Álgebra lineal I, Grado en Matemáticas

Septiembre de 2020

En cada pregunta hay una única opción correcta. Las preguntas acertadas suman los puntos indicados en cada caso. Las incorrectas restan el 50%

Preguntas relacionadas con los conceptos básicos (total 3 puntos).

Respuesta acertada: +0.5 puntos, respuesta incorrecta: -0.25 puntos.

Matrices (2 preguntas)

Pregunta 1 Sean A y B dos matrices de orden n que conmutan. Si $A^3=0$ entonces

- (a) $(B+A)^3 = B^3$
- (b) $(B+A)^3 = B^3 + B^2A + BA^2$
- (c) $(B+A)^3 3(B^2A + BA^2) = B^3$ (*)

Pregunta 1 Sean A y B dos matrices de orden n que conmutan. Si $A^2 = 0$ entonces

- (a) $(B+A)^4 B^4 = 4B^3$
- (b) $(B+A)^4 = B^4 + B^3A$
- (c) $(B+A)^4 4B^3A = B^4$ (*)

Pregunta 2 Sean A y B matrices de orden n y \sim_f , \sim_c y \sim las relaciones de equivalencia por filas, por columnas y equivalencia de matrices. ¿Cuál de las siguientes afirmaciones es cierta?

- (a) Si $A \sim_f A'$ y $B \sim_f B'$, entonces $AB \sim_f A'B'$.
- (b) Si rg(A) = rg(B), entonces $A \sim_c B$.
- (c) Si $A \sim_c B$ existe una matriz invertible C tal que $C^{-1}AC = C^{-1}B$. (*)

Pregunta 2 Sean A y B matrices de orden n y \sim_f , \sim_c y \sim las relaciones de equivalencia por filas, por columnas y equivalencia de matrices. ¿Cuál de las siguientes afirmaciones es cierta?

- (a) Si $A \sim_f A'$ y $B \sim_c B'$, entonces $AB \sim A'B'$. (*)
- (b) Si $A \sim_f B$, entonces $\det(A) = \det(B)$.
- (c) Si $\operatorname{rg}(A) = \operatorname{rg}(B)$, entonces $A \sim_f B$.

Sistemas lineales (1 pregunta)

Pregunta 3 Sea AX = B un sistema lineal escalonado con matriz ampliada (A|B) de orden 6.

- (a) Si la matriz (A|B) tiene 21 entradas no nulas, entonces el sistema es incompatible. (*)
- (b) Si la matriz (A|B) tiene menos de 21 entradas no nulas, entonces el sistema es compatible indeterminado.
- (c) Si la matriz A tiene 15 entradas no nulas, entonces el sistema es compatible.

Pregunta 3 Sea AX = B un sistema lineal escalonado con matriz A de orden 5.

- (a) Si la matriz A tiene 15 entradas no nulas, entonces el sistema no puede ser compatible indeterminado.

 (*)
- (b) Si la matriz A tiene menos de 15 entradas no nulas, entonces el sistema es compatible.
- (c) Si la matriz A tiene 15 entradas no nulas, entonces el sistema puede ser tanto compatible como incompatible.

Espacio vectorial (2 preguntas)

- Pregunta 4 Sean U y W dos subespacios de un espacio vectorial V de dimensión 2n-1 con $n \geq 2$. Si U y W tienen dimensión mayor que n, entonces
 - (a) El número de ecuaciones implícitas de U puede ser igual a n.
 - (b) $U \cap W \neq \{0\}$ (*)
 - (c) No puede ser U + W = V.
- Pregunta 4 Sean U y W dos subespacios de un espacio vectorial V de dimensión 2n + 1 con $n \ge 2$. Si U y W tienen dimensión mayor o igual que n, entonces
 - (a) El número de ecuaciones implícitas de U es menor o igual que n+1. (*)
 - (b) $U \cap W \neq \{0\}$
 - (c) No puede ser U + W = V.
- Pregunta 5 Si el conjunto de soluciones de un sistema lineal homogéneo AX=0 es un subespacio vectorial U de \mathbb{K}^n , entonces
 - (a) Si $\operatorname{rg}(A) = 2$, entonces U es un plano de \mathbb{K}^n .
 - (b) Si A es invertible, entonces U es el subespacio trivial. (*)
 - (c) Si $\operatorname{rg}(A) = n 1$, entonces U es un hiperplano de \mathbb{K}^n .
- Pregunta 5 Si el conjunto de soluciones de un sistema lineal homogéneo AX=0 es un subespacio vectorial U de \mathbb{K}^n , entonces
 - (a) AX = 0 es un sistema comptible indeterminado.
 - (b) El conjunto de soluciones del sistema AX = B es un subespacio vectorial de \mathbb{K}^n de la misma dimensión que U.
 - (c) Si $\operatorname{rg}(A) = 1$, entonces U es un hiperplano de \mathbb{K}^n .(*)

