2.8 Problemas Propostos

- 1) Determinar a extremidade do segmento que representa o vetor $\overrightarrow{v} = (2, -5)$, sabendo que sua origem é o ponto A(-1, 3).
- 2) Dados os vetores $\overrightarrow{u} = (3, -1)$ e $\overrightarrow{v} = (-1, 2)$, determinar o vetor \overrightarrow{w} tal que

a)
$$4(\overrightarrow{u} - \overrightarrow{v}) + \frac{1}{3}\overrightarrow{w} = 2\overrightarrow{u} - \overrightarrow{w}$$

b)
$$\overrightarrow{3w} - (\overrightarrow{2v} - \overrightarrow{u}) = 2(\overrightarrow{4w} - \overrightarrow{3u})$$

- 3) Dados os pontos A(-1, 3), B(2, 5) e C(3, -1), calcular $\overrightarrow{OA} \overrightarrow{AB}$, $\overrightarrow{OC} \overrightarrow{BC}$ e $3\overrightarrow{BA} 4\overrightarrow{CB}$.
- Dados os vetores $\overrightarrow{u} = (3, -4)$ e $\overrightarrow{v} = (-\frac{9}{4}, 3)$, verificar se existem números a e b tais que $\overrightarrow{u} = \overrightarrow{av}$ e $\overrightarrow{v} = \overrightarrow{bu}$.
- 5) Dados os vetores $\vec{u} = (2, -4), \vec{v} = (-5, 1)$ e $\vec{w} = (-12, 6),$ determinar k_1 e k_2 tal que $\vec{w} = k_1\vec{u} + k_2\vec{v}.$
- 6) Dados os pontos A(-1,3), B(1,0), C(2,-1), determinar D tal que $\overrightarrow{DC} = \overrightarrow{BA}$.
- 7) Dados os pontos A(2, -3, 1) e B(4, 5, -2), determinar o ponto P tal que $\overrightarrow{AP} = \overrightarrow{PB}$.
- 8) Dados os pontos A(-1, 2, 3) e B(4, -2, 0), determinar o ponto P tal que $\overrightarrow{AP} = 3\overrightarrow{AB}$.
- 9) Determinar o vetor \overrightarrow{v} sabendo que $(3,7,1) + 2\overrightarrow{v} = (6,10,4) \overrightarrow{v}$.
- 10) Encontrar os números a_1 e a_2 tais que $\overrightarrow{w} = \overrightarrow{a_1} \overrightarrow{v_1} + \overrightarrow{a_2} \overrightarrow{v_2}$, sendo $\overrightarrow{v_1} = (1, -2, 1)$, $\overrightarrow{v_2} = (2, 0, -4)$ e $\overrightarrow{w} = (-4, -4, 14)$.
- 11) Determinar a e b de modo que os vetores $\overrightarrow{u} = (4, 1, -3)$ e $\overrightarrow{v} = (6, a, b)$ sejam paralelos.
- 12) Verificar se são colineares os pontos:

a)
$$A(-1, -5, 0)$$
, $B(2, 1, 3)$ e $C(-2, -7, -1)$

b)
$$A(2, 1, -1)$$
, $B(3, -1, 0)$ e $C(1, 0, 4)$

13) Calcular a e b de modo que sejam colineares os pontos A(3, 1, -2), B(1, 5, 1) e C(a, b, 7).

- 14) Mostrar que os pontos A(4,0,1), B(5,1,3), C(3,2,5) e D(2,1,3) são vértices de um paralelogramo.
- 15) Determinar o simétrico do ponto P(3, 1, -2) em relação ao ponto A(-1, 0, -3).

