

Politecnico di Milano

Corso di Laurea Triennale in Ingegneria Matematica Scuola di Ingegneria Industriale e dell'Informazione

Il teorema di Cauchy-Kowalevski e le sue conseguenze

Tesi di

Alessandro Pedone Matricola 981105

Relatore:

Prof. Maurizio Grasselli

Sessione di Laurea Settembre 2024 Anno Accademico 2023/2024

All his life – he had difficulty saying this, as he admitted, being always wary of too much enthusiasm – all his life he had been waiting for such a student to come into this room.

A student who would challenge him completely, who was not only capable of following the strivings of his own mind but perhaps of flying beyond them.

— Alice Munro, Too Much Happiness

Abstract

Sofya Kowalevski, la prima donna ad conseguire un dottorato in matematica in Europa, nel 1874 dava la luce alla dimostrazione del teorema di Cauchy-Kowalevski (TCK), il primo risultato generale per l'esistenza di soluzioni locali analitiche per equazioni differenziali alle derivate parziali (EDP) con dati di Cauchy.

La tesi mira a presentare questa pietra miliare della matematica esaltandone la profondità del dettaglio, le conseguenze e anche la semplicità delle idee che ha permesso di far emergere. A questo scopo sono ricorrenti i richiami di nozioni e risultati fondamentali ad affrontare il discorso e, inoltre, vengono trattate tutte le forme principali in cui è possibile enunciare il TCK.

A completamento sono presenti anche una sezione dedicata a tre esempi storicamente cruciali alla comprensione delle EDP e un'altra dedicata, invece, alle due sue fondamentali applicazioni: il teorema di Holmgren e il teorema di Cartan-Kähler.

Parole chiave: EDP, caratteristiche, analiticità/olomorfia, serie di potenze, metodo dei maggioranti, teoremi di Cauchy-Kowalevski, Holmgren e Cartan-Kähler

Indice

Al	bstract												iii
1	Introduzione 1.1 Chi era Kow												
	1.2 Il teorema d	ı Cauchy-K	owale	VSKI		 •	 	•	 	•	 •	 •	. 3
2	Strumenti fond	amentali											5
	2.1 Superfici car	atteristiche	e		 		 		 				. 6
	2.2 Metodo delle	e caratteris	tiche		 		 		 				. 8
	2.3 Problemi di	Cauchy			 		 		 				. 9
	2.4 Serie di pote	enze			 		 		 				. 11
	2.5 Note				 		 	•	 				. 12
3	Il teorema di C	auchv-Ko	walev	ski									13
							 		 				. 14
	3.2 EDP quasi-l	ineari			 		 		 				. 15
	3.3 EDP in form												
	3.4 note				 		 		 				. 18
4	Esempi												19
	4.1 Esempio di l	Lewv			 		 		 				
	4.2 Esempio di l												
	4.3 Esempio di l												
5	Versioni alterna	ative											31
6	Conseguenze												32
	6.1 Teorema di	Holmgren .			 		 		 				. 33
	6.2 Altre applica	_											
	6.3 note				 		 		 				. 35
Ri	ibliografia												36

Capitolo 1 Introduzione

1.1 Chi era Kowalevski?

Sofya Vasilyevna Kovalevskaya (1850-1891) è stata una matematica russa. Per varie ragioni, tra cui proprio il teorema al centro di questa discussione, è tuttora una delle figure femmili più rilevanti per la storia di questa disciplina.

Prima di tutto, è importante sottolineare che, da qui in poi, ci riferiremo spesso a lei con il nome con cui soleva firmarsi nelle sue pubblicazioni, ovvero Kowalevski.

Per allontanarsi dalla Russia dovette prendere parte a un matrimonio bianco, difatti sposò un uomo con cui poi non ebbe alcun reale rapporto sentimentale e da cui rimase spesso anche geograficamente distante. Tutto ciò le permise di continuare a studiare in Germania; ed è qui che conobbe Karl Weierstrass, uno dei matematici più influenti del suo tempo. Dopo un prima

conoscenza avvenuta nello studio del professore, il rapporto tra loro continuò a svilupparsi grazie alle evidenti doti matematiche di Kowaleski, che Weierstrass non poté fare a meno di assecondare. Infatti, continuò a impartirle lezioni private, fino ad arrivare a supervisionare il suo lavoro di ricerca.

Per quanto riguarda le idee politiche di Kowalevski, possiamo affermare con certezza storica la sua vicinanza a movimenti femministi e idee socialiste e radicali, le quali possono essere fatte risalire al suo background familiare e agli spunti che colse durante la sua esperienza di vita negli stati dell'odierna Europa. È certamente degno di nota il fatto che ricevette in regalo da Anna, sua sorella, diverse copie di riviste radicali di quel tempo, le quali discutevano del cosiddetto nichilismo antico¹.

Quello su cui vogliamo concentrare la nostra attenzione non sono le sue idee politiche, sociali e filosofiche, ma piuttosto sul suo contributo alla matematica. Kowaleski, con l'aiuto di quello che possiamo chiamare il suo mentore, arrivò a diverse scoperte importanti. Dopo diversi anni di collaborazione, arrivò a pubblicare ben tre tesi di dottorato in un solo anno: il 1874. Ma questo non è l'unico aspetto notevole, infatti, fu

¹Per i nichilisti antichi la scienza, e non la religione e la superstizione, appariva come il mezzo più efficace per aiutare la popolazione a condurre e rappresentava, quindi, verità e progresso.

1. Introduzione

anche la prima donna a conseguire un dottorato; ciò fu reso possibile dal supporto di Weierstrass, come emerge da una lettera che scrisse lui stesso a Fuchs, un suo collega all'Università di Berlino, a riguardo dell'approvazione delle tesi di Kowaleski. Inoltre le sue pubblicazioni, oltre che significative per quanto appena detto, si rivelarono delle pietre miliari della matematica. In particolare i temi trattati sono:

- Equazioni differenziali alle derivate parziali (EDP), teorema di Cauchy-Kowalevski
- Meccanica, Kowalevski top
- Integrali ellittici

Dopo il successo, coronato anche da alcuni premi, che naturalmente seguì alla pubblicazione di queste ricerche, ritornò per un periodo in Russia; scelta che però si rivelerà di fatto inutile per il proseguimento della sua carriera accademica. Successivamente, quando il marito a cui doveva l'opportunità di aver studiato in Germania venne a mancare, si trasferì in Svezia, dove collezionò un altro primato: divenne la prima donna al mondo professoressa di matematica, ottenendo la cattedra all'Università di Stoccolma.

Purtroppo la sua vita venne interrotta prematuramente all'età di 41 da una polmonite, che, considerando ciò quanto emerge dalle fonti, le impedì di portare avanti una sua grande passione: la produzione letteraria. Nonostante non abbia potuto esprimersi come avrebbe voluto in quest'ambito, esistono numerose sue rappresentazioni artistiche, sia in letteratura che nel cinema.

Citiamo di seguito le opere cinematografiche principali:

- Sofya Kowalevski (1985, Lenfilm, 3 episodi, 218 minuti), Ayan Gasanovna Shakhmaliyeva (1932-1999, originaria dell'Azerbaijan).
- A Hill on the Dark Side of the Moon (Svedese: Berget på månens baksida)(1983), Lennart Hjulström (1938-2022)

Citiamo di seguito le opere letterarie principali:

- un'autobiografia: A Russian Childhood (1978, Springer New York, NY), Sofya Kovalevskaya, tradotto e curato da Beatrice Stillman
- una biografia: Sonja Kovalevsky. Ciò che ho vissuto con lei e ciò che mi ha detto di sé (1982, Ed. Albert Bonniers, Stoccolma), Anne Charlotte Leffler (una cara amica di Kowaleski sorella del matematico Gösta Mittag-Leffler e moglie dell'algebrista italiano Pasquale del Pezzo)
- una biografia: Little Sparrow: A Portrait of Sophia Kovalevsky (1983, Ohio University Press, Athens, Ohio), Don H. Kennedy
- un romanzo biografico: Beyond the Limit: The Dream of Sofya Kovalevskaya (2002, Tom Doherty Associates, LLC), Joan Spicci (matematico ed educatore)
- un racconto biografico: *Too Much Happiness*² (2009, Harper's Magazine), Alice Munro (1931-2024, premio Nobel per la letteratura)

²il racconto ripercorre gli ultimi giorni di vita di Kowalevski arricchito da reminiscenze del passato che Munro ha acquisito da lettere, diari e scritti (documenti a cui ha potuto accedere tramite la moglie di Don H. Kennedy la quale è una lontana discendente di Kowlevski)

1.2 Il teorema di Cauchy-Kowalevski

Una volta introdotta la figura storia, possiamo ora fare il primo passo verso la scoperta di una delle ricerche di Kowaleski: il teorema di Cauchy-Kowalevski, che da qui in poi capiterà di abbreviare con l'acronimo TCK.

Innanzitutto descriviamo rapidamente il contesto scientifico di quel tempo relativo all'ambito delle EDP.

Padre di queste ricerche che si svolgevano nell'Ottocento è Augustin-Louis Cauchy, un matematico che sarà sicuramente noto al lettore. In quegli anni, in particolare tra il 1835 e il 1842, Cauchy si stava occupando di sviluppare la teoria delle funzioni olomorfe, già avviata da altre grandi personalità di spicco come Eulero, Laplace e Fourier.

