Practice Handout For The Final Exam MA353; Term: S19

Leo Livshits

Last modified at 08:50 on May 2, 2019

These Problems, TYC's and Theorems are likely to pop-up on the Final Exam tickets.

1 Underlying Space Resolution For Normal Operators

Suppose that $oldsymbol{V}$ is an fdips, and $oldsymbol{\mathcal{L}}$ is a linear operator on $oldsymbol{V}$. Then

$$Nullspace(\mathcal{L}^*) = Range(\mathcal{L})^{\perp}$$
.

Proof. Consider the following string of equivalences.

$$Y \in Range(\mathcal{L})^{\perp} \iff \langle \mathcal{L}(X), Y \rangle = 0$$
, for all $X \in V$
 $\iff \langle X, \mathcal{L}^{*}(Y) \rangle = 0$, for all $X \in V$
 $\iff \mathcal{L}^{*}(Y) = O$
 $\iff Y \in Nullspace(\mathcal{L}^{*})$.

$$Range\left(\mathcal{L}^{*}\right)=Nullspace\left(\mathcal{L}\right)^{\perp}$$
.

Suppose that V is an fdips, and $\mathcal L$ is a <u>normal</u> linear operator on V. Then

$$Nullspace(\mathcal{L}^*) = Nullspace(\mathcal{L})$$
.

Proof. Consider the following string of equivalences.

$$Y \in Nullspace(\mathcal{L}) \iff ||\mathcal{L}(Y)||^2 = 0$$

$$\iff \langle \mathcal{L}(Y), \mathcal{L}(Y) \rangle = 0$$

$$\iff \langle \mathcal{L}^*\mathcal{L}(Y), Y \rangle = 0$$

$$\iff \langle \mathcal{L}\mathcal{L}^*(Y), Y \rangle = 0$$

$$\iff \langle \mathcal{L}^*(Y), \mathcal{L}^*(Y) \rangle = 0$$

$$\iff ||\mathcal{L}^*(Y)||^2 = 0$$

$$\iff Y \in Nullspace(\mathcal{L}^*).$$

Suppose that V is an fdips, and ${\mathcal L}$ is a <u>normal</u> linear operator on V. Then

$$V = Range(\mathcal{L}) \oplus Nullspace(\mathcal{L})$$
.

2 Isometries and Unitaries

1. Suppose that (V, \langle , \rangle) is an fdips with an orthonormal basis Γ . Let $\mathcal{A}: \mathbb{C}^n \longrightarrow V$ be the atrix corresponding to Γ . Prove that

$$\langle V, W \rangle = \mathcal{A}^{-1}(V) \bullet \mathcal{A}^{-1}(W)$$
,

for every V, $W \in V$.

2. Suppose that V and W are fdips with ortho-bases Γ and Ω respectively, and $\mathcal{L}:V\longrightarrow W$ is a linear function. Prove that $\left[\mathcal{L}^*\right]_{\Gamma\leftarrow\Omega}$ is the conjugate transpose of $\left[\mathcal{L}\right]_{\Omega\leftarrow\Gamma}$.

Problem 2 Problem 2

Suppose that V and W are inner product spaces, and $\mathcal{L}:V\longrightarrow W$ is a linear function.

- 1. Argue that the following claims are equivalent.
 - (a) \mathcal{L} is an **isometry**; i.e. $\|\mathcal{L}(v)\|_{W} = \|v\|_{V}$, for all $v \in V$.
 - (b) $\langle \mathcal{L}(v), \mathcal{L}(z) \rangle_{w} = \langle v, z \rangle_{V}$, for all $v, z \in V$.
 - (c) $\mathcal{L}^*\mathcal{L} = \mathcal{I}_V$.
 - (d) $\|\mathcal{L}(v)\|_{W} = 1$, for every unit vector $v \in V$.
- 2. Argue that the following claims are equivalent.
 - (a) $\ensuremath{\mathcal{L}}$ is a scalar multiple of an isometry.
 - (b) $\|\mathcal{L}(v)\|_{W} = \|\mathcal{L}(z)\|_{W}$, for any unit vectors $v, z \in V$.
 - (c) \mathcal{L} preserves orthogonality; i.e.

if
$$\langle v, z \rangle_V = 0$$
 then $\langle \mathcal{L}(v), \mathcal{L}(z) \rangle_W = 0$.

