Algorithms and Data Structures

Author: Vitaliy E.

Fall 2021

Содержание

1	Hea	о (Куча)	2
	1.1	Методы	. 2
	1.2	Примеры использования	. 2
	1.3	Бинарная (двоичная) куча	. 2
		1.3.1 Требование кучи	. 2
		1.3.2 Вспомогательные процедуры	. 3
		1.3.3 Процедуры	. 4
	1.4	Heap Sort - сортировка кучей	. 5
		1.4.1 Алгоритм (простая версия)	. 5
		1.4.2 Алгоритм (сложная версия) - In-place	
		1.4.3 decreaseKey по идентификатору	
		1.4.4 Метод erase	
	1.5	Другие кучи	
		1.5.1 Куча Фибоначчи	. 8
		1.5.2 Биномиальная куча	. 8
2	Амо	ртизационный анализ	10
	2.1	Метод монеток	. 10
		2.1.1 Применение для задачи о динамическом массиве (std::vector)	
		2.1.2 Insert в биномиальной куче	
	2.2	Метод потенциалов	
3	Spa	se Table	12
	3.1	Считаем sparse	
	3.2	Реализация	
	٠.2	3.2.1 Как быстро считать логарифм?	
		2.2.2 Kay manangun ura ya arangun mahun?	

1 Неар (Куча)

1.1 Методы

S - множество целых чисел. Нужно отвечать на запросы:

- $1. \ insert(x)$ добавить x в S
- 2. getMin() найти $min_{y \in S}y$
- 3. extractMin() извлечь, удалить $min_{y \in S}y$ из S
- 4. $decreaseKey(ptr, \ \Delta >= 0)$ уменьшить число, лежаещее по указателю ptr, на Δ

1.2 Примеры использования

- 1. Обработка запросов
- 2. Алгоритмы Дейкстры, Прима, декартово дерево, Heap Sort (сортировка массива с помощью кучи)

1.3 Бинарная (двоичная) куча

$$S = \{a_1, a_2, \dots, a_n\}$$

Представим кучу как дерево. Пусть для удобства a_v имеет сыновей a_{2v} и a_{2v+1} . Это позволяет нам хранить дерево неявно - в виде массива. Так же можно легко находить родительскую вершину $v=\left[\frac{u}{2}\right]$, где u - текущая вершина.

1.3.1 Требование кучи

 $\forall v$ число, записанное в вершине v, должна не превосходить (\leq) все числа в поддереве v.

Утверждение. Требование кучи выполняется, если

$$\forall v \begin{cases} a[v] \le a[2v], \ 2v \le n \\ a[v] \le a[2v+1], \ 2v+1 \le n \end{cases}$$

Будем говорить, что массив $a_1, a_2 \dots a_n$ задает корректную кучу, если для него выполняется требование кучи.

$$getMin() \quad a[1] \quad O(1)$$

1.3.2 Вспомогательные процедуры

```
siftUp(v) {
  while(v != 1) {
    if (a[v] < a[v/2]) {
       std::swap(a[v], a[v/2]);
        v /= 2;
    }
    else break;
  }
}
siftDown(v) {
  while (2v \le n) {
    int u = 2v;
    if (2v + 1 \le n \&\& a[2v + 1] \le a[2v]) {
      u = 2v + 1;
    if (a[u] < a[v]) {
      std::swap(a[u], a[v]);
      v = u;
    }
    else break;
  }
}
```

Время работы siftUp и siftDown - $O(log\ n)$ (Глубина дерева не больше, чем $log_2\ n)$

Лемма. Пусть $a_1, a_2, \dots a_n$ - корректная куча. Пусть пришел запрос $a_v := x$. Тогда после siftUp(v), если a_v уменьшилось, или siftDown(v), если a_v увеличилось, куча станет корректной.

Доказательство. siftUp(), то есть уменьшение a_v . Индукция по v.

- 1. База: v = 1 очевидно.
- 2. Переход: $v \neq 1$:

Если $a[v/2] \le x$, то все хорошо.

