Early Detection of Chronic Kidney Disease using Machine Learning

Team ID-PNT2022TMID53897

1.INTRODUCTION

Chronic kidney disease (CKD) is a worldwide under diagnosed public health problem with increasing incidence and prevalence that has high costs and poor outcomes. The number of patients on renal replacement therapy has doubled every decade since 1980, and prevalence of CKD in the early stages has also markedly increased. Unfortunately, CKD in its earliest stages is usually an asymptomatic condition which progresses to its end stage over a period of several years and is diagnosed late in its course. Therefore, strategies to reduce the incidence of end-stage renal disease require effective methods of screening early in the disease process. Intervention in the early stages of CKD seems to be more effective to prevent or delay the progression of CKD. Moreover, reduced kidney function was found to be an independent risk factor for cardiovascular events and/or all-cause mortality. Therefore, early detection of CKD and treatment of its complications seems to be important to improve outcome in cardiovascular diseases. However, the screening methods most suitable to identify for further diagnosis individuals with CKD remain to be settled. Albumin was used as a screening tool but by itself is not sufficient. Garget al found that albumin and renal insufficiency measured on a single occasion identified different segments of the population. More than one third of people with an EGFR below 30 ml/min/1.73 m² demonstrated no albumin. Moreover, one third of diabetic patients and almost two thirds of non-diabetic hypertensive patients demonstrated no albumin. There is no simple correlation between the progress of glomerular disease and kidney function. Both glomerular and tubule interstitial damage can mediate impairment of renal function. Furthermore, inulin clearance is better correlated with tubule interstitial damage than glomerular disease. In many forms of renal diseases due to primary glomerular lesions, there is a significant inverse correlation between the extent of tubule interstitial damage and the GFR. Therefore, supplementing screening methods such as albumin and EGFR with other diagnostic tools seems to be necessary for early detection of kidney disease. It is worth mentioning at this point that both albumin and decrease in eGFR were used as 2 basic markers for the new classification of CKD proposed by the Kidney Disease Outcomes Quality

Initiative of the National Kidney Foundation and introduced widely after slight modification by the KDIGO (Kidney Disease: Improving Global Outcomes) international community. Damage to the interstitial compartment, especially to more distal segments of tubules, is accompanied by an inability to maximally concentrate the urine, and therefore may result in nocturia. We believe that asking simple questions about nocturia could help distinguish the missing segment of the population with CKD who demonstrate no albumin (after exclusion of the main reasons for nocturia, such as urinary tract infection, poorly controlled diabetes, severe heart failure and evening dosing of diuretics). The definition of nocturia was accepted as the necessity to urinate more than once during the night, which disturbs sleep and which had lasted at least 3 months.

1.1 Project Overview

Chronic kidney disease (CKD) is one of the most critical health problems due to its increasing prevalence. In this, we aim to test the ability of machine learning algorithms for the prediction of chronic kidney disease using the smallest subset of features. Several statistical tests have been done to remove redundant features such as the ANOVA test, the Pearson's correlation, and the Cramer's V test. Logistic regression, support vector machines, random forest, and gradient boosting algorithms have been trained and tested using 10-fold cross-validation. We achieve an accuracy of 99.1 according to F1- measure from Gradient Boosting classifier and by using Random forest method. Also, we found that hemoglobin has higher importance for both random forest and Gradient boosting in detecting CKD. Finally, our results are among the highest compared to previous studies but with less number of features reached so far. Hence, we can detect CKD at only \$26.65 by performing three simple tests.

