

T 2 CRIPTOGRAFÍA T 2.3 CRIPTOSISTEMAS SIMÉTRICOS. CIFRADORES DE BLOQUE Y FLUJO (parte 3)

Criptografía y seguridad informática Seguridad en las tecnologías de la información @ COSEC

Curso 2016-2017

- Criptosistemas simétricos y asimétricos
- Criptosistemas simétricos
 - Cifradores de bloque
 - Cifradores de flujo
 - Introducción
 - Tipos
 - Serie cifrante
 - PRNGs criptográficos
 - □ LFSRs
 - Cifrador de flujo. Ventajas y desventajas
 - ▶ RC4

Introducción

Características de los cifradores de flujo

Descomponen el mensaje en bytes (o en bits):

$$M = m_1, m_2, ... m_n$$

- Cifran cada m_i con el correspondiente k_i de la serie cifrante
 - idealmente infinita y aleatoria

$$K = k_1, k_2, ... k_n, k_{n+1,...}$$

 $E_{K}(M) = E_{k1}(m_{1}) E_{k2}(m_{2})... E_{kn}(m_{n})$

Introducción

Cifrado de Vernam. One-time-pad

- ▶ Descifrado: $M = E(M) \oplus K$
- Shannon demostró que el cifrado de Vernam es incondicionalmente seguro si la clave K:
 - Es realmente aleatoria
 - Se usa una sola vez
 - Es de longitud igual o mayor que M

Introducción

Vernam no es práctico

Cifrador de flujo práctico:

▶ K: serie cifrante obtenida a partir de clave base

- Criptosistemas simétricos y asimétricos
- Criptosistemas simétricos
 - Cifradores de bloque
 - Cifradores de flujo
 - Introducción
 - **▶** Tipos
 - Serie cifrante
 - ▶ PRNGs criptográficos
 - □ LFSRs
 - ▶ Cifrador de flujo. Ventajas y desventajas
 - ▶ RC4

Tipos de cifradores de flujo

Síncrono

- Emisor y receptor se sincronizan externamente
- Serie cifrante independiente del texto en claro y del criptograma

Tipos de cifrado de flujo

Autosíncrono

- Emisor y receptor se sincronizan automáticamente
- La serie cifrante es una función de símbolos previamente cifrados

- Criptosistemas simétricos y asimétricos
- Criptosistemas simétricos
 - Cifradores de bloque
 - Cifradores de flujo
 - Introducción
 - Tipos
 - **▶ Serie cifrante**
 - PRNGs criptográficos
 - □ LFSRs
 - ▶ Cifrador de flujo. Ventajas y desventajas
 - ▶ RC4

Serie cifrante

- Aproximación para generar de la serie cifrante en emisor y receptor
 - Mediante un generador de números pseudoaleatorios
 - ☐ Generación determinista
 - A partir de una clave base (secreta e impredecible)
 - ☐ De centenas de bits (para evitar ataques de fuerza bruta)

Serie cifrante.

Propiedades deseables: Postulados de Golomb

Postulado GI:

Debe existir igual número de ceros que de unos. Se acepta como máximo una diferencia igual a la unidad.

Postulado G2:

La mitad de las rachas (sucesión de dígitos iguales) tiene longitud 1, la cuarta parte tiene longitud 2, la octava longitud 3, etc. Que no haya demariados iguales seguidos.

Postulado G3:

Para todo k, la Autocorrelación fuera de fase AC(k) es igual a una constante.

Función de Autocorrelación:

- Desplazamiento de la secuencia S de período T de k bits hacia la izquierda;
- \rightarrow AC(k) = (A F) /T
- Aciertos = bits iguales Fallos = bits diferentes

Serie cifrante

Postulados de Golomb. Ejemplo

Ejercicio:

Compruebe que para esta secuencia cifrante

$$s_i = 1 1 1 1 0 1 0 1 1 0 0 1 0 0$$

la Autocorrelación fuera de fase AC(k) para todos los valores de k $(1 \le k \le 14)$ es constante e igual a -1/15.

