Computational Physics Lecture 8

sieversj@ukzn.ac.za

Tutor: Hazmatally (hazmatally@gmail.com)

git clone https://github.com/ukzncompphys/lecture8_2017.git

χ^2

- The PDF of a Gaussian is $\exp(-0.5(x-\mu)^2/\sigma^2)/\operatorname{sqrt}(2\pi\sigma^2)$ with mean μ and standard deviation σ .
- If we have a bunch of data points, which may have different means and standard deviations, then the joint PDF is the product of the PDFs.
- It is often more convenient to work with the log. For many points, $\log(PDF) = \sum -0.5(x_i \mu_i)^2/\sigma_i^2 0.5*\log(2\pi\sigma_i^2)$
- Usually, we know the variance of our data, and want our model to predict the expected value of x_i , which is μ_i . When we compare models, the second part is constant, so we ditch it. log likelihood becomes: $-0.5\sum(x_i-\mu_i)^2/\sigma_i^2$.
- $\sum (x_i \mu_i)^2 / \sigma_i^2$ is χ^2 . We can find the maximum likelihood model by minimizing χ^2 .

Linear least-squares

- Rewrite $\chi 2$ with matrices: $(x-\mu)^T N^{-1}(x-\mu)$ for noise covariance matrix N. If N has diagonal elements σ^2 , this is identical to previous.
- Let's take simple case that our model depends linearly on a small number of parameters: $\mu_i = \sum A_{ij} m_j$ for model parameters m and matrix A that transforms to predicted values. In matricese: $\mu = Am$
- One example: x(t) is a polynomial in time. Then $\mu_i = \sum t_i^j c_j$.
- With this parameterization, $\chi^2 = (x-Am)^T N^{-1}(x-Am)$

Least Squares: $\chi^2 = (x-Am)^T N^{-1}(x-Am)$

- To find best-fitting model, minimize χ^2 . Calculus on matrices works like regular calculus, as long as no orders get swapped.
- $\partial \chi^2/\partial m = -A^T N^{-1}(x-Am)+...=0$ (at minimum)
- We can solve for m: $A^TN^{-1}Am=A^TN^{-1}x$. Or, $m=(A^TN^{-1}A)^{-1}A^TN^{-1}x$

Exai

tc. as matrices rather

s live in numpy.linalg,

Higher Order


```
import numpy
from matplotlib import pyplot as plt
t=numpy.arange(-5,5,0.1)
x_true=t**3-0.5*t**2
x=x_true+10*numpy.random.randn(t.size)
npoly=25 #let's fit 4th order polynomial
ndata=t.size
A=numpy.zeros([ndata,npoly])
A[:,0]=1.0
for i in range(1,npoly):
    A[:,i]=A[:,i-1]*t
#Let's ignore noise for now. New equations are:
\#m = (A^TA)^{-1} * (A^Td)
A=numpy.matrix(A)
d=numpy.matrix(x).transpose()
lhs=A.transpose()*A
rhs=A.transpose()*d
fitp=numpy.linalg.inv(lhs)*rhs
pred=A*fitp
plt.clf();plt.plot(t,x,'*');plt.plot(t,pred,'r');
plt.draw()
plt.savefig('polyfit_example_high.png')
```

Condition # and Roundoff

- Recall that the eigenvalues of a symmetric matrix are real, and the eigenvectors are orthogonal. So, $(A^TN^{-1}A)$ can be re-written $V^T\Lambda V$, where Λ is diagonal and V is orthogonal (so $V^{-1}=V^T$).
- $(ABC)^{-1}=C^{-1}B^{-1}A^{-1}$, so inverse= $V^{-1}\Lambda^{-1}(V^{T})^{-1}=V^{T}\Lambda^{-1}V$.
- If a bunch of eigenvalues are really small, they will be huge in the inverse. Double precision numbers are good to ~16 digits, so if spread gets bigger than 10¹⁶, we'll lose information in the inverse.
- Ratio of largest to smallest eigenvalue is called the condition number. If it is large, matrices are ill-conditioned, and will present problems.

