VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

Elektronika pro informační technologie 2019/2020

Semestrální projekt

Príklad č.1 – varianta H

Stanovte napätie U_{R5} a prúd I_{R5}. Použite metódu postupného zjednodušovania obvodu.

S	sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$
I	Н	135	80	680	600	260	310	575	870	355	265

Zlúčila som zdroje napätie do jedného. R₇ a R₈ sú zapojené paralelne.

$$U_{1,2} = U_1 + U_2$$

$$U_{1,2} = 135 + 80 = 215V$$

$$R_{78} = \frac{R_7.R_8}{R_7 + R_8} = 151,7339\Omega$$

Transfigurovala som rezistory R₁, R₂ a R₃ trojuholníka na hviezdu. Novovzniknuté odpory sú:

$$R_{\rm A} = \frac{R_1.R_2}{R_1 + R_2 + R_3} = 264,9351\Omega$$

$$R_{\rm B} = \frac{R_1.R_3}{R_1 + R_2 + R_3} = 114,8052\Omega$$

$$R_{\rm C} = \frac{R_2.R_3}{R_1 + R_2 + R_3} = 101,2987\Omega$$

Pokračujem v zjednodušovaní obvodu. R_B a R₄ sú zapojené sériovo, rovnako ako R_C a R₆. Výsledný odpor R_{B4} je zapojený sériovo s R₅.

$$\begin{split} R_{B4} &= R_B + R_4 = 424,\!8052~\Omega \\ R_{C6} &= R_C + R_6 = 971,\,2987~\Omega \\ R_{B45} &= R_{B4} + R_{B5} = 999,\!8052~\Omega \end{split}$$

R_{B45} a R_{C6} sú zapojené paralelne.

$$R_{B45C6} = \frac{R_{B45}.R_{C6}}{R_{B45} + R_{RC6}} = 492,6729\Omega$$

Zvyšné odpory sú zapojené sériovo. Výsledný odpor R_{ekv} je teda:

$$R_{ekv} = R_A + R_{B45C6} + R_{7.8} = 909,3419\Omega$$

Týmto obvodom preteká prúd:

$$I_{\text{ekv}} = \frac{U_{1,2}}{R_{EKV}} = 0.2364A$$

Jedná sa tiež o prúd, ktorý preteká R_{B45C6}. Napätie na R_{B45C6} teda vieme vypočítať ako:

 $U_{\text{RB45C6}} = R_{\text{B45C6}}$. I_{ekv}

 $U_{RB45C6} = 116,4679V$

RB₄₅ a R_{C6} sú zapojené paralelne, ich napätie je preto zhodné s U_{RB45C6}. Prúd pretekajúci R_{B45} som vypočítala ako:

$$I_{B45} = \frac{U_{RB45C6}}{R_{B45}} = 0,1165A$$

R_B, R₄ a R₅ sú zapojené sériovo, preteká nimi teda rovnaký prúd I_{B45}. Hľadaný prúd I₅ je preto zhodný s I_{B45} a napätie U₅ dopočítame ako:

$$\begin{split} I_5 &= I_{B45} = \textbf{0,1165A} \\ U_5 &= R_5 \;.\; I_5 = 0,1165.575 = \textbf{66,9875V} \end{split}$$

Príklad č.2 – varianta H

Stanovte napätie U_{R6} a prúd I_{R6}. Použite metódu Théveninovej vety.

sk.	U[V]	$R_1[\Omega]$	$\mathrm{R}_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$
Н	220	190	360	580	205	560	180

Odpojila som R₆ a skratovala zdroje napätia. Pozmenila som pozíciu rezistorov, aby boli lepšie viditeľné ich vzájomné pozície. R₁ a R₂ sú zapojené sériovo, R₁₂ paralelne s R₃, R₁₂₃ a R₄ voči sebe sériovo a R₁₂₃₄ paralelne s R₅. R_i som teda vypočítala ako:

$$R_{12} = R_1 + R_2 = 550 \ \Omega$$

 $R_{123} = \frac{R_{12} \cdot R_3}{R_{12} + R_3} = 282,3009 \Omega$

$$R_{1234} = R_{123} + R_4 = 487,\!3009\Omega$$

$$R_{\rm i} = \frac{R_{1234}.R_5}{R_{1234} + R_5} = 260,5636\Omega$$

Následne som vypočítala U_{i.} To je vďaka paralelnému zapojeniu rovnaké ako na R₅. Na výpočet som si zvolila metódu slučkových prúdov.

