Method Description

General Information

Type of Entry (Academic, Practitioner, Researcher, Student)	Researcher
First Name	Grzegorz
Last Name	Dudek
Country	Poland
Type of Affiliation (<i>University, Company-Organization, Individual</i>)	University
Affiliation	Department of Electrical Engineering, Czestochowa University of Technology, Czestochowa, Poland

Team Members (if applicable):

1 st Member		
First Name		
Last Name		
Country		
Affiliation		
2 nd Member		
First Name		
Last Name		
Country		
Affiliation		

Information about the method utilized

Name of Method	Bunch linear extrapolation
Type of Method (Statistical, Machine	Other
Learning, Combination, Other)	
Short Description (up to 200 words)	Bunch linear extrapolation generates a set
	of lines. Each line passes through the two
	points of time series: (t_i, y_i) and (t_n, y_n) ,
	where (t_n, y_n) is the last point of time
	series, and (t_i, y_i) is the i-th point, $i = 1, 2, $
	, n-1. So, as a result we have n-1 lines,
	all passing through the last n-th point.
	Then, we determine the median line for
	these n-1 lines. The forecasts for the next
	h points are the median for (n+1, n+2,,
	n+h). Having the median line we calculate
	95% prediction interval using standard
	approach for a linear model.

Extended Description:

For yearly, monthly, weekly and daily time series the model is constructed as follows:

- 1. If the number of points in the time series n>10*h (h is a forecast horizon) then remove first points from 1 to n-10*h. So, the time series is shorten to 10*h last points.
- 2. Create n-1 lines passing through the two points of time series: (t_i, y_i) and (t_n, y_n) , where (t_n, y_n) is the last point of the time series, and (t_i, y_i) is the i-th point, i = 1, 2, ..., n-1. So, as a result we have n-1 lines, all passing through the last n-th point.
- 3. Determine the median line for a bunch of n-1 lines created in step 2. Each point of the median line is calculated as a median of corresponding points from n-1 lines
- 4. Determine the forecasts for the next h points as the median for (n+1, n+2, ..., n+h).
- 5. Calculate 95% prediction interval using standard approach for a linear model:

$$\hat{y} \pm t_{(1-\alpha/2,n-2)} s_y \sqrt{1 + \frac{1}{n} + \frac{(t^* - \bar{t})^2}{(n-1)s_t^2}}$$

For quartely and hourly time series expressing seasonal patterns the seasonal version of the model is used. In this case the quartely time series is decomposed on four time series:

```
1) \{y_t\}, t = 1, 5, 9, ...,
```

2)
$$\{y_t\}$$
, $t = 2, 6, 10, ...,$

3)
$$\{y_t\}$$
, $t = 3, 7, 11, ...,$

4)
$$\{y_t\}$$
, $t = 4, 8, 12, ...$

Similarly the hourly time series is decomposed into 24 time series:

1)
$$\{y_t\}$$
, $t = 1, 25, 49, ...,$

2)
$$\{y_t\}$$
, $t = 2, 26, 50, ...,$

. . .

24)
$$\{y_t\}$$
, $t = 24, 48, 72, ...$

Each of these new time series is forecasted independently.

The model is constructed as follows:

- 1. If the number of points in the time series n>10*h (h is a forecast horizon) then remove first points from 1 to n-10*h. So, the time series is shorten to 10*h last points.
- 2. Decompose the time series into 4 or 24 time series (see above).
- 3. For each decomposed time series having n^* points create n^* -1 lines passing through the two points of time series: (t_i, y_i) and (t_{n^*}, y_{n^*}) , where (t_{n^*}, y_{n^*}) is the last point of time series, and (t_i, y_i) is the i-th point, $i = 1, 2, ..., n^*$ -1. So, as a result we have n^* -1 lines, all passing through the last n^* -th point.
- 4. For each decomposed time series determine the median line for a bunch of n*-1 lines created in step 2. Each point of the median line is calculated as a median of the corresponding points from n*-1 lines.

- 5. For each decomposed time series determine the forecasts for the next h^* points as the median for $(n^*+1, n^*+2, ..., n^*+h^*)$, where in our case $h^*=2$.
- 6. For each decomposed time series calculate 95% prediction interval using standard approach for a linear model:

$$\hat{y} \pm t_{(1-\alpha/2,n-2)} \, s_y \sqrt{1 + \frac{1}{n^*} + \frac{(t^* - \bar{t})^2}{(n^* - 1)s_t^2}}$$

BLE model features:

- no parameters
- no assumptions
- no initialization
- no training
- no complex calculations
- clear and understandable model
- simple implementation in any environment
- fast execution
- seasonal approach needs time series decomposition

Source and output files

The BLE models are implemented in Matlab:

- BLE for YeMoWeDa.m model for yearly, monthly, weekly and daily time series,
- BLE for QuHo.m model for seasonal quartely and hourly time series.

The input data are provided in the files:

- Yearly-train1.csv
- Quarterly-train1.csv
- Monthly-train1.csv
- Weekly-train1.csv
- Daily-train1.csv
- Hourly-train1.csv

which are the same as original data files but without quotation marks around numerical values.

To execute the m-file select the input file in the source code. Results are saved in output files (variable 'file'):

- Yerly wyn.mat
- Quart wyn.mat
- Month wyn.mat
- Week wyn.mat
- Dail wyn.mat
- Hourl wyn.mat

Each file include: time series label, forecasts (ypro), lower (y025) and upper (y975) bounds of prediction intervals.

Remark: the scripts for running need Statistics and Machine Learning Toolbox to be installed. It is needed for prediction intervals calculation where tinv function is used (Student's t inverse cumulative distribution function) which is from Statistics and Machine Learning Toolbox.