

HackerRank Prepare > SQL > Basic Select > Revising the Select Query I

1 3878 Scottedale USA Arizona 282785

HackerRank Prepare > SQL > Basic Select > Revising the Select Query II

Congratulations!

You have passed the sample test cases. Click the submit button to run your code against all the test cases.

HackerRank Prepare > SQL > Basic Select > Select By ID

Query the names of all the Japanese cities in the CITY table. The

COUNTRYCODE for Japan is JPN.

The CITY table is described as follows;

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2 (20)
POPULATION	NUMBER

Query a list of **CITY** names from **STATION** for cities that have an even **ID** number. Print the results in any order, but exclude duplicates from the answer.

The STATION table is described as follows:

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where $\textbf{LAT_N}$ is the northern latitude and $\textbf{LONG_W}$ is the western longitude.

Find the difference between the total number of CITY entries in the table

The STATION table is described as follows:

STATION

and the number of distinct CITY entries in the table.

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where **LAT_N** is the northern latitude and **LONG_W** is the western longitude.

For example, if there are three records in the table with CITY values 'New York'. 'New York'. 'Bengalaru'. there are 2 different city names: 'New York'

Query the two cities in STATION with the shortest and longest CITY names, as well as their respective lengths (i.e.: number of characters in the name). If there is more than one smallest or largest city, choose the one that comes first when ordered alphabetically.

The STATION table is described as follows:

STATION

Field Type	
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Query the list of CITY names starting with vowels (i.e., a, e, i, o, or u) from

STATION. Your result cannot contain duplicates.

Input Format

The STATION table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Query the list of CITY names ending with vowels (a, e, i, o, u) from

STATION. Your result cannot contain duplicates.

Input Format

The **STATION** table is described as follows:

STATION

Field Type	
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Query the list of CITY names from **STATION** that do not start with vowels, Your result cannot contain duplicates.

Input Format

The STATION table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Query the list of CITY names from **STATION** that do not end with vowels. Your result cannot contain duplicates.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG W	NUMBER

Query the list of CITY names from **STATION** that do not start with vowels and do not end with vowels. Your result cannot contain duplicates.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

HackerRank Prepare > SQL > Basic Select > Higher Than 75 Marks

HackerRank Prepare > SQL > Basic Select > Employee Sataries

Query a count of the number of cities in **CITY** having a Population larger than 100,000.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Submissions

Query the average population for all cities in CITY, rounded down to the nearest integer.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Query the sum of the populations for all Japanese cities in CITY. The COUNTRYCODE for Japan is JPN.

Input Format

The CITY table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

COUNTRYCODE VARCHAR2(3)

VARCHAR2 (20)

NUMBER

DISTRICT

POPULATION

Submissions

Samantha was tasked with calculating the average monthly salaries for all employees in the $\mbox{\it EMPLOYEES}$ table, but did not realize her keyboard's 0key was broken until after completing the calculation. She wants your help finding the difference between her miscalculation (using salaries with any zeros removed), and the actual average salary.

Write a query calculating the amount of error (i.e.:

actual-miscalculated average monthly salaries), and round it up to the next integer.

Input Format

The EMPLOYEES table is described as follows:

Column	Туре
ID	Integer
Name	String
Salary	Integer

HackerRank Prepare > SQL > Aggregation > Top Earners

where employee_id is an employee's ID number, name is their name,

Query the sum of Northern Latitudes (LAT_N) from **STATION** having values greater than 38.7880 and less than 137.2345. Truncate your answer to $4\,$ decimal places.

Input Format

The STATION table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Query the greatest value of the Northern Latitudes (LAT_N) from **STATION** that is less than 137.2345. Truncate your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Submissions

Query the Western Longitude (LONG_W) for the largest Northern Latitude (LAT_N) in STATION that is less than 137.2345. Round your answer to 4decimal places.

