## 1.3. The Fundamental Theorem of Calculus

1.3.1. The Fundamental Theorem of Calculus. The Fundamental Theorem of Calculus (FTC) connects the two branches of calculus: differential calculus and integral calculus. It says the following:

Suppose f is continuous on [a, b]. Then:

(1) The function

$$g(x) = \int_{a}^{x} f(t) dt$$

is an antiderivative of f, i.e., g'(x) = f(x).

(2) (Evaluation Theorem) If F is an antiderivative of f, i.e. F'(x) = f(x), then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

The two parts of the theorem can be rewritten like this:

(1) 
$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x).$$

(2) 
$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$
.

So the theorem states that integration and differentiation are inverse operations, i.e., the derivative of an integral of a function yields the original function, and the integral of a derivative also yields the function originally differentiated (up to a constant).

Example: Find  $\frac{d}{dx} \int_0^{x^2} t^3 dt$ .

Answer: We solve this problem in two ways. First directly:

$$g(x) = \int_0^{x^2} t^3 dt = \left[\frac{t^4}{4}\right]_0^{x^2} = \frac{(x^2)^4}{4} = \frac{x^8}{4},$$

hence

$$g'(x) = \frac{8x^7}{4} = \boxed{2x^7}.$$

Second, using the FTC:

$$h(u) = \int_0^u t^3 dt \implies h'(u) = u^3.$$

Now we have  $g(x) = h(x^2)$ , hence (using the chain rule):

$$g'(x) = h'(x^2) \cdot 2x = (x^2)^3 \cdot 2x = 2x^7$$
.