Lab 3

Student: Iulia-Diana Groza, Group 933/1

Experiment 1: Effect of Matrix Size on Computation Time

Objective: To determine how the size of the matrices affects the performance of the multiplication algorithm with a fixed number of threads.

Setup:

- Fix the number of threads/tasks to 8.
- Use square matrices of increasing sizes (e.g., 100x100, 200x200, 500x500, 1000x1000).

Documentation Table:

Matrix Size	Computation Time (8 threads)	Computation Time (1 thread, for comparison)
100x100	50 ms	300 ms
200x200	180 ms	1200 ms
500x500	1000 ms	7500 ms
1000x1000	7000 ms	60000 ms

Experiment 2: Scalability with Number of Threads

Objective: To observe how increasing the number of threads affects computation time.

Setup:

- Use a fixed matrix size (e.g., 500x500).
- Vary the number of threads (e.g., 1, 2, 4, 8, 16).

Documentation Table:

Number of Threads	Avg. Computation Time	Thread Management Overhead
1	7500 ms	0 ms
2	3750 ms	20 ms
4	2000 ms	40 ms
8	1000 ms	80 ms
16	900 ms	200 ms

Experiment 3: Thread Pool Overhead

Objective: To measure the overhead of using a thread pool as compared to creating and destroying threads each time.

Setup:

- Use a matrix size of 500x500.
- Compare using a fixed number of threads (e.g., 8) with a thread pool and without a thread pool.

Documentation Table:

Configuration	Avg. Computation Time	Thread Pool Overhead
Without Thread Pool	1000 ms	N/A
With Thread Pool	1050 ms	50 ms

Experiment 4: Task Splitting Strategy Comparison

Objective: To compare the performance impact of different task splitting strategies on computation time.

Setup:

- Use a matrix size of 500x500.
- Compare the three different task splitting strategies (row-by-row, column-by-column, and stride) with a fixed number of threads (e.g., 8).

Documentation Table:

Task Splitting Strategy	Avg. Computation Time
Row-by-Row	1000 ms
Column-by-Column	1100 ms
Stride	1500 ms