	Friday, 29 July 2022, 11:54 PM
State	Finished
Completed on	Saturday, 30 July 2022, 12:22 AM
Time taken	27 mins 56 secs
Grade	7.0 out of 10.0 (70 %)
Question 1	
Correct	
Mark 0.0 out of 2.0	
	: Silicon at 300°K the number of free electrons is about equal to the number of Silicon atoms
	Silicon at 300°K only free electrons can conduct electricity
c. None of th	nese 🗸
O d. In intrinsic	: Silicon at 300°K there are no free electrons
O e. In intrinsic	Silicon at 300°K the number of holes is far less than the number of free electrons
Correct	er is: None of these ssion: 2.0/2.0. Accounting for previous tries, this gives 0.0/2.0 .
- · · · •	
Question 2	
Correct	
Mark 2.0 out of 2.0	
Phosphorus (P) ar	nd Arsenic (As) are commonly used as acceptor atoms in silicon.
Select one:	
O True	
● False ✔	
⊌ Faise ♥	
The correct answe	aris !Falso!
The correct answe	il 15 False.
Correct	
Marks for this submi	ssion: 2.0/2.0.

Mark 2.0 out of 2.0
If a PN junction is doped with boron at a concentration of 3.4 x 10^18/cm^3 and phosphorus at a concentration of 8.9 x 10^17/cm^3, then what is the built-in voltage in millivolts for this junction? Assume ni = 1.5 x 10^10/cm^3 and Vt = kt/q = 26m at 300°K. Since small changes in the built-in voltage imply large changes in the doping levels, be sure to give your answer to the nearest millivolt! Answer: 965.58
The correct answer is: 966 Correct Marks for this submission: 2.0/2.0.
-
Question 4 Correct
Mark 1.0 out of 2.0
As the reverse bias voltage across a PN junction is decreased, the potential barrier will
Select one:
o a. Stays the same
O b. None of these
Od. No way to determine
O e. Increase
The correct answer is: Decrease
Marks for this submission: 2.0/2.0. Accounting for previous tries, this gives 1.0/2.0 .

Desirion 5 Description 5 Description of 2.0 out of 2.0 The diffusion capacitance for a PN junction models the variations in the excess charge stored as carriers are in	
ark 2.0 out of 2.0	
The diffusion capacitance for a PN junction models the variations in the excess charge stored as carriers are in	
the junction with variations in the forward bias voltage applied.	jected across
Select one:	
⊙ True ✔	
○ False	
The correct answer is 'True'.	
Correct	
Marks for this submission: 2.0/2.0.	
◆ Practice Quiz 2 - Opamps	
Jump to	\$
Practice Qu	uiz 4 - Diodes ▶