IST1990 Probability And Statistics

• Lecture 6

- Mean (Expected Value) and Variance for Discrete R.V.'s
- Mean (Expected Value) and Variance for Cont. R.V's
- Properties of Mean and Variance

MEAN AND VARIANCE OF A DISCRETE RANDOM VARIABLE

- There are two simple «summaries» of the distribution of a random variable X.
- The mean (expected value) is a measure of the center or middle of the probability distribution;
- and the variance is a measure of the dispersion, or variability in the distribution.

Definition

The **mean** or **expected value** of the discrete random variable X, denoted as μ or E(X), is

$$\mu = E(X) = \sum_{x} x f(x)$$

The **variance** of X, denoted as σ^2 or V(X), is

$$\sigma^2 = V(X) = E(X - \mu)^2 = \sum_{x} (x - \mu)^2 f(x) = \sum_{x} x^2 f(x) - \mu^2$$

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

Note that: Standart deviation is the positive square root of variance.

Variance is always non-negative.

☐ The **mean** is a weighted average of the possible values of X, where the weights are their corresponding probabilities.

Therefore, the mean describes the «center» of the distribution. In other words, X takes values around its mean.

☐ The **variance** measures the dispersion of X around the mean.

A **small variance** indicates that the data points tend to be very close to the mean, and to each other.

A high **variance** indicates that the data points are very spread out from the mean, and from one another.

Figure. A probability distribution can be viewed as a loading with the mean equal to the balance point.

Parts (a) and (b) illustrate equal means, but Part (a) illustrates a larger variance.

For the experiment of flipping three coins with the random variable number of heads, find the expected value, variance and standart deviation of X.

Let's first construct the **probability distribution** of the random variable X:

Number of Heads (x_i)	$f(x_i) = P(X = x_i)$
О	$\frac{\binom{3}{0}}{8} = 0.125$
1	$\frac{\binom{3}{1}}{8} = 0.375$
2	$\frac{\binom{3}{2}}{8} = 0.375$
3	$\frac{\binom{3}{3}}{8} = 0.125$

Then, the pmf of X is:

$$f(x) = \begin{cases} \frac{\binom{3}{x}}{2^3} & x = 0,1,2,3\\ 0 & \text{otherwise} \end{cases}$$

1th way:

X=x	f(x)	x.f(x)	[x-E(X)] ²	[x-E(X)] ² .f(x)	
0	1/8	0	$(0-3/2)^2=9/4$	9/32	
1	3/8	3/8	$(1-3/2)^2=1/4$	3/32	
2	3/8	6/8	$(2-3/2)^2=1/4$	3/32	
3	1/8	3/8	$(3-3/2)^2=9/4$	9/32	
E(X)=12/8=3/2			$\sigma^2 x = 24/32 = 3/4$		

$$Var(X) = \sigma^2 = E[(X - \mu)^2] = \sum_{i=0}^{3} (x_i - E(X))^2 . f(x_i) = \frac{24}{32} = \frac{3}{4}$$

$$\sigma_X = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

2nd way:

X=x	f(x)=P(X=x)	x.f(x)	x ² .f(x)
0	1/8	0	02.1/8=0
1	3/8	3/8	12.3/8=3/8
2	3/8	6/8	22.3/8=12/8
3	1/8	3/8	32.1/8=9/8
		E(X)=3/2	E(X2)=24/8=3

$$Var(X) = \sigma^2 = E[(X - \mu)^2] = \sum_{i=0}^3 x_i^2 f(x_i) - [E(X)]^2 = 3 - \left(\frac{3}{2}\right)^2 = \frac{3}{4}$$

$$\sigma_X = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

Example – Rolling 2 Dice

Suppose that the random variable Y denotes the sum of the up faces of the two dice. Table gives value of y for all elements in sample space S. Totally, we have 36 elements in S:

1 st \2 nd	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

PMF and CDF

PMF-Graph

Dice Rolling Probability Function

у	p(y)	F(y)
2	1/36	1/36
3	2/36	3/36
4	3/36	6/36
5	4/36	10/36
6	5/36	15/36
7	6/36	21/36
8	5/36	26/36
9	4/36	30/36
10	3/36	33/36
11	2/36	35/36
12	1/36	36/36

$$p(y) = \frac{\text{# of ways 2 die can sum to } y}{\text{# of ways 2 die can result in}}$$

$$F(y) = \sum_{t=2}^{y} p(t)$$

У	p(y)	ур(у)	y²p(y)
2	1/36	2/36	4/36
3	2/36	6/36	18/36
4	3/36	12/36	48/36
5	4/36	20/36	100/36
6	5/36	30/36	180/36
7	6/36	42/36	294/36
8	5/36	40/36	320/36
9	4/36	36/36	324/36
10	3/36	30/36	300/36
11	2/36	22/36	242/36
12	1/36	12/36	144/36
Sum	36/36=	252/36 1974/36	
	1.00	=7.00	4.833

$$\mu = E(Y) = \sum_{y=2}^{12} yp(y) = 7.0$$

$$\sigma^2 = E[(Y - \mu)^2] = \sum_{y=2}^{12} y^2 p(y) - \mu^2$$

$$= 54.8333 - (7.0)^2 = 5.8333$$

$$\sigma = \sqrt{5.8333} = 2.4152$$

The number of messages sent per hour over a computer network has the following distribution:

x = number of messages	10	11	12	13	14	15
f(x)	0.08	0.15	0.30	0.20	0.20	0.07

Determine the mean and standard deviation of the number of messages sent per hour.

$$E(X) = 10(0.08) + 11(0.15) + \dots + 15(0.07) = 12.5$$

$$V(X) = 10^{2}(0.08) + 11^{2}(0.15) + \dots + 15^{2}(0.07) - 12.5^{2} = 1.85$$

$$\sigma = \sqrt{V(X)} = \sqrt{1.85} = 1.36$$

The variance of a random variable X can be considered to be the expected value of a specific function of X, namely, $h(X) = (X - \mu)^2$. In general, the expected value of any function h(X) of a discrete random variable is defined in a similar manner.

Functions of Random Variables

Functions of random variables are ALSO random variables.

Let X be a random variable, and let $h: \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Then Y = h(X) is also a random variable.

Example: Let $X \in \{0,1,2\}$ be a random variable with p.m.f.

$$f(x) = P(X = x) = \begin{cases} 0.9 & \text{if } x = 0\\ 0.08 & \text{if } x = 1\\ 0.02 & \text{if } x = 2 \end{cases}$$

Let $Y = (X - 1)^2$ be another random variable. What is the p.m.f. of Y? What is the expected value of Y?

If X = 0,2 then Y = 1. If X = 1 then Y = 0. Therefore $Y \in \{0,1\}$ and

$$P(Y = 0) = 0.08$$
 and $P(Y = 1) = 0.92$.

Therefore $\mathbb{E}[Y] = 0 \cdot 0.08 + 1 \cdot 0.92 = 0.92$.

There is an easier way to get this result...

Expected Value of a Function of a Discrete Random Variable

Proposition:

Let X be a random variable, and let $h : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Then Y = h(X) is also a random variable. If X is discrete and takes values $\{x_1, x_2, \ldots\}$ then

$$\mathbb{E}[Y] = \mathbb{E}[h(X)] = \sum_{i} h(x_i) f(x_i)$$

Example: Let $X \in \{0,1,2\}$ be a random variable with p.m.f.

$$f(x) = P(X = x) = \begin{cases} 0.9 & \text{if } x = 0\\ 0.08 & \text{if } x = 1\\ 0.02 & \text{if } x = 2 \end{cases}$$

Let $Y = (X-1)^2$ be another random variable. What is the expected value of Y?

$$\mathbb{E}[Y] = (0-1)^2 \cdot 0.9 + (1-1)^2 \cdot 0.08 + (2-1)^2 \cdot 0.02 = 0.92.$$

MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE

The mean and variance of a continuous random variable are defined similarly to a discrete random variable. Integration replaces summation in the definitions.

Definition

Suppose X is a continuous random variable with probability density function f(x). The **mean** or **expected value** of X, denoted as μ or E(X), is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 (4-4)

The **variance** of X, denoted as V(X) or σ^2 , is

$$\sigma^{2} = V(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2}$$

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

Suppose you want to model the clock frequency (in GHz) of a certain mobile device processor. This is a random quantity, and in some cases it can be well modeled by a continuous random variable with density

$$f(x) = \begin{cases} 2.5 & \text{if } 0.8 \le x \le 1.2\\ 0 & \text{otherwise} \end{cases}$$

Let's study this random variable in more detail...

