

### Seq2Seq Model

Technische Universität München
Department of Informatics
Seminar - Applied Deep Learning for NLP
Prof. Dr. Simon Hegelich

Francesco Cognolato 10th January 2019





## Different tasks require different models





## Different tasks require different models





## Some possible applications

- Neural Machine Translation : input is a sentence (sequence) in one language, output is one in another language
- Text summarization : input is a long text (sequence), output is summary of the text
- Chatbot : input is a sentence, output is a reply
- Speech recognition : input is sequence (digital waveform), output is text



## Seq2Seq





### Seq2Seq - Basic architecture





## Embedding layer

- Nothing more than a matrix, N x F (N words, F embedding size)
- Both source and target language have their own embedding layer
- Unique mapping between a word and an integer
- Look up the word vector given the corresponding row index in the embedding matrix
- If enough data train embeddings from scratch, otherwise use GloVe pretrained embeddings provided from Stanford University



### Encoder architecture

- (Deep) Bidirectional LSTM or GRU







#### Decoder architecture

- (Deep) LSTM or GRU, initial state is set from last state of encoder





(b) Gated Recurrent Unit



#### Attention mechanism

 In the basic seq2seq architecture, we ignore encoder outputs, but just consider context vector (last state of encoder)

$$score(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s}) = \begin{cases} \boldsymbol{h}_{t}^{\top} \bar{\boldsymbol{h}}_{s} & \textit{dot} \\ \boldsymbol{h}_{t}^{\top} \boldsymbol{W}_{a} \bar{\boldsymbol{h}}_{s} & \textit{general} \rightarrow \text{Luong score} \\ \boldsymbol{v}_{a}^{\top} \tanh \left( \boldsymbol{W}_{a} [\boldsymbol{h}_{t}; \bar{\boldsymbol{h}}_{s}] \right) & \textit{concat} \rightarrow \text{Bahdanau score*} \end{cases}$$

$$\alpha_{ts} = \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s})\right)}{\sum_{s'=1}^{S} \exp\left(\operatorname{score}(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s'})\right)}$$
[Attention weights]
$$\boldsymbol{c}_{t} = \sum_{s} \alpha_{ts} \bar{\boldsymbol{h}}_{s}$$
[Context vector]
$$\boldsymbol{a}_{t} = f(\boldsymbol{c}_{t}, \boldsymbol{h}_{t}) = \tanh(\boldsymbol{W}_{\boldsymbol{c}}[\boldsymbol{c}_{t}; \boldsymbol{h}_{t}])$$
[Attention vector]



#### Attention mechanism





#### Remarks

- Add padding of zeros to all the sentences to have the same length (otherwise use some fancy things, like bucketing)
- After decoder, softmax over whole vocabulary and calculate cross entropy loss
- Testing time: source language sequence, decoder input will be only <START> token, generate prediction, append to <START>, generate next token and so on... Stop when <END> token generated (Greedy search)
- Use Beam search, pick best n (e.g. 5-10 beans) predictions and generate a tree of sentences. Final sentence is the one with highest final probabilities



#### Beam search





#### References

- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- http://web.stanford.edu/class/cs224n/



# Questions?



# Thank you