

數位邏輯設計

6.1 Registers

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Registers & Counters

Clocked sequential circuits

```
Flip-flops + Combinational gates (essential) (optional)
```

- Register:
 - ➤ a group of flip-flops that holds the binary information.
- Counter:
 - > a register that goes through a predetermined sequence of states

n bits Register

- **■** *Clear_b*:
 - reset all four flip flops.
- Clock:
 - ➤ Control data Trasfer

- **■** *Clear_b*:
 - reset all four flip flops.
- Clock:
 - ➤ Control data Trasfer

- Different delay time.
- Encountering problem when delay time large than the period of Clock signal.

Register with Parallel Load

L	D	Q
0	A_0	A_0
1	I_0	I_0

Outputs are controlled by both Clock and Load signals.

Symbol

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.2.1 Shift Registers

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Shift Register

- Shift register
 - ➤ a register capable of shifting its binary information in one or both directions

Serial Transfer vs. Parallel Transfer

- Serial transfer
 - Information is transferred one bit at a time
 - > shifts the bits out of the source register into the destination register
- Parallel transfer:
 - All the bits of the register are transferred at the same time

Serial Transfer

(a) Block diagram

- The content of Register A are restored.
- The content of Register A are copy into Register B.

Timing Pulse	Shif	t Re	gist	er A	Shif	t Re	gist	er B
Initial value	1	0	1	1	0	0	1	0
After T_1	1	1	0	1	1	0	0	1
After T_2	1	1	1	0	1	1	0	0
After T_3	0	1	1	1	0	1	1	0
After T_4	1	0	1	1	1	0	1	1

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.2.2 Shift Addition

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Recall: Parallel Addition

2024/4...

Ripple Carry Adder

Carry Look Ahead Adder

Recall: Parallel Addition

Serial Addition using D flip Flop

State Table For Serial Addition

 $S = x \oplus y \oplus Q$

Present	State	Inp	uts	Next State	Output
Q	Carry	x	y	Q	S
0		0	0	0	0
0		0	1	0	1
0		1	0	0	1
0		1	1	1	0
1		0	0	0	1
1		0	1	1	0
1		1	0	1	0
1		1	1	1	1

Serial Addition Using JK Flip Flop

Present State	Inp	uts	Next State	Output	Flip-Flo	p Inputs
Q	x	y	Q	S	JQ	KQ
0	0	0	0	0	0	X
0	0	1	0	1	0	X
0	1	0	0	1	0	X
0	1	1	1	0	1	X
1	0	0	0	1	X	1
1	0	1	1	0	X	0
1	1	0	1	0	X	0
1	1	1	1	1	X	0

$$J_Q = x y$$

 $K_Q = x' y' = (x + y)'$
 $S = x \oplus y \oplus Q$

Q(t)	Q(t=1)	J	K
0	0	0	Х
0	1	1	X
1	0	X	1
1	1	X	0

$$J_Q = x y$$

 $K_Q = x' y' = (x + y)'$
 $S = x \oplus y \oplus Q$

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.2.3 Universal Shift Register

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Universal Shift Register

- Universal shift register:
 - both direction shifts
 - > parallel load/out capabilities
 - > A clear control to clear the register to 0.

Mode	Control	<u> </u>
s ₁	s _o	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

(b)

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.3.1 Counter

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Counter

Counter is a register that goes through a prescribed sequence of states upon the application of input pulses

■ Input pulses:

may be clock pulses or originate from some external source

■ The sequence of states:

- right follow the binary number sequence (Binary counter)
- > any other sequence of states

Categories of counters

Ripple counters

- The flip-flop output transition serves as a source for triggering other flip-flops.
- ➤ no common clock pulse (not synchronous)

Synchronous counters:

The CLK inputs of all flip-flops receive a common clock.

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.3.2 Binary Ripple Counter

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Recall: 3 bits Binary Counter

Pre	sent S	tate	Ne	xt Sta	ite	Q(t)	Q(t=1)	1
A .	Α.			Α	Α.	0	0	0
A ₂	A ₁	A ₀	A ₂	A ₁	A ₀	0	1	1
0	0	0	0	0	1	1	0	1
0	0	1	0	1	0	1	1	0
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	O			
1	1	0	1	1	1			
1	1	1	0	0	0			

Pres	sent S	tate	Ne	xt Sta	ite	Flip-	Flop II	nputs
A ₂	<i>A</i> ₁	A ₀	A ₂	A ₁	A ₀	T _{A2}	T _{A1}	T _{AO}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	1	1
1	1	1	0	0	0	1	1	1

Recall: 3 bits Binary Counter

General Binary Ripple Counter

A ₃	A ₂	A ₁	Ao	
0	0	0	0	
0	0	0	1	
0	0	1	0	
	0	1	1	
0 0 0	1	0	0	
	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	

- **Count:** system clock.
- A₀ is complements with each Count pulse.
- \blacksquare A₁ is complements with each A₀ pulse.
- A_2 is complements with each A_1 pulse.
- A_3 is complements with each A_2 pulse.

