

COM662 Data Analytics

Dr Lu Bai I.bai@ulster.ac.uk

ulster.ac.uk

Week 3 – Descriptive Statistics and Visualisation Using R

ulster.ac.uk

Week 3 Content

- Descriptive statistics
 - Measurement of central tendency
 - Measure of variability
- Data Visualisation
 - Histogram
 - Line plot
 - Bar plot
 - Scatterplot
 - Box and Whisker plot
- Exploratory data analysis

Statistics

Statistics

Descriptive statistics & Inferential statistics

Descriptive vs Inferential statistics

Descriptive statistics R functions for computing descriptive statistics

Some R functions for computing descriptive statistics

Description	R function
Mean	mean()
Standard deviation	sd()
Variance	var()
Minimum	min()
Maximum	maximum()
Median	median()
Range of values (minimum and maximum)	range()
Sample quantiles	quantile()
Generic function	summary()
Interquartile range	IQR()

Descriptive statistics Measure of central tendency

- Mean: the average value
 - R function: mean()
- Median: the middle value
 - R function: median()
- Mode: the most frequent value
 - R function: mfv() [in the modeest R package]

Iris dataset

- Iris dataset contains four features (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor)
- http://archive.ics.uci.edu/ml/datasets/Iris

Iris Versicolor

Iris Setosa

Iris Virginica

Descriptive statistics Iris dataset

- The Iris flower data set or Fisher's Iris data set is a multivariate data set introduced by the British statistician and biologist Ronald Fisher in his 1936 paper.
- The data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
- Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.
- Based on the combination of these four features, Fisher developed a linear discriminant model to distinguish the species from each other.

Descriptive statistics Iris dataset

- This is one of the best-known database to be found in the pattern recognition literature.
- Fisher's paper is a classic in the field and is referenced frequently to this day.
 - https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
- The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant.
- Predicted attribute is the class of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

Descriptive statistics Measure of central tendency

```
> df <- iris
> head(df)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1
          5.1
                     3.5
                                  1.4
                                             0.2
                                                  setosa
2
          4.9
                     3.0
                                  1.4
                                             0.2 setosa
                     3.2
3
                                             0.2 setosa
          4.7
                                 1.3
                                             0.2 setosa
          4.6
                     3.1
                                 1.5
5
          5.0
                   3.6
                                 1.4
                                            0.2 setosa
                                            0.4 setosa
6
          5 - 4
                     3.9
                                  1.7
> mean(df$Sepal.Length) # compute the mean value of Sepal Length
[1] 5.843333
> median(df$Sepal.Width) # compute the median value of Sepal Width,
[1] 3
> library('modeest')
> mfv(df$Petal.Length) # compute the mode value of Petal Length
[1] 1.4 1.5
```


Descriptive statistics Measure of variability

- Range: minimum & maximum: corresponds to biggest value minus the smallest value and gives the full spread of data
 - R function: range() (min(), max())
- Variance: average squared deviation from the mean
- Standard deviation: square root of the variance
 - R function: var() sd()

Descriptive statistics Measure of variability

- Quartiles: minimum, maximum, and three quartiles (the 0.25, 0.50 and 0.75 quartiles).
 - R function: quantile(),
- Interquartile range (IQR): the difference between the first and third quartiles
 - R function: IQR()

Source: Towards Data Science, on Medium. https://towardsdatascience.com/understandingboxplots-5e2df7bcbd51

Measure of variability

```
> min(df$Sepal.Length) # Compute the minimum value
[1] 4.3
> max(df$Sepal.Length) # Compute the maximum value
[1] 7.9
> range(df$Sepal.Length) # Compute the range value
[1] 4.3 7.9
> quantile(df$Sepal.Length) # Compute 4 quartiles
    0% 25% 50% 75% 100%
4.3 5.1 5.8 6.4 7.9
> IQR(df$Sepal.Length) # Compute the interqurtile range
[1] 1.3
> |
```


