

Introduction to SAS

SEPTEMBER 27, 2018

Contents

- Typical analytics workflow
- SAS basics
- Applied example using hypothetical diabetes question
 - Import and access data
 - Explore data
 - Append data
 - Clean and standardize data
 - Merge data
 - Simple analysis
 - Alternative linking method using PROC SQL
 - Transforming data (wide to long, long to wide)

Basic Analytics Workflow

Workflow	Description
Access	Import or access data required for analysis.
Management	Clean, standardize, and prepare data for analysis.
Analysis	Analytical work to obtain necessary information from data.
Presentation	Prepare and communicate information for stakeholders.

Comments on Data Management

Data preparation should be not overlooked

- SAS is often used for both data management and analytics
- Data is rarely clean and analytically ready for use
- Health administrative data often not standardized in the same way across datasets
- Data often stored in ways that are not analytically friendly (e.g., relational database)

Comments on Data Management cont.

Relational Database vs. Flat File

SAS Basics

SAS Files

- Code can be stored in SAS programs → e.g., *Program.sas*
- Information on program execution can be stored in a log file → e.g., *Program Run.log*
- Data can be stored in native SAS files → e.g., *Program Dataset.sas7bdat*

SAS Syntax

- SAS code usually begins with a DATA or PROC step
- SAS steps usually ends with either a RUN or QUIT statement
- Statements end with a semicolon (;)
- Multiple statements can be written in a single line
- Statements are not case-sensitive, except inside quotations (e.g., "f" vs. "F")

SAS Basics cont.

Example SAS Code

```
data
new_data;

set old_data;

run;
proc freq data=new_data;

tables sex;

run;
```

- Names cannot be longer than 32 characters
- Can begin with a letter or underscore
- Spaces and other special characters cannot be used (e.g., !, ?, -. /, \$, #, etc.)

SAS Basics cont.

SAS Libraries

- By default, SAS stores data in a temporary workspace (library referenced as WORK)
- To save or access permanent datasets, need to point SAS to directory
- LIBNAME tells SAS to create a reference to a directory
- Directory must already exist (i.e., LIBNAME cannot create a new folder)
- Contents in temporary workspace will be deleted when SAS session ends

SAS Basics cont.

SAS Comments

- Good practice to annotate code by inserting comments
- Comments can be made using an asterisk and semicolon (e.g., * comments ;) or using a pair of forward slashes and asterisks (e.g., /* comments */)

SAS Log

- WARNINGS (green) are non-critical errors and should be investigated even if program runs
 - E.g., reference a variable that does not exist in dataset
- ERRORS (red) are critical errors that prevent program from running
 - E.g. reference a dataset that does not exist
- Number of observations (or rows) and variables (or columns) for dataset (or table) will be displayed in the log
- Processing time also displayed important for large datasets

SAS User Interface

SAS User Interface cont.

Hypothetical Scenario

- Researcher has a conceptual model of how TV viewing is associated with diabetes
- We will prepare data and build a statistical model to test this relationship

Fake Datasets

Researcher has four datasets containing data to test conceptual model

CSV	Description	Record Granularity
Tutorial Socio	 Unique identifier = FAKE_HCN Contains sociodemographics data for fake patients 	Patient-level
Tutorial Additional	 Unique identifier = FAKE_HCN Contains sociodemographics data for additional fake patients – need to add these to Socio dataset 	Patient-level
Tutorial Health	 Contains clinical and health-related data for fake patients 	 Patient-level
Tutorial HPV	 Contains HPV tests and cervical biopsy data for fake patients 	HPV Test-level

Setup Library

- Setup library so SAS knows where to read/write permanent data
- The library name acts as a reference for the folder path specified

libname TUTORIAL "M:\SAS Teaching\SAS Tutorial\Working";

Import Data

We can import different file types into SAS to work with, including CSVs

Check Contents of Data

- We need to first append (add) data from Tutorial Additional to Tutorial Socio
- Before doing this, let's look at the metadata for the two datasets so we know what we're working with
- Pay attention to:
 - Number of observations and variables
 - Variable names, type, length

```
proc contents data=SOCIO order=varnum;
run;

Tells SAS to maintain order of variables in output. By default,
SAS will order things alphabetically.
```


