Københavns Universitet LinAlgDat - Project B

Victor Vangkilde Jørgensen - kft410 kft410@alumni.ku.dk Hold 13 Mach

15. maj 2025

Indhold

1	\mathbf{Opg}	$\mathbf{a}\mathbf{v}$	\mathbf{e}																													3
	1.a																															3
	1.b																															3
	1.c																															3
	1.d																															4
	1.e					•							•			•			•	•	•	•			•		•					4
2	Opg	Opgave															4															
	2.a																															4
	2.b																															6
	2.c																															6
	2.d																															7
	2.e														•																	7
3																	7															
	3.a																															7
	3.b																															7
	3.c											_																				8
	3.d																															9
4	Opg	av	\mathbf{e}																													9

Opgave 1

1.a

Vi kan aflæse M_a til:

$$\left[\begin{array}{ccc} a & -1 & -1 \\ 0 & (a-1) & -1 \\ 0 & 2 & (a+2) \end{array}\right]$$

1.b

 T_a er altså injektiv.

 T_a er surjektiv, da vi har 3 vektoerer. T_a er dermed bijektiv, da den både er injektiv og surjektiv.

Vi bestemmer nu T_a^{-1} :

1.c

Vi opstill igen T_a , hvor a = -1:

Vi gør det samme for a = 0:

$$\begin{bmatrix} 0 & -1 & -1 & | & 0 \\ 0 & (0-1) & -1 & | & 0 \\ 0 & 2 & (0+2) & | & 0 \end{bmatrix} reducer \rightsquigarrow \begin{bmatrix} 0 & -1 & -1 & | & 0 \\ 0 & -1 & -1 & | & 0 \\ 0 & 2 & 2 & | & 0 \end{bmatrix} -r_1 \rightsquigarrow \begin{bmatrix} 0 & -1 & -1 & | & 0 \\ 0 & 2 & 2 & | & 0 \end{bmatrix} +2r_2 \rightsquigarrow \begin{bmatrix} 0 & -1 & -1 & | & 0 \\ 0 & 0 & 2 & 2 & | & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

1.d

1.e

2 Opgave

2.a

Vi opstiller et ligningssystem i form af en totalmatrix, hvor vi sætter u_1, u_2, u_3 lig hhv. v_1, v_2, v_3 , og finder løsningerne til disse, ved brug af Gauss-Jordan elimination.

$$u_1 + u_2 + u_3 = v_1 \Leftrightarrow$$

$$\begin{bmatrix} 2 & 0 & 1 & 7 \\ 1 & 1 & -1 & -2 \\ -1 & -1 & 2 & 3 \\ 1 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{\cdot 2} \leftarrow \begin{bmatrix} 2 & 0 & 1 & 7 \\ 2 & 2 & -2 & -4 \\ 2 & 2 & -4 & -6 \\ 2 & 2 & 4 & 2 \end{bmatrix} \xrightarrow{-r_1} \sim \begin{bmatrix} 2 & 0 & 1 & 7 \\ 2 & 2 & -4 & -6 \\ 2 & 2 & 4 & 2 \end{bmatrix} \xrightarrow{-r_1} \sim \begin{bmatrix} 2 & 0 & 1 & 7 \\ 0 & 2 & -3 & -11 \\ 0 & 2 & -3 & -13 \\ 0 & 2 & 3 & -5 \end{bmatrix} \xrightarrow{-r_2} \leftarrow \begin{bmatrix} 2 & 0 & 1 & 7 \\ 0 & 2 & -3 & -11 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 6 & 6 \end{bmatrix} \xrightarrow{+3r_3} \xrightarrow{+3r_3} \leftarrow \begin{bmatrix} 2 & 0 & 1 & 7 \\ 0 & 2 & -3 & -11 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\cdot (-\frac{1}{2})} \sim \begin{bmatrix} 2 & 0 & 1 & 7 \\ 0 & 2 & -3 & -11 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{+3r_3} \sim \xrightarrow{+3r_3} \sim \xrightarrow{+3r_3} \sim \xrightarrow{+3r_3} \sim \xrightarrow{-1} \begin{bmatrix} 2 & 0 & 1 & 7 \\ 0 & 2 & -3 & -11 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 & | & 6 \\ 0 & 2 & 0 & | & -8 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{\cdot \frac{1}{2}} \sim \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -4 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Vores første kolonne i $P_{B \leftarrow C}$ er dermed: $\begin{bmatrix} 3 \\ -4 \\ 1 \\ 0 \end{bmatrix}$

