BỘ GIÁO DỰC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014

Môn: TOÁN; Khối B

(Đáp án - Thang điểm gồm 03 trang)

Câu	Đáp án	Điểm
1	a) (1,0 điểm)	
(2,0đ)	Với $m=1$, hàm số trở thành: $y=x^3-3x+1$. • Tập xác định: $D=\mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y'=3x^2-3;\ y'=0\Leftrightarrow x=\pm 1$.	0,25
	Các khoảng đồng biến: $(-\infty;-1)$ và $(1;+\infty)$; khoảng nghịch biến: $(-1;1)$. - Cực trị: Hàm số đạt cực đại tại $x=-1,\ y_{\text{CD}}=3$; đạt cực tiểu tại $x=1,\ y_{\text{CT}}=-1$. - Giới hạn tại vô cực: $\lim_{x\to -\infty}y=-\infty; \lim_{x\to +\infty}y=+\infty$.	0,25
	- Bảng biến thiên: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	• Đổ thị:	0,25
	b) (1,0 điểm)	
	Ta có $y'=3x^2-3m$. Đồ thị hàm số (1) có hai điểm cực trị \Leftrightarrow phương trình $y'=0$ có hai nghiệm phân biệt $\Leftrightarrow m>0$.	0,25
	Tọa độ các điểm cực trị B,C là $B(-\sqrt{m};2\sqrt{m^3}+1),$ $C(\sqrt{m};-2\sqrt{m^3}+1).$ Suy ra $\overrightarrow{BC}=(2\sqrt{m};-4\sqrt{m^3}).$	0,25
	Gọi I là trung điểm của BC , suy ra $I(0;1)$. Ta có tam giác ABC cân tại $A \Leftrightarrow \overrightarrow{AI}.\overrightarrow{BC} = 0$	0,25
	$\Leftrightarrow -4\sqrt{m}+8\sqrt{m^3}=0 \Leftrightarrow m=0 \text{ hoặc } m=\frac{1}{2}.$ Đối chiếu điều kiện tồn tại cực trị, ta được giá trị m cần tìm là $m=\frac{1}{2}.$	0,25

Câu	Đáp án	Điểm
2	Phương trình đã cho tương đương với $2\sin x\cos x - 2\sqrt{2}\cos x + \sqrt{2}\sin x - 2 = 0.$	0,25
(1,0đ)	$\Leftrightarrow (\sin x - \sqrt{2})(2\cos x + \sqrt{2}) = 0.$	0,25
	$\bullet \sin x - \sqrt{2} = 0$: phương trình vô nghiệm.	0,25
	• $2\cos x + \sqrt{2} = 0 \Leftrightarrow x = \pm \frac{3\pi}{4} + k2\pi (k \in \mathbb{Z}).$	0,25
	Nghiệm của phương trình đã cho là: $x=\pm \frac{3\pi}{4} + k2\pi(k\in\mathbb{Z}).$	0,23
3 (1,0đ)	Ta có $I = \int_{1}^{2} \frac{x^2 + 3x + 1}{x^2 + x} dx = \int_{1}^{2} dx + \int_{1}^{2} \frac{2x + 1}{x^2 + x} dx.$	0,25
	$ \oint_{1}^{2} dx = 1. $	0,25
	$ \bullet \int_{1}^{2} \frac{2x+1}{x^2+x} dx = \ln x^2+x \Big _{1}^{2} $	0,25
	$=\ln 3$. Do đó $I=1+\ln 3$.	0,25
4 (1,0đ)	a) Đặt $z=a+bi$ $(a,b\in\mathbb{R}).$ Từ giả thiết suy ra $\left\{\begin{array}{l} 5a-3b=1\\ 3a+b=9 \end{array}\right.$	0,25
	$\Leftrightarrow a=2, b=3.$ Do đó môđun của z bằng $\sqrt{13}.$	0,25
	b) Số phần tử của không gian mẫu là: $C_{12}^3=220.$	0,25
	Số cách chọn 3 hộp sữa có đủ 3 loại là $5.4.3 = 60$. Do đó xác suất cần tính là $p = \frac{60}{220} = \frac{3}{11}$.	0,25
5	Vectơ chỉ phương của d là $\overrightarrow{u}=(2;2;-1)$.	0,25
(1,0đ)	Mặt phẳng (P) cần viết phương trình là mặt phẳng qua A và nhận \overrightarrow{u} làm vectơ pháp tuyến, nên $(P): 2(x-1)+2(y-0)-(z+1)=0$, nghĩa là $(P): 2x+2y-z-3=0$.	0,25
	Gọi H là hình chiếu vuông góc của A trên d , suy ra $H(1+2t;-1+2t;-t)$.	0,25
	Ta có $H \in (P)$, suy ra $2(1+2t)+2(-1+2t)-(-t)-3=0 \Leftrightarrow t=\frac{1}{3}$. Do đó $H\left(\frac{5}{3};-\frac{1}{3};-\frac{1}{3}\right)$.	0,25
6 (1,0đ)	Gọi H là trung điểm của AB , suy ra $A'H \perp (ABC)$ $A' \qquad \qquad C' \qquad \text{và } \widehat{A'CH} = 60^{\circ}. \text{ Do đó } A'H = CH. \tan \widehat{A'CH} = \frac{3a}{2}.$	0,25
	Thể tích khối lăng trụ là $V_{ABC.A'B'C'}=A'H.S_{\Delta ABC}=\frac{3\sqrt{3}a^3}{8}$.	0,25
	Gọi I là hình chiếu vuông góc của H trên AC ; K là hình chiếu vuông góc của H trên $A'I$. Suy ra $HK = d(H, (ACC'A'))$.	0,25
	Ta có $HI = AH$. $\sin \widehat{IAH} = \frac{\sqrt{3} a}{4}$, $\frac{1}{HK^2} = \frac{1}{HI^2} + \frac{1}{HA'^2} = \frac{52}{9a^2}, \text{ suy ra } HK = \frac{3\sqrt{13} a}{26}.$ Do đó $d(B, (ACC'A')) = 2d(H, (ACC'A')) = 2HK = \frac{3\sqrt{13} a}{13}.$	0,25

