

1/10

CGTCCGGCGGAAGGCGACATGGGCTCCGCTCCCTGGGCCCGGTCCTGCTGCTGGCGCTC
1-----+-----+-----+-----+-----+-----+-----+-----+-----+ 60
M G S A P W A P V L L L A L -

GGGCTGC CGGGCCTCCAGGC GGCCCCGGCAGGGCCCGGACCCCGGCTTCCAGGAGCGC
61-----+-----+-----+-----+-----+-----+-----+-----+-----+ 120
G L R G L Q A G A R R A P D P G F Q E R -

TTCTTCCAGCAGCGTCTGGACCAC TTCAACTTCGAGCGCTTCGCAACAAGACCTTCCCT
121-----+-----+-----+-----+-----+-----+-----+-----+-----+ 180
F F Q Q R L D H F N F E R F G N K T F P -

CAGCGCTTCTGGTGTGGACAGGTTCTGGGTCCGGGGCGAGGGGCCATCTTCTTCTAC
181-----+-----+-----+-----+-----+-----+-----+-----+-----+ 240
Q R F L V S D R F W V R G E G P I F F Y -

ACTGGGAACGAGGGCGACGTGTGGCCTTCGCCAACAACTCGGGCTTCGTGCGGAGCTG
241-----+-----+-----+-----+-----+-----+-----+-----+-----+ 300
T G N E G D V W A F A N N S G F V A E L -

GC GGCCGAGCGGGGGCTCTACTGGTCTTCGGAGCACCGCTACTACGGGAAGTCGCTG
301-----+-----+-----+-----+-----+-----+-----+-----+-----+ 360
A A E R G A L L V F A E H R Y Y G K S L -

CCGTTCGGTGCGCAGTCCACGCAGCGCGGGCACACGGAGCTGCTGACGGTGGAGCAGGCC
361-----+-----+-----+-----+-----+-----+-----+-----+-----+ 420
P F G A Q S T Q R G H T E L L T V E Q A -

CTGGCCGACTTCGCAAGAGCTGCTCCGCGCGCTACGACGCGACCTCGGGGCCAGGATGCC
421-----+-----+-----+-----+-----+-----+-----+-----+-----+ 480
L A D F A E L L R A L R R D L G A Q D A -

CCCGCCATCGCCTCGGTGGAAGTTATGGGGGGATGCTCAGTGCCTACCTGAGGATGAAG
481-----+-----+-----+-----+-----+-----+-----+-----+-----+ 540
P A I A F G G S Y G G M L S A Y L R M K -

TATCCCCACCTGGTGGCGGGGGCGCTGGCGGCCAGCGCGCCGTTCTAGCTGTGGCAGGC
541-----+-----+-----+-----+-----+-----+-----+-----+-----+ 600
Y P H L V A G A L A A S A P V L A V A G -

CTCGGCGACTCCAACCAGTTCTCCGGGACGTACGGCGGACTTGAAGGGCCAGAGTCCC
601-----+-----+-----+-----+-----+-----+-----+-----+-----+ 660
L G D S N Q F F R D V T A D F E G Q S P -

AAATGCACCCAGGGTGTGCGGGAAAGCGTCCGACAGATCAAGGACTTGTCCACAGGGA
661-----+-----+-----+-----+-----+-----+-----+-----+-----+ 720
K C T Q G V R E A F R Q I K D L F L Q G -

FIG. 1A.

2/10

GCCTACGACACGGTCCGCTGGGAGTTGGCACCTGCCAGCCGCTGTCAAGACGAGAAGGAC
721-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 780
A Y D T V R W E F G T C Q P L S D E K D -

CTGACCCAGCTCTTCATGTTGCCCGGAATGCCTTCACCGTGCTGGCCATGATGGACTAC
781-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 840
L T Q L F M F A R N A F T V L A M M D Y -

CCCTACCCCACTGACTTCCTGGTCCCCTCCCTGCCAACCCCGTCAAGGTGGGCTGTGAT
841-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 900
P Y P T D F L G P L P A N P V K V G C D -

