Data Manipulation

Arthur Allignol

arthur.allignol@uni-ulm.de

Table of Contents

Reading and Writing Data

- 1 Reading and Writing Data
- Pactors and Dates
- 3 Text Processing
- Data Manipulation
- Data Aggregation

Reading Data

Reading and Writing Data

scan()

scan() reads data into a vector or list from the console or from file

- scan is more appropriate when all the data to be read are of the same mode
- · Arguments:
 - file: Name of a file. When "", reads from the console
 - what: Type of what gives the type of data to be read.
 what can also be a list
 - scan calls can be embedded in a call to matrix

```
matrix(scan(), ncol = 3, byrow = TRUE)
```


rs and Dates Text Processing Data Manipulation

Data Frames

Reading and Writing Data

read.table

 The read.table function is used to read data into R in the form of a data frame, i.e., data with mixed modes

- read.table expects each field (variable) to be separated by separators (by default, spaces, tabs, newlines or carriage returns)
 - The sep argument can be used to specify an alternative separator
- R provides convenience functions for reading comma- and tab-separated data

read.csv Separated by ,
read.csv2 Separated by ; decimal point ,
read.delim Separated by tabs
read.delim2 Separated by tabs, decimal point ,

These functions are wrappers for read. table with the sep argument set appropriately

Arthur Allignol Data Manipulation

Data Frames

read.table: Useful options

file	File to be read or a connection	
sep	e.g.,"\t",","	
dec	Specify decimal point (default is .)	
header	TRUE if the the first line are the column names (default to	
	TRUE for read.csv)	
col.names	A vector of column names	
stringsAsFactors	Logical. If FALSE, prevent the automatic conversion of char-	
	acter strings into factors	
na.strings	By default, NA, NaN, Inf and -Inf are considered as missing values. Change this behaviour using na.strings	
skip and nrows	Number of lines to skip and number of lines to read, respec-	
	tively	
fill	If TRUE, observations with fewer variables are filled with NAs	
	or blanks	
colClasses	Specify the modes of the columns to be read	
fileEncoding	Encoding of the file. Useful for non ASCII characters from other platforms	

Data Frames

Fixed Width Input Files

- Files without delimiters but for which each variable is stored in one column
- Can be read in R using the read.fwf
 - file: the file to be read
 - widths: vector containing the widths of the fields to be read

readLines

Reading and Writing Data

- readLines reads some or all text lines from a file or a connection
- Useful, for example, if only some lines of an enormous file need to be read
 - con: a connection or file name
 - n: The maximal number of lines to read. Negative values indicate that the whole file should be read

Connections

- Connections provide a flexible way to read data from a variety of sources
- Connections can be used as input for, e.g., read.table or readLines

Function	Data source
file url gzfile unz pipe	Local files Remote read via http ot ftp Local gzipped file Local zip archive Output from a command
•••	

Connections

Reading and Writing Data

```
myCon <- url("http://taz.de/")
aa <- readLines(myCon, 3)
aa

## [1] "<!DOCTYPE html SYSTEM \"about:legacy-compat\">"
## [2] "<html xmlns=\"http://www.w3.org/1999/xhtml\" xmlns:my=\"mynames\"
## [3] "\t\tContent Management: openNewspaper www.opennewspaper.org based
close(myCon)</pre>
```

Other useful functions

Function	Format
load read.dta	Read R data format .rda, .RData Read data saved by Stata (foreign package)
<pre>read.spss read.ssd,read.xport</pre>	Read data from SPSS (foreign) Read SAS files

- Read a data from Excel
 - Export from Excel into a .csv file
 - On Windows, the RODBC package permits to access Excel files
 - gdata package for all platforms. Requires some specific perl modules to be installed
 - xlsx package. Requires Java / installation tricky
 - readxl package. Not tested (released 15.4.2015)

Arthur Allignol Data Manipulation

The **readr** package

The **readr** package provides alternatives to the base read.*** functions that are

- 10 times faster (according to http://blog.rstudio.org/2015/04/09/readr-0-1-0/)
- more consistent
- more flexible column specification

. . .

```
read csv
                       Separated by,
                       Separated by; decimal point,
read csv2
```

read tsv Separated by tabs

read_delim Separated by arbitrary delimiter

The **readr** package

Three important arguments (similar for all functions)

file File name

col_names column name; equivalent to header.

- TRUE
 ⇔ header = TRUE in base R
- FALSE
- A character vector to use as column names

col_types Override the default column types

Default to stringsAsFactors = FALSE!

Writing Data

Reading and Writing Data

The save function can be used to save R objects

```
save(a_data_set, x, y, file = "my_data.rda")
```

- The write function
 - Takes an R object and the name of a file or a connection as arguments
 - Writes a ASCII representation of the object
 - The ncolumns argument specifies the number of values to write on each line

Writing Data

Reading and Writing Data

- The write.table function
 - Requires the name of a data set or matrix (if no file is specified, write.table() writes into the console)
 - The file argument specifies the destination. file can also be a connection
 - row.names and col.names specify whether to write the rows' and columns' names, respectively
 - · sep specifies the separator. Default is blank
 - write.csv and write.csv2 available for writing comma-separated files

- The zip file data.zip contains several versions of the same (fake) data set
 - data1.rda can be opened using load() and will serve as reference
 - data2 to data5 are ASCII files
 - data6.xls is an Excel file that is rather realistic
- Read all the data sets in R and check whether they compare to the original using, e.g.,

```
all(dd1 == dd2) # dd2 being another data set
```

Table of Contents

- Factors and Dates

Factors

- Factor are variables in R that take on a limited number of different values
 - Categorical variables
 - Ordinal variables
- Factors are useful for statistical modelling as ordinal variables should be treated differently than continuous variables
- Factors are also useful for statistical report generation. Think SAS lahels

Factors

- Factors are stored internally as numeric values
- A corresponding set of characters is used for displaying

```
aa <- factor(c("cats", "dogs", "apples"))
aa

## [1] cats dogs apples
## Levels: apples cats dogs

as.integer(aa)

## [1] 2 3 1</pre>
```

Factor Creation

- Factors are created using the factor function
- The levels argument permits to control the order
- The labels argument is used to change the levels' names
- ordered = TRUE creates an ordered factor (ordinal variable)

```
set.seed(21324)
data <- sample(c(1, 2, 3), 10, TRUE)
f0 <- factor(data)</pre>
f1 \leftarrow factor(data, levels = c(2, 3, 1))
f2 <- factor(data, labels = c("I", "II", "III"))
f3 <- factor(data, levels = c(2, 3, 1),
             labels = c("II", "III", "I"))
```

```
## f0
## 1 2 3
## 4 3 3
```

```
table(f1)
```

```
## f1
## 2 3 1
## 3 3 4
```

table(f2)

```
## f2
## I II III
## 4 3 3
```

table(f3)

```
## f3
## II III I
## 3 3 4
```

Factors

 The levels() function can be used to change the labels once a factor has been created

```
levels(f0) <- c("I", "II", "III")</pre>
f0
    [1] II I III III I I I I I I
## Levels: I II III
```

