

Chapter 8 비선형분류모형 III Machine Learning & Deep Learning

손영두

e-mail: youngdoo@dongguk.edu

Find a linear hyperplane (decision boundary) that will separate the data

Hyperplane (초평면)

- Hyperplane En: the set of points $X = \{x \mid cx = z\}$ with $c \neq 0$
- **ऑ** Hyperplane은 임의의 공간을 반으로 양분
- ▼ z=0이면, hyperplane이 원점을 지나게됨
- ☑ 2차원 공간에서의 초평면: 1차원 직선
- ☑ 3차원 공간에서의 초평면: 2차원 평면

One possible solution

A linearly separable data set

Another possible solution

A linearly separable data set

Other possible solutions

A linearly separable data set

- Which is better? B_1 or B_2 ?
- How can we define "better"?

Support Vector Machine: Maximum Margin Classification

Support Vector Machine: Maximum Margin Classification

- Margin을 최대화하는 hyperplane을 선택: B₁01 B₂보다 더 좋은 classifier
- Margin : decision boundary로부터 가장 가까운 데이터까지의 거리 (또는 양 쪽의 합)
- Margin이 클 수록 generalization error가 낮아지는 경향이 있음
 - Margin이 작을 경우, decision boundary에 대한 작은 섭동이 데이터에 대한 분류에 큰 영향을 미칠 수 있음 : overfitting이 될 가능성이 높음
- ☑ 관련된 이론적 뒷받침 존재 & 실제 문제의 적용에서도 좋은 성능을 보임

Linearly separable case

■ 각 class label이 +1, -1로 주어진 경우

▼ N개의 학습 데이터로 이루어진 binary classification의 경우

$$(x_i, y_i) (i = 1, ..., N) where y_i \in \{-1, 1\}$$

■ Linear classifier의 decision boundary는 아래와 같이 표현 가능

$$\mathbf{w} \cdot \mathbf{x} + \boldsymbol{b} = \mathbf{0}$$

Square point에 धिरुपि:

$$\mathbf{w} \cdot \mathbf{x}_{s} + b = k$$
, where $k < 0$

Circle point에 대하여:

$$\mathbf{w}\cdot\mathbf{x}_{\mathrm{c}}+b=k'$$
 , where $k'>0$

▼ Test 데이터에 대하여는 아래와 같이 분류 가능

$$y = \begin{cases} 1 & if \ \mathbf{w} \cdot \mathbf{z} + b > 0 \\ -1 & if \ \mathbf{w} \cdot \mathbf{z} + b < 0 \end{cases}$$

□ 다음과 같이 parameter들을 rescale이 가능 boundary에 있는 point들에 대하여,

$$b_{i1}: w \cdot x + b = 1 \text{ if } y_i = 1$$

$$b_{i2}: w \cdot x + b = -1 \text{ if } y_i = -1$$

☑ Boundary의 안 쪽에 있는 point들에 대하여,

$$b_{i1}: w \cdot x + b > 1 \text{ if } yi = 1$$

$$b_{i2}: w \cdot x + b < -1 \text{ if } yi = -1$$

☑ 두 식을 종합하면

$$yi(w \cdot x + b) >= 1$$

텔 이 경우 margin ρ=2/||w||로 표현 가능

Quadratic optimization problem:

Find w and b such that

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$
 is maximized

and for all
$$(\mathbf{x}_i, y_i)$$
, $i=1..n$: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Reformulation:

Find w and b such that

$$\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$$
 is minimized

and for all
$$(\mathbf{x}_i, y_i)$$
, $i=1..n$: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

■ Lagrangian dual 및 Karush-Kuhn-Tucker condition을 이용하여 SVM의 해를 구함(편의상 앞으로 목적함수에 1/2를 추가)

Karush-Kuhn-Tucker (KKT) Condition (Optional)

Given general problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to $h_i(x) \le 0, \quad i = 1, \dots m$

$$\ell_j(x) = 0, \quad j = 1, \dots r$$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

•
$$0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$$
 (stationarity)

- $u_i \cdot h_i(x) = 0$ for all i (complementary slackness)
- $h_i(x) \le 0, \ \ell_j(x) = 0$ for all i, j (primal feasibility)
- $u_i \ge 0$ for all i (dual feasibility)

$$Min L(w, b, \lambda) = \frac{1}{2} ||w||^2 - \sum_{i}^{N} \lambda_i y_i (w \cdot x_i + b) + \sum_{i}^{N} \lambda_i \dots Lagrangian$$

$$\frac{\partial}{\partial w} L_p(w,b,\lambda) = w - \sum_{i}^{N} \lambda_i y_i x_i = 0$$

$$\frac{\partial}{\partial b} L_p(w,b,\lambda) = -\sum_{i}^{N} \lambda_i y_i = 0$$
...Gradient of the Lagrangian=0

