

www.datascience.pe

Aplicación de Modelos de ML para la Identificación de la Fuga de Clientes en el Servicio de Tarjeta de Créditos en un Banco.

Grupo 3

Comprensión del Negocio

Comprensión del Negocio

Un gerente de banco se siente incómodo por que cada vez más clientes abandonan sus servicios de tarjeta de crédito.

Así que se encuentra en busca de soluciones que le permitan tomar acciones de manera proactiva frente al cliente para brindarle un mejor servicio y/u ofertas que ayuden a cambiar su decisión.

www.datascience.pe

Problema

Problema

El aumento progresivo de casos de deserción de clientes del servicio de tarjeta de crédito en un banco.

Planteamiento

¿Cómo un modelo predictivo ayudará a la identificación de la fuga del cliente?

www.datascience.pe

Hipotesis

Hipótesis

Un modelo de predicción nos ayudará a clasificar los tipos de clientes(fuga y permanencia) en más del 50%.

Trabajos relacionados

Artículos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

E.A.P. DE INGENIERÍA DE SISTEMAS

Sistema de predicción de clientes desertores de tarjetas de crédito para la banca peruana usando Support Vector Machine

TESIS

Para optar el Título Profesional de Ingeniero de Sistemas

AUTORES

Rosa Angela del Carmen Ordoñez Cairo

REPOSITORIO ACADÉMICO UPC

Modelo de análisis predictivo para determinar clientes con tendencia a la deserción en bancos peruanos

Item Type	info:eu-repo/semantics/bachelorThesis
Authors	Barrueta Meza, Renzo André; Castillo Villarreal, Edgar Jean Paul
Citation	[1] R. A. Barrueta Meza and E. J. P. Castillo Villarreal, "Modelo de análisis predictivo para determinar clientes con tendencia a la deserción en bancos peruanos," Universidad Peruana de Ciencias Aplicadas(UPC)., Lima, Perú, 2018. Doi: http://doi.org/ 10.19083/tesis/626023
DOI	10.19083/tesis/626023
Publisher	Universidad Peruana de Ciencias Aplicadas (UPC)
Rights	info:eu-repo/semantics/openAccess; Attribution- NonCommercial-ShareAlike 3.0 United States
Download date	10/02/2021 00:29:43
Item License	http://creativecommons.org/licenses/by-nc-sa/3.0/us/
Link to Item	http://hdl.handle.net/10757/626023

Método

www.datascience.pe

Método

Variable	Tipo	Descripcion
CLIENTNUM	Numérica	ID del cliente
Attrition_Flag	Categorica	1: Permanencia, 0: Fuga
Gender	Categorica	1: Male, 0: Female
Education_Level	Categorica	Graduate , High School, Unknown, Uneducated, College, Post Graduate, Doctorate
Marital_Status	Categorica	Married, Single, Unknown, Divorced
Income_Category	Categorica	(\$) Menos de 40K, 40K - 60K, 80K - 120K, 60K - 80K, Unknown, 120K
Card_Category	Categorica	Blue, Silver, Gold, Platinum
Customer_Age	Numérica	Edad del cliente en años
Dependent_count	Numérica	Número de dependientes
Months_on_book	Numérica	Periodo de relación con el banco
Total_Relationship_Count	Numérica	Número total de productos en poder del cliente
Months_Inactive_12_mon	Numérica	Número de meses inactivos en los últimos 12 meses
Contacts_Count_12_mon	Numérica	Número de contactos en los últimos 12 meses
Credit_Limit	Numérica	Límite de crédito en la tarjeta de crédito
Total_Revolving_Bal	Numérica	Saldo rotatorio total en la tarjeta de crédito
Avg_Open_To_Buy	Numérica	Línea de crédito abierta para comprar (promedio de los últimos 12 meses)
Total_Amt_Chng_Q4_Q1	Numérica	Cambio en el monto de la transacción (Q4 sobre Q1)
Total_Trans_Amt	Numérica	Monto total de la transacción (últimos 12 meses)
Total_Trans_Ct	Numérica	Recuento total de transacciones (últimos 12 meses)
Total_Ct_Chng_Q4_Q1	Numérica	Cambio en el recuento de transacciones (Q4 sobre Q1)
Avg_Utilization_Ratio	Numérica	Índice de utilización promedio de la tarjeta

