Name: Aryan Girish Kasliwal

SID: 55972222 EID: akasliwal2

CS3481: Fundamentals of Data Science- Assignment 2

Construct random forest models using different numbers of component trees based on the default training set/test set partition and analyze the resulting change in classification performance. (25%)

While constructing the random forest models, the number of component trees is decided by the parameter 'n estimators'.

For the first question, the code was looped through different parameter values for n_estimators ranging from 1-120 and random_state ranging from 1-50 in the function RandomForestClassifier. The most optimal prediction value for the random forest was when:

clf = RandomForestClassifier(n_estimators=7, random_state=8)

When the parameters are set as above, the accuracy of the random forest model is 85.23076923076923 which is the highest observed through the different values. The table below has the top accuracy values for various component tree values.

No. component trees	Accuracy
7	85.23076923076923
10	85.23076923076923
6	84.92307692307692
8	84.92307692307692
9	84.3076923076923
12	84.3076923076923
11	84.0
5	83.6923076923077
14	83.38461538461539
15	83.38461538461539

An observation that can be made is, when the number of component trees range between 5-15, the accuracy of the random tree model is consistently high and then it gradually starts dipping below the average. Further, when component trees range between 1-4, the values are below

average. From this we can infer that with less trees, the model isn't trained accurately and hence its accuracy is low, this is called under-fitting. Further, even though the accuracy starts increasing as component trees increase, it flatlines after a limit, this is when the model is most accurately trained. A further observation to this is that accuracy eventually reduces too due to over-fitting.

The table below has the lowest accuracy values for various number of component trees.

No. component trees	Accuracy
2	78.46153846153847
1	79.07692307692308
3	80.92307692307692
4	81.53846153846153
40	81.84615384615384
70	81.84615384615384
98	81.84615384615384
99	81.84615384615384
34	82.15384615384616
36	82.15384615384616

Further observations can be made from the different values in the table above. The lowest accuracy was 78.46153846153847 when the parameter n_estimators was set to 2. Amongst other low values are when component tree is set to 1, 3, 4, 98, 99. This supports our inference from before that the random forests generated require a minimum number of trees to classify accurately or they tend to be under-fitted and after a limit they tend to be over-fitted.

In most of the observed cases, the accuracy does not go much above 83% irrespective of how high we keep the n_estimators value. The average accuracy observed when the number of component trees was varied from 1-120 was 82.55167055167041.

2)

For the random forest model corresponding to the best classification performance, select different component decision trees in the model and compare the classification performances of these trees with that of the original random forest model. (25%)

From part (1) we know that the highest accuracy is obtained when $n_{estimators} = 7$ and $random_{state} = 7$. For the $random_{forest}$ hence generated, we can obtain all the 7 different decision trees to find out interesting characteristics about each tree in the forest. The following are the 7 different trees and their comparison to the performance of the forest:

Decision tree - 1:

The classification accuracy of this tree is 79.07692307692308, this value is lesser when compared to the accuracy of the random forest to which this belongs.

Decision tree - 2:

The classification accuracy of this tree is 75.38461538461539, this value is lesser when compared to the accuracy of the random forest to which this belongs.

Decision tree - 3:

The classification accuracy of this tree is 78.46153846153847, this value is lesser when compared to the accuracy of the random forest to which this belongs.

Decision tree - 4:

The classification accuracy of this tree is 81.23076923076923, this value is lesser when compared to the accuracy of the random forest to which this belongs.

Decision tree - 5:

The classification accuracy of this tree is 81.84615384615384, this value is lesser when compared to the accuracy of the random forest to which this belongs.

Decision tree - 6:

The classification accuracy of this tree is 79.6923076923077, this value is lesser when compared to the accuracy of the random forest to which this belongs.

Decision tree - 7:

The classification accuracy of this tree is 73.84615384615384, this value is lesser when compared to the accuracy of the random forest to which this belongs.

