Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине «Операционная система Linux» Работа с файловой системой ОС Linux

Студент Мастылина А.А.

Группа АИ-18

Руководитель Кургасов В.В.

Оглавление

Цель работы	3
Задание кафедры	4
Ход работы	5
Вывод	20
Ответы на контрольные вопросы	21

Цель работы

Приобрести опыт работы с файлами и каталогами в ОС Linux, настройки прав на доступ к файлам и каталогам.

Задание кафедры

- 1. Запустить виртуальную машину Linux Ubuntu.
- 2. Загрузиться пользователем root (sudo su).
- 3. Ознакомиться со структурой системных каталогов ОС Linux на рабочем месте. Изучить стандарт (2.1. Filesystem Hierarchy Standard).
 - 4. Привести в отчете перечень каталогов с указанием их назначения.
- 5. Просмотреть содержимое каталога файлов физических устройств. В отчете привести перечень файлов физических устройств на рабочем месте с указанием назначения файлов.
- 6. Перейти в директорий пользователя root. Просмотреть содержимое каталога. Просмотреть содержимое файла vmlinuz. Просмотреть и пояснить права доступа к файлу vmlinuz.
 - 7. Создать нового пользователя user.
- 8. Создать в директории пользователя user три файла 1.txt, 2.txt и 3.txt, используя команды touch, сат и текстовый редактор (на выбор vi/nano). Просмотреть и пояснить права доступа к файлам.
 - 9. Перейти в директории пользователя root. В отчете описать результат.
- 10. Изменить права доступа на файл 1.txt в директории пользователя user.
- 11. Создать жесткую и символическую ссылки на файл 2.txt. Просмотреть результаты.
 - 12. Создать каталог new в каталоге пользователя user.
 - 13. Скопировать файл 1.txt в каталог new.
 - 14. Переместить файл 2.txt в каталог new.
 - 15. Изменить владельца файла 3.txt и каталога new.
 - 16. Удалить файл 1.txt в каталоге new.
 - 17. Удалить каталог new.
- 18. Найти, используя команду find, файл vga2iso (или другой файл по заданию преподавателя).

Ход работы

Запустим виртуальную машину Linux Ubuntu и загрузимся пользователем root при помощи команды sudo su. Пример выполнения работы представлен на рисунке 1.

```
#elcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0–52–generic x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

System information disabled due to load higher than 1.0

60 updates can be installed immediately.
0 of these updates are security updates.
To see these additional updates run: apt list —upgradable

Last login: Fri Oct 23 08:03:22 UTC 2020 on tty1
anna@annaserver:~$ sudo su
[sudo] password for anna:
Sorry, try again.
[sudo] password for anna:
root@annaserver:/home/anna# _
```

Рисунок 1 - 3агрузка пользователем root (sudo su)

Посмотрим содержание корневой директории с помощью команды ls и опишем каждый из этих каталогов. Пример выполнения работы представлен на рисунке 2.

```
root@annaserver:/home/anna# cd /
root@annaserver:/# ls
bin cdrom etc lib lib64 lost+found mnt proc run snap swap.img <mark>tmp</mark> var
ooot dev home lib32 libx32 media opt root sbin srv sys usr
root@annaserver:/#
```

Рисунок 2 – Содержание корневой директории

Описание каталогов

- 1. /bin содержит основные утилиты, необходимые как в однопользовательском режиме, так и при обычной работе всем пользователям (пример: cat, ls, cp, tail, ps), исполняемые файлы, а также символьные ссылки на исполняемые файлы;
- 2. /boot это каталог в котором находятся файлы, необходимые для загрузки системы такие как GRUB и ядра Linux. Здесь нет конфигурационных файлов, используемых загрузчиком они находятся в каталоге /etc вместе с другими конфигурационными файлами. В /boot хранятся данные, которые используются до того, как ядро начинает исполнять программы пользователя;

