Introducing pmtables

Author: Metrum Research Group

Date: 2021-03-06 **Version**: 0.3.2.9100

Introduction: This is a simple introduction to the pmtables package for R. I hope this will be useful for those

who are new to the package and those who just need a reminder on the syntax.

Contents

1	A si	mple ta	ıble: stable	4
	1.1	Syntax	K	4
	1.2	Basics	·	4
	1.3	Annot	rate with file names	5
	1.4	Saving	g your stable	6
	1.5	Align	columns	7
		1.5.1	Fixed column widths	8
	1.6	Manip	oulating columns and names	8
		1.6.1	Rename columns	8
		1.6.2	Hide a column name	8
		1.6.3	Unmask column names	9
		1.6.4	Make column names bold	9
		1.6.5	Drop a column from the table	9
	1.7	Other	customizations	10
		1.7.1	Notes	10
		1.7.2	Units	11
		1.7.3	Multi-line column headers	11
		1.7.4	Insert horizontal lines	12
		1.7.5	Clear replicate values	13
2	Gro	up tabl	e rows with panel	15
	2.1	Syntax	ς	15
	2.2	Basics	8	15
	2.3	nanel·	important points	16

3	Gro	up table columns with spanners	17
	3.1	Syntax	17
	3.2	Basics	17
	3.3	Multiple spanners	17
		3.3.1 Using pipe syntax	18
	3.4	Breaking span title	18
4	Tabl	les that span multiple pages: longtable	19
	4.1	Syntax	19
	4.2	Basics	19
	4.3	Inserting longtable into your latex document	19
5	The	pipe interface	20
	5.1	Basics	20
	5.2	Simple table	21
	5.3	Long table	21
	5.4	Annotate with file names	21
	5.5	Save a table	21
	5.6	Align columns	21
	5.7	Rename columns	22
	5.8	Blank columns	22
	5.9	Drop columns	22
	5.10	Notes	22
	5.11	Units	23
	5.12	panel	23
	5.13	span	23
	5.14	hlines - at	24
	5.15	hlines - from	24
	5.16	hlines - pattern	24
	5.17	Clear replicate values	24
6	Opti	ions for previewing the table	25
	6.1	st2report	25
	6.2	st2viewer	25
	6.3	st2article	25
	6.4	st2doc	25

7	A wo	ord abo	out sanitizing table contents	26			
	7.1	Notes		26			
	7.2	File na	ames	26			
	7.3	Colun	nn names	26			
	7.4	Main	table contents	26			
	7.5	Span	titles	27			
	7.6	Panel	names	27			
	7.7	7 cols_extra input					
8	pmt	able		28			
	8.1	Princi	ples	28			
	8.2	Renar	ne cols	28			
	8.3	Data i	nventory tables	28			
		8.3.1	Stacked by endpoint	30			
		8.3.2	Paneled	31			
		8.3.3	Grouped (by study)	32			
	8.4	Wide	categorical table	33			
		8.4.1	Paneled (limited utility, IMO)	34			
		8.4.2	Grouped (by male / female)	35			
		8.4.3	Paneled and grouped				
		8.4.4	No summary	37			
	8.5	Long	categorical table				
		8.5.1	Ungrouped				
		8.5.2	Grouped (by formulation)				
		8.5.3	Summary on bottom and right	40			
			No summary				
	8.6	Wide	continuous table				
		8.6.1	Ungrouped				
		8.6.2	Paneled				
		8.6.3	Grouped (by study)				
		8.6.4	Paneled and grouped				
	8.7		continuous table				
		8.7.1	Ungrouped				
		8.7.2	Paneled	47			

1 A simple table: stable

1.1 Syntax

Pass your data.frame into stable()

```
stable(data)
```

Other formal arguments include:

- · align to set column alignment
- panel to create groups of rows under a "panel" header
- span to group columns under a "spanner" header
- · notes to create table notes
- sumrows to insert summary rows
- units that get placed below the corresponding column name
- **drop** to omit certain columns from the table
- · sizes to set different table size attributes
- escape_fun a function to sanitize table items

You can also pass a bunch of other arguments through . . . to further format the table (see ?stable for details)

1.2 Basics

stable() is the name of the workhorse function that is used to turn data.frames into TeX tables. This chapter will introduce the stable() function and how to us it to create basic tables.

To illustrate usage and features of stable(), we will use the stdata data set that comes with pmtables

```
data <- stdata()
head(data)</pre>
```

```
. # A tibble: 6 x 9
         DOSE
   STUDY
                    FORM
                                 WT
                                       CRCL AGE
                                                  ALB
                                                       SCR
   <chr>
             <chr> <chr>
                            <chr> <chr> <chr> <chr> <chr> <chr> <chr>
. 1 12-DEMO-001 100 mg tablet 80 71.4 104
                                            33.7 4.20 1.06
. 2 12-DEMO-001 150 mg capsule 16
                                 89.4 122
                                            24.4 4.63 1.12
. 3 12-DEMO-001 150 mg tablet 48
                                 81.7 104
                                            34.4 3.83 0.910
. 4 12-DEMO-001 150 mg troche 16 94.0 93.2 27.4 4.94 1.25
. 5 12-DEMO-001 200 mg tablet 64
                                 67.9 100
                                            27.5 4.25 1.10
. 6 12-DEMO-001 200 mg troche 16
                                 76.6 99.2 22.8 4.54 1.15
```

We can turn this data frame into a TeX table by passing it into stable().

```
out <- stable(data)
head(out, n = 10)</pre>
```

```
. [1] "\\setlength{\\tabcolsep}{5pt} "
```

- . [2] "\\begin{threeparttable}"
- . [3] "\\renewcommand{\\arraystretch}{1.3}"
- . [4] "\\begin{tabular}[h]{11111111}"
- . [5] "\\hline"
- . [6] "STUDY & DOSE & FORM & N & WT & CRCL & AGE & ALB & SCR \\\"
- . [7] "\\hline"
- [8] "12-DEMO-001 & 100 mg & tablet & 80 & 71.4 & 104 & 33.7 & 4.20 & 1.06 \\\"
- . [9] "12-DEMO-001 & 150 mg & capsule & 16 & 89.4 & 122 & 24.4 & 4.63 & 1.12 \\\"
- [10] "12-DEMO-001 & 150 mg & tablet & 48 & 81.7 & 104 & 34.4 & 3.83 & 0.910 \\\"

Note that we have shown the raw latex code that is generated by stable(). That is to say: the output from stable() is a character vector of latex code for the table. Note also that this character vector has a special class associated with it: stable. That means we can write functions that recognize this character vector as output from stable() and we can have those functions process the character vector in special ways.