1.2 Purpose

This project helps everyone to easily detect the Kidney disease which is present in our body . It is very user friendly

2. LITERATURE SURVEY

S.No	PAPER TITLE	TECHNOLOGIES USED	DESCRIPTION
1	Chronic Kidney Disease Prediction and Recommendation of Suitable Diet plan by using Machine Learning	Machine Learning Algorithms ,MDRD equation	The proposed system which detects chronic kidney disease using machine learning defines 3 zones(Safe zone,Caution zone,Danger zone) on the basis of blood potassium level.
2	•	Regression and classification, decision tree classifier, random forest	This proposed system detects CKD- Chronic Kidney Disease using machine learning; they have attained an accuracy of 100% for decision tree classifier, 95.12% for random forest and 98.82% in logistic regression.
3	Prediction of chronic kidney disease (CKD) using Data Science		This research work is primarily concentrated on finding the best suitable

4	Chronic kidney disease Diagnosis using Multilayer perceptron classifier	Multilayer Perceptron Classifier	The Experimental results show that the proposed model can perform classification with the testing accuracy of 92.5% surpassing the scores achieved by SVM and naive bayes classifier.
5	A Neural Network based Model for Predicting Chronic Kidney Diseases	Artificial Neural Network algorithms	The 14 different properties are analyzed and linked to chronic kidney disorder victims and foretold accuracy for a machine learning algorithm named Artificial Neural Network. After analyzing the outcomes, it is recognized that the algorithm gives correctness of 96.
6	Early Diagnosis of Chronic Kidney Disease Using Machine Learning Algorithms with Least Parameters by RFE and Feature Importance Techniques	Linear, Logistic, Decision tree, CART, and Random forest classifier	The primary goal of this research project is to enhance the diagnostic precision by assessing the optimum feature selection and developing a prediction model using machine learning methods. By using different classifier methods, the model achieved a diagnosis accuracy of 0.925.
7	A Machine Learning Methodology for Diagnosing Chronic Kidney Disease	Logistic regression, Random forest, Support vector machine, knearest neighbor, Naive Bayes classifier, and Feed Forward Neural Network	A machine learning approach for diagnosing CKD was suggested in this study. An integrated model that combines logistic regression and random forest with the aid

8	Detection of Chronic Kidney Disease Using Machine Learning Algorithms with Least Number of Predictors		of perceptron was utilized and it was able to attain an average accuracy of 99.83% after ten times of simulation. The link between variables has been researched in order to decrease the number of features and eliminate redundancy. Tenfold cross-validation has been used to train, test, and validate the classifiers.
9	Intelligent systems on the cloud for the early detection of chronic kidney disease	Back-propagation networks, Generalized Feed Forward Neural Networks, and Modular Neural Networks	Utilizing Google Application Engine, the system created in accordance with the best model is uploaded to the Google cloud platform. The end solution can more effectively give CKD
10	Optimization of Prediction Method of Chronic Kidney Disease Using Machine Learning Algorithm.	Support Vector Machine, AdaBoost, Linear Discriminant Analysis, and Gradient Boosting	These algorithms are used using a dataset from the UCI machine learning repository that is available online. Gradient Boosting (GB) Classifiers produce results with a predictably high accuracy of roughly 99.80%. Based on these benchmarks, the most effective and optimized algorithms for the requested job can be chosen

2.1 Existing problem

Presently kidney disease is detected at late stages in many countries leading to loss of precious lives. There are very few means to identify them at an early stage. Most of the user details remain unverified and it's difficult to track the fake users. The user interface of the application is not user friendly and the user must have a device with an android operating system with an active internet connection to interact with this application

2.2 References

SNO	LITERATURE	AUTHOR	PROPOSED	ACCURACY	YEAR
	PAPER		METHOD		
1	Computer-Ai	Andressa C.	J48 decision	95.00%	2020
	ded	M. Da S.	tree is a suitable		
	Diagnosis of	Queiroz,	machine		
	Chronic	Alvaro	learning		
	Kidney	Sobrinho,	technique for		
	Disease in	Leandro	such screening		
	Developing	Dias Da	in developing		
	Countries: A	Silva,	countries, due		
	Comparative	Evandro De	to the easy		
	Analysis of	Barros	interpretation of		
	Machine	Costa,	its classification		
	Learning	Maria Eliete	results		
	Techniques	Pinheiro,			
		Angelo			

