July 1989

LM1575-5.0/LM2575-5.0 Simple Switcher Step-Down Voltage Regulator

General Description

The LM1575/LM2575 are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator. These devices feature a 5V output capable of driving a 1A load with excellent line and load regulation.

Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.

The LM1575/2575 offers a high efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in many cases no heat sink is required.

A standard series of inductors are available from several different manufacturers optimized for use with the LM1575/LM2575. This feature greatly simplifies the design of switchmode power supplies.

Other features include a guaranteed $\pm 3\%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10\%$ on the oscillator frequency. External shutdown is included, featuring less than 200 μA standby

current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

Features

- 5V output, ±3% Max over line and load conditions
- Guaranteed 1A output current
- Wide input voltage range, 7V to 35V
- Requires only 4 external components
- 52 kHz fixed frequency internal oscillator
- Low power standby mode, IQ typically <200 µA
- 82% efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators

Typical Application

Connection Diagram and Order Information

4-Lead TO-3 (K)

5-Lead TO-220 (T)

TL/H/10527-2

Top View

Order Number LM2575T-5.0 See NS Package Number T05A

Bottom View

Order Number LM1575K-5.0, LM2575K-5.0 See NS Package Number K04A

For information about LM2575 in dual-in-line or surface-mount packages, contact the factory.

TL/H/10527-3

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Total Supply Voltage (see Figure 5)

ON/OFF Pin Input Voltage $-1 \le V \le 15V$ Output Voltage to Ground (Steady State) -1V

Power Dissipation Internally Limited

Storage Temperature Range -65°C to +150°C Minimum ESD Rating

 $(C = 100 pF, R = 1.5 k\Omega)$ Lead Temperature

(Soldering, 10 sec.)

Maximum Junction Temperature

Operating Temperature Range

LM1575-5.0 LM2575-5.0

 $-55^{\circ}\text{C} \le \text{T}_{\text{J}} \le +150^{\circ}\text{C}$

 $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$

2 kV

260°C

150°C

Electrical Characteristics Specifications with standard type face are for T_J = 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $V_{IN} = 12V$, and $I_{LOAD} = 200$ mA.

Symbol	Parameter	Conditions	Тур	LM1575-5.0 Limit (Note 2)	LM2575-5.0 Limit (Note 3)	Units (Limits)
SYSTEM	PARAMETERS (Note 4) Te	est Circuit Figure 1				•
V _{OUT}	Output Voltage	$V_{IN} = 12V, I_{LOAD} = 0.2A$	5.0	4.950 5.050	4.900 5.100	V V (Min) V (Max)
V _{OUT}	Output Voltage	$0.2A \le I_{LOAD} \le 1A, 8V \le V_{IN} \le 35V$	5.0	4.850/ 4.800 5.150/ 5.200	4.800/ 4.750 5.200/ 5.250	V V (Min) V (Max)
η	Efficiency	$V_{IN} = 12V$, $I_{LOAD} = 1A$, $V_{OUT} = 5V$	82			%
DEVICE	PARAMETERS					
lo	Oscillator Frequency		52	47/ 43 58/ 62	47/ 42 58/ 63	kHz kHz (Min) kHz (Max)
V _{SAT}	Saturation Voltage	I _{OUT} = 1A (Note 5)	0.9	1.2/1.4	1.2/1.4	V V (Max)
DC	Max Duty Cycle (ON)	(Note 6)	98	93	93	% % (Min)
lcL	Current Limit	Peak Current, t _{ON} ≤ 3 μs (Note 5)	2.2	1.7/ 1.3 3.0/ 3.2	1.7/ 1.3 3.0/ 3.2	A A (Min) A (Max)
ار	Output Leakage Current	V _{IN} = 35V, (Note 7), Output = 0V Output = -1V	7.5	2	2	mA (Max) mA mA (Max)
la	Quiescent Current	(Note 7)	5	10/12	10	mA mA (Max)
ISTBY	Standby Quiescent Current	ON/OFF Pin = 5V (OFF)	50	200/500	200	μΑ μΑ (Max)
θJA θJC θJA θJC	Thermal Resistance	K Package, Junction to Ambient K Package, Junction to Case T Package, Junction to Ambient T Package, Junction to Case	35 1.5 40 2			°C/W
	CONTROL Test Circuit Figu	ure 1		_		
V _{IH} V _{IL}	ON/OFF Pin Threshold Voltage	$V_{OUT} = 5V$ $V_{OUT} = 0V$	1.4	22/ 2.4 1.0/ 0.8	2.2/ 2.4 1.0/ 0.8	V (Min) V (Max)
1 _{IH}	ON/OFF Pin Input Current	ON/OFF Pin = 5V (OFF)	12	30	30	μΑ μΑ (Max)
I _{IL}		ON/OFF Pin = 0V (ON)	0	10	10	μΑ μΑ (Max)

