Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005922

International filing date: 29 March 2005 (29.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-101690

Filing date: 31 March 2004 (31.03.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

31. 3. 2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 3月31日

出 願 番 号 Application Number:

特願2004-101690

[ST. 10/C]:

[JP2004-101690]

出 願 人
Applicant(s):

大陽日酸株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月 2日

1/

特許願

【物件名】

【物件名】

図面 1 要約書 1

【書類名】

【包括委任状番号】 9706458

1/E

【書類名】特許請求の範囲

【請求項1】

空気液化分離装置の原料空気を精製する温度スイング吸着法を用いた原料空気精製装置 の再起動方法であって、

再生工程を行っていた第1吸着塔のパージガスの流出部におけるパージガスの温度の時間 的変化において、このパージガスの温度が再生工程中のパージガスのピーク温度を既に過 ぎた時点で原料空気精製装置が停止した場合、吸着工程を行っていた第2吸着塔の出入口 弁を閉じるとともに大気開放弁を開き、この第2吸着塔内のガスを原料空気の精製時にお ける原料空気流に対して向流方向に放出した後、大気開放弁を閉じ、再起動直前には、第 2吸着塔の原料空気の入口弁を開けて原料空気を流入させ、吸着工程に必要な圧力まで第 2 吸着塔内を加圧するとともに、停止時に吸着工程もしくは再生工程を行っていた各吸着 塔において、停止時点以降から再起動を開始する原料空気精製装置の再起動方法。

【請求項2】

原料空気精製装置に供給される原料空気の温度が5~45℃、圧力が400~1000 kPa (絶対圧)である請求項1記載の原料空気精製装置の再起動方法。

【書類名】明細書

【発明の名称】原料空気精製装置の再起動方法

【技術分野】

[0001]

本発明は、空気液化分離装置における原料空気中の水分、二酸化炭素などの不純物を除去する原料空気精製装置の迅速な再起動方法に関するものである。

【背景技術】

[0002]

空気液化分離装置とは、原料空気を液化し、これを蒸留して窒素と酸素などに分離する装置である。この蒸留を行う際、低温で凝固して配管などを閉塞させる物質である水分、二酸化炭素などの不純物を原料空気から除去する、前処理と称する工程が原料空気精製装置において行われる。この前処理として、並列して置かれた二つ以上の吸着塔を用いる温度スイング吸着法が一般に用いられている。この吸着塔には、原料空気が流入する上流側に活性アルミナ、シリカゲル、ゼオライトなどの水分を吸着する吸着剤が充填され、下流側にNa-X型ゼオライトなどの二酸化炭素を吸着する吸着剤が充填されている。温度スイング吸着法とは、この吸着塔を用いて、原料空気から水分、二酸化炭素などの不純物を低い温度において吸着して除去する吸着工程と、吸着剤から不純物を高い温度において脱着して除去し、吸着剤を再生する再生工程を交互に行う手法である。

[0003]

以下、図1により、このような原料空気精製装置の定常運転時における操作の一例を説明する。この例では、吸着塔5 a が吸着工程、吸着塔5 b が再生工程を行っているものとする。図1は、空気液化分離装置の原料空気の前処理部分の一例を示す構成図である。先ず、大気から取り込まれた原料空気が、原料空気圧縮機1により所定の圧力(400~100 k P a (以下、本明細書における圧力は全て絶対圧を示す。))に圧縮された後、冷却装置2により冷却(5~45℃)される。この際、発生する凝縮水はドレインセパレーター3により排出される。次に、弁4 a を経て、圧縮された原料空気が冷却温度における飽和水分を含んだまま吸着塔5 a に流入し、この原料空気中の水分、二酸化炭素などの不純物が、吸着塔5 a 内の吸着剤により吸着される。続いて弁6 a、18 を経て、精製された原料空気がライン7を介して空気分離部8に流入する。

[0004]

吸着工程を行っている吸着塔5aにおいて、吸着剤の吸着成分の飽和領域は、原料空気が流入する上流側から下流側に向かって進行する。従って、精製空気中の不純物濃度が空気分離部へ送ガスされた際に問題となる限界値に達する前に、吸着工程を終了する。

[0005]

吸着工程の終了後、再生工程が開始される。再生工程は減圧、加熱、冷却および加圧の4つのステップからなる。減圧ステップにおいて、弁4a、6aが閉じられ、大気開放弁9aが開かれる。結果、吸着塔5a内に保持されていたガスがサイレンサー10を介して大気へ放出され、吸着塔5a内の圧力が大気圧まで減少する。

