CS146: Data Structures and Algorithms Lecture 3

ORDER OF GROWTH O, Ω, Θ

INSTRUCTOR: KATERINA POTIKA
CS SJSU

Measures of Algorithm Complexity

- Worst-Case Running Time: the longest time for any input size of n
 - an upper bound on running time for any input
- **Best-Case Running Time**: the shortest time for any input size of **n**
 - an lower bound on running time for any input
- Average-Case Behavior: the expected performance averaged over all possible inputs
 - it is generally better than worst case behavior, but sometimes it's roughly as bad as worst case

Order of Growth

- For very large input size n, it is the *rate of grow*, or *order of growth* that matters asymptotically
 - ignore the *lower-order terms*, since they are relatively insignificant for very large *n*
 - ignore *leading term's constant coefficients*, since they are not as important for the rate of growth in computational efficiency for very large *n*
- Higher order functions of n are normally considered less efficient

O - Notation

4

FORMAL DEFINITIONS

Big-O notation (Upper Bound – Worst Case)

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O notation (Upper Bound – Worst Case)

- 6
- A mathematically formal way of ignoring constant factors, and looking only at the "shape" of the function
- f(n)=O(g(n)) should be considered as saying that "f(n) is at most g(n), up to constant factors".
- We usually will have f(n) be the running time of an algorithm and g(n) a nicely written function
- Example: The running time of insertion sort algorithm is $O(n^2)$

Big-O notation examples

Example: $2n^2 = O(n^3)$, with c = 1 and $n_0 = 2$.

Examples of functions in $O(n^2)$:

```
n^{2}

n^{2} + n

n^{2} + 1000n

1000n^{2} + 1000n

Also,

n

n/1000

n^{1.99999}

n^{2}/\lg \lg \lg n
```

Big-O notation (Upper Bound – Worst Case)

8

ignore the multiplicative constants and the lower order terms,
 e.g.,

■
$$n, n+1, n+80, 40n, n+\log n$$
 is $O(n)$
■ $n^{1.1} + 10000000000$ is $O(n^{1.1})$
■ n^2 is $O(n^2)$
■ $3n^2 + 6n + \log n + 24.5$ is $O(n^2)$

- $\begin{array}{c} \bullet & O(1) < O(\log n) < O((\log n)^3) < O(n) < O(n^2) < O(n^3) < O(n^{\log n}) < O(2^{\log n}) < O(2^n) < O(n!) < O(n^n) \\ \end{array}$
- Constant < Logarithmic < Linear < Quadratic < Cubic <
 Polynomial < Factorial < Exponential

Ω-notation (Omega) (Lower Bound – Best Case)

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic lower bound* for f(n).

Ω -notation (Omega)

- 10
- We say Insertion Sort's run time T(n) is $\Omega(n)$
 - Why?
- For example
 - the worst-case running time of insertion sort is $O(n^2)$, and
 - the best-case running time of insertion sort is $\Omega(n)$

Ω -notation (Omega)

Example: $\sqrt{n} = \Omega(\lg n)$, with c = 1 and $n_0 = 16$.

Examples of functions in $\Omega(n^2)$:

```
n^{2}

n^{2} + n

n^{2} - n

1000n^{2} + 1000n

1000n^{2} - 1000n

Also,

n^{3}

n^{2.00001}

n^{2} \lg \lg \lg n

2^{2^{n}}
```

Θ notation (Theta) (Tight Bound)

12

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotically tight bound* for f(n).

Θ notation (Theta)

• We say g(n) is an asymptotic tight bound for f(n):

Theta notation

- $\Theta(g(n))$ means that as $n \to \infty$, the execution time f(n) is at $most c_2.g(n)$ and at $least c_1.g(n)$ for some constants c_1 and c_2 .
- $f(n) = \Theta(g(n))$ if and only if
 - $f(n) = O(g(n)) & f(n) = \Omega(g(n))$

Θ notation (Theta)

14

Example1:

- Show that $6n^3 ≠ \Theta(n^2)$
- Suppose for the purpose of contradiction that $\mathbf{c_2}$ and $\mathbf{n_0}$ exist such that $\mathbf{6n^3} \leq \mathbf{c_2n^2}$ for all $\mathbf{n} \geq \mathbf{n_0}$
 - Dividing by n² yields
 - $n \le c_2/6$
 - which cannot possibly hold for arbitrary large n, since c₂ is constant
 - Also, $\lim_{n\to\infty} [6n^3 / n^2] = \lim_{n\to\infty} [6n] = \infty$, which is not a non-zero constant

o-notation

15

We say g(n) is an *upper bound* for f(n) that is *not* asymptotically tight (strictly).

```
o(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}
```

Another view, probably easier to use: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

$$n^{1.9999} = o(n^2)$$

 $n^2/\lg n = o(n^2)$
 $n^2 \neq o(n^2)$ (just like $2 \neq 2$)
 $n^2/1000 \neq o(n^2)$

O() versus o()

16

```
\mathcal{O}(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n), \text{ for all } n \ge n_0 \}.
```

 $o(g(n)) = \{f(n): \text{ for } any \text{ positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}.$

Thus o(f(n)) is a weakened O(f(n)).

