Trigonométrie - 2 - Sinus et cosinus

1. Sinus et cosinus sur le cercle trigonométrique

1.1. $\sin \alpha$ et $\cos \alpha$

Définition 1 : M est un point du cercle trigonométrique correspondant à un réel α (par la fonction enroulement vue précédemment).

On note $\cos \alpha$ l'abscisse de M et $\sin \alpha$ l'ordonnée de M :

 $M(\cos\alpha;\sin\alpha)$

Méthode 1 :

- On repère un angle orienté lpha par rapport à l'axe (Ox), en marquant un point M sur le cerle trigonométrique ;
- si α est > 0, on tourne dans le sens direct (sens inverse des aiguilles d'une montre ; s'il est < 0, on tourne dans le sens indirect ;
- on lit alors les valeurs de $\cos \alpha$ (sur (Ox)) : c'est l'abscisse de M ;
- et celle de $\sin \alpha$ (sur (Oy)) : c'est l'ordonnée de M.

Example 1: Si l'on considère que $A=(\cos\alpha;0)\in[OI]$, on retrouve dans le triangle OAM rectangle en M les définitions de \cos et de \sin vues en troisième, à savoir : $\cos\alpha=\frac{OA}{OM}$ et $\sin\alpha=\frac{AM}{OM}$. La nouveauté est la prise en compte de valeurs négatives pour \cos et \sin , qui apparaîssent si l'on considère des angles obtus.

Si l'on ajoute 2π à α , on fait un tour du cercle et on revient à la même position, donc on obtient les mêmes valeurs pour \cos et \sin .

Définition 2 : Une fonction f étant donnée et un réel T étant fixé, lorsque pour tout x réel, on a f(x+T)=f(x), on dit que f est T-périodique (ou périodique de période T).

Propriété 1 : Les fonctions \cos et \sin sont 2π -périodiques ou autrement dit : pour tout x réel, on a $\sin(x+2\pi)=\sin x$ et $\cos(x+2\pi)=\cos x$.

1.2. Propriétés immédiates

$\overline{\ \ \ \ }$ **Propriété 2 :** Pour x réel :

- $\begin{array}{ll} \bullet & -1 \leq \cos x \leq 1 \text{ et} \\ -1 \leq \sin x \leq 1 \text{ ;} \end{array}$
- $\cos^2 x + \sin^2 x = 1$;
- \cos et \sin sont 2π -périodiques.

Remarque 2 :

- ullet La seconde formule se déduit du théorème de Pythagore, et du fait que $OM^2=1$;
- on note, pour plus de lisibilité, $\cos^2 x = (\cos x)^2$ (idem pour \sin).

Next 1:

- a. Calculer $\sin^2 t$ sachant que $\cos t = \frac{1}{4}$.
- b. Peut-on trouver un réel t tel que $\cos t = \frac{1}{4}$ et $\sin t = \frac{3}{4}$?

\ Exercice 2 : Soit t un réel tel que $\cos t = rac{3}{5}$.

- a. On suppose que $t \in \left[0; rac{\pi}{2}
 ight]$. Calculer $\sin t$.
- b. On suppose que $t \in \left[-rac{\pi}{2}; 0
 ight]$. Calculer $\sin t$.

1.3. Valeurs remarquables

Exercice 3 : Compléter le tableau de valeurs suivant :

lpha (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos \alpha$						
$\sin lpha$						

1.4. Valeurs associées

Exercice 4 : Compléter par $\pm \cos x$ et $\pm \sin x$ les égalités suivantes :

🦲 Propriété 3 :

Symétrie / (Ox)	Symétrie / (Oy)	Symétrie / O	Symétrie / $y=x$	Rotation _{90°} / O
M x rad M'	$\pi - x \operatorname{rad}$	$\pi + x \operatorname{rad}$ M' M'	$\frac{\pi}{2} - x \operatorname{rad}$	$\frac{\pi}{2} + x \operatorname{rad}$
$\cos{(-x)} =$	$\cos{(\pi-x)} =$	$\cos{(\pi+x)} =$	$\cos\left(rac{\pi}{2}-x ight)=$	$\cos\left(rac{\pi}{2}+x ight)=$
$\sin{(-x)} =$	$\sin{(\pi-x)} =$	$\sin{(\pi+x)} =$	$\sin\left(rac{\pi}{2}-x ight)=$	$\sin\left(rac{\pi}{2}+x ight)=$

