IX - Suites numériques

I - Suites usuelles

À Savoir

La suite (u_n) est une suite arithmétique de raison r si

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r.$$

Alors.

$$\forall n \in \mathbb{N}, u_n = u_0 + nr.$$

Exemple 1 - Une suite arithmétique

Soit (u_n) telle que $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$. Alors, (u_n) est une suite arithmétique de raison 3. Ainsi,

$$\forall n \in \mathbb{N}, u_n = 1 + 3n.$$

À Savoir

La suite (u_n) est une suite géométrique de raison q si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n.$$

Alors,

$$\forall n \in \mathbb{N}, u_n = q^n u_0.$$

Exemple 2 - Une suite géométrique

Soit (u_n) telle que $u_0 = 3$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n$. Alors, (u_n) est une suite arithmétique de raison 2. Ainsi,

$$\forall n \in \mathbb{N}, u_n = 3 \times 2^n.$$

À Savoir

La suite (u_n) est une suite arithmético-géométrique si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n + r.$$

Exemple 3 - Une suite arithmético-géométrique

L'étude d'une suite arithmético-géométrique suit toujours le schéma suivant.

Soit (u_n) telle que $u_0 = 7$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$.

* Recherche du réel ℓ tel que $\ell = 2\ell + 3$:

$$\ell = 2\ell + 3$$
$$0 = 2\ell - \ell + 3$$
$$\ell = -3.$$

* Étude de la suite définie par $v_n = u_n - \ell$. Alors,

$$v_{n+1} = u_{n+1} - \ell$$

$$= (2u_n + 3) - (2\ell + 3)$$

$$= 2u_n + 3 - 2\ell - 3$$

$$= 2(u_n - \ell)$$

$$= 2v_n.$$

De plus, $v_0 = u_0 - \ell = 7 - (-3) = 10$.

Ainsi, (v_n) est une suite géométrique de raison 2 et

$$\forall n \in \mathbb{N}, v_n = 10 \times 2^n.$$

* Retour sur u_n . D'après la définition,

$$u_n - \ell = v_n$$

 $u_n = v_n + \ell$
 $= 10 \times 2^n - 3 = 5 \times 2^{n+1} - 3.$

A. Camanes

Chapitre IX - Suites numériques ECT 2

II - Comportement des suites

À Savoir

Soit (u_n) une suite de nombres réels.

* La suite (u_n) est croissante si

$$\forall n \in \mathbb{N}, u_{n+1} - u_n \geqslant 0.$$

* La suite (u_n) est décroissante si

$$\forall n \in \mathbb{N}, u_{n+1} - u_n \leq 0.$$

Exemple 4 - Études de monotonie

* On définit $u_n = \sum_{k=1}^n \frac{1}{k}$ pour tout entier naturel n non nul. Soit $n \in \mathbb{N}^*$.

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \frac{1}{n+1} \ge 0.$$

Ainsi, la suite (u_n) est croissante.

* Soit $t \in]0,1[$. On définit $v_n = \ln(1+t^n)$ pour tout entier naturel n.

Soit $n \in \mathbb{N}$. Comme $t \in]0,1[$,

$$t\leqslant 1$$

$$t^n\times t\leqslant t^n\times 1, \text{ car } t^n\geqslant 0$$

$$1+t^{n+1}\leqslant 1+t^n$$

$$\ln(1+t^{n+1})\leqslant \ln(1+t^n), \text{ car ln est croissante}$$

$$v_{n+1}\leqslant v_n$$

$$v_{n+1}-v_n\leqslant 0.$$

Ainsi, la suite (v_n) est croissante.

Attention! Il convient de travailler avec un entier naturel n quelconque. Montrer que $u_1 - u_0 \ge 0$ ou $u_2 - u_1 \ge 0$ n'est d'aucune utilité pour étudier la monotonie d'une suite.

Exemple 5 - Représentations graphiques

Suite croissante.

Suite non monotone.

À Savoir

Soit (u_n) une suite de réels.

- * La suite (u_n) est majorée s'il existe un réel M tel que pour tout $n \in \mathbb{N}, u_n \leq M$.
- * La suite (u_n) est minorée s'il existe un réel m tel que pour tout $n \in \mathbb{N}, u_n \geqslant m$.

Exemple 6 - Étude de majorant

Soit $t \in]0,1[$. On définit $v_n = \ln(1+t^n)$ pour tout entier naturel n.

Chapitre IX - Suites numériques

Soit $n \in \mathbb{N}$. Comme $t \in]0,1[$,

 $t \leqslant 1$

 $t^n \leq 1^n$, car les puissances sont croissantes sur \mathbb{R}_+

 $1 + t^n \leq 2$

 $\ln(1+t^n) \leqslant \ln(2)$, car ln est croissante

Ainsi, la suite (v_n) est majorée par $\ln(2)$.