2.8.1 Respostas dos Problemas Propostos

1) (1,-2)

- 2) a) $\overrightarrow{w} = (-\frac{15}{2}, \frac{15}{2}); b) \overrightarrow{w} = (\frac{23}{5}, -\frac{11}{5})$
- 3) (-4, 1), (2, 5), (-5, -30)
- 4) $a = -\frac{4}{3}$, $b = -\frac{3}{4}$

5) $k_1 = -1$ e $k_2 = 2$

6) D(4, -4)

7) $P(3, 1, -\frac{1}{2})$

8) (14, -10, -6)

9) $\overrightarrow{v} = (1, 1, 1)$

10) $a_1 = 2$, $a_2 = -3$

11) $a = \frac{3}{2}$ $b = -\frac{9}{2}$

12) a) sim b) não

13) a = -3 b = 13

15) (-5, -1, -4)

$$\overrightarrow{\mathbf{w}} \times (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = -1\overrightarrow{\mathbf{u}} + 27\overrightarrow{\mathbf{v}} = -(3\overrightarrow{\mathbf{i}} - 2\overrightarrow{\mathbf{j}} - 6\overrightarrow{\mathbf{k}}) + 27(2\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}})$$

$$\overrightarrow{\mathbf{w}} \times (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = -3\overrightarrow{\mathbf{i}} + 2\overrightarrow{\mathbf{j}} + 6\overrightarrow{\mathbf{k}} + 54\overrightarrow{\mathbf{i}} - 27\overrightarrow{\mathbf{j}} = 51\overrightarrow{\mathbf{i}} - 25\overrightarrow{\mathbf{j}} + 6\overrightarrow{\mathbf{k}}$$

Comparando $\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w})$ e $\overrightarrow{w} \times (\overrightarrow{u} \times \overrightarrow{v})$, verifica-se que:

$$\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) \neq \overrightarrow{\mathbf{w}} \times (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}).$$

3.16 Problemas Propostos

- 1) Dados os vetores $\overrightarrow{u} = (1, a, -2a 1), \overrightarrow{v} = (a, a 1, 1)$ e $\overrightarrow{w} = (a, -1, 1)$, determinar a de modo que \overrightarrow{u} , $\overrightarrow{v} = (\overrightarrow{u} + \overrightarrow{v})$, \overrightarrow{w} .
- 2) Dados os pontos A(-1,0,2), B(-4,1,1) e C(0,1,3), determinar o vetor \overrightarrow{x} tal que $2\overrightarrow{x} \overrightarrow{AB} = \overrightarrow{x} + (\overrightarrow{BC} \cdot \overrightarrow{AB}) \overrightarrow{AC}$.
- 3) Determinar o vetor v, sabendo que

$$(3, 7, 1) + \overrightarrow{2v} = (6, 10, 4) - \overrightarrow{v}$$

- 4) Dados os pontos A(1, 2, 3), B(-6, -2, 3) e C(1, 2, 1), determinar o versor do vetor $\overrightarrow{3BA} 2\overrightarrow{BC}$.
- 5) Verificar se são unitários os seguintes vetores:

$$\vec{u} = (1, 1, 1) \quad e \quad \vec{v} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

- 6) Determinar o valor de *n* para que o vetor $\overrightarrow{v} = (n, \frac{2}{5}, \frac{4}{5})$ seja unitário.
- 7) Seja o vetor $\overrightarrow{v} = (m+7)\overrightarrow{i} + (m+2)\overrightarrow{j} + 5\overrightarrow{k}$. Calcular m para que $|\overrightarrow{v}| = \sqrt{38}$.
- 8) Dados os pontos A(1,0,-1), B(4,2,1) e C(1,2,0), determinar o valor de m para que $|\overrightarrow{v}| = 7$, sendo $\overrightarrow{v} = \overrightarrow{mAC} + \overrightarrow{BC}$.
- 9) Dados os pontos A(3, m-1,-4) e B(8, 2m-1, m), determinar m de modo que $|\overrightarrow{AB}| = \sqrt{35}$.
- 10) Calcular o perímetro do triângulo de vértices A(0, 1, 2), B(-1, 0, -1) e C(2, -1, 0).

