BCS410. Practical Class 6 & Homework 5 [Due: May 23]

Background:

Consider the following genetic negative feedback loop model:

Chemical reaction network

Model diagram

Table 1. Parameters of the genetic negative feedback loop model

Name	Description	Value
α_{M}	Transcription rate constant for M	15.1745/hr
α_P	Translational rate constant for P	1/hr
α_F	Production rate constant for F	1/hr
β_{M}	Degradation rate constant for M	1/hr
β_P	Degradation rate constant for <i>P</i>	1/hr
β_F	Degradation rate constant for <i>F</i>	1/hr
k_f	Binding rate constant for F and D_A	200Ω/hr
k_b	Unbinding rate constant for D_R	50/hr
D_T	The concentration of total DNA	165/Ω

Problem 1: Write down propensity functions of all reactions.

Problem 2: Let n_M denote the number of mRNA molecules, i.e., $M = n_M/\Omega$ where Ω represents the volume of the system. Let n_{D_A}/n_{D_T} denote the fraction of active DNA. Plot a single sample time trace of n_M and n_{D_A}/n_{D_T} until t =40 with the initial condition: $D_A = 165$, $D_R = 0$, M = 0, P = 0, and F = 0, and the system volume $\Omega = 1$.

Problem 3: Plot a single sample time trace of n_M and n_{D_A}/n_{D_T} until t=40 under the same condition as in Problem 2 except with varying $\Omega = 0.01, 0.1, 10, 100, 1000$. How does the result differ from that obtained in Problem 2? Which system exhibits more noise, and why?

Problem 4: Let $K_d = (k_b + \beta_F)/k_f$ and consider the propensity function in Table 2, which are derived using the standard quasi-steady state approximation (sQSSA). Using these propensity functions, simulate a single sample trace of n_M and n_{D_A}/n_{D_T} under the same condition as in Problem 2, and compare the results to those obtained from the full stochastic model in Problem 2 and the full deterministic model in homework 2.

Problem 5: Let $K_d = (k_b + \beta_F)/k_f$ and consider the propensity function in Table 3, which are derived using the total quasi-steady state approximation (tQSSA). Using these propensity functions, simulate a single sample trace of n_M and n_{D_A}/n_{D_T} under the same condition as in Problem 2, and compare the results to those obtained from the full stochastic model in Problem 2 and the full deterministic model in homework 2.

Table 2. Propensity functions obtained using the stochastic sQSSA

Reaction	Propensity function
$\phi \to M$	$\frac{\alpha_M n_{D_T} K_d \Omega}{n_F + K_d \Omega}$
$M \to M + P$	$\alpha_M n_M$
$P \to P + F$	$\alpha_P n_P$
$M \to \phi$	$\beta_M n_M$
$P \to \phi$	$\beta_P n_P$
$F \to \phi$	$\beta_F(n_F + \frac{n_{D_T}n_F}{n_F + K_d\Omega})$

Table 3. Propensity functions obtained using the stochastic tQSSA

Reaction	Propensity function
$\phi \to M$	$\frac{\alpha_M}{2}(n_{D_T}-n_R-K_d\Omega-\sqrt{(n_{D_T}-n_R-K_d\Omega)^2+4n_{D_T}K_d\Omega})$
$M \to M + P$	$lpha_M n_M$
$P \to P + R$	$\alpha_{P}n_{P}$
$M \to \phi$	$eta_{M}n_{M}$
$P \to \phi$	$eta_P n_P$
$R \to \phi$	$eta_F n_R$

Bonus problem 1 (5 bonus points): Please compare the computation time required to simulate 1000 time traces using the full model and the stochastic tQSSA model, under the same condition as in Problem 2, except with $k_f = 10000\Omega/\text{hr}$ and $k_b = 100/\text{hr}$.