Project 3 Predictive Modeling

Image Super-Resolution

Index

- Project Goal
- Model Selection
 - Baseline
 - Improvement :
 - Random Forest
 - Xgboost
- Evaluation
- More Thoughts...

PROJECT GOAL

Produce a predicted high resolution image as output based on the blurry and low-resolution input.

Evaluation on

- Computational Efficiency Running time on feature extraction and model training
- 2. Computational Efficiency Running time on test data
- 3. Predictive Power Error rate (PSNR)

FEATURE

Baseline (GBM)

MODEL SELECTION

Gradient Boosting Machine (GBM)

- A great application of GBM is anomaly detection in supervised learning settings where data is often highly unbalanced
- GBM build trees one at a time, where each new tree helps to correct errors made by previously trained tree.

Baseline (GBM)

	Ntrees = 200		
Depth	1	2	3
MSE	0.003755	0.003572	0.003464
PSNR	24.191	24.214	24.405

Note: "Depth = 3" already take us more than 10 hours to run

Advanced Model (Random Forest)

Random Forest

- Train each tree independently, using a random sample of the data.
- This randomness helps to make the model more robust than a single decision tree, and less likely to overfit on the training data
- The main limitation of the Random Forests algorithm is that a large number of trees may make the algorithm slow for real-time prediction.

Advanced Model (XgBoost)

XgBoost

- Use of sparse matrices with sparsity aware algorithms
- Improved data structures for better processor cache utilization which makes it faster.
- Better support for multicore processing which reduces overall training time

Advanced Model (XgBoost)

	Nthread = 2, eta = 0.5, silent=1		
Depth	2	3	4
MSE	0.002633592	0.002603574	0.002600096
PSNR	24.25706	24.31245	24.40873

Note: 1. Nrounds too large will need long time to run and result is still not good.

2. Max.depth too large will result overfit

EVALUATION

	GBM	XgBoost
Parameters	Depth=3	Depth=4
Running Time	9.8s/pic	7.3s/pic
MSE	0.003464	0.002600096
PSNR 24.405		24.40873
Training time	About 18 hours	About 40 minutes

XgBoost (test picture)

Low Resolution

Predicted Picture

High Resolution

If we have more time ...

Convolutional Neural Network (CNN)

- CNNs use relatively little pre-processing compared to other image classification algorithms
- It uses GPU in our Laptop.

REPRODUCED PERFORMANCE IN CLASS

	XgBoost	
Parameters	Depth=4	
Running Time	Around mins	

Thanks!

Refence

- 1. Han, Liu, et al. Project: Can you unscramble a blurry image? 2018, Columbia University, New York. github.com/TZstatsADS/Fall2018-Proj3-Sec1-grp1.
- 2. Ravanshad, Abolfazl. "Gradient Boosting vs Random Forest." medium.com, 27 Apr. 2018, medium.com/@aravanshad/gradient-boosting-versus-random-forest-cfa3fa8f0d80.
- 3. Rashmi, K. V., & Gilad-Bachrach, R. (2015). Dart: Dropouts meet multiple additive regression trees. arXiv preprint arXiv:1505.01866.