[0006]

次の加熱ステップにおいて、弁12、14aが開かれる。結果、空気分離部8からの排ガスの一部がパージガスとして、ライン11を介して加熱設備13に流入し、150~250℃に加熱された後、弁14aを通って吸着塔5aに流入する。この加熱パージガスの流入により吸着剤が加熱され、これにより、吸着剤に吸着されている水分、二酸化炭素などの不純物が吸着剤から脱着し、パージガス流とともに流出する。

[0007]

図2は、再生工程を行っている吸着塔5a内のパージガスの位置的温度変化の一例を模式的に示すグラフである。図2(a)に示すように、加熱パージガスの流入により、吸着塔5a内に温度が高い領域(ヒートゾーン)が生じる。このヒートゾーンはパージガス流に従って徐々に大気開放弁9a側に向かって移動する。加熱ステップが終了すると、冷却ステップに移行される。冷却ステップでは、弁12が閉じられ、弁15が開かれる。結果

、パージガスが加熱設備 13 を通らずに、低温状態で吸着塔 5 a に直接流入する。このパージガスにより吸着剤が冷却される。また、図 2 (b)、(c)、(d)に示されるように、ヒートゾーンは低温のパージガス流に押され、大気開放弁 9 a 側に移動し、やがて吸着塔 5 a 内から押し出される。これにより、不純物が吸着剤から完全に追い出されるとともに、吸着剤の温度が次回の吸着工程に適した温度となる。なお、図 2 の例は、吸着塔 5 b が再生工程を行った場合も同様である。

[0008]

図3は、定常運転時において、再生工程を行っている吸着塔5 a内のパージガスの時間的温度変化の一例を示すグラフである。吸着塔5 aには、下層側に水分吸着剤、上層側に二酸化炭素吸着剤が積層されているものとする。図中、実線で表した二酸化炭素吸着剤の最上部での温度は、加熱ステップに入ると、吸着塔5 a上部からの加熱されたパージガスの流入に伴って急激に上昇し、冷却ステップへ入ったところで急下降する。破線で表したパージガス流の下流に位置する二酸化炭素吸着剤と水分吸着剤の境界部分での温度は、加熱ステップに入ってからしばらくして、なだらかに上昇をはじめ、一定温度を保った後、冷却ステップに入ってからしばらくして、なだらかに下降していく。太い実線で表した、さらに下流(大気開放弁9 a側)に位置する水分吸着剤最下部を出たところ(パージガスの流出部)での温度は、冷却ステップに入ってしばらく経過した後、なだらかに上昇・下降していく。なお、図3の例は、吸着塔5bが再生工程を行った場合も同様である。

[0009]

このように冷却ステップ中に水分吸着剤の温度が計画値まで上がり、かつ、吸着工程の 開始までに原料空気供給温度近くまで温度が下がるようにするため、パージガスの量と加 熱設備のヒーター容量、加熱と冷却の時間配分などが決められている。

[0010]

ついで、加圧ステップにおいて、£14a、15および大気開放£9aが閉じられ、£17aが開かれる。結果、吸着工程を行っている吸着塔5bからの精製空気の一部が、ライン16を介して吸着塔5aに戻され、次の吸着工程に必要な圧力まで吸着塔5aを加圧する。

[0011]

加圧ステップの終了時には、弁17aが閉じられ、弁4a、6aが再び開かれ、吸着塔5aにおいて、吸着工程が再び開始される。例えば、2塔式の場合なら、減圧ステップから加圧ステップの終了までの再生工程の時間と、吸着工程の時間は対応し、各工程に要する時間は2~4時間である。この場合、吸着塔5a、5bを交互に切り替えることで、精製された原料空気が連続して空気分離部8~送られる。

[0012]

通常、空気液化分離装置は、起動の際、空気分離部8内を常温から極低温に冷やすのに長時間かかるため、頻繁な停止は行わず連続運転を行っている。しかし、空気液化分離装置は、何らかの理由によって緊急停止したり、保安点検のために計画停止を行うことがあり、原料空気精製装置も同時に緊急停止したり、計画停止させることがある。

[0013]

