Отчет по лабораторной работе №4 : Утилита для исследования сети и сканер портов nmap

Дедков Сергей

2015

Содержание

1	Цел	ь работы	2			
2	Ход	Ход работы				
	2.1	Провести поиск активных хостов	2			
	2.2	Определить открытые порты	2			
	2.3	Определить версии сервисов	3			
	2.4	Изучить файлы nmap-services, nmap-os-db, nmapservice-probes	3			
	2.5	Добавить новую сигнатуру службы в файл nmap-service-				
		probes (для этого создать минимальный tcp server, добить-				
		ся, чтобы при сканировании птар указывал для него на-				
		звание и версию)	6			
	2.6	Сохранить выводы утилиты в формате xml	8			
	2.7	Исследовать различные этапы и режимы работы nmap с				
		использованием утилиты Wireshark	8			
	2.8	Просканировать виртуальную машину Metasploitable2 ис-				
		пользуя nmap_db из состава metasploit-framework	9			
	2.9	Выбрать пять записей из файла nmap-service-probes и опи-				
		сать их работу. Выбрать один скрипт из состава Nmap и				
		описать его работу	11			
3	Вын	вод	16			

1 Цель работы

Определить набор и версии сервисов запущенных на компьютере в диапазоне адресов. Данная работа выполняется на ОС kali linux, используется утилита nmap.

2 Ход работы

2.1 Провести поиск активных хостов

Настройки сети: в нашей сети имеется всего 3 хоста.

- Windows 8 (192.168.150.1), основная ОС
- kali linux (192.168.150.2)
- metasploitable2 (192.168.150.3)

Выведем список хостов в подсети 192.168.150.0/24 Для этого воспользуемся командой nmap -sn 192.168.150.0/24. (См. рисунок 1)

```
root@kali:~# nmap -sn 192.168.150.0/24

Starting Nmap 6.47 ( http://nmap.org ) at 2015-05-30 16:51 EDT
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
Nmap scan report for 192.168.150.1
Host is up (0.00077s latency).
MAC Address: 00:50:56:C0:00:03 (VMware)
Nmap scan report for 192.168.150.3
Host is up (0.00099s latency).
MAC Address: 00:0C:29:B2:58:FA (VMware)
Nmap scan report for 192.168.150.2
Host is up.
Nmap done: 256 IP addresses (3 hosts up) scanned in 2.01 seconds
```

Рис. 1: Поиск хостов

2.2 Определить открытые порты

Просканируем порты metasploitable2.

Для определения открытых портов достаточно просто ввести nmap 192.168.150.3 (сканируются порты до 1024). Или же воспользоваться опцией -р, например nmap -р "*" 192.168.150.3. Данной командой просканируются все порты, если необходимо задать диапазон достаточно указать его вместо "*". Результат на рисунке 2.

```
oot@kali:~# nmap -p "*" 192.168.150.3
Starting Nmap 6.47 ( http://nmap.org ) at 2015-05-30 17:07 E
mass dns: warning: Unable to determine any DNS servers. Reve
Nmap scan report for 192.168.150.3
Host is up (0.00019s latency).
Not shown: 4219 closed ports
P0RT
         STATE SERVICE
21/tcp
         open
               ftp
22/tcp
         open
               ssh
23/tcp
         open
               telnet
25/tcp
         open
               smtp
53/tcp
         open
               domain
80/tcp
         open
               http
111/tcp
               rpcbind
         open
139/tcp
         open
              netbios-ssn
445/tcp
         open
               microsoft-ds
512/tcp
         open exec
        open
              login
513/tcp
514/tcp open
              shell
1099/tcp open
               rmiregistry
1524/tcp open
               ingreslock
2049/tcp open
               nfs
2121/tcp open
               ccproxy-ftp
3306/tcp open
               mysql
3632/tcp open
               distccd
5432/tcp open
               postgresql
5900/tcp open
               vnc
6000/tcp open
               X11
6667/tcp open
               irc
8009/tcp open
              ajp13
8180/tcp open unknown
MAC Address: 00:0C:29:B2:58:FA (VMware)
Nmap done: 1 IP address (1 host up) scanned in 0.30 seconds
```

Рис. 2: Поиск портов

2.3 Определить версии сервисов

Чтобы определить версии сервисов необходимо воспользоваться командой птар с ключем sV следующим образом: nmap -sV 192.168.150.3. Результат на рисунке 3.

