

Programozási alapismeretek

- ➤ További programozási tételek
- ➤ <u>Másolás</u> függvényszámítás
- ➤ <u>Kiválogatás</u>
- > Szétválogatás
- **>** <u>Metszet</u>
- > Unió
- > Programozási tételek visszatekintés

További programozási tételek

Mi az, hogy programozási tétel?

Típusfeladat általános megoldása.

- ➤ Sorozat → érték
- \triangleright Sorozat \rightarrow sorozat
- \triangleright Sorozat \rightarrow sorozatok
- \triangleright Sorozatok \rightarrow sorozat

Feladatok:

- Egy számsorozat tagjainak adjuk meg az abszolút értékét!
- Egy szöveget alakítsunk át csupa kisbetűssé!
- > Számoljuk ki két vektor összegét!
- Készítsünk függvénytáblázatot a sin(x) függvényről!
- Ismerünk N dátumot 'éé.hh.nn' alakban, adjuk meg őket 'éé. hónapnév nn.' alakban!

Feladatok:

- Egy számsorozat tagjainak adjuk meg az abszolút értékét!
- > Egy szöveget alakítsunk át csupa kisbetűssé!
- > Számoljuk ki két vektor összegét!
- Készítsünk függvénytáblázatot a sin(x) függvényről!
- Ismerünk N dátumot ,éé.hh.nn' alakban, adjuk meg ,éé. hónapnév nn' alakban!

Mi bennük a közös?

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám, a sorrend is marad. Az elemeken operáló függvény ugyanaz.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1..N} \in \mathbb{H}_1^N$$

 $f:H_1 \rightarrow H_2$

 \triangleright Kimenet: $Y_{1..N} \in \mathbb{H}_2^N$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Másként: $Y_{1..N} = f(X_{1..N})$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Algoritmus:

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$ $f: H_1 \rightarrow H_2$

- ≻ Kimenet: Y_{1..N}∈H₂^N
- > Előfeltétel: -
- > Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

Y[i] := f(X[i])

Változó i:Egész

Megjegyzés: nem feltétlenül kell ugyanaz az i index a két tömbhöz, pl.:

Utófeltétel:
$$\forall i (1 \le i \le N): Y_{p(i)} = f(X_i)$$

i=1..N

Y[p(i)] := f(X[i])

Változó i:Egész

p(i) lehet pl. 2*i, N-i+1, ... (megfelelő Y tömb mérettel, ill. indexintervallummal definiálva; Y részsorozata a kimenet; p injektív)

Specifikáció (egy gyakori speciális eset)₁:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$\begin{array}{c} X_{1..N} \in H^{N} \\ \hline g: H \rightarrow H \\ T: H \rightarrow L \end{array}$$

- \triangleright Kimenet: $Y_1 \in H^N$
- ➤ Előfeltétel: –
- \gt Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = f(X_i)$

> Definíció:
$$f(x) := \begin{cases} g(x), & \text{ha } T(x) \\ x, & \text{egyébként} \end{cases}$$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

- ▶ Bemenet: N∈N
 - $X_1 \in H_1^N$ $f:H_1 \rightarrow H_2$
- ≻ Kimenet: Y_{1 N}∈H₂^N
- > Előfeltétel: –
- > Utófeltétel: ∀i(1≤i≤N): Y;=f(X;)

f:H→H

Specifikáció (egy gyakori speciális eset)₁:

> Bemenet: $N \in \mathbb{N}$

$$X_{1 N} \in \mathbb{H}^N$$

 $g:H\to H$

 $T:H \rightarrow L$

- > Kimenet: $Y_1 \in H^N$
- ➤ Előfeltétel: –
- ➤ Utófeltétel: ∀i(1≤i≤N):

$$(T(X_i) \to Y_i = g(X_i) \quad \text{\'es}$$

$$\text{nem } T(X_i) \to Y_i = X_i)$$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$

≻ Kimenet: Y_{1 N}∈H₂^N

> Előfeltétel: –

> Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

Algoritmus₁:

Specifikáció (egy gyakori speciális eset)₁:

➤ Bemenet: N∈N

 $X_{1..N} \in H^N$

g:H→H T:H→L

➤ Kimenet: Y_{1,N}∈H^N

> Előfeltétel: –

> Utófeltétel: ∀i(1≤i≤N):

 $(T(X_i) \rightarrow Y_i = g(X_i)$ és

nem $T(X_i) \rightarrow Y_i = X_i$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció (egy másik speciális eset)₂:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1 N} \in \mathbb{H}^N$$

- \triangleright Kimenet: $Y_{1,N} \in \mathbb{H}^N$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = X_i$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$

- ≻ Kimenet: Y_{1..N}∈H₂^N
- > Előfeltétel: –
- > Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

Megjegyzés:

nincs f függvény, helyesebben identikus (f(x):=x).

