Extended Thomas-Fermi

Generated by Doxygen 1.8.15

Contents

1	Mod	ule Inde	ex										1
	1.1	Module	es							 	 	 	1
2	Mod	lules Inc	dex										3
	2.1	Module	es List							 	 	 	3
3	File	Index											5
	3.1	File Lis	st							 	 	 	5
4	Mod	ule Doc	cumentatio	n									7
	4.1	Global	parameters	S						 	 	 	7
		4.1.1	Detailed [Description						 	 	 	7
		4.1.2	Variable D	Oocumentatio	n					 	 	 	7
			4.1.2.1	e2						 	 	 	7
			4.1.2.2	hbar2_2m						 	 	 	8
			4.1.2.3	hbarc						 	 	 	8
			4.1.2.4	mec2						 	 	 	8
			4.1.2.5	mnc2						 	 	 	8
			4.1.2.6	mpc2						 	 	 	8
			4.1.2.7	pi						 	 	 	8
			4.1.2.8	rho0						 	 	 	8
	4.2	Extra c	constants fo	r calculatingf	i\$frac{hba	ar^2}{2m	n}f\$ for	BSk fo	rces .	 	 	 	9
		4.2.1	Detailed [Description						 	 	 	9
		4.2.2	Variable D	Oocumentatio	n					 	 	 	9
			4221	mamue2									9

ii CONTENTS

		4.2.2.2	rydb	 . 9
		4.2.2.3	xmh	 . 9
		4.2.2.4	xmn	 . 9
		4.2.2.5	xmp	 . 9
4.3	Numer	rical fractio	ons	 . 10
	4.3.1	Detailed	I Description	 . 10
	4.3.2	Variable	Documentation	 . 10
		4.3.2.1	fr12	 . 10
		4.3.2.2	fr13	 . 10
		4.3.2.3	fr14	 . 10
		4.3.2.4	fr16	 . 11
		4.3.2.5	fr18	 . 11
		4.3.2.6	fr1_12	 . 11
		4.3.2.7	fr1_16	 . 11
		4.3.2.8	fr1_24	 . 11
		4.3.2.9	fr1_32	 . 11
		4.3.2.10	fr1_36	 . 11
		4.3.2.11	fr23	 . 11
		4.3.2.12	! fr260_3	 . 12
		4.3.2.13	fr29	 . 12
		4.3.2.14	fr32	 . 12
		4.3.2.15	i fr34	 . 12
		4.3.2.16	fr35	 . 12
		4.3.2.17	fr38	 . 12
		4.3.2.18	fr3_10	 . 12
		4.3.2.19	fr43	 . 12
		4.3.2.20	fr53	 . 13
		4.3.2.21	fr54	 . 13
		4.3.2.22	! fr83	 . 13
4.4	Skyrm	e paramet	ters	 . 14

CONTENTS

	4.4.1	Detailed Description	14
	4.4.2	Variable Documentation	14
		4.4.2.1 hbar2_2m_q	14
		4.4.2.2 j2_terms	14
		4.4.2.3 sigma	14
		4.4.2.4 t0	15
		4.4.2.5 t1	15
		4.4.2.6 t2	15
		4.4.2.7 t3	15
		4.4.2.8 w0	15
		4.4.2.9 x0	15
		4.4.2.10 x1	15
		4.4.2.11 x2	15
		4.4.2.12 x3	15
4.5	Skyrme	coefficients	16
	4.5.1	Detailed Description	16
	4.5.2	Variable Documentation	16
		4.5.2.1 b1	16
		4.5.2.2 b10	16
		4.5.2.3 b11	16
		4.5.2.4 b12	16
		4.5.2.5 b13	17
		4.5.2.6 b2	17
		4.5.2.7 b3	17
		4.5.2.8 b4	17
		4.5.2.9 b5	17
		4.5.2.10 b6	17
		4.5.2.11 b7	17
		4.5.2.12 b8	17
		4.5.2.13 b9	17

iv CONTENTS

4.6	Extra p	arameters for BSk forces	18
	4.6.1	Detailed Description	18
	4.6.2	Variable Documentation	18
		4.6.2.1 alpha	18
		4.6.2.2 beta	18
		4.6.2.3 epsilon_lambda	18
		4.6.2.4 fn_neg	18
		4.6.2.5 fn_pos	19
		4.6.2.6 fp_neg	19
		4.6.2.7 fp_pos	19
		4.6.2.8 gamma	19
		4.6.2.9 t4	19
		4.6.2.10 t5	19
		4.6.2.11 x4	19
		4.6.2.12 x5	19
4.7	Mesh	rariable	20
	4.7.1	Detailed Description	20
	4.7.2	Variable Documentation	20
		4.7.2.1 r	20
4.8	Global	density arrays	21
	4.8.1	Detailed Description	21
	4.8.2	Variable Documentation	21
		4.8.2.1 del2_rho_q	21
		4.8.2.2 del2_rho_t	21
		4.8.2.3 del_rho_q	21
		4.8.2.4 del_rho_t	21
		4.8.2.5 rho_q	21
		4.8.2.6 rho_t	21
4.9	Global	effective mass arrays	22
	4.9.1	Detailed Description	22

CONTENTS

	4.9.2	Variable Documentation	22
		4.9.2.1 del2_f_q	22
		4.9.2.2 del_f_q	22
		4.9.2.3 f_q	22
4.10	Global	arrays for other densities and fields	23
	4.10.1	Detailed Description	23
	4.10.2	Variable Documentation	23
		4.10.2.1 del_j_q	23
		4.10.2.2 del_j_t	23
		4.10.2.3 div_j_2_q	24
		4.10.2.4 div_j_q	24
		4.10.2.5 div_j_t	24
		4.10.2.6 div_w_q	24
		4.10.2.7 e_density_c_di	24
		4.10.2.8 e_density_c_ex	24
		4.10.2.9 e_density_field	24
		4.10.2.10 e_density_sky	24
		4.10.2.11 j_2_q	25
		4.10.2.12 j_q	25
		4.10.2.13 j_t	25
		4.10.2.14 rho_ch	25
		4.10.2.15 tau_2_cont_q	25
		4.10.2.16 tau_2_l_q	25
		4.10.2.17 tau_2_nl_q	25
		4.10.2.18 tau_etf_q	26
		4.10.2.19 tau_etf_t	26
		4.10.2.20 tau_tf_q	26
		4.10.2.21 u_q	26
		4.10.2.22 v_c_di	26
		4.10.2.23 v_c_ex	26

vi

	4.10.2.24 v_c_pe	26
	4.10.2.25 w_q	26
4.11 Global	I arrays for densities and fields for 4th-order terms	27
4.12 Variable	oles for storing properties of Wigner-Seitz cell	28
4.12.1	Detailed Description	28
4.12.2	2 Variable Documentation	28
	4.12.2.1 delta_mu	29
	4.12.2.2 e_coulomb	29
	4.12.2.3 e_coulomb_di	29
	4.12.2.4 e_coulomb_ex	29
	4.12.2.5 e_field	29
	4.12.2.6 e_kinetic_q	29
	4.12.2.7 e_kinetic_t	30
	4.12.2.8 e_skyrme	30
	4.12.2.9 e_so	30
	4.12.2.10 e_total	30
	4.12.2.11 mu_c	30
	4.12.2.12 mu_e	30
	4.12.2.13 mu_q	31
	4.12.2.14 n_q	31
	4.12.2.15 n_t	31
	4.12.2.16 pressure_e	31
	4.12.2.17 pressure_ex	31
	4.12.2.18 pressure_nucl	31
	4.12.2.19 pressure_t	31
4.13 Input p	parameters	32
4.13.1	Detailed Description	33
4.13.2	2 Variable Documentation	33
	4.13.2.1 calc_chem_pots	33
	4.13.2.2 coulomb_on	33

CONTENTS vii

4.13.2.	.3 dr	 33
4.13.2.	.4 electrons_on	 34
4.13.2.	.5 emax0_mod	 34
4.13.2.	.6 etf_order	 34
4.13.2.	.7 force	 34
4.13.2.	.8 Imax	 34
4.13.2.	.9 n	 34
4.13.2.	.10 neutron_pairing	 35
4.13.2.	.11 nmaxstate	 35
4.13.2.	.12 pair_alpha	 35
4.13.2.	.13 pair_del_init	 35
4.13.2.	.14 pair_dk	 35
4.13.2.	.15 pair_eta	 35
4.13.2.	.16 pair_k_max	 36
4.13.2	.17 pair_max_iters	 36
4.13.2.	.18 pair_mix	 36
4.13.2.	.19 pair_num_tol	 36
4.13.2.	.20 pair_qp_cut	 36
4.13.2	.21 pair_tol	 36
4.13.2.	.22 pair_v0	 37
4.13.2.	.23 profile_r_max	 37
4.13.2.	.24 proton_bcs	 37
4.13.2.	.25 r_max	 37
4.13.2.	.26 run_mode	 37
4.13.2.	.27 smooth_qp_cut	 37
4.13.2.	.28 specify_n	 38
4.13.2.	.29 strut_r_max	 38
4.13.2	.30 strutinsky_on	 38
4.13.2	.31 verbose	 38
4.14 External profile	98	 39

viii CONTENTS

4.14	.1 Detailed Description	9
4.14	.2 Variable Documentation	9
	4.14.2.1 n_profile	9
	4.14.2.2 num_n	9
	4.14.2.3 num_p	9
	4.14.2.4 p_profile	9
	4.14.2.5 r_ws	9
4.15 Forr	nat statements	0
4.15	.1 Detailed Description	0
4.15	.2 Variable Documentation	0
	4.15.2.1 info_format	0
	4.15.2.2 n_floats	0
4.16 Glob	pal strings for printing output	-1
4.16	.1 Detailed Description	-1
4.16	.2 Variable Documentation	-1
	4.16.2.1 force_string	-1
	4.16.2.2 iso_string	-1
	4.16.2.3 line_break	-1
	4.16.2.4 space4	-1
	4.16.2.5 table_string	.1
4.17 Vari	ables for use in strutinsky module	2
4.17	.1 Detailed Description	2
4.17	.2 Variable Documentation	2
	4.17.2.1 d2hmen	2
	4.17.2.2 dhmen	2
	4.17.2.3 e_sc_q	3
	4.17.2.4 e_sc_t	3
	4.17.2.5 ecut	3
	4.17.2.6 ep	3
	4.17.2.7 hb2m	3

CONTENTS

4.17.2	2.8 jjp	43
4.17.2	2.9 lp	44
4.17.2	2.10 nnst	44
4.17.2	2.11 ps	44
4.17.2	2.12 strut_n	44
4.17.2	2.13 vpot	44
4.17.2	2.14 vso	44
4.18 Variables for u	use in pairing module	45
4.18.1 Detail	led Description	45
4.18.2 Variat	ble Documentation	45
4.18.2	2.1 delta_n	45
4.18.2	2.2 delta_p	46
4.18.2	2.3 e_pair_bcs	46
4.18.2	2.4 e_pair_q	46
4.18.2	2.5 e_pair_t	46
4.18.2	2.6 e_qp_p	46
4.18.2	2.7 num_p_bcs	46
4.18.2	2.8 occ_u	47
4.18.2	2.9 occ_v	47
4.18.2	2.10 pair_gap_n	47
4.18.2	2.11 pair_gap_p	47
4.18.2	2.12 rho_anom_p_bcs	47
4.18.2	2.13 rho_p_bcs	47
4.18.2	2.14 strength_bcs	47
4.19 Variables for e	electron contributions	48
4.19.1 Detail	led Description	48
4.19.2 Variat	ble Documentation	48
4.19.2	2.1 e_coulomb_e	48
4.19.2	2.2 e_coulomb_pe	48
4.19.2	2.3 e_kinetic_e	48
4.19.2	2.4 rho_e	48

CONTENTS

5	Mod	odule Documentation				49
	5.1	pairing	Module Referen	ce		49
		5.1.1	Detailed Descri	ption		49
		5.1.2	Function/Subro	utine Documentation		49
			5.1.2.1 bcs_	protons()		50
			5.1.2.2 calc_	_bcs_num_p()		50
			5.1.2.3 calc_	_e_pair()		51
			5.1.2.4 calc_	gap()		52
			5.1.2.5 delta	_parametric()		52
			5.1.2.6 intera	azchamelanalyt()		53
			5.1.2.7 llamb	oda()		54
	5.2	param	eters Module Re	ference		55
		5.2.1	Detailed Descri	ption		61
		5.2.2	Function/Subro	utine Documentation		61
			5.2.2.1 force	_initialise()		61
		5.2.3	Variable Docun	nentation		61
			5.2.3.1 a_q			62
			5.2.3.2 d1_a	_q		62
			5.2.3.3 d2_a	_q		62
			5.2.3.4 d2_f	_q		62
			5.2.3.5 d2_r	no_q		62
			5.2.3.6 d3_a	_q		62
			5.2.3.7 d3_f	_q		62
			5.2.3.8 d3_rl	no_q		62
			5.2.3.9 d4_a	_q		63
			5.2.3.10 d4_f	_q		63
			5.2.3.11 d4_rl	no_q		63
			5.2.3.12 div_j	_4_q		63
			5.2.3.13 dp			63
			5.2.3.14 j_4_c	1		63

CONTENTS xi

		5.2.3.15	tau_4_cont_q	63
		5.2.3.16	tau_4_no_spin_q	64
		5.2.3.17	tau_4_so_q	64
5.3	routine	es Module F	Reference	64
	5.3.1	Detailed I	Description	66
	5.3.2	Function/	Subroutine Documentation	66
		5.3.2.1	allocate_arrays()	66
		5.3.2.2	calc_div_j_2_q()	67
		5.3.2.3	calc_div_j_4_q()	67
		5.3.2.4	calc_e_f_q()	68
		5.3.2.5	calc_f_q()	69
		5.3.2.6	calc_j_2_q()	70
		5.3.2.7	calc_j_4_q()	70
		5.3.2.8	calc_particle_number()	71
		5.3.2.9	calc_rho_q()	72
		5.3.2.10	calc_tau_2_l()	73
		5.3.2.11	calc_tau_2_nl()	73
		5.3.2.12	calc_tau_4_no_spin()	74
		5.3.2.13	calc_tau_4_so()	75
		5.3.2.14	calc_tau_tf()	76
		5.3.2.15	calc_u_q()	77
		5.3.2.16	calc_w_q()	78
		5.3.2.17	charge()	79
		5.3.2.18	d1()	79
		5.3.2.19	d2()	80
		5.3.2.20	d3()	81
		5.3.2.21	d4()	81
		5.3.2.22	deallocate_arrays()	82
		5.3.2.23	deallocate_mesh()	82
		5.3.2.24	eval_coulomb()	83

xii CONTENTS

		5.3.2.25 eval_electrons()	33
		5.3.2.26 eval_fields()	34
		5.3.2.27 eval_skyrme_energy_density()	36
		5.3.2.28 eval_tau_etf()	36
		5.3.2.29 eval_u_q()	37
		5.3.2.30 eval_ws_quantities()	38
		5.3.2.31 extrapolate_back_3()	90
		5.3.2.32 initialise_uniform_mesh()	90
		5.3.2.33 lap_sphe_symm()	91
		5.3.2.34 pressure()	91
		5.3.2.35 str2int()	92
		5.3.2.36 write_densities()	93
		5.3.2.37 write_fields()	93
		5.3.2.38 write_sp_states_p()	94
		5.3.2.39 ws_integral()	94
	5.3.3	Variable Documentation	95
		5.3.3.1 file_unit_0	95
		5.3.3.2 file_unit_1	95
5.4	rspace	Module Reference	95
	5.4.1	Detailed Description	96
	5.4.2	Function/Subroutine Documentation	96
		5.4.2.1 boundary()	96
		5.4.2.2 numerov()	97
5.5	strutins	ky Module Reference	97
	5.5.1	Detailed Description	97
	5.5.2	Function/Subroutine Documentation	98
		5.5.2.1 calc_e_sc()	98
		5.5.2.2 calc_e_sc_pair()	99
		5.5.2.3 sp_states_deallocate()	99
		5.5.2.4 sp_states_setup())0

CONTENTS xiii

Inc	dex				127
	6.7	srcs/te	st.f90 File	Reference	124
	6.6	srcs/sti	rutinsky.f90	File Reference	124
	6.5	srcs/ro	utines.f90	File Reference	122
	6.4	srcs/pa	rameters.f	90 File Reference	115
	6.3	srcs/pa	airing.f90 F	ile Reference	115
			6.2.1.2	total_energy_with_corrections()	113
			6.2.1.1	etf()	112
		6.2.1	Function/	Subroutine Documentation	111
	6.2	srcs/et	f.f90 File R	deference	111
	6.1	srcs/bc	oundary.f90	File Reference	111
6	File I	Docume	entation		111
			5.6.3.3	sample_profile	110
			5.6.3.2	file_unit_2	
			5.6.3.1	file_unit	
		5.6.3		Documentation	
				write_ws_cell_array_quantity()	
				test_spin_current_densities()	
				test_sp_energies()	
				test_si_correction()	
			5.6.2.11	test_kinetic_densities()	
				test_eff_mass()	
			5.6.2.9	test_density_derivs()	
			5.6.2.8	test_densities()	
			5.6.2.7	test_central_potentials()	
			5.6.2.6	test_calc_skyrme_energy()	
			5.6.2.5	test_calc_particle_number()	
			5.6.2.4	test_calc_coulomb_energy()	
			5.6.2.3	read_test_params()	
			5.6.2.2	orders_kinetic_densities()	
			5.6.2.1	bartel_bencheikh_benchmark()	
		5.6.2	Function/	Subroutine Documentation	
		5.6.1	Detailed	Description	102
	5.6	test Mo		rence	
			5.5.2.5	state_sort()	100

Chapter 1

Module Index

1.1 Modules

Here is a list of all modules:

Global parameters
Extra constants for calculatingf\$frac{hbar^2}{2m}f\$ for BSk forces
Numerical fractions
Skyrme parameters
Skyrme coefficients
Extra parameters for BSk forces
Mesh variable
Global density arrays
Global effective mass arrays
Global arrays for other densities and fields
Global arrays for densities and fields for 4th-order terms
Variables for storing properties of Wigner-Seitz cell
Input parameters
External profiles
Format statements
Global strings for printing output
Variables for use in strutinsky module
Variables for use in pairing module
Variables for electron contributions 48

2 Module Index

Chapter 2

Modules Index

2.1 Modules List

Here is a list of all modules with brief descriptions:

pairing		
	Module to hold routines for carrying out Strutinsky correction	49
paramete	ers	
	Module to hold global parameters and variables	55
routines		
	Module to hold main routines: densities, energies	64
rspace		
	Module to hold routines for calculating single particle energies. Written by A. Pastore, some variables and use statements modified by M. Shelley for integration into etf code	95
strutinsky	y	
	Module to hold routines for carrying out Strutinsky correction	97
test		
	Module to hold test routines	101

4 Modules Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

srcs/boundary.f90																	 				111
srcs/etf.f90																	 				111
srcs/pairing.f90 .																	 				115
srcs/parameters.f90																	 				115
srcs/routines.f90																	 				122
srcs/strutinsky.f90																	 				124
srcs/test f90																					124

6 File Index

Chapter 4

Module Documentation

4.1 Global parameters

Variables

```
• real(kind=dp), parameter parameters::pi = 3.1415926535897932\_dp

• real(kind=dp), parameter parameters::hbar2_2m = 20.73553\_dp

• real(kind=dp), parameter parameters::rho0 = 0.16\_dp

• \rho_0, nuclear saturation density [fm^{-3}]

• real(kind=dp), parameter parameters::e2 = 1.439978408596513\_dp

• e^2, electric charge squared [MeV \cdot fm]

• real(kind=dp), parameter parameters::mec2 = 0.51099895\_dp

• Electron\ rest\ mass\ [MeV/c^2].

• real(kind=dp), parameter parameters::mnc2 = 939.56542052\_dp

• real(kind=dp), parameter parameters::mpc2 = 938.27208816\_dp

• real(kind=dp), parameter parameters::hbarc = 197.3269804\_dp
```

4.1.1 Detailed Description

4.1.2 Variable Documentation

4.1.2.1 e2 ${\it real(kind=dp), parameter parameters::e2 = 1.439978408596513_dp}$ $e^2, {\it electric charge squared} \ [MeV\cdot fm]$

```
4.1.2.2 hbar2_2m
real(kind=dp), parameter parameters::hbar2_2m = 20.73553_dp
\frac{\hbar^2}{2m} for SLy forces
4.1.2.3 hbarc
real(kind=dp), parameter parameters::hbarc = 197.3269804_dp
\hbar * c
4.1.2.4 mec2
real(kind=dp), parameter parameters::mec2 = 0.51099895_dp
Electron rest mass [MeV/c^2].
4.1.2.5 mnc2
real(kind=dp), parameter parameters::mnc2 = 939.56542052_dp
4.1.2.6 mpc2
real(kind=dp), parameter parameters::mpc2 = 938.27208816_dp
4.1.2.7 pi
real(kind=dp), parameter parameters::pi = 3.1415926535897932_dp
\pi
4.1.2.8 rho0
real(kind=dp), parameter parameters::rho0 = 0.16_dp

ho_0, nuclear saturation density [fm^{-3}]
```

4.2 Extra constants for calculatingf\$frac{hbar^2}{2m}f\$ for BSk forces

Variables

- real(kind=dp), parameter parameters::mamuc2 = 931.49386_dp
 Atomic mass unit u.
- real(kind=dp), parameter parameters::xmh = 7.28896940_dp
- real(kind=dp), parameter parameters::rydb = 13.6056981e-6_dp Rydberg constant.
- real(kind=dp), parameter parameters::xmp = xmh mec2 + rydb
- real(kind=dp), parameter parameters::xmn = 8.07132281_dp

4.2.1 Detailed Description

4.2.2 Variable Documentation

```
4.2.2.1 mamuc2
real(kind=dp), parameter parameters::mamuc2 = 931.49386_dp
```

```
4.2.2.2 rydb
```

```
real(kind=dp), parameter parameters::rydb = 13.6056981e-6_dp
```

Rydberg constant.