	Perkusich		

		S.Revathy, B.Bharathi,	Decision tree, Random Forest	99.10%	2019
Dis	sease	P.Jeyanthi, M.Ramesh	and Support Vector Machine		
Pre	ediction using		learning modelsare constructed		
Ma	achine Learning		to carry out the diagnosis of		
Mo	odels		CKD		
3 Pre	eemptive	Reem A.	ANN, SVM,	ANN,SVM	2018
Dia	agnosis of	Alassaf,	Naïve Bayes	,Naïve	
Ch	nronic	Khawla A.	along with k-NN	Bayes -	
Kio	dney	Alsulaim,	comparison	98%	
Dis	sease	Noura Y.	approach	k-NN -	
Us	sing	Alroomi,		93.9%	

Machine	Nouf	S.
Learning	Alsharif,	
Techniques	Mishael	F.
	Aljubeir,	
	Sunday	O.
	Olatunji,	
	Alaa	Y.
	Alahmadi,	
	Mohammed	I
	Imran, Rahi	ma A.
	Alzahrani,	
	Nora	S.
	Alturayeif	

4	Prediction ofChronic	Siddheshwar	Decision tree algorithms	Decision tree –	2018
	Kidney Disease	Tekale,Pranjal	along comparison withSVM	91.75%	
	Using Machine	Shingavi,Su kanya		SVM-96.75%	
	Learning	Wandhekar, Ankit			
	Algorithm	Chatorikar			
5	Neural	Njoud	Comparative	ANN -	2019
	network and	Abdullah	analysis was	99.75%	
	support	Almansour,H	carried out on	SVM -	
	vector	ajra	the two	97.75%	
	machine for	FahimSyed,	models-ANN		
	the	Nuha	and SVM		
	prediction of	Radwan			
	chronic	Khayat,Raw			
	kidney	an			
	disease: A	KanaanAlthe			
	comparative	eb,Renad			
	study	Emad			
		Juri,Jamal Alhiyafi,Sale h			
		Alrashed,Su nday O.Olatunji			

2.3 Problem Statement Definition

Non-communicable illnesses are the leading cause of early death, and CKD is the leading non-communicable disease. Chronic Kidney Disease is a major concern for the global health care system. People with CKD must focus on implementing proven, cost-effective therapies to as many people as possible while taking into consideration restricted needs, human and financial resources. Chronic kidney disease (CKD) is now wreaking havoc on society and is spreading at an alarming rate. Various efforts have been undertaken to advance early therapy to prevent the condition from progressing to chronic disease. Recent research suggests that some of the negative outcomes can be avoided with early identification and treatment.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Chronic kidney disease (CKD) is one of the most critical health problems due to its increasing prevalence. It is also known as chronic renal disease which is a condition characterized by a gradual loss of kidney function over time.
		A better testing method which could possibly detect CKD in the early stages would be much more useful using machine learning algorithm
2.	Idea / Solution description	The idea of approaching the problem is by creating a suitable machine learning model which involves deep understanding of the data which needs to be collected from real time, handle the missing data and standardizing the data by preprocessing technique which makes it suitable for ml model training and prediction using different approach of model creation depending on the dataset and output
3.	Novelty / Uniqueness	 Easy to use User interface (UI) accurate accuracy by comparing the performance of different ml model technique

4.	Social Impact / Customer Satisfaction	 Greater cost reduction in hospitals fortesting Helps in early diagnosis of the disease Chances of recovery is higher
5.	Business Model (Revenue Model)	 subscription based model with initial trial basis charges/commission for the actual prediction and recovery of a person
6.	Scalability of the Solution	 The server in which the app is deployed containing the ml model must be capable of handling concurrent request and handle multiple request maintaining the ml model by tweaking the parameter which doesn't play vital role in prediction by seeing the next set of dataset. regular maintenance and changes in model with new features included in it