$$\begin{bmatrix} R_1 + R_2 + R_3 & -R_3 \\ -R_3 & R_3 + R_4 + R_5 \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \end{bmatrix} = \begin{bmatrix} U \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1130 & -580 \\ -580 & 1345 \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \end{bmatrix} = \begin{bmatrix} 220 \\ 0 \end{bmatrix}$$

Pomocou Cramerovho pravidla som vypočítala I_B.

$$D = \begin{bmatrix} 1130 & -580 \\ -580 & 1345 \end{bmatrix} = 1 \ 183 \ 450 \qquad D_2 = \begin{bmatrix} 1130 & 220 \\ -580 & 0 \end{bmatrix} = 127 \ 600$$

$$I_B = \frac{D_2}{D} = \frac{127600}{1183450} = 0.1078A$$

$$\begin{split} U_{R5} &= I_{B}.R_{5} = 0,\!1078.560 = 60,\!368V \\ U_{i} &= U_{R5} \end{split}$$

Keďže poznám vnútorný odpor zdroja aj svorkové napätie, môžem zostaviť ekvivalentný odpor a dopočítať hľadené hodnoty.

$$I_{R6} = \frac{U_i}{R_i + R_6} = \frac{60,368}{260,5636 + 180} = \mathbf{0,1371A}$$

$$U_{R6} = I_{R6}.R_6 = 0,1371.180 = 24,678V$$

Príklad č.3 – varianta D

Stanovte napätie U_{R4} a prúd I_{R4}. Použite metódu uzlových napätí (U_A, U_B, U_C).

sk.	U[V]	$I_1[A]$	$I_2[A]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$\mathrm{R}_4[\Omega]$	$R_5[\Omega]$
D	115	0,6	0,9	50	38	48	37	28

Označila som dané uzly (A, B, C) a vyjadrila ich pomocou I. Kirchhoffovho zákona.

A:
$$I_1 + R_2 - R_1 = 0$$

B:
$$I_{R5} - I_{R2} - I_{R4} = 0$$

C:
$$I_2 + I_{R4} - I_{R3} - I_{R5} = 0$$

Pomocou uzlových napätí som vyjadrila aj jednotlivé napätia v obvode.

$$U_{R1} = U_A;$$

$$U_{R2} + U_{A} = U_{B} => U_{R2} = U_{B} \text{-} U_{A}$$

$$U_{R3} = U_{C}$$

$$U_{R4} + U_C = U_B => U_{R4} = U_B - U_C$$

$$U - U_{R5} = U_{R4} = > U_{R5} = U - U_{R4} = > U_{R5} = U - U_{B} + U_{C}$$

$$\begin{split} I_1 + R_1 &= I_{R1} \\ I_1 + \frac{U_{R2}}{R_2} &= \frac{U_{R1}}{R_1} \\ I_1 + \frac{U_{B-}U_A}{R_2} &= \frac{U_A}{R_1} \\ U_B R_1 - U_A R_1 - U_A R_2 &= -I_1 R_1 R_2 \\ U_A (-R_1 - R_2) + U_B (R_1) &= -1140 \end{split}$$

Uzol B:

$$\begin{split} &I_{R5} = I_{R2} + I_{R4} \\ &\frac{\textit{U}_{R5}}{\textit{R}_5} = \frac{\textit{U}_{R2}}{\textit{R}_2} + \frac{\textit{U}_{R4}}{\textit{R}_4} \\ &\frac{\textit{U} - \textit{U}_B + \textit{U}_C}{\textit{R}_5} - \frac{\textit{U}_B - \textit{U}_A}{\textit{R}_2} \ + \frac{\textit{U}_B - \textit{U}_C}{\textit{R}_4} = 0 \end{split}$$