Atomic mass unit u.

4.2.2.3 xmh

```
real(kind=dp), parameter parameters::xmh = 7.28896940_dp
```

4.2.2.4 xmn

```
real(kind=dp), parameter parameters::xmn = 8.07132281_dp
```

4.2.2.5 xmp

```
real(kind=dp), parameter parameters::xmp = xmh - mec2 + rydb
```

4.3 Numerical fractions

Variables

```
• real(kind=dp), parameter parameters::fr12 = 1. dp/2
• real(kind=dp), parameter parameters::fr14 = 1._dp/4

    real(kind=dp), parameter parameters::fr18 = 1. dp/8

• real(kind=dp), parameter parameters::fr1_16 = 1._dp/16

    real(kind=dp), parameter parameters::fr1 32 = 1. dp/32

    real(kind=dp), parameter parameters::fr13 = 1._dp/3

• real(kind=dp), parameter parameters::fr16 = 1. dp/6
• real(kind=dp), parameter parameters::fr1_12 = 1._dp/12
• real(kind=dp), parameter parameters::fr1 24 = 1. dp/24
• real(kind=dp), parameter parameters::fr1 36 = 1. dp/36

    real(kind=dp), parameter parameters::fr23 = 2. dp/3

    real(kind=dp), parameter parameters::fr29 = 2._dp/9

    real(kind=dp), parameter parameters::fr32 = 3._dp/2

    real(kind=dp), parameter parameters::fr34 = 3._dp/4

• real(kind=dp), parameter parameters::fr35 = 3._dp/5

    real(kind=dp), parameter parameters::fr38 = 3. dp/8

• real(kind=dp), parameter parameters::fr3 10 = 3. dp/10

    real(kind=dp), parameter parameters::fr43 = 4. dp/3

• real(kind=dp), parameter parameters::fr53 = 5._dp/3
• real(kind=dp), parameter parameters::fr54 = 5. dp/4
• real(kind=dp), parameter parameters::fr83 = 8._dp/3

    real(kind=dp), parameter parameters::fr260 3 = 260. dp/3
```

4.3.1 Detailed Description

4.3.2 Variable Documentation

```
4.3.2.1 fr12
real(kind=dp), parameter parameters::fr12 = 1._dp/2
4.3.2.2 fr13
real(kind=dp), parameter parameters::fr13 = 1._dp/3
4.3.2.3 fr14
real(kind=dp), parameter parameters::fr14 = 1._dp/4
```

4.3 Numerical fractions

```
4.3.2.4 fr16
real(kind=dp), parameter parameters::fr16 = 1._dp/6
4.3.2.5 fr18
real(kind=dp), parameter parameters::fr18 = 1._dp/8
4.3.2.6 fr1_12
real(kind=dp), parameter parameters::fr1_12 = 1._dp/12
4.3.2.7 fr1_16
real(kind=dp), parameter parameters::fr1_16 = 1._dp/16
4.3.2.8 fr1_24
real(kind=dp), parameter parameters::fr1_24 = 1._dp/24
4.3.2.9 fr1_32
real(kind=dp), parameter parameters::fr1_32 = 1._dp/32
4.3.2.10 fr1_36
real(kind=dp), parameter parameters::fr1_36 = 1._dp/36
4.3.2.11 fr23
real(kind=dp), parameter parameters::fr23 = 2._dp/3
```

```
4.3.2.12 fr260_3
real(kind=dp), parameter parameters::fr260_3 = 260._dp/3
4.3.2.13 fr29
real(kind=dp), parameter parameters::fr29 = 2._dp/9
4.3.2.14 fr32
real(kind=dp), parameter parameters::fr32 = 3._dp/2
4.3.2.15 fr34
real(kind=dp), parameter parameters::fr34 = 3._dp/4
4.3.2.16 fr35
real(kind=dp), parameter parameters::fr35 = 3._dp/5
4.3.2.17 fr38
real(kind=dp), parameter parameters::fr38 = 3._dp/8
4.3.2.18 fr3_10
real(kind=dp), parameter parameters::fr3_10 = 3._{dp}/10
4.3.2.19 fr43
real(kind=dp), parameter parameters::fr43 = 4._dp/3
```

4.3 Numerical fractions

4.3.2.20 fr53

```
real(kind=dp), parameter parameters::fr53 = 5._{dp/3}
```

4.3.2.21 fr54

```
real(kind=dp), parameter parameters::fr54 = 5._{dp}/4
```

4.3.2.22 fr83

real(kind=dp), parameter parameters::fr83 = $8._{dp/3}$

4.4 Skyrme parameters

Variables

```
    real(kind=dp) parameters::w0
        Spin-orbit strength W<sub>0</sub>.
    real(kind=dp) parameters::t0
    real(kind=dp) parameters::x0
    real(kind=dp) parameters::t1
    real(kind=dp) parameters::x1
    real(kind=dp) parameters::t2
    real(kind=dp) parameters::x2
    real(kind=dp) parameters::x3
    real(kind=dp) parameters::x3
    real(kind=dp) parameters::sigma
    real(kind=dp), dimension(0:1) parameters::hbar2_2m_q
    \frac{h^2}{2m} with isospin dependence, as required by BSk forces
    logical parameters::j2_terms
    Whether functional uses \( \mathcal{J}^2 \) terms.
```

4.4.1 Detailed Description

4.4.2 Variable Documentation

```
4.4.2.1 hbar2_2m_q real(kind=dp), dimension(0:1) parameters::hbar2_2m_q \frac{\hbar^2}{2m} with isospin dependence, as required by BSk forces  
4.4.2.2 j2_terms  
logical parameters::j2_terms  
Whether functional uses \mathbf{J}^2 terms.
```

```
4.4.2.3 sigma
```

```
real(kind=dp) parameters::sigma
```

```
4.4.2.4 t0
real(kind=dp) parameters::t0
4.4.2.5 t1
real(kind=dp) parameters::t1
4.4.2.6 t2
real(kind=dp) parameters::t2
4.4.2.7 t3
real(kind=dp) parameters::t3
4.4.2.8 w0
real(kind=dp) parameters::w0
Spin-orbit strength W_0.
4.4.2.9 x0
real(kind=dp) parameters::x0
4.4.2.10 x1
real(kind=dp) parameters::x1
4.4.2.11 x2
real(kind=dp) parameters::x2
4.4.2.12 x3
real(kind=dp) parameters::x3
```

4.5 Skyrme coefficients

Variables

real(kind=dp) parameters::b1
real(kind=dp) parameters::b2
real(kind=dp) parameters::b3
real(kind=dp) parameters::b4
real(kind=dp) parameters::b5
real(kind=dp) parameters::b6
real(kind=dp) parameters::b7
real(kind=dp) parameters::b8
real(kind=dp) parameters::b9
real(kind=dp) parameters::b10
real(kind=dp) parameters::b11
real(kind=dp) parameters::b11

• real(kind=dp) parameters::b13

- 4.5.1 Detailed Description
- 4.5.2 Variable Documentation

4.5.2.1 b1

```
real(kind=dp) parameters::b1
```

4.5.2.2 b10

```
real(kind=dp) parameters::b10
```

4.5.2.3 b11

```
real(kind=dp) parameters::b11
```

4.5.2.4 b12

```
real(kind=dp) parameters::b12
```

```
4.5.2.5 b13
real(kind=dp) parameters::b13
4.5.2.6 b2
real(kind=dp) parameters::b2
4.5.2.7 b3
real(kind=dp) parameters::b3
4.5.2.8 b4
real(kind=dp) parameters::b4
4.5.2.9 b5
real(kind=dp) parameters::b5
4.5.2.10 b6
real(kind=dp) parameters::b6
4.5.2.11 b7
real(kind=dp) parameters::b7
4.5.2.12 b8
real(kind=dp) parameters::b8
4.5.2.13 b9
real(kind=dp) parameters::b9
```

Extra parameters for BSk forces 4.6

Variables

```
• real(kind=dp) parameters::alpha
    • real(kind=dp) parameters::beta
    • real(kind=dp) parameters::gamma
    • real(kind=dp) parameters::t4
    • real(kind=dp) parameters::x4
   • real(kind=dp) parameters::t5
    • real(kind=dp) parameters::x5
    real(kind=dp) parameters::fn_pos
   • real(kind=dp) parameters::fn_neg
    real(kind=dp) parameters::fp_pos
    • real(kind=dp) parameters::fp_neg
    • real(kind=dp) parameters::epsilon_lambda
4.6.1
       Detailed Description
4.6.2 Variable Documentation
```

4.6.2.1 alpha

```
real(kind=dp) parameters::alpha
```

4.6.2.2 beta

```
real(kind=dp) parameters::beta
```

4.6.2.3 epsilon_lambda

```
real(kind=dp) parameters::epsilon_lambda
```

4.6.2.4 fn_neg

```
real(kind=dp) parameters::fn_neg
```

```
4.6.2.5 fn_pos
real(kind=dp) parameters::fn_pos
4.6.2.6 fp_neg
real(kind=dp) parameters::fp_neg
4.6.2.7 fp_pos
\verb|real(kind=dp)| parameters::fp\_pos|
4.6.2.8 gamma
real(kind=dp) parameters::gamma
4.6.2.9 t4
real(kind=dp) parameters::t4
4.6.2.10 t5
real(kind=dp) parameters::t5
4.6.2.11 x4
real(kind=dp) parameters::x4
4.6.2.12 x5
real(kind=dp) parameters::x5
```

4.7 Mesh variable

Variables

```
    real(kind=dp), dimension(:), allocatable parameters::r
    Mesh for r.
```

- 4.7.1 Detailed Description
- 4.7.2 Variable Documentation

```
4.7.2.1 r
```

```
real(kind=dp), dimension(:), allocatable parameters::r
```

Mesh for r.

4.8 Global density arrays

Variables

```
    real(kind=dp), dimension(:,:), allocatable parameters::rho_q
    real(kind=dp), dimension(:,:), allocatable parameters::del_rho_q
    real(kind=dp), dimension(:,:), allocatable parameters::del2_rho_q
    real(kind=dp), dimension(:), allocatable parameters::rho_t
```

- real(kind=dp), dimension(:), allocatable parameters::del_rho_t
- real(kind=dp), dimension(:), allocatable parameters::del2_rho_t

4.8.1 Detailed Description

4.8.2 Variable Documentation

```
4.8.2.1 del2_rho_q
\verb|real(kind=dp)|, | \verb|dimension(:,:)|, | \verb|allocatable|| parameters::del2\_rho\_q|
4.8.2.2 del2_rho_t
real(kind=dp), dimension(:), allocatable parameters::del2_rho_t
4.8.2.3 del_rho_q
real(kind=dp), dimension(:,:), allocatable parameters::del_rho_q
4.8.2.4 del_rho_t
real(kind=dp), dimension(:), allocatable parameters::del_rho_t
4.8.2.5 rho_q
real(kind=dp), dimension(:,:), allocatable parameters::rho_q
4.8.2.6 rho_t
real(kind=dp), dimension(:), allocatable parameters::rho_t
```

4.9 Global effective mass arrays

Variables

```
    real(kind=dp), dimension(:,:), allocatable parameters::f_q
    real(kind=dp), dimension(:,:), allocatable parameters::del_f_q
    real(kind=dp), dimension(:,:), allocatable parameters::del2_f_q
```

4.9.1 Detailed Description

4.9.2 Variable Documentation

```
4.9.2.1 del2_f_q
real(kind=dp), dimension(:,:), allocatable parameters::del2_f_q
4.9.2.2 del_f_q
real(kind=dp), dimension(:,:), allocatable parameters::del_f_q
4.9.2.3 f_q
```

4.10 Global arrays for other densities and fields

Variables

```
    real(kind=dp), dimension(:,:), allocatable parameters::w q

• real(kind=dp), dimension(:,:), allocatable parameters::div w q

    real(kind=dp), dimension(:,:), allocatable parameters::u_q

    real(kind=dp), dimension(:,:), allocatable parameters::j_2_q

    real(kind=dp), dimension(:,:), allocatable parameters::j q

    real(kind=dp), dimension(:,:), allocatable parameters::del j q

    real(kind=dp), dimension(:,:), allocatable parameters::div_j_2_q

    real(kind=dp), dimension(:,:), allocatable parameters::div_j_q

    real(kind=dp), dimension(:,:), allocatable parameters::tau tf q

• real(kind=dp), dimension(:,:), allocatable parameters::tau_2_l_q

    real(kind=dp), dimension(:,:), allocatable parameters::tau 2 nl q

    real(kind=dp), dimension(:,:), allocatable parameters::tau etf q

• real(kind=dp), dimension(:), allocatable parameters::j_t

    real(kind=dp), dimension(:), allocatable parameters::del j t

• real(kind=dp), dimension(:), allocatable parameters::div_j_t
• real(kind=dp), dimension(:), allocatable parameters::tau etf t

    real(kind=dp), dimension(:), allocatable parameters::e density field

real(kind=dp), dimension(:), allocatable parameters::e_density_sky
• real(kind=dp), dimension(:), allocatable parameters::v c di

    real(kind=dp), dimension(:), allocatable parameters::v_c_ex

• real(kind=dp), dimension(:), allocatable parameters::e_density_c_di

    real(kind=dp), dimension(:), allocatable parameters::e density c ex

    real(kind=dp), dimension(:), allocatable parameters::v c pe

    real(kind=dp), dimension(:,:,:), allocatable parameters::tau_2_cont_q

    real(kind=dp), dimension(:), allocatable parameters::rho_ch

      Charge density.
```

4.10.1 Detailed Description

4.10.2 Variable Documentation

```
4.10.2.1 del_j_q
real(kind=dp), dimension(:,:), allocatable parameters::del_j_q
4.10.2.2 del_j_t
real(kind=dp), dimension(:), allocatable parameters::del_j_t
```

```
4.10.2.3 div_j_2_q
real(kind=dp), dimension(:,:), allocatable parameters::div_j_2_q
4.10.2.4 div_j_q
real(kind=dp), dimension(:,:), allocatable parameters::div_j_q
4.10.2.5 div_j_t
real(kind=dp), dimension(:), allocatable parameters::div_j_t
4.10.2.6 div_w_q
real(kind=dp), dimension(:,:), allocatable parameters::div_w_q
4.10.2.7 e_density_c_di
4.10.2.8 e_density_c_ex
real(kind=dp), dimension(:), allocatable parameters::e_density_c_ex
4.10.2.9 e_density_field
real(kind=dp), dimension(:), allocatable parameters::e_density_field
4.10.2.10 e_density_sky
real(kind=dp), dimension(:), allocatable parameters::e_density_sky
```

```
4.10.2.11 j_2_q
real(kind=dp), dimension(:,:), allocatable parameters::j_2_q
4.10.2.12 j_q
real(kind=dp), dimension(:,:), allocatable parameters::j_q
4.10.2.13 j_t
real(kind=dp), dimension(:), allocatable parameters::j_t
4.10.2.14 rho_ch
Charge density.
4.10.2.15 tau_2_cont_q
real(kind=dp), dimension(:,:,:), allocatable parameters::tau_2_cont_q
4.10.2.16 tau_2_l_q
real(kind=dp), dimension(:,:), allocatable parameters::tau_2_1_q
4.10.2.17 tau_2_nl_q
real(kind=dp), dimension(:,:), allocatable parameters::tau_2_nl_q
```

```
4.10.2.18 tau_etf_q
real(kind=dp), dimension(:,:), allocatable parameters::tau_etf_q
4.10.2.19 tau etf t
real(kind=dp), dimension(:), allocatable parameters::tau_etf_t
4.10.2.20 tau_tf_q
4.10.2.21 u_q
real(kind=dp), dimension(:,:), allocatable parameters::u_q
4.10.2.22 v_c_di
real(kind=dp), dimension(:), allocatable parameters::v_c_di
4.10.2.23 v_c_ex
real(kind=dp), dimension(:), allocatable parameters::v_c_ex
4.10.2.24 v_c_pe
real(kind=dp), dimension(:), allocatable parameters::v_c_pe
4.10.2.25 w_q
real(kind=dp), dimension(:,:), allocatable parameters::w_q
```

4.11 Global arrays for densities and fields for 4th-order terms

4.12 Variables for storing properties of Wigner-Seitz cell

Variables

```
    real(kind=dp), dimension(0:1) parameters::n q

     Number of neutrons and protons.
• real(kind=dp) parameters::n_t
      Total number of particles.
• real(kind=dp) parameters::e_field
     Field energy.
• real(kind=dp) parameters::e_skyrme
     Skyrme energy.

    real(kind=dp), dimension(0:1) parameters::e_kinetic_q

     Kinetic energy for neutron and protons.
• real(kind=dp) parameters::e kinetic t
      Total kinetic energy.
real(kind=dp) parameters::e_so
     Spin-orbit energy.
• real(kind=dp) parameters::e_coulomb_di
     Direct Coulomb energy.
real(kind=dp) parameters::e_coulomb_ex
     Exhange Coulomb energy.

    real(kind=dp) parameters::e coulomb

      Total Coulomb energy.
• real(kind=dp) parameters::e_total
      Total energy.

    real(kind=dp), dimension(0:1) parameters::mu q

     Neutron and proton chemical potential.

    real(kind=dp) parameters::mu e

     Electron chemical potential.
real(kind=dp) parameters::mu_c
      Coulomb interaction contribution to electron chemical potential.

    real(kind=dp) parameters::delta mu

     Overall chemical potential (beta-equilibrium condition)

    real(kind=dp) parameters::pressure_nucl

     Nuclear pressure.
• real(kind=dp) parameters::pressure_e
     Electron pressure.
• real(kind=dp) parameters::pressure_ex
      Coulomb exchange pressure.
real(kind=dp) parameters::pressure_t
      Total pressure.
```

4.12.1 Detailed Description

4.12.2 Variable Documentation

```
4.12.2.1 delta_mu
real(kind=dp) parameters::delta_mu
Overall chemical potential (beta-equilibrium condition)
4.12.2.2 e_coulomb
real(kind=dp) parameters::e_coulomb
Total Coulomb energy.
4.12.2.3 e_coulomb_di
real(kind=dp) parameters::e_coulomb_di
Direct Coulomb energy.
4.12.2.4 e_coulomb_ex
real(kind=dp) parameters::e_coulomb_ex
Exhange Coulomb energy.
4.12.2.5 e field
real(kind=dp) parameters::e_field
Field energy.
4.12.2.6 e_kinetic_q
real(kind=dp), dimension(0:1) parameters::e_kinetic_q
```

Kinetic energy for neutron and protons.

```
4.12.2.7 e_kinetic_t
real(kind=dp) parameters::e_kinetic_t
Total kinetic energy.
4.12.2.8 e_skyrme
real(kind=dp) parameters::e_skyrme
Skyrme energy.
4.12.2.9 e_so
real(kind=dp) parameters::e_so
Spin-orbit energy.
4.12.2.10 e_total
real(kind=dp) parameters::e_total
Total energy.
4.12.2.11 mu_c
real(kind=dp) parameters::mu_c
Coulomb interaction contribution to electron chemical potential.
4.12.2.12 mu_e
real(kind=dp) parameters::mu_e
Electron chemical potential.
```

Generated by Doxygen

```
4.12.2.13 mu_q
real(kind=dp), dimension(0:1) parameters::mu_q
Neutron and proton chemical potential.
4.12.2.14 n_q
real(kind=dp), dimension(0:1) parameters::n_q
Number of neutrons and protons.
4.12.2.15 n_t
real(kind=dp) parameters::n_t
Total number of particles.
4.12.2.16 pressure_e
real(kind=dp) parameters::pressure_e
Electron pressure.
4.12.2.17 pressure_ex
real(kind=dp) parameters::pressure_ex
Coulomb exchange pressure.
4.12.2.18 pressure_nucl
real(kind=dp) parameters::pressure_nucl
Nuclear pressure.
4.12.2.19 pressure_t
real(kind=dp) parameters::pressure_t
Total pressure.
```

4.13 Input parameters

Variables

• integer parameters::run_mode

Mode to run code in (normal, test)

· logical parameters::verbose

Whether to print all extra messages about run.

