Algorithmes de Newton stochastiques

A. Godichon-Baggioni

IDÉE

000

Algorithme de Newton stochastique

Modèle linéaire :

$$Y = \theta^T X + \epsilon$$

Gradient stochastique : Posons $H = \mathbb{E}\left[XX^T\right] = \begin{pmatrix} 10^2 & 0 \\ 0 & 10^{-2} \end{pmatrix}$.

$$\mathbb{E}\left[\theta_{n+1} - \theta\right] = \mathbb{E}\left[\theta_{n} - \theta\right] - \gamma_{n+1}\mathbb{E}\left[\nabla G\left(\theta_{n}\right)\right]$$

$$= (I_{d} - \gamma_{n+1}H)\mathbb{E}\left[\theta_{n} - \theta\right]$$

$$= \begin{pmatrix} 1 - \gamma_{n+1}10^{2} & 0\\ 0 & 1 - \gamma_{n+1}10^{-2} \end{pmatrix}\mathbb{E}\left[\theta_{n} - \theta\right]$$

Algorithme de Newton stochastique :

$$m_{n+1} = m_n - \frac{1}{n+1} \overline{H}_n^{-1} \nabla_h g(X_{n+1}, m_n)$$

Hypothèses sur \overline{H}_n :

Algorithme de Newton stochastique

000

- $ightharpoonup \overline{H}_{n}^{-1}$ est symétrique et définie positive.
- ▶ Il existe une filtration (\mathcal{F}_n) telle que
 - $ightharpoonup \overline{H}_n$ et m_n sont $\mathcal{F}_n = \sigma\left(X_1,\ldots,X_n\right)$ mesurables.
 - $ightharpoonup X_{n+1}$ est indépendant de \mathcal{F}_n .

Régression linéaire

CADRE

Algorithme de Newton stochastique

Hypothèses sur la fonction G:

(PS0") Il existe une constante C telle que

$$\forall h \in \mathbb{R}^d$$
, $\mathbb{E}\left[\left\|\nabla_h g\left(X,h\right)\right\|^2\right] \le C + C\left(G(h) - G(m)\right)$

(PS5) La Hessienne de G est uniformément bornée : il existe $L_{\nabla G}$ tel que

$$\forall h \in \mathbb{R}^d, \quad \|\nabla^2 G(h)\|_{op} \le L_{\nabla G}$$

- ▶ (PS5) $\Longrightarrow \nabla G(.)$ est $L_{\nabla G}$ Lipchitz.
- ► *G* fortement convexe + (**PS0**) \Longrightarrow (**PS0**").
- $ightharpoonup (PS0'') + (PS5) \Longrightarrow (PS0)$.

Hypothèse sur l'estimateur \overline{H}_n

(H1) On peut contrôler les valeurs propres de H_n :

$$\lambda_{\max} \left(\overline{H}_n \right) = O(1) \quad p.s$$

$$\lambda_{\max} \left(\overline{H}_n^{-1} \right) = O\left(n^{\beta} \right) \quad p.s$$

avec β < 1/2.

• (H1)
$$\Longrightarrow \liminf \lambda_{\min} \left(\overline{H}_n^{-1} \right) > 0 \text{ p.s.}$$

CONVERGENCE

Algorithme de Newton stochastique

Théorème

On suppose que les hypothèses (PS0"), (PS2), (PS5) et (H1) sont vérifiées. Alors

$$m_n \xrightarrow[n \to +\infty]{p.s.} m.$$

Nouvelle hypothèse sur \overline{H}_n

(H2) Si (PS0"), (PS2), (PS5) et (H1) sont vérifées, alors

$$\overline{H}_n \xrightarrow[n \to +\infty]{p.s} H$$
 et $\overline{H}_n^{-1} \xrightarrow[n \to +\infty]{p.s} H^{-1}$

VITESSE DE CONVERGENCE

Théorème

Algorithme de Newton stochastique

On suppose que les hypothèses (PS0") (PS2), (PS4), (PS5), (H1) et **(H2)** sont vérifiées. Alors, pour tout $\delta > 0$,

$$||m_n - m||^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right)$$
 p.s.

