

Prof. Dr.-Ing. Frank Neitzel, Dr.-Ing. Sven Weisbrich

| Exercise 12: Adjustment Calculation - part VII - Triangulation network -               |                      |                       |             |  |  |
|----------------------------------------------------------------------------------------|----------------------|-----------------------|-------------|--|--|
| Group:                                                                                 | Surname, First name: | Matriculation number: | Signature*: |  |  |
|                                                                                        |                      |                       |             |  |  |
|                                                                                        |                      |                       |             |  |  |
|                                                                                        |                      |                       |             |  |  |
|                                                                                        |                      |                       |             |  |  |
|                                                                                        |                      |                       |             |  |  |
| * With my signature I declare that I was involved in the elaboration of this homework. |                      |                       |             |  |  |
| Submission until: <b>02.02.2025</b>                                                    |                      |                       |             |  |  |

## Objective

This exercise deals with the determination of 2D coordinates of points in a plane Cartesian coordinate system from observed directions.



Figure 1: Triangulation network

Table 1: 2D coordinates of control stations

| Point | Y [m]   | X [m]   |
|-------|---------|---------|
| 1     | 682.415 | 321.052 |
| 2     | 203.526 | 310.527 |
| 4     | 251.992 | 506.222 |
| 5     | 420.028 | 522.646 |
| 6     | 594.553 | 501.494 |

Table 2: Observed directions

| Instrument station | Foresight station | Direction<br>[gon] |
|--------------------|-------------------|--------------------|
| 3                  | 1                 | 206.9094           |
|                    | 2                 | 46.5027            |
|                    | 4                 | 84.6449            |
|                    | 5                 | 115.5251           |
|                    | 6                 | 155.5891           |

## Task 1:

The observed directions of the triangulation network depicted in Figure 1 are listed in Table 2. The points 1, 2, 4, 5 and 6 are control points (error free) and their 2D coordinates are given in Table 1. Calculate the adjusted coordinates of point 3 using least-squares adjustment.

- The observed directions are uncorrelated and were obtained with an accuracy of 1 mgon.
- Set up an appropriate functional model as well as the observation equations.
- Set up the stochastic model.
- Choose appropriate values for the break-off conditions  $\epsilon$  and  $\delta$  and justify your decision.
- Solve the normal equation system and determine the 2D coordinates of point 3 as well as their standard deviations.
- Calculate the residuals and the adjusted observations as well as their standard deviations.

## Task 2 (Homework):

Calculate the adjusted coordinates of point 3 of the triangulation network depicted in Figure 1 while this time using <u>angles</u> as observations (derived from the observed directions).

- Set up the stochastic model for the derived angles.
  - O Hint: VCM from VC propagation!
- Set up an appropriate functional model as well as the observation equations.
- Choose appropriate values for the break-off conditions  $\epsilon$  and  $\delta$  and justify your decision.
- Solve the normal equation system and determine the 2D coordinates of point 3 as well as their standard deviations.
- Calculate the residuals and the adjusted observations as well as their standard deviations.
- Compare and comment the results with those from task 1.