MATH 2603, Fall 2015, Quiz 6, Oct 21 2015: Closed book, no calculators. Instructor: Esther Ezra.

You can answer all questions on this sheet, but may use extra sheets (from your personal notepad) if needed.

Name GT IDnumber Solution $\alpha_n = \frac{6}{\sqrt{17}} \left(\frac{5 + \sqrt{17}}{2} \right)^n - \frac{6}{\sqrt{17}} \left(\frac{5 - \sqrt{17}}{2} \right)^n$ Problem 1. (50 points) Solve the recurrence relation $a_n = 5a_{n-1} - 2a_{n-2} + 3n^2,$ $-\frac{3}{2}n^2 - \frac{3}{2}n - 3$ where $a_0 = 0, a_1 = 3$. t) Solve for homogeneous part t) Solve for particular solution $\lambda^2 - 5\lambda + 2 = 0$ Pn $= (An^2 + Bn + C)$ Solve A, B, C in > 2 = 5 t V25-4.2.1 An2 + Bn + C = 5 [A(n-1)2 + B(n-1)+ C] = (5 ± \(\frac{17}{17}\)) - 2[Aln-2)2+Bln-2)+c] $5 - \sqrt{17} \rightarrow A = B = -3/2 , C = -3$ = 9n + Pn and solve to get c1 = -c2 = -Write a recursive algorithm (use either a verbal description, or a pseudo-code) to search an element in a sorted array of n numbers. How many comparisons does your algorithm perform? * Since the array is sorted we can do broany search . Let the element to be searched for be x . Divide the arrays into 2 in the middle leach new set contains n elements if n is even; if n is odd, one set will contour $\lfloor \frac{n}{2} \rfloor$ and the other . Call the new sets A and B and compare a the last element $\left(\left\lfloor \frac{n}{2} \right\rfloor \right)$ th element) in A. If x is less than that then a must be in A, other nise nin B

. Repeat this until we find a.

* The algorithm will perform, on the order of, logn comparisons

* If linear search is done then at most n comparisons