Rekher (hap 12, Kalkulus)

Intuitive: En vehlo er en mendelig sum av hall

\[\begin{align*}
 \begin{align*}

Definisjonen: His falgen { D.] our delaumer hannegeren mat et fall D. Die Dien is at rekhen \(\sum_{n=0}^{2} a_{n} \) en honnergent og i haller D summen fit rekhen. Udasjon

 $\sum_{N=0}^{\infty} Q_N$

Hvis fålgen {DN} ikke komengener, nær is al vækken er diengent.

Hoved problemsfillinger:

- (i) Firm summen $\Delta = \sum_{n=0}^{\infty} a_n n \hat{m}$ du fines (annhisiost)
- (ii) A vapar am en vehlu er hamozent eller divingent (overkommelig)

Fra tidligere: Geometiske reller

a + a r + a r + a r + - - - bustiens .

1(ansugen mår 121,

 $\sum_{n=0}^{\infty} a_{0}r^{n} = a_{0} + a_{0}V + a_{0}r^{2} + \cdots + a_{0}r^{n} + \cdots = \frac{a_{0}}{1-r}$

Direngenstersen: Deuson Dan honnergen, så ling an = 0 M.a.o.

deuson ling an + 6, så derengenen velden.

OBS:

: En vælke kan godt diverger solv am

lm an = 0.

Els: $\sum_{n=1}^{\infty} \frac{1}{n}$ liveyeur solv com $\frac{1}{n} \rightarrow 0$ non $n \rightarrow \infty$

Beisfor divergensteden: Inla al san hancegerer, og la

DN= 5 an.

lin qu = lin (Du Du-1) = 0.

Paritie velber [12.2]

Lan heller en gesilve veller deur and open falge.

Delsummere Dn til en positie veller en en volsende fälge.

Fra MAT 1100: En volsende, lepensel fälge en hannigud.

Integrallesten: Cula al $f:[1,20] \rightarrow \mathbb{R}$ er en autogunde og positiv hantimuelig funtojan. Da hanseyever rekken $\Sigma f(n)$ his og have his integraled I, f(x) de hanseyever. Berisidé: Sammenligu erealed our belieg med hiorgel flut =4 arealet en der fintspensgrefen. Selving: Rehlun $\sum_{N=1}^{\infty} \frac{1}{N^{\frac{1}{2}}} hanvergever van <math>p>1$ og divigerer van Beis: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1. For $p \neq 1$:

Mais: Vel al vesultatel Aumer for p=1:

Mais: Beginnels: $\int_{1-P}^{\infty} x^{-p} dy = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{b}$ - -> ~ his 1-p>0=> p<1 dingul O his 1-9 <0 => P > 1 hancegons.