Lógica Matemática Parte 2

Dr. Paulo Vinicius Pereira Pinheiro¹

¹Centro Universitário Paraíso do Ceará UNIFAP

Acesse estes slides em: https://github.com/paulovpp/slides

Última atualização: 17 de março de 2022

Sumário

1. Tabela verdade

- Definições iniciais
- Construção de uma tabela verdade

2. Lógica proposicional - sintaxe e semântica

- Mundo da lógica proposicional
- Valor lógico de uma proposição composta
- Uso de parêntesis

3. Propriedades semânticas 1

- Tautologia
- Princípio da substituição para as tautologias
- Contradição
- Contingência
- Exercícios

Sumário

- 4. Propriedades semânticas 2
 - Implicação lógica
 - Propriedades e exemplos

Tabela verdade

ógica proposicional - sintaxe e semântica. Propriedades semânticas 1 Propriedades semânticas 2 Definições iniciais

onstrução de uma tabela verdade

Tabela verdade

Propriedades semânticas 2

Definições iniciais

Introductory definitions to the topic

Número de linhas

O número de linhas de uma tabela verdade de uma proposição composta depende do número n de proposições simples que a integram sendo dado pela regra:

$$2^n$$
 linhas (1)

Para n proposições simples do tipo p_1, p_2, \ldots, p_n , então a tabela verdade deve possuir um total de n colunas para as proposições simples e 2^n linhas. Posto isso:

• Para a 1ª proposição simples p_1 atribui-se $2^n/2^1 = 2^{n-1}$ valores V seguidos de F na mesma proporção.

Propriedades semânticas 2

Introductory definitions to the topic

Número de linhas

- Para a 2^a proposição simples p_2 atribui-se $2^n/2^2=2^{n-2}$ valores V seguidos de F na mesma proporção, repetindo-se até o final da tabela.
- Para a 3^a proposição simples p_3 atribui-se $2^n/2^3=2^{n-3}$ valores V seguidos de F na mesma proporção, repetindo-se até o final da tabela.
- De modo genérico, para a k-ésima proposição simples $p_k (k \le n)$ atribui-se alternadamente

$$2^n/2^k = 2^{n-k} (2)$$

valores V seguidos de igual número de valores F, repetindo a sequência até o final das linhas da tabela verdade.

6 de 32

Construção de uma tabela verdade

True table construction

Caso 1:
$$H(p,q) = \neg(p \land \neg q)$$

Tabela 1: Tabela verdade para uma proposição composta H(p,q).

р	q	$\neg q$	$p \land \neg q$	$\neg (p \land \neg q)$
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

Construção de uma tabela verdade

True table construction

Caso 2:
$$G(p,q) = \neg(p \land \neg q) \lor \neg(q \leftrightarrow p)$$

Tabela 2: Tabela verdade para uma proposição G(p,q).

р	q	$p \land \neg q$	$q \leftrightarrow p$	$\neg(p \land \neg q)$	$\neg(q \leftrightarrow p)$	$\neg (p \land q) \lor \neg (q \leftrightarrow p)$
V	V	F	V	V	F	V
V	F	V	F	F	V	V
F	V	F	F	V	V	V
F	F	F	V	V	F	V

Proposição Tautológica.

Construção de uma tabela verdade

True table construction

Caso 3:
$$P(p,q,r) = (p \rightarrow (\neg q \lor r)) \land \neg (q \lor (p \leftrightarrow \neg r))$$

Tabela 3: Tabela verdade para uma proposição P(p, q, r).

				Α		В	
р	q	r	$\neg q \vee r$	$(p \to (\neg q \lor r))$	$p \leftrightarrow \neg r$	$(q \lor (p \leftrightarrow \neg r))$	$A \wedge B$
V	V	V	V	V	F	F	F
V	V	F	F	F	V	V	F
V	F	V	V	V	F	F	F
V	F	F	V	V	V	F	F
F	V	V	V	V	V	V	V
F	V	F	F	V	F	F	F
\overline{F}	F	V	V	V	V	F	F
F	F	F	V	V	F	F	\overline{F}

9 de 32

Mundo da lógica proposicional Valor lógico de uma proposição composta Uso de parêntesis

Lógica proposicional - sintaxe e semântica

Algumas definições

Some definitions to the topic

Mundo lógico

O mundo da lógica conforme conhecemos pode ser dividido em duas partes distintas a seguir:

- Sintaxe mundo sintático
- Semântica mundo semântico

Descritivo

Sintaxe: responsável pelo conjunto de símbolos (ALFABETO), conectivos e figuras utilizados pela lógica.

