Portafolio 1_Topología

Elvis Mauricio Sánchez Rogel

Curso de Topología

Contents

1	Por	tafolio 1	1
	1.1	Ejercicio 1 (1.5 pts)	1
	1.2	Ejercicio 2 (1.5 pts)	1
	1.3	Ejercicio 3 (1.5 pts)	2
	1.4	Ejercicio 4 (2 pts)	2
	1.5	Ejercicio 6 (2pts)	4
	1.6	Ejemplo de metricas	4
	1.7	Sea (X,d) un espacio métrico. Probar que	

1 Portafolio 1

1.1 Ejercicio 1 (1.5 pts)

Sea d una distancia definida en un conjunto arbitrario X, sea $k \in \mathbb{R}$. Estudiar para que valores de k la aplicación d' definida como d'(x,y) = d(x,y) + k sería también una métrica.

Demostración:

Claramente hay que comprobar que se cumpla la primera condición de métrica. Para que d'(x,x) = d(x,x) + k sea métrica debe de cumplirse que la distancia d(x,x) = 0 para todo $x \in X$, Es decir:

$$0 = d'(x,x)
0 = d(x,x) + k
0 = 0 + k
0 = k$$

Por tanto, el único valor k para que d'(x,y) = d(x,y) + k se una métrica es que sea k = 0.

1.2 Ejercicio 2 (1.5 pts)

Sea (X, d) un espacio métrico. Probar que las bolas cerradas son conjuntos cerrados.

Demostración:

Sea $\hat{x} \in X$ y r > 0, entonces $\overline{B}(\hat{x}, r) = \{\hat{y} \in X \mid d(\hat{y}, \hat{x}) \leq r\}$ es un conjunto cerrado, pués $X \ \overline{B}(\hat{x}, r) = \{\hat{y} \in X \mid d(\hat{y}, \hat{x}) > r\} = A$ es un conjunto abierto.

Para ello demostraremos $X \ \overline{B}(\hat{x},r) = \{\hat{y} \in X \mid d(\hat{y},\hat{x}) > r\} = A$ es un abierto.

Sea $\hat{y} \in A$, entonces $d(\hat{y}, \hat{x}) > r$, y sea $\epsilon = d(d\hat{x}, \hat{y}) - r > 0$, tomamemos un $\hat{z} \in B(\hat{y}, \epsilon)$, tal que se tiene lo

siguiente:

$$\begin{array}{ccc} d(\hat{y},\hat{x}) & \leq & d(\hat{y},\hat{z}) + d(\hat{z},\hat{x}) \\ d(\hat{y},\hat{x}) + r - d(\hat{y},\hat{x}) < d(\hat{y},\hat{x}) - d(\hat{y},\hat{z}) & \leq & d(\hat{z},\hat{x}) \\ r & < & d(\hat{z},\hat{x}) \end{array}$$

Por lo tanto, $\hat{z} \in A$, esto prueba $B(\hat{y}, \epsilon) \subset A$, por lo tanto A es un conjunto abierto, probando así que $\overline{B}(\hat{x}, r)$ es cerrado.

1.3 Ejercicio 3 (1.5 pts)

Sea X un conjunto y $p \in X$ un punto arbitrario. Demostrar que la familia $\tau_p = \{U \subset X \mid p \in U\} \cup \{\emptyset\}$ es una topología

Demostración:

Claramente se observa que el vacío forma parte $\emptyset \in \tau_p$. Por otro lado, $p \in X$, en consecuencia $X \in \tau_p$. Sea $\{U_j\}_{j \in I} \subset \tau_p$, si $U_j = \emptyset$ para todo $j \in I$, entonces $\bigcup_{j \in J} U_j = \emptyset$, en consecuencia $\bigcup_{j \in J} U_j \in \tau_p$. Por otro lado, si existe $U_i \neq \emptyset$, entonces $p \in U_i$, en consecuencia $p \in \bigcup_{j \in J} U_j$, por lo tanto $\bigcup_{j \in J} U_j \in \tau_p$.

Ahora sea $\{U_j\}_{j=1}^k\subseteq \tau_p$, si para algún $i\in\{1,\dots,k\}$ sucede que $U_i=\emptyset$, entonces $\bigcap_{j=1}^k U_j=\emptyset$, por tanto $\bigcap_{j=1}^k U_j\in \tau_p$. Por otro lado si sucede que $U_j\neq\emptyset$ para todo $j\in\{1,\dots,k\}$, se tiene que $p\in U_j$ para todo $j\in\{1,\dots,k\}$, así que $p\in\bigcap_{j=1}^k U_j$, por lo tanto $\bigcap_{j=1}^k U_j\in\tau_p$.

