УДК 550.4

Эколого-геохимические исследования на Ивано-Рыбальчанском участке Черноморского биосферного заповедника

Жук Е. А. Институт геохимии, минералогии и рудообразования им. Н. П. Семененко НАН Украины, Киев

Представлены результаты эколого-геохимического исследования на Ивано-Рыбальчанском участке Черноморского биосферного заповедника.

Постановка проблемы. В настоящее время в Украине, как и за рубежом, реализуются различные программы мониторинга природной среды. Выполнение Общегосударственной про—граммы формирования экологической сети Украины предусматривает выполнения комплекса научных исследований. Тема нашего исследо—вания, которое проводится в рамках молодежного гранта Президиума Национальной Академии наук Украины: "Эколого—геохимический мониторинг заповедных территорий степной ландшафтно—геохимической зоны Украины".

Цель данного исследования — изучение эколого—геохимической обстановки на заповед—ных территориях, расположенных в пределах степной ландшафтно—геохимической зоны, ус—тановление особенностей распределения мигра—ционных форм (подвижные формы ближнего резерва) отдельных химических элементов в почвах изучаемой территории.

Объект исследования — почвенный покров Ивано — Рыбальчанского участка Черноморского биосферного заповедника.

Природно—территориальные комплексы заповедника являются естественными, типичными и репрезентативными для юга Украины.

Заповедник расположен в границах юго—восточной климатической области Украины, главные черты которой — континентальный климат и засушливость. Район заповедника характеризуется низкой влажностью воздуха, низкой облачностью, незначительным количест—вом атмосферных осадков, большой суточной и годовой амплитудой колебаний температуры воздуха. Характерная особенность — резкое колебание количества осадков по годам.

По физико-географическому районированию территория исследования находится в степной зоне Причерноморско-Приазовской степной провинции в Нижнеднепровской физико-географической области (Ополье). По положению высот - от 0 до 100 м над уровнем моря.

Ивано - Рибальчанский участок расположен на нижнеднепровской песчаной арене. Песчаные арены имеют довольно сложный мезорельеф, который характеризуется чередованием высоких (до 3-5 м) овальных бугров, сугробов с впадинами. Эти пески возникли в местах давнего размыва лессовых террас, и представляют собой отложения Днепра, русло которого в прошлом находилось намного восточнее и соединялось с Джарылгацким заливом. Толща песчаных отложений на Ивановской арене и Кинбурнской косе достигает 86 м. Они лежат на понтийских известняках.

Здесь охраняется уникальный природный комплекс Нижнеднепровских (Олешковских) песков, который представлен мозаикой песчаных степей и лугов, расположенных в низинах (сагах), небольших колков (рощиц) из дуба черешчатого, березы днепровской, дикой груши, зарослей степных кустарников, а также болотной и солончаковой растительности вокруг пресных и соленых озерец и заливов. Реликтовые лесные колки это остатки знаменитейшей Гилеи — лесной страны в понизовье Днепра, которая была описана древнегреческим исследователем и путешественником Геродотом в V ст. до н. э.

Ландшафт исследованной территории — надпойменные террасовые равнины, сложенные современными эоловыми и верхнечетвертичными аллювиальными отложениями. Наиболее распространенные типы почв: песчаные не задернованные и слабо задернованные, дерновые слаборазвитые песчаные [2, 5].

Методы исследования. Геохимическое опробование проводилось по профилям, которые были намечены таким образом, чтобы они пересекали различные формы рельефа. Отбор литохимических образцов в большинстве случаев осуществлялся с глубины $0-0.05\,$ м. Из-3a

слабого развития почвенного горизонта для изучения радиального распределения химических элементов почвенные разрезы закладывали только в пониженных частях рельефа (в основном в высохших озерцах).

Аналитические работы проведены с помощью таких методов исследования: эмиссионного спектрального, потенциометри—ческого, атомной абсорбции.

Эмисионный спектральный анализ при — менен с целью получения общей характеристики качественного распределения химических элементов на территории изучаемого участка.

С помощью потенциометрического метода изучены физико—химические характеристики почв и содержание нитратов в исследуемых образцах. Концентрация нитратов и водородного показателя измерены в водной вытяжке.

С помощью метода атомной абсорбции изучены количественные параметры химических элементов (ХЭ). Для получения валового содержания ХЭ использован метод кислотного разложения [1, 4]. Определение миграционных форм проводилось в экстракте 1 н НС1. Измерения были выполнены в лаборатории поисковой и экологической геохимии Института геохимии, минералогии и рудообразования им. Н. П. Семененко НАН Украины на приборе С—115м. Данный прибор внесен в каталог технических средств контроля над загрязнением окружающей среды.

Результаты и обсуждение. Результаты спектрального анализа, проведенного на 38 элементов, не показали каких—либо аномальных концентраций ХЭ.

