Воспроизведение результатов известных статей в py_graphs и анализ сравнения.

Владимир Ивашкин

27 августа 2018 г.

Введение

Для того, чтобы проводить эксперименты с метриками, нам нужно быть уверенными, что метрики не содержат ошибок. В прошлом мы убеждались, что ошибки имеют место быть. Я воспроизвел результаты четырех статей и оформил это в виде тестов к моему коду. Теперь после любых значимых изменений я буду запускать эти тесты и расследовать возникающие расхождения. Так победим.

Этот текст нужен в том числе и мне, чтобы не забыть, что именно я делал и чем руководствовался.

Содержание

1	Pavel Unebotarev:	-
	Studying new classes of graph metrics 1.1 Figure 1	1
	1.2 Pavel Chebotarev: The Walk Distances in Graphs, Table 1	
2	Ilkka Kivimäki, Masashi Shimbo, Marco Saerens: Developments in the theory of randomized shortest paths with a article comparison of graph node distances 2.1 Figure 2	
3	Felix Sommer, François Fouss, Marco Saerens: Comparison of Graph Node Distances on Clustering Tasks	
4	Konstantin Avrachenkov, Pavel Chebotarev, Dmytro Rubanov:	
	Kernels on Graphs as Proximity Measures	4
	4.1 Сравнение реализаций на всем пространстве параметров	4
	4.2 Balanced Model	4
5	Тесты по другим источникам	ţ
	5.1 Репозитории GitHub	Ę
	5.2 Luh Yen, Francois Fouss, Christine Decaestecker, Pascal Francq, Marco Saerens: Graph Nodes Clustering based on the Commute-Time Kernel	
	Graph riodes Grasiering based on the Commute-Time Reiner	٠
6	Сравнение кластеризаторов Ward и KMeans с реализациями из Sklearn	
7	Сравнение генератора графов с версией Рубанова	ę

1 Pavel Chebotarev:

Studying new classes of graph metrics

Ссылка: https://arxiv.org/abs/1305.7514

1.1 Figure 1

В Fig. 1 на графе "цепочка" показаны расстояния между вершинами в зависимости от метрики. Расстояния здесь нормированы на $D_{12} + D_{23} + D_{34} = 3$. Достаточно будет сравнивать расстояния $D_{12}, D_{23}, D_{13}, D_{14}$. Вначале результаты не сходились, но потом выяснилось следующее:

- В моем коде из всех ядер, перед тем, как превращать их в расстояния, брался корень. Мы обсуждали, что это нужно для Communicability, но в итоге это было включено везде. В этом причина, почему раньше результаты не совпадали с этой работой;
- Для Communicability взятие корня все-таки нужно, в этом случае результаты совпадают по всем метрикам.

		D_{12}	D_{23}	D_{13}	D_{14}
SP	true	1.000	1.000	2.000	3.000
	test	1.000	1.000	2.000	3.000
R	true	1.000	1.000	2.000	3.000
	test	1.000	1.000	2.000	3.000
Walk	true	1.025	0.950	1.975	3.000
	test	1.025	0.950	1.975	3.000
logFor	true	0.959	1.081	2.040	3.000
	test	0.959	1.081	2.041	3.000
For	true	1.026	0.947	1.500	1.895
	test	1.026	0.947	1.500	1.895
SqResistance	true	1.000	1.000	1.414	1.732
	test	1.000	1.000	1.414	1.732
Comm	true	0.964	1.072	1.492	1.564
	test	0.964	1.072	1.492	1.564
pWalk 4.5	true	1.025	0.950	1.541	1.466
	test	1.025	0.950	1.541	1.466
pWalk 1.0	true	0.988	1.025	1.379	1.416
	test	0.988	1.025	1.379	1.416

Таблица 1: Comparison with "Studying new classes of graph metrics", Figure 1

1.2 Pavel Chebotarev: The Walk Distances in Graphs, Table 1

Также я воспроизвел результаты из Table 1 в Pavel Chebotarev: The Walk Distances in Graphs (ссылка: https://arxiv.org/abs/1103.2059). Скорее всего, они основаны на тех же результатах, что уже были в таблице выше, но дополнительные проверки не помешают.