Classifier	Accuracy
Random forest	85.23076923076923
Decision tree 1	79.07692307692308
Decision tree 2	75.38461538461539
Decision tree 3	78.46153846153847
Decision tree 4	81.23076923076923
Decision tree 5	81.84615384615384
Decision tree 6	79.6923076923077
Decision tree 7	73.84615384615384

The table above lists the accuracies of the random forest and all its 7 decision trees. It can be consistently observed that all the trees have an accuracy lower than the random forest. This is because the random forest classifies any data point based on maximum votes and these votes are cast based on the results of these decision trees. For example, if a data point is classified as forest type 'd' but decision tree 1, 's' by tree 2, 'd' by tree 3, 's' by tree 4, 'o' by tree 5, 'h' by tree 6, 'd' by tree 7, the random forest then aggregates these results and classifies the data point as 'd' because majority of the decision trees classify the point as type 'd'. By this aggregation, even if some trees predict wrong values, the overall prediction of the forest type can still be more accurate than any individual tree at once. Hence the random forest generated by the seven trees above is more accurate than the trees themselves.

3)

For a random forest classifier (or one of its component trees), the relative importance of the attributes can be measured through the feature_importances_ field of the classifier. For selected component trees in (b), compare their associated lists of relative attribute importance values. (25%)

The relative importance of different features for all the 7 trees in section (2) are below:

Decision tree - 1:

Feature name	Feature
	importance
b5	0.28301857576807
	27
pred_minus_obs_H	0.27670444764470
_b9	664
pred_minus_obs_H	0.12359109424577
_b3	443
pred_minus_obs_H	0.10645529849221
_b1	387
b4	0.08493947062444
	432

Feature name	Feature
	importance
b2	0.06034881335066
pred_minus_obs_H	0.026437316189043
_b6	17
b3	0.025257213206053
	91
pred_minus_obs_S	0.009028110252376
_b8	719
pred_minus_obs_H	0.004219660226654
_b8	325

The features are listed in the table above in descending order. From the table we can infer that feature 'b5' has the highest importance. All other features not mentioned in the tables have zero importance.

Decision tree - 2:

Feature name	Feature
	importance
pred_minus_obs_H	0.31296158368224
_b2	21
b7	0.20965556405453
	02
pred_minus_obs_H	0.20060851106843
_b6	22
pred_minus_obs_H	0.13241351635431
_b1	448
b9	0.07230375544643
	476

Feature name	Feature importance
pred_minus_obs_H	0.038805487999439
_b5	81
b6	0.010270419807732
	209
b8	0.009129262051317
	519
pred_minus_obs_S	0.006495821074975
_b6	917
pred_minus_obs_S	0.004153474434513
_b5	834
pred_minus_obs_H	0.003202604026067
_b9	0343

The features are listed in the table above in descending order. From the table we can infer that feature 'pred_minus_obs_H_b2' has the highest importance. All other features not mentioned in the tables have zero importance.

Decision tree - 3:

Feature name	Feature
	importance
pred_minus_obs_H	0.34273565604093
_b9	675
pred_minus_obs_H	0.32828798072287
_b2	324
b1	0.25563048542384
	853
pred_minus_obs_S	0.02644958175834
_b1	6996

Feature name	Feature
	importance
pred_minus_obs_S	0.02448762261983
_b9	9437
pred_minus_obs_H	0.01329328085076
_b5	9978
pred_minus_obs_S	0.00911539258338
_b8	5125

The features are listed in the table above in descending order. From the table we can infer that feature 'pred_minus_obs_H_b9' has the highest importance. All other features not mentioned in the tables have zero importance.

Decision tree - 4:

Feature
importance
0.48673179916270
98
0.36504834698967
58
0.05896483230265
763
0.02664823571800
0856

Feature name	Feature
	importance
pred_minus_obs_H	0.02331720625325
_b4	076
b9	0.02296753519642
	943
pred_minus_obs_S	0.01632204437727
_b3	5535

The features are listed in the table above in descending order. From the table we can infer that feature 'pred_minus_obs_H_b9' has the highest importance. All other features not mentioned in the tables have zero importance.

Decision tree - 5:

Feature name	Feature
	importance
b5	0.29170179403511
	89
b1	0.25160430208576
	41
b9	0.16164774405007
	973
pred_minus_obs_H	0.14632018255900
_b1	617
b2	0.04756097560975
	611

Feature name	Feature importance
pred_minus_obs_S	0.039791173831470
_b6	766
pred_minus_obs_S	0.020579268292682
_b4	93
pred_minus_obs_S	0.014372822299651
_b8	575
pred_minus_obs_H	0.013014032136691
_b3	582
pred_minus_obs_S	0.012195121951219
_b2	513
pred_minus_obs_S	0.001212583148558
_b3	7566

The features are listed in the table above in descending order. From the table we can infer that feature 'b5' has the highest importance. All other features not mentioned in the tables have zero importance.

