Source:		
#ret #flo		

1 | Proteins

1.1 | Structures

- Proteins account for 50% of the dray mass of most cells
- Enzymes are mostly proteins
- · Very structurally complex
 - · They are constructed from the same 20 sets of amino acids
- · A polypeptide is a polymer of amino acids
 - · A protein is made up of one or more polypeptides
- A protein must serve a biological function to be a protein
 - It also must be folded and coiled into a specific 3 dimensional structure
- · There are many types of proteins
 - · Enzymatic proteins
 - Selective acceleration of chemical reactions
 - · Digestive enzymes are an example that catalyze the hydrolysis of bonds in food
 - · Defensive proteins
 - · Protect against disease
 - · Antibodies are an example and inactivate as well as help destroy viruses and bacteria
 - Storage proteins
 - · Storage of amino acids
 - Casein is an example which is in milk and is the major source of amino acids for baby mammals
 - · Transport proteins
 - · Transport of substances
 - Hemoglobin is an example that transports oxygen from the lungs to other parts of the body.
 - · Hormonal proteins
 - · COordination of an organism's activities
 - Insulin is an example as it causes other tissues to take up glucose thus regulating the blood sugar concentration
 - · Receptor proteins
 - · Response of cell to chemical stimuli
 - Responsible for stuff like detecting signaling molecules released by other nerve cells
 - · Contractile and motor proteins
 - · Meant for movement
 - · Responsible for stuff like flagella
 - · Structural proteins
 - They are used as support
 - Keratin is an example

Amino Acids

- · All amino acids share a common structure
 - · It is an organic molecule with both an amino group and a carboxyl group
 - An amino group is two Hydrogens bonded with a nitrogen and a carboxyl group is an oxygen double bonded with a carbon and an OH bonded with the same carbon
 - · The side chain determines the unique characteristics of the particular amino acid

1.1.1 | Protein Structure

- · The specific function of a protein is a result of their shape
- · There is now easier sequencing of proteins, but originally it was very difficult
- · The protein may spontaneously fold once constructed
- Proteins share three superimposed levels of structure, known as primary, secondary, and tertiary structure
 - A fourth Quaternary structure arises once when a protein is made of two or more polypeptide chains
- · Primary structure
 - · A sequence of amino acids
- · Secondary strucutre
 - · These are coils and folds formed by hydrogen bonds from partial charges
 - · An example would be a helix and pleated sheet
- · Tertiary structure
 - It is the overall shape of a polypeptide resulting from interactions between the side chains
- · Quaternary structure
 - This is the overall protein structure resulting from the polypeptide sub-units
- Primary structure is very fundamental and even a slight change can cause large consequences
- · Chemical conditions can alter a proteins shape
 - · Denaturing is when a protein becomes mishapen and therefore biologically inactive
- Many proteins have been sequenced
- Misfolded proteins are the causes of many diseases
- Crystallography is a technique for obtaining the 3d shape of a protein
- · Nucleic acids are made of polynucleotides which are made of nucleotides