Funkcia sínus v jednotkovej kružnici

$$\sin\alpha = \frac{\mathbf{y}_{\mathsf{M}}}{\mathsf{r}}$$

$$\sin \alpha = y_M$$

$$\sin 0^{\circ} = 0$$

$$\sin 90^{\circ} = 1$$

$$\sin 180^{\circ} = 0$$

$$\sin 270^{\circ} = -1$$

$$\sin 360^{\circ} = 0$$

Pr. 1. Určte pomocou jednotkovej kružnice, či je sínus > 0, < 0, = 0

A) $\sin(\pi/4) > 0$

B) $\sin(\pi/2) > 0$

C) $\sin(\pi) = 0$

D) $\sin(13/6\pi) > 0$

E) $\sin(5/4 \pi) < 0$

F) $\sin(0) = 0$

G) $\sin(15/4 \pi) < 0$

H) $\sin(31\pi) = 0$

I) $\sin(-7/2 \pi) = 1 > 0$

J) $\sin(23/5 \pi)$

K) $\sin(-13/2 \pi)$

L) $\sin(-17/3 \pi)$

M) $\sin(-\pi/3)$

N) $\sin(-\pi)$

O) $\sin(3/2 \pi)$

P) $\sin(-14/3 \pi)$

Q) $\sin(-29/6 \pi)$

R) $\sin(-3\pi)$

Pomôcky (v týchto úlohách najprv urobíme otočky, vytýčime ramená uhla, nájdeme bod M na jednotkovej kružnici a potom vždy hľadáme <u>y-ovú súradnicu bodu M</u> a porovnávame ju s "0" na osi y):

D) $\sin (13/6\pi) = \sin (12/6 \pi + 1/6 \pi) = \sin (1.2\pi + 1/6 \pi) = \sin 30^{\circ} > 0 \dots$ 1 celá otočka $2\pi = 360^{\circ}$ v kladnom smere a ešte $30^{\circ} = >$ dostaneme sa do I. kvadrantu (tam majú všetky y bodov na kružnici kladné hodnoty)

E) $\sin(5/4\pi) = \sin(4/4\pi + 1/4\pi) = \sin(\pi + 1/4\pi) < 0 \dots$ 1 polotočka $\pi = 180^{\circ}$ v kladnom smere a ešte $1/4\pi = 45^{\circ} = 180^{\circ}$ dostaneme sa do III. kvadrantu

G) $\sin (15/4\pi) = \sin (12/4\pi + 3/4\pi) = \sin (8/4\pi + 4/4\pi + 3/4\pi) = \sin (1.2\pi + \pi + 3/4\pi) = \sin (\pi + 3/4\pi) < 0$ 1 celá otočka $2\pi = 360^{\circ}$ v kladnom smere a ešte $\pi = 180^{\circ}$ (polotočka) a ešte $3/4\pi = 135^{\circ} = 360$ dostaneme sa do IV. kvadrantu

H) $\sin (31\pi) = \sin (15.2\pi + \pi) = 0$ 15 celých otočiek o $2\pi = 360^\circ$ v kladnom smere a ešte $\pi = 180^\circ$ (polotočka) => dostaneme sa do bodu M[-1,0]

I) $\sin(-7/2\pi) = \sin(-4/2\pi - 3/2\pi) = \sin(1.(-2\pi) - \pi - 1/2\pi) = \sin(-\pi - 1/2\pi) = 1 > 0$ 1 celá otočka $2\pi = 360^\circ$ v zápornom smere a ešte $\pi = 180^\circ$ (polotočka) a ešte $1/2\pi = 90^\circ = 30$ dostaneme sa do bodu M[0,1]

Funkcia sínus nadobúda v jednotlivých kvadrantoch takéto hodnoty:

Funkcia kosínus v jednotkovej kružnici

k(S;r=1) JEDNOTKOVÁ kružnica

$$\cos \alpha = \frac{\mathbf{x}_{\scriptscriptstyle{M}}}{\mathbf{r}}$$

$$\cos \alpha = x_M$$

$$cos 0^{\circ} = 1$$

$$\cos 90^{\circ} = 0$$

$$\cos 180^{\circ} = -1$$

$$\cos 270^{\circ} = 0$$

$$\cos 360^{\circ} = 1$$

Pr2. Určte pomocou jednotkovej kružnice, či je kosínus > 0, < 0, = 0

A) $\cos(\pi/4) > 0$

B) $\cos(3/2\pi)=0$

C) $\cos(\pi) = -1 > 0$

D) $\cos(11/6\pi) > 0$

E) $\cos(3/4 \pi) < 0$

F) cos(0) = 1 > 0

G) $\cos(-\pi/3) > 0$

H) $\cos(-3\pi) = -1 < 0$

I) $\cos(-7/2 \pi) = 0$

J) $\cos(-4/3 \pi)$

K) $\cos(-1/4 \pi)$

L) $\cos(-4\pi)$

M) $\cos(13/3\pi)$

N) $cos(5\pi)$

O) $\cos(-9/2 \pi)$

P) $\cos(25/6 \pi)$

Q) $\cos(-15/4 \pi)$

R) $\cos(-20/3\pi)$

Pomôcky (v týchto úlohách najprv urobíme otočky, vytýčime ramená uhla, nájdeme bod M na jednotkovej kružnici a potom vždy hľadáme <u>x-ovú súradnicu bodu M</u> a porovnávame ju s "0" na osi x):

D) $\cos(11/6\pi) = \cos(6/6\pi + 5/6\pi) = \cos(\pi + 5/6\pi) = \cos(180^{\circ} + 150^{\circ}) > 0 \dots$ 1 polotočka $\pi = 180^{\circ}$ v kladnom smere a ešte $150^{\circ} = 5/6\pi = >$ dostaneme sa do IV. kvadrantu (tam majú všetky x bodov na kružnici kladné hodnoty)

H) $\cos(-3\pi) = \cos(1.(-2\pi) - \pi) = \cos(-\pi) = \cos(-180^\circ) = -1 < 0 \dots 1$ celá otočka $2\pi = 360^\circ$ v zápornom smere a ešte $180^\circ = \pi = > \text{dostaneme sa do bodu M}[-1,0]$

I) $\cos(-7/2\pi) = \cos(-4/2\pi - 3/2\pi) = \cos(1.(-2\pi) - \pi - \frac{1}{2}\pi) = \cos(-\pi - \frac{1}{2}\pi) = \cos(-180^{\circ} - 90^{\circ}) = 0....$ 1 celá otočka $2\pi = 360^{\circ}$ v zápornom smere a ešte $180^{\circ} = \pi$ a ešte $90^{\circ} = \frac{1}{2}\pi$ => dostaneme sa do bodu M[0,1]

Funkcia sínus nadobúda v jednotlivých kvadrantoch takéto hodnoty:

