import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

to ignore warnings
import warnings
warnings.filterwarnings('ignore')

train_data = pd.read_csv("train.csv")
test_data = pd.read_csv("test.csv")

train_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.:
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.:
2	3	1	3	Heikkinen, Miss.	female	26.0	0	0	STON/02.	7.9 •

train_data.tail()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0
4										•

train_data.shape

(891, 12)

train_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)
memo	ry usage: 83.	7+ KB	

train_data.describe()

F	Parch	SibSp	Age	Pclass	Survived	PassengerId	
891.000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	count
32.204	0.381594	0.523008	29.699118	2.308642	0.383838	446.000000	mean
49.693	0.806057	1.102743	14.526497	0.836071	0.486592	257.353842	std
0.000	0.000000	0.000000	0.420000	1.000000	0.000000	1.000000	min
7.910	0.000000	0.000000	20.125000	2.000000	0.000000	223.500000	25%
14.454	0.000000	0.000000	28.000000	3.000000	0.000000	446.000000	50%
31.000	0.000000	1.000000	38.000000	3.000000	1.000000	668.500000	75%
512.329	6.000000	8.000000	80.000000	3.000000	1.000000	891.000000	max

train_data.nunique()

PassengerId	891
Survived	2
Pclass	3
Name	891
Sex	2
Age	88
SibSp	7
Parch	7
Ticket	681
Fare	248
Cabin	147
Embarked	3
44	

dtype: int64

test_data.head()

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN
4										•

```
test_data.shape
```

(418, 11)

print(train_data.duplicated().sum())
print(test_data.duplicated().sum())

0

0

train_data.isna().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

test_data.isna().sum()

PassengerId	0
Pclass	0
Name	0
Sex	0
Age	86
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	327
Embarked	0

dtype: int64

test_data['Fare'].fillna(test_data['Fare'].median(), inplace=True)

test_data.isna().sum()

PassengerId 0 Pclass 0 Name 0 Sex 0 Age 86 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 327 Embarked

train_data["Embarked"].value_counts()

S 644C 168Q 77

dtype: int64

Name: Embarked, dtype: int64

train_data["Embarked"].fillna("S", inplace= True)

train_data["Embarked"].value_counts()

S 646 C 168 Q 77

Name: Embarked, dtype: int64

train_data.tail()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0
4										•

sns.kdeplot(data=train data, x="Age");

```
0.030 -

0.025 -

0.020 -

0.015 -

0.010 -
```

```
age_median = train_data["Age"].median()
train_data["Age"].fillna(age_median, inplace=True)
```

```
age_median2 = test_data["Age"].median()
test_data["Age"].fillna(age_median2, inplace=True)
```

ng-

train_data.isna().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	0
dtype: int64	

train_data["Cabin"].value_counts()

```
B96 B98 4
G6 4
C23 C25 C27 4
C22 C26 3
F33 3
...
E34 1
C7 1
C54 1
E36 1
C148 1
```

Name: Cabin, Length: 147, dtype: int64

```
train_data['Cabin'] = train_data['Cabin'].fillna('N/A')
test_data['Cabin'] = test_data['Cabin'].fillna('N/A')
```

sns.boxplot(data=train_data,x="Age");


```
train_data["SibSp"].value_counts()
```

```
6081 2092 28
```

4 18

3 16 8 7

5 5

Name: SibSp, dtype: int64

train_data["Parch"].value_counts()

Name: Parch, dtype: int64

train_data["Ticket"].value_counts()

sns.boxplot(data=train_data,x="Fare");

bins = [0, 12, 18, 30, 50, 100]
labels = ['Child', 'Teenager', 'Young Adult', 'Adult', 'Senior']
train_data['AgeGroup'] = pd.cut(train_data['Age'], bins=bins, labels=labels)
test_data["AgeGroup"] = pd.cut(test_data["Age"], bins=bins, labels = labels)

train_data["AgeGroup"].value_counts()

Young Adult 447 Adult 241 Teenager 70 Child 69 Senior 64

Name: AgeGroup, dtype: int64

create title column

train_data["Title"] = [name.split(',')[1].split('.')[0].strip() for name in train_data['Natest_data["Title"] = [name.split(',')[1].split('.')[0].strip() for name in test_data['Name.split(',')[1].split('.')[0].strip()

train_data["Title"].value_counts()