3.4 Problem Solution fit

4.REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	In order to become a new user, you will need to register through a form
FR-2	User Login	Users who already have credentials can log in with those credentials
FR-3	User Requirements	Past records can be stored in a database Create a report to indicate whether or not there is chronic kidney disease present A diagnostic remedy for the symptoms that you are experiencing
FR-4	User Entry	A form to be filled out in order to enter the results of pre-diagnostic tests
FR-5	Business Requirements	Diagnose CKD quickly with a quick blood test
FR-6	User Feedback	The user can submit feedback through a form on the website

4.2 Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Easy-to-use interface for communication that is user-
		friendly
NFR-2	Security	Maintain the confidentiality of the details that users
		share with you
NFR-3	Reliability	A ML model must be able to predict probabilities
		with sufficient accuracy to provide a reliable
		diagnosis
NFR-4	Performance	A reduction in the overall time it takes for a diagnosisto
		be completed
NFR-5	Availability	The service is available to users from various
		locations at any time
NFR-6	Scalability	A large number of users need to be supported at the
		same time

5. PROJECT DESIGN

5.1 Data Flow Diagrams A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is store

5.2 Solution & Technical Architecture

Solution Architecture

The Solution Architecture consist of the following elements/process for creation of accurate machine learning model they are as follows:-

- Dataset The need of data is important to analyze the features for prediction
- Preprocessing Techniques -To handle missing data as well as standardizing the data for the model to process
- Feature Selection Splitting the data into independent and dependent variables and dropping unwanted features using dimensionality reduction or dropping categorical variable with no importance
- Model creation and evaluation model is created with various ml algorithm aiming for greater accuracy and evaluation is done repeatedly to improve accuracy
- Deploying model model is deployed for the access of the service over the internet by customer
- User/customer-main actors for accessing the service

Solution Architecture Diagram:

Technical Architecture:

5.3 User Stories

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Web user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
	Verification	USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
	Login	USN-3	As a user, I can log into the application by entering email & password	I am authorized user to avail the web service	High	Sprint-1
	Dashboard	USN-4	As a user, I can navigate and interact with the web app to provide inputs for prediction and testing	I am entitled to enter only valid input for prediction	High	Sprint-1
Customer Care Executive	Assist	USN-5	· ·		High	Sprint-2
Administrator	Manage	USN-6	Management head controlling all the web services as well as assigning task to improve the service	Complete proper working of web service including security aspect	High	Sprint-3

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprints are the backbone of any good Agile development team. And the better prepared you are before a sprint, the more likely you are to hit your goals. Spring planning helps to refocus attention, minimize surprises, and (hopefully) guarantee better code gets shipped. The main event during agile methodology is the sprint, the stage where ideas turn into innovation and valuable products come to life. On one hand, agile sprints can be highly effective and collaborative. At the same time, they can be chaotic and inefficient if they lack proper planning and guidance. And for this reason, making a sprint schedule is one of the most important things you can do to ensure that your efforts are successful

6.2 Sprint Delivery Schedule

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Numbe r	User Story / Task	Story Points	Priority	Team Memb ers
Sprint-1	Registration	USN-1	As a user, I can register for the diagnosis tool using my email and password	7	High	Team Lead Membe r 1

Sprint-1		USN-2	As a user, I will receive	6	High	Member 1
			confirmation email on registering			Member 2
			for the diagnosis tool			
Sprint-4		USN-3	As a user, I can register for the	6	Low	Member 1
			application through my Gmail			Member 2
Sprint-1	Login	USN-4	As a user, I can log into the	6	High	Team
			application by entering my			Lead
			credentials			Membe
						r 1
Sprint-3	Dashboard	USN-5	As a user, I can see my past	6	High	Team
			records and activities			Lead
						Membe
						r 2
Sprint-2	Entry form	USN-6	As a user, I must enter my pre-	7	High	Team
			diagnostic testresults			Lead
						Membe
						r 1
Sprint-3	Report	USN-7	As a user, I can view the report	7	High	Membe
			generated by the tool			r 2
						Team
						Lead

Sprint	Functional	User	User Story / Task	Story	Priority	Team
	Requirement	Story		Points		Members
	(Epic)	Numbe				
		r				

