Nama	Utech
Name:	
Roll No.:	
Inviailator's Sianature :	

CS/BBA (H), BIRM, BSCM/SEM-2/BBA-202/2010 2010 MATHEMATICS – II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) If $f(x) = 2x^3 3x^2 + 4x 2$, then the value of f'(-2) is
 - a) $\frac{1}{4}$

b) $-\frac{1}{4}$

c) 0

- d) $\frac{1}{3}$.
- ii) Rank of the matrix $\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ is
 - a) 1

b) 0

c) 2

d) 4.

2052 [Turn over

CS/BBA (H), BIRM, BSCM/SEM-2/BBA-202/2010

- iii) The value of $\underset{x \to a}{Lt} \frac{x^{\frac{3}{2}} a^{\frac{3}{2}}}{x a}$ is
 - a) a

b) *e*

c) 0

- d) $\frac{3}{2}a^{\frac{1}{2}}$.
- iv) The eccentricity of the ellipse $\frac{(x-2)^2}{25} + \frac{(y+3)^2}{16} = 1$ is
 - a) $\frac{3}{5}$

b) $-\frac{3}{5}$

c) $\frac{4}{5}$

- d) $-\frac{4}{5}$.
- v) The integration of $\int 2^x dx$ is
 - a) $\frac{2^x}{\log_e 2}$
- b) $x.2^{x-1}$
- c) $2^x \log_e 2$
- d) $\log_e x$.
- vi) If A is a skew-symmetric matrix, then
 - a) $A^T = -A$
- b) $AA^{-1} = I$
- c) $A^T = A^{-1}$
- d) $A^T = A$.
- vii) The determinant value of an orthogonal matrix is
 - a) 0

b) 1

c) ± 1

d) none of these.

- viii) If A be a square matrix then $A + A^T$ is
 - a) symmetric
- b) skew-symmetric
- c) transpose
- d) none of these.
- ix) The order of minor of any element of a determinant of $\frac{1}{2}$ order 3 is
 - a) 1

b) 2

c) 3

- d) none of these.
- x) The latus rectum of the parabola $y^2 = -16x$ is
 - a) 4

b) - 4

c) 16

- d) none of these.
- xi) The derivative of $x \log x$ is
 - a) $1 + \log x$
- b) $1 \log x$

c) $\log x$

- d) none of these.
- xii) The derivative of xe^x is
 - a) e'

- b) $e^{x}(x+1)$
- c) $e^{x}(x-1)$
- d) none of these.

CS/BBA (H), BIRM, BSCM/SEM-2/BBA-202/2010

a) - 1

b)]

c) 3

d) -3.

xiv) $\int 0 \, dx$ is equal to

a) 0

b) x

c) dx

d) constant.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Verify Euler's Theorem for the function $V(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$.
- 3. Find Adj A and A^{-1} of the matrix A, if $A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & -1 \end{bmatrix}$.
- 4. Solve the following system of equations by Cramer's rule:

$$2x - z = 1$$

$$2x + 4y - z = 1$$

$$x - 8y - 3z = -2.$$

- 5. Find the co-ordinates of the vertex, length of the latus rectum and the equation of the directrix of the parabola $x^2 + 4x + 2y 11 = 0.$
- 6. Find $\frac{dy}{dx}$ if $y = x^x$.
- 7. If the area of the circle increases at a uniform rate, show that the rate of increase of the circumference of the circle varies inversely as the radius.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Prove that $\begin{vmatrix} a^2 + b^2 & ac & bc \\ ca & c^2 + a^2 & ab \\ bc & ab & b^2 + c^2 \end{vmatrix} = \begin{vmatrix} a & b & 0 \\ c & 0 & a \\ 0 & c & b \end{vmatrix}^2$
 - b) The vertices of an ellipse are (-1, 2) and (9, 2). If the distance between its foci be 8, find the equation of the ellipse.
 - c) Find the value of $\int x \log (1+x) dx$. 5 + 5 + 5

CS/BBA (H), BIRM, BSCM/SEM-2/BBA-202/2010

9. a) A function is defined as follows:

$$f(x) = x^{2} \text{ for } x > 1$$

= 2 for $x = 1$
= $x \text{ for } x < 1$.

Find $\lim_{x \to 1} f(x)$

- b) Evaluate: $\int_{0}^{1} \sin^{-1} \left(\frac{2x}{1+x^2} \right) dx$
- c) If $ax^2 + 2hxy + by^2 = 1$, show that $\frac{d^2y}{dx^2} = \frac{h^2 ab}{(hx + by)^2}$.

5 + 5 + 5

- 10. a) Evaluate: $\int \frac{x^2 dx}{\sqrt{1+x^3}}$
 - b) If $y = a\sin(mx) + b\cos(mx)$, then prove that $\frac{d^2y}{dx^2} = m^2y.$
 - c) If $V = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$, then show that $xV_x + yV_y = \tan V$.

5 + 5 + 5

- 11. a) Prove that $\begin{vmatrix} 1 & a & a^2 bc \\ 1 & b & b^2 ca \\ 1 & c & c^2 ab \end{vmatrix} = 0$
 - b) For the matrix $A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$ show that $A^2 5A + 7I_2 = 0$

and hence find A^{-1} .

7 + 8

- Solve by matrix inversion method $x + \frac{1}{2}$ 12 a) x - y + z = 2, 2x + y - z = 1.
 - Prove that the matrix b)

orthogonal matrix and hence find A^{-1} . 8 + 7

2052 7 [Turn over