

VT82C686A "Super South" South Bridge

PSIPC PCI Super-I/O Integrated Peripheral Controller

PC98 COMPLIANT PCI-TO-ISA BRIDGE
WITH INTEGRATED SUPER-I/O (FDC, LPT, COM1/2, AND IR),
INTEGRATED SOUNDBLASTER/DIRECTSOUND AC97 AUDIO,
ULTRADMA-33/66 MASTER MODE PCI-EIDE CONTROLLER,
USB CONTROLLER, KEYBOARD CONTROLLER, RTC,
DISTRIBUTED DMA, SERIAL IRQ, PLUG AND PLAY,
ACPI, ENHANCED POWER MANAGEMENT, SMBUS, AND
TEMPERATURE, VOLTAGE, AND FAN-SPEED MONITORING

Revision 1.1 April 15, 1999

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 1997, 1998, 1999 VIA Technologies Incorporated. Printed in the United States. ALL RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT82C686A and Super South may only be used to identify products of VIA Technologies, Inc.

is a registered trademark of VIA Technologies, Incorporated.

PS/2[™] is a registered trademark of International Business Machines Corp.

Pentium-Pro[™] and GTL+[™] are registered trademarks of Intel Corp.

Windows 95[™], Windows 98[™], Windows NT[™], and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCI[™] is a registered trademark of the PCI Special Interest Group.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office: 1045 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300 Fax: (510) 683-3301 **Taipei Office:** 8th Floor, No. 533

Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 218-5452 Fax: (886-2) 218-5453

Online Services:

Home Page: http://www.via.com.tw -or- http://www.viatech.com

FTP Server: <u>ftp.via.com.tw</u>
BBS: <u>886-2-2185208</u>

REVISION HISTORY

Document Release	Date	Revision	Initials
Revision 0.1	2/10/98	Initial release based on 82C596 "Mobile South" Data Sheet revision 0.3	DH
Revision 0.2	3/17/98	Updated features, overview, pins, regs; Added pin list, Sup-IO, HWM, audio	DH
Revision 0.3	4/20/98	Revised pinouts, fixed TC, changed reg defs, added regs in funcs 1, 3, & 4:	DH
Revision 0.4	4/29/98	Corrected TC, features, pin descriptions, f4/game port regs, removed timing	DH
Revision 0.5	5/27/98	Updated feature bullets, pinouts, registers in functions 0-4 and I/O	DH
Revision 0.6	5/29/98	Updated registers in functions 1, 3, and 4	DH
Revision 0.72	12/1/98	Added UltraDMA-66 capability to feature bullets	DH
		Changed pinouts (primarily SA and USB pins) so changed name to 82C686A	
		Removed PIRQ1, KBLOCK moved SLPBTN#, GPI4, SERIRQ, USBOC0-1#	
		Changed IDE secondary data bus (SDD) multiplexing	
		Moved KBCK, ROMCS#, USBCLK, & USBP0-1 ports to add USB ports 2-3	
		Added Status/Control I/O registers 14-17 (function 2) for new USB ports 2-3	
		Changed XOE# to SOE# (function changed as well as the name)	
		Updated pin names & descriptions to match MVP4 design guide	
		Updated register definitions to reflect the above pin changes Removed references to I/O APIC & changed register control bits to reserved	
		Changed Super-I/O configuration RxF6[2] and RxF8[7-4] to reserved	
		Changed FDC registers offset 2 bits 1-0 and offset 4 bits 2-3 (now reserved)	
		Moved Super I/O ena/disa from bit 0 to 1& config ports from 398/9 to 3F0/1	
		Fixed errors in SMBus offsets D4-5, fixed PCI IRQ routing (f0 Rx55-57),	
		added f0Rx4A[6],76[7], f1Rx71,79, f3Rx42[6], changed PMU Device ID	
Revision 0.8	12/7/98	Added Super-I/O config register bits RxF0[2], F6[4]	DH
		Added Func0-Rx76[7-6] (bit-7 changed), Rx85[0,2-4]	
		Added note to F0-Rx41[0], removed note from Rx4A[7]	
		Func1-fixed Rx50[29], added Rx50[19, 3), added Rx54[3]	
		Split Func 2 into two functions (2 = ports 0-1, 3 = ports 2-3), added Rx41[7]	
		Moved Pwr Mgmt, SMBus, and HW Monitoring regs from func 3 to func 4	
		Pwr Mgmt Func4 added Rx41[6], 42[7], 54	
		Pwr Mgmt I/O added Rx4[15], 20[13], 22[13], 24[13], 45[3], removed 40 Moved audio codec registers to function 5	
Revision 0.9	12/9/98	Fixed USB (Function 2 and 3) Rx40[1] definition	DH
Revision 0.7	12/7/70	Updated function 5 (audio codec) regs & added function 6 (modem codec)	DII
		Fix USB Rx41[2] definition reversed	
Revision 1.0	1/15/99	Corrected ROMCS# strapping polarity, feature bullet max EPROM support	DH
		Corrected f0Rx8 Revision ID and f4Rx2 Device ID	
		Fixed miscellaneous typographical errors in pin lists and pin descriptions	
Revision 1.1	4/15/99	Fixed typos in pinout diagram (PDD0-15 and RXD2) & fig 7 block diagram	DH
		Moved pin option MCCS# from U5 to U8 and added SCIOUT# on U5	
		Removed GPO6 from V10 and added SUSST1# alternate function to GPO3	
		Added USBOC0-3#, APIC pin descriptions, Gameport/DRQ/DACK alt funcs	
		Fixed HWM voltage sense pin descriptions, updated GPIO descriptions	
		Added DMA ctrlr & timer shadow registers, modified int ctrlr shadow regs	
		Modified ports 70 (CMOS Address RW), E6 (note), F6, F8 (2/4 drive option) Fixed register: f0Rx5C[2],74[7],75[3],77[0],81[3],85[4-2],88-89; f1Rx4[6-	
		9],41[3,0],43[3-0]44[4,2,1], 50[26,18,10,2]; f2-3Rx41[5-7]; f4Rx4C[7-	
		2],4D,50[6,2],54[3-2],90[31-16]; PMU I/O Rx4C; HWM I/O 13-17,27-	
		28,35-38,42[2-1],44[2-1],49[3-0],4B defaults; f5Rx6[14-11,8],8,18,2C,	
		34; 42[6-5],48[4]; f5IORx2[3-2],22[3-2]; f6Rx6[14-11,8],9-B,41[3-0],	
		44[5-4]; f6IORx41[5-4],42[3-2],51[5-4], added IOBase2 Rx0-3	
		Updated electrical specs	

TABLE OF CONTENTS

]
TABLE OF CONTENTS	I
LIST OF FIGURES	IV
LIST OF TABLES	IV
OVERVIEW	5
PINOUTS	
PIN DIAGRAM	
PIN LISTS	8
PIN DESCRIPTIONS	10
REGISTERS	27
REGISTER OVERVIEW	27
REGISTER DESCRIPTIONS	
Configuration Space I/O	39
Legacy I/O Ports	
Keyboard Controller Registers	
DMA Controller I/O Registers	
Interrupt Controller Registers	
Timer / Counter Registers	
CMOS / RTC Registers	
Super-I/O Configuration Index Registers	
Super-I/O Configuration Registers	
Super-I/O I/O Ports	
Floppy Disk Controller Registers	
Parallel Port 1 Registers	
Serial Port 1 Registers	
SoundBlaster Pro Port Registers	
FM Registers	
Mixer Registers	
1.22.01	
Sound Processor Registers	
Sound Processor Registers	
Game Port Registers	
Game Port Registers Function 0 Registers - PCI to ISA Bridge	55
Game Port Registers	55
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control	
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control	
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control	
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller	55 55 55 59 61 62
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller PCI Configuration Space Header	55 55 55 59 61 62 65
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller PCI Configuration Space Header IDE-Controller-Specific Confiiguration Registers	55 55 55 59 61 62 65 65
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller PCI Configuration Space Header IDE-Controller-Specific Configuration Registers IDE I/O Registers	55 55 55 55 61 62 65 65
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller PCI Configuration Space Header IDE-Controller-Specific Confiiguration Registers IDE I/O Registers Function 2 Registers - USB Controller Ports 0-1	55 55 55 55 61 62 65 65 72 73
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller PCI Configuration Space Header IDE-Controller-Specific Confiiguration Registers IDE I/O Registers Function 2 Registers - USB Controller Ports 0-1 PCI Configuration Space Header	55 55 55 55 61 62 65 65 72 73
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control	55 55 55 55 61 62 65 65 72 73
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller PCI Configuration Space Header IDE-Controller-Specific Configuration Registers IDE I/O Registers Function 2 Registers - USB Controller Ports 0-1 PCI Configuration Space Header USB-Specific Configuration Registers USB I/O Registers	55 55 55 55 61 62 65 65 72 73 74
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control. Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller PCI Configuration Space Header IDE-Controller-Specific Configuration Registers IDE I/O Registers Function 2 Registers - USB Controller Ports 0-1 PCI Configuration Space Header USB-Specific Configuration Registers USB I/O Registers Function 3 Registers - USB Controller Ports 2-3	55 55 55 55 55 61 62 65 65 72 73 74 74
Game Port Registers Function 0 Registers - PCI to ISA Bridge PCI Configuration Space Header ISA Bus Control Plug and Play Control Distributed DMA / Serial IRQ Control Miscellaneous / General Purpose I/O Function 1 Registers - Enhanced IDE Controller PCI Configuration Space Header IDE-Controller-Specific Configuration Registers IDE I/O Registers Function 2 Registers - USB Controller Ports 0-1 PCI Configuration Space Header USB-Specific Configuration Registers USB I/O Registers	55 55 55 55 55 61 62 65 65 72 73 74 74 75

Function 4 Regs - Power Management, SMBus and HWM	77
PCI Configuration Space Header	77
Power Management-Specific PCI Configuration Registers	78
Hardware-Monitor-Specific Configuration Registers	83
System Management Bus-Specific Configuration Registers	83
Power Management I/O-Space Registers	
System Management Bus I/O-Space Registers	93
Hardware Monitor I/O Space Registers	96
Function 5 & 6 Registers - AC97 Audio & Modem Codecs	100
PCI Configuration Space Header – Function 5 Audio	
PCI Configuration Space Header – Function 6 Modem	101
Function 5 & 6 Codec-Specific Configuration Registers	102
I/O Base 0 Registers – Audio/Modem Scatter/Gather DMA	104
I/O Base 1 Registers – Audio FM NMI Status Registers	
I/O Base 2 Registers –MIDI / Game Port (Rev H)	
FUNCTIONAL DESCRIPTIONS	109
POWER MANAGEMENT	109
Power Management Subsystem Overview	109
Processor Bus States	
System Suspend States and Power Plane Control	110
General Purpose I/O Ports	110
Power Management Events	111
System and Processor Resume Events	111
Legacy Power Management Timers	112
System Primary and Secondary Events	112
Peripheral Events	112
ELECTRICAL SPECIFICATIONS	113
ABSOLUTE MAXIMUM RATINGS	113
DC CHARACTERISTICS	113
PACKAGE MECHANICAL SPECIFICATIONS	114

LIST OF FIGURES

FIGURE 1. PC SYSTEM CONFIGURATION USING THE VT82C686A	
FIGURE 2. VT82C686A BALL DIAGRAM (TOP VIEW)	7
FIGURE 3. VT82C686A PIN LIST (NUMERICAL ORDER)	
FIGURE 4. VT82C686A PIN LIST (ALPHABETICAL ORDER)	
FIGURE 5. STRAP OPTION CIRCUIT.	
FIGURE 6. POWER MANAGEMENT SUBSYSTEM BLOCK DIAGRAM	
FIGURE 8. MECHANICAL SPECIFICATIONS – 352 PIN BALL GRID ARRAY PACKAGE	

LIST OF TABLES

TABLE 1.	PIN DESCRIPTIONS	10
TABLE 2.	SYSTEM I/O MAP	27
	REGISTERS	
	KEYBOARD CONTROLLER COMMAND CODES	
TABLE 5	CMOS RECISTER SUMMARY	44

VT82C686A PSIPC PCI SUPER-I/O INTEGRATED PERIPHERAL CONTROLLER

PC98 COMPLIANT PCI-TO-ISA BRIDGE
WITH INTEGRATED SUPER-I/O (FDC, LPT, COM1/2, AND IR),
INTEGRATED HARDWARE SOUNDBLASTER/DIRECT SOUND AC97 AUDIO,
ULTRADMA-33/66 MASTER MODE PCI-EIDE CONTROLLER,
USB CONTROLLER, KEYBOARD CONTROLLER, RTC,
DISTRIBUTED DMA, SERIAL IRQ, PLUG AND PLAY,
ACPI, ENHANCED POWER MANAGEMENT, SMBUS, AND
TEMPERATURE, VOLTAGE, AND FAN-SPEED MONITORING

Inter-operable with VIA and other Host-to-PCI Bridges

- Combine with VT82C598 for a complete Super-7 (66/75/83/100MHz) PCI / AGP / ISA system (Apollo MVP3)
- Combine with VT82C501 for a complete Super-7 system with integrated 2D / 3D graphics (Apollo MVP4)
- Combine with VT82C691 for a complete 66 / 100 MHz Socket-8 or Slot-1 PCI / ISA system (Apollo Pro)
- Inter-operable with Intel or other Host-to-PCI bridges for a complete PC98 compliant PCI / AGP / ISA system

PCI to ISA Bridge

- Integrated ISA Bus Controller with integrated DMA, timer, and interrupt controller
- Integrated Keyboard Controller with PS2 mouse support
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM and Day/Month Alarm for ACPI
- Integrated USB Controller with root hub and four function ports
- Integrated UltraDMA-33/66 master mode EIDE controller with enhanced PCI bus commands
- PCI-2.2 compliant with delay transaction and remote power management
- Eight double-word line buffer between PCI and ISA bus
- One level of PCI to ISA post-write buffer
- Supports type F DMA transfers
- Distributed DMA support for ISA legacy DMA across the PCI bus
- Serial interrupt for docking and non-docking applications
- Fast reset and Gate A20 operation
- Edge trigger or level sensitive interrupt
- Flash EPROM, 4Mb EPROM and combined BIOS support
- Supports positive and subtractive decoding

• UltraDMA-33 / 66 Master Mode PCI EIDE Controller

- Dual channel master mode PCI supporting four Enhanced IDE devices
- Transfer rate up to 33MB/sec to cover PIO mode 4, multi-word DMA mode 2 drives, and UltraDMA-33 interface
- Increased reliability using UltraDMA-66 transfer protocols
- Thirty-two levels (doublewords) of prefetch and write buffers
- Dual DMA engine for concurrent dual channel operation
- Bus master programming interface for SFF-8038i rev.1.0 and Windows-95 compliant
- Full scatter gather capability
- Support ATAPI compliant devices including DVD devices
- Support PCI native and ATA compatibility modes
- Complete software driver support

• Integrated Super IO Controller

- Supports 2 serial ports, IR port, parallel port, and floppy disk controller functions
- Two UARTs for Complete Serial Ports

Programmable character lengths (5,6,7,8)

Even, odd, stick or no parity bit generation and detection

Programmable baud rate generator

High speed baud rate (230Kbps, 460Kbps) support

Independent transmit/receiver FIFOs

Modem Control

Plug and play with 96 base IO address and 12 IRQ options

One dedicated IR port

Third serial port dedicated to IR function

IR function either through the two complete serial ports or the third dedicated port

Infrared-IrDA (HPSIR) and ASK (Amplitude Shift Keyed) IR

Multi-mode parallel port

Standard mode, ECP and EPP support

Plug and play with 192 base IO address, 12 IRQ and 4 DMA options

Floppy Disk Controller

16 bytes of FIFO

Data rates up to 1Mbps

Perpendicular recording driver support

Two FDDs with drive swap support

Plug and play with 48 base IO address, 12 IRQ and 4 DMA options

• SoundBlaster Pro Hardware and Direct Sound Ready AC97 Digital Audio Controller

- Dual full-duplex Direct Sound channels between system memory and AC97 link
- PCI master interface with scatter / gather and bursting capability
- 32 byte FIFO of each direct sound channel
- Host based sample rate converter and mixer
- Standard v1.0 or v2.0 AC97 Codec interface for single or cascaded AC97 Codec's from multiple vendors
- Loopback capability for re-directing mixed audio streams into USB and 1394 speakers
- Hardware SoundBlaster Pro for Windows DOS box and real-mode DOS legacy compatibility
- Plug and play with 4 IRQ, 4 DMA, and 4 I/O space options for SoundBlaster Pro and MIDI hardware
- Hardware assisted FM synthesis for legacy compatibility
- Direct two game ports and one MIDI port interface
- Complete software driver support for Windows-95, Windows-98 and Windows-NT

Voltage, Temperature, Fan Speed Monitor and Controller

- Five positive voltage (one internal), three temperature (one internal) and two fan-speed monitoring
- Programmable control, status, monitor and alarm for flexible desktop management
- External thermister or internal bandgap temperature sensing
- Automatic clock throttling with integrated temperature sensing
- Internal core VCC voltage sensing
- Flexible external voltage sensing arrangement (any positive supply and battery)

Universal Serial Bus Controller

- USB v.1.1 and Intel Universal HCI v.1.1 compatible
- Eighteen level (doublewords) data FIFO with full scatter and gather capability
- Root hub and four function ports
- Integrated physical layer transceivers with optional over-current detection status on USB inputs
- Legacy keyboard and PS/2 mouse support

System Management Bus Interface

- Host interface for processor communications
- Slave interface for external SMBus masters

Sophisticated PC98-Compatible Mobile Power Management

- Supports both ACPI (Advanced Configuration and Power Interface) and legacy (APM) power management
- ACPI v1.0 Compliant
- APM v1.2 Compliant
- CPU clock throttling and clock stop control for complete ACPI C0 to C3 state support
- PCI bus clock run, Power Management Enable (PME) control, and PCI/CPU clock generator stop control
- Supports multiple system suspend types: power-on suspends with flexible CPU/PCI bus reset options, suspend to DRAM, and suspend to disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- One idle timer, one peripheral timer and one general purpose timer, plus 24/32-bit ACPI compliant timer
- Normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- System event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, external modem ring indicator, and notebook lid open/close for system wake-up
- Up to 12 general purpose input ports and 23 output ports
- Multiple internal and external SMI sources for flexible power management models
- One programmable chip select and one microcontroller chip select
- Enhanced integrated real time clock (RTC) with date alarm, month alarm, and century field
- Thermal alarm on either external or any combination of three internal temperature sensing circuits
- Hot docking support
- I/O pad leakage control

Plug and Play Controller

- PCI interrupts steerable to any interrupt channel
- Steerable interrupts for integrated peripheral controllers: USB, floppy, serial, parallel, audio, soundblaster, MIDI
- Steerable DMA channels for integrated floppy, parallel, and soundblaster pro controllers
- One additional steerable interrupt channel for on-board plug and play devices
- Microsoft Windows 98TM, Windows NTTM, Windows 95TM and plug and play BIOS compliant

- Built-in NAND-tree pin scan test capability
- 0.35um, 3.3V, low power CMOS process
- Single chip 27x27 mm, 352 pin BGA

OVERVIEW

The VT82C686A PSIPC (PCI Super-I/O Integrated Peripheral Controller) is a high integration, high performance, power-efficient, and high compatibility device that supports Intel and non-Intel based processor to PCI bus bridge functionality to make a complete Microsoft PC98-compliant PCI/ISA system. In addition to complete ISA extension bus functionality, the VT82C686A includes standard intelligent peripheral controllers:

- a) Master mode enhanced IDE controller with dual channel DMA engine and interlaced dual channel commands. Dedicated FIFO coupled with scatter and gather master mode operation allows high performance transfers between PCI and IDE devices. In addition to standard PIO and DMA mode operation, the VT82C686A also supports the UltraDMA-33 standard to allow reliable data transfer rates up to 33MB/sec throughput. The VT82C686A also supports the UltraDMA-66 standard. The IDE controller is SFF-8038i v1.0 and Microsoft Windows-family compliant.
- b) Universal Serial Bus controller that is USB v1.1 and Universal HCI v1.1 compliant. The VT82C686A includes the root hub with four function ports with integrated physical layer transceivers. The USB controller allows hot plug and play and isochronous peripherals to be inserted into the system with universal driver support. The controller also implements legacy keyboard and mouse support so that legacy software can run transparently in a non-USB-aware operating system environment.
- c) Keyboard controller with PS2 mouse support.
- d) Real Time Clock with 256 byte extended CMOS. In addition to the standard ISA RTC functionality, the integrated RTC also includes the date alarm, century field, and other enhancements for compatibility with the ACPI standard.
- e) Notebook-class power management functionality compliant with ACPI and legacy APM requirements. Multiple sleep states (power-on suspend, suspend-to-DRAM, and suspend-to-Disk) are supported with hardware automatic wake-up. Additional functionality includes event monitoring, CPU clock throttling and stop (Intel processor protocol), PCI bus clock stop control, modular power, clock and leakage control, hardware-based and software-based event handling, general purpose I/O, chip select and external SMI.
- f) Hardware monitoring subsystem for managing system / motherboard voltage levels, temperatures, and fan speeds
- g) Full System Management Bus (SMBus) interface.
- h) Two 16550-compatible serial I/O ports with infrared communications port option. A third serial port is available to be dedicated to the IR interface.
- i) Integrated PCI-mastering dual full-duplex direct-sound AC97-link-compatible sound system. Hardware soundblaster-pro and hardware-assisted FM blocks are included for Windows DOS box and real-mode DOS compatibility. Loopback capability is also implemented for directing mixed audio streams into USB and 1394 speakers for high quality digital audio.
- j) Two game ports and one MIDI port
- k) ECP/EPP-capable parallel port
- 1) Standard floppy disk drive interface
- m) Distributed DMA capability for support of ISA legacy DMA over the PCI bus. Serial IRQ is also supported for docking and non-docking applications.
- n) Plug and Play controller that allows complete steerability of all PCI interrupts and internal interrupts / DMA channels to any interrupt channel. One additional steerable interrupt channel is provided to allow plug and play and reconfigurability of onboard peripherals for Windows family compliance.

The VT82C686A also enhances the functionality of the standard ISA peripherals. The integrated interrupt controller supports both edge and level triggered interrupts channel by channel. The integrated DMA controller supports type F DMA in addition to standard ISA DMA modes. Compliant with the PCI-2.2 specification, the VT82C686A supports delayed transactions and remote power management so that slower ISA peripherals do not block the traffic of the PCI bus. Special circuitry is built in to allow concurrent operation without causing dead lock even in a PCI-to-PCI bridge environment. The chip also includes eight levels (doublewords) of line buffers from the PCI bus to the ISA bus to further enhance overall system performance.

Figure 1. PC System Configuration Using the VT82C686A

PINOUTS

Pin Diagram

Figure 2. VT82C686A Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	SMEM	IOCH	USB	USB	KB	WRT	W	DS	CTS	DCD	TXD	DCD	PD	PD	ERR#	PIRQ	AD	AD	AD	AD
	R#	RDY	PO+	P2+	DT	PRT# R	DATA# W	1#	2#	2#	1	1#	7	2	DD	A#	31	28	26	25
В	SMEM W#	AEN	USB P0-	USB P2-	USB P3+		GATE#	DS 0#	DTR 2#	RXD 2	RTS 1#	RXD 1	ACK#	PD 3	PD 0	PCI RST#	PIRQ D#	AD 29	AD 27	AD 24
C	ROM	Ю	USB	USB	MS	DSK	HD	MTR	RI	DSR	CTS	DSR	BUSY	PD	P	AUTO	PIRQ	AD	C/BE	ID
С	CS#	W#	CLK	P1+	DT	CHG#	SEL#	1#	2#	2#	1#	1#	DUSI	4	INIT#	FD#	C#	30	3#	SEL
D	IO R#	DACK 3#	DRQ 3	USB P1-	MS CK	DRV EN1	IN DEX#	DIR#	DRV EN0	TXD 2	DTR 1#	IR RX	PE	PD 5	PD 1	STR OBE#	PIRQ B#	AD 23	AD 22	AD 21
E	DACK 1#	DRQ 1	RFSH#	OSC	KB CK	USB P3-	TRK 00#	STEP#	MTR 0#	RTS 2#	RI 1#	IR TX	SLCT	PD 6	SLCT IN#	P CLK	AD 20	AD 19	AD 18	AD 17
F	MCS	S	IOCS	IO	IRQ	GND	VCC	GND	VCC	VCC	GND	VCC	VCC	VCC	GND	AD	C/BE	FRM#	I	T
	16# IRO6	BHE#	16# IRO	CHK# IRO	7 DACK	GND	100	U	U	vec	GILD	100	100	700	GIAD	16 DEV	2#	TRIVIII	RDY#	RDY#
G	SLPB	KQ 5	KQ 4	3	2#	GND	G7	8	9	10	11	12	13	G14	GND	SEL#	STOP#	SERR#	PAR	CBE1#
Н	TC	BALE	DRQ2 SIRQ	IRQ 9	B CLK	VCC	Н							Н	VCC	AD 15	AD 14	AD 13	AD 12	AD 11
J	RST DRV	LA 23	LA 22	LA 21	LA 20	vcc	J		GND	GND	GND	GND		J	vcc	AD 10	AD 9	AD 8	C/BE 0#	AD 7
K	SA	SA	IRQ	IRQ	IRQ	VCC	K		CND	CND	GND	CND		K	VCC	AD	AD	AD	AD	AD
V	19	18	10	11	15	VCC	V		GND	GND	GND	GND		K	VCC	6	5	4	3	2
L	IRQ 14	DACK 0#	DRQ 0	DACK 5#	SD 8	GND	L		GND	GND	GND	GND		L	GND	AD 1	AD 0	PREQ#	PGNT#	PD CS1#
M	DRQ 5	SD 9	DACK 6#	SD 10	DRQ 6	VCC	M		GND	GND	GND	GND		M	VCC	PD CS3#	PD A0	PD A2	PD A1	PD DACK#
N	SD 11	DACK 7#	SD 12	DRQ 7	SD 13	VCC	N	•						N	VCC	PD RDY	PD IOR#	PD IOW#	PD DRO	PDD 15
P	SD 14	SD 15	SA 17	SA 16	SA15 SDD15	GND	P7	8	9	10	11	12	13	P14	GND	PDD 0	PDD 14	PDD 1	PDD 13	PDD 2
R	SA14	SA13 SDD13	SA12 SDD12	SA11	SA10 SDD10	GND	VCC	VCC	VCC	VCC	VCC	VCC	GND	VCC	GND	PDD	PDD	PDD	PDD	PDD
	SA9	SA8	SA7	SA6	סוממצ	01.12	, 00	GPO	S SMB	SUS	, 00	H FAN	H		SDD10	12 PDD	3 PDD	11 PDD	4 PDD	10 PDD
T	SDD9	SDD8	SDD7	SDD6	XDIR	INIT	SLP#	0	DATA	CLK	PME#	1	VREF	A	JAB2	5	9	6	8	7
U	SA5 SDD5	SA4 SDD4	SA3 SDD3	MEM R#	SOE#	SMI#	NMI	GPIO D	SMB CLK	LID#	BAT LOW#	FAN 2	V SENS1	SDD7 JBX		SDD12 JBB2	SD CS1#	SD CS3#	SD A0	SD A2
v	SA2 SDD2	SA1 SDD1	SD 5	MEM W#	SPKR	RSM RST#	FERR#	CPU RST#	SUS A#	SUS ST1#	RING#	PCI STP#	V SENS2	GPIO C		SDD3 SYNC	SDD1 SDI	SD A1	SD DACK#	SD RDY
w	SA0 SDD0	SD 2	SD	SD 7	RTC X2	PWR GD	STP CLK#	INTR	SUS B#	SMB ALRT#	GPI 1	PCK	T SENS1	V			SDD13		SD IOP#	SD IOW#
Y	SD	SD	4 SD	SD	RTC	VBAT	A20	IGN	SUS	EXT	PWR	RUN#	Т	V	SDD8	JAB1 SDD4	SDD2	SDD14	SDD15	SD
Ĺ	0	1	3	6	X1	, 10/11	M#	NE#	C#	SMI#	BTN#	STP#	SENS2	SENS4	JAY	SDO	SDI2	MSO	MSI	DRQ

Note: Some of the pins above have alternate functions and alternate names. The table above contains only one name (usually the most often used function), but the pin lists and pin descriptions contain all names.

Pin Lists

Figure 3. VT82C686A Pin List (Numerical Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
A01	О	SMEMR#	D12	Ю	IRRX / GPO15	H19	Ю	AD12	N06	P	VCC	U13	I	VSENS1 (2.0V)
A02	I	IOCHRDY	D13	I	PE	H20		AD11	N15	P	VCC	U14	IO	SDD07 / JBX
A03	Ю	USBP0+	D14	Ю	PD5	J01	О	RSTDRV	N16	I	PDRDY	U15	IO	SDD05 / RST
A04	Ю	USBP2+	D15	Ю	PD1	J02	Ю	LA23	N17	О	PDIOR#	U16	IO	SDD12 / JBB2
A05	Ю	KBDT / KBRC	D16	Ю	STROBE#	J03	Ю	LA22	N18	О	PDIOW#	U17	О	SDCS1#
A06	I	WRTPRT#	D17	I	PIRQB#	J04	Ю	LA21	N19	I	PDDRQ	U18	О	SDCS3#
A07		WDATA#	D18	Ю	AD23	J05	Ю	LA20	N20	Ю	PDD15	U19	О	SDA0
A08		DS1#	D19	Ю	AD22	J06	P	VCC	P01	Ю	SD14	U20	0	SDA2
A09		CTS2#	D20	Ю	AD21	J09	P	GND	P02	Ю	SD15	V01		SA02 / SDD2
A10	I	DCD2#	E01	O	DACK1#	J10	P	GND	P03	IO	SA17	V02		SA01 / SDD1
A11	Ō	TXD1	E02	I	DRQ1	J11	P	GND	P04	IO	SA16	V03		SD05 / KBIN4
A12		DCD1#	E03	IO	RFSH#	J12	P	GND	P05		SA15 / SDD15	V04		MEMW#
A13	IO	PD7	E04	I	OSC	J15	P	VCC	P06	P	GND	V05	IO	SPKR
A14		PD2 ERROR#	E05	IO IO	KBCK/A20GATE USBP3-	J16 J17	IO IO	AD10 AD09	P15 P16	P IO	GND PDD00	V06 V07	I	RSMRST# FERR#
A15 A16		PIRQA#	E06 E07	I	TRK00#	J17	Ю	AD09 AD08	P17		PDD14	V07		CPURST
A17	Ю	AD31	E08	OD	STEP#	J19		CBE0#	P18		PDD01	V09	O	SUSA# / GPO1
A18		AD28	E09	OD	MTR0#	J20		AD07	P19		PDD13	V10	o	SUSST1#
A19		AD26	E10	O	RTS2#	K01	Ю	SA19	P20		PDD02	V11	I	RING# / GPI7
A20	IO	AD25	E10	I	RI1#	K01	Ю	SA18	R01	IO	SA14 / SDD14	V11	o	PCISTP#/GPO5
B01		SMEMW#	E12	o	IRTX / GPO14	K02	I	IRO10	R02		SA14 / SDD14 SA13 / SDD13	V12	I	VSENS2 (2.5V)
B02		AEN	E13	Ĭ	SLCT	K04	Ì	IRQ11	R03		SA12 / SDD12	V14	IO	GPIOC(10)/CHAS
B03		USBP0-	E14	Ю	PD6	K05	I	IRQ15	R04		SA11 / SDD11	V15	IO	SDD09 / JAX
B04	Ю	USBP2-	E15	Ю	SLCTIN#	K06	P	VCC	R05	Ю	SA10 / SDD10	V16	IO	SDD03 / SYNC
B05	Ю	USBP3+	E16	I	PCLK	K09	P	GND	R06	P	GND	V17	IO	SDD01 / SDI
B06	I	RDATA#	E17	Ю	AD20	K10	P	GND	R07	P	VCC	V18	О	SDA1
B07	OD	WGATE#	E18	Ю	AD19	K11	P	GND	R08	P	VCC	V19	О	SDDACK#
B08		DS0#	E19	Ю	AD18	K12	P	GND	R09	P	VCCS	V20	I	SDRDY
B09		DTR2#	E20	Ю	AD17	K15	P	VCC	R10	P	VCCS	W01		SA00 / SDD0
B10		RXD2	F01	I	MCS16#	K16	Ю	AD06	R11	P	VCC	W02		SD02
B11		RTS1#	F02	Ю	SBHE#	K17	Ю	AD05	R12	P	VCCH	W03		SD04 / KBIN3
B12		RXD1	F03	Ĭ	IOCS16#	K18	IO	AD04	R13	P	GNDH	W04		SD07 / KBIN6
B13	I	ACK#	F04	I	IOCHCK# / GPI0	K19		AD03	R14	P	VCC	W05	O	RTCX2
B14		PD3	F05	I	IRQ7	K20		AD02	R15	P	GND	W06	I	PWRGD
B15		PD0	F06	P P	GND	L01	I	IRO14	R16	IO	PDD12 PDD03	W07		STPCLK#
B16 B17		PCIRST# PIROD#	F07 F08	P	VCC GNDU	L02 L03	O I	DACK0# DRO0	R17 R18	IO IO	PDD03 PDD11	W08 W09		INTR SUSB# / GPO2
B18		AD29	F09	P	VCCU	L03	O	DACK5#	R19	IO	PDD11 PDD04	W10	I	SMBALRT# / GPI6
B19		AD27	F10	P	VCC	L05	Ю	SD08	R20	IO	PDD10	W10	I	GPI1 / IRQ8#
B20	IO	AD24	F11	P	GND	L05	P	GND	T01	IO	SA09 / SDD9	W12	IO	PCKRUN#
C01		ROMCS#/KBCS#	F12	P	VCC	L00	P	GND	T02	IO	SA08 / SDD8	W13	I	TSENS1
C02		IOW#	F13	P	vcc	L10	P	GND	T03	IO	SA07 / SDD7	W14	Ī	VSENS3 (5V)
C03		USBCLK	F14	P	VCC	L11	P	GND	T04	IO	SA06 / SDD6	W15		SDD06 / JBY
C04		USBP1+	F15	P	GND	L12	P	GND	T05		XDIR/GPO12/PCS0#	W16		SDD11 / JAB1
C05	Ю	MSDT / IRQ12	F16	Ю	AD16	L15	P	GND	T06		INIT	W17	Ю	SDD13 / JBB1
C06		DSKCHG#	F17	Ю	CBE2#	L16	Ю	AD01	T07	OD	SLP# / GPO7	W18	IO	SDD00 / BTCK
C07		HDSEL#	F18	Ю	FRAME#	L17	Ю	AD00	T08	О	GPO0	W19	О	SDIOR#
C08	OD	MTR1#	F19	Ю	IRDY#	L18	О	PREQ#	T09	Ю	SMBDATA	W20	О	SDIOW#
C09	I	RI2#	F20	Ю	TRDY#	L19	I	PGNT#	T10	О	SUSCLK	Y01	Ю	SD00
C10		DSR2#	G01	I	IRO6/I4/SLPBTN#	L20	0	PDCS1#	T11	I	PME#/GPI5/THRM	Y02		SD01
C11		CTS1#	G02		IRO5			DRO5	T12	I	FAN1	Y03		SD03
C12		DSR1#	G03	I	IRQ4	M02		SD09	T13		VREF	Y04		SD06 / KBIN5
C13	I	BUSY	G04	I	IRQ3	M03	0	DACK6#	T14	IO	GPIOA(8)/GPOWE#	Y05	I	RTCX1
C14		PD4 dinit#	G05	O P	DACK2#/IOF/OC0#	M04		SD10	T15 T16	IO	SDD10 / JAB2 PDD05	Y06	P	VBAT
C15 C16		PINIT# AUTOFD#	G06 G15	P	GND GND	M05 M06	I P	DRQ6 VCC	T17	IO IO	PDD05 PDD09	Y07 Y08		A20M# IGNNE#
C16		PIROC#	G15	IO	DEVSEL#	M09	P	GND	T18	IO	PDD09 PDD06	Y09		SUSC#
		AD30	G17	Ю	STOP#	M10	P	GND	T19		PDD08	Y10		EXTSMI#
C19		CBE3#	G18	I	SERR#	M11	P	GND	T20		PDD07	Y11	I	PWRBTN#
C20	I	IDSEL	G19	Ю	PAR	M12	P	GND	U01		SA05 / SDD5	Y12	O	CPUSTP#/GPO4
D01	_	IOR#	G20	Ю	CBE1#	M15	P	VCC	U02	IO	SA04 / SDD4	Y13	I	TSENS2
D02		DACK3#	H01	0	TC	M16	Ō	PDCS3#	U03	IO	SA03 / SDD3	Y14	Ī	VSENS4 (12V)
D03		DRQ3	H02	ŏ	BALE	M17	ŏ	PDA0	U04	IO	MEMR#	Y15	IO	SDD08 / JAY
D04		USBP1-	H03	I	DRQ2/IOE/OC1#/SQ		О	PDA2	U05	0	SOE#/O13/SCIOUT#	Y16	Ю	SDD04 / SDO
D05	Ю	MSCK / IRQ1	H04	I	IRQ9	M19	О	PDA1	U06	OD	SMI#	Y17	Ю	SDD02 /SDI2/GPO3
D06	OD	DRVEN1	H05	О	BCLK	M20		PDDACK#	U07		NMI	Y18	Ю	SDD14 / MSO
D07	I	INDEX#	H06	P	VCC	N01	Ю	SD11	U08	Ю	GPIOD(11) / MCCS#	Y19	Ю	SDD15 / MSI
D08		DIR#	H15	P	VCC	N02	О	DACK7#	U09	Ю	SMBCLK	Y20	I	SDDRO
D09		DRVEN0	H16	IO	AD15	N03	IO	SD12	U10	Ĩ	LID / GPI3			
D10	О	TXD2	H17 H18	IO	AD14 AD13	N04	I	DRQ7	U11	I	BATLOW#/GPI2			
D11		DTR1#				N05	. 1()	SD13	U12	Ю	FAN2/GPIOB(9)	ii	1	1