We can render that table in TeX in the current Rmarkdown document by passing the text to st_asis().

```
out %>% st asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

Remember to only call st_asis() when you are rendering tables inline in an Rmd document. If you are sending table code to a TeX report, then you will save them to a file and then include them into your report.

The remaining sections of this chapter will show you how to modify and enhance this output in the more basic ways. We will implement separate chapters for more complicated table manipulations.

1.3 Annotate with file names

pmtables can track and annotate your table with the filenames of the R code that generated the table (r_file) as well as the output file where you write the table .tex code (output_file).

To have pmtables annotate your table with these file names, pass them in with the r_{file} and $output_{file}$ arguments

```
out <- stable(data, r_file = "tables.R", output_file = "tables.tex")</pre>
```

When we look at the rendered table, these names will show up as annotations at the bottom of the table

```
out %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

Source code: tables.R Source file: tables.tex

1.4 Saving your stable

Saving your stable can be as easy as sending it into writeLines()

```
writeLines(out, con = tempfile(tmpdir = '.', fileext = ".tex"))
```

But remember that we passed in the output_file argument to stable() and we can use that data to save the table code to the file we named in that argument.

Note that our stable object has another attribute now called stable_file

attributes(out)

- . \$class
- . [1] "stable"

. \$stable_file

. [1] "tables.tex"

This has the value that we passed in as output_file. To save our table to stable_file, we call stable_save()

```
stable_save(out)
```

There is a dir argument to stable_save() that we can use to to select the directory where the file will be saved

```
stable_save(out, dir = tempdir())
```

And if you look at the default value for dir in ?stable_save, you'll see that this is associated with an option called pmtables.dir; you can set that option to your default output directory and your tables will be saved there until you change that

```
options(pmtables.dir = tempdir())
stable_save(out)
```

1.5 Align columns

Use the align argument to align column data to the left, center or right. Use a cols_* function to specify the default alignment for all columns

```
tmp <- tibble(AB = 1, CDEFGHIJ = 2, KL = 3)
stable(tmp, align = cols_center()) %>% st_asis()
```

AB	CDEFGHIJ	KL
1	2	3

You can pass in exceptions to the default

```
stable(tmp, align = cols_center(CDEFGHIJ = "r")) %>% st_asis()
```

AB	CDEFGHIJ	KL
1	2	3

Or you can pass an alignment directive and the columns that are bound by that directive

```
stable(tmp, align = cols_center(.1 = "AB,KL")) %>% st_asis()
```

AB	CDEFGHIJ	KL		
1	2	3		

A special directive called .outer lets you specify the alignment of the first and last column in the table. For example, this code puts the first column to the left and the last column to the right.

```
stable(tmp, align = cols_center(.outer = "lr")) %>% st_asis()
```

AB	AB CDEFGHIJ				
1	2	3			

1.5.1 Fixed column widths

Use col_ragged(size) to force a column to be a fixed size.

```
stable(tmp, align = cols_center(AB = col_ragged(2))) %>% st_asis()
```

AB	CDEFGHIJ	KL	
1	2	3	

By default, the unit is cm so that the first column (AB) has a width of 2 cm regardless of the contents.

See cols_align() help topic for more information and argument descriptions.

1.6 Manipulating columns and names

1.6.1 Rename columns

You can change the name that appears in the rendered table with cols_rename

```
data %>%
  slice(1:3) %>%
  stable(cols_rename = c(Age = "AGE", Weight = "WT")) %>%
  st_asis()
```

STUDY	DOSE	FORM	N	Weight	CRCL	Age	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910

Note that the rename syntax follows the tidyselect convention of putting the new name on the left and the old name on the right.

1.6.2 Hide a column name

You can also "erase" the name of a column in the output

```
data %>%
  slice(1:3) %>%
  stable(cols_blank = "WT,ALB,SCR") %>%
  st_asis()
```

STUDY	DOSE	FORM	N		CRCL	AGE		
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910

1.6.3 Unmask column names

In tibbles, you can't have duplicate column names. The cols_split argument lets you unmask the names when duplicate names are prefixed with a tag and a delimiter

```
tmp <- tibble(a.A = 1, b.A = 2, c.A = 3)

tmp %>% stable(cols_split = '.') %>% st_asis()
```

1.6.4 Make column names bold

```
data %>% slice(1:2) %>% stable(cols_bold = TRUE) %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12

1.6.5 Drop a column from the table

If we want to prevent a column from appearing in the output table (e.g. FORM)

head(data)

```
. # A tibble: 6 x 9
           DOSE
   STUDY
                    FORM
                            N
                                  WT
                                       CRCL AGE
                                                  ALB
                                                        SCR.
              <chr> <chr>
                            <chr> <chr> <chr> <chr> <chr> <chr> <chr>
                                                        1.06
. 1 12-DEMO-001 100 mg tablet 80
                                 71.4 104
                                             33.7 4.20
. 2 12-DEMO-001 150 mg capsule 16
                                 89.4 122
                                             24.4 4.63
                                                        1.12
. 3 12-DEMO-001 150 mg tablet 48
                                 81.7 104
                                             34.4 3.83 0.910
. 4 12-DEMO-001 150 mg troche 16 94.0 93.2 27.4 4.94 1.25
. 5 12-DEMO-001 200 mg tablet 64 67.9 100
                                             27.5 4.25 1.10
. 6 12-DEMO-001 200 mg troche 16
                                 76.6 99.2 22.8 4.54 1.15
```

list the column name as drop

```
stable(data, drop = "FORM") %>% st_asis()
```

STUDY	DOSE	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	36	73.6	103	49.2	4.52	0.930

Of course some tidyverse could accomplish the same thing

```
data %>% select(-FORM) %>% stable()
```

1.7 Other customizations

1.7.1 Notes

Arbitrary notes can get added to any table using the notes argument.

```
data %>%
  slice(1:3) %>%
  stable(notes = "Showing just the first three rows") %>%
  st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910

Showing just the first three rows

The appearance of the notes can be controlled by calling noteconf() and passing the result as note_config. See ?tab_notes() for more details.

1.7.2 Units

pmtables can automatically place units underneath the appropriate column. To do this, generate a list with names that match the column names you want to label with units.

```
u <- list(
    WT = "kg", CRCL = "ml/min", AGE = "year", ALB = "g/dL",
    SCR = "mg\\\"
) %>% map(~paste0("(", .x, ")"))
```

Then pass that list as units to stable()

```
stable(data, units = u) %>% st_asis()
```

STUDY	DOSE	FORM	N	WT (kg)	CRCL (ml/min)	AGE (year)	ALB (g/dL)	SCR (mg%)
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

1.7.3 Multi-line column headers

If the column header is long, you can break it across multiple lines. By default, use . . . in the column name

```
tibble(`First line ... Second line` = 123456789) %>%
  stable() %>% st_asis()
```

First line Second line 123456789

The break can be introduced through the rename mechanism

```
tibble(a = 1) %>%
  stable(cols_rename = c(`First ... Second` = "a")) %>%
  st_asis()
```

```
First
Second
```

Look at the ?tab_cols help topic for the cols_break argument; this lets you change the character sequence used for the break.

