ECE 432/532 Programming for Parallel Processors

Dr. Iraklis Anagnostopoulos

Welcome

 Welcome to 432/532 course "Programming for Parallel Processors"

I wish you all good luck!!

Logistics

- This course will focus on parallel programming:
 - What is parallel programming?
 - Why we need parallel programming
 - How can we execute parallel code?
 - Models for parallel programming
 - Parallel computer architectures
 - Parallel algorithms modeling and analysis of parallel programs and systems
 - and more...

Logistics - Prerequisites

- Programming in C, C++, or similar
- Basics of data structures
- Basics of machine architecture
- Basic Unix/Linux knowledge

See me if you have any concerns

Logistics

- Instructor:
 - Dr. Iraklis Anagnostopoulos, <u>iraklis.anagno@siu.edu</u>
- TA
 - Sheheeda Mariam Manakkadu, <u>sheheeda@siu.edu</u>
- Lectures:
 - Monday, Wednesday & Friday, 4:00 pm 4:50 pm
 - Class E-136
 - Unix lab will also be used (announcement will follow)
- Office hours:
 - Wednesday & Friday, 10:00 am − 1:00 pm

Logistics

- Homeworks 30%
- Midterm 30% of the final grade
- Final exam 40% of the final grade

Final assignment of grades will be based on a curve.

Main bibliography

Peter S. Pacheco,
"An Introduction to Parallel Programming

So, let's start

Technological trends: From Moore's law...

- The number of transistors on integrated circuits doubles approximately every two years (Moore, 1965)
- More good news! transistors become faster as well!
 - CPU speed doubles every 18 months
- What to do with so many, fast transistors?
 - Instruction Level Parallelism! (ILP)
 - Deeper pipelines
 - Faster clock speeds
 - Better branch predictors
 - Out of order execution
 - Superscalar
 - Larger caches More caching levels
 - Vector units
- Faster processing cores at no programming cost

Technological trends: From Moore's law...

Technological trends: ... to Dennard Scaling

• Wikipedia:

MOSFETs continue to function as voltage-controlled switches while all key figures of merit such as layout density, operating speed, and energy efficiency improve – provided geometric dimensions, voltages, and doping concentrations are consistently scaled to maintain the same electric field (Dennard 1974)

Technological trends: ... to Dennard Scaling

 The dynamic (switching) power consumption of CMOS circuits is proportional to frequency

• Historically, the transistor power reduction allowed manufacturers to drastically raise clock frequencies without significantly increasing overall circuit power consumption.

Technological trends: ... to Dennard Scaling

- $P = CV^2f$ (C = count, V = voltage, f = frequency)
 - Increase in device count
 - Higher operating frequencies
 - Lower supply voltages
 - Constant power / chip!!!

And I think to myself What a Wonderful World...

Is it?

What a wonderful world...

- In ~2004 we hit the ILP wall
 - Transistors could not be utilized to increase serial performance
 - Logic became too complex
 - Performance attained was very low compared to power consumption

What a wonderful world...

- In ~2004 we hit the ILP wall
 - Transistors could not be utilized to increase serial performance
 - Logic became too complex
 - Performance attained was very low compared to power consumption

What a wonderful world...

- In ~2004 we hit the ILP wall
 - Transistors could not be utilized to increase serial performance
 - Logic became too complex
 - Performance attained was very low compared to power consumption

• Solution:

- Multicore CPUs!
- But.. The free lunch is over... welcome to the jungle! (http://herbsutter.com/welcome-to-the-jungle/) (http://www.gotw.ca/publications/concurrency-ddj.htm)
- We need parallel software

The end of Dennard scaling?

- Transistors are becoming too small
- A lot of energy is lost in leakage
- Voltage has not dropped significantly during the last few years

The power wall...

- If $P = CV^2f$
 - C can still increase as predicted my Moore's law
 - transistors get shorter
 - number of cores increase
 - V cannot drop drastically
 - We need to keep f low
 - But still P may take off....

