Histogram skewness and kurtosis find values from dataset:

	sl_no	ssc_p	hsc_p	degree_p	etest_P	mba_p	salary
Skew	0.0	-0.132649	0.162611	0.204164	0.282308	0.313576	0.8067
Kurtosis	-1.2	-0.60751	0.086901	-0.09749	-1.08858	-0.470723	-0.239837

Skewness:

Peak represented in dataset then it called as skewness.

Types of skewness:-

- Positive -- > if mode value is high then it is positive -- >mode<median<mean
- 2. Normal -- >if centre value is equal to all then it is normal mean=median=mode
- 3. Negative -->if peak is right shows then it is negative >mean<median<mode
- 4. Values are:
 - 0.0->normal
 - -0.132-- >Negative
 - 0.16,0.20,0.28,0.31,0.80--> Positive
 - In this problem statement all three types of skewness is present.

Kurtosis:

- In this measure of peakness or distance between peak calculated called kurtosis
- Types of kurtosis:-
- If <3--> platykurtic
- If=3-- > mesokurtic
- If>3 -->loptokurtic

Values are: --> -1.2,-0.6,0.8,-0.09,-1.08,-0.47,-0.23--> platykurtic

Then the all values are less then 3 so its platykurtic.