Analysis of Somewhat Homomorphic Encryption Over the Integer Ring

Bryan Kaperick

January 16, 2017

1 Preliminaries

1.1 Symmetric Modulus

Traditionally, the modulus operator can be defined as follows

Definition 1.1. Define $q_a(b) = \lfloor \frac{b}{a} \rfloor$. Then, define $a \pmod{b} = a - q_a(b)b$, which is equivalent to setting $a \pmod{b}$ to be the representative in [0,b) for the residue class containing a for the congruence relation of congruence modulo b.

However, for the purposes of this paper, it will be seen that a slightly altered definition is much more convenient.

Definition 1.2. Define $q_a(b) = \lfloor \frac{a}{b} \rfloor$, where $\lfloor \cdot \rfloor$ returns the nearest integer to the input value (rounding up for multiples of one-half). Again, define $a \pmod{b} = b - q_a(b)a$.

While notationally annoying, this approach makes much more sense once the *idea* of this scheme is understood. In general, the scheme relies on recovering a noisy approximation of a multiple of the secret key, so in this respect, it is more natural to allow a symmetric distribution of noisy approximations to all be in the same *class*. More on this later.

1.2 Rounding Operator

In these notes it is often necessary to round a number to the nearest integer. The following notation is used,

Definition 1.3. Let $x \in \mathbb{R}$. Then, $\lfloor x \rceil$ is equal to the integer closest to x (rounding down if equidistant).

2 Goals of Scheme

This scheme is intended to be a homomorphic encryption scheme equipped to allow evaluation of the encrypted data on arbitrary binary addition and multiplication circuits (up to a predetermined depth) such that the evaluated data almost surely decrypts correctly.

3 Motivation for Approach

The main idea is to map a bit to an arbitrary integer multiple of the secret key — also an integer — with some additional noise added. Let S be the space of integer multiples of the secret key, s. Let $x, y \in S$. Observe that with integer addition and multiplication, S forms a ring.

Proof. $S = \{x | \exists n \in \mathbb{Z}, x = n \cdot s\}$. Let $x, y \in S$. If $x = n \cdot s$ and $y = m \cdot s$ for some $n, m \in \mathbb{Z}$, then clearly $x + y = n \cdot s + m \cdot s = (n + m) \cdot s$, so the operation is closed. Integer addition is commutative. Every integer $n \in \mathbb{Z}$ has additive inverse -n, and both $n \cdot s$ and $-n \cdot s$ are in S. Clearly $0 \cdot s$ is in S, satisfying conditions for the identity. Thus, S is a group under addition.

Multiplication is also closed with respect to the integers, is associative and distributes over addition. 1 satisfies as the identity element. Thus, multiplication acts as the second binary operation, and $(S, +, \cdot)$ is a ring.

This fact is the foundational motivation behind this scheme. Since adding and multiplying elements of S will also be elements of S, so the goal is to develop a scheme which maps these operations of S to the equivalent operations on the unencrypted bits corresponding to those elements of S. The security of the scheme comes from adding noise to the elements of S to make the act of retrieving S difficult.

3.1 Noisy Ring S_n

To formalize the notion of noise in this ring, we will discuss a new ring, S_n . First, we begin with the set of integers, \mathbb{Z} . We define a congruence relation on \mathbb{Z} ,

Definition 3.1. Fix $s \in \mathbb{Z}^+$. Let $a, b \in \mathbb{Z}$. We will say a is equivalent to b, or $a \equiv b$, if $q_s(a) = q_s(b)$. That is, if $\lfloor \frac{a}{s} \rfloor = \lfloor \frac{b}{s} \rfloor$. This is equivalent to defining the relation as the following: Decompose a and b into a = xs + n and b = ys + m for some $x, y \in \mathbb{Z}$ and $m, n \in (-s/2, s/2]$. Then, $a \equiv b$ if and only if x = y.

This relation clearly satisfies symmetry, reflexivity and transitivity. The equivalency classes of this relation partition \mathbb{Z} into neighborhoods around each multiple of s. This can be enumerated by denoting C_i to be the equivalency class around $i \cdot s$, so

$$\mathbb{Z} = \bigcup_{i \in \mathbb{Z}} \mathcal{C}_i.$$

Now, let S_n be the set of these equivalency classes.

$$S_n = \{\ldots, C_{-2}, C_{-1}, C_0, C_1, C_2, \ldots\}.$$

Now, define the following binary operations, \oplus and \odot .

