Dependent Choice Schemes in Set Theory without Power Set

Richard Matthews

University of Leeds

European Set Theory Conference 2022

Joint work with Victoria Gitman

ZFC without power set II: Reflection strikes back

Arxiv: 2206.06220. June 2022

ZFC without power set

Under Zermelo set theory (ZF without replacement) the following three principles are equivalent:

- The reflection principle ("any formula reflects to a transitive set.")
- The collection scheme $(\forall x \in a \exists y \varphi(x, y) \rightarrow \exists b \forall x \in a \exists y \in b \varphi(x, y))$
- The replacement scheme. $(\forall x \in a \exists ! y \varphi(x, y) \rightarrow \exists b \forall x \in a \exists y \in b \varphi(x, y))$

However, without power set the reverse implications break down.

Definition

Let ZF- denote the theory consisting of the following axioms:

- empty set, extensionality, pairing, unions, infinity,
- the foundation scheme, the separation scheme,
- the replacement scheme.

ZFC without power set¹

Definition

- ZF⁻ denotes the theory ZF⁻ plus the collection scheme.
- ZFC⁻ denotes the theory ZF⁻ plus the well-ordering principle.

Remarks

- For μ regular, $H_{\mu} \models ZFC^{-}$.
- Any pretame class forcing over ${\rm ZFC}^-$ (GB $^-$) again satisfies ${\rm ZFC}^-$.
- Models of ZFC- can behave very counter-intuitively.

¹See What is the Theory ZFC without Power Set? by Gitman, Hamkins and Johnstone.

Going wrong without collection¹

Any of the following can occur in ZFC- models:

- ullet ω_1 exists and is singular,
- ullet ω_1 exists and every set of reals is countable,
- For every $n \in \omega$ there is a set of reals of size \aleph_n but none of size \aleph_ω ,
- The Łoś ultrapower theorem fails,
- Gaifman's Theorem fails (there is a cofinal, Σ_1 -elementary map $j: M \to N$ which is not fully elementary),
- The class of Σ_1 formulas is not closed under bounded quantification (i.e. φ is Σ_1 but $\forall x \in a \varphi$ is not).

Conclusion

All of these problems go away if we also assume collection. So ${\rm ZFC}^-$ is the "correct" way to state ${\rm ZFC}$ without power set.

¹See What is the Theory ZFC without Power Set? by Gitman, Hamkins and Johnstone.

Dependent Choice Schemes

Definition

The DC_{δ} -scheme: For every formula $\varphi(x,y,a)$, if $\forall x\,\exists y\,\varphi(x,y,a)$ then there is a function f on δ such that $\forall \alpha<\delta\,\varphi(f\!\upharpoonright\!\alpha,f(\alpha),a)$.

The $DC_{<\,ORD}$ -scheme is the scheme asserting that the DC_{δ} -scheme holds for every cardinal δ .

Observations

ZFC proves every instance of the $DC_{< ORD}$ -scheme. For any regular μ , $H_{\mu} \models ZFC^{-} + DC_{< ORD}$ -Scheme.

Theorem (Gitman, Hamkins, Johnstone 2016 & Friedman, Gitman, Kanovei 2019)

Over ZFC^- , the DC_{ω} -scheme is equivalent to the reflection principle.

Big Classes

Definition

A proper class is said to be δ -big if it surjects onto δ .

A proper class is said to be big if it surjects onto every non-zero ordinal.

Observation

Over ZF, every proper class is big.

A note on injections

Proposition

Over ZF^- , the DC_{δ} -scheme implies that every proper class is δ -big.

Moreover, the $\mathrm{DC}_{<\,\mathrm{O}_{RD}}\text{-scheme}$ implies that every proper class is big.

Big Classes

Definition

A proper class is said to be δ -big if it surjects onto δ .

A proper class is said to be big if it surjects onto every non-zero ordinal.

Observation

Over ZF, every proper class is big.