Condition # of Polynomial Matrices

Condition # quickly blows up.
 So, we should have expected problems.

```
import numpy
def get poly mat(t,npoly):
   mat=numpy.zeros([t.size,npoly])
   mat[:,0]=1.0
   for i in range(1,npoly):
       mat[:,i]=t*mat[:,i-1]
   mat=numpy.matrix(mat)
   return mat
  name ==' main ':
   t=numpy.arange(-5,5,0.1)
   for npoly in numpy.arange(5,30,5):
        mat=get poly mat(t,npoly)
       mm=mat.transpose()*mat
        mm=mm+mm.transpose() #bonus symmetrization
        e,v=numpy.linalg.eig(mm)
        eabs=numpy.abs(e)
        cond=eabs.max()/eabs.min()
        print repr(npoly) + ' order poynomial matrix has condition number ' + repr(cond)
```

```
>>> execfile('cond_example.py')
5 order poynomial matrix has condition number 158940.69399024552
10 order poynomial matrix has condition number 2366966250887.5864
15 order poynomial matrix has condition number 2.722363799692467e+19
20 order poynomial matrix has condition number 2.2708595871810382e+25
25 order poynomial matrix has condition number 7.8912167454722334e+31
>>>
```

One Possibility: SVD

- Take noiseless case. Then solving $A^TAm = A^Tx$.
- Singular value decomposition (SVD) factors matrix A=USV^T, where S is diagonal, and U and V are orthogonal, and V is square. For symmetric, U=V, S=eigenvalues, but SVD works for any matrix.
- Solutions: (USV^T)^TUSV^Tm=(USV^T)^Tx. VSU^TUSV^Tm=VSU^Tx
- U^TU=identity, so cancels. VS²V^Tm=VSU^Tx. S² squares the condition number, so that was bad. We can analytically cancel left-hand V and one copy of S: SV^Tm=U^Tx. Then m=VS⁻¹U^Tx
- NB this can be done even faster with QR

SVD Code

- Here's how to take singular value decompositions with numpy.
- This will work better than before, but still won't get us to e.g. 100th order polynomials.
- Main issue is that simple polynomials are ill-conditioned: x^{20} looks a lot like x^{22} .

```
import numpy
from matplotlib import pyplot as plt
t=numpy.arange(-5,5,0.1)
x true=t**3-0.5*t**2
x=x_true+10*numpy.random.randn(t.size)
npoly=20
ndata=t.size
A=numpy.zeros([ndata,npoly])
A[:,0]=1.0
for i in range(1,npoly):
   A[:,i]=A[:,i-1]*t
A=numpy.matrix(A)
d=numpy.matrix(x).transpose()
#Make the svd decomposition, the extra False
#is to make matrices compact
u,s,vt=numpy.linalg.svd(A,False)
#s comes back as a 1-d array, turn it into a 2-d matrix
sinv=numpy.matrix(numpy.diag(1.0/s))
fitp=vt.transpose()*sinv*(u.transpose()*d)
```

Solution: Different Poly Basis

- There are several families of polynomials that have better properties (Legendre, Chebyshev...). Usually defined on (-1,1) through recursion relations.
- Legendre polynomials are constructed to be orthogonal on (-1,1), so condition number should be good. If our t range is different from (-1,1), rescale so that it is.
- Key relation: $(n+1)P_{n+1}(t)=(2n+1)tP_n(t)-nP_{n-1}(t)$ with $P_0=1$ and $P_1=t$.
- I pick up a power of t each time, so these are also polynomials, just written in linear combinations that have better condition number.
- Strongly encourage you to *never* fit regular polynomials. Always use Legendre, Chebyshev...

