Multilayer Perceptron

Neuron model realizes AND function A two-input neuron model f(x) = step(x)

Let $w_1 = 1.0$, $w_2 = 1.0$, $\theta = 1.5$

then $Out = step(w_1x_1 + w_2x_2 - \theta)$

The neuron model realizes logical AND, which is a linear separable problem.

0 0 0 0 0 0 0

Logical AND

Limitation of One Neuron Model

One McCulloch-Pitts neuron model is able to solve linear separable problems such as logical AND, OR, but it is not able to solve problems that are not linear separable such as logical XOR.

However, adding another neuron, the two-neuron-model is able to realize logical XOR.

Two-neuron-model

Logical XOR

Not linear separable.

 $w_1 = w_2 = w_3 = w_4 = 1$ $w_5 = -2, \theta_1 = 1.5, \theta_2 = 0.5$

f(x) = step(x)

Multilayer Perceptron (cont'd) Inputs Layer of S Neurons p_1 p_2 p_3 p_3 p_4 p_4 p_5 p_8 $p_$

Other Neural Networks (cont'd)

• Recurrent Neural Network

16