1.7.4 Insert horizontal lines

Pass hlines_at to insert horizontal lines above specific rows. This can be either logical vector with the same length as the number of rows in the table or a vector of integers.

```
stable(stdata(), hline_at = c(3,5)) %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

or

```
stable(stdata(), hline_at = data$FORM == "tablet") %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

Pass hlines_from to derive hline locations based on non-repeating values in a table column. Notice how this behaves.

```
stable(stdata(), hline_from = "DOSE") %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
12-DEMO-001	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
12-DEMO-001	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
12-DEMO-001	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
12-DEMO-001	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
12-DEMO-001	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
12-DEMO-002	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
12-DEMO-002	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
12-DEMO-002	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
12-DEMO-002	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
12-DEMO-002	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
12-DEMO-002	75 mg	troche	36	73.6	103	49.2	4.52	0.930

See the ?tab_hlines help topic for more info. See also st_hline() for the pipe equivalent with additional feature.

1.7.5 Clear replicate values

You can create groups in a table by "clearing" replicate values

```
stable(stdata(), clear_reps = "STUDY") %>% st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
	75 mg	troche	36	73.6	103	49.2	4.52	0.930

This can be combined with an hline

```
stable(stdata(), clear_reps = "STUDY", hline_from = "STUDY") %>%
  st_asis()
```

STUDY	DOSE	FORM	N	WT	CRCL	AGE	ALB	SCR
12-DEMO-001	100 mg	tablet	80	71.4	104	33.7	4.20	1.06
	150 mg	capsule	16	89.4	122	24.4	4.63	1.12
	150 mg	tablet	48	81.7	104	34.4	3.83	0.910
	150 mg	troche	16	94.0	93.2	27.4	4.94	1.25
	200 mg	tablet	64	67.9	100	27.5	4.25	1.10
	200 mg	troche	16	76.6	99.2	22.8	4.54	1.15
12-DEMO-002	100 mg	capsule	36	61.3	113	38.3	4.04	1.28
	100 mg	tablet	324	77.6	106	29.9	4.31	0.981
	50 mg	capsule	36	74.1	112	37.1	4.44	0.900
	50 mg	tablet	324	71.2	106	34.1	4.63	0.868
	75 mg	capsule	36	72.4	105	38.2	3.89	0.900
	75 mg	tablet	288	71.6	98.9	34.2	4.49	0.991
	75 mg	troche	36	73.6	103	49.2	4.52	0.930

 $See \verb|?tab_clear_reps| for other options|, including an option for clearing based on several grouping variables|.$

2 Group table rows with panel

2.1 Syntax

To panel a table by STUDY

```
stable(stdata(), panel = "STUDY")
```

To set a prefix for the panel header:

```
stable(stdata(), panel = as.panel("STUDY", prefix = "Study: "))
```

2.2 Basics

Paneling your table is a way to group sets of rows together into a "panel" with a panel header rendered in bold font. For example, we can panel a table of mtcars by carb. We will be working with an abbreviated version of mtcars:

```
smcars
```

```
name mpg cyl disp hp drat
                                                      wt qsec vs am gear
. Datsun 710
                 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1
                                                                       4
. Hornet 4 Drive Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0
                                                                       3
. Valiant
                    Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0
. Fiat 128
                    Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1
. Toyota Corolla Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1
. Toyota Corona \, Toyota Corona \, 21.5 \, 4 \, 120.1 \, 97 \, 3.70 \, 2.465 \, 20.01 \, 1 \, 0
                Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1
. Fiat X1-9
. Merc 240D
                   Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0
. Merc 230
                    Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0
                                                                       4
. Honda Civic
                Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1
               carb
. Datsun 710
                  1
. Hornet 4 Drive
                  1
. Valiant
. Fiat 128
                 1
. Toyota Corolla
                  1
. Toyota Corona
                  1
. Fiat X1-9
                  2
. Merc 240D
. Merc 230
                  2
. Honda Civic
                  2
```

Then we pass into stable() and name the paneling column:

```
smcars %>% stable(panel = "carb") %>% st_asis()
```

name	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear
1										
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3
Valiant	18.1	6	225	105	2.76	3.46	20.22	1	0	3
Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	1	4
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.9	1	1	4
Toyota Corona	21.5	4	120.1	97	3.7	2.465	20.01	1	0	3
Fiat X1-9	27.3	4	79	66	4.08	1.935	18.9	1	1	4
2										
Merc 240D	24.4	4	146.7	62	3.69	3.19	20	1	0	4
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4

Now, all of the carb==1 rows are grouped with the heading 1 and similarly the carb==2 rows are grouped with the heading 2 in bold.

This is ok, but a more informative heading would be helpful. To do this, we'll call as . panel() to both name the panel column and set some options:

```
smcars %>% stable(panel = as.panel("carb", prefix = "carb: ")) %>% st_asis()
```

name	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear
carb: 1										
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3
Valiant	18.1	6	225	105	2.76	3.46	20.22	1	0	3
Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	1	4
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.9	1	1	4
Toyota Corona	21.5	4	120.1	97	3.7	2.465	20.01	1	0	3
Fiat X1-9	27.3	4	79	66	4.08	1.935	18.9	1	1	4
carb: 2										
Merc 240D	24.4	4	146.7	62	3.69	3.19	20	1	0	4
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4

Note that the prefix is completely specified by the user (including any spaces or a colon.

2.3 panel: important points

- 1. Most of the time, the data frame should be sorted by the panel column
- 2. pmtables creates panels by non-repeating values in the panel column; there will be an error if duplicate panel names are found and this can be overridden by passing duplicates_ok to as.panel().

3 Group table columns with spanners

3.1 Syntax

Set the span argument to the output of as.span(). The key arguments for as.span() are the spanner title and the names of the columns over which you want the spanner to run

```
stable(stdata(), span = as.span("Covariates", WT:SCR))
The equivalent pipe syntax is
st_new(stdata()) %>% st_span("Covariates", WT:SCR)
```

3.2 Basics

A column spanner puts a horizontal line over a sequence of column names and places a title above that line forming a column group.

As a trivial example:

```
data <-
  tibble(
   Tariffville = "06081", Connecticut= "CT",
   Minnesota = "MN", Minneapolis = "55455"
)
data %>% stable(span = as.span("States", Connecticut:Minnesota)) %>% st_asis()
```

	es		
Tariffville	Connecticut	Minneapolis	
06081	CT	MN	55455

3.3 Multiple spanners

Multiple spanners can be added to a table by specifying the level for any spanner that you want to be placed above the lowest level spanner. For example,

```
sp <- list(
  as.span("States", Connecticut:Minnesota),
  as.span("The Universe", Tariffville:Minneapolis, level = 2)
)
data %>% stable(span = sp) %>% st_asis()
```

The Universe								
	States							
Tariffville	Connecticut	Minnesota	Minneapolis					
06081	CT	MN	55455					

Note that to specify multiple spanners, we pass a list of span objects. I've simplified the code a bit here by creating that list as a standalone object and then passing the whole list as span.

