Exercise 1 (Sipser 3e, Exercise 1.14)

a) Theorem₁: If M is a DFA that recognizes language B, then swapping the accept and non-accept states in M yields a new DFA recognizing the complement of B. Conclude that the class of regular languages is closed under complement.

Proof:

Suppose $M:=(Q,\Sigma,\delta,q_0,F)$ is a DFA that recognizes the regular language B, and let $N:=(Q,\Sigma,\delta,q_0,Q\backslash F)$ be the result of swapping the accepting and non accepting states of M. We haven't mutated δ , so N will be also be deterministic.

Then each string $b \in B$ is accepted at a particular final state $f \in F$; if b could be accepted at some additional final state in $F \setminus \{f\}$, the clearly M would have to be nondeterministic. Consequently, b must end at a non-accepting state of N. And since N is also a DFA, we can conclude that b is rejected by N.

Now let $a \in B^c$. We know that a is rejected by M, so a ends on a non-accepting state of M. We also know that the non-accepting states of M are accepting states of N, so a ends at an accepting state of N, and we can conclude that N accepts a.

Corollary₁: Regular languages are closed under complement.

Proof:

By Theorem₁, given a DFA M which recognizes the regular language B, we can invert the accepting and non-accepting states of M to obtain a new DFA N which recognizes the language B^c . And since the B^c is recognized by a DFA, B^c must also be regular. Therefore regular languages are closed under complement.

b) Claim: If M is an NFA that recognizes language C, then swapping the accept and non-accept states in M doesn't necessarily yield a new NFA that recognizes the complement of C.

Proof:

Observe the following NFAs.

Now observe that we can obtain either of these NFAs from the other, by swapping the accepting and non-accepting states. Additionally, each of these DFAs accept the string aa_i , so clearly they do not recognize complementary languages.

Corollary₂: The class of languages recognized by NFA is closed under complement.

Proof:

The class of languages recognized by NFA is precisely the set of regular languages. Therefore, we can associate to each NFA, a DFA D which recognizes the same language. Now, by Theorem₁, we can obtain a new DFA D' such that $L(D') = L(D)^c$. Finally, since we have a DFA which recognizes the complementary language of the original NFA, and all DFAs are NFAs, we also have an NFA which recognizes the complementary language of the original NFA.

Exercise 2 (Sipser 3e, Exercise 1.16)

a) We want to convert the following NFA into a DFA by the algorithm given in the proof of Theorem 1.39.

For convenience, let $M:=\left(Q,\Sigma,\delta,q_0,F\right)$ be the formal description of the given NFA,

We begin by drawing four states, each corresponding to an element of $\mathcal{P}(Q)$.

Now we determine δ' for our new DFA.

$$\delta'(\emptyset, a) = \emptyset$$

$$\delta'(\{S_2\}, a) = \emptyset$$

$$\delta'(\{S_2\}, b) = \{S_1\}$$

$$\delta'(\{S_1\}, a) = \{S_1, S_2\}$$

$$\delta'(\{S_1\}, b) = \{S_2\}$$

$$\delta'(Q, a) = \{S_1, S_2\}$$

$$\delta'(Q, b) = \{S_1, S_2\}$$

So we have

Finally, make $\{S_1\}$ the initial state of our new machine, and make $\{S_1\}$ and $\{S_1,S_2\}$ accepting states to obtain A DFA which recognizes the same language as M.

b) We want to convert the following NFA into a DFA by the algorithm given in the proof of Theorem 1.39.

Once again, for convenience, let $M:=\left(Q,\Sigma,\delta,q_0,F\right)$ be the formal description of the given NFA.