Legendre Code

```
import numpy
def get legendre mat(t,npoly):
   #key relation: (n+1)P_{(n+1)}=(2n+1)tP_{n} - nP_{(n-1)}
   mat=numpy.zeros([t.size,npoly])
   mat[:,0]=1.0
    if npoly>1:
        mat[:.1]=t
    for i in range(1,npoly-1):
        mat[:,i+1]=((2.0*i+1)*t*mat[:,i]-i*mat[:,i-1])/(i+1.0)
   mat=numpy.matrix(mat)
   return mat
  __name__=='__main__':
                                                     >>> execfile('cond_example_legendre.py')
   dt = 0.001
                                                     5 order poynomial matrix has condition number 9.0000026999767648
    t=numpy.arange(-5+dt/2.0.5,dt)
                                                     10 order poynomial matrix has condition number 19.00005415034467
    for npoly in numpy.arange(5,100,5):
                                                     15 order poynomial matrix has condition number 29.000294368595334
        mat=get_legendre_mat(t/5,npoly)
                                                     20 order poynomial matrix has condition number 39.000963550102306
        mm=mat.transpose()*mat
                                                     25 order poynomial matrix has condition number 49.002402810934953
        mm=mm+mm.transpose() #bonus symmetrization
                                                     30 order poynomial matrix has condition number 59.00505642599736
        e,v=numpy.linalg.eig(mm)
                                                     35 order poynomial matrix has condition number 69.009477057966521
        eabs=numpy.abs(e)
                                                     40 order poynomial matrix has condition number 79.016336167849929
        cond=eabs.max()/eabs.min()
                                                     45 order poynomial matrix has condition number 89.026442681092632
        print repr(npoly) + ' Legendre matrix has co
                                                     50 order poynomial matrix has condition number 99.040774215288522
                                                     55 order poynomial matrix has condition number 109.06052705286851
                                                     60 order poynomial matrix has condition number 119.08719407465288
                                                     65 order poynomial matrix has condition number 129.12268493401126
                                                     70 order poynomial matrix has condition number 139.16951135267718
                                                     75 order poynomial matrix has condition number 149.23107516419981
                                                     80 order poynomial matrix has condition number 159.31212210407367
                                                     85 order poynomial matrix has condition number 169.41946763316335
                                                     90 order poynomial matrix has condition number 179.56317279103277
                                                     95 order poynomial matrix has condition number 189.75845697330035
                                                     >>>
```

Back to Polynomials...

- I mentioned there are several versions people use. Why?
- I mean, isn't least-squares always best?
- Not always... Sometimes you want least-bad behaviour over the whole range ('minimax' minimum of the maximum error). Least squares will often trade off bad at edges for even better in middle.
- Enter Chebyshev polynomial.

Chebyshev Polynomials

- Chebyshev polynomials are defined (among other ways) as: $T_n = \cos(n^* \operatorname{arccos}(x))$, $-1 \le x \le 1$
- Similar to legendre have recurrence relation: $T_{n+1}=2xT_n-T_{n-1}$, with $T_0=1$ and $T_1=x$.
- T_n are bounded by ± 1 , and are more-or-less uniform between ± 1 throughout range.
- So, if coefficients drop as *n* increases, if you truncate series, maximum error anywhere is sum of absolute values of coefficients.


```
import numpy
from numpy.polynomial import chebyshev
from matplotlib import pyplot as plt
x=numpy.arange(-1,1,1e-3)
plt.ion()
plt.clf();
t m=0*x+1.0:
t 0=x:
plt.plot(x,t_m)
plt.plot(x,t 0)
for ord in range(2,5):
    t n=2*t 0*x-t m
    plt.plot(x,t_n)
    t m=t 0
    t 0=t n
plt.savefig('cheb_pols.png')
```

Cheb ctd.