3.3.1 Using pipe syntax

For problems like this, it might be preferable to use the pipe syntax

```
data %>%
  st_new() %>%
  st_span("States", Connecticut:Minnesota) %>%
  st_span("The Universe", Tariffville:Minneapolis, level = 2) %>%
  stable() %>%
  st_asis()
```

The Universe										
	States									
Tariffville	Tariffville Connecticut Minnesota									
06081 CT MN 55455										

3.4 Breaking span title

We can make the title of the span break across multiple lines by using . . .

```
stable(data, span = as.span("Example ... States", Connecticut:Minnesota)) %>%
    st_asis()
```

Example States								
Tariffville	Connecticut	Connecticut Minnesota						
06081	CT	MN	55455					

4 Tables that span multiple pages: longtable

4.1 Syntax

To create a long table from a data frame

```
stable_long(stdata())
```

To create a long table from pipeline

```
st_new(data) %>% stable_long()
```

To create a long table from pmtable

```
pt_cont_long(data, cols = "WT,EGFR") %>% stable_long()
```

4.2 Basics

You can create longtables that span multiple pages of your pdf document. Tables using thelongtable environment are very different than the basic table from stable() which are built using tabular environment.

4.3 Inserting longtable into your latex document

Once you have written your long table out to a file, you can source it into your latex document with a simple input command

```
\input{my-table.tex}
```

You should not wrap your longtable input code in \begin{table}/\end{table} as you would with a regular table.

5 The pipe interface

5.1 Basics

Mostly working with this data; but some others come in later to illustrate certain features.

```
data <- pmt_summarized
head(data)</pre>
```

```
. # A tibble: 6 x 9
   STUDY
             DOSE FORM
                                        CRCL AGE
                                                   ALB
             <chr> <chr>
   <chr>
. 1 12-DEMO-001 100 mg tablet 80 71.4 104
                                             33.7 4.20 1.06
. 2 12-DEMO-001 150 mg capsule 16 89.4 122
                                             24.4 4.63 1.12
. 3 12-DEMO-001 150 mg tablet 48 81.7 104
                                             34.4 3.83 0.910
. 4 12-DEMO-001 150 mg troche 16 94.0 93.2 27.4 4.94 1.25
. 5 12-DEMO-001 200 mg tablet 64 67.9 100
                                             27.5 4.25 1.10
. 6 12-DEMO-001 200 mg troche 16 76.6 99.2 22.8 4.54 1.15
```

You start out a pipeline by passing your data frame into st_new()

```
data %>% st_new() %>% class
```

```
. [1] "stobject" "environment"
```

This creates an object that gets revised by subsequent steps in the pipeline, adding features and styling as you go.

For the final step in the pipeline, we'll send the object to stable() to create the table

```
data %>% st_new() %>% stable() %>% head(n=9)
```

- . [1] "\\setlength{\\tabcolsep}{5pt} "
- . [2] "\\begin{threeparttable}"
- . [3] "\\renewcommand{\\arraystretch}{1.3}"
- . [4] "\\begin{tabular}[h]{llllllll}"
- . [5] "\\hline"
- . [6] "STUDY & DOSE & FORM & N & WT & CRCL & AGE & ALB & SCR \\\"
- . [7] "\\hline"
- . [8] "12-DEMO-001 & 100 mg & tablet & 80 & 71.4 & 104 & 33.7 & 4.20 & 1.06 \\\"
- . [9] "12-DEMO-001 & 150 mg & capsule & 16 & 89.4 & 122 & 24.4 & 4.63 & 1.12 \\\"

5.2 Simple table

You can terminate the pipeline and create a tabular table by sending to stable()

```
data %>% st_new() %>% stable()
```

Equivalent call

```
data %>% stable()
```

5.3 Long table

You can also pipe to stable_long() to make a long table

```
data %>% st_new() %>% stable_long()
```

5.4 Annotate with file names

```
st_new(data) %>% st_files(r = "foo.R", output = "foo.tex")
```

Equivalent call

```
stable(data, r_file = "foo.R", output_file = "foo.tex")
```

Note that in the pipe version, we already have file in the function name so that gets dropped from the argument name.

5.5 Save a table

First convert with stable() or stable_long() then save with stable_save()

```
st_new(data) %>%
st_files(output = "foo.tex") %>%
stable() %>%
stable_save()
```

5.6 Align columns

stable()

```
• st_center(...)
• st_left(...)
• st_right(...)
• st_align(...)

st_new(data) %>%
st_center() %>%
```

Equivalent call

```
stable(data, align = cols_center())
```

5.7 Rename columns

```
st_new(data) %>%
st_rename(Weight = "WT") %>%
stable()
```

Equivalent call

```
stable(data, cols_rename = c(Weight = "WT"))
```

5.8 Blank columns

```
st_new(data) %>% st_blank(WT, ALB, DOSE) %>% stable()
```

Equivalent call

```
stable(data, cols_blank = "WT,ALB,DOSE")
```

5.9 Drop columns

```
st_new(data) %>% st_drop(WT, ALB, DOSE) %>% stable()
```

Equivalent call

```
stable(data, drop = "WT, ALB, DOSE")
```

5.10 Notes

• Multiple calls are allowed; notes will accumulate

```
st_new(data) %>%
st_notes("first note") %>%
st_nates("second note") %>%
stable()
```

Equivalent call

```
stable(
  data,
  notes = c("first note", "second note")
)
```

5.11 Units

```
st_new(data) %>%
st_units(WT = "kg", AGE = "years") %>%
stable()
```

Note that $st_units()$ will automatically add parens to your units; this can be suppressed with the parens argument.

Units can also be added as a list

```
u <- list(WT = "kg", AGE = "years")

st_new(data) %>%
    st_units(u) %>%
    stable()
```

Equivalent call

```
stable(data, units = u)
```

5.12 panel

```
st_new(data) %>%
st_panel("STUDY") %>%
stable()
```

Equivalent call

```
stable(data, panel = "STUDY")
```

5.13 span

```
st_new(data) %>%
st_span("Covariates", c(WT, ALB, EGFR)) %>%
stable()
```

Equivalent call

```
stable(data, span = as.span("Covariates", c(WT, ALB, EGFR)))
```

5.14 hlines - at

To put horizontal lines at specific rows

```
st_new(data) \%\% st_hline(at = c(2,4,6))
```

Equivalent call

```
stable(data, hline_at = c(2,4,6))
```

5.15 hlines - from

To calculate hlines based on data frame column values (for example, to break the table by changing values of STUDYf)

```
st_new(data) %>% st_hline(from = "STUDYf")
```

Equivalent call

```
stable(data, hline_from = "STUDYf")
```

5.16 hlines - pattern

To search the table for a pattern and add hlines above matches

```
st_new(data) %>% st_hline(pattern = "All", cols = "Summary")
```

The cols argument limits the search to the Summary column; omit this argument to search the whole table.