Definition 3.2. Let $C_i, C_j \in S_n$ be equivalency classes as described above. Then, define this operation as $C_i \oplus C_j = C_{i+j}$.

Definition 3.3. Let $C_i, C_j \in S_n$ be equivalency classes as described above. Then, define this operation as $C_i \odot C_j = C_{i \cdot j}$.

Since both operations return elements of S_n , they are both closed. It is simple to show that these satisfy the necessary conditions to make (S_n, \oplus, \odot) a ring.

This structure will serve as a stronger model for discussing the encryption scheme. The \oplus and \odot operators mimic the interaction of two integers near a multiple of s.

4 Implementation

4.1 Special Distribution, $\mathcal{D}_{\gamma,\rho}(p)$

We define $\mathcal{D}_{\gamma,\rho}(p)$ and analyze it prior to discussing the encryption scheme. We define $\mathcal{D}_{\gamma,\rho}(p)$,

Definition 4.1. Let $s \in \mathbb{Z}$ be odd and positive. Now define the distribution of interest as

$$\mathcal{D}_{\gamma,\rho}(p) = \{ choose \ q \leftarrow \mathbb{Z} \cap [0, 2^{\gamma}/s), \quad r \leftarrow \mathbb{Z} \cap (-2^{\rho}, 2^{\rho}), \quad output \ x = sq + r \}.$$

Random variables drawn from $\mathcal{D}_{\gamma,\rho}(p)$ are simply noisy multiples of s with certain size restrictions. r is the noise parameter, with ρ dictating the size, in bits of r. Notice it is evenly distributed over sq. Since for $x \leftarrow \mathcal{D}_{\gamma,\rho}(p)$, x = sq + r, if $\rho = 0$ then r = 0 so $x \in \mathcal{S}$. However, with nonzero noise, we see that if x = sq + r, then $x \in \mathcal{C}_q \in \mathcal{S}_n$. So, this distribution can be seen as choosing a random element of \mathcal{S}_n and then a random element within a subset of that equivalency class.

The noise level determines how far from the nearest multiple of s an element from $\mathcal{D}_{\gamma,\rho}(p)$ can be.

4.2 Overview of Scheme

First, λ , the security parameter is set. Then, the following parameters are set

- γ is the bit-length of the integers in the public key,
- ν is the bit-length of the secret key (which is the hidden approximate-gcd of all the public-key integers),
- ρ is the bit-length of the noise (i.e., the distance between the public key elements and the nearest multiples of the secret key), and
- τ is the number of integers in the public key.

Then, the KeyGen, Encrypt, Decrypt, and Evaluate functions can be described in terms of these, and the input bit, $m \in \{0,1\}$.

4.2.1 KeyGen

The first step is to create the public key, p and the secret key, s. We define s to be an odd ν -bit integer, so

$$s \leftarrow (2\mathbb{Z} + 1) \cap [2^{\nu - 1}, 2^{\nu}).$$

To create the public key, we start by sampling $\mathcal{D}_{\gamma,\rho}(p)$ with $x_i \leftarrow \mathcal{D}_{\gamma,\rho}(p)$ for all $i = 0, 1, \ldots, \tau$. Relabel to ensure x_0 is the largest. Restart this process until x_0 is odd and $x_0 \pmod{s}$ is even. Then, $p = \langle x_0, \ldots, x_{\tau} \rangle$.

4.2.2 Encrypt

Given a bit $m \in \{0, 1\}$, we first choose a random subset $S \subseteq \{1, 2, ..., \tau\}$ and random realization $r \leftarrow (-2^{\rho'}, 2^{\rho'})$. The encrypted integer, c is defined

$$c = \left(m + 2r + \sum_{i \in S} x_i\right) \pmod{x_0}.$$

A discussion of why this works is in 4.3.

4.2.3 Decrypt

Given an integer c which has been encrypted by this scheme, it can be unencrypted by setting

$$m = c \pmod{s} \pmod{2}$$
.

And m is the unencrypted bit.

It will become relevant later to state an alternate (equivalent) decryption.

