${\bf Compiler}$

wugouzi

April 28, 2019

Contents

1	Chap1 introduction				
2	chap2 scanning				
3	Cha	ap3 context-free grammars and parsing	3		
	3.1	context-free grammars	3		
	3.2	Parse tree and abstract syntax trees	4		
		3.2.1 parse tree	4		
		3.2.2 abstract symtax tree	4		
	3.3	Ambiguity	4		
		3.3.1 ambiguity grammars	4		
		3.3.2 precedence and associativity	4		
		3.3.3 the dangling else problem	5		
		3.3.4 inessential ambiguity	5		
		3.3.5 extended notations: EBNF and syntax diagrams	5		
	3.4	Formal properties of context-free language	5		
4	Cha	ap4 top-down parsing	6		
	4.1	Top-down parsing by recursive-descent	6		
	4.2	LL(1) parsing	6		
		4.2.1 $LL(1)$ parsing table	7		
		4.2.2 left recursion removal and left factoring	7		
		4.2.3 Syntax tree construction in LL(1) parsing	8		
	4.3	First and follow sets	8		
	4.4	Error recovery in top-down parsers	8		

5	Cha	p5 Bottom-up parsing	8	
	5.1	Overview of bottom-up parsing	8	
	5.2	Finite automata of $LR(0)$ items and $LR(0)$ parsing	11	
		5.2.1 Finite automata of items	11	
		5.2.2 The LR(0) parsing algorithm $\dots \dots \dots \dots$	12	
	5.3	SLR(1) Parsing (simple $LR(1)$)	13	
		5.3.1 disambiguating rules for parsing conflicts	14	
		5.3.2 limits of $SLR(1)$ parsing power	14	
	5.4	General $LR(1)$ and $LALR(1)$ parsing	14	
		5.4.1 Finite automata of $LR(1)$ items	14	
		5.4.2 The LR(1) parsing algorithm $\dots \dots \dots \dots$	14	
	5.5	LALR(1) parsing	15	
	5.6	Error recovery in Bottom-up parsers	15	
6	chaj	p6 semantics analysis		
	6.1	Attributes and attribute grammars	15	
		6.1.1 attribute grammars	16	
		6.1.2 simplifications and extensions to attribute grammars .	17	
	6.2	Algorithms for attribute computation	17	
		6.2.1 dependency graphs and evaluation order	17	
		6.2.2 synthesized and inherited attributes	17	
		6.2.3 The use of external data structures to store attributes		
		values	17	
		6.2.4 The computation of attributes during parsing	18	
		6.2.5 The dependence of attributes computation on the syntax	18	
	6.3	The Symbol Table	18	
		6.3.1 Declarations	18	
		6.3.2 Scope rules and block structure	19	
	6.4	Data types and type checking	19	

1 Chap1 introduction

source code -> scanner -> [tokens] -> parser -> [syntax tree] -> semantic analyzer -> [annotated tree] -> source code optimizer -> [intermediate code] -> code generator -> [target code] -> target code optimizer -> [target code]

2 chap2 scanning

source code (character stream) -> token stream. Use regular expression. a R|S RS R* R+= R(R*) R?=(R|) [abce]=(a|b|c|e) [a-z] [az]=anything but one of the listed chars

comment "*"([*/]/[*]""|""[^/])"*/"

finite automata

Thompson's construction

Minimizing the number of states in a DFA

- 1. it begins with the most optimistic assumptions possible: it create two sets
 - one consisting of all the accepting states
 - the other consisting of all the nonaccepting states
- 2. given this partition of the states of the original DFA, consider the transitions on **each character** a of the alphabet
 - if all accepting states have transitions on a to accepting states, defines an a-transition from the new accepting state to itself
 - if all accepting states have transitions on a to nonaccepting states
- 3. given this partition of the states of the original DFA, consider the transitions on each character a of the alphabet
 - if there are two accepting states s and t that have transitions on a that land in different sets, no a-transition can be defined for this grouping of the states. a distinguish the states s and t
 - if there are two accepting states s and t s.t. s has an a-transition to another accepting state, while t has no a-transition at all. a distinguish s and t