 The reference level of a factor can be changed using the relevel function

```
f0 <- relevel(f0, "II")</pre>
f0
           I III III III I
                              T TT T
                                            TT
  Levels: II I III
```

mon <- sample(month.name, 29, TRUE)</pre>

21

set.seed(433443534)

##

```
table(factor(mon))
##
       April
                August
                         December February
                                               January
                                                             July
                                                                        June
##
       March
                   May
                         November September
##
                                3
mon2 <- factor(mon, levels = month.name,</pre>
               ordered = TRUE)
table(mon2)
  mon2
     January
              February
                           March
                                       April
                                                             June
                                                                        July
                                                   May
```

Order operator can be used with ordered factors

August September October

December

Arthur Allignol Data Manipulation

November

When Factors Are a PITA

```
set.seed(423423)
ff <- factor(sample(1:4, 10, TRUE))</pre>
mean(ff)
## Warning in mean.default(ff): argument is not numeric or logical:
returning NA
## [1] NA
ff + 10
## Warning in Ops.factor(ff, 10): '+' not meaningful for factors
##
    [1] NA NA NA NA NA NA NA NA NA
c(ff, 10) # Not a factor anymore
    [1] 1 2 1 1 2 1 3 1 2 3 10
##
```

22

```
(a <- factor(sample(letters, 10, replace = TRUE)))</pre>
## [1] auojihdgnd
## Levels: a d g h i j n o u
(b <- factor(sample(letters, 10, replace = TRUE)))</pre>
## [1] tykgvkpbdd
## Levels: b d g k p t v y
c(a, b)
    [1] 1 9 8 6 5 4 2 3 7 2 6 8 4 3 7 4 5 1 2 2
```

```
(a <- factor(sample(letters, 10, replace = TRUE)))</pre>
## [1] auojihdgnd
## Levels: a d g h i j n o u
(b <- factor(sample(letters, 10, replace = TRUE)))</pre>
## [1] tykgvkpbdd
## Levels: b d g k p t v y
c(a, b)
    [1] 1 9 8 6 5 4 2 3 7 2 6 8 4 3 7 4 5 1 2 2
```

```
factor(c(as.character(a), as.character(b)))
## [1] a u o j i h d g n d t y k g v k p b d d
## Levels: a b d g h i j k n o p t u v y
```

◆ロト ◆個ト ◆夏ト ◆夏ト 夏 りなぐ

Factors

- Pros
 - Needed for modelling categorical variable
 - Memory efficient, i.e., factors only need to store values as integer and the unique levels as character strings
 - Nice output

```
table(factor(c(1, 2, 3),
             labels = c("Healthy", "Diseased", "Dead")))
##
##
    Healthy Diseased
                          Dead
##
```

- Cons
 - Require to be cautious for some data manipulation
- I'd recommend reading data using the option stringsAsFactors=FALSE and transform variables into factors as needed

Factors and Dates Text Processing Data Manipulation Data Aggregation

Dates

R provides several options to deal with dates, which is a challenging problem, i.e., time zones, daylight savings, leap second, ...

- as.Date handles dates without time
- The chron package handles dates and times, but without support for time zones
- The POSIXct and POSIXlt allow for dates and times with control for time zones
- The lubridate packages is supposed to facilitate the use of dates and times in R

Rule of thumb: Use the simplest technique possible. If you only have dates, use as . Date

Factors and Dates Text Processing Data Manipulation Data A

Dates

as.Date

- as.Date accepts a variety of input style through the format argument
- Default is yyyy-mm-dd

```
as.Date("2014-06-12")
## [1] "2014-06-12"

as.Date("12.6.2014", format = "%d.%m.%Y")
## [1] "2014-06-12"

as.Date("12 June 14", format = "%d %B %y")
## [1] "2014-06-12"
```

See ?strptime for a complete list of format symbols

Dates

as.Date

- Internally, dates are stored as the number of days since January 1, 1970
- as.numeric can be used to convert a date to its numeric form

```
as.integer(as.Date("2014-06-12"))
## [1] 16233
```

- The weekdays and months functions can be used to extract the dates' components
- Calculation on dates: See ?Ops.Date. Addition, subtraction, logical operations (==, <, ...) are available

POSTXct and POSTX1t

- POSIXct is represented as seconds since January 1, 1970 GMT
- POSIXlt is represented as a list
 - \rightarrow Use POSIXct for calculation and POSIXlt for extracting date components

```
(t1 <- as.POSIXct("2014-06-12 10:15:00"))

## [1] "2014-06-12 10:15:00 CEST"

(t2 <- as.POSIXlt("2014-06-12 10:15:00"))

## [1] "2014-06-12 10:15:00 CEST"
```

Dates

POSIXct and POSIXlt

```
## Internal representation of t2
str(unclass(t2))
   List of 11
    $ sec : num 0
    $ min : int 15
##
    $ hour : int 10
    $ mday : int 12
##
    $ mon : int 5
    $ year : int 114
##
    $ wday : int 4
    $ yday : int 162
##
    $ isdst : int 1
##
    $ zone : chr "CEST"
##
##
    $ gmtoff: int NA
```

Your Turn

Consider the data set data7.csv

- Read the data
- 2 Compute the age of the patients

Table of Contents

- Reading and Writing Data
- 2 Factors and Dates
- 3 Text Processing
- 4 Data Manipulation
- Data Aggregation

Introduction

Character: A symbol in a written language, e.g, letters, numbers, punctuation marks, space, newlines, ...

String: A sequence of character bound together

Note that R does not distinguish between character and string

```
test <- "a" # or 'a'
test2 <- "apple" # or 'apple'
class(test)

## [1] "character"

class(test2)

## [1] "character"</pre>
```

Making Strings

Use single or double quotes to construct a string

```
"cats"
## [1] "cats"

'cats and dogs'
## [1] "cats and dogs"

"cat's best friend"
## [1] "cat's best friend"
```

Use nchar to get the length of a string

```
length("cat's best friend"); nchar("cat's best friend")
## [1] 1
## [1] 17
```

Character-Valued Variables

Works just like other variables, e.g.,

```
# A vector
a <- c("cats", "and", "dogs")
a[2]
## [1] "and"
a[c(1, 3)]
## [1] "cats" "dogs"</pre>
```

Display characters

cats and dogs

```
print(a)
## [1] "cats" "and" "dogs"
cat(a)
```

10 > 10 > 10 > 12 > 12 > 2 9 9 9

Arthur Allignol Data Manipulation 34

Substrings

The substr permits to extract and/or replace substrings

```
# Extract
my_string <- "cats don't like dogs"</pre>
substr(my_string, start = 6, stop = 15)
## [1] "don't like"
```

```
# Works with vectors
my_vector <- c("cats", "dogs", "apple")</pre>
substr(my_vector, 2, 2)
## [1] "a" "o" "p"
```

