MATH 142A: Introduction to Analysis

www.math.ucsd.edu/~ynemish/teaching/142a

Today: Basic properties of the derivative > Q&A: February 26

Next: Ross § 29

Week 8:

Homework 7 (due Sunday, February 28)

Warm up Last time:
$$\lim_{x\to\infty} (1+\frac{1}{x})^x = e$$

3
$$\forall x < 0$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{x}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{x}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{x}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{x}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

$$(1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil}) < (1 + \frac{1}{\lceil x \rceil + 1})$$

1)
$$\lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = \lim_{n \to \infty} \left(\frac{n-1}{n}\right) = \lim_{n \to \infty} \left(1 - \frac{1}{n-1}\right) = \lim_{n \to$$

< (1+ x) -e <

Important examples (limits of functions) IE 13 | im | log(1+x) x to x Proof. (1) log (1+x) is well-defined on (-1,+∞)/10}

$$\frac{109(1100)}{x}$$

$$\frac{109(1100)}{x}$$

$$\frac{109(1100)}{x}$$

$$\frac{109(1100)}{x}$$

3
$$\lim_{x\to 0_+} (1+x)^{\frac{1}{x}} = :$$
 Let (x_n) be a sequence in $(0,1)$

and

4
$$\lim_{x \to 0_{-}} (11x)^{\frac{1}{x}} = As in 3$$

(5) By 1 hm 20.10
(6) log is continuous on
$$(0,+\infty) \Rightarrow$$

$$\frac{|E||4}{|im||} = \frac{|E||4}{|x|} = \frac{|E||4}{|$$

Then
$$\frac{e^{x}-1}{x}$$

, so that
$$x = \frac{1}{2}$$

Important examples (limits of functions) IE 15 V de R $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} =$ Proof 1 Write (11x)"-1

2 Denote f(z)= 9(4)=

Then by 1E14

150

By IEB

by Thm 20.5

Differentiability and derivative

Def Let f: I - R, I open interval. Let a & I.

We say that f is differentiable at a & I, or that f has a derivative at a, if the limit

get a function Examples 1) Let f(x) = x. Then $\forall a \in \mathbb{R}$ f(a) = 1 (so f(x) = 1)

exists and is finite. If f is differentiable Vae I, we

2) Let
$$f(x) = \sin x$$
. Then $f'(x) = \cos x$

3)
$$(e^{x})' = e^{x}$$

For any
$$x \in \mathbb{R}$$

$$\lim_{h\to 0} \frac{e^{x+h} - e^x}{h} =$$

Thm 28.2 f is differentiable at point
$$a \Rightarrow f$$
 is continuous at a D. of C differentiable at $a \Rightarrow f(x) - f(a) = f'(a)$

Proof.
$$f$$
 differentiable at $a \Rightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$

Then
$$\lim_{x \to a} f(x) =$$

Derivatives and arithmetic operations

Thm 28.3 Let f and g be differentiable at a, ceR. Then c.f., f+g and fig are differentiable at a. If additionally g(a) ≠0, then q is differentiable at a. Moreover $(cf)'(a) = c \cdot f'(a), (f+g)'(a) = f'(a)+g'(a), (f\cdot g)'(a) = f'(a)g(a)+f(a)g'(a)$ $\left(\frac{f}{g}\right)'(\alpha) = \frac{f'(\alpha)g(\alpha) - f(\alpha)g'(\alpha)}{g^2(\alpha)}$ Proof (cf), (ftg) - exercise.

$$\lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a} = \lim_{x \to a} \frac{(f(x) - f(a))g(x) + f(a)(g(x) - g(a))}{x - a}$$

$$= f'(a) \cdot g(a) + f(a) \cdot g'(a)$$

If g(a) to, then

 $\lim_{x \to a} \frac{f(x)}{g(x)} - \frac{f(a)}{g(a)} = \lim_{x \to a} \frac{1}{g(x)g(a)} - f(a)g(x) - f(a)g(a) + f(a)g(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2} = \frac{1}{(g(a))^2}$

Derivative of a composition

Thm 28.4 If f is differentiable at a , and g is differentiable at f(a), then gof is differentiable at a and

$$\frac{(g \circ f)(a)}{Remark} = \frac{g(f(x)) - g(f(a))}{x - a}$$

Proof: Og is defined on (f(a)-c,f(a)+c) for some c>o.

Take
$$f(x) =\begin{cases} x^2 \sin(\frac{1}{x}), x \neq 0 \\ 0, x \neq 0 \end{cases}$$
 $g(y) = e^y : \lim_{z \to 0} \frac{e^{z^2 \sin \frac{1}{x}} - e^0}{z^2 \sin(\frac{1}{x})}$ defined $(x_n = \frac{1}{\ln n})$

f is cont. at $a \Rightarrow$

Derivative of a composition

Then
$$g(f(x)) - g(f(a))$$
 can be written on $(a-\eta, a+\eta)$ as $\gamma \circ f(z)$

$$f(z) - f(a)$$

$$f(x) - f(a)$$
where $\varphi(y) = \begin{cases} 1 & \text{if } a \\ 1 & \text{if } a \end{cases}$

g is differentiable at
$$f(a) \Rightarrow$$

$$\Rightarrow \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a} = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \lim_{x \to a} \frac{f(x) - f(a)}{z - a}$$

Case 2:
$$\exists (x_n)$$
, $\lim x_n = a$, $\forall n \ x_n \neq a$, $f(x_n) = f(a)$

T20.2 \Rightarrow f is continuous at a , and

 \Rightarrow a is continuous at a , a \Rightarrow a

Then

Then $\forall x \in (\alpha - \delta', \alpha + \delta') \setminus \{\alpha\}, f(x) \neq f(\alpha)$