

Basic Network features

Bart Baesens, Ph.D.

Professor of Data Science, KU Leuven and University of Southampton

Neighborhood features

- First order degree
 - Number of connected nodes

```
degree(g)
A B C D E F G H I J
4 3 4 6 3 4 5 3 4 2
>
```

- Second order degree
 - Number of connected nodes that are two or less edges away

```
neighborhood.size(g, order = 2)
[1] 7 7 9 9 8 10 10 7 8 5
```


Neighborhood features - triangles


```
count_triangles(g)
[1] 4 3 4 7 2 3 4 2 3 1
```

Centrality Features

Betweenness

Closeness


```
betweenness(g)

A B C D E F G H I J

1.00 0.00 3.32 8.10 0.92 5.37 11.47 2.07 5.77 0.00

closeness(g)

A B C D E F G H I J

0.06 0.05 0.07 0.08 0.06 0.08 0.06 0.06 0.04
```

Transitivity


```
transitivity(g,type = 'local')
[1] 0.67 1.00 0.67 0.47 0.67 0.50 0.40 0.67 0.50 1.00
```


Let's practice!

Link Based Features

María Óskarsdóttir, Ph.D. Post-doctoral researcher

Adjacency Matrices

	Α	В	C	D	E	F	G	Н	ı	J
Α	0	1	1	1	1	0	0	0	0	0
В	1	0	1	1	0	0	0	0	0	0
C	1	1	0	1	0	0	1	0	0	0
D	1	1	1	0	1	1	1	0	0	0
E	1	0	0	1	0	1	0	0	0	0
F	0	0	0	1	1	0	1	0	1	0
G	0	0	1	1	0	1	0	1	1	0
Н	0	0	0	0	0	0	1	0	1	1
I	0	0	0	0	0	1	1	1	0	1
J	0	0	0	0	0	0	0	1	1	0

A <- get.adjacency(g)

Link based features


```
preference <- c(1,1,1,1,1,1,0,0,0,0)
rNeighbors <- A %*% preference
as.vector(rNeighbors)
[1] 4 3 3 5 3 2 3 0 1 0</pre>
```


Neighborhood features


```
age <- c(23,65,33,36,28,45,41,24,38,39)
degree <- degree(g)
averageAge <- A %*% age / degree
```


Let's practice!

PageRank

María Óskarsdóttir, Ph.D. Post-doctoral researcher

The PageRank Algorithm

$$\operatorname{PageRank}_{J} = \alpha \cdot \left(\frac{1}{3} \cdot \operatorname{PageRank}_{H} + \frac{1}{4} \cdot \operatorname{PageRank}_{I}\right) + (1 - \alpha) \cdot e_{J}$$

The PageRank Algorithm

```
PR = \alpha \cdot A \cdot PR + (1 - \alpha) \cdot e
```


Personalized PageRank


```
> page.rank(g,
 personalized = c(1,0,0,0,0,0,0,0,0,0)
$vector
0.25528911 0.10363533 0.12156935
0.16625582 0.09366836 0.07466596
0.08473039 0.03285162 0.04785657
0.01947748
$value
[1] 1
$options
NULL
```


Let's practice!