Feuille d'exercice n° 03 : Intégrales généralisées

I. Révision de 1ère année

Exercice 1 Soit $f:[0,\pi]\to\mathbb{R}$ continue.

- 1) Montrer que si $\int_0^{\pi} f(t) \sin t \, dt = 0$ alors il existe $a \in]0, \pi[$ tel que f
- 2) Montrer que si $\int_0^{\pi} f(t) \sin t \, dt = \int_0^{\pi} f(t) \cos t \, dt = 0$ alors f s'annule (indice: on pour regarder $\int_0^{\pi} f(t) \sin(t-a) dt$).

Exercice 2 (\(\bigs\) [Irrationalité du nombre π]

- 1) Pour $a,b \in \mathbb{N}^*$, montrer que la fonction polynomiale $P_n(x) =$ $\frac{1}{n!}x^n(bx-a)^n$ et ses dérivées successives prennent en 0 et en $\frac{a}{b}$ des valeurs entières.
- 2) Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{\pi} P_n(t) \sin t \, dt$. Montrer que $I_n \to 0$.
- 3) En supposant $\pi = \frac{a}{h}$, montrer que $I_n \in \mathbb{Z}$. Conclure.

Exercice 3 Soit $(a, b) \in \mathbb{R}^2$, a < b.

- 1) Trouver toutes les fonctions f, continues sur [a, b] et à valeurs réelles telles que $\left| \int_{a}^{b} f(t) dt \right| = \int_{a}^{b} |f(t)| dt$.
- 2) Même question pour des fonctions à valeurs complexes.

Exercice 4 () Déterminer les primitives suivantes :

- 1) $\int \frac{\ln t}{t} dt$ 3) $\int \frac{t}{1+t^4} dt$ 6) $\int \cos^3 t dt$

- 4) $\int \tan t \, dt$ 7) $\int \cos^2 t \sin^3 t \, dt$.
- 2) $\int \frac{t^2}{1 + t^3} dt$
 - 5) $\int \frac{\mathrm{d}t}{t \ln t}$

Exercice 5 () Déterminer les primitives suivantes :

- 1) $\int \ln t \, dt$ 2) $\int t \operatorname{Arctan} t \, dt$ 3) $\int (t^2 t + 1) e^{-t} \, dt$.

Exercice 6 () Calculer les intégrales suivantes :

- 1) $\int_0^1 \sqrt{1-t^2} \, dt$ 3) $\int_0^1 \frac{dt}{e^t+1}$ 5) $\int_0^{\pi} \frac{\sin t}{3+\cos^2 t} \, dt$.
- 2) $\int_{1}^{e} \frac{dt}{t + t(\ln t)^2}$ 4) $\int_{1}^{2} \frac{\ln t}{t/t} dt$

1

Exercice 7 ($^{\infty}$) Calculer $I_{m,n} = \int_{0}^{2\pi} \cos(mt) \cos(nt) dt$ pour $m,n \in$

Exercice 8 (\bigcirc) Pour tout entier n on pose $I_n = \int_0^1 x^n \sqrt{1-x} \, dx$. Calculer I_0 et I_1 . Montrer:

$$\forall n \in \mathbb{N}^*, (3+2n)I_n = 2nI_{n-1}.$$

Exercice 9 (\triangle) On definit la fonction F de \mathbb{R}_+ dans \mathbb{R} par $\forall x \in \mathbb{R}_+$, $F(x) = \int_0^{\pi} \frac{|\sin(tx)|}{t} dt.$

- 1) Justifier proprement la définition de F.
- 2) Montrer que F est dérivable sur \mathbb{R}_+ et calculer sa dérivée.
- 3) Nous étudions à présent le comportement asymptotique de F.
 - a) Montrer que $\forall x > 1$, $F(x) = \sum_{k=1}^{\lfloor x \rfloor 1} \left(\int_{k=t}^{(k+1)\pi} \frac{|\sin t|}{t} dt \right) +$ $\int_{\pi|x|}^{\pi x} \frac{|\sin t|}{t} \, \mathrm{d}t.$
 - **b)** On rappelle que $\sum_{k=1}^{n} \frac{1}{k} \sim \lim_{n \to +\infty} \ln n$. En déduire que $F(x) \sim \lim_{x \to +\infty} \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{1}{k} \sim \lim_{$ $\frac{2}{\pi} \ln x$.