Figure 4. VT82C686A Pin List (<u>Alphabetical</u> Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
Y07	OD	A20M#	C12	I	DSR1#	J04	Ю	LA21	Y05	I	RTCX1	E15	Ю	SLCTIN#
B13	I	ACK#	C10	I	DSR2#	J03		LA22	W05	О	RTCX2	T07		SLP# / GPO7
L17	Ю	AD00	D11	О	DTR1#	J02	Ю	LA23	B11	O	RTS1#	W10	I	SMBALRT# / GPI6
L16	IO	AD01	B09	О	DTR2#	U10	I	LID / GPI3	E10	Ο	RTS2#	U09	Ю	SMBCLK
K20	Ю	AD02	A15	I	ERROR#	F01	I	MCS16#	B12	I	RXD1	T09	Ю	SMBDATA
K19	Ю	AD03	Y10	IOD	EXTSMI#	U04	IO	MEMR#	B10	I	RXD2	A01	О	SMEMR#
K18	Ю	AD04	T12	I	FAN1	V04	IO	MEMW#	W01	IO	SA00 / SDD0	B01	0	SMEMW#
K17	Ю	AD05	U12	IO	FAN2/GPIOB(9)	D05	IO	MSCK / IRO1	V02	IO	SA01 / SDD1	U06	OD	SMI#
K16	IO	AD06	V07	I	FERR#	C05		MSDT / IRO12	V01	Ю	SA02 / SDD2	U05	О	SOE#/O13/SCIOUT#
J20	IO	AD07	F18	IO	FRAME#	E09		MTR0#	U03	Ю	SA03 / SDD3	V05	Ю	SPKR
J18	IO	AD08	F06	P	GND	C08		MTR1#	U02	IO	SA04 / SDD4	E08		STEP#
J17	IO	AD09	F11	P	GND	U07	_	NMI	U01	IO	SA05 / SDD5	G17	IO	STOP#
J16	i	AD10	F15	P	GND	E04	I	OSC	T04	IO	SA06 / SDD6	W07		STPCLK# STROBE#
H20 H19	IO	AD11	G06	P	GND GND	G19 W12		PAR PCKRUN#	T03 T02	IO	SA07 / SDD7 SA08 / SDD8	D16 V09	0	
H18	IO	AD12 AD13	G15 J09	P P	GND	E16	IO I	PCLK PCLK	T01	IO	SA08 / SDD8 SA09 / SDD9	W09	Ö	SUSA# / GPO1 SUSB# / GPO2
H17	1	AD13 AD14	J10	P	GND	B16	Ó	PCIRST#	R05	Ю	SA10 / SDD9	Y09	o	SUSC#
H16	IO	AD15	J11	P	GND	V12	Ö	PCISTP#/GPO5	R04	IO	SA11/SDD11	T10	ŏ	SUSCLK
F16	IO	AD16	J12	P	GND	B15	Ю	PD0	R03	Ю	SA12 / SDD12	V10	o	SUSST1#
E20	IO	AD17	K09	P	GND	D15	IO	PD1	R02	IO	SA13 / SDD13	H01	O	TC
E19	IO	AD18	K10	P	GND	A14	IO	PD2	R01	IO	SA14 / SDD14	F20	Ю	TRDY#
E18	1	AD19	K11	P	GND	B14	IO	PD3	P05	IO	SA15 / SDD15	E07	Ĭ	TRK00#
E17	IO	AD20	K12	P	GND	C14	IO	PD4	P04	IO	SA16	W13	Ī	TSENS1
D20	1	AD21	L06	P	GND	D14		PD5	P03	Ю	SA17	Y13	I	TSENS2
D19	Ю	AD22	L09	P	GND	E14	Ю	PD6	K02	IO	SA18	A11	О	TXD1
D18	Ю	AD23	L10	P	GND	A13	Ю	PD7	K01		SA19	D10		TXD2
B20	Ю	AD24	L11	P	GND	M17	О	PDA0	F02	IO	SBHE#	C03	I	USBCLK
A20	1	AD25	L12	P	GND	M19		PDA1	Y01	Ю	SD00	B03	Ю	USBP0-
A19		AD26	L15	P	GND	M18	O	PDA2	Y02	Ю	SD01	A03	Ю	USBP0+
B19	IO	AD27	M09	P	GND	L20	0	PDCS1#	W02	IO	SD02	D04	IO	USBP1-
A18	1	AD28	M10	P	GND	M16		PDCS3#	Y03	IO	SD03	C04	IO	USBP1+
B18	IO	AD29	M11	P	GND	P16		PDD00	W03	IO	SD04 / KBIN3	B04	IO	USBP2-
C18	i	AD30	M12	P	GND	P18		PDD01	V03	IO	SD05 / KBIN4	A04		USBP2+
A17	IO	AD31	P06 P15	P P	GND GND	P20		PDD02 PDD03	Y04 W04	IO	SD06 / KBIN5	E06	IO	USBP3-
B02 C16	IO	AEN AUTOFD#	R06	P	GND	R17 R19		PDD03 PDD04	L05	Ю	SD07 / KBIN6 SD08	B05 Y06	P	USBP3+ VBAT
H02	O	BALE	R15	P	GND	T16		PDD05	M02	Ю	SD08 SD09	F07	P	VCC
U11	I	BATLOW#/GPI2	R13	P	GNDH	T18		PDD06	M04	IO	SD10	F10	P	VCC
H05	Ō	BCLK	F08	P	GNDU	T20	IO	PDD07	N01	IO	SD11	F12	P	VCC
C13	Ī	BUSY	W11	I	GPI1 / IRQ8#	T19		PDD08	N03	IO	SD12	F13	P	VCC
J19	IO	CBE0#	T14	Ю	GPIOA(8)/GPOWE#	T17	IO	PDD09	N05	IO	SD13	F14	P	VCC
G20	IO	CBE1#	V14	Ю	GPIOC(10)/CHAS	R20	Ю	PDD10	P01	IO	SD14	H06	P	VCC
F17		CBE2#	U08	Ю	GPIOD(11)/MCCS#	R18	IO	PDD11	P02	IO	SD15	H15	P	VCC
C19		CBE3#	T08	О	GPO0	R16	Ю	PDD12	U19	O	SDA0	J06	P	VCC
V08		CPURST	C07	1	HDSEL#	P19		PDD13	V18	0	SDA1	J15	P	VCC
Y12		CPUSTP#/GPO4	C20	I	IDSEL	P17		PDD14	U20	0	SDA2	K06	P	VCC
C11	I	CTS1#	Y08		IGNNE#	N20	IO	PDD15	U17	0	SDCS1#	K15	P	VCC
A09 L02	0	CTS2# DACK0#	D07 T06	OD	INDEX# INIT	M20 N19	O	PDDACK# PDDRO	U18 W18	0	SDCS3# SDD00 / BTCK	M06 M15	P P	VCC VCC
E01	1	DACK0# DACK1#	W08		INTR	N19	-	PDIOR#	W18			N115 N06		VCC
G05		DK2#/IOF/OC0#	F04	I	IOCHCK# / GPI0	N17		PDIOW#	Y17		SDD01 / SD1 SDD02 / SDI2/O3	N15	P	VCC
D02		DACK3#	A02	I	IOCHRDY	N16	I	PDRDY	V16	Ю	SDD02 / SDI2/O3 SDD03 / SYNC	R07	P	VCC
L04		DACK5#	F03	Ī	IOCS16#	D13	Ī	PE	Y16	Ю	SDD03 / STRC SDD04 / SDO	R08	P	VCC
M03		DACK6#	D01	Ю	IOR#	L19		PGNT#	U15	IO	SDD05 / RST	R11	P	VCC
N02		DACK7#	C02	IO	IOW#	C15		PINIT#	W15	Ю	SDD06 / JBY	R14		VCC
A12	I	DCD1#	F19		IRDY#	A16	I	PIROA#	U14	Ю	SDD07 / JBX	R12	P	VCCH
A10	I	DCD2#	G04	I	IRO3	D17		PIROB#	Y15	Ю	SDD08 / JAY	R09		VCCS
G16	1	DEVSEL#	G03	I	IRO4	C17		PIROC#	V15	Ю	SDD09 / JAX	R10		VCCS
III		DIR#	G02	I	IRO5	B17	Ī	PIROD#	T15	IO	SDD10 / JAB2	F09		VCCU
L03	Ĭ	DRO0	G01	I	IRO6/I4/SLPBTN#	T11	I	PME#/GI5/THRM	W16	IO	SDD11 / JAB1	T13		VREF
E02	I	DRO1	F05	I	IRO7	L18	O	PREO#	U16	IO	SDD12 / JBB2	U13	I	VSENS1 (2.0V)
H03	I I	D2/IOE/OC1/SQ	H04 K03	I	IRQ9	Y11 W06		PWRBTN#	W17 Y18	IO	SDD14 / MSO	V13 W14	I	VSENS2 (2.2V) VSENS3 (5V)
D03 M01		DRQ3 DRQ5	K03 K04	I I	IRQ10 IRQ11	B06	I I	PWRGD RDATA#	Y19	IO	SDD14 / MSO SDD15 / MSI	W14 Y14	I I	VSENS3 (5 V) VSENS4 (12 V)
M05		DRQ5 DRQ6	L01	I	IRO14	E03		RFSH#	V19	0	SDD13 / MS1 SDDACK#	A07		WDATA#
N04	I	DRO7	K05	I	IRO15	E03		RI1#	Y20	I	SDDACK# SDDRO	B07		WGATE#
D09		DRVEN0	D12	IO	IRRX / GPO15	C09	Ī	RI2#	W19	O	SDIOR#	A06	I	WRTPRT#
D06	1	DRVEN1	E12	O	IRTX / GPO14	V11	I	RING# / GPI7	W20	ŏ	SDIOW#	T05		XDIR/GPO12/PCS0#
B08		DS0#	E05	Ю	KBCK / A20GATE	C01	Ó	ROMCS#/KBCS#	V20	I	SDRDY			22 22 212 200 11
A08	1	DS1#	A05	IO	KBDT / KBRC	V06	Ī	RSMRST#	G18	I	SERR#			
C06		DSKCHG#	J05	Ю	LA20	J01	O	RSTDRV	E13	Ι	SLCT			

Pin Descriptions

Table 1. Pin Descriptions

	PCI Bus Interface										
Signal Name	Pin #	I/O	Signal Description								
AD[31:0]	(see pin list)	Ю	Address/Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.								
C/BE[3:0]#	C19, F17, G20, J19	Ю	Command/Byte Enable. The command is driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.								
FRAME#	F18	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.								
IRDY#	F19	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.								
TRDY#	F20	IO	Target Ready. Asserted when the target is ready for data transfer.								
STOP#	G17	IO	Stop. Asserted by the target to request the master to stop the current transaction.								
DEVSEL#	G16	Ю	Device Select. The VT82C686A asserts this signal to claim PCI transactions through positive or subtractive decoding. As an input, DEVSEL# indicates the response to a VT82C686A-initiated transaction and is also sampled when decoding whether to subtractively decode the cycle.								
PAR	G19	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]#.								
SERR#	G18	I	System Error. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, the VT82C686A can be programmed to generate an NMI to the CPU.								
IDSEL	C20	I	Initialization Device Select. IDSEL is used as a chip select during configuration read and write cycles. Connect this pin to AD18 using a 100Ω resistor.								
PIRQA-D#	A16, D17, C17, B17	I	PCI Interrupt Request. These pins are typically connected to the PCI bus INTA#-INTD# pins as follows: PIRQA# PIRQB# PIRQC# PIRQD# PCI Slot 1 INTA# INTB# INTC# INTD# PCI Slot 2 INTB# INTC# INTD# INTA# PCI Slot 3 INTC# INTD# INTA# INTB# PCI Slot 4 INTD# INTA# INTB# INTC#								
PREQ#	L18	0	PCI Request. This signal goes to the North Bridge to request the PCI bus.								
PGNT#	L19	I	PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT82C686A.								
PCLK	E16	I	PCI Clock. PCLK provides timing for all transactions on the PCI Bus.								
PCKRUN#	W12	IO	PCI Clock. PCLK provides timing for all transactions on the PCI Bus. PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped high) or running (low). The VT82C686A drives this signal low when the PCI clock is unning (default on reset) and releases it when it stops the PCI clock. External devices hay assert this signal low to request that the PCI clock be restarted or prevent it from topping. Connect this pin to ground using a 100 Ω resistor if the function is not used. Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details.								

			CPU Interface
Signal Name	Pin #	I/O	Signal Description
CPURST	V8	OD	CPU Reset. The VT82C686A asserts CPURST to reset the CPU during power-up.
INTR	W8	OD	CPU Interrupt. INTR is driven by the VT82C686A to signal the CPU that an interrupt request is pending and needs service.
NMI	U7	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the CPU. The VT82C686A generates an NMI when either SERR# or IOCHK# is asserted.
INIT	T6	OD	Initialization. The VT82C686A asserts INIT if it detects a shut-down special cycle on the PCI bus or if a soft reset is initiated by the register
STPCLK#	W7	OD	Stop Clock. STPCLK# is asserted by the VT82C686A to the CPU to throttle the processor clock.
SMI#	U6	OD	System Management Interrupt. SMI# is asserted by the VT82C686A to the CPU in response to different Power-Management events.
FERR#	V7	I	Numerical Coprocessor Error. This signal is tied to the coprocessor error signal on the CPU. Internally generates interrupt 13 if active.
IGNNE#	Y8	OD	Ignore Numeric Error. This pin is connected to the "ignore error" pin on the CPU.
SLP# / GPO7	T7	OD	Sleep (Rx75[7] = 0). Used to put the CPU to sleep. Used with slot-1 CPUs only. Not currently used with socket-7 CPUs.
A20M#	Y7	OD	A20 Mask. Connect to A20 mask input of the CPU to control address bit-20 generation. Logical combination of the A20GATE input (from internal or external keyboard controller) and Port 92 bit-1 (Fast_A20).

Note: Connect each of the above signals to 4.7K Ω pullup resistors to VCC3.

Advan	Advanced Programmable Interrupt Controller (APIC) Interface											
Signal Name	Pin#	I/O	Signal Description									
APICREQ# / GPI3 / LID	U10	I/I/I	APIC Request. Rx74[7] = 1. Asserted by external APIC synchronous to PCLK prior to sending an interrupt over the APIC serial bus. This signals the VT82C686A to flush its internal buffers.									
APICACK# / GPO1 / SUSA#	V9	0/0/0	APIC Acknowledge. Rx74[7] = 1. Asserted by the VT82C686A to indicate that its internal buffers have been flushed (in response to APICREQ#). This indicates to the external APIC that the VT82C686A's internal buffers have been flushed and that it is OK for the APIC to send its interrupt.									
APICCS# / GPO2 / SUSB#	W9	0/0/0	APIC Chip Select. Rx74[7] = 1. The VT82C686A drives this signal active to select an external APIC (if used). This occurs if the external APIC is enabled and a PCI cycle is detected within the programmed APIC address range.									
SCIOUT# / GPO13 / SOE#	U5	0/0/0	SCI Out. Used to route the internally generated SCI and SMBus interrupts out of the South Bridge for connection to an external APIC (if used).									

Universal Serial Bus Interface											
Signal Name	Pin#	I/O	Signal Description								
USBP0+	A3	IO	USB Port 0 Data +								
USBP0-	В3	IO	USB Port 0 Data -								
USBP1+	C4	IO	USB Port 1 Data +								
USBP1-	D4	IO	USB Port 1 Data -								
USBP2+	A4	IO	USB Port 2 Data +								
USBP2-	B4	IO	USB Port 2 Data -								
USBP3+	B5	IO	USB Port 3 Data +								
USBP3-	E6	IO	USB Port 3 Data -								
USBCLK	C3	I	USB Clock. 48MHz clock input for the USB interface								
USBOC0# / GPIOF / DACK2#	G5	I / IO / O	USB Port 0 Over Current Detect. Port 0 is disabled if low.								
USBOC1# / GPIOE / DRQ2 / SERIRQ	Н3	I/IO/I/I	USB Port 1 Over Current Detect. Port 1 is disabled if this								
			input is low. Direct inputs are provided for overcurrent								
			protection for ports 0 and 1 which may be used if the alternate								
			functions of these two pins are not required. If overcurrent								
			protection is desired on all four ports (or it is desired to use								
			the alternate functions of these two pins), an external buffer								
			may be used to drive the state of USBOC[3-0]# onto SD[3-0]								
			during ISA bus refresh cycles (i.e., while ISA bus RFSH# is								
			low, so that RFSH# may be used as the buffer enable).								
USBOC0# (SD2 & RFSH#)	(W2)	I	USB Port 0 Over Current Detect								
USBOC1# (SD1 & RFSH#)	(Y2)	I	USB Port 1 Over Current Detect								
USBOC2# (SD0 & RFSH#)	(Y1)	I	USB Port 2 Over Current Detect								
USBOC3# (SD3 & RFSH#)	(Y3)	I	USB Port 3 Over Current Detect								

System Management Bus (SMB) Interface (I ² C Bus)					
Signal Name	Pin #	I/O	Signal Description		
SMBCLK	U9	IO	SMB / I ² C Clock.		
SMBDATA	T9	IO	SMB / I ² C Data.		
SMBALRT# / GPI6	W10	I	SMB Alert. (System Management Bus I/O space Rx08[3] = 1) When the chip is enabled to allow it, assertion generates an IRQ or SMI interrupt or a power management resume event. The same pin is used as General Purpose Input 6 whose value is reflected in Rx48[6] of function 4 I/O space		

UltraDMA-33 / 66 Enhanced IDE Interface					
Signal Name	Pin #	I/O	Signal Description		
PDRDY / PDDMARDY / PDSTROBE	N16	I	EIDE Mode: Primary I/O Channel Ready. Device ready indicator UltraDMA Mode: Primary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Primary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers		
SDRDY / SDDMARDY / SDSTROBE	V20	I	EIDE Mode: Secondary I/O Channel Ready. Device ready indicator UltraDMA Mode: Secondary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Secondary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers		
PDIOR / PHDMARDY / PHSTROBE	N17	О	EIDE Mode: Primary Device I/O Read. Device read strobe UltraDMA Mode: Primary Host DMA Ready. Primary channel input flow control. The host may assert HDMARDY to pause input transfers Primary Host Strobe. Output data strobe (both edges). The host may stop HSTROBE to pause output data transfers		
SDIOR / SHDMARDY / SHSTROBE	W19	О	EIDE Mode: Secondary Device I/O Read. Device read strobe UltraDMA Mode: Secondary Host DMA Ready. Input flow control. The host may assert HDMARDY to pause input transfers Host Strobe B. Output strobe (both edges). The host may stop HSTROBE to pause output data transfers		
PDIOW# / PSTOP	N18	О	EIDE Mode: Primary Device I/O Write. Device write strobe UltraDMA Mode: Primary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.		
SDIOW# / SSTOP	W20	0	EIDE Mode: Secondary Device I/O Write. Device write strobe UltraDMA Mode: Secondary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.		
PDDRQ	N19	I	Primary Device DMA Request. Primary channel DMA request		
SDDRQ	Y20	I	Secondary Device DMA Request. Secondary channel DMA request		
PDDACK#	M20	О	Primary Device DMA Acknowledge. Primary channel DMA acknowledge		
SDDACK#	V19	О	Secondary Device DMA Acknowledge. Secondary channel DMA acknowledge		

	UltraDMA-	33 / 66]	Enhanced IDE Interface (continued)
Signal Name	Pin #	I/O	Signal Description
PDCS1#	L20	О	Primary Master Chip Select. This signal corresponds to CS1FX# on the primary IDE connector.
PDCS3#	M16	О	Primary Slave Chip Select. This signal corresponds to CS3FX# on the primary IDE connector.
SDCS1#	U17	О	Secondary Master Chip Select. This signal corresponds to CS17X# on the secondary IDE connector.
SDCS3#	U18	О	Secondary Slave Chip Select. This signal corresponds to CS37X# on the secondary IDE connector.
PDA[2-0]	M18, M19, M17	О	Primary Disk Address. PDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.
SDA[2-0]	U20, V18, U19	О	Secondary Disk Address. SDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.
PDD[15-0]	N20, P17, P19, R16, R18, R20, T17, T19, T20, T18, T16, R19, R17, P20, P18, P16	IO	Primary Disk Data
SDD[15-0] / SA[15-0]	P5, R1-R5, T1-T4, U1- U3, V1, V2, W1	Ю	Secondary Disk Data muxed with ISA Bus Address (Audio Enabled) ISA Bus Address only (Audio Disabled / Dedicated Secondary IDE Data) Note: Audio is enabled by strapping the SPKR pin high with 4.7K ohms and disabled by strapping the SPKR pin low with 4.7K ohms.
SDD[15] / MSI ,	Y19,	IO / I	Secondary Disk Data (SPKR strap = 0) or AC-Link/Game Ports (SPKR strap = 1) Secondary Disk Data 15 / Midi Serial In
SDD[14] / MSO, SDD[13] / JBB1 / PDRQB, SDD[12] / JBB2 / PGNTB, SDD[11] / JAB1 / PDRQA, SDD[10] / JAB2 / PGNTA, SDD[9] / JAX / GPO23, SDD[8] / JAY / GPO22, SDD[7] / JBX / GPI23, SDD[6] / JBY / GPI22, SDD[5] / ACRST, SDD[4] / SDOUT, SDD[3] / SYNC, SDD[2] / SDIN2,	Y18, W17, U16, W16, T15, V15, Y15, U14, W15, U15, Y16, V16,	IO/I IO/I IO/I IO/I IO/I IO/I IO/O IO/O	Secondary Disk Data 14 / Midi Serial Out Secondary Disk Data 13 / Game Port Joystick B Button 1 Secondary Disk Data 12 / Game Port Joystick B Button 2 Secondary Disk Data 11 / Game Port Joystick A Button 1 Secondary Disk Data 10 / Game Port Joystick A Button 2 Secondary Disk Data 9 / Game Port Joystick A X-axis Secondary Disk Data 8 / Game Port Joystick A Y-axis Secondary Disk Data 7 / Game Port Joystick B X-axis Secondary Disk Data 6 / Game Port Joystick B Y-axis Secondary Disk Data 5 / AC97 Reset Secondary Disk Data 4 / AC97 Serial Data Out Secondary Disk Data 2 / AC97 Sync Secondary Disk Data 2 / AC97 Serial Data In 2
SDD[2] / SDIN2, SDD[1] / SDIN, SDD[0] / BITCLK	V17, W18	IO / I IO / I	Secondary Disk Data 1 / AC97 Serial Data In Secondary Disk Data 0 / AC97 Bit Clock

MIDI Interface						
Signal Name	Pin #	I/O	Signal Description			
MSI / SDD[15]	Y19	I / IO	MIDI Serial In	/ Secondary Disk Data 15 (SPKR strap = 1)		
MSO / SDD[14]	Y18	O / IO	MIDI Serial Out	/ Secondary Disk Data 14 (SPKR strap = 1)		

AC97 Audio / Modem Interface							
Signal Name	Pin#	I/O	Signal Description				
ACRST / SDD[5]	U15	O / IO	AC97 Reset / Secondary Disk Data 5 (SPKR strap = 1)				
SDOUT / SDD[4]	Y16	O / IO	AC97 Serial Data Out / Secondary Disk Data 4 (SPKR strap = 1)				
SYNC / SDD[3]	V16	O / IO	AC97 Sync / Secondary Disk Data 3 (SPKR strap = 1)				
SDIN2 / SDD[2]	Y17	I / IO	AC97 Serial Data In 2 / Secondary Disk Data 2 (SPKR strap = 1)				
SDIN / SDD[1]	V17	I / IO	AC97 Serial Data In / Secondary Disk Data 1 (SPKR strap = 1)				
BITCLK / SDD[0]	W18	I / IO	AC97 Bit Clock / Secondary Disk Data 0 (SPKR strap = 1)				

Game Port Interface								
Signal Name Pin # I/O Signal Description								
JAB1 / SDD[11] / PDRQA	W16	I / IO / I	Joystick A Button 1	/ Secondary Disk Data 11 (SPKR strap = 1)				
JAB2 / SDD[10] / PGNTA	T15	I / IO / O	Joystick A Button 2	/ Secondary Disk Data 10 (SPKR strap = 1)				
JBB1 / SDD[13] / PDRQB	W17	I / IO / I	Joystick B Button 1	/ Secondary Disk Data 13 (SPKR strap = 1)				
JBB2 / SDD[12] / PGNTB	U16	I / IO / O	Joystick B Button 2	/ Secondary Disk Data 12 (SPKR strap = 1)				
JAX / SDD[9] / GPO23	V15	I / IO / O	Joystick A X-axis	/ Secondary Disk Data 9 (SPKR strap = 1)				
JAY / SDD[8] / GPO22	Y15	I / IO / O	Joystick A Y-axis	/ Secondary Disk Data 8 (SPKR strap = 1)				
JBX / SDD[7] / GPI23	U14	I / IO / I	Joystick B X-axis	/ Secondary Disk Data 7 (SPKR strap = 1)				
JBY / SDD[6] / GPI22	W15	I / IO / I	Joystick B Y-axis	/ Secondary Disk Data 6 (SPKR strap = 1)				

PDRQ / PGNT Interface								
Signal Name Pin # I/O Signal Description								
PDRQA / SDD[11] JAB1	W16	I / IO / I						
PGNTA / SDD[10] / JAB2	T15	O / IO / I						
PDRQB / SDD[13] / JBB1	W17	I / IO / I						
PGNTB / SDD[12] / JBB2	U16	O/IO/I						

Floppy Disk Interface					
Signal Name	Pin #	I/O	Signal Description		
DRVEN0	D9	OD	Drive Enable 0. Indicates the drive and media selected.		
DRVEN1	D6	OD	Drive Enable 1. Indicates the drive and media selected.		
MTR0#	E9	OD	Motor Control 0. Select motor on drive 0.		
MTR1#	C8	OD	Motor Control 1. Select motor on drive 1		
DS0#	B8	OD	Drive Select 0. Select drive 0.		
DS1#	A8	OD	Drive Select 1. Select drive 1		
DIR#	D8	OD	Direction. Direction of head movement $(0 = \text{inward motion}, 1 = \text{outward motion})$		
STEP#	E8	OD	Step. Low pulse for each track-to-track movement of the head.		
INDEX#	D7	I	Index. Sense to detect that the head is positioned over the beginning of a track		
HDSEL#	C7	OD	Head Select. Selects the side for R/W operations $(0 = \text{side } 1, 1 = \text{side } 0)$		
TRK00#	E7	I	Track 0. Sense to detect that the head is positioned over track 0.		
RDATA#	В6	I	Read Data. Raw serial bit stream from the drive for read operatrions.		
WDATA#	A7	OD	Write Data. Encoded data to the drive for write operations.		
WGATE#	В7	OD	Write Gate. Signal to the drive to enable current flow in the write head.		
DSKCHG#	C6	I	Disk Change. Sense that the drive door is open or the diskette has been changed		
			since the last drive selection.		
WRTPRT#	A6	I	Write Protect. Sense for detection that the diskette is write protected (causes		
			write commands to be ignored)		

	Parallel Port Interface						
Signal Name	Pin#	I/O	Signal Description				
PINIT#	C15	IO	Initialize. Initialize printer. Output in standard mode, I/O in ECP/EPP mode.				
STROBE#	D16	IO	Strobe. Output used to strobe data into the printer. I/O in ECP/EPP mode.				
AUTOFD#	C16	IO	Auto Feed. Output used to cause the printer to automatically feed one line after each line is printed. I/O pin in ECP/EPP mode.				
SLCTIN#	E15	IO	Select In. Output used to select the printer. I/O pin in ECP/EPP mode.				
SLCT	E13	I	Select. Status output from the printer. High indicates that it is powered on.				
ACK#	B13	I	Acknowledge. Status output from the printer. Low indicates that it has received the data and is ready to accept new data				
ERROR#	A15	I	Error. Status output from the printer. Low indicates an error condition in the printer.				
BUSY	C13	I	Busy. Status output from the printer. High indicates not ready to accept data.				
PE	D13	I	Paper End. Status output from the printer. High indicates that it is out of paper.				
PD[7:0]	A13, E14, D14, C14, B14, A14, D15, B15	Ю	Parallel Port Data.				

	Serial Ports and Infrared Interface					
Signal Name	Pin#	I/O	Signal Description			
TXD1	A11	О	Transmit Data 1. Serial port 1 transmit data out.			
TXD2	D10	О	Transmit Data 2. Serial port 2 transmit data out.			
IRTX / GPO14	E12	О	Infrared Transmit. IR transmit data out $(Rx76[5] = 0)$ selectable from serial port 1, 2, or 3. General Purpose Output 14 if $Rx76[5] = 1$			
RXD1	B12	I	Receive Data 1. Serial port 1 receive data in.			
RXD2	B10	I	Receive Data 2. Serial port 2 receive data in.			
IRRX / GPO15	D12	IO	Infrared Receive. IR receive data in $(Rx76[5] = 0)$ selectable to serial port 1, 2, or 3. General Purpose Output 15 if $Rx76[5] = 1$			
RTS1#	B11	О	Request To Send 1. Indicator that serial output port 1 is ready to transmit data. Typically used as hardware handshake with CTS1# for low level flow control. Designed for direct input to external RS-232C driver.			
RTS2##	E10	О	Request To Send 2. Indicator that serial output port 2 is ready to transmit data. Typically used as hardware handshake with CTS2# for low level flow control. Designed for direct input to external RS-232C driver.			
CTS1#	C11	I	Clear To Send 1. Indicator to serial port 1 that external communications device is ready to receive data. Typically used as hardware handshake with RTS1# for low level flow control. Designed for input from external RS-232C receiver.			
CTS2#	A9	I	Clear To Send 2. Indicator to serial port 2 that external communications device is ready to receive data. Typically used as hardware handshake with RTS2# for low level flow control. Designed for input from external RS-232C receiver.			
DTR1#	D11	О	Data Terminal Ready 1. Serial port 1 indicator that port is powered, initialized, and ready. Typically used as hardware handshake with DSR1# for overall readiness to communicate. Designed for direct input to external RS-232C driver.			
DTR2#	В9	О	Data Terminal Ready 2. Serial port 2 indicator that port is powered, initialized, and ready. Typically used as hardware handshake with DSR2# for overall readiness to communicate. Designed for direct input to external RS-232C driver.			
DSR1#	C12	I	Data Set Ready 1. Indicator to serial port 1 that external serial communications device is powered, initialized, and ready. Typically used as hardware handshake with DTR1# for overall readiness to communicate. Designed for direct input from external RS-232C receiver.			
DSR2#	C10	I	Data Set Ready 2. Indicator to serial port 2 that external serial communications device is powered, initialized, and ready. Typically used as hardware handshake with DTR2# for overall readiness to communicate. Designed for direct input from external RS-232C receiver.			
DCD1#	A12	I	Data Carrier Detect 1. Indicator to serial port 1 that external modem is detecting a carrier signal (i.e., a communications channel is currently open). In direct connect environments, this input will typically be driven by DTR1# as part of the DTR/DSR handshake. Designed for direct input from external RS-232C receiver.			
DCD2#	A10	I	Data Carrier Detect 2. Indicator to serial port 2 that external modem is detecting a carrier signal (i.e., a communications channel is currently open). In direct connect environments, this input will typically be driven by DTR2# as part of the DTR/DSR handshake. Designed for direct input from external RS-232C receiver.			
RI1#	E11	I	Ring Indicator 1. Indicator to serial port 1 that external modem is detecting a ring condition. Used by software to initiate operations to answer and open the communications channel. Designed for direct input from external RS-232C receiver (whose input is typically not connected in direct connect environments).			
RI2#	С9	I	Ring Indicator 2. Indicator to serial port 2 that external modem is detecting a ring condition. Used by software to initiate operations to answer and open the communications channel. Designed for direct input from external RS-232C receiver (whose input is typically not connected in direct connect environments).			

	ISA Bus Interface						
Signal Name	Pin#	I/O	Signal Description				
SA[19:16], SA[15-0] / SDD[15-0]	K1, K2, P3, P4, P5, R1, R2, R3, R4, R5, T1, T2, T3, T4, U1, U2, U3, V1, V2, W1	IO IO	System Address Bus. SA[19-16] are connected to ISA bus SA[19-16] directly SA[19-17] are also connected to LA[19-17] of the ISA bus. If the audio interface disabled (SPKR pin strapped low), SA[15-0] are connected directly to ISA address bus pins SA[15-0] (the audio interface pins are used for the IDE secondary data bus If the audio interface is enabled (SPKR pin strapped high), SA[15-0] are multiplexed with the IDE Secondary Data Bus. In this case, SA[15-0] may be connected to both SDD[15-0] and ISA bus SA[15-0]. However, if ISA address bus loading is concern, 74F245 transceivers may be used to externally drive ISA address bus pin SA[15-0]. In this case, these pins would connect directly to the IDE secondary das bus and to the transceiver "A" pins and the ISA address bus would connect to the transceiver "B" pins. SOE# would be used to control the transceiver output enabled and the ISA bus MASTER# signal would drive the transceiver direction controls.				
LA[23:20]	J2, J3, J4, J5	IO	System "Latched" Address Bus : The LA[23:20] address lines are bi-directional. These address lines allow accesses to physical memory on the ISA bus up to 16Mbytes. LA[19-17] on the ISA bus are connected to SA[19-17] (see notes above).				
SD[15:0]	P2, P1, N5, N3, N1, M4, M2, L5, W4, Y4, V3, W3, Y3, W2, Y2, Y1	Ю	System Data. SD[15:0] provide the data path for devices residing on the ISA bus. X-Bus data signals XD[7:0] may be derived if needed from SD[7:0] using an external 74F245-type transceiver (see the XDIR pin description for transceiver connection details). SD7:4 are strap options for keyboard inputs 6:3 (see Function 0 Rx5A)				
SBHE#	F2	Ю	System Byte High Enable. SBHE# indicates, when asserted, that a byte is being transferred on the upper byte (SD[15:8]) of the data bus. SBHE# is negated during refresh cycles.				
IOR#	D1	Ю	I/O Read. IOR# is the command to an ISA I/O slave device that the slave may drive data on to the ISA data bus.				
IOW#	C2	Ю	I/O Write. IOW# is the command to an ISA I/O slave device that the slave may latch data from the ISA data bus.				
MEMR#	U4	Ю	Memory Read. MEMR# is the command to a memory slave that it may drive data onto the ISA data bus.				
MEMW#	V4	Ю	Memory Write. MEMW# is the command to a memory slave that it may latch data from the ISA data bus.				
SMEMR#	A1	О	Standard Memory Read. SMEMR# is the command to a memory slave, under 1MB, which indicates that it may drive data onto the ISA data bus				
SMEMW#	B1	О	Standard Memory Write. SMEMW# is the command to a memory slave, under 1MB, which indicates that it may latch data from the ISA data bus.				
BALE	H2	О	Bus Address Latch Enable. BALE is an active high signal asserted by the VT82C686A to indicate that the address (SA[19:0], LA[23:17] and the SBHE# signal) is valid				
IOCS16#	F3	I	16-Bit I/O Chip Select. This signal is driven by I/O devices on the ISA Bus to indicate that they support 16-bit I/O bus cycles.				
MCS16#	F1	I	Memory Chip Select 16. ISA slaves that are 16-bit memory devices drive this line low to indicate they support 16-bit memory bus cycles.				
IOCHCK# / GPI0	F4	I	I/O Channel Check (Rx74[0] = 1). When this signal is asserted, it indicates that a parity or an uncorrectable error has occurred for an I/O or memory device on the ISA Bus. The same pin may optionally be used as General Purpose Input 0.				
IOCHRDY	A2	I	I/O Channel Ready (Rx74[0] = 1). This signal is normally high. Devices on the ISA Bus assert IOCHRDY low to indicate that additional time (wait states) is required to complete the cycle.				

ISA Bus Interface (continued)					
Signal Name	Pin#	I/O	Signal Description		
RFSH#	E3	IO	Refresh. As an output RFSH# indicates when a refresh cycle is in		
			progress. RFSH# is also driven by 16-bit ISA Bus masters to indicate a		
			refresh cycle.		
AEN	B2	О	Address Enable. AEN is asserted during DMA cycles to prevent I/O		
			slaves from misinterpreting DMA cycles as valid I/O cycles.		
IRQ1 / MSCK	D5	I / IO	Interrupt Request 1 ($Rx5A[1] = 0$)		
IRQ3	G4	I	Interrupt Request 3.		
IRQ4	G3	I	Interrupt Request 4.		
IRQ5	G2	I	Interrupt Request 5.		
IRQ6 / GPI4 / SLPBTN#	G1	I/I/I	Interrupt Request 6.		
IRQ7	F5	I	Interrupt Request 7.		
IRQ8# / GPI1	W11	I/I	Interrupt Request 8 from ext RTC if int RTC disabled $(Rx5A[2] = 0)$		
IRQ9	H4	I	Interrupt Request 9.		
IRQ10	К3	I	Interrupt Request 10.		
IRQ11	K4	I	Interrupt Request 11.		
IRQ12 / MSDT	C5	I / IO	Interrupt Request 12. $(Rx5A[1] = 0)$		
IRQ14	L1	I	Interrupt Request 14.		
IRQ15	K5	I	Interrupt Request 15.		
DRQ7 / GPI21,	N4,	I/I	DMA Request. Used to request DMA services from the internal DMA		
DRQ6 / GPI20,	M5,	I/I	controller.		
DRQ5 / GPI19,	M1,	I/I			
DRQ3 / GPI18,	D3,	I/I			
DRQ2 / GPI12 / SERIRQ	Н3,	I/I/I			
/ GPIOE / USBOC1#,		/ IO / I			
DRQ1 / GPI17,	E2,	I/I			
DRQ0 / GPI16	L3	I/I			
DACK7# / USBIRQB / GPO21,	N2,	0/0/0	Acknowledge. Used by the internal DMA controller to indicate that a		
DACK6# / USBIRQA / GPO20,	M3,	0/0/0	request for DMA service has been granted.		
DACK5 # / MC97IRQ / GPO19	L4,	O/O/O			
/ SERIRQ,		/ I			
DACK3# / AC97IRQ / GPO18,	D2,	O/O/O			
DACK2# / USBOC0# / GPIOF	G5,	O / I / IO			
/ GPI13,		/ I			
DACK1# / IDEIRQB / GPO17,	E1,	0/0/0			
DACK0# / IDEIRQA / GPO16	L2	0/0/0			
TC	H1	О	Terminal Count. Asserted to DMA slaves as a terminal count indicator.		
SPKR / strap	V5	O/I	Speaker Drive. Output of internal timer/counter 2. Also functions as		
1			a strap input sampled at reset to determine the function of the Audio /		
			Game interface pins: 0=Disable Audio / Game interface (pins used for		
			IDE Secondary Data Bus SDD[15-0] and ISA SA[15-0] pins used for		
			ISA bus only), 1=Enable Audio / Game interface (pins used for		
			Audio/Game functions and SDD[15-0] are multiplexed with ISA		
			SA[15-0]).		
SOE#	U5	О	ISA Address (SA) Output Enable. Asserted low when ISA address		
/ SCIOUT#		/ O	(SA) is valid (deasserted when SDD is valid) when SA and SDD are		
/ GPO13		/ O	multiplexed on SA pins 15-0 (i.e., when SPKR is strapped low to		
			enable the audio interface pins). SOE# is tied directly to the output		
			enable of 74F245 transceivers that buffer IDE Secondary Bus data and		
			ISA-address (see SA pins for more information).		

Serial IRQ					
Signal Name	Pin#	I/O	Signal Description		
SERIRQ / DRQ2 / GPIOE / USBOC1#	Н3	I	Serial IRQ $(Rx68[3] = 1 \text{ and } Rx74[6] = 0 \text{ and } Rx75[3] = 1)$		
SERIRQ / DACK5# / GPO19 / MC97IRQ	L4	I	Serial IRQ $(Rx68[3] = 1 \text{ and } Rx74[6] = 1)$		

Internal Keyboard Controller						
Signal Name	Pin #	I/O	Signal Description			
MSCK / IRQ1	D5	IO / I	MultiFunction Pin (Internal mouse controller enabled by Rx5A[1]) Rx5A[1]=1 Mouse Clock. From internal mouse controller. Rx5A[1]=0 Interrupt Request 1. Interrupt input 1.			
MSDT / IRQ12	C5	IO / I	MultiFunction Pin (Internal mouse controller enabled by Rx5A[1]) Rx5A[1]=1 Mouse Data. From internal mouse controller. Rx5A[1]=0 Interrupt Request 12. Interrupt input 12.			
KBCK / A20GATE	E5	IO / I	MultiFunction Pin (Internal keyboard controller enabled by Rx5A[0]) Rx5A[0]=1 Keyboard Clock. From internal keyboard controller Rx5A[0]=0 Gate A20. Input from external keyboard controller.			
KBDT / KBRC	A5	IO / I	MultiFunction Pin (Internal keyboard controller enabled by Rx5A[0]) Rx5A[0]=1 Keyboard Data. From internal keyboard controller. Rx5A[0]=0 Keyboard Reset. From external keyboard controller (KBC) for CPURST# generation			
KBCS# / ROMCS# / strap	C1	O/O/I	Keyboard Chip Select (Rx5A[0]=0). To external keyboard controller chip. Power-Up Configuration Strap (Sampled At Reset) : 4.7K to GND = Socket-7, 4.7K to VCC3 = Socket-370 / Slot-1			
KBIN[6-3] / SD[7-4]	W4, Y4, V3, W3	I / IO	Keyboard Inputs 6-3. Sampled at reset on SD[7-4] and latched into Rx5A[7-4].			

