

Non-Inavsive Glucose Device

Group 18

Vithooban Thavapalan, Elia Tohme, Nicolas Freundler, Simon Romanski

Diabetes mellitus:

Bad glucose uptake by cells

No insulin (type I) No sensitivity to insulin (type II)

Consequence: Hyperglycaemia

Impact:

442.000.000 people in 2014

7th cause of death in 2030

Existing technology

Stripes

Continuous Glucose Monitoring (CGM)

→ All existing approaches are invasive

A non-invasive, wearable & discrete glucose monitoring device

Detection Principle: NIR

Absorption & Scattering

Wavelength & molecule dependent

$$I = I_0 exp(-\mu_{eff}L)$$

Glucose absorption spectrum

Used wavelength 940 nm

http://www.andor.com/learning-academy/spectral-response-of-glucose-spectral-response-within-optical-window-of-tissue

Detection Principle: NIR

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6777023&tag=1#ref_4

Bluetooth Module

Measurement

Measurement

Pulse Pulse every Usage per day	500 15 48	ms min s
LED forward current Bluetooth Peak Current Op-Amp Total	1000 20.6 <1 < 1025	mA
Battery Capacity	48	mAh
Recharge after	60	days

Benefits

Non-Invasive

Benefits

Non-Invasive

Convenient

Benefits

Non-Invasive

Convenient

Discrete

Manufacturing - Flexiblity

ISLANDS: Relieve stress onto existing rigid components

BENDING

Manufacturing - Stretchability

Bridge-Island Technique:

- 1. Adding a rigid island under LED
- 2. Keeping serpentine bridge

Expands the stretchability even further

Manufacturing - Materials

Substrate:

PDMS

Rigid Island:

Raisin Epoxy

Thin metal layer for interconnection:

Platinum or gold

Encapsulation:

PDMS

Manufacturing – Process flow

Manufacturing – Process flow

First Part

1. Create the matrix

2. Cast PDMS on matrix

3. Bake PDMS 4h | 75° C

4. Flip the PDMS over

5. Pick and Place rigid components

Manufacturing – Process flow

Second Part

1. Place islands

3. Flip the PDMS over

5. Shadow Mask Gold

2. Cast PDMS on islands

4. Cast Gold/Platinum on layers

Thank you