PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-243614

(43)Date of publication of application: 21.09.1993

(51)Int.CI.

HO1L 33/00 H01S 3/18

(21)Application number: 04-045809

(71)Applicant: SHARP CORP

(22)Date of filing:

03.03.1992

(72)Inventor: HOSOBANE HIROYUKI

SUYAMA NAOHIRO YOSHIDA TOMOHIKO KANEIWA SHINJI KONDO MASAFUMI HATA TOSHIO

OBAYASHI TAKESHI

(54) METHOD OF GROWING COMPOUND SEMICONDUCTOR, ITS LIGHT-EMITTING DEVICE, AND THE MANUFACTURE

(57)Abstract:

PURPOSE: To provide a method of growing a compound semiconductor, which ensures a compound semiconductor having a good crystallinity and a low resistivity, and to provide a light-emitting device of the compound semiconductor which has good electric and optical characteristics by utilizing the method for growing the compound semiconductor, in addition to the manufacture of the light-emitting device.

CONSTITUTION: A Ga1-xAlxN layer (0 · x, y · 1) is formed by adding a group III element, e.g. In, having a larger atomic radius than Ga and Al and compression distortion 4 is given to a crystal to be formed, and it is made possible to reduce expansion distortion in the crystal caused by a nitrogen vacancy hole. As a result, concentration of free electrons in the crystal, as shown in the graph, is reduced, and a compound semiconductor which has a good crystallinity with few lattice defects.

LEGAL STATUS

[Date of request for examination]

25.02.1999

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3251046

[Date of registration]

16.11.2001

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]
d \$99800009\$####Z/6b:61 (#) 月ZZ#/ \$Z00Z

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-243614

(43)公開日 平成5年(1993)9月21日

(51) Int.Cl.5

識別記号

FΙ

技術表示箇所

H01L 33/00

C 8934-4M

庁内整理番号

A 8934-4M

H01S 3/18

9170 - 4M

審査請求 未請求 請求項の数10(全 8 頁)

(21)出願番号

特願平4-45809

(22)出願日

平成4年(1992)3月3日

(71)出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 細羽 弘之

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 須山 尚宏

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 ▲吉▼田 智彦

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 弁理士 山本 秀策

最終頁に続く

(54) 【発明の名称】 化合物半導体の成長方法、化合物半導体発光素子及びその製造方法

(57)【要約】

【目的】 結晶性が良好で抵抗率の低い化合物半導体が 得られる化合物半導体の成長方法、及びこの成長方法を 利用した、電気的及び光学的特性が良好な化合物半導体 発光素子及びその製造方法を提供する。

【構成】 原子半径がGa及びAlよりも大きいIII族 元素、例えばInを添加してGa1-xA1xN層(0≤x≤ 1)を形成することにより、形成される結晶に圧縮性歪 を与え、窒素空孔に起因する結晶中の拡張性歪を緩和す ることができる。その結果、図1に示すように結晶中の 自由電子濃度が減少し、格子欠陥の少ない結晶性の良好 な化合物半導体が得られる。

【特許請求の範囲】

【請求項1】 成長装置内で $Ga_{1-x}Al_xN$ 層 $(0 \le x \le 1)$ を成長させる化合物半導体の成長方法において、

該 Ga_{1-1} A 1, N層に、原子半径がGa及びA 1よりも大きいIII族元素を 1×10^{17} cm 3 から 7×10^{22} cm 3 までの濃度範囲だけ添加する工程を含む化合物半導体の成長方法。

【請求項2】 前記G a1-rA1rN層を成長する際に、 ドナー不純物をドーピングする、請求項1記載の化合物 半導体の成長方法。

【請求項3】 前記Ga1-rAlrN層を成長する際に、アクセプター不純物をドーピングする、請求項1記載の化合物半導体の成長方法。

【請求項4】 成長装置内で $In_{r}Ga_{r}AI_{1-r-r}N$ 層 $(0 \le x, y \le 1)$ を成長させる化合物半導体の成長方法において、

該 $In_1Ga_7A1_{1-1-5}$ N層に、原子半径がNよりも大きいV族元素を 1×10^{17} cm 3 から 1×10^{23} cm 3 までの濃度範囲だけ添加する工程を含む化合物半導体の成長方法。