For example: $n^2 = O(n^2)$

$$n^2 \neq o(n^2)$$

$$n^2 = O(n^3)$$

$$n^2 = o(n^3)$$

ω -notation

We say g(n) is a *lower bound* for f(n) that is not asymptotically tight.

$$\omega(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$$
.

Another view, again, probably easier to use: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

$$n^{2.0001} = \omega(n^2)$$

$$n^2 \lg n = \omega(n^2)$$

$$n^2 \neq \omega(n^2)$$

Properties

Transitivity

$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

$$f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

$$f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$$

- Symmetry $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose Symmetry f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Example

19

f(n)	g(n)	Is	Solution
$5n^2 + 100n$	$3n^2 + 2$	f=	$f = \Theta(n^2), n^2 = \Theta(g)$
		$\Theta(g)$?	$\Rightarrow f = \Theta(g)$

Some Common Name for Complexity

O(1)	Constant time		
O(log n)	Logarithmic time		
O(log ² n)	Log-squared time		
O(n)	Linear time		
O(n ²)	Quadratic time		
O(n ³)	Cubic time		
O(n ⁱ) for some i	Polynomial time		
O(2 ⁿ)	Exponential time		

Growth Rates of some Functions

$$O(\log n) < O(\log^2 n) < O(\sqrt{n}) < O(n)$$

$$< O(n \log n) < O(n \log^2 n) < O(n^{1.5}) < O(n^2)$$

$$< O(n^3) < O(n^4)$$

$$O(n^{c}) = O(2^{c \log n}) \text{ for any constant } c$$

$$< O(n^{\log n}) = O(2^{\log^{2} n})$$

$$< O(2^{n}) < O(3^{n}) < O(4^{n})$$

$$< O(n!) < O(n^{n})$$

Exponential Functions

A Survey of Common Running Times

22

THIS SECTION

SLIDES BY KEVIN WAYNE.
COPYRIGHT © 2005 PEARSON-ADDISON WESLEY.
ALL RIGHTS RESERVED.

Why it matters

23

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	n log ₂ n	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Linear Time: O(n)

- Linear time. Running time is at most a constant factor times the size of the input.
- Computing the maximum. Compute maximum of n numbers a₁, ..., a_n.

```
max = a_1
for i = 2 to n {
    if (a_i > max)
        max \leftarrow a_i
}
```

Linear Time: O(n)

25

• Merge. Combine two sorted lists A = a₁,a₂,...,a_n with B = b₁,b₂,...,b_n into sorted whole.

```
Merged result //// |a_i| A
```

```
\label{eq:second_problem} \begin{split} &i=1,\ j=1\\ &\text{while (both lists are nonempty) } \{\\ &\quad \text{if } (a_i \leq b_j) \text{ append } a_i \text{ to output list and increment i}\\ &\quad \text{else}(a_i \leq b_j) \text{ append } b_j \text{ to output list and increment j}\\ &\}\\ &\quad \text{append remainder of nonempty list to output list} \end{split}
```

- Claim. Merging two lists of size n takes O(n) time.
- Pf. After each comparison, the length of output list increases by 1.

O(n log n) Time

• O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

- Sorting. Mergesort and heapsort are sorting algorithms that perform O(n log n) comparisons.
- Largest empty interval. Given n time-stamps $x_1, ..., x_n$ on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?
- O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n²)

- Quadratic time. Enumerate all pairs of elements.
- Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest.
- $O(n^2)$ solution. Try all pairs of points.

```
 \begin{aligned} & \min \, \leftarrow \, (\mathbf{x}_1 \, - \, \mathbf{x}_2)^2 \, + \, (\mathbf{y}_1 \, - \, \mathbf{y}_2)^2 \\ & \text{for i = 1 to n } \{ \\ & \text{for j = i+1 to n } \{ \\ & \text{d} \, \leftarrow \, (\mathbf{x}_i \, - \, \mathbf{x}_j)^2 \, + \, (\mathbf{y}_i \, - \, \mathbf{y}_j)^2 \\ & \text{if (d < min)} \\ & \text{min } \leftarrow \, \text{d} \end{aligned}
```

• Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion.

