Comptage des couplages parfaits dans un graphe planaire

Yann Strozecki

25 décembre 2007

- Introduction
- Outils et schéma de la preuve
 - Définitions
 - Théorèmes importants
 - Résultat
- 3 Démonstration
 - Comptage des couplages dans un graphe avec orientation Pfaffienne
 - Les graphes planaires admettent une orientation Pfaffienne
 - Algorithme de construction d'une orientation dans un graphe planaire
- 4 Conclusion

• Le problème caractéristique de #P est le calcul du permanent qui est complet

- Le problème caractéristique de #P est le calcul du permanent qui est complet
- On obtient cette propriété à partir de la complétude par Turing réduction du comptage des couplages parfaits dans un graphe biparti

- Le problème caractéristique de #P est le calcul du permanent qui est complet
- On obtient cette propriété à partir de la complétude par Turing réduction du comptage des couplages parfaits dans un graphe biparti
- On remarque que décider si un graphe biparti admet un couplage parfait est dans P

Problème: peut-on faire des suppositions sur le graphe pour faire baisser la complexité de comptage?

Problème: peut-on faire des suppositions sur le graphe pour faire baisser la complexité de comptage?

Réponse : oui, si on suppose le graphe planaire!

Problème: peut-on faire des suppositions sur le graphe pour faire baisser la complexité de comptage?

Réponse : oui, si on suppose le graphe planaire!

Remarque : On peut tester si un graphe est planaire en temps polynômial (voir l'exposé de Stéphane).

L Définitions

Définition (Orientation impaire d'un cycle)

Soit G un graphe, C un cycle de longueur paire et \overrightarrow{G} une orientation, on dit que C est orienté de manière impaire par rapport à \overrightarrow{G} si le nombre d'arête dans le même sens est impair.

Outils et schéma de la preuve

Définition (Orientation Pfaffienne)

Soit un graphe G et \overrightarrow{G} une orientation, on dit qu'elle est Pfaffienne si pour tous couplages parfaits M et M', tout cycle de $M \cup M'$ est d'orientation impaire dans \overrightarrow{G} .

Remarque : Si M et M' sont deux couplages parfaits du même graphe, $M \cup M'$ est un ensemble d'arêtes isolées et de cycles de longueur paire.

Définition (Matrice antisymétrique d'adjacence)

Soit un graphe G et \overrightarrow{G} une orientation, on définit la matrice antisymétrique d'adjacence $A_S(\overrightarrow{G})$ par

$$a_{ij} = \left\{ egin{array}{l} +1, \; \mathsf{si} \; (\mathsf{i},\mathsf{j}) \in E(\overrightarrow{G}) \ -1, \; \mathsf{si} \; (\mathsf{j},\mathsf{i}) \in E(\overrightarrow{G}) \ 0 \; \mathsf{sinon} \end{array}
ight.$$

└─ Théorèmes importants

Théorème (Kasteleyn)

Pour toute orientation Pfaffienne \overrightarrow{G} de G,

$$\sharp couplage \ parfait \ de \ G = \sqrt{\det A_S(\overrightarrow{G})}$$

Théorème

Tout graphe planaire admet une orientation Pfaffienne.

Remarque : Ce théorème donne en fait une manière de construire l'orientation et ce en temps polynômial.

Des théorèmes et remarques précédents on déduit le théorème qui nous intéresse.

Théorème

Le problème de calculer le nombre de couplage parfait dans un graphe planaire est dans P.

Plus précisément la complexité est en $\mathcal{O}(n^3)$ si n est le nombre de sommets du graphe.

└ Démonstration

Comptage des couplages dans un graphe avec orientation Pfaffienne

Notation: On note \tilde{G} le graphe orienté obtenu à partir du graphe non-orienté G, en remplaçant chaque arête non orientée par deux arêtes de sens opposé.

Lemme

Il y a une bijection entre le nombre de paires de couplages parfaits de \tilde{G} et de recouvrement par cycles pairs de \tilde{G} .

Démonstration

Comptage des couplages dans un graphe avec orientation Pfaffienne

Notation: On note \tilde{G} le graphe orienté obtenu à partir du graphe non-orienté G, en remplaçant chaque arête non orientée par deux arêtes de sens opposé.

Lemme

Il y a une bijection entre le nombre de paires de couplages parfaits de G et de recouvrement par cycles pairs de \tilde{G} .

Lemme (Principal)

 $\det A_S(\overrightarrow{G})$ est le nombre de recouvrement par cycles pairs de \widetilde{G} .

└ Démonstration

Comptage des couplages dans un graphe avec orientation Pfaffienne

•
$$\det A_S(\overrightarrow{G}) := \sum_{\pi \in S_n} \operatorname{sgn} \ \pi \prod_{i=0}^{n-1} a_{i,\pi(i)}$$

•
$$\det A_S(\overrightarrow{G}) := \sum_{\pi \in S_n} \operatorname{sgn} \pi \prod_{i=0}^{n-1} a_{i,\pi(i)}$$

• On peut décomposer π en produit de cycle disjoint $\pi = \gamma_1 \dots \gamma_k$

•
$$\det A_S(\overrightarrow{G}) := \sum_{\pi \in S_n} \operatorname{sgn} \ \pi \prod_{i=0}^{n-1} a_{i,\pi(i)}$$

- On peut décomposer π en produit de cycle disjoint $\pi = \gamma_1 \dots \gamma_k$
- Pour que la contribution de π soit non nulle, il faut que chaque γ décrive un cycle dans G

