- # Machine Learning Lab Manual
- **Objective: ** This lab manual provides a set of practical exercises to understand and implement fundamental machine learning algorithms. Each experiment focuses on a specific technique, allowing students to gain handson experience with data processing, model building, and evaluation.
- **Instructions: **
- * For each experiment, carefully read the problem statement and understand the underlying concepts.
- * Implement the algorithms using Python (or Java, as specified). You are encouraged to use relevant libraries like NumPy, Pandas, scikit-learn, etc., to streamline your implementations.
- * Ensure your code is well-commented and easy to understand.
- * Prepare a lab report for each experiment, including the problem statement, algorithm, code, results (including outputs and visualizations where applicable), and your observations/conclusions.

- ## Experiment 1: FIND-S Algorithm
- **Problem Statement: ** Implement and demonstrate the FIND-S algorithm to find the most specific hypothesis consistent with a given set of positive training examples. Read the training data from a `.CSV` file.
- **Similar Question: ** Consider the following training examples for a concept "EnjoySport":

Assuming the hypothesis space is a conjunction of attributes, trace the execution of the FIND-S algorithm and determine the final most specific hypothesis.

match

```
return hypothesis

# Sample CSV data (hypothetical data.csv):
# Sky, AirTemp, Humidity, Wind, Water, Forecast, EnjoySport
# Sunny, Warm, Normal, Strong, Warm, Same, Yes
# Sunny, Warm, High, Strong, Warm, Same, Yes
# Sunny, Warm, High, Strong, Cool, Change, Yes

data = pd.read_csv('data.csv')
specific_hypothesis = find_s(data)
print("Most Specific Hypothesis:", specific_hypothesis)

Potential Output:

Most Specific Hypothesis: ['Sunny', 'Warm', '?', 'Strong', '?', '?']
```

Experiment 2: Candidate-Elimination Algorithm

Problem Statement: For a given set of training data examples stored in a .csv file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples (version space).

Similar Question: Using the same "EnjoySport" dataset from Experiment 1, trace the Candidate-Elimination algorithm, showing the evolution of the General Boundary (G) and Specific Boundary (S) after each training example.

Conceptual Code (Python):

```
Python
```

```
import pandas as pd
def is consistent (hypothesis, instance):
    for i in range(len(hypothesis)):
        if hypothesis[i] != '?' and hypothesis[i] != instance[i]:
            return False
    return True
def candidate elimination(data):
    num attributes = len(data.columns) - 1
    specific boundary = ['?' for    in range(num attributes)]
    general_boundary = [['?' for _ in range(num_attributes)] for _ in
range(num attributes)]
    for i, row in data.iterrows():
        instance = list(row[:-1])
        target = row['EnjoySport']
        if target == 'Yes':
            for j in range(num attributes):
                if specific boundary[j] == '?':
                    specific boundary[j] = instance[j]
```

```
elif specific boundary[j] != instance[j]:
                    specific boundary[j] = '?'
            for g in list(general boundary):
                if not is consistent(q, instance):
                    general boundary.remove(g)
        elif target == 'No':
            new generalizations = []
            for j in range(num attributes):
                if specific boundary[j] != '?' and specific boundary[j] !=
instance[j]:
                    new general hypothesis = list(specific boundary)
                    new general hypothesis[j] = '?'
                    if new_general_hypothesis not in new_generalizations and
new general hypothesis not in general boundary:
                        new generalizations.append(new general hypothesis)
            for new hyp in new generalizations:
                is more general = True
                for g in general boundary:
                    if all((gh == '?' \text{ or } gh == nh) for gh, nh in zip(g,
new hyp)):
                        is more general = False
                        break
                if is more general:
                    general boundary.append(new hyp)
            general boundary[:] = [g for g in general boundary if not all((s
== '?' or s == g[i]) for i, s in enumerate(specific boundary))]
    final general boundary = []
    for gl in general boundary:
        is_minimal = True
        for g2 in general boundary:
            if g1 != g2 and all((g2 val == '?' or g2 val == g1 val) for
g1 val, g2 val in zip(g1, g2)) and any(g1 val != g2 val for g1 val, g2 val in
zip(g1, g2)):
                is minimal = False
                break
        if is minimal and gl not in final general boundary:
            final general boundary.append(g1)
    return specific boundary, final general boundary
# Assuming 'data.csv' from Experiment 1
data = pd.read csv('data.csv')
s boundary, g boundary = candidate elimination(data)
print("Specific Boundary (S):", s_boundary)
print("General Boundary (G):", g boundary)
```

Potential Output (may vary based on the dataset):

```
Specific Boundary (S): ['Sunny', 'Warm', '?', 'Strong', '?', '?']
```

```
General Boundary (G): [['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?'], ['?', '?'], ['?', '?'], ['?', '?']
```

Experiment 3: ID3 Algorithm

Problem Statement: Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Similar Question: Consider the following "PlayTennis" dataset:

Outlook Temperature Humidity Wind PlayTennis

Sunny	Hot	High	Weak No
Sunny	Hot	High	Strong No
Overcast	Hot	High	Weak Yes
Rainy	Mild	High	Weak Yes
Rainy	Cool	Normal	Weak Yes
Rainy	Cool	Normal	Strong No
Overcast	Cool	Normal	Strong Yes
Sunny	Mild	High	Weak No
Sunny	Cool	Normal	Weak Yes
Rainy	Mild	Normal	Strong Yes
Sunny	Mild	Normal	Strong Yes
Overcast	Mild	High	Strong Yes
Overcast	Hot	Normal	Weak Yes
Rainy		High	Strong No

Export to Sheets

Calculate the initial entropy of the "PlayTennis" attribute. Then, calculate the information gain for the "Outlook" attribute.

