An Analytic View of Arithmetic Statistics

Frank Thorne

University of South Carolina

Stony Brook University, January 25, 2018

Carl Friedrich Gauss (1777-1855)


```
?
? exp(Pi*sqrt(163))
%1 = 262537412640768743.9999999999999925007259
?
? exp(Pi*sqrt(67))
%2 = 147197952743.99999866245422450682926131
? exp(Pi*sqrt(43))
%3 = 884736743.99977746603490666193746207861
?
```

(Computation done in PARI/GP)

```
? f(n) = n^2 + n + 41
%11 = (n) - n^2 + n + 41
? vector(15, n, f(n))
%12 = [43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281]
?
```

(Computation done in PARI/GP)

Binary cubic forms I: Definitions

The lattice of binary cubic forms is

$$V(\mathbb{Z}) := \{au^3 + bu^2v + cuv^2 + dv^3 : a, b, c, d \in \mathbb{Z}\}.$$

Binary cubic forms I: Definitions

The lattice of binary cubic forms is

$$V(\mathbb{Z}) := \{au^3 + bu^2v + cuv^2 + dv^3 : a, b, c, d \in \mathbb{Z}\}.$$

There is an action of GL(2), given by

$$(g \circ f)(u, v) = \frac{1}{\det g} f((u, v)g),$$

Binary cubic forms I: Definitions

The lattice of binary cubic forms is

$$V(\mathbb{Z}) := \{au^3 + bu^2v + cuv^2 + dv^3 : a, b, c, d \in \mathbb{Z}\}.$$

There is an action of GL(2), given by

$$(g \circ f)(u,v) = \frac{1}{\det g} f((u,v)g),$$

which satisfies

$$\operatorname{Disc}(g \circ f) = (\det g)^{2} \operatorname{Disc}(f),$$

$$\operatorname{Disc}(f) = b^{2} c^{2} - 4ac^{3} - 4b^{3}d - 27a^{2}d^{2} + 18abcd.$$

Binary cubic forms II: Parametrization

Theorem (Levi 1914, Delone-Faddeev 1940, Gan-Gross-Savin 2002)

There is an explicit, discriminant-preserving bijection between the set of $GL_2(\mathbb{Z})$ -orbits on $V(\mathbb{Z})$ and the set of cubic rings.

Binary cubic forms III: A Counting Theorem

Theorem (Davenport-Heilbronn 1971)

