

GLOBAL INSTITUTE OF TECHNOLOGY B. Tech. I Semester, II Midterm Exam 2022 1FY2-01 / ENGINEERING MATHEMATICS-I /

3/3/2023/ FRIDAY

Time: 3 Hours

Maximum Marks: 70

Attempt all questions

Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly. no supplementary sheet shall be issued in any case.

Part A(Answer should be given up to 25 words only)

All questions are compulsory

- O.1 The directional derivative of the scalar function $f(x, y, z) = \sin x + e^{y} + z^{2}$ at the point $P(\pi/2, 0, 1)$ in the direction of the vector (2, 3, -1) is (CO2)
- Q.2 Let $f(x,y) = x^y + y^x$, what is the value of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ (CO1)
- Q.3 Define stationary point and saddle point for a function. (CO1)
- O.4 Find the extremum for the function $u = x^2y^2 5x^2 8xy 5y^2$.(CO4)
- O.5State the stoke's theorem. (CO2)
- O.6 In the Taylor's series expansion of $\cos x$ about x=1, the coefficient of $(x-1)^2$ is ... (CO2)
- Q.7 Find the curl of vector $V = (4xy z^3)\hat{i} + (2x^2)\hat{j} 3xz^2\hat{k}$, at x = y = z = 1 (CO2)
- 0.8 If V is a three dimensional region bounded by planes $x \ge 0$, $y \ge 0$, $z \ge 0$ & $x + y + z \le 1$ then

 $\iiint_{V} x^{p-1} y^{m-1} Z^{n-1} dx dy dz = (CO4)$

- Q.9Evaluate $\int_C \vec{F} \cdot dr$, where $\vec{F} = x^2y^2 \hat{i} + y \hat{j}$, and C is the curve $y^2 = 4x$ in the xy-plane from (0,0) to (4,4). (CO1)
- Q.10 If $f(x,y) = \frac{x^3 + y^2}{2y^3 + x}$, when $(x,y) \neq (0,0)$ and f(0,0) = 0.

Discuss the continuity of f(x, y) at the origin. (CO2)

10x 2 = 20

Part B Analytical/Problem solving questions

Attempt all questions (word Limit 100) Q.1 Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube. (CO4)

Q.2 If
$$u = \sec^{-1} \frac{x^3 + y^3}{x + y}$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \cot u$. (CO2)

- Q.3Find the work done in moving a particle once round a square C formed by lines $y \pm 1$, $x \pm 1$ in the xy-plane if the force field is given by ${}^{\uparrow}F = (x^2 + xy + z) \hat{n}(x^2 + y^2 - z) \hat{j} + xy \hat{k}$ (CO1)
- Q.4If $u = x f\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$, then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial y \partial x} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$ (CO2)
- Q.5Test the convergence or divergence of the following series if x > 0.

$$\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots$$
 (CO3)

 $5 \times 4 = 20$

Part C(Descriptive/Analytical/Problem Solving/Design Question)

Attempt all questions

- Q.1 If $\vec{F} = 4xz \hat{\imath} y^2 \hat{\jmath} + yz \hat{\kappa}$, Evaluate $\iint \vec{F} \cdot \hat{n} \, ds$ over S, where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1
- Q.2State the Green's theorem and verify this, in the plane for $\oint (x^2 2xy)dx + (x^2y + 3)dy$, where C is the boundary of the region defined by $y^2 = 8x$ and x = 2.
- Q.3Find the maximum and minimum values of $\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}$, where px + my + nz = 0 and $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (CO4)