 $U R_2 R_4 - U_B R_2 R_4 + U_C R_2 R_4 - U_B R_5 R_4 + U_A R_5 R_4 - U_B R_5 R_2 + U_C R_5 R_2 = 0$ $U_A (R_5 R_4) + U_B (-R_1 R_4 - R_5 R_4 - R_5 R_2) + U_C (R_2 R_4 + R_5 R_2) = -161 690$

Uzol C:

$$\begin{split} &I_2 + I_{R4} = I_{R3} + I_{R5} \\ &I_2 + \frac{U_{R4}}{R_4} = \frac{U_{R3}}{R_3} + \frac{U_{R5}}{R_5} \\ &I_2 + \frac{U_{B} - U_{C}}{R_4} - \frac{U_{C}}{R_3} - \frac{U - U_{B} + U_{C}}{R_5} = 0 \\ &U_{B} \ R_3 \ R_5 - U_{C} \ R_3 \ R_5 - U_{C} \ R_4 - UR_4 \ R_3 + U_{B} \ R_4 \ R_3 - U_{C} \ R_4 \ R_3 = - \ I_2 \ R_4 \ R_3 \ R_5 + UR_4 \ R_3 \\ &U_{B} (R_3 \ R_5 + R_4 \ R_3) + U_{C} \ (-R_3 \ R_5 - R_4 \ R_5 - R_4 \ R_3) = 159 \ 484.8 \end{split}$$

Tým som dostala rovnicu o troch neznámych. Hodnoty som vyčíslila a dosadila do matice:

$$\begin{bmatrix} -88 & 50 & 0 \\ 1036 & -3506 & 2470 \\ 0 & 3120 & -4156 \end{bmatrix} \cdot \begin{bmatrix} U_A \\ U_B \\ U_C \end{bmatrix} = \begin{bmatrix} -1140 \\ -161690 \\ 159 & 484.8 \end{bmatrix}$$

Podľa Cramerovho pravidla som vypočítala prúdy potrebné k výpočtu U_{R4}, U_B a U_C

$$D = \begin{bmatrix} -88 & 50 & 0\\ 1036 & -3506 & 2470\\ 0 & 3120 & -4156 \end{bmatrix} = -388798368$$

$$D_B = \begin{bmatrix} -88 & -1140 & 0 \\ 1036 & -161690 & 2470 \\ 0 & 159484.8 & -4156 \end{bmatrix} = -29377346432$$

$$D_C = \begin{bmatrix} -88 & 50 & -1140 \\ 1036 & -3506 & -161690 \\ 0 & 3120 & 159484,8 \end{bmatrix} = -7134237465.6$$

$$U_B = \frac{D_B}{D} = 75,5593V$$

$$U_C = \frac{D_C}{D} = 18,3494V$$

Keďže už poznám U_B aj U_C , môžem prostredníctvom nich vypočítať U_{R4} .

$$U_{R4} = U_B \text{-} U_C = \textbf{57,2098V}$$

$$I_{R4} = \frac{U_{R4}}{R_4} = 1,5462A$$

Príklad č.4 – varianta H

Pre napájacie napätie platí: $u_1 = U_1 \cdot \sin(2\pi f \, t)$, $u_2 = U_2 \cdot \sin(2\pi f \, t)$. Vo vzťahu pre napätie $u_{C2} = U_{C2} \cdot \sin(2\pi f \, t + \phi C_2)$ určite $|U_{C2}|$ a $\phi C2$. Použite metódu slučkových prúdov. Pozn: Pomocné smery šípok napájacích zdrojov platia pre špeciálny časový okamih $(t = \frac{\pi}{2\omega})$

sk.	11.5371	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	L ₁ [mH]	L ₂ [mH]	C.f.,F1	$C_2[\mu F]$	f[LL_7]
	$U_1[V]$						$C_1[\mu F]$		f[Hz]
Н	65	60	10	10	160	75	155	70	95
·-	u ₁ L ₁								
	<u>→</u> -1								
)	(000)				
			_(~						
			_						
					i _{C2}		2		
					·C ₂	_			
		Ī			1				
		Щ			1	-,,')	→		
	R			u_2	$\overline{}$	u_{C_2}			
		1		2 (\sim)			R ₂	
		L.J		Ψ,	\checkmark				
			11			α	T		
			$\dashv \vdash$		+	000 T			
		C	; ₁			L2			
						-2			