Let $N_3(X)$ count cubic fields K with $|\operatorname{Disc}(K)| < X$. Then,

$$N_3(X) = \frac{1}{3\zeta(3)}X + o(X).$$

Table 1: Summary of Higher Composition Laws

#	Lattice $(V_{\mathbb{Z}})$	Group acting $(G_{\mathbb{Z}})$	Parametrizes (C)	(k)	(n)	(H)
1.	{0}	Group detting (GZ)	Linear rings	0	0	
		-	<u> </u>			A_0
2.	$\widetilde{\mathbb{Z}}$	$\mathrm{SL}_1(\mathbb{Z})$	Quadratic rings	1	1	A_1
3.	(Sym ² Z ²)* (GAUSS'S LAW)	$\mathrm{SL}_2(\mathbb{Z})$	Ideal classes in quadratic rings	2	3	B_2
4.	$\mathrm{Sym}^3\mathbb{Z}^2$	$\mathrm{SL}_2(\mathbb{Z})$	Order 3 ideal classes in quadratic rings	4	4	G_2
5.	$\mathbb{Z}^2 \otimes \mathrm{Sym}^2 \mathbb{Z}^2$	$\mathrm{SL}_2(\mathbb{Z})^2$	Ideal classes in quadratic rings	4	6	B_3
6.	$\mathbb{Z}^2 \otimes \mathbb{Z}^2 \otimes \mathbb{Z}^2$	$\mathrm{SL}_2(\mathbb{Z})^3$	Pairs of ideal classes in quadratic rings	4	8	D_4
7.	$\mathbb{Z}^2 \otimes \wedge^2 \mathbb{Z}^4$	$\mathrm{SL}_2(\mathbb{Z}) \times \mathrm{SL}_4(\mathbb{Z})$	Ideal classes in quadratic rings	4	12	D_5
8.	$\wedge^3 \mathbb{Z}^6$	$SL_6(\mathbb{Z})$	Quadratic rings	4	20	E_6
9.	$(\operatorname{Sym}^3\mathbb{Z}^2)^*$	$GL_2(\mathbb{Z})$	Cubic rings	4	4	G_2
10.	$\mathbb{Z}^2 \otimes \mathrm{Sym}^2 \mathbb{Z}^3$	$\mathrm{GL}_2(\mathbb{Z}) \times \mathrm{SL}_3(\mathbb{Z})$	Order 2 ideal classes in cubic rings	12	12	F_4
11.	$\mathbb{Z}^2\otimes\mathbb{Z}^3\otimes\mathbb{Z}^3$	$GL_2(\mathbb{Z}) \times SL_3(\mathbb{Z})^2$	Ideal classes in cubic rings	12	18	E_6
12.	$\mathbb{Z}^2 \otimes \wedge^2 \mathbb{Z}^6$	$GL_2(\mathbb{Z}) \times SL_6(\mathbb{Z})$	Cubic rings	12	30	E_7
13.	$(\mathbb{Z}^2 \otimes \operatorname{Sym}^2 \mathbb{Z}^3)^*$	$GL_2(\mathbb{Z}) \times SL_3(\mathbb{Z})$	Quartic rings	12	12	F_4
14.	$\mathbb{Z}^4 \otimes \wedge^2 \mathbb{Z}^5$	$\mathrm{GL}_4(\mathbb{Z}) \times \mathrm{SL}_5(\mathbb{Z})$	Quintic rings	40	40	E_8

(M. Bhargava, Higher composition laws IV: The parametrization of quintic rings, Ann. Math., 2008.)

	Group (s.s.)	Representation	Geometric Data	Invariants	Dynkin	§
1.	SL_2	$Sym^4(2)$	(C, L_2)	2, 3	$A_2^{(2)}$	4.1
2.	SL_2^2	$\mathrm{Sym}^2(2)\otimes\mathrm{Sym}^2(2)$	$(C, L_2, L'_2) \sim (C, L_2, P)$	2, 3, 4	$D_3^{(2)}$	6.1
3.	SL_2^4	$2\otimes 2\otimes 2\otimes 2$	$(C, L_2, L'_2, L''_2) \sim (C, L_2, P, P')$	2, 4, 4, 6	$D_4^{(1)}$	6.2
4.	SL_2^3	$2 \otimes 2 \otimes \mathrm{Sym}^2(2)$	$(C, L_2, L_2') \sim (C, L_2, P)$	2, 4, 6	$B_3^{(1)}$	6.3.1
5.	SL_2^2	$\mathrm{Sym}^2(2)\otimes\mathrm{Sym}^2(2)$	$(C, L_2, L_2') \sim (C, L_2, P)$	2, 3, 4	$D_3^{(2)}$	6.3.3
6.	SL_2^2	$2 \otimes \operatorname{Sym}^{3}(2)$	(C, L_2, P_3)	2,6	$G_2^{(1)}$	6.3.2
7.	SL_2	$Sym^4(2)$	(C, L_2, P_3)	2, 3	$A_2^{(2)}$	6.3.4
8.	$SL_2^2 \times GL_4$	$2 \otimes 2 \otimes \wedge^2(4)$	$(C, L_2, M_{2,6})$	2, 4, 6, 8	$D_5^{(1)}$	6.6.1
9.	$SL_2 \times SL_6$	$2 \otimes \wedge^3(6)$	$(C, L_2, M_{3,6})$ with $L^{\otimes 3} \cong \det M$	2, 6, 8, 12	$E_6^{(1)}$	6.6.2
10.	$\mathrm{SL}_2 \times \mathrm{Sp}_6$	$2 \otimes \wedge_0^3(6)$	$(C, L_2, (M_{3,6}, \varphi))$ with $L^{\otimes 3} \cong \det M$	2, 6, 8, 12	$E_6^{(2)}$	6.6.3
11.	$\mathrm{SL}_2 \times \mathrm{Spin}_{12}$	$2 \otimes S^{+}(32)$	$(C \to \mathbb{P}^1(\mathscr{H}_3(\mathbb{H})), L_2)$	2, 6, 8, 12	$E_7^{(1)}$	6.6.3
12.	$SL_2 \times E_7$	$2 \otimes 56$	$(C \to \mathbb{P}^1(\mathscr{H}_3(\mathbb{O})), L_2)$	2, 6, 8, 12	$E_8^{(1)}$	6.6.3
13.	SL_3	$Sym^3(3)$	(C, L_3)	4, 6	$D_4^{(3)}$	4.2
14.	SL_3^3	$3\otimes 3\otimes 3$	$(C, L_3, L_3') \sim (C, L_3, P)$	6, 9, 12	$E_6^{(1)}$	5.1
15.	SL_3^2	$3 \otimes \operatorname{Sym}^2(3)$	(C, L_3, P_2)	6, 12	$F_4^{(1)}$	5.2.1
16.	SL_3	$Sym^3(3)$	(C, L_3, P_2)	4, 6	$D_4^{(3)}$	5.2.2
17.	$SL_3 \times SL_6$	$3 \otimes \wedge^2(6)$	$(C, L_3, M_{2,6})$ with $L^{\otimes 2} \cong \det M$	6, 12, 18	$E_7^{(1)}$	5.5
18.	$SL_3 \times E_6$	$3\otimes 27$	$(C \hookrightarrow \mathbb{P}^2(\mathbb{O}), L_3)$	6, 12, 18	$E_8^{(1)}$	5.4
19.	$\mathrm{SL}_2 imes \mathrm{SL}_4$	$2 \otimes \operatorname{Sym}^2(4)$	(C, L_4)	8, 12	$E_6^{(2)}$	4.3
20.	$\mathrm{SL}_5 imes \mathrm{SL}_5$	$\wedge^2(5) \otimes 5$	(C, L_5)	20, 30	$E_8^{(1)}$	4.4