Exercice 5 : Completer le tableau de valeurs suivant :						
α (rad)	$a=rac{-\pi}{6}$	$b = \frac{3\pi}{4}$	$c=rac{-2\pi}{3}$	$d=rac{3\pi}{2}$	$e=-\pi$	
$\cos \alpha$						
$\sin lpha$						

Exercice 6 : Simplifier les expressions suivantes :

- $A = 2\cos\left(\frac{\pi}{2} x\right) + \sin(\pi + x) 3\sin(\pi x)$
- $B = \cos^2\left(\frac{\pi}{2} x\right) + \sin^2(\pi + x) + 2\cos^2(\pi + x)$

2. Coordonnées polaires

 $\overline{\hspace{0.1in}}$ **Propriété 4 :** Dans un repère **orthonormé**, on note M un point du plan distinct de l'origine *O*.

Tout point M distinct de l'origine O peut être repéré par un couple de réels $(r;lpha)_{
m pol}$, avec

• $\alpha \equiv \left(\overrightarrow{OI}; \overrightarrow{OM}\right)$ (angle par rapport à l'axe des abscisses) ; unique **modulo** 2π .

Définition 3 : Le couple noté $(r;lpha)_{
m pol}$ est appelé **coordonnées polaires** et le couple (x;y) est appelé **coordonnées** cartésiennes du point M dans le repère orthonormé (O; I; J).

 $\int r = \sqrt{x^2 + y^2}$ Propriété 5 : On a alors : $\begin{cases} x = r \cos \alpha \\ y = r \sin \alpha \end{cases} \Leftrightarrow \begin{cases} \cos \alpha = \frac{x}{r} \\ \sin \alpha = \frac{y}{r} \end{cases}$

- 1. Donner les coordonnées cartésiennes de $A(3; \frac{-5\pi}{6})_{\text{pol}}$
- 2. Déterminer les coordonnées polaires de $B\left(2;-2\sqrt{3}\right)$ Est-il possible qu'un point ait les mêmes coordonnées cartésiennes et polaires ?

3. Projections orthogonales

3.1. Vecteur unitaires et rappels

Définition 4 :

- Un $\overrightarrow{vecteur}$ \overrightarrow{u} représente un déplacement (en ligne droite) d'un point A vers un point B. On note $\overrightarrow{u} = \overrightarrow{AB}$ le vecteur donnant le déplacement de A vers B.
- Ses coordonnées $\binom{x_{\vec{u}}}{y_{\vec{u}}}$ représentent le déplacement horizontal $x_{\vec{u}}=x_B-x_A$ et le déplacement vertical $y_{\vec{u}}=y_B-y_A$ lors de ce trajet de A vers B.
- Dans un repère orthonormé, sa **norme**, notée $|\overrightarrow{u}|$ est la distance AB. La formule de Pythagore permet de la calculer $|\overrightarrow{u}|=AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$
- Un vecteur **normé** est un vecteur de norme 1.

3.2. Définition

Définition $5:\overrightarrow{F}$ est un vecteur, et (d) une droite dirigée par un vecteur \overrightarrow{u} normé. On appelle **projeté othogonal** de \overrightarrow{F} sur (d) (on peut aussi dire sur \overrightarrow{u} , seule la direction importe) le vecteur \overrightarrow{F}_d défini par : $\overrightarrow{F}_d = ||\overrightarrow{F}|| \cos(\alpha) \overrightarrow{u}$

- **Propriété 6 :** Tout vecteur dont l'origine et l'extrémité sont placées sur les mêmes droites perpendiculaires à (d) que \overrightarrow{F} a même projeté orthogonal que \overrightarrow{F} sur (d).
- **\(Exercice 9 :** Dessiner un vecteur $\overrightarrow{F_1}$ ayant même projeté orthogonal sur (d) que \overrightarrow{F} .
- **Exercice 10 :** \overrightarrow{w} , de norme 3, fait un angle de $\frac{-\pi}{3}$ avec la droite d dirigée par $\overrightarrow{v}\binom{3}{4}$. Calculer les coordonnées de $\overrightarrow{w_d}$. Attention : \overrightarrow{v} n'est pas normé.