Algoritmus₂:

Specifikáció: > Bemenet: $N \in \mathbb{N}$ $X_{1..N} \in H_1^N$ $f: H_1 \rightarrow H_2$ > Kimenet: $Y_{1..N} \in H_2^N$ > Előfeltétel: -> Utófeltétel: $\forall i (1 \le i \le N): Y_i = f(X_i)$

Megjegyzés:

Az Y:=X értékadással helyettesíthető, ha a két tömb azonos típusú. Ha az indexek különbözőek (p nem identikus), akkor:

Specifikáció:

» Számoljuk ki két vektor összegét!

 \triangleright Bemenet: $N \in \mathbb{N}$

$$P_{1..N}, Q_{1..N} \in \mathbb{R}^N$$

$$\mathbf{f}: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \ \mathbf{f}(x,y) := x + y$$

- > Kimenet: $R_1 \in \mathbb{R}^N$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $R_i = P_i + Q_i$

Specifikáció:

 $(P,Q) \in (R \times R)^N$

- ▶ Bemenet: N∈N
 - $X_{1..N} \in H_1^N$
 - $f:H_1 \rightarrow H_2$
- ≻Kimenet: Y_{1..N}∈H₂^N
- ➤ Előfeltétel: –
- > Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

Algoritmus:

$$i=1..N$$

$$R[i] := P[i] + Q[i]$$

Változó i:Egész

Feladatok:

- > Adjuk meg egy osztály kitűnő tanulóit!
- > Adjuk meg egy természetes szám összes osztóját!
- > Adjuk meg egy mondat magas hangrendű szavait!
- > Adjuk meg emberek egy halmazából a 180 cm felettieket!
- > Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- Soroljuk föl egy szó magánhangzóit!

Mi bennük a közös?

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

Feladatok:

- > Adjuk meg egy osztály kitűnő tanulóit!
- Adjuk meg egy természetes szám összes osztóját!
- Adjuk meg egy mondat magas hangrendű szavait!
- Adjuk meg emberek egy halmazából a 180 cm felettieket!
- Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- > Soroljuk föl egy szó magánhangzóit!

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N$,

 $T:H\rightarrow L$

- \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{N}^{\mathbb{N}}$
- ➤ Előfeltétel: –
- > Utófeltétel: Db = $\sum_{i=1}^{N} 1$ és $T(X_i)$

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ \'es}$

 $Y \subseteq (1,2,\ldots,N)$

Másképp: (Db, Y) = Kiválogat i $\lim_{\substack{i=1 \\ T(X_i)}}^{N}$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

> Az első Db elemet használya

L. Megszámolás tételt!

16/56

SALIFORNIA O POLIVILIA DE ROLANDO BOTVOS NO POLIVILIA DE ROLAN

Algoritmus:

Megjegyzés:

A sorszám általánosabb, mint az érték. Ha mégis érték kellene, akkor Y[Db]:=X[i] szerepelne. (Ekkor a specifikációt is módosítani kell! Lásd később!)

Értékek kiválogatása (tömören): Specifikáció₂:

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

- \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{H}^{\mathbb{N}}$
- > Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $T(X_i)$

 $\forall i (1 \le i \le Db): T(Y_i) \text{ \'es}$ $Y \subset X$

Másképp: (Db, Y) = Kiválogat X_i

Specifikáció:

➤ Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

≻ Kimenet: $Db \in \mathbb{N}, Y_{1,N} \in \mathbb{N}^{\mathbb{N}}$

Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{\infty} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i})$ és $Y \subseteq (1,2,...,N)$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, H_{1.N} \in \mathbb{R}^N$

 $Poz:\mathbb{R} \to \mathbb{L}, Poz(x):=x>0$

 \triangleright Kimenet: $Db \in \mathbb{N}, NF_{1..N} \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: –

 \rightarrow Utófeltétel₁: Db= $\sum_{i=1}^{1}$ 1 és

 $\forall i (1 \le i \le Db): H_{NF_i} > 0$ és $NF \subseteq (1,2,...,N)$

► Utófeltétel₂: (Db, NF) = Kiválogat i $\underset{H_{i>0}}{\overset{i=1}{\underset{H_{i>0}}{\text{Utofeltétel}}}$ Adjuk meg egy év azon napjait, amikor délben nem fagyott!

