Tissue-level classification of loci associated with type 2 diabetes

Jason Torres, PhD McCarthy Lab Meeting March 16, 2018

Goal: Develop an informative score for classifying T2D loci by tissue

 Approach: Use fgwas to finemap "functional" credible sets with chromatin segmentation data from islet, adipose, muscle, and liver

Data:

- DIAMANTE-European GWAS (HRC-imputed)
- Chromatin states (ChIP-seq) from Varshney et al. 2016.
- Pipeline for generating functional credible sets for all conditionally independent loci

ChromHMM Emission plot Varshney *et* al. 2016

Scheme for partitioning GWAS data

- Estimates for genomic annotations that encompass a small number of SNPs fail to converge
- Overlapping annotations may be difficult to interpret (i.e. sign flips) in joint model
- Strategy: Partition the genome into subsets that are sensibly grouped

Tissue-specific, shared with islet, not shared with islet, coding, distance to TSS

Tissue-specific and shared annotations show genome-wide enrichment

Scheme for obtaining tissue scores from "functional" fine mapping

Tissue scores

(islet, adipose, muscle, liver, other)

Divvy by genomic annotation

Coding
Strong enhancer
Weak enhancer
Promoter
Gene transcription
Genic enhancer

Expression specificity scores for divvying coding variant PPA

$$ESS_t = \frac{\text{median}(Expression_t)}{\sum_{x \in T} \text{median}(Expression_x)}$$

	GenelD	GeneName	islet.score	muscle.score	adipose.score	liver.score
1	ENSG00000181092.5	ADIPOQ	0.000000E+00	1.204194E-03	9.987158E-01	8.004492E-05
2	ENSG00000254647.2	INS	9.999898E-01	1.428814E-06	2.408706E-06	6.330036E-06
3	ENSG00000187758.3	ADH1A	8.960711E-04	4.900985E-04	1.228740E-02	9.863264E-01
4	ENSG00000125414.14	MYH2	1.559308E-05	9.99565E-01	3.473728E-04	7.200330E-05

General approach for divvying PPA value for each SNP in a credible set

$$s_{j,a,t} = \frac{P_j}{\sum_{i \in T} \mathbb{1}(j, a, i)} \mathbb{1}(j, a, t)$$

$$\mathbb{1}(j, a, t) := \begin{cases} 1 & \text{if SNP} j \text{ overlaps annotation } a \text{ in tissue } t \\ 0 & \text{otherwise} \end{cases}$$

where $s_{j,a}$ is score vector for SNP *j* and annotation *a*

 s_j is score vector for SNP j where $q = \sum s_{j,a}$ $a \in A$ and A is the set of all annotations

Example: HNF4A

Fine-mapped to one coding variant (PPA=1) that maps to islet strong enhancer and liver genic enhancer

	islet	muscle	adipose	liver
coding.vec	0.188141	9.012258E-05	0.0001536971	0.8116152
strongenh.vec	1	0.000000E+00	0.0000000000	0.0000000
weakenh.vec	0.000000	0.000000E+00	0.0000000000	0.0000000
genenh.vec	0.000000	0.000000E+00	0.0000000000	1
prom.vec	0.000000	0.000000E+00	0.0000000000	0.0000000
genetrans.vec	0.000000	0.000000E+00	0.0000000000	0.0000000

matrix of score values across tissues and annotations

scale and multiply by PPA

	islet	muscle	adipose	liver	
1	0.396047	3.004086E-05	5.123236E-05	0.6038717	

Approach for determining tissue score vector for each credible set (i.e. locus)

$$L = egin{bmatrix} s_1 \ s_2 \ & \vdots \ & \vdots \ s_m \end{bmatrix}$$

- 1. Take the sum of credible set PPA scores for each tissue
 - Yields a vector with four elements corresponding to each tissue
- 2. Determine the amount of credible set PPA not accounted for by variants mapping to tissue annotations
 - this is the "other" score for the locus
- 3. Scale the resulting score vector

What genomic annotations should be included in the scheme?

"Reduced" set

Coding Strong enhancer "Full" set

Coding
Strong enhancer
Weak enhancer
Promoter
Gene transcription
Genic enhancer

Comparison of PPA Scores

Dilution of signal in "full" model from assuming all annotations are equally important?