- 3. /cdrom это временное место, где монтируются диски CD-ROM, когда они вставляются в компьютер. Однако, стандартное место для подключаемого носителя находится внутри каталога /media;
 - 4. /dev содержит файлы устройств;
- 5. /etc содержит конфигурационные файлы операционной системы и всех сетевых служб;
- 6. /home содержит домашние каталоги всех пользователей, зарегистрированых в системе;
- 7. /lib содержит основные библиотеки и модули ядра, необходимые для работы программ из /bin и /sbin;
- 8. /lib 64 обычно это используется для поддержки 64-битного или 32-битного формата в системах, поддерживающих несколько форматов исполняемых файлов, и требующих библиотек с одним и тем же названием. В этом случае /lib32 и /lib64 могут быть библиотечными каталогами, а /lib символической ссылкой на один из них;
- 9. /lost+found этот каталог нужен для хранения испорченных файлов при проблемах с файловой системой, которые были восстановлены после, например, некорректного размонтирования файловой системы;
- 10. /media данный каталог содержит точки монтирования для сменных носителей, таких как CD-ROM, DVD-ROM (впервые описано в FHS-2.3);
- 11. /mnt точки монтирования. В современных дистрибутивах Linux этот процесс обычно происходит автоматически. При этом в каталогах /mnt или /media создается подкаталог, имя которого совпадает с именем монтируемого тома;
- 12. /opt дополнительное программное обеспечение, здесь обычно размещаются установленные программы, имеющие большой дисковый объем, или вспомогательные пакеты;
- 13. /proc каталог псевдофайловой системы procfs, которая используется для предоставления информации о процессах (по-другому это

виртуальная файловая система, которая обеспечивает связь с ядром и монтируется в каталогу /proc). Он существует только во время работы системы в оперативной памяти компьютера. Каталог представляет интерес и с точки зрения безопасности;

- 14. /root каталог пользователя root;
- 15. /run хранение данных, которые были запущены приложениями;
- 16. /sbin набор утилит для системного администрирования, содержит исполняемые файлы, необходимые для загрузки системы и ее восстановления в различных щекотливых ситуациях. Запускать эти утилиты имеет право только root.;
- 17. /snap по умолчанию является местом, где файлы и папки из установленных пакетов snap появляются в вашей системе;
- 18. /srv параметры, которые специфичные для окружения системы, чаще всего данная директория пуста;
- 19. /sys это директория, к которой примонтирована виртуальная файловая система sysfs, которая добавляет в пространство пользователя информацию ядра Linux о присутствующих в системе устройствах и драйверах;
 - 20. /tmp временные файлы. Linux, регулярно очищает этот каталог;
- 21. /usr в этом каталоге хранятся все установленные пакеты программ, документация, исходный код ядра и система X Window. Все пользователи кроме суперпользователя гоот имеют доступ только для чтения. Может быть смонтирована по сети и может быть общей для нескольких машин;
- 22. /var переменные файлы (variable), которые подвергаются наиболее частому изменению. Например, кэши различных программ; файлы блокировки для недопустимости одновременного использования одной программы несколькими пользователями; файлы системных журналов; временные файлы (при выключении компьютера содержимое очищается); информация о различных программах; общая информация о состоянии

системы с момента последней загрузки, входа в систему и т.д.; очередь печати, факсов, а также входящие почтовые ящики пользователей и т.д;

Просмотрим содержимое каталога файлов физических устройств (/dev). На рисунке 3 приведён перечень файлов физических устройств.

