

THÉORIES DES LANGAGES

Mr,HEMIOUD hemourad@yahoo,fr Université de Jijel Département d'informatique

Grammaire Système générateur de langage

GRAMMAIRE

(SYSTÈME GÉNÉRATEUR DE LANGAGE)

- **Définition** . Une grammaire est un moyen permettant de décrire la construction des mots d'un langage. Elle a plusieurs avantages :
 - Elle permet de raisonner sur le langage;
 - Elle permet de construire des algorithmes efficaces pour le traitement des langages ;
 - Elle facilite l'apprentissage des langages.
- NB: Les expressions régulières ne sont pas suffisantes pour représenter les langages

Exemple: Grammaire?

Pour analyser une classe de phrases simples en français, nous allons supposer qu'une phrase est construite de la manière suivante :

PHRASE → <u>ARTICLE</u> <u>SUJET</u> <u>VERBE</u> <u>ARTICLE</u> <u>COMPLEMENT</u> et <u>COMPLEMENT</u> → <u>NOM</u> <u>ADJECTIF</u>

PHRASE → ARTICLE SUJET VERBE ARTICLE COMPLEMENT;

- COMPLEMENT → NOM ADJECTIF;
- SUJET → "garçon" ou "fille";
- VERBE → "voit" ou "mange" ou "porte";
- o ARTICLE → "un" ou "le";
- NOM → "livre" ou "plat" ou "wagon";
- ADJECTIF → "bleu" ou "rouge" ou "vert";

En remplaçant les parties gauches par les parties droites nous arrivons à générer les deux phrases suivantes :

- Le garçon voit un livre vert
- Une fille mange le plat bleu

Génération de phrases

- PHRASE→ ARTICLE SUJET VERBE ARTICLE COMPLEMENT
 - →"le" **SUJET** VERBE ARTICLE COMPLEMENT
 - →"le" "garcon" VERBE ARTICLE COMPLEMENT
 - →"le" "garçon" "voit" ARTICLE COMPLEMENT
 - →"le" "garçon" "voit" "<u>le</u>" **COMPLEMENT**
 - →"le""garçon""voit""le" **NOM** ADJECTIF
 - →"le""garçon""voit""le" "<u>livre</u>" ADJECTIF
 - →"le" "garçon" "voit" "le" "livre" "<u>vert</u>"

De même pour la phrase « *Une fille mange le plat bleu* »

« Une fille mange le livre bleu » (la syntaxe est correcte)

Définition formelle des grammaires

Définition: On appelle grammaire le quadruplet (V,N, X, R)

- V : est un ensemble fini de symboles dits *terminaux*, (vocabulaire terminal);
- N : est un ensemble fini (disjoint de V) de symboles dits non-terminaux (concepts);
- S : un non-terminal particulier appelé *axiome* (point de départ de la dérivation);
- \mathbf{R} : est un ensemble de règles de productions de la forme $\alpha \to \beta$ tel que $\alpha \in (V + N)^+$ et $\beta \in (V + N)^*$.

La notation $\alpha \rightarrow \beta$ est appelée une dérivation et signifie que α peut être remplacé par β .

Exemple

```
• COMPLEMENT → NOM AdJECTIF; ····· C→NAd
o A → " un " ou " le "
                              \cdots A \rightarrow un / le
                                  -----S→ garçon/fille
• SUJET → "garçon" ou "fille";
o VERBE → "voit" ou "mange" ou "porte"; ----- V→ voit / mange / port
o NOM → "livre" ou "plat" ou "wagon"; ------ N → livre / plat / wagon
o AdJECTIF → "bleu" ou "rouge" ou "vert"; ---- Ad → bleu / rouge / vert
G=(V,N,X,R)
```

P → ASVAC

PHRASE → ARTICLE SUJET VERBE ARTICLE COMPLEMENT;

V={garçon, fille, voit, mange, porte, un, le, livre, plat, wagon, bleu, rouge,

 $N=\{P, A, S, V, C, N, Ad\}$

X = P

 $R=\{P \rightarrow ASVAC; C \rightarrow NAd; S \rightarrow garçon / fille; V \rightarrow voit / mange / porte;$ $A \rightarrow un / le; N \rightarrow livre / plat / wagon; Ad \rightarrow bleu / rouge / vert;$

Remarques

- On utilisera les lettres <u>majuscules</u> pour les <u>non-terminaux</u>, et les lettres <u>minuscules</u> pour représenter les <u>terminaux</u>.
- Les règles de la forme $ε \rightarrow α$ sont *interdites*.
- Soit une suite de dérivations :

$$w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow ... \rightarrow w_n$$
 alors on écrira : $w_1 \rightarrow w_n$.

