الإجابة النموذجية وسلم التنقيط

	العلا			الإجابة	عناصر		محاور الموضوع
المجموع	جز اة	۵.					
					(7	مرين الأول : (04 نقاء	الت I- أ / جدول التقدم
			معادلة التفاعل	$S_2O_8^{2-}$ (aq)		$= 2SO_4^{2-}_{(aq)}$	$+I_{2(aq)}$
	0.25×4		التقدم ح/ الجمل		ول)	كميات المادة (م	
		1 1	0 ح/ ابتدائب	4×10 ⁻³	8×10 ⁻³	0	0
			x ح/ انتقالی	$4 \times 10^{-3} - x$	$8 \times 10^{-3} - 2$	x	x
1.5			x_f ح/ نهائیا	$4 \times 10^{-3} - x_f$	$8 \times 10^{-3} - 2x$	$\frac{1}{2} \sum_{f} 2x_{f}$	x_f
				$\lceil S \rceil$	$\left[{{Q_{2}}O_{8}}^{2-} \right]_{2}$ لحظي	/عبارة التركيز المولي اا	ب
			يروكسو ديكبريتات	- مية مادة شوار د ب	تقالية نجد أن ك	, جدول التقدم الحالة الانا	. مر
						تبقية في المزيج هي:	i i
			$V_{-} = V + V$	(0208)		منه التركيز المولي لهذه	1
	0.25						l l
		[\$	$\left[C_{2}O_{8}^{2-}\right]_{t} = \frac{C_{1} \times V_{1}}{V_{1} + V_{2}} -$	$[I_2]_i$: فإن	$u_{(l_2)} = x$ بث أن	وحد $\frac{n_{(S_2O_8^{2^-})}}{V_{-}} = \frac{C_1 \times V_1}{V_{-}}$	- X
			$V_1 + V_2$, _T , _T	1
				t = 0	ي اللحا S_2O_8	$\left[-2 \right]_{0}^{2}$ قيمة التركيز المولي	″ €
	0.25		$\left[S_2 O_8^{2-}\right]_0 = \frac{C_1 \times V}{V_1 + V_2}$	معدوما فإن ا	ي اللحظة 0= ي	ا أن تركيز ثناني اليود في	ايم
			$\left[S_2O_8^{2-}\right]$	$\Big _{0} = \frac{4 \times 10^{-2} mol}{0,2}$	$\frac{l/l \times 0, 1L}{L} = 2$	$\times 10^{-2} mol/L$:
2.5	0.25					ـ أ/ تبرد العينات مباشرة	
			. ح	فصلها عن المزي		ى تركيب العينة على ما	
					-	/المعادلة الإجمالية لتفاء	<u>.</u>
			$2S_2$	$O_3^{2-} =$	$S_4O_6^{-2-}$	- 2e -	
			I_2	+ $2e$ =	2 <i>I</i> -		
9		2.	$S_2O_3^{2-} = S$	$S_4O_6^{2-} + 2e$		المعادلة النصفية الأولى	
	0.25	I_{z}	+ 2e	= 21		المعادلة النصفية الثانية	
	0.25 0.25×2		$2S_2O_3^{2-} + I_2$	$= S_4 O_6^{2-} +$	2 <i>I</i> ⁻	المعادلة الاجمالية	
							49 _

تابع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: العلوم التجريبية

		,		<u>جريبي</u> ه	: العلوم الله	السعبه.	م الفيزيائية	بادة : العلوم	، اختبار م	تابع الإجابة
	العلا				الإجابة	عناصر			سوع	محاور الموض
المجموع	مجزاة									
	0.25	n(S2O ₃ ²⁻)) – 2x		(1)-x=0, x	$x = n(I_2)$	لمولي لثنائي $n(S2O_3^2)$ = $\frac{n(S2O_3^2)}{2}$ منه : $\frac{C'V'}{V_0}$ اسات	التكافؤ:	عند	
	t(m	n)	0	5	10	15	20	30	45	60
	V'(n)		0	4.0	6.7	8.7	10.4	13.1	15.3	16.7
	I_2 $[I_2]$ $[I_3]$		0	3.0	5.0	6.5	7.8	9.8	11.5	12.5
	0.25×2						$[I_2] = f(t)$	سم البيان (ع	هـ/ر د	
	0.25			[I ₂]mmol	20 3	0 40	Ledin Del Jan Inc	I(1:		
0.75	0.25	<i>v</i> _(<i>t</i>=20 min)	= -ι Δ	$\frac{21}{t} \approx 2.4 \times$	10 [~] <i>mol</i> m		عة الحجمية ثا تي: (4 نق	لتمرين الن		
					u	$E = u_c + u$	$E_R \Rightarrow E = u$	المعادلة الآ $c + Ri$	(1	
0.75	0.25×3	_	$\frac{du_c}{dt}$ +		مادلة التفاض عادلة		$u_c(t) = E\left(1\right)$,	(2	
	0.25×3			$\frac{E}{RC} = \frac{1}{R}$	$\frac{E}{RC}e^{-\frac{1}{RC}t} +$	$\frac{E}{RC} - \frac{E}{RC}$	$e^{-\frac{1}{RC}t} \Rightarrow -\frac{1}{L}$	$\frac{E}{RC} = \frac{E}{RC}$		

