Statistics 101C

Shirong Xu

University of California, Los Angeles shirong@stat.ucla.edu

October 1, 2024

Two Main Problems

We observe a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \mathbf{x}_i \in \mathbb{R}^p \text{ is } p\text{-dimensional predictors.}$ By the type of response Y, there are two **learning problems**:

- **Regression**: The response Y is quantitative. For example, people's income, the value of a house, blood pressure of patient.
- Classification: The response Y is qualitative: binary (gender, like or dislike a product), categorical (brand of a product), and ordinal (ratings given by users to movies or restaurant)

Examples

Regression:

Years of Experience	Salary in 1000\$
2	15
3	28
5	42
13	64
8	50
16	90
11	58
1	8
9	54

Classification (Categorical):

781

27/

Description:

images (28×28 pixel grayscale images) from the MNIST dataset of handwritten digits.

Objective: Predict the number (categorical 0-9) based on the pixel values (28×28) .

Example - Ordinal Classification

- **Description**: A review in Yelp community with textual data (covariates) and a rating (1-5, response).
- Objective: In Yelp challenge, the goal is to train a classifier predict the rating value based on the textual comment of users.

Example - Binary Classification

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	C
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	C
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	C
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	C
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	C
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	C
1	189	60	23	846	30.1	0.398	59	1
5	166	72	19	175	25.8	0.587	51	1

- **Description**: Diabetes dataset contains observations with diagnostic measurements and binary response indicating whether a patient has diabetes.
- Objective: Predict based on diagnostic measurements whether a patient has diabetes.

Statistical Learning for regression

- Background
- Training and test mean squared errors (MSEs)
- Bias-variance trade-off

- Predictors: $X = (X_1, X_2, ..., X_p)$ is p-dimensional random variable
- Response: Y is a quantitative random variable. Generally, Y is something we want to predict.
- The relationship between *X* and *Y*:

$$Y = f^*(X) + \epsilon$$

where $\mathbb{E}(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$. Here $f^*(X) = \mathbb{E}(Y|X)$.

- Goal: Find a function f(X) for predicting Y (or approximate f^* well)
- Question: How do we assess the quality of f(X) in predicting Y

- Goal: Find a function f(X) for predicting Y (or approximate f^* well)
- Question: How do we assess the quality of f(X) in predicting Y
- Loss function: square loss

$$L(f(\boldsymbol{X}), Y) = (Y - f(\boldsymbol{X}))^2$$

8 / 25

- Goal: Find a function f(X) for predicting Y (or approximate f^* well)
- Question: How do we assess the quality of f(X) in predicting Y
- Loss function: square loss

$$L(f(\boldsymbol{X}), Y) = (Y - f(\boldsymbol{X}))^2$$

• The averaged loss (expected error) of f:

$$R(f) = \mathbb{E}[L(f(\boldsymbol{X}), Y)] = \mathbb{E}[(Y - f(\boldsymbol{X}))^2]$$

• The expected squared loss (risk) can be written as

$$R(f) = \mathbb{E}[(Y - f(\boldsymbol{X}))^2] = \int \int (Y - f(\boldsymbol{X}))^2 \mathbb{P}(\boldsymbol{X}, Y) d\boldsymbol{X} dY.$$

• We can decompose R(f) into

$$\mathbb{E}[(Y - f(X))^{2}] = \int \int (Y - \mathbb{E}(Y|X))^{2} \mathbb{P}(X, Y) dX dY + \int \int (\mathbb{E}(Y|X) - f(X))^{2} \mathbb{P}(X, Y) dX dY,$$

where $\mathbb{P}(X, Y)$ is the joint distribution of (X, Y).

• The expected squared loss (risk) can be written as

$$R(f) = \mathbb{E}[(Y - f(\boldsymbol{X}))^2] = \int \int (Y - f(\boldsymbol{X}))^2 \mathbb{P}(\boldsymbol{X}, Y) d\boldsymbol{X} dY.$$

• We can decompose R(f) into

$$\mathbb{E}[(Y - f(\mathbf{X}))^{2}] = \int \int (Y - \mathbb{E}(Y|\mathbf{X}))^{2} \mathbb{P}(\mathbf{X}, Y) d\mathbf{X} dY$$
$$+ \int \int (\mathbb{E}(Y|\mathbf{X}) - f(\mathbf{X}))^{2} \mathbb{P}(\mathbf{X}, Y) d\mathbf{X} dY,$$

where $\mathbb{P}(X, Y)$ is the joint distribution of (X, Y).

- R(f) attains its minimum at $f(X) = \mathbb{E}(Y|X)$.
- If you have $\mathbb{E}(Y|X)$, you're done. Since you already have the "best" function.

