$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Fabric-Elasticity Relationships in Healthy and Diabetic Individuals

Mathieu Simon

November, 2024

Samples

Medtool 4.8

Downsampling (Factor 4) Segmentation

Morphometry Fabric

Abaqus 2023

Homogenization (KUBCs)

Stiffness Tensor

Morphometry

Material and Methods Preliminary Results References

Fabric-Elasticity Relationships

universität

Coefficient of variation (CV)

- Homogeneity of mass distribution within the ROI
- Threshold defined in Panyasantisuk et al. [1]

Linear Regression: Simon et al. [2] Appendix A and B

NB: Plots ranges similar as Simon et al. [2] for comparison

Material and Methods Preliminary Results References

Fabric-Elasticity Relationships II

NB: Plots ranges similar as Simon et al. [2] for comparison

Fabric-Elasticity Relationships III

References

 Panyasantisuk, J., Pahr, D. H., Gross, T., and Zysset, P. K. (2015)
Comparison of Mixed and Kinematic Uniform Boundary Conditions in Homogenized Elasticity of Femoral Trabecular Bone Using Microfinite Element Analyses

J Biomech Eng., 137(1) https://doi.org/10.1115/1.4028968

Simon M., Indermaur M., Schenk D., Hosseinitabatabaei S., Willie B.M.,
Zysset P. (2022)

Fabric-elasticity relationships of tibial trabecular bone are similar in osteogenesis imperfecta and healthy individuals

Bone, 155

https://doi.org/10.1016/j.bone.2021.116282

