Lecture 08: ULMFiT and Transformer-XL, Question Answering

Radoslav Neychev

MADE, Moscow 28.04.2021

Outline

- 1. ULMFiT: dropout in the wild
- 2. Transformer-XL
- 3. Question Answering
 - SQuAD, SberQuAD
 - Open-Domain Question Answering
- 4. More on GPT
 - miniGPT and GPT-3 for Russian language

Based on: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture13-contextual-representations.pdf
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-bert/
https://medium.com/mlreview/understanding-building-blocks-of-ulmfit-818d3775325b

ULMFiT: Universal Language Model Fine-tuning for Text Classification

Encoder: AWD-LSTM (ASGD Weight-Dropped LSTM)

ULMFiT: architecture

```
SequentialRNN(
  (0): MultiBatchEncoder(
    (module): AWD LSTM(
      (encoder): Embedding(60003, 300, padding idx=1)
      (encoder_dp): EmbeddingDropout(
        (emb): Embedding(60003, 300, padding idx=1)
      (rnns): ModuleList(
        (0): WeightDropout(
          (module): LSTM(300, 1150, batch first=True)
        (1): WeightDropout(
          (module): LSTM(1150, 1150, batch first=True)
        (2): WeightDropout(
          (module): LSTM(1150, 300, batch first=True)
      (input dp): RNNDropout()
      (hidden_dps): ModuleList(
        (0): RNNDropout()
        (1): RNNDropout()
        (2): RNNDropout()
  (1): PoolingLinearClassifier(
    (lavers): Sequential(
      (0): BatchNorm1d(900, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
      (1): Dropout(p=0.4)
      (2): Linear(in features=900, out features=50, bias=True)
      (3): ReLU(inplace)
      (4): BatchNorm1d(50, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (5): Dropout(p=0.1)
      (6): Linear(in_features=50, out_features=2, bias=True)
```

What's the main difference from all the other Sesame street models?

RNNs and dropout

Encoder: AWD-LSTM (ASGD Weight-Dropped LSTM)

 AWD-LSTM literally has dropout at all the possible layers as long as it makes sense.

ULMFiT: architecture

```
SequentialRNN(
  (0): MultiBatchEncoder(
    (module): AWD LSTM(
      (encoder): Embedding(60003, 300, padding idx=1)
      (encoder_dp): EmbeddingDropout(
        (emb): Embedding(60003, 300, padding idx=1)
      (rnns): ModuleList(
        (0): WeightDropout(
          (module): LSTM(300, 1150, batch first=True)
        (1): WeightDropout(
          (module): LSTM(1150, 1150, batch first=True)
        (2): WeightDropout(
          (module): LSTM(1150, 300, batch first=True)
      (input dp): RNNDropout()
      (hidden dps): ModuleList(
        (0): RNNDropout()
        (1): RNNDropout()
        (2): RNNDropout()
  (1): PoolingLinearClassifier(
    (lavers): Sequential(
      (0): BatchNorm1d(900, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
      (1): Dropout(p=0.4)
      (2): Linear(in features=900, out features=50, bias=True)
      (3): ReLU(inplace)
      (4): BatchNorm1d(50, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (5): Dropout(p=0.1)
      (6): Linear(in_features=50, out_features=2, bias=True)
```

ULMFiT: encoder dropout

1. Encoder Dropout (EmbeddingDropout()): Zeroing embedding vectors randomly.

ENCODER DR	ROPOUT							
before dropout				after dropout				
	token	d1	d2		token	d1	d2	
	- 1	0.399	0.75379	0.62616	- 1	0	0	0
	love	0.88533	0.29449	0.15856	love	0.88533	0.29449	0.15856
	cats	0.48927	0.04071	0.21427	cats	0.48927	0.04071	0.21427
	dogs	0.72918	0.86882	0.77136	dogs	0.72918	0.86882	0.77136

