SEQUENCE LISTING

<110> MCCARTHY, JUSTIN CORDELL, BARBARA

<120> METHODS FOR IDENTIFYING INHIBITORS OF NEURONAL DEGENERATION

<130> SCIOS.012A

<160> 16

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 942

<212> DNA

<213> Homo Sapien

<400> 1

atgcgcgcca agcagaaccc cccgggcccg gccccccgg gagggggcag cagcgacgcc 60 gctgggaagc cccccgggg ggctctgggc accccggcgg ccgccgctgc caacgagctc

120

120

aacaacaacc teeegggegg egegeeggee geacetgeeg teeeeggtee egggggegtg 180

10,0

aactgegegg teggeteege eatgetgaeg egggegeeee eggeeegegg eeegeggegg 240

teggaggaeg agececeage egectetgee teggetgeae egecgececa gegtgaegag

300 gaggagccgg acggcgtccc agagaagggc aagagctcgg gccccagtgc caggaaaggc

360

aaggggcaga tcgagaagag gaagctgcgg gagaagcggc gctccaccgg cgtggtcaac

420

atccctgccg cagagtgctt agatgagtac gaagatgatg aagcagggca gaaagagcgg

480

aaacgagaag atgcaattac acaacagaac actattcaga atgaagctgt aaacttacta

540

gatccaggca gttcctatct gctacaggag ccacctagaa cagtttcagg cagatataaa

600

agcacaacca gtgtctctga agaagatgtc tcaagtagat attctcgaac agatagaagt

660

gggttcccta gatataacag ggatgcaaat gtttcaggta ctctggtttc aagtagcaca

720

ctggaaaaga aaattgaaga tcttgaaaag gaagtagtaa cagaaagaca agaaaaccta

780

agacttgtga gactgatgca agataaagag gaaatgattg gaaaactcaa agaagaaatt

```
840
gatttattaa ataqaqacct agatgacata gaagatgaaa atgaacagct aaagcaggaa
aataaaactc ttttgaaagt tgtgggtcag ctgaccaggt ag
942
<210> 2
<211> 341
<212> PRT
<213> Homo Sapien
<400> 2
Met Ala Thr Gly Gly Tyr Arg Thr Ser Ser Gly Gly Gly Ser Thr Thr
Asp Trp Lys Ala Lys Arg Lys Met Arg Ala Lys Asn Gly Ala Gly Gly
                                25
Gly Ser Ser Asp Ala Ala Gly Lys Ala Gly Ala Gly Thr Ala Ala Ala
Ala Ala Asn Asn Asn Gly Gly Ala Ala Ala Val Gly Gly
Val Asn Cys Ala Val Gly Ser Ala Met Thr Arg Ala Ala Arg Gly Arg
Arg Ser Asp Ala Ala Ser Ala Ser Ala Ala Arg Asp Asp Gly Val Lys
                85
Gly Lys Ser Ser Gly Ser Ala Arg Lys Gly Lys Gly Lys Arg Lys Arg
                                105
Lys Arg Arg Ser Thr Gly Val Val Asn Ala Ala Cys Asp Tyr Asp Asp
                            120
                                                 125
Ala Gly Lys Arg Lys Arg Asp Ala Thr Asn Thr Asn Ala Val Asn Asp
                        135
                                            140
Gly Ser Ser Tyr Arg Thr Val Ser Gly Arg Tyr Lys Ser Thr Thr Ser
                                        155
                                                             160
145
                    150
Val Ser Asp Val Ser Ser Arg Tyr Ser Arg Thr Asp Arg Ser Gly Arg
                165
                                    170
Tyr Asn Arg Asp Ala Asn Val Ser Gly Thr Val Ser Ser Ser Thr Lys
                                185.
            180
Lys Asp Lys Val Val Thr Arg Asn Arg Val Arg Met Asp Lys Met Gly
                            200
                                                205
Lys Lys Asp Asn Arg Asp Asp Asp Asp Asn Lys Asn Lys Thr Lys Val
    210
                        215
Val Gly Thr Arg Met Ala Thr Gly Gly Tyr Arg Thr Ser Ser Gly Gly
                                        235
                    230
Gly Ser Thr Thr Asp Trp Lys Ala Lys Arg Lys Met Arg Ala Lys Asn
                                    250
Gly Ala Gly Gly Gly Ser Ser Asp Ala Ala Gly Lys Ala Gly Ala Gly
                                265
                                                     270
            260
Thr Ala Ala Ala Ala Ala Asn Asn Asn Gly Gly Ala Ala Ala Ala
        275
                            280
                                                 285
```

