Геометрия и топология.

Лектор — Евгений Анатольевич Фоминых Создатель конспекта — Глеб Минаев *

TODOs

Содержание

1	Алгебраическая топология 1.1 Фундаментальная группа	1 1
	П	
	Литература:	
	• Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., "Элементарная топологи: М.:МЦНМО, 2012.	я",
	• James Munkres, "Topology".	

1 Алгебраическая топология

1.1 Фундаментальная группа

Определение 1. Ретракция — непрерывное отображение $f: X \to A$, где A — подпространство X, что $f|_A = \mathrm{Id}_A$.

Если существует ретракция $f: X \to A$, то A называется ретрактом пространства X.

Π ример 1.

- 1. Всякое одноточечное подмножество является ретрактом.
- 2. Никакое двухточечное подмножество прямой не является ретрактом.

Теорема 1. Пусть дано подпространство A пространства X. TFAE

- 1. A pempakm X.
- 2. всякое непрерывное отображение $g:A \to Y$ продолжается до непрерывного отображения $X \to Y$.

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

Доказательство. Пусть A — ретракт. Тогда есть ретракция $\rho: X \to A$, а значит $g \circ \rho$ — продолжение g на X.

С другой стороны, если всякое непрерывное $g:A\to Y$ продолжимо до непрерывного $X\to Y$, то ретракцию A можно получить как продолжение $\mathrm{Id}_A:A\to X$.

Лемма 2. Пусть дано подпространство A пространства X и точка $x \in A$. Если $\rho: X \to A$ — ретракция, a in : $A \to X$ — включение (тождественное отображение), то $\rho_{\star}: \pi_1(X,x) \to \pi_1(A,x)$ — сюръекция, a in $_{\star}: \pi_1(A,x) \to \pi_1(X,x)$ — инъекция.

Доказательство. $\rho \circ \text{in} = \text{Id}_A$. Следовательно $(\rho \circ \text{in})_{\star} = \rho_{\star} \circ \text{in}_{\star} = \text{Id}_{\star} = \text{Id}$, откуда следует, что ρ_{\star} — сюръекция, а in_{\star} — инъекция.

Теорема 3 (Борсука). *Не существует ретракции* $D^n \to S^{n-1}$.

Доказательство в размерности 2. Предположим противное. Пусть $\rho: D^2 \to S^1$ — ретракция, $x \in S^1$. Из леммы 2 следует, что $in_*: \pi_1(S^1) \to \pi_1(D^2)$ должно быть инъекцией. Но $\pi_1(S^1) = \mathbb{Z}$, а $\pi_1(D^2) = \{0\}$. А инъекции $\mathbb{Z} \to \{0\}$ не существует — противоречие.

Замечание 1. На самом деле рассуждение работает в любой размерности. Только вместо π_1 надо взять π_{n-1} . Там опять же окажется, что лемма верна, $\pi_{n-1}(D^n)$ тривиальна, а $\pi_{n-1}(S^{n-1})$ — содержит $\mathbb Z$ как подгруппу.

Определение 2. Точка $a \in X$ называется неподвижной точкой отображения $f: X \to X$, если f(a) = a.

Пространство X, говорят, обладает свойством неподвижной точки, если всякое непрерывное отображение $f: X \to X$ имеет неподвижную точку.

 $\Pi pumep \ 2. \ [a;b]$ обладает свойством неподвижной точки.

Теорема 4 (Брауэра). Любое непрерывное отображение $f: D^n \to D^n$ имеет неподвижную точку.

Доказательство в размерности 2. Предположим противное, $f(x) \neq x$ для всех $x \in D^2$. Построим $g: D^2 \to S^1$ как пересечение открытого луча $(f(x); x; \infty)$ и S^1 . Несложно удостовериться, что для всех точек x, что $f(x) \neq x$, функция g определена и непрерывна в некоторой окрестности x. Это противоречит теореме Борсука.

Замечание 2. В точности также это можно доказать для любой размерности, но потребуется теорема Борсука большей размерности.

Определение 3. X и Y называются гомотопически эквивалентными (и пишут $X \sim Y$), если существуют непрерывные отображения $f: X \to Y$ и $g: Y \to X$ такие, что $g \circ f \sim \operatorname{Id}_X$ и $f \circ g \sim \operatorname{Id}_Y$.

Такие f и g называются гомотопически обратными отображениями. При этом каждое из них называется гомотопической эквивалентностью.