Negative edge triggered!

Binary Ripple Counter (T Flip Flop)

- **Count**: system clock.
- A₀ is complements with each Count pulse.
- \blacksquare A₁ is complements with each A₀ pulse.
- \blacksquare A₂ is complements with each A₁ pulse.
- \blacksquare A₃ is complements with each A₂ pulse.

Binary Ripple Counter (D Flip Flop)

1 1 0 1

Positive edge triggered!

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.3.3 BCD Ripple Counter

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

BCD Ripple Counter

Binary Ripple Counter

■ Q8:	
	When $Q_2Q_4=1$, Q_8 is complemented with Q_1 pulse.
>	Q_8 is reset when Q_2Q_4 is 0

When $Q_8=0$, Q_2 is complemented with Q_1 pulse.

>	When	$Q_8 = 1$,	$\mathbf{Q}_2 =$	=0.
---	------	-------------	------------------	-----

Q_8	Q_4	Q_2	Q_1
Q ₈ 0 0 0 0 0 0 0 0	Q ₄ 0 0 0 0 0	Q ₂ 0 0 1	Q ₁
0	0	0	1 0 1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1 0	0 0	0	0
1	0	0	1
0	0	0	0

BCD Ripple Counter

- Q8:
 - \triangleright When $Q_2Q_4=1,Q_8$ is complemented with Q_1 pulse.
 - $ightharpoonup Q_8$ is reset when Q_2Q_4 is 0
- Q2:
 - \triangleright When $Q_8=0$, Q_2 is complemented with Q_1 pulse.
 - \triangleright When $Q_8=1$, $Q_2=0$.

■ Q8:

- \triangleright When $Q_2Q_4=1,Q_8$ is complemented with Q_1 pulse.
- \triangleright Q₈ is reset when Q₂Q₄ is 0

■ Q2:

- \triangleright When $Q_8=0$, Q_2 is complemented with Q_1 pulse.
- \triangleright When $Q_8=1$, $Q_2=0$.

JK I	Flip-F	lop	
J	K	Q(t + 1)	I)
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	O'(t)	Complement

Three-Decade Digits BCD counter

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.4.1 Synchronous Binary Counter

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Recall: 3 bits Binary Counter

Pre	sent S	tate	Ne	xt Sta	ite
A ₂	A ₁	Ao	A ₂	A ₁	Ao
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Rules:

- \triangleright A₀ is complemented for every clock pulse.
- \triangleright A₁ is complemented A₀ =1.
- \triangleright A₂ is complemented A₁A₀ =1.

Recall: 3 bits Binary Counter

Rules:

- \triangleright A₀ is complemented for every clock pulse.
- \triangleright A₁ is complemented A₀ =1.
- \triangleright A₂ is complemented A₁A₀ =1.

Rules:

- \triangleright A_n is complemented when A_{n-1}.....A₁A₀ =1.
- \triangleright A_n is no change when A_{n-1}......A₁A₀ =0.

Synchronous:

➤ All flip flops are controlled by the same clock signal.

Binary Counter (JK Flip Flop)

- Count_enable (Ce)
 - ightharpoonup Ce = 0 : J = K = 0A no change
 - $ightharpoonup Ce = 1 : J = K = A_{n-1} A_1 A_0$

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.4.2 Synchronous Up/Down Binary Counter

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Binary Counter

- Binary Ripple Counter
 - ➤ Up Count: Negative Triggered.
 - ➤ Down Count: Positive Triggered
- **Synchronous** Binary Counter
 - Same function for negative and positive trigger.
 - Need combinational circuits to implement Up/Down Count,

Down Counter

All of Q_8 Q_4 Q_2 Q_1 take Complements.

