Module Interface Specification for Park'd

Team #29, caPstOneGroup
Albert Zhou
Almen Ng
David Yao
Gary Gong
Jonathan Yapeter
Kabishan Suvendran

April 5, 2023

1 Revision History

Date	Version	Notes
Jan 18, 2023	1.0	Revision 0
Apr 3, 2023	1.1	Revision 1

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at Park'd Software Requirements Specification.

Symbol	Description
Park'd	Parking Lot Application
MIS	Module Interface Specification
MG	Module Guide
SRS	Software Requirements Specifications

Contents

1	Rev	vision 1	History							
2	Syn	nbols,	Abbreviations and Acronyms							
3	Introduction 1									
4	Not	Notation 1								
5	Mo	Module Decomposition 3								
6	MIS	S of A	uthentication Module							
	6.1	Modu	lle							
	6.2	Uses								
	6.3	Syntax	x							
		6.3.1	Exported Constants							
		6.3.2	Exported Types							
		6.3.3	Exported Access Programs							
	6.4	Semar	ntics							
		6.4.1	State Variables							
		6.4.2	Environment Variables							
		6.4.3	Assumptions							
		6.4.4	Access Routine Semantics							
•	MIS		ser Module							
	7.1	Templ	late Module							
	7.2	Uses								
	7.3	Syntax	X							
		7.3.1	Exported Constants							
		7.3.2	Exported Types							
		7.3.3	Exported Access Programs							
	7.4	Semar	ntics							
		7.4.1	State Variables							
		7.4.2	Environment Variables							
		7.4.3	Assumptions							
		7.4.4	Access Routine Semantics							
	MIS	S of Ve	ehicle Module							
	8.1	Templ	late Module							
	8.2	Uses								
	8.3	Syntax	x							
		8.3.1	Exported Constants							
		8.3.2	Exported Types							

		8.3.3	Exported Access Programs					 					8
	8.4	Seman	tics					 					8
		8.4.1	State Variables					 					8
		8.4.2	Environment Variables					 					8
		8.4.3	Assumptions					 					8
		8.4.4	Access Routine Semantics										9
0	N/ITC	ı ca											10
9			lmin Console Module										10
	9.1		e										10
	9.2												10
	9.3	•	T										10
		9.3.1	Exported Constants										10
		9.3.2	Exported Types										10
		9.3.3	Exported Access Programs										10
	9.4		tics										10
		9.4.1	State Variables										10
		9.4.2	Environment Variables										10
		9.4.3	State Invariant					 					10
		9.4.4	Assumptions					 				•	10
		9.4.5	Access Routine Semantics					 					11
10	N ATO												10
ΤÛ			lmin Module										12
		-	ate Module										12
													12
	10.3		· · · · · · · · · · · · · · · · · · ·										12
			Exported Constants										12
			Exported Types										12
			Exported Access Programs										12
	10.4		tics										12
			State Variables										12
			Environment Variables										12
		10.4.3	State Invariant					 					12
		10.4.4	Assumptions					 					13
		10.4.5	Access Routine Semantics					 					13
11	MIS	of Pa	rking Lot Layout Modul	Δ									14
11			ate Module										14
		_											14
													14
	11.5		Exported Constants										14 14
			Exported Constants										
			Exported Types										14
	11 1		Exported Access Programs										14
	11.4	Seman	$tics \dots \dots \dots$					 					14

