

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Lógica y Métodos Discretos

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán Arturo Olivares Martos

Índice general

1.	Rela	aciones de Problemas											5
	1.1.	Problemas de sesiones prácticas											5

1. Relaciones de Problemas

1.1. Problemas de sesiones prácticas

Ejercicio 1.1.1. Para todo $n \in \mathbb{N}$, demostrar que es cierta la siguiente igualdad:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Demostración. La demostración es por inducción según el principio de inducción matemática y predicado P(n) del contenido literal (tenor):

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=0}^{0} i = 0 = \frac{0}{2} = \frac{0 \cdot 1}{2} = \frac{0(0+1)}{2}$$

Por tanto, se tiene P(0).

■ Como hipótesis de inducción supondremos que $n \in \mathbb{N}$ y que P(n) ees cierto, es decir, que:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

y en el paso de inducción demostraremos que P(n+1) es cierto.

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) \stackrel{(*)}{=} \frac{n(n+1)}{2} + (n+1) =$$

$$= \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2}$$

donde en (*) he utilizado la hipótesis de inducción. Por tanto, P(n+1) es cierto.

Por el principio de inducción matemática, sabemos que para todo $n \in \mathbb{N}$, P(n) es cierto, por lo que se tiene lo que se pedía.

Ejercicio 1.1.2. Demustre que para todo número natural n:

$$\left(\sum_{k=0}^{n} k\right)^2 = \left(\sum_{k=0}^{n-1}\right)^2 + n^3$$

Demostración. En este caso, no se usa la demostración mediante inducción, sino la demostración por casos:

 $\bullet \ \underline{n=0}$:

$$\left(\sum_{n=0}^{0} k\right)^{2} = 0^{2} = 0 = 0 + 0 = \left(\sum_{k=0}^{-1} k\right)^{2} + 0^{3}$$

■ n = 1:

$$\left(\sum_{k=0}^{1} k\right)^{2} = 0 + 1 = \left(\sum_{k=0}^{0} k\right)^{2} + 1^{3} = \left(\sum_{k=0}^{n-1} k\right)^{2} + n^{3}$$

■ n > 1:

$$\left(\sum_{k=0}^{n} k\right)^{2} = \left[\left(\sum_{k=0}^{n-1} k\right) + n\right]^{2} = \left(\sum_{k=0}^{n-1} k\right)^{2} + n^{2} + 2\left(\sum_{k=0}^{n-1} k\right) n \stackrel{(*)}{=}$$

$$\stackrel{(*)}{=} \left(\sum_{k=0}^{n-1} k\right)^{2} + n^{2} + 2 \cdot \frac{(n-1)n}{2} \cdot n = \left(\sum_{k=0}^{n-1} k\right)^{2} + n^{2} + (n-1)n^{2} =$$

$$= \left(\sum_{k=0}^{n-1} k\right)^{2} + n^{2}(1+n-1) = \left(\sum_{k=0}^{n-1} k\right)^{2} + n^{3}$$

donde en (*) he utilizado el Ejercicio 1.1.1.

Ejercicio 1.1.3 (Teorema de Nicomachus). Demuestre que para todo número natural n vale la siguiente igualdad:

$$\sum_{k=0}^{n} k^{3} = \left(\sum_{k=0}^{n} k\right)^{2}$$

Demostración. La demostración es por inducción según el principio de inducción matemática y predicado P(n) del contenido literal (tenor):

$$\sum_{k=0}^{n} k^{3} = \left(\sum_{k=0}^{n} k\right)^{2}$$

■ En el caso base n = 0:

$$\sum_{k=0}^{0} k^3 = 0^3 = 0 = 0^2 = \left(\sum_{k=0}^{0} k\right)^2$$

Y por tanto, P(0) es correcto.

• Como hipótesis de inducción, supondremos que n es un número natural y que P(n) es cierto; es decir,

$$\sum_{k=0}^{n} k^{3} = \left(\sum_{k=0}^{n} k\right)^{2}$$

En el paso de inducción, demostraremos que P(n+1) se cumple.

$$\sum_{k=0}^{n+1} k^3 = \left(\sum_{k=0}^n k^3\right) + (n+1)^3 \stackrel{(*)}{=} \left(\sum_{k=0}^n k\right)^2 + (n+1)^3 \stackrel{(**)}{=} \left(\sum_{k=0}^{n+1} k\right)^2$$

donde en (*) he utilizado la hipótesis de inducción y en (**) he utilizado el Ejercicio 1.1.2. Por tanto, P(n+1) es cierto. Luego P(n+1) es cierto.