root@annaserver:/# cd dev									
root@annaserver:			44	440	4450	++040	++06		
autofs	hwrng	port	ttyO	tty3	tty50	ttyS13	ttyS6	vcsa3	
block	i2c-0	ppp	tty1	tty30	tty51	ttyS14	ttyS7	vcsa4	
bsg	initctl	psaux	tty10	tty31	tty52	ttyS15	ttyS8	vcsa5	
btrfs–control		ptmx	tty11	tty32	tty53	ttyS16	ttyS9	vcsa6	
bus	kmsg		tty12	tty33	tty54	ttyS17	ttyprintk	vcsu	
cdrom		random	tty13	tty34	tty55	ttyS18		vcsu1	
char	log	rfkill	tty14	tty35	tty56	ttyS19	udmabuf	vcsu2	
console	loop–control	rtc	tty15	tty36	tty57	ttyS2	uhid	vcsu3	
core	100p0	rtc0	tty16	tty37	tty58	ttyS20	uinput	vcsu4	
cpu_dma_latency	loop1	sda	tty17	tty38	tty59	ttyS21	urandom	vcsu5	
cuse	100p2	sda1	tty18	tty39	tty6	ttyS22	userio	vcsu6	
disk	100p3	sda2	tty19	tty4	tty60	ttyS23	vboxguest		
dm-0	loop4	sda3	tty2	tty40	tty61	ttyS24	vboxuser	vga_arbiter	
dri	100p5	sg0	tty20	tty41	tty62	ttyS25	VCS	vhci	
dvd	100p6	sg1	tty21	tty42	tty63	ttyS26	vcs1	vhost-net	
ecryptfs	loop7	shm	tty22	tty43	tty7	ttyS27	vcs2	vhost-vsock	
fb0		snapshot	tty23	tty44	tty8	ttyS28	vcs3	zero	
fd	mcelog		tty24	tty45	tty9	ttyS29	vcs4	zfs	
full	mem	sr0	tty25	tty46	ttyS0	ttyS3	vcs5		
fuse	mqueue	stderr	tty26	tty47	ttyS1	ttys30	vcs6		
hidrawO		stdin	ttÿ27	tty48	ttyS10	ttyS31	vcsa		
hpet	null	stdout	tty28	tty49	ttyS11	ttÿS4	vcsa1		
hugepages	nvram	tty	tty29	tty5	ttyS12	ttys5	vcsa2		
root@annaserver:/dev# _									

Рисунок 3 — Содержимое каталога файлов физических устройств Укажем назначения файлов

- 1. acpi_thermal_rel обеспечивает функции управления температурой модуля ACPI;
- 2. autofs система управления автоматическим монтированием (и отмонтированием).
- 3. btrfs-control устройства принимает некоторые вызовы ioctl, которые могут выполнять следующие действия с модулем файловой системы: сканирование устройства на наличие файловой системы btrfs (т.е. позволить файловым системам с несколькими устройствами монтировать автоматически) и регистрировать их в модуле ядра, аналогично сканированию, но также дождаться завершения процесса сканирования устройства для данной файловой системы, получение поддерживаемые функции;
 - 4. console текстовый терминал и виртуальные консоли;
- 5. cpu_dma_latency часть интерфейса качества и обслуживания в ядре Linux;
 - 6. cuse реализация символьных устройств (char devices) в Linux

- 7. drm_dp_aux канал DisplayPort AUX;
- 8. ecryptfs POSIX- совместимая многоуровневая криптографическая файловая система в ядре Linux;
- 9. fb устройство обеспечивает абстракцию для графического оборудования;
- 10. freefall это решение для управления брандмауэром для многих дистрибутивов Linux, включая Ubuntu, Debian, CentOS, RHEL и Fedora;
- 11. fuse (filesystem in userspace «файловая система в пользовательском пространстве») свободный модуль для ядер Unix подобных операционных систем, позволяет разработчикам создавать новые типы файловых систем, доступные для монтирования пользователями без привилегий (прежде всего виртуальных файловых систем);
 - 12. hpet тип таймера, используемый в персональных компьютерах
 - 13. hwrng генератор случайных чисел;
- 14. i2c шина предлагает различные преимущества, такие как экономия места на плате, уменьшение общей стоимости оборудования, а также предлагает средства упрощённой отладки;
- 15. kmsg узел символьного устройства обеспечивает доступ пользователя к буферу printk ядра;
- 16. kvm программное решение, обеспечивающее виртуализацию в среде Linux на платформе x86;
- 17. loop это блочное устройство, которое отображает блоки данных обычного файла в файловой системе или другое блочное устройство;
- 18. loop-control начиная с Linux 3.1, ядро предоставляет устройство dev /loop-control, которое позволяет приложению динамически находить свободное устройство, а также добавлять и удалять устройства loop из системы;
- 19. mcelog программа mcelog декодирует машинные события (аппаратных ошибок) на х86-64, работающих под управлением 64-разрядной Linux