Cauchy ebbe l'intuizione di applicare questi risultati alle equazioni differenziali.

Quello che è importante cogliere, cercando di calarsi nella mentalità di quel periodo, è che la teoria classica e le serie di potenze erano strumenti molto promettenti, in primis per la loro semplicità ed eleganza, ma anche per la potenzialità di approssimazione che racchiudeva un semplice troncamento di una serie.

Il tentativo di Cauchy di applicare alle equazioni differenziali gli strumenti ottenuti dalle sue ricerche fu un successo, ma si rivelò soltanto parziale per una semplice ragione: egli non riuscì ad andare oltre lo studio di equazioni differenziali ordinarie (EDO) e di EDP lineari.

Il salto avvenne proprio grazie a Kowalevski e Weierstrass. Quest'ultimo fu molto ottimista sui risultati che pensava si potessero raggiungere, forse ancora più di Cauchy: basti pensare che enunciò una congettura secondo la quale sarebbe stato possibile definire funzioni analitiche tramite equazioni differenziali, grazie a serie di potenze formali ricavate dalle espressioni delle equazioni. Per tale ragione spinse Kowalevski, insieme al suo talento, verso questo tema, nel quale lei seppe indagare molto più a fondo.

È sbagliato, però, pensare che le guide di Kowaleski furono soltanto Cauchy e Weierstrass: altri matematici si dedicarono a queste tematiche, tra i quali ricordiamo, tra i più importanti, Briot, Bouquet e Fuchs, che svilupparono meglio i concetti di singolarità, e Jacobi, che fornì per primo la definizione di equazione in forma normale³. Da queste basi, l'idea importante avuta da Kowalevski può essere riassunta in questo modo:

- 1. attuare un cambio di variabile che permettesse di scrivere un'equazione non lineare in forma normale (si vedano i capitoli 2 e 3 per il significato di questo termine), mantenendo le ipotesi di regolarità sui dati, e di potersi occupare dell'esistenza di una soluzione a questo sistema;
- 2. trasformare un'equazione qualsiasi in forma normale in un sistema quasi-lineare particolare;
- 3. applicare il metodo dei maggioranti già utilizzato da Cauchy per le sue scoperte su EDO ed EDP lineari.

Come accade spesso in matematica, la dimostrazione venne poi semplificata da E. Goursat in un suo libro di testo di analisi matematica risalente al 1900 circa. Inoltre, nel corso

³questo in particolare si rivelerà un concetto cruciale nella ricerca di Kowalevski

1. Introduzione

del tempo, vennero proposti enunciati e dimostrazioni più astratti e più generali, grazie al lavoro di Ovsyannikov, Treves e Nirenberg.

Notiamo rapidamente che anche Darboux raggiunse risultati molto simili a Kowalevski, ma con meno generalità, nello stesso periodo, infatti, entrambi pubblicarono le loro ricerche nel 1874.

Alla luce di quanto detto fino ad ora, ci poniamo alcune domande cruciali, a cui vogliamo trovare risposte quanto più esaustive possibile e che svolgeranno il ruolo di guida per il discorso che affronteremo:

- è possibile che esista una soluzione analitica a un sistema di EDP con dati di Cauchy? se sì
 - sotto quali ipotesi?
 - è unica?
 - il problema che ne risulta è ben posto?
 - quali applicazioni hanno i risultati ottenuti?

Capitolo 2

Strumenti fondamentali

Prima di addentrarci nella trattazione del teorema, richiamiamo alcune nozioni alla base di quanto diremo più avanti. In particolare, avere chiare queste informazioni risulterà cruciale per assicurarsi di aver compreso a fondo il significato delle ipotesi che richiederemo e le tecniche dimostrative utilizzate.

Prima di tutto, anche per cominciare a prendere familiarità con la notazione, ripassiamo la nomenclatura delle equazioni equazioni differenziali di ordine k, e di conseguenza degli operatori ad esse associate, con una tabella riassuntiva:

Lineare	$\sum_{ \alpha \le k} a_{\alpha} D^{\alpha} u = f$
Quasi-lineare	$\sum_{ \alpha =k} a_{\alpha}(x, D^{\beta}u) D^{\alpha}u + a_0(x, D^{\beta}u) = f,$
	$ \beta < k$
Non lineare	$F(x, D^{\alpha}u) = 0, \alpha \le k$
In forma normale	$D_t^k u = G(x, t, D_x^{\alpha} D_t^j u), \alpha + j \le k, \ j < k$

Osservazione. Da qui in poi non faremo sempre particolare attenzione alle assunzioni di regolarità dei dati delle equazioni $(f, a_{\alpha}, F, G$ e altro), poiché ai nostri scopi è sufficiente che le affermazioni siano vere nel caso in cui tutto sia assunto analitico (con un certo raggio di convergenza). In ogni caso, quando non specificato, la regolarità può essere considerata come almeno C^1 .

Osservazione. Nel caso di equazione in forma normale si dividono le variabili tra spazio $x \in \mathbb{R}^{n-1}$ e tempo t, per una ragione che sarà chiara una volta conclusa la lettura di questo capitolo.

Cominciamo già ad anticipare che, successivamente, i coefficienti e le funzioni che definiscono le equazioni li assumeremo molto regolari, per la precisione analitici (ovvero localmente sviluppabili in serie di potenze).

Alla luce di quanto detto fin'ora, ci rendiamo conto di come ci sarebbero già alcuni aspetti su cui sarebbe importante soffermarsi. Ma per essere più ordinati riassumiamo le nostre tematiche di interesse in quattro punti, i quali rispecchiano la struttura dei questo capitolo:

- 1. **superfici caratteristiche**: ovvero quelle superfici in \mathbb{R}^n che sono strettamente legate alla forma dell'equazione in osservazione e che possono essere fonte di problemi quando si decide di assegnare dei dati Cauchy su di esse;
- 2. **metodo delle caratteristiche**: nel caso di equazioni, anche non lineari, del primo ordine è possibile vedere un'EDP come un sistema di EDO dipendente da un parametro;
- 3. problemi di Cauchy: l'unica tipologia di problemi di cui ci occuperemo;
- 4. **serie di potenze**: costituiscono le fondamenta del concetto di funzione analitica (e olomorfa nel caso dei numeri complessi), ovvero l'unica tipologia di funzioni che cercheremo come soluzione.

2.1 Superfici caratteristiche

In questa prima sezione introduciamo il concetto di superficie caratteristica nei casi più semplici, in modo da comprenderne a pieno il significato. Cominciamo mettendoci nella situazione più semplice in assoluto, ovvero quella di un'equazione lineare. Tale equazione è univocamente determinata dal termine forzante che abbiamo chiamato f e da un operatore differenziale lineare $L = \sum_{|\alpha| \le k} a_{\alpha} D^{\alpha}$. Concentriamo la nostra attenzione su quest'ultimo e diamo tre definizioni.

Definzione 2.1.1. Forma caratteristica di L: $\chi_L(x,\xi) = \sum_{|\alpha|=k} a_{\alpha}(x) \xi^{\alpha}$ con $x,\xi \in \mathbb{R}^n$.

Definzione 2.1.2. Varietà caratteristica di L in x: $\operatorname{char}_x(L) = \{\xi \neq 0 : \chi_L(x,\xi) = 0\}.$

Definzione 2.1.3. Γ superficie caratteristica per L in $x \iff \nu(x) \in \text{char}_x(L)$.

Cerchiamo ora di indagare il significato di queste definizioni:

- Prima di tutto notiamo che quando $\xi \in \text{char}_x(L)$ è come se l'operatore non fosse "propriamente" di ordine k nella direzione ξ .
- Inoltre nel caso di operatore del primo ordine (k = 1), una superficie Γ è caratteristica quando $A = (a_1, \ldots, a_n)$ è tangente a Γ punto per punto (ovvero per ogni $x \in \Gamma$).
- E' possibile dimostrare che una superficie caratteristica "porta con sé più informazioni" nel momento in cui si assegnano delle condizioni di Cauchy su di essa. Infatti, note le derivate normali $D^i_{\nu}u$ (i < k) di una funzione u che vogliamo soddisfi l'equazione, nel caso in cui Γ non sia caratteristica in ogni punto, è possibile calcolare tutte le derivate parziali di u su Γ .

Specialmente l'ultima considerazione, a causa della scarsa rigorosità, potrebbe essere fonte di confusione ad una prima lettura. Esiste però un teorema, che mostra tale risultato in modo esplicito nel caso di equazioni quasi-lineari e che può essere trovato insieme alla dimostrazione in [Eva10, cap.4.6].

Considerando che ambiamo a dimostrare un teorema che si rivelerà molto generale, notiamo che, purtroppo, le equazioni lineari non saranno sufficienti a risolvere tutti i nostri problemi. Per questo motivo, vogliamo generalizzare immediatamente il concetto di superficie non caratteristica al caso quasi-lineare, anche se rimaniamo nel caso di equazione del primo ordine.