【請求項5】 前記 I n₁ G a₂ A l₁₋₁₋₂ N層を成長する際に、ドナー不純物をドーピングする、請求項4記載の化合物半導体の成長方法。

【請求項6】 前記 I n. G a, A l.-., N層を成長する際に、アクセプター不純物をドーピングする、請求項4記載の化合物半導体の成長方法。

【請求項7】 原子半径がNよりも大きいV族元素を $1 \times 10^{17} \, \text{cm}^{-3}$ から $1 \times 10^{23} \, \text{cm}^{-3}$ までの濃度範囲だけ添加して、成長装置内で $1 \, \text{nr} \, \text{GayA} \, 1_{1-1-y} \, \text{NF}(0 \le x, y \le 1)$ を成長させる工程と、

該InrGayAl1-1-1-N層を利用してPN接合を形成する工程とを含む化合物半導体発光素子の製造方法。

【請求項8】 原子半径がNよりも大きいV族元素を 1×10^{17} cm⁻³ から 1×10^{23} cm⁻³ までの濃度範囲だけ添加し、同時にドナー不純物をドーピングして、成長装置内で $In.Ga_{1}Al_{1-1-1}N$ $\overline{M}(0 \le x, y \le 1)$ を成長させる工程と、

該 In, Gay Ali-1-1 N層を利用してPN接合を形成する工程とを含む化合物半導体発光素子の製造方法。

【請求項9】 原子半径がNよりも大きいV族元素を1 $40 \times 10^{17} \, \mathrm{cm}^{-3}$ から $1 \times 10^{23} \, \mathrm{cm}^{-3}$ までの濃度範囲だけ添加し、同時にアクセプター不純物をドーピングして、成長装置内で $I \, \mathrm{nr} \, \mathrm{Ga}_{7} \, \mathrm{A} \, 1_{1-1-7} \, \mathrm{N} \, \mathrm{M} \, \mathrm{$

該In,Ga,Al_{1-1-y}N層を利用してPN接合を形成する工程とを含む化合物半導体発光素子の製造方法。

【請求項10】 請求項7~請求項9記載のいずれかの 方法で製造された化合物半導体発光素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、 $Ga_{1-1}Al_1NB(0 \le x \le 1)$ 又は $In_1Ga_2Al_{1-1-2}$ N $B(0 \le x, y \le 1)$ を 気相成長させる化合物半導体の成長方法に関し、より詳しくは結晶性が良好で抵抗率の低い化合物半導体の成長方法、並びにこの成長方法を応用した化合物半導体発光

[0002]

素子及びその製造方法に関する。

【従来の技術】GaN(窒化ガリウム)はIII族元素であるガリウム及びV族元素である窒素から構成される化10合物半導体であり、直接遷移型パンド構造を有する。従って、該化合物半導体を利用して、伝導帯ー価電子帯間遷移による紫外発光素子であって、室温で3.39eV程度の禁制帯幅及び366nm程度のピーク波長を有する紫外発光素子を製造できることが期待されている。

【0003】しかし、発光ダイオード及び半導体レーザなどの発光素子を得るにはP型結晶とN型結晶とを隣合わせにしたいわゆるPN接合が必要であるが、従来はGaNからなるP型結晶を製造することは困難であった。その理由は、GaNは禁制帯幅が大きいため、本来は室温では絶縁体となるはずだが、従来の工程でGaNを製造すると、不純物をドーピングしない結晶(アンドープ結晶)でも常にN型結晶となり、しかもその自由電子濃度は10¹⁹ cm⁻³以上と極めて高くなるからである。これは格子欠陥、特に窒素空孔がドナーとして働くためと考えられている。

【0004】また、P形結晶を得るために、Mg等のアクセプター不純物をドーピングして $Ga_{1-1}AI_{1}N(0)$ $\leq x \leq 1$)層を形成しても、Mgが不活性化された抵抗率の高い結晶になってしまう。この原因についても格子欠陥が考えられる。すなわち、 $Ga_{1-1}AI_{1}N(0) \leq x \leq 1$)結晶を形成する際に、V族元素である窒素の空孔が発生し、該結晶の格子中に拡張性の歪が与えられ、この拡張性の歪のために、ドーピングされたアクセプター不純物はGa及びAI0格子位置に入り難くなり、そのため不活性化されてしまうからである。

