Лабораторная работа №3.5.1

ИССЛЕДОВАНИЕ ПЛАЗМЫ ГАЗОВОГО РАЗРЯДА В НЕОНЕ

Симанкович Александр Маслов Артём Б01-104

03.11.2022

Аннотация

В работе исследуется вольт-амперная характеристика тлеющего разряда, исследуются свойства плазмы методом зондовых характеристик.

Введение

Плазмой называется частично или полностью ионизованный квазинейтральный газ, занимающий настолько большой объём, что в нём не происходит сколько-нибудь заметного нарушения квазинейтральности из-за тепловых флуктуаций.

Из-за большого количества заряженных частиц, плазма сильно взаимодействует с внешними электрическими и магнитными полями и обладает высокой электропроводностью.

Квазинейтральность означает, что плотности положительных и отрицательных зарядов одинаковы. Если бы в плазме присутствовали нескомпенсированные заряды, то равновесие было бы невозможно. В плазме возникли бы сильные электромагнитные поля, приводящие заряды в движение, и устанавливающие равновесие. Поэтому в плазме плотности положительных и отрицательных зарядов должны практически совпадать. Отклонение от квазинейтральности возможно лишь на микроскопических расстояниях из-за тепловых флуктуаций.

Плазма отличается от нейтрального идеального газа тем, что на микроуровне частицы взаимодействуют между собой не только во время столкновений, но и во время движения посредством электромагнитных сил. То есть для плазмы характерны коллективные взаимодействия, когда силы, действующие на частицу формируются группой частиц, а не в результате прямых парных взаимодействий.

Плазма называется nuskomemnepamyphoй, если её температура $T<10^4\,$ К. Плазма называется bucokomemnepamyphoй, если $T>10^6\,$ К. Низкотемпературная плазма применяется для проведения химических реакций в газах, в методах плазменного травления при создании интегральных микросхем. В природе плазма встречается в ионосфере Земли. Из высокотемпературной полностью ионизованной плазмы состоят Солнце и горячие звезды, в которых происходят реакции термоядерного синтеза.

Теория

Рассмотрим условие квазинейтральности с точки зрения средних плотностей заряда. Пусть концентрация ионов равна n_i , концентрация электронов – n_e , и каждый ион отдаёт в плазму Z электронов. Тогда условие квазинейтральности запишется в виде:

$$-en_e + (Ze)n_i = 0,$$

e>0 — элементарный заряд. Далее для простоты изложения будем рассматривать случай однократно ионизованной плазмы Z=1.

Нарушение квазинейтральности плазмы в квазиодномерном случае

На микроуровне квазинейтральность плазмы может нарушатся из-за тепловых флуктуаций. Отклонение от квазинейтральности может происходить только на малых расстояниях и в течение малых промежутках времени. Оценим характерные расстояния, на которых может происходить разделение зарядов.

Рис. 1: Плазменные колебания.

Пусть в некотором слое толщиной l произошло разделение зарядов. В состоянии равновесия $n_i=n_e\equiv n$. В результате разделения зарядов на боковых плоскостях возникнут нескомпенсированные заряды с плотностью

$$\sigma = \frac{neV}{S} = nel$$

Выделенный слой можно рассматривать как плоский конденсатор. Напряженность электрического поля в плазме будет

$$E = 4\pi\sigma = 4\pi nel$$

. Объёмная плотность энергии такого поля равна

$$\omega_E = \frac{E^2}{8\pi}$$

. Так как электрическое поле было создано разделенными в результате тепловой флуктуации зарядами, то, согласно закону сохранения энергии, кинетическая энергия теплового движения преобразовалась в энергию электрического поля:

$$w_E = w_T$$

По теореме о равнораспределении кинетической энергии по степеням свободы, так как случай одномерный, то

$$w_T = w_T^e + w_T^i = n \frac{kT}{2} + n \frac{kT}{2} = nkT$$

Тогда напряженность поля

$$E = \sqrt{8nkT}$$

и толщина слоя

$$l = \sqrt{\frac{kT}{2\pi ne^2}}$$

Величину $r_D=\frac{l}{2}=\sqrt{\frac{kT}{8\pi ne^2}}$ называют дебаевским радиусом или дебаевской длиной.

