Covariance Tracking

Computer Vision (CS0029)

Motivation

- Capture spatial and statistical properties, and their correlation
- Can fuse different types of features
 - Location
 - Color
 - Edges
 - Motion
- Low dimensional representation (fast)
- Scale Invariance

Covariance Descriptor

Feature vector (for each pixel) $f_k = [xyRGB]^T$

Covariance Matrix

Finding the Best Match

C_{Model}

Candidate matches

- For each possible patch region in the next image, find its covariance matrix
- Compare C^{Model} to the covariance matrices of all possible patch regions in next image
- Find the patch in next image whose distance from C^{Model} is minimum

Comparing Covariance Matrices

- Find the distance between 2 covariance matrices
- Space of covariance matrices is not vector!
 - Simple arithmetic matrix subtraction would not work
- The space of covariance matrices is a Riemannian Manifold
- Distance metric

•
$$\varrho(C^{Model}, C^{Candidate}) = \sqrt{\sum_{k=1}^{d} \lambda_k \ln((C^{Model}, C^{Candidate}))_2}$$

- $\lambda_k(C^{Model}, C^{Candidate})$ is generalized eigenvalues
 - Scipy: scipy.linalg.eig()

Algorithm

• Compute C^{Model} for known target in current image

- Scan all patches in next image
 - For each patch, compute covariance matrix $C^{Candidate}$
 - Find distance from C^{Model} : $\varrho(C^{Model}, C^{Candidate})$
- Find patch region with minimum distance

Example

Other

- Rotation invariance
 - Use radial distance instead of Cartesian position
 - $f_k = [r(x, y) R G B]^T$
- Model update
 - Calculate an average/smoothed covariance matrix by tacking the mean of the models from the past few frames, then use that as C^{Model}
 - Must calculate mean on manifold

Summary

Algorithm for non-rigid object tracking

- Covariance Tracking
 - Covariance of spatial and statistical features
 - Low dimensional representation of object
 - Distance between matrices based on manifold distance