GEOG 491/891: Special Topics - Spatial Analysis in R

Week 02.01: Data structures and programmatic thinking

Dr. Bitterman

Today's schedule

- Open discussion
- Data structures
- Exercises

Anything to discuss? Questions?

Some handy dandy operations on vectors

First, create a vector

```
x <- seq(1:20) # what does this do? How would you know? # alterative method... seq is an "overloaded" function <- what does this mean? x <- seq(1, 20, 1)
```

Operations

```
sum(x)
mean(x)
median(x)
sd(x)
length(x)
```

Data types

Table 2.1 Data type, tests and conversion functions

Type	Test	Conversion
character	is.character	as.character
complex	is.complex	as.complex
double	is.double	as.double
expression	is.expression	as.expression
integer	is.integer	as.integer
list	is.list	as.list
logical	is.logical	as.logical
numeric	is.numeric	as.numeric
single	is.single	as.single
raw	is.raw	as.raw

Factors can be a pain

- What's a "factor" according to your book?
- What are some key properties of factors?
 - Ordering
 - Levels

Interrogating types

the typeof() function

```
typeof(8675309)
typeof(integer(8675309))

typeof(TRUE)

typeof("banana")

typeof(rep(1, 10))

typeof(list(1, 3, 4, "orange"))
```

Let's look more closely at data frames and tibbles

From the course GitHub page, get "ne_counties.csv" (it's in the data folder)

(https://github.com/pjbitterman/UNL_GEOG_491_891)

```
library(tidyverse) #get the helper functions

# read the data
mydf <- read_csv("./data/ne_counties.csv)

# look at it
mydf</pre>
```

What do you see?

The value of exploratory data analysis (EDA)

- When you first get new data, it's a good idea to look at it before starting work
- Many ways of doing so... like what?

```
summary(mydf) # what do you get?
# How many observations does your data have?
nrow(mydf)
# and attibutes?
ncol(mydf)
# an easier way to look at attributes
glimpse(mydf)
# access a single attribute
mydf$Total # Total population
summary(mydf$Total)
hist(mydf$Total)
```

Subsetting your data

• Often you need to filter your data such that only those observations meeting certain criteria are retained (or removed)

```
# requires dplyr/tidyverse
dplyr::filter(mydf, Total > 10000 & MedHousInc < 40000)</pre>
```

Another way to write that function

```
mydf %>% dplyr::filter(., Total > 10000 & MedHouseInc < 40000)
```

What's the %>% and how does it work?

The pipe (%>%)

- from magrittr package
- essentially says "take what's on the left and pass it to the right"

- R assumes you want to pipe to the first argument of the right-hand function, but...
- you can explicitly place the output of the pipe using a . on the right-hand side

```
mydf %>% dplyr::filter(., Total > 10000 & MedHouseInc < 40000)
```

But what's the point? (to the whiteboard!!!)

Writing your own function

syntax is a bit weird, so let's break it down

```
myfirstfunction <- function(x, y){
  x + y
}</pre>
```

then call the function (make sure it's in memory first)

```
myfirstfunction(4, 8)
```

If there's time...

- In small groups, figure out how you'd do the following:
- Write a function that takes two integers. If **both are even** or **both are odd**, the function returns **TRUE**. Otherwise, it returns **FALSE**

- Start with the algorithm, NOT the code
- Then try to write the function

A second exerice (pseudocode ONLY)

The problem:

- I've given you a raster file of Missisquoi Bay in Lake Champlain
- Each cell has a value corresponding to the concentration of cyanobacteria
 - -. I want you to tell me the area of the Bay (in m²) that correspond to the HIGH, MEDIUM, and LOW health risk categories from the World Health Organization

The big picture questions:

- 1. What do the algorithm(s) look like?
- 2. What other information do you need?

Bonus

• Algo. to measure distance from a harmful algal bloom (HAB) to an arbitray location

Review and next class

- Any questions?
- This week's readings/tasks:
 - Chapter 2 in textbook
 - Continue to review Hadley's book/site
 - Practice on your own