Unit 7: Energy Balances on reactive systems

Reminders

Homework 6 will be posted by Monday and due on November 22 (covering unit 6)

Announcements

- "Midterm" is moved to Wednesday, November 15 during class
 - Cumulative of units 1-5
- No class or office hours on Wednesday, November 22 (leading into break)

Day	Time	Location	Personnel
Monday	4:30- 5:30PM	AW Smith 147	Duval
Tuesday	4 – 5PM	AW Smith 152	TA
Wednesday	7-8PM	Zoom	TA
Thursday	6-7PM	Zoom	Duval

ECHE 260: Intro to Chemical Systems Christine Duval – November 10, 2023

After today's lecture, students should be able to:

- Define exothermic and endothermic reactions
- Explain heat of reaction

General Procedure for Energy Balances

- Draw and fully label PFD
- Solve material balance OR determine if its solvable
- Write the general E-balance equation (first law)
- Cancel terms & justify why
- Draw the theoretical path for each species
- Write relevant equations for each theoretical step
- Look up all thermodynamic constants
- Solve OR explain how you would solve

First Law of Thermodynamics

1st Law, open system $\dot{Q}-\dot{W_S}=\Delta\dot{H}+\Delta\dot{E_K}+\Delta\dot{E_P}$ 1st Law, closed system $Q-W=\Delta U+\Delta E_K+\Delta E_P$ Remember... $\Delta\dot{H}=\Delta\dot{U}+\Delta P\dot{V}$

- □ Calculate ΔU and $\Delta \dot{H}$ associated with:
 - ΔP at constant T and state
 - ΔT at constant P and state
 - Phase changes at constant T and P
 - Chemical reactions at constant T and P

Chemical Reactions

 Chemical reaction: process that involves breaking and forming chemical bonds

Types of reactions

- Exothermic reactions
 - Energy is released
 - Ex: combustion of fuels, Haber process for producing ammonia
- Endothermic reactions
 - Energy is absorbed
 - Ex: photosynthesis

Heat of Reaction

 Heat of reaction: enthalpy change when stoichiometric quantities of reactants at some T and P react to form products at the same T and P

Heat of reaction

$$2H_2 + O_2 \rightarrow 2H_2O$$
 $\Delta \hat{H}_r(T_1, P_1) = -250 \frac{kJ}{mol}$

Is the reaction exothermic or endothermic?

What if we don't have stoichiometric amounts of each reactant? Or what if we don't have 100% conversion?

$$\Delta H = \Delta \widehat{H}_r(T, P) \boldsymbol{\xi}$$

Enthalpy change associated with a chemical reaction!

Cool, cool. How does this fit with theoretical process paths?

In the "heat of reaction method" the heats of reaction are calculated separately from process paths!

Enthalpy change (no reactions):

$$\Delta H = \sum n_{i,out} \widehat{H}_{i,out} - \sum n_{i,in} \widehat{H}_{i,in}$$

Enthalpy change (single reaction):

$$\Delta H = \xi \Delta \hat{H}_r + \sum_{i,out} n_{i,out} \hat{H}_{i,out} - \sum_{i,in} \hat{H}_{i,in}$$

Unit 7: Energy balances on reactive systems

Reminders

- HW 6 is posted and is due on November 20
- HW 7 will be assigned on November 20 and is due on Nov 27

Announcements

- We will have in-person class on Wednesday Nov 27 (before break)
 and I will post a recording for anyone who is traveling
- No office hours on Wednesday, November 27

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 – 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

Unit 7: Energy balances on reactive systems

After today's lecture, students should be able to:

- Finish the problem started last class
- \Box Calculate the heat of reaction ($\Delta \widehat{H}_{rxn}$) using:
 - Hess's Law and standard heats of formation

Cool, cool. How does this fit with theoretical process paths?

Using the "Heat of Reaction Method" form of the energy balance—heats of reaction are calculated separately from process paths!