 $u_1 + u_2 + u_3 = v_2 \Leftrightarrow$

$$\begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 1 & 1 & -1 & | & 0 \\ -1 & -1 & 2 & | & -1 \\ 1 & 1 & 2 & | & -3 \end{bmatrix} \stackrel{\cdot}{\cdot 2} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 2 & 2 & -2 & | & 0 \\ 2 & 2 & -4 & | & 2 \\ 2 & 2 & 4 & | & -6 \end{bmatrix} \stackrel{\cdot}{-r_1} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 2 & -5 & | & 3 \\ 0 & 2 & 3 & | & -5 \end{bmatrix} \stackrel{\cdot}{-r_2} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 0 & -2 & | & 2 \\ 0 & 0 & 6 & | & -6 \end{bmatrix} \stackrel{\cdot}{+3r_3} \stackrel{\cdot}{+3r_3} \stackrel{\cdot}{-r_2} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 0 & -2 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \stackrel{\cdot}{-1r_3} \stackrel{\cdot}{+3r_3} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \stackrel{\cdot}{-1r_3} \stackrel{\cdot}{-1r_3} \stackrel{\cdot}{-1r_3} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \stackrel{\cdot}{-1r_3} \stackrel{\cdot}{-1r_3} \sim \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Vores anden kolonne i $P_{B\leftarrow C}$ er dermed: $\begin{bmatrix} 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}$

 $u_1 + u_2 + u_3 = v_3 \Leftrightarrow$

$$\begin{bmatrix} 2 & 0 & 1 & 3 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix} \stackrel{\cdot 2}{\cdot (-2)} \rightsquigarrow \begin{bmatrix} 2 & 0 & 1 & 3 \\ 2 & 2 & -2 & -2 \\ 2 & 2 & -4 & -4 \\ 2 & 2 & 4 & 4 \end{bmatrix} \stackrel{\cdot r_1}{-r_1} \rightsquigarrow \begin{bmatrix} 2 & 0 & 1 & 3 \\ 0 & 2 & -3 & -5 \\ 0 & 2 & -5 & -7 \\ 0 & 2 & 3 & 1 \end{bmatrix} \stackrel{\cdot r_2}{-r_2} \rightsquigarrow \begin{bmatrix} 2 & 0 & 1 & 3 \\ 0 & 2 & -3 & -5 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 6 & 6 \end{bmatrix} \stackrel{\cdot r_3}{+3r_3} \rightarrow \begin{bmatrix} 2 & 0 & 1 & 3 \\ 0 & 2 & -3 & -5 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{\cdot (-\frac{1}{2})}{\sim} \sim \begin{bmatrix} 2 & 0 & 1 & 3 \\ 0 & 2 & -3 & -5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{\cdot 1r_3}{-1r_3} \rightarrow \cdots$$

$$\begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 0 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\cdot \frac{1}{2}} \leadsto \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Vores sidste kolonne i $P_{B \leftarrow C}$ er dermed: $\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}$

Sammensætter vi nu vores tre kolonner til en matrix, får vi:

$$P_{B \leftarrow C} = \left[\begin{array}{ccc} 3 & 0 & 1 \\ -4 & -1 & -1 \\ 1 & -1 & 1 \end{array} \right]$$

2.b

$$x = \begin{bmatrix} 7 \\ -2 \\ 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ -3 \\ 4 \\ 0 \end{bmatrix}$$

Da konstanterne foran v i hvert led er 1, og $v_1, v_2, v_3 \in \mathcal{C}$, er koordinaterne for x med henhold til \mathcal{C} :

$$[x]_{\mathcal{C}} = \left[\begin{array}{c} 1\\1\\1 \end{array} \right]$$

Vi benytter vores basisskriftmatrice til at transformere vores koordinater til basen \mathcal{B} fra \mathcal{C} :

$$[x]_{\mathcal{B}} = \begin{bmatrix} 3 & 0 & 1 \\ -4 & -1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -6 \\ 1 \end{bmatrix}$$

2.c

Vi ganger kolonne 2 i vores basisskriftmatrice på u_1 og u_2 :

$$-1 \cdot u_1 + (-1) \cdot u_2 = -1 \cdot \begin{bmatrix} 0 \\ 1 \\ -1 \\ 1 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 1 \\ -1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -1 \\ -3 \end{bmatrix}$$

Vi får v_2 , så v_2 må dermed række spannet af u_2 , u_3 .

