Type I errors

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Ways of being wrong

When we run a test:

	Real effect present	No real effect present
Effect found (positive: alternative hypothesis)	True Positive	False Positive
No effect found (negative: null hypothesis)	False Negative	True Negative

Type I error: find difference where none exists

Type II error: fail to find difference that does exist

Avoiding type I errors

Basis of tests

- Statistical tests are probabilistic
- Quantify likelihood of results under null hypothesis

Consider:

- Significant results are improbable, not impossible under null hypothesis
- Still possible result are by chance

Picking a single result can be misleading

Example

Accounting for multiple tests

By design

Avoid "p-value fishing"

By correction

Correct p-values for presence of multiple tests

Correction methods

- Bonferroni and 7ídák
- Choose method based on independence of tests

Bonferroni correction

- Conservative method
- Simple

Use when

Tests are not independent from each other

```
import statsmodels as sm
from scipy import stats

t_1= stats.ttest_ind(Array1, Array2)
t_2= stats.ttest_ind(Array2, Array3)
t_3= stats.ttest_ind(Array1, Array3)

pvals_array = [t_1[1],t_2[1],t_3[1]]

adjustedvalues= sm.stats.multitest.multipletests
pvals_array, alpha=0.05, method='b')
```

Bonferroni correction example

Multiple non-independent t-tests


```
from scipy import stats
import statsmodels as sm
t_result_1= stats.ttest_ind(HighJumpVals, LongJumpVals)
t_result_2= stats.ttest_ind(LongJumpVals, ShotPutVals)
t_result_3= stats.ttest_ind(HighJumpVals, HighJumpVals)
pvals_array = [t_result_1[1],t_result_2[1],t_result_3[1]]
adjustedvalues= sm.stats.multitest.multipletests(pvals_array, alpha=0.05, method='b')
print(adjustedvalues)
```


Hidák correction

Less conservative method

Use when

Tests are independent from each other

```
import statsmodels as sm

t_1= stats.ttest_ind(Array1, Array2)
t_2= stats.ttest_ind(Array3, Array4)
t_3= stats.ttest_ind(Array5, Array6)

pvals_array = [t_1[1],t_2[1],t_3[1]]

adjustedvalues= sm.stats.multitest.multipletests
pvals_array, alpha=0.05, method='s')
```

Hidák correction example


```
from scipy import stats
import statsmodels as sm
t_result_1 = stats.ttest_ind(HighJumpVals, LongJumpVals)
t_result_2 = stats.ttest_ind(ShotPutVals, HammerVals)
t_result_3 = stats.ttest_ind(MarathonVals, PoleVals)
pvals_array = [t_result_1[1],t_result_2[1],t_result_3[1]]
adjustedvaluesm = sm.stats.multitest.multipletests(pvals_array, alpha=0.05, method='s')
print(adjustedvalues)
```


Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

Sample size

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Type II errors & sample size

Definition

- False negative
- Fail to detect an effect that exists

Caveat

Can never be sure that no effect is present

Sample size

- Helps avoid false negatives
- Larger sample size = more sensitive methods

Importance of sample size

Other factors that affect sample size

Alpha

Critical value of p at which to reject null hypothesis

Power

Probability we correctly reject null hypothesis if alternative hypothesis is true

Effect size

• Departure from null hypothesis

Effects of other factors

Increase sample size:

- Increase statistical power
- Decrease usable alpha
- Smaller effect size detectable

What sample size do we need with effect_size

$$= x$$
, power $= y$, alpha $= z$?