Enthalpy change (no reactions):

$$\Delta H = \sum n_{i,out} \widehat{H}_{i,out} - \sum n_{i,in} \widehat{H}_{i,in}$$

Enthalpy change (single reaction):

$$\Delta H = \xi \Delta \hat{H}_r + \sum_{i,out} n_{i,out} \hat{H}_{i,out} - \sum_{i,out} n_{i,in} \hat{H}_{i,in}$$

What do we do if this is not given in the problem statement?

Heat of Combustion

Standard heat of combustion (ΔH_c):
 Enthalpy change associated with the combustion of 1 mole of a reactant with O₂ to product H₂O and CO₂ at 298K and 1atm

Example: combustion of benzene

$$C_6H_6(l) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

Look it up! Table B.1

$$\Delta \widehat{H}_c^o = -3267.6 \frac{kJ}{mol}$$

Application of Hess's Law

Hess's Law: If the stoichiometric equation for rxn 1 can be obtained by algebraic operations on stoichiometric equations for rxns 2, 3, ... then $\Delta H_{rxn,1}^o$ can be obtained by performing the same operations on $\Delta H_{rxn,3}^o$, $\Delta H_{rxn,2}^o$

Rxn 1
$$A+2B \rightarrow 2C+D$$
, ΔH_1^o
Rxn 2 $B+\frac{1}{2}E \rightarrow C$, ΔH_2^o
Rxn 3 $A \rightarrow D+E$, ΔH_3^o
 $\Delta H_1^o=2\Delta H_2^o+\Delta H_3^o$

Heat of Formation

Standard Heat of formation (ΔH_f^o): Enthalpy change associated with the forming 1 mole of a compound from its elements at 298K and 1atm

Example: formation of benzene

$$6C(s) + 3H_2(g) \rightarrow C_6H_6(l)$$

$$\Delta \widehat{H}_f^o = +48.66 \frac{kJ}{mol}$$

Look it up! Table B.1

Example

Calculate the **heat of reaction** using Hess's Law and <u>standard heats of formation</u> for the following reaction:

$$C_2H_6 \rightarrow C_2H_4 + H_2$$

Table B.1 (Continued)

