

PHENIX Measurement of High- p_T Hadron-hadron and Photon-hadron Azimuthal Correlations

J Jin for the PHENIX(†) Collaboration

Columbia University, New York, NY 10027, USA

E-mail: jiamin@phys.columbia.edu

Abstract.

High- p_T hadron-hadron correlations have been measured with the PHENIX experiment in Cu + Cu and p + p collisions at $\sqrt{s_{NN}} = 200$ GeV. A comparison of the jet widths and yields between the two colliding systems allows us to study the medium effect on jets. We also present a first measurement of direct photon-hadron correlations in Au + Au and p + p collisions. We find that the near-side yields are consistent with zero in both systems. By comparing the jet yields on the away side, we observe a suggestion of the expected suppression of hadrons associated with photons in Au + Au collisions.

1. Introduction

The method of high- p_T two-particle azimuthal correlations is a unique probe of the hot, dense medium created in heavy-ion collisions at RHIC. Early RHIC results on hadron-hadron correlations indicate a strong modification of the away-side jet shape and yield by the medium [1]. These modifications provide valuable constraints on the properties of the hot, dense medium. However, the physics interpretations of the away-side modification are complicated as the trigger hadrons mostly come from the surface of the medium. Direct photons, due to their weak coupling with the medium, provide a cleaner calibration of the energy and direction of the away-side jets. Thus, direct photon-hadron correlations can provide less biased and quantitative measurements of the away-side modifications.

At RHIC energies, identification of direct photons is difficult due to the large number of background photons from hadronic decays, mostly from π^0 decays. Therefore the extraction of the direct photon-hadron per-trigger yields relies on a statistical subtraction of the decay photon-hadron per-trigger yields from the inclusive photon-hadron per-trigger yields.

† For the full list of PHENIX authors and acknowledgements, see Appendix 'Collaborations' of this volume

A two-particle correlation function ($C(\Delta\phi)$) as measured in the PHENIX central spectrometer arms is constructed as

$$CF(\Delta\phi) \sim \frac{dN_{real}/d\Delta\phi}{dN_{mix}/d\Delta\phi} = Jet(\Delta\phi) + Bkgd(\Delta\phi) \quad (1)$$

where $dN_{real}/d\Delta\phi$ is the same-event pair distribution and $dN_{mix}/d\Delta\phi$ is the mixed-event pair distribution. The mixed-event distribution is used to correct for the non-uniform PHENIX pair acceptance. The correlation function (CF) can be decomposed into a jet function $J(\Delta\phi)$ and a underlying flow modulated background term. After subtracting the background, we correct the remaining $J(\Delta\phi)$ by the single particle efficiency and the PHENIX acceptance, then normalize it by the number of triggers, thus obtaining the per-trigger yield [3].

2. High- p_T hadron-hadron correlations

The per-trigger yield distributions are fitted with a double Gaussian function to extract the Gaussian width for both peaks ($\Delta\phi = 0/\pi$ for near-side/away-side). The jet yield is integrated over a $\Delta\pi$ region of π around each peak. Two other useful jet variables are defined as

$$p_{out} = p_{T,asso} \cdot \sin(\Delta\phi), \quad x_E = \frac{p_{T,asso}}{p_{T,trig}} \cdot \cos(\Delta\phi) \quad (2)$$

p_{out} is the transverse momentum component of the associated particle perpendicular to the trigger, x_E measures the relative associated particle p_T to trigger p_T along the trigger direction.

Figure 1. (a) Near-side p_{out} distribution, $p + p$ (black) and $Cu + Cu$ (red) and (b) Away side Gaussian width as a function of associated p_T , $p + p$ (black), $Cu + Cu$ 0 – 20% (red) and $Cu + Cu$ 20 – 40% (blue)

Fig. 1(a) shows the near-side p_{out} distribution. Near-side Gaussian widths are also extracted and no significant difference is seen between $Cu + Cu$ and $p + p$. However, the p_{out} distribution is a more sensitive quantity to study medium-induced jet modification, especially at the large p_{out} region. On Fig. 1(a), we see an enhancement in $Cu + Cu$ compared with $p + p$ in the tail region. It indicates that the near-side jets are modified

by the medium through additional radiation with components transverse to the jet direction. Fig. 1(b) shows the away-side Gaussian widths, we do not see a width broadening from $p + p$ to $\text{Cu} + \text{Cu}$. We are working on the away-side p_{out} distribution to better study the away-side shape modification.

Figure 2. (a) I_{AA} as a function of associated p_T , near side (red) and away side (blue). and (b) Integrated I_{AA} and R_{AA} as a function of N_{part} , near side (red), away side (blue) and R_{AA} (black).

