structure
- A tree is of hierarchical form, whereby an item can have more than one immediate successor

Usefulness of Trees

 Trees are useful for representing hierarchical relationships among data items

Example of Not a Tree Structure

Trees Terminology: The Root Node

- A tree consists of nodes and branches
- A tree structure is characterized as a set of nodes that originates from a unique starting node called the root

Trees Terminology: Parent and Child Nodes

- A node may be considered a parent of 0, 1, 2, or more child nodes
- Node B is the parent node of nodes E and F
- Node J is a child node of node F

Trees Terminology: Internal Nodes

- An internal (or inner) node is a node that has a minimum of one child node
- Nodes A, B, C, D, and F are internal or inner nodes

3

Trees Terminology: Leaf Nodes

- A node with no children nodes is called a leaf node
- Nodes E, G, H, I, and J are leaf nodes

10

Trees Terminology: Descendant Nodes

- The children nodes of a node and children of these children are called descendants
- The descendants of node B are nodes E, F, I, and J

- 11

Trees Terminology: Ancestor Nodes

- The parent nodes and grandparents of a node are called its ancestors
- The ancestors of node F are nodes B and A

...

Trees Terminology: Subtrees

- A subtree is defined by some node and all descendants of the node
- Node F is the root of the subtree containing nodes F, I, and J

13

Trees Terminology: Subtrees

- Each node in a tree is the root of a subtree
- Node B is the root of the subtree containing nodes B, E, F, I, and J
- Node G is the root of the subtree containing only node G

14

Trees Terminology: Paths

- We move from a parent node to its children and other descendants along a path
- The path from node A to node J consists of the moves: A to B, B to F, and F to J

15

Trees Terminology: Path Length

- The length of a path is the number of edges on the path
- The path from node A to node J has length 3 (The path consists of the edges: A to B, B to F, and F to J)

16

Trees Terminology: Node Level

- The level of a node is the length of the path from the root to the node
 - Node A (the root node) has level 0
 - Nodes B, C, and D are of level 1
 - Nodes E, F, G, and H are of level 2
 - Nodes I and J are of level 3

17

Trees Terminology: Node Level

Trees Terminology: Tree Height

- The **height** of a tree is the maximum level of any node in the tree
- The tree in this example is of height 3

19