2.4 Изучить файлы nmap-services, nmap-os-db, nmapserviceprobes

Paccмотрим файл nmap-services. Для этого введем команду vim /usr/share/nmap/nmap-services.

Файл служит для быстрого поиска, напрмер с ключем -F. В файле в каждой строчке задаются сервисное название или сокращение, число

```
oot@kali:~# nmap -p "*" -sV 192.168.150.3
Starting Nmap 6.47 ( http://nmap.org ) at 2015-05-30 17:11 EDT
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is
Nmap scan report for 192.168.150.3
Host is up (0.00024s latency).
Not shown: 4219 closed ports
P0RT
         STATE SERVICE
                            VERSION
21/tcp
                            vsftpd 2.3.4
         open
               ftp
                           OpenSSH 4.7pl Debian 8ubuntul (protocol 2.0)
22/tcp
         open
               ssh
23/tcp
               telnet
                           Linux telnetd
         open
                           Postfix smtpd
25/tcp
               smtp
         open
53/tcp
                           ISC BIND 9.4.2
               domain
         open
                           Apache httpd 2.2.8 ((Ubuntu) DAV/2)
80/tcp
         open
               http
               rpcbind
                           2 (RPC #100000)
111/tcp
         open
139/tcp
               netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)
         open
               netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)
445/tcp
         open
                           netkit-rsh rexecd
512/tcp
         open
               exec
        open
               login
513/tcp
        open
514/tcp
               tcpwrapped
               rmiregistry GNU Classpath grmiregistry
1099/tcp open
1524/tcp open
               shell
                           Metasploitable root shell
                           2-4 (RPC #100003)
2049/tcp open
               nfs
                           ProFTPD 1.3.1
2121/tcp open
               ftp
                           MySQL 5.0.51a-3ubuntu5
3306/tcp open
               mysql
3632/tcp open
                           distccd v1 ((GNU) 4.2.4 (Ubuntu 4.2.4-1ubunt
               distccd
5432/tcp open
                           PostgreSQL DB 8.3.0 - 8.3.7
               postgresql
                           VNC (protocol 3.3)
5900/tcp open
               vnc
6000/tcp open
               X11
                            (access denied)
6667/tcp open
               irc
                           Unreal ircd
8009/tcp open
               ajp13
                           Apache Jserv (Protocol v1.3)
                           Apache Tomcat/Coyote JSP engine 1.1
8180/tcp open
              http
MAC Address: 00:0C:29:B2:58:FA (VMware)
Service Info: Hosts: metasploitable.localdomain, localhost, irc.Metasp
```

Рис. 3: Определение версий сервисов

порта и протокол, определенный разделом, частота порта мера того, как часто порт был найдет открытым во время сканирования. Пример файла можно увидеть на рисунке 4.

Файл nmap-os-db содержит сотни примеров реакций ОС на nmap. Таким образом nmap определяет какая опреационная система установлена на удаленной машине. Для того чтобы узнать какая ОС установлена нужно запустить nmap с ключем -О. Содержимое файла представлено на рисунке 5.

nmap-service-probes — это простой текстовый файл состоящий из строк, в котором хнаняться тесты и сигнатуры подсистем определений версий. Строки, начинающиеся с символа "решетки" (#) воспринимаются как комментарии и игнорируются обработчиком. Пустые строки также не обрабатываются.

```
# Fields in this file are: Service name, portnum/protocol, open-frequency, optional com
ments
                                 # TCP Port Service Multiplexer [rfc-1078]
tcpmux
        1/tcp
                0.001995
tcpmux
        1/udp
                0.001236
                                   TCP Port Service Multiplexer
                2/tcp
                         0.000013
                                         # Management Utility
compressnet
                2/udp
                         0.001845
                                         # Management Utility
compressnet
                3/tcp
                         0.001242
                                         # Compression Process
compressnet
compressnet
                3/udp
                         0.001532
                                         # Compression Process
unknown 4/tcp
                0.000477
        5/udp
                0.000593
                                 # Remote Job Entry
rje
                0.000502
unknown 6/tcp
                0.000000
echo
        7/sctp
echo
                0.004855
        7/tcp
        7/udp
                0.024679
echo
unknown 8/tcp
                0.000013
discard 9/sctp
               0.000000
                                 # sink null
```