		D_{12}/D_{23}	$(D_{12} + D_{23})/D_{13}$	D_{14}/D_{12}
SP	true	1.000	1.000	1.500
	test	1.000	1.000	1.500
R	true	1.000	1.000	1.500
	test	1.000	1.000	1.500
Walk	true	1.080	1.000	1.520
	test	1.080	1.000	1.519
logFor	true	0.890	1.000	1.470
	test	0.887	1.000	1.470
For	true	1.080	1.320	1.260
	test	1.083	1.316	1.263
pWalk 4.5	true	1.080	1.280	0.950
	test	1.079	1.281	0.951
pWalk 1.0	true	0.960	1.460	1.030
	test	0.964	1.459	1.027

Таблица 2: Comparison with "The Walk Distances in Graphs", Table 1

Видим, что с этими тестами тоже все ок. В последнем разделе я привожу сводную таблицу, где показываю, что именно было покрыто воспроизведением результатов каждой статьи.

2 Ilkka Kivimäki, Masashi Shimbo, Marco Saerens: Developments in the theory of randomized shortest paths with a article comparison of graph node distances

Ссылка: https://arxiv.org/abs/1212.1666

2.1 Figure 2

Здесь исследуется поведение метрик RSP, FE, pRes, logFor, SP-CT при изменении их параметров в заданном интервале для графа "треугольник с хвостом". Можно исследовать всю кривую, для простоты возьмем только крайние точки: слева отношение Δ_{12}/Δ_{23} равно 1.5, справа — 1.0.

Раньше здесь были проблемы у logFor но после того, как я перестал брать корень из матрицы расстояний, все результаты сошлись:

			1	D_{12}/D_{2}	3
border	measure	param	test	${\it true}$	diff
left	CT	_	1.5	1.5	0
	$\log For$	500.0	1.4975	1.5	0.0025
	RSP	0.0001	1.4992	1.5	0.0008
	FE	0.0001	1.4996	1.5	0.0004
right	SP	_	1	1	0
	logFor	0.01	1.0011	1	0.0011
	RSP	20.0	1	1	0
	FE	20.0	0.9834	1	0.0166

Таблица 3: Comparison with "Developments ...", Figure 2

2.2 Table 2 с оптимальными значениями из Table 1

Здесь проверяется качество (по NMI*100) кластеризации методом kMeans графов из датасета Newsgroups. Кернелы: RSP, FE, logFor, SP-CT, SCT. Результаты совпадают со статьей для всех метрик, кроме SP-CT. Для последней результат очень плох: в статье ожидается качество порядка 70-80 NMI*100, по факту что SP, что CT дают 0.2-3 NMI*100. SP-CT применяется с параметром 1, то есть чистый SP.

		n2cl1	n2cl2	n2cl3	n3cl1	n3cl2	n3cl3
	test	79.443	57.914	81.070	77.092	76.797	75.520
RSP	${ m true}$	84.500	58.700	81.000	76.600	77.000	76.500
	diff	5.057	0.786	0.070	0.492	0.203	0.980
	test	79.443	57.917	81.070	76.619	77.980	75.131
FE	true	80.700	58.700	81.100	76.200	78.300	77.000
	diff	1.257	0.783	0.030	0.419	0.320	1.869
	test	81.846	60.952	76.988	78.376	75.010	75.121
logFor H	true	83.100	58.800	75.000	75.400	75.500	74.400
	diff	1.254	2.152	1.988	2.976	0.490	0.721
	test	0.219	0.147	0.201	0.315	0.334	0.295
SP-CTK	${\it true}$	65.200	51.200	85.900	74.200	62.600	71.500
	diff	64.981	51.053	85.699	73.885	62.266	71.205
	test	81.105	54.616	78.440	77.922	72.276	75.409
SCTH	true	81.600	56.800	79.600	77.300	73.000	75.900
	diff	0.495	2.184	1.160	0.622	0.724	0.491

Таблица 4: Comparison with "Developments ...", Table 2

3 Felix Sommer, François Fouss, Marco Saerens: Comparison of Graph Node Distances on Clustering Tasks

Ссылка: (не находил в открытых источниках)

Здесь нас интересует Table 3 с оптимальными значениями из Table 2. Метрики: CCT, FE, logFor, RSP, SCT, SP. Датасеты: football, newsgroups, polblogs, zachary. Проблемы: CCT не работает для football, на polblogs не работает ничего, видимо из-за большого размера. Для SP не проходят почти все тесты.