Exercice 10 ()

Montrer que :
$$\forall x \in [0, \pi/2], \ x - \frac{x^3}{6} \leqslant \sin x \leqslant x - \frac{x^3}{6} + \frac{x^5}{120}.$$

Exercice 11 Déterminer les limites des suites définies par le terme général suivant :

1)
$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2kn}}$$
 2) $\left(\frac{(2n)!}{n^n n!}\right)^{\frac{1}{n}}$.

II. Convergence et intégrabilité

Exercice 12 ($^{\bullet}$) Soient $\alpha, \beta \in \mathbb{R}, \alpha \neq 0$. On pose $I(\alpha, \beta) =$ $\int_0^1 \frac{\mathrm{d}x}{|1-x^{\alpha}|^{\beta}}$. Représenter l'ensemble des points du plan $M(\alpha,\beta)$ où $I(\alpha,\beta)$ converge.

Exercice 13 () Donner une CNS sur $\alpha \in \mathbb{R}$ pour que $\int_{0}^{+\infty} \frac{t - \sin t}{t^{\alpha}} dt \text{ existe.}$

Exercice 14 () Étudier l'intégrabilité des applications suivantes :

1)
$$x \mapsto \frac{1+x}{\sqrt{x}+x^2} \text{ sur }]0;1]$$
6) $x \mapsto \frac{1}{x} \left(\sqrt{x^2+x+1} - \sqrt{x^2-x+1}\right)$
2) $x \mapsto \frac{\sin x + \cos x}{\sqrt{x^3+1}} \text{ sur } [0;+\infty[$
7) $x \mapsto \frac{\ln x}{\sqrt{1-x^6}} \text{ sur }]-1;1[$

2)
$$x \mapsto \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} \operatorname{sur} [0; +\infty[$$

3)
$$x \mapsto \frac{\sqrt{x^3 + 1}}{\sqrt{x^3 + 1}} \text{ sur } [1; +\infty[$$
 7) $x \mapsto \frac{1}{\sqrt{1 - x^6}} \text{ sur }] - 1; 1$

4)
$$x \longmapsto \sqrt{\frac{x^2+1}{x^2+x}} \text{ sur }]0;1]$$
 8) $x \longmapsto \frac{\sin x}{\sqrt{x^3+x^4}} \text{ sur }]0;+\infty[$

5)
$$x \mapsto \frac{\ln x}{x^3 + x^2} \text{ sur }]0;1]$$
 9) $x \mapsto \frac{1 + x^2 e^{-x}}{x^2 + e^{-2x}} \text{ sur }]-\infty; +\infty[.$

Exercice 15 Soit $f \in \mathcal{C}^1([0, +\infty[, \mathbb{R})])$. On suppose que f et f' sont intégrables sur $[0, +\infty[$. Montrer que f tend vers 0 en $+\infty$.

Soient $y: \mathbb{R}_+ \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 . Exercice 16 On suppose que y et y'' sont de carré intégrable sur \mathbb{R}_+ : montrer que y'l'est également.

Exercice 17

2

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue telle que $\lim_{x \to +\infty} f(x) = 0$

1) Prouver que $\int_0^{+\infty} f$ converge si et seulement si la suite $n \mapsto \int_0^n f$ converge et que dans ces conditions:

$$\int_0^{+\infty} f = \lim_{n \to +\infty} \int_0^n f.$$

2) Que se passe-t-il si on enlève l'hypothèse $\lim_{x\to +\infty} f(x) = 0$?

Exercice 18 (\(\Lambda\)

Soient $\alpha > 0$ et $f \in \mathcal{C}^0([1, +\infty[, \mathbb{R}^*_+)])$.