Рис. 4: Файл nmap-services

```
MatchPoints
SEQ(SP=25%GCD=75%ISR=25%TI=100%CI=50%II=100%SS=80%TS=100)
0PS(01=20%02=20%03=20%04=20%05=20%06=20)
WIN(W1=15%W2=15%W3=15%W4=15%W5=15%W6=15)
ECN(R=100%DF=20%T=15%TG=15%W=15%0=15%CC=100%Q=20)
T1(R=100%DF=20%T=15%TG=15%W=25%S=20%A=20%F=30%RD=20%Q=20)
T2(R=80%DF=20%T=15%TG=15%W=25%S=20%A=20%F=30%0=10%RD=20%Q=20)
T3(R=80%DF=20%T=15%TG=15%W=25%S=20%A=20%F=30%0=10%RD=20%Q=20)
T4(R=100%DF=20%T=15%TG=15%W=25%S=20%A=20%F=30%0=10%RD=20%Q=20)
T5(R=100%DF=20%T=15%TG=15%W=25%S=20%A=20%F=30%0=10%RD=20%Q=20)
T5(R=100%DF=20%T=15%TG=15%W=25%S=20%A=20%F=30%0=10%RD=20%Q=20)
T7(R=80%DF=20%T=15%TG=15%W=25%S=20%A=20%F=30%0=10%RD=20%Q=20)
T7(R=80%DF=20%T=15%TG=15%W=25%S=20%A=20%F=30%0=10%RD=20%Q=20)
U1(R=50%DF=20%T=15%TG=15%IPL=100%UN=100%RIPL=100%RID=100%RIPCK=100%RUC
IE(R=50%DFI=40%T=15%TG=15%CD=100)
```

Рис. 5: Файл nmap-os-db

Синтаксис:

- Probe <protocol> <probename> <probesendstring> директива probe (тест) указывает птар, какие данные отправлять в процессе определения служб
- match <service> <pattern> <productname> <version> <device> <h?????> <info> <OS> указывает птар на то, как точно определить службу, используя полученный ответ на запрос, отправленный предыдущей директивой ргобе. Эта директива используется в случае, когда полученный ответ полностью совпадает с шаблоном. При этом тестирование порта считается законченным, а при помощи дополнительных спецификаторов птар строит отчет о названии приложения, номере версии и дополнительной информации,

полученной в ходе проверки

- softmatch <service> <pattern> <h?????> <info> <OS> имеет аналогичный формат директиве
 match. Основное отличие заключается в том, что после совпадения принятого ответа с одним из шаблонов softmatch, тестирование будет продолжено с использованием только тех тестов, которые
 относятся к определенной шаблоном службе. Тестирование порта
 будет идти до тех пор, пока не будет найдено строгое соответствие
 (match) или не закончатся все тесты для данной службы
- ports <portlist> группирует порты, которые обычно закрепляются за идентифицируемой данным тестом службой
- sslports <sslportlist> аналогична директиве ports, только эта директива указывает порты, обычно используемые совместно с SSL
- totalwaitms <milliseconds> редко используемая, т.к. указывает сколько времени (в миллисекундах) необходимо ждать ответ, прежде чем прекратить тест службы

2.5 Добавить новую сигнатуру службы в файл nmap-serviceprobes (для этого создать минимальный tcp server, добиться, чтобы при сканировании nmap указывал для него название и версию)

Напишем простой tcp-сервер, который просто ждет подключения клиента и отправляет ему сообщение. В файл nmap-service-probes добавим следующую строку:

```
match tcp-server m|^111| v/1.0.X/ p/Dedkov S.V./ i/It's works / Kog cepsepa:
```

