22) Generalized Additive Models (GAMs)

Vitor Kamada

March 2018

Reference

Tables, Graphics, and Figures from

An Introduction to Statistical Learning

James et al. (2017): Chapters: 7.7, and 7.8.3

GAMs for Regression Problems

$$y_i = \beta_0 + \sum_{j=1}^p f_j(x_{ij}) + \epsilon_i$$

$$= \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + ... + f_p(x_{ip}) + \epsilon_i$$

$$wage = eta_0 + f_1(year) + f_2(age) + f_3(educ) + \epsilon$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

2 Natural Splines and 1 Step Function

2 Smoothing Splines and 1 Step Function

GAMs for Classification Problems

$$log\left[\frac{\rho(X)}{1-\rho(X)}\right] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

$$log\left[\frac{p(X)}{1-p(X)}\right] = \beta_0 + f_1(X_1) + f_2(X_2) + ... + f_p(X_p)$$

$$log\left[\frac{p(X)}{1-p(X)}\right] = \beta_0 + \beta_1 year + f_2(age) + f_3(educ)$$

$$p(X) = Pr(wage > 250|year, age, educ)$$

Logistic Regression GAM (wage>250)

Linear, Smoothing Spline, and Step Function

Excluding the Observations for which educ is <HS

library(ISLR); attach(Wage); library(splines); library(gam)

$$\label{eq:gam1} \begin{split} & \mathsf{gam1} \!\!=\!\! \mathsf{gam}(\mathsf{wage} \!\!\sim\! \mathsf{ns}(\mathsf{year},\! 4) \!\!+\! \mathsf{ns}(\mathsf{age},\! 5) \!\!+\! \mathsf{education}, \\ & \mathsf{data} \!\!=\!\! \mathsf{Wage}) \end{split}$$

par(mfrow=c(1,3)); plot(gam1, se=TRUE,col="red")

gam.m3=gam(wage~s(year,4)+s(age,5)+education, data=Wage)

par(mfrow=c(1,3)); plot(gam.m3, se=TRUE,col="blue")

gam.m1=gam(wage~s(age,5)+education, data=Wage)

```
gam.m2=gam(wage~year+s(age,5)+education, data=Wage)
anova(gam.m1,gam.m2,gam.m3,test="F")
```

```
Model 1: wage ~ s(age, 5) + education

Model 2: wage ~ year + s(age, 5) + education

Model 3: wage ~ s(year, 4) + s(age, 5) + education

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 2990 3711731

2 2989 3693842 1 17889.2 14.4771 0.0001447 ***

3 2986 3689770 3 4071.1 1.0982 0.3485661

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

summary(gam.m3)

```
Anova for Parametric Effects
            Df Sum Sq Mean Sq F value Pr(>F)
             1 27162 27162 21.981 2.877e-06 ***
s(year, 4)
s(age, 5) 1 195338 195338 158.081 < 2.2e-16 ***
education
             4 1069726 267432 216.423 < 2.2e-16 ***
Residuals 2986 3689770 1236
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova for Nonparametric Effects
           Npar Df Npar F Pr(F)
(Intercept)
s(year, 4)
               3 1.086 0.3537
s(age, 5)
                4 32.380 <2e-16 ***
education
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

gam.lo=gam(wage~s(year,df=4)+ lo(age,span=0.7)+education, data=Wage)

plot(gam.lo, se=TRUE,col="green")

gam.lr=gam(I(wage>250)~year+s(age,df=5) +education, family=binomial,data=Wage)

par(mfrow=c(1,3)); plot(gam.lr,se=T,col="green")

table(education,I(wage>250))

education	FALSE	TRUE
 < HS Grad 	268	0
HS Grad	966	5
Some College	643	7
College Grad	663	22
Advanced Degree	381	45

gam.lr.s=gam(I(wage>250)~year+s(age,df=5) +education, family=binomial, data=Wage, subset=(education!="1. < HS Grad"))

plot(gam.lr.s,se=T,col="green")