Experimento

Experimentación

A. Carga de datos

CLIENTNUM	Attrition_ Flag	Customer_ Age	Gender	Dependent _count	Education_Level	Marital_Status	Income_Category	Card_Category	Months_on _book	Total_Relation ship_Count	Months_ Inactive_ 12_mon	Count_12	Credit_Limit	Total_Revolving _Bal	Avg_Open_ To_Buy	Total_Amt_ Chng_Q4_ Q1	Total_Trans _Amt	Total_Trans _Ct	Total_Ct_ Chng_Q4_ Q1	Avg_Utilizat ion_Ratio
768805383	Existing Customer	45	М	3	High School	Married	\$60K - \$80K	Blue	39	5	1	3	12691	777	11914	1.335	1144	42	1.625	0.061
818770008	Existing Customer	49	F	5	Graduate	Single	Less than \$40K	Blue	44	6	1	2	8256	864	7392	1.541	1291	33	3.714	0.105
713982108	Existing Customer	51	М	3	Graduate	Married	\$80K - \$120K	Blue	36	4	1	0	3418	0	3418	2.594	1887	20	2.333	0
769911858	Existing Customer	40	F	4	High School	Unknown	Less than \$40K	Blue	34	3	4	1	3313	2517	796	1.405	1171	20	2.333	0.76

B. Exploración de datos

> Se tiene:

6 variables categóricas y 15 numéricas

#	Column	Non-Null Count	Dtype
0	CLIENTNUM	10127 non-null	int64
1	Attrition_Flag	10127 non-null	object
2	Customer_Age	10127 non-null	int64
3	Gender	10127 non-null	object
4	Dependent_count	10127 non-null	int64
5	Education_Level	10127 non-null	object
6	Marital_Status	10127 non-null	object
7	Income_Category	10127 non-null	object
8	Card_Category	10127 non-null	object
9	Months_on_book	10127 non-null	int64
10	Total_Relationship_Count	10127 non-null	int64
11	Months_Inactive_12_mon	10127 non-null	int64
12	Contacts_Count_12_mon	10127 non-null	int64
13	Credit_Limit	10127 non-null	float64
14	Total_Revolving_Bal	10127 non-null	int64
15	Avg_Open_To_Buy	10127 non-null	float64
16	Total_Amt_Chng_Q4_Q1	10127 non-null	float64
17	Total_Trans_Amt	10127 non-null	int64
18	Total_Trans_Ct	10127 non-null	int64
19	Total_Ct_Chng_Q4_Q1	10127 non-null	float64
20	Avg_Utilization_Ratio	10127 non-null	float64

> No existen datos nulos

CLIENTNUM	0
Attrition_Flag	0
Customer Age	0
Gender	0
Dependent_count	0
Education Level	0
Marital_Status	0
Income_Category	0
Card_Category	0
Months_on_book	0
Total Relationship Count	0
Months_Inactive_12_mon	0
Contacts_Count_12_mon	0
Credit_Limit	0
Total Revolving Bal	0
Avg_Open_To_Buy	0
Total Amt Chng Q4 Q1	0
Total_Trans_Amt	0
Total_Trans_Ct	0
Total Ct Chng Q4 Q1	0
Avg_Utilization_Ratio	0
dtype: int64	

> No hay clientes duplicados

C. Elaboración de gráficos

Clientes con servicio de tarjeta de credito

Categoria target 84% Mantiene el servicio 16% Ha cancelado el servicio

Histograma para las variables categóricas

Boxplot para variables numéricas

D. Análisis de Correlación

- Variables categóricas

- Variables numéricas

E. Resultado del análisis exploratorio

Preparación de los datos

Preparación de los datos

Tratamiento de Outliers: En nuestro caso se aplicó el Z - score. En nuestro caso era cerca del 8% por lo que se procedió a eliminarlos mediante esta técnica.

Z score = (x -mean) / std. deviation

LabelEnconding: En la codificación de nuestras variables categóricas se utilizó el método conocido como labelEnconding el cual en grandes rasgos le asigna un valor numérico a cada categoría.

Marital_Status	Encoding
Divorced	0
Married	1
Single	2
Unknown	3

Normalización de los datos: Para este caso se usó la estandarización estándar la cual sustrae la media de la observación y la divide entre la desviación estándar

