Программное обеспечение информационных технологий

Офисное программное обеспечение Электронные таблицы

- 1. Электронная таблица
- 2. Типы и форматы данных
- 3. Адресация ячеек
- 4. Вычисления по формулам
- 5. Способы обработки данных

Основные понятия

Электронная таблица — компьютерный эквивалент обычной таблицы, в клетках (ячейках) которой записаны данные различных типов: текст, даты, формулы, числа.

Основные понятия-2

Рабочая книга — документ, содержащий несколько листов, в число которых могут входить таблицы, диаграммы или макросы.

Рабочее поле — пространство электронной таблицы, сетка, в которой создается документ (книга).

Ссылка — способ указания адреса ячейки.

Диапазон ячеек — прямоугольный блок ячеек, представляющий собой строку (часть строки), столбец (часть столбца), несколько строк и столбцов или их частей.

Режимы работы табличного процессора

РЕЖИМЫ РАБОТЫ

Режим готовности

(выбор ячейки/диапазона для корректировки или выполнения какой-либо операции)

Командный режим

(выбор и выполнение команды главного меню)

Режим ввода данных

(инициируется щелчком мыши по строке формул, либо двойным щелчком по ячейке)

Режим редактирования

в содержимое ячейки)

Типы данных

Символьные (текстовые) данные имеют описательный характер и могут включать в себя алфавитные, числовые, специальные символы.

Числовые данные не могут содержать алфавитных и специальных символов, поскольку с числами производятся математические операции. Исключениями являются десятичная точка (запятая) и знак числа.

Тип входных данных определяется первым символом, который трактуется как команда переключения режима.

Если в ячейке содержится число, то первым символом может быть либо цифра, либо десятичная точка (запятая), либо знак числа.

Если в ячейке содержится формула, то в качестве первого символа используется знак равенства.

Если ячейка содержит символьные данные, ее первым символом может быть одинарная (апостроф) или двойная кавычка, либо пробел.

2 Типы и форматы данных

Форматы данных

Основной формат используется по умолчанию; обеспечивает запись данных в ячейках в том же виде, как они вводятся или вычисляются.

Формат с фиксированным количеством десятичных знаков обеспечивает представление чисел с заданной точностью (количество десятичных знаков после десятичной точки/запятой).

Пример. Пусть установлен режим форматирования: 2 десятичных знака. Тогда вводимое в ячейку число 12345 будет записано как 12345.00; число 0.12345 – как 0.12.

Процентный формат обеспечивает представление данных в виде процентов со знаком % в соответствии с установленным количеством десятичных знаков.

Пример. Если установлена точность в один десятичный знак, то при вводе 0.123 на экране появится 12.3 %, а при вводе 123 — 12300.0 %.

2 Типы и форматы данных

Форматы данных-2

Денежный формат обеспечивает представление чисел, при котором каждые три разряда разделены пробелом.

Пример. Введенное число 12345 будет записано в ячейке как 12 345 (с округлением до целого числа) и 12 345.00 (с точностью до двух десятичных знаков).

Научный (экспоненциальный) формат используется для представления очень больших или очень маленьких чисел, в виде мантиссы и порядка. Мантисса имеет один десятичный разряд слева от десятичной точки, и некоторое количество десятичных знаков справа от нее.

Пример. Число 12345 будет записано в ячейке как 1.2345Е +04 (при точности 4 разряда) и как 1.23 Е +04 (при точности в 2 разряда). Число .0000012 будет иметь вид 1.2Е-06.

Запись E±n означает умножение мантиссы на 10 в степени ±n.

Типы ссылок

Адрес ячейки определяется именем столбца и номером строки.

Адрес диапазона ячеек задается указанием ссылок первой и последней его ячеек, между которыми ставится разделительный символ «двоеточие».

В относительной ссылке на ячейку используют имя столбца и имя строки, на пересечении которых она расположена (например, **A1**).

Для указания абсолютной адресации используется символ \$.

Полная абсолютная ссылка используется, если при копировании формулы адрес ячейки, содержащей исходное данное, не меняется (например, **\$A\$1**).

Частичная абсолютная ссылка *(*смешанная*)* используется, если при копировании формулы не меняется номер строки (например, **A\$1**) или имя столбца **(**например, **\$A1**).

Стили ссылок

По умолчанию Microsoft Excel использует стиль ссылок A1, в котором столбцы имеют имена, составленные из букв латинского алфавита, а строки — номера.

Адрес ячейки = имя столбца&номер строки

В стиле ссылок **R1C1** нумеруются как строки, так и столбцы. В стиле R1C1 положение ячейки указывается буквой «R», за которой идет номер строки, и буквой «С», за которой идет номер столбца.

R[2]C[2]	Относительная ссылка на ячейку, расположенную на две строки ниже и на два столбца правее
R2C2	Абсолютная ссылка на ячейку, расположенную во второй строке и во втором столбце
R[-1]	Относительная ссылка на строку, расположенную выше текущей ячейки

Разновидности формул

Формулы состоят из операторов и операндов. В качестве операндов используются данные и/или ссылки на ячейки с данными. Операторы обозначают действия, производимые с операндами.

Арифметические операторы: (+) сложение, (-) вычитание, (*) умножение, (/) деление, (^) возведение в степень.

Операторы сравнения: равно (=), неравно (<>), больше (>), меньше (<), не более (<=), не менее (>=).

Результат вычислений арифметической формулы — число.

