ECE255 – Introduction to Digital Logic Design Homework Assignment 5 Due November 13

Name: Isauc Apella labella Gavok. wtk.edu

1. Show how to use a T FF to implement a D FF.

(a) First fill in the truth table below for next state Q^{r+1} for the D FF, then fill in the table for input T such that the T FF yields the correct next state (Q^{r+1}) for each row in the table.

D'	Q'	Q^{t+1}	T			
0	0	0	0	7	> toggle of	
0	1	0	ı	1	70	
1	0	١	1	- h 1		•
1	1	1	0	/	bygle	U11.

(b) T in the table you just completed is a function of D' (the input) and Q' (present state). This is a small state machine. Write the MSOP form for T. You may minimize to MSOP format any way you see fit.

MSOP
$$T(D', Q') = Q^{j+1} \cdot D^{j} = Q^{j+1} \cdot T^{k} \oplus Q^{k} = \sqrt{TD^{k}Q^{k}} D^{k} \oplus Q^{k}$$

(c) Sketch a schematic for this state machine showing the combinational logic for T and also the T FF with Q output. Draw by hand or use Logisim to sketch your circuit schematic.

2. Show how to use a JK FF to implement a T FF.

(a) First fill in the truth table below for next state Q^{t+1} for the JK FF, then fill in the table for inputs J^t and K^t such that the JK FF yields the correct next state (Q^{t+1}) for each row in the table.

T	Q'	Q^{t+1}	J	K
0	0	0	0	X
0	1	١	X	1
1	0	١	1	X
1	1	0	X	0

(b) J and K' in the table you just completed are functions of T' (the input) and Q' (present state). This is a small state machine. Write the MSOP forms for J' and K'. You may minimize to MSOP format any way you see fit.

MSOP
$$J(T, Q') = \mathcal{L}^b Q^b (m_2)$$

MSOP
$$K(T, Q') = \overline{L^b} \otimes^b (m_1)$$

(c) Sketch a schematic for this state machine showing the combinational logic for inputs J', K' and also the JK FF with Q output. Draw by hand or use Logisim to sketch your circuit schematic.

3. You are provided the following state table (assume 1-bit output z; state assignments in parentheses):

	x		
	0	1	
A (00)	D/1	B/0	
B (01)	D/1	C/0	
C(10)	D/1	A/0	
D(11)	B/1	C/0	

(a) Construct a state diagram for the state table shown.

(b) What is the Boolean logic equation for the output variable z?