Problem Set 2 Simon Kaib, Algebraic Geometry I Arne Riesker " =>": Let X be irreducible and Housdorff. Assume for contradiction that X coutains elements x + y. Then there exist open wighborhoods XEU, YEV with Unv= \$ => ucv vc = X and x \(\d', y \(\cdot V' \) => \(\text{is reducible } \) "=" The only strict subset of a singleton in p. Thus it is irreducible, since (a) connot be written as a curion of strict subsets. Assume that X is not irreducible so there exist open nonempty sets Un, U2 S X such that Un 11 U2 = Ø. Since f is an open map, f(Un) and f(Uz) are open in Y. Since Y is irred, there exists yef (U1) of (U2). We have that f-1(243) is irrect. and therefore $(f^{-1}(\xi_{3}) \cap U_{1}) \cap (f^{-1}(\xi_{3}) \cap U_{1}) \neq \emptyset$, which contradicts # open to open (since yef (un)) $U_1 \cap U_2 = \emptyset$. Problem 3 Let \$\phi \neq \quad \qu closed subsets of Y. Since Yi are closed in Y, we have Y: = Y: 1 Y and thus Y: + Yin (they don't even agree on Y). irreclucible (since ASX is irred. => A irred.) subsets and this & Sh

"=" : If ℓ - ℓ (m_s) = m_R , then ℓ (m_R) = ℓ (ℓ - ℓ (m_s)) $\leq m_s$ =" : If ℓ (m_R) $\leq m_s$ then $m_R \leq \ell$ - ℓ (m_R)) $\leq \ell$ - ℓ (m_s) $\neq R$ Since m_R is maximal if follows m_R = ℓ - ℓ (m_s). Since ℓ (ℓ) = ℓ m_s Identify Matn(k) with Δ_k^2 and consider the determinant polynomial let $\in A(A_k^2)$. We know that $GL_n(k) = D(\det)$ is an affine vorrety isomorphic to { (x, \ell) \in A \chi \times A \chi ; \ell \chi \det(\times) - 1 = 0} = V_{n^2+1} (\ell \chi \chi \ell(\times) - 1). By Gathman 225 (c) it follows that dim GL, (6) = n? **Proposition 2.25** (Properties of dimension). Let X and Y be non-empty irreducible affine varieties. (a) We have $\dim(X \times Y) = \dim X + \dim Y$. In particular, $\dim \mathbb{A}^n = n$. (b) If $Y \subset X$ we have $\dim X = \dim Y + \operatorname{codim}_X Y$. In particular, $\operatorname{codim}_X \{a\} = \dim X$ for every point $a \in X$. (c) If $f \in A(X)$ is non-zero every irreducible component of V(f) has codimension 1 in X (and hence dimension $\dim X - 1$ by (b)).