3 Chap3 context-free grammars and parsing

3.1 context-free grammars

A context-free grammar involves recursion rules. 4-tuple $(V, \Sigma, S, \rightarrow)$. V nonterminal. terminal. S start symbol. $\rightarrow \subset V \times (V \cup \Sigma)*$

Left recursive: the nonterminal A appears as the first symbol on the right-hand side of the rule defining A

Right recusive:

-production: empty-> A grammar that generates a language containing the empty string must have at least one **-production**

3.2 Parse tree and abstract syntax trees

3.2.1 parse tree

A parse tree corresponding to a derivation is a labeled tree

- the interior nodes are labeled by nonterminals
- the leaf is **terminals**

left-most derivation

3.2.2 abstract symtax tree

3.3 Ambiguity

3.3.1 ambiguity grammars

ambiguous grammar: a grammar that generates a string with two distinct parse trees

Two basic methods:

- 1. A rule: that specifies in each ambiguous case which of the parse trees is the correct one. **disambbiguating rule**
 - associativity
- 2. change the grammar

3.3.2 precedence and associativity

A left recursive rule makes its operators associate on the left

3.3.3 the dangling else problem

3.3.4 inessential ambiguity

sometimes a grammar may be ambiguous and yet always produce unique abstract syntax tree.

inessential ambiguity: the associated semantics don't depend on what disambiguating rule is used

3.3.5 extended notations: EBNF and syntax diagrams

$$A \to A \alpha \mid \beta \Longrightarrow A \to \beta \{\alpha\}. A \to \alpha A \mid \beta \Longrightarrow A \to \{\alpha\} \beta$$

3.4 Formal properties of context-free language

A context-free grammar consists of the following

- 1. T terminals
- 2. N nonterminals
- 3. P grammar rules
- 4. S start symbol

sentential form a string a in $(T \cup N)$ *

A grammar G is **ambiguous** if there exists a string $w \in L(G)$ s.t. w has two distinct parse trees

4 Chap4 top-down parsing

4.1 Top-down parsing by recursive-descent

not easy and use EBNF

$$\begin{array}{l} \textit{ (if-stmt)} ::= \text{ `if' '(' } \langle exp \rangle \text{ ')' } \langle statement \rangle \\ | \text{ `if' '(' } \langle exp \rangle \text{ ')' } \langle statement \rangle \text{ `else' } \langle statement \rangle \\ \end{array}$$

to if-stmt -> if (exp) statement [else statement]

4.2 LL(1) parsing

use an explicit stack rather than recursive calls.

$$\begin{array}{ccccc} \langle S \rangle ::= \langle E \rangle \ \text{`+'} \ \langle S \rangle \\ | \ \langle E \rangle \end{array}$$

.

partly-derived string	lookahead	parsed part	unparsed part
S	((1+2+(3+4))+5
E+S	((1+2+(3+4))+5
(S)+S	1	(1+2+(3+4))+5
(E+S)+S	1	(1+2+(3+4))+5
(1+S)+S	2	(1+	2+(3+4))+5
(1+E+S)+S	2	(1+	2+(3+4))+5
(1+2+S)+S	((1+2+((3+4))+5

For
$$S \to (S) S \mid \epsilon$$

step	parsing	input	action
1	\$S	()\$	S->(S)S
2	\$S)S(()\$	match
3	\$S)S)\$	S->e
4	\$S))\$	match
5	S	\$	S->e
6	\$	\$	match

Two actions:

- 1. generate
- 2. match: match a token on top of the stack with the next input token

This corresponds to the leftmost derivation. characteristic of top-down parsing

4.2.1 LL(1) parsing table

parsing table

$$\frac{M[N,T]}{S}$$
 () \$ S->e S->e

M is the set of non-terminals. T is the set of terminals or tokens including \$

Table-constructing rule:

- 1. if $A \to \alpha$ is a production choice and there is a derivation $\alpha \Rightarrow *a\beta$ where a is a token then add $A \to \alpha$ to M[A,a]
- 2. if $A \to \alpha$ and $\alpha \Rightarrow *\epsilon, S\$ \Rightarrow^* \beta Aa\gamma$, where S is the start symbol and a is a token(or \$), then add $A \to \alpha$ to M[A,a]

A grammar is LL(1) if LL(1) parsing table has at most one production in each entry

4.2.2 left recursion removal and left factoring

left recursion removal

- immediate left recursion: $exp \rightarrow exp + term|exp term|term$
- indirect left recursion: $A \to Bb$ and $B \to Aa$
- 1. Simple immediate left recursion. $A \to A\alpha | \beta$ to $A \to \beta$ A' and $A' \to \alpha$ $A' | \epsilon$
- 2. general immediate left recursion. $A \to A\alpha_1 | \dots | A\alpha_n | \beta_1 | \dots | \beta_m$ to $A \to \beta_1 A' | \dots | \beta_m A'$ and $A' \to \alpha_1 A' | \dots | \alpha_n A' | \epsilon$
- 3. general left recursion. grammars with no \$\epsilon\$-productions and no cycles

doesn't change language, but changes the grammar and parse tree **left factoring**. $A \to \alpha \beta | \alpha \gamma$ to $A \to \alpha A'$ and $A' \to \beta | \gamma$

4.2.3 Syntax tree construction in LL(1) parsing

4.3 First and follow sets

X a grammar symbol (a terminal or non-terminal) or ϵ . Then First(X) is

- 1. if X is a terminal or ϵ , then First(X)={X}
- 2. if X is a non-terminal, for each $X \to X_1 X_2 \dots X_n$, First(X) contains First(X1) {e}

A non-terminal A is **nullable** iff there exists $A \Rightarrow^* \epsilon$ iff First(A) contains ϵ Follow(A) is

- 1. if A is start symbol, \$ is in Follow(A)
- 2. if $B \to \alpha A \gamma$, then $\operatorname{First}(\gamma) \{\epsilon\} \subseteq \operatorname{Follow}(A)$
- 3. if $B \to \alpha A \gamma, \epsilon \in \text{First}(\gamma)$, then Follow(A) contains Follow(B)

4.4 Error recovery in top-down parsers

5 Chap5 Bottom-up parsing

5.1 Overview of bottom-up parsing

- A bottom-up parser uses an **explicit stack** to perform a parse
- The parsing stack will contain both tokens and nonterminals

• **right-most** derivation – backward start with the tokens; end with the start symbol

$$(1+2+(3+4))+5$$

 $(E+2+(3+4))+5$
 $(S+2+(3+4))+5$
 $(S+E+(3+4))+5$
 $(S+(S+4))+5$
 $(S+(S+4))+5$
 $(S+(S+E))+5$
 $(S+(S))+5$
 $(S+E)+5$
 $(S+5)+5$
 $(S+5$

• parsing actions: a sequence of shift and reduce operations parser state: a stack of terminals and non-terminals current derivation step = always stack + input

derivation	step stack	unconsumed input
(1+2+(3+4))+5		(1+2+(3+4))+5
	(1+2+(3+4))+5
(E+2+(3+4))+5	(E	+2+(3+4))+5
(S+2+(3+4))+5	(S	+2+(3+4))+5
	(S+	2+(3+4))+5
	(S+2)	+(3+4))+5
(S+E+(3+4))+5	(S+E)	+(3+4))+5

- 1. **shift**: shift a terminal from the front of the input to the top of the stack
 - 1. **reduce**: reduce a string at the top of the stack to a nonterminal A, given the BNF choice A

A bottom-up parser: shift-reduce parser

• One further feature of bottom-up parsers grammars are always augmented with a **new start symbol**. if S is the start symbol, a new start symbol S' is added to the grammar: S' S

