Παραδείγματα για Αυτόματα Στοίβας

Παράδειγμα 1: Ντετερμινιστικό Αυτόματο Στοίβας (1)

- $M=(K, T, V, p, k1, \$, \{k2\})$
- $K = \{k1, k2\}$
- $T = \{ "", "", "", \epsilon \}$
- $V = \{A, \$\}$

- p(k1, \$, "(") = (k1, \$A)
- p(k1, A, "(") = (k1, AA)
- $p(k1, A, ")")=(k1, \epsilon)$
- $p(k1, \$, \varepsilon) = (k2, \varepsilon)$

Παράδειγμα 1: Ντετερμινιστικό Αυτόματο Στοίβας – Πίνακας Ελέγχου(2)

- p(k1, \$, "(")=(k1, \$A)
- p(k1, A, "(")=(k1, AA)
- $p(k1, A, ")")=(k1, \epsilon)$
- $p(k1, \$, \varepsilon) = (k2, \varepsilon)$

V/T	()	ε
A	ВАЛЕ (А)	ΒΓΑΛΕ	
\$	ВАЛЕ (А)		k2

Παράδειγμα 1: Ντετερμινιστικό Αυτόματο Στοίβας (3)

- 1) p(k1, \$, "(")=(k1, \$A)
- 2) p(k1, A, "(") = (k1, AA)
- 3) $p(k1, A, ")" = (k1, \epsilon)$
- 4) $p(k1, \$, \varepsilon) = (k2, \varepsilon)$

Συμβολοσειρά: (()())

Στοίβα	Κατάσταση	Είσοδος	
\$	k1	(()())	
\$A	k1	()())	1
\$AA	k1)())	2
\$A	k1	())	3
\$AA	k1))	2
\$A	k1)	3
\$	k1	ε	3
\$	k2	ε	4

Παράδειγμα 1: Ντετερμινιστικό Αυτόματο Στοίβας (4)

Το παραπάνω αυτόματο αναγνωρίζει την συμβολοσειρά: (()(;

- 1) p(k1, \$, "(")=(k1, \$A)
- 2) p(k1, A, "(") = (k1, AA)
- 3) $p(k1, A, ")")=(k1, \epsilon)$
- 4) $p(k1, \$, \varepsilon) = (k2, \varepsilon)$

Στοίβα	Κατάσταση	Είσοδος	
\$	k1	(()(
\$A	k1	()(1
\$AA	k1) (2
\$A	k1	(3
\$AA	k1	ε	

Δεν την αναγνωρίζει γιατί στο τέλος, στη μορυφή της στοίβας δεν υπάρχει το αρχιμό σύμβολο.

Παράδειγμα 2: Μη-ντετερμινιστικό Αυτόματο Στοίβας (1)

- $M=(K, T, V, p, k1, \$, \{k3\})$
- $K = \{k1, k2, k3\}$
- $T = \{0, 1, \epsilon\}$
- $V=\{0,1,\$\}$

- p(k1, \$, 0) = (k1, \$0) p(k1, 1, 1) = (k1, 11)
- p(k1, \$, 1) = (k1, \$1) $p(k1, 1, 1) = (k2, \epsilon)$
- p(k1, 0, 0) = (k1, 00) $p(k2, 0, 0) = (k2, \epsilon)$
- $p(k1, 0, 0) = (k2, \epsilon)$ $p(k2, 1, 1) = (k2, \epsilon)$
- p(k1, 0, 1) = (k1, 01) $p(k2, \$, \varepsilon) = (k3, \varepsilon)$
- p(k1, 1, 0) = (k1, 10)

Παράδειγμα 2: Μη-ντετερμινιστικό Αυτόματο Στοίβας – Πίνακας ελέγχου (2-1)