Lemma 4.2. Let $m \in \{0,1\}$ be an arbitrary bit. Let c = Encrypt(m) under a scheme with secret key s. Then,

$$c \pmod{s} \pmod{2} = c \pmod{2} \land q_s(c) \pmod{2}.$$

Proof. Recall that by construction with KeyGen, s is odd. Also, by definition, $c \pmod{s} = c - \lfloor \frac{c}{s} \rfloor s$. In decryption of c, we are only concerned with the parity of $c \pmod{s}$. With s odd, the parity of the $\lfloor \cdot \rfloor$ term is unchanged. Thus,

$$c \pmod{s} \pmod{2} = c - \left\lfloor \frac{c}{s} \right\rfloor s \pmod{2} = c - \left\lfloor \frac{c}{s} \right\rfloor \pmod{2}.$$

The parity of the addition of two integers is the binary \wedge (XOR) of their least significant bit. Thus,

$$c - \left\lfloor \frac{c}{s} \right\rfloor \pmod{2} = c \pmod{2} \wedge \left\lfloor \frac{c}{s} \right\rfloor \pmod{2}.$$

This completes the result.

4.2.4 Evaluate

Performing integer addition and multiplication on the encrypted values and then decrypting returns the equivalent binary addition and multiplication on the original bits.

4.3 Proof of Validity

The KeyGen produces a large odd integer, s and a public key as a tuple of near-multiples of s, $< x_0, x_1, \ldots, x_\tau >$. x_0 is the largest of the publik key elements, and x_0 is odd and satisfies $x_0 \pmod{s} \pmod{2} = 0$.

The scheme perfectly decrypts if Decrypt is the left inverse of Encrypt. That is, for an arbitrary $m \in \{0,1\}$, Decrypt(Encrypt(m)) = m.

So, we claim the following,

Theorem 4.3. With sufficiently small noise, the above scheme perfectly decrypts any arbitrary $m \in \{0,1\}$.

We begin with a technical lemma.

Lemma 4.4. Consider a scheme generated according to the conditions of 4.2 with secret key s and length of public key τ and $\alpha_1, \ldots, \alpha_n$ the indices of the random public key subset from KeyGen. Let c be the encryption of an arbitrary bit $m \in \{0,1\}$. (So $c = m + 2r_e + \sum_{i=1}^n x_{\alpha_i}$). If the noise parameter, ρ , satisfies

$$\rho \le \frac{1}{2} \left(\log_2(s-1) - \log_2(2\tau + 3) \right)$$

then

$$\left(m + 2r_e + 2\sum_{i=1}^n r_{\alpha_i}\right) - q_{x_0}(c)r_s(x_0) \in \left(-\frac{s-1}{2}, \frac{s-1}{2}\right].$$

Proof. Assume $\rho \leq \frac{1}{2} (\log_2(s-1) - \log_2(2\tau+3))$ is given. The following are all equivalent,

$$\rho \le \frac{1}{2} \left(\log_2(s-1) - \log_2(2\tau + 3) \right)$$
$$2\rho + 1 \le \log_2\left(\frac{s-1}{2(2\tau + 3)}\right)$$
$$(2\tau + 3)2^{2\rho + 1} < \frac{s-1}{2}.$$

Decompose x_0 into $x_0 = c_0 s + r_0$, $c_0, r_0 \in \mathbb{Z}$ with $r_0 \in (-2^{\rho}, 2^{\rho})$.

$$(2\tau + 3)2^{2\rho+1} = (4\tau + 6)2^{2\rho}$$

$$\geq (4\tau + 5)2^{2\rho} + 2(\tau + 1)2^{\rho}$$

$$\geq m + 2r_e + 2\sum_{i=1}^{n} r_{\alpha_i} - (4\tau + 5)2^{2\rho}$$

Focusing on just the last term,

$$(4\tau + 5)2^{2\rho} = (1 + 2\tau + 2 + 2\tau + 1)2^{2\rho}$$

$$\geq \left(\frac{1}{c_0s} + \left(\frac{2\tau + 2}{c_0s}\right)2^{\rho} + (2\tau + 1)\right)2^{\rho}$$

$$= \left(\frac{1 + (2)2^{\rho} + (2\tau)2^{\rho}}{c_0s} + 2\tau + 1\right)2^{\rho}$$

$$\geq \left(\frac{m + (2)2r_e + 2\sum_{i=1}^{n}c_is + r_{\alpha_i}}{c_0s + r_0} + 1\right)2^{\rho}$$

$$= \left(\frac{m + (2)2r_e + 2\sum_{i=1}^{n}x_{\alpha_i}}{c_0s + r_0} + 1\right)2^{\rho}$$