- 20. mei это изолированный и защищенный вычислительный ресурс (сопроцессор), находящийся внутри определенных наборов микросхем Intel;
- 21. mem это символьный файл устройства, в котором отображается главная память компьютера. Он может использоваться, например, для проверки (и даже исправления) системы;
- 22. null специальный файл в системах класса UNIX, представляющий собой так называемое «пустое устройство»;
- 23. nvram она же энергонезависимая память, применяется в современных UEFI BIOS, в отличии от старых BIOS, где для хранения использовали CMOS SRAM + батарейка;
 - 24. port символьное устройство для чтения и / или записи;
- 25. ppp это механизм для. создания и запуска IP (Internet Protocol) и других сетевых протоколов;
 - 26. psaux устройство мыши PS / 2;
- 27. ptmx является символьным файлом с основным номером, равным 5 и вторичным номером 2, обычно имеет права доступа 0666, владелец и группа равны root. Используется для создания пары основного и подчиненного псевдотерминала;
- 28. random специальные символьные псевдоустройства в некоторых UNIX-подобных системах, впервые появившиеся в ядре Linux версии;
- 29. rfkill это подсистема в ядре Linux, предоставляющая интерфейс, через который можно запрашивать, активировать и деактивировать радиопередатчики в компьютерной системе.
 - 30. rtc часы реального времени;
 - 31. sda первый жесткий диск;
 - 32. sda N-ый раздел первого жесткого диска;
 - 33. sdb второй жесткий диск;
 - 34. sdb N-ый раздел второго жесткого диска;

- 35. sg SCSI Generic driver используется, среди прочего, для сканеров, устройств записи компакт-дисков и чтения аудио-компакт-дисков в цифровом формате;
 - 36. snapshot поддержка снимков устройства;
 - 37. tmp разрешает доступ к устройству Trusted Platform Module (tpm);
 - 38. tty виртуальная консоль;
- 39. ttyprintk драйвер псевдо ТТҮ, который позволяет пользователям создавать сообщения printk через вывод на устройство ttyprintk;
- 40. uhid поддержка драйвера ввода-вывода пользовательского пространства для подсистемы HID;
 - 41. uinput поддержка драйвера уровня пользователя для ввода;
- 42. urandom более быстрая и менее безопасная генерация случайных чисел;
- 43. userio призван упростить жизнь разработчикам драйверов ввода, позволяя им тестировать различные устройства Serio (в основном, различные сенсорные панели на ноутбуках), не имея физического устройства перед ними;
 - 44. vcs текущее текстовое содержимое виртуальной консоли;
- 45. vcsa текущее содержимое текстового атрибута виртуальной консоли;
- 46. vcsu текущее текстовое содержимое виртуальной консоли (юникод);
- 47. vga_arbiter сканирует все устройства PCI и добавляет в арбитраж VGA. Затем арбитр включает / отключает декодирование на разных устройствах устаревших инструкций VGA;
 - 48. vhci виртуальный драйвер HCI Bluetooth;
 - 49. vhost-net ускоритель ядра хоста для virtio ne;
- 50. vhost-vsock программное устройство, поэтому нет пробного вызова, который вызывает драйвер, чтобы зарегистрировать его узел устройства misc char. Это создает проблема с курицей и яйцом: приложения в

пользовательском пространстве должны открываться/ dev / vhost-vsock, чтобы использовать драйвер, но файл не существует, пока модуль ядра загружен;

- 51. video устройство видеозахвата / наложения;
- 52. zero специальный файл в UNIX-подобных системах, представляющий собой источник нулевых байтов;
- 53. zfs файловая система, разработанная компанией Sun Microsystems и обладающая такими характеристиками как возможность хранения больших объёмов данных, управления томами и множеством других.