 $\Pi pumep 3. \mathbb{R}^n$ гомотопически эквивалентно $\{0\}.$

Определение 4. Ретракция $f: X \to A$ называется *деформационной ретракцией*, если её композиция с включением in : $A \to X$ гомотопна тождественному отображению, т.е.

in
$$\circ f \sim \mathrm{Id}_X$$
.

Если существует деформационная ретракция X на A, то A называется $de\phi$ ормационным pempakmom пространства X.

Теорема 5. Деформационная ретракция — гомотопическая эквивалентность.

Доказательство. Действительно, если $f:X\to A$ — деформационная ретракция, а in : $A\to X$ включение, то $f\circ$ in $=\mathrm{Id}_A\sim\mathrm{Id}_A$ и

$$in \circ f \sim Id_A$$

по оперделению деформационной ретракции. Следовательно f и in — гомтопически обратные друг другу деформационные ретракции.

Следствие 5.1. Деформационные ретракты гомотопически эквивалентны своим исходным пространствам.

 Π ример 4.

- 1. S^{n-1} деформационный ретракт $\mathbb{R}^n \setminus \{0\}$.
- 2. S^1 деформационный ретракт ленты Мёбиуса и кольца $(S^1 \times [0;1])$.
- 3. Букет n окружностей и окружность с n радиусами деформационный ретракт плоскости без n точек.
- 4. Букет двух окружностей деформационный ретракт тора с дыркой.

Теорема 6. Гомотопическая эквивалентность — "отношение эквивалентности" между топологическими пространствами.

Доказательство.

- **Рефлексивность.** Очевидна, так как Id является деформационным ретрактом $X \to X$.
- Симметричность. Если $X \sim Y$, то есть $f: X \to Y$ и $g: Y \to X$, что $g \circ f \sim \mathrm{Id}_X$ и $f \circ g \sim \mathrm{Id}_Y$. Тогда $Y \sim X$.
- Транзитивность. Пусть $X \sim Y \sim Z$. Тогда имеются $f: X \to Y, g: Y \to X, h: Y \to Z$ и $i: Z \to Y$, что $g \circ f \sim \operatorname{Id}_X, f \circ g \sim \operatorname{Id}_Y, i \circ h \sim \operatorname{Id}_Y, h \circ i \sim \operatorname{Id}_Z$. Следовательно

$$(g \circ i) \circ (h \circ f) = g \circ (i \circ h) \circ f \sim g \circ \operatorname{Id}_{Y} \circ f = g \circ f \sim \operatorname{Id}_{X}$$

И

$$(h \circ f) \circ (g \circ i) = h \circ (f \circ g) \circ i \sim h \circ \mathrm{Id}_Y \circ i = h \circ i \sim \mathrm{Id}_Z.$$

Следовательно $(h \circ f)$ и $(g \circ i)$ — гомотопически обратные гомотопические эквивалентности. Значит $X \sim Z$.

П

Определение 5. Класс пространств, гомотопически эквивалентных данному X, называется гомотопическим типом. Свойства (характеристики) топологических пространств, одинаковые у гомотопически эквивалентных, — гомотопические свойства (гомотопические инварианты).

Упражнение 1. Число компонент (линейной) связности — гомотопический инвариант.

Теорема 7. Пусть X и Y — гомотопно эквивалентные поверхности, a f : $X \to Y$, g : $Y \to X$ — гомотопически обратные гомотопические эквивалентности. Пусть также фиксирована $x_0 \in X$. Тогда

$$\pi_1(X, x_0) \simeq \pi_1(Y, f(x_0)).$$

Доказательство.

Лемма 7.1. Пусть $f,g:X\to Y$ — непрерывные отображения, а $H:X\times [0;1]\to Y$ — гомотопия между f и g. Пусть также даны $x_0\in X,\ y_0:=f(x_0),\ y_1:=g(x_0)$ и путь $\gamma(t):=H(x_0,t)$ из y_0 в y_1 . Обозначим за T_γ — сопряжение по пути γ , т.е. $T_\gamma(\alpha)=\gamma^{-1}\alpha\gamma$. Тогда

$$f_{\star} = T_{\gamma} \circ g_{\star}.$$

Доказательство. Условие равенства функций $f_{\star} = T_{\gamma} \circ g_{\star}$ означает, что для всякого $\alpha \in \pi_1(X, x_0)$

$$f_{\star}([\alpha]) = T_{\gamma}(g_{\star}([\alpha])).$$

Последнее значит, что

$$[f \circ \alpha] = [\gamma^{-1}(g \circ \alpha)\gamma],$$

или говоря иначе,

$$f \circ \alpha \sim \gamma^{-1}(g \circ \alpha)\gamma$$
.

