

b UNIVERSITÄT BERN

UNIVERSITÄT RERN

Internet of Things VIII. Routing

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 19.04.2021 - 26.04.2021

Internet of Things: Routing Table of Contents

- Routing in Mobile Ad-Hoc and Wireless Sensor Networks
 - 1. Routing in Mobile Ad-Hoc Networks
 - 2. Routing in Wireless Sensor Networks: Requirements and Routing Metrics
- 2. Wireless Sensor Network Routing Protocols
 - 1. Flat-Network Routing
 - 2. Data-Centric Routing
 - 3. Geographic Routing
 - 4. Hierarchical Routing

- 3. IPv6 in Wireless Sensor Networks
 - 1. IETF Working Groups
 - 2. IPv6 over Low power Wireless Personal Area Networks / IPv6 over Networks of Resource-constrained Nodes
 - 3. IPv6 Routing Protocol for Low-power and Lossy Networks
 - 4. IPv6 over the TSCH Mode of IEEE 802.15.4e
 - 5. IPv6 Low Power Wide Area Networks

b UNIVERSITÄT RERN

1. Routing in MANETs and WSNs

1. Routing in Mobile Ad-Hoc Networks

Pro-active routing

- Pre-calculation and update of routing tables
- Example:Optimized Link State Routing

Reactive routing

- Route establishment on-demand
- Example: Ad-hoc On-demand
 Distance Vector routing

Such protocols can be adapted to wireless sensor networks by considering appropriate routing metrics, in particular for point-to-point communication.

UNIVERSITÄT

1. Routing in MANETs and WSNs

2.1 Requirements on Routing in WSNs

- Large scale networks, scalability
- No global information available
- Robustness to dynamic networks (e.g., topology changes, node failures) and adaptivity
- Low control overhead
- Limited storage for routing tables and state

- Data aggregation
- Real-time constraints
- Broadcast communication
- Point-to-multipoint and multipoint-to-point support
- Geographic addresses might be more important than unique node IDs.

UNIVERSITÄT

1. Routing in MANETs and WSNs

2.2 Routing Metrics for WSNs

- Minimum number of hops
- Energy
 - Maximum minimum available energy
 - Calculate minimum available energy over all nodes of a route
 - Select route with maximum value
 - Minimum required energy
 - Selection of route consuming the minimum energy for packet transmissions
 - Adaptation of reactive routing protocols such as Dynamic Source Routing protocol
 - Include transmission power used in Route Request messages
 - Receiver calculates required transmission power from received power.
 - Recording of required transmission power at each node in Route Request

- Quality-of-Service
 - Latency and jitter
 - Throughput
 - Packet loss and error rates
 - Expected Transmission Count ETX = 1 / (1-p)
 - p: packet error probability
- Link quality and stability

3. IPv6 in Wireless Sensor Networks

UNIVERSITÄT BERN

2.3 Expected Transmission Count

- Packet loss probability in forward and reverse direction:
 p_f, p_r
- Probability for non successful packet transmission:
 p = 1 (1-p_f) (1-p_r)
- Probability for successful delivery after k attempts:
 s(k) = p^{k-1} (1-p)

Expected Transmission Count (ETX) metric

$$ETX = \sum_{k=1}^{\infty} k \cdot s(k) = \frac{1}{1-p}$$

Classification of Routing Protocols

- 1. Flat-Network
- 2. Data-centric
- 3. Location-based
- 4. Hierarchical

1. Ad-Hoc On-Demand Distance Vector Routing

- Flat network routing, non-hierarchical
- Route Discovery based on
 - Route Request
 - RREQ ID (incremented for new RREQ) and source address for unique identification of a RREQ
 - current sequence number and IP address of originator
 - last known sequence number and IP address of destination
 - Route Reply
 - Originator/destination IP address
 - Destination sequence number
 - Hop count
 - Lifetime: Time for which nodes receiving the RREP consider the route to be valid

- Sequence numbers are incremented prior to generation of RREQ / RREP at originator / destination.
- Routing table entries (not complete)
 - Destination IP address
 - Destination sequence number
 - Hop count
 - Next hop
 - Lifetime

1.1 AODV Operation

- Destination Sequence Number
 - latest sequence number received in the past by the originator for any route towards the destination.
 - updated whenever a node receives new information about the sequence number from RREQ, RREP, or RERR messages
- Generation of RREQs when no valid route is available at a node
 - Destination sequence number = last known destination sequence number for this destination
- For received RREQ
 - RREQ will be discarded, if already received recently. Otherwise: Generation of reverse route entries (with lifetime) for source (storage of predecessor node for forwarding of RREP).
 - Response to RREQ by RREP, if valid entry for destination in routing table.
 Otherwise: broadcast of RREQ with incremented hop counter.

