Question 1.

For $k \in \mathcal{K}, n \in \mathcal{N}, m = 1, ..., M$, we define the binary variables $x_{k,m,n} \in \{0,1\}$ such that $x_{k,m,n}=1$ if and only if $p_{k,m,n} \leq p_{k,n} < p_{k,m+1,n}$, with $p_{k,M+1,n}$ interpreted as $+\infty$. Thus, the constraint by the total power budget is

$$\sum_{\substack{k \in \mathcal{K} \\ n \in \mathcal{N} \\ m=1,\dots,M}} p_{k,m,n} x_{k,m,n} \le p$$

the constraint that each channel serves one and only one user is

$$\sum_{\substack{k \in \mathcal{K} \\ m=1,\dots,M}} x_{k,m,n} = 1, \, \forall n \in \mathcal{N}$$

and the target function is

$$U := \sum_{\substack{k \in \mathcal{K} \\ n \in \mathcal{N} \\ m = 1, \dots, M}} r_{k, m, n} x_{k, m, n}$$

In all, we have the ILP below

$$x_{k,m,n} \in \{0,1\} \tag{1}$$

$$x_{k,m,n} \in \{0,1\}$$

$$\sum_{k,m,n} p_{k,m,n} x_{k,m,n} \leq p$$

$$\sum_{k,m} x_{k,m,n} = 1, \forall n \in \mathcal{N}$$

$$(3)$$

$$\sum_{k,m} x_{k,m,n} = 1, \forall n \in \mathcal{N}$$
(3)

with target function

$$U := \sum_{k,m,n} r_{k,m,n} x_{k,m,n}$$

the corresponding LP is obtained by replacing (1) with $x_{k,m,n} \in [0,1]$

Question 2.

Proof of Lemma 1

Suppose $p_{k,m,n} \leq p_{k',m',n}$ and $r_{k,m,n} \geq r_{k',m',n}$. Given an optimal solution to the ILP, if $x_{k',m',n} \neq 0$, then $x_{k',m',n} = 1$ by (1). If we replace $x_{k,m,n}$ by 1 and $x_{k',m',n}$ by 0, (1) and (3) are clearly satisfied, (2) is also satisfied since $p_{k,m,n} \leq p_{k',m',n}$, and U will not decrease since $r_{k,m,n} \geq r_{k',m',n}$, so we get an optimal where $x_{k',m',n} = 0$

Question 3.

REMOVE-IP-DOMINATED(n)

- 1 sort the pairs $(p_{k,m,n}, r_{k,m,n})$ in increasing order of $p_{k,m,n}$ into an array A. If several pairs have the same p, leave only the one with the greatest r
- 2 cm = A[0].r
- 3 for i = 0 to A.length-1
- 4 if $A[i].r \ge cm$
- 5 cm = A[i].r
- 6 else remove A[i].p and A[i].r from the original data

sorting $p_{k,m,m}$ takes time $O(KM \log(KM))$, the loop from line 3 takes time O(KM). We will run REMOVE-IP-DOMINATED for each $n \in \mathcal{N}$, so in all it takes time $O(NKM \log(KM))$ to remove IP-dominated terms.

N.B. Accounting for that $p_{k,m,n}$ is increasing according to m for k,n fixed, we may sort quicker in line 1 and achieve a complexity of $O(NKM \log(K))$.

Question 4.

Proof of Lemma 2

Suppose $p_{k,m,n} \leq p_{k',m',n} \leq p_{k'',m'',n}$ and

$$\frac{r_{k'',m'',n} - r_{k',m',n}}{p_{k'',m'',n} - p_{k',m',n}} \ge \frac{r_{k',m',n} - r_{k,m,n}}{p_{k',m',n} - p_{k,m,n}} \tag{4}$$

note that we have

$$p_{k',m',n} = p_{k,m,n} \frac{p_{k'',m'',n} - p_{k'',m',n}}{p_{k'',m'',n} - p_{k,m,n}} + p_{k'',m'',n} \frac{p_{k',m',n} - p_{k,m,n}}{p_{k'',m'',n} - p_{k,m,n}}$$
(5)

and from (4) we can deduce that

$$r_{k',m',n} \le r_{k,m,n} \frac{p_{k'',m'',n} - p_{k',m',n}}{p_{k'',m'',n} - p_{k,m,n}} + r_{k'',m'',n} \frac{p_{k',m',n} - p_{k,m,n}}{p_{k'',m'',n} - p_{k,m,n}}$$
(6)

