What is a transmission line?

The basic structure — a four port device that connects:

- (1) A Thénevin equivalent input or *generator circuit* with $V_{\rm g}$ and $R_{\rm g}$, as the equivalent voltage source and resistance
- (2) A load circuit with a load resistance R_L as the equivalent resistance

UMBC AN HONORS UNIVERSITY More generally, with a-c inputs:

$$V_{\rm g}$$
 and $R_{\rm g} \! o \! \tilde{V}_{\rm g}$ and $Z_{\rm g}$
$$R_{\rm L} \! o \! Z_{\rm L}$$

3.1

What is a transmission line?

The basic structure — a four port device that connects:

- (1) A Thénevin equivalent input or *generator circuit* with $V_{\rm g}$ and $R_{\rm g}$, as the equivalent voltage source and resistance
- (2) A load circuit with a load resistance $R_{\rm L}$ as the equivalent resistance

UMBC AN HONORS UNIVERSITY We take into account the finite transmission time from A, A' to B, B'

Lumped Element Model

We replace the detailed physics of the transmission line with lumped circuit parameters:

- R': The combined resistance of both conductors (ohms/meter)
- L': The combined inductance of both conductors (henrys/meter)
- *G'* : The conductance of the insulating medium between conductors (siemens/meter)
- C': The capacitance between the two conductors (farads/meter)
- These parameters are all "per unit length." Hence, we put primes.
- Their values are determined by the detailed physics.
- We will use this model to find a simple pair of coupled equations,

The telegrapher's equation that describes propagation through the transmission line

3.5

Transmission Line Model: (a) Parallel-wire representation (b) Differential sections each z long (c) Bach section is represented by an equivalent circuit Ulaby Figure 2-6 13.6

Lumped Element Model

Examples of parameter determination from the physics:

1 1		1 2	
Parameter	Coaxial	Two wire	Parallel plane
R'	$\frac{R_{\rm S}}{2\pi} \left(\frac{1}{a} + \frac{1}{b} \right)$	$\frac{2R_{\mathrm{S}}}{\pi d}$	$\frac{2R_{\rm S}}{w}$
L'	$\frac{\mu}{2\pi}\ln(b/a)$	$\frac{\mu}{\pi} \ln \left[(D/d) + \sqrt{(D/d)^2 - 1} \right]$	$\frac{\mu h}{w}$
G'	$\frac{2\pi\sigma}{\ln(b/a)}$	$\frac{\pi\sigma}{\ln\left[\left(D/d\right) + \sqrt{\left(D/d\right)^2 - 1}\right]}$	$\frac{\sigma w}{h}$
C'	$\frac{2\pi\varepsilon}{\ln(b/a)}$	$\frac{\pi\varepsilon}{\ln\left[(D/d) + \sqrt{(D/d)^2 - 1}\right]}$	$\frac{\varepsilon w}{h}$

Ulaby Table 2-1 Slide 3.3 and the notes have definitions of a,b,d $R_{\rm S}$ = surface resistance = $(\pi f \mu_{\rm c} / \sigma_{\rm c})^{1/2}$; $\mu_{\rm c}$, $\sigma_{\rm c}$ are conductor parameters μ , ε , and σ are insulator parameters

3.7

Microstrip Line

Real transmission lines can be complex

 \implies Curve fitting approximations are useful s = w/h

$$\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \left(\frac{\varepsilon_r - 1}{2}\right) \left(1 + \frac{10}{s}\right)^{xy}$$

w = strip widthh = substrate thickness

$$y = 1 + 0.02 \ln \left(\frac{s^4 + 3.7 \times 10^{-4} s^2}{s^4 + 0.43} \right) + 0.05 \ln (1 + 1.7 \times 10^{-4} s^3)$$