Sprint-3	Remedies	USN-8	As a user, I will receive	6 Medium		Member 1
			remedies to treat mysymptoms			Member 2
Sprint-4	Queries	USN-9	As a customer care executive, I	6	Low	Member 1
			must assistusers that face			Member 2
			problems through Q&A			
Sprint-4	Feedback	USN-10	As a customer care executive, I	7	Low	Team Lead
			should get input for the tool's			Member 1
			enhancement from users			
Sprint-2	Feature	USN-11	As an administrator, I should	6	High	Member 2
	importance		identify the most significant			Member 1
			factors that lead to CKD based on			
			the present trend			
Sprint-2	Train model	USN-12	As an administrator, I must	6	High	Team Lead
			use the most suitable ML			Member 2
			model for detection of CKD			

Project Tracker, Velocity & Burndown Chart:

Sprint	Total	Duration	Sprint Start	Sprint	Story Points	Sprint
	Story		Date	End	Completed (as on	Release Date
ļ	Points			Date	Planned End Date)	(Actual)
				(Planne		!
				d)		
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA

7. CODING & SOLUTIONING

User Registration and login:

Register.html:

```
D III ...
                      g register.html X
V LOCAL ... CA CA O A
                      templates > 5 register.html > .

✓ Im templates

                                <meta name="viewport" content="width=device-width, initial-scale=1">
     register.html
                                <title>CKD Predictor</title>
                                <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle.min.js"></script>
                                k rel="stylesheet" type="text/css" href="{{ url_for('static',filename='styles.css') }}">
                                k rel="icon" type="image/x-icon" href="{{ url_for('static',filename='logo.png') }}">
   e database.db
   requirements.txt
                                <nav class="navbar navbar-expand-lg navbar-dark bg-primary bottom-0">
                                    <div class="container-fluid">
                                        ka class="navbar-brand" href="#">kimg src="{{ url_for('static',filename='logo.png') }}" alt="Logo"
                                                width="40" class="d-inline-block align-text-top">
                                        <a class="navbar-brand" href="#">
                                            <span class="navbar-toggler-icon"></span>
                                        <div class="collapse navbar-collapse d-flex" id="navbarNav">
                                            <a class="nav-link" href="{{url_for('login')}}">Login</a>
                                                class="nav-item">
```


Login.html

Dashboard and Result

Dashboard.html

```
| Decoration | Control | C
```

2.

Result.html

Your Test Result is: Not Available Now!

Your Past Test Results

Flask Integration and Deployment

Using pickle to integrate with flask

```
In [29]: import joblib #created a pickle file using joblib to export the model for frontend usage joblib.dump(model,'rfc.pkl') # model - Random Forest Classifier
Out[29]: ['rfc.pkl']
In [ ]:
```

Flask changes for ibm deployment

Database (mysql)

8. TESTING

8.1 Test Cases

Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N		
Kaggle	1.Enter into kaggle website 2.Download the dataset	https://www.kaggle.com/	Download the Dataset	Working as expected	Pass		NO		
Anaconda prompt , Jupyter Notebook	1.Enter Anaconda prompt 2.Enter Jupyter Notebook & do Data pre-processing		Pre-processing the dataset using machine learning Algorithm	Working as expected	pass		NO		
Anaconda prompt , Jupyter Notebook	1.Enter Anaconda prompt 2.Enter Jupyter Notebook & do Model Building	Model building using logistic regression	Build a Machine Learning Model	Working as expected pass			NO		
Visual Studio Code	Click on VS code ,create html pages Run html pages on app.py by using live server .	Run a website in localhost server http://127.0.0.1:5000/	Appears a Prediction page on local host server	Working as expected	pass		NO		
Visual Studio Code	Click on the http link Enter the values as in the dataset Click on submit	Gives prediction result as patient have CKD or NOT http://127.0.0.1:5000/predict	Predict the Result	Working as expected	Pass		NO		
	Enter IBM Cloud using login credentials Use jupyter notebook in IBM	Deploy the project in IBM CLOUD	Application should show same resut as vs code flask integration						