Append Datasets Together

- Code starting with DATA often referred to as a DATA step, ending with a RUN statement
- Usually used to read, write, or manipulate data
- Datasets can be appended together using the SET statement

Explore Data

- Good practice to look at a sample of the data
- Two things are immediately apparent:
 - Values are not standardized (e.g., Homer vs. HOMER vs. HoMER)
 - Assuming FAKE_HCN is our unique identifier for a patient, we have duplicates

	FNAME	LNAME	CITY	MARITAL_STATUS	FAKE_HCN	DOB	SEX	EDUCATION
1	Homer	Simpson	Toronto	Y	999999911	01JAN1960	M	2
2	HOMER	Simpson	TORONTO	Y	999999911	01JAN1960	M	2
3	HOMER	SIMPSON	Toront	Y	9999999911	01JAN1960	M	2
4	HoMER	simpson	Tor	Y	9999999911	01JAN1960	M	2
5	HOMER	SIMPSON	6ix	Y	9999999911	01JAN1960	M	2
6	Marge	Simpson	Toronto	Y	9999999916	24MAR1970	F	3
7	Marge	Simpson	Toronto	Y	9999999916	24MAR1970	F	3
^	1	0.	- .		0000000040	0.000000000	-	^

Explore Data cont.

- PROC statements are used to run procedures or summarize data
- We can look at the unique values and frequency distribution of categorical data

```
proc freq data=COMBINE;
  tables CITY SEX EDUCATION MARITAL_STATUS;
run;
```

This just shows the basics. PROC FREQ is a powerful procedure with many options (e.g. cross-tabulate and conduct chi-sq tests, print results to dataset, etc.)

Explore Data cont.

CITY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
6ix	1	0.55	1	0.55
?	1	0.55	2 5	1.10
Ajax	3 2 4	1.66	5	2.76
Aurora	2	1.10	7	3.87
Brampton	4	2.21	11	6.08
Fraserville	1	0.55	12	6.63
Georgetown	1	0.55	13	7.18
Gue I ph	3	1.66	16	8.84
Hamilton	3 6 4 2	3.31	22	12.15
Kirby	4	2.21	26	14.36
London		1.10	28	15.47
Markham	11	6.08	39	21.55
Milton	1	0.55	40	22.10
Mississauga	3 4	1.66	43	23.76
Newmarket		2.21	47	25.97
North York	14	7.73	61	33.70
NorthYork	1	0.55	62	34.25
Oakville	4	2.21	66	36.46
Oshawa	3 3 4	1.66	69	38.12
Peterborough	3	1.66	72	39.78
Pickering	4	2.21	76	41.99
Richmond Hill	8 2	4.42	84	46.41
Rigel VII	2	1.10	86	47.51
Scarborough	10	5.52	96	53.04
TOR	2	1.10	98	54.14
TORONTO	1	0.55	99	54.70
Tor	1	0.55	100	55.25
Toront	1	0.55	101	55.80
Toronto	64	35.36	165	91.16
Unknown	3	1.66	168	92.82
Uxbr i dge	3 2 7 2 2	1.10	170	93.92
Vaughan	7	3.87	177	97.79
Whitby	2	1.10	179	98.90
toronto	2	1.10	181	100.00

Clean & Standardize Data

- There are many ways to clean/standardize data key is to be consistent and transparent
- Noticed inconsistencies for:
 - o FNAME
 - LNAME
 - CITY
 - MARITAL_STATUS
- We can recode values using if-then statements in a DATA step by either creating a new variable with the correct coding or overwriting the original values

- Can make FNAME and LNAME consistent by using built in SAS functions
- FNAME=propcase(FNAME);
 - This will recode all values in FNAME to be propercase
 - E.g., HOMER becomes Homer
- The same can be done to LNAME so that SIMPSON becomes Simpson

- CITY is a bit trickier since there are numerous values for Toronto (6ix, TORONTO, Tor, Toront, Toronto)
- One option is to use if-then statements for each variation
- Another option is to standardize values (e.g., make all values capitalized), and then use a search function
- if upcase(CITY) in: ('6IX', 'TOR') then CITY='Toronto';
 - Upcase(CITY) temporarily makes all values capitalized
 - $_{\circ}$ In: ('6IX','TOR') tells SAS to search for values that start with either 6IX or TOR
 - The statement then converts these values to 'Toronto' to make things consistent

