ОСНОВИ РАЧУНАРСКЕ ИНТЕЛИГЕНЦИЈЕ

КЛАСТЕРОВАЊЕ

Предавач: Александар Ковачевић

Слајдови засновани на поглављу 8 књиге:

Introduction to Data Mining, Tan, Steinbach, Kumar

Шта је кластер анализа?

 Налажење група објеката таквих да су објекти из групе међусобно слични (или повезани) и да су различити (неповезани) од објеката у другим групама

Примене кластер анализе

• Разумевање

Група повезаних докумената за претраживање, група гена и протеина који имају сличну функционалност, група акција са сличном флуктуацијом цене,...

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

• Сажимање

 Смањенје величине великих скупова података

Шта није кастеровање?

- Надгледана класификација
 - Постоји информација о ознакама класа
- Једноставна сегментација
 - Подела студената у различите наставне групе по презимену (алфабетски)
- Резултати упита
 - Груписања су резултат екстерне спецификације

Значење кластеровања може да буде неодређено

Типови кластеринга

- Кластеринг је скуп кластера
- Важна разлика између хијерархијских и партитивних скупова кластера
- Партитивни кластеринг
 - Подела објеката у непреклапајуће подскупове (кластере)
 таква да је сваки објекат у тачно једном подскупу
- Хијерархијски кластеринг
 - Скуп угњеждених кластера организованих као хијерархијско стабло

Партитивни кластеринг

Оригиналне тачке

Партитивни кластеринг

Хијерархијски кластеринг

Хијерархијски кластеринг

Дендограм

Друга аспекти растојања између скупова кластера

- Ексклузивни наспрам не-ексклузивног
 - Код не-екслузвином кластерингу тачке могу да спадају у више кластера.
 - Репрезентација више класа или 'граничних' тачака
- Фази наспрам не-фази
 - Код фази кластеринга, тачка припада сваком кластеру са неком вредношћу између 0 и 1
 - Збир тежина мора да буде 1
- Парцијално наспрам комплетног
 - У неким случајевима желимо да кластеризујемо део података
- Хетерогено наспрам хомогеног
 - Кластери са значајним разликама по величини, облику и густини

Алгоритми за кластеровање

- К-средине и његове варијације
- Хијерархијско кластеровање
- Кластеровање базирано на густини

Кластеровање К-средина

- Партитивни приступ кластеровању
- Сваком кластеру се додељује центроид (центар)
- Свака тачка се сврстава у кластер са најближим центроидом
- Број кластера К мора бити задат
- Основни алгоритам је врло једноставан:
- 1. Selektovati *K* tačaka za početne centroide
- 2. repeat
 - 3. Formirati K klastera svrstavanjem tačaka u najbliži centroid
 - Sračunati novi centroid za svaku klasu (na bazi svrstanih tačaka)
- 5. until centroid se ne menja

K-Means Primer 2

K-Means kao optimizacioni problem

Pogledajmo ukupan zbir rastojanja tačaka do centara:

- Svaka iteracija smanjuje fukciju φ
- Dve faze u svakoj iteraciji:
 - Dodela klasterima: fiksiramo centre c, menjamo dodele a
 - Promena centara: fiksiramo a, menjamo centre c

Faza I: Dodela Klasterima

 Dodaj svaku tačku centru koji joj je najbliži:

$$a_i = \underset{k}{\operatorname{argmin}} \operatorname{dist}(x_i, c_k)$$

 Ova faza može samo da smanji fukciju φ!

$$\phi(\lbrace x_i \rbrace, \lbrace a_i \rbrace, \lbrace c_k \rbrace) = \sum_i \operatorname{dist}(x_i, c_{a_i})$$

Faza II: Promena Centara

 Pomeramo svaki centar ka proseku tačaka koje su mu dodeljene:

$$c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i:a_i = k} x_i$$

- Takođe samo smanjuje fukciju φ.
- Uzećemo bez dokaza: tačka koja ima najmanju kvadratnu euklidsku udaljenost ka tačkama {x} u nekom skupu je baš centar tih tačaka.

