Problems:

1) What is the probability that a leap year selected at random contain 53 Sundays?

Solution: A leap year has 366 days i.e. 52 complete weeks and 2 days over and above. via (S,M),(M,T),(T,W),(W,Thu),(Thu,F),(F,Sat),(Sat,S) Let event A={A leap year contains 53 Sundays} Total No. of cases= n=7 and favorable No. of cases= m=2 Therefore, P(A) = m/n = 2/7.

2) Suppose that A, B & C are events, Such that P(A) = P(B) = P(C) = 1/4, $P(A \cap B) = P(B \cap C) = 0$ and $P(A \cap C) = 1/8$. Find the probability that at least one of the events A, B or C occurs.

Solution:
$$P(AUBUC) = P(A) + P(B) + P(C) - P(A \cap C) - P(A \cap B) - P(B \cap C) + P(A \cap B \cap C)$$

= $1/4 + 1/4 + 1/4 - 0 - 1/8 - 0 + 0$
= $(6-1)/8$
= $5/8$.

3) Suppose that A & B are events. Given that P(A)=x, P(B)=y, $P(A\cap B)=z$. Find, i) $P(\overline{A}\cup\overline{B})$ ii) $P(\overline{A}\cap B)$ iii) $P(\overline{A}\cup B)$ iv) $P(\overline{A}\cap B)$

Solution:

- i) $P(\overline{A}U\overline{B})=P((\overline{A}\cap B))=1-P(A\cap B)=1-z$
- ii) $P(\overline{A} \cap B) = P(B) P(A \cap B) = y z$
- iii) $P(\overline{A}UB)=P(\overline{A})+P(B)-P(\overline{A}\cap B)$ =1-x+y-y+z =1-x+z

iv)
$$P(\overline{A} \cap \overline{B}) = P((\overline{A \cup B})) = 1 - P(AUB) = 1 - P(A) - P(B) + P(A \cap B)$$

= 1-x-y+z

4) A class contains 10 boys and 20 girls, of which half the boys and half the girls have brown eyes. A person is chosen at random from this group. What is the probability that the chosen person is a boy or has brown eyes?

Solution: Define the events A : {The person chosen is a boy} $B : \{ \text{The person chosen has brown eyes} \}$ $\therefore \text{ Required probability} = P(A \cup B) = ? = P(A) + P(B) - P(A \cap B)$

Now P(A) =
$$\frac{\binom{10}{1}}{\binom{30}{1}} = \frac{10}{30} = \frac{1}{3}$$

P(B) = $\frac{\binom{15}{1}}{\binom{30}{1}} = \frac{15}{30} = \frac{1}{2}$
P(A\cap B) = $\frac{\binom{5}{1}}{\binom{30}{1}} = \frac{5}{30} = \frac{1}{6}$

$$\therefore P(A \cup B) = \frac{1}{3} + \frac{1}{2} - \frac{1}{6} = \frac{2}{3}$$

- 5) A lot consists of 10 good articles, 4 with minor defects and 2 with major defects. An article is chosen at random. Find the probability that
 - a) it has no defects
 - b) it has no major defects
 - c) it is either good or has major defects

Solve it!

Finite Sample Space:

A sample space consisting of a finite or countably infinite number of elements is referred to as **Finite sample space.**

Ex: $S = \{a_1, a_2, ..., a_k\}$

In order to characterize P(A), consider an event consisting of single outcome, say, $A=\{a_i\}$ we assign a number p_i is called the probability of $\{a_i\}$ satisfying

- i) $p_i \ge 0, i=1,2,....k$
- ii) $p_1+p_2+...+p_k=1$

Suppose that an event A consists of r outcomes, $1 \le r \le k$, so that $A = \{a_{j1}, a_{j2}, \dots a_{jr}\}$ where $j1, j2\dots jr$ are any indices from $1, 2, 3\dots k$. Then $P(A) = p_{j1} + p_{j2} + \dots + p_{jr}$.

Thus, by assigning probabilities p_i to each elementary event $\{a_i\}$ subject to condition (i) and (ii) above, one can uniquely determine P(A) for each $A \subseteq S$.

To evaluate p_i 's and hence P(A), some assumptions such as equally likely outcomes concerning the individual outcome must be made.

Note 1: In most of the experiments we are concerned with choosing at random one or more objects from a given collection of objects. Suppose we have N objects say $a_1, a_2, ..., a_N$.

- a) To choose one object at random from N objects means each object has the same probability of selection. i.e. P(choosing any a_i)=1/N, i=1,2....N.
- b) To choose 2 objects at random from N objects means each pair of objects has the same probability of being chosen as any other pair. Thus if there are k such pairs, then P(choosing any pair)=1/k.
- c) To choose n objects at random from N objects means that each n-tuple, say (a_i, a_2, \dots, a_n) is as likely to be chosen as any other n tuple. If there are k such groups of n objects then P(choosing any group of n objects)=1/k.

Note 2: There are several ways in which samples may be selected from a population. Here we consider, for example:

- i) the samples drawn sequentially (one after another)
- ii) the samples drawn simultaneously (together)

Let Z denote the set of balls in the urn. If the balls are drawn sequentially then we may describe the outcome of the game by the ordered k-tuple, $(z_1, z_2....z_k)$ of elements of Z, where z_1 denotes the first ball drawn, z_2 denotes the 2^{nd} and so on and k^{th} the total no. of balls drawn. Thus we shall refer to $(z_1, z_2....z_k)$ as an *ordered sample* of size k.

If the balls are drawn simultaneously, it no longer makes sense to speak of a first ball or 2^{nd} ball etc., we may describe the outcome of our sampling only by the subset $\{z_1, z_2, ..., z_k\}$ as an *unordered sample of size k*.

- 1) The number of ways of choosing an unordered sample of k objects out of n objects is $\binom{n}{k}$ i.e. ${}^{n}C_{k}$
- 2) The no. of ways of choosing ordered sample with replacement (WR) is n^k
- The no. of ways of choosing ordered samples without replacement (WOR) is ${}^{n}P_{k} = \frac{n!}{(n-k)!}$

Problems:

- 1) A lot consists of 10 good articles, 4 with minor defects and 2 with major defects. Two articles are chosen at random without replacement. Find the probability that
 - a) both are good
 - b) both have major defects
 - c) atleast one is good
 - d) atmost one is good

Solve it!

- 2) Ten persons are wearing badges marked 1 through 10. Three persons are chosen at random and asked to leave the room simultaneously with their badge no. being noted.
 - a) What is the probability that the smallest badge no. is 5?
 - b) What is the probability that the largest badge no. is 5?

Solve it!

- 3) A box contains tags marked 1,2,....n. Two tags are chosen at random. Find the probability that the no.s on the tag will be consecutive integers if
 - a) the tags are chosen without replacement
 - b) the tags are chosen with replacement

Solve it!