Neural network loss landscape

Maksim Zabelin

titorit rood rarraddapo

Visualizing the Loss Landscape of Neural Nets

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein

Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, Andrew Gordon Wilson

Loss function

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

- why are we able to minimize highly non-convex neural loss functions?
- why do the resulting minima generalize?
- how loss function geometry affects generalization in neural nets?

The Basics of Loss Function Visualization

1-Dimensional Linear Interpolation

choose two parameter vectors and plot the values of the loss function along the line connecting these two points. $\theta(\alpha) = (1-\alpha)\theta + \alpha\theta'$

Finally, we plot the function

$$f(\alpha) = L(\theta(\alpha))$$

Weaknesses:

- is difficult to visualize non-convexities
- this method does not consider batch normalization or invariance symmetries in the network

The Basics of Loss Function Visualization

Contour Plots & Random Directions

chooses a center point and chooses two direction vectors, then plots a function

$$f(\alpha) = L(\theta^* + \alpha\delta)$$
 in the 1D (line) case.

$$f(\alpha, \beta) = L(\theta^* + \alpha\delta + \beta\eta)$$
 in the 2D (surface) case

Weaknesses:

- it fails to capture the intrinsic geometry of loss surfaces
- cannot be used to compare the geometry of two different minimizers or two different networks.

The Sharp vs Flat Dilemma

Large batch – Sharp Minima

The Sharp vs Flat Dilemma Experiment

Scale invariance

$$X \rightarrow C * W1(X) \rightarrow 1/C * W2(C * W1(X)) = W2(W1(X))$$

Batch normalization

 $X \rightarrow C * W1(X) \rightarrow BN(C * W1(X)) \rightarrow BN(W1(X))$

Filter-Wise Normalization

$$d_{i,j} \leftarrow \frac{d_{i,j}}{\|d_{i,j}\|} \|\theta_{i,j}\|$$

where $d_{i,j}$ represents the j-th filter of the i-th layer of d, and $\|\cdot\|$ denotes the Frobenius norm

The Sharp vs Flat Dilemma Experiment

What Makes Neural Networks Trainable?

- Do loss functions have significant non-convexity at all?
- If prominent non-convexities exist, why are they not problematic in all situations?
- Why are some architectures easy to train, and why are results so sensitive to the initialization?

The Effect of Network Depth

Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.

Shortcut and skip connections

Shortcut and skip connections

The Effect of Network Depth

Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.

Wide Models vs Thin Models

Figure 6: Wide-ResNet-56 on CIFAR-10 both with shortcut connections (top) and without (bottom). The label k=2 means twice as many filters per layer. Test error is reported below each figure.

Are we really seeing convexity?

Figure 7: For each point in the filter-normalized surface plots, we calculate the maximum and minimum eigenvalue of the Hessian, and map the ratio of these two.

Conclusion

- Flat loss landscape = better generalization
- Shortcut and skip connections affect on trainability
- Deep network = landscape is chaotic
- Wide network = landscape is flatter

2000 Garragoo, mode Gormoutivity, arrain act Ericombining or Britis

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, Andrew Gordon Wilson

two sets of weights \hat{w}_1 and \hat{w}_2 in $\mathbb{R}^{|net|}$

let $\phi_{\theta}: [0,1] \to \mathbb{R}^{|net|}$ be a continuous piecewise smooth such that $\phi_{\theta}(0) = \hat{w}_1, \ \phi_{\theta}(1) = \hat{w}_2$.

find the parameters θ that minimize $\ell(\theta) = \int_0^1 \mathcal{L}(\phi_{\theta}(t)) dt = \mathbb{E}_{t \sim U(0,1)} \mathcal{L}(\phi_{\theta}(t))$

Conclusion

- Local minimas are connected
- This lines not unique
- Can use in the Fast Geometric Ensembling

https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f66 3b915-Abstract.html

https://asset-pdf.scinapse.io/prod/2963384892/2963384892.pdf

Красивые картинки

Здесь могла быть ваша реклама

