1 Hilbertovi prostori

- 1. Vektorski prostor s skalarnim produktom
 - Naj bo X vektorski prostor nad \mathbb{R} (ali nad \mathbb{C}).
 - Definicija. Skalarni produkt.
 - Trditev. Cauchy-Schwartzova neenakost.
 - **Definicija.** Norma na vektorskem prostoru X.
 - Trditev. Norma, ki je dobljena iz skalarnega produkta.
 - Trditev. Metrični prostor, porojeni z normo.
- 2. Hilbertovi prostori
 - Definicija. Hilbertov prostor. Banachov prostor.
 - **Zgled.** Standardni skalarni produkti na \mathbb{R}^n in \mathbb{C}^n . Norme, ki ne pridejo iz skalarnega produkta.
- 3. Prostor $L^2([a,b])$
 - Trditev. Standardni skalarni produkt na prostoru C([a,b]).
 - Trditev. Ali je prostor C([a,b]) s standardnim skalarnim produktom Hilbertov?
 - **Zgled.** Kako lahko napolnimo prostor $((0,1),d_2)$?
 - **Definicija.** Kadar pravimo, da lahko napolnimo metrični prostor (M, d)? Napolnitev prostora.
 - Opomba. Kaj je ponavadi prostor \overline{M} ?
 - Opomba. Prostor $L^1(A)$.
 - **Definicija.** Prostor $L^2([a,b])$.
 - Opomba. Ali je produkt dveh $L^2([a,b])$ funkcij $L^1([a,b])$ funkcija? Skalarni produkt na $L^2([a,b])$
 - Trditev. Ali je $L^2([a,b])$ vektorski prostor nad \mathbb{R} ?
 - Opomba. Ali je $C([a,b]) \subseteq L^2([a,b])$? Ali je C([a,b]) gost v $L^2([a,b])$? Kaj pomeni, da zaporedje $(f_n)_n \in L^2([a,b])$ konvergira k $f \in L^2([a,b])$?
 - Izrek. Ali je $L^2([a,b])$ Hilbertov prostor? Kako sta povezana prostora $L^2([a,b])$ in C([a,b])? [brez dokaza]
 - Opomba. Kako zgleda skalarni produkt nad \mathbb{C} ?
 - **Zgled.** Navedi primer funkcije ko limita po točkah ni enaka limite v L^2 smislu. Navedi primer funkcije za katero ne obstaja limita po točkah, limita v L^2 smislu pa obstaja.
- 4. Ortogonalnost
 - Naj bo X vektorski prostor s skalarnim produktom, $A \subseteq X$, $A \neq \emptyset$.
 - **Definicija.** Kadar sta dva vektorja pravokotna? Ortogonalni komplement množice A.
 - Trditev. Ali je A^{\perp} vektorski podprostor v X?
 - Opomba. V kakšni relaciji sta A in $(A^{\perp})^{\perp}$?
 - Trditev. Naj bo $v \in X$. Ali je $f: X \to \mathbb{R}$, $f(x) = \langle x, v \rangle$ zvezna?
 - Posledica. Ali je A^{\perp} zaprt podprostor v X?
 - Opomba. Ali je C([a,b]) zaprt podprostor v $L^2([a,b])$?
 - Opomba. V kakšni relaciji sta A in $(A^{\perp})^{\perp}$, če je X Hilbertov in A zaprt podprostor?
 - Trditev. Pitagorjev izrek.

Naj bo X vektorski prostor s skalarnim produktom, $Y \leq X$ podprostor v X.

- **Definicija.** Pravokotna projekcija vektorja $x \in X$ na podprostor Y.
- Trditev. Kaj lahko povemo o pravokotne projekcije vektorja $x \in X$ na Y, če obstaja? TODO: *
- Zgled. Ali imajo funkcije iz $L^2([a,b]) \setminus C([a,b])$ najboljšo aproksimacijo z zveznimi funkciji?
- Opomba. Lastnosti P_Y :
 - Ali je P_Y idempotent?
 - Kakšna zveza med ||x|| in $||P_Y(x)||$?
 - Ali je $P_Y: X \to Y$ linearna in zvezna?
 - Ali je Y zaprt podprostor, če je P_Y definirana na X?
 - Recimo, da $P_Y(x)$ obstaja. Ali obstaja tudi $P_{Y^{\perp}}(x)$?
- Trditev. Razvoj $P_Y(x)$ po ONB.
- 5. Ortogonalni sistem

Naj bo X vektorski prostor s skalarnim produktom.