ULMFiT: input dropout

2. Input Dropout (RNNDropout ()): Zeroing embedding

INPUT DROPO	DUT							
batch: [I lov	ve cats, I lo	ove dogs]						
	before dropout				after dropout			
	- 1	0	0	0	- 1	0	0	0
	love	0.88533	0.29449	0.15856	love	0	0.29449	0.15856
	cats	0.48927	0.04071	0.21427	cats	0	0.04071	0.21427
	before dropout				after dropout			
	- 1	0	0	0	- 1	0	0	0
	love	0.88533	0.29449	0.15856	love	0.88533	0.29449	0
	dogs	0.72918	0.86882	0.77136	dogs	0.72918	0.86882	0

source: Understanding building blocks of ULMFIT blog post

ULMFiT: dropout

3. Weight Dropout(WeightDropout()): Apply dropout to LSTM weights.

Random dropout at hidden-to-hidden weights for each LSTM layer

```
rnn = nn.LSTM(5,10,1, bidirectional=False, batch_first=True)
WeightDropout(rnn, weight_p=0.5, layer_names=['weight_hh_l0'])
```

ULMFiT: weight dropout

same word, different vectors

source: Understanding building blocks of ULMFIT blog post

ULMFiT: hidden dropout

4. Hidden Dropout (RNNDropout ()): Zeroing outputs of LSTM layers. This dropout is applied except for the last LSTM layer output.

ULMFiT: output dropout

5. Output Dropout

(RNNDropout()):

Zeroing final sequence outputs from encoder before feeding it to decoder.

source: <u>Understanding building blocks of ULMFIT blog post</u>

Transformer-XL

Transformer-XL

- Vanila Transformer works with a fixed-length context at training time. That's why:
 - the algorithm is not able to model dependencies that are longer than a fixed length.
 - the segments usually do not respect the sentence boundaries, resulting in context fragmentation which leads to inefficient optimization.

- During training, the representations computed for the previous segment are fixed and cached to be reused as an extended context when the model processes the next new segment.
- Contextual information is now able to flow across segment boundaries.
- Recurrence mechanism also resolves the context fragmentation issue, providing necessary context for tokens in the front of a new segment.

Relative Positional Encodings

 Fixed embeddings with learnable transformations instead of learnable embeddings

As a result:

- more generalizable to longer sequences at test time
- longer effective context

Vanilla Transformer with a fixed-length context at evaluation time

Vanilla Transformer with a fixed-length context at evaluation time

Vanilla Transformer with a fixed-length context at evaluation time

Vanilla Transformer with a fixed-length context at evaluation time

Vanilla Transformer with a fixed-length context at evaluation time

Transformer-XL with segment-level recurrence at evaluation time

Transformer-XL with segment-level recurrence at evaluation time

Transformer-XL with segment-level recurrence at evaluation time

- Transformer-XL learns dependency that is about 80% longer than RNNs and 450% longer than vanilla Transformers
- Transformer-XL is up to 1,800+ times faster than a vanilla
 Transformer during evaluation on language modeling tasks,
 because no re-computation is needed

- Transformer
- OpenAl Transformer
- ELMO
- **ULMFiT**
- Transformer-XL
- BERT
- BERTology
- GPT
- <u>GPT-2</u>
- <u>GPT-3</u>

Image sources: http://jalammar.github.io/illustrated-bert/

Question Answering

A Brief History of Open-domain Question Answering

- Simmons et al. (1964) did first exploration of answering questions from an expository text based on matching dependency parses of a question and answer
- Murax (Kupiec 1993) aimed to answer questions over an online encyclopedia using IR and shallow linguistic processing
- The NIST TREC QA track begun in 1999 first rigorously investigated answering fact questions over a large collection of documents
- IBM's Jeopardy! System (DeepQA, 2011) brought attention to a version of the problem; it used an ensemble of many methods
- DrQA (Chen et al. 2016) uses IR followed by neural reading comprehension to bring deep learning to Open-domain QA

MCTest Reading Comprehension

Passage (P) + Question (Q) — Answer (A)

Alyssa got to the beach after a long trip. She's from Charlotte. She traveled from Atlanta. She's now in Miami. She went to Miami to visit some friends. But she wanted some time to herself at the beach, so she went there first. After going swimming and laying out, she went to her friend Ellen's house. Ellen greeted Alyssa and they both had some lemonade to drink. Alyssa called her friends Kristin and Rachel to meet at Ellen's house......

Q Why did Alyssa go to Miami?

