Neural Networks: Representation

Total points 5

Which of the following statements are true? Check all that apply.

1 point

- The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).
- A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.
- 2. Consider the following neural network which takes two binary-valued inputs $x_1,x_2\in\{0,1\}$ and outputs $h_{\Theta}(x)$. Which of the following logical functions does it (approximately) compute?

.

- AND
- NAND (meaning "NOT AND")
- O OR
- XOR (exclusive OR)
- 3. Consider the neural network given below. Which of the following equations correctly computes the activation $a_i^{(3)}$? Note: g(z) is the sigmoid activation function.

1 point

$$\bullet \quad a_1^{(3)} = g(\Theta_{1,0}^{(2)}a_0^{(2)} + \Theta_{1,1}^{(2)}a_1^{(2)} + \Theta_{1,2}^{(2)}a_2^{(2)})$$

$$\bigcirc \quad a_1^{(3)} = g(\Theta_{1,0}^{(1)}a_0^{(1)} + \Theta_{1,1}^{(1)}a_1^{(1)} + \Theta_{1,2}^{(1)}a_2^{(1)})$$

$$\bigcirc \quad a_1^{(3)} = g(\Theta_{1,0}^{(1)}a_0^{(2)} + \Theta_{1,1}^{(1)}a_1^{(2)} + \Theta_{1,2}^{(1)}a_2^{(2)})$$

- $\\ \bigcirc \quad \text{The activation } a_1^{(3)} \text{ is not present in this network.}$
- 4. You have the following neural network:

1 point

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^3$. One way to do so is the following Octave code:

% Thetal is Theta with superscript "(1)" from lecture % ie, the motrix of parameters for the mapping from layer 1 (input) to layer 2 % Thetal has size 3x3 % Assume 'sigmoid' is a built-in function to compute $1 / (1 + \exp(-z))$

 $\begin{aligned} & \text{a2 = zeros (3, 1);} \\ & \text{for i = 1:3} \\ & \text{for j = 1:3} \\ & \text{a2(i) = a2(i) + x(j) * Thetal(i, j);} \\ & \text{end} \end{aligned}$

a2(i) = sigmoid (a2(i)); end

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

- z = Theta1 * x; a2 = sigmoid (z);
- a2 = sigmoid (x * Theta1);
- a2 = sigmoid (Theta2 * x);
- z = sigmoid(x); a2 = sigmoid (Theta1 * z);

- It will stay the same.
- O It will increase.
- O It will decrease
- O Insufficient information to tell: it may increase or decrease.

Coursera Honor Code Learn more

I, Vanshi Nenavath, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

△ Like 🖓 Dislike 🏳 Report an issue