Attention! Le minorant ou le majorant \mathbf{ne} doit \mathbf{pas} dépendre de l'indice n.

Exemple 7 - Représentation graphique

À Savoir

La suite (u_n) est convergente s'il existe un réel ℓ tel que $\lim_{n\to +\infty}u_n=\ell$. Sinon, la suite (u_n) est dite divergente.

À Savoir

Limites classiques

Soit a > 0. Les limites suivantes sont à connaître :

$$\lim_{n \to +\infty} \frac{1}{n^a} = 0, \text{ si } a > 0$$

$$\lim_{n \to +\infty} n^a = +\infty, \text{ si } a > 0$$

$$\lim_{n \to +\infty} t^n = 0, \text{ si } t \in]-1,1[$$

$$\lim_{n \to +\infty} a^n = +\infty, \text{ si } a > 1$$

$$\lim_{n \to +\infty} e^n = +\infty$$

$$\lim_{n \to +\infty} \ln(n) = +\infty$$

$$\lim_{n \to +\infty} \frac{-4n^5 + 3n + 1}{n^2 + 2} = \lim_{n \to +\infty} \frac{-4n^5}{n^2} = \lim_{n \to +\infty} -4n^3 = -\infty$$

Les limites des polynômes ou des fractions rationnelles sont données par les limites des monômes de plus haut degré ou de leur quotient.

Exemple 8 - Représentation graphique

III - Opérations sur les limites

À Savoir

Si la case indique??, la limite est indéterminée. Il faut transformer l'expression (factorisation, expression conjuguée,...) pour pouvoir la déterminer.

* Multiplication par une constante.

$\lim_{n \to +\infty} u_n =$	ℓ	$-\infty$	$+\infty$	
$\lim_{n \to +\infty} k u_n =$	$k\ell$	$-\infty$	$+\infty$	$\sin k > 0$
	$k\ell$	$+\infty$	$-\infty$	$\sin k < 0$
	0	0	0	$\sin k = 0$

* **Addition** de limites. Dans le tableau est indiquée la valeur de $\lim_{n\to+\infty}(u_n+v_n)$.

7+\impsi			
$\lim_{n \to +\infty} u_n \qquad \qquad v_n$	ℓ_1	$-\infty$	$+\infty$
ℓ_2	$\ell_1 + \ell_2$	$-\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$??
$+\infty$	$+\infty$??	$+\infty$

* Multiplication de limites. Dans le tableau est indiquée la valeur de $\lim_{n\to +\infty}(u_n\times v_n)$.

$\lim_{n \to +\infty} u_n v_n$	$\ell_1 < 0$	$\ell_1 > 0$	0	$-\infty$	$+\infty$
$\ell_2 < 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$+\infty$	$-\infty$
$\ell_2 > 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$-\infty$	$+\infty$
0	0	0	0	??	??
$-\infty$	$+\infty$	$-\infty$??	$+\infty$	$-\infty$
$+\infty$	$-\infty$	$+\infty$??	$-\infty$	$+\infty$

* Quotient de limites. Dans le tableau est indiquée la valeur de $\lim_{n\to +\infty} \frac{u_n}{v_n}$.

$\lim_{\substack{v \to +\infty \\ n \to +\infty}} v_n$	$\ell_1 < 0$	$\ell_1 > 0$	0-	0+	$-\infty$	$+\infty$
$\ell_2 < 0$	$rac{\ell_1}{\ell_2}$	$rac{\ell_1}{\ell_2}$	$+\infty$	$-\infty$	0+	0-
$\ell_2 > 0$	$\frac{\ell_1}{\ell_2}$	$\frac{\ell_1}{\ell_2}$	$-\infty$	$+\infty$	0-	0+
0-	0+	0-	??	??	0+	0-
$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$??	??
$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$??	??

