

Background

Problemi di ottimizzazione con un solo obiettivo (funzione) da minimizzare (o massimizzare). Formalmente, abbiamo:

- Una funzione da ottimizzare $\min f: \mathbb{R}^n \to \mathbb{R}^1$
- Un vettore di variabili indipendenti $x = (x_1 ... x_n)$
- $\text{ Un sistema di vincoli da rispettare } \begin{cases} A \cdot x \leq b & \text{Regione} \\ x_{\min} \leq x \leq x_{\max} & \text{Ammissibile} \end{cases}$

Soluzione

Diremo che x^* è un punto di minimo (globale) di f in x se e solo se $\forall \ y \in R.A.: f(x^*) \leq f(y)$

3

Background (2)

Consideriamo il seguente problema $\min f(x) = (x-2,5 \cdot \sin(\pi \cdot x))^2 -4 \le x \le 4$

Δ

Funzioni a più variabili indipendenti

Software Engineering Lab UNIVERSITY OF SALERNO

5

Ottimizzazione e S.E.

Search Based Software Engineering (SBSE): Software Engineering questions are often phrased in a language that simply cries out for an optimization-based solution.

Tipici problemi di SBSE:

- Qual è il più piccolo sottoinsieme delle test suite che copre tutte le istruzioni del codice?
- Qual è la migliore allocazione delle risorse per un particolare progetto software?
- Qual è la migliore decomposizione del sistema che massimizza la coesione delle classi?

•

Ottimizzazione e S.E.

Search Based Software Engineering (SBSE): Software neering questions are often phrased in a language out for an o

Tipi 1) Scrivere una funzione di fitness (da ottimizzare)

2) Usare algoritmi di intelligenza artificiale per trovare

• Qual coesi
•

Evoluzione

Il principio dell'evoluzione è "survival of the fittest: The good offspring survive, while bad ones die".

11

Concetti di GA

Dato un problema di ottimizzazione

minimize
$$f(x) = f(x_1, x_2, ..., x_n)$$

subject to $x_i^{\min} \le x_i \le x_i^{\max}$ $i = 1, 2, ..., n$

Ogni soluzione ${\mathcal X}$ al problema, può essere visto come un individuo

$$f(x) = f(x_1, x_2, \dots, x_n)$$

Probabilità di sopravvivenza

Cromosoma

Esempio

Funzione da ottimizzare

$$\min y = \sum_{i=1}^{4} (x_i)^2$$

13

Esempio

Funzione da ottimizzare

$$\min y = \sum_{i=1}^{4} (x_i)^2$$

1) Soluzioni (individui) casuali

x1	x2	х3	х4	Y(X)
1	-1	2	5	31
3	-2	2	8	81
-10	6	5	2	165
-2	2	2	0	12

Esempio

Funzione da ottimizzare

$$\min y = \sum_{i=1}^{4} (x_i)^2$$

1) Soluzioni (individui) casuali

x1	x2	хЗ	х4	Y(X)
1	-1	2	5	31
3	-2	2	8	81
-10	6	5	2	165
-2	2	2	0	12

2) Selezione delle migliori soluzioni

1 -1 2 5

-2 2 2 0

15

Esempio

Funzione da ottimizzare

$$\min y = \sum_{i=1}^{4} (x_i)^2$$

3) Ricombinazione

Esempio Funzione da ottimizzare 3) Ricombinazione 4) Mutazione Nuova Generazione x2 x3 x4 Y(X) 31 -1 13 -1 2 0 6 0 12

Problemi Multi-obiettivo (MOP)

Problemi nel quale bisogna ottimizzare più funzioni contemporaneamente.

25

Sfide dei MOP

- In molti problemi della vita reale, le funzioni da ottimizzare sono in conflitto tra loro.
- Ottimizzando *x* rispetto ad una unica funzione si traduce spesso in risultati inaccettabili rispetto alle restanti funzioni.
- Una perfetta soluzione multi-obiettivo che ottimizza allo stesso tempo ogni funzione obiettivo è spesso impossibile.
- Problemi che risultano essere semplice nella versione monoobiettivo, spesso diventano complessi (NP-hard) nella versione multiobiettivo.

