```
Linear Probing, hash function: h(k) = (3k + 4) \mod 8

41: h(41) = 7 \rightarrow \text{index } 7

30: h(30) = 6 \rightarrow \text{index } 6

74: h(74) = 2 \rightarrow \text{index } 2

55: h(55) = 1 \rightarrow \text{index } 1

68: h(68) = 0 \rightarrow \text{index } 0

39: h(39) = 1 \rightarrow \text{occupied}; +1 collision = 2 occupied; +1 collision = 3 -> index 3

64: h(64) = 4 \rightarrow \text{index } 4

72: h(72) = 4 \rightarrow \text{occupied}; +1 collision = 5 -> index 5
```

Index	Element
0	68
1	55
2	74
3	39
4	64
5	72
6	30
7	41

```
Quadratic Probing: h(k, i) = (h(k) + i^2) \mod m; hash function: h(k) = (3k) \mod 8

h(19) = 1 \rightarrow \operatorname{index} 1

h(29) = 7 \rightarrow \operatorname{index} 7

h(16) = 0 \rightarrow \operatorname{index} 0

h(26) = 6 \rightarrow \operatorname{index} 6

h(14) = 2 \rightarrow \operatorname{index} 2

h(24) = 0 \operatorname{occupied} \rightarrow h(24,1) = 1 \operatorname{occupie} \rightarrow h(24,2) = 4 \rightarrow \operatorname{index} 4

h(13) = 7 \operatorname{occupied} \rightarrow h(13,1) = 0 \operatorname{occupied} \rightarrow h(13,2) = 3 \rightarrow \operatorname{index} 3

h(23) = 5 \rightarrow \operatorname{index} 5
```

Index	Element
0	16
1	19
2	14

3	13
4	24
5	23
6	26
7	29

Double Hashing: $h(k, i) = (h1(k) + i * h2(k)) \mod m$; hash function =

$$h1(k) = (k) \mod 8$$
, $h2(k) = ((5k + 3) \mod 7) + 1$

h(22) = 6 -> index 6

h(14) = 6 occupied -> h(14,1) = 2 -> index 2

h(39) = 7 -> index 7

h(23) = 7 occupied -> h(23,1) = 6 occupied -> h(23,2) = 5 -> index 5

h(80) = 0 -> index 0

h(53) = 5 occupied h(53, 1) = 0 occupied -> h(53,2) = 3 -> index 3

h(49) = 1 -> index 1

h(50) = 2 occupied -> h(50,1) = 4 -> index 4

Index	Element
0	80
1	49
2	14
3	53
4	50
5	23
6	22
7	39

Cuckoo Hashing: h1(k) for table 1, h2(k) for table 2; hash function

$$h1(k) = (3k + 1) \mod 7$$
, $h2(k) = (floor(5k / 2) + 3) \mod 7$

 $h(9) = 0 \rightarrow index 0 T1$

h(23) = 0 occupied -> h2(9) = 4 -> 9 goto index 4 T2

h(24) = 3

h(15) = 4 -> index 4 T1

h(87) = 3 occupied -> h2(24) = 0 -> 24 goto index 0 T2

h(20) = 5 -> index 5 T1

 $h(12) = 2 \rightarrow index 2 T1$

h(47) = 2 occupied -> h(12) = 5 -> 12 goto index 5 T2

Index	T1	T2
0	23	24
1		
2	47	
3	87	
4	15	9
5	20	12
6		
7		