- We should also identify observations that might be missing FAKE_HCN or DOB since these are important variables we need
- if missing (FAKE HCN) then HCN MISSING=1;
- else HCN MISSING=0;
- if missing(DOB) then DOB MISSING=1;
- else DOB MISSING=0;
 - Missing() can be used to identify missing values in a variable
 - If a value is missing, we flag that observation by creating a new variable for each


```
data COMBINE2 (drop=EDUCATION rename=(EDUCATION2=EDUCATION));
  set COMBINE;
  length EDUCATION2 $25.;
  if missing (FAKE HCN) then HCN MISSING=1;
  else HCN MISSING=0;
  if missing(DOB) then DOB MISSING=1;
  else DOB MISSING=0;
  FNAME=propcase(FNAME);
  LNAME=propcase(LNAME);
  if upcase (CITY) in: ('6IX', 'TOR') then CITY='Toronto';
  if CITY in ('?', 'Unknown') then CITY='';
  if CITY='NorthYork' then CITY='North York';
  if SEX='U' then SEX='';
  if upcase (MARITAL STATUS) in: ('U') then MARITAL STATUS='';
  if EDUCATION=1 then EDUCATION2='1 - Less than high school';
  else if EDUCATION=2 then EDUCATION2='2 - High school';
  else if EDUCATION=3 then EDUCATION2='3 - Undergraduate';
  else if EDUCATION=4 then EDUCATION2='4 - Post-graduate';
  else EDUCATION2='';
run;
```

CCO

Check Results

CITY	Frequency	Percent	Frequency	Percent
Ajax	3	1.69	3	1.69
Aurora	2 4	1.13	5 9	2.82
Brampton	4	2.26	9	5.08
Fraserville	1	0.56	10	5.65
Georgetown	1	0.56	11	6.21
Gue 1 ph	3	1.69	14	7.91
Hamilton	6	3.39	20	11.30
Kirby	4	2.26	24	13.56
London	2	1.13	26	14.69
Markham	11	6.21	37	20.90
Milton	1	0.56	38	21.47
Mississauga	3	1.69	41	23.16
Newmarket	4	2.26	45	25.42
North York	15	8.47	60	33.90
Oakville	4	2.26	64	36.16
Oshawa	3	1.69	67	37.85
Peterborough	3	1.69	70	39.55
Pickering	4	2.26	74	41.81
Richmond Hill	4 8 2	4.52	82	46.33
Rigel VII		1.13	84	47.46
Scarborough	10	5.65	94	53.11
Toronto	72	40.68	166	93.79
Uxbr i dge	2	1.13	168	94.92
Vaughan	2 7	3.95	175	98.87
Whitby	2	1.13	177	100.00

Frequency Missing = 9

Remove Duplicates

- Earlier we noticed that there were duplicate records
- We can remove duplicates using PROC SORT
- This procedure can also just sort data
- Good practice to create a new dataset when you remove duplicates so you still have the original data

SAS Dates

- We need to calculate age to identify seniors for our model
- SAS dates are stored as the number of days (+/-) from January 1, 1960
- You will need to tell SAS that a numeric value is a date otherwise SAS will display the value as an integer
- There are many date formats, but a common one is date9. (e.g., 01JAN1960)

Date	SAS Value
December 31, 1959	-1
January 1, 1960	0
January 2, 1960	1

Calculating Age

- Simplest way is to use arithmetic in a DATA step
- There are more sophisticated functions that can be used to accurately account for leap years
- We can get today's date using TODAY() and the patient's DOB to calculate their age
- Additionally, let's apply an exclusion criteria where we only keep patients with a DOB

```
WHERE statement tells SAS
Apply date9. format to
                                      data COMBINE4;
                                                                                 to only read data from
display current date as a
                                         set COMBINE3;
                                                                                  COMBINE3 that are not
date instead of numeric
                                        format TODAY date9.;
                                                                                  missing DOB.
value.
                                         where DOB MISSING=0;
                                         TODAY=today();
                                         AGE=int((TODAY-DOB)/365.25);
                                      run;
                                    The INT() function tells SAS to keep only the integer.
```


Save Permanent Copy of Dataset

- Now that we've cleaned up the data, we can save it as a permanent dataset
- We need to use the library reference to tell SAS where to save the dataset

Merging Datasets

- There are a couple ways to merge/link datasets together
- One common method is to use a MERGE statement in a DATA step
- We will need to sort both datasets together in exactly the same way first

```
proc sort data=TUTORIAL.COMBINE4 out=COMBINE4;
  by FAKE_HCN;
run;

proc sort data=HEALTH;
  by FAKE_HCN;
run;
```


Merging Datasets cont.

