21页4; 26-27页1, 6-10.

21-4

For

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}$$

find elementary matrices E_1, \cdots, E_k such that

$$E_k \cdots E_2 E_1 A = I.$$

Solution: Let
$$E_1 = \begin{pmatrix} 1 & & & \\ & 1 & \\ & -1 & 1 \end{pmatrix}$$
 , $E_2 = \begin{pmatrix} 1 & & -2 \\ & 1 & \\ & & 1 \end{pmatrix}$, $E_3 = \begin{pmatrix} 1 & & -1 \\ & 1 & \\ & & 1 \end{pmatrix}$, $E_4 = \begin{pmatrix} 1 & -1 & \\ & 1 & \\ & & 1 \end{pmatrix}$, $E_5 = \begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}$, $E_6 = \begin{pmatrix} & 1 & \\ & 1 & \\ & & 1 \end{pmatrix}$, $E_7 = \begin{pmatrix} 1 & & \\ & & 1 \\ & & 1 \end{pmatrix}$.

26-1

Let

$$A = egin{pmatrix} 1 & 2 & 1 & 0 \ -1 & 0 & 3 & 5 \ 1 & -2 & 1 & 1 \end{pmatrix}$$

Find a row-reduced echelon matrix R which is row-equivalent to A and an invertible 3×3 matrix P such that R = PA.

Solution:

$$R = \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{8} \\ 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{11}{8} \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{3}{8} & -\frac{1}{4} & \frac{3}{8} \\ \frac{1}{4} & 0 & -\frac{1}{4} \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \end{pmatrix}$$

27-6

Suppose A is a 2×1 matrix and that B is a 1×2 matrix. Prove that C = AB is not invertible. Proof: (Clearly $\mathrm{rank}C \leqslant \min\{\mathrm{rank}A,\mathrm{rank}B\} = 1$ so it is not invertible). Suppose $A = (a,b)^T$ and $B = \begin{pmatrix} ac & ad \\ bc & bd \end{pmatrix}$ and clearly the two rows are linearly dependent, hence C is not invertible.

27-7

Let A be an $n \times n$ matrix. Prove the following two statements:

- (a) If A is invertible for some $B \in F^{n \times n}$ and AB = 0, then B = 0.
- (b) If A is not invertible, then there exists $B \in F^{n \times n}$ such that AB = 0 but $B \neq 0$.

Proof: (a) $0 = A^{-1}(AB) = (A^{-1}A)B = B$.

(b) If A is not invertible, then take a base v_1,\cdots,v_k of $\operatorname{Ker} A$ and add some vectors to form a base v_1,\cdots,v_n of $F^{n\times 1}$. Let B be the linear transformation that maps $\sum_{i=1}^n c_i v_i$ to $\sum_{i=1}^k c_i v_i$, then clearly B is linear and $\operatorname{Im} B = \operatorname{Ker} A$ so AB = 0 while $B \neq 0$.

27-8

Let $A=egin{pmatrix} a & b \\ c & d \end{pmatrix}$. Prove using elementary row operations, that A is invertible iff (ad-bc)
eq 0 .

Proof: A is invertible iff A can be transformed into I using elementary row operations. If ad-bc=0 then the two rows of A are linearly dependent, so A is not invertible. If $ad-bc\neq 0$, then suppose $a\neq 0$ (otherwise change the two rows)

$$A
ightarrow egin{pmatrix} a & b \ ac & ad \end{pmatrix}
ightarrow egin{pmatrix} a & b \ 0 & ad-bc \end{pmatrix}
ightarrow egin{pmatrix} a & b \ 0 & 1 \end{pmatrix}
ightarrow egin{pmatrix} a & 0 \ 0 & 1 \end{pmatrix}
ightarrow I.$$

27-9

An $n \times n$ matrix A is called upper-triangular if $A_{ij} = 0$ for i > j. Prove that an upper-triangular matrix is invertible iff every entry on its main diagonal is different from 0.

Proof: A is invertible iff the columns of A are linearly independent. If the j-th element of the diagonal is 0, let j be minimal then the j-th column is spanned by the first j-1 columns, hence A is not invertible. If no element of the diagonal is 0, then clearly all columns are linearly independent, hence A is invertible.

27-10

Prove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible. Proof: If AB is invertible, then for the base e_1, \cdots, e_m of $F^{m \times 1}$, $AB(e_i)$ are linearly independent, but $B(e_i)$ are m vectors in $F^{n \times 1}$ so they must be linearly dependent, leading to contradiction.