HMM

HMM Model

- The HMM is a **sequence model**.
- A sequence model or sequence classifier is a model whose job is to assign a label or class to each unit in a sequence, thus mapping a sequence of **observations** to a sequence of **labels**.
- An HMM is a **probabilistic sequence model**: given a sequence of units (words, letters, morphemes, sentences, whatever), they compute a probability distribution over possible sequences of labels and choose the best label sequence.
- Sequence labeling task: PoS Tagging, NER, Speech Recognition

Markov Chains

- Markov chain is an extension of Finite Automata, especially weighted finite automaton.
- Markov chain is a special case which the weights are probability so that it sums to 1, and not ambiguous

Source : jurafsky

Markov Chain

 This markov chain represent bigram language model.
Can you see that?

Source : jurafsky

The Hidden Markov Model

Given how many Ice
 Cream[observation]
 Jason Eisner eats
 everyday in summer,
 figure out the weather
 status[hidden] each
 day

Source : jurafsky

HMM Components

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations , each one drawn from a vocabulary $V = v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i
q_0, q_F	a special start state and end (final) state that are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{2F}a_{nF}$ into the end state
probab states j	ial probability distribution over states. π_i is the ility that the Markov chain will start in state i . Some may have $\pi_j = 0$, meaning that they cannot be initial Also, $\sum_{i=1}^{n} \pi_i = 1$
$QA = \{q_x, q_y\}$ a set Q	$A \subset Q$ of legal accepting states

Some Probabilities

- We want to find : $q_1^n = \underset{q_1^n}{\operatorname{argmax}} P(q_1^n | o_1^n)$
- Using Bayes' rule : $q_1^n = \operatorname*{argmax} \frac{P(o_1^n|q_1^n)P(q_1^n)}{P(o_1^n)}$
- Drop denominator (why?) : $q_1^n = \underset{q_1^n}{\operatorname{argmax}} P(o_1^n|q_1^n)P(q_1^n)$

Assumptions

•
$$q_1^n = \underset{q_1^n}{\operatorname{argmax}} P(o_1^n | q_1^n) P(q_1^n)$$

There are 2 assumptions in HMM:

1. 1st order Markov Assumption : probability of a particular state depends only on the previous state

$$P(q_i|q_1,q_2,...,q_{i-1}) = P(q_i|q_{i-1})$$

2. The probability of an output observation o_i depends only on the state that produce the observation which is q_i

$$P(o_i|q_1,...,q_i,...,q_N,o_1,...,o_i,...,o_N) = P(o_i|q_i)$$

Problems related to HMM

- 1. Likelihood : Given an HMM λ = (A,B) and an observation sequence O, determine the likelihood P(O| λ)
- 2. Decoding : Given an observation sequence O and an HMM λ = (A,B), discover the best hidden state sequence Q.
- 3. Learning: Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B

HMM for PoS Tagging

• From : Janet will back the bill → OBSERVED

To: NNP MD VB DT NN → HIDDEN

Which problem is this?

Likelihood

- Ex : what is the likelihood of eating ice cream with a sequence of 3 1 3 ?
- P(3 1 3)= P(3 1 3, cold cold cold)+P(3 1 3, cold cold hot)+.... P(3 1 3, hot hot hot)

Likelihood

Decoding

- Finding the best hidden states given observations
- Ex: What is the best sequence of weather given ice cream observation of 3 1 3?
- Approach :
 - Brute force: 3 1 3, Find likelihood (problem 1) of all possible states combination with length of 3, ex: C C C, C C H, ..., H H H, then choose sequence that give the maximum likelihood
 - Viterbi Algorithm
 - A kind of dynamic programming

Decoding: Viterbi

Viterbi Backtrace

PoS Tagging

- earnings growth took a back/JJ seat
- a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP about debt
- I was twenty-one back/RB then
- How to tag a word correctly?
 - 1. Look at the word
 - 2. Look at the previous tag?

- Janet will back the bill
- Janet/NNP will/MD back/VB the/DT bill/NN