

NOTE VALUES / DURATION

N	ame	

NOTE VALUES

The shape of the note is the clue to its duration. The most commonly used note values are the **whole note**, **half note**, **quarter note**, **eighth note** and the **sixteenth note**. In this order, each one lasts half as long as the previous mentioned note, as pictured below:

As shown in 'hierarchy' order, this chart displays how each note relates to the others. Notice that the whole note is on top with each level below the whole note representing a value that is one-half the value of the note above it. In other words, since a half note gets half the value of a whole note, it takes two of them to fill the same measure.

CLUES

Fill in the blanks below each box with the name of the correct note and its beat value in meter based on the clue, then write the note inside the box provided.

Clue: Has two flags or beams	Clue: Has one flag or beam	Clue: Has a stem but not filled in	Clue: Has no stem or flag	Clue: Has a stem, is filled in but no flag

		I .	
Note Name:			
Beat Value:			

MUSIC AND MATH

Another way to understand how one note relates to the others is to see the similarities between note values and fractions.

DOES IT ADD UP?

Use your math skills by putting **T** (true) in the blank if the beats are equal in value or **F** (false) if they are not. Tell a partner why specific examples are false.

Write notes to fill these boxes with the designated number of beats, none alike; then clap the rhythms as you say the rhythm patterns you created.

Two Beats	Two Beats	Three Beats	Three Beats	Four Beats	Four Beats

BONUS QUESTIONS

- 1. How many sixteenth notes would equal three whole notes?_____
- 2. Figure out the number of total beats from this equation: _____

$$\mathbf{o} + \mathbf{j} - \mathbf{j} + \mathbf{j} \times \mathbf{o} + \mathbf{j} = \underline{?}$$