Practical Optical Camera Communication Behind Unseen and Complex Backgrounds

Rui Xiao¹, Leqi Zhao¹, Feng Qian², Lei Yang², and Jinsong Han¹

¹ Zhejiang University ²Ant Group

Feature 1 - Location-awareness: inherently links data to light's location

Feature 2 - Pervasiveness: LED lights and cameras are pervasive

What if we reuses Lights as transmitters, and cameras as receivers...

One thing in common – Lights!

Optical Camera Communication (OCC)

Feature 1 - Location-awareness: inherently links data to light's location

Feature 2 - Pervasiveness: LED lights and cameras are pervasive

MR Content Delivery

Indoor Localization

Pervasive Connectivity

• Rolling shutter exposes a frame column by column

Rolling Shutter CMOS

• Rolling shutter exposes a frame column by column

• Rolling shutter exposes a frame column by column

Rolling Shutter CMOS

• Rolling shutter exposes a frame column by column

Rolling Shutter CMOS

• Rolling shutter exposes a frame column by column

Rolling shutter exposes a frame column by column

Bit 0

Bit 1

Issues with Existing OCC Designs

Signal-to-Noise Ratio (SNR)

Symbol Error Rate (SER)

Clean Background

SER < 0.01

SER > 0.01

Complex Background

Issues with Existing OCC Designs (Cont.)

low SNR but clean background

- Limited distance (~0.4m)
- Often difficult to find such a clean reflector

1.1dB

complex background but high SNR

- Still limited distance (~1.4m)
- Pronounced video degradation

WinkLink!

Can we build a novel OCC system that works under *low SNR* with any *unseen complex backgrounds*?

Issues with Existing OCC Designs (Cont.)

Can we build a novel OCC system that works under *low SNR* with any *unseen complex backgrounds*?

Challenge 1: Dynamic Background Entanglement

• The entanglement can be modeled as:

- Disentangling Signal O is an ill-posed problem.
- The background B is **dynamic**, varying across different frame I.

Solution: DNN-based Signal Extraction

• The entanglement can be modeled as:

- Key insight:
- 1. DNN can handle ill-posed problem by implicitly enforcing constraints
- Replication of signals across rows → Spatial correlation (DNNs excel at capturing spatial correlation)

Solution: DNN-based Signal Extraction

Stage I: Progressive Signal Extraction

not fully disentangled

well disentangled

Solution: DNN-based Signal Extraction

Stage I: Progressive Signal Extraction

ResBlock

ResBlock

Conv & ReLU

Background B

E-Block

Conv & ReLU

ResBlock

Stage II: Signal Fusion Across Rows

Challenge 2: Laborious Training Data Preparation

Generalizability of WinkLink

Diversity of Training Data

- 1. Unseen backgrounds
- 2. Diverse stripe patterns
- 3. Varying SNRs

- We require a large dataset of paired < I, B, O > with above diversities.
- Manual assembly of such a diverse dataset is time-intensive and impractical.

- Target: synthesize paired < I, B, O > -- easy to scale while minimizing the gap between synthetic and real data
- *Key components* for precise synthesis:
 - the *light reflection* model under the Lambertian assumption
 - the *light attenuation* on varying distances

• Input:

• Output:

Frame I

Signal 0

Stripe

• Input:

Output:

Frame I

Signal 0

• Input:

Output:

Frame I

Signal 0

• Input:

Output:

• We synthesize **7245** frames.

Design Overview of WinkLink

Transmitter

Design Overview of WinkLink

Transmitter

Receiver

Design Overview of WinkLink

Prototype and Implementation

- Transmitter
 - 5 watt LED
 - Modulation: 4-FSK
 - Each symbol: 1/60 seconds (120 bps)
- Receiver
 - Phone (iPhone/Samsung/Huawei)
 - Frame Rate: 60 FPS
 - Resolution: 512x512

Overall Performance

- Test Dataset
 - 12 unseen environments
 - 30K frames per environment
 - genuinely captured and not synthetic

Overall Performance

- Test Dataset
 - 12 unseen environments
 - 30K frames per environment
 - genuinely captured and not synthetic
 - SNR variation by adjusting LED power from 0 to 5 watts
- WinkLink vs. Baseline
- Metric: mSNR minimum SNR at which SER drops below 0.01

Overall Performance

- > Results
- WinkLink shows an average mSNR of -20 dB
- Consistently outperforms baseline with a 5.8 dB SNR gain

- Test Dataset
 - 12 unseen environments
 - 30K frames per environment
 - genuinely captured and not synthetic
 - SNR variation by adjusting LED power from 0 to 5 watts
- WinkLink vs. Baseline
- Metric: mSNR minimum SNR at which SER drops below 0.01

Summary of Other Evaluation Results

- Works with three distinct phone models: iPhone 14 Pro, Huawei P40 Pro, and Samsung Galaxy S21
- Performs well when the user is moving at speed of 2m/s (under dynamic backgrounds)
- Works at a distance up to 11 meters with a 10 watt LED
- Has minimized interference on concurrent vision applications (e.g., object detection)

Discussion

• Interference between Multiple OCC Links

Integrated Sensing and Communication on Vision

Sensing with Vision

Segmentation

Detection

100101011101010010 · · ·

Conclusion

- We propose WinkLink, a novel OCC system that operates under unseen and complex backgrounds, while maintaining low-SNR requirements.
- We hope to explore the integrated sensing and communication on vision domain.

Thank you!

Homepage

Mail: ruixiao24@zju.edu.cn

I'm seeking a **post-doctoral position** starting in **Fall 2025**.

Please feel free to contact me!