Supponendo di avere il problema di Cauchy

$$\begin{cases} \sum a_j(x, u) D_{x_j} u = b(x, u) \\ u = \phi \text{ su } \Gamma \end{cases}$$
 (2.1)

e che Γ abbia come parametrizzazione locale in un intorno di $x_0 \in \Gamma$ la funzione $\gamma(s) : \mathbb{R}^{n-1} \to \mathbb{R}^n$, forniamo la seguente generalizzazione, chiaramente ispirata al caso di operatori lineari del primo ordine.

Definzione 2.1.4. Γ non caratteristica in $x_0 = \gamma(s_0)$ se e solo se

$$\det \begin{bmatrix} D_{s_1} \gamma_1 & \cdots & D_{s_{n-1}} \gamma_1 \\ \vdots & & \vdots \\ D_{s_1} \gamma_n & \cdots & D_{s_{n-1}} \gamma_n \end{bmatrix} \begin{array}{c} a_1(\gamma, \phi(\gamma)) \\ \vdots \\ a_n(\gamma, \phi(\gamma)) \end{bmatrix} (s_0) \neq 0$$
span del piano tangente

Adesso è arrivato il momento di utilizzare queste definizioni per trarre qualche conseguenza utile.

2.2 Metodo delle caratteristiche

I problemi seguenti sono **equivalenti**.

EDP:
$$\begin{cases} \sum a_j(x, u) D_{x_j} u = b(x, u) \\ u = \phi \text{ su } \Gamma \end{cases}$$
 (2.2)

EDO:
$$\begin{cases} D_t x = A(x, y)^{-1} \\ D_t y = b(x, y) \\ x(0) = x_0 \\ y(0) = \phi(x_0) \quad \forall x_0 \in \Gamma \end{cases}$$
 (2.3)

Dove y = u(x) e $A(x, y) = [a_1(x, y), \dots, a_n(x, y)].$

Teorema 2.2.1.

Ipotesi | Problema (2.2)
$$a_{j}, b, \phi, \Gamma \in C^{1}$$

$$\Gamma \text{ non caratteristica}$$

$$Tesi | \exists! \text{ soluzione } C^{1} \text{ in un intorno } di \Gamma$$

Dimostrazione: sfruttando il teorema di esistenza e unicità locale per EDO QED

si può generalizzare tutto (superfici caratteristiche e metodo delle caratteristiche) al caso non lineare (primo ordine), non lo facciamo perché il metodo delle caratteristiche ci servirà solo nel caso quasi lineare e per la def di non caratteristicità seguiamo un altro approccio più rapido ed equivalente.

¹le soluzioni x vengono dette curve caratteristiche

2.3 Problemi di Cauchy

- Spesso utilizzato quando la superficie dei dati non è un bordo.
- Necessita anche le **derivate normali** $(D^j_{\nu}u)$ della soluzione sulla superficie per determinarla univocamente.
- Porta con sé il rischio di essere **sovradeterminato** (buono per l'unicità e meno per l'esistenza della soluzione).

Non ci preoccupiamo della regolarità delle funzioni perché poi le assumeremo analitiche. Problema generale

$$\begin{cases} F^*(x, D^{\alpha}u^*) = 0 & |\alpha| \le k, F^* \text{ almeno } C^1 \\ D^j_{\nu}u^* = \phi^*_j & \text{su } \Gamma^* \text{ per } j < k \end{cases}$$

Mappatura in t = 0

Detta γ^* la parametrizz. locale di Γ^* , applichiamo la mappa:

$$\Phi(x) = \begin{bmatrix} x_1 & \cdots & x_{n-1} & x_n - \gamma^*(x_1, \dots, x_{n-1}) \end{bmatrix}$$

Immagine da [Eva10, cap.8]

1. Selezioniamo una variabile privilegiata e chiamiamola "tempo":

$$t \leftarrow x_n x \leftarrow (x_1, \dots, x_{n-1})$$

- 2. Chiamiamo $\Gamma_0 = \{t = 0\}.$
- 3. Indichiamo le derivate nel modo seguente: $D_x^{\alpha} D_t^j u$.
- 4. Otteniamo il problema $(u^* = u(\Phi))$:

$$\begin{cases} F(x, t, D_x^{\alpha} D_t^j u) = 0 & |\alpha| + j \le k \\ D_t^j u(x, 0) = \phi_j(x) & \text{per } j < k \end{cases}$$

Superfici non caratteristiche in generale

Definzione 2.3.1. Γ^* (o Γ_0) è non caratteristica \iff l'equazione su Γ_0 può essere riscritta in **forma normale** rispetto a t.

Osservazione. Si dimostra che è coerente con le definizioni precedenti.

Osservazione. • Caso lineare \rightarrow condizione sui coefficienti.

 \bullet Caso non lineare \to validità ipotesi teorema del Dini su F.

2.4 Serie di potenze

Dando per nota la teoria delle funzioni olomorfe, e di conseguenza anche la teoria base delle funzioni analitiche (reali), in questo paragrafo vogliamo scoprire, o conoscere meglio, solamente degli strumenti molto specifici che ci permetteranno di dimostrare il TCK. Cominciando dallo studiare uno sviluppo in serie di potenze di una funzione di cui non dobbiamo dimenticarci.

Definzione 2.4.1. Funzione maggiorante:

$$\mathcal{M}_{Cr}(x) = \frac{Cr}{r - (x_1 + \ldots + x_n)}$$

Utilizzando il teorema multinomiale, dimostriamo che la questa funzione può essere sviluppata in serie di potenze per |x| < r/n, ricavandone l'espressione dei coefficienti c_{α} :

$$\mathcal{M}_{Cr}(x) = \frac{Cr}{r - (x_1 + \dots + x_n)} = C \sum_{j=0}^{\infty} \left(\frac{x_1 + \dots + x_n}{r} \right)^j$$
$$= C \sum_{j=0}^{\infty} \frac{1}{r^j} \sum_{\alpha} {|\alpha| \choose \alpha} x^{\alpha} = \sum_{\alpha} C \frac{|\alpha|!}{\alpha! r^{|\alpha|}} x^{\alpha}.$$

A partire da questo risultato, vogliamo enunciare due teoremi, che costituiscono la spina dorsale del cosiddetto metodo dei maggioranti, ideato per la prima volta da Cauchy, e che permettono di giustificare la terminologia introdotta poco fa.

Teorema 2.4.1 (utilità del maggiorante).

$$\begin{array}{c|c} Ipotesi & g_{\alpha} \geq |f_{\alpha}| \\ & \sum g_{\alpha}x^{\alpha} \ ha \ raggio \ di \ conv. \ R \\ \\ Tesi & \sum f_{\alpha}x^{\alpha}ha \ raggio \ almeno \ R \end{array}$$

Teorema 2.4.2 (costruzione del maggiorante).

Ipotesi
$$\int f_{\alpha}x^{\alpha} \text{ ha raggio } R$$

$$Tesi \quad \exists r < R, C > 0 : |f_{\alpha}| \le C \frac{|\alpha|!}{\alpha! r^{|\alpha|}}$$

Dimostrazione: E' sufficiente notare che prendendo $C \ge |f_{\alpha}r^{|\alpha|}|$ si ha come conseguenza immediata che

$$|f_{\alpha}| \leq C \frac{1}{r^{|\alpha|}} \leq C \frac{|\alpha|!}{\alpha! r^{|\alpha|}}.$$

QED

Nel caso in cui valgano le ipotesi del teorema 2.4.1 scriveremo: $\sum g_{\alpha}x^{\alpha} \gg \sum f_{\alpha}x^{\alpha}$. Osservazione. Gli stessi teoremi continuano a valere nel caso dei numeri complessi.

2.5 Note

Cosa si intende per superficie analitica superfici caratteristiche e calcolo di tutte le derivate parziali:

- \bullet caso t=0
- caso generale

Capitolo 3

Il teorema di Cauchy-Kowalevski

Schema dell'approccio: seguendo l'ordine cronologico di scoperta procediamo per **generalizzazioni progressive**:

- 1. EDO
- 2. EDP quasi-lineari
- 3. EDP in forma normale

3.1 EDO

Teorema 3.1.1.

$$A \subseteq \mathbb{C}, B \subseteq \mathbb{C}^n \ aperti$$

$$\Omega \subseteq A \ aperto \ connesso$$

$$f: A \times B \to \mathbb{C}^n \ olomorfa$$

$$Pb: \begin{cases} y' = f(x,y) & \forall x \in \Omega \\ y(x_0) = y_0 \end{cases}$$
 Tesi | localmente esiste un'unica soluzione olomorfa

Stima del raggio

Teorema 3.1.2.

$$Ipotesi \qquad Ipotesi \ del \ teorema \ precedente \\ \exists \ \overline{B_a(x_0)} \subseteq A, \ \overline{B_b(y_0)} \subseteq B$$

$$Tesi \qquad La \ soluzione \ converge \ almeno \ con \ raggio^1\widetilde{r} = a \left[1 - \exp\left(-\frac{b}{aM(n+1)}\right)\right]$$

 $^{{}^{1}}M = \max_{B_a(x_0), B_b(y_0)} |f|$

3.2 EDP quasi-lineari

Teorema 3.2.1.

