

LOW INPUT BIAS CURRENT

SUPER BETA: PRECISION BIPOLAR : LOW NOISE,OFFSET, and DRIFT @ ± 15 VOLT RAILS																		Model Designator								
MODEL NUMBER	INPUT BIAS			CURRENT				<----VOLTAGE NOISE---->				<----CURRENT NOISE---->				Temperature										
	CLOSED LOOP	OPEN LOOP	COMMON MODE	INITIAL OFFSET	Eos	Ib	Ib	Ios	@ +25C	@ @ Ta	@ .1>10HZ	@ 10HZ	@ 100HZ	@ 1KHZ	@ .1>10HZ	@ 10HZ	@ 100HZ	@ 1KHZ	SUPPLY	UNITY GAIN	GAIN BW	SLEW RATE	Range			
	GAIN	GAIN	REJECTION	Eos	Temp	MAX	MAX	MAX											Iq				0 70	-25 85	-40 85	-55 125
			CMRR																							
	V/uV	dB	± mV	Max	±uV/C	± pA	± nA	± pA	uV	PP	<----nV/ ---->				pA	PP	<----pA/ --->		mA	MHZ	MHZ	V/uSEC			100's	
SINGLES																										
AD515A	±1	0.02	66	3	50	0.3			4	75	55	50	3	0fA	RMS---->			1.5	1	0.3	J			\$10.25		
AD515A	±1	0.04	80	1	15	0.15															K			\$18.60		
AD515A	±1	0.025	70		25	0.075															L			\$20.00		
AD8551	+3V	0.4	110	5uV	.1uV	50	60pA	40	1.3									0.85		1.5	0.8		A	\$0.79		
AD546	±1	0.3	80	2	20	1			4	90	60	35	1.3				0.4	0.7	0.7	2	J			\$3.75		
AD546	±1		84	1		0.5															K			\$4.11		
AD8531	±1	.025typ	38	25	250	50	60	25					45				0.05	1.25	2.2	3.5		A	\$1.19			
AD549	±1	0.3	80	1		0.25			2.2	6	90	60	35	0.7			0.22	0.7	0.7	2	J			\$8.95		
AD549	±1		90	0.25		0.1			1.3											K				\$12.50		
AD549	±1			0.5		0.06		0.85												L				\$15.45		
		dB																								
AD645A	±1	114	90	0.5	10/5	3/5			3.3	50	30	15	20				3.5	2		1	J	A		\$3.83		
AD645A	±1	120	94	0.25	5/2	1.5/3			2.5	30	20	12	15							K	B			\$4.83		
AD645A	±1	114	90	0.5	10	4			3.3	50	30	15	20								S			\$14.75		
AD645A	±1	120	94	0.25	1	4															C			\$8.83		
OP-42	±1	0.1		5	NS	250	2	50	2	30	16	13	12			0.007	6.5		10	30		C		\$2.25		
OP-42	±1	0.2		1.5																	F			\$3.75		
OP-42	±1	0.5	88	0.75	10	200	1.2	40									6			50		F		\$9.50		
OP-42	±1	0.5	80	1	10		20														A			\$16.00		
AD547	±1	0.1	76	1	5	50			50	4	30	45	30					1.5	1	3	J	A		\$3.47		
AD547	±1	0.25	80	0.5	2	25			25											K	B	S	\$6.11			
AD547	±1			0.25	1															L	C		\$18.43			
		±1																								
AD548	±1	0.3	76	2	20	20	.45/1.3/20	2	80	30	30						1.8	0.2	0.8	1	J	A	S	\$1.06		
AD548	±1	0.3	82	0.5	5	80	.25/.65/10													K	B	T		\$2.19		
AD548	±1	0.3	80	0.25	2	10	0.65														C			\$6.09		
AD8551	±1	0.3	110	5uV	0.1	50	60	40	1.3								0.6	1.5		0.8			A			
AD8541	±1	0.1	65	5		4		2				100					0.05	0.5		0.6		A				
AD8571	±1	0.3	110	0.005	0.1	50	60	40	1.3								0.6	1.5		0.8			A			
AD711	±1	0.15	76	2	20	50	1.1	25	2	45	22	18				0.01	3.4	3		16	J			\$0.92		
AD711	±1			1			3.2/51										3.4					A	S	\$1.67		
AD711	±1	0.2	80	0.5	10												3			16	K	B	T	\$2.19		
AD711	±1			80	0.25	3	25	1.6	10								2.8					C		\$5.64		

