HOMEWORK 8

Proposition 6.26. Fix an integer $n \geq 2$. Addition \oplus and multiplication \odot on \mathbb{Z}_n are commutative, associative, and distributive. The set \mathbb{Z}_n has an additive identity, a multiplicative identity, and additive inverses.

Proof. Take $[a] \oplus [b]$ and $[a] \odot [b]$. By definition, these are equal to [a+b] and $[a \cdot b]$ respectively. We may commute to have [b+a] and $[b \cdot a]$. By definition again, these can be rewritten to $[b] \oplus [a]$ and $[b] \odot [a]$. Thus, \odot and \oplus are commutative.

Take $([a] \oplus [b]) \oplus [c]$ and $([a] \odot [b]) \odot [c]$. By definition, these are equal to $([a+b]) \oplus [c]$ and $([a \cdot b]) \odot [c]$ respectively. We may rewrite this to be [(a+b)+c] and $[(a \cdot b) \cdot c]$. We can apply associativity to get [a+(b+c)] and $[a \cdot (b \cdot c)]$. By definition again we can write $[a] \oplus ([b+c])$ and $[a] \odot ([b \cdot c])$. Finally, this could be rewritten to $[a] \oplus ([b] \oplus [c])$ and $[a] \odot ([b] \odot [c])$. Thus, \oplus and \odot are associative.

Take $[c] \odot ([a] \oplus [b])$. By definition, this can be rewritten as $[c] \odot ([a+b]) = [c(a+b)]$. If we distribute, we have [ca+cb]. By definition, this is equal to $[ca] + [cb] = [c] \odot [a] \oplus [c] \odot [d]$. Thus, \odot and \oplus are distributive.

Project 6.28. Every integer ≥ 2 can be factored into primes.

Proof. Let P(k) for $k \geq 2$ be the claim "There are primes $q_1 \dots q_t$ such that $k = q_1 \dots q_t$."

Base. k = 2. The number 2 is a prime, so 2 = 2 is a prime factorization. **Successor.** Suppose P(k) holds for $k \le n$. Consider n + 1. We have two cases:

Case 1. n + 1 is a prime. In this case n + 1 = n + 1 is the desired prime factorization.

Case 2. n + 1 is composite. There are some integers $m \neq \pm 1$ and $m \neq \pm (n+1)$ such that m|n+1. Thus there exists a $j \in \mathbb{Z}$ such that $m \cdot j = n+1$. We may assume m > 0. Thus, $m, j \in \mathbb{N}$ and $m \cdot j = n+1$. Additionally $m \neq 1$, $m \neq n+1$, so $j \neq 1$ and $j \neq n+1$. That is to say $2 \leq m$, j < n+1. By our induction hypothesis, $k = q_1 \dots q_t$ and

Date: March 21, 2017.

2 LEANDRO RIBEIRO (WORKED WITH KYLE FRANKE AND JOYCE GOMEZ)

we multiply by n on both sides, we have (qp+rm)n = qpn + rmn = n.

Sources.

 $http://www.math.umassd.edu/\sim ahausknecht/aohWebSiteSpring2017/courses/mth182Spring2017/sharedDownloads/HWSolutions/CZSection7_6Solutions.pdf$

http://www.tkiryl.com/teaching/aa/les091503.pdf

Because p|mn and p|qpn, p|(qpn + rmn). Thus, p|n