UNIVERSITATEA DIN BUCURESTI FACULTATEA DE MATEMATICA SI INFORMATICA

Seminar 6

aformatii ount eduralente:

Solutie:

$$(a) \Rightarrow b$$
) The ($(a_n)_m \subseteq Q$. $(a_n)_m \subseteq R \setminus Q$ as $(a_n)_m = a_n \setminus Q$) $(a_n)_m = a_n \setminus Q$

Cum In mit ount combinue in no, asm:

Cum. In m g. nunt continue an no, arem.

Dim (1101(2) QHM (ā f(20)=9(20).

Arem
$$y(\omega) - y(\omega) = \begin{cases} f(\omega) - f(\omega) & \omega \in \mathbb{Q} \end{cases}$$
 get order

deci avand en redere (3), hagem conclusia ca lim (hem)-h(no) =0. ie lim. h(m) = h(ro) Acadan. In este continua in ro

2) Fie. f,g.R. R douā Junchi denivabile. ni h:R-R dalā $h(r) = \begin{cases} -f(r), & x \in \Omega, \\ g(r), & x \notin \Omega, \end{cases}$ So is another const.

 l_n -derivable in to $\Longrightarrow L(r_0) = g(r_0)$ in $L'(r_0) = g'(r_0)$

Solution:

=>1 Decente. h. este devirabila în ro∈R, arm. ca ea este combinua în 20, deci fro) = 9(20)

Fie (rinh = D. m. (gm) = R. Q. ar lim rm = lim gm = ro cum hint.

ound derivable in no, exem:

$$\lim_{m \to \infty} \frac{\int_{M} \int_{M} \int_{M$$

m.
$$\frac{3m-70}{3m-70} = \lim_{m \to \infty} \frac{3(3m)-3(3m)}{3(3m)-3(3m)} = 3(3m) = y(3m) = y(3m)$$

Dim (1) in (2), deducem $c\bar{a}$ f'(no) = g'(no)

Arem.
$$\frac{h(nn) - h(no)}{nm - no} - \Gamma = \begin{cases} \frac{-l(nn) - l(no)}{nm - no} - \Gamma & l(nn) \in \mathbb{Q}. \end{cases}$$

HMEN

Com. I vi d. vont generapige. ou vo. oxum.

$$\lim_{m \to \infty} \left| \frac{f(m) - f(no)}{r^{m} - ro} - \Gamma \right| = \lim_{m \to \infty} \left| \frac{g(r_{m}) - g(r_{o})}{r^{m} - ro} - \Gamma \right| = 0$$

$$\lim_{n \to \infty} \left| \frac{f(m) - f(no)}{r^{m} - ro} - \Gamma \right| = 0$$

$$\lim_{n \to \infty} \left| \frac{f(m) - f(no)}{r^{m} - ro} - \Gamma \right| = 0$$

$$\lim_{n \to \infty} \left| \frac{f(m) - f(no)}{r^{m} - ro} - \Gamma \right| = 0$$

$$\lim_{n \to \infty} \left| \frac{f(m) - f(no)}{r^{m} - ro} - \Gamma \right| = 0$$

$$\lim_{n \to \infty} \left| \frac{f(m) - f(no)}{r^{m} - ro} - \Gamma \right| = 0$$

$$\lim_{n \to \infty} \left| \frac{f(m) - f(no)}{r^{m} - ro} - \Gamma \right| = 0$$

Solutie:

Conform exercitive D, daca roer este un peinct de decivabilitate et.

Lunchia f, almai no -ro = o m 3ro - zro = o . Cum no = o este

ningunal prinat care resifica conditible de mai rus, conclutionism. ca no = o
este ringunal prinat de decivabilitate pentre f.

(4) Fig.
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 data de $f(r,y) = \begin{cases} \frac{\text{Nin}(r^3 + y^3)}{r^2 + y^2}, & (x,y) \neq (0,0). \\ 0, & (x,y) = (0,0). \end{cases}$

São se avate continuitata m. origine.

Solutie:

The $(7n, 9n)_{m \in N} \subseteq \mathbb{R}^2 \setminus (0,0) \setminus ar \lim_{m \to \infty} (7n, 9n) = (0,0), i.e. 7n \xrightarrow{m \to 0}$

Humai, com.
$$\left| \frac{\eta_{M}^{2} + \eta_{M}^{2}}{\eta_{M}^{2}} \right| \leq \frac{\eta_{M}^{2} + \eta_{M}^{2}}{\eta_{M}^{2} + \eta_{M}^{2}} |\eta_{M}| + \frac{\eta_{M}^{2}}{\eta_{M}^{2} + \eta_{M}^{2}} |\eta_{M}| \leq |\eta_{M}| + |\eta_{M}|$$

(H)m:
$$\approx 1$$
, deducem $c\bar{a}$: $\lim_{n \to \infty} \frac{3^n + y_n^n}{3^n + y_n^n} = 0$ (1)

Describes
$$\lim_{m \to \infty} (x_{1}^{2} + y_{2}^{2}) = 0$$
, obtingent $c\bar{a}$: $\lim_{m \to \infty} \frac{x_{1}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{2}^{2}} = 1$ (2).