LOW INPUT BIAS CURRENT

SUPER BETA: PRECISION BIPOLEAR : LOW NOISE,OFFSET, and DRIFT @ ± 15 VOLT RAILS																			Model Designator							
MODEL	NUMBER	INPUT BIAS CURRENT				<----VOLTAGE NOISE---->				<----CURRENT NOISE---->				SUPPLY CURRENT	UNITY GAIN BW	SLEW RATE	Temperature Range				PRICE					
		CLOSED LOOP GAIN	OPEN LOOP GAIN	COMMON REJECTION	INITIAL Eos	Ib vs +25C	Ib @ Ta	Ios @ +25C	@ 10HZ	@ 100HZ	@ 1KHZ	@ +25C	@ 10HZ	@ 100HZ	@ 1KHZ	GAIN	BW	0 70	-25 85	-40 85	-55 125					
		GAIN	GAIN	REJECTION	Eos	Temp	MAX	MAX	MAX									Iq				70 85 85 125				
CMRR																							100's			
V/uV		dB		\pm mV Max		\pm uV/C		\pm pA		\pm nA		\pm pA		uV PP		<----nV/ ---->		pA PP		<----pA/ --->		mA	MHZ	MHZ	V/uSEC	
AD744	± 1	0.2	78	1	2	100	6.4	50	2	45	22	18						0.01	5	8		45	J	A	S	\$2.25
AD744	± 2	0.25	82	0.5	1													4	9		50	K	B	T	\$3.20	
AD744	± 2		86	0.25	0.45	50	3.2	20															C			\$8.48
AD743	± 1	1	80	1/8	5	400	8.8/25.6	0.1	NS	5.5	3.6	3.2 (typ)						5.4	10	4.5	2.8	2.8	J	A		\$3.95
AD743	± 1	2	90	0.5/25	2	250	5.5/16	0.05		10	6	5 (max)											K	B		\$5.93
AD743	± 1	1	80	1	5	400	413	0.1																S/T		\$17.07
AD745 (Decomp'd 743, high speed)																										
AD745	± 4	1	80	1	11	400	8.8	150	NS	NS	NS	5						6.1	10		20	12.5	J			\$3.95
AD745	± 4	2	90	0.5		250	5.5	75	1	10	6	5											K			\$5.93
AD745	± 4	1	80	0.8	8.3	400	25.6	150																A		\$6.32
AD745	± 4	2	90	0.25	4	250	16	75															B		\$9.42	
AD745	± 4	1	80	1	10	400	413	150															S		\$17.07	
AD795	± 1	0.5	90	0.5	10/5	2	23/64	1	3.3	50	30	15	13	20			0.6	1.5	2		0.8	J	A		\$3.00	
AD795	± 1	1	94	0.25	3/1	1		0.5	2.5	40	20	10											K	B		\$4.97
AD820	± 1	0.5	70	1	10	10	2/30	0.4	2	25	18	12.5	15				0.8	0.9	2.25		1.2			A		\$1.50
AD820	± 1			0.5	5	5	.5/1.3																B		\$2.25	
OP-97	± 1	0.2	110	0.075	2	150	0.75	150	0.5	30		22					0.6	0.4		0.1				F		\$1.30
OP-97	± 1	0.3	114	0.025	0.6	100	0.25	100															E	A		\$3.75
AD705	± 1	0.3	110	0.09	1.2	200	0.25	150	0.5	17		22					0.6	0.4		0.1	J	A		\$1.05		
AD705	± 1	0.4	114	0.035	0.6	110	0.15	100															K	B		\$2.00
AD705	± 1			0.025		120	0.25																T		\$6.69	
AD825	± 1	0.069	65	2	10	40	.25					12					10	7.4	24		125			A		\$1.94
DUALS																										
AD647	± 1	0.1	76	1	10	50			4	70	45	30						2.8	1		3	J	A		\$6.38	
AD647	± 1	0.25	80	0.5	5	25																	K	B	S	\$11.03
AD647	± 1			0.25	2.5																		L	C		\$32.33
AD642	± 1	0.1	76	2	15	75		5	2	70	45	30	ns	ns	ns	ns		2.8	1		2	J			\$5.28	
AD642	± 1	0.25	80	1	10	35		2															K		S	\$7.45
AD644	± 1	0.03	76	2	15	75		5	2	35	22	18	ns	ns	ns	ns		4.5	2		8	J			\$5.28	
AD644	± 1	0.05	80	1	10	35																	K		S	\$5.20
AD644	± 1			0.5	5																		L			\$11.68