 Val Gly Gly Gly Val Asn Cys Ala Val Gly Ser Ala Met Thr Arg Ala

 290
 295

 Ala Arg Gly Arg Arg Asp Ala Ala Ser Ala Ser Ala Ser Ala Ala Arg Asp Asp

 305
 310

 Gly Val Lys Gly Lys Ser Ser Gly Ser Ala Arg Lys Gly Lys
 320

 Arg Lys Arg Lys Arg
 340

<210> 3 <211> 1404 <212> DNA <213> Homo Sapien

<400> 3

atgacagagt tacctgcacc gttgtcctac ttccagaatg cacagatgtc tgaggacaac cacctgagca atactgtacg tagccagaat gacaatagag aacggcagga gcacaacgac 120 agacqqaqcc ttqqccaccc tqaqccatta tctaatggac gaccccaggg taactcccgg 180 caggtggtgg agcaagatga ggaagaagat gaggagctga cattgaaata tggcgccaag catgtgatca tgctctttgt ccctgtgact ctctgcatgg tggtggtcgt ggctaccatt 300 aagtcagtca gcttttatac ccggaaggat gggcagctaa tctatacccc attcacagaa gataccgaga ctgtgggcca gagagccctg cactcaattc tgaatgctgc catcatgatc 420 agtgtcattg ttgtcatgac tatcctcctg gtggttctgt ataaatacag gtgctataag 480 gtcatccatg cctggcttat tatatcatct ctattgttgc tgttcttttt ttcattcatt tacttggggg aagtgtttaa aacctataac gttgctgtgg actacattac tgttgcactc 600 ctgatctgga attttggtgt ggtgggaatg atttccattc actggaaagg tccacttcga 660 ctccaqcaqq catatctcat tatgattagt gccctcatgg ccctggtgtt tatcaagtac 720 ctccctgaat ggactgcgtg gctcatcttg gctgtgattt cagtatatga tttagtggct qttttqtqtc cqaaaqqtcc acttcqtatq ctqqttqaaa caqctcaqqa qaqaaatgaa acqctttttc caqctctcat ttactcctca acaatggtgt ggttggtgaa tatggcagaa ggagacccgg aagctcaaag gagagtatcc aaaaattcca agtataatgc agaaagcaca 960

gaaagggagt cacaagacac tgttgcagag aatgatgat gcgggttcag tgaggaatgg 1020
gaagcccaga gggacagtca tctagggcct catcgctcta cacctgagtc acgagctgct 1080
gtccaggaac tttccagcag tatcctcgct ggtgaagacc cagaggaaag gggagtaaaa 1140
cttggattgg gagattcat tttctacagt gttctggttg gtaaagcctc agcaacagcc 1200
agtggagact ggaacacaac catagcctgt ttcgtagcca tattaattgg tttgtgcctt 1260
acattattac tccttgccat tttcaagaaa gcattgccag ctcttccaat ctccatcacc 1320
tttgggcttg ttttctactt tgccacagat tatcttgtac agccttttat ggaccaatta 1380
gcattccatc aattttatat ctag

