Course on Proof Theory - Lecture 3

Exercises - Gentzen's sequent calculus

Gianluca Curzi, Marianna Girlando

University of Birmingham

Midlands Graduate School Nottingham, 10-14 April 2022

Exercises for Lecture 3

1. We saw that modus ponens could be simulated in LK. Give cut-free LK proofs for each of the three propositional axioms of HF:

$$\begin{array}{ll} (\textit{wk}) & \textit{A} \rightarrow (\textit{B} \rightarrow \textit{A}) \\ (\textit{dist}) & (\textit{A} \rightarrow (\textit{B} \rightarrow \textit{C})) \rightarrow ((\textit{A} \rightarrow \textit{B}) \rightarrow (\textit{A} \rightarrow \textit{C})) \\ (\textit{neg}) & ((\textit{A} \rightarrow \bot) \rightarrow \bot) \rightarrow \textit{A} \end{array}$$

2. What about the quantifier axioms and rule:

$$\frac{A}{\forall xA} \qquad \begin{array}{l} \forall x.A \to A[t/x] \\ \forall x.(A \to B) \to (A \to \forall x.B) \quad \text{as long as } x \notin \mathsf{FV}(A) \end{array}$$

(NB: this concludes the proof of completeness of LK).

- 3. What possible rules might we need in LK if we had \perp in our language?
- 4. Show that the multiplicative formulation of the rules for \land can be derived from the additive formulation of the rules for \land using the structural rules, and vice versa (see slide 13).