Chapter 6

Chapter 6

Multiple Linear Regression (solutions to exercises)

Contents

6	Mul	ltiple Linear Regression (solutions to exercises)	1
	6.1	Nitrate concentration	4
	6.2	Multiple linear regression model	7
	6.3	MLR simulation exercise	12

Import Python packages

```
# Import all needed python packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as stats
import statsmodels.formula.api as smf
import statsmodels.api as sm
```

6.1 Nitrate concentration

Exercise 6.1 Nitrate concentration

In order to analyze the effect of reducing nitrate loading in a Danish fjord, it was decided to formulate a linear model that describes the nitrate concentration in the fjord as a function of nitrate loading, it was further decided to correct for fresh water runoff. The resulting model was

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2), \tag{6-1}$$

where Y_i is the natural logarithm of nitrate concentration, $x_{1,i}$ is the natural logarithm of nitrate loading, and $x_{2,i}$ is the natural logarithm of fresh water run off.

- a) Which of the following statements are assumed fulfilled in the usual multiple linear regression model?
 - 1) $\varepsilon_i = 0$ for all i = 1, ..., n, and β_i follows a normal distribution
 - 2) $E[x_1] = E[x_2] = 0$ and $V[\varepsilon_i] = \beta_1^2$
 - 3) $E[\varepsilon_i] = 0$ and $V[\varepsilon_i] = \beta_1^2$
 - 4) ε_i is normally distributed with constant variance, and ε_i and ε_j are independent for $i \neq j$
 - 5) $\varepsilon_i = 0$ for all i = 1,...,n, and x_j follows a normal distribution for $j = \{1,2\}$

Solution

- 1) ε_i follows a normal distribution with expectation equal zero, but the realizations are not zero, and further β_j is deterministic and hence it does not follow a distribution ($\hat{\beta}_i$ does), hence 1) is not correct
- 2)- 3) There are no assumptions on the expectation of x_j and the variance of ε equal σ^2 , not β_1^2 hence 2) and 3) are not correct
 - 4) Is correct, this is the usual assumption about the errors
 - 5) Is incorrect since ε_j follow a normal distribution, further the are no distributional assumptions on x_j . In fact we assume that x_j is known

The parameters in the model were estimated in Python and the following results are available (slightly modified output from summary):

OLS Regression Results

=========				====		=======		=======	
Dep. Variab	У	R-sq	uared:			0.3438			
Model:			OLS	Adj.	R-squared:			0.3382	
No. Observa	tions:		240	240 F-statistic:				62.07	
Covariance :	nonro	bust	Prob (F-statistic):			2.2e-16			
=========	=======			====	=======	=======	======	======	
	coef	std err	t		P> t	[0.025	0.	975]	
Intercept	 -2.3650	0 0.222	 -10.	661	 <2e-16		*	*	
x1	0.476			720	3.25e-13		*	*	
x2	0.082			185	0.273		*	*	
A2							· 		

b) What are the parameter estimates for the model parameters ($\hat{\beta}_i$ and $\hat{\sigma}_{\beta_i}^2$) and how many degrees of freedom are there in the estimation?

Solution

The number of degrees of freedom is equal n - (p + 1), and since the number of observations is n = 240 and p = 2, we get df = 240 - (2 + 1) = 237. The parameters are given in the first column of the the first column of the summary table, i.e.

$$\hat{\beta}_0 = -2.365 \tag{6-2}$$

$$\hat{\beta}_1 = 0.476$$
 (6-3)

$$\hat{\beta}_2 = 0.083$$
 (6-4)

and the estimated standard errors for the parameters are given in the second column:

$$\hat{\sigma}_{\beta_0} = 0.222 \tag{6-5}$$

$$\hat{\sigma}_{\beta_1} = 0.062 \tag{6-6}$$

$$\hat{\sigma}_{\beta_2} = 0.070 \tag{6-7}$$

c) Calculate the usual 95% confidence intervals for the parameters (β_0 , β_1 , and β_2).

||| Solution

From Theorem 6.5 we know that the confidence intervals can be calculated by

$$\hat{\beta}_i \pm t_{1-\alpha/2} \, \hat{\sigma}_{\beta_i}$$

where $t_{1-\alpha/2}$ is based on 237 degrees of freedom, and with $\alpha = 0.05$, we get $t_{0.975} =$ 1.97. The standard errors for the estimates is the second column of the summary, and the confidence intervals become

$$\hat{\beta}_0 = -2.365 \pm 1.97 \cdot 0.222 \tag{6-8}$$

$$\hat{\beta}_1 = 0.467 \pm 1.97 \cdot 0.062 \tag{6-9}$$

$$\hat{\beta}_1 = 0.467 \pm 1.97 \cdot 0.062$$

$$\hat{\beta}_2 = 0.083 \pm 1.97 \cdot 0.070$$
(6-9)
(6-10)

d) On level $\alpha = 0.05$ which of the parameters are significantly different from 0, also find the *p*-values for the tests used for each of the parameters?

