Probabilistic Artificial Intelligence

Lecture 4: Learning

handout:

"Maximum Likelihood Estimation and the EM algorithm"

Recap

- Probability for representing beliefs
 - Bayes' rule to update beliefs
- Time... need both:
 - estimation (sensor model)
 - prediction (transition model)
- HMMs
 - filtering, prediction, smoothing
 - Main tools: 1) Bayes' rule, 2) Markov assumption
- Compact representations: DBNs
 - Approximate inference: particle filter

Where do the numbers come from?

- Where do we get the parameters of the HMM or MDP?
- Today: learning techniques
- Field of Machine learning is huge... also see:
 - CS4070 Multivariate Data Analysis
 - CS4180 Deep Learning
 - ▷ IN4085 Pattern Recognition → "machine learning"
 - ▷ IN4320 Machine learning → "machine learning 2"

 - SC42050 Knowledge-Based Control Systems (RL)

Why learning?

- Three main motivations:
 - 1) No model available
 - Human designers can not provide models for all possible situations an intelligent agent may encounter
 - E.g., the numbers of a Bayesian network or HMM
 - 2) Adaptivity.
 - The way the environment works may change over time.
 - · e.g., traffic patterns
 - 3) Humans don't understand the task well enough; not possible to manually program.
 - E.g., vision tasks.

...?

- We take the perspective that **learning** = **induction**.
 - going from observations to theories that explain these observations
- But details may depend on settings/tasks...
 - receiving a bag of data
 - receiving a bag of data with labels
 - robot learning from its observations over time
 - robot taking actions

- We take the perspective that **learning** = **induction**.
 - going from observations to theories that explain these observations
 - (contrast with "deductive learning":
 from a known general rule → more specialized rule that allows for more efficient process
- But details may c
 - receiving a bag
 - receiving a bag
 - robot learning f
 - robot taking act

More generally, the choice of technique depends on:

- What the component is
- What prior knowledge the agent has
- How the data and component are represented
- What feedback is available to learn from

Example: Taxi Driver Agent

- Instructor shouts "Brake"... the agent may learn a condition-action rule for when to brake
- From images showing buses, the agent learns to recognize buses
- By trying actions and observing the results (e.g. braking hard on a wet road), agent can learn effects of actions
- No tip from passengers after driving wildly... learn a component of its (or really the passengers'!) utility function

Learned car behaviors [Behbahani et al. 2019]

High Level Perspectives to Learning

Idealistic

- maintain a belief over true way the world works (possible hypotheses)
- □ use observations in optimal fashion... → Bayes' rule
- statistical learning
- Pragmatic
 - anything that improves performance
 - ▶ Tom M. Mitchell:

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

- ► Machine Learning. 1997. McGraw Hill. p. 2. ISBN 978-0-07-042807-2.
- optimization
- And everything in between... ML, statistics and optimization are tightly interwoven.

Idealistic (Bayesian) Perspective

- A robot that learns from its observation: Bayes rule!
 - use laws of probability to represent its beliefs (otherwise, its beliefs could led it to be 'exploited')
 - belief over how the world works: hypotheses H
 - □ using Bayes rule to update its beliefs → that is learning!
- learning = inference

$$P(H \mid d) = P(d \mid H) P(H) / P(d)$$

- And then 'act' in a Bayesian way:
 - $\triangleright V(a) = \sum_{h} P(h \mid d) u(a,h)$

Idealistic Perspective: Hypothesis Spaces

- Nice, but... what is the class of hypotheses *H...*?
 - ▶ Idea 1: World is complex... need a huge class *H*
 - but leads to huge computational complexity...
 - Idea 2: Limit the class to allow for tractable inference
 - ▶ but what if the true model is not in *H*...?
 - all bets are off **

Idealistic Perspective: Hypothesis Spaces

- Nice, but... what is the class of hypotheses *H...*?
 - ▶ Idea 1: World is complex... need a huge class *H*
 - but leads to huge computational complexity...
 - Idea 2: Limit the class to allow for tractable inference
 - ▶ but what if the true model is not in *H*...?
 - all bets are off **
- E.g., learning the parameters of an HMM from a long sequence...
 - what assumptions do we make?
 - how would this work?

Idealistic Perspective: Hypoth.

- Nice, but...
 - ▷ Idea 1: Wd•
 - ▶ but lea
 - ▷ Idea 2: Lin
 - but wł
 - ▶ all bet
- E.g., learnin
 - what assu
 - ▶ how would

- we assume...
 - some number of states S
 - Markov assumption
- a hypothesis h is a vector of all the initial state-, transition-, and observation parameters
- Now need to compute:

$$P(h \mid o_{1:T}) = P(o_{1:T} \mid h) P(h) / P(o_{1:T})$$

- h is high-dimensional... how to even represent $P(h \mid o_{1.T})$?
- *P(h)* what is our subjective belief...?
- $P(o_{1.7}|h)$ itself is intractable: marginalize over sequence states
- → we may need some smarter tricks...

Pragmatic Perspective

- "Any form of parameter updating that improves performance"
 - E.g., given a bag of data, make multiple passes trough to optimize some parameters using SGD.
- learning=optimization
- what are we optimizing...?
 - end-to-end learning:
 - ightharpoonup parametrize 'actions' using some parameters θ
 - e.g., action probabilities, or a NN that generates those
 - directly optimize $V(\theta)$
 - other typical approach: maximum likelihood

- Somewhere between the full Bayesian perspective, and end-toend optimization
- Still based on statistical models
 - ▷ instead of computing posterior P(H | d)
 - ▷ optimize: $h_{M} = max_h P(d | h)$
- To do this optimization, optimize **log likelihood:** L(h) = log P(d | h)
 - $h_{ML} = max_h \log P(d | h)$ $= max_h \log \prod_i P(d_i | h) = max_h \sum_i \log P(d_i | h)$
 - usually much easier to optimize

Example: a coin toss...

