面向深度学习的 R 语言线性代数速查

赵奇

2015年8月17日

Contents

1	矩阵	乘法	2
	1.1	乘法	2
	1.2	Hadamard 乘法	3
	1.3	点乘	3
	1.4	矩阵相乘的性质	4
		1.4.1 满足分配率	4
		1.4.2 满足结合律	4
		1.4.3 不满足交换律	5
2	矩阵	车转置	5
	2.1	矩阵转置的性质	5
3	解线	λ 性方程 $\mathbf{A}\mathbf{x} = \mathbf{B}$	6
	3.1	方法 1	6
	3.2	方法 2	6
4	单位		7
5	矩阵	F求逆	8
6	行列	山式	8
7	范数	ά	9
	7.1	性质	9
8	Frol	benius 范数	10
9	特殊	法矩阵和向量	10
	9.1	对角矩阵	10
	9.2	对称矩阵	11
	9.3	单位向量	11
	9.4	正交向量	12
	9.5		12

```
      9.6 正交矩阵
      12

      9.7 特征分解
      13

      9.8 奇异值分解
      13

      9.9 广义逆矩阵
      14

      9.10 矩阵的迹
      15

      library(knitr)

      #library(showtext)
```

Loading required package: sysfonts

```
opts_chunk$set(fig.showtext = TRUE,prompt = TRUE,message = FALSE,warning = FALSE,cache = TRUE)
```

1 矩阵乘法

1.1 乘法

```
> A <- matrix(data = 1:36, nrow = 6)
> A
```

```
> B <- matrix(data = 1:30, nrow = 6)
> B
```

```
1
     7
        13
             19
                  25
2
              20
     8
        14
                  26
3
                  27
    9
        15
              21
4
    10
        16
              22
                   28
5
   11
        17
              23
                   29
   12
         18
              24
                   30
```

> A %*% B

441	1017	1593	2169	2745
462	1074	1686	2298	2910
483	1131	1779	2427	3075
504	1188	1872	2556	3240
525	1245	1965	2685	3405

1.2 Hadamard 乘法

```
> A <- matrix(data = 1:36, nrow = 6)
                                    1
                                        7
                                            13
                                                19
                                                     25
                                                         31
                                    2
                                        8
                                            14
                                                20
                                                    26
                                                         32
                                    3
                                           15
                                                21
                                                     27
                                                         33
                                        9
                                                22
                                    4
                                       10
                                            16
                                                     28
                                                         34
                                    5
                                       11
                                            17
                                                23
                                                     29
                                                         35
                                       12
                                           18
                                                24
                                                     30
                                                         36
```

```
> B <- matrix(<u>data = 11:46</u>, <u>nrow = 6</u>)
> B
```

```
29
11 17
        23
                 35 41
12
    18
        24
            30
                 36
                     42
13
    19
        25
            31
                 37
                     43
            32
14
    20
        26
                 38
                     44
15
    21
        27
             33
                 39
                     45
16
    22
        28
            34
                 40
                     46
```

> A * B

```
1271
11
   119
         299
               551
                     875
24
    144
         336
               600
                      936
                           1344
39
    171
         375
               651
                      999
                           1419
56
    200
         416
               704
                     1064
                           1496
75
    231
         459
               759
                     1131
                           1575
96
    264
         504
               816
                    1200
                           1656
```

1.3 点乘

```
> X <- matrix(data = 1:10, nrow = 10)
> X

> Y <- matrix(data = 11:20, nrow = 10)
> Y

> dotProduct <- function(X, Y) {
+    as.vector(t(X) %*% Y)
+ }
> dotProduct(X, Y)
```

[1] 935

1.4 矩阵相乘的性质

1.4.1 满足分配率

```
> A <- matrix(data = 1:25, nrow = 5)
> B <- matrix(data = 26:50, nrow = 5)
> C <- matrix(data = 51:75, nrow = 5)
>
> A %*% (B + C)
```

4555	5105	5655	6205	6755
4960	5560	6160	6760	7360
5365	6015	6665	7315	7965
5770	6470	7170	7870	8570
6175	6925	7675	8425	9175

