University of Minnesota Math Refresher

SUMMER 2015

Problem Set 3

- 1. Prove or disprove: the convex hull of a compact set is compact.
- 2. Show that a function $f: \Re^n \to \Re$ is affine iff is convex and concave. (Exercise 5, Sundaram 7.8).
- 3. Consider a finite collection of sets $X_i \subset \Re^n_+$ for $i \in I = \{1, 2, ..., l\}$, for each set there is a preference relation characterized by \succeq_i , which implies that x is preferred to y iff $x \succeq_i y$. Suppose that \succeq_i is reflexive, transitive and convex (see definition below) for all $i \in I$. Now suppose there exists $x \in X \subset \Re^{nl}_+$ such that $\sum_{i \in I} x_i = w$. Define $A_i(x_k) = \{y_i \in X_i : y_i \succ x_i\}$ for all $i \in I$ and $A = \sum_i A_i$. Show that there exists $p \in \Re^n$ such that $pz \geq pw$ for all $z \in A$.

Convexity: A reflexive and transitive (see definitions in Exercise 6, PS0) preference relation \succeq is convex on a set X if for all $x, y \in X$ and $\lambda \in (0, 1), y \succ x \Rightarrow \lambda x + (1 - \lambda) y \succ x$.

- 4. Let $f: \Re^n \to \Re$ be a concave function stisfying f(0) = 0. Show that for all $k \ge 1$ we have $kf(x) \ge f(kx)$. What if $k \in [0,1]$? (Exercise 3, Sundaram 7.8).
- 5. Let $\{f_i : i \in I\}$ a set of functions from $D \subset \Re^n$ to \Re which are convex and bounded on D. Show that f is convex, for f defined as:

$$f\left(x\right) = sup_{i \in I} f_i$$

What if we replace sup by inf? (Exercise 8, Sundaram 7.8)

- 6. Are quasi-convex and quasi-concave functions always continuous in the interior of their domain?
- 7. Find the extrema of $F(x,y) = x^2 \cdot y \log(x)$ subject to 0 = g(x,y) := 16x + 6y.
- 8. Excercises 17, 18, 19, 20 and 23 Sundaram 7.8.
- 9. Exercises 2, 4 and 9, Sundaram 8.9.