- We have a coin and toss it N times...
 - *k* heads, *l=N-k* tails
 - → what is the prob. of heads?

ayesian perspective, and end-to-

P(H|d)

ze **log likelihood:** L(h) = log P(d | h)

$$h_{ML} = max_h \log P(d | h)$$

$$= max_h \log \prod_i P(d_i | h) = max_h \sum_i \log P(d_i | h)$$

usually much easier to optimize

Example: a coin toss...

- We have a coin and toss it N times...
 - k heads, I=N-k tails
 → what is the prob. of heads?
- Lets call P(head) = θ
- So.. likelihood: $P(d \mid \theta) = \theta^{k} (1 - \theta)^{l}$

ayesian perspective, and end-to-

 $P(H \mid d)$

ze **log likelihood:** L(h) = log P(d | h)

$$h_{ML} = max_h \log P(d | h)$$

$$= max_h \log \prod_i P(d_i | h) = max_h \sum_i \log P(d_i | h)$$

usually much easier to optimize

Example: a coin toss...

- We have a coin and toss it N times...
 - k heads, I=N-k tails
 → what is the prob. of heads?
- Lets call P(head) = θ
- So.. likelihood: $P(d \mid \theta) = \theta^k (1-\theta)^k$

$$h_{ML} = max_h \log P(d | h)$$

$$= max_h \log \prod_i P(d_i | h) = max_h \sum_i \log \frac{1}{n}$$

usually much easier to optimize

Maximum likelihood Bernoulli (20.2.1)

$$L(\theta) = \log \prod_{i=1}^{k} \theta \prod_{i=1}^{l} (1 - \theta)$$
$$= \log \theta^{k} (1 - \theta)^{l}$$
$$= k \log \theta + l \log (1 - \theta)$$

Its derivative:

ayesia

 $P(H \mid a)$

ze loc

$$\frac{d}{d\theta}L(\theta) = \frac{k}{\theta} - \frac{l}{(1-\theta)}$$

equating with 0 and solving to find the maximum:

$$\frac{k}{\theta} - \frac{l}{(1 - \theta)} = 0$$

$$\Leftrightarrow \frac{k}{\theta} = \frac{l}{(1 - \theta)}$$

$$\Leftrightarrow k(1 - \theta) = l\theta$$

$$\Leftrightarrow k = (l + k)\theta$$

$$\Leftrightarrow \frac{k}{l + k} = \theta = \frac{k}{N}$$

Maximum likelihood vs Bayesian

- **Bayesian learning**: computing posterior $P(H \mid d)$
 - ▶ uses prior information *P(h)*
 - ▷ use in weighted manner to select best action: $V(a) = \sum_{h} P(h \mid d) u(a,h)$
- Maximum likelihood (ML) $h_{MI} = max_h P(d | h)$
 - ▷ select action according $V(a) = u(a, h_{M})$
 - prone to "overfitting"
- Maximum a posteriori (MAP) probability: ML + priors
 - $\vdash h_{MAP} = max_h P(d \mid h) P(h)$
 - can still overfit

I threw a die a couple of times: (4,2,2,5,4,4)

→ does this die have 50% chance of landing 4?

Some Machine Learning Concepts in a Nutshell

Supervised Machine Learning

- Taxi agent told "that's a bus"
- General set up:
 - ▶ bag of **training data** $d = \{\langle x_i, y_i \rangle\}_{i=1...N}$
 - \triangleright assumption: labels generated by **'true' function** y=f(x)
 - ▷ goal: find **hypothesis** $h(x) \approx g(x)$
- Instantiations: regression, classification

Supervised Machine Learning

- Taxi agent told "that's a bus"
- General set up:
 - ▶ bag of **training data** $d = \{\langle x_i, y_i \rangle\}_{i=1...N}$
 - assumption: labels generated by 'true' function y=f(x)
 - ▷ goal: find **hypothesis** $h(x) \approx g(x)$
- Instantiations: regression, classification

Run your favorite ML algorithm

define loss

optimization

Other Machine Learning Settings

Unsupervised learning

- Learn patterns in the input without explicit feedback no labels
- Most common task is clustering
- e.g. taxi agent notices "bad traffic days"

Semi-supervised learning

- ▶ large bag of data, only a few are labeled...
- can we use the unlabeled data to use labels more effectively?

Active-learning

- ▷ large bag of data, only a few are labeled...
- what point should we ask an annotator to label?

■ Reinforcement learning

- Learns from a series of reinforcements: rewards or punishments
- Cab driver gets paid and needs to pay for fuel. He/she also needs to pay for groceries to live..
- Etc., etc.,...

Generalization: the problem of induction

- Philosophical question of whether inductive reasoning leads to knowledge...
 - https://en.wikipedia.org/wiki/Problem_of_induction
 - E.g., the inference that "all swans we have seen are white, and, therefore, all swans are white", before the discovery of black swans...?
- In other words... how do we know $h \approx f$?

Generalization: the problem of induction

- Philosophical question of whether inductive reasoning leads to knowledge...
 - https://en.wikipedia.org/wiki/Problem_of_induction
 - E.g., the inference that "all swans we have seen are white, and, therefore, all swans are white", before the discovery of black swans...?
- In other words... how do we know $h \approx f$?
- Two approaches:
 - use theorems
 - computational/statistical learning theory
 - use experiments
 - ▶ test h on a new set of data

- ML algorithms optimize training loss
 e.g., the mean squared error
- But we want to predict how well we do on unseen data
 - That performance can be quite different!

ML algorithms optimize training loss

ML algorithms optimize training loss

ferent!

by using a sufficiently complex model, is possible to get 0 training loss...

→ "overfitting"

- ML algorithms optimize training loss
 - e.g., the mean squared error

- But we want to predict how well we do on unseen data
 - That performance can be quite different!
 - Solution: estimate on some held out test data
 - (test data is never used, also not for model selection!)