Câu	Đáp án	Điểm
7 (1,0đ)	Gọi E và F lần lượt là giao điểm của HM và HG với BC . Suy ra $\overrightarrow{HM} = \overrightarrow{ME}$ và $\overrightarrow{HG} = 2\overrightarrow{GF}$, Do đó $E(-6;1)$ và $F(2;5)$.	0,25
	Đường thẳng BC đi qua E và nhận \overrightarrow{EF} làm vectơ chỉ phương, nên $BC: x-2y+8=0$. Đường thẳng BH đi qua H và nhận \overrightarrow{EF} làm vectơ pháp tuyến, nên $BH: 2x+y+1=0$. Tọa độ điểm B thỏa mãn hệ phương trình $\begin{cases} x-2y+8=0\\ 2x+y+1=0. \end{cases}$ Suy ra $B(-2;3)$.	0,25
	Do M là trung điểm của AB nên $A(-4;-3)$. Gọi I là giao điểm của AC và BD , suy ra $\overrightarrow{GA}=4\overrightarrow{GI}$. Do đó $I\left(0;\frac{3}{2}\right)$.	0,25
	Do I là trung điểm của đoạn BD , nên $D(2;0)$.	0,25
8 (1,0đ)	$\begin{cases} (1-y)\sqrt{x-y} + x = 2 + (x-y-1)\sqrt{y} & (1) \\ 2y^2 - 3x + 6y + 1 = 2\sqrt{x-2y} - \sqrt{4x-5y-3} & (2). \end{cases} \text{ Diều kiện: } \begin{cases} y \ge 0 \\ x \ge 2y \\ 4x \ge 5y + 3 \end{cases} $ $\text{Ta có } (1) \Leftrightarrow (1-y)(\sqrt{x-y}-1) + (x-y-1)(1-\sqrt{y}) = 0$ $\Leftrightarrow (1-y)(x-y-1) \Big(\frac{1}{\sqrt{x-y}+1} + \frac{1}{1+\sqrt{y}} \Big) = 0 (3).$	0,25
	Do $\frac{1}{\sqrt{x-y}+1}+\frac{1}{1+\sqrt{y}}>0$ nên $(3)\Leftrightarrow \left[\begin{array}{c}y=1\\y=x-1.\end{array}\right]$ • Với $y=1$, phương trình (2) trở thành $9-3x=0\Leftrightarrow x=3.$	0,25
	• Với $y=x-1$, điều kiện (*) trở thành $1 \le x \le 2$. Phương trình (2) trở thành $2x^2-x-3=\sqrt{2-x} \Leftrightarrow 2(x^2-x-1)+(x-1-\sqrt{2-x})=0$ $\Leftrightarrow (x^2-x-1)\Big[2+\frac{1}{x-1+\sqrt{2-x}}\Big]=0$	0,25
	$\Leftrightarrow x^2-x-1=0 \Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}. \text{ Đối chiếu điều kiện } (*) \text{ và kết hợp trường hợp trên, ta được}$ nghiệm $(x;y)$ của hệ đã cho là $(3;1)$ và $\Big(\frac{1+\sqrt{5}}{2};\frac{-1+\sqrt{5}}{2}\Big).$	0,25
9 (1,0đ)	Ta có $a+b+c \ge 2\sqrt{a(b+c)}$. Suy ra $\sqrt{\frac{a}{b+c}} \ge \frac{2a}{a+b+c}$.	0,25
	Tương tự, $\sqrt{\frac{b}{a+c}} \geq \frac{2b}{a+b+c}$. Do đó $P \geq \frac{2(a+b)}{a+b+c} + \frac{c}{2(a+b)} = \left[\frac{2(a+b)}{a+b+c} + \frac{a+b+c}{2(a+b)}\right] - \frac{1}{2}$	0,25
	$\geq 2 - \frac{1}{2} = \frac{3}{2}.$	0,25
	Khi $a=0,b=c,b>0$ thì $P=\frac{3}{2}.$ Do đó giá trị nhỏ nhất của P là $\frac{3}{2}.$	0,25

----Hết----