5.0C	Calculator	practice:	Linear	regression,	systems	of	equations,	cosine
rule,	frequency t	able stati	stics					

1. Apply the law of cosines, $c^2 = a^2 + b^2 - 2ab\cos\theta$.

(a)
$$a = 12.3$$
, $b = 14.7$, $\theta = 71^{\circ}$. Find the third side length, c . [3]

(b)
$$a = 11.4, b = 17.1, c = 16.0$$
. Find \hat{C} (the angle opposite side c). [3]

Working:	
	(a) (b)

2. Perform a linear regression on the data in the table, finding y = ax + b.

x	17	18	17	19	23	15	16
y	71.1	78.6	69.2	71.2	80.5	55.7	58.4

(a) Write down the value of a, b.

[3]

(b) Write down the correlation coefficient r.

[1]

(c) Use your regression line to estimate y for x = 22.

[2]

Working:	
	Answers:
	(a)(i)

3.	Find the solutions for the system, the value(s) for x such that $f(x) = g(x)$). Skete	ch the
	graph to show working.		

(a)
$$f(x) = -2x^2 + 5x + 7$$

 $g(x) = -2x + 4$ [3]

Working:	
	Answers: (a)

4. The data for n = 50 are shown in the frequency table below.

x	$15 \le x < 25$	$25 \le x < 35$	$35 \le x < 45$	$45 \le x < 55$
Frequency	k	21	16	8

(a) Find the value of k. [1]

(b) Estimate the mean \overline{x} . [2]

(c) Estimate the standard deviation of the data, σ . [2]

