1.b

Tværvektorer og determinanter

Tværvektor

Ønsker vi at bestemme en vektor, der står vinkelret på en vektor, kan vi konstruere den vektor, vi kalder for tværvektoren.

Definition 1.1 (Tværvektor). For en vektor \overrightarrow{v} med koordinaterne

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

defineret tværvektoren til \overrightarrow{v} som

$$\hat{\vec{v}} = \begin{pmatrix} -v_2 \\ v_1 \end{pmatrix}.$$

På Figur 1 kan vi se, tværvektoren for en vektor.

Figur 1: En vektor og dens tværvektor

Eksempel 1.2. Vektoren

 $\binom{4}{2}$

har vektoren

 $\begin{pmatrix} -2 \\ 4 \end{pmatrix}$

som tværvektor.

Determinanter

Definition 2.1 (Determinanter). For to vektorer \vec{u} og \vec{v} givet ved

$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad \text{og} \qquad \vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

defineres determinanten mellem \overrightarrow{u} og \overrightarrow{v} som

$$\det(\overrightarrow{u}, \overrightarrow{v}) = u_1 v_2 - u_2 v_1.$$

Dette skrives også til tider

$$\det(\overrightarrow{u}, \overrightarrow{v}) = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$$

Eksempel 2.2. For vektorerne

$$\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \text{og} \qquad \vec{v} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

er determinanten givet ved

$$\det(\vec{u}, \vec{v}) = 2 \cdot 5 - 1 \cdot (-3) = 10 + 3 = 13$$

Sætning 2.3 (Areal og determinant). For to vektorer \vec{u} og \vec{v} gælder der, at arealet af deres udspændende parallelogram er lig $|\det(\vec{u}, \vec{v})|$.

På Figur 2 kan vi se arealet, som determinanten tilsvarer

Figur 2: Determinant som areal

Skal vi bestemme determinanten i Maple, så skal vi skrive

with(Gym):

 \overrightarrow{u} := $\langle u_1, u_2 \rangle$

 \overrightarrow{v} := $\langle v_1, v_2 \rangle$

 $\det(\overrightarrow{\mathtt{u}}, \overrightarrow{\mathtt{v}})$

1.b

Opgave 1

Bestem tværvektoren for følgende vektorer

$$a)$$
 $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$

$$b) \begin{pmatrix} -7 \\ 11 \end{pmatrix}$$

$$c) \begin{pmatrix} 3 \\ -0.5 \end{pmatrix}$$

$$d) \begin{pmatrix} -\sqrt{3} \\ -27 \end{pmatrix}$$

Opgave 2

Bestem determinanten for følgende par af vektorer

$$a) \begin{pmatrix} 3 \\ -2 \end{pmatrix} \text{ og } \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 6 \\ 10 \end{pmatrix}$$
 og $\begin{pmatrix} 4 \\ -7 \end{pmatrix}$

Opgave 3

Udregn følgende

$$a) \begin{vmatrix} 5 & 7 \\ -2 & -5 \end{vmatrix}$$

$$b) \begin{vmatrix} -9 & 4 \\ 4 & -6 \end{vmatrix}$$

Opgave 4

Beregn arealet af det skraverede område på følgende figur.

Opgave 5

Vektorerne \vec{a} og \vec{b} givet ved

$$\vec{a} = \begin{pmatrix} 2 \\ -4 \end{pmatrix} \qquad \text{og} \qquad \vec{b} = \begin{pmatrix} 4 \\ -8 \end{pmatrix}$$

er parallelle, da $2\vec{a} = \vec{b}$.

- i) Bestem $\det(\vec{a}, \vec{b})$. Hvorfor giver resultatet god mening? Tænk på den geometriske fortolkning af determinanten
- ii) Hvordan kan vi undersøge, om to vektorer er parallelle?

Opgave 6

To vektorer \overrightarrow{u} og \overrightarrow{v} er givet ved

$$\vec{u} = \begin{pmatrix} t+2\\5 \end{pmatrix} \qquad \text{og} \qquad \vec{v} = \begin{pmatrix} -t+3\\4 \end{pmatrix}$$

- i) Bestem $\det(\vec{u}, \vec{v})$, hvis t = 6
- ii) Bestem t, så arealet af vektorernes udspændende parallelogram er 20.

Opgave 7

- i) Bevis, at en vektor \overrightarrow{v} og dens tværvektor $\hat{\overrightarrow{v}}$ er orthogonale
- ii) Bevis, at der for to vektorer \overrightarrow{u} og \overrightarrow{v} givet ved

$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad \text{og} \qquad \vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

gælder, at

$$\det(\vec{u}, \vec{v}) = \hat{\vec{u}} \cdot \vec{v}.$$