定常運転をしていた原料空気精製装置が停止した場合、吸着塔を封止して維持したとしても、停止時間が長時間に渡ると、吸着工程を行っていた吸着塔5a内で、水分、二酸化炭素などの不純物が拡散する。従って、再起動後に吸着工程をそのまま停止時点から行うと不純物が破過する場合があり、精製空気中の不純物濃度が定常運転時よりも増加し、限界値を超える可能性が生じる。

[0014]

一方、再生工程を行っていた吸着塔 5 b 内では、原料空気精製装置が長時間停止した場合、吸着剤の再生のために導入された熱が、伝熱により外部へ放出されることがある。従って、再起動後に再生工程を停止時点から行うと、加熱不足により吸着剤の再生が不十分となり、切り替え後の吸着工程において、精製空気中の不純物濃度が定常運転時よりも増加する可能性が生じる。

[0015]

上記の問題を解決するため、従来では、原料空気精製装置の再起動後、空気分離部8へ の送ガスを行う前に、単独再生運転を行っていた。この単独再生運転とは、原料空気圧縮 機1から吸着塔5aに流入する原料空気流量を、定常運転時よりも減らして低負荷の状態 にし、原料空気精製装置と空気分離部間の弁18を閉じた上で、吸着塔5aから流出した 精製空気を吸着塔5bに流入させ、吸着工程および再生工程を各1回以上行う操作である 。この単独再生運転により、各吸着塔内の吸着剤の状態を定常運転時の状態に戻すことが できる。

[0016]

また、緊急停止ではなく計画停止を行った場合など、単独再生運転以外の方法が、特開 2002-168561号公報に開示されている。この先行出願明細書の段落0029に おいて、「休止中の吸着塔内の吸着材が空気分離部S2で得られた窒素ガスによって再生 され、これによって吸着精製装置12の精製効率の低下が防止されるようになっている」 と記載されており、停止している吸着精製装置(原料空気精製装置)に窒素ガスを流し続 け、原料空気精製装置の精製効率の低下を防止する方法が記載されている。

【特許文献1】特開2002-168561号公報

【発明の開示】

【発明が解決しようとする課題】

しかしながら、吸着工程、再生工程に要する時間は各々2~4時間であるため、例えば 2 塔切り替え式では準備操作に要する時間は少なくとも 4 時間となり、この間は空気液化 分離装置への送ガスが行えないから、空気液化分離装置の再起動が遅れるという問題があ った。

本発明は、上記従来技術の問題点に鑑み、原料空気精製装置の迅速な再起動方法を提供 [0018]することを目的とする。

【課題を解決するための手段】

[0019]

かかる課題を解決するため、

請求項1にかかる発明は、空気液化分離装置の原料空気中の水分、二酸化炭素などの不 純物を除去する温度スイング吸着法を用いた原料空気精製装置の再起動方法であって、再 生工程を行っていた第1吸着塔のパージガスの流出部におけるパージガスの温度の時間的 変化において、このパージガスの温度が再生工程中のパージガスのピーク温度を既に過ぎ た時点で原料空気精製装置が停止した場合、吸着工程を行っていた第2吸着塔の出入口弁 を閉じるとともに大気開放弁を開き、この第2吸着塔内のガスを原料空気の精製時におけ る原料空気流に対して向流方向に放出した後、大気開放弁を閉じ、再起動直前には、第2 吸着塔の原料空気の入口弁を開けて原料空気を流入させ、吸着工程に必要な圧力まで第2 吸着塔内を加圧するとともに、装置停止時に吸着工程もしくは再生工程を行っていた各吸 着塔において、停止時点以降から再起動を開始する原料空気精製装置の再起動方法である

[0020]

請求項2にかかる発明は、原料空気精製装置に供給される原料空気の温度が5~45℃ 、圧力が400~1000kPaである請求項1記載の原料空気精製装置の再起動方法で ある。

【発明の効果】

本発明によれば、原料空気精製装置が停止した時点が、パージガスの流出部におけるパ ージガスの温度の時間的変化において、このパージガスの温度が再生工程中のパージガス のピーク温度を既に過ぎた時点であった場合、吸着工程にあった吸着塔の圧力を減圧して これを維持し、再起動前に、再度、吸着工程圧力まで戻すことで、長時間の停止後にも高 純度の精製空気を供給することができる。

また、本発明によれば、単独再生運転が不要であるため、再起動から、空気液化分離装 置への送ガスまでに要する時間を短縮させることができる。

【発明を実施するための最良の形態】

[0023]