- 11) Obter um ponto P do eixo das abscissas equidistante dos pontos A(2, -3, 1) e B(-2, 1, -1).
- 12) Seja o triângulo de vértices A(-1, -2, 4), B(-4, -2, 0) e C(3, -2, 1). Determinar o ângulo interno ao vértice B.
- Os pontos A, B e C são vértices de um triângulo equilátero cujo lado mede 10 cm. Calcular o produto escalar dos vetores AB e AC.
 - 14) Os lados de um triângulo retângulo ABC (reto em A) medem 5, 12 e 13. Calcular AB. AC + BA. BC + CA. CB.
- 15) Determinar os ângulos do triângulo de vértices A(2,1,3), B(1,0,-1) e C(-1,2,1).
- Sabendo que o ângulo entre os vetores $\overrightarrow{u} = (2, 1, -1)$ e $\overrightarrow{v} = (1, -1, m + 2)$ $\in \frac{\pi}{3}$, determinar m.
- 17) Calcular *n* para que seja de 30° o ângulo entre os vetores $\vec{u} = (1, n, 2)$ e \vec{j} .
 - 18) Dados os vetores $\overrightarrow{a} = (2, 1, \alpha)$, $\overrightarrow{b} = (\alpha + 2, -5, 2)$ e $\overrightarrow{c} = (2\alpha, 8, \alpha)$, determinar o valor de α para que o vetor $\overrightarrow{a} + \overrightarrow{b}$ seja ortogonal ao vetor $\overrightarrow{c} \overrightarrow{a}$.
 - 19) Determinar o vetor \overrightarrow{v} , paralelo ao vetor $\overrightarrow{u} = (1, -1, 2)$, tal que \overrightarrow{v} $\overrightarrow{u} = -18$.
 - 20) Determinar o vetor \overrightarrow{v} ortogonal ao vetor $\overrightarrow{u} = (2, -3, -12)$ e colinear ao vetor $\overrightarrow{w} = (-6, 4, -2)$.
 - 21) Determinar o vetor \overrightarrow{v} , colinear ao vetor $\overrightarrow{u} = (-4, 2, 6)$, tal que \overrightarrow{v} . $\overrightarrow{w} = -12$, sendo $\overrightarrow{w} = (-1, 4, 2)$.
 - Provar que os pontos A(5, 1, 5), B(4, 3, 2) e C(-3, -2, 1) s\u00e3o v\u00e9rtices de um tri\u00e1ngulo ret\u00e1ngulo.
 - 23) Qual o valor de α para que os vetores $\vec{a} = \alpha \vec{i} + 5 \vec{j} 4 \vec{k}$ e $\vec{b} = (\alpha + 1) \vec{i} + 2 \vec{j} + 4 \vec{k}$ sejam ortogonais?
 - 24) Verificar se existe ângulo reto no triângulo ABC, sendo A(2, 1, 3), B(3, 3, 5) e C(0, 4, 1).
 - Os ángulos diretores de um vetor podem ser de 45°, 60° e 90°? Justificar.
 - Os ângulos diretores de um vetor são 45°, 60° e γ. Determinar γ.