•
$$\det A_S(\overrightarrow{G}) := \sum_{\pi \in S_n} \operatorname{sgn} \pi \prod_{i=0}^{n-1} a_{i,\pi(i)}$$

- On peut décomposer π en produit de cycle disjoint $\pi = \gamma_1 \dots \gamma_k$
- Pour que la contribution de π soit non nulle, il faut que chaque γ décrive un cycle dans G
- Seuls les cycles pairs comptent, car les cycles impairs s'annulent

•
$$\det A_S(\overrightarrow{G}) := \sum_{\pi \in S_n} \operatorname{sgn} \pi \prod_{i=0}^{n-1} a_{i,\pi(i)}$$

- On peut décomposer π en produit de cycle disjoint $\pi = \gamma_1 \dots \gamma_k$
- Pour que la contribution de π soit non nulle, il faut que chaque γ décrive un cycle dans G
- Seuls les cycles pairs comptent, car les cycles impairs s'annulent
- Chaque cycle pair contribue pour 1 dans la somme car \overrightarrow{G} est une orientation Pfaffienne.

Formule d'Euler: face + arête - sommet = 2

Théorème

Soit un graphe planaire connexe \overrightarrow{G} dont toutes les faces ont un nombre impair d'arêtes orientées dans le sens direct. Alors, dans tous ses cycles non-orientés, le nombre d'arêtes dans le sens des aiguilles d'une montre est de parité opposée au nombre des sommets à l'intérieur du cycle.

Les graphes planaires admettent une orientation Pfaffienne

Formule d'Euler: face + arête - sommet = 2

Théorème

Soit un graphe planaire connexe \overrightarrow{G} dont toutes les faces ont un nombre impair d'arêtes orientées dans le sens direct. Alors, dans tous ses cycles non-orientés, le nombre d'arêtes dans le sens des aiguilles d'une montre est de parité opposée au nombre des sommets à l'intérieur du cycle.

Corollaire: \overrightarrow{G} est une orientation Pfaffienne.

LAlgorithme de construction d'une orientation dans un graphe planaire

Algorithme

ullet On décompose G en composantes connexes.

LAlgorithme de construction d'une orientation dans un graphe planaire

- On décompose G en composantes connexes.
- On définit l'orientation de manière récursive sur les sommets.

└ Démonstration

LAlgorithme de construction d'une orientation dans un graphe planaire

- On décompose G en composantes connexes.
- On définit l'orientation de manière récursive sur les sommets.
- On choisit une arête e sur la face extérieur de G : on trouve la plus petite arête, on la supprime si elle n'est pas dans un cycle, sinon c'est la bonne!

- On décompose G en composantes connexes.
- On définit l'orientation de manière récursive sur les sommets.
- On choisit une arête e sur la face extérieur de G : on trouve la plus petite arête, on la supprime si elle n'est pas dans un cycle, sinon c'est la bonne!
- On calcule récursivement une orientation Pfaffienne de $G \setminus \{e\}$.

- On décompose G en composantes connexes.
- On définit l'orientation de manière récursive sur les sommets.
- On choisit une arête e sur la face extérieur de G : on trouve la plus petite arête, on la supprime si elle n'est pas dans un cycle, sinon c'est la bonne!
- On calcule récursivement une orientation Pfaffienne de $G \setminus \{e\}$.
- On oriente e de manière à ce que la face créée en rajoutant l'arête ait un nombre impair d'arêtes orientées dans le sens des aiguilles d'une montre.

- On décompose G en composantes connexes.
- On définit l'orientation de manière récursive sur les sommets.
- On choisit une arête e sur la face extérieur de G : on trouve la plus petite arête, on la supprime si elle n'est pas dans un cycle, sinon c'est la bonne!
- On calcule récursivement une orientation Pfaffienne de G \ {e}.
- On oriente e de manière à ce que la face créée en rajoutant l'arête ait un nombre impair d'arêtes orientées dans le sens des aiguilles d'une montre.
- On créé la matrice d'adjacence antisymétrique et on calcule la racine carrée de son déterminant.

- On décompose G en composantes connexes.
- On définit l'orientation de manière récursive sur les sommets.
- On choisit une arête e sur la face extérieur de G : on trouve la plus petite arête, on la supprime si elle n'est pas dans un cycle, sinon c'est la bonne!
- On calcule récursivement une orientation Pfaffienne de $G \setminus \{e\}$.
- On oriente e de manière à ce que la face créée en rajoutant l'arête ait un nombre impair d'arêtes orientées dans le sens des aiguilles d'une montre.
- On créé la matrice d'adjacence antisymétrique et on calcule la racine carrée de son déterminant.

Le théorème précédent prouve la correction de l'algorithme.

On a donné l'exemple d'un problème dont la décision et le comptage sont dans P.

<u>Problèmes ouverts</u>: On voudrait élargir cette technique à tous les graphes admettant une orientation Pfaffienne, mais décider si un graphe admet une telle orientation (sans parler de la calculer) n'est pas *facile*.

<u>Applications</u>: Le nombre de couplage parfait est utile en physique, et justement certaines structures naturelles admettent des orientations Pfaffiennes.

Remerciement: Michaël pour ses corrections, Arnaud pour l'algorithme de choix d'arête et bien sur Kasteleyn pour son article *Graph Theory and Theoritical Physic*.