$$= \left|\left[\frac{m + (2)2r_e + 2\sum_{i=1}^{n}x_{\alpha_i}}{c_0s + r_0}\right]2^{\rho}\right|$$

$$\geq \left[\frac{m + (2)2r_e + 2\sum_{i=1}^{n}x_{\alpha_i}}{c_0s + r_0}\right]2^{\rho}$$

$$= \left[\frac{m + (2)2r_e + 2\sum_{i=1}^{n}x_{\alpha_i}}{c_0s + r_0}\right]2^{\rho}$$

$$= \left[\frac{m + (2)2r_e + 2\sum_{i=1}^{n}x_{\alpha_i}}{x_0}\right]2^{\rho}$$

$$= q_{x_0}(c)$$

So, putting this into the earlier inequality, if the hypothesis is true,

$$\left| m + 2r_e + 2\sum_{i=1}^n r_{\alpha_i} - q_{x_0}(c)r_0 \right| \le \left| m + 2r_e + 2\sum_{i=1}^n r_{\alpha_i} \right| + |q_{x_0}(c)r_0|$$

$$\le (2\tau + 3)2^{2\rho + 1}$$

$$< \frac{s - 1}{2}$$

so the bound is achieved.

Now, we are prepared to address the proof of theorem 4.3.

Proof. Suppose $m \in \{0, 1\}$ has been encrypted with Evaluate using s and $\langle x_0, x_1, \dots, x_\tau \rangle$ is the private and public keys, respectively. Since each element of the public key is a noisy multiple of s, we can rewrite the public key elements as

$$x_0 = c_0 s + r_0$$

$$x_1 = c_1 s + r_1$$

$$\vdots$$

$$x_{\tau} = c_{\tau} s + r_{\tau}.$$

Subject to the constraints

- $c_i \in \mathbb{Z}$
- $r_i \in (-2^{\rho}, 2^{\rho}) \subseteq (-\frac{s-1}{2}, \frac{s-1}{2})$
- $c_0 s + r_0 \ge c_i s + r_i$
- r_0 is odd
- c_0 is even

for all $0 \le i \le \tau$.

To encrypt m, a subset of the public key indices is chosen randomly. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$, $0 < \alpha_i \le \tau$ for all $0 < i \le n$ be the indices of the subset chosen. Finally, more noise is added as $r_e \leftarrow (-2^{\rho'}, 2^{\rho'})$.

$$c = m + 2r_e + 2\sum_{i=0}^{n} x_{\alpha_i} \pmod{x_0}$$

Then, to decrypt,

$$m' = c \pmod{s} \pmod{2}$$
.

$$c = m + 2r_e + 2\sum_{i=0}^{n} x_{\alpha_i} \pmod{x_0}$$

Let $r = r_e + \sum_{i=1}^n r_{\alpha_i}$. Now, with the definition of (mod ·),

$$c = m + 2r_e + 2\sum_{i=0}^{n} x_{\alpha_i} \pmod{x_0}$$

$$= m + 2r + 2\sum_{i=0}^{n} c_{\alpha_i} s \pmod{x_0}$$

$$= m + 2\left(r + s\sum_{i=0}^{n} c_{\alpha_i}\right) \pmod{x_0}$$

$$= m + 2\left(r + s\sum_{i=0}^{n} c_{\alpha_i}\right) - \left\lfloor \frac{m + 2r + 2\sum_{i=0}^{n} c_{\alpha_i} s}{x_0} \right\rfloor (x_0)$$

Now, applying the first step of decryption to c, we have

$$c \pmod{s} = m + 2 \left(r + s \sum_{i=0}^{n} c_{\alpha_i} \right) - \left\lfloor \frac{m + 2r + 2 \sum_{i=0}^{n} c_{\alpha_i} s}{x_0} \right\rfloor (x_0) \pmod{s}$$
$$= m + 2 \left(r + s \sum_{i=0}^{n} c_{\alpha_i} \right) - \left\lfloor \frac{m + 2r + 2 \sum_{i=0}^{n} c_{\alpha_i} s}{x_0} \right\rfloor (c_0 s + r_0) \pmod{s}$$

and since any multiple of s reduces to $0 \pmod{s}$, this simplies to

$$c \pmod{s} = m + 2r - \left\lfloor \frac{m + 2r + 2\sum_{i=0}^{n} c_{\alpha_i} s}{x_0} \right\rfloor r_0 \pmod{s}$$
$$= m + 2r - q_{x_0}(c)r_0 \pmod{s}.$$

It is assumed sufficiently small noise parameter, ρ and non-trivial public key size τ . By lemma 4.4,

$$m + 2r - q_{x_0}(c)r_0 \in \left(-\frac{s-1}{2}, \frac{s-1}{2}\right],$$

SO

$$c \pmod{s} = m + 2r - q_{x_0}(c)r_0.$$

Now, since by constraint, r_0 is even, so the final result is simply given

$$c \pmod{s} \pmod{2} = m + 2r - q_{x_0}(c)r_0 \pmod{2} = m.$$

Thus, the decryption is correct.

