信号检测与估值

段江涛 机电工程学院

2019年10月

ch4. 信号波形的检测

ch4-4. 一般二元信号波形的检测—充分统计量的方法

- 一般二元信号波形的检测—充分统计量的方法
- ② 简单二元信号波形的检测—总结

一般二元信号波形的检测—充分统计量的方法

- **条件:** 功率谱密度为 $P_n(\omega) = N_0/2$ 的高斯白噪声背景中一般二元信号波形 检测
- 正交级数展开法: 信道噪声是白噪声,正交函数集可任意选取。
- 充分统计量法:选取特定的正交函数集,使得有关发送信号的信息只包含在有限的展开系数中。

一般二元信号波形的检测—充分统计量的方法

信号模型

$$H_0: x(t) = s_0(t) + n(t), 0 \le t \le T$$

$$H_1: x(t) = s_1(t) + n(t), 0 \le t \le T$$

n(t) 为零均值高斯白噪声

正交函数集 $\{f_k(t)\}$ 的构造问题

波形相关系数 ρ:

$$\rho = \frac{1}{\sqrt{E_0 E_1}} \int_0^T s_0(t) s_1(t) dt, \quad (|\rho| \le 1)$$

 $\rho = 0$ 时, 信号 $s_0(t)$ 与 $s_1(t)$ 正交。

 $\rho \neq 0$ 时, 信号 $s_0(t)$ 与 $s_1(t)$ 不正交。

受打法 信号检测与估值

4/30

一般二元信号波形的检测—充分统计量的方法

$$H_0: x(t) = s_0(t) + n(t), 0 \le t \le T$$

$$H_1: x(t) = s_1(t) + n(t), 0 \le t \le T$$

(1) 选择一组完备正交函数集,构造两个坐标函数:

第一个坐标函数满足:

$$f_1(t) = \frac{1}{\sqrt{E_1}} s_1(t)$$

 $f_1(t)$ 为确知信号 $s_1(t)$ 的归一化函数, $E_1 = \int_0^T s_1^2(t) dt$

其余坐标函数 $f_k(t)$, $k \ge 2$ 是与 $f_1(t)$ 正交, 且两两正交的任意归一化函数, 即

$$f_j(t)$$
和 $f_k(t)$ 是正交的, $k \ge 1, j \ge 1, k \ne j$

格拉姆—施密特法构造 $f_2(t)$

格拉姆—施密特 (Gram—Schmidt) 正交化法构造第二个坐标函数:

利用 $s_0(t)$ 构造与 $f_1(t)$ 正交的信号 $g_2(t)$, 使 $s_0(t)$ 在 $f_1(t)$ 上的投影 s_1 为零。

$$g_{2}(t) = s_{0}(t) - s_{1}f_{1}(t)$$

$$= s_{0}(t) - \left[\int_{0}^{T} s_{0}(t)f_{1}(t)dt\right]f_{1}(t)$$

$$= s_{0}(t) - \left[\int_{0}^{T} s_{0}(t)\frac{1}{\sqrt{E_{1}}}s_{1}(t)dt\right]\frac{1}{\sqrt{E_{1}}}s_{1}(t) \quad \text{by } f_{1}(t) = \frac{1}{\sqrt{E_{1}}}s_{1}(t)$$

$$= s_{0}(t) - \rho\sqrt{\frac{E_{0}}{E_{1}}}s_{1}(t) \quad \text{by } \rho = \frac{1}{\sqrt{E_{0}E_{1}}}\int_{0}^{T} s_{0}(t)s_{1}(t)dt$$

格拉姆—施密特法构造 $f_2(t)$

$$g_2(t) = s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t)$$

$$\int_0^T s_0^2(t) dt = E_0, \int_0^T s_1^2(t) dt = E_1, \int_0^T s_0(t) s_1(t) dt = \rho \sqrt{E_0 E_1}$$

归一化 $g_2(t)$, 得到第二个坐标函数:

$$\begin{split} f_2(t) &= \frac{g_2(t)}{\sqrt{\int_0^T g_2^2(t) dt}} = \frac{s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t)}{\sqrt{\int_0^T \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t)\right)^2 dt}} \\ &= \frac{s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t)}{\sqrt{\int_0^T \left(s_0^2(t) - 2\rho \sqrt{\frac{E_0}{E_1}} s_0(t) s_1(t) + \rho^2 \frac{E_0}{E_1} s_1^2(t)\right) dt}} \\ &= \frac{s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t)}{\sqrt{E_0 - 2\rho \sqrt{\frac{E_0}{E_1}} \sqrt{E_0 E_1} \rho} + \rho^2 \frac{E_0}{E_1} E_1} = \frac{1}{\sqrt{(1 - \rho^2)E_0}} \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t)\right) \end{split}$$