Split Strings into Vectors

The strsplit function permits to slit a string into a list containing multiple strings based on a give delimiter

```
another_string <- "cats, dogs and apples"</pre>
strsplit(another_string, split = ",")
## [[1]]
## [1] "cats"
                         " dogs and apples"
strsplit(another_string, split = " ")[[1]]
## [1] "cats," "dogs" "and" "apples"
yet_another_string <- "walk into a bar"</pre>
strsplit(c(another_string, yet_another_string), split = " ")
   [[1]]
   [1] "cats," "dogs" "and" "apples"
##
   [[2]]
  [1] "walk" "into" "a" "bar"
```

Build Strings from Multiple Parts

The paste function

The paste function combines multiple strings into a single strings. The sep and collapse arguments control the separation.

```
paste(c("cats", "dogs", "apple"), collapse = "|") # BUT

## [1] "cats|dogs|apple"

paste(c("cats", "dogs", "apple"), sep = "|")

## [1] "cats" "dogs" "apple"

# collapse permits to concatenate strings from a single vector
```

```
paste("cats", "dogs", "apple", sep = "|")
## [1] "cats|dogs|apple"
```


Arthur Allignol

Build Strings from Multiple Parts

A more complicated example: Estimate plus 95% confidence interval

```
est \leftarrow round(90.233982, 2)
ci \leftarrow round(c(40.48992, 130.93774), 2)
paste(est, " (95% CI [", ci[1], ", ", ci[2], "])", sep = "")
  [1] "90.23 (95% CI [40.49, 130.94])"
```

Search and Replace

R provides several functions for searching and replacing text

grep	Search for pattern in a vector x and return the indices of matches or matching string (value = TRUE)
grepl	As grep but returns a logical vector
regexpr	Return character position of the first match as well as length of the match1 is returned if no match
gregexpr	As regexpr but reports all matches
regexec	Comparable to regexpr but returns a list
sub	Finds pattern in text and replaces first match with specified string
gsub	As sub but replaces all matches


```
l <- c("apple", "banana", "grape", "10", "green.pepper")</pre>
grep(pattern = "a", x = l)
## [1] 1 2 3
grep(pattern = "a", x = l, value = TRUE)
## [1] "apple" "banana" "grape"
grepl("a", l)
## [1] TRUE TRUE TRUE FALSE FALSE
regexpr("a", l)
## [1] 1 2 3 -1 -1
   attr(,"match.length")
  [1] 1 1 1 -1 -1
## attr(,"useBytes")
## [1] TRUE
```

Arthur Allignol Data Manipulation

Simple Matching

```
regexpr("a", l)
## [1] 1 2 3 -1 -1
## attr(,"match.length")
## [1] 1 1 1 -1 -1
## attr(,"useBytes")
## [1] TRUE
gregexpr("a", l)
## [[1]]
## [1] 1
## attr(,"match.length")
## [1] 1
## attr(,"useBytes")
## [1] TRUE
##
## [[2]]
## [1] 2 4 6
## attr(,"match.length")
## [1] 1 1 1
## attr(,"useBytes")
## [1] TRUE
##
## [[3]]
## [1] 3
## attr(,"match.length")
## [1] 1
## attr(."useRvtes")
```

Arthur Allignol

A regular expression is a pattern that describes a set of strings. It is more or

less a grammar of text searchingrepresents any character

```
grep("ap.", l, value = TRUE)
## [1] "apple" "grape"
grep("\\.p", l, value = TRUE)
## [1] "green.pepper"
```

+ represents one or more occurrence

```
grep("ba+", l, value = TRUE)
## [1] "banana"
grep("p+", l, value = TRUE)
## [1] "apple" "grape" "green.pepper"
```

* represents 0 or more occurrence

Group term with parentheses

```
grep("(ap)+.", l, value = TRUE)
## [1] "apple" "grape"
```

^ end of line; \$ start of line

Regular Expressions

logical OR

```
grep("(ap)|(an)", l, value = TRUE)
## [1] "apple" "banana" "grape"
```

- [] creates special character classes, e.g.,
 - [a-z] lower case letters
 - [a-gA-G0-5] any of a to g, A to G, and 0 to 5
 - [^0-9] anything except a digit

```
grep("[a-c]", l, value = TRUE)
## [1] "apple" "banana" "grape"
grep("[^a-z]", l, value = TRUE)
## [1] "10"
                      "green.pepper"
```

- {n} match exactly n times
- {n,} match n or more times
- {n,m} match at least n times but no more than m times

```
grep("e{2,}", l, value = TRUE)

## [1] "green.pepper"

grep("p{2}.*r$", l, value = TRUE)

## [1] "green.pepper"
```

Your Turn

Consider the babynames data in package **babynames**

```
install.packages("babynames")
require(babynames)
text <- unique(babynames$name)</pre>
```

Find in text

- 1 All the names starting with L and with exactly 2 a's
- 2 All the names with at least 2 y's
- 3 All the names containing either 'Paris', 'London' or 'Berlin'

Table of Contents

- Reading and Writing Data
- 2 Factors and Dates
- 3 Text Processing
- 4 Data Manipulation
- Data Aggregation

Subscripting

Logical subscripts

```
nums \leftarrow c(12, 9, 8, 14, 7, 16, 3, 2, 9)
nums > 10
## [1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
nums[nums > 10]
## [1] 12 14 16
which(nums > 10)
## [1] 1 4 6
nums[which(nums > 10)]
## [1] 12 14 16
nums[nums > 10] <- 0
nums
## [1] 0 9 8 0 7 0 3 2 9
```

```
(mat <- matrix(1:12, 4, 3))

## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12</pre>
```

```
mat[, c(3, 1)]

## [,1] [,2]

## [1,] 9 1

## [2,] 10 2

## [3,] 11 3

## [4,] 12 4
```


Arthur Allignol Data Manipulation 49

Subscripting Matrices and Arrays

```
mat[, 1]
## [1] 1 2 3 4

mat[, 1, drop = FALSE]

## [,1]
## [1,] 1
## [2,] 2
## [3,] 3
## [4,] 4
```

```
mat[mat > 4]
## [1] 5 6 7 8 9 10 11 12
```


Lists

Lists are the most general R object.

```
(ll \leftarrow list(a = 1:3, b = month.name[1:5], c = c(TRUE, FALSE),
            d = data.frame(y = rnorm(5), x = rbinom(5, 1, .5)))
## $a
  [1] 1 2 3
##
##
   $b
   [1] "January" "February" "March"
                                          "April"
                                                      "May"
##
## $c
##
   [1] TRUE FALSE
##
## $d
##
              V X
   1 - 1.1065764 0
   2 1.6957258 0
   3 -1.0641906 1
## 4 -0.0415854 1
  5 0.8534742 0
```

51

Lists

```
class(ll[[4]]); class(ll[["d"]]); class(ll$d)
   [1] "data.frame"
   [1] "data.frame"
  [1] "data.frame"
class(ll[4])
## [1] "list"
```

```
ll[c(1, 3)]
## $a
   [1] 1 2 3
##
  $c
   [1]
        TRUE FALSE
```