الإجابة اختبار مادة: العلوم الفيزيائية ..الشعبة: العلوم التجريبية

3 '	العلا	عناصر الإجابة المعلوم الفيريائية السعبة: العلوم النجريبية عناصر الإجابة
المجموع ا	العد	عنصر برجب
,,,,,		
0.75	0.25	: التحليل البعدي : $[RC] = [R][C] = \frac{[V]}{[A]} \cdot \frac{[q]}{[V]} = \frac{[A][T]}{[A]} = [T]$ RC RC
0.25	0.25 0.25	- مدلوله العملي: هو المدة اللازمة لشحن المكثفة بنسبة %63 - اسمه ثابت الزمن اسمه ثابت الزمن . 4) الجدول :
	0.25	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0.50	0.25×2	$u_{c}(V)$ $u_{c}(t) = f(t)$ $t(m.s)$
01	0.25	$i(t) = \frac{E}{R}e^{-\frac{1}{RC}t} \qquad (6)$
	0.25×2	$i(\infty) = 0$ $ext{ } i(o) = \frac{E}{R}$
	0.25	$u_{c}(\infty) = E$
		التمرين الثالث: (4 نقاط)
01	0.25×2	ا أ - عنصر مشع : نواة ذرته غير مستقرة تتفكك تلقائيا مصدرة شعاعات eta أو eta أو أشعة eta .
	0.25×2	ب) للعنصر نظير : ذراته لها أنوية مختلفة في العدد الكتلي A .
0.5	0.25×2	${}^{210}_{84}Po \rightarrow {}^{A}_{Z}Pb + {}^{4}_{2}He \qquad (2)$ $A = 210 - 4 = 206$
02.50	0.25×3	$Z = 84 - 2 = 82$ $\lambda = \frac{\ln 2}{t_{1/2}} - 1 (3)$
		$\lambda = 5.10^{-3} j^{-1} = 5{,}78.10^{-8} s^{-1}$