LOW INPUT BIAS CURRENT

SUPER BETA: PRECISION BIPOLEAR : LOW NOISE,OFFSET, and DRIFT @ ± 15 VOLT RAILS																			Model Designator							
						INPUT BIAS												Temperature								
MODEL	CLOSED	OPEN	COMMON	CURRENT		<----VOLTAGE NOISE---->					<----CURRENT NOISE---->					SUPPLY	UNITY	GAIN	SLEW	Range						
				OFFSET	vs	+25C	@ Ta	+25C	.1>10HZ	10HZ	100HZ	1KHZ	.1>10HZ	10HZ	100HZ	1KHZ	CURRENT	GAIN	BW	RATE	0	-25	-40	-55	PRICE	
NUMBER	LOOP	LOOP	MODE	Eos	Temp	MAX	MAX	MAX									Iq				70	85	85	125		
	GAIN	GAIN	REJECTION																						100's	
			CMRR	V/uV	dB	\pm mV	Max	\pm uV/C	\pm pA	\pm nA	\pm pA	uV	PP	<----nV/ ---->		pA	PP	<-----pA/ --->		mA	MHZ	MHZ	V/uSEC			
AD648	± 1	0.3	76	2	20	20	.45	/1.3/20	10	2	80	40	30					1.8	0.4	0.8		1	J	A	S	\$34.88
AD648	± 1		82	1	10	10	.25	/65/10	5													K	B	T	\$4.29	
AD648	± 1		86	0.3	3			0.65														C			\$7.97	
AD712	± 1	0.15	76	3	20	75	1.7	100	2	45	22	18					0.01	6.8	3		16	J			\$1.44	
AD712	± 1	0.2	80	1	10													6	3.4		18	K			\$4.31	
AD712	± 1	0.15	76	1	20			4.8										6.8	3		16		A		\$2.07	
AD712	± 1	0.2	80	0.7	10													5.6	3.4		18		B		\$5.00	
AD712	± 1			0.3	5	50	3.2	50	4									6.8					C		\$8.91	
AD712	± 1	0.15	76	1	20	75	154	100										6	3		16			S	\$6.10	
AD712	± 1	0.2	80	0.7	10			77										3.4			18			T	\$11.04	
AD746	± 2	0.08	78	1.5	20	250	16/256	125	2	45	22	18					0.01	10	16		45	J	A	S	\$4.25	
AD746	± 2	1	82	1	10	150	9.6	75										8	16		50		B		\$9.07	
AD823, Rail to Rail Output Stage																										
AD823	± 1	0.02	80	0.8	20	25	5		2.5	25		15	20				1	8.4	12		14		A		\$2.65	
OP-249	± 1	0.5	76	2	25	75	4.5	25		75	26	17					0.003	7	3.5		18		G		\$1.75	
OP-249	± 1	0.5	80	0.7	6	75	4	25														E		\$3.95		
OP-249	± 1	1	80	0.3	3	50	4	15														E		\$7.25		
OP-249	± 1	1	80	0.5	5	75	20	25														A		\$8.75		
OP-282	± 1	70	3	10	100	500	50	1.3		36							0.04	0.5	4		7		G	A	\$1.19	
AD822	± 1	0.5	78	1	10	10	2/30	0.4	2	25	14	12.5	15				0.8	1.8	2		3.5		A		\$2.40	
AD822				0.5	5	5	.5/1.3															B		\$3.60		
OP250	± 1	.025typ	38	3	250	50	60	25				45					0.05	2.5	2.2		3.5		A		\$1.19	
AD8542	± 1	0.1	65	5		4		2			100							8.4	0.5		0.6		A			
AD8552	+3V	0.4	110	5uV	.1uV	50	60pA	40	1.3									1.8		1.5	0.6		A		\$0.79	
AD8532	± 1	.025typ	38	25	250	50	60	25			45						0.05	2.5	2.2		3.5		A		\$1.19	
AD8572	± 1	0.3	110	0.005	0.1	50	60	40	1.3									1.2	1.5		0.8			A		
AD706	± 1	0.2	110	100	1.5	200	0.3	150	.5typ	17		22	3	50				1.2	0.8		0.15	J	A		\$2.40	
AD706	± 1	0.4	110	50	0.6	110	0.2	100														K	B		\$3.54	
AD706	± 1					120	0.3																T			
OP-297	± 1	0.8	110	200	2	200	0.75	200	0.5typ	20		17		20				1.25	0.5		0.05		G		\$2.65	
OP-297	± 1	1	110	100		150	0.75	150														E		\$3.10		
OP-297	± 1	1.2		50	0.6	100	0.45	100														E	A	\$5.30		
QUADS																										
AD713	± 1	0.15	78	1.5		150	3.4	75	2	45	22	18					0.01	13.5	3		16	J			\$4.03	
AD713	± 1	0.2	84	0.5	20	75	1.7	35										12	3.4		18	K			\$6.84	