Down Counter

Up

Down

Q_8	Q_4	Q_2	\mathbf{Q}_1
1	1	1	1
1	1	1	0
1	1	0	1
1	1	0	0
1	0	1	1
1	0	1	0
1	0	0	1
1	0	0	0

Rules:

- $ightharpoonup A_n$ is complemented when $\overline{A}_{n-1} \cdots \overline{A}_2 \overline{A}_1 = 1$
- $ightharpoonup A_n$ is no change when $\overline{A}_{n-1} \cdots \overline{A}_2 \overline{A}_1 = 0$

 $T_{A_n} = U(A_{n-1} \cdots A_2 A_1) + U'D(\overline{A}_{n-1} \cdots \overline{A}_2 \overline{A}_1)$

- U=0, D=0 \rightarrow T=0 \rightarrow no Change
- > U=0, D=1 → Down
- > U=1, D=0 → Up
- ► U=1, D=1 →

 $T_{A_n} = U(A_{n-1} \cdots A_2 A_1) + U'D(\overline{A}_{n-1} \cdots \overline{A}_2 \overline{A}_1)$

 \rightarrow U=0, D=0 \rightarrow T=0 \rightarrow no Change

 $U=0, D=1 \rightarrow Down$

> U=1, D=0 → Up

> U=1, D=1 →

 $T_{A_n} = U(A_{n-1} \cdots A_2 A_1) + U'D(\overline{A}_{n-1} \cdots \overline{A}_2 \overline{A}_1)$

- \rightarrow U=0, D=0 \rightarrow T=0 \rightarrow no Change
- \triangleright U=0, D=1 \rightarrow Down
- U=1, D=0 → Up
- > U=1, D=1 → Up

$$T_{An} = U(A_{n-1} \cdots A_2 A_1) + U'D(\overline{A}_{n-1} \cdots \overline{A}_2 \overline{A}_1)$$

- V=0, D=0 \rightarrow T=0 \rightarrow no Change
- > U=0, D=1 → Down
- > U=1, D=0 → Up
- **U**=1, D=1 → Up

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.4.3 Synchronous Binary Counter With Parallel Load

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

4-bit binary counter with parallel load

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	1	1	X	Load inputs
1	1	0	1	Count next binary state
1	1	0	0	No change

BCD Counter Implemented by Binary Counter

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	1	1	X	Load inputs
1	1	0	1	Count next binary state
1	1	0	0	No change

Method 1

Method 2

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

6.4.4 Synchronous BCD Counter

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

BCD Counter Implemented by Binary Counter

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	1	1	X	Load inputs
1	1	0	1	Count next binary state
1	1	0	0	No change

Method 2 Method 1 $A_3 \ A_2 \ A_1 \ A_0$ $A_3 \ A_2 \ A_1 \ A_0$ Clear Load \leftarrow Count = 1 \leftarrow Count = 1 4-Bit binary 4-Bit binary \leftarrow Clear = 1 \leftarrow Load = 0 Counter Counter \leftarrow CLK ← CLK Inputs = 0Inputs have no effect

Synchronous BCD Counter

P	resent	State	9	77.	Next	State		Output				
Q ₈	Q ₄	Q ₂	Q ₁	Q ₈	Q ₄	Q ₂	Q ₁	y		Q(t)	Q(t=1)	
0	0	0	0	0	0	0	1	0			5(/	
0	0	0	1	0	0	1	0	0		0	0	
0	0	1	0	0	0	1	1	0		0	1	
0	0	1	1	0	1	0	0	0	_	1	0	
0	1	0	0	0	1	0	1	0	•	1	U	
0	1	0	1	0	1	1	0	0		1	1	
0	1	1	0	0	1	1	1	0				•
0	1	1	1	1	0	0	0	0				
1	0	0	0	1	0	0	1	0				
1	0	0	1	0	0	0	0	1				

Present State Q8 Q4 Q2 Q1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1			2	02	Next	State		Output	Flip-Flop Inputs			its
Q ₈	Q ₄	Q ₂	Q ₁	Q ₈	Q ₄	Q ₂	Q ₁	у	TQ ₈	TQ ₄	TQ ₂	TQ
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	0	0	1

Present State					Next	State		Output	Flip-Flop Inputs				
Q ₈	Q_4	Q ₂	Q ₁	Q ₈	Q_4	Q ₂	Q ₁	у	TQ ₈	TQ ₄	TQ ₂	TQ	
0	0	0	0	0	0	0	1	0	0	0	0	1	
0	0	0	1	0	0	1	0	0	0	0	1	1	
0	0	1	0	0	0	1	1	0	0	0	0	1	
0	0	1	1	0	1	0	0	0	0	1	1	1	
0	1	0	0	0	1	0	1	0	0	0	0	1	
0	1	0	1	0	1	1	0	0	0	0	1	1	
0	1	1	0	0	1	1	1	0	0	0	0	1	
0	1	1	1	1	0	0	0	0	1	1	1	1	
1	0	0	0	1	0	0	1	0	0	0	0	1	
1	0	0	1	0	0	0	0	1	1	0	0	1	

