Solubilidade

♦ PROBLEMAS

Solubilidade

- 1. O cloruro de prata é un sal pouco soluble e a súa constante de produto de solubilidade vale 1,8·10⁻¹⁰.
 - a) Escribe a ecuación química do equilibrio de solubilidade deste sal e deduza a expresión para a constante do produto de solubilidade.
 - b) Determina a máxima cantidade deste sal, expresada en gramos, que pode disolverse por decímetro cúbico de disolución.

(P.A.U. xuño 07)

Rta.: b) $m = 1.9 \cdot 10^{-3} \text{ g AgCl /dm}^3 \text{ D.}$

- 2. O produto de solubilidade do Mn(OH)₂, medido a 25 °C, vale 4·10⁻¹⁴. Calcula:
 - a) A solubilidade en auga expresada en g/dm³
 - b) O pH da disolución saturada.

(P.A.U. set. 06)

Rta.: a) $s' = 1.9 \cdot 10^{-3} \text{ g / dm}^3$; b) pH = 9.6.

• Efecto do ión común

- 1. A 25 °C a solubilidade do PbI₂ en auga pura é 0,7 g/L. Calcula:
 - a) O produto de solubilidade.
 - b) A solubilidade do PbI₂ a esa temperatura nunha disolución de KI de concentración 0,1 mol/dm³.

(P.A.U. set. 16)

Rta.: a) $K_s = 1,40 \cdot 10^{-8}$; b) $s_2' = 0,646 \text{ mg/dm}^3$.

- 2. O produto de solubilidade a 25 °C do MgF₂ é de $8,0\cdot10^{-8}$.
 - a) Cantos gramos de MgF₂ pódense disolver en 250 cm³ de auga?
 - (a.1) Cantos gramos de MgF₂ disolveranse en 250 cm³ dunha disolución de concentración 0,1 mol/dm³ dun sal totalmente disociado como o Mg(NO₃)₂?

(P.A.U. set. 15)

Rta.: a) $m_a = 0.0423 \text{ g; b}$ $m_b = 6.96 \cdot 10^{-3} \text{ g.}$

- 3. A solubilidade do BaF₂ en auga é de 1,30 g/dm³. Calcula:
 - a) O produto de solubilidade do sal.
 - b) A solubilidade do BaF₂ nunha disolución acuosa de concentración 1 mol/dm³ de BaCl₂, considerando que este sal está totalmente disociado.

(P.A.U. xuño 15)

Rta.: a) $K_s = 1,63 \cdot 10^{-6}$; b) $s_2 = 6,38 \cdot 10^{-4} \text{ mol/dm}^3$.

- 4. O produto de solubilidade do PbBr₂ é 8,9·10⁻⁶. Determina a solubilidade molar:
 - a) En auga pura.
 - b) Nunha disolución de Pb(NO₃)₂ de concentración 0,20 mol/dm³ considerando que este sal está totalmente disociado.

(P.A.U. set. 14)

Rta.: a) $s_a = 0.013 \text{ mol/dm}^3$; b) $s_b = 3.3 \cdot 10^{-3} \text{ mol/dm}^3$.

- 5. O produto de solubilidade, a 25 °C, do Pbl₂ é 9,6·10⁻⁹.
 - a) Calcula a solubilidade do sal.
 - b) Calcula a solubilidade do PbI₂ nunha disolución de concentración 0,01 mol/dm³ de CaI₂, considerando que este sal atópase totalmente disociado.

(P.A.U. xuño 13)

Rta.: a) $s = 1,3 \cdot 10^{-3} \text{ mol/ dm}^3$; b) $s_2 \approx 2,4 \cdot 10^{-5} \text{ mol / dm}^3$.

- 6. Calcula, a 25 °C:
 - a) A solubilidade en mg/dm³ do AgCl en auga.
 - b) A solubilidade en mg/dm³ do AgCl nunha disolución acuosa que ten unha concentración de ión cloruro de 0,10 mol/dm³.

Dato: O produto de solubilidade do AgCl a 25 °C é $K_s = 1,7 \cdot 10^{-10}$.

(P.A.U. set. 07)

Rta.: a) $s' = 1.9 \text{ mg/dm}^3$; b) $s_2' = 2.4 \cdot 10^{-4} \text{ mg/dm}^3$.

Precipitación

- 1. Disponse dunha disolución que contén unha concentración de Cd²⁺ de 1,1 mg/dm³. Quérese eliminar parte do Cd²⁺ precipitándoo cun hidróxido, en forma de Cd(OH)₂. Calcula:
 - a) O pH necesario para iniciar a precipitación.
 - b) A concentración de Cd²+, en mg/dm³, cando o pH é igual a 12.