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{\rm m}(^{\circ}{ m C})^b$	$\Delta \hat{H}_{\mathrm{m}}(T_{\mathrm{m}})^{c,j}$ kJ/mol	$T_{b}(^{\circ}C)^{d}$	$\Delta \hat{H}_{v}(T_{b})^{e,j}$ kJ/mol	$T_{\rm c}({ m K})^f$	$P_{\rm c}({\rm atm})^g$	$(\Delta \hat{H}_{\mathrm{f}}^{\circ})^{h,j}$ kJ/mol	$(\Delta \hat{H}_{c}^{\circ})^{i,j}$ kJ/mol
-								. ,			
Chloroform	CHCl₃ Cu	119.39 63.54	1.489 8.92	-63.7 1083	13.01	61.0 2595	304.6	536.0	54.0	-131.8(1)	-373(1)
Copper	CuSO ₄	159.61	3.606 ^{15°}	1003		2393 Decompose		_		0(c) -769.9(c)	_
Cupric sulfate	Cu ₃ O ₄	139.01	3.000		L	recompose	S > 000 C			-843.1(aq)	
Cyclohexane	C_6H_{12}	84.16	0.779	6.7	2.677	80.7	30.1	553.7	40.4	-045.1(aq) -156.2(1)	-3919.9(1)
Cyclonexane	C_6H_{12}	04.10	0.779	0.7	2.077	00.7	30.1	333.7	40.4	-136.2(1) -123.1(g)	-3919.9(1) -3953.0(g)
Cyalonantana	C_5H_{10}	70.13	0.745	-93.4	0.609	49.3	27.30	511.8	44.55	-125.1(g) -105.9(l)	-3290.9(1)
Cyclopentane	C5H ₁₀	70.13	0.743	-95.4	0.009	49.5	27.30	311.0	44.55	-77.2(g)	-3290.9(1) -3319.5(g)
n-Decane	$C_{10}H_{22}$	142.28	0.730	-29.9		173.8		619.0	20.8	-77.2(g) -249.7(1)	-6778.3(I)
n-Decane	$C_{10}\Pi_{22}$	142.20	0.730	-29.9	_	1/3.0	_	019.0	20.6	-249.7(I)	-6776.3(1) -6829.7(g)
Diethyl ether	$(C_2H_5)_2O$	74.12	0.708 ^{25°}	-116.3	7.30	34.6	26.05	467	35.6	-272.8(1)	-2726.7(g)
Ethane	C_2H_5	30.07	U.706	-110.3 -183.3	2.859	-88.6	14.72	305.4	48.2	-272.8(1) -84.67(g)	-2726.7(1) -1559.9(g)
Ethyl acetate	$C_4H_8O_2$	88.10	0.901	-183.3 -83.8	2.039	77.0	14.72 —	523.1	37.8	-463.2(1)	-1339.9(g) -2246.4(1)
Ethyl acetate	$C_4H_8O_2$	00.10	0.901	-65.6	_	77.0		323.1	31.0	-405.2(1) -426.8(g)	-2240.4(1)
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.789	-114.6	5.021	78.5	38.58	516.3	63.0	-277.63(1)	-1366.91(1)
(Ethanol)	C ₂ H ₅ OH	40.07	0.769	-114.0	5.021	10.0	30.30	310.3	03.0	-235.31(g)	-1300.91(1) -1409.25(g)
Ethyl benzene	C_8H_{10}	106.16	0.867	-94.67	9.163	136.2	35.98	619.7	37.0	-12.46(1)	-4564.9(1)
Ethyl benzene	C81110	100.10	0.007	-94.07	9.103	130.2	33.90	019.7	37.0	+29.79(g)	-4607.1(g)
Ethyl bromide	C ₂ H ₅ Br	108.98	1.460	-119.1	_	38.2	_	504	61.5	-54.4(g)	4007.1(g)
Ethyl chloride	C ₂ H ₅ Cl	64.52	0.903 ^{15°}	-138.3	4.452	13.1	24.7	460.4	52.0	-105.0(g)	_
3-Ethyl	C ₂ H ₃ C ₁ C ₈ H ₁₈	114.22	0.717	136.3		118.5	34.27	567.0	26.4	-250.5(1)	-5407.1(I)
hexane	C81118	117.22	0.717			110.5	54.27	507.0	20.4	-210.9(g)	-5509.8(g)
Ethylene	C_2H_4	28.05	_	-169.2	3.350	-103.7	13.54	283.1	50.5	+52.28(g)	-1410.99(g)
Ethylene	$C_2H_6O_2$	62.07	1.113 ^{19°}	-13	11.23	197.2	56.9	205.1	50.5	-451.5(l)	-1179.5(1)
glycol	C2116O2	02.07	1.113	15	11.23	197.2	50.9			-387.1(g)	1179.5(I)
Ferric oxide	Fe_2O_3	159.70	5.12		D	ecomposes	s at 1560°C			-822.2(c)	
Ferrous oxide	FeO	71.85	5.7	_	_	—	- L	_	_	-266.5(c)	_
Ferrous	FeS	87.92	4.84	1193						-95.1(c)	
sulfide	103	07.92	4.04	1195						93.1(c)	
Formaldehyde	H ₂ CO	30.03	$0.815^{-20^{\circ}}$	-92	_	-19.3	24.48	_	_	-115.90(g)	-563.46(g)
Formic acid	CH_2O_2	46.03	1.220	8.30	12.68	100.5	22.25	_	_	-409.2(1)	-262.8(1)
. Offine deld	011202	10100	11220	0.50	12.00	1000	22.20			-362.6(g)	
Glycerol	$C_3H_8O_3$	92.09	1.260 ^{50°}	18.20	18.30	290.0	_		_	-665.9(1)	-1661.1(l)
Helium	He	4.00		-269.7	0.02	-268.9	0.084	5.26	2.26	0(g)	
Hendin	110	-1.00		203.1	0.02	200.9	0.004	5.20	2.20	U(g)	