Solution

We can see directly from the confidence intervals above that β_0 and β_1 are significantly different from zero (the confidence intervals does not cover zero), while we cannot reject that $\beta_2 = 0$ (the confidence interval cover zero). The *p*-values we can see directly in the Python output: for β_0 is less than 10^{-16} and the *p*-value for β_1 is $3.25 \cdot 10^{-13}$, i.e. very strong evidence against the null hypothesis in both cases.

6.2 Multiple linear regression model

Exercise 6.2 Multiple linear regression model

The following measurements have been obtained in a study:

No.	1	2	3	4	5	6	7	8	9	10	11	12	13
y	1.45	1.93	0.81	0.61	1.55	0.95	0.45	1.14	0.74	0.98	1.41	0.81	0.89
x_1	0.58	0.86	0.29	0.20	0.56	0.28	0.08	0.41	0.22	0.35	0.59	0.22	0.26
x_2	0.71	0.13	0.79	0.20	0.56	0.92	0.01	0.60	0.70	0.73	0.13	0.96	0.27
No.	14	15	16	17	18	19	20	21	22	23	24	25	
y	0.68	1.39	1.53	0.91	1.49	1.38	1.73	1.11	1.68	0.66	0.69	1.98	
x_1	0.12	0.65	0.70	0.30	0.70	0.39	0.72	0.45	0.81	0.04	0.20	0.95	
x_2	0.21	0.88	0.30	0.15	0.09	0.17	0.25	0.30	0.32	0.82	0.98	0.00	

It is expected that the response variable y can be described by the independent variables x_1 and x_2 . This imply that the parameters of the following model should be estimated and tested

$$Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2).$$

a) Calculate the parameter estimates $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \text{ and } \hat{\sigma}^2)$, in addition find the usual 95% confidence intervals for β_0 , β_1 , and β_2 . You can copy the following lines to Python to load the data:

Solution

The question is answered by Python. Start by loading data into and and estimating the parameters in Python:

```
fit = smf.ols('y \sim x1 + x2', data=df).fit()
print(fit.summary(slim=True))
                 OLS Regression Results
______
                      y R-squared:
Dep. Variable:
                                              0.940
Model:
                     OLS Adj. R-squared:
                                              0.934
No. Observations:
                     25 F-statistic:
                                              172.0
Covariance Type: nonrobust Prob (F-statistic): 3.70e-14
coef std err
                       t
                              P>|t| [0.025
                                             0.975]
Intercept 0.4335 0.066 6.571 0.000 0.297
                                              0.570
        1.6530
                0.095
                      17.355
                              0.000
                                     1.455
                                             1.851
         0.0039 0.075 0.053 0.958
                                      -0.151
                                             0.159
______
# Residual standard deviation (error standard deviation estimate)
sigma = np.sqrt(fit.mse_resid) # fit.mse_resid or fit.scale
print(sigma)
0.11271746832914663
```

|| Solution

The parameter estimates are given in the first column, i.e.

$$\hat{\beta}_0 = 0.434,$$
 $\hat{\beta}_1 = 1.653,$
 $\hat{\beta}_2 = 0.0039,$

and the error variance estimate is $\hat{\sigma}^2 = 0.11^2$. The confidence intervals can be seen in the last two columns or calculated again in Python:

```
print(fit.conf_int(alpha=0.05))

0 1
Intercept 0.296707 0.570387
x1 1.455467 1.850520
x2 -0.151292 0.159182
```

b) Still using confidence level $\alpha = 0.05$ reduce the model if appropriate.

|| Solution

Since the confidence interval for β_2 cover zero (and the *p*-value is much larger than 0.05), the parameter should be removed from the model to get the simpler model

$$y_i = \beta_0 + \beta_1 x_1 + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2),$$

the parameter estimates in the simpler model are

```
fit = smf.ols('y \sim x1', data=df).fit()
print(fit.summary(slim=True))
                OLS Regression Results
                     y R-squared:
Dep. Variable:
                                            0.940
                OLS Adj. R-squared:
25 F-statistic:
Model:
                                            0.937
No. Observations:
                                           359.6
Covariance Type: nonrobust Prob (F-statistic): 1.54e-15
______
         coef std err t P>|t| [0.025 0.975]
______
Intercept 0.4361 0.044 9.913 0.000 0.345 0.527
        1.6512 0.087 18.963 0.000
                                    1.471
                                           1.831
```

and both parameters are now significant.

c) Carry out a residual analysis to check that the model assumptions are fulfilled.

