# Computer Graphics - Exercise 09

#### Maximilian Richter

#### Winter Semester 2022/23

## 1 Polygon Clipping

What is the maximum number of new vertices, if

- a) a n-sided convex polygon is clipped with a line? Answer: 2
- b) a n-sided non-convex polygon is clipped with a line? Answer: n
- c) a n-sided convex polygon is clipped with a rectangle?
  Answer: 8
- d) a n-sided non-convex (possibly self-intersecting) polygon is clipped with a rectangle? Answer: 2n

## 2 Sutherland–Hodgman Algorithm

The following points are given and labeled:

$$P_1 = \left(-\frac{1}{2}, -\frac{1}{2}\right), \quad P_2 = \left(\frac{3}{2}, -1\right), \quad P_3 = \left(\frac{1}{2}, \frac{3}{2}\right), \quad P_4 = \left(-\frac{3}{2}, \frac{1}{2}\right).$$

These points make an polygon which is supposed to be clipped to a square with extent (-1, -1, 1, 1)

| $\mathbf{Edge}$ | Case     | Output          |
|-----------------|----------|-----------------|
| P1, P2          | Outgoing | P2'=(1,7/8)     |
| P2, P3          | Incoming | P2"=(1,1/4), P3 |
| P3, P4          | Inside   | P4              |
| P4, P1          | Inside   | P1              |

Table 1: Right

| $\mathbf{Edge}$ | Case     | Output          |
|-----------------|----------|-----------------|
| P1, P2'         | Inside   | P2'             |
| P2', P2"        | Inside   | P2"             |
| P2", P3         | Outgoing | P3'=(7/10,1)    |
| P3, P4          | Incoming | P3"=(1/2,1), P4 |
| P4, P1          | Inside   | P1              |

Table 2: Up

| $\mathbf{Edge}$ | Case     | Output          |
|-----------------|----------|-----------------|
| P1, P2'         | Inside   | P2'             |
| P2', P2"        | Inside   | P2"             |
| P2", P3'        | Inside   | P3'             |
| P3', P3"        | Inside   | P3"             |
| P3", P4         | Outgoing | P4'=(1,3/4)     |
| P4, P1          | Incoming | P4"=(-1, 0), P1 |

Table 3: Left

| $\mathbf{Edge}$ | Case   | Output |
|-----------------|--------|--------|
| P1, P2'         | Inside | P2'    |
| P2', P2"        | Inside | P2"    |
| P2", P3'        | Inside | P3'    |
| P3', P3"        | Inside | P3"    |
| P3", P4'        | Inside | P4'    |
| P4', P4"        | Inside | P4"    |
| P4", P1         | Inside | P1     |

Table 4: Bottom



Figure 1: Clipped Polygon

#### 3 Bresenham Algorithm

The Bresenham algorithm is a frequently used method in computer graphics to rasterize lines and circles. The implicit representation of a line between two given points in space is given as

$$F(x,y) = y(x_1 - x_0) + x(y_0 - y_1) + y_1 x_0 - y_0 x_1$$
(1)

a) Using the line equation for  $P_0 = (x_0, y_0) = (1, 2)$  and  $P_1 = (x_1, y_1) = (6, 4)$  we obtain an implicit representation of the given line

$$F(x,y) = 5y - 2x - 8$$

We initialize out control variable d as  $2F(x_0 + 1, y_0 + \frac{1}{2})$ 

$$d := 2F(x_0 + 1, y_0 + \frac{1}{2})$$

$$= 2(5(y_0 + \frac{1}{2}) - 2(x_0 + 1)8)$$

$$= 10y_0 - 4x_0 - 15$$

We use  $P_0 = (1, 2)$  and yield

$$d_0 = 20 - 4 - 15 = 1$$

Since  $d \ge 0$  holds, the Bresenham algorithm indicates to go east (E) and the incremented d is calculated by

$$d_1 = d_0 + 2(y_0 - y_1) = 1 + 2(2 - 4) = -3$$

Since d < 0 holds, the Bresenham algorithm indicates to go northeast (NE) and the incremented d is calculated by

$$d_2 = d_1 + 2(y_0 - y_1) + 2(x_1 - x_0) = -3 + 2(2 - 4) + 2(6 - 1) = 3$$

 $d \ge 0 \to E$ 

$$d_3 = d_2 + 2(y_0 - y_1) = -1$$

 $d < 0 \rightarrow \text{NE}$ 

$$d_4 = d_3 + 2(y_0 - y_1) + 2(x_1 - x_0) = 5$$

$$d > 0 \to E$$

As the formulas used above are specified for the case that the slope of the line is smaller than 1, we have to exploit symmetrie and thus switch x and y axes for the calculations. Therefore  $P_0 = (x_0, y_0) = (2, 1)$  becomes (1, 2) and  $P_1 = (x_1, y_1) = (5, 5)$  becomes (5, 5).

$$F(x,y) = 4y - 3x - 5$$

We initialize our control variable d

$$d := 2F(x_0 + 1, y_0 + \frac{1}{2})$$

$$= 2(4(y_0 + \frac{1}{2}) - 3(x_0 + 1)5)$$

$$= 8y_0 - 6x_0 - 12$$

We use  $P_0 = (1, 2)$  and yield

$$d_0 = 16 - 6 - 12 = -2$$

 $d < 0 \rightarrow NE$ 

$$d_1 = d_0 + 2(y_0 - y_1) + 2(x_1 - x_0) = -2 + 2(5 - 2) + 2(5 - 1) = 0$$

 $d > 0 \to E$ 

$$d_2 = d_1 + 2(y_0 - y_1) = -6$$

 $d < 0 \rightarrow \text{NE}$ 

$$d_3 = d_2 + 2(y_0 - y_1) + 2(x_1 - x_0) = -4$$

 $d < 0 \rightarrow NE$ 

$$d_4 = d_3 + 2(y_0 - y_1) + 2(x_1 - x_0) = -2$$

Depending on the stopping criterion and the chosen point, the end of the line will look slightly different.

b) For rasterization of the first line using anti-aliasing we need the signed distance a between the line and the center between the E and NE pixel. On the basis of a one can then decide which pixel should be set with which intensity. a can be determined by

$$a = \frac{d}{2\Delta x}$$
 with  $\Delta x = x_1 - x_0$ 



Figure 2: Result of Rasterization Line 1 (left) and Line 2 (right)

For every d we calculate a and use the appropriate functions to determine the fraction of the intensity for the East and North East pixel

- Step 1:  $d = 1, a = -0.05 \rightarrow (x + 1, y)$  with 0.55 and (x + 1, x + 1) with 0.45
- Step 2:  $d = -3, a = -0.15 \rightarrow (x+1, y)$  with 0.35 and (x+1, x+1) with 0.65
- Step 3:  $d = 3, a = 0.15 \rightarrow (x + 1, y)$  with 0.65 and (x + 1, x + 1) with 0.35
- Step 4:  $d = -1, a = -0.05 \rightarrow (x+1, y)$  with 0.45 and (x+1, x+1) with 0.55



Figure 3: Result of Anti-aliasing Line 1