Connor Nagel

Problem 1

2.1 For the following C statement, write the corresponding RISC-V assembly code. Assume that the C variables f, g, and h, have already been placed in registers x5, x6, and x7 respectively. Use a minimal number of RISC-V assembly instructions.

$$f = g + (h - 5);$$

 $sub \ h, \ h, \ 5$
 $add \ f, \ g, \ h$

Problem 2

2.2 Write a single C statement that corresponds to the two RISC-V assembly instructions below.

```
add f, g, h
add f, i, f
f = i + (g + h)
```

Problem 3

2.4 For the RISC-V assembly instructions below, what is the corresponding C statement? Assume that the variables f, g, h, i, and j are assigned to registers x5, x6, x7, x28, and x29, respectively. Assume that the base address of the arrays A and B are in registers x10 and x11, respectively.

slli x30, x5, 3 // x30 = f*8	f = f * 8
add x30, x10, x30 // x30 = &A[f]	A = &A[f]
slli x31, x6, 3 // x31 = g*8	g = g * 8
add x31, x11, x31 // x31 = &B[g]	B = &B[g]
Id x5, $0(x30) // f = A[f]$	f = &A
addi x12, x30, 8	C = &A + 8
ld x30, 0(x12)	A = &C
add x30, x30, x5	A = A[f + 8]
sd x30, 0(x31)	Writes A

Problem 4

2.5 Show how the value 0xabcdef12 would be arranged in memory of a little-endian and a big-endian machine. Assume the data are stored starting at address 0 and that the word size is 4 bytes.

Little-endian: 12efcdab

Big-endian: abcdef12

Problem 5

2.6 Translate 0xabcdef12 into decimal.

Oxabcdef12 to binary = 1010 1011 1100 1101 1110 1111 0001 0010

Binary to decimal = 2882400018