Θέμα 1

Δώστε λογικά διαγράμματα για την υλοποίηση μιας πύλης ΑΝD 4 εισόδων, χρησιμοποιώντας:

- 1. Μόνο πύλες NAND 2 εισόδων
- 2. Μόνο πύλες NOR 2 εισόδων.
- 1.

2.

Θέμα 2

Δώστε ισοδύναμα λογικά διαγράμματα για την F, με:

- 1. Τον ελάχιστο αριθμό πυλών 2 εισόδων και αντιστροφέων.
- 2. Αποκωδικοποιητή 3 σε 8 και μία πύλη ΟR.
- 3. Πολυπλέκτη 4 σε 1 και αντιστροφείς.
- 1. Eival F = {[(a'+b)c]'(ab'c')'}'= (a'+b)c + a b'c' = a'c + bc + a b'c' = c(a'+b) + c'(ab') = c (ab')' + c'(ab') = c \oplus (ab')

2. Από πιο πάνω είναι F = a´c + bc + a b´c´ = a´b´c + a´bc + a´bc + abc + a b´c´ = m₁ + m₃ + m₁ + m₄ = Σ(1,3,4,7)

3.

Θέμα 3

Σχεδιάστε ένα κύκλωμα που να δέχεται ως είσοδο δύο δυαδικούς αριθμούς A και B των δύο δυαδικών ψηφίων ο καθένας (υποθέστε ότι A = wx₂, B = yz₂) και παράγει εξόδους F, G και H.

- Οι αριθμοί Α και Β είναι προσημασμένοι σε αναπαράσταση συμπληρώματος του 2.
- Η έξοδος F γίνεται 1 όταν οι αριθμοί είναι ίσοι κατ' απόλυτη τιμή, δηλαδή όταν |A|=|B|.
- Η έξοδος G γίνεται 1 όταν |A| = 2|B|.
- Η έξοδος Η γίνεται 1 όταν Β > Α.

Για την υλοποίηση του κυκλώματός σας συνίσταται να χρησιμοποιήσετε έναν αποκωδικοποιητή και πύλες ΟR.

Α	2	В	2	A ₁₀	B ₁₀	F	G	Н
W	X	У	Z					
0	0	0	0	0	0	1	1	0
0	0	0	1	0	+1	0	0	1
0	0	1	0	0	-2	0	0	0
0	0	1	1	0	-1	0	0	0
0	1	0	0	+1	0	0	0	0
0	1	0	1	+1	+1	1	0	0
0	1	1	0	+1	-2	0	0	0
0	1	1	1	+1	-1	1	0	0
1	0	0	0	-2	0	0	0	1
1	0	0	1	-2	+1	0	1	1
1	0	1	0	-2	-2	1	0	0
1	0	1	1	-2	-1	0	1	1
1	1	0	0	-1	0	0	0	1
1	1	0	1	-1	+1	1	0	1
1	1	1	0	-1	-2	0	0	0
1	1	1	1	-1	-1	1	0	0

Θέμα 4

Έστω τρεις αριθμοί A, B και D των δύο δυαδικών ψηφίων ο καθένας, δηλαδή $A = a_1 a_0$, $B = b_1 b_0$, $D = d_1 d_0$ και δύο αριθμοί E και F του ενός δυαδικού ψηφίου, δηλαδή $E = e_0$, $F = f_0$. Χρησιμοποιώντας μόνο πλήρεις αθροιστές (FA) ή / και ημιαθροιστές (HA), σχεδιάστε ένα κύκλωμα που να υπολογίζει το άθροισμα E = A + B + D + 2xE + 4xF.

Έχουμε να εκτελέσουμε τη πρόσθεση :

	2 ²	2 ¹	2 ⁰
A ->		a ₁	a_0
B ->		b_1	b_0
D ->		d_1	d_0
2xE ->		e_0	0
4xF ->	f_0	0	0 +

Προφανώς δε χρειάζεται να προσθέσουμε τα 0. Στη θέση με σημαντικότητα 2^0 έχουμε μόνο 3 ψηφία, άρα μπορούμε να χρησιμοποιήσουμε έναν FA. Στη θέση 2^1 έχουμε 4 ψηφία και το κρατούμενο από τη βαθμίδα 2^0 , συνεπώς θα πρέπει να χρησιμοποιήσουμε 2 FAs σε σειρά (η έξοδος αθροίσματος του ενός θα οδηγεί είσοδο του άλλου). Τέλος στη θέση 2^2 θα έχουμε το ψηφίο f_0 καθώς και τα δύο κρατούμενα των FAs από τη θέση 2^1 , οπότε αρκεί ένας FA.