MOP - Esempio

Test Case Selection:

Selezionare un sottoinsieme della test suite che (i) massimizzi la copertura del codice e (ii) minimizzi il costo complessivo di esecuzione.

Una soluzione è un vettore binario

$$X = \{x_1, x_2, ..., x_n\}$$
Cromosoma

$$x_i = \begin{cases} 1 & \text{se } t_i \text{ è selez.} \\ 0 & \text{altrimenti} \end{cases}$$

Funzioni da ottimizzare

$$\min cost(X) = \sum_{i=1}^{n} (x_i \cdot c_i)$$
$$\max cov(X) = M \cdot X^{T}$$

27

Ottimo di Pareto

E' necessario definire con chiarezza cosa si intende per soluzione ottima di un problema di ottimizzazione multiobiettivo.

Definizione 1. Dati due vettori di soluzioni x e $y \in \mathbb{R}^n$, diremo che x domina y secondo Pareto $(x \le_P y)$ se e solo se

- 1) $f_i(x) \le f_i(y)$ per ogni i=1,2,...,m
- 2) $f_j(x) < f_j(y)$ per almeno un indice $j \in \{1, ..., m\}$

Definizione 2. Un vettore di soluzioni $x^* \in Reg. Amm$. è un <u>ottimo di Pareto</u> per le funzioni $\{f_1...f_m\}$ se non esiste un altro vettore $x \in Reg. Amm$. tale che

$$f_i(x) \leq_P f_i(x^*)$$

33

GA vs. Multi-Objective GA

GΑ

Problema

 $\min f(x)$

 $A \cdot x \ge b$

 $x_{\min} \le x \le x_{\max}$

$$f(x) = f(x_1, x_2, \dots, x_n)$$

Probabilità Di sopravvivere Cromosoma

Multi-objective GA

Problema

 $\min \{ f_1(x) \dots f_m(x) \}$ $A \cdot x \ge b$

$$x_{\min} \le x \le x_{\max}$$

$$\begin{aligned} f_1(x) &= f_1(x_1, x_2, ..., x_n) \\ \vdots &= \vdots \end{aligned}$$

Probabilità
Di sopravvivere

Cromosoma

Multi-Objective GA

· Quali sono gli individui migliori?

- Per i problemi mono-obiettivo gli individui "migliori" sono quelli che hanno valore minimo (o massimo) della funzione obiettivo.
- Per i problemi multi-obiettivo gli individui "migliori" devono ottimizzare più funzioni obiettivo contemporaneamente.

Come calcoliamo la probabilità di sopravvivenza degli individui?

- Per i problemi mono-obiettivo gli individui "migliori" hanno maggiore probabilità di sopravvivere.
- Determinare la probabilità di sopravvivenza degli individui in problemi multiobiettivo è tutt'altro che scontata.

35

Multi-Objective GA Quali sono gli individui migliori? - Per i problemi mono-obiettivo che hanno valore minimo (o massim Non-Dominated Sorting Algorithm Per i probl are più fun-Con aividui? migliori" hanno maggiore pro Deter ar sopravvivenza degli individui in problemi multiobietti che scontata.

Approssimazione del fronte di Pareto = in ogni popolazione possiamo determinare degli insiemi di soluzioni non dominate a vare livelli fi(x) fi(x)

Fast Non dominated Sorting GA (NSGA) La popolazione iniziale è un insieme di soluzioni Popolazione generate casualmente all'interno della regione Iniziale ammissibile. Gli individui migliori sono selezioni per la Selezione riproduzione (Fast Non-Dominated Sorting) Riproduzione degli inidividui migliori Crossover I cromosomi dei figli generati sono mutati Mutazione L'algoritmo termina quando la soluzione Fine? ottenuta non è ulteriormente ottimizzata Yes

GA per l'Ottimizzazione del Testing di Regressione

Rappresentazione - Test Suite Minimization and Test Case Selection

1	0	0	0	1	0	1	1	1
1	1	0	1	1	0	0	1	0

Rappresentazione - Test Case Prioritization

