

DSBA Open QA Study

Open-Domain Question Answering Paper Review #4

고려대학교 산업경영공학과

Data Science & Business Analytics Lab

발표자: 이유경

- 01 Introduction
- 02 REALM
- 03 Graph Retriever

Part 5 : Dense Retriever and End-to-end Training

REALM: Retrieval-Augmented Language Model Pre-Training.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, Ming-Wei Chang. ICML 2020.

Part 7 : Open-Domain Question Answering using Text & Knowledge Bases

Knowledge Guided Text Retrieval and Reading for Open Domain Question Answering.

Sewon Min, Danqi Chen, Luke Zettlemoyer, Hannaneh Hajishirzi. arXiv 2019.

REALM: Retrieval-Augmented Language Model Pre-Training. Overview

- TL;DR
 - Retriever도 학습하면 QA 성능이 매우 높아짐
 - Retriever 와 reader를 한번에 학습(Joint training)할 수 있음
 - Retriever를 Pretraining에서 수행하는 모델 제안
- Main Contribution
 - Retriever와 Reader를 한번에 학습하는 E2E 모델
 - Query을 넣어(input), 답(output)을 찾는 과정을 두 단계로 분리
 - Neural Knowledge Retriever
 - Query -> Query 의 답이 될만한 document를 찾음
 - Knowledge-Augmented Encoder
 - Retrieved Document -> Answer
 - Pretraining과 Finetuning(ODQA)을 모두 진행함

02

REALM: Retrieval-Augmented Language Model Pre-Training. Background

1. Pretrained LM의 능력과 한계

- PLM은 Pretrain 단계에서 이미 large corpora로 학습되므로 대량의 정보를 포함하고 있음
- 대부분의 PLM은 Cloze task로 학습을 진행하기 때문에 Mask를 예측하는 과정에서 언어를 이해할 뿐만 아니라 정보를 습득함 :"The [Mask] is the currency of the United Kingdom" (answer: "pound").
- 하지만, PLM이 정보를 저장하는 방식은 "implicitly" 함
 - Network에 어떤 knowledge가 학습되어 있는지 알 수 없음
 - 더 많은 knowledge를 학습하기 위해서는 model size를 증가 시켜야 하며, 계산 비용이 상당함

2. Explicit하게 Knowledge를 학습 및 저장하는 모델 필요

- <u>Textual knowledge retriever</u>를 통해 기존 PLM을 보다 해석 가능하고 explicit하게 knowledge를 학습하는 모델로 개선
- 즉, Retriever 과정이 pretraining에 포함되어있는 형태임
- 문장 -> Retriever -> 정답을 찾아낼 수 있는 새로운 모델 구조를 제안함

REALM: Retrieval-Augmented Language Model Pre-Training. Method

Main Idea

- Original QA: Query(x)를 넣어 Answer(y)를 찾겠어
- REAML
 - Step 1 : <u>Query(x)</u>를 넣어 Retrieved document(z)를 찾고
 - Step 2 : Query(x)와 Retrieved document(z)를 넣어 Answer(y)를 찾겠어

Model Architecture

- Neural knowledge retriever (Step 1)
- knowledge-augmented encoder (Step 2)

Training Process

- Unsupervised (Pretraining)
- Supervised training (Finetuning)
 - QA Task

REALM: Retrieval-Augmented Language Model Pre-Training.

Method

Neural Knowledge Retriever

(시간 관계상) 발표에서 제외했지만 Top K를 approximate 하는 과정에서

Retriever는 dense inner product model로 정의됨 == "Query와 relevance score가 가장 높은 document를 찾겠다"는 의미

$$p(y|x) = \sum_{z \in \mathcal{Z}} \underbrace{p(y|x, z)}_{\text{reader retriever}} p(z|x) \approx \sum_{z \in \text{TOP}_k(\mathcal{Z})} p(y|x, z) p(z|x)$$

① Distribution, relevance score

$$egin{aligned} p\left(z|x
ight) &= rac{exp\ f\left(x,z
ight)}{\sum_{z'}exp\ f\left(x,z'
ight)}, \ f\left(x,z
ight) &= \mathsf{Embed}_{\mathsf{input}}(x)^{\mathsf{T}}\mathsf{Embed}_{\mathsf{doc}}\left(z
ight), \end{aligned}$$

② BERT style transformer

$$\mathsf{join}_\mathsf{BERT}\left(x
ight) = [\mathsf{CLS}]x[\mathsf{SEP}] \ \mathsf{join}_\mathsf{BERT}\left(x_1, x_2
ight) = [\mathsf{CLS}]x_1[\mathsf{SEP}]x_2[\mathsf{SEP}]$$

