|8] KOMPLEXE ANALYSIS - EINE EINCADUNG

8.1 INTRO In diesem le laten Teil der Vo unternehmen wir einen Kleinen Spozierpanp durch die Grundlogen de komplexen Anolysis – oho de Analysis von Flut $f: C \rightarrow C.$ (*)

Dieses reiche & schöne Lebiet befosst sich vor oblem mit komplex differentierberen Fhl wie in (*).

Diese versen ouch als holomorphe ode onolyhiche

Flet bezeichnet - wobei as bereibein Resultal ist,

doss diese eigentlich eigenständigen Bepriffe Jewommenfollen.

Holomorphe Flet sind in der pasomten Mothemotik

Weit verbreitet und totsächlich sind uns ouch

schon viele solcher Flet begepnet: So ist

elsa die komplexe Exp-Flet [17] 3.12] ebenso holomorph

wie die Cos-L Snusfankhien oder Polynome wennmo
sie als Flet eine komplexen Voridole outfosst.

Es skellt sich herous, doss die holomorphen Flet erstounliche Eigenschoften besitten und merkwirdigen strikten Leethen gehorchen – die mon pornicht ehnen konn, wenn mon sie nor mit der reellen Brille onsieht. 8.2 VH: WAS 4:2 SCHON ACCES JBER & WISSEN?

(i) $C := \mathbb{R}^2$, wobi un $C \ni f = X + iy$ mit dan Poor $(x,y) \in \mathbb{R}^2$ identifities. $\mathbb{R}(f)$

C wird mit du Multiplikotion

?, · ? = (X,+iy1)(X2+iy2) = X1X2-4142 + i (X142+X241)

zum Körpe [10] 1.4]. Die Johl i = (0,1) ist die imspirore Einheit und estallt i = -1

I koun juor nocht zu einem geordneten Korpe gemocht werden, obe der komplexe Betrog [[] 3.10]

/7/:= 77 = 1x2+12 = Rc(4) + /m (4)2

ermoplicht es Konverpent von Folgen & Reihan souice Stehigkeit von Flut vollip onder fam reelle Foll In betrachten [Es mus nu de reelle Detry durch den komplexen Betres ersetit Werden.] Es ist eine einfoche Konsepvent der Vollstondig keit von IR, doss jede Couchy-Folge in C konverpiet, oho C vollstöndig ist [12] 3.10(4)].

8.3 FUNKTIONEN AUX (& IHRE DIFFBARKEIT)

(1) Flit out to Se. GE to offen [d.h. jedes 7 e 4
besiht eine, Schutzkupe (" UE(7) := { WEC: IW-716E},

```
die pont in G liept-vpl. [6] 1.11], f: G-> C
Wir schreiben f(x) = Ref(x) + i^{\circ} Imf(x)
                    f(2) = Ref(2) + 1° lmf(2)
      und erholten dorous 2 reelle Flet (GSR out pefosst)
                    u: G→R, u(x,y):=Ref(x+iy)
v: G→R, v(x,y):= Imf(x+iy)
      sodoss
                 f(x+iy)= u(x,y)+iv(x,y)
   gill, un sehen donn

F: R=G -> 12, F(x,y)= (U(x,y))

V(x,y)
  (ii) DEF f: G-> ( heißt komplex differentiation in 2.66,
                   lim $\frac{f(7)-f(10)}{7-70}\ (ob ejentlike lime)\]
  { folls
  Ableidangs fll f: (1-) (1,2+) f(1)
(iii) Einfoche Tolperurgen: Genouso vie im Realler Juga mon
     · I komp diffhor in to (=) JOEC Jr: (2//2/0)-> C
                      f(70+h)-f(70)=a.h+r(h), r(h)
```

acstolt (0-5) scin. Findie Jocobi-(b &) Robix von DF von F=(U,v)

 $DF(x,y) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} \end{pmatrix}$ Vorlesungsausarbeitung RAimukAieVfLAK (SoSem 2013)

