Національний університет «Запорізька політехніка» Кафедра програмних засобів

Дипломна кваліфікаційна робота бакалавра

Програмне забезпечення для виявлення дефектів на металевих поверхнях

Software for Metal Surfaces Defects Detection

Виконав ст. гр. КНТ-137

В.В. Козлов

Керівник

к.т.н., доцент

2021

Мета та задачі дипломної роботи

Мета роботи — розробка програмного забезпечення для виявлення дефектів на металевих поверхнях за допомогою методів в основу яких закладено використання нейромережевих технологій.

Задачі роботи:

- виконати аналіз вимог;
- обрати програмні засоби;
- виконати програмну реалізацію;
- провести тестування та експериментальне дослідження програми;
- розробити програмну документацію.

Актуальність дипломної роботи

Продукція	За 3 місяці 2020, тис. т	За 3 місяці 2021, тис. т	Зсув, %
Агломерат	7 858	8 220	4,6
Кокс	2 451	2 420	-1,3
Чавун	5 096	5 313	4,3
Сталь	5 318	5 291	-0,5
Металопрокат	4 670	4 734	1,4

Підсумки роботи ГМК України в 2021 році

Штучні нейронні мережі

Особливість	Прямого поширення	Зі зворотніми або латеральними зв'язками	Нейро-нечіткі	Згорткові
Інформація про архітектури в мережі Інтернет	Багато	Середньо	Мало	Багато
Складність реалізації	Легко	Середньо	Складно	Середньо
Вага мережі	Легка	Середня	Середня	Важка
Час навчання	Швидко	Середньо	Середньо	Довго
Час роботи	Швидко	Середньо	Середньо	Довго
Робота з послідовними даними	Hi	Так	Hi	Hi
Класифікація зображень	Теоретично	Теоретично	Hi	Так
Розпізнавання зображень	Hi	Hi	Hi	Так

Порівняння архітектур нейронних мереж

Згорткові нейронні мережі та VGGNet сімейство

Загальна архітектура згорткової нейронної мережі

Особливість	LeNet-5	AlexNet	ZFNet	GoogleNet	VGG-16
Рік представлення	1989	2012	2013	2014	2014
Розмір зображення	32x32	227x227	224x224	224x224	224x224
Глибина кольору	1	3	3	3	3
Кількість згорткових шарів	3	5	5	-	13
Наявність inception модуля	Hi	Hi	Hi	9 модулів	Hi
Розмір ядер згортки	5x5	11x11	7x7	5х5, 3х3 та 1х1	3x3
Функція активації нейронів	Tanh	ReLU	ReLU	ReLU	ReLU
Функція агрегування	Average	Maximum	Maximum	Maximum, Average	Maximum
Загальна кількість шарів	5	8	8	22	16
Складність реалізації	Легко	Середньо	Середньо	Складно	Середньо
Час навчання	Швидко	Довго	Довго	Середньо	Довго
Точність на наборі даних ImageNet	-	83,60%	88,30%	93,30%	92,70%

Порівняння архітектур згорткових нейронних мереж

VGG-11	VGG-11 (LRN)	VGG-13	VGG-16-1	VGG-16	VGG-19		
11 вагових шарів	11 вагових шарів	13 вагових шарів	16 вагових шарів	16 вагових шарів	19 вагових шарів		
Вхідний шар (224 × 224 RGB зображення)							
Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64		
	LRN	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64		
		Максимізацій	не агрегування				
Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128		
		Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128		
		Максимізацій	не агрегування				
Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256		
Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256		
			Згортка 1×1×256	Згортка 3×3×256	Згортка 3×3×256		
					Згортка 3×3×256		
		Максимізацій	не агрегування				
Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512		
Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512		
			Згортка 1×1×512	Згортка 3×3×512	Згортка 3×3×512		
					Згортка 3×3×512		
		Максимізацій	не агрегування				
Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512		
Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512		
			Згортка 1×1×512	Згортка 3×3×512	Згортка 3×3×512		
					Згортка 3×3×512		
		Максимізацій	не агрегування	·	·		
		Повноз'єднан	ний шар ×4096				
		Повноз'єднан	ний шар ×4096				
		Повноз'єднан	ний шар ×1000				
	Hoj	рмалізована експонен	ціальна функція (Softi	max)			