Inicijalizacija

- K-means ne daje uvek isti rezultat za više pokretanja
 - Zahteva inicijalne centre
 - Vrlo je značajno kako su odabrani!
 - Postoji puno metoda za rešavanje ovog problema.
 Jedan od njih ćemo raditi danas.

K-Means može da se zaglavi

Lokalni optimum:

K-Means Pitanja

- Da li konvergira?
 - Ka globalnom optimumu?
- Da li će uvek pronaći stvarne šablone koji postoje u podacima?
 - Samo ako su ti šabloni stvarno jasni?
- Da li će uvek naći nešto interesantno?
- Da li se stvarno koristi?
- Koliko klastera odabrati?

Кластеровање К-средина — Детаљи

- Иницијални центроиди се често случајно бирају.
 - Добијају се различити кластери за различите случајне секвенце.
- Центроид је (обично) средња вредност тачака из кластера.
- 'Близина' се мери Еуклидским растојањем, косинусном сличношћу, корелацијом, итд.
- К-средине конвергирају за уобичајене (поменуте) мере сличности.
- Најбржа је конвергенција у првих неколико итерација.
 - Критеријум заустављања у пракси је најчешће 'док релативно мало података мења кластер'

Два кластеринга К-средина

Оптимални кластеринг

Субоптимални кластеринг

Важност избора иницијалних центроида

Важност избора иницијалних центроида

Важност избора иницијалних центроида

Важност избора иницијалних центроида...

Проблеми при избору иницијалних тачака

- Ако постоји К 'стварних' кластера, шанса да се изабере један центроид за сваки кластер је мала.
 - Шанса је релтивно мала када је К велико
 - Ако су кластери исте димензије, n, тада је шанса

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$
 бира се кластер од n тачака у кластеру, бира се тачка која ће бити цетроид
$$= \frac{K*n*(K-1)*n*(K-2)*n....*2*n*1*n}{K*n*K*n*K*n...*K*n*K*n} =$$

- На пример, за K = 10, вероватноћа = $10!/10^{10} = 0.00036$
- У неким случајевима центроиди ће се модификовати на 'добар' начин, а у некима баш и неће
- Посмтраћемо пет парова кластера

Пример 10 кластера

Почиње се са два иницијална центроида у једном кластеру сваког пара кластера

Пример 10 кластера

Почиње се са два иницијална центроида у једном кластеру сваког пара кластера

Пример 10 кластера

Почиње се са неколико парова кластера који имају три иницијална центроида, док остали имају по један.

Пример 10 кластера

Почиње се са неколико парова кластера који имају три иницијална центроида, док остали имају по један.

Решење проблема иницијалних центроида

- Вишеструка извршавања
 - Помаже, али вероватноћа није на вашој страни
- Коришћење хијерархијског кластеринга за одређивање иницијалних центроида
- Генерисање више од к иницијалних центроида и затим избор међу тим центроидима
 - Бирају се они који су најбоље раздвојени
- Пост-процесинг (спајање или разбијање добијених кластера)
- Бисекција К-средина (биће приказан на неком од наредних курсева)
 - Није јако осетљиво на питања иницијализације

K-means++ [Arthur et al. '07]

- Предлог решења проблема иницијализације центара
- Идеја алгоритма: раширити центре што више
- Алгоритам:
- Одабрати први центар, c_1 , на случајан начин из униформне расподеле целог скупа података
- Понављати за 2 ≤ i ≤ k: (к је број кластера)
 - Одабрати c_i тако да буде тачка из података x_o бирана из дистрибуције: D_i

$$\sum_{j} D_{j}$$

$$D_{i} = \min(\|x_{i} - c_{1}\|^{2}, \|x_{i} - c_{2}\|^{2}, ..., \|x_{i} - c_{n}\|^{2})$$

 Идеја је да се следећи центар бира тако да тачке које су удаљеније од већ одабраних центара имају већу вероватноћу

Проблеми K-means++

- К пролаза кроз податке
- За велике колекције података обично је и К велико па је алгоритам јако спор.
- Предлог убрзања: "Scalable k-means++", Bahmani et al. 2012