A note on injections

Theorem (Friedman, Gitman, Kanovei)

There is a model of ZFC^- (plus every set is countable) in which every proper class is big but the DC_{ω} -scheme fails.

Taking Reinhardt's Power Away

Theorem (M.)

There is no non-trivial, cofinal, Σ_0 -elementary embedding $j \colon W \to W$ such that $W \models \mathrm{ZFC}_{j}^{-}$ and either:

- $(\sup\{j^n(\operatorname{crit}(j)) \mid n \in \omega\})^+$ exists or
- $V_{crit(j)}$ is a set in W.

Theorem (M.)

Suppose that $W \models ZFC^-$ and every proper class is big in W. If $j \colon W \to M \subseteq W$ is an elementary embedding, then $V_{\mathrm{crit}(j)}$ is a set in W.

Corollary

There is no non-trivial, cofinal Reinhardt embedding over $\mathrm{ZFC}^- + \mathrm{DC}_{<\mathrm{ORD}}$ -scheme.

Motivating Questions

Corollary

There is no non-trivial, cofinal Reinhardt embedding over ${\rm ZFC}^- + {\rm DC}_{<{\rm ORD}}$ -scheme.

Question 1

Is the following situation consistent: There is a non-trivial, cofinal, elementary embedding $j \colon W \to W$ such that $W \models \mathrm{ZFC}_i^-$?

Question 2

Does ${\rm ZFC}^-$ prove that every proper class is big?

Question 3

Suppose that $W \models \mathrm{ZFC}_{j}^{-}$ for a non-trivial, cofinal $j \colon \mathrm{W} \to \mathrm{M}$ with $\mathrm{M} \subseteq \mathrm{W}$. Does $\mathrm{V}_{\mathrm{crit}(j)}$ exist in W? Does $\mathcal{P}(\omega)$ exist in W?

Zarach's Construction

Set-up

- $V \models ZFC + CH$,
- $\mathbb{P} = \mathrm{Add}(\omega, 1) \cong \mathrm{Add}(\omega, \omega)$,
- $G \subseteq Add(\omega, \omega)$, V-generic,
- $G_n = G \upharpoonright n$ is the restriction of G to the first n coordinates,
- $V_{[n]} = V[G_n],$
- $W_G^V = \bigcup_{n \in G} V[G_n]$.

Zarach's Construction

Theorem (Zarach)

- $W_G^V \models ZFC^- + DC_\omega$ -scheme,
- f Q V and W_G^V have the same cardinals and cofinalities,
- **3** $\mathcal{P}(\omega)$ is a small proper class which does not surject onto ω_2 ,
- \bullet $W_G^V \models \neg DC_{\omega_2}$ -scheme,
- **3** (Blass) $W_G^V \models \neg DC_{\omega_1}$ -scheme.

Embeddings with $\mathcal{P}(\omega)$ a proper class

- Suppose that $V \models ZFC + CH$ and κ is a measurable cardinal with ultrapower embedding $j \colon V \to M$.
- Let $G \subseteq \mathrm{Add}(\omega,\omega)$ be generic and construct the union model W_G^V as before.
- Then j lifts to some $j^* \colon V[G] \to M[G]$.
- Let $j_n \colon V[G_n] \to M[G_n]$ be the lift given from restricting G to its first n coordinates.
- Let $j^{W} = \bigcup_{n} j_{n} \colon W_{G}^{V} \to W_{G}^{M}$ be the restriction of j^{\star} .

Theorem (Gitman, M.)

- $W_G^V \models ZFC^- + DC_\omega$ -scheme,
- 2 The DC_{ω_1} -scheme fails in W_G^V ,
- **3** $\mathcal{P}(\omega)$ (and therefore V_{κ}) is not a set in W_G^V ,
- W_G^V has a definable elementary embedding with critical point κ .

