3.46 PHOTONIC MATERIALS AND DEVICES

Lecture 15: III-V Processing

Lecture

Double Hetero structure laser

- 1. Large refractive index active region
- 2. Low E_a active region

η_d is increased

- faster inversion for same injection current
- light concentrated for stimulated emission

Confinement

Γ

DH $\Gamma = 1$

d > 1000 Å

SQW $\Gamma \propto \Delta \text{nd}^2$ SCH $\Gamma \propto \Delta \text{nd}$ **Notes**

(band structure engineering)

light (guided) confinement carrier (electron and hole) confinement

100× \downarrow of J_{th}

Double Heterostructure SQW: Single Quantum Well SCH: Separate Confinement

Heterostructure

Density of States of QW

$$g_{_{P}} = \frac{\lambda^2 m_{_{_{\! f}}}}{2\tau_{_{\! f}} h d} \textcircled{a} \ \, \text{threshhold}$$

Threshhold current density

$$\mathbf{J}_{\text{th}} = \mathbf{e} \mathbf{R}_{\text{th}}$$

$$\mathbf{C}_{\text{R}} \mathbf{n} \mathbf{p}$$

$$\begin{split} 10^{-10} cm^3 s^{-1} \cdot (2 \times 10^{18} cm^{-3})^2 &= 4 \times 10^{26} cm^{-3} s^{-1} \\ &= 1.6 \times 10^{-19} \cdot R_{th} \\ J_{th} &\approx 6.4 \text{ kA } \underline{cm^{-2}} \cdot \underline{\mu}\underline{m} \\ I \times w \quad d \end{split}$$

Notes

$$\begin{split} & \mathbf{n}_{\text{th}} \downarrow \text{ as d} \downarrow \\ & \mathbf{g} \big(\boldsymbol{\nu} \big) \! \propto \! \mathbf{f}_{\mathbf{g}} \big(\boldsymbol{\nu} \big) \! \cdot \! \rho_{\text{bulk}} \big(\boldsymbol{\nu} \big) \end{split}$$

gp:peak gain

higher T stability

$$\mathbf{g}\!\left(\boldsymbol{\nu}\right)\!\propto\!\mathbf{f}_{\mathbf{g}}\!\left(\boldsymbol{\nu}\right)\!\cdot\!\boldsymbol{\rho}_{\mathsf{QW}}\!\left(\boldsymbol{\nu}\right)$$

$$\rho(\nu) = 10^{12} \text{ states/cm}^2 \text{ for dE} = \text{kT}$$

$$=\frac{2m_r}{\hbar d}$$

multilevel gain

R_{th} = threshold recombination rate

J_{th} decreases with d

DH: $\begin{aligned} d &\simeq 0.2 \; \mu \text{m} \\ J_{\text{th}} &= 1.2 \; \text{kA/cm}^2 \\ I_{\text{th}} &\simeq 10-20 \; \text{mA} \end{aligned}$

SQW

- E levels quantized → lasing @ QW transitions
- 2. $\rho(\nu)$ (2D) more efficient, $g_P = const(\nu)$
- 3. g saturates
- 4. QW $\simeq 10^{12}$ states/cm² DH $\simeq 10^{13}$ states/cm² in d = 1000Å
- Confinement optimized by separation SCH

Strained Layers

Strain (compressive)

- raises the LH sub band
- reduces carriers to invert \Rightarrow J_{th} \downarrow

$$\Rightarrow \eta_{\text{d}} \uparrow$$

Notes

d<300Å with band filling, transition not @ g_p are useless

Lecture Notes

III-V Compound Semiconductor Processing

- Substrate Preparation GaAs, InP
- Epitaxial layer growth LPE, MBE, MOCVD, CVD
- 3. Etch Dry (RIE), wet
- 4. Contacts
 Au, silicides, metals

1. Process Constraints

A. CSBH laser provides (CSBH: Channeled-Substrate Buried Heterostructure) lateral optical and electrical confinement.

- i. grow InP:Fe SI layer
- ii. etch channel
- iii. grow InP/InGaAsP/InP DH in channel
- B. APD detector (SAM)
 - i. grow InGaAs/InP het.
 - ii. SiNx dielectric deposition
 - iii. etch contact window
 - iv. diffuse p+ contact/junction
 - v. implant p- guard ring

Both devices employ deposited dielectrics for AR coatings (APD) and facet reflectors (laser).

2. Issues

A. Groups V volatility

- i. incongruent vaporization of P from InP @ T > 360°C
- ii. as from GaAs @ T > 600°C
- Solution: group V overpressure or
 - stable dielectric cap layer.

 iii. RIE creates group III rich
 - RIE creates group III r suffice
- Solution: lower T, lower E, high Z

(Z: atomic number)

B. Preferential etch of V groove Solution: surface prep.

C. Metallization reactions

Solution: barriers or stable phases

D. Degradation of η_i

Solution: defect control, life testing

3. Epitaxial Growth

A. Dislocation density

B. Stoichiometry

Concept: Single crystal film bonded to a

single crystal substrate with a common interface and the lattice of the film having a definite orientation w.r.t. the

substrate lattice.

