Universidad del Quindío Programa de Ingeniería de Sistemas y Computación Análisis de algoritmia en el contexto de la bibliometría

1. Introducción

La bibliometría es una disciplina enmarcada dentro de la cienciometría que permite explorar y analizar volúmenes de datos derivados de la producción científica utilizando métodos cuantitativos. Se fundamenta en las matemáticas y la estadística, para establecer descripciones, relaciones, inferencias y presentaciones de la información suministrada por las revistas, los artículos y en general las publicaciones científicas en diferentes áreas del conocimiento.

2. Contexto

En el contexto de la bibliometría se pueden identificar diferentes indicadores. Algunos de ellos se enfocan en la productividad de los autores, índices de impacto, tipologías de producción académica, países, tópicos según el área de conocimiento, relación visual a partir de diferentes variables bibliométricas, relación entre la colaboración entre autores. En el trabajo de (Donthu et al. 2021) se plantean las técnicas de análisis: análisis de desempeño, mapeo científico y técnicas enriquecidas; cada una de las cuales está soportada en métodos estadísticos, algoritmos y herramientas.

3. Dominio

Para el proyecto del curso de análisis de algoritmos se plantea un dominio de conocimiento: El pensamiento computacional (computational thinking), el cual es un área de investigación con amplia productividad científica. En los siguientes enlaces puede acceder a información complementaria para este tema.

- https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2950
- https://www.mdpi.com/2227-7102/14/10/1124
- https://revista.eia.edu.co/index.php/reveia/article/view/1716

4. Fuentes de información

La universidad del Quindío cuenta actualmente con diversas bases de datos científicas disponibles en: https://library.uniquindio.edu.co/databases y las cuales agrupa por facultades. Entre algunas de las bases de datos se encuentran: ACM, SAGE y ScienceDirect. Cada una permite métodos de consulta, acceso y exportación de información. En este último aspecto, existen los formatos RIS, BibTex, CSV, texto plano entre otros. Las bases de datos disponibles presentan diversas tipologías de productividad científica - productos (artículos, conferencias, capítulos de libro, entre otros). Así mismo, cada base de datos presenta limitantes en cuanto al acceso a la información y la calidad de los datos relacionado principalmente a la completitud.

5. Propósito del proyecto

Implementar algoritmos que permitan el análisis bibliométrico y computacional sobre un dominio de conocimiento particular a partir de algunas de las bases de datos disponibles en la Universidad del Quindío. El desarrollo del proyecto se fundamentará en una serie de requerimientos funcionales que contemplan la implementación de diversas técnicas bibliométricas, la representación de información derivada del análisis bibliométrico y un análisis cuantitativo. Así mismo, para el proyecto se espera el despliegue de la aplicación con la correspondiente documentación.

A continuación se hace una descripción de los requerimientos funcionales del proyecto, los cuales parten de la cadena de búsqueda: "computational thinking".

Requerimiento 1. Se deben generar dos archivos con la siguiente información.

- En un archivo (en formato a definir RIS BibTex,) se debe unificar la estructura de la información proveniente de las diferentes bases de datos. El archivo debe contener la información completa de acuerdo con los resultados de la búsqueda para cada uno de los campos, por ejemplo: autores, título del trabajo, resumen, entre otros. También en el archivo se debe garantizar la existencia de una sola instancia del producto, es decir, si en dos o más bases de datos se identifica un producto repetido (artículo, conferencia, entre otros) se debe tener un solo registro de este. El proceso de unificación debe ser totalmente automático tanto desde la búsqueda hasta la generación de un solo archivo.
- En el otro archivo se debe almacenar toda la información con el registro de los productos repetidos (artículo, conferencia, entre otros) y los cuales fueron eliminados por aparecer repetidos. También se debe ser en el formato a definir.

Requerimiento 2. Desde el archivo unificado se deben generar estadísticos de acuerdo con las siguientes variables: primer autor del producto (15 autores con más apariciones), año de publicación por tipo de producto (artículos, conferencias, capítulos de libro, libro), tipo de producto (artículos, conferencias, capítulos de libro, libro), journal (15 journal con más apariciones), publisher (15 publisher con más apariciones). Todos los anteriores deben estar relacionados ya sea por la cantidad de productos o por el año.

Requerimiento 3. Dadas las siguientes categorías y sus variables, se debe presentar la frecuencia de aparición teniendo como fuente el abstract de cada artículo. Es de tener en cuenta que para algunos casos se tienen palabras que son sinónimos y los cuales deben ser unificados para el análisis; estos sinónimos se presentarán mediante un guion (-) dentro de la columna denominada variable. La frecuencia de aparición se debe mostrar de manera independiente por categoría. Así mismo se debe construir una gráfica de palabras clave (algunos autores la denominan nube de palabras) considerando la frecuencia de aparición tanto por categoría como por la totalidad de las categorías. La nube de palabras se debe generar dentro de la aplicación o herramienta desarrollada. No se permite hacer uso de otras plataformas. Se debe generar un gráfico de co-word (keyword co-occurrence) network visualization. Para ello se puede apoyar en el documento de Donthu.