Semântica: responsável pelas operações e regras de forma a utilizar da melhor forma possível o conjunto de símbolos.

Algumas definições

Some definitions to the topic

Na prática

- O computador é um aparelho extremamente sintático opera com a representação de símbolos em linguagem de máquina, baixo nível e com a possibilidade de conversão dos mesmos para um nível inteligível aos seres humanos, conhecido como alto nível.
- Para que o computador possa desempenhar suas funções, um conjunto de regras (ALGORITMO) precisa ser definido, enviado e traduzido para sua interpretação e execução.

Regras ou significados

Caso a definição ou o significado de um conjunto de símbolos não seja bem definido, falhas de semântica podem ocorrer. Isso não fará com que não haja processamento. Porém, o resultado pode não ser o esperado.

Algumas definições

Some definitions to the topic

Exemplo de falha semântica

Observe o seguinte conjunto de caracteres - símbolos sintáticos:

REDE

Caso o uso do seguinte conjunto de símbolos seja utilizado sem a prévia e correta definição de sua usabilidade, poderá haver uma falha de execução e resultados discrepantes. Observa-se pelo menos três possíveis usos da palavra acima:

- objeto usado para dormir.
- objeto usado para pescar.
- descrição de um conjunto de computadores.

Valor lógico de uma proposição composta

Logical values (interpretations) for compound propositions

Definição

Dado uma proposição composta $H(p,q,r,\dots)$ pode-se determinar seu valor lógico, V ou F, quando são conhecidos os valores lógicos de suas proposições simples respectivamente.

Exemplo 1:

Assumindo $P(p,q)=(p\to q)\to (p\to p\land q)$, calcule: V(P) quando V(p)=V(q)=F:

$$V(P(F,F)) = V(P) = (F \to F) \to (F \to F \land F)$$

$$V(P) = V \to (F \to F)$$

$$V(P) = V$$

14 de 32

Valor lógico de uma proposição composta

Logical values (interpretations) for compound propositions

Definição

Exemplo 2:

Dado:

$$P(p,q,r) = (q \leftrightarrow (r \rightarrow \neg p)) \lor ((\neg q \rightarrow p) \leftrightarrow r)$$

$${\sf Calcule}\ V(P)\ {\sf quando}\ V(p) = V\ {\sf e}\ V(q) = V(r) = F.$$

$$V(P(VFF)) = (F \leftrightarrow (F \to \neg V)) \lor ((\neg F \to V) \leftrightarrow F)$$

$$V(P) = (F \leftrightarrow (F \to F)) \lor ((V \to V) \leftrightarrow F)$$

$$V(P) = (F \leftrightarrow V) \lor (V \leftrightarrow F)$$

$$V(P) = (F) \lor (F)$$

$$V(P) = F$$

15 de 32

Uso de parêntesis

Parentheses use

Definição

É óbvia a necessidade do uso dos parêntesis na simbolização das proposições e fórmulas. Muito utilizados para evitar qualquer tipo de ambiguidade. Assim, p. ex., a expressão $p \wedge q \vee r$ dá lugar, colocando parêntesis, às duas proposições a seguir:

(i)
$$(p \wedge q) \vee r$$
 e (ii) $p \wedge (q \vee r)$

Percebe-se aqui que ambas não possuem o mesmo significado pois para ambos os casos os conectivos principais são diferentes.

A supressão de parêntesis nas proposições se faz mediante algumas **convenções**, mostradas a seguir:

I. "A ordem de precedência" para os conectivos.

$$(1) \sim (2) \land \lor (3) \rightarrow (4) \leftrightarrow$$

Uso de parêntesis

Parentheses use

Definição

O conectivo mais fraco é, portanto o \neg . E o mais forte \leftrightarrow . Para o caso abaixo:

$$p \to q \leftrightarrow s \wedge r$$

Temos então uma BICONDICIONAL e nunca uma condicional. Para convertê-la em uma condicional, o uso dos parêntesis se faz necessário:

$$p \to (q \leftrightarrow s \land r)$$

II. Quando um mesmo conectivo aparece sucessivamente repetido, suprimem-se os parêntesis, fazendo-se a associação a partir da esquerda. Observe as seguintes proposições:

Uso de parêntesis

Parentheses use

Exemplos

1.
$$((\neg(\neg(p \land q))) \lor (\neg p)) \longrightarrow \neg\neg(p \land q) \lor \neg p$$

