Syntactic NFA Minimization via SAT solving

Bastian Kauschke

May 30, 2022

GOAL

minimal nfas

Given an nfa M with states Q, nfa N with states S is a *union nfa* of M if

- ▶ each $s \in S$ accepts $\bigcup \{L(N, q) : q \in X\}$ with $X \subseteq Q$
- ightharpoonup L(N) = L(M)

Given an $nfa\ M$ with states Q, $nfa\ N$ with states S is a *union nfa* of M if

- ▶ each $s \in S$ accepts $\bigcup \{L(N, q) : q \in X\}$ with $X \subseteq Q$
- ightharpoonup L(N) = L(M)

An nfa N is rpd if N^R is a partial dfa.

The states of rpd nfas accept pairwise disjoint languages.

All trimmed nfas whose states accept pairwise disjoint languages are rpd.

nfa $N = (Q, \delta, I, F)$ accepting L is **atomic** if the following equivalent statements hold

- $ightharpoonup \operatorname{rsc}(N^R)$ is a minimal dfa
- ▶ each $q \in Q$ accepts a language from BLD(L), the closure of LD(L) under all set-theoretic boolean operations
- ▶ each $q \in Q$ accepts a union of congruence classes of the Nerode left congruence \sim_L :

$$u \sim_L v \iff \forall x \in \Sigma^*. u \in x^{-1}L = v \in x^{-1}L$$

 $\iff (u^r)^{-1}L^r = (v^r)^{-1}L^r$

▶ N is a union nfa of the átomaton **dfa** $(L^r)^R$

nfa $N = (Q, \delta, I, F)$ accepting L is **subatomic** if the following equivalent statements hold

- ▶ the transition monoid of $rsc(N^R)$ is isomorphic to $syn(L^r)$
- ▶ each $q \in Q$ accepts a language from BLRD(L), the closure of LD(L) under all boolean operations and right derivatives
- ▶ each $q \in Q$ accepts a union of congruence classes of the syntactic congruence \equiv_L :

$$u \equiv_L v \iff \forall x, y \in \Sigma^*. u \in x^{-1}Ly^{-1} = v \in x^{-1}Ly^{-1}$$

 \triangleright N is a union nfa of the syntactic nfa **syn**(L)

given $\mathbf{dfa}(L)$ and an rpd nfa $M=(Q,\delta,I,\{q_f\})$ accepting L,

does a union nfa N of M with k states exist?

 $ightharpoonup H \subseteq \mathbf{k} \times Q$:

$$H[i] = X \iff L(N, i) = \bigcup \{L(M, q) : q \in X\}$$

 $ightharpoonup H \subseteq \mathbf{k} \times Q$:

$$H[i] = X \iff L(N, i) = \bigcup \{L(M, q) : q \in X\}$$

▶ $G \subseteq LD(L) \times \mathbf{k}$:

$$G[u^{-1}L] = Y \iff u^{-1}L = \bigcup \{L(N, i) : i \in Y\}$$

 $ightharpoonup H \subseteq \mathbf{k} \times Q$:

$$H[i] = X \iff L(N, i) = \bigcup \{L(M, q) : q \in X\}$$

▶ $G \subseteq LD(L) \times \mathbf{k}$:

$$G[u^{-1}L] = Y \iff u^{-1}L = \bigcup \{L(N,i) : i \in Y\}$$

As a commutative diagram:

Require states to accept their assigned language using the transition relations $R_a \subseteq \mathbf{k} \times \mathbf{k}$ ($a \in \Sigma$):

Require states to accept their assigned language using the transition relations $R_a \subseteq \mathbf{k} \times \mathbf{k}$ ($a \in \Sigma$):

$$N = (\mathbf{k}, (R_a)_{a \in \Sigma}, G[L], H^{-1}[q_f])$$

$$L = \{ w \in \Sigma^* : |w|_b = 0 \lor |w|_a \neq 1 \}$$

 $N_{\mathsf{atm}} = N_{\mathsf{syn}}$

	[ε]	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

	[ε]	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

	[ε]	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

	[ε]	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

	[ε]	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

	[ε]	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

	[ε]	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

	$[\varepsilon]$	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

	[ε]	[a]	[<i>b</i>]	[aa]	[ab]
$arepsilon^{-1} L$					
$a^{-1}L$					
$b^{-1}L$					
$aa^{-1}L$					
$ab^{-1}L$					

Two possible options for H:

r	[ε], [a]	[ε], [a], [aa]
g	$[\varepsilon]$, $[b]$, $[aa]$	$[\varepsilon]$, $[b]$, $[aa]$
Ь	[a], [aa], [ab]	[a], [aa], [ab]

Implementation

size results

k	total	ns(L) < LD(L)	ns(L) < natm(L)	ns(L) < nsyn(L)	unknown
1	2	1 (50.0%)	0 (0.0%)	0 (0.0%)	0
2	24	3 (12.5%)	0 (0.0%)	0 (0.0%)	0
3	1028	123 (12.0%)	0 (0.0%)	0 (0.0%)	0
4	56014	5911 (10.6%)	86 (0.15%)	86 (0.15%)	0
5	3705306	335820 (9.1%)	13376 (0.36%)	11122 (0.30%)	0
6	1269000	98376 (7.8%)	5399 (0.43%)	4540 (0.36%)	0
7	1000000	67904 (6.8%)	4159 (0.42%)		93
8	1000000	60497 (6.0%)	4084 (0.41%)		362
9	1000000	55131 (5.5%)	3668 (0.37%)		372
10	1000000	51563 (5.2%)	3598 (0.36%)		318
11	1000000	48070 (4.8%)	3465 (0.34%)		241

performance results

performance results

Thank you for your attention!