Functions

- t-test: TTestIndPower()
- Other functions for other tests

Calculating sample size needed for t-test

Initialize analysis

```
TTestIndPower() for ttest_ind()
```

Values

```
effect size : standardized effect size
```

power : 0 - 1

alpha: 0.05 standard

ratio: 1 if experiment balanced

nob1s : set to None

```
from statsmodels.stats import power as pwr
analysis = pwr.TTestIndPower()
ssresult = analysis.solve_power(
effect_size=effect_size,
power=power,
alpha=alpha,
ratio=1.0,
nobs1=None)
print(ssresult)
```

Sample size calculation example

Sample size calculation example

Assumptions

```
effect_size : 0.8 (large)
```

power : 0.8 (80% chance of detection)

alpha: 0.05 (standard)

ratio : (group 2 samples / group 1 samples)

```
effect_size = 0.8
power = 0.8
alpha = 0.05
ratio =
float(len(df[df.Fertilizer == "B"]) )/
len(df[df.Fertilizer == "A"])
```

Sample size calculation example

```
from statsmodels.stats import power as pwr
analysis = pwr.TTestIndPower()
ssresult = analysis.solve_power(
effect_size=effect_size,
power=power,
alpha=alpha,
ratio=ratio ,
nobs1=None)
print(ssresult)
```


Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

Effect size

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Defining effect size

Effect size vs. significance

Significance

- How sure we are that effect exists
- X% confident that fertilizer A is better than fertilizer B

Effect size

- How much difference that effect makes
- Yields with fertilizer A are Y higher than yields with fertilizer B

Measures of effect size

Cohen's d

- Continuous variables in relation to discrete variables
- Normalized differences between the means of two samples

Odds ratio

- For discrete variables
- How much one event is associated with another

Correlation coefficients

- For continuous variables
- Measures correlation

Effect sizes for t-tests

Calculating Cohen's d

Cohen's d = (M2 - M1)? SDpooled

```
import math as ma
sampleA = df[df.Fertilizer == "A"].Production
sampleB = df[df.Fertilizer == "B"].Production
diff = abs(sampleA.mean() - sampleB.mean() )
pooledstdev = ma.sqrt(
(sampleA.std()**2 + sampleB.std()**2)/2)
cohend = diff / pooledstdev
print(cohend)
```

Calculating minimum detectable effect size

Assumptions

effect_size :None

power : 0.8 (80% chance of detection)

alpha: 0.05 (standard)

ratio: 1 (equal sample size per group)

nobs1:100

```
from statsmodels.stats import power as pwr
analysis = pwr.TTestIndPower()
esresult = analysis.solve_power(
effect_size=None,
power=power,
alpha=alpha,
ratio=ratio ,
nobs1=nobs1 )
print(esresult)
```


Effect size for Fisher exact test

Metric: Odds ratio

```
import pandas as pd
print(pd.crosstab(df.Coin,df.Flip))
```

Flip	heads	tails
Coin		
1	22	8
2	17	13

```
from scipy import stats
chi = stats.fisher_exact(
  table, alternative='two-sided')
print(round(chi[0],1))
```

Effect size for Pearson correlation

Example

Metric: Pearson correlation coefficient (r)

Perfect correlation at r = 1

```
from scipy import stats

pearson = stats.pearsonr(
  df.Weight, df.Height)

print(pearson[0])
```

0.7922545330545416

♀ DataCamp

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

Power

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Defining statistical power

- Probability of detecting an effect
- Increase power, decrease chance of type II errors

Relationship to other factors

- Larger effect size, increase power
- Larger sample size, increase power

Calculating power

Calculating power

Assumptions

effect_size : 0.8 (large)

power : None

alpha: 0.05 (standard)

ratio: 1 (balanced design)

nobs1:100

```
from statsmodels.stats import power as pwr
analysis = pwr.TTestIndPower()
pwresult = analysis.solve_power(
effect_size=effect_size,
power=None,
alpha=alpha,
ratio=ratio ,
nobs1=nobs1 )
print(pwresult)
```

Calculating power

0.9998783661018764

Interpretation

Almost certain of detecting an effect of this size

Dealing with uncertainty

Hypothesis tests

- Estimate likelihoods
- Can't give absolute certainty

Power analysis

Estimates the strength of answers

Drawing conclusions

Interpreting tests

In context of power analyses

Possibility of type II errors

- Negative test result & high power: true negative
- Negative test result & low power: possible false negative

Type I & II errors in context

Find balance

More power: maybe more risk of type I errors

Domain knowledge

Make reasonable assumptions

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