> A %*% B + A %*% C

4555	5105	5655	6205	6755
4960	5560	6160	6760	7360
5365	6015	6665	7315	7965
5770	6470	7170	7870	8570
6175	6925	7675	8425	9175

1.4.2 满足结合律

```
> A <- matrix(data = 1:25, nrow = 5)
> B <- matrix(data = 26:50, nrow = 5)
> C <- matrix(data = 51:75, nrow = 5)
> (A %*% B) %*% C
```

569850	623350	676850	730350	783850
620450	678700	736950	795200	853450
671050	734050	797050	860050	923050
721650	789400	857150	924900	992650
772250	844750	917250	989750	1062250

> A %*% (B %*% C)

569850	623350	676850	730350	783850
620450	678700	736950	795200	853450
671050	734050	797050	860050	923050
721650	789400	857150	924900	992650
772250	844750	917250	989750	1062250

1.4.3 不满足交换律

```
> A <- matrix(data = 1:25, nrow = 5)
> B <- matrix(data = 26:50, nrow = 5)
>
> A %*% B
```

1590	1865	2140	2415	2690
1730	2030	2330	2630	2930
1870	2195	2520	2845	3170
2010	2360	2710	3060	3410
2150	2525	2900	3275	3650

> B %*% A

590	1490	2390	3290	4190
605	1530	2455	3380	4305
620	1570	2520	3470	4420
635	1610	2585	3560	4535
650	1650	2650	3650	4650

2 矩阵转置

```
> A <- matrix(data = 1:25, nrow = 5, ncol = 5, byrow = TRUE)
> A
```

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

> t(A)

```
1
               21
   6 11
           16
2
   7
       12
           17
               22
      13
3
   8
           18
               23
4
      14
           19
               24
           20
               25
  10 15
```

2.1 矩阵转置的性质

```
> A <- matrix(data = 1:25, nrow = 5)
> B <- matrix(data = 25:49, nrow = 5)
>
```

> t(A %*% B)

1535	1670	1805	1940	2075
1810	1970	2130	2290	2450
2085	2270	2455	2640	2825
2360	2570	2780	2990	3200
2635	2870	3105	3340	3575

> t(B) %*% t(A)

1535	1670	1805	1940	2075
1810	1970	2130	2290	2450
2085	2270	2455	2640	2825
2360	2570	2780	2990	3200
2635	2870	3105	3340	3575

- 3 解线性方程 Ax = B
- 3.1 方法 1

```
> A <- matrix(data = c(1, 3, 2, 4, 2, 4, 3, 5, 1, 6, 7, 2, 1, 5, 6, 7), nrow = 4, byrow = TRUE)
> A
```

```
> B <- matrix(data = c(1, 2, 3, 4), nrow = 4)
> B
```

$> solve(\underline{a} = A, \underline{b} = B)$

0.6153846 -0.8461538 1.0000000 0.2307692

3.2 方法 2

```
> A <- matrix(data = c(1, 3, 2, 4, 2, 4, 3, 5, 1, 6, 7, 2, 1, 5, 6, 7), nrow = 4, byrow = TRUE)
> A
```

```
> B <- matrix(data = c(1, 2, 3, 4), nrow = 4)
> B

> library(MASS)
> X <- ginv(A) %*% B
> X
```

 $\begin{array}{c} 0.6153846 \\ -0.8461538 \\ 1.0000000 \\ 0.2307692 \end{array}$

4 单位阵

```
> I <- diag(x = 1, nrow = 5, ncol = 5)
> I
```

 $0 \quad 0 \quad 0 \quad 0$

```
> A <- matrix(data = 1:25, nrow = 5)
> A %*% I
```

6 11

> I %*% A

```
1
    6 11
            16
                21
2
    7
       12
                22
            17
3
    8
       13
           18
                23
                24
    9
           19
       14
```

5 矩阵求逆

> A <- matrix(data = c(1, 2, 3, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 3), nrow > A

1 3 3 8 4 2 4 4 9 5 3 5 5 1 6 1 6 6 2 7 $2 \ 2 \ 7 \ 3 \ 3$

```
> library(MASS)
```

> ginv(A)