•	s. = 1 1	1 1 0 1 0 1 1 0	01000)	•	• •	• •	•	• •	•	•	•	•	• •
•			· · · · · · · · · · · · · · · · · · ·) a	esplat	-ado 1	itq	•	•	•	•	•	•	•
k=1	111	0101100	1 000 1		•	•		•	•	•	•	•	•	
				A=	7	• •		•	• •		•	•	•	• •
k=2	770	1011001 C) () () () () () () () () () () () () ()	A=1	•	• •	•	•	• •	• •	•	•	•	• •
k=3		01100100			•	•	•	•	•	•	•	•	•	•
		x	, x x x	A=7	•	•					•			
• •	/		0		.0 .	•	• •	•	• •		•	•	•	• •
• •	xos . qu	Coinciden con	a anterio	V. des.	prata	og,	• •	•	• •	•	•	•	•	• •
•					•	•		•	•	•	•	•	•	•
Rac	thas de (00 10100 111 0110	·				•	A.	• •			٠	()	
• •	00 - 11	Dachas de	1 simbolo:5	1/2 -	. 1	ray -	4 por	lo go	ρρη 	ia.qve	ψ.	mple	O. 20	haber.
	. 1 → 11				•	•		•	• • •	•	•	•	•	•
• •	0 - 111	Raches de	2 simb: 3	.% -	•	• •	• •	•	3-	4	•	•	•	• •
• •	141 → L 11 → L	Packer de	3 sinb: 1	1/8	•	• •	• •	•		,	•	•	•	• •
•											•	•	•	•
•		Se comple à	el postulado	547	, 3 €	(3,4	۱. ۲	1e ('4,2)		•	•	•	
• •	• • • •		• • • •		•	• •		•	• •	•	•	•	•	• •
• •	0010	1001110	110	• • •	•	• •	•	•	• •	•	•	•	•	• •
•					•	•		•	•		•	•	•	•
k=1	.0.1.0.1.	0011101	100		•	• •	• •	•	• •	• •	•	•	•	• •
		111011		•	•	• •	• •	•	• •	• •	•	•	•	• •
		× ×× ×	x * A-	6	•	•		•	•	•	•	•	•	•
k=3	0.400	1110110	001	<i>.</i>	•	• •		•	• •		•	•	•	• •
k= 4	,		* *		•	• •	•	•	• •	•	•	•	•	• •
•	, , o, o, o, o,	**************************************	× A=6		•	•	•	٠	•	•	•	•	•	•
•	المناسبة المناسبة	₀ . વૃષ્			•			•	•	•	•	•	•	•
· k=1	Buscavilles L.U.	2. (A + 6)	• • • •		•	•		٠	• •		•	•	•	• •
• •	· · · T				•	• •		•			•	•	•	• •

Serie cifrante

- Propiedades deseables
 - Período muy grande
 - Aleatoriedad: Distribución uniforme, independencia
 - Impredecibilidad
 - Se puede medir por su complejidad lineal LC
 - número de bits necesarios para predecir el resto de la secuencia
 - viene dada por la longitud mínima del LFSR capaz de reproducirla
 - Se calcula L (número de celdas) y si se conocen 2L bits se puede predecir el resto de la serie
 - □ Meta: conseguir una complejidad lineal lo más alta posible

- Criptosistemas simétricos y asimétricos
- Criptosistemas simétricos
 - Cifradores de bloque
 - Cifradores de flujo
 - Introducción
 - Tipos
 - Serie cifrante
 - PRNGs criptográficos
 - □ LFSRs
 - Cifrador de flujo. Ventajas y desventajas
 - ▶ RC4

PRNGs criptográficos

- Basados en algoritmos criptográficos existentes
 - Cifradores simétricos
 - Cifradores asimétricos
 - Funciones resumen
- Ad-hoc
 - Generador de registros de desplazamiento
 - ▶ LFSR (linear feed-back shift register)
 - ► A5/I (2000)
 - ► A5/2 (2001)
 - PRNG propio de RC4

- Criptosistemas simétricos y asimétricos
- Criptosistemas simétricos
 - Cifradores de bloque
 - Cifradores de flujo
 - Introducción
 - ▶ Tipos
 - Serie cifrante
 - ▶ PRNGs criptográficos
 - LFSRs
 - Cifrador de flujo. Ventajas y desventajas
 - RC4

que provocan compleji de l'ineal de k 6 (1101) Coje los termina de la remille de los grados de par - PCXI= X+XLJ

Registro de desplazamiento con retroalimentación lineal [Linear Feedback Shift Register (LFSR)]

Universidad

prohibido cadena de ceros

COSEC LAB. Dpto. Informática

 $T_{\text{máx}} = 2^{\text{n}} - 1$

LFSR

EJEMPLO -- Generador LFSR de cuatro celdas (n = 4)

Mirorla aprite.

X

 S_1 S_2 S_3 S_4

- ▶ Clave base: $S_1S_2S_3S_4 = 1$ 0 1 1
- Polinomio de conexión $f(x) = x^4 + x + I$
- ▶ En este ejemplo el periodo es $T = T_{máx} = 2^n I$

Bit s_i Registro bit realim.

 X^4

LFSR

- Periodos altos pero complejidad lineal muy baja
- Solución:
 - Aumentar la complejidad lineal del generador
 - ▶ Eg, empleando varios LFSRs
 - Operaciones lineales de secuencias seudoaleatorias
 - Operaciones no lineales de las secuencias seudoaleatorias
 - Filtrado no lineal de los estados de un LFSR
 - Otros

LFSR

Aumentando la complejidad lineal de los LFSRs

Operaciones lineales de secuencias seudoaleatorias:

Operaciones no lineales de las secuencias seudoaleatorias:

- Criptosistemas simétricos y asimétricos
- Criptosistemas simétricos
 - Cifradores de bloque
 - Cifradores de flujo
 - Introducción
 - Tipos
 - Serie cifrante
 - LFSRs
 - PRNGs criptográficos
 - Cifrador de flujo. Ventajas y desventajas
 - ▶ RC4

