

San Francisco | April 16-20 | Moscone Center

SESSION ID: CRYP-R14

COMPOSABLE AND ROBUST OUTSOURCED STORAGE

Christian Badertscher and Ueli Maurer

ETH Zurich, Switzerland

Motivation

Server/Database

In general: Insecure

Server/Database

- Detect malicious modifications
- Detect rollbacks of valid data blocks

Server/Database

- Confidentiality of the content

Server/Database

Alice's server memory should look like a black box to the server provider:

- Leaks at most number of accesses
- Hides access pattern and content
- No undetected modifications possible

Applications of a Storage Abstraction

- Use the storage abstraction in cryptographic protocols
 - Store and retrieve information
 - Design and prove entire networked file systems
- Conduct a modular proof in a composable framework
 - Assume an outsourced storage resource as hybrid
 - Construct stronger from weaker resources

Composability

Application

Robustness

Abort-on-Error is a common mechanism (e.g., TLS sessions)

Robustness

Abort-on-Error is a common mechanism (e.g., TLS sessions)

- Different with outsourced storage
 - Recovery, memory dump, ...
 - In general: access whatever is there (e.g., after a failure or security breach)
 - Solutions: Distribute, Replicate, or: Robust Storage Protocols
- However: Robustness could compromise security!

Constructions

The real world

Constructions

The real world

Constructions

The real world

The ideal world

seel to ...

A New Model for Outsourced Storage

 We design a formal model for composable and robust outsourced storage.

 We capture various client-side security provisions including composable retrievability guarantees.

 We design robust schemes that ensure these guarantees and review the security of existing schemes.

Direct interaction with resources at interface W:

- Not a hard-coded adversarial capability
- But this typical worstcase is also covered
- **Specific form of** robustness is modeled

getAccessHistory $(w,i_1,x_1),..., (r,i_k,x_k)$

SMR

Authentic Server-Memory Resource

Confidential Server-Memory Resource

Secure Server-Memory Resource

Secure Server-Memory Resource

Auditable Server-Memory Resource

ETH zürich

Auditable Server-Memory Resource

Basic

Authentic

Confidential

Secure

Basic Authentic

Confidential

Secure

Message-Authentication Codes +
Authentication Trees (e.g., Blum)

Basic

Authentic

Confidential

Secure

- Symmetric Encryption

Basic

Authentic

Confidential

Secure

 Strengthened Oblivious RAM (e.g., Path-ORAM + Error Handling)

Protocols - Audits

Basic

Basic & Auditable

Authentic

Authentic & Auditable

Confidential

Confidential & Auditable

Secure

Secure & Auditable

Protocols - Audits

Special Case: Achieving Secure Storage

Special Case: Achieving Secure Storage

Authentic & Confidential Server Memory Resource

1

Bob deletes part of the storage where he assumes that Alice stores her logical block i.

Authentic & Confidential Server Memory Resource

2 Assume Alice makes a sequence of requests.

Authentic & Confidential Server Memory Resource

Access 1: Fail

Access 2: OK

•••

3

Assume Bob learns which requests by Alice failed to retrieve a block.

If Alice's protocol allows Bob to guess correctly with some bias, then the error pattern reveals information on the access pattern!

Summary and Outlook

 We present a security model for outsourced storage following a modular approach building a hiearchy of storage resources.

 We show how to achieve each of the storage resources with concrete protocols.

 Our strongest notion provides a very high level of security and supports audits. Existing protocols often fail to provide this level of security.

CRYPTOGRAPHY: SECURE STORAGE

Session-ID CRYP-R14

San Francisco | April 16-20 | Moscone Center

SESSION ID: CRYP-R14

SECURE DEDUPLICATION OF ENCRYPTED DATA: REFINED MODEL AND NEW CONSTRUCTIONS

PhD Candidate Aalto University

Cloud Storage

Deduplication

Secure Deduplication of Encrypted Data (SDoE)

Convergent encryption

DupLESS: Independent Key Server

Online brute-force attack by a corrupt storage server

RSAConference2018

PAKE-based SDoE

PAKE-based Key Sharing

 $K_B = K_A \text{ iff } F_A = F_{BA}$ K_B ... A B K_B ... K_B ... A Skan, and Pinkas. Secure deduplication of Encrypted Data Without Additional Independent Servers. CCS' 15

RSA'Conference2018

Contributions

- Formal security model for SDoE
- Two single-server SDoE that are provable secure
- Realistic simulations

Password Authenticated Key Exchange (PAKE)

mella ...

Simulation - dataset

- Android application popularity: 7396235 uploads, 178396 distinct
- Extend 5x by Synthetic Minority Over-sampling Technique (SMOTE)
- Model the real-world upload stream
 - Assuming the upload requests of a single file follows normal distribution $N(m, S^2)$
 - The number of copies of a file uploaded at time point t is $y_i = \frac{1}{S_i \sqrt{2p}} e^{-\frac{(t-u_i)^2}{2S_i^2}} x_i$
 - The total number of files uploaded at time point t is

Simulation – Rate Limiting

Simulation – Offline Rate

Simulation – Popularity threshold

Q & A