This print-out should have 15 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Find the directional derivative, $f_{\mathbf{v}}$, of

$$f(x,y) = \sqrt{3x - 2y}$$

at the point (4, -3) in the direction

$$\mathbf{v} = \mathbf{i} + \mathbf{j}$$
.

1.
$$f_{\mathbf{v}} = \frac{5}{12}$$

2.
$$f_{\mathbf{v}} = \frac{7}{12}$$

3.
$$f_{\mathbf{v}} = \frac{1}{4}$$

4.
$$f_{\mathbf{v}} = \frac{1}{12}$$
 correct

5.
$$f_{\mathbf{v}} = \frac{3}{4}$$

Explanation:

For an arbitrary vector \mathbf{v} ,

$$f_{\mathbf{v}} = \nabla f \cdot \left(\frac{\mathbf{v}}{|\mathbf{v}|}\right) ,$$

where we have normalized the direction vector so that it has unit length.

Now the partial derivatives of

$$f(x,y) = \sqrt{3x - 2y}$$

are given by

$$\frac{\partial f}{\partial x} = \frac{3}{2\sqrt{3x - 2y}},$$

and

$$\frac{\partial f}{\partial y} = -\frac{1}{\sqrt{3x - 2y}}.$$

Thus

$$\nabla f(x, y) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$
$$= \left(\frac{3}{2\sqrt{3x - 2y}}\right) \mathbf{i} - \left(\frac{1}{\sqrt{3x - 2y}}\right) \mathbf{j},$$

and so

$$\nabla f(4, -3) = \frac{1}{\sqrt{2}} \left(\frac{1}{2} \mathbf{i} - \frac{1}{3} \mathbf{j} \right).$$

On the other hand,

$$\mathbf{v} = \mathbf{i} + \mathbf{j} \implies \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j}).$$

But then

$$\nabla f \cdot \left(\frac{\mathbf{v}}{|\mathbf{v}|} \right) \; = \; \frac{1}{2} \Big(\frac{1}{2} \, \mathbf{i} - \frac{1}{3} \, \mathbf{j} \Big) \cdot (\mathbf{i} + \mathbf{j}) \, .$$

Consequently,

$$f_{\mathbf{v}} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{1}{12}$$
.

keywords:

002 10.0 points

Find the directional derivative, $f_{\mathbf{v}}$, of the function

$$f(x, y) = 4 + 3x\sqrt{y}$$

at the point P(3, 1) in the direction of the vector

$$\mathbf{v} = \langle 3, -4 \rangle.$$

1.
$$f_{\mathbf{v}} = -\frac{12}{5}$$

2.
$$f_{\mathbf{v}} = -\frac{8}{5}$$

3.
$$f_{\mathbf{v}} = -\frac{11}{5}$$

4.
$$f_{\mathbf{v}} = -\frac{9}{5}$$
 correct

5.
$$f_{\mathbf{v}} = -2$$

Explanation:

Now for an arbitrary vector \mathbf{v} ,

$$f_{\mathbf{v}} = \nabla f \cdot \left(\frac{\mathbf{v}}{|\mathbf{v}|}\right) ,$$

where we have normalized so that the direction vector has unit length. But when

$$f(x, y) = 4 + 3x\sqrt{y},$$

then

$$\nabla f \ = \ (3\sqrt{y})\,\mathbf{i} + \frac{3}{2}\left(\frac{x}{\sqrt{y}}\right)\,\mathbf{j}\,.$$

At P(3, 1), therefore,

$$\nabla f \Big|_P = 3\mathbf{i} + \frac{9}{2}\mathbf{j}.$$

Consequently, when $\mathbf{v} = \langle 3, -4 \rangle$,

$$f_{\mathbf{v}}(3, 1) = \left\langle 3, \frac{9}{2} \right\rangle \cdot \left(\frac{\mathbf{v}}{|\mathbf{v}|} \right) = -\frac{9}{5} \right|.$$

keywords:

003 10.0 points

Find the directional derivative, $D_{\mathbf{v}}f$, of

$$f(x, y, z) = 4x \tan^{-1}\left(\frac{y}{z}\right)$$

at the point P = (1, 1, 1) in the direction of the vector

$$\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \,.$$

- 1. $D_{\mathbf{v}}f|_{P} = \pi$
- **2.** $D_{\mathbf{v}}f|_{P} = 1$
- 3. $D_{\mathbf{v}}f|_{P} = \frac{1}{3}$
- **4.** $D_{\mathbf{v}}f|_{P} = \frac{4}{3}\pi$
- 5. $D_{\mathbf{v}}f|_P = \frac{1}{3}\pi$ correct