Перейдём к директории пользователя root и посмотрим содержимое каталога на рисунке 4.

```
See 'snap info <snapname>' for additional versions.

root@annaserver:/# cd boot
root@annaserver:/boot# ls
System.map-5.4.0-52-generic initrd.img lost+found vmlinuz.old
config=5.4.0-52-generic initrd.img-5.4.0-52-generic vmlinuz
grub initrd.img.old vmlinuz-5.4.0-52-generic
```

Рисунок 4 – Содержимое каталога

Посмотрим содержимое файла vmlinuz с помощью команды саt на рисунке 5.

Рисунок 5 – Содержимое файла vmlinuz

Все пользователи и группы пользователей имеют полные права на файл vmlinuz. Владельцем файла указан пользователь root.

Создадим нового пользователя user, для этого воспользуемся командой useradd. Пример выполнения представлен на рисунке 6

```
/
root@annaserver:/# useradd –m user
root@annaserver:/# cd home
root@annaserver:/home# ls
root@annaserver:/home# ls –l
total 8
drwxr–xr–x 3 anna anna 4096 Oct 23 08:01 anna
drwxr–xr–x 2 user user 4096 Oct 28 14:42 user
root@annaserver:/home# _
```

Рисунок 6 – Пример создания нового пользователя user

Создадим в директории пользователя user три файла 1.txt, 2.txt и 3.txt, используя команды touch, саt и текстовый редактор nano. Пример выполнения представлен на рисунках 7 и 8.

```
root@annaserver:/home/user# ls –l
total 4
–rw–r––r– 1 root root 0 Oct 28 16:15 1.txt
–rw–r––r– 1 root root 3 Oct 28 16:18 2.txt
–rw–r––r– 1 root root 0 Oct 28 16:27 3.txt
root@annaserver:/home/user# _
```

Рисунок 7 – Пример работы

Просмотрим и поясним права доступа к файлам.

Владельцем файлов является пользователь root, он имеет полные права на файлы, остальные пользователи имеют только право на чтение.

Рисунок 8 – Пример создания файла используя nano

Перейдём в директорию пользователя root. Пример выполнения представлен на рисунке 9

```
root@annaserver:/home/anna# cd /
root@annaserver:/# cd root
root@annaserver:~# ls
snap
root@annaserver:~# ls –a
. . . .bash_history .bashrc .local .profile .ssh snap
root@annaserver:~# _
```

Рисунок 9 — Каталог root

Выполним следующее задание, изменим права доступа на файл 1.txt в директории пользователя user с помощью команды chmod.

```
root@annaserver:~# chmod 777 /home/user/1.txt
root@annaserver:~# ls–l
ls–l: command not found
root@annaserver:~# ls –l
total 4
drwxr–xr–x 3 root root 4096 Oct 23 07:58 snap
root@annaserver:~#
```

Рисунок 10 – Пример изменения прав доступа с помощью chmod

Так как после команды chmod было указано значение 777, то все пользователи имеют право на чтение, изменение и исполнение файла.