• example

$$S \rightarrow (S)S|e$$

$$S' = >S = >(S)S = >(S) = >()$$

	Parsing stack	Input	Action
1	\$	()\$	Shift
2	\$ () \$	Reduce $S \rightarrow$
3	\$ (S) \$	Shift
4	\$ (S)	\$	Reduce $S \rightarrow$
5	\$ (S) S	\$	Reduce $S \rightarrow (S) S$
6	S	\$	Reduce S'-> S
7	\$S'	\$	Accept

• example

$$E'->E$$

$$E->E+n|n$$

$$E'=>E=>E+n=>n+n$$

	Parsing stack	Input	Action
1	\$	n+n\$	Shift
2	n	+n\$	Reduce $E->n$
3	E	+n\$	Shift
4	E+	n\$	Shift
5	E+n	\$	Reduce $E->E+n$
6	E	\$	Reduce $E'->E$
7	\$E'	\$	Accept

Right sentential form

- A sentential form is any string derivable from the start symbol.
 Note that this includes the forms with non-terminals at intermediate steps as well.
- A right-sentential form is a sentential form that occurs in a step of rightmost derivation (RMD). Each of the intermediate strings of terminals and nonterminals in such a derivation is called a right sentential form Each such sentential form is split between the parsing stack and the input during a shift-reduce parse
- A **sentence** is a sentential form consisting only of terminals

E,E+,E+n are **viable prefixes** of the right sentential form E+n. The sequence of symbols on the parsing stack is called **viable prefix** of the right sentential form

• handle This string, together with the **position** in the right sentential form where it occurs, and the production used to reduced it, is called the **handle** of the right sentential form

 $\frac{\mathrm{determining\ the\ next\ handle\ in\ a\ parse\ is\ the\ main\ task\ of\ a\ shift-reduce}}{\mathrm{parser}}$

5.2 Finite automata of LR(0) items and LR(0) parsing

- An LR(0) item of a context-free grammar: a production choice with a distinguished position in its right-hand side
- If $A \rightarrow$, = , then $A \rightarrow$ ů is an LR(0) item
- Example

$$S' -> S$$

$$S \rightarrow (S)S \setminus e$$

$$S' \rightarrow uS$$

$$S' -> S\mathring{u}$$

$$S \rightarrow \mathring{u}(S)S$$

$$S \rightarrow (\mathring{u}S)S$$

$$S \rightarrow (S\mathring{u})S$$

$$S \rightarrow (S)$$
ůS

$$S \rightarrow (S)Sů$$

$$S \rightarrow \mathring{u}$$

5.2.1 Finite automata of items

- The LR(0) items: as the state of a finite automata
- construct the DFA of sets of LR(0) using the subset construction from NFA
- If X is a token or a nonterminal

$$A \to \alpha \cdot X\eta \longrightarrow X \to \alpha X \cdot \eta$$

- If X is a token, then this transition corresponds to a shift of X from the input to the top of the stack during a parse
- if X is a nonterminal, X will never appear as an input symbol

$$A \to \alpha \cdot X\eta \xrightarrow{\epsilon} X \to \beta$$

- The **start state** of the NFA the **initial state** of the parser: the stack is empty
- the solution is to augment the grammar by a single production S' -> S
- S'->ůS the start state of the NFA

5.2.2 The LR(0) parsing algorithm

- the parsing stack to store: symbols and state numbers
- pushing the new state number onto the parsing stack after each push of a symbol
- Let s be the current state. Then actions are
 - 1. if state s contains any item of the form $A \rightarrow \mathring{u}X$ (X is a terminal). Then the action is to shift the current input token onto the stack
 - If state s contains any complete item (an item of the form A->ů), then the action is to reduce by the rule A->ů
 - A reduction by the rule S'->S where S' is the start state
 - acceptance if the input is empty
 - Error if the input is not empty
- A grammar is LR(0) grammar if the above rules are unambiguous
- A grammar is LR(0) iff
 - Each state is a shift state
 - A reduce state containing a single complete item
- table

state	action	rule	input	input	input	goto
			(a)	A
0	shift		3	2		1
1	reduce	A'->A				
2	reduce	$A \rightarrow (A)$				
3	shift		3	2		4
4	shift				5	
5	reduce	A-> a				

