Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

First enantioselective synthesis of methyl (+)-7-methoxyanodendroate, an antitubercular dihydrobenzofuran

Leave this area blank for abstract info.

Kylee M. Aumann, Natasha L. Hungerford, Mark J. Coster*

Tetrahedron Letters

journal homepage: www.elsevier.com

First enantioselective synthesis of methyl (+)-7-methoxyanodendroate, an antitubercular dihydrobenzofuran.

Kylee M. Aumann^a, Natasha L. Hungerford^a, Mark J. Coster^a, *

^a Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Queensland, Australia

ARTICLE INFO

ABSTRACT

Article history:

Received

Received in revised form

Accepted

Available online

Keywords:

methyl (+)-7-methoxyanodendroate

Cross-metathesis

Shi epoxidation

Claisen rearrangement

Natural product synthesis

An enantioselective synthesis of methyl (+)-7-methoxyanodendroate was achieved utilising a Claisen rearrangement, a Grubbs cross-metathesis, and a Shi epoxidation–cyclisation sequence, confirming the absolute configuration assigned to the natural product.

2009 Elsevier Ltd. All rights reserved.

Methyl (+)-7-methoxyanodendroate (1, Figure 1) was first isolated, in 2008, from *Zanthoxylum wutaiense* Chen, an evergreen shrub endemic to the Pingtung County in Taiwan, during an antituberculotic bioactivity-guided screen of approximately 400 species of Taiwanese plants. Compound 1 was shown to possess antitubercular activity against *Mycobacterium tuberculosis* H37Rv with a minimum inhibitory concentration of 35 µg/mL. Its structure was elucidated using mass spectrometry, and 1D and 2D NMR spectroscopic techniques. The absolute configuration at C2 was assigned as the (*S*)-enantiomer, after comparison of the specific rotation of the natural product $\{[\alpha]^{15}_D + 31.7 (c\ 0.04, CHCl_3)\}$, with that of (-)-(*R*)-anodendroic acid $\{[\alpha]^{15}_D - 35.2 (c\ 0.682, EtOH)\}$.

Insert Figure 1

The chiral 2-substituted 2,3-dihydrobenzofuran structure is present in a number of biologically important compounds and new enantioselective routes to these systems have recently been described.⁴⁻⁷ Herein, our interest^{5,8} in dihydrobenzofuran synthesis continues, and we report the first enantioselective synthesis of 1, confirming the absolute configuration as methyl (+)-(*S*)-7-methoxyanodendroate.

Our retrosynthetic analysis (Scheme 1) proposed that the dihydrobenzofuran core of 1 could be derived from phenolic epoxide 2, *via* base-promoted 5-*exo-tet* cyclisation. This epoxide would, in turn, be accessed from allylphenol 3 *via* olefin crossmetathesis to efficiently install the prenyl *gem*-dimethyl functionality,⁵ and enantioselective epoxidation of the trisubstituted olefin utilising the Shi protocol. Allylphenol 3 would be obtained from commercially available methyl vanillate (4)

after allylation and Claisen rearrangement of the resultant allyl ether.

Insert Scheme 1

The synthesis of our proposed Shi epoxidation substrate 6 began with allylation of methyl vanillate (4), 9 followed by Claisen rearrangement of allyl ether 5 to afford allylphenol 3 in 99% yield, requiring no purification (Scheme 2). Crossmetathesis of the terminal olefin with amylene (2-methylbut-2-ene) in the presence of Grubbs' 2nd generation catalyst furnished the desired prenyl derivative 6.¹⁰ The crude reaction mixture was adsorbed onto amino-bonded silica gel, ¹¹ and subjected to flash chromatography (on regular silica gel). This proved to be the most effective method for removing ruthenium contaminants.

Insert Scheme 2

With tri-substituted olefin **6** in hand, we turned our attention to the proposed epoxidation–cyclisation sequence (Table 1). One-pot achiral epoxidation–cyclisation of **6** with freshly distilled dimethyldioxirane (DMDO) at 0 $^{\circ}$ C, 12 followed by direct addition of base (entry 1) 12,13 proceeded in excellent yield. Interestingly, DMDO generated *in situ* 14 caused degradation of our substrate and no epoxide or cyclised product was detected. Having successfully synthesised methyl (\pm)-7-methoxyanodendroate, an enantioselective strategy was investigated. Shi's epoxidation protocol, employing a chiral fructose-derived catalyst **7**, seemed particularly suitable, due to its proven ability to epoxidise enantioselectively tri-substituted alkenes. ¹⁵ Furthermore, Shi's

* Corresponding author. Tel.: +61 7 3735 6037; fax: +61 7 3735 6001.; e-mail: m.coster@griffith.edu.au

mechanism-based correlation between catalyst configuration and resulting epoxide stereochemistry suggested that we could obtain the desired epoxide using the catalyst derived from naturally occurring D-fructose. ¹⁶

