Fast Inference from Transformers via Speculative Decoding

Доклад подготовил Борзыкин Валерий

Введение

- Хотим ускорить инференс авторегрессионных моделей, не меняя вообще ничего (в том числе полностью оставляя выход модели)
- Для этого используем уменьшенную модель, чтобы в основном она предсказывала токены, а большую используем чтобы проверять корректность генерации и поправлять неправильные токены, если надо
- Большая модель параллельно проверяет токены из генерации малой модели
- Ускорение инференса в 2-3 раза для Т5-ХХL

Алгоритм на примере

- Обозначения:
- ullet M_p большая целевая модель, инференс которой хотим ускорить, а $p(x_t|x_< t)$ распределение модели для префикса $x_< t$
- M_q более эффективная аппроксимирующая модель решающая ту же самую задачу, а ее распределение $q(x_t|x_< t)$

• Основная идея:

- о использование легковесной модели для генерации последовательности токенов заданной длины (γ новых токенов)
- \circ параллельный запуск большой модели, которая оценивает все префиксы сгенерированной последовательности, а также соответствующие вероятности из M_q и принимает те, которые могут вести к первоначальному распределению
- \circ сэмплирование большой моделью дополнительного токена который либо заменяет первый неправильный токен, либо вставляет дополнительный токен в конец, если приняты все токены, предложенные M_{σ}

- Есть множество методов сэмплирования: argmax, top-k, nucleus, задание температуры и др.
- Они все могут быть приведены к standard sampling из скорректированного вероятностного распределения
- Например, в случае argmax-а можно занулить все элементы, которые не являются максимумом, и провести нормализацию
- Тогда будем считать, что p(x) и q(x) это распределения из M_p и M_q соответственно, с поправкой на метод сэмплирования.

- Новый метод сэмплирования speculative sampling
 - \circ Хотим сэмплировать $x \sim p(x)$
 - \circ Вместо этого для начала сгенерируем $x \sim q(x)$
 - \circ Оставим сгенерированный токен, если $q(x) \leq p(x)$
 - \circ Если же q(x)>p(x), то отклоним токен с вероятностью $1-rac{p(x)}{q(x)}$, и сгенерируем исправленный токен из распределения p'(x)=norm(max(0,p(x)-q(x)))
 - \circ Выясняется, что на самом деле $x \sim p(x)$ для любых $\mathsf{p}(\mathsf{x})$ и $\mathsf{q}(\mathsf{x})$

Algorithm 1 SpeculativeDecodingStep

```
Inputs: M_p, M_q, prefix.
\triangleright Sample \gamma guesses x_{1,\ldots,\gamma} from M_q autoregressively.
for i=1 to \gamma do
   q_i(x) \leftarrow M_q(prefix + [x_1, \dots, x_{i-1}])
   x_i \sim q_i(x)
end for
\triangleright Run M_p in parallel.
p_1(x),\ldots,p_{\gamma+1}(x) \leftarrow
      M_n(prefix), \ldots, M_n(prefix + [x_1, \ldots, x_n])
\triangleright Determine the number of accepted guesses n.
r_1 \sim U(0,1), \ldots, r_{\gamma} \sim U(0,1)
n \leftarrow \min(\{i-1 \mid 1 \le i \le \gamma, r_i > \frac{p_i(x)}{q_i(x)}\} \cup \{\gamma\})
\triangleright Adjust the distribution from M_p if needed.
p'(x) \leftarrow p_{n+1}(x)
if n < \gamma then
   p'(x) \leftarrow norm(max(0, p_{n+1}(x) - q_{n+1}(x)))
end if
\triangleright Return one token from M_p, and n tokens from M_q.
t \sim p'(x)
return prefix + [x_1, \ldots, x_n, t]
```

```
Algorithm 1 SpeculativeDecodingStep
   Inputs: M_n, M_a, prefix.
   \triangleright Sample \gamma guesses x_{1,...,\gamma} from M_q autoregressively.
   for i=1 to \gamma do
      q_i(x) \leftarrow M_q(prefix + [x_1, \dots, x_{i-1}])
      x_i \sim q_i(x)
   end for
   \triangleright Run M_n in parallel.
   p_1(x), \ldots, p_{\gamma+1}(x) \leftarrow
          M_p(prefix), \ldots, M_p(prefix + [x_1, \ldots, x_{\gamma}])
   \triangleright Determine the number of accepted guesses n.
   r_1 \sim U(0,1), \ldots, r_{\gamma} \sim U(0,1)
   n \leftarrow \min(\{i-1 \mid 1 \le i \le \gamma, r_i > \frac{p_i(x)}{q_i(x)}\} \cup \{\gamma\})
   \triangleright Adjust the distribution from M_p if needed.
  p'(x) \leftarrow p_{n+1}(x)
   if n < \gamma then
      p'(x) \leftarrow norm(max(0, p_{n+1}(x) - q_{n+1}(x)))
   end if
   \triangleright Return one token from M_p, and n tokens from M_q.
   t \sim p'(x)
```

return $prefix + [x_1, \ldots, x_n, t]$

- **Definition 3.1.** The acceptance rate $\beta_{x_{< t}}$, given a prefix $x_{< t}$, is the probability of accepting $x_t \sim q(x_t|x_{< t})$ by speculative sampling, as per Section 2.3².
- Введем обозначение: $\alpha = E(\beta)$
- $E(\# generated \ tokens) = \frac{1 \alpha^{\gamma+1}}{1 \alpha}$
- Как считать α :

$$\alpha = 1 - E(D_{LK}(p,q)) = E(\min(p,q))$$

Figure 2. The expected number of tokens generated by Algorithm 1 as a function of α for various values of γ .