以下、本発明にかかる原料空気精製装置の再起動方法の一実施形態について、図面を用 いて詳しく説明する。この説明の中では、原料空気精製装置の停止時に、吸着塔5aが吸 着工程、吸着塔5 bが再生工程を行っているものとする。

図3に示すように、再生工程を行っている吸着塔5bのパージガスの流出部におけるパ ージガスの温度は、冷却ステップの途中でピーク温度に達し、やがて次の吸着工程に適し た温度まで冷却されていく。このパージガスの温度がピーク温度に達した以降の時点にお いて、原料空気精製装置が停止した場合、弁14b、15および大気開放弁9bを閉じて おく。

[0025]

原料空気精製装置の停止後、吸着工程を行っていた吸着塔5aにおいて、その出入口に ある弁4a、6aを閉じ、大気開放弁9aを開く。結果、吸着塔5a内に保持されていた ガスが原料空気流に対して向流方向に流出する。この時、この流出ガスにともなって吸着 剤に吸着されていた不純物が脱着される。このガスの流出および不純物の脱着は吸着塔5 a内の温度を低下させる。吸着塔5a内の圧力が大気圧まで減少したら、大気開放弁9a を閉じる。また、原料空気精製装置の停止後、吸着塔5a内の熱は伝熱により外部へ放出 されるため、吸着塔 5 a 内の温度は徐々に低下する。原料空気精製装置の再起動後、吸着 工程を行っていた吸着塔5a内は原料空気の流入により再び加圧されるため、ガスの流出 による温度の低下が解消されるが、不純物の脱着もしくは外部への伝熱による温度の低下 の効果はそのまま残る。従って、吸着塔 5 a は原料空気精製装置の停止時点よりも低い温 度で吸着工程を開始することになる。

[0026]

一般に、吸着剤の吸着容量は温度の低下に従って増加する。従って、原料空気精製装置 の再起動後、吸着塔5a内の吸着剤の吸着容量は停止時点よりも増えており、この増加は 、原料空気精製装置の停止中における不純物の拡散を解消するのに十分な効果を有する。

吸着塔5a、5bにおいて上記の操作を行った上で、停止後の原料空気精製装置を保持 する。再起動を行う際は、先ず空気圧縮機2を起動し、弁4aを開く。結果、吸着塔5a 内が原料空気の流入により吸着工程圧力まで加圧される。加圧の終了後、吸着塔5aにお いて、吸着工程を停止時点以降から開始するとともに、弁6 a、18を開き、精製された 原料空気をライン7を介して空気分離部8へ送ガスする。

一方、再生工程を行っていた吸着塔 5 b において、再生工程を停止時点以降から開始す る。弁14b、15および大気開放弁9bを開く。結果、空気分離部8から流出する排気 ガスの一部がライン11を介して吸着塔5bに流入した後、サイレンサー10を通って大 気に放出される。

なお、本発明では、定常運転時のパージガスの流出部におけるパージガスの温度を測定 しておくか、もしくはシミュレーションすることにより、パージガスの温度がピーク温度 に達する時間をあらかじめ予測し、再生工程開始から停止時点までの経過時間を測定して おくことで、原料空気精製装置が停止した時点で本発明の再起動方法が適用できるか判断 することができる。

【実施例】

[0030]

以下、実施例により、本発明をさらに詳しく説明する。本発明は、下記実施例に何ら制限されるものではない。なお、以下の実施例および比較例において、原料空気精製装置の停止時に、吸着塔5aが吸着工程を、吸着塔5bが再生工程を行っているものとする。

[0031]

本発明の効果を判断するため、シミュレーションを行った。

例えば、吸着塔におけるガスの流出入がない停止期間において、吸着塔内のガスの濃度や温度の分布は時間の経過とともに均一化する。このような状況を模擬できるように、このシミュレーションでは、吸着塔内の物質収支および熱収支の計算式中に、軸方向ガス分散および軸方向熱伝導を考慮した。すなわち、停止中におけるガスの濃度分布の変化を、濃度分布を推進力とする拡散および温度分布に基づく対流として、停止中におけるガスの温度分布の変化を、温度分布を推進力とする伝熱として表現した。そして、再起動後の吸着工程の終了時点で得られる、吸着塔の精製空気の流出部における二酸化炭素濃度を計算した。また、この結果を定常運転中に吸着工程を行っている吸着塔の精製空気の流出部における二酸化炭素濃度と比較した。なお、シミュレーションの詳細は、日本酸素技報Noよ22,13-18(2003)に開示されている。

