

DISPLIB Competition 2025 – The TRAINees

Abschlussprojekt AlgLab

Gliederung

- 1. Einleitung
 - Problemstellung und Motivation
- 2. Eigenschaften der Instanzen
 - Eigenschaften und Besonderheiten
- 3. Mathematische Modellierung
 - Modellierung des Problems
- 4. Lösungsverfahren
 - Heuristik
 - Large Neighborhood Search (LNS) + Erweiterung (ALNS)
- 5. Ergebnisse
 - Lösungen der Instanzen
 - Platzierung bei der Competition
- 6. Ausblick auf Phase 2

Problemstellung

Bringe jeden Zug ins Ziel:

Eigenschaften und Besonderheiten der Instanzen

- Für Modellierung des Objective:
 - nur Increment oder Coeff treten für den selben Zug auf
 - Increment tritt nur mit Threshold 0 auf
- Für Heuristik
 - Züge in Full Instanzen blockieren für Start und Endoperationen keine Ressourcen

Modellierung des Problems – Path Constraints

- Operations-Graph f
 ür jeden Zug
 - Knoten ⇔ Operations
 - Kanten ⇔ Nachfolger-Relation
- Für jede Kante eine boolesche Variable

- Erste Operation: Summe der out-edges = 1
- Letzte Operation: Summe der in-edges = 1
- Alle anderen: Summe über in-edges = Summe über out-edges

Modellierung des Problems – Timing Constraints

- Jede Operation hat eine Integer Variable für Start und Ende
- Ist eine Operation ausgewählt, gilt:
 - Start_{op} + min_duration_{op} ≤ Ende_{op}
 - Ende = Start succ(op)
 - Start_{op} ≤ start_ub_{op}
 - start_lb_{op} ≤ Start_{op}

Modellierung des Problems – Resource Constraints

- Ermittle f
 ür jede Ressource, von welchen Operations sie genutzt wird
 - \circ Beispiel: r1: [(train₁, op₂), (train₁, op₄), (train₃, op₁), ...]
- Für jede Ressource:
 - 1. Bilde für jede Operation eine optionale Intervall-Variable
 - Start_{IV} ⇔ Start_{op}
 - Ende_{IV} ⇔ Ende_{op} + release_time_{resource}
 - optional ⇔ Wenn Operation ausgewählt ist
 - 2. Bilde jedes (t_1, op_1) , (t_2, op_2) , das die Ressource verwendet:
 - Wenn t ≠ t' ⇒ fordere ein NoOverLap für die Intervallvariablen

Modellierung des Problems – Deadlock Constraints

- Resource-Allocation-Graph
 - Knoten ⇔ Ressourcen
 - Kanten ⇔ Ressourcen-Übergänge
- Verfahren:

```
Algorithm 1 Resource-Allocation-Graph
```

```
1: G \leftarrow DiGraph
2: for each train do
3: for each op do
4: for each resource do
5: if release\_time is 0 then
6: G.add\_edge(res_{op}, res_{succ(op)})
7: end if
8: end for
9: end for
10: end for
```


Resource-Allocation-Graph für die Test-Instanz swapping_2

Modellierung des Problems – Deadlock Constraints

- Wann genau wird eine Kante gezogen?
 - release_time der Ressource muss 0 sein ⇒ sonst <u>keine</u> Verklemmung möglich
 - Ressource der Folge-Operation muss eine andere sein
- Ein Kreis im Graph ist ein potenzieller Deadlock
 - Ein Kreis der Länge n benötigt mindestens n verschiedene Züge
- Nun:
 - Ersetze in der Instanz eine release time von 0 mit boolescher Variable
 - Finde einen Zyklus der Länge n mit mind. n verschiedenen Zügen
 - Sum(release time) entlang aller Kanten ≥ 1
- → Verklemmung ist gelöst

Modellierung des Problems – Threshold Constraints und Zielfunktion

- Hintergrund: Auswertung der Zielfunktion
 - Für je eine objective-component eine threshold-Variable
- Fall 1: Coeff_{component} > 0
 - Integer-Variable
 - \circ var_{threshold} \geq start_{op} component_{threshold}
- Fall 2: Increment component > 0
 - boolesche Variable
 - start_{op} + 1 ≤ component_{threshold}, wenn var_{threshold} = False
- Component einer Zielfunktion:
 - Increment component var threshold + Coeff component var threshold

Problem modelliert – Und nun?

