Αριθμηζική Επίλυση Πλάχιας Βολής

Σύντομη Επανάληψη Πλάχιας Βολής

- Ο ζύπος για το βεληνεκές σώματος σε πλάγια βολή προκύπτει:
 - Ι. Από την Αρχή Ανεξαρτησίας των Κινήσεων
 - 2. Από ζις εξισώσεις κίνησης

Στην οριζόντια διεύθυνση ισχύει:

$$x = u_{0x}t$$

Στην κατακόρυφη διεύθυνση ισχύει:

$$x = u_{0y}t - \frac{1}{2}gt^2$$

 $m{\varnothing}$ Απαλείφονζας ζον χρόνο t: $y=rac{u0y}{u_{0x}}x-rac{g}{2}rac{x^2}{u_{0x}^2}$

τια το βεληνεκές ισχύει:
$$y=0\Rightarrow \frac{u0y}{u_{0x}}r-\frac{g}{2}\frac{r^2}{u_{0x}^2}\Rightarrow \begin{array}{c} r=0\\ r=\frac{g}{2}u_{0y}u_{0x} \end{array}$$

Αριθμηζική επίλυση

- Προβλήματα κινηματικής, όπως η πλάχια βολή, επιδέχονται αριθμητικής επίλυσης
 - oxdot Χωρίζουμε την κίνηση του σώματος σε χρονικά διαστήματα διάρκειας Δt
 - Επιλέχουμε το Δt να είναι μικρό, π.χ. Δt = 0.19
 - Π Το τέλος κάθε διαστήματος Δt ονομάζεται "στιχμιότυπο"

Αριθμηζική επίλυση

- $m{arphi}$ Σε κάθε στιχμιότυπο υπολοχίζουμε την θέση $(x,\ y)$ και την ταχύτητα $(u_x,\ u_y)$
 - \square Για τον υπολοχισμό της θέσης στο επόμενο στιχμιότυπο, υποθέτουμε ότι σε κάθε διεύθυνση, το σώμα εκτελεί **ομαλή ευθύχραμμη κίνηση** κατά το διάστημα Δt
 - \square Για τον υπολοχισμό της ταχύτητας στο επόμενο στιχμιότυπο, υποθέτουμε ότι σε κάθε διεύθυνση, το σώμα εκτελεί **ομαλά επιταχυνόμενη κίνηση** κατά το διάστημα Δt

Αριθμηζική επίλυση

- Ας δούμε ένα-ένα ζα σζιζμιόζυπα
 - \square Το στιχμιότυπο μηδέν (ΣΟ), είναι το αρχικό στιχμιότυπο: $egin{array}{c} x_0=0 & u_{0x}=u_0\cos(heta) \ y_0=0 & u_{0y}=u_0\sin(heta) \end{array}$
 - Για το πρώτο στιχμιότυπο (ΣΙ):

$$x_1 = x_0 + u_{0x} \Delta t$$
$$y_1 = y_0 + u_{0y} \Delta t$$

Υπολοχίζουμε τη νέα θέση υποθέτοντας ομαλή ευθύχραμμη κίνηση με αρχική ταχύτητα u_{0x} , u_{0y}

$$u_{1x} = u_{0x} + a_x \Delta t$$

$$u_{1y} = u_{0y} + a_y \Delta t$$

Υπολοχίζουμε τη νέα ταχύτητα υποθέτοντας ομαλά επιταχυνόμενη κίνηση με αρχική ταχύτητα u_{0x} , u_{0y} , και επιτάχυνση $a_x=0$, $a_y=-g$

Π Για το πρώτο στιχμιότυπο (ΣΙ):

$$x_1 = x_0 + u_{0x} \Delta t$$
$$y_1 = y_0 + u_{0y} \Delta t$$

Υπολοχίζουμε τη νέα θέση υποθέτοντας ομαλή ευθύχραμμη κίνηση με αρχική ταχύτητα u_{ox} , u_{oy}

$$u_{1x} = u_{0x} + a_x \Delta t$$

$$u_{1y} = u_{0y} + a_y \Delta t$$

Υπολοχίζουμε τη νέα ταχύτητα υποθέτοντας ομαλά επιταχυνόμενη κίνηση με αρχική ταχύτητα u_{0x} , u_{0y} , και επιτάχυνση $a_x=0$, $a_y=-g$