Далее создадим жёсткую и символическую ссылки на файл 2.txt. Пример выполнения представлен на рисунка 11 и 12.

```
root@annaserver:/home/user# cd
/home
root@annaserver:/home# cd /
root@annaserver:/# ln /home/user/2.txt hardlink
root@annaserver:/# ls –l
total 1808460
                                                              7 Jul 31 16:28 bin -> usr/bin
4096 Oct 23 07:55 boot
4096 Oct 23 07:36 cdrom
4080 Oct 29 12:52 dev
4096 Oct 28 14:42 etc
3 Oct 28 16:18 hardlink
4096 Oct 28 14:42 home
7 Jul 31 16:28 lib -> usr/lib
9 Jul 31 16:28 lib32 -> usr/lib3
9 Jul 31 16:28 lib32 -> usr/lib3
16:38 10:32 lib432 -> usr/lib3
16:38 10:32 lib332 -> usr/lib3
16:38 10:32 lib332 -> usr/lib3
16:38 0ct 23 07:35 lost+found
4096 Jul 31 16:28 media
4096 Jul 31 16:28 mnt
4096 Jul 31 16:28 opt
0 Oct 29 12:52 proc
4096 Oct 28 16:22 root
760 Oct 29 12:55 run
8 Jul 31 16:28 sbin -> usr/sbin
4096 Oct 23 07:57 snap
4096 Jul 31 16:28 srv
1851785216 Oct 23 07:45 swap.img
0 Oct 29 12:52 sus
4096 Oct 29 12:53 tmg
4096 Jul 31 16:29 usr
4096 Jul 31 16:29 usr
4096 Jul 31 16:29 usr
                                1 root root
4 root root
2 root root
1rwxrwxrwx
drwxr-xr-x
drwxr-xr-x
                              19 root root
                              93 root root
drwxr-xr-x
                                2 root root
4 root root
1 root root
 -rw-r--r--
driixr-xr-x
lrwxrwxrwx
                                                                                                                             lib32 -> usr/lib32
lib64 -> usr/lib64
libx32 -> usr/libx32
                                     root root
 lrwxrwxrwx
                                     root root
 .רשארשארשא
lrwxrwxrwx
                                      root root
                                     root root
                                2 root root
2 root root
drwxr-xr-x
drwxr-xr-x
                                     root root
root root
drwxr-xr-x
dr–xr–xr–x 107 root root
drwx––––– 5 root root
                                      root root
drwxr–xr–x 25 root root
1rwxrwxrwx
                                      root root
                                6 root root
drwxr-xr-x
                                2 root root
1 root root
drwxr-xr-x
                              13 root root
11 root root
14 root root
drwxr-xr-x
                              13 root root
 oot@annaserver:/#
```

Рисунок 11 – Создание жёсткой ссылки (hardlink)

```
root@annaserver:/home/anna# cd /
root@annaserver:/# ls -1
total 1808460

Tuwruwruw 1 root root 7 Jul 31 16:28 bin -> usr/bin
drwxr-xr-x 4 root root 4096 Oct 23 07:36 cdrom
drwxr-xr-x 2 root root 4096 Oct 23 07:36 cdrom
drwxr-xr-x 19 root root 4080 Oct 30 06:23 dev
drwxr-xr-x 93 root root 4096 Oct 28 14:42 etc
-ru-r-r-- 1 root root 4096 Oct 28 16:18 hardlink
drwxr-xr-x 4 root root 4096 Oct 28 16:18 hardlink
drwxr-xr-x 4 root root 4096 Oct 28 16:28 lib -> usr/lib
lrwxrwxruw 1 root root 9 Jul 31 16:28 lib -> usr/lib
lrwxrwxruw 1 root root 9 Jul 31 16:28 lib32 -> usr/lib32
lrwxrwxruw 1 root root 9 Jul 31 16:28 lib32 -> usr/lib4
lrwxrwxruw 1 root root 10 Jul 31 16:28 lib32 -> usr/lib32
drwx----- 2 root root 4096 Jul 31 16:28 lib32 -> usr/lib32
drwxr-xr-x 2 root root 4096 Jul 31 16:28 media
drwxr-xr-x 2 root root 4096 Jul 31 16:28 media
drwxr-xr-x 112 root root 4096 Jul 31 16:28 mid
drwxr-xr-x 112 root root 4096 Jul 31 16:28 mid
drwx----- 5 root root 4096 Jul 31 16:28 mid
drwxr-xr-x 112 root root 4096 Oct 28 16:22 root
drwx----- 5 root root 4096 Oct 28 16:22 root
drwxr-xr-x 2 root root 4096 Oct 28 16:22 root
drwxr-xr-x 2 root root 4096 Oct 28 16:22 root
drwxr-xr-x 2 root root 4096 Oct 28 16:22 root
drwxr-xr-x 2 root root 4096 Oct 28 16:22 root
drwxr-xr-x 2 root root 4096 Oct 28 16:22 root
drwxr-xr-x 2 root root 4096 Oct 28 06:23 run
lrwxrwxrux 1 root root 4096 Oct 28 07:57 snap
lrwxrwxrux 1 root root 4096 Oct 28 07:55 softlink -> /home/user/2.txt
drwxr-xr-x 13 root root 4096 Oct 30 06:23 time
dr-xr-xr-x 13 root root 4096 Oct 30 06:23 time
drwxr-xr-x 13 root root 4096 Jul 31 16:29 usr
drwxr-xr-x 13 root root 4096 Jul 31 16:30 var
```

