# Influence branching for learning to solve Mixed Integer Programs online

**Paul Strang** 

Sureli Seminar May 3, 2023



### Introduction



#### Sommaire

MIPcc23

Mixed Integer Programming Mixed Integer Programs Branch & bound

Influence branching Definition Speed up potential over MIPcc23

3 Online learning
Building an action set for MIPcc23
Convergence
Results

# Rappel du plan

- Mixed Integer Programming Mixed Integer Programs Branch & bound MIPcc23
- 2 Influence branching
- 3 Online learning

# Mixed Integer Programs

### Mixed integer programs

Mixed integer linear programs are generally defined such as:

$$P: \left\{ \begin{array}{l} \min c^{\mathsf{T}} x \\ \mathsf{A} x \leq b \; ; \; x \in \mathbb{N}^{|\mathcal{I}|} \times \mathbb{R}^{n-|\mathcal{I}|} \end{array} \right.$$

with 
$$A \in \mathbb{R}^{m \times n}$$
,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$ 

- Linear objective
- Linear constraints
- Integrity constraints makes the problem non-convex
- NP-hard in fact



#### Branch & bound

#### **B&B**:

Create a partition of the solution space by fixing binary variables at either 0 or 1 (branching).

Such partitioning is built following a tree structure, each node being a sub-problem of the initial MILP.

At each node, we solve the corresponding linear relaxation and hope to find a solution satisfying the binary constraints. A branch is expanded until we prune the leave nodes out of:

- Infeasibility
- Integrality
- Sub-optimality

#### **Branch & bound**





Paul STRANG

Sureli seminar MIPcc23

May 3, 2023

### Branch & bound





Paul STRANG

# Strong branching

Two major selection strategies to parametrize the B&B solver:



The **node** selection strategy and the **variable** selection strategy!

◆□▶◆□▶◆■▶◆■▶ ■ 900

# Strong branching

Strong branching : select the best one-step lookahead branching in terms of **dual gap** 



Inconvenient : vast number of LP iterations associated, intractable in most cases

### Learning to solve MIPs

Industrial MIP solvers' node and variable selection strategies are based on complex fine-tuned heuristic, designed to perform best (in average) over a vast range of benchmarks.

In the context of real-world applications, in which similar instances with slightly varying inputs are solved on a regular basis, there is a huge incentive to reduce the solving time by learning efficient tailor-made heuristics.

# MIP23 Computational competition



Each series  $s \in S$  of the competition if composed of 50 fixed-size MIPs sampled from an unknown distribution  $\mathbb{Q}_s$ .

$$i \in \mathcal{I}_s \sim \mathbb{Q}_s : \left\{ egin{array}{l} \min c^T x \ Ax \leq b \ ; \ x \in \mathbb{N}^{|\mathcal{J}|} imes \mathbb{R}^{n-|\mathcal{J}|} \end{array} 
ight.$$

For each series, the value of one or several vectors among  $\{A, b, c\}$  can change.

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ 夕 Q (?)

Paul STRANG

# MIP23 Computational competition



- Series of 50 instances  $i \in \mathcal{I}_s$  to solve **online** (sequentially).
- $t_{max} \sim 300 \, s$  per instance
- $f_{s,i} = \frac{t}{t_{max}} + dualgap + no primal$
- Total score =  $\sum_{s \in \mathcal{S}} \sum_{i=1}^{50} (1 + 0.1i) \cdot f_{s,i}$



Paul STRANG

### MIP23 Computational competition

#### Trade-off between **learning a model** and **solving an instance**!

- ightarrow Very different framework from the literature of machine learning applied to mixed integer programming.
- $\rightarrow$  If you had to learn the absolute minimum about a MIP series, what would it be ?

**Our take:** for each series, we are going to try to learn graph representations of the instances leading to the best branching decisions near the root node of the B&B tree.

In fact, we introduce a new graph-based branching heuristic, named **influence branching**, and learn to fine tune it across instance series.

