

CURSO SUPERIOR DE ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

AMANDA MASCHIO REGINARA FERREIRA BORGES WILLIAM DA SILVA

MONITORAMENTO DA SALA DE SERVIDORES

Caxias do Sul 2020

SUMÁRIO

1	INTRODUÇÃO		10
2	OBJETIVOS E JUSTIFICATIVA		
	2.1	OBJETIVOS GERAIS	11
	2.1	I.1 Objetivos específicos	11
	2.2	JUSTIFICATIVA	11
3	DESENVOLVIMENTO		13
	3.1	FUNDAMENTAÇÃO TEÓRICA	13
	3. 1	I.1 Sensor de Pressão BME280 - Características	13
	3.1	I.2 Sensor de Pressão BME280 - Especificações	13
	3.2	PROCEDIMENTOS METODOLÓGICOS	13
	3.3	APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	14
	3.4	CONSIDERAÇÕES FINAIS	18
RE	FERÊN	CIAS	19

1 INTRODUÇÃO

A era a qual vivemos sugere grande importância em garantir alta disponibilidade de serviços online e maior investimento na segurança dos dados de um negócio, porém, é necessário lembrar que além do perigo virtual existe o físico.

Existem diversas formas de ter controle sobre os estados de um ambiente com a utilização de sensores que disponibilizam dados como temperatura, umidade, problemas de disco entre outras diversas informações.

Com todos estes dados, é normal que algumas questões passem por despercebido, e se não forem levadas em conta podem diminuir a vida útil dos hardwares utilizados para tais serviços, por conta disso, levamos em consideração um dado denominado ponto de orvalho que é a relação que existe entre a temperatura e o nível de umidade do ar, o mesmo não tem tanta influência de forma imediata mas se não for controlado, diminui significativamente o tempo de vida dos componentes de um servidor, o mesmo pode ser calculado através de um relacionamento entre temperatura e nível de umidade.

Disponibilizar os dados em um dashboard onde seja possível monitorar as variações do ponto de orvalho é uma solução preventiva que pode contribuir com o monitoramento e assim durabilidade dos componentes de hardware evitando a condensação de vapor

2 OBJETIVOS E JUSTIFICATIVA

2.1 OBJETIVOS GERAIS

Apresentar um modelo de Dashboard utilizado para monitorar e registrar estados de datacenters, através da utilização e implementação de um sensor barômetro, integrado com o chip BME280, que permite detectar a pressão atmosférica, altitude, temperatura e umidade. Além disso, deverá ser medida a temperatura do ar em relação ao ponto de orvalho, a fim de monitorar os excessos de umidade presentes.

Com este modelo proposto, espera-se predizer problemas relacionados ao ambiente físico aonde o datacenter permanece localizado, buscando evitar desastres naturais e a danificação e/ou redução de vida útil de equipamentos de hardware.

2.1.1 Objetivos específicos

- Delinear o estado da arte de métodos e tecnologias utilizados no monitoramento de Datacenters;
- Analisar iniciativas científicas e/ou comerciais de métodos de predição de falhas em monitoramento de Datacenters;
- Propor um modelo de monitoramento e registros de dados relacionados a temperatura de Datacenters;
- Integrar a utilização de sensor barômetro com faixa de medição precisa e baixo consumo de energia;
- Implementar e validar partes do modelo com ferramentas tecnológicas existentes;
- Analisar os testes e resultados obtidos na implantação do modelo;

2.2JUSTIFICATIVA

Os servidores são vulneráveis às flutuações da temperatura ambiente, umidade excessivamente alta ou baixa, portanto exigem um acompanhamento constante que ajuda a proteger os equipamentos de falhas e que previnem uma diminuição do desempenho.

Com o monitoramento do ambiente é possível manter a sala de servidores na

temperatura adequada todos os dias fornecendo os níveis de refrigeração necessários. Com um dashboard intuitivo será possível monitorar e ter acesso aos dados de temperatura + umidade da sala em tempo real.

