Học Máy (IT 4862)

Nguyễn Nhật Quang

quangnn-fit@mail.hut.edu.vn

Trường Đại học Bách Khoa Hà Nội Viện Công nghệ thông tin và truyền thông Năm học 2011-2012

Nội dung môn học:

- Giới thiệu chung
- Đánh giá hiệu năng hệ thống học máy
- Các phương pháp học dựa trên xác suất
- Các phương pháp học có giám sát
 - Hồi quy tuyến tính (Linear regression)
- Các phương pháp học không giám sát
- Lọc cộng tác
- Học tăng cường

Hồi quy tuyến tính – Giới thiệu

- Với một ví dụ đầu vào, dự đoán một giá trị đầu ra kiểu số thực
- Một phương pháp học máy đơn-giản-nhưng-hiệu-quả <u>phù hợp</u> khi hàm mục tiêu (cần học) là một hàm tuyến tínhh

$$f(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n = w_0 + \sum_{i=1}^n w_i x_i \qquad (w_i, x_i \in \mathbb{R})$$

Cần học (xấp xỉ) một hàm mục tiêu £

$$f: X \rightarrow Y$$

- X: Miền không gian đầu vào (không gian vectơ n chiều Rn)
- Y: Miền không gian đầu ra (miền các giá trị số thực ℝ)
- £: Hàm mục tiêu cần học (một hàm ánh xạ tuyến tính)
- Thực chất, là học một vectơ các trọng số: $w = (w_0, w_1, w_2, ..., w_n)$

Hồi quy tuyến tính – Ví dụ

Hàm tuyến tính f (x) nào phù hợp?

X	f(x)
0.13	-0.91
1.02	-0.17
3.17	1.61
-2.76	-3.31
1.44	0.18
5.28	3.36
-1.74	-2.46
7.93	5.56

Vidu: f(x) = -1.02 + 0.83x

Các ví dụ học/kiểm thử

- Đối với mỗi ví dụ học $x=(x_1,x_2,...,x_n)$, trong đó $x_i \in \mathbb{R}$
 - Giá trị đầu ra mong muốn c_x (∈R)
 - Giá trị đầu ra thực tế (tính bởi hệ thống) $y_x = w_0 + \sum_{i=1}^n w_i x_i$
 - $ightarrow w_{i}$ là đánh giá hiện thời của hệ thống đối với giá trị trọng số của thuộc tính thứ i
 - ightarrow Giá trị đầu ra thực tế y_x được mong muốn là (xấp xỉ) c_x
- Đối với mỗi ví dụ kiểm thử $z=(z_1,z_2,...,z_n)$
 - Cần dự đoán (tính) giá trị đầu ra
 - Bằng cách áp dụng hàm mục tiêu đã học được f

Hàm đánh giá lỗi

- Giải thuật học hồi quy tuyến tính cần phải xác định hàm đánh giá lỗi
 - → Đánh giá mức độ lỗi của hệ thống trong giai đoạn huấn luyện
- Định nghĩa hàm lỗi E
 - Lỗi của hệ thống đối với mỗi ví dụ học x:

$$E(x) = \frac{1}{2}(c_x - y_x)^2 = \frac{1}{2}\left(c_x - w_0 - \sum_{i=1}^n w_i x_i\right)^2$$

Lỗi của hệ thống đối với toàn bộ tập huấn luyện D:

$$E = \sum_{x \in D} E(x) = \frac{1}{2} \sum_{x \in D} (c_x - y_x)^2 = \frac{1}{2} \sum_{x \in D} \left(c_x - w_0 - \sum_{i=1}^n w_i x_i \right)^2$$

Hồi quy tuyến tính – Giải thuật

- Việc học hàm mục tiêu f là tương đương với việc học vectơ trọng số w sao cho cực tiểu hóa giá trị lỗi huấn luyện E
 - → Phương pháp này có tên gọi là "Least-Square Linear Regression"
- Giai đoạn huấn luyện
 - Khởi tạo vectơ trọng số w
 - Tính toán giá trị lỗi huấn luyện E
 - Cập nhật vectơ trọng số w theo quy tắc delta (delta rule)
 - Lặp lại, cho đến khi hội tụ về một giá trị lỗi nhỏ nhất (cục bộ) E
- Giai đoạn dự đoán