# Rappel du plan

- Mixed Integer Programming
- 2 Influence branching Definition Speed up potential over MIPcc23
- 3 Online learning



#### Definition

#### Local influence

We define the local influence  $w_{ij}^I$  exerted by variable i on variable j through constraint I.  $w_{ij}^I$  can be any function on A, b, c, in particular, we say that i has a non-zero influence on j through I if  $\mathbb{1}_{A_{ij}\neq 0}\mathbb{1}_{A_{ij}\neq 0}\neq 0$ .

#### Direct influence

We define the direct influence  $w_{ij}$  exerted by variable i on variable j over P as :

$$w_{ij} = \mathbb{1}_{i \neq j} \sum_{l=1}^{m} w_{ij}^{l}$$



#### Definition

We can then derive a definition for influence graphs:

### Influence graph

We call influence graph the directed graph G = (V, E, W) where  $V = \{1, ..., n\}$ ,  $E = V \times V$  and where  $W \in \mathbb{R}^{n \times n}$  the  $w_{ij}$  matrix satisfies the definition of direct influence.





Figure: Examples of influence graphs

#### Influence models

• Count 
$$w_{ij}^I = \mathbb{1}_{A_{li}}\mathbb{1}_{A_{lj}}$$

• Binary 
$$w_{ij}^{I} = \frac{\mathbb{1}_{A_{li}}\mathbb{1}_{A_{lj}}}{\sum_{k=1}^{m}\mathbb{1}_{A_{ki}}\mathbb{1}_{A_{kj}}}$$

- Dual  $w_{ij}^I = \mathbb{1}_{A_{li}} \mathbb{1}_{A_{lj}} |y_l^*|$
- Countdual

$$w'_{ij} = \mathbb{1}_{A_{li}} \mathbb{1}_{A_{lj}} \mathbb{1}_{(y_l^* \neq 0)}$$

- Auxiliary  $w'_{ij} = \mathbb{1}_{A_{ii}} \mathbb{1}_{A_{ij}} s_i |A_{li} y_l|$
- Adversarial  $w_{ij}^l = \mathbb{1}_{A_{ii}} \mathbb{1}_{A_{ij}} s_i | rac{A_{ii}}{A_{ij}} | \mathbb{1}_{(y_l^* 
  eq 0)}$

Table: Proposed influence models, with  $y^*$  the solution of the dual problem at the current node and  $s_i$  the minimal distance to a bound for variable i in the primal solution.  $\mathbb{1}_{A_{ii}\neq 0}$  is noted  $\mathbb{1}_{A_{ij}}$  to ease the notations.



# Influence branching

### Influence branching

The influence branching heuristic returns the variable within the graph with the maximal total influence :

$$w^* = \max_{i} w_i = \max_{i} \sqrt{1 + c_i} \sum_{j \neq i} w_{ij}(g)$$
 (1)

as long as the depth of the current node d is inferior or equal to k, the maximum depth.

Influence branching is a variable selection strategy relying on two hyperparameters :

- $g \in \mathcal{G} = \{count, binary, ..., adversarial\}$ , the influence model
- $k \in \mathbb{N}$ , the maximal depth to apply the heuristic

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

# Speed up potential on MIPcc23

| Instance | Influence<br>model | Max<br>depth | Performance $f_{s,i}$ | SCIP<br>default | Speed<br>up |
|----------|--------------------|--------------|-----------------------|-----------------|-------------|
| 1        | binary             | 5            | 0.64                  | 0.70            | -0.06       |
| 2        | adversarial        | 5            | 0.53                  | 1.01            | -0.48       |
| 3        | countdual          | 5            | 0.49                  | 0.60            | -0.11       |
| 4        | count              | 4            | 0.48                  | 0.76            | -0.28       |
| 5        | countdual          | 2            | 0.70                  | 1.03            | -0.33       |
| 6        | count              | 4            | 0.26                  | 0.44            | -0.18       |
| 7        | auxiliary          | 3            | 0.42                  | 0.53            | -0.11       |
| 8        | countdual          | 2            | 0.71                  | 0.98            | -0.37       |
| 9        | countdual          | 4            | 0.57                  | 1.39            | -0.82       |
| •••      |                    | •••          | •••                   | •••             | •••         |
| 50       | binary             | 5            | 0.29                  | 0.66            | -0.34       |
| Avg      |                    |              | 0.56                  | 0.94            | -0.38       |