Input Format

The STATION table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

```
MySQL
    2 I JUST SOLVED IT FOR LAT_N
    3 WHAT THE HEEK HACKER RANK!!!!
    6 SELECT ROUND(LONG_W,4)
      FROM STATION
    8 WHERE LAT_N = (SELECT MAX(LAT_N) FROM STATION WHERE LAT_N < 137.2345)
   10 ▼ /* THIS ISSUE WAS RESOLVED BY MAJDI AWAD */
                                                                         Line: 10 Col: 42
 J. Upload Code as File
                                                                           Submit Code
                                                               Run Code
Congratulations!
You have passed the sample test cases. Click the submit button to run your code against all the test cases.
```

Query the smallest Northern Latitude (LAT_N) from **STATION** that is greater than 38.7780. Round your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

Query the Western Longitude (LONG_W)where the smallest Northern Latitude (LAT_N) in ${f STATION}$ is greater than 38.7780. Round your answer to 4 decimal places.

Input Format

The STATION table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

HackerRank Prepare > SQL > Aggregation > Weather Observation Station 18

ID

NUMBER

You have passed the sample test cases. Click the submit button to run your code against all the test cases.

LAT_N

NUMBER

LONG W NUMBER

where LAT_N is the northern latitude and LONG_W is the western

Problem

Submissions

Given the $\mbox{{\bf CITY}}$ and $\mbox{{\bf COUNTRY}}$ tables, query the sum of the populations of all cities where the CONTINENT is 'Asia'.

Note: CITY.CountryCode and COUNTRY.Code are matching key columns.

Input Format

The CITY and COUNTRY tables are described as follows:

CITY

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

HackerRank Prepare > SQL > Basic Join > Average Population of Each Continent

3

20

29

You have passed the sample test cases. Click the submit button to run your code against all the test cases.

Julia just finished conducting a coding contest, and she needs your help assembling the leaderboard! Write a query to print the respective hacker_id and name of hackers who achieved full scores for more than one challenge. Order your output in descending order by the total number of challenges in which the hacker earned a full score. If more than one hacker received full scores in same number of challenges, then sort them by ascending hacker_id.

Input Format

The following tables contain contest data:

· Hackers: The hacker_id is the id of the hacker, and name is the name of

Column	Туре
hacker_id	Integer
name	String

the hacker.

. Difficulty: The difficult_level is the level of difficulty of the challenge, and score is the score of the challenge for the difficulty level.

Harry Potter and his friends are at Ollivander's with Ron, finally replacing

HackerRank Prepare > SQL > Basic Join > Ollivander's Inventory

Hermione decides the best way to choose is by determining the minimum number of gold galleons needed to buy each non-evil wand of high power and age. Write a query to print the id, age, coins_needed, and power of the wands that Ron's Interested In, sorted In order of descending power. If more than one wand has same power, sort the result in order of descending age.

Input Format

Charlie's old broken wand.

The following tables contain data on the wands in Ollivander's inventory:

 Wands: The id is the id of the wand, code is the code of the wand, coins_needed is the total number of gold galleons needed to buy the wand, and power denotes the quality of the wand (the higher the

Column	Туре
ld	Integer
code	Integer

HackerRank Prepare > SQL > Basic Join > Challenges

HackerRank Prepare > SQL > Basic Join > Contest Leaderboard

the id of the hacker who made the submission, challenge_id is the id of

HackerRank Prepare > SQL > Advanced Select > The PADS

Leaderboard

HackerRank Prepare > SQL > Advanced Select > Occupations

sorted alphabetically and displayed underneath its corresponding Occupation. The output column headers should be Doctor, Professor, Singer, and Actor, respectively.

Pivot the Occupation column in OCCUPATIONS so that each Name is

Note: Print NULL when there are no more names corresponding to an occupation.

Input Format

The OCCUPATIONS table is described as follows:

Column	Туре
Name	String
Occupation	String

Occupation will only contain one of the following values: Doctor,

Professor, Singer or Actor.

