研究性学习结题报告书

2020年10月25日

课题名称 用信息方法研究遗传学问题

课题负责人 杨景云

课题成员 blablabla

指导教师 李丽华老师

所在班级 高二 (9) 班

1 约定

真值运算符 若[]内表达式为真,则是1,否则是0。

2 定义

2.1 基因集合

我们用 @ 来表示基因集合。

对于只有显隐性的情况,基因集合由一系列大写字母和小写字母组成,大写字母表示显性,小写字母表示隐性。对于只有两对等位基因 A,B 的情况, $\mathbb{G} = \{A,B,a,b\}$ 。

对于另一些更复杂的情况,拿喷瓜举例,基因集合可以写作 $\mathbb{G} = \{g^-, g^+, G\}$ 。

2.2 对于集合元素的标号

创建基因集合到 $\{1, 2, \cdots | \mathbb{G} | \}$ 的映射 $f : \mathbb{G} \to \mathbb{Z}$ 。

基因的顺序就是标号的顺序。

容易发现其有逆运算 f'。

2.3 集合到向量的转化

一个集合 S 可以转化为一个 |S| 维向量 v, 其中 $v_i = [f'(i) \in S]$ 。 若基因集合为 $\{A,B\}$,A 标号为 1,B 标号为 2,那么集合 $\{A\}$ 可以转化为 (1,0)。

2.4 基因片段

基因片段是一个向量。记基因片段组成的集合为 ℙ。

配子基因片段

我们用 \vec{G} 来表示配子基因片段。

我们可以将一个具有 k 个基因的配子用一个 k 维向量 $\{a_i\}$ 表示, $a_i \in \mathbb{G}$ 。

个体基因片段

我们用 \vec{I} 来表示个体基因片段。

我们可以将一个具有 k 对等位基因的个体用一个 k 维向量 $\{(l_i, r_i)\}$ 表示, $l_i, r_i \in \mathbb{G}$ 。

2.5 基因片段的运算

2.5.1 加法运算 +

对于 $L, R \in \mathbb{P}$,而且 L, R 同为配子基因片段或个体基因片段,定义加法运算为两基因片段的有序拼接。如 (A, C) + (B) = (A, B, C)。

2.5.2 结合运算 ⊕

对于 $L, R \in \mathbb{P}$, 而且 L, R 同为配子基因片段, 而且长度相等, 定义结合运算为按位有序结合:

$$(L \oplus R)_i = (\max(L_i, R_i), \min(L_i, R_i))$$

max, min 为取序号较大/较小者。

2.6 生成函数 (Generating function)

定义:

$$A = \sum_{i} a_i x^i$$

是序列 $\{a_i\}$ 的生成函数。

我们不关心 x 的取值和级数是否收敛, 把 x 作为形式, 只关心系数 a_i 。

2.7 基因片段生成函数

定义:

$$A = \sum_{i \in \mathbb{P}} a_i x^i$$

是序列 $\{a_i\}$ 的基因片段生成函数。

2.8 基因片段生成函数的系列运算

乘法运算 ×

$$x^L \times x^R = x^{L+R}$$

结合乘法运算 ⊗

$$x^L \otimes x^R = x^{L \oplus R}$$

2.9 基因片段生成函数的应用

求基因型为 AaBB 的个体产生的配子数量比构造生成函数:

$$\begin{split} G &= (\frac{1}{2}x^{\mathrm{A}} + \frac{1}{2}x^{\mathrm{a}})(\frac{1}{2}x^{\mathrm{B}} + \frac{1}{2}x^{\mathrm{B}}) \\ &= \frac{1}{2}x^{\mathrm{AB}} + \frac{1}{2}x^{\mathrm{aB}} \end{split}$$

即配子数量比为 AB: aB = 1:1。 求其自交后个体的基因型比例 构造生成函数:

$$\begin{split} I &= G \otimes G \\ &= \frac{1}{4} x^{\mathtt{AABB}} + \frac{1}{2} x^{\mathtt{AaBB}} + \frac{1}{4} x^{\mathtt{aaBB}} \end{split}$$