	11.4.1 State Variables	14
	11.4.2 Environment Variables	15
	11.4.3 State Invariant	15
	11.4.4 Assumptions	15
	11.4.5 Access Routine Semantics	15
12 I	IS of Parking Layout Element Module	17
		17
]	.2 Uses	17
]	.3 Syntax	17
	12.3.1 Exported Constants	17
	12.3.2 Exported Types	17
	12.3.3 Exported Access Programs	17
1	.4 Semantics	17
	12.4.1 State Variables	17
	12.4.2 Environment Variables	17
	12.4.3 State Invariant	17
	12.4.4 Assumptions	17
	12.4.5 Access Routine Semantics	18
13]	IS of Parking Spot Module	19
	.1 Template Module Inherits Parking Layout Element	19
	.2 Uses	19
	.3 Syntax	19
-	13.3.1 Exported Constants	19
	13.3.2 Exported Types	19
	13.3.3 Exported Access Programs	19
7	4 Semantics	19
_	13.4.1 State Variables	19
	13.4.2 Environment Variables	20
	13.4.3 State Invariant	20
	13.4.4 Assumptions	20
	13.4.5 Access Routine Semantics	20
14 1	IS of Parking Stats Module	22
	.1 Module	22
	.2 Uses	22
	.3 Syntax	22
_	·	22
	14.3.1 Exported Constants	$\frac{22}{22}$
	14.3.2 Exported Types	$\frac{22}{22}$
1		
	.4 Semantics	22
	14.4.1 State Variables	22

		14.4.2 Environment Variables	22
		14.4.3 State Invariant	22
		14.4.4 Assumptions	22
		14.4.5 Access Routine Semantics	23
15		8.00	24
			24
			24
	15.3	•	24
		1	24
		1 91	24
			24
	15.4		24
			24
			24
		15.4.3 State Invariant	24
		15.4.4 Assumptions	24
		15.4.5 Access Routine Semantics	25
10	D CTC		
16		8	26
			26
			26
	16.3		26
		1	26
		1 01	26
			26
	16.4		26
			26
			26
			26
		· · · · · · · · · · · · · · · · · · ·	26
		16.4.5 Access Routine Semantics	27
17	МТС	of DataBase Module 2	28
11			28
			20 28
			20 28
	17.5	V	
		1	28
		1 01	28
	17 4		28
	11.4		28
			28

		17.4.3	Assumptions	 		 	 							28
		17.4.4	Access Routine Semantics .	 	•	 	 				•			28
18	MIS	of Vid	leo Capture Module											30
			·	 		 	 							30
														30
														30
		•	Exported Constants											30
			Exported Types											30
			Exported Access Programs .											30
	18.4													30
			State Variables											30
			Environment Variables											30
			Assumptions											30
			Access Routine Semantics .											30
19	MIS	of Use	er Action Handler module											32
	19.1	Module	9	 		 	 							32
														32
														32
		*	Exported Constants											32
			Exported Types											32
			Exported Access Programs .											32
	19.4													32
			State Variables											32
			Environment Variables											32
			State Invariant											32
			Assumptions											33
			Access Routine Semantics .											33
20	MIS	of Vie	ew module											3 4
			· · · · · · · · · · · · · · · · · · ·	 		 	 							
														34
	_													34
			Exported Constants											34
			Exported Types											34
			Exported Access Programs											34
	20.4		ics											34
	_0.1		State Variables											34
			Environment Variables											34
			State Invariant											34
			Assumptions											34
			Access Routine Semantics			 • •	 	• •	•	 •	•	•	•	35

20.4.6	Local Functions	 	 	 	 			 35
21 Appendix								38

3 Introduction

The following document details the Module Interface Specifications for Park'd, our parking assistant application. Park'd aims to help drivers find parking spaces by using machine learning algorithms to locate empty spaces from overhead cameras. Our application then directs drivers to those spaces, taking into account restrictions like reserved or accessible spaces. It will maintain a database of spaces as well as a navigation layout for a given parking lot.

Complementary documents include the SRS and MG documents. The full documentation and implementation can be found at Module Interface Specification and Module Guide documents, respectively.

4 Notation

The structure of the MIS for modules comes from Software Design, Automated Testing, and Maintenance: A Practical Approach Hoffman and Strooper (1995), with the addition that template modules have been adapted from Fundamentals of Software Engineering Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Software Design, Automated Testing, and Maintenance: A Practical Approach Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Park'd.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
null	ϵ	empty value
Boolean	\mathbb{B}	true or false
String	String	a sequence of characters
Seq	Seq	an ordered collection of elements
exists	3	true if there exists an element that satis- fies a property, false otherwise
for all	\forall	true if all elements satisfy a property, false otherwise
implies	\Rightarrow	false if the left is true and right is false, otherwise true
in	\in	true if a an element is in a Seq
and	\wedge	true if both operators are true, false otherwise
subset	\subseteq	true if a set contains another, false otherwise

