Progetto Sistemi Complessi: Modelli e Simulazione

Simulazione di Evacuazione di Tsunami

Magazzù Giuseppe 829612 Magazzù Gaetano 829685

Background

Un modello di evacuazione in caso di tsunami è composto da:

- Rete stradale / griglia
- Distribuzione della popolazione
- Rifugi
- Inondazione da tsunami
- Casualty model

Goto et al. 2012

- Modello network-based
- Oltre 20,000 individui
- Moto, auto e pedoni raggruppati in famiglie (distribuzione da questionari)
- Shortest path (spazio per pedoni e moto, tempo per auto)
- Velocità dipendente dalla densità di fronte (pedoni e moto)
- Rifugi con capacità limitata con eventuale ricalcolo del percorso
- Profondità critica 1 m.

densità = n° agenti / area

Pedone $L_w = 3 \text{ m}$

Moto $L_h = 16.7 \text{ m}$

Goto et al. 2012

- Velocità auto dipendente dalla larghezza della strada
- L'auto avanza in base alla densità di fronte
- Gestione più corsie in base alla densità

 $L_f = V_f \times \Delta_t$, dove L_f è la free run length, V_f la velocità massima e Δ_t è il time step.

Density of agents in front for automobile $\rho c = \frac{n}{(W-W_C) \times L_f}$

Where W: Road width
Wc: Car width

2) ρ_c > 1.0 agents/m² e non ci sono altre auto

3) ρ_c < 1.0 agents/m² e c'è un auto davanti

Wang, Mostafizi et. al

Wang et. al. (2016)

- Modello network-based
- 4502 diversi tipi di agenti (residenti / pedoni / auto)
- Routing: percorso più breve
- Shelter con capacità illimitata
- Profondità critica Hc = 1 m
- I pedoni hanno velocità costante (distribuita secondo una normale)
- Le auto accelerano in base all'auto di fronte (modello general motors)

Analisi di sensitività sulla mortalità:

- Tempi di preparazione (distribuzione di Rayleigh)
- Evacuazione orizzontale / verticale
- Modalità di evacuazione (a piedi o in auto)
- Velocità dei pedoni
- Profondità critica

Mostafizi et. al. (2017)

Resilienza della rete sulla base della mortalità:

- Caso ideale in cui si evacua immediatamente (a 2.3 min il 99% ha iniziato)
- Hc abbassato a 0.5 m per l'impatto su persone anziane e bambini
- Identificazione link critici (mortalità maggiore ≥ 5%)
- Piano di retrofitting sui link critici (Constraint Satisfaction Problem (CSP))

Mostafizi et. al. (2019)

Analisi di sensitività sulla mortalità in aggiunta ai lavori precedenti:

- Velocità massima delle auto
- Parametri del General Motors

Z. Wang e Jia 2021

- Modello network-based
- Diverse popolazioni: 5000, 10000, 15000
- Danni sismici per ponti e strade
 - 5 livelli di distruzione in ogni link
 - Riduce la capacità
- Parcheggi
- Incertezza dei parametri

- Interazioni auto-pedoni in base al volume
- Velocità variabile in base alla densità
 - Pedoni: modifica della curva di Goto et. al 2012
 - Auto: modello di Greenshields $(V_{max} = 40 \text{ km/h}, D_{max} = 160 \text{ veh/km})$

θ	Distribution	θ	Distribution
t_0	U(3, 10)	μ_p	U(1.4, 2)
τ	U(0, 10)	σ_p	U(0.1, 0.6)
σ_i	U(1, 5)	h_c	U(0.5, 3)
T_1	U(0.3, 0.7)	μ_c	U(0, 1)
T_2	U(1.1, 1.5)		

Modello Base

Wang et. al. (2016)

Popolazione:

4502 agenti (residenti, auto e pedoni)

• Scenario: mezzogiorno di un fine settimana di estate

Rifugi:

- Capacità illimitata
- Evacuazione orizzontale
- 8 rifugi

Rete Stradale:

- Strade a una corsia e a senso unico
- Limite 55 km/h

Casualty Model:

Altezza onda ≥ 0.5 m

Modello Base

Agenti

Tipi di agenti: residenti, auto e pedoni.

All'inizio della simulazione ogni residente:

- Sceglie la modalità di evacuazione (a piedi o in auto)
- Si prepara all'evacuazione
- Raggiunge l'intersezione più vicina
- Inizia ad evacuare seguendo il percorso più breve (A star)

Durante la simulazione un agente (auto/pedone) può:

- Continuare sulla strada corrente
- Cambiare strada seguendo il percorso
- Evacuare se ha raggiunto il rifugio
- Morire secondo il casualty model

Tempo di preparazione (Distribuzione di Rayleigh)

$$P(t) = \begin{cases} 0 & 0 < t < \tau \\ 1 - e^{-(t-\tau)^2/(2\sigma^2)} & t < \tau \end{cases}$$

tempo minimo τ = 1 min parametro di scala σ = 0.5

Modello Base

Agenti

Pedoni:

- Velocità costante distribuita normalmente
- $\mu_p = 1.22 \text{ m/s}, \ \sigma_p = 0.2$

Non sono gestite le interazioni pedone-auto, pedone-pedone

Auto:

- 1 auto = 1 persona
- Velocità massima: 55 km/h
- Car-following (General Motors)

$$a_{n+1}^t = [rac{lpha_{l,m}*(v_{n+1}^t)^m}{(x_n^t-x_{n+1}^t)^l}][v_n^t-v_{n+1}^t]$$
 Esponente di distanza: l = 2 Esponente di velocità: m = 0 Coefficiente di sensitività: $lpha_{
m l,m}$ = 0.36 km²/h

Più veloce è il veicolo di fronte maggiore sarà la distanza tra i due veicoli. Inoltre deve essere mantenuta una certa distanza di sicurezza dall'auto di fronte.