3. Suppose that V and W are fdips with orthonormal bases Γ and Ω respectively. Argue that $\mathcal L$ is an isometry if and only if the columns of $\left[\mathcal L\right]_{\Omega\leftarrow\Gamma}$ are orthonormal.

<u>Hint</u>: If v and z are orthonormal, then v - z and v + z are orthogonal.

Terminology 2.1

Invertible isometric operators $\mathcal{L}:V\longrightarrow V$ are said to be unitary.

Problem 3 D Unitaries

Suppose that V is an inner product space, and $\mathcal{L}:V\longrightarrow V$ is a linear function.

- 1. Argue that the following claims are equivalent.
 - (a) \mathcal{L} is unitary.
 - (b) \mathcal{L} is invertible, and $\mathcal{L}^{-1} = \mathcal{L}^{*}$.
- 2. Argue that the following are equivalent in the case that V is fdips, and Γ is an orthonormal basis of V.
 - (a) \mathcal{L} is unitary.
 - (b) The columns of $[\mathcal{L}]_{\Gamma \leftarrow \Gamma}$ form an orthonormal basis (of the appropriate \mathbb{C}^n).

Problem 4 Unitary Equivalence For Matrices

Let V be an n-dimensional inner product space.

- 1. Suppose that Γ and Ω are two orthonormal bases of V. Argue that $[\mathcal{I}]_{\Omega \leftarrow \Gamma}$ is a unitary matrix.
- 2. Argue that for each unitary matrix \mathcal{U} in \mathbb{M}_n there exist orthonormal bases Γ and Ω of V such that $\mathcal{U} = [\mathcal{I}]_{\Omega \subset \Gamma}$.
- 3. Suppose that $A, B \in M_n$. Argue that the following claims are equivalent.
 - (a) There exists a linear function $\mathcal{L}:V\longrightarrow V$ and orthonormal bases Γ and Ω of V such that

$$\mathcal{A} = \left[\mathcal{L}\right]_{\Gamma \leftarrow \Gamma}$$
 and $\mathcal{B} = \left[\mathcal{L}\right]_{\Omega \leftarrow \Omega}$.

(b) There exists a unitary matrix $\mathcal U$ in $\mathbb M_n$ such that

$$\mathcal{B} = \mathcal{U}^{1} \mathcal{A} \mathcal{U}$$
.

Definition 2.2 Unitary Similarity/Equivalence

Suppose that V is an fdips, and \mathcal{L} and \mathcal{M} are linear operators on V. We say that \mathcal{L} and \mathcal{M} are unitarily similar (a.k.a. unitarily equivalent) if there exists a unitary \mathcal{U} on V such that

$$\mathcal{M} = \mathcal{U}^{\mathsf{T}} \mathcal{L} \mathcal{U} = \mathcal{U}^{\mathsf{T}} \mathcal{L} \mathcal{U}$$
.

Problem 5 Properties Of Unitary Similarity/Equivalence

- 1. Argue that unitary equivalence is an equivalence relation on $\mathfrak{L}(V,V)$.
- 2. Argue that unitary equivalence preserves normality, "unitary-ness" and "self-adjoint-ness".

3 Spectral Theorem

Suppose that V is an n-dimensional inner product space, and \mathcal{L} is a linear operator on V. In class we have shown that if \mathcal{L} is normal then V has an orthonormal basis comprised of the eigenvectors of \mathcal{L} .

Problem 6 Spectral Theorem For Normal Matrices

- 1. Argue that the following claims are equivalent for a square matrix \mathcal{A} .
 - (a) A is normal.
 - (b) A is unitarily equivalent to a diagonal matrix.
- 2. Argue that the following claims are equivalent for a square matrix \mathcal{B} .
 - (a) \mathcal{B} is unitary.
 - (b) \mathcal{B} is unitarily equivalent to a diagonal matrix with diagonal entries of modulus 1.

- 3. Argue that the following claims are equivalent for a square matrix \mathcal{C} .
 - (a) C is self-adjoint.
 - (b) ${\cal C}$ is unitarily equivalent to a diagonal matrix with real entries.

Problem 7 Spectral Theorem For Normal Linear Operators

Suppose that V is an fdips, and $\mathcal L$ is a linear operator on V. Prove each of the following claims.

