Simulování náhodných veličin

Proč potřebujeme simulovat náhodné veličiny ?

- Pravděpodobnost chování řady statistických postupů (odhadů, testových statistik, procedur, apod.) nelze studovat exaktně.
- Rozdělení může být příliš složité nebo prakticky nepoužitelné.
- Sledujeme chování při konečných rozsazích výběrů pomocí simulací.
- Nechť X je náhodná veličina a X_1, X_2, \ldots, X_n je náhodný výběr, pak $\mu_n = \frac{1}{n} \sum_{i=1}^n g(X_i) \stackrel{n \to \infty}{\Longrightarrow} \mu = \operatorname{E} g(X)$ (s pravděpodobností 1), speciálně
 - $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{n \to \infty}{\Longrightarrow} EX$

 - $\frac{1}{n}|X_n \le c| \stackrel{n\to\infty}{\Longrightarrow} P(X \le c)$
 - ightharpoonup median $(X_1, X_2, \dots, X_n) \stackrel{n \to \infty}{\Longrightarrow}$ median(X)
- Je-li proces generovaný pomocí algoritmu, není náhodný. Důležité je, aby se proces choval jako náhodný.

Generování náhodných (pseudonáhodných) čísel z rovnoměrného rozdělení

- ▶ lineární kongruentní generátor $x_i = (ax_{i-1} + c) \mod m (i = 1, 2, ...)$
- multiplikativní rekurzivní generátor $x_i = (a_1x_{t-1} + \cdots + a_kx_{t-k}) \mod m (i = k, k+1, \dots)$
- kombinované generátory, např. $x_i = (1403580x_{i-2} 810728x_{i-3})$ mod $m_1 = 2^{32} 209$ a $y_i = (527612y_{i-2} 1370589y_{i-3})$ mod $m_2 = 2^{32} 22853$ a $u_i = \frac{x_i y_i + m_1}{m_1 + 1}$ pokud $x_i \le y_i$ a $u_i = \frac{x_i y_i}{m_1 + 1}$ pokud $x_i > y_i$
- kvalitu pseudonáhodných generátorů testuje řada testů
- ▶ Více např. Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev: Handbook of Monte Carlo Methods,2011. ISBN: 9780470177938

Obecné metody simulování náhodných veličin

- metoda inverzní transformace
 využívá znalost distribuční funkce
- zamítací metoda využívá znalost funkce hustoty
- doplňková přijímací metoda
- kompoziční metoda

lze využít pokud umíme napsat funkci hustoty jako součet jiných funkcí hustoty nebo jako transformace jiných funkcí hustoty

Metoda inverzní transformace

Uvažujeme náhodnou veličinu X s distribuční funkcí F(x) a inverzní distribuční funkcí $F^{-1}(t) = \inf \{x : F(x) \ge t\}$, pak platí: pokud U má rovnoměrné rozdělení na intervalu 0,1, pak X má rozdělení s distribuční funkcí $X = F^{-1}(U)$.

Pro generování výběru x_1, x_2, x_3, \dots lze použít následující postup

- ▶ Nageneruji *u_i* z rovnoměrného rozdělení na intervalu 0, 1
- $x_i = F^{-1}(u_i)$

Metoda je vhodná pro situace, kdy umím vyjádřit explicitně fci F^{-1} . Funkci F^{-1} lze v některých případech nahradit vhodnou aproximací. Hodnotu x_i lze získat i numerickým řešením rovnice $F(x_i) = u_i$.

Zamítací metoda

Nechť X je náhodná veličina s hustotou f(x) a nechť existuje dominující funkcí hustoty g(x) a konstanta $c \ge 1$ tak, že $f(x) \le c \cdot g(x)$, pak lze pro generování výběru x_1, x_2, x_3, \ldots použít následující postup

- ▶ nageneruji x_i s hustotou g(x)
- nageneruji v_i z z rovnoměrného rozdělení na intervalu 0,1 nezávislou na X
- vypočtu $T_i = c \cdot \frac{g(x_i)}{f(x_i)}$
- ▶ pokud platí $v_i \cdot T_i \le 1$ je x_i akceptováno do výběru

Zamítací metoda pro funkci hustoty s omezeným nosičem

Pokud funkce f(x) je nenulová na konečném intervalu a,b (označme $M=\max_{a\leq x\leq b}f(x)$), pak lze použít následující postup

- ▶ nageneruji u_i a v_i dvě nezávislé veličiny z R(0,1)
- $x_i = a + (b a) \cdot u_i$
- ▶ pokud platí $v_i \cdot M \le f(x_i)$ je x_i akceptováno do výběru

Výhoda: není třeba znát distribuční funkci a inverzní funkci F^{-1} Nevýhoda: pokud funkce f(x) vymezuje v obdélníku $(a,b)\times(0,M)$ malou plochu, bude zamítnuto mnoho dvojic u_i,v_i Modifikací je metoda o sevření.

Generování náhodných vektorů pomocí inverzní metody

Uvažujme dvourozměrnou náhodnou veličinu s distribuční funkcí F(x,y). Označme F(x) marginální distribuční funkci a F(y|x) podmíněnou distribuční funkci.

Pro generování výběru (x_i, y_i) použijeme následující postup

- ightharpoonup nageneruji u_i a v_i dvě nezávislé veličiny z R(0,1)

Generování náhodných vektorů pomocí zamítací metody

Uvažujme dvourozměrnou náhodnou veličinu s funkcí hustoty f(x,y). Předpokládejme, že funkce je nenulová na omezené oblasti A. Označme maximum $M = \max_{(x,y) \in A} f(x,y)$.

Pro generování výběru (x_i, y_i) použijeme následující postup

- nageneruji trojici x_i, y_i, w_i rovnoměrně z oblasti vymezené plochou A a výškou M
- ▶ pokud platí $w_i \le f(x_i, y_i)$ je (x_i, y_i) akceptováno do výběru