Decimo Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

30 de setembro de 2022

Sumário

1 Introdução

2	Difracao de Fraunhofer				
	2.1	Tabela de dados inicial			
	2.2	Analise Teorica			
	2.3	Tabela de dados extendida			
	2.4	Grafico de $\sin \theta$ vs $1/a$			
	2.5	Difracao de objeto microscopico .			
3	Redes de difracao				
	3.1	Sistema com rede de difracao conhe-			
		cida			
	3.2	Sistema utilizando CD como rede de			
		difracao			

4 Decomposicao espectral

1 Introdução

Neste relatório, vamos discutir difracao de fendas simples, redes de difracao, e decomposicao espectral.

Também discutiremos alguns circuitos retificadores com diodos.

Todos arquivos utilizados para criar este relatório, é o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

2 Difração de Fraunhofer

2.1 Tabela de dados inicial

Paquimetro	Primeiro Minimo
$(0.10 \pm 0.05) mm$	$(1.55 \pm 0.05) cm$
$(0.20 \pm 0.05) mm$	$(1.15 \pm 0.05) cm$
$(0.30 \pm 0.05) mm$	$(0.50 \pm 0.05) cm$
$(0.40 \pm 0.05) mm$	$(0.40 \pm 0.05) cm$
$(0.50 \pm 0.05) mm$	$(0.35 \pm 0.05) cm$

2.2 Analise Teorica

Para prosseguirmos precisamos lembrar das seguintes relacoes:

$$a * \sin \theta = m\lambda$$

$$m = 1$$

$$a * \sin \theta = \lambda$$

$$\sin \theta = \frac{\lambda}{a}$$
(1)

Que nos da uma relacao linear se consideramos ao inves de a, consideramos seu inverso $\gamma=1/a$.

$$\sin \theta = \lambda \gamma \tag{2}$$

2.3 Tabela de dados extendida

E seu percentual de desvio foi de 10% aproximadamente.

a	1/a	y	x	$\sin \theta$
$(0.10 \pm 0.05) mm$	$(10.0 \pm 2)mm^{-1}$	$(1.55 \pm 0.05) cm$	$(217 \pm 5)cm$	(0.0071 ± 0.0005)
$(0.20 \pm 0.05) mm$	$(5.0 \pm 2) mm^{-1}$	$(1.15 \pm 0.05) cm$	$(217 \pm 5)cm$	(0.0053 ± 0.0005)
$(0.30 \pm 0.05) mm$	$(3.3 \pm 2)mm^{-1}$	$(0.50 \pm 0.05) cm$	$(217 \pm 5)cm$	(0.0023 ± 0.0005)
$(0.40 \pm 0.05) mm$	$(2.5 \pm 2)mm^{-1}$	$(0.40 \pm 0.05) cm$	$(217 \pm 5)cm$	(0.0018 ± 0.0005)
$(0.50 \pm 0.05) mm$	$(2.0 \pm 2)mm^{-1}$	$(0.35 \pm 0.05) cm$	$(217 \pm 5)cm$	(0.0016 ± 0.0005)

2.4 Grafico de $\sin \theta$ vs 1/a

Podemos ver de fato, que como esperado obtemos uma relacao linear entre $\sin \theta$ e 1/a.

E o coeficiente angular da reta, encontrado foi de 717.4. Porem, com error na ordem de 100.

Logo podemos afirmar que o comprimento de onda encontrado foi de 700 ± 100 nm. Que esta dentro do esperado.

2.5 Difração de objeto microsco- 3 pico

Nos medimos uma abertura de 3.1cm ou seja. Nosso x e y sao os mesmos do caso da abertura de 0.1mm do paquimetro.

Logo, convenientemente pelo principio de Babinet podemos reutilizar todos dados que obtivemos para a abertura de 0.1mm do paquimero.

E obteremos os seguintes resultados:

$$a = (0.10 \pm 0.05) mm$$

$$\frac{1}{a} = (10.0 \pm 2)mm^{-1}$$

$$y = (1.55 \pm 0.05) cm$$

$$x = (217 \pm 5)cm$$

$$\sin \theta = (0.0071 \pm 0.0005)$$

$$\theta = (0.41 \pm 0.05) graus$$

Podemos tambem simplesmenet usar a relacao:

$$a = \frac{\lambda}{\sin \theta} \tag{4}$$

Que nos da: 0.09 ± 0.02 **mm**

Que esta dentro do esperado. Ja que a mesma abertura do laser tinha sido observada com o paquimetro aberto em 0.1mm.

3 Redes de difração

3.1 Sistema com rede de difracao conhecida

$$Y_1 = (7.15 \pm 0.05)cm \tag{5}$$

Com a aproximação $\theta_1 = Y_1/l = (0.358 \pm 0.007)rad$

Utilizando as seguintes relacoes:

$$d\sin(\theta) = m\lambda$$

$$f = \frac{1}{d}$$
(6)

Temos que $d = (1805 \pm 8)nm$ **e** $f = (554 \pm (3)) \frac{nm}{mm}$

O valor do fabricante foi de $540\frac{nm}{mm}$.

Entao a ordem do erro seria aproximadamente 2%.

3.2 Sistema utilizando CD como rede de difração

Temos que $l = 10.3 \pm 0.1 cm$ e $Y_1 = 5.2 \pm 0.1 cm$

Tirando das relacoes (6) temos:

$$d = 1404 \pm 5nm$$

$$f = 712 \pm 5 \frac{nm}{mm}$$
(7)

O cd tem 545 fendas por mm. E encontrei o valor de 712 fendas por mm. Logo o erro seria de aproximadamente 30%. 4 Decomposicao espectral