Transformer review By Qiao

class tatch

On Info holding a batch of data with anal during training.

On Inst._(unit, set, treptune, pates):

salirare_mask = (uct t pad).unsqueste(-))

if ug is not best

salirare_mask = (uct t pad).unsqueste(-))

if ug is not best

salirare_mask = (unit region):

salirare_mask = (return tgt mask

def subsequent_mask(size):
 "Mask out subsequent positions."
 attn_shape = (1, size, size)
 subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uinta') return torch.from numpy(subsequent mask) == 0

loss = loss_compute(out, batch.rtg.y, batch.rtckens)
total_total_loss = lostch.rtckens
total_total_sos = lostch.rtckens
total_total_sos = lostch.rtckens
total_total_sos = lostch.rtckens
total_total_sos = lostch.rtckens = lostch.rtckens
(i, loss / batch.rtckens, tokens / elapsed))
start = time.time() return total loss / total tokens

lask Nowmopt:
'Optia wrapper that implements rate.'
def_init_(calf, model_size, factor, warmup, optiaize'):
 salf.optiaize = optimizer
 salf_inter;
 salf_inter; def step(self):
 "Update parameters and rate"
 self_step == 1
 rate = self_rate()
 for p in self_optimize.param_groups:
 p('lr') = rate
 self_rate = self_rate()

def get_std_opt(model):
 return NoamSpt(model.src_embed(0).d_model, 2, 4000,
 torch.optin.Adan(model.parameters(), lr=0, betas=(0.9, 0.90), eps=10-9))

"We suspect that for large values of dk, the dot products grow large in magnitude, pushing the softmax function into replace where it has extremely small gradients 4. To counteract this effect, we scale the dot products by $\frac{1}{\sqrt{d_k}}$." X Wº Q - (Attention is all you need) . . $Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$ x w v def attention(query, key, value, melbonne, dropouthisma) 'Comput 'Scaled Dot Product Attention' 'Comput 'Scaled Dot Product Attention' 'Community Community (Community Community Community Community Community Community Community Community (Community Community Communit softnax(_____) ___ · m def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads. super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assure d_v always equals d_h self.d_k = d_model // h self.d_k = d_model // h Linear self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) # 1) Do all the linear projections in batch from d_madel => h x d_k query, key, value = \ [1(x).view(mhatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear x = x.transpose(1, 2).contiguous() \ .view(nbatchs, -1, self.h * self.d_k) return self.linears[-1](x) class SublayerConnection(nn.Module): A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x)))

def rete(self, step = Nome):
 "tpplement 'lerate' above'
if step is Nome!
 step = self_step
 return self_step
 return self_step
 self_step * (=0.5) *
 self_step * (=0.5) *
 self_step * (=0.5) *

"Implement label snoothing (in. rocote);

"Implement label snoothing ding idx, smoothing=0.0):

super(LabelSmoothing, self)__init__()

self.criterion = nn.KiDivloss(size_average=False) self.padding idx = padding idx self.smoothing = smoothing self.size = size

def greep_decode(model, rec, src_mask, max_lem, start_symbol);
memory = model.necode(src, src_mask)
ys = tord.necode(src, src_mask)
ys = tord.necode(src, src_mask)
cut = model.decode(semory, src_mask)
cut = model.decode(semory, src_mask)
veriable(sounce, src_mask)
veriable(sounce, src_mask)
veriable(sounce, src_mask)
prob = model.pemerator(cut)
prob = model.p model.eval()
src = Variable(torch.longFensor([[1,2,3,4,4,5,6,7,8,9,10]]))
src_mask = Variable(torch.ones(3, 1, 10))
print(greedy_decode(model, src, src_mask, max_lene10, start_symbol=1))

the Sythester (Int., Devolut)
of vorte, better (1000)
if a vorte, bett

when the first the vill the first the first the vill the first the

decinematic decine and particular content of the co

A stricts preventing from counts:

a stricts preventing from counts:

strong_late x salet sheet_place

a resulter (simulation)

become (simulation)

for (simulation)

for (simulation)

get = m (precision) are (simulation)

get = m (precision) are (simulation)

for (simulation)

for (simulation) I the and constitut time

2 x on parallels getter time,

target, declaración

2 x 1.mm((x) / meralles

total on 1.det((x)

def forward(self, x):
 return self.lut(x) * math.sqrt(self.d_model)

Transformer Page 1

class Imbeddings(nn.Nodule): def __init__(self, d_model, vocab): super(rebeddings, self), __init__() self.lut = nn.Embeding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model)

class Generator(nn.Module):
 "Define standard linear+ softmax generation step."
 def __init__(self, d_model, vocab):
 super(denerator, self) __init__()
 self.proj = rn.linear(d_model, vocab) def forward(self, x):
 return E.log_softmax(self.proj(x), dim=-1)

m = memory
x = self-sublayer[0](x, laebda x: self-self_attn(x, x, x, tgt_mank))
x = self-sublayer[2](x, laebda x: self-ser_attn(x, n, n, sec_mask))
return self-sublayer[2](x, self-feed_forward)

