SEMINARUL 3

Relații de echivalență, mulțime factor, morfisme, inele și corpuri

1. Fie
$$A = \{1, 2, 3, 4\}; \rho = (A, A, R).$$

a)
$$R = \Delta_A \cup \{(1,2), (2,3), (1,3), (3,1), (3,2), (2,1)\};$$

b)
$$R = \Delta_A \cup \{(1,2), (2,3), (3,2), (2,1)\};$$

c)
$$R = \Delta_A \cup \{(1,2), (2,3), (1,3), (2,1)\};$$

d)
$$R = \{(1,1), (1,2), (2,3), (1,3), (3,1), (3,2), (2,1)\};$$

Verificați (r),(t),(s) și dacă ρ este relație de echivalență determinați mulțimea factor indusă.

2. Fie
$$A = \{1, 2, 3, 4\}, \pi \subseteq P(A)$$
.

a)
$$\pi = \{\{1, 2\}, \{3, 4\}\}; \text{ b) } \pi = \{\{1, 2, 3\}, \{3, 4\}\}; \text{ c) } \pi = \{\{1\}, \{3, 4\}\}; \text{ d) } \pi = \{\{1, 2, 3, 4\}\};$$

Verificați dacă π este partiție pentru A și în caz afirmativ determinați relația de echivalență indusă.

- 3. Fie $g: \mathbb{C}^* \to GL_2(\mathbb{R}), \ g(\mathfrak{a} + \mathfrak{bi}) = \begin{pmatrix} \mathfrak{a} & \mathfrak{b} \\ -\mathfrak{b} & \mathfrak{a} \end{pmatrix}$. Arătaţi că \mathfrak{g} este morfism de grupuri între (\mathbb{C}^*,\cdot) şi $(GL_2(\mathbb{R}),\cdot)$.
- 4. Considerăm inelul claselor de resturi modulo $n \ (n \in \mathbb{N}, n \ge 2)$ și fie $\hat{a} \in \mathbb{Z}_n$.
 - a) \hat{a} inversabil $\Leftrightarrow (a, n) = 1$;
 - b) Deduceți: $(\mathbb{Z}_n, +, \cdot)$ este corp \Leftrightarrow n este număr prim;
- 5. Rezolvați în \mathbb{Z}_6 :

$$\hat{4}x + \hat{5} = \hat{1}; \ \hat{5}x + \hat{3} = \hat{1}.$$

- 6. Fie $\mathbb{Z}[\sqrt{2}]$, $\mathbb{Q}[\sqrt{2}]$.
 - a) Arătați că $\mathbb{Z}[\sqrt{2}] \leq (\mathbb{R}, +, \cdot)$. Este $(\mathbb{Z}[\sqrt{2}], +, \cdot)$ corp?
 - b) Arătați că ($\mathbb{Q}[\sqrt{2}], +, \cdot$) este corp.
- 7. a) Arătați că $R = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \mid a,b \in \mathbb{Z} \right\}$ este parte stabilă a lui $M_2(\mathbb{Z})$ în raport cu adunarea și în raport cu înmulțirea matricelor și că R este domeniu de integritate în raport cu operația indusă.
 - b) $\mathbb{Z}[\sqrt{2}] \simeq R$

8. Fie
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}; \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}.$$

- a) Determinați $\sigma\circ\tau,\,\tau\circ\sigma,\,\sigma^{-1},\tau^{-1},\tau^3;$
- b) Determinați $\operatorname{ord}(\sigma)$ și $<\sigma>;$
- c) $\epsilon(\sigma)$, $\epsilon(\tau)$.