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Net;
using System.Net;
using System.Net.Sockets;
using System.Threading;

namespace ExampleTcpListener_Console
{
    class ExampleTcpListener
    {
        static void Main(string[] args)
```

```
{
             TcpListener server = null;
             try
             {
                           int MaxThreadsCount = Environment.ProcessorCount * 4;
                           Console.WriteLine(MaxThreadsCount.ToString());
                           ThreadPool.SetMaxThreads(MaxThreadsCount, MaxThreadsCount);
                           ThreadPool.SetMinThreads(2, 2);
                           Int32 port = 9596;
                           IPAddress localAddr = IPAddress.Parse("192.168.137.1");
                           int counter = 0;
                           server = new TcpListener(localAddr, port);
                           server.Start();
                          while (true)
                           {
                                         Console.Write("\nWaiting for a connection... ");
                                         \label{thm:condition} Thread Pool. Queue User Work Item (Obrabotka Zaprosa, server. Accept Tcp Classical Conditions) and the property of the
                                         counter++;
                                         Console.Write("\nConnection \mathbb{N}" + counter.ToString() + "!");
                          }
             }
             catch (SocketException e)
              {
                           Console.WriteLine("SocketException: {0}", e);
             }
             finally
             {
                           server.Stop();
             Console.WriteLine("\nHit enter to continue...");
             Console.Read();
}
static void ObrabotkaZaprosa(object client_obj)
             Byte[] bytes = new Byte[256];
             String data = null;
```

```
TcpClient client = client_obj as TcpClient;

data = null;

NetworkStream stream = client.GetStream();

int i;

data = "111";
byte[] msg = System.Text.Encoding.ASCII.GetBytes(data);
stream.Write(msg, 0, msg.Length);

client.Close();
}
}
```

Таким образом теперь nmap знает, что если при пустом запросе с сервера прихоит строка 111, значит нужно выводить информацию которая указана на рисунке 6.

```
Starting Nmap 6.47 ( http://nmap.org ) at 2015-05-24 23:40 EDT
Nmap scan report for 192.168.137.1
Host is up (0.00088s latency).
PORT STATE SERVICE VERSION
9596/tcp open tcp-server Dedkov S.V. 1.0.x (It's works)
```

Рис. 6: Вывод информации о сервисе

2.6 Сохранить выводы утилиты в формате xml

Для того, чтобы вывести данные в xml файл достаточно вызвать команду nmap с ключем -oX и указать имя файла. Например:

```
namp -sn -oX output.xml 192.168.150.1 Результат можно увидеть на рисунке 7:
```

2.7 Исследовать различные этапы и режимы работы nmap с использованием утилиты Wireshark

Wireshark — это достаточно известный инструмент для захвата и анализа сетевого трафика, фактически стандарт как для образования, так и для траблшутинга. Wireshark работает с подавляющим большинством

```
<?xml version="1.0"?>
<!DOCTYPE nmaprun>
<?xml-stylesheet href="file:///usr/bin/../share/nmap/nmap.xsl" type="text/xsl"?>
<!-- Nmap 6.47 scan initiated Sun May 24 23:49:40 2015 as: nmap -sn -oX output.xml 192
<nmaprun scanner="nmap" args="nmap -sn -oX output.xml 192.168.137.1" start="1432525780"</pre>
startstr="Sun May 24 23:49:40 2015" version="6.47" xmloutputversion="1.04">
<verbose level="0"/>
<debugging level="0"/>
<host><status state="up" reason="echo-reply" reason ttl="128"/>
<address addr="192.168.137.1" addrtype="ipv4"/>
<hostnames>
</hostnames>
<times srtt="813" rttvar="5000" to="100000"/>
<runstats><finished time="1432525780" timestr="Sun May 24 23:49:40 2015" elapsed="0.01"</pre>
summary="Nmap done at Sun May 24 23:49:40 2015; 1 IP address (1 host up) scanned in 0.
01 seconds" exit="success"/><hosts up="1" down="0" total="1"/>
</runstats>
</nmaprun>
```

Рис. 7: output.xml

известных протоколов, имеет понятный и логичный графический интерфейс на основе GTK+ и мощнейшую систему фильтров. Кроссплатформенный, работает в таких ОС как Linux, Solaris, FreeBSD, NetBSD, OpenBSD, Mac OS X, и, естественно, Windows. Распространяется под лицензией GNU GPL v2. Доступен бесплатно на сайте wireshark.org.

Далее продемонстрируем простую работу с wireshark. При запуске wireshark предложит выбрать интерфейс и начать сканировать его траффик(см. рисунок 8). Выберем интерфейс eth0

Wireshark по-умолчанию выводит все пакеты, которые проходят через интерфейс eth0. Все пакеты просматривать неудобно, поэтому мы будем пользоваться фильтрами. Поставим фильтр по протоколу істр, ір отправителя и получателя:

```
ip.src == 192.168.150.2 and ip.dst == 192.168.150.3 and icmp. Введем команду для определения ОС в подсети 192.168.150.0/24 nmap -0 192.168.150.0/24.
```

Результат на рисунке 9. Увидим три пакета

По каждому запросу можно увидеть дополнительую информацию кликнув на нем, как, например, на рисунке 10.

2.8 Просканировать виртуальную машину Metasploitable2 используя nmap db из состава metasploit-framework

Для работы с metasploit потребуется СУБД postgresql. Для того, чтобы ее запустить воспользуемся командой

Рис. 8: wireshark выбор интерфейса и старт

Filter	r: :== 192.168.1	50.2 and ip.dst == 192.168	3.150.3 and V Expressi	on Clear	Apply	Save		
۷o.	Time	Source	Destination	Protocol	Lengtl	Info		
34	495 6.678055000	192.168.150.2	192.168.150.3	ICMP	162	Echo	(ping)	request
34	499 6.703968000	192.168.150.2	192.168.150.3	ICMP	192	Echo	(ping)	request

Рис. 9: wireshark scan

Рис. 10: wireshark info

service postgressql start

Затем запустим msf консоль командой msf console.

В данной консоли осуществляется работа с metasplit. Проверим соединение с БД:

db_status

Результат на рисунке 11.

Рис. 11: db status

Таблицы БД: hosts, services, vulns, loot и notes. В каждой храниться соответствующая информация. Для заполнения этих таблиц автоматизированно, можно использовать db_nmap. Так же можно использовать какую-то любую утилиту для сканирования, экспортировать результаты её работы в XML-файл, а потом - импортировать его в метасплойт. Это можно сделать, использовав db import внутри меню метасплойт.

Выполним команду: db_nmap -sV 192.168.150.0/24

Вывод будет такой же как и при использовании команы nmap. Теперь после того как была просканирована наша сеть можно посмотреть, что было записано в БД: hosts, services. Результаты на рисунках 12 и 13.

Рис. 12: Таблица хостов

2.9 Выбрать пять записей из файла nmap-service-probes и описать их работу. Выбрать один скрипт из состава Nmap и описать его работу

• Первая запись

Возьмем самую первую запсись probe - эта запись теста с отправкой null-запроса. В данной записи будет отправляться пустой запрос по протоколу TCP. С ожиданием ответа в 6 секунд(директива totalwaitms).

• Вторая запись

Второй записью рассмотрим match после probe null-запроса. Если пользователь укажет ключ -sV при использовании nmap и после отправки нулевого теста с сервера приедет выражение подходящее под mSxf5xc6x1a тогда в колонке SERVICE при выводе информации он увидит наименование сервиса 1c-server, а в олонке VERSION 1C:Enterprise business management server.

