# La Vie Secrète des Cellules (et comment la decouvrir)

Piyush MISHRA Inst. de Mathématiques de Marseille & Inst. Fresnel



G.D.C. Ortega, ETH Zurich, 2023



## La correspondance mesures-états est un problème inverse d'association de données



#### L'association de données est un problème combinatoire (et donc difficile)



#### Les méthodes conventionelles recourent à un estimateur iteratif sous-optimal

$$p(\mathbf{X}_t|\mathbf{Z}_{1:t}) = p(\mathbf{Z}_t|\mathbf{X}_t) \int p(\mathbf{X}_t|\mathbf{X}_{t-1}) p(\mathbf{X}_{t-1}|\mathbf{Z}_{1:t-1}) d\mathbf{X}$$
 association prediction a priori

#### Les méthodes conventionelles doivent élaguer prématurément les hypothèses

$$p(\mathbf{X}_t|\mathbf{Z}_{1:t}) = p(\mathbf{Z}_t|\mathbf{X}_t) \int p(\mathbf{X}_t|\mathbf{X}_{t-1}) p(\mathbf{X}_{t-1}|\mathbf{Z}_{1:t-1}) d\mathbf{X}$$
 association prediction a priori  $= \sum_{oldsymbol{\eta}_p^t \in \mathbf{H}_t'} p(\mathbf{Z}_t|\mathbf{X}_t,oldsymbol{\eta}_p^t) p(oldsymbol{\eta}_p^t|\mathbf{X}_t) \int p(\mathbf{X}_t|\mathbf{X}_{t-1}) p(\mathbf{X}_{t-1}|\mathbf{Z}_{1:t-1}) d\mathbf{X}$ 

#### L'attention peut prendre des decisions à la fois sur les états et sur les hypothèses



$$\hat{\mathbf{X}} = \mathrm{concat}\left(\mathrm{softmax}\left(rac{\mathbf{Z}_m\mathbf{W}_{q,m}(\mathbf{Z}_m\mathbf{W}_{k,m})^T}{\sqrt{d_k}}
ight)\mathbf{Z}_m\mathbf{W}_{v,m}, orall m \in \left[1,rac{h}{n_h}
ight] \subset \mathbb{N}
ight) \cdot \mathbf{W}_l$$

#### Un simple dispositif experimental pour une preuve de concept



$$z^{t,p} = y^{t,p} + \omega^p$$
bruit de mesure

## La similarité verité terrain-prediction est mesurée par le coefficient de Jaccard



## L'attention est robuste au bruit croissant dans les longues séquences



## Augmenter la fenêtre d'arrière pourrait potentiellement améliorer les performances



#### Lorsque le filtrage Bayèsien est optimal, l'attention est sous-optimale



## Lorsque le filtrage Bayèsien est optimal, l'attention reste sous-optimale



## L'attention est plus efficace lorsqu'on augmente la fenêtre d'arrière



#### L'attention est robuste à la taille croissante des séquences



## En cours : une stratégie frugale pour construire des a prioris globaux



## En cours : entraînement sur des simulations physiologiquement pertinentes

## Applications & résultats préliminaires : tenir debout sur une cellule en mouvement



Images microscopiques des embryons des mouches, C. Collinet, IBDM Suivre les cellules avec la stratégie hybride Attention-Bayèsienne Région d'interêt stabilisée Équipe Endotrack Centuri Hackathon, 2024 o pourquoi suivre?





















# Merci de votre attention ©



Mishra, Roudot, 2024