Equivalent Resistance Worksheet

- 1. Three resistors with values of 3.0 Ω , 6.0 Ω , and 12 Ω are connected in series. What is the equivalent resistance of this combination?
- 2. Three resistors with values of 4.0 $\,\Omega$, 6.0 $\,\Omega$, and 12.0 $\,\Omega$ are connected in parallel. What is their equivalent resistance?
- 3. Two resistors with values of 6.0 $\,\Omega$ and 12 $\,\Omega$ are connected in parallel. This combination is connected in series with a 4.0 $\,\Omega$ resistor. What is the overall resistance of this combination?
- 4. Three resistors with values of 18 $\,\Omega$, 26 $\,\Omega$, 9 $\,\Omega$, respectively, are connected in series. What is their equivalent resistance?
- 5. Four resistors with values of 15 Ω , 20 Ω , 30 Ω , 60 Ω , respectively, are connected in parallel. What is the overall resistance of this combination?
- 6. Two resistors with values of 6.0 $\,\Omega$ and 12 $\,\Omega$ are connected in parallel. This combination is connected in series with a 2.0 $\,\Omega$ resistor and a 24 V battery. What is the current in the 2.0 $\,\Omega$ resistor?

7. What is the equivalent resistance for the resistors in the figure above?

Equivalent Resistance Worksheet

Name: 8.0 Ω 2.0 Ω 10.0 Ω 40.0 V 5.0 Ω

- 8. For the circuit shown above find the following
 - a. What is the equivalent resistance for the resistors in the figure above?
 - b. What is the total current in the circuit above?

- 9. For the circuit shown above find the following
 - a. What is the equivalent resistance for the resistors in the figure above?
 - b. What is the total current in the circuit above?

- 10. For the circuit shown above find the following
 - a. What is the equivalent resistance for the resistors in the figure above?
 - b. What would the current through the 2 \wedge resistor in the figure above if 120V is applied?