Лабораторная работа 2. "Дискретные системы"

Свойства дискретных систем. Линейные стационарные (ЛС) системы. Линейные разностные уравнения с постоянными коэффициентами. Комплексная частотная характеристика ЛС-системы.

Задание 1. Проверить является ли система описываемая Matlab-функцией DS N.p¹:

- 1) системой без запоминания?
- 2) аддитивной?
- 3) однородной?
- 4) линейной?
- 5) стационарной?
- В отчете представьте графики входных сигналов и откликов системы, подтверждающие наличие или отсутствие у системы указанных свойств.

Задание 2. Напишите Matlab-функцию, реализующую дискретную систему, согласно вашему варианту. Постройте реакцию дискретной системы на следующие сигналы²:

- дельта-импульс $x(n) = \delta(n n_0);$
- единичную ступеньку $x(n) = u(n n_0)$;
- низкочастный синусоидальный сигнал $x(n) = \cos(2\pi \cdot 0.01 \cdot n)$;
- высокочастотный синусоидальный сигнал $x(n) = \cos(2\pi \cdot 0.48 \cdot n)$;

Вариант №1	y(n) = (2/[2x(n) + 1])x(n)
Вариант №2	$y(n) = sign(x(n)) \frac{\log(1+\mu x(n))}{\log(1+\mu)}$ где $-1 \le x(n) \le 1$, μ =255
Вариант №3	$y(n) = \operatorname{sign}(x(n))x(n)$
Вариант №4	y(n) = x(n) + x(n-10)
Вариант №5	$y(n) = \left(x(n) + \frac{1}{2}\right)\left(x(n-1) - \frac{1}{2}\right)$
Вариант №6	y(n) = x(n) - 0.8y(n-1)
Вариант №7	y(n) = x(n-2) - 0.6y(n-1)

 $^{^{1}}$ (где N — номер варианта, определяется по формуле: $N = ((n_0 - 1) \mod 11) + 1$), где n_0 — номер студента в списке группы.

 $[\]frac{1}{2}$ n_0 – номер студента в списке группы

Вариант №8	y(n) = 0.6x(n-5) - 0.4y(n-2)
Вариант №9	$y(n) = \frac{0.5x(n) + 0.5x(n-1)}{x(n-2) + 0.1x(n)}$
Вариант №10	$y(n) = x(n) + \frac{1}{2} (y(n-1) + y(n-2))$
Вариант №11	$y(n) = y(n-1) - \frac{1}{2}(x(n) + x(n-1))$

Задание 3. Записать разностное уравнение и реализовать в Matlab дискретную систему по её блок-схеме. Построить импульсную характеристику системы.

Вариант №1

Вариант №2

Вариант №11

Задание 4.

Дискретная ЛС-система может быть описана при помощи разностного уравнения с постоянными коэффициентами:

$$a_0y(n) = \sum_{i=0}^{M} b_i x(n-i) - \sum_{i=1}^{N} a_i y(n-i),$$

где $\{b_i\}$ – коэффициенты прямой связи, которые применяются к поступающему в систему сигналу; x(n) и $\{a_i\}$ – коэффициенты обратной связи, которые применяются к выходному сигналу y(n).

Напишите Matlab-функцию, реализующую разностное уравнение. На вход функции подаются коэффициенты $\{b_i\},\{a_i\}$ и входной сигнал x[n]. С помощью написанной функции постройте импульсную характеристику для фильтра из задания 3. Сравните результат с работой встроенной функцией filter(b,a,x).

Задание 5. Построить комплексную частотную характеристику системы из задания 3. по формуле

$$H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{j\omega k}}{(1 + \sum_{k=1}^{M} a_k e^{j\omega k})}, \qquad \omega \in [0 \ \pi].$$

Постройте график $A(\omega) = |H(e^{j\omega})|$ и $\varphi(\omega) = \arg H(e^{j\omega})$. Функция $A(\omega)$ — это амплитудно-частотная характеристика (AЧX), а $\varphi(\omega)$ — фазо-частотная характеристика (ФЧX).