Cubic Time: O(n³)

- Cubic time. Enumerate all triples of elements.
- Set disjointness. Given n sets S_1 , ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?
- $O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

```
foreach set S<sub>i</sub> {
   foreach other set S<sub>j</sub> {
     foreach element p of S<sub>i</sub> {
        determine whether p also belongs to S<sub>j</sub>
     }
     if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
        report that S<sub>i</sub> and S<sub>j</sub> are disjoint
   }
}
```

Polynomial Time: O(nk) Time

- Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?
- O(n^k) solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```

- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets =

poly-time for k=17, but not practical

$$\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \le \frac{n^k}{k!}$$

Exponential Time

 Independent set. Given a graph, what is maximum size of an independent set?

• O(n² 2ⁿ) solution. Enumerate all subsets.

```
S* \( \phi \)
foreach subset S of nodes {
   check whether S in an independent set
   if (S is largest independent set seen so far)
      update S* \( \times \) }
}
```

Useful facts

31)

Proofs by Counterexample & Contradiction

32)

There are several ways to prove a theorem:

Counterexample:

- By providing an example of in which the theorem does not hold, you prove the theory to be false.
- For example: All multiples of 5 are even. However 3x5 is 15, which is odd. The theorem is false.

Contradiction:

 Assume the theorem to be true. If the assumption implies that some known property is false, then the theorem CANNOT be true.

Floors & Ceilings

- For any **real** number x, we denote the **greatest integer** less than or equal to x by $\lfloor x \rfloor$
 - read "the floor of x"
- For any real number x, we denote the least integer greater than or equal to x by $\lceil x \rceil$
 - read "the ceiling of x"
- For all real x, (example for x=4.2)

$$\mathbf{x} - 1 < \lfloor \mathbf{x} \rfloor \leq \mathbf{x} \leq \lceil \mathbf{x} \rceil < \mathbf{x} + 1$$

- For any integer n,

Polynomials

 Given a positive integer d, a polynomial in n of degree d is a function P(n) of the form

$$P(n) = \sum_{i=0}^d a_i n^i$$

- where a_0 , a_1 , ..., a_d are coefficient of the polynomial
- $a_d \neq 0$
- A polynomial is asymptotically positive iff $a_d > 0$
 - Also $P(n) = \Theta(n^{\alpha})$

Exponents

35)

$$x^0 = 1$$

$$x^1 = x$$

$$x^{-1} = 1/x$$

$$x^a \cdot x^b = x^{a+b}$$

$$x^a / x^b = x^{a-b}$$

$$(x^a)^b = (x^b)^a = x^{ab}$$

$$x^n + x^n = 2x^n \neq x^{2n}$$

$$2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$$

Logarithms (1)

(36)

 In computer science, all logarithms are to base 2 unless specified otherwise

```
iff
\mathbf{x}^a = \mathbf{b}
                        log_{x}(b) = a
Ig(n)
                        log_2(n)
In(n)
                        loge(n)
Igk(n)
                        (lg(n))^k
                        \log_c(b) / \log_c(a); c > 0
\bullet \log_a(b)
• Ig(ab)
                        lg(a) + lg(b)
 lg(a/b)
                        lg(a) - lg(b)

    Ig(a<sup>b</sup>)

                        b . lg(a)
```

Logarithms (2)

37)

- $= a \qquad = b^{\log_b(a)}$
- = lg (1/a) = lg(a)
- $\log_b(a) = 1/\log_a(b)$
- = lg(n) < n for all n > 0
- $\log_a(a) = 1$

log*n

- called log star of n
- is the number of times the <u>logarithm</u> function must be iteratively applied before the result is less than or equal to 1
- Examples:

$$lg*4=2$$

Harmonic number

39)

•
$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k} = lnn + O(1)$$

Summations

40

•
$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^2)$$

•
$$\sum_{k=1}^{n} x^k = 1 + x + x^2 + \dots + x^n = \frac{x^{n+1}-1}{x-1}$$

Summations (cont.)

