主管 领导 审核 答字

哈尔滨工业大学 2018 学年 秋 季学期 数字电子技术基础 试 题

题号	_	=	Ш	四	五	六	七	八	总分
得分									
阅卷人									

片纸鉴心 诚信不败

得分

封

线

- 一、填空、选择与判断(共13分)
 - 1. CMOS 门电路输入端对地接入 10MΩ电阻时, 应视为 b 输入。
 - a. 高电平; b. 低电平; c. 不定。
- 2. 根据对偶规则,若 $F = A + \overline{B + CD} + \overline{AD} \cdot \overline{B} \cdot \overline{C}$,则F'的最简与或式为 $A\overline{B} + A\overline{CD}$ 。
- 3. 已知某组合逻辑电路的输入 $A \times B \times C$ 和输出 $X \times Y$ 的工作波形如图 1-1 所示, 其逻辑功能为 全加器 。

- 4. 在逻辑功能上属于一对互反操作的是 a、d 。
 - a. 译码器和编码器

- b. 全加器和全减器
- c. 数码寄存器和移位寄存器 d. 数据选择器和数据分配器
- 5. 判断下述说法是否正确,正确者在其后()内打√,反之打×。
 - a. 若 X+Y=X+Z,则 Y=Z。(\times)
 - b. 全部最大项之积恒等于"0"。(√)
 - c. 集电极开路门在使用时,需要在其输出与电源之间接一个电阻。(√)
 - d. 组合逻辑电路产生冒险信号的原因是门电路的延迟时间。(√)
 - e. 在双积分型 A/D 转换器中,输入电压 U_I 和参考电压 U_{REF} 的极性必须相反, 且满足 $|U_1| > |U_{RFF}|$,才能完成模-数转换。(×)

6. 已知 8 线-3 线集成编码器 74148 的功能表如图 1-3(a)所示,请分析判断图 1-3(b)所示电路的输出编码 $B_3B_2B_1B_0$ 为 1000 。

\overline{EI}	\overline{I}_0	\overline{I}_1	\overline{I}_2	\overline{I}_3	\overline{I}_4	\overline{I}_5	\overline{I}_6	\overline{I}_7	\overline{GS}	$ar{Q}_{ m c}$	$\bar{Q}_{\mathtt{B}}$	\bar{Q}_{A}	EO
1	×	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	×	×	×	×	×	×	×	0	0	0	0	0	1
0	×	×	×	×	×	×	0	1	0	0	0	1	1
0	×	×	×	×	×	0	1	1	0	0	1	0	1
0	×	×	×	×	0	1	1	1	0	0	1	1	1
0	×	×	×	0	1	1	1	1	0	1	0	0	1
0	×	×	0	1	1	1	1	1	0	1	0	1	1
0	×	0	1	1	1	1	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	1	0	1	1	1	1

(a)

图 1-3

- 7. 己知某半导体存储器有 12 根地址线, 8 位数据线,则其存储容量为___4__ KByte。
- 8. 某 10 位 D/A 转换器能分辨的最小电压为 3mV,如果输入数据为(2A6)₁₆,则 D/A 转换器的输出电压为 2.034 V。(小数点后保留 3 位有效数字)
- 9. 某数字音频系统中的输入音频信号的最高频率为 15kHz,为使通过 ADC 和 DAC 之后的模拟音频信号的波形不失真,则应要求 ADC 的最大转换时间为_0.033_ms。(小数点后保留 3 位有效数字)

得分

- 二、简答题: (14分)
 - 1. 图 2-1 所示电路由 CMOS 门构成,请写出电路输出 F 的最简**与-或**表达式。

图 2-1

- 2. Verilog HDL 程序如下所示, 试分析:(6分)
 - (1) 简要说明模块 FF0 的逻辑功能;
 - (2) 设 FF0 的初态为"0"态,已知电路的输入波形如图 2-2 所示,请在图中画出电路输出 Q_1 的工作波形。

module ff0(q, j, k, clk, set, reset);

input j, k, clk, set, reset;

output q;

reg q;

always @(negedge clk or negedge reset or negedge set)

begin

```
if (!reset)
           begin
           q \le 1'b0;
           end
else if (!set)
           begin
                                 低电平有效的异步清零和异步置数的
           q \le 1b1;
           end
                                 JK触发器(CP下降沿触发)*
       case ( {j, k} )
else
           2'b00 : q \le q;
           2'b01 : q \le 1'b0;
           2'b10 : q \le 1'b1;
           2'b11 : q \le -q;
            default : q \le 1'bx;
        endcase
end
```

endmodule

封

线.....

```
module mod1(a, b, c, q1);
input a, b, c;
output q1;
and u1(out1, a, b);
ff0 u2(q1, out1, a, c, 1'b1, 1'b1);
endmodule
```