FAKE_HCN	DOB		FAKE_HCN	DIABETES
9999997760 19	9NOV1958		9999997760	N
9999998743 15	5APR1932	—	9999998743	Υ
9999998748 15	5APR1952		9999998748	Υ
9999998749 25	5MAR1950		9999998749	N
9999998750 15	5FEB1985		9999998750	N

This tells SAS to merge COMBINE4 and HEALTH. We also tell SAS to reference COMBINE4 as 'a' and HEALTH as 'b'.

```
This tells SAS to merge COMBINE_HEALTH;

merge COMBINE4 (in=a) HEALTH (in=b);

by FAKE_HCN;

if a=1 and b=1;

run;

This tells SAS to merge observations only if the same FAKE_HCN is in both datasets.
```


Merging Datasets cont.

Explore, Clean, Standardize.. Again

- Since we are working with new data and variables, we should check the values to see if cleaning/standardization is required
- We can use PROC FREQ again on categorical values
- To keep things simple, we previously converted unknown ('U') values to missing
- Let's do the same for this new data

DIABETES	Frequency	Percent	Cumulative Frequency	Cumulative Percent
N U	87 2	58.00 1.33	87 89	58.00 59.33
Y	61	40.67	150	100.00

HYPER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
N	92	61.33	92	61.33
U	5	3.33	97	64.67
Y	53	35.33	150	100.00

Explore, Clean, Standardize.. Again cont.


```
data COMBINE HEALTH2 (drop=DIET OBE DEP rename=(DIET2=DIET));
  length DIET2 $10.;
  set COMBINE HEALTH;
  if DIABETES='U' then DIABETES='';
  if HYPER='U' then HYPER='';
  OBESITY=OBE;
  if OBESITY='U' then OBESITY='';
  if CANCER='U' then CANCER='';
  DEPRESSION=DEP:
  if DEPRESSION='U' then DEPRESSION='';
  if DIET=1 then DIET2='MIXED';
  else if DIET=2 then DIET2='VEGETARIAN';
  else if DIET=3 then DIET2='VEGAN';
  else DIET2='';
  if SUPPLEMENTS='U' then SUPPLEMENTS='';
  if DAIRY='U' then DAIRY='';
run;
```


Descriptive Statistics

class DIABETES;

- We can use PROC MEANS or PROC UNIVARIATE to look at continuous variables
- CLASS statement can be used to tell SAS to stratify the analysis by a variable (e.g., sex)

```
proc means data=COMBINE_HEALTH2 n mean median min max clm std p25 p50 p75
maxdec=2;
var AGE EXERCISE TV;
class DIABETES;
run;
Round output to two decimal places. Specify which summary statistics to display.

proc univariate data=COMBINE_HEALTH2 plot;
title "Analysis of Age, Exercise, & TV by Diabetes Status";
var AGE EXERCISE TV;
```


run;

PROC MEANS Output

DIABETES	N Obs	Variable	N	Mean	Median	Minimum	Max i mum
N	87	AGE EXERC ISE TV	87 87 87	50.02 13.39 12.83	49.00 16.00 7.00	8.00 0.00 1.00	91.00 27.00 65.00
Y	61	AGE EXERCISE TV	61 61 61	64.89 7.44 27.90	68.00 5.00 32.00	18.00 0.00 1.00	88.00 25.00 60.00

DIABETES	N Obs	Variable	Lower 95% CL for Mean	Upper 95% CL for Mean	Std Dev	25th Pct1	50th Pct1
N	87	AGE EXERC ISE TV	46.19 11.81 10.12	53.86 14.96 15.54	17.99 7.39 12.72	33.00 6.00 5.00	49.00 16.00 7.00
Y	61	AGE EXERC ISE TV	60.85 5.71 23.38	68.92 9.17 32.42	15.74 6.75 17.65	65.00 2.00 9.50	68.00 5.00 32.00