Đối với một ví dụ mới z, giá trị đầu ra được dự đoán bằng:

$$f(z) = w_0^* + \sum_{i=1}^n w_i^* z_i$$

Trong đó $w^* = (w^*_0, w^*_1, ..., w^*_n)$ là vectơ trọng số đã học được

Quy tắc delta

- Để cập nhật vectơ trọng số w theo hướng giúp giảm bớt giá trị lỗi huấn luyện E
 - η là tốc độ học (là một hằng số dương)
 - → Xác định mức độ thay đổi đối với các giá trị trọng số tại mỗi bước học
 - Cập nhật theo từng ví dụ (Instance-to-instance/incremental update):
 w_i ← w_i + η (c_x-y_x) x_i
 - Cập nhật theo đợt (Batch update): $w_i \leftarrow w_i + \eta \sum_{x \in D} (c_x y_x) x_i$
- Các tên gọi khác của quy tắc delta
 - LMS (least mean square) rule
 - Adaline rule
 - Widrow-Hoff rule

LSLR_batch(D, η)

for each thuộc tính f_i $w_i \leftarrow \text{giá trị (nhỏ) được khỏi tạo ngẫu nhiên}$ while not CONVERGENCE

for each thuộc tính f_i

$$delta_w_i \leftarrow 0$$

for each **ví dụ học** x∈D

Tính toán giá trị đầu ra thực tế y_x

for each thuộc tính f_i

$$delta_w_i \leftarrow delta_w_i + \eta(c_x - y_x)x_i$$

for each thuộc tính f_i

$$w_i \leftarrow w_i + delta_w_i$$

end while

return w

Cập nhật theo đợt/theo từng ví dụ

- Giải thuật trên tuân theo chiến lược cập nhật theo đợt
- Cập nhật theo đợt (Batch update)
 - Tại mỗi bước học, các giá trị trọng số được cập nhật sau khi <u>tất</u>
 <u>cả</u> các ví dụ học được đưa vào (được học bởi) hệ thống
 - Giá trị lỗi được tính tích lũy đối với tất cả các ví dụ học
 - Các giá trị trọng số được cập nhật theo giá trị lỗi tích lũy tổng thể
- Cập nhật theo từng ví dụ (Instance-to-instance/ incremental update)
 - Tại mỗi bước học, các giá trị trọng số được cập nhật ngay lập tức sau khi mỗi ví dụ học được đưa vào (được học bởi) hệ thống
 - Giá trị lỗi (riêng biệt) được tính cho ví dụ học đưa vào
 - Các giá trị trọng số được cập nhật ngay lập tức theo giá trị lỗi này

LSLR_incremental(D, η)

for each thuộc tính fi

w_i ← giá trị (nhỏ) được khởi tạo ngẫu nhiên

while not CONVERGENCE

for each ví dụ học $x \in D$

Tính toán giá trị đầu ra thực tế y_x for each thuộc tính f_i

$$W_i \leftarrow W_i + \eta (C_x - Y_x) X_i$$

end while

return w

Các điều kiện kết thúc học

- Trong các giải thuật LSLR_batch và LSLR_incremental, quá trình học kết thúc khi các điều kiện được chỉ định bởi CONVERGENCE được thỏa mãn
- Các điều kiện kết thúc học thường được định nghĩa dựa trên một số tiêu chí đánh giá hiệu năng hệ thống
 - Kết thúc, nếu giá trị lỗi nhỏ hơn giá trị ngưỡng
 - Kết thúc, nếu giá trị lỗi ở một bước học lớn hơn giá trị lỗi ở bước học trước
 - Kết thúc, nếu sự khác biệt giữa các giá trị lỗi ở 2 bước học liên tiếp nhỏ hơn giá trị ngưỡng

•