Theorems for Generalization

- We will not in detail cover, but see R&N 19.5
- Field: computational learning theory
- One of the main ideas: PAC-learning
 - assume that data is drawn from some true distribution
 - consider what would be an 'unlucky draw' (error >ε)
 - bound the probability of such 'unlucky draws' (<δ)</p>

Learning parameters of a Bayesian Network

■ How to Estimate the Parameters...?

- How to Estimate the Parameters...?
- Well...
 - Bayesian learning
 - Maximum likelihood
 - ▶ MAP

- How to Estimate the Parameters...?
- Well...
 - Bayesian learning
 - Maximum likelihood
 - ▷ MAP

we'll give ML a shot....

 $L(\theta) = log P(d;\theta)$ ters...? party rested pass studied exam

 $L(\theta) = log P(d;\theta)$ $= log \Pi_{i} P(\langle party_{i}, rested_{i}, studied_{i}, pass_{i} \rangle; \theta)$

 $L(\theta) = log P(d;\theta)$

= $log \Pi_i P(\langle party_i, rested_i, studied_i, pass_i \rangle; \theta)$

= $\Sigma_i log P(\langle party_i, rested_i, studied_i, pass_i > ; \theta)$

 $L(\theta) = log P(d;\theta)$

= $log \Pi_i P(\langle party_i, rested_i, studied_i, pass_i > ; \theta)$

= $\Sigma_i log P(\langle party_i, rested_i, studied_i, pass_i > ; \theta)$

= $\Sigma_i log P(party_i; \theta) P(rested_i | party_i; \theta)$ $P(studied_i; \theta) P(pass_i | studied_i, rested_i; \theta)$


```
L(\theta) = \log P(d;\theta)
= log \Pi_i P(\langle party_i, rested_i, studied_i, pass_i \rangle; \theta)
= \Sigma_i log P(\langle party_i, rested_i, studied_i, pass_i > ; \theta)
= \Sigma_i log P(party_i; \theta) P(rested_i | party_i; \theta)
     P(studied_i; \theta)P(pass_i | studied_i, rested_i; \theta)
= \Sigma_i \log P(party_i; \theta)
+ \Sigma_i \log P(rested_i | party_i; \theta)
+ \Sigma_i \log P(studied_i; \theta)
+ \Sigma_i \log P(pass_i | studied_i, rested_i; \theta)
```


$$L(\theta) = log \ P(d;\theta)$$

 $= log \Pi_i P(< party_i, rested_i, st)$

= $\Sigma_i log P(\langle party_i, rested_i, sti)$

= $\Sigma_i log P(party_i; \theta) P(rested_i; \theta) P(studied_i; \theta) P(pass_i | stu_i)$

- = $\Sigma_i \log P(party_i; \theta)$
- + $\Sigma_i \log P(rested_i \mid party_i; \theta)$
- + Σ_i log $P(studied_i; \theta)$
- + $\Sigma_i \log P(pass_i | studied_i, rested_i; \theta)$

Estimating a Bernoulli...! (we saw this)

- $P(party_i; \theta) = \theta_{party}$
- e.g., went to party 2x, stayed at home 3x

$$\rightarrow$$
 L(θ_{party}) = 2 log θ_{party} + 3 log (1- θ_{party})

diffentiate, equate to 0...

rested

 $L(\theta) = log P(d;\theta)$

 $= log \Pi_i P(< party_i, rested_i, st)$

= $\Sigma_i log P(\langle party_i, rested_i, sti)$

= $\Sigma_i log P(party_i; \theta) P(rested_i; \theta) P(studied_i; \theta) P(pass_i | stu_i)$

= $\Sigma_i \log P(part_{i}, \theta)$

+ $\Sigma_i \log P(rested_i | party; \theta)$

+ Σ_i log P(studied; θ)

+ $\Sigma_i \log P(pass_i | studied_i, rested_i; \theta)$

Estimating a Bernoulli...! (we saw this)

• $P(party_i; \theta) = \theta_{party}$

• e.g., went to party 2x, stayed at home 3x

→ L(θ_{party}) = 2 $\log \theta_{party}$ + 3 $\log (1-\theta_{party})$

diffentiate, equate to 0...

studied pass exam

note: parameters are "localized" → estimate each CPT in isolation

46

rested

Great, you are now ready to plan for your exam!

risk of this approach...?

Learning with hidden variables

Learning with Hidden Variables (20.3)

- many ML methods: map x → y both are observable!
- What if don't observe all of the x? (or even y)...?
- E.g..
 - disease? (only observe diagnosis)
 - actual location of a robot?
 - or if it rained? (only observe umbrella)
- Deal with hidden, or 'latent variables'!

Just work with what you can observe...?

- ...just use the variables x' → y that you can observe?
 - typical approach taken in deep learning...
 - So can work well

- In favor of latent variable models:
 - can greatly reduce the number of parameters
 - may be critical to the further actions... (e.g. treatment depends on the disease!)

Just work with what you can

- In favor of latent variable models:
 - can greatly reduce the number of parameters
 - may be critical to the further actions... (e.g. treatment depends on the disease!)

Learning latent variable models

- The big challenge: how?
- We will assume we know the structure...
 - but even then...?
- Also learning the structure: very hard problem!
- But: at the core of AI!
 - agent that can hypothesize about the working of the world
 - even things that can not be seen directly (gravity, quarks...)

Learning with latent variables: the EM algorithm

EM - overall idea

- The **expectation-maximization** algorithm: one of the most frequently used methods to learn with hidden variables
- Overall intuition:
 - estimate hidden variables given current parameters
 - learn better parameters given estimated variables
- This will be technical...
 - but: agent that can do science!