2.
$$(((p \land (\neg q)) \lor r) \land (\neg p)) \longrightarrow (p \lor \neg q) \land r \land \neg p)$$

3.
$$((p \lor (\neg q)) \land (r \land (\neg p))) \longrightarrow (p \land \neg q) \land (r \land \neg p)$$

4.
$$((\neg p) \rightarrow (q \rightarrow (\neg (p \lor r))))$$
 \longrightarrow $\neg p \rightarrow (q \rightarrow \neg (p \lor r))$

Outros símbolos para os conectivos

Também muito utilizado em linguagens de programação:

Tautologia Princípio da substituição para as tautologias Contradição Contingência

Propriedades semânticas 1

Tautologia

Tautology definitions

Definição

Dada uma fórmula $H(p,q,r,\dots)$ ela será uma tautologia quando para qualquer valor lógico de suas proposições simples, seu valor lógico será **sempre** verdadeiro (V). Ou seja:

$$\forall V(p,q,r,\dots) \to V(H) = V$$

Exemplos:

$$H_1(p) = p \lor \neg p \qquad H_2(p) = \neg (p \land \neg p)$$

$$H_3(p,q) = p \lor \neg (p \land q) \qquad H_4(p,q) = p \land q \to (p \leftrightarrow p)$$

$$H_5(p,q) = p \lor (q \land \neg q) \leftrightarrow p \qquad H_6(p,q,r) = p \land r \to \neg q \lor r$$

Tautologia - Exemplo

Tautology example

Exemplo

$$H_6(p,q,r) = p \wedge r \rightarrow \neg q \vee r$$

Tabela 4: Tabela verdade para uma proposição P(p,q,r) tautológica.

р	q	r	$\neg q$	$p \wedge r$	$\neg q \lor r$	$p \wedge r \to \neg q \vee r$
V	V	V	F	V	V	V
V	V	F	F	F	F	V
V	F	V	V	V	V	V
V	F	F	V	F	V	V
\overline{F}	V	V	F	F	V	V
\overline{F}	V	F	F	F	F	V
\overline{F}	F	V	V	F	V	V
\overline{F}	F	F	V	F	V	V

Princípio da substituição para as tautologias

Tautological replacement principle

Definição

Seja $H(p,q,r,\dots)$ uma proposição tautológica qualquer e sejam $P(p,q,r,\dots)$, $Q(p,q,r,\dots)$, $R(p,q,r,\dots)$, \dots proposições quaisquer formadas a parir do mesmo conjunto de proposições simples.

Realizando a substituição das proposições compostas P,Q,R,\ldots em H, a nova proposição

$$H(P,Q,R,\dots)$$

também será uma tautologia quaisquer que sejam as proposições P,Q,R,\dots .

Contradição

Contradiction definitions

Definição

Dada uma fórmula $H(p,q,r,\dots)$ ela será uma contradição quando para qualquer valor lógico de suas proposições simples, seu valor lógico será **sempre** falso (F). Ou seja:

$$\forall V(p,q,r,\dots) \to V(H) = F$$

As contradições também são conhecidas como proposições contraválidas ou logicamente falsas.

Exemplos:

$$H_7(p) = p \land \neg p$$
 $H_8(p) = p \leftrightarrow \neg p$ $H_9(p,q) = (p \land q) \land \neg (p \lor q)$ $H_{10}(p,q) = \neg p \land (p \land \neg q)$

23 de 32

Contingência

Contigency definitions

Definição

Proposições que não são nem tautológicas ou contraválidas chamam-se necessariamente de contingentes. As mesmas possuem em sua última coluna de sua tabela-verdade os valores lógicos V e F **pelo menos uma vez**.

Elas também são conhecidas como proposições indeterminadas.

Exemplos:

$$H_{11}(p) = p \rightarrow \neg p$$
 $H_{12}(p,q) = p \lor q \rightarrow p \land p$ $H_{13}(p,q) = p \lor q \rightarrow p$ $H_{14}(p,q) = p \rightarrow (p \rightarrow q \land \neg q)$

Caracterize a proposição como tautológica, contingente ou contraditória.

$$H_1(p,q) = \neg(p \lor q) \to (p \leftrightarrow q) \tag{3}$$

Tabela 5: Tabela verdade para uma proposição $H_1(p,q)$.