Mr	517
Miss	182
Mrs	125
Master	40
Dr	7
Rev	6
Mlle	2
Major	2
Col	2
the Countess	1
Capt	1
Ms	1
Sir	1
Lady	1
Mme	1

```
LEARNING FROM DISASTER TOTAL CODE - Colaboratory
                        1
     Don
     Jonkheer
                        1
     Name: Title, dtype: int64
test_data["Title"].value_counts()
                240
     Mr
     Miss
                78
                72
     Mrs
     Master
                21
                 2
     Col
     Rev
                 2
     Ms
                 1
     Dr
                 1
     Dona
     Name: Title, dtype: int64
train_data['Title'] = train_data['Title'].replace(['Dr', 'Rev', 'Major', 'Col', 'Capt', 'S
test_data['Title'] = test_data['Title'].replace(['Dr', 'Rev', 'Major', 'Col', 'Capt', 'Sir
train_data["Title"].value_counts()
     Mr
                517
     Miss
               182
     Mrs
               125
                40
     Master
     Other
                27
     Name: Title, dtype: int64
test_data["Title"].value_counts()
                240
     Mr
     Miss
                78
     Mrs
                72
                21
     Master
     Other
                 7
     Name: Title, dtype: int64
train_data.tail()
```

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Far

Montvila.

EDA

```
# Create a correlation matrix
corr = train_data.corr()
```

Create a heatmap using seaborn
sns.heatmap(corr, cmap="coolwarm", annot=True);

What is the Overall Survival Rate?

```
# Count the number of survivors
num_survivors = train_data["Survived"].sum()

# Calculate the overall survival rate
total_passengers = len(train_data)
survival_rate = (num_survivors / total_passengers) * 100

print("The overall survival rate was: {:.2f}%".format(survival_rate))
The overall survival rate was: 38.38%
```

▼ Does passenger class after Survival Rates ?

```
# Count plot
plt.subplot(1, 2, 1) # 1 row, 2 columns, first plot
sns.countplot(x='Pclass', hue='Survived', data=train_data, palette='Set1')
plt.title('Count of Passengers by Class and Survival')
plt.xlabel('Passenger Class')
plt.ylabel('Count')
plt.legend(title='Survived?', loc='upper right')
# Bar plot
plt.subplot(1, 2, 2) # 1 row, 2 columns, second plot
survival_rate_by_class = train_data.groupby('Pclass')['Survived'].mean().reset_index()
sns.barplot(x='Pclass', y='Survived', data=survival_rate_by_class, palette='Set1')
plt.title('Survival Rate by Class')
plt.xlabel('Passenger Class')
plt.ylabel('Survival Rate')
plt.ylim(0, 1) # Set y-axis limit from 0 to 1
plt.tight_layout() # Adjust the layout of the plots
plt.show()
```


Passengers in 1st class are more likely to survive.

Passengers in 3d class are more likely to die.

How does the survival rate differ by gender?

```
# Calculate survival rate based on gender
survival_rate = (train_data.groupby('Sex')['Survived'].mean()*100).round(1)
# Plot survival rate by gender
sns.barplot(x='Sex', y='Survived', data=train_data, ci=None, palette='Set1')
plt.title("Survival rate by gender")
plt.show()
# Select only the passengers who survived
survived = train_data[train_data['Survived'] == 1]
# Count the number of males and females
gender_counts = survived['Sex'].value_counts()
# Plot the gender pie chart
palette = "Set1"
colors = sns.color_palette(palette)
labels = ['Female','Male']
plt.pie(gender_counts, labels=labels, autopct='%1.1f%%', colors=colors)
plt.title('Gender of Survivors')
plt.show()
```


Women have a greater chance of survival than Men.

delider of Julyivora

train_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.:
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.;
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9
4										•

→ Any relationship between Age and Survival?

sns.violinplot(x='Survived', y='Age', data=train_data);

▼ Were children more likely to survive compared to adults?

```
agegroup_survival_rate = train_data.groupby('AgeGroup')['Survived'].mean().sort_values()

colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2']

plt.figure(figsize=(8,6))
plt.barh(agegroup_survival_rate.index, agegroup_survival_rate.values, color = colors)
plt.title('Survival Rate by Age Group', fontsize=14)
plt.xlabel('Survival Rate')
plt.ylabel('Age Group')
plt.xticks(np.arange(0, 1.1, 0.1))
plt.show()
```

Survival Rate by Age Group

Children have a greater chance of survival.

train_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.:
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.;
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9
4										•

Any relationship between Family on board and survival rates?

sns.countplot(x="SibSp", hue="Survived", data=train_data)
plt.show()

The count of survived people having only one siblings/spouses is greater than who died.