 $K_{\rm s}({\rm Cd}({\rm OH})_2) = 1.2 \cdot 10^{-14}.$

(P.A.U. xuño 16)

Rta.: a) pH = 9,5; b) $[Cd^{2+}]_b = 1,3 \cdot 10^{-5} \text{ mg/dm}^3$.

- 2. a) Sabendo que a 25 °C a K₅(BaSO₄) é 1,1·10⁻¹⁰, determina a solubilidade do sal en g/dm³.
 - b) Se 250 cm³ dunha disolución de BaCl₂ de concentración 0,0040 mol/dm³ engádense a 500 cm³ de disolución de K₂SO₄ de concentración 0,0080 mol/dm³ e supoñendo que os volumes son aditivos, indica se se formará precipitado ou non.

(P.A.U. xuño 14)

Rta.: a) $s' = 2.4 \cdot 10^{-3} \text{ g/dm}^3$; b) Si. $1.3 \cdot 10^{-3} \cdot 5.3 \cdot 10^{-3} > K_s$.

- 3. O produto de solubilidade do cloruro de chumbo(II) é 1,6·10⁻⁵ a 298 K.
 - a) Determina a solubilidade do cloruro de chumbo(II) expresada en mol/dm³.
 - b) Mestúranse 200 cm³ dunha disolución de concentración $1,0\cdot10^{-3}$ mol/dm³ de Pb(NO₃)₂ e 200 cm³ dunha disolución de HCl de pH = 3. Supoñendo que os volumes son aditivos indica se precipitará cloruro de chumbo(II).

(P.A.U. set. 12)

Rta.: a) $s = 0.016 \text{ mol/dm}^3$; b) Non.

- 4. O sulfato de estroncio é un sal moi pouco soluble en auga. A cantidade máxima deste sal que se pode disolver en 250 cm³ de auga a 25 °C é de 26,0 mg.
 - a) Calcula o valor da constante do produto de solubilidade do sal a 25 °C.
 - b) Indica se se formará un precipitado de sulfato de estroncio ao mesturar volumes iguais de disolucións de Na₂SO₄ de concentración 0,02 mol/dm³ e de SrCl₂ de concentración 0,01 mol/dm³, considerando que ambos os sales están totalmente disociados.

Supón os volumes aditivos.

(P.A.U. xuño 12)

Rta.: a) $K_s = 3.21 \cdot 10^{-7}$; b) Si.

- 5. O PbCO₃ é un sal moi pouco soluble na auga cunha K_s de 1,5·10⁻¹⁵. Calcula:
 - a) A solubilidade do sal.
 - b) Se se mesturan 150 cm³ dunha disolución de $Pb(NO_3)_2$ de concentración 0,04 mol/dm³ con 50 cm³ dunha disolución de Na_2CO_3 de concentración 0,01 mol/dm³, razoa se precipitará o $PbCO_3$ no recipiente onde se fixo a mestura.

(P.A.U. xuño 11)

Rta.: a) $s = 3.9 \cdot 10^{-8} \text{ mol/dm}^3$; b) Si.

- 6. O produto de solubilidade do ioduro de prata é 8,3·10⁻¹⁷. Calcula:
 - a) A solubilidade do ioduro de prata expresada en g·dm⁻³
 - b) A masa de ioduro de sodio que se debe engadir a 100 cm³ de disolución de concentración 0,005 mol/dm³ de nitrato de prata para iniciar a precipitación do ioduro de prata.

(P.A.U. set. 10)

Rta.: a) $s = 2.1 \cdot 10^{-6} \text{ g/dm}^3$; b) $m = 2.5 \cdot 10^{-13} \text{ g NaI}$.

7. O produto de solubilidade do cloruro de prata vale 1,70·10⁻¹⁰ a 25 °C. Calcula:

- a) A solubilidade do cloruro de prata.
- b) Se se formará precipitado cando se engaden 100 cm³ dunha disolución de NaCl de concentración 1,00 mol/dm³ a 1,0 dm³ dunha disolución de AgNO₃ de concentración 0,01 mol/dm³.

(P.A.U. set. 09)

Rta.: a) $s = 1,3 \cdot 10^{-5} \text{ mol/dm}^3$; b) Si. [Ag⁺] · [Cl⁻] = 8,3·10⁻⁴ > K_s .