• real(kind=dp) parameters::dr

Mesh spacing of r(fm).

• logical parameters::profile_r_max

Whether to take "r_max" from "r_ws".

• real(kind=dp) parameters::r_max

Max value of r(fm).

· logical parameters::specify_n

Whether to specify "n" instead of "dr".

integer parameters::n

Number of mesh points.

· integer parameters::force

Force to use.

· integer parameters::etf_order

Order at which to calculate kinetic energy densities.

· logical parameters::coulomb on

Use Coulomb interaction or not.

logical parameters::electrons_on

Add electrons.

• integer parameters::nmaxstate

Number of states that can be stored.

integer parameters::lmax

Maximum angular momentum of states to find.

· logical parameters::calc chem pots

Calculate chemical potentials.

logical, dimension(0:1) parameters::strutinsky_on

Use Strutinsky Integral (SI) correction for neutrons and protons.

• real(kind=dp) parameters::strut_r_max

Max value of r to use for box for single particle states (fm).

logical parameters::emax0_mod

Whether to modify "emax0" to always = 0.

integer parameters::neutron_pairing

Type of pairing calculation to perform for neutrons.

logical parameters::proton_bcs

Whether to do BCS for protons.

• real(kind=dp) parameters::pair_qp_cut

Cut-off for quasiparticle energy for solving gap equation.

logical parameters::smooth_qp_cut

Whether to use smooth cut-off on quasiparticle energy.

real(kind=dp) parameters::pair_k_max

Maximum momentum for integral in gap equation.

real(kind=dp) parameters::pair_v0

Interaction strength parameter.

4.13 Input parameters 33

```
• real(kind=dp) parameters::pair_eta
          Interaction parameter eta.
    • real(kind=dp) parameters::pair_alpha
          Interaction parameter alpha.
    real(kind=dp) parameters::pair_tol
          Gap equation self-consistency tolerance.
    real(kind=dp) parameters::pair_mix
          Mix of previous iteration in gap equation self-consistency loop.
    • real(kind=dp) parameters::pair_dk
          Step size in integral in gap equation.
    · real(kind=dp) parameters::pair_del_init
          Initial guess for pairing gap.
    • integer parameters::pair_max_iters
          Maximum iterations for gap equation self-consistency loop.
    • real(kind=dp) parameters::pair_num_tol
          BCS number equation self-consistency tolerance.
4.13.1
        Detailed Description
4.13.2 Variable Documentation
4.13.2.1 calc_chem_pots
logical parameters::calc_chem_pots
Calculate chemical potentials.
4.13.2.2 coulomb_on
logical parameters::coulomb_on
Use Coulomb interaction or not.
4.13.2.3 dr
real(kind=dp) parameters::dr
Mesh spacing of r(fm).
```

4.13.2.4 electrons_on logical parameters::electrons_on Add electrons. 4.13.2.5 emax0_mod logical parameters::emax0_mod Whether to modify "emax0" to always = 0. 4.13.2.6 etf_order integer parameters::etf_order Order at which to calculate kinetic energy densities. 4.13.2.7 force integer parameters::force Force to use. 4.13.2.8 lmax integer parameters::lmax Maximum angular momentum of states to find. 4.13.2.9 n integer parameters::n

Number of mesh points.

4.13 Input parameters 35

```
4.13.2.10 neutron_pairing

integer parameters::neutron_pairing
```

Type of pairing calculation to perform for neutrons.

```
4.13.2.11 nmaxstate
```

integer parameters::nmaxstate

Number of states that can be stored.

```
4.13.2.12 pair_alpha
```

```
real(kind=dp) parameters::pair_alpha
```

Interaction parameter alpha.

```
4.13.2.13 pair_del_init
```

```
\verb"real(kind=dp") parameters::pair_del_init"
```

Initial guess for pairing gap.

```
4.13.2.14 pair_dk
```

```
\verb|real(kind=dp)| parameters::pair\_dk|
```

Step size in integral in gap equation.

4.13.2.15 pair_eta

```
real(kind=dp) parameters::pair_eta
```

Interaction parameter eta.

```
4.13.2.16 pair_k_max
```

```
real(kind=dp) parameters::pair_k_max
```

Maximum momentum for integral in gap equation.

```
4.13.2.17 pair_max_iters
```

```
integer parameters::pair_max_iters
```

Maximum iterations for gap equation self-consistency loop.

```
4.13.2.18 pair_mix
```

```
real(kind=dp) parameters::pair_mix
```

Mix of previous iteration in gap equation self-consistency loop.

```
4.13.2.19 pair_num_tol
```

```
real(kind=dp) parameters::pair_num_tol
```

BCS number equation self-consistency tolerance.

```
4.13.2.20 pair_qp_cut
```

```
real(kind=dp) parameters::pair_qp_cut
```

Cut-off for quasiparticle energy for solving gap equation.

```
4.13.2.21 pair_tol
```

```
real(kind=dp) parameters::pair_tol
```

Gap equation self-consistency tolerance.

4.13 Input parameters 37

```
4.13.2.22 pair_v0
real(kind=dp) parameters::pair_v0
Interaction strength parameter.
4.13.2.23 profile_r_max
logical parameters::profile_r_max
Whether to take "r_max" from "r_ws".
4.13.2.24 proton_bcs
logical parameters::proton_bcs
Whether to do BCS for protons.
4.13.2.25 r_max
real(kind=dp) parameters::r_max
Max value of r(fm).
4.13.2.26 run_mode
integer parameters::run_mode
Mode to run code in (normal, test)
4.13.2.27 smooth_qp_cut
logical parameters::smooth_qp_cut
Whether to use smooth cut-off on quasiparticle energy.
```

4.13.2.28 specify_n

 ${\tt logical\ parameters::specify_n}$

Whether to specify "n" instead of "dr".

```
4.13.2.29 strut_r_max
```

```
\verb"real(kind=dp") parameters::strut\_r\_max"
```

Max value of r to use for box for single particle states (fm).

4.13.2.30 strutinsky_on

logical, dimension(0:1) parameters::strutinsky_on

Use Strutinsky Integral (SI) correction for neutrons and protons.

4.13.2.31 verbose

logical parameters::verbose

Whether to print all extra messages about run.

4.14 External profiles 39

4.14 External profiles

Variables

- real(kind=dp), dimension(5) parameters::n_profile
- real(kind=dp), dimension(5) parameters::p_profile
- real(kind=dp) parameters::num_n
- integer parameters::num_p
- real(kind=dp) parameters::r_ws

4.14.1 Detailed Description

4.14.2 Variable Documentation

```
4.14.2.1 n_profile
```

```
real(kind=dp), dimension(5) parameters::n_profile
```

4.14.2.2 num_n

```
real(kind=dp) parameters::num_n
```

4.14.2.3 num_p

integer parameters::num_p

4.14.2.4 p_profile

```
real(kind=dp), dimension(5) parameters::p_profile
```

4.14.2.5 r_ws

```
\verb"real(kind=dp") parameters::r\_ws"
```

4.15 Format statements

Variables

- character(18), dimension(10) parameters::n_floats = (/'(1(es24.16e3,1x))','(2(es24.16e3,1x))','(3(es24. \leftarrow 16e3,1x))', '(4(es24.16e3,1x))','(5(es24.16e3,1x))','(6(es24.16e3,1x))','(7(es24.16e3,1x))',' (8(es24. \leftarrow 16e3,1x))','(9(es24.16e3,1x))','(10(es24.16e3,1x))',')
- character(27) parameters::info_format = '(a27,1x,a1,1x,es24.16e3)'

4.15.1 Detailed Description

4.15.2 Variable Documentation

4.15.2.1 info_format

```
character(27) parameters::info_format = '(a27,1x,a1,1x,es24.16e3)'
```

4.15.2.2 n_floats

```
character(18), dimension(10) parameters::n_floats = (/'( 1(es24.16e3,1x))','( 2(es24.16e3,1x))','( 3(es24.16e3,1x))','( 5(es24.16e3,1x))','( 6(es24.16e3,1x))','( 7(es24.6e3,1x))','( 10(es24.16e3,1x))','( 10(es24.16e3,1x
```

4.16 Global strings for printing output

Variables

- character(8) parameters::force_string
- character(62), parameter parameters::table_string = '-------
- character(1), dimension(0:1), parameter parameters::iso_string = (/'n','p'/)
- character(4), parameter parameters::space4 = ''
 Whitespace of length 4.

4.16.1 Detailed Description

4.16.2 Variable Documentation

```
4.16.2.1 force_string
character(8) parameters::force_string

4.16.2.2 iso_string
character(1), dimension(0:1), parameter parameters::iso_string = (/'n','p'/)
```

```
Isospin labels.
```

```
4.16.2.3 line_break
```

Separating output.

```
4.16.2.4 space4
```

```
character(4), parameter parameters::space4 = ' '
```

Whitespace of length 4.

```
4.16.2.5 table_string
```

```
character(62), parameter parameters::table_string = '------'
```

4.17 Variables for use in strutinsky module

Variables

```
• integer parameters::strut_n
```

- real(kind=dp), dimension(:,:), allocatable parameters::dhmen
- real(kind=dp), dimension(:,:), allocatable parameters::d2hmen
- real(kind=dp), dimension(:,:), allocatable parameters::hb2m
- real(kind=dp), dimension(:,:), allocatable parameters::vpot
- real(kind=dp), dimension(:,:), allocatable parameters::vso
- real(kind=dp), dimension(0:1) parameters::ecut

Cutoff energies for neutrons and protons.

- real(kind=dp), dimension(:,:), allocatable parameters::ps
 Storage for single particle wavefunctions.
- integer parameters::nnst

Number of states found within cutoff energy.

- integer, dimension(:), allocatable parameters::jjp
 - Storage for J of states found.
- integer, dimension(:), allocatable parameters::lp

Storage for L of states found.

- real(kind=dp), dimension(:), allocatable parameters::ep
 - Storage for energy of states found.
- real(kind=dp), dimension(0:1) parameters::e_sc_q

Storage for shell correction energies.

real(kind=dp) parameters::e_sc_t

Storage for total shell correction energy.

4.17.1 Detailed Description

4.17.2 Variable Documentation

4.17.2.1 d2hmen

```
\verb|real(kind=dp)|, | \verb|dimension(:,:)|, | \verb|allocatable|| parameters:: d2hmen||
```

4.17.2.2 dhmen

```
\verb"real(kind=dp")", \verb"dimension(:,:)", \verb"allocatable parameters::dhmen"
```

```
4.17.2.3 e_sc_q
real(kind=dp), dimension(0:1) parameters::e_sc_q
Storage for shell correction energies.
4.17.2.4 e_sc_t
real(kind=dp) parameters::e_sc_t
Storage for total shell correction energy.
4.17.2.5 ecut
real(kind=dp), dimension(0:1) parameters::ecut
Cutoff energies for neutrons and protons.
4.17.2.6 ep
real(kind=dp), dimension(:), allocatable parameters::ep
Storage for energy of states found.
4.17.2.7 hb2m
4.17.2.8 jjp
integer, dimension(:), allocatable parameters::jjp
```

Storage for J of states found.

```
4.17.2.9 lp
integer, dimension(:), allocatable parameters::lp
Storage for L of states found.
4.17.2.10 nnst
integer parameters::nnst
Number of states found within cutoff energy.
4.17.2.11 ps
Storage for single particle wavefunctions.
4.17.2.12 strut_n
integer parameters::strut_n
4.17.2.13 vpot
real(kind=dp), dimension(:,:), allocatable parameters::vpot
4.17.2.14 vso
real(kind=dp), dimension(:,:), allocatable parameters::vso
```

4.18 Variables for use in pairing module

Variables

```
    real(kind=dp), dimension(:), allocatable parameters::pair_gap_n
    Neutron pairing gap.
```

- real(kind=dp), dimension(:), allocatable parameters::delta_n
 Neutron pairing field.
- real(kind=dp), dimension(:), allocatable parameters::pair_gap_p
 Proton pairing gap.
- real(kind=dp), dimension(:), allocatable parameters::delta_p
 Proton pairing field.
- real(kind=dp), dimension(:), allocatable parameters::rho_p_bcs
 Proton density (from wavefunctions)
- real(kind=dp), dimension(:), allocatable parameters::rho_anom_p_bcs
 Anomalous density.
- real(kind=dp), dimension(:), allocatable parameters::strength_bcs
 Interaction strength for protons.
- real(kind=dp), dimension(:), allocatable parameters::occ_v
 Particle occupation probabilities.
- real(kind=dp), dimension(:), allocatable parameters::occ_u
 Hole occupation probabilities.
- real(kind=dp), dimension(:), allocatable parameters::e_qp_p
 Quasiparticle energies.
- real(kind=dp) parameters::num_p_bcs

Number of protons calculated from occupations.

- real(kind=dp) parameters::e_pair_bcs
 - BCS pairing energy.
- real(kind=dp), dimension(0:1) parameters::e_pair_q
 Storage for pairing condensation energies.
- real(kind=dp) parameters::e_pair_t

Storage for total pairing condensation energy.

4.18.1 Detailed Description

4.18.2 Variable Documentation

4.18.2.1 delta n

```
real(kind=dp), dimension(:), allocatable parameters::delta_n
```

Neutron pairing field.

```
4.18.2.2 delta_p
real(kind=dp), dimension(:), allocatable parameters::delta_p
Proton pairing field.
4.18.2.3 e_pair_bcs
\verb"real(kind=dp") parameters::e_pair_bcs"
BCS pairing energy.
4.18.2.4 e_pair_q
real(kind=dp), dimension(0:1) parameters::e_pair_q
Storage for pairing condensation energies.
4.18.2.5 e_pair_t
real(kind=dp) parameters::e_pair_t
Storage for total pairing condensation energy.
4.18.2.6 e_qp_p
real(kind=dp), dimension(:), allocatable parameters::e_qp_p
Quasiparticle energies.
4.18.2.7 num_p_bcs
real(kind=dp) parameters::num_p_bcs
```

Number of protons calculated from occupations.

```
4.18.2.8 occ_u
real(kind=dp), dimension(:), allocatable parameters::occ_u
Hole occupation probabilities.
4.18.2.9 occ_v
real(kind=dp), dimension(:), allocatable parameters::occ_v
Particle occupation probabilities.
4.18.2.10 pair_gap_n
Neutron pairing gap.
4.18.2.11 pair_gap_p
real(kind=dp), dimension(:), allocatable parameters::pair_gap_p
Proton pairing gap.
4.18.2.12 rho_anom_p_bcs
real(kind=dp), dimension(:), allocatable parameters::rho_anom_p_bcs
Anomalous density.
4.18.2.13 rho_p_bcs
real(kind=dp), dimension(:), allocatable parameters::rho_p_bcs
Proton density (from wavefunctions)
4.18.2.14 strength_bcs
Interaction strength for protons.
```

4.19 Variables for electron contributions

Variables

```
• real(kind=dp) parameters::rho_e

Electron density.
```

• real(kind=dp) parameters::e_kinetic_e

Total electron kinetic energy.

• real(kind=dp) parameters::e_coulomb_e

Total electron-electron potential energy from Coulomb interaction.

• real(kind=dp) parameters::e_coulomb_pe

Total proton-electron potential energy from Coulomb interaction.

4.19.1 Detailed Description

4.19.2 Variable Documentation

```
4.19.2.1 e_coulomb_e
real(kind=dp) parameters::e_coulomb_e
```

Total electron-electron potential energy from Coulomb interaction.

```
4.19.2.2 e_coulomb_pe
real(kind=dp) parameters::e_coulomb_pe
```

Total proton-electron potential energy from Coulomb interaction.

```
4.19.2.3 e_kinetic_e
real(kind=dp) parameters::e_kinetic_e
```

Total electron kinetic energy.

```
4.19.2.4 rho_e
real(kind=dp) parameters::rho_e
```

Electron density.

Chapter 5

Module Documentation

5.1 pairing Module Reference

Module to hold routines for carrying out Strutinsky correction.

Functions/Subroutines

• subroutine calc_e_pair ()

Subroutine to calculate the pairing energy for the WS cell, using the method specified in "input.in".

real(kind=dp) function calc_gap (r, rhon, rhop, fq, mu)

Function to calculate the pairing gap in infinite neutron matter, for specified density and effective mass.

• subroutine bcs_protons ()

Subroutine to perform BCS for protons.

real(kind=dp) function calc_bcs_num_p (mu_p)

Function to solve gap equation at given chemical potential "mu_p", returning the (BCS) number of protons.

real(kind=dp) function interazchamelanalyt (rhon, rhop, hbm, itz)

Function to calculate the interaction strength for the effective contact pairing force. Modified by M. Shelley.

real(kind=dp) function llambda (x)

Function to calculate the pairing cutoff for the effective contact pairing force.

real(kind=dp) function delta_parametric (kf, YY, itz, xk0)

Function to calculate the pairing gap using the analytical BSk expression. Modified by M. Shelley.

5.1.1 Detailed Description

Module to hold routines for carrying out Strutinsky correction.

Author

M. Shelley

5.1.2 Function/Subroutine Documentation

5.1.2.1 bcs_protons()

```
subroutine pairing::bcs_protons ( )
```

Subroutine to perform BCS for protons.

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.1.2.2 calc_bcs_num_p()

Function to solve gap equation at given chemical potential "mu_p", returning the (BCS) number of protons.

Author

M. Shelley, A. Pastore

Parameters

in	mu⊷	Proton chemical potential
	_p	

Here is the call graph for this function:

Here is the caller graph for this function:

5.1.2.3 calc_e_pair()

```
subroutine pairing::calc_e_pair ( )
```

Subroutine to calculate the pairing energy for the WS cell, using the method specified in "input.in".

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.1.2.4 calc_gap()

```
real(kind=dp) function pairing::calc_gap (
    real(kind=dp), intent(in) r,
    real(kind=dp), intent(in) rhon,
    real(kind=dp), intent(in) rhop,
    real(kind=dp), intent(in) fq,
    real(kind=dp), intent(in) mu)
```

Function to calculate the pairing gap in infinite neutron matter, for specified density and effective mass.

Author

M. Shelley

Parameters

in	r	Radius
in	rhon	Neutron density
in	rhop	Proton density
in	fq Effective mass	
in	ти	Effective chemical potential

Here is the call graph for this function:

Here is the caller graph for this function:

```
pairing::calc_gap pairing::calc_e_pair total_energy_with_corrections etf
```

5.1.2.5 delta_parametric()

```
real(kind=dp), intent(in) YY,
integer, intent(in) itz,
real(kind=dp), intent(in) xk0)
```

Function to calculate the pairing gap using the analytical BSk expression. Modified by M. Shelley.

Author

A. Pastore, M. Shelley

Parameters

in	kf	Fermi momentum
in	YY	Neutron-proton composition
in	itz	Isospin
in	xk0	"Average" fermi momentum

Here is the caller graph for this function:

5.1.2.6 interazchamelanalyt()

```
real(kind=dp) function pairing::interazchamelanalyt (
    real(kind=dp), intent(in) rhon,
    real(kind=dp), intent(in) rhop,
    real(kind=dp), intent(in) hbm,
    integer, intent(in) itz)
```

Function to calculate the interaction strength for the effective contact pairing force. Modified by M. Shelley.

Author

A. Pastore, M. Shelley

Parameters

in	rhon	Neutron density
in	rhop	Proton density
in	hbm	$\frac{\hbar^2}{2m^*}$
in	itz	Isospin

Here is the call graph for this function:

Here is the caller graph for this function:

5.1.2.7 llambda()

Function to calculate the pairing cutoff for the effective contact pairing force.