PROC UNIVARIATE Output

For Hours of TV where DIABETES='Y'

Moments

N	61	Sum Weights	61
Mean	27.9016393	Sum Observations	1702
Std Deviation	17.6530969	Variance	311.631831
Skewness	-0.0186843	Kurtosis	-1.2722672
Uncorrected SS	66186.5	Corrected SS	18697.9098
Coeff Variation	63.2690312	Std Error Mean	2.26024745

Basic Statistical Measures

Locat	ion	Vari	iabili	ty

Mean	27.90164	Std Deviation	17.65310
Median	32.00000	Variance	311.63183
Mode	45.00000	Range	59.00000
		Interquartile Range	35.50000

Extreme Observations

Lowe	st	Highest		
Value	0bs	Value	0bs	
1 2	97 142	50 55	66 12	
2	134 40	59 60	10 8	
3	41	60	9	

Returning to Research Question

- We have Hours of TV and Diabetes in our dataset
- Let's create Senior status (based on age) and Active lifestyle status variables

Create New Variables

- We can use a DATA step to create new variables for Senior and Active status
- Senior is defined as being 65+ years old
- Active status is defined as either doing weight lifting or cardio, and also exercising more than
 15 hours a week
- COMBINE_HEALTH3 will be our "analytically ready dataset"

```
data COMBINE_HEALTH3;
  set COMBINE_HEALTH2;
  if AGE>=65 then SENIOR=1;
  else SENIOR=0;

if (WEIGHT_LIFTING='Y' or CARDIO='Y') and EXERCISE>15 then ACTIVE=1;
  else ACTIVE=0;
run;
```


X² Test and Fischer's Exact Test

- Before we build our multivariate model, we might want to do a simple bivariate analysis first
- PROC FREQ can be used again to cross-tabulate categorical values and test expected vs.
 observed outcomes
- SAS will give you a warning if 25% of cells have expected counts less than 5 for a chi-square test

```
proc freq data=COMBINE_HEALTH3;
  tables DIABETES*SENIOR /chisq fisher norow nocol;
run;
```

Table of DIABETES by SENIOR

DIABETES	SENTOR	}	
Frequency Percent	0	1	Total
N	55	32	87
	37.16	21.62	58.78
Y	15	46	61
	10.14	31.08	41.22
Total	70	78	148
	47.30	52.70	100.00

X² Test and Fischer's Exact Test cont.

Statistics for Table of DIABETES by SENIOR

Statistic	DF	Value	Prob
Chi-Square	1	21.4648	<.0001
Likelihood Ratio Chi-Square	1	22.2346	(.000i
Continuity Adj. Chi-Square	1	19.9432	<.0001
Mantel-Haenszel Chi-Square	1	21.3198	<.0001
Phi Coefficient		0.3808	
Contingency Coefficient		0.3559	
Cramer¹s V		0.3808	

Fisher's Exact Test

Cell (1,1) Frequency (F)	55
Left-sided Pr <= F	1.0000
Right-sided Pr >= F	<.0001
Table Prebability (P) Two-sided Pr <= P	<.0001 <.0001

Effective Sample Size = 148 Frequency Missing = 2

Multivariate Logistic Regression

- There are multiple procedures that can be used to build a regression model
- PROC LOGISTIC works in most situations
- By default, beta coefficient estimates will be produced but SAS can also output odds ratios

```
proc logistic data=COMBINE_HEALTH3;
  class SENIOR (ref="0") ACTIVE (ref="0") /param=ref;
  model DIABETES (event='Y') = TV SENIOR ACTIVE /clodds=wald cl;
  units TV=1;
run;
```


Multivariate Logistic Regression cont.

Multivariate Logistic Regression cont.

