Robotics Language Tutorial - IEEE IRC 2019

Simple way to specify behaviour

Behaviour changes:

- Particular set of conditions
- Series of events

Definition

An automaton is the tuple $(S, E, f, \Gamma, q_0, S_m)$ where:

- S is a finite set of states
- E is a finite set of events (the alphabet)
- $f: S \times E \to S$ is a transition function
- $\Gamma: S \to 2^E$ is the active event function
- s_0 is the initial state

A grammar for state machines

```
FiniteStateMachine<{
    name:machine
    initial:idle
    (idle) -start-> (running) -stop-> (idle)
}>
```


Attach callback functions

Robotics Language Tutorial - IEEE IRC 2019

Reasoning in time

$$U \models \Box \phi$$

Property ϕ always holds true globally

$$U \models \Diamond \phi$$

Property ϕ eventually holds true in the future

Interval temporal logic for signals

 $\Box \phi [3,0]$ Property ϕ always held true for the last 3 seconds

 $\Diamond \phi$ [1,0] Property ϕ eventually held true in the last 1 second

Practical examples

- If always in the last 5 seconds don't have GPS update, raise an alarm
- If eventually any alarm raised in the last 5 second, stay alarmed

Deep Learning

Robotics Language Tutorial - IEEE IRC 2019

Deep Learning applications in Robotics

- Recognition Tasks:
 - Object Recognition
 - People Recognition
 - Speech Recognition
- Motion & Behavior
 - Learning motion paths
 - Task decisions

Stages of Deep Learning

Offline:

- Design
- Training
- Evaluation

Online:

- Inference
- Online training
- Data collection

- Object Recognition
 - Image RGB / RGBD input
 - Inference
 - Class, probability, location etc.

- Speech recognition
 - Sequence of sound (frequencies & amplitudes in)
 - Inference
 - Word(s), probabilities

- Motion path planning
 - Start & End positions, obstacles etc.
 - Inference
 - Speeds, Torque, energy etc.

abstraction

- Inference
 - Inputs
 - Inference
 - Outputs

minimum information

- Inputs:
 - Type
 - Format
- Network
 - Weights, architecture etc. in Tensorflow / Keras format
- Outputs
 - Type

Inputs:

- Type: sensor_msgs/lmage

- Format: 1 channel, 28 x 28 px

Creates a *preprocess* function to convert ros image topic to network input of 1 x 28 x 28.

Inputs:

- Type: audio_common_msgs/AudioData

- Format: 1 channel, 1 x 128

Creates a *preprocess* function to convert ros audio topic to network input of 1 x 1 x 128.

Outputs

- Type: Float → Probability

Creates a *postprocess* function to convert the network output to a class and probability

Outputs

```
- Type: std msgs/Int → Class
```

- Type: std_msgs/Float → Probability
- Type: detection msgs/BBox → Detection box

Creates a *postprocess* function to convert the network outputs to a class, probability and detection.

Outputs

```
- Type: std msgs/String → words
```

- Type: std_msgs/Float → Probability

Creates a *postprocess* function to convert the network outputs to words and probabilities.

Fault Detection

Robotics Language Tutorial - IEEE IRC 2019

Fault Detection

Error: is a deviation from accuracy or correctness. Corrected with control.

Faults: an abnormal condition or defect at the component, equipment, or sub-system level which may lead to a failure.

Failures: Non-recoverable behaviour

Fault Detection