1.4 Ejercicio 4 (2 pts)

Se considera el conjunto $X = \{a, b, c, d, e, f\}$. Indicar justificadamente si las siguientes familias constituyen topologías en X.

a)
$$\tau_1 = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{a, b, c, d, e\}\}$$

b)
$$\tau_2 = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, e\}, \{b, c, d\}, \{a, b, c, d, e\}\}$$

c)
$$\tau_3 = \{\emptyset, X, \{a\}, \{f\}, \{a, f\}, \{a, c, f\}, \{b, c, d, e, f\}\}$$

d)
$$\tau_A = \{\emptyset, X, \{b\}, \{d\}, \{a, d\}, \{a, b, d\}, \{a, b, c, d, e\}\}$$

a)
$$\tau_1 = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{a, b, c, d, e\}\}\$$

Demostración:

Claramente el vacio \emptyset y el X estan en la topología τ_1 .

Por otro lado, las uniones e interseciones:

```
 \text{Uni\'on} \qquad \text{Intersecci\'on} \\ \{a\} \cup \emptyset = \{a\} \qquad \qquad \{a\} \cap \{c,d\} = \emptyset \\ \{a\} \cup \{c,d\} = \{a,c,d\} \qquad \qquad \{a\} \cap \{a,c,d\} = \{a\} \\ \{a\} \cup \{a,c,d\} = \{a,c,d\} \qquad \qquad \{a\} \cap \{a,b,c,d,e\} = \{a\} \\ \{c,d\} \cup \{a,c,d\} = \{a,c,d\} \qquad \qquad \{c,d\} \cap \{a,c,d\} = \{c,d\} \\ \{a,c,d\} \cup \{a,b,c,d,e\} = \{a,b,c,d,e\} \qquad \qquad \{a,b,c,d,e\} \cap \{a,b,c,d,e\} = \{a,b,c,d,e\} \\ \{a,b,c,d,e\} \cup \{a,b,c,d,e,f\} = X \qquad \qquad \{a,b,c,d,e\} \cap \{a,b,c,d,e,f\} = \{a,b,c,d,e\} \\ \end{cases}
```

las uniones y las intersecciones de los subconjuntos estan en la topología τ_1 . Por lo tanto τ_1 es una topología sobre X

b)
$$\tau_2 = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, e\}, \{b, c, d\}, \{a, b, c, d, e\}\}\$$

Demostración:

Claramente el vacio \emptyset y el X estan en la topología τ_2 .

Por otro lado, las uniones e interseciones:

Como $\{c,d\}\cap \{a,c,e\}=\{c\}\not\in \tau_2.$ Por lo tanto τ_2 no es una topología sobre X

c)
$$\tau_3 = \{\emptyset, X, \{a\}, \{f\}, \{a, f\}, \{a, c, f\}, \{b, c, d, e, f\}\}\$$

Demostración:

Claramente el vacio \emptyset y el X estan en la topología τ_3 .

Por otro lado, las uniones e interseciones:

$$\begin{array}{ll} \text{Uni\'on} & \text{Intersecci\'on} \\ \{a\} \cup \emptyset = \{a\} & \{a\} \cap \{f\} = \emptyset \\ \{a\} \cup \{f\} = \{a,f\} & \{a\} \cap \{a,f\} = \{a\} \\ \{a\} \cup \{a,c,f\} = \{a,c,f\} & \{a\} \cap \{b,c,d,e,f\} = \emptyset \\ \{a\} \cup \{b,c,d,e,f\} = X & \{f\} \cap \{a,f\} = \{f\} \\ \{a,f\} \cup \{a,c,f\} = \{a,c,f\} & \{a,f\} \cap \{a,c,f\} = \{a,f\} \\ \{a,c,f\} \cup \{b,c,d,e,f\} = X & \{a,c,f\} \cap \{b,c,d,e,f\} = \{c,f\} \end{array}$$

Como $\{a, c, f\} \cap \{b, c, d, e, f\} = \{c, f\} \notin \tau_3$. Por lo tanto τ_3 no es una topología sobre X d) $\tau_4 = \{\emptyset, X, \{b\}, \{d\}, \{a, d\}, \{a, b, d\}, \{a, b, c, d, e\}\}$

Demostración:

Claramente el vacio \emptyset y el X estan en la topología τ_4 .