There is no equivalent call for this using straight stable().

5.17 Clear replicate values

To create groups by "clearing" replicate values in a column

```
st_new(data) %>% st_clear_reps(STUDY) %>% stable()
```

Equivalent call

```
stable(data, clear_reps = "STUDY")
```

6 Options for previewing the table

6.1 st2report

Take a table or a list of tables and render them in a report-like document with a table of contents and a (faux) caption for each table

```
data %>% stable() %>% st2report()
```

You might try passing ntex to force the document to build more than once (sometimes the layout settles down after the second build

```
data %>% stable() %>% st2report(ntex = 2)
```

Pass in a list of tables and you will get one table on each page with a listing of tables in the table of contents

```
list(table1, table2, table3) %>% st2report()
```

6.2 st2viewer

This function relies on texPreview() to render your table and display it as a graphic in the viewer window

```
data %>% stable() %>% st2viewer()
```

This method is more convenient because the tables always go to the viewer. But the rendering will not be like what you will see in the report.

6.3 st2article

Like st2report() but less report-like. You should use st2report() instead.

```
data %>% stable() %>% st2article()
```

6.4 st2doc

The original. Rather than building a TeX article, it runs the table in a Rmd document via pandoc. Not recommended; it is much slower to get the preview because there has to be a call to pandoc

```
data %>% stable() %>% st2doc()
```

7 A word about sanitizing table contents

7.1 Notes

```
x <- ptdata() %>% st_new(notes = "EDA_summary = TRUE") %>%
  st_make(inspect = TRUE) %>%
  get_stable_data()
x$notes
```

. [1] "EDA_summary = TRUE"

7.2 File names

```
x <- ptdata() %>% st_new() %>%
  st_files(r = "my_script.R") %>%
  st_make(inspect = TRUE) %>%
  get_stable_data()

x$notes
```

. [1] "Source code: my_script.R"

7.3 Column names

```
out <-
  tibble(a_1 = 5) %>%
  stable(inspect = TRUE) %>%
  get_stable_data()

out$cols_tex
```

. [1] "a_1 \\\\"

7.4 Main table contents

```
out <-
  tibble(a = "5_2") %>%
  stable(inspect = TRUE) %>%
  get_stable_data()
out$tab
```

. [1] "5_2 \\\\"

7.5 Span titles

```
out <-
  ptdata() %>%
  stable(inspect = TRUE, span = colgroup("foo_this", WT:SCR)) %>%
  get_stable_data()

out$span_data$tex
```

- . [1] "\\multicolumn{4}{c}{} & \\multicolumn{5}{c}{foo}_this} \\\\"
- $[2] "\cmidrule(lr){5-9}"$

7.6 Panel names

- . [1] "\\multicolumn $\{1\}\{l\}\{\t \{a\t 1\}\}\t$ "
- . [2] "\\hline \\multicolumn{1}{1}{\\textbf{a_2}}\\\\"

7.7 cols_extrainput

```
x <- letters[1:5]
data <- tibble(a = x, b = x, c = x)
xtra <- tibble(a = "foo%", b = "$\\mu$g", c = "1234 \\% %")
out <- stable(data, cols_extra = xtra)
out[grepl("%", out, fixed = TRUE)]</pre>
```

. [1] "foo\\% & \$\\mu\$g & 1234 \\% % \\\\"

8 pmtable

Some setup

```
units = yspec::ys_get_unit(yspec::ys_help$spec(), parens = TRUE)

data <- pmt_first
data_pk <- pmt_pk
data_all <- pmt_obs</pre>
```

8.1 Principles

These functions expect that the user passes in all data that is to be summarized and nothing more. We will not filter your data.

8.2 Rename cols

When you select columns to summarize, you can generally pass in alternate (nicer) names that you want to show up in the table. For example, if I have a column called WT in the data frame and I want it to show up as Weight this can be accomplished during the call

Alternatively, you can use the table argument to enter rename info. Note that table is a list that should have names that match up with columns in the data frame and values that are the new names

```
tab <- list(SEXf = "Sex", ASIANf = "Race group")

pt_cat_wide(data, cols = "SEXf, ASIANf", table = tab) %>%
  stable() %>% st_asis()
```

	Se	ex	Race	group
n	male	male female		non-Asian
160	80 (50.0)	80 (50.0)	66 (41.2)	94 (58.8)

Summary is count (percent) n: number of records summarized

8.3 Data inventory tables

- · Count number of
 - individuals

- observations
- BQL observations
- missing values
- Calculate the percent of observations or BQL in different sub groups

8.3.1 Stacked by endpoint

• The stacked plot creates multiple independent tables to summarize different endpoints; there is no single overall summary for the table because we are summarizing different endpoints

```
out <- pt_data_inventory(
  data_all,
  by = c(Study = "STUDYf"),
  panel = as.panel("SEQf", prefix = "Endpoint: "),
  stacked = TRUE
)

out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Num	ber		Percent	
Study	SUBJ	MISS	OBS	BQL	OBS	BQL
Endpoint: DEM	IO PK					
12-DEMO-001	30	8	427	15	13.9	0.5
12-DEMO-002	50	10	1152	38	37.4	1.2
11-DEMO-005	40	10	920	30	29.9	1.0
13-DEMO-001	40	7	582	11	18.9	0.4
Group Total	160	35	3081	94	100.0	3.1
Endpoint: EST	RDIOL					
11-DEMO-005	40	0	40	0	50.6	0.0
13-DEMO-001	40	1	39	0	49.4	0.0
Group Total	80	1	79	0	100.0	0.0
Endpoint: BMI)					
11-DEMO-005	40	9	111	0	49.1	0.0
13-DEMO-001	40	5	115	0	50.9	0.0
Group Total	80	14	226	0	100.0	0.0

SUBJ: subjects

BQL: below quantitation limit

MISS: missing observations (not BQL)

OBS: observations Source code: test.R Source file: test.tex

8.3.2 Paneled

• Just summarize a single endpoint

```
out <- pt_data_inventory(
  data_pk,
  by = c(Study = "STUDYf"),
  panel = "ASIANf"
)

out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Number Group percent		Overall percent					
Study	SUBJ	MISS	OBS	BQL	OBS	BQL	OBS	BQL
Asian								
12-DEMO-001	17	4	241	10	19.5	0.8	7.8	0.3
12-DEMO-002	18	4	414	14	33.4	1.1	13.4	0.5
11-DEMO-005	16	5	366	13	29.5	1.0	11.9	0.4
13-DEMO-001	15	3	218	4	17.6	0.3	7.1	0.1
non-Asian								_
12-DEMO-001	13	4	186	5	10.1	0.3	6.0	0.2
12-DEMO-002	32	6	738	24	40.1	1.3	24.0	8.0
11-DEMO-005	24	5	554	17	30.1	0.9	18.0	0.6
13-DEMO-001	25	4	364	7	19.8	0.4	11.8	0.2
All data	160	35	3081	94	_	_	100.0	3.1