تابع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: العلوم التجريبية

امة	العلا	عنبار ماده: العلوم القيرياليةالسعبة: العلوم النجريبية	محاور الموضوع
المجموع	مجزاة	, 3	29-9-35-
	0.25×4	$A = A_0 = \lambda N_0$ ب - $A = A_0 e^{-\lambda t}$ و في $t = 0$	
		$N_O = \frac{A_O}{2} = 1,73.10^{15}$ نواة	
		$N_0 = \frac{1}{\lambda} = 1,73.10$	
		$N = \frac{N_O}{4} = N_o e^{-\lambda t} \qquad - \Rightarrow$	
		4	
	0.25×3	$\frac{1}{4} = e^{-\lambda t} \Rightarrow \ln \frac{1}{4} = \ln e^{-\lambda t}$	
		, , , , , , , , , , , , , , , , , , , ,	
		$\ln 4 = \lambda t \implies t = \frac{\ln 4}{\lambda} = 2t_{1/2}$	
	:	$t = 0,23.10^8 s = 276 j$	
		,	
		التمرين الرابع: (4 نقاط)	
0.25	0.25	1) المعلم المركزي الأرضي : مركزه مركز الأرض ومحاورة و موجهة	
		لثلاثة نجوم بعيدة	
0.50	0.050	(1) $\frac{T^2}{(R+h)^3} = \frac{4\pi^2}{GM_T}$: each $\frac{T^2}{r^3} = \frac{4\pi^2}{GM_T}$ (2)	
0.50	0.25×2	$\frac{(1)\dots (R+h)^3}{(R+h)^3} - \frac{GM_T}{GM_T} \qquad (2)$	
		(2) $v^2 T^2 = 4\pi^2 (R+h)^2$: $v = \frac{2\pi (R+h)}{T}$: Light (3)	
0.55		$V = \frac{1}{T} : U = 4\pi (K + n) : V = \frac{1}{T}$	
0.75	0.25×3	$4\pi^2(R+h)^3$	
		(2) من $T^2 = \frac{4\pi^2 (R+h)^3}{GM_T}$ (1) من	
		$4\pi^{2}(R+h)^{3}$	
		$v^2 \cdot \frac{4\pi^2 (R+h)^3}{GM_T} = 4\pi^2 (R+h)^2$	
		•	
	0.25×2	(3) $v^2 = \frac{GM_T}{(R+h)}$	
02		 4) القمر الجيومستقر: * يدور حول الأرض في نفس جهة دورانها حول محورها. 	
	0.25×2	* يدور حون الأرض في نفس جهة دوراتها خون محورها. * دور حركته يكون مساويا لدور حركة الأرض حول محورها.	
		$rac{T^2}{\left(R+h ight)^3} = rac{4\pi^2}{GM_T}$: h حساب الارتفاع	
	0.25×2	,	
	0.25	$h = \sqrt[3]{\frac{T^2 G M_T}{4\pi^2}} - R$: ومنه	
		1 1 1 1	
	!	$h \simeq 35841Km$ أو $h = 35,841 \times 10^6 m$	
	0.25×2	حساب السرعة v: بالتعويض في العلاقة (3)	
		v = 3Km/s each v = 3070m/s	
	0.25	$F = 446,33N$: بالتعويض $F = G \cdot \frac{M_T \cdot m_S}{(R+h)^2}$: فوة الجذب	
0.50	0.25 0.25	1	
	0.23	الدوران حول الأرض يمنعه من السقوط (القوة الطاردة المركزية)	

تلبع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: العلوم التجريبية

		Y	ـجرييه	عبه : العلوم ا		، سیری	. اسوم	سبر ماده	بع الإجابة الد حاور الموضوع
	العلا			اصر الإجابة	20				حاور الموضوع
المجموع	مجزأة								
01.75	0.25×2			<u>, , , , , , , , , , , , , , , , , , , </u>	٠. ۵	ت الإيثيا	لتجريبي لإيثانواد - جدول	`	
	0.25	الحالة	CH ₃ C 00H	$+C_2H_5OH$					
	0.25	ح . إبتدائية	0,2	0,2	0		0		
	0.25	ح. إنتقالية	0,2-x	0,2-x	x		x		
	0.25	ح. النهائية		0,2-x	x_f		$\frac{x_f}{x_f}$		
			0,2 %		x _f		مريد عادلة المع		
								ج- ۵	
	0.25	CH_3COO	$^{\circ}H + (Na^{+} + C)$		-				
	0.25		$n_A = n_B = 0$	V' يرة: $_{a}$ ' V'	ناعل المعا	افؤ في تا	عند التكا	-1(2	
00.05			а в		r I he				
02.25	0.25			-		_	_	_	
				$n_a=0,2$	2-x:	ندم الاسر	جدول نه	من	
	0.25				x = 0, 2	$-n_a$:	ومنه		
						u			
				کل زم <i>ن</i> :	جدول في	x في ال	، التقدم	حساب	
	0.05	t(h) = 0	4 8	16 20	32	40	48	60	
	0.25		0,03 0,05	0,08 0,1	0 0,12	0,13	0,13	0,13	
	<u> </u>						<u></u>	<u> </u>	
	0.25		شکل)	x (أنظر ال	=f(t)	-ى :	م المنحن	رس	
			6	ء أو %55	$=\frac{x_f}{}$	$\frac{0,13}{1}$	-0.65	ـ ـ	
	0.25×2			,5 ₇₀ y .	x_{max}	0,2	- 0,05	•	
					ر تام	فاعل غي	نج أن الد	نستنا	
					(λ^2			
	0.25×2			Q_r	ر تام. = $\frac{(x_f)}{(0,2-)}$) =	3,14	جـ -	
	0.23^2			(eq)	(0,2-	$x_f)^2$			
}									
	İ								
	L								L