6.
$$D_{\mathbf{v}}f|_{P} = \frac{4}{3}$$

Explanation:

For an arbitrary vector \mathbf{v} ,

$$D_{\mathbf{v}}f = \nabla f \cdot \left(\frac{\mathbf{v}}{|\mathbf{v}|}\right),\,$$

where we have normalized so that the direction vector has unit length. But when

$$f(x, y, z) = 4x \tan^{-1} \left(\frac{y}{z}\right),\,$$

then

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

$$= 4 \tan^{-1} \left(\frac{y}{z}\right) \mathbf{i} + \frac{4x}{z(1 + (y/z)^2)} \mathbf{j}$$

$$- \frac{4xy}{z^2(1 + (y/z)^2)} \mathbf{k}.$$

Thus

$$\nabla f = 4 \tan^{-1} \left(\frac{y}{z}\right) \mathbf{i} + \frac{4xz}{z^2 + y^2} \mathbf{j} - \frac{4xy}{z^2 + y^2} \mathbf{k}.$$

At P = (1, 1, 1), therefore,

$$\nabla f|_P = 4\left(\frac{\pi}{4}\right)\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}.$$

Consequently, when

$$\mathbf{v} = \mathbf{i} + 2\mathbf{i} + 2\mathbf{k}$$
.

we see that

$$|\mathbf{v}| = \sqrt{1 + 2^2 + 2^2} = 3$$
,

and

$$D_{\mathbf{v}}f|_{P} = \frac{1}{3} \left(4 \left(\frac{\pi}{4} \right) \mathbf{i} + 2 \mathbf{j} - 2 \mathbf{k} \right) \cdot \left(\mathbf{i} + 2 \mathbf{j} + 2 \mathbf{k} \right).$$

Consequently,

$$D_{\mathbf{v}}f|_{P} = \frac{1}{3}(\pi + 4 - 4) = \frac{1}{3}\pi$$
.

keywords: directional derivative, gradient, dot product, unit vector,

004 10.0 points

Find the maximum slope on the graph of

$$f(x, y) = 4\sin(xy)$$

at the point P(0, 3).

- 1. $\max \text{slope} = 4$
- 2. $\max \text{slope} = 1$
- 3. max slope = 12π
- 4. $\max \text{slope} = 12 \text{ correct}$
- 5. $\max \text{slope} = \pi$
- 6. max slope = 4π
- 7. max slope = 3π
- 8. $\max \text{slope} = 3$

Explanation:

At P(0, 3, 0) the slope in the direction of **v** is given by

$$\nabla f \Big|_{(0,3)} \cdot \left(\frac{\mathbf{v}}{|\mathbf{v}|} \right) .$$

But when

$$f(x, y) = 4\sin(xy),$$

the gradient of f is

$$\nabla f(x, y) = 4y \cos(xy) \mathbf{i} + 4x \cos(xy) \mathbf{j},$$

so at P(0,3)

$$\nabla f \Big|_{(0,3)} = 12 \,\mathbf{i} \,.$$

Consequently, the slope at P will be maximized when $\mathbf{v} = \mathbf{i}$ in which case

$$\max slope = 12$$
.

keywords: slope, gradient, trig function, maximum slope

005 10.0 points

Suppose that over a certain region of space the electrical potential V is given by

$$V(x, y, z) = 6x^2 - 6xy + xyz.$$

Find the rate of change of the potential at P(2, 1, 7) in the direction of the vector

$$\mathbf{v} = \mathbf{i} + \mathbf{j} - \mathbf{k}$$
.

- **1.** 25
- 2. $\frac{25}{\sqrt{3}}$ correct
- 3. -25
- 4. $-\frac{25}{\sqrt{3}}$
- 5. $-\frac{25}{3}$

Explanation:

The rate of change at P(2, 1, 7) is given by

$$D_u V = \nabla V(2, 1, 7) \cdot \frac{\mathbf{v}}{|\mathbf{v}|}.$$

Now, when

$$V(x, y, z) = 6x^2 - 6xy + xyz$$

it follows that

$$\nabla V = \langle 12x - 6y + yz, -6x + xz, xy \rangle$$

and

$$\nabla V(2,1,7) = \langle 25, 2, 2 \rangle.$$

Consequently,

$$D_u V = \langle 25, 2, 2 \rangle \cdot \frac{\langle 1, 1, -1 \rangle}{\sqrt{3}} = \boxed{\frac{25}{\sqrt{3}}}.$$

keywords:

4

Find the linearization of z = f(x, y) at P(2, -1) when

$$f(2,-1) = 1$$

and

$$f_x(2,-1) = -2, \quad f_y(2,-1) = 3.$$

1.
$$L(x, y) = 1 - 2x + 3y$$

2.
$$L(x, y) = 8z + 2x - 3y$$

3.
$$L(x, y) = 1 - 2x - 3y$$

4.
$$L(x, y) = 1 + 2x - 3y$$

5.
$$L(x, y) = 8 - 2x + 3y$$
 correct

6.
$$L(x, y) = 8z - 2x + 3y$$

Explanation:

The linearization of z = f(x, y) at P(a, b) is given by

$$L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b),$$

and so at P(2, -1),

$$L(x, y) = f(2, -1)$$

$$+ f_x(2, -1)(x - 2) + f_y(2, -1)(y + 1).$$

Consequently, the linearization of f at P is

$$L(x, y) = 1 - 2(x - 2) + 3(y + 1),$$

which after rearrangement becomes

$$L(x, y) = 8 - 2x + 3y .$$

keywords: linearization, partial derivative, radical function, square root function,

007 10.0 points

Find the quadratic approximation to

$$f(x, y) = \cos(x + y) + 2\sin(x - y)$$

at P(0, 0).

1.
$$Q(x, y) = 2 + 2x - 2y + \frac{1}{2}x^2 + xy - \frac{1}{2}y^2$$

2.
$$Q(x, y) = 2 + 2x - 2y - \frac{1}{2}x^2 + xy - \frac{1}{2}y^2$$

3.
$$Q(x, y) = 2 + 2x - 2y + \frac{1}{2}x^2 - xy + y^2$$

4.
$$Q(x, y) = 1 - 2x + 2y - \frac{1}{2}x^2 + xy + y^2$$

5.
$$Q(x, y) = 1 - 2x + 2y + \frac{1}{2}x^2 - xy + y^2$$

6.
$$Q(x, y) = 1 + 2x - 2y - \frac{1}{2}x^2 - xy - \frac{1}{2}y^2$$
 correct

Explanation:

The Quadratic Approximation to f(x, y) at P(0, 0) is given by

$$Q(x, y) = f(0, 0) + f_x(0, 0)x + f_y(0, 0)y + \frac{1}{2}f_{xx}(0, 0)x^2 + f_{xy}(0, 0)xy + \frac{1}{2}f_{yy}(0, 0)y^2.$$

But when

$$f(x, y) = \cos(x+y) + 2\sin(x-y)$$

we see that

$$f_x = -\sin(x+y) + 2\cos(x-y),$$

 $f_y = -\sin(x+y) - 2\cos(x-y),$

so that f(0, 0) = 1 and

$$f_x(0, 0) = 2, \quad f_y(0, 0) = -2,$$

while

$$f_{xx} = -\cos(x+y) - 2\sin(x-y),$$

 $f_{xy} = \cos(x+y) + 2\sin(x-y),$
 $f_{yy} = \cos(x+y) - 2\sin(x-y),$

so that $f_{xx}(0, 0) = 1$ and

$$f_{xy}(0, 0) = -1, \quad f_{yy}(0, 0) = -1,$$

Consequently, the Quadratic Approximation to f at P(0, 0) is

$$Q(x, y) = 1 + 2x - 2y - \frac{1}{2}x^2 - xy - \frac{1}{2}y^2$$

keywords: quadratic approximation, partial derivative, second order partial derivative, trig function,

008 10.0 points

Find the quadratic approximation to

$$f(x, y) = \sqrt{1 - x + 2y}$$

at P(0, 0).