Substrate: semi infinite thickness

Surface: atomically flat

(ledges)

(bond reconstruction)

Film: homogeneous, 2D (x, y >> t)

(phase separation?)

Interface: sharp (interdiffusion)

Tangential forces: sinusoidal in a₀

Growth Modes

 E_{fs} = film/substrate bond strength

E_{ff} = film/film bond strength

 $W = \frac{E_{fs}}{E_{ff}} = \text{relative strength of bonds to}$

substrate

$$\eta = \text{lattice misfit} = \frac{a_s - a_f}{a_f}$$

Notes

Si(100) 2 × 1 or GaAs(100) → rows of AS V-termination → flat surface

Epitaxy

equilibrium:

- low deposition rate
- high T (surface diffusion)
- $\label{eq:minimize} \begin{array}{l} \frac{\Delta G}{N_{\scriptscriptstyle f}} \; (\text{system energy}) \\ \end{array}$

Coherency (dislocations)

1. 1. variables:

a, Eff, h

2. minimize energy

Coherent

$$\eta = \in$$

(strained)

Incoherent: $\eta = \in +\delta$

$$\eta = \in +\delta$$

(relaxed)

separation of parallel misfit dislocations:

$$S = \frac{\left| \vec{b} \right|}{\delta}$$

$$\eta$$
 (relaxed) = $\in +\frac{1}{S} \left| \vec{b} \right| \cos \underline{\lambda}$

projection of \vec{b} on plane of interface

Critical hc

minimize E_{ϵ} vs. $E_{dislocation}$

Matthews-Blakelee

$$h_{c} = \frac{b}{8\pi\eta(1+\upsilon)} \left[ln \left(\frac{h_{c}}{b} \right) + 1 \right]$$

$$h_c pprox rac{b}{4\eta}$$

Notes

Frank-Vander Merwe 1D harmonic chain

 $\delta =$ strain relief by dislocations

Morphology (wetting)

ML: monolayers

Nucleation barrier to clustering

$$\Delta G^* = \frac{8\pi}{3} \frac{\gamma_{\text{c/v}}^3}{\rho_0^2 \left[\Delta F(\eta)\right]^2}$$
density of unstrained film

$$N^* = \frac{16\pi\gamma_{c/v}^3}{3\left[\Delta F(\eta)\right]^3 \rho_0^2}$$

$$I = N_s \Gamma \exp(-\Delta G^*/RT)$$

Morphology + Coherency are determined by nucleation barriers ΔG^* for dislocation formation clustering

Metastability is common

Notes

Deposition

$$w = 1$$

 $\begin{array}{l} \mu_{\text{0--1}} \Rightarrow \text{monolayer coverage G} \downarrow \\ \mu_{\text{1--2}} \Rightarrow \text{f--f clustering G} \uparrow \end{array}$

w = 2

 $\mu_{\text{1-2}} \Rightarrow \text{layer growth G} \downarrow$

Stronski-Kranstanov: G ↑ after one monolayer

Volmer-Weber: G ↑ initially (no

wetting)

$$\Delta \text{F} \big(\eta \big) \propto \eta^{\text{2}}$$

LCGlu

4. Contacts

- stable
- selective
- low R_c
- low T deposition
- adhesion

Eutectics

- Au(Be) P
- Au(Ge) n
- small process window
 - o RTA
- unreliable

Silicides

- Stable
 - o undefined interface

$$\,\to\! R_{\rm c}\uparrow$$

Metals

- reactive with compounds
 - \rightarrow defects, dissociation
 - \rightarrow phase stability

Notes

 $\rm R_c < 10^{-5} \Omega \! \cdot \! cm^2$

for lasers

surface defects pin E_F

→ contact resistance

(Schottky Barrier) for n-GaAs

p-InP

⇒ heavily doped epilayer under contact

Notes

Notes

Notes

Adhesion:

- local structural relaxation
- ion beam mixing
- chemical bonding
 (Cu/Al₂O₃ with excess ₂)

Interdiffusion

Polycrystal: grain boundary diffusion

$$\begin{split} D_{\text{bulk}} = E_{\text{a}} & D_{\text{disloc}} \simeq \frac{3E_{\text{a}}}{4} \\ D_{\text{gb}} \sim \frac{E_{\text{a}}}{2} & \end{split}$$

$$D = D_{\text{bulk}} + f \cdot \quad_{\text{gb}}$$

- Diffusion Barrier (Ti/Pt)Au
 - o high T_{MP}
 - o chemically stable
- Intermetallic Compound
- Coherent Interface

Dielectric Deposition

 SiO_2 , SiO_xN_y , SiN_x

- sputter
- PECVD
- e-beam

facets, isolation, diffusion masks

Etch

- Wet etch (Br:CH₃OH, HCI)
 - o layer stop H_2SO_4 : H_2O_2 : H_2O
 - o v-groove
- Dry etch (CF₂Cl₂), (HBr, HI)
 - Anisotropy
 - Photoelectrochemical etch anisotropy

$$D_{\text{bulk}}\left(T_{\text{MP}}\right) \simeq D_{\text{gb}}\!\left(\!\frac{1}{2}T_{\text{MP}}\right)$$

refractory TM: Cr, Ni, Ta, Ti, Hf