

Elementos de física Clase 14

Dr. David González Profesor Principal Escuela de Ingeniería, Ciencia y Tecnología Abril 24, 2023

Principio de conservación de la energía: la energía es una cantidad que se convierte de una forma a otra, pero no se crea ni destruye.

Energía potencial: es la energía asociada con la posición de un sistema, no con su movimiento.

La suma de las energías cinética y potencial de un sistema, llamada **energía mecánica total**, es constante durante el movimiento del sistema. Así llegamos al enunciado general de la ley de conservación de la energía, que es uno de los principios más fundamentales y trascendentales de la ciencia.

- **7.2** Cuando un cuerpo se mueve verticalmente de una altura inicial y_1 a una altura final y_2 , la fuerza gravitacional \vec{w} efectúa trabajo y cambia la energía potencial gravitacional.
- a) El cuerpo se mueve hacia abajo

Energía potencial gravitacional $U_{\rm grav} = mgy$ Coordenada vertical de la partícula se mueve hacia arriba)

Masa de la partícula. Aceleración debida a la gravedad

El trabajo hecho por la fuerza ... es igual al negativo del cambio en la gravitacional sobre una partícula ... energía potencial gravitacional. $W_{\rm grav} = mgy_1 - mgy_2 = U_{\rm grav,1} - U_{\rm grav,2} = -\Delta U_{\rm grav}$ Masa de la Aceleración debida Coordenadas verticales inicial partícula a la gravedad y final de la partícula

$$W_{\text{tot}} = W_{\text{grav}} + W_{\text{otras}}$$

$$W_{\text{otras}} + W_{\text{grav}} = K_2 - K_1$$

$$K_1 + U_{\text{grav}, 1} + W_{\text{otras}} = K_2 + U_{\text{grav}, 2}$$

Deseamos subir una caja de 12 kg deslizándola por una rampa de 2.5 m inclinada 30°. Sin considerar la fricción un obrero calcula que puede subir la caja por la rampa dándole una rapidez inicial de 5.0 m/s en la base y soltándola. Sin embargo, la fricción *no* es despreciable; la caja sube 1.6 m por la rampa, se detiene y se desliza de regreso (figura 7.11a). a) Suponiendo que la fuerza de fricción que actúa sobre la caja es constante, calcule su magnitud. b) ¿Qué rapidez tiene la caja al volver a la base de la rampa?

7.11 a) Una caja sube deslizándose por una rampa, se detiene y se desliza de regreso. b) Gráficas de barras de la energía para los puntos 1, 2 y 3.

El proceso de almacenar energía en un cuerpo deformable, como un resorte o una banda de hule, se define como **energía potencial elástica.** Un cuerpo es elástico si recupera su forma y tamaño originales después de deformarse.

Consideraremos el almacenamiento de energía en un resorte ideal. Para mantener un resorte ideal estirado una distancia x, debemos ejercer una fuerza F = kx, donde k es la constante de fuerza del resorte.

Si sólo la fuerza elástica efectúa trabajo, la energía mecánica total es constante, es decir, se conserva.

7.13 Cálculo del trabajo realizado por un resorte unido a un bloque sobre una superficie horizontal. La cantidad *x* es la extensión o compresión del resorte.

a)

Energía potencial elástica*
$$U_{\rm el} = \frac{1}{2} k x_{\rm v.....}^2$$
 Alargamiento del resorte almacenada en el resorte $(x > 0)$ si se estira, $(x < 0)$ si se comprime)

El trabajo hecho por la fuerza elástica es igual al negativo del cambio en la energía potencial elástica.

$$W_{\text{el}} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2 = U_{\text{el},1} - U_{\text{el},2} = -\Delta U_{\text{el}}$$

Constante de fuerza del resorte Alargamiento inicial y final del resorte

CUIDADO Energía potencial gravitacional contra energía potencial elástica Una diferencia importante entre la energía potencial gravitacional $U_{\rm grav}-mgy$ y la energía potencial elástica $U_{\rm el}-\frac{1}{2}kx^2$ es que *no* tenemos la libertad de elegir x-0 donde queramos. En la ecuación (7.10), x=0 debe estar en la posición donde el resorte no está ni estirado ni comprimido. En esa posición, tanto su energía potencial elástica como la fuerza que ejerce son iguales a cero.

