УНАРНОЕ ОТНОШЕНИЕ

Пусть X — непустое множество. Любое подмножество $R\subseteq X$ называется отношением в множестве X (унарным отношением).

 $\mathit{Пример}.\ X=\mathbb{N},\ R\subseteq X,\ R=\{x\in\mathbb{N},x$ — чётное число}, $R=\{2,4,\ldots,2n,\ldots\}.$

БИНАРНОЕ ОТНОШЕНИЕ

Пусть X и Y — произвольные непустые множества. Произвольное подмножество $R \subseteq X \times Y$ называется **бинарным отношением**, определённым в паре множеств X и Y.

Пример. $R\subseteq \mathbb{N}\times\mathbb{N}=\mathbb{N}^2,\ (m,n)\in R\iff n\mid m.$ $(6,3)\in R,\ (6,4)\notin R.$ Тогда $D_R=\mathbb{N},\ E_R=\mathbb{N}.$

Если $R \subseteq X \times Y$ и $(x, y) \in R$, то пишут xRy.

• Областью определения бинарного отношения R называют множество

$$D_R = \{x \in X \mid xRy$$
 для некоторого $y \in Y\}$

• Областью значений бинарного отношения R называют множество

$$E_R = \{y \in Y \mid xRy$$
 для некоторого $x \in X\}$

•

1 Найдите $D_R, E_R, R^{-1}, R \circ R, R \circ R^{-1}, R^{-1} \circ R$

- (A) $R = \{(x, y) : x, y \in \mathbb{N} \& x | y\}$
- (B) $R = \{(x, y) : x, y \in \mathbb{R} \& x + y \le 0\}$

Решение

- (A) $R = \{(x, y) : x, y \in \mathbb{N} \& x | y\}$
 - $D_R = \mathbb{N}$
 - $E_R = \mathbb{N}$

$$R^{-1} = \{(x, y) : x, y \in \mathbb{N} \& y | x\}$$

 $R\circ R=\{(x,z):$ найдется такой $y\in\mathbb{N},$ для которого $xRy,yRz\}=\{(x,z):$ найдется $y\in N,$ что $x|y,y|z\}=R,$ если y:=x

 $R\circ R^{-1}=\{(x,z):$ найдется $y\in\mathbb{N},$ что $x|y,z|y\}=\{(x,z):x\in\mathbb{N},z\in\mathbb{N}\},$ если взять $y:=z\cdot x$

 $R^{-1}\circ R=\{(x,z):$ найдется $y\in\mathbb{N},$ что $y|x,y|z\}=\{(x,z):x\in\mathbb{N},z\in\mathbb{N}\},$ если взять y:=1

- (B) $R = \{(x, y) : x, y \in \mathbb{R} \& x + y \le 0\}$
 - $D_R = \mathbb{R}$

$$E_R = \mathbb{R}$$

$$R^{-1} = \{(x, y) : x, y \in \mathbb{R} \& y + x \le 0\}$$

 $R\circ R=\{(x,z):$ найдется такой $y\in\mathbb{R},$ для которого $xRy,yRz\}=\{(x,z):$ найдется $y\in R,$ что $x+y\leq 0,y+z\leq 0\}=\mathbb{R}^2,$ если y:=-|x|-|z|

$$R\circ R^{-1}=R\circ R$$

$$R^{-1} \circ R = R \circ R$$

Возможные операции

Пусть $R, R_1, R_2 \subseteq X \times Y$. Тогда:

1.
$$R_1 \cup R_2 = \{(x,y) \mid xR_1y \text{ или } xR_2y\}$$

2.
$$R_1 \cap R_2 = \{(x,y) \mid xR_1y \text{ if } xR_2y\}$$

3.
$$R_1 \setminus R_2 = \{(x,y) \mid xR_1y \text{ if } (x,y) \notin R_2\}$$

4.
$$\overline{R}_{X\times Y} = \{(x,y) \mid (x,y) \notin R\} = (X\times Y)\setminus R$$