- Ernüchternde Erkenntnis:
 - Schlechte Laufzeit
 - Keine (überzeugenden) Ergebnisse innerhalb von zehn Minuten
- Ursache:
 - Modell zu groß ⇒ zu viele Variablen und Constraints
- Neue Strategie:
 - Suche nicht nach globalen Optima
 - In kurzer Zeit gute Lösungen finden

Lösungsverfahren – Die Heuristik: Solver-Methode

- Gegeben:
 - Beliebige Instanz
- Schritt 1)
 - Jede release time, die zuvor 0 war wird auf 1 gesetzt
- Schritt 2)
 - Wähle für jeden Zug genau eine zufällige Route
- Schritt 3)
 - Gib die erste zulässige Lösung zurück
- Enorme Zeitersparnis:
 - Path- und Deadlock-Constraints entfallen komplett
 - Anzahl an Variablen und Constraints wird deutlich reduziert

Lösungsverfahren – Die Heuristik: Algorithmische Methode

- Gegeben:
 - Instanz mit Zügen, die in ihrer ersten Operation keine Ressource belegen
 - Alle Operations abseits der Start-Operations haben keine start_ub
- Schritt 1)
 - Alle Züge starten ihre erste Operation zum Zeitpunkt 0
- Schritt 2)
 - Wähle für einen Zug eine zufällige Route
- Schritt 3)
 - Der n\u00e4chste Zug startet, wenn:
 - 1. Sein Vorgänger seine Route beendet hat
 - 2. Zusätzlich die größte *release_time* vergangen ist

Lösungsverfahren – Die Heuristik : Kombination beider Strategien

- Bei vielen Instanzen ist es notwendig, beide Strategien zu kombinieren
- Schritt 1) Teile Instanz in zwei Teil-Instanzen A und B
 - A: Züge, die keine Ressourcen in ihrer ersten Operation verwenden.
 - B: Züge, die mindestens eine Ressource in ihrer ersten Operation verwenden
- Schritt 2) Berechne jeweils eine zulässige Lösung für A und B
- Schritt 3) Füge die Teil-Lösungen zusammen
 - Teil-Instanz B fährt zuerst
 - Teil-Instanz A fährt danach

Erhalte schnell zulässige Lösungen für jede Instanz

Lösungsverfahren – Large Neighborhood Search (LNS)

- Kernidee:
 - Eine zulässige Lösung iterativ verbessern
- Umsetzung:
 - Wähle eine Menge an Zügen als variabel
 - Die Restmenge an Zügen bleibt fix
 - Umplanung erfolgt mit einem Solver
- Vorteile
 - Weniger Variablen und Constraints
 - Schnelle Berechnung einer (besseren) Lösung

Lösungsverfahren – Model der LNS

	Fixe Züge	Variable Züge	
Path-Constraints	Entfallen	Ja	
Timing-Constraints	Entfallen	Ja	
Resource-Constraints	Nur fixe Intervall-Variablen	Variable Intervall-Variablen	
Deadlock-Constraints	Nur fixe Routen	Anpassung an fixe Züge	
Threshold-Constraints	Entfallen	Ja	

Lösungsverfahren – Adaptive Large Neighborhood Search (ALNS)

- Nach welcher Strategie wählen wir Züge zur Umplanung aus?
 - Least-used
 - Random
 - Highest objective
 - Most resource-conflicts
 - Nearest threshold
- Zuganzahl und Strategien haben Gewichte
 - Auswahl zufällig, jedoch nach Gewichtung
- Passe Gewichtung nach jeder Iteration an
 - Besseres Objective: Reward
 - Keine Verbessung: Punishment