[0005]

【発明が解決しようとする課題】このような問題を解決する改善方法として、例えばJapanese Journal of Applied Physics 28(1989)p2112-p2114に開示された方法がある。それは、電子線照射によりアクセプター不純物を活性化する方法であって、MgをドープしたGaNのフィルムに電子線を照射することによってP型結晶を得たと報告しているが、その抵抗率は35Ω・m、ホール濃度は2×10¹⁶ cm⁻³と依然として高抵抗、低キャリア濃度である。このP型結晶を用いて製造された発光ダイオード(LED)素子は、紫外領域で発光しているが効率が悪く、電気的特性の改善が今後の課題となっている。

【0006】このように従来の技術では、良好なPN接合を実現できるような良好な結晶性と低い抵抗率とを有 50 するN型結晶及びP型結晶を製造(成長)することは困

難である。また、このような結晶を応用した発光ダイオ ード素子等の化合物半導体発光素子についても十分な特 性が得られるものを製造できなかったのが現状である。

【0007】本発明は、上記の課題を解決するものであ り、格子欠陥がない良好な結晶が得られる化合物半導体 の成長方法、特に低抵抗の良好なP型結晶が得られる化 合物半導体の成長方法を提供することを目的とする。

【0008】また、本発明の他の目的は、電気的及び光 学的特性が良好な化合物半導体発光素子及びその製造方 法を提供することにある。

[0009]

【課題を解決するための手段】本発明の化合物半導体の 成長方法は、成長装置内でGa1-1A l1N層(0≤x≤ 1)を成長させる際に、該Ga1-rAlrN層に、原子半 径がGa及びAlよりも大きいIII族元素を1×1017c m⁻³から7×10²²cm⁻³までの濃度範囲だけ添加する工 程を含んでおり、そのことにより上記目的が達成され

【0010】また、本発明の化合物半導体の成長方法 は、成長装置内で In. Ga, Al_{1-1-y} N層(0≤x, y≤ 20 1) を成長させる際に、該 I n. G a, A l 1-1-1, N層に、 原子半径がNよりも大きいV族元素を 1×10^{17} cm³か ら1×10²³ cm⁻³ までの濃度範囲だけ添加する工程を含 んでおり、そのことにより上記目的が達成される。

【0011】前記のいずれの化合物半導体を成長する際 にも、ドナー不純物を同時にドーピングするとN型半導 体が得られ、アクセプター不純物を同時にドーピングす るとP型半導体が得られる。

【0012】また、本発明の化合物半導体発光素子の製 造方法は、原子半径がNよりも大きいV族元素を1×1 *30* 0¹⁷cm⁻³から1×10²³cm⁻³までの濃度範囲だけ添加し て、成長装置内でIniGa,Ali-i-,N層(0≤x,y≤ 1)を成長させる工程と、該 In, Ga, Ali-,-, N層を 利用してPN接合を形成する工程とを含んでおり、その ことにより上記目的が達成される。

【0013】また、前記の製造方法を利用して得られる 化合物半導体発光素子によっても、上記目的が達成され

* a · A 11-x-y N層を成長させる際に、ドナー不純物を同 時にドーピングする工程及び/又はアクセプター不純物 を同時にドーピングする工程を含む。

[0015]

【作用】上記のように、Ga1-rA1rN層(0≤x≤1) の結晶を形成する際に、Ga及びAlよりも原子半径の 大きいIII族元素、例えばInを添加すると、又は、I nrGayAl1-x-yN層(0≤x,y≤1)の結晶を形成する 際に、Nよりも原子半径の大きいV族元素、例えばP,

10 As, Sbを添加すると、成長する結晶に圧縮性歪が与 えられる。これにより、窒素空孔に起因する結晶中の拡 張性歪を緩和することができる。その結果、格子欠陥 (点欠陥) の少ない結晶性の良好な化合物半導体が得ら

【0016】また、上記の工程において、さらにアクセ プター不純物を添加すれば、アクセプター不純物は容易 にIII族格子位置に入り、活性化されるため、低抵抗の 良好なP型結晶が得られる。