- 1) On suppose que f est intégrable sur $[1, +\infty)$. On pose R(x) = $\int_{x}^{+\infty} f(t) dt$ pour $x \ge 1$. Étudier l'intégrabilité de $x \mapsto \frac{f(x)}{R(x)^{\alpha}}$ sur $[1,+\infty[$.
- 2) On suppose que f n'est pas intégrable sur $[1, +\infty)$. On pose S(x) = $\int_{1}^{x} f(t) dt$ pour $x \ge 1$. Étudier l'intégrabilité de $x \mapsto \frac{f(x)}{S(x)^{\alpha}}$ sur $[2,+\infty[$.

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue, décroissante et de limite nulle. On pose pour tout $n \ge 0$:

$$u_n = \int_{n\pi}^{(n+1)\pi} f(t)\sin(t) dt.$$

- 1) Montrer que $\sum_{n\geq 0} u_n$ converge.
- 2) Montrer que $\int_{0}^{+\infty} f(t) \sin(t) dt$ converge. Quel est son signe ?
- 3) On suppose que $f(x) \geqslant \frac{1}{x}$ au voisinage de $+\infty$. Montrer que $t \mapsto$ $f(t)\sin(t)$ n'est pas intégrable sur \mathbb{R}_+

Exercice 20

Soit $f:[1,+\infty[\to\mathbb{R} \text{ continue. Montrer que si}\int_{1}^{+\infty}f(t)\,\mathrm{d}t$ converge, alors $\int_{1}^{+\infty} \frac{f(t)}{t} dt$ converge.

Calculs, limites et équivalents d'intégrales généralisées

Exercice 21 (Existence et calcul des intégrales suivantes :

1)
$$\int_0^{+\infty} \frac{x^4}{x^{10}+1} dx$$
 3) $\int_0^1 \frac{x^2}{\sqrt{1-x^2}} dx$ 5) $\int_0^{\frac{1}{2}} \ln(1-3x+2x^2) dx$.

2)
$$\int_{-\infty}^{+\infty} \frac{\operatorname{ch} x}{\operatorname{ch} 2x} \, \mathrm{d}x$$
 4) $\int_{0}^{+\infty} \frac{1}{(x+1)(x+2)} \, \mathrm{d}x$

Exercice 22 () Existence et calcul des intégrales suivantes :

1)
$$\int_{1}^{+\infty} \frac{1}{x\sqrt{x^2 + x + 1}} dx$$
 3) $\int_{0}^{+\infty} \frac{x - \arctan x}{x^3} dx$

3)
$$\int_0^{+\infty} \frac{x - \operatorname{Arctan} x}{x^3} \, \mathrm{d}x$$

2)
$$\int_{-\infty}^{+\infty} \frac{1}{(x^2 + x + 1)^2} dx$$
 4) $\int_{0}^{1} \frac{1 + x}{\sqrt{x(1 - x)}} dx$.

4)
$$\int_0^1 \frac{1+x}{\sqrt{x(1-x)}} \, \mathrm{d}x$$

Exercice 23

Donner un équivalent, lorsque x tend vers $+\infty$, de

$$\int_{x}^{+\infty} e^{-t^2} dt$$

Exercice 24 On veut étudier la convergence de I = $\int_{0}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-t^2} dt \right) dx, \text{ et calculer cette intégrale.}$

- 1) Soit $x \in \mathbb{R}_+$. Majorer $\int_{-\infty}^{+\infty} e^{-t^2} dt$ en fonction de x (on distinguera deux cas : x < 1 et $x \ge 1$).
- 2) En déduire que I converge.
- 3) Calculer I grâce à une intégration par parties.

Exercice 25 Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^{n+1}}$.

- 1) Existence de I_n ?
- 2) Donner une relation entre I_n et I_{n+1} (on pourra utiliser une intégration par parties).
- **3)** Calculer I_n en fonction de n.

Exercice 26 Pour x > 0, on pose $f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$.

- 1) Donner un équivalent simple de f(x) en 0.
- 2) Donner un équivalent simple de f(x) en $+\infty$ (on pourra utiliser une intégration par parties et écrire que $f(x) = \int_x^{+\infty} u'(t)v(t) dt = [uv]_x^{+\infty} \int_x^{+\infty} u(t)v'(t) dt$, et montrer que $\int_x^{+\infty} u(t)v'(t) dt \leq \frac{1}{x}f(x)$).