<210> 4 <211> 467 <212> PRT <213> Homo Sapien

<400> 4

Met Thr Glu Leu Pro Ala Pro Leu Ser Tyr Phe Gln Asn Ala Gln Met Ser Glu Asp Asn His Leu Ser Asn Thr Val Arg Ser Gln Asn Asp Asn 25 Arg Glu Arg Gln Glu His Asn Asp Arg Arg Ser Leu Gly His Pro Glu Pro Leu Ser Asn Gly Arg Pro Gln Gly Asn Ser Arg Gln Val Val Glu Gln Asp Glu Glu Glu Asp Glu Glu Leu Thr Leu Lys Tyr Gly Ala Lys 75 His Val Ile Met Leu Phe Val Pro Val Thr Leu Cys Met Val Val Val Val Ala Thr Ile Lys Ser Val Ser Phe Tyr Thr Arg Lys Asp Gly Gln 110 105 Leu Ile Tyr Thr Pro Phe Thr Glu Asp Thr Glu Thr Val Gly Gln Arg 125 120 Ala Leu His Ser Ile Leu Asn Ala Ala Ile Met Ile Ser Val Ile Val 135 140 Val Met Thr Ile Leu Leu Val Val Leu Tyr Lys Tyr Arg Cys Tyr Lys 160 145 150 155 Val Ile His Ala Trp Leu Ile Ile Ser Ser Leu Leu Leu Phe Phe 170 Phe Ser Phe Ile Tyr Leu Gly Glu Val Phe Lys Thr Tyr Asn Val Ala 185 Val Asp Tyr Ile Thr Val Ala Leu Leu Ile Trp Asn Phe Gly Val Val