Aplicaciones lineales (1 pregunta)

Pregunta 6 Sea $f: \mathbb{K}^5 \to \mathbb{K}^5$ una aplicación lineal.

- (a) Si $\operatorname{Im}(f)$ es un hiperplano de \mathbb{K}^5 , entonces f puede ser inyectiva pero no sobreyectiva.
- (b) $\dim(\operatorname{Ker}(f)) \neq \dim(\operatorname{Im}(f))$. (*)
- (c) Si Im(f) es un plano de \mathbb{K}^5 , entonces Ker(f) puede ser otro plano de \mathbb{K}^5 .

Pregunta 6 Sea $f: \mathbb{K}^3 \to \mathbb{K}^5$ una aplicación lineal.

- (a) El subespacio Im(f) puede ser un hiperplano de \mathbb{K}^5 .
- (b) No puede ser $\dim(\operatorname{Im}(f)) = 2\dim(\operatorname{Ker}(f))$.
- (c) Si dim Im(f) = 3, entonces f es invectiva. (*)

Preguntas relacionadas con la realización de ejercicios (Total 7 puntos):

Respuesta acertada: +1 punto, respuesta incorrecta: -0.5 puntos.

Ejercicio 1: Sea $A = (a_{ij})$ una matriz de orden $n \ge 4$ cuyas entradas son:

$$a_{ij} = 1$$
 si $i \neq j$ y $a_{ii} = \lambda$ para $i = 1, \ldots, n$.

Pregunta 7 (1 punto): Teniendo en cuenta la relación entre rango, equivalencia de matrices e inversa, decida cuál de las siguientes afirmaciones es correcta:

- (a) A es equivalente a I_n si $\lambda \neq 1$ y $\lambda \neq -n$ F
- (b) El rango de A es n-1 si $\lambda = 1-n$. V
- (c) A es invertible si $\lambda \neq 1$ y $\lambda \neq n-1$. F

Pregunta 8 (1 punto): El determinante de A es:

- (a) un múltiplo de $(\lambda 1)^n$ F
- (b) un múltiplo de $(\lambda + n 1)^2$ F
- (c) un múltiplo de $(\lambda + n 1)(\lambda 1)^3$ V

Solución: En primer lugar, observamos que la matriz es de la forma

$$A = \left(\begin{array}{ccccc} \lambda & 1 & \cdots & \cdots & 1 \\ 1 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \cdots & \cdots & 1 & \lambda \end{array}\right)$$

La suma de las entradas de cada fila y cada columna es $\lambda + n - 1$.

Transformamos A realizando las operaciones elementales $c_1 \to c_1 + c_i$ para $i = 2, \dots, n$.

$$A \longrightarrow \begin{pmatrix} \lambda + n - 1 & 1 & \cdots & \cdots & 1 \\ \lambda + n - 1 & \lambda & 1 & \ddots & \vdots \\ \vdots & 1 & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ \lambda + n - 1 & \cdots & \cdots & 1 & \lambda \end{pmatrix} = A'$$

A continuación hacemos 0 todos los elementos de la primera columna, salvo el primero

$$A' \xrightarrow{f_{i} \to f_{i} - f_{1}} \begin{pmatrix} \lambda + n - 1 & 1 & \cdots & \cdots & 1 \\ 0 & \lambda - 1 & 0 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & & \cdots & & \cdots & 0 & \lambda - 1 \end{pmatrix} = A''$$

Las operaciones elementales que se han utilizado no alteran el determinante, por lo que $\det(A) = \det(A'')$. El determinante de A'', por ser triangular, es igual al producto de los elementos de la diagonal principal. Por tanto

$$\det(A) = \det(A'') = (\lambda + n - 1)(\lambda - 1)^{n-1}$$

El rango de A es igual al de A' y por tanto

$$rg(A) = \begin{cases} n & \text{si } \lambda \neq 1 - n \text{ y } \lambda \neq 1 \\ n - 1 & \text{si } \lambda = 1 - n \\ 1 & \text{si } \lambda = 1 \end{cases}$$

Pregunta 7: La opción correcta es: (b) El rango de A es n-1 si $\lambda=1-n$.