Simplified by K-Map

$$T_{Q1} = 1$$

 $T_{Q2} = Q_8'Q_1$
 $T_{Q4} = Q_2Q_1$
 $T_{Q8} = Q_8Q_1 + Q_4Q_2Q_1$
 $y = Q_8Q_1$

$$T_{Q1} = 1$$

 $T_{Q2} = Q_8'Q_1$
 $T_{Q4} = Q_2Q_1$
 $T_{Q8} = Q_8Q_1 + Q_4Q_2Q_1$
 $y = Q_8Q_1$

6.5.1 Counter with Unused States

主講者:吳順德

Counters

- Counter can be designed to generate any desired sequence of states
- Modulo-N counter (Divide-by-N counter)
 - ➤ a counter that goes through a repeated sequence of N states
- \blacksquare *n* flip-flops \Rightarrow 2ⁿ binary states
- Unused states
 - right states that are not used in specifying the FSM and are not listed in the state table.
 - may be treated as don't-care conditions or may be assigned specific next states.

Modulo-6 counter

Present State		Next State			Flip-Flop Inputs						
Α	В	С	A	В	С	JA	KA	J _B	K _B	Jc	Kc
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X

Q(t)	Q(t=1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Two unused states: 011 & 111 (not listed in the state table) The simplified flip-flop input eqs.

$$J_A = B, K_A = B$$

$$J_{R} = C, K_{R} = 1$$

$$J_C = B', K_C = 1$$

Modulo-6 counter

$$J_A = B, K_A = B$$

 $J_B = C, K_B = 1$
 $J_C = B', K_C = 1$

(a) Logic circuit diagram

Self Correcting

$$J_A = B, K_A = B$$
 $J_B = C, K_B = 1$
 $J_C = B', K_C = 1$

 $ABC=111 \rightarrow ABC=000$

$$J_A = 1, K_A = 1 - A = 0$$

$$J_B = 1, K_B = 1 \implies B = 0$$

$$J_C = 0, K_C = 1 - C = 0$$

$$J_A = 1, K_A = 1 - A = 1$$

$$J_B = 1, K_B = 1 \implies B = 0$$

$$J_{\rm C} = 0, \ K_{\rm C} = 1 - C = 0$$

(b) State transition diagram

6.5.2 Ring Counter

主講者:吳順德

Ring Counter

■ A ring counter is a circular shift register with only one flip-flop being set at any particular time

Timing Diagram for Ring Counter

A ring counter is use to generate timing signals that control the sequence of operations.

Reduce the number of Flip Flops

4 Flip Flops

(a) Ring-counter (initial value = 1000)

2 Flip Flops

(c) Counter and decoder

6.5.3 Johnson Counter

主講者:吳順德

Johnson Counter

- A ring counter is used to generate timing signals that control the sequence of operations.
- A Johnson Counter is a *k* bits switch tail ring counter with 2*k* decoding gates to provide outputs for 2*k* timing signals.

Switch-tail ring counter

(a) Four-stage switch-tail ring counter

	1	1	1	† 5—
Shift right	T_0	T_1	T_2	T_3
	1			

Camanaa	Fli	p-flop	outp	A NID anto comicad			
Sequence number	A	В	C	E	AND gate required for output		
1	0	0	0	0	A'E'		
2	1	0	0	0	AB'		
3	1	1	0	0	BC'		
4	1	1	1	0	CE'		
5	1	1	1	1	AE		
6	0	1	1	1	A'B		
7	0	0	1	1	B'C		
8	0	0	0	1	C'E		

k flip flops
→ 2k states

(b) Count sequence and required decoding

Sequence of Timing Clock

S.	aguanga	Flip-flop outputs				AND gate required					
	equence number				C	E	AND gate required for output				
	1		0	0	0	0		j	A'E'		
	2		1 0 0 0			AB'					
	2 3 4 5			1	0	0	BC'				
	4			1	1	0		CE'			
	5			1	1	1	AE				
	6 7		0	1	1	1	A'B				
	7		0	0	1	1	B'C				
	8		0	0	0	1			C'E		
	0000	1000	1100	1	110	1111	0111	0011	0001	0000	
E'	1	0	0		0	0	0	0	0	1	
B'	0	1	0		0	0	0	0	0	0	
r'ng	0	0	1		0	0	0	0	0	0	
E'	0	0	0		1	0	0	0	0	0	
E	0	0	0		0	1	0	0	0	0	
B	0	0	0		0	0	1	0	0	0	
C	0	0	0		0	0	0	1	0	0	
E	0	0	0		0	0	0	0	1	0	

6.5.4 Comparison of Counters

主講者:吳順德

Example: Generating 16 timing signal

4 flips flops + 4X16 decoder

16 flips flops

decoding circuit is unnecessary!

8 flips flops + simple decoding circuit