Overall summary of a variable and an entire data frame

```
head(df) # first few lines
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          5.1
                      3.5
                                  1.4
                                              0.2 setosa
2
          4.9
                      3.0
                                  1.4
                                              0.2
                                                  setosa
3
          4.7
                      3.2
                                  1.3
                                              0.2
                                                  setosa
4
5
          4.6
                      3.1
                                  1.5
                                              0.2
                                                  setosa
          5.0
                      3.6
                                  1.4
                                              0.2 setosa
          5.4
                      3.9
                                  1.7
                                              0.4
                                                  setosa
 summary(df) # summary statistics
               Sepal.Width
 Sepal.Length
                                Petal.Length
                                              Petal.Width
                                                                    Species
Min.
        :4.300
                Min.
                       :2.000
                               Min.
                                      :1.000
                                               Min.
                                                      :0.100
                                                              setosa
                1st Qu.:2.800
                               1st Ou.:1.600
                                               1st Ou.:0.300
                                                              versicolor:50
 1st Ou.:5.100
 Median:5.800
                Median :3.000
                               Median :4.350
                                               Median :1.300
                                                              virginica:50
 Mean
        :5.843
                Mean
                       :3.057
                               Mean
                                      :3.758
                                               Mean
                                                      :1.199
               3rd Qu.:3.300
                               3rd Qu.:5.100
                                               3rd Qu.:1.800
 3rd Qu.:6.400
Max.
       :7.900
                Max. :4.400
                               Max. :6.900
                                               Max.
                                                      :2.500
```


Overall summary of a variable and an entire data frame

```
> str(df) #show the structure
'data.frame': 150 obs. of 5 variables:
  $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
  $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
  $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
  $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
  $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
```


Overall summary of a variable and an entire data frame

- sapply() function
 - to apply a particular function over a list or vector.

```
> sapply(df[,-5],median) # Compute the median for each column
Sepal.Length Sepal.Width Petal.Length Petal.Width
                   3.00
       5.80
> sapply(df[,-5], quantile) # Compute the quantile for each column
    Sepal.Length Sepal.Width Petal.Length Petal.Width
0.8
             4.3
                        2.0
                                   1.00
                                               0.1
25%
             5.1
                        2.8
                                               0.3
                                   1.60
                        3.0
                                               1.3
50%
            5.8
                                   4.35
           6.4
75%
                     3.3
                                               1.8
                                   5.10
            7.9
                        4.4
100%
                                               2.5
                                   6.90
>
```


Data Visualisation Basic plots

- Scatter plot
- Histogram
- Bar plot
- Line plot
- Box and Whisker plot

Data Visualisation

Basic plots

 Scatter plot: to display values for typically two variables for a set of data.

Data Visualisation Scatter plot

Simple scatter plot

```
> plot(iris$Sepal.Length) # Simple Scatter Plot
>
```


Data Visualisation Scatter plot

- Scatter plot matrix pairs(iris)
 - The pairs R function returns a plot matrix, consisting of scatterplots for each variable-combination of a data frame.

Data Visualisation

> # Create scatterplots of all pairwise combination of the 4 variables in the dataset
> pairs(iris[1:4], main="Iris Data (red=setosa, green=versicolor, blue=virginica)",
+ pch=21, bg=c("red", "green3", "blue") [unclass(iris\$Species)])

Iris Data (red=setosa,green=versicolor,blue=virginica)

Data VisualisationHistogram (Frequency distribution plot)

- An approximate representation of the distribution of numerical data.
 - R function: hist()

```
> hist(iris$Sepal.Length) # Base R histogram with default bins
> |
```

Histogram of iris\$Sepal.Length

Data Visualisation

Histogram

 # breaks argument of the hist function is to increase or decrease the width of the bars.

```
> hist(iris$Sepal.Length, breaks = 100) # Base R histogram with manual bins
> |
```

Histogram of iris\$Sepal.Length

Data Visualisation

Histogram

Histogram & Density Curve

```
> d <- density(iris$Sepal.Length)
> hist(iris$Sepal.Length, prob=TRUE, xlab='Sepal Length', main='Histogram & Density Curve')
> lines(d,col='blue')
> |
```


Data Visualisation Barplot

- Data is represented in the form of rectangular bars
 - R function: barplot()

