MATHEMATICS AND STATISTICS (ES 1043) Question Bank_Statistics

Q.1	Attempt the following			
1	The data set below gives the waiting time (in minutes) of several people having the oil			
	changed in their car at an auto mechanics shop. 22, 18,25,21,28,26,20,28,20			
	Mean =,			
2	Suppose a researcher is concerned with a nominal scale that identifies users			
	versus nonusers of bank credit cards. The measure of central tendency			
	appropriate to this scale is the			
3	A) mean B) median C) mode D) average E) range. The variance			
3	A) is a poor index of the degree of dispersion.			
	B) has a major drawback because it reflects a unit of measurement that has been			
	squared.			
	C) is the squared root of the standard deviation.			
	D) is the average deviation squared.			
4	In statistics out of 100, marks of 21 students in final exams are as 90, 95, 95, 94, 90,			
	85, 84, 83, 85, 81, 92, 93, 82, 78, 79, 81, 80, 82, 85, 76, 85 then mode of data is			
	A)85 B) 95 C) 90 D)81			
5	The standard deviation of a sample of 100 observations equals 64. The variance of the			
	sample equals			
	a) 8 b) 10 c) 6,400 d) 4,096 e) None of the above answers is			
	correct.			
6	Which of the following is not a measure of dispersion? a. the range b. the 50th percentile c. the standard deviation			
	d. the inter quartile range e. the variance			
7	The measure of dispersion that is influenced most by extreme values is			
	a. the variance b. the standard deviation c. the range			
	d. the inter quartile range e. None of the above answers is correct.			
8	The mean of 100 observations is 50 and their standard deviation is 5. The sum			
	of all squares of all the observations is			
	(A) 50000 (B) 250000 (C) 252500 (D) 255000			
9	Data collected for muscle pain due to arthritis is of which type?			
10	A) Nominal B) Interval C) Ratio D) Ordinal The mean of the distribution is 13, median is 16 and standard deviation is 4.36,			
10	the distribution is			
	A) positively skewed B) Skewed C) negatively skewed D) asymptotic			
11	Suppose a researcher is concerned with a nominal scale that identifies users versus nonusers of bank			
	credit cards. The measure of central tendency appropriate to this scale is the			
12	A) mean B) median C) mode D) average E) range. Which of the following describes categorical set of data			
12				
13	A) Variability B) Shape C) Percentage D) Centre Which of the following statistical measure is not a representative in Box Plot?			
13	A) Range B) Median C) Mean D) Quartiles			
1.4				
14	Which of the following is Interval type variable			
	A) Weight B) Temperature in Kelvin			
	C) Color of hairs D) Temperature in Fahrenheit			
15	A random variable X has expectation 2.5, then the expectation of $\frac{2X+5}{5}$ is			
	A random variable A has expectation 2.3, then the expectation of $\frac{1}{5}$			
	A) 2 B) 5 C) 2.5 D) 10			
16	Mode is a best measure of central tendency for variable			
10	A) Interval B) Nominal C) Ordinal D) Ratio			
	15, Inc. viii D) Naiio			

MATHEMATICS AND STATISTICS (ES 1043) Question Bank_Statistics

17	The mean of a distribution is 23, the median is 24, and the mode is 25.5. It is most likely that this			
	distribution is: A) Positively Skewed B) Symmetric C) Negatively Skewed D) Asymptotic			
18		kewed B) Symmetric C) Negatively Skewed D) Asymptotic of the following is not a probability mass function of a discrete random variable?		
		22 the following is not a proceeding mass function of a dispersor function (and acceptance)		
	A)			
		X		
		$p(X=x) \qquad 1 \qquad 1 \qquad 1$		
		$p(X=x) \qquad \frac{1}{2} \qquad \frac{1}{4} \qquad \frac{1}{4}$		
	B)			
		X -1 0 1 2		
		p(X = x) 0.3 0.2 0.4 0.1		
	C)	1		
		$p(X = x) = \frac{1}{2^x}, \ x = 1, 2, 3, \dots \infty$		
	D)	X 1 2 3 4 5		
		p(X = x) 0.2 0.1 0.5 0.1 0.2		
19	Which of the fo	llowing describes a categorical data?		
	A) Frequency B) Centre C) Shape D) Percentage E) Proportion of each category			
20	Which of the following graphical representation is used for numerical variable?			
0.2	A) Bar Diagram			
Q.2	Attempt the following If <i>X</i> is a random variable the difference between heads and tails obtained when a fair			
	coin is tossed 3 times. What are the possible values of X and its probability mass			
		so write the distribution function of X .		
2		s rolled twice. Find the possible values of random variable X and its		
		robability mass function, where X is the maximum of the values		
	appearing in	-		
3	A random v	variable X takes values $-3, -1, 2, 5$ with respective probabilities		
	$\frac{2k-3}{10}, \frac{k+1}{10}$	$\frac{k-1}{10}$ and $\frac{k-2}{10}$. Determine the distribution of X .		

MATHEMATICS AND STATISTICS (ES 1043) Question Bank_Statistics

	Question Bank_Statistics
4	A random variable X has probability mass function (pmf) shown in the following
	tabular form. Find the value of $\operatorname{unknown} k$. Hence write pmf and cdfof X . Draw
	graphs of pmf and cdf . Also find i) $p(1 \le X < 3)$ ii) $p(1 < X \le 3)$
	iii) $p(X < 1)$ iv) $p(X > 5)$
5	Determine k such that the following functions are p.m.f.s
	i) $P(x) = k x$, $x = 1, 2, 3,, 10$ ii) $P(x) = k \frac{2^x}{x!}$, $x = 0, 1, 2, 3$
	iii) $P(x) = k(2x^2 + 3x + 1), x = 0, 1, 2, 3$
6	A random variable has mean 2 and standard deviation $\frac{1}{2}$. Find
	i) $E(2X-1)$ ii) $Var(X+2)$ iii) $sd\left(\frac{3X-1}{-4}\right)$
7	A sample space of size 3 is selected at random from a box containing 12 items of
	which 3 are defective. Let X denote the number of defective items in the sample. Write
	the probability mass function and distribution function of X. Find the expected number
	of defective items.
8	A player tosses two fair coins. The player wins \$2 if two heads occur, and \$1 if one
	head occur. On the other hand, the player losses \$3 if no heads occur. Find the
	expected gain of the player. Is the game Favorable to the player?