即基因型数量比为 AABB: AaBB: aaBB = 1:2:1。

2.10 表现型集合

定义 \mathbb{E} 为表现型集合,一般地, $\mathbb{E} = \mathbb{G}$ 。

2.11 表现型映射

我们创建映射: $\exp: \mathbb{G} \times \mathbb{G} \to \mathbb{E}$, 对于一对等位基因 $l, r \in G$ 使得 $\exp(l, r)$ 为这个个体的表现型。 比如 $\exp(\mathbf{A}, \mathbf{a}) = \mathbf{A}$, $\exp(\mathbf{a}, \mathbf{a}) = \mathbf{a}$ 。

2.12 表现型映射的性质

- $\exp(i, j) = \exp(j, i)$.
- $\exp(i, i) = i$.

2.13 计算个体的表现型

个体的表现型可以用一个 k 维向量 \vec{E} 表示,其中

$$\vec{E}_i = \exp(\vec{I}_i)$$

2.14 卷积

给定环 R 上的 n 维向量 $\vec{A} = \{a_i\}, \vec{B} = \{b_i\}$ 和下标运算 \circ ,设 $C = \{c_i\} = A * B$,则满足:

$$c_i = \sum_{j,k} [j \circ k = i] a_j b_k \tag{1}$$

称 C 为 A 和 B 关于 \circ 的离散卷积,以下简称卷积。

记 $C = A *_{\circ} B$,如果不引起混淆,简记为 $C = A *_{\bullet} B$,其中 * 为卷积算子。

若 ○ = +,就是我们熟悉的多项式乘法运算。

2.15 卷积与生成函数运算的联系

若满足运算 $x^L \times x^R = x^{L \circ R}$, 那么生成函数 $F = \sum f_i x^i$ 的乘法:

$$H = F \times G$$

和卷积 $\vec{F} = \{f_i\}, \vec{G} = \{g_i\}, \vec{H} = \vec{F} * \vec{G} = \{h_i\}$ 等价。

3 只有显隐性情况群体自由交配的计算

参考 2.9 中做法, 我们分步计算。

- 1. 对于第 i 个个体, 求配子生成函数 G_i 。
- 2. 计算 $G = \sum_{i=1}^{n} G_i$ 。
- 3. 计算 $I = G \otimes G$,

3.1 配子生成函数的求法

将基因片段对应到一个二进制数,如 $AB = (11)_2 = 3$, $aB = (01)_2 = 1$ 。

朴素求法

模拟生成配子的过程,每次生成一个长度为 k 的二进制数,若第 i 位为 0,则选择第 i 对等位基因的其中一个,否则选择另一个。

拿 AaBB 举例:

生成二进制数的时间复杂度(time complexity)为 $\mathcal{O}(2^k)$,而计算配子的时间复杂度为 $\mathcal{O}(k)$ 。 所以总时间复杂度是 $\mathcal{O}(k2^k)$,对于 n 个个体都计算一次,时间复杂度为 $\mathcal{O}(nk2^k)$,是不能接受的。

快速做法

考虑维护配子出现次数函数 f,一开始为 x^{None} ,考虑每次加入一对基因,f 的变化。假设它变为 f'。若加入的基因是一对显性基因,如 AA,那么 $f'(x \times 2 + 1) = 2f(x)$ 。

若加入的基因是一个显性和一个隐形基因,如 Aa,那么 $f'(x \times 2 + 1) = f(x), f'(x \times 2) = f(x)$ 。 若加入的基因是一对隐性基因,如 aa,那么 $f'(x \times 2) = 2f(x)$ 。

加入 k 等位基因,每次都 $\mathcal{O}(2^k)$ 计算,时间复杂度和上面没有区别,看似没有优化。

但是程序处理时,加入到第 i 个等位基因时,可以只用考虑 $0 \sim 2^i$ 的函数值,总时间复杂度是 $\mathcal{O}(\sum_{i=1}^k 2^i) = \mathcal{O}(2^k)$,可以将一个 k 优化掉。

