Matemática Discreta – AP2 – 2006/2

- 1. Uma caixa contém nove etiquetas numeradas de 1 a 9, inclusive. Três etiquetas são retiradas da caixa, uma de cada vez, sem reposição.
 - (a) (0,5) Descreva o espaço amostral Ω deste experimento e determine o número de elementos de Ω .
 - (b) (1,0) Determine a probabilidade de que as etiquetas sejam, na ordem em que são retiradas, *impar*, *par* e *impar*, respectivamente.
 - (c) (0,5) Determine a probabilidade de que as etiquetas sejam, na ordem em que são retiradas, par, impar e par, respectivamente.
 - (d) (1,0) Determine a probabilidade de que duas etiquetas de mesma paridade sejam retiradas consecutivamente. Dizemos que duas etiquetas são de mesma paridade quando são ambas pares ou ambas ímpares.

Solução:

(a) O espaço amostral Ω é o conjunto de todas as triplas ordenadas (x, y, z) de três elementos distintos tomados no conjunto $\{1, 2, \dots, 9\}$.

Temos que $\#\Sigma = 9 \times 8 \times 7 = 504$.

(b) Considere o evento:

$$A = \{(x, y, z) \in \Omega : x \text{ \'e impar}, y \text{ \'e par e } z \text{ \'e impar}\}.$$

O evento A tem $5 \times 4 \times 4 = 80$ elementos.

Logo, a probabilidade procurada é $P(A) = \frac{80}{504}$.

(c) Considere o evento:

$$B = \{(x, y, z) \in \Omega : x \text{ \'e par}, y \text{ \'e impar e } z \text{ \'e par}\}.$$

O evento B tem $4 \times 5 \times 3 = 60$ elementos.

Logo, a probabilidade procurada é $P(A) = \frac{60}{504}$.

(d) Considere o evento:

C: as etiquetas são de mesma paridade.

Observe que C é o complementar do evento $A \cup B$.

Logo, a probabilidade de ocorrer o evento C é $P(C)=1-P(A\cup B)=1-(P(A)+P(B))=1-\frac{140}{729}=\frac{589}{729}.$

- 2. Um baralho consiste de 52 cartas, sendo 13 de cada um dos naipes, copas, espadas, ouros e paus. Um jogador retira treze cartas, aleatoriamente, deste baralho e considera a $m\tilde{a}o$ formada por estas cartas, sem levar em conta a ordem em que são retiradas.
 - (a) (0,5) Descreva o espaço amostral Ω deste experimento e determine o número de elementos de Ω .
 - (b) (1,0) Determine a probabilidade do jogador retirar 7 cartas de copas, 2 cartas de espadas, 3 cartas de ouros e 1 carta de paus.
 - (c) (1,0) Determine a probabilidade do jogador retirar todas as cartas de um mesmo naipe.

Solução:

(a) O espaço amostral Ω consiste de todos os subconjuntos de 13 elementos de cartas do baralho.

Temos que $\#\Omega = C(52, 13)$.

(b) Considere o evento:

A: a mão tem 7 copas, 2 espadas, 3 ouros e 1 paus.

Temos que $\#A = C(13,7) \times C(13,2) \times C(13,3) \times C(13,1)$.

Logo, a probabilidade procurada é

$$P(A) = \frac{C(13,7) \times C(13,2) \times C(13,3) \times C(13,1)}{C(52,13)}.$$

(c) Considere o evento:

B: a mão tem todas as cartas de um mesmo naipe.

De acordo com a configuração do baralho e o fato de que a ordem das cartas que formam uma mão não é levada em conta, temos que #B = 4.

Logo, a probabilidade procurada é $P(B) = \frac{4}{C(52, 13)}$.

- 3. Considere 6 livros distintos de matemática e 6 livros distintos de física, arrumados em uma prateleira de uma biblioteca, considerando-se a ordem em que os livros estão dispostos.
 - (a) (0,5) Determine o espaço amostral Ω deste experimento e determine o número de elementos de Ω .
 - (b) (1,0) Determine a probabilidade de que os livros de matemática estejam antes dos livros de física.
 - (c) (0,5) Determine a probabilidade de que 4 livros de física, previamente determinados, estejam lado a lado.

Solução:

(a) O espaço amostral Ω consiste de todas as ordens formadas com os 12 livros disponíveis.

Temos que $\#\Omega = 12!$.

(b) Para ordenar os livros de modo que os livros de matemática estajem antes dos livros de física, devemos executar duas tarefas:

 T_1 : arrumar os 6 livros de matemática,

 T_2 : arrumar, em seguida, os 6 livros de física.

Assim, existem $6! \times 6!$ maneiras de arrumar os livros de modo que os livros de matemática estejam antes dos livros de física.

Logo, a probabilidade procurada é $\frac{6! \times 6!}{12!}$.

(c) Para ordenar os livros de modo que os 4 livros de física, previamente determinados, estejam lado a lado, devemos executar duas tarefas:

 T_1 : escolher uma ordem para arrumar os 4 livros previamente determinados,

 T_2 : arrumar os livros, considerando os 4 livros já ordenados como um só.

Assim, existem $4! \times 9!$ maneiras de arrumar os livros de modo que os 4 livros de física, previamente determinados, estejam lado a lado.

Logo, a probabilidade procurada é $\frac{4! \times 9!}{12!}$.

- 4. Para o argumento abaixo, faça o que se pede:
 - (a) (1,0) Destaque as proposições simples que compõem as premissas e a conclusão do argumento.
 - (b) (0,5) Determine a estrutura lógica do argumento.
 - (c) (1,0) Determine se o argumento é $v\'{a}lido$ ou $inv\'{a}lido$, usando uma tabela-verdade.

Argumento: Se Mozart compõe uma sinfonia, o Rei fica feliz. Se Salieri não compõe uma ópera, o Rei não fica feliz. Logo, se Mozart compõe uma sinfonia, Salieri compõe uma ópera.

Solução:

(a) Destacando as premissas simples que compõem o argumento, temos:

p: Mozart compõe uma sinfonia.

q: o Rei fica feliz.

r: Salieri compõe uma ópera.

(b) Assim, a estrutura lógica do argumento é dada por:

Premissas: $p \rightarrow q$,

 $\sim r \rightarrow \sim q$

Conclusão: $p \rightarrow r$.

(c) Construindo uma tabela, de acordo com o exposto no Módulo, se verifica que $((p \to q) \land (\sim r \to \sim q)) \to (p \to r)$ é uma tautologia e que o argumento é válido.