图2-2*

- 3.电路如图 2-3(a)所示,移位寄存器 74LS194 的功能表如表 2-1 所示。已知初始时 刻[QDQCQBQA]=[0101], 试分析:(5分)
 - (1) 设以 Q_D 为高位,在时钟信号控制下, $[Q_DQ_CQ_BQ_A]$ 构成多少进制计数器?
 - (2) 在图 2-3(b)中画出 Q2 的输出波形。

4 进制

悪	2_{-1}	7/11	C10/	1功能表

功能	7-1-4k		输		入				输		L	1		
切肥	CR	S_1	S_0	CP	D_{SL}	D_{SR}	A	В	С	D	$Q_{\rm A}^{n+1}$	$Q_{\rm B}^{n+}$	${}^{1}Q_{\rm C}^{n+}$	${}^{\mathrm{l}}Q_{\mathrm{D}}^{n+1}$
清零	0	×	×	×	×	×	×	X	×	×	0	0	0	0
保持	1	X	×	0	×	×	×	X	X	×	$Q_{\rm A}^n$	$Q_{\rm B}^{\rm n}$	$Q_{\mathbb{C}}^n$	$Q_{\scriptscriptstyle \mathrm{D}}^{\scriptscriptstyle n}$
送数	1	1	1	┲	×	×	\boldsymbol{A}	В	C	D	A	\boldsymbol{B}	C	D
右移	1	0	1	_	×	1	×	×	X	×	1	$Q_{\rm A}^n$	$Q_{\scriptscriptstyle m B}^{\scriptscriptstyle m n}$	$Q_{\mathbb{C}}^n$
右移	1	0	1	ⅎ	×	0	×	X	X	×	0	$Q_{\rm A}^n$	$Q_{\scriptscriptstyle m B}^{\scriptscriptstyle m n}$	$Q_{\mathbb{C}}^n$
左移	1	1	0	⊥	1	×	×	X	×	×	$Q_{\scriptscriptstyle m B}^{\scriptscriptstyle m n}$	$Q_{\mathbb{C}}^{n}$	$Q_{\scriptscriptstyle m D}^{\scriptscriptstyle n}$	1
左移	1	1	0		0	×	×	×	X	×	$Q_{\scriptscriptstyle m B}^{\scriptscriptstyle m n}$	$Q_{\mathbb{C}}^n$	$Q_{\scriptscriptstyle \mathrm{D}}^{\scriptscriptstyle n}$	0
保持	1	0	0	×	×	×	×	×	×	×	$Q_{\rm A}^n$	$Q_{\rm B}^{\rm n}$	$Q_{\rm C}^n$	$Q_{\scriptscriptstyle \mathrm{D}}^{\scriptscriptstyle n}$

三、设计一个3变量的组合逻辑电路,要求输入为3位二进制数码(ABC),当输入可以被3整除时,电路输出商值;当不能被3整除时,输出为0。试分析:(6分)

- (1) 列写电路的功能真值表;
- (2) 请在图 3 中完成该电路设计,允许使用适当的门电路,图中 74153 为双 4 选 1 数据选择器。

答(1):

A	В	\boldsymbol{C}	Y_2	Y_1
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	0	0

(2)

图 3

答案 1*.....

- 1. 分别说明当 X=0 及 X=1 时电路的逻辑功能;
- 2. 请画出该电路的次态卡诺图和输出 Z 的函数卡诺图;
- 3. 请写出电路的驱动方程和输出方程。

图 4

- 2.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
X	00	01	11	10				
0	00	00	00	10				
1	01	11	00	11				

$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
X	00	01	11	10						
0	0	0	1	1						
1	0	0	1	1						

3.

$$J_1 = XQ_0^n, K_1 = Q_0^n \stackrel{\text{red}}{\boxtimes} D_1 = XQ_0^n \overline{Q_1^n} + \overline{Q_0^n} Q_1^n \dots$$
 (1 $\stackrel{\text{red}}{\boxtimes}$)

$$Z = Q_1^n$$
(1 分)

沼然

五、电路如图 5-1 所示,其中 555 定时器的功能如表 5-1 所示。设二极管 VD 具有理想特性,试求:(7分)