Vypočítala som hodnotu pre ω a následne impedancie jednotlivých komponentov obvodu:

$$\omega = 2\pi f$$

 $\omega = 2\pi.95 = 596,9026 \text{ rad/s}$

$$\begin{split} Z_{\text{C1}} &= \frac{-j}{\omega C_1} = \frac{-j}{596,9026.0,000115} = \frac{-j}{0,0925} = -\text{j.} \cdot \frac{1}{0,0925} = -10,8108\text{j} \\ Z_{\text{C2}} &= \frac{-j}{\omega C_2} = \frac{-j}{596,9026.0.00007} = \frac{-j}{0,0418} = -\text{j.} \cdot \frac{1}{0,0418} = -23,9234\text{j} \end{split}$$

$$Z_{L1} = j\omega L_1 = 596.9026.0, 16.j = 95,5044j \Omega$$

 $Z_{L2} = j\omega L_2 = 596.9026.0, 075.j = 44,7677j \Omega$

Vyjadrila som U v okamihu $t = \frac{\pi}{2\omega}$

$$\begin{split} u_1 &= U_1. \; sin(2\pi f \, \frac{\pi}{2\omega}) = U_1. \; sin(\omega \frac{\pi}{2\omega}) = U_1. \; sin(\frac{\pi}{2}) = U_1. \; 1 = U_1 \\ u_2 &= U_2. \; sin(2\pi f \, \frac{\pi}{2\omega}) = U_2. \; sin(\omega \frac{\pi}{2\omega}) = U_2. \; sin(\frac{\pi}{2}) = U_2. \; 1 = U_2 \end{split}$$

Na základe slučiek som zostavila nasledujúce rovnice o troch neznámych:

$$\begin{split} &I_A:\\ &I_A R_1 + U_2 + I_A Z_{C1} = 0\\ &I_A (R_1 + Z_{C1}) = -U_2 \end{split}$$

$$\begin{split} I_B: \\ U_1 + I_B Z_{L1} + I_B Z_{C2} - I_C Z_{C2} &= 0 \\ I_B (Z_{L1} + Z_{C2}) - I_C (Z_{C2}) &= -U_1 \end{split}$$

$$\begin{split} &I_C:\\ -U_2 + I_C Z C 2 + I_C R_2 + I_C Z_{L2} - I_B Z_{C2} \\ -I_B (Z_{C2}) + I_C (Z_{C2} + R_2 + Z_{L2}) &= U_2 \end{split}$$

Hodnoty som dosadila do matice a Cramerovým pravidlom vypočítala I_C a I_B

$$\begin{bmatrix} R_1 + Z_{C1} & 0 & 0 \\ 0 & Z_{L1} + Z_{C2} & -Z_{C2} \\ 0 & -Z_{C2} & Z_{C2} + R_2 + Z_{L2} \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \begin{bmatrix} -60 \\ -65 \\ 60 \end{bmatrix}$$

$$\begin{bmatrix} 10 - 10.8108j & 0 & 0 \\ 0 & 71,581j & 23,9234j \\ 0 & 23,9234j & 10 + 20,8443j \end{bmatrix} . \begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \begin{bmatrix} -60 \\ -65 \\ 60 \end{bmatrix}$$

$$I_B = -1,0303 - 2,9909jA$$

 $I_C = 3,0829-3,9611jA$

$$\begin{split} IC_2 &= I_C - I_B = 4,1132 - 6,1930 jA \\ U_{C2} &= I_{C2} Z_{C2} = -148,158 - 98,4017 jV \end{split}$$

$$|U_{C2}| = \sqrt{Re(U_{C2})^2 + Im(U_{C2})^2} = 177,859V$$

Fázový posun som previedla do správneho kvadrantu:

$$\varphi C_2 = \arctan \frac{Im U_{C2}}{Re U_{C2}} + 180^{\circ} = 33,59^{\circ} + 180^{\circ} = 213,59^{\circ}$$

