Некоторые задачи проверки статистических гипотез и их применения

Выпускная квалификационная работа

Лунев Иван Сергеевич, группа 422

Санкт-Петербургский Государственный Университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент В. В. Некруткин Рецензент: к.ф.-м.н., доцент А. И. Коробейников

Санкт-Петербург 2018 г.

Общая проблема

Две задачи — проверка равенства нулю коэффициента корреляции Пирсона и частного коэффициента корреляции.

Классические критерии — в предположении гауссовости выборок.

Пакеты Statistica, SPSS, R и т. д.

Проблемы:

- Когда классические критерии применимы, если распределения не гауссовские?
- 2 Построение критериев, применимых в общей ситуации.

Проверка гипотезы ho=0. Гауссовские выборки

Если вектор (x,y) имеет невырожденное двумерное гауссовское распределение, критерий хорошо известен [Robb J. Muirhead, 2009]:

Нулевая гипотеза: $H_0: \{ \rho = 0 \}$. Статистика:

$$\mu(\mathbf{X}_n, \mathbf{Y}_n) := \sqrt{n-2} \frac{\widehat{\rho}_n}{\sqrt{1-\widehat{\rho}_n^2}},$$

где $\widehat{
ho}_n$ — выборочный коэффициент корреляции.

Распределение статистики:

$$\mathcal{L}_{H_0}(\mu(\mathbf{X}_n, \mathbf{Y}_n)) = \mathrm{t}(n-2).$$

Классический критерий

Получаем критерий с уровнем значимости lpha, который отвергает нулевую гипотезу, если $|\mu(\mathbf{X}_n,\mathbf{Y}_n)|\geq T_{n-2,1-lpha/2}$, где $T_{m,\gamma}-\gamma$ -квантиль распределения Стьюдента с m степенями свободы.

Основная предельная теорема

 $(\mathbf{X}_n,\mathbf{Y}_n)$ – двумерная независимая повторная выборка, соответствующая вектору (x,y) с непрерывными координатами, причем четвертые моменты x и y конечны. Обозначим

$$x^* = (x - \mathbb{E}x)/\sigma_x, \quad y^* = (y - \mathbb{E}y)/\sigma_y,$$
$$\sigma_{f,\rho}^2 = \mathbb{D}\left(\rho(x^{*2} + y^{*2}) - 2x^*y^*\right)/4,$$
$$\mu(\mathbf{X}_n, \mathbf{Y}_n) = \frac{\sqrt{n}}{\sigma_{f,\rho}}\left(\widehat{\rho}_n - \rho\right),$$

 $\widehat{
ho}_n$ — выборочный коэффициент корреляции.

Утверждение (ход доказательства, например, в [E. Lehman, 1999]).

Если $|\rho| \neq 1$ и $n \to \infty$

$$\mathcal{L}(\mu(\mathbf{X}_n, \mathbf{Y}_n)) \Rightarrow \mathrm{N}(0, 1).$$

Для гауссовской выборки $\sigma_{f,\rho}^2 = (1-\rho^2)^2$.

Проверка гипотезы ho=0. Общий вид критерия

Нулевая гипотеза: $H_0: \{
ho = 0 \}$.

Статистика:

$$\mu(\mathbf{X}_n,\mathbf{Y}_n)=rac{\sqrt{n}}{\widehat{\sigma_f}}\widehat{
ho}_n,$$
 где $\widehat{\sigma_f^2}$ — состоятельная оценка $\sigma_{f,0}^2.$

