XIANGYU ZHAO

Burrell's Field, Trinity College, Grange Road, Cambridge, United Kingdom CB3 9DH Telephone: +44 7422 900440 (UK) \diamond +86 185 1241 5307 (China)

 $Email: \ xz398@cam.ac.uk \diamond Website: \ https://victorzxy.github.io/ \diamond GitHub: \ VictorZXY = Constraint \ Authorized \ Aut$

EDUCATION

Trinity College, University of Cambridge, United Kingdom

October 2018 – *June* 2022

BA + MEng (Hons) in Computer Science

BA final year result: 2.i (Overall: 70.5%; Units: 86%; Dissertation: 81%)

WORK EXPERIENCE

Department of Computer Science and Technology, University of Cambridge

June 2022 – Present Cambridge, UK

Research Intern

· Supervised by Dr Aaron Zhao and Prof Robert Mullins

· Project: Graph-Connected Neural Networks

ByteDance

June – September 2021

Algorithm Engineer Intern

Beijing, China

- · Trained a model based on causal forest and double ML for TikTok Lite's user growth event;
- · Increased per-user successful invitation count by 43.9% while decreasing its cost by 56.1%.

PUBLICATION

- · **Xiangyu Zhao** and Sean B. Holden (2022). Towards a Competitive 3-Player Mahjong AI using Deep Reinforcement Learning. *Preprint*.
- · **Xiangyu Zhao** and Sean B. Holden (2022). Building a 3-Player Mahjong AI using Deep Reinforcement Learning. arXiv preprint arXiv:2202.12847.

PROJECT EXPERIENCE

Task-Agnostic Graph Neural Network Evaluation via Adversarial Collaboration *November MEng Dissertation*

November 2021 – May 2022

- · Developed a conceptually novel, principled, task-agnostic, and stable framework for evaluating GNNs through contrastive self-supervision, without needing handcrafted augmentations;
- · Distinguish GNNs of different expressivity by having them directly compete against each other on unlabelled graphs, and ensures that more expressive GNNs can win by producing more informative graph embeddings.
- · Source code: https://github.com/VictorZXY/GraphAC

Improving Graph Generative Models via Expressive Graph Neural Networks

March – April 2022

MEng Representation Learning on Graphs and Networks Mini-Project

- · Investigated the expressivity of GNNs under the context of molecular graph generation;
- · Replaced R-GCN in GCPN with GIN, PNA and GSN, and significantly improved GCPN's performance.
- $\cdot \ \ Source\ code:\ https://github.com/VictorZXY/expressive-graph-gen$

Multi-Agent Deep Q-Learning for the Berry Poisoning Game

February – March 2022

MEng Advanced Topics in Machine Learning Coursework (Reinforcement Learning)

- · Performed a multi-agent DQN method on the Berry Poisoning Games, and investigated on the agent performance with respect to different game environment parameters;
- · Successfully trained agents for the game, with high transferability across different game environment parameters.
- · Source code: https://github.com/VictorZXY/dqn-berry-poisoning

Function Autoencoders: A Neural Network Approach to Gaussian Processes *Meng Probabilistic Machine Learning Investigative Project*

- · Investigated a neural network alternative to Gaussian processes, and introduced the function autoencoders that preserve GPs' own advantages and avoid their weaknesses with NNs' benefits;
- · Models successfully learnt distributions over random functions, and performed decently on a 1-d regression task.
- · Source code: https://github.com/VictorZXY/function-autoencoder

MEng Machine Learning and the Physical World Group Project

- · Carried out simulation of an urban traffic signalling system, and built an emulator to search for optimal traffic signal scheduling using Bayesian optimisation;
- · Introduced multiple scheduling schemes to overcome the problem of exploding search space, without sacrificing flexibility or descriptiveness.
- · Source code: https://github.com/VictorZXY/traffic-sim

A Neural Network Approach to Named Entity Recognition on Noisy User-Generated Texts