 $Z_0 = \frac{60}{\sqrt{\varepsilon_{\text{eff}}}} \ln \left[\frac{6 + (2\pi - 6) \exp(-t)}{s} + \left(1 + \frac{4}{s^2} \right)^{1/2} \right]; \quad t = \left(\frac{30.67}{s} \right)^{0.75} \Rightarrow$

 $R' = 0; \quad G' = 0$ $C' = \sqrt{\varepsilon_{\text{eff}}} / Z_0 c; \quad L' = Z_0 \sqrt{\varepsilon_{\text{eff}}} / c$

Ulaby and Ravaioli 2015, Figure 2-10

Transmission Line Equations

Our starting point is one section of the transmission line

Note: We are taking a section that is small enough so that we can assume

Ulaby Figure 2-8 Kirchoff's voltage law: $v(z,t) - R' \Delta z \ i(z,t) - L' \Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z,t) = 0$

Kirchoff's current law: (at node N + 1)

$$i(z,t) - G'\Delta z \ v(z + \Delta z, t) - C'\Delta z \frac{\partial v(z + \Delta z, t)}{\partial t} - i(z + \Delta z, t) = 0$$

3.9

Transmission Line Equations

Rearranging terms

$$\begin{split} &-\frac{v(z+\Delta z,t)-v(z,t)}{\Delta z}=R'\,i(z,t)+L'\frac{\partial i(z,t)}{\partial t}\\ &-\frac{i(z+\Delta z,t)-i(z,t)}{\Delta z}=G'\,v(z+\Delta z,t)+C'\frac{\partial v(z+\Delta z,t)}{\partial t} \end{split}$$

Take the limit as $\Delta z \rightarrow 0$:

$$-\frac{\partial v(z,t)}{\partial z} = R'i(z,t) + L'\frac{\partial i(z,t)}{\partial t}$$
$$-\frac{\partial i(z,t)}{\partial z} = G'v(z,t) + C'\frac{\partial v(z,t)}{\partial t}$$

Telegrapher's Equations

Transmission Line Equations

Simplification

 $R' = (f \mu_c / \sigma_c)^{1/2} \rightarrow 0$ (low frequency and high conductivity conductors) $G' \rightarrow 0$ (low conductivity dielectric material)

The transmission equations become

$$-\frac{\partial v(z,t)}{\partial z} = L' \frac{\partial i(z,t)}{\partial t}, \quad -\frac{\partial i(z,t)}{\partial z} = C' \frac{\partial v(z,t)}{\partial t}$$

which imply

$$\frac{\partial^2 v(z,t)}{\partial z^2} = L'C' \frac{\partial^2 v(z,t)}{\partial t^2}, \quad \frac{\partial^2 i(z,t)}{\partial z^2} = L'C' \frac{\partial^2 i(z,t)}{\partial t^2}$$

Note: In Paul's notation: $v \rightarrow V$, $i \rightarrow I$, $L' \rightarrow l$, and $C' \rightarrow c$

$$\frac{\partial V(z,t)}{\partial z} = -l \frac{\partial I(z,t)}{\partial t}, \quad \frac{\partial I(z,t)}{\partial z} = -c \frac{\partial V(z,t)}{\partial t}$$

3.11

Transmission Line Equations

The circuit diagram also simplifies

Paul Figure 6.1(c)

Note change in notation from Ulaby

The second-order wave equations become in Paul's notation

$$\frac{\partial^2 V(z,t)}{\partial z^2} = lc \frac{\partial^2 V(z,t)}{\partial t^2}, \quad \frac{\partial^2 I(z,t)}{\partial z^2} = lc \frac{\partial^2 I(z,t)}{\partial t^2}$$

The second-order voltage equation has the general solution

$$V(z,t) = \underbrace{V^{+}\left(t - \frac{z}{v}\right)}_{\text{forward propagation}} + \underbrace{V^{-}\left(t + \frac{z}{v}\right)}_{\text{backward propagation}}, \quad \text{with} \quad v = 1/\sqrt{lc}$$

- $V^+(x)$ and $V^-(x)$ = two completely arbitrary functions
- v = the velocity of propagation
- (1) Arbitrarily shaped pulses propagate in the transmission line, both forward and backward, *without dispersing!*
- (2) The absence of dispersion is a special feature of TEM modes, which makes direct time-domain analysis possible.