Por el principio de inducción matemática para todo número natural n, P(n) se tiene, como se pedía.

Observación. El segundo principio de inducción matemática se utiliza cuando, en vez de usar como hipótesis una verdad sobre n, se quiere usar una verdad sobre n-k con k>1, cuando estemos demostrado que el predicado vale para n+1.

Veamos un ejemplo de uso del segundo principio de inducción matemática.

Ejercicio 1.1.4. Todo número natural mayor que 1 tiene al menos un factor primo.

Demostración. El razonamiento es por el segundo principio de inducción según el predicado (o fórmula) P(n) del tenor:

"n tiene un factor primo"

donde $n \in \omega \setminus \{0,1\}$ (tenemos que $i_0 = 2$).

Como hipótesis de inducción, supongamos que n es un número natural superior a 1 y que P(k) vale para todo 1 < k < n.

En el paso de inducción distinguimos dos casos:

\blacksquare *n* es primo:

En este caso, n es un factor primo de n (note que 2 es un ejemplo de los números en este caso).

no es primo: Si n no es primo, existen números naturales u y v tales que n = uv y 1 < u, v. Claro está entonces, que 1 < u, v < n.

Por la hipótesis de inducción, P(u) vale, luego u tendrá al menos un factor primo, al que podemos llamar p. Así pues, $p \mid u$ y por tanto:

$$p \mid n$$

Luego P(n) vale y por el segundo principio de inducción, para todo número natural n vale P(n).

Notemos que siempre tiene que ocurrir que el caso base (i_0) esté incluido en uno de los casos, por eso lo hemos destacado anteriormente con $i_0 = 2$.

Ejercicio 1.1.5 (Multiplicación por el Método del Campesino Ruso). Sea p la función dada por:

$$p(a,0) = 0,$$

$$p(a,b) = \begin{cases} p\left(2a, \frac{b}{2}\right) & \text{si } b \text{ es par,} \\ p\left(2a, \frac{b-1}{2}\right) + a & \text{si } b \text{ es impar,} \end{cases}$$

Demuestre por inducción que para cualesquiera números naturales a y b, p(a, b) = ab.

Demostración. La demostración es por inducción según el segundo principio de inducción y el predicado del tenor:

"Para todo número natural m, p(m, n) = mn."

Supongamos como hipótesis de inducción que k es un número natural y que P(k) vale para todo $0 \le k < n$. Distinguimos los siguientes casos:

• $\underline{n=0}$, (sea cual sea \underline{m}):

$$p(m,0) = 0 = m \cdot 0$$

Luego P(0) vale.

- En el paso de inducción, demostraremos que P(n) vale:
- \blacksquare Suponemos aquí que n>0. Caben dos casos:
 - 1. $n \equiv 0 \mod 2$ (es par):

$$p(m,n) = p\left(2m, \frac{n}{2}\right) \stackrel{(*)}{=} 2m \cdot \frac{n}{2} = mn$$

Donde en (*) he usado la hipótesis de inducción, ya que $\frac{n}{2} < n$.

2. $\underline{n} \equiv 1 \mod 2$ (es impar):

$$p(m,n) = p\left(2m, \frac{n-1}{2}\right) + m \stackrel{(*)}{=} \left(2m \cdot \frac{n-1}{2}\right) + m =$$
$$= m(n-1) + m = mn - m + m = mn$$

donde en (*) he usado la hipótesis de inducción, ya que $\frac{n-1}{2} < n$.

Por el segundo principio de inducción, para todo número natural n, vale P(n). \square

Ejercicio 1.1.6. Para todo número natural n no nulo, demostrar que:

$$2 \mid (5^n + 3^{n-1})$$

Demostración. La demostración es por inducción según el principio de inducción matemática y el predicado P(n) del tenor:

"2 |
$$(5^n + 3^{n-1})$$
"

• En el caso base, n = 1:

$$5^1 + 3^{1-1} = 5 + 1 = 6$$

Como $2 \mid 6, P(1)$ es cierto.