- Bound on error mean Chebyshev polynomials are great for modelling functions. Many implementations of functions in e.g. math library are based on them.
- Look at e.g. cos fit from -pi to pi.
- Why are odd terms zero?
- How many terms would you keep for single precision? For double?

```
>>> execfile("fit_chebyshev.py")
                     -3.0424e-01
                                   9.6317e-16
                     -9.7087e-01
                                   2.5647e-16
                      3.0285e-01
                                  -2.9023e-16
                     -2.9092e-02
                                  -1.1972e-16
                      1.3922e-03
                                  -2.7269e-16
                     -4.0190e-05
                 10
                                  -3.2028e-17
                     7.7828e-07
                                  -6.0301e-17
                 14
                     -1.0827e-08
                                  -5.7433e-16
                 16
                    1.1351e-10
                                  -3.4716e-16
                     -9.2925e-13
                 18
                                  -2.7599e-16
                 20
                      5.9186e-15
                                  -1.1678e-16
                      2.7256e-16
                                  -7.4016e-17
                 24
                      6.1067e-17
                                  -1.0598e-16
                 26
                    2.5820e-16 -3.6700e-16
                 28
                     -1.1187e-16
                                  -3.3971e-16
                 30
                     -2.6300e-16
                                  -3.6472e-16
import numpy
from numpy.polynomial import chebyshev
x=numpy.arange(-1,1,1e-3)
y=numpy.cos(x*numpy.pi)
order=50
pp=chebyshev.chebfit(x,y,order)
for i in range(0,order,2):
   #note formatted output here, similar to C
   print '%3d %12.4e %12.4e'% (i,pp[i],pp[i+1])
   #print 2*i,pp[2*i],pp[2*i+1]
```

Nonlinear Fitting

- Sometimes data depend non-linearly on model parameters
- Examples are Gaussian and Lorentzian $(a/(b+(x-c)^2)$
- Often significantly more complicated cannot reason about global behaviour from local properties. May be multiple local minima
- Many methods reduce to how to efficiently find the "nearest" minimum.
- One possibility find steepest downhill direction, move to the bottom, repeat until we're happy. Called "steepest descent."
- How might this end badly?

Steepest Descent

The "Zig-Zagging" nature of the method is also evident below, where the gradient ascent method is applied to $F(x,y)=\sin\left(rac{1}{2}x^2-rac{1}{4}y^2+3
ight)\cos(2x+1-e^y)$.

From wikipedia. Zigagging is inefficient.

Better: Newton's Method

- linear: $\langle d \rangle = Am$. Nonlinear: $\langle d \rangle = A(m) \chi^2 = (d A(m))^T N^{-1} (d A(m))$
- If we're "close" to minimum, can linearize. $A(m)=A(m_0)+\partial A/\partial m*\delta m$
- Now have $\chi^2 = (d-A(m_0)-\partial A/\partial m \delta m)^T N^{-1} (d-A(m_0)-\partial A/\partial m \delta m)$
- What is the gradient?

Newton's Method ctd

- Gradient trickier $\partial A/\partial m$ depends in general on m, so there's a second derivative
- Two terms: $\nabla \chi^2 = (-\partial A/\partial m)^T N^{-1} (d-A(m_0)-\partial A/\partial m \delta m) (\partial^2 A/\partial m_i \partial m_j \delta m)^T N^{-1} (d-A(m_0)-\partial A/\partial m \delta m)$
- If we are near solution $d \approx A(m_0)$ and δm is small, so first term has one small quantity, second has two. Second term in general will be smaller, so usual thing is to drop it.
- Call $\partial A/\partial m A_m$. Call d-A(m₀) r.Then $\nabla \chi^2 \approx -A_m^T N^{-1} (r-A_m \delta m)$
- We know how to solve this! $A_m^T N^{-1} A_m \delta m = A_m^T N^{-1} r$

How to Implement

- Start with a guess for the parameters: m_0 .
- Calculate model $A(m_0)$ and local gradient A_m .
- Solve linear system $A_m^T N^{-1} A_m \delta m = A_m^T N^{-1} r$
- Set $m_0 \rightarrow m_0 + \delta m$.
- Repeat until δ m is "small". For χ^2 , change should be <<1.