5.3 SLR(1) Parsing (simple LR(1))

• definition

- 1. if state s contains any item of form $A \to \alpha \cdot X\beta$, then the action is to shift the current input token onto the stack, and the new state to be pushed on the stack is the state containing the item $A \to \alpha \cdot X\beta$
- 2. if state s contains the complete item $A \to \gamma$, and the next token in the input string is in Follow(A), then the action is to reduce by the rule $A \to \gamma$
 - A reduction by the rule S'->S where S' is the start state,
 this will happen only if the next input token is \$
 - remove the string and all of its corresponding states from the parsing stack
 - back up in the DFA to the state from which the construction of begin
 - this state must contain an item of the form $B \to \alpha \cdot A\beta$. Push A to the stack, and push the state containing the item $B \to \alpha \cdot A\beta$
- 3. if the next input token is s.t. neither of the above two cases applies, an error is declared

• A grammar is **SLR(1)** iff for any state s

- 1. for any item $A \to \alpha \cdot X\beta$ in s with X a terminal, there is no complete item $B \to \gamma$ in s with X Follow(B)
- 2. For any two complete item $A \to \alpha \cdot$ and $B \to \beta \cdot$ in s, Follow $(A) \cap$ Follow $(B) = \emptyset$
- right recursion can cause stack overflow

5.3.1 disambiguating rules for parsing conflicts

- two kinds of parsing conflicts in SLR(1) parsing shift-reduce conflicts
 reduce-reduce conflicts
- in the case of shift-reduce conflicts, there is a natural **disambiguaiting rule**: always prefer shift over the reduce

•

5.3.2 limits of SLR(1) parsing power

5.4 General LR(1) and LALR(1) parsing

- the difficulty with the SLR(1) method: applies lookaheads after the construction of the DFA of LR(0) items
- An LR(1) item is a pair consisting of an LR(0) item and a lookahead token
- LR(1) item as $[A->\mathring{u}, a]$ $A->\mathring{u}$ is LR(0) item, a is a token
- definition of LR(1) transitions main difference of LR(0) and LR(1) [A->ůX, a], X is any symbol, there is a transition on X to [A->Xů,a] [A->ůB,a], B nonterminal, there are -transitions to items [B->ů,b] for every B-> and for every token b in First(a)

5.4.1 Finite automata of LR(1) items

- start state S'->S
- start item

[S'->uS, \$]

5.4.2 The LR(1) parsing algorithm

- the general LR(1) parsing algorithm Let s be the current state.
 - 1. s:[A->ůX,a], X terminal, X is the next token in the input string shift
 - 2. s: [A->ů,a], the next token in the input string is a **reduce**
 - 3. otherwise error

- A grammar is LR(1) iff for any state s
 - 1. for any item $[A->\mathring{\mathbf{u}},\mathbf{a}]$ in s with X a terminal, there is no item in s of the form $[B->\mathring{\mathbf{u}},\mathbf{X}]$ (otherwise there is a shift-reduce conflict
 - 2. there are no two item in s of the form $[A->\mathring{\mathbf{u}},\mathbf{a}]$ and $[B->\mathring{\mathbf{u}},\mathbf{a}]$

$5.5 \quad LALR(1)$ parsing

- the size of the DFA of sets of LR(1) items is too large
- first principle of LAIR(1) parsing the core of a state of DFA of LR(1) is a state of the DFA of LR(0) items
- second principle of LAIR(1) parsing s,s of DFA of LR(1) that have the same core, suppose there is a transition on the symbol X from s to a state t, then there is also a transition on X from state s to a state t, and the states t and t have the same core
- if a grammar is LR(1) then the LALR(1) parsing table cannot have any shift-reduce conflicts, there may be reduce-reduce conflicts
- if a grammar is SLR(1), then it's LALR(1)
- compute the DFA of LALR(1) items directly from the DFA of LR(0) items through a process of **propagating lookaheads**