Chip Selects				
Signal Name	Pin#	I/O	Signal Description	
ROMCS# / KBCS# / strap	C1	O / O / I	ROM Chip Select (Rx5A[0]=1). Chip Select to the BIOS ROM.	
			Power-Up Configuration Strap (Sampled At Reset):	
			4.7K to GND = Socket-7, 4.7K to VCC3 = Socket-370 / Slot-1	
PCS0 # / GPO12 / XDIR	T5	O / IO / IO	Programmable Chip Select 0 (Rx76[1] = 1 and Rx76[4] = 1). Asserted	
			during I/O cycles to programmable read or write ISA I/O port ranges.	
			Addressed devices drive data to the SD pins (XDIR is disabled and the X-	
			Bus is not implemented).	
MCCS# / GPIOD / GPIO11	U8	O / IO / IO	Microcontroller Chip Select $(Rx76[1] = 1 \text{ and } Rx76[3] = 1)$. Asserted	
			during read or write accesses to I/O ports 62h or 66h.	

General Purpose Inputs						
Signal Name	Pin #	I/O	Signal Description			
GPI0 / IOCHCK#	F4	I	General Purpose Input 0 (Rx74[0] = 0)			
GPI1 / IRQ8#	W11	I	General Purpose Input 1 (Rx5A[2] = 1)			
GPI2 / BATLOW#	U11	I	General Purpose Input 2			
GPI3 / LID / APICREQ#	U10	I	General Purpose Input 3			
GPI4 / IRQ6 / SLPBTN#	G1	I	General Purpose Input 4			
GPI5 / PME# / THRM	T11	I	General Purpose Input 5 (Read pin state at function 4 Rx48[5])			
GPI6 / SMBALRT#	W10	I	General Purpose Input 6			
GPI7 / RING#	V11	I	General Purpose Input 7			
GPI8 / GPO8 / GPIOA / GPOWE#	T14	I	General Purpose Input 8 (Rx74[2] = 0)			
GPI9 / GPO9 / GPIOB / FAN2 / DTEST	U12	I	General Purpose Input 9 (Rx74[3] = 0)			
GPI10 / GPO10 / GPIOC / CHAS / ATEST	V14	I	General Purpose Input 10 ($Rx74[4] = 0$)			
GPI11 / GPO11 / GPIOD	U8	I	General Purpose Input 11 (Rx74[5] = 0)			
GPI12 / GPO24 / GPIOE / DRQ2 / SERIRQ / USBOC1#	Н3	I	General Purpose Input 12 (Rx75[3] = 1 & 75[1]=0 & 68[3]=0)			
GPI13 / GPO25 / GPIOF / DACK2# / USBOC0#	G5	I	General Purpose Input 13 (Rx75[3] = 1 & 75[2]=0)			
GPI16 / DRQ0 (Rev H)	L3	I	General Purpose Input 16 (Rx77[7] = 1)			
GPI17 / DRQ1 (Rev H)	E2	I	General Purpose Input 17 (Rx77[7] = 1)			
GPI18 / DRQ3 (Rev H)	D3	I	General Purpose Input 18 (Rx77[7] = 1)			
GPI19 / DRQ5 (Rev H)	M1	I	General Purpose Input 19 (Rx77[7] = 1)			
GPI20 / DRQ6 (Rev H)	M5	I	General Purpose Input 20 (Rx77[7] = 1)			
GPI21 / DRQ7 (Rev H)	N4	I	General Purpose Input 21 (Rx77[7] = 1)			
GPI22 / SDD6 (Rev H)	W15	I	General Purpose Input 22 (Rx77[6] = 1, audio ena, game disa)			
GPI23 / SDD7 (Rev H)	U14	I	General Purpose Input 23 (Rx77[6] = 1, audio ena, game disa)			
GPI[23-16] (SD[7-0] & RFSH#)	n/a	I	General Purpose Inputs 16-23 (enabled on SD[7-0] by RFSH# active) (Rx77[7] = 0)			

General Purpose Outputs					
Signal Name	Pin#	I/O	Signal Description		
GPO0 / SLOWCLK	T8	О	General Purpose Output 0 (Function $4 Rx54[0] = 0$ and $Rx54[1] = 0$)		
GPO1 / SUSA#	V9	O	General Purpose Output 1 $(Rx74[7] = 0 \text{ and Function } 4 Rx54[2] = 1)$		
GPO2 / SUSB#	W9	O	General Purpose Output 2 $(Rx74[7] = 0$ and Function $4 Rx54[3] = 1)$		
GPO3 / SDD[2] / SDIN2 / SUSST1#	Y17	Ο	General Purpose Output 3 (Function 4 Rx54[4] = 1)		
GPO4 / CPUSTP#	Y12	O	General Purpose Output 4 (Rx75[4] = 1)		
GPO5 / PCISTP#	V12	O	General Purpose Output 5 (Rx75[5] = 1)		
GPO6 / SUSST1#	V10	O	General Purpose Output 6 (Rx75[6] = 1)		
GPO7 / SLP#	T7	O	General Purpose Output 7 (Rx75[7] = 1)		
GPO8 / GPI8 / GPIOA / GPOWE#	T14	Ο	General Purpose Output 8 $(Rx74[2] = 1 \text{ and } Rx76[0] = 0)$		
GPO9 / GPI9 / GPIOB / FAN2	U12	O	General Purpose Output 9 (Rx74[3] = 1)		
GPO10 / GPI10 / GPIOC / CHAS	V14	O	General Purpose Output 10 $(Rx74[4] = 1 \text{ and } Rx76[2] = 0)$		
GPO11 / GPI11 / GPIOD	U8	О	General Purpose Output 11 $(Rx74[5] = 1 \text{ and } Rx76[3] = 0)$		
GPO12 / XDIR / PCS0#	T5	O	General Purpose Output 12 $(Rx76[1] = 1 \text{ and } Rx76[4] = 0)$		
GPO13 / SOE# / SCIOUT#	U5	О	General Purpose Output 13 $(Rx77[0] = 1 \text{ and } Rx74[7] = 0)$		
GPO14 / IRTX	E12	O	General Purpose Output 14 (Rx76[5] = 1)		
GPO15 / IRRX	D12	O	General Purpose Output 15 (Rx76[5] = 1)		
GPO16 / DACK0# (Rev H)	L2	О	General Purpose Output 16 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO17 / DACK1# (Rev H)	E1	О	General Purpose Output 17 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO18 / DACK3# (Rev H)	D2	О	General Purpose Output 18 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO19 / DACK5# (Rev H)	L4	О	General Purpose Output 19 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO20 / DACK6# (Rev H)	M3	О	General Purpose Output 20 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO21 / DACK7# (Rev H)	N2	О	General Purpose Output 21 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO22 / SDD8 (Rev H)	Y15	О	General Purpose Output 22 (Rx77[6] = 1, audio enabled, game disabled)		
GPO23 / SDD9 (Rev H)	V15	О	General Purpose Output 23 (Rx77[6] = 1, audio enabled, game disabled)		
GPO24/DRQ2/GPI12/IOE/SIRQ/OC1	Н3	О	General Purpose Output 24 (Rx75[3] = 1 & Rx75[1]=1 & Rx68[3]=0)		
GPO25/DACK2#/GPI13/GPIOF/OC0	G5	О	General Purpose Output 25 (Rx75[3] = 1 & Rx75[2]=1)		
GPO[23-16] (latched from SD[7-0])	n/a	О	General Purpose Output 23-16 (Rx74[7]=0) latched by GPOWE# rising		
GPOWE# / GPIOA / GPI8 / GPO8	T14	O	General Purpose Output Write Enable $(Rx74[2] = 1 \text{ and } Rx76[0] = 1).$		

General Purpose I/Os					
Signal Name	Pin#	I/O	Signal Description		
GPIOA (GPIO8) / GPOWE#	T14	IO	General Purpose I/O A / 8 ($Rx76[0] = 0$). GPOWE# if $Rx76[0] = 1$.		
GPIOB (GPIO9) / FAN2 / DTEST	U12	IO	General Purpose I/O B / 9		
GPIOC (GPIO10) / CHAS / ATEST	V14	IO	General Purpose I/O C / 10 (Rx76[2] = 0)		
GPIOD (GPIO11) / MCCS#	U8	IO	General Purpose I/O D / 11		
GPIOE / GPI12	Н3	IO	General Purpose I/O E		
/ USBOC1# / DRQ2 / SERIRQ					
GPIOF / GPI13	G5	IO	General Purpose I/O F		
/ USBOC0# / DACK2#					

Hardware Monitoring				
Signal Name	Pin#	I/O	Signal Description	
VSENS1	U13	I	Voltage Sense 2.0V. Monitor for CPU core voltage.	
VSENS2	V13	I	Voltage Sense 2.5V. Monitor for North Bridge core voltage.	
VSENS3	W14	I	Voltage Sense 5V.	
VSENS4	Y14	I	Voltage Sense 12V. Connect +12V through a resistive voltage divider to insure 5V max to the input pin (see MVP4 Design Guide for details).	
VREF	T13	P	Voltage Reference for Thermal Sensing (5V ±5%)	
TSENS1	W13	I	Temperature Sense 1.	
TSENS2	Y13	I	Temperature Sense 2.	
FAN1	T12	I	Fan Speed Monitor 1. (3.3V only)	
FAN2 / GPIOB/9 / DTEST	U12	I	Fan Speed Monitor 2.	
CHAS / GPIOC/10 / ATEST	V14	I	Chassis Intrusion Detect $(Rx76[2] = 1 \text{ and } Rx74[4] = 1)$. Used for system security	
			purposes.	
DTEST / FAN2 / GPIOB/9	U12	О	Hardware Monitor Digital Test Out	
ATEST / CHAS / GPIOC/10	V14	О	Hardware Monitor Analog Test Out	

XD Interface				
Signal Name	Pin#	I/O	Signal Description	
XDIR / PCS0# / GPO12	T5	O	X-Bus Data Direction. (Rx76[1]=0) Asserted low for all I/O read cycles and for memory read cycles to the programmed BIOS address space. XDIR is tied directly to the direction control of a 74F245 transceiver that buffers the X-Bus data and ISA-Bus data. The transceiver output enable may be grounded. SD0-7 connect to the "A" side of the transceiver and XD0-7 connect to the "B" side. XDIR high indicates that SD0-7 drives XD0-7.	

Power Management						
Signal Name	Pin#	I/O	Signal Description			
PME# / THRM / GPI5	T11	I	MultiFunction Pin Power Management Event (Rx74[1] = 0) (10K PU to VCCS if not used) Thermal Alarm Monitor (Rx74[1] = 1) General Purpose Input 5 (pin state may be read at Function 4 I/O Rx48[5])			
PWRBTN#	Y11	I	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch. The VT82C686A performs a 200us debounce of this input if Function 4 Rx40[5] is set to 1. (3.3V only)			
SLPBTN# / IRQ6 / GPI4	G1	I/I/I	Sleep Button. Used by the Power Management subsystem to monitor an external system sleep button or switch. (Function 4 Rx40[6]=1) (10K PU to VCC if not used)			
RSMRST#	V6	I	Resume Reset. Resets the internal logic connected to the VCCS power plane and also resets portions of the internal RTC logic.			
EXTSMI#	Y10	IOD	External System Management Interrupt. When enabled to allow it, a falling edge on this input causes an SMI# to be generated to the CPU to enter SMI mode. (10K PU to VCCS if not used) (3.3V only)			
SMBALRT# / GPI6	W10	I	SMB Alert (System Management Bus I/O space Rx08[3] = 1). When the chip is enabled to allow it, assertion generates an IRQ or SMI or power management event. (10K PU to VCCS if not used)			
LID / GPI3	U10	I	Notebook Computer Display Lid Open / Closed Monitor. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high and/or high-to-low transitions to generate an SMI#. The VT82C686A performs a 200 usec debounce of this input if Function 4 Rx40[5] is set to 1. (10K PU to VCCS if not used)			
RING# / GPI7	V11	I	Ring Indicator. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call. (10K PU to VCCS if not used)			
BATLOW# / GPI2	U11	I	Battery Low Indicator. (10K PU to VCCS if not used) (3.3V only)			
CPUSTP# / GPO4	Y12	O	CPU Clock Stop (Rx75[4] = 0). Signals the system clock generator to disable the CPU clock outputs. Not connected if not used.			
PCISTP# / GPO5	V12	О	PCI Clock Stop (Rx75[5] = 0). Signals the system clock generator to disable the PCI clock outputs. Not connected if not used.			
SLOWCLK / GPO0	Т8		Slow Clock (Function $4 \text{ Rx} 54[0] = 1 \text{ or } \text{Rx} 54[1] = 1$).			
SUSA# / GPO1 / APICACK#	V9	О	Suspend Plane A Control (Rx74[7]=0 and Function 4 Rx54[2]=0). Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane. (10K PU to VCCS if not used)			
SUSB# / GPO2 / APICCS#	W9	О	Suspend Plane B Control (Rx74[7]=0 and Function 4 Rx54[3]=0). Asserted during power management STR and STD suspend states. Used to control the secondary power plane. (10K PU to VCCS if not used)			
SUSC#	Y9	O	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. Also connected to ATX power-on circuitry.			
SUSST1# / GPO6	V10	О	Suspend Status 1 (Rx75[6] = 0 for GPO6 and Func4 Rx54[4] = 0 for GPO3). Typically connected to the North Bridge to provide information on host clock			
SUSST1# / GPO3	Y17	О	status. Asserted when the system may stop the host clock, such as Stop Clock or during POS, STR, or STD suspend states. Connect 10K PU to VCCS.			
SUSCLK	T10	O	Suspend Clock. 32.768 KHz output clock for use by the North Bridge (e.g., Apollo MVP3 or MVP4) for DRAM refresh purposes. Stopped during Suspend-to-Disk and Soft-Off modes. Connect 10K PU to VCCS.			

Resets and Clocks				
Signal Name	Pin#	I/O	Signal Description	
PWRGD	W6	I	Power Good. Connected to the PWRGOOD signal on the Power Supply.	
PCIRST#	B16	О	PCI Reset. Active low reset signal for the PCI bus. The VT82C686A will assert this pin during power-up or from the control register.	
RSTDRV	J1	О	Reset Drive. Reset signal to the ISA bus. Connect through an inverter to the chipset north bridge RESET# input and to PCI bus RESET#.	
BCLK	Н5	0	Bus Clock. ISA bus clock.	
OSC	E4	I	Oscillator. 14.31818 MHz clock signal used by the internal Timer.	
RTCX1	Y5	I	RTC Crystal Input : 32.768 KHz crystal or oscillator input. This input is used for the internal RTC and for power-well power management logic.	
RTCX2	W5	0	RTC Crystal Output: 32.768 KHz crystal output	

Power and Ground					
Signal Name	Pin #	I/O	Signal Description		
VCC	F7, F10, F12- F14, H6, H15, J6, J15, K6, K15, M6, M15, N6, N15, R7-R8, R11, R14	Р	Core Power. 3.3V nominal (3.15V to 3.45V). This supply is turned on only when the mechanical switch on the power supply is turned on and the PWRON signal is conditioned high. This pin should be connected to the same voltage as the CPU I/O circuitry. Internally connected to hardware monitoring system voltage detection circuitry for 3.3V monitoring.		
GND	F6, F11, F15, G6, G15, J9-J12, K9-K12, L6, L9- L12, L15, M9- M12, P6, P15, R6, R15	P	Ground. Connect to primary motherboard ground plane.		
VCCS	R9-R10	Р	Suspend Power. Always available unless the mechanical switch of the power supply is turned off. If the "soft-off" state is not implemented, then this pin can be connected to VCC. Signals powered by or referenced to this plane are: PWRGD, RSMRST#, PWRBTN#, SMBCLK, SMBDATA, SUSCLK, SUSA# / GPO1, SUSB# / GPO2, SUSC#, SUSST1# / GPO6, GPI1 / IRQ8#, GPI2 / BATLOW#, GPI3 / LID, GPI5 / PME#, GPI6 / SMBALRT#, GPI7 / RING#, GPO0		
VBAT	Y6	P	RTC Battery. Battery input for internal RTC (RTCX1, RTCX2)		
VREF	T13	P	Voltage Reference (5V ±5%). For thermal sensing and 5V input tolerance.		
VCCH	R12	P	Hardware Monitor Power. Power for hardware monitoring subsystem (voltage monitoring, temperature monitoring, and fan speed monitoring). Connect to VCC through a ferrite bead.		
GNDH	R13	P	Hardware Monitor Ground. Connect to GND through a ferrite bead.		
VCCU	F9	P	USB Differential Output Power. Power for USB differential outputs (USBP0+, P0-, P1+, P1-, P2+, P2-, P3+, P3-). Connect to VCC through a ferrite bead.		
GNDU	F8	P	USB Differential Output Ground. Connect to GND through a ferrite bead.		

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT82C686A. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated

Table 2. System I/O Map

Port	Function	Actual Port Decoding
$\overline{00-1}$ F	Master DMA Controller	0000 0000 000x nnnn
20-3F	Master Interrupt Controller	0000 0000 001x xxxn
40-5F	Timer / Counter	0000 0000 010x xxnn
60-6F	Keyboard Controller	0000 0000 0110 xnxn
(60h)	KBC Data	0000 0000 0110 x0x0
(61h)	Misc Functions & Spkr Ctrl	0000 0000 0110 xxx1
(64h)	KBC Command / Status	0000 0000 0110 x1x0
70-77	RTC/CMOS/NMI-Disable	0000 0000 0111 0nnn
78-7F	-available for system use-	0000 0000 0111 1xxx
80	-reserved- (debug port)	0000 0000 1000 0000
81-8F	DMA Page Registers	0000 0000 1000 nnnn
90-91	-available for system use-	0000 0000 1001 000x
92	System Control	0000 0000 1001 0010
93-9F	-available for system use-	0000 0000 1001 nnnn
A0-BF	Slave Interrupt Controller	0000 0000 101x xxxn
C0-DF	Slave DMA Controller	0000 0000 110n nnnx
E0-FF	-available for system use-	0000 0000 111x xxxx
100-CF7	-available for system use*	
CF8-CFB	PCI Configuration Address	0000 1100 1111 10xx
CFC-CFF	PCI Configuration Data	0000 1100 1111 11xx
D00-FFFF	-available for system use-	
* On-Chip	Super-I/O Functions – PC-St	andard Port Addresses
200-20F	Game Port	
2E8-2EF	COM4	
2F8-2FF	COM2	
378-37F	Parallel Port (Standard & E.	PP)
3E8-3EF	COM3	
3F0-3F1	Configuration Index / Data	
3F0-3F7	Floppy Controller	
3F8-3FF	COM1	
400-402	Parallel Port (ECP Extensio	ns)

Table 3. Registers

Legacy I/O Registers

<u>Port</u>	Master DMA Controller Registers	<u>Default</u>	<u>Acc</u>
00	Channel 0 Base & Current Address		RW
01	Channel 0 Base & Current Count		RW
02	Channel 1 Base & Current Address		RW
03	Channel 1 Base & Current Count		RW
04	Channel 2 Base & Current Address		RW
05	Channel 2 Base & Current Count		RW
06	Channel 3 Base & Current Address		RW
07	Channel 3 Base & Current Count		RW
08	Status / Command		RW
09	Write Request		wo
0A	Write Single Mask		WO
0B	Write Mode		WO
0C	Clear Byte Pointer FF		wo
0D	Master Clear		WO
0E	Clear Mask		wo
0F	Read / Write Mask		RW

Port	Master Interrupt Controller Regs	Default	Acc
20	Master Interrupt Control	_	*
21	Master Interrupt Mask	_	*
20	Master Interrupt Control Shadow	_	RW
21	Master Interrupt Mask Shadow	_	RW

^{*} RW if shadow registers are disabled

Port	Timer/Counter Registers	<u>Default</u>	Acc
40	Timer / Counter 0 Count		RW
41	Timer / Counter 1 Count		RW
42	Timer / Counter 2 Count		RW
43	Timer / Counter Control		WO

Port	Keyboard Controller Registers	<u>Default</u>	Acc
60	Keyboard Controller Data		RW
61	Misc Functions & Speaker Control		RW
64	Keyboard Ctrlr Command / Status		RW

Port	CMOS / RTC / NMI Registers	<u>Default</u>	<u>Acc</u>
70	CMOS Memory Address & NMI Disa		wo
71	CMOS Memory Data (128 bytes)		RW
72	CMOS Memory Address		RW
73	CMOS Memory Data (256 bytes)		RW
74	CMOS Memory Address		RW
75	CMOS Memory Data (256 bytes)		RW

NMI Disable is port 70h (CMOS Memory Address) bit-7. RTC control occurs via specific CMOS data locations (0-0Dh). Ports 72-73 may be used to access all 256 locations of CMOS. Ports 74-75 may be used to access CMOS if the internal RTC is disabled.

<u>Port</u>	DMA Page Registers	<u>Default</u>	Acc
87	DMA Page - DMA Channel 0		RW
83	DMA Page - DMA Channel 1		RW
81	DMA Page - DMA Channel 2		RW
82	DMA Page - DMA Channel 3		RW
8F	DMA Page - DMA Channel 4		RW
8B	DMA Page - DMA Channel 5		RW
89	DMA Page - DMA Channel 6		RW
8A	DMA Page - DMA Channel 7		RW

<u>Port</u>	System Control Registers	<u>Default</u>	Acc
92	System Control		RW

<u>Port</u>	Slave Interrupt Controller Regs	Default	<u>Acc</u>
A0	Slave Interrupt Control		*
A1	Slave Interrupt Mask		*
A0	Slave Interrupt Control Shadow	_	RW
A1	Slave Interrupt Mask Shadow		RW

^{*} RW accessible if shadow registers are disabled

<u>Port</u>	Slave DMA Controller Registers	Default	Acc
C0	Channel 0 Base & Current Address		RW
C2	Channel 0 Base & Current Count		RW
C4	Channel 1 Base & Current Address		RW
C6	Channel 1 Base & Current Count		RW
C8	Channel 2 Base & Current Address		RW
CA	Channel 2 Base & Current Count		RW
CC	Channel 3 Base & Current Address		RW
CE	Channel 3 Base & Current Count		RW
D0	Status / Command		RW
D2	Write Request		wo
D4	Write Single Mask		WO
D6	Write Mode		wo
D8	Clear Byte Pointer FF		wo
DA	Master Clear		wo
DC	Clear Mask		WO
DE	Read / Write Mask		RW

Super-I/O Configuration Registers (I/O Space)

Port	Super-I/O Configuration Registers	<u>Default</u>	Acc
3F0	Super-I/O Config Index (Rx85[1]=1)	00	RW
3F1	Super-I/O Config Data (Rx85[1]=1)	00	RW

Super-I/O Configuration Registers (Indexed via Port 3F0/1)

Offset	Super-I/O Control	Default	Acc
00-DF	-reserved-	00	RO
E0	Super-I/O Device ID	3C	RW
E1	Super-I/O Device Revision	00	RW
E2	Function Select	00	RW
E3	Floppy Ctrlr Base Addr (def = 3F0-7)	FC	RW
E4-E5	-reserved-	00	RO
E6	Parallel Port Base Addr (def = 378-F)	DE	RW
E7	Serial Port 1 Base Addr (def = 3F8-F)	FE	RW
E8	Serial Port 2 Base Addr (def = 2F8-F)	BE	RW
E9-ED	-reserved-	00	RO
EE	Serial Port Configuration	00	RW
EF	Power Down Control	00	RW
F0	Parallel Port Printer Control	00	RW
F1	Serial Port Control	00	RW
F2	Test Mode (Do Not Program)	00	RW
F3	-reserved-	00	RO
F4	Test Mode (Do Not Program) 2	00	RW
F5	-reserved-	00	RO
F6	Floppy Controller Configuration	00	RW
F7	-reserved-	00	RO
F8	Floppy Controller Drive Select	00	RW
F9-FB	-reserved-	00	RO
FC	General Purpose I/O	00	RW
FD-FF	-reserved-	00	RO

Super-I/O I/O Ports

Offset	Floppy Disk Controller (3F0-3F7)	<u>Default</u>	<u>Acc</u>
00	-reserved-	00	
01	FDC Status A / B (Rx85[1]=0)		RO
02	FDC Command		RW
03	-reserved-	00	
04	FDC Main Status		RO
04	FDC Data Rate Select	00	WO
05	FDC Data		RW
06	-reserved-	00	
07	Diskchange Status		RO
07	FDC Configuration Control	00	WO

<u>Offset</u>	Parallel Port (378-37F typical)	<u>Default</u>	Acc
00	Parallel Port Data		RW
01	Parallel Port Status		RO
02	Parallel Port Control	E0	RW
03	EPP Address		RW
04	EPP Data Port 0		RW
05	EPP Data Port 1		RW
06	EPP Data Port 2		RW
07	EPP Data Port 3		RW
400h	ECP Data / Configuration A		RW
401h	ECP Configuration B		RW
402h	ECP Extended Control		RW

Offset	Serial Port 1 (COM1=3F8, 3=3E8)	<u>Default</u>	Acc
0	Transmit (Wr) / Receive (Rd) Buffer		RW
1	Interrupt Enable		RW
2	FIFO Control		WO
2	Interrupt Status		RO
3	UART Control		RW
4	Handshake Control		RW
5	UART Status		RW
6	Handshake Status		RW
7	Scratchpad		RW
9-8	Baud Rate Generator Divisor		RW
A-F	-undefined-		

Offset	Serial Port 2 (COM2=2F8, 4=2E8)	Default	Acc
0	Transmit (Wr) / Receive (Rd) Buffer		RW
1	Interrupt Enable		RW
2	FIFO Control		wo
2	Interrupt Status		RO
3	UART Control		RW
4	Handshake Control		RW
5	UART Status		RW
6	Handshake Status		RW
7	Scratchpad		RW
9-8	Baud Rate Generator Divisor		RW
A-F	-undefined-		

PCI Function 0 Registers - PCI-to-ISA Bridge

Configuration Space PCI-to-ISA Bridge Header Registers

Offset	PCI Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0686	RO
5-4	Command	0087	\mathbf{RW}
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	06	RO
C	-reserved- (cache line size)	00	_
D	-reserved- (latency timer)	00	_
E	Header Type	80	RO
F	Built In Self Test (BIST)	00	RO
10-27	-reserved- (base address registers)	00	_
28-2B	-reserved- (unassigned)	00	_
2F-2C	Subsystem ID Read	00	RO
30-33	-reserved- (expan. ROM base addr)	00	_
34-3B	-reserved- (unassigned)	00	_
3C	-reserved- (interrupt line)	00	_
3D	-reserved- (interrupt pin)	00	_
3E	-reserved- (min gnt)	00	
3F	-reserved- (max lat)	00	_

Configuration Space PCI-to-ISA Bridge-Specific Registers

Offset	ISA Bus Control	Default	Acc
40	ISA Bus Control	00	RW
41	ISA Test Mode	00	RW
42	ISA Clock Control	00	RW
43	ROM Decode Control	00	RW
44	Keyboard Controller Control	00	RW
45	Type F DMA Control	00	RW
46	Miscellaneous Control 1	00	RW
47	Miscellaneous Control 2	00	RW
48	Miscellaneous Control 3	01	RW
49	-reserved-	00	_
4A	IDE Interrupt Routing	04	RW
4B	-reserved-	00	_
4C	DMA / Master Mem Access Control 1	00	RW
4D	DMA / Master Mem Access Control 2	00	RW
4F-4E	DMA / Master Mem Access Control 3	0300	RW

Offset	Plug and Play Control	Default	Acc
50	PnP DMA Request Control	2D	RW
51	PnP Routing for LPT / FDC IRQ	00	RW
52	PnP Routing for COM2 / COM1 IRQ	00	RW
53	-reserved-	00	_
54	PCI IRQ Edge / Level Select	00	RW
55	PnP Routing for PCI INTA	00	RW
56	PnP Routing for PCI INTB-C	00	RW
57	PnP Routing for PCI INTD	00	RW
58-59	-reserved-	00	_
5A	KBC / RTC Control	x4†	RW
5B	Internal RTC Test Mode	00	RW
5C	DMA Control	00	RW
5F-5D	-reserved-	00	_

† Bit 7-4 power-up default value depends on external strapping

Offset	Distributed DMA	<u>Default</u>	Acc
61-60	Channel 0 Base Address / Enable	0000	RW
63-62	Channel 1 Base Address / Enable	0000	RW
65-64	Channel 2 Base Address / Enable	0000	RW
67-66	Channel 3 Base Address / Enable	0000	RW
69-68	Serial IRQ Control	0000	RW
6B-6A	Channel 5 Base Address / Enable	0000	RW
6D-6C	Channel 6 Base Address / Enable	0000	RW
6F-6E	Channel 7 Base Address / Enable	0000	RW

Offset	Miscellaneous	Default	Acc
70	Subsystem ID Write	00	WO
71-73	-reserved-	00	_
74	GPIO Control 1	00	RW
75	GPIO Control 2	00	RW
76	GPIO Control 3	00	RW
77	GPIO Control 4	00	RW
79-78	Programmable Chip Select Control	0000 0000	RW
7A-7F	-reserved-	00	
80	Programmable Chip Select Mask	00	RW
81	ISA Positive Decoding Control 1	00	RW
82	ISA Positive Decoding Control 2	00	RW
83	ISA Positive Decoding Control 3	00	RW
84	ISA Positive Decoding Control 4	00	RW
85	Extended Function Enable	00	RW
86-87	PnP IRQ/DRQ Test (do not program)	00	RW
88	PLL Test	00	RW
89	PLL Control	00	RW
8A-FF	-reserved-	00	_

PCI Function 1 Registers - IDE Controller

Configuration Space IDE Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0571	RO
5-4	Command	0080	RO
7-6	Status	0280	\mathbf{RW}
8	Revision ID	nn	RO
9	Programming Interface	85	$\mathbf{R}\mathbf{W}$
A	Sub Class Code	01	RO
В	Base Class Code	01	RO
C	-reserved- (cache line size)	00	-
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Base Address - Pri Data / Command	000001F0	RO
17-14	Base Address - Pri Control / Status	000003F4	RO
1B-18	Base Address - Sec Data / Command	00000170	RO
1F-1C	Base Address - Sec Control / Status	00000374	RO
23-20	Base Address - Bus Master Control	0000CC01	$\mathbf{R}\mathbf{W}$
24-2F	-reserved- (unassigned)	00	-
30-33	-reserved- (expan ROM base addr)	00	
34-3B	-reserved- (unassigned)	00	_
3C	Interrupt Line	0E	RW
3D	Interrupt Pin	00	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space IDE-Specific Registers

Offset	Configuration Space IDE Registers	<u>Default</u>	Acc
40	IDE Chip Enable	08	RW
41	IDE Configuration	02	RW
42	-reserved- (do not program)	09	$\mathbf{R}\mathbf{W}$
43	IDE FIFO Configuration	3A	RW
44	IDE Miscellaneous Control 1	68	RW
45	IDE Miscellaneous Control 2	03	RW
46	IDE Miscellaneous Control 3	C0	RW
4B-48	IDE Drive Timing Control	A8A8A8A8	RW
4C	IDE Address Setup Time	FF	RW
4D	-reserved- (do not program)	00	$\mathbf{R}\mathbf{W}$
4E	Sec Non-1F0 IDE Port Access Timing	FF	RW
4F	Pri Non-1F0 IDE Port Access Timing	FF	RW
53-50	UltraDMA Extended Timing Control	03030303	RW
54	UltraDMA FIFO Control	06	RW
55-5F	-reserved-	00	_
61-60	IDE Primary Sector Size	0200	RW
62-67	-reserved-	00	_
69-68	IDE Secondary Sector Size	0200	RW
69-6F	-reserved-	00	_
70	IDE Primary Status	00	RW
71	IDE Primary Interrupt Control	00	RW
72-73	-reserved-	00	_
74	IDE Primary Command 1	00	RW
75	IDE Primary Command 2	00	RW
76-77	-reserved-	00	_
78	IDE Secondary Status	00	RW
79	IDE Secondary Interrupt Control	00	RW
7A-7B	-reserved-	00	_
7C	IDE Secondary Command 1	00	RW
7D	IDE Secondary Command 2	00	RW
7E-7F	-reserved-	00	_
83-80	IDE Primary S/G Descriptor Address	0000 0000	RW
84-87	-reserved-	00	_
8B-88	IDE Secondary S/G Descriptor Addr	0000 0000	RW
8C-97	-reserved-	00	
99-98	IDE Configuration I/O Space	0000	RW
	-reserved-	00	_

I/O Registers - IDE Controller (SFF 8038 v1.0 Compliant

Offset	IDE I/O Registers	Default	Acc
0	Primary Channel Command	00	RW
1	-reserved-	00	
2	Primary Channel Status	00	WC
3	-reserved-	00	_
4-7	Primary Channel PRD Table Addr	00	RW
8	Secondary Channel Command	00	RW
9	-reserved-	00	
A	Secondary Channel Status	00	WC
В	-reserved-	00	
C-F	Secondary Channel PRD Table Addr	00	RW

PCI Function 2 Registers - USB Controller Ports 0-1

Configuration Space USB Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	\mathbf{RW}
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C	Cache Line Size	00	RO
D	Latency Timer	16	\mathbf{RW}
Е	Header Type	00	RO
F	BIST	00	RO
10-1F	-reserved-	00	
23-20	USB I/O Register Base Address	00000301	\mathbf{RW}
24-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	

Configuration Space USB-Specific Registers

Offset	USB Control	Default	Acc
40	USB Miscellaneous Control 1	00	RW
41	USB Miscellaneous Control 2	00	RW
42-43	-reserved-	00	RO
44-45	-reserved- (test, do not program)		\mathbf{RW}
46-47	-reserved- (test)		RO
48-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-BF	-reserved-	00	_
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	

I/O Registers - USB Controller

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	_

PCI Function 3 Registers - USB Controller Ports 2-3

Configuration Space USB Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	\mathbf{RW}
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C	Cache Line Size	00	RO
D	Latency Timer	16	\mathbf{RW}
Е	Header Type	00	RO
F	BIST	00	RO
10-1F	-reserved-	00	
23-20	USB I/O Register Base Address	00000301	\mathbf{RW}
24-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	_

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	USB Miscellaneous Control 1	00	RW
41	USB Miscellaneous Control 2	00	$\mathbf{R}\mathbf{W}$
42-43	-reserved-	00	RO
44-45	-reserved- (test only, do not program)		$\mathbf{R}\mathbf{W}$
46-47	-reserved- (test)		RO
48-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-BF	-reserved-	00	_
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	

I/O Registers - USB Controller

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
С	Start Of Frame Modify	40	RW
11-10	Port 2 Status / Control	0080	WC
13-12	Port 3 Status / Control	0080	WC
14-1F	-reserved-	00	_

PCI Function 4 Registers - Power Management

Configuration Space Power Management Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3068	RO
5-4	Command	0000	RO
7-6	Status	0280	WC
8	Revision ID	nn	RO
9	Programming Interface	00†	RO
A	Sub Class Code	00‡	RO
В	Base Class Code	00‡	RO
C	Cache Line Size	00	RO
D	Latency Timer	00	RO
Е	Header Type	00	RO
F	BIST	00	RO
10-3F	-reserved-	00	_

 $[\]dagger$ The default values for these registers may be changed by writing to offsets 61-63h (see below).

