Constraint Satisfaction Problems (CSPs)

CS 221 Section - 10/30/15

Agenda

- Quick Review
- Problem Modeling
- N-ary Constraints
- Elimination Example
- Code Example

- Quick Review
- Problem Modeling
- N-ary Constraints
- Elimination Example
- Code Example

Definition: Factor Graph

Variables:

$$X = (X_1, ..., X_n)$$
, where $X_i \in Domain_i$

Factors:

$$f_1,...,f_m$$
, with each $f_j(X) \ge 0$

Definition: Constraint Satisfaction Problem (CSP)

A CSP is a factor graph where all factors are **constraints**:

for all j = 1, ..., m.

The constraint is satisfied iff $f_i(x) = 1$.

Definition: Consistent Assignments

An assignment x if Weight(x) = 1 (i.e., all constraints are satisfied.)

- Quick Review
- Problem Modeling
- N-ary Constraints
- Elimination Example
- Code Example

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot e if (e, t) in A

Formulation 1a:

• Variables for each event $e, X_e \in \{1,...,T\}$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e,X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e,X_e) \in A]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

Formulation 1b:

• Variables for each event $e, X_1,...,X_E$

Formulation 1b:

• Variables for each event $e, X_1,...,X_E$

$$Domain_i = \{t : (i,t) \in A\}$$

Formulation 1b:

• Variables for each event $e, X_1,...,X_E$

$$Domain_i = \{t : (i,t) \in A\}$$

• Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$

Formulation 2a:

• Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e]$ for exactly one t]

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e$ for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e]$ for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

Formulation 2a:

• Variables for each time slot $t: Y_1,...,Y_T$

Formulation 2a:

• Variables for each time slot $t: Y_1, ..., Y_T$

$$Domain_i = \{e : (e,i) \in A\} \cup \{\emptyset\}$$

Formulation 2a:

• Variables for each time slot $t: Y_1, ..., Y_T$

$$Domain_i = \{e : (e,i) \in A\} \cup \{\emptyset\}$$

• Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e]$ for exactly one t]

- Quick Review
- Problem Modeling
- N-ary Constraints
- Elimination Example
- Code Example

- From event scheduling:
 - Constraints (each event is scheduled exactly once): for each event e, enforce

 $[Y_t = e \text{ for exactly one } t]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization:
$$[A_0 = 0]$$

$$i$$
 0 1 2 3 4 Y_i 3 1 2 1 $A:$ 0

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ $A_i = 0$

$$Y_i$$
 3 1 2 1

$$A_i$$
 0

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ $A_i = 0$

$$[A_0 = 0]$$

 Y_i 3 1 2 1

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ $A_i = 0 = 0 = 1$

$$Y_i$$
 3 1 2 1

$$A_i \quad 0 \quad 0 \quad 1$$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ $A_i = 0 = 0 = 1 = 0$

$$Y_i$$
 3 1 2 1

$$A_i = 0 = 0 = 1 = 0$$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ $A_i = 0 + 0 + 1 = 0 + 2 = 0 + 1 =$

$$Y_i$$
 3 1 2 1

$$A_i \quad 0 \quad 0 \quad 1 \quad 0 \quad 2$$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ $A_i = 0 = 0 = 1 = 0 = 2$

Final Output: $[A_T = 1]$

$$Y_i$$
 3 1 2 1

$$A_i \quad 0 \quad 0 \quad 1 \quad 0 \quad 2$$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)]$ $A_i = 0 = 0 = 1 = 0 = 2$

Final Output: $[A_T = 1]$

$$i$$
 0 1 2 3

$$Y_i$$
 3 1 2 1

$$A_i = 0 \quad 0 \quad 1 \quad 0 \quad 2$$

Still have factors with three variables...

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_I[0] = 0]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_1[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_1[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Final Output: $[B_T[1] = 1]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_1[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Final Output: $[B_T[1] = 1]$

Consistency: $[B_{i-1}[1] = B_i[0]]$

- Quick Review
- Problem Modeling
- N-ary Constraints
- Elimination Example
- Code Example

• Variables X_i : Location of object at position i

- Variables X_i : Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much

- Variables X_i : Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

- Variables X_i : Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

```
def t(x, y):
if x == y: return 2
if abs(x - y) == 1: return 1
return 0
```


- Variables X_i : Location of object at position i
- Transition Factors $t_i(x_i, x_{i+1})$: object positions can't change too much
- Observation Factors $o_i(x_i)$: noisy information compatible with position

Variable Elimination

Backtracking search is bad because it is exponential. We have to consider every possible assignment of values.

But since most variables don't immediately depend on other variables, what if we locally maximized each variable?

