สรุปการทำงาน week 6

สถาปัตยกรรมของระบบ

ระบบตรวจจับพฤติกรรมนี้ใช้การผสานกันระหว่าง:

- YOLOv8 (Custom model): ตรวจจับมนุษย์และกล่อง (วัตถุ)
- Mediapipe Pose: ตรวจจับโครงกระดูกมนุษย์ (33 จุด)
- Rule-based system: ประมวลผล โครงสร้างท่าทางเพื่อจำแนก action เช่น carry, push, pull
- History Buffer (deque): ช่วยให้ระบบเสถียรขึ้นโดยพิจารณาการเกิดซ้ำของ action แทนการตัดสินเฟรมเดียว

การจัดการกับ Resolution

กำหนดความละเอียดของวิดีโอไว้ที่ 640×480 เพื่อลดภาระ GPU และช่วยให้เฟรมเรตสูงขึ้นจากเดิม (4–5 FPS \longrightarrow 10+ FPS ใน บางกรณี)

ข้อดีของการลด resolution:

- ประหยัดเวลาในการ detect box (YOLO)
- ถดขนาด input ของ Mediapipe
- ช่วยให้ระบบทำงานแบบ near real-time ได้มากขึ้น

ข้อเสีย/ข้อควรระวัง:

- หากลด resolution มากเกินไป อาจส่งผลให้การแยก keypoints ผิดพลาดในกรณีที่ร่างกาย/กล่องเล็กเกินไปในเฟรม
- ullet ควรระวังกรณี object ห่างกล้องมาก ullet กล่องเล็ก ullet ไม่ \det

การจำแนก Carrying ด้วย Rule + History-Based Buffer

ระบบใช้ฟังก์ชัน extract_features_from_skeleton() เพื่อดึงคุณลักษณะจาก joint points เช่น:

- ค่าเฉลี่ยของมุมข้อศอก (avg_elbow)
- ความสูงของมือเมื่อเทียบกับใหล่/สะโพก
- ความสัมพันธ์ของจุดมือ (wrist) กับใหล่ทางแนวนอน

จากนั้นใช้ เงื่อนไข (rules) แบ่งออกเป็น:

ประเภทการกระทำ	เงื่อนไข
carry_normal	แขนพับเล็กน้อย มืออยู่ระดับลำตัว
carry_heavy	แขนเหยียดตรง มืออยู่ต่ำ
carry_on_shoulder	มือสูงใกล้หัว แขนงอ
push_forward	มืออยู่ข้างหน้า ลำตัวตรง
pull_backward	มืออยู่ข้างหลัง ลากกล่อง

แต่ละ action มี history buffer ของตนเอง เช่น:

ระบบจะตรวจว่า action ใดเกิดซ้ำ \geq 3 ครั้งใน buffer (5 เฟรมล่าสุด) \rightarrow ค่อยสรุปว่าเป็น action นั้น (ลด false positive)

สรุป

จุดเด่นของระบบ	รายละเอียด
ใช้ Pose อย่างมีประสิทธิภาพ	ด้วยการเลือก joints ที่สำคัญ และคำนวณ features เฉพาะ
ใช้ history-based filtering	ลคการผิดพลาคจาก frame เดียว
ปรับ resolution ช่วย performance	ทำให้ระบบรันได้เร็วขึ้นใน real-time
ตรวจจับหลายรูปแบบ carrying	เช่น push, pull, heavy, shoulder