Критерий

Пусть $\alpha \in (0,1)$. Критерий отвергает гипотезу H_0 , если

$$|\mu(\mathbf{X}_n, \mathbf{Y}_n)| \ge C_{1-\alpha/2}$$
,

где C_{β} – квантиль уровня β распределения $\mathrm{N}(0,1).$

Проверка гипотезы ho=0. Две оценки $\sigma_{f, ho}^2$ — два критерия

«Общий» критерий:

$$\widehat{\sigma}_{f,\rho}^2 = \frac{1}{n} \sum_{i=1}^n \left(\widehat{\rho_n} \left(\left(\frac{x_i - \overline{x}}{\overline{s}_n(x)} \right)^2 + \left(\frac{y_i - \overline{y}}{\overline{s}_n(y)} \right)^2 \right) - 2 \frac{x_i - \overline{x}}{\overline{s}_n(x)} \frac{y_i - \overline{y}}{\overline{s}_n(y)} \right)^2 / 4$$

— оценка состоятельна для любого ρ (генеральные моменты заменены на выборочные).

«Модифицированный» критерий:

$$\widehat{\sigma}_{f,0}^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2 (y_i - \overline{y})^2}{n\overline{s}_n^2(x)\overline{s}_n^2(y)}$$

— оценка состоятельна при ho=0.

Утверждение

Оба критерия асимптотически точны и состоятельны при $n \to \infty$.

О применимости классического критерия

Предположим, что $\rho=0.$ Рассмотрим предельную дисперсию

$$\sigma_{f,0}^2 = \mathbb{D}\left(x^*y^*\right),\,$$

где
$$x^* = (x - \mathbb{E}x)/\sigma_x$$
, $y^* = (y - \mathbb{E}y)/\sigma_y$.

Утверждение

Классический критерий, примененный к негауссовской выборке, будет асимптотически точным и состоятельным тогда и только тогда, когда $\sigma_{f,0}^2=1$, что эквивалентно равенству $\rho(x^2,y^2)=0$.

Следствие

Если случайные величины x и y независимы, то $\sigma_{f,0}^2=1.$

Ошибки первого рода, $\alpha = 0.05$. Независимые x, y.

ho = 0, $\sigma_{f,0}^2 = 1$: классический критерий асимптотически точен.

Рис.: Равномерно распределенные независимые случайные величины. Оценки вероятностей ошибок первого рода для трех критериев при $\alpha=0.05,\,N=10^5$

ho = 0, $\sigma_{f,0}^2 = 2/3$: классический критерий асимптотически консервативен.

Рис.: Равномерное распределение в круге. Оценки вероятностей ошибок первого рода для трех критериев при $\alpha=0.05,\ N=10^5$

ho = 0, $\sigma_{f,0}^2 = 1.5$: классический критерий асимптотически либерален.

Рис.: Круговая симметрия с $r^2\in \mathrm{G}(1/2,1)$. Оценки вероятностей ошибок первого рода для трех критериев при $\alpha=0.05,\,N=10^5$

Ошибки первого рода, lpha=0.05. Пример зависимости с $\sigma_{f,0}^2=1$

Равномерная смесь равномерных распределений на трех окружностях с радиусами $1,\,\sqrt{2}\,$ и $\sqrt{6+\sqrt{39}}.$

Зависимость, $\rho=0$, $\sigma_{f,0}^2=1$: классический критерий асимптот. точен.

Рис.: Смесь равномерных распределений на трех окружностях. Оценки вероятностей ошибок первого рода для трех критериев при $\alpha=0.05;\ N=10^5.$

Частный коэффициент корреляции: общая постановка задачи

Случайные величины x,y,z с конечными вторыми моментами, $|\rho_{x,z}|<1$, $|\rho_{y,z}|<1$.

Линейные регрессии x на z и y на z с остатками ϵ_1 и ϵ_2 .

$$\rho_{x,y|z} = \rho(\epsilon_1, \epsilon_2) = \frac{\rho_{x,y} - \rho_{x,z}\rho_{y,z}}{\sqrt{1 - \rho_{x,z}^2}\sqrt{1 - \rho_{y,z}^2}} :$$

частный коэффициент корреляции между x, y при исключении влияния z.

 (X_n,Y_n,Z_n) – трехмерная повторная выборка объема n.