Rete Stradale

- 304 intersezioni (98 a 4 strade, 206 a 3 strade)
- 78 TWSC, 20 AWSC (Google Maps)

Strada locale con larghezza minima¹

Gestione delle Intersezioni

Per ogni intersezione *i* sono state definite:

- C(i, j) = numero di pedoni che stanno attraversando la strada (i, j).
- Arrival(i) = insieme delle auto entrate nella zona di attraversamento.
- Crossing(i) = insieme delle auto che possono passare contemporaneamente.
- Stops(i) = insieme delle intersezioni j collegate a i in cui è presente uno stop nella strada (i, j)

Gestione delle Intersezioni - Pedoni

Dato un pedone x:

- x_{prev}: intersezione precedente
- x_{cur}: intersezione corrente
- x_{next}: intersezione successiva
- $X_{side} \in \{left, right\}: lato del marciapiede$
- I_d: intersezione nella direzione d ∈ {origin, left, straight, right}
- x_{dir} : direzione assegnata a x_{next} (dal proprio punto di vista)

Aggiornamento contatori:

a)
$$x_{\text{side}} \neq x_{\text{dir}} \wedge x_{\text{dir}} \neq \text{straight} \quad \Box \quad C(x_{\text{curr}}, I_{\text{origin}})$$

b)
$$x_{dir} = straight \square C(x_{curr}, I_d), d = x_{side}$$

 $\chi_{\text{side}} = \chi_{\text{dir}}$

Gestione delle Intersezioni - Auto

Gestione Precedenze - AWSC

Arrival_{min}(i) = auto con il minimo arrival time

Arrival = $\{x1, x2\}$ Crossing = $\{\}$

Arrival = $\{x1, x2\}$ Crossing = $\{x1\}$

	Car1: Origin	Car2: Straight
	Left	Left
.ou	Right	Right
Direction	Right	Straight
	Straight	Right
	Straight	Straight

	Car1: Origin	Car2: Left	
_	Left	Right	
tio.	Right	Left	
Direction	Right	Right	
	Straight	Right	

	Car1: Origin	Car2: Left	Car3: Straight
_	Right	Left	Right
tic	Left	Right	Left
Direction	Right	Right	Right
	Straight	Right	Right

Gestione Precedenze - TWSC

Arrival^P(i) = auto in Arrival(i) nella strada principale

Right

() Crossing area

 $Arrival_{min}^{\rho}(i)$ = auto in Arrival(i) con il minimo arrival time sulla strada principale $Arrival_{min}^{\rho}(i)$ = auto in Arrival(i) con il minimo arrival time sulla strada secondaria

	Car1: Origin	Car2: Straight
	Left	Left
.o	Right	Right
ect	Right	Straight
Direction	Straight	Right
-	Straight	Straight

Arrival = $\{x1, x2, x3\}$ Crossing = $\{\}$ Stops = $\{\}$, $\{\}$

 $x1_{dir} = Left, x2_{dir} = Straight, x3_{dir} = Left$ $x1_{time} = x2_{time} >= x3_{time}$ Arrival = $\{x1, x2, x3\}$ Crossing = $\{\}$ Arrival = $\{x1, x3\}$ Crossing = $\{x2\}$

Velocità Pedoni

Goto et. al (2012)

Z. Wang e Jia (2021)

N(μ =1.22, σ =0.2) search length = 4m

Simulazione

Esempio Simulazione

Esempio Simulazione

Base

Minuto 2.3 il 99% dei residenti ha iniziato a evacuare

Esteso

Esempio Simulazione

Esempio Simulazione

Esempio Simulazione

Base

Minuto 40 lo tsunami raggiunge la costa

Esteso

Esempio Simulazione

Base Minuto 50 Esteso lo tsunami raggiunge la massima distanza

Modello esteso

Minutes (after the earthquake)