Table 1: Table of coregular representations and their moduli interpretations

(M. Bhargava and W. Ho, Coregular spaces and genus one curves, Cambridge J. Math., to appear)

Application 1: Counting cubic fields

Let $N_3(X) := \text{number of cubic fields } K \text{ with } |\mathrm{Disc}(K)| < X.$

Application 1: Counting cubic fields

Let $N_3(X) := \text{number of cubic fields } K \text{ with } |\mathrm{Disc}(K)| < X$.

Theorem (BBDHPSTTT*)

We have

$$N_3(X) = C^{\pm} \frac{1}{3\zeta(3)} X + \frac{4(1+\sqrt{3})\zeta(1/3)}{5\Gamma(2/3)^3\zeta(5/3)} X^{5/6} + O(X^{2/3+\epsilon}).$$

Application 1: Counting cubic fields

Let $N_3(X) := \text{number of cubic fields } K \text{ with } |\mathrm{Disc}(K)| < X$.

Theorem (BBDHPSTTT*)

We have

$$N_3(X) = C^{\pm} \frac{1}{3\zeta(3)} X + \frac{4(1+\sqrt{3})\zeta(1/3)}{5\Gamma(2/3)^3\zeta(5/3)} X^{5/6} + O(X^{2/3+\epsilon}).$$

^{*:} Davenport, Heilbronn (1971), Belabas (1999), Belabas, Bhargava, Pomerance (~2006), Bhargava, Shankar, Tsimerman (2010), Taniguchi, T. (2011), Bhargava, Taniguchi, T. (2017?)

Application 2: 3-torsion in class groups of quadratic fields

Theorem (BBDHPSTTT) We have

$$\sum_{\mathbf{0}<\pm|D|< X} \#\mathrm{Cl}(\mathbb{Q}(\sqrt{D})[3]) = \frac{6}{\pi^2}X + \frac{8(1+\sqrt{3})\zeta(1/3)}{5\Gamma(2/3)^3} \prod_{\rho} \left(1 - \frac{\rho^{\mathbf{1/3}}+1}{\rho(\rho+1)}\right) X^{\mathbf{5/6}} + O(X^{\mathbf{2/3}+\epsilon}).$$