- 1. \mathcal{L} is normal if and only if V has an orthonormal basis comprised of the eigenvectors of \mathcal{L} .
- 2. \mathcal{L} is unitary if and only if \mathcal{L} is normal, and all eigenvalues of \mathcal{L} have modulus 1.
- 3. \mathcal{L} is self-adjoint if and only if \mathcal{L} is normal, and all eigenvalues of \mathcal{L} are real.

4 Spectral Resolution

Suppose that V is a finite-dimensional vector space, and \mathcal{L} is a linear operator on V. In class we have shown that \mathcal{L} is diagonalizable exactly when V has a basis comprised of the eigenvectors of \mathcal{L} , and from that we had deduced the \mathcal{L} is diagonalizable exactly when there exist idempotents $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_k$ which resolve the identity on V, such that

$$\mathcal{L} = \lambda_1 \mathcal{E}_1 + \lambda_2 \mathcal{E}_2 + \cdots + \lambda_k \mathcal{E}_k$$

for some distinct λ_i . (This is a spectral resolution of \mathcal{L} .)

In that case we showed that

$$\sigma_{\mathbb{C}}(\mathcal{L}) = \{\lambda_1, \lambda_2, \ldots, \lambda_k\}$$
,

and that the range of \mathcal{E}_i is the eigenspace of \mathcal{L} corresponding to λ_i , and the kernel of \mathcal{E}_i is the direct sum of the remaining eigenspaces. This uniquely specifies the \mathcal{E}_i 's.

Test Your Comprehension 4.2

Argue that O is the only normal nilpotent operator on an fdips $oldsymbol{V}$.

Terminology 4.3 Atomic Spectral Idempotents

Under the set-up of fact 4.1, the \mathcal{E}_i 's are said to be **the atomic spectral idempotents of** \mathcal{L} .

Problem 8 Diagonalizability And Linear Combinations Of Mutually Annihilating Idempotents

Suppose that \mathcal{G}_1 , \mathcal{G}_2 , . . . , \mathcal{G}_p are idempotent linear operators on a vector space V, such that

$$G_iG_i=O$$
 ,

whenever $i \neq j$. In this case we say that the \mathcal{G}_i 's are **mutually annihilating idempotents**.

1. Argue that $\mathcal{G}_{_1}+\mathcal{G}_{_2}+\cdots+\mathcal{G}_{_p}$ is an idempotent and infer that

$$\alpha_1 \mathcal{G}_1 + \alpha_1 \mathcal{G}_2 + \cdots + \alpha_1 \mathcal{G}_n$$

is a diagonalizable operator.

2. Argue that a linear operator on $oldsymbol{V}$ is diagonalizable exactly when it is a linear combination of some mutually annihilating idempotent operators.

Fact 4.4 Polynomial Interpolation

Given distinct complex numbers $\alpha_1, \alpha_2, \ldots, \alpha_m$, and any complex numbers $\beta_1, \beta_2, \ldots, \beta_m$, with $m \in \mathbb{N}$, there exists exactly one polynomial p of degree at most m-1, such that

$$p(\alpha_i) = \beta_i$$
, for all i .

Problem 9 \bigcirc Atomic Spectral Idempotents Are Polynomials In L

Suppose that $m{V}$ is a finite-dimensional vector space, and $m{\mathcal{L}}$ is a diagonalizable linear operator on $m{V}$ with

$$\sigma_{\mathbb{C}}(\mathcal{L}) = \{\lambda_1, \lambda_2, \ldots, \lambda_k\}$$
.

Argue that each corresponding atomic spectral idempotent \mathcal{E}_i of \boldsymbol{L} can be expressed as $p_i(\boldsymbol{L})$, for the unique polynomial p_i of degree at most k-1 which maps λ_i to 1, and all other eigenvalues of \boldsymbol{L} to zero.

Problem 10 🖒 Uniqueness of Spectral Resolution

Suppose that $m{V}$ is a finite-dimensional vector space, and $m{\mathcal{L}}$ is a diagonalizable linear operator on $m{V}$ with

$$\sigma_{\mathbb{C}}(\mathcal{L}) = \{\lambda_1, \lambda_2, \ldots, \lambda_k\}$$
.

