Automata Theory Homework. Dmitry Semenov, M3100, ISU 409537

1. For each given regular expression P, construct a DFA (Deterministic Finite Automaton), and find the number of accepted word of length at most 5, i.e. the size of the set $L\prime=\{w\in L(P)||w|\leq 5\}$. For "any" (.) and "negative" $(\hat{[.]})$ matches, assume that the alphabet is $\Sigma=\{a,b,c,d\}$

Dead states опущены, но подразумеваются

$$(a)P_1=ab^*$$

$$L' = \{a, ab, abb, abbb, abbbb\}$$

$$\Rightarrow |L'| = 5$$

$$(b)P_2 = a + b?c$$

$$L' = \{ac, abc, aac, aabc, aaac, aaabc, aaaac\}$$

 $\Rightarrow |L'| = 7$

$$(c)P_3 = [\hat{}cd] + c\{3\}$$

 $L' = \{accc, bccc, aaccc, abccc, bbccc, baccc\}$ $\Rightarrow |L'| = 6$

$$(d)P4 = [\hat{a}](.|ddd)?$$

$$\begin{split} L' &= \{b, c, d, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd, bddd, cddd, dddd\} \\ \Rightarrow |L'| &= 18 \end{split}$$

$(e)P5 = d(a|bc) \ast$

 $L' = \{d, da, dbc, daa, dabc, dbca, dbcbc, daabc, dabca, daaa, daaaa, dbcaa\}$ $\Rightarrow |L'| = 12$

$$(f)P6 = ((a|ab)[cd])\{2\}$$

$$\begin{split} L' &= \\ \{acac, acad, adac, adad, acabc, acabd, adabc, adabd, abcac, abcad, abdac, abdad\} \\ &\Rightarrow |L'| = 12 \end{split}$$

2. Describe the set of strings defined by each of these sets of productions in EBNF (extended Backus-Naur form).

(a)
$$\langle string
angle ::= \langle L
angle + \langle D
angle ? \langle L
angle + \langle L
angle ::= a |b| c$$

$$\langle D\rangle ::=0|1$$

Это определение задает множество строк, которые начинаются с одного или более символов из множества $\{a,b,c\}$, за которыми может следовать один символ из множества $\{0,1\}$, а затем заканчиваются одним или более символами из множества $\{a,b,c\}$.

Примеры строк из этого множества: "ab", "a1b", "cccb", "b0c", "caaa"

(b)
$$\langle string
angle ::= \langle sign
angle ? \langle N
angle$$
 $\langle sign
angle ::= `+ `|`- `$ $\langle N
angle ::= \langle D
angle (\langle D
angle | 0)^*$ $\langle D
angle ::= 1|...|9$

Это определение задает множество строк, которые могут начинаться с знака "+" или "-", за которым следует целое число. Число может начинаться с любой цифры от 1 до 9, за ней могут следовать любые другие цифры, в том числе 0.

Примеры строк из этого множества: " +239", " -5", "789", " +0", " -25"

(c)
$$\langle string
angle ::= \langle L
angle^* (\langle D
angle +)? \langle L
angle^* \ \langle L
angle ::= x | y \ \ \langle D
angle ::= 0 | 1$$

Это определение задает множество строк, которые могут содержать любое количество символов 'x' или 'y' (в том числе 0), за которыми может следовать одно или более вхождений символов '0' или '1', а затем опять любое количество символов 'x' или 'y' (в том числе 0).

Примеры строк из этого множества: "xx011yx", "x1y", "y010x", "xyx"

(d)
$$\langle string \rangle ::= \langle C \rangle \langle R \rangle^*$$
 $\langle C \rangle ::= a|...|z|A|...|Z$ $\langle D \rangle ::= 0|...|9$ $\langle R \rangle ::= \langle C \rangle |\langle D \rangle|`_`$

Это определение задает множество строк, которые начинаются с любого символа из латинского алфавита (маленькая или заглавная буква), за которым может следовать любое количество символов из латинского алфавита, цифр или символов подчеркивания.

Примеры строк из этого множества: "a123", " $B_$ ", " Zz_9 ", " C_dE_2 "

- 3. Let $G=\langle V,T,S,P\rangle$ be the phrase-structure grammar with vocabulary $V=\{A,S\}$, terminal symbols $T=\{0,1\}$, start symbol $S=\mathbb{S}$, and set of productions $P:\mathbb{S}\to 1\mathbb{S},\ \mathbb{S}\to 00A,\ A\to 0A,\ A\to 0$.
- (a) Show that 111000 belongs to the language generated by G Корректная последовательность шагов, приводящая к 111000:

$$\mathbb{S} o 1\mathbb{S} o 11\mathbb{S} o 111\mathbb{S} o 11100A o 111000$$

(b) Show that 11001 does not belong to the language generated by G Покажем конструктивно, что G не может сгенерировать 11001.

