System Dynamics Exam 2

The FE reference book, a one-sided formula sheet, and MATLAB/Simulink may be used during this exam. Matlab/Simulink must be available to the student.

- 1. Solve the following for x(t).
 - (a) $5\dot{x} = 7t$ x(0) = 3
 - (b) $4\dot{x} = 3e^{-5t}$ x(0) = 4
 - (c) $7\ddot{x} = 4t$ x(0 = 3 $\dot{x}(0) = 5$
 - (d) $3\ddot{x} = 8e^{-4t}$ x(0) = 3 $\dot{x}(0) = 5$
- 2. Use Matlab to plot the step response of the following systems:
 - (a) $3\ddot{x} + 21\dot{x} + 30x = f(t)$
 - (b) $5\ddot{x} + 2\dot{x} + 65x = f(t)$
- 3. Write the state space equation matrices A, B, C, and D for the following systems:
 - (a) x_1 and x_2 are the outputs:

$$\dot{x}_1 = -5x_1 + 3x_2$$

$$\dot{x}_2 = x_1 - 4x_2 + 5u$$

(b) \dot{y} is the output:

$$2\frac{d^3y}{dt^3} + 5\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 7y = f(t)$$

(c) y(t) and $\dot{y}(t)$ are the outputs:

$$\frac{Y(s)}{F(s)} = \frac{6}{3s^3 + 63 + 10}$$

4. Create a Simulink model to solve for $\theta(t)$ and plot the solution for $0 < \theta < \pi/2$ given $\theta(0) = 0.1$ and $\dot{\theta}(0) = 0.0$ for the system defined by

$$25,400\ddot{\theta} = -17,500\cos(\theta) + \frac{626,000}{Q}\sin(1.33 + \theta)$$

where

$$Q = \sqrt{2020 + 1650\cos(1.33 + \theta)}$$