

Modelos de Séries Temporais Parte II

Modelo ARMA(p,q) Modelos Autorregressivos de Médias Móveis

Definição:

Considere $\{\varepsilon_t, t=1,2,\dots\}$ um ruído branco. Um processo ARMA(p,q) é definido sendo um processo estacionário do tipo :

$$x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_p \varepsilon_{t-p}$$

Sendo $\phi_1, \phi_2, \dots, \theta_1, \theta_2, \dots$, constantes.

Geralmente denotado por ARMA(p,q)

Propriedades:

Parcimônia:

Um modelo ARMA costuma requerer menos parâmetros que um modelo AR ou MA.

Na maior parte das vezes um Modelo ARMA (1,1) será suficiente para modelar uma série estacionária.

Resumo FAC e FACP

Modelos	FAC	FACP
AR(p)	Decai para zero de forma amortizada ou oscilando	Corte após lag p
MA(q)	Corte após lag q	Decai para zero de forma amortizada ou oscilando
ARMA(p,q)	Decai para zero de forma amortizada ou oscilando	Decai para zero de forma amortizada ou oscilando

ARIMA

Os modelos ARMA só servem para modelar modelos que são estacionários Então o modelo ARMA integrado, ARIMA(p,d,q), consiste em aplicar o modelo ARMA(p,q) na d-ésima diferença da série.

- Robusto: Pode ser usado em praticamente qualquer tipo de ST
- Dados estáveis, com poucos outliers
- Requer dados estacionários: pode ser transformada usando diferenciação: remove tendências
- Subtrai a observação do período atual do período anterior

MODELO ARIMA

- AR Autoregressivo: Indica que a variável é regressada em seus valores anteriores. Avalia a relação entre os períodos (lags)
- I Integrado: Indica que os valores de dados foram subtituídos com a diferença entre sus valores e os valores anteriores (diferenciação)
- MA Média Móvel: avalia erros entre períodos e extrai estes erros

Codificação do ARIMA

ARIMA

- p = 1, significa que uma determinada observação pode ser explicada pela observação prévia + erro
- p = 2, significa que uma determinada observação pode ser explicada por duas observações prévias + erro
- d = 0, significa que não é aplica diferenciação
- d = 1, significa que será aplicada diferenciação de primeira ordem
- d = 2, significa que será aplicada diferenciação de segunda ordem
- q = 1, significa que uma determinada observação pode ser explicada pelo erro da observação prévia
- q = 2, significa que uma determinada observação pode ser explicada pelo erro de duas observações prévias

ARIMA

- AR(1) ou ARIMA(1,0,0) Apenas elemento autoregressivo , de 1º ordem
- AR(2) OU ARIMA(2,0,0)) − Apenas elemento autoregressivo, de 2º ordem
- MA(1) OU ARIMA(0,0,1) Apenas média móvel
- ARMA(1,1) ou Arima(1,0,1) Autoregressão e média móvel de 1º ordem

MODELO SARIMA

Além da codificação Arima (p, d, q)

Inclui a codificação para a Sazonalidade (P, D, Q)

Modelo SARIMA:

Arima (p, d, q): (1, 1, 2)

Seasonal (P, D, Q): (2, 0, 1)