Futbolcu Bonservis Değeri Tahmini

Berkay Yüce Bilişim Sistemleri Mühendisliği Makine Öğrenmesi Berkay.Yce10@gmail.com

Bu çalışmada futbolcuların sezonluk istatistikleri web kazıma (scraping) yöntemi ile toplanmıştır. Oyuncuların her sezonki performansına ait detaylı veriler elde edilmiş; bu veriler daha sonra temizlenmiş, görselleştirilmiş ve analiz için uygun hale getirilmiştir. Çalışmada elde edilen veri ile transformer tabanlı zaman serisi ve regresyon modelleri olan Autformer,Informer,Reformer,TFT ve TST modelleri kullanılıp model eğitim kısmı gerçekleştirilip ilgili sonuçlar paylaşılmıştır.

Veri kaynağı olarak sofascore sitesi tercih edilmiştir. Web scraping işlemleri için **Python** dili kullanılmış, dinamik sayfa yapıları nedeniyle **Playwright** kütüphanesinden faydalanılmıştır.

- Oyuncu Bilgileri : Oyuncu adı, Yaş, Uyruk, Mevki.
- Performans Verileri: Lig, Kategori, Sezon, Bonservis

MP: Maç sayısı, DK: Oynanılan dakika, GLS: Gol sayısı, AST: Asist sayısı, ASR: Sezonun ortalama reytingi, TOS: İsabetsiz şut, SOT: İsabetli şut, BCM: Kaçırılan büyük şanslar, KEYP: Kilit pas sayısı, APS: Pas denemesi, APS%: Pas başarı oranı, ACR: Orta denemesi, CA%: Orta isabet oranı, ALB: Kaybedilen hava topu mücadele sayısı, ADW: Kazanılan hava topu mücadele sayısı, LBA%: Hava topu kazanma oranı, CLS: Top temizleme sayısı, YC: Sarı kart sayısı, <u>RC</u>: Kırmızı kart sayısı, <u>ELTG</u>: , <u>DRP</u>: Rakip tarafından geçilme sayısı, <u>TACK</u>: Mücadele sayısı, INT: Top kapma sayısı, BLS: Top kaybı sayısı, xG: Gol beklentisi, xA: Asist beklentisi, GI: Gol katkı sayısı(gol+asist), XGI: Beklenen gol katkısı

Örnek oyuncu Ferdi Kadıoğlu

SofaScore sitesinden ilgili oyuncu profiline gittiğimizde bizi karşılayan bu kısımdan oyuncunun bilgileri çekiliyor.

Kariyer kısmı olan bu bölümden oyuncunun diğer bilgileri çekiliyor. Veriler : Genel, Shooting, Team play, Pas, Savunma, Additional gibi sekmeler altında tutuluyor. Sırasıyla bu sekmeler arasında gezilerek ilgili veriler toplanıyor.

Çekilen veriler bir araya getirilip ham veriyi oluşturuyor.