Caveat: We are treating l and c as if they have no frequency dependence.

This assumption is not generally true!

It will often be approximately true over a limited frequency range

3.13

Time-Domain Evolution

The current is determined from the voltage

— After substitution into the transmission line equations

$$I(z,t) = \underbrace{\frac{V^{+}\left(t - \frac{z}{v}\right)}{Z_{C}}}_{\text{forward propagation}} - \underbrace{\frac{V^{-}\left(t + \frac{z}{v}\right)}{Z_{C}}}_{\text{propagation}}, \quad \text{with} \quad Z_{C} = \sqrt{l/c}$$

- Z_C = the characteristic impedance of the transmission line
- Note that since V(z, t) and I(z, t) are real, so is Z_C
 The characteristic impedance is purely resistive in this case.

We have
$$I^{+}(z,t) = V^{+}(z,t)/Z_{C}$$
 and $I^{-}(z,t) = -V^{-}(z,t)/Z_{C}$
BUT $|I(z,t)| \neq |V(z,t)|/Z_{C}$

There is no simple relationship between V(z,t) and I(z,t)!

Example: From Paul Quick Review Exercises 6.1 and 6.7

Question: What are the per unit length capacitance and inductance of a two-wire line whose wires have a radius of 7.5 mils and a separation of 50 mils? What is the characteristic impedance and the velocity of propagation? (These dimensions are typical for ribbon cables used to interconnect components.)

Answer: 7.5 mils \times 2.54 \times 10⁻⁵ m/mil = 1.91 \times 10⁻⁴ m, 50 mils = 1.27 \times 10⁻³ m. (D/d) = 50.0/15.0 = 3.33, $[(D/d)^2 - 1]$ = 3.18, ln(3.33 + 3.18) = 1.87. $L' = (\mu_0/\pi) \times 1.87 = 4 \times 10^{-7}$ H/m $\times 1.87 = 7.46 \times 10^{-7}$ H/m. $C' = (\pi \varepsilon_0 / 1.87) = (\pi / 1.87) \times 8.85 \times 10^{-12}$ F/m = 1.49 \times 10⁻¹¹ F/m. $Z_0 = (L' / C')^{1/2} = 224$ ohms. $u_p = 1 / (7.46 \times 10^{-7}$ H/m $\times 1.49 \times 10^{-11}$ F/m)^{1/2} = 3.00 \times 10⁸ m/s. The velocity equals the speed of light in the vacuum.

NOTE: Paul uses a different notation for all quantities

3.15

Time-Domain Evolution

We now consider the behavior at the load

$$V(\mathcal{L},t) = V^{+}(t-T) + V^{-}(t+T), \quad T = \mathcal{L}/V$$

= one-way time delay
 $I(\mathcal{L},t) = \frac{V^{+}(t-T)}{Z_{C}} - \frac{V^{-}(t+T)}{Z_{C}}$

From Ohm's Law: $V(\mathcal{L},t) / I(\mathcal{L},t) = R_L$ From the telegrapher's equations: $V^+(t-T) / I^+(t-T) = Z_C$

Unless $R_L = Z_C$, there must be reflected waves!

 V_S = source voltage R_S = source resistance R_L = load resistance \mathcal{L} = total length of transmission line

We now consider the behavior at the load

$$V(\mathcal{L},t) = V^{+}(t-T) + V^{-}(t+T), \qquad T = \mathcal{L}/V$$

$$= \text{one-way time delay}$$

$$I(\mathcal{L},t) = \frac{V^{+}(t-T)}{Z_{C}} - \frac{V^{-}(t+T)}{Z_{C}}$$

From Ohm's Law: $V(\mathcal{L},t)/I(\mathcal{L},t) = R_L$ From the telegrapher's equations: $V^+(t-T)/I^+(t-T) = Z_C$

Unless $R_L = Z_C$, there must be reflected waves!