Author

A. Pastore

Parameters

in	X	(DDCI cutoff) / (Fermi energy)

Here is the caller graph for this function:

5.2 parameters Module Reference

Module to hold global parameters and variables.

Functions/Subroutines

• subroutine force_initialise ()

Subroutine to initialise Skyrme force parameters with values for a given force specified in 'input.dat'.

Variables

```
• integer, parameter dp = selected real kind(15, 300)
     Precision.

    real(kind=dp), parameter pi = 3.1415926535897932 dp

• real(kind=dp), parameter hbar2 2m = 20.73553 dp
      rac{\hbar^2}{2m} for SLy forces
• real(kind=dp), parameter rho0 = 0.16_dp
     \rho_0, nuclear saturation density [fm^{-3}]

    real(kind=dp), parameter e2 = 1.439978408596513_dp

     e^2, electric charge squared [MeV \cdot fm]
real(kind=dp), parameter mec2 = 0.51099895_dp
     Electron rest mass [MeV/c^2].

    real(kind=dp), parameter mnc2 = 939.56542052 dp

    real(kind=dp), parameter mpc2 = 938.27208816_dp

• real(kind=dp), parameter hbarc = 197.3269804_dp
real(kind=dp), parameter mamuc2 = 931.49386_dp
     Atomic mass unit u.
real(kind=dp), parameter xmh = 7.28896940_dp
real(kind=dp), parameter rydb = 13.6056981e-6_dp
     Rydberg constant.

    real(kind=dp), parameter xmp = xmh - mec2 + rydb

• real(kind=dp), parameter xmn = 8.07132281 dp

    real(kind=dp), parameter fr12 = 1. dp/2

    real(kind=dp), parameter fr14 = 1._dp/4

    real(kind=dp), parameter fr18 = 1. dp/8

real(kind=dp), parameter fr1_16 = 1._dp/16

 real(kind=dp), parameter fr1 32 = 1. dp/32

    real(kind=dp), parameter fr13 = 1._dp/3

    real(kind=dp), parameter fr16 = 1._dp/6

 real(kind=dp), parameter fr1 12 = 1. dp/12

real(kind=dp), parameter fr1_24 = 1._dp/24

 real(kind=dp), parameter fr1 36 = 1. dp/36

    real(kind=dp), parameter fr23 = 2._dp/3

• real(kind=dp), parameter fr29 = 2._dp/9

    real(kind=dp), parameter fr32 = 3. dp/2

real(kind=dp), parameter fr34 = 3._dp/4

 real(kind=dp), parameter fr35 = 3. dp/5
```

real(kind=dp), parameter fr38 = 3._dp/8

```
real(kind=dp), parameter fr3_10 = 3._dp/10

    real(kind=dp), parameter fr43 = 4._dp/3

 real(kind=dp), parameter fr53 = 5._dp/3

• real(kind=dp), parameter fr54 = 5._dp/4
• real(kind=dp), parameter fr83 = 8. dp/3

 real(kind=dp), parameter fr260 3 = 260. dp/3

 real(kind=dp) w0

      Spin-orbit strength W_0.

 real(kind=dp) t0

    real(kind=dp) x0

 real(kind=dp) t1

 real(kind=dp) x1

• real(kind=dp) t2

    real(kind=dp) x2

 real(kind=dp) t3

    real(kind=dp) x3

    real(kind=dp) sigma

    real(kind=dp), dimension(0:1) hbar2_2m_q

      rac{\hbar^2}{2m} with isospin dependence, as required by BSk forces
· logical j2 terms
      Whether functional uses \mathbf{J}^2 terms.
• real(kind=dp) b1

    real(kind=dp) b2

 real(kind=dp) b3

 real(kind=dp) b4

• real(kind=dp) b5
• real(kind=dp) b6

 real(kind=dp) b7

 real(kind=dp) b8

    real(kind=dp) b9

 real(kind=dp) b10

 real(kind=dp) b11

 real(kind=dp) b12

• real(kind=dp) b13

    real(kind=dp) alpha

• real(kind=dp) beta

    real(kind=dp) gamma

real(kind=dp) t4

    real(kind=dp) x4

 real(kind=dp) t5

• real(kind=dp) x5

    real(kind=dp) fn pos

real(kind=dp) fn_neg
real(kind=dp) fp_pos
real(kind=dp) fp_neg
• real(kind=dp) epsilon lambda

    real(kind=dp), dimension(:), allocatable r

      Mesh for r.
real(kind=dp), dimension(:,:), allocatable rho_q
• real(kind=dp), dimension(:,:), allocatable del_rho_q

    real(kind=dp), dimension(:,:), allocatable del2 rho q

    real(kind=dp), dimension(:), allocatable rho_t

• real(kind=dp), dimension(:), allocatable del rho t
• real(kind=dp), dimension(:), allocatable del2_rho_t
```

```
    real(kind=dp), dimension(:,:), allocatable f_q

    real(kind=dp), dimension(:,:), allocatable del_f_q

    real(kind=dp), dimension(:,:), allocatable del2_f_q

    real(kind=dp), dimension(:,:), allocatable w_q

    real(kind=dp), dimension(:,:), allocatable div w q

    real(kind=dp), dimension(:,:), allocatable u q

    real(kind=dp), dimension(:,:), allocatable j 2 q

    real(kind=dp), dimension(:,:), allocatable j_q

    real(kind=dp), dimension(:,:), allocatable del_j_q

    real(kind=dp), dimension(:,:), allocatable div j 2 q

    real(kind=dp), dimension(:,:), allocatable div_j_q

• real(kind=dp), dimension(:,:), allocatable tau tf q

    real(kind=dp), dimension(:,:), allocatable tau_2_l_q

• real(kind=dp), dimension(:,:), allocatable tau_2_nl_q

    real(kind=dp), dimension(:,:), allocatable tau_etf_q

    real(kind=dp), dimension(:), allocatable j t

    real(kind=dp), dimension(:), allocatable del j t

    real(kind=dp), dimension(:), allocatable div_j_t

    real(kind=dp), dimension(:), allocatable tau_etf_t

• real(kind=dp), dimension(:), allocatable e_density_field

    real(kind=dp), dimension(:), allocatable e_density_sky

    real(kind=dp), dimension(:), allocatable v c di

    real(kind=dp), dimension(:), allocatable v c ex

    real(kind=dp), dimension(:), allocatable e density c di

    real(kind=dp), dimension(:), allocatable e_density_c_ex

    real(kind=dp), dimension(:), allocatable v_c_pe

    real(kind=dp), dimension(:,:,:), allocatable tau_2_cont_q

    real(kind=dp), dimension(:), allocatable rho_ch

      Charge density.

    real(kind=dp), dimension(:,:), allocatable d2_rho_q

    real(kind=dp), dimension(:,:), allocatable d3_rho_q

    real(kind=dp), dimension(:,:), allocatable d4_rho_q

    real(kind=dp), dimension(:,:), allocatable d2 f q

    real(kind=dp), dimension(:,:), allocatable d3_f_q

    real(kind=dp), dimension(:,:), allocatable d4 f q

    real(kind=dp), dimension(:,:), allocatable a_q

    real(kind=dp), dimension(:,:), allocatable d1_a_q

    real(kind=dp), dimension(:,:), allocatable d2_a_q

    real(kind=dp), dimension(:,:), allocatable d3_a_q

    real(kind=dp), dimension(:,:), allocatable d4_a_q

    real(kind=dp), dimension(:,:), allocatable tau_4_no_spin_q

    real(kind=dp), dimension(:,:), allocatable tau_4_so_q

    real(kind=dp), dimension(:,:), allocatable j 4 q

    real(kind=dp), dimension(:,:), allocatable div j 4 q

    real(kind=dp), dimension(:,:,:), allocatable tau_4_cont_q

    real(kind=dp), dimension(0:1) n_q

      Number of neutrons and protons.

 real(kind=dp) n t

      Total number of particles.

    real(kind=dp) e field

      Field energy.

    real(kind=dp) e skyrme

      Skyrme energy.

    real(kind=dp), dimension(0:1) e_kinetic_q
```

```
Kinetic energy for neutron and protons.
• real(kind=dp) e_kinetic_t
      Total kinetic energy.
• real(kind=dp) e so
     Spin-orbit energy.
real(kind=dp) e_coulomb_di
     Direct Coulomb energy.
• real(kind=dp) e coulomb ex
      Exhange Coulomb energy.
• real(kind=dp) e_coulomb
      Total Coulomb energy.
real(kind=dp) e_total
      Total energy.
• real(kind=dp), dimension(0:1) mu_q
     Neutron and proton chemical potential.
real(kind=dp) mu_e
      Electron chemical potential.
real(kind=dp) mu_c
      Coulomb interaction contribution to electron chemical potential.

    real(kind=dp) delta mu

      Overall chemical potential (beta-equilibrium condition)
• real(kind=dp) pressure_nucl
     Nuclear pressure.
• real(kind=dp) pressure_e
      Electron pressure.
• real(kind=dp) pressure_ex
      Coulomb exchange pressure.
real(kind=dp) pressure_t
      Total pressure.
· integer run mode
     Mode to run code in (normal, test)

    logical verbose

      Whether to print all extra messages about run.
• real(kind=dp) dr
     Mesh spacing of r(fm).

    logical profile_r_max

      Whether to take "r_max" from "r_ws".
• real(kind=dp) r_max
     Max value of r(fm).

    logical specify_n

      Whether to specify "n" instead of "dr".

    integer n

     Number of mesh points.

    integer force

     Force to use.

    integer etf_order

      Order at which to calculate kinetic energy densities.

    logical coulomb_on

      Use Coulomb interaction or not.
• logical electrons_on
```

Add electrons.

integer nmaxstate

Number of states that can be stored.

integer Imax

Maximum angular momentum of states to find.

logical calc_chem_pots

Calculate chemical potentials.

logical, dimension(0:1) strutinsky_on

Use Strutinsky Integral (SI) correction for neutrons and protons.

real(kind=dp) strut_r_max

Max value of r to use for box for single particle states (fm).

logical emax0_mod

Whether to modify "emax0" to always = 0.

integer neutron_pairing

Type of pairing calculation to perform for neutrons.

logical proton_bcs

Whether to do BCS for protons.

real(kind=dp) pair qp cut

Cut-off for quasiparticle energy for solving gap equation.

logical smooth_qp_cut

Whether to use smooth cut-off on quasiparticle energy.

real(kind=dp) pair k max

Maximum momentum for integral in gap equation.

real(kind=dp) pair_v0

Interaction strength parameter.

real(kind=dp) pair_eta

Interaction parameter eta.

real(kind=dp) pair_alpha

Interaction parameter alpha.

• real(kind=dp) pair_tol

Gap equation self-consistency tolerance.

real(kind=dp) pair_mix

Mix of previous iteration in gap equation self-consistency loop.

• real(kind=dp) pair_dk

Step size in integral in gap equation.

real(kind=dp) pair_del_init

Initial guess for pairing gap.

integer pair_max_iters

Maximum iterations for gap equation self-consistency loop.

real(kind=dp) pair_num_tol

BCS number equation self-consistency tolerance.

- real(kind=dp), dimension(5) n_profile
- real(kind=dp), dimension(5) p_profile
- real(kind=dp) num_n
- integer num_p
- real(kind=dp) r_ws
- character(18), dimension(10) n_floats = (/'(1(es24.16e3,1x))','(2(es24.16e3,1x))','(3(es24.16e3,1x))', '(4(es24.16e3,1x))','(5(es24.16e3,1x))','(6(es24.16e3,1x))','(7(es24.16e3,1x))', '(8(es24.16e3,1x))','(9(es24.16e3,1x))','(10(es24.16e3,1x))','(10(es24.16e3,1x))','(10(e
- character(27) info_format = '(a27,1x,a1,1x,es24.16e3)'
- character(8) force string

```
Separating output.

    character(1), dimension(0:1), parameter iso_string = (/'n','p'/)

     Isospin labels.

    character(4), parameter space4 = ' '

      Whitespace of length 4.

    integer strut n

    real(kind=dp), dimension(:,:), allocatable dhmen

• real(kind=dp), dimension(:,:), allocatable d2hmen

    real(kind=dp), dimension(:,:), allocatable hb2m

    real(kind=dp), dimension(:,:), allocatable vpot

• real(kind=dp), dimension(:,:), allocatable vso
• real(kind=dp), dimension(0:1) ecut
      Cutoff energies for neutrons and protons.

    real(kind=dp), dimension(:,:), allocatable ps

     Storage for single particle wavefunctions.
· integer nnst
     Number of states found within cutoff energy.
• integer, dimension(:), allocatable jjp
     Storage for J of states found.

    integer, dimension(:), allocatable lp

     Storage for L of states found.
• real(kind=dp), dimension(:), allocatable ep
     Storage for energy of states found.

    real(kind=dp), dimension(0:1) e_sc_q

     Storage for shell correction energies.
• real(kind=dp) e sc t
     Storage for total shell correction energy.

    real(kind=dp), dimension(:), allocatable pair_gap_n

     Neutron pairing gap.

    real(kind=dp), dimension(:), allocatable delta_n

     Neutron pairing field.

    real(kind=dp), dimension(:), allocatable pair_gap_p

     Proton pairing gap.

    real(kind=dp), dimension(:), allocatable delta p

     Proton pairing field.

    real(kind=dp), dimension(:), allocatable rho_p_bcs

     Proton density (from wavefunctions)

    real(kind=dp), dimension(:), allocatable rho_anom_p_bcs

     Anomalous density.
• real(kind=dp), dimension(:), allocatable strength_bcs
     Interaction strength for protons.

    real(kind=dp), dimension(:), allocatable occ v

     Particle occupation probabilities.

    real(kind=dp), dimension(:), allocatable occ u

     Hole occupation probabilities.

    real(kind=dp), dimension(:), allocatable e_qp_p

     Quasiparticle energies.
real(kind=dp) num_p_bcs
     Number of protons calculated from occupations.
```

real(kind=dp) e_pair_bcs

BCS pairing energy.

• real(kind=dp), dimension(0:1) e_pair_q

Storage for pairing condensation energies.

• real(kind=dp) e_pair_t

Storage for total pairing condensation energy.

real(kind=dp) rho_e

Electron density.

real(kind=dp) e_kinetic_e

Total electron kinetic energy.

• real(kind=dp) e_coulomb_e

Total electron-electron potential energy from Coulomb interaction.

• real(kind=dp) e_coulomb_pe

Total proton-electron potential energy from Coulomb interaction.

5.2.1 Detailed Description

Module to hold global parameters and variables.

Author

M. Shelley

5.2.2 Function/Subroutine Documentation

5.2.2.1 force_initialise()

```
subroutine parameters::force_initialise ( )
```

Subroutine to initialise Skyrme force parameters with values for a given force specified in 'input.dat'.

Author

M. Shelley

Here is the caller graph for this function:

5.2.3 Variable Documentation

```
5.2.3.1 a_q
real(kind=dp), dimension(:,:), allocatable parameters::a_q
5.2.3.2 d1_a_q
real(kind=dp), dimension(:,:), allocatable parameters::d1_a_q
5.2.3.3 d2_a_q
real(kind=dp), dimension(:,:), allocatable parameters::d2_a_q
5.2.3.4 d2_f_q
real(kind=dp), dimension(:,:), allocatable parameters::d2_f_q
5.2.3.5 d2_rho_q
real(kind=dp), dimension(:,:), allocatable parameters::d2_rho_q
5.2.3.6 d3 a q
real(kind=dp), dimension(:,:), allocatable parameters::d3_a_q
5.2.3.7 d3_f_q
real(kind=dp), dimension(:,:), allocatable parameters::d3_f_q
5.2.3.8 d3_rho_q
real(kind=dp), dimension(:,:), allocatable parameters::d3_rho_q
```

```
5.2.3.9 d4_a_q
real(kind=dp), dimension(:,:), allocatable parameters::d4_a_q
5.2.3.10 d4_f_q
5.2.3.11 d4_rho_q
real(kind=dp), dimension(:,:), allocatable parameters::d4_rho_q
5.2.3.12 div_j_4_q
\verb|real(kind=dp)|, | \verb|dimension(:,:)|, | \verb|allocatable|| parameters:: \verb|div_j_4_q||
5.2.3.13 dp
integer, parameter parameters::dp = selected_real_kind(15, 300)
Precision.
5.2.3.14 j_4_q
real(kind=dp), dimension(:,:), allocatable parameters::j_4_q
5.2.3.15 tau_4_cont_q
```

real(kind=dp), dimension(:,:,:), allocatable parameters::tau_4_cont_q

```
5.2.3.16 tau_4_no_spin_q
real(kind=dp), dimension(:,:), allocatable parameters::tau_4_no_spin_q
5.2.3.17 tau_4_so_q
real(kind=dp), dimension(:,:), allocatable parameters::tau_4_so_q
```

5.3 routines Module Reference

Module to hold main routines: densities, energies.

Functions/Subroutines

- integer function str2int (string)
- subroutine allocate_arrays ()

Subroutine to allocate arrays for all densities and effective masses, and for their derivatives.

subroutine initialise_uniform_mesh ()

Subroutine to calculate number of mesh points for a uniform grid, allocate array for r, and then populate r with the mesh points.

subroutine deallocate_mesh ()

Subroutine to deallocate array for r.

• subroutine deallocate arrays ()

Subroutine to deallocate arrays for all densities and effective masses, and for their derivatives.

real(kind=dp) function calc_rho_q (rhoqgas, rhoqliq, rq, aq, gammaq, r)

Function to calculate the neutron or proton density at a given radius r, using supplied input parameters.

• subroutine calc_f_q (rhot, rhoq, q, fq)

Subroutine to calculate the effective mass ratio $f_q=\frac{m}{m_q^*}$ for neutrons or protons, for standard Skyrme or for BSk forces

• subroutine calc_w_q (delrho, delrhoq, Wq)

Function to calculate the spin-orbit field \mathbf{W}_q for neutrons or protons.

subroutine calc_tau_tf (rhoq, tauTF)

Function to calculate the zeroth-order contribution to the kinetic energy density for neutrons or protons.

• subroutine calc_tau_2_l (rhoq, delrhoq, del2rhoq, tau2Lq, t2contq)

Function to calculate the local second-order contribution to the kinetic energy density for neutrons or protons.

• subroutine calc_tau_2_nl (rhoq, delrhoq, fq, delfq, del2fq, Wq, q, tau2NLq, t2contq)

Subroutine to calculate the non-local second-order contribution to the kinetic energy density for neutrons or protons.

• subroutine calc_tau_4_no_spin (rhoq, d1rhoq, d2rhoq, d3rhoq, d4rhoq, fq, d1fq, d2fq, d3fq, d4fq, tau4nosping, t4contq)

Subroutine to calculate the fourth-order contributions to the kinetic energy density (without spin-orbit contributions) tau_q for neutrons or protons.

- subroutine calc_tau_4_so (rhoq, d1rhoq, fq, d1fq, d2fq, d1Aq, d2Aq, d3Aq, q, tau_4_so_q, t4contq)
 - Subroutine to calculate the fourth-order contributions to the kinetic energy density (spin-orbit contributions) \mathbf{tau}_q for neutrons or protons.
- subroutine calc_j_2_q (rhoq, Wq, fq, q, J2q)

Subroutine to calculate the second-order contributions to the spin current density J_q for neutrons or protons.

subroutine calc_j_4_q (rhoq, d1rhoq, fq, d1fq, d2fq, d1Aq, d2Aq, d3Aq, q, J4q)

Subroutine to calculate the fourth-order contributions to the spin current density \mathbf{J}_q for neutrons or protons.

subroutine calc_div_j_2_q (rhoq, d1rhoq, fq, d1fq, d1Aq, d2Aq, q, divJ2q)

Subroutine to calculate the second-order contributions to the divergence of the current density \mathbf{J}_q for neutrons or protons.

• subroutine calc_div_j_4_q (rhoq, d1rhoq, d2rhoq, fq, d1fq, d2fq, d3fq, d1Aq, d2Aq, d3Aq, d4Aq, q, divJ4q)

Subroutine to calculate the fourth-order contributions to the divergence of the current density \mathbf{J}_q for neutrons or protons.