Example cont.

Let's first check this is a valid probability density function:

A valid **probability density function** f(x) must satisfy

(i)
$$f(x) \geq 0$$
 for all $x \in \mathbb{R}$

(ii)
$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Example cont.

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & \text{if } x < 0.8 \\ 2.5(x - 0.8) & \text{if } 0.8 \le x < 1.2 \\ 1 & \text{if } x \ge 1.2 \end{cases}$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{0.8}^{1.2} 2.5 x dx = \dots = 1 \quad \text{(GHz)}$$

$$V[X] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx = \int_{0.8}^{1.2} 2.5(x - 1)^2 dx = \dots = 0.01333(3)\dots$$

$$\sqrt{V[X]} = \sigma \approx 0.1155 \text{ (GHz)}$$

Suppose you replace the old processor with a better one, with the same average speed, but much more steady...

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & \text{if } x < 0.9 \\ 5(x - 0.9) & \text{if } 0.9 \le x < 1.1 \end{cases}$$

$$F(x) \downarrow 1 \qquad 0.9 \qquad 1.1 \qquad x$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{0.9}^{1.1} 5x dx = \dots = 1 \quad (\text{GHz})$$

$$V[X] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx = \int_{0.9}^{1.1} 5(x - 1)^2 dx = \dots = 0.00333(3) \dots$$

$$\sqrt{V[X]} = \sigma \approx 0.0577 \quad (\text{GHz})$$

Expected Value of a Function of a Continuous Random Variable

Functions of Random Variables

Let X be a random variable, and let $h : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Then Y = h(X) is also a random variable.

Proposition: (law of the unconscious statistician) If X is a continuous random variable then

$$\mathbb{E}[Y] = \mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x)f(x)dx$$

Note that the variance is the expected value of the random variable $Y = (X - \mu_X)^2$ (in this case $h(\cdot) = (\cdot - \mu_X)^2$):

$$\mathbb{E}[Y] = \mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x)f(x)dx = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x)dx$$

Properties of the Mean and Variance

Properties:

Let X be a random variable. Let $a, b \in \mathbb{R}$. Then

(i)
$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

(ii)
$$V(X) = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mu_X^2$$

(iii)
$$\vee (aX + b) = a^2 V(X)$$

(iv)
$$\sqrt{V(aX+b)} = |a|\sqrt{V(X)}$$

(V)

If X_1, \ldots, X_n random variables then $\mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n].$

(Vi)

Furthermore, if these are jointly independent then

$$\mathbb{E}[X_1 \times \cdots \times X_n] = \mathbb{E}[X_1] \times \cdots \times \mathbb{E}[X_n]$$

$$\mathbb{V}[X_1 + \cdots + X_n] = \mathbb{V}[X_1] + \cdots + \mathbb{V}[X_n] .$$

Note: The properties of mean and variance given in (i) - (vi) are for both discrete and continuous random variables.

Independence of Random Variables

Earlier we talked about independent events. Actually the concept of independence extends naturally to random variables, and plays a crucial role both in probability and statistics.

Definition: Independence of Multiple Random Variables

Let X_1, X_2, \ldots, X_n be denote n random variables.

We say X_1, X_2, \ldots, X_n are **jointly independent** if for **any** sets A_1, A_2, \ldots, A_n we have

$$P(X_1 \in A_1, X_2 \in A_2, \dots, X_n \in A_n) = P(X_1 \in A_1)P(X_2 \in A_2) \cdots P(X_n \in A_n)$$

Suppose that you are playing a machine game. The machine gives a prize of €100 with probability 0.02. To play you need to pay €5..

Let X be a random variable taking values $\{0,1\}$, where 1 indicates the machine gave a prize. Therefore P(X=1)=0.02 and P(X=0)=0.98.