		n2cl1	n2cl2	n2cl3	n3cl1	n3cl2	n3cl3	zachary	football
	test	0.794	0.598	0.758	0.784	0.758	0.746	1.000	error
SCCT	true	0.794	0.582	0.758	0.778	0.762	0.746	1.000	
	diff	0.000	0.016	0.000	0.006	0.004	0.000	0.000	
	test	0.797	0.645	0.811	0.781	0.763	0.764	1.000	0.862
FE	${ m true}$	0.805	0.591	0.811	0.781	0.797	0.771	1.000	0.906
	diff	0.008	0.054	0.000	0.000	0.034	0.006	0.000	0.045
-	test	0.831	0.622	0.769	0.746	0.745	0.752	1.000	0.895
logFor	${\it true}$	0.838	0.584	0.748	0.753	0.758	0.749	1.000	0.903
	diff	0.007	0.038	0.021	0.007	0.014	0.003	0.000	0.008
	test	0.797	0.635	0.785	0.781	0.786	0.725	1.000	0.895
RSP	${ m true}$	0.797	0.580	0.796	0.781	0.776	0.730	1.000	0.909
	diff	0.000	0.055	0.011	0.000	0.010	0.005	0.000	0.014
	test	0.820	0.625	0.824	0.753	0.723	0.765	1.000	0.845
SCT	true	0.817	0.552	0.786	0.773	0.728	0.763	1.000	0.811
	diff	0.002	0.073	0.039	0.020	0.005	0.002	0.000	0.033
	test	0.003	0.003	0.009	0.003	0.021	0.006	0.677	0.861
SP	true	0.654	0.516	0.859	0.743	0.625	0.720	1.000	0.858
	diff	0.651	0.513	0.850	0.740	0.603	0.714	0.323	0.004

Таблица 5: Comparison with "Comparison of Graph Node Distances on Clustering Tasks", Table 3

Все проблемы минорные, кроме SP. SP выдает плохое качество в обоих статьях. Как работает SP:

- Вызывается функция shortest_path() из scipy (проверял на маленьких графах, выдает правильные результаты. Также были тесты по статье "Studying new classes of graph metrics", там тоже результаты верные)
- (опционально) Применяется нормализация, чтобы параметр адекватно смешивал SP и CT
- Применяется $D \to K$ преобразование

Больше ничего тут нет. Проблемы с $D \to K$ тоже быть не может, ведь RSP и FE преобразуются этой же формулой. Без нормализации наблюдаем ту же проблему. Если заменить kMeans на Ward, то качество тоже не растет — значит проблема не специфична для кластеризатора.

Что еще интересно, с уменьшением размеров графа качество кластеризации растет (видим, что на football получилось приличное качество). Похоже на проблему у СТ, описанную в Getting lost in space. Очень странно, тем более странно, что проблема коснулась только SP. По СТ нет результатов для больших графов, может у СТ тоже есть такая проблема?

4 Konstantin Avrachenkov, Pavel Chebotarev, Dmytro Rubanov: Kernels on Graphs as Proximity Measures

Ссылка: https://hal.inria.fr/hal-01647915/document

Помимо статьи, здесь у нас был доступен код. Я добавил все метрики из этого кода к себе в репозиторий. Часть метрик у нас уже была реализована, часть — нет. Исследование можно разделить на две части: сравнение реализаций Рубанова и моих для совпадающих мер, и воспроизведение результатов кластеризации из статьи.

4.1 Сравнение реализаций на всем пространстве параметров

Сравнивались результаты для одного простого графа на всем пространстве параметров. Метрики: Walk, logComm, logHeat, Forest. Метрики совпали с точностью 0.0001.

Кажется, тут есть некоторые проблемы с наименованиями: в статье метрики выглядят как plain и только в коде понятно, что метрики логарифмируются. Но так как у нас код был, проблем не возникло.

4.2 Balanced Model

Сравнивались результаты из секции "Balanced Model" для метрик Walk, logComm, logHeat, Forest (мои реализации), а также Normalized Heat, Personalized PageRank, Modified Personalized PageRank, Heat Personalized PageRank (реализации Рубанова). Сравнение сделано для сгенерированных графов.

Вначале у результатов были расхождения: одни и те же реализации давали качество в среднем на 0.004 хуже, чем в статье.

Сначала я заподозрил генератор графов: несмотря на то, что в основе лежит одна и та же идея, реализации дают разные результаты. Насколько я понял, самое важное отличие — они проверяют связность графа и подбирают только связные. Использование генератора немного подняло результаты, но не настолько, чтобы считать тесты пройденными.

После этого я решил использовать для теста именно те графы, на которых считал Рубанов: он зафиксировал, на каких именно графах он получил результаты. И ничего не совпало.