- Looks like a one hour increase in TV watching per week is associated with a 1.067 (95% CL: 1.036, 1.099) increase in odds of being diabetic, controlling for senior status and active lifestyle status
- The effect sizes and 95% CL for active lifestyle and especially senior status are very large
 - This should be investigated (could be issues with data or sample size)

	Udds	Hatio	Estimates	and Wald	Confidence	Intervals	
Effect			Unit	Estima	te 95%	Confidence	Limits
TV SENIOR	1 vs	0	1.0000 1.0000	1.00 8.00		1.036 2.989	1.099 21.430
ACTIVE	1 vs	Ō	1.0000	0.2	67	0.103	0.691

Exporting Output or Data

- SAS has a couple of ways to export data or analytical outputs
- PROC EXPORT can be used to export datasets in different file formats (e.g., CSV, XLSX)
- You can also run a procedure and have its outputs printed to a PDF

```
proc export data=COMBINE_HEALTH3
          outfile='M:\SAS Teaching\SAS Tutorial\Data\test export.csv'
          dbms=csv replace;
run;

ods pdf file="M:\SAS Teaching\SAS Tutorial\Data\Logistic Regression
Example.pdf";
proc logistic data=COMBINE_HEALTH3;
    class SENIOR (ref="0") ACTIVE (ref="0") /param=ref;
    model DIABETES (event='Y') = TV SENIOR ACTIVE /clodds=wald cl;
    units TV=1;
run;
ods pdf close;
```


More on Merging Data

- Using a DATA step is an easy way to merge data, but one drawback is that data needs to be sorted in the same way first
- Works fine for small datasets but can be problematic with health administrative data (e.g., millions of observations)
- Additionally, sometimes we need to merge multiple datasets using multiple variables (or keys)
- PROC SQL is a good alternative to a DATA step

Another Hypothetical Scenario

- Suppose a program is interested in evaluating HPV screening tests for the cohort of patients we worked with earlier
- The researcher is only interested in subsequent screening tests (i.e., not the very first one), and the following criteria must apply:
 - 1) The HPV screening tests must be positive or there must have been a positive biopsy
 - 2) The HPV screening tests must be at least 30 days apart but not more than 2 years apart

	TEST_ID	FAKE_HCN	HPV_TEST_DATE	HPV_RESULT	BIOPSY
1	100251	9999999916	27JAN1999	0	0
2	100252	9999999916	18JUN2005	0	0
3	100253	9999999916	10SEP2006	1	0
4	100254	9999999916	25FEB2016	0	0
5	100255	9999999925	01JUN2018	0	0
6	100256	999999937	19JAN2012	0	0
7	100257	999999937	20NOV2014	0	0
8	100258	999999938	07NOV1998	0	0
9	100259	999999938	17DEC2002	1	0
10	100260	999999938	12MAY2005	1	0

PROC SQL to Merge Data

 First we need to merge data from our analytically ready dataset to Tutorial HPV, which contains HPV screening data

PROC SQL to Merge Data cont.

- The record granularity is still at the HPV-test level
- TEST_COUNT, POSITIVE_HPV, and POSITIVE_BIOPSY are vertical summaries of data based on FAKE_HCN

Identify Subsequent HPV Tests

- Next we need to identify HPV tests that are not the very first test a patient had
- There are multiple ways to do this, but we can use a BY statement in a DATA step
- This identifies the first and last observation for a patient
- You can also create a counter with this method that has other uses

Identify Subsequent HPV Tests cont.

Counter for each observation by patient.

	FAKE_HCN	TEST_ID	HPV_TEST_DATE	HPV_RESULT	CERVICAL_BIOPSY	TEST_COUNT	POSITIVE_HPV	POSITIVE_BIOPSY	TEST_NUM
1	9999999916	100251	27JAN1999	0	0	4	1	0	1
2	9999999916	100252	18JUN2005	0	0	4	1	0	2
3	9999999916	100253	10SEP2006	1	0	4	1	0	3
4	9999999916	100254	25FEB2016	0	0	4	1	0	4
5	9999999925	100255	01JUN2018	0	0	1	0	0	1
6	999999937	100256	19JAN2012	0	0	2	0	0	1
7	999999937	100257	20NOV2014	0	0	2	0	0	2
8	999999938	100258	07NOV1998	0	0	6	3	1	1
9	999999938	100259	17DEC2002	1	0	6	3	1	2
10	999999938	100260	12MAY2005	1	0	6	3	1	3
11	999999938	100261	19AUG2006	1	1	6	3	1	4
12	999999938	100262	30DEC2006	0	0	6	3	1	5
13	999999938	100263	15MAY2016	0	0	6	3	1	6
14	999999939	100264	11AUG2006	0	0	3	0	0	1
15	999999939	100265	01SEP2015	0	0	3	0	0	2
16	9999999939	100266	16JUL2018	0	0	3	0	0	3

