Quantum Key Search for Ternary LWE ia.cr/2021/865

Iggy van Hoof, Elena Kirshanova, and Alexander May

July 9, 2021

Introduction

- ▶ We Modified "Meet-LWE" [May2021] to the quantum setting.
- ▶ This algorithm attacks ternary LWE, including NTRU.
- \triangleright Classical algorithm solves LWE in $S^{0.24}$.

Introduction

- ▶ We Modified "Meet-LWE" [May2021] to the quantum setting.
- ▶ This algorithm attacks ternary LWE, including NTRU.
- ▶ Classical algorithm solves LWE in $S^{0.24}$.
- ▶ Quantum algorithm solves LWE in $S^{0.19}$.

Introduction

- ▶ We Modified "Meet-LWE" [May2021] to the quantum setting.
- ▶ This algorithm attacks ternary LWE, including NTRU.
- ▶ Classical algorithm solves LWE in $S^{0.24}$.
- ▶ Quantum algorithm solves LWE in $S^{0.19}$.
- Different approach than the current best attacks.
- NTRU still quantum secure.

- Public $A \in \mathbb{Z}_q^{n \times n}, b \in \mathbb{Z}_q^n$.
- ▶ Solve $As = b + e \mod q$ where $s \in \mathbb{Z}_q^n$, $e \in \mathbb{Z}_q^n$ are the secret key.
- NTRU: n = 509, q = 2048.

- ▶ Public $A \in \mathbb{Z}_q^{n \times n}, b \in \mathbb{Z}_q^n$.
- ▶ Solve $As = b + e \mod q$ where $s \in \mathbb{Z}_q^n, e \in \mathbb{Z}_q^n$ are the secret key.
- NTRU: n = 509, q = 2048.
- ▶ Ternary if $s, e \in \{-1, 0, 1\}^n$.
- ▶ We also know the weight w of s.
- ▶ NTRU: w = 254.

- ▶ Public $A \in \mathbb{Z}_q^{n \times n}, b \in \mathbb{Z}_q^n$.
- ▶ Solve $As = b + e \mod q$ where $s \in \mathbb{Z}_q^n, e \in \mathbb{Z}_q^n$ are the secret key.
- ► NTRU: n = 509, q = 2048.
- ▶ Ternary if $s, e \in \{-1, 0, 1\}^n$.
- ▶ We also know the weight w of s.
- ▶ NTRU: w = 254.
- \blacktriangleright We assume s has an equal number of 1 and -1 entries.
- ► NTRU: 127 1s, 127 -1s, 255 0s.

- ▶ Public $A \in \mathbb{Z}_q^{n \times n}, b \in \mathbb{Z}_q^n$.
- ▶ Solve $As = b + e \mod q$ where $s \in \mathbb{Z}_q^n, e \in \mathbb{Z}_q^n$ are the secret key.
- ► NTRU: n = 509, q = 2048.
- ▶ Ternary if $s, e \in \{-1, 0, 1\}^n$.
- ▶ We also know the weight w of s.
- ▶ NTRU: w = 254.
- \blacktriangleright We assume s has an equal number of 1 and -1 entries.
- ► NTRU: 127 1s, 127 -1s, 255 0s.
- Number of possible s: $S = \binom{n}{w/2} \binom{n-w/2}{w/2}$.
- ▶ NTRU: $S \approx 2^{754}$.

▶ Meet in the middle [HPS98]: split $s = (s_1, s_2)$.

- ▶ Meet in the middle [HPS98]: split $s = (s_1, s_2)$.
- ▶ Where $s_1, s_2 \in \mathbb{Z}_q^{n/2}$.
- ightharpoonup Weight $\frac{w}{2}$ each, balanced.

- ▶ Meet in the middle [HPS98]: split $s = (s_1, s_2)$.
- ▶ Where $s_1, s_2 \in \mathbb{Z}_q^{n/2}$.
- ightharpoonup Weight $\frac{w}{2}$ each, balanced.
- \triangleright Permutations poly(n).

