APRENDENDO COM OS DADOS

UMA ABORDAGEM DE CIÊNCIA DE DADOS E APRENDIZADO DE MÁQUINA UTILIZANDO R

(PARTE 1)

Prof. Rafael G. Mantovani 30/10/2019

Roteiro

- 1 Introdução
- 2 Conceitos gerais
- 3 Fluxo de ciência de dados
- 4 Ferramentas
- 5 Um pouco de R :)
- 6 Referências

Material

Link: https://github.com/rgmantovani/secomp2019 utfpr ap

Roteiro

- 1 Introdução
- 2 Conceitos gerais
- 3 Fluxo de ciência de dados
- 4 Ferramentas
- 5 Um pouco de R :)
- 6 Referências

poucos dados

poucos dados

imensa quantidade de dados (big data)

- Dados são continuamente:
 - gerados, coletados, processados e transmitidos

Mudança de realidade

Necessidade: conjuntos de dados

Mudança de realidade

- Inteligência Artificial
- Automatiza a construção de modelos para solucionar problemas!

• Onde isso é usado?

• Onde isso é usado?

Onde isso é usado? Veículos Autônomos

Uber Tesla

• Onde isso é usado? Veículos Autônomos

LRM - ICMC/USP, São Carlos - SP

Onde isso é usado? Bancos

Onde isso é usado? Sistemas Médicos

• Onde isso é usado? Sistemas de Segurança

Roteiro

- 1 Introdução
- 2 Conceitos gerais
- 3 Fluxo de ciência de dados
- 4 Ferramentas
- 5 Um pouco de R :)
- 6 Referências

Conceitos Gerais

Conceitos Gerais

Mineração de dados

- Preparação dos dados:
 - imputação
 - normalização
 - transformações
 - • •

Aprendizado de Máquina

Matemática / Estatística

- Amostragem
- Estatística descritiva visualização
- Testes de Hipótese
- • •

Ciência de Dados

Quantos algoritmos existem?

Ciência de Dados

Quantos algoritmos existem?

• • •

Roteiro

- 1 Introdução
- 2 Conceitos gerais
- 3 Fluxo de ciência de dados
- 4 Ferramentas
- 5 Um pouco de R :)
- 6 Referências

Fluxo de Ciência de Dados

Fluxo de Ciência de Dados

Roteiro

- 1 Introdução
- 2 Conceitos gerais
- 3 Fluxo de ciência de dados
- 4 Ferramentas
- 5 Um pouco de R :)
- 6 Referências

Ferramentas

Ferramentas

OpenML / Dados

OpenML / Dados

7983 results	▼ FILTERS FOR SEARCH OPTIONS, SE				
iris (4)	This is perhaps the best known database to be found in the patterr ★ 0 runs ♥ 0 likes ♠ 0 downloads ♠ 0 reach ∱ 3 impact 150 instances - 5 features - 3 classes - 0 missing values				
iris (1)	This is perhaps the best known database to be found in the patterr ★ 8030 runs ♥ 5 likes ♠ 82 downloads ♠ 87 reach ∱ 31 impact 150 instances - 5 features - 3 classes - 0 missing values				
★ 1298 runs ♥	Subgroup Discovery on iris ★ 1298 runs ♥ 0 likes ♣ 0 downloads ৯ 0 reach ½ 2 impact uploader_id: 1 - quality_measure: Information gain - target_feature: class - target_value: Iris-setosa - reuse				
Learning Curve of	on iris-test				

OpenML / Dados

Author: R.A. Fisher

Source: UCI - 1936 - Donated by Michael Marshall

Please cite:

Iris Plants Database

This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly

5 features

Ferramentas

Studio / IDE para R

Ferramentas

mlr / framework em R

Machine Learning in R

- build failing on build failing CRAN 2.13 downloads 7732/month stackoverflow mir
 - · CRAN release site
 - Detailed Tutorial: Online as HTML
 - · mlr cheatsheet
 - · Install the development version

```
devtools::install_github("mlr-org/mlr")
```

- · Further installation instructions
- · Ask a question about mlr on Stackoverflow
- We are on Slack (Request invitation: code{at}jakob-r.de)
- · We have a blog on mlr
- A list of possible enhancements to mlr is available on the wiki contributors welcome!
- We are in the top 20 of the most starred R packages on Github, as reported by metacran.

mlr / framework em R

- Página principal:
 - https://github.com/mlr-org/mlr
- Tutoriais:
 - https://mlr-org.github.io/mlr/
 - https://mlr-org.github.io/mlr/articles/wrapper.html
 - https://mlr-org.github.io/mlr/articles/integrated_learners.html
 - https://mlr-org.github.io/mlr/articles/measures.html
 - https://mlr-org.github.io/mlr/articles/advanced_tune.html

Ferramentas

ggplot2

Overview

ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphichow to map variables to aesthetics, what graphical primitives to use, and it takes care of

Installation

```
# The easiest way to get ggplot2 is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just ggplot2:
install.packages("ggplot2")
```

ggplot2

Visualização dos dados :)

ggplot2

Roteiro

- 1 Introdução
- 2 Conceitos gerais
- 3 Fluxo de ciência de dados
- 4 Ferramentas
- 5 Um pouco de R :)
- 6 Referências

Um pouco de R :)

Um pouco de R :)

Data frame:

Atributos preditivos (X)

Atributo alvo (Y)

^	sepallength [‡]	sepalwidth [‡]	petallength [‡]	petalwidth [‡]	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa
10	5.4	3.7	1.5	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
12	4.8	3.0	1.4	0.1	Iris-setosa
13	4.3	3.0	1.1	0.1	Iris-setosa
14	5.8	4.0	1.2	0.2	Iris-setosa
15	5.7	4.4	1.5	0.4	Iris-setosa

Hello world

- O que faremos?
 - ler dados no R
 - ver características dos dados
 - plotar

Hello world

- O que faremos?
 - ler dados no R
 - ver características dos dados
 - plotar

helloWorld.R

helloWorld.R

Branch: master ▼

secomp2019_utfpr_ap / codes / 01_initialCodes / helloWorld.R

g rgmantovani adding content

1 contributor

```
49 lines (33 sloc)
                    823 Bytes
      # carregando o pacote ggplot2
      library(ggplot2)
  4 # acessando o dataset
      mpg
      View(mpg)
     # contando numero de linhas do dataset
      nrow(mpg)
```

Exercício 01

- Fazer o mesmo com o dataset: iris
 - visualizar par a par as coordenadas
 - o que pode ser visto?
 - Usar:
 - library(ggplot2)
 - plot()
 - geom_point()

Exercício 02

- Encontrar outro dataset no OpenML
 - baixar e ler no R
 - visualizar informação
 - Qual informação o dataset nos mostra?

```
Usar:

library(ggplot2)
library(OpenML)
read.csv ()
read.table ()
read.arff ()
getOMLDataSet(data.id = <id>)
```

Roteiro

- 1 Introdução
- 2 Conceitos gerais
- 3 Fluxo de ciência de dados
- 4 Ferramentas
- 5 Um pouco de R :)
- 6 Referências

Referências

[Wickham & Grolemund, 2018]

[Bruce & Bruce, 2019]

Referências

[Aggarwal, 2015]

[Zumel and Mount, 2014]

Perguntas?

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br