Математический анализ 1. Направление 38.03.01 Экономика Тема 2. Функции нескольких переменных Семинар 2.13. Зависимость экстремумов от параметров

- 1. В задачах этого пункта $F(\alpha)$ обозначает значение функции $f_{\alpha}(\mathbf{x})$ в точке строгого локального экстремума; если для данного α таких точек несколько, то для каждой точки строгого локального экстремума вводится своя функция $F(\alpha)$ (!). Здесь α параметр α или набор параметров (α, β) , а \mathbf{x} вектор переменных.
 - (1) $f_{\alpha}(x,y) = x^2 + \frac{xy}{\alpha} + y^2 \alpha^2 x 2\alpha^2 y$. Проверьте выполнение условий теоремы об огибающей для безусловных экстремумов при $\alpha = 1$. Если они выполнены, то с использованием этой теоремы найдите F'(1).
 - (2) $f_{\alpha}(x,y) = x^3 + \alpha y^3 (\alpha^2 4)x (8 + \alpha)y$. Проверьте выполнение условий теоремы об огибающей для безусловных экстремумов при $\alpha = 4$. Если они выполнены, то с использованием этой теоремы найдите F'(4).
 - (3) $f_{\alpha}(x,y) = x^4 + y^4 4(\alpha 1)x (1 \alpha^2)y$. Проверьте выполнение условий теоремы об огибающей для безусловных экстремумов при $\alpha = 1$. Если они выполнены, то с использованием этой теоремы найдите F'(1).
 - (4) $f_{\alpha,\beta}(x,y) = 4\alpha x^2 + (\alpha \beta)xy + \beta y^2 \alpha^3 x + \beta^3 y$. Проверьте выполнение условий теоремы об огибающей для безусловных экстремумов при $(\alpha,\beta) = (1,2)$. Если они выполнены, то с использованием этой теоремы найдите $\nabla F(1,2)$.
- 2. В задачах этого пункта $F(\alpha)$ обозначает значение функции $f_{\alpha}(\mathbf{x})$ в точке строгого условного локального экстремума при условии $G_{\alpha}(\mathbf{x}) = \mathbf{0}$ либо $\mathbf{G}_{\alpha}(\mathbf{x}) = \mathbf{0}$; если для данного α таких точек несколько, то для каждой точки строгого локального экстремума вводится своя функция $F(\alpha)$ (!). Здесь α параметр α или набор параметров (α, β) , а \mathbf{x} вектор переменных.
 - (1) $f_{\alpha}(x,y)=\alpha x+(2-\alpha)y,$ $G_{\alpha}(x,y)=\alpha x^2-(1-\alpha)xy+\frac{y^2}{\alpha}-9.$ Проверьте выполнение условий теоремы об огибающей для условных экстремумов при $\alpha=1.$ Если они выполнены, то с использованием этой теоремы найдите F'(1).

$$(2) \ f_{\alpha}(x,y,z) = (\alpha-1)x + y - z, \ \mathbf{G}_{\alpha}(x,y,z) = \left(\frac{\alpha x^2}{2} + y^2 - 1\right).$$
 Проверьте выполнение

условий теоремы об огибающей для условных экстремумов при $\alpha=2$. Если они выполнены, то с использованием этой теоремы найдите F'(2).

- (3) $f_{\alpha,\beta}(x,y) = \alpha x^2 \beta xy + \frac{\alpha \beta}{2} y^2$, $G_{\alpha}(x,y) = 2x^2 + 2y^2 \alpha^2 \beta^2$. Проверьте выполнение условий теоремы об огибающей для условных экстремумов при $(\alpha,\beta) = (1,-1)$. Если они выполнены, то с использованием этой теоремы найдите $\nabla F(1,-1)$.
- 3. В задачах этого пункта $F(\alpha)$ обозначает значение функции $f_{\alpha}(\mathbf{x})$ в точке строгого условного локального экстремума при условии $G_{\alpha}(\mathbf{x}) = \mathbf{0}$ либо $\mathbf{G}_{\alpha}(\mathbf{x}) = \mathbf{0}$ (если для данного α таких точек несколько, то для каждой точки строгого локального экстремума вводится своя функция $F(\alpha)$ (!). Здесь α параметр α или набор параметров (α, β) , а \mathbf{x} вектор переменных.

1

- (1) $f_{\alpha}(x,y) = 2x^2 + (5-\alpha)xy + 2y^2$, $G_{\alpha}(x,y) = -\sqrt{\alpha}x + y \alpha$. Проверьте выполнение условий теоремы об огибающей для условных экстремумов при $\alpha = 1$. Если они выполнены, то с использованием этой теоремы найдите F'(1).
- (2) $f_{\alpha,\beta}(x,y,z) = \alpha x^2 + \beta y^2 + \frac{\alpha+\beta}{2}z^2$, $G_{\alpha}(x,y,z) = \sqrt{\alpha\beta}x + y + \beta z + 1$. Проверьте выполнение условий теоремы об огибающей для условных экстремумов при $(\alpha,\beta) = (1,1)$. Если они выполнены, то с использованием этой теоремы найдите $\nabla F(1,1)$.
- (3) $f_{\alpha}(x,y,z)=x^2+2\alpha^2y^2+2\alpha^3z^2,$ $\mathbf{G}_{\alpha}(x,y,z)=\begin{pmatrix} x-\alpha y-\alpha^5z+5\\ 4x+4y+(\ln\alpha-1)z \end{pmatrix}.$ Проверьте выполнение условий теоремы об огибающей для условных экстремумов при $\alpha=-1.$ Если они выполнены, то с использованием этой теоремы найдите F'(-1).
- 4. Вернемся к семинару 2.11 и задаче 6: у потребителя имеется k у.е., которые он хочет потратить на 2 товара, первый из которых стоит a у.е. за единицу, а второй b у.е. за единицу. Пусть полезность, получаемая потребителем от x единиц первого товара и y единиц второго товара, задается функцией полезности Кобба-Дугласа $U(x,y)=x^{\alpha}y^{\beta}$, где $0\leqslant \alpha\leqslant 1$ и $\alpha+\beta=1$. Покажите, что полезность максимальна при $x=\frac{k\alpha}{a}$ и $y=\frac{k\alpha}{b}$.

Теперь найдите предельную полезность денег в этой задаче и определите, насколько изменится максимальная полезность, если бюджет потребителя увеличится на 1 у.е.

Указание. Предельной полезностью денег является множитель Лагранжа в точке строгого условного локального экстремума функции полезности при заданном бюджетном ограничении, взятый с противоположным знаком.

- 5. Дана функция полезности $u(x,y) = 3\sqrt{x} + 2\sqrt{y}$ и бюджетное ограничение px + qy = P (здесь (x,y) вектор приобретенных потребителем благ, p, q цены этих благ, P бюджет потребителя). Поведение потребителя рационально: при любом значении параметров p, q, P он выбирает набор благ, обеспечивающий ему максимальную полезность U(p,q,P) в пределах бюджета. Значения параметров в некоторый момент времени составляют p=10, q=30, P=100. При каком развитии событий полезность U(p,q,P) увеличится наиболее сильно:
 - (1) цена p первого блага уменьшилась на малую величину d;
 - (2) цена q второго блага уменьшилась на малую величину d;
 - (3) бюджет p увеличился на малую величину 2d.