При этом заметим, что

$$f \circ \alpha = H(\alpha(s), 0), \qquad g \circ \alpha = H(\alpha(s), 1).$$

Рассмотрим

$$F:[0;1]^2\to X\times [0;1], (s,t)\mapsto (\alpha(s),t).$$

Несложно видеть, что

$$F(s,0) = (\alpha(s),0), \qquad F(s,1) = (\alpha(s),1), \qquad F(0,t) = F(1,t) = (x_0,t).$$

Таким образом

$$(H \circ F)(s,0) = f \circ \alpha, \qquad (H \circ F)(s,1) = g \circ \alpha, \qquad (H \circ F)(0,t) = F(1,t) = \gamma.$$

Зафиксируем в $[0;1]^2$ линейные пути $\varphi:(0,0)\mapsto(1,0)$ и $\psi:(0,0)\mapsto(0,1)\mapsto(1,1)\mapsto(1,0)$. Несложно видеть, что

$$H \circ F \circ \varphi = f \circ \alpha, \qquad H \circ F \circ \psi = \gamma^{-1}(g \circ \alpha)\gamma.$$

При этом $[0;1]^2$ выпукло, значит есть гомотопия G, переводящая φ в γ . В таком случае $H \circ F \circ G$ — гомотопия, переводящая $f \circ \alpha$ в $\gamma^{-1}(g \circ \alpha)\gamma$.

Заметим, что $g \circ f$ гомотопно Id_X . Значит в контексте x_0 и $\pi_1(X,x_0)$ есть некоторое сопряжение T_γ , что

$$T_{\gamma} \circ (g \circ f)_{\star} = (\mathrm{Id}_X)_{\star} = \mathrm{Id}.$$

При этом T_{γ} есть изоморфизм групп (биекция). Это в частности означает, что $g_{\star} \circ f_{\star}$ является биекцией. Отсюда следует, что g_{\star} инъективно, а f_{\star} сюръективно.

Повторяя рассуждения в обратную сторону, получаем, что f_{\star} и g_{\star} являются биекциями. Поэтому

$$\pi_1(X, x_0) \simeq \pi_1(Y, f(x_0)).$$

Следствие 7.1. f_{\star} (кроме того, что индуцирует биекцию из множества фундаментальных групп компонент линейной связности X в множества тех же у Y) индуцирует изоморфизмы фундаментальных групп компонент линейной связности X.

Следствие 7.2. Если X линейно связно (а тогда Y тоже), то $\pi_1(X) \simeq \pi_1(Y)$.

Определение 6. Топологическое пространство X стягиваемо, если гомотопически эквивалентно точке.

Лемма 8. *TFAE*

- 1. Х стягиваемо.
- 2. Id_X гомотопно константному отображению.
- 3. Некоторая точка деформационный ретракт.
- 4. Всякая точка деформационный ретракт.

Пример 5. Например, стягиваемы следующие пространства.

- $1. \mathbb{R}^n.$
- 2. Выпуклые множества.
- 3. Звёздные множества.
- 4. Деревья.

Лемма 9. Пусть $h: S^1 \to X$ — непрерывное отображение. TFAE

- 1. h гомотопно постоянному отображению.
- 2. h продолжается до непрерывного отображения $D^2 \to X$.
- 3. h_{\star} тривиальный гомоморфизм.

Доказательство.

- $1\Rightarrow 2)$ Существует гомотопия H между h и константным отображением. Это значит, что $H: S^1\times [0;1]\to X$ непрерывно, и $H(x,1)={\rm const.}$ Это значит, что пространство $S^1\times [0;1]$ можно склеить по множеству $S^1\times \{1\}$ (так как на нём H константна) и H переопределится в некоторую функцию H'. При этом множество-прообраз H' гомеоморфно $D^2.$ Следовательно можно считать, что $H':D^2\to X.$ При этом H' является доопределением, так как $H'|_{S^1}=H|_{S^1\times \{0\}}=h.$
- $2\Rightarrow 1)$ Пусть h продолжена до H на D^2 . Тогда определим

$$G:S^1\times [0;1]\to X, (\alpha,r)\mapsto H(re^{\alpha i}).$$

Несложно видеть, что G — гомотопия между h и константным отображением.

 $1 \Leftrightarrow 3$) Если h_{\star} является тривиальным гомоморфизмом фундаментальных групп, то $h = h \circ \alpha \sim$ const, где α — один оборот по окружности, т.е. h гомотопно константному отображению. Если h гомотопно постоянному отображению, то $\alpha \circ h = h \sim \text{const}$, т.е. $f_{\star}([\alpha]) = e$. При этом $[\alpha]$ порождает группу $\pi_1(S^1)$. Следовательно, h_{\star} — тривиальный гомоморфизм.