Jensen reals

- Start with a model of $ZFC + \diamondsuit$ (e.g. L).
- (Jensen 1970) There is a subposet J of Sacks forcing (perfect trees ordered by ⊆) which:
 - has the ccc,
 - adds a unique generic real.
- (Lyubetsky, Kanovei 2017) Also, we can construct iterations of Jensen forcing \mathbb{J}_n for any $n \in \omega$ satisfying:
 - \mathbb{J}_n has the ccc,
 - If $\langle r_1, \ldots, r_n \rangle$ is a V-generic sequence of reals for \mathbb{J}_n then it is the unique generic sequence for \mathbb{J}_n in $V[\langle r_1, \ldots, r_n \rangle]$.

Jensen reals on trees

Set-up

- X is any set or class (X = ORD).
- \mathcal{T} is a subtree of $X^{<\omega}$ (the tree of finite sequences from X ordered by extension).
- $\bullet \ \vec{\mathbb{J}} = \langle \mathbb{J}_n \mid n \in \omega \rangle.$
- $\quad \mathbb{P}(\vec{\mathbb{J}},\mathcal{T}) \text{ is the tree iteration of Jensen} \\ \text{reals along } X.$

Theorem (Friedman, Gitman, Kanovei)

For any set or class X and subtree $\mathcal T$ of $X^{<\omega}$,

- The poset $\mathbb{P}(\vec{\mathbb{J}}, \mathcal{T})$ has the ccc,
- ② The poset $\mathbb{P}(\vec{\mathbb{J}}, \mathcal{T})$ is pretame (so preserves ZFC^-),
- **3** Suppose that $G \subseteq \mathbb{P}(\vec{\mathbb{J}}, \mathcal{T})$ is V-generic. Then the V-generic sequences $\langle r_1, \ldots, r_n \rangle$ for \mathbb{J}_n in V[G] are precisely the sequences added by nodes of \mathcal{T} on level n.

Tree union model

Set-up

- Work in L,
- Let $G \subseteq \mathbb{P}(\vec{\mathbb{J}}, \operatorname{ORD}^{<\omega})$ be L-generic,
- Given $\mathcal{T} \in \mathbb{T}$, let $G_{\mathcal{T}}$ be the restriction of G to $\mathbb{P}(\vec{\mathbb{J}}, \mathcal{T})$,
- Let $W = \bigcup_{T \in \mathbb{T}} L[G_T]$.

Theorem (Gitman, M.)

- W $\models ZFC^-$ (+ every cardinal in L remains a cardinal in W),
- **3** Every proper class over W is big.

DC_ω fails in $\mathrm{W} = \cup_{\mathcal{T} \in \mathbb{T}} \, \mathrm{L}[G_{\mathcal{T}}]$

Idea:

- Consider the definable class tree with domain $\{\vec{r} \mid \vec{r} \text{ is L-generic for } \mathbb{J}_n \text{ for some } n\}$ ordered by extension in W,
- This is a tree relation with no terminal nodes.

- Suppose that $b \in W$ were an infinite branch,
- Then $b \in L[G_T]$ for some tree $T \in \mathbb{T}$.
- But \mathcal{T} does not have an infinite branch of Jensen reals. So, for sufficiently large n, $b \upharpoonright n$ is L-generic for \mathbb{J}_n but not in \mathcal{T} ,
- Contradicting uniqueness of generics for Jensen forcing.

W models ZFC

Idea for Collection:

• Suffices to consider instances where we suppose that

$$W \models \forall \xi \in \delta \exists y \, \psi(\xi, y, a).$$

- Let $a \in L[G_T]$ for some $T \in \mathbb{T}$.
- For each $\xi < \delta$ there is some tree $\mathcal{S}_{\xi} \in \mathbb{T}$ such that $W \models \exists y \in L[G_{\mathcal{S}_{\xi}}] \psi(\xi, y, a).$
- The aim is to find some tree $\mathcal{R} \in \mathbb{T}$ such that for each $\xi < \delta$, $W \models \exists y \in L[G_{\mathcal{R}}] \psi(\xi, y, a)$.
- But $\bigcup_{\xi<\delta} \mathcal{S}_{\xi}$ may contain a cofinal branch.

