

easy_manipulation_deployment

An easy to use ROS2 manipulation package that uses the easy_perception_deployment output to provide a **modular** and **configurable** manipulation pipeline for pick and place tasks

Easy_manipulation_deployment

Manipulation pipeline

Workcell builder

Quick and Intuitive GUI for users to create a representation of the elements in a workcell

Grasp Planner

Modular and Flexible Grasp Planner
that generates a (3+1) DOF End
Effector specific Pose from the
easy_perception deployment output

Grasp Execution

Robust Path planning process to navigate robot to the object for grasp

Rationale

Problem Statement:

For new users to ROS and to robotic workcell generation, it is **knowledge and time intensive** to generate the required files to prepare an environment that
represents a workcell for robot manipulation

Solution:

A simple to use Graphical User Interface that allows the user to determine and create objects required in a robotic workcell, which generates a file that provides an easy to understand representation of the workspace. Relevant files and folders will then be generated and organized to provide an immediate simulation model for path planning.

Standardization

Folder structures

- Folder standardization has been determined to ensure:
 - Clear delineation between user's custom generated folders and pre downloaded asset packages
 - Clear segmentation of types of assets to increase user understanding and easier folder navigation

Naming Convention

- Naming convention has been established for:
 - End Effector description and moveit configuration folder
 - · Robot description and moveit configuration folder
 - URDF and SRDF files

Scene building

Static object building

YAML files

Robot End effector **Environment Objects** robot: objects: end_effector: table: name: ur5 name: robotiq 85 links: origin: origin: table: x: 0 x: 0 visual: y: 0 y: 0 name: None Z: 0 z: 0 geometry: roll: 0 filepath: /home/rosi5/rect roll: 0 pitch: 0 scale: pitch: 0 yaw: 0 scale x: 0.00100000005 yaw: 0 scale y: 0.00100000005 links: links: scale z: 0.00100000005 - base link - gripper base link material: - shoulder link - gripper finger1 knuckle link name: aluminum - upper arm link - gripper finger2 knuckle link r: 0.550000012 - forearm link - gripper finger1 finger link g: 0.560000002 - wrist 1 link b: 0.529999971 - gripper finger2 finger link - wrist 2 link a: 1 - gripper finger1 inner knuckle collision: - wrist 3 link - gripper_finger2_inner_knuckle name: None - ee link - gripper finger1 finger tip li geometry: - base - gripper_finger2_finger_tip_li shape: Box - toolo length: 2 breadth: 2 height: 0.00999999978

External Joints

```
external joints:
  robot_to_table:
   type: fixed
  parent: base_link
  child: table
  origin:
    x: 0
    y: 0
    z: 0
   roll: 0
  pitch: 0
  yaw: 0
```

Benchmarking

00:00.0 With Workcell Builder

Benchmarking of workcell building process between using the Workcell Builder (1:36) and without (19:51) shows the potential time reduction and the reduction of knowledge gap faced by users

Rationale

Most grasp planners are Machine Learning based, which means that a completely different training dataset is needed if a specific end effector is required, leading to difficulties in implementing new models for new grippers.

Solution:

An **Algorithmic, depth based grasp planner** that uses depth values to generate valid grasp poses, accounting for finger collision and stability (Assuming objects with center of mass at the object centroid)

A **flexible representation of an end effector** to allow for extension of capabilities to other end effectors with minimal effort needed from the user

User Configuration

```
end_effector:
   type: finger
   attributes:
      fingers: 2
      distance_between_fingers: 250
      longest_gripper_dim: 40
      table_height: 570
parameters:
   min_zero_angle: 0.01
   min_height_diff_to_grip: 5
   min_gdi_diff_for_comparison: 5
```

 Easy to understand configuration file for users to customize the parameters to their specific end effector

Algorithm – Finger collision avoidance

Depth camera

Algorithm – Grasp stability

Current assumption that the Centre of Gravity is at the centroid of the object, so we also value grasps closer to the centroid <u>IF the first</u> condition of graspability is satisfied

This additional condition allows for faster computation of grasp samples, and increased stability for regular objects

Results

Current implementation of grasp planner shows that it is possible to have a **non Machine Learning** based, **unsupervised learning grasp planner** to find **grasp poses for novel objects**

Work Package output, done with depth based grasp pose planning without need for training.

Further testing

Multi-gripper support

Support for suction type grippers has been added, but current functionalities only include <u>single</u> <u>cup grippers</u>.

Average grasp planning time: 0.25s

Extrapolation of fingered end effectors

2 Finger Gripper

3 Finger Gripper

4 Finger Gripper

Extrapolation of suction end effectors

Single suction cup

Suction Cup array

Irregular suction cup array

Benchmarking

- Current grasp planning solution was run on CPU (i7-7700HQ, 4 cores) using a single thread, thus in terms of processing power there is <u>still significant opportunity for further improvement</u> in detection speeds by harnessing GPU and running multi-thread processes. Current results however, already indicate the <u>low hardware specifications needed for the package, which is a common problem for Machine Learning methods</u>
- Actual improvement in grasp times vary depending on the size of object and the profile of the object.

Solution	End Effector Supported	Grasp Planning times (s)	Training needed?
Grasp Pose Detection (GPD)	2 Finger Gripper	2.1	Yes
Superquadratic Grasping	5 Finger Gripper	1.78	Yes
ROS-I Grasp Planner	2 Finger Gripper Single Suction Gripper	~0.42 ~0.25	<u>No</u>
GQ-STN	2 Finger Gripper	0.024	Yes

THANK YOU

www.a-star.edu.sg

