

DASAR SISTEM

Departemen Ilmu Komputer/ Informatika Universitas Diponegoro Semester Gasal 2017/ 2018

REFERENSI

- [Harris] Digital Design And Computer Architecture, D.M. Harris And S.L. Harris, Morgan Kaufmann, 2013 (2nd Edition).
- [Muchlas] Muchlas. 2005. Rangkaian Digital. Gava Media. Jogjakarta

AGENDA

I - SISTEM DIGITAL

- 1. Revolusi Digital
- 2. Rangkaian Digital
- 3. Sistem Digital
- 4. Representasi Besaran Digital
- 5. Prinsip Perancangan Digital

II – SISTEM BILANGAN

- 1. Sistem bilangan
- 2. Konversi Sistem biner, oktal, dan heksadesimal ke Sistem Desimal
- 3. Sistem kode

Motivation

- Microelectronic technologies have revolutionized our world: cell phones, internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to \$315 billion in 2013.

The Digital Revolution

Integrated Circuit: Many digital operations on the same material

Vacuum tubes

Integrated Circuit

Exponential Growth of Computation

Moore's Law

Stored Program WWII Model

1949

1965

Robert Noyce, 1927 - 1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild
 Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

Gordon Moore

- Cofounded Intel in 1968 with Robert Noyce.
- Moore's Law: the number of transistors on a computer chip doubles every 2 years (observed in 1965)

Technology Trends: Moore's Law

CPU Transistor Counts 1971-2008 & Moore's Law

• Since 1975, transistor counts have doubled every two years.

[Harris]

Principle of Abstraction

Smt 3 - AIK21332 : Sistem Operasi

Smt 2 - AIK21322 : Organisasi dan arsitektur komputer

Smt 1 - AIK21312 : Dasar Sistem

Abstraction: Hiding details when they aren't important

Application programs Software Operating device drivers **Systems** instructions **Architecture** registers Microdatapaths architecture controllers adders Logic memories Digital **AND** gates Circuits **NOT** gates amplifiers

filters

transistors

diodes

electrons

Analog Circuits

Devices

Physics

AGENDA

I - SISTEM DIGITAL

- 1. Revolusi Digital
- 2. Rangkaian Digital
- 3. Sistem Digital
- 4. Representasi Besaran Digital
- 5. Prinsip Perancangan Digital

II – SISTEM BILANGAN

- 1. Sistem bilangan
- 2. Konversi Sistem biner, oktal, dan heksadesimal ke Sistem Desimal
- 3. Sistem kode

RANGKAIAN DIGITAL (1)

- Berdasarkan sifat sinyal yang diolah, terdapat dua jenis rangkaian elektronika yakni:
 - Rangkaian analog
 Rangkaian elektronika yang mengolah sinyal listrik kontinyu
 - Rangkaian digital
 Rangkaian elektronika yang mengolah sinyal listrik diskrit

RANGKAIAN DIGITAL (2)

- Pengertian
 Kesatuan dari beberapa elemen logika atau beberapa gerbang logika yang membentuk fungsi pemrosesan sinyal digital
- Bentuk elemen logika terkecil adalah Gerbang Logika, contoh: OR, AND, NOT

Gambar 2. Penjelasan pengertian rangkaian digital/logika

RANGKAIAN DIGITAL (3)

- Contoh fungsi pemrosesan sinyal digital:
 - Penjumlahan biner (binary addition)
 - Pemilihan data digital (multiplexing)
 - Pendistribusian data digital (demultiplexing)
 - Pengkodean data (encoding)
 - Penafsiran data (decoding)

AGENDA

I - SISTEM DIGITAL

- 1. Revolusi Digital
- 2. Rangkaian Digital
- 3. Sistem Digital
- 4. Representasi Besaran Digital
- 5. Prinsip Perancangan Digital

II – SISTEM BILANGAN

- 1. Sistem bilangan
- 2. Konversi Sistem biner, oktal, dan heksadesimal ke Sistem Desimal
- 3. Sistem kode

SISTEM DIGITAL

- Pengertian
 Sistem elektronika yang setiap rangkaian penyusunnya melakukan pengolahan sinyal diskrit
- Komponen sistem digital
 - Sistem elektronika
 - rangkaian elektronika
 - komponen elektronika
 - Elemen/gerbang logika