EFFICACITÉ ASYMPTOTIQUE

Algorithme de Newton stochastique

(H3) On suppose que les hypothèses (PS0") (PS2), (PS4), (PS5), **(H1)** et **(H2)** sont vérifiées, alors il existe $p_H > 0$ tel que

$$\|\overline{H}_n - H\|_{op} = O\left(\frac{1}{n^{p_H}}\right) \quad p.s$$

$$\|\overline{H}_n^{-1} - H^{-1}\|_{op} = O\left(\frac{1}{n^{p_H}}\right) \quad p.s$$

Avoir une vitesse pour m_n implique d'avoir une vitesse pour \overline{H}_n .

EFFICACITÉ ASYMPTOTIQUE

Théorème

On suppose que les hypothèses (PS0"), (PS2) à (PS5), et (H1) à (H3) sont vérifiées, alors

$$\sqrt{n} (m_n - m) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N} (0, H^{-1} \Sigma H^{-1})$$

avec
$$H = \nabla^2 G(m)$$
 et $\Sigma = \Sigma(m)$.

Régression linéaire

•000000000

Régression linéaire

UNE FORMULE MAGIQUE

Algorithme de Newton stochastique

Formule de Riccati: Soit $A \in \mathcal{M}_d(\mathbb{R})$ une matrice inversible et $u, v \in \mathbb{R}^d$. Si $1 + v^T A^{-1} u \neq 0$, alors $A + uv^T$ est inversible et

$$(A + uv^T)^{-1} = A^{-1} - (1 + v^T A^{-1}u)^{-1} A^{-1}uv^T A^{-1}.$$

Cas particulier: Soit A une matrice définie positive, pour tout $u \in \mathbb{R}^d$ et $\lambda > 0$, on a $1 + \lambda u^T A^{-1} u > 1$ et donc

$$(A + \lambda u u^{T}) = A^{-1} - \lambda (1 + \lambda u^{T} A^{-1} u)^{-1} A^{-1} u u^{T} A^{-1}.$$

L'ALGORITHME

Algorithme de Newton stochastique

Algorithme de Newton stochastique :

$$\theta_{n+1} = \theta_n + \frac{1}{n+1} \overline{H}_n^{-1} (Y_{n+1} - X_{n+1}^T \theta_n) X_{n+1}$$

$$H_{n+1}^{-1} = H_n^{-1} + (1 + X_{n+1}^T H_n^{-1} X_{n+1})^{-1} H_n^{-1} X_{n+1} X_{n+1}^T H_n^{-1}$$

avec H_0 positive et $\overline{H}_n = (n+1)H_n^{-1}$.

Réécriture de H_n :

$$\overline{H}_n = \frac{1}{n+1} \left(H_0 + \sum_{k=1}^n X_k X_k^T \right).$$

VITESSE DE CONVERGENCE

Théorème

Algorithme de Newton stochastique

On suppose qu'il existe $\eta > 0$ tel que X et ϵ admettent des moments d'ordre $4 + \eta$ et $2 + \eta$. Alors pour tout $\delta > 0$,

$$\|\theta_n - \theta\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) p.s. \quad et \quad \sqrt{n} \left(\theta_n - \theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, \sigma^2 H^{-1}\right)$$

SIMULATIONS

FIGURE – Evolution de l'erreur quadratique moyenne des estimateurs de gradient θ_n (SGD), de leur version moyennée $\overline{\theta}_n$ (ASGD) et des estimateurs de Newton stochastique $\tilde{\theta}_n$ (SN) en fonction de la taille de l'échantilon dans le cadre du modèle linéaire.

