

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

GPR

Instructor: Dikun Yang Feb – May, 2020

Radar

- Can we do the same thing to the subsurface?
- What are the differences between finding an object in the air and underground using EM waves?

EM Field at High Frequencies – Wave

Ground Penetrating Radar (GPR)

Capacitive coupling

- High frequency EM field
- Dielectric constant (ε_r)
- Wave phenomenon

Wave Propagation

Medium characterized by three physical properties:

 σ (electrical conductivity), ε (electrical permittivity), µ (magnetic permeability)

In general:
$$V = \sqrt{\frac{2}{\mu\varepsilon}} \left[\left(1 + \left(\frac{\sigma}{\omega\varepsilon} \right)^2 \right)^{1/2} + 1 \right]^{-1/2}$$

Wave regime
$$V = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$$

Nonmagnetic approximatio $n (\mu_r = 1)$:

$$V=rac{c}{\sqrt{arepsilon_r}}$$

Question: How does EM wave propagate in perfect conductors?

Dielectric Permittivity (ε): How easily a material is electrically polarized

Electrical Conductivity (σ):

How easily electrical charges flow through a material

Magnetic Permeability (μ):

How strongly a material supports magnetism

Wave Attenuation

$$lpha = \omega \sqrt{rac{\mu arepsilon}{2}} \left[\left(1 + \left(rac{\sigma}{\omega arepsilon}
ight)^2
ight)^{1/2} - 1
ight]^{1/2} pprox \left\{ egin{align*} \sqrt{rac{\omega \mu \sigma}{2}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \sigma \ll \omega arepsilon \end{array}
ight.$$

- Quasi-Static ($\omega \epsilon << \sigma$): Conductive/Low-frequency
- Wave Regime ($\sigma << \omega \epsilon$): Resistive/High-frequency

Skin Depth and Probing Distance

• Skin Depth: Distance at which a wave is reduced to 37% (1/e) of its original amplitude

The probing distance is approximated 3 skin depths

$$\delta pprox \left\{ egin{array}{ll} 503 \sqrt{\dfrac{1}{\sigma f}} & ext{ for } \omega arepsilon \ll \sigma \ \\ 0.0053 \dfrac{\sqrt{arepsilon_r}}{\sigma} & ext{ for } \sigma \ll \omega arepsilon \end{array}
ight.$$

Table of relative dielectric permittivity (e_R), electrical conductivity (σ), and velocity.

Material	e _R	σ(mSeimens/m)	V avg (m/ns)
Air	1	0	.3
Distilled water	80	0.01	0.033
Fresh water	80	0.5	0.033
Sea water	80	3000	0.01
Dry sand	3 - 5	0.01	0.15
Saturated sand	20-30	0.1-1.0	0.06
Limestone	4-8	0.5-2.0	0.12
Shales	5-15	1-100	0.09
Silts	5-30	1-100	0.07
Clays	5-40	2- 1000	0.06
Granite	4-6	0.01-1.0	0.13
Dry salt	5-6	0.01-1.0	0.13
Ice	3-4	0.01	0.16

Reflection and Transmission

$$R = rac{ ext{Reflected Amplitude}}{ ext{Incident Amplitude}} = rac{\sqrt{arepsilon_1} - \sqrt{arepsilon_2}}{\sqrt{arepsilon_1} + \sqrt{arepsilon_2}}$$
 $T = rac{ ext{Transmitted Amplitude}}{ ext{Incident Amplitude}} = rac{2\sqrt{arepsilon_2}}{\sqrt{arepsilon_1} + \sqrt{arepsilon_2}}$

- If $\varepsilon_1 \approx \varepsilon_2$, most of the wave is transmitted
- If $\epsilon_1 \ll \epsilon_2$ or $\epsilon_1 \gg \epsilon_2$, most of the wave is reflected

Refraction

• Snell's Law:

$$rac{\sin\! heta_1}{V_1} = rac{\sin\! heta_2}{V_2}$$

$$V=c/\!\sqrt{arepsilon_r}$$

$$\sqrt{arepsilon_1} \sin\! heta_1 = \sqrt{arepsilon_2} \sin\! heta_2$$

Critical refraction

$${
m sin} heta_c=rac{V_1}{V_2}$$

Requires $V_1 < V_2$

Reflection, Transmission, Refraction, Scattering

EM Wave Propagation in a Two-layer Earth

GPR Anomaly on Radargram

- Determine background medium velocity
- Determine the depth of burial
- Determine the size of extended objects

GPR Source Signal

- Wavelet: A wave-like oscillation of short duration
- Bandwidth: Range of frequencies in the wavelet
- Pulse Width: Time-duration of wavelet
- Spatial Length: Wavelength of the wavelet
- Central Frequency: Operating frequency of GPR survey

$$f_c = rac{1}{\Delta t}$$

Typically 50 MHz to 1 GHz

GPR Source Signal: Spatial Length

 The spatial length (wavelength) of the GPR pulse is dependent on the central frequency and velocity

$$\lambda = rac{V}{f_c} = rac{c}{f_c\sqrt{arepsilon_r}} = rac{c\,\Delta t}{\sqrt{arepsilon_r}}$$

 When the GPR signal at some frequency is transmitted across an interface, it can be stretched or contracted

Lower velocity

Shorter spatial length

Lower frequency

Larger spatial length

Signal Stretched or Contracted?