A To visit some friends

P

Stanford Question Answering Dataset (SQuAD)

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

- What causes precipitation to fall?
 - gravity
- What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?
 - o graupel
- Where do water droplets collide with ice crystals to form precipitation?
 - within a cloud

SQuAD evaluation, v1.1

- Authors collected 3 gold answers
- Systems are scored on two metrics:
 - Exact match: 1/0 accuracy on whether you match one of the 3 answers
 - F1: Take system and each gold answer as bag of words, evaluate Precision, Recall and harmonic mean F1.
 - Score is (macro-)average of per-question F1 scores
- F1 measure is seen as more reliable and taken as primary
 - It's less based on choosing exactly the same span that humans chose, which is susceptible to various effects, including line breaks
- Both metrics ignore punctuation and articles (a, an, the only)

SQuAD v1.1 leaderboard, end of 2016

		EM	F1
11	Fine-Grained Gating	62.5	73.3
	Carnegie Mellon University		
	(Yang et al. '16)		
12	Dynamic Chunk Reader	62.5	71.0
	IBM		
	(Yu & Zhang et al. '16)		
13	Match-LSTM with Ans-Ptr (Boundary)	60.5	70.7
	Singapore Management University		
	(Wang & Jiang '16)		
14	Match-LSTM with Ans-Ptr (Sequence)	54.5	67.7
	Singapore Management University		
	(Wang & Jiang '16)		
15	Logistic Regression Baseline	40.4	51.0
	Stanford University		
	(Rajpurkar et al. '16)		
/ill your	model outperform humans on the QA	task?	
	Human Performance	82.3	91.2
	Stanford University		
	(Rajpurkar et al. '16)		

source: CS224n Lecture 10

SQuAD v1.1 leaderboard, (May 2020)

FM

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Apr 10, 2020	LUKE (single model) Studio Ousia & NAIST & RIKEN AIP	90.202	95.379
2 May 21, 2019	XLNet (single model) Google Brain & CMU	89.898	95.080
3 Dec 11, 2019	XLNET-123++ (single model) MST/EOI http://tia.today	89.856	94.903
3 Aug 11, 2019	XLNET-123 (single model) MST/EOI	89.646	94.930
4 Sep 25, 2019	BERTSP (single model) NEUKG http://www.techkg.cn/	88.912	94.584
4 Jul 21, 2019	SpanBERT (single model) FAIR & UW	88.839	94.635
5 Jul 03, 2019	BERT+WWM+MT (single model) Xiaoi Research	88.650	94.393

Model

Pank

source: SQuAD website

SQuAD 2.0

- A defect of SQuAD 1.0 is that all questions have an answer in the paragraph
- Systems (implicitly) rank candidates and choose the best one
- You don't have to judge whether a span answers the question
- In SQuAD 2.0, 1/3 of the training questions have no answer, and about 1/2 of the dev/test questions have no answer
 - o For NoAnswer examples, NoAnswer receives a score of 1, and any other response gets 0, for both exact match and F1
- Simplest system approach to SQuAD 2.0:
 - Have a threshold score for whether a span answers a question
- Or you could have a second component that confirms answering
 - Like Natural Language Inference (NLI) or "Answer validation"

SQuAD 2.0 example

Genghis Khan united the Mongol and Turkic tribes of the steppes and became Great Khan in 1206. He and his successors expanded the Mongol empire across Asia. Under the reign of Genghis' third son, Ögedei Khan, the Mongols destroyed the weakened Jin dynasty in 1234, conquering most of northern China. Ögedei offered his nephew Kublai a position in Xingzhou, Hebei. Kublai was unable to read Chinese but had several Han Chinese teachers attached to him since his early years by his mother Sorghaghtani. He sought the counsel of Chinese Buddhist and Confucian advisers. Möngke Khan succeeded Ögedei's son, Güyük, as Great Khan in 1251. He

When did Genghis Khan kill Great Khan?

Gold Answers: <No Answer>

Prediction: 1234 [from Microsoft nlnet]

source: CS224n Lecture 10

	Rank	Model	EM	F1	
		Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452	SQuAD 2.0 leaderboard
	1 Apr 06, 2020	SA-Net on Albert (ensemble) QIANXIN	90.724	93.011	(October 2020)
	2 May 05, 2020	SA-Net-V2 (ensemble) QIANXIN	90.679	92.948	(October 2020)
	2 Apr 05, 2020	Retro-Reader (ensemble) Shanghai Jiao Tong University http://arxiv.org/abs/2001.09694	90.578	92.978	
	3 Jul 31, 2020	ATRLP+PV (ensemble) Hithink RoyalFlush	90.442	92.877	
	3 May 04, 2020	ELECTRA+ALBERT+EntitySpanFocus (ensemble) SRCB_DML	90.442	92.839	
	4 Jun 21, 2020	ELECTRA+ALBERT+EntitySpanFocus (ensemble) SRCB_DML	90.420	92.799	
	4 Sep 11, 2020	EntitySpanFocus+AT (ensemble) RICOH_SRCB_DML	90.454	92.748	
	4 Mar 12, 2020	ALBERT + DAAF + Verifier (ensemble) PINGAN Omni-Sinitic	90.386	92.777	
	5 Jan 10, 2020	Retro-Reader on ALBERT (ensemble) Shanghai Jiao Tong University http://arxiv.org/abs/2001.09694	90.115	92.580	
source: <u>SQuAD website</u>	5 Sep 27, 2020	electra+nlayers (ensemble) oppo.tensorlab	90.126	92.535	