Теорема 10 (основная теорема алгебры). Всякий многочлен из $\mathbb{C}[z]$ положительной степени имеет корень.

Доказательство. WLOG нам дан многочлен

$$z^n + a_{n-1}z^{n-1} + \dots + a_0z^0$$
.

Также WLOG $|a_{n-1}|+\cdots+|a_0|<1$, так как если сделать замену z=y/c, то задача сведётся к многочлену

$$y^n + ca_{n-1}y^{n-1} + \dots + c^n a_0.$$

В таком случае

$$|a_{n-1}| + \dots + |a_0| = |c||a_{n-1}| + \dots + |c|^n|a_0|.$$

Значит можно взять достаточно маленькое значение |c|>0, и тогда полученная сумма будет меньше 1.

Предположим противное, т.е. у данного многочлена нет корней. Тогда функция

$$f: \mathbb{C} \to \mathbb{C}, z \mapsto z^n + a_{n-1}z^{n-1} + \dots + a_0z^0$$

непрерывна и имеет область значений $\mathbb{C} \setminus \{0\}$. Следовательно, поскольку f определена D^2 , то $f|_{S^1}$ гомотопна постоянному отображению.

Определим функцию

$$g: S^1 \to \mathbb{C} \setminus \{0\}, z \mapsto z^n$$

и функцию

$$H: S^1 \times [0;1] \to \mathbb{C}, z \mapsto z^n + t(a_{n-1}z^{n-1} + \dots + a_0z^0).$$

Заметим, что

$$|H(z,t)| \ge |z^n| - |t|(|a_{n-1}||z|^{n-1} + \dots + |a_0||z|^0) \ge 1 - (|a_{n-1}| + \dots + |a_0|) > 0,$$

т.е. $H \neq 0$. Следовательно, H является гомтопией между f и g в $\mathbb{C} \setminus \{0\}$. Таким образом f гомотопно g и константной функции. При этом g не гомотопно константной функции, так как определяет n оборотов по окружности, что не является тривиальным гомоморфизмом $\pi_1(\mathbb{C} \setminus \{0\}) \simeq \pi_1(S^1)$ на себя — противоречие.

Теорема 11 (Борсука-Улама). Для любой непрерывной функции $f: S^n \to \mathbb{R}^n$ существует точка $x \in S^n$ такая, что f(-x) = f(x).

Доказательство для размерности 1. Функция $\varphi: S^1 \to \mathbb{R}^1, x \mapsto f(x) - f(-x)$ определена на компакте, значит множество её значений есть отрезок. При этом φ нечётна, значит это отрезок с серединой в 0. Таким образом в какой-то точке φ принимает 0, т.е. в этой точке f(x) = f(-x).

Доказательство для размерности 2. Предположим противное, т.е. $f(x) \neq f(-x)$ ни в какой точке. Тогда можно определить функцию

$$g: S^2 \to S^1, \frac{f(x) - f(-x)}{|f(x) - f(-x)|}.$$

Понятно, что g нечётна и непрерывна.

Рассмотрим нативные проекции $p_1: S^1 \to \mathbb{R}P^1$ и $p_2: S^2 \to \mathbb{R}P^2$. Поскольку g нечётна, то $p_1 \circ g$ чётна, а значит $\varphi:=p_1 \circ g \circ p_2^{-1}$ определена. При этом $\pi_1(\mathbb{R}P^2)=\mathbb{Z}_2$, а $\pi_1(\mathbb{R}P^1)=\mathbb{Z}$. Т.е. не существует нетривиальных гомоморфизмов $\mathbb{Z}_2 \to \mathbb{Z}$. Таким образом φ_\star тривиален.

Пусть α — нетривиальная петля в $\mathbb{R}P^2$. Тогда при помощи p_2 её можно поднять в путь $\widetilde{\alpha}$. При этом из нетривиальности α следует, что концы $\widetilde{\alpha}$ не совпадают, а являются противоположными. Следовательно $g \circ \widetilde{\alpha}$ — путь с противоположными концами. Но в таком случае $p_1 \circ g \circ \widetilde{\alpha}$ является нетривиальной петлёй в $\mathbb{R}P^1$. Т.е. φ_{\star} отправил не нейтральный элемент в не нейтральный. Следовательно, φ_{\star} нетривиален — противоречие.