Given an optimal solution to the LP, we can construct another solution with

$$x'_{k,m,n} = x_{k,m,n} + x_{k',m',n} \frac{p_{k'',m'',n} - p_{k',m',n}}{p_{k'',m'',n} - p_{k,m,n}}$$

$$x'_{k',m',n} = 0$$

$$x'_{k'',m'',n} = x_{k'',m'',n} + x_{k',m',n} \frac{p_{k',m',n} - p_{k,m,n}}{p_{k'',m'',n} - p_{k,m,n}}$$

- (3) is satisfied since $x'_{k,m,n} + x'_{k',m',n} + x'_{k'',m'',n} = x_{k,m,n} + x_{k',m',n} + x_{k'',m'',n}$, and so is (2) since $x'_{k,m,n}, x'_{k',m',n}, x'_{k'',m'',n} \ge 0$ and none of them can surpass 1 or else one of the $x' \cdot, \cdot, n$ would be negative.
- (2) is satisfied owing to (5), and $U' \ge U$ owing to (6). Thus we get an optimal solution where $x_{k',m',n} = 0$

In the pseudo-code below, we consider the input as points in the plane with coordinates $(p_{k,m,n}, r_{k,m,n})$. For simplicity, for a stack S, we note S[0] the top element and S[1] the second top one; for tow points A, B in the plane, we note L(A, B) the slope of the line formed between them; we say B is dominated by A and C if and only if $A.p \leq B.p \leq C.p$ and $L(A, B) \leq L(B, C)$, which is just another interpretation of (4)

REMOVE-LP-DOMINATED(n)

- 1 sort the pairs $(p_{k,m,n}, r_{k,m,n})$ in increasing order of $p_{k,m,n}$ into an array A. If several pairs have the same p, leave only the one with the greatest r
- 2 let S be a stack
 3 Push(A[0], S)
 4 Push(A[1], S)
 5 for i = 2 to A.length-1
 6 while $L(A[i],S[0]) \ge L(S[0],S[1])$ 7 Pop(S)
 8 Push(A[i], S)
 9 return S

Proof of correctness We use the loop invariant that after each iteration of line 5, S contains exactly all the points that are not dominated by points from A[0] to A[i], the line segments form a convex curve.

The invariant trivially holds before line 5. Suppose it holds before the ith iteration. During the ith iteration, the points removed by line 7 are clearly dominated by A[i] and S[1]. After the **while** loop terminates, we can be sure that all points in A between S[0] and A[i] are dominated by these two points and thus cannot be added to S, nor can the points between A[0] and S[0] by the loop invariant.

Note that the points in S form a convex curve, so that by L(A[i],S[0]) < L(S[0],S[1]) we have that after line 8 the points in S still form a convex curve and so no points in S are dominated by points from A[0] to A[i], and by the arguments above, these are exactly all the points that have this property.

Time complexity Line 1 takes time $O(KM \log(KM))$. Regarding the **for** loop from line 5 to 8, note that each point can only be pushed or popped only once, so in all the **for** loop takes time O(KM). We run the algorithm for each $n \in \mathcal{N}$, so altogether it takes time $O(NKM \log(KM))$ to remove all LP-dominated terms.

Question 5.

TO DO After coding

Question 6.

Greedy Algorithm We consider establishing a greedy solution. As indicated in the question, for each n, we sort the $(p_{l,n}, r_{l,n})$ in ascending order of $p_{l,n}$. We add one more convention $\forall n, p_{0,n} = 0, r_{0,n} = 0$. Initially, we allocate to each channel no user, which means $(p_{0,n}, r_{0,n})$. Thus the initial utility is 0.