段江涛

证明 $f_1(t)$ 和 $f_2(t)$ 是正交函数集的前两个坐标函数

$$\begin{split} f_1(t) &= \frac{1}{\sqrt{E_1}} s_1(t), \quad 0 \leq t \leq T \\ f_2(t) &= \frac{1}{\sqrt{(1 - \rho^2)E_0}} \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t) \right), \quad 0 \leq t \leq T \\ \int_0^T s_0^2(t) dt &= E_0, \int_0^T s_1^2(t) dt = E_1, \int_0^T s_0(t) s_1(t) dt = \rho \sqrt{E_0 E_1} \end{split}$$

证明: $f_1(t)$ 和 $f_2(t)$ 满足正交集坐标函数的定义。

先证明 $f_1(t), f_2(t)$ 是归一化函数。因为

$$\begin{split} &\int_0^T f_1^2(t)dt = \frac{1}{E_1} \int_0^T s_1^2(t)dt = 1 \\ &\int_0^T f_2^2(t)dt = \frac{1}{(1-\rho^2)E_0} \int_0^T \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t)\right)^2 dt \\ &= \frac{1}{(1-\rho^2)E_0} \int_0^T \left(s_0^2(t) - 2\rho \sqrt{\frac{E_0}{E_1}} s_0(t) s_1(t) + \rho^2 \frac{E_0}{E_1} s_1^2(t)\right) dt \\ &= \frac{1}{(1-\rho^2)E_0} \left(E_0 - 2\rho \sqrt{\frac{E_0}{E_1}} \sqrt{E_0 E_1} \rho + \rho^2 \frac{E_0}{E_1} E_1\right) = 1 \end{split}$$

汀涛 信号检测与估值 2019年10月

证明 $f_1(t)$ 和 $f_2(t)$ 是正交函数集的前两个坐标函数

$$\begin{split} f_1(t) &= \frac{1}{\sqrt{E_1}} s_1(t), \quad 0 \le t \le T \\ f_2(t) &= \frac{1}{\sqrt{(1 - \rho^2)E_0}} \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t) \right), \quad 0 \le t \le T \\ \int_0^T s_0^2(t) dt &= E_0, \int_0^T s_1^2(t) dt = E_1, \int_0^T s_0(t) s_1(t) dt = \rho \sqrt{E_0 E_1} \end{split}$$

证明: 再证明 $f_1(t), f_2(t)$ 是相互正交的两个函数。因为

$$\begin{split} \int_0^T f_1(t) f_2(t) dt &= \int_0^T \frac{1}{\sqrt{E_1}} s_1(t) \frac{1}{\sqrt{(1 - \rho^2) E_0}} \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t) \right) dt \\ &= \frac{1}{\sqrt{(1 - \rho)^2 E_0 E_1}} \left(\int_0^T s_0(t) s_1(t) dt - \rho \sqrt{\frac{E_0}{E_1}} \int_0^T s_1^2(t) dt \right) \\ &= \frac{1}{\sqrt{(1 - \rho)^2 E_0 E_1}} \left(\rho \sqrt{E_0 E_1} - \rho \sqrt{\frac{E_0}{E_1}} E_1 \right) = 0 \end{split}$$

所以, $f_1(t)$, $f_2(t)$ 是相互正交的两个函数。

综上, $f_1(t)$, $f_2(t)$ 是归一化函数, 且满足正交性, 是正交函数集的前两个坐标函数。

充分统计量的方法,选择一组完备正交函数集

$$f_1(t) = \frac{1}{\sqrt{E_1}} s_1(t), \quad 0 \le t \le T$$

$$f_2(t) = \frac{1}{\sqrt{(1 - \rho^2)E_0}} \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t) \right), \quad 0 \le t \le T$$

其余坐标函数 $f_k(t)$, $k \le 3$ 是与 $f_1(t)$ 和 $f_2(t)$ 正交, 且两两相互正交的任意归一化函数, 即 $f_i(t)$ 和 $f_k(t)$ 是正交的, $k \ge 1$, $j \ge 1$, $k \ne j$

$$\int_0^T f_j(t)f_k(t)dt = 0, \quad k \ge 1, j \ge 1, k \ne j$$

对接收信号进行正交展开 (假设 $H_0: x_1$)