EM for clustering - intuition

- Intuition: EM for clustering using k Gaussians
- Algorithm does not get class labels
- randomly initialize:
 - cluster means, covariances
 - which point belongs to which cluster

https://en.wikipedia.org/wiki/Expectation%E2%80%93ma

■ Iterate:

- ▷ estimate $p_{ij} = P(C=i | \mathbf{x}_j)$ the probability that data point j belongs to cluster i
 - using current cluster parameters
- \triangleright update cluster parameters using p_{ij}

EM General form

'x' - all observed data

General form of EM:

$$\theta^{(k+1)} = \arg\max_{\theta} \sum_{\mathbf{z}} P(\mathbf{Z} = \mathbf{z} | \mathbf{x}, \theta^{(k)}) L(\mathbf{x}, \mathbf{Z} = z | \theta)$$
 (2.1)

where:

- $\theta^{(k+1)}$ is the new parameter vector
- ullet z is the vector of values for latent variables Z
- \bullet x is the value of observed variables
- $P(\mathbf{Z} = \mathbf{z} | \mathbf{x}, \theta^{(k)})$ the 'estimation' of the latent variables given $\mathbf{x}, \theta^{(k)}$
- $L(\boldsymbol{x},\boldsymbol{Z}=\boldsymbol{z}|\theta)$ the log likelihood:

$$L(\boldsymbol{x},\boldsymbol{Z}=\boldsymbol{z}|\theta) = \log P(\boldsymbol{x},\boldsymbol{Z}=\boldsymbol{z}|\theta)$$

EM General form

- 1. **E-step**, where 'E' stands for *expectation*. Here the summation over z is performed to compute the expectation. Note that, in order to accomplish this, it needs to compute, or *estimate*, the posterior $P(Z = z | x, \theta^{(k)})$.
- 2. **M-step**. Which performs the maximization over parameters θ .

$$\theta^{(k+1)} = \arg\max_{\theta} \sum_{\mathbf{z}} P(\mathbf{Z} = \mathbf{z} | \mathbf{x}, \theta^{(k)}) L(\mathbf{x}, \mathbf{Z} = z | \theta)$$
 (2.1)

where:

- $\theta^{(k+1)}$ is the new parameter vector
- \bullet z is the vector of values for latent variables Z
- \bullet x is the value of observed variables
- $P(\mathbf{Z} = \mathbf{z} | \mathbf{x}, \theta^{(k)})$ the 'estimation' of the latent variables given $\mathbf{x}, \theta^{(k)}$
- $L(\boldsymbol{x},\boldsymbol{Z}=\boldsymbol{z}|\theta)$ the log likelihood:

$$L(\boldsymbol{x}, \boldsymbol{Z} = \boldsymbol{z} | \theta) = \log P(\boldsymbol{x}, \boldsymbol{Z} = \boldsymbol{z} | \theta)$$

EM General form

- 1. **E-step**, where 'E' stands for *expectation*. Here the summation over z is performed to compute the expectation. Note that, in order to accomplish this, it needs to compute, or *estimate*, the posterior $P(Z = z | x, \theta^{(k)})$.
- 2. **M-step**. Which performs the maximization over parameters θ .

$$\theta^{(k+1)} = \arg\max_{\theta} \sum_{\mathbf{z}} P(\mathbf{Z} = \mathbf{z} | \mathbf{x}, \theta^{(k)}) L(\mathbf{x}, \mathbf{Z} = z | \theta)$$
 (2.1)

where:

- $\theta^{(k+1)}$ is the new parameter vector
- \bullet z is the vector of values for latent variables Z
- \bullet x is the value of observed variables
- $P(\mathbf{Z} = \mathbf{z} | \mathbf{x}, \theta^{(k)})$ the 'estimation' of the latent variables given $\mathbf{x}, \theta^{(k)}$
- $L(\boldsymbol{x},\boldsymbol{Z}=\boldsymbol{z}|\theta)$ the log likelihood:

In the Mixture of Gaussians example:

- $x the set of data points x_i z the hidden "true cluster" z_i for each point_i$
- θ parameters: mean vectors, covariance matrices
- $L(x,z|\theta) = \log \Pi_i P(x_i, z_i | \theta)$
- E-step: estimate the probability of the assignment z
- M-step: update the means, covariances

EM for the "Flavor" Bayesian Network (R&N: 20.3.2)

The Flavor BN

2 Bags of candy got mixed!

In the "flavor BN", we have

- the observed variables of a data point i are $X_i = \langle Flavor, Wrapper, Hole \rangle$
- the hidden variable $Z_i = Bag$, which takes values $z_i \in \{1,2\}$
- the parameters $\theta = \left\langle \theta_B, \{\theta_{Fx}, \theta_{Wx}, \theta_{Hx}\}_{x=1,2} \right\rangle$ encode the CTPs:

$$\theta_B = P(Bag = x), \quad \theta_{Fx} = P(Flavor = cherry|Bag = x), \text{ etc.}$$

• We write $\mathbf{x} = \langle x_i \rangle_{i=1}^N$, $\mathbf{z} = \langle z_i \rangle_{i=1}^N$ are the vectors of observed resp. hidden values for all data points,

The Flavor BN

2 Bags of candy got mixed!

In the "flavor BN", we have

- the observed variables of a data point i are $X_i = \langle Flavor, Wrapper, Hole \rangle$
- the hidden variable $Z_i = Bag$, which takes values $z_i \in \{1,2\}$
- the parameters $\theta = \left\langle \theta_B, \{\theta_{Fx}, \theta_{Wx}, \theta_{Hx}\}_{x=1,2} \right\rangle$ encode the CTPs:

$$\theta_B = P(Bag = x), \quad \theta_{Fx} = P(Flavor = cherry|Bag = x), \text{ etc.}$$

• We write $\mathbf{x} = \langle x_i \rangle_{i=1}^N$, $\mathbf{z} = \langle z_i \rangle_{i=1}^N$ are the vectors of observed resp. hidden values for all data points,

Optimize Log Likelihood...