- In practice, we do not know the exact from of $\mathbb{E}(Y|X)$.
- Question: What do we usually do?

- In practice, we do not know the exact from of $\mathbb{E}(Y|X)$.
- Question: What do we usually do?
 - Impose a structure on f, for example

$$f(\mathbf{X}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p.$$

• Suppose a function class

$$\mathcal{F} = \{f(\mathbf{x}) = \beta_0 + \sum_{i=1}^p \beta_i x_i : \beta_i \in \mathbb{R}, i = 0, \dots, p\}$$

• Minimize the averaged squared loss on training dataset

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2$$

• Based on the training dataset $\{(x_i, y_i)\}_{i=1}^n$, we obtain an estimator \hat{f}

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

• Based on the training dataset $\{(x_i, y_i)\}_{i=1}^n$, we obtain an estimator \hat{f}

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

• Suppose for a new data point x_0 (testing step), we aim to predict its y, the quality of \hat{f} at $X = x_0$:

$$\begin{split} & \mathbb{E}\big[(\widehat{f}(\boldsymbol{X}) - \boldsymbol{Y})^2 | \boldsymbol{X} = \boldsymbol{x}_0\big] \\ = & \big[\widehat{f}(\boldsymbol{x}_0) - \mathbb{E}(\boldsymbol{Y} | \boldsymbol{X} = \boldsymbol{x}_0)\big]^2 + \mathbb{E}\big[\boldsymbol{Y} - \mathbb{E}(\boldsymbol{Y} | \boldsymbol{X} = \boldsymbol{x}_0) | \boldsymbol{X} = \boldsymbol{x}_0\big]^2 \\ = & \underbrace{\big[\widehat{f}(\boldsymbol{x}_0) - \mathbb{E}(\boldsymbol{Y} | \boldsymbol{X} = \boldsymbol{x}_0)\big]^2}_{Reducible} + \underbrace{\sigma^2}_{non-reducible} \end{split}$$

• Reducible part can be decomposed into two components

$$\begin{split} & \mathbb{E}\big[\widehat{f}(\textbf{\textit{x}}_0) - \mathbb{E}(\textbf{\textit{Y}}|\textbf{\textit{X}} = \textbf{\textit{x}}_0)\big]^2 \\ = & \underbrace{\mathbb{E}\big[\widehat{f}(\textbf{\textit{x}}_0) - \mathbb{E}(\widehat{f}(\textbf{\textit{X}}))\big]^2}_{\textit{Variance}} + \underbrace{\big[\mathbb{E}(\widehat{f}(\textbf{\textit{x}}_0)) - \mathbb{E}(\textbf{\textit{Y}}|\textbf{\textit{X}} = \textbf{\textit{x}}_0)\big]^2}_{\textit{Bias}^2}, \end{split}$$

where the expectation is taken with respect to what?

• Reducible part can be decomposed into two components

$$\begin{split} & \mathbb{E}\big[\widehat{f}(\textbf{\textit{x}}_0) - \mathbb{E}(\textbf{\textit{Y}}|\textbf{\textit{X}} = \textbf{\textit{x}}_0)\big]^2 \\ = & \underbrace{\mathbb{E}\big[\widehat{f}(\textbf{\textit{x}}_0) - \mathbb{E}(\widehat{f}(\textbf{\textit{X}}))\big]^2}_{Variance} + \underbrace{\big[\mathbb{E}(\widehat{f}(\textbf{\textit{x}}_0)) - \mathbb{E}(\textbf{\textit{Y}}|\textbf{\textit{X}} = \textbf{\textit{x}}_0)\big]^2}_{Bias^2}, \end{split}$$

where the expectation is taken with respect to what?

- Variance: represents the variability of the predicted value. The randomness comes from the training dataset.
- Squared Bias: The second term is the squared bias. If \mathcal{F} is chosen well, so that the mean across all training data sets is the true function, then bias is 0.

Training MSE v.s. Testing MSE

• Let $D_r = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ and $D_e = \{(\mathbf{x}_i', y_i')\}_{i=1}^m$ be training and testing datasets, respectively. Train an estimator from D_r

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

• Evaluate \hat{f} by the mean squared error (MSE):

Training MSE:
$$\frac{1}{n} \sum_{i=1}^{n} (\widehat{f}(x_i) - y_i)^2$$

Testing MSE:
$$\frac{1}{m} \sum_{i=1}^{m} (\widehat{f}(\mathbf{x}_i') - \mathbf{y}_i')^2$$

• Question: Which one can be used for assessing the quality of \widehat{f} ?