Ok.. Is that all?

Ok.. Is that all?

No ☺

CPU to memory gap

 The memory wall: CPUs are much faster than memory and applications may starve waiting for data from main memory...

Two ways ahead...

• The catapult way: Advances through technological breakthrough

 The parkour way: Redesign software and algorithms

It's the evolution after all

Motivations for Parallel Computing

- Technology push
- Application pull

Microprocessor Architecture (Mid 90's)

- Superscalar (SS) designs were the state of the art
 - multiple functional units (e.g., int, float, branch, load/store)
 - multiple instruction issue
 - dynamic scheduling: HW tracks instruction dependencies
 - speculative execution: look past predicted branches
 - non-blocking caches: multiple outstanding memory operations
- Apparent path to higher performance?
 - wider instruction issue
 - support for more speculation

Microprocessor Architecture (Mid 90's)

Increasing issue width provides diminishing returns

Two factors

- Fundamental circuit limitations
 - delays 1 as issue queues 1 and multi-port register files 1
 - increasing delays limit performance returns from wider issue
- Limited amount of instruction-level parallelism
 - inefficient for codes with difficult-to-predict branches

Instruction-level Parallelism Concerns

Issue Waste

Some Sources of Wasted Issue Slots

- Translation Lookaside Buffer (TLB) miss
- I cache miss Memory
- D cache miss
- Load delays (L1 hits)
- Branch misprediction
- Instruction dependences
- Memory conflict

Control Flow

Instruction Stream

Recent Multicore Processors

- 2016: Intel Knight's Landing
 - —72 cores; 4-way SMT; 16GB (on pkg)
- 2015: Oracle SPARC M7
 - —32 cores; 8-way fine-grain MT; 64MB cache
- Fall 14: Intel Haswell
 - —18 cores; 2-way SMT; 45MB cache
- June 14: IBM Power8
 - —12 cores; 8-way SMT; 96MB cache
- Sept 13: SPARC M6
 - —12 cores; 8-way fine-grain MT; 48MB cache
- May 12: AMD Trinity
 - —4 CPU cores; 384 graphics cores
- Q2 13: Intel Knight's Corner (coprocessor)
 - —61 cores; 2-way SMT; 16MB cache
- Feb 12: Blue Gene/Q
 - —16+1+1 cores; 4-way SMT; 32MB cache

Application Pull

- Complex problems require computation on large-scale data
- Sufficient performance available only through massive parallelism

The Need for Speed: Complex Problems

Science

- understanding matter from elementary particles to cosmology
- storm forecasting and climate prediction
- understanding biochemical processes of living organisms

Engineering

- combustion and engine design
- computational fluid dynamics and airplane design
- earthquake and structural modeling
- pollution modeling and remediation planning
- molecular nanotechnology

Business

- computational finance
- high frequency trading
- information retrieval
- data mining "big data"

The Need for Speed: Complex Problems

Challenges of Explicit Parallelism

- Algorithm development is harder
 - complexity of specifying and coordinating concurrent activities
- Software development is much harder
 - lack of standardized & effective development tools and programming models
 - subtle program errors: race conditions
- Rapid pace of change in computer system architecture
 - a great parallel algorithm for one machine may not be suitable for another
 - example: homogeneous multicore processors vs. GPUs

Parallel Hardware in the Large

Super computers

- For decades: parallel computing = supercomputing
 - Cooperation of multiple processors
- Super computers
 - Computers with thousand computing elements.

https://www.top500.org/

Top500 -JUNE 2016

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
5	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660

Top500 -JUNE 2016

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
5	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660

Vendors System Share

Operating System System Share

Accelerator/Co-Processor System Share

Countries System Share

Performance Development

Projected Performance Development

● Sum ▲ #1 ■ #500

■ Sum ▲ #1 ■ #500