MATH 239 Spring 2012: Assignment 4 Due: 9:29 AM, Friday, June 1 2012 in the dropboxes outside MC 4066

Note: In this assignment, the weight of a binary string is its length.		
Last Name:		
First Name:		
I.D. Number:		
Section:		
Mark (For the marker only):	/50	
Acknowledgments:		
which generates every st	the following sets of binary straining in that set. (No justification trings where the length of each	- ,
(b) The set of binary s	trings which do not contain 011	111 as a substring.
(c) The set of binary st least 3.	trings where each block of 1's m	must be followed by a block of 0's of length a
(d) The set of binary s	trings which do contain 111100	00 as a substring.

- 2. {12 marks} Inside Bertrand's special box, there is an unlimited supply of blue and red balls. You draw one ball at a time, and Bertrand will offer you \$1 for each ball you draw, as long as you do not draw 4 of the same-coloured balls in a row, at which point you lose everything. (For this question, represent your answers as coefficients of rational expressions.)
 - (a) How many ways can you win n from Bertrand?

(b) How many ways can you win n, but get greedy and lose everything on the next draw?

3. {Extra credit: 3 marks} Describe the set of binary strings which is generated by the following expression:

 $(1(0\{1\}^*0)^*1\{0\}^*)^*$

4. $\{12 \text{ marks}\}\ \text{Let } S$ be the set of all binary strings where consecutive blocks have different parities. For example, things in S include 00011011111100000110, 11111111, 00111111, ε . Prove that the generating series for S is

$$\Phi_S(x) = \frac{1 + 2x + x^3 - x^4}{1 - 2x^2 - x^3 + x^4}.$$

5. $\{5 \text{ marks}\}\$ For some positive integer m, let s_1, \ldots, s_k be distinct binary strings of length m. Prove that $S = \{s_1, \ldots, s_k\}^*$ is an unambiguous expression.

6. {5 marks} Prove that for any choice of positive integers m and n where $m \neq n$, there exist binary strings s and t of lengths m and n respectively where $\{s,t\}^*$ is an ambiguous expression.