Du 2 au 6 novembre

L'ensemble du cours depuis le début d'année doit être connu. Les questions de cours suivantes, portant sur les chapitres récents, sont à travailler particulièrement. En gras, les questions rajoutées au programme de colles de la semaine.

Questions de cours à préparer : sur 8 points

- 1) Énoncer les deux inégalités triangulaires pour le module, démontrer la première.
- 2) Expressions de $\Re(z)$, $\Im(z)$ et |z| à l'aide de $z \in \mathbb{C}$ et \overline{z} . Étant donnés $z_1, z_2 \in \mathbb{C}$ de module 1 tels que $z_1 z_2 \neq -1$, montrer que

$$Z = \frac{z_1 + z_2}{1 + z_1 z_2} \in \mathbb{R}$$

- 3) Expression pour $z \in \mathbb{C}^*$ de $\frac{1}{z}$ à l'aide de \bar{z} et |z|.

 Donner une condition nécessaire et suffisante portant sur z et \bar{z} pour que $z \in \mathbb{R}$, ou pour que $z \in i\mathbb{R}$.
- 4) Forme trigonométrique d'un nombre complexe. Définitions de $e^{i\theta}$ et de e^z pour $\theta \in \mathbb{R}, z \in \mathbb{C}$. Propriétés de l'exponentielle d'un nombre imaginaire.
- 5) Écrire sous forme trigonométrique $1 + e^{i\theta}$.
- 6) Énoncer les formules d'Euler et de Moivre. Au choix du colleur : développer $\cos(nx)$ ou $\sin(nx)$ (pour $n \leq 5$) ou linéariser un produit de fonctions trigonométriques $\cos^p(x)\sin^q(x)$ $(p+q \leq 5)$.
- 7) Au choix du colleur : simplifier $\sum_{k=0}^{n} \binom{n}{k} \sin(kx)$ ou $\sum_{k=0}^{n} \cos(kx)$ ou factoriser $\cos(p) + \cos(q)$.
- 8) Définition de \ln , propriétés opératoires. Montrer que $\forall x \in]-1; +\infty[, \ln(1+x) \leqslant x$.
- 9) Définition de exp, propriétés opératoires.

 On admet que $\forall x \in \mathbb{R}, e^x \geqslant 1 + x$. Montrer que $\forall n \in \mathbb{N}^*, \sum_{k=0}^{n-1} \frac{e^{k/n}}{n} \geqslant \frac{3}{2} \frac{1}{2n}$.
- 10) Définition des fonctions puissance, propriétés opératoires, limites, représentations graphiques suivant la valeur de l'exposant. Croissances comparées.
- 11) Formulaire de trigonométrie de C.Baillaud (quelques formules au choix du colleur) sauf cotan (hors-programme) et formules en $\tan(t/2)$ (pas encore vues).
- 12) Définition de tan, parité, périodicité, limites, représentation graphique. Propriétés et représentation graphique de sin et cos.

Tout depuis le début d'année.