On dit alors qu'il y a une chaîne de *dérivation* qui mène de w_1 vers w_n .

Exemple: Soit la grammaire

G = ({a}, {S}, S, {S \rightarrow aS | ϵ }). On peut construire la chaîne de dérivation suivante :

$$S \rightarrow aS \rightarrow aaS \rightarrow aaaS...$$

Les mots générés par une grammaire

Soit une grammaire G = (V, N, S, R). On dit que le mot \boldsymbol{u} appartenant à V^* est $\boldsymbol{d\acute{eriv\acute{e}}}$ (ou bien $\boldsymbol{g\acute{en\acute{er\acute{e}}}}$) à partir de G s'il existe une suite de dérivation qui, partant de l'axiome S, permet d'obtenir \boldsymbol{u} , noté ' $S \rightarrow u$ '

Le langage engendré par une grammaire

Le langage engendré par une grammaire G est l'ensemble de tous les mots générés par la grammaire G est noté L(G).

Deux grammaires G et G' sont équivalentes si L(G) = L(G').

Exemple: Soit la grammaire $G = (\{a, b\}, \{S, T\}, S, \{S \rightarrow aS \mid aT, T \rightarrow bT \mid b\}).$

Elle génère les mots abb et aab parce que

$$S \rightarrow aT \rightarrow abT \rightarrow abb$$

$$S \rightarrow aS \rightarrow aaT \rightarrow aab$$
.

.

$$S \rightarrow aS \rightarrow aaT \rightarrow aaT \rightarrow aaaT \rightarrow \rightarrow aaa...aT$$
.

On peut facilement voir alors que le langage généré par cette grammaire est : tous les mots sur $\{a, b\}$ de la forme a^mb^n avec m, n > 0.

ı

Les arbres de syntaxe de la grammaire

- Étant donnée une grammaire G = (V,N, S, R), les arbres de syntaxe de G sont des arbres où les nœuds internes sont étiquetés par des symboles de N, et les feuilles étiquetés par des symboles de V, tels que, si le nœud p apparaît dans l'arbre et si la règle p → a₁...a₁ (aᵢ terminal ou non terminal) est utilisée dans la dérivation, alors le nœud p possède n fils correspondant aux symboles aᵢ.
- Si l'arbre syntaxique a comme <u>racine</u> S, alors il est dit arbre de dérivation du mot u tel que u est le mot obtenu en prenant les feuilles de l'arbre dans le sens gauche→droite et bas→haut.

Exemple:

Soit la grammaire $G = (\{a, b\}, \{S, T\}, S, \{S \rightarrow aS \mid aT, T \rightarrow bT \mid b\}).$

Elle génère le mot aab selon la chaîne de dérivation $S \to aS \to aaT \to aab$.

Ce qui donne donc l'arbre syntaxique suivant :

1:

Classification de Chomsky

- La classification de Chomsky est un moyen permettant de *maîtriser la complexité* des langages ainsi que de celle des grammaires qui les génèrent.
- En effet, certains langage sont simples et peuvent être décrits par des grammaires facilement compréhensibles. Cependant, il existe des langages d'une telle complexité que les grammaires qui les génèrent sont trop difficile à appréhender (par exemple, {aⁿ | n est premier}).
- → comment mesurer la complexité d'une grammaire ou d'un langage ?

- Noam Chomsky remarquer que la complexité d'une grammaire (et celle du langage aussi) dépend de la forme des règles de production
- o Chomsky a ainsi proposé quatre classes (hiérarchiques) de grammaires (et de langages) de sorte qu'une grammaire de type i génère un langage de type j tel que j ≥ i.

1.

