1. Minterms are a canonical sum of products—it entails writing each combination of inputs which yield f=1 as a product (i.e. we would write x1x2 if f(x1,x2)=1), and then summing all these products of combinations together. It is considered "canonical" because all input combinations that yield f=1 appear only once. On the other hand, maxterms are a canonical product of sums—it entails writing each combination of inputs which yield f=0 as a sum (i.e. we would write x1+x2 if f(x1,x2) =0), and then multiplying all these sums of combinations together. Because of duality — the notion that you can substitute 0 for 1 and • for + in any statement — minterms and maxterms are complementary expressions.

2.

a.

x1	x2	х3	f(x1,x2,x3)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

b.

x1	x2	х3	x4	f(x1,x2,x3,x4) y1 y2 y3 y4				
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	1	1	0	0	0	0	
0	1	0	0	0	0	0	1	
0	1	0	1	0	0	0	1	

0	1	1	0	0	0	0	1
0	1	1	1	0	0	0	1
1	0	0	0	0	0	1	0
1	0	0	1	0	0	1	0
1	0	1	0	0	0	1	0
1	0	1	1	0	0	1	0
1	1	0	0	0	0	1	1
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	1
1	1	1	1	0	0	1	1

c.

x1	x2	х3	x4	x5	y1	f(x1,x y2	x2,x3,x y3	x4,x5) y4	y5
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	0	0	0	1
0	0	0	1	1	0	0	0	0	1
0	0	1	0	0	0	0	0	1	0
0	0	1	0	1	0	0	0	1	0
0	0	1	1	0	0	0	0	1	0
0	0	1	1	1	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0
0	1	0	0	1	0	0	0	1	0
0	1	0	1	0	0	0	0	1	0
0	1	0	1	1	0	0	0	1	0
0	1	1	0	0	0	0	0	1	0

0	1	1	0	1	0	0	0	1	0
0	1	1	1	0	0	0	0	1	0
0	1	1	1	1	0	0	0	1	0
1	0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	0	0	1	1
1	0	0	1	0	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	0	1	0	0	0	0	0	1	1
1	0	1	0	1	0	0	0	1	1
1	0	1	1	0	0	0	0	1	1
1	0	1	1	1	0	0	0	1	1
1	1	0	0	0	0	0	0	1	1
1	1	0	0	1	0	0	0	1	1
1	1	0	1	0	0	0	0	1	1
1	1	0	1	1	0	0	0	1	1
1	1	1	0	0	0	0	0	1	1
1	1	1	0	1	0	0	0	1	1
1	1	1	1	0	0	0	0	1	1
1	1	1	1	1	0	0	0	1	1

3.

a.
$$x1x2x3 + x1$$
' $x2x3 + x1x2$ ' $x3 + x1x2x3$ '

$$f(x1, x2, x3) = x2x3 + x1x3 + x1x2$$

b.
$$y1 = 0$$
 (always); $y2 = 0$ (always); $y3 = x1$; $y4 = x2$

c.
$$y1 = 0$$
 (always) $y2 = 0$ (always); $y3 = 0$ (always); $y4 = x1 + x2 + x3$; $y5 = x1$

4. 5 binary inputs \rightarrow 32 different input combos

To create every single output (0 or 1) of 32 inputs, we can do 2^{32} -1, which yields **4294967295 unique functions**

5.