对于 n 个个体都计算一次,时间复杂度为 $\mathcal{O}(n2^k)$,比较快速。

3.2 基因片段生成函数的求法

我们想求出一个基因片段生成函数乘法的快速实现。

朴素做法

考虑朴素地实现 (1) 中的卷积,时间复杂度是 $\mathcal{O}(4^k)$,是不能接受的。

优化的第一步

我们发现 **对于只有显隐性情况的基因片段生成函数,可以转化为集合生成函数**。而且集合生成函数已经存在快速算法。

集合生成函数

可以使用符号:

$$f = \sum_{S \subset U} f_S x^S$$

来表示一个集合生成函数。

这里我们定义算子。= \cup ,即: $x^L \times x^R = x^{L \cup R}$ 。

容易发现集合生成函数的乘法运算恰好为集合并卷积。

基因片段生成函数到集合生成函数的转换

定义全集 U 是: $\{A, B, \dots\}$ 。

我们将基因片段中的显性基因抽取出来,形成一个集合,如 $ABc \Rightarrow \{A, B\}$ 。

这样发现集合并卷积刚好符合"显性基因克制隐形基因"的条件,因为只要某一位有对应的显性基因,那么个体就表现为显性,可以结合集合运算表来理解:

集合生成函数的快速卷积算法: FWT

仿照 FFT 的思路,**我们求**出 f **的一种变换** \hat{f} **,使得** $f*g=h\Rightarrow \hat{f}_i\times \hat{g}_i=\hat{h}_i$,即将系数表示法转化为点值表示法。

我们给出关于集合并卷积的 FWT 运算,即快速莫比乌斯变换。

$$\hat{f}_S = \sum_{T \subseteq S} f_T$$

证明:

$$\begin{split} \hat{h}_S &= \sum_L \sum_R [(L \cup R) \subseteq S] f_L g_R \\ &= \sum_L \sum_R [L \subseteq S] [R \subseteq S] f_L g_R \\ &= \sum_L [L \subseteq S] f_L \sum_R [R \subseteq S] g_R \\ &= \hat{f}_S \hat{g}_S \end{split}$$

我们求出 \hat{h}_S 后, 当然需要将 \hat{h} 转化为 h, 于是需要反演运算:

$$f_S = \sum_{T \subseteq S} (-1)^{|S| - |T|} \hat{f}_T$$

可以用容斥简单证明。

朴素的变换和反演的实现

枚举 T 和 S, 并且判断是否 $T \subseteq S$, 时间复杂度 $\mathcal{O}(4^k)$, 没有太大的变化。

经过优化的变换和反演的实现

通过程序精细实现,能够以 $\mathcal{O}(2^{|S|})$ 的时间复杂度枚举 S 的子集。如果对于所有的 $S \subset U$,都这样枚举子集 T,时间复杂度为:

$$\mathcal{O}(\sum_{i=0}^{k} \binom{k}{i} 2^i) = \mathcal{O}(3^k)$$

比上述做法稍有进步。

进一步优化的变换和反演的实现

我们使用递推的思路,推导出 \hat{f}_S 。

设 $\hat{f}_S^{(i)} = \sum_{T \subseteq S} [(S \setminus T) \subseteq \{1, \cdots, i\}] f_T$, $\hat{f}_S^{(n)}$ 即是目标序列。 首先有 $\hat{f}_S^{(0)} = f_S$,因为只有当 $S \setminus T$ 为空集时,才能属于空集。 对于所有 $i \notin S$ 的 S,满足 $\hat{f}_S^{(i)} = \hat{f}_S^{(i-1)}$, $\hat{f}_{S \cup \{i\}}^{(i)} = \hat{f}_S^{(i-1)} + \hat{f}_{S \cup \{i\}}^{(i-1)}$ 。我们解释一下两个式子。