Oyuncu 1	lag Uynu	k Wev	ki Sezon	Lig	Kategori	MP	X	GLS A	IST ASR	TOS	90T B	OV 8	EVP	Œ S	OR	APS APS%	ALB LBA%	UR CAN	QS.	IC F	CE	IG D	go T	ACK I	NT B	IS A	DW 10	S XA	GI XIGI	Borsenis
Ferdi Kadioglu	25 TUR	0	24/25	Premier League	Domestic leagues	6	388	1	0 6.80	4	1	1	5	0	3	128 85.3	444.4	444.4	1	1	0	0	9	90	8	2	30	44 0.27	107	25,000,000
Ferdi Kadioglu	25 TUR	D	24/25	Trendyol SÄX per tig	Domestic leagues	2	334	0	0 6.65			0	0	0	0	42 82.4	5 100.0	0	0	0	0	0	2	0	0			0.02	000	30,000,000
Ferd Kadloglu	24 TUR	0	23/24	Trendyol SÄXper Lig	Domestic leagues	37	3327	1	47.44	33	14	3	51	10	57	1690 84.8	108 59.9	24 35.3	15	3	0	0	34	75	35	7	26 2	50 6.69	591	21,000,000
Ferdi Kadioglu	23 TUR	D	22/23	Trendyol SÄXper Lig	Domestic leagues	32	2852	3	47,01	23	7	2	42	3	8	1476 85.6	58 53.2	19 25.0	6	5	0	0	20	67	28	8	16		7	17,000,000
Ferdi Kadioglu	22 TUR	D	21/22	Trendyol SÄX per tig	Domestic leagues	28	2254	2	17.06	20	7	1	31	3	51	1049 82.7	50 61.7	19 24.7	5	5	0	0	35	76	39	8	18		3	10,500,000
Ferdi Kadioglu	21 TUR	0	20/21	Trendyol SÅXper Lig	Domestic leagues	25	737	1	26.64	11	3	1	20	3	11	243 80.7	8 53.3	9 37.5	0	3	0	0	4	13	6	4	1		3	4.200.000
Ferdi Kadioglu	20 TUR	D	19/20	Trendyol SÄXper Lig	Domestic leagues	23	933	4	3 6.82	17	6	0	17	4	19	291 81.3	21 77.8	623.1	0	2	0	0	13	21	6	2	5		7	4.000.000
Ferd Kadloglu	23 TUR	D	22/23	TÂlirkiye Kupasāć	Domestic leagues	1	90	0	0 7.30	1	0	0	0	0	4	11	00	0.4	1	0	0	0	1	2	1	1			0	17,000.000
Ferdi Kadioglu	18 TUR	0	17/18	Eredivisie	Domestic leagues	2	90	0	0 6.85	1	0	0	3	2	1	25 67.6		2 28.6	0	0	0	0	0	0	0	1	1		0	1,500,000
Ferdi Kadioglu	17 TUR	D	15/17	Eredivisie	Domestic leagues	27	1003	4	3 6.59	20	5	0	21	4	24	376 72.0	1944.2	14 30.4	0	1	0	0	12	35	9	7	10		7	1.250.000
Ferd Kadloglu	25 TUR	0	24/25	LEFA Champions League	international competitions	3	194	1	0 6.90	3	2	1	1	0	2	68 87.2	4 65.7	133.3	0	1	0	0	4	6	2	0	2		1	30,000,000
Ferdi Kadioglu	24 TUR	D	23/24	LEFA Conference League	International competitions	11	857	2	17.50	9	3	0	14	2	20	583 85.2	32,47.1	3 37.5	3	0	0	0	7	21	8	2	40	27 1.10	313	21,000,000
Ferdi Kadioglu	22 TUR	D	21/22	UEFA Conference League	International competitions	2	118	1	17.10	1	1	0	1	1	3	37 84.1	4 100.0	0	0	0	0	0	0	2	5	0	1		2	10,500,000
Ferdi Kadioglu	23 TUR	0	22/23	UEFA Europa League	International competitions	6	458	0	0 6.97	4	2	0	5	2	4	158 80.4	745.7	6 28.6	2	1	0	0	5	13	3	0	30	38 0.67	010	17,000.000
Ferdi Kadioglu	22 TUR	D	21/22	UEFA Europa League	International competitions	5	313	0	0 6.54	3	0	0	4	1	3	98 76.0	5 33.3	0	0	1	0	0	3	6	6	2	3		0	10,500,000

- Toplamda <u>464</u> farklı oyuncunun verisi
- Oyuncuların toplam 4835 satır sezon verisi
- Toplam 38 feature (sütun) mevcut:
 - -Oyuncu bilgileri: Oyuncu, Yaş, Uyruk, Mevki
 - -Sezon/Lig bilgileri: Sezon,Lig,Kategori
 - -Performans: GLS,AST,MP...
 - -Disiplin: YC(Sarı kart), RC(Kırmızı kart)
 - -Finansal: Bonservis