Sample Input

```
£63
                                                       MySQL
    select
        Doctor,
        Professor,
        Singer,
        Actor
    from (
6
        select
8
            NameOrder,
9
            max(case Occupation when 'Doctor' then Name end) as Doctor,
           max(case Occupation when 'Professor' then Name end) as Professor,
10
11
            max(case Occupation when 'Singer' then Name end) as Singer,
12
            max(case Occupation when 'Actor' then Name end) as Actor
13
        from (
14
                select
15
                    Occupation,
16
                    Name,
17
                    row_number() over(partition by Occupation order by Name ASC) as
    NameOrder
18
                from Occupations
19
             ) as NameLists
        group by NameOrder
20
21
        ) as Names
22
23 ▼ /* THIS ISSUE WAS RESOLVED BY MAJDI AWAD */
```

Problem

Submissions

You are given a table, BST, containing two columns: N and P, where N represents the value of a node in Binary Tree, and P is the parent of N.

Column	Туре
N	Integer
P	Integer

Write a query to find the node type of Binary Tree ordered by the value of the node. Output one of the following for each node:

- Root: If node is root node.
- Leaf: If node is leaf node.
- Inner: If node is neither root nor leaf node.

Sample Input

HackerRank Prepare > SQL > Advanced Select New Companies

• The company_code is string, so the sorting should not be **numeric**. For example, if the company_codes are C_1, C_2, and C_10, then the

ascending company_codes will be C_1 , C_10 , and C_2 .

Amber's conglomerate corporation just acquired some new companies. select c.company_code, c.founder, count(distinct l.lead_manager_code), count(distinct s.senior_manager_code), Founder count(distinct m.manager_code), count(distinct e.employee_code) Lead Manager from Company as c join Lead_Manager as l Senior Manager on c.company_code = l.company_code join Senior_Manager as s Manager Submissions on l.lead_manager_code = s.lead_manager_code 11 join Manager as m Employee 12 on m.senior_manager_code = s.senior_manager_code Each of the companies follows this hierarchy: 13 join Employee as e on e.manager_code = m.manager_code Given the table schemas below, write a query to print the company_code, 15 group by c.company_code, c.founder founder name, total number of lead managers, total number of senior order by c.company_code managers, total number of managers, and total number of employees. 17 ▼ /* THIS ISSUE WAS RESOLVED BY MAJDI AWAD */ Order your output by ascending company_code. Leaderboard Line: 17 Col: 44 . The tables may contain duplicate records. Submit Code Run Code

Congratulations!

You have passed the sample test cases. Click the submit button to run your code against all the test cases.

HackerRank Prepare > SQL > Advanced Join > Interviews

Samantha interviews many candidates from different colleges using coding challenges and contests. Write a query to print the contest_id, hacker_id, name, and the sums of total_submissions, total_accepted_submissions, total_views, and total_unique_views for each contest sorted by contest_id. Exclude the contest from the result if all four sums are $\bf 0$.

Note: A specific contest can be used to screen candidates at more than one college, but each college only holds 1 screening contest.

Input Format

The following tables hold interview data:

• Contests: The contest_id is the id of the contest, hacker_id is the id of the hacker who created the contest, and name is the name of the

Column	Туре
contest_id	Integer
hacker_id	Integer
name	String

hacker.

```
select con.contest_id,
            con.hacker id.
            con.name.
            sum(total_submissions),
            sum(total_accepted_submissions),
           sum(total_views), sum(total_unique_views)
    from contests con
    join colleges col on con.contest_id = col.contest_id
   join challenges cha on col.college_id = cha.college_id
10 left join
    (select challenge_id, sum(total_views) as total_views, sum(total_unique_views)
11
    as total_unique_views
    from view_stats group by challenge_id) vs on cha.challenge_id = vs.challenge_id
13 left join
14 (select challenge_id, sum(total_submissions) as total_submissions,
    sum(total_accepted_submissions) as total_accepted_submissions from
    submission_stats group by challenge_id) ss on cha.challenge_id =
    ss.challenge_id
15
        group by con.contest_id, con.hacker_id, con.name
16
            having sum(total_submissions)!=0 or
17
                    sum(total_accepted_submissions)!=0 or
18
                    sum(total_views)!=0 or
19
                    sum(total_unique_views)!=0
20
                order by contest_id;
21
22 " /* THIS ISSUE WAS RESOLVED BY MAJDI AWAD */
```


You have passed the sample test cases. Click the submit button to run your code against all the test cases.