Definition: Elimination

- To **eliminate** a variable X_i , consider all factors f_I , ..., f_k , that depend on X_i
- Remove X_i and f_I , ..., f_k
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

• Eliminate X_I

- Eliminate X_I
- Factors that depend on X_I :
 - o_1 , t_1

- Eliminate X_I
- Factors that depend on X_I :
 - o_1 , t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X_I
- Factors that depend on X_I :
 - o_1 , t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

- Eliminate X_I
- Factors that depend on X_I :
 - o_1 , t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

x_2	x_1	$o_I(x_I)$	$t_{I}(x_{1},x_{2})$	$o_1(x_1) \ t_1(x_1, x_2)$	$g_1(x_2)$
0	0				
0	1				
0	2				
1	0				
1	1				
1	2				
2	0				
2	1				
2	2				

- Eliminate X_I
- Factors that depend on X_I :
 - o_1 , t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$

x_2	x_1	$o_I(x_I)$	$t_{I}(x_{1},x_{2})$	$o_{I}(x_{1}) t_{I}(x_{1}, x_{2})$	$g_1(x_2)$
0	0	2			
0	1	1			
0	2	0			
1	0	2			
1	1	1			
1	2	0			
2	0	2			
2	1	1			
2	2	0			

- Eliminate X_I
- Factors that depend on X_I :

•
$$o_1$$
, t_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

x_2	x_1	$o_{I}(x_{I})$	$t_{I}(x_{1},x_{2})$	$o_I(x_1) \ t_I(x_1, x_2)$	$g_1(x_2)$
0	0	2	2		
0	1	1	1		
0	2	0	0		
1	0	2	1		
1	1	1	2		
1	2	0	1		
2	0	2	0		
2	1	1	1		
2	2	0	2		

- Eliminate X_I
- Factors that depend on X_I :

•
$$o_1$$
, t_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

x_2	x_1	$o_I(x_I)$	$t_{I}(x_{1},x_{2})$	$o_1(x_1) \ t_1(x_1, x_2)$	$g_1(x_2)$
0	0	2	2	4	
0	1	1	1	1	
0	2	0	0	0	
1	0	2	1	2	
1	1	1	2	2	
1	2	0	1	0	
2	0	2	0	0	
2	1	1	1	1	
2	2	0	2	0	

- Eliminate X_I
- Factors that depend on X_I :
 - o_1 , t_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

•
$$g_1(x_2) = \max_{x_1 \in \{0,1,2\}} o_1(x_1) \cdot t_1(x_1, x_2)$$

x_2	x_{I}	$o_I(x_I)$	$t_{I}(x_{1},x_{2})$	$o_1(x_1) t_1(x_1, x_2)$	$g_1(x_2)$
0	0	2	2	4	
0	1	1	1	1	4: $\{x_1:0\}$
0	2	0	0	0	
1	0	2	1	2	
1	1	1	2	2	2: $\{x_1: 1\}$
1	2	0	1	0	
2	0	2	0	0	
2	1	1	1	1	1: $\{x_1: 1\}$
2	2	0	2	0	

• Eliminate X_2

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$

- Eliminate X_2
- Factors that depend on X_2 :
 - o_2 , t_2 , g_1
- Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$
- $g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$

- Eliminate X_2
- Factors that depend on X_2 :

•
$$o_2$$
, t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

g_1	$-(X_2)-[t_2]$	X_3
	o_2	o_3

 X_3

03

		$\lambda_2 \subset \{0,1,2\}$				
x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2,x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0					
0	1					
0	2					
1	0					
1	1					
1	2					
2	0					
2	1					
2	2					

- Eliminate X_2
- Factors that depend on X_2 :

•
$$o_2$$
, t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

g_1	$-(X_2)-[t_2]$	X_3
	o_2	03

x_3	x_2	$g_I(x_2)$	$o_2(x_2)$	$t_2(x_2,x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}				
0	1	2: { <i>x</i> ₁ : 1}				
0	2	1: { <i>x</i> ₁ : <i>1</i> }				
1	0	4: { <i>x</i> ₁ :0}				
1	1	2: { <i>x</i> ₁ : 1}				
1	2	1: { <i>x</i> ₁ : <i>1</i> }				
2	0	4: { <i>x</i> ₁ :0}				
2	1	2: { <i>x</i> ₁ : <i>1</i> }				
2	2	1: { <i>x</i> ₁ : <i>1</i> }				

 X_3

- Eliminate X_2
- Factors that depend on X_2 :