Иначе a[v/2] > x. Заменим a_v на a_p . Тогда получим корректную кучу, в которой нет x, но есть две копии a_p . Затем верхнее a_p заменим на $x < a_p$. По предположению индукции в конце будет корректная куча

siftDown(): индукция от листьев к корню (индукция по n-v)

- 1. База: *v* лист.
- 2. Переход: v не лист.

Если $a_u \leq x$, то куча уже корректна, а shiftDown(v) ничего не делает. Иначе $a_n < x$. Заменим x на a_u . Получим корректную кучу. Увеличим нижнее вхождение a_u на x по предположению индукции куча корректна.

1.3.3 Процедуры

```
int getMin() {
     return a[1];
   }
   void decreaseKey(int v, int delta >= 0) {
      a[v] -= delta;
     siftUp(v);
   }
   void insert(int x) {
      a[++n] = x;
     siftUp(n);
   }
   void extractMin() {
     a[1] = a[n--];
     siftDown(1);
   }
getMin()
              O(1)
              O(\log n)
insert()
decreaseKey()
              O(\log n)
extractMin()
              O(\log n)
```

1.4 Heap Sort - сортировка кучей

$$a_1, a_2, a_3, \dots a_n$$

1.4.1 Алгоритм (простая версия)

```
for i = 1...n insert(ai)
for i = 1...n print(getMin()); extractMin();
// Time: O(nlogn)
```

На i-м шаге напечатается i-я порядковая статистика.

1.4.2 Алгоритм (сложная версия) - In-place

На i-м шаге i-я порядковая статистика положится на i-е с конца место. Процедура heapify(): куча с min в корне.

```
a_1, a-2...a_n // наш массив

for (int i = n; i >= 1; --i) {
   siftDown(i);
}
```

Определение. Время работы heapify() есть O(n), при этом heapify строит корректную кучу.

Доказательство. на k-м уровне shiftDown() работает $\leq H - k + 1, H \leq log_2 n$. Суммарное время работы меньше, чем

$$1(H+1) + 2H + 4(H-1) + 8(H-2) + \dots + 2^{H-1} + 1 = \sum_{k=0}^{H} 2^{k}(H-k+1)$$

$$H - k + 1 = m \quad k = H - m + 1$$

$$\sum_{m=1}^{H+1} m 2^{H-m+1} = \Theta(n) \sum_{m=1}^{H+1} \frac{m}{2^{m}}$$

Достаточно доказать, что $\sum_{m=1}^{\infty} \frac{m}{2^m}$ сходится. $\frac{m}{2^m} \leq \frac{5^m}{2^m}$ для всех m, начиная с некоторого (с m_0).

$$\sum_{m=1}^{\infty} \frac{m}{2^m} \le \sum_{m=1}^{m_0} \frac{m}{2^m} + \sum_{m=m_0}^{\infty} \frac{m}{2^m}$$

Корректность? Докажем индукцией по i в порядке убывания, что после выполнения siftDown(i) в поддереве вершины i будет корректная куча. В конце (после "замены" $-\infty$ на a_i и вызова siftDown(i)) получим корректную кучу.

Следствие. Не существует такой реализации кучи, основанной на сравнениях, которая могла бы делать extractMin за O(1) и при этом могла бы делать insert за O(1). Иначе был бы алгоритм сортировки за O(N).