```
<u>msf</u> > services
Services
host
               port proto name
                                           state
                                                  info
192.168.150.1
               135
                                                  Microsoft Windows RPC
                      tcp
                             msrpc
                                           open
192.168.150.1
               139
                             netbios-ssn
                                          open
192.168.150.1
               445
                             netbios-ssn open
                      tcp
192.168.150.1
               1028
                                                  Microsoft Windows RPC
                      tcp
                             msrpc
                                           open
192.168.150.1
                                                  Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
               2869
                             http
                      tcp
                                           open
192.168.150.3
               512
                                                  netkit-rsh rexecd
                      tcp
                             exec
                                           open
192.168.150.3
               22
                                                  OpenSSH 4.7pl Debian 8ubuntul protocol 2
                                           open
                      tcp
                             ssh
192.168.150.3
               23
                             telnet
                                                  Linux telnetd
                                           open
                      tcp
192.168.150.3
               25
                             smtp
                                           open
                                                  Postfix smtpd
                      tcp
192.168.150.3
               53
                                                  ISC BIND 9.4.2
                      tcp
                             domain
                                           open
                                                  Apache httpd 2.2.8 (Ubuntu) DAV/2
192.168.150.3
               80
                                           open
                      tcp
                             http
192.168.150.3
               111
                      tcp
                             rpcbind
                                           open
                                                   2 RPC #100000
    168 150
                             nathine-een
```

Рис. 13: Таблица сервисов

Рис. 14: Запись 1

match lc-server m|^S\xf5\xc6\xla{| p/1C:Enterprise business management server/

Рис. 15: Запись 2

• Третья запись

В данной запись на сервер отправляется запрос по протоколу ТСР в котором передается информация. Так же указан список портов и ssl-портов, по которым нужно осуществлять сканирование.

• Четвертая запись

Здесь отправляется запрос по протоколу UDP для проверки RPC.

• Пятая запись

Здесь отправляется запрос по протоколу UDP для проверки sql, через порт 1434.

Рис. 16: Запись 3

Probe UDP RPCCheck q|\x72\xFE\x1D\x13\0\0\0\0\0\0\0\x02\0\x01\x86\xA0\0\x01\x97\x7C\0\0\
rarity 1
ports 17,88,111,407,500,517,518,1419,2427,4045,10000,10080,12203,27960,32750-32810,38978

Рис. 17: Запись 4

################################# Probe UDP Sqlping q|\x02| rarity 6 ports 1434

Рис. 18: Запись 5

• Скрипт

Paccмотрим следующий скрипт skypev2-version.nse. Его можно найти в папке с отчетом.

Первым делом в нем объявлены переменные импортированные из библиотек:

```
local comm = require "comm"
local nmap = require "nmap"
local shortport = require "shortport"
local string = require "string"
local U = require "lpeg-utility"

Далее следует описание скрипта в переменной description:
```

description = [[
Detects the Skype version 2 service.
]]

Далее описание в комментарии в формате NSEDoc.

```
-- @output
-- PORT STATE SERVICE VERSION
-- 80/tcp open skype2 Skype
Далее имя автора, лицензия, категория:
author = "Brandon Enright"
license = "Same as Nmap--See http://nmap.org/book/man-legal.html"
categories = {"version"}
Далее правило порта(вместо него можно задавать правило хоста)
- функция возвращающая true или false. Если возвращает true, то
выполняется функция заданная в перемнной action. В данном слу-
чае из кода понятно, в каких случая выполняется это условие.
portrule = function(host, port)
  return (port.number == 80 or port.number == 443 or
    port.service == nil or port.service == "" or
    port.service == "unknown") -- условия по портам
  and port.protocol == "tcp" and port.state == "open" -- условия по протоколу
  and port.version.name_confidence < 10 -- доверие
  and not(shortport.port_is_excluded(port.number,port.protocol)) -- порт не искл
  and nmap.version_intensity() >= 7 -- версия интенсивности
end
Далее приведен код функции action:
action = function(host, port)
  local result, rand
  -- Did the service engine already do the hard work?
  if port.version and port.version.service_fp then
    -- Probes sent, replies received, but no match.
    result = U.get_response(port.version.service_fp, "GetRequest")
    -- Loop through the ASCII probes most likely to receive random response
    -- from Skype. Others will also recieve this response, but are harder to
    -- distinguish from an echo service.
    for _, p in ipairs({"HTTPOptions", "RTSPRequest"}) do
      rand = U.get_response(port.version.service_fp, p)
      if rand then
        break
```