Exemple 9 - Opérations sur les limites

- * Comme $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} \ln(n) = +\infty$, alors $\lim_{n \to +\infty} \left(\frac{1}{n} 5\ln(n)\right) = -\infty$.
- * Comme $\lim_{n\to +\infty} n^2 = +\infty$ et $\lim_{n\to +\infty} \mathrm{e}^{-n} = 0$, alors $\lim_{n\to +\infty} \frac{\mathrm{e}^{-n}}{n^2} = 0$.
- * Comme $\lim_{n\to +\infty} n^3 = +\infty$ et $\lim_{n\to +\infty} n^5 = +\infty$, alors $\lim_{n\to +\infty} n^3 n^5$ est une forme indéterminée. On va utiliser une factorisation pour lever l'indétermination :

$$n^3 - n^5 = n^5 \left(\frac{1}{n^2} - 1\right).$$

Comme $\lim_{n\to+\infty}\frac{1}{n^2}=0$, alors $\lim_{n\to+\infty}\left(\frac{1}{n^2}-1\right)=-1$. De plus, $\lim_{n\to+\infty}n^5=+\infty$. Ainsi,

$$\lim_{n \to +\infty} n^5 \left(\frac{1}{n^2} - 1 \right) = -\infty.$$

Chapitre IX - Suites numériques ECT 2

À Savoir

Soit (u_n) et (v_n) deux suites de réels telles que, pour tout n entier naturel, $u_n \leqslant v_n$.

Si (u_n) et (v_n) convergent, alors

$$\lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n.$$

À Savoir

Théorème d'encadrement.

Soit (u_n) , (v_n) et (w_n) trois suites de réels tells que pour tout nentier naturel,

$$v_n \leqslant u_n \leqslant w_n$$
.

* Si (v_n) et (w_n) convergent vers une même limite ℓ , alors (u_n) converge et

$$\lim_{n \to +\infty} u_n = \ell.$$

- * Si $\lim_{n \to +\infty} v_n = +\infty$, alors $\lim_{n \to +\infty} u_n = +\infty$. * Si $\lim_{n \to +\infty} w_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.

Exemple 10 - Théorème d'encadrement

* Soit (u_n) une suite de réels telle que pour tout n entier naturel non nul.

$$\frac{n^5 + n^3 + 1}{2n(1+n^4)} \leqslant u_n \leqslant \frac{n^5 + n^4 + 1}{2n(1+n^4)}.$$

Comme la limite d'une fraction rationnelle est égale au rapport de ses monômes de plus hauts degrés,

$$\lim_{n \to +\infty} \frac{n^5 + n^3 + 1}{2n(1 + n^4)} = \frac{1}{2} \text{ et } \lim_{n \to +\infty} \frac{n^5 + n^4 + 1}{2n(1 + n^4)} = \frac{1}{2}.$$

D'après le théorème d'encadrement, (u_n) converge et $\lim_{n \to +\infty} u_n = \frac{1}{2}.$

* Soit (u_n) une suite de réels telle que pour tout n entier naturel.

$$\frac{n^4 + n^3 + 1}{n^2} \leqslant u_n.$$

Comme la limite d'une fraction rationnelle est égale au rapport de ses monômes de plus hauts degrés,

$$\lim_{n \to +\infty} \frac{n^4 + n^3 + 1}{n^2} = +\infty.$$

D'après le théorème d'encadrement, (u_n) converge et $\lim_{n \to +\infty} u_n = +\infty.$

IV - Existence de limites

À Savoir

Théorème de la limite monotone.

Soit (u_n) une suite de réels.

- * Si (u_n) est croissante et majorée, alors (u_n) converge.
- * Si (u_n) est décroissante et minorée, alors (u_n) converge.

Attention! Ce théorème **ne** fournit **pas** la valeur de la limite. Pour cela, il faudra se reporter à une des techniques précédentes.

Exemple 11 - Limite monotone

Soit (u_n) une suite telle que

$$u_0 = -2 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2} + 3.$$

* Montrons par récurrence que (u_n) est majorée par 6. Initialisation. Pour $n=0, u_0=-2 \leqslant 6$ donc la propriété est vraie à l'ordre 0.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $u_n \leq 6$. Alors,

$$u_{n+1} = \frac{u_n}{2} + 3$$

 $\leq \frac{6}{2} + 3$, d'après l'H.R.
 ≤ 6 .

Ainsi, la propriété est vraie à l'ordre n + 1.

Conclusion. La propriété est vraie à l'ordre 0 et est héréditaire, donc

$$\forall n \in \mathbb{N}, u_n \leq 6.$$

* Étudions la monotonie de (u_n) . Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = \frac{u_n}{2} + 3 - u_n$$

$$= 3 - \frac{1}{2}u_n$$

$$\geqslant 3 - \frac{1}{2}6, \text{ car } u_n \leqslant 6$$

$$\geqslant 0.$$

Ainsi, la suite (u_n) est croissante.

- * La suite (u_n) est croissante et majorée par 6. D'après le théorème de la limite monotone, (u_n) converge.
- * Notons $\ell = \lim_{n \to +\infty} u_n$. Alors, $\lim_{n \to +\infty} u_{n+1} = \ell$ et en passant à la limite dans l'égalité,

$$u_{n+1} = \frac{u_n}{2} + 3$$
$$\ell = \frac{\ell}{2} + 3$$
$$\frac{\ell}{2} = 3$$
$$\ell = 6.$$

Ainsi, $\lim_{n \to +\infty} u_n = 6$.