Configuration Space Power Management Registers

Offset	Power Management	<u>Default</u>	Acc
40	General Configuration 0	00	RW
41	General Configuration 1	00	RW
42	ACPI Interrupt Select	00	RW
43	Internal Timer Read Test		RO
45-44	Primary Interrupt Channel	0000	RW
47-46	Secondary Interrupt Channel	0000	RW
4B-48	Power Mgmt I/O Base (256 Bytes)	0000 0001	RW
4C	Host Bus Power Management Control	00	RW
4D	Throttle / Clock Stop Control	00	RW
4E-4F	-reserved-	00	
53-50	GP Timer Control	0000 0000	RW
54	Power Well Control	00	RW
55-60	-reserved-	00	
61	Write value for Offset 9 (Prog Intfc)	00	WO
62	Write value for Offset A (Sub Class)	00	WO
63	Write value for Offset B (Base Class)	00	WO
64-7F	-reserved-	00	

Configuration Space Hardware Monitor Registers

Offset	System Management Bus	Default	Acc
71-70	Hardware Mon IO Base (128 Bytes)	0001	RW
72-73	-reserved-	00	_
74	Hardware Monitor Control	00	RW
75-8F	-reserved-	00	_

Configuration Space SMBus Registers

Offset	System Management Bus	<u>Default</u>	Acc
93-90	SMBus I/O Base (16 Bytes)	0000 0001	RW
94-D1	-reserved-	00	_
D2	SMBus Host Configuration	00	RW
D3	SMBus Host Slave Command	00	RW
D4	SMBus Slave Address Shadow Port 1	00	RW
D5	SMBus Slave Address Shadow Port 2	00	RW
D6	SMBus Revision ID	nn	RO
D7-FF	-reserved-	00	_

I/O Space Power Management- Registers

Offset	Basic Control / Status Registers	Default	Acc
1-0	Power Management Status	0000	WC
3-2	Power Management Enable	0000	RW
5-4	Power Management Control	0000	RW
6-7	-reserved-	00	_
B-8	Power Management Timer	0000 0000	RW
C-F	-reserved-	00	_
Offset	Processor Registers	Default	Acc
13-10	Processor and PCI Bus Control	0000 0000	RW
14	Processor LVL2	00	RO
15	Processor LVL3	00	RO
16-1F	-reserved-	00	_
Offset	General Purpose Registers	<u>Default</u>	Acc
21-20	General Purpose Status	0000	WC
23-22	General Purpose SCI Enable	0000	RW
25-24	General Purpose SMI Enable	0000	RW
26-27	-reserved-	00	_
Offset	Generic Registers	<u>Default</u>	Acc
29-28	Global Status	0000	WC
2B-2A	Global Enable	0000	RW
2D-2C	Global Control	0010	RW
2E	-reserved-	00	_
2F	SMI Command	00	RW
33-30	Primary Activity Detect Status	0000 0000	WC
37-34	Primary Activity Detect Enable	0000 0000	RW
3B-38	GP Timer Reload Enable	0000 0000	RW
3C-3F	-reserved-	00	
Offset	General Purpose I/O Registers	<u>Default</u>	Acc
40-43	-reserved-	00	_
44	External SMI Input Value	input	RO
45	IRQ Resume Status	00	RO
46-47	-reserved-	00	
4B-48	GPI Port Input Value	input	RO
4F-4C	GPO Port Output Value	03FF FFFF	RW
	-reserved-	00	

I/O Space System Management Bus Registers

Offset	System Management Bus	Default	Acc
0	SMBus Host Status	00	WC
1	SMBus Slave Status	00	RW
2	SMBus Host Control	00	RW
3	SMBus Host Command	00	RW
4	SMBus Host Address	00	RW
5	SMBus Host Data 0	00	RW
6	SMBus Host Data 1	00	RW
7	SMBus Block Data	00	RW
8	SMBus Slave Control	00	RW
9	SMBus Shadow Command	00	RO
A-B	SMBus Slave Event	0000	RW
C-D	SMBus Slave Data	0000	RO
E-F	-reserved-	00	

I/O Space Hardware Monitor Registers

Offset	Hardware Monitor	<u>Default</u>	Acc
00-3F	Value RAM		
00-1C	-reserved-	00	_
1D	TSENS3 Hot Hi Limit	00	RW
1E	TSENS3 Hot Hysteresis Lo Lim	00	RW
1F	TSENS3 (Int) Temp Reading	00	RW
20	TSENS1 (W13) Temp Reading	00	RW
21	TSENS2 (Y13) Temp Reading	00	RW
22	VSENS1 (U13) Voltage Reading	00	RW
23	VSENS2 (V13) Voltage Reading	00	RW
24	Internal Core VCC Voltage Reading	00	RW
25	VSENS3 (W14) Voltage Reading	00	RW
26	VSENS4 (Y14) Voltage Reading	00	RW
27-28	-reserved-	00	_
29	FAN1 (T12) Count Reading	00	RW
2A	FAN2 (U12) Count Reading	00	RW
2B	VSENS1 Voltage High Limit	00	RW
2C	VSENS1 Voltage Low Limit	00	RW
2D	VSENS2 Voltage High Limit	00	RW
2E	VSENS2 Voltage Low Limit	00	RW
2F	Internal Core VCC High Limit	00	RW
30	Internal Core VCC Low Limit	00	RW
31	VSENS3 Voltage High Limit	00	RW
32	VSENS3 Voltage Low Limit	00	RW
33	VSENS4 Voltage High Limit	00	RW
34	VSENS4 Voltage Low Limit	00	RW
35-38	-reserved-	00	_
39	TSENS1 Hot High Limit	00	RW
3A	TSENS1 Hot Hysteresis Lo Lim	00	RW
3B	FAN1 Fan Count Limit	00	RW
3C	FAN2 Fan Count Limit	00	RW
3D	TSENS2 Hot High Limit	00	RW
3E	TSENS2 Hot Hysteresis Lo Lim	00	RW
3F	Stepping ID Number	00	RW
40	Hardware Monitor Configuration	08	RW
41	Hardware Monitor Interrupt Status 1	00	RO
42	Hardware Monitor Interrupt Status 2	00	RO
43	Hardware Monitor Interrupt Mask 1	00	RW
44	Hardware Monitor Interrupt Mask 2	00	RW
45-46	-reserved-	00	_
47	Hardware Monitor Fan Configuration	50	RW
48	-reserved-	00	_
49	HW Mon Temp Value Lo-Order Bits	00	RW
4A	-reserved-	00	_
4B	Temperature Interrupt Configuration	15	RW
4C-FF	-reserved-	00	

PCI Function 5 & 6 Registers – AC97 / MC97 Codecs

Function 5 Configuration Space AC97 Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3058	RO
5-4	Command	0000	$\mathbf{R}\mathbf{W}$
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	04	RO
С	Cache Line Size	00	RO
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	BIST	00	RO
13-10	Base Address 0 - SGD Control/Status	0000 0001	RW
17-14	Base Address 1 – FM NMI Status	0000 0001	RW
1B-18	Base Address 2 (reserved)	0000 0000	-
1F-1C	Base Address 3 (reserved)	0000 0000	_
23-20	Base Address 4 (reserved)	0000 0000	_
27-24	Base Address 5 (reserved)	0000 0000	
28-2F	-reserved-	00	
33-30	Expansion ROM (reserved)	0000 0000	_
34-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E-3F	-reserved-	00	_

Configuration Space Audio Codec-Specific Registers

Offset	Audio Codec Link Control	<u>Default</u>	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RW
43	Plug and Play Control	1C	RW
44	MC97 Interface Control	00	RO
45-47	-reserved-	00	_
48	FM NMI Control	00	RO
49-FF	-reserved-	00	_

Note that these registers are the same as function 6 except for offset 44 (Read / Write in function 6)

Function 6 Configuration Space MC97 Header Registers

Offset	PCI Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3068	RO
5-4	Command	0000	RW
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	80	RO
В	Base Class Code	07	RO
С	Cache Line Size	00	RO
D	Latency Timer	00	$\mathbf{R}\mathbf{W}$
E	Header Type	00	RO
F	BIST	00	RO
13-10	Base Address 0 - SGD Control/Status	0000 0001	\mathbf{RW}
17-14	Base Address 1 – FM NMI Status	0000 0001	\mathbf{RW}
1B-18	Base Address 2 (reserved)	0000 0000	_
1F-1C	Base Address 3 (reserved)	0000 0000	_
23-20	Base Address 4 (reserved)	0000 0000	
27-24	Base Address 5 (reserved)	0000 0000	_
28-2F	-reserved-	00	_
33-30	Expansion ROM (reserved)	0000 0000	_
34-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E-3F	-reserved-	00	_

Configuration Space Modem Codec-Specific Registers

Offset	Modem Codec Link Control	Default	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RW
43	Plug and Play Control	1C	RW
44	MC97 Interface Control	00	RW
45-47	-reserved-	00	_
48	FM NMI Control	00	RO
49-FF	-reserved-	00	_

Note that these registers are the same as function 5 except for offset 44 (Read Only in function 5)

I/O Registers (I/O Base 0) - AC97 Scatter-Gather DMA

Offset	AC97 SGD I/O Registers	<u>Default</u>	Acc
0	SGD Read Channel Status	00	WC
1	SGD Read Channel Control	00	RW
2	SGD Type	00	RW
3	Reserved	00	
7-4	SGD Read Chan Table Pointer Base	0000 0000	WR
	SGD Read Channel Current Address		RD
B-8	Reserved (Test)	0000 0000	RO
F-C	SGD Read Chan Current Count	0000 0000	RO
10	SGD Write Channel Status	00	WC
11	SGD Write Channel Control	00	RW
12	SGD Type	00	RW
13	Reserved	00	_
17-14	SGD Write Chan Table Pointer Base	0000 0000	WR
	SGD Write Channel Current Address		RD
1B-18	Reserved (Test)	0000 0000	RO
1F-1C	SGD Write Channel Current Count	0000 0000	RO
20	SGD FM Channel Status	00	WC
21	SGD FM Channel Control	00	RW
22	SGD FM Type	00	RW
23	Reserved	00	_
27-24	SGD FM Channel Table Pointer Base	0000 0000	WR
	SGD FM Channel Current Address		RD
2B-28	Reserved (Test)	0000 0000	RO
2F-2C	SGD FM Channel Current Count	0000 0000	RO
30-3F	Reserved	00	

The above registers are writable from $\underline{function 5}$ only. They are Read / Only in $\underline{function 6}$

I/O Registers (I/O Base 0) – MC97 Scatter-Gather DMA

Offset	MC97 SGD I/O Registers	<u>Default</u>	Acc
40	SGD Read Channel Status	00	WC
41	SGD Read Channel Control	00	RW
42	SGD Type	00	RW
43	Reserved	00	
47-44	SGD Read Chan Table Pointer Base	0000 0000	WR
	SGD Read Channel Current Address		RD
4B-48	Reserved (Test)	0000 0000	RO
4F-4C	SGD Read Chan Current Count	0000 0000	RO
50	SGD Write Channel Status	00	WC
51	SGD Write Channel Control	00	RW
52	SGD Type	00	RW
53	Reserved	00	_
57-54	SGD Write Chan Table Pointer Base	0000 0000	WR
	SGD Write Channel Current Address		RD
5B-58	Reserved (Test)	0000 0000	RO
5F-5C	SGD Write Channel Current Count	0000 0000	RO
60-7F	Reserved	00	_

The above registers are writable from $\underline{function \ 6}$ \underline{only} . They are Read / Only in $\underline{function \ 5}$

Offset	AC97 Controller I/O Registers	<u>Default</u>	Acc
83-80	AC97 Controller Command / Status	0000 0000	RW
87-84	SGD Status Shadow	0000 0000	RO

The above registers are writable from **both function 5 and function 6**.

Offset	AC97 Controller I/O Registers	<u>Default</u>	<u>Acc</u>
8B-88	Codec GPI Interrupt Status / GPIO	0000 0000	WC
8F-8C	Codec GPI Interrupt Enable	0000 0000	RW
90-FF	Reserved	00	_

The above registers are writable from $\underline{\text{function 6}}$ $\underline{\text{only}}$. They are Read / Only in $\underline{\text{function 5}}$

I/O Registers (I/O Base 1) – FM NMI Status

Offset	FM NMI Status Registers	<u>Default</u>	Acc
0	FM NMI Status	00	RO
1	FM NMI Data	00	RO
2	FM NMI Index	00	RO
3	Reserved	00	_

The above registers are accessable through **function 5** only.

I/O Registers - SoundBlaster Pro

Offset	SB Pro Registers (220 or 240h typ)	Default	Acc
0	FM Left Channel Index / Status		RW
1	FM Left Channel Data		WO
2	FM Right Channel Index / Status		RW
3	FM Right Channel Data		wo
4	Mixer Index		WO
5	Mixer Data		RW
6	Sound Processor Reset		wo
7	-reserved-	00	
8	FM Index / Status (Both Channels)		RW
9	FM Data (Both Channels)		wo
A	Sound Processor Data		RO
В	-reserved-	00	
С	Sound Processor Command / Data		WR
	Sound Processor Buffer Status		RD
D	-reserved-	00	
Е	Snd Processor Data Available Status		RO
F	-reserved-	00	

ĺ	Port	SB Pro Regs (same as offsets 8 & 9)	Default	<u>Acc</u>
I	388h	FM Index / Status		RW
I	389h	FM Data		wo

The above group of registers emulates the "FM", "Mixer", and "Sound Processor" functions of the SoundBlaster Pro.

I/O Registers - Game Port

Offset	Game Port (200-20F typical)	Default	Acc
0	-reserved-	00	
1	Game Port Status		RO
1	Start One-Shot		WO
2-F	-reserved-	00	

Register Descriptions

Configuration Space I/O

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration AddressRW

31	Configuration Space Enable	
	0 Disableddefault	
	1 Convert configuration data port writes to	
	configuration cycles on the PCI bus	
30-24	Reserved always reads 0	
23-16	PCI Bus Number	
	Used to choose a specific PCI bus in the system	
15-11	Device Number	
	Used to choose a specific device in the system	
10-8	Function Number	
	Used to choose a specific function if the selected	
	device supports multiple functions	
7-2	Register Number	
	Used to select a specific DWORD in the device's	
	configuration space	
1-0	Fixed always reads 0	
Port CI	FF-CFC - Configuration DataRW	

Refer to PCI Bus Specification Version 2.1 for further details on operation of the above configuration registers.

Legacy I/O Ports

This group of registers includes the DMA Controllers, Interrupt Controllers, and Timer/Counters as well as a number of miscellaneous ports originally implemented using discrete logic on original PC/AT motherboards. All of the registers listed are integrated on-chip. These registers are implemented in a precise manner for backwards compatibility with previous generations of PC hardware. These registers are listed for information purposes only. Detailed descriptions of the actions and programming of these registers are included in numerous industry publications (duplication of that information here is beyond the scope of this document). All of these registers reside in I/O space.

Port 61	- Misc Functions & Speaker ControlRW	
7	Reserved always reads 0	
6	IOCHCK# ActiveRO	
	This bit is set when the ISA bus IOCHCK# signal is	
	asserted. Once set, this bit may be cleared by setting	
	bit-3 of this register. Bit-3 should be cleared to	
	enable recording of the next IOCHCK#. IOCHCK#	
	generates NMI to the CPU if NMI is enabled.	
5	Timer/Counter 2 OutputRO	
	This bit reflects the output of Timer/Counter 2	
	without any synchronization.	
4	Refresh DetectedRO	
	This bit toggles on every rising edge of the ISA bus	
	REFRESH# signal.	
3	IOCHCK# DisableRW	
	0 Enable IOCHCK# assertions default	
	1 Force IOCHCK# inactive and clear any	
	"IOCHCK# Active" condition in bit-6	
2	Reserved RW, default=0	
1	Speaker EnableRW	
	0 Disabledefault	
	1 Enable Timer/Ctr 2 output to drive SPKR pin	
0	Timer/Counter 2 EnableRW	
	0 Disabledefault	
	1 Enable Timer/Counter 2	
Port 92	h - System ControlRW	
7-6	Hard Disk Activity LED Status	
, 0	0 Offdefault	
	1-3 On	
5-4	Reserved always reads 0	
3	Power-On Password Bytes Inaccessabledefault=0	
2	Reserved always reads 0	
1	A20 Address Line Enable	
	0 A20 disabled / forced 0 (real mode) default	
	1 A20 address line enabled	
0	High Speed Reset	
	0 Normal	
	1 Briefly pulse system reset to switch from	
	protected mode to real mode	

Keyboard Controller Registers

The keyboard controller handles the keyboard and mouse interfaces. Two ports are used: port 60 and port 64. Reads from port 64 return a status byte. Writes to port 64h are command codes (see command code list following the register descriptions). Input and output data is transferred via port 60.

A "Control" register is also available. It is accessable by writing commands 20h / 60h to the command port (port 64h); The control byte is written by first sending 60h to the command port, then sending the control byte value. The control register may be read by sending a command of 20h to port 64h, waiting for "Output Buffer Full" status = 1, then reading the control byte value from port 60h.

Traditional (non-integrated) keyboard controllers have an "Input Port" and an "Output Port" with specific pins dedicated to certain functions and other pins available for general purpose I/O. Specific commands are provided to set these pins high and low. All outputs are "open-collector" so to allow input on one of these pins, the output value for that pin would be set high (non-driving) and the desired input value read on the input port. These ports are defined as follows:

<u>Bit</u>	<u>Input Port</u>	Lo Code	<u>Hi Code</u>
0	P10 - Keyboard Data In	B0	B8
1	P11 - Mouse Data In	B1	B9
2	P12 - Turbo Pin (PS/2 mode only)	B2	BA
3	P13 - user-defined	В3	BB
4	P14 - user-defined	B6	BE
5	P15 - user-defined	B7	BF
6	P16 - user-defined	_	_
7	P17 - undefined	_	_
Bit	Output Port	Lo Code	Hi Code
0	P20 - SYSRST (1=execute reset)	_	_
1	P21 - GATEA20 (1=A20 enabled)	_	_
2	P22 - Mouse Data Out	B4	BC
3	P23 - Mouse Clock Out	B5	BD
4	P24 - Keyboard OBF Interrupt (IR0	Q1) –	_
5	P25 - Mouse OBF Interrupt (IRQ 1	2) –	_
6	P26 - Keyboard Clock Out	_	_
7	P27 - Keyboard Data Out	_	_
Bit	Test Port	Lo Code	Hi Code
0	T0 - Keyboard Clock In	_	_
1	T1 - Mouse Clock In	_	_
Note:	Command code C0h transfers inp	ut port da	ta to the

Note: Command code C0h transfers input port data to the output buffer. Command code D0h copies output port values to the output buffer. Command code E0h transfers test input port data to the output buffer.

Port 60 - Keyboard Controller Output BufferROOnly read from port 60h if port 64h bit-0 = 1 (0=empty).

7	Parity Error
	0 No parity error (odd parity received) default
	1 Even parity occurred on last byte received
	from keyboard / mouse
6	General Receive / Transmit Timeout
	0 No error default
	1 Error
5	Mouse Output Buffer Full
	0 Mouse output buffer emptydefault
	1 Mouse output buffer holds mouse data
4	Keylock Status
	0 Locked
	1 Free
3	Command / Data
	0 Last write was data writedefault
	1 Last write was command write
2	System Flag
	0 Power-On Default default
	1 Self Test Successful
1	Input Buffer Full
	0 Input Buffer Emptydefault
	1 Input Buffer Full
0	Keyboard Output Buffer Full
	0 Keyboard Output Buffer Emptydefault
	1 Keyboard Output Buffer Full
KBC C	Control Register(R/W via Commands 20h/60h)
7	Reservedalways reads 0
	Reserved always reads 0 PC Compatibility
7	Reserved
7	Reserved
7	Reserved
7 6	Reserved
7	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable
7 6	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable 0 Enable Mouse Interface default
7 6	Reserved
7 6	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable 0 Enable Mouse Interface default 1 Disable Mouse Interface Keyboard Disable
7 6 5	Reserved
7 6 5	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable 0 Enable Mouse Interface default 1 Disable Mouse Interface Keyboard Disable 0 Enable Keyboard Interface default 1 Disable Keyboard Interface default 1 Disable Keyboard Interface
7 6 5	Reserved
7 6 5 4	Reserved
7 6 5 4	Reserved
7 6 5 4 3	Reserved
7 6 5 4 3 2	Reserved
7 6 5 4 3 2	Reserved
7 6 5 4 3 2	Reserved

Port 64 - Keyboard / Mouse StatusRO

Port 64 - Keyboard / Mouse Command...... WO

This port is used to send commands to the keyboard / mouse controller. The command codes recognized by the VT82C686A are listed n the table below.

Note: The VT82C686A Keyboard Controller is compatible with the VIA VT82C42 Industry-Standard Keyboard Controller except that due to its integrated nature, many of the input and output port pins are not available externally for use as general purpose I/O pins (even though P13-P16 are set on power-up as strapping options). In other words, many of the commands below are provided and "work", but otherwise perform no useful function (e.g., commands that set P12-P17 high or low). Also note that setting P10-11, P22-23, P26-27, and T0-1 high or low directly serves no useful purpose, since these bits are used to implement the keyboard and mouse ports and are directly controlled by keyboard controller logic.

Table 4. Keyboard Controller Command Codes

<u>Code</u> 20h	Keyboard Command Code Description	Code	Keyboard Command Code Description
2011 21-3Fh	Read Control Byte (next byte is Control Byte) Read SRAM Data (next byte is Data Byte)	C0h	Read input port (read P10-17 input data to
60h	Write Control Byte (next byte is Control Byte)	C1h	the output buffer) Poll input port low (read input data on P11-13
61-7Fh	Write SRAM Data (next byte is Data Byte)	CIII	repeatably & put in bits 5-7 of status
01-	Waite 1 wildling (bits 0.2) to D10 D12	C2h	Poll input port high (same except P15-17)
9xh A1h	Write low nibble (bits 0-3) to P10-P13 Output Keyboard Controller Version #	G01	
A111 A4h	Test if Password is installed	C8h	Unblock P22-23 (use before D1 to change
A+11	(always returns F1h to indicate not installed)	COL	active mode)
A7h	Disable Mouse Interface	C9h	Reblock P22-23 (protection mechanism for D1)
A8h	Enable Mouse Interface	CAh	Read mode (output KBC mode info to port 60
A9h	Mouse Interface Test (puts test results in port 60h)		output buffer (bit-0=0 if ISA, 1 if PS/2)
	(value: 0=OK, 1=clk stuck low, 2=clk stuck high,	D0h	Read Output Port (copy P10-17 output port values
	3=data stuck lo, 4=data stuck hi, FF=general error)	Don	to port 60)
AAh	KBC self test (returns 55h if OK, FCh if not)	D1h	Write Output Port (data byte following is written to
ABh	Keyboard Interface Test (see A9h Mouse Test)	2111	keyboard output port as if it came from keyboard)
ADh	Disable Keyboard Interface	D2h	Write Keyboard Output Buffer & clear status bit-5
AEh	Enable Keyboard Interface		(write following byte to keyboard)
AFh	Return Version #	D3h	Write Mouse Output Buffer & set status bit-5 (write
B0h	Set P10 low		following byte to mouse; put value in mouse input
B1h	Set P11 low		buffer so it appears to have come from the mouse)
B2h	Set P12 low	D4h	Write Mouse (write following byte to mouse)
B3h	Set P13 low	E0h	Read test inputs (T0-1 read to bits 0-1 of resp byte)
B4h	Set P22 low	Exh	Set P23-P21 per command bits 3-1
B5h	Set P23 low	Fxh	Pulse P23-P20 low for 6usec per command bits 3-0
B6h	Set P14 low		•
B7h	Set P15 low	All othe	er codes not listed are undefined.
B8h	Set P10 high		
B9h	Set P11 high		
BAh	Set P12 high		

Set P13 high

Set P22 high Set P23 high

Set P14 high

Set P15 high

BBh BCh

BDh BEh

BFh

DMA Controller I/O Registers

Ports 00-0F - Master DMA Controller

Channels 0-3 of the Master DMA Controller control System DMA Channels 0-3. There are 16 Master DMA Controller registers:

I/O Address Bits 15-0	Register Name	
0000 0000 000x 0000	Ch 0 Base / Current Address	\mathbf{RW}
0000 0000 000x 0001	Ch 0 Base / Current Count	\mathbf{RW}
0000 0000 000x 0010	Ch 1 Base / Current Address	\mathbf{RW}
0000 0000 000x 0011	Ch 1 Base / Current Count	\mathbf{RW}
0000 0000 000x 0100	Ch 2 Base / Current Address	\mathbf{RW}
0000 0000 000x 0101	Ch 2 Base / Current Count	\mathbf{RW}
0000 0000 000x 0110	Ch 3 Base / Current Address	\mathbf{RW}
0000 0000 000x 0111	Ch 3 Base / Current Count	\mathbf{RW}
0000 0000 000x 1000	Status / Command	\mathbf{RW}
0000 0000 000x 1001	Write Request	WO
0000 0000 000x 1010	Write Single Mask	WO
0000 0000 000x 1011	Write Mode	WO
0000 0000 000x 1100	Clear Byte Pointer F/F	WO
0000 0000 000x 1101	Master Clear	WO
0000 0000 000x 1110	Clear Mask	WO
0000 0000 000x 1111	R/W All Mask Bits	\mathbf{RW}

Ports C0-DF - Slave DMA Controller

Channels 0-3 of the Slave DMA Controller control System DMA Channels 4-7. There are 16 Slave DMA Controller registers:

I/O Address Bits 15-0	Register Name	
0000 0000 1100 000x	Ch 4 Base / Current Address	\mathbf{RW}
0000 0000 1100 001x	Ch 4 Base / Current Count	\mathbf{RW}
0000 0000 1100 010x	Ch 5 Base / Current Address	$\mathbf{R}\mathbf{W}$
0000 0000 1100 011x	Ch 5 Base / Current Count	$\mathbf{R}\mathbf{W}$
0000 0000 1100 100x	Ch 6 Base / Current Address	\mathbf{RW}
0000 0000 1100 101x	Ch 6 Base / Current Count	\mathbf{RW}
0000 0000 1100 110x	Ch 7 Base / Current Address	$\mathbf{R}\mathbf{W}$
0000 0000 1100 111x	Ch 7 Base / Current Count	$\mathbf{R}\mathbf{W}$
0000 0000 1101 000x	Status / Command	$\mathbf{R}\mathbf{W}$
0000 0000 1101 001x	Write Request	WO
0000 0000 1101 010x	Write Single Mask	WO
0000 0000 1101 011x	Write Mode	WO
0000 0000 1101 100x	Clear Byte Pointer F/F	WO
0000 0000 1101 101x	Master Clear	WO
0000 0000 1101 110x	Clear Mask	WO
0000 0000 1101 111x	Read/Write All Mask Bits	WO

Note that not all bits of the address are decoded.

The Master and Slave DMA Controllers are compatible with the Intel 8237 DMA Controller chip. Detailed description of 8237 DMA controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports 80-8F - DMA Page Registers

There are eight DMA Page Registers, one for each DMA channel. These registers provide bits 16-23 of the 24-bit address for each DMA channel (bits 0-15 are stored in registers in the Master and Slave DMA Controllers). They are located at the following I/O Port addresses:

I/O Address Bits 15-0	Register Name
0000 0000 1000 0111	Channel 0 DMA Page (M-0)RW
0000 0000 1000 0011	Channel 1 DMA Page (M-1)RW
0000 0000 1000 0001	Channel 2 DMA Page (M-2)RW
0000 0000 1000 0010	Channel 3 DMA Page (M-3)RW
0000 0000 1000 1111	Channel 4 DMA Page (S-0)RW
0000 0000 1000 1011	Channel 5 DMA Page (S-1)RW
0000 0000 1000 1001	Channel 6 DMA Page (S-2)RW
0000 0000 1000 1010	Channel 7 DMA Page (S-3)RW

DMA Controller Shadow Registers

The DMA Controller shadow registers are enabled by setting function 0 Rx77 bit 0. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard DMA controller registers (writes are unchanged).

Port 0 - Channel 0 Base AddressRO
Port 1 - Channel 0 Byte CountRO
Port 2 - Channel 1 Base AddressRO
Port 3 – Channel 1 Byte CountRO
Port 4 – Channel 2 Base Address
Port 5 - Channel 2 Byte CountRO
Port 6 – Channel 3 Base Address
Port 7 - Channel 3 Byte CountRO
Port 8 –1 st Read Channel 0-3 Command RegisterRO
Port 8 – 2 nd Read Channel 0-3 Request RegisterRO
Port 8 – 3 rd Read Channel 0 Mode RegisterRO
Port 8 –4 th Read Channel 1 Mode RegisterRO
Port 8 –5 th Read Channel 2 Mode RegisterRO
Port 8 –6 th Read Channel 3 Mode RegisterRO
1 of t o = 0 Read Channel 5 Wode RegisterRO
Port F - Channel 0-3 Read All MaskRO
Don't CA Channel 5 Don't Allinon
Port C4 - Channel 5 Base Address
Port C6 - Channel 5 Byte Count RO
Port C8 – Channel 6 Base AddressRO
Port CA -Channel 6 Byte CountRO
Port CC - Channel 7 Base AddressRO
Port CE - Channel 7 Byte CountRO
Doub DO 1st Dood Channel 4.7 Common d Dociston DO
Port D0 –1 st Read Channel 4-7 Command RegisterRO
Port D0 – 2 nd Read Channel 4-7 Request RegisterRO
Port D0 – 3 rd Read Channel 4 Mode RegisterRO
Port D0 –4 th Read Channel 5 Mode RegisterRO
Port D0 –5 th Read Channel 6 Mode RegisterRO
Port D0 –6 th Read Channel 7 Mode RegisterRO
Port DE -Channel 4-7 Read All MaskRO

Interrupt Controller Registers

Ports 20-21 - Master Interrupt Controller

The Master Interrupt Controller controls system interrupt channels 0-7. Two registers control the Master Interrupt Controller. They are:

I/O Address Bits 15-0 Register Name

0000 0000 001x xxx0	Master Interrupt Control	RW
0000 0000 001x xxx1	Master Interrupt Mask	RW

Note that not all bits of the address are decoded.

The Master Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports A0-A1 - Slave Interrupt Controller

The Slave Interrupt Controller controls system interrupt channels 8-15. The slave system interrupt controller also occupies two register locations:

I/O Address Bits 15-0 Register Name

0000 0000 101x xxx0	Slave Interrupt Control	RW
0000 0000 101x xxx1	Slave Interrupt Mask	RW

Note that not all address bits are decoded.

The Slave Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Interrupt Controller Shadow Registers

The following shadow registers are enabled by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard interrupt controller registers (writes are unchanged).

Port 20 - Master Interrupt Control Shadow	vRO
Port A0 - Slave Interrupt Control Shadow	RO

- 7 Reservedalways reads 0
- 6 OCW3 bit 2 (POLL)
- 5 OCW3 bit 0 (RIS)
- 4 **OCW3 bit 5 (SMM)**
- 3 OCW2 bit 7 (R)
- 2 ICW4 bit 4 (SFNM)
- 1 ICW4 bit 1 (AEOI)
- 0 ICW1 bit 3 (LTIM)

Port 21 - Master Interrupt Mask Shadov	<u>vRO</u>
Port A1 - Slave Interrupt Mask Shadow	RO

- **7-5 Reserved**always reads 0
- 4-0 T7-T3 of Interrupt Vector Address

Timer / Counter Registers

Ports 40-43 - Timer / Counter Registers

There are 4 Timer / Counter registers:

I/O Address Bits 15-0	Register Name	
0000 0000 010x xx00	Timer / Counter 0 Count	\mathbf{RW}
0000 0000 010x xx01	Timer / Counter 1 Count	\mathbf{RW}
0000 0000 010x xx10	Timer / Counter 2 Count	\mathbf{RW}
0000 0000 010x xx11	Timer / Counter Cmd Mode	WO

Note that not all bits of the address are decoded.

The Timer / Counters are compatible with the Intel 8254 Timer / Counter chip. Detailed descriptions of 8254 Timer / Counter operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Timer / Counter Shadow Registers

The following shadow registers are enabled for readback by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard timer / counter registers (writes are unchanged).

Port 40 – Counter 0 Base Count Value (LSB 1st MSB 2nd)RO Port 41 – Counter 1 Base Count Value (LSB 1st MSB 2nd)RO Port 42 – Counter 2 Base Count Value (LSB 1st MSB 2nd)RO

Binary Range BCD Range

CMOS / RTC Registers

Port 70) - CMOS AddressRW	00	Seconds Dilitary Range Deep Range 00-3Bh 00-59h
7	NMI DisableRW	01	Seconds Alarm 00-3Bh 00-59h
,	0 Enable NMI Generation. NMI is asserted on	02	Minutes 00-3Bh 00-59h
	encountering IOCHCK# on the ISA bus or	03	Minutes Alarm 00-3Bh 00-59h
	SERR# on the PCI bus.	04	Hours am 12hr: 01-1Ch 01-12h
	1 Disable NMI Generationdefault		pm 12hr: 81-8Ch 81-92h
6-0	CMOS Address (lower 128 bytes)RW		24hr: 00-17h 00-23h
0 0	Chief Huttes (10 wei 120 bytes)	05	Hours Alarm am 12hr: 01-1Ch 01-12h
Port 71	- CMOS DataRW		pm 12hr: 81-8Ch 81-92h
7-0	CMOS Data (128 bytes)		24hr: 00-17h 00-23h
Note:	Ports 70-71 may be accessed if Rx5A bit-2 is set to	06	Day of the Week Sun=1: 01-07h 01-07h
Note.	one to select the internal RTC. If Rx5A bit-2 is set to	07	Day of the Month 01-1Fh 01-31h
	zero, accesses to ports 70-71 will be directed to an	08	Month 01-0Ch 01-12h
	external RTC.	09	Year 00-63h 00-99h
	external RTC.		
Port 72	2 - CMOS AddressRW	0A	Register A
7-0	CMOS Address (256 bytes)RW		7 UIP Update In Progress
D 4 = 4	O MOG D		6-4 DV2-0 Divide (010=ena osc & keep time)
	3 - CMOS DataRW		3-0 RS3-0 Rate Select for Periodic Interrupt
7-0	CMOS Data (256 bytes)	ΔD	Doniston D
Note:	Ports 72-73 may be accessed if Rx5A bit-2 is set to	0B	Register B 7 SET Inhibit Update Transfers
	one to select the internal RTC. If Rx5A bit-2 is set to		6 PIE Periodic Interrupt Enable
	zero, accesses to ports 72-73 will be directed to an		5 AIE Alarm Interrupt Enable
	external RTC.		4 UIE Update Ended Interrupt Enable
- · - ·			3 SQWE No function (read/write bit)
	I - CMOS AddressRW		2 DM Data Mode (0=BCD, 1=binary)
7-0	CMOS Address (256 bytes)RW		1 24/12 Hours Byte Format (0=12, 1=24)
Port 75	5 - CMOS DataRW		0 DSE Daylight Savings Enable
7-0	CMOS Data (256 bytes)	0C	Register C
Note:		UC	7 IRQF Interrupt Request Flag
Note.	Ports 74-75 may be accessed only if Function 0 Rx5B bit-1 is set to one to enable the internal RTC SRAM		6 PF Periodic Interrupt Flag
	and if Rx48 bit-3 (Port 74/75 Access Enable) is set to		5 AF Alarm Interrupt Flag
			4 UF Update Ended Flag
	one to enable port 74/75 access.		3-0 0 Unused (always read 0)
Note:	Ports 70-71 are compatible with PC industry-		•
	standards and may be used to access the lower 128	0D	Register D
	bytes of the 256-byte on-chip CMOS RAM. Ports		7 VRT Reads 1 if VBAT voltage is OK
	72-73 may be used to access the full extended 256-		6-0 0 Unused (always read 0)
	byte space. Ports 74-75 may be used to access the		
	full on-chip extended 256-byte space in cases where	0E-7C	C Software-Defined Storage Registers (111 Bytes)
	the on-chip RTC is disabled.		
Note:	The system Real Time Clock (RTC) is part of the		t Extended Functions Binary Range BCD Range
	"CMOS" block. The RTC control registers are	7D	Date Alarm 01-1Fh 01-31h
	located at specific offsets in the CMOS data area (0-	7E	Month Alarm 01-0Ch 01-12h
	0Dh and 7D-7Fh). Detailed descriptions of CMOS /	7 F	Century Field 13-14h 19-20h
	RTC operation and programming can be obtained		
	from the VIA VT82887 Data Book or numerous	80-FF	Software-Defined Storage Registers (128 Bytes)
	other industry publications. For reference, the		
	definition of the PTC register locations and hits are		

Offset Description

definition of the RTC register locations and bits are

summarized in the following table:

Super-I/O Configuration Index Registers

Super-I/O configuration registers are accessed by performing I/O operations to/from an index / data pair of registers in system I/O space at port addresses 3F0h and 3F1h. The configuration registers accessed using this mechanism are used to configure the Super-I/O registers (parallel port, serial ports, IR port, and floppy controller).

Super-I/O Configuration Index / Data Registers

Port 3F0h - Super-I/O Configuration Index.....RW

7-0 Index value

Function 0 PCI configuration space register Rx85[1] must be set to 1 to enable access to the Super-I/O configuration registers.

Port 3F1h - Super-I/O Configuration Data.....RW

7-0 Data value

This register shares a port with the Floppy Status Port (which is read only). This port is accessible only when Rx85[1] is set to 1 (the floppy status port is accessed if Rx85[1] = 0).

Super-I/O Configuration Registers

These registers are accessed via the port 3F0/3F1 index / data register pair using the indicated index values below

Index E	20 – Super-I/	O Device ID	RO
7-0		\mathbf{D} default = 3	
Index E	21 – Super-I/	O Device Revision	<u>RO</u>
7-0	Super-I/O I	Revision Code default	= 0
Index E	22 – Super-I/	O Function Select I	<u>RW</u>
7-5	Reserved	always read	ls 0
4	Floppy Con	troller Enable	
	0 Disab	oledefa	ault
	1 Enab	le	
3	Serial Port		
	0 Disab	oledefa	ault
	1 Enab	le	
2	Serial Port		
	0 Disab	oledefa	ault
	1 Enab	le	
1-0		rt Mode / Enable	
	00 Unidi	rectional modedefa	ault
	01 ECP		
	10 EPP		
	11 Paral	lel Port Disabled	
Index E	3 – Floppy (Controller I/O Base Address F	<u>w</u>
7-2	I/O Address	s 9-4 default	= 0
1-0	Must be 0	default	= 0
Index E6 – Parallel Port I/O Base AddressRW			
		s 9-2default	
		ed, the parallel port can be set to	
		oundaries from 100h to 3FCh. If EPI	
		port can be set to 96 locations on 8-b	
	ries from 1001	<u>*</u>	,
Index E	7 – Serial Po	ort 1 I/O Base Address F	<u>tw</u>
7-1	I/O Address	s 9-3default	=0
0	Must be 0	default	= 0
Index E	28 – Serial Po	ort 2 I/O Base Address I	W
7-1		s 9-3default	
0	Must be 0	default	= 0

fault
fault
fault
fault
fault
ads 0
ads 0
RW
ads 0
fault
fault
fault
ads 0
RW
K VV
RW
1 11

Index F6 – Floppy Controller ConfigurationRW			
7-5	Reserved always reads 0		
4	3-Mode FDD		
	0 Disabledefault		
	1 Enable		
3	Reserved always reads 0		
2	Four Floppy Drive Option		
	0 Internal 2-Drive Decoderdefault		
	1 External 4-Drive Decoder		
1	FDC DMA Non-Burst		
	0 Burstdefault		
	1 Non-Burst		
0	FDC Swap		
	0 Disabledefault		
	1 Enable		

	Index F8	- Floppy Drive	Control		RV	λ
--	----------	----------------	---------	--	----	---

- **7-6 Floppy Drive 3** (see table below)
- **5-4 Floppy Drive 2** (see table below)
- 3-2 Floppy Drive 1 (see table below)
- 1-0 Floppy Drive 0 (see table below)

	<u>DRVEN1</u>	<u>DRVEN0</u>
00	SENSEL	DRATE0
01	DRATE1	DRATE0
10	SENSEL#	DRATE0
11	DRATE1	DRATE0

Super-I/O I/O Ports

Floppy Disk Controller Registers

These registers are located at I/O ports which are offsets from "FDCBase" (index C3h of the Super-I/O configuration registers). FDCBase is typically set to allow these ports to be accessed at the standard floppy disk controller address range of 3F0-3F7h.

Port FDCBase+1 - FDC Status ARO

7	terrui		

- 0 Interrupt inactive
- 1 Interrupt signal active

6 # of Drives

- 0 Two drives connected
- 1 One drive connected

5 Step Pulse

- 0 Not transferred
- 1 Transferred

4 Track 00

- 0 Head currently not at track 00
- 1 Head currently at track 00

3 Head Selected

- 0 Head 0
- 1 Head 1

2 Index Mark

- 0 Index mark detected
- 1 Index mark not detected

1 Write Protection Status

- 0 Disk Write Protected
- 1 Disk not write protected

0 Step Direction of Head

- 0 Outward (to smaller cylinder numbers)
- 1 Inward (to higher cylinder numbers)

Port FDCBase+1 - FDC Status BRO

7-6 Unusedalways read 1

5 Drive Selected

- 0 Other drive selected
- 1 Drive 0 selected

4 Write Data

- 0 Data has been transmitted to drive
- 1 No data written

3 Read Data

- 0 Data has been transmitted from drive
- 1 No data read

2 Write Enable

- 0 Head can read data only
- 1 Head activated for writing

1 Motor 1 Status

- 0 Motor is off
- 1 Motor is on

0 Motor 0 Status

- 0 Motor is off
- 1 Motor is on

Port FDCBase+2 - FDC CommandRW

- 7 Motor 3 (unused in VT82C686A: no MTR3# pin)
- 6 Motor 2 (unused in VT82C686A: no MTR2# pin)

5 Motor 1

- 0 Motor Off
- 1 Motor On

4 Motor 0

- 0 Motor Off
- 1 Motor On

3 DMA and IRQ Channels

- 0 Disabled
- 1 Enabled

2 FDC Reset

- 0 Execute FDC Reset
- 1 FDC Enabled

1-0 Drive Select

- 00 Select Drive 0
- 01 Select Drive 1
- 1x -reserved-

Port FDCBase+4 – FDC Main StatusRO

7 Main Request

- 0 Data register not ready
- 1 Data register ready

6 Data Input / Output

- $0 \quad \overline{CPU} \Rightarrow \overline{FDC}$
- $1 ext{ FDC} \Rightarrow \text{CPU}$

5 Non-DMA Mode

- 0 FDC in DMA mode
- 1 FDC not in DMA mode

4 FDC Busy

- 0 FDC inactive
- 1 FDC active

3-2 Reservedalways reads 0

1 Drive 1 Active

- 0 Drive inactive
- 1 Drive performing a positioning change

0 Drive 0 Active

- 0 Drive inactive
- 1 Drive performing a positioning change

Port FI	OCBas	e+4 – FDC Data Rate Select WO
Port FI	OCBas	e+5 – FDC DataRW
Port FI	OCBas	e+7 – FDC Disk Change StatusRO
7	Disk	Change
	0	Floppy not changed
	1	Floppy changed since last instruction
6-3	Unde	fined always read 1
2-1	Data	Rate
	00	500 Kbit/sec (1.2MB 5" or 1.44 MB 3" drive)
	01	300 Kbit/sec (360KB 5" drive)
	10	250 Kbit/sec (720KB 3" drive)
	11	1 Mbit/sec
0	High	Density Rate
	0	500 Kbit/sec or 1 Mbit/sec selected
	1	250 Kbit/set or 300 Kbit/sec selected

Parallel Port Registers

2-0 Reserved

These registers are located at I/O ports which are offsets from "LPTBase" (index C6h of the Super-I/O configuration registers). LPTBase is typically set to allow these ports to be accessed at the standard parallel port address range of 378-37Fh.