Soit G = (V,N, S, R) une grammaire, les classes de grammaires de Chomsky sont :

- Type 3 ou grammaire régulière (à droite 1) : toutes les règles de production sont de la forme $\alpha \to \beta$ où $\alpha \in N$ et $\beta = aB$ / tel que $\alpha \in V^*$ et $\beta \in N \cup \{\epsilon\}$;
- Type 2 ou grammaire hors-contexte : toutes les règles de production sont de la forme $\alpha \to \beta$ où $\alpha \in N$ et $\beta \in (V + N)^*$;
- Type 1 ou grammaire contextuelle : toutes les règles sont de la forme $\alpha \to \beta$ tel que $\alpha \in (N+V)^+$, $\beta \in (V+N)^*$ et $|\alpha| \le |\beta|$. De plus, si ϵ apparaît à droite alors la partie gauche doit seulement contenir S (l'axiome).

On peut aussi trouver la définition : toutes les règles sont de la forme $\alpha B\beta \rightarrow \alpha\omega\beta$ tel que $\alpha,\beta\in (V+N)^*,\ B\in X$ et $\omega\in (V+N)^*$

• **Type 0**: aucune restriction. Toutes les règles sont de la forme : $\alpha \to \beta$, $\alpha \in (V + N)^+$, $\beta \in (V + N)^*$

• Il existe une relation <u>d'inclusion</u> entre les types de grammaires :

type
$$3 \subset \text{type } 2 \subset \text{type } 1 \subset \text{type } 0$$

- Pour trouver la classe d'un langage on procède cependant comme suit :
 - Chercher une grammaire de <u>type 3</u> qui le génère, si elle existe, le langage est de type 3 (ou **régulier**)
 - <u>Sinon</u>, chercher une grammaire de type 2 qui le génère, si elle existe, le langage est de type 2 (ou **algébrique**)
 - <u>Sinon</u>, chercher une grammaire de type 1 qui le génère, si elle existe, le langage est de type 1 (ou **contextuel**)
 - Sinon, le langage est de type 0.

4

Exemple:

$$G_{1} = (\{S, A, B\}, \{0, 1\}, P_{1}, S) \mid G_{2} = (\{S, A, B\}, \{0, 1\}, P_{2}, S)$$

$$P_{1} = \begin{cases} S \to \varepsilon |0A|B1 \\ A \to 1|S1 \\ B \to 0|0S \end{cases} \qquad P_{2} = \begin{cases} S \to 1S|0A \\ A \to 1S|0B|0 \\ B \to 0|1|0B|1B \end{cases}$$

$$G_{3} = (\{S\}, \{0, 1\}, P_{3}, S) \qquad G_{4} = (\{S, A, B, C\}, \{0, 1\}, P_{4}, S)$$

$$P_{3} = \{ S \to \varepsilon |0|01S|1S \} \qquad P_{4} = \begin{cases} S \to AB \\ A \to \varepsilon |0 \\ B \to 10B|C \\ C \to \varepsilon |1 \end{cases}$$

Le tableau suivant résume les différentes classes de grammaires, les langages générés et les types d'automates qui les reconnaissent :

Grammaire	Langage	Automate
Type 0	Récursivement énumérable	Machine de Turing
Type 1 ou contextuelle	Contextuel	Machine de Turing à borne linéaire
Type 2 ou hors-contexte	Algébrique	Automate à pile
Type 3 ou régulière	Régulier ou rationnel	Automate à états fini

11

Exercice:

Soient les grammaires G_i = ({a, b, c}, {S, A, B, C}, S, P_i), (i=1,...,8) ; où les P_i sont :

- $P_1: S \rightarrow aA \mid bB; A \rightarrow a \mid ab; B \rightarrow b \mid cb$
- $P_2: S \to bA; A \to aA \mid \varepsilon$
- $P_3: S \to aAb \mid \epsilon; A \to aSb; Ab \to \epsilon$
- $P_4: S \to AB \mid aS \mid a; A \to Ab \mid \epsilon; B \to AS$
- $P_5: S \rightarrow 0S \mid 1B; B \rightarrow 0C \mid 1S \mid \epsilon, C \rightarrow 0B \mid 1C$
- $P_6: S \to 0B; B \to S1; S \to \epsilon$
- $P_7: S \rightarrow \varepsilon |a| abS |bS$
- $P_8: S \rightarrow AB; A \rightarrow \varepsilon \mid 0; B \rightarrow 10B \mid C; C \rightarrow \varepsilon \mid 1$

Pour chacune des grammaires G_i (i=1,..,8) ; donner le type de celle-ci, puis trouver le langage engendré par chacune d'elles.