• real(kind=dp) function calc_u_q (rhot, rhon, rhop, delrhot, delrhon, delrhop, del2rhot, del2rhon, del2rhop, taut, taun, taup, divJt, divJq, q)

Function to calculate the central potential U_q for neutrons or protons, for standard Skyrme or for BSk forces with extra terms

• subroutine eval_fields ()

Subroutine to evaluate matter density derivatives, and all fields: effective masses (and derivatives), spin-orbit fields, spin current densities (and derivatives)

subroutine eval tau etf ()

Subroutine to calculate the kinetic energy density τ_{ETF} with the (extended) Thomas-Fermi approximation at order specified by "etf_order".

• subroutine charge (rho, Neutr, Nprot, Ngrid1, del1, rhoch)

Subroutine to calculate the charge density from the matter densities. Modified by M. Shelley.

• subroutine eval_coulomb (prot_dens, calc_exchange)

Subroutine to evaluate the Coulomb potentials and energy densities, using either the proton or charge density.

• subroutine eval electrons ()

Subroutine to evaluate the proton-electron potential which contributes to U_q , all energy contributions, and the pressure, coming from a homogeneous electron gas. Also calculates the electron chemical potential.

subroutine eval_u_q ()

Subroutine to evaluate the central fields U_q .

subroutine eval skyrme energy density ()

Subroutine to evaluate the Skyrme energy density, after first separately evaluating the field energy density.

• subroutine pressure ()

Subroutine to calculate the nuclear contribution to the pressure, and then the total pressure.

subroutine calc particle number ()

Subroutine to calculate the number of particles in the Wigner-Seitz cell.

subroutine eval_ws_quantities ()

Subroutine to evaluate the various densities, fields, derivatives, energies, and particle numbers in the WS cell with densities rho_q .

• real(kind=dp) function calc_e_f_q (rhoq, fq, q)

Subroutine to evaluate the Fermi energy at a given density and effective mass, for neutrons or protons.

• subroutine d1 (n, h, f, df)

This subroutine computes the first derivative of function evaluated on the meshpoints 1,...,npt. The input is the function f with extrapolated values in -1, 0. Modified by M. Shelley.

• subroutine d2 (n, h, f, d2f)

This subroutine computes the second derivative of function evaluated on the meshpoints 1,...,npt. The input is the function f with extrapolated values in -1, 0. Modified by M. Shelley.

• subroutine lap sphe symm (f, df dr, d2f dr2)

Subroutine to carry out Laplacian in spherical symmetry.

subroutine d3 (f, d3f_dr3)

Subroutine to calculate third derivative of function f evaluated on evenly-spaced meshpoints from 1 to n. Works with extrapolated values in -2,-1,0. Uses 7-point stencil.

subroutine d4 (f, d4f_dr4)

Subroutine to calculate fourth derivative of function f evaluated on evenly-spaced meshpoints from 1 to n. Works with extrapolated values in -2,-1,0. Uses 7-point stencil.

subroutine extrapolate_back_3 (grid)

Subroutine to extrapolate back 3 points on the r mesh, to faciliate the calculation of first and second derivatives using a 5-point stencil. Values in grid start at 4, extrapolated values are put in elements 3,2,1. Coefficients come from solving 4th-order polynomial, assuming that f'(0) = 0, and f(-h) = f(h).

real(kind=dp) function ws integral (quantity, n max)

Function to integrate a density or field over the whole W-S cell, using Simpson's rule (+ Simpson's 3/8 rule if odd number of points)

• subroutine write densities ()

Subroutine to write neutron and proton densities to files.

subroutine write_fields ()

Subroutine to write neutron and proton fields to files.

• subroutine write_sp_states_p ()

Subroutine to write proton single particle energies to file, and extra details if BCS has been performed.

Variables

- integer file_unit_0
- integer file unit 1

Unit numbers for opening files.

5.3.1 Detailed Description

Module to hold main routines: densities, energies.

Author

M. Shelley

5.3.2 Function/Subroutine Documentation

```
5.3.2.1 allocate_arrays()
```

```
subroutine routines::allocate_arrays ( )
```

Subroutine to allocate arrays for all densities and effective masses, and for their derivatives.

Author

M. Shelley

5.3.2.2 calc_div_j_2_q()

Subroutine to calculate the second-order contributions to the divergence of the current density \mathbf{J}_q for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density	
in	d1rhoq	First derivative of neutron or proton density	
in	fq	Effective mass for protons or neutrons	
in	d1fq	First derivative of effective mass for neutrons or protons	
in	d1Aq	First derivative of "composite" neutron or proton density ${\cal A}_q$	
in	d2Aq	Second derivative of "composite" neutron or proton density ${\cal A}_q$	
in	q	Isospin	
in,out	divJ2q	Array for second-order contributions	

Here is the caller graph for this function:

5.3.2.3 calc_div_j_4_q()

```
real(kind=dp), dimension(1:n), intent(in) d1Aq, real(kind=dp), dimension(1:n), intent(in) d2Aq, real(kind=dp), dimension(1:n), intent(in) d3Aq, real(kind=dp), dimension(1:n), intent(in) d4Aq, integer, intent(in) q, real(kind=dp), dimension(1:n), intent(inout) divJ4q)
```

Subroutine to calculate the fourth-order contributions to the divergence of the current density \mathbf{J}_q for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in	d1rhoq	First derivative of neutron or proton density
in	d2rhoq	Second derivative of neutron or proton density
in	fq	Effective mass for protons or neutrons
in	d1fq	First derivative of effective mass for neutrons or protons
in	d2fq	Second derivative of effective mass for neutrons or protons
in	d3fq	Third derivative of effective mass for neutrons or protons
in	d1Aq	First derivative of "composite" neutron or proton density ${\cal A}_q$
in	d2Aq	Second derivative of "composite" neutron or proton density ${\cal A}_q$
in	d3Aq	Third derivative of "composite" neutron or proton density ${\cal A}_q$
in	d4Aq	Fourth derivative of "composite" neutron or proton density ${\cal A}_q$
in	q	Isospin
in,out	divJ4q	Array for fourth-order contributions

Here is the caller graph for this function:

5.3.2.4 calc_e_f_q()

Subroutine to evaluate the Fermi energy at a given density and effective mass, for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in	fn	Neutron or proton effective mass

Here is the caller graph for this function:

5.3.2.5 calc_f_q()

Subroutine to calculate the effective mass ratio $f_q=\frac{m}{m_q^*}$ for neutrons or protons, for standard Skyrme or for BSk forces.

Author

M. Shelley

Parameters

in	rhot	Total density
in	rhoq	Neutron or proton density
in	q	Isospin
in,out	fq	Neutron or proton effective mass

Here is the caller graph for this function:

5.3.2.6 calc_j_2_q()

Subroutine to calculate the second-order contributions to the spin current density ${f J}_q$ for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in	Wq	Spin-orbit field
in	fq	Effective mass for neutrons or protons
in	q	Isospin [in,out] J2q Array for second-order contributions

Here is the caller graph for this function:

```
routines::calc __2_q routines::eval_fields routines::eval_ws_quantities total_energy_with_corrections
```

5.3.2.7 calc_j_4_q()

```
real(kind=dp), dimension(1:n), intent(in) d1fq, real(kind=dp), dimension(1:n), intent(in) d2fq, real(kind=dp), dimension(1:n), intent(in) d1Aq, real(kind=dp), dimension(1:n), intent(in) d2Aq, real(kind=dp), dimension(1:n), intent(in) d3Aq, integer, intent(in) q, real(kind=dp), dimension(1:n), intent(inout) J4q)
```

Subroutine to calculate the fourth-order contributions to the spin current density \mathbf{J}_q for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in	d1rhoq	First derivative of neutron or proton density
in	fq	Effective mass for protons or neutrons
in	d1fq	First derivative of effective mass for neutrons or protons
in	d2fq	Second derivative of effective mass for neutrons or protons
in	d1Aq	First derivative of "composite" neutron or proton density ${\cal A}_q$
in	d2Aq	Second derivative of "composite" neutron or proton density ${\cal A}_q$
in	d3Aq	Third derivative of "composite" neutron or proton density ${\cal A}_q$
in	q	Isospin
in,out	J4q	Array for fourth-order contributions

Here is the caller graph for this function:

5.3.2.8 calc_particle_number()

```
subroutine routines::calc_particle_number ( )
```

Subroutine to calculate the number of particles in the Wigner-Seitz cell.

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.9 calc_rho_q()

```
real(kind=dp) function routines::calc_rho_q (
    real(kind=dp), intent(in) rhoqqas,
    real(kind=dp), intent(in) rhoqliq,
    real(kind=dp), intent(in) rq,
    real(kind=dp), intent(in) aq,
    real(kind=dp), intent(in) gammaq,
    real(kind=dp), intent(in) r)
```

Function to calculate the neutron or proton density at a given radius r, using supplied input parameters.

Author

M. Shelley

Parameters

in	rhoqgas	Asymptotic density in gas far from surface
in	rhoqliq	Asymptotic density in cluster far from surface
in	rq	Cluster radius
in	aq	Surface diffuseness
in	gammaq	Parameter allowing for "asymmetric surface"
in	r	Radius

Here is the caller graph for this function:

5.3.2.10 calc_tau_2_l()

Function to calculate the local second-order contribution to the kinetic energy density for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in	delrhoq	Gradient of proton or neutron density
in	del2rhoq	Laplacian of proton or neutron density
in,out	tau2Lq	Array for local second-order contributions
in,out	t2contq	Array for individual second-order contributions

Here is the caller graph for this function:

5.3.2.11 calc_tau_2_nl()

```
real(kind=dp), dimension(1:n), intent(in) delrhoq,
real(kind=dp), dimension(1:n), intent(in) fq,
real(kind=dp), dimension(1:n), intent(in) delfq,
real(kind=dp), dimension(1:n), intent(in) del2fq,
real(kind=dp), dimension(1:n), intent(in) Wq,
integer, intent(in) q,
real(kind=dp), dimension(1:n), intent(inout) tau2NLq,
real(kind=dp), dimension(1:n,2:4), intent(inout) t2contq)
```

Subroutine to calculate the non-local second-order contribution to the kinetic energy density for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in	delrhoq	Gradient of neutron or proton density
in	fq	Effective mass for neutrons or protons
in	delfq	Gradient of effective mass for neutrons or protons
in	del2fq	Laplacian of effective mass for neutrons or protons
in	Wq	Spin-orbit field
in	q	Isospin
in,out	tau2NLq	Array for non-local second-order contributions
in,out	t2contq	Array for individual second-order contributions

Here is the caller graph for this function:

5.3.2.12 calc_tau_4_no_spin()

```
real(kind=dp), dimension(1:n), intent(inout) tau4nospinq,
real(kind=dp), dimension(1:n,1:3), intent(inout) t4contq)
```

Subroutine to calculate the fourth-order contributions to the kinetic energy density (without spin-orbit contributions) tau_a for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in	d1rhoq	First derivative of neutron or proton density
in	d2rhoq	Second derivative of neutron or proton density
in	d3rhoq	Third derivative of neutron or proton density
in	d4rhoq	Fourth derivative of neutron or proton density
in	fq	Effective mass for neutrons or protons
in	d1fq	First derivative of effective mass for neutrons or protons
in	d2fq	Second derivative of effective mass for neutrons or protons
in	d3fq	Third derivative of effective mass for neutrons or protons
in	d4fq	Fourth derivative of effective mass for neutrons or protons
in,out	tau4nospinq	Array for fourth-order contributions (no spin-orbit)
in,out	t4contq	Array for individual fourth-order contributions

Here is the caller graph for this function:

5.3.2.13 calc_tau_4_so()

```
subroutine routines::calc_tau_4_so (
    real(kind=dp), dimension(1:n), intent(in) rhoq,
    real(kind=dp), dimension(1:n), intent(in) d1rhoq,
    real(kind=dp), dimension(1:n), intent(in) fq,
    real(kind=dp), dimension(1:n), intent(in) d1fq,
    real(kind=dp), dimension(1:n), intent(in) d2fq,
    real(kind=dp), dimension(1:n), intent(in) d2Aq,
    real(kind=dp), dimension(1:n), intent(in) d3Aq,
    integer, intent(in) q,
    real(kind=dp), dimension(1:n), intent(inout) tau_4_so_q,
    real(kind=dp), dimension(1:n), intent(inout) t4contq)
```

Subroutine to calculate the fourth-order contributions to the kinetic energy density (spin-orbit contributions) \mathbf{tau}_q for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in	d1rhoq	First derivative of neutron or proton density
in	fq	Effective mass for protons or neutrons
in	d1fq	First derivative of effective mass for neutrons or protons
in	d2fq	Second derivative of effective mass for neutrons or protons
in	d1Aq	First derivative of "composite" neutron or proton density ${\cal A}_q$
in	d2Aq	Second derivative of "composite" neutron or proton density ${\cal A}_q$
in	d3Aq	Third derivative of "composite" neutron or proton density ${\cal A}_q$
in	q	Isospin
in,out	tau_4_so⇔	Array for fourth-order contributions (spin- orbit)
	_q	
in,out	t4contq	Array for individual fourth-order contributions

Here is the caller graph for this function:

5.3.2.14 calc_tau_tf()

Function to calculate the zeroth-order contribution to the kinetic energy density for neutrons or protons.

Author

M. Shelley

Parameters

in	rhoq	Neutron or proton density
in,out	tauTF	Array for zeroth-order contributions

Here is the caller graph for this function:

5.3.2.15 calc_u_q()

```
real(kind=dp) function routines::calc_u_q (
            real(kind=dp), intent(in) rhot,
             real(kind=dp), intent(in) rhon,
             real(kind=dp), intent(in) rhop,
             real(kind=dp), intent(in) delrhot,
             real(kind=dp), intent(in) delrhon,
             real(kind=dp), intent(in) delrhop,
             real(kind=dp), intent(in) del2rhot,
             real(kind=dp), intent(in) del2rhon,
             real(kind=dp), intent(in) del2rhop,
             real(kind=dp), intent(in) taut,
             real(kind=dp), intent(in) taun,
             real(kind=dp), intent(in) taup,
             real(kind=dp), intent(in) divJt,
             real(kind=dp), intent(in) divJq,
             integer, intent(in) q)
```

Function to calculate the central potential U_q for neutrons or protons, for standard Skyrme or for BSk forces with extra terms.

Author

M. Shelley

Parameters

in	rhot	Total density
in	rhon	Neutron density
in	rhop	Proton density
in	delrhot	First derivative of total density
in	delrhon	First derivative of neutron density
in	delrhop	First derivative of proton density
in	del2rhot	Laplacian of total density
in	del2rhon	Laplacian of neutron density
in	del2rhop	Laplacian of proton density
in	taut	Total kinetic density
in	taun	Neutron kinetic density
in	taup	Proton kinetic density
in	divJt	Divergence of total spin current density
in	divJq	Divergence of proton or neutron spin current density
in	q	Isospin

Generated by Doxygen

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.16 calc_w_q()

Function to calculate the spin-orbit field \mathbf{W}_q for neutrons or protons.

Author

M. Shelley

Parameters

in	delrho	Gradient of total density
in	delrhoq	Gradient of neutron or proton density
in,out	Wq	Array for spin-orbit field

5.3.2.17 charge()

Subroutine to calculate the charge density from the matter densities. Modified by M. Shelley.

Author

A. Pastore, M. Shelley

Parameters

in	rho	Neutron and proton densities
in	Neutr	Number of neutrons
in	Nprot	Number of protons
in	Ngrid1	Number of mesh points
in	del1	Step size
in,out	rhoch	Array for charge density

Here is the caller graph for this function:

5.3.2.18 d1()

```
subroutine routines::d1 (
    integer, intent(in) n,
    real(kind=dp), intent(in) h,
    real(kind=dp), dimension(-1:n), intent(in) f,
    real(kind=dp), dimension(1:n), intent(inout) df)
```

This subroutine computes the first derivative of function evaluated on the meshpoints 1,...,npt. The input is the function f with extrapolated values in -1, 0. Modified by M. Shelley.

Author

A. Pastore, M. Shelley

Parameters

in	n	Number of meshpoints	
in	f	Input function (1:n) with extrapolated values in -1,0	
in	h	Step size	
in, out	df	Array for first derivatives	

Here is the caller graph for this function:

5.3.2.19 d2()

```
subroutine routines::d2 (
          integer, intent(in) n,
          real(kind=dp), intent(in) h,
          real(kind=dp), dimension(-1:n), intent(in) f,
          real(kind=dp), dimension(1:n), intent(inout) d2f)
```

This subroutine computes the second derivative of function evaluated on the meshpoints 1,...,npt. The input is the function f with extrapolated values in -1, 0. Modified by M. Shelley.

Author

A. Pastore, M. Shelley

Parameters

in	n	Number of meshpoints	
in	f	Input function (1:n) with extrapolated values in -1,0	
in	h	Step size	
in,out	d2f	Array for second derivatives	

5.3.2.20 d3()

```
subroutine routines::d3 (  real(kind=dp), \ dimension(-2:n), \ intent(in) \ f, \\ real(kind=dp), \ dimension(1:n), \ intent(inout) \ d3f\_dr3 \ )
```

Subroutine to calculate third derivative of function f evaluated on evenly-spaced meshpoints from 1 to n. Works with extrapolated values in -2,-1,0. Uses 7-point stencil.

Author

M. Shelley

Parameters

in	f	Input function (1:n) with extrapolated values in -2,-1,0
in,out	d3f_dr3	Array for third derivative

Here is the caller graph for this function:

5.3.2.21 d4()

```
subroutine routines::d4 (  real(kind=dp), \; dimension(-2:n), \; intent(in) \; f, \\ real(kind=dp), \; dimension(1:n), \; intent(inout) \; d4f\_dr4 \; )
```

Subroutine to calculate fourth derivative of function f evaluated on evenly-spaced meshpoints from 1 to n. Works with extrapolated values in -2,-1,0. Uses 7-point stencil.

Author

M. Shelley

Parameters

in	f	Input function (1:n) with extrapolated values in -2,-1,0
in,out	d4f_dr4	Array for fourth derivative

Here is the caller graph for this function:

5.3.2.22 deallocate_arrays()

```
subroutine routines::deallocate_arrays ( )
```

Subroutine to deallocate arrays for all densities and effective masses, and for their derivatives.

Author

M. Shelley

Here is the caller graph for this function:

5.3.2.23 deallocate_mesh()

```
subroutine routines::deallocate_mesh ( )
```

Subroutine to deallocate array for r.

Author

M. Shelley

5.3.2.24 eval_coulomb()

Subroutine to evaluate the Coulomb potentials and energy densities, using either the proton or charge density.

Author

M. Shelley

Parameters

in	prot_dens	Density to use (proton or charge)
in	calc_exchange	Whether to calculate exchange potential

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.25 eval_electrons()

```
subroutine routines::eval_electrons ( )
```

Subroutine to evaluate the proton-electron potential which contributes to U_q , all energy contributions, and the pressure, coming from a homogeneous electron gas. Also calculates the electron chemical potential.

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.26 eval_fields()

```
subroutine routines::eval_fields ( )
```

Subroutine to evaluate matter density derivatives, and all fields: effective masses (and derivatives), spin-orbit fields, spin current densities (and derivatives)

Author

M. Shelley

Here is the call graph for this function:

5.3.2.27 eval_skyrme_energy_density()

```
subroutine routines::eval_skyrme_energy_density ( )
```

Subroutine to evaluate the Skyrme energy density, after first separately evaluating the field energy density.

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.28 eval_tau_etf()

```
subroutine routines::eval_tau_etf ( )
```

Subroutine to calculate the kinetic energy density τ_{ETF} with the (extended) Thomas-Fermi approximation at order specified by "etf_order".

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:


```
5.3.2.29 eval_u_q()
```

subroutine routines::eval_u_q () $\,$

Subroutine to evaluate the central fields \mathcal{U}_q .

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.30 eval_ws_quantities()

```
subroutine routines::eval_ws_quantities ( ) \,
```

Subroutine to evaluate the various densities, fields, derivatives, energies, and particle numbers in the WS cell with densities rho_q .

Author

M. Shelley

Here is the call graph for this function:

5.3.2.31 extrapolate_back_3()

Subroutine to extrapolate back 3 points on the r mesh, to faciliate the calculation of first and second derivatives using a 5-point stencil. Values in grid start at 4, extrapolated values are put in elements 3,2,1. Coefficients come from solving 4th-order polynomial, assuming that f'(0) = 0, and f(-h) = f(h).

Author

M. Shelley

Parameters

in,out	grid	Array of quantity evaluated on r mesh, with 3 elements before $r = dr$
--------	------	--

Here is the caller graph for this function:

5.3.2.32 initialise_uniform_mesh()

```
subroutine routines::initialise_uniform_mesh ( )
```

Subroutine to calculate number of mesh points for a uniform grid, allocate array for r, and then populate r with the mesh points.