Identify Records of Interest

- We can use PROC SQL to identify records that are 30-730 days apart
- This can be accomplished by joining the dataset to itself

TEST_ID	HPV_TEST_DATE	TEST_ID	HPV_TEST_DATE
100251	27JAN1999	100251	27JAN1999
100252	18JUN2005	100252	18JUN2005
100253	10SEP2006	100253	10SEP2006

TEST_ID	HPV_TEST_DATE	TEST_ID2	HPV_TEST_DATE2	DATE_DIFF
100251	27JAN1999	100251	27JAN1999	0
100251	27JAN1999	100252	18JUN2005	2,334
100251	27JAN1999	100253	10SEP2006	6,238

Identify Records of Interest cont.

 Using PROC SQL, we can easily identify all combinations of HPV screening dates that are of interest

FAKE_HCN	TEST_ID	TEST_NUM	HPV_TEST_DATE	TEST_ID2	TEST_NUM2	HPV_RESULT2	CERVICAL_BIOPSY2	HPV_TEST_DATE2	DATE_DIFF		
999999943	100288	1	19APR2008	100288	1	0	0	19APR2008	0		
999999943	100288	1	19APR2008	100289	2	1	1	10SEP2009	509		
999999943	100288	1	19APR2008	100290	3	0	0	14FEB2014	2127		
999999943	100288	1	19APR2008	100291	4	1	0	13MAY2018	3676		
999999943	100289	2	10SEP2009	100288	1	0	0	19APR2008	-509		
999999943	100289	2	10SEP2009	100289	2	1	1	10SEP2009	0		
999999943	100289	2	10SEP2009	100290	3	0	0	14FEB2014	1618		
999999943	100289	2	10SEP2009	100291	4	4	^	12447/2010	2107		
999999943	100290	3	14FEB2014	100288	1		For patient 9999999943, test 100289 is of interest since there was one instance where				
999999943	100290	3	14FEB2014	100289	2	int					
999999943	100290	3	14FEB2014	100290	3	it v	it was:				
999999943	100290	3	14FEB2014	100291	4	1)	 Not the first HPV test (TEST_NUM is 2) HPV result was positive or cervical 				
999999943	100291	4	13MAY2018	100288	1	2)					
999999943	100291	4	13MAY2018	100289	2			•			
999999943	100291	4	13MAY2018	100290	3	2)	biopsy was posi				
999999943	100291	4	13MAY2018	100291	4	3)	3) It was 509 days from a previous HPV to				
					1						
FAKE_HCN	TEST_ID	TEST_NUM	HPV_TEST_DATE	TEST_ID2	TEST_NUM2	HPV_RESULT2	CERVICAL_BIOPSY	2 HPV_TEST_DATE	DATE_DIFF		

100289

100288

1 19APR2008

509

1 10SEP2009

Identify Records of Interest cont.

Using a WHERE statement we can keep only subsequent HPV tests that are either HPV
positive or there was a positive biopsy, and are at least 30 days apart but not more than 2
years apart

```
proc sql;
    create table COMBINE_HPV3 as
    select b.*

from    COMBINE_HPV2 as a inner join COMBINE_HPV2 as b
    on     a.FAKE_HCN=b.FAKE_HCN

where    (b.TEST_NUM>1 and (b.HPV_RESULT=1 or b.CERVICAL_BIOPSY=1))
        and 30<= (b.HPV_TEST_DATE- a.HPV_TEST_DATE) <=730

order by a.FAKE_HCN, a.HPV_TEST_DATE, b.HPV_TEST_DATE
    ;
    quit;</pre>
```


Transpose Data – Long to Wide

- Sometimes data needs to be transformed prior to analysis
- Transposing data is very common
- SAS provides a few different ways to convert data from long to wide and vice versa

Transpose Data – Long to Wide cont.

- One way to transform data is to use a DATA step along with ARRAYS and a DO loop
- ARRAYs in SAS allow you to reference a group of variables
- This allows you to do an operation on a group of variables without having to write separate code for each variable
- Suppose we want to automate some code instead of typing out each line
- In the example below, creating MONEY_1 to MONEY_5 results in 5 lines of code we have to program

```
data example;
   MONEY=100000;

MONEY_1=MONEY*1.035**1;
   MONEY_2=MONEY*1.035**2;
   MONEY_3=MONEY*1.035**3;
   MONEY_4=MONEY*1.035**4;
   MONEY_5=MONEY*1.035**5;
run;
```


Transpose Data – Long to Wide cont.