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

➤ Kimenet: Db∈N, Y_{1..N}∈N^N

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{\infty} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $Y\subseteq(1,2,...,N)$

i:Egész

Algoritmus:

i=1.. N

Db:=Db+1

Y[Db]:=i

T(X[i])

 $Y \subseteq (1,2,...,N)$ Db:=0

8. Kiválogatás helyben

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N$
- \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1,N} \in \mathbb{H}^{\mathbb{N}}$
- ➤ Előfeltétel: –
- ➤ Utófeltétel: $Db = \sum_{i=1}^{i=1} 1$ és $Y_{1..Db} \subseteq X$ és $\forall i (1 \le i \le Db)$: $T(Y_i)$

Programparaméterek:

Konstans

MaxN:**Egész**(???)

Típus

THk=**Tömb**[1..MaxN:TH]

Változó

N:**Egész**, X:THk

Itt a bemenetben szereplő X és a kimenetben szereplő Y lehet a programban ugyanaz a változó. Jelöljük ezt is X-szel. Teljesülni kell rá a megálláskor (meghagyva a specifikációbeli műveleteket):

 $X_{1,Db}^{\text{kimeneti}} \subseteq X_{1,N}^{\text{bemeneti}}$ és $\forall i (1 \le i \le Db): T(X_i^{\text{kimeneti}})$

8. Kiválogatás helyben

Ötlet:

Itt olyan helyre tesszük a kiválogatott elemet, amelyre már nincs szükségünk.

Algoritmus:

Specifikáció:

- > Bemenet: N∈N, X∈H^N
- \succ Kimenet: $Db \in \mathbb{N}$, $X' \in H^{\mathbb{N}}$
- > Előfeltétel: -
- > Utófeltétel: $Db = \sum_{i=1}^{T} 1$ és $X'_{1..Db} \subseteq X$ és $\forall i (1 \le i \le Db): T(X'_i)$

Speciális sorozat típus: dinamikus tömb

A programozás a tömb típuson kívül sokféle sorozat típust ismer. Közülük az egyik egy olyan indexelhető típus, aminek az elemszáma futás közben növelhető (ebből a szempontból a szöveg típusra hasonlít).

Műveletei:

- Hossz(S) az S sorozat és a neki megfelelő tömb elemei száma
- ➤ Végére(S,x) az S tömb végére egy új elemet, az x-et illeszti
- ➤ S[i] az S tömb i-edik eleme
- További műveletek is lehetnek, most nem térünk ki rá.
- Figyelem: e típus használata jelentősen megnövelheti a program futási idejét!

8. Kiválogatás dinamikus tömbbe

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{H}^N$,

 $T:H\rightarrow L$

 \triangleright Kimenet: $Y_1 \in \mathbb{N}$

➤ Előfeltétel: -

➤ Utófeltétel: $\underset{T(X_i)}{\text{Hossz}(Y)} = \sum_{i=1}^{\infty} 1$ és

 $\forall y \in Y : T(X_y) \text{ és}$

 $Y\subseteq(1,2,...,N)$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

Annyi elemet használva, amennyit kell.

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^{\mathbb{N}},$

T:H→L

➤ Kimenet: $Db \in N, Y_{1..N} \in N^N$

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és } Y \subseteq (1,2,...,N)$

8. Kiválogatás dinamikus tömbbe

Algoritmus:

Megjegyzés:

A sorszám általánosabb, mint az érték. Ha mégis **érté**k kellene, akkor Végére(Y,X[i]) szerepelne. (Ekkor a specifikációt is módosítani kell!)

Feladatok:

- > Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!
- > Adjuk meg emberek egy halmazából a 140 cm alattiakat, a 140 és 180 cm közöttieket és a 180 cm felettieket!
- Adjuk meg emberek egy halmazából a télen, tavasszal, nyáron, illetve ősszel születetteket!