Wir hoben oho beuiesen
SATT: Soi f. G-> a mil Jupeordnete Abb F= (V):
G->M² donn pill:
Colo 1-111 Freell diff hor out 6
f komplex diffhor (=) und e) gill Jx u = Jy V
I komplex diffhor \Rightarrow und e) gill $\int_X u = \int_X V$
(v) Holomorphe Flet Sicholo (Couchy-Riemonn-
Vie im reeller ist es prokhisher (CRUM)
nicht blas diffhere Flut qu betrachten, sonder E1-
Flet, diese heilen holomorphe Flit; peroue
DEF: f: G-) Theint holomorph, folls foul a kompl
Ediffbor med slehje Ableitung f! C-> C ist.
Aus(in) folpt solort: I holomorph (=) {F & C and e) pellen dic(CRD4)
pellen dic(CRI))
(VI) 1000 KUMP 53 (Der 7 & per :
SATT VON GOURSAT: Jede komplex differen sichere the
SATT VON GOURSAT: Jede komplex differentiebre Flet S List octomobisch holomorph.
Siche dorn ouch 8.9. Bemerke den proben Unterchied für reeller Anolysis
(vi) BSP f. +> €, f(2) = e2:= 5 7/6! [1]3.12]
(Vi) \overline{SSP} . • $f: \varphi \rightarrow \varphi$, $f(z) = e^z := \sum_{k=0}^{\infty} \frac{1}{k!} [\mathbb{Q}] \cdot \mathbb{Q}$ ist holomorph, of an mil $f = Y + iy$ pilt
100 TO TO THE TOTAL POLLAR POL

(iii) Reelle Schreibueise. Mittels flx+iy)=uxxxy+irxxxy) und P(+) = x4)+19(+) schreibt sich (ii) ob $\int_{\mathcal{S}} f(x) = \int f(y(t)) \cdot \dot{y}(t) dt = \int_{\mathcal{V}} \left(\frac{d}{dt} \right) (t) dt + i \int_{\mathcal{V}} \left(\dot{u} \right) (t) dt$ ((x(x(1), y(x)))+ir(x(x),y(x))) (x(1)+i°y(x)) = u(x(t),y(t))x(t)-V(x(t),y(t))y(t)+i (U(x(+), y(+)) g(+) + V(x(+), y(+)) x (+)) $= \left\langle \left(\frac{U(x(l), y(l))}{-V(x(l), y(l))} \right) \left| \left(\frac{\dot{y}(l)}{\dot{y}(l)} \right) \right\rangle + i \left\langle \left(\frac{V(--)}{u(--)} \right) \left| \left(\frac{\dot{x}(l)}{\dot{y}(l)} \right) \right\rangle$ (ir) BSP. 8(4)=70+reit = 20+r (cos(4)+isin(4)) 8(+)= r(-sin (+)+icos (+))= ire Story die state of the state of $\int_{\mathcal{S}} (7-70)^m d7 = \int_{\mathcal{S}} (re^{it})^m i - e^{it} dt = i r^{mss} \int_{\mathcal{S}} e^{it} (msn) dt$ = ir m+1 (S(0) ((m+1)t) dt +1 = Sin ((m+1)t) dt $= \begin{cases} \int_{0}^{2\pi} dt = 2\pi & (m=-1) \\ \int_{0}^{2\pi(n+1)} dt = 0 & (m \neq -1) \end{cases} = 0$ $= \int \int (7-70)^m dz = \int ZTTi \left(m=-1\right) \int Zin Jentroles$ Zin Jentroles Zin Jentroles Zin Jentroles Zin Jentroles Zin Jentroles Zin Jentroles

227
8.5 DER INTEGRALSATI VON CAUCHY Offentsteint.
(i) THO. So. GEC an Sternformipes Cabial and so
f: G-) C holomorph. Down pilk
(
für jeden geschlossenen Stückweisen C- Weg Pin a.
(ii) Then (Jus Delankers von (i)) Im Hinhlick on (17/8)
(ii) BETT (fur Bedeutung von (i)) Im Hinblick out 17/52 (vgl. insbe) 17/2.5(vii)) koun die Bedeutung von eis por-
nicht überschötzt werden. Im Kern heropt des Thin, das
holomorphe Fled outomobisch die Inteprobilitäts -
bedinpagen enfallen - de Bevai zagt penour, doss
die (CRDG) die Interrolbilitätsbed. sind O
(iii) Bevas: Wieder schreiben 4ir f(x+iy) = U(x,4)tiv(x,4)
fholomorph => (CROS) 2x U= 2yV, 2y U=-2xV
=) die VF (4), (4) enfüllen die
Dohe 8.5iai) (17) 2.5cvi)
Dohe $ \begin{cases} Siaii \end{cases} = dic \ VF \left(\begin{matrix} U \\ V \end{matrix} \right), \left(\begin{matrix} U \\ -V \end{matrix} \right) \ extillendic $ $ \begin{cases} f(i)dit = \int (-V) + i \int (V) = 0 + i = 0 \\ V \end{cases} $ $ \begin{cases} f(i)dit = \int (-V) + i \int (V) = 0 + i = 0 \\ V \end{cases} $ $ \begin{cases} f(i) \text{ Konsepuenten ow (i)} . \ Volling onology and } \begin{cases} 1/2.56(iv) \text{ fair } 1/2.66(iv) \end{cases} $
(iv) Konsephenten ow (i). Volling onolog qu 1772.4(iv) 74/1