• Como hipótesis de inducción, supondremos que n es un número natural no nulo y que P(n) es cierto, es decir, que:

$$2 \mid (5^n + 3^{n-1})$$

En el paso de inducción, demostraremos que P(n+1) es cierto.

Para demostrarlo, antes tenemos en cuenta que, dados $a, b, n \in \mathbb{Z}$, se tiene que:

$$\left. \begin{array}{l} n \mid (a-b) \\ n \mid b \end{array} \right\} \Longrightarrow n \mid a$$

Esto se debe a que:

$$n \cdot k = a - b = a - nk_1 \Longrightarrow a = n(k + k_1) = n \cdot k_2 \Longrightarrow n \mid a$$

Por tanto, haciendo uso de esto, tenemos que:

$$(5^{n+1} + 3^{(n+1)-1}) - (5^n + 3^{n-1}) = 4 \cdot 5^n + 3^{n-1} \cdot 2 =$$
$$= 2 \cdot (2 \cdot 5^n + 3^{n-1})$$

Como $2 \mid (5^{n+1} + 3^{(n+1)-1} - (5^n + 3^{n-1}))$ y, por hipótesis de inducción, se tiene que $2 \mid 5^n + 3^{n-1}$, hemos visto que $2 \mid 5^{n+1} + 3^{(n+1)-1}$. Por tanto, P(n+1) es cierto.

Por tanto, por el principio de inducción matemática, para todo número natural n no nulo, se tiene que $2 \mid (5^n + 3^{n-1})$.

Ejercicio 1.1.7. Para todo número natural n no nulo, demostrar que:

$$8 \mid (5^n + 2 \cdot 3^{n-1} + 1)$$

Demostración. La demostración es por inducción según el principio de inducción matemática y el predicado P(n) del tenor:

"8 |
$$(5^n + 2 \cdot 3^{n-1} + 1)$$
"

• En el caso base, n=1:

$$5^1 + 2 \cdot 3^{1-1} + 1 = 5 + 2 + 1 = 8$$

Como $8 \mid 8, P(1)$ es cierto.

• Como hipótesis de inducción, supondremos que n es un número natural no nulo y que P(n) es cierto, es decir, que:

$$8 \mid (5^n + 2 \cdot 3^{n-1} + 1)$$

En el paso de inducción, demostraremos que P(n+1) es cierto.

Para demostrarlo, antes tenemos en cuenta que, dados $a, b, n \in \mathbb{Z}$, se tiene que:

$$\left. \begin{array}{c} n \mid (a-b) \\ n \mid b \end{array} \right\} \Longrightarrow n \mid a$$

Esto se debe a que:

$$n \cdot k = a - b = a - nk_1 \Longrightarrow a = n(k + k_1) = n \cdot k_2 \Longrightarrow n \mid a$$

Por tanto, haciendo uso de esto, tenemos que:

$$(5^{n+1} + 2 \cdot 3^{(n+1)-1} + 1) - (5^n + 2 \cdot 3^{n-1} + 1) =$$

$$= 5^n \cdot 5 + 2 \cdot 3^n + \cancel{1} - 5^n - 2 \cdot 3^{n-1} - \cancel{1} =$$

$$= 5^n (5 - 1) + 2 \cdot 3^{n-1} (3 - 1) =$$

$$= 4 \cdot 5^n + 2 \cdot 3^{n-1} \cdot 2 =$$

$$= 4 (5^n + 3^{n-1}) \stackrel{(*)}{=} 4 \cdot 2k = 8k$$

donde en (*) he usado que el Ejercicio 1.1.6. Por tanto, como hemos visto que 8 | $[(5^{n+1}+2\cdot 3^{(n+1)-1}+1)-(5^n+2\cdot 3^{n-1}+1)]$ y, por hipótesis de inducción, 8 | $5^n+2\cdot 3^{n-1}+1$, se tiene que 8 | $5^{n+1}+2\cdot 3^{(n+1)-1}+1$. Por tanto, P(n+1) es cierto.

