Graph Algorithms #1 - Introduction & Theory

CptS 223 - Fall 2017 - Aaron Crandall

Today's Agenda

- Announcements
- Thing of the day
- Introducing graph algorithms

- Days left:
 - o 8 more real days
 - 3 days in dead week
 - Final
- Targeting return of finals on Friday
- Will go over exam on Wednesday for logistical reasons
- Yes, we're so far behind on grading it's nail biting for me
 - It's got to be caught up ASAP

Thing of the Day

South Korea's first giant robot take its first steps:

https://www.youtube.com/watch
?v=7rgFtkMiXms

Jeff Bezos →

Graphs and Graph Algorithms

Wrong kind of graph

- What is a graph?
 - A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.
- Each edge is a pair (v, w), where $v, w \in V$.
- Graph algorithm?
 - An algorithm designed to work with data kept in a graph structure

Where have we seen graphs already?

Trees (Directed Acyclic Graph / DAG)

How do we calculate big-O for graphs?

- In trees, heaps, hashing, stacks
 - Number of updates or operations to complete
 - Push == add node to head of list
 - Insert (tree) == traversal to bottom of tree, then node create & update
- In sorting:
 - Number of swaps/moves and comparisons done
- For graphs, it's based around two things:
 - Edges traversed, nodes (vertices) inspected
 - |E| == number of edges || |V| == number of vertices

Directed graphs - digraphs

- Directed graphs are when the edges are directed.
- This means they have a front and a back, normally shown as an arrow
- Where have we seen these already?
- $(v,w) \in E$ Edge from v to w

Undirected Graphs

- Edges do not have a front and back, normally shown with a line (no arrow)
 - Edges can be traversed in either direction
 - Think of it being the difference between one way streets and normal streets
 - Both nodes are adjacent to each other
- This below is (v, w), which is also (w, v)

Adjacency

- Vertex w is adjacent to v if and only if (v, w) ∈ E
 - This means you can traverse the edge from v to w
- When using undirected edges, (v, w) means (w, v) so w and v are both adjacent to each other

W is adjacent to V V is adjacent to W

Weight or Cost of an edge

- Edges can carry a cost to traverse them
 - For example, two intersections are connected and the cost is how many meters long the connecting road is

Degree of a vertex

- The number of adjacent vertices to the vertex
- *Indegree* is the number of incoming edges
- Outdegree is the number of outgoing edges

Paths

- A path is a sequence of vertices
 - $w_1, w_2, w_3, \dots, w_N \text{ such that } (w_i, w_{\{i+1\}}) \in E \text{ for } 1 \le i < N$
- The length of the path is the number of edges on the path (not vertices!)
 - So the length = count(V) 1
- The path can go from a vertex to itself
 - o If that path has no edges, it has a length of zero. This is a special case
- The path can do (v, v), which is a loop
 - Normally loops don't happen in most algorithm traversals, but can happen
- Simple paths are where all vertices are distinct (no repeated vertices)
 - Exception: First and last can be the same if it's a path *and* a loop.

Cycles

- Directed graph of at least length 1
 - such that $w_1 == w_N$ (you get back to the start w)
- It's a simple cycle if the path is simple
 - No repeated nodes in the path, except the start & end
- In undirected graphs the edges must be distinct
 - You can only use an edge once in a cycle
- It's a **Directed Acyclic Graph** if it has no cycles
 - A special case called a DAG
 - O Where have we seen these?

Connected vs. Disconnected

An undirected graph is connected if there's a path from every vertex to

every other vertex

 A directed graph like that is strongly connected

- If it's all included, but not strong then it's weakly connected
 - This means you have dead ends in the paths you can make
 - \circ The graphs \rightarrow are weakly connected

Complete graph

• When there's an edge between every pair of vertices

• There's a path of length 1 between every pair of vertices

Examples of situations that suit graphs

- Airport connections
- Road trip route planning
- Traffic flow
- Networking
- LinkedIn
- Course prerequisites
- What else?
 - o Bacon!

Storing and representing graphs

Adjacency matrix

- For each edge (u, v), we set A[u][v] to true; otherwise the entry in the array is false
- If edges have weights, set A[u][v] equal to the weight and use either a very large or a very small weight as a sentinel to indicate nonexistent edges (INF, -INF)
- Requires $\Theta(|V|^2)$ space, only appropriate if $|E| \sim = \Theta(|V|^2)$
 - Example of badness with street maps

Adjacency Matrix Representation of Weighted Graph

Dense vs. Sparse

- Most graphs are sparse
 - This means |E| << |V|
- Better solution for these is an adjacency list representation
 - Keep a list of all adjacent vertices for each vertex
 - Space requirement becomes O(|E| + |V|)
 - Instead of $\Theta(|V|^2)$ with the matrix
 - Weights can be kept with edges in adjacency list
 - Standard way to represent graphs

Direct comparison of adjacency matrix vs. adjacency list

If time, then do topo sort!

- Topological sort is an ordering of vertices in a directed acyclic graph, such that if there is a path from v_i to v_i, then v_i appears after v_i in the ordering
- Can't work if there's a cycle in the graph
- Does not guarantee a unique ordering
- Used for deciding scheduling of work units
 - Edges represent the dependency of work units
 - Only those with an indegree of 0 can be done next

Topographical Sorting Example

 $\{v_1, v_2, v_5, v_4, v_3, v_7, v_6\}$ and $\{v_1, v_2, v_5, v_4, v_7, v_3, v_6\}$ are both valid

topological orderings

1) Find node with no in edges

- a) Indegree of zero
- b) Called a "source node"
- Print out node && remove from graph
- 3) Repeat

For Wednesday:

Reviewing exam

More on graphs, starting into Dijkstra's algorithm to stage for next MA