Smart River

Mise en place d'une plateforme de métrologie autonome pour milieux aquatiques

Réalisé par : FALL El Hadji Fallou & JONCOUR Romain

Tuteurs académiques : CERTON Dominique, BUSSEUIL Rémi, LEMAIRE Etienne

> Sommaire

- Contexte et objectifs
- Structuration du projet par tâches
- Diagramme de Gantt et répartition des taches
- Description des travaux réalisés par tâche
- Conclusion et perspectives.

Contexte et objectif

• Reprise en main du projet initialement lancé en 2020, Lors des projets PCIs de 4 A.

- Projet lancé à la demande des enseignants du DAE.
- Mesurer l'évolution des sédiments dans un cours d'eau.
- Autonome en énergie

Structuration du projet par tâches

Synoptique du système

Diagramme de Gantt

Répartition des tâches

Romain

- Conception de la carte de pré-amplification
- Programmation de l'acquisition
- Mesure courant/tension de des batteries

Fallou

- Conception de l'alimentation pré-ampli
- Conception de l'alimentation Raspberry
- > Etude caractéristique des batteries

Description des travaux réalisés par tâche

➤ Alimentation ±5∨

- ✓ LM7805 pour délivrer +5V
- ✓ LM7905 pour délivrer -5V
- ✓ Masse flottante pour avoir la symétrie

Pré-Amplification

AD8253

AD8253 est un amplificateur instrumentation

- Gain programmable : 1, 10, 100, 1000
- Alimentation :
 - Bipolaire: ±4 V à ±18 V
- Bande passante (en fonction du gain):
 - Gain = $1 \rightarrow 10 \text{ MHz}$
 - Gain = $10 \rightarrow 2 \text{ MHz}$
 - Gain = $100 \rightarrow 300 \text{ kHz}$
 - Gain = $1000 \rightarrow 80 \text{ kHz}$

Schéma électrique et PCB

Pré-Amplification

Entrée hydrophone

Sortie

Sortie filtrer

Relais

Résultat de la carte pré-amplification

Signale 1 : 50mV Signale 2 : 25mV

Gain 1

Gain 10

Résultat de la carte pré-amplification

Signale 1 : 50mV Signale 2 : 25mV

Gain 1000

Alimentation Raspberry

- ✓ LM317 pour assurer une sortie de 5V/3A
- ✓ Résistance variable pour ajuster la sortie
- ✓ Led témoin pour assurer le passage du courant

Software

Plage de tension d'entrée : De ± 50 mV à ± 20 V

Bande passante: 100 MHz

Taux d'échantillonnage max : 1 GS/s

Mémoire tampon: 40 kS

Résolution : 8 bits pouvant être pousser jusqu'à 12 bits

Connexion PC: USB 2.0

Alimentation: 5 V à 500 mA max. provenant du port USB

Picoscope 2207A

02/05/2025

Software

Raspberry Pi 4

- Fonctionne sous Raspbian (Linux)
- Jusqu'à 4Go de RAM
- Consommation de 3A maximum ce qui comprend l'écran tactile ainsi que le SSD externe et le picoscope

Courant consommé: 400 mA à 500 mA

Ecran tactile

Software

Interface homme machine

Bibliotheques utilisées:

- ctypes : permet d'interagir avec des bibliothèques C pour appeler l'API C du PicoScope
- **numpy** : pour manipuler les buffers de données
- picosdk.ps2000a : contrôler le PicoScope 2000A
- wave : pour créer des fichiers audio WAV
- matplotlib.pyplot : pour tracer les courbes et enregistrer en PNG
- **pyudev** : pour détecter les périphériques USB connectés (utile pour savoir où sauvegarder)
- **tkinter** : pour créer une interface graphique simple (curseur de temps, bouton d'acquisition)
- os, time, shutil : pour la gestion de fichiers

02/05/2025

> Tests réalisés avec le banc de test

Transducteurs 40kHz

Résultat du tests réalisés avec le banc de test

Composante 50Hz

Assemblage sur batteries

Résultat du tests réalisés avec l'hydrophone

Transducteurs 500kHz

Caractéristisation des batteries

Batterie 1

Batterie 2

Caractéristisation des batteries

Décharge à 3A

Batterie 1 Batterie 2

Coupleur de batterie

- ✓ Connecter les batteries en parallèle
- ✓ Evite les commutations non souhaitées
- ✓ Empêche la surcharge, la surchauffe et la décharge excessive.
- ✓ aucune chute de tension

Cyrix-ct 12/24-120

Mesure courant tension des batteries

12.64 V Bus Voltage: 26.70 mA Current: 0.34 W Power: Bus Voltage: 12.64 V 26.30 mA Current: 0.33 W Power: 12.64 V Bus Voltage: 25.80 mA Current: 0.33 W Power:

INA219

Mesure sur batterie

IHM avec jauge de batteries

Conclusion et perspectives

Ce projet couvre les principaux domaines de notre formation : l'énergie et l'électronique. Il intègre également des notions de gestion de projet, le rendant complet.

- Partie énergie et le stockage sont finalisés,
- > Partie de l'acquisition, nécessite encore quelques ajustements.
- Nécessité d'un régulateur de courant-tension pour le bon fonctionnement de l'hydrophone

Merci pour votre aimable attention !!!