- Determinar o vetor \overrightarrow{v} , sabendo que $|\overrightarrow{v}| = 5$, \overrightarrow{v} é ortogonal ao eixo Oz, \overrightarrow{v} . $\overrightarrow{w} = 6$ e $\overrightarrow{w} = 2\overrightarrow{j} + 3\overrightarrow{k}$.
- 28) Sabe-se que $|\overrightarrow{v}| = 2$, $\cos \alpha = \frac{1}{2} e \cos \beta = -\frac{1}{4}$. Determinar \overrightarrow{v} .
- 29) Determinar um vetor unitário ortogonal ao vetor $\overrightarrow{v} = (2, -1, 1)$.
- 30) Determinar um vetor de módulo 5 paralelo ao vetor $\overrightarrow{v} = (1, -1, 2)$.
- 31) O vetor \overrightarrow{v} é ortogonal aos vetores $\overrightarrow{u} = (2, -1, 3)$ e $\overrightarrow{w} = (1, 0, -2)$ e forma ângulo agudo com o vetor \overrightarrow{j} . Calcular \overrightarrow{v} , sabendo que $|\overrightarrow{v}| = 3\sqrt{6}$
- 32) Determinar o vetor \overrightarrow{v} , ortogonal ao eixo Oz, que satisfaz as condições \overrightarrow{v} . $\overrightarrow{v_1} = 10$ e \overrightarrow{v} . $\overrightarrow{v_2} = -5$, sendo $\overrightarrow{v_1} = (2, 3, -1)$ e $\overrightarrow{v_2} = (1, -1, 2)$.
- 33) Determinar o vetor projeção do vetor $\overrightarrow{u} = (1, 2, -3)$ na direção de $\overrightarrow{v} = (2, 1, -2)$.
- 34) Qual o comprimento do vetor projeção de $\overrightarrow{u} = (3, 5, 2)$ sobre o eixo dos x?
- 35) Se o vetor \overrightarrow{AB} tem co-senos diretores p, q e r e angulos diretores α , β e γ , quais são os co-senos e os angulos diretores de \overrightarrow{BA} ?
- 36) Mostrar que se \overrightarrow{u} e \overrightarrow{v} são vetores, tal que \overrightarrow{u} + \overrightarrow{v} é ortogonal a \overrightarrow{u} \overrightarrow{v} , então $|\overrightarrow{u}| = |\overrightarrow{v}|$.
- 37) Mostrar que, se \vec{u} é ortogonal a \vec{v} e \vec{w} , \vec{u} é também ortogonal a \vec{v} + \vec{w} .
- Calcular o módulo dos vetores $\overrightarrow{u} + \overrightarrow{v}$ e $\overrightarrow{u} \overrightarrow{v}$, sabendo que $|\overrightarrow{u}| = 4$, $|\overrightarrow{v}| = 3$ e o ângulo entre \overrightarrow{u} e \overrightarrow{v} é de 60°.
- 39) Sabendo que $|\overrightarrow{u}| = 2$, $|\overrightarrow{v}| = 3$ e que \overrightarrow{u} e \overrightarrow{v} formam um angulo de $\frac{3\pi}{4}$ rad, determinar $|(2\overrightarrow{u} \overrightarrow{v}), (\overrightarrow{u} 2\overrightarrow{v})|$.
- 40) Determinar \overrightarrow{u} . \overrightarrow{v} + \overrightarrow{u} . \overrightarrow{w} + \overrightarrow{v} . \overrightarrow{w} , sabendo que \overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = $\overrightarrow{0}$, $|\overrightarrow{u}|$ = 2, $|\overrightarrow{v}|$ = 3 e
- 41) O vetor \overrightarrow{v} é ortogonal aos vetores $\overrightarrow{a} = (1, 2, 0)$ e $\overrightarrow{b} = (1, 4, 3)$ e forma ângulo agudo com o eixo dos x. Determinar \overrightarrow{v} , sabendo que $|\overrightarrow{v}| = 14$.
- 42) Dados os vetores $\vec{u} = (2, -1, 1), \vec{v} = (1, -1, 0)$ e $\vec{w} = (-1, 2, 2),$ calcular:

- $a) \stackrel{\rightarrow}{w} \times \stackrel{\rightarrow}{v}$
- b) $\overrightarrow{v} \times (\overrightarrow{w} \overrightarrow{u})$
- c) $(\overrightarrow{u} + \overrightarrow{v}) \times (\overrightarrow{u} \overrightarrow{v})$
- d) $(2\vec{u}) \times (3\vec{v})$
- e) $(\overrightarrow{u} \times \overrightarrow{v}) . (\overrightarrow{u} \times \overrightarrow{v})$
- f) $(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$
- $g) (\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w} e \overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w})$
- h) $(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} \times \overrightarrow{w})$
- 43) Dados os vetores $\overrightarrow{a} = (1, 2, 1)$ e $\overrightarrow{b} = (2, 1, 0)$, calcular:
 - a) $2\vec{a} \times (\vec{a} + \vec{b})$
 - b) $(\overrightarrow{a} + 2\overrightarrow{b}) \times (\overrightarrow{a} 2\overrightarrow{b})$
- 44) Dados os pontos A(2,-1,2), B(1,2,-1) e C(3,2,1), determinar o vetor $\overrightarrow{CB} \times (\overrightarrow{BC} 2\overrightarrow{CA})$.
- 45) Determinar um vetor simultaneamente ortogonal aos vetores $2\vec{a} + \vec{b}$ e $\vec{b} \vec{a}$, sendo $\vec{a} = (3, -1, -2)$ e $\vec{b} = (1, 0, -3)$.
- Dados os vetores $\overrightarrow{a} = (1, -1, 2)$, $\overrightarrow{b} = (3, 4, -2)$ e $\overrightarrow{c} = (-5, 1, -4)$, mostrar que $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$.
- Determinar o valor de m para que o vetor $\overrightarrow{\mathbf{w}} = (1, 2, \mathbf{m})$ seja simultaneamente ortogonal aos vetores $\overrightarrow{\mathbf{v}}_1 = (2, -1, 0)$ e $\overrightarrow{\mathbf{v}}_2 = (1, -3, -1)$.
- 48) Dados os vetores $\overrightarrow{v} = (a, 5b, -\frac{c}{2})$ e $\overrightarrow{w} = (-3a, x, y)$, determinar x e y para que $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{0}$.
- 49) Determinar um vetor unitário simultaneamente ortogonal aos vetores $\overrightarrow{v}_1 = (1, 1, 0)$ e $\overrightarrow{v}_2 = (2, -1, 3)$. Nas mesmas condições, determinar um vetor de módulo 5.
- 50) Mostrar num gráfico um representante de cada um dos seguintes vetores:
- $a)\overrightarrow{j} \times 2\overrightarrow{i}$
 - b) $3\vec{i} \times 2\vec{k}$

