University of Waterloo Department of Electrical and Computer Engineering ECE250 Algorithms and Data Structures Fall 2014

Midterm Examination

Instructor: Ladan Tahvildari, PhD, PEng, SMIEEE

Date: Tuesday, October 21, 2014, 10:00 a.m. **Location:** EIT-1015; CPH-3602; CPH-3604

Duration: 80 minutes **Type:** Closed Book

Instructions:

- There are 4 questions. Answer all 4 questions.
- Standard calculator allowed but no additional materials allowed.
- The number in brackets denotes the relative weight of the question (out of 100).
- If information appears to be missing from a question, make a reasonable assumption, state it and proceed.
- Write your answers directly on the sheets.
- If the space to answer a question is not sufficient, use overflow page.
- When presenting programs, you may use any mixture of pseudocode/C++ constructs as long as the meaning is clear.

Name	Student ID		

Question	Mark			Max	Marker				
1	A:	B:	C:		35	A:	B:	C:	
2					10				
3	A:	B:	C:		35	A:	B:	C:	
4	A:		B:		20	A:		B:	
Total					100				

Question 1: Algorithm Analysis [35]

Part A [15].

Consider the following recursive algorithm that computes minimum value out of real numbers stored in the array A on positions from l to r.

FindMin(A: array of real numbers, l: integer, r: integer)

if
$$l = r$$
 then return $A[l]$

$$temp_1 \leftarrow FindMin(A, l, \left\lfloor \frac{l+r}{2} \right\rfloor)$$

$$temp_2 \leftarrow FindMin(A, \left\lfloor \frac{l+r}{2} + 1 \right\rfloor, r)$$
if $temp_1 \prec temp_2$

$$then return \ temp_1$$

$$else \ return \ temp_2$$

Write a recurrence describing the cost of running this algorithm on n element array: FindMin(A, I, n). Solve the recurrence and give the resulting running time of the algorithm.

Part B. [10]

Give asymptotic upper and lower bounds for the following recurrence. Assume that T(n) is constant for sufficiently small n. Make your bounds as tight as possible, and justify your answer.

$$T(n) = 16T(n/4) + n^5 \sqrt{n}$$

Part C. [10]

Prove that $f(n) = 10^7 + 7n^7 \log n + 3n^7$ is $O(n^7 \log n)$ using the definition of "Big-Oh".

Question 2: Elementary Data Structures [10]

You have been provided with an implementation of a *stack-of-integers* ADT. This implementation includes the usual operations such as *Push*, *Pop*, and *IsEmpty*.

Describe how you would implement the Queue ADT using two stacks. Specifically, give algorithms for the *Enqueue* and *Dequeue* operations. Give tight Big-Oh expressions for the running times of your implementation.

You may assume that **Push**, **Pop**, and **IsEmpty** are all O(1).

Name:	Student ID:
Question 3: Trees and Tree Traversa	ls [35]
Part A. [15]	
• Consider we have a BST contains the followork this BST in such a way that the result	owing keys: P, L, A, C, E . It of the "preorder tree traversal" is: C, A, L, E, R
• Let T be an AVL tree of height 6. What	is the smallest number of nodes it can store?

Part B. [12]

Start with an empty AVL tree and insert the following keys in the given order: 25, 35, 45, 20, 22, and 27. Draw the trees following each insertion, and also after each rotation. Specify the rotation types.

Part C. [8]

Assume we have the following AVL tree. Show the tree after deleting 27. Use the successor of a node if it is needed. Draw the final tree and all intermediate trees.

Question 4: Hashing [20]

Part A. [5]

Suppose we have a hash table with N slots containing n keys. Suppose that instead of a linked list, each slot is implemented as a binary search tree. Give the worst and the best time complexity of adding an entry to this hash table. Explain your answers.

Part B. [15]

Consider a hash table of size 7. Suppose the hash function uses division method. Insert, in the given order, keys: 2, 4, 12, 19, and 20 into the hash table using:

• Linear probing to resolve the collisions. Show all your work.

• Double hashing to resolve collisions with the secondary hash function $h_2(k) = 5 - \begin{pmatrix} k \mod 5 \end{pmatrix}$. Show all your work.

OVERFLOW SHEET [Identify the question(s) being answered.]