- ▶ Meet in the middle [HPS98]: split $s = (s_1, s_2)$.
- ▶ Where $s_1, s_2 \in \mathbb{Z}_q^{n/2}$.
- ightharpoonup Weight $\frac{w}{2}$ each, balanced.
- \triangleright Permutations poly(n).
- ▶ Try to find solutions to $A_1s_1 \approx b A_2s_2$ using locality sensitive hashing.

- ▶ Meet in the middle [HPS98]: split $s = (s_1, s_2)$.
- ▶ Where $s_1, s_2 \in \mathbb{Z}_q^{n/2}$.
- ightharpoonup Weight $\frac{w}{2}$ each, balanced.
- \triangleright Permutations poly(n).
- ▶ Try to find solutions to $A_1s_1 \approx b A_2s_2$ using locality sensitive hashing.
- ▶ Time & space complexity for NTRU with n = 509, q = 2048, w = 254:

$$2^{377} = S^{\frac{1}{2}}$$
.

► How do we turn this quantum?

- ► How do we turn this quantum?
- ► Idea: quantum random walk.

- ► How do we turn this quantum?
- ► Idea: quantum random walk.
 - ► What do we walk over?

- ► How do we turn this quantum?
- ► Idea: quantum random walk.
 - ► What do we walk over?
 - ► What do we want to find?

- ► How do we turn this quantum?
- ▶ Idea: quantum random walk.
 - ► What do we walk over?
 - ► What do we want to find?
 - ▶ What is the speedup?

ightharpoonup We have a graph G = (V, E).

- \blacktriangleright We have a graph G = (V, E).
- ▶ Vertices $v \in V$: subsets of all s_1, s_2 .
- ightharpoonup L is the size of all s_1 .

- ightharpoonup We have a graph G = (V, E).
- ▶ Vertices $v \in V$: subsets of all s_1, s_2 .
- ightharpoonup L is the size of all s_1 .
- We make the subsets all size L^{γ} .

- \blacktriangleright We have a graph G = (V, E).
- ▶ Vertices $v \in V$: subsets of all s_1, s_2 .
- ightharpoonup L is the size of all s_1 .
- ightharpoonup We make the subsets all size L^{γ} .
- ▶ Edge $(u, v) \in E$ iff $|\Delta(u, v)| = 1$.

- ightharpoonup We have a graph G = (V, E).
- ▶ Vertices $v \in V$: subsets of all s_1, s_2 .
- ightharpoonup L is the size of all s_1 .
- ightharpoonup We make the subsets all size L^{γ} .
- ▶ Edge $(u, v) \in E$ iff $|\Delta(u, v)| = 1$.
- ▶ Try to find u containing (s_1, s_2) as the secret key.

- ightharpoonup We have a graph G = (V, E).
- ▶ Vertices $v \in V$: subsets of all s_1, s_2 .
- ightharpoonup L is the size of all s_1 .
- ightharpoonup We make the subsets all size L^{γ} .
- ▶ Edge $(u, v) \in E$ iff $|\Delta(u, v)| = 1$.
- ▶ Try to find u containing (s_1, s_2) as the secret key.
- ▶ Random walk: keep a single subset in memory.

- ightharpoonup We have a graph G = (V, E).
- ▶ Vertices $v \in V$: subsets of all s_1, s_2 .
- ightharpoonup L is the size of all s_1 .
- ightharpoonup We make the subsets all size L^{γ} .
- ▶ Edge $(u, v) \in E$ iff $|\Delta(u, v)| = 1$.
- ▶ Try to find u containing (s_1, s_2) as the secret key.
- ► Random walk: keep a single subset in memory.
- Quantum random walk: create a superposition over all subsets.
- Use Johnson graph: $\gamma = 2/3$ optimal for quantum.