Insert Table 1

Attempts to generate chiral epoxide 2 from 6 using a standard Shi epoxidation¹⁶ involving hydrogen peroxide as the oxidant (entry 2)¹⁷ resulted in substrate degradation. Whilst these results were not ideal, they were not altogether unexpected. Previous work within our group,⁵ and a lack of precedent in the literature, suggests that Shi epoxidations on substrates bearing a free phenol, such as 6, generally suffer from poor yields and stereoselectivities. Accordingly, we sought to protect our phenol as a silyl ether. Woggon et al. found that they achieved higher enantioselectivity in their Shi epoxidation of a similar prenylphenol using bulkier silyl ethers, ¹⁸ so we sought to test this methodology on our system. Protection of phenol 6 as silyl ethers **8a–c** proceeded smoothly in excellent yields. Gratifyingly, Shi epoxidation of the TBDPS ether 8a using the Shi conditions again (entries 3¹⁶ and 4,¹⁷ respectively) gave the cyclised product 1 via epoxide 9a in good yields and promising enantiomeric enrichment. Use of the H₂O₂-mediated Shi epoxidation conditions¹⁷ (entry 4) provided a better yield. However, attempts to optimise the conditions by altering the temperature and ketone loading (entries 5-7) provided no significant improvement in yield or ee. Likewise, other silyl protecting groups (entries 8 and 9) failed to alter significantly the ee achieved, suggesting that catalyst 7 is not ideally suited to epoxidation of our substrate. Finally, application of the modified catalyst 10, described by Shi¹⁹ and Vidal-Ferran²⁰ using the conditions^{20,6} described in entry 10 gave the product 1 in excellent enantiomeric excess (95% ee), as determined by chiral HPLC (AD-H column, 20-80% isopropanol in hexane, 1 mL.min⁻¹, R_t (major) 13.2 min, R_t (minor) 7.2 min), and 69% yield. The spectroscopic data (¹H and ¹³C NMR, HRMS) and specific rotation for the synthetic material $\{ [\alpha]^{25}_{D} +60.4 \ (c \ 0.54, \ CHCl_{3}) \}$ confirmed the assigned (S)configuration of the natural product.

In summary, we have developed the first enantioselective total synthesis of the naturally occurring dihydrobenzofuran, methyl (+)-7-methoxyanodendroate (1) in 5 steps from commercially available methyl vanillate (4), with an overall yield of 65%, and an *ee* of 95%. This synthesis confirms the structure and absolute configuration of the natural product as methyl (+)-(S)-7-methoxyanodendroate. Furthermore, it is efficient and scalable, and paves the way for future structure-activity relationship studies.

Acknowledgements

We thank the Australian Research Council for funding (DP0986795) and Dr Jakob Magolan for preparing ketone **7**.

References and notes

- Huang, H.-Y.; Ishikawa, T.; Peng, C.-F.; Tsai, I.-L.; Chen, I.-S. J. Nat. Prod. 2008, 71, 1146-1151.
- The synthesis of racemic 1 has been described, but no spectroscopic data was reported: Ishii, H.; Ishikawa, T.; Chen, I.-S.; Lu, S.-T. *Tetrahedron Lett.* 1982, 23, 4345-4348.
- Kawase, Y.; Yamaguchi, S.; Inoue, O.; Sannomiya, M.; Kawabe, K. Chem. Lett. 1980, 1581-1584.
- Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science, 2010, 328, 1376-1379.
- 5. Magolan, J.; Coster, M. J. J. Org. Chem. 2009, 74, 5083-5086.
- (a) Jiang, H.; Hamada, Y. Org. Biomol. Chem. 2009, 7, 4173-4176.
 (b) Jiang, H.; Sugiyama, T.; Hamajima, A.; Hamada, Y. Adv. Synth. Catal. 2011, 353, 155-162.
- Pelly, S. C.; Govender, S.; Fernandes, M. A.; Schmalz, H.-G.; de Koning, C. B. *J. Org. Chem.* 2007, 72, 2857-2864.
- Fischer, J.; Savage, G. P.; Coster, M. J. Org. Lett. 2011, 13, 3376– 3379.
- Wilson, S. C.; Howard, P. W.; Forrow, S. M.; Hartley, J. A.; Adams, L. J.; Jenkins, T. C.; Kelland, L. R.; Thurston, D. E. J. Med. Chem. 1999, 42, 4028-4041.
- Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.
- 11. Davisil® amino-bonded Silica gel 60A, 30-40 µm, was employed.
- Murray, R. W.; Singh, M. Org. Synth. 1998, Coll. Vol. 9, 288-293; or 1997, 74, 91-96.
- 13. Lindsey, C. C.; Gómez-Diaz, C.; Villalba, J. M.; Pettus, T. R. R. *Tetrahedron*, **2002**, *58*, 4559-4565.
- Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J. O.; Pater, R. H. J. Org. Chem. 1980, 45, 4758-4760.
- For reviews on the Shi epoxidation, see: (a) Frohn, M.; Shi, Y. Synthesis, 2000, 1979-2000; (b) Wong, O. A.; Shi, Y. Chem. Rev. 2008, 108, 3958.
- Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.
- 17. Shu, L.; Shi, Y. Tetrahedron, 2001, 57, 5213-5218.
- Chapelat, J.; Buss, A.; Chougnet, A.; Woggon, W.-D. Org. Lett. 2008, 10, 5123-5126.
- (a) Wu, X.-Y.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124, 8792-8793. (b) Wang, B.; Wu, X.-Y.; Wong, O. A.; Nettles, B.; Zhao, M.-X.; Chen, D.; Shi, Y. J. Org. Chem. 2009, 74, 3986-3989.
- Nieto, N.; Molas, P.; Benet-Buchholz, J.; Vidal-Ferran, A.; J. Org. Chem. 2005, 70, 10143-10146.