Ipotesi
$$\begin{cases} A_j, \ B \ analitici \\ Pb: \begin{cases} D_t \ y = \sum\limits_{j=1}^{n-1} A_j(x,y) D_{x_j} y + B(x,y) \\ y = 0 \quad su \ \Gamma_0 \end{cases}$$
Tesi
$$\exists! \ y(x,t) : \mathbb{R}^n \to \mathbb{R}^m \ sol. \ analitica \ in \ intorno \ dell'origine$$

Dimostrazione: 1. ipotizziamo $y_h = \sum c_h^{\alpha j} x^{\alpha} t^j$

2. inserendo le serie di y, A_j , B si ottiene che:

$$c_h^{\alpha j} = Q_h^{\alpha j}$$
 (coeff. delle serie di A_j, B)

 ${\cal Q}$ polinomio a coefficienti non negativi

3.
$$\widetilde{A}_i \gg A_i$$
, $\widetilde{B} \gg B \implies \widetilde{y} \gg y$ grazie a Q

4. si scelgono \widetilde{A}_i , \widetilde{B} in modo da poter calcolare esplicitamente \widetilde{y} analitica con il metodo delle caratteristiche

QED

Sistema maggiorante

Come sappiamo già fare, maggioriamo le serie con

$$\mathcal{M}_{Cr}(x,y) \gg A_i, B$$

e risolviamo il problema²:

$$\begin{cases} D_t \, \widetilde{y}_h = \mathcal{M}_{Cr} \left[\sum_{i,j} D_{x_j} \widetilde{y}_i + 1 \right] \\ \widetilde{y}_h = 0 \quad \text{su } \Gamma_0 \end{cases}$$

Soluzione maggiorante

Il sistema precedente ha come soluzione:

$$\widetilde{y}_h(x,t) = u(x_1 + \dots + x_n, t) \quad \forall h$$

con

$$u(s,t) = \frac{r - s - \sqrt{(r-s)^2 - 2tCrmn}}{mn},$$

di cui possiamo studiare il raggio di convergenza.

Stima del raggio di convergenza

Teorema 3.2.2. La soluzione del teorema 3.2.1 converge con raggio almeno

$$\widetilde{r} = \frac{1}{n-1} \frac{r}{8Cmn} \ con \ C \ge \frac{1}{2}$$

 $^{^{2}}$ con h = 1, ..., m

Osserviamone l'andamento 3 rispetto a r, sapendo che:

$$r < \min\{raggi\ di\ conv.\ dei\ coefficienti\ a_{ml}^j,\ b_m\}$$

$$r < \min\{raggi\ di\ conv.\ dei\ coefficienti\ a_{ml}^j,\ b_m\}$$

$$C \ge \max\left\{\max_{j,m,l,\alpha} \left|a_{ml}^j\ r^{|\alpha|}\right|\right\}$$

$$\max_{m,\alpha} \left|b_m\ r^{|\alpha|}\right|$$

³trade-off Cr

3.3 EDP in forma normale

Teorema 3.3.1. I due problemi seguenti sono equivalenti

$$non\ lineare: \begin{cases} D_t^k u = G(x, D_x^{\alpha} D_t^j u) & |\alpha| + j \leq k, \ j < k \\ D_t^j u = \phi_j & su \ \Gamma_0, \ j < k \end{cases}$$

$$quasi-lineare: \begin{cases} D_t y = \sum_{j=1}^{n-1} A_j(x, y) D_{x_j} y + B(x, y) \\ y = 0 & su \ \Gamma_0 \end{cases}$$

Dimostrazione: 1. Si costruisce il sistema in modo tale che $y_{\alpha j} = D_x^{\alpha} D_t^j u$ Le matrici A_j e B saranno quindi ricavabili dalle espressioni⁴:

$$D_t y_{\alpha j} = y_{\alpha(j+1)} \qquad |\alpha| + j < k$$

$$D_t y_{\alpha j} = D_{x_i} y_{(\alpha-1_i)(j+1)} \qquad |\alpha| + j = k, \ j < k$$

$$D_t y_{0k} = D_t G + \sum_{|\alpha|+j < k} D_{y_{\alpha j}} G y_{\alpha(j+1)}$$

$$+ \sum_{|\alpha|+j=k, \ j < k} D_{y_{\alpha j}} G D_{x_i} y_{(\alpha-1_i)(j+1)}$$

I dati di Cauchy saranno invece:

$$y_{\alpha j}(x,0) = D_x^{\alpha} \phi_j(x)$$
 $j < k$

$$y_{0k}(x,0) = G(x,0,D_x^{\alpha} \phi_j(x))$$
 $|\alpha| + j \le k, j < k$

- 2. rimozione $\phi: y(x,t) \leftarrow y(x,t) \phi(x)$
- 3. rimozione t: si aggiunge la variabile $y^0 = t$ (con relativa equazione)

QED

Versione "olomorfa"

Come nel caso delle EDO tutto si estende in modo **immediato** al caso complesso assumendo i dati olomorfi.

 $^{^{4}}i(\alpha) = \min\{i : \alpha \neq 0\}$

3.4 note

edp quasi lin, IDEE CHIAVE:

- RISCRIVERE L'EQUAZIONE IN FORMA DI EVOLUZIONE
- METODO DEI MAGGIORANTI: inserire nell'equazione delle serie di potenze, ottenere informazioni sui coefficienti, stimare questi coefficienti, dimostrare che la stima (una maggiorazione!) converge.
- METODO DELLE CARATTERISTICHE

Versione per EDP quasi-lineari Rifacendoci a Evans, e quindi anche usando la notazione in esso presente, assumiamo che i coefficienti del sistema B_j e c abbiano come raggi di convergenza $r_{B_j} > 0$ e $r_c > 0$ di conseguenza per il Lemma nel capitolo 4.6.2 si osserva che affinché la maggiorazione valga è necessario che $r < \min\{\min_j\{r_{B_j}\}, r_c\}$. Consideriamo ora la funzione

$$\nu = \frac{r - s - \sqrt{(r - s)^2 - 2tCrmn}}{mn}$$

e ricordiamone alcune proprietà:

1. E' interessante perché essa alla conclusione della dimostrazione del teorema di CK permette di scrivere in forma compatta la soluzione del problema maggiorante nella seguente forma:

$$u = \nu(x_1 + \ldots + x_{n-1}, t)[1, \ldots, 1]^T$$

- 2. Essa è analitica in un intorno dell'origine, in particolare per $t < \frac{(r-s)^2}{2Crmn}$ e di conseguenza anche in $B_h(0,0)$ con $h = \frac{r}{8Cmn}$.
- 3. In $B_h(0,0)$ vale la condizione $s^2 + m\nu^2(s,t) < r^2$
- 4. Unendo le ultime due condizioni si ottiene che la soluzione è maggiorante in

Versione per EDP non lineari: riscrivere l'equazione come un problema di evoluzione (vedi pdf)

Capitolo 4 Esempi

Dopo aver visto il teorema di Cauchy-Kowalevski in tutte le sue forme più note, si concentra ora lo sguardo su tre esempi importanti che aiutano a inquadrare meglio il ruolo che giocano le ipotesi e i limiti di questo teorema.

Tale discussione risulta particolarmente di rilievo, poiché per molto tempo si ritenne ragionevole pensare che un'equazione differenziale con coefficienti piuttosto regolari, come ad esempio C^{∞} , dovesse avere almeno una soluzione. Questo, però, oltre al caso di analiticità trattato dal teorema, oggetto del capitolo, in generale, non accade.

4.1 Esempio di Lewy

Questo primo esempio è decisamente il più importante ed interessante tra quelli qui trattati, proprio perché permette di introdurre in modo più rigoroso il problema appena citato.

Nel 1957 Hans Lewy propose questo semplice controesempio, volto a mostrare come l'ipotesi di **analiticità** nel teorema di Cauchy-Kowalevski fosse cruciale, portando un caso di un operatore differenziale lineare con coefficienti analitici che necessita della presenza di una forzante anch'essa analitica per possedere delle soluzioni almeno C^1 .

Ciò mostra come sia cruciale, non solo una discussione sulle condizioni sufficienti per l'esistenza di soluzioni locali, ma anche una sulle condizioni necessarie. Infatti Hörmander, matematico che contribuì ampiamente alla teoria delle equazioni lineari, rispose all'emersione di questo problema proprio con delle condizioni necessarie per l'esistenza di soluzioni locali (e quindi anche globali!) per equazioni lineari, le quali ispirarono poi a loro volta il lavoro di Treves e Nirenberg volto alla ricerca di condizioni necessarie e sufficienti.

20 4. Esempi

Preliminarmente si riportano qui sotto gli enunciati di due teoremi che torneranno utili nella discussione:

Formula di Green in \mathbb{C} 4.1.1.

$$\begin{array}{c|c} Ipotesi & D \subseteq \mathbb{C} \ dominio \ regolare \\ f: D \to \mathbb{C} \\ f \in H(\mathring{D}) \\ \\ Tesi & \oint\limits_{\partial^+ D} f(z) \, dz = 2i \iint\limits_{D} \frac{\partial f}{\partial \overline{z}}(x+iy) \, dx dy \\ \end{array}$$

Osservazione. La definizione di dominio regolare non tornerà particolarmente utile, infatti ai fini di questa trattazione è sufficiente sapere che una qualsiasi palla chiusa è regolare (questo verrà utilizzato nella dimostrazione del teorema 4.1.3). Per una formalizzazione di questo concetto si veda [FMS20, cap.8], dove è presente una trattazione dell'analogo teorema in \mathbb{R}^2 che va sotto il nome di "Formule di Gauss-Green" e "Formula di Stokes", di quale la generalizzazione in \mathbb{C} è immediata.

