Problem Sheet 3: Predicate Calculus

- Q1: Let $U = \{2,4,6\}$ and let $P(x) = x \mod 2 = 0$ Evaluate $\forall x P(x)$, $\exists x P(x)$.
- Q2: Let $U = \{5,6,7,11\}$, P(x) = x < 10Evaluate $\forall x \ P(x)$, $\neg \exists x \ P(x)$
- Q3: Specify a Universe of Discourse for which the following propositions are <u>true</u>. (Try to choose the Universe to be as large a subset of the integers as possible.)
 - i) $\forall x [x > 0]$,
 - ii) $\forall x [x = 3]$
 - iii) $\exists y \ \forall x [x+y<0]$
- Q6: Write down quantified predicates for
 - i) x is a multiple of k
 - iv) x is prime number
- Q8: Prove
 - ii) $\neg \exists x \neg P(x) \equiv \forall x P(x)$
- Q9: Let A[0..N), $N \ge 1$ be an integer array.

Write down formal assertions for each of the following:

- i) All elements of A are in the range 1..100
- iii) A[j..k] contains an even integer value
- v) Max is the largest value in A
- viii) j = index of smallest element in A[i..N]