总习题

- 1. 已知 $\triangle ABC$ 的项点 A(3,2,-1), B(5,-4,7) 和 C(-1,1,2) , 求从项点 C 所引中线的长度.
- 2. 设 $\triangle ABC$ 的三边 $\overrightarrow{BC} = \boldsymbol{a}$, $\overrightarrow{CA} = \boldsymbol{b}$, $\overrightarrow{AB} = \boldsymbol{c}$, 三边中点依次为 $D \setminus E \setminus F$,试用 $\boldsymbol{a,b,c}$ 表示 $\overrightarrow{AD} \setminus \overrightarrow{BE} \setminus \overrightarrow{CF}$,并证明 $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = 0$.
- 3. 用向量证明三角形两边中点连线平行于第三边,且其长度是第三边长的一半.
- 4. 设 $|a| = \sqrt{3}$, |b| = 1, 且a, b 的夹角为 $\pi/6$, 求向量a + b 与a b 的夹角.
- 5. 设 $(a+3b) \perp (7a-5b)$, $(a-4b) \perp (7a-2b)$, 求a, b 的夹角.
- 6. 设a = (2, -3, 1), b = (1, -2, 3), c = (2, 1, 2), 求向量r使 $r \perp a, r \perp b$, $(r)_c = 14$.
- 7. 设 a,b,c 都是单位向量,且 a+b+c=0,求 $a \cdot b + b \cdot c + c \cdot a$.
- 8. 设a = (2,1,2),b = (4,-1,10), $c = b \lambda a$,且 $a \perp c$,求 λ .
- 9. 设 |a| = 3, |b| = 4, |c| = 5,且 a + b + c = 0,则 $|a \times b + b \times c + c \times a| =$ _____
- 10. 求通过点 A(3,0,0) 和 B(0,0,1) 且与 xOy 面成 $\frac{\pi}{3}$ 角的平面的方程.
- 11. 求过点 (-1,0,4),且平行于平面 3x-4y+z-10=0,又与直线 $\frac{x+1}{1}=\frac{y-3}{1}=\frac{z}{2}$ 相 交的直线的方程 (可先求交点坐标).
- 12. 直线 $L: \frac{x-1}{0} = \frac{y}{1} = \frac{z}{1}$ 绕 z 轴旋转生成旋转面,求这个旋转面的方程.
- 13. 求点(2,1,1)到平面x+y-z+1=0的距离.

- 14. 求经过直线 L: $\begin{cases} x+5y+z=0 \\ x-z+4=0 \end{cases}$ 且与平面 x-4y-8z=8 夹成 $\pi/4$ 角的平面方程.
- 15. **共面定理**: 若向量a与b不共线,则向量c与a,b共面的充要条件是存在实数k,l 使得 c = ka + lb. (由平行四边形法则可得)
- 16. 设数 $\lambda_1, \lambda_2, \lambda_3$ 不全为0,且 $\lambda_a + \lambda_b + \lambda_c = 0$,则向量a,b,c 是共面的(用**共面定理**)
- 17. 设 $\mathbf{a} = (-1,3,2), \mathbf{b} = (2,-3,-4), \mathbf{c} = (-3,12,6)$. 证明向量 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 共面,并用 \mathbf{a}, \mathbf{b} 表示 \mathbf{c} .

(提示:由混合积[abc]= $(a \times b) \cdot c = 0$ 可知3向量共面,也可用**共面定理**).

- 18. 已知 \vec{a} , \vec{b} , \vec{c} 互相垂直,且 $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$, $\vec{s} = \vec{a} + \vec{b} + \vec{c}$.
- (1) 求 $\vec{s} = \vec{a} + \vec{b} + \vec{c}$ 的长度平方与长度; (2) 求向量 \vec{s} 与 \vec{c} 的夹角余弦
- 19. 已知三角形的顶点 $A(x_1, y_1, z_1), B(x_2, y_2, z_2), C(x_3, y_3, z_3)$.
- (1)证明三角形的重心G (3 条中线的交点)的向径公式为

$$\overrightarrow{OG} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$$

В

- 20. (1) 已知 $OB \perp AC$, $OC \perp AB$, 用向量证明 $OA \perp BC$ (如图示).
 - (2)证明三角形的3条高线相交于一点.

(提示: 设
$$\overrightarrow{OA} = x$$
, $\overrightarrow{OB} = y$, $\overrightarrow{OC} = z$, 则 $\overrightarrow{BA} = x - y$, $\overrightarrow{BC} = z - y$, $\overrightarrow{AC} = z - x$. 因为 $OB \perp AC$, $OC \perp AB$, 故 $y \cdot (z - x) = 0$, $z \cdot (x - y) = 0$, 两式相加得 $x \cdot (z - y) = 0$, 即 $OA \perp BC$).

- 21. 用向量证明: (1)直径所对的圆周角是直角; (2)直角三角形的勾股定理.
- 22. 设 A(a,0,0), B(0,b,0), C(0,0,c). (1) 求叉积 $\overline{AB} \times \overline{AC}$; (2) 求三角形面积 S_{ABC} .

23. 设
$$a \neq 0$$
,证明 $a \perp [b - \frac{(a \cdot b)a}{a^2}]$,且 $[b - \frac{(a \cdot b)a}{a^2}]^2 = b^2 - \frac{(a \cdot b)^2}{a^2}$.

24. 设非零向量a, b, c 互相垂直, 且d = xa + yb + zc, 则系数x, y, z 为

$$x = \frac{d \cdot a}{a^2}, y = \frac{d \cdot b}{b^2}, z = \frac{d \cdot c}{c^2}.$$

25. 已知四顶点 A(1,1,1), B(7,1,7), C(5,4,1), D(3,0,4). 求四面体 ABCD 的体积 V