ECE 612, Information Theory

Ganyu (Bruce) Xu (g66xu)

Winter, 2024

Preliminares

Definition 0.1. The normal distribution $N(\mu, \sigma^2)$ has the probability density function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}\exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2)$$

Definition 0.2. The joint normal distribution $N(\mu, K)$ is defined by probability density function:

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(K)}} \exp(-\frac{1}{2}(\mathbf{x} - \mu)^{\mathsf{T}} K^{-1}(\mathbf{x} - \mu))$$

- 1 Entropy, mutual information, divergence
- 2 Entropy rate
- 3 Asymptotic equipartition property
- 4 Data compressions
- 5 Channel capacity
- 6 Differential entropy

Theorem 6.1 (Differential entropy of Gaussian distribution). Let X be Gaussian $N(0, \sigma^2)$, then

$$h(X) = \frac{1}{2}\log\left(2\pi e\sigma^2\right)$$

Theorem 6.2. Let **X** follow joint Gaussian distribution $N(\mathbf{0}, K)$, then:

$$h(\mathbf{X}) = \frac{1}{2}\log((2\pi e)^n \det K)$$

7 Gaussian channel

Definition 7.1 (Gaussian channel with power constraint).

Definition 7.2 (Information channel capacity).

Theorem 7.1. The information channel capacity of a Gaussian channel is

$$\max_{f_X: E[X^2] \le P} I(X; Y) = \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2} \right) \tag{1}$$

Where P is the power constraint, and σ^2 is the variance of the Gaussian noise. The maximum is achieved when X follows Gaussian distribution $X \stackrel{\$}{\leftarrow} N(0,P)$

8 Rate distortion theory