- **Definicija.** Ortogonalni sistem (OS). Ortonormiran sistem (ONS).
- Trditev. Besselova neenakost. TODO: *
- Posledica. Čemu je enaka limita $\lim_{j\to\infty}\langle x, e_j\rangle$?
- Opomba. Zakaj potrebujemo absolutno vrednost? Kaj so (⟨x, e_j⟩)[∞]_{j=1}?
 Trditev. Naj bo (e_j)[∞]_{j=1} ONS, (c_j)_j tako zaporedje števil, da ∑[∞]_{j=1} |c_j|² < ∞. Kaj potem?
- Definicija. Kompleten ortonormiran sistem (KONS).
- Trditev. 6 ekvivalentnih trditev o KONS. TODO: *
- **Zgled.** Modelni Hilbertov prostor.
- 6. Prostor $L^2([-\pi,\pi])$
 - ONS na prostoru $L^2([-\pi, \pi])$.
 - Opomba. Kako lahko obravnavamo vsako funkcijo $f: [-\pi, \pi] \to \mathbb{R}$ v tem kontekstu?
 - Klasične Fourierjevi koeficienti. Fourierjeva vrsta. TODO: *
 - Trditev. Riemann-Lebesgueva lema.
 - Trditev. Parsevalova enakost.
 - **Zgled.** Definiramo funkcijo $f: [-\pi, \pi] \to \mathbb{R}$ s predpisom

$$f(x) = \begin{cases} 1; & 0 \le x \le \pi \\ 0; & -\pi < x < 0. \end{cases}$$

Razvij f v Fourierjevo vrsto ter izračunaj $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

- Lema. Naj bo $f:\mathbb{R}\to\mathbb{R}$ odsekoma zvezna periodična funkcija s periodo $2\pi.$ Čemu je enak integral $\int_a^{a+p} f(x) dx$?
- Lema. Dirichletovo jedro.
- Lema. 3 lastnosti Dirichletovega jedra.
- Izrek. Fourierjeva vrsta funkcije. TODO: *
- **Zgled.** S pomočjo vrste iz prejšnjega zgleda izračunaj $\sum_{k=0}^{\infty} (-1)^k \frac{1}{2k+1}$.
- **Definicija.** Cesarjeve delne vsote. Fourierjevo jedro.
- Trditev. 5 lastnosti Fourierjeva jedra.
- Izrek. Naj bo $f 2\pi$ periodična zvezna funkcija. Kaj lahko povemo o Cesarjevih delnih vsotih?

- Izrek. Ali je prej definiran ONS na L² KONS?
 Opomba. Trigonometrični polinomi.
- Izrek. Weierstrassov isrek.

2 Vektorska analiza 4

2 Vektorska analiza

- 1. Skalarno in vektorsko polje
 - **Definicija.** Skalarno polje. Vektorsko polje.
 - **Definicija.** Pozitivno/negativno orientirana ONB.
 - Opomba. Prehod med bazi.
- 2. Smerni odvod skalarnega polja

Naj bo $u:D\subseteq\mathbb{R}^3\to\mathbb{R}$ skalarno polje.

