Домашнее задание 1 по предмету "Методы оптимизации"

Михаил Лобанов, Б05-926

27 ноября 2021 г.

1 Теоретические результаты

В рамках решения задачи о логистической регрессии мы минимизируем следующую функцию:

$$f = \frac{1}{m} \sum_{i=1}^{m} \ln\left(1 + \exp\left(-b_i, \langle a_i, x \rangle\right)\right) + \frac{\lambda}{2} ||x||_2^2 \xrightarrow[x \in \mathbb{R}^n]{} \min$$
 (1)

Градиент и гессиан выражаются следующим образом:

$$\nabla f = \lambda \cdot x - \frac{1}{m} A^T \left(b \cdot \frac{1}{1 + \exp\left(b^T \cdot Ax\right)} \right) \tag{2}$$

$$\nabla^2 f = \frac{1}{m} A^T \frac{1}{1 + \exp(b^T \cdot Ax)} (1 - \frac{1}{1 + \exp(b^T \cdot Ax)}) I_n A + \lambda \cdot I_n$$
 (3)

Функция в матрично-веткорной форме

$$f = \frac{1}{m} \left\langle 1_m, \ln\left(1 + \exp\left(-b \odot Ax\right)\right) \right\rangle + \frac{\lambda}{2} ||x||_2^2$$
(4)

Пояснение. Размерности $b \mapsto (m,1), A \mapsto (m,n), x \mapsto (n,1).$

2

3 Эксперименты

3.1 Траектория градиентного спуска на квадратичной функции

 Γ радиентный спуск чувствителен к сжатию осей. Рассмотрим две квадратичных функции, одна с обычными осями, а другая - "сплюснутая".

Симметричная функция. С ней справляется градиентный спуск в любой модификации: и с константным подбором шага, и с правилом Вульфа, и с правилом Армихо. Разве что в константном случае шагов требуется много.

Сжатые оси. При деформации осей алгоритм начинает работать сильно хуже. На соответствующей функции GD с Армихо стал "петлять" из стороны в сторону, GD с константным шагом вообще не получилось свести, и только Вульф показал себя хорошо.

Эксперименты показали, что нет качественной зависимости между сходимостью и начальной точкой (либо из всех сходится, либо из всех не сходится). Видимо поэтому начальную точку часто выбирают случайно.

3.2 Зависимость числа итераций градиентного спуска от числа обусловленности и размерности пространства

Рассмотрим 4 различных размерности n: $[10, 10^2, 10^3, 10^4]$ и 49 чисел обусловленности κ : от 2 до 49 включительно. Для каждой пары (n, κ) сформулируем 100 задач минимизации квадратичной функции размерности n и числом обусловленности κ .

Решим каждую задачу и подсчитаем количество итераций $T_i(n,\kappa), i \in \{1,\ldots,100\}$, которое прошел GD номер i.

Посмотрим на среднее количество итераций при каждом κ и n:

Видим, что примерно до n=15 есть четка корреляция между числом обусловленности и количеством итераций. После зависимость перестает быть такой ясной.

Нанесем на график вообще все результаты эксперимента:

График наталкивает на мысль, что чем больше размерность, тем меньше дисперсия количества итераций, а чем больше κ , тем она выше. Проверим:

Действительно, график стандартного отклонения показывает, что чем больше κ , тем больше разброс в количестве итераций GD. И чем меньше размерность, тем это виднее.

3.3 Сравнение методов градиентного спуска и Ньютона на реальной задаче логистической регрессии

Все три датасета (w8a, gisette, real-sim) приводят к следующим выводам:

- 1. Метод Ньютона сходится гораздо быстрее, чем метод градиентного спуска: требуется меньше итераций, со временем (по мере спуска) GD теряет эффективность сильнее, чем NM.
- 2. Метод Ньютона сильно более затратный. На одну итерацию требуется больше времени и памяти.
- 3. Иногда NM невыгоден, поскольку хоть и сходится быстро, но слишком медленно. Пускай GD и делает в разы больше итераций, но он делает их за секунды.
- 4. Нормированный градиент убывает очень похоже на значение самой функции с точностью до масштаба.

Далее приведем графики экспериментов.

Датасет w8a.

Зависимость значения функции от времени, от масштабированного времени (на отрезок [0,1]), от номера итерации.

Видим, что в данном случае метод Ньютона оказался быстрее. Посмотрим на норму градиента. **Note.** На одном из графиков перепутана подпись оси ординат.

Датасет gisette.

Зависимость значения функции от времени, от масштабированного времени (на отрезок [0,1]), от номера итерации.

В данном случае метод Ньютона оказался медленнее. Посмотрим на норму градиента. **Note.** На одном из графиков перепутана подпись оси ординат.

По каким-то причинам методы долго бродили вокруг оптимальной точки, пытаясь в нее попасть.

Датасет real-sim.

Зависимость значения функции от времени, от масштабированного времени (на отрезок [0,1]), от номера итерации.

В данном случае метод Ньютона оказался медленнее. Посмотрим на норму градиента. **Note.** На одном из графиков перепутана подпись оси ординат.

Видим, насколько быстрее метод Ньютона уменьшает градиент, чем градиентный спуск.

Приведем оценки одной итерации градиентного спуска и метода Ньютона по времени и памяти:

	GD	NM
Time	$\mathcal{O}(n^2)$	$\mathcal{O}(n^3)$
Memory	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$