

Ch.4 Combinational Logic - part A

Combinational Logics(조합 로직)

- ① Logic circuits(논리회로)
 - Combinational circuit(조합회로) → f(n) = m
 - o Output depends on the present inputs. → 함수와 유사하다고 생각하기
 - No feedback line and no storage element.

- ① Sequential circuit(순차회로) → ch.5
 - Combinational circuit + Storage elements
 - Output depends on present inputs as well as past inputs
 - 。 출력 값을 저장하고 있다가 입력 값으로 사용
 - the time sequence of inputs and internal states.
- ★⇒ Basic circuit analysis(회로분석) and design(회로도)에 대해서 배울 것
 - truth tables , boolean expressions describe functions.

- expressions can be converted into h/w circuits
- boolean algebra, K-maps help simplify expressions and circuits.

ሂሂ ሂር Circuit analysis

involves figuring out what some cirtcuit does.

- 모든 회로는 function으로 compute되고 이 function은 boolean expression, 진리표로 표현 가능
 - ∘ 이 boolean expression, or truth table은 무엇임 ?? = circuit analysis →

boolean expression

- 1. 가장 먼저 전체 회로의 input, output 파악하기
- 2. gate의 input에 따른 각 individual gate의 ouput에 대한 expression 작성하기 a. input → ouput ⇒ simplication

Block Box x + y' y z x + y'z + x'yz'Output

truth table

- 1. input, ouput의 개수 찾기
- 2. 가능한 모든 input 조합들을 나열하기 → 진리표 작성
 - a. n개의 input → 2ⁿ개의 rows
- 3. 회로로 simulating 해서 input들에 대한 output 찾기(by, hand..program..)
- 🕂 🔹 boolean expression을 안다면 truth table 쉽게 만들 수 있음

function f(x, y, z) = xz + y'z + x'yz', we can use that to fill in a table:

- We show intermediate columns for the terms xz, y'z and x'yz'.
- Then, f is obtained by just OR'ing the intermediate columns.

×	У	z	ΧZ	y'z	x'yz'	f
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	1	1
0	1	1	0	0	0	0
1	0	0	0	Ο	0	0
1	0	1	1	1	0	1
1	1	0	0	0	0	0
1	1	1	1	0	0	1

			•
X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

• k-map으로 더 단순하게 만들기도 가능

Binary addition by hand

Half adder(반가산기)

- adding two bits
 - o two binary numbers → carry 발생 가능

L 430 AND hardware adder MINT

half adder: adds two bits and produces a two bit result ⇒ sum(right), carry

Full adder(전가산기)

- · adding three bits
- addend dugend
- o three binary numbers → 더하는 수, 더해지는 수, and carry in (right)

क्रम्भ क्रिक्ट्रिक्षं भितिश्रम्यास इ

- full adder equations
 - full adder circuit takes three bits of input, and produces a two-bit result(sum, carry out)
 - equations
 - XOR operations → simplify

X	У	C_{in}	C_{out}	S	$S = \Sigma m(1,2,4,7)$
0	0	0	0	0	= X'Y'Cin + X'YCin' + XY'Cin' + XYC
0	0	1	0	1	$= X'(Y'Cin + YC_{in}') + X(Y'Cin' + YC_{in})$
0	1	0	0	1	$= X'(Y \oplus Cin) + X(Y \oplus Cin)'$ = $X \oplus Y \oplus Cin$
0	1	1	1	0	- X # I # Cin
1	0	0	0	1	$C_{out} = \Sigma m(3,5,6,7)$
1	0	1	1	0	$= X'YCin + XY'Cin + XYC_{in}' + XYC_{ij}$
1	1	0	1	0	$= (X'Y + XY')C_{in} + XY(C_{in}'' + C_{in})$
1	1	1	1	1	$= (X \oplus Y)C_{in} + XY$

■ used algebra → k-maps 으로부터 XOR 하기는 쉽지 않음

· full adder circuit

∘ 두 개의 half adder로 구성

$$S = X \oplus Y \oplus C_{in}$$

$$C_{out} = (X \oplus Y) C_{in} + XY$$

Full Adder

A 4-bit adder

4개의 full adder로 구현

- input : 9개
 - A3, A2, A1, A0 / B3, B2, B1, B0 / CI(carry in)
- ouput: 5개
 - S3, S2, S1, S0 / CO(carry out)

→ hierarchical structure, 5개의 input에 대한 512개의 row를 가진 진리표

· example of 4-bit adder

Let's try our initial example: A=1011 (eleven), B=1110 (fourteen).

