ÉNERGIE POTENTIELLE DE PESANTEUR - ÉNERGIE MÉCANIQUE

Exercice 1:

Une balle de masse m = 200 g est lancé verticalement vers le haut avec une vitesse de valeur $5, 0m.s^{-1}$ à partir d'un point situé à 1,20 m du sol.

- 1. Calculer les énergies potentielle, cinétique et mécanique de la balle à l'état initial.
- 2. Calculer l'altitude maximale de la balle lors de ce lancer.
- 3. Calculer la vitesse de la balle au moment où elle retombe sur le sol. Donnée : $g = 9,8N.kg^{-1}$.

Exercice 2:

Un pendule est constitué d'une bille de masse M=65 g fixée à l'extrémité d'un fil de masse négligeable de longueur l=0.80 m. La bille est écartée de sa position d'équilibre jusqu'à que le fil fasse un angle $\alpha_0=35^\circ$ avec la verticale puis abandonnée sans vitesse initiale.

- 1. Exprimer l'énergie potentielle de la bille en fonction de l'angle α du fil avec la verticale. L'altitude z=0 est la position d'équilibre de la bille.
- 2. Justifier la constance de la somme $\{E_{PP} + E_c \text{ des énergies cinétique et potentielle de la bille.}$
- 3. Quelle est la vitesse V_{max} , de la bille lorsqu'elle passe par sa position d'équilibre?
- 4. Quel angle α_1 fait le fil avec la verticale en N lorsque la vitesse de la bille est la moitié de sa valeur maximale ?

Exercice 3:

Un pendule est formé d'une tige rédige OA, de longueur l = 50cm, de masse négligeabl et d'un corps ponctuel placé en A de masse m=200 g . On écarte le pendule d'un angle $\alpha=30\circ$ par rapport à sa position d'équilibre stable et on le lance avec une vitesse initiale \vec{V} orthogonale à la droite (OA) .

Les frottement sont négligeable . On prend l'état de référence pour l'énergie potentielle de pesanteur le plan horizontal qui passe par O' et l'axe O'z orienté vers le haut .

On donne g = 10N/kg

- 1. Déterminer la valeur minimale de v_0 pour que le pendule puisse effectue un tour complet.
- 2. Sachant qu'on le lance avec une vitesse $v_0=4,5m/s$, déterminer les valeurs minimales et maximales de la vitesse du corps et son énergie cinétique.

Exercice 4:

Un solide ponctuel de masse m est lancé en A sur une piste horizontale prolongée par un demi-cercle vertical de rayon R.

On donne : AB = 1 m ; R = 1 m ; m = 0, 5 kg ; g = 9, 81 N/kg

- 1. Les frottements étant négligeables, calculer en A la vitesse minimale $V_{A_{min}}$ que doit avoir la masse pour qu'elle atteigne le point C
- 2. Même question lorsque les frottements entre l'objet et la piste sont assimilables à une force constante de norme f=1N.

Exercices Supplémentaires

Exercice 5:

Une portion de gouttière BO de forme circulaire de rayon r=1m se situe dans un plan vertical. Elle se raccorde en O à une autre gouttière identique OB' située dans le même plan (voir figure).

Les centres O1 et O2 des deux gouttières se trouvent sur la même verticale. Un solide ponctuel S de masse m=100g est lâché sans vitesse du point A situé à une hauteur h = 0,2 m par rapport au plan horizontal passant par O. Les frottements étant supposés négligeables et g=10kg/N

4. Sur le trajet OD on montre que l'intensité R de la réaction de la gouttière sur S à pour expression

$$R = mg(cos(\theta) - \frac{V^2}{r.g})$$

Au point D le solide S perd le contact avec la gouttière et suit le trajet DC. Déterminer la valeur numérique θ_D et celle de V_D vitesse du S au point D.

5. Avec quelle vitesse du solide touche-t-il le sol en C?

Exerice 6:

Un cycliste descend une pente de 10%. Sa vitesse v = 54 km/h est constante.

- 1. Calculer la variation de l'énergie potentielle de pesanteur pendant $\Delta t = 1s$.
- 2. Calculer la quantité de chaleur Q dissipée par les frottement au niveau des freins pendant 30s.

Donnée: L'ensemble cycliste -bicyclette a une masse m = 80kg L'intensité de pesanteur g = 9, 8N/kg

Exerice 7

Un skieur glisse sur une piste horizontale DA à vitesse constante . En A, commence une portion de piste circulaire de rayon R =BA (B est à la verticale de de A) . Les frottement sont négligeables et on admet que le skieur est assimilable à un point matériel dont la trajectoire suit la forme de la piste.

- 1. Calculer la variation de l'énergie mécanique enter le point ${\bf A}$ et le point ${\bf M}$.
- 2. Déduire l'expression de la vitesse de skieur au point M en fonction de R , $\theta=A\hat{B}M$ et g On prend g = 10N/kg