Principio di riflessione di Schwarz 4.1.2.

$$D\subseteq \mathbb{C} \ dominio \ regolare \ e \ simmetrico \ rispetto \ a \ \mathbb{R}$$

$$D\cap \mathbb{R} \ \grave{e} \ un \ intervallo$$

$$f:D\rightarrow \mathbb{C}$$

$$f(\mathbb{R}\cap D)\subseteq \mathbb{R}$$

$$f\in H(\mathring{D})$$

$$Tesi \qquad f(\overline{z})=\overline{f(z)} \ \forall z\in \mathring{D}$$

Osservazione. La definizione di insieme simmetrico rispetto a \mathbb{R} è data in modo naturale: esso deve soddisfare la condizione $z \in D \implies \overline{z} \in D$.

Per entrare nel vivo dell'esempio, si definisce il seguente operatore:

$$L = D_x + iD_y - 2i(x+iy)D_t$$

che soddisfa le proprietà precedentemente enunciate e il cui comportamento peculiare emerge dal teorema che si enuncia di seguito.

Teorema 4.1.3.

Dimostrazione: Innanzitutto si fissa un R > 0 tale che $\{(x, y, t) : x^2 + y^2 < R^2, |t| < R\}$ sia contenuto nell'intorno dell'origine delle ipotesi (ovviamente questo R esiste sempre) e si procede seguendo questi passi:

1. Si definisce la funzione:

$$V(t,s) = \int_{\gamma_r} u(x,y,t) dz \quad \text{con} \quad \begin{cases} t \in (-R,R) \\ r^2 = s \in [0,R^2) \\ \gamma_r = \partial^+ B_r(0,0) \\ z = x + iy \end{cases}$$

2. Si ricerca una relazione tra V_s e V_t :

$$V = i \iint_{B_r(0,0)} (u_x + iu_y)(x, y, t) dx dy$$
per formula di Green
$$= i \int_0^r \int_0^{2\pi} (u_x + iu_y)(\rho \cos \theta, \rho \sin \theta, t) \rho d\rho d\theta$$
in coordinate polari
$$V_r = i \int_0^{2\pi} (u_x + iu_y)(\rho \cos \theta, \rho \sin \theta, t) r d\theta$$
derivando
$$= \int_{\gamma_r} (u_x + iu_y)(x, y, t) r \frac{dz}{z}$$

$$V_s = \frac{1}{2r} V_r = \int_{\gamma_r} (u_x + iu_y)(x, y, t) \frac{dz}{2z}$$

$$= \int_{\gamma_r} u_t(x, y, t) dz + \int_{\gamma_r} f(t) \frac{dz}{2z}$$
usando $Lu = f$

$$= iV_t + \pi i f(t)$$
(4.1)

3. Si definiscono le funzioni:

$$F(t) = \int_0^t f(\tau) d\tau$$
$$U(t,s) = V(t,s) + \pi F(t) .$$

e si osservano le seguenti proprietà di U vista come funzione di w = t + is:

- si verifica che soddisfa l'equazione di Cauchy-Riemann $U_t + iU_s = 2U_{\overline{z}} = 0$ utilizzando la relazione (4.1),
- olomorfa per $(s,t) \in (0,R^2) \times (-R,R)$ per la proprietà precedente,
- continua per $(s,t) \in [0,R^2) \times (-R,R)$ perché lo è V,
- $U(0,t) = \pi F(t)$ per $t \in (-R,R)$, ovvero assume valori reali sull'asse reale.
- 4. Si prolunga analiticamente U in un intorno dell'origine, infatti, date le proprietà appena osservate, valgono le ipotesi del principio di riflessione di Schwarz che ci permette di definire U per $s \in (-R^2, 0)$ con la seguente formula:

$$U(t,s) = \overline{U(t,-s)}.$$

5. Si conclude il ragionamento notando che, se il prolungamento di U è analitico in un intorno dell'origine, lo deve essere anche $U(t,0) = \pi F(t)$ e anche f = F'.

22 4. Esempi

QED

Generalizzazione. Il teorema appena trattato si presta, in realtà, anche a una generalizzazione interessante e l'idea è la seguente: si cerca di mostrare che, nonostante la forma caratteristica di L non abbia punti singolari, è possibile scegliere una forzante $F \in C^{\infty}(\mathbb{R}^3, \mathbb{R})$ in modo tale che **ovunque** l'equazione differenziale Lu = F non ammetta soluzioni.

Osservazione. Dati due spazi matrici (X, d_X) e (Y, d_Y) , con la notazione C(X, Y) con $k \in \mathbb{N} \cup \{\infty\}$ si indica l'insieme delle funzioni continue del tipo $h : X \to Y$. Nel caso in cui $X = \mathbb{R}^n$ e $Y = \mathbb{R}^m$ si usa la notazione $C^k(\mathbb{R}^n, \mathbb{R}^m)$ naturalmente per le funzioni C^k .

Prima di scendere nello specifico di questa seconda parte della discussione dell'esempio di Lewy, è utile richiamare tre definizioni:

Definzione 4.1.1. Un sottoinsieme D di uno spazio topologico X è denso se per ogni $A \in X$ aperto $D \cap A \neq \emptyset$.

Definzione 4.1.2. Un sottoinsieme E di uno spazio metrico è senza parte interna se $\mathring{E} = \emptyset$.

Definzione 4.1.3. Uno spazio topologico viene detto "di Baire" se l'unione numerabile di ogni famiglia di insiemi chiusi con interno vuoto ha interno vuoto.

La ragione per cui si citano questi concetti è che si è interessati a un teorema, o per meglio dire, a un suo corollario, che permette di sviluppare un argomento per assurdo, nel caso si abbia a che fare con spazi metrici completi. Si riportano di seguito gli enunciati.

Teorema della categoria di Baire 4.1.4.

$$(X,d) \ spazio \ metrico \ completo$$

$$\{A_n\}_{n\in\mathbb{N}}\subseteq 2^X \ famiglia \ di \ insiemi \ aperti \ densi \ in \ X$$

$$\{E_n\}_{n\in\mathbb{N}}\subseteq 2^X \ famiglia \ di \ insiemi \ chiusi \ e \ senza \ parte \ interna$$

$$Tesi \ 1 \qquad \bigcap_{n\in\mathbb{N}} A_n \ \grave{e} \ denso \ in \ X$$

$$Tesi \ 2 \qquad \bigcup_{n\in\mathbb{N}} E_n \ \grave{e} \ senza \ parte \ interna$$

Osservazione. Con questo teorema si mostra proprio come gli spazi metrici completi siano di Baire nella topologia indotta dalla metrica. Si veda [RF10, cap.10] per la dimostrazione e maggiori dettagli.

Corollario (argomento per assurdo di Baire) 4.1.5.

$$| (X,d) \text{ spazio metrico completo}$$

$$\{E_n\}_{n\in\mathbb{N}} \subseteq 2^X \text{ famiglia di insiemi chiusi}$$

$$X = \bigcup_{n\in\mathbb{N}} E_n$$

$$\exists n \in N \text{ tale che } \mathring{E_n} \neq \emptyset$$

Osservazione. Questo enunciato è la proposizione contronominale della Tesi 2 del teorema 4.1.4 e, come è stato anticipato, può essere usato per ottenere un assurdo esibendo un spazio metrico completo uguale all'unione di una famiglia di insiemi chiusi e senza parte interna.

Il secondo importante risultato di analisi funzionale, che giocherà un ruolo importante per raggiungere lo scopo dichiarato, è il teorema di Ascoli-Arzelà: un teorema "di compattezza", il quale sostituisce il teorema di Heine-Borel nel compito di ricerca di una sottosuccessione convergente, nel caso in cui non si abbia a che fare con spazi metrici di cui sia nota la proprietà di compattezza. In particolare, verrà utilizzato per dimostrare che un insieme (di cui si capirà la struttura più avanti) è chiuso, sfruttando la proprietà di convergenza uniforme che la tesi garantisce.

Per comprendere a pieno l'enunciato di tale teorema, si richiamano insieme ad esso due definizioni.

Definzione 4.1.4. Una successione di funzioni $\{f_n: X \to \mathbb{R}\}_{n \in \mathbb{N}_0}$ si dice uniformemente limitata in X se $\exists M \geq 0$ tale che $|f_n| \leq M$ in X.

Definzione 4.1.5. Una successione di funzioni $\{f_n : X \to \mathbb{R}\}_{n \in \mathbb{N}_0}$ si dice equicontinua in X se $\forall \varepsilon > 0 \ \exists \ \delta > 0$ tale che $d(x,y) < \delta \implies |f_n(x) - f_n(y)| < \varepsilon \ \forall x,y \in X, \ \forall n \in \mathbb{N}_0$.

