第四讲 硅酸盐晶体结构

主讲:张骞

材料科学与工程学院

硅酸盐晶体结构特点

- 结构中Si4+离子位于02-离子形成的四面体中心,构成硅酸盐晶体的基本结构单元[Si04]四面体,Si-0-Si键是一条夹角不等的折线,一般在145°左右
- [SiO₄]四面体的每个顶点,即O²⁻离子最多只能为两个[SiO₄]四面体所共用。
- 两个相邻的[Si0₄]四面体之间只能共顶而不能共棱 或共面连接。
- [SiO₄] 四面体中心的Si⁴⁺离子可以部分的被AI³⁺所取 代,取代后结构本身并不发生大的变化,即所谓同 晶取代,但晶体的性质却可以发生很大的变化。这 为材料的改性提供了可能。

材料科学与工程学院 School of Material Science & Engineering

硅酸盐晶体结构特点

材料科学与工程学院

硅酸盐晶体的组成表示方法

- 氧化物法: 把构成硅酸盐晶体的所有氧化物按照一定的比例和顺序全部写出来, 按照价态大小排序, 一价氧化物、二价氧化物, 三价氧化物, 四价氧化物, 最后是SiO₂。如钾长石的化学式表示: K₂O·AI₂O₃·6SiO₂
- 无机络盐表示法:把构成硅酸盐晶体的所有离子按照一定的比例和顺序全部写出来,再把相关的络阴离子用[]括起来,先是1价、2价金属离子,其次是AI³⁺和Si⁴⁺,最后是0²⁻或OH⁻。如钾长石为K[AISi₂0₀]。

材料科学与工程学院 School of Material Science & Engineering

硅酸盐晶体结构类型与Si/O比的关系

结构类型	[SiO ₄] ⁴ 共用O ²⁻ 离子数	形状	络阴离子	Si/O‡Ł	实例	
岛状	0	四面体	[SiO ₄] ⁴⁻	1:4	镁橄榄石Mg,[SiO ₄] 镁铝石榴石Al ₂ Mg,[SiO ₄],	
组群状	1	双四 面体	[Si ₂ O ₇] ⁶⁻	2:7	硅钙石Ca ₃ [Si ₂ O ₇]	
		三节	[Si ₃ O ₉] ⁶⁻	1:3	蓝锥石BaTi [Si ₃ O ₉]	
	2	四节环	[Si ₄ O ₁₂] ⁸⁻	1:3	斧 石 Ca ₂ Al ₂ (Fe,Mn)BO ₃ [Si ₄ O ₁₂](OH) ₂	
		六节 环	[Si ₆ O ₁₈] ¹²⁻	1:3	绿宝石Be ₃ Al ₂ [Si ₆ O ₁₈]	
链状	2	单链	[Si ₂ O ₆] ⁴⁻	1:3	透辉石CaMg [Si ₂ O ₆]	
挺仏	2, 3	双链	[Si ₄ O ₁₁] ⁶⁻	4:11	透闪石Ca ₂ Mg ₅ [Si ₄ O ₁₁] ₂ (OH) ₂	
层状	3	平面层	[Si ₄ O ₁₀] ⁴⁻	4:10	滑	
架状	4	骨架	[SiO ₂]	1:2	石英SiO ₂	
			[AlSi ₃ O ₈] ¹⁻		钾长石K [AlSi ₃ O ₈]	
			[AlSiO ₄] ¹⁻		方钠石Na [AlSiO ₄]4/3H ₂ O	

岛状结构

- [SiO₄]四面体以孤岛状存在,各顶点之间并不互相连接,每个O²⁻一侧与1个Si⁴⁺连接,另一侧与其它金属离子相配位使电价平衡,结构中Si/O比例为1:4。
- 岛状硅酸晶体主要有锆英石 $Zr[SiO_4]$ 、镁橄榄石 $Mg_2[SiO_4]$ 、蓝晶石 $AI_2O_3SiO_2$ 、莫来石 $3AI_2O_3\cdot 2SiO_2$ 以及水泥熟料中的 Ca_2SiO_4 和 Ca_3SiO_5 等。

材料科学与工程学院

结构中的同晶取代

• 镁橄榄石中的 Mg^{2+} 可以被 Fe^{2+} 以任意比例取代,形成橄榄石(Fe_xMg_{1-x}) SiO_4 固溶体。如果全部被 Ca^{2+} 取代,则形成 γ $-Ca_2SiO_4$ 。与 β $-Ca_2SiO_4$ 相比,其中 Ca^{2+} 有8和6两种配位。由于配位不规则,化学性质活泼,能与水发生水化反应,而由于配位规则,在水中几乎是惰性的。

