《计算机算法设计与分析》第一章作业

1-1 求下列函数的渐进表达式:

 $3n^2+10n$; $n^2/10+2^n$; 21+1/n; $\log n^3$; $10\log 3^n$.

答: O(n²); O(2"); O(1); O(logn); O(n)

1-2 试论 O(1)和 O(2)的区别。

答:由O的定义可知,O(1)=O(2),用O(1)或O(2)表示同一个函数时,差别仅在于常数因子c。

1-3 按照渐进阶从低到高的顺序排列以下表达式: $4n^2$,logn, 3^n ,20n,2, $n^{2/3}$ 。 又 n! 应该排在哪一位?

答: 从低到高排列为: 2 < logn < n^{2/3} < 20n < 4n² < 3ⁿ < n! 。

- 1-4 (1) 假设某算法在输入规模为 n 时的计算时间为 T(n)=3x2ⁿ。在某台计算机上实现并完成该算法的时间为 t 秒。现拥有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在 t 秒内能解输入规模为多大的问题?
- (2) 若上述算法的计算时间改进为 T(n)=n², 其余条件不变,则在新机器上用 t 秒时间能解输入规模为多大的问题?
- (3) 若上述算法的计算时间进一步改进为 T(n)=8, 其余条件不变,则在新机器 上用 t 秒时间能解输入规模为多大的问题?

答:

(1) 3x2ⁿx64 = 3x2^x 解得 X=n+6, 能解 n+6 规模的问题。

- (2) 64n² = X² 解得 X=8n, 能解 8n 规模的问题。
- (3) T(n)为常数,算法可以解任意规模的问题。

1-5 硬件厂商 XYZ 公司宣称他们最新研制的微处理器运行速度为其竞争对手 ABC 公司同类产品的 100 倍。对于计算复杂性分别为 n、n²、n³和 n! 的各算法, 若用 ABC 公司的计算机在 1 小时内能解输入规模为 n 的问题, 那么用 XYZ 公司的计算机在 1 小时内分别能解规模为多大的问题?答:

对于复杂性为 n 的算法, X=100n, 能解规模 100n 的问题;

对于复杂性为 n^2 的算法, $X^2=100$ n^2 ,能解规模 10n 的问题;

对于复杂性为 n³ 的算法, X³=100 n³, 能解规模 4.64n 的问题;

对于复杂性为 n! 的算法, X! =100n!, 能解规模 n+log100 即 n+6.64 的问题;

1-6 对于下列各组函数 f(n)和 g(n),确定 f(n)= O(g(n))或 f(n)= $\Omega(g(n))$ 或 f(n)= $\theta(g(n))$,并简述理由。

(1)
$$f(n) = logn^2$$
 $g(n) = logn + 5$

(2)
$$f(n) = logn^2$$
 $g(n) = \sqrt{n}$

(3)
$$f(n)=n$$
 $g(n)=log^2n$

(4)
$$f(n)=n\log n+n$$
 $g(n)=\log n$

(5)
$$f(n)=10$$
 $g(n)=log10$

(6)
$$f(n) = log^2 n$$
 $g(n) = log n$

(7)
$$f(n)=2^n$$
 $g(n)=100n^2$

(8)
$$f(n) = 2^n$$
 $g(n) = 3^n$

答:
(1) f(n)=logn² =θ(logn+5) ,同阶
(2) f(n)= logn² = O(√n) , f(n)的阶不高于 g(n)的阶
(3) $f(n)=n=\Omega(\log^2 n)$, $f(n)$ 的阶不低于 $g(n)$ 的阶
(4) $f(n)$ =nlogn+n = Ω (logn) , $f(n)$ 的阶不低于 $g(n)$ 的阶
(5) f(n)=10 =θ(log10) ,同阶
(6) $f(n) = log^2 n = \Omega(log n)$, $f(n)$ 的阶不低于 $g(n)$ 的阶
(7) $f(n)=2^n=\Omega(100n^2)$, $f(n)$ 的阶不低于 $g(n)$ 的阶
(8) f(n)= 2 ⁿ = O(3 ⁿ) , f(n)的阶不高于 g(n)的阶
1-7 证明 n! =O(n ⁿ)。
证明:
当 n 趋近于无穷时,lim n! / n" = (1/n)(2/n) (3/n)···(n/n)=0,即 n!的阶不高于
n ⁿ 的阶,n! =O(n ⁿ)。
1-8 下面的算法段用于确定 n 的初始值。试分析该算法段所需计算时间的上界
和下界。
while (n>1)
if (odd (n))
n=3*n+1;

else

n=n/2;

答:在最坏情况下,该算法的计算时间下界为 Ω (logn),无法分析计算时间的上界。

1-9 证明: 如果一个算法在平均情况下的计算复杂性为 θ (f(n)),则该算法在最坏情况下所需的计算时间为 Ω (f(n))。

答:由最坏情况和平均情况下的时间复杂性在数学上的定义可知:

$$T_{avg}(N) = \sum P(I)T(N,I) \le \sum P(I)maxT(N,I')$$

$$=T(N,I^*) \sum P(I)$$

$$=T(N,I^*)$$

$$=T_{max}(N)$$

其中, I^* 是 D_N 中使 $T(N,I^*)$ 达到 $T_{max}(N)$ 的合法输入,而 P(I)是在算法的应用中出现输入 I 的概率。

因此 $T_{max}(N) = \Omega(T_{avg}(N)) = \Omega(\theta(f(n))) = \Omega(f(n))$,证毕。