CUESTIÓNS

- 1. Ponse nun vaso con auga certa cantidade dun sal pouco soluble, de fórmula xeral AB_3 , e non se disolve completamente. O produto de solubilidade do sal é K_s .
 - a) Deduce a expresión que relaciona a concentración de A³+ co produto de solubilidade do sal.
 - b) A continuación introdúcese no vaso unha cantidade dun sal soluble CB_2 Que variación produce na solubilidade do sal AB_3 ?

(P.A.U. xuño 05)

- 2. Xustifica se esta afirmación é correcta:
 - b) A presenza dun ión común diminúe a solubilidade dun sal lixeiramente soluble.

(P.A.U. xuño 14)

- 3. Disponse dunha disolución saturada de cloruro de prata en auga. Indica razoadamente, que sucedería se a esta disolución:
 - a) Engádenselle 2 g de NaCl.
 - b) Engádenselle 10 cm³ de auga.

(P.A.U. set. 08)

- 4. a) Expresa a relación que existe entre a solubilidade e o produto de solubilidade para o ioduro de chumbo(II).
 - b) Se se dispón dunha disolución saturada de carbonato de calcio en equilibrio co seu sólido, como se verá modificada a solubilidade do precipitado ao engadirlle carbonato de sodio? Razoa as respostas.

(P.A.U. xuño 09)

- 5. Como é coñecido, o ión prata precipita con ións Cl⁻, l⁻ e CrO₄²⁻, cos seguintes datos: $K_s(AgCl) = 1,7 \cdot 10^{-10}$; $K_s(Ag_2CrO_4) = 1,1 \cdot 10^{-12}$ e $K_s(AgI) = 8,5 \cdot 10^{-17}$
 - a) Explica razoadamente o que sucederá se se engade unha disolución acuosa de nitrato de prata lentamente, a unha disolución acuosa que contén os tres anións á mesma concentración.
 - b) Indica os equilibrios e as expresións da constante do produto de solubilidade para cada unha das reaccións entre o anión e o ión prata.

(P.A.U. xuño 10)

♦ LABORATORIO

- a) 2,0 g de CaCl₂ disólvense en 25 mL de auga e 3,0 g de Na₂CO₃ noutros 25 mL de auga. Seguidamente mestúranse as dúas disolucións. Escribe a reacción que ten lugar identificando o precipitado que se produce e a cantidade máxima que se podería obter.
 - b) Describe a operación que empregarías no laboratorio para separar o precipitado obtido, debuxando a montaxe e o material a empregar.

(P.A.U. set. 16)

Rta.: a) $m = 1,80 \text{ g CaCO}_3$.

- 2. Mestúranse 50 cm³ de disolución de concentración 0,1 mol/dm³ de KI e 20 cm³ de disolución de concentración 0,1 mol/dm³ de Pb(NO₃)₂ obténdose 0,51 g dun precipitado de PbI₂.
 - a) Escribe a reacción que ten lugar e indica a porcentaxe de rendemento da reacción.
 - b) Indica o material e describe o procedemento a seguir no laboratorio para a obtención e separación do precipitado.

(P.A.U. xuño 16)

Rta.: Rendemento do 55 %.

- 3. Ao facer reaccionar unha disolución de cloruro de calcio e outra de carbonato de sodio, obtense un precipitado de carbonato de calcio.
 - a) Escribe a reacción que ten lugar e indica como calcularías a porcentaxe do rendemento da reacción.
 - b) Indica o material e describe o procedemento a seguir no laboratorio para a obtención e separación do precipitado.

(P.A.U. xuño 15)

4. Para que serve un funil büchner? E un matraz kitasato? Fai un esquema de montaxe para a utilización de ambos.

(P.A.U. set. 11)

- 5. Mestúranse 25,0 cm³ dunha disolución de CaCl₂ de concentración 0,02 mol/dm³ e 25,0 cm³ dunha disolución de Na₂CO₃ de concentración 0,03 mol/dm³.
 - a) Indica o precipitado que se obtén e a reacción química que ten lugar.
 - b) Describe o material e o procedemento empregado para a súa separación.

(P.A.U. set. 08)

- 6. Vertemos en dous tubos de ensaio disolucións de AgNO₃, nun, e de NaCl no outro. Ao mesturar ambas as disolucións fórmase instantaneamente un precipitado, que aos poucos, vai sedimentando no fondo do tubo.
 - a) Escribe a reacción que ten lugar.
 - b) Describe o procedemento, indicando o material necesario, para separar e recoller o precipitado. (P.A.U. xuño 08, xuño 06)
- 7. Describe unha reacción de precipitación que realice no laboratorio. Debuxa o material e explica o modo de utilizalo. Escribe a reacción que ten lugar. Como calcularías o rendemento?

(P.A.U. set. 05)

Rta.: Rendemento do 94 %.

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.