DE4326517 A

3/3 DWPI - ©The Thomson Corp. - image

Derwent Accession:

1995-075792 [11]

CPI Accession:

C1995-033714

Non-CPI Accession:

N1995-060193

Title:

Metal and ceramic machining process uses carbon di:oxide-based coolant in gaseous and snow form

Derwent Class:

L02 M21 P56

Patent Assignee:

(LINM) LINDE AG

(CRPT-) CRP-TECHNIC SPEZIALMASCH & GERAETEBAU

Inventor:

RICHTER P; WERNER S

Nbr of Patents:

2

Nbr of Countries:

1

Patent Number:

DE4326517 A1 19950209 DW1995-11 B23Q-011/10 Ger 4p *

AP: 1993DE-4326517 19930806

DE4326517 C2 19980610 DW1998-27 B23Q-011/10 Ger

AP: 1993DE-4326517 19930806

Priority Number:

1993DE-4326517 19930806

Abstract:

DE4326517 A

In the machining of metallic workpieces and ceramic surfaces, in which coolant is supplied to cool the machining region, the novelty is that the cooling is effected using a coolant jet contg. cold CO2 gas and CO2 snow particles.

USE: In the machining of titanium high strength steels and ceramic layers (claimed).

ADVANTAGE: The coolant has high cooling capacity (or higher machining

speeds), is simple and inexpensive to produce and leaves no residues.

Manual Codes:

CPI: L02-J01E M23-J

Update Basic:

1995-11

Update Equiv.:

1998-27

Update Equivalents (Monthly):

2006-08

19 BUNDESREPUBLIK DEUTSCHLAND

PATENTAMT

Patentschrift

® DE 43 26 517 C 2

② Aktenzeichen:

P 43 26 517.0-14

2 Anmeldetag:

6. 8.93

43 Offenlegungstag:

9. 2.95

45 Veröffentlichungstag

der Patenterteilung: 10. 6.98

fi) Int. Cl.⁶: B 23 Q 11/10 C 09 K 5/00

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

Linde AG, 65189 Wiesbaden, DE; CRP-technic -Spezialmaschinen und Gerätebau - Dipl.-Ing. Peter Richter, 84539 Ampfing, DE

(74) Vertreter:

Kasseckert, R., Dipl.-Phys.Univ., Pat.-Anw., 82041 Oberhaching

(72) Erfinder:

Werner, Stefan, Dipl.-Ing., 84183 Niederviehbach, DE; Richter, Peter, Dipl.-Ing., 84539 Ampfing, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE-AS 10 37 808 DE-B 15509 lb/49a-12.3.53:

Verfahren zur spanenden Bearbeitung von metallischen Werkstücken und auch keramischer Oberflächen, wobei während des Bearbeitungsvorgangs durch Zufuhr eines Kühlmittels zur Bearbeitungsstelle gekühlt wird und wobei zur Kühlung ein zumindest überwiegend aus Kohlendioxid (CO₂) bestehender Kühlmittelstrahl enthaltend kaltes Gas und Schneepartikel der Bearbeitungsstelle zugeführt wird, dadurch gekennzeichnet, daß der Kühlmittelstrahl aus gasförmigem, unter geeignetem Überdruck stehendem CO2 derart gewonnen wird, daß

 das CO₂-Gas über eine Schlitzdüse oder eine sonstige schlitzartige Öffnung zunächst in ein um diesen Expansionsschlitz herum ausgebildetes, weitgehend gegen die Umgebung abgeschlossenes Expansionsvolumen hinein expandiert wird und

- ausgehend von diesem Expansionsvolumen und dessen Austrittsöffnung der Kühlstrahl gebildet und auf den zu kühlenden Bereich gerichtet wird.

Beschreibung

Die Erfindung betrifft ein Verfahren zur spanenden Bearbeitung von metallischen Werkstücken und auch keramischer Oberflächen, wobei während des Bearbeitungsvorgangs durch Zufuhr eines Kühlmittels zur Bearbeitungsstelle gekühlt wird und wobei zur Kühlung ein zumindest überwiegend aus Kohlendioxid (CO₂) bestehender Kühlmittelstrahl enthaltend kaltes Gas und Schneepartikel der Bearbeitungsstelle zugeführt wird.