The specification of Park'd uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Park'd uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware Hiding Modules	None
	Video capture module
	Admin console module
	Admin module
Behaviour-Hiding Module	Parking lot layout module
	Parking layout element module
	Parking spot module
	Authentication module
	User module
	User action handler module
	Vehicle module
	View module
	Database module
	Navigation module
Software Decision Module	Parking Stats module
	Machine learning model module

Table 1: Module Hierarchy

6 MIS of Authentication Module

6.1 Module

AuthT

6.2 Uses

UserT DataBaseT

6.3 Syntax

6.3.1 Exported Constants

None

6.3.2 Exported Types

AuthT = ?

6.3.3 Exported Access Programs

Name	In	Out	Exceptions
authenticateUser	String, String	UserT	MissingUserException

6.4 Semantics

6.4.1 State Variables

None

6.4.2 Environment Variables

users: Seq of UserT

6.4.3 Assumptions

None

6.4.4 Access Routine Semantics

authenticateUser(id, pass):

• output: out := \exists (i : \mathbb{N} |i < |users| \land users[i].getUserId() = id \land users[i].getPassword() = pass)) \Rightarrow users[i]

• exception: $exc := \neg \exists (i : \mathbb{N} | i < |users| \land users[i].getUserId() = id \land users[i].getPassword() = pass)) \Rightarrow MissingUserException$

7 MIS of User Module

7.1 Template Module

UserT

7.2 Uses

VehicleT

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Types

UserT = ?

7.3.3 Exported Access Programs

Name	In	Out	Exceptions
new UserT	String, String, VehicleT	UserT	UserCreationException
getUserId		String	
getPassword	l	String	
getVehicle		VehicleT	

7.4 Semantics

7.4.1 State Variables

userId: String password: String vehicle: VehicleT

7.4.2 Environment Variables

None

7.4.3 Assumptions

7.4.4 Access Routine Semantics

```
new UserT(id, pass, veh):
```

- \bullet transition: user Id, password, vehicle := id, pass, veh
- output: out := self
- exception: exc := ((|id| = 0) \vee (|pass| = 0) \vee (veh = ϵ) \Rightarrow UserCreationException) getUserId():
 - output: out := userId
 - exception: none

getPassword():

- output: out := password
- exception: none

getVehicle():

- output: out := vehicle
- exception: none

8 MIS of Vehicle Module

8.1 Template Module

VehicleT

8.2 Uses

None

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Types

VehicleT = ?

8.3.3 Exported Access Programs

Name	In	Out	Exceptions
new VehicleT	\mathbb{R},\mathbb{R}		VehicleCreationException
getLength		\mathbb{R}	
getWidth		\mathbb{R}	

8.4 Semantics

8.4.1 State Variables

length: \mathbb{R} width: \mathbb{R}

8.4.2 Environment Variables

None

8.4.3 Assumptions

8.4.4 Access Routine Semantics

new VehicleT(len, wid):

- transition: length, width := len, wid
- \bullet output: out := self
- exception: $\operatorname{exc} := ((\operatorname{len} \leq 0) \vee (\operatorname{wid} \leq 0) \Rightarrow \operatorname{VehicleCreationException})$

getLength():

- output: out := length
- exception: none

getWidth():

- output: out := width
- exception: none

9 MIS of Admin Console Module

9.1 Module

AdminConsoleT

9.2 Uses

AdminT

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Types

AdminConsoleT = ?

9.3.3 Exported Access Programs

Name	In	Out	Exceptions
authenticateAdmin	String, String	AdminT	MissingAdminException

9.4 Semantics

9.4.1 State Variables

None

9.4.2 Environment Variables

admins: Seq of AdminT

9.4.3 State Invariant

None

9.4.4 Assumptions

9.4.5 Access Routine Semantics

authenticateAdmin(id, pass):

- output: out := $\exists (i : \mathbb{N} | i < | \text{admins} | \land \text{admins}[i].getAdminId() = id \land \text{admins}[i].getPassword() = pass)) \Rightarrow \text{admins}[i]$
- exception: $exc := \neg \exists (i : \mathbb{N} | i < | admins[i].getAdminId() = id \land admins[i].getPassword() = pass)) \Rightarrow MissingAdminException$

10 MIS of Admin Module

10.1 Template Module

AdminT

10.2 Uses

ParkingLotLayoutT, ParkingLayoutElemT, ParkingSpotT

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Types

AdminT = ?