- ightharpoonup We have a graph G = (V, E).
- ▶ Vertices $v \in V$: subsets of all s_1, s_2 .
- ightharpoonup L is the size of all s_1 .
- \blacktriangleright We make the subsets all size L^{γ} .
- ▶ Edge $(u, v) \in E$ iff $|\Delta(u, v)| = 1$.
- ▶ Try to find u containing (s_1, s_2) as the secret key.
- Random walk: keep a single subset in memory.
- Quantum random walk: create a superposition over all subsets.
- ▶ Use Johnson graph: $\gamma = 2/3$ optimal for quantum.
- For our NTRU example: $2^{252} = S^{1/3}$.

Big picture idea

▶ Split $s = s_1 + s_2$ with $s_1, s_2 \in \mathbb{Z}_q^n$, weight $\frac{w}{2}$.

- ▶ Split $s = s_1 + s_2$ with $s_1, s_2 \in \mathbb{Z}_q^n$, weight $\frac{w}{2}$.
- ightharpoonup Guess r entries of e.
- Example: guess 23/509.

- ▶ Split $s = s_1 + s_2$ with $s_1, s_2 \in \mathbb{Z}_q^n$, weight $\frac{w}{2}$.
- ► Guess *r* entries of *e*.
- Example: guess 23/509.
- ▶ Set $t \in \mathbb{Z}_q^r$.

Meet-IWF

- ▶ Split $s = s_1 + s_2$ with $s_1, s_2 \in \mathbb{Z}_q^n$, weight $\frac{w}{2}$.
- ► Guess *r* entries of *e*.
- Example: guess 23/509.
- ▶ Set $t \in \mathbb{Z}_q^r$.
- ightharpoonup Try to find s_1, s_2 s.t.

$$\pi_r\left(As_1^{(1)}+e_1
ight)\mod q=t=\pi_r\left(b-As_2^{(1)}+e_2
ight)\mod q.$$

Meet-IWF

Big picture idea

- ▶ Split $s = s_1 + s_2$ with $s_1, s_2 \in \mathbb{Z}_q^n$, weight $\frac{w}{2}$.
- ► Guess *r* entries of *e*.
- Example: guess 23/509.
- ▶ Set $t \in \mathbb{Z}_q^r$.
- ightharpoonup Try to find s_1, s_2 s.t.

$$\pi_r\left(\mathit{As}_1^{(1)} + e_1
ight) \mod q = t = \pi_r\left(b - \mathit{As}_2^{(1)} + e_2
ight) \mod q.$$

Do this recursively.

- ▶ Split $s = s_1 + s_2$ with $s_1, s_2 \in \mathbb{Z}_q^n$, weight $\frac{w}{2}$.
- ► Guess *r* entries of *e*.
- Example: guess 23/509.
- ▶ Set $t \in \mathbb{Z}_q^r$.
- ightharpoonup Try to find s_1, s_2 s.t.

$$\pi_r\left(As_1^{(1)}+e_1
ight)\mod q=t=\pi_r\left(b-As_2^{(1)}+e_2
ight)\mod q.$$

- Do this recursively.
- At highest level do MitM.
- ► At lowest level check solution using LSH.

Figure

Runtime

▶ Time complexity $T = T_g \times T_\ell$.

Runtime

- ▶ Time complexity $T = T_g \times T_\ell$.
- ► $T_g = 3^r$.
- ► Example: $3^{23} \approx 2^{36}$.

Runtime

- ▶ Time complexity $T = T_g \times T_\ell$.
- ► $T_g = 3^r$.
- ightharpoonup Example: $3^{23} \approx 2^{36}$.
- $ightharpoonup T_{\ell}$ is the size of the largest list.
- Example: 2^{282}

Runtime

- ▶ Time complexity $T = T_g \times T_\ell$.
- ► $T_g = 3^r$.
- ightharpoonup Example: $3^{23} \approx 2^{36}$.
- $ightharpoonup T_{\ell}$ is the size of the largest list.
- Example: 2^{282}
- Final runtime: $2^{282+36} = 2^{318} < 2^{377}$.

► Apply Grover & quantum walk.

- ► Apply Grover & quantum walk.
- $ightharpoonup T_{qg} = \sqrt{T_g}$ using Grover.
- Example: $2^{36 \cdot \frac{1}{2}} = 2^{18}$.