Resolution of GPR

• ¼ wavelength rule:

The thickness of a layer must be at least ¼ the wavelength of the GPR signal.

$$L>rac{c}{4f_c\sqrt{arepsilon_r}}=rac{c\Delta t}{4\sqrt{arepsilon_r}}$$

For zero offset survey

$$L>\sqrt{rac{V\,d}{2f_c}}$$

Probing Distance vs. Resolution

- Want to find two buried tunnels.
- Using a zero offset survey configuration.
- Higher frequencies give better resolution
- Lower frequencies give larger probing distance

Radargram 200 MHz

- Little to no useful signal after 200 ns
- Can't see features from the tunnels

- Too much attenuation of signal
- Probing distance insufficient

Radargram 100 MHz

- Useful signals up to 300 ns
- See top of hyperbolas from tunnels

- Lower resolution
- Can see tunnels

Radargram 50 MHz

- Useful signals through 400 ns
- Well-defined hyperbolas from tunnels

- Lower resolution image
- Best frequency for what we want to observe

Depth vs. Resolution

Quiz

 True or false and why: While dc resistivity is only sensitive to the electrical resistivity, GPR data only response to the variation of electrical permittivity.

- Both dc resistivity and GPR can use electrical dipole sources. In a dc survey the dipole electrodes need to be in contact with the earth, but the GPR dipole source can be suspended in the air. Why?
- Which survey parameters determine the depth of investigation (DOI) in dc resistivity and GPR?

Common Offset

Common Midpoint

Zero Offset: Finding Buried Objects

Two-way travel time for a point scatter

$$t_p=rac{2L_2}{V}=rac{2\sqrt{(x-x_p)^2+d^2}}{V}$$

- (1) Estimate the velocity V. Can you think of two methods?
- (2) Calculate the depth of burial d or h

Migration

Zero offset survey along lines

Common Midpoint

$$t = \frac{2\sqrt{x^2 + d^2}}{V}$$

Solve for V and d

Transillumination Surveys

- Tx and Rx are placed on opposing sides of a target.
- Sometimes many Tx and Rx
- Used for:
 - Structural integrity of mine shafts
 - Borehole surveys
 - Finding internal structures within objects

Noise – External Radiowave or Above

Ground Reflection

Noise - "Ringing"

Wire below surface

2 nearby objects

- Caused when signals reverberate in regular fashion
- Signal repeatedly bounces within a layer or between objects.

Noise – Scattering

- Deviations in signal path due to localized non-uniformities.
- Reduces amplitude of usable signal and increases noise.

Processing – Time-depth Conversion

Apparent depth:

$$d_a=rac{Vt}{2}$$

- Vertical axis usually 2-way travel time [ns]
- Get velocity first, then get an apparent depth

Processing – Gain Correction

- Multiply raw data by a gain factor so that late signals can be recognized.
- Gain factor generally counteracts exponential decay in amplitude

Processing – Stacking and Averaging

- Data from repeated shots are averaged (stacked)
- Stacking reduces the amplitude of incoherent noise

- Wavelet signal is smooth whereas incoherent noise is random
- Smoothing decreases amplitude of random noise relative to returning signals.

GPR Antenna

Half-wave dipole antenna: Length is determined by the intended wavelength (or frequency) of operation

GPR Antenna

Water Hazard in Potash Mine

- Zero offset GPR survey performed.
- Arrival time to depth conversion performed

Q: Without a direct ground wave measurement or hyperbola to obtain propagation speed, how could they do conversion?

A: Potash in an anhydrite mineral.

From known physical properties, V ~ 0.13 m/ns

Apparent depth $d_a = V t / 2$

Q: What kinds of features do you see in the data?

- Strong reflector from intruding water (7 8 m into the wall)
- Water is delineated and seems to be coming from the right
- Ringing from mine infrastructure

GPR on SUSTech Campus

On SUSTech campus: search for buried power cables

- Frequency range: 100M to 1G Hz
- Depth of penetration: within 100 m
- High frequency: good resolution but shallow
- Low frequency: poor resolution but deep
- Good reflectors: water ($\varepsilon_r = 81$), metal ($\varepsilon_r = infinity$)

MARSIS antenna beam

Mars Radar

40 m dipole antenna 1.8 ~ 5.0 MHz

Mars Advanced Radar for <u>S</u>ubsurface and <u>l</u>onosphere <u>S</u>ounding MARSIS mission

Liquid water beneath ice cap

Mars Express radar footprints (blue = brightest radar echo)

Radar image of subsurface

Summary of GPR

- EM at high frequency: Wave regime
- Physical properties utilized by EM/GPR
- Reflection, transmission, refraction and scattering
- Signal length scale and resolution
- Depth vs. spatial resolution
- GPR survey types
- GPR data analysis: velocity and depth
- GPR data processing
- GPR noise in practice
- GPR instruments: Antenna
- Applications: Water gushing in potash mines, MARS radar, Searching pipes.