Pravděpodobnostní prostor $(\Omega, \mathcal{A}, P) = (\text{množina všech náhodných elem. jevů, } \sigma\text{-algebra,pravděpodobnost})$ Základní vlastnosti:

1.
$$0 \le P(A) \le 1$$

2.
$$P(A^c) = 1 - P(A)$$

3.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

4.
$$A \subset B \to P(A) \leq P(B)$$

5.
$$A \subset B \rightarrow P(B - A) = P(B) - P(A)$$

Podmíněná pravděpodobnost - jev A za podmínky jevu B (např. pst, že padne 6 za podmínky, že padlo sudé číslo), chová se jako nepodmíněná pst.

 $P(A|B) = \frac{P(A \cap B)}{P(B)} \rightarrow$ průnik lze hledat např. skrz tabulku či obrázek (případně u nezávislých jevů skrz vzorec níže)

Věta o násobení psti (řetězové pravidlo) - $P(\bigcap_{i=1}^n) = P(A_1)P(A_2|A_1)P(A3|A_1\cap A_2)...P(A_n|A_1\cap...\cap A_{n-1})$

Věta o úplné psti - známe $P(B|A_i) \to P(B) = \sum_{i=0}^{\infty} P(A_i)P(B|A_i)$, např. pst, že nám během roku praskne nějaký z X typů žárovek

Bayesova věta - známe $P(B|A_i) \to P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{\infty}P(A_j)P(B|A_j)}$; např. jaká je pst, že člověk s pozitivním testem je opravdu nakažený, když máme danou spolehlivost - ideálně řešit skrz tabulku

Nezávislost jevů - dva jevy jsou nezávislé, pokud platí $P(A \cap B) = P(A)P(B)$, např. při prvním hodu padne panna a při druhém orel. Pro více jevů je potřeba pro totální nezávislost dokázat nezávislost všech n-tic pro $n \ge 2$. Pokud pro každou dvojici jevů platí, že jsou jevy nezávislé, pak jsou obecně po dvou nezávislé.

Náhodná veličina X - zobrazení $X:\Omega\to\mathbb{R}$, které přiřazuje jevům náhodná čísla (lze na to pohlížet jako na náhodné číslo); operace s náhodnými veličinami vrací náhodné veličiny

Distribuční funkce - $F(x) = P(X \le x)$, např. jaká je šance, že budeme na bus čekat méně jak x minut. Je neklesající a zprava spojitá v každém bodě. Platí, že $\lim_{x\to -\infty} F(x) = 0$ a $\lim_{x\to \infty} F(x) = 1$.

Tabulka základních informací o diskrétních, spojitých a směsích n. v.:

Diskrétní	Spojitá	Směs $Mix_c(D, S)$
$F(x)$ je skokovitá, velikost skoků odpovídá jejich pravděpodobnostem, $F(x) = \sum_i P(X=x_i)$	$F(x)$ je spojitá a její derivace je $f(x)$, tj. $F(x) = \int_{-\infty}^{x} f(t)dt$	$F(x)$ je směs dílčích distribučních funkcí F_D (s "váhou"c) a F_S , tj. $F(x) = cF_D(x) + (1-c)F_S(x)$
	f(x) - hustota pravděpodobnosti, $\int_{-\infty}^{\infty} f(x)dx = 1$	
$\mathbb{E}X = \sum_{i=1}^{\infty} x_i \cdot P(X = x_i)$	$\mathbb{E}X = \int_{-\infty}^{\infty} x f(x) dx$	$\mathbb{E}X = c\mathbb{E}_D + (1-c)\mathbb{E}S$
$\mathbb{E}X^2 = \sum_{i=1}^{\infty} x_i^2 \cdot P(X = x_i)$	$\mathbb{E}X^2 = \int_{-\infty}^{\infty} x^2 f(x) dx$	

Základní vlastnosti střední hodnoty $\mathbb{E}X$:

1. a je konst.
$$\to \mathbb{E}a = a$$

2.
$$\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$$

3.
$$X_1 \leq X \leq X_2 \rightarrow \mathbb{E}X_1 \leq \mathbb{E}X \leq \mathbb{E}X_2$$

Variance - česky rozptyl, $varX = \mathbb{E}(X - \mathbb{E}X)^2$,

Základní vlastnosti variance varX

1. X je n.v.
$$\rightarrow varX = \mathbb{E}X^2 - \mathbb{E}^2X$$

2. a je konst.
$$\rightarrow var(a) = 0$$

3. X je n.v., a je reálné číslo

$$\rightarrow var(aX) = a^2 var X$$

4.
$$X,Y \rightarrow var(X+Y) = varX + varY + 2cov(X,Y)$$

Čebyševova nerovnost - X je n.v. a pro každé $\mathcal{E} > 0$ platí, že $P(|X = \mathbb{E}X| \ge \mathcal{E}) \le \frac{varX}{\mathcal{E}^2}$; např. odhadněte, že při 120 hodech padne 10-15 šestek (tohle jsou zrovna prý dost blbá čísla, ale princip snad jde poznat :D)