Newton's Method in Action

```
def calc_lorentz(p,t):
    y=p[0]/(p[1]+(t-p[2])**2)
    grad=numpy.zeros([t.size,p.size])
    #now differentiate w.r.t. all the parameters
    grad[:,0]=1.0/(p[1]+(t-p[2])**2)
    grad[:,1]=-p[0]/(p[1]+(t-p[2])**2)**2
    grad[:,2]=p[0]*2*(t-p[2])/(p[1]+(t-p[2])**2)**2
    return y,grad
```

```
for j in range(5):
    pred,grad=calc_lorentz(p,t)
    r=x-pred
    err=(r**2).sum()
    r=numpy.matrix(r).transpose()
    grad=numpy.matrix(grad)
    lhs=grad.transpose()*grad
    rhs=grad.transpose()*r
    dp=numpy.linalg.inv(lhs)*(rhs)
    for jj in range(p.size):
        p[jj]=p[jj]+dp[jj]
    print p,err
```


Levenberg-Marquardt

- Sometimes Newton's method doesn't converge
- In this case maybe we should just go downhill for a bit and then try again
- One way of doing this is Levenberg-Marquardt: curve->curve $+\Lambda^*$ diag(curve). For $\Lambda=0$ this is Newton, for large Λ it's downhill.
- Scheme: if fit is improving, make Λ small. If it isn't working, make Λ larger until it starts working again.
- This and many other minimizers are in scipy.optimize.

MCMC

- Nonlinear problems can be very tricky. Big problem there can be many local minima, how do I find global minimum? Linear problem easier since there's only one minimum.
- One technique: Markov-Chain Monte Carlo (MCMC). Picture a particle bouncing around in a potential. It normally goes downhill, but sometimes goes up.
- Solution: simulate a thermal particle bouncing around, keep track of where it spends its time. Phase space density ~ exp(-dE/kT).
- Key theorem: such a particle traces the PDF of the model parameters, and distribution of the full likelihood is the same as particle path.
- Using this, we find best-fit and confidence intervals for model parameters.

MCMC, ctd.

- Detailed balance: in steady state, probability of state going from a to b is equal to going from b to a ("detailed balance").
- Algorithm. Start a particle at a random position. Take a trial step. If trial step improves χ^2 , take the step. If not, sometimes accept the step, with probability $\exp(-0.5\delta\chi^2)$.
- After waiting a sufficiently long time, take statistics of where particle has been. This traces out the likelihood surface.

MCMC Driver

```
def run_mcmc(data,start_pos,nstep,scale=None):
    nparam=start_pos.size
    params=numpy.zeros([nstep,nparam+1])
    params[0,0:-1]=start_pos
    cur_chisq=data.get_chisq(start_pos)
    cur_pos=start_pos.copy()
    if scale==None:
        scale=numpy.ones(nparam)
    for i in range(1,nstep):
        new_pos=cur_pos+get_trial_offset(scale)
        new_chisq=data.get_chisq(new_pos)
        if new_chisq<cur_chisq:</pre>
            accept=True
        else:
            delt=new_chisq-cur_chisq
            prob=numpy.exp(-0.5*delt)
            if numpy.random.rand()prob:
                accept=True
            else:
                accept=False
        if accept:
            cur_pos=new_pos
            cur_chisq=new_chisq
        params[i,0:-1]=cur_pos
        params[i,-1]=cur_chisq
    return params
```

- Here's a routine to make a fixed-length chain.
- As long as our data class has a get_chisq routine associated with it, it will work.
- Big loop: take a trial step, decide if we accept or not. Add current location to chain.