Note 1: Abso intended to be Note 2: All lin Outgoing Qua Note 3: All lin production ter Note 4: Exter LM1575/LM2 Note 5: Outpo Note 6: Feed! Note 7: Feed!

Typica

+100 +75 OUTPUT YOUTAGE CHANGE (mY) +50 +25 -25 -50 -100 L -7:

OUTPUT CURRENT (A)

HORIZALIZED FREQUENCY (X)

2 **kV**

50°C

5**0°C**

25°C

nits

mits)

tin) tax)

lin)

(Min) (Max)

fax)

fin)

1in) 1ax)

(Max)

(Max)

Max)

lin)

Max)

Max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to calculate Average Outgoing Quality Level, and all are 100% production tested.

Note 3: Ail limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.

Note 4: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM1575/LM2575 is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

Note 5: Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output.

Note 6: Feedback (pin 4) removed from output and connected to 0V.

Note 7: Feedback (pin 4) removed from output and connected to 12V to force the output transistor OFF.

Typical Performance Characteristics (Circuit of Figure 1)

TL/H/10527-4

Typical Performance Characteristics (Continued)

Load Transient Response

Switching Waveforms

100 usec/div.

TL/H/10527-5

UN1575/ LM2575

Test Circuit and Layout Guidelines

TUH/10527-7 Note: Pin numbers are for the TO-220 package.

G_N — 5990PSA107MG385 (Sprayes)
01 — 5970PSA227M0105 (Sprayes)
01 — 477 mituritature
01 — 477 mituritature
11 — 415-5028 (MS) for (Lope 2 0.84, 430-6835 (MS) for (Lope 5 1.0A 5-577 TO-203 societ—2396 (Lopenge Mfg, Co.)

4-pin TO-3 socket--8112-AG7 (Augat Inc.)

FIGURE 1

Block Diagram and Typical Application

A: Output per vollage, 10V/drv B: Output per current, 1A/drv C: Inductre current, 0.5A/drv D: Output ripple vollage, 20 mV/drv, AC-coupled Horizontat; 5 µasec/drv

As in any switching regulator, layout is very important. Rapidly switching current associated with winning indicance generals voltage transients which cause problems. For minimal stray inductance and ground loops, the length of the leads indicated by heavy lines as should be keep as short a possible. Single-point grounding (as indicated) or ground plane construction should be used for best results.

LM1575/LM2575 Design Procedure

Example	Given:	V _{IN} (Max) = 18V	LOAD (Max) = 0.8A	1. Inductor Selection (L1)	A. Code = L330		B. Value = 330 μH		C. Choose AIE 415-0926, Pulse Engineering	PE 52627, or Renco RL1952			-	
Procedure	Given:	V _{IN} (Max) = Maximum input voltage	ILOAD (Max) = Maximum load current	1. Inductor Selection (L1)	A. From Figure 3, identity inductor code for region	indicated by Vin (Max) and ILOAD (Max).	B. From Figure 4, identify inductor value from the	inductor code.	 C. Select from the three manufacturer's part numbers 	listed in Figure 4.	Alternately, another inductor of the appropriate value may	be used. It must be rated for operation at the LM2575	switching frequency (typically 52 kHz), and for a current	rating of 1.25 \times I _{LOAD} (Max).

