

Lecture 6

Agenda

K-Nearest Neighbors

• Distance metrics

- A simple classification technique.
- It does not even need training...
 - ... but it requires a bit more effort in the operational phase.

- A simple classification technique.
- It does not even need training...

... but it requires a bit more effort in the operational phase.

Basic concept

- Classify a sample based on its neighbors
- When we want to determine the label of a sample, we look at the label of its closest neighbors.
- **k** is the number of nearest neighbors to consider

Basic concept

How do we measure the distance between two samples?

• The Euclidean distance: The first choice in case of numerical features

b
$$c=\sqrt{a^2+b^2}$$
 Pythagoras (mid-school math)

2D
$$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

3D
$$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2}$$

nD
$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

How do we measure the distance between two samples?

Minkowski. A generalized distance metric

$$d(p,q) = \sqrt[r]{\sum_{i=1}^{n} |p_i - q_i|^r}$$

Manhattan distance

Euclidean distance

Chebychev distance

L-norm distance example

	x	У
а	1	2
b	3	5
С	2	0
d	4	5

data

	а	b	С	d
а	0			
b	5	0		
С	3	6	0	
d	6	1	7	0

	а	b	С	d
а	0			
b	3.61	0		
С	2.24	5.1	0	
d	4.24	1	5.39	0

	а	b	С	d
а	0			
b	3	0		
С	2	5	0	
d	3	1	5	0

Manhattan (L1)

Euclidean (L2)

Chebyshev (L∞)

Limitations of Euclidean distance → Different scales

	Weight	Height	Diabetes
Α	85	175	Yes
В	65	170	No
С	70	180	No

$$d(A,B) = \sqrt{(175 - 170)^2 + (85 - 65)^2} = 20.6$$

$$d(A,C) = \sqrt{(175 - 180)^2 + (85 - 70)^2} = 15.8$$

$$d(B,C) = \sqrt{(170 - 180)^2 + (65 - 70)^2} = 11.2$$

• Euclidean distance works good with numeric variables but let's look at this example...

	Weight	Salary	Diabetes
Mark	80	70k	Yes
Mike	50	69.9k	No
John	78	69.8k	No

Who is more similar to Mark? Mike or John?

Rescale

- Variables on larger scale dominate the distance! Solution: Rescale all variables
- Two common ways:
 - Normalization to $[0,1] \rightarrow x' = (x min(x)) / (max(x) min(x))$
 - Standardization: zero mean and unit std dev $\rightarrow x' = (x mean(x)) / sd(x)$

After standardization

Limitations of Euclidean distance → Categorical variables

	Weight	Height	Diabetes
Α	85	175	Yes
В	65	170	No
С	70	180	No

$$d(A, B) = \sqrt{(175 - 170)^2 + (85 - 65)^2} = 20.6$$

$$d(A, C) = \sqrt{(175 - 180)^2 + (85 - 70)^2} = 15.8$$

$$d(B, C) = \sqrt{(170 - 180)^2 + (65 - 70)^2} = 11.2$$

	Weight	Height	Gender	Country	Diet	Income	Diabetes
А	85	175	М	AT	Vegan	70K	Yes
В	65	170	F	IT	Vegetarian	59K	No
С	70	180	М	FR	Omnivorous	50K	No

?

What about categorical variables?

	Weight	Height	Gender	Income		Weight	Height	isMale	Income		Weight	Height	isMale	Income
Α	85	175	М	70K	Α	85	175	1	70K	Α	1	0.5	1	1
В	65	170	F	59K	В	65	170	0	59K	В	0	0	0	0.45
С	70	180	М	50K	С	70	180	1	50K	С	0.25	1	1	0

- One could one hot encode or dummify categorical variables. However, the distance will be dominated by the one-hot-encoded variables.
- Solution: Weight each variable or look at other distance metrics.

Cosine similarity

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

$$\cos 0^{\circ} = 1$$

$$\cos 90^{\circ} = 0$$

- It measures only different orientations but not different magnitude of a vector.
- 1 cosine_sim = Cosine Dissimilarity
- It is not a proper distance metrics, but it can be very useful in kNN.

Jaccard index (or Tanimoto coefficient)

- Measure of similarity
- Only for binary features!

Jaccard index =
$$\frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{A + B - |A \cap B|}$$

Example – A <u>binary</u> Customer/Product matrix (very common problem)

Hamming distance

• Straightforward: the number of symbols that differ between two vectors

Hamming distance = 3

Summary

		Binary
Manhattan	$d(A,B) = \sum_{i=1}^{n} (A_i - B_i)$	d(A,B) = a + b - 2c
Euclidean	$d(A,B) = \sqrt{\sum_{i=1}^{n} (A_i - B_i)^2}$	$d(A,B) = \sqrt{a+b-2c}$
Cosine	$s(A,B) = \frac{\vec{a} \cdot \vec{b}}{\ \vec{a}\ \ \vec{b}\ }$	$s(A,B) = \frac{c}{\sqrt{ab}}$
Tanimoto		$s(A,B) = \frac{c}{a+b-c}$
Hamming		d(A,B)=length(xor(A,B))
		a=num. of 1s in A. b=num. of 1s in B. c=num. of common 1s.