الإجابة النموذجية وسلم التنقيط

مة	العلا	محاور الموضوع عناصر الإجابة
المجموع	مجزاة	
		التمرين الأولى: (04 نقاط):
0.50	0.25	I) 1 - أ/ - طاقة الربط النووي: الطاقة اللازمة لتماسك النويات.
	0.25	$1u = \frac{1}{12} m_{(^{12}C)} = \frac{1}{N_A} = 1,66 \times 10^{-27} kg$: ب/ وحدة الكتل الذرية
0.25	0.25	$E_{l} = \left[Z.m_{p} + (A-Z)m_{n} - m_{\chi} \right] C^{2} \qquad -2$
0.50	0.25 0.25	$E_1 = (92 \times 1,0073 + 143 \times 1,0087 - 234,9935) \times 931,5$ - 3
	0.23	$E_I = 1,8.10^3 MeV$
0.50	0.25	-4 العنصر 3_1H $^{14}_6C$ $^{140}_{54}Xe$ $^{235}_{92}U$
	,	$E_{1/2}$ 2,85 7,11 8,32 7,62
	0.25	
0.25	0.25	5 - النواة الأكثر استقرار ⁹⁴ 5r
		لأن طاقة الربط لكل نوية توافق أكبر قيمة في الجدول .
0.75	0.25	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$ /\(\frac{1}{-1}\) (II
	0.25	$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + ^{1}_{0}n$
	0.25	${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{140}_{54}Xe + {}^{94}_{38}Sr + 2{}^{1}_{0}n \qquad / \tau$
0.75	0.25	2 - التحول: أ - إشعاعي
	0.25	ب - أندماج
	0.20	ج - انشطار
	0.25	3 – الطاقة المحررة من كل تفاعل على الترتيب: ب و ج.
		$E = \left (m_f - m_i)c^2 \right $
	0.25	$ F = \pm 17.04 MeV$
0.50	0.25	$ E_2 = +17,04 MeV$ $ E_3 = +184,7 MeV$
		E ₃ - T104, THEF

التجريبية	: العلوم	. الشعبة	الفيزيائية	العلوم	:	إلر ملاة
-----------	----------	----------	------------	--------	---	----------

ä	العلا	عناصر الإجابة
المجموع	مجزأة	
0.50	0.25×2	<u>المرين الثاني</u> : (4 نقاط)
0.25	0.25	i : كثيل عند عند 1
0.50	0.25×2	$u_c + u_R = 0 \Rightarrow u_c = -u_R$
0.75	0.25 0.25×2	: المعادلة التفاضلية $u_c+R\frac{dq}{dt}=0$ $u_c+RC\frac{du_c}{dt}=0 \qquad \qquad \frac{du_c}{dt}+\frac{1}{RC}u_c=0$ $\vdots \ a\ ,\ b \qquad $ نعيين قيمة كل من a
0.75	0.25	$ae^{bt} + RCabe^{bt} = 0$ $e^{bt} (a + RCab) = 0 \Rightarrow a + RCab = 0$ $b = -\frac{1}{RC} \Rightarrow b = -666, 7$
	0.25	$u_{c}(0) = a = \frac{q_{0}}{C} = 6$: غين $t = 0$
0.25	0.25	$u_{c}(t) = Ee^{-\frac{1}{RC}t} = 6e^{-666.7t}$: u_{c} العبارة الزمنية لـ $u_{c}(t) = 6e^{-666.7t}$: عند $t = 0$ عند $t = 0$
01	0.25 0.25	$b=-rac{1}{ au}$ ومنه $b=-rac{1}{RC}$ $ au=1.5 imes10^{-3}s$ ومنه $uc(au)=0.37E=2.22V$
	0.25	$b = -\frac{1}{\tau} = -\frac{1}{1,5 \times 10^{-3}} = -666,7$
	0.25	z' (4 نقاط) التمرين الثالث: (4 نقاط) z' $\overline{F}_{ext} = \overline{P} + \overline{f} = m\overline{a}_G$
01.50	0.25 الرسم 0.25	\overrightarrow{f} : $z'z$: $z'z$: $z'z$ وبالإسقاط على $z'z$: $z'z$ وبالإسقاط على $z'z$: z'
	0.25	\overrightarrow{P} (1) $\frac{dv}{dt} = -\frac{k}{m}v + g$ ومنه z (2) $\frac{dv}{dt} = Av + B$ وهي من الشكل

يع الإنجاب المنبار ماده المنطوم الميرياتيا المنطب المنوم المبريبيا	بـار مـادة : الـعلوم الفيزيـائيـةالشعبـة : الـعلوم التجريبيـ	ابع الاجابة اخت
--	--	-----------------