SISTEM DIGITAL (2)

Komputer sebagai suatu sistem digital

Gambar 4. Komputer sebagai suatu sistem elektronika digital dalam bidang komputasi

SISTEM DIGITAL (3)

Perbedaan Rangkaian dan Sistem Digital

RANGKAIAN DIGITAL	SISTEM DIGITAL
 Merupakan bagian dari sistem digital, bagian-bagiannya terdiri atas beberapa elemen/gerbang logika Outputnya membentuk fungsi pemrosesan sinyal digital Input dan outputnya berupa sinyal digital 	 Bagian-bagiannya terdiri atas beberapa rangkaian digital, gerbang logika, dan komponen elektronika lainnya Outputnya merupakan fungsi pengalihan tenaga Input dan outputnya berupa suatu tenaga/energi

Contoh Sistem Digital

Digital Computer

Usually design to maximize performance. "Optimized for speed"

• Handheld Calculator

- Usually designed to minimize cost.
- "Optimized for low cost"
- Of course, low cost comes at the expense of speed.

Contoh Sistem Digital (2)

Digital Watch

Designed to minimize power. Single battery must last for years.

- Low power operation comes at the expense of:
 - lower speed
 - higher cost

AGENDA

I - SISTEM DIGITAL

- 1. Revolusi Digital
- 2. Rangkaian Digital
- 3. Sistem Digital
- 4. Representasi Besaran Digital
- 5. Prinsip Perancangan Digital

II – SISTEM BILANGAN

- 1. Sistem bilangan
- 2. Konversi Sistem biner, oktal, dan heksadesimal ke Sistem Desimal
- 3. Sistem kode

Representasi Besaran Digital

- Besaran digital merupakan besaran yang sifatnya diskrit (hanya memiliki dua keadaan saja)
 - Keadaan biner
 - Rendah tinggi
 - Logika 0 logika 1
- Implementasi bidang elektronika
 - Logika 0: 0 volt 0,8 volt
 - Logika 1 : 2 volt − 5 volt

Representasi Besaran Digital (2)

Gambar 5. Representasi besaran digital dengan tegangan listrik

Representasi Besaran Digital (3)

• Representasi besaran digital pada bidang elektronika

LEVEL LOGIKA 0	LEVEL LOGIKA 1
Tegangan listrik 0 s.d 0,8 V	Tegangan listrik 2 s.d 5 V
Titik potensial referensi 0	Titik potensial catu daya +Vcc
Diode dengan reverse bias	Diode dengan forward bias
Transistor dalam keadaan mati	Transistor dalam keadaan jenuh
Saklar dalam keadaan terbuka	Saklar dalam keadaan tertutup
Lampu/ LED dalam keadaan padam	lampu/LED dalam keadaan menyala

Representasi Besaran Digital (4)

Gambar 10. Representasi level logika menggunakan saklar dan LED

Representasi Besaran Digital (5)

• Simulasi DSCH, file TEST_1.SCH

TUGAS 1a

- Kerjakan dari buku Muchlash, 2005, Bagian 1
 - soal nomor: 5, 7, dan 8
- Tuliskan pada kertas folio bergaris

AGENDA

I - SISTEM DIGITAL

- 1. Revolusi Digital
- 2. Rangkaian Digital
- 3. Sistem Digital
- 4. Representasi Besaran Digital
- 5. Prinsip Perancangan Digital

II – SISTEM BILANGAN

- 1. Sistem bilangan
- 2. Konversi Sistem biner, oktal, dan heksadesimal ke Sistem Desimal
- 3. Sistem kode

Basic Design Tradeoffs

- You can improve on one at the expense of worsening one or both of the others.
- These tradeoffs exist at every level in the system design every subpiece and component.
- Design Specification -
 - Functional Description.
 - Performance, cost, power constraints.
- As a designer you must make the tradeoffs necessary to achieve the function within the constraints.

Design Representation

Digital Design

Given a functional description and performance, cost, & power constraints, come up with an implementation using a set of primitives.

