Evan Wesley - Black Hole Thermodynamics in Bits — Part III

Appendices C-H (Gas Pack)

(This file is a supplement to Blackhole3.tex.)

Appendix C: Jet Bit–Joule Bound (AGN Horizons as Computers)

Let $P_{\rm jet}$ denote the mechanical/EM power launched by a black-hole engine and $\epsilon_{\rm gb} \in (0,1)$ an effective transmission efficiency from the horizon to infinity (proxy for greybody/magnetospheric losses). The one-bit energy cost at fixed (J,Q) implies an instantaneous bound on any horizon-mediated information flux

$$\dot{N_{\rm bitsmax}} = \frac{\epsilon_{\rm gb} P_{\rm jet}}{k_{\rm B} \ln 2}$$
 (1)

Example (symbolic): For Sgr A* with $\approx 1.54 \times 10^{-14}$ K, one-bit energy is $k_{\rm B} \ln 2 \approx 9.21 \times 10^{-19}$ eV, giving

$$\dot{N_{\rm bitsmax}} \approx 6.77 \times 10^{69} \, \epsilon_{\rm gb} \left(\frac{P_{\rm jet}}{10^{33} \, \rm W} \right) \, \rm bits \, s^{-1} \,.$$
 (2)

Usage: choose targets (M87*, Sgr A*), adopt conservative $P_{\rm jet}$ and $\epsilon_{\rm gb}$ to plot a forbidden region where any claimed horizon computation would violate the bound.

Appendix D: Ringdown Log-Constant Stack (Search for ln 2)

Hypothesis. If the horizon area is quantized in steps of $4 \ln 2 \ell_P^2$, asymptotic QNM spectra may encode a universal logarithmic factor.

Pipeline (simulation first):

- 1. Generate damped–sine ringdowns with overtones $n=0,1,\ldots,N$ at random SNRs; add Gaussian noise.
- 2. Fit frequencies $\{\omega_n\}$ via maximum likelihood.
- 3. Test null \mathcal{H}_0 (no constant) vs \mathcal{H}_1 (spacings follow $\Delta \operatorname{Re} \omega_n \propto \kappa_H$ with a universal factor compatible with $\ln 2$).
- 4. Power analysis: estimate SNR and N needed to discriminate \mathcal{H}_1 from \mathcal{H}_0 at fixed FAP.

Deliverable: a small Python stacker that outputs Bayes factor vs SNR.

Appendix E: Cosmic Bit Balance Sheet

Goal. A ledger of cosmic entropy in bits with the same normalization as horizon bits: $S_{\text{bits}} = \mathcal{A}/(4\ell_{\rm P}^2 \ln 2)$.

Entries:

- Supermassive BHs: $S_{\text{bits}}^{\text{SMBH}} = \sum_{i} A_i / (4\ell_{\text{P}}^2 \ln 2)$ using the BH mass function dn/dM.
- Stellar–mass BHs/NSs/WDs: area contributions (subdominant) included for completeness.
- Relics: CMB and cosmic neutrinos (thermodynamic entropies, distinct from area entropy), IGM, stars/dust.

Output: one bar chart (orders of magnitude) + a sensitivity table highlighting the dominant astrophysical uncertainties.

Appendix F: Analogue Horizon One-Bit Engine

Objective. Test $\Delta E_{1\text{bit}} = k_{\text{B}} \ln 2$ in a tunable analogue horizon. **Design sketch:**

- 1. Choose platform (optical fibre / BEC / water tank) with calibrated Hawking temperature T_H^{eff} .
- 2. Define a single-bit memory coupled to the horizon (two metastable states with reset pulse).
- 3. Protocol: prepare maximally mixed state; erase to a standard state while in contact with the analogue bath at T_H^{eff} ; measure work.
- 4. Prediction: minimal work per operation $\geq k_{\rm B}T_H^{\rm eff} \ln 2$, up to known inefficiencies.

Knobs: vary $T_H^{\rm eff}$ to observe linear scaling of work/bit.

Appendix G: Kerr Bit Chemical Potentials

With $N \equiv \mathcal{A}/(4\ell_{\rm P}^2 \ln 2)$, the first law yields

$$dM = \underbrace{\frac{\kappa_{\rm H} \ln 2}{2\pi}}_{\mu_N} dN + \Omega_{\rm H} dJ + \Phi_{\rm H} dQ.$$
 (3)

Thus μ_N acts as a bit chemical potential. In SI units, $\mu_N c^2 = k_B \ln 2$. Near extremality $(a_* \to 1 \text{ or large } Q)$ one has $\kappa_H \to 0$ and $\mu_N \to 0$: rotation/charge discount the energy cost per bit while the area-per-bit remains fixed.

Appendix H: Kerr Spin Map (Numerics at $M = 10 M_{\odot}$)

For a Kerr black hole of mass $M=10\,M_\odot$ the table shows Hawking temperature, one-bit energy, horizon angular velocity, and bit count versus dimensionless spin a_* . Values scale as $T_H \propto f(a_*)/M$, $\Delta E_{\rm 1bit} \propto T_H$, and $S_{\rm bits} \propto \mathcal{A}$.

$\overline{a_*}$	T_H (K)	$\Delta E_{1 ext{bit}} ext{ (eV)}$	$\Omega_H \text{ (rad/s)}$	$S_{ m bits}$
0.00	6.17×10^{-9}	3.69×10^{-13}	0	1.51×10^{79}
0.50	5.73×10^{-9}	3.42×10^{-13}	2.72×10^3	1.41×10^{79}
0.90	3.75×10^{-9}	2.24×10^{-13}	6.36×10^3	1.09×10^{79}
0.99	1.53×10^{-9}	9.11×10^{-14}	8.81×10^{3}	8.63×10^{78}

Notes. (i) $\Omega_H = a/(r_+^2 + a^2)c$; (ii) $r_+ = M + \sqrt{M^2 - a^2}$ (geometric units); (iii) $S_{\text{bits}} = \mathcal{A}/(4\ell_{\text{P}}^2 \ln 2)$ with $\mathcal{A} = 4\pi(r_+^2 + a^2)$.