Table B.2 Heat Capacities^a

Form 1:
$$C_p[kJ/(mol \cdot ^{\circ}C)]$$
 or $[kJ/(mol \cdot K)] = a + bT + cT^2 + dT^3$
Form 2: $C_p[kJ/(mol \cdot ^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^{-2}$

Example: $(C_p)_{\text{acetone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Acetone	CH ₃ COCH ₃	58.08	1	1	°C	123.0	18.6			-30-60
			g	1	$^{\circ}\mathrm{C}$	71.96	20.10	-12.78	34.76	0-1200
Acetylene	C_2H_2	26.04	g	1	$^{\circ}\mathrm{C}$	42.43	6.053	-5.033	18.20	0-1200
Air		29.0	g	1	$^{\circ}\mathrm{C}$	28.94	0.4147	0.3191	-1.965	0-1500
			g	1	K	28.09	0.1965	0.4799	-1.965	273-1800
Ammonia	NH_3	17.03	g	1	$^{\circ}\mathrm{C}$	35.15	2.954	0.4421	-6.686	0-1200
Ammonium sulfate	$(NH_4)_2SO_4$	132.15	c	1	K	215.9				275-328
Benzene	C_6H_6	78.11	1	1	$^{\circ}\mathrm{C}$	126.5	23.4			6–67
			g	1	$^{\circ}\mathrm{C}$	74.06	32.95	-25.20	77.57	0-1200
Isobutane	C_4H_{10}	58.12	g	1	$^{\circ}\mathrm{C}$	89.46	30.13	-18.91	49.87	0-1200
n-Butane	C_4H_{10}	58.12	g	1	$^{\circ}\mathrm{C}$	92.30	27.88	-15.47	34.98	0-1200
Isobutene	C_4H_8	56.10	g	1	$^{\circ}\mathrm{C}$	82.88	25.64	-17.27	50.50	0-1200
Calcium carbide	CaC_2	64.10	c	2	K	68.62	1.19	-8.66×10^{10}	_	298-720
Calcium carbonate	$CaCO_3$	100.09	c	2	K	82.34	4.975	-12.87×10^{10}	_	273-1033
Calcium hydroxide	$Ca(OH)_2$	74.10	c	1	K	89.5				276-373
Calcium oxide	CaO	56.08	c	2	K	41.84	2.03	-4.52×10^{10}		273-1173
Carbon	C	12.01	C	2	K	11.18	1.095	-4.891×10^{10}		273-1373
Carbon dioxide	CO_2	44.01	g	1	$^{\circ}\mathrm{C}$	36.11	4.233	-2.887	7.464	0-1500
Carbon monoxide	CO	28.01	g	1	$^{\circ}\mathrm{C}$	28.95	0.4110	0.3548	-2.220	0-1500
Carbon tetrachloride	CCl_4	153.84	1	1	K	93.39	12.98			273-343
Chlorine	Cl_2	70.91	g	1	°C	33.60	1.367	-1.607	6.473	0-1200
Copper	Cu	63.54	С	1	K	22.76	0.6117			273–1357

^aAdapted in part from D. M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 3rd Edition, © 1974, Table E.1. Adapted by permission of Prentice-Hall. Inc., Englewood Cliffs, NJ.

