Метрика. Экзамен 2016

Задача 1. С помощью МНК оцените модель $y_i = \beta x_i + \varepsilon_i$ по трём наблюдениям: $x_1 = 1, x_2 = 1, x_3 = -2, y_1 = 0, y_2 = 1, y_3 = 4$. Найдите $\hat{\beta}$, RSS, TSS, ESS, R^2 .

Задача 2.

Исследователь Тимофей следующую функцию спроса с сезонными переменными SPRING (весна), SUMMER (лето), FALL (осень):

$$\widehat{\ln Q} = \hat{\beta}_1 + \hat{\beta}_2 \cdot \ln P + \hat{\beta}_3 \cdot SPRING + \hat{\beta}_4 \cdot SUMMER + \hat{\beta}_5 \cdot FALL, \quad R^2 = 0.24, n = 24.$$

Тимофей желает протестировать гипотезу $H_0: \begin{cases} \beta_3 = 0, \\ \beta_4 = \beta_5 \end{cases}$.

- 1. Дайте интерпретацию проверяемой гипотезе.
- 2. Какую ограниченную регрессию надо оценить Тимофею для проверки данной гипотезы?
- 3. Пусть для регрессии с ограничениями $R^2=0.13$. На уровне значимости 5% проверьте нулевую гипотезу.

Задача 3.

Винни-Пух построил логит-модель для предсказания качества мёда: $y_i = 0$ означает неправильный мёд, а $y_i = 1$ — правильный. Правильность мёда зависит от разных характеристик дупла, в частности от правильности пчёл (x_i) и их количества (z_i) . Оценка модели выглядит так:

$$P[y_i = 1] = \Lambda(-0.2 + 2x_i + 0.03z_i)$$

Здесь $\Lambda()$ — логистическая функция, $\Lambda(t) = e^t/(1+e^t)$.

- 1. Спрогнозируйте вероятность правильного мёда для дупла с сотней правильных пчёл.
- 2. Рассмотрим дупло с сотней правильных пчёл. Рассчитайте предельный эффект увеличения от количества пчёл на вероятность правильности мёда.
- 3. При каком количестве правильных пчёл предельный эффект от количества пчёл на вероятность правильности мёда будет максимальным?

	Model 1	
(Intercept)	8.45***	
	(0.00)	
$\log(\text{carat})$	1.68***	
	(0.00)	
\mathbb{R}^2	0.93	
$Adj. R^2$	0.93	
Num. obs.	53940	
RMSE	0.26	
***p < 0.001, **p < 0.01, *p < 0.05		

Таблица 1: Statistical models

Задача 4.

Исследовательница Мишель оценила зависимость логарифма цены бриллиантов от логарифма массы. Результаты приведены в таблице 1.

```
model <- lm(data = diamonds, log(price) ~ log(carat)) \\texreg(model)
```

А затем провела тест Голдфельда-Квандта (таблица 2):

Таблица 2: Goldfeld-Quandt test: model

Test statistic	df1	df2	P value	Alternative hypothesis
1.363	21574	21574	1.501e-114 * * *	variance increases from segment 1 to 2

- 1. Аккуратно сформулируйте H_0 и H_a данного теста
- 2. К каким выводам пришла Мишель по результатам теста?
- 3. Что можно посоветовать Мишель, если она желает строить предиктивные доверительные интервалы для цены бриллиантов, зная их массу?

Задача 5. Рассмотрим стационарный случайный процесс удовлетворяющий уравнению

$$y_t = 3 + 0.5y_{t-1} - 0.06y_{t-2} + \varepsilon_t, \quad \varepsilon_t \sim WN(0; \sigma^2).$$

- 1. Найдите $\mathbb{E}(y_t)$.
- 2. Найдите первые два значения корреляционной и автокорреляционной фукнций.
- 3. Дополнительно известно, что остатки имеют нормальное распределение, $\varepsilon_t \sim N(0;1), y_{99}=6, y_{100}=5.$ Постройте точечный прогноз y_{101} и 95%-ый предиктивный интервал для y_{101} .