Chapter Seven

Efficient Diversification

Chapter Overview

- The investment decision is a top-down process
 - 1. Capital allocation (risky vs. risk-free)
 - Asset allocation within the risky portfolio across broad asset classes
 - Security selection of individual assets within each asset class
- Optimal risky portfolio construction
- Efficient diversification
- Long-term vs. short-term investment horizons

Portfolios of Two Risky Assets

- Expected return
 - Weighted average of expected returns on the component securities

- Portfolio risk
 - Variance of the portfolio is a weighted sum of covariances, and each weight is the product of the portfolio proportions of the pair of assets

Portfolios of Two Risky Assets: Expected Return

Consider a portfolio made up of equity (stocks) and debt (bonds)...

$$r_p = w_D r_D + w_E r_E$$

where r_P = rate of return on portfolio w_D = proportion invested in the bond fund w_E = proportion invested in the stock fund r_D = rate of return on the debt fund r_E = rate of return on the equity fund

$$E(r_p) = w_D E(r_D) + w_E E(r_E)$$

Portfolios of Two Risky Assets: Risk

• Variance of r_p

$$\sigma_p^2 = w_D^2 \sigma_D^2 + w_E^2 \sigma_E^2 + 2w_D w_E \text{Cov}(r_D, r_E)$$

Bond variance

$$\sigma_D^2$$

Equity variance

$$\sigma_E^2$$

 Covariance of returns for bond and equity $Cov(r_D, r_E)$

Portfolios of Two Risky Assets: Covariance

Covariance of returns on bond and equity

$$Cov(r_D, r_E) = \rho_{DE}\sigma_D\sigma_E$$

- ρ_{DE} = Correlation coefficient of returns
- σ_D = Standard deviation of bond returns
- σ_E = Standard deviation of equity returns

Portfolios of Two Risky Assets: Correlation Coefficients (1 of 2)

Range of values for correlation coefficient

$$-1.0 \le \rho \le 1.0$$

- If $\rho = 1.0 \rightarrow$ perfectly positively correlated securities
- If $\rho = 0 \rightarrow$ the securities are uncorrelated
- If $\rho = -1.0 \rightarrow$ perfectly negatively correlated securities

Portfolios of Two Risky Assets: Correlation Coefficients (2 of 2)

- Portfolio variance is higher when ρ_{DF} is higher.
- When $\rho_{DF} = 1$, there is no diversification

$$\sigma_P = w_E \sigma_E + w_D \sigma_D$$

• When ρ_{DE} < 1, the portfolio standard deviation is less than the weighted average.

Portfolios of Two Risky Assets: Correlation Coefficients (2 of 2)

- Assets with negative correlation are particularly effective in reducing total risk.
- With expected return unaffected by correlation, we always prefer to add to our portfolios assets with low or, even better, negative correlation.
- When $\rho_{DF} = -1$, a perfect hedge is possible

$$w_E = \frac{\sigma_D}{\sigma_D + \sigma_E} = 1 - w_D$$

Portfolios of Two Risky Assets: Example — 50%/50% Split

Table 7.1

Descriptive statistics for two mutual funds

	Debt		Equity
Expected return, E(r)	8%		13%
Standard deviation, σ	12%		20%
Covariance, Cov (r_D, r_E)		72	
Correlation coefficient, ρ_{DE}			0.30

Expected Return:
$$E(r_p) = w_D E(r_D) + w_E E(r_E)$$

= .50×8% + .50×13% = 10.5%

Variance:
$$\sigma_p^2 = w_D^2 \sigma_D^2 + w_E^2 \sigma_E^2 + 2w_D w_E \text{Cov}(r_D, r_E)$$

= $.50^2 \times 12^2 + .50^2 \times 20^2 + 2 \times .5 \times .5 \times 72 = 172$
 $\sigma_P = \sqrt{172} = 13.23\%$

Portfolio Expected Return

Computation of Portfolio Variance from the Covariance Matrix

A. Bordered Covariance Matrix						
Portfolio Weights	w_D	w_{E}				
W_D	$Cov(r_D, r_D)$	$Cov(r_D, r_E)$				
W _E	$Cov(r_E, r_D)$	$Cov(r_E, r_E)$				
B. Border-Multiplied Covariance Matrix						
Portfolio Weights	$w_{\scriptscriptstyle D}$	w_{E}				
W_D	$w_D w_D Cov(r_D, r_D)$	$w_D w_E Cov(r_D, r_E)$				
W_E	$W_EW_DCov(r_E, r_D)$	$w_E w_E Cov(r_E, r_E)$				
$w_D + w_E = 1$	$W_DW_DCov(r_D, r_D) + W_EW_DCov(r_E, r_D)$	$w_D w_E Cov(r_D, r_E) + w_E w_E Cov(r_E, r_E)$				
Portfolio variance	$W_D W_D Cov(r_D, r_D) + W_E W_D Cov(r_E, r_D)$	$+ w_D w_E \text{Cov}(r_D, r_E) + w_E w_E \text{Cov}(r_E, r_E)$				