مة	العلا	عناصر الإجابة	محاور الموضوع
المجموع	مجزأة		
	0.25×2	$A=-rac{k}{m}$ و $B=g$: بالمطابقة بين (1) و (2) نجد	
		v_l و v_l من البيان :	
		البيان مستقيم لا يمر من المبدأ معادلته من الشكل:	
	0.25	$(3) \ldots a_G = \alpha t + \gamma$	
01.50	0.25	$\alpha = \frac{2-10}{10-0} - 0.8$ $\theta = 10$:	
	0.25 0.25	$A=\alpha=-0.8$: نجد (2) و (2) بالمطابقة بين (2) و $B=\gamma=10 \Rightarrow g=10 ms^{-1}$	
•	0.25	عند بلوغ السرعة الحدية لدينا: $\frac{dv}{dt} = 0$ ومنه:	
		$Av_i + B = 0 \Rightarrow v_i = -\frac{B}{A} = \frac{-g}{-0.8} = \frac{10}{0.8}$	
		$v_{i} = 12,5ms^{-1}$	
	0.25	•	
		$\frac{k}{m}$ بالتحليل البعدي : 3	
		$\frac{k}{m} = \frac{g}{v_l} \Rightarrow \frac{m}{k} = \frac{v_l}{g}$ لدينا	
D. 50	0.25	ومنه وحدة $\frac{m}{k}$ هي الثانية (s) في الجملة الدولية $\left[\frac{m}{k}\right] = \frac{[L][T]^{-1}}{[L][T]^{-2}} = [T]$	
	0.25	s^{-1} ومنه بالمطابقة $\frac{k}{m}$ وحدته $\frac{k}{m} = 0.8$	
1.25	0.25	$k = 80N sm^{-1}$ ومنه $\frac{k}{m} = 0.8 : k$ حساب -4	
		v(t) = f(t) : — التمثيل الكيفي لـ - 5	
L25	0.25		
_			

تلبع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: العلوم التجريبية

		 اختبار مادة : العلوم الفيزيانيةالشعبة : العلوم التجريبية ضوع	يعع الإجاب
	العلا	ضوع عناصر الإجابة	محاور المود
المجموع	مجزأة		
0.50	0.25×2	التمرین الرابع : $CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO_{aq}^- + H_3O_{(aq)}^+ + H_2O_{(aq)}^- + H_2O_{(l)}^- = CH_3COO_{aq}^- + H_3O_{(aq)}^+$ التقدم :	
	0.25	المعادلة $CH_3COOH_{(aq)} + H_2O_{(I)} = CH_3COO_{(aq)}^- + H_3O_{(aq)}^+$	
01		ربیادهٔ (۲۷ ع.) ابتدائیهٔ (۲۷ ع.) ابتدائیهٔ (۲۷ ع.) ابتدائیهٔ	
	0.25 0.25	ع. انتقالیة	
	0.25		
	0.23	ح.نهائيه $CV - x_{eq}$ ع.نهائيه x_{eq}	
0.50	0.25	$n(H_3O^+)_{eq} = x_{eq} = [H_3O^+]_f V : 3 $ عبارة $[H_3O^+]_{eq} = x_{eq} = [H_3O^+]_f V : 3$	
	0.25	$\tau_{f} = \frac{x_{f}}{x_{max}} = \frac{x_{f}}{CV} \Rightarrow \left[H_{3}O^{+}\right] = \tau C$	
		x_{max} CV z	
0.25	0.25	$Ka = \frac{\left[H3O^{+}\right]_{f} \cdot \left[CH3COO^{-}\right]_{f}}{\left[CH3COOH\right]_{f}} = \frac{\tau^{2}C}{1-\tau} : K_{a} \text{ is the } 4$	
	ſ	5- أ/ اكمال الجدول : 4_ 1 ("I mal-1) 5,62 11,40 56,18 92,6	
	0.25	$A = \frac{1}{C} \left(L.mot \right)$	
	0.25	$B = \frac{\tau^2}{1 - \tau} \begin{vmatrix} 1,0 \times 10^{-4} & 2,0 \times 10^{-4} & 10 \times 10^{-4} \\ 10,7 \times 10^{-4} & 16,7 \times 10^{-4} \end{vmatrix}$	
	0.25	A •	
01.75	0.25	A = f(B)ب/رسم البيان $A = f(B)$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
		ΔΑ 5 425 104	
		$a = \frac{\Delta A}{\Delta B} = 5,435 \times 10^4$	
	0.25	$Ka = \frac{\tau^2 C}{1-\tau} \Leftrightarrow \frac{1}{C} = \frac{1}{K_a} \times \frac{\tau^2}{(1-\tau)} $ (2) : العلاقة النظرية	
		$1-\tau C K_a (1-\tau)$	
	0.25	$Ka = \frac{1}{a}$ بالمطابقة بين العبارتين (1)و (2)نجد	
	33	u	
	0.25	$Ka = \frac{1}{5,435 \times 10^4} = 1,84 \times 10^{-5}$	

