微积分 A(2)第一次习题课题目(第三周)

- 一、n维空间的点集
- 1. $A,B\subseteq R^n$, 证明下列结论:
- (1) $A^{\circ} \bigcup B^{\circ} \subset (A \bigcup B)^{\circ}$ (2) $\partial (A \bigcup B) \subset \partial A \bigcup \partial B$ (3) $A^{\circ} = A \setminus \partial A$
- 2. $f: \mathbb{R}^n \to \mathbb{R}^m$ 是一个连续映射, 求证: $\forall \mathbb{R}^m$ 中的开集 G , 它的原像集

 $f^{-1}(G) = \{x \in \mathbb{R}^n \mid f(x) \in G\}$ 是 \mathbb{R}^n 中的开集。

- 二、多元函数的极限与连续
- 3. 下列极限是否存在? 若存在,求出极限值;若不存在,说明理由。

(1)
$$\lim_{(x,y)\to(1,0)} (x+y)^{\frac{x+y+1}{x+y-1}};$$

(2)
$$\lim_{(x,y)\to(0,0)} (x+y) \ln(x^2+y^2);$$

(3)
$$\lim_{(x,y)\to(\infty,\infty)} \left(\frac{|xy|}{x^2+y^2}\right)^{x^2} = 0;$$
 (4) $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y};$

(4)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y}$$

(5)
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x+y}{x^2 - xy + y^2}.$$

4. 讨论下列函数的累次极限 $\lim_{y\to 0}\lim_{x\to 0}f(x,y)$, $\lim_{x\to 0}\lim_{y\to 0}f(x,y)$ 与二重极限 $\lim_{x\to 0}f(x,y)$

(1)
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, & x \cdot y \neq 0 \\ 0, & x \cdot y = 0 \end{cases}$$
; (2) $f(x,y) = \begin{cases} \frac{3xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$

(3)
$$f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$
.

- 5. 若 z = f(x, y)在 R^2 上连续,且 $\lim_{x^2+y^2\to +\infty} f(x, y) = +\infty$,证明: f 在 R^2 上有最小值。
- 三、偏导数与可微
- 6. 证明下列各题
- (1)证明: 若 f(x, y) 的偏导数在点 (x_0, y_0) 的某邻域内存在且有界,则 f(x, y) 在 (x_0, y_0) 连 续.
- (2) 设 $f(x,y) = (x+y)\{(x,y), 其中\{(x,y) 在点(0,0)处连续,,证明 f(x,y) 在(0,0)\}$ 点处可微, 并写出全微分df(x, v)。
- 7. 设 $f'_x(x_0, y_0)$ 存在, $f'_v(x y)$ 在点 (x_0, y_0) 处连续,证明f(x, y)在点 (x_0, y_0) 处可微.

- 8. 求解下列有关偏导数的题目.
- (1) 设 $z = \arcsin \frac{x}{y}$, 求dz;
- 设函数 $z = (x + 2y)^{xy}$, 求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$;
- (3) 若函数 f(u) 有二阶导数,设函数 $z = \frac{1}{r} f(xy) + y f(x+y)$,求 $\frac{\partial^2 z}{\partial r \partial y}$;
- (4) 设函数 $z = \arctan \frac{x+y}{x-y}$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial y^2}$;
- 设函数 $z = 2\cos^2(x \frac{y}{2})$, 证明 $\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = 0$.
- 设 f(x, y) 在点 $M(x_0, y_0)$ 可微, $\vec{v} = \vec{i} \vec{j}$, $\vec{u} = -\vec{i} + 2\vec{j}$. 如果 $\frac{\partial f(x_0, y_0)}{\partial \vec{v}} = -2, \frac{\partial f(x_0, y_0)}{\partial \vec{v}} = 1, \ \ \text{求} \ df(x_0, y_0);$
- (7) 设函数 f(x,y) 有连续的偏导数, 且在点 M(1,-2) 的两个偏导数分 $\frac{\partial f(1,-2)}{\partial x} = 1$,

$$\frac{\partial f(1,-2)}{\partial y} = -1. \, \text{则} \, f(x,y) \, \text{在点} \, M(1,-2) \, \text{增加最快的方向是} ()$$

- $A. \ \dot{i}$ $B. \ \dot{j}$ $C. \ \dot{i} + \dot{j}$ $D. \ \dot{i} \dot{i}$

).

- (8) $z \, \mathbb{N} \, \sqrt{|xy|}$, $\dot{\mathbb{R}} \, \frac{\partial z}{\partial x}$
- 9. 求解下列各题,并体会多元函数可微、连续、偏导数存在性与连续性之间的关系。
- (1) 下列条件成立时能够推出 f(x,y) 在 (x_0,y_0) 点可微, 且全微分 df=0 的是 (
 - (A) 在点 (x_0, y_0) 两个偏导数 $f'_x = 0, f'_y = 0$

(B)
$$f(x, y)$$
 在点 (x_0, y_0) 的全增量 $\Delta f = \frac{\Delta x \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}$,

(C)
$$f(x, y)$$
 在点 (x_0, y_0) 的全增量 $\Delta f = \frac{\sin(\Delta x^2 + \Delta y^2)}{\sqrt{\Delta x^2 + \Delta y^2}}$

(D)
$$f(x, y)$$
 在点 (x_0, y_0) 的全增量 $\Delta f = (\Delta x^2 + \Delta y^2) \sin \frac{1}{\Delta x^2 + \Delta y^2}$

- (2) 设 $f(x, y) = \sqrt{|xy|}$, 则在(0,0) 点(
 - (A) 连续, 但偏导数不存在;
- (B) 偏导数存在,但不可微;

(C) 可微;

- (D) 偏导数存在且连续.
- (3) 若 z = f(x, y) 在点 $P_0(x_0, y_0)$ 处的两个偏导数存在,则()
 - (A) f(x,y) 在 P_0 点连续;
 - (*B*) 一元函数 $z = f(x, y_0)$ 和 $z = f(x_0, y)$ 分别在 $y = y_0$ 和 $x = x_0$ 连续;

(
$$C$$
) $f(x, y)$ 在 P_0 点的微分为 $dz = \frac{\partial z}{\partial x}\Big|_{P_0} dx + \frac{\partial z}{\partial y}\Big|_{P_0} dy$;

(*D*)
$$f(x, y)$$
 在 P_0 点的梯度为 $grad f(P_0) = (\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y})\Big|_{P_0}$.

- (4) 如 f(x,y) 在点 (x_0,y_0) 不可微,则下列命题中一定不成立的是(
 - (A) f(x, y) 在点 (x_0, y_0) 不连续;
 - (B) f(x,y) 在点 (x_0,y_0) 沿任何方向 \bar{v} 的方向导数不存在;
 - (C) f(x, y) 在点 (x_0, y_0) 两个偏导数都存在且连续;
 - (D) f(x,y) 在点 (x_0,y_0) 两个偏导数存在且至少有一个不连续.

10. 分别考察函数
$$f(x,y) = \begin{cases} \frac{1}{x} (1 - e^{-xy}) & x \neq 0 \\ y & x = 0 \end{cases}$$
 在全平面上连续性与可微性,并证明.

11. 设
$$u(x,y) \in C^2$$
, $u \neq 0$, 证明 $u(x,y) = f(x)\{(y)$ 的充要条件是 $\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} = u \frac{\partial^2 u}{\partial x \partial y}$.