Output

```
name ==' main ':
#get a realization of a gaussian, with noise added
t=numpy.arange(-5,5,0.01)
dat=Gaussian(t,amp=2.5)
#pick a random starting position, and guess some errors
guess=numpy.array([0.3,1.2,0.3,-0.2])
scale=numpy.array([0.1,0.1,0.1,0.1])
nstep=10000
chain=run_mcmc(dat,guess,nstep,scale)
#nn=numpy.round(0.2*nstep)
#chain=chain[nn:,:]
#pull true values out, compare to what we got
param_true=numpy.array([dat.sig,dat.amp,dat.cent,dat.offset])
for i in range(0,param_true.size):
    val=numpy.mean(chain[:,i])
    scat=numpy.std(chain[:,i])
    print [param_true[i],val,scat]
```

```
>>> execfile('fit_gaussian_mcmc.py')
[0.5, 0.48547765442013036, 0.031379203158769478]
[2.5, 2.5972175915216877, 0.16347041731916298]
[0.0, 0.039131754036757782, 0.030226015774759099]
[0.0, 0.0031281155414288856, 0.03983540490701154]
```

- Main: set up data first. Then call the chain function. Finally, compare output fit to true values.
- Parameter estimates are just the mean of the chain. Parameter errors are just the standard deviation of the chain.

What Chain Looks Like

- Here's the samples for one parameter. Note big shift at beginning: we started at a wrong position, but chain quickly moved to correct value.
- Initial part is called "burn-in", and should be removed from chain.

Covariances

- Naturally get parameter covariances out of chains. Just look at covariance of samples!
- Very powerful way of tracing out complicated multi-dimensional likelihoods.

You Gotta Know When to Fold 'em

- Trick in doing MCMC is knowing when to stop.
- One standard technique is to run many chains, then look at scatter between them vs. expected scatter.
- Chains work independent of step size. However, they work faster with a good trial step size. Too large steps, we spend all our time sampling crazy land. Too small and we only move around slowly, so takes many samples to get to a new place.
- Good rule of thumb is you want to accept ~25% of your samples. Run for a bit, then adjust step size and start new chain.

Single-Chain Convergence

- Chains eventually forget their past.
- If you plot chain samples, then eventually they should look like white noise
- FT of converged chain should be flat for large scales (low k)
- top: unconverged chain. bottom:converged chain.

Model Fitting Tutorial Samples (official set to be posted tomorrow)

- Write linear least-squares code to fit sines and cosines to evenly sampled data. Pick the sines and cosines to have integer numbers of periods, so you pick 100 numbers, should have sin/cos(2*pi*n*(0:50)/100). Compare your fit parameters to the FFT of the data. (NB sin should go from 1 to 49 instead of 0 to 50. Why?) (10)
- Take the mcmc sample code. Add a Lorentzian class $(f(x)=a/(b+(x-c)^2)$. Run the fit, and show you get correct answers. (10)
- Modify the mcmc sample code to run a short chain, use that to estimate the Gaussian parameter errors, and then run a longer chain using the error estimates. What is your accept fraction? (10)

N-body Tutorial

- Let's add some methods to the class from the last tutorial so we can use it in an n-body simulation. First, add a method to initialize # of particles with random positions in 2-D (numpy.random.randn() will get gaussian random numbers). (5)
- Next, write a method that calculates the forces on the particles using a softened potential (10)
- Now write a method that will update the particle positions and velocities using a timestep. (5)
- Finally, plot the total kinetic and potential energies as a function of time, and show that the total energy is approximately conserved (5)

Tutorial bonus

- N-body Write a 2nd order integrator for your n-body class. You'll need to make copies of your particles. When you look at the total energy, is conservation better or worse? (10)
- MCMC we see that the parameters have covariances. You can do even better if you include those covariances in your step size. Write a stepper that uses a parameter covariance matrix - to generate fake data, take the eigenvalues/eigenvectors of the covariance matrix, then multiply sqrt(eigenvalues) by gaussians, and then multiply by transpose of eigenvectors. (5)

More Bonus

 Write a Newton's method routine to fit a Gaussian to data and run it on the same data as an MCMC run. (10) Which takes longer to write?
 Which takes longer to run?