- How do we learn how to do this?
 - 1. Learn about the primitives.
 - 2. Learn about design representation.
 - 3. Learn formal methods to optimally manipulate the representations.
 - 4. Look at design examples.
 - 5. Use trial and error CAD tools and prototyping.
- Digital design is in some ways more an art than a science. The creative spirit is critical in combining primitive elements & other components in new ways to achieve a desired function.
- Unlike art we have objective measures of a design:

performance - cost - power

AGENDA

I - SISTEM DIGITAL

- 1. Revolusi Digital
- 2. Rangkaian Digital
- 3. Sistem Digital
- 4. Representasi Besaran Digital

II – SISTEM BILANGAN

- 1. Sistem bilangan
- 2. Konversi Sistem biner, oktal, dan heksadesimal ke/dari Sistem Desimal
- 3. Sistem kode

Sistem Bilangan

- Bilangan Desimal (basis 10)
 - 0,1,2,3,4,5,6,7,8,9
- Bilangan Biner (basis 2)
 - 0,1
- Bilangan Oktal (basis 8)
 - 0,1,2,3,4,5,6,7
- Bilangan Heksadesimal (basis 16)
 - 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Decimal	Binary	Octal	Hex
0	000	0	0
1	001	1	1
2	010	2	2

Decimal	Binary	Octal	Hex
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

AGENDA

I - SISTEM DIGITAL

- 1. Revolusi Digital
- 2. Rangkaian Digital
- 3. Sistem Digital
- 4. Representasi Besaran Digital

II – SISTEM BILANGAN

- 1. Sistem bilangan
- 2. Konversi Sistem biner, oktal, dan heksadesimal ke/dari Sistem Desimal
- 3. Sistem kode

Biner VS desimal

- Biner ke desimal
 - 1101₂
 - 1101,11,
- Desimal ke biner
 - 21₁₀
 - 227₁₀
 - 227,625₁₀

Oktal VS desimal

- Oktal ke desimal
 - 154₈
 - 154,67₈
- Desimal ke oktal
 - 85₁₀

Heksadesimal VS desimal

- Heksadesimal ke desimal
 - 5B₁₆
 - A7,C1₁₆
- Desimal ke heksadesimal
 - 45₁₀

BINER VS Oktal dan Heksadesimal

- **Biner** → Oktal dan Heksadesimal
 - Biner ke oktal
 - 10100111010001101,
 - Biner ke heksadesimal
 - 10100111010001101,
- Oktal dan Heksadesimal → Biner
 - Oktal ke biner
 - 16245₈
 - Heksadesimal ke biner
 - 62B1C₁₆

Binary to Hex Conversion

Four-bit Group	Decimal Digit	Hexadecimal Digit
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	\mathbf{A}
1011	11	В
1100	12	\mathbf{C}
1101	13	D
1110	14	${f E}$
1111	15	${f F}$

AGENDA

I - SISTEM DIGITAL

- 1. Revolusi Digital
- 2. Rangkaian Digital
- 3. Sistem Digital
- 4. Representasi Besaran Digital

II – SISTEM BILANGAN

- 1. Sistem bilangan
- 2. Konversi Sistem biner, oktal, dan heksadesimal ke Sistem Desimal
- 3. Sistem kode

Sistem Kode

- Sistem kode
 - Kode BCD (Binary-Coded Decimal)
 - Kode Excess-3 (XS-3)
 - Kode Gray
 - Kode 7 Segment Display
 - Kode ASCII

BCD

- Hanya menggunakan kode biner yang merepresentasikan desimal 0 – 9
- Latihan, ubahlah ke bentuk desimal:
 - 0110 1000 0011 1001_{BCD}
 - 0111 1100 0001_{BCD}
- Simulasi DSCH:
 - EN_10_BCD.SCH
 - DEC_BCD_DEC.SCH
- Ubah ke biner dan BCD
 - 137₁₀

7 Segment Display

- Simulasi DSCH:
 - 7SEGTES.SCH

ASCII

- American Standard Code for Information Interchange
- Kode biner untuk merepresentasikan bilangan, huruf, dan simbol, sehingga disebut juga alfanumerik
- Deteksi kesalahan
 - Bit paritas ganjil
 - Bit paritas genap
- Tabel ASCII