A. Karşılaşılan Zorluklar:

- SofaScore sitesinden bu veriler çekildi ama bu sitede olmayan tek veri Bonservis değeriydi bu eksiği de <u>Transfermarkt</u> sitesinden bireysel emek ile tek tek her satıra eklendi.
- Verilerde bazı hücreler boş ilgili oyuncunun o sütununda o veri olmadığından dolayı. Bu boş hücreler o sütunun ortalamasıyla doldurularak eksiği gideriliyor.
- Kategorik verilerin encoding ihtiyacı
- Farklı sezon verilerinin normalize edilmesi gerekebilir. 23/24 Bir tam sezonu ifade eder biz bu sezon formatını ilk yılı alarak yaptık yani 23/24 → 2023 olarak alındı.

Veri temizleme öncesi Isı Haritası

Veri temizleme öncesi Korelasyon Matrisi

Veri temizleme sonrası Korelasyon Matrisi

Veri temizleme öncesi Mevki Sınıf Dağılımı

Veri temizleme öncesi Kategori Sınıf Dağılımı

Veri temizleme öncesi Oyuncuların Sezon Dağılımı

Veri temizleme sonrası Oyuncuların Sezon Dağılımı

Bonservis değer aralığına göre oyuncu dağılımı

Tüm ligler bazında oyuncu dağılımı

II. VERI MODELLEME

A. Veriyi Model İçin Hazırlama

Öncelikle Autoformer,Informer,Reformer,TFT,TST gibi zaman serisi ve regresyon Transformer modellerine verileceği için veriyi sekansa böldül 5 sekans şablonuna çevirildi.

- Oyuncu Adı → Oyuncu_ID
- Bonservis → Target
- Date = Hedef bonservis değerinin(Target) sezonu

Olarak verilecek modele.

Ham veri model için hazır veriye şu şekilde çevirildi. öncelikle 5 sekans olacağından en az 5 sezon verisine sahip olan oyuncular alındı yani bu durumda 5 sezondan az verisi olan zaten azınlıkta olan oyuncular çıkarıldı.

Oyuncu_ID,Date,t1_performans,t2_performans,t3_performans,t4_performans,t5_performans,Target bu şablona geçildi.

Ligler, Mevkiler ve Kategoriler string değerli olduğundan bu bilgileri **One-hot encoding** ile bildirdik. Bu şablona geçişten sonra

- Satır sayısı: 4835 → 2853
- Sütun sayısı (Feature): 38 → 272
- Form: Uzun form(her satır = oyuncu-sezon)→Geniş form(her satır = oyuncu + geçmiş 5 yıl özellikleri)

Olarak değişti ve modellere doğrudan girdi olarak verilebilecek şekle

B. Modeller

Autoformer, Informer, Reformer, TFT(Temporal Fusion Transformer), TST(Zamansal Füzyon Transformer)

I. Autoformer Modeli

Autoformer, zaman serisi verilerinde uzun dönemli tahmin (forecasting) yapmak için tasarlanmış, dikkat (attention) tabanlı bir derin öğrenme modelidir. 2021 yılında yayınlanan bu model, özellikle klasik Transformer mimarisinin zaman serisi verilerine doğrudan uygulanmasında karşılaşılan zorlukları aşmak için geliştirilmiştir.

Autoformer'ın en büyük farkı, zaman serilerini sezonsal ve trend bileşenlerine ayırmasıdır. Bu ayrıştırma, verinin daha anlamlı şekilde işlenmesini sağlar.

-Nasıl çalışır?