- Definicija. Smerni odvod skalarnega polja u.
- Opomba. Kaj meri smerni odvod? Kaj so smerni odvodi v smeri baznih vektorjev?
- **Opomba.** Kako izračunamo smerni odvod skalarnega polja u v točki p_0 , če je u diferenciabilno v p_0 ? Kaj to pomeni v kartezičnih koordinatih?
- Definicija. Gradient skalarnega polja.
- Opomba. Ali je gradient odvisen od izbire baze? Kaj smo priredili skalarnemu polju?
- Trditev. V kakšni smeri se najhitreje narašča skalarno polje? V kakšni smeri pa najhitreje pada?
- Definicija. Operator nabla.
- Opomba. Kako se z operatorjem nabla izraža gradient skalarnega polja?
- **Definicija.** Divergenca vektorskega polja.
- Opomba. Ali je divergenca odvisna od izbire baze?
- Definicija. Rotor vektorskega polja.
- Opomba. Odvisnost rotorja od izbire baze.
- Trditev. Rotor gradienta. Divergenca rotorja.
- Opomba. Ali je divergenca gradienta enaka nič?
- Definicija. Laplaceov operator. Harmonična funkcija.
- **Definicija.** Potencialno polje. Potencial. Irotacionalno (nevrtinčno) polje. Solenoidalno polje.
- Opomba. Zadosten pogoj, da je polje irotacionalno, Zadosten pogoj, da je polje solenoidalno. Kaj pa obrat?
- **Zgled.** Izračunaj rotor polja $\vec{f}(x,y,z) = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0\right)$. Ali je polje potencialno?
- **Definicija.** Zvezdasto območje.
- Izrek. Kdaj je nevrtinčno polje potencialno? Kdaj je polje rotor nekega drugega polja?
- **Zgled.** Ali je polje $\vec{f}(x,y,z) = (y^2z^3 + 2, 2xyz^3 + 1, 3xe^2z^2)$ potencialno? Čemu je enak rot \vec{f} ? Ali je polje $\vec{g}(x,y,z) = (2y-1,-1,4x-2xy)$ solenoidalno?
- Opomba. V kakšni obliki lahko lokalno zapišemo vsako vektorsko polje?

2.1 Krivuljni in ploskovni integral

- 1. Dolžina krivulje
 - Regularna parametrizacija krivulje.
 - **Definicija.** Dolžina krivulje.
 - Trditev. Ali je definicija neodvisna od izbire regularne parametrizacije?
 - Zgled. Naravni parameter.

- **Zgled.** Vijačnico lahko parametriziramo s predpisom $t \mapsto (a \cos t, a \sin t, bt)$. Določi naravno parametrizacijo vijačnice.
- 2. Krivuljni integral skalarnega polja
 - Definicija. Orientacija krivulje. Usklajen izbor orientacije. Orientirana kri-
 - Opomba. Ali je vsaka krivulja orientabilna? Kaj če je krivulja odsekoma gladka? Krivulja z robom.
 - **Definicija.** Integral skalarnega polja vzdolž krivulje.
 - Opomba. Kaj je dolžina krivulje? Ali je vrednost odvisna od izbire regularne parametrizacije? Kaj je skalarno polje v fizikalnem smislu? Kaj če je krivulja odsekoma gladka?
 - **Zgled.** Naj bo $\Gamma = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = a^2, y \ge 0\}$ homogena polkrožnica. Določi lego težišča Γ .
- 3. Krivuljni integral vektorskega polja
 - **Definicija.** Integral vektorskega polja vzdolž krivulje.
 - Opomba. Fizikalni pomen. Ali je definicija odvisna od izbire regularne para-
 - **Zgled.** Naj bo $\vec{f}(x,y,z) = (xy,z,x-z)$ ter $\Gamma : \vec{r}(t) = (t,t,\frac{1}{2}t^2), t \in [0,1].$ Izračunaj integral \vec{f} po Γ .
 - Zgled. TODO: Delo sile teže.
 - Opomba. Zapis integrala vektorskega polja v diferencialni formi. Integral po sklenjeni krivulji.
 - Trditev. Kaj če integriramo potencialno polje?
 - Posledica. Kaj če integriramo potencialno polje po sklenjeni krivulji?
 - **Zgled.** Izračunaj integral polja $\vec{f}(x,y,z) = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0\right)$ po krožnice. **Izrek.** Karakterizacija potencialnih vektorskih polj.
- 4. Površina ploskve
 - Intuitivna izpeljava formule za površine ploskve.
 - **Definicija.** Površina ploskve.
 - Trditev. Ali je definicija odvisna od izbire regularne parametrizacije?
- 5. Orientacija ploskev

Naj bo $\Sigma \subseteq \mathbb{R}^3$ gladka ploskev.