3 DESENVOLVIMENTO

3.1 FUNDAMENTAÇÃO TEÓRICA

O Sensor de Pressão BME280 é um exclusivo modelo capaz de realizar a medição de pressão atmosférica, umidade e temperatura, também conhecido como barômetro é um módulo digital de alta capacidade e resolução, utilizado nas mais diversas aplicações junto a microcontroladores, entre eles, o Arduino. E através de seu padrão de conexão por I2C, o Sensor de Pressão BME280 aumenta a sua praticidade de utilização, além de contribuir na maior precisão da obtenção de resultados. (USINAINFO, 2018?).

3.1.1 Sensor de Pressão BME280 - Características

- Sensor de Pressão BME280;
- Sensor de Umidade:
- Sensor de Temperatura;
- Sistema de comunicação I2C;
- Compatível com diversos modelos de microcontroladores.

3.1.2 Sensor de Pressão BME280 - Especificações

- Modelo: BME280;
- Tensão de operação: 1,8 a 3,6VDC;
- Faixa de Umidade: 0 a 100%;
- Faixa de Temperatura: -40 a 85°C;
- Faixa de Pressão: 300 a 1100hPa;
- Precisão da umidade: 0,008%;
- Precisão da temperatura: 0,01°C;
- Precisão da pressão: +/- 1Pa;
- Comunicação: I2C (até 3,4MHz) e SPI (até 10MHz).

3.2 PROCEDIMENTOS METODOLÓGICOS

O mapa do site oferece uma visão completa de todas as páginas. Ele é

organizado hierarquicamente e tem por objetivo ajudar na orientação e navegação pelo dashboard.

Figura 1. Mapa do Site

3.3 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

Através do modelo proposto foi desenvolvido um Dashboard para monitorar data centers. Através da aplicação web é possível verificar o número de servidores ativos e ainda alterar ou realizar o cadastro de mais servidores. Também é possível ter acesso às informações específicas referente a esse servidor, essas informações são coletadas através do sensor de pressão.

Figura 2 - Tela Inicial

Figura 3 - Cadastrar Novo Servidor

É possível também cadastrar, alterar e excluir usuários e ainda definir quais servidores esse usuário vai ter acesso.

Figura 4 - Cadastro de usuário

Por meio da API, que foi desenvolvida, é possível coletar os dados dos sensores e apresentá-los graficamente ao usuário.

Figura 5 - API Desenvolvida

A API foi desenvolvida para atender aos requisitos de autenticação, segurança, confidencialidade, disponibilidade e tolerância a falhas.

Os dados coletados são armazenados no banco de dados PostgreSQL, não relacional. Esse banco de dados foi publicado através de uma máquina virtual no MS AZURE e disponibilizado juntamente com o projeto e a API para que seja possível utilizá-la sem instalar e/ou configurar um banco local.

O código fonte de todo o projeto está disponível no GitHub.

3.4 CONSIDERAÇÕES FINAIS

Neste trabalho foram abordados os principais tópicos apresentados em sala de aula possibilitando desenvolver uma aplicação funcional que atenda as necessidades do usuário de forma clara e objetiva.

Cumprimos os objetivos propostos com o desenvolvimento de uma Web API, interfaces gráficas e a implantação do banco de dados, tudo isso publicado em uma máquina virtual disponível na AZURE.

Com isso conseguimos aprimorar nossos conhecimentos aliando a teoria a prática o que auxiliou a fixação do conteúdo e despertou a curiosidade e a busca por mais informações a cerca do funcionamento dos datacenters, dos sensores utilizados e da própria linguagem de programação.

REFERÊNCIAS

USINAINFO. **Sensor de Pressão, Umidade e Temperatura BME280.** [2015?]. Disponível em: https://www.usinainfo.com.br/sensor-de-pressao-arduino/sensor-de-pressao-umidade-e-temperatura-bme280-4682.html Acesso em: 22 ago. 2020.