10.3.3 Exported Access Programs

Name	In	Out	Exceptions
new AdminT	String, String	AdminT	AdminCreationException
getAdminId		String	
getPassword		String	
getLayout	String	${\bf ParkingLotLayoutT}$	Layout Not Found Exception
${\it change} Layout$	String, ParkingLayoutElemT		Layout Not Found Exception

10.4 Semantics

10.4.1 State Variables

adminId: String password: String

layouts: seq of ParkingLotLayoutT

10.4.2 Environment Variables

None

10.4.3 State Invariant

10.4.4 Assumptions

None

10.4.5 Access Routine Semantics

new AdminT(id, pass):

- transition: adminId, password, layouts := id, pass, $\langle \rangle$
- output: out := self
- exception: $exc := ((|id| = 0) \lor (|pass| = 0) \Rightarrow AdminCreationException)$

getAdminId():

- output: out := adminId
- exception: none

getPassword():

- output: out := password
- exception: none

getLayout(layoutId):

- output: out := $\exists (i : \mathbb{N} | i < n : \text{layout}[i].\text{getLayoutId}) = \text{layoutId}) \Rightarrow \text{layout}[i]$
- exception: exc := $\neg \exists (i : \mathbb{N} | i < n : \text{layout[}i].\text{getLayoutId(}) = \text{layoutId(}) \Rightarrow \text{LayoutNotFoundException}$

changeLayout(layoutId, newSpot):

- transition: layout := $\langle i : \mathbb{N} | i < n : \text{layout}[i].\text{getLayoutSpotId}() = \text{spotId} \Rightarrow \text{layout}[i].\text{changeElem}(\text{newSpot.getelemId}(), \text{newSpot})|true \Rightarrow \text{layout}[i]\rangle$
- exception: exc := $\neg \exists (i : \mathbb{N} | i < n : \text{layout}[i].\text{getLayoutId}() = layoutId}) \Rightarrow LayoutNotFoundException$

11 MIS of Parking Lot Layout Module

11.1 Template Module

ParkingLotLayoutT

11.2 Uses

Parking Layout Elem T

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Types

ParkingLotLayoutT = ?

11.3.3 Exported Access Programs

Name	In	Out	Exceptions
new ParkingLotLayoutT	String, N	ParkingLotLayoutT	LayoutCreationException
$\frac{\text{setAllRoads}}{\text{setAllRoads}}$			
getLayoutId		String	
getSize		\mathbb{N}	
ah an ga Flom	String,		
changeElem	${\bf Parking Layout Elem T}$		
got I arrout		Seq of	
getLayout		${\bf Parking Layout Elem T}$	
getElem	String	${\bf Parking Layout Elem T}$	${\bf ElemNotFoundException}$
getElemIndex	String	\mathbb{N}	${\bf ElemNotFoundException}$

11.4 Semantics

11.4.1 State Variables

layoutId: String

 $n: \mathbb{N}$

layout: seq of ParkingLayoutElemT

11.4.2 Environment Variables

None

11.4.3 State Invariant

```
|layout| = n^2.
```

11.4.4 Assumptions

None

11.4.5 Access Routine Semantics

new ParkingLotLayoutT(id, size):

- transition: layoutId, n, layout := id, size, $\langle \rangle$
- output: out := self
- exception: $exc := ((|id| = 0) \Rightarrow AdminCreationException)$

$\frac{\text{setAllRoads}()}{\text{constant}}$:

- output: $layout := i : \mathbb{N}|i < n^2 : layout||\langle newParkingLayoutElem("road" + i, "road)\rangle$
- exception: none

getLayoutId():

- output: out := layoutId
- exception: none

getSize():

- output: out := n
- exception: none

changeElem(elemId, newElem):

