

Main street in downtown Ames, Photo by Tim Kiser

House Prices - Advanced Regression Techniques

Predict sales prices and practice feature engineering

COMPETENCES EVALUÉES

- Rédiger une note méthodologique afin de communiquer sa démarche de modélisation
- Utiliser un logiciel de version de code pour assurer l'intégration du modèle
- Présenter son code aux standards PEP 8
- Enrichir les réalisations d'autres membres de la communauté de professionnels

PROBLÉMATIQUE

Notre objectif est d'utiliser l'ensemble des données sur les logements d'Ames, lowa pour construire un modèle d'apprentissage automatique capable de prédire le prix de vente d'une propriété résidentielle.

PROBLÉMATIQUE

Inputs

80 variables

5 modèles

- Catboost
- GradientBoosting
- BayesianRidge
- LGBMRegressor
- Ridge

Bagging | Stacking

GridSearchCV

Output

SalePrice

min RMSE

MÉTHODOLOGIE

- -> Erreurs de formatage
- -> Valeurs manquantes
- -> Erreurs de typage
- -> Exploratory data analysis (EDA)
- -> Outliers
- -> Feature engineering
- -> Modélisation
- -> Tuning
- -> Soumission des résultats

DONNÉES

80 variables au total – 1460 observations de 2006 à 2010:

- 46 variables catégorielles allant de 2 à 28 classes
 - 23 nominales: sous-classes de bâtiment
 - 23 ordinales: mesure se qualité
- 14 discrètes: nombre d'éléments présents dans la maison
 - cuisines, salles de bains etc.
 - année ou mois
- 20 continues:
 - la taille du terrain
 - la superficie totale du logement en pieds carrés

L'ensemble de données sur le logements d'Ames a été collecté par le Dr Dean De Cock, professeur de statistiques à la Truman State University, en 2011.

DATA PROCESSING

Erreurs de formatage

Valeurs manquantes

- variables numériques : KNNImputer ()
- variables catégoriques : mode ()

BsmtFinType1: Rating of basement finished area GLQ Good Living Quarters ALQ Average Living Quarters BLQ Below Average Living Quarters Rec Average Rec Room LwQ Low Quality Unf Unfinshed NA No Basement

Erreurs de typage

- Float to int64: BsmtFullBath, GarageYrBlt, FullBath etc.
- int64 **to** object: MSSubClass, OverallQual, OverallCond
- object to int 64: variables ordinales

```
ExterQual ['Gd' 'TA' 'Ex' 'Fa']
ExterCond ['TA' 'Gd' 'Fa' 'Po' 'Ex']
BsmtQual ['Gd' 'TA' 'Ex' 'None' 'Fa']
BsmtCond ['TA' 'Gd' 'None' 'Fa' 'Po']
BsmtExposure ['No' 'Gd' 'Mn' 'Av'
'None']
HeatingQC ['Ex' 'Gd' 'TA' 'Fa' 'Po']
KitchenQual ['Gd' 'TA' 'Ex' 'Fa']
FireplaceQu ['None' 'TA' 'Gd' 'Fa' 'Ex'
'Po']
GarageQual ['TA' 'Fa' 'Gd' 'None' 'Ex'
'Po']
GarageCond ['TA' 'Fa' 'None' 'Gd' 'Po'
'Ex']
PoolQC ['None' 'Ex' 'Fa' 'Gd']
```

DATA EXPLORATION

Distribution des variables numériques

Distribution des variables numériques

DATA EXPLORATION

Distribution des variables catégoriques

Corrélation des variables numériques à SalePrice

OUTLIERS

OUTLIERS

BedroomAbvGr
ForthenAbvGr
ForthenAbvGr
FirehnSabvGr
Garage*Fift
Garage*Fift
Garage*Fift
Garage*Fift
Garage*Fift
Garage*Fift
Garage*Fift
Garage*Cars
WoodDeckSF
OpenPorrh
SSENPORTH
SSENFORTH
SSENFORTH
ForthenBorth
F

