

MATEMÁTICA BÁSICA – CE82 SEMANA 5 – SP2

Temario: Igualdad, Operaciones y composición de funciones, determinación de la regla de correspondencia, dominio y rango.

Logro de la sesión: Al término de la sesión el estudiante establece cuando dos funciones son iguales, realiza las diversas operaciones y la composición entre dos o más funciones logrando determinar la regla de correspondencia, dominio y rango así como aplicaciones a situaciones reales.

IGUALDAD DE FUNCIONES

Sean f y g dos funciones reales de variable real con dominios Dom(f) y Dom(g) respectivamente y con reglas de correspondencias f(x) y g(x) respectivamente.

Las funciones f y g son iguales si se cumple:

- Dom(f) = Dom(g)
- f(x)=g(x) para todo x del dominio

Ejemplos 1.

Determine en cada caso si la funciones f y g cuyas reglas son f(x) y g(x) respectivamente, son iguales.

a)
$$f(x) = \frac{x^2 - 1}{x - 1}$$

 $g(x) = x + 1$

b)
$$f(x) = \sqrt{x^2 - 9}$$

 $g(x) = \sqrt{x + 3}\sqrt{x - 3}$

OPERACIONES CON FUNCIONES

Dadas las funciones f y g con dominios Domf y Domg respectivamente, tal que Domf \cap Dom $g\neq \phi$ y con reglas de correspondencia f(x) y g(x) respectivamente, entonces las operaciones algebraicas de f y g están definidas mediante las siguientes reglas de correspondencia

SUMA Y RESTA DE FUNCIONES

Regla de correspondencia: (f+g)(x) = f(x) + g(x) y Dominio: $Dom(f+g) = Domf \cap Domg$

Regla de correspondencia: (f - g)(x) = f(x) - g(x) y Dominio: $Dom(f - g) = Domf \cap Domg$

Ejemplo: Dadas las funciones f y g cuyas reglas de correspondencia son $f(x) = x^2 + 1$ \land $g(x) = \sqrt{2x+1}$ respectivamente. Determine la regla de correspondencia para la función f + g.

Ejercicio 1: Dadas las funciones f y g cuyas reglas de correspondencia son $f(x) = \frac{1}{x+1}$, $g(x) = \sqrt{x+2}$, respectivamente. Determine la regla de correspondencia para la función f - g.

PRODUCTO DE FUNCIONES

Regla de correspondencia: $(f \cdot g)(x) = f(x) \cdot g(x)$ y Dominio: $Dom(f \cdot g) = Domf \cap Domg$

Ejemplo: Dadas las funciones f y g cuyas reglas de correspondencia son $f(x) = \sqrt{x-1}$,

 $g(x) = \frac{1}{\sqrt{3-x}}$, respectivamente. Determine la regla de correspondencia para la función $f \cdot g$.

Ejercicio 2: Dadas las funciones f y g cuyas reglas de correspondencia son f(x) = x - 1; $x \in [-3; 6]$, g(x) = x + 1; $x \in [-1; 8]$. Halle: $f \cdot g$.

DIVISIÓN DE FUNCIONES

Regla de correspondencia: $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$

Dominio: Dom $(\frac{f}{g})$ = Dom $f \cap$ Dom $g - \{x / g(x) = 0\}$

Ejemplo: Dadas las funciones f y g cuyas reglas de correspondencia son $f(x) = x^2 - 4$, $g(x) = \sqrt{1 - 2x}$ respectivamente. Halle $\left(\frac{f}{g}\right)(x)$.

Ejercicio 3: Dadas las funciones f y g cuyas reglas de correspondencia son $f(x) = x^2 - 4$; $x \in [-3; 6]$, $g(x) = x^2 + 1$; $x \in]-1; 7[$. Halle $\left(\frac{g}{f}\right)(x)$.

2/4 EPE INGENIERÍA

COMPOSICIÓN DE FUNCIONES

La operación de aplicar sucesivamente dos o más funciones en un orden determinado da origen a otra función llamada composición de funciones.

Suponga que $f(x) = \sqrt{x}$ y $g(x) = x^2 + 1$ a partir de estas dos funciones se puede definir una nueva función $h \operatorname{como} h(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$

La función h está formada por las funciones f y g en una forma interesante: dado un número x, primero le aplicamos la función g y luego aplicamos f al resultado. En otras palabras, obtenemos la regla h al aplicar la regla g y luego la regla f.

La figura 1 muestra un diagrama de máquina para h.

Figura 1. La máquina h está compuesta de la máquina g y luego por la máquina f.

DEFINICIÓN

Dadas las funciones f y g, tal que $Dom f \cap Rang \neq \{\}$, la composición f de g, denotada $f \circ g$ se define mediante la siguiente regla de correspondencia

DOMINIO DE LA COMPOSICIÓN

De la figura observa que el dominio de la composición está formado por todos los valores del dominio de g cuya imagen pertenece al dominio de f.

De manera formal: $Dom(f \circ g) = \{x \in R \mid x \in Domg \land g(x) \in Domf\}$

Ejemplo:

Dadas las funciones f y g con regla de correspondencia: f(x) = 2x + 3; $x \in [-7;5]$ y g(x) = 3x - 4, $x \in [0;5]$. Halle $f \circ g$ y $g \circ f$

Dominio de f: $f(x) = 2x + 3 \Rightarrow$

Dominio de g: $g(x) = 3x - 4 \Rightarrow$

Para determinar la composición $f \circ g$, primero se debe determinar el dominio, según la definición:

Parte II:
$$Dom(f \circ g) = \{x \in R / x \in Domg \land g(x) \in Domf\}$$
Parte II: Parte II

Dominio de la composición:

Ahora se debe intersectar los resultados de la parte I y la parte II:

3/4 EPE INGENIERÍA

Por lo tanto: $Dom(f \circ g) =$

Regla de correspondencia: $(f \circ g)(x) = f(g(x)) =$

Conclusión: $(f \circ g)(x) =$ ______; $x \in$ ______

Ahora veamos el caso de $g \circ f$

Dominio de f**:** $f(x) = 2x + 3 \Rightarrow$

Dominio de g: $g(x) = 3x - 4 \Rightarrow$

Para determinar la composición $g \circ f$, primero se debe determinar el dominio, según la definición:

Parte I:

Parte II:

Dominio de la composición:

Ahora se debe intersectar los resultados de la parte I y la parte II:

Por lo tanto: $Dom(g \circ f) =$

Regla de correspondencia: $(g \circ f)(x) = g(f(x)) =$

Conclusión: $(g \circ f)(x) =$ ______; $x \in$ _______

Ejercicio 1:

Dadas las funciones f y g con regla de correspondencia: $f(x) = \sqrt{x-4}$ y $g(x) = x^2$, $x \in [0,5]$.

Halle $f \circ g$ y $g \circ f$.

Respuesta:

CIERRE DE CLASE

- A. En general $i_{i}(f \circ g)(x) = (g \circ f)(x)$?.
- B. Sean las funciones f(x) = x y g(x) = 4, luego es cierto que $\xi(f \circ g)(x) = -4$?.
- C. Se tiene que f(x) = -3y g(x) = x, luego es cierto que f(x) = -3x?
- D. Sean las funciones $f(x) = \sqrt{x-3}$ y $g(x) = \sqrt{3-x}$ entonces (f+g)(x) = 0

EJERCICIOS

Sean las funciones f y g con regla de correspondencia $f(x) = \sqrt{x}$ y $g(x) = x^2$.

Halle: a) $(f \circ g)(x)$

b) $(g \circ f)(x)$