Архітектура моделей VGGNet

Операція згортки

Вихідна матриця

Вхідна матриця

Операція згортки з нульовим доповненням

Особливості зображення виявлені різними ядрами згортки

Агрегування, повнозв'язні шари, функції активації

Приклади агрегування

	Функція активації							
Особливість	Порогова	Лінійна	Сигмоїдна	Гіперболічний тангенс	ReLU			
Діапазон значень	{0, 1}	$(-\infty; +\infty)$	(0; 1)	(-1; 1)	$[0; +\infty)$			
Нелінійність	Так	Hi	Так	Так	Так			
Не захоплює від'ємні значення	Так	Hi	Так	Hi	Так			
Швидкість розрахунку значення	Швидко	Швидко	Довго	Довго	Швидко			
Відкидання не активованих нейронів	Так	Hi	Hi	Hi	Так			
Ріномірність розподілення значень	Hi	Так	Hi	Hi	Так			

Порівняння функцій активації

Вимоги до програмного забезпечення

Use Case діаграма програми

Вибір програмних засобів

Особливість	C++	C #	R	Java	Python
Рік розробки	1983	2001	1993	1995	1991
Інтерпретованість	Hi	Hi	Так	Hi	Так
Динамічна типізація	Hi	Hi	Так	Hi	Так
Легкий інтуїтивний синтаксис	Hi	Середньо	Середньо	Середньо	Так
Підтримка об'єктно орієнтованої парадигми	Так	Так	Так	Так	Так
Підтримка процедурної парадигми	Так	Hi	Так	Hi	Так
Щвидкість роботи	Швидко	Швидко	Середньо	Швидко	Середньо
Скільки пам'яті займає програма	Багато	Багато	Мало	Багато	Мало
Керування пам'яттю	Вручну	Вручну	Авто	Авто	Авто
Створення та стилізація графічного інтерфейсу	Так	Так	Hi	Так	Так
Бібліотеки для аналізу даних	Мало	Мало	Багато	Мало	Багато
Бібліотеки для машинного навчання	Мало	Мало	Середньо	Середньо	Багато
Легко встановити додаткову бібліотеку	Hi	Так	Hi	Hi	Так
Технічна документація та навчальні посібники	Багато	Багато	Середньо	Середньо	Багато

Порівняння мов програмування

Структура програмного забезпечення

Загальна структура розробленої програми

Діаграма класів програми

(None, 14, 14, 512)

(None, 14, 14, 512)

Реалізація нейромережевих моделей VGG

Назва шару	Опис	Основні параметри
Conv2D	Створює ядро згортки, яке спільно з входом шару створює тензор вихідних даних	Кількість фільтрів на виході Розмір ядра сгортки Тип вирівнювання Тип функції активації Форма вхідного тензора
Lambda	Надає можливість використання довільних виразів в побудованій послідовній моделі	Залежить від довільного виразу, який використовується
MaxPool2D	Агрегувальний шар зменшує вибірку вводу за його просторовими розмірами, приймаючи	Розмір агрегувального фільтра
	максимальні значення	Крок Тип вирівнювання
Flatten	Згладжує вхідний шар у одновимірний тензор	_
Dense	Додавання повнозв'язаного шару	Кількість нейронів в шарі
	ширу	Тип функції активації

Використані шари для побудови архітектур VGGNet

block5 conv2: Conv2D

Спроєктована архітектура мережі VGG19

Тестування

Короткий опис	Пере	вірка процесу навчання моделі		
Передумови	Відк	рито головне вікно програми		
	№	Покрокові дії	Очікуваний результат	Статус
	1	Натиснути на кнопку навчання	Відкрито вікно зі списком всіх моделей	Пройдено
	2	Вибрати зі списку необхідну модель та натиснути на конпку детальніше	Відкрито вікно з інформацією про вибрано модель	Пройдено
			Якщо модель не навчена почався процес навчання, про що свідчить повідомлення в назві моделі.	
Кроки		Натиснути на кнопку навчити	Якщо модель попередньо навчена відображено діалогове вікно. Попередній прогрес навчання моделі скинуто	Пройдено
	4	Натиснути на кнопку зупинити навчання	Навчання моделі зупинено	Пройдено
	5 Натиснути кнопку донавчити	Натиснути кнопку донавчити	Почався процес донавчання, про що свідчить повідомлення в назві моделі	Пройдено
	6	Закрити вікно	Процес донавчання зупинено. Збережено прогрес останньої пройденої епохи. Вікно зі списком моделей стало активним	Пройдено