Now in Russian: SberQuAD

Термин Computer science (Компьютерная наука) появился в 1959 году в научном журнале Communications of the ACM, в котором Луи Фейн (Louis Fein) ратовал за создание Graduate School in Computer Sciences (Высшей школы в области информатики) . . . Усилия Луи Фейна, численного аналитика Джорджа Форсайта и других увенчались успехом: университеты пошли на создание программ, связанных с информатикой, начиная с Университета Пердью в 1962.

- Q11870 Когда впервые был применен термин Computer science (Компьютерная наука)?
- Q28900 Кто впервые использовал этот термин?
- Q30330 Начиная с <u>каого*</u> учебного заведения стали применяться учебные программы, связанные с информатикой?

^{*}Misspelling is intended

SberQuAD evaluation

Model	Sber	QuAD	SQuAD	
	EM	F1	EM	F1
simple baseline	0.3	25.0	_	_
ML baseline	3.7	31.5	_	-
BiDAF	51.7	72.2	68.0	77.3
DrQA	54.9	75.0	70.0	79.0
R-Net	58.6	77.8	71.3	79.7
DocQA	59.6	79.5	72.1	81.1
BERT	66.6	84.8	85.1	91.8

Table 7: Model performance on SQuAD and SberQuAD; SQuAD part shows single-model scores on test set taken from respective papers.

Figure 6: Model performance depending on answer length (# of words).

% test R-Net BiDAF DocQA DrQA BERT						
w/ typos	5.7	74.1	66.7	77.5	67.5	81.1
correct	94.3	77.1	72.5	79.6	75.4	85.0
Test set		77.8	72.2	79.5	75.0	84.8

Table 8: Answer quality for misspelled questions.

But errors are still present

The Yuan dynasty is considered both a successor to the Mongol Empire and an imperial Chinese dynasty. It was the khanate ruled by the successors of Möngke Khan after the division of the Mongol Empire. In official Chinese histories, the Yuan dynasty bore the Mandate of Heaven, following the Song dynasty and preceding the Ming dynasty. The dynasty was established by Kublai Khan, yet he placed his grandfather Genghis Khan on the imperial records as the official founder of the

What dynasty came before the Yuan?

Gold Answers: 1 Song dynasty 2 Mongol Empire

3 the Song dynasty

Prediction: Ming dynasty [BERT (single model) (Google AI)]

source: CS224n Lecture 10

S(ber)QuAD limitations

- Only span-based answers (no yes/no, counting, implicit why)
 - Questions were constructed looking at the passages
 - Not genuine information needs
 - Generally greater lexical and syntactic matching between questions and answer span than you get IRL
 - Barely any multi-fact/sentence inference beyond coreference

But these datasets are still of a great use

Passage

Potential solutions

How to make it better

- Use extra information about the text
 - Char embeddings
 - Linguistic features: PoS and NER tags
 - 0 ...

PoS tagging

20-20-00 September 20-20-00 100 100 100 100 100 100 100 100 100					
PUNCT	PUNCT	•]	Po	S tagging can be
DET	DET	✓	this		
NOUN	NOUN	✓	killing	ne	rformed using
ADP	ADP	✓	of	۲۰	monnoa aomig
DET	DET	/	a	\circ	Rule-based taggers
ADJ	ADJ	/	respected	O	Tule-based laggers
NOUN	NOUN	✓	cleric		D
AUX	AUX	/	will	0	Dynamic programming
AUX	AUX	✓	be		
VERB	VERB	/	causing	\circ	Models based on CRF
PRON	PRON	✓	us	O	Modele bacca off Civi
NOUN	NOUN	/	trouble		(Conditional Dandom
ADP	ADP	✓	for		(Conditional Random
NOUN	NOUN	✓	years		- : 1.1\
PART	PART	✓	to		Field)
VERB	VERB	✓	come		,
PUNCT	PUNCT	✓		0	Neural Networks
PUNCT	PUNCT	✓]	O	Neural Networks
				0	etc.