When $R_L = Z_C$, we say that the line is *impedance matched*

The concept of impedance matching is one of the most important in this course.

Impedance matching is never perfect, giving rise to transients.

3.17

Time-Domain Evolution

Behavior at the load: Reflection Coefficient Γ_L

$$\Gamma_L = V^-(t+T)/V^+(t-T)$$

which implies

$$V(\mathcal{L},t) = V^{+}(t-T)[1+\Gamma_{L}], \quad I(\mathcal{L},t) = \frac{V^{+}(t-T)}{Z_{C}}[1-\Gamma_{L}]$$

from which

$$\frac{V(\mathcal{L},t)}{I(\mathcal{L},t)} = R_L = Z_C \frac{1+\Gamma_L}{1-\Gamma_L} \quad \text{and} \quad \Gamma_L = \frac{R_L - Z_C}{R_L + Z_C}$$

 Schematically, we may understand the behavior at the load as a combination of a forward-propagating wave and a backward-going wave that is a reflected copy of the first wave, multiplied by Γ_I.

Behavior at the source $[2T \le t \le 4T; V^-(t) \ne 0]$

The wave reflected from the load returns to the source where it reflects again, with a coefficient

$$\Gamma_S = \frac{R_S - Z_C}{R_S + Z_C}; \quad V^+(t) = \frac{Z_C}{R_S + Z_C} \left[V_S(t) + \Gamma_S \Gamma_L V_S(t - 2T) \right]$$

$$V^{-}(t) = \Gamma_L V_S(t - 2T)$$

We thus find

$$V(0,t) = \frac{Z_C}{R_S + Z_C} \left[V_S(t) + (1 + \Gamma_S) \Gamma_L V_S(t - 2T) \right]$$

This process of bouncing back and forth continues indefinitely

— illustrated in a bounce diagram

Time evolution

$$\begin{split} V(0,t) &= \frac{Z_C}{R_S + Z_C} \Big[V_S(t) + (1 + \Gamma_S) \Gamma_L V_S(t - 2T) \\ &\quad + (1 + \Gamma_S) (\Gamma_S \Gamma_L) \Gamma_L V_S(t - 4T) + (1 + \Gamma_S) (\Gamma_S \Gamma_L)^2 \Gamma_L V_S(t - 6T) + \cdots \Big] \\ V(\mathcal{L},t) &= \frac{Z_C}{R_S + Z_C} \Big[(1 + \Gamma_L) V_S(t - T) + (1 + \Gamma_L) (\Gamma_S \Gamma_L) V_S(t - 3T) \\ &\quad + (1 + \Gamma_L) (\Gamma_S \Gamma_L)^2 V_S(t - 5T) + (1 + \Gamma_L) (\Gamma_S \Gamma_L)^3 V_S(t - 7T) + \cdots \Big] \end{split}$$

NOTE: This series continues forever IF we define $V_S(t) = 0$ when t < 0

3.23

Time-Domain Evolution

Geometric series:

$$1 + x + x^{2} + \dots + x^{m} = \sum_{i=0}^{m} x^{i} = \frac{1 - x^{m+1}}{1 - x}$$

