CHAPTER 0 REVIEW OF ALGEBRA

05. Factoring

Exercised by: Rizal Bimanto

1 Summary

Rules for Factoring

Expression	Factored Form	Type of Factoring
xy + xz	x(y+z)	$Common\ Factor$
$x^2 + (a+b)x + ab$	(x+a)(x+b)	-
$abx^2 + (ad + cb)x + cd$	(ax+c)(bx+d)	-
$x^2 + 2ax + a^2$	$(x+a)^2$	Perfect Square Trinomial
$x^2 - 2ax + a^2$	$(x-a)^2$	Perfect Square Trinomial
$x^2 - a^2$	(x+a)(x-a)	Difference of Two Squares
$x^3 + a^3$	$(x+a)(x^2 - ax + a^2)$	Sum of Two Cubes
$x^3 - a^3$	$(x-a)(x^2+ax+a^2)$	Difference of Two Cubes

Always factor as completely as you can.

For example:

- $2x^2 8$
- $2(x^2-4)$
- 2(x+2)(x-2)

Examples

Expression	Factored Form	Type of Factoring
$x^2 + 8x + 16$	$(x+4)^2$	4. Perfect Square Trinomial
$9x^2 + 9x + 2$	(3x+1)(3x+2)	3
$6y^3 + 3y^2 - 18y$	$3y(2y^2+y-6)$	1. Common Factor
$6y^3 + 3y^2 - 18y$	3y(2y+3)(y-2)	3
$x^2 - 6x + 9$	$(x-3)^2$	5. Perfect Square Trinomial
$z^{\frac{1}{4}} + z^{\frac{5}{4}}$	$z^{\frac{1}{4}}(1+z)$	1. Common Factor
$x^4 - 1$	$(x^2+1)(x^2-1)$	6. Difference of Two Squares
$x^4 - 1$	$(x^2+1)(x+1)(x-1)$	6. Difference of Two Squares
$x^{\frac{2}{3}} - 5x^{\frac{1}{3}} + 4$	$(x^{\frac{1}{3}}-4)(x^{\frac{1}{3}}-1)$	2
$ax^2 - ay^2 + bx^2 - by^2$	$a(x^2 - y^2) + b(x^2 - y^2)$	1. Common Factor
$ax^2 - ay^2 + bx^2 - by^2$	$(a+b)(x^2-y^2)$	1. Common Factor
$ax^2 - ay^2 + bx^2 - by^2$	(a+b)(x+y)(x-y)	6. Difference of Two Squares
$8 - x^3$	$(2)^3 - x^3$	8. Difference of Two Cubes
$8 - x^3$	$(x^2 + 2x + 4)(-x + 2)$	8. Difference of Two Cubes
$x^6 - y^6$	$(x^3)^2 - (y^3)^2$	-
$x^6 - y^6$	$(x^3 + y^3)(x^3 - y^3)$	6. Difference of Two Squares
$x^6 - y^6$	$(x+y)(x^2 - xy + y^2)(x-y)(x^2 + xy + y^2)$	7, 8