Din. (1) in (2), conclusionam. ca
$$\lim_{m \to \infty} \frac{\eta_m^3 + \eta_m^3}{\eta_m^3 + \eta_m^3} = 0$$
, deci

$$\lim_{m \to \infty} \frac{\sin((2n+y_m))}{(2n+y_m)} = 0$$
, i.e. $\lim_{m \to \infty} f((2m,y_m)) = f(0,0)$.

Prin. whomase. lim. f(1,y) = f(0,0), dea f este continua îm (0,0)

(5) Fig. f:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$
. data de. $f(x,y) = \begin{cases} \frac{\gamma y}{\gamma^2 + y^2} & (\gamma,y) \neq (0,0) \\ 0 & (\gamma,y) = (0,0) \end{cases}$

Sã re anate ca + nu este continua em origine.

Solutie:

So presupernem, prin reducere la abrusd; co f este continua in (0,0)Alunci pentru care $(n_1,y_m)_{m\in\mathbb{N}}\subseteq\mathbb{R}^2$ ar. $\lim_{n\to\infty}(n_n,y_m)=(0,0)$, asom $\lim_{n\to\infty}f((n_n,y_m))=f(0,0)=0$

In particular over $\lim_{m \to \infty} f(t_m, t_m) = 0$, deci obtinem contradictie. $t_m = 0$. Acadar I rue ente continua în origine.

Lim try = $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2} = \lim_{x\to0} \frac{x^2 \sin x \cos x}{x^2} = \lim_{x\to0} \frac{x^2 \cos x}{x^2} = \lim_{x\to0} \frac{x$

ceea ce anata ca limita în (0,0) nu exista, deci functia nu este continua in. and me.

Sã re anate ca f-mu este continua în origine.

Solutie:

The Conjument
$$\subseteq \mathbb{R}^2$$
 3(0,0)4; $(\eta_m, \eta_m) = (\frac{1}{m}, \frac{1}{m^2}) \longrightarrow (0,0)$. Attention $\frac{1}{m^2}$

Prim resimano. Jim. 124. um exista u ca atare. I-uma compuna

(0,0) M)

Observative: Dersi lim for, mx) =0 (4) mer, tolum livida nu exista

(7) São se shudiese continuitatea functiei f: R2-R $f(u^{i}d) = \begin{cases} 0 & (u^{i}d) = (d^{0}) \\ u^{d} \cdot \frac{u_{5} + d_{5}}{u_{5} - d_{5}} & (u^{i}d) \neq (o^{i}0) \end{cases}$

$$\bigcirc \qquad , \qquad (\mathcal{A}) = (\mathcal{A} \circ)$$

Solutie: Pe. R23(0,0)/ Junctia este combinua (Liend elementara).

alfel: (4) ab ER in (4) (amin, (bmin = R ar lim an=a in lim bn=b. -> lim f((am,bm)) = f(a,b)

Sã aludiem continuitatea in (0,0)

Fig. 8>0. Alegen SE = 12E. Fig. 11 (714) - (010) 11 < SE (=> 1x2+42 < SE

(nôma eudidiana)

From repursing t ente compuner on (0,0) u gea t ente compuner de (0,0) (

8) Sā re anate cā nu existā funcți continue f: R→R ar.

Solutie.

So pp cā (3) o functie comtinua $f:R \rightarrow R$ as $f(x) \in G \implies f(x+1) \neq G$.

Definim $h:g:R \rightarrow R$ h(x) = f(x+1) - f(x) h:g(x) = f(x+1) + f(x)Where R, care evident numb continue in ca alone ou proprietates bui Danboux. Prim when h(R) in respective g(R) numb intervals.

Cum h(R) in $g(R) \subseteq R \setminus G$, is reduce be sun punct, adica h in g.

The constants

Prim sommer + este constanta ceia ce combarice fastel ca + va cel.

Alta odutie: Fie. g:R->R g(r) = -f(r+1)-f(r) (4) reR. Cum g-continua n g(R) = R(Q) => ca g ente constantà doci 7) ceR ar g(r)=c (4) xeR

for ea => for+1) & a => gor) & a (1.0 c&a).

Deci f(n+1) = f(n) + g(n) = f(n)+c & Q.

Rede alta parte f(n+1)+c = -f(n)+2c (=> 2c eQ. (=> ceQ.).

Q. 7

-6-

Scanned with CamScanner

Decorate upm que ibapea ca
$$\frac{b_1}{q_1} + \frac{b_2}{q_3} > J$$
. But $\frac{1}{q_1} = \frac{1}{|A|_{b^2}|J_{b^2}|} = \frac{1}{|A|_{b^2}|J_{b^2}|J_{b^2}|} = \frac{1}{|A|_{b^2}|J_{b^2}|J_{b^2}|} = \frac{1}{|A|_{b^2}|J_$

Scanned with CamScanne

Am Jolonit ca:

(A) x12 ap>0. apom: xa2p. € (x+2) a+p.

inegalitate eriduta doonce aren:

 $x_{\alpha} d_{p} \in (x+\lambda)_{\alpha+p} \mid A_{\alpha+p} \neq 0 \pmod{\frac{\lambda}{x}}_{\alpha} \leq (\frac{\lambda}{x}+1)_{\alpha+p}$

jan. $(\frac{\chi}{\lambda})^{\alpha} \leq (\frac{\chi}{\lambda} + 1)^{\alpha} \leq (\frac{\chi}{\lambda} + 1)^{\alpha+b}$.

Jed.