Exercice 27 On pose : $I=\int_0^{\frac{\pi}{2}}\ln(\cos x)\mathrm{d}x,\ J=\int_0^{\frac{\pi}{2}}\ln(\sin x)\mathrm{d}x$ et $K=\int_0^{\frac{\pi}{2}}\ln(\sin 2x)dx.$

- 1) Justifier l'existence de I, J et K.
- 2) Démontrer que I = J = K.
- 3) Calculer I.

Exercice 28

- 1) Montrer que $\int_0^1 x \ln(x) dx$ converge.
- 2) Soit $I(\alpha) = \int_0^{+\infty} \frac{x \ln(x)}{(1+x^2)^{\alpha}} dx$
 - a) Déterminer la nature de $I(\alpha)$ en fonction de α .
 - b) Effectuer le changement de variable $y = \frac{1}{x}$ dans I(2). En déduire la valeur de I(2).

Exercice 29 Considérons $I = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+t^a)}$ où $a \in \mathbb{R}_+$.

- 1) Montrer que *I* converge.
- 2) Via un changement de variable, calculer I.

Exercice 30 Convergence de la suite $u_n = \int_0^{+\infty} \frac{e^{-t}}{1+t^n} dt$? Limite?

Exercice 31 Soit f une application continue de \mathbb{R}^+ dans \mathbb{R} et F de \mathbb{R}^*_+ dans \mathbb{R} définie par :

$$\forall x \in \mathbb{R}_+^*, F(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t.$$

- 1) Montrer que si f admet une limite ℓ non nulle en $+\infty$, alors F admet aussi ℓ pour limite en $+\infty$.
- 2) Montrer que si f admet 0 pour limite en $+\infty$, alors F également.
- 3) Donner un exemple où f n'a pas de limite en $+\infty$ mais où F tend vers 0.
- 4) Montrer que si $f(x) \xrightarrow[x \to +\infty]{} +\infty$, alors $F(x) \xrightarrow[x \to +\infty]{} +\infty$.

Exercice 32 Le but de cet exercice est de montrer la convergence de l'intégrale généralisée suivante : $\int_0^\infty \frac{\mathrm{d}x}{1 + x^4 \sin^2 x}.$ Pour cela, on considère la série de terme général

$$u_n = \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}x}{1 + x^4 \sin^2 x}.$$

- 1) Par un changement de variable, transformer u_n en $u_n = \int_0^{\pi} \frac{\mathrm{d}x}{1 + (n\pi + x)^4 \sin^2 x}$.
- 2) Encadrer ensuite u_n par les termes de la suite v_n où $v_n = \int_0^{\pi} \frac{\mathrm{d}x}{1 + (n\pi)^4 \sin^2 x}$.
- 3) Calculer explicitement l'intégrale v_n (indication : considérer le changement de variable $t = \tan x$).
- 4) En déduire un équivalent de u_n .
- **5)** Conclure.

Exercice 33 (velo) Pour tout $n \in \mathbb{N}$, posons $A_n = \int_0^{\pi/2} \frac{\sin((2n+1)x)}{\sin x} dx$ et $B_n = \int_0^{\pi/2} \frac{\sin((2n+1)x)}{x} dx$.

- 1) Question préliminaire : soit g une fonction de classe \mathscr{C}^1 sur $\left[0, \frac{\pi}{2}\right]$ telle que g(0) = 0. Montrer que $\int_0^{\frac{\pi}{2}} g(t) \sin((2n+1)t) dt \xrightarrow[n \to +\infty]{} 0$.
- 2) Étudier $A_n A_{n-1}$ puis calculer A_n .
- 3) Étudier $B_n A_n$ puis montrer que (B_n) admet une limite finie, et la donner.
- 4) En déduire la valeur de $\int_0^{+\infty} \frac{\sin x}{x} dx$.

Exercice 34 Soit $a \in]0,1[$. Déterminer la nature de la série $\sum_{n\geqslant 0} a^{\sqrt{n}}$.