【0017】このようにして得られた結晶からなるPN 接合は、電気的及び光学的特性が良好である。このPN 接合を利用すれば、紫外から青色にかけての発光ダイオ ード (LED) 及び半導体レーザ (LD) 等の発光素子が実 現できる。

[0018]

【実施例】 [実施例1] Ga1-rA1rN層(0≤x≤1) を気相成長させるために、MOCVD(有機金属気相成 長法)装置を使用し、Gaの材料ガスとしてTMG(ト リメチルガリウム)を、A1の材料ガスとしてTMA (トリメチルアルミニウム) を、Nの材料としてNH3 (アンモニア) 又はN2 (窒素ガス) をそれぞれ使用し

【0019】また、Ga1-,A1,N層に添加される元素 として、Ga及びAlよりも原子半径の大きいIII族元 素を用いた。下記表1にIII族元素の共有結合半径を示 す。本実施例1では、表1に示したIII族元素の共有結 合半径をもとにInを選択し、Inの材料ガスとしてT MI (トリメチルインジウム)を使用した。

[0020]

【0014】前記の製造方法は、好ましくは、In.G* 【表1】

川族兀茶	共有結合手位(オンググトローム)
В	0.88
A 1	1. 26
Ga	1. 26
l n	1. 44
	I .

【0021】初めに、アンドープ結晶を製造(成長)す 50 る場合について説明する。

【0022】MOCVD装置内でGaAs基板上にTMG, TMA及びNH3を供給し、同時にTMIを供給し、Inの濃度範囲が1×10¹⁶cm⁻³から1×10²³cm⁻³になるGa₁₋₁AI₁N層(x=0.50)を成長した。

【0023】図1に、得られた結晶中の自由電子濃度と、In濃度との関係を示す。図1から明らかなように、In濃度が $1\times10^{17}\,\mathrm{cm}^{-3}$ から $1\times10^{23}\,\mathrm{cm}^{-3}$ までの範囲で自由電子濃度が減少している。そして、In濃度が $1\times10^{21}\,\mathrm{cm}^{-3}$ のときに自由電子濃度は $1\times10^{16}\,\mathrm{cm}^{-3}$ となり最小値を示した。この結果は、Inを添加しない場合の自由電子濃度が $1\times10^{19}\,\mathrm{cm}^{-3}$ 以上であったことを考えると、窒素空孔に起因する残留ドナー濃度が1000分の1以下に減少したことを意味している。すなわち格子欠陥の少ない良好な $Ga_{1-1}A_{1}$ 、N B (x=0.50) の結晶が得られたことを示している。

【0024】同様の条件でGaN 圏及びAIN 層を成長させたところ、それぞれ自由電子の濃度が 1×10^{16} cm $^{-3}$ から 3×10^{16} cm $^{-3}$ まで低減できた。従って、全ての組成比($0\le x \le 1$)の $Ga_{1-x}AI_xN$ 層について、In の添加による効果があるといえる。

【0025】次に、N型結晶を製造する場合について説明する。

【0026】上記と同様の条件でI nを添加しながらG a_{1-1} A I n B を成長させる際に、ドナー不純物として S i H_4 ガスを、S i の濃度がI \times $10^{1.9}$ cm $^{-3}$ 程度となる ようにドーピングしたところ、2 0 0 0 cm 2 / V · Sの移動度を有する N 型結晶(N 型伝導型結晶)が得られ、I n を添加しないで得られた N 型結晶に比べて移動度が大幅に改善された。

【0027】次に、P型結晶(P型伝導型結晶)を製造 30 する場合について説明する。

【0028】MOCVD装置内でGaAs基板上にTMG及びNH3を供給し、同時にInの濃度範囲が1×10¹⁶cm⁻³から1×10²³cm⁻³になるようにTMIを供給し、この時さらに、アクセプター不純物としてDMZn(ジメチル亜鉛)をドーピングした。