Sepal Length 28

Data Visualisation Bar plot

- Arrange plots with par(mfrow)
- ? par()

```
> par(mfrow=c(2,1))
> barplot(iris$Sepal.Length)  # creating simple bar graph
> library(RColorBrewer)
> barplot(table(iris$Species,iris$Sepal.Length),col = brewer.pal(3,"Set1"))  # stacked plot
> |
```


Data Visualisation Line plot

```
> plot(iris$Sepal.Length,type='l')
> |
```


Data Visualisation Line plot

```
> plot(AirPassengers,type='l')
> |
```


Data Visualisation Box and Whisker plot

- Box plot: graphically depicting groups of numerical data through their quartiles.
- Box-and-whisker plot: lines extending from the boxes (whiskers) indicating variability outside the upper and lower quartiles.

Data Visualisation

Box and Whisker plot

```
> boxplot(iris[,-5])
> |
```


Data Visualisation Box and Whisker plot

Anatomy of a Typical Box-and-whisker

Data Visualisation Sophisticated Visualisation - ggplot2

- One of the most widely used visualisation packages in R
- Install ggplot2 package
 - install.packages("ggplot2")
- Include ggplot2 library
 - library(ggplot2)
- http://docs.ggplot2.org/current/

Data Visualisation ggplot

Scatter plot

```
> library(ggplot2)
> g <- ggplot(data=iris, aes(x=Petal.Length, y=Petal.Width))
> g + geom_point()
> |
```


Scatter plot

Histogram

```
> ggplot(iris, aes(x=Sepal.Length)) + geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
> |
```


Histogram

Data Visualisation

ggplot

- Histogram
- (for all four variables)

Density Curve

Sepal Length


```
> density2 <- ggplot(data=iris, aes(x=Sepal.Length, fill=Species))
> density2 + geom_density(stat='density', alpha=(0.2)) +
+ xlab('Sepal Length') + ylab('Density') + ggtitle('Density Curve of Sepal Length')
> |
```


Bar plot


```
> library(ggplot2)
> bar1 <- ggplot(data=df2, aes(x=Species, y=value, fill=variable))
> bar1 + geom_bar(stat="identity")
> |
```



```
> # Use position=position_dodge()
> library(ggplot2)
> bar1 <- ggplot(data=df2, aes(x=Species, y=value, fill=variable))
> bar1 + geom_bar(stat="identity", position = position_dodge())
> |
```



```
> # Use position=position_dodge2()
> library(ggplot2)
> bar1 <- ggplot(data=df2, aes(x=Species, y=value, fill=variable))
> bar1 + geom_bar(stat="identity", position = position_dodge2())
> |
```

8 -

Species

Use position=position_dodge()

```
> library(ggplot2)
> bar1 <- ggplot(data=df2, aes(x=Species, y=value, fill=variable))
> bar1 + geom_bar(stat="identity", position = position_dodge()) +
+ scale_fill_manual(values=c("red", "yellow", "blue", "green"),
+ name="Iris\nMeasurements",
+ breaks=c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
+ labels=c("Sepal Length", "Sepal Width", "Petal Length", "Petal Width"))
```


Line plot

```
> ?Orange
> head(Orange)
Grouped Data: circumference ~ age | Tree
        age circumference
  Tree
     1 118
                       30
     1 484
                       58
     1 664
                       87
     1 1004
                      115
     1 1231
                     120
     1 1372
                      142
```


Orange {datasets}

Growth of Orange Trees

Description

The Orange data frame has 35 rows and 3 columns of records of the growth of orange trees.

Line plot

```
> ggplot(Orange) + geom_line(aes(x = age, y = circumference, color = Tree))
> |
```


Line plot

```
> ggplot(data = Orange, aes(x = age, y = circumference, color = Tree)) + geom_line()
> |
```


Box plot

```
box <- ggplot(data=iris, aes(x=Species, y=Sepal.Length))</pre>
box + geom boxplot(aes(fill=Species))
```


setosa versicolor

- Cleaning and Pre-Processing the data
- Calculating descriptive statistics
- Visualizing the data
- Density plot / Correlation plot

Exploratory data analysis Exercise

- Studying the Titanic passenger survival
- Titanic dataset from Kaggle https://www.kaggle.com/c/titanic
- Carry out exploratory data analysis