The count of survived people having only one parents/children is greater than who died.

→ Did the embarkation location affect survival rates??

```
sns.countplot(x='Embarked', hue='Survived', data=train_data, palette='Set1')
plt.title('Survival by Embarked', fontsize=14)
plt.xlabel('Embarked')
plt.ylabel('Count')
plt.xticks(rotation=0)
plt.legend(['Did Not Survive', 'Survived'], loc='upper right')
plt.show()
```

Survival by Embarked Did Not Survive Survived Did Not Survive Survived

The number of embarked survivals from Cherbourg is > than who number of who died.

```
sns.barplot(x='Embarked', y='Survived', data=train_data, ci=None, palette='Set1');
plt.title("Survival rate by Embarked ")
plt.show()
```

Survival rate by Embarked

train_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.:
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.!
4										•

Any relationship between the fare and survival rates?

```
sns.boxplot(x='Survived', y='Fare', data=train_data)
plt.title('Fare by Survival')
plt.xlabel('Survived')
plt.ylabel('Fare')
plt.show()
```


Survived passengers paid more.

Survived
sns.countplot(x='Title', hue='Survived', data=train_data)
plt.show()

It is clear that Mrs, Miss and Master are more likely to survive.

```
train data.shape
     (891, 14)
train_data["Title"].value_counts()
     Mr
               517
              182
     Miss
     Mrs
               125
               40
     Master
     Other
               27
     Name: Title, dtype: int64
train_data[train_data["Title"] == "Dona"]
       PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin E
test_data[train_data["Title"] == "Dona"]
       PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
test_data["Title"].value_counts()
               240
     Mr
     Miss
               78
     Mrs
               72
     Master
               21
     Other
     Name: Title, dtype: int64
```

Model building

```
train_data["FamilySize"] = train_data["SibSp"] + train_data["Parch"] + 1
test_data["FamilySize"] = test_data["SibSp"] + test_data["Parch"] + 1

# Create a new feature called IsAlone
train_data['IsAlone'] = 0
train_data.loc[(train_data["FamilySize"]) == 0, 'IsAlone'] = 1

test_data['IsAlone'] = 0
test_data.loc[(test_data["FamilySize"]) == 0, 'IsAlone'] = 1

# Create the Deck feature
train_data['Deck'] = train_data['Cabin'].apply(lambda x: x[0])
test_data['Deck'] = test_data['Cabin'].apply(lambda x: x[0])
```

Combine Age and Pclass into a new feature called AgeClass
train_data['AgeClass'] = train_data['Age'] * train_data['Pclass']
test_data['AgeClass'] = test_data['Age'] * test_data['Pclass']

train_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.:
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0
7	*									
4										•

test_data.head()

	Pass	engerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	N/A
,	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	N/A
Passenger_Id = test_data["PassengerId"]											
	2	804	2	IVIT.	mala	62 N	Λ	Λ	240276	0 6975	NI/A

