資料分析與學習基石 (Fundamental of Data Analytics and Learning)

-- Unsupervised Learning (1/2)

Hung-Yu Kao (高宏宇) Intelligent Knowledge Management Lab

Master Program of Artificial Intelligence Institute of Medical Informatics, Dept. of Computer Science and Information Engineering National Cheng Kung University, Tainan, Taiwan

Unsupervised Learning

- Learning without a teacher
- Self-organization

Clustering

- K-mean
- Hierarchical clustering
- DBSCAN
- ...

Anomaly Detection

Outlier detection

Neural Network

- Autoencoder
- Generative Adversarial Network (GAN)
- SOM

Learning approach

- Expectation Maximization (EM)
- PCA, MF, SVD

Clustering

- Clustering: process of grouping a set of physical or abstract objects into classes of similar objects
- Cluster: a collection of data objects that
 - are similar to one another within the same cluster
 - are dissimilar to the objects in other clusters
- Clustering: unsupervised classification
 - supervised classification: known #cluster & cluster labels
 - unsupervised classification: unknown #cluster & cluster labels

Cluster

Good Clustering

- Good clustering (produce high quality clusters)
 - intra-cluster similarity is high
 - inter-cluster class similarity is low
- Quality factors
 - similarity measure and its implementation
 - definition and representation of cluster chosen
 - clustering algorithm

What is Similarity?

Similarity is hard to define, but... "We know it when we see it"

Typical Applications of Clustering Analysis

- Pattern Recognition
- Business: market segmentation
 - discover distinct group of customers
 - characterize customer groups
- Biology:
 - derive plant & animal taxonomies
 - categorizes genes with similar functionality
 - gain insight into structures inherent in populations
- Geography:
 - identification of area of similar land use
- Insurance:
 - identification of groups of insurance holders with high claim cost
- City-planning: identification of house group
- Document management: classify documents of WWW

Requirements of Clustering

- Scalability
- Dealing with different types of attributes (not only numerical data)
- Discovery of clusters with arbitrary shape (not only sphere)
- Minimal requirements for domain knowledge to input design parameters
- Ability to deal with noisy data
- Insensitivity to order of input records
- High dimensionality
- Constraint-based clustering
- Interpretability and usability

Clustering Houses

Geographic Distance Based
Size Based

Clustering Issues

- Outlier handling
- Dynamic data
- Interpreting results (centroid meaning)
- Number of clusters (magic k)
- Data to be used
- Scalability

Impact of Outliers on Clustering

Types of Clusters: Well-Separated

• Well-Separated Clusters:

 A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

- Center-based
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
 - The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

2 Overlapping Circles

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Approaches of Clustering Algorithms

Five Categories of Clustering Methods

- Partitioning algorithms
 - Construct various partitions and then evaluate them by some criterion.
- Hierarchy algorithms
 Create a hierarchical decomposition of the set of data (or objects) using some criterion.
- Density-based
 - based on connectivity and density functions
- Grid-based
 - based on a multiple-level granularity structure
- Model-based
 - A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other.

Partition-based Clustering

Partitioning Algorithms: Basic Concept

- Partitioning method: Construct a partition of a database D of n objects into a set of kclusters
- Given a k, find a partition of k clusters that
 - optimizes the chosen partitioning criterion.
 Global optimal: exhaustively enumerate all partitions. (NP-Hard!)
 - Heuristic methods.
 - k-means: each cluster is represented by the center of the cluster
 - k-medoids or PAM (Partition Around Medoids): each cluster is represented by one of the objects in the cluster.

The *K*-Means Clustering Method

- Given *k*, the *k-means* algorithm:
 - 1. Partition objects into k nonempty subsets
 - 2. Compute mean as the centroids of the clusters of the current partition
 - 3. Relocate each object to the nearest cluster
 - 4. Go back to Step 2, stop when no more new relocation

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, k, must be specified
- The basic algorithm is very simple
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-Means Clustering Method

Example

23

K-Means Example

• Given: $\{2,4,10,12,3,20,30,11,25\}$, k=2

C1	C2	M1	M2
{2,3}	{4,10,12,20,30,11,25}	2.5	16
{2,3,4}	{10,12,20,30,11,25}	3	18
{2,3,4,10}	{12,20,30,11,25}	4.75	19.6
{2,3,4,10,11,12}	{20,30,25}	7	25
{2,3,4,10,11,12}	{20,30,25}	7	25

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'

Comments on the *K-Means* Method

- Strength
 - Efficient, Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes
 - Often terminates at a local optimum
- Weakness
 - Applicable only when *mean* is defined (categorical data?)
 - Need to specify \vec{k} , the *number* of clusters, in advance
 - Unable to handle noisy data and outliers

Variations of the *K-Means* Method

- Variants of the k-means
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes
 - Replacing means of clusters with modes (distance=0 or 1)
 - k-prototype: a mixture of categorical and numerical data

Importance of Choosing Initial Centroids

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

3 - 2 - 1 0 1 2 3 4 5 6 X

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Hierarchical Clustering

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Hierarchical Clustering

Fundamental of Data

d) Two Clusters

e) One Cluster

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

• Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and update the proximity matrix. | C1 | C2 | C3 | C4 | C5 |

How to Define Inter-Cluster Similarity

	p1	p2	р3	p4	р5	<u>.</u> .
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

Strength/Limitation of MIN

Two Clusters

• Can handle non-elliptical shapes

Original Points

Two Clusters

Sensitive to noise and outliers

Strength of MAX

Original Points

Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space requirements

- $O(N^2)$ space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone (one direction)
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm

- Eliminate noise points
- $\mathbf{F} current_cluster_label \leftarrow 1$ for all core points do if the core point has no cluster label then $current_cluster_label \leftarrow current_cluster_label + 1$ Label the current core point with cluster label current_cluster_label end if for all points in the Eps-neighborhood, except i^{th} the point itself do if the point does not have a cluster label then Label the point with cluster label current_cluster_label end if end for end for

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

- - Clusters

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

Clustering is subjective