We begin by drawing four states, each corresponding to an element of $\mathcal{P}(Q)$.

$$(s_0, s_1)$$

Now we determine δ' for our new DFA.

$$\delta'(\emptyset, a) = \emptyset$$
$$\delta'(\emptyset, b) = \emptyset$$

$$\delta'(\left\{S_0, S_1\right\}, a) = \left\{S_0, S_1, S_2\right\}$$
$$\delta'(\left\{S_0, S_1\right\}, b) = \emptyset$$

$$\delta'(\left\{S_0\right\}, a) = \left\{S_2\right\}$$

$$\delta'(\left\{S_0\right\}, b) = \emptyset$$

$$\delta'(\{S_0, S_2\}, a) = \{S_1, S_2\}$$

$$\delta'(\{S_0, S_2\}, b) = \{S_1, S_2\}$$

$$\delta'(\left\{S_1\right\}, a) = \left\{S_0, S_1\right\}$$

$$\delta'(\left\{S_1\right\}, b) = \emptyset$$

$$\delta'(\{S_1, S_2\}, a) = \{S_0, S_1\}$$

$$\delta'(\{S_1, S_2\}, b) = \{S_1, S_2\}$$

$$\delta'(\lbrace S_2 \rbrace, a) = \lbrace S_1 \rbrace$$

$$\delta'(\lbrace S_2 \rbrace, b) = \lbrace S_1, S_2 \rbrace$$

$$\delta'(Q, a) = Q$$

$$\delta'(Q, b) = \{S_1, S_2\}$$

So we have

Finally, make $\{S_0, S_1\}$ the initial state of our new machine, and set each state which corresponds to a set containing S_1 into an accepting state; $\{S_0, S_1\}$, $\{S_1, S_2\}$, and Q. Our result is a DFA which recognizes the same language as M.

Exercise 3 (Sipser 3e, Exercise 1.19 a)

We want to convert the regular expression $(0 \cup 1) * 000(0 \cup 1) *$ into a nondeterministic finite automaton using the procedure described in lemma 1.55.

$(0 \cup 1)*000(0 \cup 1)*$

Exercise 4

Here we view a string w over the alphabet $\{0,1,2\}$ as representing an integer in base three. Give a DFA which accepts w iff (w mod 5) = 0.

Our DFA will have five states S_0, \ldots, S_4 , corresponding to equivalence classes of whole numbers mod 5. In general, strings end on S_k if and only if they represent ternary numbers m with the property that $m \equiv k \pmod{5}$. We will set $q_0 = S_0$, since strings end on this state if and only if they represent ternary multiples of 5.

Let α be a string over Σ .

Suppose α is passed to S_0 . If α starts with 0, then S_0 should clearly pass the tail of α to itself. Similarly, if α starts with 1, then S_0 passes the tail of α to S_1 , and if α starts with 2, then S_0 passes the tail of α to S_1 ; making the assumption that α will be divisible by the corresponding number.

Now suppose α is passed to S_1 , and assume α was passed from S_0 . If α starts with 0, then S_1 should pass the tail of α to S_3 , since $10_3=3_{10}$. If α starts with 1, then S_1 should pass the tail of α to S_4 , since $11_3=4_{10}$. And if α starts with 2, then S_1 should pass the tail of α to S_0 , since $12_3=5_{10}\equiv 0 \pmod 5$.

We continue in the same way for states S_2 , S_3 , and S_4 , and record the information into a table.

	0	1	2
S ₀	0	1	2
S ₁	3	4	0
S ₂	1	2	3
S ₃	4	0	1
S ₄	2	3	4

Table 1

Equivalently, we can represent our resultant DFA by the following graph. Note that some edges are colored to disambiguate crossed edges. Also, sorry for the crossed edges.

Exercise 5

Convert the NFA below to a DFA. It accepts the language over {a, b} of all strings that contain abba.

So we have

There's clearly no way to reach states \emptyset , S_1 , S_2 , S_3 , or S_4 , so we can get rid of them. Finally, set $q_0 = S_0$, and let each state with a four into an accepting state.

Lastly, we can remove states (0,2,4), (0,3,4), and (0,4), add a loop edge at state (0,1,4) for b, and clean up the presentation to obtain our final DFA.