→	Gender	Education_Level	Marital_Status	Income_Category	Card_Category	Total_Relationship_Count	Months_Inactive_12_mon	Contacts_Count_12_mon	Total_Revolving_Bal
0	1.079693	-0.592235	-0.637965	-1.243382	-0.249152	-0.550958	-1.394369	-0.408686	0.117766
1	1.079693	1.040910	2.071824	-1.907141	-0.249152	0.739782	0.753847	-0.408686	0.387645
2	-0.926189	-0.592235	-0.637965	0.747896	-0.249152	0.739782	-0.320261	-0.408686	-0.577784
3	-0.926189	-0.592235	-0.637965	1.411655	-0.249152	1.385153	-1.394369	-0.408686	0.007362
4	1.079693	-1.136617	-1.992860	-0.579623	-0.249152	0.739782	-0.320261	-2.261594	0.796142
	***			9885					
9312	-0.926189	-0.592235	0.716929	0.747896	-0.249152	0.094412	-1.394369	1.444222	-0.668561
9313	1.079693	1.585292	-1.992860	-1.243382	-0.249152	0.094412	-0.320261	0.517768	1.269656
9314	-0.926189	-0.047853	-0.637965	0.747896	-0.249152	0.739782	0.753847	1.444222	-1.411953
9315	1.079693	-0.592235	2.071824	-1.243382	-0.249152	0.094412	0.753847	0.517768	-1.411953
9316	-0.926189	-0.592235	-0.637965	0.747896	4.226461	1.385153	-0.320261	1.444222	0.993644

$$z = \frac{x - \mu}{\sigma}$$

$$\mu = \text{Mean}$$

$$\sigma = \text{Standard Deviation}$$

Técnicas de Balanceo de Datos: En nuestro caso aproximadamente el 16% de nuestra base era considerado como un cliente que 'fuga' por lo que se utilizó el Método SMOTE para generar datos sintéticos de la clase minoritaria.

Synthetic Minority Oversampling Technique

www.datascience.pe

Modelo

www.datascience.pe

Modelamiento

Algoritmos a desarrollar:

- 1. Random Forest(RF)
- 2. Regresión Logística(RL)
- 3. Light GBM(LGB)
- 4. Gradiente Boosting(GB)
- 5. Catboost(CB)

Mate Comparación de matriz de confusión

Matriz de confusión y curva roc

Matriz de confusión:

Herramienta muy útil para valorar cómo de bueno es un modelo clasificando basado **en** aprendizaje automático.

Curva ROC:

Es una representación gráfica de la sensibilidad o razón de verdaderos positivos frente a la especificidad o razón de verdaderos negativos para un sistema clasificador binario.

Comparación de la curva ROC

Data Comparación de métricas

	Modelo	precision	accuracy	f1-score
	Catboost	0.90	0.97	0.91
	LGBM	0.89	0.97	0.90
	Random Forest	0.83	0.96	0.87
	GradientBoosting	0.82	0.96	0.86
	Regresion Logística	0.49	0.84	0.62

Comparación de métricas

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

$$recall = rac{TP}{TP + FN}$$

$$precision = rac{TP}{TP + FP}$$

→ Prueba de Hipotesis

```
↑ ↓ ⊖ 目 ‡ 見 🔒 :
   from statsmodels.stats.proportion import proportions ztest
    # Significancia
    Significancia = 0.05
    # Entradas
    pred exitos = 2713
    total = 2796
    # Ho = 0.5
    Hipotesis nula = 0.5
    # Ho: p <=0.5
    # H1: p > 0.5
    stat, p value = proportions ztest(count=pred exitos, nobs=total, value=Hipotesis nula, alternative='larger')
    print('z stat: %0.3f, p value: %0.3f' % (stat, p value))
    if p_value > Significancia:
       print ("No se rechaza la hipotesis Nula ")
    else:
       print ("Se rechaza la hipotesis nula - Se puede afirmar que la hipotesis alterna es verdadera")
z_stat: 146.531, p_value: 0.000
    Se rechaza la hipotesis nula - Se puede afirmar que la hipotesis alterna es verdadera
```

Comentario: Se puedo observar que en efecto lo que buscamos demostrar que un modelo nos ayudará en más de 50% es correcto. Y existen pruebas estadísticas para afirmarlo.

Conclusiones y Recomendaciones

Conclusiones

Luego de obtener los datos, analizar, transformar, modelar y comparar modelos, podemos afirmar lo siguiente:

- Cuando un cliente tiene un menor uso de su tarjeta y a la vez se le ha ofrecido una línea de crédito menor es mucho más probable que abandone el servicio de tarjeta de crédito.
- Nuestro mejor modelo para la clasificación de la permanencia o fuga de un cliente para el servicio de tarjeta de crédito, según la métrica f1-score será el modelo catboost el cual nos arroja un valor de 0.91, para la categoría de interés el cual es, 'Attried Customer'(fuga).

Sería recomendable tener el comportamiento histórico de los clientes en el banco, dentro de nuestra base de datos, para un mejor análisis y poder clasificar no solo en permanencia y fuga sino también poder clasificar con clientes que se encuentren propensos a la fuga y de esta forma tener una mejor alternativa para la toma de decisiones.

www.datascience.pe