Solution

We are interested in inspecting a q-q plot of the residuals and a plot of the residuals as a function of the fitted values

```
# Predicted values for the data
ypred = fit.predict(df)
# Prepare plot
fig, ax = plt.subplots(1,2)
# Q-Q plot
sm.qqplot(df['y']-ypred, line="q",a=1/2, ax=ax[0])
ax[0].set_title("Q-Q plot")
# Scatter plot of residuals vs. fitted values
ax[1].scatter(fit.fittedvalues, df['y']-ypred)
ax[1].set_xlabel("Fitted values")
ax[1].set_ylabel("Residuals")
ax[1].set_title("Residuals vs. Fitted values")
plt.tight_layout()
plt.show()
```


there are no strong evidence against the assumptions, the qq-plot is are a straight line and the are no obvious dependence between the residuals and the fitted values, and we conclude that the assumptions are fulfilled.

d) Make a plot of the fitted line and 95% confidence and prediction intervals of the line for $x_1 \in [0,1]$ (it is assumed that the model was reduced above).

Solution

```
x1_new = pd.DataFrame({'x1': np.linspace(0, 1, 100)})
prediction_summary = fit.get_prediction(x1_new).summary_frame(alpha=0.05)
plt.figure(figsize=(10, 6))
plt.plot(df['x1'], df['y'], 'o', label='Observed data')
plt.plot(x1_new, prediction_summary['mean'], 'r-', label='Fitted line')
plt.fill_between(x1_new['x1'],
                 prediction_summary['mean_ci_lower'],
                 prediction_summary['mean_ci_upper'],
                 color='red', alpha=0.2, label='95% Confidence
interval')
plt.fill_between(x1_new['x1'],
                 prediction_summary['obs_ci_lower'],
                 prediction_summary['obs_ci_upper'],
                 color='green', alpha=0.2, label='95% Prediction
interval')
plt.xlabel('x1')
plt.ylabel('y')
plt.legend()
plt.title('Fitted Line with 95% Confidence and Prediction Intervals')
plt.show()
```


6.3 MLR simulation exercise

MLR simulation exercise

The following measurements have been obtained in a study:

Nr.	1	2	3	4	5	6	7	8
y	9.29	12.67	12.42	0.38	20.77	9.52	2.38	7.46
x_1	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
x_2	4.00	12.00	16.00	8.00	32.00	24.00	20.00	28.00

a) Plot the observed values of y as a function of x_1 and x_2 . Does it seem reasonable that either x_1 or x_2 can describe the variation in y? You may copy the following lines into Python to load the data

```
df = pd.DataFrame({
    'y': [9.29,12.67,12.42,0.38,20.77,9.52,2.38,7.46],
    'x1': [1.00,2.00,3.00,4.00,5.00,6.00,7.00,8.00],
    'x2': [4.00,12.00,16.00,8.00,32.00,24.00,20.00,28.00]
})
```

■ Solution

The data is plotted with

```
fig, ax = plt.subplots(1, 2)
ax[0].scatter(df['x1'], df['y'])
ax[0].set_xlabel('x1')
ax[0].set_ylabel('y')
ax[1].scatter(df['x2'], df['y'])
ax[1].set_xlabel('x2')
ax[1].set_ylabel('y')
plt.tight_layout()
plt.show()
```


There does not seem to be a strong relation between y and x_1 or x_2 .

b) Estimate the parameters for the two models

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2),$$

and

$$Y_i = \beta_0 + \beta_1 x_{2,i} + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2),$$

and report the 95% confidence intervals for the parameters. Are any of the parameters significantly different from zero on a 5% confidence level?

■ Solution

The models are fitted with

since all confidence intervals cover zero we cannot reject that the parameters are in fact zero, and we would conclude neither x_1 nor x_2 explain the variations in y.

c) Estimate the parameters for the model

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i, \quad \varepsilon_i \sim (N(0, \sigma^2),$$
 (6-11)

and go through the steps of Method 6.16 (use confidence level 0.05 in all tests).

■ Solution

The model is fitted with

```
fit = smf.ols('y \sim x1 + x2', data=df).fit()
print(fit.summary(slim=True))
                 OLS Regression Results
Dep. Variable:
                     y R-squared:
                                             0.988
Model:
                    OLS Adj. R-squared:
                                             0.983
No. Observations:
                     8 F-statistic:
                                             208.0
Covariance Type: nonrobust Prob (F-statistic): 1.54e-05
______
          coef std err t P>|t| [0.025 0.975]
Intercept 8.0325 0.673 11.939 0.000 6.303

x1 -3.5734 0.195 -18.280 0.000 -4.076

x2 0.9672 0.049 19.790 0.000 0.842
                                            -3.071
                                             1.093
______
```