1.
$$Q(x, y) = 1 - \frac{1}{2}x + y - \frac{1}{8}x^2 + \frac{1}{2}xy - \frac{1}{2}y^2$$
 correct

2.
$$Q(x, y) = 1 - \frac{1}{2}x + y - \frac{1}{8}x^2 + \frac{1}{2}xy + \frac{1}{2}y^2$$

3.
$$Q(x, y) = 1 - \frac{1}{2}x + y + \frac{1}{8}x^2 - \frac{1}{2}xy - y^2$$

4.
$$Q(x, y) = 1 - \frac{1}{2}x - y - \frac{1}{8}x^2 - \frac{1}{2}xy - \frac{1}{2}y^2$$

5.
$$Q(x, y) = 1 - \frac{1}{2}x - y + \frac{1}{8}x^2 + \frac{1}{2}xy + y^2$$

6.
$$Q(x, y) = 1 - \frac{1}{2}x - y + \frac{1}{8}x^2 - \frac{1}{2}xy + y^2$$

Explanation:

The Quadratic Approximation to f(x, y) at P(0, 0) is given by

$$Q(x, y) = f(0, 0) + f_x(0, 0)x + f_y(0, 0)y$$

$$+\frac{1}{2}f_{xx}(0,\,0)x^2+f_{xy}(0,\,0)xy+\frac{1}{2}f_{yy}(0,\,0)y^2.$$

But when

$$f(x, y) = \sqrt{1 - x + 2y}$$

we see that

$$f_x = -\frac{1}{2} \frac{1}{\sqrt{1 - x + 2y}} \,,$$

$$f_y = \frac{1}{\sqrt{1-x+2y}},$$

so that f(0, 0) = 1 and

$$f_x(0, 0) = -\frac{1}{2}, \quad f_y(0, 0) = 1,$$

while

$$f_{xx} = -\frac{1}{4} \frac{1}{(1 - x + 2y)^{3/2}},$$

$$f_{xy} = \frac{1}{2} \frac{1}{(1 - x + 2y)^{3/2}},$$

$$f_{yy} = -\frac{1}{(1 - x + 2y)^{3/2}},$$

so that

$$f_{xx}(0, 0) = -\frac{1}{4}, \quad f_{xy}(0, 0) = \frac{1}{2},$$

and $f_{yy}(0, 0) = -1$.

Consequently, the Quadratic Approximation to f at P(0, 0) is

$$Q(x, y) = 1 - \frac{1}{2}x + y - \frac{1}{8}x^2 + \frac{1}{2}xy - \frac{1}{2}y^2$$

keywords: quadratic approximation, partial derivative, second order partial derivative, trig function,

009 10.0 points

Find the quadratic approximation to

$$f(x, y) = e^{-x+2y^2}$$

at P(0, 0).

1.
$$Q(x, y) = 1 + x + \frac{1}{2}xy + 2y^2$$

2.
$$Q(x, y) = 1 + 2x + \frac{1}{2}x^2 + 2y^2$$

3.
$$Q(x, y) = 1 + 2y + 2xy + \frac{1}{2}y^2$$

4.
$$Q(x, y) = 1 - 2x + \frac{1}{2}x^2 - 2y^2$$

5.
$$Q(x, y) = 1 - x + \frac{1}{2}x^2 - 2y^2$$

6.
$$Q(x, y) = 1 - x + \frac{1}{2}x^2 + 2y^2$$
 correct

Explanation:

The Quadratic Approximation to f(x, y) at P(0, 0) is given by

$$Q(x, y) = f(0, 0) + f_x(0, 0)x + f_y(0, 0)y + \frac{1}{2}f_{xx}(0, 0)x^2 + f_{xy}(0, 0)xy + \frac{1}{2}f_{yy}(0, 0)y^2.$$

But when

$$f(x, y) = e^{-x+2y^2}$$

we see that

$$f_x = -e^{-x+2y^2}, \quad f_y = 4ye^{-x+2y^2},$$

so that f(0, 0) = 1 and

$$f_x(0, 0) = -1, \quad f_y(0, 0) = 0,$$

while

$$f_{xx} = e^{-x+2y^2}, \quad f_{xy} = -4ye^{-x+2y^2},$$

and

$$f_{yy} = 4e^{-x+2y^2} + 16y^2e^{-x+2y^2},$$

so that

$$f_{xx}(0, 0) = 1, \quad f_{xy}(0, 0) = 0,$$

and $f_{yy}(0, 0) = 4$.

Consequently, the Quadratic Approximation to f at P(0, 0) is

$$Q(x, y) = 1 - x + \frac{1}{2}x^2 + 2y^2$$

keywords: quadratic approximation, partial derivative, second order partial derivative, trig function,

010 10.0 points

Find the quadratic approximation to

$$f(x, y) = \ln(1 + 4x^2 - 2y)$$

at P(0, 0).

