Лекция 4. Полевые транзисторы

Полевым транзистором называют полупроводниковый электропреобразовательный прибор, ток которого управляется электрическим полем и который предназначен для усиления электрической мощности.

В полевых, или униполярных транзисторах в отличие от биполярных ток определяется движением только основных носителей заряда одного типа — электронов или дырок.

Носители заряда перемещаются по каналу от электрода, называемого **истоком** (И) к электроду, называемому **стоком** (С). С помощью третьего электрода — **затвора** (З) создается поперечное направлению движения носителей заряда управляющее электрическое поле, позволяющее регулировать электрическую проводимость канала, а следовательно, и ток в канале.

Полевые транзисторы изготавливают из кремния и в зависимости от электропроводимости исходного материала подразделяют на транзисторы с р-каналом и n-каналом.

По типу управления током канала полевые транзисторы подразделяются на два вида: **с управляющим p-n-переходом и с изолированным затвором**. На рис. 4.1. приведены графические обозначения этих полевых транзисторов.

Рис. 4.1. Обозначения полевых транзисторов n и p типов проводимости: a, б – c управляющим p-n-переходом; в, г – c изолированным затвором, где C – сток, 3 – затвор, И – исток, П – подложка.

Структура и схема включения полевого транзистора с п-каналом и управляющим p-n-переходом показаны на рис. 4.2.

Рис. 4.2. Структура (а) и схема включения (б) полевого транзистора с затвором в виде p-n-перехода и каналом n-типа: 1,2 — области канала Δ и p-n-переходов.

В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала 1 шириной Δ от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока I_C . Между затвором и истоком приложено обратное напряжение, запирающее p-n-переход 2, образованный n-областью канала и p-областью затвора. Таким затвором, в полевом транзисторе с n-каналом полярности приложенных напряжений следующие: $U_{CU}>0$, $U_{3u}\leq0$. В транзисторе с p-каналом основными носителями заряда являются дырки, которые движутся в направлении снижения потенциала, поэтому полярности приложенных напряжений должны быть иными: $U_{CU}<0$, $U_{3u}\geq0$.

При изменении электрического потенциала на затворе меняется ширина p-n переходов 2, что приводит к изменению ширины Δ канала 1. Последнее меняет количество электронов (дырок), движущихся через сечение канала, и соответственно – ток стока $I_{\rm C}$.

ВАХ полевого транзистора приведены на рис. 4.3. Здесь зависимости тока стока I_C от напряжения U_{CU} при постоянном напряжении на затворе U_{3U} определяют выходные, или стоковые, характеристики полевого транзистора (см. рис. 1.17,а). На начальном участке характеристик, $U_{CU}+|U_{3U}|< U_{3A\Pi}$ ток I_C возрастает с увеличением U_{CU} . При повышении напряжения сток-исток до $U_{CU}=U_{3A\Pi}-|U_{3U}|$ происходит перекрытие канала и дальнейший рост тока I_C прекращается (участок насыщения). Отрицательное напряжение U_{3U} между затвором и истоком приводит к меньшим значениям напряжения U_{CU} и тока I_C , при которых происходит перекрытие канала. Область насыщения справа от пунктирной линии является рабочей областью выходных характеристик полевого транзистора.

Дальнейшее увеличение напряжения U_{CM} приводит к пробою

р-п-перехода между затвором и каналом и выводит транзистор из строя. По выходным характеристикам может быть построена передаточная характеристика $I_C=f(U_{3U})$ (рис.4.3,б). На участке насыщения она практически не зависит от напряжения U_{CU} . Входная характеристика полевого транзистора — зависимость тока утечки затвора I_3 от напряжения затвор — исток — обычно не используется, так как при $U_{3U} \le 0$ p-n-переход между затвором и каналом закрыт и ток затвора очень мал ($I_3 = 10^{-8} \div 10^{-9}$ A), поэтому во многих случаях им можно пренебречь.