Pregunta 8 : Como $\det(A) = (\lambda + n - 1)(\lambda - 1)^{n-1}$ y $n \ge 4$, entonces la opción correcta es:

(c) Determinante de A es un múltiplo de $(\lambda + n - 1)(\lambda - 1)^3$

Ejercicio 2: Sea $B = \{v_1, v_2, v_3, v_4\}$ una base de un \mathbb{K} -espacio vectorial V y U y W los siguientes subespacios de V

$$U = L(v_1 + v_2, v_1 - 2v_3 + v_4), \quad W = L(v_1 + 2v_2 + 3v_3, 2v_1 + v_2 + 3v_4, v_1 + v_2 + v_3 + v_4)$$

Pregunta 9 (1 punto): El subespacio intersección $U \cap W$

- (a) es la recta generada por el vector $v_1 2v_3 + v_4$. F
- (b) unas ecuaciones implícitas de $U \cap W$ son $\{x_1 = 0, x_3 2x_2 = 0, x_2 + x_4 = 0\}$ V
- (c) $U \cap W = \{0\}$ F

Pregunta 10 (1 punto): El subespacio suma U+W

- (a) es igual a V aunque U y W no son suplementarios. F
- (b) $\{v_1 + v_2, v_3 + v_4, v_1\}$ es una base de U + V F
- (c) $\{v_1 + v_2, -v_2 2v_3 + v_4, v_3 + v_4\}$ es una base de U + V. V

Solución:

$$U = L(u_1 = v_1 + v_2, u_2 = v_1 - 2v_3 + v_4), \dim U = 2$$

$$W = L(w_1 = v_1 + 2v_2 + 3v_3, \ w_2 = 2v_1 + v_2 + 3v_4, \ w_3 = v_1 + v_2 + v_3 + v_4) = L(w_1, w_3), \ \dim W = 2v_1 + v_2 + 3v_3 + v_4 + v_3 + v_4 + v_4$$

Un sistema generador del subespacio suma es $U + W = L(u_1, u_2, w_1, w_3)$ y dim $(U + W) = \operatorname{rg}\{u_1, u_2, w_1, w_3\}$

$$\begin{pmatrix} 1 & 1 & 0 & 0 & | & u_1 \\ 1 & 0 & -2 & 1 & | & u_2 \\ 1 & 2 & 3 & 0 & | & w_1 \\ 1 & 1 & 1 & 1 & | & w_3 \end{pmatrix} \sim_f \begin{pmatrix} 1 & 1 & 0 & 0 & | & u_1 \\ 0 & -1 & -2 & 1 & | & u_2 - u_1 \\ 0 & 1 & 3 & 0 & | & w_1 - u_1 \\ 0 & 0 & 1 & 1 & | & w_3 - u_1 \end{pmatrix} \sim_f \begin{pmatrix} 1 & 1 & 0 & 0 & | & u_1 \\ 0 & -1 & -2 & 1 & | & u_2 - u_1 \\ 0 & 0 & 1 & 1 & | & w_1 - 2u_1 + u_2 \\ 0 & 0 & 1 & 1 & | & w_3 - u_1 \end{pmatrix}$$

luego $\dim(U+W)=3$. Una base de U+W está formada por los vectores de las filas 1, 2 y 3:

$$\mathcal{B}_{U+W} = \{ v_1 + v_2, -v_2 - 2v_3 + v_4, v_3 + v_4 \}$$

Dimensión de la intersección:

$$\dim U \cap W = \dim U + \dim W - \dim(U + W) = 2 + 2 - 3 = 1$$

Base de la intersección: $w_1 - 2u_1 + u_2 = w_3 - u_1$ separamos u's y w's y tenemos

$$w_1 - w_3 = u_1 - u_2 \in U \cap W$$

 $u_1-u_2=(0,1,2,-1)=v_2+2v_3-v_4$ es un vector que determina una base de $U\cap W$.