Author

M. Shelley

5.3.2.33 lap_sphe_symm()

```
subroutine routines::lap_sphe_symm (  real(kind=dp), \; dimension(-2:n), \; intent(in) \; f, \\ real(kind=dp), \; dimension(1:n), \; intent(in) \; df\_dr, \\ real(kind=dp), \; dimension(1:n), \; intent(inout) \; d2f\_dr2 \; )
```

Subroutine to carry out Laplacian in spherical symmetry.

Author

M. Shelley

Parameters

in	f	Input function (1:n) with extrapolated values in -2,-1,0
in	df_dr	First derivative array
in, out	d2f_dr2	Array for Laplacian

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.34 pressure()

```
subroutine routines::pressure ( )
```

Subroutine to calculate the nuclear contribution to the pressure, and then the total pressure.

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.35 str2int()

5.3.2.36 write_densities()

```
subroutine routines::write_densities ( )
```

Subroutine to write neutron and proton densities to files.

Author

M. Shelley

Here is the caller graph for this function:

5.3.2.37 write_fields()

```
subroutine routines::write_fields ( )
```

Subroutine to write neutron and proton fields to files.

Author

M. Shelley

5.3.2.38 write_sp_states_p()

```
subroutine routines::write_sp_states_p ( )
```

Subroutine to write proton single particle energies to file, and extra details if BCS has been performed.

Author

M. Shelley

Here is the caller graph for this function:

5.3.2.39 ws_integral()

Function to integrate a density or field over the whole W-S cell, using Simpson's rule (+ Simpson's 3/8 rule if odd number of points)

Author

M. Shelley

Parameters

in	quantity	Array of quantity, evaluated on r mesh, to be integrated
in	n_max	Maximum mesh point in array for integration

Here is the caller graph for this function:

5.3.3 Variable Documentation

5.3.3.1 file_unit_0

integer routines::file_unit_0

5.3.3.2 file_unit_1

integer routines::file_unit_1

Unit numbers for opening files.

5.4 rspace Module Reference

Module to hold routines for calculating single particle energies. Written by A. Pastore, some variables and use statements modified by M. Shelley for integration into etf code.

Functions/Subroutines

- subroutine boundary (h, Lmax, Ecut, Nmaxt, PS, NNST, JJP, LP, EP, isospin)
- subroutine numerov (h, Nrmax, Emax0, N, L, J, EFINAL, U, V, VSO, HME, GI, Glprimo, no)

5.4.1 Detailed Description

Module to hold routines for calculating single particle energies. Written by A. Pastore, some variables and use statements modified by M. Shelley for integration into etf code.

Author

A. Pastore, M. Shelley

5.4.2 Function/Subroutine Documentation

5.4.2.1 boundary()

Here is the call graph for this function:

5.4.2.2 numerov()

Here is the caller graph for this function:

5.5 strutinsky Module Reference

Module to hold routines for carrying out Strutinsky correction.

Functions/Subroutines

• subroutine sp_states_setup ()

Subroutine to allocate + initialise variables needed in 'boundary' routine, and allocate arrays needed for BCS.

subroutine sp_states_deallocate ()

Subroutine to deallocate arrays needed in 'boundary' routine, and deallocate arrays needed for BCS.

• subroutine state_sort (sp_J, sp_L, sp_E, sp_wfns)

Subroutine to sort single particle states by their energies. Use bubble sort.

subroutine calc_e_sc (q)

Subroutine to calculate the Strutinsky shell correction energy for isospin q. First, sum over occupied states of s.p. energies. Second, integrate over W-S cell of smoothed ETF densities and fields.

• subroutine calc_e_sc_pair ()

Subroutine to calculate the Strutinsky shell correction energy for protons, using BCS occupation probabilities.

5.5.1 Detailed Description

Module to hold routines for carrying out Strutinsky correction.

Author

M. Shelley

5.5.2 Function/Subroutine Documentation

5.5.2.1 calc_e_sc()

```
subroutine strutinsky::calc_e_sc ( integer, intent(in) q)
```

Subroutine to calculate the Strutinsky shell correction energy for isospin q. First, sum over occupied states of s.p. energies. Second, integrate over W-S cell of smoothed ETF densities and fields.

Author

M. Shelley

Parameters

in	q	Isospin
in	q	Isospin

Here is the call graph for this function:

5.5.2.2 calc_e_sc_pair()

```
subroutine strutinsky::calc_e_sc_pair ( )
```

Subroutine to calculate the Strutinsky shell correction energy for protons, using BCS occupation probabilities.

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.5.2.3 sp_states_deallocate()

```
\verb|subroutine| strutinsky::sp\_states\_deallocate ( )\\
```

Subroutine to deallocate arrays needed in 'boundary' routine, and deallocate arrays needed for BCS.

Author

M. Shelley

5.5.2.4 sp_states_setup()

```
subroutine strutinsky::sp_states_setup ( )
```

Subroutine to allocate + initialise variables needed in 'boundary' routine, and allocate arrays needed for BCS.

Author

M. Shelley

Here is the caller graph for this function:

5.5.2.5 state_sort()

```
subroutine strutinsky::state_sort (
          integer, dimension(:), intent(inout) sp_J,
          integer, dimension(:), intent(inout) sp_L,
          real(kind=dp), dimension(:), intent(inout) sp_E,
          real(kind=dp), dimension(:,:), intent(inout) sp_wfns)
```

Subroutine to sort single particle states by their energies. Use bubble sort.

Author

M. Shelley

Parameters

in,out	sp_J	Array for (2)J's of single particle states
in,out	sp_L	Array for L's of single particle states
in,out	sp_E	Array for energies of single particle states
in,out	sp_wfns	Array for wavefunctions of single particle states

5.6 test Module Reference 101

Here is the caller graph for this function:

5.6 test Module Reference

Module to hold test routines.

Functions/Subroutines

• subroutine read_test_params ()

Subroutine to read from "test_input.in" parameters used for test routines.

• subroutine test densities ()

Subroutine to calculate the density profiles using sample parameters.

• subroutine test_density_derivs ()

Subroutine to test some derivatives of the total and individual densities.

• subroutine test eff mass ()

Subroutine to test effective masses fm^{-3} .

• subroutine test_kinetic_densities ()

Subroutine to test kinetic energy densities.

subroutine test_spin_current_densities ()

Subroutine to write spin current densities and spin-orbit fields to file.

· subroutine orders kinetic densities ()

Subroutine to write order-by-order comparison of kinetic densities to file.

subroutine test_central_potentials ()

Subroutine to write spin central potentials to file.

subroutine write_ws_cell_array_quantity (quantity)

Utility subroutine that can be called anywhere at any time, for writing a quantity (evaluated over WS cell) to file.

• subroutine test_calc_particle_number ()

Subroutine to test calculation of neutron and proton particle numbers.

subroutine test_calc_coulomb_energy ()

Subroutine to test calculation of Coulomb energy.

• subroutine test_calc_skyrme_energy ()

Subroutine to test calculation of Skyrme energy.

subroutine test_sp_energies ()

Subroutine to test calculation of single particle energies.

• subroutine test_si_correction ()

Subroutine to test the Strutinsky integral correction.

• subroutine bartel_bencheikh_benchmark ()

Subroutine to check different contributions to τ_{ETF} at 2nd order, for comparison with results in Bartel and Bencheikh (2002)

Variables

- integer file_unit
- integer file_unit_2

Unit numbers for opening files.

• integer sample_profile

Test density profile to use.

5.6.1 Detailed Description

Module to hold test routines.

Author

M. Shelley

5.6.2 Function/Subroutine Documentation

5.6.2.1 bartel_bencheikh_benchmark()

```
subroutine test::bartel_bencheikh_benchmark ( )
```

Subroutine to check different contributions to τ_{ETF} at 2nd order, for comparison with results in Bartel and Bencheikh (2002)

Author

M. Shelley

5.6 test Module Reference 103

5.6.2.2 orders_kinetic_densities()

```
subroutine test::orders_kinetic_densities ( )
```

Subroutine to write order-by-order comparison of kinetic densities to file.

Author

M. Shelley

Here is the caller graph for this function:

5.6.2.3 read_test_params()

```
subroutine test::read_test_params ( )
```

Subroutine to read from "test_input.in" parameters used for test routines.

Author

M. Shelley

5.6.2.4 test_calc_coulomb_energy()

```
subroutine test::test_calc_coulomb_energy ( )
```

Subroutine to test calculation of Coulomb energy.

Author

M. Shelley

Here is the caller graph for this function:

5.6.2.5 test_calc_particle_number()

```
subroutine test::test_calc_particle_number ( )
```

Subroutine to test calculation of neutron and proton particle numbers.

Author

M. Shelley

5.6 test Module Reference 105

5.6.2.6 test_calc_skyrme_energy()

```
subroutine test::test_calc_skyrme_energy ( )
```

Subroutine to test calculation of Skyrme energy.

Author

M. Shelley

Here is the caller graph for this function:

5.6.2.7 test_central_potentials()

```
subroutine test::test_central_potentials ( )
```

Subroutine to write spin central potentials to file.

Author

M. Shelley

5.6.2.8 test_densities()

```
subroutine test::test_densities ( )
```

Subroutine to calculate the density profiles using sample parameters.

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.6.2.9 test_density_derivs()

```
subroutine test::test_density_derivs ( )
```

Subroutine to test some derivatives of the total and individual densities.

Author

M. Shelley

5.6 test Module Reference 107

5.6.2.10 test_eff_mass()

```
subroutine test::test_eff_mass ( )
```

Subroutine to test effective masses fm^{-3} .

Author

M. Shelley

Here is the caller graph for this function:

5.6.2.11 test_kinetic_densities()

```
subroutine test::test_kinetic_densities ( )
```

Subroutine to test kinetic energy densities.

Author

M. Shelley

5.6.2.12 test_si_correction()

```
subroutine test::test_si_correction ( )
```

Subroutine to test the Strutinsky integral correction.

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.6.2.13 test_sp_energies()

```
subroutine test::test_sp_energies ( )
```

Subroutine to test calculation of single particle energies.

5.6 test Module Reference 109

Author

M. Shelley

Here is the call graph for this function:

Here is the caller graph for this function:

5.6.2.14 test_spin_current_densities()

```
subroutine test::test_spin_current_densities ( )
```

Subroutine to write spin current densities and spin-orbit fields to file.

Author

M. Shelley

5.6.2.15 write_ws_cell_array_quantity()

```
\label{lem:subroutine test::write_ws_cell_array_quantity (} $$ real(kind=dp), dimension(1:n), intent(in) $$ quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ real(kind=dp), dimension(1:n), intent(in) $$ quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ and $$ properties for the subroutine test::write_ws_cell_array_quantity () $$ array_quantity () $$ a
```

Utility subroutine that can be called anywhere at any time, for writing a quantity (evaluated over WS cell) to file.

Author

M. Shelley

Parameters

in	quantity	Array to be written to file (1:n)
----	----------	-----------------------------------

5.6.3 Variable Documentation

5.6.3.1 file_unit

integer test::file_unit

5.6.3.2 file_unit_2

integer test::file_unit_2

Unit numbers for opening files.

5.6.3.3 sample_profile

integer test::sample_profile

Test density profile to use.

Chapter 6

File Documentation

6.1 srcs/boundary.f90 File Reference

Modules

· module rspace

Module to hold routines for calculating single particle energies. Written by A. Pastore, some variables and use statements modified by M. Shelley for integration into etf code.

Functions/Subroutines

- subroutine rspace::boundary (h, Lmax, Ecut, Nmaxt, PS, NNST, JJP, LP, EP, isospin)
- subroutine rspace::numerov (h, Nrmax, Emax0, N, L, J, EFINAL, U, V, VSO, HME, GI, Glprimo, no)

6.2 srcs/etf.f90 File Reference

Functions/Subroutines

program etf

Program to calculate the equation of state in the inner crust with the extended Thomas-Fermi (ETF) approach.

• subroutine total_energy_with_corrections (write_files_print_info)

Subroutine to evaluate all WS quantities using supplied profile parameters, and calculate total energy, with pairing and shell corrections included. Write densities and fields to files, and all info to screen, if specified.

6.2.1 Function/Subroutine Documentation

112 File Documentation

6.2.1.1 etf()

```
program etf ( )
```

Program to calculate the equation of state in the inner crust with the extended Thomas-Fermi (ETF) approach.

Author

M. Shelley

6.2.1.2 total_energy_with_corrections()

Subroutine to evaluate all WS quantities using supplied profile parameters, and calculate total energy, with pairing and shell corrections included. Write densities and fields to files, and all info to screen, if specified.

Author

M. Shelley

Parameters

in	write_files_print_info	Whether to write to files and screen
----	------------------------	--------------------------------------

114 File Documentation

Here is the caller graph for this function:

6.3 srcs/pairing.f90 File Reference

Modules

· module pairing

Module to hold routines for carrying out Strutinsky correction.

Functions/Subroutines

• subroutine pairing::calc_e_pair ()

Subroutine to calculate the pairing energy for the WS cell, using the method specified in "input.in".

real(kind=dp) function pairing::calc_gap (r, rhon, rhop, fq, mu)

Function to calculate the pairing gap in infinite neutron matter, for specified density and effective mass.

• subroutine pairing::bcs_protons ()

Subroutine to perform BCS for protons.

real(kind=dp) function pairing::calc_bcs_num_p (mu_p)

Function to solve gap equation at given chemical potential "mu_p", returning the (BCS) number of protons.

• real(kind=dp) function pairing::interazchamelanalyt (rhon, rhop, hbm, itz)

Function to calculate the interaction strength for the effective contact pairing force. Modified by M. Shelley.

real(kind=dp) function pairing::llambda (x)

Function to calculate the pairing cutoff for the effective contact pairing force.

real(kind=dp) function pairing::delta_parametric (kf, YY, itz, xk0)

Function to calculate the pairing gap using the analytical BSk expression. Modified by M. Shelley.

6.4 srcs/parameters.f90 File Reference

Modules

· module parameters

Module to hold global parameters and variables.

Functions/Subroutines

subroutine parameters::force_initialise ()

Subroutine to initialise Skyrme force parameters with values for a given force specified in 'input.dat'.

116 File Documentation

Variables

```
integer, parameter parameters::dp = selected_real_kind(15, 300)
     Precision.

    real(kind=dp), parameter parameters::pi = 3.1415926535897932 dp

• real(kind=dp), parameter parameters::hbar2 2m = 20.73553 dp
      rac{\hbar^2}{2m} for SLy forces
• real(kind=dp), parameter parameters::rho0 = 0.16_dp
     \rho_0, nuclear saturation density [fm^{-3}]

    real(kind=dp), parameter parameters::e2 = 1.439978408596513 dp

     e^2, electric charge squared [MeV \cdot fm]

    real(kind=dp), parameter parameters::mec2 = 0.51099895 dp

     Electron rest mass [MeV/c^2].

    real(kind=dp), parameter parameters::mnc2 = 939.56542052 dp

    real(kind=dp), parameter parameters::mpc2 = 938.27208816 dp

• real(kind=dp), parameter parameters::hbarc = 197.3269804_dp

    real(kind=dp), parameter parameters::mamuc2 = 931.49386 dp

     Atomic mass unit u.

    real(kind=dp), parameter parameters::xmh = 7.28896940 dp

real(kind=dp), parameter parameters::rydb = 13.6056981e-6_dp
     Rvdberg constant.

    real(kind=dp), parameter parameters::xmp = xmh - mec2 + rydb

    real(kind=dp), parameter parameters::xmn = 8.07132281 dp

    real(kind=dp), parameter parameters::fr12 = 1. dp/2

• real(kind=dp), parameter parameters::fr14 = 1._dp/4

    real(kind=dp), parameter parameters::fr18 = 1. dp/8

    real(kind=dp), parameter parameters::fr1 16 = 1. dp/16

• real(kind=dp), parameter parameters::fr1 32 = 1. dp/32

    real(kind=dp), parameter parameters::fr13 = 1. dp/3

    real(kind=dp), parameter parameters::fr16 = 1. dp/6

    real(kind=dp), parameter parameters::fr1 12 = 1. dp/12

• real(kind=dp), parameter parameters::fr1 24 = 1. dp/24

    real(kind=dp), parameter parameters::fr1 36 = 1. dp/36

    real(kind=dp), parameter parameters::fr23 = 2. dp/3

• real(kind=dp), parameter parameters::fr29 = 2. dp/9

    real(kind=dp), parameter parameters::fr32 = 3. dp/2

• real(kind=dp), parameter parameters::fr34 = 3._dp/4

    real(kind=dp), parameter parameters::fr35 = 3. dp/5

• real(kind=dp), parameter parameters::fr38 = 3. dp/8
• real(kind=dp), parameter parameters::fr3 10 = 3. dp/10

    real(kind=dp), parameter parameters::fr43 = 4. dp/3

• real(kind=dp), parameter parameters::fr53 = 5._dp/3

    real(kind=dp), parameter parameters::fr54 = 5. dp/4

• real(kind=dp), parameter parameters::fr83 = 8. dp/3
• real(kind=dp), parameter parameters::fr260_3 = 260._dp/3
real(kind=dp) parameters::w0
     Spin-orbit strength W_0.

    real(kind=dp) parameters::t0

real(kind=dp) parameters::x0

    real(kind=dp) parameters::t1

real(kind=dp) parameters::x1
```

```
real(kind=dp) parameters::t2
real(kind=dp) parameters::x2
• real(kind=dp) parameters::t3
real(kind=dp) parameters::x3

    real(kind=dp) parameters::sigma

    real(kind=dp), dimension(0:1) parameters::hbar2_2m_q

\frac{\hbar^2}{2m} with isospin dependence, as required by BSk forces 
• logical parameters::j2_terms
      Whether functional uses \mathbf{J}^2 terms.
real(kind=dp) parameters::b1
real(kind=dp) parameters::b2

    real(kind=dp) parameters::b3

    real(kind=dp) parameters::b4

    real(kind=dp) parameters::b5

real(kind=dp) parameters::b6
real(kind=dp) parameters::b7

    real(kind=dp) parameters::b8

real(kind=dp) parameters::b9

    real(kind=dp) parameters::b10

    real(kind=dp) parameters::b11

    real(kind=dp) parameters::b12

    real(kind=dp) parameters::b13

· real(kind=dp) parameters::alpha

    real(kind=dp) parameters::beta

    real(kind=dp) parameters::gamma

real(kind=dp) parameters::t4

    real(kind=dp) parameters::x4

• real(kind=dp) parameters::t5

    real(kind=dp) parameters::x5

    real(kind=dp) parameters::fn pos

    real(kind=dp) parameters::fn neg

    real(kind=dp) parameters::fp pos

real(kind=dp) parameters::fp_neg
• real(kind=dp) parameters::epsilon lambda

    real(kind=dp), dimension(:), allocatable parameters::r

    real(kind=dp), dimension(:,:), allocatable parameters::rho q

• real(kind=dp), dimension(:,:), allocatable parameters::del rho q

    real(kind=dp), dimension(:,:), allocatable parameters::del2 rho q

    real(kind=dp), dimension(:), allocatable parameters::rho t

    real(kind=dp), dimension(:), allocatable parameters::del rho t

    real(kind=dp), dimension(:), allocatable parameters::del2_rho_t

    real(kind=dp), dimension(:,:), allocatable parameters::f q

• real(kind=dp), dimension(:,:), allocatable parameters::del_f_q

    real(kind=dp), dimension(:,:), allocatable parameters::del2 f g

    real(kind=dp), dimension(:,:), allocatable parameters::w q

    real(kind=dp), dimension(:,:), allocatable parameters::div_w_q

• real(kind=dp), dimension(:,:), allocatable parameters::u q

    real(kind=dp), dimension(:,:), allocatable parameters::j 2 q

real(kind=dp), dimension(:,:), allocatable parameters::j_q

    real(kind=dp), dimension(:,:), allocatable parameters::del j q

    real(kind=dp), dimension(:,:), allocatable parameters::div_j_2_q

    real(kind=dp), dimension(:,:), allocatable parameters::div j q

    real(kind=dp), dimension(:,:), allocatable parameters::tau tf q
```