1.
$$Q(x, y) = 1 - 2x + 2x^2 - 4y^2$$

2.
$$Q(x, y) = 1 - 2y + 2x^2 + 4y^2$$

3.
$$Q(x, y) = -2y + 4x^2 + 2y^2$$

4.
$$Q(x, y) = -2x + 2x^2 + 4y^2$$

5.
$$Q(x, y) = 1 - 2y + 4x^2 - 2y^2$$

6.
$$Q(x, y) = -2y + 4x^2 - 2y^2$$
 correct

Explanation:

The Quadratic Approximation to f(x, y) at P(0, 0) is given by

$$Q(x, y) = f(0, 0) + f_x(0, 0)x + f_y(0, 0)y + \frac{1}{2}f_{xx}(0, 0)x^2 + f_{xy}(0, 0)xy + \frac{1}{2}f_{yy}(0, 0)y^2.$$

But when

$$f(x, y) = \ln(1 + 4x^2 - 2y)$$

we see that

$$f_x = \frac{8x}{1 + 4x^2 - 2y}, \quad f_y = -\frac{2}{1 + 4x^2 - 2y}.$$

Thus f(0, 0) = 0 and

$$f_x(0, 0) = 0,$$
 $f_y(0, 0) = -2.$

Differentiating once more we get

$$f_{xx} = \frac{8}{1 + 4x^2 - 2y} - \frac{64x^2}{(1 + 4x^2 - 2y)^2}$$

while

$$f_{xy} = \frac{16x}{(1+4x-2y)^2},$$

and

$$f_{yy} = -\frac{4}{(1+4x-2y)^2}$$
.

This gives

$$f_{xx}(0, 0) = 8, \quad f_{xy}(0, 0) = 0,$$

and $f_{yy}(0, 0) = -4$.

Consequently, the Quadratic Approximation to f at P(0, 0) is

$$Q(x, y) = -2y + 4x^2 - 2y^2$$

keywords: quadratic approximation, partial derivative, second order partial derivative, trig function,

011 10.0 points

Find an equation for the plane passing through the origin that is parallel to the tangent plane to the graph of

$$z = f(x, y) = x^2 - 2y^2 + 2x + y$$

at the point (1, -1, f(1, -1)).

1.
$$z + 4x - 5y - 9 = 0$$

2.
$$z - 4x - 5y = 0$$
 correct

3.
$$z-4x+5y+9=0$$

4.
$$z + 4x + 5y + 1 = 0$$

5.
$$z - 4x + 5y = 0$$

6.
$$z + 4x - 5y = 0$$

Explanation:

Parallel planes have parallel normals. On the other hand, the tangent plane to the graph of z = f(x, y) at the point (a, b, f(a, b)) has normal

$$\mathbf{n} = \langle -f_x(a, b), -f_y(a, b), 1 \rangle.$$

But when

$$f(x, y) = x^2 - 2y^2 + 2x + y$$

we see that

$$f_x = 2x + 2, \qquad f_y = -4y + 1,$$

and so when a = 1, b = -1,

$$\mathbf{n} = \langle -4, -5, 1 \rangle$$
.

Thus an equation for the plane through the origin with normal parallel to \mathbf{n} is

$$\langle x, y, z \rangle \cdot \mathbf{n} = \langle x, y, z \rangle \cdot \langle -4, -5, 1 \rangle = 0,$$

which after evaluation becomes

$$z - 4x - 5y = 0 \quad .$$

keywords:

012 10.0 points

Find the equation of the tangent plane to the surface

$$4x^2 + 2y^2 + 5z^2 = 79$$

at the point (2, -3, 3).

1.
$$8x - 6y + 15z = 79$$
 correct

2.
$$4x - 2y + 5z = 79$$

$$3. 8x - 6y + 15z = 43$$

4.
$$8x + 6y + 15z = 79$$

$$5. 8x + 6y + 15z = 43$$

Explanation:

Let

$$F(x) = 4x^2 + 2y^2 + 5z^2.$$

The equation to the tangent plane to the surface at the point P(2, -3, 3) is given by

$$F_x\Big|_P(x-2) + F_y\Big|_P(y+3) + F_z\Big|_P(z-3) = 0.$$

Since

$$F_x = 8x, \qquad F_x \Big|_{P} = 16,$$

$$F_y = 4y, \qquad F_y \Big|_{P} = -12,$$

and

$$F_z = 10z, \qquad F_z \Big|_P = 30$$

it follows that the equation of the tangent plane is

$$8x - 6y + 15z = 79$$
.

keywords:

013 10.0 points

Find an equation for the tangent plane to the graph of

$$z = xe^y \cos z - 7$$

at the point (7,0,0).