假设 $H_0: x(t) = s_0(t) + n(t)$ 下, 展开系数 x_1

$$x_{1} = \int_{0}^{T} x(t)f_{1}(t)dt = \int_{0}^{T} [s_{0}(t) + n(t)]f_{1}(t)dt = \int_{0}^{T} s_{0}(t)f_{1}(t)dt + \int_{0}^{T} n(t)f_{1}(t)dt$$

$$= \int_{0}^{T} s_{0}(t)[\frac{1}{\sqrt{E_{1}}}s_{1}(t)]dt + n_{1} = \frac{1}{\sqrt{E_{1}}}\int_{0}^{T} s_{0}(t)s_{1}(t)dt + n_{1}$$

$$= \rho\sqrt{E_{0}} + n_{1}$$

$$f_1(t) = \frac{1}{\sqrt{E_1}} s_1(t), \quad \int_0^T n(t) f_1(t) dt = n_1$$

$$\rho = \frac{1}{\sqrt{E_0 E_1}} \int_0^T s_0(t) s_1(t) dt \implies \int_0^T s_0(t) s_1(t) dt = \rho \sqrt{E_0 E_1}$$

对接收信号进行正交展开 (假设 $H_0: x_2$)

假设 $H_0: x(t) = s_0(t) + n(t)$ 下, 展开系数 x_2

$$\begin{split} x_2 &= \int_0^T x(t) f_2(t) dt = \int_0^T [s_0(t) + n(t)] f_2(t) dt = \int_0^T s_0(t) f_2(t) dt + \int_0^T n(t) f_2(t) dt \\ &= \int_0^T s_0(t) \frac{1}{\sqrt{(1 - \rho^2) E_0}} \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t) \right) dt + n_2 \\ &= \frac{1}{\sqrt{(1 - \rho^2) E_0}} \left[\int_0^T s_0^2(t) dt - \rho \sqrt{\frac{E_0}{E_1}} \int_0^T s_0(t) s_1(t) dt \right] + n_2 \\ &= \frac{1}{\sqrt{(1 - \rho^2) E_0}} \left[E_0 - \rho \sqrt{\frac{E_0}{E_1}} \rho \sqrt{E_0 E_1} \right] + n_2 = \sqrt{(1 - \rho^2) E_0} + n_2 \end{split}$$

$$\begin{split} f_2(t) &= \frac{1}{\sqrt{(1-\rho^2)E_0}} \left(s_0(t) - \rho \sqrt{\frac{E_0}{E_1}} s_1(t) \right), \quad E_0 = \int_0^T s_0^2(t) dt, \quad \int_0^T n(t) f_2(t) dt = n_2 \\ \rho &= \frac{1}{\sqrt{E_0E_1}} \int_0^T s_0(t) s_1(t) dt \implies \int_0^T s_0(t) s_1(t) dt = \rho \sqrt{E_0E_1} \end{split}$$

对接收信号进行正交展开 (假设 $H_0: x_k$)

假设 $H_0: x(t) = s_0(t) + n(t)$ 下, 展开系数 x_k

$$x_k = \int_0^T x(t)f_k(t)dt = \int_0^T [s_0(t) + n(t)]f_k(t)dt = \int_0^T s_0(t)f_k(t)dt + \int_0^T n(t)f_k(t)dt$$
$$= 0 + \int_0^T n(t)f_k(t)dt = n_k \quad k \ge 3$$

$$f_{2}(t) = \frac{1}{\sqrt{(1-\rho^{2})E_{0}}} \left(s_{0}(t) - \rho \sqrt{\frac{E_{0}}{E_{1}}} s_{1}(t) \right), s_{1}(t) = \sqrt{E_{0}} f_{1}(t)$$

$$\implies s_{0}(t) = \left(\sqrt{(1-\rho^{2})E_{0}} \right) f_{2}(t) + \left(\rho \sqrt{E_{0}} \right) f_{1}(t)$$

$$\int_{0}^{T} f_{j}(t) f_{k}(t) dt = 0, \quad k \ge 1, j \ge 1, k \ne j$$

对接收信号进行正交展开 (假设 H_1)

