Дискретная математика 2. Конспект

Бобень Вячеслав @darkkeks, GitHub 2020

"Здесь должна быть чья-то цитата". $\frac{}{}- \text{Bottom text}$

Содержание

1 Лекция 1.

1 Лекция 1.

Мы будем рассматривать алгоритм интуитивно, не давая ему точного определения. Вместо определения алгоритма мы будем постепенно неформально описывать его свойства.

- 1. Алгоритмов счётно много. (их можно отождествить с словами конечного алфавита)
- 2. Алгоритм исполняется по шагам.
- 3. Алгоритм работает конечно много шагов или зацикливается.

Например, while(1); (вычисляет нигде не определенную функцию)

4. Алгоритм принимает вход и может подавать что-то на выход.

Сделать алгоритм, принимающий на вход число $x \in \mathbb{R}$ и возвращающий $\sin x$ мы не можем. Хотя некоторые числа имеют конечное описание, в общем случае вещественное число это бесконечный поток байт. То есть в общем случае обработать бесконечный поток байт конечной процедурой мы не можем.

Считаем, что вход и выход — тоже слова конечного алфавита.

Так как слов конечного алфавита счётно много, нам удобно отождествить их с натуральными числами. (или \mathbb{N}^2 , \mathbb{N}^3 , ...)

Алгоритм может вычислять функцию $f: \mathbb{N} \xrightarrow{p} \mathbb{N}$. Здесь буква p означает, что алгоритм вычисляет *частичную* функцию.

Определение 1.1. Алгоритм \mathcal{F} вычисляет функцию $f: \mathbb{N} \stackrel{p}{\to} \mathbb{N}$, если $\forall x \in \mathbb{N}$

```
x \in \text{dom } f \implies алгоритм \mathcal{F} на входе x останавливается и выводит f(x),
```

 $x \notin \mathrm{dom}\, f \implies$ алгоритм $\mathcal F$ на входе x НЕ останавливается на за какое конечное число шагов.

Определение 1.2. Функция f *вычислима*, если существует алгоритм, который её вычисляет.

Пример.

$$f(x) = \begin{cases} 1, & \text{если бог есть,} \\ 0, & \text{иначе.} \end{cases}$$

Утверждается, что функция f вычислима, так как существует алгоритм, ее вычисляюющий. (либо всегда возвращающий 1, либо 0). Например,

```
int f(int x) {
    return 1;
}
```

Определение 1.3. Множество $A\subseteq\mathbb{N}$ разрешимо, если \exists алгоритм \mathcal{A} такой, что $\forall x\in\mathbb{N}$

 $x \in \mathcal{A} \implies$ алгоритм выводит 1 и останавливается

 $x \in \mathcal{A} \implies$ алгоритм выводит 0 и останавливается.

Утверждение 1.1. *А разрешимо* \iff вычислима характеристическая функция $\chi_A : \mathbb{N} \to \{0,1\}$ множества A :

$$\chi_A(n) = \begin{cases} 1, & n \in A, \\ 0, & n \notin A. \end{cases}$$

Утверждение 1.2. Существует неразрешимое множество.

Доказательство. Алгоритмов лишь счётно много. Подмножеств № несчётно много.

Следствие 1.1. \exists невычислимая функция.

Утверждение 1.3. Если А конечно, то А разрешимо.

Доказательство. $A = \{a_1, \dots, a_n\}$. Тогда, характеристическая функция A:

```
int in_A(x) {
    return (x == a1) || (x == a2) || ... || (x == a_n);
}
```

Утверждение 1.4. Если A, B разрешимы, то разрешимы $A \cup B, A \cap B, \overline{A}, A \times B$.

Доказательство.

- $\chi_{A \cap B}(n) = \chi_A(n) \cdot \chi_B(n)$;
- $\chi_{A\cup B}(n) = \chi_A(n) + \chi_B(n)$;
- $\chi_{\overline{A}} = 1 \chi_A(n)$;
- $\chi_{A\times B}(n,m) = \chi_A(n) \cdot \chi_B(m)$.

Определение 1.4. Множество $A \subseteq \mathbb{N}$ называется *перечислимым*, если существует алгоритм \mathcal{A} («перечислитель»), такой что работая на пустом входе (или любом) алгоритм \mathcal{A} никогда не останавливается, но в процессе работы выводит все элементы множества A и только их.

To есть для любого элемента $x \in A$ существует конечный момент времени, в который алгоритм \mathcal{A} выведет элемент x.