FEATURES ENGINEERING

+ Features

SFPerRoom
TotOverall
TotGarage
TotExter
TotBsmt
TotBathrooms
BsmtFinType
BsmtFinSF
TotFlrSF
TotPorchSF

- Features

FEATURES ENGINEERING

Skewness: log(x+1)

$$- \cos(0.5236 x)$$

- Encoding 🛂
- Normalisation
- log(y) 🗸
- Split train | test 🔽

Classification des modèles

catboost cv_rmsle: mean = 0.000088
std = 0.000030
catboost cv_rmse: mean = 0.118712
std = 0.018860
catboost cv_mae : mean = 0.080981
std = 0.007297
catboost cv_mse : mean = 0.014448
std = 0.004666
catboost cv_r2 : mean = 0.909867
std = 0.017926
catboost cv_rmse: exp(average error) = 1.126045

Baseline: catboost regressor

Baseline: catboost regressor

```
catboost cv_rmsle: mean = 0.000088 std = 0.000030
catboost cv_rmse: mean = 0.118712 std = 0.018860
catboost cv_mae : mean = 0.080981 std = 0.007297
catboost cv_mse : mean = 0.014448 std = 0.004666
catboost cv_r2 : mean = 0.909867 std = 0.017926
catboost cv_rmse: average error = 1.126045
```


	ld	SalePrice
0	1461	122280.80
1	1462	156660.81
2	1463	187629.83
3	1464	192667.31
4	1465	178686.50
1454	2915	84055.80
1455	2916	82374.96
1456	2917	154157.58
1457	2918	122527.66
1458	2919	208587.87

Bagging | Stacking

```
models = {
    "catboost": CatBoostRegressor(),
    "gbr": GradientBoostingRegressor(),
    "br": BayesianRidge(),
    "lightgbm": LGBMRegressor(),
    "ridge": Ridge()
}
```

```
Cross validation
score
cv = 10
```

```
catboost
mean error: 1.1255705021722968
std error: 0.019166088729885393
abr
mean error: 1.1313293560334636
std error: 0.018247295842752285
br
mean error: 1.1309322682595433
std error: 0.01677582200834476
lightgbm
mean error: 1.1340964763343142
std error: 0.01605738440024673
ridge
mean error: 1.1340701486514333
std error: 0.01579574106419592
```

```
final_predictions = (
    0.4 * y_pred +
    0.2 * pred_gbr +
    0.2 * pred_br +
    0.1 * pred_ridge +
    0.1 * pred_lightgbm)
```

Id SalePrice

GridSearchCV cv = 5

- hyper paramètres
- predict() * 5

```
Cross validation
score
cv = 10
```

```
catboost
mean error: 1.1240598432253028
std error: 0.01738574116687094
mean error: 1.127137357413304
std error: 0.01594005333252564
mean error: 1.1309322170966687
std error: 0.01677577289463734
lightgbm
mean error: 1.128179739246058
std error: 0.016585223136415268
ridge
mean error: 1.1334127886973446
std error: 0.01584938403087582
```

```
Metrics = -exp (RMSE)
```


CONCLUSION

Steps	Score	Rank %	Rank
Baseline catboost	0.12301	7.11%	442
Bagging Ensemble	0.12386	7.17%	445
Add Features	0.12213	7.04%	439
Drop Features	0.12235	7.06%	440
Baseline: Add Features + Features Elimination + Outliers	0.12562	7.30%	451
Bagging: Add Features + Features Elimination + Outliers	0.12296	7.11%	442
Baseline with PCA	0.1294	7.61%	465
Bagging with PCA	0.12463	7.24%	448
Bagging with PCA and GridSearchCV	0.12364	7.15%	444
Best score:	0.12213		

- AutoML avec pycaret
- Ajout de colonnes
- Bagging | Stacking
- GridSearchCV

- supprimer les variables

Thanks!
Any
questions?