【0029】図2に、得られたP型結晶中の活性化した*

*アクセプター濃度と、In濃度との関係を示す。図 2からわかるように、In濃度が $1\times10^{17}\,\mathrm{cm}^{-3}$ から $7\times10^{22}\,\mathrm{cm}^{-3}$ までの範囲で活性化したアクセプター濃度が増加している。そして、In濃度が $1\times10^{21}\,\mathrm{cm}^{-3}$ の時に活性化したアクセプター濃度は $5\times10^{18}\,\mathrm{cm}^{-3}$ と最大値を示した。この In濃度を有する GaN層の抵抗率は $0\times10^{18}\,\mathrm{cm}^{-3}$ と最大値を添加せずに得られた結晶に比べて大幅に低抵抗化が実現できた。

6

0 【0030】これは原子半径の大きいIII族元素のIn を添加することにより窒素空孔に起因する格子歪を緩和 し、II族元素のアクセプター不純物がIII族元素の格子 位置に入り易く、かつ活性化されたためと考えられる。

【0031】また、アクセプター不純物として2n以外に、Mg、Be等の他のII族元素を用いてもよく、同様の条件でGa N層を成長させたところ低抵抗のP型結晶が得られた。

【0032】また、A1N層及びGa1-rA1.N層(x=0.50)を同様の条件で成長させた場合も、アクセプタ 20 一不純物及びInの添加によって良好なP型結晶が得られた。従って、全ての組成比(0≦x≦1)のGa1-rA1 rN層について、Inの添加による効果があるといえ

【0035】 【表2】

V族元素	共有結合半径(オングクトローム)
N	0.70
P	1. 10
A s	1, 18
Sb	1.36
Ві	_
	1

【0036】初めに、アンドープ結晶を製造する場合に · ついて説明する。 50

【0037】MOMBE装置内でGaAs基板上に、成 50 長温度600℃で、TMG、TMA及びNH3を供給してG

 a_{1-1} A l_1 N層を (x=0.30) 成長し、この結晶中のV 族元素 (P, As Z はSb) の濃度範囲が 1×10^{16} cm $^{-3}$ から 1×10^{23} cm $^{-3}$ になるように、 PH_3 、 $As H_3$ 、Z は Sb を供給した。

【0038】図3に得られた結晶中の自由電子濃度と、P、As及びSb濃度との関係を示す。図3から明らかなように、P、As及びSb濃度が $1 \times 10^{16} \, \mathrm{cm}^3$ から $1 \times 10^{23} \, \mathrm{cm}^3$ までの範囲で、自由電子濃度が減少している。そして、Pの場合は濃度が $4 \times 10^{21} \, \mathrm{cm}^3$ のときに自由電子濃度は $1 \times 10^{16} \, \mathrm{cm}^3$ となり最小値を示し 10た。この結果は、Nよりも原子半径の大きいV族元素を添加しない場合の自由電子濃度が $1 \times 10^{19} \, \mathrm{cm}^3$ 以上であったことを考えると、窒素空孔に起因する残留ドナー濃度が1000分の1以下に減少したことを意味している。すなわち、格子欠陥の少ない良好な3000の結晶が得られたことを示している。

【0039】同様の条件でGaN 層及びAlN 層を成長させたところ、P、As 及びSb 濃度が 1×10^{16} cm⁻³から 1×10^{28} cm⁻³までの範囲で、それぞれ自由電子濃度が低減できた。従って、全ての組成比($0\le x\le 1$)の 20 Ga_1 -, Al, N 層について、N よりも原子半径の大きいV 族元素の添加による効果があるといえる。

【0040】次に、N型結晶を製造する場合について説明する。

【0041】上記と同様の条件でNよりも原子半径の大きいV族元素を添加しながら $Ga_{1-1}Al_1$ N層を成長させる際に、ドナー不純物として SiH_4 ガスを、Sio 濃度が 1×10^{19} cm $^{-3}$ 程度となるようにドーピングしたところ、2000 cm 2 / $V\cdot S$ の移動度を有するN型結晶が得られ、Nよりも原子半径の大きいV族元素を添加しな 30 いで得られたN型結晶に比べて移動度が大幅に改善された。