Dec Hx Oct Char	Dec Hx Oct Html Chr	Dec Hx Oct Html Chr Dec Hx Oct Html Chr	
0 0 000 NUL (null)	32 20 040 @#32; Space	64 40 100 4#64; 0 96 60 140 4#96;	
1 1 001 SOH (start of heading)	33 21 041 6#33; !	65 41 101 6#65; A 97 61 141 6#97; a	
2 2 002 STX (start of text)	34 22 042 6#34; "	66 42 102 B B 98 62 142 b b	
3 3 003 ETX (end of text)	35 23 043 6#35; #	67 43 103 4#67; C 99 63 143 4#99; C	
4 4 004 EOT (end of transmission)	36 24 044 @#36; \$	68 44 104 a#68; D 100 64 144 a#100; d	
5 5 005 ENQ (enquiry)	37 25 045 @#37; %	69 45 105 a#69; E 101 65 145 a#101; e	
6 6 006 ACK (acknowledge)	38 26 046 & &	70 46 106 F F 102 66 146 f f	
7 7 007 BEL (bell)	39 27 047 @#39; '	71 47 107 @#71; <mark>G</mark> 103 67 147 @#103; <mark>g</mark>	
8 8 010 <mark>BS</mark> (backspace)	40 28 050 ((72 48 110 6#72; H 104 68 150 6#104; h	
9 9 011 TAB (horizontal tab)	41 29 051))	73 49 111 6#73; I 105 69 151 6#105; i	
10 A 012 LF (NL line feed, new line)	42 2A 052 * *	74 4A 112 6#74; J 106 6A 152 6#106; j	
ll B 013 <mark>VT</mark> (vertical tab)	43 2B 053 + +	75 4B 113 6#75; K 107 6B 153 6#107; k	
12 C 014 FF (NP form feed, new page)		76 4C 114 L L 108 6C 154 l L	
13 D 015 CR (carriage return)	45 2D 055 - -	77 4D 115 6#77; M 109 6D 155 6#109; M	
14 E 016 <mark>50</mark> (shift out)	46 2E 056 . .	78 4E 116 N N 110 6E 156 n n	
15 F 017 SI (shift in)	47 2F 057 / /	79 4F 117 O 0 111 6F 157 o o	
16 10 020 DLE (data link escape)	48 30 060 0 0	80 50 120 P P 112 70 160 p p	
17 11 021 DC1 (device control 1)	49 31 061 1 1	81 51 121 Q Q 113 71 161 q q	
18 12 022 DC2 (device control 2)	50 32 062 2 2	82 52 122 R R 114 72 162 r r	
19 13 023 DC3 (device control 3)	51 33 063 3 3	83 53 123 S <mark>\$</mark> 115 73 163 s 3	
20 14 024 DC4 (device control 4)	52 34 064 4 4	84 54 124 T T 116 74 164 t t	
21 15 025 NAK (negative acknowledge)	53 35 065 4#53; 5	85 55 125 U U 117 75 165 u u	
22 16 026 SYN (synchronous idle)	54 36 066 6 6	86 56 126 V V 118 76 166 v V	
23 17 027 ETB (end of trans. block)	55 37 067 4#55; 7	87 57 127 6 #87; ₩ 119 77 167 6 #119; ₩	
24 18 030 CAN (cancel)	56 38 070 4#56; 8	88 58 130 X X 120 78 170 x X	
25 19 031 EM (end of medium)	57 39 071 4#57; 9	89 59 131 Y Y 121 79 171 y Y	
26 1A 032 SUB (substitute)	58 3A 072 @#58; :	90 5A 132 Z Z 122 7A 172 z Z	
27 1B 033 ESC (escape)	59 3B 073 ; ;	91 5B 133 [[123 7B 173 { {	
28 1C 034 FS (file separator)	60 30 074 4#60; <	92 5C 134 6#92; \ 124 7C 174 6#124;	
29 1D 035 GS (group separator)	61 3D 075 = =	93 5D 135]] 125 7D 175 } }	
30 1E 036 RS (record separator)	62 3E 076 >>	94 5E 136 ^ ^ 126 7E 176 ~ ~	
31 1F 037 <mark>US</mark> (unit separator)	63 3F 077 ? ?	95 5F 137 _ _ 127 7F 177 DEL	
Source: www.LookupTables.com			

TUGAS 1b

- Kerjakan dari buku Muchlas, 2005, Bagian 2.
 - Soal nomor 2,3,5,6
- Tuliskan pada kertas folio bergaris