Нулевая гипотеза

$$H_0: \{\rho_{x,y|z} = 0\}.$$

Частный коэффициент корреляции: критерии для проверки нулевой гипотезы

(x,y,z) — невырожденное гауссовское распределение: классический критерий (например, [ван дер Варден, 1960]).

Те же вопросы:

- Когда классический критерий применим, если распределение не гауссовское?
- ② Построение критериев, применимых в общей ситуации.

Ответ

Так как частный коэффициент сводится к коэффициенту корреляции Пирсона между остатками ϵ_1 и ϵ_2 , то все результаты про коэффициент корреляции Пирсона переносятся на частный коэффициент корреляции.

Основная предельная теорема

 $({f X}_n,{f Y}_n,{f Z}_n)$ – независимая повторная выборка из распределения вектора (x,y,z) с непрерывными распределениями x,y,z и конечными четвертыми моментами. Пусть x^* , y^* и z^* — стандартизированные (x,y,z) и $ho_{x,z}^2 \neq 1$, $ho_{y,z}^2 \neq 1$.

$$\sigma_{xy|z}^2 = \frac{1}{(1-\rho_{x,z}^2)(1-\rho_{y,z}^2)} \mathbb{D}\Big(x^*y^* + z^{*2}\rho_{x,z}\rho_{y,z} - x^*z^*\rho_{y,z} - y^*z^*\rho_{x,z}\Big),$$

где $\widehat{
ho}_{x,y|z}$ —выборочный коэффициент частной корреляции.

Утверждение

Если $\rho_{x,y|z}=0$, тогда

$$\mathcal{L}(\sqrt{n}\widehat{\rho}_{x,y|z}) \Rightarrow N(0, \sigma_{x,y|z}^2).$$

Замечание

Если вектор (x,y,z) имеет гауссовское распределение, то $\sigma^2_{xy|z}=1.$

Оценка $\sigma_{x,y|z}^2$ при $ho_{xy|z}=0.$

Пусть $\widehat{
ho}_{x,z}$ и $\widehat{
ho}_{y,z}$ — выборочные коэффициенты корреляции между x,z и y,z. Кроме того, положим

$$\widehat{u}_i^* = \frac{\frac{x_i - \overline{x}}{\overline{s}_n(x)} - \widehat{\rho}_{x,z} \frac{z_i - \overline{z}}{\overline{s}_n(z)}}{\sqrt{1 - \widehat{\rho}_{x,z}^2}}, \quad \widehat{v}_i^* = \frac{\frac{y_i - \overline{y}}{\overline{s}_n(y)} - \widehat{\rho}_{y,z} \frac{z_i - \overline{z}}{\overline{s}_n(z)}}{\sqrt{1 - \widehat{\rho}_{y,z}^2}}.$$

Тогда при $ho_{xy|z}=0$

$$\hat{\sigma}_{x,y|z}^2 = \frac{1}{n} \sum_{i=1}^n (\hat{u}_i^* \hat{v}_i^*)^2$$

— состоятельная оценка $\sigma_{x,y|z}^2$.

Утверждение

Критерий, порожденный оценкой $\widehat{\sigma}_{x,y\,|\,z}^2$, является асимптотически точным и состоятельным при $n\to\infty$.

Заключение

Таким образом, в работе были получены следующие результаты.

- Для коэффициента корреляции Пирсона
 - Предложены два асимптотического критерия для проверки гипотезы равенства нулю коэффициента корреляции Пирсона, доказаны их асимптотические точность и состоятельность;
 - С помощью вычислительных экспериментов проведено сравнение этих критериев;
 - Проанализированы свойства классического (гауссовского) критерия при его применении к негауссовской выборке.
- 2 Для частного коэффициента корреляции
 - Все теоретические результаты работы, относящиеся к коэффициенту корреляции Пирсона, перенесены на частный коэффициент корреляции.