Subscripting Data Frames

```
set.seed(4234234)
(df \leftarrow data.frame(x = c(rnorm(3), NA, 3),
                 V = c(NA, rexp(2, 0.01), NA, 3))
##
              Χ
## 1 1.7547348
                       NA
  2 -0.3676785 108.34508
  3 -1.5529115 85.43826
## 4
             NA
                       NA
## 5 3.0000000 3.00000
df$x
## [1] 1.7547348 -0.3676785 -1.5529115
                                                NA 3,0000000
df[, "x", drop = FALSE]
              Х
  1 1.7547348
## 2 -0.3676785
  3 -1.5529115
```

Arthur Allignol

```
df[df$y > 10, ]
```

```
NA
                NA
                           NA
     -0.3676785 108.34508
  3 -1.5529115
                    85,43826
## NA.1
                NA
                           NA
df[!is.na(df$y) & df$y > 10, ]
##
              Х
  2 -0.3676785 108.34508
  3 -1.5529115 85.43826
subset(df, \lor > 10)
##
              Х
```

2 -0.3676785 108.34508 3 -1.5529115 85.43826

Arthur Allignol Data Manipulation 54

Subscripting Data Frames

Order a data frame

Your Turn

- $oxed{1}$ Compute a variable hypertension that equals 1 if DIAS > 120 **and** SYS > 80
- 2 Compute a variable Hypotension that equals 1 if DIAS < 100 **and** SYS < 65
- 3 Create a variable that equals 1 if the patient's CITY is in New York state (NY)
- 4 Create a data set that contains the patients that have hypotension or hypertension don't live in New York state

- Reading and Writing Data
- 2 Factors and Dates
- 3 Text Processing
- Data Manipulation
- **5** Data Aggregation

Data Aggregation

Data Aggregation

- For simple tabulation and cross-tabulation, the table, ftable and xtabs functions are available
- For more complex tasks, the available functions can be classified into two groups
 - Functions that operate on arrays and/or lists (e.g., *apply, sweep)
 - Functions oriented towards data frames (e.g., aggregate, by)

```
data(iris)
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
```

```
##
              5.1
                           3.5
                                         1.4
                                                     0.2
                                                          setosa
              4.9
                           3.0
                                                     0.2
##
                                        1.4
                                                          setosa
              4.7
                           3.2
                                        1.3
                                                     0.2 setosa
##
              4.6
                           3.1
                                        1.5
                                                     0.2 setosa
              5.0
                           3.6
                                        1.4
                                                     0.2
                                                          setosa
##
              5.4
                           3.9
                                        1.7
                                                     0.4
                                                          setosa
```

The table function

```
table(iris$Species)
##
##
       setosa versicolor virginica
##
           50
                       50
                                   50
table(iris$Species, iris$Petal.Length > 6)
##
##
                 FALSE TRUE
##
     setosa
                    50
##
     versicolor
                 50
##
     virginica
                    41
                          9
```

as.data.frame(table(iris\$Species, iris\$Petal.Length > 6))

```
## Var1 Var2 Freq
## 1 setosa FALSE 50
## 2 versicolor FALSE 50
## 3 virginica FALSE 41
## 4 setosa TRUE 0
## 5 versicolor TRUE 0
```

Arthur Allignol

The table function

```
table(iris$Species, iris$Petal.Length > 6, iris$Sepal.Width > 3.5)
        = FALSE
##
##
##
                 FALSE TRUE
##
     setosa
                    34
##
    versicolor
                50
     virginica
##
                    41
##
        = TRUE
##
##
##
                 FALSE TRUE
##
     setosa
                    16
     versicolor
     virginica
##
                     0
```

The table function

```
as.data.frame(table(iris$Species, iris$Petal.Length > 6, iris$Sepal.Width
                  Var2 Var3 Freq
##
            Var1
                 FALSE FALSE
          setosa
                                34
      versicolor FALSE FALSE
                                50
       virginica FALSE FALSE
                                41
                  TRUE FALSE
                                 0
          setosa
      versicolor
                  TRUE FALSE
      virginica
                  TRUE FALSE
                                 6
          setosa FALSE
                        TRUE
                                16
##
      versicolor FALSE
                         TRUE
       virginica FALSE
                        TRUE
                  TRUE
                        TRUE
          setosa
                                 0
      versicolor
                  TRUE
                         TRUE
                                 0
```

virginica

TRUE

TRUE

3

addmargins

```
tt <- table(iris$Species, iris$Petal.Length > 6)
addmargins(tt, margin = 1)
##
##
                 FALSE TRUE
                    50
##
     setosa
##
    versicolor
                    50
##
     virginica
                   41
##
     Sum
                   141
addmargins(tt, margin = c(1, 2))
##
##
                 FALSE TRUE Sum
##
     setosa
                    50
                             50
     versicolor
                          0 50
##
                 50
##
     virginica
                    41
                             50
##
     Sum
                   141
                          9 150
```

Arthur Allignol Data Manipulation 63

prop.table

```
prop.table(tt, margin = 1)
##
##
                FALSE TRUE
##
                1.00 0.00
     setosa
##
    versicolor 1.00 0.00
     virginica 0.82 0.18
##
prop.table(tt, margin = 2)
##
##
                                TRUE
                     FALSE
##
     setosa
                0.3546099
                          0.0000000
##
    versicolor 0.3546099 0.0000000
##
     virginica
                0.2907801 1.0000000
```

The ftable function

The ftable function creates **flat** tables

```
ftable(iris$Species, iris$Petal.Length > 6, iris$Sepal.Width > 3.5)
##
                      FALSE TRUE
##
   setosa
               FALSE
                          34
                               16
##
               TRUE
   versicolor FALSE
                          50
##
               TRUE
   virginica
               FALSE
                          41
##
               TRUF
                           6
```

The xtabs function

The xtabs function produces similar results as the table function but uses the formula interface

```
iris$sepal_width <- factor(as.integer(iris$Sepal.Width > 3.5),
                       levels = c(0, 1),
                       labels = c("<= 3.5", "> 3.5"))
with(iris, table(Species, sepal_width))
##
          sepal width
  Species <= 3.5 > 3.5
##
    setosa
                34
                      16
## versicolor 50
## virginica 47
xtabs(~ Species + sepal_width, iris)
##
           sepal_width
  Species <= 3.5 > 3.5
##
    setosa
           34
                      16
  versicolor 50
##
##
   virginica 47
```

Arthur Allignol

67

Missing values with table

The useNA and exclude Arguments

```
iris$sepal_widthNA <- iris$sepal_width</pre>
iris$sepal_widthNA[seq(1, 150, 25)] <- NA
with(iris, table(Species, sepal_widthNA))
##
          sepal widthNA
 Species <= 3.5 > 3.5
## setosa 32
                     16
## versicolor 48
  virginica 45
##
with(iris, table(Species, sepal_widthNA, useNA = "ifany"))
##
     sepal widthNA
## Species <= 3.5 > 3.5 <NA>
##
   setosa 32 16
## versicolor 48
   virginica 45
##
```