Decision tree - 6:

Feature name	Feature
	importance
b8	0.36580444916996
	213
b2	0.20077026948559
	015
b9	0.19796221667284
	758
b3	0.09233252623083
	132
pred_minus_obs_H	0.05048126805752
_b9	868

Feature name	Feature
	importance
pred_minus_obs_S	0.035000602906288
_b6	72
b7	0.013267794148163
	519
pred_minus_obs_S	0.011739246435241
_b4	458
pred_minus_obs_S	0.011413156256484
_b1	747
pred_minus_obs_H	0.010956630006225
_b7	355
pred_minus_obs_H	0.010271840630836
_b3	273

The features are listed in the table above in descending order. From the table we can infer that feature 'b8' has the highest importance. All other features not mentioned in the tables have zero importance.

Decision tree - 7:

Feature name	Feature
	importance
pred_minus_obs_H	0.36043084260857
_b1	1
b9	0.25686064804476
	78
pred_minus_obs_H	0.25346632930774
_b3	82
pred_minus_obs_H	0.04644225694683
_b4	4626
pred_minus_obs_S	0.03362015557238
_b7	246

nce 391869038
391869038
262689773
113994630
708198526

The features are listed in the table above in descending order. From the table we can infer that feature 'pred_minus_obs_H_b1' has the highest importance. All other features not mentioned in the tables have zero importance.

The aggregate of all feature importance for various component decision trees are listed in descending order in the table below:

Feature name	Feature
	importance
pred_minus_obs_H	1.15985577493194
_b9	91
pred_minus_obs_H	0.77226807573210
_b1	63
b9	0.71174189941055
	92
b2	0.68644954538198
	9
pred_minus_obs_H	0.64781664639038
_b2	42
b5	0.57472036980319
	16
b1	0.50723478750961
	26
pred_minus_obs_H	0.40034329632105
_b3	04
b8	0.39145262991166
	474
pred_minus_obs_H	0.22704582725747
_b6	538
b7	0.22292335820269
	37
b4	0.14390430292710
	193
b3	0.11758973943688
	524

T 4	.
Feature name	Feature
	importance
pred_minus_obs_S	0.081287597812735
_b6	41
pred_minus_obs_H	0.069759463200085
_b4	39
pred_minus_obs_H	0.052098768850209
_b5	795
pred_minus_obs_S	0.045691141625659
_b4	36
pred_minus_obs_S	0.037862738014831
_b1	75
pred_minus_obs_S	0.033620155572382
_b7	45
pred_minus_obs_S	0.032516325135413
_b8	415
pred_minus_obs_S	0.024487622619839
_b9	44
pred_minus_obs_S	0.017534627525834
_b3	29
pred_minus_obs_S	0.012195121951219
_b2	511
pred_minus_obs_H	0.010956630006225
_b7	355
b6	0.010270419807732
	209
pred_minus_obs_H	0.004219660226654
_b8	325
pred_minus_obs_S	0.004153474434513
_b5	834
	L

The table was made by just adding up the feature importance of all the component trees. And from this table we can infer that pred_minus_obs_H_b9 has the highest feature importance in all tables combined.

4)
Construct a naïve Bayes classifier model based on our data set and compare the classification performance with that of the random forest model. (25%)

```
nb = GaussianNB()
train_Y = training_data["class"]
train_X = training_data.drop(["class"], axis=1)
test_X = testing_data.drop(["class"], axis=1)
nb.fit(train_X, train_Y)
predicted_Y = nb.predict(test_X)
```

The code above was used to construct a naïve Bayes classifier. It resulted in an accuracy of 80.3076923076923, which is lesser when compared to the random forest classifier. However, an interesting comparison of accuracy is that the average accuracy of the component trees of the random forest is 78.5054571 which is lesser than that of the naïve Bayes classifier. This is interesting because this shows that the strongest component tree is alone still not accurate enough, instead a voting system based on these trees leads to a higher accuracy when compared to naïve Bayes classifier or the individual component trees.