5.6 Error recovery in Bottom-up parsers

A bottom-up parser will detect an error when a blank entry is detected

6 chap6 semantics analysis

6.1 Attributes and attribute grammars

attribute: any property of a programming language constructs. May be fixed prior to the compilation process or be only determinable during program execution

binding of the attribute: the process of computing an attribute and associating its computed value with the language construct in question

binding time: the time during the compilation/execution process when the binding of an attribute occurs

static attributes/dynamic attributes: based on the difference of the binding time

type checker: an analyzer. computes the data type attribute of all language entities for which data types are defined. And verifies that these types conform to the type rules of the language

type checking: set of rules that ensure the type consistency of different constructs in the program. e.g. operands types and so on

6.1.1 attribute grammars

- X.a: the value of a associated to X
 X is a grammar symbol and a is an attribute associated to X
- syntax-directed semantics: attributes are associated directly with the grammar symbols of the language
- given attributes $a_1, a_2, ..., a_k$ for each grammar rule $X_0 \to X_1 ... X_n$, the values of the attributes $X_i.a_j$ of each grammar symbol X_i are related to the values of the attributes of the other symbols in the rule
- an attribute grammar

$$X_i.a_j = f_{ij}(X_0.a_1, \dots, X_0.a_k, \dots, X_n.a_1, \dots, X_n.a_k)$$

• example

For

$$\langle number \rangle ::= \langle number \rangle \langle digit \rangle$$

 $| \langle digit \rangle ::= '[0123456789]'$

grammar rule	semantic rules
$number1 \rightarrow number2 \ digit$	$number 1.val = number 2.val \times 10 + digit.val$
number o digit	number.val = digit.val
$digit \rightarrow 0$	digit.val = 0

6.1.2 simplifications and extensions to attribute grammars

- **metalanguage** for the attribute grammar: the collection of expressions allowable in an attribute equation
- **functions** can be added to the metalanguage whose definitions may be given elsewhere
- simplifications
 - 1. using ambiguous grammar
 - 2. using abstract syntax tree instead of parse tree

6.2 Algorithms for attribute computation

purpose

- each grammar rule choice has an associated dependency graph
- an edge from X.a to X.a expressing the dependency of X.a on X.a

6.2.1 dependency graphs and evaluation order

• directed acyclic graphs DAG topological sort

6.2.2 synthesized and inherited attributes

- · synthesized attributes
 - an attribute is synthesized if all its dependencies point from child to parent in the parse tree
 - S-attributed grammar an attribute grammar where all the attributes are synthesized
- **inherited attributes** inheritance from parent to siblings, from siblings to siblings

6.2.3 The use of external data structures to store attributes values

- Applicability
 - Not suitable to the method of **parameters** and **returned values**

- particularly when the attribute values have significant structure and may be needed at arbitrary points during translation
- Not reasonable to be stored in the syntax tree nodes

• Ways:

- external data structures: table, graphs and other data structures.
 One of the prime examples is the symbol table
- replace attribute equations by calls to procedures representing operations on the appropriate data structure used to maintain the attribute values

6.2.4 The computation of attributes during parsing

• L-attributed

- An attribute grammar of a_1, \ldots, a_k is **L-attributed** if for each inherited attribute a_j and each grammar rule $X_0 \to X_1 \ldots X_n$ the associated equations for a_j are $X_i.a_j = f_{ij}(X_0.a_1, \ldots, X_0.a_k, X_1.a_1, \ldots, X_1.a_k, \ldots, X_{i-1}.a_1, \ldots)$
- S-attributed grammar is L-attributed

6.2.5 The dependence of attributes computation on the syntax

6.3 The Symbol Table

semantic checks

- 1. Linear list
- 2. Various search tree structures AVL, B tree
- 3. hash tables best choice

6.3.1 Declarations

- constant declarations
- type declarations
- variable declarations
- procedure/function declarations

- 6.3.2 Scope rules and block structure
- 6.4 Data types and type checking