CGGCTGCTGAGTGAGGCCAGAGGATCACGGGGCTGCGAGCACTGGCAGGGCTGGTCTAC
901-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 960
R L L S E A Q R I T G L R A L A G L V Y -

AACGCCTCGGGCTCCGAGCACTGCTACGACATCTACCGGCTCTACCACAGCTGTGCTGAC
961-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1020
N A S G S E H C Y D I Y R L Y H S C A D -

CCCACTGGCTGCGGCACCGGCCCCGACGCCAGGGCTGGACTACCAGGCCGACCGAG
1021-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1080
P T G C G T G P D A R A W D Y Q A C T E -

ATCAACCTGACCTTCGCCAGCAACAATGTGACCGATAATGTTCCCCGACCTGCCCTCACT
1081-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1140
I N L T F A S N N V T D M F P D L P F T -

GACGAGCTCCGCCAGCGGTACTGCCTGGACACCTGGGGCGTGTGGCCCCGGCCGACTGG
1141-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1200
D E L R Q R Y C L D T W G V W P R P D W -

CTGCTGACCAGCTCTGGGGGGGTGATCTCAGAGCCGCCAGCAACATCATCTTCTCCAAC
1201-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1260
L L T S F W G G D L R A A S N I I F S N -

GGGAACCTGGACCCCTGGGCAGGGGGCGGGATTGGAGGAACCTGAGTGCCTCAGTCATC
1261-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1320
G N L D P W A G G G I R R N L S A S V I -

GCCGTACCATCCAGGGGGAGCGCACCACTCGACCTCAGAGCCTCCCACCCAGAAGAT
1321-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1380
A V T I Q G G A H H L D L R A S H P E D -

CCTGCTTCCGTGGTTGAGGCGCGGAAGCTGGAGGCCACCATCATGGCGAGTGGTAAAG
1381-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1440
P A S V V E A R K L E A T I I G E W V K -

GCAGCCAGGCAGTGAGCAGCAGCCAGCTCTGCCTGGGGGGCCAGACTCAGCCTCTGAGCA
1441-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1500
A A R R E Q Q P A L R G G P R L S L -

CAGGACTGGAGGGGTCTCAAGGCTCCTCATGGAGTGGGGCTTCACTCAAGCAGCTGGCG
1501-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 1560

FIG. 1B.

3/10

GCAGAGGGAAGGGGCTGAATAAACGCCTGGAGGCCTGGCAAAAAAAAAAAAAAA
1561-----+-----+-----+-----+-----+-----+-----+ 1620

1621 AAAAAAAAAAAAAAAAAAAAAAAA 1653

FIG. 1C.

4/10

Query: 22012

Scores for sequence family classification (score includes all domains):

Model	Description	Score	E-value	N
abhydrolase	alpha/beta hydrolyase fold	31.8	1.6e-05	1
Peptidase_S9	Prolyl oligopeptidase family	8.4	0.25	1

Parsed for domains:

Model	Domain	seq-f	seq-t	hmm-f	hmm-t	score	E-value
Peptidase_S9	1/1	158	167	.	72	81)
abhydrolase	1/1	100	360	.	1	233	{}

Alignments of top-scoring domains:

Peptidase_S9: domain 1 of 1, from 158 to 167: score 8.4, E = 0.25

-> ifGgSnnGGIL<-

+fGgS+GG+L

22012 158 AFGGSYGGML 167

abhydrolase: domain 1 of 1, from 100 to 360: score 31.8, E = 1.6e-05

*-> frviaIDlrGfGeSrp..... sdldayrfddlaedleal

+ ++ + +r++G+S p + ++++++++ + + +dtae l al

22012 100 ALLVFAEHRYYGKSL-PfgaqstqrgheteLLTVEQALADFAELLRAL 145

ldalgldkp. v i l v GhSmGGalaayaakyPeervkalv lvstp... ap

++ lg + ++i++G+S+GG+l+a++++kyP+ +v+++ + s+p a

22012 146 RRDILGAQDApAIAFGGSYGGMLSAYLRMKYPH-LVAGALAASAPvlavAG 194

aglssrlfpriqlgnleglllanffnrlrsveallgralkqffllgrpfvs

g s+ +f++ ++ ++ ++++ +ea+++ + +fl g +

22012 195 LGDSNQFRDVTADFEQSPKCTQ--GVREAQRQIKD--LFLQGAY--- 236

df lkqaedwlsslarp. getdggdgllgy... aval gk llqwdrs. alkd

d ++++++++ l+++ t+ ++ ++ + + + + +d+ ++l+

22012 237 DTVRWEFGTCQPLSDEKDLTQLFMARNAFTvLAMMDYPYPTDFLgPLPA 286

.. ikvPtliwgdDplvpIkaseklsalfpna. evvv iddagHla...

++kv + + + + l a l + + + + + + + + +H + +

22012 287 npVKVGCDRLSEAQRITGLRALAGLVYNASGSeHCYDIYRLYHSCadpt 336

..... llekpeevaeli. kf l <-*

+ +++++ ++++++et f+

22012 337 gcgtgpdaRAWDYQACTEINITFA 360

//

FIG. 2.

5/10

FIG. 3.

6/10

Analysis of 22012 (492 aa)

>22012
MGSAPWAPVLLALGLRGLQAGARRADPGFQERFFQQRLDHFNFEREGNKTFPQRFLVS
DRFWVRGEGPPIFYTGNEGVDWAFANNSGFVAELAAERGALLVFAEHRYYGKSLPFGAQS
TQRGHTELLTVEQALADFAELLRALRDLGAQDAPAIAFGGSYGGMLSAYLRMKYPHLVA
GALAASAPVLAVAGLGSNQFFRDVTADFEQGQSPKCTQGVREAFRQIKDLFLQGAYDTVR
WEFGTCQPLSDEKDLTQLFMARNAFTVLAAMDYPYPTDFLGPLPANPVKVGCDRLLSEA
QRITGLRALAGLVYNAGSGSEHCYDIYRLYHSCADPTCGGTGPNDARWDYQACTEINLTFA
SNNVTDMPDJLPFTDELRQRYCLDTWVWPRPDWLLTSFWGGDLRAASNIIIFSGNLDPW
AGGGIIRRNLASAVIAVTIQGGAAHLDLRAASHPEDPASVWEARKLEATIIGEWVKAAARREQ
QPALRGGRPLSL

FIG. 4.

7/10

Prosite Pattern Matches for 22012

Prosite version: Release 12.2 of February 1995

>PS00001/PDOC00001/ASN_GLYCOSYLATION N-glycosylation site.

Query:	50	NKTF	53
Query:	86	NNSG	89
Query:	315	NASG	318
Query:	356	NLT	359
Query:	363	NVT	366
Query:	428	NLSA	431

>PS00005/PDOC00005/PKC_PHOSPHO_SITE Protein kinase C phosphorylation site.

Query:	60	SDR	62
Query:	121	TQR	123
Query:	213	SPK	215
Query:	238	TVR	240

>PS00006/PDOC00006/CK2_PHOSPHO_SITE Casein kinase II phosphorylation site.

Query:	75	TGNE	78
Query:	317	SGSE	320
Query:	331	SCAD	334
Query:	340	TGPD	343
Query:	450	SHPE	453
Query:	457	SVVE	460

>PS00008/PDOC0008/MYRISTYL_N_myristoylation site.

Query:	18	GLQAGA	23
Query:	117	GAQSTQ	122
Query:	160	GGSYGG	165
Query:	181	GALAAS	186
Query:	194	GLGDSN	199
Query:	219	GVREAF	224
Query:	234	GAYDTV	239
Query:	311	GLVYNA	316
Query:	318	GSEHCY	323
Query:	424	GIRRNIL	429

>PS00029/PDOC00029/LEUCINE_ZIPPER Leucine zipper pattern.

Query: 128 LLTVEQALADFAELLRALRRDL 149

FIG. 5.

FIG. 6.

9/10

Gene 22012 Expression in Normal Human Tissues

FIG. 7.

FIG. 8.