Application 2: 3-torsion in class groups of quadratic fields

Theorem (BBDHPSTTT) We have

$$\sum_{\mathbf{0} < \pm |D| < X} \# \mathrm{Cl}(\mathbb{Q}(\sqrt{D})[3]) = \frac{6}{\pi^2} X + \frac{8(1+\sqrt{3})\zeta(1/3)}{5\Gamma(2/3)^3} \prod_{\rho} \left(1 - \frac{\rho^{\mathbf{1/3}} + 1}{\rho(\rho+1)}\right) X^{\mathbf{5/6}} + \mathcal{O}(X^{\mathbf{2/3} + \epsilon}).$$

Also: Similar results for 2-torsion in cubic fields (Bhargava, Belabas-Bhargava-Pomerance)

Application 3: Quartic and quintic fields

Theorem (Bhargava (2002), Belabas-Bhargava-Pomerance (2006))

We have*

$$N_4(X) = \frac{5}{24} \prod_p \left(1 + p^{-2} - p^{-3} - p^{-4} \right) \cdot X + O(X^{23/24 + \epsilon}).$$

Application 3: Quartic and quintic fields

Theorem (Bhargava (2002), Belabas-Bhargava-Pomerance (2006))

We have*

$$N_4(X) = \frac{5}{24} \prod_p \left(1 + p^{-2} - p^{-3} - p^{-4} \right) \cdot X + O(X^{23/24 + \epsilon}).$$

*: Excluding D_4 -quartic fields, but see Cohen, Diaz y Diaz, Olivier (2002) and Altuğ, Shankar, Varma, Wilson (2017) .

Application 3: Quartic and quintic fields

Theorem (Bhargava (2002), Belabas-Bhargava-Pomerance (2006))

We have*

$$N_4(X) = \frac{5}{24} \prod_p \left(1 + p^{-2} - p^{-3} - p^{-4} \right) \cdot X + O(X^{23/24 + \epsilon}).$$

*: Excluding D_4 -quartic fields, but see Cohen, Diaz y Diaz, Olivier (2002) and Altuğ, Shankar, Varma, Wilson (2017).

Theorem (Bhargava (2005), Shankar-Tsimerman (2013)) We have

$$N_5(X) = rac{13}{120} \prod_p \left(1 + p^{-2} - p^{-4} - p^{-5} \right) \cdot X + O(X^{199/200 + \epsilon}).$$

Application 4: Erdős-Kac for number fields

Let K be a 'random' cubic, quartic (non- D_4), or quintic number field with $|\operatorname{Disc}(K)| \simeq X$.

Application 4: Erdős-Kac for number fields

Let K be a 'random' cubic, quartic (non- D_4), or quintic number field with $|\operatorname{Disc}(K)| \simeq X$.

Theorem (Lemke Oliver-T. (2014))

The average number of primes ramified in K is normally distributed with mean and variance $\log \log X$.

Application 5: The least prime to not split completely

For a number field K, let p(K) be the least prime which does not split completely.

Application 5: The least prime to not split completely

For a number field K, let p(K) be the least prime which does not split completely.

Theorem (Martin-Pollack (2011))

Over all cubic fields, the average of p(K) is

$$\sum_{\ell} \frac{\ell(5/6 + 1/\ell + 1/\ell^2)}{1 + 1/\ell + 1/\ell^2} \prod_{p < \ell} \frac{1/6}{1 + 1/p + 1/p^2} = 2.1211 \cdots$$

Application 5: The least prime to not split completely

For a number field K, let p(K) be the least prime which does not split completely.

Theorem (Martin-Pollack (2011))

Over all cubic fields, the average of p(K) is

$$\sum_{\ell} \frac{\ell(5/6 + 1/\ell + 1/\ell^2)}{1 + 1/\ell + 1/\ell^2} \prod_{p < \ell} \frac{1/6}{1 + 1/p + 1/p^2} = 2.1211 \cdots$$

Cho-Kim (2016): extensions to other splitting types, quartic and quintic fields.

Fix the following:

Fix the following:

• ϕ , an even Schwartz function with $\widehat{\phi}$ supported in $\left(-\frac{4}{25}, \frac{4}{25}\right)$.