K.K.T condition

$$y_i(w \cdot x_i + b) - 1 \ge 0$$
 $\square i$...Primal Feasibility

$$\lambda_i \geq 0$$
 \square i ...Dual Feasibility

$$\lambda_i(y_i(w \cdot x_i + b) - 1) = 0$$
 $\square i$...Complementarity Conditions

ਊ 여기서,

 $\lambda_i[y_i(w\cdot x_i+b)-1]=0$ 을 살펴보면 training instance X_i 가 $y_i(w\cdot x_i+b)-1=0$ 을 만족하지 않는 경우에는 $\lambda_i=0$ 이 되어야 하는데, 이것은 training instance가 $y_i(w\cdot x_i+b)-1=0$ 인 hyperplane상에 없는 경우에만 $\lambda_i=0$ 이 됨을 의미함 (Complementary slackness)

- training instance가 y_i(w·x_i+b)-1=0 을 만족하는 경우에만 λ_i>0의 값을 갖는다.
 즉, λ_i>0인 경우 training instance X는 y_i(w·x_i+b)-1=0 인 hyperplane b_{i1}, 또는 b_{i2} 상에 위치하는데, 이러한 training instance들을 support vector라 한다.
- hyperplane의 w, b값은 support vectors에 의해서만 결정되며, support vector가 아닌 다른 training instance는 w, b값을 결정하는데 사용되지 않는다.

Machine Learning & Deep Learning

Linear SVM: support vectors

- 주어진 Lagrangian primal 문제는 Lagrangian dual 문제로 변경이 가능
- **Primal problem: minimization on w, b, λ**

min
$$Lp(w,b,\lambda) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} - \sum_{i}^{N} \lambda_{i} y_{i} (\mathbf{w}^{T} \cdot x_{i} + b) + \sum_{i}^{N} \lambda_{i}$$

$$w = \sum_{i}^{N} \lambda_{i} y_{i} x_{i}, \sum_{i}^{N} \lambda_{i} y_{i} = 0$$

Solution Dual problem: maximization of λ

$$\begin{aligned} & \max \ \ L_{cl}(\lambda) = -\frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i}^{T} \cdot x_{j} + \sum_{i}^{N} \lambda_{i} \\ & st. \quad \lambda_{i} \geq 0, \ \sum_{i}^{N} \lambda_{i} y_{i} = 0, \quad \forall \ i \\ & \lambda_{i} [y_{i}(w^{T} x_{i} + b) - 1] = 0 \end{aligned}$$

Dual Problem을 풀어 λ를 구해내면, decision boundary를 아래와 같이 표현 가능

$$\left(\sum_{i=1}^{N} \lambda_{i} y_{i} x_{i} \cdot x\right) + b = 0$$

™ 따라서 λ=0인 데이터(support vector가 아닌 데이터)들은 decision boundary에 영향을 주지 못함

Linearly non-separable case

■ Soft margin 방법 사용

- 작은 오차는 허용하여 decision boundary를 구함
- ☑ 따라서 오차와 margin 간의 trade-off 관계에 대한 조절이 필요
- S차를 위하여 slack variable ξ 도입

Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called *soft*.

$$w \cdot x_i + b \ge 1 - \xi_i$$
 if y_i=1
 $w \cdot x_i + b \le -1 + \xi_i$ if y_i=-1

,where $\xi_i \ge 0$

P: one of the instances that violates the constraints in Eq 5.35

 ξ provides an estimate of the error of the decision boundary on the training example P

$$wx_{1} + b = -1 + \xi$$

$$wx_{2} + b = -1$$

$$w(x_{1} - x_{2}) = \xi$$

$$\|w\| \cdot d = \xi$$

$$d = \frac{\xi}{\|w\|}$$

₩ 새로운 목적함수

Find w and b such that

$$\mathbf{\Phi}(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum \xi_{i} \text{ is minimized}$$

and for all $(\mathbf{x}_{i}, y_{i}), i=1..n$: $y_{i} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b) \ge 1 - \xi_{i}$, $\xi_{i} \ge 0$

- 모수 C를 통하여 margin과 error의 trade-off 조절
- Separable case와 마찬가지로 Lagrangian dual을 통하여 풀이 가능

