Index

A halian mana	
Abelian groups	vol.1: p.24
Adjoint operators	vol.1: pp.43 - 44,87,103
Adjugate matrix	vol.2: pp.120 - 121
Affine spaces	vol.1: p.93
Asymptotically stable	vol.2: p.76
Attracting fixed point	vol.2: p.76
Autonomous systems	vol.1:p.7
B	10 00
Basin boundary	vol.2: p.89
Basin of attraction	vol.2:p.89
Basis	vol.2: pp.125 - 127
Bifurcation	vol.1: pp.11 - 12, 63 - 64
Body velocity	vol.1:p.38
C	
Causal systems	vol.2: p.152
	vol.3: pp.3-4
Cayley-hamilton theorem	vol.2: pp.139 - 140
Centroid of area	vol.1: pp.4-6
Characteristic equation	vol.2: pp.77, 138 - 139
	vol.3:p.37
Column space	vol.2: pp.133 - 134
Complex conjugate transpose	vol.3: pp.40 - 44
Connection vector field	vol.1: pp.118 - 119
Conservative system	vol.2: pp.89 - 91,103
Conservative vector fields	vol.1: pp.145 - 146
Conserved quantity	vol.2:p.90
Constraint, holonomic	vol.1: pp.76-77
Constraint, nonholonomic	vol.1: pp.110 - 117, 135 - 136
Contour	vol.2: pp.91 - 92
Convolution	vol.3:pp.2-4
Convolution (discrete)	vol.3:pp.14,17
Coordinate transformation matrix	vol.2: pp.128 - 129
Coordinate vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51-54
Corank	vol.2: pp.51-54
Cotangent bundle	vol.1:p.126
Cotangent space	vol.1:p.126
Cotangent vector	vol.1: pp.127 - 130
Cramer's rule	vol.2:p.121
Cross product	vol.1:pp.1-2
Curl (vector)	vol.1:p.145
Curvature (constraint)	vol.1: pp.144 - 145
D	11
Dead zone nonlinearity	vol.2:p.151
-	-

	1.0 1.40 1.41
Deficient matrix	vol.2: pp.140 - 141
Degenerate matrix	vol.2: p.139
Degrees of freedom	vol.1: p.17
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonal coordinate form	vol.3: pp.38 - 45
Diagonalization	vol.2: pp.142 - 144
Diffeomorphic	vol.1: p.20
Differential-algebraic equations	vol.2: pp.41 - 44,47 - 48
Differential-algebraic equations, differentiation index	vol.2: pp.47 - 48
Differential-algebraic equations, model consistency	vol.2: p.44
Differential-algebraic equations, regularity	vol.2: p.45
Differential-algebraic equations, solution	vol.2: p.44
Dimension (of a vector space)	vol.2: pp.125 - 126
Direct product of two sets	vol.1: p.20
Direct sum	vol.1: p.20
Direct sum of two sets	vol.1: p.125
Directional linearity	vol.1: p.106
Distribution (allowable velocities)	vol.1: pp.112, 148 - 150
Dot product	vol.2: pp.134 - 135
T.	vol.3:p.41
E: gangna aa	
Eigenspace	vol.2: p.140
Eigenvalue	vol.2: pp.77, 138 - 145 vol.3: pp.36 - 45
Eigenvector	vol.3: pp.30 - 45 vol.2: pp.76 - 77, 138 - 145
Eigenvector	vol.2: pp.76 - 77, 138 - 143 vol.3: pp.36 - 45
Elementem non en enetens	vol.3: pp.30 - 45 vol.2: p.107
Elementary row operators	
Embedding Equilibrium point	vol.1: p.96
Equipolant vectors with functions	vol.3: pp.1, 5-10
Equivalent vectors w.r.t. functions Euler-lagrange equation	vol.1: pp.100 - 101 vol.1: p.136
Existence and uniqueness theorem	
Existence and uniqueness theorem	vol.1: pp.11, 13 vol.2: p.82
Ermanantial man	-
Exponential map External forces	vol.1: pp.48 - 51, 103 - 104
External forces F	vol.1:p.1
Force couple	vol.1:p.2
Force couple system	vol.1: p.3
Forward bin and time	vol.2: p.148
Forward kinematics	vol.1: pp.78, 83 - 84
Fundamental vector field (infinitesimal generators) G	vol.1: pp.99 - 100
Gait generation	vol.1: p.124
Gaussian elimination	vol.2: p.104
Generalized coordinates Geodesics	vol.1: p.78
	vol.1: pp.44 - 46, 51, 96 - 99
Gradient vector field	vol.1: pp.129 - 130

