#### GUARDIANS OF DATA

\* BERT를 이용한 NEWS 요약 및 추천 시스템

> 오수연 박소연 박병준 김학진 제태성 With Mentor 이성희





01 주제소개



02 팀원소개



데이터셋

04 아키텍처

05 알고리즘

06 성능평가

07 기대효과



# INTRODUCTION



무엇을 할 것인가?

# Background of Topic Selection

정보 과부하 정보 정보 정보 시스템



#### 시스템 목표

최신 뉴스와 가장 연관성 있는 기존 뉴스 추천

추출된 요약문과 기존 뉴스와의 연관도 계산

최신 뉴스 추출 요약문 생성

최신 뉴스 검색

## TEAM



이성희 Mentor

0

Team Leader



오수연
Embedded Vector 데이터 셋 구축
Vector 유사도 계산 모델 개발



박소연

Data Pre-processing

Deep Learning Modeling



박병준
Data Pre-processing
Deep Learning Modeling



김학진 Database 구축 Front-end 구축



제태성
Embedded Vector 데이터 셋 구축
Presentation 및 산출물 작성



### DATA SET

무엇을 분석할 것인가? 쓸모 있는 데이터를 찾아라!



#### **DATA**

- 데이터 분석을 위한 3가지 정의
  - 무엇을 할 것인가?
  - 무엇을 분석할 것인가?
  - 어떻게 분석할 것인가?



# DATA 구축 개요



#### **ROW DATA**

원문 데이터 신문기사 30만 건

> 추출 요약 3개 문장

#문서요약 # 추출요약

# 생성요

# 문서요약텍스트

분야 한국어

유형 텍스트

갱신년월: 2023-05 구축년도: 2020

다운로드



▶ 샘플 데이터

"sentence": "ha당 조사료 400만원...작물별 차등 지원", "highlight\_indices": "" "index": 1, "sentence": "이성훈 sinawi@hanmail.net", "highlight\_indices": "" "index": 2, "sentence": "전라남도가 짤 과잉문제를 근본적으로 해결하기 위해 올해부터 시행하는 짤 생산조정제를 적극 추진키로 했다.", "highlight\_indices": "" "sentence": "쌜 생산조정제는 벼를 짐었던 논에 벼 대신 사료작물이나 콩 등 다른 작물을 짐으면 벼와의 일정 소득차를 보전해주는 제도다.", "highlight\_indices": "35,37" "index": 4, "sentence": "올해 전남의 돈 다른 작물 재배 계획면적은 전국 5만ha의 약 21%인 1만 698ha로, 제부시행지침을 확정, 시군에 통보했다.", "highlight\_indices": "9,11;33,34" "sentence": "지원사업 대상은 2017년산 쌀 변동직불금을 받은 농지에 10a(300평) 이상 벼 이외 다른 작물을 재배한 농업인이다.", 錢

"highlight indices": "50,52" Ln 52, Col 21 Tab Size: 4 UTF-8 CRLF JSON R Q

"id": "290741792", u\_\_\_\_\_ u조상u

鐚

# . DATA PRE-PROCESSING . °

쓸 수 있는 데이터로 변환하라!

