B.Sc.(Hons.) Physics 32221501 Teacher: Mamta S.G.T.B. Khalsa College Quantum Mechanics (2022-23) Lab Assignment # 4 Numerov Method

Due Date and Time: 19.08.2022, 11:59PM Max. Marks : 20

The objective of this assignment is to

- understand the Numerov method for solving IVP.
- realise the order of local and global truncation errors in Numerov Method.

1. (8 marks) **Theory**

(a) Derive the Numerov method algorithm for solving IVP

$$u''(x) + f(x)u(x) = 0$$
 with $u(a) = u_0$, $u(a+h) = u_1$ (1)

 $x \in [a, b]$ and with h = (b - a)/N i.e. you with N intervals or N + 1 grid points in the interval [a, b].

- (b) Discuss the local and global truncation errors.
- (c) How will you use Numerov method to solve the IVP when the initial conditions given are $u(a) = u_0$, $u'(a) = du_0$ without affecting the order of local truncation error.
- (d) Now derive the algorithm for

$$u''(x) + f(x)u(x) = r(x)$$
 with $u(a) = u_0$, $u(a+h) = u_1$ (2)

(e) Show the steps of numerical computation to solve the following IVP using Numerov method with N=4:

$$u''(x) - (1+x^2)u(x) = 0$$
 with $u(0) = 1$, $u'(0) = 0$. (3)

2. (10 marks) **Programming**

- (a) Write a Python code that
 - i. solves the IVP (1) with N+1 number of grid points.
 - ii. plots the final numerical solution u(x) and u'(x) in the range [a, b] along with the solutions obtained by inbuilt function $scipy.integrate.solve_ivp$.
- (b) Validate your code by solving the IVP given in equations (3)
- (c) Print a table with the column heads x_i , u_{num_i} , u_{inbuilt_i} , $E_i = |u_{\text{inbuilt}_i} y_{\text{num}_i}|$ for N = 2 and N = 4.
- (d) Now extend your program to solve the IVP for $N=2^k$ with $k=1,2,\ldots,6$. Plot the solution for each N as points of different style along with the inbuilt solution.

3. (2 marks) **Discussion**

Interpret and discuss your results.