

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Object Detection

Evaluation

Bastian Lampe

Institute for Automotive Engineering

RWTHAACHEN UNIVERSITY

Intersection over Union

- Metric for evaluating the localization
- Compare each detection with its ground truth

$$IoU(b_1, b_2) = \frac{|b_1 \cap b_2|}{|b_1 \cup b_2|} =$$
 $\in [0,1]$

- Final hypotheses with $IoU_{pred}^{true} > {}^{min}IoU_{pred}^{true}$ are considered as **TP**
- All other predictions are false positives (FP) or false negatives (FN)

		actual				
		positive	negative			
predicted	positive	True Positives (TP)	False Positives (FP)			
	negative	False Negatives (FN)	True Negatives (TN)			

Average Precision

Confusion matrix

		actual				
		positive	negative			
icted	positive	True Positives (TP)	False Positives (FP)			
predicted	negative	False Negatives (FN)	True Negatives (TN)			

- Precision = $\frac{TP}{TP+FP}$ (Positive Predictive Value)
- Recall = $\frac{TP}{TP+FN}$ (True Positive Rate)

- Precision-Recall pairs
 - Variable confidence score thresholds ^{min}CS
 - **Fixed** $^{min}IoU_{pred}^{true}$ threshold (often 50%)

- Average Precision (AP) is integrated area under curve
 - e.g. AP₅₀ / AP@50%

$$AP \in [0,1]$$

Average Precision

- Average Precision can be computed at different IoU Prediction Thresholds (AP₅₀, AP₇₅, ...)
 - \rightarrow average of AP scores $AP_{\emptyset} = AP@[0.5:0.95:0.05]$

■ Mean Average Precision (mAP) is average over all class-specific AP scores

Model evaluation matrix looks similar to this table

			4.5	c_1							c_N			
Model	mAP_{50}	mAP_{75}	mAP_{\emptyset}	AP_{50}	AP_{75}	AP_{\emptyset}	•	AP_{50}	AP_{75}	AP_{\emptyset}	•	AP_{50}	AP_{75}	AP_{\emptyset}
Model 1	0.8	0.4	0.6											
Model 2	0.7	0.6	0.5											
Model 3	0.5	0.4	0.3											

Bold numbers indicate the best score across models

Datasets and Benchmarks

RWTHAACHEN UNIVERSITY

2D Datasets

- ImageNet
- CIFAR
- COCO
- Cityscapes
- KITTI
- PASCAL VOC
- nuScenes

Image: cv.gluon

3D Datasets

- Waymo Open Dataset
- Ford Campus Vision
- nuScenes
- KITTI
- KITTI 360

KITTI-360 http://www.cvlibs.net/datasets/kitti-360

Image : cvlibs

Benchmarks challenges

enable comparison between different models

- main influencing factors
 - Average Precision
 - runtime for inference

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard	Runtime
1	DRF			83.21 %	91.02 %	78.20 %	0.08 s
2	Anonymous			82.99 %	91.64 %	78.02 %	0.1 s
3	<u>BtcDet</u>	:::		82.86 %	90.64 %	78.09 %	0.09 s
4	HIKVISION-ADLab-HZ			82.83 %	89.00 %	76.00 %	0.1 s
5	SPG_mini	:::		82.66 %	90.64 %	77.91 %	0.09 s
6	SE-SSD	::	code		91.49 %		0.03 s

Image : cvlibs

Intersection over Union

Average Precision

Datasets and Benchmarks

		actual				
		positive	negative			
predicted	positive	True Positives (TP)	False Positives (FP)			
	negative	False Negatives (FN)	True Negatives (TN)			