RMS Titanic, By F.G.O. Stuart (1843-1923)

https://medium.com/analytics-vidhya/a-beginners-guide-to-learning-r-with-the-titanic-dataset-a 630bc 5495a8

Exploratory data analysis Exercise – preparation

- Download dataset
- Load dataset

```
> df <- read.csv('train.csv',na.strings = '')  # empty values are read as NA values
> _
```

- Install packages: install.packages()
 - visdat, dplyr, ggplot2, corrplot
- Load packages: library()

Exploratory data analysis Exercise – data cleaning

- View and summaries the dataset
 - head(), summary()

```
head(df)
 PassengerId Survived Pclass
                                                                                Name
                                                                                         Sex Age SibSp Parch
                                                                                                                        Ticket
                                                            Braund, Mr. Owen Harris
                                                                                                                     A/5 21171
                              Cumings, Mrs. John Bradley (Florence Briggs Thaver) female
                                                                                                                      PC 17599
                                                             Heikkinen, Miss. Laina female
                                                                                                            0 STON/O2. 3101282
                                      Futrelle, Mrs. Jacques Heath (Lily May Peel) female
                                                                                                                        113803
                                                           Allen, Mr. William Henry
                                                                                                                        373450
                                                                   Moran, Mr. James
                                                                                       male
                                                                                                                        330877
    Fare Cabin Embarked
  7.2500
          <NA>
 71.2833
           C85
  7.9250
          <NA>
 53.1000
          C123
  8.0500
          <NA>
  8.4583
                       o
         <NA>
summary (df)
 PassengerId
                    Survived
                                       Pclass
                                                        Name
                                                                            Sex
                                                                                                 Age
                                                                                                                 SibSp
Min.
                Min.
                        :0.0000
                                          :1.000
                                                   Length:891
                                                                        Length:891
                                                                                            Min.
                                                                                                   : 0.42
                                                                                                             Min.
                                                                                                                    :0.000
1st Ou.:223.5
                1st Ou.:0.0000
                                   1st Ou.:2.000
                                                                                            1st Ou.:20.12
                                                   Class :character
                                                                       Class :character
                                                                                                             1st Ou.:0.000
Median :446.0
                                                                                            Median :28.00
                Median :0.0000
                                  Median :3.000
                                                   Mode :character
                                                                       Mode :character
                                                                                                             Median :0.000
Mean
       :446.0
                Mean
                        :0.3838
                                  Mean
                                          :2.309
                                                                                            Mean
                                                                                                   :29.70
                                                                                                             Mean
                                                                                                                    :0.523
3rd Ou.:668.5
                3rd Ou.:1.0000
                                   3rd Ou.:3.000
                                                                                            3rd Ou.:38.00
                                                                                                             3rd Ou.:1.000
       :891.0
                        :1.0000
                                          :3.000
                                                                                                   :80.00
Max.
                Max.
                                                                                            Max.
                                                                                                             Max.
                                                                                                                    :8.000
                                                                                            NA's
                                                                                                   :177
                     Ticket
                                                           Cabin
                                                                              Embarked
    Parch
                                           Fare
Min.
       :0.0000
                 Length:891
                                     Min.
                                             : 0.00
                                                        Length:891
                                                                            Length:891
1st Ou.:0.0000
                 Class : character
                                      1st Qu.: 7.91
                                                        Class :character
                                                                            Class : character
Median :0.0000
                 Mode :character
                                     Median: 14.45
                                                        Mode :character
                                                                            Mode :character
Mean
       :0.3816
                                     Mean
                                             : 32.20
3rd Ou.:0.0000
                                      3rd Qu.: 31.00
       :6.0000
                                             :512.33
Max.
```

Exploratory data analysis Exercise – data cleaning

- Missing values
 - identify count of NAs in data frame

```
> sum(is.na(df))
[1] 866
> |
```

compute the total missing values in each column

Exercise – data cleaning

- Missing values
 - Visulising missing values
 - library('visdat')

```
> library('visdat')
> vis_dat(df)
> |
```


Exploratory data analysis Exercise – data cleaning

- Handle the missing values
 - Remove missing values
 - Recode missing values using mean/median (numerical variables), using most frequent category (categorical variables)
 - other imputation methods: LOCF (last observation carried forward)