Sample tests:

Your Test Result is: Positive

Your Past Test Results

Date	Age	BP	SG	AL	SU	RBC	PC	PCC	BA	BGR	BU	sc	SOD	POT	НЕМО	PCV	wc	RC	HTN	DM	CAD	APPET	PE	ANE	Result
2022-11-17T21:04	41.0	80.0	1.02	0.0	0.0	normal	abnormal	present	notpresent	122.0	32.0	0.8	139.0	5.0	14.1	41.0	9100.0	5.2	yes	yes	no	good	no	no	Positive
2022-11-13T19:53	41.0	80.0	1.02	0.0	0.0	normal	normal	notpresent	notpresent	122.0	25.0	0.8	138.0	5.0	17.1	41.0	9100.0	5.2	no	no	no	good	no	no	Negative

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [Early Detection of Chronic Kidney Disease] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	3	1	1	1	6
Duplicate	4	0	2	0	6
External	2	2	0	1	5
Fixed	1	1	1	1	4
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	10	4	4	3	21

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Home Screen	1	0	0	1
User Input	3	0	0	3
Chronic Kidney Disease testing	2	0	0	2
No Chronic Kidney Disease testing	2	0	0	2
Version Control	2	0	0	2

9. RESULTS

4.9.1 Performance Metrics (Random Forest Classifier)

10. ADVANTAGES & DISADVANTAGES

Advantages:

Chronic kidney disease (CKD) is one of the most critical health problems due to its increasing prevalence. It is also known as chronic renal disease which is a condition characterized by a gradual loss of kidney function over time.

A better testing method which could possibly detect CKD in the early stages would be much more useful using machine learning algorithm

- Greater cost reduction in hospitals for testing
- Helps in early diagnosis of the disease
- Chances of recovery is higher

Disadvantages:

Even Though the CKD prediction model web application consists of alot of advantages but it comes with certain disadvantages here are some ofthem .

- Chances of prediction to be wrong for least number of timewhich can cause problems
- Vast feature in dataset on discovery of time for the diseasemaking the model inefficient to keep up the metrics
- Since its a web application it requires scaling of web application to handle concurrent requests after certain threshold

11. CONCLUSION

Chronic Kidney Disease as the name suggests it's a chronic disease, any chronic disease would make the person miserable and last longer till their livelihood. If in such cases the disease gets unnoticed in early stages which can be cured by medical facilities it's a huge carelessness and risking a person's life. In such cases finding an optimal solution is important, thus there comes the use of a machine learning model for early detection and prediction of the chronic kidney disease which can greatly reduce the potential risk of getting the disease and get cured immediately if it is detected in early stages of the disease. Think of the traditional way of diagnosing kidney disease, it is through blood test, and blood test reports take longer than expected, but blood test is not the only step for diagnosing there are still many more tests taken, which can betime consuming. In those cases the model prediction plays an important role in predicting the disease sooner and faster for the medical team to treat the person if he/she is vulnerable.

Thus early detection of chronic kidney disease is very much necessary in current hospital functioning to diagnose the patient in no time and do necessary treatment to cure if found.

12.FUTURE WORK:

The current work remains the base for the prediction model primarily used by everyone extending from hospitals to normal users .The future aspects can be as follows:

- subscription based model can be created with initial trial basis
- Scaling the existing application for simultaneous user to request
- Modifying the model based on adding new feature in the existing dataset based on the hospitals input and standards

13. APPENDIX

https://ieeexplore.ieee.org/abstract/document/8029917 https://iopscience.iop.org/article/10.1088/1742-6596/1255/1/012024/meta https://start.atlassian.com/ https://ieeexplore.ieee.org/abstract/document/9333572

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-25744-1659972038

 $OUR\ REPOISOTORIES\ -\ \underline{https://github.com/Savundhariya7?tab=repositories}$