Sistemas Operacionais

CCP/SIF
UNISUL – Tubarão

Cassio Brodbeck Caporal

cassio{NOSPAM}ostec.com.br

Agenda

- Revisão sobre tipos de sistemas operacionais;
- Revisão sobre hardware e software básico;
 - Processador, memória (principal, cache, secundária), dispositivos de E/S, BUS, arquiteturas CISC e RISC;
 - Softwares básicos: linkers, compiladores, carregadores (loaders), depuradores, etc.

Agenda

- Estrutura de Sistemas Operacionais
 - Chamadas de sistema;
 - Kernel monolítico;
 - Kernel em camadas;
 - Microkernel;
 - Virtual machine.

- Função principal:
 - Controle e execução de instruções localizadas na memória principal;
 - Utilização de registradores para armazenar variáveis e resultados (temporário);
- Componentes: Unidade de Controle (UC), Unidade
 Lógica e Aritmética (ULA), Registradores.

- Unidade de Controle:
 - Responsável por gerenciar todos os recursos (componentes) do computador;
- Unidade Lógica e Aritmética:
 - Responsável por operações lógicas e aritméticas (sério???);

- Registradores:
 - Armazenamento de dados temporários;
 - Memória de alta velocidade e pouco armazenamento;
 - Completamente dependente de arquitetura computacional;

- Registradores:
 - Program counter (contador de instruções):
 - Armazenamento do endereço da próxima instrução a ser executada.
 - Stack pointer;
 - Aponta para o topo da pilha.
 - Registrador de status (PSW):
 - Armazena informações sobre execução de instruções

Memória Principal

- Local de armazenamento de dados e instruções;
- Células;
 - Endereços de memória referenciam células;
 - Ponteiros em C;
- Memory Register Address (MRA ou MAR);
 - Identificação de qual célula será utilizada.

Memória Principal

- Memory Buffer Register (MBR);
 - Não confuda com Master Boot Record;
 - Registrador responsável por guardar a informação propriamente dita;
- Classificação:
 - Volátil;
 - Não-volátil;

Memória Cache

- Características:
 - Alta velocidade;
 - Baixa capacidade de armazenamento;
 - Caras (R\$);
- Finalidade:
 - Aumentar a velocidade da área de troca entre
 CPU e memória principal;

Memória Cache

- Mensagens:
 - CACHE_HIT;
 - CACHE_MISS;
- E os registradores?
 - Também são considerados um tipo de memória específica da CPU;
 - Altíssima velocidade.

Memória Secundária

- Memória não-volátil;
- Características:
 - Alta capacidade de armazenamento;
 - Baixa velocidade (??);
 - Baixo custo (R\$);
- Exemplo: hard drives.

Dispositivos de E/S

- Propriedades:
 - Controlador;
 - Dispositivo;
- Controlador é um chip que controla fisicamente um dispositivo (interface para o SO);
- Driver: comunicação com controlador.

Dispositivos de E/S

- Interrupções
 - Exemplo com chegada de um pacote de rede;
- Direct Memory Access;
 - Controle de fluxo de bits diretamente entre o dispositivo e a memória, sem intervenção da CPU.

Barramentos

- Meio físico de comunicação entre unidades funcionais de um computador;
- Existência de linhas de controle e linhas para transmissão/transferência de dados;
- Com a evolução, surgiu a necessidade de criar diversos outros barramentos: cache, local, memória, PCI, SCSI, USB, IDE, SATA, ISA, ...);

Barramentos

- Industry Standard Architecture;
 - IBM PC/AT, 8,33Mhz, transfere 2 bytes de uma vez, vel. Máxima de 16,67MB/s;
- Peripheral Component Interconnect;
 - Criado pela Intel como sucessor do ISA;
 - Funciona a 66Mhz e transfere 8 bytes por vez,
 528MB/s;
 - PCI-X 64/133/266/533.

Pipelining

- Execução de múltiplas instruções
 paralelamente (mas em estágios/momentos
 diferentes);
- Fracionamento de instruções (sub-tarefas);
- Unidades funcionais pipelining;
- Característica:
 - Aumento de desempenho;

Arquitetura RISC

- Reduced Instruction Set Computer;
- Caracterizada por poucas instruções, executadas de forma simples pelo próprio hardware;
- Pouca iteratividade com a memória principal devido a existência de múltiplos registradores;

Arquitetura CISC

- Complex Instruction Set Computer;
- Instruções complexas executadas por microprogramas;
- Utilização contínua de memória principal, poucos registradores.

Estrutura de Sistemas Operacionais

- Kernel (o coração):
 - Conjunto de "rotinas" que oferecem tanto serviços para usuários e aplicações, como ao próprio sistema;
- Utilitários versus aplicações;
- Hierarquia: aplicações → utilitários → kernel
 - → hardware;

Estrutura de Sistemas Operacionais

- Mas o que o kernel efetivamente faz?
 - Gerenciamento de memória, E/S, file systems, escalonamento de processos, tratamento de exceções, concorrência, interrupções, etc etc etc.
 - Para isso uma disciplina de Sistemas
 Operacionais. :-)

- Antes de tudo, o que é kernel e user space?
 - Ou então, instruções privilegiadas e nãoprivilegiadas?
 - Certas instruções não podem ser feitas por um usuário, é necessário uma camada intermediária de proteção;
 - Aplicações precisam ler informações do disco,
 mas não podem fazer isso DIRETAMENTE;

- System calls s\u00e3o implementadas como forma de interfaceamento entre user space e kernel space;
- Qual objetivo?
 - Não comprometer a integridade do sistema;
- Através das system calls podemos ler um arquivo sem comprometer o sistema...

- .. não precisamos saber informações específicas do dispositivo (abstração);
- Através das system calls a execução de um processo entre em modo privilegiado de forma segura;
- System call → kernel space → execução → user space → retorno;

- Cada sistema operacional tem seu conjunto de chamadas de sistema;
 - POSIX 9945-1 (Portable Operating System Interface for Unix):
 - Padronização de chamadas de sistema;

- Exemplo prático:
 - Um simples "Hello world" / Uma simples substituição ao "cat".
 - Análise com system call trace.

Kernel monolítico

- Presença de vários módulos;
- Compilação separada, linking para gerar um único e grande arquivo;
 - Exemplo: vmlinuz.
- Desenvolvimento facilitado, no entanto, manutenção crítica;
- MS-DOS, primeiros Unices.

Kernel em camadas

- Divisão em níveis onde cada um sabe exatamente o que oferecer para camada superior;
- Características:
 - Isolamento de funções do sistema operacional;
 - Baixo desempenho através de mudanças de acesso entre camadas (modos);

Microkernel

- Paradigma de serviços como processos;
- Relacionamento de cliente e servidor para processar requisições;
- Características:
 - Fácil manutenção;
 - Flexibilidade;
 - Alta portabilidade.

Microkernel

- Na prática, hmmm, "nem tudo são rosas"...
 - Implementação MUUUUITO complicada;
 - Funções com acesso direto ao hardware,
 especialmente dispositivos de E/S;
 - Exemplo: Exokernel (MIT), GNU/Hurd.

Máquina virtual

- Substituição de uma camada da arquitetura computacional;
- Pode estar entre sistema operacional e hardware;
- Pode estar entre aplicação e sistema operacional (JVM);
- Problemas? Desempenho:P