(iv) Konsephenten ow (i). Volling onolog qu 17 7.4(iv) quiet mon, doss holomorphe Flet wep unol honpipe Interrole holen and onolog ta 1772.4(ii), 1772.5 (v) erpiht sich line komplexe Version der HSDI. Die Wichhipste Konsephent oler den Couchjschen Interpoliotist:

8.6 DIE CAUCHYSCHE INTEGRALFORTIEC

(i) THI. Se. f. G-> C holomorph out dom Gebich G und) Sa: Pain pos orientiate Kias inneholb von G. Down pilt für jedes 7 innerholb von P die tormel

 $\int f(t) = \frac{1}{2\pi i} \int \frac{f(s)}{s-t} ds$

(ii) Bedantung ron (i): Dic Formal

besops insbesondere, doss die Wate eine holomorphen Flat inneholb einer Kraisscheibe schon allein durch die Herle am Pandkini P bestimmt sind

(iii) Bewasskitte. Scien +, [wie im Thm. Wöhle ainen kleinen Kra's To am 7 de inne holb von Pliegt.

(1) Da y 1) 1/9)-f(1) holomorph out

5-7 (12) ist, pill $\int_{\Gamma} \frac{f(y) - f(x)}{5 - t} dy = \int_{\Gamma} f \frac{f(y) - f(x)}{9 - t} (x)$

dens $\begin{cases}
-S = S + S = O \\
To d P
\end{cases}$ Anologie rholden ur $\begin{cases}
\frac{dS}{S-1} = S \\
\frac{dS}{S-1} = S \end{cases}$ agsausarbeitung RAimukAieVfLAK (SoSem 2013)

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(s)}{s-t} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(t)+f(s)-f(t)}{s-t} ds$$

$$= \frac{f(t)}{2\pi i} \int_{\gamma} \frac{ds}{s-t} + \frac{1}{2\pi i} \int_{\gamma} \frac{f(s)-f(t)}{s-t} ds$$

$$= \frac{f(t)}{2\pi i} \int_{\gamma} \frac{ds}{s-t} + \frac{1}{2\pi i} \int_{\gamma} \frac{f(s)-f(t)}{s-t} ds$$

$$= 2\pi i \left[8.4uiv \right] = :h(t)$$

(3) Wir dayen
$$h(t) = 0$$
; down fer hip.

I stehing => $f(\xi) = 0$ fro Rodius ron Γ_0 s.d. $\left| \frac{f(\xi) - f(t)}{\xi - t} \right| \leq \frac{\ell}{\ell_0}$

=> $\left| \frac{h(t)}{\xi} \right| \leq \frac{\Lambda}{2\pi} \int_{0}^{\infty} \left| \frac{f(\xi) - f(t)}{\xi - t} \right| d\xi$
 $\leq \frac{\Lambda}{2\pi} \frac{\mathcal{E}}{r_0} L(\Gamma_0) = \frac{\Lambda}{2\pi} \frac{\mathcal{E}}{r_0} 2\pi r_0 = \mathcal{E}$

8.7 POTENTREPHEN

(i) Intro. Vi- Jayen jetel, doss komplexe Pokentrahen holomorphe Flet definieren. Dos ist eine Erweilung vo- 15) Prop 2.15, die besogh, don realle ? R Co-FlL do-slellen.

Wir beginner mit unsver Therepungen und formulieren erst donoch des Kesultot.

Etimerung: hol5] \$2 hober wir je schon anijes ühe Vorlesungsausarbeitung RAimukAieViLAK (SoSem 2013) PR pelend...

(11) Komplere PZ. Sa: Z, 9k (1-20) eine PR mit KR R70 and f. Bn(20) -> C, f(1):= \(\frac{1}{k} = 0 \) (x) thre Summer flet. Flet of mit aine PR-Dorstellung (x) heisen andytisch.