假设 $H_1: x(t) = s_1(t) + n(t)$ 下,展开系数

$$x_{1} = \int_{0}^{T} x(t)f_{1}(t)dt = \int_{0}^{T} [s_{1}(t) + n(t)]f_{1}(t)dt = \int_{0}^{T} s_{1}(t)f_{1}(t)dt + \int_{0}^{T} n(t)f_{1}(t)dt$$

$$= \int_{0}^{T} s_{1}(t)[\frac{1}{\sqrt{E_{1}}}s_{1}(t)]dt + n_{1} = \frac{1}{\sqrt{E_{1}}} \int_{0}^{T} s_{1}^{2}(t)dt + n_{1}$$

$$= \sqrt{E_{1}} + n_{1} \quad (\text{by } f_{1}(t) = \frac{1}{\sqrt{E_{1}}}s_{1}(t), E_{1} = \int_{0}^{T} s_{1}^{2}(t)dt)$$

$$x_{2} = \int_{0}^{T} x(t)f_{2}(t)dt = \int_{0}^{T} [s_{1}(t) + n(t)]f_{2}(t)dt = \int_{0}^{T} s_{1}(t)f_{2}(t)dt + \int_{0}^{T} n(t)f_{2}(t)dt$$

$$= \int_{0}^{T} [\sqrt{E_{1}}f_{1}(t)]f_{2}(t)dt + n_{2} = 0 + n_{2} = n_{2}$$

$$x_{k} = \int_{0}^{T} x(t)f_{k}(t)dt = \int_{0}^{T} [s_{1}(t) + n(t)]f_{k}(t)dt = \int_{0}^{T} [\sqrt{E_{1}}f_{1}(t) + n(t)]f_{k}(t)dt$$

$$= \int_{0}^{T} n(t)f_{k}(t)dt = n_{k} \quad k \geq 3 \quad (by \quad s_{1}(t) = \sqrt{E_{1}}f_{1}(t), \int_{0}^{T} f_{1}(t)f_{k}(t)dt = 0, k \geq 3)$$

充分量统计法

(2) 利用构造的正交函数集 $f_1(t), f_2(t)$ 和 $\{f_k(t)|k \ge 3\}$ 对接收信号进行正交展开

两个假设下展开系数 x1,x2

$$H_0: x_1 = \int_0^T x(t)f_1(t)dt = \int_0^T [s_0(t) + n(t)]f_1(t)dt = \rho\sqrt{E_0} + n_1$$
 $H_0: x_2 = \int_0^T x(t)f_2(t)dt = \int_0^T [s_0(t) + n(t)]f_2(t)dt = \sqrt{(1 - \rho^2)E_0} + n_2$
 $H_1: x_1 = \int_0^T x(t)f_1(t)dt = \int_0^T [s_1(t) + n(t)]f_1(t)dt = \sqrt{E_1} + n_1$
 $H_1: x_2 = \int_0^T x(t)f_2(t)dt = \int_0^T [s_1(t) + n(t)]f_2(t)dt = n_2$
 $H_0, H_1: x_k = \int_0^T x(t)f_k(t)dt = n_k \quad (k \ge 3) \implies$ 不含确知信号 $s_0(t), s_1(t)$ 信息

 $x = (x_1, x_2)^T$ 是充分统计量。且 x_1 和 x_2 为高斯随机变量,相互统计独立。

充分量统计法: x1, x2 的均值和方差

$$E[x_{1}|H_{0}] = E\left[\rho\sqrt{E_{0}} + n_{1}\right] = \rho\sqrt{E_{0}}$$

$$E[x_{2}|H_{0}] = E\left[\sqrt{(1-\rho^{2})E_{0}} + n_{2}\right] = \sqrt{(1-\rho^{2})E_{0}}$$

$$Var[x_{1}|H_{0}] = Var[x_{2}|H_{0}] = E[n_{1}^{2}] = E[n_{2}^{2}] = \frac{N_{0}}{2}$$

$$E[x_{1}|H_{1}] = E\left[\sqrt{E_{1}} + n_{1}\right] = \sqrt{E_{1}}$$

$$E[x_{2}|H_{1}] = E[n_{2}] = 0$$

$$Var[x_{1}|H_{1}] = Var[x_{2}|H_{1}] = E[n_{1}^{2}] = E[n_{2}^{2}] = \frac{N_{0}}{2}$$