V - Exercices

V.1 - Suites arithmétiques

Accroissement constant

Exercice 1. Pour tout n entier naturel, on pose $u_n = (n+5)^2 - (n+2)^2$.

- **1.** Pour tout n entier naturel, simplifier l'expression $u_{n+1} u_n$.
- **2.** En déduire la nature de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 2. Pour tout n entier naturel, on pose $u_n = (2n+5)^2 - (n+2)^2$.

- **1.** Pour tout n entier naturel, simplifier l'expression $u_{n+1} u_n$.
- **2.** La suite $(u_n)_{n\in\mathbb{N}}$ est-elle arithmétique?

Utilisation d'une suite auxiliaire

Exercice 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et, pour tout n entier naturel non nul,

$$u_{n+1} = \sqrt{4 + u_n^2}.$$

Pour tout n entier naturel, on note $v_n = u_n^2$

- **1.** Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique.
- **2.** Exprimer v_n en fonction de n.
- **3.** En déduire une expression de u_n en fonction de n.

Exercice 4. On pose $u_0 = 1$ et, pour tout n entier naturel, $u_{n+1} = \frac{u_n}{1+2u_n}$. On admet que $(u_n)_{n \in \mathbb{N}}$ est à valeurs strictement positives et, pour tout n entier naturel, on pose $v_n = \frac{1}{u_n}$.

- **1.** Déterminer la nature de la suite $(v_n)_{n\in\mathbb{N}}$
- **2.** Déterminer une expression de v_n en fonction de n.
- **3.** En déduire une expression de u_n en fonction de n.

Chapitre IX - Suites numériques ECT 2

Exercice 5. On pose $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = u_n + 2n - 1$. Pour tout n entier naturel, on pose $v_n = u_n - n^2$.

- **1.** Déterminer la nature de la suite $(v_n)_{n\in\mathbb{N}}$.
- **2.** Déterminer une expression de v_n en fonction de n.
- **3.** En déduire une expression de u_n en fonction de n.

V.2 - Suites géométriques

Manipulation des puissances

Exercice 6. Déterminer la raison de la suite géométrique définie pour tout n entier naturel par $u_n = 3^n \times \left(\frac{1}{5}\right)^{n+1}$.

Exercice 7. Déterminer la raison de la suite géométrique définie pour tout n entier naturel par $u_n = 3^n \times \left(\frac{1}{5}\right)^{2n+1}$.

Suites arithmético-géométriques

Exercice 8. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=4$ et, pour tout n entier naturel, $u_{n+1}=\frac{u_n}{5}+8$. Pour tout n entier naturel, on pose $v_n=u_n-10$.

- 1. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique.
- **2.** Donner une expression de v_n en fonction de n.
- **3.** En déduire une expression de u_n en fonction de n.

Exercice 9. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=5$ et, pour tout n entier naturel, $u_{n+1}=2u_n+1$.

- 1. Déterminer le réel ℓ tel que $\ell = 2\ell + 1$.
- **2.** Pour tout n entier naturel, on pose $v_n = u_n \ell$. Déterminer la nature de la suite $(v_n)_{n \in \mathbb{N}}$ puis une expression de v_n en fonction de n.
- **3.** En déduire une expression de u_n en fonction de n.

V.3 - Monotonie

Signe de $u_{n+1} - u_n$

Exercice 10. Déterminer la monotonie de la suite définie pour tout n entier naturel par $u_n = (n+3)^2 + \frac{n}{4}$.

Exercice 11. Déterminer la monotonie de la suite définie pour tout n entier naturel par $u_n = (2n+1)^2$.

Utilisation d'une fonction auxiliaire

Exercice 12. Pour tout n entier naturel, on pose $u_n = \ln(1 + n + n^2)$.

- 1. Étudier les variations de la fonction définie pour tout réel x positif par $f(x) = \ln(1 + x + x^2)$.
- **2.** En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Exercice 13. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et, pour tout n entier naturel, $u_{n+1}=\sqrt{4+u_n}$.

- **1.** Étudier les variations de la fonction $f: x \mapsto \sqrt{4+x}$.
- **2.** Montrer par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Exercice 14. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et, pour tout n entier naturel, $u_{n+1}=\frac{u_n^2}{2}-u_n+\frac{3}{2}$. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ .

- **1.** Montrer que $\ell = \frac{\ell^2}{2} \ell + \frac{3}{2}$.
- 2. En déduire les valeurs possibles pour ℓ

Chapitre IX - Suites numériques

V.4 - Théorème de la limite monotone

Suites récurrentes & Passage à la limite

Exercice 15. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=\frac{1}{5}$ et, pour tout n entier naturel, $u_{n+1}=u_n(2-u_n)$. On définit sur \mathbb{R} la fonction f(x)=x(2-x).

- 1. Dresser le tableau de variations de f.
- **2.** Montrer que, pour tout n entier naturel, $u_n \in [0,1]$.
- **3.** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est monotone.
- **4.** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- **5.** Déterminer la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 16. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=4$ et, pour tout n entier naturel, $u_{n+1}=\frac{u_n^2}{5}$.

- **1.** Montrer par récurrence que, pour tout n entier naturel, $0 \le u_{n+1} \le u_n$.
- **2.** En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel noté ℓ .
- 3. Déterminer la valeur de ℓ .

Avec un soupçon d'absurde

Exercice 17. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et, pour tout n entier naturel, $u_{n+1}=u_n+\frac{1}{u_n}$.

- **1.** Montrer que, pour tout n entire naturel, $u_n > 0$.
- **2.** En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- **3.** On suppose par l'absurde que $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ . Montrer que $\ell=\ell+\frac{1}{\ell}$ puis obtenir une contradiction.
- **4.** En déduire la limite de la suite $(u_n)_{n\in\mathbb{N}}$ lorsque n tend vers $+\infty$.

Exercice 18. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=3$ et, pour tout n entier naturel, $u_{n+1}=u_n^2+u_n-3$.

- **1.** Étudier les variations de la fonction $f: x \mapsto x^2 + x 3$.
- **2.** Montrer que, pour tout n entier naturel, $\sqrt{3} \leqslant u_n$.
- **3.** En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- **4.** On suppose par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers une limite ℓ . Montrer que $\ell = \ell^2 + \ell 3$ et en déduire la valeur de ℓ .
- **5.** En déduire que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.

V.5 - Bijection monotone

Existence de solutions

Exercice 19. Pour tout x réel, on pose $f(x) = x^3 + x + 5$.

- 1. Étudier les variations de la fonction f.
- **2.** Montrer que l'équation f(x) = 0 possède une unique solution α sur l'intervalle [-2, -1].

Exercice 20. Pour tout x réel positif, on pose $f(x) = 3 - \frac{x+1}{e^x}$.

- 1. Étudier les variations de la fonction f.
- **2.** Montrer que l'équation $f(x) = \frac{5}{2}$ possède une unique solution α sur l'intervalle $[0, +\infty[$.

Exercice 21. Pour tout réel x, on pose $f(x) = e^x + x - 2$.

- 1. Étudier les variations de f.
- **2.** Montrer que l'équation f(x) = 0 admet une unique solution sur \mathbb{R} . Cette solution sera notée α .
- **3.** Montrer que $\alpha \in [0,1]$.
- **4.** En déduire que α est l'unique solution de l'équation $e^x = -x + 2$.

Chapitre IX - Suites numériques

Construction de solutions approchées

Exercice 22. On considère le code suivant :

```
\begin{array}{l} \text{import numpy as np} \\ \text{def } f(x) \colon \\ \text{return } x \! * \! * \! 2 - 2 \\ \\ a = 0 \\ b = 3 \\ \text{while } b - a > 0.25 \colon \\ \\ m = (a + b) \ / \ 2 \\ \\ \text{if } f(a) * f(m) <= 0 \colon \\ \\ b = m \\ \\ \text{else} \colon \\ \\ a = m \\ \\ \text{print (a)} \end{array}
```

- 1. Indiquer les valeurs successives contenues par les variables a, b et m.
- 2. Expliquer la valeur affichée par ce programme.

Exercice 23.

- 1. Montrer que l'équation $e^x = 2$ admet une unique solution.
- 2. Expliquer la valeur affichée par le programme suivant :

```
import numpy as np

def f(x):
    return np.exp(x) - 2

a = 0
b = 3
while b - a > 10**(-5):
    m = (a + b) / 2
    if f(a) * f(m) <= 0:
        b = m
    else:
        a = m

print(a)</pre>
```

Exercice 24. Pour tout x réel, on pose $f(x) = 2 + (-x^2 + x - 1) e^{-x}$.

- **1.** Étudier les variations de f sur \mathbb{R} .
- **2.** Montrer que l'équation f(x) = 0 admet une unique solution α sur l'intervalle [-1,0].
- 3. Compléter l'algorithme suivant pour qu'il fournisse une valeur approchée de α à 10^{-4} près.