LOG111 Hand-in 3

Frank Tsai

October 1, 2024

1

Proof. By construction, the set $\Gamma_1 \cup \Gamma_2$ is unsatisfiable, so by compactness, there is a finite unsatisfiable subset $\Delta \subseteq \Gamma_1 \cup \Gamma_2$.

Consider

$$\Delta_1 := \Delta \setminus \Gamma_2$$
 $\Delta_2 := \Delta \setminus \Gamma_1$.

We claim that Δ_1 and Δ_2 respectively axiomatize $\mathsf{Th}(\Gamma_1)$ and $\mathsf{Th}(\Gamma_2)$. We prove that this is the case for Δ_1 ; the argument for Δ_2 is completely analogous.

We need to prove that for any formula φ , $\Gamma_1 \vdash \varphi$ iff $\Delta_1 \vdash \varphi$. To this end, it suffices to prove their semantic counterpart by soundness and completeness.

The if direction is an immediate consequence of monotonicity. In the other direction, suppose that $\Gamma_1 \models \varphi$ and let $M \models \Delta_1$. If $M \models \Gamma_1$ then we are done. On the other hand, if $M \not\models \Gamma_1$ then it follows that $M \models \Delta_2$, but this means that $M \models \Delta_1 \cup \Delta_2$ contradicting the fact that $\Delta = \Delta_1 \cup \Delta_2$ is unsatisfiable.

2

1.

$$\frac{c_x < c_y \quad [c_y < c_x]^1}{\frac{c_x < c_x}{\bot} \underset{RAA_2^1}{} } T$$

2.

$$(X,R) \not \models \bot$$
 $(X,R) \models c_x < c_y \text{ iff } (x,y) \in R$
$$(X,R) \models c_x \not < c_y \text{ iff } (x,y) \notin R$$

 Γ \models φ iff for every (X, R), if (X, R) satisfies every formula in Γ then (X, R) satisfies φ .

3. To prove soundness, we can do an induction on the height of the derivation tree.

The base case is immediate. In the induction case, we do a case analysis on the last applied rule. When the last applied rule is RAA₁, the induction hypothesis yields Γ , $c_x \not< c_y \models \bot$. Thus, for any (X, R) satisfying Γ , (X, R) must satisfy $c_x < c_y$, i.e., $\Gamma \models c_x < c_y$.

4. We show that if Γ is consistent then Γ is satisfiable.