📊 Pandas Data Analysis: Used **Bikes Dataset**

Today, we explored the Pandas library using a real-world dataset: **Used_Bikes.csv**.

What is Pandas?

Pandas is a Python library used for working with structured data. It provides two primary data structures:

- DataFrame: Table-like structure
- Series : Single column

1. Importing Libraries and Reading Data

import pandas as pd df = pd.read_csv("Used_Bikes.csv")

2. Overview of the Dataset

df.info() **Output:**

Column	Non-Null Count	Dtype
bike_name	7324	object
price	7324	float64
city	7324	object
kms_driven	7324	float64
owner	7324	object
age	7324	float64
power	7324	float64
brand	7324	object

3. Removing Duplicates

df.duplicated().sum() # Output: 25324

```
df.drop_duplicates(inplace=True)
df.duplicated().sum()
# Output: 0
```


4. Descriptive Statistics

df.describe()

Metric	price	kms_driven	age	power
count	7324	7324	7324	7324
mean	84883.9	23910.5	6.66	228.13
std	120966.2	27317.6	3.61	158.32
min	4400	1	1	100
max	1900000	750000	63	1800

5. Viewing Data

df.head(5) df.tail(5)

📊 6. Columns, Data Types & Shape

```
df.columns # output- no. of columns in the table
df.dtypes # output- data types of the columns
df.shape # output- dimensions mentioning number of rows x number of
columns
```

Shape: (7324, 8) Data types:

- object (categorical): bike_name, city, owner, brand
- float64 (numerical): price, kms_driven, age, power

7. Value Counts and Uniques

df['owner'].value_counts()

Owner Type	Count
First Owner	6642
Second Owner	588
Third Owner	84
Fourth Owner Or More	10

8. Filtering Data

o Royal Enfield with specific filters

```
royal_df = df[(df['brand']=="Royal Enfield") &
              (df['kms_driven'] <= 30000) &</pre>
               (df['owner'] == "First Owner") &
              (df['price'] <= 100000)]
```

output--- list of bikes satisfying above conditions

Using .query() method:

df.query("brand=='Royal Enfield' and kms_driven==30000 and owner=='First Owner' and price<=100000")</pre>

9. Filter by Brand and Condition

TVS bikes with age < 1 and price ≤ 40000

```
tvs_df = df[df['brand'] == "TVS"]
tvs_age_df = tvs_df[tvs_df['age'] < 1]</pre>
tvs_price_df = tvs_df[tvs_df['price'] <= 40000]</pre>
```

10. Feature Selection

```
df['brand']
df['owner']
```

You can use square brackets to select a single or multiple columns.

Summary of Commands Used:

Command	Description
<pre>pd.read_csv()</pre>	Load data from CSV
df.info()	Basic info about DataFrame
<pre>df.describe()</pre>	Summary stats
<pre>df.head()/df.tail()</pre>	Preview first/last rows
df.columns / df.shape / df.dtypes	Metadata and structure
<pre>df['col'].value_counts()</pre>	Unique counts of a column

Command	Description
<pre>df.duplicated().sum()</pre>	Count duplicate rows
<pre>df.drop_duplicates(inplace=True)</pre>	Remove duplicates
<pre>df.query("condition")</pre>	Filter with readable syntax
<pre>df[(condition1) & (condition2)]</pre>	Boolean indexing for custom filtering

★ Final Thoughts

Mastering **Pandas** is the first big step in becoming a data scientist. You now have the skills to load, inspect, clean, filter, and explore datasets — which are critical in real-world analytics and ML projects.