<210> 5

<211> 1346

<212> DNA

<213> Homo Sapien

<400> 5

atgctcacat tcatggcctc tgacagcgag gaagaagtgt gtgatgagcg gacgtcccta 60

atgtcggccg agagccccac gccgcgctcc tgccaggagg gcaggcaggg cccagaggat 120

ggagagaaca ctgcccagtg gagaagccag gagaacgagg aggacggtga ggaggaccct

Met 1	Leu	Thr	Phe	Met 5	Ala	Ser	Asp	Ser	Glu 10	Glu	Glu	Val	Cys	Asp 15	Glu
Arg	Thr	Ser	Leu 20	Met	Ser	Ala	Glu	Ser 25	Pro	Thr	Pro	Arg	Ser 30	Cys	Gln
Glu	Gly	Arg 35	Gln	Gly	Pro	Glu	Asp 40	Gly	Glu	Asn	Thr	Ala 45	Gln	Trp	Arg
Ser	Gln 50		Asn	Glu	Glu	Asp 55	Gly	Glu	Glu	Asp	Pro 60	Asp	Arg	Tyr	Val
Cys 65	Ser	Gly	Val	Pro	Gly 70	Arg	Pro	Pro	Gly	Leu 75	Glu	Glu	Glu	Leu	Thr 80
Leu	Lys	Tyr	Gly	Ala 85	Lys	His	Val	Ile	Met 90	Leu	Phe	Val	Pro	Val 95	Thr
	_		100			Val		105					.110		
Thr	Glu	Lys 115	Asn	Gly	Gln	Leu	Ile 120	Tyr	Thr	Thr	Phe	Thr 125	Glu	Asp	Thr
Pro	Ser 130	Val	Gly	Gln	Arg	Leu 135	Leu	Asn	Ser	Val	Leu 140	As'n	Thr	Leu	Ile
Met 145	Ile	Ser	Val	Ile	Val 150	Val	Met	Thr	Ile	Phe 155	Leu	Val	Val	Leu	Tyr 160
Lys	Tyr	Arģ	Cys	Tyr 165	Lys	Phe	Ile	His	Gly 170	Trp		Ile	Met	Ser 175	Ser
Leu	Met	Leu	Leu 180	Phe	Leu	Phe	Thr	Tyr 185	Ile	Tyr	Leu	Gly	Glu 190	Val	Leu
Lys	Thr	Tyr 195	Asn	Val	Ala	Met	Asp 200	Tyr	Pro	Thr	Leu	Leu 205	Leu	Thr	Val
Trp	Asn 210	Phe	Gly	Ala	Val	Gly 215	Met	Val	Cys	Ile	His 220	Trp	Lys	Gly	Pro
Leu 225	Val	Leu	Gln	Gln	Ala 230	Tyr	Leu	Ile	Met	Ile 235	Ser	Ala	Leu	Met	Ala 240
Leu	Val	Phe	Ile	Lys 245	Tyr	Leu	Pro	Glu	Trp 250	Ser	Ala	Trp	Val	Ile 255	Leu
_			260		_	_		265					270		Gly
		275					280					285			Ile
Phe	Pro 290	Ala	Leu	Ile	Tyr	Ser 295	Ser	Ala	Met	Val	Trp 300	Thr	Val	Gly	Met
305	_	j	_		310	Ser				315					320
Pro	Glu	Met	Glu	Glu 325	Asp	Ser	Tyr	Asp	Ser 330	Phe	Gly	Glu	Pro	Ser 335	Tyr
Pro	Glu	Val	Phe 340	Glu	Pro	Pro	Leu	Thr 345	Gly	Tyr	Pro	Gly	Glu 350	Glu	Leu
Gļu	Glu	Glu 355	Glu	Glu	Arg	Gly	Val 360	Lys	Leu	Gly	Leu	Gly 365	Asp	Phe	Ile
Phe															


```
<210> 7
<211> 371
<212> DNA
<213> Homo Sapien
<400> 7
60
cctccctcct tcttctccct ccctcctgtc ctgggattgc ctggagctcc gcaccgcgag
tttgccgcgg cactttccgc gcggcggaag agcgcgcgcc agcttcggca cacctgggag
180
ccqqatccca qccctacqcc tcqtccccta caaqctcctc caagccccgc cggctgctgt
gggagcggcg gccgtccctc tcctggaggt cgtctcctgg catcctcggg gccgcaggaa
300
ggaagaggag gcagcggccg gagccctggt gggcggcctg aggtgagagc ccgaccggcc
360
cctttqqqaa t
371
<210> 8
<211> 5935
<212> DNA
<213> Homo Sapien
<220>
<221> CDS
<222> (5832)...(5935)
<221> intron
```

<222> (5214)...(5690)

<400> 8

gaattccaga aggcaggaac agagaaagta gaaggaaagt cttataaaag aaagagaata 60 ggccaggcac ggtggctcac gcctctaatc ccagcatttt gggaggctga ggcaggtgga 120

tcatgaggtc 180	aggagttcaa	gaccaacctg	accaacatgg	tgaagccccg	tctctactaa
aaatacaaaa. 240	attaaccagg	cgtgtgtgcc	tgtaatccca	gctactcagg	aggctgaggc
aggagaatcg 300	cttgaacccg	aaaggtgaag	gttgctgtga	gcċtagatca	ggccactgca
ctctgacctg 360	ggcgacagag	cgagactcca	t <u>g</u> tcaaagaa	aaagaaagag	gataagaaaa
tttcctaact 420	ggaaggcaga	tagctgatta	aaagggtcca	ctgactgcat	aacataataa
tgataaaaga 480	ccaaatcaga	gcatatcttc	aagatatttc	agaggatcta	agtaagaaga
tccaaaaatt 540	ttgagacaga	aaatacaatg	caatcagaat	gccactggtc	ttctaaacag
caactctgga 600	aactagatga	taataaagca	atgccttcaa	aattatgaag	gaaaatgctt
tctaacctag 660	agttctatgc	tccaccaaac	tattaatcaa	gtatgaagat	aaatttaaaa
cattttccaa 720	tatgcaaggt	ctctaagaat	gagttatact	atcttcagaa	tatactgagg
atatactctg 780	ctaaaatgaa	ggggagaaac	aaaaagagaa	aagtatgcaa	ttcaggaaac
aagaagtcta 840	cagagaaaat	gattctcaag	gtgttagagg	agcataatcc	caggatgacc
acaagcaacg 900	agccttaaaa	tcagtccaga	ttaggccagg	tgcggtggct	cacacctgta
atcccagcac 960	tttgggaggc	caaagcaggc	tggttgcctg	agctcagaag	ttcgagacca
gtctgggcaa 1020	catggtgaaa	ccccgtctc	tactaaaata	caaaaaatta	gctgggcgtg
gtggcatgtg 1080	cctgtattcc	cagctactct	ggaggctgat	gcaggagaat	tgcttgaacc
caggaggcgg 1140	aggttgcagt	gagccaagac	tgcgccactg	cactacagcc	tcaccaacag
agcgagactc 1200	cgtctccaaa	caaacaaaca	aaatcaatcc	atattaaagc	aggggatgga
gggctccaga 1260	acagatgttt	ccaaaaagag	aatagaactg	atagcttacc	caatgtgatt
1320		aatttgagta			
gccgatgatt 1380	aaagaaaaaa	aaagaggcaa	gttttaactg	cagaaaaatg	gtaaagacaa
aaggtatagt 1440	tgtgcaacaa	ggaaaaacag	ttgtaaaaaa	aaagaaatgc	aatcatatac
accacatgac 1500	tcagctatga	acagtatttg	tatagtcata	atactacggg	cgtgtaggag
	atatgtgtgg	ccgggcatgg	tggctcatgc	ctgtaatccc	agaactttgg

