

Sensitiviteitsanalyse en onzekerheidskwantificatie van deep learning methodes

Joppe De Jonghe, Juha Carlon

Deep learning?

Neurale netwerken

- 1. Gewichtsmatrix
- 2. Bias vector

Sigmoid functie:
$$f(x) = \frac{1}{1 + e^{-x}}$$

- Input vector: x
- Gewichtsmatrix: W
- Bias vector: b
- Niet-lineaire transf. : f(x)
- Output netwerk: F(x)

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ w_1 & w_2 & w_3 \\ w_1 & w_2 & w_3 \\ w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$

- Input vector: x
- Gewichtsmatrix: W
- Bias vector: b
- Niet-lineaire transf. : f(x)
- Output netwerk: F(x)

Hoe kan het netwerk leren?

- Verwachte output vergelijken met netwerkoutput
- Verschil geeft kostfunctie
- Deze minimaliseren door gewichten en biases aan te passen
- Simpel algoritme: gradient descent

Gradient descent:

- *Cost*(*p*)
- $p \rightarrow p \alpha \nabla Cost(p)$

Gradient descent

- $p \rightarrow p \alpha \nabla Cost(p)$
 - 1. Stap-grootte: α
 - 2. Gradiënt van kostfunctie: $\nabla Cost(p)$

 ¬∇Cost(p) is de richting waarin de functie het sterkst daalt

- Stap te groot: mogelijk om over minimum te springen
- Stap te klein: algoritme te traag

Gradient descent

• Mogelijke kostfunctie:

$$Cost = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} ||y(x^{\{i\}}) - a^{[L]}(x^{\{i\}})||_{2}^{2}$$

- Datapunten: x^{i}
- Gewenst resultaat: y(x^{i})
- Resultaat model: a^[L](x^{i})

• Deel-functies:

$$C_{x^{\{i\}}} = \frac{1}{2} \|y(x^{\{i\}}) - a^{[L]}(x^{\{i\}})\|_2^2$$

• Berekening gradiënt:

$$\nabla \text{Cost}(p) = \frac{1}{N} \sum_{i=1}^{N} \nabla C_{x^{\{i\}}}(p)$$

Gradient descent

- Groot neuraal netwerk \rightarrow veel parameters $\rightarrow \nabla C_{x^{\{i\}}}(p)$ hoge dimensie
- Diepe neurale netwerken vereisen veel datapunten (= grote N)

$$\nabla \text{Cost}(p) = \frac{1}{N} \sum_{i=1}^{N} \nabla C_{x^{\{i\}}}(p) \quad - \cdots$$

Oplossing: beperk N in elke iteratie

Stochastic gradient descent

• Telkens 1 punt nemen:

$$p \to p - \eta \nabla C_{x^{\{i\}}}(p)$$

- Telkens m << N punten nemen:
 - Minibatch

$$p \to p - \eta \frac{1}{m} \sum_{i=1}^{m} \nabla C_{x^{\{k_i\}}}(p)$$

Met/zonder vervanging

Generaliseren

- Generaliseren = niet eerder geziene datapunten correct labelen
- Doel van het netwerk: goed generaliseren
- Kleine fout op trainingsset ≠ goede generalisatie

Voorbeeld:

Betere generalisatie

Veel of weinig iteraties?

- Overfitting
- Goede generalisatie
- Training met minder iteraties beter
 - 1. Snelle convergentie
 - 2. Indirecte voordelen

Hangt samen met stabiliteit van SGD

- 2 datasets D1 en D2: Verschillen in 1 punt
- parameters p_1 en p_2 : $||p_1-p_2||$

- Stabiliteitsgrenzen bepalen mogelijk
- Afhankelijk van eigenschappen kostfunctie
- Betere stabiliteit -> betere generalisatie error

Het netwerk gebruiken

- Kostfunctie geoptimaliseerd
- Controleren op test data
- Gebruik voor classificatie

Hoe zeker is het netwerk?

- Moeilijk vast te stellen
- Geen maat voor onzekerheid
- Motivatie om onzekerheid te kwantificeren

Bayesian deep learning

- Stochastisch neuraal netwerk
- Bayesiaanse inferentie

Gradient descent:

- $Cost(\theta) = -log(p(D|\theta) * p(\theta))$
- $\theta \to \theta \alpha \nabla \text{Cost}(\theta)$, $\alpha = \text{stap-grootte}$

Applicaties van Bayesian deep learning

- Onzekerheidskwantificatie
- Zelfrijdende auto's
- Active learning

Vragen?

Referenties

C. Higham and D. Higham (2019). Deep Learning: An Introduction for Applied Mathematicians.
SIAM Review Vol. 61, No. 4, pp. 860–891

https://epubs.siam.org/doi/pdf/10.1137/18M1165748

• L. Valentin Jopsin, W. Buntine, F. Boussaid, H. Laga, M. Bennamoun (2020), Hands-on Bayesian Neural Networks - a Tutorial for Deep Learning Users

https://arxiv.org/pdf/2007.06823.pdf

 M. Hardt, B. Recht, and Y. Singer, Train faster, generalize better: Stability of stochastic gradient descent, in Proceedings of the 33rd International Conference on Machine Learning, 2016, pp. 1225-1234

http://proceedings.mlr.press/v48/hardt16.pdf