Port L	PTBas	e+0 – Parallel Port DataRV	V					
7-0	Para	Parallel Port Data						
Port L	PTBas	e+1 – Parallel Port StatusRo	<u>o</u>					
7	BUS	Y#						
	0	Printer busy, offline, or error						
	1	Printer not busy						
6	ACK	<i>;</i> #						
	0	Data transfer to printer complete						
	1	Data transfer to printer in progress						
5	PE							
	0	Paper available						
	1	No paper available						
4	SLC	Γ						
	0	Printer offline						
	1	Printer online						
3	ERR	OR#						
	0	Printer error						
	1	Printer OK						

.....always read 1 bits

Port L	PTBas	e+2 – Parallel Port ControlRW
7-5	Unde	efinedalways read back 1
4	Hard	lware Interrupt
	0	Disabledefault
	1	Enable
3	Print	ter Select
	0	F
	1	Select printer
2	Print	ter Initialize
	0	Initialize Printer default
	1	Allow printer to operate normally
1	Auto	matic Line Feed
	0	Host handles line feeds default
	1	Printer does automatic line feeds
0	Strol	, ,
	0	No data transfer default
	1	Transfer data to printer
Port L	PTBas	e+3 – Parallel Port EPP Address RW
•		
Port L	PTBas	e+4 – Parallel Port EPP Data Port 0 RW
Port L	<u>PTBas</u>	e+5 – Parallel Port EPP Data Port 1RW
Dowt I	DTD	e+6 – Parallel Port EPP Data Port 2 RW
POFT L	ribas	e+0 - Parallel Port EPP Data Port 2 RW
Port L	PTBas	e+7 – Parallel Port EPP Data Port 3 RW
I OI U Z	11045	C+7 Turumer Fore B11 Buttu Fore Community
Port L	<u>PTBas</u>	<u>e+400h – Parallel Port ECP Data / Cfg A RW</u>
Port L	<u> PTBas</u>	<u>e+401h – Parallel Port ECP Config B RW</u>
Dort I	DTRes	e+401h – Parallel Port ECP Extd Ctrl RW
IUILL	i i Das	CT-TOTH - LALAHELL OLL ECL EXILICIT KYY

Serial l	Port 1 Registers	Port C	OM1Base+4 – Handshake ControlRW
These r	registers are located at I/O ports which are offsets from	7-5	Undefined always read 0
"COM	Base" (index C7h of the Super-I/O configuration	4	Loopback Check
register	s). COM1Base is typically set to allow these ports to		0 Normal operation
be acce	essed at the standard serial port 1 address range of 3F8-		1 Loopback enabled
3FFh.		3	General Purpose Output 2 (unused in 82C686A)
D . C		2	General Purpose Output 1 (unused in 82C686A)
Port C	OM1Base+0 – Transmit / Receive BufferRW	1	Request To Send
7-0	Serial Data		0 Disabled
Dont C	OM1Page 1 Interment Enable DW		1 Enabled
	OM1Base+1 - Interrupt EnableRW	0	Data Terminal Ready
7-4	Undefinedalways read 0		0 Disabled
3	Interrupt on Hnadshake Input State Change		1 Enabled
2	Intr on Parity, Overrun, Framing Error or Break	Port C	OM1Base+5 – UART StatusRW
1	Interrupt on Transmit Buffer Empty		
0	Interrupt on Receive Data Ready	7	Undefined always read 0
Port C	OM1Base+2 – Interrupt StatusRO	6	Transmitter Empty
7-3	Undefinedalways read 0		0 1 byte in transmit hold or transmit shift register
2-1	Interrupt ID (0=highest priority)	_	1 0 bytes transmit hold and transmit shift regs
2-1	00 Priority 3 (Handshake Input Changed State)	5	Transmit Buffer Empty 0 1 byte in transmit hold register
	01 Priority 2 (Transmit Buffer Empty)		0 1 byte in transmit hold register 1 Transmit hold register empty
	10 Priority 1 (Data Received)	4	Break Detected
	11 Priority 0 (Serialization Error or Break)	4	0 No break detected
0	Interrupt Pending		1 Break detected
v	0 Interrupt Pending	3	Framing Error Detected
	1 No Interrupt Pending	3	0 No error
	1 10 merrupt rending		1 Error
Port C	OM1Base+2 - FIFO Control WO	2	Parity Error Detected
			0 No error
Port C	OM1Base+3 – UART ControlRW		1 Error
7	Divisor Latch Access	1	Overrun Error Detected
	0 Select transmit / receive registers	•	0 No error
	1 Select divisor latch		1 Error
6	Break	0	Received Data Ready
	0 Break condition off	v	0 No received data available
	1 Break condition on		1 Received data in receiver buffer register
5-3	Parity		
	000 None	Port C	OM1Base+6 – Handshake StatusRW
	001 Odd	7	DCD Status (1=Active, 0=Inactive)
	011 Even	6	RI Status (1=Active, 0=Inactive)
	101 Mark	5	DSR Status (1=Active, 0=Inactive)
_	111 Space	4	CTS Status (1=Active, 0=Inactive)
2	Stop Bits	3	DCD Changed (1=Changed Since Last Read)
	0 1	2	RI Changed (1=Changed Since Last Read)
	1 2	1	DSR Changed (1=Changed Since Last Read)
1-0	Data Bits	0	CTS Changed (1=Changed Since Last Read)
	00 5	Dont C	OM1Dece 17 Several DW
	01 6		OM1Base+7 – ScratchpadRW
	10 7 11 8	7	Scratchpad Data
	11 0	Port C	OM1Base+9-8 – Baud Rate Generator Divisor RW
		15-0	Divisor Value for Basud Rate Generator
			Baud Rate = 115,200 / Divisor

(e.g., setting this register to 1 selects 115.2 Kbaud)

Serial l	Port 2 Registers	Port C	OM1Base+4 – Handshake ControlRW
These r	egisters are located at I/O ports which are offsets from	7-5	Undefined always read 0
	Base" (index C8h of the Super-I/O configuration	4	Loopback Check
	s). COM2Base is typically set to allow these ports to		0 Normal operation
	ssed at the standard serial port 2 address range of 2F8-		1 Loopback enabled
2FFh.		3	General Purpose Output 2 (unused in 82C686A)
		2	General Purpose Output 1 (unused in 82C686A)
Port C	OM1Base+0 - Transmit / Receive BufferRW	1	Request To Send
7-0	Serial Data		0 Disabled
- . ~			1 Enabled
	OM1Base+1 – Interrupt EnableRW	0	Data Terminal Ready
7-4	Undefinedalways read 0		0 Disabled
3	Interrupt on Hnadshake Input State Change		1 Enabled
2	Intr on Parity, Overrun, Framing Error or Break	D 4 C	OMAD . F. HADEGA A DW
1	Interrupt on Transmit Buffer Empty		OM1Base+5 – UART StatusRW
0	Interrupt on Receive Data Ready	7	Undefined always read 0
Dont C	OM1Page 2 Interment Status DO	6	Transmitter Empty
	OM1Base+2 – Interrupt StatusRO		0 1 byte in transmit hold or transmit shift register
7-3	Undefinedalways read 0		1 0 bytes transmit hold and transmit shift regs
2-1	Interrupt ID (0=highest priority)	5	Transmit Buffer Empty
	00 Priority 3 (Handshake Input Changed State)		0 1 byte in transmit hold register
	01 Priority 2 (Transmit Buffer Empty)		1 Transmit hold register empty
	10 Priority 1 (Data Received)	4	Break Detected
	11 Priority 0 (Serialization Error or Break)		0 No break detected
0	Interrupt Pending		1 Break detected
	0 Interrupt Pending	3	Framing Error Detected
	1 No Interrupt Pending		0 No error
Port C	OM1Base+2 – FIFO Control WO		1 Error
TOILE	ONTIDUSC 12 TH O CONTOL MANAGEMENT TO	2	Parity Error Detected
Port C	OM1Base+3 - UART ControlRW		0 No error
7	Divisor Latch Access		1 Error
,	0 Select transmit / receive registers	1	Overrun Error Detected
	1 Select divisor latch		0 No error
6	Break		1 Error
ŭ	0 Break condition off	0	Received Data Ready
	1 Break condition on		0 No received data available
5-3	Parity		1 Received data in receiver buffer register
	000 None	Port C	OM1Base+6 – Handshake StatusRW
	001 Odd	7	DCD Status (1=Active, 0=Inactive)
	011 Even	6	RI Status (1=Active, 0=Inactive)
	101 Mark	5	DSR Status (1=Active, 0=Inactive)
	111 Space	4	CTS Status (1=Active, 0=Inactive)
2	Stop Bits	3	DCD Changed (1=Changed Since Last Read)
	0 1	2	RI Changed (1=Changed Since Last Read)
	1 2	1	DSR Changed (1=Changed Since Last Read)
1-0	Data Bits	0	CTS Changed (1=Changed Since Last Read)
	00 5		
	01 6	Port C	OM1Base+7 – ScratchpadRW
	10 7	7	Scratchpad Data
	11 8	Port C	OM1Base+9-8 – Baud Rate Generator Divisor RW
			Divisor Value for Basud Rate Generator
		•	Baud Rate = 115,200 / Divisor
			(e.g., setting this register to 1 selects 115.2 Kbaud)

SoundBlaster Pro Port Registers

These registers are located at offsets from "SBPBase" (defined in Rx43 of Audio Function 5 PCI configuration space). SBPBase is typically set to allow these ports to be accessed at the standard SoundBlaster Pro port address of 220h or 240h.

FM Registers

Port SBP	Base+0 – FM Left Channel Index / StatusRW
7-0	FM Right Channel Index / Status
	<u>PBase+1 – FM Left Channel Data WO</u> Right Channel FM Data
	PBase+2 – FM Right Channel Index / StatusRW FM Right Channel Index / Status

Port 388h or SBPBase+8 – FM Index / StatusRW

Port SBPBase+3 – FM Right Channel Data WO

7-0 FM Index / Status (Both Channels)

Writing to this port programs both the left and right channels (the write programms port offsets 0 and 2 as well)

Port 389h or SBPBase+9 – FM Data WO

7-0 FM Data (Both Channels)

7-0 Right Channel FM Data

Writing to this port programs both the left and right channels (the write programms port offsets 1 and 3 as well)

Mixer Registers

7-0	Mixer Index
Port SB	PBase+5 – Mixer DataRW

Port SBPBase+4 - Mixer Index...... WO

7-0 Mixer Data

Sound Processor Registers

Port SB	PB	ase+6 –	<u>Sound</u>	Processor	Reset	WO
0	1	C 1	D	D 4		

0 1 = Sound Processor Reset

Port SBPBase+A - Sound Processor Read DataRO

7-0 Sound Processor Read Data

Port SBPBase+C - Sound Processor Command / Data WO

7-0 Sound Processor Command / Write Data

Port SBPBase+C - Sound Processor Buffer Status.....RO

7 1 = Sound Processor Command / Data Port Busy

Port SBPBase+E - Sound Processor Data Avail Status..RO

1 = Sound Processor Data Available

Register Summary - FM

<u>Index</u>	<u>Bit-7</u>	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
01		Test						
02		Fast Counter (80 usec)						
03		Slow Counter (320 usec)						
04	IRQ	MFC	MSC				SSSC	SSFC
08	CSM	SEL						
20-35	AM	VIB	EGT	KSR		Mı	ulti	
40-55	K	SL		Τ	otal Le	vel (TI	رـ)	
60-75	A	ttack R	ate (AF	₹)	D	ecay R	ate (DF	₹)
80-95	Sı	ıstain L	evel (S	L)	Re	elease I	Rate (R)	R)
A0-A8				F-Nu	mber			
B0-B8			Key		Block		F-Nu	mber
BD	Int AN	M VIB	Ryth	Bass	Snare	Tom	Cym	HiHat
C0-C8					F	eedbac	k	FM
E0-F5							W	/S

MFC=Mask Fast Counter
MSC=Mask Slow Counter
SSFC=Start / Stop Fast Counter
SSSC=Start / Stop Slow Counter

Register Summary - Mixer

Index	<u>Bit-7</u>	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
00				Data	Reset			
02	SP	SP Volume L			SP	Volume R		
0A						Mic	Vol	
0C			Finp		TFIL	Sel	lect	
0E			Fout				ST	
22	General Volume				Gene	eral Vo	lume	
26	FM Volume L			FM	Volum	ne R		
28	CD Volume L				CD	Volum	ie R	
2E	Line	e Volun	ne L		Line	Volun	ne R	

Finp = Input Filter Fout = Output Filter

TFIL = Input Filter Type

ST = Stereo / Mono Mode

Select = Input Choices (0=Microphone, 1=CD, 3=Line)

Command Summary - Sound Processor (see next page)

Command Summary - Sound Processor

<u>#</u>	Type	Command
10	Play	8 bits directly
14	Play	8 bits via DMA
91	Play	High-speed 8 bits via DMA
16	Play	2-bit compressed via DMA
17	Play	2-bit compressed via DMA with reference
74	Play	4-bit compressed via DMA
75	Play	4-bit compressed via DMA with reference
76	Play	2.6-bit compressed via DMA
77	Play	2.6-bit compressed via DMA with reference
20	Record	Direct
24		Via DMA
		High-speed 8 bits via DMA
D1		Turn on speaker connection
D3		Turn off speaker connection
D8	Speaker	Get speaker setting
40	Misc	Set sample rate
	Misc	Set block length
	Misc	Set silence block
	Misc	Stop DMA
	Misc	Continue DMA
		Get version
30	MIDI	Direct MIDI input
31	MIDI	MIDI input via interrupt
32	MIDI	Direct MIDI input with time stamp
33	MIDI	MIDI input via interrupt with time stamp
34	MIDI	Direct MIDI UART mode
35	MIDI	MIDI UART mode via interrupt
36	MIDI	Direct MIDI UART mode with time stamp
37	MIDI	MIDI UART mode via interrupt with time stamp
38	MIDI	Send MIDI code

Game Port Registers

These registers are fixed at the standard game port address of 201h.

I/O Port 201h - Game Port StatusRO

- 7 Joystick B Button 2 Status
- 6 Joystick B Button 1 Status
- 5 Joystick A Button 2 Status
- 4 Joystick A Button 1 Status
- 3 Joystick B One-Shot Status for Y-Potentiometer
- 2 Joystick B One-Shot Status for X-Potentiometer
- 1 Joystick A One-Shot Status for Y-Potentiometer
- 0 Joystick A One-Shot Status for X-Potentiometer

I/O Port 201h - Start One-Shot......WO

7-0 (Value Written is Ignored)

Function 0 Registers - PCI to ISA Bridge

All registers are located in the function 0 PCI configuration space of the VT82C686A. These registers are accessed through PCI configuration mechanism #1 via I/O address CF8/CFC.

PCI Configuration Space Header

Offset 1	-0 - Vendor ID = 1106hRO			
Offset 3	3-2 - Device ID = 0686hRO			
Offset 5	5-4 - CommandRW			
15-8	Reserved always reads 0			
7	Address / Data Stepping			
	0 Disable			
	1 Enabledefault			
6-4	Reserved always reads 0			
3	Special Cycle Enable Normally RW†, default = 0			
2	Bus Master always reads 1			
1	Memory SpaceNormally RO†, reads as 1			
0	I/O SpaceNormally RO†, reads as 1			
† If the	test bit at offset 46 bit-4 is set, access to the above			
indicate	d bits is reversed: bit-3 above becomes read only			
(reading back 1) and bits 0-1 above become read / write (with				
a defaul	•			

Offset 7-6 - StatusRWC				
15	Detected Parity Error	write one to clear		
14	Signalled System Error	always reads 0		
13	Signalled Master Abort	write one to clear		
12	Received Target Abort	write one to clear		
11	Signalled Target Abort	write one to clear		
10-9	DEVSEL# Timing	fixed at 01 (medium)		
8	Data Parity Detected	always reads 0		

	Fast Back-to-Back	always reads 0
6-0	Reserved	always reads 0
Offset 8	8 - Revision ID = nn	RO
7-0	Revision ID	

-0 Revision ID 0x VT82C686

1x VT82C686A

Offset 9 - Progr	<u>ram Interface = 00h</u>	RO
		_

Offset A -	Sub	Class	Code =	01h	•••••	•••••	 RO

Offset B -	Class	Code =	06h	RO

Offset 1	E - Header Type = 80hRO	
7-0	Header Type Code 80h (Multifunction Device)	

Offset F - BIST = 00h.....RO

Offset 2F-2C - Subsystem ID.....RO

Use offset 70-73 to change the value returned.

ISA Bus Control

Offset	40 - ISA Bus ControlRW
7	ISA Command Delay
-	0 Normal default
	1 Extra
6	Extended ISA Bus Ready
	0 Disabledefault
	1 Enable
5	ISA Slave Wait States
	0 4 Wait Statesdefault
	1 5 Wait States
4	Chipset I/O Wait States
	0 2 Wait Statesdefault
	1 4 Wait States
3	I/O Recovery Time
	0 Disabledefault
	1 Enable
2	Extend-ALE
	0 Disabledefault
	1 Enable
1	ROM Wait States
	0 1 Wait Statedefault
	1 0 Wait States
0	ROM Write
	0 Disabledefault
	1 Enable
<u>Offset</u>	41 - ISA Test ModeRW
7	Bus Refresh Arbitration (do not program) default=0
6	XRDY Test Mode (do not program)default=0
5	Port 92 Fast Reset
	0 Disabledefault
	1 Enable
4	A20G Emulation (do not program)default=0
3	Double DMA Clock
	0 Disable (DMA Clock = $\frac{1}{2}$ ISA Clock) default
	1 Enable (DMA Clock = ISA Clock)
2	SHOLD Lock During INTA (do not program) def=0
1	Refresh Request Test Mode (do not program).def=0
0	ISA Refresh
	0 Disabledefault
	1 Enable
	This hit should be set to 1 for ICA secondibility

This bit should be set to 1 for ISA compatibility.

Offset 42 - ISA Clock ControlRW	Offset 43 - ROM Decode ControlRW
7 Latch IO16# 0 Enable (recommended setting)default	Setting these bits enables the indicated address range to be included in the ROMCS# decode:
1 Disable 6 MCS16# Output 0 Disabledefault 1 Enable	7 FFFE0000h-FFFEFFFFh default=0 6 FFF80000h-FFFDFFFFh default=0 5 000E8000h-000EFFFFh default=0 4 000E0000h-000E7FFFh default=0
5 Master Request Test Mode (do not program) 0 Disabledefault 1 Enable	3 000D8000h-000DFFFFh default=0 2 000D0000h-000D7FFFh default=0 1 000C8000h-000CFFFFh default=0
4 Reserved (Do Not Program)	0 000C0000h-000C7FFFh default=0
1 BCLK selected per bits 2-0 2-0 ISA Bus Clock Select (if bit-3 = 1) 000 BCLK = PCICLK/3default 001 BCLK = PCICLK/2 010 BCLK = PCICLK/4	Offset 44 - Keyboard Controller Control RW 7 KBC Timeout Test (do not program) default = 0 6-4 Reserved (do not program) default = 0 3 Mouse Lock Enable default 0 Disable default
011 BCLK = PCICLK/6 100 BCLK = PCICLK/5 101 BCLK = PCICLK/10 110 BCLK = PCICLK/12	1 Enable 2-1 Reserved (do not program)
111 BCLK = OSC/2 Note: Procedure for ISA Clock switching: 1) Set bit 3 to 0; 2) Change value of bit 2-0; 3) Set bit 3 to 1	 7 ISA Master / DMA to PCI Line Buffer 0 Disabledefault 1 Enable 6 DMA type F Timing on Channel 7default=0

5

4

3

2

DMA type F Timing on Channel 6.....default=0

DMA type F Timing on Channel 5.....default=0

DMA type F Timing on Channel 3.....default=0

DMA type F Timing on Channel 2......default=0
DMA type F Timing on Channel 1.....default=0
DMA type F Timing on Channel 0.....default=0

ffset	46 - Miscellaneous Control 1RW	Offset 47 - Miscellaneous Control 2 RW
7	PCI Master Write Wait States	7 CPU Reset Source
	0 0 Wait Statesdefault	0 Use CPURST as CPU Reset default
	1 1 Wait State	1 Use INIT as CPU Reset
6	Gate INTR	6 PCI Delay Transaction Enable
	0 Disabledefault	0 Disabledefault
	1 Enable	1 Enable
5	Flush Line Buffer for Int or DMA IOR Cycle	The "Posted Memory Write" function is
	0 Disabledefault	automatically enabled when this bit is enabled,
	1 Enable	independent of the state of Rx46 bit-0.
4	Config Command Reg Rx04 Access (Test Only)	5 EISA 4D0/4D1 Port Enable
	0 Normal: Bits 0-1=RO, Bit 3=RWdefault	0 Disable (ignore ports 4D0-1)default
	1 Test Mode: Bits 0-1=RW, Bit-3=RO	1 Enable (ports 4D0-1 per EISA specification)
3	Reserved (do not program) default = 0	4 Interrupt Controller Shadow Register Enable
2	Reserved (no function)default = 0	0 Disabledefault
1	PCI Burst Read Interruptability	1 Enable (for test purposes, enable readback of
	0 Allow burst reads to be interrupted by ISA	interrupt controller internal functions on I/O
	master or DMAdefault	reads from ports 20-21, A0-A1, A8-A9, and
	1 Don't allow PCI burst reads to be interrupted	C8-C9) (Contact VIA Test Engineering
0	Posted Memory Write Enable	department)
	0 Disabledefault	Reserved (always program to 0)default = 0
	1 Enable	Note: Always mask this bit. This bit may read back
	The Posted Memory Write function is automatically	as either 0 or 1 but must always be
	enabled when Delay Transaction (see Rx47 bit-6	programmed with 0.
	below) is enabled, independent of the state of this bit.	2 Write Delay Transaction Time-Out Timer
		0 Disable default
		1 Enable
		1 Read Delay Transaction Time-Out Timer
		0 Disabledefault

1 Enable

Software PCI Reset write 1 to generate PCI reset

Offset 4	48 - Miscellaneous Control 3RW	<u>4C - IS</u>	A DMA/Master Memory Access Control 1 RW
7-4	Reserved always reads 0	7-0	PCI Memory Hole Bottom Address
3	Extra RTC Port 74/75 Enable		These bits correspond to HA[23:16]default=0
	0 Disabledefault		
	1 Enable	<u>4D - IS</u>	A DMA/Master Memory Access Control 2 RW
2	Integrated USB Controller Disable	7-0	PCI Memory Hole Top Address (HA[23:16])
	0 Enabledefault		These bits correspond to HA[23:16]default=0
	1 Disable	Note:	Access to the memory defined in the PCI memory
1	Integrated IDE Controller Disable	1,000	hole will not be forwarded to PCI. This function is
	0 Enabledefault		disabled if the top address is less than or equal to the
	1 Disable		bottom address.
0	512K PCI Memory Decode		ottom address.
	0 Use Rx4E[15-12] to select top of PCI memory	<u>4F-4E -</u>	· ISA DMA/Master Memory Access Control 3 RW
	1 Use contents of Rx4E[15-12] plus 512K as top	15-12	Top of PCI Memory for ISA DMA/Master accesses
	of PCI memorydefault		0000 1Mdefault
0.00	44 7077		0001 2M
	4A - IDE Interrupt RoutingRW		
7	Wait for PGNT Before Grant to ISA Master /		1111 16M
	DMA	Note:	All ISA DMA / Masters that access addresses higher
	0 Disabledefault		than the top of PCI memory will not be directed to the
	1 Enable		PCI bus.
6	Bus Select for Access to I/O Devices Below 100h	11	Forward E0000-EFFFF Accesses to PCIdef=0
	0 Access ports 00-FFh via XD busdefault	10	Forward A0000-BFFFF Accesses to PCIdef=0
	1 Access ports 00-FFh via SD bus (applies to	9	Forward 80000-9FFFF Accesses to PCIdef=1
	external devices only; internal devices such as	8	Forward 00000-7FFFF Accesses to PCIdef=1
	the mouse controller are not effected)	7	Forward DC000-DFFFF Accesses to PCIdef=0
5-4	Reserved (do not program) default = 0	6	Forward D8000-DBFFF Accesses to PCIdef=0
3-2	IDE Second Channel IRQ Routing	5	Forward D4000-D7FFF Accesses to PCIdef=0
	00 IRQ14	4	Forward D0000-D3FFF Accesses to PCIdef=0
	01 IRQ15default	3	Forward CC000-CFFFF Accesses to PCIdef=0
	10 IRQ10	2	Forward C8000-CBFFF Accesses to PCIdef=0
	11 IRQ11	1	Forward C4000-C7FFF Accesses to PCIdef=0
1-0	IDE Primary Channel IRQ Routing	0	Forward C0000-C3FFF Accesses to PCIdef=0
	00 IRQ14default	-	
	01 IRQ15		
	10 IRQ10		
	11 IRQ11		

Plug and Play Control

7-4 3-2 1-0	80 – PNP DMA Request ControlRW Reserved
Offset 5	51 - PNP IRQ Routing 1RW
7-4	PnP Routing for Parallel Port IRQ (see PnP IRQ
3-0	routing table) PnP Routing for Floppy IRQ (see PnP IRQ routing table)
Offset 5	52 - PNP IRQ Routing 2RW
7-4	PnP Routing for Serial Port 2 IRQ (see PnP IRQ
3-0	routing table) PnP Routing for Serial Port 1 IRQ (see PnP IRQ)
3-0	routing table)
Offset 5 7-4 3 2 1 0 Note:	Reserved
	55 - PNP IRQ Routing 4RW
7-4 3-0	PIRQA# Routing (see PnP IRQ routing table) Reservedalways reads 0
	·
7-4	56 - PNP IRQ Routing 5RW PIRQC# Routing (see PnP IRQ routing table)
7-4 3-0	PIRQE# Routing (see PnP IRQ routing table) PIRQB# Routing (see PnP IRQ routing table)
Offset 5	57 - PNP IRQ Routing 6RW
7-4	PIRQD# Routing (see PnP IRQ routing table)
3-0	Reserved always reads 0

PnP IRQ Routing Table

1111 IRQ15

Offset 5A – Kl	BC/RICC	ontrol	•••••	KW
Bits 7-4 of this	register are	latched from	pins SD7	-4 at power-
1 .	1/ .	.1 1		1 C

up but are read/write accessible so may be changed after power-up to change the default strap setting:

7	Keyboard RP16	latched from SD7
6	Keyboard RP15	latched from SD6
5	Keyboard RP14	latched from SD5
4	Keyboard RP13	latched from SD4
3	Audio Function Enable	

...... RO, strapped from SPKR pin V5

- 0 Disable (SDD pins function as SDD)
- 1 Enable (SDD pins function as Audio / Game)

2 **Internal RTC Enable**

- 0 Disable
- 1 Enabledefault
- **Internal PS2 Mouse Enable** 1
- 0 Disabledefault
 - 1 Enable
- **Internal KBC Enable**
 - 0 Disabledefault
 - 1 Enable

External strap option values may be set by connecting Note: the indicated external pin to a 4.7K ohm pullup (for 1) or driving it low during reset with a 7407 TTL open collector buffer (for 0) as shown in the suggested circuit below:

Figure 5. Strap Option Circuit

Offset :	5B - Internal RTC Test ModeRW
7-3	Reservedalways reads 0
2	RTC Reset Enable (do not program)default=0
1	RTC SRAM Access Enable
	0 Disabledefault
	1 Enable
	This bit is set if the internal RTC is disabled but it is
	desired to still be able to access the internal RTC
	SRAM via ports 74-75. If the internal RTC is
	enabled, setting this bit does nothing (the internal
	RTC SRAM should be accessed at either ports 70/71
	or 72/73.
0	RTC Test Mode Enable (do not program) .default=0
0664	EC DMA Control
	5C - DMA ControlRW
7	Reservedalways reads 0
6	Passive Release
	0 Disabledefault
_	1 Enable
5	Internal Passive Release
	0 Disabledefault
	1 Enable
4	Dummy PREQ
	0 Disabledefault
_	1 Enable
3	Reservedalways reads 0
2	APIC Connection
	0 APIC on SD Busdefault
	1 APIC on XD Bus
1	Reserved (Do Not Program)default = 0
0	DMA Line Buffer Disable
	0 DMA cycles can be to/from line buffer def
	1 Disable DMA Line Buffer

Distributed DMA / Serial IRQ Control

Offset (61-60 - Distributed DMA Ch 0 Base / EnableRW
15-4	Channel 0 Base Address Bits 15-4 default = 0
3	Channel 0 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset (63-62 - Distributed DMA Ch 1 Base / EnableRW
15-4	Channel 1 Base Address Bits 15-4 default = 0
3	Channel 1 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset (65-64 - Distributed DMA Ch 2 Base / EnableRW
15-4	Channel 2 Base Address Bits 15-4 default = 0
3	Channel 2 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset (67-66 - Distributed DMA Ch 3 Base / EnableRW
Offset (
15-4	Channel 3 Base Address Bits 15-4 default = 0
15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable
15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable
15-4 3 2-0	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable
15-4 3 2-0	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW
15-4 3 2-0 Offset (Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0
15-4 3 2-0 Offset 0 15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW
15-4 3 2-0 Offset 0 15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable
15-4 3 2-0 Offset 0 15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable 0 0 Disable default
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable default 0 Disable default 1 Enable default
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 Serial IRQ Enable default 0 Disable default 1 Enable Serial IRQ Mode
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable RW Reserved always reads 0 Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default
15-4 3 2-0 Offset 0 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable RW Reserved always reads 0 Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode default
15-4 3 2-0 Offset 0 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable RW Reserved always reads 0 Serial IRQ Enable 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode Serial IRQ Start-Frame Width
15-4 3 2-0 Offset 0 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable RW Reserved always reads 0 Serial IRQ Enable 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode Serial IRQ Start-Frame Width 00 4 PCI Clocks default

The frame size is fixed at 21 PCI clocks.

Offset 6	6B-6A - Distributed DMA Ch 5 Base / Enable RW
15-4	Channel 5 Base Address Bits 15-4 default = 0
3	Channel 5 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset 6	6D-6C - Distributed DMA Ch 6 Base / Enable RW
15-4	Channel 6 Base Address Bits 15-4 default = 0
3	Channel 6 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset 6	6F-6E - Distributed DMA Ch 7 Base / Enable RW
15-4	Channel 7 Base Address Bits 15-4 default = 0
3	Channel 7 Enable
	0 Disabledefault
	1 Enable
2-0	Reservedalways reads 0

Miscellaneous / General Purpose I/O

Offset '	73-70 - Subsystem ID WO			
31-0	Subsystem ID / Vendor ID always reads 0			
	Contents may be read at offset 2C.			
Offset '	74 – GPIO Control 1RW	Offset	76 - GPIO Control 3	RW
7	APIC Enable	7	Over-Current (OC) Input	
,	0 Disabledefault	•	0 Disable	default
	1 Enable		1 Enable	
6	Reserved	6	OC[3:0] From SD[3:0] By Scan	
5	GPIOD Direction (Pin U8)	Ü	0 Disable	default
·	0 Inputdefault		1 Enable	
	1 Output	5	GPO14 / GPO15 Enable (Pins E1	2 / D12)
4	GPIOC Direction (Pin V14)		0 Pins used for IRTX and IRR	
-	0 Inputdefault		1 Pins used for GPO14 and GF	
	1 Output	4	PCS0# Enable (Pin T5)	
3	GPIOB Direction (Pin U12)	-	Bit-1 = 0: pin is defined as XDIR (this bit is ignored)
	0 Inputdefault		Bit-1 = 1: pin is defined per this bit	_
	1 Output		0 Pin is defined as GPO12	
2	GPIOA Direction (Pin T14)		1 Pin is defined as PCS0#	,,.
_	0 Inputdefault	3	MCCS# Enable (Pin U5)	
	1 Output		Bit-1 = 0: pin is defined as SOE# ($^{\circ}$	this bit is ignored)
1	THRM Enable (Pin T11)		Bit-1 = 1: pin is defined per this bit	
	0 PME#default		0 Pin is defined as GPO13	
	1 THRM		1 Pin is defined as MCCS#	
	Note that pin T11 is also used as GPI5 whose value is	2	CHAS Enable (Pin V14)	
	reflected in Function 4 Rx48[5].		0 Pin is defined as GPIOC	default
0	GPI0 / IOCHCK# Select		1 Pin is defined as CHAS	
	0 GPI0default	1	GPO12 / GPO13 Enable (Pins T5	/ U5)
	1 IOCHCK#		0 Pins are defined as XDIR and	
			1 Pins are defined per bits 3 an	d 4:
Offset '	75 – GPIO Control 2RW		Bit- $4 = 0$: Pin T5 is defined	as GPO12
7	GPO7 Enable (Pin T7)		Bit- $4 = 1$: Pin T5 is defined	as PCS0#
	0 Pin defined as SLP#default		Bit- $3 = 0$: Pin U5 is defined	as GPO13
	1 Pin defined as GPO7		Bit- $3 = 1$: Pin U5 is defined	as MCCS#
6	GPO6 Enable (Pin V10)	0	GPOWE# (GPO[23-16]) Enable (Pin T14)
	0 Pin defined as SUSST1#default		0 Pin is defined as GPIOA	default
	1 Pin defined as GPO6		1 Pin is defined as GPOWE# (Rx74[2] also must
5	GPO5 Enable (Pin V12)		be set to 1)	
	0 Pin defined as PCISTP#default	O.00 4	TT CDIOC 4 14C 4 1	DIV
	1 Pin defined as GPO5		77 – GPIO Control 4 Control	
4	GPO4 Enable (Pin Y12)	7-1	Reserved	always reads 0
	0 Pin defined as CPUSTP#default	0	GPO13 Enable (Pin U5)	
	1 Pin defined as GPO4		O Pin defined as SOE#	default
3	FDC External IRQ / DRQ Interface		1 Pin defined as GPO13	
	0 Enabledefault			
	1 Disable			
2	GPO2 Enable (Pin W9)	Offset	79-78 – Programmable Chip Select	Control RW
	0 Pin defined as SUSB#default		PCS0# I/O Port Address [15-0]	<u> </u>
	1 Pin defined as GPO2	13-0	r CSU# I/O FOR Address [15-0]	
1	GPO1 Enable (Pin V9)	Offset	80 – Programmable Chip Select Ma	ask RW
	O Pin defined as SUSA#default		Reserved	
_	1 Pin defined as GPO1	3-0	PCS0# I/O Port Address Mask [3	-01
0	Positive Decode			~1
	0 Subtractive Decodedefault			
	1 Positive Decode			

-62-

_		Oliset		
7	On-Board I/O Port Positive Decoding	7	COM Port B Positive Decoding	
	0 Disabledefault		0 Disable	defaul
	1 Enable		1 Enable	
6	Microsoft-Sound System I/O Port Positive	6-4	COM-Port B Decode Range	
	Decoding		000 3F8h-3FFh (COM1)	defaul
	0 Disabledefault		001 2F8h-2FFh (COM2)	
	1 Enable		010 220h-227h	
5-4	Microsoft-Sound System I/O Decode Range		011 228h-22Fh	
	00 0530h-0537hdefault		100 238h-23Fh	
	01 0604h-060Bh		101 2E8h-2EFh (COM4)	
	10 0E80-0E87h		110 338h-33Fh	
	11 0F40h-0F47h		111 3E8h-3EFh (COM3)	
3	APIC Positive Decoding	3	COM Port A Positive Decoding	
3	0 Disabledefault	3	0 Disable	default
	1 Enable		1 Enable	deraun
2		2-0		
2	BIOS ROM Positive Decoding 0 Disabledefault	2-0	COM-Port A Decode Range 000 3F8h-3FFh (COM1)	dafaul
	1 Enable			deraur
4			001 2F8h-2FFh (COM2)	
1	Reserved always reads 0		010 220h-227h	
0	PCS0 Positive Decoding		011 228h-22Fh	
	0 Disabledefault		100 238h-23Fh	
	1 Enable		101 2E8h-2EFh (COM4)	
			110 338h-33Fh	
			111 3E8h-3EFh (COM3)	
O 66 4 4				
Offset a	82 – ISA Positive Decoding Control 2RW			
	82 – ISA Positive Decoding Control 2RW			
7	FDC Positive Decoding	Offset	84 – ISA Positive Decoding Control 4	RW
	FDC Positive Decoding 0 Disabledefault		84 – ISA Positive Decoding Control 4	
7	FDC Positive Decoding 0 Disabledefault 1 Enable	7-4	Reserved	
	FDC Positive Decoding 0 Disabledefault 1 Enable LPT Positive Decoding		ReservedFDC Decoding Range	always reads (
7	FDC Positive Decoding 0 Disable	7-4	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable default 1 Enable LPT Positive Decoding 0 Disable default 1 Enable	7-4 3	Reserved	always reads (
7	FDC Positive Decoding 0 Disable	7-4	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (
7 6	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h	always reads (
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary	always reads (
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h	always reads (
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h 10 260h-26Fh, 270h-273h	always reads (
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h 10 260h-26Fh, 270h-273h	always reads (
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h 10 260h-26Fh, 270h-273h	always reads (
7 6 5-4	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h 10 260h-26Fh, 270h-273h	always reads (
7 6 5-4 3	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h 10 260h-26Fh, 270h-273h	always reads (
7 6 5-4 3	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h 10 260h-26Fh, 270h-273h	always reads (
7 6 5-4 3	FDC Positive Decoding 0 Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h 10 260h-26Fh, 270h-273h	always reads (
7 6 5-4 3	## Proceeding O Disable	7-4 3	Reserved FDC Decoding Range 0 Primary 1 Secondary Sound Blaster Positive Decoding 0 Disable 1 Enable Sound Blaster Decode Range 00 220h-22Fh, 230h-233h 01 240h-24Fh, 250h-253h 10 260h-26Fh, 270h-273h	always reads (

Offset	85 - Extended Function Enable	RW
7-5	Reserved	always reads (
4	Function 3 USB Ports 2-3	·
	0 Enable	defaul
	1 Disable	
3	Function 6 Modem / Audio	
	0 Enable	defaul
	1 Disable	
2	Function 5 Audio	
	0 Enable	defaul
	1 Disable	
1	Super-I/O Configuration	
	0 Disable	defaul
	1 Enable	
0	Super-I/O	
	0 Disable	defaul
	1 Enable	

Offset	86 – PNP IRQ/DRQ Test 1 (Do Not Program) RW
Offset	87 – PNP IRQ/DRQ Test 2 (Do Not Program) RW
Offset	88 – PLL Test (Do Not Program)RW
Offset	89 – PLL ControlRW
7-4	Reserved always reads 0
3-2	PLL PCLK Input Delay Select
1-0	PLL CLK66 Feedback Delay Select

Function 1 Registers - Enhanced IDE Controller

This Enhanced IDE controller interface is fully compatible with the SFF 8038i v.1.0 specification. There are two sets of software accessible registers -- PCI configuration registers and Bus Master IDE I/O registers. The PCI configuration registers are located in the function 1 PCI configuration space of the VT82C686A. The Bus Master IDE I/O registers are defined in the SFF8038i v1.0 specification.

