РГР по дискретной математике Пятая задача

Клименко В. М. – M8O-103Б-22 – 11 вариант Апрель, 2023

Дано

Квадратные матрицы порядка 4: <M, +, $\times>$ с элементами из $\mathbb R$

Задание

Определить, является ли полем или кольцом заданная алгебраическая структура. Проверить, существуют ли делители нуля.

Решение

Сложение

1. коммутативность, ассоциативность, замкнутость - очевидно по свойствам матриц

$$2.\,$$
единичный элемент $-\left(0
ight)=egin{pmatrix}0&0&0&0&0\0&0&0&0&0\0&0&0&0&0\end{pmatrix}$

3. обратный элемент – $A_+^{-1} = -A = -1 \times A$: A + (-A) = (0)

Умножение

- 1. коммутативность не выполняется
- 2. ассоциативность, замкнутость очевидно по свойствам матриц

$$3. \,$$
единичный элемент – $E=egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$

4. обратный элемент – $A_{\times}^{-1}=A^{-1}=\frac{1}{\Delta A}\times (A_{ij})^T$: $A\times A^{-1}=E$ существует только если детерминант матрицы не равен нулю

Дистрибутивность

 $A \times (B+C) = A \times B + A \times C$ — по дистрибутивности матриц

Делители нуля

делители нуля существуют, например:

Ответ

Алгебраическая структура квадратные матрицы порядка 4: <M, +, $\times>$ с элементами из $\mathbb R$ является кольцом