Оцена кластера К-средина

- Најчешћа мера је сума квадрата грешака (Sum of Squared Error - SSE)
 - За сваку тачку, грешка је растојање до најближег кластера
 - SSE се добија сабирањем кавдрата ових грешака.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x је податак (тачка) из кластера $C_{\rm i}$ а $m_{\rm i}$ је репрезентативна тачка за кластер $C_{\rm i}$
 - ◆ m_i одговара центру (средини) кластера
- Од два дата кластеринга можемо одабрати онај са мањом грешком
- Један једноставан начин за смањење SSE је повећање K, броја кластера
 - ◆ Али, добро кластеровање са мањим К може да има нижу SSE него лоше кластеровање са већим К

- Није лако унапред знати у колико кластера треба кластеровати скуп података
- Код 2д скупа можемо визуализовати податке и видети природне групе
- Код више-димензионих можемо пројектовати податке на 2д, али тиме потенцијално губимо информације
- Два алтернативна метода у наставку

- Оба метода су занована на "расутости (густини)" кластера
- Први метод
 - Тражимо нагли прелаз ("лакат") у графику SSE по броју кластера

- Други метод је статистички:
 - Gap statistic: Tibshirani, Walther & Hastie (2000)
- Заснива се на разлици (*Gap*) дисперзије кластера добијених помоћу К-средина за дати скуп података и дисперзије кластера случајно генерисаних скупова података
- Разлика се мери итеративно од неког датог броја кластера
- Број кластера који произведе највећи размак је предлог за број кластера за К-средина

- Заснива се на разлици (Gap) дисперзије кластера добијених помоћу К-средина за дати скуп података и дисперзије кластера случајно генерисаних скупова података.
- Идеја је у томе да наши подаци имају природне групе тј. да нису скроз случајно генерисани.
- Постављамо питање колико има тих група тј. у колико кластера треба да кластерујемо?
- Идеја је да ће дисперзија (расутост) података око центара кластера бити мала кад пронађемо баш тај природан број група.
- Како ћемо знати шта је мала дисперзија?
- Тако што ћемо видети колика је дисперзија случајно генерисаних података (оних који немају природне групе) и онда је упоредити са оном коју смо добили.
- К за које је разлика дисперзија у односу на случајно генерисане податке највећа је оно које бирамо.

 Заснива се на разлици (Gap) дисперзије кластера добијених помоћу К-средина за дати скуп података и дисперзије кластера случајно генерисаних скупова података

$$W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r \quad D_r \quad = \quad 2n_r \sum_{i \in C_r} \left\| x_i - \overline{x} \right\|^2 \longleftarrow \text{SSE}$$

$$\max Gap_n(k) = E_n^*(\log(W(k))) - \log(W(k))$$

 Заснива се на разлици (Gap) дисперзије кластера добијених помоћу К-средина за дати скуп података и дисперзије кластера случајно генерисаних скупова података

$$W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r \quad D_r \quad = \quad 2n_r \sum_{i \in C_r} \|x_i - \overline{x}\|^2 \longleftarrow \text{SSE}$$

$$\max Gap_n(k) = E_n^*(\log(W(k))) - \log(W(k))$$

Ово је дисперзија података коју очекујемо за случајно генерисане податке.

Добијамо је вишеструким генерисањем случајних скупова података и одређивањем дисперзије за сваки.

Те дисперзије се онда упросече.

 Заснива се на разлици (Gap) дисперзије кластера добијених помоћу К-средина за дати скуп података и дисперзије кластера случајно генерисаних скупова података

$$W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r \quad D_r \quad = \quad 2n_r \sum_{i \in C_r} \|x_i - \overline{x}\|^2 \longleftarrow \text{SSE}$$

$$\max Gap_n(k) = E_n^*(\log(W(k))) - \log(W(k))$$

Ово је дисперзија добијена за к кластера помоћу К-средина.

Број кластера к код којега је ова разлика највећа је онај који најбоље групише тачке, тачније онај који је успео да пронађе природно груписање нашег скупа података, ако оно постоји.

Како добијамо случајно генерисане скупове података?

