Aula de hoje

- Histograma com uso de densidade
- Alguns possíveis formatos do histograma
- Formato do histograma versus Medidas de posição

1º: uso do notebook:

Aula04_Atividade

2º: uso do notebook:

Aula04_Exercício

Objetivos de Aprendizado

Ao final desta aula, o aluno deve ser capaz de:

- Calcular medidas que representem os percentis (ou quantis) de uma particular amostra e interpreta-los.
- Construir um HISTOGRAMA útil para visualização gráfica de variáveis quantitativas.
- Explicar vantagens sobre o uso da <u>densidade</u> na construção de um histograma e saber interpretá-lo.
- Discutir alguns formatos de um histograma e suas relações com as medidas de posição: média, mediana e moda

Tabela de frequências para variável quantitativa

Tabela de frequências para variável quantitativa:

```
dados = pd.read excel('EmpresaTV.xlsx')
In [6]: dados.RENDA.value_counts().head(15)
Out[6]: 4.9
        5.4
        2.5
        13.2
        0.8
        12.9
        7.4
        10.7
        5.5
        5.3
        6.0
        4.7
        11.2
        3.9
        0.6
        Name: RENDA, dtype: int64
```


Tabela de frequências para variável quantitativa:

A construção de tabelas de frequências para variáveis quantitativas necessita de alguns cuidados.

Se construirmos uma tabela de frequências para a variável RENDA, por exemplo, usando função .value_counts(), essa tabela não resumirá as observações num grupo menor, pois não existem ou existem poucos valores iguais. Certamente, dificultará na interpretação!

A solução empregada é agrupar os dados por faixa de renda as quais podem ter amplitudes iguais ou desiguais.

Tabela de frequências para variável quantitativa:

- Dividir os dados em classes
- Contar quantas observações há em cada classe:

Frequência Absoluta

Dividir pelo número total de observações:

Frequência Relativa

Determinação do número e da amplitude das classes:

O número de classes não deve ser tão grande a ponto de se ter classes com muito poucas observações e nem tão pequeno a ponto de mascarar o comportamento dos dados.

Tabela de frequências relativas para RENDA

Plano A

Frequências	relativa	as:
[0.5, 4)	6.5	
[4, 7.5)	19.6	
[7.5, 11)	32.6	
[11, 14.5)	26.1	
[14.5, 18)	10.9	
[18, 21.5)	4.3	
Name: RENDA,	dtype:	float64

Plano B

```
Frequências relativas:
[0.5, 4) 22.2
[4, 7.5) 55.6
[7.5, 11) 19.4
[11, 14.5) 0.0
[14.5, 18) 0.0
[18, 21.5) 2.8
```

Name: RENDA, dtype: float64

Comando Python:

```
from numpy import arange
```

```
faixa = arange(start, stop, step) ou faixa = range(start, stop, step)
```

variávelCateg = pd.cut(variávelQuant, bins=faixa, right=False)

variávelCateg.value_counts()

Histograma

Uso de densidade no eixo y

Gráfico de colunas para RENDA – com

amplitudes desiguais

Plano A

Frequências relativas:

[0.5, 4.0)[4.0, 7.5)

19.6

[7.5, 11.0) 32.6 [11.0, 14.5) 26.1

6.5

[14.5, 21.5) 15.2

Name: RENDA, dtype: float64

Gráfico de colunas para RENDA – com amplitudes desiguais

www.insper.edu.br

Gráfico de colunas para RENDA – com

JTRO EXEMPLO

Plano A

Frequência relativas:

(0, 4]

6.5

amplitudes desiguais

(4, 8]

23.9

(8, 11]

28.3

(11, 15] 28.3

(15, 22]

13.0

Name: RENDA, dtype: float64

Gráfico de colunas para RENDA – com amplitudes desiguais

TRO EXEMPLO

Exercício 1 – da Aula04_Atividade

dados.RENDA.describe().to_frame().transpose()

	count	mean	std	min	25%	50%	75%	max
RENDA	82.0	8.343902	4.620622	0.6	4.925	7.75	10.775	21.4

Na aula passada, já discutimos que o Histograma 3 está errado. Porém, como calcular a densidade?

Como calcular densidade

 δ_i f_i

 Δ_i : amplitude (largura) da classe i

 δ_i : altura da classe i

 f_i : área da classe i

A área é o que chama a atenção no gráfico e queremos representar a frequência relativa com que cada classe aparece.

Como determinar δ_i (medida para eixo y)?

Sabemos que $Area = base \times altura$

Logo,

$$f_i = \Delta_i \delta_i \implies \delta_i = \frac{f_i}{\Delta_i}$$

O que é δ_i ?

Exercício 2 - Aula03 Atividade

Frequência relativas:

	RENDA
[0.5, 4.0)	0.134
[4.0, 7.5)	0.354
[7.5, 11.0)	0.268
[11.0, 21.5)	0.244

Como calcular a densidade?

Considerando a quarta classe, por exemplo, temos:

$$f_i = 0.244$$

 $\Delta_i = (21.5 - 11) = 10.5$

$$f_i = 0.244$$
 $\Delta_i = (21.5 - 11) = 10.5$
 $\Rightarrow \delta_i = \frac{f_i}{\Delta_i} = \frac{0.244}{10.5} 0.0232$

Construção de histograma

Determinação da densidade:

O nome densidade é dado para distribuições cuja área total sob a curva é igual a 1. Ou seja, **Área total na soma de todos os retângulos formados no histograma deve ser igual a 1**.

Com isso, a densidade para classe é obtida a partir da conta:

Densidade = frequência relativa / amplitude da classe

Dessa forma, frequência relativa de uma classe está refletida na área de sua respectiva caixa formada no histograma.

É possível construir um histograma com classes de tamanhos diferentes?

Sim. Entretanto, é necessário ter cuidado na interpretação do histograma.

Notebook Atividade – sala

Explorando base de dados reais:

• Download pelo Github:

https://github.com/Insper/CD22-2

• Fazer individual e discutir em sala

Notebook Exercício

Explorando base de dados reais:

Download pelo Github:

https://github.com/Insper/CD22-2

Fazer individual e discutir na mesa

Próxima aula...

Leitura prévia necessária:

- Tutorial de Pandas via Jupyter
- Montgomery & Runger, Seç. 6.6 e Seç. 11.2.
- Magalhães & Lima, Cap. 1. e Cap. 4.
- Grus, Cap. 5
- Jogar no http://guessthecorrelation.com/