- Generation of RREP by destination or intermediate nodes, if destination sequence number in RREQ is not larger than in routing table. (freshness!)
 - Intermediate nodes set forward entries for received RREP, no source routing!
 - RREP messages are forwarded, if destination sequence number is higher than in routing table.
- Expiration of routing entries, if those are not used within a certain interval.
- Route Maintenance
 - Generation and transmission of Route Error messages by upstream node, which detects route failure, e.g., in case of mobility.

1.2 AODV: Example

2.2 Data-Centric Routing

Instead of addressing nodes by address identifiers or geographic locations, packets are forwarded according to searched data.

Examples

- Directed Diffusion
- Geographic Hash Tables
 - → Geographic Routing

2.1 Directed Diffusion

Attribute based routing

- Attribute value pairs characterize information that a node holds or seeks.
- More general approach than routing based on geographic locations only

Example

```
- Node generates event record
    type = animal
    instance = horse
    location = [89, 154]
    time = 12:34:55
```

timestamp = 12:34:10 expiresat = 12:39:10

- A node seeking information creates request
 type = animal
 instance = horse
 interval = 1 s
 rect = [0, 200, 0, 200]

2.2 Directed Diffusion Operation

1. Interest Propagation

2. Gradient Setup

3. Data Propagation along reinforced path

2.2.1 Directed Diffusion: Interest Propagation

- Interest = a kind of query message describing what data a user wants to receive.
- Sensing task is disseminated throughout the sensor network as an interest for named data by using broadcast / flooding.

- Identical interests received from different neighbors are represented as a single (soft state) entry in a node.
- Periodic refreshments of interests due to unreliable interest transport

2.2.2 Directed Diffusion: Gradient Setup

- Interest dissemination sets up gradients to draw events.
- Each interest entry contains several gradient fields.

- Gradient = direction state in each node that receives an interest
 - Direction is set to neighboring node from which interest has been received.
 - Data rate is derived from interval field of interest message.
 - Duration is derived from timestamp and duration fields (lifetime information) in interests.

2.2.3 Directed Diffusion: Data Propagation

Source sensor nodes with interest entries matching to events

- calculate highest event rate among all outgoing gradients,
- generate according event samples,
- and send data (using unicast) to each neighbor for whom it has a gradient.

Receiving nodes

- try to find matching rules in their interest entries
- if match exists:

 Message is dropped if in data cache (recently received → loop prevention)

- Forwarding to neighbors with specified data rate,
- possibly: down-sampling.

2.2.4 Directed Diffusion: Path Reinforcement

- After a sink receives events, it reinforces a particular neighbor (based on local rules) using a higher data rate by using a smaller interval value.
- A node receiving such an interest message must also reinforce at least one neighbor.

- Intermediate nodes can trigger path reinforcement based on their local rules, e.g., for repairing failed paths.
- Negative reinforcements
 - Timeouts
 - Explicit

3. Geographic Routing

Assumptions

- All nodes know their geographic location.
- Each node knows immediate 1-hop-neighbors.
- Routing destination is specified as node location or geographic region.
- Each packet can hold a bounded amount of additional routing information.

Examples

- Greedy PerimeterStateless Routing
- Geographic Hash Tables
- Two-Tier Data Dissemination
 - → Hierarchical Routing

3.1 Greedy Perimeter Stateless Routing

- Greedy forwarding, e.g.,
 Most Forward within Radius
- Switching to recovery mode (perimeter routing) until a node is encountered with closer distance to destination than node where entering recovery mode

3.1.1 Right Hand Rule

- A packet arriving at node x from node y will be forwarded along the next edge counterclockwise from edge (x, y).
- Right hand rule traverses the interior of a polygonal region (face) in clockwise order (x → z → y → x).

3.1.2 Perimeter Routing

- Packet is forwarded_around a face intersected by xD using right hand rule until an edge is reached which intersects xD.
- Forwarding around next face

– ...

