Math-1003b Homework #6 Solutions

Reading

• Section 8.5

Problems

The amount of heat energy (Q) needed to change the temperature of an object (without going through a phase change like melting or boiling) is jointly proportional to the mass of the object (m) and the *change* in temperature (ΔT) .

1). Write an equation that models this physical phenomenon. Use c for the constant of proportionality.

$$Q = cm(\Delta T)$$

2). The MKS unit for heat energy is the Joule (J). The constant of proportionality is specific to the substance being heated and is referred to as the *specific heat* of the substance. If Q is measured in Joules (J), m is measured in grams (g), and temperature is measured in Kelvin (K), what are the units of c?

In terms of units, we want:

$$J = \left(\frac{?}{?}\right) gK$$

So we want the grams and kelvin to cancel out, and joules to be introduced, so the units for c should be $\frac{J}{aK}$.

3). In the lab, it is found that $41790 \, \text{J}$ of heat energy raises the temperature of $1 \, \text{L}$ of water by $10 \, \text{K}$. What is the specific heat of water? $(1 \, \text{L})$ of water $= 1000 \, \text{g}$

Note that 1 L of water has a mass of 1000 g, so:

$$41790 \,\mathsf{J} = c(1000g)(10K)$$

$$c = \frac{41790 \,\mathsf{J}}{(1000g)(10K)}$$

$$c = 4.1790 \,\frac{\mathsf{J}}{\mathsf{gK}}$$

4). How much energy (in Joules) is required to raise the temperature of 5 L of water by 5 K?

1

Since we now know c, we have an equation that we can use to calculate the needed heat energy for different masses and temperature changes:

$$Q = 4.1790m(\Delta T)$$

For $5\,L=5000\,g$ of water and a temperature change of $5\,K$:

$$Q=4.1790(5000)(5)=\mathbf{104\,475\,J}$$