华东师范大学数据科学与工程学院实验报告

课程名称:分布式系统与编程 年级:2017级 上机实践成绩:

指导教师: 徐辰 **姓名:** 吴双

上机实践名称: Giraph 部署与编程 学号: 10164102141 上机实践日期: 2019/12/20

上机实践编号: 05 组号: 01 上机实践时间: Week 15-16

一、实验目的

- 学习 Giraph 的部署,理解 Giraph 与 MapReduce 之间的关系
- 练习以顶点为中心的图算法编程方式,体会与基于 MapReduce/Spark/Flink 进行图算法编程的区别

二、实验任务

- Giraph 部署【第 15 周】: 单机集中式、单机伪分布式(在个人用户下独立完成)、分布式(多位同学新建一个相同的用户,例如 ecnu,协作完成(实在无法完成))
- Giraph 编程【第 16 周】

三、使用环境

- Hadoop 2.9.2
- Ubuntu LTS 18.04
- Flink 1.7.2

四、实验过程

Giraph 基于 MapReduce v1 部署

- 1 单机伪分布式部署
- 1.1 准备工作&修改配置并启动 Hadoop 和 Giraph
- 修改 ~/giraph-1.2.0-for-hadoop-1.2.1/bin/giraph-env, 指定 Hadoop 安装路径:

```
# resolve links - $0 may be a softlink
sed -i '1i\export HADOOP_HOME=~/hadoop-1.2.1' ~/giraph-1.2.0-for-hadoop-1.2.1/bin/giraph-env
THIS="${BASH_SOURCE:-0}"
while [ -h "$THIS" ]; do
    ls=`ls -ld "$THIS"`
```

• 修改 ~/hadoop-1.2.1/conf/mapred-site.xml, 结果如下:

· 启动 HDFS 及 MapReduce。通过运行 jps 来检验进程状态:

```
Mon 23 Dec - 16:41 ~ 
@wushuangyoyo jps
26803 SecondaryNameNode
27238 Jps
26935 JobTracker
26599 DataNode
26396 NameNode
27135 TaskTracker 1 ~/hadoop
```

1.2 运行 Giraph 应用程序

Simple shortest paths computation 示例程序

• 将 tiny_graph.txt 上传至 hdfs:///user/you/input 下。查看 HDFS 的文件信息:

```
| Muushuangyoyo | -/hadoop-1,2.1/bin/hadoop fs -ls <u>input</u> | grep tiny_graph
| grep tiny_graph | grep tiny_graph | large | la
```

按照如下代码执行:

```
| The Part | The Part
```

查看运行中进程

```
Mon 23 Dec - 16:48 ~

Dwwshunggeve jps
31360 Child
26803 SecondaryNameNode
31411 Child
26935 JobTracker
26599 DataNode
31433 Child
30202 RunJar
26396 NameNode
31455 Child
27135 TaskTracker
31903 Jps
```

• 运行完成后查看输出

1.3 查看 Giraph 应用程序运行信息

• 访问 JobTracker 网页 (http://localhost:50030),

点击正在运行或已完成的 Giraph 应用程序, 可看到 Giraph 应用程序的统计信息

Hadoop job_201912231641_0002 on localhost

Kind	% Complete	Num Tasks	Pending	Running	Complete	Killed	Failed/Killed Task Attempts
map	100.00%	4	0	0	4	0	0/0
reduce	100.00%	0	0	0	0	0	0/0

	Counter	Мар	Reduce	Total
Map-Reduce Framework	Spilled Records	0	0	0
	Virtual memory (bytes) snapshot	0	0	8,750,948,352
	Map input records	0	0	4
	SPLIT_RAW_BYTES	176	0	176
map-reduce rramework	Map output records	0	0	0
	Physical memory (bytes) snapshot	0	0	893,489,152
	CPU time spent (ms)	0	0	6,690
	Total committed heap usage (bytes)	0	0	1,237,319,680
Zookeeper halt node	/_hadoopBsp/job_201912231641_0002/_haltComputation	0	0	0
Zookeeper server:port	localhost:22181	0	0	0
	Superstep 1 SimpleShortestPathsComputation (ms)	58	0	58
	Initialize (ms)	1,070	0	1,070
calhost:50030/jobconf.jsp?jobid=	iob 201912231641 0002	63	0	63

• 查看程序日志

JobHistory 日志默认位置: ~/hadoop-1.2.1/logs

job 201912111815 0002 conf.xml job 201912231641 0001 conf.xml job 201912231641 0002 conf.xml userlogs/ 98508 bytes Dec 11, 2019 6:20:25 PM 98508 bytes Dec 23, 2019 4:46:30 PM 98508 bytes Dec 23, 2019 4:48:29 PM 4096 bytes Dec 23, 2019 4:48:30 PM

- Task 日志默认位置:~/hadoop-1.2.1/logs/userlogs/<jobid>/<attempt-id>

3.6 关闭 Hadoop

略

分布式在构建过程中有很多错误,实在无法进行,故放弃。

Giraph 应用编程实践

1. 编写并调试 Giraph 程序

- 配置程序输入

在 src/main/resources/input/ 路径下添加输入文件 graph-data1.txt 和 tiny_graph.txt:

• graph-data1.txt 文件内容:

• <u>tiny_graph.txt</u> 文件内容:

- IDE 中直接运行 Giraph MaxVertexValue 应用程序
- 正常执行情况下,项目结构:

• 程序输出内容:

2. 运行 Giraph 程序

- 利用 IDE 打包 jar 文件
- 伪分布式模式下运行 Giraph MaxVertex Value 程序
- 上传输入文件至 HDFS, 具体的文件情况如下:

• 运行 giraph 程序

在终端中运行此 jar 包程序,结果如下:

• 查看输出结果

执行命令:

分布式和上一部分一致, 无法完成。

五、**总结**

- 1. Giraph 在分布式的支持上还是有一些不太会的地方,而且对外界的依赖比较高;
- 2. **论文要好好看,好多问题的出现其实就是没仔细看论文,没理解本质的含义造成的。