Внимательнее посмотрев код, я нашел важное отличие от нашего эксперимента: мы стараемся найти наилучший параметр, который подходил бы всем графам, и смотрим на качество при этом параметре. В коде Рубанова же наилучший параметр находится отдельно для каждого графа и по лучшему качеству для каждого графа проводится усреднение. Переписав метод оценки параметра, мне удалось получить такие же результаты. Некоторые расхождения все же есть, можно списать их на недетерминированную работу спектральной кластеризации.

	test	true	diff
Katz	0.0071	0.0072	0.0001
Estrada	0.0086	0.0084	0.0002
Heat	0.0068	0.0064	0.0004
Normalized Heat	0.0067	0.0066	0.0001
Regularized Laplacian	0.0071	0.0072	0.0001
Personalized PageRank	0.0071	0.0073	0.0002
Modified Personalized PageRank	0.0072	0.0072	0.0000
Heat Personalized PageRank	0.0082	0.0074	0.0008

Таблица 6: Comparison with "Kernels on Graphs as Proximity Measures", Balanced Model

5 Тесты по другим источникам

5.1 Репозитории GitHub

Я попробовал найти другие реализации shortest path — не помогло. Попробовал найти сразу shortest path kernel и нашел здесь: https://github.com/gmum/pykernels, но результат все такой же плохой.

Также искал другие реализации мер для того, чтобы расширить количество тестов. Наткнулся на вот этот репозиторий: https://github.com/jmmcd/GPDistance. Здесь есть более сложные реализации RSP и FE. Насколько я понял, они защищены от случаев вроде тех, когда граф не связный (защищены от деления на 0 при вычислении Pref). Я реализовал тесты из этого репозитория и увидел, что RSP и FE из этого репозитория выдают значения на более широком диапазоне параметров, чем мои варианты, сделанные строго по формулам из статей. Я заменил свои версии версиями из репозитория и они проходят все наши тесты. В частности, таблицы выше содержит результаты с обновленными мерами.

5.2 Luh Yen, Francois Fouss, Christine Decaestecker, Pascal Francq, Marco Saerens: Graph Nodes Clustering based on the Commute-Time Kernel

Итак, мне нужно больше статей про SP и CT, в которых были бы результаты, с которыми я мог бы сравниваться. В этой статье нас интересует Table 1, колонки K_{CT} k-means. Здесь используется известный нам датасет Newsgroups и известные нам метрики RI (в таблице "class. rate" соответствует 100*RI) и ARI.

Получаем качество, близкое к 0 по ARI, то есть случайное гадание. Это совсем не похоже на результаты, описанные в статье, значит у нас неправильно реализованы и SP, и CT. Проверяю эксперимент, заменяя кернел на \log For при параметре 0.95 — оптимальный параметр для Newsgroup и получаю качество, почти достигающее заявленных значений.

У меня есть непонимание насчет того, что значит L+. По идее + это взятие псевдообратной матрицы методом Мура-Пенроуза, в python есть такая функция. Но в Forest, который по идее должен быть обобщением СТ, $(I+tL)^{-1}$, то есть добавляется І. Поэлементно логарифмированная $(I+L)^{-1}$ дает хорошее качество (это logFor при параметре 1), при убирании \log качество падает до нуля по ARI.

Взятие корня из СТ тоже поправляет метрики. Это воспроизводится и на kMeans (который был проверен выше), и на Ward.

6 Сравнение генератора графов с версией Рубанова

Генератор из кода Рубанова делит список вершин на отрезки, соответствующие классам, без перемешивания. Потом из каждого класса последовательно берутся элементы, для каждого из них бросается монетка насчет связи с элементами из этого же класса вперед (вперед по списку вершин, чтобы избежать повторений) и для всех элементов следующих классов.

Рис. 1: Ours vs Rubanov, ours Ward, $p_{out}=0.1$ averaging 200 (two runs)

Кажется, это должно работать так же, как и моя схема. Раз его решение и мое прошлое решение дают результаты ниже, чем мой текущий генератор, значит мой текущий генератор работает неправильно.

А что если перепроверить вероятности, возвращаемые генераторами, напрямую? Выйдет неплохой тест. Но нет, все в порядке, у обоих генераторов хорошее распределение. Провел тест для $p_{in}=0.3, p_{out}=0.1$ при усреднении в 1000 графов.

Моя модель: $p_{in}=0.2996, p_{out}=0.1007,$ модель Рубанова $p_{in}=0.3003, p_{out}=0.1002.$

Окей, я написал еще один генератор, проще чем оба предыдущие. Новый генератор практически сошелся с генератором Рубанова. Ниже график с усреднением по 20 графам.

Рис. 2: Сравнение трех генераторов

Здесь получается однозначный вывод: мой старый генератор показывает завышенные результаты по отношению к более простому (без возможности проставлять размеры классов и матрицу вероятностей) и генератору Рубанова. Это связано либо с генерацией случайных значений матрицами вместо поэлементных, либо с ошибкой, которую я не могу найти. Хорошие новости: этого бага не было на момент публикации. Буду использовать один из двух генераторов.