If there is NAs, they will be included

Missing values with table

The useNA and exclude Arguments

```
with(iris, table(Species, sepal_widthNA, useNA = "always"))
##
            sepal_widthNA
  Species <= 3.5 > 3.5 <NA>
##
##
    setosa
                 32
                       16
  versicolor 48
##
##
  virginica 45
##
   <NA>
                            0
with(iris, table(Species, sepal_width, useNA = "always"))
##
             sepal width
  Species <= 3.5 > 3.5 <NA>
##
    setosa
                 34
                       16
  versicolor 50
##
  virginica 47
                            0
##
   <NA>
                            0
```

An NA column is always included, even if there is no missing values

The useNA argument is specific to table

Arthur Allignol

Missing values with table

The useNA and exclude Arguments

The exclude argument

- By default, exclude = c(NA, NaN)
- E.g., exclude = NULL to include missing values

```
with(iris, table(Species, sepal_widthNA, exclude = NULL))
##
            sepal widthNA
  Species <= 3.5 > 3.5 <NA>
                      16
##
    setosa
                 32
  versicolor 48
##
  virginica 45
##
    <NA>
## equivalent to useNA = "always"
```

Missing values with table

The useNA and exclude Arguments

```
with(iris, table(Species, sepal_widthNA, exclude = "setosa"))
##
     sepal_widthNA
## Species <= 3.5 > 3.5
## versicolor 48
##
 virginica 45
with(iris, table(Species, sepal_widthNA, exclude = "setosa", useNA = "ifar
##
     sepal widthNA
## Species <= 3.5 > 3.5 <NA>
##
  versicolor 48
## virginica 45 3
```

- exclude = NULL is equivalent to useNA="always"
- exclude = "somethingElse" only exclude level "somethingElse" from the factor

Road Map for Aggregation

Three things to consider

- 1 How are the groups that divide the data defined?
- What is the nature of the data to be operated on?
- What is the desired end result

sapply or lapply are the appropriate functions

- lapply always returns a list
- sapply tries to "simplify" the output

sapply or lapply are the appropriate functions

- lapply always returns a list
- sapply tries to "simplify" the output

```
mvList <- list()
for (i in 1:4) {
   myList[[i]] \leftarrow rnorm(n = 3 * i)
myList
## [[1]]
  [1] 0.3429579 -0.3193258 0.7808710
## [[2]]
  [1] 1.16866312 0.01419804 0.45813283 -0.43180622 0.34224696 -1.30745260
## [[3]]
  [1] 1.4005004 -1.7575754 -0.2415508 1.0928182 -1.1926425 1.8645074
  [7] -0.3128976 0.8755070 -1.9690762
  [[4]]
       1.1415283 -1.1269112 -2.2914106 0.9855559 -1.4959317
        0.5160894 -0.5481570 -0.6098171 -1.4302086 1.2207910 -1.7708338
```

Arthur Allignol Data Manipulation 72

73

Groups Defined as Lists Elements

Both for lapply and sapply, the first argument is a list, the second argument is a function

Third, fourth, ... arguments are further arguments for the function that is applied

```
lapply(myList, length)
    \lceil \lceil 1 \rceil \rceil
    [1] 3
    [[2]]
##
    [1] 6
##
    [[3]]
    [1] 9
##
    [[4]]
    [1] 12
```

```
sapply(myList, length)
## [1] 3 6 9 12
```

Arthur Allignol Data Manipulation

```
myList[[2]][c(3, 5)] <- NA
sapply(myList, mean)

## [1] 0.26816768 NA -0.02671217 -0.26099896
```

```
sapply(myList, mean, na.rm = TRUE)
## [1] 0.26816768 -0.13909942 -0.02671217 -0.26099896
```

```
sapply(myList, quantile, probs = c(0.25, 0.75), na.rm = TRUE)

## [,1] [,2] [,3] [,4]

## 25% 0.0118160 -0.6507178 -1.192642 -1.446639

## 75% 0.5619144 0.3028143 1.092818 1.024549
```

```
## A user defined function
lapply(myList, function(x) {
    data.frame(
        Mean = mean(x, na.rm = TRUE),
        SD = sd(x, na.rm = TRUE),
        Min = min(x, na.rm = TRUE),
        Max = max(x, na.rm = TRUE))
## [[1]]
          Mean
                      SD
                                 Min
                                          Max
  1 0.2681677 0.5538984 -0.3193258 0.780871
##
## [[2]]
           Mean
                      SD
                                Min
                                         Max
## 1 -0.1390994 1.030286 -1.307453 1.168663
##
## [[3]]
##
            Mean
                        SD
                                 Min
                                          Max
  1 -0.02671217 1.411432 -1.969076 1.864507
##
## [[4]]
          Mean
                     SD
                               Min
                                        Max
##
## 1 -0.260999 1.446369 -2.291411 2.277318
```

```
## A user defined function
sapply(myList, function(x) {
    data.frame(
       Mean = mean(x, na.rm = TRUE),
       SD = sd(x, na.rm = TRUE),
       Min = min(x, na.rm = TRUE),
       Max = max(x, na.rm = TRUE))
})
##
       [,1] \qquad [,2] \qquad [,3]
                                  [,4]
  Mean 0.2681677 -0.1390994 -0.02671217 -0.260999
   SD
       0.5538984 1.030286
                             1.411432
                                        1,446369
  Min -0.3193258 -1.307453
                             -1.969076 -2.291411
## Max
       0.780871 1.168663
                             1.864507
                                        2,277318
```

```
mySummary <- function(x, na.rm = FALSE) {</pre>
   data.frame(
       Mean = mean(x, na.rm = na.rm),
       SD = sd(x, na.rm = na.rm),
       Min = min(x, na.rm = na.rm),
       Max = max(x, na.rm = na.rm))
sapply(myList, mySummary, na.rm = TRUE)
      [,1] [,2] [,3] [,4]
##
## Mean 0.2681677 -0.1390994 -0.02671217 -0.260999
  SD 0.5538984 1.030286 1.411432 1.446369
## Min -0.3193258 -1.307453 -1.969076 -2.291411
## Max 0.780871 1.168663 1.864507 2.277318
```

sapply or lapply can be used as alternative to loops. This way you don't have to take care too much of the form of the output

```
## check type 1 error of the t-test
check_level <- function(i, n = 100) {</pre>
    a <- rnorm(n)
    b \leftarrow rnorm(n)
    tt <- t.test(a, b)
    tt$p.value < 0.05
```

```
nsimul <- 1000
res <- sapply(1:nsimul, check_level, n = 100)
sum(res) / nsimul
## [1] 0.047
```

For this kind of simple repetitive tasks, the replicate function can also be used

```
res2 <- replicate(nsimul, t.test(rnorm(10), rnorm(10))$p.value < 0.05)
sum(res2) / nsimul
## [1] 0.044</pre>
```

- First argument is the number of replication
- Second argument is an expression, i.e., a piece of R language and not a function

Data Aggregation

Groups Defined by Rows or Columns of a Matrix/Array

In this case, the apply function is the logical choice.