	refseq	Locus.ID	tissue	ppa.score.full	ppa.score.reduced	ppa.score.wfull	ppa.score.diff	ppa.score.diffW
1	MTNR1B	144_1	islet	1	0	1	1	0
2	MTNR1B	144_1	muscle	0	0	0	0	0
3	MTNR1B	144_1	adipose	0	0	0	0	0
4	MTNR1B	144_1	liver	0	0	0	0	0
5	MTNR1B	144_1	other	0	1	0	-1	0

	refseq	Locus.ID	tissue	ppa.score.full	ppa.score.reduced	ppa.score.wfull	ppa.score.diff	ppa.score.diffW
1	PPARG	30_1	islet	0.05492854	5.030831E-05	0.05493294	0.05487823	4.396757E-06
2	PPARG	30_1	muscle	0.05761088	5.669301E-05	0.05671312	0.05755418	-8.977524E-04
3	PPARG	30_1	adipose	0.4450193	7.698313E-01	0.52633933	-0.32481205	8.132003E-02
4	PPARG	30_1	liver	0.44244129	9.979674E-05	0.36201461	0.44234149	-8.042667E-02
5	PPARG	30_1	other	0.00000000	2.299619E-01	0.00000000	-0.22996186	0.000000E+00

	refseq	Locus.ID	tissue	ppa.score.full	ppa.score.reduced	ppa.score.wfull	ppa.score.diff	ppa.score.diffW
1	ADCY5	40	islet	0.3131044	0.939313204	0.3624188	-0.62620880	0.04931441
2	ADCY5	40	muscle	0.3016360	0.000000000	0.3265585	0.30163605	0.02492244
3	ADCY5	40	adipose	0.1973943	0.009529011	0.1621266	0.18786527	-0.03526772
4	ADCY5	40	liver	0.1878653	0.000000000	0.1488961	0.18786527	-0.03896913
5	ADCY5	40	other	0.0000000	0.051157784	0.0000000	-0.05115778	0.00000000

General approach for divvying PPA value for each SNP in a credible set

$$s_{j,a,t} = \frac{P_j}{\sum_{i \in T} \mathbb{1}(j, a, i)} \mathbb{1}(j, a, t)$$

$$\mathbb{1}(j, a, t) := \begin{cases} 1 & \text{if SNP} j \text{ overlaps annotation } a \text{ in tissue } t \\ 0 & \text{otherwise} \end{cases}$$

where $s_{j,a}$ is score vector for SNP *j* and annotation *a*

$$s_j = P_j \frac{q}{\sum_{i=1}^4 q_i}$$

 s_i is score vector for SNP j where $q = \sum s_{j,a} w_a$ A is the set of all annotations and wa is a weight for annotation a

$$q = \sum_{a \in A} s_{j,a} w_a$$

Comparison of PPA Scores

The first principal component separates "other" loci (n=93) from everything else

Similar profile when center and rescale input score matrix

PC1 in pruned matrix ("other" score <= 0.10) separates islet loci from everything else. PC2 separates liver from adipose and muscle

PC1 in pruned matrix ("other" score <= 0.10) separates islet loci from everything else. PC2 separates liver from adipose and muscle

Tissues scores for *KCNJ11* credible set vary with model and weighting

	refseq	Locus.ID	tissue	ppa.score.full	ppa.score.reduced	ppa.score.wfull	ppa.score.diff	ppa.score.diffW
:	KCNJ11	135_1	islet	0.392899363	0.612162221	0.303201465	-0.219262859	-0.0896978980
2	KCNJ11	135_1	muscle	0.59894185	0.380090176	0.688983349	0.218851674	0.0900414998
3	KCNJ11	135_1	adipose	0.003256424	0.004884636	0.003797298	-0.001628212	0.0005408742
4	KCNJ11	135_1	liver	0.004902363	0.002862966	0.004017888	0.002039397	-0.0008844759
	KCNJ11	135_1	other	0.000000000	0.000000000	0.000000000	0.000000000	0.0000000000

	Locus.ID	symbol	SEGNUMBER	SNPID	CHR	POS	logBF	Z	PPA
1	135_1	KCNJ11	54	chr11:17408630	chr11	17408630	54.6166	-10.8025	0.47946011
2	135_1	KCNJ11	54	chr11:17409572	chr11	17409572	54.4518	10.7872	0.40660809
3	135_1	KCNJ11	54	chr11:17408404	chr11	17408404	54.5897	-10.7996	0.09076952
4	135_1	KCNJ11	54	chr11:17418477	chr11	17418477	51.8248	-10.5403	0.01786720

annotation	weight
strong.enhancers	1.5839700
weak.enhancers	1.4815050
repressed.regions	-0.1424545
promoters	2.5220150
gene.transcription	1.0398415
bivalent.tss	1.5177900
genic.enhancer	1.8237250
low.signal	-1.0193400
coding	2.5870100

	Locus.ID	islet	muscle	adipose	liver	other
1	135_1	0.3925058	0.6007978	0.003443151	0.0032532	0