- We can replicate the SAS program previously in a more efficient manner with the code below
- First we create an array called MONEY_
 - [5] tells SAS that there are 5 variables in the array
 - MONEY_1-MONEY_5 specifies which variables are in the array
- Do a=1 to 5 creates a loop where SAS will cycle through the specified code changing a=1 to a=5 each iteration

```
data array_example;
   MONEY=100000;
   array MONEY_[5] MONEY_1-MONEY_5;

   do a=1 to 5;
        MONEY_[a]=MONEY*1.035**a;
   end;
   drop a;

run;
Tell SAS to reference variables MONEY_1
to MONEY_5 as MONEY_.

MONEY_is arbitrary here.

This tells SAS to loop through a=1 to 5.

"A" acts as a reference that changes from 1 to 5 as SAS goes through the DO loop.
```


Transpose Data – Long to Wide cont.

```
Iteration 1 where a=1

data array_example;
   MONEY=100000;
   array MONEY_[5] MONEY_1-MONEY_5;

   do a=1 to 5;
      MONEY_1=MONEY*1.035**1;
   end;
   drop a;
run;
```

```
Iteration 2 where a=2

data array_example;
   MONEY=100000;
   array MONEY_[5] MONEY_1-MONEY_5;

   do a=1 to 5;
   MONEY_2=MONEY*1.035**2;
   end;
   drop a;

run;
```

```
Iteration 3 where a=3

data array_example;
  MONEY=100000;
  array MONEY_[5] MONEY_1-MONEY_5;

do a=1 to 5;
  MONEY_3=MONEY*1.035**3;
  end;
  drop a;
  run;
```

Etc. until iteration 5 where a=5

Transpose Data – Long to Wide

- We can use arrays and a do loop to transpose data from long to wide format
- There are 21 variables because that is the maximum number of tests a patient had

```
data HPV WIDE (drop=a TEST ID HPV TEST DATE HPV RESULT BIOPSY);
  retain FAKE HCN;
  array TEST ID [21];
  array HPV TEST DATE [21];
  array HPV RESULT [21];
  array BIOPSY [21];
  format HPV TEST DATE 1-HPV TEST DATE 21 date9.;
  do a=1 to 21 until (last.FAKE HCN);
     set HPV;
    by FAKE HCN;
                                                    This tells SAS to sum the values of
     TEST ID [a]=TEST ID;
                                                    HPV RESULT 1 to HPV RESULT 21 to give
                                                    the total number of positive HPV results
    HPV TEST DATE [a] = HPV TEST DATE;
                                                    for each patient.
    HPV RESULT [a] = HPV RESULT;
    BIOPSY [a]=BIOPSY;
  end;
  POSITIVE HPV=sum(of HPV RESULT 1-HPV RESULT 21);
  POSITIVE BIOPSY=sum (of BIOPSY 1-BIOPSY 21);
run;
```

Transpose Data – Wide to Long

We can use a DATA step and arrays to reverse the process also

```
data HPV LONG;
  retain TEST ID FAKE HCN HPV TEST DATE HPV RESULT BIOPSY;
  set HPV WIDE;
  format HPV TEST DATE date9.;
  array TEST ID [21] TEST ID 1-TEST ID 21;
  array HPV TEST DATE [21] HPV_TEST_DATE_1-HPV_TEST_DATE_21;
  array HPV RESULT [21] HPV RESULT 1-HPV RESULT 21;
  array _BIOPSY [21] BIOPSY_1-BIOPSY_21;
  do a=1 to 21;
     if TEST ID[a]^=. then do;
       TEST ID= TEST ID[a];
       HPV TEST DATE= HPV TEST DATE[a];
       HPV RESULT= HPV RESULT[a];
                                             The OUTPUT statement tells SAS to write a
       BIOPSY= BIOPSY[a];
                                             new observation with each iteration of the
       output;____
                                             do loop. This is the key to transforming
                                             the data back to long format.
     end;
  end:
  keep TEST ID FAKE HCN HPV TEST DATE HPV RESULT BIOPSY;
run;
```


Questions?

Image source: https://157ofgemma.com/