【0042】次に、P型結晶を製造する場合について説明する。

【0043】MOMBE装置内でGaAs基板上に、TMG、TMA及びNHaを供給してGa1-1Al1N層(x=0.30)を成長し、同時にこのGa1-1Al1N層中のP、As又はSbの濃度範囲が1×10¹⁰cm⁻³から1×10²³cm⁻³になるように、PHa、AsHa、又はSb固体をそれぞれ供給した。この時さらに、アクセプター不40純物としてZnをドーピングした。

【0044】図4に、得られた結晶中の活性化したアクセプター濃度と、P、As及びSb濃度との関係を示す。図4からわかるように、P、As及びSb濃度が1× 10^{16} cm⁻³から 1×10^{23} cm⁻³までの範囲で、活性化したアクセプター濃度が増加している。そして、Pの場合は濃度が 1×10^{22} cm⁻³の時に活性化したアクセプター濃度が 1×10^{19} cm⁻³と最大値を示した。このP濃度を有するG a_{1-r} A I_r N層の抵抗率は5 Qm、移動度は8 Q cm²/V・Sであり、同様の条件でNよりも原子半

径の大きいV族元素を添加せずに得られた結晶に比べ、 大幅に低抵抗化を実現できた。

【0045】これはNよりも原子半径の大きいV族元素を添加することにより窒素空孔に起因する格子歪を緩和し、II族元素のアクセプター不純物がIII族元素の格子位置に入り易く、かつ活性化され易くなったためと考えられる。

【0046】また、アクセプター不純物として2n以外にMg、Be等の他のII族元素を利用して、同様の条件で $Ga_{1-1}Al_{1}$ N層を成長させた場合も、P、As 又はSb を添加することにより低抵抗のP型結晶が得られた

【0047】また、A1N層及びGaN層を同様の条件で成長させた場合も、アクセプター不純物、及びP、As 又はSbの添加によって良好なP型結晶が得られた。従って、全ての組成比($0 \le x \le 1$)の $Ga_{1-1}Al_1N$ 層について、Nよりも原子半径の大きいV族元素の添加による効果があるといえる。

【0048】また、InrGa,Ali-r-,N層(0 \leq x,y \leq 1)を、Nよりも原子半径の大きいV族元素を添加して、同様の条件で成長させたところ、Gai-rAliN層(0 \leq x \leq 1)の場合よりもさらに良好な結晶が得られた。すなわち、本実施例2における結果は、Gai-rAliN層(0 \leq x \leq 1)をInrGa,Ali-r-,N層(0 \leq x,y \leq 1)に置き換えることにより、さらに改善されるものである。

【0049】以上の実施例1、2ではMOCVD装置又はMOMBE装置を利用したが、MBE(分子線エピタキシー法)装置等の他の装置でもよい。Ga、A1及びNの材料、Ga及びA1よりも原子半径の大きいIII族元素の材料、及びNよりも原子半径の大きいV族元素の材料も、本実施例以外の他の化合物を用いてもよい。基板についても、GaAs基板以外にSi、InP、GaP等の他の半導体基板及びサファイヤ基板を用いても効果があることは言うまでもない。

【0050】 [実施例3] 実施例2によって得られる化合物半導体を利用して、図5(a)~(b)に示す半導体レーザ素子を製造した。以下にその製造方法を説明する。

【0051】まず、MOMBE装置内でN型GaAs基板301を、温度600℃まで加熱し、TMG、N2、SiH4及びPH3を供給して、N型GaNからなるパッファ層302をその厚さが0.2μmとなるように成長させる。ここで、パッファ層302は2種以上の半導体層による超格子でもよい。

度は80cm²/V・Sであり、同様の条件でNよりも原子半 50 【0053】次に、TMG、N₂及びPH₃を供給したま

まで、TMA及びSiH4の供給を停止し、GaN層を その厚さがO. 1 µmとなるように成長させて、活性層 304を形成する。ここで該活性層304は、同時にT MAを供給して得られるGa1-1Al2N層であっても、 SiHi、DEZn等のドーパントを供給して得られる 結晶であってもよい。