1.4.3 decreaseKey по идентификатору

(номер запроса на котором соответствующее число было добавлено) pointer[t] - указатель на вершину в куче, которая соответствует t-му добавленому элементу.

num[v] - идентификатор, соответствующий вершине v.

```
void exchange(int u, int v) {
  int k = num[u];
  int m = num[v];
  std::swap(num[u], num[v]);
  std::swap(pointer[k], pointer[n]);
  std::swap(a[u], a[v]);
}
void siftUp(int v) {
 while (v != 1) {
    if (a[v] < a[v / 2]) {
      exchange(v, v / 2);
      v /= 2;
    } else {
      break;
}
void decreaseKey(int t, int delta) {
  a[pointer[t]] -= delta;
  siftUp(t);
```

}

1.4.4 Метод erase

1. Удаление по указателю (или по идентификатору)

```
a_v = -inf;
siftUp(v);
extractMin();
```

2. Удаление по значению

```
getMin() {
  while (A.getMin() == D.getMin()) {
    A.extractMin();
    D.extractMin();
}
  return A.getMin();
}
```

Это все работает при корректности запросов (несуществующие элементы не должны удаляться)

1.5 Другие кучи

1.5.1 Куча Фибоначчи

decreaseKey за O(1) амортизированно. Все остальное за O(logn) амортизированно.

1.5.2 Биномиальная куча

- 1. insert
- 2. getMin
- 3. extractMin
- 4. decreaseKey
- 5. merge

Дает построить кучу Фибоначчи.

Биномиальное дерево порядка k (T_k). Если есть дерево T_k , можно построить еще одно дерево T_k и подвесить его к корню первого. Таким образом получим T_{k+1} . На m-м уровне дерева T_k находятся C_m^k вершин. В вершинах дерева храним элементы мультимножества. Требование кучи: число, записанное в вершине v не превосходит чисел, записанных в поддереве v.

Биномиальная куча - набор биномиальных деревьев попарно различных порядков. В дереве T_k содержится 2^k вершин.

getMin: найти минимальный корень среди всех деревьвев // O(logn)

Если всего в куче n элементов, то все деревья в куче имеют порядок $\leq \lfloor log_2 n \rfloor$ Всего деревьев в куче $\leq log_2 n$

decreaseKey(ptr, delta) // O(logn)

```
H_1: t_1[0] \dots t_1[logn]
H_2: t_2[0] \dots t_2[logn]

merge {
    carry = -1; // t[0] \dots t[logn + 1] - результат for (int i = 0 \dots logn + 1) {
        t_1[i], t_2[i], carry if (все 3 дерева есть) {
        t[i] = carry; carry = unite(t_1[i], t_2[i]);
    }
    if (есть 2 дерева из 3) {
        t[i] = -1;
```

```
carry = unite(2 дерева);
}
if (есть 1 дерево из 3) {
   t[i] = то самое дерево;
   carry = -1;
}
if (ноль деревьев) {
   t[i] = -1;
}
}
```

2 Амортизационный анализ

S - структура данных. q типов запросов.

Определение. Будем говорить, что T_i - амортизированное (учетное) время обработки запроса i-го типа, если $\forall n \ \forall Q_1, Q_2, \ldots, Q_n$ - запросы к S. Время обработки запросов есть

$$O(\sum_{j=1}^{n} T_{i_j}(n))$$

Пример. Динамический массив (std::vector): $push_back$, pop_back за $O^*(1)$ амортизированно.

2.1 Метод монеток

(Метод бухгалтерского учета) Есть банк и счет. Умеем вносить и снимать деньги. Поступают запросы Q_1, Q_2, \ldots, Q_n . Реальное время обработки t_1, t_2, \ldots, t_n . Пусть во время обоработки i-того запроса мы кладем на счет d_i монет (deposit), а так же снимаем w_i монет (withdraw). Тогда $a_i = t_i + d_i - w_i$ - учетная (амортизированная) стоимость i-того запроса.

Утверждение. Пусть на счету число монет всегда неотрицательно. Тогда a_i - учетные стоимости, то есть $\sum t_i = O(\sum a_i)$

Доказательство.
$$\sum a_i = \sum t_i + \sum d_i - \sum w_i \implies \sum t_i \leq \sum a_i$$

Замечание. На самом деле, число монет может быть отрицательным в середине процесса. Главное, чтобы в конце было ≥ 0 .