Aus der DE-B 15 509 Ib/49a – 12.03.53 ist ein Verfahren zur spanenden Bearbeitung von metallischen Werkstücken bekannt, bei dem während des Bearbeitungsvorgangs durch Zufuhr eines Kühlmittels zur Bearbeitungsstelle gekühlt wird. Als Kühlmittel wird über eine Düse ein Flüssigkeitsstrahl aus CO₂ auf das Werkstück verwendet. Der Flüssigkeitsstrahl aus CO₂ trifft an der Bearbeitungsstelle auf das Werkstück, wobei ein Niederschlag von festem CO₂ entsteht. Im Dokument wird ausdrücklich darauf hingewiesen, daß in allen Fällen die Grundregel zu beachten sein wird, 20 daß das flüssige CO₂ an der Stelle expandieren soll, wo das Werkzeug das Werkstück berührt.

Aus der DE-AS 10 37 808 ist die spanabhebende Bearbeitung unter Verwendung von Kohlensäure in Form von Schnee für Kühlzwecke bekannt. Dabei strömt flüssige 25 Kohlensäure unter Druck aus einem Kapillarrohr oder einer Düse aus und wird beim Austritt aufgrund des Druckabfalles augenblicklich in ein Gemisch aus Dampf und Schnee umgewandelt.

Bei der auf Kohlendioxid beruhenden Kühlmethode handelt es sich um eine trockene Kühlung, d. h., da das Kohlendioxid bei normaler Umgebungstemperatur den gasförmigen Zustand annimmt, verbleiben im Anschluß an die gekühlte Bearbeitung keinerlei Kühlmittelrückstände auf dem Werkstück. Darüber hinaus ergibt sich auch bei der Bearbeitung von auf Grundkörpern aufgebrachten keramischen Schichten die vorteilhafte Situation, daß kein Kühlmittel in die poröse, keramische Schicht eindringen kann. Eine nachfolgende Versiegelung solcher Schichten wird somit optimal vorbereitet.

Besonders einfach ist eine Kühlung mit CO_2 dadurch realisierbar, daß der Kühlmittelstrahl aus unter entsprechendem Druck und Normaltemperatur stehendem, gasförmigen oder flüssigem CO_2 durch Entspannung über eine Standarddüse mit freiliegender rundlicher Öffnung erzeugt wird.

Der Kühlmittelstrahl aus Gas und Schnee liefert eine hohe Kühlleistung. Der Kühlstrahl ist auf relativ einfache Weise erzeugbar, nämlich durch Entspannung konventionell in Gasflaschen gespeicherten Kohlendioxids. Durch das zugeführte kalte Gas-/Schneegemisch wird eine besonders intensive Kühlung des beaufschlagten Bereichs bewirkt, wobei der Kühlstrahl negative Celsiustemperaturen aufweist und wobei gerade auf den Schneepartikeln im Kühlstrahl ein wesentlicher Teil des Kühleffekts beruht, da sie anhaften und am Werkstück verdampfen.

Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine verbesserte und möglichst effektive Kühlmethode für den Einsatz bei spanenden Bearbeitungen von Metallwerkstücken zu schaffen.

Diese Aufgabenstellung wird erfindungsgemäß dadurch 60 gelöst, daß der Kühlmittelstrahl aus gasförmigem, unter geeignetem Überdruck stehendem CO₂ derart gewonnen wird, daß

das CO₂-Gas über eine Schlitzdüse oder eine sonstige schlitzartige Öffnung zunächst in ein um diesen Expansionsschlitz herum ausgebildetes, weitgehend gegen die Umgebung abgeschlossenes Expansionsvo-

lumen hinein expandiert wird und

ausgehend von diesem Expansionsvolumen und dessen Austrittsöffnung der Kühlstrahl gebildet und auf den zu kühlenden Bereich gerichtet wird.

Besondere Vorteile bringt die erfindungsgemäße Kühlmittelstrahlerzeugung mit sich. Die Effektivität der vorliegenden Erfindung beruht insbesondere auf der hocheffizienten Kühlwirkung des mit den Schlitzdüsen erzeugbaren Kühlstrahls aus Gas und Schnee. Die notwendige Kälte für die Kühlstrahlausbildung kommt dabei prinzipiell aus der Expansionsabkühlung des CO₂-Gases. Dies beruht darauf, daß diese Schlitzdüsen mit ihrer länglichen Querschnittsöffnung einen Expansionsgasstrahl erzeugen, der im Vergleich zu einem aus einer Runddüse stammenden Expansionsgasstrahl eine wesentlich vergrößerte Oberfläche aufweist. Daraus resultiert eine verstärkte Wechselwirkung dieses Expansionsgasstrahles mit seiner Umgebung, die ja von einem abgeschirmten Raum (Expansionsvolumen) gebildet wird, zu dem insbesondere Umgebungsluft keinen unmittelbaren Zutritt hat. Warme Umgebungsluft kann sich also nicht in unmittelbarer Nachbarschaft zur Düse mit dem gerade expandierten CO2 vermischen, sondern lediglich im Expansionsvolumen befindliches, bereits expandiertes, kaltes CO2.