Заметим, что 1 можно получить, только применением $\mathbb{S} \to 1\mathbb{S}$. То есть, с таким P мы не можем получить одиночный терминальный символ 1. Кроме того, после 0 не могут идти единицы в данном языке.

 $\Rightarrow 11001$ не принадлежит языку, который порождает G, так как он не содержит .*1

(c) What is the language generated by G?

$$L(G) = \{000, 0000, 00000, ..., 1000, 11000, 110000, ...\}$$

 $\Rightarrow L(G) = (1)^*(000)(0)^*$

4. Find the output generated from the input string 01110 for each of the following Mealy machines.

Input: 01110

Input: 01110

Input: 01110

Output: 10101

Output: 00000

Output: 00000

- 5. Construct a Moore machine for each of the following descriptions.
- (a) Determine the residue modulo 3 of the input treated as a binary number. For example, for

input

 ε (which corresponds to "value" 0) the residue is 0; 101 (5 in decimal) has residue

2; and 1010 (value 10) has residue 1.

(b) Output the residue modulo 5 of the input from $\{0,1,2\}$ treated as a ternary (base 3) number.

(c) Output A if the binary input ends with 101; output B if it ends with 110; otherwise output C.

- 6. Show that regular languages are closed under the following operations.
- (a) Union, that is, if L_1 and L_2 are regular languages, then $L_1\cup L_2$ is also regular. Пусть L_1 и L_2 регулярные языки над алфавитом Σ . По определению, существуют регулярные выражения R_1 и R_2 , такие что $L(R_1)=L_1$ и $L(R_2)=L_2$. Тогда регулярное выражение $R=R_1+R_2$ представляет объединение $L_1\cup L_2$. Следовательно, L(R) является регулярным языком, а значит, $L_1\cup L_2$ также является регулярным

(b) Concatenation, that is, if L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is also regular.

Пусть

 L_1 и L_2 - регулярные языки над алфавитом Σ . По определению, существуют

регулярные выражения R_1 и R_2 , такие что $L(R_1)=L_1$ и $L(R_2)=L_2$. Тогда регулярное выражение $R=R_1\cdot R_2$ представляет конкатенацию $L_1\cdot L_2$. Следовательно, L(R) является регулярным языком, а значит, $L_1\cdot L_2$ также является регулярным

(c) Kleene star, that is, if L is a regular language, then L^* is also regular.

Пусть L — регулярный язык над алфавитом Σ . По определению, существует регулярное выражение R, такое что L(R)=L. Тогда регулярное выражение R^* представляет звезду Клини L^* . Следовательно, $L(R^*)$ является регулярным языком, а значит, L^* также является регулярным

(d) Complement, that is, if L is a regular language, then $\overline{L}=\Sigma^*-L$ is also regular.

Пусть L — регулярный язык над алфавитом Σ . Регулярные языки замкнуты относительно операции дополнения, что означает, что если язык L является регулярным, то его дополнение \overline{L} также является регулярным. Регулярный язык может быть распознан конечным автоматом, значит \overline{L} может быть получено простым инвертированием принимающих и не принимающих

состояний автомата языка L, что также останется конечным автоматом. Таким образом, \overline{L} также будет регулярным языком

(e) Intersection, that is, if L_1 and L_2 are regular languages, then $L1\cap L2$ is also regular.

Пусть L_1 и L_2 — регулярные языки над алфавитом Σ . Мы знаем, что дополнение регулярного языка также является регулярным. Таким образом, $\overline{L_1}$ и $\overline{L_2}$ — регулярные. По закону Де Моргана, $\overline{L_1} \cup \overline{L_2} = \overline{L_1 \cap L_2}$. Поскольку регулярные языки замкнуты относительно объединения, $\overline{L_1} \cup \overline{L_2}$ является регулярным. Следовательно, $\overline{L_1 \cap L_2}$ является регулярным, что означает, что $L_1 \cap L_2$ также является регулярным

Автоматы для используемых в доказательстве замыканий уже построены.

7. Determine whether the following languages are regular or not. For non-regular languages, use Pumping lemma to prove that they are not regular. For each regular language, provide a regular expression and construct an $\varepsilon-NFA$.

Dead states опущены, но подразумеваются

(a)
$$L_1 = \{w \in \{0,1\}^* \mid length \ of \ w \ is \ odd\}$$

Регулярное выражение для регулярного языка $L_1 = \frac{(0|1)(00|01|10|11)^*}{}$

(b)
$$L_2=\{0^n1^n\mid n\in N\}$$

Предположим, что язык L_2 является регулярным. Тогда существует число накачки p для этого языка. Выберем слово $w=0^p1^p$, которое принадлежит языку L_2 . $|w|\geq p$, поэтому оно удовлетворяет условиям леммы о накачке.