Π Για το δεύτερο στιχμιότυπο (Σ2):

$$x_2 = x_1 + u_{1x}\Delta t$$
$$y_2 = y_1 + u_{1y}\Delta t$$

$$u_{2x} = u_{1x}$$
$$u_{2y} = u_{1y} - g\Delta t$$

Όπου x_1 , y_1 και u_{0x} , u_{0y} , έχουν υπολοχιστεί στο προηχούμενο βήμα

Αριθμηζικό παράδειχμα

$$x_0 = 0, y_0 = 0, u_{0x} = 1\frac{\mathrm{m}}{\mathrm{s}}, u_{0y} = 2\frac{\mathrm{m}}{\mathrm{s}}, \Delta t = 0.1\mathrm{s}$$

TRANSPORT				
Σο	Xozo	y₀=0	U0x=1m/5	uoy = 2m/s
Σ۱	x1= x0+ 110x · st = 0.1m	y1= y0+ Noy· At = 0.2m	Mix = Uox = Im/s	u,y= noy-8.2t= 1 m/s.
Σ2	x2= x1+ u1x. Δt= 0.2m	yz=91+a1y. St= 0.3m	112x= 11x = 1m/s	12y=11y-8. At= Om/s.
Z3	X3 = X2+ U2x. Δt = 0.3m	y3= y2-1 M2y-1st=0.3m	M3x= M2x= 1m/s	Uzy = Ney -8. Dt = -1m/s.
Ση	X4 = ×3+ 113x ·Δt= 0.4m	yu= y3+ u3y. Dt= 0.2m	44x= U3x= m/5	Muy= Msy - g. Ot= -2m/s.
25	X5 = X4+ Uux . Dt=0.5m	95= Yu + Way . Dt= 0 m	U5x= Unx= 1 M/S	Usy= Uny-80t= -3m/s.
•			•	

Αριθμηζικό παράδειχμα

Το αποτέλεσμα της αριθμητικής λύσης εμπεριέχει σφάλμα, το λεζόμενο σφάλμα διακριτοποίησης. Το σφάλμα αυτό, μικραίνει όσο μικραίνει το Δt

- $m{\phi}$ Εάν επαναλάβουμε την άσκηση με $m{\Delta} t$ = 0.05ε, θα χρειαστούμε διπλάσια βήματα, και εάν την επαναλάβουμε με $m{\Delta} t$ = 0.01ε θα χρειαστούμε $m{\delta} m{\epsilon} m{\kappa} m{\alpha} m{\eta} m{\alpha} m{\delta} m{\alpha}$
- $m{arphi}$ Είναι προφανές πως ζια όλο και πιο μικρές τιμές του $m{\Delta} \, t$ η αριθμητική επίλυση χίνεται όλο και πιο χρονοβόρα

Υπολοχιστική Λύση

- Καζά ζην υπολοχισζική επίλυση ζου προβλήμαζος, χρησιμοποιούμαι έναν υπολοχισζή
 χια να αυζομαζοποιήσουμε ζον υπολοχισμό ζων σζιχμιοζύπων
- Θα πρέπει να δώσουμε: Την αρχική θέση και ταχύτητα
 - Τον χρόνο Δτ
 - Τις εξισώσεις κίνησης, με τις οποίες θα υπολοχίζουμε την θέση και ταχύτητα του νέου στιχμιότυπου βάσει του προηχούμενου
- Συνεχίστε αυτό το πρόβλημα ακολουθώντας τον πιο κάτω σύνδεσμο και τις οδηχίες που υπάρχουν εκεί:

http://172.104.245.249:8000