To increase the total utility, during every loop, we choose one channel to allocate more power. The criteria is the $e_{l,n} = \frac{r_{l+1,n} - r_{l,n}}{p_{l+1,n} - p_{l,n}}$, which shows the average augmentation of rate by increasing $p_{l,n}$ to $p_{l+1,n}$. So each time we choose the channel with the largest $e_{l,n}$. The loop ends when all channels have been allocated the largest power or $p \leq p_{current}$

When $p < p_{current}$, this means the last allocation is not feasible. So we allocate to the last channel a linear combination of its largest two powers. We have

$$\sum_{k \neq n} p_{l_k,k} + p_{l-1,n}$$

$$\sum_{k \neq n} p_{l_k,k} + p_{l,n} = p_{current} > p \tag{8}$$

We search for an ϵ such that

$$\sum_{k \neq n} p_{l_k,k} + \epsilon p_{l-1,n} + (1 - \epsilon) p_{l,n} = p \tag{9}$$

Combining (8) and (9), we get ϵ

$$\epsilon = \frac{p_{current} - p}{p_{l,n} - p_{l-1,n}}$$

GREEDY-ALGORITHM-SOLUTION(n)

- $1 \quad p_{current} = 0$
- 2 for n = 1 to N
- 3 l[n] = 0
- 4 while $p_{current} < p$
- 5 find the $n \in 1, ...N$ with the largest $e_{l[n]n} = \frac{r_{l[n]+1,n} r_{l[n],n}}{p_{l[n]+1,n} p_{l[n],n}}$, noted as n_m
- 6 $p_{current} += p_{(l[n_m]+1),n_m} p_{l[n_m],n_m}$
- $7 l[n_m] += 1;$
- 8 if $p_{current} == p$

Time Complexity Line 2 to 3 take O(N). Considering the **while** loop from line 4 to line 7, we use a priority queue to store the l[n], with $e_{l[n],n}$ as priority, every loop takes constant time. In the worst case, the final allocation could be $p_{L,n}, r_{L,n}$ for every n < N, and it takes NL loops to get that. The line 8 to the end takes constant time. So the complexity for the entire algorithm is O(NL)

Question 7.

TO DO After coding

Question 8.

DP Solution To find a DP Solution of the whole problem, we consider the subproblem: find the best utility we can get using only the first n channels with total power limit p'. Let $DP_{n,p}$ be the matrix who stores these values. We have the relation below:

$$DP(0, p') = 0 \quad \forall p' \in \{0...p\}$$

$$DP(n, 0) = 0 \quad \forall n \in \{0...N\}$$

$$DP(n, p') = \max_{l \in \{0, ..., L\}} \{DP(n - 1, p' - p_{l,n}) + r_{l,n}\}$$

By filling iteratively the matrix, we get the optimal allocation

DP-SOLUTION-MAXIMUM-UTILITY(n)

```
1 DP = Zeros[N][p]

2 for q = 1 to p

3 for n = 1 to N

4 for l = 1 to L
```

```
5  \mathrm{DP}[n][q] = \mathrm{MAX}(\mathrm{DP}[n][q], \, \mathrm{DP}[\text{n-1}][q - p_{l,n}] + r_{l,n})  6 return DP[N][P]
```

But this algorithm only return the maximum utility but not the optimal allocation. We need a way to store the optimal allocation and we decide to use another matrix of dimension (N,p) to store the optimal allocation for channel n in the sub problem (n,q) DP-solution(n)

```
1 DP = Zeros[N][p]
    LastTask = Zeros[N][p]
    for q = 1 to p
         for n = 1 to N
 4
              l_M = 0
 5
 6
               for l = 1 to L
                    if (DP[n-1][q - p_{l,n}] + r_{l,n}) \geq DP[n][q]
 7
                         DP[n][q] = DP[n-1][q - p_{l,n}] + r_{l,n}
 8
                         l_M = l
 9
               LastTask[n][q] = l_M
10
    q = p
11
    for n = N \text{ to } 1
         l_M = \text{LastTask}[n][q]
13
         x_{l_M,n} = 1
14
15
         q = p_{l_M,n}
16 return x
```

Time Complexity The loop from line 3 to line 10 takes O(NLp). The loop after line 12 takes O(N). Thus the time complexity of the entire algorithm is O(NLp)

Space Requirement The matrices DP and LastTask take O(Np)

Question 9.

