Algèbre Linéaire 2 - Série 6

L'espace vectoriel \mathbb{R}^n III

1. Soient
$$\overrightarrow{v_1} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
, $\overrightarrow{v_2} = \frac{1}{\sqrt{19}} \begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix}$ et $\overrightarrow{v_3} = \frac{1}{\sqrt{266}} \begin{pmatrix} 11 \\ -9 \\ 8 \end{pmatrix}$.

- (a) Vérifier que $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ est une base orthonormée de \mathbb{R}^3 .
- (b) Calculer la norme de $3\overrightarrow{v_1} 2\overrightarrow{v_2} + 5\overrightarrow{v_3}$.
- (c) Déterminer les composantes du vecteur $\overrightarrow{u} = \begin{pmatrix} -1\\2\\3 \end{pmatrix}$ dans la base $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$.
- 2. Implémenter l'algorithme d'orthonormalisation de Gram-Schmidt dans le langage de votre choix. L'utiliser pour orthonormaliser les familles libres de l'exercice 1(a) de la Série 5.

3. Soient
$$\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\overrightarrow{u_2} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\overrightarrow{u_3} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$, ainsi que $\overrightarrow{v_1} = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$, $\overrightarrow{v_2} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\overrightarrow{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- (a) Montrer que $\mathcal{U} = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ et $\mathcal{V} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ sont des bases de \mathbb{R}^3 .
- (b) Calculer la matrice de passage de la base canonique à la base \mathcal{U} , et celle de la base canonique à la base \mathcal{V} .
- (c) Calculer la matrice de passage de la base \mathcal{U} à la base \mathcal{V} , et celle de la base \mathcal{V} à la base \mathcal{U} .
- (d) Soit $\overrightarrow{x} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ (dans la base canonique). Ecrire la représentation de \overrightarrow{x} dans la base \mathcal{U} de deux manières:
 - (i) en passant de la base canonique à la base \mathcal{U} .
 - (ii) en écrivant d'abord \overrightarrow{x} dans la base \mathcal{V} , puis en faisant un changement de base pour passer de la base \mathcal{V} à la base \mathcal{U} .
- (e) Appliquer le processus de Gram-Schmidt sur la base \mathcal{U} et sur la base \mathcal{V} . Soient \mathcal{U}^{\perp} et \mathcal{V}^{\perp} les bases orthonormées ainsi obtenues. Calculer la matrice de passage P de \mathcal{U}^{\perp} à \mathcal{V}^{\perp} . Calculer det P, ainsi que les produits scalaires respectifs des colonnes de P entre elles.