- p(k1, \$, 0) = (k1, \$0)
- p(k1, \$, 1) = (k1, \$1)
- p(k1, 0, 0) = (k1, 00)
- $p(k1, 0, 0) = (k2, \epsilon)$
- p(k1, 0, 1) = (k1, 01)
- p(k1, 1, 0) = (k1, 10)
- p(k1, 1, 1) = (k1, 11)
- $p(k1, 1, 1) = (k2, \epsilon)$

Κατάσταση: k1

V/T	0	1	8
0	ΒΑΛΕ (0) ἡ ΒΓΑΛΕ, k2	ВАΛЕ (1)	
1	BAΛE (0)	ΒΑΛΕ (1) ἡ ΒΓΑΛΕ, k2	
\$	BAΛE (0)	BAΛE (1)	

Παράδειγμα 2: Μη-ντετερμινιστικό Αυτόματο Στοίβας – Πίνακας ελέγχου (2-2)

- $p(k2, 0, 0) = (k2, \epsilon)$
- $p(k2, 1, 1) = (k2, \epsilon)$
- $p(k2, \$, \varepsilon) = (k3, \varepsilon)$

Κατάσταση: k2

V/T	0	1	ε
0	ВГАЛЕ		
1		ΒΓΑΛΕ	
\$			k3

Παράδειγμα 2: Μη-ντετερμινιστικό Αυτόματο Στοίβας (3)

- 1. p(k1, \$, 0) = (k1, \$0)
- 2. p(k1, \$, 1) = (k1, \$1)
- 3. p(k1, 0, 0) = (k1, 00)
- 4. $p(k1, 0, 0) = (k2, \epsilon)$
- 5. p(k1, 0, 1) = (k1, 01)
- 6. p(k1, 1, 0) = (k1, 10)
- 7. p(k1, 1, 1) = (k1, 11)
- 8. $p(k1, 1, 1) = (k2, \varepsilon)$
- 9. $p(k2, 0, 0) = (k2, \epsilon)$
- 10. $p(k2, 1, 1) = (k2, \varepsilon)$
- 11. $p(k2, \$, \varepsilon) = (k3, \varepsilon)$

Συμβολοσειρά: 001100

Στοίβα	Κατάσταση	Είσοδος	
\$	k1	001100	
\$0	k1	01100	1
\$00	k1	1100	3
\$001	k1	100	5
\$00	k2	00	8
\$0	k2	0	9
\$	k2	8	9
\$	k3	ε	11

Παράδειγμα 2: Μη-ντετερμινιστικό Αυτόματο Στοίβας (4)

Αν είχαμε διαλέξει την παρακάτω σειρά διαμορφώσεων το ΑΣ δεν θα αναγνώριζε την συμβολοσειρά.

1.
$$p(k1, \$, 0) = (k1, \$0)$$
 7. $p(k1, 1, 1) = (k1, 11)$

2.
$$p(k1, \$, 1) = (k1, \$1)$$
 8. $p(k1, 1, 1) = (k2, \epsilon)$

3.
$$p(k1, 0, 0) = (k1, 00)$$
 9. $p(k2, 0, 0) = (k2, \varepsilon)$

4.
$$p(k1, 0, 0) = (k2, \epsilon)$$
 10. $p(k2, 1, 1) = (k2, \epsilon)$

5.
$$p(k1, 0, 1) = (k1, 01)$$
 11. $p(k2, \$, \varepsilon) = (k3, \varepsilon)$

6.
$$p(k1, 1, 0) = (k1, 10)$$

Συμβολοσειρά: 001100

Στοίβα	Κατάσταση	Είσοδος	
\$	k1	001100	
\$0	k1	01100	1
\$00	k1	1100	3
\$001	k1	100	5
\$0011	k1	00	7
\$00110	k1	0	6
\$001100	k1	ε	6

Στο τέλος, στη κορυφή της στοίβας δεν υπάρχει το αρχικό σύμβολο

Παράδειγμα 2: Μη-ντετερμινιστικό Αυτόματο Στοίβας (5-1)

Το παραπάνω αυτόματο αναγνωρίζει την συμβολοσειρά: 111001;