	GeneID	GeneName	islet.score	muscle.score	adipose.score	liver.score
1	ENSG00000187486.5	KCNJ11	0.1464343	0.8365146	0.01075026	0.00630090

	annotation	tissue	weight
1	strong.enhancers	adipose	1.7294600
2	strong.enhancers	islet	2.4192650
3	strong.enhancers	liver	1.0076935
4	strong.enhancers	muscle	0.5695666
5	weak.enhancers	adipose	0.8061710
6	weak.enhancers	islet	1.6125100
7	weak.enhancers	liver	1.4397500
8	weak.enhancers	muscle	1.5232600
9	repressed.regions	adipose	-0.0885795
10	repressed.regions	islet	-0.5018890
11	repressed.regions	liver	0.3082345
12	repressed.regions	muscle	0.0044020
13	promoters	adipose	2.2591100
14	promoters	islet	2.2379800
15	promoters	liver	1.8956730
16	promoters	muscle	2.3708533
17	gene.transcription	adipose	0.7433020
18	gene.transcription	islet	1.2535615
19	gene.transcription	liver	0.8084615
20	gene.transcription	muscle	0.9358600
21	bivalent.tss	adipose	1.0656500
22	bivalent.tss	islet	1.9313600
23	bivalent.tss	liver	1.8489800
24	bivalent.tss	muscle	1.1866000
25	genic.enhancer	adipose	1.6906900
26	genic.enhancer	islet	-23.9143000
27	genic.enhancer	liver	2.1158200
28	genic.enhancer	muscle	1.9567600
29	low.signal	adipose	-1.0189100
30	low.signal	islet	-1.0197700
31	low.signal	liver	-0.8916990
32	low.signal	muscle	-1.2294800
33	coding	adipose	2.5870100
34	coding	islet	2.5870100
35	coding	liver	2.5870100
36	coding	muscle	2.5870100

Establishing a rule-based classifier

- Tissue classifier applied the score values for each locus
- For a given locus, assign to tissue t if score value for that tissue is the greatest in the set **and** greater than threshold r
- Threshold r is determined through an eQTL enrichment analysis
 - for each evaluated threshold on interval [0,1], classify loci into tissue groups
 - for each tissue group, take the combined set of credible SNPs across all assigned loci and perform and eQTL enrichment analysis (MAFadjusted)
 - Assess eQTL enrichment for the corresponding tissue
 - Identify threshold that maximizes enrichment for each tissue
 - subject to (a) enrichment being significant and (b) enrichment values being available for all tissues at threshold
 - Take mean of maximizing thresholds

	islet	liver	adipose	muscle
1	136	39	59	21

Validating the tissue classifier

Validation 1: Test if fgwas fine-mapping of loci classified as islet improves with additional islet epigenetic data

Wilcoxon test for difference in improvement of max PPA over null

Mean of Islet-only fgwas = 0.0925 Mean of multi-tissue fgwas = 0.05677

Validation 2: Gene co-expression analysis of annotated genes for each classified loci across tissues

Rank-based permutation test for coexpression

Conclusions and current work

- "functional" credible set-based tissue scores separate islet and insulin-responsive peripheral tissue loci
- Secondary separation of liver from adipose and muscle
- Top loci for each group are biologically plausible although some require special consideration (e.g. KNCJ11)
- Some loci unclassified due to low/quiescent signals in chromatin segmentation (e.g. MC4R, KLF14)
- Rule-based classifier results in tissue groups that are supported by validation analyses
 - only loci classified as islet are more finely-mapped if additional islet epigenetic data
 - tissue-classified loci genes are most highly co-expressed in the corresponding tissue

Special thanks

- Anubha
- Moustafa
- Juan
- Agata
- Matthias
- Mark
- and you too;)

islet shared enhancer variant

Coding and islet-specific strong enhancer

```
refseq Locus.ID tissue ppa.score.full ppa.score.reduced ppa.score.diff

1 PPARG 30_1 islet 0.05492854 5.030831e-05 0.05487823

2 PPARG 30_1 muscle 0.05761088 5.669301e-05 0.05755418

3 PPARG 30_1 adipose 0.43986191 7.698313e-01 -0.32996944

4 PPARG 30_1 liver 0.44759867 9.979674e-05 0.44749888

5 PPARG 30_1 other 0.000000000 2.299619e-01 -0.22996186
```

```
(filter(full.df,other<0.50) %>% dim(.))[1] # 314 loci with other scores < 0.50 (filter(cse.df,other<0.50) %>% dim(.))[1] # 148 loci with other scores < 0.50
```

```
(filter(full.df,other<0.10) %>% dim(.))[1] # 237 loci with other scores < 0.10 (filter(cse.df,other<0.10) %>% dim(.))[1] # 67 loci with other scores < 0.10
```

There is a slight correlation between the number of snps in credible set and other score 0.11, pval=0.03 (reduced);

Conclusion: The number of SNPs in the credible set doesn't influence the difference in ppa scores between full and reduced methods, altough slight correlation with number of snps and value of the "other" score