

DPP – 3

ideo Solution	n on Website:-	https://phy	ysicsaholics.com/hc	ome/courseDetails/57	
ideo Solution	n on YouTube:-	https://you	ıtu.be/R21yaok6Wր	ρQ	
Q 1.	Calculate the total number of degree of freedom for a mole of diatomic gas at STP (a) 30.10×10^{23} (b) 3.10×10^{23} (c) 12.24×10^{20} (d) 3.14×10^{17}				
Q 2.	At what temperature (a) 123°C	e, the kinetic ene (b) 123 <i>K</i>	ergy of a gas molecule is h (c) -123 K	alf of the value at 27°C? (d) -123°C	
Q 3.	The number of degree (a) 3	ees of freedom f (b) 5	or a rigid diatomic molect	ale is (d) 7	
Q 4.	The energy associate (a) $\frac{1}{2}RT$	ed with each deg $(b) \frac{1}{2} KT$	gree of freedom of a molecular (c) $\frac{3}{2}RT$	cule $(d)^{\frac{3}{2}KT}$	
Q 5.	A polyatomic gas w by (a) $\frac{n}{2}RT$	with (n) degrees of $(b) \frac{1}{2}RT$	of freedom has a mean en (c) $\frac{n}{2}kT$	ergy per molecule given $ (d) \frac{1}{2}kT $	
Q 6.	The number of degree (a) 1		of molecules of argon gas in (c) 5	is (d) 7	
Q 7.			I (having negligible therm K, then average kinetic en (c) unchanged		
Q 8.	(9)	•	gy of hydrogen molecule ergy of helium at same ten (c) E	•	
Q 9.	oxygen gas at 300 K	are 6.21 × 10 ⁻¹ nearly (assuming 928 m/s	the rms speed of molecular the rms speed of molecular the rms speed of molecular the respective gideal gas behavior) (b) 8.78×10^{-21} J, 684 r (d) 12.42×10^{-21} J, 684	ely The corresponding m/s	
Q 10.			sure of $8 \times 10^4 N/m^2$. The as due to its thermal motion (c) $7 \times 10^4 J$		

hysicsaholics

- Q 11. The average kinetic energy of H_2 molecules at 300K is E at the same temperature the average kinetic energy of O_2 molecules is:

 (a) E(b) $\frac{E}{4}$ (c) $\frac{E}{16}$ (d) 16E

- (c) $\frac{E}{16}$

Q.2 d	Q.3 b	Q.4 b Q.5 c
		SIT CS
Q.7 b	Q.8 d	Q.9 d Q.10 a
	acl	20
30		
15		