Depth-Driven Routing

A Novel Approach to the Qubit Routing Problem

alessandro.annechini@mail.polimi.it

Sala Conferenze Emilio Gatti, Via Giuseppe Ponzio, 34/5 Milano, 26 Luglio 2024

Slides available here

Qubits and quantum circuits

$$|q\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\Psi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle$$

Quantum hardware

Google Sycamore: https://research.google/blog/quantum-supremacy-using-a-programmable-superconducting-processor/

Rigetti Aspen: https://investors.rigetti.com/news-releases/news-release-details/rigetti-computing-announces-commercial-availability-80-qubit

IBM Eagle: https://guantum.ibm.com/services/resources

Qubit routing

DEPTH-DRIVEN ROUTING

Depth-Driven Routing

Operand selection: selection of the pair of operands that need to be routed together

Minimal Path Computation: selection of the best path between the qubits with respect of:

- Execution time
- Number of required SWAP
- Lookahead

Optimal SWAP selection: the optimal SWAP is chosen and applied to the circuit

Results

Depth Ratio =
$$\frac{\text{Final Depth}}{\text{Initial Depth}}$$

Topology: Rigetti Aspen (80 qubit)

Circuit: Deutsch-Jozsa

 \longrightarrow Stochastic \longrightarrow SABRE \longrightarrow t $|\text{ket}\rangle$ \longrightarrow DDR

Topology: IBM Eagle (127 qubit) Circuit: Two-Local Ansatz

IBM Condor

Results

Depth Ratio =
$$\frac{\text{Final Depth}}{\text{Initial Depth}}$$

Topology: IBM Condor (1121 qubit) Circuit: generated from Qiskit Circuit Library

Conclusions

Contribution:

 We designed an algorithm for Qubit Routing aimed at minimizing the depth of hardware compliant circuits, which shows a depth reduction up to 70% with respect to state-of-the-art solutions

Future work:

- Perform more tests to validate and improve the quality of the algorithm
- Develop a full python library providing the routing functionalities to the most employed quantum computing frameworks

Thanks for the attention!

Alessandro Annechini

alessandro.annechini@mail.polimi.it

Sala Conferenze Emilio Gatti, Via Giuseppe Ponzio, 34/5 Milano, 26 Luglio 2024

