1 Ruler and Compass Constructions

Definition 1 (Constructible points/angles). Let $P_0 = (0,0)$ and $P_1 = (1,0)$, and let $S_n = (P_0, \ldots, P_n)$. Then P_{n+1} is a constructible point if it is the intersection of either

- 1. two lines containing points in S_n ;
- 2. two circles with centers in S_n ;
- 3. a circle and line with center and endpoints in S_n .

Similarly, an angle θ is constructible if for some $a \in \mathbb{R}$, there exists some constructible point x such that $x^2 = a^2$.

Lemma 1.1. If n-gon constructible, then 2n-gon is constructible.

Lemma 1.2. If a, b, c constructible (or polyquadratic), then $a \pm b, \frac{ab}{c}$, and \sqrt{ab} constructible.

Fact 1. If m-gon and n-gon are constructible for coprime m, n, then mn-gon is contructible.

Fact 2. If $p \ge \text{prime}$, then p^k -gon constructible for $k \in \mathbb{N}$.

Theorem 1.3 (Gauss).

$$\cos\frac{2\pi}{17} = \frac{-1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}} + 2\sqrt{17 + 3\sqrt{17} - \sqrt{34 - 2\sqrt{17}}}}{16}$$

Corollary 1. The 17-gon is constructible.

Corollary 2. If $a \in \mathbb{R}$ is constructible, then $[\mathbb{Q}(a) : \mathbb{Q}] = 2^n$ for some $n \geq n$

Corollary 3. Given a cube C_1 with volume V_1 , it is impossible to construct a cube C_2 with volume $2V_2$ by ruler and compass. That is, the volume of a cube can not be duplicated by ruler and compass.

Corollary 4. An arbitrary angle cannot be trisected by ruler and compass.

Theorem 1.4 (Gauss-Wantzel). A regular n-gon is constructible $\iff n = 2^r \prod_{i=1}^s p_i$ for $r \in \mathbb{Z}_{\geq 0}$ and Fermat primes $p_i = 2^{\binom{2^k}{r}} + 1$ for $k \in \mathbb{Z}_{\geq 0}$.

TODO: define V_n

Lemma 1.5. For all integers d and all d-periods θ , $V_d = \mathbb{Q}(\theta)$.