③ Embeddings

$$p\left(z|x\right) = \frac{\operatorname{car} f\left(x,z\right)}{\sum_{z'} \operatorname{exp} f\left(x,z'\right)}, \qquad \text{join}_{\mathsf{BERT}}\left(x\right) = [\mathsf{CLS}]x[\mathsf{SEP}] \qquad \mathsf{Embed}_{\mathsf{input}}\left(x\right) = \mathbf{W}_{\mathsf{input}} \mathsf{BERT}_{\mathsf{CLS}}\left(\mathsf{join}_{\mathsf{BERT}}\left(x\right)\right) \\ f\left(x,z\right) = \mathsf{Embed}_{\mathsf{input}}\left(x\right)^{\mathsf{T}} \mathsf{Embed}_{\mathsf{doc}}\left(z\right), \qquad \mathsf{join}_{\mathsf{BERT}}\left(x_1,x_2\right) = [\mathsf{CLS}]x_1[\mathsf{SEP}]x_2[\mathsf{SEP}] \qquad \mathsf{Embed}_{\mathsf{doc}}\left(z\right) = \mathbf{W}_{\mathsf{doc}} \mathsf{BERT}_{\mathsf{CLS}}\left(\mathsf{join}_{\mathsf{BERT}}\left(z_{\mathsf{title}},z_{\mathsf{body}}\right)\right)$$

- **Knowledge-Augmented Encoder**
 - Retrieved documents와 query를 함께 사용하여 정답을 찾아내며, pretraining과 finetuning 과정이 살짝 다름

1) Pretraining (MLM)

$$p\left(y|z,x
ight) = \prod_{j=1}^{J_x} p\left(y_j|z,x
ight)$$
 $p\left(y_j|z,x
ight) \propto exp\left(w_j^\intercal \mathsf{BERT}_{\mathsf{MASK}}\left(j
ight) \left(\mathsf{join}_{\mathsf{BERT}}\left(x,z_{\mathsf{body}}
ight)
ight)
ight)$: Mask 예측

2 Open QA Finetuning

$$p\left(y|z,x
ight) \propto \sum_{s \in S(z,y)} \exp\left(\mathsf{MLP}\left(\left[h_{\mathsf{START}(s)};h_{\mathsf{END}(s)}
ight]
ight)
ight) \ h_{\mathsf{START}(s)} = \mathsf{BERT}_{\mathsf{START}}\left(s
ight) \left(\mathsf{join}_{\mathsf{BERT}}\left(x,z_{\mathsf{body}}
ight)
ight), \ h_{\mathsf{END}(s)} = \mathsf{BERT}_{\mathsf{END}}\left(s
ight) \left(\mathsf{join}_{\mathsf{BERT}}\left(x,z_{\mathsf{body}}
ight)
ight), \ dots \ \mathsf{Span} \ \mathfrak{A}$$

02

REALM: Retrieval-Augmented Language Model Pre-Training. Method

- Injecting inductive biases into pre-training
 - (개인적 견해) 타 연구들은 비슷한 방법론을 사용할 때 infuse knowledge 라고 표현하는 경우가 많은데, 해당 연구는 injecting inductive biases라는 표현 사용함 논문 쓸 때 참고해봐도 좋을 포인트라 생각
 - Salient span masking
 - Named entity를 사용하여 salient spans 생성 (such as "United Kingdom" or "July 1969")
 - 해당 masking strategy의 목적은 정답일 가능성이 높은 Entity 들을 Query의 Answer로 간주한 것
 - Pretraining REALM 과정에서 [MASK] 자리에 들어올 값을 Top K Retriever 과정을 통해 찾아내는것이 포인트
 - Span masking은 대부분 비슷한 방법론을 취하고 있음 (SpanBERT, MASS, BART, Pegasus 등)
 - BERT masking , SpanBERT masking, REALM masking을 비교한 결과 제안 방법이 가장 좋았다고 언급함

REALM: Retrieval-Augmented Language Model Pre-Training.

Name	Architectures	Pre-training	NQ (79k/4k)	WQ (3k/2k)	CT (1k /1k)	# params
BERT-Baseline (Lee et al., 2019)	Sparse Retr.+Transformer	BERT	26.5	17.7	21.3	110m
T5 (base) (Roberts et al., 2020)	Transformer Seq2Seq	T5 (Multitask)	27.0	29.1	-	223m
T5 (large) (Roberts et al., 2020)	Transformer Seq2Seq	T5 (Multitask)	29.8	32.2	-	738m
T5 (11b) (Roberts et al., 2020)	Transformer Seq2Seq	T5 (Multitask)	34.5	37.4	-	11318m
DrQA (Chen et al., 2017)	Sparse Retr.+DocReader	N/A	-	20.7	25.7	34m
HardEM (Min et al., 2019a)	Sparse Retr.+Transformer	BERT	28.1	-	-	110m
GraphRetriever (Min et al., 2019b)	GraphRetriever+Transformer	BERT	31.8	31.6		110m
PathRetriever (Asai et al., 2019)	PathRetriever+Transformer	MLM	32.6	-	-	110m
ORQA (Lee et al., 2019)	Dense Retr.+Transformer	ICT+BERT	33.3	36.4	30.1	330m
Ours (\mathcal{X} = Wikipedia, \mathcal{Z} = Wikipedia)	Dense Retr.+Transformer	REALM	39.2	40.2	46.8	330m
Ours ($\mathcal{X} = \text{CC-News}$, $\mathcal{Z} = \text{Wikipedia}$)	Dense Retr.+Transformer	REALM	40.4	40.7	42.9	330m