- transition: $layout := \langle i : \mathbb{N} | i < n : layout[i].getelemId() = elemId <math>\Rightarrow newElem|true \Rightarrow layout[i] \rangle$
- exception: none

getLayout():

 \bullet output: out := layout

• exception: none

getElem(elemId):

- output: out := $\exists (i : \mathbb{N} | i < n : \text{layout}[i].\text{getLayoutId}() = \text{elemId}) \Rightarrow layout[i]$
- exception: exc := $\neg \exists (i : \mathbb{N} | i < n : \text{layout}[i].\text{getLayoutId}() = \text{elemId}) \Rightarrow \text{ElemNotFoundException}$

getElemIndex(elemId):

- output: out := $\exists (i : \mathbb{N} | i < n : \text{layout}[i].\text{getLayoutId}() = \text{elemId}) \Rightarrow i$
- exception: exc := $\neg \exists (i : \mathbb{N} | i < n : \text{layout}[i].\text{getLayoutId}() = \text{elemId}) \Rightarrow \text{ElemNotFoundException}$

12 MIS of Parking Layout Element Module

12.1 Template Module

ParkingElemT

12.2 Uses

None

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Types

ParkingElemT = ?

12.3.3 Exported Access Programs

Name	In	Out	Exceptions
new ParkingElemT	String, String	ParkingElemT	
getelemId		String	
getType		String	

12.4 Semantics

12.4.1 State Variables

elemId: String type: String

12.4.2 Environment Variables

None

12.4.3 State Invariant

 $type \in \{"spot", "road", "obstacle"\}.$

12.4.4 Assumptions

12.4.5 Access Routine Semantics

new ParkingElem(id, s, x, y):

- \bullet output: out := self
- \bullet exception: exc := None

getelemId():

- ullet output: out := elemId
- exception: none

getType():

- \bullet output: out := type
- exception: none

13 MIS of Parking Spot Module

13.1 Template Module Inherits Parking Layout Element

 ${\bf ParkingSpotT}$

13.2 Uses

Parking Layout Elem T

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Types

ParkingSpotT = ?

13.3.3 Exported Access Programs

Name	In	Out	Exceptions
new ParkingSpotT	String, \mathbb{R} , \mathbb{R}	ParkingSpotT	
setEnabled	\mathbb{B}		
setOccupied	\mathbb{B}		
setReserved	\mathbb{B}		
$\operatorname{setHandicapped}$	\mathbb{B}		
$\operatorname{setAllProp}$	Seq of \mathbb{B}		In valid Param Exception
getEnabled		\mathbb{B}	
getOccupied		\mathbb{B}	
getReserved		\mathbb{B}	
getHandicapped		\mathbb{B}	
getAllProp		Seq of \mathbb{B}	

13.4 Semantics

13.4.1 State Variables

enabled: \mathbb{B} occupied: \mathbb{B} reserved: \mathbb{B}

handicapped: \mathbb{B}

13.4.2 Environment Variables

None

13.4.3 State Invariant

None

13.4.4 Assumptions

None

13.4.5 Access Routine Semantics

new ParkingSpot(id):

- transition: spotId, type, enabled, reserved, handicapped, occupied := id, "spot", true, false, false, false
- output: out := self
- exception: exc := None

setEnabled(e):

- transition: enabled := e
- exception: none

setOccupied(o):

- transition: occupied := o
- exception: none

setReserved(r):

- transition: reserved := r
- exception: none

setHandicapped(h):

- transition: handicapped := h
- exception: none

setAllProp(p):

- transition: enabled, occupied, reserved, handicapped := p[0], p[1], p[2], p[3]

getEnabled():

- output: out := enabled
- exception: none

getOccupied():

- output: out := occupied
- exception: none

getReserved():

- output: out := reserved
- exception: none

getHandicapped():

- output: out := handicapped
- exception: none

getAllProp():

- output: out := \(\)enabled, occupied, reserved, handicapped \(\)
- exception: none

14 MIS of Parking Stats Module

14.1 Module

 ${\bf ParkingStatsT}$

14.2 Uses

 ${\bf ParkingLotLayoutT,\,ParkingSpotT}$

14.3 Syntax

14.3.1 Exported Constants

None

14.3.2 Exported Types

ParkingStatsT = ?