### Multi-armed bandit problem

- Learning which pair (g, k) performs best for any instance of any series would require to shift to a reinforcement learning framework
- We adopt an online bandits framework, as we try to learn which pair (g, k) obtains the best performance in average on a whole series of instances

### Multi-armed bandit problem

The optimization task can be reformulated as a multi-armed bandit problem on action space  $\ensuremath{\mathcal{A}}$  where

$$\min_{a_i \in \mathcal{A}} \sum_{i=1}^{50} (1 + 0.1i) f_{s,i}(a_i)$$
 (2)

is the sum of reward to minimize.



21/31

Paul STRANG Sureli seminar MIPcc23 May 3, 2023

### Multi-armed bandit problem



### Multi-armed bandit problem

The optimization task can be reformulated as a multi-armed bandit problem on action space  $\ensuremath{\mathcal{A}}$  where

$$\min_{a_i \in \mathcal{A}} \sum_{i=1}^{50} (1 + 0.1i) f_{s,i}(a_i)$$
 (3)

is the sum of reward to minimize.



Paul STRANG Sureli seminar MIPcc23 May 3, 2023

### Multi-armed bandit problem

| Influence model | Max depth | Performance | Speed up | Rank |
|-----------------|-----------|-------------|----------|------|
| count           | 5         | 0.857       | -0.0862  | 1    |
| base            | 6         | 0.865       | -0.0783  | 2    |
| countdual       | 2         | 0.874       | -0.0691  | 3    |
| base            | 5         | 0.877       | -0.0657  | 4    |
| count           | 4         | 0.882       | -0.0606  | 5    |
| •••             | •••       | •••         | •••      | •••  |
| adversarial     | 3         | 0.953       | 0.0520   | 34   |
| adversarial     | 2         | 0.973       | 0.0721   | 35   |
| auxiliary       | 5         | 1.05        | 0.148    | 36   |

Table: Sorted average performance of influence branching on *obj series 2* for each pair (g, k). The performance column corresponds to the mean of  $f_{s,i} = reltime + gap$  at  $time\ limit + nofeas$  over  $\mathcal{I}_s$ .

# Rappel du plan

- Mixed Integer Programming
- 2 Influence branching
- 3 Online learning
  Building an action set for MIPcc23
  Convergence
  Results

### Building an action set

For each series, only 50 samples are available in total:

- Scores  $\{f_{s,i}(a)\}_{i\in\mathcal{I}_s}$  with  $a\in\mathcal{A}=\{(g,k):g\in\mathcal{G},\,k\in[1,6]\}$  are assumed to follow an unknown probability distribution  $\mathcal{P}_{a,s}$ .
- In order to minimize (3), the means of  $(\mathcal{P}_{a,\,s})_{a\in\mathcal{A}}$ , noted  $(\mu_{a,\,s})_{a\in\mathcal{A}}$ , need to be estimated (or at least ranked) as efficiently as possible for the heuristic to select the action leading to the minimum expected reward.



# Building an action set



#### However:

- The more actions in the action space, the more samples are needed to guarantee the convergence of the bandits algorithm towards optimal actions.
- Moreover, the spreads between  $(\mu_{a,s})_{a\in\mathcal{A}}$  are rather small, comprised between 0.01 and 0.2, in front of standard deviations of  $(\mathcal{P}_{a,s})_{a\in\mathcal{A}}$ , noted  $(\sigma_{a,s})_{a\in\mathcal{A}}$ , that were measured around 0.1 0.3 across public series.