```
end
    end
  end
 local status
  if not result then
    -- Have to send the probe ourselves.
    status, result = comm.exchange(host, port,
      "GET / HTTP/1.0\r\n\r\n", {bytes=26})
    if (not status) then
      return nil
    end
  end
  if (result \sim= "HTTP/1.0 404 Not Found\r\n\r\n") then
    return
  end
  -- So far so good, now see if we get random data for another request
 if not rand then
    status, rand = comm.exchange(host, port,
      "random data\r\n\r\n", {bytes=15})
    if (not status) then
      return
    end
  end
  if string.match(rand, "[^{s}_{-}].*[^{s}_{-}].*[^{s}_{-}]") then
    -- Detected
   port.version.name = "skype2"
   port.version.product = "Skype"
   nmap.set_port_version(host, port)
   return
  end
 return
end
```

После прохождения всех проверок, обозначается версия и продукт (после комментария Detected).

Для использования скрипта нужно ввести либо ключ -sC, либо – $script = < uмя_скрипта>$.

Для примера была просканирована основная ОС. Двумя способа-

ми. Результаты можно увидеть на рисунках 19 и 20.

```
oot@kali:/usr/share/nmap/scripts#<mark>_nmap_192.168.150.1_-p-</mark>_
Starting Nmap 6.47 ( http://nmap.org ) at 2015-05-31 01:35 EDT
Nmap scan report for 192.168.150.1
Host is up (0.00052s latency).
Not shown: 65515 closed ports
PORT
          STATE SERVICE
80/tcp
               http
135/tcp
          open
                msrpc
139/tcp
          open
               netbios-ssn
445/tcp
               microsoft-ds
          open
                iss-realsecure
902/tcp
          open
912/tcp
                apex-mesh
          open
                NFS-or-IIS
1025/tcp
          open
1026/tcp
                LSA-or-nterm
          open
1027/tcp
                IIS
          open
1028/tcp
                unknown
          open
1031/tcp
          open
                iad2
1074/tcp
                warmspotMgmt
          open
1203/tcp
                unknown
          open
1433/tcp
          open
                ms-sql-s
2383/tcp
                ms-olap4
          open
2869/tcp
                icslap
          open
3050/tcp
          open
               gds db
5357/tcp open
                wsdapi
27017/tcp open unknown
41535/tcp open unknown
```

Рис. 19: Результаты сканирования без использования скрипта

3 Вывод

В ходе проделанной работы были изучены основы работы с nmap, немного изучен сниффер wireshark, а так же запись в БД metasploit посредством команды db_nmap. Ранее я не был знаком с подобными программами, поэтому не с чем сравнивать. В общем интересно было посканировать хосты и порты. Понравилось так же что можно писать собственные скрипты, но для того, чтобы подробно с ними разобраться нужно больше времени.

```
ot@kali:/usr/share/nmap/scripts# nmap 192.168.150.1 -p- --script=skypev2-version.nse
Starting Nmap 6.47 ( http://nmap.org ) at 2015-05-31 02:03 EDT
Vmap scan report for 192.168.150.1
Host is up (0.00075s latency).
Not shown: 65515 closed ports
P0RT
          STATE SERVICE
80/tcp
           open
                 http
135/tcp
          open
                 msrpc
139/tcp
          open
                 netbios-ssn
445/tcp
          open
                 microsoft-ds
902/tcp
                 iss-realsecure
          open
          open
912/tcp
                 apex-mesh
1025/tcp
          open
                 NFS-or-IIS
                 LSA-or-nterm
1026/tcp
          open
1027/tcp
                 IIS
          open
1028/tcp
          open
                 unknown
1031/tcp
                 iad2
          open
1074/tcp
          open warmspotMgmt
1203/tcp
          open unknown
1433/tcp
          open ms-sql-s
2383/tcp
          open
                 ms-olap4
2869/tcp
          open icslap
3050/tcp
                 gds_db
          open
5357/tcp open wsdapi
27017/tcp open unknown
11535/tcp open skype2
```

Рис. 20: Результаты сканирования с использованием скрипта