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^{5}$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Cumene	C ₉ H ₁₂	120.19	g	1	°C	139.2	53.76	-39.79	120.5	0–1200
(Isopropyl benzene)										
Cyclohexane	C_6H_{12}	84.16	g	1	$^{\circ}\mathrm{C}$	94.140	49.62	-31.90	80.63	0-1200
Cyclopentane	C_5H_{10}	70.13	g	1	$^{\circ}\mathrm{C}$	73.39	39.28	-25.54	68.66	0-1200
Ethane	C_2H_6	30.07	g	1	$^{\circ}\mathrm{C}$	49.37	13.92	-5.816	7.280	0-1200
Ethyl alcohol	C_2H_5OH	46.07	1	1	$^{\circ}\mathrm{C}$	103.1				0
(Ethanol)			1	1	$^{\circ}\mathrm{C}$	158.8				100
			g	1	$^{\circ}\mathrm{C}$	61.34	15.72	-8.749	19.83	0-1200
Ethylene	C_2H_4	28.05	g	1	$^{\circ}\mathrm{C}$	+40.75	11.47	-6.891	17.66	0-1200
Ferric oxide	Fe_2O_3	159.70	c	2	K	103.4	6.711	-17.72×10^{10}	_	273-1097
Formaldehyde	CH_2O	30.03	g	1	$^{\circ}\mathrm{C}$	34.28	4.268	0.0000	-8.694	0 - 1200
Helium	He	4.00	g	1	$^{\circ}\mathrm{C}$	20.8				0-1200
n-Hexane	C_6H_{14}	86.17	1	1	$^{\circ}\mathrm{C}$	216.3				20-100
			g	1	$^{\circ}\mathrm{C}$	137.44	40.85	-23.92	57.66	0-1200
Hydrogen	H_2	2.016	g	1	$^{\circ}\mathrm{C}$	28.84	0.00765	0.3288	-0.8698	0-1500
Hydrogen bromide	HBr	80.92	g	1	$^{\circ}\mathrm{C}$	29.10	-0.0227	0.9887	-4.858	0-1200
Hydrogen chloride	HCl	36.47	g	1	$^{\circ}\mathrm{C}$	29.13	-0.1341	0.9715	-4.335	0-1200
Hydrogen cyanide	HCN	27.03	g	1	$^{\circ}\mathrm{C}$	35.3	2.908	1.092		0-1200
Hydrogen sulfide	H_2S	34.08	g	1	$^{\circ}\mathrm{C}$	33.51	1.547	0.3012	-3.292	0-1500
Magnesium chloride	$MgCl_2$	95.23	c	1	K	72.4	1.58			273-991
Magnesium oxide	MgO	40.32	c	2	K	45.44	0.5008	-8.732×10^{10}		273-2073
Methane	CH_4	16.04	g	1	$^{\circ}\mathrm{C}$	34.31	5.469	0.3661	-11.00	0-1200
			g	1	K	19.87	5.021	1.268	-11.00	273-1500
Methyl alcohol	CH_3OH	32.04	1	1	$^{\circ}\mathrm{C}$	75.86	16.83			0-65
(Methanol)			g	1	$^{\circ}\mathrm{C}$	42.93	8.301	-1.87	-8.03	0-700
Methyl cyclohexane	C_7H_{14}	98.18	g	1	$^{\circ}\mathrm{C}$	121.3	56.53	-37.72	100.8	0-1200
Methyl cyclopentane	C_6H_{12}	84.16	g	1	$^{\circ}\mathrm{C}$	98.83	45.857	-30.44	83.81	0-1200
Nitric acid	NHO_3	63.02	1	1	$^{\circ}\mathrm{C}$	110.0				25
Nitric oxide	NO	30.01	g	1	$^{\circ}\mathrm{C}$	29.50	0.8188	-0.2925	0.3652	0-3500

