ÁLGEBRA LINEAR ALGORÍTMICA – UFRJ – 2020.1

ESTUDO DIRIGIDO 4

Questões sobre os temas da Semana 7

Questão 1. Use o algoritmo de Gram-Schimdt para achar bases ortonormais para os subespaços dados abaixo:

(a)
$$\{(-2, -8, 0, 2), (-2, -9, 9, 0), (4, 15, 9, -6)\}$$
 em \mathbb{R}^4 ;

(b)
$$\{(3,-1,-4,2),(3,-2,-1,0),(-6,1,11,-7)\}\ em\ \mathbb{R}^4$$
.

Questão 2. O objetivo deste exercício é completar o conjunto

$$C = \left\{ \frac{1}{2}(1, 1, 1, 1), \frac{1}{\sqrt{6}}(2, -1, 0, -1) \right\}$$

para uma base ortonormal do \mathbb{R}^4 . Para isso:

- (a) Complete C para uma base β do \mathbb{R}^4 .
- (b) Aplique o algoritmo de Gram-Schimdt a β .
- (c) Este método funcionaria para qualquer conjunto C de dois vetores do \mathbb{R}^4 ? Por quê?

Questão 3. Determine todos os valores para a, b e c para os quais a matriz

$$A = \begin{bmatrix} a & 1/\sqrt{2} & 0 \\ b & c & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

é ortogonal.

Questão 4. Sejam $u, v \in \mathbb{R}^n$ dois vetores cujas normas são iguais. Use as propriedades do produto interno para provar que u + v tem que ser ortogonal a u - v.

Date: 1 de fevereiro de 2021.

Questões sobre os temas da Semana 8

Questão 5. Determine dois subespaços complementares diferentes para

$$W = \langle (1, 2, 0, 4), (-1, 3, 2, 1), (2, -1, 0, 5) \rangle.$$

Questão 6. Sejam W_1 e W_2 os seguintes subespaços do \mathbb{R}^4 :

$$W_1 = \{(x, y, z, w) \mid x - y + z = x + y - z - w = 5x + y - z - 3w = 0\};$$

$$W_2 = \langle (1, -1, 0, 3), (4, -1, 0, 2), (-6, 4, -1, -9), (10, -5, 1, 11) \rangle$$

Determine:

- (a) uma base e a dimensão de W_1 ;
- (b) um sistema homogêneo cujo conjunto solução é W_2 ;
- (c) uma base e a dimensão de W_2^{\perp} ;
- (d) uma base e a dimensão de $W_1 + W_2$;
- (e) uma base e a dimensão de $W_1 \cap W_2$.

Questão 7. Considere os subespaços

$$U = \{(x, y, u, v, z) \mid x + y + u - z = x - y - 2u + z = 5x + y - u - z = 0\}$$

$$W = \langle (2, 1, 1, 0, 0), (-4, -2, 1, 1, 1), (0, 1, 3, 1, 0), (-6, -3, 0, 1, 1) \rangle$$

Determine:

- (a) uma base e a dimensão $U \cap W^{\perp}$;
- (b) uma base e a dimensão $U^{\perp} + W$.

Questão 8. Prove que se U e W são subespaços do \mathbb{R}^n tais que

a união de uma base de U com uma base de W é uma base do \mathbb{R}^n então $\mathbb{R}^n=U\oplus W$.

- Questão 9. Determine quais das afirmações abaixo são verdadeiras e quais são falsas. Você deve dar um contra-exemplo para as afirmações falsas e provar as verdadeiras.
 - (a) se $U \subset W$ são subespaços do \mathbb{R}^n e β é uma base de W, então alguns dos vetores de β geram U;
 - (b) se U e W são subespaços do \mathbb{R}^n tais que $\dim(U) < \dim(W)$, então $U \subset W$;
 - (c) se U é subespaço do \mathbb{R}^n e $v \notin U$, então v pertence a um complementar de U.