Mi bennük a közös?

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt! Azaz az összes bemeneti elemet "besoroljuk" a kimenet valamely sorozatába.

A többfelé szétválogatás visszavezethető a kétfelé szétválogatásra.

Feladatok:

- Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!
- Adjuk meg emberek egy halmazából a 140 cm alattiakat, a 140 és 180 cm közöttieket és a 180 cm felettieket!
- Adjuk meg emberek egy halmazából a télen, tavasszal, nyáron, illetve ősszel születetteket!

Specifikáció:

➤ Bemenet: $N \in \mathbb{N}, X_{1.N} \in \mathbb{H}^N$

 $T:H \rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{N}^{\mathbb{N}}, Z_{1..N} \in \mathbb{N}^{\mathbb{N}}$

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i})$ és

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és

 $Y\subseteq(1,2,...,N)$ és $Z\subseteq(1,2,...,N)$

N darab "valami" közül kell megadni az

illetve nem rendelkezőt!

összes, adott T tulajdonsággal rendelkezőt,

Specifikáció₂:

► Utófeltétel₂: (Db, Y, Z) = Szétválogat i

Értékek szétválogatása esetén:

$$(Db, Y, Z) = Sz\acute{e}tv\acute{a}logat X_i$$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

Algoritmus:

Specifikáció:		
> Bemenet:	N∈N	
	$X_{1N} \in H^N$	
	T:H→L	
➤ Kimenet:	Db∈N	
	$Y_{1N} \in N^N, Z_{1N} \in N^N$	
> Előfeltétel:		
> Utófeltétel	: Db= $\sum_{i=1}^{N} 1$ és	
	i=1 T(X _i)	
	∀i(1≤i≤Db): T(X _{Y:}) és	
	$\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és	
	Y⊆(1,2,,N) és Z⊆(1,2,,N)	

Megjegyzés:

Itt is szerepelhetne := i helyett := X[i], ha csak az értékekre lenne szükségünk. (A specifikáció is módosítandó!)

Probléma:

Y-ban és Z-ben együtt csak N darab elem van, azaz elég lenne egyetlen N-elemű sorozat.

Megoldás:

► Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N, T: \mathbb{H} \to \mathbb{L}$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: –

➤ Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $\forall i(Db+1 \le i \le N)$: nem $T(X_{Y_i})$ és

 $Y \in Permutáció(1,2,...,N)$

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H^N$

T:H→L

> Kimenet: Db∈N

 $Y_{1..N} \in N^N, Z_{1..N} \in N^N$

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{\substack{i=1\\T(X_i)}}^{N} 1$ és

 $\forall i (1 \le i \le Db)$: $T(X_{Y_i})$ és

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és

Y⊆(1,2,...,N) és Z⊆(1,2,...,N)

Specifikáció₂:

► Utófeltétel₂: (Db, Y) = Szétválogat₂i

Értékek szétválogatása esetén:

$$(Db, Y) = Sz\acute{e}tv\acute{a}logat_2 X_i$$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

i:Egész

Algoritmus:

```
> Bemenet: N∈N, X_{1.N}∈H^N
➤ Kimenet: Db∈N, Y<sub>1.N</sub>∈N<sup>N</sup>
> Előfeltétel: -
> Utófeltétel: Db= \sum_{i=1}^{\infty} 1 és
                 \forall i(1 \le i \le Db): T(X_{Y}) és
                 \forall i(Db+1 \le i \le N): nem T(X_{Y}) és
                 Y∈Permutáció(1,2,...,N)
```

Db:=0 [≅elölről ir	ind2, i :Egé s	
ind2:=N+1 [≅hát		
i=1		
T	T(X[i])	
Db:=Db+1	ind2:=ind2-1	
Y[Db]:=i	Y[ind2]:=i	

Megjegyzés: Itt célszerű egy segédváltozó arra, hogy hol tartunk Y-ban hátulról: ind2.