Логические формулы могут содержать операторы сравнения, а также специальные логические операторы #NOT# — логическое отрицание «HE», #AND# — логическое «И», #OR# — логическое «ИЛИ». Логические формулы определяют, выражение истинно (1) или ложно (0).

Функции

Функции можно считать частным случаем формулы.

Функция представляет собой программу с уникальным именем, для которой пользователь должен задать конкретные значения аргументов.

Структура функции начинается со знака равенства (=), за ним следует имя функции, открывающаяся скобка, список аргументов, разделенных точками с запятой, закрывающаяся скобка.

- 1 структура функции
- 2 имя функции
- 3 аргументы
- 4 всплывающая подсказка

Категории функций

Математические функции выполняют различные математические операции (вычисление логарифмов, тригонометрических функций, преобразование радиан в градусы и т.п.).

Статистические функции выполняют операции по вычислению параметров случайных величин или их распределений, представленных множеством чисел (среднее значение, максимум, медиана и т. п.).

Текстовые функции выполняют операции над текстовыми строками или последовательностью символов, вычисляя длину строки, преобразуя заглавные буквы в строчные и т. п.

Логические функции используются для построения логических выражений, результат которых зависит от истинности проверяемого условия.

Категории функций-2

Финансовые функции используются в сложных финансовых расчетах (определение амортизационных отчислений и др.)

Функции даты и времени имеют внутренний (количество дней от начала 1900 года) и внешний формат. Этот тип данных обеспечивает выполнение таких функций, как добавление к дате/времени числа (пересчет даты/времени вперед/ назад) или вычисление разности двух дат (длительность периода). Внешний формат используется для ввода и отображения дат/времени.

Функции базы данных используются для анализа данных из списков или баз данных. Каждая из этих функций имеет обобщенное название БДФункция и использует три аргумента: база_данных, поле и критерий. Эти три аргумента ссылаются на интервалы ячеек на рабочем листе, которые используются данной функцией.

Ошибки в формулах

#ИМЯ?

Причина: в формуле есть адрес ячейки, набранный русскими буквами.

Как исправить: заново набрать адрес в латинском регистре.

#3HA4!

Причина: в формуле есть ссылка на ячейку с текстом.

Как исправить: проверить правильность значений ячеек, на которые ссылается формула.

#ДЕЛ0!

Причина: в формуле используется деление на пустую ячейку, либо на ячейку с нулевым значением.

Как исправить: изменить содержимое пустой ячейки.

Главное достоинство электронной таблицы — возможность мгновенного пересчета всех данных, связанных формульными зависимостями, при изменении значения любого операнда.

Ошибки в формулах-2

#####

Причина: столбец недостаточно широк или дата и время являются отрицательными числами.

Как исправить: расширить столбец или указать формат, отличный от формата даты и времени.

#ССЫЛКА!

Причина: ячейки, на которые ссылается формула, были удалены.

Как исправить: изменить формулу, либо отменить удаление.

#ЧИСЛО!

Причина: в функции с числовым аргументом используется неприемлемый аргумент, либо полученное по формуле числовое значение слишком велико или слишком мало для представления в Microsoft Excel.

Как исправить: ввести числовой аргумент или изменить формулу так, чтобы результат находился в диапазоне от -1*10³⁰⁷ до 1*10³⁰⁷.

Сортировка

Порядок сортировки, используемый по умолчанию

Числа сортируются от наименьшего отрицательного до наибольшего положительного числа.

При сортировке алфавитно-цифрового текста значения сравниваются по знакам слева направо.

Порядок символов

0123456789 (пробел)!"#\$%&()*,./:;?@[\]^_`{|}~+<=>A BCDEFGHIJKLMNOPQRSTUVWXYZAБВГДЕЁЖЗИЙК ЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ

Апострофы (') и **дефисы** (-) игнорируются. Исключение: если две строки текста одинаковы, не считая дефиса, текст с дефисом ставится в конец.

Логическое значение ЛОЖЬ ставится перед значением ИСТИНА.

Все значения ошибки равны.

Пустые значения всегда ставятся в конец.

5 Способы обработки данных

Фильтрация

Фильтрация отображает только те строки, которые удовлетворяют условиям отбора. Фильтры могут быть использованы только для одного списка на листе.

Знак подстановки эквивалентен одному символу или произвольной последовательности символов.

Любой символ в той же позиции, что и знак вопроса (?), например, д?м задает поиск «дым» и «дом».

Любую последовательность символов в той же позиции, что и звездочка (*), например, *ск задает поиск «Заринск» и «Бийск».

Строчные и прописные буквы при фильтрации данных не различаются.

Промежуточные итоги

Итоги подразумевают выполнение некоторой итоговой операции (суммы, среднего значения, подсчета количества и др.) над значениями некоторого поля для группы записей.

Для подведения **промежуточных итогов** необходимо определить

- 1 по какому полю (полям) выполнять группировку (сортировку);
- **2** какие итоговые операции следует применить;
- значениями какого поля (полей) выполнять итоговые операции.

Консолидация

Консолидация данных используется в том случае, если необходимо вычислить итоги для данных, расположенных не в одном списке, а в различных списках.

Списки могут быть расположены на разных листах одной книги, или в разных областях одного листа, или в разных книгах.

Методы консолидации данных

При консолидации по расположению итоговая операция применяется в ячейках, одинаково расположенных в каждом из диапазонов.

При консолидации по категории используются заголовки строк и столбцов. Операция выполняется над данными, расположенными в строках и столбцах с одинаковыми названиями.