Amendments to the claims:

6

Please replace all prior versions and listings of the claims with the following amended claims:

- 1 1. (Currently Amended) A micro-stencil comprising:
 - a. a membrane with a receptor surface and a print surface, the print surface being patterned with stencil features; and
 - b. a flow region through the membrane to allow a print fluid to flow from the receptor surface to the print surface for printing the stencil feature on a medium; and
 - c. means to align the membrane with the medium between multiple prints.
- 1 2. (Original) The micro-stencil of claim 1, wherein the flow region comprises passages from the receptor surface to the print surface.
- 1 3. (Currently Amended) The micro-stencil of claim 1, further comprising a reservoir for holding and suppling supplying a print fluid.
- 1 4. (Original) The micro-stencil of claim 3, wherein the reservoir comprises a porous material.
- 1 5. (Currently Amended) The micro-stencil of claim 4, wherein the porous material comprises a material selected from the group consisting of metal, glass, quartz, polymer, cellulose, polycarbonate, polytetrafluoroethylene, nylon, polyether sulfone, polypropylene, mixed cellulose and polyvinylidene fluoride.
- 1 6. (Original) The micro-stencil of claim 4, wherein the porous material is coupled to the receptor surface of the membrane.

1 2	7.	(Original) The micro-stencil of claim 4, wherein a portion of the porous material is positioned within the flow region.
1 2	8.	(Original) The micro-stencil of claim 1, wherein the stencil features comprise lateral feature dimensions of less than 5.0 microns.
1 · 2 3	9.	(Original) The micro-stencil of claim 1, wherein the membrane is formed from a resilient material selected from the group consisting of rubber, silicone, urethane, vinyl, acrylic and nylon.
1 2	10.	(Original) The micro-stencil of claim 1, wherein the membrane is formed from polydimethylsiloxane (PDMS).
1 2	11.	(Currently Amended) The micro-stencil of claim 1, wherein a portion of the stencil features of the membrane has a thickness have thicknesses of less than 1.0 micron.
1 2	12.	(Original) The micro-stencil of claim 1, wherein the stencil features comprise an array of stencil features.
1	Claim	s 13-88 (Canceled).
1 2 3	89.	 (New) A micro-stencil comprising: a membrane formed from polydimethylsiloxane (PDMS) with a receptor surface and a print surface, the print surface being patterned with stencil features
4 5 6 7		comprising lateral feature dimensions of less than 5.0 microns; b. a flow region through the membrane to allow a print fluid to flow from the receptor surface to the print surface for printing the stencil features on a medium; and
8		c. means to align the membrane with the medium between multiple prints.