LOW INPUT BIAS CURRENT

SUPER BETA: PRECISION BIPOLAR : LOW NOISE,OFFSET, and DRIFT @ ± 15 VOLT RAILS																		Model Designator										
						INPUT BIAS		<----VOLTAGE NOISE---->								<----CURRENT NOISE---->								Temperature				
MODEL	CLOSED	OPEN	COMMON	INITIAL	Eos	Ib	Ib	Ios	@	@	@	@	@	@	@	SUPPLY	UNITY	GAIN	SLEW	0	-25	-40	-55	PRICE				
NUMBER	LOOP	LOOP	MODE	OFFSET	vs	+25C	@ Ta	+25C	.1>10HZ	10HZ	100HZ	1KHZ	.1>10HZ	10HZ	100HZ	1KHZ	CURRENT	GAIN	BW	RATE	70	85	85	125				
	GAIN	GAIN	REJECTION	Eos	Temp	MAX	MAX	MAX									Iq											
	CMRR																											
	V/uV	dB	± mV	Max	±uV/C	± pA	± nA	± pA	uV	PP	<----nV/ ---->			pA	PP	<----pA/ --->		mA	MHZ	MHZ	V/uSEC					100's		
AD713	±1	0.15	78	1.5		150	9.6	75																		A	\$4.89	
AD713	±1	0.2	84	0.5	20	75	4.8	35																		B	7.48	
AD713	±1	0.15	78	1.5		150	154	75																		S	\$14.89	
AD713	±1	0.2	84	0.5	15	75	77	35																		T	\$22.94	
OP-482	±1	70	3	20	100	500	50	1.3																		G	A	\$1.95
AD824	±1	0.02	66	1	20	25	4	20	2																	A		\$3.75
OP250	±1	0.4	60	6	TBD	10	20	8																		G		\$1.79
AD8544	±1	0.1	65	5		4		2																		A		
AD8534	±1	.025typ	38	25	250	50	60	25																		A		\$1.79
AD8574	±1	0.3	110	0.005	0.1	50	60	40	1.3																	A		
AD8554	+3V	0.4	110	5uV	.1uV	50	60pA	40	1.3																	A		\$0.79
AD704	±1	0.2	110	150	1.5	270	0.3	0.25	.5typ	17															J	A	\$4.75	
AD704	±1	0.4	114	75	1	150	0.2	0.1	2																K	B	\$7.13	
AD704	±1		110	100		200	0.6	0.15																		T		
OP-497	±1	1.2	114	150	1.5	200	.3/.6	200	0.3	17															G	C	\$4.75	
OP-497	±1	1.5		75	1	150	.2/.6	150																	F	B	\$7.13	
OP-497	±1	2	120	50	0.5	100	0.45	100																		A		