Feature Selection and Text Clustering

Ayoub Bagheri

Lecture Plan

- 1. Features in text? And how to do text feature selection?
- 2. What is text clustering?
- 3. What are the applications?
- 4. How to cluster text data?

Feature Selection

Feature selection for text classification

- ► Feature selection is the process of selecting a specific subset of the terms of the training set and using only them in the classification algorithm.
- high dimensionality of text features
- Select the most informative features for model training
 - ▶ Reduce noise in feature representation
 - ► Improve final classification performance
 - Improve training/testing efficiency
 - Less time complexity
 - Fewer training data

Feature selection methods

- Wrapper methods
 - Find the best subset of features for a particular classification method
 - Sequential forward selection or genetic search to speed up the search
- Filter methods
 - Evaluate the features independently from the classifier and other features
 - ► Feasible for very large feature se
 - Usually used as a preprocessing step
- Embedded methods
- e.g. Regularized regression, Regularized SVM

Document frequency

 Rare words: non-influential for global prediction, reduce vocabulary size

Figure 2.1. A plot of the hyperbolic curve relating f, the frequency of occurrence and r, the rank order (Adaped from Schultz *4 page 120)

Information gain

Decrease in entropy of categorical prediction when the feature is present or absent

$$IG(t) = -\sum_{c} p(c) \log p(c)$$
 Entropy of class label along
$$+p(t) \sum_{c} p(c|t) \log p(c|t) \qquad \text{Entropy of class label if t is } \\ +p(\bar{t}) \sum_{c} p(c|\bar{t}) \log p(c|\bar{t}) \qquad \text{Entropy of class label if t is } \\ +p(\bar{t}) \sum_{c} p(c|\bar{t}) \log p(c|\bar{t}) \qquad \text{Entropy of class label if t is } \\ \text{probability of seeing class label c in } \\ \text{probability of seeing class label c in } \\ \text{documents where t occurs}$$

documents where t occurs

Gini Index

Let p(c|t) be the conditional probability that a document belongs to class c, given the fact that it contains the term t. Therefore, we have:

$$\sum_{c=1}^k p(c|t) = 1$$

Then, the gini-index for the term t, denoted by G(t) is defined as:

$$G(t) = \sum_{c=1}^{k} p(c|t)^2$$

Gini Index

- ▶ The value of the gini-index lies in the range (1/k, 1).
- Higher values of the gini-index indicate a greater discriminative power of the term t.
- If the global class distribution is skewed, the gini-index may not accurately reflect the discriminative power of the underlying attributes.
- Other methods
 - Normalized gini-index
 - Mutual Information
 - $\sim \chi^2$ -Statistic

Text Clustering

Unsupervised learning

include_graphics("img/page 3.png")

Clustering versus classification

CLASSIFICATION

- Labeled data points
- Want a "rule" that assigns labels to new points
- Supervised learning

CLUSTERING

- Data is not labeled
- Group points that are "close" to each other
- Identify structure or patterns in data
- Unsupervised learning

Clustering

- Clustering: the process of grouping a set of objects into clusters of similar objects
- Discover "natural structure" of data
 - ▶ What is the criterion?
 - ► How to identify them?
 - ► How to evaluate the results?

Question

Which one is not a text clustering task?

- Grouping Trump's tweets and finding the main topics
- Finding similar patterns (demands) in customer reviews
- Grouping scientific articles
- ▶ Detection of heart failure (0 or 1) using discharge summaries

Please go to www.menti.com and use the code 9594 3321

Clustering

- Basic criteria
 - high intra-cluster similarity
 - low inter-cluster similarity
- No (little) supervision signal about the underlying clustering structure
- ▶ Need similarity/distance as guidance to form clusters

Applications of text clustering

- Organize document collections
 - Automatically identify hierarchical/topical relation among documents

Applications of text clustering

- Grouping search results
 - Organize documents by topics
 - Facilitate user browsing

Applications of text clustering

- ▶ Topic modeling
 - Grouping words into topics

Clustering algorithms

Categories

- Partitional clustering
- ► Hierarchical clustering
- ▶ Topic modeling

Hard versus soft clustering

- ► Hard clustering: Each document belongs to exactly one cluster
 - ► More common and easier to do
- Soft clustering: A document can belong to more than one cluster.

Partitional clustering

Partitional clustering algorithms

- Partitional clustering method: Construct a partition of n documents into a set of K clusters
- ▶ Given: a set of documents and the number *K*
- ► Find: a partition of *K* clusters that optimizes the chosen partitioning criterion
 - ► Globally optimal
 - Intractable for many objective functions
 - Ergo, exhaustively enumerate all partitions
 - Effective heuristic methods: K-means and K-medoids algorithms

Partitional clustering algorithms

- ► Typical partitional clustering algorithms
 - k-means clustering
 - Partition data by its closest mean

K-Means algorithm

- Assumes documents are real-valued vectors.
- Clusters based on centroids of points in a cluster, c:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{a} \in c} \vec{x}$$

▶ Reassignment of instances to clusters is based on distance to the current cluster centroids.

K-Means algorithm

- ▶ Select K random docs $\{s_1, s_2, ..., s_K\}$ as seeds.
- Until clustering converges (or other stopping criterion):
 - For each doc d_i :
 - Assign d_i to the cluster c_j such that $dist(x_i, s_j)$ is minimal.
 - (Next, update the seeds to the centroid of each cluster)
 - For each cluster cj
 - $ightharpoonup s_j = \mu(c_j)$

Hierarchical Clustering

Dendrogram: Hierarchical clustering

- ▶ Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.
- ► Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Clustering algorithms

- Typical hierarchical clustering algorithms
 - Bottom-up agglomerative clustering
 - Start with individual objects as separated clusters
 - ► Repeatedly merge closest pair of clusters

include_graphics("img/page 34.png")

Most typical usage: gene sequence analysis

Clustering algorithms

- Typical hierarchical clustering algorithms
 - Top-down divisive clustering
 - Start with all data as one cluster
 - Repeatedly splitting the remaining clusters into two

include_graphics("img/page 35.png")

Hierarchical Agglomerative Clustering (HAC)

- Starts with each doc in a separate cluster
 - then repeatedly joins the closest pair of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

Closest pair of clusters

- Many variants to defining closest pair of clusters (linkage methods):
 - Single-link
 - ► Similarity of the most cosine-similar
 - ► Complete-link
 - ▶ Similarity of the "furthest" points, the least cosine-similar
 - Centroid
 - Clusters whose centroids (centers of gravity) are the most cosine-similar
 - Average-link
 - Average cosine between pairs of elements
 - ▶ Ward's linkage
 - Ward's minimum variance method, much in common with analysis of variance (ANOVA)
 - The distance between two clusters is computed as the increase in the "error sum of squares" (ESS) after fusing two clusters into a single cluster.

Summary

Summary

- ► Feature Selection
- ► Text Clustering
- Evaluation

Practical 5