Aerodynamics 2 - Rotorcraft Aerodynamics

Fundamentals of Vertical Flight (straight up and down) Lecture 3

Dr Djamel Rezgui djamel.rezgui@bristol.ac.uk

Axial Flight

Hover ... Climb ... Descent

- momentum analysis
- Axial flow states
- Universal Induced
 Velocity diagram

Helicopter Aerodynamics in Axial Flight

Actuator Disc (Momentum) Theory

The Lifting Rotor in it's most simplistic form is a **Propeller**.

Mechanical energy (in the form of rotating blades) is used to accelerate (a) a mass (m) of air.

Newton's law (every action has a reaction), states F=ma, where F, is the rotor thrust (T).

Applying Bernoulli's equation:

$$H_0 = P_0 + \frac{1}{2}\rho V^2 = P_1 + \frac{1}{2}\rho (V + v)^2$$

$$H_1 = P_0 + \frac{1}{2}\rho (V + v_1)^2 = P_1 + P' + \frac{1}{2}\rho (V + v)^2$$

Subtracting H_0 from H_1 results in

$$H_1 - H_0 = \frac{1}{2} \rho (2Vv_1 + v_1^2) = P'$$

However, the Thrust=change of axial momentum per unit time

$$\frac{T}{A} = P' = \rho(V + v)v_1$$

Where ρ is the air density and A is the rotor disc area

Hence

$$\frac{v_1}{2} = v$$
 or $v_1 = 2v$
Thrust: $T = 2\rho A(V + v)v$
Power: $P = T(V + v)$

Momentum Theory in Hover

Or a lifting rotor in **hover**, when the onset velocity V = 0

$$v_h = \sqrt{\frac{T}{2\rho A}}$$

$$P_h = Tv_h$$
 Hence

$$P_h = \frac{T^{3/2}}{\sqrt{2\rho A}}$$

AXIAL FLOW STATES

The vertical climb and hover states (and to a certain extent the slow decent) are easily analysed by momentum considerations, as already discussed.

Higher rates of decent can be problematic, both analytically (as the stream tube no longer exists) and in piloting the craft.

Following a total engine failure the helicopter pilot will descend the aircraft into the upper region of the turbulent wake state.

THE OPERATING STATES

The Rotor in **BLUE**

A Constant and always POSITIVE

THRUST is produced in each state.

 V_V is the Aircraft Vertical Velocity (+ve up)

v is the induced velocity, v_h (in hover)

U is the flow through the rotor disk (+ve down)

NORMAL WORKING STATE

The Rotor in **CLIMB**

Momentum Theory applies as an effective stream tube exists.

$$V_{V} > 0$$

$$V < V_{h}$$

NORMAL WORKING STATE

Rotor in **HOVER**

Momentum Theory applies as an effective stream tube exists.

$$V_V = 0$$

$$v = v_h$$

$$U = v$$

VORTEX RING STATE

Rotor in <u>VERY SLOW DESCENT</u>

Momentum Theory applies as an effective stream tube exists.

$$0 > V_{V} \ge \left(\frac{-v_{h}}{2}\right)$$

$$v > v_{h}$$

$$U < v$$

VORTEX RING STATE

Rotor in **SLOW DESCENT**

Momentum Theory does not apply as no effective stream tube exists.

$$\left(\frac{-v_h}{2} \right) \ge V_V \ge -v_h$$

$$v >> v_h$$

$$U < v$$

TURBULENT WAKE STATE

Rotor in MODERATE DESCENT

Momentum Theory does not apply as no effective stream tube exists.

$$-v_h \ge V_V \ge -\frac{3}{2}v_h$$

$$v > v_h$$

$$U \le 0,$$

$$U \approx 0 \text{ ideal autorotation}$$

TURBULENT WAKE STATE

Rotor in **HIGH DESCENT RATE**

Momentum Theory does not apply as no effective stream tube exists.

$$-\frac{3}{2}v_h \ge V_V \ge -2v_h$$

$$v \ge v_h$$

$$U < v \text{ (and-ve in value)}$$

WINDMILL BRAKE STATE

Rotor in <u>VERY HIGH DESCENT RATE</u>

Momentum Theory applies as

an effective stream tube exists.

This is analogous to "Normal Working State"

$$V_V \le -2v_h$$

$$v \approx v_{i}$$

 $U \le v$ (and –ve in value)

WINDMILL BRAKE STATE

Rotor in **EXTREME DESCENT RATE**

Momentum Theory applies as

an effective stream tube exists.

This is analogous to "Normal Working State"

$$V_V << -2v_h$$

$$v < v_h$$

$$v < v_{i}$$

$$U \geq v$$

AXIAL FLOW STATES

The vertical climb and hover states are easily analysed by momentum considerations (as already discussed) and to a certain extent the slow decent.

Higher rates of decent can be problematic, both in analysis (as the stream tube no longer exists) and in piloting the craft.

Following a total engine failure the helicopter pilot will descend the aircraft into the upper regions of the turbulent wake state.

Question

- Starting from $T_{Hover} = T_{AxialFlight} = T$,
- i.e. $2\rho A v_h^2 = 2\rho A (V + v) v$
- Plot the variation of $\frac{v}{v_h}$ as a function of $\frac{V}{v_h}$

Answer

$$\frac{v_i}{v_h} = -\frac{V_c}{2v_h} \pm \sqrt{\left(\left(\frac{V_c}{2v_h}\right)^2 \pm 1\right)}$$

ALL THESE FLOW STATES

can now be summarised on one diagram, the Universal Induced Velocity Curve. The dark area is literally a "grey area" as it cannot be solved analytically and therefore comprises of empirical obtained by flight test.

The induced velocity (Y-axis) and the helicopter rotor's vertical velocity (X-axis) have been non-dimensionalised by the rotor induced velocity in the hover.

The Universal Induced Velocity Diagram

Remembering that P = T(V + v), then at $(V + v) = 0, T \neq 0, P = 0$

HELICOPTER in Vortex Ring State

It is important to design for low autorotation rates