Column	Туре
А	Integer
В	Integer
С	Integer

HackerRank Prepare > SQL > Advanced Select

Each row in the table denotes the lengths of each of a triangle's three

You are given a table, Functions, containing two columns: X and Y.

Column	Туре
X	Integer
Υ	Integer

Two pairs (X_1, Y_1) and (X_2, Y_2) are said to be symmetric pairs if $X_1 = Y_2$ and

Write a query to output all such symmetric pairs in ascending order by the value of X. List the rows such that $X_1 \le Y_1$.

Sample Input

X	Y
20	20
20	20

HackerRank Prepare > SQL > Advanced Join > 15 Days of Learning SQL

· Submissions: The submission_date is the date of the submission,

the hacker.

(SELECT @d_rnk := 0) r) AS p2 16 17 ON p1.submission_date = p2.submission_date Julia conducted a 15 days of learning SQL contest. The start date of the 18 AND hacker_rank = date_rank contest was March 01, 2016 and the end date was March 15, 2016. GROUP BY pl.submission_Date) AS t1 19 Write a query to print total number of unique hackers who made at least ${\bf 1}$ 20 JOIN (SELECT submission_date, hacker_id, sub_cnt, 21 @s_rnk := CASE WHEN @d_grp != submission_date THEN 1 ELSE @s_rnk+1 submission each day (starting on the first day of the contest), and find the END AS max rnk. hacker_id and name of the hacker who made maximum number of 22 @d_grp := submission_date AS date_group submissions each day. If more than one such hacker has a maximum 23 FROM (SELECT submission_date, hacker_id, COUNT(*) AS sub_cnt 24 FROM submissions AS s number of submissions, print the lowest hacker_id. The query should print GROUP BY submission_date, hacker_id 25 this information for each day of the contest, sorted by the date. 26 ORDER BY submission_date, sub_cnt DESC, hacker_id) AS c, (SELECT @s_rnk := 1, @d_grp := 0) AS r) AS t2 Input Format 28 ON t1.submission_date = t2.submission_date AND max_rnk = 1 The following tables hold contest data: 29 JOIN hackers AS h ON h.hacker_id = t2.hacker_id ORDER BY t1.submission_date . Hackers: The hacker_id is the id of the hacker, and name is the name of 31 ▼ /* THIS ISSUE SOLVED BY MAJDI AWAD */ Line: 31 Col: 38 Column Type 1 Upload Code as File hacker_id Integer Submit Code Run Code name String

Congratulations!

You have passed the sample test cases. Click the submit button to run your code against all the test cases.

HackerRank Prepare > SQL > Advanced Join > SQL Project Planning

is more than one project that have the same number of completion days,

then order by the start date of the project.

Congratulations!

You are given three tables: Students, Friends and Packages. Students contains two columns: ID and Name. Friends contains two columns: ID and Friend_ID (ID of the ONLY best friend). Packages contains two columns: ID and Salary (offered salary in \$ thousands per month).

HackerRank Prepare > SQL > Advanced Join > Placements

Туре
Integer
String

Column	Туре
ID	Integer
Friend_ID	Integer

Friends


```
SELECT GROUP_CONCAT(NUMB SEPARATOR '&')
      FROM (
          SELECT @num:=@num+1 as NUMB FROM
          information_schema.tables t1,
          information_schema.tables t2,
          (SELECT @num:=1) tmp
      ) tempNum
      WHERE NUMB<=1000 AND NOT EXISTS(
             SELECT * FROM (
  10
                  SELECT @nu:=@nu+1 as NUMA FROM
  11
                      information_schema.tables t1,
  12
                      information_schema.tables t2,
  13
                      (SELECT @nu:=1) tmp1
  14
                      LIMIT 1000
  15
  16
              WHERE FLOOR(NUMB/NUMA)=(NUMB/NUMA) AND NUMA<NUMB AND NUMA>1
  17
  18 ▼ /* THIS ISSUE WAS RESOLVED BY MAJDI AWAD */
                                                                     Line: 18 Col: 44
 J. Upload Code as File
                                                            Run Code
                                                                       Submit Code
Congratulations!
```