Ergebnisse – Lösungen der Instanzen

Competition

Heuristik

						motanz	· · · · · · · · · · · · · · · · · · ·	Componion
critical_0	150.855	4.133	close_0	2.174	679	full_0	22.881.938	7.024
critical_1	75.964	2.416	close_1	7.669	4.544	full_1	33.901.797	12.922
critical_2	79.080	3.775	close_2	6.485	1.617	full_2	2.680.044	10.640
critical_3	363.135	8.584	close_3	5.210	3.098	full_3	5.430.667	3.518
critical_4	13.438	1.506	close_4	24.793	24.372	full_4	13.621.449	11.551
critical_5	39.377	2.677	close_5	12.770	471	full_5	26.080.804	8.773
critical_6	134.918	4.534	close_6	101.477	21.292	full_6	33.217.196	9.741
critical_7	103.991	4.316	close_7	4.929	585	full_7	32.332.985	6.863
critical_8	107.245	3.840	close_8	174.06	7.619	full_8	37.318.418	11.467
critical_9	118.462	5.514				full_9	35.344.136	12.652
Instanz	Heuristik	Competition	Instanz	Heuristik	Competition	Instanz	Heuristik	Competition
line_3_1	9.670	0	headway_0	6.067	1.483	headway_9	793.516.576	22.548
line_3_2	777.019.338	5.242	headway_1	8.395	5.040	headway_10	47.477	9.809
line_3_3	30.297.977	27.904	headway_2	16.686	3.108	headway_11	11.449	6.210
line_3_4	24.281.631	49.828	headway_3	7.826	3.552			
line_3_5	24.493.611	51.230	headway_4	25.323	24.797			
			headway_5	14.093	869			
			headway_6	109.252	22.236			
			headway_7	11.549	1.150			

17.274

Heuristik

Competition

5.159

Instanz

Heuristik

Competition

Instanz

Instanz

headway_8

team	line1_critical	line1_full	line2_close	line2_headway	line3	SUM
openbus Florian Fuchs, Thomas Dubach, Jan Lordieck, Bernardo Martin- Iradi	76	95	80	77	42	370
CSLS Carolin Scholl, Luka Stärk	76	76	62	61	42	317
The TRAINees Lina Breuer, Sebastian Brunke, Elias Kaiser, Felix Michel	43	31	36	64	14	188
WUB (Wien, Udine, Bologna) Vera Hemmelmayr, Hai Yen Luu, Roberto María Rosati, Sara Ceschia, Andrea Schaerf, Alex Fabián Barrales Araneda, Valentina Cacchianí	76	10	45	4	4	139
Delayed Train Péter Dobrovoczki, Péter Györgyi, Markó Horváth, Tamás Kis	8	50	20	30	18	126
TCS Research Railways team Aakash Swami, Gajendra Malviya	20	23	10	14	26	93
RailwayRam Hariharan Subramanian, Sachin Jayaswal	5	0	9	15	1	30
The A-Team Andres Espinoza, Alaina Gordon, Aleksandr Kazachkov, Yuyang Sun	0	0	0	0	0	0

Table 1: Points awarded for an instance.

Position	Phase 1	Phase 2
1st	10	15
2nd	7	11
3rd	5	8
4th	3	6
5th	2	4
6th	1	3
7th		2
8th		1

Ausblick zu Phase 2

- größere Instanzen
 - o mehr Züge
 - mehr Operationen pro Zug
 - mehr Nachfolger
 - viele Züge der Phase 2 Instanzen blockieren in der Start- und Endoperation keine Ressourcen
- Ansätze für Future Work:
 - stärkere Aufteilung der Instanzen auf relevante Bereiche
 - Preprocessing von potentiellen Konflikten für Heuristik

Vielen Dank:)