1.
$$x + 7y - z = 7$$
 correct

2.
$$x - 7y - z = 7$$

3.
$$x + 7y + z = -7$$

4.
$$x + 7y + z = 7$$

5.
$$x + 7y - z = -7$$

Explanation:

Note that

$$xe^y \cos z - z = 7$$

Let

$$F(x) = xe^y \cos z - z.$$

The equation to the tangent plane to the surface at the point P(7,0,0) is given by

$$F_x\Big|_{P}(x-7) + F_y\Big|_{P}(y-0) + F_z\Big|_{P}(z-0)$$
.

Since

$$F_x = e^y \cos z, \qquad F_x \Big|_P = 1,$$

$$F_y = xe^y \cos z, \qquad F_y \Big|_P = 7,$$

and

$$F_z = -xe^y \sin z - 1, \qquad F_z \Big|_P = -1$$

it follows that the equation of the tangent plane is

$$\boxed{x + 7y - z = 7}.$$

keywords:

014 10.0 points

If $\mathbf{r}(x)$ is the vector function whose graph is trace of the surface

$$z = f(x, y) = 3x^2 - y^2 - x - 2y$$

on the plane y+2x=0, determine the tangent vector to $\mathbf{r}(x)$ at x=1.

- 1. tangent vector = $\langle 2, 0, 3 \rangle$
- **2.** tangent vector = $\langle 1, 0, 1 \rangle$
- **3.** tangent vector = $\langle 1, -2, 1 \rangle$ correct
- 4. tangent vector = $\langle 1, -2, 3 \rangle$
- **5.** tangent vector = $\langle 2, 1, 3 \rangle$
- **6.** tangent vector = $\langle 2, 0, 1 \rangle$

Explanation:

The graph of

$$z = f(x, y) = 3x^2 - y^2 - x - 2y$$

is the set of all points

as x, y vary in 3-space. So the intersection of the surface with the plane y + 2x = 0 is the set of all points

$$(x, -2x, f(x, -2x)), -\infty < x < \infty.$$

But

$$f(x, -2x) = -x^2 + 3x.$$

Thus the surface and the plane y = 2x intersect in the graph of

$$\mathbf{r}(x) = \langle x, -2x, -x^2 + 3x \rangle.$$

9

Now the tangent vector to the graph of $\mathbf{r}(x)$ is the derivative

$$\mathbf{r}'(x) = \langle 1, -2, -2x + 3 \rangle.$$

Consequently, at x = 1 the graph of $\mathbf{r}(x)$ has

tangent vector
$$= \langle 1, -2, 1 \rangle$$
.

keywords:

015 10.0 points

If $\mathbf{r}(x)$ is the vector function whose graph is trace of the surface

$$z = f(x, y) = 3x^2 - 2y^2 - 2x + 3y$$

on the plane y = 2x, determine the tangent vector to $\mathbf{r}(x)$ at x = 1.

- 1. tangent vector = $\langle 1, 2, -6 \rangle$ correct
- **2.** tangent vector = $\langle 1, 2, 4 \rangle$
- **3.** tangent vector = $\langle 1, 0, -6 \rangle$
- **4.** tangent vector = $\langle 2, 1, 4 \rangle$
- **5.** tangent vector = $\langle 2, 2, -6 \rangle$
- **6.** tangent vector = $\langle 2, 0, 4 \rangle$

Explanation:

The graph of

$$z = f(x, y) = 3x^2 - 2y^2 - 2x + 3y$$

is the set of all points

as x, y vary in 3-space. So the intersection of the surface with the plane y=2x is the set of all points

$$(x, 2x, f(x, 2x)), \quad -\infty < x < \infty.$$

But

$$f(x, 2x) = -5x^2 + 4x.$$

Thus the surface and the plane y = 2x intersect in the graph of

$$\mathbf{r}(x) = \langle x, 2x, -5x^2 + 4x \rangle.$$

Now the tangent vector to the graph of $\mathbf{r}(x)$ is the derivative

$$\mathbf{r}'(x) = \langle 1, 2, -10x + 4 \rangle.$$

Consequently, at x = 1 the graph of $\mathbf{r}(x)$ has

tangent vector
$$= \langle 1, 2, -6 \rangle$$
.

keywords: