Nota Didática 1

TDE

Carlos Alberto

Variações Nominais e Reais

- **1.** . Meu objetivo nesta Nota didática vai ser explicar os cálculos que envolvem variações reais e nominais.
- 2. Vamos começar falando sobre o objetivo de ter uma série com uma base simples, por exemplo, 100. O objetivo é simplesmente para visualizar melhor as variações e, secundariamente, fazer a leitura de um gráfico mais direta. Vejamos a seguinte tabela:

Tempo	PIB	PIB	
		Base = 100 em T _o	
0	1.450,84	100	
1	1.559,65	107,5	

Observemos que, na segunda coluna, está o PIB (nominal ou real, não importa agora). Se o leitor quer ver rapidamente qual foi o aumento em termos percentuais deve apelar para uma calculadora. Transformando em base 100 o valor em T_0 , rapidamente sabemos que o aumento foi de 7,5%. Ou seja, facilita a leitura.

3. Transformamos os valores da segundo coluna em um base mediante uma simples regra de três:

No caso da série ser mais longa ou se quiséssemos fazer a base no período T_1 no lugar do período T_0 a lógica seria a mesma. Façam como exercício a base=100 em T_1 . Para saber se o resultado está bem dividam o 100 de T_1 sobre o valor que encontraram em T_0 e a variação tem que ser 7.5%.

4. Vamos agora calcular a taxa média de variação de uma série em um dado intervalo de tempo, calculo que também parece que têm dificuldades. Observemos a seguinte tabela:

0	1.450	
1	1.595	
2	1.706,65	
3	1.740,78	
4	1.827,82	
5	1.900,93	
6	1.957,96	
7	2.075,44	
8	2.222,8	
9	2.267,25	

Uma possível pergunta é: qual é a taxa média de variação do PIB nesse período?

Uma vez que a variação é acumulativa (exponencial), o cálculo seria:

$$(PIB_9/PIB_0)^{1/9} = (2267,25/1450)^{1/9} = 1,0509 \longrightarrow 5,09\%$$
 de variação média

Dois aspectos a observar.

- a raiz é 9, não obstante serem 10 períodos (de 0 a 9 tem 10 períodos). Ou seja, sempre vamos ter n-1.
- a taxa média de variação significa que se, partindo de 1450, todos os anos o PIB aumenta em 5,09%, no período 9 teríamos 2.267,25.
- **5.** Vamos agora agregar uma complicação. Suponhamos que a tabela anterior diz respeito ao PIB nominal e nós queremos calcular a variação real, descontada a inflação. Assumamos que temos uma série sobre o Índice de Preços que vai ser nosso deflator.

Tempo	PIB Nominal	Índice de Preços	
0	1.450	415	
1	1.595	435	
2	1.706,65	453,18	
3	1.740,78	480,37	
4	1.827,82	506,79	
5	1.900,93	527,06	
6	1.957,96	558,69	
7	2.075,44	581,03	
8	2.222,8	610,09	
9	2.267,25	646,69	

5.1. No caso de querer calcular a inflação média do período aplicamos a mesma lógica que quando estimamos o aumento médio do PIB, uma vez que a variação de

preços (inflação) também segue uma dinâmica acumulativa. Assim, a inflação média do período vai ser:

[(Índice de Preços)₉/(Índice de Preços)₀] $^{1/9}$ = (646,09/415) $^{1/9}$ = 1,0505 \longrightarrow 5,05%

5.2. Temos, assim, que a variação média do PIB nominal foi de 5,09% e a variação média da inflação de 5,05%. Assim, a variação média do PIB real vai estar dada por:

5.3. Cuidado. A forma certa é (1+variação % da série nominal)/(1+variação % da inflação). Não é variação % da série nominal – variação % da inflação.

Quando os percentuais são muito pequenos o resultado é bem próximo. Quando os percentuais de variação são muito elevados o erro pode ser muito elevado. Vamos dar um exemplo.

Suponhamos que o salário nominal teve uma variação de 10% e a inflação foi de 5%. Se fazemos 10-5=5, concluímos que o salário real teve uma variação de 5%. Fazendo da forma correta teríamos:

(1+0,1)/(1+0,05)=1,476 ou seja 4,76%, bem próximo de 5%.

Imaginemos, agora, que a variação nominal do salário foi de 60% e a inflação de 30%. Se fazemos 60 – 30 o resultado vai ser 30. Se escolhemos a técnica correta:

(1,6)/(1,3) = 1,2308, ou seja, 23,08%, bem distante dos 30%

Resumindo: sempre temos que trabalhar (seja para deflacionar ou seja para "viajar" no tempo) usando 1+% e nunca fazer nominal-variação dos preços.

- 5.4. Cuidado: no exemplo que estamos analisando (tabela) não podemos calcular a variação dos preços (inflação) e a variação do PIB do período t0. Para isso teríamos que ter os valores do ano t-1.
- 6. Vamos agora calcular o PIB real (ou seja, o PIB nominal deflacionado pelo índice de preços) e estabelecer uma base aleatória, por exemplo, t_0 =100. Tem várias formas de fazer. Vou dar um exemplo, mas os que quiserem podem calcular utilizando outras formas que acharem mais convenientes.
- 6.1. A primeira alternativa, talvez a mais rápida e intuitiva, consiste em dividir o PIB nominal pelo Índice de Preços. (ver Tabela abaixo)

