Predicting Song Popularity

Philippe Lessard, Petra Kumi, Camelia D. Brumar, Yanniode Peri-Okonny

Spotify Worldwide Daily Song Ranking

	# Position Position on charts	A Track Name Title of song	A Artist Name of musician or group	# Streams Number of streams	A URL	Date Date Othrisizot7, Count 71,7
	104.48 - 108.46 Count: 68.183	18597 unique values	Ed Sheeran 4% The Chainsmokers 2% Other (6626) 94%	1k 1.1m	21746 unique values	
1	1	Reggaetón Lento (Bailemos)	CNCO	19272	https://open.spotify .com/track/3AEZUABDX NtecAOSC1qTfo	2017-01
2	2	Chantaje	Shakira	19270	https://open.spotify .com/track/6mICuAdrw Ejh6Y6lroV2Kg	2017-01
3	3	Otra Vez (feat. J Balvin)	Zion & Lennox	15761	https://open.spotify .com/track/3QwBODjSE zelZyVjxPOHdq	2017-01
4	4	Vente Pa' Ca	Ricky Martin	14954	https://open.spotify .com/track/7DM4BPaS7 uofFul3ywMe46	2017-01
5	5	Safari	J Balvin	14269	https://open.spotify .com/track/6rQSrBHf7 HlZjtcMZ4S4b0	2017-01
6	6	La Bicicleta	Carlos Vives	12843	https://open.spotify .com/track/0sXvAOmXg jR2QUqLK1MltU	2017-01

Spotify Song Features

A track_name ▼	A track_id ▼	# popularity T	# acousticness T	# danceability T	# duration_ms
130254 unique values	153685 unique values	0 100	0 1	0.06 0.99	15.5k
Stiffelio, Act III: Ei fugge! … Lina, pensai che un angelo … Oh gioia inesprimbile	7EsKYeHtTc4H4xWiTqSV ZA	21	0.986	0.313	
Madama Butterfly / Act 1: E soffitto e pareti	7MfmRBvqaW0I6UTxXnad 8p	18	0.972	0.36	
Turandot / Act 2: Gloria, gloria, o vincitore	7pBo1GDhIysyUMFXiDVo ON	10	0.935	0.168	
Rigoletto, Act IV: Venti scudi hai tu detto?	02mvYZX5aKNzdqEo6jF2 0m	17	0.961	0.25	
Don Carlo / Act 4: "Ella giammai m'amò!"	03TW0jwGMGhUabAjOpB1 T9	19	0.985	0.142	
D'amor sull'ali rosee	0G75cCcf6vBSnMFFkVW9 pq	20	0.99	0.211	
Waxman : Carmen Fantasie	10gPtjlpTS9Uq6EUQuGl jt	13	0.98	0.341	

Project Goal

- Predict song popularity in a given country based on song features
- Merge datasets to connect features to regional chart position
- Regression might be hard to get good accuracy
- Classify into different categories:
 - o Top 10 (1-10)
 - o Top 50 (11-50)
 - o Top 100 (51-100)
 - o Top 150 (101-150)
 - o Top 200 (151-200)

Merging Datasets

- 1. Drop irrelevant columns (track name, artist name, date)
- 2. Flatten genre column
- 3. Keep each song's peak position in each country's chart, and drop the rest
 - As songs move up and down the charts, their position changes
 - Features stay the same
- 4. Convert track id to URL
- 5. Merge features dataset into rankings dataset using URL as a key
 - Equivalent of a SQL Natural Join
- 6. $3.4 \text{ million rows} \rightarrow 12,000$
- 7. Split into 2,000 row safe

Feature Engineering - Categorical Data

ge	enre
M	ovie
Re	eggae
Ja	zz
Da	ance
Po	ор
Co	omedy
Re	eggaeton
O	pera
BI	ues
Al	ternative
Αı	nime
Cł	nildren's Music
Ro	ock
Fc	olk
In	die
W	orld orld

Blues	Dance	Pop	Electronic	R&B
0	1	1	0	0
0	0	1	0	0
0	1	1	0	0
0	1	0	0	1
0	0	0	0	0
0	1	0	0	0
0	0	0	0	0
1	0	1	0	1
0	0	1	0	0

