Примерно решение на второ домашно по Дискретни структури, специалност Информатика, първи курс, летен семестър на 2017/2018 г.

Зад. 1 Колко са на брой стринговете с дължина \mathfrak{n} над азбуката $\{\mathfrak{a},\mathfrak{b},\mathfrak{c}\}$, в които всяка буква участва поне веднъж?

Решение: Броят на всички стрингове с дължина n над азбуката $\{a,b,c\}$ е 3^n . От него ще извадим броя на стринговете, в които не участват и трите букви. Нека $\sigma \in \{a,b,c\}$ и нека означим с M_{σ} множеството от стринговете с дължина n над азбуката $\{a,b,c\}\setminus \{\sigma\}$. Всяко от множествата M_{σ} има мощност 2^n за $\sigma \in \{a,b,c\}$. От принципа на включването и изключването получаваме, че броят на стринговете с дължина n, над азбуката $\{a,b,c\}$, в които не участва поне една от буквите, е $|M_a \cup M_b \cup M_c| = |M_a| + |M_b| + |M_c| - |M_a \cap M_b| - |M_a \cap M_c| - |M_b \cap M_c| + |M_a \cap M_b \cap M_c| = 2^n + 2^n + 2^n - 1 - 1 - 1 + 0 = 3 \times 2^n - 3$. Следователно броят стринговете с дължина n над азбуката $\{a,b,c\}$, в които всяка буква участва поне веднъж е $3^n - (3 \times 2^n - 3) = 3(3^{n-1} - 2^n + 1)$.

Зад. 2 Колко са всички наредени четворки с елементи от $I_n = \{1, 2, \dots, n\}$, за които на първата и третата позиция са нечетни числа, а втората и четвъртата са четни.

Пример: за n = 4 търсените четворки са четири (1, 2, 3, 4), (1, 4, 3, 2), (3, 2, 1, 4), (3, 4, 1, 2).

Съставете рекурентно уравнение (без да го решавате) с подходящи начални условия.

Решение: Нека означим с T(n) броя на всички наредени четворки с елементи от $I_n = \{1,2,\ldots,n\}$, за които първата и третата компоненента са нечетни числа, а втората и четвъртата са четни. $I_{k+1} = I_k \cup \{k+1\}$, следователно всички търсени наредени четворки за n=k ще бъдат част от търсените и за n=k+1. Елемента n+1 можем да поставим на точно две позиции, спрямо това да ли е четен или не е. Ако се опитаме директно да получим броят за n+1, използвайки наредени четворки от n, е възможно да пребройм някой от новите наредени четворки няколко пъти.

Пример: от наредените четворки за n = 6 (1,2,3,6) и (1,2,5,6) при добавянето на новия елемент в множеството (тоест n = 7), при замяната на 3 и 5 с 7, получаваме наредените четворките (1,2,7,6) и (1,2,7,6), тоест можем да получим повторения при броенето.

За да избегнем повторение на наредените четворки, трябва при добавяне на нечетно числа да разделим старите вариации на броя на нечетните числа и да извадим два от получения резултат (заради двете позции за нечетни числа), а при добавяне на четно числа - да разделим старите вариации на броя на четните числа и от него да извадим 2. Броят на четните числа от множеството $\{1,2,\ldots,n\}$ (ако n е четно) и броят на нечетните (ако n е нечетно), можем да ги получим $\frac{n}{2}$, закръглено нагоре.

От тук получаваме следното уравнение
$$T(n)=T(n-1)+2\left(\dfrac{T(n-1)}{\dfrac{n}{2}-2}\right)$$
.

За това уравнение имаме нужда само от едно начално условие T(4)=4.

Зад. 3 Нека
$$V=\{\nu_1,\nu_2,\ldots\nu_n\}$$
 за $n>3$ и $E=\{\{\nu_1,\nu_2\},\{\nu_2,\nu_3\},\{\nu_3,\nu_4\},\ldots,\{\nu_{n-1},\nu_n\}\}\cup\{\{\nu_1,\nu_3\},\{\nu_2,\nu_4\},\{\nu_3,\nu_5\},\ldots,\{\nu_{n-2},\nu_n\}\}$ и нека $G=(V,E)$.

5 т. a) Докажете, че за всяко n > 3 в G има ойлеров път.

5 т. **б)** Възможно ли е, чрез добавяне на точно едно ребро към **G**, да се получи ойлеров цикъл? Обосновете отговора си!

Решение:

- а) За всяко n > 3 съответният граф има има точно два върха от нечетна степен ν_2 и ν_{n-1} . Това е така, защото връх с индекс j е свързан с върхове с индекси j-2, j-1, j+1, j+2. Лесно се забелязва, че ν_1 , ν_2 , ν_{n-1} и ν_n са единствените, чиито степен е различна от 4. Степента на връх ν_1 е 2, защото е свързан само с ν_2 и ν_3 . Степента на връх ν_n е 2, защото е свързан само с ν_{n-2} и ν_{n-1} . Степента на връх ν_2 е 3, защото е свързан само с ν_1 , ν_3 и ν_4 . Степента на връх ν_{n-1} е 3, защото е свързан само с ν_{n-3} , ν_{n-2} и ν_n . Следователно в графа има 2 върха с нечетна степен, от което следва, че съществува ойлеров път с начало ν_2 и край ν_{n-1} .
- **б**) Понеже за всяко $\mathfrak{n}>3$ съответният граф има има точно два върха от нечетна степен, достатъчно е да добавим ребро между тях. Добавяме реброто $\{v_2,v_{\mathfrak{n}-1}\}$ и всички върхове ще бъдат от четна степен. Следователно ще съществува ойлеров цикъл.

Зад. 4 Докажете, че следният граф не е планарен.

Решение: За да докажем твърдението ще използваме теоремата на **Kuratowski**, която гласи, че граф е планарен тогава и само тогава, когато не садържа подграф, хомеоморфен на K_5 или $K_{3,3}$.

Лесно се забелязва, че даденият граф садържа подграф, който е изоморфен на $K_{3,3}$. Това е индуцираният подграф с върхове $\{2,3,5,7,8,6\}$. Следователно даденият граф не е планарен.