Tarea segunda clase de estadística

Rodrigo Castillo

4 de agosto de 2020

1. Enunciado

Ejercicio de distancias

Dados los siguientes pares de medidas sobre dos variables x_1 y x_2 :

- a Grafique los datos como un diagrama de dispersión y calcule s_{11}, s_{22} y s_{12} .
- b Usando $\tilde{x}_1=x_1\cos(\theta)+x_2\sin(\theta)$ y $\tilde{x}_2=-x_1\sin(\theta)+x_2\cos(\theta)$, calcule las medidas correspondientes sobre las variables \tilde{x}_1 y \tilde{x}_2 , asumiendo que los ejes coordenados originales están rotados un ángulo de $\theta=26^\circ$.
- c Usando las medidas \tilde{x}_1 y \tilde{x}_2 de (b), calcule las varianzas de muestra \tilde{s}_{11} y \tilde{s}_{22}
- d Considere el nuevo par de medidas $(x_1,x_2)=(4,-2)$. Transforme estas medidas en \tilde{x}_1 y \tilde{x}_2 como en (b) y calcule la distancia d(O,P) del nuevo punto $P=(\tilde{x}_1,\tilde{x}_2)$ desde el origen O=(0,0), usando $d(O,P)=\sqrt{\frac{\tilde{x}_1^2}{\tilde{s}_{11}}+\frac{\tilde{x}_2^2}{\tilde{s}_{22}}}$. Nota: Necesitará \tilde{s}_{11} y \tilde{s}_{22} de (c).
- e Calcule la distancia desde P=(4,-2) hasta el origen O=(0,0) usando $d(O,P)=\sqrt{a_{11}x_1^2+2a_{12}x_1x_2+a_{22}x_2^2}$ y las expresiones para a_{11},a_{22} , y a_{12} de la siguiente diapositiva. Nota: necesitará s_{11},s_{22} , y s_{12} de (a). Compare la distancia calculada aquí con la distancia calculada usando los valores \widetilde{x}_1 y \widetilde{x}_2 en (d). (Dentro del error de redondeo, los números deben ser los mismos).

2. punto a

3. el vector está dado por :

grafique los datos como un diagrama de dispersion y calcule s $_{11}, s_{22}, s_{12}$

3.1. grafica:

3.2. s $_{11}, s_{22}, s_{12}$

4. punto b

usando