Estimation of the Customer Life Value

August 25, 2023

Insurance context

- ▶ Providing Insights in a Complex Industry:
 - ▶ Insurance operations involve numerous variables, from risk assessment to customer behavior.
 - ► Customer Lifetime Value (or CLV) offers a comprehensive metric encompassing these factors.
- ► Efficient Decision-Making:
 - ► CLV consolidates diverse information, streamlining decision processes.
 - ► Enables optimized resource allocation, customer engagement, and tailored product offerings.

Customer Life Value (CLV)

- ► CLV represents the total expected profit a company expects from a client throughout their entire relationship.
- Used in multiple industries in order to evaluate the financial value of a customer and better tailor the approach of the company towards customers (pricing, marketing, etc.)
- ▶ Mathematically, we can define CLV as

$$CLV(a) = \mathbb{E}\left[\sum_{t=1}^{T} \gamma^{t} Profit(S_{t}) \mid S_{0} = a\right]$$

where:

- \triangleright γ is a discounting factor to account for time-value of money:
- $ightharpoonup Profit(S_t)$ is a function that gives the expected profit from a client given their state S_{t} .

The model

- ightharpoonup Problem: how to model S_t ?
- \blacktriangleright Natural to think of $\{S_t\}$ as a sequence of random variables.
- ▶ We assume the Markov property for simplification:

$$\mathbb{P}(S_{t+1} = s \mid S_t, S_{t-1}, \dots, S_0) = \mathbb{P}(S_{t+1} = s \mid S_t)$$

We used a method from Haenlein et al. (2007) that involves 3 steps:

- 1. Fit a regression tree on the data to identify groups (i.e. the states of the Markov chain) with the profit as a target variable;
- 2. Estimate the transition probabilities between each group/state;
- 3. Compute the CLV by Monte Carlo.

ID	Features			Profit	Time
טו	X1	X2	ХЗ	Piolit	Time
Α	13	14	9	250	0
В	18	16	4	570	0
С	32	27	2	-50	0
Α	23	16	11	50	1
В	43	8	2	-100	1
С	12	22	7	240	1

- ▶ Step 1: Combine data from all time steps into a single dataset (we assume time independency) and fit a regression tree;
- ▶ Result : that creates a new feature **Group** (there is a sense of order by profit). We can "forget" the other features from now on.

Details (continued)

ID		Time	
10	0	1	2
Α	1	0	1
В	2	1	2
С	0	0	1

	T+1				
	0	1	2		
0	0.333	0.667	0		
1	0.5	0	0.5		
2	0	1	0		

- ▶ **Step 2**: Build the transition matrix with empirical transition probabilities (assuming time homogeneity);
- ▶ **Step 3**: Compute the CLV by simulating Markov chains (Monte Carlo method).

Results

► The method does function on synthetic data. It can categorize clients into controlable number of groups and assign a CLV for each groups a land a sign a CLV for each groups.

Other approaches

- ▶ Beta-geometric/NBD Model: in the context of marketing or online retail, this model was used to estimate the CLV using a conjunction of Pareto/NBD model and Gamma-Gamma model, in Jasek, Pavel, et al. (2018).
- ▶ Deep Learning approach: a master's thesis was written which attempted to apply deep learning to calculate CLV with a P&C insurance company. Marta Jablecka (2020)

References

- ▶ Haenlein, Michael & Kaplan, Andreas & Beeser, Anemone. (2007). A Model to Determine Customer Lifetime Value in a Retail Banking Context. European Management Journal. 25. 221-234. 10.1016/j.emj 2007.01.004.
- ▶ Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2018, January). Modeling and application of customer lifetime value in online retail. In Informatics (Vol. 5, No. 1, p. 2). MDPI.
- ▶ Jablecka, Marta (2020). Modelling CLV in the Insurance Industry Using Deep Learning Methods (Master's Thesis, KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES)