Portfolio Optimizer- Ethan Alan John

What I set out to do

I built a small, investable portfolio of NSE stocks that balances **evidence from markets** with **my own views** without overreacting to either. The tool I used is **Black–Litterman**: it starts from the market's implied expectations and then lets me add modest, transparent tilts where I have conviction. This approach is widely used in practice because it avoids extreme weights and makes views measurable.

Data & setup

- Market proxy: NIFTY50 (Yahoo ticker ^NSEI).
- **Assets:** I created a focused set of NSE stocks chosen through fundamental analysis (Hindustan Copper Limited, Fortis Healthcare Limited, Indian Energy Exchange Limited, Waaree Energies Limited).
- **Frequency:** Daily returns, annualized using 252 trading days.
- Risk-free: 6.5% (India taken from Aswath Damodaran's Country Risk Premiums).
- **Files produced:** daily returns table, annual expected returns, CAPM results, covariance & correlation matrices, inverse covariance, portfolio weights.

Method overview

- 1. **Build clean returns:** Pull prices, compute daily % changes for each stock and the NIFTY50 index.
- 2. **Sanity checks:** Spot missing dates, duplicates, and outliers (e.g., >50% daily moves).
- 3. **Risk model:** Create the **covariance matrix** (Σ) of stock returns, handle singularities with pseudo-inverse if needed.
- 4. Market baseline: Derive implied returns that would make the market-cap portfolio optimal under Σ (create a benchmark).
- 5. CAPM calibration: Compute expected returns using CAPM, estimating each stock's beta against NIFTY50 and defining the key Markowitz 'Greek' parameters $(\alpha, \beta, \gamma, \Delta)$ used in portfolio construction.
- 6. **Views:** Apply small, explicit adjustments (e.g., "Stock X +2pp expected return")—this is where my research goes in.

- 7. **Optimization:** Compute weights from the updated returns and Σ ; also show **tangency** and **minimum-variance** portfolios for context.
- 8. **Evaluate:** Report expected return, volatility, and **Sharpe ratio**, and compare to a simple market-cap portfolio.

Outputs

1. Calculated CAPM Expected Returns

```
      ✓ CAPM results saved to capm_results.csv
      Symbol
      Beta
      Expected Annual Return %
      CAPM Expected Return %
      \( \)

      Ø WAAREENER
      0.264817
      77.289283
      8.185741

      1 HINDCOPPER
      0.114364
      34.489072
      7.228009

      2 FORTIS
      -0.084010
      27.967889
      5.965215

      3 IEX
      0.076546
      21.749459
      6.987270
```

2. Calculated Markowitz's Greeks, Lagrange multipliers, minimum-variance portfolios and tangency portfolios.

```
Alpha (α) Computed Successfully
\alpha (e^{T} \cdot C^{-1} \cdot e) = 15.001366
Markowitz scalars
\alpha = 15.001366
\beta = 4.625514
y = 2.298590
\Delta = 13.086605
Tangency portfolio (risky assets only)
E[R_{tan}] = 54.73\%
Vol_tan = 36.35%
Sharpe_tan= 1.327
Minimum-variance portfolio
E[R_mv] = 30.83%
Vol mv
         = 25.82%
Sharpe_mv = 0.942
Tangency weights (sum≈1):
   Symbol w_tan
   FORTIS 0.289987
HINDCOPPER 0.097105
      IEX 0.073806
WAAREEENER 0.539103
Min-variance weights (sum≈1):
    Symbol w minvar
    FORTIS 0.439438
HINDCOPPER 0.107979
     IEX 0.362985
WAAREEENER 0.089598
\lambda(R^*) = -0.017806, \mu(R^*) = 0.273941 (with R^* = 54.73\%)
```

3. Created visualisations of the efficient frontier.

Efficient Frontier (Markowitz Portfolio Theory)

4. Created comparison of CAPM weighted portfolio and Market-Cap Weighted Portfolio.

Comparison:	Calculated vs Mark		
Symbol	Calculated Weight	Market Cap Weight	Difference
FORTIS	0.289987	0.349988	-0.060001
HINDCOPPER	0.097105	0.141233	-0.044129
IEX	0.073806	0.052388	0.021418
WAAREEENER	0.539103	0.456390	0.082712

5. Introduced my views and readjusted weights.

=== Black-L	itterman: Non-Int	S) ===				
Symbol	Implied μ (dec)	View ∆ (pp)	New μ (dec)	MktCap w	New Weight	Diff (New - Mkt)
FORTIS	0.290660	2.0	0.310660	0.349988	0.386018	0.036029
HINDCOPPER	0.367664	0.0	0.367664	0.141233	0.140273	-0.000961
IEX	0.172431	3.0	0.202431	0.052388	0.113840	0.061451
WAAREEENER	0.769659	-10.0	0.669659	0.456390	0.359870	-0.096520

Portfolio (with new μ): E[R]=43.55%, Vol=30.62%, Sharpe (Rf=6.5%): 1.210

6. Plotted my BL efficient frontier.

7. Used current market prices and took total funds to be 100000 rupees and created stock allocations.

```
=== Investment Allocation for ₹100,000 ===
    Symbol Weight Price (₹) Amount (₹) Shares (rounded)
    FORTIS 0.39 1097.90 38601.75 35
HINDCOPPER 0.14 346.30 14027.27 41
    IEX 0.11 139.14 11383.97 82
WAAREEENER 0.36 3514.30 35987.00 10

Total Invested ≈ ₹99,177
```

Takeaways

- 1. Implemented a professional BL workflow on Indian equities with real data
- 2. Integrated finance theory with coding practice by combining CAPM, Markowitz mean–variance optimization, and Black–Litterman.
- 3. Demonstrated quantitative reasoning through computing and interpreting Markowitz's key Greek parameters $(\alpha, \beta, \gamma, \Delta)$ and Lagrange multipliers to understand how portfolio weights evolve mathematically.
- 4. Showed practical investment sense by translating theoretical weights into actual rupee allocations based on ₹100,000 invested capital and current stock prices.

Scope for Improvement

- Expand asset universe: Include more sectors and stocks to make the portfolio more diversified and realistic.
- 2. Add real-world constraints: Incorporate factors like transaction costs and liquidity to make the model investable.
- 3. **Enhance view modeling:** Introduce confidence levels matrix in the Black–Litterman framework instead of fixed percentage adjustments.