- **Definicija.** Orientacija Σ . Orientabilna ploskev.
- Opomba. Koliko orientacij lahko ima orientabilna povezana ploskev?
- **Zgled.** Določi ali je ploskev Σ orientabilna, če
 - $-\Sigma$ je graf funkcije;
 - $-\Sigma$ je sfera;
 - $-\Sigma$ je plašč valja;
 - $-\Sigma$ je torus; je sklenjena ploskev;
 - $-\Sigma$ je Mobiusov trak.
- Definicija. Gladka ploskev z robom. Rob ploskve. Skladna orientacija roba.
- Opomba. Orientacija, ki je usklajena z parametrizacijo.
- Definicija. Odsekoma gladka ploskev. Orientacija odsekoma gladke ploskve.
- 6. Ploskovni integral skalarnega polja
 - **Definicija.** Ploskovni integral skalarnega polja.
 - Opomba. Kaj je površina ploskve?

- Trditev. Ali je integral odvisen od izbire regularne parametrizacije?
- Opomba. Ali je orientacija ploskve pomembna? Ali je ta integral obstaja na Mobiusovem traku?
- Opomba. Kaj je masa ploskve? Homogena ploskev.
- Zgled. Izračunaj vztrajnostni moment homogene sfere z polmerom $\mathbb R$ okoli z-osi.
- 7. Ploskovni integral vektorskega polja
 - **Definicija.** Ploskovni integral vektorskega polja. Pretok vektorskega polja skozi ploskev.
 - Trditev. Ali je integral odvisen od izbire regularne parametrizacije?
 - **Opomba.** Kaj pravi formula, če izberimo orientacijo, ki je usklajena z regularno parametrizacijo? Kaj če imamo odsekoma gladko ploskev?
 - Zgled. TODO: sfera.
 - Opomba. Diferencialna 1-forma.
- 8. Integralski izreki
 - Izrek. Gauss-Ostrogradski.

	Dokaz. TODO:	
•	Izrek. Stokesov izrek.	
	Dokaz. TODO:	
•	Izrek. Greenova formula.	
	Dokaz. TODO:	
	Z I I MODO D Y Y Y	

- Zgled. TODO: Račun integralov.
- Definicija. Divergenca, ki je neodvisna od izbire koordinatnega sistema.
- Definicija. Rotor, ki je neodvisen od izbire koordinatnega sistema.
- Izrek. Greenovi identiteti.
- Opomba. O diferencialnih formah.

3 Kompleksna analiza

- 1. Kompleksna števila
 - Komutativni obseg \mathbb{C} . Vložitev \mathbb{R} v \mathbb{C} .
 - Imaginarna enota i. Kvadrat imaginarne enote i^2 .
 - Algebraičen zapis kompleksnega števila. Realni in kompleksni del. Gaussova ravnina.
 - Konjugiranje. Absolutna vrednost. Kaj velja za absolutno vrednost?
 - Polarni zapis kompleksnega števila.
 - Metrika (topologija) na C. Odprt krog v C.
 - Zaporedja v C.
 - Karakterizacija povezanih množic v $\mathbb C.$ Komponente za povezanost.
 - Definicija. Območje.
 - Zveznost preslikave $f:D\subseteq\mathbb{C}\to\mathbb{C}$. Limita.
 - Kako kompleksna funkcija definira realni? Kdaj je kompleksna funkcija f zvezna?
 - Riemannova sfera (kompaktifikacija z eno točko).
- 2. Holomorfne funkcije

Naj bo $D\subseteq \mathbb{C}$ območje ter $f:D\to \mathbb{C}$ kompleksna funkcija.