tggtctaagc catgcagtga taaatttatg tggggtgtta tcctagttca ttcaaagtct 3060 atcgttttta ggctgatatt gtatattcaa taccccatct gttataattt cctcttctcc 3120 catacacttc ttagagacca aggactttaa gcccctagaa gggactatgt ttactgagtg 3180 ccttcctcga atcaagcaca ttttatgtgc agtgtcagtt cttaagacag cttaaatata 3240 atgtaattgg gaggctgaga gcaggagaat tgcttgaact caggaggcgg aggttgcagt gagctgagat cccgccactg cactccagcc tggcgacaga gcgagactcc gcctcaaaaa 3360 aaaaaaaaat gtaatttttg ctgattttat agtacagaaa gctgagtacc agataatgta 3420 aacatgccca agatctctca gctagctgac tattccctct ttccactata tcctgcagcc 3480 cttccaggag aaaagtcctc tgataagtta caaagcatat gaatgtgaat acgtttaatg 3540 tcccagcctc ccttactctc cttaaaactc agaaaacaaa ctaatgaata tgtaattgag 3600 aaacttcagg tggcacactg gggttggtac tagcttaggt aaacagccgc tcagcctttt 3660 agacctattc ccaacaaaag cttttaattt tctaaggatt tttccagagc tctcgccata 3720 cgtttcccac aacagccaga ccaaagacca aaactgtctt tccctgagaa atatagagca 3780 tgtgaatcac tttcttctgt tcccagttct gtggcaggca aacactgatt gctcactcat catgtgctac ctgggcaaaa caggaatatt aagtaggaag aaaggtttat gttaggtaag 3900 agegtgaett agggetetee taetttttta caaaatggag acetggeatt tgtageetee 3960 cacaatgatg tgccctgaca ttacttggat atagaaaggt cagtcttagg tgcgtcagtg 4020 acageceace eegetetgat eeagaaattt eagatgaett geateagagg ataageetet 4080 ggcatgttaa taatgaaaaa atagagacaa tcactgcccc agctcatctc aaattagcat 4140 cagtgcagcg ttagtacttt ggtagggagc tttgctgcta aattcattct ctgtaaagag 4200 gagaggcaga gacagggtta aggggaaaac tccaagactg gaatcgccaa tacaataaac 4260 tgtcgaactg agttttttct cccgcaaccc taagatacta gtaagtcctt cctcttagcc 4320 aacccttttc accagggcac cgcagttttc ttagaaggag ggtgctgggt ttgtctcagg tctttctatt ctcctgcccg ctgccctagt acatctgaaa agggagcagc gactaggaaa 4440