Token

Actual Tag

Pred. Tag

Correct?

How to make it better

- Use extra information about the text
 - Char embeddings
 - Linguistic features: PoS and NER tags
 - 0 ..

Better use of attention

BiDAF

Query2Context

Word Character Embedding

GLOVE Char-CNN

source: Bidirectional Attention Flow for Machine Comprehension

- There are variants of and improvements to the BiDAF architecture, but the central idea is the Attention Flow layer: attention should flow both ways - from the context to the question and from the question to the context
- Make similarity matrix (with w of dimension 6d): $oldsymbol{S}_{ij} = oldsymbol{w}_{ ext{sim}}^T [oldsymbol{c}_i; oldsymbol{q}_i; oldsymbol{c}_i \circ oldsymbol{q}_i] \in \mathbb{R}$
 - Context-to-Question (C2Q) attention (which query words are most relevant to each context word):

most relevant to each context word):
$$\alpha^i = \operatorname{softmax}(\boldsymbol{S}_{i,:}) \in \mathbb{R}^M \quad \forall i \in \{1, \dots, N\}$$

 $\boldsymbol{a}_i = \sum_{j=1}^{n} \alpha_j^i \boldsymbol{q}_j \in \mathbb{R}^{2h} \quad \forall i \in \{1, \dots, N\}$

 $\boldsymbol{b}_i = [\boldsymbol{c}_i; \boldsymbol{a}_i; \boldsymbol{c}_i \circ \boldsymbol{a}_i; \boldsymbol{c}_i \circ \boldsymbol{c}'] \in \mathbb{R}^{8h} \quad \forall i \in \{1, \dots, N\}$

- For each passage position, output of BiDAF layer is:
- $\beta = \operatorname{softmax}(\boldsymbol{m}) \in \mathbb{R}^N$

Attention Flow:

with respect to the query – slight asymmetry through max $\boldsymbol{m}_i = \max_{i} \boldsymbol{S}_{ij} \in \mathbb{R} \quad \forall i \in \{1, \dots, N\}$

question and from the question to the context

 $c' = \sum \beta_i c_i \in \mathbb{R}^2$

attention should flow both ways – from the context to the

BiDAF

Query2Context

Word Character Embedding

GLOVE Char-CNN

source: Bidirectional Attention Flow for Machine Comprehension

Open-Domain Question Answering

Open-domain QA

SQuAD, TREC, WebQuestions, WikiMovies

Q: How many of Warsaw's inhabitants spoke Polish in 1933?

Document Retriever

Document Reader

→ 833,500

Possible problems

Example question: "What is the Aquaman actor's next movie?"

Possible solutions

More on GPT

GPT-3, May 2020

Proportions are not preserved for visual sake

Hypothesis from Stanford CS224N Lecture 20 (2019)

Reaction: GPT-3

Source: Twitter, more links available at https://lambdalabs.com/blog/qpt-3/

Reaction: GPT-3

Andriy Burkov • Following
ML at Gartner, author of The Hundred-Page Machine Learning Book
2d • 🕲

GPT-3 is the closest thing to artificial general intelligence (AGI) that I ever saw.

It's so strong that it makes me nervous.

Source: LinkedIn, Twitter

Reaction: GPT-3

source: Andrej Karpathy twitter

miniGPT

- Great way to understand GPT
 - ~300 lines of code and examples

available GPT implementations

minGPT

source: miniGPT by Andrej Karpathy

GPT-3 Large for Russian Language

source: Сбер выложил русскоязычную модель GPT-3 Large с 760 миллионами параметров в открытый доступ

Outro

- Question answering systems guide us one step closer to human-like NLP systems
- Refer to the original papers on <u>Transformer-XL</u>, <u>BiDAF</u> and <u>SQuAD</u>, there are a lot of interesting ideas in there
- For Russian language:
 - SberQuAD paper provides a great aggregation of available materials, libraries and pretrained models
 - GPT-3 trained on Russian texts
 - <u>deeppavlov.ai</u> and <u>Natasha project</u> provide many useful materials and pretrained models