SUBJ: subjects

BQL: below quantitation limit

MISS: missing observations (not BQL)

OBS: observations Source code: test.R Source file: test.tex

8.3.3 Grouped (by study)

```
out <- pt_data_inventory(
  data_pk,
  by = c(Study = "STUDYf")
)

out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Num		Percent		
Study	SUBJ	MISS	OBS	BQL	OBS	BQL
12-DEMO-001	30	8	427	15	13.9	0.5
12-DEMO-002	50	10	1152	38	37.4	1.2
11-DEMO-005	40	10	920	30	29.9	1.0
13-DEMO-001	40	7	582	11	18.9	0.4
All data	160	35	100.0	3.1		

SUBJ: subjects

BQL: below quantitation limit

MISS: missing observations (not BQL)

OBS: observations Source code: test.R Source file: test.tex

8.4 Wide categorical table

- Summary of categorical data in wide format
- The summary is number (percent within group)
- Wide refers to the fact that the covariates go across the table

8.4.0.1 Ungrouped

```
out <- pt_cat_wide(
  data = data,
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

Formulation			Se	ex	Race group		
n	tablet	capsule	troche	male	male female		non-Asian
160	130 (81.2)	15 (9.4)	15 (9.4)	80 (50.0)	80 (50.0)	66 (41.2)	94 (58.8)

Summary is count (percent)

n: number of records summarized

8.4.1 Paneled (limited utility, IMO)

• Provided here for completeness

```
out <- pt_cat_wide(
  data = data,
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  panel = as.panel("STUDYf", prefix = "Study: ")
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Fo	Formulation		S	ex	Race group	
n	tablet	capsule	troche	male	female	Asian	non-Asian
Stud	y: 12-DEM()-001					
30	25 (83.3)	3 (10.0)	2 (6.7)	10 (33.3)	20 (66.7)	17 (56.7)	13 (43.3)
Stud	y: 12-DEM()-002					
50	42 (84.0)	6 (12.0)	2 (4.0)	18 (36.0)	32 (64.0)	18 (36.0)	32 (64.0)
Stud	y: 11-DEM()-005					
40	30 (75.0)	3 (7.5)	7 (17.5)	29 (72.5)	11 (27.5)	16 (40.0)	24 (60.0)
Stud	y: 13-DEM()-001					
40	33 (82.5)	3 (7.5)	4 (10.0)	23 (57.5)	17 (42.5)	15 (37.5)	25 (62.5)
All d	ata						
160	130 (81.2)	15 (9.4)	15 (9.4)	80 (50.0)	80 (50.0)	66 (41.2)	94 (58.8)

Summary is count (percent)

n: number of records summarized

8.4.2 Grouped (by male / female)

```
out <- pt_cat_wide(
  data = data,
  by = c(Sex = "SEXf"),
  cols = vars(Formulation = FORMf, "Race group" = ASIANf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Fo	ormulation	Race group			
Sex	n	tablet	capsule	troche	Asian	non-Asian	
male	80	62 (77.5)	7 (8.8)	11 (13.8)	28 (35.0)	52 (65.0)	
female	80	68 (85.0)	8 (10.0)	4 (5.0)	38 (47.5)	42 (52.5)	
All data	160	130 (81.2)	15 (9.4)	15 (9.4)	66 (41.2)	94 (58.8)	

Summary is count (percent)

n: number of records summarized

8.4.3 Paneled and grouped

```
out <- pt_cat_wide(
  data = data,
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  panel = as.panel("STUDYf", prefix = "Study: "),
  by = c("RF Group" = "RFf")
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Fo	Formulation		Sex		Race group		
RF Group	n	tablet	capsule	troche	male	female	Asian	non-Asian	
Study: 12-	Study: 12-DEMO-001								
normal	30	25 (83.3)	3 (10.0)	2 (6.7)	10 (33.3)	20 (66.7)	17 (56.7)	13 (43.3)	
Study: 12-	DEM()-002							
normal	50	42 (84.0)	6 (12.0)	2 (4.0)	18 (36.0)	32 (64.0)	18 (36.0)	32 (64.0)	
Study: 11-	DEMO)-005							
normal	10	9 (90.0)	0 (0.0)	1 (10.0)	7 (70.0)	3 (30.0)	3 (30.0)	7 (70.0)	
mild	10	7 (70.0)	2 (20.0)	1 (10.0)	7 (70.0)	3 (30.0)	5 (50.0)	5 (50.0)	
moderate	10	6 (60.0)	0 (0.0)	4 (40.0)	8 (80.0)	2 (20.0)	6 (60.0)	4 (40.0)	
severe	10	8 (80.0)	1 (10.0)	1 (10.0)	7 (70.0)	3 (30.0)	2 (20.0)	8 (80.0)	
Study: 13-	DEM()-001							
normal	40	33 (82.5)	3 (7.5)	4 (10.0)	23 (57.5)	17 (42.5)	15 (37.5)	25 (62.5)	
All data	160	130 (81.2)	15 (9.4)	15 (9.4)	80 (50.0)	80 (50.0)	66 (41.2)	94 (58.8)	

Summary is count (percent)

n: number of records summarized

8.4.4 No summary

```
out <- pt_cat_wide(
  data = data,
  summarize = "none",
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  panel = as.panel("STUDYf", prefix = "Study: "),
  by = c("RF Group" = "RFf")
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

		Fo	Formulation		So	ex	Race group	
RF Group	n	tablet	capsule	troche	male	female	Asian	non-Asian
Study: 12-	DEM	O-001						
normal	30	25 (83.3)	3 (10.0)	2 (6.7)	10 (33.3)	20 (66.7)	17 (56.7)	13 (43.3)
Study: 12-	DEM	O-002						
normal	50	42 (84.0)	6 (12.0)	2 (4.0)	18 (36.0)	32 (64.0)	18 (36.0)	32 (64.0)
Study: 11-	DEM	O-005						
normal	10	9 (90.0)	0 (0.0)	1 (10.0)	7 (70.0)	3 (30.0)	3 (30.0)	7 (70.0)
mild	10	7 (70.0)	2 (20.0)	1 (10.0)	7 (70.0)	3 (30.0)	5 (50.0)	5 (50.0)
moderate	10	6 (60.0)	0 (0.0)	4 (40.0)	8 (80.0)	2 (20.0)	6 (60.0)	4 (40.0)
severe	10	8 (80.0)	1 (10.0)	1 (10.0)	7 (70.0)	3 (30.0)	2 (20.0)	8 (80.0)
Study: 13-	DEM	O-001						
normal	40	33 (82.5)	3 (7.5)	4 (10.0)	23 (57.5)	17 (42.5)	15 (37.5)	25 (62.5)

