MP* - Suites totales

Dans toute la suite, E est un espace préhilbertien réel, de produit scalaire <, >, et de norme associée $|| \ ||$.

Définition 1: Une suite $(f_n)_{n\in\mathbb{N}}$ d'éléments de E est dite totale si et seulement si $vect(\{f_n \mid n \in \mathbb{N}\})$ est dense dans E.

Notons qu'un élément de $vect(\{f_n \mid n \in \mathbb{N}\})$ est combinaison linéaire (finie) de f_n , donc en notant $V_n = vect(\{f_0, ..., f_n\}), \, vect(\{f_n \mid n \in \mathbb{N}\}) = \bigcup_{n \in \mathbb{N}} V_n$, union croissante.

Exemple: Soient a < b, et $E = \mathcal{C}([a, b], \mathbb{R})$.

On munit E du produit scalaire $\langle f, g \rangle = \int_a^b fg$.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction polynomiales réelles sur [a,b] telle que $\forall n,\ deg(f_n)=n$. Alors (f_n) est totale:

Du fait de la propriété des degrés échelonnés, $V := vect(\{f_n \mid n \in \mathbb{N}\})$ est l'espace des fonctions polynomiales de [a,b] dans \mathbb{R} .

Soit $g \in E$. Par le théorème de Weierstrass, il existe $(g_k) \in V^{\mathbb{N}}$ telle que $||g_k - g||_{\infty} \xrightarrow[k \to +\infty]{} 0$.

Mais alors
$$||g_k - g||^2 = \int_a^b (g_k - g)^2 \le (b - a)||g_k - g||_{\infty} \xrightarrow[k \to +\infty]{} 0$$
, donc $g_k \to g$ dans E .

Notons que dans cet exemple, si on orthonormalise $(f_n)_n$ par le procédé de Schmidt, on obtient une nouvelle suite (h_n) vérifiant les mêmes conditions de degré, et qui est donc orthonormée totale.

Tout ce qui est à connaître est dans la propriété suivante:

Propriété 1: Soit $(f_n)_{n\in\mathbb{N}}$ une suite orthonormée totale de E, et $g\in E$. On a:

1. En notant
$$S_n = \sum_{k=0}^n \langle g, f_k \rangle f_k$$
, $S_n \xrightarrow[n \to +\infty]{} g$ dans E , ie $||S_n - g|| \xrightarrow[n \to +\infty]{} 0$.

2. Pour tout
$$n, ||g||^2 = \sum_{n=0}^{+\infty} \langle g, f_n \rangle^2$$
 (égalité de Parseval)

Démonstration:

Notons $V_n = vect(\{f_0, ..., f_n\})$. $V := \bigcup_{n \in \mathbb{N}} V_n$ est donc dense dans E.

Notons p_n la projection orthogonale sur V_n , et $d_n = d(g, V_n) = \inf_{h \in V_n} ||h - g||$.

Comme $(f_0, ..., f_n)$ est une BON de V_n , on sait que $p_n(g) = \sum_{k=0}^n \langle g, f_k \rangle f_k$.

On sait également que $d_n = ||g - p_n(g)||$.

Montrons que $d_n \to 0$.

Comme (V_n) est croissante, (d_n) est décroissante, minorée par 0, donc converge vers $a \ge 0$.

Soit $\varepsilon > 0$. Comme V est dense dans E, il existe $h \in V$ tel que $||h - g|| \leq \varepsilon$.

Avec un tel h, il existe n tel que $h \in V_n$, et alors $d_n \leq \varepsilon$. Comme (d_n) décroît, il en résulte $a \leq \varepsilon$. Ceci étant vrai pour tout $\varepsilon > 0$, a = 0.

Maintenant, $||S_n - g|| = ||p_n(g) - g|| = d_n \to 0$, ce qui donne le point 1.

Notons
$$W_n = \sum_{k=0}^{n} \langle g, f_k \rangle^2$$
.

Par Pythagore, $W_n = ||p_n(g)||^2$.

Par continuité de la norme et le point 1, $||p_n(g)|| \underset{n \to +\infty}{\longrightarrow} ||g||$, donc $W_n \to ||g||^2$, ce qui donne le point 2. \clubsuit

Problème

$$C_0: x \in \mathbb{R} \mapsto 1.$$

Si $n \in \mathbb{N}^*$, on note $C_n : x \in \mathbb{R} \mapsto \sqrt{2}\cos(2\pi nx)$ et $S_n : x \in \mathbb{R} \mapsto \sqrt{2}\sin(2\pi nx)$.