PCI Configuration Space Header

Offset 1-0 - Vendor ID (1106h=VIA)RO		
Offset 3	-2 - Device ID (0571h=IDE Controller)RO	
Offset 5	-4 - CommandRW	
15-10	Reserved always reads 0	
9	Fast Back to Back Cycles default = 0 (disabled)	
8	SERR# Enable default = 0 (disabled)	
7	Address Stepping fixed at 1 (enabled)	
	A value of 1 provides additional address decode time	
	to IDE devices.	
6	Parity Error Response default = 0 (disabled)	
5	VGA Palette Snoopfixed at 0 (disabled)	
4	Memory Write & Invalidatefixed at 0 (disabled)	
3	Special Cycles fixed at 0 (disabled)	
2	Bus Master default = 0 (disabled)	
	S/G operation can be issued only when the "Bus	
	Master" bit is enabled.	
1	Memory Spacefixed at 0 (disabled)	
0	I/O Space default = 0 (disabled)	
	When the "I/O Space" bit is disabled, the device will	
	not respond to any I/O addresses for both compatible	
	and native mode.	
Offset 7	'-6 - StatusRWC	
15	Detected Parity Error default=0	
14	Signalled System Errordefault=0	
13	Received Master Abortdefault=0	
12	Received Target Abortdefault=0	
11	Signalled Target AbortFixed at 0	
10-9	DEVSEL# Timing default = 01 (medium)	

Offset 8 - Revision ID (06)RO
0-7 Revision Code for IDE Controller Logic Block

Data Parity Detected......default=0

Fast Back to BackFixed at 1

..... always reads 0

	Aaster IDE Capability		
	Reservedalways reads 0		
3 Programmable Indicator - Secondary fixed			
	upports both modes (1	nay be set to eithe	er mode by
	vriting bit-2)		
2	Channel Operating Mo		
		ode (fixed addressin	
		e (flexible addressir	
	Programmable Indicat		
	upports both modes (r	nay be set to eithe	er mode by
W	vriting bit-0)		
0 (Channel Operating Mo		
		ode (fixed addressir	
	1 Native PCI Mode	e (flexible addressir	ng) de
ompatibi	ility Mode (fixed IRQs	and I/O addresses)	:
	Command Block		<u>-</u>
Channel	Registers	Registers	IRQ
Pri	1F0-1F7	3F6	14
Sec	170-177	376	15
SCC	170-177	370	13
ative PC	I Mode (registers are p	rogrammable in I/C) space)
	Command Block	Control Block	
<u>Channel</u>	<u>Registers</u>	<u>Registers</u>	
Pri	BA @offset 10h	BA @offset 14h	
Sec	BA @offset 18h	BA @offset 1Ch	
ontrol re	register blocks are 8 b gisters are 4 bytes of I/	O space (only byte	
ffset A -	Sub Class Code (01h	=IDE Controller)	R(
ffset B -	Base Class Code (01)	n=Mass Storage C	trlr) R(
ffset C -	- Cache Line Size (001	h)	R(
ffset D -	Latency Timer (Defa	nult=0)	RV
ffset E -	Header Type (00h)		R(
	BIST (00h)		R(
11500 12 -	· -		

Offset 9 - Programming InterfaceRW

Reserved

8 7

6-0

Offset 13-10 - Pri Data / Command Base AddressRW		
Specifies an 8 byte I/O address space.		
31-16 15-3 2-0	Reservedalways read 0Port Addressdefault=01F0hFixed at 001bfixed	
Offset 1	7-14 - Pri Control / Status Base AddressRW	
	s a 4 byte I/O address space of which only the third ctive (i.e., 3F6h for the default base address of 3F4h).	
31-16 15-2 1-0	Reservedalways read 0Port Addressdefault=03F4hFixed at 01bfixed	
	B-18 - Sec Data / Command Base AddressRW s an 8 byte I/O address space.	
	Reservedalways read 0Port Addressdefault=0170hFixed at 001bfixed	
Specifie	F-1C - Sec Control / Status Base AddressRW s a 4 byte I/O address space of which only the third active (i.e., 376h for the default base address of 374h).	
	Reservedalways read 0Port Addressdefault=0374hFixed at 01bfixed	
Specifie	s a 16 byte I/O address space compliant with the SFF-ev 1.0 specification.	
31-16 15-4 3-0	Reservedalways read 0Port Addressdefault=CC0hFixed at 0001bfixed	

Offset 3	3C - Interrupt Line (0Eh)RW
Offset 3	3D - Interrupt Pin (00h)RO
7-0	Interrupt Routing Mode 00h Legacy mode interrupt routingdefault 01h Native mode interrupt routing
Offset 3	3E - Min Gnt (00h)RO
Offset (3F - Max Latency (00h)RO

IDE-Controller-Specific Configuration Registers

7-4	Reserved always reads 0)
3-2	Reserved (Do Not Program) R/W, default = 0)
1	Primary Channel Enable default = 0 (disabled))
0	Secondary Channel Enable default = 0 (disabled))
Offset 4	41 - IDE ConfigurationRW	′
7	Primary IDE Read Prefetch Buffer	
	0 Disabledefault	t
	1 Enable	
6	Primary IDE Post Write Buffer	
	0 Disabledefault	
	1 Enable	
5	Secondary IDE Read Prefetch Buffer	
	0 Disabledefault	
	1 Enable	
4	Secondary IDE Post Write Buffer	
	0 Disabledefault	
	1 Enable	
3	SERR# Response	
	0 Disabledefault	t
	1 Enable	
2	Reserved (Do Not Change)default=1	
1	Reserved (Do Not Change) default=1	
0	PERR# Response	
	0 Disabledefault	ţ
	1 Enable	
	42 - Reserved (Do Not Program)RW	

Offset 4	43 - FII	FO Config	gurationRW
7	Hold	PCI Requ	iest Until DACK Release
	0	Disabled	default
	1	Enabled	
6-4	FIFO	Configur	ation Between the Two Channels
		Primary	<u>Secondary</u>
	00x	32	0default
	010	24	8
	011	16	16
	100	16	16
	101	8	24
	11x	0	32
3-2	Thres	shold for l	Primary Channel
	00	0	
	01	3/4	
	10	1/2	default
	11	1/4	
1-0	Thres	shold for S	Secondary Channel
	00	0	
	01	3/4	
	10	1/2	default
	11	1/4	

<u>Offset</u>	44 - Miscellaneous Control 1RW	<u>Offset</u>	46 - Miscellaneous Control 3RW
7	Reserved always reads 0	7	Primary Channel Read DMA FIFO Flush
6	Master Read Cycle IRDY# Wait States		1 = Enable FIFO flush for read DMA when interrupt
	0 0 wait states		asserts primary channeldefault=1 (enabled)
	1 1 wait statedefault	6	Secondary Channel Read DMA FIFO Flush
5	Master Write Cycle IRDY# Wait States		1 = Enable FIFO flush for Read DMA when interrupt
	0 0 wait states		asserts secondary channelDefault=1 (enabled)
	1 1 wait statedefault	5	Primary Channel End-of-Sector FIFO Flush
4	Reserved always reads 0		1 = Enable FIFO flush at the end of each sector for
3	Bus Master IDE Status Register Read Retry		the primary channelDefault=0 (disabled)
_	Retry bus master IDE status register read when	4	Secondary Channel End-of-Sector FIFO Flush
	master write operation for DMA read is not complete		1 = Enable FIFO flush at the end of each sector for
	0 Disabled		the secondary channel Default=0 (disabled)
	1 Enableddefault	3-2	Reserved always reads 0
2-1	Reserved always reads 0	1-0	Max DRDY Pulse Width
0	UltraDMA Host Must Wait for First Strobe		Maximum DRDY# pulse width after the cycle count.
	Before Termination		Command will deassert in spite of DRDY# status to
	0 Enableddefault		avoid system ready hang.
	1 Disabled		00 No limitationdefault
			01 64 PCI clocks
Offset	45 - Miscellaneous Control 2RW		10 128 PCI clocks
7	Reserved always reads 0		11 192 PCI clocks
6	Interrupt Steering Swap		
	0 Don't swap channel interruptsdefault		
	1 Swap interrupts between the two channels		
5-2	Reserved always reads 0		
1	Secondary Channel Threshold Enable		
	0 Disable (data transfer starts immediately if		
	FIFO is not empty)		
	1 Enable (data transfer will not start until the		
	FIFO is filled to the threshold set in bits 1-0 of		
	Rx43)default		
0	Primary Channel Threshold Enable		
	0 Disable (data transfer starts immediately if		
	FIFO is not empty)		
	1 Enable (data transfer will not start until the		
	FIFO is filled to the threshold set in bits 3-2 of		

Rx43)default

Offset 4B-48 - Drive Timing ControlRW	Offset 53-50 - UltraDMA Extended Timing Control RW
The following fields define the Active Pulse Width and	31 Pri Drive 0 UltraDMA-Mode Enable Method
Recovery Time for the IDE DIOR# and DIOW# signals:	0 Enable by using "Set Feature" command def
31-28 Primary Drive 0 Active Pulse Width def=1010b	1 Enable by setting bit-30 of this register
27-24 Primary Drive 0 Recovery Time def=1000b	30 Pri Drive 0 UltraDMA-Mode Enable
23-20 Primary Drive 1 Active Pulse Width def=1010b	0 Disabledefault
19-16 Primary Drive 1 Recovery Time	1 Enable UltraDMA-Mode Operation
15-12 Secondary Drive 0 Active Pulse Width def=1010b	29 Pri Drive 0 Transfer Mode
11-8 Secondary Drive 0 Recovery Time def=1000b	0 DMA or PIO Modedefault
7-4 Secondary Drive 1 Active Pulse Width def=1010b	1 UltraDMA Mode
3-0 Secondary Drive 1 Recovery Time def=1000b	28-27 Reserved always reads 0
· ·	26-24 Pri Drive 0 Cycle Time (T = 30nsec @33MHz)
The actual value for each field is the encoded value in the field	000 2T
plus one and indicates the number of PCI clocks.	001 3T
0.00	010 4T
Offset 4C - Address Setup TimeRW	011 5Tdefault (rev A-E)
7-6 Primary Drive 0 Address Setup Time	100 6T
5-4 Primary Drive 1 Address Setup Time	101 7T
3-2 Secondary Drive 0 Address Setup Time	110 8T
1-0 Secondary Drive 1 Address Setup Time	111 9Tdefault (rev H)
For each field above:	23 Pri Drive 1 UltraDMA-Mode Enable Method
00 1T	22 Pri Drive 1 UltraDMA-Mode Enable
01 2T	21 Pri Drive 1 Transfer Mode
10 3T	20 Reservedalways reads 0
11 4Tdefault	19 Pri Clock Source
Offset 4E - Secondary Non-1F0 Port Access TimingRW	0 33 MHzdefault
7-4 DIOR#/DIOW# Active Pulse Width def=1111b	1 66 MHz
3-0 DIOR#/DIOW# Recovery Time def=1111b	18-16 Pri Drive 1 Cycle Time
The actual value for each field is the encoded value in	15 Sec Drive 0 UltraDMA-Mode Enable Method
the field plus one and indicates the number of PCI	14 Sec Drive 0 UltraDMA-Mode Enable
clocks.	13 Sec Drive 0 Transfer Mode
	12-11 Reserved always reads 0
Offset 4F - Primary Non-1F0 Port Access Timing`RW	10-8 Sec Drive 0 Cycle Time
7-4 DIOR#/DIOW# Active Pulse Width def=1111b	7 Sec Drive 1 UltraDMA-Mode Enable Method
3-0 DIOR#/DIOW# Recovery Time def=1111b	6 Sec Drive 1 UltraDMA-Mode Enable
The actual value for each field is the encoded value in	5 Sec Drive 1 Transfer Mode
the field plus one and indicates the number of PCI	4 Reservedalways reads 0
clocks.	3 Sec Clock Source
	0 33 MHzdefault
	1 66 MHz
	2-0 Sec Drive 1 Cycle Time

Each byte defines UltraDMA operation for the indicated drive. The bit definitions are the same within each byte.

Offset 5	54 – UltraDMA FIFO ControlRW
7-4	Reserved (Do Not Program)RW, default=0
3	Grant ISA While Sharing Bus with SA & IDE in
	IDLE State
	0 Enabledefault
	1 Disable
2	Change Drive to Clear All FIFO & Internal States
	0 Disabled
	1 Enableddefault
1	Add Dummy FIFO Push After End of Transfer
	0 Enabled
	1 Disableddefault
	This bit is normally set to 0 for effective handling of
	transfer lengths that are not doubleword multiples
0	Complete DMA Cycle with Transfer Size Less
	Than FIFO Size
	0 Enableddefault
	1 Disabled

Offset 6	61-60 - Primary Sector Size	RW
	Reserved Number of Bytes Per Sector	•
Offset 6	69-68 - Secondary Sector Size	eRW
	Reserved Number of Bytes Per Sector	•

Offset	<u>70 – Primary IDE StatusRW</u>	<u>Offset</u>	<u> 78 – Secondary IDE Status RW</u>
7	Interrupt Status	7	Interrupt Status
6	Prefetch Buffer Status	6	Prefetch Buffer Status
5	Post Write Buffer Status	5	Post Write Buffer Status
4	DMA Read Prefetch Status	4	DMA Read Prefetch Status
3	DMA Write Prefetch Status	3	DMA Write Prefetch Status
2	S/G Operation Complete	2	S/G Operation Complete
1-0	Reserved always reads 0	1-0	Reservedalways reads 0
Offset '	71 – Primary Interrupt ControlRW	Offset	79 - Secondary Interrupt ControlRW
7-1	Reserved always reads 0	7-1	Reservedalways reads 0
0	Flush FIFO Before Generating IDE Interrupt	0	Flush FIFO Before Generating IDE Interrupt
	0 Desabledefault		0 Desabledefault
	1 Enable		1 Enable
Offset	74 – Primary IDE Command 1RW	Offset	7C – Secondary IDE Command 1RW
7	Reload Sector Size After Last Command Register	7	Reload Sector Size After Last Command Register
	Write		Write
6-0	Reserved always reads 0	6-0	Reservedalways reads 0
Offset	75 – Primary IDE Command 2RW	Offset	7D – Secondary IDE Command 2RW
7	Set Controller to Perform PIO Mode Data Port	7	Set Controller to Perform PIO Mode Data Port
	Prefetch		Prefetch
6	Set Controller to Perform PIO Mode Data Port	6	Set Controller to Perform PIO Mode Data Port
	Buffer Write		Buffer Write
5	Set Controller to Perform DMA Mode Read	5	Set Controller to Perform DMA Mode Read
	Pipeline Operation		Pipeline Operation
4	Set Controller to Perform DMA Mode Write	4	Set Controller to Perform DMA Mode Write
	Pipeline Operation		Pipeline Operation
3	Stop S/G Bus Master	3	Stop S/G Bus Master
2-0	Reserved always reads 0	2-0	Reservedalways reads (

Offset 83-80 – Primary S/G Descriptor AddressRW
Offset 8B-88 – Secondary S/G Descriptor AddressRW
Offset 99-98 – Configuration I/O SpaceRW
Specifies an 8-byte I/O space for index and data ports.

IDE I/O Registers

These registers are compliant with the SFF $8038I\ v1.0$ standard. Refer to the SFF $8038I\ v1.0$ specification for further details.

I/O Offset 0 - Primary Channel Command

I/O Offset 2 - Primary Channel Status

I/O Offset 4-7 - Primary Channel PRD Table Address

I/O Offset 8 - Secondary Channel Command

I/O Offset A - Secondary Channel Status

I/O Offset C-F - Secondary Channel PRD Table Address

Function 2 Registers - USB Controller Ports 0-1

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 2 PCI configuration space of the VT82C686A. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 0-1 (see function 3 for ports 2-3).

PCI Configuration Space Header

Offset 1	<u>-0 - Vendor IDRO</u>
0-7	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device IDRO
0-7	Device ID (3038h = VT82C686A USB Controller)
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Address Stepping default=0 (disabled)
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Spacedefault=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved always reads 0

Offset 8	3 - Revision ID (nnh)RO
7-0	Silicon Revision Code (0 indicates first silicon)
Offset 9	O - Programming Interface (00h)RO
Offset A	A - Sub Class Code (03h=USB Controller)RO
Offset I	B - Base Class Code (0Ch=Serial Bus Controller)RO
Offset (C – Cache Line Size (00h)RO
Offset I	O - Latency TimerRW
7-0	Timer Value default = 16h
Offset I	E - Header Type (00h)RO
Offset I	F - BIST (00h)RO
Offset 2	23-20 - USB I/O Register Base AddressRW
31-16	Reserved always reads 0
15-5	USB I/O Register Base Address. Port Address for
	the base of the 32-byte USB I/O Register block,
	corresponding to AD[15:5]
4-0	00001b
Offset 3	BC - Interrupt Line (00h)RW
7-4	Reserved always reads 0
3-0	USB Interrupt Routing default = 16h
	0000 Disableddefault
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 Disabled
Offset 3	BD - Interrupt Pin (04h)RO

USB-Specific Configuration Registers

Offset	<u>40 - M</u>	iscellaneous Control 1RW
7	PCI 1	Memory Command Option
	0	Support Memory-Read-Line, Memory-Read-
		Multiple, & Memory-Write-&-Invalidate def
	1	Only support Mem Read, Mem Write Cmds
6	Babb	ole Option
	0	Automatically disable babbled port when EOF
		babble occursdefault
	1	Don't disable babbled port
5	PCI :	Parity Check Option
	0	Disable PERR# generationdefault
	1	Enable parity check and PERR# generation
4	Fran	ne Interval Select
	0	1 ms framedefault
	1	0.1 ms frame
3	USB	Data Length Option
	0	Support TD length up to 1280default
	1	Support TD length up to 1023
2	USB	Power Management
	0	Disable USB power managementdefault
	1	Enable USB power management
1	$\mathbf{DM}A$	A Option
	0	8 DW burst access with better FIFO latency def
	1	16 DW burst access (original performance)
0		Wait States
	0	Zero waitdefault
	1	One wait

Offset	41 - M	iscellaneous Control 2RW
7	USB	1.1 Improvement for EOP
	0	Enabledefault
	1	Disable
6	Patc	h Read / Resume Issue
	0	Enabledefault
	1	Disable
5	Patc	h 16 Bit-time EOP
	0	Enabledefault
	1	Disable
4	Hold	PCI Request for Successive Accesses
	0	Disabledefault
	1	Enable
3	Fran	ne Counter Test Mode
	0	Disabledefault
	1	Enable
2	Trap	Option
	0	Set trap 60/64 status bits only when trap 60/64
		enable bits are set default
	1	Set trap 60/64 status bits without checking
		enable bits
1	A20g	gate Pass Through Option
	0	Pass through A20GATE command sequence
		defined in UHCIdefault
	1	Don't pass through Write I/O port 64 (ff)
0	USB	IRQ Test Mode
	0	Normal Operationdefault
	1	Generate USB IRQ

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Function 3 Registers - USB Controller Ports 2-3

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 3 PCI configuration space of the VT82C686A. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 2-3 (see function 2 for ports 0-1).

PCI Configuration Space Header

Offset 1	1-0 - Vendor IDRO
0-7	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device IDRO
0-7	Device ID (3038h = VT82C686A USB Controller)
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Address Stepping default=0 (disabled)
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Space default=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved always reads 0

7-0	Silicon Revision Code (0 indicates first silicon)
Offset 9	O - Programming Interface (00h)RO
	A - Sub Class Code (03h=USB Controller)RO
Offset I	3 - Base Class Code (0Ch=Serial Bus Controller)RO
Offset (C – Cache Line Size (00h)RO
Offset I	O - Latency TimerRW
7-0	Timer Value default = 16h
Offset I	E - Header Type (00h)RO
Offset 1	F - BIST (00h)RO
	Reserved
Offset 3	BC - Interrupt Line (00h)RW
7-4	Reserved always reads 0
3-0	TTGT T
2 0	USB Interrupt Routing
2 0	0000 Disableddefault
2 0	
3 0	0000 Disabled
	0000 Disabled
	0000 Disabled

Offset 3D - Interrupt Pin (04h).....RO

USB-Specific Configuration Registers

Offset	40 - M	iscellaneous Control 1RW	
7	PCI 1	Memory Command Option	
	0	Support Memory-Read-Line, Memory-Read-	
		Multiple, & Memory-Write-&-Invalidate def	
	1	Only support Mem Read, Mem Write Cmds	
6	Babb	ole Option	
	0	Automatically disable babbled port when EOF	
		babble occursdefault	
	1	Don't disable babbled port	
5	PCI 1	Parity Check Option	
	0	Disable PERR# generationdefault	
	1	Enable parity check and PERR# generation	
4	Fran	ne Interval Select	
	0	1 ms framedefault	
	1	0.1 ms frame	
3	USB	Data Length Option	
	0	Support TD length up to 1280default	
	1	Support TD length up to 1023	
2	USB	Power Management	
	0	Disable USB power managementdefault	
	1	Enable USB power management	
1	$\mathbf{DM}A$	A Option	
	0	8 DW burst access with better FIFO latency def	
	1	16 DW burst access (original performance)	
0	PCI '	Wait States	
	0	Zero waitdefault	
	1	One wait	

41 - M	iscellaneous Control 2RW	
USB	1.1 Improvement for EOP	
0	Enable default	
1	Disable	
Patcl	n Read / Resume Issue	
0	Enabledefault	
1	Disable	
Patcl	n 16 Bit-time EOP	
0	Enabledefault	
1	Disable	
Hold	PCI Request for Successive Accesses	
0	Disabledefault	
1	Enable	
Fran	ne Counter Test Mode	
0	Disabledefault	
1	Enable	
Trap	Option	
0	Set trap 60/64 status bits only when trap 60/64	
	enable bits are set default	
1	Set trap 60/64 status bits without checking	
	enable bits	
A20g	ate Pass Through Option	
0	Pass through A20GATE command sequence	
	defined in UHCIdefault	
1	Don't pass through Write I/O port 64 (ff)	
USB	IRQ Test Mode	
0	Normal Operationdefault	
1	Generate USB IRQ	
	USB 0 1 Patcl 0 1 Patcl 0 1 Hold 0 1 Fram 0 1 Trap 0 1 A20g 0 1 USB 0	

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Function 4 Regs - Power Management, SMBus and HWM

This section describes the ACPI (Advanced Configuration and Power Interface) Power Management system of the VT82C686A which includes a System Management Bus (SMBus) interface controller and Hardware Monitoring (HWM) subsystem. The power management system of the VT82C686A supports both ACPI and legacy power management functions and is compatible with the APM v1.2 and ACPI v1.0 specifications.

PCI Configuration Space Header

ogies)
RO
(Igmt)
RW
eads 0
d at 0
RWC
eads 0
fixed)
eads 0
eads 1

7-0 Silicon Revision Code
Offset 9 - Programming Interface (00h)RO
The value returned by this register may be changed by writing
the desired value to PCI Configuration Function 4 offset 61h.
Offset A - Sub Class Code (00h)RO
The value returned by this register may be changed by writing
the desired value to PCI Configuration Function 4 offset 62h.
Offset B - Base Class Code (00h)RO
The value returned by this register may be changed by writing
the desired value to PCI Configuration Function 4 offset 63h.
Offset 0D - Latency TimerRW
7-0 Timer Value default = 0
Offset 0E - Header Type (00h)RO

Offset 8 - Revision ID (nnh).....RO

Power Management-Specific PCI Configuration Registers

Offset	40 – General Configuration 0RW	Offset 4	11 - General Configuration 1RW
7	Thermal Alarm Source Select	7	I/O Enable for ACPI I/O Base
	0 From pin T11 (Function 0 Rx74[1] must be set		0 Disable access to ACPI I/O block default
	to define the pin as THRM#)default		1 Allow access to Power Management I/O
	1 From any of the three internal temperature		Register Block (see offset 4B-48 to set the
	sensing circuits (see Rx43 and Rx44 of		base address for this register block). The
	Hardware Monitoring configuration space)		definitions of the registers in the Power
6	Sleep Button		Management I/O Register Block are included
	0 Disabledefault		later in this document, following the Power
	1 Sleep Button is on IRQ6 pin (pin G1)		Management Subsystem overview.
5	Debounce LID and PWRBTN# Inputs for 200us	6	ACPI Timer Reset
	0 Disabledefault		0 Normal Timer Operationdefault
	1 Enable		1 Reset Timer
4	Reserved always reads 0	5-4	PMU Timer Test Mode (Do Not Program) def = 0
3	Microsoft Sound Monitor in Audio Access	3	ACPI Timer Count Select
	0 Disabledefault		0 24-bit Timerdefault
	1 Enable		1 32-bit Timer
2	Game Port Monitor in Audio Access	2	RTC Enable Signal Gated with PSON (SUSC#) in
	0 Disabledefault		Soft-Off Mode
	1 Enable		0 Disabledefault
1	SoundBlaster Monitor in Audio Access		1 Enable
	0 Disabledefault	1	Clock Throttling Clock Selection
	1 Enable		0 32 usec (512 usec cycle time)default
0	MIDI Monitor in Audio Access		1 1 msec (16 msec cycle time)
	0 Disabledefault	0	DEVSEL# Test Mode (Do Not Program)def = 0
	1 Enable		

Offset	42 - ACPI Interrupt SelectRW	Offset 4	45-44 - Primary Interrupt Channel (0000h) RW
7	ATX / AT Power IndicatorRO	15	1/0 = Ena/Disa IRQ15 as Primary Intrpt Channel
	0 ATX	14	1/0 = Ena/Disa IRQ14 as Primary Intrpt Channel
	1 AT	13	1/0 = Ena/Disa IRQ13 as Primary Intrpt Channel
6	SUSC# StateRO	12	1/0 = Ena/Disa IRQ12 as Primary Intrpt Channel
5	Reserved always reads 0	11	1/0 = Ena/Disa IRQ11 as Primary Intrpt Channel
4	SUSC# AC-Power-On Default ValueRO	10	1/0 = Ena/Disa IRQ10 as Primary Intrpt Channel
	This bit is written at RTC Index 0A bit-7.	9	1/0 = Ena/Disa IRQ9 as Primary Intrpt Channel
3-0	SCI Interrupt Assignment	8	1/0 = Ena/Disa IRQ8 as Primary Intrpt Channel
	0000 Disableddefault	7	1/0 = Ena/Disa IRQ7 as Primary Intrpt Channel
	0001 IRQ1	6	1/0 = Ena/Disa IRQ6 as Primary Intrpt Channel
	0010 Reserved	5	1/0 = Ena/Disa IRQ5 as Primary Intrpt Channel
	0011 IRQ3	4	1/0 = Ena/Disa IRQ4 as Primary Intrpt Channel
	0100 IRQ4	3	1/0 = Ena/Disa IRQ3 as Primary Intrpt Channel
	0101 IRQ5	2	Reserved always reads 0
	0110 IRQ6	1	1/0 = Ena/Disa IRQ1 as Primary Intrpt Channel
	0111 IRQ7	0	1/0 = Ena/Disa IRQ0 as Primary Intrpt Channel
	1000 IRQ8	Offeed	47.46 Casandam Intermed Channel (0000h) DW
	1001 IRQ9		47-46 - Secondary Interrupt Channel (0000h) RW
	1010 IRQ10	15	1/0 = Ena/Disa IRQ15 as Secondary Intr Channel
	1011 IRQ11	14	1/0 = Ena/Disa IRQ14 as Secondary Intr Channel
	1100 IRQ12	13	1/0 = Ena/Disa IRQ13 as Secondary Intr Channel
	1101 IRQ13	12	1/0 = Ena/Disa IRQ12 as Secondary Intr Channel
	1110 IRQ14	11	1/0 = Ena/Disa IRQ11 as Secondary Intr Channel
	1111 IRQ15	10	1/0 = Ena/Disa IRQ10 as Secondary Intr Channel
		9	1/0 = Ena/Disa IRQ9 as Secondary Intr Channel
Offset	43 – Internal Timer Read TestRO	8	1/0 = Ena/Disa IRQ8 as Secondary Intr Channel
7-0	Internal Timer Read Test	7	1/0 = Ena/Disa IRQ7 as Secondary Intr Channel
		6	1/0 = Ena/Disa IRQ6 as Secondary Intr Channel
		5	1/0 = Ena/Disa IRQ5 as Secondary Intr Channel
		4	1/0 = Ena/Disa IRQ4 as Secondary Intr Channel
		3	1/0 = Ena/Disa IRQ3 as Secondary Intr Channel
		2	Reserved always reads 0

1

1/0 = Ena/Disa IRQ1 as Secondary Intr Channel 1/0 = Ena/Disa IRQ0 as Secondary Intr Channel

Offset 41	B-48 – Power Management I/O BaseRW
15-7	Reserved
·	C - Host Bus Power Management ControlRW
	Thermal Duty Cycle (THM_DTY) This 4-bit field determines the duty cycle of the STPCLK# signal when the THRM# pin is asserted low. The field is decoded as follows: 0000 Reserved
2	1111 93.75-100%
3	THRM Enable 0 Disabledefault
	1 Enable
2	Frame Input as Resume Event in C3
_	0 Disabledefault
	1 Enable
	Reserved always reads 0
	CPU Stop Grant Cycle Select 0 From Halt and Stop Grant Cycledefault 1 From Stop Grant Cycle This bit is combined with I/O space Rx2C[3] for controlling the start of STPCLK# assertion during system suspend mode: Rx2C[3] Rx4C[0] Function 4 Function 4 I/O Space

Offset 4D – Throttle / Clock Stop ControlRW			
7	Throttle Timer Reset def = 0		
6-5	Throttle Timer		
	0x 4-Bitdefault		
	10 3-Bit		
	11 2-Bit		
4	Fast Clock (7.5us) as Throttle Timer Tick		
	0 Disabledefault		
	1 Enable		
3	Reserved always reads 0		
2	Internal Clock Stop for PCI Idle		
	0 Disabledefault		
	1 Enable		
1	Internal Clock Stop During C3		
	0 Disabledefault		
	1 Enable		
0	Internal Clock Stop During Suspend		
	0 Disable default		
	1 Enable		

Offset 53-50 - GP Timer Control (0000 0000h)RW 31-30 Conserve Mode Timer Count Value $00 \quad 1/16 \ second \ default$ 01 1/8 second 10 1 second 11 1 minute **Conserve Mode Status** This bit reads 1 when in Conserve Mode 28 **Conserve Mode Enable** Disabledefault 1 Enable 27-26 Secondary Event Timer Count Value 00 2 milliseconds......default 01 64 milliseconds 10 ½ second 11 by EOI + 0.25 milliseconds **Secondary Event Occurred Status**

This bit reads 1 to indicate that a secondary event has occurred (to resume the system from suspend) and the secondary event timer is counting down.

24 **Secondary Event Timer Enable**

- 0 Disabledefault
- 1 Enable

23-16 GP1 Timer Count Value (base defined by bits 5-4) Write to load count value; Read to get current count

15-8 GP0 Timer Count Value (base defined by bits 1-0) Write to load count value; Read to get current count

7 **GP1 Timer Start**

On setting this bit to 1, the GP1 timer loads the value defined by bits 23-16 of this register and starts counting down. The GP1 timer is reloaded at the occurrence of certain peripheral events enabled in the Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP1 timer counts down to zero, then the GP1 Timer Timeout Status bit is set to one (bit-3 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP1 Timer Timeout Enable bit is set (bit-3 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

GP1 Timer Automatic Reload

- 0 GP1 Timer stops at 0default
- Reload GP1 timer automatically after counting down to 0

GP1 Timer Base

- 00 Disabledefault
- 01 1/4 msec
- 10 1 second
- 11 1 minute

GP0 Timer Start

On setting this bit to 1, the GP0 timer loads the value defined by bits 15-8 of this register and starts counting down. The GP0 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP0 timer counts down to zero, then the GP0 Timer Timeout Status bit is set to one (bit-2 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP0 Timer Timeout Enable bit is set (bit-2 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

GP0 Timer Automatic Reload 2

- 0 GP0 Timer stops at 0default
- Reload GP0 timer automatically after counting down to 0

1-0 GP0 Timer Base

- 00 Disable......default
- 01 1/16 second
- 10 1 second
- 11 1 minute

Offset:	54 - Power Well Control	WO
7	Reserved	always reads 0
6	STR Power Well Output Gating	•
	0 Disable	default
	1 Enable	
5	SUSC# = 0 for STR	
	0 Disable	default
	1 Enable	
4	SUSST1# / GPO3 Select	
	0 SUSST1#	default
	1 GPO3	
3	GPO2 / SUSB# Select	
	0 SUSB#	default
	1 GPO2	
	Before chip rev C, these definitions w	ere reversed
2	GPO1 / SUSA# Select	
	0 SUSA#	default
	1 GPO1	
	Before chip rev C, these definitions w	ere reversed
1-0	GPO0 Output Selection	
	00 From GPO (ACPI Rx4C[0])	default
	01 1 Hz	
	10 4 Hz	
	11 16 Hz	

Offset 61 - Program Interface Read ValueWO

7-0 Rx09 Read Value

The value returned by the register at offset 9h (Programming Interface) may be changed by writing the desired value to this location.

Offset 62 - Sub Class Read Value......WO

7-0 Rx0A Read Value

The value returned by the register at offset 0Ah (Sub Class Code) may be changed by writing the desired value to this location.

Offset 63 - Base Class Read Value......WO

7-0 Rx0B Read Value

The value returned by the register at offset 0Bh (Base Class Code) may be changed by writing the desired value to this location.

Hardware-Monitor-Specific Configuration Registers

Offset '	71-70 – Haro	dware Monitor I/O BaseRW
15-7	I/O Base (1	128-byte I/O space) default = 0
6-0	Fixed	always reads 0000001b
Offset '	74 –Hardwa	re Monitor ControlRW
7-4	Reserved	always reads 0
3	Hardware	Monitoring Interrupt
	0 SMI	default
	1 SCI	
2-1	Reserved	always reads 0
0	Hardware	Monitoring I/O Enable
	0 Disa	ble hardware monitor functionsdefault
	1 Enal	ole hardware monitor functions

System Management Bus-Specific Configuration Registers

Offset 9	3-90 – SMBus I/O Base RW
31-16	Reserved always reads 0
	I/O Base (16-byte I/O space) default = 00h
	Fixedalways reads 0001b
Offset I	02 – SMBus Host ConfigurationRW
7-4	Reservedalways reads 0
3	SMBus Interrupt Select
-	0 SMIdefault 1 SCI
2-1	Reserved always reads 0
0	SMBus Host Controller Enable
	0 Disable SMB controller functions default
	1 Enable SMB controller functions
Offset I	03 – SMBus Host Slave CommandRW
7-0	SMBus Host Slave Command Code default = 0
Offset I	04 – SMBus Slave Address for Port 1 RW
7-0	SMBus Slave Address for Port 1default=0
	ast be set to 0 for proper operation
Offset I	05 – SMBus Slave Address for Port 2RW
	SMBus Slave Address for Port 2default=0
	ist be set to 0 for proper operation
Offset I	06 – SMBus Revision IDRO
	SMBus Revision Code

Power Management I/O-Space Registers

Basic Power Management Control and Status

		I/O Off	set 3-2 - Power Management EnableRW
The bits	set 1-0 - Power Management StatusRWC in this register are set only by hardware and can be software by writing a one to the desired bit position.	The bits	s in this register correspond to the bits in the Power ment Status Register at offset 1-0.
15	Wakeup Status (WAK_STS) default = 0 This bit is set when the system is in the suspend state and an enabled resume event occurs. Upon setting this bit, the system automatically transitions from the suspend state to the normal working state (from C3 to	15	Reserved always reads 0
14-11 10	C0 for the processor). Reserved	10	Reserved
9	Sleep Button Status (SB_STS)	9	Sleep Button Enable (SB_EN)default = 0 This bit may be set to trigger either an SCI or SMI when the SB_STS bit is set. Power Button Enable (PB_EN)default = 0
8	Power Button Status (PB_STS) default = 0 This bit is set when the PWRBTN# signal is asserted LOW. If the PWRBTN# signal is held LOW for more than four seconds, this bit is cleared, the PBOR_STS bit is set, and the system will transition	8	This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the PB_STS bit is set.
7-6 5	into the soft off state. Reserved	7-6 5	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
4	bit is also cleared at the same time by hardware. Bus Master Status (BM_STS) default = 0 This bit is set when a system bus master requests the system bus. All PCI master, ISA master and ISA	4	Reservedalways reads 0
3-1 0	DMA devices are included. Reserved	3-1 0	Reserved

I/O Offset 5-4 - Power Management ControlRW

- 15 Soft Resume
- **14 Reserved** always reads 0
- 12-10 Sleep Type (SLP_TYP)
 - 000 Normal On
 - 001 Suspend to RAM (STR)
 - 010 Suspend to Disk (STD) (also called Soft Off). The VCC power plane is turned off while the VCCS and VBAT planes remain on.
 - 011 Reserved
 - 100 Power On Suspend without Reset
 - 101 Power On Suspend with CPU Reset
 - 110 Power On Suspend with CPU/PCI Reset
 - 111 Reserved

In any sleep state, there is minimal interface between powered and non-powered planes so that the effort for hardware design may be well managed.

- 1 **Bus Master Reload** (BMS RLD)...... default = 0
 - O Bus master requests are ignored by power management logic
 - 1 Bus master requests transition the processor from the C3 state to the C0 state
- **O** SCI Enable (SCI_EN)......default = 0 Selects the power management event to generate either an SCI or SMI:
 - 0 Generate SMI
 - 1 Generate SCI

Note that certain power management events can be programmed individually to generate an SCI or SMI independent of the setting of this bit (refer to the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24). Also, TMR_STS & GBL_STS always generate SCI and BIOS_STS always generates SMI.

I/O Offset 0B-08 - Power Management Timer RW

31-24 Extended Timer Value (ETM_VAL)

This field reads back 0 if the 24-bit timer option is selected (Rx41 bit-3).

23-0 Timer Value (TMR VAL)

This read-only field returns the running count of the power management timer. This is a 24/32-bit counter that runs off a 3.579545 MHz clock, and counts while in the S0 (working) system state. The timer is reset to an initial value of zero during a reset, and then continues counting until the 14.31818 MHz input to the chip is stopped. If the clock is restarted without a reset, then the counter will continue counting from where it stopped.

