Origin-destination mobility flow inference from traffic data

szeresfehel a ungary szolnek

Sietok

Dunaujváro

Kecskemel

Mihály Hanics
CEU DNDS

Szekszárd

Advisors: Márton Karsai, Gergely Ódor

Inter-settlement origin-destination matrix

An example for an O-D matrix: rows represent the origin locations, columns the destinations. The stored value would equal the commuters inbetween **Problem:** We would like to know how many people commute from a Hungarian city/town/settlement to others regularly.

Origin – destination pairs: For each location pair, the number of people travelling (commuting) between the two places over a time period (e.g. per day) is represented.

Usecases: Epidemic spreading modelling (our main interest), human mobility, traffic and traffic congestion prediction, human behaviour studies.

Challenges: Directly measured data is rare, inferring from certain types of data can raise other concerns (e.g. privacy) Census data is only collected once over multiple years.

Goal: An alternative way to create Hungary's O-D matrix with high accuracy and great resolution.

Ground truth data from census

Commuting map in Hungary, from self-reported data [Ódor 2022]

Hungarian Central Statistical Office (KSH) 2016:

- Data 1: Settlement statistics: population, latitude-longitude
- Data 2: Commuting from one settlement to another:
 - includes commuting to school, and to work

Both datasets include each settlement / pair of settlements where there is at least one commuter.

~3200 settlements, ~93000 pairs (non-zero commution)

Observational data: Road traffic volume

Hungarian Public Roads 2022:

- Nation-wide daily public road traffic measurements, average over a year
- Vehicle, heavy vehicle, bicycle counts 14000 road segments, e.g. highways.
- Geographical data
- Some extra information on measurement

Közút száma	Útkategória	Vármegye	A számlálóállomás														
			szelvénye [km+m]	érvényességi szakaszának						1 0	VOLUME OF	utolsó		200	T		
				határszelvényei		OKA csomopontial		hossza	100000		típusa	forgalmi sávok	1 1000000000000000000000000000000000000	adat forrása	számlált napok	pontosság	kódja
				100 A 27 Ca 2 C		kezdő	vég -	o.mecamu.	vese	jellege	11.546.55(0)1.0	száma	éve		száma		
				[km+m]	[km+m]		1000	[km]					2 500	U		[+/-%]	
	~~	vármegyei átlagérték	7. 7					81,435									
3	I. rendű főút	Borsod-Abaúj-Zemplén vármegye	135+ 949	134 + 576	136 + 243	M000348	C050901	1,667	K	d 2	M1	2	2017	felszorzott		20,0%	3024
3	I. rendű főút	Borsod-Abaúj-Zemplén vármegye	138+855	136+243	142 + 379	C050901	C050102	6,135	K	c 2	MI	2	2017	felszorzott		20,0%	5545
3	I. rendű főút	Borsod-Abaúj-Zemplén vármegye	142+ 832	142 + 379	146 + 054	C050102	C050103	3,675	K	6.2	MI	2	2015	felszorzott		30,0%	4462
3	I. rendű főút	Borsod-Abaúj-Zemplén vármegye	147+ 269	146+054	148 + 857	C050103	C050104	2,803	к	c 2	MI	2	2017	felszorzott		20,0%	1925
3	I. rendű főút	Borsod-Abaúj-Zemplén vármegye	152+897	148 + 857	157 + 755	C050104	C050107	8,898	L	c 2	FCS+J	2	2022	mért	279	1,0%	13534
3	I. rendű főút	Borsod-Abaúj-Zemplén vármegye	162+ 843	157 + 755	165 + 064	C050107	C050110	7,309	K.	c 2	MI	2	2017	felszorzott		20,0%	7691

Test network construction

37-38: 5154

"Proof of concept"

In accordance with the traffic data.

Small network:

- 16 cities, 3 highway division points
- Nodes represent the locations, edges are roads, possibly multiple roads
- Weight: The minimum traffic volume on the road segments represented by the edge

Parallel edges may appear between two nodes (e.g. road 4 and highway M4), these are combined into one (sum)

Models - methods

Gravity [Parsons 1960]

$$T_{ij} = K \frac{m_i^{\alpha} m_j^{\beta}}{d_{ij}^{k}}$$

where:

- T_{ij} : number of trips from zone i to zone j
- m_i , m_j relate to the number of trips leaving location i / attracted by location j
- d_{ij} : the distance between zones i and j
- deterrence: decreasing number of trips as the distance increases, by power-law
- *K*: constant of proportionality

For us: β , k estimated, $\alpha = 1$, K comes from the total trips sum

Bell [Bell 1983]