PHENIX measures jet yield modification via I_{AA} , which is the yield ratio of $\text{Cu} + \text{Cu}$ to $p + p$. $I_{AA} = 1$ indicates no suppression in $\text{Cu} + \text{Cu}$ with respect to $p + p$ whereas the lower the I_{AA} , the stronger the suppression. Fig. 2(a) shows I_{AA} of most central (0-20%) $\text{Cu} + \text{Cu}$ collisions. The near-side I_{AA} is close to unity and the away-side I_{AA} shows substantial suppression in the central $\text{Cu} + \text{Cu}$ collisions. Fig. 2(b) shows the I_{AA} integrated over $x_E = 0.4 - 1$ as a function of N_{part} . The near-side I_{AA} is consistent with unity within error bars, whereas the away-side I_{AA} shows a decreasing trend from peripheral to central collisions. On the same plot is a comparison to the nuclear modification factor R_{AA} of high- p_T π^0 s, the observed I_{AA} is similar to the nuclear modification factor.

3. High- p_T direct photon-hadron correlations

While dijet measurements suffer from trigger bias and possible trigger surface bias, an ideal probe for studying the jet modification in medium is the use of direct photon-hadron correlations [4]. This measurement is aided by the fact that PHENIX has observed a factor of ~ 2 excess of photons above the hadronic decay background at $p_T > 5\text{GeV}/c$ in the most central Au + Au collisions, which is consistent with direct photon production as calculated by pQCD [5]. We employ a statistical subtraction method to extract direct photon-hadron correlations and per-trigger yields. First, the inclusive photon-hadron per-trigger yields (Y_{incl-h}) are constructed by subtracting the background term (using the measured inclusive photon v_2) from the inclusive photon-hadron CF. Then, starting from π^0 -hadron pairs, we construct the decay photon-hadron CF. This is done by performing a pair by pair weighted sum to convolute the

contributions from feeddown from π^0 decays. The weights applied are derived from the π^0 decay kinematics. From the decay photon-hadron CF, we subtract the background term using the decay photon-hadron v_2 derived from the measured $\pi^0 v_2$ in order to finally get the decay photon-hadron per-trigger yields. The inclusive photon and $\pi^0 v_2$'s that we used were measured with the standard PHENIX single particle method [2]. Once both per-trigger yields are obtained, the direct photon-hadron per-trigger yield (Y_{dir-h}) is found by:

$$Y_{dir-h} = \frac{1}{R-1}(R \cdot Y_{incl-h} - Y_{decay-h}) \quad (3)$$

in which R measures the number of inclusive photons divided by the number of decay photons from all decay channels. R is independently measured by PHENIX [5].

Figure 3. (a) The direct photon-hadron per-trigger yield in p + p (red) and Au + Au (black) and (b) The integrated away side yields as a function of trigger photon p_T in p + p (blue) and Au + Au (black).

The direct photon-hadron yield in p + p is an important baseline measurement. Fig. 3(a) shows direct photon-hadron per-trigger yield in p + p, a near-side yield consistent with zero is seen, which is consistent with what one would expect from direct photon and small fragmentation photon contribution. A comparison between the p + p per-trigger yield and the PYTHIA simulation results shows a qualitative agreement. In Au + Au collisions, the direct photon-hadron per-trigger yield is shown in Fig. 3(a). The near-side yield is consistent with zero and the away-side yield is small.

Comparing p + p to Au + Au in Fig. 3(a), we see some indication of away-side suppression. Although error bars are large, there is a systematic trend that the p + p yield is higher than Au + Au. To make a quantitative statement, the away-side yield is integrated over the $[\pi/2, 3\pi/2]$ region. Fig. 3(b) shows the integrated away-side yields as a function of trigger photon p_T . We observe an increasing trend of yields in p + p, whereas yields in Au + Au are suppressed, especially when $p_T > 7\text{GeV}/c$.

4. Conclusions

PHENIX has made precision measurements of high- p_T dijets. We observe near-side jet modification at large p_{out} . Away-side yield is suppressed, whereas the width is unchanged. Also, the away-side I_{AA} is quantitatively consistent with R_{AA} . Moreover, PHENIX has made the first measurement of high- p_T direct photon-hadron yields. The near-side yield is consistent with zero and the away-side yield is suppressed compared to yields in p + p. Therefore these data indicate the modification of the away-side jets from photon triggers in Au + Au.

References

- [1] S.S. Adler *et al*, nucl-ex/0611019
- [2] S.S. Adler *et al*, Phys. Rev. Lett. **(96)** 032302 (2006)
- [3] J. Jia, J. Phys. **G31** S521 (2005)
- [4] Xin-Nian Wang *et al*, Phys. Rev. Lett. **77** 231234 (1996)
- [5] S.S. Adler *et al*, Phys. Rev. Lett. **94** 232301 (2005)