1. Suppose that

$$\mathcal{L} = \gamma_1 \mathcal{F}_1 + \gamma_2 \mathcal{F}_2 + \cdots + \gamma_m \mathcal{F}_m$$
,

for some idempotents $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_m$ which resolve the identity on V, and some *distinct* complex numbers $\gamma_1, \gamma_2, \ldots, \gamma_m$. Argue that m = k, that

$$\sigma_{\mathbb{C}}(\mathcal{L}) = \{\lambda_1, \lambda_2, \dots, \lambda_k\} = \{\gamma_1, \gamma_2, \dots, \gamma_k\}$$

and that $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k$ are the atomic spectral idempotents of \mathcal{L} .

2. Explain how one discerns the atomic spectral idempotents and the eigenspaces of $\mathcal L$ from any $\mathcal L$ -eigenbasis of V. Justify your claims.

Suppose that $oldsymbol{V}$ is an fdips, that $oldsymbol{\mathcal{L}}$ is a <u>normal</u> linear operator on $oldsymbol{V}$ with

$$\sigma_{\mathbb{C}}(\mathcal{L}) = \{\lambda_1, \lambda_2, \ldots, \lambda_k\}$$
.

1. Argue that every atomic spectral idempotent of $\mathcal L$ is normal, and conclude that every atomic spectral idempotent of $\mathcal L$ is a non-

negative (i.e. positive semi-definite) operator.

Non-negative idempotents are said to be **ortho-projections** or **projections**, for short.

2. Argue that

$$oldsymbol{V} = oldsymbol{E}_{\scriptscriptstyle \lambda_1} \oplus oldsymbol{E}_{\scriptscriptstyle \lambda_2} \oplus \cdots \oplus oldsymbol{E}_{\scriptscriptstyle \lambda_k}$$
 ,

where \boldsymbol{E}_{λ} is the eigenspace of $\mathcal L$ corresponding to the eigenvalue λ .

Suppose that V is an fdips, that $\mathcal L$ is a linear operator on V. Argue that the following claims are equivalent.

- 1. \mathcal{L} is normal.
- 2. $\mathcal L$ is a linear combination of ortho-projections that resolve the identity on $oldsymbol{V}$.
- 3. $\mathcal L$ is a linear combination of mutually annihilating projections.

Problem 13 C Commuting With A Normal

Suppose that V is an fdips, that $\mathcal L$ is a <u>normal</u> linear operator on V. Argue that the following claims are equivalent for an operator $\mathcal M$ on V.

- 1. \mathcal{M} commutes with \mathcal{L} .
- 2. \mathcal{M} commutes with every atomic spectral projection of \mathcal{L} .

 $\underline{\text{Hint}}$: Problem 9 can be handy here

5 Non-Negative Operators

Test Your Comprehension 5.1

Argue that an operator ${\mathcal L}$ on a vector space ${m V}$ is self-adjoint exactly when

$$\langle \mathcal{L}(X), X \rangle \in \mathbb{R}$$
, for all $X \in \mathbf{V}$.

Problem 14 Another Polarization Identity

Suppose that ${\mathcal L}$ is a linear operator on an inner product space ${m V}.$

1. Argue that

$$4\langle \mathcal{L}(X), Y \rangle = \langle \mathcal{L}(X+Y), X+Y \rangle - \langle \mathcal{L}(X-Y), X-Y \rangle$$
$$+ i\langle \mathcal{L}(X+iY), X+iY \rangle - i\langle \mathcal{L}(X-iY), X-iY \rangle.$$

2. Infer that

$$\langle \mathcal{L}(Z), Z \rangle = 0$$
, for all $Z \in V \iff \mathcal{L} = O$,

and that for an operator \mathcal{M} on V,

$$\langle \mathcal{L}(Z), Z \rangle = \langle \mathcal{M}(Z), Z \rangle$$
, for all $Z \in V \iff \mathcal{L} = \mathcal{M}$.

Terminology 5.2

Suppose that V is an inner product space, and \mathcal{L} is a linear operator on V. We say that \mathcal{L} is non-negative (a.k.a. positive semi-definite) if

$$\langle \mathcal{L}(X), X \rangle \geq 0$$
, for all $X \in \mathbf{V}$.