-0.3333333	0.3333333	0.3333333	-0.3333333	0.0
-4.0888889	3.6444444	-1.2222222	0.8666667	-0.2
-0.355556	0.2444444	-0.222222	0.1333333	0.2
-0.1111111	0.2222222	-0.1111111	0.0000000	0.0
3.8888889	-3.444444	1.2222222	-0.6666667	0.0

> ginv(A) %*% A

> A %*% ginv(A)

6 行列式

> A <- matrix(data = c(1, 3, 2, 4, 2, 4, 3, 5, 1, 6, 7, 2, 1, 5, 6, 7), nrow = 4, byrow = TRUE)
> A

```
## [1] -39
     范数
 lpNorm <- function(A, p) {</pre>
       if (p >= 1 & dim(A)[[2]] == 1 && is.infinite(p) == FALSE) {
                 sum((apply(X = A, MARGIN = 1, FUN = abs)) ** p) ** (1 / p)
       } else if (p >= 1 & dim(A)[[2]] == 1 & is.infinite(p)) {
            max(apply(X = A, MARGIN = 1, FUN = abs)) # Max Norm
       } else {
            invisible(NULL)
> lpNorm(\underline{A} = matrix(\underline{data} = 1:10), p = 1)
## [1] 55
> lpNorm(\underline{A} = matrix(\underline{data} = 1:10), \underline{p} = 2) # Euclidean Distance
## [1] 19.62142
> lpNorm(\underline{A} = matrix(\underline{data} = 1:10), p = 3)
## [1] 14.46245
> lpNorm(\underline{A} = matrix(\underline{data} = -100:10), p = Inf)
## [1] 100
7.1 性质
> lpNorm(\underline{A} = matrix(\underline{data} = rep(0, 10)), p = 1) == 0
```

[1] TRUE

8 Frobenius 范数

```
> frobeniusNorm <- function(A) {
+    (sum((as.numeric(A)) ** 2)) ** (1 / 2)
+ }
> 
> frobeniusNorm(A = matrix(data = 1:25, nrow = 5))
```

[1] 74.33034

[1] TRUE

9 特殊矩阵和向量

9.1 对角矩阵

```
> A <- diag(x = c(1:5, 6, 1, 2, 3, 4), nrow = 10)
> A
```

```
1
      0
             0
                0
                    0
                      0
0
   2
      0
             0
                       0
                          0
          0
                0
                    0
0
      3
0
   0
      0
          4
             0
                0
                    0
                       0
                          0
0
   0
      0
          0
             5
                0
                    0
                       0
                          0
0
   0
      0
          0
             0
                6
                    0
                       0
0
                   1
                0
0
                       2
                          0
   0
      0
          0
             0
                0
                    0
                             0
      0
                    0
                       0
                          3
                              0
0
   0
          0
             0
                0
0
   0
      0
             0 \quad 0
                   0
```

```
> X <- matrix(data = 21:30)
> X
```

> A %*% X

```
> library(MASS)
> ginv(A)
```

```
1
   0.0
         0.0000000
                     0.00
                            0.0
                                 0.0000000
                                                 0.0
                                                       0.0000000
                                                                   0.00
0
   0.5
         0.0000000
                     0.00
                            0.0
                                 0.0000000
                                                 0.0
                                                       0.0000000
                                             0
                                                                   0.00
0
   0.0
         0.3333333
                     0.00
                            0.0
                                 0.0000000
                                              0
                                                 0.0
                                                       0.0000000
                                                                   0.00
0
                     0.25
   0.0
         0.0000000
                            0.0
                                 0.0000000
                                              0
                                                 0.0
                                                       0.0000000
                                                                   0.00
0
   0.0
         0.0000000
                     0.00
                            0.2
                                 0.0000000
                                                       0.0000000
                                                 0.0
                                                                   0.00
0
   0.0
         0.0000000
                     0.00
                            0.0
                                 0.1666667
                                              0
                                                 0.0
                                                       0.0000000
                                                                   0.00
0
   0.0
         0.0000000
                     0.00
                            0.0
                                 0.0000000
                                              1
                                                 0.0
                                                       0.0000000
                                                                   0.00
0
   0.0
                     0.00
                            0.0
                                                 0.5
                                                       0.0000000
                                                                   0.00
         0.0000000
                                 0.0000000
                                              0
0
   0.0
         0.0000000
                     0.00
                            0.0
                                 0.0000000
                                                 0.0
                                                       0.3333333
                                                                   0.00
   0.0
0
         0.0000000
                     0.00
                            0.0
                                 0.0000000
                                              0
                                                 0.0
                                                       0.0000000
                                                                   0.25
```