7 Сравнение кластеризаторов Ward и KMeans с реализациями из Sklearn

Здесь я построил графики ARI от параметра метрики для основного набора метрик для двух разных реализаций Ward и KMeans: самодельные, которые мы использовали до сих пор, и реализации, предложенные Николаем Козырским.

Рис. 3: Ours vs Sklearn $p_{out}=0.1$ averaging $200\,$

Рис. 4: Ours vs Sklearn $p_{out}=0.1$ averaging $500\,$

Видим, что все графики не совпадают. Версия kMeans, которую мы использовали раньше, мне не нравилась, и здесь она показала себя значительно хуже всех. Хорошо, будем использовать версию из sklearn. Расстраивает, что версии Ward тоже различаются. Я могу ручаться за текущую реализацию Ward, писал ее по статье и она дает хорошие результаты. Но, почему-то, при других параметрах.

Еще странно, что kMeans и Ward из sklearn показывают наилучшее качество на одних и тех же параметрах. Хотя, может быть, это как раз логично? Мол, оптимальный параметр для метрики объективен и не нужно подбирать его для каждого метода кластеризации?

У меня есть некоторое недоверие к методам из sklearn, в документации не написано, что они используются именно для кернелов. Вдруг они оптимизируются при других параметрах, потому что при них кернел больше похож на матрицу расстояний? Решил провести такой эксперимент: взять самый простой граф и посмотреть качество на нем.

Рис. 5: Матрица смежности для простого графа

Рис. 6: Зависимость качества от параметра метрики для простого графа

Рис. 7: Зависимость качества от параметра метрики, усредненная на ста запусках для одного и того же простого графа

Видим здесь, что kMeans, который мы использовали раньше, нестабильно работает, и дает качество близкое к нулю в при случайных значениях параметра метрики. Усреднение показывает случайный характер этого. Остальные методы кластризации справились с задачей. Значит ли это, что они все работают для кернелов?

Еще одна идея: может быть, эти функции принимают строчки ядра как вектора признаков? Возможно ли, что в такие кластеризаторы тоже дают хорошее качество, но на других значениях параметров?

Графики выше строились по графам, сгенерированным моей моделью, но в предыдущей секции мы увидели, что это плохая модель и мы ее использовать не будем. Вот график для $p_{in}=0.3, p_{out}=0.15$ на графах модели Рубанова:

Эта картинка гораздо приятнее выглядит. Здесь почти везде видна корреляция трех графиков. Можно предположить, что моя реализация Ward правильная, но наивная, поэтому она проигрывает.

Общий результат

		Chebotarev	Kivimäki	Sommer	Avrachenkov	Result
	Shortest path	+	+/-	+/-		-
	Resistance	+	+			+*
	plain Walk	+				+
	Walk	+			+	+
	Forest	+				+
	logForest	+	+	+	+	+
	Comm	+				+
	$\log Comm$				+	+
Measure	Heat					+
Measure	logHeat				+	+
	SCT		+	+		+
	SCCT			+		+
	RSP		+	+		+
	FE		+	+		+
	Normalized Heat				+**	+**
	P. PageRank				+**	+**
	Modified P. PageRank				+**	+**
	Heat P. PageRank				+**	+**
	$\alpha \to t$	+	+			+
	t/ ho	+			+	+
Transformation	t/2 * (1-t)	+	+	+	+	+
Transformation	$(1-\beta)/\beta$		+	+		+
	$H0 \rightarrow H$	+	+	+	+	+
	H o D	+	+	+		+
	Football			+		+
	Polbooks					?
Dataset	Polblogs			?***		?
	Zachary			+		+
	Newsgroup		+	+		+
Graph Generator	Stochastic Block Model				+/-	+
Graph Generator	Rubanov's impl.				+	+
	kMeans		+	+		+
Clustering	Ward					?
	Spectral				+	+

Таблица 7: Overall result

Итого, имеем несовпадение метрик SP и CT, и это очень странно.

Из хороших новостей: все остальные метрики можно считать покрытыми тестами. Можно быть уверенными, что с ними все хорошо.

^{*} На самом деле, тут уверенности нет. Мы видели, что проблемы с SP появились только на больших графах, возможно и у CT могут быть расхождения.

^{**} Мы сравнили реализации Рубанова с его же результатами на его же графах. Это не очень корректно, ведь если Рубанов ошибся в реализации мер, то мы этого не узнаем.

^{***} Датасет очень большой и на нем падают наши вычисления