0

# **TABLE**

| sentence                                                                                                                        | target | category |
|---------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| 중국 투자의향기업 직접 방문·투자협약 체결 협의                                                                                                      | 0      | 경제       |
| 이성훈 sinawi@hanmail.net                                                                                                          | 0      | 경제       |
| 여수광양항만공사(사장 방희석)는 14일부터 20일까지 광양항 배후단지 투자<br>유치를 위해 CEO가 직접 참여하는 투자유치 활동을 중국 중남부지역에서 펼친다.                                       | 1      | 경제       |
| 광양만권경제자유구역청과 합동으로 진행되는 이번 투자유치활동은 방희석<br>사장이 직접 중국 현지의 투자의향기업을 방문해 광양항 및 배후단지의 장점 등을<br>소개하고 투자협약(MOU)을 체결하는 방식으로 진행된다.         | 1      | 경제       |
| 방 사장은 먼저 광양항 서측배후단지 푸드존 투자유치를 위해 중국 운남성 소재<br>커피 원재료 공급업체인 운남허메이격치(주)를 방문해 광양항 배후단지<br>투자협약를 체결할 예정이다.                          | 0      | 경제       |
| 중국의 다른 입주의향기업들도 방문해 투자유치 활동을 진행할 계획이다.                                                                                          | 0      | 경제       |
| "이번 투자유치 활동은 지난해 9월 경제청과 공사가 합동으로 중국지역<br>투자유치활동을 통해 투자의향기업을 선정했던 후속 조치로, 이번 방문을 통해<br>광양항 배후단지에 실질적인 투자가 이뤄질 수 있도록 하기 위한 것이다." | 1      | 경제       |



### ARCHITECTURE



전체 흐름 파악하기





### **ALGORITHM**

+ 0

어떻게 분석할 것인가?

Pre-trained Model 활용

#### **BERT**

- Bidirectional Encoder Representation from Transformer(2019)
- Pre-trained 언어모델
  - 이런 학습 방식은 사람이 직접 Labeling 할 필요가 없다.
  - 대신 엄청난 양의 데이터가 필요하다.

| 나는 오늘 학교에 갔습니다.    |       |  |  |  |  |  |  |
|--------------------|-------|--|--|--|--|--|--|
| Train Data (Input) | Label |  |  |  |  |  |  |
| 나는                 | 오늘    |  |  |  |  |  |  |
| 나는 오늘              | 학교에   |  |  |  |  |  |  |
| 나는 오늘 학교에          | 갔습니다. |  |  |  |  |  |  |

#### **BERT**

- Bidirectional Encoder Representation from Transformer(2019)
  - Bidirectional은 양방향을 의미
  - Encoder는 입력값을 숫자의 형태로 바꾸는 모듈
  - BERT는 문맥을 양방향으로 이해해서 숫자의 형태로 바꿔주는 딥러닝 모델



# BERT를 사용한 이유

- 뉴스를 분석해서 유사한 뉴스를 추천을 해주기 위해서는 문맥을 이해해서 문장을 분석해야 된다.
- BERT는 문맥을 이해하는 Understanding 영역에서 그 성능이 뛰어나다.
- 왜냐하면 BERT는 Large-scale로 사전 학습된 언어모델이기 때문이다.
- 언어 모델이란, 일반적으로 앞 단어를 Input으로, 뒤에 나오는 단어를 Label 로 학습하는 방식을 말한다.
- 학습 방식이 단순하고 별도의 Labeling이 필요하지 않기 때문에 대용량으로 학습이 가능하다.
- 우리는 BERT를 이용하여 전이학습으로 적은 양의 Hidden Layer를 Fine Tunning하였다.
- Fine Tunning이란 적은 양의 Hidden Layer를 미세조정(재학습)하는 것을 말한다.



+



# KLUE를 사용한 이유

- Korean Language Understanding Evaluation
- Base Multilingual Model
  - Wordpiece Tokenizer
    - annoyingly → annoying / ly
- KLUE
  - 형태소를 고려한 Tokenizing → 성능 개선