9.2 对称矩阵

```
> A <- matrix(data = c(1, 2, 2, 1), nrow = 2)
> A
```

 $\begin{array}{cc} \hline 1 & 2 \\ 2 & 1 \end{array}$

```
> all(A == t(A))
```

[1] TRUE

9.3 单位向量

```
> lpNorm(<u>A = matrix(data = c(1, 0, 0, 0))</u>, <u>p = 2)</u>
```

[1] 1

```
9.4 正交向量
```

```
> X <- matrix(data = c(11, 0, 0, 0))
> Y <- matrix(data = c(0, 11, 0, 0))
> all(t(X) %*% Y == 0)
## [1] TRUE
9.5 正交单位向量组
> X <- matrix(data = c(1, 0, 0, 0))
> Y < - matrix(data = c(0, 1, 0, 0))
> lpNorm(\underline{A} = X, p = 2) == 1
## [1] TRUE
> lpNorm(\underline{A} = Y, p = 2) == 1
## [1] TRUE
> all(t(X) %*% Y == 0)
## [1] TRUE
9.6 正交矩阵
> A <- matrix(data = c(1, 0, 0, 0, 1, 0, 0, 1), nrow = 3, byrow = TRUE)
                                            1 \ 0 \ 0
                                            0 \ 1 \ 0
                                            0 \ 0 \ 1
> all(t(A) %*% A == A %*% t(A))
## [1] TRUE
> all(t(A) %*% A == diag(\underline{x} = 1, \underline{nrow} = 3))
## [1] TRUE
> library(MASS)
```

[1] TRUE

> all(t(A) == ginv(A))

9.7 特征分解

```
> A <- matrix(<u>data = 1:25</u>, <u>nrow = 5</u>, byrow = TRUE)
                                               2
                                          1
                                                    3
                                                         4
                                                             5
                                               7
                                          6
                                                    8
                                                         9
                                                             10
                                          11
                                              12
                                                   13
                                                        14
                                                             15
                                          16
                                              17
                                                   18
                                                        19
                                                             20
                                          21
                                              22
                                                   23
                                                             25
                                                        24
```

```
> y \leftarrow eigen(\underline{x} = A)
## $values
## [1] 6.864208e+01 -3.642081e+00 4.626054e-15 7.173861e-16 -1.202776e-16
##
## $vectors
                        [,2]
                                   [,3]
##
             [,1]
                                              [,4]
                                                         [,5]
## [1,] -0.1079750 -0.67495283   0.43684670 -0.10763824 -0.10839336
## [2,] -0.2527750 -0.36038970 -0.80161272 -0.29282210 0.05352876
## [3,] -0.3975750 -0.04582657 0.38296630 0.85748010 0.52747309
## [5,] -0.6871751  0.58329969  0.09028096 -0.05107881  0.30935054
> library(MASS)
> all.equal(y$vectors %*% diag(y$values) %*% ginv(y$vectors), A)
```