Тест-кейс перевірки процесу навчання моделі

	1.1.1.1.1.1.1.1.1.1.1.1							
Вимога	Статус							
Відкриття вікон програми								
Відкриття головного вікна програми	Пройдено							
Відкриття вікна зі списком моделей	Пройдено							
Відкриття вікна з інформацією про модель	Пройдено							
Відкриття вікна класифікації	Пройдено							
Відкриття вікна з інформацією про програму	Пройдено							
Можливості головного вікна програми								
Реакція графічних елементів на дії користувача	Пройдено							
Відображення назви програми	Пройдено							
Відображення логотипа програми	Пройдено							
Фікосваний розмір вікна	Пройдено							
Можливості вікна зі списком моделей								
Можливість гортання списку моделей	Пройдено							
Коректне відображення назв неромережевих моделей	Пройдено							
Відображення графіка точності для кожної з моделей	Пройдено							
Реакція графічних елементів на дії користувача	Пройдено							
Розмір вікна можна змінювати								
Можливості вікна з інформацією про модель								
Реакція графічних елементів на дії користувача	Пройдено							
Можливість навчання моделі	Пройдено							
Можливість зупинити навчання моделі	Пройдено							
Коректне відображення назви неромережевої моделі	Пройдено							
Відображення графіка точності та витрат	Пройдено							
Можливості вікна класифікації								
Вибір та завантаження зображення	Пройдено							
Коректне відображення зображення	Пройдено							
Можливість вибору моделі зі списку	Пройдено							
Інше								
Найвні всі моделі сімейства VGGNet	Пройдено							
Читабельний розмір шрифтів графічних елементів	Пройдено							
Основні елементи керування підписано українською мовою	Пройдено							
Висока швидкість відклику на дії користувача	Пройдено							
Наявність повідомлення користувачу під час виходу з програми	Пройдено							

Контрольний список тестування

Використання програмного забезпечення

Головне вікно

Вікно зі списком моделей

Вікно класифікації

Використання програмного забезпечення

Вікно моделі VGG11

Вікно моделі VGG19

Експериментальне дослідження програми

Графіки зміни точності всіх моделей VGG під час навчання

Експериментальне дослідження програми

Параметр	VGG11	VGG11 LRN	VGG13	VGG16	VGG16 1	VGG19
Точність на навчальному наборі даних, %	89,49	89,49	95,41	97,95	97,64	98,55
Точність на валідаційному наборі даних, %	94,44	94,44	95,83	100	98,61	100
Точність на тестовому наборі даних, %	93,06	93,06	94,44	98,61	97,22	100
Витрати на навчальному наборі даних	0.2798	0.2798	0.1732	0.0598	0.0571	0.0500
Витрати на валідаційному наборі даних	0.1788	0.1788	0.1562	0.0231	0.0042	0.0027
Витрати на тестовому наборі даних	0.2058	0.2058	0.1656	0.0719	0.0120	0.0141
Кількість згорткових шарів	8	8	10	13	13	16
Загальна кількість шарів	11	11	13	16	16	19
Кількість параметрів	128790918	128790918	128975430	134285126	129566534	139594822
Розмір файлу з вагами, КБ	503133	503134	503858	524610	506178	545359
Розмір файлу з моделлю загалом, КВ	1509367	1509382	1511553	1458790	1518504	1479542
Загальний час навчання, год	4 год 19 хв	4 год 41 хв	6 год 45 хв	12 год 17 хв	9 год 20 хв	13 год 53 хв
Можливість використання вагів ядер згортки мережі натренованої на БД ImageNet	Hi	Hi	Hi	Так	Hi	Так
Загальний час навчання з використанням натренованих вагів ядер згортки, год	-	-	-	3 год 10 хв	+	3 год 50 хв
Кількість епох	20	20	20	20	20	20
Епоха на якій перевищено 75% точності на навчальному наборі	12	11	10	2	8	2

Результати навчання та використання моделей

Висновки

За результатами виконання дипломної кваліфікаційної роботи бакалавра вирішено актуальну інженерну задачу виявлення дефектів на металевих поверхнях за допомогою методів в основу яких закладено використання нейромережевих технологій.

Практична цінність розробленого програмного забезпечення полягає в тому, що воно надає гнучкі можливості навчання нейромережевих моделей сімейства VGGNet та їх подальшого вибору для виявлення дефектів на металевих поверхнях. Програма може використовуватися як для розпізнавання дефектів на виробництві, так і під час проведення навчання та підвищення кваліфікації персоналу.

В подальшому буде додано можливість роботи з програмним забезпеченням за допомогою командного рядка, що дозволить виконувати одночасну обробку великої кількості вхідних даних. Окрім цього буде додано нові екземпляри до навчальної вибірки, що дозволить збільшити кількість типів дефектів на металевих поверхнях, які може виявляти програма. Також планується впровадження системи спостерігання за діями користувача для подальшого аналізу результатів його роботи.

Основні положення роботи було представлено в тезах доповіді науково-практичної конференції Тиждень науки – 2021.

Дякую за увагу!