This Week's News

- ♦ Platform for lab 4
- ◆ Lab 3 back tomorrow
- ◆ Exam

17 June, 9:30 am

◆ Workload survey

VUW Computer Science 305

2/2/00

System Security

Comp 305 Lecture 11 ©John H. Hine 1998

VIIW Computer Science 305

3/3/99

Some Definitions

- ◆ Security
 - Protection against external events
- ◆ Reliability
 - Ability to handle internal errors
- ◆ Availability
 - Measure of how often a system is available

VUW Computer Science 305

3/3/99

Security Threats

Asset	Avai l abi l iyt	Secrecy	I ntegr i y
Hardware	Equipment is olden denying service		
Software	Programs are deleted denying access	An unaut hor sed copy of of ware is made	A working program modifed, either to fail or odo some unintended task
Data	Fiès are del ded, deny ing acces s	An unaut hor sed read of dta is performed; an analys i sof s tat ist i- cal data reveal sun- derlying information	Existing files are modified or new files
Communcia -tion Liess	Mes sages are de- s royed or deleted; communication lifes or networks are rendered unavai able	Mes sages are read; the taffic pattern 6 messages is observed	Mes ages are modi- fied, delayed, reor- dered, or dup licated; false mes ages ae fabrica ed

Security Issues

- ◆ Policy v Mechanism
 - Who, from Where, When and to What
- ◆ Physical Security
- ◆ Operational Security
- ◆ System Security

VUW Computer Science 305

3/3/9

System Security

- ◆ Authentication
- ◆ Access Control
- ♦ Information Flow Control
- ◆ Data Transmission Security

VIIW Computer Science 305

3/3/99

Authentication

- ◆ Problems with passwords
 - They are private
 - They get written down
 - Short ones are easily broken
 - Easy to remember means easy to guess
 - Stored in the machine

VUW Computer Science 305

Trapdoor Encryption

◆ Store only encrypted password:

f(P) = DES(const, password.salt)

omputer Science 305 3/3/

Translation Table Sizes

Password length	26 lo werc ase letters		62 alp h aumeric chara cters	_
1	1	1.4	2.4	3.7
2	26	50	148	347
3	676	1.8k	9.2k	33k
4	17.6k	64.6k	568k	3.1M
5	0.5M	2.33M	35.2M	289M
6	11.9M	83.7M	2.180	28.3

Algorithmic Passwords

- ◆ Challenge Response
- ♦ One-time passwords
- ◆ Shared secret

The Login Process

- ◆ Always read both username and password
- ◆ Always encrypt password
- ◆ Slow down the process
- ♦ Disable after 3 failures

Access Matrix Model

- ♦ Domain:
 - User, site, program, time of day

	Obje cts			
	file A	file B	de vic e 12	proces X
domain 1	e	e		
	re	e		stop
domain 3	rwed	re		

Example Problem

- Information in F is to be available to any user through program P at company site S during normal hours T.
- ◆ Information in **F** is to be available to any boss, **B**, at site **S**, through program **P** at any time of day.
- ◆ Information in **F** is updated by a program **Q** which runs continually during normal hours.
- ◆ Maintenance of **F** is done by the sys admin, **A**, and must be done at site **S**.

VUW Computer Science 305

3/3/99

Example Access Matrix F P Q D_5 D1 (A,* S,*) Q D_5 D2 (*,*,S,T) exec switch D3 (B,*,S,*) exec switch D4 (*,Q,*,T) Q D_5 $D_$