Exercise – data cleaning

- Select the useful columns and drop the columns with NA values: select ()
- Drop the rows with NA values: na.omit()

```
> library(dplyr)
> df <- select(df, Survived, Pclass, Age, Sex, SibSp, Parch)
> df <- na.omit(df)
> str(df)
'data.frame': 714 obs. of 6 variables:
$ Survived: int 0 1 1 1 0 0 0 1 1 1 ...
$ Pclass : int 3 1 3 1 3 1 3 2 3 ...
$ Age : num 22 38 26 35 35 54 2 27 14 4 ...
$ Sex : chr "male" "female" "female" "female" ...
$ SibSp : int 1 1 0 1 0 0 3 0 1 1 ...
$ Parch : int 0 0 0 0 0 0 1 2 0 1 ...
- attr(*, "na.action") = 'omit' Named int [1:177] 6 18 20 27 29 30 32 33 37 43 ...
..- attr(*, "names") = chr [1:177] "6" "18" "20" "27" ...
> |
```

Exercise – data cleaning

Convert integer values to categorical values

```
> df$Survived = factor(df$Survived)
> df$Pclass = factor(df$Pclass)
>
> str(df)
'data.frame': 714 obs. of 6 variables:
  $ Survived: Factor w/ 2 levels "0","1": 1 2 2 2 1 1 1 2 2 2 ...
  $ Pclass : Factor w/ 3 levels "1","2","3": 3 1 3 1 3 1 3 3 2 3 ...
  $ Age : num 22 38 26 35 35 54 2 27 14 4 ...
  $ Sex : chr "male" "female" "female" "female" ...
  $ SibSp : int 1 1 0 1 0 0 3 0 1 1 ...
  $ Parch : int 0 0 0 0 0 0 1 2 0 1 ...
  - attr(*, "na.action") = 'omit' Named int [1:177] 6 18 20 27 29 30 32 33 37 43 ...
  ... attr(*, "names") = chr [1:177] "6" "18" "20" "27" ...
> |
```


Exercise - visualisation

- Visualisation
 - Survival by Sex

```
> ggplot(df, aes(x = Survived, fill=Sex)) +
+    geom_bar()
>
```


Exercise - visualisation

- Visualisation
 - Survival by Pclass

Exercise - visualisation

- Pclass vs Age
 - To compare a categorical variable like Pclass with a continuous variable like Age there are several useful visualizations. Here we will use a boxplot.

Exploratory data analysis Exercise - density plot

Density plot – Survived by Age

```
> ggplot(df, aes(x=Age))+
+ geom_density(aes(fill = Survived), alpha = 0.5)
> |
```


Exploratory data analysis Correlation analysis

- Correlation analysis explores a relationship between two or more variables.
 - However, seeing two variables moving together does not necessarily mean we know whether one variable causes the other to occur.
 - This is why we commonly say "correlation does not imply causation."

https://www.jmp.com/en_gb/statistics-knowledge-portal/what-is-correlation/correlation-vs causation.html#:~:text=Correlation%20tests%20for%20a%20relationship,correlation%20 does%20not%20imply%20causation.%E2%80%9D

Exploratory data analysis Correlation formula

- Pearson correlation formula
- Spearman correlation formula
- Kendall correlation formula

$$r = rac{\sum (x - m_x)(y - m_y)}{\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}} \ rho = rac{\sum (x' - m_{x'})(y_i' - m_{y'})}{\sqrt{\sum (x' - m_{x'})^2 \sum (y' - m_{y'})^2}} \ tau = rac{n_c - n_d}{rac{1}{2}n(n-1)}$$

http://www.sthda.com/english/wiki/correlation-test-between-two-variables-in-r

Correlation coefficient	Correlation strength	Correlation type
7 to -1	Very strong	Negative
5 to7	Strong	Negative
3 to5	Moderate	Negative
0 to3	Weak	Negative
0	None	Zero
0 to .3	Weak	Positive
.3 to .5	Moderate	Positive
.5 to .7	Strong	Positive
.7 to 1	Very strong	Positive