Согласно лемме о накачке, слово w можно разбить на три части w=xyz, где $\mid y\mid>0$, $\mid xy\mid\leq p$ и xy^iz принадлежит языку L_2 $\forall i\geq 0$.

Так как $\mid xy \mid \leq p$, то у состоит только из нулей (так как первые p символов слова w — это нули).

Если мы "накачаем" w, заменив y на y^2 , мы получим слово $xy^2z=0^{p+|y|}1^p.$

Однако, это слово не принадлежит языку L_2 , так как количество нулей и единиц в нем не совпадает. Это противоречит лемме о накачке, которая утверждает, что xy^iz должно принадлежать языку L_2 для всех $i\geq 0$.

$$\Rightarrow L_2 = \{0^n 1^n | n \in N\}$$
 — нерегулярный

(c) $L_3 = \{w \in \{0,1\}^* \mid w \ contains \ an \ even \ number \ of \ 1s\}$

Регулярное выражение для регулярного языка $L_3 = {0^*}({0^*}{10^*}{10^*})^*$

(d)
$$L_4=\{1^{n^2}\mid n\in N\}$$

Предположим, что язык $L_4=\{1^{n^2}\mid n\in N\}$ является регулярным и имеет константу накачки p. Рассмотрим слово $w=1^{p^2}$, которое, принадлежит языку $L_4.$

Согласно лемме о накачке, w можно разбить на три части: w=xyz, где |y|>0, $|xy|\leq p$, и xy^iz также принадлежит языку L_4 для любого $i\geq 0$.

Однако, если мы увеличим количество единиц в y, заменив y на y^2 , мы получим слово $xy^2z=1^{p^2+|y|}$. Это слово не принадлежит языку L_4 , так как $p+\mid y\mid$ не является полным квадратом для любого $\mid y\mid>0$.

Это противоречит лемме о накачке.

$$\Rightarrow L_4 = \{1^{n^2} | n \in N \}$$
 — нерегулярный

- 8. Consider a finite-state automaton $M=(\Sigma,Q,q_0,F,\delta)$ and a non-negative integer k. Let R_k be the relation on the set of states of M such that sR_kt if and only if for every input string $w\in \Sigma^*$ with $|w|\leq k$, $\delta(s,w)$ and $\delta(t,w)$ are both final states or both not final states. Furthermore, let R^* be the relation on the set of states of M such that sR^*t if and only if for every input string $w\in \Sigma^*$, regardless of length, $\delta(s,w)$ and $\delta(t,w)$ are both final states or both not final states.
- (a) Show that for every non-negative integer k, R_k is an equivalence relation on S. Two states s and t are called k—equivalent if sR_kt .

Чтобы показать, что отношение R_k является отношением эквивалентности на множестве состояний S, нам нужно доказать, что оно обладает рефлексивностью, симметричностью и транзитивностью.

Рефлексивность: Для любого состояния s из S и для любой строки w с $|w| \leq k$, $\delta(s,w)$ будет либо конечным, либо не конечным состоянием. Таким образом, каждое состояние s будет k-эквивалентно самому себе

Симметричность: Если состояние s k-эквивалентно состоянию t, это значит, что для всех строк w с $\mid w \mid \leq k$, $\delta(s,w)$ и $\delta(t,w)$ оба либо конечные, либо не конечные состояния. Это же верно и в обратном направлении, если s k- эквивалентно t, то и t k-эквивалентно s

Транзитивность: Если состояние s k-эквивалентно состоянию t, и состояние t k-эквивалентно состоянию u, то для всех строк w с $|w| \le k$, $\delta(s,w)$, $\delta(t,w)$ и $\delta(u,w)$ будут либо все конечными, либо все не конечными состояниями. Следовательно, s будет k-эквивалентно u

(b) Show that R^* is an equivalence relation on S. Two states s and t are called *- equivalent if sR^*t .

Полностью аналогично предыдущему пункту.

Рефлексивность: Для произвольного состояния s выполняется условие sR^*s , так как $\delta(s,w)$ будет либо конечным, либо не конечным состоянием, значит состояние s всегда эквивалентно самому себе

Симметричность: Если s R^*- эквивалентно t, то $\delta(s,w)$ и $\delta(t,w)$ либо оба финальные, либо оба не финальные для любой строки w, что означает, что t R^*- эквивалентно s, так как это верно и в другом направлении

Транзитивность: Если s R^* —эквивалентно t и t R^* —эквивалентно u, то $\delta(s,w)$, $\delta(t,w)$ и $\delta(u,w)$ либо оба финальные, либо оба не финальные для любой строки w, что означает, что s R^* —эквивалентно u

(c) Show that if two states s and t are k-equivalent (k>0), then they are also (k-1)-equivalent.