Cifrado de flujo. Ventajas y desventajas

Ventajas:

- Transformación byte a byte, o bit a bit
 - Altas velocidades de cifrado
- Los errores de transmisión no se propagan

Desventajas:

- Escasa difusión de la información
 - Cada símbolo de M se corresponde con uno de C
- Las series cifrantes no son realmente aleatorias
 - Generación determinista
- Problemas de reutilización de la clave >

Cifrado de flujo. Ventajas y desventajas

- Problemas de reutilización de la clave:
 - Ataque con texto original conocido

Se puede obtener K, teniendo M y C:

$$M \oplus C = M \oplus M \oplus K = K$$

Ataque sólo al criptograma

M_i a partir de C_i y C_i escogidos si M_i predecible:

$$C_i \oplus C_j = M_i \oplus K \oplus M_j \oplus K = M_i \oplus M_j$$

- Criptosistemas simétricos y asimétricos
- Criptosistemas simétricos
 - Cifradores de bloque
 - Cifradores de flujo
 - Introducción
 - Tipos
 - Serie cifrante
 - LFSRs
 - PRNGs criptográficos
 - ▶ Cifrador de flujo. Ventajas y desventajas
 - ▶ RC4

- Algoritmo propietario de RSA
- Inicialmente secreto, luego desensamblado y publicado en sci.crypt
- Diseño de Ron Rivest, simple pero muy efectivo
- ▶ Tamaño variable de clave, trabaja sobre bytes
- Muy simple -> rápido en sw
- Muy usado (web SSL/TLS, wireless WEP, etc.)

1. Fase de inicialización

- Clave base variable de I a 256 bytes
- Vector de estados S={S[0],S[1],...,S[255]}
 - S es el estado interno del cifrador
- Usa la clave para permutar el vector S
- Dada una clave k de longitud l bytes

```
for i = 0 to 255 do

S[i] = i

j = 0

for i = 0 to 255 do

j = (j + S[i] + k[i mod l]) (mod 256)

swap (S[i], S[j])
```


! Serie cifrante y cifrado

- ▶ En cada paso de cifrado se modifica S: En cada paso se vuelve a des ordens/permol
- La suma de un par de valores en S determina el byte de salida

```
[i=j=0] \begin{tabular}{l} Cogemos 2 policiones, sumamos sus volones y la \\ clave es et elemento de la posición de las uma. \\ Y combiamos las 2 pos, i y j \\ i=(i+1) \mbox{ (mod 256)} // contador simple \\ j=(j+S[i]) \mbox{ (mod 256)} // simula un random-walk \\ swap(S[i],S[j]) \\ t=(S[i]+S[j]) \mbox{ (mod 256)} \\ C_i=M_i\oplus S[t] \end{tabular}
```



```
1º faze:

¿ Que volor de la clave haçe que el vector noise desordère?

j=j+s(i)+h.
                                                    Hay 255 y come hay 2 conos llegas
La clave fera: [h] = \ 0,0,255,254,253,...,2\}
       i=0 +0+k0 => k0= 0
       j=0+1+k1=1=> k1=0
       i=2 j=1

Son iquel a i pava que no se des ordenen, ya que des pies de esto hace

j=1+2+1/2=2=> 1/2=255 -4 mod 156 = 255

The des ordenen, ya que des pies de esto hace

j=1+2+1/2=2=> 1/2=255 -4 mod 156 = 255
      i=3 j=2
j=2+3+k3=3=> k3=254
     j= 3+4+ Ku=4=> Ku=253
  14 fare: S= } 4,7,9.1,2,6,8,3,5,0}
                [:.0+7=} j+5ci]
                                       ( sip ( sci3, s ci3)
               3 4, 3, 9, 1, 2, 6, 8, 7, 5,07
                                                               }.4,3,8,0,2,6,9,7,5,13
                                                                t=0+1=1
               t= 3+7= 10 modio=0
                                        SciJ+SciJ
               } 4,3,8,1,2,6,9,7,5,0}
```

t= 17 mo2 10= 7

Serie cifrante

Seguridad

- ▶ El resultado es muy no-lineal
- Ningún ataque práctico con tamaño de clave base razonable (128 bits o más) HASTA el año 2015
 - había ataques contra malas implementaciones concretas
 - La serie cifrante sufre un bias...

Seguridad

- En 2015 investigadores de KU Leuven han demostrado ataques "prácticos"
 - Recuperar una cookie segura (enviada sobre HTTP con TLS) en 75 horas
 - Descifrar e inyectar paquetes arbitrarios en WPA-TKIP en 1 hora
- Se está prohibiendo poco a poco su uso en los protocolos que lo contemplan (eg, RFC 7465 lo prohibe para TLS)
- Se están buscando nuevos algoritmos para sustituir a RC4
- De momento:
 - AES-CTR (AES con Counter Mode) o AES-GCM
 - Salsa 20 (resultado del proyecto europeo eSTREAM)