Утверждение 1.5. Если А разрешимо, то А перечислимо. (обратное неверно)

Доказательство.

```
n = 0;
while (true) {
    if (in_A(n)) {
        return n;
    }
    ++n;
}
```

Утверждение 1.6. Из разрешимости не следует конечность. Например, N или 2N (множество четных чисел).

Теорема 1.1 (Поста). A разрешимо $\iff A$ и \overline{A} перечислимы.

Доказательство.

- \implies A разрешимо \implies A перечислимо.
 - A разрешимо $\Longrightarrow \overline{A}$ разрешимо $\Longrightarrow \overline{A}$ перечислимо.
- \longleftarrow Дано n, хотим посчитать $\chi_A(n)$.

Пусть \mathcal{A} перечисляет A и \mathcal{B} перечисляет \overline{A} . Поочередно будем делать по шагу алгоритмов \mathcal{A} и \mathcal{A} .

Если на каком-то шаге A вывел n, то $n \in A$. Выводим 1 и останавливаемся.

Если на каком-то шаге \mathcal{B} вывел n, то $n \in \overline{A}$. Выводим 0 и останавливаемся.

Так как $A \cup \overline{A} = \mathbb{N}$, то одно из событий точно случится, следовательно наш алгоритм обязательно завершится.

Определение 1.5. Проекция множества $A \subseteq \mathbb{N}^k$:

$$\operatorname{pr}^{i} A = \{b \in \mathbb{N} \mid (a_{1}, \dots, a_{i-1}, b, a_{i+1}, \dots, a_{n}) \in A\}.$$

Утверждение 1.7. Если A и B перечислимы, то также перечислимы множества $A \cup B$, $A \cap B$, $A \times B$, $\operatorname{pr}^i A$.

Доказательство. Пусть A перечисляет A и B перечисляет B.

 $\operatorname{pr}^i A$ Запустим $\mathcal A$ и для каждого выведенного набора (a_1,\ldots,a_n) будем печатать i-ю его координату.

 $A \cup B$ Будем поочередно делать шаги перечислителей \mathcal{A} и \mathcal{B} . Все выведенные ими числа отправляем в выходной поток.

 $A \cap B$ Будем поочередно делать шаги перечислителей \mathcal{A} и \mathcal{B} .

Будем добавлять весь вывод A в буффер A', аналогично для B и B'.

 $A_i' :=$ то, что лежит в буфере A' после i-го шага \mathcal{A} .

Аналогично для B'_i .

После того, как мы сделали i-й шаг \mathcal{A} и \mathcal{B} выводим множество $A_i' \cap B_i'$ — оно конечно; это делается за конечное время.

 $A \times B$ Все аналогично $A \cap B$, но выводим $A'_i \times B'_i$.

Определение 1.6. Пусть $f: \mathbb{N} \stackrel{p}{\to} \mathbb{N}$. Тогда, график функции:

$$\Gamma_f = \left\{ (x, y) \in \mathbb{N}^2 \mid f(x) = y \right\}.$$

Теорема 1.2 (о графике). Пусть $f: \mathbb{N} \stackrel{p}{\to} \mathbb{N}$. Тогда f вычислима $\iff \Gamma_f$ перечислим.

Доказательство.

 \iff Вход: x. Хотим f(x) (если \exists).

Алгоритм \mathcal{F} : Запускаем перечислитель Γ_f и ждем первой пары вида (x,y).

$$(x,y) \in \Gamma_f \implies y = f(x).$$

Теперь выводим у и завершаемся.

Если же x не принадлежит dom f, то мы будем ждать такой пары бесконечно (зациклимся).

 \implies Дано: f и вычисляющий ее алгоритм \mathcal{F} .

Хотим сделать перечислитель для Γ_f .

Знаем, что \mathbb{N}^k перечислимо как декартово произведение \mathbb{N} .

Запустим перечислитель для \mathbb{N}^3 . Для каждой выведенной тройки $(x,y,k) \in \mathbb{N}^3$ делаем k шагов \mathcal{F} на входе x. Если он вывел y и остановился, то f(x) = y. Тогда напечатаем пару (x,y).

Допустим, $(x,y) \in \Gamma_f$. Тогда f(x) = y. Значит, существует такое число шагов k, что \mathcal{F} на входе x выведет y за k шагов. Мы рассмотрим тройку (x,y,k) и выведем (x,y).