Region
ec

Region_cl	Region_ec	Region_ee	Region_es	Region_fi
0	0	0	0	0
0	0	0	0	0
0	1	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Feature Engineering - Key

https://assets.classicfm.com/2018/13/circle-of-fifths--1523016231.jpg

Feature Engineering - Time Signature

Lasso & Ridge Regression

- Lasso: too strict none of the predictors were deemed influential enough
- Generalized Cross-Validation used to determine alpha
- Most influential predictors:
 - Region_ee (Estonia)
 - Soundtrack
 - Region_sk (Slovakia)

Lasso & Ridge Regression

- Ridge Regression with interaction terms
- Most influential parameter:
 - o instrumentalness * movie
 - o instrumentalness * Reggaeton
 - o instrumentalness *Reggae
- MSE = too high
- Figure 1: Results of ridge regression (with interaction terms).
- Figure 2: Results of ridge regression all predictors except for the three most influential ones.

KNN and KNN + PCA

- KNN: no strict assumptions about the data
- K-fold cross validation
- Best accuracy:
 - Only KNN:
 - K=10
 - Accuracy = 0.3852
 - \circ KNN + PCA
 - 29 principal components,
 - K = 7
 - $\blacksquare \quad Accuracy = 0.3859$

- Types of Kernel: Linear, RBF, Polynomial, or Sigmoid
- To determine the degree to use for a polynomial kernel
 - tested values between 3 and 10
 - o degree of 3 had the best accuracy
- Set the C-parameter: tested values of 1e-5 to 10
- Best accuracy: RBF kernel with C=10
- Larger values of C tested manually
 - \circ C=10,000, accuracy = 54.2%

- Training: sample sizes usually different \rightarrow bias in the training
- Solution: up-sampled the smaller class to the size of the larger class by bootstrapping
 - Samples were balanced
 - No loss of data by down-sampling
- Chose SVM model with higher testing accuracy

Larger values of C + RBF

- \circ C=10,000,
- \circ accuracy = 54.2%

- 2 different **strategies** for using SVM:
 - a. Multi-class SVM algorithm
 - b. Layered set of one-vs-all binary classifiers
- Trained and cross-validated 4 different SVM models

Random Forests

- Expected not to overfit
- Used K-Fold Cross-Validation
- Tested for:
 - \circ 70-150 trees with increments of 1
 - 100-500 trees with increments of 100
 - o 3-12 folds
 - o Max depth 20-40

Highest Accuracy For:

- \circ Number of trees = 100
- \circ Maximum depth of each tree = 30
- \circ Number of folds = 6
- \circ Accuracy score = 0.7405

Summary of the Final Approach

- 1. Cross validating to find the optimal number of hyperparameters for the models
- 2. Tested their accuracy on sets of testing data with the goal of finding the most successful model
- 3. Best model: a single multi-class Random Forest with 100 trees, 6 folds, and 30 as our maximum depth
 - \circ accuracy = 0.7405
- 4. Followed by a single multi-class SVM, and KNN with 10 neighbors and 29 PCA components.
- 5. Chosen Random Forest (no overfitting)
- 6. Proceeded to test it against the data we had put in the safe.

Expected Accuracy

37.4%

Final test accuracy

Summary of the Final Results

- 30% True Positives for predicted top 10 songs
- 51% True Positives on top 100 data
- 26% of the data points rightfully classified as top 200.

Summary of the Final Results

- Our model does well in predicting the general trends of a song
- Possible reasons behind low model accuracy
 - Accidental data snooping
 - May have overlooked/misunderstood how some functions are used
 - Chose final model based only only average accuracy, not true/false positives or negatives
- May have picked a more biased model, much more accurate on true negatives than it is on true positives.

Conclusions

- Lasso, Ridge Classification, KNN, KNN + PCA, Random Forest, and SVM.
- Merged 2 datasets
- Did feature engineering to make the dataset useable for our purposes
- Stored some of the data in "the safe" to only use for testing of the final model.

Conclusions

- Used k-fold cross-validation and bootstrapping.
- Fine-tuned our models by cross validating on different hyperparameters.
- Most accurate model: Random Forest with 100 trees, of 30 maximum features each, and 6 folds for k-fold cross-validation.
- When running it on our safe data → lower accuracy than expected.
- Suspecting accidental data snooping or not have examined model accuracy scores in more depth.

