

Universidade Federal de Pernambuco Departamento de Física

Física para Computação - 1º Exercício Escolar 05/04/2018 Início: 13:00 - duração: 2h

Não é permitido o uso de calculadoras. Indicar apenas uma resposta nos testes, na própria folha de enunciados. Para as questões só serão aceitas as respostas que mostrem claramente como foram obtidas.

CPF: Nome:

Marque verdadeiro ou falso para as frases abaixo:

- [F] Quando um corpo está em repouso sobre o chão, as forças peso e normal se anumal, portanto formando um par ação e reação. Acao e reacao atuam em corpos diferentes
 - [V] A força de atrito estático sempre realiza trabalho negativo.
- 👩 Uma força é conservativa quando realiza trabalho nulo em um caminho fechado (quando um objeto se desloca e retorna ao ponto de partida).

Uma caixa repousa sobre um plano horizontal com coeficiente de atrito estático μ_e . Uma força \vec{F} é aplicada sobre a caixa, formando um ângulo θ com a horizontal $(0 < \theta < \pi/2)$. A caixa permanece parada. Sejam F_{at} o módulo da força de atrito estático, N o módulo da força normal e F_{at}^{max} o módulo da força de atrito estático máxima. Conforme o ângulo θ aumenta (mantendo o módulo de \vec{F} constante), podemos afirmar que:

- (A) F_{at} aumenta, N aumenta e F_{at}^{max} aumenta.

- (B) F_{at} aumenta, N aumenta e F_{at}^{max} diminui. (C) F_{at} diminui, N aumenta e F_{at}^{max} aumenta. (D) F_{at} aumenta, N diminui e F_{at}^{max} diminui. (F) F_{at} diminui, N diminui e F_{at}^{max} diminui. (F) F_{at} diminui, N aumenta e F_{at}^{max} diminui.

A força de interação entre duas moléculas dá origem a uma energia potencial em função da distância entre elas descrita pelo potencial de Lennard-Jones (vide figura qualitativa abaixo). A partir do gráfico, qual seria a distância de equilíbrio entre as moléculas?

- (B) r = b
- (C) $b << r < \infty$
- (D) Seria tanto em r=a quanto em r muito maior que b.

Considere que sobre uma partícula atua somente uma força conservativa cujo potencial é dado no gráfico ao lado.

Em quais regiões do eixo X a força é negativa?

(d)
$$[b,c] e [d,e]$$
 (e) $[0,a] e x > e$ (f) $[b,d]$

Questões discursivas

Questão 1: Você depõe como perito em um caso envolvendo um acidente no qual um carro A bateu na traseira de um carro B que estava parado em um sinal vermelho no meio de uma ladeira. Você descobre que a inclinação da ladeira é θ , que os carros estavam separados por uma distância d m quando o motorista do carro A freiou bruscamente, bloquendo as rodas (o carro não dispunha de freios ABS), e que a velocidade do carro A no momento em que o motorista pisou no freio era v_0 m/s.

(A) Determine a velocidade com que o carro A bateu no carro B em função dos dados do problema.

Considere agora os seguintes a inclinação da ladeira era $\theta=12^{\circ}$, a distância era d=24 m e $v_0=12$ m/s. Considere sen $(12^{\circ})\approx 0.2$ e $\cos(12^{\circ})\approx 1.0$, o que nos dá uma margem de erro inferior a 5%.

- (B) Qual a velocidade com que o carro A bateu no carro B considerando que a pista estava seca, tendo um corficiente de atrito $\mu_c = 0.60$ entre o pneu e a pista?
- (C) Qual a velocidade com que o carro A bateu no carro B considerando que a pista estava coberta de folhas molhadas, tendo um corficiente de atrito $\mu_c = 0.10$ entre o pneu e a pista?

Questão 2: Um bloco de massa m desce, a partir do repouso, ao longo de um plano inclinado sem atrito (vide figura). Ele está inicialmente a uma distância d do aparo da mola. Ele prende-se então a uma mola de constante elástica k, que é comprimida até o bloco parar momentaneamente. Qual é o deslocamento máximo a de compressão da mola?