3.3. Sur les axes

Propriété 7 : On se place dans un repère **orthonormé** $(O; \overrightarrow{i}; \overrightarrow{j})$. Toutes les lignes de rappel sont parallèles ou perpendiculaires aux axes. Le vecteur \overrightarrow{F} fait un angle α avec l'axe (Ox). On obtient :

- Le projeté othogonal de \overrightarrow{F} sur (Ox) le vecteur $\overrightarrow{F_x} = F_x\overrightarrow{i}$ avec : $F_x = ||\overrightarrow{F}||\cos \alpha$.
- Le projeté othogonal de \overrightarrow{F} sur (Oy) le vecteur $\overrightarrow{F_y} = F_y\overrightarrow{j}$ avec : $F_y = ||\overrightarrow{F}||\sin \alpha$

• Les coordonnées de
$$\overrightarrow{F}$$
 : $\binom{F_x}{F_y} = \begin{pmatrix} ||\overrightarrow{F}||\cos \alpha \\ ||\overrightarrow{F}||\sin \alpha \end{pmatrix} = ||\overrightarrow{F}|| \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$

4. (In)Équations trigonométriques

- **4.1.** Équation $\cos x = k$ avec $k \in \mathbb{R}$
- Propriété 8 :
 - Si k < -1 ou bien si k > 1, l'équation $\cos x = k$ n'a pas de solution ;
 - si $k \in [-1, 1]$, alors $\cos x = k$ a une infinité de solutions dans \mathbb{R} , qui correspondent à une ou deux solutions modulo 2π .
- Méthode 3 :
 - 1. On place k sur **l'axe** (Ox) (correspondant à \cos);
 - 2. on recherche les deux angles α et $-\alpha$ tels que $\cos \alpha = k$;
 - **[a] Remarque 3 :** on peut utiliser $\alpha = \arccos k$ noté aussi $\cos^{-1} k$;
 - 3. on a alors : $\cos x = k \quad \Leftrightarrow \quad x \equiv \alpha \ \ (2\pi) \ {
 m ou} \ x \equiv lpha \ \ (2\pi)$

- **\ Exercice 12:** Résoudre $\cos x = \frac{1}{2}$.
- **4.2.** Équation $\sin x = k$ avec $k \in \mathbb{R}$
 - Propriété 9 :
 - Si k < -1 ou bien si k > 1, l'équation $\sin x = k$ n'a pas de solution ;
 - si $k \in [-1,1]$, alors $\sin x = k$ a une infinité de solutions dans $\mathbb R$, qui correspondent à une ou deux solutions modulo 2π .
- Méthode 4 :
 - 1. On place k sur **l'axe** (Oy) (correspondant à \sin);
 - 2. on recherche les deux angles α et $\pi \alpha$ tels que $\sin \alpha = k$;
 - **[a] Remarque 4:** on peut utiliser $\alpha = \arcsin k$ noté aussi $\sin^{-1} k$;
 - 3. on a alors : $\sin x = k \quad \Leftrightarrow \quad x \equiv \alpha \ \ (2\pi) \ {
 m ou} \ x \equiv \pi \alpha \ \ (2\pi)$

- **\ Exercice 13:** Résoudre $\sin x = \frac{1}{2}$.
- $\stackrel{lack}{=}$ **Remarque 5 :** Attention à ne pas se tromper d'axe en plaçant k !
- Sexercice 14 : Résoudre les équations trigonométriques suivantes
 - 1. $3\sin x 5 = 0$

- 2. $\sin^2 x = 2$ 3. $\sqrt{2} + 2\cos x = 0$ 4. $\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{2}$ 6. $\cos\frac{x}{2} = \frac{-\sqrt{2}}{2}$ 7. $4\sin^2 x 3 = 0$ 8. $2\cos^2 x = 1$
- 5. $2\sin 2x = 1$

- $9. \sin 3x = \cos 2x$
- 10. $\cos^2 x = \sin^2 2x$
- **\ Exercice 15** : Déterminer l'angle que fait le vecteur $\sqrt{2}inom{2}{2}$ avec l'axe horizontal.
- 4.3. Inéquations
- Remarque 6 : On adapte ces méthodes aux inéquations trigonométriques facilement.
- **Exercice 16 :** Résoudre $\cos x \leq \frac{1}{2}$ et $\sin x > \frac{\sqrt{3}}{2}$.