Tester H0 : $\theta = \theta_0$ "en ligne"

Réécriture du TLC: Sous H0,

Algorithme de Newton stochastique

$$\sqrt{n} \frac{\left(\theta_n - \theta_0\right)^T H \left(\theta_n - \theta_0\right)}{\sigma^2} \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Application: Soit \overline{H}_n et $\hat{\sigma}_n^2$ des estimateurs consistants. Alors

$$K_n := \sqrt{n} \frac{(\theta_n - \theta_0)^T \overline{H}_n (\theta_n - \theta_0)}{\hat{\sigma}_n^2} \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Construction de \overline{H}_n et σ_n^2

Ecriture directe:

Algorithme de Newton stochastique

$$\overline{H}_n = \frac{1}{n+1} \left(H_0 + \sum_{k=1}^n X_k X_k^T \right)$$
$$\hat{\sigma}_n^2 = \frac{1}{n+1} \sum_{k=1}^n \left(Y_k - X_k^T \theta_{k-1} \right)^2$$

Ecriture récursive :

$$\overline{H}_{n+1} = \overline{H}_n + \frac{1}{n+2} \left(X_{n+1} X_{n+1}^T - \overline{H}_n \right)
\hat{\sigma}_{n+1}^2 = \hat{\sigma}_n^2 + \frac{1}{n+2} \left(\left(Y_{n+1} - X_{n+1}^T \theta_n \right)^2 - \hat{\sigma}_n^2 \right)$$

SIMULATIONS

FIGURE – Comparaison des fonctions de répartition de C_n et K_n , pour n = 1000 (à gauche) et n = 5000 (à droite), et de la fonction de répartition d'une Chi 2 à 10 degrés de liberté dans le cadre du modèle linéaire.

Régression linéaire

000000000

TESTER $x_0^T \theta = x_0^T \theta_0$

Réécriture du TLC

$$\sqrt{n} \frac{x_0^T \theta_n - x_0^T \theta}{\sqrt{\sigma^2 x_0^T H^{-1} x_0}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,1\right).$$

Application: Sous H0,

$$\sqrt{n} \frac{x_0^T \theta_n - x_0^T \theta}{\sqrt{\hat{\sigma}_n^2 x_0^T \overline{H}^{-1} x_0}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,1\right).$$

SIMULATIONS

FIGURE – Comparaison de la densité de C_{e_1} , pour n = 1000 (à gauche) et n = 5000 (à droite), et de la densité d'une loi normal centrée réduite dans le cadre de la régression linéaire.

Algorithme de Newton stochastique

Régression linéaire

L'ALGORITHME

Algorithme de Newton stochastique:

$$\begin{split} &\alpha_{n+1} = \pi \left(\theta_n^T X_{n+1}\right) \left(1 - \pi \left(\theta_n^T X_{n+1}\right)\right) \\ &\theta_{n+1} = \theta_n + \frac{1}{n+1} \overline{H}_n^{-1} \left(Y_{n+1} - \pi \left(\theta_n^T X_{n+1}\right)\right) X_{n+1} \\ &H_{n+1}^{-1} = H_n^{-1} - \alpha_{n+1} \left(1 + \alpha_{n+1} X_{n+1}^T H_n^{-1} X_{n+1}\right)^{-1} H_n^{-1} X_{n+1} X_{n+1}^T H_n^{-1} \\ &\text{avec } H_0^{-1} \text{ symétrique et définie positive, } \overline{H}_n^{-1} = (n+1) H_n. \end{split}$$

Réécriture de \overline{H}_n :

$$\overline{H}_n = rac{1}{n+1} \left(H_0 + \sum_{k=1}^n \pi \left(heta_n^T X_{n+1}
ight) \left(1 - \pi \left(heta_n^T X_{n+1}
ight)
ight) X_k X_k^T
ight)$$