Due to hidden variable, directly optimizing log likelihood is hard:

In this example the data log-likelihood is

$$L(\boldsymbol{x}|\theta) = \log \Pr(\boldsymbol{x}|\theta) = \log \sum_{\boldsymbol{z}} \Pr(\boldsymbol{x}, \boldsymbol{Z} = \boldsymbol{z}|\theta)$$

$$= \log \sum_{\boldsymbol{z}} \prod_{i=1}^{N} \Pr(x_i, Z_i = z_i|\theta)$$

$$= \log \sum_{\boldsymbol{z}} \prod_{i=1}^{N} \Pr(z_i|\theta_B) \Pr(flavor_i|z_i, \theta_{Fz_i}) \Pr(wrapper_i|z_i, \theta_{Wz_i}) \Pr(hole_i|z_i, \theta_{Hz_i})$$

Optimize Log Likelihood...

Due to hidden variable, directly optimizing log likelihood is hard:

In this example the data log-likelihood is

$$L(\boldsymbol{x}|\theta) = \log \Pr(\boldsymbol{x}|\theta) = \log \sum_{\boldsymbol{z}} \Pr(\boldsymbol{x}, \boldsymbol{Z} = \boldsymbol{z}|\theta)$$

$$= \log \sum_{\boldsymbol{z}} \prod_{i=1}^{N} \Pr(x_i, Z_i = z_i|\theta)$$

$$= \log \sum_{\boldsymbol{z}} \prod_{i=1}^{N} \Pr(z_i|\theta_B) \Pr(flavor_i|z_i, \theta_{Fz_i}) \Pr(wrapper_i|z_i, \theta_{Wz_i}) \Pr(hole_i|z_i, \theta_{Hz_i})$$

log-of-sum does not decompose in smaller terms... ...everything is coupled in a big messy expression :(

If the problem was observable...

The EM algorithm iterates:

$$\theta^{(k+1)} = \arg \max_{\theta} \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\boldsymbol{x}, \theta^{(k)}) L(\boldsymbol{x}, \boldsymbol{z}|\theta)$$

which uses the full (or 'completed') log-likelihood:

$$\begin{split} L(\boldsymbol{x}, & \boldsymbol{z}|\boldsymbol{\theta}) = \log \Pr(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}) = \log \prod_{i=1}^{N} \Pr(x_i, z_i|\boldsymbol{\theta}) \\ & = \sum_{i=1}^{N} \log \Pr(x_i, z_i|\boldsymbol{\theta}) \\ & = \sum_{i=1}^{N} \log \Pr(z_i|\boldsymbol{\theta}_B) + \sum_{i=1}^{N} \log \Pr(flavor_i|z_i, \boldsymbol{\theta}_{Fz_i}) \\ & + \sum_{i=1}^{N} \log \Pr(wrapper_i|z_i, \boldsymbol{\theta}_{Wz_i}) + \sum_{i=1}^{N} \log \Pr(hole_i|z_i, \boldsymbol{\theta}_{Hz_i}) \end{split}$$

This term (indeed assuming we know z) is easy to optimize: the parameters are localized: e.g., in order to optimize θ_B , we only need to consider the first term $\sum_{i=1}^{N} \log \Pr(z_i|\theta_B)$, the other terms are not affected by θ_B and there are no other parameters that affect it.

TUDelft

If the problem was observable...

The EM algorithm iterates:

$$\theta^{(k+1)} = \arg \max_{\theta} \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\boldsymbol{x}, \theta^{(k)}) L(\boldsymbol{x}, \boldsymbol{z}|\theta)$$

which uses the full (or 'completed') log-likelihood:

$$\begin{split} L(\boldsymbol{x}, & \boldsymbol{z}|\boldsymbol{\theta}) = \log \Pr(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}) = \log \prod_{i=1}^{N} \Pr(x_i, z_i|\boldsymbol{\theta}) \\ & = \sum_{i=1}^{N} \log \Pr(x_i, z_i|\boldsymbol{\theta}) \\ & = \sum_{i=1}^{N} \log \Pr(z_i|\boldsymbol{\theta}_B) + \sum_{i=1}^{N} \log \Pr(flavor_i|z_i, \boldsymbol{\theta}_{Fz_i}) \\ & = \sum_{i=1}^{N} \log \Pr(wrapper_i|z_i, \boldsymbol{\theta}_{Wz_i}) + \sum_{i=1}^{N} \log \Pr(hole_i|z_i, \boldsymbol{\theta}_{Hz_i}) \end{split}$$

let's zoom in on this term

This term (indeed assuming we know z) is easy to optimize: the parameters are localized: e.g., in order to optimize θ_B , we only need to consider the first term $\sum_{i=1}^{N} \log \Pr(z_i|\theta_B)$, the other terms are not affected by θ_B and there are no other parameters that affect it.

TUDelft

... we could easily update θ_{B}

Can rewrite as follows:

$$\sum_{i=1}^{N} \log \Pr(z_{i}|\theta_{B}) = \sum_{i \text{ s.t. } z_{i}=1} \log \Pr(z_{i}|\theta_{B}) + \sum_{i \text{ s.t. } z_{i}=2} \log \Pr(z_{i}|\theta_{B})$$

$$= \sum_{i \text{ s.t. } z_{i}=1} \log \theta_{B} + \sum_{i \text{ s.t. } z_{i}=2} \log (1 - \theta_{B})$$

$$= N_{1} \log \theta_{B} + N_{2} \log (1 - \theta_{B})$$

$$= N_{1} \log \theta_{B} + (N - N_{1}) \log (1 - \theta_{B})$$

Where $N_1 = N(bag = 1|\mathbf{z})$.

If z was correct, this would then lead (by taking derivative and setting to 0) to

$$\theta_B \leftarrow \frac{N_1}{N}$$

... we could easily

Can rewrite as follows:

$$\sum_{i=1}^{N} \log \Pr(z_i | \theta_B) = \sum_{i \text{ s.t. } z_i = 1} \log \Pr$$

$$= \sum_{i \text{ s.t. } z_i = 1} \log \theta_B$$

$$= N_1 \log \theta_B + N_2$$

$$= N_1 \log \theta_B + (N_2)$$

Where $N_1 = N(bag = 1|\mathbf{z})$.