10. Szétválogatás dinamikus tömbökbe

A kiválogatáshoz hasonlóan itt is használhatunk az eredmények tárolásához bővíthető elemszámú sorozatokat.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^{N}, T: \mathbb{H} \to \mathbb{L}$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

- \succ Kimenet: $Y_1 \in \mathbb{N}^*, Z_1 \in \mathbb{N}^*$
- ➤ Előfeltétel: –
- ► Utófeltétel: hossz(Y)= $\sum_{i=1}^{n} 1$ és Y⊆(1,2,...,N) és

$$T(X_i)$$

$$\forall y \in Y : T(X_v)$$
 és

$$hossz(Z) = \sum_{i=1}^{N} 1 \text{ \'es } Z \subseteq (1,2,...,N) \text{ \'es}$$

$$nem T(X_i)$$

$$\forall z \in Z$$
: nem $T(X_z)$

10. Szétválogatás dinamikus tömbökbe

Algoritmus:

Specifikáció:
Bemenet: N∈N, $X_{1,N}$ ∈H ^N , T:H \rightarrow L
> Kimenet: $Y \in N^*$, $Z \in N^*$
≻ Előfeltétel: – <u>N</u>
> Utófeltétel: hossz(Y)= $\sum_{i=1}$ 1 és Y⊆(1,2,,N) és
$T = T(X_i)$ $\forall y \in Y : T(X_y)$ és
$hossz(Z) = \sum_{i=1}^{N} 1 \text{ \'es } Z \subseteq (1,2,,N) \text{ \'es}$
nem $T(X_i)$

10. Szétválogatás helyben

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{N}^N$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}$

➤ Előfeltétel: – N

➤ Utófeltétel: $Db = \sum_{i=1}^{\infty} 1$ és $Y \in Permutáció(X)$ $T(X_i)$

 $\forall i (1 \le i \le Db): T(Y_i)$ és $\forall i (Db+1 \le i \le N): nem T(Y_i)$

Programparaméterek:

Konstans

MaxN:**Egész**(???)

Típus

THk=**Tömb**[1..MaxN:TH]

Változó

N:**Egész**, X:THk

. . .

és

Megjegyzés: bemenetben szereplő X és a kimenetben szereplő Y legyen a programban ugyanaz az X változó!

Algoritmikus ötlet:

- 1. Vegyük ki (másoljuk le) a sorozat első elemét:
- 2. Keresünk hátulról egy elemet, aminek elől a helye (mert T tulajdonságú, nem od<u>avaló):</u>

3. A megtalált elemet tegyük az előbb keletkezett lyukba:

$$\otimes$$
 x x x x x x X O x x x x x

A lyuk mögött és az 1. elemmel már rendben vagyunk.

4. Most keletkezett egy lyuk hátul. Az előbb betöltött lyuktól indulva elölről keressünk hátra teendő (nem odavaló: nem T-tulajdonságú) elemet:

5. A megtalált elemet tegyük a hátul levő lyukba, majd újra hátulról kereshetünk!

$$\otimes$$
 x x O x x \otimes x x x x x

Az elől keletkezett lyuk előttiek és a hátrébb mozgatott elemmel kezdve rendben vagyunk.

- 6. ... és így tovább ...
- 7. Befejezzük a keresést, ha valahonnan elértük a lyukat.

8. Erre a helyre az 1. lépésben kivettet visszatesszük.

Utófeltétel pontosítása:

Teljesülni kell az X vektorra a megálláskor (meghagyva a specifikációbeli műveleteket):

$$X_{1..N}^{kimeneti} = permutáció(X_{1..N}^{bemeneti}) és$$
 $\forall i(1 \le i \le Db): T(X_{i}^{kimeneti}) és \forall i(Db+1 \le i \le N): nem T(X_{i}^{kimeneti})$

Algoritmus:

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X_{1-N} \in H^N$
- ≻ Kimenet: Db∈N, X_{1-N}∈H^N
- > Előfeltétel: -
- > Utófeltétel: Db = $\sum_{i=1}^{N} 1$ és X'∈Permutáció(X)

és $\forall i (1 \le i \le Db)$: $T(X'_i)$ és $\forall i (Db+1 \le i \le N)$: nem $T(X'_i)$

e:=1	[a szétválogatandók	elsője]
u:=1	N [a szétválogatandók	utolsója]
y:=X[e]		
e <u< td=""></u<>		
HátulrólKeres(e, <mark>u,Van</mark>)		
I	Van	N
-	X[e]:=X[u]	
•	e:=e+1	
	ElölrőlKeres(<mark>e,u,Van</mark>)	
Ī	Van	
7	X[u]:=X[e]	
Ī	u:=u-1	

Változó e,u**:Egész** y:TH Van:**Logikai**

Algoritmus:

Megjegyzés: Az X változóról az algoritmus végrehajtása közben különböző állításokat mondhatunk:

- 1. kezdetben a bemenetbeli sorozat;
- 2. a futás végén a bemeneti X permutációja a szétválogatás utófeltétele szerint; Ún. ciklusinvariáns
- közben e-ig T tulajdonságú elemek, u-tól nem T tulajdonságú elemek, köztük nem vizsgált elemek.