- **Definicija.** Kompleksni odvod funkcije f v točki $a \in D$. Holomorfna funkcija. Množica vseh holomorfnih funkcij.
- Opomba. Ali je kompleksni odvod močnejši od običajnega?
- Posledica. Ali je kompleksno odvedljiva funkcija v točki $a \in D$ diferenciabilna? Ali je zvezna?
- Opomba. Ali je $f(z)=\overline{z}$ kompleksno linearna? Ali je linearna? Ali je kompleksno odvedljiva?
- Trditev. Kakšno strukturo ima O(D)? Pravila za odvajanje.
- Trditev. Kompleksni odvod kompozicije.
- 3. Cauchy-Riemannove enačbe

Naj bo $D \subseteq \mathbb{C}$ območje ter $f: D \to \mathbb{C}$ kompleksna funkcija.

- Izrek. Cauchy-Riemannove enačbe.
- Opomba. Kako izračunamo kompleksni odvod?
- Zgled. TODO: Račun odvodov.
- Opomba. Simboli $\frac{\partial f}{\partial \overline{z}}$ ter $\frac{\partial f}{\partial z}$
- Trditev. Karakterizacija holomorfnosti f. Cauchy-Riemmanova enačba.
- Zgled. TODO: Račun odvodov.
- Opomba. Kdaj je intuitivno f holomorfna?
- Trditev. Kdaj je f holomorfna na $D \subseteq \mathbb{C}$ (diferencial)?
- Izrek. Zadosten pogoj, da je f konstanta.
- Izrek. kaj če je f holomorfna na območju D ter $f_*(D) \subseteq \mathbb{R}$?
- Izrek. Pišimo f = u + iv. Recimo, da je $f \in O(D)$ ter $f \in C^2(D)$. Kaj lahko povemo o u in v?
- Definicija. Harmonična konjugiranka.
- **Opomba.** Kaj če imamo eno harmonično konjugiranko? V čim se razlikujeta dve harmonični konjugiranki?
- **Zgled.** Pokaži, da je u(x,y) = xy harmonična in določi njeno harmonično konjugiranko. Pokaži, da je log |z| harmonična na $\mathbb{C} \setminus \{0\}$ in na $\mathbb{C} \setminus \{0\}$ nima

harmonične konjugiranke.

- Izrek. Zadosten pogoj za obstoj harmonične konjugiranke.
- 4. Potenčne vrste v kompleksnem
 - **Definicija.** Kdaj kompleksna številska vrsta konvergira? Kdaj vrsta konvergira absolutno?
 - **Opomba.** Kakšno strukturo ima množica konvergentnih številskih vrst? Ali pri absolutni konvergenci lahko seštevamo v poljubnem vrstnem redu?
 - **Definicija.** Kdaj funkcijska vrsta konvergira po točkah? Kdaj konvergira enakomerno? Kdaj konvergira enakomerno na kompaktih?
 - **Zgled.** Gledamo $f_n(z) = z^n$ kot zaporedje oziroma

$$g_1(z) = 1, \ g_n(z) = z^n - z^{n-1}, \ n \ge 2$$

kot vrsto. Ali vrsta $\sum_{n=1}^{\infty} g_n(z)$ konvergira enakomerno na \triangle ? Ali konvergira po kompaktih v \triangle ?

- Izrek. Weierstrassov kriterij.
- Definicija. Potenčna vrsta.
- Izrek. Konvergenčni polmer. Obstoj in formula.
- **Definicija.** Kdaj pravimo, da kompleksno funkcijo se da razviti v potenčno vrsto?
- Izrek. Kaj lahko povemo o funkciji, če jo se da razviti v kompleksno vrsto?
- **Posledica.** Ali je vsota konvergentne potenčne vrste holomorfna funkcija? Kaj je njen odvod?
- Posledica. Lokalna oblika prejšnje posledice.
- Zgled. Razvoj v potenčno vrsto. Koeficienti.
- 5. Elementarne funkcije v kompleksnem
 - Eksponentna funkcija.
 - Trditev. Čemu je enako e^{z+w} ?
 - Funkciji sinus in kosinus. Povezava z eksponento.
 - Eulerjeva formula.
 - Hiperbolični sinus in kosinus. Povezava z navadnimi.
 - Ali ima eksponenta ničla na C?
 - Koliko rešitev ima enačba $e^z = 1$? Ali je e^z periodična?
 - Ničle funkcije sinus. Sinus vsote.
 - Logaritemska funkcija.
 - Korenska funkcija.