Var	Name	Defn	Desc
đ	q	$q = [q_0,, q_7]$ $q = [s_0, t_0, s_1, t_1, s_2, t_2, s_3, t_3]$	Joint Coords, Pairs of steer/trans coords. At caster-steer and wheel-roll, NOT motors.
S_i	<i>i</i> th steer joint		Steer joint angle
t_{i}	<i>i</i> th trans joint		(only speeds, \dot{t}_i , used)
tq	joint torques	$\boldsymbol{\tau} = [\tau_s, \tau_t]$	Joint Torques on caster-steer and wheel-roll joints
mtq	motor torques	$ au_{ m mot} = N^{-1} au$	
N	gearbox ratios	$\omega_{ m mot} = N \dot{q}$	steer/trans mot speeds=N*steer/trans joint speeds
qd	q-dot	ġ	Joint speeds
Х	X	$x = [x, y, \theta]$	Local Coords
xd	x-dot	$\dot{\mathbf{x}} = [\dot{x}, \dot{y}, \dot{\theta}]$	Local Velocity
rxd	raw x-dot	$x = [x, y, \theta]$	Raw Local Velocity {unfiltered}
rgxd	raw global x-dot	$\dot{\mathbf{x}} = [\dot{x}, \dot{y}, \dot{\theta}]$	Raw Global Velocity {unfiltered}
gx	global x	$\mathbf{x} = [x, y, \theta]$	Global Coords
gxd	global x-dot	$\dot{\mathbf{x}} = [\dot{x}, \dot{y}, \dot{\theta}]$	Global Velocity
gxdd	global x-double-dot	$\ddot{x} = [\ddot{x}, \ddot{y}, \ddot{\theta}]$	Global Acceleration
dx	desired x		Desired/Goal position
dxd	desired x-dot		Desired/Goal velocity
dxdd	desired x-double-dot		Desired/Goal acceleration
KPx_		1200 1/s^2	Controller position gain, Linear
KVx_		4 1/s	Controller velocity gain, Linear
KPa_		1100 m/s^2	Controller position gain, Angular
 KVa		2 m/s	Controller velocity gain, Angular
KpE_		170 kg/s	Virtual Truss Controller position gain
J, Jt	Jacobian (transpose)	$\dot{x} = J \dot{q}$	
С	Constraint Matrix	$\dot{q} = C \dot{x}$	
Lambda	Λ		Op-Space Mass matrix
Mu	μ		Op-space velocity coupling vector
cxdd	local control accel	$\ddot{x} = K_p(x_{\text{des}} - x) + K_{\nu}(\dot{x}_{\text{des}} - \dot{x})$	Control acceleration, local coords
cgxdd	global control accel		Control acceleration, global coords
cf	control force	$F = \Lambda \ddot{x} + \mu$ $F = [F_x, F_y, M_\theta]$	Control force of unit-mass system (gravity term, p, not implemented)