DP Solution Right now we consider the subproblem: find the minimum power we need to reach total utility r using only first n channels. Here r ranges from 0 to $U := \sum_{k=1}^{n} r_{L,k}$. U is the highest utility we can get from these n channels. Let DP(n,r) be the matrix who stores these values. We have the relations below:

$$\begin{split} DP(0,r) &= \infty \quad \forall r \in \{0...U\} \\ DP(n,r^{-}) &= 0 \quad \forall n \in \{0...N\} \ \forall r^{-} \leq 0 \\ DP(n,r) &= \min_{l \in \{0,...,L\}} \{DP(n-1,r-r_{l,n}) + p_{l,n}\} \end{split}$$

By filling iteratively the matrix, we get the optimal allocation when DP(N,r) reaches p. If all values in DP[N][:] are less than p, we can reach the maximum utility U by assigning the maximum power.

```
DP-SOLUTION(n)
 1 \ U = 0
 2 for n = 1 to N
 3
         U += r_{L,n}
 4 DP = Infty[N][U]
    for n = 1 to N
 6
         DP[n][0] = 0
   LastTask = Zeros[N][U]
   r_m = U
   for r = 1 to U
10
         for n = 1 to N
             l_M = 0
11
              for l = 1 to L
12
                  if (r - r_{l,n}) \ge 0 and (DP[n-1][r - r_{l,n}] + p_{l,n}) \le DP[n][r]
13
                       DP[n][r] = DP[n-1][r - r_{l,n}] + p_{l,n}
14
                       l_M = l
15
                  elif (r - r_{l,n}) \le 0 and p_{l_n} \le DP[n][r]
16
                       DP[n][r] = p_{l_n}
17
                       l_M = l
18
             LastTask[n][q] = l_M
19
         if DP[N][r] > p
20
              r_M = r - 1
21
22
              break
```

```
\begin{array}{lll} 23 & r = r_M \\ \\ 24 & \textbf{for n} = \text{N to 1} \\ \\ 25 & l_M = \text{LastTask}[n][r_M] \\ \\ 26 & x_{l_M,n} = 1 \\ \\ 27 & r -= r_{l_M,n} \\ \\ 28 & \textbf{if } r \leq 0 \\ \\ 29 & \textbf{break} \\ \\ 30 & \textbf{return } x \end{array}
```

Time Complexity The loop from line 9 to line 22 takes O(NLU). The loop after line 24 takes O(N). Thus the time complexity of the entire algorithm is O(NLU)

Space Requirement The matrices DP and LastTask take O(NU)

Question 10.

Branch-and-Bound We set each node as a subproblem defined as *The highest utility we* can get with the constraint: $[l_1^- \leq l_1 \leq l_1^+, ..., l_N^- \leq l_N \leq l_N^+)]$, where the tuple (l_n^-, l_n^+) represents the lower and upper bound for each channel n.

```
BB-SOLUTION(n)
 1 \quad r_{max} = 0;
 2 let Q be an empty queue;
    ENQUEUE(Q, [(1, L), ..., (1, L)])
     while Q is not empty
           [(l_1^-, l_1^+), ..., (1_N^-, l_N^+)] = \text{Dequeue}(Q)
 5
           if \sum_{k=1}^{N} p_{l_{k}^{+},k} \leq p
 6
                  if \sum_{k=1}^{N} r_{l_{k}^{+},k} \geq r_{max}
 7
                        r_{max} = \sum_{k=1}^{N} r_{l_k^+, k}
 8
                        A_{best} = [l_1^+, ..., l_N^+]
 9
10
                  continue
           for k = 1 to n
11
                  if l_k^- \le l_k^+ - 1
12
13
                        break
```

```
 \begin{aligned} & mid = floor(\frac{l_k^- + l_k^+}{2}) \\ & 15 \qquad & \text{Enqueue}(\ Q,\ [(l_1^-, l_1^+), ..., (l_k^-, mid), ..., (1_N^-, l_N^+)]) \\ & 16 \qquad & \text{Enqueue}(\ Q,\ [(l_1^-, l_1^+), ..., (mid + 1, l_k^+), ..., (1_N^-, l_N^+)]) \\ & 17 \quad & \textbf{for}\ \mathbf{n} = 1\ \mathbf{to}\ \mathbf{N} \\ & 18 \qquad & x_{A_{best}[n],n} = 1 \\ & 19 \quad & \textbf{return}\ x \end{aligned}
```

Time Complexity In the worst case, we will have to treat every possible node, which leads to a time complexity of $O(L^N)$.