Teorema di Ascoli-Arzelà 4.1.6.

```
Ipotesi  \begin{cases} (X,d) \text{ spazio metrico completo} \\ \{f_n: X \to \mathbb{R}\}_{n \in \mathbb{N}_0} \text{ successione di funzioni} \\ - \text{ uniformemente continua} \\ - \text{ equilimitata} \end{cases} 
Tesi \mid \exists f \in C(X,\mathbb{R}), n_k \text{ tali che } f_{n_k} \to f \text{ uniformemente}
```

Dopo aver inquadrato questi strumenti, è arrivato il momento di entrare nel merito della discussione e lo si fa con uno schema che presenta per punti e a grandi linee il ragionamento da affrontare:

- 1. traslare il problema del teorema 4.1.3 in modo da ricondursi al caso di un generico punto (x_0, y_0, t_0) , usando come forzante la funzione $g(x, y, t) = f(t 2xy_0 + 2x_0y)$ (lemma 4.1.7);
- 2. costruire una funzione $S_a \in C^{\infty}$ per ogni $a \in l^{\infty}$ (lemma 4.1.8);
- 3. costruire degli insiemi $E_{j,n} \subseteq l^{\infty}$ chiusi e senza parte interna sfruttando S_a e il teorema di Ascoli-Arzelà (lemma 4.1.9);
- 4. concludere la dimostrazione del teorema 4.1.10 utilizzando i lemmi appena citati per ricavare, con un ragionamento per assurdo, l'uguaglianza $l^{\infty} = \bigcup E_{j,n}$, grazie alla quale si può applicare l'argomento di Baire.

Di seguito si dettagliano i passaggi appena elencati con enunciati e dimostrazioni.

24 4. Esempi

Lemma 4.1.7.

$$Ipotesi \qquad | \begin{array}{c} F \in C^{\infty}(\mathbb{R}, \mathbb{R}) \\ (x_0, y_0, t_0) \in \mathbb{R}^3 \\ u \in C^1 : Lu(x, y, t) = F'(t - 2xy_0 + 2x_0y) \ in \ un \ interno \ di \ (x_0, y_0, t_0) \\ Tesi \qquad | \begin{array}{c} F \ e \ F' \ sono \ analitiche \ in \ un \ interno \ di \ t = t_0 \end{array}$$

Dimostrazione: sfruttando l'invarianza dell'operatore L rispetto a

$$T(x, y, t) = (x + x_0, y + y_0, t + t_0 + 2xy_0 - 2x_0y),$$

ovvero la validità dell'identità (facile da verificare) $L(u \circ T) = (Lu) \circ T$, si deduce che, se u è soluzione dell'equazione delle ipotesi, essa rende vera in un intorno dell'origine anche l'espressione:

$$L(u \circ T)(x, y, t) = f(t + t_0) \text{ con } f = F'.$$
 (4.2)

Chiaramente $u \circ T \in C^1$ e $g(t) = f(t+t_0)$ soddisfano le ipotesi del teorema 4.1.3 e quindi applicandolo alla seconda equazione la tesi è dimostrata. QED

Osservazione. L'analiticità di F segue dall'ultimo passaggio della dimostrazione del teorema 4.1.3, tendendo in considerazione del fatto che essa è della forma $F(t) = \int_0^t f(\tau) + c \cos c \in \mathbb{R}$.

Osservazione. L'equazione (4.2) vale in un intorno dell'origine poiché l'operatore T rende \mathbb{R}^3 un gruppo, noto in generale come gruppo di Heisenberg, e agisce in questo contesto come una traslazione.

Lemma 4.1.8.

$$\{(x_{j}, y_{j}, t_{j})\}_{j=1}^{\infty} \ denso \ in \mathbb{R}^{3}$$

$$c_{j} = 2^{-j}e^{-\rho_{j}} \ con \ \rho_{j} = |x_{j}| + |y_{j}| \quad \forall j \in \mathbb{N}_{0}$$

$$a = \{a_{n}\}_{n=1}^{\infty} \in l^{\infty}$$

$$F \in C^{\infty}(\mathbb{R}, \mathbb{R}) \ periodica \ e \ non \ analitica$$

$$f_{j}(x, y, t) = F'(t + 2xy_{j} - 2x_{j}y)$$

$$Tesi \ 1 \qquad S_{a} = \sum_{j=1}^{\infty} a_{j}c_{j}f_{j} \ converge \ uniformemente \ in \mathbb{R}^{3}$$

$$Tesi \ 2 \qquad lo \ stesso \ vale \ per \ le \ derivate \ formali \ D^{\alpha}S_{a} = \sum_{j=1}^{\infty} a_{j}c_{j}D^{\alpha}f_{j}$$

Osservazione. Naturalmente S_a è una funzione C^{∞} .

Dimostrazione: Siccome $F \in C^{\infty}$ ed è periodica si definisce $M_k = \sup_t \left| F^{(k)}(t) \right| \in \mathbb{R} \quad \forall k \in \mathbb{N}$. E ciò permette di scrivere, per ogni α multi-indice e $j \in \mathbb{N}_0$, le seguenti disuguaglianze:

$$|a_{j}c_{j}D^{\alpha}f_{j}| \leq ||a||_{\infty} 2^{-j} e^{-\rho_{j}} M_{|\alpha|+1} \rho_{j}^{|\alpha|}$$

$$\leq ||a||_{\infty} 2^{-j} M_{|\alpha|+1} \left(\frac{|\alpha|}{e}\right)^{|\alpha|} \qquad \text{poichè } \max_{x \geq 0} \frac{x^{|\alpha|}}{e^{x}} = \left(\frac{|\alpha|}{e}\right)^{|\alpha|}$$

$$(4.4)$$

 $D^{\alpha}S_{a}$ converge totalmente, e quindi anche uniformemente, essendo che la serie

$$\sum_{j=1}^{\infty} \sup_{\mathbb{R}^3} |a_j c_j D^{\alpha} f_j|$$

ha un termine generale minore o uguale della parte destra della disuguaglianza (4.4), la cui corrispondente serie numerica è ovviamente convergente.

QED

Osservazione. Prima di proseguire è utile soffermarsi brevemente su due questioni:

- l^{∞} è una spazio di Banach se dotato della norma: $||b||_{\infty} = \sup_{n} |b_{n}|$ per ogni $b \in l^{\infty}$;
- \bullet esiste una funzione f con le proprietà delle ipotesi: per esempio, la funzione

$$F(x) = \sum_{n=1}^{\infty} \frac{\cos(n! x)}{(n!)^n}$$

è definita da un serie puntualmente convergente ed è $C^{\infty}(\mathbb{R}, \mathbb{R})$, inoltre è periodica di periodo 2π e si può dimostrare che essa non è analitica in nessun punto $x \in \mathbb{R}$. Sopratutto per quest'ultimo aspetto si veda il problema 4 presente in [Joh82, cap.3] per maggiori dettagli.

Notazione. $A_{j,n} = B_{n^{-1/2}}(x_i, y_i, t_i)$ dove (x_i, y_i, t_i) sono i punti nelle ipotesi del lemma 4.1.8.

Lemma 4.1.9.

Dimostrazione: si dimostrano separatamente le due proprietà:

1. Per quanto riguarda la proprietà di chiusura, si vuole mostrare che se $\{a^k\}\subseteq E_{j,n}$ è tale che $a^k \xrightarrow{l^{\infty}} a$ allora $a \in E_{j,n}$. Ciò, a sua volta, si riduce a mostrare l'esistenza di una funzione u con le proprietà in (4.5).

Si deduce immediatamente che $S_{a^k} \to S_a$ in modo uniforme, poiché $|S_a - S_{a^k}| \le M_1 ||a - a^k||$ per la (4.4) con $\alpha = 0$. Inoltre, per le ipotesi su a^k esiste una funzione u_k che risolve l'equazione $Lu_k = S_{a^k}$ e che soddisfa le altre proprietà in (4.5). Proprio grazie a queste ultime u_k soddisfa le ipotesi del teorema di Ascoli-Arzelà con $X = A_{j,n}$, quindi per una qualche u vale che $u_{k_h} \to u$ uniformemente .

26 4. Esempi

In particolare, sfruttando il fatto che L è un operatore del primo ordine, si ricava facilmente che $Lu=S_a$ in $A_{i,n}$ poiché

$$Lu_{k_h} \to Lu$$
 uniformemente per le proprietà di u_k
$$\parallel S_{a^{k_h}} \to S_a$$
 uniformemente

e che u eredita tutte le altre proprietà in (4.5) da u_k grazie alla convergenza uniforme.

2. In ultimo si vuole mostrare che $\mathring{E}_{j,n} = \emptyset$ ragionando per assurdo. Si suppone che esista una successione a interna a $\mathring{E}_{j,n}$. Definendo poi

$$\delta_j = \frac{1}{c_j} \mathbb{1}_{\{j\}} \in l^{\infty},$$

si osserva che esiste un $\theta \in \mathbb{R}$ abbastanza piccolo tale che $a' = a + \theta \delta_j \in E_{j,n}$. Siano ora u e u' le soluzioni rispettivamente di $Lu = S_a$ e di $Lu = S_{a'}$ con le proprietà in (4.5) e sia

$$u'' = \frac{u' - u}{\theta}.$$

Chiaramente è vero che $u'' \in C^1$; inoltre si deduce immediatamente usando la linearità di L e la definizione della serie S, che vale la relazione

$$Lu'' = S_{\delta_j} = f_j,$$

ma ciò entra in contraddizione con il lemma 4.1.7 (di cui valgono tutte le ipotesi), non essendo F analitica.