118 File Documentation

```
    real(kind=dp), dimension(:,:), allocatable parameters::tau_2_l_q

    real(kind=dp), dimension(:,:), allocatable parameters::tau 2 nl q

    real(kind=dp), dimension(:,:), allocatable parameters::tau_etf_q

    real(kind=dp), dimension(:), allocatable parameters::j t

    real(kind=dp), dimension(:), allocatable parameters::del j t

    real(kind=dp), dimension(:), allocatable parameters::div j t

    real(kind=dp), dimension(:), allocatable parameters::tau_etf_t

    real(kind=dp), dimension(:), allocatable parameters::e density field

• real(kind=dp), dimension(:), allocatable parameters::e density sky

    real(kind=dp), dimension(:), allocatable parameters::v c di

    real(kind=dp), dimension(:), allocatable parameters::v c ex

• real(kind=dp), dimension(:), allocatable parameters::e density c di

    real(kind=dp), dimension(:), allocatable parameters::e_density_c_ex

    real(kind=dp), dimension(:), allocatable parameters::v c pe

    real(kind=dp), dimension(:,:,:), allocatable parameters::tau_2_cont_q

    real(kind=dp), dimension(:), allocatable parameters::rho ch

      Charge density.

    real(kind=dp), dimension(:,:), allocatable parameters::d2 rho q

    real(kind=dp), dimension(:,:), allocatable parameters::d3_rho_q

• real(kind=dp), dimension(:,:), allocatable parameters::d4 rho q

    real(kind=dp), dimension(:,:), allocatable parameters::d2 f q

    real(kind=dp), dimension(:,:), allocatable parameters::d3 f q

    real(kind=dp), dimension(:,:), allocatable parameters::d4 f q

    real(kind=dp), dimension(:,:), allocatable parameters::a_q

    real(kind=dp), dimension(:,:), allocatable parameters::d1 a q

    real(kind=dp), dimension(:,:), allocatable parameters::d2 a q

    real(kind=dp), dimension(:,:), allocatable parameters::d3 a q

    real(kind=dp), dimension(:,:), allocatable parameters::d4 a q

    real(kind=dp), dimension(:,:), allocatable parameters::tau_4_no_spin_q

    real(kind=dp), dimension(:,:), allocatable parameters::tau 4 so q

• real(kind=dp), dimension(:,:), allocatable parameters::j_4_q

    real(kind=dp), dimension(:.:), allocatable parameters::div j 4 g

    real(kind=dp), dimension(:,:,:), allocatable parameters::tau 4 cont q

    real(kind=dp), dimension(0:1) parameters::n q

      Number of neutrons and protons.
real(kind=dp) parameters::n t
      Total number of particles.

    real(kind=dp) parameters::e field

      Field energy.
• real(kind=dp) parameters::e_skyrme
      Skyrme energy.
real(kind=dp), dimension(0:1) parameters::e_kinetic_q
      Kinetic energy for neutron and protons.

    real(kind=dp) parameters::e kinetic t

      Total kinetic energy.
• real(kind=dp) parameters::e_so
      Spin-orbit energy.
• real(kind=dp) parameters::e coulomb di
      Direct Coulomb energy.

    real(kind=dp) parameters::e coulomb ex

      Exhange Coulomb energy.

    real(kind=dp) parameters::e coulomb

      Total Coulomb energy.
```

real(kind=dp) parameters::e_total

```
Total energy.

    real(kind=dp), dimension(0:1) parameters::mu q

      Neutron and proton chemical potential.
real(kind=dp) parameters::mu_e
      Electron chemical potential.
• real(kind=dp) parameters::mu c
      Coulomb interaction contribution to electron chemical potential.
• real(kind=dp) parameters::delta_mu
      Overall chemical potential (beta-equilibrium condition)
real(kind=dp) parameters::pressure_nucl
     Nuclear pressure.

    real(kind=dp) parameters::pressure_e

      Electron pressure.
real(kind=dp) parameters::pressure_ex
      Coulomb exchange pressure.
real(kind=dp) parameters::pressure_t
      Total pressure.
· integer parameters::run_mode
     Mode to run code in (normal, test)
· logical parameters::verbose
      Whether to print all extra messages about run.
• real(kind=dp) parameters::dr
     Mesh spacing of r(fm).

    logical parameters::profile_r_max

      Whether to take "r_max" from "r_ws".
real(kind=dp) parameters::r_max
     Max value of r(fm).
· logical parameters::specify_n
      Whether to specify "n" instead of "dr".
• integer parameters::n
     Number of mesh points.
· integer parameters::force
     Force to use.
· integer parameters::etf_order
      Order at which to calculate kinetic energy densities.
· logical parameters::coulomb on
      Use Coulomb interaction or not.

    logical parameters::electrons_on

      Add electrons.

    integer parameters::nmaxstate

      Number of states that can be stored.

    integer parameters::lmax

      Maximum angular momentum of states to find.

    logical parameters::calc_chem_pots

      Calculate chemical potentials.

    logical, dimension(0:1) parameters::strutinsky_on

      Use Strutinsky Integral (SI) correction for neutrons and protons.

    real(kind=dp) parameters::strut r max

      \textit{Max value of r to use for box for single particle states } (fm).

    logical parameters::emax0_mod
```

120 File Documentation

Whether to modify "emax0" to always = 0.

· integer parameters::neutron_pairing Type of pairing calculation to perform for neutrons. logical parameters::proton bcs Whether to do BCS for protons. real(kind=dp) parameters::pair_qp_cut Cut-off for quasiparticle energy for solving gap equation. · logical parameters::smooth qp cut Whether to use smooth cut-off on quasiparticle energy. real(kind=dp) parameters::pair k max Maximum momentum for integral in gap equation. real(kind=dp) parameters::pair v0 Interaction strength parameter. real(kind=dp) parameters::pair_eta Interaction parameter eta. real(kind=dp) parameters::pair alpha Interaction parameter alpha. real(kind=dp) parameters::pair tol Gap equation self-consistency tolerance. real(kind=dp) parameters::pair_mix Mix of previous iteration in gap equation self-consistency loop. · real(kind=dp) parameters::pair_dk Step size in integral in gap equation. • real(kind=dp) parameters::pair_del_init Initial guess for pairing gap. • integer parameters::pair max iters Maximum iterations for gap equation self-consistency loop. • real(kind=dp) parameters::pair_num_tol BCS number equation self-consistency tolerance. • real(kind=dp), dimension(5) parameters::n_profile real(kind=dp), dimension(5) parameters::p profile real(kind=dp) parameters::num n • integer parameters::num_p • real(kind=dp) parameters::r ws character(18), dimension(10) parameters::n floats = (/'(1(es24.16e3.1x))', '(2(es24.16e3.1x))', '(3(es24.4e3.1x))', '(16e3,1x))', '(4(es24.16e3,1x))', '(5(es24.16e3,1x))', '(6(es24.16e3,1x))', '(7(es24.16e3,1x))', '(8(es24.6e3,1x))', '(8(es24.6e3,1x))', '(8(es24.16e3,1x))', '(8(es24.16e3,1x)16e3,1x))','(9(es24.16e3,1x))','(10(es24.16e3,1x))'/) character(27) parameters::info_format = '(a27,1x,a1,1x,es24.16e3)' character(8) parameters::force_string Separating output. character(1), dimension(0:1), parameter parameters::iso_string = (/'n','p'/) Isospin labels. character(4), parameter parameters::space4 = ' ' Whitespace of length 4. integer parameters::strut n • real(kind=dp), dimension(:,:), allocatable parameters::dhmen real(kind=dp), dimension(:,:), allocatable parameters::d2hmen real(kind=dp), dimension(:,:), allocatable parameters::hb2m real(kind=dp), dimension(:,:), allocatable parameters::vpot real(kind=dp), dimension(:,:), allocatable parameters::vso

```
    real(kind=dp), dimension(0:1) parameters::ecut

      Cutoff energies for neutrons and protons.

    real(kind=dp), dimension(:,:), allocatable parameters::ps

      Storage for single particle wavefunctions.
integer parameters::nnst
      Number of states found within cutoff energy.

    integer, dimension(:), allocatable parameters::jjp

      Storage for J of states found.
• integer, dimension(:), allocatable parameters::lp
      Storage for L of states found.
• real(kind=dp), dimension(:), allocatable parameters::ep
      Storage for energy of states found.
real(kind=dp), dimension(0:1) parameters::e_sc_q
      Storage for shell correction energies.
• real(kind=dp) parameters::e_sc_t
      Storage for total shell correction energy.

    real(kind=dp), dimension(:), allocatable parameters::pair_gap_n

     Neutron pairing gap.

    real(kind=dp), dimension(:), allocatable parameters::delta_n

     Neutron pairing field.

    real(kind=dp), dimension(:), allocatable parameters::pair_gap_p

      Proton pairing gap.

    real(kind=dp), dimension(:), allocatable parameters::delta_p

      Proton pairing field.

    real(kind=dp), dimension(:), allocatable parameters::rho_p_bcs

      Proton density (from wavefunctions)

    real(kind=dp), dimension(:), allocatable parameters::rho anom p bcs

      Anomalous density.

    real(kind=dp), dimension(:), allocatable parameters::strength bcs

      Interaction strength for protons.

    real(kind=dp), dimension(:), allocatable parameters::occ_v

     Particle occupation probabilities.

    real(kind=dp), dimension(:), allocatable parameters::occ u

     Hole occupation probabilities.

    real(kind=dp), dimension(:), allocatable parameters::e_qp_p

      Quasiparticle energies.

    real(kind=dp) parameters::num p bcs

     Number of protons calculated from occupations.

    real(kind=dp) parameters::e_pair_bcs

      BCS pairing energy.
real(kind=dp), dimension(0:1) parameters::e_pair_q
      Storage for pairing condensation energies.

    real(kind=dp) parameters::e_pair_t

      Storage for total pairing condensation energy.

    real(kind=dp) parameters::rho_e

      Electron density.
• real(kind=dp) parameters::e_kinetic_e
      Total electron kinetic energy.
• real(kind=dp) parameters::e_coulomb_e
      Total electron-electron potential energy from Coulomb interaction.

    real(kind=dp) parameters::e_coulomb_pe

      Total proton-electron potential energy from Coulomb interaction.
```

122 File Documentation

6.5 srcs/routines.f90 File Reference

Modules

· module routines

Module to hold main routines: densities, energies.

Functions/Subroutines

- integer function routines::str2int (string)
- subroutine routines::allocate arrays ()

Subroutine to allocate arrays for all densities and effective masses, and for their derivatives.

subroutine routines::initialise_uniform_mesh ()

Subroutine to calculate number of mesh points for a uniform grid, allocate array for r, and then populate r with the mesh points.

subroutine routines::deallocate mesh ()

Subroutine to deallocate array for r.

subroutine routines::deallocate_arrays ()

Subroutine to deallocate arrays for all densities and effective masses, and for their derivatives.

real(kind=dp) function routines::calc_rho_q (rhoqgas, rhoqliq, rq, aq, gammaq, r)

Function to calculate the neutron or proton density at a given radius r, using supplied input parameters.

subroutine routines::calc_f_q (rhot, rhoq, q, fq)

Subroutine to calculate the effective mass ratio $f_q=\frac{m}{m_q^*}$ for neutrons or protons, for standard Skyrme or for BSk forces

• subroutine routines::calc_w_q (delrho, delrhoq, Wq)

Function to calculate the spin-orbit field \mathbf{W}_q for neutrons or protons.

• subroutine routines::calc_tau_tf (rhoq, tauTF)

Function to calculate the zeroth-order contribution to the kinetic energy density for neutrons or protons.

• subroutine routines::calc_tau_2_l (rhoq, delrhoq, del2rhoq, tau2Lq, t2contq)

Function to calculate the local second-order contribution to the kinetic energy density for neutrons or protons.

• subroutine routines::calc_tau_2_nl (rhoq, delrhoq, fq, delfq, del2fq, Wq, q, tau2NLq, t2contq)

Subroutine to calculate the non-local second-order contribution to the kinetic energy density for neutrons or protons.

 subroutine routines::calc_tau_4_no_spin (rhoq, d1rhoq, d2rhoq, d3rhoq, d4rhoq, fq, d1fq, d2fq, d3fq, d4fq, tau4nospinq, t4contq)

Subroutine to calculate the fourth-order contributions to the kinetic energy density (without spin-orbit contributions) tau_q for neutrons or protons.

- subroutine routines::calc_tau_4_so (rhoq, d1rhoq, fq, d1fq, d2fq, d1Aq, d2Aq, d3Aq, q, tau_4_so_q, t4contq)
 Subroutine to calculate the fourth-order contributions to the kinetic energy density (spin-orbit contributions) tauq for neutrons or protons.
- subroutine routines::calc_j_2_q (rhoq, Wq, fq, q, J2q)

Subroutine to calculate the second-order contributions to the spin current density J_a for neutrons or protons.

• subroutine routines::calc_j_4_q (rhoq, d1rhoq, fq, d1fq, d2fq, d1Aq, d2Aq, d3Aq, q, J4q)

Subroutine to calculate the fourth-order contributions to the spin current density ${m J}_q$ for neutrons or protons.

- subroutine routines::calc_div_j_2_q (rhoq, d1rhoq, fq, d1fq, d1Aq, d2Aq, q, divJ2q)
 - Subroutine to calculate the second-order contributions to the divergence of the current density \mathbf{J}_q for neutrons or protons.
- subroutine routines::calc_div_j_4_q (rhoq, d1rhoq, d2rhoq, fq, d1fq, d2fq, d3fq, d1Aq, d2Aq, d3Aq, d4Aq, q, divJ4q)

Subroutine to calculate the fourth-order contributions to the divergence of the current density \mathbf{J}_q for neutrons or protons.

real(kind=dp) function routines::calc_u_q (rhot, rhon, rhop, delrhot, delrhon, delrhop, del2rhot, del2rhot, del2rhop, taut, taun, taup, divJt, divJq, q)

Function to calculate the central potential U_q for neutrons or protons, for standard Skyrme or for BSk forces with extra terms.

subroutine routines::eval fields ()

Subroutine to evaluate matter density derivatives, and all fields: effective masses (and derivatives), spin-orbit fields, spin current densities (and derivatives)

• subroutine routines::eval tau etf ()

Subroutine to calculate the kinetic energy density τ_{ETF} with the (extended) Thomas-Fermi approximation at order specified by "etf order".

subroutine routines::charge (rho, Neutr, Nprot, Ngrid1, del1, rhoch)

Subroutine to calculate the charge density from the matter densities. Modified by M. Shelley.

• subroutine routines::eval_coulomb (prot_dens, calc_exchange)

Subroutine to evaluate the Coulomb potentials and energy densities, using either the proton or charge density.

• subroutine routines::eval electrons ()

Subroutine to evaluate the proton-electron potential which contributes to U_q , all energy contributions, and the pressure, coming from a homogeneous electron gas. Also calculates the electron chemical potential.

subroutine routines::eval_u_q ()

Subroutine to evaluate the central fields U_a .

subroutine routines::eval_skyrme_energy_density ()

Subroutine to evaluate the Skyrme energy density, after first separately evaluating the field energy density.

• subroutine routines::pressure ()

Subroutine to calculate the nuclear contribution to the pressure, and then the total pressure.

• subroutine routines::calc particle number ()

Subroutine to calculate the number of particles in the Wigner-Seitz cell.

subroutine routines::eval_ws_quantities ()

Subroutine to evaluate the various densities, fields, derivatives, energies, and particle numbers in the WS cell with densities rho_q .

• real(kind=dp) function routines::calc_e_f_q (rhoq, fq, q)

Subroutine to evaluate the Fermi energy at a given density and effective mass, for neutrons or protons.

• subroutine routines::d1 (n, h, f, df)

This subroutine computes the first derivative of function evaluated on the meshpoints 1,...,npt. The input is the function f with extrapolated values in -1, 0. Modified by M. Shelley.

subroutine routines::d2 (n, h, f, d2f)

This subroutine computes the second derivative of function evaluated on the meshpoints 1,...,npt. The input is the function f with extrapolated values in -1, 0. Modified by M. Shelley.

• subroutine routines::lap_sphe_symm (f, df_dr, d2f_dr2)

Subroutine to carry out Laplacian in spherical symmetry.

• subroutine routines::d3 (f, d3f_dr3)

Subroutine to calculate third derivative of function f evaluated on evenly-spaced meshpoints from 1 to n. Works with extrapolated values in -2,-1,0. Uses 7-point stencil.

• subroutine routines::d4 (f, d4f_dr4)

Subroutine to calculate fourth derivative of function f evaluated on evenly-spaced meshpoints from 1 to n. Works with extrapolated values in -2,-1,0. Uses 7-point stencil.

subroutine routines::extrapolate_back_3 (grid)

Subroutine to extrapolate back 3 points on the r mesh, to faciliate the calculation of first and second derivatives using a 5-point stencil. Values in grid start at 4, extrapolated values are put in elements 3,2,1. Coefficients come from solving 4th-order polynomial, assuming that f'(0) = 0, and f(-h) = f(h).

real(kind=dp) function routines::ws_integral (quantity, n_max)

Function to integrate a density or field over the whole W-S cell, using Simpson's rule (+ Simpson's 3/8 rule if odd number of points)

• subroutine routines::write densities ()

Subroutine to write neutron and proton densities to files.

124 File Documentation

· subroutine routines::write_fields ()

Subroutine to write neutron and proton fields to files.

• subroutine routines::write_sp_states_p()

Subroutine to write proton single particle energies to file, and extra details if BCS has been performed.

Variables

- integer routines::file unit 0
- integer routines::file_unit_1

Unit numbers for opening files.

6.6 srcs/strutinsky.f90 File Reference

Modules

· module strutinsky

Module to hold routines for carrying out Strutinsky correction.

Functions/Subroutines

• subroutine strutinsky::sp_states_setup ()

Subroutine to allocate + initialise variables needed in 'boundary' routine, and allocate arrays needed for BCS.

subroutine strutinsky::sp_states_deallocate ()

Subroutine to deallocate arrays needed in 'boundary' routine, and deallocate arrays needed for BCS.

• subroutine strutinsky::state_sort (sp_J, sp_L, sp_E, sp_wfns)

Subroutine to sort single particle states by their energies. Use bubble sort.

• subroutine strutinsky::calc_e_sc (q)

Subroutine to calculate the Strutinsky shell correction energy for isospin q. First, sum over occupied states of s.p. energies. Second, integrate over W-S cell of smoothed ETF densities and fields.

• subroutine strutinsky::calc e sc pair ()

Subroutine to calculate the Strutinsky shell correction energy for protons, using BCS occupation probabilities.

6.7 srcs/test.f90 File Reference

Modules

· module test

Module to hold test routines.

Functions/Subroutines

• subroutine test::read_test_params ()

Subroutine to read from "test_input.in" parameters used for test routines.

• subroutine test::test_densities ()

Subroutine to calculate the density profiles using sample parameters.

subroutine test::test_density_derivs ()

Subroutine to test some derivatives of the total and individual densities.

• subroutine test::test_eff_mass ()

Subroutine to test effective masses fm^{-3} .

• subroutine test::test_kinetic_densities ()

Subroutine to test kinetic energy densities.

• subroutine test::test_spin_current_densities ()

Subroutine to write spin current densities and spin-orbit fields to file.

• subroutine test::orders kinetic densities ()

Subroutine to write order-by-order comparison of kinetic densities to file.

subroutine test::test_central_potentials ()

Subroutine to write spin central potentials to file.

subroutine test::write ws cell array quantity (quantity)

Utility subroutine that can be called anywhere at any time, for writing a quantity (evaluated over WS cell) to file.

• subroutine test::test_calc_particle_number ()

Subroutine to test calculation of neutron and proton particle numbers.

subroutine test::test_calc_coulomb_energy ()

Subroutine to test calculation of Coulomb energy.

subroutine test::test_calc_skyrme_energy ()

Subroutine to test calculation of Skyrme energy.

subroutine test::test sp energies ()

Subroutine to test calculation of single particle energies.

• subroutine test::test_si_correction ()

Subroutine to test the Strutinsky integral correction.

subroutine test::bartel_bencheikh_benchmark ()

Subroutine to check different contributions to τ_{ETF} at 2nd order, for comparison with results in Bartel and Bencheikh (2002)

Variables

- · integer test::file unit
- integer test::file_unit_2

Unit numbers for opening files.

integer test::sample_profile

Test density profile to use.