# EVALUATION

SYSTEM 시연 및 성능 평가



|                 | Layers      | (learning_rate, dropout_rate) | avg_time | train_loss | train_accuracy | val_loss | val_accuracy | cnt_pred_true | diff  | accuracy |                |
|-----------------|-------------|-------------------------------|----------|------------|----------------|----------|--------------|---------------|-------|----------|----------------|
| 2_hidden_layers | (256, 512)  | (2e-5, 0.2)                   | 947.4s   | 0.0804     | 0.9721         | 0.4253   | 0.8769       | 5804          | -196  | 0.7635   |                |
|                 |             | (2e-5, 0.3)                   | 946.3s   | 0.1193     | 0.9577         | 0.3915   | 0.8787       | 5626          | -374  | 0.7715   | early_stopped  |
|                 |             | (1e-5, 0.2)                   | 943.5s   | 0.1492     | 0.944          | 0.3817   | 0.8692       | 6218          | 218   | 0.7523   | early_stopped  |
|                 |             | (1e-5, 0.3)                   | 941s     | 0.1522     | 0.9424         | 0.3848   | 0.8701       | 5743          | -257  | 0.7634   | early_stopped  |
|                 | (768, 256)  | (2e-5, 0.2)                   | 927.8    | 0.08       | 0.972          | 0.4411   | 0.8819       | 5672          | -328  | 0.7746   |                |
|                 |             | (2e-5, 0.3)                   | 932.3s   | 0.1206     | 0.9566         | 0.3923   | 0.8731       | 4712          | -1288 | 0.7715   | early_stopped  |
|                 |             | (1e-5, 0.2)                   | 925.8s   | 0.1493     | 0.944          | 0.3872   | 0.8658       | 5882          | -118  | 0.7603   | early_stopped  |
|                 |             | (1e-5, 0.3)                   | 98.3s    | 0.15       | 0.9444         | 0.3625   | 0.8802       | 6078          | 78    | 0.7755   | early_stopped  |
|                 | (512, 1024) | (2e-5, 0.2)                   | 939s     | 0.115      | 0.9589         | 0.3756   | 0.879        | 4767          | -1233 | 0.7784   |                |
|                 |             | (2e-5, 0.3)                   | 940s     | 0.1153     | 0.9591         | 0.3835   | 0.8756       | 5408          | -592  | 0.7707   | early_stopped  |
|                 |             | (1e-5, 0.2)                   | 933.8s   | 0.0984     | 0.9641         | 0.4821   | 0.8595       | 6254          | 254   | 0.7633   |                |
|                 |             | (1e-5, 0.3)                   | 931.3s   | 0.1388     | 0.9482         | 0.3744   | 0.8803       | 5098          | -902  | 0.7755   | early_stopped  |
| single_layer    | 512         | (2e-5, 0.2)                   | 936.2    | 0.0807     | 0.9717         | 0.445    | 0.8797       | 5305          | -695  | 0.7648   |                |
|                 |             | (2e-5, 0.3)                   | 941.8    | 0.0827     | 0.9705         | 0.5088   | 0.8603       | 5944          | -56   | 0.7576   |                |
|                 |             | (1e-5, 0.2)                   | 937.5    | 0.1488     | 0.9451         | 0.3869   | 0.8589       | 6982          | 982   | 0.7413   | early stopping |
|                 |             | (1e-5, 0.3)                   | 934      | 0.0984     | 0.9649         | 0.4377   | 0.8637       | 6926          | 926   | 0.7495   |                |
|                 | 1024        | (2e-5, 0.2)                   | 934.2    | 0.0827     | 0.971          | 0.4287   | 0.8816       | 5119          | -881  | 0.7674   |                |
|                 |             | (2e-5, 0.3)                   | 933.2    | 0.1458     | 0.9444         | 0.4137   | 0.8767       | 5069          | -931  | 0.7482   |                |
|                 |             | (1e-5, 0.2)                   | 937.25   | 0.1429     | 0.9468         | 0.3693   | 0.8729       | 5589          | -411  | 0.7716   | early stopping |
|                 |             | (1e-5, 0.3)                   | 939.5    | 0.1502     | 0.9447         | 0.3914   | 0.8646       | 6966          | 966   | 0.7447   | early stopping |





# EXPECTATION

기대효과 & 활용방안



# 기대효과 활왕안

- 최신 기사를 요약문으로 받아볼 수 있다.
- 연관성 있는 과거의 뉴스를 함께 확인할 수 있다.
- 동일한 이슈에 대한 현재와 과거의 변화도를 파악하여 새로운 인사이트를 얻을 수 있다.