An example.

• We generate $\{(x_i, y_i)\}_{i=1}^n$ in the following way

$$y_i = \sin(x_i) + \cos(x_i) + \epsilon_i$$

- $x_i \sim \text{Unif}(0, 2\pi)$
- $\epsilon \sim N(0,1)$
- Set n = 20

• We fit a linear model $f(x) = \beta_0 + \beta_1 x$

- Training MSE is 1.9918
- Testing MSE is 1.6304

• We fit a linear model $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$

- Training MSE is 1.2848
- Testing MSE is 1.2837

• We fit a linear model $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$

- Training MSE is 1.1101
- Testing MSE is 1.1374

• We fit a linear model $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4$

- Training MSE is 1.0883
- Testing MSE is 1.1924

An example: Conclusion

Metrics	Model 1	Model 2	Model 3	Model 4
Training MSE	1.9918	1.2848	1.1101	1.0883
Testing MSE	1.6304	1.2837	1.1374	1.1924

• Conclusions:

- Training MSE is non-increasing with respect to the flexibility of model, i.e., as training model F becomes more flexible, training MSE always becomes smaller.
- (2) Testing MSE decreases first and then increases with respect to the flexibility of model.
- The behavior of Testing MSE: Bias-variance trade-off
 - (1) Models with greater flexibility have a smaller bias.
 - (2) More flexible methods have a greater variance

Taylor Expansion

In the previous example, $Y = sin(X) + cos(X) + \epsilon$.

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$f(x) = \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right) + \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right)$$

Therefore, if we consider a model with polynomial terms with higher degrees, we are closer to the truth. But it does not mean we achieve higher performance on the testing. Why?

Another example: Bias-variance tradeoff

1 We generate 1000 datasets: the j-th dataset is $D_j = \{(x_i^{(j)}, y_i^{(j)})\}_{i=1}^{30}$

$$y_i^{(j)} = \sin(x_i^{(j)}) + \cos(x_i^{(j)}) + \epsilon_i,$$

where $x_i \in \text{Unif}(-2\pi, 2\pi)$.

2 Consider polynomial model with degree d = 1, 2, ..., 7,

$$\mathcal{F}_d = \{ f(x) = \beta_0 + \sum_{i=1}^d \beta_i x_i : \beta_i \in \mathbb{R}, i = 0, \dots, d \}$$

3 Estimate \hat{f} in 1,000 replications

$$\hat{f}^{(j)} = \arg\min_{f \in \mathcal{F}_d} \sum_{i=1}^{30} (f(x_i^{(j)}) - y_i^{(j)})^2$$

4 Generate 50,000 testing samples $\{(x_i', y_i')\}_{i=1}^{50,000}$:

$$y_i' = \sin(x_i') + \cos(x_i')$$

Another example: Bias-variance tradeoff

5 Estimate the Bias:

Estimate of Bias :
$$\frac{1}{50000} \sum_{i=1}^{50000} (\bar{f}(x_i') - y_i')^2$$
,

where
$$\bar{f}(x_i') = \frac{1}{1000} \sum_{j=1}^{1000} \hat{f}^{(j)}(x_i')$$

6 Estimate the variance:

Estimate of Variance :
$$\frac{1}{50000} \sum_{i=1}^{50000} \left(\frac{1}{1000} \sum_{j=1}^{1000} (\widehat{f}^{(j)}(x_i') - \bar{f}(x_i'))^2 \right),$$

where
$$\bar{f}(x_i') = \frac{1}{1000} \sum_{j=1}^{1000} \hat{f}^{(j)}(x_i')$$

Another example: Bias-variance tradeoff

- \bullet Degrees of polynomial increases \Rightarrow Model becomes more flexible \Rightarrow Squared Bias decreases
- Degrees of polynomial increases ⇒ Model becomes more flexible ⇒ Variance increases

Take home messages

- A more flexible function class is not always preferred. In practice, a "medium" model usually has higher performance in predicting unobserved samples (testing data)
- ullet In real-life situation f is unobserved, it is impossible to compute the bias and variance of an estimated function. Nevertheless, we should always keep the bias-variance tradeoff in mind.
- The bias-variance tradeoff point depends on the sample size.

Assignment 1: Part 1

- 1 Reproduce the Bias-Variance plot in Page 23 (codes).
- 2 Give the explaination (for the example from Pages 14-20). The last model

$$\mathcal{F}_4 = \{ f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 \}$$

approximates the ground truth model $f(x) = \sin(x) + \cos(x)$ better. But the testing performance is worse than the third one, that is

$$\mathcal{F}_3 = \{ f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 \}.$$