Support Vector Machine

Aipert

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectFromModel
# Define the features and target variable
features = ["Pclass", "Sex", "Fare", "Embarked", "AgeGroup", "FamilySize", "IsAlone", "Title", "Defeatures = ["Pclass", "Sex", "Fare", "Embarked", "AgeGroup", "FamilySize", "IsAlone", "Title", "Defeatures = ["Pclass", "Sex", "Fare", "Embarked", "AgeGroup", "FamilySize", "IsAlone", "Title", "Defeatures = ["Pclass", "Sex", "Fare", "Embarked", "AgeGroup", "FamilySize", "IsAlone", "Title", "Defeatures = ["Pclass", "Sex", "Fare", "Embarked", "AgeGroup", "FamilySize", "IsAlone", "Title", "Defeatures = ["Pclass", "IsAlone", "Title", "Defeatures = ["Pclass", "IsAlone", "Title", "Defeatures = ["Pclass", "IsAlone", "Is
target = "Survived"
# Split the data into train, validation, and test sets
X_train, X_val_test, y_train, y_val_test = train_test_split(train_data[features], train_data_
X_val, X_test, y_val, y_test = train_test_split(X_val_test, y_val_test, test_size=0.5, rar
# Prepare the training data
X_train = pd.get_dummies(X_train)
X_val = pd.get_dummies(X_val)
test_data = pd.get_dummies(test_data[features])
# Align columns in training and test data
X train, test data = X train.align(test data, join='outer', axis=1, fill value=0)
X_val, test_data = X_val.align(test_data, join='outer', axis=1, fill_value=0)
# Scale numerical columns
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
num_cols = ["Fare","FamilySize","AgeClass"]
X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
X_val[num_cols] = scaler.transform(X_val[num_cols])
test_data[num_cols] = scaler.transform(test_data[num_cols])
# Fit and evaluate Support Vector Classifier model
svc model = SVC(kernel='linear')
svc_model.fit(X_train, y_train)
```

Use feature selection to identify the most important features

```
selector = SelectFromModel(svc_model, prefit=True)
important features = X train.columns[selector.get support()]
# Print the important features
print("Important features:", important features)
svc_y_pred_val = svc_model.predict(X_val)
svc_acc_val = accuracy_score(y_val, svc_y_pred_val)
svc_cm_val = confusion_matrix(y_val, svc_y_pred_val)
svc_report_val = classification_report(y_val, svc_y_pred_val)
print("Support Vector Classifier Accuracy on validation data: ", round(svc_acc_val*100, 2)
print("Support Vector Classifier Confusion Matrix on validation data:\n", svc_cm_val)
print("Support Vector Classifier Classification Report on validation data:\n", svc_report_
# Make predictions on test data using the trained model
y_pred_svc = svc_model.predict(test_data)
     Important features: Index(['Deck_E', 'Deck_G', 'FamilySize', 'Fare', 'Sex_female', '
            'Title_Master', 'Title_Mr'],
           dtype='object')
     Support Vector Classifier Accuracy on validation data: 79.21 %
     Support Vector Classifier Confusion Matrix on validation data:
      [[94 19]
      [18 47]]
     Support Vector Classifier Classification Report on validation data:
                    precision
                                 recall f1-score
                                                    support
                        0.84
                                  0.83
                                            0.84
                0
                                                       113
                1
                        0.71
                                  0.72
                                            0.72
                                                        65
                                            0.79
                                                       178
         accuracy
        macro avg
                        0.78
                                  0.78
                                            0.78
                                                       178
     weighted avg
                        0.79
                                  0.79
                                            0.79
                                                       178
```

→ Random Classifier

```
# Random Forest Classifier
rfc_model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=42)
rfc_model.fit(X_train, y_train)

# Use feature selection to identify the most important features
selector = SelectFromModel(rfc_model, prefit=True)
important_features = X_train.columns[selector.get_support()]

# Print the important features
print("Important features:", important_features)

# Make predictions on validation data
y_pred_val = rfc_model.predict(X_val)
```

```
# Evaluate model on validation data
acc val = round(accuracy score(y val, y pred val) * 100, 2)
print("Random Forest Classifier accuracy on validation data:", acc val)
print("Random Forest Classifier confusion matrix on validation data:")
print(confusion_matrix(y_val, y_pred_val))
print("Random Forest Classifier classification report on validation data:")
print(classification_report(y_val, y_pred_val))
# Make predictions on test data using the trained model
y_pred_rfc = rfc_model.predict(test_data)
     Important features: Index(['AgeClass', 'FamilySize', 'Fare', 'Pclass', 'Sex_female',
            'Title_Miss', 'Title_Mr', 'Title_Mrs'],
           dtype='object')
     Random Forest Classifier accuracy on validation data: 80.9
     Random Forest Classifier confusion matrix on validation data:
     [[99 14]
      [20 45]]
     Random Forest Classifier classification report on validation data:
                   precision
                              recall f1-score
                                                   support
                0
                        0.83
                                 0.88
                                            0.85
                                                       113
                        0.76
                                  0.69
                                            0.73
                                                        65
                                            0.81
                                                       178
         accuracy
        macro avg
                        0.80
                                  0.78
                                            0.79
                                                       178
     weighted avg
                        0.81
                                  0.81
                                            0.81
                                                       178
```

K - Neatest Neighbour