Оценим характерное время, в течение которого может происходить разделение зарядов. Рассмотрим смещение l зарядов в слое плазмы (рис. 1). На электроны действует электрическое поле:

$$E = 4\pi nel$$

Запишем уравнение движения электронов:

$$m\ddot{l} = -4\pi ne^2 l$$

Это уравнение, решением которого является гармонический осциллятор с частотой $\omega_p = \sqrt{\frac{4\pi n e^2}{m}},$ называемой ленгмюровской или плазменной.

Таким образом, ленгмюровская частота ω_p определяет время отклика плазмы на флуктуацию заряда, а дебаевский радиус определяет характерные размеры флуктуаций. То есть ленгмюровская частота и дебаевский радиус характеризуют временной и пространственный масштаб плазменных явлений.

Теперь можно дать количественное описание коллективного характера взаимодействия плазмы. Плазмой можно считать газ, дебаевский радиус которого много меньше характерного размера области d, занимаемой газом:

$$r_D = \sqrt{\frac{kT}{8\pi ne^2}} \ll d$$

Если характерный размер области меньше дебаевского радиуса, то тепловые флуктуации будут оказывать более значительное влияние, чем электромагнитные взаимодействия. Тогда можно будет рассматривать только взаимодействия частиц во время столкновений, а дальнодействующими силами пренебречь.

Плазменное экранирование

Внесем в плазму точеный заряд q. Под действием внешнего поля электроны в плазме перераспределяться так, чтобы скомпенсировать поле точеного заряда. Из-за наличия тепловых флуктуаций полной нейтрализации поля заряда наблюдаться не будет. Ослабление внешнего поля в плазме называется экранированием.

Потенциал точечного заряда равен

$$\phi_q = \frac{q}{r}$$

В плазме потенциал

Идеальная и не идеальная плазмы

Рассмотрим дебаевскую сферу – область в плазме, ограниченную сферой радиуса

 r_D

. Концентрация частиц в сфере

$$N = \frac{4}{3}\pi r_D^3 n$$

В веществе объемом V и концентрацией частиц n находится N=nV частиц, тогда каждая частица в среднем занимает объем $V_0=\frac{V}{N}=\frac{1}{n}\sim d^3$, поэтому среднее расстояние между частицами $d\sim n^{-1/3}$. Тогда

$$N \sim \left(\frac{r_d}{d}\right)^3$$

Рассмотрим два предельных случая.

1. $N \gg 1$. То есть в дебаевской сфере находится очень много частиц. Так как экранирование на расстояниях порядка дебаевского радиуса r_D невелико, то заряженные частицы будут проявлять коллективные эффекты, связанные с электромагнитным взаимодействием. Заметим, что хотя количество частиц в сфере велико, плазма является разреженной из-за большого дебаевского радиуса:

$$r_D \sim \sqrt{\frac{kT}{8\pi ne^2}} \gg n^{-1/3} \Rightarrow n \ll \left(\frac{kT}{e^2}\right)^3$$

Покажем, что потенциальная энергия взаимодействия частиц мала по сравнению с их кинетической энергией. Условие разреженной плазмы можно переписать в виде:

$$w_E \sim \frac{e^2}{d} \ll w_T \sim kT$$

Плазму называют *идеальной*, если потенциальная энергия взаимодействия частиц мала по сравнению с кинетической энергией. В данном случае плазму с хорошей точностью можно рассматривать как идеальный газ.

2. $N \ll 1$. Из-за малого дебаевского радиуса, плотность плазмы велика:

$$n \gg \left(\frac{kT}{e^2}\right)^3$$

Такую плазму называют *плотной*, и её нельзя рассматривать как идеальный газ.

