$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}\!$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_1^{\#_1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{#1}$		#
$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0	nts	
$\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	Source constraints	SO
0	0	0	e co	irre
0	0	$-\frac{1}{t_1}$	Sourc	SO(3) irreps

 $_{\kappa}^{\lambda}\partial^{\kappa}f_{\lambda\alpha}+$

 $t_1 \; \omega_{\kappa\alpha}^{\;\;\alpha} \; \partial^\kappa f'_{\;\;\prime} + t_1 \; \omega_{\kappa\lambda}^{\;\;\lambda} \; \partial^\kappa f'_{\;\;\prime} + 2 \, t_1 \, \partial^\alpha f_{\;\kappa\alpha} \; \partial^\kappa f'_{\;\;\prime} - t_1 \, \partial_\kappa f^\lambda_{\;\;\lambda} \, \partial^\kappa f'_{\;\;\prime} +$

 $2\,t_1\,\,\omega_{_{IK}\theta}\,\partial^\kappa f^{'\theta} - t_1\,\,\omega_{_{I}\alpha}^{\alpha}\,\partial^\kappa f^{'}_{} - t_1\,\,\omega_{_{I}}^{}\partial^\kappa f^{'}_{} + \frac{1}{2}\,t_1\,\partial^\alpha f^{'}_{}$

 $\tfrac{1}{2} \, t_1 \, \partial_k f_{\theta}^{\ \lambda} \, \partial^\kappa f_{\lambda}^{\ \theta} + \tfrac{1}{2} \, t_1 \, \partial_\kappa f^{\lambda}_{\ \theta} \, \partial^\kappa f_{\lambda}^{\ \theta} - t_1 \, \partial^\alpha f^{\lambda}_{\ \alpha} \, \partial^\kappa f_{\lambda \kappa} \, +$

 $\frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^{\beta} \omega_{\alpha}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} -$

 $\frac{8}{3}r_1\partial^{\beta}\omega_{\lambda}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}+r_5\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial^{\lambda}\omega_{\theta\kappa}^{\kappa}-r_5\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial^{\lambda}\omega_{\theta\kappa}^{\kappa}$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

 $\omega_{0}^{\#1}$

 $f_{0}^{\#2}$

 $f_{0}^{\#1}$

 $\omega_{0}^{\#1}$

0

0

 $i\sqrt{2} kt_1$

*-t*₁

0

0

 $-2 k^2 t_1$

 $-i\sqrt{2}kt_1$

 $f_{0}^{\#1}$ †

0

0

0

0

 $f_0^{#2} +$

$\omega_{2^{^{-}}}^{\#1}\alpha\beta\chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}\;f_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + ^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

 \sim

0 ==

 $\tau_1^{\#2}{}^{\alpha} + 2ik \, \sigma_1^{\#2}{}^{\alpha}$

Н

 $t_0^{\#1} - 2ik\sigma_0^{\#1} = 0$

 $c_{0}^{#2} == 0$

 \sim

 $\tau_{1}^{\#1}{}^{\alpha} := 0$

 \sim

 $\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$

16

Total #:

2

 $t_2^{\#1}\alpha\beta - 2ik \ \sigma_2^{\#1}\alpha\beta == 0$

-¢₁

0

0

0

 $\omega_{0}^{\#1}$ \dagger

$\omega_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$\omega_{2}^{\#1}_{+} f_{2}^{\#1}_{lphaeta}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
•	$\omega_{2}^{\#1} + \alpha^{eta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

$f_{1^{-}\alpha}^{\#2}$	0	0	0	$\bar{l} k t_1$	0	0	0
$f_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2} \alpha f_{1^{-}}^{\#1} \alpha f_{1^{-}}^{\#2} \alpha$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{\imath}kt_1$
$f_{1}^{\#1}{}_{\!$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_+\alpha_\beta\ f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha_\beta$	$\omega_{1}^{\#1} + \alpha \beta \left k^2 \left(2 r_1 + r_5 \right) - \frac{t_1}{2} \right $	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_{1}^{\#2} + \alpha \beta$	$f_{1+}^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

	Massive partic	le
? $J^P = 2^-$ /	Pole residue:	$-\frac{1}{r_1} > 0$
$J^2 \equiv 2$	Polarisations:	5
k^{μ}	Square mass:	$-\frac{t_1}{2r_1} > 0$
?	Spin:	2
	Parity:	Odd

Lagrangian density

 $\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} +$

 $r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta}.$

 $\frac{1}{2}\,t_1\,\partial^\alpha f_{\,\theta\kappa}\,\partial^\kappa f_{\,\alpha}^{\ \ \theta} - \frac{1}{2}\,t_1\,\partial^\alpha f_{\,\kappa\theta}\,\partial^\kappa f_{\,\alpha}^{\ \ \theta} - \frac{1}{2}\,t_1\,\partial^\alpha f^{\,\lambda}_{\ \ \kappa}\,\partial^\kappa f_{\,\alpha\lambda} +$

mass
ıassless
partic
les)

(No