Algorithme de Newton stochastique

Algorithme de Newton stochastique tronqué:

$$\alpha_{n+1} = \pi \left(\theta_n^T X_{n+1}\right) \left(1 - \pi \left(\theta_n^T X_{n+1}\right)\right)$$

$$\theta_{n+1} = \theta_n + \frac{1}{n+1} \overline{H}_n^{-1} \left(Y_{n+1} - \pi \left(\theta_n^T X_{n+1}\right)\right) X_{n+1}$$

$$H_{n+1}^{-1} = H_n^{-1} - a_{n+1} \left(1 + a_{n+1} X_{n+1}^T H_n^{-1} X_{n+1}\right)^{-1} H_n^{-1} X_{n+1} X_{n+1}^T H_n^{-1}$$

$$\text{avec } a_{n+1} = \max \left\{\alpha_{n+1}, \frac{c_{\beta}}{(n+1)^{\beta}}\right\} \text{ avec } c_{\beta} > 0 \text{ et } \beta \in (0, 1/2)$$

Réécriture de \overline{H}_n :

$$\overline{H}_n = \frac{1}{n+1} \left(H_0 + \sum_{k=1}^n \max \left\{ \alpha_{k+1}, \frac{c_\beta}{(k+1)^\beta} \right\} X_k X_k^T \right)$$

VITESSE DE CONVERGENCE

Théorème

Algorithme de Newton stochastique

On suppose que X admet un moment d'ordre 4. Alors pour tout $\delta > 0$,

$$\|\theta_n - \theta\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) p.s. \quad et \quad \sqrt{n} \left(\theta_n - \theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, H^{-1}\right)$$

SIMULATIONS

FIGURE – Evolution de l'erreur quadratique moyenne des estimateurs de gradient (SGD), de leur version moyennée (ASGD) et des estimateurs de Newton stochastique (SN) en fonction de la taille de l'échantillon dans le cadre de la régression logistique.

Tester H0 : $\theta = \theta_0$ "en ligne"

Réécriture du TLC : Sous H0.

Algorithme de Newton stochastique

$$\sqrt{n} \left(\theta_n - \theta_0\right)^T H \left(\theta_n - \theta_0\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Application: Soit H_n un estimateur consistant de H. Alors

$$K_n := \sqrt{n} \left(\theta_n - \theta_0\right)^T \overline{H}_n \left(\theta_n - \theta_0\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Régression linéaire

SIMULATIONS

FIGURE – Comparaison de la fonction de répartition de K_n , pour n = 1000 (à gauche) et n = 5000 (à droite), et de la fonction de répartition d'une Chi 2 à 10 degrés de liberté.

Régression linéaire

Algorithme de Newton stochastique

Réécriture du TLC

$$\sqrt{n} \frac{x_0^T \theta_n - x_0^T \theta}{\sqrt{x_0^T H^{-1} x_0}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,1\right).$$

Application: Sous H0,

$$\sqrt{n} \frac{x_0^T \theta_n - x_0^T \theta}{\sqrt{x_0^T \overline{H}^{-1} x_0}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, 1\right).$$

SIMULATIONS

FIGURE – Comparaison de la densité de C_{e_1} , pour n = 1000 (à gauche) et n = 5000 (à droite), et de la densité d'une loi normal centrée réduite.

EXERCICE

Algorithme de Newton stochastique

On considère le cas de la régression linéaire

$$Y = X^T \theta + \epsilon$$

avec $\theta = (-2, -1, 0, 1, 2), X \sim \mathcal{N}(0, I_5)$ et $\epsilon \sim \mathcal{N}(0, 1)$. Sur un même graphique, tracer l'évolution de l'erreur quadratique moyenne de l'algorithme de gradient, de sa version moyennée et de l'algorithme de Newton stochastique.

- Faire de même mais en prenant $X \sim \mathcal{N}(0, D)$ avec $D = \operatorname{diag}(\sigma_i^2) \operatorname{et} \sigma_i^2 = \frac{i^2}{\epsilon^2}$.
- ► Faire de même pour la régression logistique avec $\theta = (-2, -1, 0, 1, 2)$ et $X \sim (U[0, 1])^{\otimes 5}$.