OVERVIEW Study Notes for my **CS506 FINAL**

1 Distance and Similarity

Distance

- A way to measure how different two data points are
- Good distance measures:
 - Always positive (distance can't be negative)
 - Symmetric (distance from A to B = distance from B to A)
 - Follows the triangle shortcut rule (going directly from A to C is never longer than going A→B→C)

Types of Distance Measures

- 1. Straight-Line Distance (Euclidean)
 - Like measuring with a ruler, DIRECT DISTANCE
 - Works well for "normal" numerical data
- 1 Manhattan
 - Like walking in a grid city (only horizontal/vertical moves)
 - Less sensitive to outliers than Euclidean
- If a "distance" breaks the triangle rule, it's not a true distance function

2 Clustering

K-Means (The Classic Method)

- Goal: Group data into k clusters
- How it works:
 - a. Pick k random centers
 - b. Assign each point to the nearest center
 - c. Move centers to the average of their points
 - d. Repeat until centers stop moving
- Problems:
 - Gets stuck in bad groupings if centers start poorly
 - Works best on round, evenly sized clusters

K-Means++

- Chooses first center randomly
- Next centers are picked from points far from existing centers
- Helps avoid terrible initial groupings

Hierarchical Clustering

- Bottom-Up Approach:
 - Start with every point as its own cluster
 - Repeatedly merge the two closest clusters
 - Stop when everything is in one big cluster
- How to Measure "Close":
 - Single Link: Distance between closest points in clusters
 - Complete Link: Distance between farthest points
 - Average Link: Average distance between all points
 - Result: A tree (dendrogram) showing how clusters merged

DBSCAN (Density-Based Clustering)

- Finds clusters based on crowded areas
- Two Settings:
 - How close points need to be to be neighbors
 - Minimum neighbors to form a dense area
- Types of Points:
 - Core Points: Have enough neighbors to start a cluster
 - Border Points: In a cluster but not dense enough to hold it together
 - Noise Points: Don't belong anywhere
- For Odd-shaped clusters and noisy data

Gaussian Mixture Models (GMM)

- Assumes data comes from several overlapping bell curves
- Soft Clustering: Points can belong partially to multiple clusters
- How it Works:
 - a. Guess some bell curves
 - b. Assign points probabilistically to each curve
 - c. Adjust curves to fit better
 - d. Repeat until curves stabilize

3 SVD (Simplifying Data)

What It Does

- Breaks data into simpler, more important parts
- Like finding the main directions where data varies most

Key Concepts

- 1. Rank: Number of truly independent directions in data
 - A flat line has rank 1 (all points along one direction)
 - A filled square has rank 2 (needs two directions to describe it)

1. Principal Components:

- First component points where data spreads most
- Next components capture remaining spread, perpendicular to previous ones

1. Using SVD:

- D: Keep only important components, discard weak ones
- C: Represent data with fewer numbers

4 Classification

K-Nearest Neighbors (KNN)

- Simple Rule: A point is whatever its closest neighbors are
- Choosing k:
 - Small k (like 1): Follows every twist in data (risks overfitting)
 - Large k: Smoothes out quirks (may miss details)
- Critical Step: Make sure all features are on similar scales!

Decision Trees

How They Work:

- Ask yes/no questions to split data (eg, "Is age > 30?")
- Keep splitting until groups are pure enough

Measuring Split Quality:

- **GINI Impurity:** How mixed a group is (0 = all same, 05 = evenly split)
- Better splits lower impurity in child groups

Weakness: Can grow too complex and memorize data (overfitting)

Naive Bayes

- Assumption: Features affect result independently (often not true, but works surprisingly well)
- Fast and Simple: Good for quick baseline models

Support Vector Machines (SVM)

- Goal: Find the widest possible "street" between classes
- **Kernel Trick:** Can twist data into higher dimensions to make separation easier
- RBF Kernel: Controls how flexible the boundary is (small γ = smooth, large γ = wiggly)

5 Regression

Linear Regression

- Fits a Straight Line to predict numbers
- Assumptions:
 - Relationship is roughly linear
 - Errors are normally scattered around the line

Logistic Regression

- Predicts probabilities (like chance of being in class 1)
- **Sigmoid Function:** Squashes predictions into 0-1 range
- **Decision Boundary:** Where probability = 50%

Regression Trees

- Like Decision Trees for Numbers:
- Splits data based on feature values
- Predicts the average in each final bucket
- Handles Non-Linear Data Well