Рис. 4.3. Выходные (а) и передаточная (б) вольт-амперные характеристики полевого транзистора

В настоящее время широкое распространение получили полевые транзисторы, в которых металлический затвор изолирован от полупроводника слоем диэлектрика. Такие транзисторы называют **МДП-транзисторами** (металл – диэлектрик – полупроводник) или **МОП-транзисторами** (металл – оксид – полупроводник). В последнем случае под оксидом понимают оксид кремния, который является высококачественным диэлектриком. Их входное сопротивление достигает 10^{15} Ом, т.е. ток затвора на несколько порядков ниже тока полевых транзисторов с управляющим p-n-переходом.

BAX полевых транзисторов с изолированным затвором в основном аналогичны характеристикам полевых транзисторов с управляющим p-n-переходом.

Основными параметрами полевых транзисторов являются крутизна характеристики передачи

$$S = \frac{dI_C}{dI_{3H}}$$
 при $U_{CH} = const$

и дифференциальное (внутренние) сопротивление стока (канала) на участке насыщения

$$R_i = \frac{dU_{CU}}{dI_C}$$
 при $U_{3U} = const$

В качестве предельно допустимых параметров нормируются: максимально допустимые напряжения $U_{\text{СИмакс}}$ и $U_{\text{3Имакс}}$; максимально допустимая мощность стока $P_{\text{Смакс}}$; максимально допустимый ток стока $I_{\text{Смакс}}$. Значения параметров полевых транзисторов приведены в табл. 1.3.

Таблица 4.2. Значения параметров полевых транзисторов

Тип транзистора	Ѕ,мА/В	Ri,МОм	U _{СИмакс} ,В	Р _{Смакс} ,Вт	Ісмакс, мА	I ₃ ,A
С управляющим	1-20	0,1-0,5	5-100	0,1-10	10-1000	10-8-
р-п-переходом						10^{-9}
С изолированным	0,5-50	0,1-0,5	5-1000	0,01-50	0,1-5000	10 ⁻¹⁰ -
затвором						10^{-15}
_						

Межэлектродные емкости полевых транзисторов между затвором и стоком C_{3C} , а также затвором и истоки C_{3N} , обычно не превышают $1 \div 20 \pi \Phi$.

Основными преимуществами полевых транзисторов являются:

- 1) высокое входное сопротивление;
- 2) малый уровень собственных шумов в измерительных схемах;
- 3) высокая плотность распространения элементов при изготовлении интегральных схем

К недостаткам полевых транзисторов следует отнести сравнительно большие межэлектродные емкости.

Тиристоры.

Тиристоры — это полупроводниковые приборы с тремя или более p-n-переходами, которые имеют два устойчивых состояния и применяются как мощные электродные ключи.

Тиристоры имеют два вывода от крайних чередующихся р- и n- областей и управляющий электрод (рис. 4.4,а).

Вывод, соединенный с крайней p-областью, называется анодом (A), а с крайней n-областью катодом (K). Внешнее напряжение U является прямым по отношению к p-n-переходам Π_1 и Π_3 и обратным для перехода Π_2 , поэтому переходы Π_1 и Π_3 открыты (подобно открытым диодам), а переход Π_2 заперт. В результате напряжение U почти целиком приложено к Π_2 и через тиристор протекает небольшой ток, являющийся обратным током I_0 p-n-перехода.

С увеличением напряжения U ток через тиристор несколько возрастает (Участок OB характеристики 1.18 в), а при достижении напряжением значения $U_{\rm BKЛ}$ p-n-переход Π_2 пробивается (электрический пробой) и ток лавинообразно увеличивается (участок BCD рис. 1.18 в) и ограничивается только

сопротивлением нагрузки. Изменяя величину тока управляющего электрода I_{y} меняю величину напряжения включения U_{BKJ} тиристора.

Рис.4.4. Тиристор: (а) структура; (б) условное обозначение; (в) вольт-амперные характеристики; (г) условное обозначение динистора

Тиристоры нашли свое применение в силовой электронике и электротехнике — там, где требуется формирование мощных питающих напряжений постоянного или переменного тока, питающих напряжений с регулируемой частотой, специальной формы. В частности, на основе тиристоров разрабатываются устройства регулирования частотой вращения электродвигателей, в том числе в приводах станков.