3.2.1 Geographic Hash Tables

- Hashing of a key (name of object, e.g., "forest fire") into geographic coordinates
- Storage of a key-value pair at the sensor node geographically nearest of its key
- Data Centric Storage:
 Data are stored at a node determined by the name associated with sensed data.

- Advantages
 - All events of a single type are stored at a certain node.
 - Query flooding can be avoided.
- Operations: Put and Get

3.2.2 GHT: Home Node and Home Perimeter

- Home node = node geographically nearest to the destination coordinates of a packet
 - serves as synchronization point for Put and Get operations.

- GPSR routing
 - Packet will enter perimeter routing at home node and then traverse the entire perimeter (home perimeter) that encloses the destination.
- A node becomes a home node when a Put packet arrives after completing its tour around home perimeter.

4.1 Hierarchical Routing

- Creation of clusters and assigning special tasks to cluster leaders
- Sensor nodes perform sensing tasks and deliver sensor data to cluster leaders.

- Cluster leaders

- aggregate received sensor data and
- forward data (via other cluster leaders) to sink.

Examples

- Low Energy Adaptive
 Clustering Hierarchy
- Two-Tier Data Dissemination

4.2 Two-Tier Data Dissemination

- Sensors are aware of own location.
- Sensor becomes source of an event.
- Greedy geographical forwarding
- Grid construction
 - Source defines cell size and is located at crossing point.
 - Source sends advertisements to all 4 adjacent crossing points, which become dissemination nodes of the source.
 - Dissemination nodes forward advertisements to adjacent crossing points except the one from which it has been received.
- Query and data forwarding (using soft states) along dissemination nodes of source

3. IPv6 in Wireless Sensor Networks

- IP in wireless sensor networks
 - Standard protocols and APIs
 - No need for protocol translation
- Proposal
 - Use IPv6 in networks with low-power devices and lossy wireless networks
 - IPv6 offers address space for massive deployment in many small devices.

Problems

- Large transmission overhead by standard IPv6 header (40 bytes)
- IPv6 requires Minimum Transmission
 Unit of 1280 bytes, whereas IEEE
 802.15.4 limits the frame length to 128
 bytes to ensure low packet error rate.
- Small devices such as sensors can not run complex routing protocols.
- Low-power and Lossy Networks with temporary disruptions

3. IPv6 in Wireless Sensor Networks

UNIVERSITÄT BERN

1. IETF Working Groups

- IPv6 over Low power Wireless Personal Area Networks (6lowpan, concluded)
 - defines adaptation layer between IP and link layer, e.g., IEEE 802.15.4.
 - 6LowPAN: collection of nodes sharing the same IPv6 prefix
- IPv6 over Networks of Resource-constrained Nodes (6lo)
 - Continuation of 6lowpan WG
 - Header compression

- Routing Over Low power and Lossy networks (roll)
 - defines requirements and specifies routing protocols for their use in LLNs.
 - Example: IPv6 Routing Protocol for LLNs supports multipoint-to-point and point-to-multipoint traffic
- IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH)
 - IPv6 over IEEE 802.15.4 timeslotted channel hopping (TSCH) mode
- IPv6 over Low Power Wide-Area Networks (lpwan)
 - IPv6 over LPWAN technologies such as 5G NB-IoT, LoRaWAN etc.
 - Issues of header compression

UNIVERSITÄT

3. IPv6 in Wireless Sensor Networks

2.1 IETF 6LowPAN Routing Options

Mesh Under

- Link-layer forwarding
- No IP routing in LoWPAN nodes
- Adaptation layer masks lack of broadcast by transparent routing and forwarding
- Emulation of a broadcast link

Route Over

- Routing at IP layer
- Each LoWPAN node serves as IP router.
- Limited resources, in particular memory for routing tables

3. IPv6 in Wireless Sensor Networks

b UNIVERSITÄT BERN

2.2 IETF 6LoWPAN Adaptation Layer Services

Header Compression

- IPv6 Header Compression
 - Certain fields in an IPv6 header, e.g., Version, Traffic Class, Flow Label, carry usual values.
 - Payload Length can be inferred from link layer information.
 - IP addresses are inferred from MAC address, often link local addresses.
- UDP Header Compression
 - Possible checksum elision
 - Length field can be inferred from link layer information.
 - Port number compression by using ports of a certain range
- Generic Header Compression
 - LZ77 byte code