Por tanto, por el principio de inducción matemática, para todo número natural n no nulo, se tiene que $8 \mid (5^n + 2 \cdot 3^{n-1} + 1)$, como se pedía.

Ejercicio 1.1.8. Demouestre que para todo número natural n no nulo, se tiene que:

$$\prod_{k=1}^{n} \frac{2k-1}{2k} \leqslant \frac{1}{\sqrt{n+1}}$$

Demostración. La demostración es por inducción según el principio de inducción matemática y el predicado P(n) del tenor:

$$"\prod_{k=1}^{n} \frac{2k-1}{2k} \leqslant \frac{1}{\sqrt{n+1}}"$$

• En el caso base, n=1:

$$\prod_{k=1}^{1} \frac{2k-1}{2k} = \frac{1}{2} \leqslant \frac{1}{\sqrt{2}} \iff 2 \geqslant \sqrt{2}$$

Como $2 \geqslant \sqrt{2}$, P(1) es cierto.

• Como hipótesis de inducción, supondremos que n es un número natural no nulo y que P(n) es cierto, es decir, que:

$$\prod_{k=1}^{n} \frac{2k-1}{2k} \leqslant \frac{1}{\sqrt{n+1}}$$

En el paso de inducción, demostraremos que P(n+1) es cierto. Tenemos que:

$$\prod_{k=1}^{n+1} \frac{2k-1}{2k} = \left(\prod_{k=1}^{n} \frac{2k-1}{2k}\right) \cdot \frac{2(n+1)-1}{2(n+1)} \stackrel{(*)}{\leqslant} \frac{1}{\sqrt{n+1}} \cdot \frac{2(n+1)-1}{2(n+1)} = \frac{1}{\sqrt{n+1}} \cdot \frac{2n+1}{2(n+1)}$$

donde en (*) hemos utilizado la hipótesis de inducción. Veamos ahora que P(n+1) se tiene:

$$\frac{1}{\sqrt{n+1}} \cdot \frac{2n+1}{2(n+1)} \leqslant \frac{1}{\sqrt{n+2}} \Longleftrightarrow \frac{2n+1}{2(n+1)} \leqslant \frac{\sqrt{n+1}}{\sqrt{n+2}} \Longleftrightarrow$$

$$\iff \frac{2n+1}{2n+2} \leqslant \sqrt{\frac{n+1}{n+2}} \Longleftrightarrow \frac{(2n+1)^2}{(2n+2)^2} \leqslant \frac{n+1}{n+2} \Longleftrightarrow$$

$$\iff (2n+1)^2 (n+2) \leqslant (2n+2)^2 (n+1) \Longleftrightarrow$$

$$\iff (n+2)(4n^2+4n+1) \leqslant (n+1)(4n^2+8n+4) \Longleftrightarrow$$

$$\iff 4n^3 + 4n^2 + n + 8n^2 + 8n + 2 \leqslant 4n^3 + 8n^2 + 4n + 4n^2 + 8n + 4 \Longleftrightarrow$$

$$\iff 2+n \leqslant 4+4n \Longleftrightarrow 0 \leqslant 2+3n$$

Como $0 \le 2 + 3n$, P(n+1) es cierto.

Por tanto, por el principio de inducción matemática, para todo número natural n, P(n) es cierto, como se pedía.

Ejercicio 1.1.9. Demuestra que, para todo número natural n mayor que 2, se tiene que:

$$(n+1)^2 < n^3$$

Demostración. La demostración es por inducción según el principio de inducción matemática y el predicado P(n) del tenor:

"
$$(n+1)^2 < n^3$$
"

• En el caso base, n=3:

$$(3+1)^2 = 16 < 27 = 3^3$$

Como 16 < 27, P(3) es cierto.

• Como hipótesis de inducción, supondremos que n es un número natural mayor que n que n

$$(n+1)^2 < n^3$$

En el paso de inducción, demostraremos que P(n+1) es cierto. Tenemos que:

$$(n+1+1)^2 = (n+1)^2 + 2(n+1) + 1 \stackrel{(*)}{\leqslant}$$

$$\stackrel{(*)}{\leqslant} n^3 + 2n + 1 \leqslant n^3 + 3n^2 + 3n + 1 = (n+1)^3$$

donde en (*) he utilizado la hipótesis de inducción. Por tanto, P(n+1) es cierto.

