Chicago Mobility Service Launch

Evaluation Report

Part 1: Competitor Landscape

Key Insights

Top 2 companies (i.e: Flash Cab, Taxi Afflication Services) command >50% of total market share

Recommendation

Conduct in-depth business analysis on these top 2 companies to better understand:

- Any product/feature gaps?
- Any underserved population?

Part 2: Mobility Market (Demand)

aton hts Evanston Elmhurst Oak Park

Key Insights: Top pickup hotspots

Recommendation: Prioritise these locations for initial launch

- Community Areas

 Near North Side
 - Near West Side
 - \bullet Loop
 - Lake View

Part 2: Mobility Market (Demand)

Key Insights

- Clear increasing trend in demand throughout the years (likely due to economy recovery post-covid)
- The top two companies are unable to pick up the pace of demand growth.
 - This demand gap can be translated into business opportunities

Part 2: Mobility Market (Supply)

Key Insights

• The growth in demand is much steeper than supply

Recommendation

 Laser focus in expanding supply to to utilise this opportunity to win the market

Part 3: Summary

Summary

- 1. **Top Competitors** (which holds >50% of current market shares)
 - Flash Cab
 - Taxi Afflication Services
- 2. Strong signals of supply crunch in current market
 - Good timing to enter the market if we can tackle the supply issues
- 3. Initial Launch Areas Recommendations
 - o Populous community area
 - Near North Side
 - Near West Side
 - \blacksquare Loop
 - Lake View
 - o Airports
 - O'Hare Airport
 - Midway Airport

Question 2:

Chicago Ride Pricing Model

Methodology: Feature Engineering

Demand Score

- Idea: Create a table that maps `day_of_week`, `hour`, `geohash` to a demand score
- Method:
 - Step 1: Calculate the **number of trips** aggregated by `day_of_week`, `hour` and `*pickup_geohash*` using data from **training period**
 - Step 2: Normalise number of trips as an indicator of demand

Example: Top 5 highest demand score

day_of_week	hour	geohash	num_trips	demand_score
0	19	dp3qz6r	276	10.487691
0	20	dp3qz6r	271	10.288883
0	18	dp3qz6r	261	9.891267
5	16	dp3wmge	258	9.771982
5	17	dp3wmge	254	9.612936

Top highest demand area

• O'hare airport (on Sunday from 1800-2000)

Methodology: Feature Engineering

Supply Score

- Idea: Create a table that maps `day_of_week`, `hour`, `geohash` to a supply score
- Method:
 - Step 1: Calculate the number of drivers aggregated by `day_of_week`, `hour` and `dropoff_geohash` from data during training period
 - Step 2: Normalise number of drivers as an indicator of demand

Sanity Check:

Observation: The trend of supply score seems reasonable

- Peaked during working hour
- Dropped during midnight

Methodology: Feature Engineering

Traffic Score

- Idea: Create a table that maps `day_of_week`, `hour` to a traffic score (of Chicago city in general)
- Method:
 - Step 1: Calculate the **mean driving speed of trip** (miles per hours = `Trip Miles` / `Trip Seconds`)
 - Step 2: Calculate **average driving speed** aggregated by `day_of_week`, `hour` from data during the **training perio**d as an indicator of **traffic situation** of Chicago city as a whole

Example: Top 5 highest traffic score (higher means less congested)

day_of_week	hour	traffic_score
6	5	0.036008
1	22	0.020970
3	23	0.015931
5	1	0.014406
3	12	0.012402

Observation: Scores seem intuitive

- Road is less congested during off-peak hours like:
 - Saturday midnight (5am)
 - Monday night (10pm)
 - etc

Approach: Modelling

<u>Data Sampling:</u> Time-series Split

Reason: To ensure no data leakage in train-test via the score tables

<u>Regression Model</u>:

	Baseline	Version 1	
Regression Model	XGBoost		
Loss Function	MSE (mean square error)		
Features	- Trip Miles - day_of_week - hour	- Trip Miles - day_of_week - hour - demand_score - supply_score - traffic_score	

Results

Observation

- Version 1 model consistently performed better than <u>baseline</u> across all cross-validation folds.
- This proved that the *supply*, *demand*, *traffic signals* are important for the pricing.

Future Work

1. Signals: Demand, Supply, Traffic

- <u>Current limitation:</u>
 - i. Score tables are essentially dictionary that map discrete states to a score
 - This can quickly turn out to be impractical as the number of states grow (e.g. 7-precision geohashes regionally)
 - ii. Limited source of data
 - e.g. getting the route from pickup to dropoff can certain give better traffic score estimates)
- Future direction:
 - i. Approximate score functions so that we can allow continuous states
 - ii. Expand data sources to get more relevant data regarding demand, supply and traffic conditions

2. Loss Function

- <u>Current limitation:</u>
 - i. Framing this as a regression problem limits us to be only able to replicate competitor pricing at best.
- <u>Future direction:</u>
 - i. Ideally, pricing should also take **internal business metrics** into account (e.g. to maximise GMV, profits, etc)

3. Other Areas:

- Model Interpretability to explain pricing to users (e.g. SHAP, LIME)
- Personalised Pricing based on users price elasticity to maximise profit