[0032]

[実施例1]

図1に示された空気液化分離装置を想定し、シミュレーションを行った。シミュレーションで用いた各操作条件を以下に示す。

水分吸着剤:プロカタリーゼ社製活性アルミナ (層高: 0. 88m)

二酸化炭素吸着剤:グレース社製Na-Xゼオライト(層高:0.65m)

原料空気圧力:620kPa(絶対圧)

原料空気温度:40℃

パージガス率 (パージガス流量/原料空気流量):40%

加熱ガス温度:200℃ 吸着工程時間:120分

再生工程時間:120分(減圧ステップ:3分、加熱ステップ:43分、冷却ステップ:62分、加圧ステップ:12分)

[0033]

上記の各操作条件を用いて、定常運転中に再生工程を行っている吸着塔 5 b 内の温度変化を計算した。吸着塔内のパージガスの流出部では、再生工程の開始から約 6 0 分後に温度が上昇し、約 7 5 分後にピーク温度に達し、その後なだらかに下降することが明らかとなった。従って、本シミュレーションの操作条件においては、再生工程の開始から約 7 5 分後に、全ての吸着剤が加熱されることが明らかとなった。そこで、パージガスの温度がピーク温度を既に過ぎた時点として、再生工程の開始から 9 0 分後を設定し、この時点で原料空気精製装置が停止したものとした。

[0034]

原料空気精製装置の停止後、再生工程を行っていた吸着塔5bを全ての弁を閉じた状態で維持し、一方、吸着工程を行っていた吸着塔5aを、吸着塔内を減圧した後、全ての弁を閉じた状態で維持したものとした。本シミュレーションでは、72時間経過後、再起動に先立ち、吸着塔5a内を原料空気により620kPaまで加圧し、その後、吸着工程を停止時点から再開したものとした。一方、吸着塔5bにおいて、再起動後、再生工程を停止時点から再開したものとした。

[0035]

図4は、上記条件に従って再開された吸着工程が終了した時点における、吸着塔5a内の二酸化炭素濃度分布を示すグラフである。なお、基準吸着工程とは、定常運転時の吸着工程終了時点における吸着塔5a内の二酸化炭素濃度分布のことである。結果、吸着塔の精製空気の流出部(層高:1.53m)において、基準吸着工程の二酸化炭素濃度が約1.7ppm、上記条件における吸着塔5aの二酸化炭素濃度が約0.8ppmであった。この結果は、定常運転時と比べて、再起動後に吸着塔5aから流出する精製空気中の二酸

化炭素濃度が低いことを示す。

[0036]

一方、再生工程を行っていた吸着塔 5 b において、再起動後、続けて再生工程を行い、次の吸着工程が終了した時点での、吸着塔 5 b 内の二酸化炭素濃度は、基準吸着工程と同じであることを、シミュレーションにより確認した。

[0037]

従って、72時間という長時間停止しても、本発明の再起動方法を用いることで、精製空気中の二酸化炭素濃度が定常運転時よりも増加することなく、原料空気精製装置を再起動できることが明らかとなった。なお、このシミュレーションでは、停止時点として再生工程の開始から90分後を設定したが、この停止時点は流出ガスの温度がピーク温度を示す75分後以降であれば、どの時点においても二酸化炭素濃度は定常運転時よりも増加しないことを、シミュレーションにより確認した。

[0038]

「比較例1]

比較例1として、本発明において、再生工程を行っていた吸着塔5b内のパージガスの流出部におけるパージガスの温度が、ピーク温度に達する前に原料空気精製装置が停止し、再起動を行った場合、得られる吸着塔5b内の二酸化炭素濃度を計算した。本シミュレーションで用いられた各操作条件は、実施例1のものと同じである。

[0039]

実施例1の操作条件において、再生工程開始から75分後に、吸着塔内のパージガスの流出部におけるパージガスの温度がピーク温度に達することが明らかとなっている。そこで、本シミュレーションでは、再生工程開始から73分後に原料空気精製装置が停止したものとした。その後、実施例1と同様の操作を行い、吸着塔5aにおいて、吸着工程を停止時点から再開し、続いて再生工程を行ったものとした。一方、吸着塔5bにおいて、再起動後、再生工程を停止時点から再開し、続いて吸着工程を行ったものとした。

[0040]