5.
$$R^{-1} = \{(y, x) \mid xRy\}$$
 — обратное отношение к R

2

Пусть R, R_1, R_2 - бинарные отношения, опрделенные на паре множеств A, B, S, T - бинарные отношения, опрделенные на паре множеств B, C. Докажите, что

(a)
$$(R^{-1})^{-1} = R$$

(b)
$$\overline{R^{-1}} = (\overline{R})^{-1}$$

(c)
$$(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$$

Решение

(a)
$$(R^{-1})^{-1} = R$$

Доказательство:

$$(R^{-1})^{-1} = (\{(x,y) \mid x \in A, y \in B, yRx\})^{-1} = \{(x,y) \mid x \in A, y \in B, xRy\} = R$$

(b)
$$\overline{R^{-1}} = (\overline{R})^{-1}$$

Доказательство:

$$\overline{R^{-1}} = B \times A \setminus \{(y,x) \mid y \in B, x \in A, xRy\} = \{(y,x) \mid (x,y) \notin R\}$$

$$(\overline{R})^{-1} = (A \times B \setminus \{(x,y) \mid x \in A, y \in B, xRy\})^{-1} = B \times A \setminus \{(y,x) \mid y \in B, x \in A, xRy\} = \{(y,x) \mid (x,y) \notin R\}$$

(c)
$$(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$$

Доказательство:

$$(R_1 \cup R_2)^{-1} = \{(x,y) \mid (x,y) \in R_1$$
или $(x,y) \in R_2\} = \{(y,x) \mid (x,y) \in R_1$ или $(x,y) \in R_2\}$

$$R_1^{-1} = \{(y, x) \mid (x, y) \in R_1\}$$

$$R_2^{-1} = \{(y, x) \mid (x, y) \in R_2\}$$

$$R_1^{-1} \cup R_2^{-1} = \{(y,x) \mid (x,y) \in R_1$$
или $(x,y) \in R_2\}$

3

Выясните, для каких бинарных отношений R, определенных на паре множеств A и B, выполняетс соотношение $R^{-1}=\overline{R}$

Решение

$$\underline{R^{-1}} = \{(y,x)|y\in B, x\in A, (x,y)\in R\}$$

$$\overline{R} = \{(x, y) | (x, y) \notin R\}$$

Для равенства множеств нужно, чтобы A = B.

Рассмотрим два случая.

- $(x,x) \in R$. Тогда (x,x) не лежит в \overline{R} , но лежит в R^{-1}
- $(x,x) \notin R$. Тогда (x,x) лежит в \overline{R} , но не лежит в R^{-1}

Получили противоречие, значит, таких бинарных отношений не существует.

Бинарное отношение R называют:

- 1. **рефлексивным**, если $\forall a \in A : aRa$
- 2. симметричным, если $\forall a,b \in A: (aRb \Longrightarrow bRa)$
- 3. антисимметричным, если $\forall a,b \in A: (aRb \ u \ bRa \Longrightarrow a = b)$
- 4. **транзитивным**, если $\forall a,b,c \in A: (aRb \bowtie bRc \Longrightarrow aRc)$

4

Пусть $R\subseteq A^2$ и $E=\{(a,a):a\in A$ - диагональ множества A. Докажите, что

ullet R рефлексивно тогда и только тогда, когда $E\subseteq R$

Решение

Rрефлексивно тогда и только тогда, когда $E\subseteq R$ Доказательство

По определению.

Отношение называется **рефлексивным**, если $\forall a \in A: aRa$

Значит, все пары (a,a) должны входить в отношение

$$\forall a \in A : (a, a) \in R$$

$$E \subseteq R$$

Бинарное отношение $R\subseteq A^2$ называется **отношением эквивалентности** на множестве A, если оно рефлексивно, симметрично и транзитивно.

