CE 366 - SITE INVESTIGATION (Problems & Solutions)

P1. DEPTH OF EXPLORATION

Question:

Find the depth of exploration from ground level for the 30x50 m, 15 storey building.

Solution:

Depth of exploration should reach such a depth where vertical stress increase due to weight of the structure would approximately be equal to the 10% of the initial effective overburden pressure:

De Beer's rule
$$\Rightarrow \therefore \frac{1}{10} p_0 = \Delta p$$

$$\Delta p = \frac{200x30x50(kN)}{(30+D)(50+D)}$$

$$\frac{1}{10}p_0' = \frac{1}{10}(20(D+5))$$

$$\frac{200x30x50}{(30+D)(50+D)} = \frac{1}{10}x20(D+5)$$

$$2D^3 + 170D^2 + 3800D = 285000$$

D=28 m

Thus, depth of exploration, z = 28+5=33 m from ground level

P2. CONE PENETRATION TEST (CPT)

Question:

Table 1. CPT Data

Depth (m)	$\underline{\mathbf{q}_{c}}$ (MPa)	$q_s(kPa)$	
0.5	1.86	22.02	
1.5	1.16	28.72	
2.5	2.28	24.89	
3.5	0.29	12.44	
4.5	0.38	15.32	
5.5	0.40	14.74	
6.5	6.90	28.72	
7.5	9.20	26.81	
8.5	8.45	43.09	
9.5	9.50	34.60	

- Indicate the soil classification by depth.
- Plot the cone penetration test data given in Table 1 including friction ratio F_R.
- Estimate undrained shear strength at depth 5.5 m assuming the cone factor $N_k=18$.
- Estimate angle of shearing resistance of the soil (φ) at depth 7.5 m using the graph given in Figure 1.

Figure 1. Correlation between cone data and angle of internal friction (Robertson and Campanella, 1983)

Assume an average γ =16.5 kN/m³ to GWT at depth 3 m, and γ_{sat} =19.8 kN/m³ for below GWT.

Solution:

Depth (m)	qc (MPa/kPa	<u>qs (kPa)</u>	$\underline{\mathbf{F}_{\mathbf{R}}}$ (%) *1	Soil Classification* ²
0.5	1.86 / 1860	22.02	1.19	Silt Mixtures – clayey silt to silty clay
1.5	1.16 / 1160	28.72	2.48	Clay – silty clay to clay
2.5	2.28 / 2280	24.89	1.09	Sand Mixtures – silty sand to sandy silt
3.5	0.29 / 290	12.44	4.29	Clay – silty clay to clay
4.5	0.38 / 380	15.32	4.03	Clay – silty clay to clay
5.5	0.40 / 400	14.74	3.69	Clay – silty clay to clay
6.5	6.90 / 6900	28.72	0.42	Sands – clean sand to silty sand
7.5	9.20 / 9200	26.81	0.29	Sands – clean sand to silty sand
8.5	8.45 / 8450	43.09	0.51	Sands – clean sand to silty sand
9.5	9.50 / 9500	34.60	0.36	Sands – clean sand to silty sand

*1: Note that; F_R (%) = $\frac{q_s}{q_c} x 100$

*2: Soil classification is obtained by using Figure 2.19 in lecture notes.

• Plot of the Cone Penetration Test data (CPT) is shown in Figure 2.

Figure 2. Plot of CPT data

• Estimate undrained shear strength at depth 5.5 m assuming the cone factor $N_k=18$.

$$c_u = \frac{q_c - p_o}{N_k}$$

where; p_o is total overburden pressure at the level of cone tip

Since γ_d =16.5 kN/m³ and γ_{sat} =19.8 kN/m³ then,

$$p_o = 3x16.5 + 2.5x19.8 = 99 \text{ kPa}$$

$$c_u = \frac{400 - 99}{18} = 16.7 \text{ kPa } (\text{@ z} = 5.5 \text{ m})$$

• Estimate ϕ' at depth 7.5 m from Figure 1 where p'_{o} = effective overburden pressure;

$$(p_0 @ z = 7.5 \text{ m}) = [3 \text{ x } 16.5] + [4.5 \text{ x } (19.8-9.8)] = 94.5 \text{ kPa}$$

$$(q_c @ z = 7.5 \text{ m}) = 9.2 \text{ MPa}$$
 $\phi = 41^\circ$

P3. STANDARD PENETRATION TEST (SPT)

Question:

Referring to Table 2 given below estimate the SPT- N_1 value you would use for a footing which is 2 x 2 m in dimensions and located at 2 m depth. Assume the unit weight of both sands is 18.1 kN/m³ and 19.7 kN/m³ above and below ground water table, respectively. GWT is at 6 m depth. Assume that the given N values are corrected for energy efficiency and field procedures.