Mesh	Fragm.	Comp.	IPv6 Payload
Header	Header	Header	ir vo rayload

- Fragmentation into multiple link-level frames to accommodate MTU requirement
- Link layer forwarding when multi-hop is used by the link layer (Mesh-Under Routing)
 - Mesh addressing header to carry originator and final destination addresses
 - Note: in 802.15.4 only for FFDs needed, RFDs always send to FFD

3. IPv6 in Wireless Sensor Networks

UNIVERSITÄT

3.1 IPv6 Routing Protocol for Low-power and Lossy

Networks

- Routing protocol developed in IETF working group ROLL "Routing Over Low-power and Lossy Networks"
- Design issues
 - lossy links
 - variable error rates
 - low resources (bandwidth and energy)
- RPL forms one or more Destination Oriented Directed Acyclic Graphs, with the root being the access point into the WSN.
 - DODAG depends on Objective Function measuring rank / distance of a node to root.
 - Nodes may include redundant paths by having multiple parents.
- Storing or non-storing mode for downward routes

 → Nodes either store routing tables or do not store them.

 → Source routing by root in case of non-storing mode.
- Why not reactive MANET protocols?
 - Reactive routing protocols are susceptible to route breaks.
 - Link state routing protocols do not scale because of flooding global topology information.

UNIVERSITÄT

3. IPv6 in Wireless Sensor Networks

3.2 RPL Operation

Upward Routing

- DODAG Information Object messages (ICMP) are broadcast periodically (with increasing sequence number) for discovery, formation, and maintenance of the DODAG.
- Optionally DIO messages can be solicited by DODAG Information Solicitation messages.
- DIO includes
 - DODAG id
 - Rank: level of a node in the DODAG, depends on OF and is increased monotonically
 - Sequence number
 - Metric used in RPL might be ETX, which can be advertised by each node.

Downward Routing

- Destination Advertisement Option messages can be sent by leaf nodes to advertise path to root nodes.
- As a DAO message travels up the DODAG towards Root node, each node that it passes through appends its unique ID. Aggregation of DAO messages.

3. IPv6 in Wireless Sensor Networks

3.3 RPL Operation Example

3. IPv6 in Wireless Sensor Networks

4.1 IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)

- IEEE 802.15.4 TSCH mode
 - targets industrial applications.
 - combines network-wide synchronization and channel hopping to achieve over 99.999 % end-to-end reliability and longer than a decade of battery lifetime.
 - external network

 6LBR

 NME
 PCE

 6LowPAN and RPL

- Major functionality by 6TiSCH
 - support for scheduling transmissions of IPv6 packets by ensuring provision of schedule time to devices that is free from contention.
- Components
 - 6LowPAN Border Router (LLN Border Router)
 - Network Management Entity Path Computation Element

UNIVERSITÄT

3. IPv6 in Wireless Sensor Networks

4.2 6TiSCH: 6top Protocol

- is a Logical Link Control layer between 6LoWPAN and TSCH MAC layer.
- provides a link abstraction to higher layers.
- defines a distributed scheduling protocol.
 - Neighbor nodes negotiate to add/remove cells in the TSCH schedule.
 - A cell is a "communication opportunity" for neighbor nodes to exchange a link layer frame.
 - Hard cells are managed by NME PCE, soft cells are managed locally among nodes.
- provides a set of interfaces/commands to upper layers supporting:
 - (i) creation of cell schedule with respect to slot offset and channel offset
 - (ii) transfer of data to TSCH once the schedule is established
 - (iii) retrieval of status information for management & monitoring.

UNIVERSITÄT

3. IPv6 in Wireless Sensor Networks

5. IPv6 Low Power Wide Area Networks

- LPWAN components
 - End devices
 - Radio gateway
 - Network gateway or router
 - LPWAN-AAA server
 - Application server

- Problems running IPv6 over LPWANs
 - IPv6 protocol overhead
 - IPv6 MTU requirement: 1280 byte packets
 - Neighbor Discovery with (too) large messages
- Solution
 - Static Context Header Compression
 - Header (De)Compression
 - Rule contains a list of Field Descriptors: Field Identifier, Field Length, Field Position, Direction Indicator, Target Value, Matching Operator, Compression/ Decompression Action
 - Fragmentation and Reassembly

36

Thanks

for Your Attention

 \boldsymbol{u}

UNIVERSITÄT BERN

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 19.04.2021 - 26.04.2021

