AMS Théorème de Weierstrass

Samy Amara et Guillaume Salloum

Avignon Université L3 Mathématiques

Plan

- Théorème de Stone-Weierstrass et application aux séries de Fourier
 - Rappels
 - Application directe aux séries de Fourier

Preuve constructive à l'aide des polynômes de Bernstein

Rappels

D'après le cours de *Topologie et Analyse Hilbertienne*, nous avons vu que pour $(E, \|.\|)$ un espace vectoriel normé et $K \subseteq E$ compacte, alors :

- $C(K,\mathbb{R})$ l'ensemble des fonctions continues de K dans \mathbb{R} a une structure d'algèbre sur \mathbb{R} .
- $A \subset \mathcal{C}(K,\mathbb{R})$ est une sous-algèbre si elle est stable pour les opérations définies sur $\mathcal{C}(K,\mathbb{R})$.
- En considérant la norme de la convergence uniforme sur $\mathcal{C}(K,\mathbb{R})$ définie par $\|f\|_{\infty} = \sup_{x \in K} |f(x)|$, alors $\mathcal{C}(K,\mathbb{R})$ est une algèbre de Banach.
- $A \subset C(K, \mathbb{R})$ sépare les points de K si pour $x \neq y$ dans K, alors il existe une fonction $f \in A$ telle que $f(x) \neq f(y)$.

Théorème (Stone-Weierstrass, cas réel)

Soit (E, ||.||), $K \subseteq E$ compacte et $A \subseteq C(K, \mathbb{R})$ une sous-algèbre vérifiant:

- A contient les constantes,
- A sépare les points,
- $\overline{A} = \mathcal{C}(K, \mathbb{R})$

Alors toute fonction $f: K \to \mathbb{R}$ est limite d'une suite de A.

Schéma de la preuve.

- ① On montre d'abord que $t \mapsto \sqrt(t)$ est limite uniforme sur [0, 1] d'une suite de polynômes de A.
- 2 Ensuite on prouve que A est clos sous le passage à la valeur absolue, au sup et à l'inf d'une famille de fonctions de A.
- **③** On procède par interpolation à montrer l'existence d'un "élargissement" : pour $f \in A, \forall x, y \in K, \forall \epsilon > 0, \exists g \in \overline{A}$ telle que $g_x(x) = f(x)$ et $g_x(y) \leq f(y) + \epsilon$.
- ① On en déduit que $\forall \epsilon > 0, \exists g \in \overline{A}$ telle que $\|f g\|_{\infty} \le \epsilon$, ce qui implique que $f \in \overline{\overline{A}} = \overline{A}$.

Dans le cas où l'on se place sur $A \subset \mathcal{C}(K,\mathbb{C})$:

- Les étapes (1) et (2) restent identiques dans le cas complexe.
- Si $f \in A$, alors son conjugué $\overline{f} \in A$, ce qui permet de décomposer f en $f = \Re(f) + i\Im(f)$ pour $\Re(f), \Im(f) \in A|_{\mathcal{C}(K,\mathbb{R})}$ et d'apliquer le cas réel du théorème à $\Re(f)$ et $\Im(f)$.
- Puisque A est clos par addition et multiplication par un scalaire complexe, on peut combiner $g = \Re(f) + i\Im(f)$ et avoir g dans A. Ce g approxime bien f uniformément.

Application directe aux séries de Fourier

Dans cette partie, $E = \mathbb{T} = [0, 2\pi]$ le cercle unité compact de \mathbb{R} , $A = Vect(\exp(inx)_{n \in \mathbb{Z}})$

Références I