Summing all the bounces, we find

$$\begin{split} V(0,t) &= \frac{V_S Z_C}{R_S + Z_C} \left[\frac{1 - (\Gamma_S \Gamma_L)^{m_S + 1} + \Gamma_L [1 - (\Gamma_S \Gamma_L)^{m_S}]}{1 - \Gamma_S \Gamma_L} \right] \\ I(0,t) &= \frac{V_S}{R_S + Z_C} \left[\frac{1 - (\Gamma_S \Gamma_L)^{m_S + 1} - \Gamma_L [1 - (\Gamma_S \Gamma_L)^{m_S}]}{1 - \Gamma_S \Gamma_L} \right] \\ V(\mathcal{L},t) &= \frac{V_S Z_C}{R_S + Z_C} \left[\frac{(1 + \Gamma_L)[1 - (\Gamma_S \Gamma_L)^{m_L}]}{1 - \Gamma_S \Gamma_L} \right] \\ I(\mathcal{L},t) &= \frac{V_S}{R_S + Z_C} \left[\frac{(1 - \Gamma_L)[1 - (\Gamma_S \Gamma_L)^{m_L}]}{1 - \Gamma_S \Gamma_L} \right] \end{split}$$

 $m_S = \lfloor t/2T \rfloor, \quad m_L = \lfloor (t+T)/2T \rfloor$

In Ulaby et al.'s notation, we find

$$\begin{split} V(0,t) &= \frac{V_{g}Z_{0}}{R_{g} + Z_{0}} \left[\frac{1 - (\Gamma_{g}\Gamma_{L})^{m_{g}+1} + \Gamma_{L}[1 - (\Gamma_{g}\Gamma_{L})^{m_{g}}]}{1 - \Gamma_{g}\Gamma_{L}} \right] \\ I(0,t) &= \frac{V_{g}}{R_{g} + Z_{0}} \left[\frac{1 - (\Gamma_{g}\Gamma_{L})^{m_{g}+1} - \Gamma_{L}[1 - (\Gamma_{g}\Gamma_{L})^{m_{g}}]}{1 - \Gamma_{g}\Gamma_{L}} \right] \\ V(l,t) &= \frac{V_{g}Z_{0}}{R_{g} + Z_{0}} \left[\frac{(1 + \Gamma_{L})[1 - (\Gamma_{g}\Gamma_{L})^{m_{L}}]}{1 - \Gamma_{g}\Gamma_{L}} \right] \\ I(l,t) &= \frac{V_{g}}{R_{g} + Z_{0}} \left[\frac{(1 - \Gamma_{L})[1 - (\Gamma_{g}\Gamma_{L})^{m_{L}}]}{1 - \Gamma_{g}\Gamma_{L}} \right] \\ m_{g} &= |t/2T|, \quad m_{L} = |(t+T)/2T| \end{split}$$

3.25

Time-Domain Evolution

When m_S and m_L become infinite, these become:

$$\begin{split} V(0,t) &= \frac{V_S Z_C}{R_S + Z_C} \left[\frac{1 + \Gamma_L}{1 - \Gamma_S \Gamma_L} \right], \quad I(0,t) = \frac{V_S}{R_S + Z_C} \left[\frac{1 - \Gamma_L}{1 - \Gamma_S \Gamma_L} \right] \\ V(\mathcal{L},t) &= \frac{V_S Z_C}{R_S + Z_C} \left[\frac{1 + \Gamma_L}{1 - \Gamma_S \Gamma_L} \right], \quad I(\mathcal{L},t) = \frac{V_S}{R_S + Z_C} \left[\frac{1 - \Gamma_L}{1 - \Gamma_S \Gamma_L} \right] \end{split}$$

which is the same at both the source and the load

In Ulaby et al.'s notation, we have

$$V(0,t) = V(l,t) = \frac{V_{g}Z_{0}}{R_{g} + Z_{0}} \left[\frac{1 + \Gamma_{L}}{1 - \Gamma_{g}\Gamma_{L}} \right],$$
$$I(0,t) = I(l,t) = \frac{V_{g}}{R_{g} + Z_{0}} \left[\frac{1 - \Gamma_{L}}{1 - \Gamma_{g}\Gamma_{L}} \right]$$

Example (Paul 6.1):

Question: A thirty volt battery is switched onto a line of length 400 m. The line has a characteristic impedance of 50 Ω and a propagation velocity of 2.00×10^8 m/s. The source resistance is zero, and the load resistance is $100~\Omega$. What is the current at the input and the voltage at the load as a function of time?

