

Thibaud Ardoin

Combinatorial Problems with Transformers

The Dial a Ride Problem

- Complex routing **Problem**
- Pick-up and Drop of **Targets**
- **Constraints**:
 - Time & Space
 - Capacity
 - Service time
- **NP-Hard**:
 - DARP > VRP > TSP

Background

- DaRP Survey paper in 2018:
 - Only Operational Research
 - No learning solutions

review and recent developments, C. Ho (2018)

- DARP state-of-the-art:
 - Branch-and-Cut algorithms
 - **Optimal** solutions on *cordeau2006*
- Use of **Transformer** in TSP
 - Get optimality with n=100

The Transformer Network for the TSP, X. Bresson (2021)

Evaluation

Classical benchmark datasets

Cordeau2003: - Heuristics - Loose constraints

cordeau2006:

- Exact solutions
- Tight constraints
- Metrics:
 - Minimize cost function
 - Cost = Distance
 - GAP = % difference to best known solution
 - CPU = Computation time (min)

General Approach

- Translate the problem to be understood by the model
- **Clone** an existing policy:
 - **Nearest Neighbor** (NN) (naive strategy)
 - **Restricted Fragment (RF)** (Exact & SotA)
- Learn on top with RL
- Evaluate on benchmark datasets

Simulator

- Respect of constraints:
 - Time & Space
 - Capacity
 - Service time
- Dynamic:
 - Online (but offline data..)

Dataset GAP

cordeau2006

2.80%

- Continuous time
- Sparse time step
- Interaction

Supervision

RF

NN

- Tour based game
- Get observation of the environment
- Action = Assign 1 target to current driver

Random

instance GAP

2.78%

~100%

Accuracy on

test data

92.4%

99.99%

Data Processing

Transformer Model

Conclusion

Results

- Results are **not able to compete** with exact and optimal solutions on Cordeau2006
- Although, we show that our approach is able to learn near optimal solutions, and understand a complex, multi-type data, combinatorial problem.
- Futures works: Expand results to different type of instances. Train on top with RL to improve results.