Схема экспериментальной установки

Схема установки изображена на рисунке:

Стеклянная газоразрядная трубка имеет холодный (нагреваемый) полый катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка. Трубка наполнена изотопом неона ^{22}Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (~ 450 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходом напряжением до 5 кВ.

Оборудование

- 1. Стеклянная газоразрядная трубка, наполненная неоном.
- 2. Высоковольтный источник питания.
- 3. Источник питания постоянного тока.
- 4. Делитель напряжения.
- 5. Потенциометр.
- 6. Амперметр.
- 7. Вольтметр.
- 8. Переключатели.

Экспериментальные результаты

Вольт-амперная характеристика разряда

Определим напряжение зажигания разряда. Для этого будем плавно поднимать напряжение ВИП. В момент зажигания разряда $U_{\text{заж}}=2140~\text{B}.$

Проведем измерения ВАХ газоразрядной трубки с помощью амперметра A_1 и вольтметра V_1 . Построим график $U_p(I_p)$ (см. рис. 2).

Рис. 2: BAX разрядной трубки

Определим также максимальное дифференциальное сопротивление разряда $R_{\text{дифф}}$.

$$R_{\text{дифф}} = \frac{dU}{dI} = -44.8 \text{ кОм}.$$

Зондовые характеристики

Проведем измерения зондовых характеристик разряда при различных разрядных токах I_p . Измерения будем проводить при обоих полярностях зондов.

Рис. 3: Зондовые характеристики

Вычислим значение температуры электронов T_e .

$$kT_e = \frac{1}{2} \frac{eI_n}{\frac{dI}{dU}} \Rightarrow kT_e = \Delta U/2$$
 [CII]

где ΔU – абсциссы точек, помеченных "крестиками".

Воспользуемся формулой Бома чтобы определить концентрацию электронов n_e . Будем считать, что $n_e=n_i$ – концентрации ионов.

$$I_n = 0.4 n_e e S \sqrt{\frac{2kT_e}{m_i}} \Rightarrow n_e = \frac{I_n}{0.4eS} \sqrt{\frac{m_i}{2kT_e}}$$
 [CII],

где $S=\pi dl=3.26$ мм² – площадь зонда, $m_i=22\cdot 1.66\cdot 10^{-27}$ – масса иона неона.

Также рассчитаем плазменную (ленгмюровскую) частоту ω_p :

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}}$$
 [CCC],

где m_e – масса электрона.

Определим характерные длины плазмы – поляризационную r_{De} и дебаевский радиус экранирования r_{D} .

$$r_{De} = \sqrt{\frac{kT_e}{8\pi n_e e^2}}$$
 $r_D = \sqrt{\frac{kT_i}{8\pi n_e e^2}}$ [CCC],

где $T_i \approx 300 \; \mathrm{K}$ – температура ионов.

Оценим среднее число ионов в характерном объеме плазмы – дебаевской сфере.

$$N_d = \frac{4}{3}\pi r_d^3 n_i.$$

Давление в трубке оценивается значением $P\approx 2$ торр. Тогда можно оценить степень ионизации плазмы $\alpha=n_i/n$, где n – концентрация частиц в трубке. Концентрацию n определим из следующего соотношения:

$$P = nkT_i$$
.

Полученные результаты сведены в таблицу

I_p , мА	kT_e , $\ni B$	$n_e \cdot 10^{-9}, 1/\text{cm}^3$	$\omega_p \cdot 10^{-9}, \mathrm{pag/c}$	r_{De} , MKM	r_D , MKM	N_d	$\alpha \cdot 10^6$
1.5	3.6	21.9	8.3	67.89	5.71	17.1	0.345
3.0	4.0	42.5	11.5	51.54	4.10	12.3	0.669
5.0	4.7	70.3	14.8	43.23	3.19	9.6	1.106

Таблица 1: Характеристики плазмы

Построим графики зависимостей температуры электронов $T_e(I_p)$ и концентрации электронов $n_e(I_p)$, где I_p — разрядный ток.

Рис. 4: T_e от тока в разряде

Рис. 5: n_e от тока в разряде

Выводы