Si sólo la fuerza elástica realiza trabajo, se conserva la energía mecánica total:

Energía cinética inicial Energía potencial elástica inicial

$$K_1=\frac{1}{2}mv_1^2$$
 ... $U_{\text{el},1}=\frac{1}{2}kx_1^2$ $K_1+U_{\text{el},1}=K_2+U_{\text{el},2}$ Energía cinética final ... Energía potencial elástica final $K_2=\frac{1}{2}mv_2^2$ $U_{\text{el},2}=\frac{1}{2}kx_2^2$

7.14 La gráfica de la energía potencial elástica para un resorte ideal es una parábola: $U_{el} = \frac{1}{2}kx^2$, donde x es la extensión o compresión del resorte. La energía potencial elástica U_{el} nunca es negativa.

Relación general para la energía cinética y la energía potencial: Energía cinética inicial $K_1 + U_1 + W_{\text{other}} = K_2 + U_2$ Energía potencial inicial de todas las clases Trabajo realizado por otras fuerzas (no asociado con la energía potencial) Trabajo realizado por otras fuerzas de todas las clases

$$U = U_{\text{grav}} + U_{\text{el}} = mgy + \frac{1}{2}kx^2$$

$$K_1 + U_{\text{grav},1} + U_{\text{el},1} + W_{\text{otras}} = K_2 + U_{\text{grav},2} + U_{\text{el},2}$$

Un deslizador de masa m = 0.200 kg descansa en un riel horizontal de aire, sin fricción, conectado a un resorte con una constante de fuerza k = 5.00 N/m. Usted tira del deslizador, estirando el resorte 0.100 m y, luego, lo libera partiendo del reposo. El deslizador regresa a su posición de equilibrio (x = 0). ¿Qué velocidad tiene cuando x = 0.080 m?

Un deslizador de masa m = 0.200 kg descansa en un riel horizontal de aire, sin fricción, conectado a un resorte con una constante de fuerza k = 5.00 N/m. Usted tira del deslizador, estirando el resorte 0.100 m y, luego, lo libera partiendo del reposo. El deslizador regresa a su posición de equilibrio (x = 0). ¿Qué velocidad tiene cuando x = 0.080 m?

7.16 Diagramas y gráficas de barras de la energía para este problema.

Suponga que el deslizador del ejemplo 7.7 está inicialmente en reposo en x = 0, con el resorte sin estirar. Usted aplica al deslizador una fuerza constante \vec{F} (de magnitud igual a 0.610 N) en la dirección +x. ¿Qué velocidad tiene el deslizador cuando se movió a x = 0.100 m?

En una prueba, un elevador de 2000 kg (19,600 N) con cables rotos cae a 4.00 m/s cuando hace contacto con un resorte amortiguador en el fondo del cubo. El resorte está diseñado para detener el elevador, comprimiéndose 2.00 m al hacerlo (figura 7.17). Durante el movimiento, un freno de seguridad aplica una fuerza de fricción constante de 17,000 N al elevador. ¿Cuál es la constante de fuerza k necesaria para el resorte?

En una prueba, un elevador de 2000 kg (19,600 N) con cables rotos cae a 4.00 m/s cuando hace contacto con un resorte amortiguador en el fondo del cubo. El resorte está diseñado para detener el elevador, comprimiéndose 2.00 m al hacerlo (figura 7.17). Durante el movimiento, un freno de seguridad aplica una fuerza de fricción constante de 17,000 N al elevador. ¿Cuál es la constante de fuerza k necesaria para el resorte?

7.17 La caída de un elevador es detenida por un resorte y una fuerza de fricción constante.

¿Preguntas?

Dr. David González Profesor Principal

<u>Davidfeli.gonzalez@urosario.edu.co</u>

Escuela de Ingeniería, Ciencia y Tecnología Universidad del Rosario

