Mass Transfer II Jan 19th, 2024

1. <u>Liquid-liquid extraction: Single stage operation</u>

containing acetone in (a) Determ extracted.	g 50% acetone is con a mixer-settler unit	ontacted with 80, followed by sep of the extract and the amount of so	O kg of chloro paration of the I the raffinate polyent required	ograms of an aqueous benzene containing extract and the raffin hases and the fraction if 90% of the aceto	ate phases, of acetone
Aqueous phase (Raffinate)			Organic phase (Extract)		
Water	Chlorobenzene	Acetone	Water	Chlorobenzene	Acetone
x_A	x_B	xc	y _A	y_B	ус
0.9989	0.0011	0.0	0.0018	0.9982	0.0
0.8979	0.0021	0.1	0.0049	0.8872	0.1079
0.7969	0.0031	0.2	0.0079	0.7698	0.2223
0.6942	0.0058	0.3	0.0172	0.608	0.3748
0.5864	0.0136	0.4	0.0305	0.4751	0.4944
0.4628	0.0372	0.5	0.0724	0.3357	0.591
0.2741	0.1259	0.6	0.2285	0.1508	0.610
0.2566	0.1376	0.6058	0.2566	0.1376	0.605

Ude MATLAB/ Python to answer the questions.

The data is given in the code to draw the ternary equilibrium curve (liquid-liquid equilibrium curve) on the right-angled triangle co-ordinate.

Also we provide the approach to store the information for drawing the ties lines.

Question 1: Based on above data points, draw the four tie lines using MATLAB/python. Suppose for a particular extraction process you find that $x_{c,M} = 0.17$, $x_{B,M} = 0.43$ (M point). Construct a code to automate the drawing of tie line through any point M, Draw a tie line [1^{st} , 3^{rd} , 5^{th} and 7^{th} points from experimental data)] through M point. If , $x_{c,M} = 0.5$, $x_{B,M} = 0.2$, draw the tie line in the LLE diagram on right-angles triangle co-ordinate.

Hints on interpolation of slope:

$$tie_slope(i) + (My - xc_int(i)) * (tie_slope(i+1) - tie_slope(i)) / (xc_int(i+1) - xc_int(i));$$

Question 2: Fit two polynomials [in the form, $y = ax^n + bx^{n-1} + + c$], one with the raffinate phase (order n= 5) and one with the extract phase data (order 3) using polyfit function. Check the goodness of fit using the plot of experimental data in x axis and simulated data in y axis. Calculate the RMSE for the two cases. Plot the actual points in blue circles and predicted points in red circles and show them on LLE curve. [Adsorption revision].

```
%clear all;
% clc: close all:
%%%% Data %%%%%
B = [0\ 0.0011\ 0.0021\ 0.0031\ 0.0058\ 0.0136\ 0.0372\ 0.11\ 0.1259\ 0.1376\ 0.1508\ 0.16\ 0.3357
0.4751 0.608 0.7698 0.8872 0.9982 1];
C = [0\ 0\ 0.1\ 0.2\ 0.3\ 0.4\ 0.5\ 0.5821\ 0.6\ 0.6058\ 0.6107\ 0.6093\ 0.5819\ 0.4944\ 0.3748\ 0.2223
0.1079 0 0];
figure(1)
plot(B,C,'bo-');grid on;
hold on;
%% Plotting the right triangle (0,0), (1,0),(0,1) and (0,0)
plot([0 ],[0 ],'k-.','linewidth',1.25)
xlabel(");ylabel(");
title('raw data');
%%% Example tie lines (You can change this according to the mixture point)
tiexc = [. ];
tieyc = [. ];
tiexb = [0.0021 \ 0.0136];
tieyb = [0.8872 \ 0.4751];
for i = 1:length(tiexc)
  plot([tiexb(i) tieyb(i)], [tiexc(i) tieyc(i)], 'mo:', 'linewidth', 1.25);
end
%% calculate the slope of the picked tielines
tie_slope = zeros(1,length(tiexc));
for i = 1:length(tiexc);
  tie slope(i) = (tieyc(i) - tiexc(i))/(tieyb(i) - tiexb(i));
end
% Calculating slope through interpolation
if (0 < My) \&\& (My <= 0.1)
  slope = 0 + (My - 0) * tie_slope(1) / 0.1;
elseif (0.1 < My) \&\& (My <= 0.4)
  slope = tie_slope(1) + ( ---- ) * (tie_slope(2) - tie_slope(1)) / (0. - 0. );
elseif (My > 0.4)
  slope = tie slope(2) + (My - 0.4) * 0.25 / (---- - 0.4);
end
% Draw the line with the calculated slope through the point (Mx, My)
% Draw the line with the calculated slope through the point (Mx, My)
x vals = linspace(0, 1, 10);
```

```
y_vals = slope * (x_vals - Mx) + My
```

```
plot(x_vals, y_vals, 'r-', 'linewidth', 1.5);
plot(Mx, My, 'kp', 'MarkerSize', 10, 'MarkerFaceColor', 'g');
```


Q2 Hints:

% Curve fitting

```
p1 = polyfit(____, _____); %%%%Extract phase
f1 = polyval(p1, _____);
plot(B(1:10),f1,'m','linewidth',1.25);grid on;
```