5 Attacks

The secret key, s, must be kept private in order to prevent unwanted parties from decrypting data under this scheme. Clearly, if an attacker possesses s and an encrypted bit, c, it is trivial to compute $m = c \pmod{s} \pmod{2}$ to uncover the data. Since the public key elements are noisy muiltiples of s, the process for uncovering s is at most as difficult as solving the Approximate GCD problem.

Let \mathcal{A} be an attacker with advantage ε if for a given ciphertext and public key, it can output the plaintext bit with probability $\frac{1}{2} + \varepsilon$. With this, it will be demonstrated how \mathcal{A} can uncover the secret key.

Before discussing the details of this attack, we give an overview of the Least Significant Bit estimation problem.

5.1 Least Significant Bit Guessing

Given an arbitrary $z \in [0, 2^{\gamma})$ with $|z \pmod{s}| < 2^{\rho}$ and public key $p = \langle x_0, x_1, \dots, x_{\tau} \rangle$, the output is the least significant bit of $q_s(z)$, which is equivalent to $\mathsf{Decrypt}(z)$.

The method proposed for estimating this value, is to simply perform the following procedure $\operatorname{poly}(\lambda)/\varepsilon$ times, and take the majority result.

Choose a random bit m and perform c = Encrypt(z + m). Then use \mathcal{A} with c and p to predict a = Decrypt(c). Finally, set $b = a \wedge z \pmod{2} \wedge m$.

Theorem 5.1. This routine will return the least significant bit of $q_s(z)$ with probability proportional to ε .

Proof. Consider a single iteration of the above-described method. Decrypt(Encrypt(z+m)) is equivalent to

$$\mathsf{Decrypt}(z) \land m = z \pmod{s} \pmod{2} \land m.$$

By lemma 4.2, this becomes

$$z \pmod{s} \pmod{2} \land m = (z \pmod{2}) \land q_s(z) \pmod{2}) \land m.$$

So if a is the correct bit, then a = Decrypt(Encrypt(z+m)), so the output is

$$b = a \wedge z \pmod{2} \wedge m$$

$$= (z \pmod{2}) \wedge q_s(z) \pmod{2} \wedge m) \wedge z \pmod{2} \wedge m$$

$$= (z \pmod{2}) \wedge z \pmod{2}) \wedge (m \wedge m) \wedge q_s(z) \pmod{2}$$

$$= q_s(z) \pmod{2}$$

which is the least significant bit of $q_s(z)$, as desired.

5.2 Binary GCD Algorithm

To give motivation for the Approximate GCD algorithm, a brief explanation of the Binary (exact) GCD algorithm is helpful.

The Euclidean algorithm for solving the GCD problem is given as, Given $x, y \in \mathbb{Z}$, use the following procedure.

- 1. If x < y, swap x, y
- 2. iteratively form

$$x = q_0 y + r_0$$

$$y = q_1 r_0 + r_1$$

$$r_0 = q_2 r_1 + r_2$$

$$r_1 = q_3 r_2 + r_3$$

$$\vdots$$

$$r_{k-2} = q_k r_{k-1} + r_k$$

3. Return r_{k-1} , the gcd of x and y.

The Binary GCD algorithm is similar, but uses simpler bit-wise arithmetic operations. It relies on the following identities for arbitrary $u, v \in \mathbb{Z}$.

- gcd(u,0) = u
- gcd(0, v) = v
- u and v even, then $\gcd(u,v)=2\cdot\gcd\left(\frac{u}{2},\frac{v}{2}\right)$
- u odd and v even, then $\gcd(u,v) = \gcd(u,\frac{v}{2})$ (same is true swapping u,v)
- u and v odd and $u \ge v$, then $\gcd(u, v) = \gcd\left(\frac{u-v}{2}, v\right)$

5.3 Solving Approximate GCD