		10 107
	Gram schmidt orthogonality procedure	vol.2: p.137
	Group	vol.1: pp.21, 94 - 95
	Group invariant vectors	vol.1: p.100
	Group, left/right action	vol.1: pp.24 - 29, 33, 80, 96, 137
	Group, symmetry	vol.1: pp.108 - 109, 137
Н		
	Hartman-grobman theorem	vol.2: p.88
	Heteroclinic trajectory	vol.2: p.94
	Holonomic constraint	vol.1: pp.76 - 77
	Homeomorphic	vol.1:p.19
		vol.2:p.88
	Homogeneity	vol.3:p.1
	Homogeneous equations	vol.2:p.105
	Hyperbolic fixed point	vol.2: pp.87 - 88
	Hysteresis	vol.1: pp.66, 70-71
		vol.2: p.42
I		
	Idempotent	vol.2: p.37
	Image (algebra)	vol.1: p.124
	Impulse response	vol.3: pp.19 - 20, 29 - 30, 36
	Index theory	vol.2: pp.98 - 101
	Inner product	vol.2: pp.134 - 135
	product	vol.3: p.41
	Internal forces	vol.1: p.1
	Intersection (spaces)	vol.2: pp.130 - 131
	Invariance	vol.1: p.139
	Isocline	vol.2: pp.74,84
	Isomorphic	vol.1: p.22
т	Isomor pine	00t.1 : p.22
J	Jacobi-liouville formula	wol 2 . m 27
	Jacobian	vol.3: p.27 vol.1: pp.84 - 86
	Jacobian	
v		vol.2: p.85
K	TZ 1	11 104 105
	Kernel	vol.1: pp.124 - 125
<i>T</i>	Kinematic locomotion	vol.1: pp.105 - 107
L		
	Lagrangian	vol.2: p.45
	Lagrangian multipliers	vol.2: pp.45 - 46
	Laplace transform	vol.2: p.147
		vol.3: pp.29 - 33
	Liapunov fixed point	vol.2: p.76
	Lie algebra	vol.1: pp.41, 98 - 100, 103, 151 - 152
	Lie bracket	vol.1: pp.148 - 150
		vol.2: p.1
	Lie groups	vol.1: pp.21, 96 - 99
	Lifted actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
	Linear combination	vol.2: p.124

Linear equations	vol.2:p.104
Linear independence	vol.2: pp.124 - 125
Linear time invariance	vol.2:p.152
	vol.3: pp.8 - 9, 17
Linear transformation	vol.2: pp.131 - 133
Linearity	vol.3:p.15
Linearity (mapping)	vol.1: pp.106 - 107
Linearity (systems)	vol.2:p.152
	vol.3:p.1
Linearization at a fixed point	vol.1: pp.10-11
	vol.2: pp.84 - 85
	vol.3: pp.1, 7-10
Local connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locomotion	vol.1:p.104
Lotka-volterra model of competition	vol.2:p.88
M	
Manifolds	vol.1: pp.17 - 19,93
Manifolds, accessible	vol.1: pp.76 - 78
Manifolds, c^k -differentiable	vol.1:p.20
Manifolds, curvature	vol.1:p.93
Manifolds, stable	vol.2:p.89
Manifolds, topology	vol.1:p.93
Markov parameters	vol.3:p.20
Matrix cofactor	vol.2: pp.111, 118 - 120
Matrix determinant	vol.2: pp.115 - 119
Matrix exponentiation	vol.3: pp.26 - 27, 36
Matrix inverse	vol.2: pp.110 - 115
Matrix minor	vol.2:p.111
Matrix operations	vol.2:p.106
Matthew equation	vol.3:p.27
Memoryless systems	vol.2:p.152
	vol.3:p.4
Modal contributions of initial conditions	vol.3: pp.41 - 45
Modal decomposition	vol.3:pp.35-45
Model consistency	vol.2:p.44
Modular addition	vol.1:p.21
Momentum	vol.1: pp.138 - 140
Monotonic function	vol.1:p.13
Multiplicative calculus	vol.1: pp.34 - 38, 46 - 47
N	
Neumann series	vol.3:p.22
Neutrally stable	vol.2:p.76
Nilpotent matrix	vol.3:p.35
Noether's theorem	vol.1: pp.131 - 134
Noncommutativity	vol.1:p.147
Nonconservativity	vol.1: pp.145 - 147

