

TOPIC OUTLINE

Correlation Coefficient

CORRELATION COEFFICIENT

CORRELATION COEFFICIENT

Correlation coefficient adjusts covariance, so that the relationship between the two variables becomes easy and intuitive to interpret.

It ranges from -1 to +1, where:

- +1 indicates perfect positive correlation
- **−1** indicates perfect negative correlation
- **0** indicates no linear relationship

Scatter Plot:

Correlation = 0

CORRELATION COEFFICIENT

<u>Correlation coefficient</u> adjusts covariance, so that the relationship between the two variables becomes easy and intuitive to interpret.

It ranges from -1 to +1, where:

- +1 indicates perfect positive correlation
- **−1** indicates perfect negative correlation
- **0** indicates no linear relationship

Population Correlation Coefficient:

$$r = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

Sample Correlation Coefficient:

$$r = \frac{s_{xy}}{s_x s_y}$$

EXERCISE

Determine if each scenario suggests a positive, negative, or no correlation:

- 1. Ice cream sales and umbrella sales in a city.
- 2. Hours spent studying and exam scores.
- 3. A person's shoe size and their IQ.
- 4. Age of a used car and its resale value.

EXERCISE

The given dataset contains five observations of current (A) and corresponding power (W) measurements. Does **current** and **power** consumption have a positive, negative, or no linear relationship?

Device

Current	Power
2	100
3 . 5	200
1.8	90
4.2	210
2.7	110

Solution:

LABORATORY