Summary is count (percent)

n: number of records summarized

8.5 Long categorical table

- Categorical table in long format
- Long indicates that the covariates go down the table

8.5.1 Ungrouped

```
out <- pt_cat_long(
  data = data,
  cols = vars(Study = STUDYf, Sex = SEXf, "Race group" = ASIANf, "Child-Pugh" = CPf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Summary $n = 160$			
Study				
12-DEMO-001	30 (18.8)			
12-DEMO-002	50 (31.2)			
11-DEMO-005	40 (25.0)			
13-DEMO-001	40 (25.0)			
Sex				
male	80 (50.0)			
female	80 (50.0)			
Race group				
Asian	66 (41.2)			
non-Asian	94 (58.8)			
Child-Pugh				
Score=0	130 (81.2)			
Score=1	10 (6.2)			
Score=2	10 (6.2)			
Score=3	10 (6.2)			
Cummawia agunt (navaant)				

Summary is count (percent) n: number of records summarized

8.5.2 Grouped (by formulation)

```
out <- pt_cat_long(
  data = data,
  cols = vars(Study = STUDYf,Sex = SEXf,"Race group" = ASIANf, "Child-Pugh" = CPf),
  span = c(Formulation = "FORMf")
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	F	Formulation					
	tablet n = 130	capsule n = 15	troche n = 15	Summary $n = 160$			
Study							
12-DEMO-001	25 (19.2)	3 (20.0)	2 (13.3)	30 (18.8)			
12-DEMO-002	42 (32.3)	6 (40.0)	2 (13.3)	50 (31.2)			
11-DEMO-005	30 (23.1)	3 (20.0)	7 (46.7)	40 (25.0)			
13-DEMO-001	33 (25.4)	3 (20.0)	4 (26.7)	40 (25.0)			
Sex							
male	62 (47.7)	7 (46.7)	11 (73.3)	80 (50.0)			
female	68 (52.3)	8 (53.3)	4 (26.7)	80 (50.0)			
Race group							
Asian	53 (40.8)	7 (46.7)	6 (40.0)	66 (41.2)			
non-Asian	77 (59.2)	8 (53.3)	9 (60.0)	94 (58.8)			
Child-Pugh							
Score=0	106 (81.5)	12 (80.0)	12 (80.0)	130 (81.2)			
Score=1	7 (5.4)	1 (6.7)	2 (13.3)	10 (6.2)			
Score=2	8 (6.2)	1 (6.7)	1 (6.7)	10 (6.2)			
Score=3	9 (6.9)	1 (6.7)	0 (0.0)	10 (6.2)			

Summary is count (percent)

n: number of records summarized

8.5.3 Summary on bottom and right

```
out <- pt_cat_long(
  data = data,
  summarize = "both",
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  span = vars(Study = STUDYf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Study						
	12-DEMO-001 n = 30	12-DEMO-002 n = 50	11-DEMO-005 n = 40	13-DEMO-001 n = 40	$\begin{array}{c} Summary \\ n = 160 \end{array}$		
Formulatio	on						
tablet	25 (83.3)	42 (84.0)	30 (75.0)	33 (82.5)	130 (81.2)		
capsule	3 (10.0)	6 (12.0)	3 (7.5)	3 (7.5)	15 (9.4)		
troche	2 (6.7)	2 (4.0)	7 (17.5)	4 (10.0)	15 (9.4)		
Sex							
male	10 (33.3)	18 (36.0)	29 (72.5)	23 (57.5)	80 (50.0)		
female	20 (66.7)	32 (64.0)	11 (27.5)	17 (42.5)	80 (50.0)		
Race group)						
Asian	17 (56.7)	18 (36.0)	16 (40.0)	15 (37.5)	66 (41.2)		
non-Asian	13 (43.3)	32 (64.0)	24 (60.0)	25 (62.5)	94 (58.8)		

Summary is count (percent)

n: number of records summarized

8.5.4 No summary

```
out <- pt_cat_long(
  data = data,
  summarize = "none",
  cols = vars(Formulation = FORMf, Sex = SEXf, "Race group" = ASIANf),
  span = vars(Study = STUDYf)
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	Study							
	12-DEMO-001	12-DEMO-002	11-DEMO-005	13-DEMO-001				
Formulatio	n							
tablet	25 (83.3)	42 (84.0)	30 (75.0)	33 (82.5)				
capsule	3 (10.0)	6 (12.0)	3 (7.5)	3 (7.5)				
troche	2 (6.7)	2 (4.0)	7 (17.5)	4 (10.0)				
Sex								
male	10 (33.3)	18 (36.0)	29 (72.5)	23 (57.5)				
female	20 (66.7)	32 (64.0)	11 (27.5)	17 (42.5)				
Race group	1							
Asian	17 (56.7)	18 (36.0)	16 (40.0)	15 (37.5)				
non-Asian	13 (43.3)	32 (64.0)	24 (60.0)	25 (62.5)				

Summary is count (percent)

n: number of records summarized

8.6 Wide continuous table

- Continuous table in wide format
- Wide means that the covariates go across the table

8.6.1 Ungrouped

```
out <- pt_cont_wide(
  data = data,
  cols = "WT,SCR,AGE,ALB,HT",
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

WT	SCR	AGE	ALB	HT
(kg)	(mg/dL)	(years)	(g/dL)	(cm)
70.7 (12.8) [157]	1.36 (0.986) [160]	33.7 (8.83) [160]	4.20 (0.793) [156]	179 (17.7) [160]

Summary is mean (sd) [count]

Source code: test.R Source file: test.tex

8.6.2 Paneled

```
out <- pt_cont_wide(
  data = data,
  cols = "WT,SCR,AGE,ALB,HT",
  panel = c(Study = "STUDYf"),
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

WT (kg)	SCR (mg/dL)	AGE (years)	ALB (g/dL)	HT (cm)				
	Study 12-DEMO-001							
72.2 (14.3) [29]	1.03 (0.155) [30]	32.0 (9.19) [30]	4.28 (0.474) [29]	180 (19.3) [30]				
Study 12-DEMO	-002							
72.4 (11.5) [49]	0.971 (0.161) [50]	35.0 (8.20) [50]	4.47 (0.468) [50]	182 (15.4) [50]				
Study 11-DEMO	-005							
68.9 (14.5) [39]	2.52 (1.43) [40]	32.8 (8.48) [40]	4.41 (0.537) [39]	175 (19.2) [40]				
Study 13-DEMO	-001							
69.4 (11.6) [40]	0.950 (0.165) [40]	34.2 (9.67) [40]	3.58 (1.15) [38]	179 (17.2) [40]				
All data								
70.7 (12.8) [157]	1.36 (0.986) [160]	33.7 (8.83) [160]	4.20 (0.793) [156]	179 (17.7) [160]				