% evacuati al minuto

Comparazione

Tempi di evacuazione

Comparazione Solo Pedoni

Piano di evacuazione ufficiale della città di Seaside

Tempo di evacuazione medio dei pedoni: ~25 min

Analisi Intersezioni

Flusso Pedoni

Analisi Intersezioni

Flusso Auto

Comparazione con Wang et al. 2021

	Base / Esteso	Wang et. al 2021
N° agenti	4502	5000
Pedoni	$\mu_p = 1.22$ $\sigma_p = 0.2$	$\mu_p \sim U(1.4, 2)$ $\sigma_p \sim U(0.1, 0.6)$
Auto	costante / variabile 1 auto = 1 agente general-motors $V_{max} = 55 \text{ km/h}$	variabile 1 auto = 4 agenti greenshields $V_{max} = 40 \text{ km/h}$
Casualty Model	$H_c = 0.5 \text{ m}$	$H_c \sim U(0.5, 3) \text{ m}$
Tempo di preparazione	$t_0 = 0$ $\tau = 1$ $\sigma_t = 0.5$	$t_0 \sim U(3, 10)$ $\tau \sim U(0, 10)$ $\sigma_t \sim U(1, 5)$
Probabilità Pedoni / Auto	100% - 0%, 75% - 25%, 50% - 50%, 25% - 75%, 0% - 100%	$\mu_c \sim U(0, 1)$ $\sigma_c = 0.15$
Interazioni Auto-Pedoni	nessuna / gestione intersezioni	tre fasi di traffico

Cases	Seismic damage	Pedestrian-vehicle interaction	Speed adjustment
CO	No	No	No
C1	No	No	Yes
C2	No	Yes	Yes
C3	Yes	No	Yes
C4	Yes	Yes	Yes

Conclusioni e Sviluppi Futuri

Conclusioni:

- La percentuale di evacuati aumenta al diminuire delle auto
- Caso migliore: solo pedoni (99% evacuati)
- Nessun cambiamento significativo per i pedoni rispetto al modello base
- Nonostante l'evacuazione immediata nei casi con traffico misto non tutti riescono ad evacuare
- La gestione delle intersezioni in generale provoca un aumento di vittime
- La gestione delle intersezioni rallenta i tempi di evacuazione e abbassa il flusso (soprattutto nei casi misti con più pedoni)
- I casi 100% auto e 100% pedoni sono i casi con minor effetto delle intersezioni

Sviluppi Futuri:

- Considerare le Intersezioni a 3 strade e altri tipi di intersezioni (es. semafori)
- Aggiungere delle fasi di accelerazione e decelerazione (quando arrivano agli incroci)
- Nei casi in cui i pedoni bloccano auto con precedenze le altre auto dovrebbero passare se possono
- Nei TWSC le auto sulle strade secondarie tendono a prendersi la precedenza
- Considerare casi in cui i pedoni attendono le auto
- Altre strategie di routing (aggiunta di un grafo per i percorsi pedonali, costo sugli attraversamenti)
- Altri possibili sviluppi sono considerare nuovi scenari (giorni/notte), abbandono auto, propagazione informazioni e la validazione.

EXTRA

Modelli Agent-based per Evacuazione da Tsunami

Modelli Network-based

 Modelli già usati per altri disastri (Imamura et al. 2001; Usuzawa et al. 1997)

Comportamento Umano

- Studio della reazione allo tsunami
- Questionari (Imamura et al. 2001; Saito e Kagami 2004)

Routing

- Altitudine (primi modelli)
- Percorso più breve (Katada, Kuwasawa, Kanai et al. 2004)
- Nash equilibrium (Lämmel e Flötteröd 2009)

Potenza di Calcolo

- Modelli grid-based
- Calcolo parallelo (Wijerathne et al. 2013; Makinoshima et al. 2018)

Conoscenza dell'Ambiente

- Fox agent, sheep agent (Nguyen et al. 2012)
- Residenti, visitatori (Takabatake et al. 2017)

Modelli Multimodali

- Auto e altri veicoli insieme ai pedoni
- Interazioni tra agenti (Goto et al. 2012; Mostafizi et al. 2017;
 Z. Wang e Jia 2021)

Parametri

General Motors:

- max speed: 55 km/h. Velocità massima
- safe distance: 1.8 m. Distanza minima tra le auto
- acceleration: 1.5 m/s². Accelerazione nel caso in cui non è presente un'auto davanti
- I: 2. Esponente di distanza
- m: 0. Esponente di velocità
- alpha: 0.36 km²/h. Coefficiente di sensitività

Casualty Model:

Hc: 0.5 m. Profondità critica alla quale l'agente viene considerato una vittima

Tempo di Preparazione:

- τ : 1 min. Tempo minimo per prepararsi prima di evacuare
- σ: 0.5. Fattore di scala per la distribuzione di Rayleigh

Parametri per il comportamento dei pedoni:

- search length: 4 m. Lunghezza della strada davanti al pedone per calcolare la densità
- jam density: 6 ped/m². Densità massima

Parametri per le dimensioni delle strade:

- side width: 1.5 m. Larghezza di un marciapiede
- lane width: 3.6 m. Larghezza di una corsia

Parametri per il comportamento dei pedoni:

- $\mu_{\rm p}$: 1.22 m/s. Velocità media $\sigma_{\rm p}$: 0.2. Deviazione standard della velocità
- side: lato del marciapiede all'inizio della simulazione

Parametri per la percentuale di auto e pedoni:

- R1_Evac_Foot: probabilità di un residente di evacuare a piedi.
- R2_Evac_Car: probabilità di un residente di evacuare in auto.

Comportamento Agenti (Shortest Path)