FIGURE 3. Inductor Value Selection Guide

Inductor Code	Inductor Valve	AIE8	Pulse Eng.9	Renco 10
L100	100 µH	415-0930	PE-92108	RL1955
L150	150 µH	415-0953	PE-53113	RL1954
1.220	220 µH	415-0922	PE-52626	RL1953
F330	330 µH	415-0926	PE-52627	RL1952
L470	470 µH	415-0927	PE-53114	AL1951
L680	Н и 089	415-0928	PE-52629	RL1950
H330	330 µH	430-0635	PE-53117	RL1962
H470	470 µH	430-0634	PE-53118	AL1961
Н680	Нт 089	415-0935	PE-53119	RL1960
H1000	1000 tH	415-0934	PE-53120	RL1959

FIGURE 4. Inductor Selection by Manufacturer's Part Number

Note & ALE Magnetics, Dv. Vernatron Corp. Passive Components Group, (813) 347-2181 2801 72nd Street North, St. Petersburg, Ft. 33710

Note 9: Putae Engineering, (619) 269-2400 P.O. Box 12255, San Diego, CA 92112 Note 10: Renco Electronica Inc., (519) 586-5566 60 Jeithyn Blvd. East, Deer Park, NY 11729

TUH/10527-8

FIGURE 2

LM1575/LM2575 Design Procedure (Continued)

Procedure (Continued)	Control Control Section College

 A. C_{OUT} = 220 μF to 1000 μF standard aluminum Cour = 470 µF to 1000 µF high-grade capacitor

electrolytic or

(see text)

Output Capacitor Selection (Cour.)

Example (Continued)

(Equivalent Series Resistance) capacitor will result in the lowest amount of ripple. The lower capacitor values will A. The output capacitor value and the type of capacitor appears as the output. A value of between 220 µF and allow typically 50 mV to 150 mV of output ripple, while used will determine the amount of ripple voltage that 1000 µF is recommended. Selecting a low ESR larger-value capacitors will reduce the ripple to

called "high-frequency", "low-inductance", or "low-ESR" instability. For this reason, the use of tantalum capacitors value standard capacitors may be paralleled, or a highergrade capacitor may be used. Such capacitors are often To further reduce the output ripple voltage, several low-These will reduce the output ripple to 10 mV to 20 mV. However, reducing the ESR below 0.05Ω can cause

approximately 35 mV to 50 mV.

a rating of at least 6.3V is appropriate, and a 10V rating is B. The capacitor's voltage rating should be at least 1.25 times greater than the output voltage. For a 5V regulator

B. Capacitor voltage rating = 10V

Catch Diode Selection (D1)

Catch Diode Selection (D1)

င်း

ditions, the diode current rating should be greater than greater than the maximum load current. Also, if the power The catch diode current rating must be at least 1.2 times supply design must withstand continuous shorted output 3A. The most stressful condition for this diode is an overload or short circuit condition.

Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best efficiency characteristic may cause instability and EMI problems. A fast-recovery diode with soft recovery characteristics is a High-Efficiency, or Ultra-Fast Recovery diodes are also Standard 60 Hz diodes (e.g., 1N4001, etc.) are also not A. The reverse voltage rating of the diode should be at better choice. To prevent damage to the LM2575, fastespecially in 5V switching regulators. Fast-Recovery, recovery diodes should not be used for $V_{IN} \ge 35V$. suitable. See Figure 5 for Schottky and "soft" fastsuitable, but some types with an abrupt turn-off least 1.25 times the maximum input voltage. recovery diode selection guide

B. Use the 1N5821 or 31DQ03 Schottky diodes, or any of A. For this example, a 20V rating is adequate. the suggested fast-recovery diodes. Current Rating 34 V_{IN} (Max) 8 300