If z was correct, this would then le to 0) to

Maximum likelihood Bernoulli (20.2.1)

$$L(\theta) = \log \prod_{i=1}^{k} \theta \prod_{i=1}^{l} (1 - \theta)$$
$$= \log \theta^{k} (1 - \theta)^{l}$$
$$= k \log \theta + l \log (1 - \theta)$$

Its derivative:

$$\frac{d}{d\theta}L(\theta) = \frac{k}{\theta} - \frac{l}{(1-\theta)}$$

equating with 0 and solving to find the maximum:

$$\frac{k}{\theta} - \frac{l}{(1 - \theta)} = 0$$

$$\Leftrightarrow \frac{k}{\theta} = \frac{l}{(1 - \theta)}$$

$$\Leftrightarrow k(1 - \theta) = l\theta$$

$$\Leftrightarrow k = (l + k)\theta$$

$$\Leftrightarrow \frac{k}{l + k} = \theta = \frac{k}{N}$$

- ...this is why EM takes the expectation w.r.t. $P(\boldsymbol{z}|\boldsymbol{x},\theta^{(k)})$.
- Again, let's continue to focus on updating θ_B .

- ...this is why EM takes the expectation w.r.t. $P(z|x,\theta^{(k)})$.
- Again, let's continue to focus on updating θ_B .
- The EM rule

$$\theta^{(k+1)} = \arg \max_{\theta} \sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}, \theta^{(k)}) L(\mathbf{x}, \mathbf{z}|\theta)$$

translates to:

$$\theta_B^{(k+1)} = \arg \max_{\theta_B} \sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}, \theta^{(k)}) \left[N_1 \log \theta_B + (N - N_1) \log(1 - \theta_B) \right]$$

- ...this is why EM takes the expectation w.r.t. $P(z|x,\theta^{(k)})$.
- Again, let's continue to focus on updating θ_B .
- The EM rule

$$\theta^{(k+1)} = \arg\max_{\theta} \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\boldsymbol{x}, \theta^{(k)}) L(\boldsymbol{x}, \boldsymbol{z}|\theta)$$

translates to:

$$\theta_B^{(k+1)} = \arg \max_{\theta_B} \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\boldsymbol{x}, \theta^{(k)}) \left[N_1 \log \theta_B + (N - N_1) \log(1 - \theta_B) \right]$$

and we see that the dependence on z is only via the counts $N_1...$

• .. so we can re-write:

$$\sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}, \theta^{(k)}) \left[N_1 \log \theta_B + (N - N_1) \log(1 - \theta_B) \right]$$
$$= \sum_{\mathbf{z}} P(N_1 = n|\mathbf{x}, \theta^{(k)}) \left[n \log \theta_B + (N - n) \log(1 - \theta_B) \right]$$

<etc..., check hand out.>

$$= \log \theta_B \cdot \hat{N}(Bag = 1) + \log(1 - \theta_B) \cdot (N - \hat{N}(Bag = 1))$$

with $\hat{N}(Bag = 1)$ is the expected counts for bag 1.

• Finally, this leads (by taking derivative and setting to 0) to

$$\theta_B^{(k+1)} \leftarrow \frac{\hat{N}(Bag = 1)}{N}$$

.. so we can re-write:

$$\sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}, \theta^{(k)}) \left[N_1 \log \theta_B + (N - N_1) \log(1 - \theta_B) \right]$$
$$= \sum_{\mathbf{z}} P(N_1 = n|\mathbf{x}, \theta^{(k)}) \left[n \log \theta_B + (N - n) \log(1 - \theta_B) \right]$$

<etc..., check hand out.>

$$= \log \theta_B \cdot \hat{N}(Bag = 1) + \log(1 - \theta_B) \cdot (N - \hat{N}(Bag = 1))$$
 using BN inference; see with $\hat{N}(Bag = 1)$ is the expected counts for bag 1. book!

• Finally, this leads (by taking derivative and setting to 0) to

$$\theta_B^{(k+1)} \leftarrow \frac{\hat{N}(Bag = 1)}{N}$$

EM for HMMs

(R&N: 20.3.3)

So how about HMMs...?

- Idea is going to be the same...
 - write down general EM rule
 - start filling out the "completed log-likelihood"
 - b do puzzling: information we really need to take the expectation over **z**

HMM learning set up

- $\mathbf{x} = \{(o_{i1}, o_{i2}, \dots, o_{iT})\}_{i=1}^{N}$ is the set of N trajectories of observations of the form $x_i = (o_{i1}, o_{i2}, \dots, o_{iT})$.
- $z = \{(s_{i0}, s_{i1}, s_{i2}, \dots, s_{iT})\}_{i=1}^{N}$ is the set of N trajectories of hidden states of the form $z_i = (s_{i0}, s_{i1}, s_{i2}, \dots, s_{iT})$.

HMM learning set up

- $\mathbf{x} = \{(o_{i1}, o_{i2}, \dots, o_{iT})\}_{i=1}^{N}$ is the set of N trajectories of observations of the form $x_i = (o_{i1}, o_{i2}, \dots, o_{iT})$.
- $\mathbf{z} = \{(s_{i0}, s_{i1}, s_{i2}, \dots, s_{iT})\}_{i=1}^{N}$ is the set of N trajectories of hidden states of the form $z_i = (s_{i0}, s_{i1}, s_{i2}, \dots, s_{iT})$.
- The joint probability defined by an HMMs:

$$P(\boldsymbol{x},\boldsymbol{z}|\theta) = P(s_0) \prod_{t=1}^{T} P(s_t|s_{t-1},\theta) P(o_t|s_t,\theta)$$
$$= \theta_{s_0}^{init} \prod_{t=1}^{T} \theta_{s_{t-1} \to s_t}^{trans} \theta_{s_t \to o_t}^{obs}$$

where

$$\theta_{s_{t-1} \to s_t}^{trans} \triangleq P(s_t | s_{t-1})$$
$$\theta_{s_t \to o_t}^{obs} \triangleq P(o_t | s_t)$$

are the parameters for the transition and observation probabilities.