ElölrőlKeres(e,u:**Egész, Van:Logikai**)

e = e + 1

Van:=e<u

HátulrólKeres(e,**u:Egész, Van:Logikai**)

e<u és nem T(X[u])

u:=u-1

Van:=e<u

Feladatok:

- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a nem költöző madarakat!
- ➤ Két ember szabad órái alapján mondjuk meg, hogy mikor beszélgethetnek egymással!
- > Adjuk meg azokat az állatfajokat, amelyeket a budapesti és a veszprémi állatkertben is megnézhetünk!
- Három virágárusnál kapható virágok közül adjuk meg azokat, amelyek mindegyiknél kaphatóak!

Feladatok:

- Adjuk meg két természetes szám közös osztóit!
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a nem költöző madarakat!
- Két ember szabad órái alapján mondjuk meg, hogy mikor beszélgethetnek egymással!
- Adjuk meg azokat az állatokat, amelyeket a budapesti és a veszprémi állatkertben is megnézhetünk!

Mi bennük a közös?

Ismerünk két halmazt (tetszőleges, de azonos típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek mindkét halmazban szerepelnek! A több halmaz visszavezethető a két halmaz esetére.

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N, Y_{1,M} \in \mathbb{H}^M$

 \gt Kimenet: $Db \in \mathbb{N}, Z_{1..min(\mathbb{N}, \mathbb{M})} \in \mathbb{H}^{min(\mathbb{N}, \mathbb{M})}$

➤ Előfeltétel: HalmazE(X) és HalmazE(Y)

$$\triangleright$$
 Utófeltétel:Db= $\sum_{\substack{i=1\\X_i \in Y}}^{N} 1$ és

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ \'es } Z_i \in Y) \text{ \'es}$

HalmazE(Z)

Az első Db elemet használya

Az elemtartalmazás egyértelmű-e.

Ismerünk két halmazt (tetszőleges típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek mindkét halmazban szerepelnek!

Specifikáció₂:

➤ Utófeltétel₂: (Db,Z)=Metszet(N,X,M,Y) pelnek!

Specifikáció₃:

 \triangleright Utófeltétel₃: (Db,Z)=Kiválogat X_i

Ismerünk két halmazt (tetszőleges típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek mindkét halmazban szerepelnek!

Specifikáció:

- > Bemenet: $N,M \in N, X_{1.N} \in H^N, Y_{1.M} \in H^M$
- ➤ Kimenet: Db∈N, Z_{1,min(N,M)} ∈ H^{min(N,M)}
- > Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: Db= $\sum_{\substack{i=1\\X_i \in Y}} 1$ és ∀i(1≤i≤Db): ($Z_i \in X$ és $Z_i \in Y$) és HalmazE(Z)

Algoritmus:

Specifikáció:

> Bemenet: $N,M \in N, X_{1..N} \in H^N, Y_{1..M} \in H^M$ > Kimenet: $Db \in N, Z_{1..min(N,M)} \in H^{min(N,M)}$ > Előfeltétel: HalmazE(X) és HalmazE(Y)> Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $\forall i(1 \le i \le Db)$: $(Z_i \in X$ és $Z_i \in Y)$ és HalmazE(Z)

Kiválogatás tétel!

Eldöntés tétel!

Megjegyzés:

A megoldás egy kiválogatás és egy eldöntés.

Algoritmus:

Az eldöntés tétel, mivel logikai értéket ad, **függvényként** implementálva szerepelhetne az elágazás feltételében:

```
Specifikáció:

> Bemenet: N,M \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N, Y_{1..M} \in \mathbb{H}^M

> Kimenet: Db \in \mathbb{N}, Z_{1..min(N,M)} \in \mathbb{H}^{min(N,M)}

> Előfeltétel: HalmazE(X) és HalmazE(Y)

> Utófeltétel: Db = \sum_{\substack{i=1 \ X_i \in Y}}^{N} 1 és

\forall i(1 \le i \le Db): (Z_i \in X és Z_i \in Y) és

HalmazE(Z)
```


Függvény nélkül: az elágazás előtt az eldöntés tétel algoritmusa, kimenete a Van logikai változó az elágazás feltétele.