[1] TRUE

9.8 奇异值分解

 $y \leftarrow svd(x = A)$

```
> A <- matrix(<u>data = 1:36</u>, <u>nrow = 6</u>, <u>byrow = TRUE</u>)
> A
```

```
1
            4
                 5
                     6
7
     8
         9
           10 11 12
13
    14
       15
            16
                17
                    18
    20
        21
            22
19
                23
                    24
25
    26
        27
            28
                29
                    30
    32
31
        33
            34
                35
                    36
```

```
## $d
## [1] 1.272064e+02 4.952580e+00 3.378635e-15 8.394570e-16 1.033790e-16
## [6] 3.580178e-17
```

```
##
## $u
               [,2]
                     [,3]
##
        [,1]
                            [,4]
## [1,] -0.06954892 -0.72039744  0.6825128 -0.09839656  0.02608853
## [2,] -0.18479698 -0.51096788 -0.5968445 -0.37321714 -0.37506104
## [3,] -0.30004504 -0.30153832 -0.2663298 0.69016113 0.46300174
## [4,] -0.41529310 -0.09210875 -0.1904227 -0.24789729 0.33483806
## [5,] -0.53054116  0.11732081  0.1546485  0.41016255 -0.68887985
##
         [,6]
## [1,] -0.002050105
## [2,] 0.261871683
## [3,] 0.239631064
## [4,] -0.780523688
## [5,] -0.195082027
## [6,] 0.476153071
##
## $v
##
              [,2]
                     [,3]
                          [, 4]
                                  [,5]
        [,1]
## [6,] -0.4494062 -0.56731262 -0.4181548 0.5444966 -0.06917926 0.008644142
```

> all.equal(y\$u %*% diag(y\$d) %*% t(y\$v), A)

[1] TRUE

9.9 广义逆矩阵

> A <- matrix(data = 1:25, nrow = 5)

11 16 21 1 6 2 7 12 17 22 23 3 13 18 4 9 14 19 24 25 5 10 15 20

> B <- ginv(A) > B

-0.152	-0.08	-0.008	0.064	0.136
-0.096	-0.05	-0.004	0.042	0.088
-0.040	-0.02	0.000	0.020	0.040
0.016	0.01	0.004	-0.002	-0.008
0.072	0.04	0.008	-0.024	-0.056

```
> y <- svd(A)
> all.equal(y$v %*% ginv(diag(y$d)) %*% t(y$u), B)
## [1] TRUE
9.10 矩阵的迹
> A <- diag(x = 1:10)
                                     0
                                        0 \quad 0
                                               0
                                                   0
                                                              0
                               0
                                  2
                                        0 \quad 0
                                     0
                                               0
                                                   0
                                                      0
                                                          0
                                                              0
                                     3
                                        0
                                            0
                                               0
                                                              0
                                  0
                                     0
                                        4
                                            0
                                               0
                                                   0
                                                      0
                                                          0
                                                              0
                               0
                                  0
                                     0
                                        0
                                            5
                                               0
                                                   0
                                                              0
                                                      0
                                                          0
                                  0
                                     0
                                        0
                                            0
                                               6
                                                   0
                               0
                                     0
                                        0 \quad 0
                                               0
                                  0
                                     0
                                        0
                                           0
                                               0
                                                   0
                                                      8
                                                          0
                                                              0
                                  0
                                        0
                                           0
                                               0
                                                   0
                                                              0
                                     0
                                                      0
                                                          9
                                  0 \quad 0 \quad 0 \quad 0
                                               0
                                                   0 \quad 0 \quad 0
                                                             10
> library(psych)
> tr(A)
## [1] 55
> alternativeFrobeniusNorm <- function(A) {</pre>
      sqrt(tr(t(A) %*% A))
> alternativeFrobeniusNorm(A)
## [1] 19.62142
> frobeniusNorm(A)
## [1] 19.62142
> all.equal(tr(A), tr(t(A)))
## [1] TRUE
> A <- diag(x = 1:5)
                                        1
                                           0
                                              0
                                                 0
                                                     0
                                        0
                                           2
                                              0
                                                  0
                                                     0
                                           0
                                              3
                                                  0
                                                     0
                                              105
                                        0
                                           0
                                                 4
                                                     0
```

 $0 \ 0 \ 0 \ 5$

```
> B <- diag(<u>x =</u> 6:10)
> B
```

```
    6
    0
    0
    0
    0

    0
    7
    0
    0
    0

    0
    0
    8
    0
    0

    0
    0
    0
    9
    0

    0
    0
    0
    0
    10
```

```
> C <- diag(<u>x =</u> 11:15)
> C
```

11	0	0	0	0
0	12	0	0	0
0	0	13	0	0
0	0	0	14	0
0	0	0	0	15

```
> all.equal(tr(A %*% B %*% C), tr(C %*% A %*% B))
```

[1] TRUE

```
> all.equal(tr(C %*% A %*% B), tr(B %*% C %*% A))
```

[1] TRUE