14.3.3 Exported Access Programs

Name	In	Out	Exceptions
getStat	ParkingLotLayoutT, Seq of \mathbb{B}	\mathbb{N}	InvalidParamException

14.4 Semantics

14.4.1 State Variables

None

14.4.2 Environment Variables

None

14.4.3 State Invariant

None

14.4.4 Assumptions

14.4.5 Access Routine Semantics

getStat(l, p):

- output: out := +(\forall (e : ParkingSpotT|e \in l.getLayout() : e.getType() = "spot" \land e.getAllProp() = p \Rightarrow 1| $true \Rightarrow$ 0))

15 MIS of Navigation Module

15.1 Module

Navigation T

15.2 Uses

 ${\bf Parking Lot Layout T}, \, {\bf Parking Layout Elem T}$

15.3 Syntax

15.3.1 Exported Constants

None

15.3.2 Exported Types

NavigationT = ?

15.3.3 Exported Access Programs

Name	In	Out	Exceptions
findPath	ParkingLotLayoutT, String	Seq of String	NoPathException

15.4 Semantics

15.4.1 State Variables

None

15.4.2 Environment Variables

loc: String

15.4.3 State Invariant

None

15.4.4 Assumptions

15.4.5 Access Routine Semantics

findPath(L, stopId):

- output: out := $\langle s : \text{String} \rangle$ that satisfies the following: - out[0] = loc. - out[|out| - 1] = stopId. - out $\subseteq \langle \forall (e : \text{ParkingLayoutElemT} | e \in \text{L.getLayout}() : e.get(elemId) \rangle$. - $\forall (i : \mathbb{N} | i < |out| - 2 : L.getElem(out[i]).getType() = "Road")$.
 - L.getElem(out[|out|-1]).getType() = "Spot". $∀(i : N|i < |out|-1 : l.getElemIndex(out[i]) l.getElemIndex(out[i+1]) ∈ {1,-1, l.getSize(), -l.getSize()}.$
- ullet exception: exc := No out can satisfy the requirements \Rightarrow NoPathException

16 MIS of Machine Learning Model Module

16.1 Module

ModelT

16.2 Uses

VideoCaptureT

16.3 Syntax

16.3.1 Exported Constants

None

16.3.2 Exported Types

ModelT = ?

16.3.3 Exported Access Programs

Name	In	Out	Exceptions
$\operatorname{setModel}$	String		
$\operatorname{setInput}$	String, String		
getResult		Seq of \mathbb{B}	

16.4 Semantics

16.4.1 State Variables

None

16.4.2 Environment Variables

model: the pre-trained machine learning model in the machine. The model will be descrialized as a python object.

16.4.3 State Invariant

None

16.4.4 Assumptions

16.4.5 Access Routine Semantics

setModel(pickleAdd):

- transition: modelAddress, model := pickleAdd, load(pickleAdd)
- exception: exc := $\neg \exists (address : String | \neg address.exist()) \Rightarrow InvalidAddressException$

setInput(inputURL, inputTypes):

- transition: InputURL, Inputtype := inputURL,inputTypes
- exception: none

getResult():

- output: out := model.predict()
- exception: none

17 MIS of DataBase Module

17.1 Module

DbT

17.2 Uses

None

17.3 Syntax

17.3.1 Exported Constants

None

17.3.2 Exported Types

DbT = ?

17.3.3 Exported Access Programs

Name	In	Out	Exceptions
query_by_key	String	String	
set_by_key	String, String	\mathbb{B}	

17.4 Semantics

17.4.1 State Variables

None

17.4.2 Environment Variables

None

17.4.3 Assumptions

None

17.4.4 Access Routine Semantics

query_by_key(key):

• output: out := DbT[key]

set_by_key(key, value):

 $\bullet \ \, {\rm output} \colon \, {\rm out} := {\rm DbT}[{\rm key}] := {\rm value}$

18 MIS of Video Capture Module

18.1 Module

 ${\bf Video Capture T}$

18.2 Uses

None

18.3 Syntax

18.3.1 Exported Constants

None

18.3.2 Exported Types

VideoCaptureT = ?