$$\hat{f}_S^{(i)} = \sum_{T \subseteq S} [(S \setminus T) \subseteq \{1, \dots, i\}] f_T$$

$$= \sum_{T \subseteq S} [(S \setminus T) \subseteq \{1, \dots, i-1\}] f_T$$

$$= \hat{f}_S^{(i-1)}$$

这里我们发现 $i \notin (S \setminus T)$, 所以可以直接把 $\{i\}$ 去掉, 也是等价的。

$$\begin{split} \hat{f}_{S \cup \{i\}}^{(i)} &= \sum_{T \subseteq (S \cup \{i\})} \left[(S \cup \{i\}) \setminus T \right) \subseteq \{1, \cdots, i\} \right] f_T \\ &= \sum_{T \subseteq (S \cup \{i\}) \text{ and } i \notin T} \left[\left((S \cup \{i\}) \setminus T \right) \subseteq \{1, \cdots, i\} \right] f_T + \sum_{T \subseteq (S \cup \{i\}) \text{ and } i \in T} \left[\left((S \cup \{i\}) \setminus T \right) \subseteq \{1, \cdots, i-1\} \right] f_T \\ &= \sum_{T \subseteq S \text{ and } i \notin T} \left[\left((S \setminus T) \subseteq \{1, \cdots, i-1\} \right] f_T + \sum_{T \subseteq (S \cup \{i\}) \text{ and } i \in T} \left[\left((S \cup \{i\}) \setminus T \right) \subseteq \{1, \cdots, i-1\} \right] f_T \\ &= \hat{f}_S^{(i-1)} + \hat{f}_{S \cup \{i\}}^{(i-1)} \end{split}$$

这样, 我们 $\mathcal{O}(n2^n)$ 求出 \hat{f}_S, \hat{g}_S , 按位乘, 然后再反演回去即可。

快速莫比乌斯变换和反演的伪代码实现

```
算法 1 快速莫比乌斯变换
输入:集合幂级数 f
```

输出: f 的莫比乌斯变换

```
1: function FastMobiusTransform(f)
       for i \leftarrow 1 to n do
            for all S \subseteq U \setminus \{i\} do
3:
                f_{S \cup \{i\}} \leftarrow f_{S \cup \{i\}} + f_S
4:
            end for
5:
       end for
       return f
8: end function
```

算法 2 快速莫比乌斯反演

```
输入: 集合幂级数 f
输出: f 的莫比乌斯反演
 1: function FastMobiusInversion(f)
        for i \leftarrow 1 to n do
           for all S \subseteq U \setminus \{i\} do
 3:
               f_{S\cup\{i\}} \leftarrow f_{S\cup\{i\}} - f_S
           end for
 5:
        end for
 6:
        return f
 8: end function
```

4 只有显隐性情况群体自由交配的计算的推广

4.1 共显性问题

有一种花卉,基因型为 AA 时表现为红色,基因型为 Aa 时表现为粉色,基因型为 aa 时表现为白色。

表 3: 共显性表现型表

\exp	A	a	
Α	A	Aa	
a	Aa	a	

我们将基因片段中的显性和隐性基因抽取出来,形成一个集合,如 $ABc \Rightarrow \{A, B, c\}$,对这样的集合作集合并卷积,也可以理解为把一对等位基因拆成两位, $A \Rightarrow 10$, $a \Rightarrow 01$ 。

容易发现这样做的时间复杂度为 $\mathcal{O}(2k \times 2^{2k}) = \mathcal{O}(2k \times 4^k)$, 和朴素做法差不多,是不可接受的。

4.2 喷瓜问题

喷瓜的性别由等位基因 g-,g+,G 决定,其中:

表 4: 喷瓜表现型表

exp	g ⁻	g ⁺	G
g^-	g ⁻	g ⁺	G
g^+	g^+	g ⁺	G
G	G	G	G

容易发现,这些等位基因构成一个偏序集,我们发现若 $g^- \le g^+ \le G$,则 \exp 运算对应 \max 运算。将 g^-, g^+, G 编码成为 00, 01, 10,那么容易看出:

表 5: 编码运算表

or	$00(g^-)$	$01(g^+)$	10(G)
$00(g^-)$	$00(g^-)$	$01(g^{+})$	10(G)
$01(g^+)$	$01(g^+)$	$01(g^+)$	11(G)
10(G)	10(G)	11(G)	10(G)

发现 11,10 都对应 G,而 00 对应 g^- ,01 对应 g^+ 。我们在程序实现时最后一步处理一下即可。 容易发现这样做的时间复杂度还是 $\mathcal{O}(2k \times 2^{2k}) = \mathcal{O}(2k \times 4^k)$,和朴素做法差不多,是不可接受的。

5 高维 FWT

以上两个问题在只运用集合并卷积的情况下,都没有较低时间复杂度的算法,下面,我们引入高维 FWT,并且逐渐探寻 FWT 的一般式。

5.1 定义

定义生成函数 $F = \sum f_S x^S$, 其中 S 不再是一个集合,而是一个每维可以取 $0, \cdots, k-1$ 的向量。

5.2 每维取 max 的 FWT

容易看出, 当 k=2, 而且:

$$0 \circ 0 = 0$$
$$1 \circ 0 = 1$$

$$0 \circ 1 = 1$$

$$1 \circ 1 = 1$$

那么,这就对应了集合并卷积。

这里,我们不再讨论集合并卷积,而是考虑更加一般的形式,即 $\circ = \max$ 时的情形。 定义:

$$\hat{f}[x^S] = \sum [S \circ T = S] f_T$$

容易发现:

$$\hat{h}_S = \sum_{L} \sum_{R} [S \circ (L \circ R) = S] f_L \times g_R$$

由于:

$$\max(a, \max(b, c)) = a \Leftrightarrow \max(a, b) = a \text{ and } \max(a, c) = a$$

有:

$$[(S\circ (L\circ R))=S]=[(S\circ L)=S][(S\circ R)=S]$$

得:

$$\begin{split} \hat{h}_S &= \sum_L \sum_R [(S \circ L) = S] [(S \circ R) = S] f_L \times g_R \\ &= \sum_L [(S \circ L) = S] f_L \times \sum_R [(S \circ R) = S] g_R \\ &= \hat{f}_S \times \hat{g}_S \end{split}$$

那么,我们在 FWT 的 k 个向量中,取前缀和即可,如果是反演的话,相邻做差即可。

5.3 喷瓜问题的快速算法

通过上述算法,将 g^- 对应到 0, g^+ 对应到 1, G 对应到 2,我们就可以解决上述的喷瓜问题,时间复杂 度为 $\mathcal{O}(n\times 3^n)$ 。

5.4 任意操作符的 FWT 问题

容易发现,每次 FWT,都是在对其他位相同,而某一位分别为 $0, \cdots, k-1$ 的 k 个向量对应的下标做矩阵乘法。

如集合并卷积的矩阵:

 $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

集合交卷积的矩阵:

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

集合对称差卷积的矩阵:

 $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

上述 max 卷积的矩阵:

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

而反演则是乘对应的逆矩阵。 我们设矩阵为:

$$\mathbf{M} = \begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0,k-1} \\ a_{1,0} & a_{1,1} & a_{1,2} & \cdots & a_{1,k-1} \\ a_{2,0} & a_{2,1} & a_{2,2} & \cdots & a_{2,k-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{k-1,0} & a_{k-1,1} & a_{k-1,2} & \cdots & a_{k-1,k-1} \end{bmatrix}$$

由于 FWT 按位独立,对于某一维分析,有:

$$\begin{pmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{k-1} \end{bmatrix} \times \mathbf{M} \end{pmatrix} \cdot \begin{pmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \\ \vdots \\ g_{k-1} \end{bmatrix} \times \mathbf{M} \\ \vdots \\ \vdots \\ h_{k-1} \end{bmatrix} \times \mathbf{M}$$

