fast cube implementation

Raphaël Jauslin^a, Esther Eustache^a and Yves Tillé^a

Abstract

Key words: optimal design, spread sampling, stratification

(E-mail: raphael.jauslin@unine.ch)

^aInstitute of statistics, University of Neuchatel, Av. de Bellevaux 51, 2000 Neuchatel, Switzerland

1 Introduction

2 Notation

Consider a finite population U of size N whose units can be defined by labels $k \in \{1, 2, ..., N\}$. Let $S = \{s | s \subset U\}$ be the set of all possible samples. A sampling design is defined by a probability distribution p(.) on S such that

$$p(s) \ge 0$$
 for all $s \in \mathcal{S}$ and $\sum_{s \in \mathcal{S}} p(s) = 1$.

A random sample S is a random vector that maps elements of S to an N vector of 0 or 1 such that P(S = s) = p(s). Define $a_k(S)$, for k = 1, ..., N:

$$a_k = \begin{cases} 1 & \text{if } k \in S \\ 0 & \text{otherwise.} \end{cases}$$

Then a sample can be denoted by means of a vector notation: $\mathbf{a}^{\top} = (a_1, a_2, \dots, a_N)$. For each unit of the population, the inclusion probability $0 \le \pi_k \le 1$ is defined as the probability that unit k is selected into sample S:

$$\pi_k = P(k \in S) = E(a_k) = \sum_{s \in S | k \in s} p(s), \text{ for all } k \in U.$$

Let $\boldsymbol{\pi}^{\top} = (\pi_1, \dots, \pi_N)$ be the vector of inclusion probabilities. Then, $E(\mathbf{a}) = \boldsymbol{\pi}$. Let also $\pi_{k\ell}$ be the probability of selecting the units k and ℓ together in the sample, with $\pi_{kk} = \pi_k$. The matrix of second-order inclusion probabilities is given by $\Pi = E(\mathbf{a}\mathbf{a}^{\top})$. In many applications, inclusion probabilities are such that samples have a fixed size n. Let the set of all samples that have fixed size equal to n be defined by

$$S_n = \left\{ \mathbf{a} \in \{0, 1\}^N \mid \sum_{k=1}^N a_k = n \right\}.$$

The sample is generally selected with the aim of estimating some population parameters. Let y_k denote a real number associated with unit $k \in U$, usually called the variable of interest. For example, the total

$$Y = \sum_{k \in U} y_k$$

can be estimated by using the classical Horvitz-Thompson estimator of the total defined by

$$\widehat{Y}_{HT} = \sum_{k \in U} \frac{y_k a_k}{\pi_k}.$$
(1)

Usually, some auxiliary information $\mathbf{x}_k^{\top} = (x_{k1}, x_{k2}, \dots, x_{kq}) \in \mathbb{R}^q$ regarding the population units is available. In the particular case of spatial sampling, a set of spatial coordinates $\mathbf{z}_k^{\top} = (z_{k1}, z_{k2}, \dots, z_{kp}) \in \mathbb{R}^p$ is supposed to be available, where p is the dimension of the considered space. A sampling design is said to be balanced on the auxiliary variables x_k if and only if it satisfies the balancing equations

$$\widehat{\mathbf{X}} = \sum_{k \in S} \frac{\mathbf{x}_k}{\pi_k} = \sum_{k \in U} \mathbf{x}_k = \mathbf{X}.$$

- 3 Simulation
- 4 Discussion