18.3.3 Exported Access Programs

Name	In	Out	Exceptions
getLatestFrame	String	Image File	

18.4 Semantics

18.4.1 State Variables

 ${\bf current Frame: \ Image \ File}$

18.4.2 Environment Variables

None

18.4.3 Assumptions

None

18.4.4 Access Routine Semantics

getLatestFrame(url):

• transition: currentFrame := youtube.capture(url)

 \bullet output: out := currentFrame

• exception: None

getLatestClip():

• transition: currentClip := picamera.record(directory)

 \bullet output: out := currentClip

• exception: None

19 MIS of User Action Handler module

19.1 Module

User Action Handler T

19.2 Uses

NavigationT, AuthT, AdminT, ModelT, ParkingStatsT, ViewT

19.3 Syntax

19.3.1 Exported Constants

none

19.3.2 Exported Types

UserHandlerT = ?

19.3.3 Exported Access Programs

Name	In	Out	Exceptions
handleChangeLayout	String, ParkingLayoutElemT		
handle Parking Stats	ParkingLotLayoutT, Seq of \mathbb{B}	\mathbb{N}	
handle Check Availability		Seq of \mathbb{B}	
handleFindPath	ParkingLotLayoutT, String, String	Seq of String	
handleAuth	Sting, String	$\mathbb B$	

19.4 Semantics

19.4.1 State Variables

None

19.4.2 Environment Variables

None

19.4.3 State Invariant

19.4.4 Assumptions

None

19.4.5 Access Routine Semantics

handleCheckAvailability():

- output: out := ModelT.getResult()
- exception: none

handleChangeLayout(st, parkingele):

- output: out := AdminT.changeLayout(st, parkingele)
- exception: none

handleParkingStats(layout, boolArray):

- output: out := ParkingStatsT.getStat(st, parkingele)
- exception: none

handleFindPath(1, stopId):

- output: out := navigationT.findPath(layout, String)
- exception: none

handleAuth(id, pass):

- output: out := AuthT.authenticateUser(id,pass)
- exception: none

20 MIS of View module

20.1 Module

ViewT

20.2 Uses

 ${\bf Parking Lot Layout T}, \, {\bf Parking Layout Elem T}$

20.3 Syntax

20.3.1 Exported Constants

None

20.3.2 Exported Types

viewT = ?

20.3.3 Exported Access Programs

Name	In	Out	Exceptions
initLogin			
initPageUser			
initPageAdmin			

20.4 Semantics

20.4.1 State Variables

None

20.4.2 Environment Variables

win: two dimensional sequence of coloured pixels

20.4.3 State Invariant

None

20.4.4 Assumptions

20.4.5 Access Routine Semantics

initLogin():

- transition: modify win with the following:
 - a text input field for a user name.
 - a text input field for a password.
 - a button to confirm the text inputs.
- exception: none

initPageUser():

- transition: modify win with the following:
 - use showLayout() based on the location.
 - use showLayout() to show a path.
 - a button to confirm logout.
 - a panel to show parking stats.
- exception: none

initPageAdmin():

- transition: modify win with the following:
 - use showLayout() based on the location.
 - a button to confirm logout.
 - a panel to show parking stats.
 - a button to modify parking lots.
- exception: none

20.4.6 Local Functions

showLayout(L):

• transition: modify win so the elements e :ParkingLotLayoutT of L are displayed on a L.getSize() by L.getSize() grid with the following table:

getEnabled()	getHandicapped()	getReserved()	getOccupied()	character
true	false	false	false	Green + Green border
true	false	false	true	Red + green border
true	false	true	false	Green + red border
true	false	true	true	Green + red border
true	true	false	false	Green + blue border
true	true	false	true	Red + blue border
false				None

$\operatorname{showPath}(L, \operatorname{startId}, \operatorname{stopId}):$

• transition: modify win first with showLayout(L). $\forall (s : String | s \in NavigationT.findPath(L, stopId) :$ then draw a line along each point representing L.getElem(s))

• exception: none

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

21 Appendix

N/A