Politechnika Poznańska				
Wydział Automatyki, Robotyki i Elektrotechniki				
Instytut Robotyki i Inteligencji Maszynowej				
Dz>AiR>Sem5	Automatyka Napędu Elektrycznego 2020/21 (s.zim.)			
Skład osobowy:	Synteza modelu obwodowego silnika	Data wyk.:		
Hubert Dąbrowski 140229	prądu stałego (DCM)	03.01.21		
Aleksandra Myszka 140287				
Grupa A2/L3	Ćwiczenie 1	Zajęcia 1		

1 Wprowadzenie

Celem zajęć jest przybliżenie metodyki postępowania w przypadku syntezy prostego modelu silnika prądu stałego.

2 Wybór silnika

Dokonamy analizy silnika szczotkowego prądu stałego Honeywell 22VM51-020-5 DC. Dzięki jego niewielkim gabarytom ma on zastosowanie w przemyśle oraz wielu urządzeniach użytku domowego (np.wentylatory). Wszystkie dane potrzebne do symulacji są podane w dokumentacji (rys.1).

Specifications of the Honeywell 22VM51-020-5 DC Motor.

Motor Characteristics	Parameters	Values	Units
Rated voltage (DC)	_	24	V
Rated current (RMS)	_	2.2	Α
Rated torque	_	9.18×10^{-2}	$N \cdot m$
Rated speed	_	2225	RPM
Back EMF constant	K_e	0.0374	V · s/rad
Torque constant	K_m	0.0374	$N \cdot m/A$
Terminal resistance	R_a	3.6	Ω
Rotor inductance	L_a	6.0×10^{-4}	Н
Viscous damping coefficient	B_m	6.74×10^{-6}	N·m·s/rad
Rotor inertia	J_m	3.18×10^{-6}	$kg \cdot m^2$

Rysunek 1: Zdjęcie dokumentacji (źródło: Dokumentacja silnika Honeywell)

3 Implementacja

Listing 1. przedstawia deklaracje parametrów w programie Matlab. Na rysunku 2. widoczna jest struktura wybranego silnika w Simulinku (źródło: opracowanie własne).

Listing 1: Parametry modelu silnika DC - środowisko Matlab

```
Ra = 3.6; %armator winding resistance (Ohm)

La = 6*10^{\circ}(-4); %arrmator winding inductance (H)

km = 0.0374; %torque constant (Nm/A)

kv = 0.0374; %voltage constant (V*s/rad)

Jr = 3.18*10^{\circ}(-6); %intertia momentum of motor rotor (kg*m^2)

T1 = 9.18*10^{\circ}(-2); %load torque (Nm)

Ua = 24; %gain for unity step excitation (-)

B1 = 6.74*10^{\circ}(-6); %constant of viscotic fricion resistive torrque (Nm*s/rad)

TauEM = La/Ra; %electromagnettic time constant of the amatorr winding (s)
```


Rysunek 2: Struktura obwodowego modelu silnika prądu stałego wykonana w programie Simulink (źródło: opracowanie własne).

4 Obliczenia

Prędkość obrtowa wału ω_r to stosunek napięcia zasilania U_a do stałej napięciowej k_v . Podstawiając nasze pararmetry otrzymujemy:

$$\omega_r = \frac{U_a}{k_v} = \frac{24}{0,0374} = 641,71 \left(\frac{V}{Vs/rad} = \frac{rad}{s} \right)$$
 (1)

Wartość maksymalna prądu twornika w czasie rozruchu można opisać wzorem:

$$i_{aMAX} = \frac{U_a}{R_a} = \frac{24}{3.6} = 6, (6) \left(\frac{V}{\Omega} = A\right)$$
 (2)

5 Analiza przebiegów

Wynik przeprowadzonej symulacji z rysunku 1 w postaci przebiegu prędkości obrotowej wału ω_r oraz prądu twornika i_{aMAX} przedstawiono na rysunkach kolejno: 3 oraz 4.

Rysunek 3: Przebieg prędkości obrotowej, odpowiedź na wymuszenie skokowe napięcia – wynik symulacji modelu z rysunku 1 wg parametrów z listingu 1 (źródło: opracowanie własne).

Rysunek 4: Przebieg prądu uzwojenia twornika, odpowiedź na wymuszenie skokowe napięcia – wynik symulacji modelu z rysunku 1, wg parametrów z listingu 1 (źródło: opracowanie własne).

Porównując wyniki teoretyczne z wynikami symulacji można zaobserwować, iż wartość prędkości obrotowej otrzymanej drogą obliczeń jest ponad 1,5 raza większa niż ta otrzymana w wynikach testów. Może to być spowodowane nieuwzględnieniem wartości prądu twornika i_a . Maksymalna wartość prądu twornika i_{aMAX} otrzymana z wykredu na rysunku 4. jest natomiast bardzo zbliżona do wartości z obliczeń we wzorze (2).

Rysunek 5: Przebieg momentu obrotowego, odpowiedź na wymuszenie skokowe napięcia – wynik symulacji modelu z rysunku 1, wg parametrów z listingu 1 (źródło: opracowanie własne).

Na rysunku 6. zaznaczone jest wejście sterujące i wejście zakłócenia. Węzeł stanowiący wejście sterujące obiektu jest sumator dwuwejściowy \mathbf{a} , ponieważ wchodzi tam skok jednostkowy wraz ze wzmocnieniem U_a reprezentujące model idealny. Węzeł stanowiący wejście zakłócenia jest sumator trzywejściowy \mathbf{b} , ponieważ źródło skoku jednostkowego wraz z momentem obciążenia T_1 doprowadzane jest do drugiego wejścia '-'.

Rysunek 6: Struktura obwodowego modelu silnika prądu stałego wykonana w programie Simulink z zaznaczonymi sumatorami (źródło: opracowanie własne).

6 Podsumowanie

W ćwiczeniu dokonaliśmy symulacji działania silnika stałoprądowego. Otrzymane charakterystyki wyjściowe pokrywają się z założeniami teoretycznymi, z wyjątkiem różnicy wartości prędkości kątowej, którą uzasadniliśmy wcześniej, natomiast sam kształt przebiegu jest poprawny. Obliczone wartości w_r wyszły większe niż te ukazane na przebiegu, ale po odjęciu wartości prądu twornika stanowiącego efekt obciążenia momentem we wzorze (2) wartości te powinny być zbliżone do siebie.