Use Part Number (or Equivalent)

FR302, HER302

or MR850

Fast-Recovery

Schottky

1N5821

FIGURE 5. Diode Selection Guide

Not Recommended

æ

40

(See Text)

Rated over 35V)

(All These are

1N5822 or 310003 310004 310005 MBR350

Application Hints

Input Capacitor (CIN)

To maintain stability, the regulator input pin must be bysleads must be kept short, and located as close as passed with at least a 22 µF electrolytic capacitor. The capossible to the regulator.

below ~25°C, the input capacitor value may need to be larger. (This also applies to the output capacitor.) With most If the operating temperature range includes temperatures electrolytic capacitors, the capacitance value decreases and the ESR increases with lower temperatures and age. For maximum capacitor operating lifetime, the capacitor's

RMS ripple current rating should be greater than 1.2 × (fon/T) × ILOAD

Feedback Connection

The LM2575 feedback circuitry is designed so that, when the output voltage is connected directly to the Feedback pin, the output voltage is 5V.

ON/OFF Input

or driven with a low-level TTL voltage. To put the regulator into standby mode, drive this pin with a high-level TTL signite standby mode, drive this pin with a high-level For normal operation, the ON/OFF pin should be grounded

Application Hints (Continued)

To maintain output voltage stability, the power ground con-nections must be low-impedance (see Figura 1). For the TO-3 style package, the case is ground. For the 5-lead and either connection may be used, as they are both part of TO-220 style package, both the tab and pin 3 are ground the same copper leadframe.

Hest Sink/Thermal Considerations

In many cases, no heat sink is required to keep the LM2575 junction temperature within the allowed operating range. For each application, to determine whether or not a heat sink will be required, the following must be identified:

- 1. Maximum ambient temperature (in the application).
- Maximum regulator power dissipation (in application).
- Maximum allowed junction temperature (150°C for LM1575 or 125°C for the LM2575). For a safe, conservawe design, a temperature approximately 15°C cooler han the maximum temperatures should be selected.
 - Total power dissipated by the LM2575 can be calculated as LM2575 package thermal resistances θ_{JA} and θ_{JC}.

 $P_D = (V_{IN})(I_S) + (V_O/V_{IN})(I_{LOAD})(V_{SAT})$

Characteristic Curves shown previously, V_{IN} is the applied minimum input voltage, V_O is the regulated output voltage, where is (supply current) and VSAT can be found in the and turn-off are negligible if a Schottky is used as and It OAD is the load current. The dynamic losses during the catch diode.

When no heat sink is used, the junction temperature rise can be determined by the following:

- To arrive at the actual operating junction temperature, add the junction temperature rise to the maximum ambient tem- $\Delta T_J = (P_D)(\theta_{JA})$
- If the actual operating junction temperature is greater than $T_J = \Delta T_J + T_A$
 - erating junction temperature deterthe selected safe operating junction term mined step 3, then a heat sink is required.
- When using a heat sink, the junction temperature rise can $\Delta T_{\rm J} = (P_{\rm D})(\theta_{\rm JC} + \theta_{\rm interface} + \theta_{\rm Heat sink})$ be determined by the following:
- The operating junction temperature will be: $T_J = T_A + \Delta T_J$

As above, if the actual operating junction temperature is greater than the selected safe operating junction temperature, then a larger heat sink is required (one that has a lower

Definition of Terms

Buck Regulator

A switching regulator topology in which a higher voltage is converted to a lower voltage. Also known as a step-down switching regulator.

Catch Diode

The diode which provides a raturn path for the load current when the LM2575 switch is OFF.

Ratio of the output switch's on-time to the oscillator period. Duty Cycle (D)

where T is the oscillator period, typically 1/52 kHz.