Portfolio Standard Deviation

The Minimum-Variance Portfolio

Weights of the minimum-variance portfolio

$$w_{Min}(D) = \frac{\sigma_E^2 - \rho_{DE}\sigma_D\sigma_E}{\sigma_D^2 + \sigma_E^2 - 2\rho_{DE}\sigma_D\sigma_E},$$

$$w_{Min}(E) = 1 - w_{Min}(D) = \frac{\sigma_D^2 - \rho_{DE}\sigma_D\sigma_E}{\sigma_D^2 + \sigma_E^2 - 2\rho_{DE}\sigma_D\sigma_E}$$

- For a pair of assets,
 - When $\rho_{DE} < \sigma_D/\sigma_E$, volatility will initially fall when we start with all bonds and begin to move into stocks.
 - When $\rho_{DE} > \sigma_D/\sigma_E$, volatility will increase monotonically from the low-risk asset (bonds) to the high-risk asset (stocks). Even in this case, however, there is a positive (if small) benefit from diversification.

Portfolio Expected Return as a Function of Standard Deviation

The Minimum-Variance Portfolio

- The minimum-variance portfolio has a standard deviation smaller than that of either of the individual component assets
- Risk reduction depends on the correlation:
 - If $\rho = +1.0$, no risk reduction is possible
 - If $\rho = 0$, σ_P may be less than the standard deviation of either component asset
 - If ρ = -1.0, a riskless hedge is possible

The Opportunity Set of the Debt and Equity Funds and Two Feasible CALs

Portfolio A

$$E(r_{A}) = 8.9\%$$

$$\sigma_{A} = 11.45\%$$

Portfolio B

$$E(r_{\rm B}) = 9.5\%$$

$$\sigma_{R} = 11.70\%$$

The Sharpe Ratio

• Objective is to find the weights w_D and w_E that result in the highest slope of the CAL

Thus, our objective function is the Sharpe ratio:

$$S_p = \frac{E(r_p) - r_f}{\sigma_p}$$

The Sharpe Ratio: Example

$$E(r_{A}) = 8.9\%$$

$$|\sigma_{A}| = 11.45\%$$

$$S_A = \frac{E(r_A) - r_f}{\sigma_A} = \frac{8.9\% - 5\%}{11.45\%} = .34$$

Portfolio B

$$E(r_{\rm R}) = 9.5\%$$

$$\sigma_{R} = 11.70\%$$

$$S_B = \frac{E(r_B) - r_f}{\sigma_B} = \frac{9.5\% - 5\%}{11.70\%} = .38$$

Debt and Equity Funds with the Optimal Risky Portfolio

Optimal Risky Portfolio

$$E(r_{P}) = 11\%$$

$$\sigma_{P} = 14.2\%$$

$$S_{P} = \frac{E(r_{P}) - r_{f}}{\sigma_{P}}$$

$$= \frac{11\% - 5\%}{14.2\%}$$

$$= .42$$

Optimal Risky Portfolio

Optimization problem

$$\max_{w_i} \frac{E(r_p) - r_f}{\sigma_p}$$

s.t.
$$w_D + w_E = 1$$

Optimal risky portfolio

$$w_{D} = \frac{E(R_{D})\sigma_{E}^{2} - E(R_{E})Cov(R_{D}, R_{E})}{E(R_{D})\sigma_{E}^{2} + E(R_{E})\sigma_{D}^{2} - [E(R_{D}) + E(R_{E})]Cov(R_{D}, R_{E})}, w_{E} = 1 - w_{D}$$

where R denotes the excess return.

