

Many of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook "Computer Systems: A Programmer's Perspective." $2^{\rm nd}$ Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O'Hallaron in Fall 2010. These slides are indicated "Supplied by CMU" in the notes section of the slides.

Fractional binary numbers

• What is 1011.101₂?

CS33 Intro to Computer Systems

VI-2

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Fractional Binary Numbers: Examples

■ Value Representation

5 3/4 101.11₂ 2 7/8 10.111₂ 63/64 0.111111₂

■ Observations

- divide by 2 by shifting right (unsigned)
- multiply by 2 by shifting left
- numbers of form 0.111111...2 are just below 1.0

•
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... → 1.0$$

• use notation 1.0 – ε

CS33 Intro to Computer Systems

VI-4

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Representable Numbers

- Limitation #1
 - can exactly represent only numbers of the form n/2k
 - » other rational numbers have repeating bit representations

value representation
 1/3 0.0101010101[01]...2
 1/5 0.001100110011[0011]...2
 1/10 0.0001100110011[0011]...2

- Limitation #2
 - just one setting of decimal point within the w bits
 - » limited range of numbers (very small values? very large?)

CS33 Intro to Computer Systems

VI-5

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

IEEE Floating Point

- IEEE Standard 754
 - established in 1985 as uniform standard for floating point arithmetic
 - » before that, many idiosyncratic formats
 - supported by all major CPUs
- · Driven by numerical concerns
 - nice standards for rounding, overflow, underflow
 - hard to make fast in hardware
 - » numerical analysts predominated over hardware designers in defining standard

CS33 Intro to Computer Systems

VI-6

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

On x86 hardware, all floating-point arithmetic is done with 80 bits, then reduced to either 32 or 64 as required.

"Normalized" Values

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - exp: unsigned value exp
 - $bias = 2^{k-1} 1$, where k is number of exponent bits
 - » single precision: 127 (Exp: 1...254, E: -126...127)
 - » double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - minimum when frac=000...0 (M = 1.0)
 - maximum when frac=111...1 ($M = 2.0 \varepsilon$)
 - get extra leading bit for "free"

CS33 Intro to Computer Systems

VI-9

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example • Value: float F = 15213.0; $-15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$ Significand $M = 1.\underline{1101101101101}_2$ frac = Exponent E = 13 bias = 127 $exp = 140 = 10001100_2$ · Result: 11011011011010000000000 exp **CS33 Intro to Computer Systems** VI-10 Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Denormalized Values

```
• Condition: exp = 000...0
```

- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - $\exp = 000...0, frac = 000...0$
 - » represents zero value
 - » note distinct values: +0 and -0 (why?)
 - $-\exp = 000...0, frac \neq 000...0$
 - » numbers closest to 0.0
 - » equispaced

CS33 Intro to Computer Systems

VI-11

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - represents value ∞ (infinity)
 - operation that overflows
 - both positive and negative
 - $e.g., 1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - not-a-number (NaN)
 - represents case when no numeric value can be determined
 - e.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

CS33 Intro to Computer Systems

VI-12

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Tiny Floating Point Example

- · 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

CS33 Intro to Computer Systems

VI-14

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

```
Dynamic Range (Positive Only)
                              Value
           s exp frac
                        E
           0 0000 000
                        -6
           0 0000 001 -6
                              1/8*1/64 = 1/512
                                                     closest to zero
                      -6
Denormalized 0 0000 010
                              2/8*1/64 = 2/512
numbers
           0 0000 110 -6 6/8*1/64 = 6/512
           0 0000 111
                              7/8*1/64 = 7/512
                                                     largest denorm
                        -6
           0 0001 000 -6
                              8/8*1/64 = 8/512
                                                     smallest norm
           0 0001 001
                              9/8*1/64 = 9/512
                        -1
           0 0110 110
                              14/8*1/2 = 14/16
0 0110 111 -1 Normalized 0 0111 000 0
                                                     closest to 1 below
                              15/8*1/2 = 15/16
                              8/8*1 = 1
                                      = 9/8
numbers
           0 0111 001 0
                              9/8*1
                                                     closest to 1 above
           0 0111 010 0
                              10/8*1 = 10/8
           0 1110 110
                        7
                              14/8*128 = 224
           0 1110 111
                       7
                             15/8*128 = 240
                                                     largest norm
           0 1111 000
                       n/a inf
  CS33 Intro to Computer Systems
                                 VI-15
                                       Copyright © 2014 Thomas W. Doeppner. All rights reserved.
```


Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$
- · Basic idea
 - first compute exact result
 - make it fit into desired precision
 - » possibly overflow if exponent too large
 - » possibly round to fit into frac

CS33 Intro to Computer Systems

VI-18

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Rounding

Rounding modes (illustrated with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
towards zero	\$1	\$1	\$1	\$2	- \$1
round down (-∞)	\$1	\$1	\$1	\$2	-\$2
round up (+∞)	\$2	\$2	\$2	\$3	- \$1
nearest even (default)	\$1	\$2	\$2	\$2	- \$2

CS33 Intro to Computer Systems

VI-19

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Closer Look at Round-To-Nearest-Even

- · Default rounding mode
 - hard to get any other kind without dropping into assembly
 - all others are statistically biased
 - » sum of set of positive numbers will consistently be over- or underestimated
- · Applying to other decimal places / bit positions
 - when exactly halfway between two possible values
 - » round so that least significant digit is even
 - e.g., round to nearest hundredth

1.2349999	1.23	(less than half way)
1.2350001	1.24	(greater than half way)
1.2350000	1.24	(half way-round up)
1.2450000	1.24	(half way—round down)

CS33 Intro to Computer Systems

VI-20

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Rounding Binary Numbers

- Binary fractional numbers
 - "even" when least significant bit is 0
 - "half way" when bits to right of rounding position = 100...2
- Examples
 - round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11100 ₂	11.002	(1/2—up)	3
2 5/8	10.10100 ₂	10.102	(1/2—down)	2 1/2

CS33 Intro to Computer Systems

VI-21

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

FP Multiplication

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact result: (-1)^s M 2^E
 - sign s: s1 ^ s2significand M: M1 x M2
 - exponent *E*: *E*1 + *E*2
- Fixing
 - if $M \ge 2$, shift M right, increment E
 - if E out of range, overflow
 - round *M* to fit frac precision
- Implementation
 - biggest chore is multiplying significands

CS33 Intro to Computer Systems

VI-22

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Floating Point in C

- · C guarantees two levels
 - -float single precision
 - -double double precision
- · Conversions/casting
 - -casting between int, float, and double changes bit representation
 - double/float \rightarrow int
 - » truncates fractional part
 - » like rounding toward zero
 - » not defined when out of range or NaN: generally sets to TMin
 - $\textbf{-int} \to \textbf{double}$
 - » exact conversion, as long as int has ≤ 53-bit word size
 - $int \rightarrow float$
 - » will round according to rounding mode

CS33 Intro to Computer Systems

VI-24

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Postnormalize

- Issue
 - rounding may have caused overflow
 - handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
13	1.101	3		13
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000*26	64

CS33 Intro to Computer Systems VI–28 Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Float is not Rational ...

```
    Floating addition
```

```
- commutative: a +f b = b +f a

» yes!

- associative: a +f (b +f c) = (a +f b) +f c

» no!

• 2 +f (1e10 +f -1e10) = 2

• (2 +f 1e10) +f -1e10 = 0
```

CS33 Intro to Computer Systems

VI-29

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Note that the floating-point numbers in this and the next two slides are expressed in base 10, not base 2.

Float is not Rational ...

• Multiplication

- commutative: $a *^f b = b *^f a$
 - » yes!
- associative: $a *^f (b *^f c) = (a *^f b) *^f c$
 - » no!
 - 1e20 *f (1e20 *f 1e-20) = 1e20
 - (1e20 *f 1e20) *f 1e-20 = +∞

CS33 Intro to Computer Systems

VI-30

Copyright © 2014 Thomas W. Doeppner. All rights reserved.

Float is not Rational ...

- More ...
 - multiplication distributes over addition:

- loss of significance:

```
x=y+1
z=2/(x-y)
z==2?
» not necessarily!
• consider y = 1e20
```

CS33 Intro to Computer Systems

VI-31

Copyright © 2014 Thomas W. Doeppner. All rights reserved.