図5は、上記条件に従って行われた吸着工程が終了した時点における、吸着塔5b内の二酸化炭素濃度分布を示すグラフである。結果、吸着塔の精製空気の流出部(層高:1.53m)において、基準吸着工程の二酸化炭素濃度が約1.7ppm、上記条件における吸着塔5bの二酸化炭素濃度が約2.5ppmであった。この結果は、定常運転時と比べて、再起動後に吸着塔5bから流出する精製空気中の二酸化炭素濃度が高いことを示す。従って、本発明の再起動方法から逸脱して原料空気精製装置を運転すると、精製空気中の二酸化炭素濃度が定常運転時よりも増加することが明らかとなった。

[0041]

一方、再起動後、吸着塔5aにおいて、開始された吸着工程が終了した時点における、吸着塔5a内の二酸化炭素濃度は、図4に示された再起動後の二酸化炭素濃度と同様に、 基準吸着工程と比べて減少することを、シミュレーションにより確認した。

$[0\ 0\ 4\ 2]$

[比較例2]

比較例2として、本発明において、原料空気精製装置の停止後、吸着工程を行っていた 吸着塔5a内を減圧せずに維持した場合、得られる吸着塔5a内の精製空気の二酸化炭素 濃度を計算した。本シミュレーションで用いられた各操作条件は、実施例1のものと同じ である。

[0043]

本シミュレーションでは、再生工程開始から76分後に原料空気精製装置を停止したものとした。その後、吸着塔5bを、全ての弁を閉じた状態で維持し、一方、吸着塔5aを減圧せずに、全ての弁を閉じた状態で維持したものとした。本シミュレーションでは、吸着塔5aが吸着工程圧力を維持しているため、72時間経過後、再起動に先立ち、吸着塔5aを加圧することなく、吸着工程を停止時点から再開したものとした。一方、吸着塔5bにおいて、再起動後、再生工程を停止時点から再開したものとした。

[0044]

図6は、上記条件に従って再開された吸着工程が終了した時点における、吸着塔5a内の二酸化炭素濃度分布を示すグラフである。結果、吸着塔の精製空気の流出部(層高:1.53m)において、基準吸着工程の二酸化炭素濃度が約1.7ppm、上記条件における吸着塔5aの二酸化炭素濃度が約2.4ppmであった。この結果は、定常運転時と比べて、再起動後に吸着塔5aから流出する精製空気中の二酸化炭素濃度が高いことを示す。従って、本発明の再起動方法から逸脱して原料空気精製装置を運転すると、精製空気中の二酸化炭素濃度が定常運転時よりも増加することが明らかとなった。

[0045]

[実施例2]

実施例2では、実施例1で用いられた各条件の数値を変更して、シミュレーションを行った。本シミュレーションで用いられた各操作条件を以下に示す。

水分吸着剤:プロカタリーゼ社製活性アルミナ(層高:0.28m)

二酸化炭素吸着剤:グレース社製Na-Xゼオライト(層高:0.32m)

原料空気圧力: 620kPa

原料空気温度:10℃

パージガス率 (パージガス流量/原料空気流量):15%

加熱ガス温度:150℃ 吸着工程時間:240分

再生工程時間:240分(減圧ステップ:6分、加熱ステップ:86分、冷却ステップ: 124分、加圧ステップ:24分)

[0046]

上記の各操作条件を用いて、定常運転中に再生工程を行っている吸着塔 5 b内のパージガスの流出部におけるパージガスの温度を計算した結果、再生工程開始から 1 4 2 分後にピーク温度に達することを確認した。そこで、1 4 5 分後において原料空気精製装置を停止したものとした。その後、実施例 1 と同様の操作を行い、吸着塔 5 a において、吸着工程を停止時点から再開したものとした。一方、吸着塔 5 b において、再起動後、再生工程を停止時点から再開したものとした。

[0047]

図7は、上記条件に従って再開された吸着工程が終了した時点における、吸着塔5 a内の二酸化炭素濃度分布を示すグラフである。結果、吸着塔の精製空気の流出部(層高:1.5 3 m)において、基準吸着工程の二酸化炭素濃度が約0.2 p p m、上記条件における吸着塔5 a の二酸化炭素濃度が約0.2 p p mであった。この結果は、停止前と再起動後の精製空気中の二酸化炭素濃度がほぼ同じであることを示す。

[0048]

一方、再生工程を行っていた吸着塔5bにおいて、再起動後、続けて再生工程を行い、 次の吸着工程が終了した時点での、吸着塔5b内の二酸化炭素濃度分布は、基準吸着工程 と同じであることを、シミュレーションにより確認した。