An automorphism π of $\mathbb{P}(\vec{\mathbb{J}}, \mathrm{ORD}^{<\omega})$ is said to be tree-switching if it is generated by an automorphism of $\mathrm{ORD}^{<\omega}$.

- Since $\bigcup_{\xi<\delta} \mathcal{S}_{\xi}$ may contain a cofinal branch, we want to find a sequence of tree-switching isomorphisms π_{ξ} such that
 - $W \models \exists y \in L[G_{\pi_{\mathcal{E}} " \mathcal{S}_{\mathcal{E}}}] \psi(\xi, y, a)$ and
 - π_{ξ} " S_{ξ} and π_{η} " S_{η} are disjoint modulo \mathcal{T} for any $\xi, \eta < \delta$.
- However, we can't determine these automorphisms in the ground model and therefore it need not be the case that $\bigcup_{\xi<\delta}\pi_\xi\text{"}\mathcal{S}_\xi\in\mathbb{T}\text{ (in }L).$
- Instead we use the ccc to construct in L countable sequences of trees $\langle \mathcal{S}_{\xi}^{(\alpha)} \mid \alpha < \beta_{\xi} \rangle$ which do the job.

- Since $\bigcup_{\xi<\delta} \mathcal{S}_{\xi}$ may contain a cofinal branch, we want to find a sequence of tree-switching isomorphisms π_{ξ} such that
 - W $\models \exists y \in L[G_{\pi_{\xi}"S_{\xi}}]\psi(\xi, y, a)$ and
 - π_{ξ} " S_{ξ} and π_{η} " S_{η} are disjoint modulo \mathcal{T} for any $\xi, \eta < \delta$.
- However, we can't determine these automorphisms in the ground model and therefore it need not be the case that $\bigcup_{\xi<\delta}\pi_\xi\text{"}\mathcal{S}_\xi\in\mathbb{T}\text{ (in }L).$
- Instead we use the ccc to construct in L countable sequences of trees $\langle \mathcal{S}_{\xi}^{(\alpha)} \mid \alpha < \beta_{\xi} \rangle$ which do the job.
- Namely, taking $\mathcal{T}_{\xi} = \bigcup_{lpha < eta_{\xi}} \mathcal{S}_{\xi}^{(lpha)}$,
 - $W \models \forall \xi < \delta \,\exists y \in L[G_{\mathcal{T}_{\xi}}] \psi(\xi, y, a)$,
 - For any $\xi, \eta < \delta$, \mathcal{T}_{ξ} and \mathcal{T}_{η} are disjoint modulo \mathcal{T} ,
 - $\mathcal{R} := \bigcup_{\xi < \delta} \mathcal{T}_{\xi} \in \mathbb{T} \cap L$.
- Then for each $\xi < \delta$, $W \models \exists y \in L[G_{\mathcal{R}}] \psi(\xi, y, a)$ so we can use collection over this (set) forcing extension.

Closing Remarks

- Instead of doing a class forcing we could instead take λ regular, consider the forcing $\mathbb{P}(\vec{\mathbb{J}},\lambda^{<\omega})$ and work over H^L_λ .
- By combining the model with a generalisation of Zarach's union model, we can also get models of ${\rm ZFC}^-$ in which the ${\rm DC}_\omega$ -scheme fails and in which there are proper classes that are not big.

Open Question

Is the following situation consistent: There is a non-trivial, cofinal, elementary embedding $j \colon W \to W$ such that $W \models ZFC_i^-$?

Theorem (Monro)

Let $\mathrm{ZF}(\mathrm{K})$ be the theory with the language of ZF plus a one-place predicate K and let M be a countable transitive model of ZF . Then there is a model N such that N is a transitive model of $\mathrm{ZF}(\mathrm{K})$ and

 $N \models K$ is a proper class which is Dedekind-finite and can be mapped onto the universe.