# Research Updates Summer 2024

Maryann Benny Fernandes

# Week 2



### Color: Gray

Scale: asinh, zscale

- Asinh: enhances faint and bright features simultaneously
  - zscale: Automatic contract adjustment, decreases background dust

# Color: Gray, Scale: zscale, asinh

### Adding asteroid streak and scaling







### Asteroid streaks:

- 1) Random orientation (0° to 360° (clockwise from east))
- 2) Random location
- Random magnitudes from 20-26
- 4) Random velocity around 1 to 80 arcsec^-1
- 5) Random width and length (10-20 pixels)
- 6) Brightness variation not accounted

### Identifying asteroid streaks



### Zooming into features of asteroid streaks



# **Creating Sub-images and cutouts**



Sub-image 21

Sub-image 22

Sub-image 23

Sub-image 24

Sub-image 25

### Simulating and Identifying 100 asteroid streaks







### **Zooming into features of asteroid streaks**







# Week 1

### Week 1: July 19 - 29, 2024

- Received access to Rubin Science Platform, Isst.data.cloud
  - Studied the notebook tutorial on 'Main Belt Asteroids'
- Studied the asteroid simulation section from the below paper
  - Euclid: Identification of asteroid streaks in simulated images using deep learning

    (DL pipeline still need to study)
- ☐ Multivariable calculus research assignment and Touch the Art final project on Simulated Asteroids

### Week 2: Goals

- Explore the simulated data set on cloud and compare 'Main Belt Asteroids' tutorial with the following by also using the NEA tutorial:
  - New properties of other families in the Main Belt
  - Study objects >1.6 au to see if they make a close approach to Earth or Mars
- Euclid: Identification of asteroid streaks in simulated images using deep learning
  - Understand DL pipeline

# Orbital Parameters of SSO's observed $\geq$ 50 times in 10 years



### Main Belt Asteroids (1.6 < a < 4.2 au, q > 1.6 au)



The asteroids of the inner Solar System and <sup>6-J</sup> Jupiter: The belt is located between the orbits of Jupiter and Mars.



Wikipedia

### Not a uniform Main Belt Asteroid

Kirkwood gaps: Resonances between orbital period of asteroids and Jupiter



Hildas, Cybeles, and Hungarias are clearly visible in the DP0.3 dataset



http://burro.cwru.edu/Academics/Astr221/Gravity/resonance.html

### **Asteroid Properties in Solar System**

All objects in DP0.3 observed  $\geq$  50 times in 10 years





All objects in DP0.3 observed ≥ 50 times in 10 years in the Main Asteroid Belt



### **Orbit families in Main Belt Asteroids**



https://data.lsst.cloud/nb/user/maryann/lab/tree/notebooks/tutorial-notebooks

# Orbit eccentricity and inclination in Main Belt Asteroids



# Objects in close proximity to Earth

- Earth's eccentricity: **0.0167**
- Earth Perihelion distance (closest) to Sun: **0.9832899** AU
- Earth Aphelion distance (farthest) to Sun: 1.0167103 AU

### **Objects close-contact with Earth?**