- Zaman serisi = Trend bileşeni + Sezonsal bileşen
- Her bileşen ayrı öğrenilir ve daha sonra birleşerek nihai tahmin üretilir.
- Kendi kendine benzerlikleri (auto-correlation) yakalayarak uzun dönemli örüntüleri öğrenir.Bu sayede mevsimsellik gibi tekrar eden yapıları etkili biçimde modelleyebilir.
- Encoder: Girdi zaman serisini trend ve sezonsal bileşenlere ayırır ve uzun dönemli bağımlılıkları öğrenir.

Decoder: Bu bileşenleri kullanarak gelecekteki değerleri tahmin eder.

Sonuçlar

Epoch	Train	Val Loss	Learning
	Loss		Rate
1	0,8062	0,542	0,0001
2	0,5555	0,4238	0,0001
3	0,4349	0,3531	0,0001
4	0,4038	0,3126	0,0001
5	0,349	0,2933	0,0001
6	0,3314	0,2893	0,0001
7	0,3151	0,2622	0,0001
8	0,299	0,3144	0,0001
9	0,2919	0,2669	0,0001
10	0,2474	0,264	0,0001
11	0,2674	0,2566	0,0001
12	0,2664	0,2963	0,0001
13	0,2555	0,2483	0,0001
14	0,2551	0,2639	0,0001
15	0,2368	0,2667	0,0001
16	0,2554	0,2357	0,0001
17	0,2334	0,2247	0,0001
18	0,2372	0,2318	0,0001
19	0,2219	0,2146	0,0001

20	0,2197	0,2328	0,0001
21	0,221	0,2478	0,0001
22	0,2124	0,2348	0,0001
23	0,2103	0,2774	0,0001
24	0,215	0,2571	0,0001
25	0,2074	0,2016	0,0001
26	0,2041	0,2441	0,0001
27	0,1945	0,2052	0,0001
28	0,1913	0,2023	0,0001
29	0,1791	0,2071	0,0001
30	0,1964	0,2251	0,0001
31	0,1884	0,1866	0,0001
32	0,1879	0,1957	0,0001
33	0,1835	0,2066	0,0001
34	0,1805	0,2006	0,0001
35	0,1724	0,1932	0,0001
36	0,1626	0,225	0,00005
37	0,1675	0,2142	0,00005
38	0,1655	0,2144	0,00005
39	0,1653	0,1982	0,00005
40	0,1655	0,1922	0,00005
41	0,1644	0,195	0,00005

Model 41 epoch boyunca eğitilmiş ve **early stopping** uygulanmıştır. Eğitim ve doğrulama kayıpları istikrarlı biçimde azalmış; öğrenme oranı 36. epoch'tan itibaren azaltılmıştır (1e-4 \rightarrow 5e-5). Bu, modelin daha hassas ayarlamalar yapması için uygulanmıştır. Son doğrulama kaybı **0.1950**, eğitim kaybı **0.1644** olarak gerçekleşmiştir.

MSE: 119178858070016.00

MAE: 7788990.00 RMSE: 10916906.98

R²: 0.7911 MAPE: 69.18%

Training Time: 59.60 seconds Inference Time: 0.0643 seconds

II. Informer Modeli

Informer, uzun dönemli zaman serisi tahmini (Long Sequence Time-Series Forecasting) için özel olarak geliştirilmiş, verimli ve ölçeklenebilir bir Transformer tabanlı derin öğrenme modelidir. 2021 yılında THUML (Tsinghua University) araştırmacıları tarafından geliştirilmiştir.

Informer, klasik Transformer yapısının zaman serilerinde kullanımı sırasında karşılaşılan hesaplama yükü ve doğruluk problemlerini çözmeyi hedefler.

- -Nasıl çalışır?
- ProbSparse Self-Attention (Olasılıksal Seyrek Dikkat):
 - Klasik attention mekanizması zaman/mekân karmaşıklığını artırır: O(L2)O(L^2)O(L2)
 - Informer bu problemi ProbSparse Attention ile çözer: yalnızca en anlamlı dikkat ağırlıkları hesaplanır.

