```
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sb
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
%matplotlib inline

df = pd.read_csv('/content/ifood_df.csv')

df.head(50)
```

10.12.2023 22:08					TASK10C - Colaboratory			
19	37040.0	0	0	41	86	2	73	
20	2447.0	1	0	42	1	1	1725	
21	58607.0	0	1	63	867	0	86	
22	65324.0	0	1	0	384	0	102	
23	40689.0	0	1	69	270	3	27	
24	18589.0	0	0	89	6	4	25	
25	53359.0	1	1	4	173	4	30	
26	38360.0	1	0	26	36	2	42	
27	84618.0	0	0	96	684	100	801	
28	10979.0	0	0	34	8	4	10	
29	38620.0	0	0	56	112	17	44	
30	40548.0	0	1	31	110	0	5	
31	46610.0	0	2	8	96	12	96	
32	68657.0	0	0	4	482	34	471	
33	49389.0	1	1	55	40	0	19	
34	67353.0	0	1	37	702	17	151	
35	23718.0	1	0	76	6	3	14	
36	42429.0	0	1	99	55	0	6	
37	48948.0	0	0	53	437	8	206	
38	80011.0	0	1	3	421	76	536	
39	20559.0	1	0	88	13	1	29	
40	21994.0	0	1	4	9	0	6	
41	7500.0	1	0	19	3	1	10	
42	79941.0	0	0	72	123	164	266	
43	7500.0	0	0	24	3	18	14	
44	41728.0	1	0	92	13	6	15	
45	72550.0	1	1	39	826	50	317	
46	65486.0	0	1	29	245	19	125	
47	79143.0	0	0	2	650	37	780	
48	35790.0	1	0	54	12	6	20	
49	82582.0	0	0	54	510	120	550	

50 rows × 39 columns

df.head()

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
0	58138.0	0	0	58	635	88	546	
1	46344.0	1	1	38	11	1	6	
2	71613.0	0	0	26	426	49	127	
3	26646.0	1	0	26	11	4	20	
4	58293.0	1	0	94	173	43	118	

5 rows × 39 columns

```
def basic_info(df):
    print("This dataset has ", df.shape[1], " columns and ", df.shape[0], " rows.")
    print("This dataset has ", df[df.duplicated()].shape[0], " duplicated rows.")
    print(" ")
    print("Descriptive statistics of the numeric features in the dataset: ")
    print(" ")
    print(df.describe())
    print(" ")
    print("Information about this dataset: ")
    print(" ")
    print(df.info())
```

basic_info(df)

This dataset has 39 columns and 2205 rows. This dataset has 184 duplicated rows.

Descriptive statistics of the numeric features in the dataset:

	Income	e Kidhome	Teenhome	Recency	MntWines	\
count	2205.000000	2205.000000	2205.000000	2205.000000	2205.000000	
mean	51622.094785	0.442177	0.506576	49.009070	306.164626	
std	20713.063826	0.537132	0.544380	28.932111	337.493839	
min	1730.000000	0.000000	0.000000	0.000000	0.000000	
25%	35196.000000	0.00000	0.000000	24.000000	24.000000	
50%	51287.000000	0.00000	0.000000	49.000000	178.000000	
75%	68281.000000	1.000000	1.000000	74.000000	507.000000	
max	113734.000000	2.00000	2.000000	99.000000	1493.000000	
	MntFruits	${\tt MntMeatProducts}$	MntFishPro	ducts MntSwe	etProducts \	
count	2205.000000	2205.000000	2205.0	00000 2	205.000000	
mean	26.403175	165.312018	37.7	56463	27.128345	
std	39.784484	217.784507	54.8	24635	41.130468	

```
min
               0.000000
                                0.000000
                                                 0.000000
                                                                    0.000000
     25%
               2.000000
                               16.000000
                                                 3.000000
                                                                    1.000000
     50%
               8.000000
                               68.000000
                                                12.000000
                                                                    8.000000
     75%
                              232.000000
              33.000000
                                                50.000000
                                                                   34.000000
                             1725.000000
                                                                 262.000000
     max
             199.000000
                                               259.000000
            MntGoldProds
                          ... marital Together marital Widow education 2n Cycle \
             2205.000000
                                    2205.000000
                                                   2205.000000
                                                                        2205.000000
     count
               44.057143
                                       0.257596
                                                      0.034467
                                                                           0.089796
     mean
               51.736211
                                       0.437410
                                                                           0.285954
     std
                                                      0.182467
     min
                0.000000
                                       0.000000
                                                      0.000000
                                                                           0.000000
     25%
               9.000000
                                       0.000000
                                                      0.000000
                                                                           0.000000
     50%
               25.000000
                                       0.000000
                                                      0.000000
                                                                           0.000000
     75%
               56.000000
                                       1.000000
                                                      0.000000
                                                                           0.000000
     max
              321.000000
                                       1.000000
                                                      1.000000
                                                                           1.000000
            education_Basic education_Graduation education_Master education_PhD
                2205.000000
                                      2205.000000
                                                                        2205.000000
     count
                                                        2205.000000
                   0.024490
                                         0.504762
                                                            0.165079
                                                                           0.215873
     mean
                   0.154599
                                         0.500091
                                                            0.371336
                                                                           0.411520
     std
     min
                   0.000000
                                         0.000000
                                                           0.000000
                                                                           0.000000
     25%
                   0.000000
                                         0.000000
                                                            0.000000
                                                                           0.000000
     50%
                   0.000000
                                         1.000000
                                                           0.000000
                                                                           0.000000
     75%
                   0.000000
                                         1.000000
                                                           0.000000
                                                                           0.000000
                   1.000000
                                         1.000000
                                                            1.000000
                                                                           1.000000
     max
               MntTotal MntRegularProds AcceptedCmpOverall
     count 2205.000000
                             2205.000000
                                                  2205.00000
            562.764626
                             518.707483
                                                     0.29932
     mean
     std
             575.936911
                              553.847248
                                                     0.68044
     min
              4.000000
                             -283.000000
                                                     0.00000
     25%
             56.000000
                              42.000000
                                                     0.00000
     50%
             343.000000
                              288.000000
                                                     0.00000
     75%
             964.000000
                              884.000000
                                                     0.00000
            2491.000000
                             2458.000000
                                                     4.00000
     max
     [8 rows x 39 columns]
     def remove outliers(df, column names):
    for column in column names:
        Q1 = df[column].quantile(0.25)
        Q3 = df[column].quantile(0.75)
        IQR = Q3 - Q1
        lower bound = Q1 - 1.5 * IQR
        upper bound = Q3 + 1.5 * IQR
        df = df[(df[column] >= lower bound) & (df[column] <= upper bound)]
    return df
columns = ['Income', 'Kidhome', 'Teenhome', 'Recency', 'MntFruits', 'MntMeatProducts',
           'NumDealsPurchases', 'AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3',
           'AcceptedCmp4', 'AcceptedCmp5']
```

```
df no outliers = remove outliers(df, columns)
# Standardizing features
scaler = StandardScaler()
scaled features no outliers = scaler.fit transform(df no outliers[columns])
from sklearn.mixture import GaussianMixture
# Rerun KMeans clustering and silhouette analysis
n_components_range = range(2, 21)
aic_scores = []
bic scores = []
for n in n_components_range:
   gmm = GaussianMixture(n components=n, random state=42)
    gmm.fit(scaled_features_no_outliers)
    aic scores.append(gmm.aic(scaled features no outliers))
   bic_scores.append(gmm.bic(scaled_features_no_outliers))
plt.figure(figsize=(15, 6))
plt.plot(n_components_range, aic_scores, marker='o', linestyle='-', color='b', label='
plt.plot(n_components_range, bic_scores, marker='o', linestyle='-', color='r', label='
plt.title('GMM AIC and BIC Scores')
plt.xlabel('Number of Components (Clusters)')
plt.ylabel('Scores')
plt.grid(True)
plt.legend()
plt.show()
```