2.1.1 Применение для задачи о динамическом массиве (std::vector)

Запросы:

- 1. [] по i сообщить элемент a_i
- $2. \ push_back(x)$ добавить x справа
- 3. $pop_back(x)$ удалить самый правый элемент

В стеке мы умеем обрабатывать последние две операции за O(1) (не амортизированно), но при этом запрос [] может выполняться за $\Omega(n)$. Вектор же умеет выполнять [] за O(1) и остальные операции за $O^*(1)$. Пусть c - длина массива, s - количество элементов в нем. Если поступает запрос $push_back$, и при этом s=c, то запрашиваем у системы массив размера 2c, копируем в

него элементы старого массива и возвращаем старый массив системе. Когда поступает запрос pop_back , то если $s \leq \frac{1}{4}c$, то уменьшаем c вдвое. Докажем, что учетное время работы всех операций есть $O^*(1)$.

Доказательство. push_back и pop_back могут быть как легкими, так и тяжелыми.

1. Легкий push_back:

$$t_i = 2, d_i = 2, w = 0$$
 $(a[s] = x; ++s)$ учетное $a_i = 4 = O(1)$.

2. Тяжелый push back:

$$t_i = c, d_i = 0, w = c$$
 учетное $a_i = 0 = O(1)$.

3. Лекий рор back:

$$t_i = 1, d_i = 1, w = 0$$
 $(--s)$ учетное $a_i = 2 = O(1)$.

4. Тяжелый рор_back: аналогично O(1).

Если мы получаем q запросов, то они в сумме выполняются за O(1) каждый.

2.1.2 Insert в биномиальной куче

(В отсутствие других операций).

 $n\ insert$ -ов - $O^*(1)$ каждый, то есть суммарно O(n).

2.2 Метод потенциалов

Пусть S - структура данных, пусть $\phi(s)$ - функция состояния структуры. Пусть поступают запросы Q_1, Q_2, \ldots, Q_n . После обработки i-того запроса потенциал = ϕ_i . Пусть t_i - реальное время обработки i-того запроса.

$$a_i=t_i+\phi_i-\phi_{i-1}=t_i+\Delta\phi_i$$
 - учетное время работы, если $\phi_{end}-\phi_{start}\geq 0$

Доказательство. Хотим $\sum a_i \geq \sum t_i$

$$\sum t_i + (\phi_1 - \phi_0) + (\phi_2 - \phi_1) \dots + (\phi_n - \phi_{n-1}) = \sum t_i + \phi_n - \phi_0$$

Стр. 11

3 Sparse Table

```
a_0,a_1,a_2\dots a_{n-} - неизменяемый (статический) массив. 
Запросы - [l,r] - найти min\{a_l,a_{l+1},\dots,a_r\} за O(1). sparse[k][i]=min\{a_i,a_{i+1},\dots,a_{i+2^k-1}\}
```

3.1 Считаем sparse

- 1. sparse[0][i] = a[i] очевидно.
- 2. Пусть известно sparse[k][.]
- 3. Тогда $sparse[k+1][i] = min(sparse[k][i], sparse[k][i+2^k])$

3.2 Реализация

```
int a[n];

for (int i = 0; i < n; i++) {
    sparse[0][i] = a[i]
}

for (int k = 0; k <= log_n; k++) {
    j = i + 2^k;
    sparse[k + 1][i] = min(sparse[k][i], sparse[k][j]);
}

// O(nlogn)

int getMin(int l, int r) {
    k - max такое, что 2^k <= r - l + 1
    return min(sparse[k][l], sparse[k],[r - 2^k +1]);
}

// O(1)</pre>
```

3.2.1 Как быстро считать логарифм?

```
Пусть deg[x] = max \ k: \ 2^k \le x \deg[1] = 0; for (int x = 2; x <= n; x++) { \deg[x] = \deg[x - 1]; if (x - степень двойки) + \deg[x]; }
```

3.2.2 Как проверить, что х - степень двойки?

```
bool isDeg(int x) {
  return (x&(x-1) == 0)
}
```