76

$$\theta^{(k+1)} = \arg\max_{\theta} \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\boldsymbol{x}, \theta^{(k)}) L(\boldsymbol{x}, \boldsymbol{z}|\theta)$$

• The full (or 'completed') log-likelihood:

$$L(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}) = \log \theta_{s_0}^{init} + \sum_{t=1}^{T} \log \theta_{s_{t-1} \to s_t}^{trans} + \sum_{t=1}^{T} \log \theta_{s_t \to o_t}^{obs}.$$

$$\theta^{(k+1)} = \arg \max_{\theta} \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\boldsymbol{x}, \theta^{(k)}) L(\boldsymbol{x}, \boldsymbol{z}|\theta)$$

• The full (or 'completed') log-likelihood:

$$L(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta}) = \log \theta_{s_0}^{init} + \sum_{t=1}^{T} \log \theta_{s_{t-1} \to s_t}^{trans} + \sum_{t=1}^{T} \log \theta_{s_t \to o_t}^{obs}.$$

• Let's find the new transition probabilities of some state y

$$\theta^{(k+1)} = \arg \max_{\theta} \sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}, \theta^{(k)}) L(\mathbf{x}, \mathbf{z}|\theta)$$

• The full (or 'completed') log-likelihood:

$$L(\boldsymbol{x}, \boldsymbol{z}|\theta) = \log \theta_{s_0}^{init} + \sum_{t=1}^{T} \log \theta_{s_{t-1} \to s_t}^{trans} + \sum_{t=1}^{T} \log \theta_{s_t \to o_t}^{obs}.$$

- Let's find the new transition probabilities of some state y
- Our goal is to maximize

$$\theta_{y \to \cdot}^{trans(k+1)} = \arg \max_{\theta_{y \to \cdot}^{trans}} \sum_{\mathbf{z}} P(\mathbf{z} | \mathbf{x}, \theta^{(k)}) L(\mathbf{x}, \mathbf{z} | \theta)$$

$$= \arg \max_{\theta_{y \to \cdot}^{trans}} \sum_{\mathbf{z}} P(\mathbf{z} | \mathbf{x}, \theta^{(k)}) \left[\sum_{t=1}^{T} \log \theta_{s_{t-1} \to s_{t}}^{trans} \right]$$

subject to $\sum_{z} \theta_{y \to z}^{trans} = 1$.

$$\theta^{(k+1)} = \arg \max_{\theta} \sum_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}, \theta^{(k)}) L(\mathbf{x}, \mathbf{z}|\theta)$$

• The full (or 'completed') log-likelihood:

$$L(\boldsymbol{x}, \boldsymbol{z}|\theta) = \log \theta_{s_0}^{init} + \sum_{t=1}^{T} \log \theta_{s_{t-1} \to s_t}^{trans} + \sum_{t=1}^{T} \log \theta_{s_t \to o_t}^{obs}.$$

- Let's find the new transition probabilities of some state y
- Our goal is to maximize

$$\theta_{y \to \cdot}^{trans(k+1)} = \arg \max_{\theta_{y \to \cdot}^{trans}} \sum_{\mathbf{z}} P(\mathbf{z} | \mathbf{x}, \theta^{(k)}) L(\mathbf{x}, \mathbf{z} | \theta)$$

$$= \arg \max_{\theta_{y \to \cdot}^{trans}} \sum_{\mathbf{z}} P(\mathbf{z} | \mathbf{x}, \theta^{(k)}) \left[\sum_{t=1}^{T} \log \theta_{s_{t-1} \to s_t}^{trans} \right]$$

subject to $\sum_{z} \theta_{y \to z}^{trans} = 1$.

TUDelft

What part of z do we need?

- Let us abbreviate: $Q^{(k+1)}(z) = P(z|x,\theta^{(k)})$
- Then:

$$\arg\max_{\theta_{y}^{trans}} \sum_{\boldsymbol{z}} Q^{(k+1)}(\boldsymbol{z}) \left[\sum_{t=1}^{T} \log \theta_{s_{t-1} \to s_{t}}^{trans} \right]$$

$$= \arg\max_{\theta_{y}^{trans}} \sum_{\boldsymbol{z}} Q^{(k+1)}(\boldsymbol{z}) \left[\sum_{t \text{ s.t. } \{S_{i,t-1} = y\}} \log \theta_{y \to s_{t}}^{trans} \right]$$

$$= \arg\max_{\theta_{y}^{trans}} \sum_{t} \sum_{\substack{\boldsymbol{z} \text{ s.t. } \\ S_{t-1} = y}} Q^{(k+1)}(\boldsymbol{z}) \log \theta_{y \to s_{t}}^{trans}$$

$$= \arg\max_{\theta_{y}^{trans}} \sum_{t} \sum_{(s_{0} \dots s_{t-2}, s_{t} \dots s_{T})} Q^{(k+1)}(s_{0} \dots s_{t-1}, S_{t-1} = y, s_{t} \dots s_{T}) \log \theta_{y \to s_{t}}^{trans}$$

$$= \arg\max_{\theta_{y}^{trans}} \sum_{t} \sum_{v} \sum_{(s_{0} \dots s_{t-2}, s_{t+1} \dots s_{T})} Q^{(k+1)}(s_{0} \dots, S_{t-1} = y, S_{t} = v, \dots s_{T}) \log \theta_{y \to v}^{trans}$$

$$= \arg\max_{\theta_{y}^{trans}} \sum_{t} \sum_{v} Q^{(k+1)}(S_{t-1} = y, S_{t} = v) \log \theta_{y \to v}^{trans}$$

• To update the parameters $\theta_{y\to}^{trans}$ for transitioning from y, we only need to estimate the marginal probabilities $Q^{(k+1)}(S_{t-1}=y,S_t=v)$

What part of z do we need?

- Let us abbreviate: $Q^{(k+1)}(z) = P(z|x,\theta^{(k)})$
- Then:

$$\arg \max_{\theta_{y \to \cdot}^{trans}} \sum_{\boldsymbol{z}} Q^{(k+1)}(\boldsymbol{z}) \left[\sum_{t=1}^{T} \log \theta_{s_{t-1} \to s_{t}}^{trans} \right]$$

$$= \arg \max_{\substack{\theta_{y \to \cdot}^{trans} \\ y \to \cdot}} \sum_{\mathbf{z}} Q^{(k+1)}(\mathbf{z}) \left[\sum_{\substack{t \text{ s.t. } \{S_{i,t-1} = y\}}} \log \theta_{y \to s_t}^{trans} \right]$$

$$= \arg \max_{\substack{\theta_{y \to \cdot}^{trans} \\ Y \to \cdot}} \sum_{\substack{t \text{ z.s.t.} \\ S_{t-1} = y}} Q^{(k+1)}(\mathbf{z}) \log \theta_{y \to s_t}^{trans}$$

$$\text{check at home}$$

$$t$$
 \tilde{S}_{t-1} s.t. check at home

$$= \arg \max_{\substack{\theta_{y \to s}^{trans}}} \sum_{t \ (s_0 \dots s_{t-2}, s_t \dots s_T)} Q^{(k+1)}(s_0 \dots s_{t-1}, S_{t-1} = y, s_t \dots s_T) \log \theta_{y \to s_t}^{trans}$$

$$= \arg \max_{\substack{\theta_{y \to v}^{trans}}} \sum_{t} \sum_{v} \sum_{(s_0 \dots s_{t-2}, s_{t+1} \dots s_T)} Q^{(k+1)}(s_0 \dots, S_{t-1} = y, S_t = v, \dots s_T) \log \theta_{y \to v}^{trans}$$

$$= \arg \max_{\theta_{y \to v}^{trans}} \sum_{t} \sum_{v} Q^{(k+1)}(S_{t-1} = y, S_t = v) \log \theta_{y \to v}^{trans}$$

• To update the parameters $\theta_{y\to}^{trans}$ for transitioning from y, we only need to estimate the marginal probabilities $Q^{(k+1)}(S_{t-1} = y, S_t = v)$

What part of z do we need?

- Let us abbreviate: $Q^{(k+1)}(z) = P(z|x,\theta^{(k)})$
- Then:

$$\arg\max_{\theta^{trans}_{y\rightarrow t}}\sum_{\boldsymbol{z}}Q^{(k+1)}(\boldsymbol{z})\left[\sum_{t=1}^{T}\log\theta^{trans}_{s_{t-1}\rightarrow s_{t}}\right]$$
 similar to max. likelihood estimation before:
$$=\arg\max_{\theta^{trans}_{y\rightarrow t}}\sum_{\boldsymbol{z}}Q^{(k+1)}(\boldsymbol{z})\left[\sum_{t\text{ s.t. }}\{s_{i,t-1}=y\}\log\theta^{trans}_{y\rightarrow s_{t}}\right]$$

$$=\arg\max_{\theta^{trans}_{y\rightarrow t}}\sum_{t}\sum_{s_{t-1}=y}Q^{(k+1)}(\boldsymbol{z})\log\theta^{trans}_{y\rightarrow s_{t}}$$

$$\theta_{u\rightarrow v}=\sum_{t}Q(u,v)/\sum_{t}Q(u)$$

$$=\arg\max_{\theta^{trans}_{y\rightarrow t}}\sum_{t}\sum_{(s_{0}\dots s_{t-2},s_{t}\dots s_{T})}Q^{(k+1)}(s_{0}\dots s_{t-1},S_{t-1}=y,s_{t}\dots s_{T})\log\theta^{trans}_{y\rightarrow s_{t}}$$

$$=\arg\max_{\theta^{trans}_{y\rightarrow t}}\sum_{t}\sum_{(s_{0}\dots s_{t-2},s_{t+1}\dots s_{T})}Q^{(k+1)}(s_{0}\dots s_{t-1},S_{t-1}=y,s_{t}\dots s_{T})\log\theta^{trans}_{y\rightarrow v}$$

$$=\arg\max_{\theta^{trans}_{y\rightarrow t}}\sum_{t}\sum_{s}Q^{(k+1)}(S_{t-1}=y,S_{t}=v)\log\theta^{trans}_{y\rightarrow v}$$

• To update the parameters $\theta_{y\to}^{trans}$ for transitioning from y, we only need to estimate the marginal probabilities $Q^{(k+1)}(S_{t-1}=y,S_t=v)$

Computing the pairwise marginals...?

- Need to compute $Q(s_{t-1}, s_t) = P(s_{t-1}, s_t | o_{1:T}, \theta^{(\kappa)})...$
- How?
- Modify the smoothing algorithm to compute these!
 - why smoothing?

Normal Smoothing

Normal Smoothing

$$Q(x_{k-1}, x_k) = \alpha \mathbf{f}_{1:k-1}(x_{k-1}) P(x_k|x_{k-1}) P(e_k|x_k) b_{k+1:t}(x_k)$$

Summary: EM for HMMs

- Iteratively apply EM rule as always...
- E-step: compute pairwise marginal probabilities
 - using modification of smoothing
- M-step: usual count ratios...
 - ...but based on the marginal probabilities
- Limitations:
 - ▷ local optima
 - overfitting... (what can be done...?)
- But very widely used in ML and statistics!

Summary Learning

- Learning, *induction*, is an important AI technique
 - b no model available, adaptivity, too difficult to program
- Different learning...
 - ...perspectives: idealistic vs. pragmatic
 - ...task settings: supervised, unsupervised, etc.
- Problem of induction... $h \approx f$?
 - test error or theorems
- Learning with maximum likelihood
 - a binary variable (Bernoulli)
 - b a (fully observed) Bayesian network
- Learning with hidden variables
 - Can lead to more compact models
 - EM algorithm
 - general form, Bayesian networks, HMMs
- Now, your robot can learn a model of change over time!