E est l'espace des fonctions continues 1-périodiques de \mathbb{R} dans \mathbb{R} .

Si
$$f, g \in E, < f, g > = \int_0^1 fg$$
.

- 1. Vérifier que <, > est un produit scalaire sur E. On notera || || la norme associée.
- 2. On note $F = (C_0, C_1, S_1, C_2, S_2, ...)$. Montrer que F est ON.

1 Théorème de Fejér

Si $n \in \mathbb{N}$, on note $D_n : x \in \mathbb{R} \mapsto \sum_{k=-n}^n e^{2i\pi kx}$ (noyau de Dirichlet), et $F_n = \frac{1}{n+1} \sum_{k=0}^n D_k$ (noyau de Fejér).

- 3. Montrer que $F_n \in vect(\{C_0, C_1, S_1, ..., C_n, S_n\})$.
- 4. Calculer $D_n(x)$ et $F_n(x)$.
- 5. Montrer que:
 - (a) F_n est à valeurs réelles positives.

(b)
$$\int_{0}^{1} F_n = 1$$

(c) Si
$$1/2 > \delta > 0$$
, $||F_n||_{\infty, [\delta, 1/2]} \xrightarrow[n \to +\infty]{} 0$ et $||F_n||_{\infty, [-1/2, -\delta]} \xrightarrow[n \to +\infty]{} 0$.

Soit $f \in E$. Si $n \in \mathbb{N}$, soit $g_n : x \in \mathbb{R} \mapsto \int_{-1/2}^{1/2} f(x-t) F_n(t) dt$ (= $\int_0^1 f(x-t) F_n(t) dt$) le produit de convolution entre f et F_n .

- 6. Montrer que $g_n(x) = \int_0^1 f(t)F_n(t-x)dt$, et que $g_n \in vect(\{C_0, C_1, S_1, ..., C_n, S_n\})$.
- 7. Soit $1/2 > \delta > 0$. Montrer que :

$$|g_n(x) - f(x)| = \left| \int_{-1/2}^{1/2} F_n(t) (f(x-t) - f(x)) dt \right|$$
et:

$$|g_n(x) - f(x)| \le 2||f||_{\infty} (||F_n||_{\infty, [\delta, 1/2]} + ||F_n||_{\infty, [-1/2, -\delta]}) + \sup_{t \in [-\delta, \delta]} |f(x-t) - f(x)|$$

8. Montrer que f est uniformément continue sur \mathbb{R} , et que $||g_n - f||_{\infty} \xrightarrow[n \to +\infty]{} 0$.

La convergence uniforme de (g_n) vers f constitue le théorème de Fejér. Il en résulte, comme $g_n \in vect(F)$, que vect(F) est dense dans E pour $|| \ ||_{\infty}$. Les éléments de vect(F) sont appelés polynômes trigonométriques, et cette densité constitue le théorème de Weierstrass trigonométrique.

9. En déduire que F est une suite totale de E.

2 Un développement en série de Fourier

Soit $f \in E$ telle que $\forall x \in [0, 1/2], f(x) = x$, et $\forall x \in [1/2, 1], f(x) = 1 - x$. (faire un dessin).

- 10. Vérifier que $\langle f, S_n \rangle = 0$, $\langle f, C_0 \rangle = 1/4$, $\langle f, C_{2n+1} \rangle = \frac{-\sqrt{2}}{\pi^2(2n+1)^2}$, et, si $n \geq 1$, $\langle f, C_{2n} \rangle = 0$.
- 11. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}$ et de $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.
- 12. On note $g(x) = 1/4 + \sum_{n=0}^{+\infty} \frac{-2}{\pi^2 (2n+1)^2} \cos(2\pi (2n+1)x)$. Justifier que g est définie, 1-périodique, et continue sur \mathbb{R} .
- 13. Montrer que $\forall n \in \mathbb{N}, \langle g, S_n \rangle = \langle f, S_n \rangle$ et $\langle g, C_n \rangle = \langle f, C_n \rangle$.
- 14. Montrer que f = g.
- 15. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$ et de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.