MEng Natural Language Processing Final Assignment

November – December 2021

- · Investigated a bidirectional LSTM structure for named-entity recognition on social media texts, and explored various data-processing techniques in order to improve the model's performance;
- · Model trained with data-processing techniques applied achieved significant improvements on prediction accuracy on the W-NUT 2017 shared task, compared to the same model trained without any data optimisation.
- · Source code: https://github.com/VictorZXY/nlp-assignments-ner

Deep Reinforcement Learning for Mahjong

October 2020 - May 2021

BA Dissertation

- · Designed an informative and compact data structure for encoding observable Mahjong states, built an AI for Mahjong by pre-training CNN models for each action, and improved the major action's model with self-play RL;
- · Models achieved near state-of-the-art level, and RL significantly improved the agent's win rate from SL;
- · Paper submitted to IEEE Conference on Games 2022.
- Source code: https://github.com/VictorZXY/meowjong Related publication: https://arxiv.org/abs/2202.12847

Investigating Adversarial Examples for Deep Residual Networks

February – March 2021

Third Year Deep Neural Networks Mini-Project

- · Investigated on targeted/black-box adversarial attacks on ResNets using one-shot/iterative FGSM algorithms, and experimented the transferability of each FGSM attack to other image inputs and neural networks.
- · Source code: https://github.com/VictorZXY/dnn-assignments

An Analysis of Clickstream Data for Online Shopping

November – December 2020

Third Year Data Science Final Practical

- · Analysed a clickstream dataset on an online shopping website, trained various ML models to predict the costumers' potential willingness to pay a premium price, and identified the most important features for ML prediction.
- · Source code: https://github.com/VictorZXY/datasci-pnp-final-practical

Trading Assistant for IMC

January – March 2020

Second Year Group Project

- · This is a web service which holds market data and responds to queries on demand in a human-like manner, by automating the trader side of the process using speech recognition and NLP;
- · Responsible for writing speech-to-text and text-to-speech libraries;
- Efficiently built the libraries with high accuracies, and provided clean interfaces that were used conveniently by the NLP and back-end teammates, improving the system's overall performance.

iSport May 2019

First Year Interaction Design Group Project

- · This is an Android application that gives a daily weather forecast information on the most relevant weather based on the selection of sports for the athletes at the University of Cambridge;
- · Responsible for layout design and interaction processing, and built an aesthetic, easy-to-use and efficient UI.
- Source code: https://github.com/VictorZXY/iSport

A Classroom Teaching Tool for Graph Theory

June 2017 – *March* 2018

A-Level Computer Science Project

- · This is a desktop application that allows a user to freely create a graph, and then apply the graph algorithms with step-by-step demonstrations. It also provides a Question Bank for teachers to edit/store questions. Besides, it can keep track of the learning progress of each student.
- https://github.com/VictorZXY/GraphTeachingTool

AWARDS

Google Hash Code	2020	Team ranked 1331/10724 globally
UK & Ireland Programming Contest (UKIEPC)	2019	Team ranked 54/191
British Informatics Olympiad (BIO)	2017	National finalist (top 15)
British Physics Olympiad (BPhO)	2017	Gold Medal
British Chemistry Olympiad (BChO)	2017	Gold Medal
British Mathematics Olympiad (BMO)	2016, 2017	Distinction
Senior Team Mathematics Challenge (STMC)	2017	Team won regional 2nd place
Senior Mathematics Challenge (SMC)	2016, 2017	Gold Medal (Full marks)
American Mathematics Contest (AMC12)	2016	Distinction (Global top 1%)
American Mathematics Contest (AMC10)	2015	Distinction (Global top 1%)
National Olympiad in Informatics (NOI)	2014	2nd Place

SKILLS

Languages	Chinese (Native), English (Fluent, IELTS Band 8.0)
Programming	Python, Java, C, C++, C#, OCaml, StandardML, Prolog, SQL, Cypher, Verilog, LATEX, Swift
ML Libraries	PyTorch, TensorFlow, Keras, Scikit-learn, PyG, DGL, TorchDrug, GPy, GPyOpt, EconML
Music	Clarinet (Grade 10, soloist of the Cambridge University Chinese Orchestra Society)
Sports	Kendo (University team), Football (High school team), Badminton