Introduction to PDEs, Fall 2022

Test 1 Make-up

For 2 hours and 35 minutes

Name(Print):	
Student No:	
Signature:	
There are 10 problems, 10 points each, 100 points in total.	
Show details to get full credits. Make your justifications clear and direct.	

Leave the following table blank

Score Table			
Problem	Points	Score	
1	10		
2	10		
3	10		
4	10		
5	10		
6	10		
7	10		
8	10		
9	10		
10	10		
	Total score		

1. Let us consider a similar scenario in a 2D lattice with mesh size $\Delta x = \Delta y$. Let u(x,y,t) be the number of particles at location $(x,y) \in \mathbb{R}^2$ and time t>0. Suppose that each particle, at the next time $t+\Delta$, moves northwards, southwards, westwards or eastwards with probability $\frac{1}{4}$, i.e., $p((x,y) \to (x \pm \Delta x,y),t) = p((x,y) \to (x,y \pm \Delta y),t) = \frac{1}{4}$. Assume that $D = \frac{\Delta x^2}{\Delta t}$ as $\Delta t \to 0^+ > 0$. Derive the PDE for u(x,y,t).

- 2. Let Ω be a bounded domain in $\mathbb{R}^N,\,N\geq 1.$
 - (i) Write down the definitions of Dirichlet, Neumann, Robin boundary conditions.
 - (ii) What are the physical interpretations of DBC and NBC if u(x,t) represents the temperature?
 - (iii) What are the biological interpretations of DBC and NBC if u(x,t) represents the population density?

3. Consider the following initial boundary value problem

$$\begin{cases} u_t = D\Delta u + f(x,t), & x \in \Omega, t > 0, \\ u(x,0) = \phi(x), & x \in \Omega, \\ u(x,t) = \gamma(x), & x \in \partial\Omega, t > 0. \end{cases}$$
 (1)

Use the energy method to prove the uniqueness of (1).

4. Solve the following eigen-value problem for the eigen–pair $(X_n(x), \lambda_n)$

$$\begin{cases} X''(x) + \lambda X(x) = 0, & x \in (0, L), \\ X'(0) = X'(L) = 0. \end{cases}$$
 (2)

- 5. 1) Write down the definition of $L^2(\Omega)$ and L^2 -norm;
 - 2) Write down the definition that functions f and g are orthogonal in $L^2(\Omega)$;
 - 3) Consider the following problem

$$\begin{cases}
\Delta w + \lambda w = 0, & x \in \Omega, \\
\alpha \frac{\partial u}{\partial \mathbf{n}} + \beta u = 0, & x \in \partial \Omega,
\end{cases}$$
(3)

where Ω is a bounded domain in \mathbb{R}^n , $n \geq 2$, and $\alpha^2 + \beta^2 \neq 0$. Prove that w_m and w_n , corresponding to λ_m and λ_n respectively, are orthogonal in $L^2(\Omega)$, whenever $\lambda_m \neq \lambda_n$.

6. Consider the following IBVP

$$\begin{cases} u_t = Du_{xx}, & x \in (0, L), t > 0, \\ u(x, 0) = \phi(x) \ge \not\equiv 0, & x \in (0, L), \\ u(x, t) = 0, & x = 0, L, t > 0. \end{cases}$$
(4)

- i) Without solving (4), describe the behavior of its solution in the long time, i.e., as $t \to \infty$. Draw u(x,t) for several time, say t = 1, 2, 5, 10... to illustrate your results;
- ii) We know that solution to (4) is unique. Find this solution in terms of infinite series.

...continue working here if needed

7. Consider the following problem over a 2D square $\Omega = (0,1) \times (0,1)$

$$\begin{cases} \Delta u = 0, & x \in (0,1) \times (0,1) \\ u_x(0,y) = u_x(1,y) = 0, & y \in (0,1), \\ u(x,0) = 0, u(x,1) = x. \end{cases}$$
 (5)

Find u(x,y) in terms of infinite series by starting with u(x,y) = X(x)Y(y).

8. Let us consider the following problem with heating/cooling resources under DBC

$$\begin{cases} u_t = u_{xx} + e^{-t} \sin 2x, & x \in (0,1), t \in \mathbb{R}^+, \\ u(x,0) = x, & x \in (0,1), \\ u = 0, & x = 0, 1, t \in \mathbb{R}^+. \end{cases}$$
(6)

Find the solution to (6) in terms of infinite series.

...continue working here if needed

9. Consider

$$\begin{cases}
 u_t = Du_{xx}, & x \in (0, L), t \in \mathbb{R}^+, \\
 u(x, 0) = \phi(x), & x \in (0, L), \\
 u(0, t) = \mu_1(t), u(L, t) = \mu_2(t), & t \in \mathbb{R}^+.
\end{cases}$$
(7)

Solving for u(x,t) in terms of infinite series;

...continue working here if needed

- 10. Let Ω be a bounded domain in $\mathbb{R}^n, n \geq 1$. Suppose that $p \in (1, \infty)$ and $\frac{1}{p} + \frac{1}{q} = 1$.
 - 1) Write down the definitions of strong convergence and weak convergence of f_n to f in $L^p(\Omega)$;
 - 2) prove that strong convergence in L^p implies weak convergence;
 - 3) give a counter-example that weak convergence does not imply strong convergence. Proof is **NOT** needed.