

ONLINE LEARNING APPLICATION PROJECT

PROJECT REQUIREMENTS

Requirement 1

Single product and stochastic environment

Requirement 2

Multiple products and stochastic environment

Requirement 3

Best-of-both-worlds algorithms with a single product

Requirement 4

Best-of-both-worlds with multiple products

Requirement 5

Slightly non-stationary environments with multiple products

SETTING

A company has to choose prices dynamically.

The goal of the company is to maximize profit in different selling scenarios with specific environment settings and according to different buyers behavior.

20 X X

PARAMETERS AND INTERACTION

Given:

- A time horizon of T rounds
- The number of products N
- The set of possible prices P
- The production capacity B (expressed as the total number of products that the company can produce)
- lacktriangledown The valuation $oldsymbol{v_i}$ of the buyer for each type of product

At each round:

- The company chooses the types of product to sell and set the price for each type of product
- 2. A buyer with a valuation for each type of product arrives
- 3. The buyer buys a unit of product with price smaller than his valuation
- 4. If the product is sold, the budget of the company is decreased

REQUIREMENT 1

- 1.1 Single product and Stochastic environment without Budget constraint
- 1.2 Single product and Stochastic environment with Budget constraint

ENVIRONMENT

Requirement 1.1

COMPANY

- Single product selling
- No budget constraints

BUYER

- Has a distribution over the valuation of a single product
- Modelled as a Gaussian distribution

SOLUTION

Requirement 1.1

UCB1 approach:

- Compute UCB for all the arms (prices)
- 2. Choose the arm with the highest UCB
- 3. Update the agent

Baseline computation:

Expected rewards calculated weighting the prices vector with the conversion probability

SIMULATION

Requirement 1.1

We provide results for a simulation with the following parameters:

- Time horizon: T = 10000
- Price set P on the interval [0, 1]
- Gaussian distribution [0.5, 1.0] for the buyer distribution

For measuring the uncertainty on the result the simulation is executed over 10 trials

Requirement 1.1

ENVIRONMENT

Requirement 1.2

COMPANY

- Single product selling
- Budget constraints

BUYER

- Has a distribution over the valuation of a single product
- Modelled as a Gaussian distribution

SOLUTION

Requirement 1.2

UCB1-like approach:

- 1. Compute UCB for rewards and LCB for costs
- 2. Solve the linear program to find the optimal probabilities
- 3. Draw an arm from the computed distribution
- 4. Get the reward and the cost (unit sold)
- 5. Update the agent

Different baseline computation

Linear program for finding the optimal strategy gamma

$$OPT_t \ = \ \left\{ egin{array}{l} \sup_{\gamma \in \Delta_{\mathcal{B}}} \ ar{f}_t^{UCB}(\gamma) \ ext{s.t.} \ ar{c}_t^{LCB}(\gamma) \leq
ho \end{array}
ight.$$

$$\max_{\gamma \in \mathbb{R}^K} \quad \sum_{i=1}^K \gamma_i \, ar{f}_i^{ ext{UCB}}$$

$$ext{s.t.} \quad \sum_{i=1}^K \gamma_i \, ar{c}_i^{ ext{LCB}} \, \leq \,
ho,$$

$$\sum_{i=1}^K \gamma_i = 1,$$

$$0 \leq \gamma_i \leq 1 \quad \forall i = 1, \ldots, K.$$

SIMULATION

Requirement 1.2

We provide results for a simulation with the following parameters:

■ Time horizon: T = 10000

■ **Budget:** B = 4000

Price set P on the interval [0, 1]

■ Gaussian distribution [0.5, 1.0] for the buyer distribution

For measuring the uncertainty on the result the simulation is executed over 10 trials

Requirement 1.2

REQUIREMENT 2

Multiple products and Stochastic environment

ENVIRONMENT

Requirement 2

COMPANY

- Multiple product selling
- Budget constraints

BUYER

- Has a joint distribution over the valuation of the products
- Modelled as a Multivariate
 Gaussian distribution

PROPOSED SOLUTIONS

Requirement 2

APPROACH 1

Product-wise decomposition with independent UCB for each product.

Same approach as Req. 1.2 but for N > 1 products

APPROACH 2

A priori calculation of all superarms with cartesian product.

Full combinatorial optimization with linear program solving for joint pricing decisions.

APPROACH 3

Same approach as approach 2 but greedy: we don't optimize solving the linear program

Baseline Computation

Linear program for finding the optimal **gamma matrix**

SIMULATION

Requirement 2

We provide results for a simulation with the following parameters:

- Time horizon: T = 10000
- **Budget:** B = 16000
- Price set P on the interval [0, 1]
- Number of Products: 3
- Multivariate Gaussian distribution with mean vector [0.5, 0.6, 0.7] and covariance matrix [[0.1, 0.05, 0.02], [0.05, 0.1, 0.03], [0.02, 0.03, 0.1]].

For measuring the uncertainty on the result the simulation is executed over 5 trials

APPROACH 1

Requirement 2

Product-wise UCB1 approach:

- Compute UCB for rewards and LCB for costs for each product
- 2. Compute the optimal strategy gamma for each product
- 3. Generate and pull the superarm using the gamma matrix
- 4. Get prices and check for units sold
- 5. Update the agent

SUPERARM

PRODUCT 1	р1
PRODUCT 2	р2
PRODUCT 3	рЗ

Requirement 2 – Approach 1

Cumulative Regret of UCB1

APPROACH 2

Requirement 2

Full combinatorial UCB1 approach:

- Generate all the combination of prices (superarms) with cartesian product
- Compute UCB for rewards and LCB for costs for each superarm
- 3. Solve the linear program to find the gamma
- 4. Pull the superarm using the gamma and get the reward and the cost (if sold)
- 5. Update the agent

Requirement 2 – Approach 2

APPROACH 3

Requirement 2

Full combinatorial UCB1 approach, with greedy:

- Generate all the combination of prices (superarms) with cartesian product
- Compute UCB for rewards and LCB for costs for each superarm
- 3. Choose feasible superarm which maximize utility, without linear program optimization
- 4. Pull the superarm and get the reward and the cost (if sold)
- 5. Update the agent

Requirement 2 – Approach 2

REQUIREMENT 3

Single product and Adversarial environment

ENVIRONMENT

Requirement 3

COMPANY

- Single product selling
- No budget constraints

BUYER

- Has a distribution over the valuation of a single product
- Modelled as a Gaussian distribution

SOLUTION

Requirement 3

UCB1 approach:

- Compute UCB for all the arms (prices)
- 2. Choose the arm with the highest UCB
- 3. Update the agent

Baseline computation:

Expected rewards calculated weighting the prices vector with the conversion probability

SIMULATION

Requirement 3

We provide results for a simulation with the following parameters:

- Time horizon: T = 10000
- Price set P on the interval [0, 1]
- Gaussian distribution [0.5, 1.0] for the buyer distribution

For measuring the uncertainty on the result the simulation is executed over 10 trials

Requirement 3

REQUIREMENT 4

Multiple products and Adversarial environment

REQUIREMENT 5

Slightly non-stationary environment