We say that \mathcal{L} is **positive** (a.k.a. positive definite) if

$$\langle \mathcal{L}(X), X \rangle > 0$$
, for all non-zero $X \in \mathbf{V}$.

Note that every non-negative operator is self-adjoint, by TYC 5.1.

Test Your Comprehension 5.3

Argue that a sum of two self-adjoint operators (when defined) is also self-adjoint, and the sum of two non-negative operators (when defined) is non-negative. Is the sum of two positive operators (when defined) necessarily positive?

Test Your Comprehension 5.4

Suppose that V and W are inner product spaces, and $\mathcal{L}:V\longrightarrow W$ is a linear function. Argue that $\mathcal{L}^*\mathcal{L}$ and $\mathcal{L}\mathcal{L}^*$ are non-negative linear operators.

Test Your Comprehension 5.5

Suppose that $\mathcal L$ and $\mathcal M$ are linear operators on an inner product space $\mathbf V$. Verify each of the following claims.

- 1. If \mathcal{L} is self-adjoint, so is $\mathcal{M}^*\mathcal{L}\mathcal{M}$.
- 2. If \mathcal{L} is non-negative, so is $\mathcal{M}^*\mathcal{L}\mathcal{M}$.

Problem 15 Problem 15 Non-Negativity (And Positivity) Conditions I

Suppose that V is an fdips, and $\mathcal L$ is a linear operator on V. Prove each of the following claims.

- 1. $\mathcal L$ is non-negative if and only if $\mathcal L$ is normal, and all eigenvalues of $\mathcal L$ are non-negative.
- 2. \mathcal{L} is positive if and only if \mathcal{L} is normal, and all eigenvalues of \mathcal{L} are positive.
- 3. $\mathcal L$ is non-negative if and only if $\mathcal L$ is self-adjoint, and all eigenvalues of $\mathcal L$ are non-negative.
- 4. \mathcal{L} is positive if and only if \mathcal{L} is non-negative and invertible.

<u>Hint</u>: Spectral decomposition and functional calculus can be handy here.

Problem 16 Problem 16 Non-Negativity Conditions II

Suppose that V is an fdips, and \mathcal{L} is a linear operator on V. Prove that the following claims are equivalent.

- 1. \mathcal{L} is non-negative.
- 2. $\mathcal{L} = \mathcal{P}^2$ for some non-negative operator \mathcal{P} on \mathbf{V}^*
- 3. $\mathcal{L} = \mathcal{M}^2$ for some self-adjoint operator \mathcal{M} on V.
- 4. $\mathcal{L} = \mathcal{T}^*\mathcal{T}$ for some operator \mathcal{T} on V.
- 5. $\mathcal{L} = \mathcal{K}\mathcal{K}^*$ for some operator \mathcal{K} on V.

Problem 17

Suppose that V is an fdips, and \mathcal{L} is a non-negative linear operator on V. Argue that for any $X \in V$ the following claims are equivalent.

- 1. L(X) = O.
- 2. $\langle \mathcal{L}(X), X \rangle = 0$.

Problem 18 Non-Negativity Conditions For Matrices

- 1. Argue that the following claims are equivalent for a square matrix \mathcal{P} .
 - (a) \mathcal{P} is non-negative.
 - (b) ${\mathcal P}$ is unitarily equivalent to a diagonal matrix with nonnegative diagonal entries.
- 2. Argue that the following claims are equivalent for a square matrix \mathcal{P} .
 - (a) \mathcal{P} is positive.
 - (b) ${\mathcal P}$ is unitarily equivalent to a diagonal matrix with positive diagonal entries.

^{*}Such a $\mathcal P$ is said to be a non-negative square root of $\mathcal L$.

Theorem 5.6 Uniqueness Of Non-Negative Square Roots

For each non-negative linear operator $\mathcal L$ on an fdips m V there is a unique non-negative operator $\mathcal R$ on m V such that

$$\mathcal{R}^2 = \mathcal{L}$$
.

This \mathcal{R} is said to be **THE square root of** \mathcal{L} and it is denoted by $\sqrt{\mathcal{L}}$.