Exercise - correlation plot

- Correlation plot
 - Covert categorical values to numerical values

```
> df_corr <- df
> df_corr$Survived <- as.numeric(df_corr$Survived)
> df_corr$Pclass <- as.numeric(df_corr$Pclass)
> df_corr$Sex <- ifelse(df_corr$Sex=='male', 1, 0)
> str(df_corr)
'data.frame': 714 obs. of 6 variables:
$ Survived: num 1 2 2 2 1 1 1 2 2 2 ...
$ Pclass : num 3 1 3 1 3 1 3 3 2 3 ...
$ Age : num 22 38 26 35 35 54 2 27 14 4 ...
$ Sex : num 1 0 0 0 1 1 1 0 0 0 0 ...
$ SibSp : int 1 1 0 1 0 0 3 0 1 1 ...
$ Parch : int 0 0 0 0 0 0 1 2 0 1 ...
- attr(*, "na.action")= 'omit' Named int [1:177] 6 18 20 27 29 30 32 33 37 43 ...
... attr(*, "names")= chr [1:177] "6" "18" "20" "27" ...
> |
```


Exploratory data analysis Correlation matrix

- The R function cor() can be used to compute a correlation matrix
 - cor(df_corr)

	Survived	Pclass	Age	Sex	SibSp	Parch
Survived	1.00000000	-0.35965268	-0.07722109	-0.53882559	-0.01735836	0.09331701
Pclass	-0.35965268	1.00000000	-0.36922602	0.15546030	0.06724737	0.02568307
Age	-0.07722109	-0.36922602	1.00000000	0.09325358	-0.30824676	-0.18911926
Sex	-0.53882559	0.15546030	0.09325358	1.00000000	-0.10394968	-0.24697204
SibSp	-0.01735836	0.06724737	-0.30824676	-0.10394968	1.00000000	0.38381986
Parch	0.09331701	0.02568307	-0.18911926	-0.24697204	0.38381986	1.00000000

Exploratory data analysis Exercise - correlation plot

Correlation plot – visualising correlation matrix

```
> M <- cor(df_corr)
> corrplot(M, method = 'number')
> |
```


Exploratory data analysis Exercise - correlation plot

Correlation plot – visualising correlation matrix
 M <- cor(df_corr, method = "spearman")
 corrplot(M, method = 'number')

Exploratory data analysis Exercise - correlation plot

Correlation plot – visualising correlation matrix
 M <- cor(df_corr, method = "kendall")
 corrplot(M, method = 'number')

Exercise - correlation plot

corrplot(cor(mtcars))

```
> str(mtcars)
'data.frame': 32 obs. of 11 variables:
$ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
$ disp: num  160 160 108 258 360 ...
$ hp : num  110 110 93 110 175 105 245 62 95 123 ...
$ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num  2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num  16.5 17 18.6 19.4 17 ...
$ vs : num  0 0 1 1 0 1 0 1 1 1 ...
$ am : num  1 1 1 0 0 0 0 0 0 0 ...
$ gear: num  4 4 4 3 3 3 3 3 4 4 4 ...
$ carb: num  4 4 1 1 2 1 4 2 2 4 ...
>
```


Exploratory data analysis Exercise - correlation plot

corrplot(cor(mtcars))

Open Datasets

- UCI machine learning Repository
 - https://archive.ics.uci.edu/ml/index.php
- Kaggle
 - https://www.kaggle.com/datasets
- OPEN Data NI
 - https://www.opendatani.gov.uk/

Further reading

- Gareth, J., Daniela, W., Trevor, H. and Robert, T., 2013. *An introduction to statistical learning: with applications in R.* Spinger. (Chapter 3)
- Lantz, Brett. Machine learning with R. Packt Publishing Ltd, 2013 (Chapter 2)
- R Visulisation
 - https://www.publichealth.columbia.edu/sites/default/files/media/fdawg_ggplot 2.html
 - http://www.sthda.com/english/wiki/data-visualization
- Correlation:
 - https://www.scribbr.com/statistics/correlation-coefficient/
 - An Introduction to corrplot Package
 https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html
- Exploratory data analysis
 - https://bookdown.org/steve_midway/DAR/exploratory-data-analysis.html