Por tanto, por el principio de inducción matemática, para todo número natural n mayor que 2, se tiene que $(n+1)^2 < n^3$, como se pedía.

Ejercicio 1.1.10. Demuestre que para todo número natural n superior a 5, se tiene que $n^3 < n!$.

Demostración. La demostración es por inducción según el principio de inducción matemática y el predicado P(n) del tenor:

"
$$n^3 < n!$$
"

• En el caso base, n = 6:

$$6^3 \leqslant 6! \iff 6^2 \leqslant 5! = 2 \cdot 3 \cdot 4 \cdot 5 \iff 6 \leqslant 4 \cdot 5$$

Como 6 < 20, P(6) es cierto.

• Como hipótesis de inducción, supondremos que n es un número natural superior a 5 y que P(n) es cierto, es decir, que:

$$n^3 < n!$$

En el paso de inducción, demostraremos que P(n+1) es cierto. Tenemos que:

$$(n+1)^3 = (n+1)^2(n+1) \stackrel{(*)}{<} n^3(n+1) \stackrel{(**)}{<} n!(n+1) = (n+1)!$$

donde en (*) he utilizado el Ejercicio 1.1.9 y en (**) he empleado la hipótesis de inducción. Por tanto, P(n+1) es cierto.

Por tanto, por el principio de inducción matemática, para todo número natural n superior a 5, se tiene que $n^3 < n!$, como se pedía.

Ejercicio 1.1.11. Demuestre que, para todo número natural n, $8^n - 3^n$ es múltiplo de 5.

Demostración. La demostración es por inducción según el principio de inducción matemática y el predicado P(n) del tenor:

"5 |
$$8^n - 3^n$$
"

• En el caso base, n = 0:

$$8^0 - 3^0 = 1 - 1 = 0$$

Como $5 \mid 0, P(0)$ es cierto.

• Como hipótesis de inducción, supondremos que n es un número natural y que P(n) es cierto, es decir, que:

$$5 | 8^n - 3^n$$

En el paso de inducción, demostraremos que P(n+1) es cierto. Tenemos que:

$$8^{n+1} - 3^{n+1} - 8^n + 3^n = 8^n \cdot (8-1) - 3^n \cdot (3-1) = 7 \cdot 8^n - 2 \cdot 3^n =$$

$$= 5 \cdot 8^n + 2 \cdot 8^n - 2 \cdot 3^n = 5 \cdot 8^n + 2 \cdot (8^n - 3^n) \stackrel{(*)}{=}$$

$$\stackrel{(*)}{=} 5 \cdot 8^n + 2 \cdot 5k = 5(8^n + 2k)$$

donde en (*) he utilizado la hipótesis de inducción. Como por hipótesis de inducción se tiene también que $5 \mid 8^n - 3^n$, se tiene que $5 \mid 8^{n+1} - 3^{n+1}$. Por tanto, P(n+1) es cierto.

Por tanto, por el principio de inducción matemática, para todo número natural n, $8^n - 3^n$ es múltiplo de 5, como se pedía.

Veamos ahora un ejemplo de uso del principio del buen orden de los números naturales.

Ejercicio 1.1.12. Demuestra que, para cualesquiera números naturales a y b, existe un mínimo común múltiplo de ellos.

Demostración. Distinguimos casos según el valor de a y b:

a = 0 o b = 0:

Tenemos que 0 es un múltiplo común de a y de b. Además, es el mínimo múltiplo común de a y b, ya que cualquier otro múltiplo común de a y de b es mayor que 0.

■ a, b > 0:

Sea $M_{a,b}$ el conjunto de los múltiplos comunes de a y de b. Es claro que $0 \in M_{a,b}$, ya que 0 es múltiplo de cualquier número natural. Además, tenemos que $ab \in M_{a,b}$, ya que ab es múltiplo de a y de b. Como a,b>0, se tiene que ab>0. Consideramos ahora el siguiente conjunto:

$$v_{a,b} = M_{a,b} \setminus \{0\} \subsetneq M_{a,b} \subset \mathbb{N}$$

Como hemos visto, $v_{a,b}$ es un subconjunto no vacío de \mathbb{N} , por lo que, por el principio del buen orden de los números naturales, $v_{a,b}$ tiene un mínimo, al que llamaremos $m_{a,b}$. Así pues, $m_{a,b}$ es el mínimo común múltiplo de a y de b.