```
# K-Nearest Neighbors Classifier
knn model = KNeighborsClassifier(n neighbors=5)
knn_model.fit(X_train, y_train)
# Make predictions on validation data
y_pred_knn_val = knn_model.predict(X_val)
acc knn val = round(accuracy score(y val, y pred knn val) * 100, 2)
print("K-Nearest Neighbors Classifier accuracy on validation data:", acc_knn_val)
print("K-Nearest Neighbors Classifier confusion matrix on validation data:")
print(confusion matrix(y val, y pred knn val))
print("K-Nearest Neighbors Classifier classification report on validation data:")
print(classification_report(y_val, y_pred_knn_val))
# Make predictions on test data using the trained model
y_pred_knn = knn_model.predict(test_data)
     K-Nearest Neighbors Classifier accuracy on validation data: 77.53
     K-Nearest Neighbors Classifier confusion matrix on validation data:
     [[98 15]
```

[25 40]]

K-Nearest Nei	ghbors Class	ifier cla	ssification	report on	validation	data:
	precision	recall	f1-score	support		
0	0.80	0.87	0.83	113		
1	0.73	0.62	0.67	65		
accuracy			0.78	178		
macro avg	0.76	0.74	0.75	178		
weighted avg	0.77	0.78	0.77	178		

Decision Tree Model

```
# Fit decision tree model
dt model = DecisionTreeClassifier(random state=0)
dt_model.fit(X_train, y_train)
# Use feature selection to identify the most important features
selector = SelectFromModel(dt_model, prefit=True)
important_features = X_train.columns[selector.get_support()]
# Print the important features
print("Important features:", important_features)
# Make predictions on validation data
y_pred_val = dt_model.predict(X_val)
# Evaluate model on validation data
acc_val = round(accuracy_score(y_val, y_pred_val) * 100, 2)
print("Decision Tree Classifier accuracy on validation data:", acc_val)
print("Decision Tree Classifier confusion matrix on validation data:")
print(confusion_matrix(y_val, y_pred_val))
print("Decision Tree Classifier classification report on validation data:")
print(classification_report(y_val, y_pred_val))
# Make predictions on test data using the trained model
y_pred_dt = dt_model.predict(test_data)
     Important features: Index(['AgeClass', 'FamilySize', 'Fare', 'Pclass', 'Sex_female']
     Decision Tree Classifier accuracy on validation data: 75.84
     Decision Tree Classifier confusion matrix on validation data:
     [[87 26]
     [17 48]]
     Decision Tree Classifier classification report on validation data:
                   precision recall f1-score support
                                 0.77
                0
                        0.84
                                            0.80
                                                       113
                        0.65
                                  0.74
                                            0.69
                                                       65
                                            0.76
                                                       178
         accuracy
                        0.74
                                  0.75
                                            0.75
                                                       178
        macro avg
                                  0.76
                                            0.76
                                                       178
     weighted avg
                        0.77
```

→ Logistic Regression

```
# Fit and evaluate Logistic Regression model
lr_model = LogisticRegression(random_state=0)
lr_model.fit(X_train, y_train)
# Use feature selection to identify the most important features
selector = SelectFromModel(lr_model, prefit=True)
important_features = X_train.columns[selector.get_support()]
# Print the important features
print("Important features:", important_features)
# Make predictions on validation data
y_pred_val = lr_model.predict(X_val)
# Evaluate model on validation data
acc val = round(accuracy score(y val, y pred val) * 100, 2)
print("Logistic Regression Model accuracy on validation data:", acc_val)
print("Logistic Regression Model confusion matrix on validation data:")
print(confusion_matrix(y_val, y_pred_val))
print("Logistic Regression Model classification report on validation data:")
print(classification_report(y_val, y_pred_val))
# Make predictions on test data using the trained model
y_pred_lr = lr_model.predict(test_data)
     Important features: Index(['AgeClass', 'Deck_C', 'Deck_E', 'Deck_G', 'FamilySize', '
            'Sex_female', 'Sex_male', 'Title_Master', 'Title_Mr', 'Title_Mrs'],
           dtype='object')
     Logistic Regression Model accuracy on validation data: 80.34
     Logistic Regression Model confusion matrix on validation data:
     [[96 17]
      [18 47]]
     Logistic Regression Model classification report on validation data:
                              recall f1-score
                   precision
                                                   support
                0
                        0.84
                                 0.85
                                            0.85
                                                       113
                        0.73
                                  0.72
                                            0.73
                                                        65
                                            0.80
                                                       178
         accuracy
                        0.79
                                  0.79
                                            0.79
                                                       178
        macro avg
     weighted avg
                        0.80
                                  0.80
                                            0.80
                                                       178
```

→ XGBoost as XGB

