

Object localization

What are localization and detection?

Image classification

`Car"

Classification with localization

"(w

Detection

multiple objects

bjert

Classification with localization

Defining the target label y

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background \leftarrow

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Landmark detection

Landmark detection

 b_x , b_y , b_h , b_w

ConvNet

: 164, 264y

lix, lig, : 1324 1224

Object detection

Car detection example

Convolutional implementation of sliding windows

Turning FC layer into convolutional layers

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Convolution implementation of sliding windows

Intersection over union

Evaluating object localization

More generally, IoU is a measure of the overlap between two bounding boxes.

Non-max suppression

Non-max suppression example

Non-max suppression example

19x19

Non-max suppression example

Pc

Non-max suppression algorithm

19× 19

Each output prediction is:

Discard all boxes with $p_c \leq 0.6$

- While there are any remaining boxes:
 - Pick the box with the largest p_c Output that as a prediction.
 - Discard any remaining box with $IoU \ge 0.5$ with the box output in the previous step

Anchor boxes

Overlapping objects:

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Anchor box algorithm

Previously:

Each object in training image is assigned to grid cell that contains that object's midpoint.

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU.

(grid cell, cychon bux)

(9 uput y:
$$3 \times 3 \times 16$$
 $3 \times 3 \times 2 \times 8$

Andrew No

Anchor box example

Anchor box 1: Anchor box 2:

Andrew Ng

Putting it together: YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Making predictions

Outputting the non-max supressed outputs

- For each grid call, get 2 predicted bounding boxes.
- Get rid of low probability predictions.
- For each class (pedestrian, car, motorcycle) use non-max suppression to generate final predictions.

Region proposals (Optional)

Region proposal: R-CNN

[Girshik et. al, 2013, Rich feature hierarchies for accurate object detection and semantic segmentation] Andrew Ng

Faster algorithms

 \rightarrow R-CNN:

Propose regions. Classify proposed regions one at a

time. Output label + bounding box.

Fast R-CNN:

Propose regions. Use convolution implementation

of sliding windows to classify all the proposed

regions.

Faster R-CNN: Use convolutional network to propose regions.

[Girshik et. al, 2013. Rich feature hierarchies for accurate object detection and semantic segmentation] [Girshik, 2015. Fast R-CNN]

[Ren et. al, 2016. Faster R-CNN: Towards real-time object detection with region proposal networks]