 $D = \frac{t_{ON}}{t_{OM}} = \frac{V_{OUT}}{t_{OI}}$ for buck regulator

The proportion of input power actually delivered to the load. Efficiency (η)

 $\frac{Pout}{P_{IN}} = \frac{Pout}{Pout + P_{LOSS}}$

Equivalent Series Inductance (ESL)

The pure inductance component of a capacitor (see Figure δ). The amount of inductance is determined to a large extent on the capacitor's construction.

S

FIGURE 6. Simple Model of a Real Capacitor

Equivalent Series Resistance (ESR)

ance. (see Figure 6). It causes power loss resulting in capacitor heating, which directly affects the capacitor's operating lifetime. When used as a switching regulator output The purely resistive component of a real capacitor's impedfilter, higher ESR values result in higher output ripple volt-

220 μF-1000 μF range have 0.1Ω to 0.3Ω ESR. Highergrade capacitors ("low-ESR", "high-frequency", or "low-in-Most standard aluminum electrolytic capacitors in the ductance") in the 220 µF-1000 µF range generally have ESR of less than 0,15Ω.

Output Ripple Voltage

value of this sawtooth ripple current will be typically 40% of the maximum load current (when the Design Procedure in age. It is usually dominated by the output capacitor's ESR multiplied by the inductor's ripple current. The peak-to-peak The AC component of the switching regulator's output volt the datasheet is followed).

Ripple Current

RMS value of the maximum allowable alternating current at which a capacitor can be operated continuously at a specified temperature.

Standby Current (ISTBY)

Supply current required by the LM2575 when in the standby mode (ON/OFF pin is driven to TTL-high voltage), thus turning the output switch OFF.

Pin Name	Pln Number	Normal Operation	Observed Problem					
	(TO-220 Pkg.)	Voltage Waveform & Values	Condition	Probable Reason	Solution			
Feedback	4	DC, V _{OUT} (5V Typ.) Plus Tri-Wave Ripple Voltage Plus Switching Noise	0 < V4 < 5V	V _{IN} Is Too Low Regulator Is in Current Limit	Increase V _{IN} to 7V Reduce Load to Less Than 1A			
			V4 = 0V	ON/OFF Pin Is Not "Low"	Apply Correct Voltage to ON/OFF Pin			
Output	2	Pulse Train (V _M -V _{SAT}) (-V _D)	No Pulse Train Observed but V _{OUT} = 5V	Regulator is Unloaded	Add 200 mA Load to Observe Switching			
		ton	Pulse Width Not Steady or Stable	Scope Not Triggered	Adjust Scope Trigger			
		$T = 1/f_{OSC} \approx 19.2 \mu\text{s}$ $(Typ.)$ $\frac{\text{ton}}{T} \approx \frac{V_{OUT}}{V_{IN}}$		C _{IN} Is Too Far from LM2575	Reposition Capacitor as Close as Possible to Input Pin, so That Lead Length ≤1"			
		TIN		Regulator Is in Current Limit	Reduce Load to Less Than 1A			
				"Hard" Fast Recovery Diode Used	Change Diode to Schottky or "Soft" Fast Recovery Type (as Recommended)			
				LM2575 Not Seated Firmly in Its Socket (if Used)	Improve Connections of Device to Circuit			
ON/OFF	5	DC, ov	V5 > 0V	Pin Control Not Set for Normal Operation (Improper Logic or Connection)	Apply Correct Voltage to Pin			
Ground (Case of TO-3 Pkg.)	3 (Tab)	DC, 0V	Noisy	Probe Ground Lead Is Picking up Switching Noise	Use Short Ground Lead (≤1")			
V _{IN}	1	DC, V _{IN} (from Unregulated Source)	0 < V1 < V _{IN}	Input Supply Overloaded	Verify That Input Supply Is Capable of Delivering at Least (5V × I _{LOAD} × 1.3)/V _{IN} Amps			

FIGURE 7. LM2575 Troubleshooting Guide

Physical Dimensions inches (millimeters)

4-Lead TO-3 (K)
Order Number LM1575K-5.0, LM2575K-5.0
NS Package Number K04A