- 1. Fill in all the inputs, including CI=0
- 2. The circuit produces C1 and S0 (1 + 0 + 0 = 01)
- 3. Use C1 to find C2 and S1 (1+1+0=10)
- 4. Use C2 to compute C3 and S2 (0 + 1 + 1 = 10)
- 5. Use C3 to compute CO and S3 (1 + 1 + 1 = 11)
 The final answer is 11001 (twenty-five).

⇒ 4bit인데 결과값은 5bit → **overflow** !!

Overflow

부호가 없는 덧셈에서 overflow ; carry out이 1이 될 때 일어남 즉, input bit 수와 최종 output bit 수가 다름 \rightarrow 사용 x

Hierarchical adder design

ex) 8 bit adder -> 4 bit 274

1. 우리가 4bit adder를 여러 개 합쳐서 더 큰 adders를 만들 수 있기 때문이다.

(like, 4bit adder를 만들 때 full adder를 여러 개 합친 것처럼)

- > of cert, O exemporals equ \$=>11 KH\$+0 = pg
 - @ क्लारा प्राचन व्यक्ता क्रमा लामका म

2. plus, subtraction에 carry in이 쓰임

Gate delays

gate가 갖는 시간적인 지연

- 모든 gate는 input과 output 사이에 아주 짧은 fraction이 존재 ⇒ gate delay
 - 。 θ delay or θ cylcle 표현
- 실제로 gate delay를 계산하는 복잡한 방법이 있지만 우리 수업에서는 모두 동일한 지 연 가정
- timing diagram으로 graphically하게 표현 가능

Ripple carry adder(RCA): delay

- ripple carry adder
 - ∘ input A0, B0, CI 이 S3가 생성될 때까지 왼쪽으로 ripple 됨.♠
 - ripple carry adders are slow
 - nbit ripple carry adder → longes path has 2n + 1 gates

ex) 64 bit → 129 gates

→ Algebraic carry out : a faster way to compute carry outs

Carry lookahead adders

- instead of waiting for the carry out from all the previous stage.
 - we could compute it directly with a two-level circuit ⇒ minimizing
- 가장 하위 carry out만 알면 다 구할 수 있음 → 모든 carry out은 SOP
 - 1. define two functons
 - , a. generate function

: produces 1 → position i에서 Ai and Bi가 모두 1일 때

 $g_i = A_i B_i$

b. propagate function

: position i의 incoming carry가 있을 때, Ai or Bi가 1일 때

A_{i}	Bi	C_{i}	C_{i+1}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	
1	0	0	0
1	0	1	
	1	0	1
	1	1	1

$$p_i = Ai \oplus Bi$$

$$\downarrow \text{for the probability of the pr$$

Ch.4 Combinational Logic - part A

anye

2. carry out function

$$c_{i+1} = g_i + p_i c_i$$

· pros and cons

- by adding more h/w
 - 회로의 level을 줄일 수 있음
 - speed up!
 - ex) RCA: delay 9개 / CLA: delay 4개 (4 いてていい)
 - 。 CLA와 RCA
 - CLA:
 - delay가 logarithmically 하게 증가
 - 빠르지만 복잡합
 - RCA
 - delay가 linearly하게 증가
 - 느리지만 간단함

A 4-bit carry lookahead adder

> 4 but CLAS & gate delay

• Group Propagation : $PG = P_0 P_1 P_2 P_3$

Group Generation : $GG = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3$

+) (6 bit CLAE 8 gate delay of moximal time 16 bit RCAE 37 gate delay
64 bit: CLA 1274 / RCA 12974