The apply function requires three arguments

- the array/matrix on which to operate
- An index telling apply which dimension to operate on (1 on rows; 2 on columns, c(1, 2) on both
- The function to use
- Optionally further arguments to be used by the function that we want to apply

```
apply(iris[, 1:4], 2, mean)
   Sepal.Length
                 Sepal.Width Petal.Length
                                            Petal.Width
       5.843333
                     3.057333
                                  3.758000
                                                1.199333
##
```

Groups Defined by Rows or Columns of a Matrix/Array

```
apply(iris[, 1:4], 2, mySummary)
   $Sepal.Length
         Mean
                      SD Min Max
   1 5.843333 0.8280661 4.3 7.9
##
   $Sepal.Width
##
         Mean
                     SD Min Max
   1 3.057333 0.4358663
                           2 4.4
##
   $Petal.Length
      Mean
                  SD Min Max
   1 3.758 1.765298
##
   SPetal.Width
##
         Mean
                      SD Min Max
   1 1.199333 0.7622377 0.1 2.5
```

Groups Defined by Rows or Columns of a Matrix/Array

rowSums, colSums, rowMeans, colMeans

These are specialised functions that are potentially way faster than apply (which is a general function)

```
colMeans(iris[, 1:4], na.rm = TRUE)
   Sepal.Length Sepal.Width Petal.Length
                                           Petal.Width
       5.843333
                    3.057333
                                 3.758000
                                               1.199333
##
```

```
colSums(iris[, 1:4] > 2, na.rm = TRUE)
   Sepal.Length Sepal.Width Petal.Length Petal.Width
##
            150
                         149
                                       100
                                                     23
```

A very common operation

A lot of choice in base R + a couple of additional packages that facilitates these operations

- aggregate
- tapply, by
- split-apply-combine strategy
 - split, lapply, do.call
 - plyr, dplyr package

aggregate

A natural choice for data summaries of several variables

- First argument: A formula
 - LHS: Variables to "summarise"
 - RHS: Grouping variables
- Second argument: A data frame
- Third argument: Function to apply
- …; Further arguments for FUN

```
aggregate(cbind(Sepal.Length, Sepal.Width) ~ Species, iris, mean)

## Species Sepal.Length Sepal.Width
## 1 setosa 5.006 3.428
## 2 versicolor 5.936 2.770
## 3 virginica 6.588 2.974
```


Data Aggregation

aggregate

```
iris$Petal.Length.f <- factor(iris$Petal.Length > 4.8,
                            levels = c(FALSE, TRUE),
                            labels = c("Small petals", "Big petals"))
aggregate(cbind(Sepal.Length, Sepal.Width) ~ Species + Petal.Length.f,
         data = iris, FUN = mean)
##
       Species Petal.Length.f Sepal.Length Sepal.Width
        setosa
                Small petals 5.006000 3.428000
##
  2 versicolor
                Small petals 5.889130 2.765217
                                         2.766667
##
  3 virginica
                Small petals 5.700000
##
  4 versicolor
                  Big petals 6.475000 2.825000
                  Big petals
  5 virginica
                                6.644681
                                           2.987234
```

Returns an array with as many dimensions as there were vectors that defined the groups, but can only process a single vector

```
with(iris, tapply(X = Sepal.Length,
                 INDEX = list(Species, Petal.Length.f),
                 FUN = mean))
             Small petals Big petals
##
                  5,00600
  setosa
  versicolor 5.88913 6.475000
  virginica
             5.70000 6.644681
```

tapply

Also works if FUN does not return a scalar

```
with(iris, tapply(X = Sepal.Length,
                   INDEX = Species,
                   FUN = range)
   $setosa
   [1] 4.3 5.8
##
   Sversicolor
   [1] 4.9 7.0
##
   $virginica
   [1] 4.9 7.9
```

In this case, a matrix of lists is returned...

tapply

But individual elements can still be accessed

```
tt[["setosa", "Small petals"]]
## [1] 4.3 5.8
```

```
str(tt)
## list of 6
  $ : num [1:2] 4.3 5.8
## $ : num [1:2] 4.9 7
## $ : num [1:2] 4.9 6.2
## $ : NULL
## $ : num [1:2] 6 6.9
## $ : num [1:2] 5.6 7.9
   - attr(*, "dim")= int [1:2] 3 2
##
    - attr(*, "dimnames")=List of 2
##
##
   ..$: chr [1:3] "setosa" "versicolor" "virginica"
    ..$: chr [1:2] "Small petals" "Big petals"
##
```


Arthur Allignol Data Manipulation 89

- by is a version of tapply oriented towards data frames
- First argument is a data frame, others are as in tapply
- by returns a list

```
## Don't work, because iris is a data frame
bv(iris[, 1:4], iris$Species, mean)
## Warning in mean.default(data[x, , drop = FALSE], ...): argument is not numeric or logical:
returning NA
## Warning in mean.default(data[x, , drop = FALSE], ...): argument is not numeric or logical:
returning NA
## Warning in mean.default(data[x, , drop = FALSE], ...): argument is not numeric or logical:
returning NA
## iris$Species: setosa
  [1] NA
  iris$Species: versicolor
## [1] NA
## iris$Species: virginica
## [1] NA
```

```
(ex_by <- by(iris[, 1:4], iris[, "Species"], colMeans))</pre>
  iris[, "Species"]: setosa
  Sepal.Length Sepal.Width Petal.Length Petal.Width
                 3.428
                            1,462
##
         5.006
                                             0.246
  iris[, "Species"]: versicolor
  Sepal.Length Sepal.Width Petal.Length Petal.Width
         5.936 2.770 4.260
##
##
  iris[, "Species"]: virginica
  Sepal.Length Sepal.Width Petal.Length Petal.Width
##
         6.588
                2.974
                            5.552
                                             2.026
```

```
do.call(rbind, ex_by)
##
              Sepal.Length Sepal.Width Petal.Length Petal.Width
   setosa
                      5.006
                                  3,428
                                                1.462
                                                             0.246
   versicolor
                      5.936
                                  2.770
                                                4.260
                                                             1.326
  virginica
                      6.588
                                  2.974
                                                5.552
                                                             2.026
```

- do.call takes a list of arguments (second argument)
- and prepares a call to a function (first argument), using the list elements as if they had been passed to the function as individual arguments

Term coined by Hadley Wickham (author of the **ggplot2**, **plyr**, **reshape**, **dplyr**, ..., packages)

Split Divide the problem into smaller pieces

Apply Work on each pieces independently

Combine Recombine the pieces

A common problem for both programming and data analysis; many implementations

- In base R: split(), *apply(), do.call()
- R-packages: plyr, doBy, dplyr, data.table (to some extent)

94

Split-Apply-Combine

Base R

Split by species

```
s_iris <- split(iris, iris$Species)
## s_iris is a list with number of items
## equal to the number of levels of iris$Species
length(s_iris) == length(levels(iris$Species))
## [1] TRUE</pre>
```

Apply a function to each item of the list

```
s_means <- lapply(s_iris, function(x) colMeans(x[1:4]))
s_means[[1]]

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.006 3.428 1.462 0.246</pre>
```