ā .`	العلا	T		، الاحلية	يزيائية الشعبة عناص			c	عادد الممد
م- المجموع	مجز أة مجز أة			ر ،ړجب	مين العبد			صنوح	حاور المود
						، التجريبي : جدول التقدم :	-1		
		المعادلة ا	$C a C O_{3(s)}$	+ 2 H	$_{(aq)}^{+} = CO$		$q_{(aq)}^{2+} +$	H_{2}	$O_{(l)}$
.75	0.25	ح الجملة			، المادة بالمول				
	0.25	ح. إبتدائية	2×10 ⁻²		10-2	0	0		بوفرة
		ح.إنتقالية	$2 \times 10^{-2} - X$		$10^{-2} - 2X$				بوفرة
	0.25	ح.نهائية	$2 \times 10^{-2} - X$	max	$10^{-2} - 2X_{\text{max}}$	X max	X max		بوفرة
			لدينا	ل التقدم)n و x : من جدو	$\mathrm{CO}_2)$ قة بين	2- العلا		
.50	0.25×2				$n=\frac{I}{I}$	$\frac{\partial V}{\partial T}$ \circ n(CC) ₂)=x		
					I	ر، ي الجدول <u>:</u>	1		
		$n(CO_2)$ mmol	0,92		2,24	2,89			
0.25	0.25	x(mmol)	0,92		2,24	2,89			
.25	0.25			11/11	x انظر الصفحة	f(t): din	4- تم		
			ظه:	ي کل لھ	مية +H المتبقية ف		ĺ		
- -0	0.05	$n(H^+)m$	amol 8	,0	5,6	-1 4,0	,		
.50	0.25 0.25			.0	2,2	3,0			
.25	0.25	x(mn)	nol) 1,						
				n(H	$I^+\big)_i=n_0-2x:$	ن جدول النقدم	2- مر		
0.25	0.25		$n0(H^+)-r$	$a(H^+)_{\iota}$	م x في كل لحظة	anti ia	ا د ما		
0.25	0.23 ا لر سم	<i>x</i>	$r = \frac{}{2}$	`	م χ قي χ نحصه	ب معدار التعد	ا ز - حساد		
0.50	0.25				انظر أدناه	x = f(t):	م 4- البياز		
U.JU	0.25		ى لحظة	قدم في أز	لملى نفس مقدار الد	ناج: نحصل ع	- الاستن		
D.25	0.25		•		عد:	يد المتفاعل الم	5- تحدي		
	0.2.		$2 \times 10^{-2} - 3$	$x = 0 \Rightarrow$	$x = 2 \times 10^{-2} mol$	ا التقدم إدرنا	امن حدما		
		1	$10^{-2} - 2x =$	$=0 \Rightarrow x$	$=0,5\times10^{-2}mol$	ن اسعدم سیت	اس جدو		
					هو المتفاعل المحد		ا و		
0.2 5	0.25	$x = \frac{xf}{x}$	$-\Rightarrow x = \frac{5}{2} = 2$,5mmol	سف التفاعل:	ىتنتاج زمن نم	ا 6- اس		
		2	2		$t_{\frac{1}{2}} = 70S$		1		
	0.25		t	= 50S 4	½ حجمية للتفاعل عن				
D.25	0.25				$3 \times 10^{-5} = 3 \times 10$				
			$v = \frac{1}{V} \frac{1}{L}$	$-\frac{10^{-1}}{10^{-1}}$ X	2×10 = 2×10	mous. L	1		

تلبع الإجابة اختبار مادة: العلوم الفيزيائية الشعبة: العلوم التجريبية محاور الموضوع عناصر الإجابة العلامة مجزأة المجموع x(mmol) البيانان x = f(t)بالطريقتين 0,5 t(s)