Processor Power Management Registers

I/O Offs	set 13-10 - Processor & PCI Bus ControlRW
31-12	Reserved always reads 0
11	PCI Stop (PCISTP# asserted) when PCKRUN# is
	Deasserted (PCI_STP)
	0 Enabledefault
	1 Disable
10	PCI Bus Clock Run Without Stop (PCI_RUN)
	0 PCKRUN# will be de-activated after the PCI
	bus is idle for 26 clocksdefault
	1 PCKRUN# is always asserted
9	Host Clock Stop Enable (HOST_STP)
	0 STPCLK# will be asserted in the C3 state, but
	the CPU clock is not stoppeddefault
	1 CPU clock is stopped in the C3 state
8	Assert SLP# for LVL3 Read
	0 Disabledefault
	1 Enable
- -	Used in Slot-1 systems only.
7-5	Reserved always reads 0
4	Throttling Enable (THT_EN).
	Setting this bit starts clock throttling (modulating the STPCLK# signal) regardless of the CPU state. The
	throttling duty cycle is determined by bits 3-0 of this
	register.
3-0	Throttling Duty Cycle (THT_DTY)
3-0	This 4-bit field determines the duty cycle of the
	STPCLK# signal when the system is in throttling
	mode (the "Throttling Enable" bit is set to one). The
	duty cycle indicates the percentage of time the
	STPCLK# signal is asserted while the Throttling
	Enable bit is set. The field is decoded as follows:
	0000 Reserved
	0001 0-6.25%
	0010 6.25-12.50%
	0011 18.75-25.00%
	0100 31.25-37.50%
	0101 37.50-43.75%
	0110 43.75-50.00%
	0111 50.00-56.25%
	1000 56.25-62.50%
	1001 62.50-68.75%
	1010 68.75-75.00%
	1011 75.00-87.50%
	1100 75.00-81.25%
	1101 81.25-87.50%
	1110 87.50-93.75%

I/O Offset 14 - Processor Level 2 (P LVL2).....RO

7-0 Level 2always reads 0
Reads from this register put the processor into the
Stop Grant state (the VT82C686A asserts STPCLK#
to suspend the processor). Wake up from Stop Grant
state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

I/O Offset 15 - Processor Level 3 (P LVL3).....RO

Reads from this register put the processor in the C3 clock state with the STPCLK# signal asserted. If Rx10[9] = 1 then the CPU clock is also stopped by asserting CPUSTP#. Wake up from the C3 state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

1111 93.75-100%

General Purpose Power Management Registers

I/O Off	set 21-20 - General Purpose Status (GP STS).RWC
15-14	Reserved always reads 0
13	AC97 Wakeup Status (WAKE_STS)
	Can be set only in suspend mode
12	Battery Low Status (BL_STS)
	This bit is set when the BATLOW# input is asserted
	low.
11	Notebook Lid Status (LID_STS)
	This bit is set when the LID input detects the edge
	selected by Rx2C bit-7 (0=rising, 1=falling).
10	Thermal Detect Status (THRM_STS)
	This bit is set when the THRM input detects the edge
	selected by Rx2C bit-6 (0=rising, 1=falling).
9	USB Resume Status (USB_STS)
	This bit is set when a USB peripheral generates a
	resume event.
8	Ring Status (RING_STS)
	This bit is set when the RING# input is asserted low.
7	Reserved always reads 0
6	GPI6 / EXTSMI6 Toggle Status (GPI6_STS)
	This bit is set when the GPI6 pin is toggled.
5	PME# Toggle Status (PME_STS)
	This bit is set when the PME# pin is toggled.
4	GPI4 / SLPBTN# Toggle Status (GPI4_STS)
	This bit is set when the GPI4 pin is toggled.
3-2	Reserved always reads 0
1	GPI1 Status (GPI1_STS)
	This bit is set when the GPI1 pin is asserted low.
0	EXTSMI# Status (EXT_STS)
	This bit is set when the EXTSMI# pin is asserted low.

Note that the above bits correspond one for one with the bits of the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24: an SCI or SMI is generated if the corresponding bit of the General Purpose SCI or SMI Enable registers, respectively, is set to one.

The above bits are set by hardware only and can only be cleared by writing a one to the desired bit.

	set 23-22 - General Purpose SCI EnableRW
15-14	Reserved always reads 0
13	Enable SCI on setting of the WAKE_STS bit def=0
12	Enable SCI on setting of the BL_STS bit def=0
11	Enable SCI on setting of the LID_STS bit def=0
10	Enable SCI on setting of the THRM_STS bit def=0
9	Enable SCI on setting of the USB_STS bit def=0
8	Enable SCI on setting of the RING_STS bit .def=0
7	Reserved always reads 0
6	Enable SCI on setting of the GPI6_STS bit def=0
5	Enable SCI on setting of the PME_STS bit def=0
4	Enable SCI on setting of the GPI4_STS bit def=0
3-2	Reserved always reads 0
1	Enable SCI on setting of the GPI1_STS bit def=0
0	Enable SCI on setting of the EXT_STS bit def=0
These b	its allow generation of an SCI using a separate set of
conditio	ns from those used for generating an SMI.
I/O Off	set 25-24 - General Purpose SMI EnableRW
15-14	Reserved always reads 0
13	Enable SMI on setting of the WAKE_STS bit def=0
12	Enable SMI on setting of the BL_STS bitdef=0
11	Enable SMI on setting of the LID_STS bit def=0
10	Enable SMI on setting of the THRM_STS bit def=0
9	Enable SMI on setting of the USB_STS bit def=0
8	Enable SMI on setting of the RING_STS bit def=0
7	Reserved always reads 0
6	Enable SMI on setting of the GPI6_STS bit def=0
5	Enable SMI on setting of the PME_STS bit def=0
4	Enable SMI on setting of the GPI4_STS bit def=0
3-2	Reserved always reads 0
1	Enable SMI on setting of the GPI1_STS bit def=0
0	Enable SMI on setting of the EXT_STS bitdef=0
	't11

These bits allow generation of an SMI using a separate set of

conditions from those used for generating an SCI.

Generic Power Management Registers

I/O Off	set 29-28 -	Global Status	•••••	RW	
15-9	Reserved		always	reads	(
0	DOMEDIA	TH D C4 - 4 (DDDCM	CITICI)	1.6	,

- **8 PCKRUN# Resume Status (PRRSM_STS)....** def=0 This bit is set when PCI bus peripherals wake up the system by asserting PCKRUN#
- 7 Primary IRQ Resume Status (PIRSM_STS) . def=0 This bit is set at the occurrence of primary IRQs as defined in Rx45-44 of PCI configuration space
- 6 Software SMI Status (SW_SMI_STS)......def=0 This bit is set when the SMI_CMD port (offset 2F) is written.
- 4 Legacy USB Status (LEG_USB_STS)def=0 This bit is set when a legacy USB event occurs.
- **3 GP1 Timer Time Out Status (GP1TO_STS)**.. def=0 This bit is set when the GP1 timer times out.
- 2 GP0 Timer Time Out Status (GP0TO_STS).. def=0
 This bit is set when the GP0 timer times out.

Note that SMI can be generated based on the setting of any of the above bits (see the offset 2Ah Global Enable register bit descriptions in the right hand column of this page).

The bits in this register are set by hardware only and can only be cleared by writing a one to the desired bit position.

I/O Offset 2B-2A - Global EnableRW

- **15-9 Reserved**always reads 0
- **8 PCKRUN# Resume Enable (PRRSM_EN)**def=0 This bit may be set to trigger an SMI to be generated when the PRRSM_STS bit is set.
- 7 Primary IRQ Resume Enable (PIRSM_EN)..def=0 This bit may be set to trigger an SMI to be generated when the PIRSM_STS bit is set.
- 6 SMI on Software SMI (SW_SMI_EN)def=0 This bit may be set to trigger an SMI to be generated when the SW_SMI_STS bit is set.
- 5 SMI on BIOS Status (BIOS_EN)def=0 This bit may be set to trigger an SMI to be generated when the BIOS STS bit is set.
- 4 SMI on Legacy USB (LEG_USB_EN).....def=0
 This bit may be set to trigger an SMI to be generated when the LEG_USB_STS bit is set.
- 3 SMI on GP1 Timer Time Out (GP1TO_EN) .def=0 This bit may be set to trigger an SMI to be generated when the GP1TO_STS bit is set.
- 2 SMI on GP0 Timer Time Out (GP0TO_EN) .def=0 This bit may be set to trigger an SMI to be generated when the GP0TO_STS bit is set.
- 1 SMI on Secondary Event Timer Time Out (STTO_EN)def=0
 This bit may be set to trigger an SMI to be generated when the STTO_STS bit is set.
- **SMI on Primary Activity (PACT_EN)**def=0 This bit may be set to trigger an SMI to be generated when the PACT_STS bit is set.

I/O Offset 2D-2C - Global Control (GBL CTL)RW always reads 0 Reserved 8 **SMI Active (INSMI)** 0 SMI Inactive.....default SMI Active. If the SMIIG bit is set, this bit needs to be written with a 1 to clear it before the next SMI can be generated. **LID Triggering Polarity** 0 Rising Edgedefault Falling Edge **THRM# Triggering Polarity** 0 Rising Edgedefault 1 Falling Edge 5 **Battery Low Resume Disable** 0 Enable resumedefault Disable resume from suspend BATLOW# is asserted SMI Lock (SMIIG) 0 Disable SMI Lock Enable SMI Lock (SMI low to gate for the next SMI)default Wait for Halt / Stop Grant Cycle for STPCLK# Assertion 0 Don't wait......default 1 Wait This bit works with Rx4C[7] of PCI configuration space to control the start of STPCLK# assertion. **Power Button Triggering Select** 2 SCI/SMI generated by PWRBTN# rising edgedefault 1 SCI/SMI generated by PWRBTN# low level Set to zero to avoid the situation where PB_STS is set to wake up the system then reset again by PBOR_STS to switch the system into the soft-off state. **BIOS Release (BIOS RLS)** 1 This bit is set by legacy software to indicate release of the SCI/SMI lock. Upon setting of this bit, hardware automatically sets the GBL_STS bit. This bit is cleared by hardware when the GBL_STS bit cleared by software. Note that if the GBL EN bit is set (bit-5 of the Power Management Enable register at offset 2), then setting this bit causes an SCI to be generated (because setting this bit causes the GBL STS bit to be set). SMI Enable (SMI EN)

Disable all SMI generation.....default

Enable SMI generation

I/O Offset 2F - SMI Command (SMI CMD)RW

7-0 SMI Command

Writing to this port sets the SW_SMI_STS bit. Note that if the SW_SMI_EN bit is set (see bit-6 of the Global Enable register at offset 2Ah), then an SMI is generated.

I/O Offset 33-30 - Primary Activity Detect Status......RWC

These bits correspond to the Primary Activity Detect Enable bits in offset 37-34. All bits default to 0, are set by hardware only, and may only be cleared by writing 1s to the desired bit.

- - 9 Keyboard Controller Access Status..... (KBC_STS) Set if the KBC is accessed via I/O port 60h.
 - 8 VGA Access Status......(VGA_STS)
 Set if the VGA port is accessed via I/O ports 3B03DFh or memory space A0000-BFFFFh.
 - 7 Parallel Port Access Status......(LPT_STS) Set if the parallel port is accessed via I/O ports 278-27Fh or 378-37Fh (LPT2 or LPT1).
 - 6 Serial Port B Access Status (COMB_STS) Set if the serial port is accessed via I/O ports 2F8-2FFh or 2E8-2Efh (COM2 and COM4 respectively).
 - 5 Serial Port A Access Status (COMA_STS)
 Set if the serial port is accessed via I/O ports 3F83FFh or 3E8-3EFh (COM1 and COM3, respectively).
 - 4 Floppy Access Status.....(FDC_STS) Set if the floppy controller is accessed via I/O ports 3F0-3F5h or 3F7h.
 - 3 Secondary IDE Access Status.....(SIDE_STS) Set if the IDE controller is accessed via I/O ports 170-177h or 376h.
 - 2 Primary IDE Access Status (PIDE_STS)
 Set if the IDE controller is accessed via I/O ports
 1F0-1F7h or 3F6h.
 - Primary Interrupt Activity Status..... (PIRQ_STS)
 Set on the occurrence of a primary interrupt (enabled via the "Primary Interrupt Channel" register at Function 4 PCI configuration register offset 44h).
 - O PCI Master Access Status(DRQ_STS)
 Set on the occurrence of PCI master activity.

Note: The bits above correspond to the bits of the Primary Activity Detect Enable register at offset 34 (see right hand column of this page): if the corresponding bit is set in that register, setting of the above bits will cause the PACT_STS bit to be set (bit-0 of the Global Status register at offset 28). Setting of PACT_STS may be set up to enable a "Primary Activity Event": an SMI will be generated if PACT_EN is set (bit-0 of the Global Enable register at offset 2Ah) and/or the GP0 timer will be reloaded if the "GP0 Timer Reload on Primary Activity" bit is set (bit-0 of the GP Timer Reload Enable register at offset 38 on this page).

Note: Bits 2-9 above also correspond to bits of the GP Timer Reload Enable register (see offset 38 on next page): If bits are set in that register, setting a corresponding bit in this register will cause the GP1 timer to be reloaded.

I/O Offset 37-34 - Primary Activity Detect Enable...... RW

These bits correspond to the Primary Activity Detect Status bits in offset 33-30. Setting of any of these bits also sets the PACT_STS bit (bit-0 of offset 28) which causes the GP0 timer to be reloaded (if PACT_GP0_EN is set) or generates an SMI (if PACT_EN is set).

- - 1 Set PACT_STS if VGA_STS is set

 7 SMI on Parallel Port Status......(LPT_EN)

 0 Don't set PACT_STS if LPT_STS is set......def
 - 1 Set PACT_STS if LPT_STS is set
 - 6 SMI on Serial Port B Status(COMB_EN)
 - 0 Don't set PACT_STS if COMB_STS is set . def1 Set PACT_STS if COMB_STS is set

0 Don't set PACT_STS if VGA_STS is set def

- 5 SMI on Serial Port A Status (COMA_EN)
 0 Don't set PACT_STS if COMA_STS is set. def
 - 1 Set PACT_STS if COMA_STS is set
 - SMI on Floppy Status(FDC_EN)

 0 Don't set PACT_STS if FDC_STS is set def
 - 1 Set PACT_STS if FDC_STS is set
- 3 SMI on Secondary IDE Status.....(SIDE_EN)
 - 0 Don't set PACT_STS if SIDE_STS is set def
 - 1 Set PACT_STS if SIDE_STS is set
- 2 SMI on PrimaryIDE Status(PIDE EN)
 - 0 Don't set PACT_STS if PIDE_STS is set.... def
 - 1 Set PACT_STS if PIDE_STS is set
- 1 SMI on Primary INTR Status(PIRQ_EN)
 - 0 Don't set PACT_STS if PIRQ_STS is set.... def
 - 1 Set PACT_STS if PIRQ_STS is set
- 0 SMI on PCI Master Status(DRQ_EN)
 - 0 Don't set PACT_STS if DRQ_STS is set def
 - 1 Set PACT_STS if DRQ_STS is set

I/O Offset 3B-38 - GP Timer Reload EnableRW

All bits in this register default to 0 on power up.

31-8 Reservedalways read 0

7 Enable <u>GP1</u> Timer Reload on <u>KBC Access</u>

- 0 Normal GP1 Timer Operation
- Setting of KBC_STS causes the GP1 timer to reload.

6 Enable GP1 Timer Reload on Serial Port Access

- 0 Normal GP1 Timer Operation
- 1 Setting of COMA_STS or COMB_STS causes the GP1 timer to reload.
- 5 Reservedalways read 0

4 Enable GP1 Timer Reload on VGA Access

- 0 Normal GP1 Timer Operation
- Setting of VGA_STS causes the GP1 timer to reload.

3 Enable GP1 Timer Reload on IDE/Floppy Access

- 0 Normal GP1 Timer Operation
- 1 Setting of FDC_STS, SIDE_STS, or PIDE STS causes the GP1 timer to reload.
- **2-1 Reserved**always read 0

0 Enable GP0 Timer Reload on Primary Activity

- 0 Normal GP0 Timer Operation
- 1 Setting of PACT_STS causes the GP0 timer to reload. Primary activities are enabled via the Primary Activity Detect Enable register (offset 37-34) with status recorded in the Primary Activity Detect Status register (offset 33-30).

General Purpose I/O Registers

I/O	Offset 4	44 – Exte	rnal S	MI In	put Va	lue			
(EX	TSMI	VAL)	• • • • • • • • • •			•••••	•••••	•••••	RO
	11	.1	C*	•		_		- 1	CCT/CD II

Depending on the configuration, up to 8 external SCI/SMI ports are available as indicated below. The state of these inputs may be read in this register.

- **7 GPI7 Input Value (RING#)**
- 6 GPI6 Input Value (SMBALRT#)
- **5 GPI5 Input** Value (PME#)
- 4 GPI4 Input Value (SLPBTN#)
- **3 GPI3 Input Value (LID)**
- **2 GPI2 Input Value (BATLOW#)**
- 1 GPI1 Input Value
- 0 EXTSMI# Input Value

<u>I/O Offset 45 – IRQ / Resume StatusRW</u>

- **7-4 Reserved**always reads 0
- 3 FM SMI or Serial SMI Status
- 2 Hardware Monitor IRQ Status
- 1 SMBus IRQ Status
- 0 SMBus Resume Status

<u> /O OII:</u>	<u>set 4B-48 - GPI Port Input Value (Gl</u>	PI VAL) KU
31-24	Reserved	always read 0
23-16	GPI[23-16] by Refresh Scan	Read Only
15-12	Reserved	always read 0
11-0	GPI[11-0] Input Value	Read Only
I/O Off:	set 4F-4C - GPO Port Output Value	(GPO_VAL)RW
Reads fr	rom this register return the last value	written (held on
	Reserved GPO[25-0] Output Value GPO[25-0] Output Value	•

System Management Bus I/O-Space Registers

The base address for these registers is defined in Rx93-90 of the Function 4 PCI configuration registers. The System Management Bus I/O space is enabled for access by the system if RxD2[0] = 1.

I/O Off	set 00	- SMBus Host StatusRWC
7-5		rved always reads 0
4		d Bus TransactionRWC
	0	SMBus interrupt not caused by failed bus
		transactiondefault
	1	SMBus interrupt caused by failed bus
		transaction. This bit may be set when the
		KILL bit (I/O Rx02[1]) is set and can be
		cleared by writing a 1 to this bit position.
3	Bus (CollisionRWC
	0	SMBus interrupt not caused by transaction
		collisiondefault
	1	SMBus interrupt caused by transaction
		collision. This bit is only set by hardware and
		can be cleared by writing a 1 to this bit
		position.
2		ee ErrorRWC
	0	SMBus interrupt not caused by generation of
		an SMBus transaction errordefault
	1	SMBus interrupt caused by generation of an
		SMBus transaction error (illegal command
		field, unclaimed host-initiated cycle, or host
		device timeout). This bit is only set by
		hardware and can be cleared by writing a 1 to
1	CMD	this bit position.
1	SMB	us InterruptRWC
	U	SMBus interrupt not caused by host command completiondefault
	1	SMBus interrupt caused by host command
	1	completion. This bit is only set by hardware
		and can be cleared by writing a 1 to this bit
		position.
0	Host	BusyRO
v	0	SMBus controller host interface is not
		processing a commanddefault
	1	SMBus host controller is busy processing a
		command. None of the other SMBus registers
		should be accessed if this bit is set.

I/O Off	Set 01h – SMBus Slave StatusRWC
7-6	Reserved always reads 0
5	Alert StatusRWC
	0 SMBus interrupt not caused by SMBALERT#
	signaldefault
	1 SMBus interrupt caused by SMBALERT#
	signal. This bit will be set only if the Alert
	Enable bit is set in the SMBus Slave Control
	Register at I/O Offset R08[3]. This bit is only
	set by hardware and can be cleared by writing
	a 1 to this bit position.
4	Shadow 2 StatusRWC
•	0 SMBus interrupt not caused by address match
	to SMBus Shadow Address Port 2 default
	1 SMBus interrupt or resume event caused by
	slave cycle address match to SMBus Shadow
	Address Port 2. This bit is only set by
	hardware and can be cleared by writing a 1 to
	this bit position.
3	Shadow 1 StatusRWC
3	0 SMBus interrupt not caused by address match
	to SMBus Shadow Address Port 1 default
	i singus interrupt of resume event endaged by
	slave cycle address match to SMBus Shadow Address Port 1. This bit is only set by
	·
	hardware and can be cleared by writing a 1 to
2	this bit position. Slave StatusRWC
2	
	0 SMBus interrupt not caused by slave event
	match default
	1 SMBus interrupt or resume event caused by
	slave cycle event match of the SMBus Slave
	Command Register at PCI Function 4
	Configuration Offset D3h (command match)
	and the SMBus Slave Event Register at
	SMBus Base + Offset 0Ah (data event match).
	This bit is only set by hardware and can be
	cleared by writing a 1 to this bit position.
1	Reserved always reads 0
0	Slave Busy RO
	0 SMBus controller slave interface is not
	processing data
	1 SMBus controller slave interface is busy

receiving data. None of the other SMBus registers should be accessed if this bit is set.

I/O Offset 02h – SMBus Host ControlRW	I/O Offset 03h - SMBus Host CommandRW
7 Reserved always reads 0 6 Start always reads 0 0 Writing 0 has no effect default 1 Start Execution of Command Writing a 1 to this bit causes the SMBus controller host interface to initiate execution of	7-0 SMBUS Host Command
the command programmed in the SMBus Command Protocol field (bits 4-2). All necessary registers should be programmed prior to writing a 1 to this bit. The Host Busy bit (SMBus Host Status Register bit-0) can be used to identify when the SMBus controller has completed command execution.	of the SMBus host transaction. 7-1 SMBUS Address
5 Reservedalways reads 0	I/O Offset 05h – SMBus Host Data 0RW
4-2 SMBus Command Protocol 000 Quick Read or Write	The contents of this register are transmitted in the Data 0 field of SMBus host transaction writes. On reads, Data 0 bytes are stored here. 7-0 SMBUS Data 0
0 Normal host controller operationdefault 1 Stop host transaction currently in progress. Setting this bit also sets the FAILED status bit (Host Status bit-4) and asserts the interrupt selected by the SMB Interrupt Select bit (Function 4 SMBus Host Configuration Register RxD2[3]).	I/O Offset 06h – SMBus Host Data 1 RW The contents of this register are transmitted in the Data 1 field of SMBus host transaction writes. On reads, Data 1 bytes are stored here. 7-0 SMBUS Data 1
O Interrupt Enable O Disable interrupt generationdefault I Enable generation of interrupts on completion of the current host transaction.	I/O Offset 07h – SMBus Block Data

I/O Offset 08h - SMBus Slave Control.....RW always reads 0 Reserved 3 **SMBus Alert Enable** 0 Disabledefault Enable generation of an interrupt or resume event on the assertion of the SMBALERT# signal 2 **SMBus Shadow Port 2 Enable** Disabledefault Enable generation of an interrupt or resume event on external SMBus master generation of a transaction with an address that matches the SMBus Slave Shadow Port 2 register (PCI function 4 configuration register RxD5). **SMBus Shadow Port 1 Enable** 1 Disabledefault Enable generation of an interrupt or resume event on external SMBus master generation of a transaction with an address that matches the SMBus Slave Shadow Port 1 register (PCI function 4 configuration register RxD4). **SMBus Slave Enable** 0 Disabledefault Enable generation of an interrupt or resume event on external SMBus master generation of a transaction with an address that matches the SMBus host controller slave port of 10h, a command field which matches the SMBus Slave Command register (PCI function 4

configuration register RxD3), and a match of

one of the corresponding enabled events in the

SMBus Slave Event Register (I/O Offset 0Ah).

I/O Offset 09h - SMBus Shadow CommandRO

This register is used to store command values for external SMBus master accesses to the host slave and slave shadow ports.

I/O Offset 0Ah – SMBus Slave EventRW

This register is used to enable generation of interrupt or resume events for accesses to the host controller's slave port.

This field contains data bits used to compare against incoming data to the SMBus Slave Data Register (I/O Offset 0Ch). When a bit in this register is set and the corresponding bit the Slave Data register is also set, an interrupt or resume event will be generated if the command value matches the value in the SMBus Slave Command register and the access was to SMBus host address 10h.

I/O Offset 0Ch - SMBus Slave DataRO

This register is used to store data values for external SMBus master accesses to the shadow ports or the SMBus host controller's slave port.

Hardware Monitor I/O Space Registers

The I/O base address for access to the Hardware Monitor registers is defined in Rx71-70 of function 4 PCI configuration space. The hardware monitor I/O space is enabled for I/O access by the system if Rx74[0] = 1.

Offset 13 – Analog Data 15-8	RW
Offset 14 – Analog Data 7-0	RW
Offset 15 – Digital Data 7-0	RW
Offset 16 – Channel Counter	RW
Offset 17 – Data Valid & Channel Indicators	RW

Offset 1D - TSENS3 Hot Temperature High LimitRW Offset 1E - TSENS3 Hot Temp Hysteresis Lo Limit.....RW Offset 1F - TSENS3 Temperature Reading.....RW

Temperature sensor 3 is an internal bandgap-type sensor which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx49[7-6]. Only the high order 8 bits are used for comparison with the limit values in offsets 1D and 1E.

Offset 20 – TSENS1 Temperature ReadingRW

Temperature sensor 1 is an external sensor input on pin W13 which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx4B[7-6]. Only the high order 8 bits are used for comparison with the limit values in offsets 39 and 3A.

Offset 21 – TSENS2 Temperature ReadingRW

Temperature sensor 2 is an external sensor input on pin Y13 which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx49[5-4]. Only the high order 8 bits are used for comparison with the limit values in offsets 3D and 3E.

Offset 22 – VSENS1 (Pin U13) Voltage Reading (2.0V).RW
$\underline{Offset~23-VSENS2~(Pin~V13)~Voltage~Reading~(2.5V).RW}$
Offset 24 – Internal Core Voltage Reading (3.3V)RW
Offset 25 – VSENS3 (Pin W14) Voltage Reading (5V)RW
Offset 26 – VSENS4 (Pin Y14) Voltage Reading (12V)RW
Offset 27 – VSENS4 (Pin Y14) Voltage Reading (12V)RW
Offset 28 – Sense Voltage Reading (-12V)RW
Offset 29 – Sense Voltage Reading (-5V)RW

Offset 29 – FAN1 (Pin T12) Count ReadingRW Offset 2A – FAN2 (Pin U12) Count ReadingRW

The above two locations store the number of counts of the internal clock per fan revolution.

Offset 2B – VSENS1 Voltage High Limit (CPU 2.0V) RW
Offset 2C – VSENS1 Voltage Low Limit (CPU 2.0V) RW
Offset 2D – VSENS2 Voltage High Limit (NB 2.5V) RW
Offset 2E – VSENS2 Voltage Low Limit (NB 2.5V) RW
Offset 2F – Internal Core Voltage High Limit (3.3V) RW
Offset 30 – Internal Core Voltage Low Limit (3.3V) RW
Offset 31 – VSENS3 Voltage High Limit (5V)RW
Offset 32 – VSENS3 Voltage Low Limit (5V)RW
Offset 33 – VSENS4 Voltage High Limit (12V)RW
Offset 34 – VSENS4 Voltage Low Limit (12V)RW
Offset 35 – Voltage Sense High Limit (-12V)RW
Offset 36 – Voltage Sense Low Limit (-12V) RW
Offset 37 – Voltage Sense High Limit (-5V)RW
Offset 38 – Voltage Sense Low Limit (-5V)RW
Offset 39 – TSENS1 Hot Temperature High Limit RW
Offset 3A – TSENS1Hot Temp Hysteresis Lo Limit RW
Offset 3B – FAN1 Fan Count LimitRW
Offset 3C – FAN2 Fan Count LimitRW
The above two locations store the number of counts of the
internal clock per fan revolution for the low limit of the fan

speed.

Offset 3D – TSENS2 Hot Temperature High Limit...... RW Offset 3E – TSENS2 Hot Temp Hysteresis Lo Limit..... RW

Note: For high limits, comparisons are "greater than"

Offset 3F – Stepping ID Number.....RW

comparisons. For low limits, comparisons are "less than or equal" comparisons.

One consequence of the above is that if high limits are set to all ones (FFh or 111111111b), interrupts are disabled for high limits (i.e., interrupts will only be generated for cases when voltages are equal to or below the low limits).

Offset 40 - Hardware Monitor ConfigurationRW

7 Initialization

- Normal operationdefault
 Restore power-up default values to this register, the interrupt status and mask registers, the FAN/RST#/OS# register, and the OS# Configuration / Temperature Resolution register. This bit automatically clears itself
- 6 Chassis Intrusion Reset
 - 0 Normal operationdefault
 - 1 Reset the Chassis Intrusion pin
- 5-4 Reserved (R/W) default = 0

since the power-on default is 0.

- 3 Hardware Monitor Interrupt Clear
 - 0 Normal operation
- 2 Reserved always reads 0
- 1 Hardware Monitor Interrupt Enable

purpose).

- 0 Disable hardware monitor interrupt output.. def
- 1 Enable hardware monitor interrupt output
- 0 Start
 - 0 Place hardware monitor in standby mode.... def
 - 1 Enable startup of hardware monitor logic. At startup, limit checking functions and scanning begins. All high and low limits should be set prior to turning on this bit. Note: the hardware monitor interrupt output will not be cleared if the user writes a zero to this bit after an interrupt has occurred (the hardware monitor interrupt clear bit must be used for this

Offset 4	11 -Hardware Monitor Interrupt Status 1RO	Oiiset	43 –Hardware Monitor Interrupt Mask 1 RW
7	Fan 2 Error	7	Fan 2 Count Error Mask
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 Fan 2 count limit exceeded		1 Disable interrupt on error status bit set
6	Fan 1 Error	6	Fan 1 Count Error Mask
	0 No errordefault		0 Enable interrupt on error status bit setdef
	1 Fan 1 count limit exceeded		1 Disable interrupt on error status bit set
5	Reserved always reads 0	5	TSENS1 Thermal Alarm Control Mask
			0 Enable TSENS1 over-temp condition to
			control the thermal alarm (function 4 Rx40[7]
4	TSENS1 Temperature Error		automatic CPU clock throttling must be set)def
•	0 No errordefault		1 Disable
	1 High or low hot temperature limit exceeded.	4	TSENS1 Temperature Error Mask
		-	0 Enable interrupt on error status bit set def
	The interrupt mode is determined by		
2	Temperature Resolution register Rx4B[1-0].	•	1 Disable interrupt on error status bit set
3	VSENS3 Voltage Error (5V)	3	VSENS3 Voltage Error Mask (5V)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
2	Internal Core VCC Voltage Error (3.3V)	2	Internal Core VCC Voltage Error Mask (3.3V)
	0 No errordefault		0 Enable interrupt on error status bit setdef
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
1	VSENS2 Voltage Error (2.5V NB Core Voltage)	1	VSENS2 Voltage Error Mask (2.5V NB Core)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
0	VSENS1 Voltage Error (2.0V CPU Core Voltage)	0	VSENS1 Voltage Error Mask (2.0V CPU Core)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
			•
Offset 4	12 –Hardware Monitor Interrupt Status 2RO	Offset	44 -Hardware Monitor Interrupt Mask 2 RW
		Oliset	TT - Haruware Promisor Interrupt Mask 2
7	TSENS3 (Internal Bandgap) Temp Error	7	TSENS3 Temperature Error Mask
	TSENS3 (Internal Bandgap) Temp Error 0 No errordefault		TSENS3 Temperature Error Mask
	TSENS3 (Internal Bandgap) Temp Error 0 No errordefault 1 High or low hot temperature limit exceeded.		TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def
	TSENS3 (Internal Bandgap) Temp Error 0 No error	7	TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set
7	TSENS3 (Internal Bandgap) Temp Error 0 No errordefault 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[5-4].	7	TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask 0 Enable TSENS3 over-temp condition to
7 6-5	TSENS3 (Internal Bandgap) Temp Error 0 No errordefault 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[5-4]. Reservedalways reads 0 Chassis Error	7	TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask 0 Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7]
7 6-5	TSENS3 (Internal Bandgap) Temp Error 0 No error	7	TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask 0 Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def
6-5 4	TSENS3 (Internal Bandgap) Temp Error 0 No error default 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[5-4]. Reserved always reads 0 Chassis Error 0 No error default 1 Chassis Intrusion has gone high	6	TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask 0 Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable
7 6-5	TSENS3 (Internal Bandgap) Temp Error 0 No error default 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[5-4]. Reserved always reads 0 Chassis Error 0 No error default 1 Chassis Intrusion has gone high TSENS2 Temperature Error	7	TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask 0 Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask
6-5 4	TSENS3 (Internal Bandgap) Temp Error 0 No error	6	TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask 0 Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask 0 Enable TSENS2 over-temp condition to
6-5 4	TSENS3 (Internal Bandgap) Temp Error 0 No error default 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[5-4]. Reserved always reads 0 Chassis Error 0 No error default 1 Chassis Intrusion has gone high TSENS2 Temperature Error 0 No error default 1 High or low hot temperature limit exceeded.	6	TSENS3 Temperature Error Mask 0 Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask 0 Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask 0 Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7]
7 6-5 4	TSENS3 (Internal Bandgap) Temp Error 0 No error	6	TSENS3 Temperature Error Mask O Enable interrupt on error status bit setdef 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def
6-5 4	TSENS3 (Internal Bandgap) Temp Error 0 No error	765	TSENS3 Temperature Error Mask O Enable interrupt on error status bit setdef Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def Disable TSENS2 Thermal Alarm Control Mask Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def Disable
7 6-5 4	TSENS3 (Internal Bandgap) Temp Error 0 No error	6	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask
7 6-5 4 3	TSENS3 (Internal Bandgap) Temp Error 0 No error default 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[5-4]. Reserved always reads 0 Chassis Error 0 No error default 1 Chassis Intrusion has gone high TSENS2 Temperature Error 0 No error default 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[3-2]. Minus 5V Voltage Error (-5V) 0 No error default 1 High or low limit exceeded	765	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def
7 6-5 4	TSENS3 (Internal Bandgap) Temp Error 0 No error	765	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set
7 6-5 4 3	TSENS3 (Internal Bandgap) Temp Error 0 No error default 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[5-4]. Reserved always reads 0 Chassis Error 0 No error default 1 Chassis Intrusion has gone high TSENS2 Temperature Error 0 No error default 1 High or low hot temperature limit exceeded. Interrupt mode is determined by Rx4B[3-2]. Minus 5V Voltage Error (-5V) 0 No error default 1 High or low limit exceeded Minus 12V Voltage Error (-12V) 0 No error default	765	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS2 Temperature Error Mask
7 6-5 4 3	TSENS3 (Internal Bandgap) Temp Error 0 No error	765	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def
7 6-5 4 3	TSENS3 (Internal Bandgap) Temp Error 0 No error	76543	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS2 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set
7 6-5 4 3	TSENS3 (Internal Bandgap) Temp Error 0 No error	765	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def
7 6-5 4 3 2 1	TSENS3 (Internal Bandgap) Temp Error 0 No error	76543	TSENS3 Temperature Error Mask O Enable interrupt on error status bit setdef 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def
7 6-5 4 3 2 1 0 Note:	TSENS3 (Internal Bandgap) Temp Error 0 No error	76543	TSENS3 Temperature Error Mask O Enable interrupt on error status bit setdef 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS2 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def
7 6-5 4 3 2 1 0 Note:	TSENS3 (Internal Bandgap) Temp Error 0 No error	76543	TSENS3 Temperature Error Mask O Enable interrupt on error status bit setdef 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def
7 6-5 4 3 2 1 0 Note: Yethat re	TSENS3 (Internal Bandgap) Temp Error 0 No error	765432	TSENS3 Temperature Error Mask O Enable interrupt on error status bit setdef 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS2 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set def
7 6-5 4 3 2 1 0 Note: 'that re indicati	TSENS3 (Internal Bandgap) Temp Error 0 No error	765432	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS2 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def 1 Disable interrupt on error status bit set Minus 5V Voltage Error Mask (-5V) O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def
7 6-5 4 3 2 1 0 Note: that reindicati another	TSENS3 (Internal Bandgap) Temp Error 0 No error	765432	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS2 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set Minus 5V Voltage Error Mask (-5V) O Enable interrupt on error status bit set Minus 12V Voltage Error Mask (-12V) O Enable interrupt on error status bit set def
7 6-5 4 3 2 1 0 Note: Year indicati another not han	TSENS3 (Internal Bandgap) Temp Error 0 No error	 7 6 5 4 3 2 1 	TSENS3 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS3 Thermal Alarm Control Mask O Enable TSENS3 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable TSENS2 Thermal Alarm Control Mask O Enable TSENS2 over-temp condition to control the thermal alarm (function 4 Rx40[7] automatic CPU clock throttling must be set) def 1 Disable Chassis Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set TSENS2 Temperature Error Mask O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set Minus 5V Voltage Error Mask (-5V) O Enable interrupt on error status bit set Minus 12V Voltage Error Mask (-12V) O Enable interrupt on error status bit set def 1 Disable interrupt on error status bit set def

Offset 4	47 -Hardware Monitor Fan ConfigurationRW	Offset 4	4B –Temperature Interrupt Configuration RW
7-6	Fan 2 RPM Control	7-6	TSENS1 Value Low-Order Bitsdef = 00
	00 Divide by 1		Upper 8 bits are stored in offset 20h
	01 Divide by 2default	5-4	TSENS3 Hot Temp Interrupt Mode def = 01
	10 Divide by 4	3-2	TSENS2 Hot Temp Interrupt Mode $def = 01$
	11 Divide by 8	1-0	TSENS1 Hot Temp Interrupt Mode def = 01
5-4	Fan 1 RPM Control		The following applies to each of the above 3 fields
	00 Divide by 1		00 <u>Default Interrupt Mode</u> . An interrupt occurs if
	01 Divide by 2default		the temperature goes above the hot limit. The
	10 Divide by 4		interrupt will be cleared once the status register
	11 Divide by 8		is read, but will be generated again when the
3-0	Reserved always reads 0		next conversion is completed. Interrupts will
Offcot	40 Handwara Manitan Tamp Law Orden Valua DW		continue to be generated until the temperature
	49 – Hardware Monitor Temp Low Order Value RW		goes below the hysteresis limit.
7-6	TSENS3 Value Low-Order Bits		01 One-Time Interrupt Mode. An interrupt is
- 4	Upper 8 bits are stored in offset 1Fh		generated if the temperrature goes above the
5-4	TSENS2 Value Low-Order Bits		hot limit. The interrupt will be cleared when
•	Upper 8 bits are stored in offset 21h		the status register is read. Another interrupt
3	Over Temperature Active Low for PMU to		will not be generated until the temperature first
	Control Stop Clock 0 Disabledefault		drops below the hysteresis limit default
	1 Enable		10 <u>Comparator mode</u> . An interrupt occurs if the
2			temperature goes above the hot limit. This
4	Chassis Active Low Output 20 msec 0 Disabledefault		interrupt remains active until the temperature
	1 Enable		goes below the hot limit (i.e., no hysteresis).
1			11 Default Interrupt Mode (same as 00)
1	Interrupt Active High Output 0 Disabledefault		
	1 Enable		
0	Reservedalways reads 0		
U	always icads 0		

Function 5 & 6 Registers - AC97 Audio & Modem Codecs

The codec interface is hardware compatible with AC97 and SoundBlaster Pro. There are two sets of software accessible registers: PCI configuration registers and I/O registers. The PCI configuration registers for the <u>Audio Codec</u> are located in the <u>function 5</u> PCI configuration space of the VT82C686A. The PCI configuration registers for the <u>Modem Codec</u> are located in the <u>function 6</u> PCI configuration space. The I/O registers are located in the system I/O space.