```
import xgboost as xgb
# Define the XGBoost model
xgb_model = xgb.XGBClassifier(n_estimators=100, learning_rate=0.05, max_depth=3, random_st
# Fit the XGBoost model on the training data
xgb_model.fit(X_train, y_train)
# Use feature selection to identify the most important features
selector = SelectFromModel(xgb_model, prefit=True)
important_features = X_train.columns[selector.get_support()]
# Print the important features
print("Important features:", important_features)
# Make predictions on validation data
y_pred_val = xgb_model.predict(X_val)
# Evaluate model on validation data
acc_val = round(accuracy_score(y_val, y_pred_val) * 100, 2)
print("XGBoost Model accuracy on validation data:", acc_val)
print("XGBoost Model confusion matrix on validation data:")
print(confusion_matrix(y_val, y_pred_val))
print("XGBoost Model classification report on validation data:")
print(classification_report(y_val, y_pred_val))
# Make predictions on test data using the trained model
y_pred_xgb = xgb_model.predict(test_data)
     Important features: Index(['Pclass', 'Sex_female', 'Title_Mr', 'Title_Other'], dtype
     XGBoost Model accuracy on validation data: 82.02
     XGBoost Model confusion matrix on validation data:
     [[98 15]
      [17 48]]
     XGBoost Model classification report on validation data:
                   precision recall f1-score
                                                   support
                0
                        0.85
                                  0.87
                                            0.86
                                                       113
                1
                        0.76
                                  0.74
                                            0.75
                                                        65
                                            0.82
                                                       178
         accuracy
                        0.81
                                  0.80
                                            0.80
                                                       178
        macro avg
     weighted avg
                        0.82
                                  0.82
                                            0.82
                                                       178
```

Gradient Boosting Classifier

```
from sklearn.ensemble import GradientBoostingClassifier

# Define the Gradient Boosting model
gbm_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, r
```

```
# Fit the Gradient Boosting model on the training data
gbm_model.fit(X_train, y_train)
# Use feature selection to identify the most important features
selector = SelectFromModel(gbm_model, prefit=True)
important_features = X_train.columns[selector.get_support()]
# Print the important features
print("Important features:", important_features)
# Make predictions on validation data
y pred val = gbm model.predict(X val)
# Evaluate model on validation data
acc_val = round(accuracy_score(y_val, y_pred_val) * 100, 2)
print("Gradient Boosting Model accuracy on validation data:", acc_val)
print("Gradient Boosting Model confusion matrix on validation data:")
print(confusion_matrix(y_val, y_pred_val))
print("Gradient Boosting Model classification report on validation data:")
print(classification_report(y_val, y_pred_val))
# Make predictions on test data using the trained model
y_pred_gbm = gbm_model.predict(test_data)
     Important features: Index(['AgeClass', 'Fare', 'Pclass', 'Sex_male', 'Title_Mr'], dt
     Gradient Boosting Model accuracy on validation data: 82.02
     Gradient Boosting Model confusion matrix on validation data:
     [[99 14]
      [18 47]]
     Gradient Boosting Model classification report on validation data:
                                recall f1-score
                   precision
                                                   support
                0
                        0.85
                                  0.88
                                            0.86
                                                       113
                1
                        0.77
                                  0.72
                                            0.75
                                                         65
                                            0.82
                                                       178
         accuracy
                        0.81
                                  0.80
                                            0.80
                                                        178
        macro avg
     weighted avg
                        0.82
                                  0.82
                                            0.82
                                                       178
```

We will submit using RFC model

```
# Create submission file
submission = pd.DataFrame({
      "PassengerId": Passenger_Id,
      "Survived": y_pred_gbm
})
submission.to_csv("submission.csv", index=False)
```

→ My score is : 0.79186 = Top 6%

✓ 0s completed at 9:34 PM