- Алгоритм уменьшает кол-во вызовов M_p на $\frac{1-\alpha^{\gamma+1}}{1-\alpha}$
- Хотим также посчитать, во сколько раз уменьшится общее время выполнения
- **Definition 3.7.** Let c, the cost coefficient, be the ratio between the time for a single run of M_q and the time for a single run of M_p .
- **Theorem 3.8.** The expected improvement factor in total walltime by Algorithm 1 is $\frac{1-\alpha^{\gamma+1}}{(1-\alpha)(\gamma c+1)}$.

Figure 3. The optimal γ as a function of α for various values of c.

Figure 4. The speedup factor and the increase in number of arithmetic operations as a function of α for various values of γ .

Fast Inference from Transformers via Speculative Decoding

Figure 5. A simplified trace diagram for a full encoder-decoder Transformer stack. The top row shows speculative decoding with $\gamma = 7$ so each of the calls to M_p (the purple blocks) is preceded by 7 calls to M_q (the blue blocks). The yellow block on the left is the call to the encoder for M_p and the orange block is the call to the encoder for M_q . Likewise the middle row shows speculative decoding with $\gamma = 3$, and the bottom row shows standard decoding.

В качестве $\mathrm{M}_{_{\mathrm{G}}}$ можем выбирать абсолютно любую модель

- Наиболее очевидный вариант трансформер меньшего размера (дает наилучшие результаты)
- Модели со относительной стоимостью одного запуска близкой к 0 (легки в использовании)
 - o n-граммы
 - Простые эвристики, например копирование токенов из контекста в случае одинакового префикса
- Неавторегрессионные модели (за одно выполнение генерируют последовательность токенов)
- Случайное сэмплирование токенов (тоже гарантирует ускорение! хоть и очень маленькое)

Эксперименты

Table 2. Empirical results for speeding up inference from a T5-XXL 11B model.

TASK	M_q	ТЕМР	γ	α	SPEED
EnDe	T5-SMALL ★	0	7	0.75	3.4X
ENDE	T5-BASE	0	7	0.8	2.8X
ENDE	T5-LARGE	0	7	0.82	1.7X
ENDE	T5-SMALL ★	1	7	0.62	2.6X
ENDE	T5-BASE	1	5	0.68	2.4X
EnDe	T5-LARGE	1	3	0.71	1.4X
CNNDM	T5-SMALL ★	0	5	0.65	3.1X
CNNDM	T5-BASE	0	5	0.73	3.0X
CNNDM	T5-LARGE	0	3	0.74	2.2X
CNNDM	T5-SMALL ★	1	5	0.53	2.3X
CNNDM	T5-BASE	1	3	0.55	2.2X
CNNDM	T5-LARGE	1	3	0.56	1.7X

Эксперименты

Table 3. Empirical α values for various target models M_p , approximation models M_q , and sampling settings. T=0 and T=1 denote argmax and standard sampling respectively⁶.

M_p	M_q	SMPL	α
GPT-LIKE (97M)	Unigram	т=0	0.03
GPT-LIKE (97M)	BIGRAM	T=0	0.05
GPT-LIKE (97M)	GPT-LIKE (6M)	T=0	0.88
GPT-LIKE (97M)	UNIGRAM	T=1	0.03
GPT-LIKE (97M)	BIGRAM	T=1	0.05
GPT-LIKE (97M)	GPT-LIKE (6M)	т=1	0.89
T5-XXL (ENDE)	Unigram	т=0	0.08
T5-XXL (ENDE)	BIGRAM	T=0	0.20
T5-XXL (ENDE)	T5-SMALL	T=0	0.75
T5-XXL (ENDE)	T5-BASE	T=0	0.80
T5-XXL (ENDE)	T5-LARGE	T=0	0.82
T5-XXL (ENDE)	UNIGRAM	T=1	0.07
T5-XXL (ENDE)	BIGRAM	T=1	0.19
T5-XXL (ENDE)	T5-SMALL	T=1	0.62
T5-XXL (ENDE)	T5-BASE	T=1	0.68
T5-XXL (ENDE)	T5-LARGE	T=1	0.71

T5-XXL (CNNDM)	Unigram	T=0	0.13
T5-XXL (CNNDM)	BIGRAM	T=0	0.23
T5-XXL (CNNDM)	T5-SMALL	T=0	0.65
T5-XXL (CNNDM)	T5-BASE	T=0	0.73
T5-XXL (CNNDM)	T5-LARGE	T=0	0.74
T5-XXL (CNNDM)	UNIGRAM	T=1	0.08
T5-XXL (CNNDM)	BIGRAM	T=1	0.16
T5-XXL (CNNDM)	T5-SMALL	T=1	0.53
T5-XXL (CNNDM)	T5-BASE	T=1	0.55
T5-XXL (CNNDM)	T5-large	T=1	0.56
LAMDA (137B)	LAMDA (100M)	т=0	0.61
LAMDA (137B)	LAMDA (2B)	T=0	0.71
LAMDA (137B)	LAMDA (8B)	T=0	0.75
LAMDA (137B)	LAMDA (100M)	T=1	0.57
LAMDA (137B)	LAMDA (2B)	T=1	0.71
LAMDA (137B)	LAMDA (8B)	T=1	0.74
•		•	

Плюсы и минусы статьи

Плюсы:

- Совершенно ничего не надо делать с исходной моделью
- Простой алгоритм
- Для аппроксимации можно использовать модель любой архитектуры и размера

• Минусы:

- Необходимо иметь достаточно ресурсов, чтобы параллельно запускать много больших моделей
- Эксперименты только на переводе и суммаризации
- Экспериментировали только с batch size 1 (как заметил Андрей Ишутин)
- Измерили ускорение только для моделей семейства Т5