- 51) Sabendo que $|\vec{a}| = 3$, $|\vec{b}| = \sqrt{2}$ e 45° é o angulo entre \vec{a} e \vec{b} , calcular $|\vec{a} \times \vec{b}|$.
- 52) Se $|\overrightarrow{u} \times \overrightarrow{v}| = 3\sqrt{3}$, $|\overrightarrow{u}| = 3$ e 60° é o ângulo entre \overrightarrow{u} e \overrightarrow{v} , determinar $|\overrightarrow{v}|$
- Dados os vetores $\vec{a} = (3, 4, 2)$ e $\vec{b} = (2, 1, 1)$, obter um vetor de módulo 3 que seja ao mesmo tempo ortogonal aos vetores $2\vec{a} \vec{b}$ e $\vec{a} + \vec{b}$.
- 54) Calcular a área do paralelogramo definido pelos vetores $\vec{u} = (3, 1, 2)$ e $\vec{v} = (4, -1, 0)$.
- 55) Mostrar que o quadrilátero cujos vértices são os pontos A(1, -2, 3), B(4, 3, -1), C(5, 7, -3) e D(2, 2, 1) é um paralelogramo e calcular sua área.
- 56) Calcular a área do paralelogramo cujos lados são determinados pelos vetores $2\vec{u}$ e $-\vec{v}$, sendo $\vec{u} = (2, -1, 0)$ e $\vec{v} = (1, -3, 2)$.
- 57) Calcular a área do triângulo de vértices
 - a) A(-1, 0, 2), B(-4, 1, 1) e C(0, 1, 3)
 - b) A(1, 0, 1), B(4, 2, 1) e C(1, 2, 0)
 - c) A(2, 3, -1), B(3, 1, -2) e C(-1, 0, 2)
 - d) A(-1, 2, -2), B(2, 3, -1) e C(0, 1, 1)
- 58) Calcular a área do paralelogramo que tem um vértice no ponto A(3, 2, 1) e uma diagonal de extremidades B(1, 1, -1) e C(0, 1, 2).
- 59) Calcular x, sabendo que A(x, 1, 1,), B(1, -1, 0) e C(2, 1, -1) são vértices de um triângulo de área $\frac{\sqrt{29}}{2}$.
- 60) Dado o triângulo de vértices A(0, 1, -1), B(-2, 0, 1) e C(1, -2, 0), calcular a medida da altura relativa ao lado BC.
- Determinar \overrightarrow{v} tal que \overrightarrow{v} seja ortogonal ao eixo dos y e $\overrightarrow{u} = \overrightarrow{v} \times \overrightarrow{w}$, sendo $\overrightarrow{u} = (1, 1, -1)$ e $\overrightarrow{w} = (2, -1, 1)$.
- Dados os vetores $\overrightarrow{u} = (0, 1, -1)$, $\overrightarrow{v} = (2, -2, -2)$ e $\overrightarrow{w} = (1, -1, 2)$, determinar o vetor \overrightarrow{x} , paralelo a \overrightarrow{w} , que satisfaz à condição: $\overrightarrow{x} \times \overrightarrow{u} = \overrightarrow{v}$.