Mit dieser Entspannungsmethode wird im Vergleich zu einer unabgeschirmten Expansion von CO₂ über eine Runddüse ein einen größeren Kälteinhalt aufweisender, besser gebündelter, einen größeren Schneepartikelanteil besitzender Kühlstrahl gebildet, der eben die bereits mehrfach angesprochene besonders intensive Kühlwirkung liefert Dabei sind im Regelfall CO₂-Mengen von ca. 2 bis 30 Nm³ pro Stunde (gasförmiges CO₂!) für eine effiziente Kühlung einer Bearbeitung ausreichend.

Vorteilhafte Druckverhältnisse, wie sie in den oben geschilderten Erzeugungsverfahren des Kühlmittelstrahls zugrundeliegen sollten, bestehen dann, wenn das Ausgangsdruckniveau von normaltemperiertem Kohlendioxid vor der Kühlstrahlausbildung bei mehr als 50 bar liegt. Diese Druckwerte liegen im Normalfall bei der üblichen Speicherung von Kohlendioxid in Gasflaschen bei Umgebungstemperatur vor (in CO₂-Gasflaschen befinden sich üblicherweise gasförmige und flüssige Phase nebeneinander auf einem Druckniveau von etwa 57 bar bei einer Umgebungstemperatur von ca. 20°C). Bei kalt und in Flüssigphase gespeichertem CO₂ sind zur Ausführung der Erfindung jeweils geeignete Anpassungen vorzunehmen.

Schließlich ist festzuhalten, daß die Anwendung des erfindungsgemäßen Verfahrens insbesondere bei der Bearbeitung von hochfesten Materialien wie Titan, hochfesten Stählen und dergleichen besondere Vorteile vor allem hinsichtlich der erzielbaren Leistung aufweist.

Im folgenden wird die Erfindung anhand der Figur beispielhaft näher erläutert:

Die Figur zeigt eine Fräsbearbeitung eines Werkstücks W, wobei ein Fräser 1 gemäß Pfeil 2 über das Werkstück W geführt und eine Materialschicht dabei abgetragen wird. Hinsichtlich der Bewegung ist es hierbei ebenso möglich, das Werkzeug anstelle des Werkstücks gemäß Pfeil 2' zu bewegen. Benachbart zum Fräser 1 sind des weiteren im gezeigten Fall zwei Kühlmitteldüsen 3 und 4 angeordnet und auf diejenigen Zonen des Werkstücks ausgerichtet, die gerade der Bearbeitung durch den Fräser 1 unterliegen. Fräser und Kühlmitteldüsen werden im gezeigten Fall (bei bewegtem Werkzeug) parallel miteinander vorwärtsbewegt. Gemäß der vorliegenden Erfindung wird nunmehr über die Kühlmitteldüsen 3 und 4 jeweils ein Kühlstrahl ausgebildet und auf die Bearbeitungszone gerichtet.

Patentansprüche

- 1. Verfahren zur spanenden Bearbeitung von metallischen Werkstücken und auch keramischer Oberflächen, wobei während des Bearbeitungsvorgangs durch Zufuhr eines Kühlmittels zur Bearbeitungsstelle gekühlt wird und wobei zur Kühlung ein zumindest überwiegend aus Kohlendioxid ($\rm CO_2$) bestehender Kühlmittelstrahl enthaltend kaltes Gas und Schneepartikel der Bearbeitungsstelle zugeführt wird, **dadurch gekenn** 10 **zeichnet**, daß der Kühlmittelstrahl aus gasförmigem, unter geeignetem Überdruck stehendem $\rm CO_2$ derart gewonnen wird, daß
 - das CO₂-Gas über eine Schlitzdüse oder eine sonstige schlitzartige Öffnung zunächst in ein um 15 diesen Expansionsschlitz herum ausgebildetes, weitgehend gegen die Umgebung abgeschlossenes Expansionsvolumen hinein expandiert wird und
 - ausgehend von diesem Expansionsvolumen und 20 dessen Austrittsöffnung der Kühlstrahl gebildet und auf den zu kühlenden Bereich gerichtet wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Ausgangsdruckniveau für das CO₂ vor der Entspannung bei wenigstens 50 bar liegt.
- 3. Anwendung der Verfahren nach einem der Ansprüche 1 oder 2 auf Werkstücke aus Titan, hochfesten Stählen und keramischen Schichten.

Hierzu 1 Seite(n) Zeichnungen

30

35

40

45

50

55

60

Nummer: Int. Cl.⁶:

Veröffentlichungstag:

DE 43 26 517 C2 B 23 Q 11/1010. Juni 1998