Optimal Risky Portfolio

Using the data in Table 7.1

$$w_D = \frac{(8-5)400 - (13-5)72}{(8-5)400 + (13-5)144 - (8-5+13-5)72} = .40,$$

$$w_E = 1 - .40 = .60$$

$$E(r_P) = (.4 \times 8) + (.6 \times 13) = 11\%$$

$$\sigma_P = [(.4^2 \times 144) + (.6^2 \times 400) + (2 \times .4 \times .6 \times 72)]^{1/2} = 14.2\%$$

Determination of the Optimal Complete Portfolio

Optimal Allocation to P

$$A = 4$$

$$y = \frac{E(r_P) - r_f}{A\sigma_P^2}$$

$$= \frac{11\% - 5\%}{4 \times (14.2\%)^2} = .7439$$

The Proportions of the Optimal Complete Portfolio

Overall Portfolio

$$E(r_P) = 11\%$$
 $y = .7439$
 $\sigma_P = 14.2\%$ $r_f = 5\%$

$$E(r_{Overall}) = y \times E(r_p) + (1 - y) \times r_f$$

$$= .7439 \times 11\% + .2561 \times 5\%$$

$$= 9.46\%$$

$$\sigma_{Overall} = .7439 \times 14.2\% = 10.56\%$$

$$S_{Overall} = \frac{9.46\% - 5\%}{10.56\%} = .42$$

Steps to Arrive the Complete Portfolio

- 1. Specify the return characteristics of all securities (expected returns, variances, covariances)
- 2. Establish the risky portfolio (asset allocation):
 - a. Calculate the optimal risky portfolio, P.
 - b. Calculate the properties (i.e., $E(r_p)$ and σ_P) of portfolio P using the weights determined in step (a)
- 3. Allocate funds between the risky portfolio and the risk-free asset (capital allocation):
 - Calculate the fraction of the complete portfolio allocated to portfolio P (the risky portfolio) and the risk-free asset.
 - b. Calculate the share of the complete portfolio invested in each asset.

Markowitz Portfolio Optimization Model (1 of 6)

- Security selection—generalize the portfolio construction problem to the case of many risky securities and a risk-free asset
 - Determine the risk-return opportunities available
 - Minimum-variance frontier of risky assets
 - All portfolios that lie on the minimum-variance frontier from the global minimum-variance portfolio and upward provide the best risk-return combinations
 - **Efficient frontier** of risky assets is the portion of the frontier that lies above the global minimum-variance portfolio

The Minimum-Variance Frontier of Risky Assets

Markowitz Portfolio Optimization Model (2 of 6)

- Security selection (continued)
 - Search for the CAL with the highest Shape ratio (i.e., the steepest slope)
 - Individual investor chooses the appropriate mix between the optimal risky portfolio P and T-bills
 - Everyone invests in P, regardless of their degree of risk aversion
 - More risk averse investors put less in P
 - Less risk averse investors put more in P

The Efficient Frontier of Risky Assets with the Optimal CAL

Markowitz Portfolio Optimization Model (3 of 6)

- Capital allocation and the separation property
 - Portfolio choice problem may be separated into two independent tasks
 - Determination of the optimal risky portfolio is purely technical
 - Allocation of the complete portfolio to risk-free versus the risky portfolio depends on personal preference

Capital Allocation Lines with Various Portfolios from the Efficient Set

Markowitz Portfolio Optimization Model (4 of 6)

- The power of diversification
 - Recall: $\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \text{Cov}(r_i, r_j)$
 - Assume we define the average variance and average covariance of the securities as:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}$$

$$Cov = \frac{1}{n(n-1)} \sum_{\substack{j=1 \ i \neq i}}^{n} \sum_{i=1}^{n} Cov(r_{i}, r_{j})$$

Markowitz Portfolio Optimization Model (5 of 6)

- The power of diversification (continued)
 - We can then express portfolio variance as

$$\sigma_p^2 = \frac{1}{n}\bar{\sigma}^2 + \frac{n-1}{n}\text{Cov}$$

- Portfolio variance can be driven to zero if the average covariance is zero
- The risk of a highly diversified portfolio depends on the covariance of the returns of the component securities

Risk Reduction of Equally Weighted Portfolios

		$\rho = 0$		ρ		ρ	= .40
Universe Size <i>n</i>	Portfolio Weights w = 1/n (%)	Standard Deviation (%)	Reduction in σ	Standard Deviation (%)	Reduction in ஏ		
1	100	50.00	14.64	50.00	8.17		
2	50	35.36		41.83			
5	20	22.36	1.95	36.06	0.70		
6	16.67	20.41		35.36			
10	10	15.81	0.73	33.91	0.20		
11	9.09	15.08		33.71			
20	5	11.18	0.27	32.79	0.06		
21	4.76	10.91		32.73			
100	1	5.00	0.02	31.86	0.00		
101	0.99	4.98		31.86			

Markowitz Portfolio Optimization Model (6 of 6)

- Optimal portfolios and non-normal returns
 - Fat-tailed distributions can result in extreme values of VaR and ES
 - Practice way to estimate values of VaR and ES in the presence of fat tails is called bootstrapping
 - If other portfolios provide sufficiently better VaR and ES values than the mean-variance efficient portfolio, we may prefer these when faced with fat-tailed distributions