Single cell RNA seq Data and Analysis

Samuele Soraggi

Bioinformatics Research Center,
Aarhus University

- What is single cell data
- Why do we use it
- Sequencing framework

Analysis of single cell data

Conclusions and introduction to paper discussion

Single cell data: what is it?

In a single cell RNA sequencing dataset (scRNAseq), we can capture the mRNA transcripts of each cell, and count how many of them are associated to a set of reference genes.

Single cell data: what is it? Why do we use it?

scRNAseq data gives the possibility of analyzing gene transcription at cellular level to retrieve information about

- Differentiation and fate of cells
- Cell hierarchy
- Cell response to stimuli
- Co-expression of genes
- Rare cell types
- Gradual changes in transcription rate
-

Single cell data: what is it? Why do we use it?

scRNAseq data gives the possibility of analyzing gene transcription at cellular level. A Considerable step forward compared to bulkRNA seq data.

Single cell data: a recent sequencing technology

The sequencing framework: cell isolation

The sequencing framework: mRNA capture

Structure of the barcode primer bead

The sequencing framework: cDNA RT

Reverse transcription into cDNA

The sequencing framework: NGS sequencing

Preamplification and NGS sequencing

The sequencing framework: raw reads

After NGS sequencing, a typical sequence from fastq files looks like this


```
@SRR8363305.1 1 length=98
```

NCTAAAGATCACACTAAGGCAACTCATGGAGGGGTCTT

+SRR8363305.1 1 length=98

A<77AFJJFAAAJJJ7-7-<7FJ-7---<77--7F

The (post)sequencing framework: align & quantify

The raw fastq reads are aligned to a transcriptome to identify which reads pertain to specific genes. The aligner has to be splice-aware and correct for sequencing errors happening in the barcodes and cDNA. Lastly, UMIs are used to detect matching transcripts and collapse them into one if they come from the same cell.

The (post)sequencing framework: the data

The final dataset is composed by a matrix of dimension cell x genes. For each cell, we have the quantified mRNA transcripts for each gene, detected by collapsing together matching UMI tags

scRNAseq data analysis

Analysis: characteristics of the data

An scRNAseq dataset can be composed by thousands of cells and genes.

Tipycally, this type of data is characterised by

- low capture rate of transcripts per cell (2-10%)
- Ambient RNA noise
- Empty droplets and doublets
- 3' RT bias (for 10X data)
- sparse data (often >95% of the data matrix is zero)
- Non-linear structure
- Genes expressed in modules

Analysis: An example dataset – human testes

Analysis: An example dataset – human testes

Human testes data:

- Composed of 65K cells
- Around 19K cells are outliers
- Data comes from 13 different datasets
- We will use a subset of this data in the exercise

Analysis workflow: preprocessing

Analysis workflow: cell-wise analysis

Analysis workflow: cell-wise analysis

Detection of cell fates

Prediction of molecular states

Analysis workflow: gene-wise analysis

Modeling genes trajectories in time

Clustering of coexpressed genes

Analysis workflow: gene-wise analysis

TF-Gene Networks

Gene Enrichment Analysis

Analysis workflow: spatial analysis

spatial1

Conclusions

- scRNAseq data is sparse and can be noisy
- However, it allows to explore detailed biological aspects of a tissue
- There is not yet a standardised way of analyzing this data
- There are >300 scRNAseq tools
- Scanpy (python) and Seurat (R) have emerged as reliable analysis tools for many standard operations
- Yet more advanced scRNAseq analysis is still not a standard, and requires acquiring some programming expertise and using both R and python packages

Useful links

- The home page of Scanpy. This is a python tool. Here you have a lot of tutorials to try out some more of the single cell data analysis of this presentation. I personally suggest scanpy as your standard analysis tool.
- The home page of Seurat. This is an R tool. It is quite as good as Scanpy, but not as open and efficient, and contains less new tools than Scanpy. It can be interfaced with R Bioconductor packages quite easily.
- A list of many single cell tools and their scope

Paper discussion

You will discuss in group the following research paper

Article

Cell

SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues

- Discuss the paper in groups
- Discuss answer to the questions
- Choose a person that will report the answers when we group together again