Overview Graph Retriever Overview

- TL;DR 🤫 생각보다 흥미롭지 않았던 연구 🤫
 - ODQA 할 때 KB를 사용해서 Question에서 정보를 추출
 - Wikipedia passage로 knowledge graph 생성
 - GCN Span prediction 진행

Main Contribution

- External information(KB)을 충분히 활용한 연구
- WIKIDATA의 relation을 활용하여 KG 생성
- 다양한 관계를 고려한 Graph를 기반으로 GCN modeling
- 모델은 크게 Graph Retriever와 Graph Reader로 구성
- Graph Retriever
 - Entity linking, TF-IDF (Question)
 - 관련된 article retrieval
- Graph Reader
 - Bert passage, relation encoding (respectively)
 - Encoded representation GCN New representation

O3 Graph Retriever Background

1. Text-based QA의 한계

- Text-based QA는 Retriever Reader 구조로 진행
- Retrieval 과정에서 사용 가능한 데이터가 제한 되어있다는 한계점이 존재
- Passage와 Question 사이의 관계들을 고려하지 못한다는 한계점 존재

2. Relation을 고려하는 새로운 QA 모델의 필요성

- 기존에도 External knowledge를 사용하여 모델링 하는 경우는 존재하였음 (KB, 다양한 외부 Source 사용)
- WIKIDATA는 각 Entity별 다양한 relation이 정의도어있음
- WIKIDATA의 특성을 고려하여 각 정보들간 Relation을 고려한 Graph를 구성하고 의미있는 passage를 찾을 수 있음
- Passage를 collect한 후 information을 fuse 할 수 있으며 relation으로 부터 파생된 정보를 model이 학습할 수 있게 됨

Subject	Relation	Object		
More Than a Feeling	performer	Boston (band)		
More Than a Feeling	part of	Boston (album)		
More Than a Feeling	genre	Hard rock		
More Than a Feeling	country of origin	USA		
More Than a Feeling	record label	Epic		
More Than a Feeling	followed by	Foreplay/Long Time		

03

Graph Retriever

Method

Q: Who sang more than a feeling by Boston? (A: Brad Delp)

O3 Graph Retriever Method

Q: Who sang more than a feeling by Boston? (A: Brad Delp)

Seed Passage : Question으로부터 etity linking, TF-IDF을 수행하여 article collection 진행 **Graph expansion** Seed Passage와 relation을 가지는 article들을 Wikidata(KB)를 통해 찾고, 첫번째 passage를 graph에 포함 2) Seed Article들의 첫번째 passage들을 제외한 passage들을 BM25를 이용해 랭크를 매긴 후 상위에 rank되는 S개를 포함 3) n개의 Passage가 구성될 때 까지 반복 진행 Lavers: 1, 2, ..., M

Graph Retriever

Method

Q: Who sang more than a feeling by Boston? (A: Brad Delp)

Graph Retriever

Method

O3 Graph Retriever Result

Retriever	Reader	WEBQ Dev	UESTIONS Test	NATUR Dev	AL QUESTIONS Test	Triv Dev	IAQA Test
Text-match Text-match	PARREADER PARREADER++	23.6 19.9	25.2 20.8	26.1 28.9	25.8 28.7	52.1 54.5	52.1 54.0
GRAPHRETRIEVER GRAPHRETRIEVER GRAPHRETRIEVER GRAPHRETRIEVER	PARREADER PARREADER++ GRAPHREADER (binary) GRAPHREADER (relation)	33.2 33.7 34.0 34.0	33.0 31.8 36.4 36.0	30.2 33.1 34.2 34.7	29.3 33.5 34.1 34.5	54.8 55.5 55.2 55.8	54.7 55.0 54.2 56.0
Previous best (pipelin Previous best (end-to-	(*)	38.5 ^d	18.5 ^a 36.4 ^d	31.7^b 31.3^d	32.6^{b} 33.3^{d}	50.7 ^c 45.1 ^d	50.9 ^c 45.0 ^d

감사합니다