- **1 Vakil Exercise 21.7.K** Suppose C is an irreducible smooth projective curve over an algebraically closed field $k = \overline{k}$ of characteristic 0, of genus $g \ge 2$. Suppose that G is a finite group of automorphisms of C.
- (a) Let C' be the smooth projective curve corresponding to the field extension $K(C)^G$ of k (via Theorem 17.4.3). ($(K(C)^G$ means the G-invariants of K(C).) Describe a morphism $\pi:C\to C'$ of degree |G|, as well as a faithful G-action on C that commutes with π .
- (b) Show that above each branch point of π , the preimages are all ramified to the same order (as G acts transitively on them). Suppose there are n branch points and the ith one has ramification r_i (each $|G|/r_i$ times).
- (c) Use the Riemann-Hurwitz formula to show that

$$(2g-2) = |G| \left(2g(C') - 2\sum_{i=1}^{n} \frac{r_i - 1}{r_i} \right)$$

- **2 Gathamnn Exercise 7.8.9** Show that any smooth projective curve of genus 2...
- (i) can be realized as a curve of degree 5 in \mathbb{P}^3 ,
- (ii) admits a two-to-one morphism to \mathbb{P}^1 . How many ramification points does such a morphism have?
- **3 Gathamnn Exercise 7.8.10** Let X be a smooth projective curve, and let $P \in X$ be a point. Show there is a rational function on X that is regular everywhere except at P.