Zedong Wang

Dunyu Road 600
310030 Hangzhou
China
+86 136 0259 1515
jackywang28@outlook.com
wangzedong@westlake.edu.cn
jacky1128.github.io

Google Scholar 🞓

Twitter **y**

OpenReview 🏠

LinkedIn in

GitHub 😱

Citations: **75**, H-index: **4**

Contribute: 3, Stars: 1.1k

Short Biography

I am a Hong Kong-born AI researcher. I completed my B.Eng. in Electronic and Information Engineering from Huazhong University of Science and Technology (HUST). My research interests now center around visual representation learning from 3 aspects: (i) Data Mixing Augmentation and Label-Efficient Learning (Data-level); (ii) Efficient Network Backbone Architecture Design (Network-level); (iii) Representation Learning and Generative Models, e.g., Vector Quantization, Diffusion, and more. (Framework-level). Currently, I am a visiting student in CAIRI AI Lab under Chair Prof. Stan Z. Li (IEEE Fellow, IAPR Fellow) at Westlake University. Previously, I worked on few-shot semantic segmentation fortunately under the supervision of Prof. Xinggang Wang at HUST. In the summer of 2021. I was a visiting student at MMLab@SIAT, Chinese Academy of Sciences (CAS). I also conducted an internship at Key Lab of Digital Earth Science, CAS, 2020.

Education and Degrees

2019 – 2023 B.Eng. in Electronic and Information Engineering, Huazhong University of Science and Technology.

- Multiple High Quality Computer Vision Research Experience | Undergrad Supervisor: Prof. Xinggang Wang.
- Graduation Thesis: Efficient Visual Backbone Architecture Design | Grade: 92/100 (First-Tier, Full Novelty Scores)
 Advisor: Prof. Xinggang Wang
- High GPA in Al-related core courses (90.0/100 in Average): Introduction to Green Communications (95/100), Engineering Training (94/100), Multimedia Retrieval (93/100), Graduation Thesis (92/100), Software Project (92/100), Principles and Applications of Sensors (90/100), Python programming (87/100), Capstone Project in Machine Intelligence (87/100), Deep Learning and Computer Vision (87/100), Machine Learning (85/100) etc.

Research Experience (Links are provided)

Feb. 2024 Please View My Homepage for The Latest Updates!

Feb. 2024 Invited as a Reviewer for ECCV 2024.

Jan. 2024 Invited as a Reviewer for ICML 2024, ICLR 2024 (TinyPapers), and ICPR 2024.

Dec. 2022 Ph.D. Offer, Al Division, School of Engineering, Westlake University.

Sep. 2022 - Visiting Student (representation learning, ai4science), CAIRI AI Lab (Chair Prof. Stan Z. Li Lab), Westlake University.

Present (i) Mixup Augmentation and Label-Efficient Learning. | SemiReward (ICLR 2024); SAMix; OpenMixup (541 GitHub stars). (ii) Efficient Network Backbone Architecture Design on Vision and Beyond. | MogaNet (ICLR 2024, 114 GitHub stars).

(i) Elikelit Network Backbone Architecture Design of Vision and Deyond, Programe C (ICEN 2024, 114 Old rub stars).

(iii) Framework-level Representation Learning. | OpenSTL (NeurIPS 2023, 498 GitHub stars); Masked Modeling Survey.

(iv) Vector Quantized Vocabulary Learning for Multi-Species Genomic Sequence Modeling. | VQDNA

Jul. 2022 – Summer Research Studentship, School of Engineering, Westlake University.

Sep. 2022 Advisor: Chair Prof. Stan Z. Li (only 2 selected out of 100+ applicants) | Research Topic: Representation Learning.

Sep. 2021 - Research Intern, HUST Vision Lab, School of EIC, Huazhong University of Science and Technology.

Jun. 2022 Advisor: Prof. Xinggang Wang | Research Topic: Efficient Visual Recognition & Few-shot Semantic Segmentation.

Jul. 2021 - Visiting Student, MMLab, Shenzhen Institute of Advanced Tech. (SIAT), Chinese Academy of Sciences.

Sep. 2021 Advisor: Dr. Bin Fu | Research Topic: Semantic Segmentation.

Sep. 2020 - Research Intern, Key Lab of Digital Earth Science, Chinese Academy of Sciences.

Apr. 2021 Advisor: Dr. Xiaoping Du | Research Topic: High Resolution Remote Sensing Building Semantic Segmentation.

Languages and Skills

Chinese (native), English (fluent). **IELTS 7.5 (2023)** overall grades, **CET-4 646** overall grades. Python DL Libraries, PyTorch, Git, Anaconda, Linux (basic), L^AT_EX , All-round Research Skills.

ICLR 2024 MogaNet: Multi-order Gated Aggregation Network.

Siyuan Li*, **Zedong Wang***, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin Zheng, Stan Z. Li[†]

- The first network backbone design through the lens of multi-order game-theoretic interaction, which portrays inter-variable interaction effects w.r.t. varying scale of context via game theory.
- The representative interactions are emphasized by the proposed spatial gated aggregation and channel reallocation architecture, leading to better representation learning capacity.
- Impressive scalability and superior performance with a more efficient use of model parameters than state-of-the-art ViTs and ConvNets scaling from 5M to 180M on various vision benchmarks.
- Spontaneously forwarded by world-wide media (Twitter, Zhihu, Wechat) with high appraisal.
- Two Weak Accept in CVPR'23, One Strong Accept in ICCV'23, all positive ratings 6668 in ICLR'24

ICLR 2024 **SemiReward: A General Reward Model for Semi-supervised Learning.**Siyuan Li*, Weiyang Jin*, **Zedong Wang**, Fang Wu, Zicheng Liu, Cheng Tan, Stan Z. Li[†]

- The first online-optimizable reward model that predicts reward scores to filter out high-quality
- pseudo labels for semi-supervised representation learning (both classification and regression).

 State-of-the-art across 12 classification and regression semi-supervised learning benchmarks.

To ICML 2024 OpenMixup: Open Mixup Toolbox for Visual Representation Learning. Siyuan Li*, Zedong Wang*, Zicheng Liu*, Di Wu, Stan Z. Li†

- The first comprehensive mixup visual classification benchmark. where 16 representative mixup algorithms are impartially evaluated from scratch across 12 visual classification datasets, ranging from classical iconic scenarios to fine-grained, long-tail, and scenic cases.
- The first standardized mixup-based vision model design and training codebase framework OpenMixup for customized visual classification.
- Interesting observations are derived through extensive empirical analysis on various scenarios.
- Spontaneously retweeted by Prof. Sebastian Raschka (Twitter) with high appraisal.
- Spontaneously reported by Lightning Al official account (Twitter) as 'weakly highlights in Al'. (the same session as pytorch's departure of facebook)

To CVPR 2024 Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup. Siyuan Li*, Zicheng Liu*, Zedong Wang*, Di Wu, Zihan Liu, Stan Z. Li[†]

- A unified online-optimizable mixup framework that **first addresses the two remaining critical issues** at once: **(i)** Drastic performance variation over different scenarios caused by trivial solutions; **(ii)** Self-supervised learning (SSL) dilemma for online-optimizable mixup policies.
- To reduce the computational cost from online training, a pre-trained version is presented.
- Exceptional performance and generalizability across 12 SL and SSL image benchmarks.

NeurIPS 2023 OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning.

Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, **Zedong Wang**, Zicheng Liu, Lirong Wu, Stan Z. Li^T

- The first comprehensive benchmarking study for spatio-temporal predictive learning that categorized prevalent approaches into recurrent-based and recurrent-free models.
- The first modular and extensible framework implementing various state-of the art methods. Impartial evaluations and analysis are conducted across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow, weather forecasting.
- Surprisingly, we find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
- All positive ratings in NeurIPS 2023 (6,6,7,7) | Accepted as Poster by NeurIPS 2023

To ICML 202 Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling. Siyuan Li*, Zedong Wang*, Zicheng Liu, Stan Z. Li†