- 1. 写出电路的名称;
- 2. 已知该电路的工作波形如图 5-2 所示, 计算电路参数 V_{CC} 、 R_1 和 R_2 的具体数值;
- 3. 在图 5-2 中画出电路输出 uo 的工作波形,必须标明信号幅值与时间坐标;
- 4. 若 555 定时器的第 5 脚接入控制电压 $U_{IC} = V_{CC}$,电路能否正常工作?请简述理由。

表 5-1 555 定时器的功能表

$\overline{R_{\rm d}}$ (4)	<i>U</i> _{TH} (6)	$U_{\mathrm{TL}}(2)$	$U_{\rm O}(3)$	DIS(7)
L	×	×	L	导通
Н	$>\frac{2}{3}V_{\rm CC}$	$>\frac{1}{3}V_{\rm CC}$	L	导通
Н	$<\frac{2}{3}V_{\rm CC}$	$>\frac{1}{3}V_{\rm CC}$	保持	保持
Н	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	Н	截止
Н	$> \frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	Н	截止

- 1. 多谐振荡器。.....(2分)

3.

封

得分

六、由 2/5 分频 10 进制异步加法计数器 74LS90、2/8 分频 16 进制异步加法计数器 74LS93 和 4 位二进制码比较器 74LS85 构成的电路如图 6 所示,已知 $Q_7Q_6Q_5Q_4$ $Q_3Q_2Q_1Q_0$ 初始状态为 0。试分析: $(6\, \%)$

- 1. 设开关 S 切换至触点 1,请按照 $Q_7Q_6Q_5Q_4$ 的顺序画出 74LS93 构成 电路的状态转换图;
- 2. 设开关 S 切换至触点 2, 试分析并说明[$Q_7Q_6Q_5Q_4Q_3Q_2Q_1Q_0$]构成多少进制计数器。

2. 32进制

- 七、由 16 进制同步加法计数器 74LS163、集成 4 位加法器 74LS283 和存储器构成的 电路如图 7 所示。试分析: (8 分)
 - 1. 请写出输出 D_4 、 D_3 与变量 A_3 、 A_2 、 A_1 、 A_0 之间的最简与-或式;
 - 2. 若[I_1 I_2 I_3 I_4 I_5 I_6 I_7]=[1000111],请画出 74LS163 的输出 $Q_DQ_CQ_BQ_A$ 完整的状态转换图,并写出 74LS283 的输出 $S_3S_2S_1S_0$ 为何种编码;
 - 3. 若[I_1 I_2 I_3 I_4 I_5]=[11001], I_6 接 D_2 , I_7 接 D_1 ,保持 $S_3S_2S_1S_0$ 编码方式不变,请直接在图上画出 D_1 、 D_2 的阵列,并写出此时 $Q_DQ_CQ_BQ_A$ 的输出为何种编码。

图 7*

1.
$$D_4 = \overline{A}_3 + A_2 + A_1 + \overline{A}_0$$

$$D_3 = \overline{A}_3 + A_2 + \overline{A}_1 \qquad (2 \%)$$

2

BCD8421.....(1分)

- 3. D_2 上 m_9 不标代表0, D_1 上 m_9 标记代表1 (给分原则:都标对2
- 分,仅**D1标对1分,仅D2标对且D1未标不给分**)......(1分) 余三码(2分)

八、在图 8 所示电路中,4 位集成加法计数器 74160 在时钟 *CP* 作用下连续工作,计数器的输出如图中虚线所示与 D/A 转换电路的数据端相连。当 $D_{i=1}$ 时,控制模拟开关 S_{i} 接电源 U_{REF} ; 当 D_{i} =0 时, S_{i} 接地 (i=0,1,2,3)。已知 U_{REF} = - 8V, R_{f} = R, R_{off} = 0.75R。试分析:(8 分)

- 1. 请画出图中虚线框内电路的完整状态转换图,并计算计数器的模值;
- 2. 试分析并写出电路输出 U_0 与二进制数码 $D_3D_2D_1D_0$ 之间的函数表达式;
- 3. 设 $U_{\text{OFF}} = 0V$,计算电路输出 U_{O} 的电压范围。

1. 模 M=3(3 进制)(2 分)

2.

封

$$U_{\rm O} = -R_{\rm f} \left(\frac{U_{\rm R.E.F}}{2^3 R} \times D_{\rm n} + \frac{U_{\rm O.F.F}}{R_{\rm OFF}} \right) = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm R.E.F}}{2^3} \times \left(2^3 D_{\rm s} + 2^2 D_{\rm s} \right) + \frac{4}{3} U_{\rm o...} \right] = -\left[\frac{U_{\rm$$