Eigenvalues and Eigenvectors

Matt McCarthy

June 2016

Problem. Let $\tau: \mathbb{F}_5^3 \to \mathbb{F}_5^3$ be the endomorphism defined by

$$\tau = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$$

Find all eigenvalues and eigenvectors of τ . (Note: \mathbb{F}_5 denotes $\mathbb{Z}/5\mathbb{Z}$, the integers modulo 5.)

1 Background

Lets begin with the definition of eigenvalues and eigenvectors.

Definition 1. Let V be a vector space over a field \mathbb{F} and let τ be an endomorphism on V. A scalar $\lambda \in \mathbb{F}$ is an *eigenvalue* of τ if there exists a nonzero vector v such that

$$\tau v = \lambda v$$
.

If such a v exists, it is called an eigenvector of τ associated with λ .

Furthermore, in finite-dimensional vector spaces, each endomorphism has a minimal polynomial.

Definition 2. Let V be a finite-dimensional vector space over a field \mathbb{F} and let τ be an endomorphism on V. Then the *minimal polynomial* of τ is the generator of the ideal

$$I_{\tau} = \{ p \in \mathbb{F}[x] | p(\tau) = 0 \}.$$

Moreover, the eigenvalues of an endomorphism are the zeros of this minimal polynomial.

Theorem 1. Let τ be an endomorphism with minimal polynomial p. Then the set of zeros of p and the set of eigenvalues of τ are equal.

2 Solution

Problem. Let $\tau: \mathbb{F}^3_5 \to \mathbb{F}^3_5$ be the endomorphism defined by

$$\tau = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$$

Find all eigenvalues and eigenvectors of τ . (Note: \mathbb{F}_5 denotes $\mathbb{Z}/5\mathbb{Z}$, the integers modulo 5.) We begin by finding the minimal polynomial of τ . To do so, we apply τ multiple times to the vector $e_1 = (1,0,0)$.

$$\tau^0 e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \tau^1 e_1 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad \tau^2 e_1 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}$$

We now need to check that $B = \{e_1, \tau e_1, \tau^2 e_1\}$ is linearly independent. Therefore, we must solve the equation

$$a(1,0,0) + b(1,2,1) + c(3,3,1) = 0.$$

Indeed, this equation implies that a = b = c = 0. Ergo B is linearly independent. Next, we compute one more power of τ .

$$\tau^3 e_1 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$$

Consider the equation

$$a(1,0,0) + b(1,2,1) + c(3,3,1) = (0,2,0).$$

This implies that a = 1, b = 3, and c = 2. Thus,

$$\tau^3 e_1 = e_1 + 3\tau e_1 + 2\tau^2 e_1$$

which yields a minimal polynomial of

$$\mu_{\tau,e_1} = X^3 + 3X^2 + 2X + 4.$$

Recall that the set of eigenvalues of a linear transform is the set of zeros of its minimal polynomial. We notice that $\mu_{\tau,e_1}(1) = 0$, thus $X - 1 | \mu_{\tau,e_1}$. Therefore,

$$\mu_{\tau,e_1} = (X-1)(X^2+4X+1).$$

When we apply the quadratic formula, we get that

$$X = 3 + 3\sqrt{2} \cdot 3 + 2\sqrt{2}$$

are also zeros of μ_{τ,e_1} . Therefore the eigenvalues of μ_{τ,e_1} are $1, 3 + 3\sqrt{2}, 3 + 2\sqrt{2}$. To find the eigenvectors that correspond to 1, we solve the following equation.

$$\begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 1 \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

This corresponds to the following system of equations.

$$a + 0b + 2c = a$$
$$2a + 0b + c = b$$

$$a + 2b + c = c$$

This system implies that c=0 and b=2a, thus any vector in \mathbb{F}_5^3 of the form (a,2a,0) is an eigenvector of 1. Even though $\sqrt{2} \notin \mathbb{F}_5$, we can embed \mathbb{F}_5 inside $\mathbb{F}_5[\sqrt{2}]$. By performing a similar process we get that any vector of the form $(a,3\sqrt{2}a,(1+4\sqrt{2})a)$ is an eigenvector of $3+3\sqrt{2}$ and $(a,2\sqrt{2}a,(1+\sqrt{2})a)$ is an eigenvector of $3+2\sqrt{2}$ where $a \in \mathbb{F}_5[\sqrt{2}]$.