Il ruolo del phase lag index nella classificazione multiclasse di un segnale elettroencefalografico

Università di Verona Corso di Laurea in Informatica 05/10/2022

Relatore: Prof.ssa Silvia Francesca Storti

Correlatore: Ing. Ilaria Siviero

Giulia Doro VR414426

Introduzione

Un'interfaccia cervello computer (BCI) è un sistema di comunicazione diretta tra il cervello e il computer.

Frequentemente utilizzate sono le BCI di tipo non invasivo, basate sull'elettroencefalogramma (EEG). L'EEG viene registrato tramite elettrodi posti sullo scalpo che registrano l'attività sincrona di gruppi di cellule.

L'immaginato motorio (MI) è un processo in cui il soggetto immagina un movimento senza l'esecuzione fisica.

Stato dell'arte

Numerose ricerche utilizzano vari metodi di analisi per l'estrazione delle feature come **Common Spatial Pattern (CSP) e Power Spectral Density (PSD)** per ottenere i migliori risultati nel classificare movimenti immaginati.

Si possono così implementare **BCI** basate su segnali EEG sempre più efficienti per aiutare le persone che non possono comunicare con il mondo esterno attraverso comuni canali di comunicazione.

Lo scopo della ricerca è quello di **classificare** tra diversi tipi di task di tipo immaginato motorio in soggetti sani tramite misure di connettività come **Phase Lag Index (PLI).**

Si utilizza:

- PLI
- Classificatore multiclasse e binario

Atlan et. Al, National Defence University,2019

Feng et Al., SMC,2020 Boernama et Al., AIMS,2021 Kim et Al., MBEC,2018

Materiali e Metodi: data set

Si utilizza il data set 2a della "BCI Competition IV 2008". Le caratteristiche principali sono:

- 9 soggetti
- 4 MI: mano sinistra, mano destra, entrambi i piedi e lingua
- 22 canali EEG e 3 EOG
- frequenza di campionamento: 250 Hz
- 72 trial per ogni classe

Tangermann et al., Front. Neurosci., 2012.

Tangermann et al., Front. Neurosci., 2012.

Materiali e Metodi: pre-elaborazione

Rimozione della **baseline**

Filtro di Butterworth:

- Filtro di tipo Infinite Impulse Response (IIR)
- Fase nulla
- Assenza di ripple
- Applicato come passa alto e passa basso

Re-referenziazione dei dati rispetto all' **average reference**

Riorganizzazione degli eventi e rimozione dei **trial** artefattati

Filtraggio nella banda alpha: 8 - 12 Hz Filtraggio nella banda beta: 13 - 30 Hz

EEC EUTDATO

Materiali e Metodi: estrazione delle feature

Calcolo del **PLI** per ogni classe e per ogni "trial" privo di artefatti.

Calcolo della **trasformata di Hilbert** per ottenere la fase istantanea dei segnali utile al calcolo del PLI.

Il PLI è un indice che stima la connettività del segnale EEG e misura in particolare la sincronizzazione tra due elettrodi distinti.

$$PLI = \left| rac{1}{N} \, \sum_{k \, = \, 1}^{N} \mathrm{sign}(\sin \left(\phi_l(k) - \, \phi_m(k)
ight))
ight| \, \in \, [0, 1]$$

Viene misurato sia per la banda alpha sia per la banda beta

Esempio di matrice di connettività di dimensione 22x22

Materiali e Metodi: estrazione delle feature

PLI medio nelle 4 classi banda alpha Soggetto 1

PLI medio nelle 4 classi banda beta Soggetto 1

Materiali e Metodi: classificazione

Classificazione bianaria e multiclasse

Partizionamento per entrambe le bande:

- 80% training
- 20% test

Si utilizza il metodo di classificazione **"Support Vector Machines" (SVM)** :

- Kernel lineare
- Cross validation del training set: K-fold = 5
- Training con iperparametri ottimizzati

Valutazione dei risultati tramite il calcolo dell'Accuracy

Solo per la classificazione multiclasse si è eseguito il calcolo del Fisher Score per applicare una "feature selection"

$$F(i) = \frac{\sum_{j=1}^{3} (x_{avg,i}^{j} - x_{avg,i})^{2}}{\sum_{j=1}^{3} (\frac{1}{n^{j}-1}) \sum_{k=1}^{n^{j}} (x_{k,i}^{j} - x_{avg,i}^{j})^{2}}$$

Risultati: classificazione binaria

RISULTATI NELLA BANDA ALPHA			
SOGGETTO	ACCURACY VALIDATION	ACCURACY TEST	
A01T	51%	70%	
A02T	59%	56%	
A03T	62%	59%	
A04T	52%	52%	
A05T	51%	52%	
A06T	51%	50%	
A07T	60%	58%	
A08T	56%	65%	
A09T	54%	57%	

RISULTATI NELLA BANDA BETA		
SOGGETTO	ACCURACY VALIDATION	ACCURACY TEST
A01T	54%	56%
A02T	61%	41%
A03T	68%	52%
A04T	52%	52%
A05T	67%	44%
A06T	57%	45%
A07T	53%	62%
A08T	60%	54%
A09T	54%	57%

Risultati: classificazione multiclasse

RISULTATI NELLA BANDA ALPHA			
SOGGETTO	FEATURE	ACCURACY VALIDATION	ACCURACY TEST
A01T	50	42%	46%
A02T	231	27%	27%
A03T	231	34%	37%
A04T	100	29%	36%
A05T	175	31%	35%
A06T	160	32%	35%
A07T	70	40%	35%
A08T	175	32%	35%
A09T	100	34%	32%

RISULTATI NELLA BANDA BETA			
SOGGETTO	FEATURE	ACCURACY VALIDATION	ACCURACY TEST
A01T	50	38%	46%
A02T	120	30%	37%
A03T	175	44%	35%
A04T	120	34%	31%
A05T	160	30%	29%
A06T	40	35%	33%
A07T	40	37%	37%
A08T	50	39%	36%
A09T	100	42%	40%

Discussione

- Il classificatore binario è più efficiente rispetto a quello multiclasse
- Il classificatore **multiclasse** non ottiene i livelli di accuracy sperati. I risultati non sono necessariamente imputabili al calcolo del PLI, ma bisogna tenere presente la difficoltà nel classificare l'immaginato motorio di task mappati in elettrodi molto vicini tra loro.
- L'accuracy aumenta se si sceglie una soglia ad hoc per ogni soggetto e per ogni banda.
- L'utilizzo del kernel lineare ha prestazioni migliori rispetto a quello gaussiano

Risultati del classificatore multiclasse:

BANDA ALPHA		
METODO	ACCURACY VALIDATION	ACCURACY TEST
SOGLIA MEDIA	37%	29%
FEATURE SELECTION AD HOC	33%	35%

BANDA BETA			
METODO	ACCURACY VALIDATION	ACCURACY TEST	
SOGLIA MEDIA	39%	29%	
FEATURE SELECTION AD HOC	37%	36%	

In futuro si suggerisce di utilizzare il **Fisher Score** anche nella classificazione binaria.