- Amaç: Uzun dizilerde bilgi yoğunluğu düşük alanları eleyip dikkatli kaynak kullanımı sağlamak
- Self-Attention Distilling (Katman İçinde Bilgi Yoğunlaştırma):
 - Uzun zaman dizileri içinde öğrenmeyi zorlaştıran "gereksiz" bilgileri azaltmak için kullanılır.
 - Özellikle uzun dizi tahminlerinde modeli daha kompakt ve stabil hale getirir.

-Encoder/Decoder:

- Encoder: Zaman serisini sıkıştırarak anlamlı temsillere dönüstürür.
- Decoder: Bu temsilleri kullanarak gelecekteki değerleri tahmin eder.

Sonuçlar

	Soliuçiai						
Epoch	Train	Val Loss	Learning				
	Loss		Rate				
1	0,7586	0,5742	0,0001				
2	0,6814	0,5114	0,0001				
3	0,6464	0,4742	0,0001				
4	0,5884	0,4368	0,0001				
5	0,5383	0,3985	0,0001				
6	0,4951	0,3642	0,0001				
7	0,4584	0,338	0,0001				
8	0,4192	0,3168	0,0001				
9	0,3896	0,2993	0,0001				
10	0,3532	0,2765	0,0001				
11	0,3321	0,2607	0,0001				
12	0,3197	0,2495	0,0001				
13	0,2975	0,2381	0,0001				
14	0,2849	0,2301	0,0001				
15	0,2664	0,2314	0,0001				
16	0,2646	0,2347	0,0001				
17	0,2495	0,2215	0,0001				
18	0,2404	0,2157	0,0001				
19	0,2296	0,2091	0,0001				
20	0,2254	0,2059	0,0001				
21	0,2524	0,2057	0,0001				
22	0,2437	0,2241	0,0001				
23	0,2375	0,2235	0,0001				
24	0,2391	0,2206	0,0001				
25	0,2315	0,2131	0,0001				
26	0,2325	0,2066	0,0001				
27	0,2235	0,1985	0,0001				
28	0,2223	0,1993	0,0001				
29	0,2215	0,1977	0,0001				
30	0,221	0,1929	0,0001				

31	0,2206	0,192	0,0001
32	0,2085	0,1919	0,0001
33	0,2063	0,1878	0,0001
34	0,2077	0,1935	0,0001
35	0,2057	0,2155	0,0001
36	0,2021	0,2318	0,0001
37	0,2003	0,1915	0,0001
38	0,1934	0,1849	0,0001
39	0,1931	0,1844	0,0001
40	0,1875	0,1714	0,0001
41	0,1812	0,1615	0,00005
42	0,1813	0,1682	0,00005
43	0,1728	0,1592	0,00005
44	0,1703	0,1625	0,00005
45	0,1692	0,1692	0,00005
46	0,1783	0,1942	0,00005
47	0,1791	0,1952	0,00005
48	0,1814	0,1915	0,00005
49	0,1743	0,1825	0,00005
50	0,1741	0,1845	0,00005
51	0,1824	0,1924	0,00005
52	0,1811	0,1912	0,00005
53	0,1745	0,1932	0,00005
54	0,1652	0,1742	0,00005
55	0,1604	0,1778	0,00005
56	0,1586	0,1839	0,00005
57	0,166	0,1789	0,00005
58	0,1597	0,1792	0,00005
59	0,1562	0,1743	0,00005
60	0,155	0,1745	0,00005
61	0,1647	0,1775	6,25E-06
62	0,1586	0,1738	6,25E-06
63	0,1577	0,1782	6,25E-06
64	0,1538	0,1814	6,25E-06
65	0,163	0,1785	6,25E-06

Model 65 epoch boyunca eğitilmiş ve early stopping uygulanmıştır. Eğitim ve doğrulama kayıpları istikrarlı biçimde azalmış; öğrenme oranı 41. epoch'tan itibaren 1e-4 → 5e-5, 61. epoch'tan sonra ise 6.25e-6 seviyesine düşürülmüştür. Bu, modelin ince ayar yaparak daha iyi genelleme sağlaması için uygulanmıştır. Son doğrulama kaybı 0.1785, eğitim kaybı ise 0.1630 olarak gerçekleşmiştir.