- Apply Grover & quantum walk.
- $ightharpoonup T_{qg} = \sqrt{T_g}$ using Grover.
- Example: $2^{36 \cdot \frac{1}{2}} = 2^{18}$.
- ▶ Inner loop: subsets of highest level lists.

- Apply Grover & quantum walk.
- $ightharpoonup T_{qg} = \sqrt{T_g}$ using Grover.
- Example: $2^{36 \cdot \frac{1}{2}} = 2^{18}$.
- ▶ Inner loop: subsets of highest level lists.
- ▶ Number of levels d + 1.

- Apply Grover & quantum walk.
- $ightharpoonup T_{qg} = \sqrt{T_g}$ using Grover.
- Example: $2^{36 \cdot \frac{1}{2}} = 2^{18}$.
- ▶ Inner loop: subsets of highest level lists.
- ▶ Number of levels d + 1.
- Example: 2 levels optimal, $2^{212+18} = 2^{230} < 2^{318}$.

- ► Apply Grover & quantum walk.
- $ightharpoonup T_{qg} = \sqrt{T_g}$ using Grover.
- Example: $2^{36 \cdot \frac{1}{2}} = 2^{18}$.
- ▶ Inner loop: subsets of highest level lists.
- ▶ Number of levels d + 1.
- Example: 2 levels optimal, $2^{212+18} = 2^{230} < 2^{318}$.
- Further improvement: 1 1 = 0.

- Apply Grover & quantum walk.
- $ightharpoonup T_{qg} = \sqrt{T_g}$ using Grover.
- Example: $2^{36 \cdot \frac{1}{2}} = 2^{18}$.
- ▶ Inner loop: subsets of highest level lists.
- ▶ Number of levels d + 1.
- Example: 2 levels optimal, $2^{212+18} = 2^{230} < 2^{318}$.
- Further improvement: 1 1 = 0.
- ► Classically now 2²⁶⁷.

- Apply Grover & quantum walk.
- $ightharpoonup T_{qg} = \sqrt{T_g}$ using Grover.
- Example: $2^{36 \cdot \frac{1}{2}} = 2^{18}$.
- ▶ Inner loop: subsets of highest level lists.
- Number of levels d + 1.
- ightharpoonup Example: 2 levels optimal, $2^{212+18} = 2^{230} < 2^{318}$.
- Further improvement: 1 1 = 0.
- ► Classically now 2²⁶⁷.
- **Example:** 4 levels optimal, $2^{155+33} = 2^{188}$.

Results

	(n,q,w)	MEET-LWE	QMEET-LWE	csvp
NTRU-Enc	(509, 2048, 254)	267 = 193 + 74	188 = 155 + 33	98
	(677, 2048, 254)	313 = 235 + 78	223 = 191 + 32	137
	(821, 4096, 510)	449 = 336 + 113	320 = 268 + 52	164
	(701, 8192, 468)	387 = 295 + 92	278 = 235 + 43	126
NTRU-Prime	(653, 4621, 288)	309 = 236 + 73	225 = 190 + 35	119
	(761, 4591, 286)	344 = 265 + 79	245 = 206 + 39	143
	(857, 5167, 322)	383 = 294 + 89	274 = 236 + 38	163
BLISS I+II	(512, 12289, 154)	206 = 168 + 38	149 = 133 + 16	77
GLP I	(512, 8383489, 342)	250 = 210 + 40	193 = 175 + 18	34

Conclusions

Significant quantum speedup.

Conclusions

- Significant quantum speedup.
- Results are worse than lattice results.
- ► Core SVP classic: 2¹⁰⁸ quantum: 2⁹⁸.
- Different heuristic.

Conclusions

- Significant quantum speedup.
- Results are worse than lattice results.
- ► Core SVP classic: 2¹⁰⁸ quantum: 2⁹⁸.
- Different heuristic.
- $\triangleright \gamma$ for time-memory trade-off.