

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	justificaciones)
DCBel	Dra. Estela Cerezo Acevedo	El programa se estructuró a partir de temas propuestos por:
20/sep/2011	Dr. Víctor Manuel Romero Medina	Dra. Estela Cerezo Acevedo Dr. Víctor Manuel Romero Medina

Relación con otras asignaturas

Seminario

Anteriores	Posteriores	
Asignatura(s)	Asignatura(s)	
a) Cálculo Integral	a) Manejo alternativo de energía.	
b) Física Experimental	b) Aire acondicionado y refrigeración	
Tema(s)	Tema(s)	
a) Integrales definidas	a) Leyes Termodinámicas	
b) Introducción a la termodinámica	b) Ciclo de Carnot inverso	

Nombre de la asignatura	Departamento o Licenciatura
Termodinámica	Ingeniería Industrial

Ciclo	Clave	Créditos	Área de formación curricular
2 - 2	II0216	8	Profesional Asociado y Licenciatura Básica
Tipo de asignatura			Horas de estudio
			нт не тн ні

16

64

64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir las leyes fundamentales de la Termodinámica para que se explique el funcionamiento de las máquinas térmicas y los ciclos de potencia.

Objetivo procedimental

Evaluar la eficiencia de las máquinas térmicas y los ciclos de potencia para la estimación de los sistemas utilizados en la industria.

Objetivo actitudinal

Fomentar el trabajo colaborativo y tolerante para la realización de proyectos en equipo.

Unidades y temas

Unidad I. INTRODUCCIÓN Y CONCEPTOS BÁSICOS

Describir los términos básicos de Termodinámica para discusión de sus aplicaciones en la vida diaria y en la industria.

- 1) Objeto y aplicaciones de la Termodinámica.
- 2) Conceptos básicos
 - a) Sistema
 - b) Volúmenes de control
 - c) Propiedades de un sistema
 - d) Estado y Equilibrio
 - e) Proceso y ciclos
 - f) Dimensiones y unidades
- 3) Temperatura y Ley Cero
- 4) Sustancias puras

Unidad II. PRIMER PRINCIPIO DE LA TERMODINÁMICA

	T 11 / 1 1 11 1/		/ 1 1 / 1 / 1 / 1
Emplear al primar principio de la	Larmodinamica nara la realización	ada halancae da i	anardia da cictamae tarmodinamicoe
LITIDICAL CI DITITICI DITICIDIO GETA	i cittibuli attilca bata la tcalizacioi	i ue balalices de l	energía de sistemas termodinámicos.

- 1) Definición del trabajo en: Sistemas mecánicos y Sistemas termodinámicos.
- 2) El Primer Principio de la Termodinámica.
- 3) Capacidades caloríficas
- 4) Energía Interna

Unidad III. SEGUNDO PRINCIPIO DE LA TERMODINÁMICA

Aplicar el segundo principio de la Termodinámica para la evaluación de la eficiencia de las máquinas térmicas.

- 1) Procesos irreversibles y reversibles
- 2) Enunciados del Segundo Principio: Clausius, Kelvin-Planck.
- 3) Entropía.
- 4) Máquinas térmicas:
 - a) Motores de combustión externa: el ciclo de Rankine
 - b) Motores de combustión interna: el ciclo Otto, el ciclo Diesel
- 5) El ciclo de Carnot inverso:
 - a) Ciclo de refrigeración por compresión de vapor o gas.
 - b) Ciclo de refrigeración por absorción.
 - c) Ciclo de refrigeración por adsorción.

Unidad IV. CICLOS DE POTENCIA

Evaluar los diferentes ciclos de potencia para su utilización en la industrial.

- 1) Ciclo de Stirling y Ericsson
- 2) Ciclo Brayton
- 3) Cogeneración por turbina de vapor.
- 4) Plantas combinadas de generación de potencia.

Actividades que promueven el aprendizaje

Docente	Estudiante
Lectura dirigida y discusiones grupales	Investigación documental
Visita a empresas	Exposiciones en equipo
Prácticas de laboratorio	Elaboración de reportes de la visita y prácticas
Resolución de problemas	Realización de resúmenes.

Actividades de aprendizaje en Internet

Se promoverá el uso de la tecnologías de la información (correo electrónico, grupo de noticias, claroline).

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Prácticas y/o salidas de campo	30
Exposición	20
Tareas	20
Total	100

Fuentes de referencia básica

Bibliográficas

Cengel, Yunus A. (2009). Termodinámica. (6ª Ed.). México. McGraw Hill

Huang, Francis F. (2001). Ingeniería termodinámica. México. CECSA

Kurt C. (2006). Termodinámica (6ª Ed.). México. Pearson Educación. ISBN 9702607574

Lynn D. Russel y George A. Adeviyi. (2000)Termodinámica clásica. México. Pearson education

Stephen R. Turns. (2006) Thermal fluid sciences an integrated approach. Cambridge University Press.

Web gráficas

Se promoverá el uso de la tecnologías de la información (correo electrónico, grupo de noticias, claroline).

Fuentes de referencia complementaria

Bibliográficas

Wark, Keneth Jr. (1991). Termodinámica. Mc Graw-Hill.

Zemansky, M.W. y Dittman, R.H. (1990) Calor y termodinámica. McGraw-Hill.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con la licenciatura en Ingeniería (Sistemas de Energía, Industrial, Mecánica, Química) o Físico, preferentemente con posgrado en ingenierías vinculadas con el uso y el aprovechamiento de la energía.

Docentes

Tener experiencia docente de tres años mínimos a nivel superior en asignaturas relacionadas.

Profesionales

Tener experiencia laboral en el sector energético y/o industrial