

QUANTRONICS LABORATORY

Department of Applied Physics

Yale University

Whispering Gallery Mode in a Parallel Plate Ring Resonator

Zlatko Minev

Michel H. Devoret

loan Pop

Nick Masluk

Archana Kamal

Thanks to:
Teresa Brecht
Matt Reagor
Yehan Liu
Uri Vool
QuLab
RSL Lab

Desired Goals

- 'Wafer-Scalable' Circuit QED architecture
- Allow flux bias, copper cavity
- Study superconducting thin film quality factor

Means:

- Confine EM Waves in vacuum between patterned Aluminum films
 - Keep fields away from lossy dielectric and copper walls
 - Mode control
- Simple, robust geometry

Transmission Line Ring

1D Description – 2 Degenerate Ground Modes

$$\nabla^2 \psi + \frac{w^2}{c^2} (1 + \Delta n(x)^2) \psi = 0$$

Whispering Gallery Mode

E & Current on Ring

Cylindrical Sample Box (Cavity)

- Wafer imposed
 - Keep the lossy walls as far away as possible
- Cleaner machining
- Demonstrated high Q
- Simple mode structure

Geometry

Wafer Separation

Harnessing Wafer in Cylinder with Springs

- Copper-Beryllium spring
- Indium Seal

- Cryo-safe
- good electrical contact between two halves

Physical Considerations

- Thermalizing Al
 - Reduce quasiparticles
 - Backing Aluminum with Copper film
- Dissipation via magnetic vortices
 - Chicken wire ring
- Alignment and tolerances
- Wafer separation
- Differential thermal contraction

- Dielectric -Simple Physical Picture

Currents Induced on Cylinder by Whispering Mode

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\dot{\mathbf{E}} \sim \frac{1}{\mu_0} \mathbf{B}$$

F, Q vs Outer Radius and Ring Thickness

- F as a function of Outer Radius [R_{outer}]
 - How does the thickness affect the mode frequency
- Does Q depend on the thickness?
- How much does Q depend on the outer radius?
- What is the scaling Q ~ R_{outer}/R_{wafer}
- Simulation Parameters:
 - 300 um separation of rings
 - 12 mm cylinder height
 - 2in (50.8mm) wafer, 300 um thick

Observations

- Good frequency separation between the good whispering gallery modes and the cylinder or parasitic whispering gallery modes. (~500 MHz)
 - Bad Modes Q ~> 10,000, small line width (< few MHz)
- Q is safely & easily in millions, but is sensitive to other modes
- Can tune the Frequency from 1 to 4 GHz
 - Highest frequency is limited to ~ 4 GHz by cylinder radius.
 (in principle can go higher)
- Too thick a ring will perturb the modes, and couple to the top walls more, lowering the Q (within a factor of 3)
- Degeneracy of good mode

Degeneracy ⇒ Lift Modes

Effective 2D Potential in Space

Variation in Inner Circle Position

- How much is degeneracy lifted
- How much is Q affected

- Parameters:
 - Thickness
 - 6.4mm
 - Cylinderheight
 - 12mm

Observations

- As long as we don't hybridize the mode, we can achieve the same high Q as for concentric rings
 - Bad mode Q's still >10,000, linewidth (< few MHz)</p>
- Can safely get 300 MHz separation for displacement of 4.5 mm
 - Separation drops with larger radius ~30 MHz/mm
 - Cannot exceed the thickness of the rings ~ 6.4mm

Alignment Tolerance

 How sensitive are Q and F to misalignment of the rings

 Note: Q goes exponentially with cylinder height

Next Challenges

Coupling

Aligning

• Plating walls with Al?

Thermalizing

....

QUANTRONICS LABORATORY

Department of Applied Physics

Yale University

Chuck

Thanks Teresa