Следствие 1.2. Если f вычислима и A перечислимо, то f(A) перечислимо.

Доказательство. $f(A) = \operatorname{pr}^2(\Gamma_f \cap (A \times \mathbb{N})).$

f вычислима \Longrightarrow Γ_f перечислим.

A перечислимо $\Longrightarrow A \times \mathbb{N}$ перечислимо.

Таким образом $\Gamma_f \cap (A \times \mathbb{N})$ перечислим, а значит перечислимо и $\operatorname{pr}^2(\Gamma_f \cap (A \times \mathbb{N}))$.

Аналогично $f^{-1}(A) = \operatorname{pr}^1(\Gamma_f \cap (\mathbb{N} \times A)).$

Следствие 1.3. Если $f: \mathbb{N} \xrightarrow{p} \mathbb{N}$ вычислима, то dom f и rng f перечислимы.

Доказательство. dom $f = f^{-1}(\mathbb{N})$, rng $f = f(\mathbb{N})$.

Определение 1.7. Если $A \subseteq \mathbb{N}$, то *полухарактеристичекая* функция $\omega_A \colon \mathbb{N} \xrightarrow{p} \mathbb{N}$ множества A:

$$\omega_A(n)\simeq egin{cases} 1, & n\in A, \\ \text{не определена}, & n
otin A. \end{cases}$$

Определение 1.8. $f(x) \simeq g(x)$ («совпадает») — или f(x) и g(x) оба определены и равны, либо оба не определены для любого x.

Замечание. $\operatorname{dom} \omega_A = A$.

Утверждение 1.8. Если A перечислимо, то ω_A вычислимо.

Доказательство. Алгоритм для ω_A , вход: n.

Запускаем перечислитель A и ждем появляения n; когда появится, выводим 1 и останавливаемся.

Предложение 1.1. Если ω_A вычислима, то A перечислимо.

Доказательство. $A = \text{dom } \omega_A$.

Следствие 1.4. *А* перечислимо $\iff \omega_A$ вычислима (*A* полуразрешимо).

Утверждение 1.9. Если A перечислимо и $A \neq \emptyset$, то \exists вычислимая тотальная $f \colon \mathbb{N} \to \mathbb{N}$, такая что $A = \operatorname{rng} f$ (то есть $A = \{f(0), f(1), \ldots\}$).

Доказательство. У A есть перечислитель A.

Так как $A \neq \emptyset$, то \mathcal{A} напечатает какое-то число $a \in A$. Пусть впервые напечатает на шаге k.

Пусть f(0) := a, а f(n+1) := последнее число, которое \mathcal{A} напечатает за n+k+1 шагов.

Очевидно, что f вычислима.

Следствие 1.5. Если A перечислимо, то \exists вычислимая $f: \mathbb{N} \xrightarrow{p} \mathbb{N}$, такая что $A = \operatorname{rng} f$.

Утверждение 1.10. Если $A \subseteq \mathbb{N}$ перечислимо, то \exists разрешимое $B \subseteq \mathbb{N}^2$, такое что $A = \operatorname{pr}^1 B$.

Доказательство. Пусть \mathcal{A} — перечислитель A.

$$B:=\left\{(n,k)\in\mathbb{N}^2\mid \text{ алгоритм }\mathcal{A} \text{ выводит }n \text{ на шаге }k\right\}.$$
 $\operatorname{pr}^1B=\left\{n\in\mathbb{N}\mid\exists k: (\text{алгоритм }\mathcal{A} \text{ выводит }n \text{ на шаге }k)\right\}=\left\{n\in\mathbb{N}\mid n\in A\right\}=A.$

Теорема 1.3 (равносильное определение перечислимого множества). $\forall A \subseteq \mathbb{N}$ следующие утверждения равносильны:

- 1. А перечислимы;
- 2. А полуразрешимо;
- 3. $\exists f$ вычислимая : $\mathbb{N} \stackrel{p}{\to} \mathbb{N}$: $A \operatorname{dom} f$;
- 4. $\exists f$ вычислимая : $\mathbb{N} \stackrel{p}{\to} \mathbb{N}$: $A \operatorname{rng} f$;
- 5. $A=\varnothing$ или $\exists f$ вычислимая тотальная : $\mathbb{N} \to \mathbb{N}$: $A=\operatorname{rng} f;$
- 6. \exists разрешимое $B \subseteq \mathbb{N}^2$: $A = \operatorname{pr}^1 B$.