[0049]

従って、72時間という長時間停止しても、本発明の再起動方法を用いることで、精製空気中の二酸化炭素濃度が定常運転時よりも増加することなく、原料空気精製装置を再起動できることが明らかとなった。なお、このシミュレーションでは、停止時点として再生工程の開始から145分後を設定したが、この停止時点は流出ガスの温度がピーク温度を示す145分後以降であれば、どの時点においても二酸化炭素濃度は定常運転時よりも増加しないことを、シミュレーションにより確認した。

【図面の簡単な説明】

[0050]

【図1】本発明における空気液化分離装置の一例を示す構成図である。

【図2】(a)再生工程を行っている吸着塔5a、5b内のパージガスの時間taにおける位置的温度変化を示すグラフである。(b)(a)に示すパージガスの時間t

出証特2005-3005922

ь における位置的温度変化を示すグラフである。(c)(a)に示すパージガスの時間 t 。における位置的温度変化を示すグラフである。(d)(a)に示すパージガスの時間 t 。における位置的温度変化を示すグラフである。

【図3】再生工程を行っている吸着塔5a、5b内のパージガス流出部におけるパージガスの時間的温度変化を示すグラフである。

【図4】実施例1において、再起動時に行われた吸着工程が終了した時点における吸着塔5a内の二酸化炭素濃度分布を示すグラフである。

【図5】比較例1において、再起動時に行われた吸着工程が終了した時点における吸着塔5b内の二酸化炭素濃度分布を示すグラフである。

【図 6 】比較例 2 において、再起動時に行われた吸着工程が終了した時点における吸着塔 5 a 内の二酸化炭素濃度分布を示すグラフである。

【図7】実施例2において、再起動時に行われた吸着工程が終了した時点における吸着塔5a内の二酸化炭素濃度分布を示すグラフである。

【符号の説明】

[0051]

5 a 、5 b 吸着塔

9 a、9 b 大気開放弁

【書類名】図面【図1】

【図4】

【図5】

【図6】

【図7】

【書類名】要約書

【要約】

原料空気精製装置の迅速な再起動方法を提供する。 【課題】

【解決手段】 原料空気精製装置の再起動方法であって、

再生工程を行っていた吸着塔5a内のパージガスの流出部におけるパージガスの温度の時 間的変化において、このパージガスの温度が再生工程中のパージガスのピーク温度を過ぎ た時点で原料空気精製装置を停止し、吸着工程を行っていた吸着塔 5 b の出入口弁を閉じ るとともに大気開放弁9 bを開き、この吸着塔5 b内のガスを放出した後、大気開放弁を 閉じ、再起動直前には、吸着塔 5 b の原料空気の入口弁を開けて原料空気を流入させて吸 着塔5b内を加圧し、再起動直後に、吸着工程もしくは再生工程を停止時点以降から開始 する。

【選択図】

図 1

認定・付加情報

特許出願の番号 特願2004-101690

受付番号 50400536013

書類名 特許願

担当官 第六担当上席 0095

作成日 平成16年 4月 1日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000231235

【住所又は居所】 東京都港区西新橋1丁目16番7号

【氏名又は名称】 日本酸素株式会社

【代理人】 申請人

【識別番号】 100064908

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 志賀 正武

【選任した代理人】

【識別番号】 100108578

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 高橋 詔男

【選任した代理人】

【識別番号】 100089037

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 渡邊 隆

【選任した代理人】

【識別番号】 100101465

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 青山 正和

【選任した代理人】

【識別番号】 100094400

【住所又は居所】 東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】 鈴木 三義

ページ: 2/E

【選任した代理人】

【識別番号】

100107836

【住所又は居所】

東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

西 和哉

【選任した代理人】

【識別番号】

100108453

【住所又は居所】

東京都中央区八重洲2丁目3番1号 志賀国際特

許事務所

【氏名又は名称】

村山 靖彦

特願2004-101690

出 願 人 履 歴 情 報

識別番号

[000231235]

1. 変更年月日 [変更理由]

1990年 8月16日

住所

氏 名

新規登録 東京都港区西新橋1丁目16番7号

日本酸素株式会社

2. 変更年月日 [変更理由]

2004年10月 1日

名称変更

住所変更

住 所 名

東京都品川区小山一丁目3番26号

大陽日酸株式会社