•
$$o_2$$
, t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

g_1	$-(X_2)-[t_2]$	X_3
	o_2	03

x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2,x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}	0			
0	1	2: { <i>x</i> ₁ : 1}	1			
0	2	1: { <i>x</i> ₁ : <i>1</i> }	2			
1	0	4: { <i>x</i> ₁ :0}	0			
1	1	2: { <i>x</i> ₁ : 1}	1			
1	2	1: { <i>x</i> ₁ : <i>1</i> }	2			
2	0	4: { <i>x</i> ₁ :0}	0			
2	1	2: { <i>x</i> ₁ : 1}	1			
2	2	1: { <i>x</i> ₁ : <i>1</i> }	2			

 X_3

- Eliminate X_2
- Factors that depend on X_2 :

•
$$o_2$$
, t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

g_1	$-(X_2)-[t_2]$	X_3
	o_2	03

x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2,x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}	0	2		
0	1	2: { <i>x</i> ₁ : <i>1</i> }	1	1		
0	2	1: { <i>x</i> ₁ : <i>1</i> }	2	0		
1	0	4: { <i>x</i> ₁ :0}	0	1		
1	1	2: { <i>x</i> ₁ : 1}	1	2		
1	2	1: { <i>x</i> ₁ : 1}	2	1		
2	0	4: { <i>x</i> ₁ :0}	0	0		
2	1	2: { <i>x</i> ₁ : <i>1</i> }	1	1		
2	2	1: { <i>x</i> ₁ : 1}	2	2		

 X_3

- Eliminate X_2
- Factors that depend on X_2 :

•
$$o_2$$
, t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

		<i>x</i> ₂ ⊂(0,1,2)				
x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2,x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}	0	2	0	
0	1	2: { <i>x</i> ₁ : 1}	1	1	2	
0	2	1: { <i>x</i> ₁ : <i>1</i> }	2	0	2	
1	0	4: { <i>x</i> ₁ :0}	0	1	4	
1	1	2: { <i>x</i> ₁ : 1}	1	2	4	
1	2	1: { <i>x</i> ₁ : <i>1</i> }	2	1	2	
2	0	4: { <i>x</i> ₁ :0}	0	0	0	
2	1	2: { <i>x</i> ₁ : 1}	1	1	2	
2	2	1: { <i>x</i> ₁ : <i>1</i> }	2	2	4	

 X_3

- Eliminate X_2
- Factors that depend on X_2 :

•
$$o_2$$
, t_2 , g_1

• Add
$$f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$$

•
$$g_2(x_3) = \max_{x_2 \in \{0,1,2\}} g_1(x_2) \cdot o_2(x_2) \cdot t_2(x_2, x_3)$$

		$\lambda_2 \subset \{0,1,2\}$				
x_3	x_2	$g_1(x_2)$	$o_2(x_2)$	$t_2(x_2,x_3)$	$g_1(x_2) \ o_2(x_2) \ t_2(x_2, x_3)$	$g_2(x_3)$
0	0	4: { <i>x</i> ₁ :0}	0	2	0	
0	1	2: { <i>x</i> ₁ : <i>1</i> }	1	1	2	$2: \{x_1: 1, x_2: 2\}$
0	2	1: { <i>x</i> ₁ : <i>1</i> }	2	0	2	
1	0	4: { <i>x</i> ₁ :0}	0	1	4	
1	1	2: { <i>x</i> ₁ : <i>1</i> }	1	2	4	4: $\{x_1: 1, x_2: 1\}$
1	2	1: { <i>x</i> ₁ : <i>1</i> }	2	1	2	
2	0	4: { <i>x</i> ₁ :0}	0	0	0	
2	1	2: { <i>x</i> ₁ : 1}	1	1	2	4: $\{x_1: 1, x_2: 2\}$
2	2	1: { <i>x</i> ₁ : <i>1</i> }	2	2	4	

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) o_3(x_3)$	Optimal Weight
0				
1				
2				

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) \ o_3(x_3)$	Optimal Weight
0	$2: \{x_1: 1, x_2: 2\}$	0		
1	4: $\{x_1: 1, x_2: 1\}$	1		
2	4: $\{x_1: 1, x_2: 2\}$	2		

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) \ o_3(x_3)$	Optimal Weight
0	2: $\{x_1: 1, x_2: 2\}$	0	2	
1	4: $\{x_1: 1, x_2: 1\}$	1	4	
2	4: $\{x_1: 1, x_2: 2\}$	2	8	

$$\max_{x_3 \in \{0,1,2\}} g_2(x_3) \cdot o_3(x_3)$$

x_3	$g_2(x_3)$	$o_3(x_3)$	$g_2(x_3) \ o_3(x_3)$	Optimal Weight
0	2: $\{x_1: 1, x_2: 2\}$	0	2	
1	4: $\{x_1: 1, x_2: 1\}$	1	4	8: $\{x_1: 1, x_2: 2, x_3: 2\}$
2	4: $\{x_1: 1, x_2: 2\}$	2	8	