Рисунок 12 – Создание символической ссылки (softlink)

Далее нужно создать директорию new в каталоге пользователя user. Для этого используем команду mkdir.

```
root@annaserver:/home/anna# cd /
root@annaserver:/# mkdir /home/user/new
root@annaserver:/# ls -l /home
total 8
drwxr-xr-x 3 anna anna 4096 Oct 23 08:01 anna
drwxr-xr-x 3 user user 4096 Oct 29 13:13 user
root@annaserver:/# ls -l /home/user/
total 8
-rwxrwxrwx 1 root root 0 Oct 28 16:15 1.txt
-rw-r--r- 2 root root 3 Oct 28 16:18 2.txt
-rw-r--r- 1 root root 0 Oct 28 16:27 3.txt
drwxr-xr-x 2 root root 4096 Oct 29 13:13 new
root@annaserver:/# _
```

Рисунок 13 – Создание директории new

Следующим заданием нужно скопировать файл 1.txt и переместить файл 2.txt в созданную директорию new. Пример выполнения представлен на рисунках 14 и 15.

```
root@annaserver:/# cp /home/user/1.txt /home/user/new/
root@annaserver:/# ls –l home/user/new
total 0
–rwxr–xr–x 1 root root 0 Oct 29 13:58 1.txt
root@annaserver:/# _
```

Рисунок 14 – Копирование файла

```
root@annaserver:/# mv /home/user/2.txt /home/user/new/
root@annaserver:/# ls -1 home/user/new
total 4
-rwxr-xr-x 1 root root 0 Oct 29 13:58 1.txt
-rw-r---- 2 root root 3 Oct 28 16:18 2.txt
root@annaserver:/# ls -1/ home/user
ls: invalid option -- '/'
Try 'ls --help' for more information.
root@annaserver:/# ls -1 home/user
total 4
-rwxrwxrwx 1 root root 0 Oct 28 16:15 1.txt
-rw-r---- 1 root root 0 Oct 28 16:27 3.txt
drwxr-xr-x 2 root root 4096 Oct 29 14:06 new
root@annaserver:/# _
```

Рисунок 15 – Перемещение файла

Далее нужно поменять владельцев файла 3.txt и каталога new реализуем это с помощью chown

Рисунок 16 – Изменение владельцев файла и каталога

По заданию нужно удалить файл 1.txt из директории new, а затем удалить директорию new. Используем для этого команду rm:

```
root@annaserver:/# rm /home/user/new/1.txt
root@annaserver:/# ls -l /home/user/new
total 4
-rw-r--r-- 2 root root 3 Oct 28 16:18 2.txt
root@annaserver:/# rm -R /home/user/new/
root@annaserver:/# ls -l /home/user
total 0
-rwxrwxrwx 1 root root 0 Oct 28 16:15 1.txt
-rw-r--r-- 1 user root 0 Oct 28 16:27 3.txt
root@annaserver:/# _
```

