Countability Axiom in Topology

jiang Zao* December 14, 2024 3:35pm 3 Abstract 4 Topology lemmas in measure theory 5 **Keywords**: topology, measure theory 6 Introduction 1 7 Some results we found and trusted. First Contable Space Definition 2.1. (Herenditarily Lindelöf Space) 10 If every subspace of X is Lindelöf, then we say it's Herenditarily Lindelöf. 11

Theorem 2.1. (Separable and First Countable Space)

1

Let X be a Hausdorff, locally compact and Herenditarily Lindelöf space, then it is first 13 countable.14

Proof. Given a point x in X, then the class of open sets $\{X/K|K\}$ is a paracompact

neighborhood of x \} covers $X/\{x\}$. Since $X/\{x\}$ is open and X is Herenditarily Lindelöf,

 $X/\{x\}$ is Lindelöf. There are contablely number of K_n , such that $\{X/K_n\}$ covers $X/\{x\}$.

Without loss of generality, we assume $\{K_n\}$ is decreasing (nested). We claim that $\{X/K_n\}$

is a neighborhood basis of x. Given U is a neighborhood of x, if U doesn't contain any

 K_n , we can choose $x_n \in K_n/U$. Actually a compact space is sequential compact. So

 $\{x_n\} \in K_0/U$ have at least one limit point y. For any compact neighborhood V of y,

 $V \cap K_{n_i} \neq \emptyset$ for infinite n_i , then $V \cap \bigcap_{n=1}^{\infty} K_n \neq \emptyset$. Since $\bigcap_{n=1}^{\infty} K_n$ is $\{x\}$, then $x \in V$. Then x = y, which controdicts U is a neighborhood of x.

^{*}Sun Yat-sen University, Guang Zhou, China. Email: jiangzmath@outlook.com.

- Theorem 2.2. Space R_l is a Lindelöf, Separable, first countable space, but it's not second countable.
- Proof. Open sets in R_l is generated by $\{[a,b): a,b \in R\}$
- Theorem 2.3. Let X is a second countable space, then every cover of it admits a countable subcover.
- Proof. Given an open cover $\{U_{\alpha}\}$ of X, and countable basis \mathcal{B} of X. For every $B_n \in \mathcal{B}$,
- 30 if there is at least one U_{α} contain it, we choose this U_{α} and denote it by U_{α_n} . Then we
- have a countable class of open set $\{U_{\alpha_n}\}$. It's the subcover we need.
- For any x in X, there is $U \in \{U_{\alpha}\}$ such that $x \in U$, then there is a base $x \in B_k \subseteq U$.
- Then $x \in B_k \subseteq U_{\alpha_k}$, which completes the proof.
- 34 Theorem 2.4. (Secondly Countable)
- Let X be a separable metric space, then X is second countable.
- Let X be a Lindelöf metric space, then X is second countable.
- 1 let X be a first countable metric space, then X is second countable.
- \square Proof.
- Corollary 2.1. Let X is separable, Hausdorff, locally compact, metric space, then every cover of it admits a countable subcover. Then every compact set of X is G_{δ}
- 41 Remark 2.1. (Classical Results)
- (a) First countablility axiom guarantees that $x \in \bar{X}$ iff. there is a sequence x_n in X convergent to x. And f continuous iff. for every $x_n \to x$, $f(x_n) \to f(x)$.
- (b) Every basis of C_2 space contains a countable basis.
- (c) Subspaces of C_1 or C_2 spaces are C_1 , or C_2 .
- (d) Subspaces of Lindelöf, separable space are not necessary Lindelöf or separable. But
 closed subspaces of Lindelöf space are Lindelöf.
- (e) Eg. I^2 endowed with order topology is Lindelöf but $I \times (0,1)$ is not Lindelöf.
- (f) Products of Lindelöf space is not necessary Lindelöf, but countbalely products separable space is separable.
- 51 (g) Eg. Sergenfry Space R_l^2 is not Lindelöf.

- 52 (h) Image of Continuous map on Lindelöf, separable is Lindelöf, separable. If a continuous map is open, then image from C_1 , C_2 space is also C_1 , C_2 .
- (i) A class of disjoint open sets in separable space is countable.
- 55 (j) X is Lindelöf, Y is compact, then $X \times Y$ is Lindelöf.
- (k) If X is a C_1 topology group, if X is Lindelöf or separable, then X is C_2 .[Hint: B_n is a countable basis at e, D is a countable dense subset, then $\{dB_n|d\in D\}$ is a basis. If X is Lindelöf, then for every n, there is a countable set $C_n\in X$, such that $\mathcal{K}_n=cB_n|c\in C_n$ is an open cover of X, then $\bigcup_{n=1}^{\infty}\mathcal{K}_n$ is a basis.]