Измерение концентрации нитратов показало, что их накопление происходит в пониженных частях рельефа, которые периодически заполнены водой. В целом на участке содержание нитратов невелико. Но следует отметить, что в высохщих озерцах вблизи первого кордона егеря, что расположен с южной стороны участка, зафиксировано содержание нитратов, в 2-10 раз превышающее предельно допустимую концентрацию (ПДК нитратов для почв -130 мг/кг [3]). Данный факт требует дополнительного изучения для выявления источника поступления нитратов. Существует большая вероятность того, что поступление нитратов связанно с хозяйственной деятельностью егерей. Максимальная концентрация нитратов составила 1653 минимальная — 9,1, средняя 74,2 мг/кг (табл. 1).

Среднее значение рН водной вытяжки на участке — 6,45, минимальное — 4,2. Максимальное значение рН зафиксировано в той же точке, что и максимальная концентрация нитратов и достигает 8,9.

Таблица 1 Статистичекие параметры содержания нитратов и показателя рН

Параметр	NO ₃ , MF/KF	pН
Min	9,1	4,2
Max	1653,2	8,9
x	74,8	6,5
V, %	40,0	17,0

Примечание. Здесъ и в таблицах 2-4: х - среднее содержание, V - коэффициент вариации

В табл. 2, 3 приведены статистические параметры валового содержания и содержания миграционных форм некоторых химических элементов. Из табл. 2 мы видим, что изучаемые почвы обеднены медью, кобальтом, никелем и цинком, а также содержат не значительное количество свинца. Такая картина характерна для слаборазвитых песчаных почв. Содержание миграционных форм элементов также достаточно низкое (табл. 3).

Таблица 2 Статистические параметры валового содержания Cu, Co, Ni, Zn, Pb, мг/кг

Параметр	Cu	Со	Ni	Zn	Pb
Min	2	2	1	7	1
Max	10	8	30	30	15
х	6	4,3	5	12	2,7
V %	53	41	68	23	22

Таблица 3 Статистические параметры миграционных форм Cu, Co, Ni, Zn, Pb, мг/кг

Параметр	Cu	Co	Ni	Zn	Pb
Min	< 0,5	< 0,5	< 0,5	0,5	< 0,5
Мах	2,6	6,1	6,5	7,5	6,4
х	0,5	0,7	1	2,5	1,9
V %	35	39	60	59	51

Таблица 4 Подвижность Сu, Co, Ni, Zn, Pb, %

Параметр	Cu	Co	Ni	Zn	Pb
Min	0,9	1,8	0,99	4,2	13
Max	78	21	38	52	75
x	13	12,7	24,9	21	46

Значения коэффициента вариации говорит о равномерном распределении изучаемых метал – лов и их миграционных форм в почвах (табл. 2, 3). Исключение составляет распределение валового содержания Ni, коэффициент вариации которого

составляет 68 % и коэффициент вариации миграционных форм Ni и Zn, превышающий 59 %.

В табл. 4 приведены значения подвижности металлов, которая отображает долю мигра— ционных форм от валового содержания металлов, которая выражена в процентах. Как видно из табл. 4, металлы в данных условиях характери— зуются не высоким значением подвижности. Подвижность меди и кобальта немногим больше 12%, цинка— 21,3, никеля— 24,9%. Самой высокой подвижностью среди изучаемых элементов обладает свинец— 45,7%.

Выводы. Проведенные исследования позволили получить данные о характере распреде ления химических элементов в заповедных почвах Ивано—Рыбальчанского участка Черноморского биосферного заповедника. Почвы довольно бедны микроэлементами.

Из — за малой мощности `почв законо — мерности радиальной миграции не выявлены.

Получены данные о миграционных формах меди, никеля, кобальта, цинка и свинца.

Выявлены участки с аномальной кон центрацией нитратов (превышающей ПДК в 10 раз). В связи с этим требуется предусмотреть мониторинг динамики накопления нитратов и выявление их источника поступления.

- 1. Обухов А. И., Плеханов И. О. Атомно—абсорбционный анализ в почвенно—биологических исследованиях. М.: Изд—во МГУ, 1991.-184 с.
- 2. Пирогов Н. Г. Численность, распределение и некоторые черты экологии куриных Черноморского заповедника. Беркут. Вып. 1-2. С. 34-37.
- 3. Справочник по санитарно-гигиеническим нормам содержаний вредных химических веществ в окружающей среде. M., 1987. 300 с.
- 4. Тулупов П. Е., Журавлева Н. И. Использование кислотных вытяжек для округления валового содержания тяжелых металлов в почвах // Загрязнение почв и сопредельных сред токсикантами промышленного и сельскохозяйственного происхождения М.: Гидрометиздат, 1987. С. 89—98.
 - 5. www.nashkray.kiev.ua

Викладені результати еколого-геохімічного дослідження на Івано-Рибальчанській ділянці Чорноморського біосферного заповідника.

The results of ecological geochemical research are expounded on Ivano-rybal'chanskom area of the Black Sea biosphere preserve.