其中.代表"按位乘",即:

$$\begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{k-1} \end{bmatrix} \cdot \begin{bmatrix} g_0 \\ g_1 \\ g_2 \\ \vdots \\ g_{k-1} \end{bmatrix} = \begin{bmatrix} f_0 \times g_0 \\ f_1 \times g_1 \\ f_2 \times g_2 \\ \vdots \\ f_{k-1} \times g_{k-1} \end{bmatrix}$$

由于 $h_i = \sum_{j,k} [j \circ k = i] f_j \times g_k$, 枚举每个 i, 对于每个 $f_j \times g_k$ 分析, 容易列出方程:

$$a_{i,j} \times a_{i,k} = a_{i,j \circ k}$$

发现不管对于哪个 i,方程都是一样的,去掉 i,我们就只用解方程 $a_j \times a_k = a_{j \circ k}$ 。如,当 \circ 运算为取 or 的时候,有:

$$\begin{cases} a_0 \times a_0 = a_0 \\ a_1 \times a_0 = a_1 \\ a_0 \times a_1 = a_1 \\ a_1 \times a_1 = a_1 \end{cases}$$

我们解出两组解:

$$\begin{cases} a_0 = 1 \\ a_1 = 0 \end{cases} \qquad \begin{cases} a_0 = 1 \\ a_1 = 1 \end{cases}$$

于是可以这样安排我们的矩阵:

$$\mathbf{M_1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{M_2} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

为什么不能这样这样安排:

$$\mathbf{M_3} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{M_4} = egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$$

原因是,这两个矩阵都没有对应的逆矩阵,求逆矩阵可以再列出一个方程,然后解出 x_0, x_1 。(可以注意 到求解方程的意义正好对应了 FWT 逆操作的意义)

$$\begin{cases} a_{0,0}x_0 + a_{0,1}x_1 = b_0 \\ a_{1,0}x_0 + a_{1,1}x_1 = b_1 \end{cases}$$

拿 M₁ 举例,有:

$$\begin{cases} x_0 = b_1 \\ x_0 + x_1 = b_2 \end{cases}$$

那么显然:

$$\begin{cases} x_0 = b_1 \\ x_1 = b_2 - b_1 \end{cases}$$

于是其逆矩阵就是:

$$\mathbf{M}_{1}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

而对于 M_3 来说,有:

$$\begin{cases} x_0 = b_1 \\ x_0 = b_2 \end{cases}$$

显然不合法。于是不能使用 M_3 这个矩阵。

这样,我们解出矩阵 \mathbf{M} ,然后求出逆矩阵 \mathbf{M}^{-1} ,就可以解决任意操作符。的 FWT 问题。

5.5 ○ 运算需要满足的性质

由于:

$$a_j \times a_k = a_{j \circ k}$$

有:

$$a_{j \circ k} = a_j \times a_k = a_k \times a_j = a_{k \circ j}$$

$$a_{j \circ (k \circ l)} = a_j \times a_{k \circ l} = a_j \times a_k \times a_l = a_{j \circ k} \times a_l = a_{(j \circ k) \circ l}$$

于是。运算必须满足交换律和结合律。

5.6 不进位加法的 FWT

我们定义不进位加法 \oplus_p 运算,为:

$$a \oplus_{p} b = \begin{cases} a+b & (0 \le a+b \le p-1) \\ a+b-p & (p \le a+b \le 2p-2) \end{cases}$$

容易发现, 其矩阵系数 a 满足:

$$a_{i,j} \times a_{i,k} = a_{i,j \oplus_p k}$$

这里,我们发现,这组方程的特解即是:

$$a_{i,j} = \omega_p^j$$

因为单位根运算满足:

$$\omega_p^k = \omega_p^{k+p}$$

$$\omega_p^{i+j} = \omega_p^i \times \omega_p^j$$

进而发现,方程有p组解,第i组解(从0开始编号)为:

$$a_{i,j} = \omega_p^{j \times i}$$

那么我们可以列出矩阵:

