ÁLGEBRA II (61.08 - 81.02)

Evaluación Integradora Duración: 2 horas.

Segundo cuatrimestre – 2021 2/III/22 - 13:00 hs.

Apellido y Nombres:

Legajo:

1. Se considera \mathbb{R}^3 con el producto interno canónico. Hallar, y describir geométricamente, el conjunto de todos los $x \in \mathbb{R}^3$ equidistantes a los subespacios

$$\mathbb{S}_1 = \operatorname{gen}\left\{\begin{bmatrix}2 & -6 & 3\end{bmatrix}^T, \begin{bmatrix}6 & 3 & 2\end{bmatrix}^T\right\} \ y \ \mathbb{S}_2 = \operatorname{gen}\left\{\begin{bmatrix}6 & 3 & 2\end{bmatrix}^T, \begin{bmatrix}-3 & 2 & 6\end{bmatrix}^T\right\}.$$

2. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz definida por $A = \frac{1}{2}(\Sigma + I)$, donde Σ es la matriz, en base canónica, de la simetría con respecto al subespacio $\mathbb{S} = \{x \in \mathbb{R}^3 : 2x_1 - x_2 + 2x_3 = 0\}$ en la dirección del subespacio $\mathbb{T} = \text{gen} \{ \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T \}$. Hallar la solución de Y' = AY tal que $Y(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

3. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz de rango 2 tal que $\begin{bmatrix} 6 & 3 & 2 \end{bmatrix}^T \in \text{nul}(A)$ y

$$A \begin{bmatrix} 2 & -3 \\ -6 & 2 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ -3 & 4 \\ 6 & -2 \end{bmatrix}.$$

Hallar todas las soluciones por cuadrados mínimos de la ecuación $Ax = \begin{bmatrix} 2 & 2 \end{bmatrix}^T$.

4. Sea $B = A^2 - 2A + I$, donde $A \in \mathbb{R}^{3\times 3}$ es una matriz simétrica, definida postiva, tal que traza(A) = 10. Sean $Q_1, Q_2 : \mathbb{R}^3 \to \mathbb{R}$ las formas cuadráticas definidas por $Q_1(x) = x^T B x$ y $Q_2(x) = x^T A x$. Si $\max_{\|x\|=1} Q_1(x) = 9$ y $Q_1\left(\frac{1}{3}\begin{bmatrix}2 & -1 & 2\end{bmatrix}^T\right) = Q_1\left(\frac{1}{3}\begin{bmatrix}-1 & 2 & 2\end{bmatrix}^T\right) = 9$, hallar el valor de $Q_2\left(\begin{bmatrix}1 & 2 & 1\end{bmatrix}^T\right)$.