Entradas y salidas en un PLC

Facultad de Ciencias Carlos Canto

Tipos de interfases de Entrada de un PLC

Entradas de AC/DC

- •24 volts
- •48 volts
- •120 volts
- •230 volts

Entradas TTL
Entradas de No voltaje
Entradas aisladas
Entradas de DC

- •Sink
- •source

INTERFASES: DE ENTRADAS: DE LA AC/CD)

Facultad de Ciencias Carlos Canto

UASLP

Interfases de entradas de AC/DC

Diagrama de bloques de un circuito de entrada para AC/DC

Figure 6-8. Typical input circuit.

Facultad de Ciencias Cortos Control Cortos Control Cortos Control Cortos Control Cortos Control Contro

INTERFASES DE ENTRADAS DE CD

Facultad de Ciencias Carlos Canto

UASLP

Corriente para un módulo de entrada sinking /dispositivo sourcing

Si el dispositivo (durante su posición on) provee corriente, se dice que suministra corriente (SOURCING)

Facultad de Ciencias Contos

Conectando sensores con salida "Sourcing" a un PLC con entrada "sinking"

Facultad de Ciencias Carlos Canto

UASLP

Corriente para un módulo de entrada sourcing /dispositivo sinking

Si el dispositivo (durante su posición on) RECIBE corriente, se dice que DRENA corriente (SINKING)

Conectando sensores con salida "sinking" a un PLC con entrada "Sourcing"

Facultad de Ciencias Carlos Canto

UASLP

Tipos de salida de sensores de CD

De acuerdo al tipo de transistor de su salida:

Facultad de Ciencias Carlos Canto

UASLP

De acuerdo al número de terminales de salida:

Sensor de 4 hilos complementario

Sensor DC de 3 hilos

Conectando sensores con salida de corriente NPN a la entrada de un PLC

Conectando sensores con salida colector abierto NPN a la entrada de un PLC

Facultad de Ciencias Carlos Canto

UASLP

Connecting sensor with PNP current output to a PLC controller input

Connecting sensor with voltage output to a PLC controller input

Facultad de Ciencias Carlos Cant

Ejemplo de alambrado de un interruptor mecánico a una entrada del S7-200

Facultad de Ciencias Carlos Canto

UASLP

INTERFASES DE SALIDA

Facultad de Ciencias Carlos Carto

Tipos de interfases salida en un PLC

- Salidas de relevador
- Salidas de CD
- Salidas de CA
- Salidas TTL

Facultad de Ciencias Carlos Canto

UASLP

INTERFASES DE SALIDA TIPO RELEVADOR

Facultad de Ciencias Cartos

Figura A-7 Identificación de terminales de conexión para la CPU 224 AC/DC/relé

Facultad de Ciencias Carlos Canto

UASLP

Circuito de Interfase de una salida tipo relevador

Este tipo es válido tanto para corriente continua como para alterna , es el tipo de salida más empleado

OUTPUTS 205 204 203 202 201 200 Micro-1

El fototransistor proporciona un aislamiento galvánico de la CPU con la salida a controlar.

Este aislamiento evita que el CPU pueda ser quemado por un mala conexión en el circuito de salida y lo aisla de fuentes externas de ruido

Carlos Card

Ejemplo de conexión de cargas de CA a las salidas relevador

Facultad de Ciencias Carlos Canto

UASLP

Ejemplo de conexión de cargas Resistivas de CA a las salidas relevador

Facultad de Ciencias Carlos Carto

Ejemplo de l uso de una salida relevador para arranque y paro de un motor trifásico

Facultad de Ciencias Carlos Canto

UASLP

Salidas Relevador

Conexiones separada

Con Conexiones comunes

INTERFASES DE SALIDA DE CD Y AC

Facultad de Ciencias Carlos Canto

UASLP

Salidas estáticas de CA

Salidas de CA

- Emplean como conmutador de salida un TRIAC, un par de tiristores antiparalelo o un puente rectificador corto circuiteado por un tiristor.
 - Todos tiene aislamiento galvánico y un LED para indicación de status.
 - En algunos casos tiene algún circuito de protección de corto circuito, que bloquea la salida en caso de que la carga absorba más corriente de la permitida.

Facultad de Ciencias Contos

Circuito de interfaz de salida de CA

Facultad de Ciencias Carlos Canto

UASLP

Salidas CA vs Salida Relevador

Ventajas:

- Mayor rapidez de conmutación
- Ausencia de desgaste mecánico
- Cierre al paso por cero tensión y apertura al paso de la corriente, eliminando perturbaciones en la línea
- Tamaño más reducido

Desventajas:

- Más sensibles a sobrecargas, con difícil protección.
- Más sensible a perturbaciones en la alimentación (ruidos y fenómenos parásitos)
- Caída de tensión en estado de paso del orden de 2 v
- Ligera corriente de fugas en estado bloqueado
- Mayor disipación de potencia
- Menor flexibilidad para mezclar varias tensiones de mando.
- Aptas solo para ciertos márgenes de tensión

Interfases de salida de CD

Salidas de CD

Facultad de Ciencias Carlos Canto

UASLP

Características de las salidas CD más importantes comparadas con salidas relevador

- Mayor velocidad de respuesta
- Ausencia de desgaste mecánico
- más compactas
- Permiten protección contra cortocircuitos
- Sin protección contra cortocircuitos son más sensibles a picos de corriente de carga
- Menor capacidad de carga de la salida
- Caída de tensión en el transistor de salida, es mayor que la que produce el contacto de un relevador.
- Corriente de fuga pequeña en estado "0"

Facultad de Ciencias Contro

Salidas CD (PNP) no aislado

Facultad de Ciencias **Carlos Canto**

UASLP

lidas CD (PNP) aislado

* D2 - Protección de inversión de polaridad (opcional)

Connecting output load device to a sinking PLC controller output

Connecting output load device to a sourcing PLC controller output

Facultad de Ciencias Carlos Canto

Salidas TTL

- Permite que el controlador pueda manejar dispositivos de salida compatibles con TTL, tal como displays de 7 segmentos
- Generalmente requiren una fuente de poder externa de +5 volts dc.

Salidas CA vs salida Relevador

Facultad de Ciencias Carlos Canto

UASLP

SENSOR NPN (Sink)

Facultad de Ciencias Carlos Carto

SENSOR PNP (SUMINISTRO)

Facultad de Ciencias Carlos Canto

UASLP

Conexión de un sensor PNP (source) a una entrada NPN (sink) de un PLC \$7-200

ENTRADA DEL PLC DE CD DE SUMIDERO DE CORRIENTE (SINK)

Facultad de Ciencias Carlos Canto

Conexión de un sensor NPN (sink) a una entrada PNP (source) de un PLC \$7-200

ENTRADA DEL PLC DE CD DE SUMINISTRO DE CORRIENTE (SOURCE)

Facultad de Ciencias Carlos Canto

UASLP

Conexión de un sensor PNP (source) a una entrada PNP (source) de un PLC \$7-200

ENTRADA DEL PLC DE CD DE SUMINISTRO DE CORRIENTE (SOURCE)

Conexión de un sensor PNP (source) a una entrada PNP (source) de un PLC \$7-200

ENTRADA DEL PLC DE CD DE SUMIDERO DE CORRIENTE (SINK)

Facultad de Ciencias Carlos Canto