$$\sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0$$

$$\sum_{k=1}^{n} (a_k - a_{k+1}) = a_0 - a_n$$

Series

$$\sum_{i=0}^{N} 2^{i} = 2^{N+1} - 1$$

$$\sum_{i=0}^{N} A^{i} = \frac{A^{N+1} - 1}{A - 1}$$

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \approx \frac{N^2}{2}$$

if 0 < A < 1:

$$\sum_{i=0}^{N} A^{i} \leq \frac{1}{1-A}$$

$$\sum_{i=0}^{\infty} A^i = \frac{1}{1-A}$$

Factorials

• n! ("n factorial") is defined for integers n ≥ 0 as

$$n! = \begin{cases} 1, & if \ n = 0 \\ n * (n-1)!, & if \ n > 0 \end{cases}$$

- n! = 1 . 2 .3 ... n
- $n! < n^n$ for $n \ge 2$
- Stirling's approximation

$$n! = \sqrt{2\pi n} \, \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

Useful Facts

- For a > 0, b > 0, $\lim_{n \to \infty} (|g^a n / n^b|) = 0$, so $|g^a n = o(n^b)$, and $n^b = w(|g^a n|)$
 - Prove using L'Hospital's rule and induction

A $5n^2 + 100n$

 $3n^2 + 2$

$$\log_3(n^2)$$

 $\log_2(n^3)$

 $3^{\lg n}$

 $n^{1/2}$

$$5n^2 + 100n$$
 $3n^2 + 2$

$$3n^2 + 2$$

$$A \in \Theta(B)$$

 $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$

$$\log_3(n^2)$$

$$\log_2(n^3)$$

$$\mathbf{n}^{\log 4}$$

$$3^{\lg n}$$

$$n^{1/2}$$

(48)

 $A \in \Theta(B)$

■
$$5n^2 + 100n$$
 $3n^2 + 2$
 $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$

■
$$\log_3(n^2)$$
 $\log_2(n^3)$ $A \in \Theta(B)$ $\log_b a = \log_c a / \log_c b$; $A = 2 \lg n / \lg 3$, $B = 3 \lg n$, $A/B = 2/(3 \lg 3)$

$$Ig^2 n$$

$$n^{1/2}$$

49

 $A \in \Theta(B)$

■
$$5n^2 + 100n$$
 $3n^2 + 2$
 $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$

- $\log_3(n^2)$ $\log_2(n^3)$ $A \in \Theta(B)$ $\log_b a = \log_c a / \log_c b$; $A = 2 \lg n / \lg 3$, $B = 3 \lg n$, $A/B = 2/(3 \lg 3)$
- $a^{\log b} = b^{\log a}; B = 3^{\log n} = n^{\log 3}; A/B = n^{\log(4/3)} \to \infty \text{ as } n \to \infty$

50

 $A \in \Theta(B)$

■
$$5n^2 + 100n$$
 $3n^2 + 2$
 $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$

- $\log_3(n^2)$ $\log_2(n^3)$ $A \in \Theta(B)$ $\log_b a = \log_c a / \log_c b$; $A = 2\lg n / \lg 3$, $B = 3\lg n$, $A/B = 2/(3\lg 3)$
- lg^2n $n^{1/2}$ $A \in o(B)$ $lim_{n\to\infty}(lg^an/n^b) = 0$ (here a = 2 and b = 1/2) $\Rightarrow A \in o(B)$

True or false

(51)

- 10 f(n) + 10100 = O(f(n)) True
- $f(n) + g(n) = \Theta(\min\{f(n), g(n)\})$ False
- $f(n) + g(n) = \Omega(\min\{f(n), g(n)\})$ True
- $f(n) + g(n) = O(\max\{f(n), g(n)\})$ True

exercises

f(n)	g(n)	Θ(g(n)	O(g(n))	o(g(n))	$\Omega(g(n))$	ω(g(n))
2^n	$2^{n+2} + 5$					
n^4	16^{lgn}					
5 ⁴ⁿ	10^{2n}					
$n^{1/lgn}$	$n^{0.001}$					
n!	n^n					
n^{lgn}	2^n					

Self test

 Choose the correct order of the following functions by asymptotic growth rate (smaller to bigger)

•
$$lgn$$
 , 2^{log3} , n^2 , $(\frac{3}{2})^n$, $n^{3/2}$, 2^{logn}

A.
$$lgn$$
, 2^{log3} , 2^{lgn} , n^2 , $n^{3/2}$, $(\frac{3}{2})^n$

B.
$$2^{log3}$$
, lgn , 2^{lgn} , $n^{3/2}$, n^2 , $(\frac{3}{2})^n$

C.
$$2^{log3}$$
, lgn , 2^{lgn} , $n^{3/2}$, $(\frac{3}{2})^n$, n^2

D.
$$2^{\log 3}$$
, lgn , $n^{\frac{3}{2}}$, n^2 , 2^{lgn} , $\left(\frac{3}{2}\right)^n$