Feladatvariációk:

- ➤ Ismerünk két halmazt, meg kell adnunk a közös elemek számát!
- ➤ Ismerünk két halmazt, meg kell adnunk, hogy van-e közös elemük!
- ➤ Ismerünk két halmazt, meg kell adnunk egyet közös elemeik közül!

Feladatok:

- A télen és a nyáron megfigyelhető madarak alapján adjuk meg, hogy milyen madarakat figyeltek meg!
- Két ember szabad órái alapján mondjuk meg, hogy mikor tudjuk elérni valamelyiket!
- Három szakkör tanulói alapján soroljuk fel a szakkörre járókat!
- > Adjuk meg azokat az állatfajokat, amelyeket a budapesti vagy a veszprémi állatkertben megnézhetünk!

Feladatok:

- Két szakkör tanulói alapján adjuk meg a szakkörre járókat!
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a megfigyelhető madarakat!
- Két ember szabad órái alapján mondjuk meg, hogy mikor tudjuk elérni valamelyiket!
- Adjuk meg azokat az állatokat, amelyeket a budapesti vagy a veszprémi állatkertben megnézhetünk!

Mi bennük a közös?

Ismerünk két halmazt (tetszőleges, de azonos típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek legalább az egyik halmazban szerepelnek!

A több halmaz visszavezethető a két halmaz esetére.

Specifikáció:

 \triangleright Bemenet: N,M \in N,

$$X_{1..N} \in \mathbb{H}^{N}, Y_{1..M} \in \mathbb{H}^{M}$$

 \triangleright Kimenet: $Db \in \mathbb{N}, Z_{1 N+M} \in \mathbb{H}^{N+N}$

> Előfeltétel: HalmazE(X) és HalmazE(Y)

> Utófeltétel: $Db=N+\sum_{j=1}^{M}1$ és

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ vagy } Z_i \in Y) \text{ és}$

HalmazE(Z)

Ismerünk két halmazt (tetszőleges típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek legalább az egyik halmazban szerepelnek!

> Az első Db elemet használya

Specifikáció₂:

➤ Utófeltétel₂: (Db,Z)=Unió(N,X,M,Y)

Ismerünk két halmazt (tetszőleges típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek legalább az egyik halmazban szerepelnek!

Specifikáció₃:

M \triangleright Utófeltétel₃: (Db,Z)= X + Kiválogat Y_i

Specifikáció:

- ▶ Bemenet: N,M∈N, X_{1..N}∈H^N, Y_{1..M}∈H^M
- ➤ Kimenet: Db∈N, Z_{1..N+M}∈H^{N+M}
- Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: Db=N+ ∑ 1 és $\forall i(1 \le i \le Db): (Z_i \in X \text{ vagy } Z_i \in Y) \text{ és}$

HalmazE(Z)

i,j:Egész

Algoritmus:

Specifikáció:

- ➤ Bemenet: $N,M \in N, X_{1..N} \in H^N, Y_{1..M} \in H^M$
- ➤ Kimenet: Db∈N, Z_{L,N+M}∈H^{N+M}
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel:Db=N+∑1 és

 $\forall i(1 \le i \le Db): (Z_i \in X \text{ vagy } Z_i \in Y) \text{ és}$ HalmazE(Z)

Kiválogatás tétel!

Eldöntés tétel!

Feladatvariációk:

- Ismerünk két halmazt, meg kell adnunk az elemek együttes számát!
- ➤ Ismerünk két halmazt, meg kell adnunk a különbségüket (X\Y)!
- > Ismerünk két halmazt, meg kell adnunk azon elemeket, amelyek pontosan az egyikben vannak! $(X \setminus Y \cup Y \setminus X)$

Programozási tételek

- ➤ Sorozat → sorozat
- 7. Másolás függvényszámítás
- 8. Kiválogatás
- 9. Rendezés (később lesz)
- ➤ Sorozat → sorozatok
- 10. Szétválogatás
- ➤ Sorozatok → sorozat
- 11. Metszet
- 12. Unió