QED

Teorema 4.1.10.

Osservazione. L'arbitrarietà di A implica che questo valga per tutti gli aperti di \mathbb{R}^3 e quindi che Lu=F non abbia soluzioni C^1 e con derivate prime continue secondo Hölder da nessuna parte.

Osservazione. La tesi implica come conseguenza naturale che non esistano nemmeno soluzioni C^k per ogni $k \geq 1$, in quanto $C^k \subset C^1$.

Dimostrazione: Si ragiona per assurdo e si conclude nei seguenti tre passi (di cui il secondo è quello che merita più attenzione).

1. $E_{j,n} \subseteq l^{\infty}$ per ogni $j, n \in \mathbb{N}_0$ ovviamente.

2. $a \in l^{\infty} \implies a \in E_{j,n}$ per qualche $j, n \in \mathbb{N}_0$ (i quali dipendono da a).

Supponendo la tesi falsa, è possibile affermare che $\forall a \in l^{\infty} \exists A \in \mathbb{R}^3, u^* \in C^1(A, \mathbb{R})$ tali che si ha che $Lu^* = S_a$ e che u^* ha le derivate prime continue secondo Hölder in A.

Si sa, inoltre, che per la densità dell'insieme dei punti in (4.3) esiste un $(x_j, y_j, t_j) \in A$ ed essendo A aperto esiste un k (scelto abbastanza grande) tale per cui $A_{j,k} \subseteq A$.

Consideriamo ora la funzione $u = u^* - u^*(x_j, y_j, t_j)$, in modo che u mantenga le proprietà di u^* , ma soddisfi al contempo la condizione $u(x_j, y_j, t_j)$ come richiesto in una della proprietà in (4.5).

In ultimo è chiaro che, essendo le derivate prime di u continue secondo Hölder, esiste un m abbastanza grande per cui valgono le condizioni rimanenti in (4.5) con m al posto del pedice n e prendendo poi $n = \max\{k, m\}$ l'implicazione è dimostrata.

3. Dai primi due passi di conclude che

$$l^{\infty} = \bigcup_{j,n \in \mathbb{N}_0} E_{j,n},$$

ma, quindi, per il fatto che l^{∞} è di Banach e per le proprietà degli insiemi $E_{j,n}$, valgono sia le ipotesi del corollario 4.1.5 che la negazione della tesi. Ciò è assurdo.

QED

28 4. Esempi

4.2 Esempio di Kowalevski

L'esempio su cui ci si concentra è dovuto a Kowalevski stessa ed è stato utile a suo tempo a comprendere più a fondo, in modo quanto più essenziale possibile, l'importanza, o meglio la necessità, di assumere che la superficie scelta per assegnare i dati di Cauchy sia non-caratteristica per l'equazione differenziale in osservazione. Inoltre, costituisce un controesempio alla congettura proposta da Weierstrass, che suggeriva la possibilità di definire funzioni analitiche attraverso equazioni differenziali. Infatti, tutto ciò viene citato all'interno di una lettera rivolta a Fuchs (un matematico tedesco dell'Università di Berlino) scritta da Weierstrass (che supervisionò il lavoro di ricerca di Kowalevski), con cui quest'ultimo faceva richiesta per l'accettazione delle tesi di dottorato di Sofya. La lettera è riportata integralmente in [Ken83, app.C].

Seguendo le orme di Kowaleski, si consideri quindi il seguente problema di Cauchy per l'equazione del calore in una dimensione:

$$u_t - u_{xx} = 0 (4.6)$$

$$u(x,0) = \frac{1}{1+x^2} \quad \forall x \in \mathbb{R}$$
 (4.7)

Osservazione. La condizione per u_x su Γ necessaria per completare il problema di Cauchy è già implicitamente imposta dall'equazione (4.7).

Osservazione. In realtà il dato iniziale realmente scelto da Kowalevski durante la sua ricerca è $\frac{1}{1-x}$, che però si è deciso di non utilizzare qui per semplicità, evitando alcuni problemi legati alla singolarità della funzione e mantenendo invariato il significato del ragionamento.

L'obiettivo che ci si pone è quello di dimostrare che non ammette soluzioni analitiche in un intorno dell'origine.

1. Per cominciare si osserva che in questo caso la superficie su cui sono stati assegnati i dati di Cauchy (1.2) è $\Gamma = \{(x,t) \in \mathbb{R}^2 : t = 0\}$. Essa in ogni punto ha come versore normale (0, 1) ed è, quindi, caratteristica per l'equazione (4.6), poiché

$$\sum_{|\alpha|=2} a_{\alpha} \boldsymbol{\nu}^{\alpha} = a_{(2,0)} \boldsymbol{\nu}^{(2,0)} = 0.$$

2. Per assurdo si supponga di avere una soluzione del problema u analitica in un intorno dell'origine, ovvero:

$$u(x,t) = \sum_{\alpha = (\alpha_1, \alpha_2)} c(\alpha) x^{\alpha_1} t^{\alpha_2}, \quad c(\alpha) = \frac{D^{\alpha} u(0,0)}{\alpha!}$$

dove |(x,t)| < r per qualche r > 0.

3. Si calcolano i valori dei coefficienti $c(2n,0) \ \forall n \in \mathbb{N}$. Per fare questo si sviluppa in serie di potenze centrata nell'origine la funzione del problema di Cauchy:

$$\frac{1}{1+x^2} = \frac{d}{dx}\arctan(x) = \frac{d}{dx}\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}x^{2n+1} = \sum_{n=0}^{\infty} (-1)^n x^{2n} \quad \forall x \in \mathbb{R}.$$

Da questa serie si ottengono le seguenti relazioni:

$$D_x^{2n}u(0,0) = \frac{d^{2n}}{dx^{2n}} \frac{1}{1+x^2} \Big|_{x=0} = (-1)^n (2n)!$$
$$D_x^{2n+1}u(0,0) = \frac{d^{2n+1}}{dx^{2n+1}} \frac{1}{1+x^2} \Big|_{x=0} = 0$$

dalle quali si ricava: $c(2n,0) = (-1)^n$ e c(2n+1,0) = 0.

4. Si calcolano i valori dei coefficienti c(2n,n) e si dimostra che $c(2n,n) \xrightarrow{n\to\infty} +\infty$. A questo scopo, invece, si sfrutta l'equazione (1.1) per ottenere la seguente relazione tra i coefficienti:

$$c(\alpha_1, \alpha_2 + 1) = \frac{(\alpha_1 + 2)(\alpha_1 + 1)}{(\alpha_2 + 1)} c(\alpha_1 + 2, \alpha_2).$$
(4.8)

E si utilizza, quindi, quest'ultima come segue:

$$c(2n,n) = \frac{(2n+2)(2n+1)}{n} c(2n+2,n-1)$$
 (4.8) con
$$\begin{cases} \alpha_1 = 2n \\ \alpha_2 + 1 = n \end{cases}$$
$$= \dots = \frac{(2n+2n)\cdots(2n+1)}{n!} c(2n+2n,0)$$
 iterando su n
$$= \frac{(4n)!}{(2n)! \, n!} (-1)^{2n}$$
$$\sim \frac{1}{\sqrt{\pi n}} \left(\frac{64n}{e}\right)^n \xrightarrow{n \to \infty} +\infty$$
 per la formula di Stirling

5. Si completa il ragionamento in modo immediato osservando che c(2n, n) x^{2n} $t^n \xrightarrow{n \to \infty} +\infty \ \forall (x, t) \neq (0, 0)$, infatti ciò implica direttamente che la serie di potenze non converge in ogni punto diverso dall'origine e questo è assurdo.

30 4. Esempi

4.3 Esempio di Hadamard

L'esempio che si propone ora, dovuto ad Hadamard (1932), aiuta a capire un limite importante del teorema di Cauchy-Kowalevski, ovvero il fatto che esso non fornisca alcun controllo sulla **relazione** tra i dati di Cauchy e la forma della soluzione analitica, la quale potrebbe risultare instabile.

Per osservare tale comportamento si considera il seguente problema di Cauchy per l'equazione di Laplace in due dimensioni al variare di n:

$$u_{xx} + u_{yy} = 0$$

$$u(x,0) = 0$$

$$u_y(x,0) = n\sin(nx)e^{-\sqrt{n}} \quad \text{con} \quad n \in \mathbb{N}$$

$$(4.9)$$

L'obiettivo che ci si pone in questo caso è quello di mostrare come al crescere di n si verifica un blow-up della soluzione u_n del problema (4.9).

- 1. Il problema, come nell'esempio precedente, è assegnato su $\Gamma = \{(x, y) \in \mathbb{R}^2 : y = 0\}$, che è naturalmente una superficie non caratteristica per l'equazione di Laplace (si noti infatti che essa è ellittica).
- 2. E' facile verificare che la funzione $u_n(x,y) = \sin(nx)\sinh(ny)e^{-\sqrt{n}}$ soddisfa (4.9) e che essa è analitica, per questo è anche l'unica possibile con quest'ultima proprietà.
- 3. Si osserva, infine, come $\sinh(ny)e^{-\sqrt{n}} \xrightarrow{n\to\infty} \infty$.