(iii) Wir wollen non onaly bische Flet Kompl differentieren und besinner mit eine Voreberlepung:

Sc. 71 = B2(10), 11 +t

= (2-20) = ((1-21)+(11-20)) = (4)(2,-20) (1-21) l

(11) l=0

 $\begin{pmatrix} \binom{k}{e} = 0 \\ f_{i}, e_{i} = k \end{pmatrix} = \frac{\infty}{2} \binom{k}{e} \binom{k-e}{(2-2i)} \binom{k-e}{(2-2i)} e$

 $=\int_{k=0}^{\infty} \int_{k=0}^{\infty} C_{k}(z-z_{0})^{k} = \sum_{k=0}^{\infty} C_{k} \sum_{\ell=0}^{\infty} {k \choose \ell} {k \choose \ell-l_{0}}^{k-\ell} {k-\ell \choose \ell-l_{0}}^{\ell}$

 $= \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} c_k \binom{k}{\ell} (t_1 - t_0)^k (t - t_1)^{\ell}$

Jeht kunner wir den

Diffuentes puotientes beachars

Entricklung mit 1 Entricklungsplet 19!

 $\frac{f(7)-f(7)}{7-7} = \frac{2}{e=5} \frac{be(7-7)^{e}-bo}{7-7} = \frac{2}{7-7}$ b1 (7-11) + b2 (7-77) 2 ---

 $=b_1+b_2(7-71)+b_3(7-71)^2+...-b_1(7-71)$

=) f komplex diffbor in 1 mil $f(1) = b_1 = \sum_{k=1}^{(k)} C_k \binom{k}{n} (\frac{1}{2} - \frac{1}{2}) = \sum_{k=1}^{\infty} C_k k (\frac{1}{2} - \frac{1}{2})^k = \frac{1}{2} C_k k (\frac{1}{2} - \frac{1}{2})^k$ Well 7, in Ba (75) belieby wer pill insperomet · f komplex diffbor out Br(to) und · f: Ba(20) -> I ist durch die plieducise differentiete Thike pepeben (6)1.5 Konverpentrodins des objelikten Reihe ist vicole R =) f'skhis oul Ba(to) =) I holomorph out Biz(tol Wir hober oho pereigh: anolytisch => holomorph; penoue (iii) SATT (Potentrainen definieren holomorphe Flix) JSci ZICL (7-70) eine PR mit KRR. Donn (ist die Summenfelt fer) = ICk (2-to) holomorph out Br (7) and die Ableitung konn pliedverse berechnet weeder, d.h. f(1) = Zkc, (+-70) 1-1 Desure heren folph durch Harrieren [VP1.15] 2.15] doss and sische +61 beliebig of kompl diff bor sind. (ir) Es ist eine veite e tolperung ous dem lauchy schen Interpolsoto bis de Interpolformel, dois ouch ene

<i>Q</i> D	EN-WICKLUM	
0.0	CN. WICKLON	Tas sar F

(i) THIT. Sai GE Coffen und sai f. G -> C holomorph.

Sci 70 e Gund Ur (70) die pronte offene Kreisscheibe mit

(G)-(:,)))

Millelph 1 to sodoss Ur(70) = K, (70) = G[vpl. 16] 1.31].

Donn pihdes V7 & U1 (to) eine andentige PR-Enduicklung

$$\int \int c_k(z) = \sum_{k=0}^{\infty} c_k(z-z_0)^k$$

Dobci sind die Koeffizienten Ck pageben durch

(ii) Bemerke, dos dos ondope Kesullot für Co-Flit out IR falseb isd. In 15 Bsp 3.12 hober wir peschen, doss fix= {e x = 0 e C (M) keine PR-Endwicklung hot-

vgl 15/3.17. Dort musster wir die Froge oftenlossen, welche

reclen Cotleh eine Entwicklung holen-wir kommen gout
Zom Ende der Vo dorauf
Zom Ende der Vo dorauf.

(iii) Beneis skitte. OBdA sei 70=0,7 e Ur(0).

Down pilt
$$f(z) = \frac{1}{2\pi} \int \frac{f(y)}{y-t} dy = \frac{1}{2\pi} \int \frac{f(y)}{y} \frac{1}{1-\frac{1}{y}} dy$$

$$= \frac{1}{|y|=r} \int \frac{f(y)}{y-t} dy = \frac{1}{|y|=r} \int \frac{f(y)}{y} \frac{1}{1-\frac{1}{y}} dy$$

$$= \frac{1}{|y|=r} \int \frac{f(y)}{y-t} dy = \frac{1}{|y|=r} \int \frac{f(y)}{y} dy$$

$$= \frac{1}{|y|=r} \int \frac{f(y)}{y-t} dy = \frac{1}{|y|=r} \int \frac{f(y)}{y-t} dy$$

$$= \frac{1}{|y|=r} \int \frac{f(y)}{y-t} dy = \frac{1}{|y|=r} \int \frac{f(y)}{y-t} dy$$

$$= \frac{1}{2\pi i} \int_{k=0}^{\infty} \frac{f(\xi)}{\xi^{n+n}} f^{n} = \frac{1}{2\pi i} \int_{k=0}^{\infty} \frac{f(\xi)}{\xi^{n+n}} d\xi d\xi d\xi$$

$$= \frac{1}{2\pi i} \int_{k=0}^{\infty} \frac{f(\xi)}{\xi^{n+n}} d\xi d\xi$$
Roland Steinbauer, 20. Juni 2013

