Definition

A set of vectors $\{v_1, \ldots, v_k\}$ in \mathbb{R}^n is an *orthogonal set* if each pair each pair of vectors in this set is orthogonal, i.e.

$$\mathbf{v}_i \cdot \mathbf{v}_j = 0$$

for all $i \neq j$.

Example.

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ is an orthogonal set in } \mathbb{R}^3.$$

Example.

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-5\\3 \end{bmatrix} \right\} \text{ is another orthogonal set in } \mathbb{R}^3.$$

Proposition

If $\{v_1, \ldots, v_k\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^n then this set is linearly independent.

Recall: Any linearly independent set of n vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Corollary

If $\{v_1, \ldots, v_n\}$ is an orthogonal set of n non-zero vectors in \mathbb{R}^n then this set is a basis of \mathbb{R}^n .

Definition

If V is a subspace of \mathbb{R}^n then we say that a set $\{\mathbf{v}_1, \dots \mathbf{v}_k\}$ is an *orthogonal basis* of V if

- 1) $\{v_1, \dots v_k\}$ is a basis of V and
- 2) $\{v_1, \dots v_k\}$ is an orthogonal set.

Recall. If $\mathcal{B} = \{v_1, \dots v_k\}$ is a basis of a vector space V and $\mathbf{w} \in V$ then the coordinate vector of \mathbf{w} relative to \mathcal{B} is the vector

$$\left[\begin{array}{c}\mathbf{w}\end{array}\right]_{\mathcal{B}} = \left[\begin{array}{c}c_1\\ \vdots\\ c_k\end{array}\right]$$

where c_1, \ldots, c_k are scalars such that $c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k = \mathbf{w}$.

Propostion

If $\mathcal{B} = \{\mathbf{v}_1, \dots \mathbf{v}_k\}$ is an orthogonal basis of V and $\mathbf{w} \in V$ then

$$\left[\begin{array}{c}\mathbf{w}\end{array}\right]_{\mathcal{B}} = \left[\begin{array}{c}c_1\\\vdots\\c_k\end{array}\right]$$

where
$$c_i = \frac{\mathbf{w} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i} = \frac{\mathbf{w} \cdot \mathbf{v}_i}{||\mathbf{v}_i||^2}$$

Example. Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-5\\3 \end{bmatrix} \right\}, \quad \mathbf{w} = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$$

The set $\mathcal B$ is an orthogonal basis of $\mathbb R^3$. Compute $[\mathbf w]_{\mathcal B}$.

Theorem (Gram-Schmidt Process)

Let $\{v_1, \ldots, v_k\}$ be a basis of V. Define vectors $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ as follows:

$$\mathbf{w}_1 = \mathbf{v}_1$$

$$\mathbf{w}_2 = \mathbf{v}_2 - \left(\frac{\mathbf{w}_1 \cdot \mathbf{v}_2}{\mathbf{w}_1 \cdot \mathbf{w}_1}\right) \mathbf{w}_1$$

$$\mathbf{w}_3 = \mathbf{v}_3 - \left(\frac{\mathbf{w}_1 \cdot \mathbf{v}_3}{\mathbf{w}_1 \cdot \mathbf{w}_1}\right) \mathbf{w}_1 - \left(\frac{\mathbf{w}_2 \cdot \mathbf{v}_3}{\mathbf{w}_2 \cdot \mathbf{w}_2}\right) \mathbf{w}_2$$

...

$$\mathbf{w}_k = \mathbf{v}_k - \left(\frac{\mathbf{w}_1 \cdot \mathbf{v}_k}{\mathbf{w}_1 \cdot \mathbf{w}_1}\right) \mathbf{w}_1 - \left(\frac{\mathbf{w}_2 \cdot \mathbf{v}_k}{\mathbf{w}_2 \cdot \mathbf{w}_2}\right) \mathbf{w}_2 - \ldots - \left(\frac{\mathbf{w}_{k-1} \cdot \mathbf{v}_k}{\mathbf{w}_{k-1} \cdot \mathbf{w}_{k-1}}\right) \mathbf{w}_{k-1}$$

Then the set $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is an orthogonal basis of V.

Example. In \mathbb{R}^4 take

$$\mathbf{v}_1 = \begin{bmatrix} 2\\1\\3\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 7\\4\\3\\-3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 5\\7\\7\\8 \end{bmatrix}$$

The set $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of some subspace $V \subseteq \mathbb{R}^4$. Find an orthogonal basis of V.

Definition

An orthogonal basis $\mathcal{B} = \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ of V is called an *orthonormal basis* if $||\mathbf{w}_i|| = 1$ for $i = 1, \dots, k$.

Propostion

If $\mathcal{B} = \{v_1, \dots v_k\}$ is an orthonormal basis of V and $\mathbf{w} \in V$ then

$$\left[\begin{array}{c}\mathbf{w}\end{array}\right]_{\mathcal{B}} = \left[\begin{array}{c}c_1\\ \vdots\\ c_k\end{array}\right]$$

where $c_i = \mathbf{w} \cdot \mathbf{v}_i$.

Note. If $\mathcal{B} = \{v_1, \dots v_k\}$ is an orthogonal basis of V then

$$C = \left\{ \frac{\mathbf{v}_1}{||\mathbf{v}_1||}, \dots, \frac{\mathbf{v}_k}{||\mathbf{v}_k||} \right\}$$

is an orthonormal basis of V.