Passage de la grammaire vers l'automate

soit $G=(V,N,\,S,\,R)$ une grammaire régulière à droite, si toutes les règles de production sont de la forme : $A\to aB\,$ ou $A\to B$ (A, $B\in N,\,a\in V\cup \{\epsilon\}$) alors il suffit d'appliquer l'algorithme suivant :

- 1. Associer un état à chaque non terminal de N;
- L'état initial est associé à l'axiome ;
- 3. Pour chaque règle de production de la forme $A \to \epsilon$, l'état q_A est final :
- 4. Pour chaque règle de production de la forme $A\to a$ (a \in V), alors créer un nouvel état final q_f et une transition partant de l'état q_A vers l'état q_f avec l'entrée a ;
- 5. Pour chaque règle $A\to aB$ alors créer une transition partant de q_A vers l'état q_B en utilisant l'entrée a ;
- 6. Pour chaque règle $A\to B$ alors créer une ϵ -transition partant de q_A vers l'état q_B ;

Langages hors-contexte (algébriques) et Automates à pile

Certains langages ne peuvent pas être décrits par une grammaire régulière, et ne peuvent donc pas être reconnus par un automate fini (par exemple le langage $\{a^nb^n / n > 0\}$).

On étudie dans ce chapitre une classe de langages plus générale que celle des langages réguliers : la classe des *langages hors-contexte*, décrits par des grammaires hors-contexte et reconnus par des *automates à pile*.

2

• Grammaire hors-contexte:

G = (T, N, S, R) est une grammaire hors-contexte si toutes les règles de R sont de la forme $A \rightarrow w$ avec $A \in N$ et $w \in (N \cup T)^*$.

• *Langage hors-contexte*: On appelle langage hors-contexte un langage généré par une grammaire hors contexte.

Simplification des grammaires hors-contextes

1. Les grammaires propres

Une grammaire hors-contexte $(V,\,N,\,S,\,R)$ est dite **propre** si elle vérifie :

- $\forall A \rightarrow u \in R : u \neq \varepsilon \text{ ou } A = S ;$
- $\forall A \rightarrow u \in R : S$ ne figure pas dans u;
- $\forall A \rightarrow u \in R : u \notin N$;
- Tous les non terminaux sont utiles, c'est-à-dire qu'ils vérifient :
 - o $\forall A \in N : A \text{ est } \underline{atteignable} \text{ depuis } S : \exists \alpha, \beta \in (N + V)^* : S \rightarrow^* \alpha \alpha \beta ;$
 - \circ ∀A ∈ N: A est <u>productif</u> : \exists w ∈ V*: A \rightarrow * w.
- Il est toujours possible de trouver une grammaire propre pour toute grammaire hors contexte. En effet, on procède comme suit :

- 1. Rajouter une nouvelle règle $S' \to S$ tel que S' est le nouvel axiome ;
- 2. Éliminer les règles $A \rightarrow \epsilon$:
 - Calculer l'ensemble $E = \{A \in N \cup \{S'\} \mid A \rightarrow^* \epsilon \}$;
 - Pour tout $A \in E$, pour toute règle $B \to \alpha A\beta$ de R
 - Rajouter la règle B →αβ
 - Enlever les règles $A \to \epsilon$;
- 3. **Eliminer** les règles $A \rightarrow^* B$, on applique la procédure suivante sur R privée de $S' \rightarrow \varepsilon$:
 - Calculer toutes les paires (A, B) tel que $A \rightarrow^* B$
 - Pour chaque paire (A, B) trouvée
 - o Pour chaque règle $B \to u_1 \, | \, ... \, | \, u_n$ rajouter la règle $A \to u_1 \, | \, ... \, | \, u_n$
 - Enlever toutes les règles $A \rightarrow B$
- 4. Supprimer tous les non-terminaux non-productifs
- 5. Supprimer tous les non-terminaux non-atteignables