Fix the following:

- ϕ , an even Schwartz function with $\widehat{\phi}$ supported in $\left(-\frac{4}{25}, \frac{4}{25}\right)$.
- ▶ $\mathcal{F}(X)$, the set of noncyclic cubic fields K with $|\mathrm{Disc}(K)| < X$.

Fix the following:

- ϕ , an even Schwartz function with $\widehat{\phi}$ supported in $\left(-\frac{4}{25}, \frac{4}{25}\right)$.
- ▶ $\mathcal{F}(X)$, the set of noncyclic cubic fields K with $|\mathrm{Disc}(K)| < X$.
- For each K, the associated 2-dimensional representation $\rho = \rho_K$ of $\operatorname{Gal}(\widehat{K}/\mathbb{Q})$ with associated Artin L-function $L(s, \rho)$.

Fix the following:

- ϕ , an even Schwartz function with $\widehat{\phi}$ supported in $\left(-\frac{4}{25}, \frac{4}{25}\right)$.
- ▶ $\mathcal{F}(X)$, the set of noncyclic cubic fields K with $|\mathrm{Disc}(K)| < X$.
- ▶ For each K, the associated 2-dimensional representation $\rho = \rho_K$ of $\operatorname{Gal}(\widehat{K}/\mathbb{Q})$ with associated Artin L-function $L(s, \rho)$.

Theorem (Yang '09, Cho-Kim '15, Shankar-Södergren-Templier '15) We have

$$\lim_{X\to\infty} \frac{1}{\#\mathcal{F}(X)} \sum_{K\in\mathcal{F}(X)} \sum_{L(\frac{1}{2}+i\gamma,\rho_K)=0} \phi\left(\frac{\gamma_j}{2\pi} \log(|\mathrm{Disc}(K)|)\right) = \widehat{\phi}(0) - \frac{\phi(0)}{2}.$$

Application 7: The shape of number fields

Theorem (Terr 1997, Bhargava-Harron 2016)

The 'shape' of fields of degree $n \in \{3,4,5\}$ is equidistributed in $\operatorname{GL}_{n-1}(\mathbb{Z})\backslash\operatorname{GL}_{n-1}(\mathbb{R})/\operatorname{GO}_{n-1}(\mathbb{R}).$

Application 7: The shape of number fields

Theorem (Terr 1997, Bhargava-Harron 2016)

The 'shape' of fields of degree $n \in \{3,4,5\}$ is equidistributed in

$$\mathrm{GL}_{n-1}(\mathbb{Z})\backslash\mathrm{GL}_{n-1}(\mathbb{R})/\mathrm{GO}_{n-1}(\mathbb{R}).$$

Theorem (Hough 2017+)

Let ϕ be a [nice] cuspidal automorphic form on $\mathrm{SL}_2(\mathbb{Z})\backslash\mathrm{SL}_2(\mathbb{R})$, and $F:(0,\infty)\to(0,\infty)$ a smooth test function. Then,

$$\sum_{[K:\mathbb{Q}]=3} \phi(\Lambda_K) F\left(\frac{\pm \mathrm{Disc}(K)}{X}\right) \ll_\phi X^{3/4+\epsilon}.$$

Application 7: The shape of number fields

Theorem (Terr 1997, Bhargava-Harron 2016)

The 'shape' of fields of degree $n \in \{3,4,5\}$ is equidistributed in

$$\mathrm{GL}_{n-1}(\mathbb{Z})\backslash\mathrm{GL}_{n-1}(\mathbb{R})/\mathrm{GO}_{n-1}(\mathbb{R}).$$

Theorem (Hough 2017+)

Let ϕ be a [nice] cuspidal automorphic form on $\mathrm{SL}_2(\mathbb{Z})\backslash\mathrm{SL}_2(\mathbb{R})$, and $F:(0,\infty)\to(0,\infty)$ a smooth test function. Then,

$$\sum_{[K:\mathbb{Q}]=3} \phi(\Lambda_K) F\left(\frac{\pm \mathrm{Disc}(K)}{X}\right) \ll_\phi X^{3/4+\epsilon}.$$

A version for quartic fields too.