2019年10月

 $\mathbf{x} = (x_1, x_2)^T$

充分量统计法—构建似然比

(3) 利用得到的展开系数,构建似然比表达式

$$\lambda(\mathbf{x}) = \frac{p(\mathbf{x}|H_1)}{p(\mathbf{x}|H_0)} \mathop{\gtrless}_{H_0}^{H_1} \eta$$

$$\lambda(\mathbf{x}) = \frac{p(x_1, x_2|H_1)}{p(x_1, x_2|H_0)} \mathop{\gtrless}_{H_0}^{H_1} \eta$$

$$\frac{\frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{(x_1 - \sqrt{E_1})^2}{N_0}\right) \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{x_2^2}{N_0}\right)}{\frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{(x_1 - \sqrt{E_0})^2}{N_0}\right) \mathop{\gtrless}_{H_0}^{H_1} \eta} \mathop{\gtrless}_{H_0}^{H_1} \eta$$

充分量统计法—充分统计量 x1

(3) 利用得到的展开系数,构建似然比表达式

展开系数中只有 x_1 含有接收信号的信息,因此展开系数 x_1 是一个**充分统计量**。 利用 x_1 构成的似然比检验,表示为

$$\lambda(x_1) = \frac{p(x_1|H_1)}{p(x_1|H_0)} \mathop{\geq}_{H_0}^{H_1} \eta$$

因为

$$f_1(t) = \frac{1}{\sqrt{E_s}} s(t), \quad (x_1 | H_0) = n_1, \quad (x_1 | H_1) = \sqrt{E_s} + n_1$$
$$x_1 = \int_0^T x(t) f_1(t) dt = \frac{1}{\sqrt{E_s}} \int_0^T x(t) s(t) dt$$

因为充分统计量 x_1 是高斯随机变量,可用假设 H_0 和假设 H_1 下的均值和方差表示。

充分量统计法—充分统计量 x1

(3) 利用得到的展开系数,构建似然比表达式

展开系数中只有 x_1 含有接收信号的信息,因此展开系数 x_1 是一个充分统计量。 利用 x_1 构成的似然比检验,表示为

$$\lambda(x_1) = \frac{p(x_1|H_1)}{p(x_1|H_0)} \mathop{\geq}_{H_0}^{H_1} \eta$$

因为

$$f_1(t) = \frac{1}{\sqrt{E_s}} s(t), \quad (x_1 | H_0) = n_1, \quad (x_1 | H_1) = \sqrt{E_s} + n_1$$
$$x_1 = \int_0^T x(t) f_1(t) dt = \frac{1}{\sqrt{E_s}} \int_0^T x(t) s(t) dt$$

所以充分统计量 x_1 是高斯随机变量,可用假设 H_0 和假设 H_1 下的均值和方差表示。

2019年10月

20/30

充分量统计法—充分统计量x1

x1 是高斯变量, 均值和方差

$$E[x_1|H_0] = 0,$$
 $Var[x_1|H_0] = \frac{N_0}{2}$ $E[x_1|H_1] = \sqrt{E_s},$ $Var[x_1|H_1] = \frac{N_0}{2}$

概率密度函数

$$p(x_1|H_0) = \left(\frac{1}{\pi N_0}\right)^{1/2} \exp\left(-\frac{x_1^2}{N_0}\right)$$
$$p(x_1|H_1) = \left(\frac{1}{\pi N_0}\right)^{1/2} \exp\left(-\frac{(x_1 - \sqrt{E_s})^2}{N_0}\right)$$

打游 信号检测与估值

推导 $E[x_1|H_0]$

$$f_1(t) = \frac{1}{\sqrt{E_s}} s(t), \quad (x_1 | H_0) = n_1, \quad (x_1 | H_1) = \sqrt{E_s} + n_1$$

$$x_1 = \int_0^T x(t) f_1(t) dt = \frac{1}{\sqrt{E_s}} \int_0^T x(t) s(t) dt$$

$$E[x_1 | H_0] = E[n_1] = 0$$

或:

$$E[x_1|H_0] = E\left[\frac{1}{\sqrt{E_s}} \int_0^T x(t)s(t)dt\right]$$
 by $H_0: x(t) = n(t)$
$$= E\left[\frac{1}{\sqrt{E_s}} \int_0^T n(t)s(t)dt\right]$$
$$= \frac{1}{\sqrt{E_s}} \int_0^T E[n(t)]s(t)dt = 0$$
 by $E[n(t)] = 0$