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_p^1 & \omega_p^2 & \cdots & \omega_p^{p-1} \\ 1 & \omega_p^2 & \omega_p^4 & \cdots & w_p^{2(p-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_p^{p-1} & \omega_p^{2(p-1)} & \cdots & \omega_p^{(p-1)(p-1)} \end{bmatrix}$$

此矩阵就是范德蒙德矩阵。

我们不加证明地给出它的逆矩阵:

$$\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_p^{-1} & \omega_p^{-2} & \cdots & \omega_p^{-(p-1)} \\
1 & \omega_p^{-2} & \omega_p^{-4} & \cdots & \omega_p^{-2(p-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_p^{-(p-1)} & \omega_p^{-2(p-1)} & \cdots & \omega_p^{-(p-1)(p-1)}
\end{bmatrix}$$

这样,我们就可以完成模 p 意义下的不进位加法卷积,此算法即多维广义离散傅里叶变换。

具体程序实现, 我们可以算出 ω_p^1 即 $\cos\frac{p}{2\pi}+i\sin\frac{p}{2\pi}$, 如果能用根号形式表示, 即: $a+b\sqrt{x}i$, 我们可以模拟 复数 $a+b\sqrt{x}i$, 其乘法为 $(a+b\sqrt{x}i)(c+d\sqrt{x}i)=(ac-xbd)+(ac+bd)\sqrt{x}i$, 加法为 $(a+b\sqrt{x}i)+(c+d\sqrt{x}i)=(a+b)+(c+d)\sqrt{x}i$.

或者,更加通用地,我们将长度为 p 的多项式环作为一种数据结构,假设是 $F = \sum_{i=0}^{p-1} \omega_p^i f_i$,有: $F \times \omega_p^k = F = \sum_{i=0}^{p-1} \omega_p^i f_{i \ominus k}$, $F \times G = \sum_{i=0}^{p-1} \sum_{j=0}^{p-1} w_p^{i \ominus j} f_i \times g_j$ 。 注意,如果对某个数 mod 取模,若 p 在 mod 下没有对应的逆,则不能使用此算法。

算法 3 多维广义离散傅里叶变换

多维广义离散傅里叶变换的代码实现:

```
输入:幂级数 f,单位根 w_p,操作符 opr 代表正变换还是逆变换。
输出: f 的傅里叶变换
 1: function FOURIERTRANSFORM(f, w_p, opr)
         if then opr = 1

\mathbf{M}_{i,j} \leftarrow w_p^{(i-1)(j-1)}
 3:
 4:
             \mathbf{M}_{i,j} \leftarrow \frac{1}{p} w_p^{-(i-1)(j-1)}
         end if
 6:
         for i \leftarrow 1 to n do
 7:
             for The p vectors satisfying 1\cdots p on the i-th bit and the other bits are same. {f do}
 8:
                  v \leftarrow \mathtt{the}\ \mathtt{p}\ \mathtt{vectors}
 9:
                  for j \leftarrow 1 to p do
10:
                      g_i \leftarrow f_{v_i}
11:
                  end for
12:
                  g \leftarrow g \times \mathbf{M}
13:
                  for j \leftarrow 1 to p do
15:
                      f_{v_i} \leftarrow g_j
                  end for
16:
             end for
17:
         end for
18:
         return f
19:
20: end function
```

5.7 共显性问题的快速算法

如果将 A 对应到 1, a 对应到 0, 容易发现:

我们发现 A 对应 2, Aa 对应 1, a 对应 0。

只要使用三次单位根 $\omega_3 = \cos 120^\circ + \sin 120^\circ i$,即可轻松解决此问题,时间复杂度是 $\mathcal{O}(n \times 3^n)$ 。