Nitrogen	N_2	28.02	g	1	$^{\circ}\mathrm{C}$	29.00	0.2199	0.5723	-2.871	0-1500
Nitrogen dioxide	NO_2	46.01	g	1	°C	36.07	3.97	-2.88	7.87	0-1200
Nitrogen tetraoxide	N_2O_4	92.02	g	1	°C	75.7	12.5	-11.3		0-300
Nitrous oxide	N_2O	44.02	g	1	$^{\circ}\mathrm{C}$	37.66	4.151	-2.694	10.57	0-1200
Oxygen	O_2	32.00	g	1	$^{\circ}\mathrm{C}$	29.10	1.158	-0.6076	1.311	0 - 1500
n-Pentane	C_5H_{12}	72.15	1	1	$^{\circ}\mathrm{C}$	155.4	43.68			0-36
			g	1	$^{\circ}\mathrm{C}$	114.8	34.09	-18.99	42.26	0-1200
Propane	C_3H_8	44.09	g	1	$^{\circ}\mathrm{C}$	68.032	22.59	-13.11	31.71	0-1200
Propylene	C_3H_6	42.08	g	1	$^{\circ}\mathrm{C}$	59.580	17.71	-10.17	24.60	0-1200
Sodium carbonate	Na_2CO_3	105.99	c	1	K	121				288-371
Sodium carbonate	Na_2CO_3	286.15	c	1	K	535.6				298
decahydrate	$\cdot 10H_2O$									
Sulfur	S	32.07	c	1	K	15.2	2.68			273-368
		(Rho	ombic)							
			c	1	K	18.3	1.84			368-392
		(Mon	oclinic)							
Sulfuric acid	H_2SO_4	98.08	1	1	$^{\circ}\mathrm{C}$	139.1	15.59			10-45
Sulfur dioxide	SO_2	64.07	g	1	$^{\circ}\mathrm{C}$	38.91	3.904	-3.104	8.606	0-1500
Sulfur trioxide	SO_3	80.07	g	1	$^{\circ}\mathrm{C}$	48.50	9.188	-8.540	32.40	0-1000
Toluene	C_7H_8	92.13	1	1	$^{\circ}\mathrm{C}$	148.8	32.4			0-110
			g	1	$^{\circ}\mathrm{C}$	94.18	38.00	-27.86	80.33	0-1200
Water	H_2O	18.016	1	1	°C	75.4				0-100
			g	1	°C	33.46	0.6880	0.7604	-3.593	0-1500

Unit 7: Energy balances on reactive systems

Reminders

- HW 6 is posted and is due on November 20
- HW 7 will be assigned on November 20 and is due on Nov 27

Announcements

- In-person class on Wednesday Nov 27 (before break)
 - Recording will be posted for anyone who is traveling
- No office hours on Wednesday, November 27

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

Unit 7: Energy balances on reactive systems

After today's lecture, students should be able to:

 Use the "Heat of Formation Energy Balance" to calculate the enthalpy change in a reactive process

Heat of Formation

Standard Heat of formation (ΔH_f^o): Enthalpy change associated with the forming 1 mole of a compound from its elements at 298K and 1atm

Example: formation of benzene

$$6C(s) + 3H_2(g) \rightarrow C_6H_6(l)$$

$$\Delta \widehat{H}_f^o = +48.66 \frac{kJ}{mol}$$

Look it up! Table B.1

Table B.1 (Continued)