Application 8: Almost prime field discriminants

Theorem (Belabas-Fouvry 1999)

There are $\gg \frac{X}{\log X}$ cubic fields K with $|\mathrm{Disc}(K)| < X$, such that $\mathrm{Disc}(K)$ is fundamental and has at most 7 prime factors.

Analytic Number Theory Principle 1: Zeta Functions

The Riemann zeta function is

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}.$$

Analytic Number Theory Principle 1: Zeta Functions

The Riemann zeta function is

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}.$$

Theorem (Riemann, 1859)

The function $\zeta(s)$ has a meromorphic continuation to $\mathbb C$ and satisfies the functional equation

$$\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-(1-s)/2}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s).$$

Analytic Number Theory Principle 1: Zeta Functions

Let $\Lambda(n) := \log(p)$ if $n = p^a$ and zero otherwise. Then

Analytic Number Theory Principle 1: Zeta Functions

Let $\Lambda(n) := \log(p)$ if $n = p^a$ and zero otherwise. Then

$$\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \Lambda(n) n^{-s},$$

and

Analytic Number Theory Principle 1: Zeta Functions

Let $\Lambda(n) := \log(p)$ if $n = p^a$ and zero otherwise. Then

$$\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \Lambda(n) n^{-s},$$

and

$$\sum_{n \le X} \Lambda(n) = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{\zeta'(s)}{\zeta(s)} X^s \frac{ds}{s}.$$

Shintani's zeta function

Definition

The Shintani zeta function is

$$\xi^{\pm}(s) := \sum_{\substack{x \in \operatorname{GL}_2(\mathbb{Z}) \setminus V(\mathbb{Z}) \\ \pm \operatorname{Disc}(x) > 0}} \frac{1}{|\operatorname{Stab}(x)|} |\operatorname{Disc}(x)|^{-s}$$

$$" = " \sum_{\substack{\pm \operatorname{Disc}(\mathcal{O}) > 0}} |\operatorname{Disc}(\mathcal{O})|^{-s},$$

where \mathcal{O} ranges over orders in cubic fields.

Shintani's zeta function

Definition

The Shintani zeta function is

$$\xi^{\pm}(s) := \sum_{\substack{x \in \mathrm{GL}_2(\mathbb{Z}) \setminus V(\mathbb{Z}) \\ \pm \mathrm{Disc}(x) > 0}} \frac{1}{|\mathsf{Stab}(x)|} |\mathrm{Disc}(x)|^{-s}$$

$$" = " \sum_{\substack{\pm \mathrm{Disc}(\mathcal{O}) > 0}} |\mathrm{Disc}(\mathcal{O})|^{-s},$$

where \mathcal{O} ranges over orders in étale cubic algebras.

Don't worry about this, UNLESS you would like to generalize these results to quartic fields.

The functional equation

Theorem (Shintani, 1971)

The Shintani zeta functions converge absolutely for $\Re(s) > 1$. They continue to functions holomorphic in the plane except for simple poles at 1 and 5/6, and satisfy the functional equation

$$\begin{pmatrix} \xi^{+}(1-s) \\ \xi^{-}(1-s) \end{pmatrix} = \Gamma\left(s - \frac{1}{6}\right)\Gamma(s)^{2}\Gamma\left(s + \frac{1}{6}\right)2^{-1}3^{6s-2}\pi^{-4s} \times$$

$$\begin{pmatrix} \sin 2\pi s & \sin \pi s \\ 3\sin \pi s & \sin 2\pi s \end{pmatrix} \begin{pmatrix} \hat{\xi}^{+}(s) \\ \hat{\xi}^{-}(s) \end{pmatrix}.$$