р	q	$p \lor q$	$\neg(p \lor q)$	$p \rightarrow q$	$\neg (p \lor q) \to (p \to q)$
V	V				
V	F				
\overline{F}	V				
\overline{F}	F				

Fonte: Filho, E. A Iniciação à lógica matemática. Ed. Nobel. 2002 - Q.1k C.5

Caracterize a proposição como tautológica, contingente ou contraditória.

$$H_2(p,q) = (p \leftrightarrow q) \land p \to q \tag{4}$$

Tabela 6: Tabela verdade para uma proposição $H_2(p,q)$.

р	q	$p \leftrightarrow q$	$(p \leftrightarrow q) \land p$	$(p \leftrightarrow q) \land p \to q$
V	V			
V	F			
\overline{F}	V			
\overline{F}	F			

Fonte: Filho, E. A Iniciação à lógica matemática. Ed. Nobel. 2002 - Q.11 C.5

Caracterize a proposição como tautológica, contingente ou contraditória.

$$H_3(p,q,r) = p \to (p \lor q) \lor r \tag{5}$$

Tabela 7: Tabela verdade para uma proposição $H_3(p,q,r)$.

р	q	r	$p \lor q$	$(p \lor q) \lor r$	$p \to (p \lor q) \lor r$
V	V	V			
V	V	F			
V	F	V			
V	F	F			
F	V	V			
F	V	F			
F	F	V			
F	F	F			

Fonte: Filho, E. A Iniciação à lógica matemática. Ed. Nobel. 2002 - Q.4g C.5

Caracterize a proposição como tautológica, contingente ou contraditória.

$$H_4(p,q,r) = p \land q \to (p \leftrightarrow q \lor r) \tag{6}$$

Tabela 8: Tabela verdade para uma proposição $H_4(p,q,r)$.

р	q	r	$p \wedge q$	$p \leftrightarrow q$	$p \leftrightarrow q \vee r$	$p \land q \to (p \leftrightarrow q \lor r)$
V	V	V				
V	V	F				
V	F	V				
V	F	F				
F	V	V				
F	V	F				
F	F	V				
\overline{F}	F	F				

Fonte: Filho, E. A Iniciação à lógica matemática. Ed. Nobel. 2002 - Q.4h C.5

Propriedades semânticas 2

Implicação lógica Propriedades e exemplo

Propriedades semânticas 2

Implicação lógica

Brief concepts over logical implication

Definição

Dada uma proposição $P(p,q,r,\ldots)$; diz-se que ela implica logicamente em $Q(p,q,r,\ldots)$ se para todo valor lógico verdadeiro (V) de $P(p,q,r,\ldots)$ também for verdadeiro em $Q(p,q,r,\ldots)$.

Indica-se que a proposição $P(p,q,r,\dots)$ implica a proposição $Q(p,q,r,\dots)$ com a notação:

$$P(p,q,r,\dots) \Rightarrow Q(p,q,r,\dots)$$

Em particular, toda proposição implica uma tautologia e somente uma contradição implica uma contradição.

Propriedades da implicação lógica

Logical implication properties

Reflexiva

$$P(p,q,r,\dots) \Rightarrow P(p,q,r,\dots)$$
 (7)

Transitiva

Se
$$P(p,q,r,\dots) \Rightarrow Q(p,q,r,\dots)$$
 e (8)

$$P(p,q,r,\dots)\Rightarrow R(p,q,r,\dots)$$
, então

$$P(p,q,r,\dots) \Rightarrow R(p,q,r,\dots)$$
 (9)

Propriedades da implicação lógica

Logical implication properties

Regras de inferência

As tabelas verdade das proposições:

$$P_1(p,q) = p \land q, \qquad P_2(p,q) = p \lor q, \qquad P_3(p,q) = p \leftrightarrow q$$

são:

Tabela 9: Tabela verdade das proposições P_1 , P_2 e P_3 .

. ,					
			P_1	P_2	P_3
	р	q	$p \wedge q$	$p \lor q$	$p \leftrightarrow q$
	V	V	V	V	V
	V	F	F	V	F
	F	V	F	V	F
	F	F	F	F	V

(i)
$$p \wedge q \Rightarrow p \vee q$$

(ii)
$$p \wedge q \Rightarrow p \leftrightarrow q$$

(iii)
$$p \Rightarrow p \lor q \ e \ q \Rightarrow p \lor q$$

(iv)
$$p \wedge q \Rightarrow p \ e \ p \wedge q \Rightarrow q$$