The modified objective function and constraints:

$$f(w) = \frac{\|w\|^2}{2} + C(\sum_{i=1}^{N} \xi_i)^k$$

$$w \cdot x_i + b \ge 1 - \xi_i$$

$$w \cdot x_i + b \le -1 + \xi_i$$

,where
$$\xi_i \geq 0$$

Lagrangian for the constrained optimization(k=1)

$$Lp = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \lambda_i \{y_i (w \cdot x_i + b) - 1 + \xi_i\} - \sum_{i=1}^{N} \mu_i \xi_i$$

$$y_i(x_i \cdot w + b) - 1 + \xi_i \ge 0$$
 Given conditions
$$\xi_i \ge 0$$

$$\lambda_i \ge 0$$
$$\mu_i \ge 0$$

Lagrange multiplier conditions

$$\begin{split} \lambda_i & \big\{ y_i (x_i \cdot w + b) - 1 + \xi_i \big\} = 0 \\ \mu_i & \xi_i = 0 \end{split}$$
 KKT complementary conditions

☑ Separable case와 같은 형태의 decision boundary를 도출

$$(\sum_{i=1}^{N} \lambda_i y_i x_i \bullet x) + b = 0$$

₩ 차이점

- Support vector on boundary:
- Bounded support vector (samples off the boundary):

Nonlinear SVM

☑ Decision boundary 가 비선형인 경우?

Nonlinear SVM

☑ 선형분리가 가능한 경우:

☑ 선형분리가 불가능한 경우:

☑ 고차원 mappling을 통해 해결이 가능할까?

Nonlinear SVM: feature space

☑ General idea: 입력 공간을 학습 데이터의 선형 분리가 가능한 고차원 특성 공간 (feature space)으로 mapping이 가능하다

Machine Learning & Deep Learning

Nonlinear SVM: feature space

☑ 고차원 공간에서의 선형 분리는, 입력 공간에서의 비선형 분리로 표현될 수 있다

Nonlinear SVM

Nonlinear SVM을 입력 공간이 아닌 특성 공간에서 문제를 해결할 경우 기존의 linear SVM과 같은 방법으로 풀어낼 수 있음

$$min \frac{\|w\|^2}{2}$$

s.t. yi
$$(w \cdot \Phi(xi) + b) \ge 1$$
, $i = 1, 2, ..., N$

Decision boundary

$$f(z) = sign(w \cdot \Phi(z) + b)$$

$$= sign(\sum_{i=1}^{n} \lambda_i y_i \Phi(x_i) \cdot \Phi(z) + b)$$

- ਊ마나 고차원으로 mapping을 해야할까?
 - 고차원으로 mapping할수록 두 mapped feature vector의 내적의 계산에 많은 자원이 소요됨

Nonlinear SVM: kernel trick

Linear SVM은 입력 벡터의 내적에만 의존: $K(x_i, x_j) = x_i^T x_j$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j}$$

Arr 만일 데이터가 특정 변환 Φ: $x \rightarrow \varphi(x)$ 에 의해 고차원 특성 공간으로 사영되더라도, 특성공간에서의 특성벡터의 내적에만 의존:

$$K(x_i, x_j) = \varphi(x_i)^{\mathsf{T}} \varphi(x_j)$$

- ¥ Kernel function 은 특성 공간에서의 내적 값과 같은 결과를 주는 함수
- **Example:**

2-dimensional vectors $x=[x_1 \ x_2];$ let $K(x_i, x_i) = (x_i^T x_i)^2$ then find $\phi(x)$

따라서 kernel function은 데이터를 간접적으로 고차원으로 사영함 (직접적으로 φ(x)를 정의할 필요 없음)

Nonlinear SVM: kernel trick

- All 매번 K(xi,xj)= φ(xi) Tφ(xj)를 만족하는 φ(x)를 찾는 것은 번거로움
- Mercer's theorem:

Every positive semi-definite symmetric function is a kernel

☑ Positive semi-definite 함수는 Positive semi-definite한 Gram matrix와 연관됨

•	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$	 $K(\mathbf{x}_1,\mathbf{x}_n)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$	$K(\mathbf{x}_2,\mathbf{x}_n)$
K=				
	$K(\mathbf{x}_n, \mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	 $K(\mathbf{x}_n,\mathbf{x}_n)$

Nonlinear SVM: positive semi-definite

$$\forall z \neq 0, \ z^T A z > 0 \rightarrow positive definite$$

 $\forall z \neq 0, \ z^T A z \geq 0 \rightarrow positive semidefinite$
 $\forall z \neq 0, \ z^T A z < 0 \rightarrow negative definite$
 $\forall z \neq 0, \ z^T A z \leq 0 \rightarrow negative semidefinite$

