CLAIMS:

5

10

20

1. A compound of formula I:

wherein R₁ and R₂ are independently selected form the group consisting of

$$R_5$$

15 H, CH₂OH, CHO and CH₂NH₂;

X and Y are independently selected from the group consisting of Se, S, O, and NR, wherein R is H or C_1 - C_7 alkyl,

R₃, R₄, R₅ and R₆ are independently selected from the group consisting of H, CHO, CH₂OH and CH₂NH₂;

cyclodextrin complexes of such compounds; and when R_1 , R_2 , R_3 , R_4 , R_5 or R_6 is CH_2NH_2 , the pharmaceutically acceptable salt of the compound represented thereby; with the provisos, that R_1 and R_2 are not both

and when R_1 and R_2 are both H, R_6 and R_3 are not both H, and when R_2 is

BEST AVAILABLE COPY

30

25

one of R_1 , R_3 , R_4 , R_5 and R_6 is other than H, and when R_1 is

$$R_{5}$$

one of R₂, R₃, R₄, R₅ and R₆ is other than H.

- 2. The compound of claim 1, wherein R_3 , R_4 and R_6 are H.
- The compound of claim 2 wherein R₂ is selected from the group consisting of H, CH₂OH, CHO and CH₂NH₂ and R₁ is

20

5

10

4. The compound of claim 2 wherein R_1 is selected from the group consisting of H, CH₂OH, CHO and CH₂NH₂ and R_2 is

25

5. The compound of claim 3 or 4 wherein X is Se.

5

10

20

6. A compound of formula I:

wherein R₁ and R₂ are independently selected from the group consisting of

H, CHO, CH2OH and CH2NH2;

X and Y are independently selected from the group consisting of Se, S, O and NR, wherein R is H or C₁-C₇ alkyl; R₃, R₄, R₅ and R₆ are independently selected from the group consisting of H, CHO, CH₂OH and CH₂NH₂;

cyclodextrin complexes of such compounds; and when R_1 , R_2 , R_3 , R_4 , R_5 or R_6 is CH_2NH_2 , the pharmaceutically acceptable salt of the compound represented thereby; with the proviso that R_1 and R_2 are not both hydrogen, and when R_2 is

 R_5 or R_5 X

25 R₁ is H, CHO, CH₂OH or CH₂NH₂, provided that at least one of R₁ R₃, R₄, R₅ and R₆ is other than H, and when R₁ is

30

 R_2 is H, CHO, CH₂OH or CH₂NH₂, provided that at least one of R_2 , R_3 , R_4 , R_5 and R_6 is other than H.

7. A composition comprising an anti-tumor effective amount of a compound of formula I:

wherein R₁ and R₂ are independently selected from the group consisting of,

10

5

H, CH₂OH, CHO and CH₂NH₂;

15 X and Y are independently selected from the group consisting of Se, S, O and NR, wherein R is H or C₁-C₇ alkyl;

 R_3 , R_4 , R_5 and R_6 are independently selected from the group consisting of H, CHO, CH₂OH and CH₂NH₂, cyclodextrin complexes of such compounds; and when R_1 , R_2 , R_3 , R_4 , R_5 or R_6 is CH₂NH₂, the pharmaceutically acceptable salt of the compound represented thereby; with the proviso, that R_1 and R_2 are not both

25

20

and at least one of R₁, R₂, R₃, R₄, R₅ or R₆ is other than hydrogen; and a pharmaceutically acceptable carrier.

- 8. The compound of claim 7, wherein R_3 , R_4 and R_6 are H.
- 9. The compound of claim 8 wherein R₂ is selected from the group consisting of H, CH₂OH, CHO and CH₂NH₂ and R₁ is

5

10

15

20

10. The compound of claim 8 wherein R₁ is selected from the group consisting of H, CH₂OH, CHO and CH₂NH₂ and R₂ is

- 11. The compound of claim 9 or 10 wherein X is Se.
- 12. The use of a compound of the formula I:

wherein R₁ and R₂ are independently selected from the group consisting of;

H, CHO, CH₂OH and CH₂NH₂;

X and Y are independently selected from the group consisting of Se, S, O and NR, wherein R is H or C₁-C₇ alkyl; R₃, R₄, R₅ and R₆ are independently selected from the group consisting of H, CHO, CH₂OH and CH₂NH₂; cyclodextrin complexes of such compounds, and when R₃, R₄, R₅ or R₆ is CH₂NH₂, the pharmaceutically acceptable salt of the compound represented thereby; with the proviso, that R₁ and R₂ are not both

5

to manufacture a pharmaceutical composition useful for treating a patient having a tumor.

13. A method of preparing an intermediate compound of the formula

10

wherin X and Y are selected from the group consisting of O Se, S and NR, wherein R is H or C₁-C₇ alkyl; and

15

R₁, R₂, R₃, R₄ and R₆ are independently selected from the group consisting of H, CHO, CH₂OH and CH₂NH₂, said method comprising the step of reacting a compound of

the formula

$$R_1$$
 $N (CH_3)_2$

20

with a compound of the formula

25

in the presence of sodium cyanide and in dimethyl formamide.

14. A method of preparing a compound of the formula

wherein X, Y and Z are selected from the group consisting of O, Se, S and NR, wherein R is H or C_1 - C_7 alkyl, and

R₁, R₂, R₃, R₄ and R₆ are independently selected from the group consisting of H, CHO, CH₂OH and CH₂NH₂, said method comprising the steps of reacting a compound of the formula

15 with a compound of the formula

20

5

10

in the presence of sodium cyanide and DMF to form an intermediate having the formula

25

and when Z is NR, reacting the intermediate with RNH₂Cl in the presence of NaOAc; when Z is O, reacting the intermediate with $(CH_3CO)_2O$ in the presence of HCl; and when Z is S or Se, reacting the intermediate with $[(C_6H_{11})_3Sn]_2Z$ in the presence of BCl₃.