agagacacgt gggtattttc ccatcctgtc tagtcattcc ctgaatcatc acaagttatc 4500 gcacttttcc ccttagccag cagcgttcga gactttctct caaataatac ggtcttgtac 4560 ttaaaaggaa gagtggtggg agaagagaga ggcggagaag acaagcaaga agggcgtgga gtgccgttcc cgccccggag tcggaggcgc cgggaggccg gacgccgcga agctgctagc 4680 ccaggaatgt gccgtctaac tcgcaggccg cgggcggagc gcggggcg cgctgtggtc tgcggcggga gcgggcaga ggacggctgg cgcagggcag gctgcagcgg cgggccggac 4800 gcgacgccgc gcacctgagc gccgggggcg gggcgtcagc ggccacgacc cttcccaccg 4860 egegeegege ceetegegeg eegeetegge etttteeget egtgettegg egeegetegg 4920 4980 gtcctgggat tgcctggagc tccgcaccgc gagtttgccg cggcactttc cgcgcggcgg 5040 \ aagagegege gecagetteg geacacetgg gageeggate ecageeetae geetegteee 5100 ctacaagctc ctccaaggta aggcgctcgc tcacacccgg tcctttccac gctcggcggg 5160 acagetgggt eccegeetee tetgegaace ggetaggage teegegeete geettgggag 5220 tggggttgta gctgacgggg acctcggacc ggcggtggct agagcgcgga gcaggcgata cgacgagccg acaggtggcg ggtctagccc tagtatctcg accgccgccg gcgcggacct 5340 5400 taggggcggc gatcgtcggg gtccgtactg taggtgcgtg ggagaaactt tgcagggtgg 5460 ggacccggcg gctgctggcc ggtagtgact ggtgggcgcg ctcgaggact ccaaggggcg 5520 cagcccgggg gcagaccctt gggtcgggcg gggatcttac gcttccctta cccgcccct 5580 tttgtctttc acctcagccc cgccggctgc tgtgggagcg gcggccgtcc ctctcctgga 5640 ggtcgtctcc tggcatcctc ggggccgcag gaaggaagag gaggcagcgg ccggagccct 5700 ggtgggcggc ctgaggtgag agcccgaccg gcccctttgg gaatatggcg accggtggct 5760 accggaccag cagcggcctc ggcggcagca ccacagactt cctggaggag tggaaggcga 5870

```
Met Arg Ala Lys Gln Asn Pro Pro Gly Pro Ala Pro Pro 1 5 10
```

```
gga ggg ggc agc agc gcc gct ggg aag ccc ccc gcg ggg gct ctg
5918
Gly Gly Gly Ser Ser Asp Ala Ala Gly Lys Pro Pro Ala Gly Ala Leu
15 20 25
```

```
ggc acc ccg gcg gcc gc
5935
Gly Thr Pro Ala Ala
30
```

```
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide
<400> 9
agttgagggg actttcccag gc
```

agttgagggg actttcccag gc 22

<210> 10 <211> 22 <212> DNA <213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide
<400> 10

attcgatcgg ggcgggggga gc 22

<210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide

<400> 11 cggctaccac atccaaggaa

```
2.0
      <210> 12
      <211> 18
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Oligonucleotide
     <400> 12
      gctggaatta ccgcggct
      18
      <210> 13
      <211> 22
      <212> DNA
      <213> Artificial Sequence
<220>
      <223> Synthetic Oligonucleotide
      <400> 13
      tgctggcacc agacttgccc tc
      22
      <210> 14
      <211> 20
ļ
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Oligonucleotide
      <400> 14
      cccagatcca ggaacctcct
      20
      <210> 15
      <211> 23
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Oligonucleotide
      <400> 15
      ttttgtatct gcctgggact gtt
```

19

23

<210> 16
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide

<400> 16
cctgcccag gacccgtcg