Summary is mean (sd) [count] Source code: test.R

Source file: test.tex

8.6.3 Grouped (by study)

```
out <- pt_cont_wide(
  data = data,
  cols = "WT,SCR,AGE,ALB,HT",
  by = c(Study = "STUDYf"),
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

Study	WT (kg)	SCR (mg/dL)	AGE (years)	ALB (g/dL)	HT (cm)
12-DEMO-001	72.2 (14.3) [29]	1.03 (0.155) [30]	32.0 (9.19) [30]	4.28 (0.474) [29]	180 (19.3) [30]
12-DEMO-002	72.4 (11.5) [49]	0.971 (0.161) [50]	35.0 (8.20) [50]	4.47 (0.468) [50]	182 (15.4) [50]
11-DEMO-005	68.9 (14.5) [39]	2.52 (1.43) [40]	32.8 (8.48) [40]	4.41 (0.537) [39]	175 (19.2) [40]
13-DEMO-001	69.4 (11.6) [40]	0.950 (0.165) [40]	34.2 (9.67) [40]	3.58 (1.15) [38]	179 (17.2) [40]
All data	70.7 (12.8) [157]	1.36 (0.986) [160]	33.7 (8.83) [160]	4.20 (0.793) [156]	179 (17.7) [160]

Summary is mean (sd) [count]

8.6.4 Paneled and grouped

```
out <- pt_cont_wide(
  data = data,
  cols = "WT,SCR,AGE,ALB,HT",
  by = c(Study = "STUDYf"),
  panel = c(Formulation = "FORMf"),
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

	WT	SCR	AGE	ALB	HT			
Study	(kg)	(mg/dL)	(years)	(g/dL)	(cm)			
Formulation tablet								
12-DEMO-001	71.0 (14.2) [24]	1.01 (0.157) [25]	32.6 (9.23) [25]	4.22 (0.459) [24]	179 (19.7) [25]			
12-DEMO-002	72.2 (11.8) [41]	0.966 (0.166) [42]	34.0 (7.93) [42]	4.49 (0.495) [42]	182 (15.9) [42]			
11-DEMO-005	68.8 (15.2) [29]	2.48 (1.47) [30]	33.2 (8.73) [30]	4.37 (0.568) [29]	173 (19.7) [30]			
13-DEMO-001	69.4 (11.0) [33]	0.967 (0.163) [33]	33.7 (9.67) [33]	3.53 (1.14) [31]	178 (16.5) [33]			
Formulation ca	apsule							
12-DEMO-001	72.9 (17.3) [3]	1.12 (0.0700) [3]	32.2 (12.0) [3]	4.49 (0.593) [3]	184 (23.0) [3]			
12-DEMO-002	70.9 (10.3) [6]	1.03 (0.146) [6]	37.7 (7.59) [6]	4.38 (0.354) [6]	181 (15.4) [6]			
11-DEMO-005	73.9 (11.1) [3]	3.06 (2.19) [3]	31.8 (4.99) [3]	4.65 (0.240) [3]	181 (16.4) [3]			
13-DEMO-001	58.4 (4.04) [3]	0.973 (0.195) [3]	36.5 (6.69) [3]	3.09 (1.50) [3]	167 (8.88) [3]			
Formulation tr	oche							
12-DEMO-001	85.3 (12.4) [2]	1.20 (0.0707) [2]	25.1 (3.28) [2]	4.74 (0.283) [2]	194 (0.163) [2]			
12-DEMO-002	79.7 (8.61) [2]	0.910 (0.0283) [2]	48.0 (1.79) [2]	4.49 (0.0354) [2]	182 (10.9) [2]			
11-DEMO-005	66.8 (13.9) [7]	2.45 (1.05) [7]	31.4 (9.34) [7]	4.49 (0.509) [7]	177 (19.8) [7]			
13-DEMO-001	77.4 (15.9) [4]	0.795 (0.0777) [4]	37.3 (12.9) [4]	4.32 (0.994) [4]	193 (22.4) [4]			
All data	70.7 (12.8) [157]	1.36 (0.986) [160]	33.7 (8.83) [160]	4.20 (0.793) [156]	179 (17.7) [160]			

Summary is mean (sd) [count]

8.7 Long continuous table

- Continuous summary table in long format
- Long indicates that covariates go down the table

8.7.1 Ungrouped

```
out <- pt_cont_long(
  data = data,
  cols = "WT,SCR,AGE",
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

Variable	n	Mean	Median	SD	Min / Max
WT (kg)	157	70.7	70.0	12.8	43.6 / 97.2
SCR (mg/dL)	160	1.36	1.04	0.986	0.710 / 5.59
AGE (years)	160	33.7	33.4	8.83	18.9 / 49.5

n: number of records summarized

SD: standard deviation

Min: minimum; Max: maximum

8.7.2 Paneled

```
out <- pt_cont_long(
  data = data,
  cols = "WT,SCR,AGE",
  panel = vars(Study = STUDYf),
  units = units
)
out %>% stable(r_file = "test.R", output_file = "test.tex") %>% st_asis()
```

Variable	n	Mean	Median	SD	Min / Max		
Study 12-DEMO-001							
WT (kg)	29	72.2	70.0	14.3	50.9 / 97.2		
SCR (mg/dL)	30	1.03	1.04	0.155	0.740 / 1.30		
AGE (years)	30	32.0	28.0	9.19	19.9 / 47.8		
Study 12-DEM	10-00	2					
WT (kg)	49	72.4	72.1	11.5	51.5 / 96.6		
SCR (mg/dL)	50	0.971	0.970	0.161	0.720 / 1.30		
AGE (years)	50	35.0	36.0	8.20	20.3 / 49.2		
Study 11-DEM	10-00	5					
WT (kg)	39	68.9	65.4	14.5	43.6 / 92.8		
SCR (mg/dL)	40	2.52	2.33	1.43	0.720 / 5.59		
AGE (years)	40	32.8	33.4	8.48	19.2 / 49.5		
Study 13-DEM	10-00	1					
WT (kg)	40	69.4	68.1	11.6	50.7 / 96.6		
SCR (mg/dL)	40	0.950	0.975	0.165	0.710 / 1.26		
AGE (years)	40	34.2	35.2	9.67	18.9 / 49.5		
All data							
WT (kg)	157	70.7	70.0	12.8	43.6 / 97.2		
SCR (mg/dL)	160	1.36	1.04	0.986	0.710 / 5.59		
AGE (years)	160	33.7	33.4	8.83	18.9 / 49.5		

n: number of records summarized

SD: standard deviation

Min: minimum; Max: maximum