Introduction à la Recherche Opérationnelle

Anatoli louditski, LJK anatoli.iouditski@univ-grenoble-alpes.fr

Lien vers le cours :

https://ljk.imag.fr/membres/Anatoli.Iouditski/ro-m1-ssd.htm

Objectifs de ce cours :

- s'initier à la modélisation et la résolution de problèmes "du monde réel" et de problèmes d'optimisation surgissant en applications statistiques
- comprendre les qualités et les limites de différents modèles par rapport aux hypothèses, à la complexité et à l'effort de résolution
- experimenter la résolution de problèmes à l'aide de modèles mathématiques en utilisant les logiciels disponibles, et interpréter correctement les résultats

Évaluation: réalisation d'un projet en TP

Introduction

Recherche opérationnelle : comment organiser les *operations (activités)* d'une organisation (production, transport, construction, communication, planification financière, santé, militaire...)

Recherche – en reference à une approche scientifique :

- analyse des besoins, collection des données, formulation du problème
- construction d'un modèle mathématique abstraction et extraction des facteurs essentiels – assez precis, pour que ces solutions soient valides pour le problème "réel"
- résolution conception d'un algorithme numérique pour calculer la solution
- validation experimentation pour tester l'adequation du modèle et des solutions,
 ajustements

Caractéristique importante : l'objectif est de proposer "la meilleure solution" = la solution optimale (ou plutôt une solutions optimales)

Avertissement : Une approche par modèles à de la prise de décision aide à prendre de bonnes décisions, mais ne peut garantir de bons résultats

De point de vue de statisticien

- 1. RO est le "consommateur final" des solutions statistiques analyse statistique est un étape de construction, d'identification et de test d'un modèle
- 2. Les outils mathématiques et numériques de RO théorie et algorithmes d'optimisation sont utilisées en statistiques quand les règles de decisions statistiques nécessitent une recherche de "meilleurs solutions"

Dans ce cours on présentera brièvement ces deux aspects de RO. Mais notre intérêt s'orientera surtout vers le second – les outils mathématiques et numériques de resolution de *problèmes d'optimisation* et leurs applications en statistique.

En termes de compétences les objectifs sont d'apprendre de modéliser un problème comme un problème d'optimisation (ou encore, de *programmation mathématique*), et d'utiliser les outils disponibles (e.g., CVXR, RMosek) pour le résoudre.

Formuler un modèle mathématique

Problème général de programmation mathématique

minimiser
$$f(x)$$
 [fonction objective] sous contraintes
$$h_i(x) = 0, \ i = 1,...,m \quad \text{[contraintes d'égalité]} \qquad (\text{MP}) \\ g_j(x) \leq 0, \ j = 1,...,k \quad \text{[contraintes d'inégalité]} \\ x \in X \qquad \qquad \text{[domaine du problème]}$$

Un problème d'optimisation, comme tout modèle mathématique est une representation idéalisée du problème "réel." Le modèle

- *doit être "adéquate"* modéliser "correctement" la structure des relations entre les décisions et les résultats)
- *peut être "nourri" par les données* on doit pouvoir identifier les différents paramètres
- peut être traité numériquement en temps raisonnable

Éléments d'un problème de programmation mathématique

- variables de décision, e.g., $x = [x_1; ...; x_n]$ décisions quantifiées
- une solution $x \in \mathbb{R}^n$ représente une decision possible
- fonction objective représente la mesure de performance (les pertes) à optimiser,
 e.g.,

$$f(x_1, ..., x_n) = c_1 x_1 + ... + c_n x_n$$

 contraintes du problème representent les restrictions sur les décisions admissibles, définies par les inégalités ou égalités contenant les variables de decision, par exemple,

$$x_1 + 3x_1x_2 + 2x_2 \le 10$$
, $x_1 + x_2^{x_5} - x_6\cos(x_8) = 0$,...

— les coefficients et les seconds membres sont données ou paramètres du problème

minimiser
$$f(x)$$
 sous contraintes

[fonction objective]

$$h_i(x) = 0, i = 1, ..., m$$
 [contraintes d'égalité]
 $g_j(x) \le 0, j = 1, ..., k$ [contraintes d'inégalité]
 $x \in X$ [domaine du problème]

(MP) [domaine du problème]

Resoudre le problème (MP) veut dire trouver une solution optimale x_* , c.-à-d., une solution admissible (réalisable) (i.e., qui respecte les contraintes) avec la valeur de I'objectif ≤ sa valeur sur toute autre solution admissible :

$$\begin{cases} h_i(x_*) = 0 & \forall i, \ g_j(x_*) \le 0 \ \forall j, \ \text{et } x_* \in X \\ h_i(x) = 0 & \forall i, \ g_j(x) \le 0 \ \forall j, \ \text{et } x \in X \end{cases}$$

$$\Rightarrow f(x_*) \le f(x)$$

Classification des problème de programmation mathématique

minimiser f(x) [fonction objective] sous contraintes $h_i(x) = 0, i = 1,...,m$ [contraintes d'égalit

$$h_i(x) = 0, i = 1, ..., m$$
 [contraintes d'égalité] (MP)
 $g_j(x) \le 0, j = 1, ..., k$ [contraintes d'inégalité]
 $x \in X$ [domaine du problème]

- En optimisation *combinatoire* (ou *discrete*), le domaine X est un ensemble discret (e.g., ensemble des vecteurs avec des composantes entières ou 0/1.
- En optimisation *continue* on se concentre sur X qui est un "continuum" (e.g., \mathbb{R}^n , boite $\{x \ a \le x \le b\}$, ou *simplex* $\{x \ge 0 : \sum_j x_j = 1\}$, etc.); l'objectif et les contraintes sont des fonction (pour le moins!) continues sur X.
- En optimisation linéaire, $X = \mathbb{R}^n$ et l'objectif et les contraintes sont des fonctions linéaires de x.
- Au contraire, en optimisation *non-linéaire continue*, (certaines fonctions parmi) l'objectif et les contraintes sont non-linéaires.