【0054】次に、TMG、N2及びPH3を供給したま まで、さらにTMA及びDEZnの供給を開始し、P型 Ga1-rA1rN層(x=0.30) をその厚さが1 µmとな

【0055】次に、図5(b)に示すように、TMG、 N₂、PH₃及びDEZnを供給したままでTMAの供給 を停止して、P型GaN層をその厚さが 0.5μ mとな るように成長させて、P型コンタクト層306を形成す

【0056】続いて、P型電極310及びN型電極31 1を積層させ、これにより図5(c)に示す半導体レーザ 素子を作製する。ここで、PH₃は全ての層の成長中に おいてその濃度が1×10²² cm⁻³程度になるように供給 20 した。

【0057】本実施例では、全面電極型の半導体レーザ 素子を例にとって説明しているが、同様の製造方法を利 用してストライプ構造をもつ半導体レーザ素子を製造す ることも可能である。また、2回以上の成長を用いて導 波路を作製することも可能である。

【0058】また、Gai-xAlxN層の組成比xを適宜 に変更できることは言うまでもなく、導電型は全て逆で もよい。また、Ga1-rA1rN層の成長時に同時にIn の材料ガスを供給して、In, Ga, Al₁₋₁₋₁ N層(0≤ 30 x. v≤1)として成長させてもよい。

【0059】さらに、クラッド層303及び305のG a1-1Al, N層又はIn, Ga, Al1-1-1N層の組成比 であるx又は/及びyは積層方向に沿って変化していて もよく、SCH構造やGDIN-SCH構造も可能であ る。また、活性層304についても量子井戸構造及び多 重量子井戸構造でもよい。

【0060】本実施例の製造方法により製造された半導 体レーザは室温で連続発振が得られ、ピーク波長は37 0 nm付近であった。光出力は3mWであったが、紫外 40 発光素子が実現できた。

【0061】また、同様の製造方法で、活性層304の

10

厚さが1μm程度となるようにしたところ、ピーク波長 367 nmで発光し、LED (発光ダイオード)として 使用可能な発光素子が得られた。

[0062]

【発明の効果】本発明の化合物半導体の成長方法によれ ば、原子半径がGa及びAlよりも大きいIII族元素を 添加してGa1-rA1rN層(0≤x≤1)を、又は、原子 半径がNよりも大きいV族元素を添加してIn.Ga,A 11-x-y N層(0≤x,y≤1)を成長させるので、点欠陥が るように成長させて、P型クラッド層305を形成す 10 なく結晶性が良好な、かつ抵抗率の低い化合物半導体を 製造することができる。

> 【0063】また、特に請求項2及び請求項5記載の化 合物半導体の成長方法によれば、良好なPN接合を実現 できるN型結晶を得ることができる。

> 【0064】また、特に請求項3及び請求項6記載の化 合物半導体の成長方法によれば、良好なPN接合を実現 できるP型結晶を得ることができる。

【0065】また、特に請求項7~請求項9記載の化合 物半導体発光素子の製造方法によれば、電気的特性及び 光学的特性が良好な化合物半導体発光素子を実現でき

【図面の簡単な説明】

【図1】Ga1-rA1rN層(x=0.50)中のIn濃度と自 由電子濃度との関係を示すグラフ。

【図2】アクセプター不純物を添加したGaN層中のI n濃度と活性化したアクセプター濃度との関係を示すグ ラフ。

【図3】 In. Gar Ali-1-1 N層(x=0.30)中のP、A s及びSb濃度と自由電子濃度との関係を示すグラフ。

【図4】アクセプター不純物を添加したIntGayAl 1-x-y N層(x=0.30)中のP、As及びSb濃度と活性化 したアクセプター濃度との関係を示すグラフ。

【図5】本発明の方法によって製造される化合物半導体 レーザー素子の断面図。

【符号の説明】

301 GaAs基板

302 パッファ層

303 クラッド層

304 活性層

305 クラッド層

306 コンタクト層

310,311 電極

【図5】

フロントページの続き

(72)発明者 兼岩 進治

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

(72)発明者 近藤 雅文

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

(72)発明者 幡 俊雄

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 大林 健

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内