BDA 355 - Business Analytics with Python

Python assignment(3)

Note: please add your answer to each question in its own answer box.

```
# run the following lines - Do not change lines!
names=input("Write your full names! ")# write your full name and your team member full name. e.g., Mark Fuller and Eli Roger:
print("names: ", names)

Write your full names! David Galietti and Armaan Singh
    names: David Galietti and Armaan Singh

import pandas as pd
import numpy as np
```

Part 1

- write your code wherever it is instructed
- Do not change print functions

import matplotlib.pyplot as plt

```
# TASK 1
# upload and read "StudentsPerformance.csv" data. Call it df
from google.colab import files
uploaded=files.upload()
df=pd.read csv("StudentsPerformance.csv")
```

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please re Saving StudentsPerformance.csv to StudentsPerformance.csv

TASK 2
get an overall view about the data using head function, showing 10 rows
df.head(10)

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score
0	female	group B	bachelor's degree	standard	none	72.0	72.0
1	female	group C	some college	standard	completed	69.0	90.0
2	female	group B	master's degree	standard	none	90.0	95.0
3	male	group A	associate's degree	free/reduced	none	47.0	57.0
4	male	group C	some college	standard	none	76.0	78.0
5	female	group B	associate's degree	standard	none	71.0	83.0
6	female	group B	some college	standard	completed	88.0	95.0
7	male	group B	some college	free/reduced	none	40.0	43.0
8	male	group D	high school	free/reduced	completed	64.0	64.0
9	female	group B	high school	free/reduced	none	38.0	60.0

```
# TASK 3
# get the shape of df. Call it df_shape
df_shape=df.shape
print(df_shape)

(1000, 8)
```

```
# TASK 4
# run this cell
#sample size and number of variables
sample_size=df_shape[0]
variables=df_shape[1]
f"The sample size is {sample_size} and there are {variables} variables in this dataset"
    'The sample size is 1000 and there are 8 variables in this dataset'

# TASK 5
#create a list of columns. Call it columns
columns=df.columns.to_list()
print(columns)
```

['gender', 'race/ethnicity', 'parental level of education', 'lunch', 'test preparation course', 'math score', 'reading

TASK 6 #check the dtype of each variable df.dtypes

gender	object
race/ethnicity	object
parental level of education	object
lunch	object
test preparation course	object
math score	float64
reading score	float64
writing score	float64
dtyne: object	

```
# TASK 7
#select object variables and put them in a list called it cat_var (the list should include names of 5 object variables)
cat_var=df.select_dtypes("object").columns.to_list()
print(cat var)
    ['gender', 'race/ethnicity', 'parental level of education', 'lunch', 'test preparation course']
# TASK 8
# for each in cat var find the information regarding categories using unique()
for each in cat var:
 print(each, df[each].unique())
 print("======="") #DO NOT CHANGE THIS LINE
    gender ['female' 'male']
    _____
    race/ethnicity ['group B' 'group C' 'group A' 'group D' 'group E']
    _____
    parental level of education ["bachelor's degree" 'some college' "master's degree" "associate's degree"
     'high school' nan 'some high school']
    _____
    lunch ['standard' 'free/reduced' nan]
    _____
    test preparation course ['none' 'completed' nan]
    _____
# TASK 9
# for each in cat var, find the frequency of each category using value counts()
for each in cat var:
 print(df[each].value counts())
 print("======"") #DO NOT CHANGE THIS LINE
    female
            518
    male
            482
    Name: gender, dtype: int64
    _____
             319
    group C
    group D
             262
```

group B 190 group E 140 group A 89

Name: race/ethnicity, dtype: int64

some college 219
associate's degree 214
high school 189
some high school 171
bachelor's degree 114
master's degree 57

Name: parental level of education, dtype: int64

standard 644 free/reduced 354

Name: lunch, dtype: int64

none 624 completed 347

Name: test preparation course, dtype: int64

TASK 10

#use describe() for finding statistics about numeric variables, save it into a variable called description
description=df.describe()
print(description)

	math score	reading score	writing score
count	978.000000	976.000000	963.000000
mean	66.118609	69.106557	68.271028
std	15.193742	14.689571	14.984963
min	0.000000	17.000000	15.000000
25%	57.000000	59.000000	58.000000
50%	66.000000	70.000000	69.000000
75%	77.000000	79.250000	79.000000
max	100.000000	100,000000	100.000000

Now you have all information required for describing data

- Read the data description example word file
- Practice on data description example jupyter notebook file
- use the template for submitting the first part of the assignment-3
- Ignore the Nan values in describing categorical variables

Part 2

```
# TASK 11
# what is the average of math, reading, and writing scores for each race/ethnicity group?
race groups scores=df.groupby('race/ethnicity')[['math score', 'reading score', 'writing score']].mean()
print(race groups scores)
                     math score reading score writing score
     race/ethnicity
     group A
                      61.441860
                                     64.779070
                                                     63.305882
                      63.365591
                                      67.245989
                                                     65.333333
     group B
     group C
                      64.662379
                                     69.073248
                                                     68.309211
                      67.277344
                                                     70.160156
     group D
                                     69.936508
     group E
                      73.820144
                                     72.912409
                                                     71.572464
# TASK 12
# which race/ethnicity group has the highest scores in all categories?
Answer1="Group E"
print(Answer1)
     Group E
# TASK 13
# what is the average of math, reading, and writing scores for gender groups?
```

```
gender_group_scores=df.groupby('gender')[['math score', 'reading score', 'writing score']].mean()
print(gender_group_scores)
             math score reading score writing score
     gender
     female
              63.608696
                             72.578740
                                            72.705645
                             65.337607
     male
              68.809322
                                            63.561028
# TASK 14
# which gender group has the highest score in math?
Answer2="male"
print(Answer2)
     male
# TASK 15
# which gender group has the highest score in reading?
Answer3="female"
print(Answer3)
     female
# TASK 16
# which gender group has the highest score in writing?
Answer4="female"
print(Answer4)
     female
# TASK 17
# what is the average of math, reading, and writing scores for test preparation course groups?
preparation_group_scores=df.groupby('test preparation course')[['math score', 'reading score', 'writing score']].mean()
print(preparation_group_scores)
                              math score reading score writing score
     test preparation course
```

completed	69.818991	73.985207	74.313609
none	64.075041	66.357377	64.891304

TASK 18

what is your conclusion about the effect of test preparation course on scores?

math score reading score writing score

Answer5="Individuals who completed a test preparation course score higher in math, reading, and writing than people who do no print(Answer5)

Individuals who completed a test preparation course score higher in math, reading, and writing than people who do not

TASK 19
what is the average of math, reading, and writing scores for lunch groups?
lunch_group_scores=df.groupby('lunch')[['math score', 'reading score', 'writing score']].mean()
print(lunch_group_scores)

		•	
lunch			
free/reduced	58.979769	64.544928	63.40708
standard	70.069841	71.627981	70.94061

TASK 20

what is your conclusion about the effect of lunch on scores?

Answer6="Individuals who receive the standard lunch score higher in math, reading, and writing than people who receive free/print(Answer6)

Individuals who receive the standard lunch score higher in math, reading, and writing than people who receive free/redu

Part 3: Visualization

TASK 21

plot a bar chart for average of reading score, writing score and math score

The final chart should be like this:


```
#write your code here
Score_Categories=["math", "reading", "writing"]
Mean_of_scores=df[['math score', 'reading score', 'writing score']].mean()
plt.figure(figsize=(6,4))
plt.ylim([60,70])
plt.bar(Score_Categories, Mean_of_scores,color='red')
plt.title("Mean Scores Across Categories", fontsize=20)
plt.xlabel("Score Categories", fontsize=14)
plt.ylabel("Mean of Scores", fontsize=14)
plt.xticks(fontsize=13)
```


LEAVE THIS CELL BLANK

```
# # TASK 22
```

plot a bar chart that shows the mean of math, reading, and writing across gender groups

The final chart should be like this:

write your code here

index=np.arange(n groups)

barwidth=.3

```
Score_Categories=["math", "reading", "writing"]
avg_male=[68.809322, 65.337607, 63.561028]
avg_female=[63.608696, 72.578740, 72.705645]

br1=np.arange(len(avg_male))
br2=[x+ barwidth for x in br1]

plt.figure(figsize=(10,5))
plt.bar(br2, avg_female,width=barwidth,color='red',label='female')
plt.bar(br1, avg_male,width=barwidth,color='green',label='male')
n_groups=3
```

plt.xticks(index + barwidth/2, ('Math', 'Reading', 'Writing'), fontsize=14)

```
ax=plt.axis()
plt.title("Gender Scores Across Categories", fontsize=20)
plt.xlabel("Test Categories", fontsize=18)
plt.ylabel("Scores", fontsize=16)
plt.legend(loc="best")
plt.ylim([50,80])
plt.show()
```


✓ 0s completed at 1:50 PM

×