Other methods optimize an objective function subject to constraints:

$$\max f(t)$$
 assuming $v = Pt$

where **t** contains the O-D pairs (*J*-size column vector) (**We infer it**)

- v: Traffic volumes We measure it, input data (I-size column vector)
- P-matrix: When travelling from A to B, how likely you are to pass through a certain road This we pre-determine (I \times J matrix)

 v_i : road i traffic, p_{ij} : probability of going through road i given the O-D pair j

Bell-model: maximizes the probability of observing t given initial probabilities

Models - methods

Gravity [Parsons 1960]

$$T_{ij} = K \frac{m_i^{\alpha} m_j^{\beta}}{d_{ij}^{k}}$$

where:

- T_{ij} : number of trips from zone i to zone j
- m_i , m_j relate to the number of trips leaving location i / attracted by location j
- d_{ij} : the distance between zones i and j
- deterrence: decreasing number of trips as the distance increases, by power-law
- *K*: constant of proportionality

For us: β , k estimated, $\alpha = 1$, K comes from the total trips sum

Bell [Bell 1983]

Other methods optimize an objective function subject to constraints:

$$\max f(t)$$
 assuming $v = Pt$

where t contains the O-D pairs (J-size column vector) (**We infer it**)

- v: Traffic volumes We measure it, input data (I-size column vector)
- P-matrix: When travelling from A to B, how likely you are to pass through a certain road This we pre-determine (I \times J matrix)

Bell-model: maximizes the probability of observing $m{t}$ given probabilities $m{q}$

$$f(t) = \frac{\left(\sum_{j} t_{j}\right)!}{\prod_{j} \left(t_{j}!\right)} \cdot \prod_{j} q_{j}^{t_{j}} \qquad \text{(multinomial distribution)}$$

Bell-model in practice

Optimization: $\max f(t)$ assuming v = Pt

Bell: max
$$P(\boldsymbol{t} \mid \boldsymbol{q}) \rightarrow f(\boldsymbol{t}) = \frac{(\Sigma_j t_j)!}{\prod_j (t_j!)} \cdot \prod_j q_j^{t_j}$$

assuming multinomial distributions

q: Estimated by normalizing an initial guess: $q_j = \frac{t_j^{\sim}}{\sum_i t_i^{\sim}}$

P: Shortest paths - Between all pairs of locations, all shortest paths are computed.

For each of the N shortest paths between two locations, $\frac{1}{N}$ is added to a path's edges

Some constraints in practice conflict -> use them as loss (L1 mostly)

Gravity, Bell models pipeline

Results on the small graph

	Correlation	MSE	MAE	Relative diff^2	Better prediction		
Gravity	95.8%	62479	~124	1103	49		
Bell from Gravity	97.4%	37298	~94	1138	71		

Bell model improves on the initial model

This is true for the gravity model, but other tested models: entropy min/max. Superior especially in large O-D values.

Scale up the network to as large as we can: all roads, more settlements Issues:

- Technical issues e.g. different components (see figures on left)

Scale up the network to as large as we can: all roads, more settlements Issues:

P-matrix creation: shortest path works weakly + we need multiple found paths

UPDATE:

Shortest time routes seem to work well.

One issue that came up is that now the used roads are "too crowded"-> low O-D value predictions

Scale up the network to as large as we can: all roads, more settlements Issues:

- Computation time: optimization ~46 sec for 16 locations, grows fast with more locations
 - Network creation: finding intersections took 25 mins, overall procedure 30+ mins

Run the analysis for monthly traffic data between 2016 and 2022

References

[Ódor 2021] Ódor G, Czifra D, Komjáthy J, Lovász L, Karsai M. Switchover phenomenon induced by epidemic seeding on geometric networks. Proceedings of the National Academy of Sciences. 2021;118(41):e2112607118. pmid:34620714

[Pappalardo 2022] Pappalardo, L., Simini, F., Barlacchi, G., & Pellungrini, R. (2022). scikit-mobility: A Python Library for the Analysis, Generation, and Risk Assessment of Mobility Data. Journal of Statistical Software, 103(1), 1–38.

[Parsons 1960] Parsons, Christopher R. 'Do Migrants Really Foster Trade'. *The Trade-Migration Nexus, a Panel Approach* 2000 (1960).

[Bell 1983] Bell, M. G. (1983). The estimation of an origin-destination matrix from traffic counts. Transportation Science, 17(2), 198-217.

Data:

Nemzeti Adathozzáférési Pont – Magyar Közút Nonprofit Zrt.: Éves keresztmetszeti forgalmi adatok (2022) https://napportal.kozut.hu/ Központi Statisztikai Hivatal - https://www.ksh.hu/