Combine

```
(res <- do.call(rbind, s_means))</pre>
              Sepal.Length Sepal.Width Petal.Length Petal.Width
##
## setosa
                     5.006
                                  3.428
                                               1.462
                                                           0.246
## versicolor
                     5.936
                                 2.770
                                              4.260
                                                           1.326
## virginica
                    6.588
                                 2.974
                                               5.552
                                                           2.026
```


Base R

```
myLM <- function(x) {
    temp <- lm(Sepal.Length ~ Petal.Length, x)
    summary(temp)$coefficients
(res <- lapply(split(iris, iris$Species), myLM))</pre>
## $setosa
##
                Estimate Std. Error t value
                                                   Pr(>|t|)
  (Intercept) 4.2131682 0.4155888 10.137830 1.614927e-13
## Petal.Length 0.5422926 0.2823153 1.920876 6.069778e-02
##
## Sversicolor
                Estimate Std. Error t value
##
                                                Pr(>|t|)
  (Intercept) 2.407523 0.4462583 5.394909 2.075294e-06
## Petal.Length 0.828281 0.1041364 7.953806 2.586190e-10
##
## $virginica
##
                 Estimate Std. Error t value
                                                   Pr(>|t|)
## (Intercept) 1.0596591 0.46676645 2.270213 2.772289e-02
## Petal.Length 0.9957386 0.08366764 11.901120 6.297786e-16
```

The plyr Package

The *apply functions in base R implement the split-apply-combine strategy, but are inconsistent

- apply() input arrays; split by row and/or columns; output array
- lapply() input list or vector; output list
- sapply() input list or vector; simplify to vector
- tapply input data.frame; output depends
- rapply(), vapply(), mapply()

The **plyr** Package

The *apply functions in base R implement the split-apply-combine strategy, but are inconsistent

- apply() input arrays; split by row and/or columns; output array
- lapply() input list or vector; output list
- sapply() input list or vector; simplify to vector
- tapply input data.frame; output depends
- rapply(), vapply(), mapply()

```
plyr brings some consistency: **ply()
```

```
first * Input type (a array, d data frame, l list)
```

second * Output type (a array, d data frame, l list, _ discard)


```
plyr
a*ply()
```

```
y <- a*ply(.data, .margins., .fun, ...)

.data An array
.margins Subscripts which the function gets applied over
.fun Function to apply to each piece

Returns an array (*=a), a data.frame (*=d), a list (*=l)
```

l*ply()

```
y <- l*ply(.data, .fun, ...)

.data An list

.fun Function to apply to each item of the list

Returns an array (*=a), a data.frame (*=d), a list (*=l)
```

```
plyr
d*ply()
```

```
y <- d*ply(.data, .variables, .fun, ...)</pre>
       .data A data frame
  .variables Variables defining the groups
        .fun Function to apply to each group
Returns an array (*=a), a data.frame (*=d), a list (*=1)
```

plyr d*ply()

```
(res <- ddply(iris, "Species", myLM))</pre>
##
       Species Estimate Std. Error
                                       t value Pr(>|t|)
##
        setosa 4.2131682 0.41558877 10.137830 1.614927e-13
##
         setosa 0.5422926 0.28231526 1.920876 6.069778e-02
   3 versicolor 2.4075231 0.44625834
                                      5.394909 2.075294e-06
##
   4 versicolor 0.8282810 0.10413643 7.953806 2.586190e-10
##
     virginica 1.0596591 0.46676645 2.270213 2.772289e-02
##
     virginica 0.9957386 0.08366764 11.901120 6.297786e-16
```

plyr d*ply()

The only problem with **plyr** is that it is sometimes slow

The **dplyr** package

The **dplyr** package proposes a "grammar of data manipulation", i.e., it implements "verbs" useful for data manipulation.

```
select column subset (select variables)
filter row subset (⇔ subset in base R)
mutate add new/modify rows
summarise summary statistics
arrange re-order the rows
do arbitrary action
```

- dplyr supports data.frames, data.tables (see later) as well as data bases
- Operations can be chained using a pipe operator

The **dplyr** package

Compute the mean sepal width by species for flower whose petal length is longer than 4.8

```
unloadNamespace("plyr") # conflict with dplyr
## Error in unloadNamespace("plyr"):
                                      namespace 'plyr' is imported by
'reshape2' so cannot be unloaded
require(dplyr)
iris %>% group_by(Species) %>% filter(Petal.Length > 4.8) %>%
  summarise(mean width = mean(Petal.Width))
  Source: local data frame [2 x 2]
##
       Species mean width
   1 versicolor 1.575000
  2 virginica 2.042553
```

Data Aggregation

Data Aggregation

103

The **dplyr** package

Compute a linear model per species and petal length and summarise the results

```
iris %>% mutate(Petal.Length.f = factor(iris$Petal.Length > 4.8,
               levels = c(FALSE, TRUE),
               labels = c("Small petals", "Big petals"))) %>%
 group_by(Species, Petal.Length.f) %>%
 do(mod = summary(lm(Sepal.Length ~ Petal.Length, data = .))$coefficients) %>%
 do(data.frame(
        Species = .$Species.
        Petal.Length.f = .$Petal.Length.f,
        var = rownames(.$mod),
        coef = .$mod[, 1],
        se = .\$mod[, 2],
        p = format.pval(.$mod[, 4], eps = 10^(-3), digits = 2)))
## Warning in rbind all(out[[1]]): Unequal factor levels: coercing to character
## Source: local data frame [10 x 6]
## Groups: <by row>
##
        Species Petal.Length.f
##
                                       var
                                                  coef
                                                                se
## 1
        setosa
                  Small petals (Intercept) 4.2131682 0.41558877 < 0.001
## 2
         setosa
                  Small petals Petal.Length 0.5422926 0.28231526 0.061
## 3 versicolor
                  Small petals (Intercept) 2.2844372 0.48523067 < 0.001
                  Small petals Petal.Length 0.8587048 0.11498472 < 0.001
## 4 versicolor
## 5 versicolor
                    Big petals (Intercept) 19.5909091 11.55006708 0.23
## 6 versicolor
                    Big petals Petal.Length -2.6363636 2.32129915 0.37
     virginica
## 7
                  Small petals (Intercept) -13.1000000 2.71477439 0.130
```

The **data.table** package enhances the base data.frame. The package offers (extremely) fast

- subset
- grouping
- update
- · joints (merging)

A data.table inherits from data.frame, i.e., it is compatible with R functions and packages that only accept data.frame.