#### Action set

After running computationally intensive over test the competition's series, we derive an action set to train our bandit agent :

#### Action set

$$\mathcal{A} = \{(\textit{count},\, 1),\, (\textit{count},\, 5),\, (\textit{countdual},\, 2),\, (\textit{binary},\, 3),\, (\textit{dual},\, 3)\}$$

We use Thompson sampling select to train our agent online:

### Thompson sampling

- Hypothesis  $(\mathcal{P}_{a,s})_{a \in \mathcal{A}} \sim \mathcal{N}(\mu_{a,s}, \sigma = 0.2)$
- Initialize  $(\hat{\mu_a}, \hat{\sigma_a})$  with  $(\mu_0, \sigma_0)$
- Draw samples  $x_a \sim \mathcal{N}(\hat{\mu_a}, \hat{\sigma_a})$  for  $a \in \mathcal{A}$
- Perform action  $a^* = \underset{a}{arg \ min} x_a$  and observe reward  $f_s(a_i)$
- Perform bayesian update on  $\hat{\mu_a}$  and  $\hat{\sigma_a}$



### TS convergence on MIPcc23 series

$$CS = \frac{\sum_{i=1}^{50} \ \mu_{i,s}(a_i) - \mu_{i,s}(a_0)}{\sum_{i=1}^{50} \ \mu_{i,s}(a_s^*) - \mu_{i,s}(a_0)}$$

| Series           | Convergence score |  |
|------------------|-------------------|--|
| bnd series 1     | 72%               |  |
| bnd series 2     | 65%               |  |
| obj series 1     | 75%               |  |
| obj series 2     | 66%               |  |
| rhs series 1     | 64%               |  |
| rhs series 2     | 72%               |  |
| rhs obj series 1 | 74%               |  |

Table: Convergence score of Thompson sampling on MIPcc23 public instances series.



#### Results

| Series                   | Average f <sub>s, i</sub>           | Speed up              |
|--------------------------|-------------------------------------|-----------------------|
| bnd series 1             | $0.992 \pm 0.009$                   | $-0.031 \pm 0.009$    |
| bnd series 2             | $\textbf{0.881} \pm \textbf{0.020}$ | $-0.037 \pm 0.020$    |
| obj series 1             | $0.895 \pm 0.006$                   | $-$ 0.022 $\pm$ 0.006 |
| obj series 2             | $0.891 \pm 0.022$                   | $-$ 0.052 $\pm$ 0.022 |
| rhs series 1             | $0.875 \pm 0.027$                   | $-$ 0.048 $\pm$ 0.027 |
| rhs series 2             | $1.004 \pm 0.0001$                  | $0.001 \pm 0.0001$    |
| rhs obj series 1         | $\boldsymbol{1.015 \pm 0.006}$      | $-0.005 \pm 0.006$    |
| mat series 1             | $1.050\pm0.013$                     | $-0.009 \pm 0.013$    |
| mat rhs bnd obj series 1 | $\textbf{0.677} \pm \textbf{0.021}$ | $-$ 0.061 $\pm$ 0.021 |

Table: Averaged speed up obtained across public series. Results are averaged over 2,000 runs, with varying seed.



#### Conclusion

#### Criticism

- A build over public instances, no guarantee that any of the actions will be efficient on the hidden series
- Isn't it just a sophisticated but disguised approach to overfit the competition dataset?

### Strengths

- Sub-optimal actions also achieve significant speed up over public instance series
- We had only 50 instances to train our agent. State of the art methods obtain speed increases of only 4% while training over hundreds of instances.
- With larger dataset, more actions could be added to the action set, thus improving the power of generalization of our method.

#### Conclusion

Thanks for your attention! Let's hear from you:)