Если два состояния s и t k-эквивалентны, то для всех строк входа w с $\mid w \mid \leq k$, $\delta(s,w)$ и $\delta(t,w)$ оба либо конечные, либо не конечные состояния. Это означает, что для всех строк w с $\mid w \mid \leq k-1$, что является подмножеством строк с $\mid w \mid \leq k$, $\delta(s,w)$ и $\delta(t,w)$ также будут оба либо конечными, либо не конечными состояниями. То есть, если два состояния k-эквивалентны, то они также (k-1)-эквивалентны

(d) Show that the equivalence classes of R_k are a refinement of the equivalence classes of R_{k-1} .

Классы эквивалентности отношения R_k являются уточнением классов эквивалентности отношения R_{k-1} , потому что если два состояния эквивалентны относительно R_k , они также эквивалентны относительно R_{k-1} , как было показано в прошлом пункте. Это означает, что классы эквивалентности для R_k не могут быть шире, чем для R_{k-1} , а могут только совпадать или иметь мощность меньше.

(e) Show that if two states s and t are k-equivalent for every non-negative integer k, then they

are

*-equivalent.

Если два состояния s и t k-эквивалентны для каждого неотрицательного целого числа k, это означает, что для всех строк w, независимо от их длины, $\delta(s,w)$ и $\delta(t,w)$ оба либо конечные, либо не конечные состояния одновременно. Следовательно, s и t также R^*- эквивалентны по определению.

(f) Show that all states in a given R^* —equivalence class are final or all are not final. Рассмотрим произвольный класс эквивалентности R^* . Предположим, что в этом классе есть финальное состояние s и не финальное состояние t. Поскольку s и t R^* —эквивалентны, то для любой строки w, $\delta(s,w)$ и $\delta(t,w)$ либо оба финальные, либо оба не финальные. Но тогда $\delta(s,\varepsilon)$ и $\delta(t,\varepsilon)$ также либо оба финальные, либо оба не финальные, что противоречит тому, что s финальное, а t не финальное.

Таким образом, все состояния в классе эквивалентности R^* должны быть либо все финальные, либо все не финальные

(g) Show that if two states s and t are *-equivalent, then $\delta(s,a)$ and $\delta(t,a)$ are also *-equivalent for all $a\in \Sigma$.

Пусть s и t *—эквивалентны. Это означает, что для любой строки w, $\delta(s,w)$ и $\delta(t,w)$ либо оба финальные, либо оба не финальные.

Теперь рассмотрим произвольный символ $a\in \Sigma$. Для любой строки wa, $\delta(s,wa)=\delta(\delta(s,w),a)$ и $\delta(t,wa)=\delta(\delta(t,w),a)$. Поскольку $\delta(s,w)$ и $\delta(t,w)$

либо оба финальные, либо оба не финальные, то и $\delta(s,wa)$ и $\delta(t,wa)$ будут либо оба финальные, либо оба не финальные.

Следовательно, $\delta(s,a)$ и $\delta(t,a)$ также *-эквивалентны

9. Consider the finite-state automaton $M=(\Sigma,Q,q_0,F,\delta)$ depicted below.

(a) Find the k-equivalence classes of M for k=0,1,2,3.

$$egin{aligned} k &= 0: \{s_0, s_1, s_2, s_4, s_5\}, \{s_3, s_6\} \ k &= 1, 2, 3: \{s_0\}, \{s_1, s_5\}, \{s_2, s_4\}, \{s_3\}, \{s_6\} \end{aligned}$$

(b) Find the *-equivalence classes of M.

$$[s_0]_{R*} = \{s_0\}$$

$$[s_1]_{R_*} = \{s_1, s_5\}$$

$$[s_2]_{R_*} = \{s_2, s_4\}$$

$$[s_3]_{R*} = \{s_3\}$$

$$[s_6]_{R*} = \{s_6\}$$

- (c) Construct the quotient automaton \overline{M} of M.
- ¬ The quotient automaton

 \overline{M} of the deterministic finite-state automaton $M=(\Sigma,S,s_0,F,\delta)$ is the finite state automaton $M=(\Sigma,S,[s_0]_{R^*},F,\delta)$, where the set of states S is the set of R^* -equivalence classes of S; the transition function δ is defined by $\delta([s]_{R^*},a)=$

 $[\delta(s,a)]_{R^*}$ for all states $[s]_{R^*}$ of M and input symbols $a\in\Sigma$; and F is the set consiting of R^* —equivalence classes of final states of M.

10. Solve the following regex crosswords. Fill each cell with a single ASCII character (an uppercase

letter, a digit, a punctuation mark, or a space). Each row/column, when read left to right or top to bottom must match the regular expression(s) given for that row/column.