MSE: 107219823624192.00

MAE: 7194386.00 RMSE: 10354700.56

R²: 0.8121 MAPE: 50.65%

Training Time: 265.71 seconds

Inference Time: 0.1692 seconds

III. Reformer Modeli

Reformer, klasik Transformer modelinin sınırlamalarını (özellikle uzun dizilerdeki bellek ve hız sorunlarını) çözmek için geliştirilmiş verimli bir Transformer varyantıdır.

Google Research tarafından 2020'de tanıtılmıştır.

-Nasıl çalışır?

- Klasik attention mekanizması yerine LSH Attention (Locality-Sensitive Hashing) kullanır. Bu, sadece benzer token'lar arasında attention hesaplamasını sağlar.
- Reversible Layers: Geriye doğru geçiş sırasında ara katman çıktıları bellekte tutulmaz, hesaplanır. Böylece bellek verimli kullanılır.

Sonuçlar

Epoch	Train	Val Loss	Learning
	Loss		Rate
1	0,7876	0,5117	0,0001
2	0,4651	0,3678	0,0001
3	0,3454	0,3862	0,0001
4	0,3066	0,2803	0,0001
5	0,2771	0,2561	0,0001
6	0,2553	0,2194	0,0001
7	0,2437	0,2391	0,0001
8	0,2313	0,2343	0,0001
9	0,2218	0,2315	0,0001
10	0,2083	0,2452	0,0001
11	0,2008	0,2411	0,0001
12	0,1931	0,2307	0,0001
13	0,1898	0,2114	0,0001
14	0,1808	0,2104	0,0001
15	0,1771	0,2048	0,0001
16	0,1785	0,2334	0,0001
17	0,1693	0,2232	0,0001
18	0,1621	0,211	0,0001
19	0,1604	0,2118	0,0001
20	0,1539	0,2011	0,0001
21	0,1594	0,1966	0,0001
22	0,1454	0,1664	0,0001
23	0,1454	0,1964	0,0001
24	0,1437	0,1996	0,0001
25	0,1428	0,1945	0,0001
26	0,1319	0,1667	0,0001
27	0,1272	0,1775	0,0001
28	0,1426	0,1832	0,00005
29	0,1314	0,1873	0,00005
30	0,1216	0,2014	0,00005

31	0,1279	0,1991	0,00005
32	0,1249	0,184	0,00005

Model 32 epoch boyunca eğitilmiş ve early stopping uygulanmıştır. Eğitim ve doğrulama kayıpları düzenli biçimde azalmış; 26. epoch'tan itibaren öğrenme oranı 1e-4 → 5e-5 seviyesine düşürülmüştür. Bu ayarlama, doğrulama performansını dengelemek amacıyla yapılmıştır. Son doğrulama kaybı 0.1840, eğitim kaybı ise 0.1249 olarak gerçekleşmiştir.

IV. TFT Modeli

TFT, çok değişkenli zaman serisi tahmini için geliştirilmiş, yüksek doğruluk ve yorumlanabilirlik sunan, kompleks ve güçlü bir modeldir. Google DeepMind tarafından 2020'de tanıtılmıştır.

-Nasıl çalışır?

- Hem zamanla değişen (time-varying) hem de sabit (static) girdileri işler.
- Gated Residual Network ve Variable Selection Network ile önemli öznitelikleri seçer.
- Attention katmanları, hangi zaman aralığı ve özelliğin önemli olduğunu açıklar.