Príklad č.5 – varianta H

V obvode na obrázku nižšie v t = 0[s] sepne spínač S. Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie $u_C = f(t)$. Vykonajte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

sk.	U[V]	C[F]	$R[\Omega]$	$U_{C}(0)[V]$
Н	18	50	40	5

1)
$$I = \frac{U_R}{R}$$

$$\boldsymbol{I} = \boldsymbol{I}_C = \boldsymbol{I}_R$$

2)
$$(U_R+U_C)-U=0$$

3) U'C =
$$\frac{1}{c}$$
. $I_c = \frac{1}{c}$. $I = \frac{I}{c}$

a) Dosadila som hodnoty z 1) do 3):

U'_C =
$$\frac{1}{c}$$
. I
U'_C = $\frac{1}{c}$. $\frac{UR}{R}$
U'_C = $\frac{UR}{RC}$

b) Vyjadrila som
$$U_R z 2$$

 $U_R = U - U_C$

c) Dosadila som b) do a)
$$U'_{C} = \frac{UR}{RC}$$

$$U'_{C} = \frac{U}{RC} - \frac{U_{c}}{RC}$$

$$U'_{C} + \frac{U_{C}}{RC} = \frac{U}{RC}$$

Očakávané riešenie:

$$U_{C}(t) = k(t) \cdot e^{\lambda \cdot t}$$

$$U'_{C} + \frac{u_{C}}{RC} = \frac{u}{RC}$$

$$\lambda + \frac{1}{R_{C}} = 0$$

$$\lambda = -\frac{1}{RC} = -\frac{1}{40.50} = -0,0005$$

Derivácie:

$$\begin{aligned} &U_{C}(t) = K(t).e^{\frac{-t}{RC}} \\ &U'_{C}(t) = K'(t).e^{\frac{-t}{RC}} + k(t) \cdot e^{\frac{-t}{RC}} \cdot -0,0005 \end{aligned}$$

$$U'_{C} + \frac{U_{C}}{RC} = \frac{U}{RC}$$

$$K'(t).e^{\frac{-t}{RC}} + K(t).e^{\frac{-t}{RC}}. -0,0005 + 0,0005. K(t).e^{\frac{-t}{RC}} = \frac{U}{RC}$$

$$K'(t) = -e^{\frac{-t}{RC}} = \frac{U}{RC}$$

$$K'(t) = \frac{U.e^{\frac{t}{RC}}}{RC}$$

Integrácie

$$K'(t) = \frac{U}{RC} \cdot e^{\frac{t}{RC}}$$

$$K'(t) = \frac{U}{RC} \cdot \frac{RC}{1} \cdot e^{\frac{t}{RC}} + k$$

$$K'(t) = U \cdot e^{\frac{t}{RC}} + k$$

Dosadila som do očakávaného riešenia:
$$U_C(t) = (U. \ e^{\frac{t}{RC}} + k) \ . \ e^{\frac{-t}{RC}}$$

$$U_C(t) = U + k.e^{\frac{-t}{RC}}$$

Dosadím začiatočnú podmienku:

$$U_{\rm C}(0)=5$$

$$5 = U + k.e^{\frac{-t}{RC}}$$

$$5 = U + k.e^{\frac{0}{RC}}$$

$$5 = U + k$$

$$k = 5-U$$

Dosadila som do očakávaného riešenia:

$$U_{\rm C}(t) = U + (5-U). e^{-0,0005t}$$

 $U_{\rm C}(t) = 18 - 13. e^{-0,0005t}$

Kontrola:

$$U_{\rm C}(0) = 18 - 13. \ e^{-0.0005.0}$$

5 = 5

Súhrn výsledkov

Úloha	Varianta	výsledky
1	Н	$I_5 = 0.1165A$ $U_5 = 66.9875V$
2	Н	$I_{R6} = 0.1371A$ $U_{R6} = 24.678V$
3	D	$U_{R4} = 57,2098V$ $I_{R4} = 1,5462A$
4	Н	$ U_{C2} = 177,859V$ $\phi C_2 = 213,59^{\circ}$
5	Н	$U_{\rm C}(t) = 18 - 13. e^{-0.0005t}$