Conceptual Code (Python - using a library for brevity):

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# Sample CSV data (hypothetical tennis.csv):
# Outlook, Temperature, Humidity, Wind, PlayTennis
```

```
# Sunny, Hot, High, Weak, No
# ... (rest of the data)
data = pd.read csv('tennis.csv')
X = data.drop('PlayTennis', axis=1)
y = data['PlayTennis']
X = pd.get dummies(X, drop first=True) # Convert categorical features
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
model = DecisionTreeClassifier(criterion='entropy')
model.fit(X train, y train)
y pred = model.predict(X test)
accuracy = accuracy score(y test, y pred)
print("Accuracy:", accuracy)
# Predicting for a new sample
new sample = pd.DataFrame([{'Outlook Rainy': 0, 'Outlook Sunny': 1,
'Temperature Hot': 0, 'Temperature Mild': 1, 'Wind Weak': 1,
'Humidity Normal': 1}])
prediction = model.predict(new sample)
print("Prediction for new sample:", prediction)
Potential Output (may vary):
```

```
Prediction for new sample: ['Yes']
```

Experiment 4: Backpropagation Algorithm

Problem Statement: Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.

Similar Question: Explain the steps involved in the Backpropagation algorithm for a single layer perceptron with a sigmoid activation function. Illustrate with a simple example.

Conceptual Code (Python - using a library for brevity):

```
from sklearn.neural network import MLPClassifier
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score
from sklearn.datasets import load iris
iris = load iris()
X, y = iris.data, iris.target
X train, X test, y train, y test = train test split(X, y, test size=0.3,
random state=42)
```

```
model = MLPClassifier(hidden_layer_sizes=(5,), activation='logistic',
max_iter=1000, random_state=42)
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 0.977777777777777

Experiment 5: Naive Bayesian Classifier

Problem Statement: Write a program to implement the naive Bayesian classifier for a sample training data set stored as a .csv file. Compute the accuracy of the classifier, considering few test data sets.

Similar Question: Given the following training data for classifying emails as "Spam" or "Not Spam":

Word1 Word2 Word3 Class

Yes	No	Yes	Spam
No	Yes	No	Not Spam
Yes	Yes	No	Spam
No	No	Yes	Not Spam

Export to Sheets

Calculate the probability of an email containing (Word1=Yes, Word2=No, Word3=Yes) being classified as "Spam" using the Naive Bayes approach.

Conceptual Code (Python - using a library for brevity):

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

# Sample CSV data (hypothetical email.csv):
# Word1,Word2,Word3,Class
# Yes,No,Yes,Spam
# ...
data = pd.read_csv('email.csv')
X = pd.get_dummies(data.drop('Class', axis=1), drop_first=True)
y = data['Class']
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

model = GaussianNB()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 0.75

Experiment 6: Naive Bayesian Classifier for Document Classification

Problem Statement: Assuming a set of documents that need to be classified, use the naive Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

Similar Question (Java Focused): Outline the steps involved in building a Naive Bayes classifier for text classification using Java libraries like Apache Mahout or Weka.

Conceptual Code (Python - using scikit-learn for text processing):

```
from sklearn.feature extraction.text import CountVectorizer
from sklearn.model selection import train test split
from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import accuracy score, precision score, recall score
# Sample document data (hypothetical documents.txt - each line is a document
with label)
# This is a positive document. POS
# This is another positive one. POS
# This is a negative review. NEG
# Another negative sentence here. NEG
with open('documents.txt', 'r') as f:
    documents = [line.strip().split(' ', -1) for line in f]
    texts = [' '.join(doc[:-1]) for doc in documents]
    labels = [doc[-1]] for doc in documents]
vectorizer = CountVectorizer()
X = vectorizer.fit transform(texts)
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.3,
random state=42)
```

```
model = MultinomialNB()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')

print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
```

Accuracy: 1.0 Precision: 1.0 Recall: 1.0

Experiment 7: Bayesian Network for Medical Diagnosis

Problem Statement: Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using a standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

Similar Question: Describe the structure of a simple Bayesian network for diagnosing a specific medical condition (e.g., flu) based on symptoms like fever, cough, and sore throat. Define the conditional probability tables for each node.

Conceptual Code (Python - using a library for Bayesian Networks):

```
import pandas as pd
from pgmpy.models import BayesianNetwork
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.inference import VariableElimination
# Sample Heart Disease Data (hypothetical heart.csv - simplified)
# ChestPain, BlockedArtery, HeartDisease
# Yes, Yes, Yes
# No, Yes, Yes
# Yes, No, No
# No, No, No
data = pd.read csv('heart.csv')
# Define the Bayesian Network structure
model = BayesianNetwork([('ChestPain', 'HeartDisease'), ('BlockedArtery',
'HeartDisease')])
# Estimate parameters from data
model.fit(data, estimator=MaximumLikelihoodEstimator)
```

```
# Perform inference
inference = VariableElimination(model)
query_result = inference.query(variables=['HeartDisease'],
evidence={'ChestPain': 'Yes', 'BlockedArtery': 'Yes'})
print(query_result)
```

++	+	
HeartDisease	phi(HeartDisease)	
HeartDisease(0)	0.1000 0.10000000000000000000000000000	
HeartDisease(1)	0.9000 0.9	