

MIEIC - Concepção e Análise de Algoritmos

Planeamento de itinerários multimodais

Relatório Intercalar

realizado por:

2MIEIC01 - Grupo B - Tema 4

Página de Rosto

Tema do Projeto: 4;

Curso: Mestrado Integrado em Engenharia Informática e Computação;

Unidade Curricular: Cencepção e Análise de Algoritmos.

Ano letivo: 2014/15;

Grupo B:

João Nogueira, nº 201303882 up201303882@fe.up.pt;
António Pedro Fraga nº 201303095 up201303095@fe.up.pt;
Filipa Barroso nº 201307852 up201307852@fe.up.pt.

Turma 1;

Data de Entrega: 27 de Abril de 2015.

Índice

Página de Rosto	2
Introdução	
Explicação do Problema	
Descrição do Problema	6
Input	6
Introdução de dados	6
Output	6
Objetivo	6
Restrição	6
Formalização do Problema	
Input	
Output	
Objetivo	
Restrição	
Solução	8
Algoritmos	8
Esquema do programa	9
	(
Casos de Utilização	10
Métricas de avaliação	10
Avaliação empírica do seu desempenho	10
Complexidade temporal	10
Diagrama de Classes	11
Principais dificuldades	12
Esforço por elemento	12
Código	12
Introdução de Dados	12
Implementação Gráfica	
Implementação de algoritmos	
Relatório	
Conclusão	15

Introdução

Foi no âmbito da Unidade Curricular de Concepção e Análise de Algoritmos do 2º ano do MIEIC que nos foi apresentado um problema que nos foi pedido para resolver da forma mais eficiente possível.

Neste relatório está explicado o problema em si, por forma a que se entenda exatamente qual o nosso objetivo e como o pretendemos atingir.

Depois de explicitar qual o problema que procuraremos resolver, explicamos neste relatório os métodos que usaremos para a resolução do problema em questão.

Explicação do Problema

É uma preocupação cada vez maior, o facto de nas grandes cidades o transporte individual ser demasiado utilizado, em detrimento dos transportes comunitários. Um problema presente na maior parte das cidades com vários serviços de transportes públicos é o facto de não haverem plataformas que facilitem ao utilizador a escolha do melhor itinerário tendo em conta os vários tipos de transporte e as várias alternativas de chegar a um destino. Estas plataformas teriam em conta os transportes com paragens em comum e os horários dos vários transportes e linhas diferentes.

Nesta plataforma, caberia ao utilizador apenas introdroduzir a origem e o destino do percurso. A plataforma calcularia os vários itinerários possíveis e mostraria ao utilizador o itenerário multimodal mais curto/rápido.

Para avaliar o itinerário podem ser utilizados diversos critérios tal como o tempo de viagem e distância.

Descrição do Problema

De uma forma geral, pretendemos resolver o problema de itinerários intermodais através de uma aplicação que, apenas recebendo a estação de origem e a de destino, consiga devolver o itinerário mais rápido, curto ou barato dependendo das preferências do utilizador.

Input

Construção de um grafo, G = (V, E), de estações e linhas no qual:

- V vértices representam todas as paragens/estações dos meios de transportes disponíveis;
- E arestas representam todas as distâncias, tempos de viagens e custos;
- Nó de início de viagem e nó de destino.

Introdução de dados

Um ficheiro das estações com respetivas linhas de transportes que nelas passam, id e coordenadas de cada um deles.

Output

Todas as estações em que o utilizador passou por forma a otimizar o seu trajeto e o valor final da distância, duração da viagem dependendo da preferência do utilizador.

Objetivo

Facilitar aos utilizadores a escolha dos melhores trajetos consoante os critérios por estes preferidos.

Restrição

No mesmo caminho não se passa pela mesma estação mais do que uma vez.

Formalização do Problema

Formalizamos agora o problema, de acordo com aquela que achamos ser a melhor forma para resolver aquilo a que nos propusemos.

```
Input
```

V: estações/paragens

E: ligações entre pontos

(tempo de viagem); (distância da viagem).

