

Facultad de Ingeniería

Carrera: Ingeniería en Sistemas

Asignatura:

Sistemas Operativos

Catedrático:

Ing. Elmer Danuary Padilla Sorto.

Ángeles Izamar Euceda Herrera 20221930061

Comayagua, Comayagua, 22 de abril de 2025

Introducción

La planificación de procesos es una función fundamental de los sistemas operativos modernos. Este proyecto tiene como finalidad simular distintos algoritmos de planificación, analizar su comportamiento y medir su eficiencia mediante métricas clave. La simulación permite comprender cómo se gestionan los recursos de CPU y cuál es el impacto de cada algoritmo sobre los procesos en ejecución.

Objetivo del Proyecto

• Desarrollar un simulador interactivo en C++ con interfaz gráfica (Windows Forms) que implemente los algoritmos de planificación de procesos FCFS, SJF y Round Robin, y que permita observar visualmente el orden de ejecución, el uso de CPU y las métricas asociadas a cada proceso.

Algoritmos Implementados

- FCFS (First Come First Serve): Atiende los procesos en el orden en que llegan.
- SJF (Shortest Job First): Selecciona el proceso con el menor tiempo de rafaga.
- Round Robin: Asigna un tiempo fijo (quantum) a cada proceso y rota entre ellos hasta finalizar.

Cada algoritmo se puede seleccionar desde la interfaz gráfica y visualizar su comportamiento con los datos ingresados por el usuario.

Detalles de Implementación

→ Lenguaje utilizado: C++
→ Entorno de desarrollo: Visual Studio 2022
→ Interfaz: Windows Forms
→ Entrada de procesos: Manual, mediante campos para ID, tiempo de llegada, rafaga y prioridad.

→ Salida: Diagrama de Gantt textual, métricas individuales y

promedio general.

Métricas Calculadas

- → Tiempo de espera: Tiempo en que un proceso espera en cola antes de ser atendido.
- → Tiempo de respuesta: Tiempo desde la llegada hasta la primera vez que se atiende el proceso.
- → Tiempo de retorno: Tiempo total desde la llegada hasta que finaliza el proceso.
- → Uso de CPU: Proporción del tiempo en que la CPU estuvo activa.

Casos de Prueba

Se ingresaron distintos conjuntos de procesos para validar el comportamiento de los algoritmos. En todos los casos, se observaron los tiempos correctamente y se generaron los diagramas esperados. Se evaluó también el funcionamiento del quantum en Round Robin y su impacto en la alternancia de procesos.

Caso 1

Atiende a los procesos en el orden de llegada, sin interrupciones. El primer proceso que llega se ejecuta hasta terminar luego el siguiente, y así sucesivamente.

→ Simulación paso a paso:

P1 llega en 0 y se ejecuta durante $5 \rightarrow [0-5]$

P2 ya ha llegado (llegó en 1) \rightarrow [5-8]

P3 también llegó antes, se ejecuta después → [8-10]

Caso 2

Elige el proceso con la ráfaga más corta entre los que ya han llegado. No interrumpe procesos (en su versión no-preemptiva).

→ Simulación paso a paso:

Solo P1 está disponible al inicio, así que empieza.

P1 se ejecuta \rightarrow [0-7]

En ese tiempo, llegan P2 y P3.

De ellos, P3 tiene la ráfaga más corta $(1) \rightarrow [7-8]$

Queda P2, con ráfaga $4 \rightarrow [8-12]$

Caso 3

Asigna a cada proceso un quantum fijo (aquí: 2). Si el proceso no termina en ese tiempo, se interrumpe y vuelve a la cola luego elige el próximo proceso disponible por orden de llegada. Cabe recalcar que esta versión no muestra el Gantt en detalle, sino que muestra intervalos acumulados: p.inicio: el momento en que el proceso se ejecutó por primera vez. Y p.fin: el momento en que terminó su última ejecución.

→ Simulación paso a paso:

P1 (llega en 0): ejecuta 2 unidades \rightarrow queda 3

P2 (llega en 1): ejecuta 2 unidades → queda 1

P3 (llega en 2): ejecuta 1 unidad → termina

P1 (vuelve): ejecuta 2 unidades → queda 1

P2 (vuelve): ejecuta 1 unidad → termina

P1 (última vuelta): ejecuta 1 unidad → termina

Conclusiones

Este simulador permite comprender de manera visual y práctica el impacto de distintos algoritmos de planificación sobre el rendimiento del sistema. La interfaz amigable facilita la introducción de datos y el análisis de resultados, mientras que la implementación modular permite la futura extensión hacia algoritmos como Prioridades o MLFQ. El proyecto refuerza los conceptos teóricos vistos en clase mediante la programación aplicada.