126 File Documentation

Index

a_q		calc_e_f_q
	parameters, 61	routines, 68
alloc	cate_arrays	calc_e_pair
	routines, 66	pairing, 51
alph	a	calc_e_sc
	Extra parameters for BSk forces, 18	strutinsky, 98
		calc_e_sc_pair
b1		strutinsky, 98
	Skyrme coefficients, 16	calc_f_q
b10		routines, 69
	Skyrme coefficients, 16	calc_gap
b11		pairing, 51
	Skyrme coefficients, 16	calc <u>j</u> 2_q
b12		routines, 70
	Skyrme coefficients, 16	calc_j_4_q
b13		routines, 70
	Skyrme coefficients, 16	calc_particle_number
b2		routines, 71
	Skyrme coefficients, 17	calc_rho_q
b3		routines, 72
	Skyrme coefficients, 17	calc_tau_2_l
b4		routines, 73
	Skyrme coefficients, 17	calc_tau_2_nl
b5		routines, 73
	Skyrme coefficients, 17	calc_tau_4_no_spin
b6		routines, 74
	Skyrme coefficients, 17	calc_tau_4_so
b7		routines, 75
	Skyrme coefficients, 17	calc_tau_tf
b8		routines, 76
	Skyrme coefficients, 17	calc_u_q
b9		routines, 77
	Skyrme coefficients, 17	calc_w_q
bart	el_bencheikh_benchmark	routines, 78
	test, 102	charge
bcs_	protons	routines, 78
	pairing, 49	coulomb_on
beta		Input parameters, 33
	Extra parameters for BSk forces, 18	
bou	ndary	d1
	rspace, 96	routines, 79
		d1_a_q
calc	_bcs_num_p	parameters, 62
	pairing, 50	d2
calc	_chem_pots	routines, 80
	Input parameters, 33	d2_a_q
calc	_div_j_2_q	parameters, 62
	routines, 66	d2_f_q
calc	_div_j_4_q	parameters, 62
	routines, 67	d2 rho a

parameters, 62	div_w_q
d2hmen	Global arrays for other densities and fields, 24
Variables for use in strutinsky module, 42	dp
d3	parameters, 63
routines, 80	dr
d3_a_q	Input parameters, 33
parameters, 62	-0
d3_f_q	e2
parameters, 62	Global parameters, 7 e_coulomb
d3_rho_q	
parameters, 62	Variables for storing properties of Wigner-Seitz cell,
d4	e_coulomb_di
routines, 81	Variables for storing properties of Wigner-Seitz cell,
d4_a_q	29
parameters, 62	e_coulomb_e
d4_f_q	Variables for electron contributions, 48
parameters, 63	e coulomb ex
d4_rho_q	Variables for storing properties of Wigner-Seitz cell,
parameters, 63	29
deallocate_arrays	e_coulomb_pe
routines, 82	Variables for electron contributions, 48
deallocate_mesh	e_density_c_di
routines, 82	Global arrays for other densities and fields, 24
del2_f_q	e_density_c_ex
Global effective mass arrays, 22	Global arrays for other densities and fields, 24
del2_rho_q	e_density_field
Global density arrays, 21	Global arrays for other densities and fields, 24
del2_rho_t	e_density_sky
Global density arrays, 21	Global arrays for other densities and fields, 24
del_f_q	e field
Global effective mass arrays, 22	Variables for storing properties of Wigner-Seitz cell,
del_j_q	29
Global arrays for other densities and fields, 23	e_kinetic_e
del_j_t	Variables for electron contributions, 48
Global arrays for other densities and fields, 23	e_kinetic_q
del_rho_q	Variables for storing properties of Wigner-Seitz cell,
Global density arrays, 21	29
del_rho_t	e_kinetic_t
Global density arrays, 21	Variables for storing properties of Wigner-Seitz cell,
delta_mu	29
Variables for storing properties of Wigner-Seitz cell,	e_pair_bcs
28	Variables for use in pairing module, 46
delta_n	e_pair_q
Variables for use in pairing module, 45	Variables for use in pairing module, 46
delta_p	e_pair_t
Variables for use in pairing module, 45	Variables for use in pairing module, 46
delta_parametric	e_qp_p
pairing, 52	Variables for use in pairing module, 46
dhmen	e_sc_q
Variables for use in strutinsky module, 42	Variables for use in strutinsky module, 42
div_j_2_q	e_sc_t
Global arrays for other densities and fields, 23	Variables for use in strutinsky module, 43
div_j_4_q	e_skyrme
parameters, 63	Variables for storing properties of Wigner-Seitz cell,
div_j_q	30
Global arrays for other densities and fields, 24	e_so
div_j_t	Variables for storing properties of Wigner-Seitz cell,
Global arrays for other densities and fields, 24	30

e_total	x4, 19
Variables for storing properties of Wigner-Seitz cell,	x5, 19
30	extrapolate_back_3
ecut	routines, 90
Variables for use in strutinsky module, 43	
electrons_on	f_q
Input parameters, 33	Global effective mass arrays, 22
emax0_mod	file_unit
Input parameters, 34	test, 110
ер	file_unit_0
Variables for use in strutinsky module, 43	routines, 95
epsilon_lambda	file_unit_1
Extra parameters for BSk forces, 18	routines, 95
etf	file_unit_2
etf.f90, 111	test, 110
etf.f90	fn_neg
etf, 111	Extra parameters for BSk forces, 18
	fn_pos
total_energy_with_corrections, 113	Extra parameters for BSk forces, 18
etf_order	force
Input parameters, 34	Input parameters, 34
eval_coulomb	force_initialise
routines, 82	parameters, 61
eval_electrons	force_string
routines, 83	Global strings for printing output, 41
eval_fields	Format statements, 40
routines, 84	info_format, 40
eval_skyrme_energy_density	n_floats, 40
routines, 85	fp_neg
eval_tau_etf	Extra parameters for BSk forces, 19
routines, 86	fp_pos
eval_u_q	Extra parameters for BSk forces, 19
routines, 87	fr12
eval_ws_quantities	Numerical fractions, 10
routines, 88	fr13
External profiles, 39	Numerical fractions, 10
n_profile, 39	fr14
num_n, 39	Numerical fractions, 10
num_p, 39	fr16
p_profile, 39	Numerical fractions, 10
r ws, 39	fr18
Extra constants for calculatingf\$frac{hbar^2}{2m}f\$ for	Numerical fractions, 11
BSk forces, 9	fr1_12
mamuc2, 9	Numerical fractions, 11
rydb, 9	fr1 16
xmh, 9	Numerical fractions, 11
xmn, 9	fr1_24
xmp, 9	Numerical fractions, 11
Extra parameters for BSk forces, 18	fr1_32
alpha, 18	Numerical fractions, 11
beta, 18	fr1_36
epsilon_lambda, 18	Numerical fractions, 11
fn_neg, 18	fr23
fn_pos, 18	Numerical fractions, 11
fp_neg, 19	fr260 3
	_
fp_pos, 19 gamma, 19	Numerical fractions, 11 fr29
_	
t4, 19	Numerical fractions, 12
t5, 19	fr32

Numerical fractions, 12 fr34	Global parameters, 7 e2, 7
Numerical fractions, 12	hbar2_2m, 7
fr35	hbarc, 8
Numerical fractions, 12	mec2, 8
fr38	mnc2, 8
Numerical fractions, 12 fr3_10	mpc2, 8
Numerical fractions, 12	pi, 8 rho0, 8
fr43	Global strings for printing output, 41
Numerical fractions, 12	force_string, 41
fr53	iso_string, 41
Numerical fractions, 12	line_break, 41
fr54	space4, 41
Numerical fractions, 13	table_string, 41
fr83	
Numerical fractions, 13	hb2m
	Variables for use in strutinsky module, 43
gamma	hbar2_2m
Extra parameters for BSk forces, 19	Global parameters, 7
Global arrays for densities and fields for 4th-order terms,	hbar2_2m_q
Global arrays for other densities and fields, 23	Skyrme parameters, 14
del_j_q, 23	hbarc Global parameters, 8
del_j_t, 23	Global parameters, o
div_j_2_q, 23	info_format
div_j_q, 24	Format statements, 40
div_j_t, 24	initialise_uniform_mesh
div_w_q, 24	routines, 90
e_density_c_di, 24	Input parameters, 32
e_density_c_ex, 24	calc_chem_pots, 33
e_density_field, 24	coulomb_on, 33
e_density_sky, 24	dr, 33
j_2_q, 24	electrons_on, 33
j_q, 25	emax0_mod, 34
j_t, 25	etf_order, 34
rho_ch, 25	force, 34
tau_2_cont_q, 25	lmax, 34
tau_2_l_q, 25 tau_2_nl_q, 25	n, 34 neutron pairing, 34
tau_z_ni_q, 25 tau_etf_q, 25	nmaxstate, 35
tau_etf_t, 26	pair_alpha, 35
tau tf q, 26	pair del init, 35
u_q, 26	pair_dk, 35
v_c_di, 26	pair_eta, 35
v_c_ex, 26	pair_k_max, 35
v_c_pe, 26	pair_max_iters, 36
w_q, 26	pair_mix, 36
Global density arrays, 21	pair_num_tol, 36
del2_rho_q, 21	pair_qp_cut, 36
del2_rho_t, 21	pair_tol, 36
del_rho_q, 21	pair_v0, <mark>36</mark>
del_rho_t, 21	profile_r_max, 37
rho_q, 21	proton_bcs, 37
rho_t, 21	r_max, 37
Global effective mass arrays, 22	run_mode, 37
del2_f_q, 22	smooth_qp_cut, 37
del_f_q, 22	specify_n, 37
f_q, <mark>22</mark>	strut_r_max, 38

strutinsky_on, 38 verbose, 38	Variables for storing properties of Wigner-Seitz cell, 31
interazchamelanalyt	n_t
pairing, 53	Variables for storing properties of Wigner-Seitz cell,
iso_string	31
Global strings for printing output, 41	neutron_pairing
in tarma	Input parameters, 34
j2_terms	nmaxstate
Skyrme parameters, 14	Input parameters, 35
j_2_q Global arrays for other densities and fields, 24	Variables for use in strutinsky module, 44
j_4_q	num_n
parameters, 63	External profiles, 39
j_q	num_p
Global arrays for other densities and fields, 25	External profiles, 39
<u>i_t</u>	num_p_bcs
Global arrays for other densities and fields, 25	Variables for use in pairing module, 46
jjp	Numerical fractions, 10
Variables for use in strutinsky module, 43	fr12, 10
	fr13, 10
lap_sphe_symm	fr14, 10
routines, 90	fr16, 10
line_break	fr18, 11
Global strings for printing output, 41	fr1_12, 11
llambda	fr1_16, 11
pairing, 54	fr1_24, 11
Input parameters, 34	fr1_32, 11
Input parameters, 54	fr1_36, 11
Variables for use in strutinsky module, 43	fr23, 11 fr260_3, 11
variables for also in stratificity medials, re-	fr29, 12
mamuc2	fr32, 12
Extra constants for calculatingf\$frac{hbar^2}{2m}f\$	fr34, 12
for BSk forces, 9	fr35, 12
mec2	fr38, 12
Global parameters, 8	fr3_10, 12
Mesh variable, 20	fr43, 12
r, 20	fr53, 12
mnc2	fr54, 13
Global parameters, 8	fr83, 13
mpc2	numerov
Global parameters, 8	rspace, 96
mu_c Variables for storing properties of Wigner-Seitz cell,	000 !!
30	Variables for use in pairing module, 46
mu_e	Variables for use in pairing module, 46 occ_v
Variables for storing properties of Wigner-Seitz cell,	Variables for use in pairing module, 47
30	orders_kinetic_densities
mu_q	test, 102
Variables for storing properties of Wigner-Seitz cell,	,
30	p_profile
	External profiles, 39
n	pair_alpha
Input parameters, 34	Input parameters, 35
n_floats	pair_del_init
Format statements, 40	Input parameters, 35
n_profile	pair_dk
External profiles, 39	Input parameters, 35
n_q	pair_eta

Input parameters, 35	Variables for storing properties of Wigner-Seitz cell
pair_gap_n	31
Variables for use in pairing module, 47	pressure_t
pair_gap_p Variables for use in pairing module, 47	Variables for storing properties of Wigner-Seitz cell 31
pair k max	profile_r_max
Input parameters, 35	Input parameters, 37
pair_max_iters	proton_bcs
Input parameters, 36	Input parameters, 37
pair_mix	ps
Input parameters, 36	Variables for use in strutinsky module, 44
pair_num_tol	r
Input parameters, 36	r Mesh variable, 20
pair_qp_cut	r max
Input parameters, 36	Input parameters, 37
pair_tol	r_ws
Input parameters, 36	External profiles, 39
pair_v0	read_test_params
Input parameters, 36	test, 103
pairing, 49	rho0
bcs_protons, 49	Global parameters, 8
calc_bcs_num_p, 50	rho_anom_p_bcs
calc_e_pair, 51	Variables for use in pairing module, 47
calc_gap, 51	rho_ch
delta_parametric, 52	Global arrays for other densities and fields, 25
interazchamelanalyt, 53	rho_e
llambda, 54	Variables for electron contributions, 48
parameters, 55	rho_p_bcs
a_q, 61	Variables for use in pairing module, 47
d1_a_q, 62	rho_q
d2_a_q, <mark>62</mark>	Global density arrays, 21
d2_f_q, 62	rho_t
d2_rho_q, 62	Global density arrays, 21
d3_a_q, <mark>62</mark>	routines, 64
d3_f_q, 62	allocate_arrays, 66 calc_div_j_2_q, 66
d3_rho_q, 62	calc_div_j_2_q, 60 calc_div_j_4_q, 67
d4_a_q, 62	calc_e_f_q, 68
d4_f_q, 63	calc_f_q, 69
d4_rho_q, 63	calc_j_2_q, 70
div_j_4_q, <mark>63</mark>	calc_j_4_q, 70
dp, 63	calc particle number, 71
force_initialise, 61	calc_rho_q, 72
j_4_q, 63	calc_tau_2_l, 73
tau_4_cont_q, 63	calc_tau_2_nl, 73
tau_4_no_spin_q, 63	calc_tau_4_no_spin, 74
tau_4_so_q, 64	calc_tau_4_so, 75
pi	calc_tau_tf, 76
Global parameters, 8	calc_u_q, 77
pressure	calc_w_q, 78
routines, 91	charge, 78
pressure_e	d1, 79
Variables for storing properties of Wigner-Seitz cell,	d2, 80
31	d3, 80
pressure_ex	d4, 81
Variables for storing properties of Wigner-Seitz cell,	deallocate_arrays, 82
31	deallocate_mesh, 82
pressure_nucl	eval_coulomb, 82

eval_electrons, 83	sp_states_deallocate
eval_fields, 84	strutinsky, 99
eval_skyrme_energy_density, 85	sp_states_setup
eval_tau_etf, 86	strutinsky, 99
eval_u_q, 87	space4
eval_ws_quantities, 88	Global strings for printing output, 41
extrapolate_back_3, 90	specify_n
file_unit_0, 95	Input parameters, 37
file_unit_1, 95	srcs/boundary.f90, 111
initialise_uniform_mesh, 90	srcs/etf.f90, 111
lap_sphe_symm, 90	srcs/pairing.f90, 115
pressure, 91	srcs/parameters.f90, 115
str2int, 92	srcs/routines.f90, 122
write_densities, 92	srcs/strutinsky.f90, 124
write_fields, 93	srcs/test.f90, 124
write_sp_states_p, 93	state_sort
ws_integral, 94	strutinsky, 100
rspace, 95	str2int
boundary, 96	routines, 92
numerov, 96	strength_bcs
run_mode	Variables for use in pairing module, 47
	, -
Input parameters, 37	strut_n
rydb	Variables for use in strutinsky module, 44
Extra constants for calculatingf\$frac{hbar^2}{2m}f\$	strut_r_max
for BSk forces, 9	Input parameters, 38
sample_profile	strutinsky, 97
	calc_e_sc, 98
test, 110	calc_e_sc_pair, 98
sigma	sp_states_deallocate, 99
Skyrme parameters, 14	sp_states_setup, 99
Skyrme coefficients, 16	state_sort, 100
b1, 16	strutinsky_on
b10, 16	Input parameters, 38
b11, 16	
b12, 16	t0
b13, 16	Skyrme parameters, 14
b2, 17	t1
b3, 17	Skyrme parameters, 15
b4, 17	t2
b5, 17	Skyrme parameters, 15
b6, 17	t3
b7, 17	Skyrme parameters, 15
b8, 17	t4
b9, 17	Extra parameters for BSk forces, 19
Skyrme parameters, 14	t5
hbar2_2m_q, 14	Extra parameters for BSk forces, 19
j2_terms, 14	table_string
sigma, 14	Global strings for printing output, 41
t0, 14	tau_2_cont_q
t1, 15	Global arrays for other densities and fields, 25
t2, 15	tau_2_l_q
t3, 15	Global arrays for other densities and fields, 25
w0, 15	-
	tau_2_nl_q
x0, 15	Global arrays for other densities and fields, 25
x1, 15	tau_4_cont_q
x2, 15	parameters, 63
x3, 15	tau_4_no_spin_q
smooth_qp_cut	parameters, 63
Input parameters, 37	tau_4_so_q

tou	parameters, 64	Global arrays for other densities and fields, 26 Variables for electron contributions, 48
ıau_	etf_q Global arrays for other densities and fields, 25	e_coulomb_e, 48
tau	etf t	e_coulomb_e, 48
iau_	Global arrays for other densities and fields, 26	e_kinetic_e, 48
tau		rho_e, 48
tuu_	Global arrays for other densities and fields, 26	Variables for storing properties of Wigner-Seitz cell, 28
test,		delta_mu, 28
,	bartel_bencheikh_benchmark, 102	e_coulomb, 29
	file unit, 110	e_coulomb_di, 29
	file unit 2, 110	e coulomb ex, 29
	orders kinetic densities, 102	e field, 29
	read_test_params, 103	e_kinetic_q, 29
	sample_profile, 110	e_kinetic_t, 29
	test_calc_coulomb_energy, 103	e_skyrme, 30
	test_calc_particle_number, 104	e_so, 30
	test_calc_skyrme_energy, 104	e_total, 30
	test_central_potentials, 105	mu_c, 30
	test_densities, 105	mu_e, 30
	test_density_derivs, 106	mu_q, 30
	test_eff_mass, 106	n_q, 31
	test_kinetic_densities, 107	— ·
	test_si_correction, 107	n_t, 31
	test_sp_energies, 108	pressure_e, 31
	test_spin_current_densities, 109	pressure_ex, 31
	write_ws_cell_array_quantity, 109	pressure_nucl, 31
test	_calc_coulomb_energy	pressure_t, 31
_	test, 103	Variables for use in pairing module, 45
test	_calc_particle_number	delta_n, 45
_	test, 104	delta_p, 45
test	_calc_skyrme_energy	e_pair_bcs, 46
_	test, 104	e_pair_q, 46
test	_central_potentials	e_pair_t, 46
_	test, 105	e_qp_p, 46
test	densities	num_p_bcs, 46
_	test, 105	occ_u, 46
test	_density_derivs	occ_v, 47
_	test, 106	pair_gap_n, 47
test	_eff_mass	pair_gap_p, 47
	test, 106	rho_anom_p_bcs, 47
test	_kinetic_densities	rho_p_bcs, 47
_	test, 107	strength_bcs, 47
test	_si_correction	Variables for use in strutinsky module, 42
_	test, 107	d2hmen, 42
test	_sp_energies	dhmen, 42
_	test, 108	e_sc_q, 42
test	_spin_current_densities	e_sc_t, 43
_	test, 109	ecut, 43
total	_energy_with_corrections	ep, 43
	etf.f90, 113	hb2m, 43
		jjp, 43
u_q		lp, 43
	Global arrays for other densities and fields, 26	nnst, 44
		ps, 44
V_C_		strut_n, 44
	Global arrays for other densities and fields, 26	vpot, 44
V_C_		vso, 44
	Global arrays for other densities and fields, 26	verbose
V_C_	_pe	Input parameters, 38

```
vpot
     Variables for use in strutinsky module, 44
VSO
     Variables for use in strutinsky module, 44
w0
     Skyrme parameters, 15
w_q
     Global arrays for other densities and fields, 26
write densities
     routines, 92
write fields
     routines, 93
write_sp_states_p
     routines, 93
write_ws_cell_array_quantity
    test, 109
ws_integral
     routines, 94
х0
     Skyrme parameters, 15
x1
     Skyrme parameters, 15
x2
     Skyrme parameters, 15
хЗ
     Skyrme parameters, 15
х4
     Extra parameters for BSk forces, 19
х5
     Extra parameters for BSk forces, 19
xmh
     Extra constants for calculatingf$frac{hbar^2}{2m}f$
          for BSk forces, 9
xmn
     Extra constants for calculatingf$frac{hbar^2}{2m}f$
         for BSk forces, 9
xmp
     Extra constants for calculatingf\frac{hbar^2}{2m}f
         for BSk forces, 9
```