Por otro lado, las uniones e interseciones:

Como $\{b\} \cup \{d\} = \{b,d\} \notin \tau_4$. Por lo tanto τ_4 no es una topología sobre X. ## Ejercico 5 (1.5 pts)

Probar que el conjunto $\mathcal{B} = \{(a, \infty), a \in \mathbb{R}\}$ es una base de topología en \mathbb{R} . La topología generada por cada base se llama topología de Kolmogorov.

Sea $x \in \mathbb{R}$,
entonces existe $x \in B_o = (a, \infty)$, con $B_o = \{y \in \mathbb{R} \mid y > a\}$, tal que $B_o \in \mathcal{B}$, cumpliendo así, la primera condición.

Sean $B_1, B_2 \in \mathcal{B}$, entonces $B_1 = (a_1, \infty)$ y $B_2 = (a_2, \infty)$, con $a, b \in \mathbb{R}$, si tomamos $a = \max(a_1, a_2)$, tal que se cumple $B_1 \cap B_2 = (a, \infty)$, entonces existe $B_3 = (a, \infty) \in \mathcal{B}$, en consecuencia $x \in B_3 \subset B_1 \cap B2$. Por lo tanto, se ha comprobado la segunda condición.

1.5 Ejercicio 6 (2pts)

Considera $X = \mathbb{R}$. Indicar si los siguientes conjuntos son abiertos y/o cerrados considerando la topología usual τ_u y la topología de Kolmogorov τ_K descrita en el ejemplo anterior.

- a) (0,1)
- b) (0,1]
- c) [0,1]
- d) $[1,\infty)$
- e) $(-\infty, 0]$
- a) (0,1)

Demostración: Según la topología usual:

Supongamos que [0,1] es cerrado, entonces su \mathbb{R} [0,1] es abierto, $(-\infty,0)U(1,\infty)$,

1.6 Ejemplo de metricas

Sea X un conjunto no vacio y $d: X \times X \longrightarrow \mathbb{R}$ una función que satisface lo siguiente:

- a) d(x,y) = 0, si y solo si x = y
- b) d(x,y) = d(x,z) + d(y,z)

Probar que es métrica

Demostración:

Sabemos de la primera condición, d(x,y) = 0, si y solo si x = y.

Por otro lado, comprobaremos la segunda condición de simetría, para ello tenemos:

Sea $z = x \in X$, entonces:

$$d(x,y) \le d(x,z) + d(y,z)$$

$$d(x,y) \le d(x,x) + d(y,x)$$

$$d(x,y) \le d(y,x)$$

Ahora si y = z

$$d(y,x) \le d(y,z) + d(x,z)$$

$$d(y,x) \le d(y,y) + d(x,y)$$

$$d(y,x) \le d(x,y)$$

Por lo tanto, $d(x, y) \le d(y, x) \le d(x, y)$, entonces d(x, y) = d(y, x).

Finalmente, la propiedad de la desigualdad del triángulo, se cumple por la condición de simetría de la prueba anterior

$$d(x,y) \le d(x,z) + d(y,z) = d(z,y)$$
$$d(x,y) \le d(x,z) + d(z,y)$$

Por lo tanto, se cumple la desigualdad del triángulo pedida.

1.7 Sea (X, d) un espacio métrico. Probar que

$$\alpha(x,y)=\min\{1,d(x,y)\};\,\beta(x,y)=\frac{d(x,y)}{1+d(x,y)}$$
 son métricas en X.

Demostración:

Como sabemos el menor valor de distancia que la métrica d(x,y) puede tomar es cero, si y solo x=y. Claramente $\alpha(x,y)=d(x,y)$, cumpliendose así todas las condiciones de métrica. Por lo tanto $\alpha(x,y)$ es una métrica sobre X.

En el caso de $\beta(x,y)=\frac{d(x,y)}{1+d(x,y)},$ es una métrica

Demostración:

Notemos si $\beta(x,y) = 0$, tenemos

$$0 = \frac{d(x,y)}{1+d(x,y)}$$
$$0 = d(x,y)$$

como d(x,y)=0 y es métrica, entonces $\beta(x,y)=0$, la primera condición se cumple.

Notemos que si d(x,y) = d(y,x), entonces

$$\frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)}$$

¡Hasta aqui me quede!