

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

P2P SYSTEMS

Lecture G

PASTRY

PASTRY

- Designed by Antony Rowstron (Microsoft Research) and Peter Druschel (Rice University)
- Assigns ids to nodes, just like Chord (using a virtual ring)
- Leaf Set Each node knows its successor(s) and predecessor(s)

PASTRY NEIGHBORS

- Routing tables based prefix matching
 - Think of a hypercube
- Routing is thus based on prefix matching and is thus log(N)
 - And hops are short (in the underlying network)

PASTRY ROUTING

- Consider a peer with id 01110100101. It maintains a neighbor peer with an id matching each of the following prefixes:
 - 0*
 - 01*
 - 011*
 - ... 0111010010*
- When it needs to route to a peer, say 011101<u>1</u>1001, it starts by forwarding to a neighbor with the largest matching prefix, i.e., 011101*

PASTRY LOCALITY

- For each prefix, say 011*, among all potential neighbors with a matching prefix, the neighbor with the shortest round-trip time is selected
- Since shorter prefixes have many more candidates (spread out throughout the Internet), the neighbors for shorter prefixes are likely to be closer than the neighbors for longer prefixes
- Thus, in the prefix routing, early hops are short and later hops are longer
- Yet overall "stretch," compared to direct Internet path, stays short

SUMMARY OF CHORD AND PASTRY

- Chord and Pastry protocols
 - More structured than Gnutella
 - Black box lookup algorithms
 - Churn handling can get complex
 - O(log(N)) memory and lookup cost
 - O(log(N)) lookup hops may be high
 - Can we reduce the number of hops?