Moreover,

$$\mathsf{Res}_{s=1} \xi^{\pm}(s) = \frac{\pi^2 (3 + C^{\pm})}{36}, \ \ \mathsf{Res}_{s=\frac{5}{6}} \xi^{\pm}(s) = \mathcal{K}^{\pm} \frac{\zeta(1/3) \Gamma(1/3)^3}{4\sqrt{3}\pi}.$$

$$\#\{n \leq X, \ n \ \text{squarefree}\} = \sum_{n=1}^{X} \left(\sum_{d^2|n} \mu(d)\right)$$

$$\#\{n \leq X, \ n \ \text{squarefree}\} = \sum_{n=1}^X \left(\sum_{d^2|n} \mu(d)\right)$$

$$= \sum_{n=1}^X \left(\sum_{d^2|n, \ d < \sqrt{X}} \mu(d)\right)$$

$$\#\{n \leq X, \ n \ \text{squarefree}\} = \sum_{n=1}^X \left(\sum_{d^2 \mid n} \mu(d)\right)$$

$$= \sum_{n=1}^X \left(\sum_{d^2 \mid n, \ d \leq \sqrt{X}} \mu(d)\right)$$

$$= \sum_{d \leq \sqrt{X}} \mu(d) \left(\sum_{d^2 \mid n < X} 1\right).$$

$$\#\{n \leq X, \ n \ \text{squarefree}\} = \sum_{d \leq \sqrt{X}} \mu(d) \left(\sum_{d^2 \mid n \leq X} 1\right)$$

$$\#\{n \leq X, \ n \ \text{squarefree}\} = \sum_{d \leq \sqrt{X}} \mu(d) \left(\sum_{d^2 \mid n \leq X} 1\right)$$

$$= \sum_{d \leq \sqrt{X}} \mu(d) \left(\frac{X}{d^2} + O(1)\right)$$

$$\#\{n \leq X, \ n \ \text{squarefree}\} = \sum_{d \leq \sqrt{X}} \mu(d) \left(\sum_{d^2 \mid n \leq X} 1\right)$$

$$= \sum_{d \leq \sqrt{X}} \mu(d) \left(\frac{X}{d^2} + O(1)\right)$$

$$= X \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} + O(\sqrt{X})$$

$$\#\{n \leq X, \ n \text{ squarefree}\} = \sum_{d \leq \sqrt{X}} \mu(d) \left(\sum_{d^2 \mid n \leq X} 1\right)$$

$$= \sum_{d \leq \sqrt{X}} \mu(d) \left(\frac{X}{d^2} + O(1)\right)$$

$$= X \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} + O(\sqrt{X})$$

$$= \frac{6}{\pi^2} X + O(\sqrt{X}).$$

$$\#\{n \leq X, \ n \ \text{squarefree}\} = \sum_{d \leq \sqrt{X}} \mu(d) \left(\sum_{d^2 \mid n \leq X} 1\right)$$

$$= \sum_{d \leq \sqrt{X}} \mu(d) \left(\frac{X}{d^2} + O(1)\right)$$

$$= X \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} + O(\sqrt{X})$$

$$= \frac{6}{\pi^2} X + O(\sqrt{X}).$$

The red \sqrt{X} is a level of distribution.

Inserting an 'arithmetic kernel' function $\Phi_d:V(\mathbb{Z}/d\mathbb{Z}) o\mathbb{C}$,

$$\xi^{\pm}(s, \Phi_d) := \sum_{\substack{x \in \mathrm{GL}_2(\mathbb{Z}) \setminus V(\mathbb{Z}) \\ \pm \mathrm{Disc}(x) > 0}} \frac{1}{|\mathsf{Stab}(x)|} \Phi_d(x) |\mathrm{Disc}(x)|^{-s}$$

is also a good zeta function.

Inserting an 'arithmetic kernel' function $\Phi_d:V(\mathbb{Z}/d\mathbb{Z}) \to \mathbb{C}$,

$$\xi^{\pm}(s, \Phi_{d}) := \sum_{\substack{x \in \mathrm{GL}_{2}(\mathbb{Z}) \setminus V(\mathbb{Z}) \\ \pm \mathrm{Disc}(x) > 0}} \frac{1}{|\mathsf{Stab}(x)|} \Phi_{d}(x) |\mathrm{Disc}(x)|^{-s}$$

is also a good zeta function.

Its functional equation involves the Fourier transform

$$\widehat{\Phi_d}(x) = \frac{1}{d^4} \sum_{y \in V(\mathbb{Z}/d\mathbb{Z})} \Phi_d(y) e^{2\pi i [x,y]}.$$

Unspecialized tools yield inadequate bounds for $|\widehat{\Phi}_d(x)|$.