- 1. p(k1, \$, 0) = (k1, \$0)
- 2. p(k1, \$, 1) = (k1, \$1)
- 3. p(k1, 0, 0) = (k1, 00)
- **4.** $p(k1, 0, 0) = (k2, \varepsilon)$
- 5. p(k1, 0, 1) = (k1, 01)
- 6. p(k1, 1, 0) = (k1, 10)
- 7. p(k1, 1, 1) = (k1, 11)
- 8. $p(k1, 1, 1) = (k2, \epsilon)$
- 9. $p(k2, 0, 0) = (k2, \varepsilon)$
- 10. $p(k2, 1, 1) = (k2, \varepsilon)$
- 11. $p(k2, \$, \varepsilon) = (k3, \varepsilon)$

Στοίβα	Κατάσταση	Είσοδος	
\$	k1	111001	
\$1	k1	11001	2
\$11	k1	1001	7
\$111	k1	001	7
\$1110	k1	01	6
\$11100	k1	1	3
\$111001	k1	ε	5

Στο τέλος, στη κορυφή της στοίβας δεν υπάρχει το αρχικό σύμβολο

Παράδειγμα 2: Μη-ντετερμινιστικό Αυτόματο Στοίβας (5-2)

Τι συμβαίνει, όμως, αν διαλέξουμε την παρακάτω σειρά διαμορφώσεων (2, 7, 8);

- 1. p(k1, \$, 0) = (k1, \$0)
- 2. p(k1, \$, 1) = (k1, \$1)
- 3. p(k1, 0, 0) = (k1, 00)
- **4.** $p(k1, 0, 0) = (k2, \varepsilon)$
- 5. p(k1, 0, 1) = (k1, 01)
- 6. p(k1, 1, 0) = (k1, 10)
- 7. p(k1, 1, 1) = (k1, 11)
- 8. $p(k1, 1, 1) = (k2, \epsilon)$
- 9. $p(k2, 0, 0) = (k2, \varepsilon)$
- 10. $p(k2, 1, 1) = (k2, \epsilon)$
- 11. $p(k2, \$, \varepsilon) = (k3, \varepsilon)$

Στοίβα	Κατάσταση	Είσοδος	
\$	k1	111001	
\$1	k1	11001	2
\$11	k1	1001	7
\$111	k2	001	8
Το ΑΣ	δεν <u>διαβάζει</u>	την συμβολοσειοά	

Δεν υπάρχει διαμόρφωση που να καθορίζει τι εισάγεται ή εξάγεται από την στοίβα όταν η κατάσταση είναι k2, στην κορυφή της είναι το 1 και το στοιχείο εισόδου είναι το 0 [p(k2,1,0)]

Παράδειγμα 2: Μη-ντετερμινιστικό Αυτόματο Στοίβας (6)

Το παραπάνω αυτόματο αναγνωρίζει την συμβολοσειρά: 110011;

- 1. p(k1, \$, 0) = (k1, \$0)
- 2. p(k1, \$, 1) = (k1, \$1)
- 3. p(k1, 0, 0) = (k1, 00)
- **4.** $p(k1, 0, 0) = (k2, \varepsilon)$
- 5. p(k1, 0, 1) = (k1, 01)
- 6. p(k1, 1, 0) = (k1, 10)
- 7. p(k1, 1, 1) = (k1, 11)
- 8. $p(k1, 1, 1) = (k2, \epsilon)$
- 9. $p(k2, 0, 0) = (k2, \varepsilon)$
- 10. $p(k2, 1, 1) = (k2, \varepsilon)$
- 11. $p(k2, \$, \varepsilon) = (k3, \varepsilon)$

Στοίβα	Κατάσταση	Είσοδος	
\$	k1	110011	
\$1	k1	10011	2
\$11	k1	0011	7
\$110	k1	011	6
\$11	k2	11	4
\$1	k2	1	10
\$	k2	ε	10
\$	k3	ε	11

Επιτυχής αναγνώριση