Supplementary Material

Supplementary data (experimental procedures and characterization data for all new compounds; ¹H and ¹³C NMR spectra for all new compounds; chiral HPLC traces for Table 1) associated with this article can be found, in the online version, at doi:

 $\textbf{Figure 1.} \ Methyl \ (+)\text{-}7\text{-}methoxyanodendroate \ (1).}$

 $\textbf{Scheme 1.} \ Retrosynthetic \ analysis \ of \ methyl \ (+)-7-methoxyanodendroate \ \textbf{(1)}.$

 $Scheme \ 2 \ Synthesis \ of \ prenylphenol \ 6.$

allyl bromide,
$$K_2CO_3$$
 acetone, reflux, 16 h 100% OMe CO_2Me CO_2Me

Table 1. Synthesis of methyl (+)-7-methoxyanodendroate via enantioselective epoxidation, then cyclisation.

Entry	Substrate	Epoxidation Reagents	Epoxidation Conditions	Cyclisation Conditions	Yield of 1	ee b
1	6	Freshly distilled DMDO (1.2 eq.), acetone	0 °C, 30 min then rt, 16 h	Et ₃ N, rt, 60 min	78%	(rac)
2	6	Method B^d (0.4 eq. of 7)	4 °C, 14 h	sat. NaHCO ₃ , rt, 60 min	_	_
3	8a	Method A ^c (0.25 eq. of 7)	0 °C, 1.5 h	Method Ce (using 2 M NaOH, 30 min)	62%	79%
4	8a	Method B^d (0.4 eq. of 7)	4 °C, 14 h	Method C ^e (using sat. NaHCO ₃ , 70 min)	84%	77%
5	8a	Method B^d (0.4 eq. of 7)	−15 °C, 7h	Method C ^e (using 1 M NaOH, 15 min)	63% ^g	78%
6	8a	Method B^d (0.4 eq. of 7)	rt, 1.5 h	Method Ce (using 1 M NaOH, 15 min)	84%	75%
7	8a	Method B^d (1.0 eq. of 7)	0-6 °C, 2 h	Method Ce (using 2 M NaOH, 30 min)	87%	77%
8	8b	Method B^d (0.4 eq. of 7)	4 °C, 14 h	Method C ^e (using sat. NaHCO ₃ , 70 min)	81%	76%
9	8c	Method B^d (0.4 eq. of 7)	4 °C, 14 h	Method C ^e (using sat. NaHCO ₃ , 70 min)	79%	76%
10	8a	Method $D^f(0.15 \text{ eq. of } 10)$	0 °C, 22 h	TBAF, THF, 0 °C – rt, 75 min	69%	95%

^a Isolated yield.

^b ee values were determined by HPLC analysis using an AD-H column.

 $^{^{}c}$ Method A: Ketone 7, n Bu₄NHSO₄ (0.1 eq.), Oxone (1.5 eq.), K_{2} CO₃ (1 M, 6 eq.), buffer [Na₂B₄O₇ (0.05 M), Na₂EDTA (4 x 10⁻⁴ M)]: dimethoxymethane (DMM): CH₃CN (2:2:1),

 $[^]d$ Method B: Ketone 7 and H_2O_2 (5.5 eq.) in buffer [2 M K_2CO_3 in 4 x 10^{-4} M Na_2EDTA] : CH_3CN : EtOH : CH_2Cl_2 (3:1:1:2),

^e Method C: TBAF, THF, 0 °C, 15 min then aqueous base, rt,

^f Method D: Ketone **10**, "Bu₄NHSO₄ (0.04 eq.), Oxone (1.5 eq.), K₂CO₃ (0.38 M, 2.4 eq.), pH 6 buffer [KOH (0.1 M):KH₂PO₄ (0.1 M):H₂O (5.6:50:44.4)], DMM:CH₃CN (2:1),

 $^{^{\}rm g}$ Reaction did not proceed to completion, unreacted starting material (18%) was also recovered.