 $Nonholonomic\ constraint$

vol.1: pp.110 - 117, 135 - 136

Normal matrix	vol.3: pp.36-45
Nullcline	vol.2:p.84
Nullity	vol.2:p.134
Nullspace	vol.2: pp.132 - 134
O	
One-form	vol.1: pp.125, 127-129
Optimal frame	vol.1:p.83
Orthogonal compliment	vol.2: pp.137 - 138
Orthogonal set	vol.2:p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal basis	vol.2:p.136
Outer product	vol.2:p.136
Overdetermined system	vol.2: pp.19, 41
P	••
Pfaffian constraint	vol.1: pp.111 - 117
Phase (angle)	vol.2: p.61
Phase coordinate form	vol.3: p.6
Phase drift	vol.2: p.68
Phase lock	vol.2:p.67
Phase portrait	vol.1: pp.7 - 9
That portrait	vol.2: pp.74, 83
	vol.3: p.35
Poles (transfer function)	vol.2: p.147
Position trajectory	vol.1: p.105
Potentials	vol.1: p.170
Preimage (algebra)	vol.1: p.11 vol.1: p.124
Principally kinematic system	vol.1 : p.124 vol.1 : p.139
Principle of least action	vol.1: p.139 vol.1: pp.131 - 133
-	
Projection operator	vol.2:p.37
R	and 9 . mm 199 - 199
Range (matrix)	vol.2: pp.132 - 133
Range of entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reaction force	vol.1: p.4
Realization theory	vol.2: p.149
Reconstruction equation	vol.1: pp.114 - 123, 138
Regular control problem	vol.2:p.45
Resolvent	vol.3: pp.17 - 18, 30, 36
Reversible system	vol.2: pp.92 - 95
Rigid body	vol.1:p.23
Rigid body, left lifted action	vol.1: pp.38 - 41
Rigid body, right lifted action	vol.1: pp.41 - 43
Row echelon form	vol.2:p.107
Row space	vol.2:p.134
Runge-kutta method	vol.2:p.83
S	
Saddle connection	vol.2:p.94

Semidirect product of two sets	vol.1: p.24
Separatrix	vol.2: p.89
Shape trajectory	vol.1: p.105
Shift operator	vol.3: pp.1-2
Similar matrices	vol.2: p.142
Singular matrix	vol.2: pp.41 - 42, 51, 110, 122
Solution, differential-algebraic equations	vol.2:p.44
Span	vol.2: pp.124 - 125
Spatial velocity	vol.1:pp.43,85
Special euclidean group	vol.1:p.23
	vol.2: pp.1-2
Special orthogonal group, $so(n)$	vol.1:p.22
	vol.2: pp.1-2
Stable	vol.2: p.76
State space model	vol.2: pp.147 - 150
	vol.3:p.5
State transition matrix	vol.3:pp.11-13
State vector	vol.2: pp.147 - 149
	vol.3:p.5
Strain energy	vol.2: pp.5-7
Structural stability	vol.2:p.88
Subspace	vol.2: pp.129 - 130
Sum (spaces)	vol.2: pp.130 - 131
Superposition	vol.3:pp.1,13
Symmetric matrix	vol.2:p.144
Symmetry	vol.1: pp.108 - 109, 131
T	
Tangent spaces	vol.1: pp.29 - 30
Taylor series expansion	vol.3:pp.7-8
Tensor product	vol.1:p.20
Time invariance	vol.2:p.152
	vol.3: pp.1-4
Time-reversal symmetry	vol.2: pp.92 - 93
Toeplitx matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Transfer function	vol.2: pp.146 - 147, 150
	vol.3: pp.18 - 20, 36
U	
Underactuated system	vol.1:p.104
Underdetermined system	vol.2:pp.19,41
Unitary diagonal coordinate transformation	vol.3: pp.38 - 43
Unstable	vol.2:p.76
V	
Variations of constants formula	vol.3:p.24
Varignon's theorem	vol.1:p.1
Vector field	vol.1: pp.30 - 31
	vol.2:p.74
	- -

vol.2:p.127Vector mapping vol.2: pp.122 - 123 ${\bf Vector\ space}$ Vertical space vol.1:p.125WWork (mechanical) vol.1:p.145ZZ-transform vol.3: pp.14 - 22vol.1: pp.76, 110-111 ${\rm Zero}\,\,{\rm set}$ Zeros (transfer function) vol.2:p.147