I: ponto inicial

F: ponto final

Output

$$Caminho = \{V_i\}, I = 1 \dots n$$

Valor

Objetivo

$$valor = \sum_{i=1}^{n} (E_{ij}),$$

 $ij \in Caminho$

Restrição

$$\forall_i \in Caminho = \{V_i\}$$

 ${\sim} \exists_j \in Caminho: \ V_i = \ V_j \ \land \ i \ \neq j$

Solução

Algoritmos

Pensamos que o melhor algoritmo a ser usado neste trabalho é o algoritmo de Dijkstra, que encontra o caminho mais curto num grafo dirigido ou não dirigido em tempo computacional O([arestas + vértices]log (vértices)), este algoritmo não pode ser usado para grafos com pesos negativos, mas visto que este não é o caso, o algoritmo é perfeitamente aplicável.

Este algoritmo é um algoritmo ganancioso, tomando decisões que parecem óptimas no momento, determinando assim o conjunto de melhores caminhos intermediários. O valor de cada aresta está associado ou à distância, calculada através das coordenadas de cada estação, ou ao tempo, calculado com uma velocidade média. A única diferença entre estes dois pesos, são as trocas de linha, estas apenas têm peso quando o tempo for tido em conta.

Esquema do programa

Começamos por introduzir dados de graphos, vértices (estações) e arestas (linhas). De seguida, agrupamos os graphos em dois tipos de estruturas de dados. Uma das estruturas é utilizada para representação gráfica e outra delas é utilizada para cálculos de rotas ideais, cálculos esses efetuados pelo algoritmo descrito em cima. As duas estruturas de dados apresentam ligeiras diferenças, de forma a tornar a representação gráfica mais "user friendly".

Depois de carregar todos os dados, é altura do utilizador escolher o tipo de optimização de viagem, a estação de origem e a estação de destino, seguido da indicação de rota (diferente cor de arestas) na representação gráfica e uma lista das estações que constituem a rota otimizada.

C\Users\Oao\Documents\GitHub\CAL-code\Project\Debug\Projec

Casos de Utilização

- Leitura de dados de ficheiros relativos a redes de transportres;
- Escolha do melhor percurso em termos de tempo de viagem;
- Escolha do melhor percurso em termos de distância percorrida;
- Visualização através do GraphViewer de toda a rede de transportes;
- Visualização do melhor percurso através do GraphViewer.

Métricas de avaliação

Avaliação empírica do seu desempenho

Para avaliar e testar a complexidade temporal dos algoritmos utilizamos diferentes dados de entrada.

Complexidade temporal

Como já foi referido anteriormente, a complexidade temporal do algoritmo que estamos a implementar é de **O([arestas + vértices]log (vértices)).**

Diagrama de Classes

Principais dificuldades

Ao longo da realização deste trabalho encontramos algumas dificuldades, no entanto, aquela que se demonstrou mais difícil de contornar foi a obtenção de informação acerca das várias linhas e redes de transportes a partir dos websites disponíveis, fosse o website da STCP, fosse a partir de *Open Street Maps*.

Optámos então por introduzir manualmente em ficheiros .txt a informação relativa à rede de transportes.

Esforço por elemento

Código

Introdução de Dados

No que diz respeito à procura e forma de introdução dos dados da rede de transportes o João Nogueira foi quem supervisionou. Porém contudo, esta foi feita também pelos outros elementos.

Implementação Gráfica

Em relação à implementação da parte Gráfica, todos os elementos participaram de igual forma e ativamente, tendo esta sido feita paralelamente à implementação do algoritmo.

Implementação de algoritmos

Em relação à implementação do algoritmo, todos participaram na implementação estando o Pedro Fraga responsável por esta componente.

Relatório

No que diz respeito ao relatório, todos os elementos do grupo se esforçaram igualmente para a sua realização.

Conclusão

Desde o relatório perliminar houve algumas pequenas alterações ao trabalho, tendo em conta os problemas encontrados durante o desenvolvimento do programa. O utilizador pode apenas escolher o percurso otimizado por tempo de viagem ou por distância percorrida. Os graphos são apenas preenchidos com informação após a escolha por parte do utilizador da forma de otimização do percurso. Estas são algumas das alterações que nos vimos obrigados a fazer por forma a implementar o trabalho da melhor forma.

Toda a nossa rede de transportes foi baseada na cidade de Vila Real. Não vimos portanto a necessidade de implementar mais do que um tipo de transporte, tendo em conta que a alteração de uma linha para a outra (transbordo) implica o tempo de deslocação entre estações e tempo de espera.

A realização deste trabalho serviu para ficarmos mais inteirados da matéria em questão, particularmente com o modo de funcionamento do Algoritmo de Dijkstra.