Proof. Let us begin by writing down a spectral resolution of \mathcal{L} :

$$\mathcal{L} = \lambda_1 \mathcal{E}_1 + \cdots + \lambda_{\nu} \mathcal{E}_{\nu} .$$

Keep in mind that all eigenvalues of $\boldsymbol{\mathcal{L}}$ are non-negative. Then, as we have seen in class,

$$\mathcal{R} := \sqrt{\lambda_1} \, \mathcal{E}_1 + \dots + \sqrt{\lambda_k} \, \mathcal{E}_k$$

defines a non-negative (see TYC 5.3) linear operator $\mathcal R$ that squares to $\mathcal L.$

Suppose that $\mathcal P$ is another non-negative linear operator on V that squares to $\mathcal L$. If we can demonstrate that $\mathcal P=\mathcal R$, the proof will be complete.

Note that

$$\mathcal{PL} = \mathcal{P}^3 = \mathcal{LP}$$

so that \mathcal{P} commutes with \mathcal{L} .

Therefore \mathcal{P} commutes with all atomic spectral projections of \mathcal{L} , and so commutes with \mathcal{R} (Problem 13).

Since \mathcal{P} and \mathcal{R} are self-adjoint, so is $\mathcal{P}-\mathcal{R}$, and since the only normal nilpotent operator on V is the zero operator (TYC 4.2), our task shall be complete if we can show that $(\mathcal{P}-\mathcal{R})^2=\mathcal{O}$.

Note that

$$(\mathcal{P} - \mathcal{R})^2 = \mathcal{P}^2 - \mathcal{P}\mathcal{R} - \mathcal{R}\mathcal{P} + \mathcal{R}^2$$

 $=2\mathcal{L}-2\mathcal{PR}$.

Hence we have reduced the task to showing that $\mathcal{L} = \mathcal{PR}$.

Let us continue by observing that the following equality holds.

$$O = \mathcal{L} - \mathcal{L} = \mathcal{P}^2 - \mathcal{R}^2 = (\mathcal{P} + \mathcal{R})(\mathcal{P} - \mathcal{R}).$$

In particular, for any $X \in V$, letting $Y = (\mathcal{P} - \mathcal{R})(X)$, we get

$$(\mathcal{P} + \mathcal{R})(Y) = O,$$

and consequently

$$0 = \langle (\mathcal{P} + \mathcal{R})(Y), Y \rangle = \langle \mathcal{P}(Y), Y \rangle + \langle \mathcal{R}(Y), Y \rangle.$$

Since \mathcal{P} and \mathcal{R} are non-negative operators, $\langle \mathcal{P}(Y), Y \rangle$ and $\langle \mathcal{R}(Y), Y \rangle$ are non-negative, and hence both have to be zero.

In particular, $\mathcal{P}(Y) = O$ by Problem 17. This demonstrates that

$$\mathcal{P}(\mathcal{P} - \mathcal{R})(X) = O$$
, for all $X \in V$,

and so

$$\mathcal{P}(\mathcal{P} - \mathcal{R}) = \mathcal{O}$$
,

which reduces to the desired equality

$$\mathcal{L} - \mathcal{P}\mathcal{R} = \mathcal{P}^2 - \mathcal{P}\mathcal{R} = \mathcal{O} .$$

Problem 19 Properties of $\sqrt{\mathcal{L}^*\mathcal{L}}$ and $\sqrt{\mathcal{L}\mathcal{L}^*}$

Suppose that V and W are fdips, and $\mathcal{L}:V\longrightarrow W$ is a linear function. Argue that

1.
$$\left\|\sqrt{\mathcal{L}^*\mathcal{L}}(X)\right\| = \left\|\mathcal{L}(X)\right\|$$
, for all $X \in V$ and $\left\|\sqrt{\mathcal{L}\mathcal{L}^*}(Y)\right\| = \left\|\mathcal{L}^*(Y)\right\|$, for all $Y \in W$.

2.
$$Nullspace\left(\sqrt{\mathcal{L}^*\mathcal{L}}\right) = Nullspace\left(\mathcal{L}\right)$$
 and $Nullspace\left(\sqrt{\mathcal{L}\mathcal{L}^*}\right) = Nullspace\left(\mathcal{L}^*\right)$.

3.
$$Range\left(\sqrt{\mathcal{L}^*\mathcal{L}}\right) = Range\left(\mathcal{L}^*\right)$$
 and $Range\left(\sqrt{\mathcal{L}\mathcal{L}^*}\right) = Range\left(\mathcal{L}\right)$.