Tempo (1)	PIB Nominal (2)	Índice de Preços (3)	(2)/(3) (4)
0	1.450	415	3,493976
1	1.595	435	3,666667
2	1.706,65	453,18	3,765943
3	1.740,78	480,37	3,623832
4	1.827,82	506,79	3,606662
5	1.900,93	527,06	3,606667
6	1.957,96	558,69	3,504555
7	2.075,44	581,03	3,572001
8	2.222,8	610,09	3,643397
9	2.267,25	646,69	3,50593

Observemos que a coluna (4) da tabela tem os valores reais do PIB. Contudo é difícil perceber a magnitude (relativo ou %) da variação. Podemos, assim, determinar que a base seja 100 no período t_{0.} Temos que:

Tempo (1)	PIB Nominal (2)	Índice de Preços (3)	(1)/(3) (4)	Índice Base =100 em t₀ (5)
0	1.450	415	3,493976	100
1	1.595	435	3,666667	104,9425
2	1.706,65	453,18	3,765943	107,7839
3	1.740,78	480,37	3,623832	103,7166
4	1.827,82	506,79	3,606662	103,2251
5	1.900,93	527,06	3,606667	103,2253
6	1.957,96	558,69	3,504555	100,3028
7	2.075,44	581,03	3,572001	102,2331
8	2.222,8	610,09	3,643397	104,2765
9	2.267,25	646,69	3,50593	100,3421

Agora fica mais perceptíveis as variações. Por exemplo, o PIB real aumentou 4,9425% no período 1 (com respeito ao período 0).

Observemos que esse percentual de variação é igual ao cociente entre (1+% do PIB Nominal)/(1+variação dos preços). O PiB nominal variou 10%. Os preços 4,82%. Se fazemos (1,10/1,0482)=1,0494, que o valor de variação que estimamos na coluna (5). Se fizéssemos 10-4,82=5,18 seria uma aproximação um pouco ruim do verdadeiro valor. Mais uma vez fica evidente que temos que usar o cociente entre (1+% da magnitude nominal)/(1+% do deflator).

6.2. Vamos fazer várias brincadeiras para fixar técnicas que apresentamos em parágrafos anteriores.

- Qual é a variação média anual do PIB Real ? (100,342/100) $^{1/9}$ = 0,04%. Isso significa que, se todos os anos o PIB tivesse variado em 0,04%, partindo de 100 em t_0 teríamos 100,3421 em t_9 ;
- Qual foi a taxa de inflação do período ? 646,69/415=1,55829. Ou seja, a inflação acumulada foi de 55,829%.
 - Qual foi a variação acumulada do PIB nominal ?1450/2267,25= 1,56362, ou seja, 56362.
- Qual foi a variação acumulada do PIB Real ?1,5636/1,5636=1,00342, ou seja, 0,342%, que é o que encontramos na última linha da coluna (5).
- 7. Vamos passar a tempo contínuo.

Sabemos que em tempo discreto temos que:

$$y(1) = y_0(1+i)$$

y = Renda ou PIB; t=1 é o tempo 1 (zero o tempo anterior); i= a taxa de variação do período;

Generalizando:

$$y(t) = y_0(1+i)^t$$

Em tempo contínuo o equivalente à expressão anterior é:

$$y(t) = y_0 e^{it}$$

Vamos aplicar ln a essa função:

$$\ln y(t) = \ln y_0 + it$$

Sabemos que, se derivamos o logaritmo de uma função, o resultado é a taxa de crescimento. Ou seja,

$$\frac{dlny}{dt} = i$$

Percebam que ln y(t) = ln y₀ + it é uma função linear onde a inclinação é i, ou seja, a taxa de variação da função.

Isto é muito importante porque em um gráfico onde o eixo t seja o tempo (por exemplo) e o eixo y o ln de alguma função (um gráfico na escala semi-logaritmo) a inclinação da trajetória das magnitudes plotadas é a taxa de variação.

Por que os economistas (entre outros) gostam tanto de um gráfico semi-logaritmo ? Porque eles estão geralmente interessados nas taxas de variação e não nos valores absolutos. Nesse sentido, para visualizar melhor essa variação percentual é melhor trabalhar com In. A forma de olhar o gráfico é, neste caso, diferente. O relevante é a inclinação. Se a inclinação mudou significa que a taxa de crescimento mudou. Na aula vamos fazer exemplos para vocês internalizarem.

8. Em termos de crescimento temos que $(1+i)^t = e^{it}$. Em termos de queda a lógica é equivalente. Exemplo.

Temos um poço de petróleo cujo estoque (E) é de 18 milhões de barris. A taxa de extração é de 4%. A extração é um processo contínuo. Pergunta: qual será o estoque daqui a 6 anos ?

$$E(6) = 18 e^{-0.04(6)} = 14.16$$

9. Também tendo o ln dos valores absolutos podemos deduzir facilmente a taxa de variação. Lembremos que (para um período):

$$y(1)=y(0) e^{i}$$

Aplicando In:

$$\ln y(1) = \ln y(0) + i$$

Ou seja:

$$Ln y(1) - ln y(0) = i$$

Se temos os ln's de dois valores a diferença entre eles é, aproximadamente, a taxa de variação. Estamos falando de aproximadamente porque podemos encontrar uma diferença entre o tempo discreto e contínuo.

Vejamos no nosso exemplo. O PIB Nominal do período 0 é 1.450, do período de 1.595. Ou seja, a taxa de variação é de 10% (1595/1450=1,1). Tomemos In: ln (1450)= 7,279319; ln (1595)= 7,374629. Ln (1595)-ln (1450)= 7,374629-7,279319=0,09531. Próxima de 10%.