Unit 3: Quiz

Due Feb 10 at 11:59pmPoints 7Questions 7Available until Feb 11 at 3amTime Limit 60 Minutes

This quiz was locked Feb 11 at 3am.

Attempt History

Atte		Time	Score
LATEST <u>Atte</u>	<u>mpt 1</u>	3 minutes	7 out of 7

Score for this quiz: **7** out of 7 Submitted Feb 6 at 2:53pm This attempt took 3 minutes.

	Question 1 1 / 1 pts	
	Select the answers that best complete the following statement. Unlike Naïve Bayes, which is a model, Logistic Regression is amodel.	
Correct!	Generative, discriminative	
	O Discriminative, generative	
	Supervised, Unsupervised	
	Quadratic, linear	

Question 2 1/1 pts

4/26/2021

Computing the final values of the parameters for Logistic Regression requires the use of what technique?

Correct!

- Gradient Ascent
- Expectation Maximization
- Matrix Factorization

Question 3 1 / 1 pts

If the true value of μ is known, then the MLE estimator of

$$\sigma^2$$
 is $\sigma^2_{MLE} = rac{1}{N} \sum_{i=1}^{N} \left(x_i - \mu
ight)^2$

Is the estimation of σ^2 unbiased?

Correct!

- Yes
- O No

Question 4 1 / 1 pts

Researchers at a medical center are interested in exploring the relationship between patient age (x_1) , patient weight (x_2) and the presence (1) or absence (0) of a particular disease. If researchers decide to use logistic regression, which of the following would be interpreted as the probability that the positive outcome (e.g., disease) is present?

O Probability = $\beta_0 + \beta_1 x_1 + \beta_2 x_2$

igcup Probability $=rac{e^{eta_0+eta_1x_1+eta_2x_2}}{1-e^{eta_0+eta_1x_1+eta_2x_2}}$

Correct!

- \bigcirc Probability $=rac{e^{-eta_0-eta_1x_1-eta_2x_2}}{1+e^{-eta_0-eta_1x_1-eta_2x_2}}$

Question 5 1 / 1 pts

Suppose the scores of randomly selected students are normally distributed with an unknown mean and a standard deviation. A random sample of 10 students returns the following scores: [81, 71, 71, 74, 56, 92, 83, 74, 91, 66]. Estimate μ by using maximum likelihood estimation.

(Choose the closest one.)

- 56
- 92
- 11

Correct!

76

Question 6 1 / 1 pts

When tossing a dice several times, let α_0 stand for the number of odd rolls and α_e stand for the number of even rolls. Let p be the probability of getting an even number. Using maximum likelihood estimation, how do you estimate p?

Correct!

$$\hat{p}=rac{lpha_e}{lpha_e+lpha_0}$$

- $\hat{p}=rac{lpha_e}{lpha_0}$
- $\hat{p}=rac{lpha_0}{lpha_e+lpha_0}$
- $\hat{p}=rac{lpha_0}{lpha_e}$

Question 7

1 / 1 pts

Which of the following is true for generative or discriminative classifier models that read the input x and the label y? (Select all that apply.)

Correct!

~

A generative classifier makes its predictions by using Bayes' rule to calculate P(y|x).

 \square A discriminative classifier learns a model of the joint probability p(x, y).

Correct!

 \blacksquare A discriminative classifier models the posterior P(y|x) directly.

Correct!

- \square A generative classifier attempts to learn p(x|y).
- \square A discriminative classifier learns a model of the joint density p(x, y).
- No answer text provided.

Quiz Score: 7 out of 7