Let Y be your profit after playing the game. Clearly

$$Y = 100X - 5$$

What is the mean and variance of the profit?

$$\mathbb{E}[X] = P(X = 1) = 0.02$$

$$\forall (X) = E[X^2] - (E[X])^2$$

$$= P(X = 1) - (P(X = 1))^2$$

$$= P(X = 1)(1 - P(X = 1)) = 0.0196$$

$$\mathbb{E}[Y] = 100E[X] - 5 = -3$$

$$\forall (Y) = 100^2 * 0.0196 = 196$$

Let X be a discrete random variable with the following probability distribution:

$$\frac{X}{f(x)} \begin{vmatrix} -1 & 0 & 2 \\ 1/6 & 1/3 & 1/2 \end{vmatrix}$$

$$E(X) = (-1)\left(\frac{1}{6}\right) + (0)\left(\frac{1}{3}\right) + (2)\left(\frac{1}{2}\right) = \frac{5}{6}$$

$$E(X^2) = (-1)^2\left(\frac{1}{6}\right) + (0)^2\left(\frac{1}{3}\right) + (2)^2\left(\frac{1}{2}\right) = \frac{13}{6}$$

$$E(3X - 2) = 3E(X) - 2 = 3\left(\frac{5}{6}\right) - 2 = \frac{1}{2}$$

$$E(-X + 4) = -E(X) + 4 = -\left(\frac{5}{6}\right) + 4 = \frac{19}{6}$$

$$E((X - 1)^2) = E(X^2 - 2X + 1) = E(X^2) - 2E(X) + 1 = \frac{13}{6} - 2 * \frac{5}{6} + 1 = \frac{3}{2}$$

$$Var(X) = E(X^2) - E(X)^2 = \frac{13}{6} - (\frac{5}{6})^2 = \frac{53}{36}$$

$$Var(2X + 1) = (2)^2 Var(X) = 4 * \frac{53}{36} = \frac{53}{9}$$

$$Var(-3X + 1) = (-3)^2 Var(X) = 9 * \frac{53}{36} = \frac{53}{4}$$

Example: Let X be a random variable with density function

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Find E(X) and E(4X + 3).

$$E(X) = \int_{-\infty}^{\infty} x \, f(x) dx = \int_{-1}^{2} x \, \frac{x^2}{3} \, dx = \int_{-1}^{2} \frac{x^3}{3} \, dx = \frac{x^4}{12} |_{-1}^2 = \frac{5}{4}$$

$$E(4X + 3) = \int_{-1}^{2} \frac{(4x + 3)x^2}{3} \, dx = \frac{1}{3} \int_{-1}^{2} (4x^3 + 3x^2) \, dx = 8.$$

or

$$E(4X + 3) = 4E(X) + 3 = 4\left(\frac{5}{4}\right) + 3 = 8$$

Example: The weekly demand for a drinking-water product, in thousands of liters, from a local chain of efficiency stores is a continuous random variable X having the probability density

$$f(x) = \begin{cases} 2(x-1), & 1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the mean and variance of X.

$$\mathsf{V}(X) = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mu_X^2$$

$$\mu = E(X) = 2 \int_1^2 x(x-1) \ dx = \frac{5}{3}$$

and

$$E(X^2) = 2 \int_1^2 x^2(x-1) \ dx = \frac{17}{6}.$$

Therefore,

$$\sigma^2 = \frac{17}{6} - \left(\frac{5}{3}\right)^2 = \frac{1}{18}.$$

Let X be a random variable with following pdf:

$$f(x) = \begin{cases} \frac{4}{3}(1 - x^3) & 0 \le x \le 1\\ 0 & diger \end{cases}$$

- a) Find variance and standart deviation of X.
- b) Var(2X+3)=?

a)
$$E(X) = \frac{4}{3} \int_{0}^{1} x(1-x^{3}) dx = \frac{4}{3} \left(\frac{x^{2}}{2} - \frac{x^{5}}{5} \right) \Big|_{0}^{1} = \frac{2}{5}$$

$$E(X^{2}) = \frac{4}{3} \int_{0}^{1} x^{2} (1 - x^{3}) dx = \frac{4}{3} \left(\frac{x^{3}}{3} - \frac{x^{6}}{6} \right) \Big|_{0}^{1} = \frac{2}{9}$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \frac{2}{9} - \left(\frac{2}{5}\right)^{2} = \frac{14}{225} = 0,062$$

$$\sigma = \sqrt{Var(x)} \Rightarrow \sigma = \sqrt{0.06} \Rightarrow \sigma = 0.245$$

b)
$$Var(2X + 3) = 4Var(X) = 4 \times 0.062 = 0.248$$