Mangler at lave resten af opgaven

2.d

2.e

3

3.a

$$\begin{bmatrix} c_1^F \\ c_2^F \\ s_1^F \\ s_2^F \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} s_1 - c_1 \\ s_2 - c_2 \\ s_1 - c_1 \\ s_2 - c_2 \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ 2s_1 - c_1 \\ 2s_2 - c_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{bmatrix}$$

3.b

Rotation mod venstre er bestemt som:

$$\begin{bmatrix} s_1^L \\ s_2^L \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} \begin{bmatrix} s_1 - c_1 \\ s_2 - c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} (s_1 - c_1)cos(\theta) - (s_2 - c_2)sin(\theta) \\ (s_1 - c_1)sin(\theta) + (s_2 - c_2)cos(\theta) \end{bmatrix} = \begin{bmatrix} c_1 + (s_1 - c_1)cos(\theta) - (s_2 - c_2)sin(\theta) \\ c_2 + (s_1 - c_1)sin(\theta) + (s_2 - c_2)cos(\theta) \end{bmatrix} = \begin{bmatrix} c_1 - c_1 \cdot cos(\theta) + c_2 \cdot sin(\theta) + s_1 \cdot cos(\theta) - s_2 \cdot sin(\theta) \\ -c_1 \cdot sin(\theta) + c_2 - c_2 \cdot cos(\theta) + s_1 \cdot sin(\theta) + s_2 \cdot cos(\theta) \end{bmatrix} \Rightarrow \begin{bmatrix} 1 - cos(\theta) & sin(\theta) & cos(\theta) & -sin(\theta) \\ -sin(\theta) & 1 - cos(\theta) & sin(\theta) & cos(\theta) \end{bmatrix}$$

Og som der fremkommer i opgaven, er:

$$\left[\begin{array}{c} c_1^L \\ c_2^L \end{array}\right] = \left[\begin{array}{c} c_1 \\ c_2 \end{array}\right]$$

Den endelige matrix for rotation mod venstre er dermed bestemt ved følgende variable:

$$L_{\theta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 - \cos(\theta) & \sin(\theta) & \cos(\theta) & -\sin(\theta) \\ -\sin(\theta) & 1 - \cos(\theta) & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Rotation mod højre er bestemt som:

$$R_{\theta} = L_{-\theta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 - \cos(\theta) & -\sin(\theta) & \cos(\theta) & \sin(\theta) \\ \sin(\theta) & 1 - \cos(\theta) & -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

3.c

Ved brug af matrixoperationerne fra python i $project\ A$, får vi følgende matricer efter vi ganger hhv. 'fremad', 'rotation til venstre' og 'rotation til højre' matricerne på til venstre:

Efter alle 9 multiplikationer fra venste ender vi med postionen af spilleren og sidsen svarende til matricen:

$$\begin{bmatrix}
0.57728 \\
0.07421 \\
-0.33566 \\
0.48229
\end{bmatrix}$$

3.d

At gange vores 'rotation mod højre' matrice på sig selv svarer til at gange det antal gange med vinkeln θ , da:

$$R_{\theta 1} \cdot R_{\theta 2} = R_{\theta 1 + \theta 2}$$

og

$$(R_{\theta})^n = \prod_{i=1}^n R_{\theta i} = R_{\theta 1 + \theta 2 + \dots + \theta n}$$

Vi kan dermed beregne $(R_{20})^{18}$ til:

$$(R_{20})^{18} = \prod_{i=1}^{18} R_{20} = R_{20\cdot 18} = R_{360}$$

Med vores nye vinkel beregnet, kan vi nu indsætte 360 på θ -s plads i R_{θ} :

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1-\cos(360) & -\sin(360) & \cos(360) & \sin(360) \\ \sin(360) & 1-\cos(360) & -\sin(360) & \cos(360) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1-1 & 0 & 1 & 0 \\ 0 & 1-1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Således ender vi med enhedsmatricen I_4 .

4 Opgave

Se vedhæftede python-fil.