推导 $Vax[x_1|H_0]$ (方法 1)

$$\begin{split} H_0: x(t) &= n(t), \quad E(x_1|H_0) = 0, \quad E_s = \int_0^T s^2(t)dt \\ E[n(t)n(u)] &= r_n(t-u) = \frac{N_0}{2}\delta(t-u) = \frac{N_0}{2}, (t=u,\delta(t-u)=1) \\ f_1(t) &= \frac{1}{\sqrt{E_s}}s(t), \quad (x_1|H_0) = n_1, \quad (x_1|H_1) = \sqrt{E_s} + n_1 \\ x_1 &= \int_0^T x(t)f_1(t)dt = \frac{1}{\sqrt{E_s}}\int_0^T x(t)s(t)dt, \quad (x_1|H_0) = \frac{1}{\sqrt{E_s}}\int_0^T n(t)s(t)dt \\ Var[x_1|H_0] &= E[((x_1|H_0) - E(x_1|H_0))^2] = E[(x_1|H_0)^2] = E\left[\left(\frac{1}{\sqrt{E_s}}\int_0^T n(t)s(t)dt\right)^2\right] \\ &= \frac{1}{E_s}E\left[\int_0^T n(t)s(t)dt \int_0^T n(t)s(t)dt\right] = \frac{1}{E_s}E\left[\int_0^T n(t)s(t)dt \int_0^T n(u)s(u)du\right] \\ &= \frac{1}{E_s}\int_0^T s(t) \left\{\int_0^T E[n(u)n(t)]s(u)du\right\}dt = \frac{1}{E_s}\int_0^T s(t) \left[\int_0^T \frac{N_0}{2}\delta(t-u)s(u)du\right]dt \\ &= \frac{N_0}{2E_s}\int_0^T s(t) \left(\int_0^T s(u)du\right)dt = \frac{N_0}{2E_s}\int_0^T s^2(t)dt = \frac{N_0}{2} \end{split}$$

段汀涛

信号检测与估价

推导 $Vax[x_1|H_0]$ (方法 2)

$$H_{0}: x(t) = n(t), \quad E(x_{1}|H_{0}) = 0, \quad E_{s} = \int_{0}^{T} s^{2}(t)dt$$

$$E[n(t)n(u)] = r_{n}(t - u) = \frac{N_{0}}{2}\delta(t - u) = \frac{N_{0}}{2}, (t = u, \delta(t - u) = 1)$$

$$f_{1}(t) = \frac{1}{\sqrt{E_{s}}}s(t), \quad (x_{1}|H_{0}) = n_{1}, \quad (x_{1}|H_{1}) = \sqrt{E_{s}} + n_{1}$$

$$x_{1} = \int_{0}^{T} x(t)f_{1}(t)dt = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} x(t)s(t)dt, \quad (x_{1}|H_{0}) = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} n(t)s(t)dt$$

$$n_{1} = \int_{0}^{T} n(t)f_{1}(t)dt = \int_{0}^{T} n(t)\frac{1}{\sqrt{E_{s}}}s(t)dt = \frac{1}{\sqrt{E_{s}}}\int_{0}^{T} n(t)s(t)dt$$

$$Var[x_{1}|H_{0}] = E[((x_{1}|H_{0}) - E(x_{1}|H_{0}))^{2}] = E[(x_{1}|H_{0})^{2}] = E[n_{1}^{2}]$$

$$= E\left[\left(\frac{1}{\sqrt{E_{s}}}\int_{0}^{T} n(t)s(t)dt\right)^{2}\right] = \frac{N_{0}}{2} \quad (||\overline{t}||\overline{f}||\overline{f}||\overline{f}||\overline{f}||$$

推导 $p(x_1|H_0)$

$$E[x_1|H_0] = 0, \quad Var[x_1|H_0] = \frac{N_0}{2}$$

$$p(x_1|H_0) = \left(\frac{1}{2\pi Var[x_1|H_0]}\right)^{1/2} \exp\left(-\frac{(x_1 - E[x_1|H_0])^2}{2Var[x_1|H_0]}\right)$$

$$= \left(\frac{1}{\pi N_0}\right)^{1/2} \exp\left(-\frac{x_1^2}{N_0}\right)$$

推导 $E[x_1|H_1]$ 和 $Var[x_1|H_1]$

$$f_{1}(t) = \frac{1}{\sqrt{E_{s}}} s(t), \quad E_{s} = \int_{0}^{T} s^{2}(t)dt, \quad n_{1} = \int_{0}^{T} n(t)f_{1}(t)dt$$

$$(x_{1}|H_{1}) = \int_{0}^{T} x(t)f_{1}(t)dt = \int_{0}^{T} [s(t) + n(t)]f_{1}(t)dt = \sqrt{E_{s}} + n_{1}$$

$$E[x|H_{1}] = E\left[\sqrt{E_{s}} + n_{1}\right]$$

$$= E[\sqrt{E_{s}}] + E[n_{1}]$$

$$= E[\sqrt{E_{s}}] = \sqrt{E_{s}}$$

$$Var[x_{1}|H_{1}] = E[((x|H_{1}) - E(x|H_{1}))^{2}] = E[(\sqrt{E_{s}} + n_{1} - \sqrt{E_{s}})]$$

$$= E[n_{1}^{2}] = Var[x_{1}|H_{0}]$$

$$= \frac{N_{0}}{2}$$

江涛 信号检测与估值

推导 $p(x_1|H_1)$

$$E[x_1|H_1] = \sqrt{E_s}, \quad Var[x_1|H_1] = \frac{N_0}{2}$$

$$p(x_1|H_1) = \left(\frac{1}{2\pi Var[x_1|H_1]}\right)^{1/2} \exp\left(-\frac{(x_1 - E[x_1|H_1])^2}{2Var[x_1|H_1]}\right)$$

$$= \left(\frac{1}{\pi N_0}\right)^{1/2} \exp\left(-\frac{(x_1 - \sqrt{E_s})^2}{N_0}\right)$$

段江涛 信号检测与估值

充分量统计法—充分统计量x1

x1 是高斯变量, 均值和方差

$$E[x_1|H_0] = 0,$$
 $Var[x_1|H_0] = \frac{N_0}{2}$ $E[x_1|H_1] = \sqrt{E_s},$ $Var[x_1|H_1] = \frac{N_0}{2}$

概率密度函数

$$p(x_1|H_0) = \left(\frac{1}{\pi N_0}\right)^{1/2} \exp\left(-\frac{x_1^2}{N_0}\right)$$
$$p(x_1|H_1) = \left(\frac{1}{\pi N_0}\right)^{1/2} \exp\left(-\frac{(x_1 - \sqrt{E_s})^2}{N_0}\right)$$

充分量统计法—判决表达式

$$\lambda(x_1) = \frac{p(x_1|H_1)}{p(x_1|H_0)} \stackrel{\mathcal{H}}{\underset{H_0}{\otimes}} \eta$$

$$\frac{\left(\frac{1}{\pi N_0}\right)^{1/2} \exp\left(-\frac{(x_1 - \sqrt{E_s})^2}{N_0}\right)}{\left(\frac{1}{\pi N_0}\right)^{1/2} \exp\left(-\frac{x_1^2}{N_0}\right)} \stackrel{\mathcal{H}_1}{\underset{H_0}{\otimes}} \eta \implies x_1 \stackrel{\mathcal{H}_1}{\underset{H_0}{\otimes}} \frac{N_0}{2\sqrt{E_s}} \ln \eta + \frac{\sqrt{E_s}}{2}$$
代人展开系数 $x_1 = \int_0^T x(t) f_1(t) dt = \frac{1}{\sqrt{E_s}} \int_0^T x(t) s(t) dt$

化简得, 判决表达式:

$$l[x(t)] \stackrel{def}{=} \int_0^T x(t)s(t)dt \underset{H_0}{\gtrless} \frac{N_0}{2} \ln \eta + \frac{E_s}{2} \stackrel{def}{=} \gamma$$

结论

由任意正交函数集对 x(t) 进行正交级数展开法与由充分统计量法导出的判决表达式是完全一样的,因而也具有相同的检测系统结构和相同的检测性能。

简单二元信号波形的检测—总结

- 首先,利用随机过程的正交级数展开,将随机过程用一组随机变量来表示;
- 然后,针对展开得到的随机变量,利用第三章的统计检测方法,构建贝叶斯 检测表达式;
- 最后,利用展开系数与随机过程之间的表示关系,构建波形信号的检测表达式。
- 4 两种方法:正交级数展开和充分统计量,所得结果相同。

欢迎批评指正!