The general syntax is

```
dt[i, j, by]
```

- i permits to select rows (A bit like subset)
- j permits to update/create columns. Extremely flexible (maybe too much?)
- by permits to "group by"

Additionally, data.tables can be keyed by one or more variables, leading to

- ordered data
- faster merging by keyed variables

Data Aggregation

106

The **data.table** package

Subset rows in i

```
require(data.table)
(dt_iris <- data.table(iris, key = "Species"))</pre>
##
        Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                                Species
##
                  5.1
                              3.5
                                                         0.2
                                                                 setosa
     1:
                                            1.4
    2:
                              3.0
                                                         0.2
##
                  4.9
                                            1.4
                                                                setosa
##
   3:
                 4.7
                              3.2
                                            1.3
                                                         0.2
                                                                setosa
##
    4:
                 4.6
                              3.1
                                            1.5
                                                         0.2
                                                                setosa
##
    5:
                  5.0
                              3.6
                                            1.4
                                                         0.2
                                                                 setosa
##
                                            5.2
   146:
                 6.7
                              3.0
                                                         2.3 virginica
##
   147:
                 6.3
                              2.5
                                            5.0
                                                         1.9 virginica
                                                         2.0 virginica
   148:
                 6.5
                              3.0
                                            5.2
   149:
                  6.2
                              3.4
                                            5.4
                                                         2.3 virginica
##
   150:
                  5.9
                              3.0
                                            5.1
                                                         1.8 virginica
##
        sepal_width sepal_widthNA Petal.Length.f
                                      Small petals
##
     1:
             <= 3.5
                                NA
##
    2:
             <= 3.5
                            <= 3.5
                                      Small petals
             <= 3.5
                            <= 3.5
                                      Small petals
##
##
    4:
             <= 3.5
                            <= 3.5
                                      Small petals
                                      Small petals
##
     5:
               > 3.5
                             > 3.5
```

Data Manipulation Arthur Allignol

Subset rows in i

```
dt_iris[Species == "versicolor" & Petal.Length > 4.8]
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
                                                   1.5 versicolor
              6.9
                          3.1
                                       4.9
                                                   1.5 versicolor
## 2:
              6.3
                          2.5
                                       4.9
  3:
              6.7
                          3.0
                                       5.0
                                                   1.7 versicolor
              6.0
                          2.7
                                        5.1
                                                   1.6 versicolor
##
      sepal_width sepal_widthNA Petal.Length.f
                                   Big petals
          <= 3.5
                    <= 3.5
## 2:
          <= 3.5
                       <= 3.5
                                   Big petals
## 3:
         <= 3.5
                       <= 3.5
                                   Big petals
## 4:
          <= 3.5
                       <= 3.5
                                    Big petals
```

Select columns in j

```
dt_iris[1:3, Species]
## [1] setosa setosa setosa
## Levels: setosa versicolor virginica
dt_iris[1:3, .(Species, Petal.Length)]
     Species Petal.Length
##
## 1: setosa
                 1.4
                   1.4
## 2: setosa
## 3: setosa
                  1.3
dt_iris[Species == "versicolor" & Petal.Length > 4.8,
       .(Species, Petal.Length)]
  Species Petal.Length
## 1: versicolor
                        4.9
## 2: versicolor
                4.9
## 3: versicolor
                        5.0
## 4: versicolor
                        5.1
```

Arthur Allignol

Compute in j: As long as j-expressions returns a list, each element of the list will be converted to a column

```
dt_iris[, mean(Petal.Length)]
## [1] 3.758

dt_iris[Species == "versicolor", mean(Petal.Length)]
## [1] 4.26
```

Data Aggregation

```
dt_iris[Species == "versicolor", .(mean = mean(Petal.Length),
        sd = sd(Petal.Length))]
     mean sd
## 1: 4.26 0.469911
## With a use defined function
myFun <- function(x) {</pre>
   list(mean = mean(x),
         sd = sd(x)
dt_iris[Species == "versicolor", myFun(Petal.Length)]
##
     mean sd
## 1: 4.26 0.469911
```

Special symbol . N

[1] 4

Arthur Allignol

Group by using by

```
dt_iris[, .N, by = .(Species, Petal.Length.f)]
## Species Petal.Length.f N
    setosa Small petals 50
## 2: versicolor Small petals 46
## 3: versicolor Big petals 4
## 4: virginica Big petals 47
## 5: virginica Small petals 3
dt_iris[, myFun(Sepal.Length), by = .(Species, Petal.Length.f)]
 Species Petal.Length.f mean sd
##
## 1:
     setosa Small petals 5.006000 0.3524897
  2: versicolor Small petals 5.889130 0.5012111
## 3: versicolor Big petals 6.475000 0.4031129
## 4: virginica Big petals 6.644681 0.5955664
## 5: virginica
                Small petals 5.700000 0.7000000
```

Reorder the last output by Species and Petal. Length.f

```
dt_iris[, myFun(Sepal.Length), by = .(Species, Petal.Length.f)]
##
      Species Petal.Length.f mean
                                       sd
        setosa Small petals 5.006000 0.3524897
## 3: versicolor Big petals 6.475000 0.4031129
## 4: virginica Big petals 6.644681 0.5955664
## 5: virginica Small petals 5.700000 0.7000000
(setkeyv(tmp, c("Species", "Petal.Length.f")))
## Error in is.data.table(x): object 'tmp' not found
```

Chaining:

```
my lm <- function(y, x) {
   mod <- summary(lm(y ~ x))$coefficients
   list(var = rownames(mod),
        coef = mod[, 1],
        se = mod[, 2],
        p = format.pval(mod[, 4], eps = 10^(-3), digits = 2))
dt_iris[, Petal.Length.f := factor(Petal.Length > 4.8,
         levels = c(FALSE, TRUE),
         labels = c("Small petals", "Big petals"))
       ][, my_lm(Sepal.Length, Petal.Length),
         bv = .(Species, Petal.Length.f)
         [order(Species, Petal.Length.f)]
      Species Petal.Length.f
                                         coef
                                      var
                                                             se
       setosa
                  Small petals (Intercept) 4.2131682 0.41558877 < 0.001
##
   1:
##
          setosa Small petals
                                      x 0.5422926 0.28231526 0.061
   3: versicolor Small petals (Intercept) 2.2844372 0.48523067 <0.001
                                      x 0.8587048 0.11498472 <0.001
##
   4: versicolor
                  Small petals
                    Big petals (Intercept) 19.5909091 11.55006708 0.23
   5: versicolor
   6: versicolor
                    Big petals
                                      x -2.6363636 2.32129915 0.37
##
   7: virginica
                  Small petals (Intercept) -13.1000000 2.71477439 0.130
##
                  Small petals
   8: virginica
                               x 4.0000000 0.57735027
                                                                 0.091
   9:
      virginica
                    Big petals (Intercept) 1.1908726 0.49934706 0.021
## 10: virginica
                    Big petals
                                x 0.9727855 0.08869172 <0.001
```

Arthur Allignol

Your Turn

Other example (see dplyr examples)?

Consider WM_teams_2014.csv data set that contains information on each player of the World Cup 2014, e.g., age, club, country, caps (number of plays for the national team)

- 1 Find the three oldest and youngest players for each country
- 2 Create a data set with the mean (with 95% confidence interval), median, 25% and 75% percentile of the players' age stratified on country and position
- 3 Create a data set containing the clubs, number of players in each club that participate in the world cup. The data set should be ordered from highest to lowest