Ejercicio 1.1.13. Estime un valor de n para el que

$$100^n < n!$$

Ejercicio 1.1.14 (Ejemplo de principio del buen orden). Sea n un número natural y sea S un conjunto de números naturales menores que n. Demuestre que S es vacío o tiene máximo.

Demostración. Sea S un conjunto en las condiciones del enunciado y supongamos que S es no vacío. Pueden darse dos casos

- 1. $S = \{0\}$; en este caso, S tiene máximo y es 0.
- 2. $S \setminus \{0\} \neq \emptyset$ (o que S tiene elementos distintos de 0); en este caso, sea

$$M(S) = \{ m \in \omega \mid \text{ para todo } x \in S, x \leqslant m \}$$

Se cumple lo siguiente:

- $n \in M(S)$
- $M(S) \neq \emptyset$
- Por el principio del buen orden, existe el mínimo de M(S), denotado como m_0 .
- $m_0 \neq 0$, porque m_0 es un mayorante de $S \setminus \{0\}$ que es no vacío.
- ullet Si para todo $x \in S$ se cumpliera que

$$x < m_0$$

entonces, para todo $x \in S$ se cumpliría que

$$x \leqslant m_0 - 1$$

y por tanto $m_0 - 1 \in M(S)$ y además

$$0 \leqslant m_0 - 1 < m_0$$

de donde m_0 no sería el mínimo de M(S), en contra de lo supuesto.

• Existe $x_0 \in S$ tal que

$$m_0 \leqslant x_0$$

• Como m_0 es un un mayorante de S se cumplirá que

$$x_0 \leqslant m_0$$

- Por las dos desigualdados anteriores, $m_0 = x_0$
- $m_0 \in S \cap M(S)$
- \blacksquare El mínimo de M(S) es un elemento de S, luego es el máximo de S.

Ejercicio 1.1.15. Demuestre mediante inducción que para todo número natural n tal que $2 \le n$ se cumple:

$$\sqrt{n} < \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

Demostración. A continuación, daremos las ideas de la demostración para que el lector termine el desarrollo de la misma.

El razonamiento es por el principio de inducción matemática

$$P(n) \text{ es "} 2 \leqslant n \text{ y } \sqrt{n} < \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$
"

• Caso base: n=2

$$1 < 2 \Rightarrow 1 = \sqrt{1} < \sqrt{2}$$

$$\Rightarrow 2 = 1 + 1 < \sqrt{2} + 1$$

$$\Rightarrow (\sqrt{2})^2 < \sqrt{2} + 1$$

$$\Rightarrow \sqrt{2} < \frac{\sqrt{2} + 1}{\sqrt{2}}$$

$$\frac{\sqrt{2} + 1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$

$$= 1 + \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}}$$

$$= \sum_{k=1}^{2} \frac{1}{\sqrt{k}}$$

Luego P(2) es cierto.

• Hipótesis de inducción: supongamos que $n \in \omega$ y que vale P(n), es decir

$$2 \leqslant n \text{ y } \sqrt{n} < \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

paso de inducción:

$$n = (\sqrt{n})^2 = \sqrt{n}\sqrt{n} < \sqrt{n}\sqrt{n+1}$$

Entonces:

$$n+1 < \sqrt{n}\sqrt{n+1} + 1$$

$$(\sqrt{n+1})^2 < \sqrt{n}\sqrt{n+1} + 1$$

$$\sqrt{n+1} < \frac{\sqrt{n}\sqrt{n+1}}{\sqrt{n+1}} + \frac{1}{\sqrt{n+1}}$$

$$= \sqrt{n} + \frac{1}{\sqrt{n+1}}$$

$$< \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right) + \frac{1}{\sqrt{n+1}}$$

$$= \sum_{k=1}^{n+1} \frac{1}{\sqrt{n+1}}$$

Luego P(n+1) vale.

Por el principio de inducción matemática, para todo $n \in \omega$ con $n \leq 2$, P(n) vale.