GREEDY ALGORITHMS

kruskal: repeatedly add the next lightest edge to G' that does not create a cycle. makeset(x), find(x): identify x's connected component (labeled by root), union(x,y): merge connected components. For all $x \in V$: makeset(x). X={} (empty set). for all e = (x,y) (in increasing order of weight), if $find(x) \neq find(y): X = X \cup \{e\}, union(x,y)$. Cost = sorting edges $+ 2 \cdot |E| \cdot cost(find) + (|V| - 1) \cdot cost(union) + |V| \cdot cost(makeset)$.

prim: similar to Dijkstra. Start form any vertex, find the lightest edge extending from your current tree and added that tree and ending vertex.

horn formulas: $(x_1 \wedge x_2 \wedge \cdots \wedge x_k) \Rightarrow x_{k+1}$ OR $(\bar{x_1} \vee \bar{x_2} \vee \cdots \vee \bar{x_k} \vee x_{k+1})$. Start with all vars = false. While there is an unsatisfied implication, set the implied (rightmost) variable to true. Return the truth assignments

DYNAMIC PROGRAMMING ALGS

longest increasing subsequence: $O(n^2)$: L(j) = len of longest subsequence ending @ j. $L(j) = 1 + \max\{L(i)\}$ where $i < j, a_i < a_j \rightarrow (i, j)$ is an edge. Return $\max\{L(i) for i \leq n\}$, and loop from $i = n \rightarrow 0$

edit distance: $O(m \cdot n)$: $E[m, n] = \min$ num of edits to change $x[1 \cdots m]$ to $y[1 \cdots n]$. E[m, n] =

$$\min \left\{ \begin{array}{l} \cdots x[m], \cdots - \\ \text{delete x[m]: } E[m,n] = 1 + E[m-1,n] \\ \cdots -, \cdots y[n] \\ \text{insert y[n]: } E[m,n] = 1 + E[m,n-1] \\ \cdots x[m], \cdots y[n] \\ \text{change x[m] to y[n]:} \\ E[m,n] = E[m-1,n-1] + (1 \text{ if diff, 0 else}) \end{array} \right.$$

Initialize $i=0\cdots m: E[i,0]=i$ $j=0\cdots n: E[0,j]=j.$ Loop $i=1\cdots m, j=1\cdots n, E[i,j]$

Knapsack: $O(W_{\text{max}} \cdot n)$: $K(w) = \max$ value of weight $w \leq W_{\text{max}}$. $K(w) = \max_{w_i \leq w} \{v_i + K(w - w_i)\}$

K(0) = 0. Loop $w = 1 \cdots W_{\text{max}}$

Chain Matrix Multiply: $O(n^3)$: $C(i,j) = \cos t$ of best solution to multiplying $A_i \cdots A_j$.

$$C(i,j) = \min_{i \le k \le j} \{ C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \}$$

Solve in order of increasing subproblem length: for $i=1\cdots n-1: C(i,i=0)$. for $s=1\cdots n-1$, for $i=1\cdots n-s: j=i+s;$ update. Return C(1,n). Shortest path (all pairs of vertices): O(|V|)

(|V| + |E|): dist(v, i) = dist from s to v using i

 $\text{edges.} \quad dist(v,i) \, = \, \min_{e=(w,v)} \{len(e) + dist(w,i-1)\}.$

For all $v \in V$ $dist(v, 0) = \infty, dist(s, 0) = 0$. for $i = 1 \cdot |V|$, for all $v \in V$, update.

Independent Sets: O(|V| + |E|): I(u) =size of largest independent set in subtree rooted at u.

$$I(u) = \max \begin{cases} 1 + \sum_{\substack{grandchildren}} I(g_i) & \text{if } u \in I(n) \\ \sum_{\substack{children}} I(c_i) & \text{u isn't} \end{cases}$$

DFS traversal: postvisit[u] = update (does u after children of u are done)

Travelling Salesman: $O(2^n n^2)$ Subset $S \leq V$, $\{1\} \in S$.

for $j \in S$, C(S, j) =length of shortest path that starts at 1, ends at j, and visits each vertex in S once. If |S| > 1, $C(S, 1) = \infty$.

update: $C(S,j) = \min_{i \in S, i \neq j, (i,j) \in E} \{C(S - \{j\}, i) + len(i,j)\}$

For $S = 2 \cdots n$: for all sizes of S, for all subsets $S \leq \{1 \cdots n\}$ of size s (including $\{i\}$): $C(S, 1) = \infty$ for all $j \in S, j \neq 1, update$