## 数理逻辑期终试卷 (A)

| 考系     | 试方式:<br> | 开卷 |   |    | 考试日期 <u>2013</u> 年 <u>6</u> 月<br>年级 |   |   |    | 考试时间 <u>2</u> 小时<br>班级 |   |  |
|--------|----------|----|---|----|-------------------------------------|---|---|----|------------------------|---|--|
| <br>学号 |          |    |   | 姓名 |                                     |   |   | 成绩 |                        |   |  |
|        | 题号       |    | _ | =  |                                     | = | 四 | 五  | 六                      | 七 |  |
|        | 分粉       |    |   |    |                                     |   |   |    |                        |   |  |

- 一. (15 分) 在系统 **G** 中证明
  - $(1) \vdash (A \rightarrow B) \rightarrow (\neg A \lor B);$
  - $(2) \vdash (\neg A \lor B) \to (A \to B)_{\circ}$

- 二. (15 分)设 x ∉ FV(B),在 G 系统中证明:
  - $(1) \vdash (\forall x. A \rightarrow B) \rightarrow \exists x. (A \rightarrow B);$
  - $(2) \vdash \exists x. (A \to B) \to (\forall x. A \to B)_{\circ}$

三. (15 分)设一阶语言  $\mathcal{L}$  的结构  $\mathbf{m} = (\mathbf{M}, I)$ , $\sigma$  为赋值,以及 $\mathbf{M}'$  为与  $\mathbf{M}$  等势的集合(即有映射  $f: \mathbf{M}^{\frac{1-1, \ onto}{}} \mathbf{M}'$ ),证明存在  $\mathcal{L}$  的结构 $\mathbf{m}' = (\mathbf{M}', I')$ 和赋值 $\sigma'$  使对任何公式 A 有  $\mathbf{m} \models_{\sigma} A$  iff  $\mathbf{m}' \models_{\sigma}, A$ 。

四. (15 分)在一阶语言中将下列推理符号化并在 **G** 系统中给出形式证明: 鸟会飞,猴不会飞,所以猴不是鸟。



六. (15 分)设 p(x), q(x) 为一元谓词符,证明  $\vdash \forall x(p(x) \rightarrow q(x)) \rightarrow \exists x(p(x) \land \neg q(x))$ 在**G**中不可证。

七.  $(10 \, \text{分})$  Let  $\mathcal{L}$  be a language containing a binary predicate R. Show that there is no set  $\Sigma$  of  $\mathcal{L}$ -sentences with at least one infinite model such that  $R_M$  is a well ordering of M for each infinite model m of  $\Sigma$ .

{设 L 为含二元谓词符 R 带等词的一阶语言,证明不存在L-句子的集合  $\Sigma$  其至少有一个无穷模型使得对每个  $\Sigma$  的无穷模型 m 皆有  $R_M$  为M 的良序,这里M 为m 的论域。

## Definition 1

A well ordering on M is a linear ordering on A with the further property that every nonempty subset of A has a least element.

## Definition 2

R is a linear ordering on M iff

- (1) R is a binary relation on M;
- (2) R is transitive;
- (3) R satisfies trichotomy on M, i.e., for any x and y in A exactly one of the three alternatives, xRy, x = y, yRx, holds. }