Sonuclar

		Jonaçıaı	
Epoch	Train	Val Loss	Learning
	Loss		Rate
1	0,7223	0,4627	0,0001
2	0,4424	0,391	0,0001
3	0,3664	0,3794	0,0001
4	0,3222	0,3309	0,0001
5	0,2834	0,3062	0,0001
6	0,2533	0,2871	0,0001
7	0,2378	0,2609	0,0001
8	0,2156	0,2622	0,0001
9	0,2106	0,2641	0,0001
10	0,1902	0,2291	0,0001
15	0,1448	0,2391	0,0001
20	0,1442	0,2211	0,0001
25	0,1183	0,2289	0,0001
28	0,1138	0,232	0,0001
30	0,1057	0,2065	0,0001
35	0,1019	0,1894	0,0001
40	0,1023	0,1949	0,0001

Model 42 epoch boyunca eğitilmiş ve early stopping uygulanmıştır. Eğitim ve doğrulama kayıpları düzenli biçimde azalmış, model stabil bir şekilde öğrenmiştir. Öğrenme oranı sabit tutulmuş (varsayılan: 1e-4). Son epoch'ta doğrulama kaybı 0.1949, eğitim kaybı ise 0.1023 olarak gerçekleşmiştir.

MSE: 119992662097920.0000

MAE: 8040703.0000 RMSE: 10954116.2171

R2: 0.7897 MAPE: 82.59% Train time: 32.88s Inference time: 0.03s

V. TST Modeli

TST, klasik Transformer mimarisinin zaman serisi tahmini problemlerine doğrudan uygulanmasıyla geliştirilen bir modeldir

-Nasıl çalışır?

- Zaman serisi verisine pozisyonel encoding eklenir.
- Genellikle sadece Encoder kısmı kullanılır.
- Model doğrudan geçmiş veriye bakarak gelecekteki değerleri tahmin eder.

Sonuçlar

Train	Val Loss	Learning
Loss		Rate
0,8984	0,6328	4,26E-05
0,7278	0,6182	5,25E-05
0,6155	0,5535	0,000063
0,4995	0,4534	8,17E-05
0,4007	0,4258	0,000115
0,3328	0,3827	0,000132
0,2664	0,3457	0,00016
0,2402	0,2477	0,000199
0,2021	0,2832	0,000213
0,1705	0,2681	0,000221
0,1111	0,2026	0,000572
0,0917	0,2635	0,000284
0,0755	0,2068	0,000908
0,0815	0,2543	0,000999
0,0463	0,2505	0,00129
0,0376	0,2317	0,00094
0,0321	0,2629	0,000875
	0,8984 0,7278 0,6155 0,4995 0,4007 0,3328 0,2664 0,2402 0,2021 0,1705 0,1111 0,0917 0,0755 0,0815 0,0463 0,0376	Loss 0,6328 0,7278 0,6182 0,6155 0,5535 0,4995 0,4534 0,4007 0,4258 0,3328 0,3827 0,2664 0,3457 0,2402 0,2477 0,2021 0,2832 0,1705 0,2681 0,1111 0,2026 0,0917 0,2635 0,0755 0,2068 0,0815 0,2543 0,0463 0,2505 0,0376 0,2317

Model 50 epoch boyunca eğitilmiş ve early stopping uygulanmıştır. Eğitim kaybı istikrarlı bir şekilde azalmış; öğrenme oranı çeşitli aşamalarda dinamik olarak ayarlanmıştır. Bu strateji doğrulama performansını iyileştirmeyi hedeflemiştir. Son epoch'ta doğrulama kaybı 0.2629, eğitim kaybı ise 0.0321 olarak gerçekleşmiştir.

Eğitim süresi: 47.53 saniye MSE: 114628331831296.0000

MAE: 7729483.5000 RMSE: 10706462.1529

R² Skoru: 0.7991 MAPE: 81.92%

References

[1] COLAB NOTEBOOKS, GRAFIKLER VE VERİLER