Пусть $R \subseteq A^2$ — бинарное отношение, и $a \in A$ — фиксированный элемент. Тогда $[a]_A = \{x \in A \mid xRa\}$ — смежный класс множества A по эквивалентности R или просто **класс** эквивалентности множества A.

6

(a)
$$A = \mathbb{Z} \text{ if } R = \{(a, b) : a + b = 0\}$$

(б)
$$A = \mathbb{Z}$$
 и $R = \{(a, b) : a + b \text{ четно}\};$

(B)
$$A = \mathbb{Z} \text{ M } R = \{(a, b) : a^2 = b^2\};$$

(r)
$$A = \mathbb{Z} \text{ if } R = \{(a, b) : a^3 = b^3\};$$

(д)
$$A = 2^{\{a,b,c,d\}}$$
 и $R = \{(X,Y): |X| = |Y|\};$

(e)
$$A = \mathbb{Z} \text{ M } R = \{(a, b) : \exists k \in \mathbb{Z} \ (a - b = 5k)\}.$$

Решение

(a) $A = \mathbb{Z}$ и $R = \{(a, b) : a + b = 0\}$ Нет, не является рефлексивным.

рефлексивно: если $\forall a \in A : aRa$

(б) $A = \mathbb{Z}$ и $R = \{(a, b) : a + b \text{ четно}\};$

Нужно показать, что отношение R рефлексивно, симметрично и транзитивно

- **рефлексивно**: если $\forall a \in \mathbb{Z}: aRa$ $(a,a) \in R$ тогда и только тогда, a+a четно. Это правда.
- симметрично: если $\forall a,b \in \mathbb{Z}: (aRb \Longrightarrow bRa)$ Если $(a,b) \in R$, значит, a+b - четно, значит, b+a - четно, значит $(b,a) \in R$.
- **транзитивно**: если $\forall a,b,c\in\mathbb{Z}:(aRb\ u\ bRc\Longrightarrow aRc)$ Если $(a,b)\in R,(b,c)\in R$, значит, a+b - четно и b+ - четно, значит, a+c - четно значит $(a,c)\in R$.

Классы эквивалентности:

- Все четные числа
- Все нечетные числа.

Бинарное отношение $R \subseteq A^2$ называется **отношением эквивалентности** на множестве A, если оно рефлексивно, симметрично и транзитивно.

Пусть $R \subseteq A^2$ — бинарное отношение, и $a \in A$ — фиксированный элемент. Тогда $[a]_A = \{x \in A \mid xRa\}$ — смежный класс множества A по эквивалентности R или просто **класс** эквивалентности множества A.

7

Пусть $A = \{1,2,3,4,5,6,7\}$, $B = \{x,y,z\}$ и $f \colon A \to B$ – сюръективная функция вида $f = \{(1,x),(2,z),(3,x),(4,y),(5,z),(6,y),(7,x)\}$. Определим бинарное отношение R на множестве A следующим образом: aRb тогда и только тогда f(a) = f(b). Докажите, что R –отношение эквивалентности и найдите классы эквивалентности.

Решение

Нужно показать, что отношение R рефлексивно, симметрично и транзитивно

- рефлексивно: если $\forall a \in A: aRa$ $(a,a) \in R$ тогда и только тогда, f(a) = f(a). Это правла.
- симметрично: если $\forall a,b \in A: (aRb \Longrightarrow bRa)$ Если $(a,b) \in R$, значит, f(a) = f(b), значит, f(b) = f(a), значит $(b,a) \in R$.
- транзитивно: если $\forall a,b,c \in A: (aRb \text{ и } bRc \Longrightarrow aRc)$ Если $(a,b) \in R, (b,c) \in R,$ значит, f(a) = f(b), f(b) = f(c), значит, f(a) = f(c), значит $(a,c) \in R$.

Давайте, найдем R.

Относительно x

$$(1,3),(1,7),(3,7),(3,1),(7,1),(7,3),(1,1),(3,3),(7,7)$$

Относительно y

Относительно z