Ограничења К-средина

- К-средина има проблеме када се разликују кластери
 - величина
 - густина
 - несферични облици

 К-средина има проблем у случају присуства страних података.

Ограничења K-средина: Различите величине кластера

Оригиналне тачке

К-средине (3 кластера)

Ограничења К-средина: Различите густине

Оригиналне тачке

К-средине (3 кластера)

Ограничења K-средина: Несферични облици

Оригиналне тачке

К-средине (2 кластера)

DBSCAN

- DBSCAN је алгоритам базиран на густини.
 - Густина = број тачака унутар задатог пречника (Eps)
 - Тачка је тачка језгра (core point) ако има више од специфицираног броја тачака (MinPts) унутар Ерѕ
 - То су тачке које се налазе унутар кластера
 - Ивична тачка (border point) има мање од MinPts тачака на растојању Eps, али је суседна са тачком језгра (налази се у Eps "кругу" неке тачке језгра)
 - Тачка шума (noise point) је свака тачка која није ни тачка језгра ни ивична тачка.

DBSCAN: тачка језгра, ивична тачка, тачка шума

DBSCAN: тачке језгра, ивичне тачке, тачке шума

Оригиналне тачке

Типови тачака: jeзгро, ивица и шум

Eps = 10, MinPts = 4

Dosežnost po gustini (Density-reachability)

- Direktna dosežnost po gustini
 - Tačka q je direktno dosežna po gustini od tačke p
 ako je p core tačka, a q je u ε okolini p

MinPts = 4

- q je direktno dosežna po gustini od p
- p nije direktno dosežna po gustini od q zato što q nije core tačka
- Dosežnost po gustini nije simetrična

Dosežnost po gustini

Dosežnost po gustini (direktna i indirektna):

- Tačka p je direktno dosežna po gustini od tačke p_2
- $-p_2$ je direktno dosežna po gustini od tačke p_1
- $-p_1$ je direktno dosežna po gustini od tačke q
- $-p \leftarrow p_2 \leftarrow p_1 \leftarrow q$ lanac direktne dosežnosti po gustini

- p je indirektno dosežna po gustini od tačke q
- q nije direktno dosežna po gustini od tačke p zato što p nije core tačka

DBSCAN Primer

- Parametri
 - ε = 2 cm
 - *MinPts* =3

remove all noise points

for each core-object o do

if o is not yet classified then

assign o to a new cluster Ccollect all objects density-reachable from oand assign them to Cend

DBSCAN Primer

- Parametri
 - ε = 2 cm
 - *MinPts* =3

remove all noise points
for each core-object o do
if o is not yet classified then
assign o to a new cluster C
collect all objects density-reachable from o
and assign them to C
end

DBSCAN Primer

- Parametri
 - ε = 2 cm
 - *MinPts* =3

remove all noise points

for each core-object o do

if o is not yet classified then

assign o to a new cluster C

collect all objects density-reachable from o

and assign them to C

end

DBSCAN Алгоритам

- Елиминишу се тачке шума
- Кластеринг се изврши над преосталим тачкама

```
current\_cluster\_label \leftarrow 1
for all core points do
  if the core point has no cluster label then
     current\_cluster\_label \leftarrow current\_cluster\_label + 1
     Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except i^{th} the point itself do
    if the point does not have a cluster label then
       Label the point with cluster label current_cluster_label
     end if
  end for
end for
```

DBSCAN: тачке језгра, ивичне тачке, тачке шума

Оригиналне тачке

Типови тачака: jeзгро, ивица и шум

Eps = 10, MinPts = 4

Када DBSCAN добро ради

- Отпоран на шум
- Може да ради са кластерима различитих облика и величине

Када DBSCAN НЕ РАДИ добро

Оригиналне тачке

- Варијабилне густине
- Високо димензионални подаци

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

DBSCAN: Одређивање EPS и MinPts

- Идеја је да за тачке из кластера, k^{те} најближе комшије буду на приближно истом растојању
- Тачке шума за k^{те} најближе комшије су на већем растојању
- Дакле, нацртају се сортиране дистанце сваке тачке до сваког њеног k^{тог} најближег комшије