Answer: System Parameters:

Time-Domain Evolution

Example (Paul 6.1):

Answer (continued): For $t = (0 \ \mu s, 2 \ \mu s)$, $V(\mathcal{L}, t) = 0$. For $t = (2 \ \mu s, 6 \ \mu s)$, $V(\mathcal{L}, t) = (\text{incoming voltage}) + (\text{reflected voltage}) = 30 \ \text{V} + (1/3) \times 30 \ \text{V} = 40 \ \text{V}$. Since the reflected voltage is 10 V, we find that for $t = (4 \ \mu s, 8 \ \mu s)$, $V^+(t) = 30 \ \text{V} - 10 \ \text{V} = 20 \ \text{V}$, and, for $t = (6 \ \mu s, 10 \ \mu s)$, $V(\mathcal{L}, t) = (4/3) \times 20 \ \text{V} = 26.67 \ \text{V}$. And so on...

When a pulse is present, superpose two step functions

3.31

Time-Domain Evolution

Example (Paul 6.2):

Question: Consider a line of length 0.2 m. The source voltage is a pulse of 20 V amplitude and 1 ns duration t_D . The line has a characteristic impedance of 100 Ω and a velocity of propagation of 2×10^8 m/s. The source resistance is 300 Ω and the load is open-circuited. Find the source and generator currents and voltages.

Answer: System Parameters:

Example (Paul 6.2):

Answer (continued): We use the formulae on slide 3.24, but we must subtract a negative contribution for the back end of the pulse

$$V(0,t) = \frac{V_S Z_C}{R_S + Z_C} \left[\frac{1 - (\Gamma_S \Gamma_L)^{m_{S1}+1} + \Gamma_L [1 - (\Gamma_S \Gamma_L)^{m_{S1}}]}{1 - \Gamma_S \Gamma_L} - \frac{1 - (\Gamma_S \Gamma_L)^{m_{S2}+1} + \Gamma_L [1 - (\Gamma_S \Gamma_L)^{m_{S2}}]}{1 - \Gamma_S \Gamma_L} \right]$$

$$I(0,t) = \frac{V_S}{R_S + Z_C} \left[\frac{1 - (\Gamma_S \Gamma_L)^{m_{S1}+1} - \Gamma_L [1 - (\Gamma_S \Gamma_L)^{m_{S1}}]}{1 - \Gamma_S \Gamma_L} - \frac{1 - (\Gamma_S \Gamma_L)^{m_{S2}+1} - \Gamma_L [1 - (\Gamma_S \Gamma_L)^{m_{S2}}]}{1 - \Gamma_S \Gamma_L} \right]$$

$$I(0,t) = \frac{V_S}{R_S + Z_C} \left[\frac{1 - (\Gamma_S \Gamma_L)^{m_{S1}+1} - \Gamma_L [1 - (\Gamma_S \Gamma_L)^{m_{S1}}]}{1 - \Gamma_S \Gamma_L} - \frac{1 - (\Gamma_S \Gamma_L)^{m_{S2}+1} - \Gamma_L [1 - (\Gamma_S \Gamma_L)^{m_{S2}}]}{1 - \Gamma_S \Gamma_L} \right]$$

$$V(\mathcal{L},t) = \frac{V_S Z_C}{R_S + Z_C} \left[\frac{(1 + \Gamma_L)[1 - (\Gamma_S \Gamma_L)^{m_{L1}}]}{1 - \Gamma_S \Gamma_L} - \frac{(1 + \Gamma_L)[1 - (\Gamma_S \Gamma_L)^{m_{L2}}]}{1 - \Gamma_S \Gamma_L} \right]$$

$$I(\mathcal{L},t) = \frac{V_S}{R_S + Z_C} \left[\frac{(1 - \Gamma_L)[1 - (\Gamma_S \Gamma_L)^{m_{L1}}]}{1 - \Gamma_S \Gamma_L} - \frac{(1 - \Gamma_L)[1 - (\Gamma_S \Gamma_L)^{m_{L2}}]}{1 - \Gamma_S \Gamma_L} \right]$$