Come conclusione di questa discussione è interessante osservare anche come la soluzione non dipenda con continuità dai dati. Infatti, considerando il problema per $n = \infty$, ovvero con dati $u(x,0) = u_y(x,0) = 0$, si nota immediatamente che l'unica soluzione analitica è $u \equiv 0$, la quale è profondamente diversa dal comportamento asintotico di u_n .

A partire da queste considerazioni Hadamard proseguì i suoi studi, prima definendo il concetto di buona positura di un problema di Cauchy¹, e poi scoprendo che i problemi costruiti con equazioni iperboliche a coefficienti costanti soddisfano sempre questa nella classe delle funzioni C^{∞} .

¹un problema di Cauchy è ben posto se ha una e una sola soluzione stabile rispetto ai dati

Capitolo 5

Versioni alternative

Ispirazione a Ovsyannikov, L.V. (vedi bibliografia) (vedi pag 109 e 110 treves analytic) Versioni alternative

Versione astratta (classi di Ovsyannikov)

Versione classica (simile a esistenza e unicità locale per EDO)

Versione invariante (superfici non caratteristiche)

Versione classica **Teorema 5.0.1.**

$$| \overline{\mathcal{O}}_0 \subseteq \mathcal{O}_1 \subseteq \mathbb{C}^n \text{ aperti connessi limitati}$$

$$A_j, f, y_0 \text{ olomorfi in } z$$

$$A_j, f \text{ continui in } t$$

$$Pb: \begin{cases} D_t y = \sum A_j(z, t) D_{z_j} y + A_0(z, t) y + f(z, t) \\ y(z, 0) = y_0(z) \end{cases}$$

$$\exists \delta \in (0, T) : \exists ! y \text{ sol. per } |t| < T$$

$$- \text{ olomorfa in } z$$

$$- C^1 \text{ in } t \rightarrow (\neq \text{Holmgren})$$

Capitolo 6 Conseguenze

Le conseguenze di questo teorema si osservano in vari campi, tra cui i principali sono:

- teoria delle equazioni differenziali
- fisica matematica: emersione di numerose domande (cosa succede nella realtà se esiste una sol. analitica locale?)
- geometria differenziale
- teoria economica

Impatto sulla teoria delle equazioni differenziali:

- confutare la congettura di Weierstrass
- teorema di Holmgren
- ricerca di condizioni necessarie e/o sufficienti per l'esistenza di soluzioni locali di Treves e Nirenberg
- teoria degli operatori differenziali lineari di Hörmander

6.1 Teorema di Holmgren

Risultato di unicità delle soluzioni per EDP lineari.

Osservazione. Il teorema di Cauchy-Kowalevski non esclude l'esistenza di altre soluzioni che non sono analitiche!

Versione astratta: una qualsiasi equazione lineare può essere ridotta a un **sistema del** 1° **ordine**. Ci concentriamo su questo caso.

Teorema 6.1.1.

Versione classica

Teorema 6.1.2.

$$\begin{array}{c|c} \Omega\subseteq\mathbb{R}^n \ aperto \\ A_j \ analitici \\ y\in C^1(\Omega\times(-T,T)): \\ \begin{cases} D_ty=\sum A_j(x,t)D_{x_j}y+A_0(x,t)y \\ y=0 \ per \ t=0 \\ \end{cases}$$
 Tesi
$$\begin{array}{c|c} y=0 \ in \ un \ intorno \ di \ \Omega\times\{0\} \\ \end{array}$$

Dimostrazione: E' un'applicazione della versione astratta alla funzione

$$\widetilde{y}(x,t) = H(t) y(x,t),$$

la quale soddisfa sempre un sistema della stessa tipologia.

QED

6. Consequenze

6.2 Altre applicazioni

Teorema di Cartan-Kähler: un teorema molto importante in geometria differenziale:

- sull'integrabilità di sistemi differenziali esterni (exterior differential systems)
- che si dimostra utilizzando il teorema di Cauchy-Kowalevski
- che ha un'applicazione al campo economico (I. Ekeland, P.A. Chiappori)

Citando Ekeland a riguardo del paper scritto nel 1999 insieme a Chiappori:

Questo articolo risolve un problema di base nella teoria economica, che era rimasto aperto per **trent'anni**, ovvero la caratterizzazione delle funzioni di domanda di mercato. Il metodo di dimostrazione consiste nel ridurre il problema a un sistema di equazioni differenziali alle derivate parziali non lineari, per il quale si cercano soluzioni convesse. Questo viene riscritto come un sistema differenziale esterno e viene risolto mediante il teorema di Cartan-Kähler, insieme ad alcune manipolazioni algebriche per ottenere la **convessità**.

Nonostante la ricerca condotta in quegli anni

- non fosse guidata da applicazioni immediate
- portò a risultati deludenti rispetto alle aspettative di Cauchy e Weierstrass

ha avuto un impatto gigantesco grazie alla comprensione delle soluzioni di sistemi di EDP che ci ha permesso di raggiungere.

6.3. note 35

6.3 note

teorema inutile nella pratica che però ha ispirato ricerche e scoperte future cruciali e utili (come accadde per i grafi di eulero) applicazioni:

- fisica matematica (cosa succede nella realtà quando si hanno soluzioni analitiche locali?)
- teorema di holmgren
- teorema di cartan-kahler (pag 137) utile in geometria differenziale (suggerisce Tao), economic theory (microeconomia, ekeland e chiappori, 1999) per l'eistenza locale di una funzione utilità concava (e quindi con un massimo) ricavata da un sistema di pdes che neccessita di dati analitici (visto come un sistema differenziale esterno)

I. Ekeland

Cartan Kahler

4 (with Chiappori), "Aggregation and market demand: an exterior differential calculus viewpoint", Econometrica, 67 (1999), p. 1435-1458

This paper solves a basic problem in economic theory, which had remained open for thirty years, namely the characterization of market demand functions. The method of proof consists of reducing the problem to a system of nonlinear PDEs, for which convex solutions are sought. This is rewritten as an exterior differential system, and is solved by the Cartan-Kähler theorem, together with some algebraic manipulations to achieve convexity. The introduction of exterior differential calculus proved to be a breakthrough, and was the starting point of a long collaboration with P.A. Chiappori. We realized that the mathematical structure we had discovered in this problem was to be found also in one of the major problems of econometrics: given a group (a household, for instance), can one characterize and identify the preferences of each member if one observes only the collective demand? I am happy to say that this research program is now concluded, with the publication of two major papers [14] and [25] and a100-pages survey [28] which will probably turn into a book.

- 14: (with P.A. Chiappori) "The microeconomics of group behaviour: general characterization". Journal of Economic Theory, september 2006, volume 130 (p.1 -26)
- 25: (with P.A. Chiappori) "The microeconomics of group behaviour: Identification". Econometrica, 2005, 44 pages
- 28: (with P.A. Chiappori). "The mathematics and economics of aggregation". Foundations and Trends in Economic Theory, 2009

Bibliografia

- [CE99] Pierre A. Chiappori and Ivar Ekeland. Aggregation and market demand: an exterior differential calculus viewpoint. *Econometrica*, 67:1435–1458, 1999.
- [CE06] Pierre A. Chiappori and Ivar Ekeland. The micro economics of group behavior: General characterization. *Journal of Economic Theory*, 130:1–26, 2006.
- [CE09a] Pierre A. Chiappori and Ivar Ekeland. The economics and mathematics of aggregation: Formal models of efficient group behavior. Foundations and Trends[®] in Microeconomics, 5:1–2, 2009.
- [CE09b] Pierre A. Chiappori and Ivar Ekeland. The Microeconomics of Efficient Group Behavior: Identification. *Econometrica*, 77:763 799, 2009.
- [Eke] Ivar Ekeland. Some applications of the Cartan-Kähler theorem to economic theory.
- [Eva10] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2010.
- [FMS20] Nicola Fusco, Paolo Marcellini, and Carlo Sbordone. *Lezioni di analisi matematica 2.* Zanichelli, 2020.
- [Fol95] Gerald B. Folland. *Introdution to Partial Differential Equations*. Princeton University Press, 1995.
- [Hö63] Lars Hörmander. Linear Partial Differential Operators. Spinger-Verlag, 1963.
- [Joh82] Fritz John. Partial Differential Equations. Springer-Verlag, 1982.
- [Ken83] Don H. Kennedy. Little Sparrow: A Portrait of Sophia Kovalevsky. Ohio University Press, 1983.
- [Luc24] Sandra Lucente. Teorema di Cauchy-Kovalevskaja per le equazioni differenziali. Le Scienze, 2024. Collona Rivoluzioni matematiche.
- [Ovs65] L.V. Ovsyannikov. Singular operators in Banach spaces scales (in Russian). Doklady Acad. Nauk., 1965. p. 819–822.
- [RF10] Halsey L. Royden and Patrick M. Fitzpatrick. Real Analysis. Pearson, 2010.

BIBLIOGRAFIA 37

[Rou80] Delfina Roux. *Istituzioni di analisi superiore - PARTE I.* Edizioni la Viscontea, 1980.

- [Tre70] François Treves. On local solvability of partial differential equations. 1970.
- [Tre75] François Treves. Basic Linear Partial Differntial Equations. Amacademic Press, 1975.
- [Tre22] François Treves. Analytic Partial Differential Equations. Springer Nature, 2022.