Travaux Dirigés Etude d'échanges entre machines, protocoles, couches et encapsulation

Observez la capture de trafic ci-dessous faite avec Wireshark (en amphi Ensimag, par une connexion Wifi).

Longueur d'en-tête Ethernet (couche 2) : 14 octets. Le type associé à IP est 0x0800

0 5 6 11 12 13

Adresse MAC Dest | Adresse MAC Src | Type Prot encapsulé

Longueur d'en-tête IP(v4): 20 octets (sans options); se termine par Adresse IP Source (4 octets) puis Adresse IP Destination (4 octets).

Diagramme de couches (statique)

Question 1. Repérez les machines (hôtes) qui interviennent dans les échanges capturés. Pour chaque machine impliquée, identifiez les protocoles qu'elle a utilisés dans cet échange. Puis dessinez l'empilement des couches avec les protocoles présents (et utilisés par la machine dans l'échange) dans chaque couche.

Diagramme temporel (dynamique)

Question 2. Tracez autant de lignes de vie parallèles que nécessaire et représentez les échanges ci-dessus sur un diagramme temporel.

Question 3. Expliquez en français les phases du dialogue telles que vous pouvez les observer sur cette succession de 16 messages.

Analyse d'en-tête UDP

On s'intéresse maintenant au contenu de l'en-tête du PDU UDP dans lequel est encapsulée la requête DNS initiale (trame 3). Les octets surlignés sont ceux de l'en-tête IP.

Question 4. *Quelle est la longueur de l'en-tête UDP ?*

Question 5. Où apparaît dans la trame le port source (50522) ? Convertissez 53 et 50522 en hexadécimal (aucun calcul n'est nécessaire).

Question 6. Wireshark a décodé dans cet en-tête une longueur de 40 (en décimal). Où apparaît cette longueur dans la trame? Que mesure-t-elle?

Question 7. Comment Wireshark sait il où finit l'en-tête UDP et où commence la requête DNS ?