PCI Configuration Space Header - Function 5 Audio

Offset 1	-0 - Vendor IDRO
	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device IDRO
0-7	Device ID (3058h = 82C686A Audio Codec)
Offset 5	5-4 - CommandRW
15-10	Reserved always reads 0
9	Fast Back-to-Back fixed at 0
8	SERR# Enable fixed at 0
7	Address Steppingfixed at 0
6	Parity Error Responsefixed at 0
5	VGA Palette Snoopfixed at 0
4	Memory Write and Invalidatefixed at 0
3	Special Cycle Monitoringfixed at 0
2	Bus Masterfixed at 0
1	Memory Spacefixed at 0
0	I/O Space default=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Detected Parity Error always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortfixed at 0
12	Received Target Abortfixed at 0
11	Signalled Target Abortfixed at 0
10-9	DEVSEL# Timing
	00 Fast
	01 Medium fixed
	10 Slow
	11 Reserved
8	Data Parity Error fixed at 0
7	Fast Back-to-Back Capablefixed at 0
6-0	Reserved always reads 0
Offset 8	B - Revision ID (nnh)RO
7-0	Silicon Revision Code
	10h Revision A
	11h Revision B
	12h Revision C
	13h Revision D
	14h Revision E
	20h Revision H

Offset 9 - Programming Interface (00h)RO
Offset A - Sub Class Code (01h=Audio Device)RO
Offset B - Base Class Code (04h=Multimedia Device)RO
Offset D - Latency Timer (00h)RO
Offset E - Header Type (00h)RO
Offset F - BIST (00h)RO
Offset 13-10 - Base Address 0 - SGD Control / Status RW 31-16 Reserved
Offset 17-14 - Base Address 1 - FM NMI Status RW
31-16 Reservedalways reads 0
15-2 Base Address
Offset 1B-18 - Base Address 2 – MIDI Port (Rev H) RW
31-16 Reservedalways reads 0
15-2 Base Address default = 0330h
1-0 01b (4 bytes)
Offset 2F-2C – Subsystem ID / Sub Vendor ID (Rev H)RO* *This register is RW if function 5-6 Rx48[4] = 1
Offset 34 – Capture Pointer (Rev H) (Default = C0h) RO
Offset 34 – Capture Pointer (Rev H) (Default = C0h)RO Offset 3C - Interrupt LineRW
Offset 3C - Interrupt Line

PCI Configuration Space Header – Function 6 Modem

Offset 1	<u>-0 - Vendor IDRO</u>	
0-7	Vendor ID (1106h = VIA Technologies)	
Offset 3	-2 - Device IDRO	
0-7	Device ID (3068h = 82C686A Modem Codec)	
O 00 4 5	A C D	
	i-4 - Command	
	Reserved always reads 0	
9	Fast Back-to-Back fixed at 0	
8	SERR# Enable fixed at 0	
7	Address Steppingfixed at 0	
6	Parity Error Response	
5	VGA Palette Snoopfixed at 0	
4	Memory Write and Invalidate fixed at 0	
3	Special Cycle Monitoring fixed at 0	
2	Bus Master fixed at 0	
1	Memory Spacefixed at 0	
0	I/O Space default=0 (disabled)	
Offset 7	-6 - StatusRWC	
15	Detected Parity Error always reads 0	
14	Signalled System Errorfixed at 0	
13	Received Master Abortfixed at 0	
12	Received Target Abortfixed at 0	
11	Signalled Target Abort	
10-9	DEVSEL# Timing	
	00 Fast	
	01 Medium fixed	
	10 Slow	
	11 Reserved	
8	Data Parity Error fixed at 0	
7	Fast Back-to-Back Capablefixed at 0	
6-0	Reserved always reads 0	
Offset 8	- Revision ID (nnh)RO	
7-0	Silicon Revision Code (0 indicates first silicon)	
Offset 9	- Programming Interface (00h)*RO	
Offset A	A - Sub Class Code (80h)*RO	
Offset I	B - Base Class Code (07h)*RO	
	ers 9-B are RW if function 5-6 Rx44[5] = 1	
Offset I	O - Latency Timer (00h)RO	
Offset I	E - Header Type (00h)RO	
Offset I	F - BIST (00h)RO	

Oliset 1	3-10 - Dase Address 0 - SGD Control / Status KW
31-16	Reserved always reads 0
15-8	Base Address default = 00h
7-0	00000001b (256 bytes)
Offset 3	C - Interrupt LineRW
7-4	Reserved always reads 0
3-0	Audio Interrupt Routing
	0000 Disableddefault
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 Disabled
Offset 3	BD - Interrupt Pin (03h)RO
Offset 3	BE - Minimum Grant (00h)RO
Offset 3	BF - Minimum Latency (00h)RO

Function 5 & 6 Codec-Specific Configuration Registers

Offset 40 – AC97 Interface StatusRO		
Reserved always reads 0		
Secondary Codec Ready StatusRO		
0 Codec Not Ready		
1 Codec Ready (AC97 ctrlr can access codec)		
AC97 Codec Low-Power StatusRO		
0 AC97 Codec not in low-power mode		
1 AC97 Codec in low-power mode		
AC97 Codec Ready StatusRO		
0 Codec Not Ready		
1 Codec Ready (AC97 ctrlr can access codec)		

<u>tiset </u>	<u> 41 – A</u>	C Link Interface Control RW
7	AC-I	Link Interface Enable (ENAC97)
	0	Disabledefault
	1	Enable
6	AC-I	Link Reset (ACRST#)
	0	Assert AC-Link Resetdefault
	1	De-assert AC-Link Reset
5	AC-I	Link Sync (RSYNCHI)
	0	Release SYNC default
	1	Force SYNC High
4	AC-I	Link Serial Data Out
	0	Release SDOdefault
	1	Force SDO High
3	Varia	able-Sample-Rate On-Demand Mode
	0	Disabledefault
	1	Enable
		alid in function 5 only (reserved in function 6)
2	AC I	Link SGD Read Channel PCM Data Output
	0	Disabledefault
	1	Enable
	Bit va	alid in function 5 only (reserved in function 6)
1	AC I	Link FM Channel PCM Data Out (SELFM)
	0	Disable default
	1	Enable
		alid in function 5 only (reserved in function 6)
0	AC I	Link SB PCM Data Output (SELSB)
	0	Disable default
	1	Enable
	Bit v	alid in function 5 only (reserved in function 6)

	42 – Function EnableRW (Function 5)		44 – MC97 Interface Control	
Offset	42 – Function EnableRO (Function 6)	<u>Offset</u>	44 – MC97 Interface Control	·
7	Reserved always reads 0	7	Function 5 AC-Link Interfa	
6	MIDI PnP (Rev H)			default
	0 MIDI Port Address Selected by Rx43[3-2]. def		1 Enable	
	1 MIDI Port Address Selected by IOBase2	6	Secondary Codec Support	
5	Function 5 Config Reg Rx2C Writable (Rev H)			default
	0 F5Rx2C-2F ROdefault		1 Enable	
	1 F5Rx2C-2F RW	5	Function 6 Config Reg Rx9	
4	Gate SoundBlaster PCM When FIFO Empty			default
	0 Disabledefault		1 F6Rx9-B RW	
	1 Enable	4	Function 6 Config Reg 2Ch	Writable (Rev H)
3	Game Port Enable (ENGAME)			default
	0 Disabledefault		1 F6Rx2C-2F RW	
	1 Enable (200-207h)	3-0	Reserved	always reads 0
2	FM Enable (ENFM)			
	0 Disabledefault			
	1 Enable (388-38B)	Offact	49 EM NMI Control	DW (Eunstian 5)
1	MIDI Enable (ENMIDI)		48 – FM NMI Control	
	0 Disabledefault		48 – FM NMI Control	
	1 Enable	7-6	Reserved	•
0	SoundBlaster Enable (ENSB)	5	Function 5 Config Reg Rx2	
	0 Disabledefault			default
	1 Enable		1 F5Rx2C-2F RW	
		4	Reserved	always reads 0
		2	FM IRQ Select (FMIRQS)	
			0 Route FM Trap interrule	upt to NMI default
Offset	43 – Plug and Play ControlRW (Function 5)		 Route FM Trap interrule 	upt to IRQ
Offset	43 – Plug and Play ControlRO (Function 6)	1	FM SGD Data for SoundBl	laster Mixing
7-6	SoundBlaster IRQ Select (SBIRQS[1:0])		0 Disable	default
, 0	00 IRQ5default		1 Enable	
	01 IRQ7	0	FM Trap Interrupt (EN_F)	MI
	10 IRQ9		0 Enable	default
	11 IRQ10		1 Disable	
5-4	SoundBlaster DRQ Select (SBDRQS[1:0])			
<i>3</i> - 4	00 DMA Channel 0			
	01 DMA Channel 1default			
	10 DMA Channel 2			
	11 DMA Channel 3			
3-2	MIDI Decode Select (MIDIBASE)			
3-2	00 300-303h			
	01 310-313h			
	10 320-323h			
	11 330-333hdefault			
1.0				
1-0	SoundBlaster Decode Select (SBBASE) 00 220-22Fhdefault			
	01 240-24Fh			
	10 260-26Fh			
	11 280-28Fh			

I/O Base 0 Registers -Audio/Modem Scatter/Gather DMA

Read / Write through function 5, R/O through function 6.

I/O Off	Set 0 – Audio SGD Read Channel StatusRWC	I/O Of	fset 10 – Audio SGD Write Channel StatusRO
7	SGD Active (0 = completed or terminated)RO	7	SGD Active (0 = completed or terminated) RO
6	SGD PausedRO	6	SGD PausedRO
5-4	Reserved always reads 0	5-4	Reservedalways reads 0
3	SGD Trigger Queued (will restart after EOL)RO	3	SGD Trigger Queued (will restart after EOL) RO
2	SGD Stopped (write 1 to resume)RWC	2	SGD Stopped (write 1 to resume)RWC
1	SGD EOLRWC	1	SGD EOLRWC
0	SGD FlagRWC	0	SGD Flag RWC
I/O Off	Set 1 – Audio SGD Read Channel ControlRW	I/O Of	fset 11 – Audio SGD Write Channel Control RW
7	SGD StartWO (always reads 0)	7	SGD StartWO (always reads 0)
	0 No effect		0 No effect
	1 Start SGD read channel operation		1 Start SGD write channel operation
6	SGD TerminateWO (always reads 0)	6	SGD TerminateWO (always reads 0)
	0 No effect		0 No effect
	1 Terminate SGD read channel operation		1 Terminate SGD write channel operation
5-4	Reserved always reads 0, writing 1 not allowed	5-4	Reserved always reads 0, writing 1 not allowed
3	SGD Pause	3	SGD Pause
	0 Release SGD read channel pause and resume		0 Release SGD write channel pause and resume
	the transfer from the paused line		the transfer from the paused line
	1 Pause SGD read channel operation (SGD read		1 Pause SGD write channel operation (SGD
	channel pointer stays at the current address)		write channel pointer stays at current address)
2-0	Reserved always reads 0	2-0	Reserved always reads 0
I/O Off	Set 2 – Audio SGD Read Channel TypeRW	I/O Of	fset 12 – Audio SGD Write Channel TypeRW
7	Auto-Start SGD at EOL (1=Enable) default = 0	7	Auto-Start SGD at EOL (1=Enable) default = 0
6	Reserved always reads 0	6	Reserved always reads 0
5	PCM 16-Bit Format	5	PCM 16-Bit Format
	0 8-Bit Formatdefault		0 8-Bit Formatdefault
	1 16-Bit Format		1 16-Bit Format
4	PCM Stereo Format	4	PCM Stereo Format
	0 Mono Formatdefault		0 Mono Formatdefault
	1 Stereo Format		1 Stereo Format
3-2	Interrupt Select	3-2	Reserved always reads 0
	00 Interrupt at PCI Read of Last Linedefault	1	Interrupt on EOL @ End of Block (1=Ena)def=0
	01 Interrupt at Last Sample Sent	0	Interrupt on FLAG @ End-of-Blk (1=Ena)def=0
	10 Interrupt at Less Than One Line to Send	T/O O8	0 (48.44 A P CCD W CL TI II D C (D DW
	11 -reserved-		fset 17-14 – Audio SGD W Ch Table Pointer BaseRW
1	Interrupt on EOL @ End of Block (1=Ena) def=0	31-0	SGD Table Pointer Base Address (even addr) W
0	Interrupt on FLAG @ End-of-Blk (1=Ena) def=0		Current Pointer AddressR
I/O Off	fset 7-4 – Audio SGD R Ch Table Pointer BaseRW	I/O Of	fset 1F-1C - Audio SGD W Ch Current Count RO
31-0	SGD Table Pointer Base Address (even addr)W	31-24	Reservedalways reads 0
	Current Pointer AddressR	23-0	Current SGD Write Channel Count
I/O Off	set F-C – Audio SGD R Ch Current CountRO	EOL	End Of Link. 1 indicates this block is the last of the
	Reservedalways reads 0		link. If the channel "Interrupt on EOL" bit is set, then
	Current SGD Read Channel Count		an interrupt is generated at the end of the transfer.
3		FLAG	
	SGD Table Format		block. If the channel "Interrupt on FLAG" bit is set,
<u>63</u>			then an interrupt is generated at the end of this block.
EO		STOP	Block Stop. If set, transfer pauses at the end of this
	Count Address		block. To resume the transfer, write 1 to Rx?0[2].

[23:0]

[31:0]

block. To resume the transfer, write 1 to Rx?0[2].

Read / Write through function 5, R/O through function 6.

The following set of registers is dedicated for FM:

<u>1/O OII:</u>	set 20 – FM SGD Read Channel StatusRWC
7	SGD Active (0 = completed or terminated)RO
6	SGD PausedRO
5-4	Reserved always reads 0
3	SGD Trigger Queued (will restart after EOL)RO
2	SGD Stopped (write 1 to resume)RWC
1	SGD EOLRWC
0	SGD FlagRWC
I/O Offs	set 21 – FM SGD Read Channel ControlRW
7	SGD StartWO (always reads 0)
	0 No effect
	1 Start SGD read channel operation
6	SGD TerminateWO (always reads 0)
	0 No effect
	1 Terminate SGD read channel operation
5-4	Reserved always reads 0, writing 1 not allowed
3	SGD PauseRW
	0 Release SGD read channel pause and resume
	the transfer from the paused line
	1 Pause SGD read channel operation (SGD read
	channel pointer stays at the current address)
2-0	Reserved always reads 0
	110501 vou
I/O Offs	set 22 – FM SGD Read Channel TypeRW
<u>I/O Offs</u>	set 22 – FM SGD Read Channel TypeRW Auto-Start SGD at EOL (1=Enable) default = 0
	set 22 – FM SGD Read Channel TypeRW
7	set 22 – FM SGD Read Channel TypeRW Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select
7 6-4	Set 22 – FM SGD Read Channel Type
7 6-4	Set 22 – FM SGD Read Channel Type
7 6-4	Set 22 – FM SGD Read Channel TypeRW Auto-Start SGD at EOL (1=Enable) default = 0 Reservedalways reads 0 Interrupt Select 00 Interrupt at PCI Read of Last Linedefault 01 Interrupt at Last Sample Sent 10 Interrupt at Less Than One Line to Send
7 6-4	Set 22 – FM SGD Read Channel Type
7 6-4	Set 22 – FM SGD Read Channel Type
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default 1 Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send 1 -reserved- Interrupt on EOL @ End of Block O Disable default
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Linedefault Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block Disabledefault Enable
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Linedefault OI Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disabledefault Interrupt on FLAG @ End-of-Blk
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Linedefault OI Interrupt at Last Sample Sent I Interrupt at Less Than One Line to Send I -reserved- Interrupt on EOL @ End of Block O Disabledefault I Enable Interrupt on FLAG @ End-of-Blk O Disabledefault
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Linedefault OI Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disabledefault Interrupt on FLAG @ End-of-Blk
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default Interrupt on FLAG @ End-of-Blk O Disable default Enable
7 6-4 3-2 1 0	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent I Interrupt at Less Than One Line to Send I -reserved- Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent I Interrupt at Less Than One Line to Send I -reserved- Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Set 27-24 - FM SGD Rd Ch Table Pointer Base RW SGD Table Pointer Base Address (even addr)W
7 6-4 3-2 1 0 <u>I/O Offs</u> 31-0	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent IO Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Set 27-24 – FM SGD Rd Ch Table Pointer Base RW SGD Table Pointer Base Address (even addr)W Current Pointer Address R
7 6-4 3-2 1 0 <u>I/O Offs</u> 31-0	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent I Interrupt at Less Than One Line to Send I -reserved- Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Set 27-24 - FM SGD Rd Ch Table Pointer Base RW SGD Table Pointer Base Address (even addr)W
7 6-4 3-2 1 0 <u>I/O Offs</u> 31-0	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent IO Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Set 27-24 – FM SGD Rd Ch Table Pointer Base RW SGD Table Pointer Base Address (even addr)W Current Pointer Address R

Read / Write through function 6, R/O through function 5.

I/O Off	set 40 – Modem SGD Read Channel StatusRWC	I/O Off	fset 50 – ModemSGD Write Channel StatusRO
7	SGD Active (0 = completed or terminated)RO	7	SGD Active (0 = completed or terminated) RO
6	SGD PausedRO	6	SGD PausedRO
5-4	Reserved always reads 0	5-4	Reserved always reads 0
3	SGD Trigger Queued (will restart after EOL)RO	3	SGD Trigger Queued (will restart after EOL) RO
2	SGD Stopped (write 1 to resume)RWC	2	SGD Stopped (write 1 to resume)RWC
1	SGD EOLRWC	1	SGD EOLRWC
0	SGD FlagRWC	0	SGD Flag RWC
I/O Off	set 41 – ModemSGD Read Channel ControlRW	I/O Of	fset 51 – Modem SGD Write Channel Control RW
7	SGD StartWO (always reads 0)	7	SGD StartWO (always reads 0)
	0 No effect		0 No effect
	1 Start SGD read channel operation		1 Start SGD write channel operation
6	SGD Terminate WO (always reads 0) 0 No effect	6	SGD TerminateWO (always reads 0) 0 No effect
	1 Terminate SGD read channel operation		1 Terminate SGD write channel operation
5-4	Test (Do Not Program)always write 0	5-4	Test (Do Not Program) always write 0
3	SGD PauseRW	3	SGD PauseRW
	0 Release SGD read channel pause and resume		0 Release SGD write channel pause and resume
	the transfer from the paused line		the transfer from the paused line
	1 Pause SGD read channel operation (SGD read		1 Pause SGD write channel operation (SGD
	channel pointer stays at the current address)		write channel pointer stays at current address)
2-0	Reserved always reads 0	2-0	Reserved always reads 0
I/O Off	set 42 – Modem SGD Read Channel TypeRW	I/O Of	fset 52 – Modem SGD Write Channel TypeRW
7	Auto-Start SGD at EOL (1=Enable) default = 0	7	Auto-Start SGD at EOL (1=Enable)default = 0
6-4	Reserved	6-2	Reservedalways reads 0
3-2	Interrupt Select	1	Interrupt on EOL @ End of Block (1=Ena) def=0
	00 Interrupt at PCI Read of Last Linedefault	0	Interrupt on FLAG @ End-of-Blk (1=Ena)def=0
	01 Interrupt at Last Sample Sent	v	
	10 Interrupt at Less Than One Line to Send	I/O Of	fset 57-54 – Modem SGD W Ch Table Ptr Base . RW
	11 -reserved-	31-0	SGD Table Pointer Base Address (even addr) W
1	Interrupt on EOL @ End of Block		Current Pointer AddressR
	0 Disabledefault	T/O O6	for the ECC . Markey CCD W. Cl. Comment Count DO
	1 Enable		fset 5F-5C – Modem SGD W Ch Current Count. RO
0	Interrupt on FLAG @ End-of-Blk		Reservedalways reads 0
	0 Disabledefault	23-0	Current SGD Write Channel Count
	1 Enable	EOL	End Of Link. 1 indicates this block is the last of the
I/O Off	set 47-44 – Modem SGD R Ch Table Ptr BaseRW		link. If the channel "Interrupt on EOL" bit is set, then
			an interrupt is generated at the end of the transfer.
31-0	SGD Table Pointer Base Address (even addr)W Current Pointer AddressR	FLAG	<u>Block Flag</u> . If set, transfer pauses at the end of this block. If the channel "Interrupt on FLAG" bit is set,
I/O Off	Sset 4F-4C – Modem SGD R Ch Current CountRO		then an interrupt is generated at the end of this block.
	Reservedalways reads 0	STOP	<u>Block Stop</u> . If set, transfer pauses at the end of this
	Current SGD Read Channel Count		block. To resume the transfer, write 1 to Rx?0[2].
	0411411 S 02 11444 0141114 004114		
	SGD Table Format		
<u>63</u>	<u>62 61 60-56 55-32 31-0</u>		
EO			
	Count Address		
	[23:0] [31:0]		
	, J		

The audio / modem interface is compliant with AC97. Refer to the AC97 specification and AC97 Codec data sheets for further details.

Read / Write through both functions 5 and 6.

Offset 8	3-80 – AC97 Controller Command / StatusRW
Read / V	Vrite through both functions 5 and 6.
31-30	Codec IDRW
	00 Select Primary Codec
	01 Select Secondary Codec
	1x -reserved-
29-28	Reserved always reads 0
27	Secondary Codec Data / Status / Index Valid.RWC
	0 Not Valid
	1 Valid (OK to Read bits 0-23)
26	Reserved always reads 0
25	Primary Codec Data / Status / Index ValidRWC
	0 Not Valid
	1 Valid (OK to Read bits 0-23)
24	AC97 Controller BusyRO
	0 Primary Codec is ready for a register access
	command
	1 AC97 Controller is sending a command to the
	primary codec (commands are not accepted)
23	Codec Command Register Write ModeRW
	0 Select Codec command register write mode
	 Select Codec command register read mode
22-16	Codec Command Register Index [7:1]RW
	Index of the AC97 codec command register to access
	(in the attached codec). Data must be written before
	or at the same time as Index as writing to the index
	triggers the AC97 controller to access the addressed
	codec register over the AC-link interface.
15-0	Codec Command Register Data / Status RW
	W Codec Command Register Data

R Codec Status Register Data

	27-84 – SGD Status Shadow
	Reserved always reads 0
29	Modem Write Chan SGD Active Shadow(Rx50[7])
28	Modem Read Chan SGD Active Shadow (Rx40[7])
27-26	Reserved always reads 0
25	Modem Write Chan SGD STOP Shadow (Rx50[2])
24	Modem Read Chan SGD STOP Shadow.(Rx40[2])
23-22	Reserved always reads 0
21	Modem Write Chan SGD EOL Shadow(Rx50[1])
20	Modem Read Chan SGD EOL Shadow(Rx40[1])
19-18	Reserved always reads 0
17	Modem Write Chan SGD FLAG Shadow(Rx50[0])
16	Modem Read Chan SGD FLAG Shadow (Rx40[0])
15	Reservedalways reads 0
14	FM Channel SGD Active Shadow(Rx20[7])
13	Audio Write Chan SGD Active Shadow(Rx10[7])
12	Audio Read Chan SGD Active Shadow(Rx10[7]) Audio Read Chan SGD Active Shadow(Rx00[7])
11	Reservedalways reads 0
10	FM Channel SGD STOP Shadow(Rx20[2])
	, = = -
9	Audio Write Chan SGD STOP Shadow(Rx10[2])
8	Audio Read Chan SGD STOP Shadow (Rx00[2])
7	Reservedalways reads 0
6	FM Channel SGD EOL Shadow(Rx20[1])
5	Audio Write Chan SGD EOL Shadow (Rx10[1])
4	Audio Read Chan SGD EOL Shadow (Rx00[1])
3	Reserved always reads 0
2	FM Channel SGD FLAG Shadow(Rx20[0])
1	Audio Write Chan SGD FLAG Shadow(Rx10[0])
0	Audio Read Chan SGD FLAG Shadow(Rx00[0])
	Only through function 5 and Read / Write through
function	6:
	B-88 – Codec GPI Interrupt Status / GPIO RWC
31-16	GPI Interrupt StatusRWC
	R GPI[15-0] Interrupt Status
	W 1 to clear
15-0	Codec GPIORW
	R Reflect status of Codec GPI[15-0]
	W. T. ACKIN LAND

Triggers AC-Link slot-12 output to codec

.....always reads 0

Offset 8F-8C - Codec GPI Interrupt EnableRW
31-16 Interrupt on GPI[15-0] Change of Status....RW

0 Disable1 Enable

15-0 Reserved

I/O Base 1 Registers - Audio FM NMI Status Registers

These registers are accessable through function 5 only.

I/O Offset 0 – FM NMI StatusRO Reserved always reads 0 7-2 1-0 **FM NMI Status** 00 Undefined 01 OPL3 Bank 0 10 OPL3 Bank 1 11 Undefined I/O Offset 1 – FM NMI Data.....RO

FM NMI Data

This register allows readback of the data written to the FM data port

<u>I/O Offset 2 – FM NMI IndexRO</u>

FM NMI Index

This register allows readback of the data written to the FM index port

I/O Base 2 Registers -MIDI / Game Port (Rev H)

I/O Off	set 1-0 – MIDI Base	RW
15-0	MIDI Port Base Address	default = 03301
This reg	gister is functional only if Rx42[6	[0] = 1
I/O Off	set 3-2 – Game Port Base	RV
15-0	Game Port Base Address	default = 02001

FUNCTIONAL DESCRIPTIONS

Power Management

Power Management Subsystem Overview

The power management function of the VT82C686A is indicated in the following block diagram:

Figure 6. Power Management Subsystem Block Diagram

Refer to ACPI Specification v1.0 and APM specification v1.2 for additional information.

Processor Bus States

The VT82C686A supports the complete set of C0 to C3 processor states as specified in the Advanced Configuration and Power Interface (ACPI) specification (and defined in ACPI I/O space Registers 10-15):

- C0: Normal Operation
- C1: CPU Halt (controlled by software).
- C2: Stop Clock. Entered when the P_LVL2 register is read. The STPCLK# signal is asserted to put the processor in the Stop Grant State. The CPUSTP# signal is not asserted so that host clocks remain running. To exit this state, the chip negates STPCLK#.
- C3: Suspend. Entered when the P_LVL3 register is read. In addition to STPCLK# assertion as in the C2 state, the SUSST1# (suspend status 1) signal is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz suspend clock (SUSCLK) provided by the VT82C686A. If the HOST_STP bit is enabled, then CPUSTP# is also asserted to stop clock generation and put the CPU into Stop Clock State. To exit this state, the chip negates CPUSTP# and allows time for the processor PLL to lock. Then the SUSST1# and STPCLK# signals are negated to resume to normal operation.

During normal operation, two mechanisms are provided to modulate CPU execution and control power consumption by throttling the duty cycle of STPCLK#:

- a. Setting the THT_EN bit to 1, the duty cycle defined in THT_DTY (IO space Rx10) is used.
- b. THRM# pin assertion enables automatic clock throttling with duty cycle pre-configured in THM_DTY (PCI configuration Rx4C).

System Suspend States and Power Plane Control

There are three power planes inside the VT82C686A. The first power plane (VCCS) is always on unless turned off by the mechanical switch. The second power plane (VCC) is controlled by chip output SUSC# (also called "PSON"). The third plane (VCCRTC) is powered by the combination of the VCCS and the external battery (VBAT) for the integrated real time clock. Most of the circuitry inside the VT82C686A is powered by VCC. The amount of logic powered by VCCS is very small; its main function is to control the supply of VCC and other power planes. VCCRTC is always on unless both the mechanical switch and VBAT are removed.

The VT82C686A supports multiple system suspend states by configuring the SLP_TYP field of ACPI I/O space register Rx4-5:

- POS (Power On Suspend): Most devices in the system remain powered. The host bus is put into an equivalent of the C3 state. In particular, the CPU is put into the Stop Grant State or Stop Clock State depending on the setting of the HOST_STP bit. SUSST1# is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz SUSCLK provided by the VT82C686A. As to the PCI bus, setting the PCLK_RUN bit to 0 enables the CLKRUN protocol defined in the PCI Mobile Design Guide. That is, the PCKRUN# pin will be de-activated after the PCI bus is idle for 26 clocks. Any PCI bus masters including the north bridge may resume PCI clock operation by pulling the PCKRUN# pin low. During the PCKRUN# deactivation period, the PCISTP# pin may be activated to disable the output of the PCI clock generator if the PCI_STP bit is enabled. When the system resumes from POS, the VT82C686A can optionally resume without resetting the system, can reset the processor only, or can reset the entire system. When no reset is performed, the chip only needs to wait for the clock synthesizer and processor PLL to lock before the system is resumed, which typically takes 20ms.
- b) STR (Suspend to RAM): Power is removed from most of the system except the system DRAM. Power is supplied to the suspend refresh logic in the north bridge (VTT of VT82C598) and the suspend logic of the VT82C686A (VCCS). The VT82C686A provides a 32KHz suspend clock to the north bridge for it to use to continue DRAM refresh.
- c) STD (Suspend to Disk, also called Soft-off): Power is removed from most of the system except the suspend logic of VT82C686A (VCCS).
- **d) Mechanical Off:** This is not a suspend state. All power in the system is removed except the RTC battery.

The suspend state is entered by setting the SLP_EN bit to 1. Three power plane control signals (SUSA#, SUSB# and

SUSC#) are provided to turn off more system power planes as the system moves to deeper power-down states, i.e., from normal operation to POS (only SUSA# asserted), to STR (both SUSA# and SUSB# asserted), and to STD (all three SUS# signals asserted). In particular, the assertion of SUSC# can be used to turn off the VCC supply to the VT82C686A.

One additional suspend status indicator (SUSST1#) is provided to inform the north bridge and the rest of the system of the processor and system suspend states. SUSST1# is asserted when the system enters the suspend state or the processor enters the C3 state. SUSST1# is connected to the north bridge to switch between normal and suspend-DRAM-refresh modes.

General Purpose I/O Ports

As ACPI compliant hardware, the VT82C686A includes PWRBTN#, SLPBTN#, and RI# pins to implement power button, sleep button, and ring indicator functionality, respectively. Furthermore, the VT82C686A offers many general-purpose I/O ports with the following capabilities:

- I²C/SMB Support
- Thermal Detect
- Notebook Lid Open/Close Detect
- Battery Low Detect
- Twelve General Purpose Input Ports (multiplexed with other functions).
- Nineteen General Purpose Output Ports (1 dedicated and 18 multiplexed with other functions)
- Four General Purpose Input / Output Ports (multiplexed with other functions)

In addition, the VT82C686A provides an external dedicated SMI pin (EXTSMI#). The external SMI input can be programmed to trigger an SCI or SMI at both the rising and falling edges of the corresponding input signal. Software can check the status of the input pin and take appropriate actions.

Power Management Events

Three types of power management events are supported:

- 1) **ACPI-required Fixed Events** defined in the PM1a_STS and PM1a_EN registers. These events can trigger either SCI or SMI depending on the SCI_EN bit:
 - PWRBTN# Triggering
 - RTC Alarm
 - · Sleep Button
 - ACPI Power Management Timer Carry (always SCI)
 - BIOS Release (always SCI)
- 2) ACPI-aware General Purpose Function Events defined in the GP_STS and GP_SCI_EN, and GP_SMI_EN registers. These events can trigger either SCI or SMI depending on the setting of individual SMI and SCI enable bits:
 - · External SMI triggering
 - · USB Resume
 - Ring Indicator (RI#)
 - Battery Low Detect (BATLOW#)
 - Notebook Lid Open/Close Detect (LID)
 - Thermal Detect (THRM#)

- 3) Generic Global Events defined in the GBL_STS and GBL_EN registers. These registers are mainly used for SMI:
 - PCI Bus Clock Run Resume
 - Primary Interrupt Occurance
 - · GP0 and GP1 Timer Time Out
 - Secondary Event Timer Time Out
 - Occurrence of Primary Events (defined in register PACT_STS and PACT_EN)
 - Legacy USB accesses (keyboard and mouse)
 - Software SMI

System and Processor Resume Events

Depending on the system suspend state, different features can be enabled to resume the system. There are two classes of resume events:

- a) VCCS-based events. Event logic resides in the VCCS plane and thus can resume the system from any suspend state. Such events include PWRBTN#, RI#, BATLOW#, LID, SMBus resume event, RTC alarm, EXTSMI#, and GP1 (EXTSMI1#).
- b) VCC-Based Events. Event logic resides in the VCC plane and thus can only resume the system from the POS state. Such events include the ACPI PM timer, USB resume, and EXTSMIn#.

Figure 7. System Block Diagram Using the VT82C686A Super South Bridge

Legacy Power Management Timers

In addition to the ACPI power management timer, the VT82C686A includes the following four legacy power management timers:

GP0 Timer: general purpose timer with primary event **GP1 Timer**: general purpose timer with peripheral event reload

Secondary Event Timer: to monitor secondary events Conserve Mode Timer: Hardware-controlled return to standby

The normal sequence of operations for a general purpose timer (GP0 or GP1) is to

- 1) First program the time base and timer value of the initial count (register GP_TIM_CNT).
- 2) Then activate counting by setting the GP0_START or GP1 START bit to one: the timer will start with the initial count and count down towards 0.
- 3) When the timer counts down to zero, an SMI will be generated if enabled (GP0TO_EN and GP1TO_EN in the GBL_EN register) with status recorded (GP0TO_STS and GP1TO STS in the GBL STS register).
- 4) Each timer can also be programmed to reload the initial count and restart counting automatically after counting down to 0. This feature is not used in standard VIA BIOS.

The GP0 and GP1 timers can be used just as the general purpose timers described above. However, they can also be programmed to reload the initial count by system primary events or peripheral events thus used as primary event (global standby) timer and peripheral timer, respectively. secondary event timer is solely used to monitor secondary events.

System Primary and Secondary Events

Primary system events are distinguished in the PRI_ACT_STS and PRI_ACT_EN registers:

Bit	Event	<u>Trigger</u>
7	Keyboard Access	I/O port 60h
6	Serial Port Access	I/O ports 3F8h-3FFh, 2F8h-2FFh,
		3E8h-3EFh, or 2E8h-2EFh
5	Parallel Port Access	I/O ports 378h-37Fh or 278h-27Fh
4	Video Access	I/O ports 3B0h-3DFh or memory
		A/B segments
3	IDE/Floppy Access	I/O ports 1F0h-1F7h, 170h-177h,
		or 3F5h

2 Reserved

1 **Primary Interrupts** Each channel of the interrupt controller can be programmed to

be a primary or secondary interrupt

0 ISA Master/DMA Activity

Each category can be enabled as a primary event by setting the corresponding bit of the PRI_ACT_EN register to 1. If enabled, the occurrence of the primary event reloads the GP0 timer if the PACT_GP0_EN bit is also set to 1. The cause of the timer reload is recorded in the corresponding bit of PRI_ACT_STS register while the timer is reloaded. If no enabled primary event occurs during the count down, the GP0 timer will time out (count down to 0) and the system can be programmed (setting the GP0TO EN bit in the GBL EN register to one) to trigger an SMI to switch the system to a power down mode.

The VT82C686A distinguishes two kinds of interrupt requests as far as power management is concerned: the primary and secondary interrupts. Like other primary events, the occurrence of a primary interrupt demands that the system be restored to full processing capability. Secondary interrupts, however, are typically used for housekeeping tasks in the background unnoticeable to the user. The VT82C686A allows each channel of interrupt request to be declared as either primary, secondary, or ignorable in the PIRQ_CH and SIRQ_CH registers. Secondary interrupts are the only system secondary events defined in the VT82C686A.

Like primary events, primary interrupts can be made to reload the GP0 timer by setting the PIRQ_EN bit to 1. Secondary interrupts do not reload the GP0 timer. Therefore the GP0 timer will time out and the SMI routine can put the system into power down mode if no events other than secondary interrupts are happening periodically in the background.

Primary events can be programmed to trigger an SMI (setting of the PACT_EN bit). Typically, this SMI triggering is turned off during normal system operation to avoid degrading system performance. Triggering is turned on by the SMI routine before entering the power down mode so that the system may be returned to normal operation at the occurrence of primary events. At the same time, the GP0 timer is reloaded and the count down process is restarted.

Peripheral Events

Primary and secondary events define system events in general and the response is typically expressed in terms of system events. Individual peripheral events can also be monitored by the VT82C686A through the GP1 timer. The following four categories of peripheral events are distinguished (via register GP_RLD_EN):

Bit-7 **Keyboard Access** Bit-6 **Serial Port Access** Bit-4 Video Access Bit-3 **IDE/Floppy Access**

The four categories are subsets of the primary events as defined in PRI ACT EN and the occurrence of these events can be checked through a common register PRI_ACT_STS. As a peripheral timer, GP1 can be used to monitor one (or more than one) of the above four device types by programming the corresponding bit to one and the other bits to zero. Time out of the GP1 timer indicates no activity of the corresponding device type and appropriate action can be taken as a result.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit	Comment
Storage temperature	-55	125	oC	T_{S}
Operating temperature - Case	0	85	oC	T _C
Operating temperature - Ambient	0	70	oC	T _A
Reference Voltage	0	5.5	Volts	V_{REF}
Core Voltage	0	3.6	Volts	V _{CC}
Suspend Voltage	-0.5	$V_{CC} + 0.3$	Volts	V _{SUS}
USB Voltage	-0.5	$V_{CC} + 0.3$	Volts	V_{USB}
Hardware Monitor Voltage	-0.5	$V_{CC} + 0.3$	Volts	V_{HWM}
Battery Voltage	-0.5	$V_{CC} + 0.3$	Volts	V _{BAT}
Input voltage (3.3V only inputs)	-0.5	$V_{CC} + 0.3$	Volts	FERR#, USBCLK, PWRBTN#, EXTSMI#, BATLOW#, FAN1, FAN2, SMBCLK, SMBDATA
Input voltage (5V tolerant inputs)	-0.5	$V_{REF} + 0.5$	Volts	All other inputs

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

 $T_{A} \text{ -0-70}{}^{O}\text{C}, \ V_{REF} = 5\text{V} \pm 5\%, \ V_{CC} = V_{CCS} = V_{CCH} = V_{CCU} = 3.3\text{V} \pm 0.3\text{V}, \ V_{BAT} = 3.3\text{V} + 0.3/-1.3\text{V}, \ GND = 0\text{V} + 0.3/-1.3\text{V}$

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input low voltage	-0.5	0.8	V	
V _{IH}	Input high voltage	2.0	V _{CC} +0.3	V	
V_{OL}	Output low voltage	-	0.45	V	$I_{OL} = 4.0 \text{mA}$
V _{OH}	Output high voltage	2.4	-	V	$I_{OH} = -1.0 \text{mA}$
I_{IL}	Input leakage current	-	±10	uA	$0 < V_{\rm IN} < V_{\rm CC}$
I_{OZ}	Tristate leakage current	-	±20	uA	$0.45 < V_{OUT} < V_{CC}$
I_{CC}	Power supply current	-	80	mA	

PACKAGE MECHANICAL SPECIFICATIONS

Figure 8. Mechanical Specifications – 352 Pin Ball Grid Array Package