UMBC
$$m_{\text{gl}} = \lfloor t/2T \rfloor, \quad m_{\text{g2}} = \lfloor (t-t_D)/2T \rfloor, \\ m_{\text{L1}} = \lfloor (t+T)/2T \rfloor, \quad m_{\text{L2}} = \lfloor (t+T-t_D)/2T \rfloor, \quad t > t_D$$

You only subtract for $t > t_D$

3.33

Time-Domain Evolution

Example (Paul 6.2):

Answer (continued): In Ulaby's notation, this is

$$V(0,t) = \frac{V_{g}Z_{0}}{R_{g} + Z_{0}} \left[\frac{1 - (\Gamma_{g}\Gamma_{L})^{m_{g1}+1} + \Gamma_{L}[1 - (\Gamma_{g}\Gamma_{L})^{m_{g1}}]}{1 - \Gamma_{g}\Gamma_{L}} - \frac{1 - (\Gamma_{g}\Gamma_{L})^{m_{g2}+1} + \Gamma_{L}[1 - (\Gamma_{g}\Gamma_{L})^{m_{g2}}]}{1 - \Gamma_{g}\Gamma_{L}} \right]$$

$$I(0,t) = \frac{V_{g}}{R_{g} + Z_{0}} \left[\frac{1 - (\Gamma_{g}\Gamma_{L})^{m_{g1}+1} - \Gamma_{L}[1 - (\Gamma_{g}\Gamma_{L})^{m_{g1}}]}{1 - \Gamma_{g}\Gamma_{L}} - \frac{1 - (\Gamma_{g}\Gamma_{L})^{m_{g2}+1} - \Gamma_{L}[1 - (\Gamma_{g}\Gamma_{L})^{m_{g2}}]}{1 - \Gamma_{g}\Gamma_{L}} \right]$$

$$V(l,t) = \frac{V_{\rm g} Z_0}{R_{\rm g} + Z_0} \left[\frac{(1 + \Gamma_{\rm L})[1 - (\Gamma_{\rm g} \Gamma_{\rm L})^{m_{\rm L1}}]}{1 - \Gamma_{\rm g} \Gamma_{\rm L}} - \frac{(1 + \Gamma_{\rm L})[1 - (\Gamma_{\rm g} \Gamma_{\rm L})^{m_{\rm L2}}]}{1 - \Gamma_{\rm g} \Gamma_{\rm L}} \right]$$

$$I(l,t) = \frac{V_{g}}{R_{g} + Z_{0}} \left[\frac{(1 - \Gamma_{L})[1 - (\Gamma_{g}\Gamma_{L})^{m_{L1}}]}{1 - \Gamma_{g}\Gamma_{L}} - \frac{(1 - \Gamma_{L})[1 - (\Gamma_{g}\Gamma_{L})^{m_{L2}}]}{1 - \Gamma_{g}\Gamma_{L}} \right]$$

$$\begin{split} m_{S1} &= \left \lfloor t/2T \right \rfloor, \quad m_{S2} &= \left \lfloor (t-t_D)/2T \right \rfloor, \\ m_{L1} &= \left \lfloor (t+T)/2T \right \rfloor, \quad m_{L2} &= \left \lfloor (t+T-t_D)/2T \right \rfloor, \quad t > t_D \end{split}$$

You only subtract for $t > t_D$

Assignment

Problem Set 2: Some notes

- There are 6 problems. Many of the answers to these problems have been provided by either Ulaby and Ravaioli or by me. YOU MUST SHOW YOUR WORK TO GET FULL CREDIT!
- Watch significant figures. Report the number that I ask for.
- These problems are difficult. GET STARTED EARLY!