材料科学与工程学院 School of Material Science & Engineering

结构与性能的关系

• 结构中每个02-离子同时和1个[Si04]和3个 [MgO6]相连接,因此02-离子的电价是饱和的,晶体结构稳定。由于Mg-0键和Si-0键都比较强,所以镁橄榄石表现出较高的硬度,熔点达到1890°C,是镁质耐火材料的主要成分。由于结构中各个方向上键力分布比较均匀,所以,橄榄石结构没有明显的解理,破碎后呈粒状。

材料科学与工程学院

> 材料科学与工程学院 School of Material Science & Engineering

堇青石Mg₂Al₃[AlSi₅O₁₈]

> 材料科学与工程学院 School of Material Science & Engineering

链状结构

单链结构

双链结构

硅氧四面体通过共用的氧离子相连接,形成向一维方向无限延伸的链,依照硅氧四面体共用顶点数目的不同,分为单链和双链两类。

材料科学与工程学院 School of Material Science & Engineering

透辉石CaMg[Si₂O₆]

材料科学与工程学院

透闪石 $Ca_2Mg_5[Si_4O_{11}]_2(OH)_2$

材料科学与工程学院

结构与性质的关系

- 介电性质: 从离子堆积及结合状态来看, 辉石 类晶体比绿宝石类晶体要紧密, 因此, 顽火辉 石、锂辉石LiAI[Si206]等都具有良好的电绝缘 性能, 是高频无线电陶瓷和微晶玻璃的主要晶 相。但当结构中存在变价正离子时,则晶体又 会呈现显著的电子电导。
- 解理性与结晶习性: 具有链状结构的硅酸盐矿 物中,由于链内的Si-O键要比链间的M-O键强 得多, 所以, 这些矿物很容易研链间结合较弱 处劈裂, 成为柱状或纤维状小块。

材料科学与工程学院

硅酸盐结构特性

• 离子取代现象: 在硅酸盐结构中, 常常会出 现AI3+取代Si4+的现象, 但这种取代是有限 的。其他离子,如K+, Ca²⁺, Mg²⁺, Al³⁺等离子 也存在各种离子取代现象。并由此会带来性 能上的差异。

如:白云母中位于水铝石层的2个A13+被3个Mg2+取代时,形成金 云母,用F⁻取代OH⁻,则得到人工合成的氟金云母,用 (Mg²⁺, Fe²⁺) 代替Al³⁺, 可形成黑云母, 用(Li⁺, Fe²⁺) 取代1 个Al3+,可得到锂铁云母,用2个Li+取代1个Al3+,同时Si4+被 Al3+取代,可得到锂云母。K+被Na+取代,可得到钠云母等。

材料科学与工程学院

架状结构

- 架状结构中硅氧四面体的每个顶点均为桥氧,硅氧四面体之间以共顶方式连接,形成三维"骨架"结构。结构的重复单元为 $\left[\mathrm{SiO}_{2} \right]$,作为骨架的硅氧结构单元的化学式为 $\left[\mathrm{SiO}_{2} \right] \mathrm{n}^{0}$,其中 Si/O 为1:2
- 当硅氧骨架中的Si被AI取代时,结构单元的化学式可以写成[AISiO₄]或[AISi₃O₈],其中(AI+Si): 0 仍为1:2,此时,由于结构中有剩余负电荷,一些电价低、半径外的正离子(如K+、Na+、Ca²⁺、Ba²⁺ 等)会进入结构中,典型的架状结构有石英族晶体 (SiO_2) ,以及一些铝硅酸盐矿物,如霞石Na[AlSiO₄]、长石(Na, K)[AlSi₃O₈]、方沸石Na[AlSi₂O₆]·H₂O₆

材料科学与工程学院

石英族晶体结构 SiO₂晶体具有多种变体, 常压下可分三个系列: 石英、 磷石英和方石英。转变关系如下: 石英熔体 α-石英 α-磷石英 α-方石英 < 573°C 160°C 268°C β−石英 β-磷石英 β-方石英 117°C γ-磷石英 材料科学与工程学院

4

	作业
• P92:	
– 2. 26	
– 2. 27	
– 2. 28	
- 2. 30	
31	材料科学与工程学院 School of Material Science & Engineering