Categoría	Variable
Habilidades	Abstraction
	Algorithm
	Algorithmic thinking
	Coding
	Collaboration
	Cooperation
	Creativity
	Critical thinking
	Debug
	Decomposition
	Evaluation
	Generalization
	Logic
	Logical thinking
	Modularity
	Patterns recognition
	Problem solving
	Programming

Conceptos	Conditionals
Computationales	Control structures
Computationales	
	Directions
	Events Funtions
	Loops
	Modular structure
	Parallelism
	Sequences
	Software/hardware
	Variables
Actitudes	Emotional
	Engagement
	Motivation
	Perceptions
	Persistence
	Self-efficacy
	Self-perceived
Propiedades	Classical Test Theory - CTT
psicométricas	Confirmatory Factor Analysis - CFA
	Exploratory Factor Analysis - EFA
	Item Response Theory (IRT) - IRT
	Reliability
	Structural Equation Model - SEM
	Validity
Herramienta de	Beginners Computational Thinking test - BCTt
evaluación	Coding Attitudes Survey - ESCAS
	Collaborative Computing Observation Instrument
	Competent Computational Thinking test - cCTt
	Computational thinking skills test - CTST
	Computational concepts
	Computational Thinking Assessment for Chinese Elementary
	Students - CTA-CES
	Computational Thinking Challenge - CTC
	Computational Thinking Levels Scale - CTLS
	Computational Thinking Scale - CTS
	Computational Thinking Skill Levels Scale - CTS
	Computational Thinking Test - CTt
	Computational Thinking Test
	Computational Thinking Test for Elementary School Students
	Computational Thinking Test for Lower Primary - CTtLP
	Computational thinking-skill tasks on numbers and arithmetic
	Computerized Adaptive Programming Concepts Test - CAPCT
	CT Scale - CTS
	Elementary Student Coding Attitudes Survey - ESCAS
	General self-efficacy scale
	ICT competency test
	Instrument of computational identity
<u> </u>	1

	KBIT fluid intelligence subtest
	Mastery of computational concepts Test and an Algorithmic Test
	Multidimensional 21st Century Skills Scale
	Self-efficacy scale
	STEM learning attitude scale
	The computational thinking scale
Diseño de	No experimental
investigación	Experimental
J	Longitudinal research
	Mixed methods
	Post-test
	Pre-test
	Quasi-experiments
Nivel de	·
	Upper elementary education - Upper elementary school
escolaridad	Primary school - Primary education - Elementary school
	Early childhood education – Kindergarten -Preschool
	Secondary school - Secondary education
	high school - higher education
	University – College
Medio	Block programming
	Mobile application
	Pair programming
	Plugged activities
	Programming
	Robotics
	Spreadsheet
	STEM
	Unplugged activities
Estrategia	Construct-by-self mind mapping
230.000	Construct-on-scaffold mind mapping
	Design-based learning
	Evidence-centred design approach
	Gamification
	Reverse engineering pedagogy
	Technology-enhanced learning
	Collaborative learning
	Cooperative learning
	Flipped classroom
	Game-based learning
	Inquiry-based learning
	Personalized learning
	Problem-based learning
	Project-based learning
	Universal design for learning
Herramienta	Alice
	Arduino
	Scratch
	ScratchJr

Blockly Games Code.org Codecombat **CSUnplugged Robot Turtles** Hello Ruby Kodable LightbotJr **KIBO** robots **BEE BOT CUBETTO** Minecraft **Agent Sheets** Mimo Pv-Learn SpaceChem

Requerimiento 5. Se deben implementar al menos dos técnicas que permitan medir la similitud entre abstracts de artículos de investigación. En función de las técnicas seleccionadas (validades previamente con el profesor) se deben agrupar artículos que tengan similitud textual, lo cual debe estar debidamente fundamentado.

Requerimiento 6. El proyecto debe estar desplegado y soportado con la documentación técnica para cada uno de los requerimientos.

Documento final:

El proyecto debe estar soportado en un documento de diseño con la correspondiente arquitectura. Se debe presentar para cada requerimiento una explicación técnica con detalles de implementación. El uso de IA debe estar debidamente fundamentado y se proporcionará un documento con los aspectos que deben ser considerado.

Nota: En caso de ser necesario, la presente descripción del proyecto puede ser modificada para efectos de dar mayor claridad en su especificación. En particular con los requerimientos funcionales los cuales podrán ser especificados con mayor detalle cuando se aclaren algunas restricciones técnicas de las bases de datos.