

Ebrengel: Finn en ulder som slån normall på håde 7 - (2,-1,3) og \$ - (1,1,-2)

Vi ul al äxt den namel je løde å og ti: Han

= -17 + 77 + 32 = (-1,7,3)

091117.notebook November 09, 2017

parallellopran ulyper au à os tr.

Aved hi parchlyron

Sehung: Avedel lil parallelle grannel utsperl om å og ti en [åxti]. Avedel til helæmler utsperl om å og ti en \frac{1}{2} | \vec{a} \tilde{x} \vec{b}|

Ebreupet: flua en avealet til helraulen med hijmen i $\vec{a} = (1,-1,2)$, $\vec{b} = (2,2,-3)$, $\vec{c} = (1,3,0)$

Det en net å vegne ut andet av trekadu utgjud av rektaur Îr-a og, Z-a:

$$\vec{\lambda} - \vec{a} = (2, 2, 3) - (4, -1, 2) = (1, 3, -5)$$

$$\vec{c} - \vec{a} = (1, 3, 0) - (1, -1, 2) = (0, 4, -2)$$

 $(-b-a)\lambda(\tilde{c}-a) = (3(-2)-(-5)\cdot4)^{2} + ((-5)\cdot0-1(-2))^{2}$ + $(1\cdot4-3\cdot0)^{2}$

$$= 14\vec{z} + 2\vec{\gamma} + 4\vec{k}$$

$$A = \frac{1}{2} || (\vec{k} - \vec{a}) \times (\vec{c} - \vec{a})| = \frac{1}{2} || (14^2 + 2^2 + 4^2)| = \frac{1}{2} || (196 + 4 + 16)| = \frac{1}{2} || (196 + 4 +$$

091117.notebook November 09, 2017

Mahrser

En mahin er d'velstangerlout oppesets ou tell:

$$A = \begin{pmatrix} 2 & -1 & 3 & 4 \\ 1 & 0 & \pi & e \\ \hline
1 & 4 & 16 & \sqrt{\pi} \end{pmatrix}$$

$$3 \times 4 - \text{modrier}$$

$$3 - \text{rader | liniter}$$

$$4 - \text{Säyler (Indomer)}$$

Addispur au maluser au samme dimengan:

Vomponentis: $A = \begin{pmatrix} 2 & -1 & 3 \\ 0 & 4 & 7 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 1 & 2 \\ 7 & 0 & -1 \end{pmatrix}$

$$3A = \begin{pmatrix} 2 & -3 & 9 \\ 6 & 12 & 21 \end{pmatrix}$$

Transponering: Byther our singler og vader: $A = \begin{pmatrix} 2 & -1 \\ 4 & 0 \end{pmatrix}$

$$A^{T} = \begin{pmatrix} 2 & 4 & 3 \\ -1 & 0 & 7 \end{pmatrix}$$

2 x 3- mahise

Hovedhensikken med makinen en à transformere relationer.
Than 600 studente (600) Than 10 studente 10 Than 10 studente 200 That on 200 studenter. 200 That on 200 studenter. 200 A = (0.2 0.4 0.2 0.3) Elendiq 0.4 0.4 0.2 0.3
$\frac{120 + 4 + 100}{\text{Brg.}} = 0.2 \cdot 600 + 0.4 \cdot 10 + 0.5 \cdot 200 = \frac{224}{302}$ $\frac{240}{\text{Darlig.}} = 0.4 \cdot 600 + 0.2 \cdot 10 + 0.3 \cdot 200 = \frac{302}{284}$ $\frac{120 + 4 + 100}{240} + 0.4 \cdot 10 + 0.3 \cdot 200 = \frac{302}{284}$ $\frac{120 + 4 + 100}{240} + 0.4 \cdot 10 + 0.3 \cdot 200 = \frac{302}{284}$
Definisjon: And al $X = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \alpha_{m_1} & \alpha_{m_2} & \dots & \alpha_{m_n} \end{pmatrix}$ en en x_1 in which of x_2 and x_3 and x_4 and x_4 and x_4 and x_5 and x_6 an