Let $\Phi_q:V(\mathbb{Z}/q^2)\to\{0,1\}$ be the characteristic function of cubic forms 'nonmaximal at q'.

Let $\Phi_q:V(\mathbb{Z}/q^2)\to\{0,1\}$ be the characteristic function of cubic forms 'nonmaximal at q'.

Theorem (Taniguchi-T.)

The Fourier transform $\widehat{\Phi_q}$ is multiplicative in q, and satisfies

$$\widehat{\Phi_{p^2}}(x) = \begin{cases} p^{-2} + p^{-3} - p^{-5} & x = 0, \\ p^{-3} - p^{-5} & x : of type \ p \cdot (1^3), p \cdot (1^21), \\ -p^{-5} & x : of type \ p \cdot (111), p \cdot (21), p \cdot (3). \\ p^{-3} - p^{-5} & x : of type \ (1^3_{**}), \\ -p^{-5} & x : of type \ (1^3_*), \ (1^3_{\max}), \\ 0 & otherwise. \end{cases}$$

Let $\Phi_q:V(\mathbb{Z}/q^2)\to\{0,1\}$ be the characteristic function of cubic forms 'nonmaximal at q'.

Theorem (Taniguchi-T.)

The Fourier transform $\widehat{\Phi_q}$ is multiplicative in q, and satisfies

$$\widehat{\Phi_{p^2}}(x) = \begin{cases} p^{-2} + p^{-3} - p^{-5} & x = 0, \\ p^{-3} - p^{-5} & x : of type \ p \cdot (1^3), p \cdot (1^21), \\ -p^{-5} & x : of type \ p \cdot (111), p \cdot (21), p \cdot (3). \\ p^{-3} - p^{-5} & x : of type \ (1^3_{**}), \\ -p^{-5} & x : of type \ (1^3_*), \ (1^3_{\max}), \\ 0 & otherwise. \end{cases}$$

On this slide, let:

On this slide, let:

 $V = V(\mathbb{F}_q)$ denote the space of pairs of ternary quadratic forms;

On this slide, let:

- $V = V(\mathbb{F}_q)$ denote the space of pairs of ternary quadratic forms;
- ▶ Φ_q denote the characteristic function of singular $v \in V$.

On this slide, let:

- $V = V(\mathbb{F}_q)$ denote the space of pairs of ternary quadratic forms;
- Φ_q denote the characteristic function of singular $v \in V$.

Theorem (Taniguchi-T.) If $char(\mathbb{F}_q) \neq 3$, then we have

$$\widehat{\Psi_q}(x) = \begin{cases} q^{-3} - q^{-4} - 2q^{-5} + 2q^{-6} + q^{-7} - 1 & x \in \mathcal{O}_{D1}, \\ 2q^{-4} - 5q^{-5} + 3q^{-6} + q^{-7} - q^{-8} & x \in \mathcal{O}_{D2}, \\ -q^{-5} + q^{-6} + q^{-7} - q^{-8} & x \in \mathcal{O}_{D3}, \mathcal{O}_{D4}, \mathcal{O}_{C2}, \mathcal{O}_{14}^{(2s)}, \mathcal{O}_{14}^{(2b)}, \\ q^{-4} - 3q^{-5} + 2q^{-6} + q^{-7} - q^{-8} & x \in \mathcal{O}_{C1}, \\ q^{-7} - q^{-8} & x \in \mathcal{O}_{14}^{(1)}, \mathcal{O}_{131}, \mathcal{O}_{1211}, \mathcal{O}_{122}, \\ q^{-6} + 2q^{-7} - q^{-8} & x \in \mathcal{O}_{22}, \\ q^{-8} & x \in \mathcal{O}_{22}, \\ q^{-8} & x \in \mathcal{O}_{22}, \mathcal{O}_{112}, \mathcal{O}_{1111}, \mathcal{O}_{4}, \mathcal{O}_{13}, \\ q^{-1} + 2q^{-2} - q^{-3} - 2q^{-4} - q^{-5} + 2q^{-6} + q^{-7} - q^{-8} & x \in \mathcal{O}_{0}. \end{cases}$$

Thank you!