Table 2. SPT Data

Depth (m)	N_{field}	Soil Type
1	6	Coarse Sand
2	9	Coarse Sand
3	10	Coarse Sand
4	8	Coarse Sand
5	7	Coarse Sand
6	9	Coarse Sand
7	22	Silty fine sand
8	28	Silty fine sand
9	31	Silty fine sand

Solution:

Depth (m)	N	Soil Type	Silty Sand Correction, N	p' ₀ (kPa)*2	${C_N}^{*3}$	N ₁ *4
1	6	Coarse Sand	6 (no correction)	18.1	2.00	12
2	9	Coarse Sand	9 (no correction)	36.2	1.63	15
3	10	Coarse Sand	10 (no correction)	54.3	1.33	13
4	8	Coarse Sand	8 (no correction)	72.4	1.15	9
5	7	Coarse Sand	7 (no correction)	90.5	1.03	7
6	9	Coarse Sand	9 (no correction)	108.6	0.94	8
7	22	Silty fine sand	18.5≈19	118.3	0.90	17
8	28	Silty fine sand	21.5≈22	128.0	0.86	19
9	31	Silty fine sand	23	137.7	0.83	19

^{*1: &}lt;u>Silty sand correction</u>: SPT-N values should be corrected for the increased resistance due to negative excess pore water pressure.

Applied when all three conditions are satisfied simultaneously:

- (i) When the test is carried out in very fine sand or silty sand
- (ii) When the test is carried out below ground water table
- (iii) When N is greater than 15 (N > 15)

$$N' = 15 + \frac{1}{2} (N-15)$$

Where;

N': Silty sand corrected SPT-N value

Note that N' values should always be reported as rounded to the nearest integer.

*2: Overburden correction (C_N):

$$N_1 = N \times C_N$$

Where;

C_N: values are determined using equation 2.3 in Lecture Notes (page 31)

$$C_N = 9.78 \cdot \sqrt{\frac{1}{\sigma_v'(kN/m^2)}} \le 2.00$$

N: is equal to N' if silty sand correction is applicable.

Note that N_1 *values should always be reported as rounded to the nearest integer.*

In order to estimate SPT- N_1 value to be used in calculations for a foundation, the SPT- N_1 values in depth interval of 0.5B above and 2B below the foundation level should be considered (where B = foundation width).

0.5B above 0.5 x 2 = 1 m above foundation level 2B below $2 \times 2 = 4 \text{ m}$ below foundation level $2 \times 2 = 4 \text{ m}$ below foundation level z = 1 m and z = 6 m.

Within this depth interval the weighted average of SPT-N₁ can be used solely for the analysis of given footing.

$$N_{1,av} = \frac{(12+15+13+9+7+8)}{6} = 11$$

P4. PLATE LOAD TEST (FIELD LOAD TEST)

a. Footing on Clay (load test on clay)

Question:

The results of a plate load test in stiff clay are shown in the Figure 3. The size of the test plate is $0.305 \text{ m} \times 0.305 \text{ m}$. Determine the size of a square column footing that should carry a load of 2500 kN. (FS = 2.0; maximum permissible settlement is 40 mm)

Figure 3. Plate load test in stiff clay

Solution:

B (or B_F such as in Lecture Notes): width of footing b (or B_P such as in Lecture Notes): width of test plate

$$(q_{ult})_{test} = 700 \text{ kN/m}^2 = (q_{ult})_{ftg}$$

$$q_{all} = \frac{700}{FS = 2.0} = 350 \text{kPa} \Rightarrow \frac{2500}{BxB} = 350 \Rightarrow B = 2.7 \text{m}$$

$$S_{\text{fig}} = \frac{350x5}{500} \times \frac{2.7}{0.305} = 31 \text{mm} < 40 \text{mm}$$

Stest under 350 kPa loading

Settlement calculation, however, is not very reliable; because it can not represent consolidation settlement. Generally, <u>bearing capacity criteria governs</u>, not the settlement, in the design of foundations resting <u>on clays</u>.

Coefficient of subgrade reaction: $k = \frac{q}{S} (kN / m^3)$ (k is the slope of q vs S graph, for more information about "k" see Lecture Notes p.112-113 or Ordemir p. 28)

$$k_{test} = \frac{500}{0.005} = 100000 \ kN / m^3 = 100 MN / m^3$$

b. Load test on sand

Question:

The results of a plate load test in a sandy soil are shown in the Figure 4. Size of the test plate: $0.305 \text{ m} \times 0.305 \text{ m}$. Determine the size of square footing that should carry a load of 2500 kN with a maximum permissible settlement of 40 mm.

Figure 4. Plate load test in sandy soil

Solution:

B and b are in meters!

Q(kN)	Assume	d B (m)	$q=Q/B^2$ (kPa)	S _{test} (mm)	$\mathbf{S}_{ ext{ftg}}$	(mm)
2500	4	156	5.2 (20/600x156)	17.7<40	
	3	278	9.3		30.2<40	
	2.5	400	13.3		41.7>40	
	2.6	370	12.3		38.9	
	2.55	384	12.8		40.4	

Square column footing of 2.55 x 2.55 m dimensions will be appropriate.

-OR-

$$S_{fig} = 40 = \underbrace{\frac{2500}{B^2} x \frac{20}{600}}_{\text{S}_{\text{test}}} \times \left[\frac{B(0.305 + 0.3)}{0.305(B + 0.3)} \right]^2 \Rightarrow B = 2.56m$$

Thus,

$$q_{ftg} = q_{test} x \frac{B}{b} = 700 x \frac{2.55}{0.305} = 5852 kN / m^2$$

$$F.S. = \frac{5852}{384.5} = 15.2$$
 (settlement governs design)

Thus, factor of safety against bearing capacity (F.S.) is,

Thus, coefficient of subgrade reaction (k) is,

$$k = \frac{600}{0.020} = 30MN/m^3$$