8.9 DIE FABECHAFTE WELT DER HOLOPORPHEN FKT

(i) Wie bereits in 8.1 onpedealet, sind komplex diffhore
Flat sehr, schöne" Flat. Uir fossen unsve diesbezüplichen
Resultak Fasommen

THIT. So: G = A offen, f: G-> C skip. Down sind die folgender Aussopen olle opuivolent.

(i) & kompl. diffbar.

(ii) fist bolomorph.

(iii) fist anolytisch, d.h. fer) = Icu(2-20) in eine Umgebung

(ir) fish beliebing of b kompl. diffbor. _____ jedes Plus 7064.

(v) fish reell 61 & expeltendic (CRDG).

(F'=f& (iv))

(vi) of f=0 far olle poschlossenen Wepe 8=U1(20) = G.

(Vii) I hat in jedem Plet eine (loude) Stommflet.

Beversskipe [Fost obles hober wir schon erushad, vict soper besiesen.]

(i) tompl diffber =) (ii) holomorph =) (iii) onoly tisch - 8.7(iii)

Solt v. learsot vpl 8.3(vi)

Bevers elvo mit oblepaneine v

Version des Couchy-Interolodies

(v) reell 21

(c) tompl. diffb.

Solt von Parera [Jonich 350178]

(vi) by =0

(vi) floorpl. db. (vii) lol. Sommy. 8.5(iv)

Vorlesungsausarbeitung RAimukAieVfLAK (SoSem 2013)

Roland Steinbauer, 20. Juni 2013

(it) Waitere schone Eigenschoften holomorphe Fkh, 23 (die obledings obuch zaigen, doss holomorphe Fhh Schrsperiell sind) sind edus:

SATT V. Liouvice =: Jede Flut f: C > C, dicouf & pont & holomorph & beschränkt ist, ist schon konstont

DENTITATSSATZ Seien GE & ein Lebiel, f.p. 6-> (
] Frai holomorphe Flot, die olef eine Trilmengeron G,

die einen Höufungspunkt besitzt, über einshimmen.

Donn pill f=pout gont G.

Insbesonder konnen sich die Nullstellen (nichthivisle) holomorphe Flet nicht häufen. Somit ist ein Bsp wie in 1573.11-12 ouspeschlossen.

(iii) Holomorphe Flet byu. die komplexe Anolysis hilft ouch ofters Frogen der reellen Anolysis zu beondworten; So konnen wir nun die Froge ous 15) 3.1) beondsorten [upl. ouch 8.8ciss]:

Eine reelle Flet ist penoa donn um einen Plut in eine PR entrickelber, folls sie sich out linen Kreis um zo in de kompl. Ebene holomorph fortsetzen lött; penoue

(iv) Ausblick. Die komplexe Anolysis ist im Wesentlichen die Theorie de holomorphen Flat. Ein Weitreichender Gesichtsplut dobe: 1st es, holomorphe Flat ob lesuspen de (CRDS) zu schen – domit er peber sich viele Verbindurgen für Theorie der Porhiellen Differentiel pleichungen (PDE).

Die Anolysis von Flut mehrerer komplerer Vorioblen unterscheidet sich prundlepend von de 1-d Theorie. Wiederem pihot es storke Bezige zu Theorie de PIE abe ouch de Funktinolonolysis und zur Algebroischen Geometrie.

Dobe: hondeld as sich um ein olchie Forschungsgebich-[am Inst: + Haslinge & B. Lome (]

(v) CITERATUR. Diese Auns beitung beruht wesentlich
Out [House 2, 185-187]. Eine knoppe Einfahrung ist
[Jonich, Funkhönen theorie J, ein amfossender (m.E. schr
schönes) Buch [Zemmert Schuchmoche, Funkhönen theorie 1-2].
Vorlesungsadsarbeitung RAimukAieVfLAK (SoSem 2013)