Рисунок 17 – Удаление файла и директории

Последним заданием лабораторной работы является поиск файла vga2iso с использованием команды find. Осуществим эту операцию:

```
root@annaserver:/home/anna# cd /
root@annaserver:/# find / –name vga2iso
_
```

Рисунок 18 – Нахождение файла vga2iso

Так как работа производится в более новой версии Ubunto Server файла vga2iso не существует. Поэтому приведём пример работы программы поиска другого файла, а именно 1.txt.

```
root@annaserver:/home/anna# find /–name boot
find: '/–name': No such file or directory
find: 'boot': No such file or directory
root@annaserver:/home/anna# find / –name 1.txt
/home/user/1.txt
—
```

Рисунок 19 – Нахождение файла 1.txt

Вывод

В процессе выполнения лабораторной работы была изучена файловая система ОС Linux и основные операции, а именно: просмотр директории, создание нового пользователя, различные операции с файлами (создание, перемещение, копирование, удаление, изменение прав доступа на файл), создание директории, поиск файла и изменение прав доступа на файл. Также изучены особенности установки виртуальной машины с последующим запуском в ней дистрибутива Linux Ubuntu Server.

Контрольные вопросы

1. Что такое файловая система?

Файловая система — это структура, с помощью которой ядро операционной системы предоставляет пользователям (и процессам) ресурсы долговременной памяти системы, т. е. памяти на долговременных носителях информации - жестких дисках, магнитных лентах, CD-ROM и т. п. С точки зрения пользователя, файловая система — это логическая структура каталогов и файлов.

2. Права доступа к файлам. Назначение прав доступа.

Права доступа и информация о типе файла в UNIX-системах хранятся в индексных дескрипторах в отдельной структуре, состоящей из двух байтов. Четыре бита из этих 16-ти отведены для кодированной записи о типе файла. И, наконец, оставшиеся 9 бит определяют права доступа к файлу. Право на чтение (r) файла означает, что пользователь может просматривать содержимое файла. Но вы не сможете сохранить изменения в файле н, если не имеете права на запись (w) в этот файл. Право на выполнение (x) означает, что вы можете попытаться запустить его на выполнение как исполняемую программу.

3. Жёсткая ссылка в Linux. Основные сведения.

Жесткая ссылка является просто другим именем для исходного файла. После создания такой ссылки ее невозможно отличить от исходного имени файла. «Настоящего» имени у файла нет, точнее, все такие имена будут настоящими. Удаление файла по любому из его имён уменьшает на единицу количество ссылок, и окончательно файл будет удален только тогда, когда это количество станет равным нулю. Поэтому удобно использовать жесткие ссылки для того, чтобы предотвратить случайное удаление важного файла.

4. Команда поиска в Linux. Основные сведения.

Команда find может искать файлы по имени, размеру, дате создания или модификации и некоторым другим критериям. Общий синтаксис команды find имеет следующий вид: find [список_каталогов] критерий_поиска Параметр "список_каталогов" определяет, где искать нужный файл. Проще всего задать

в качестве начального каталога поиска корневой каталог /, однако, в таком случае поиск может затянуться очень надолго, так как будет просматриваться вся структура каталогов, включая смонтированные файловые системы.

- 5. Перечислите основные команды работы с каталогами.
- 1) Просмотр каталога (list): ls -ключи путь/имя файла;
- 2) Узнать текущий каталог: pwd;
- 3) Сменить текущий каталог: cd имя каталога;
- 4) Создание нового каталога: mkdir путь/имя каталога;
- 5) Удаление пустого каталога: rmdir путь/имя каталога.