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{\mathrm{m}}(^{\circ}\mathrm{C})^{b}$	$\Delta \hat{H}_{\mathrm{m}}(T_{\mathrm{m}})^{c,j}$ kJ/mol	$T_{\rm b}({\rm ^{\circ}C})^d$	$\Delta \hat{H}_{\rm v}(T_{\rm b})^{e,j}$ kJ/mol	$T_{\rm c}({\rm K})^f$	$P_{\rm c}({\rm atm})^g$	$(\Delta \hat{H}_{\mathrm{f}}^{ \circ})^{h,j}$ kJ/mol	$(\Delta \hat{H_{ m c}}^{\circ})^{i,j}$ kJ/mol
Chloroform	CHCl ₃	119.39	1.489	-63.7	_	61.0		536.0	54.0	-131.8(I)	-373(1)
Copper	Cu	63.54	8.92	1083	13.01	2595	304.6		34.0	0(c)	- 375(I)
Cupric	CuSO ₄	159.61	$3.606^{15^{\circ}}$	1005		ecompose				-769.9(c)	_
sulfate	Cu5O4	133.01	5.000			recompose	3 × 000 C			-843.1(aq)	
Cyclohexane	C_6H_{12}	84.16	0.779	6.7	2.677	80.7	30.1	553.7	40.4	-156.2(1)	-3919.9(1)
Cyclonexane	061112	04.10	0.775	0.7	2.077	00.7	30.1	333.1	70.7	-123.1(g)	-3953.0(g)
Cyclopentane	C_5H_{10}	70.13	0.745	-93.4	0.609	49.3	27.30	511.8	44.55	-105.9(1)	-3290.9(1)
Cyclopentane	C51110	70.13	0.743	75.4	0.005	77.5	27.50	311.0	44.55	-77.2(g)	-3319.5(g)
n-Decane	$C_{10}H_{22}$	142.28	0.730	-29.9	_	173.8		619.0	20.8	-249.7(1)	-6778.3(1)
n-Decane	C101122	172,20	0.750	27.7		175.0		017.0	20.0	245.7(1) —	-6829.7(g)
Diethyl ether	$(C_2H_5)_2O$	74.12	$0.708^{25^{\circ}}$	-116.3	7.30	34.6	26.05	467	35.6	-272.8(1)	-2726.7(1)
Ethane	C_2H_6	30.07		-183.3	2.859	-88.6	14.72	305.4	48.2	-84.67(g)	-1559.9(g)
Ethyl acetate	$C_4H_8O_2$	88.10	0.901	-83.8	2.037	77.0		523.1	37.8	-463.2(1)	-2246.4(1)
Luiyi acctate	C4118O2	00.10	0.501	05.0		77.0	_	323.1	37.0	-426.8(g)	2240.4(1)
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.789	-114.6	5.021	78.5	38.58	516.3	63.0	-277.63(1)	-1366.91(I)
(Ethanol)	C ₂ 115O11	40.07	0.709	114.0	3.021	10.5	30.30	310.3	05.0	-235.31(g)	-1409.25(g)
Ethyl benzene	C_8H_{10}	106.16	0.867	-94.67	9.163	136.2	35.98	619.7	37.0	-12.46(1)	-4564.9(1)
Ethyl belizene	C81110	100.10	0.007	74.07	5.105	130.2	33.70	017.7	37.0	+29.79(g)	-4607.1(g)
Ethyl bromide	C_2H_5Br	108.98	1.460	-119.1	_	38.2	_	504	61.5	-54.4(g)	
Ethyl chloride	C ₂ H ₅ Cl	64.52	$0.903^{15^{\circ}}$	-138.3	4.452	13.1	24.7	460.4	52.0	-105.0(g)	_
3-Ethyl	$C_{8}H_{18}$	114.22	0.717	130.3		118.5	34.27	567.0	26.4	-250.5(1)	-5407.1(1)
hexane	C81118	114.22	0.717	_	_	110.5	34.27	307.0	20.4	-230.9(g)	-5509.8(g)
Ethylene	C_2H_4	28.05	_	-169.2	3.350	-103.7	13.54	283.1	50.5	+52.28(g)	-1410.99(g)
Ethylene	C_2H_4 $C_2H_6O_2$	62.07	1.113 ^{19°}	-13	11.23	197.2	56.9	203.1	30.3	-451.5(l)	-1179.5(1)
glycol	$C_2 \Pi_6 G_2$	02.07	1.113	-13	11.23	197.2	30.9	_		-387.1(g)	-1179.3(1)
Ferric oxide	Fe_2O_3	159.70	5.12		D	ecomposes	s at 1560°C			-822.2(c)	_
Ferrous oxide	FeO	71.85	5.7		D	ccomposes	s at 1300 C			-266.5(c)	
				250.40	0.12	252.56			12.0	`\\\\\	205.04/
Hydrogen	H_2	2.016	_	-259.19	0.12	-252.76	0.904	33.3	12.8	0(g)	-285.84(g
Hydrogen bromide	HBr	80.92	_	-86	_	-67	_	_	_	-36.23(g)	_
Hydrogen chloride	HCl	36.47	_	-114.2	1.99	-85.0	16.1	324.6	81.5	-92.31(g)	_
Hydrogen	HCN	27.03	_	-14	_	26	_	_	_	+130.54(g)	_
cyanide											
Hydrogen	HF	20.0	_	-83		20		503.2	_	-268.6(g)	_
fluorida										-216.0(na)	