CSE 211: Discrete Mathematics

(Due: 06/10/22)

Problem Session #1

Instructor: Dr. Zafeirakis Zafeirakopoulos

Assistant: Başak Karakaş

Problem 1: Sets (0 points)

List the members of these sets.

- (a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
- (b) $\{x \mid x \text{ is a positive integer less than } 12\}$
- (c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$
- (d) $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

Problem 2: Sets (0 points)

Determine whether each of these statements is true or false.

- (a) $0 \in \emptyset$
- **(b)** $\emptyset \in \{0\}$
- (c) $\{0\} \subset \emptyset$
- (d) $\emptyset \subset \{0\}$
- (e) $\{0\} \in \{0\}$
- (f) $\{0\} \subset \{0\}$
- (g) $\{\emptyset\} \subseteq \{\emptyset\}$
- (h) $\{0\} \in \{\{0\}\}$

Problem 3: Cartesian Product of Sets

(0 points)

Let $A = \{a, b, c\}$, $B = \{x, y\}$, and $C = \{0, 1\}$. Find

- (a) $A \times B \times C$.
- (b) $C \times B \times A$.
- (c) $C \times A \times B$.
- (d) $B \times B \times B$.

Problem 4: Set Operations

(0 points)

Let A, B, and C be sets. Show that

(a)
$$(A \cup B) \subseteq (A \cup B \cup C)$$
.

(b)
$$(A \cap B \cap C) \subseteq (A \cap B)$$
.

(c)
$$(A - B) - C \subseteq A - C$$
.

(d)
$$(A - C) \cap (C - B) = \emptyset$$
.