

PEP 1 Cálculo III, Forma A 3 de noviembre de 2022

Coordinación de Cálculo III y Cálculo Avanzado para el Módulo Básico de Ingeniería

IMPORTANTE: debe resolver cada problema en hojas separadas.

Al final, debe entregar <u>tres</u> (3) hojas, que tengan como mínimo: nombre, código de sección, y número de problema a resolver.

Problema 1. Sea

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

Determine el conjunto de puntos de \mathbb{R}^2 en el que f tiene derivadas parciales continuas. Justifique su respuesta.

Solución. La derivada parcial en x de f para todo $(x,y) \neq (0,0)$ es:

$$f_x(x,y) = \frac{\sqrt{x^2 + y^2}y - xy\frac{x}{\sqrt{x^2 + y^2}}}{x^2 + y^2}$$

$$= \frac{(x^2 + y^2)y - x^2y}{(x^2 + y^2)^{\frac{3}{2}}} = \frac{y^3}{(x^2 + y^2)^{\frac{3}{2}}},$$

$$y \quad f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{1}{h} \frac{0 \cdot h}{\sqrt{h^2 + 0^2}} = 0.$$

Luego

$$f_x(x,y) = \begin{cases} \frac{y^3}{(y^2 + x^2)^{\frac{3}{2}}} & \text{si} \quad (x,y) \neq (0,0), \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

Ahora, $f_x(x,y)$ es continua en $(x,y) \neq (0,0)$ porque $f_x(x,y) = \frac{y^3}{(x^2+y^2)^{\frac{3}{2}}}$ y esta función es continua en $\mathbb{R}^2 - \{(0,0)\}.$

Para ver si es continua en (0,0), basta ver si

$$\lim_{(x,y)\to(0,0)} f_x(x,y) = f_x(0,0) = 0.$$

Pero
$$\lim_{y\to 0^+} f_x(0,y) = \lim_{y\to 0^+} \frac{y^3}{(0^2+y^2)^{\frac{3}{2}}} = \lim_{y\to 0^+} 1 = 1 \neq 0.$$

Luego f_x no es continua en (0,0), y similarmente, f_y tampoco es continua en (0,0).

Se sigue así que el conjunto de puntos en los que f(x,y) tiene derivadas parciales continuas es $\mathbb{R}^2 - \{(0,0)\}$.

Problema 2. Considere los vectores $\vec{u} = \frac{1}{\sqrt{2}}(1,1)$ y $\vec{v} = \frac{1}{\sqrt{2}}(1,-1)$. Suponga que $f: \mathbb{R}^2 \to \mathbb{R}$ es diferenciable en (1,2) y tal que

$$f'((1,2); \vec{u}) = 2, \ f'((1,2); \vec{v}) = -2.$$

Determine $\nabla f(1,2)$ y $f'((1,2); \vec{w})$, donde w es el vector unitario que va en la misma dirección que el vector (2,3).

Nota: Recuerde que $f'((a,b); \vec{u})$ es la derivada direccional de f en el punto (a,b) en la dirección \vec{u} .

Solución. Como f es diferenciable, entonces

$$f'((1,2);u) = \langle \nabla f(1,2), u \rangle = \frac{1}{\sqrt{2}} \left(\frac{\partial f}{\partial x}(1,2) + \frac{\partial f}{\partial y}(1,2) \right)$$

у

$$f'((1,2);v) = \langle \nabla f(1,2), v \rangle = \frac{1}{\sqrt{2}} \left(\frac{\partial f}{\partial x}(1,2) - \frac{\partial f}{\partial y}(1,2) \right).$$

Como f'((1,2);u) = 2 y f'((1,2);v) = -2, entonces se debe satisfacer:

$$\begin{cases} \frac{\partial f}{\partial x}(1,2) + \frac{\partial f}{\partial y}(1,2) = 2\sqrt{2} \\ \frac{\partial f}{\partial x}(1,2) - \frac{\partial f}{\partial y}(1,2) = -2\sqrt{2}, \end{cases}$$

de donde $\frac{\partial f}{\partial x}(1,2) = 0$ y $\frac{\partial f}{\partial x}(1,2) = \sqrt{2}$, por lo que $\nabla f(1,2) = (0,\sqrt{2})$. Por otra parte el vector w unitario que va en la misma dirección que (2,3) es $w = \frac{1}{\sqrt{13}}(2,3)$. Luego

$$f'((1,2);w) = \langle \nabla f(1,2), w \rangle = \langle (0,\sqrt{2}), \frac{1}{\sqrt{13}}(2,3) \rangle = \frac{3\sqrt{2}}{\sqrt{13}}$$

Problema 3. Determine la menor distancia desde el origen a la recta determinada por la intersección entre los planos x + 2y - z = 1, 2x - 3y + 3z = 0.

Sugerencia: Minimice el cuadrado de la distancia al origen.

Solución. La distancia desde el origen a cualquier punto (x, y, z) se expresa por

$$\sqrt{x^2 + y^2 + z^2}$$

Queremos encontrar el mínimo de esta expresión cuando (x,y,z) está en la recta. Por lo tanto (x,y,z) debe verificar

$$x + 2y - z = 1$$
, $y 2x - 3y + 3z = 0$

Encontrar el mínimo de $\sqrt{x^2+y^2+z^2}$ es equivalente a encontrar el mínimo de $x^2+y^2+z^2$.

Si usamos las letras f, g_1 , g_2 para definir las expresiones

$$f(x,y,z) = x^2 + y^2 + z^2$$
, $g_1(x,y,z) = x + 2y - z$, $g_2(x,y,z) = 2x - 3y + 3z$

El método de los multiplicadores de Lagrange dice que

$$\nabla f(x, y, z) = \lambda \nabla g_1(x, y, z) + \mu \nabla g_2(x, y, z)$$

Pero como
$$\nabla f(x,y,z)=(2x,2y,2z)$$
, $\nabla g_1(x,y,z)=(1,2,-1)$, y $\nabla g_2(x,y,z)=(2,-3,3)$,

la igualdad anterior se expresa como

$$(2x, 2y, 2z) = \lambda(1, 2, -1) + \mu(2, -3, 3)$$

O bien,
$$2x = \lambda + 2\mu$$
, $2y = 2\lambda - 3\mu$, $2z = -\lambda + 3\mu$

Despejando x, y, z tenemos que :

$$x=\tfrac{\lambda}{2}+\mu, \quad y=\lambda-\tfrac{3}{2}\mu, \quad z=-\tfrac{\lambda}{2}+\tfrac{3}{2}\mu$$

Pero como (x, y, z) verifica las restricciones, se tiene que

$$x + 2y - z = 3\lambda - \frac{7}{2}\mu = 1$$

y
$$2x - 3y + 3z = -\frac{7}{2}\lambda + 11\mu = 0$$

de donde
$$\mu = \frac{14}{83}$$
, $\lambda = \frac{44}{83}$

y reemplazando en
$$x=\frac{\lambda}{2}+\mu, \ \ y=\lambda-\frac{3}{2}\mu, \ \ z=-\frac{\lambda}{2}+\frac{3}{2}\mu$$

se obtiene
$$x = \frac{36}{83}$$
, $y = \frac{23}{83}$, $z = -\frac{1}{83}$

y por lo tanto la menor distancia buscada es

$$\sqrt{\left(\frac{36}{83}\right)^2 + \left(\frac{23}{83}\right)^2 + \left(\frac{1}{83}\right)^2} = \frac{1}{83}\sqrt{36^2 + 23^2 + 1} = \frac{\sqrt{1826}}{83}$$

Justifique todas sus respuestas.

Tiempo:90 minutos.