a.
$$f(x1, x2, x3) = x1'x2'x3 + x1x2'x3' + x1x2'x3 + x1x2x3'$$

distributive :
$$x2^2x3(x1^2+x1) + x1x3^2(x2+x2^2)$$

 $x^2+x=1$ (cancel out parentheses) : $\mathbf{f(x1,x2,x3)} = \mathbf{x2^2x3} + \mathbf{x1x3^2}$
b. $\mathbf{f(x1,x2,x3)} = (x1+x2+x3)(x1+x2^2+x3)(x1^2+x2^2+x3)(x1+x2+x3^2)$
Distribute parentheses $\rightarrow (x1x1+x1x2^2+x1x3+x2x1+x2x2^2+x2x3+x3x1+x3x2^2+x3x3)$
 $\rightarrow (x1^2x1+x1^2x2+x1^2x3^2+x2^2x1+x2^2x2^2+x2^2x3^2+x3x1+x3x2^2+x3x3^2)$
Apply $\mathbf{xx} = 1$ and $\mathbf{x} + \mathbf{x} = 1$ $\mathbf{xx^2} = \mathbf{0} \rightarrow (x1+x1x2^2+x1x3+x2x1+x2x3+x3x2^2+x3)$
 $\rightarrow (x1^2x2+x1^2x3^2+x2^2x1+x2^2x3^2+x3x1+x3x2)$
Combining $\rightarrow (x1+x1x3+x3)(x1^2x2+x1^2x3^2+x2^2x1+x2^2x3^2+x3x1+x3x2)$
Absorption $\rightarrow (x1+x3)(x1x3+x1^2x2+x1^2x3^2+x2^2x1+x2^2x3^2+x3x1+x3x2)$
Consensus $\rightarrow (x1+x3)(x1x3+x1^2x2+x1^2x2^2+x1x2^2x3^2+x1x3x3+x1^2x2x3+x2^2x1x3+x2x3^2)$
Distributive $\rightarrow (x1x2x3+x1^2x12+x1x2x2^2+x1x2^2x3^2+x1x3x3+x1^2x2x3+x2^2x1x3+x2x3^2)$
Apply $\mathbf{xx} = 1$ and $\mathbf{x} + \mathbf{x} = 1$ $\mathbf{xx^2} = \mathbf{0} \rightarrow (x1x2x3+x1x2^2x3^2+x1x3+x1^2x2x3+x1x2^2x3)$
Combining $\rightarrow (x2x3+x1x2^2)$
 $\mathbf{f(x1,x2,x3)} = (x2x3+x1x2^2)$

6.

a.
$$f(x1,x2,x3) = x1'x2x3 + x1x2'x3' + x1x2x3' + x1x2x3$$

 $x1x2(x3 + x3') + x1'x2x3 + x1x2'x3'$
 $= x1x2 + x1'x2x3 + x1x2'x3$
 $= x1x3' + x2x3$

b.
$$x1'x2'x3' + x1'x2x3 + x1x2'x3' + x1x2x3' + x1x2x3$$

= $x2'x3'(x1' + x1) + x1x2(x3' + x3) + x2x3$
= $x1x2 + x2x3 + x2'x3'$

7.

a.
$$f(x1,x2,x3) = (x1+x2+x3)(x1+x2'+x3)(x1'+x2+x3')$$

 $= (x1x1 + x1x2' + x1x3 + x2x1 + x2x2' + x2x3 + x3x1 + x3x2' + x3x3)(x1'+x2+x3')$
 $= (x1 + x3)(x1'+x2+x3') = (x1x1' +x1x2 + x1x3' + x3x1' + x3x2 + x3x3')$
 $= (x1x2 + x1x3' + x3x1' + x3x2)$
 $= consensus \rightarrow x3x2 + x3'x1 + x1x2 = x3x2 + x3'x1$
 $f(x1,x2,x3) = x1x3' + x3x1' + x3x2$

b.
$$f(x1, x2, x3) = \Pi(M0, M1, M5, M7)$$

 $= (x1+x2+x3)(x1+x2+x3')(x1'+x2+x3')(x1'+x2'+x3')$
 $= (x1x1+x1x2+x2x3'+x2x1+x2x2+x2x3'+x3x1+x3x2+x3x3')(x1'+x2+x3')(x1'+x2'+x3')$
 $= (x1+x2)(x1'x1'+x1'x2'+x1'x3'+x2x1'+x2x2'+x2x3'+x3'x1'+x2'x3'+x3'x3')$
 $= (x1+x2)(x1'x1'+x3') = x1x3'+x1'x2+x2x3' \rightarrow \text{(consensus)}$
 $f(x1,x2,x3) = x1x3'+x1'x2$