Unas ecuaciones implícitas de $U \cap W$ son

$${x_1 = 0, x_3 - 2x_2 = 0, x_2 + x_4 = 0}$$

Ejercicio 3: Sean $B = \{v_1, v_2, v_3, v_4\}$ la base canónica de \mathbb{K}^4 y $f : \mathbb{K}^4 \to \mathbb{K}^4$ una aplicación lineal tal que

- (1) El núcleo es el subespacio de ecuaciones $\{x + y + z = 0, t = 0\}$ y
- (2) $f(v_1 + v_2 + v_3) = v_1 + v_2 + v_3$ y $f(v_4) = v_4$

Pregunta 11 (1 punto): La matriz de f en la base canónica de \mathbb{K}^4 es

$$(a) \ \frac{1}{3} \left(\begin{array}{cccc} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{array} \right) \ V, \quad (b) \ \frac{1}{3} \left(\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{array} \right), \quad (c) \ \text{es una matriz de rango 3.}$$

Pregunta 12 (1 punto): Sea R la recta generada por el vector $v_1 + v_2 + v_3 + v_4$. La imagen inversa de R

- (a) es la recta R.
- (b) es un hiperplano. V
- (c) es el plano L((1,1,1,1), (1,-1,0,0))

Pregunta 13 (1 punto): Sea $g: \mathbb{K}^4 \to \mathfrak{M}_2(\mathbb{K})$ la aplicación lineal $g(x,y,z,t) = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$. El subespacio imagen de R por la aplicación $g \circ f$ es

- (a) es un subespacio de $\mathfrak{M}_2(\mathbb{K})$ que no contiene matrices singulares salvo la nula.
- (b) contiene a las matrices de la forma $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$, con $x \in \mathbb{K}$ V
- (c) es el subespacio trivial pues $v_1 + v_2 + v_3 + v_4$ es un vector del núcleo de $g \circ f$.

Solución

Pregunta 11: Tomando dos vectores del núcleo de f, por ejemplo $v_1 - v_2 = (1, -1, 0, 0)$ y $v_2 - v_3 = (0, 1, -1, 0)$, se tienen las imágenes de los vectores de una base de \mathbb{K}^4 :

$$f(1,-1,0,0) = (0,0,0,0), f(0,1,-1,0) = (0,0,0,0), f(1,1,1,0) = (1,1,1,0), f(0,0,0,1) = (0,0,0,1)$$

A partir de ellos determinamos las imágenes de los vectores de la base canónica para obtener la matriz de f que es

$$\mathfrak{M}_{\mathcal{B}}(f) = rac{1}{3} \left(egin{array}{ccccc} 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 3 \end{array}
ight)$$

o simplemente comprobamos que esa matriz transforma los cuatro vectores dados de la forma indicada.

Pregunta 12: Resolvemos sin tener en cuenta la matriz del apartado anterior.

En primer lugar, el vector generador de R no pertenece al núcleo de f. Su imagen es

$$f(1,1,1,1) = f(1,1,1,0) + f(0,0,0,1) = (1,1,1,0) + (0,0,0,1) = (1,1,1,1)$$

es decir $R \subseteq f^{-1}(R)$. Además, todos os vectores del núcleo de f pertenecen a $f^{-1}(R)$ puesto que su imagen es el $(0,0,0,0) \in R$. Una base del núcleo es $\{(1,-1,0,0),\,(0,1,-1,0)\}$, por lo tanto el subespacio H generado por los

tres vectores $\{(1,1,1,1), (1,-1,0,0), (0,1,-1,0)\}$ está contenido en $f^{-1}(R)$ y tiene dimensión 3. Como $f^{-1}(R)$ no puede tener dimensión 4, ya que en tal caso sería $f(\mathbb{K}^4) = R$, entonces $f^{-1}(R)$ es el hiperplano H. Si se quiere usar el razonamiento habitual, utilizando la matriz de f, sería así:

$$\begin{split} f^{-1}(R) &= \{(x,y,z,t): \ f(x,y,z,t) \in R \\ &= \{(x,y,z,t): \frac{1}{3}(x+y+z, \ x+y+z, \ x+y+z, \ 3t) \in R \end{split}$$

Pregunta 13: La imagen de R por la aplicación $g\circ f$ es

$$(g \circ f)(R) = L((g \circ f)(1, 1, 1, 1)) = L((\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix}))$$

luego contiene a todas las matrices de la forma $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$, con $x \in \mathbb{K}$.