Solution

Before discussing the parameter let's have a look at the residuals:

```
fig, ax = plt.subplots(1, 2)
sm.qqplot(fit.resid.values, line="q",a=1/2,ax=ax[0])
ax[0].set_title("Q-Q plot")
ax[1].scatter(fit.fittedvalues, fit.resid)
ax[1].set_xlabel("Fitted values")
ax[1].set_ylabel("Residuals")
ax[1].set_title("Residuals vs Fitted values")
plt.tight_layout()
plt.show()
```


The are no obvious structures in the residuals as a function of the fitted values and also there does not seem be be serious departure from normality, but lets try to look at the residuals as a function of the independent variables anyway

|| Solution

```
fig, ax = plt.subplots(1, 2)
ax[0].scatter(df['x1'], fit.resid)
ax[0].set_xlabel('x1')
ax[0].set_ylabel('Residuals')
ax[1].scatter(df['x2'], fit.resid)
ax[1].set_xlabel('x2')
ax[1].set_ylabel('Residuals')
plt.tight_layout()
plt.show()
```


the plot of the residuals as a function of x_1 suggest that there could be a quadratic dependence.

Solution

Now include the quadratic dependence of x_1

```
df['x3'] = df['x1']**2
fit3 = smf.ols('y \sim x1 + x2 + x3', data=df).fit()
print(fit3.summary(slim=True))
                   OLS Regression Results
Dep. Variable:
                         y R-squared:
                                                   1.000
Model:
                        OLS Adj. R-squared:
                                                   1.000
No. Observations:
                        8 F-statistic:
                                                1.257e+04
Covariance Type: nonrobust Prob (F-statistic):
                                                2.11e-08
P>|t| [0.025
           coef std err
Intercept 10.1007 0.121 83.334 0.000 9.764 10.437
x1
         -5.0024
                  0.071 -70.549
                                 0.000
                                         -5.199
                                                  -4.806
x2
         1.0006
                  0.005 185.205
                                 0.000
                                          0.986
                                                   1.016
         0.1474 0.007 21.067 0.000
xЗ
                                          0.128
                                                  0.167
```

we can see that all parameters are still significant, and we can do the residual analysis of the resulting model.

Solution

```
fig, ax = plt.subplots(2, 2)
sm.qqplot(fit3.resid, line="q", ax=ax[0, 0])
ax[0, 0].set_title("Q-Q plot")
ax[0, 1].scatter(fit3.fittedvalues, fit3.resid)
ax[0, 1].set_xlabel("Fitted values")
ax[0, 1].set_ylabel("Residuals")
ax[0, 1].set_title("Residuals vs Fitted values")
ax[1, 0].scatter(df['x1'], fit3.resid)
ax[1, 0].set_xlabel('x1')
ax[1, 0].set_ylabel('Residuals')
ax[1, 1].scatter(df['x2'], fit3.resid)
ax[1, 1].set_xlabel('x2')
ax[1, 1].set_ylabel('Residuals')
plt.tight_layout()
plt.show()
```


There are no obvious structures left and there is no departure from normality, and we can report the finally selected model as

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{1,i}^2 + \varepsilon_i, \quad \varepsilon_i \sim (N(0, \sigma^2), \sigma^2)$$

with the parameters estimates given above.

d) Find the standard error for the line, and the confidence and prediction intervals for the line for the points $(\min(x_1), \min(x_2)), (\bar{x}_1, \bar{x}_2), (\max(x_1), \max(x_2)).$

■ Solution

The question is solved by

```
## New data
Dnew = pd.DataFrame({
   'x1': [np.min(df['x1']), np.mean(df['x1']), np.max(df['x1'])],
   'x2': [np.min(df['x2']), np.mean(df['x2']), np.max(df['x2'])],
   'x3': [np.min(df['x1'])**2, np.mean(df['x1'])**2,
np.max(df['x1'])**2]
})
# Summary frame
pred = fit3.get_prediction(Dnew).summary_frame(alpha=0.05)
print(round(pred,3))
    mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
   9.248 0.073 9.045
                                      9.451
                                                   8.934
                                                                 9.563
  8.587 0.048
                        8.454
                                      8.720
                                                    8.312
                                                                 8.862
         0.080
 11.538
                       11.317
                                      11.760
                                                   11.211
                                                                11.866
```

The standard error for line for the new points can be seen in "mean_se" followed by the lower and upper bounds for the confidence and prediction intervals, respectively.

e) Plot the observed values together with the fitted values (e.g. as a function of x_1).

∭ Solution

The question is solved by

```
plt.figure()
plt.scatter(df['x1'], df['y'], marker='o', color='red', label='Observed
data')
plt.scatter(df['x1'], fit3.fittedvalues, marker='+', color='blue',
label='Fitted values')
plt.xlabel('x1')
plt.ylabel('y')
plt.legend()
plt.tight_layout()
plt.show()
```


Notice that we have an almost perfect fit when including x_1 , x_2 and x_1^2 in the model, while neither x_1 nor x_2 alone could predict the outcomes.