Nonlinear SVM: kernel 함수의 종류

- Linear: $K(x_i, x_j) = x_i^T x_j$
 - Mapping Φ : $x \to \phi(x)$, where $\phi(x)$ is x itself
- Polynomial of power $p: K(x_i, x_j) = (1 + x_i^T x_j)^p$
 - Mapping Φ: $x \to \varphi(x)$, where $\varphi(x)$ has $\begin{pmatrix} d + p \\ p \end{pmatrix}$ dimensions
- Gaussian (radial-basis function): $K(x_i, x_j) = e^{-||x_i x_j||^2/2\sigma^2}$
 - Mapping Φ: $x \to \phi(x)$, where $\phi(x)$ is *infinite-dimensional*: every point is mapped to *a function* (a Gaussian); combination of functions for support vectors is the separator.

SVM 실습 – 모듈 import와 데이터 생성과 학습

Make_blobs 함수를 통해 분류 데이터 생성 및 학습(fit)

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=40, centers=2, random_state=20)|
clf = svm.SVC(kernel='linear')
clf.fit(X, y)
```

▶ 추후에 'linear'를 변경해서 kernel을 조절할 수 있음

Machine Learning & Deep Learning

SVM 실습 – 학습된 모델의 시각화

ਊ 학습된 모델을 토대로 시각화

```
plt.scatter(X[:,0], X[:,1], c=y, s=30, cmap=plt.cm.Paired)
# 圣哲色(Hyper-Plane) 丑色
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1,0,1], alpha=0.5, linestyles=['--', '--', '---'])
# X/X/벡터(Support Vector) 丑色
ax.scatter(clf.support_vectors_[:,0], clf.support_vectors_[:,1], s=60, facecolors='r')
plt.show()
```


SVM 실습 – 시각화 결과 (linear)

- 빨간 점은 support vector
- ☑ 굵은 회색 선이 hyperplane

Chapter 8. 비선형분류모형 III

Machine Learning & Deep Learning

SVM 실습 - 모듈 import와 데이터 생성과 학습

'linear'를 'rbf'로 변경해서 kernel을 조절

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=40, centers=2, random_state=20)
clf = svm.SVC(kernel='rbf')
clf.fit(X, y)
```


SVM 실습 – 시각화 결과(rbf)

- 빨간 점은 support vector
- ☑ 굵은 회색 선이 hyperplane

Chapter 8. 비선형분류모형 III

Machine Learning & Deep Learning

실습 - Iris Data load

```
iris = load_iris()
iris_frame=pd.DataFrame(data=np.c_[iris['data'],iris['target']],columns=iris['feature_names'] + ['target'])
iris_frame['target'] = iris_frame['target'].map({0:"setosa",1:"versicolor",2:"virginica"})
X=iris_frame.iloc[:,:-1]
Y=iris_frame.iloc[:,[-1]]
iris_frame
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

Machine Learning & Deep Learning

실습 - Iris Data를 이용한 svm 학습

Sepal의 length와 width를 이용한 svm

```
clf = svm.SVC(kernel='linear')
import matplotlib.colors as colors
df1 = iris_frame[["sepal length (cm)", "sepal width (cm)", 'target']]
X = df1.iloc[:,0:2]
Y = df1.iloc[:,2].replace({'setosa':0,'versicolor':1,'virginica':2}).copy()
clf.fit(X,Y)
```


실습 – Iris Data와 svm 시각화

import seaborn as sn 해줘야 합니다.

```
N = 100
X_{\perp} = np.linspace(4, 8, N)
Y_{\perp} = np.linspace(1.5, 5, N)
X_, Y_ = np.meshgrid(X_, Y_)
color_list = ['Blues','Greens','Reds']
my norm = colors.Normalize(vmin=-1.,vmax=1.)
g = sn.FacetGrid(iris_frame, hue="target", size=10, palette = 'colorblind') .map(plt.scatter, "sepal length (cm)",
my_ax = g.ax
zz = np.array([clf.predict([[xx,yy]])[0]  for xx, yy in zip(np.ravel(X_), np.ravel(Y_))])
Z = zz.reshape(X_.shape)
#Plot the filled and boundary contours
my_ax.contourf( X_, Y_, Z, 2, alpha = .1, colors = ('blue', 'green', 'red'))
my_ax.contour( X_, Y_, Z, 2, alpha = 1, colors = ('blue', 'green', 'red'))
# Addd axis and title
my_ax.set_xlabel('Sepal length')
|my_ax.set_ylabel('Sepal width')
my_ax.set_title('SVM')
plt.show()
```

Machine Learning & Deep Learning

실습 – Iris Data와 svm 시각화

Machine Learning & Deep Learning

실습 – Iris Data와 svm 시각화

