Math 131B: Real Analysis

Final Exam Notes

Spring 2016

Lecturer: Dave Penneys Name: Eric Chuu

2.0.1 Definitions

Limit Point: Suppose $(x_n) \subseteq (X, d)$ and let $L \in X$. L is a limit point of $(x_n)_{n=m}^{\infty} \Leftrightarrow \forall N \geq m$ and $\epsilon > 0, \exists n \geq N$ such that $d(x_n, L) \leq \epsilon$.

Closed: $E \subset (X, d)$ closed $\Leftrightarrow E$ contains all boundary points, $\partial E \subseteq E \Leftrightarrow E = \overline{E}$.

Open: $E \subset (X, d)$ open $\Leftrightarrow E$ contains none of its boundary points, $\partial E \cap E = \emptyset$.

Bounded: $S \subseteq X$ bounded $\Leftrightarrow \forall x \in X, \exists R > 0$ such that $S \subseteq B_R(x) \Leftrightarrow \exists x \in X, R > 0$ such that $B_R(x) \supset S \Leftrightarrow \operatorname{diam}(S) = \sup\{d(x,y) : x,y \in S\} < \infty$.

Dense: $S \subseteq X$ dense $\Leftrightarrow \forall$ nonempty $U \subseteq X, S \cap U \neq \emptyset \Leftrightarrow \forall \epsilon > 0 \\ B_{\epsilon}(x) \cap S \neq \emptyset \forall x \in X \Leftrightarrow X = \overline{S}$.

Totally Bounded: (X,d) totally bounded $\Leftrightarrow \forall \epsilon > 0, \exists x_1, x_2, \dots, x_n$, such that $X \subseteq \bigcup_{i=1}^n B_{\epsilon}(x_i)$.

Pointwise Convergence: (f_n) converges to f (both functions from $(X, d_X) \to (Y, d_Y)$) pointwise $\Leftrightarrow \forall x \in X$ and every $\epsilon > 0, \exists N > 0$ such that $\forall n > N, d_Y(f_n(x), f(x)) < \epsilon$.

Uniform Convergence: (f_n) converges uniformly to f (both functions from $(X, d_X) \to (Y, d_Y)$) uniformly $\Leftrightarrow \forall \epsilon > 0, \exists N > 0$ such that $\forall n > N, d_Y(f_n(x), f(x)) < \epsilon, \forall x \in X \Leftrightarrow \text{converges in the } d_{\infty} \text{ metric.}$

Limit of function: $\lim_{x\to x_0} f(x) = L \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0$ such that $0 < d_X(x, x_0) < \delta \implies d_Y(f(x), L) < \epsilon \Leftrightarrow x \in B_{\delta}(x_0) \setminus \{x_0\} \implies f(x) \in B_{\epsilon}(L)$.

Strongly Equivalent: Two metrics d_1, d_2 on X are strongly equivalent if there are $c_1, c_2 > 0$ such that $d_1(x, y) \le c_2 d_2(x, y)$ and $d_2(x, y) \le c_1 d_1(x, y)$, for all $x, y \in X$.

2.0.2 Propositions/Lemmas/Theorems

Prop: Let $(x_n)_{n=m}^{\infty} \subseteq (X,d)$. TFAE: (1) L is limit point of $(x_n)_{n=m}^{\infty}$. (2) \exists a subsequence (x_{n_j}) of the original sequence which converges to L.

Lemma: Let $(x_n)_{n=m}^{\infty}$ be a Cauchy subsequence in (X,d). Suppose that there is some $(x_{n_j})_{j=1}^{\infty}$ of this subsequence which converges to some $x_0 \in X$. Then the original sequence converges to x_0 .

Theorem: Let (X, d_X) be a metric space, let (Y, d_Y) be complete. Then the space $(C(X, Y), d_{\infty}|_{C(X, \mathbb{R}) \times C(X, \mathbb{R})})$ is a complete subspace of $L^{\infty}(X, Y), d_{\infty}$. In other words, every Cauchy sequence of functions in C(X, Y) converges to a function in C(X, Y).

2.0.3 More Definitions

Space of Bounded Functions: $L^{\infty}(X,Y) = \{f | f : X \to Y \text{ bounded}\}$

Space of Continuous Functions: $C(X,Y) = \{f | f : X \to Y \text{ continuous}\}\$

Space of Continuous, Bounded Functions: $C_B(X,Y) = \{f|f: X \to Y \text{ continuous, bounded}\}$

 $\mathbf{Sup\text{-}Norm}\big(L^\infty(X,Y)\big)\ \mathbf{Metric}\colon\ d_\infty(f,g):L^\infty(X,Y)\times L^\infty(X,Y)\to\mathbb{R}^+,$

$$d_{\infty}(f,g) = \sup_{x \in X} d_Y(f(x), g(x))$$

Sup Norm: If $f: X \to \mathbb{R}$ is a bounded real-valued function, the sup norm

$$||f||_{\infty} := \sup\{|f(x)| : x \in X\}$$

 L^2 metric: Define the L^2 metric

$$d_{L^{2}}(f,g) := \|f - g\|_{2} = \left(\int_{[0,1]} |f(x) - g(x)|^{2} dx\right)^{1/2}$$

Lebesgue Number Lemma Suppose that (X,d) is a (sequentially) compact metric space. Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open cover of X. Then there exists a constant $\delta>0$ which satisfies: for all $x\in X$ there exists $\alpha\in I$ such that $B_{\delta}(x)\subseteq U_{\alpha}$.

Weierstrass M-Test Let (X,d) be a metric space and let (f_n) be a sequence of bounded, real-valued continuous functions on X such that the series $\sum_{n=1}^{\infty} \|f_n\|_{\infty}$ is absolutely convergent. Then the series $\sum_{n=1}^{\infty}$ converges uniformly to some function f on X, and the function is also continuous.

Fourier Transform For all $f \in C(\mathbb{R}/\mathbb{Z};\mathbb{R})$ and any $n \in \mathbb{Z}$ define the *n*-th Fourier coefficient (2.1) and the Fourier inversion formula (2.2) of f

$$\hat{f}(n) := c_n = \langle f, e_n \rangle = \int_0^1 f(x) e^{-2\pi i n x} dx$$
 (2.1)

$$f = \sum_{n = -\infty}^{\infty} \hat{f}(n)e_n = \sum_{n = -\infty}^{\infty} \hat{f}(n)e^{2\pi i nx}$$
(2.2)

Fourier Theorem For any $f \in C(\mathbb{R}/\mathbb{Z};\mathbb{C})$, the series $\sum_{n=\infty}^{\infty} \hat{f}(n)e_n$ converges in L^2 metric to f. In other words, we have

$$\lim_{N \to \infty} \left\| f - \sum_{n=-N}^{N} \hat{f}(n)e_n \right\|_2 = 0$$

Plancherel Theorem For any $f \in C(\mathbb{R}/\mathbb{Z}; \mathbb{C})$, the series $\sum_{n=-\infty}^{\infty} \left| \hat{f}(n) \right|^2$ is absolutely convergent, and $\left\| \hat{f} \right\|_2^2 = \sum_{n=-\infty}^{\infty} \left| \hat{f}(n) \right|^2$

Power series A power series centered at a is: $\sum_{n=0}^{\infty} c_n(x-a)^n$

Real Analytic Let $f: E \to \mathbb{R}$. If $a \in Int(E)$, f is real analytic at a if there exists a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ centered at a with radius of convergence greater than or equal to r which converges to f on (a-r,a+r).

Theorem (Convolution): Let $f:(a-r,a+r)\to\mathbb{R}$, $g:(a-r,a+r)\to\mathbb{R}$ be functions analytic on (a-r,a+r), with power series expansions $f(x)=\sum_{n=0}^{\infty}c_n(x-a)^n$ and $g(x)=\sum_{n=0}^{\infty}d_n(x-a)^n$. Then $fg:(a-r,a+r)\to\mathbb{R}$ is analytic on (a-r,a+r) power series expansion:

$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} c_n d_{n-m} (x-a)^n$$

Dini's Theorem Suppose (f_n) , f are functions in $C(X,\mathbb{R})$, where X is compact. If $f_n \to 0$ pointwise, and f_n is monotonically increasing, then $f_n \to 0$ uniformly.

Weierstrass Approximation (Polynomials) If [a, b] is an interval, $f : [a, b] \to \mathbb{R}$ is a continuous function, and $\epsilon > 0$, then there exists a polynomial P on [a, b] such that $d_{\infty}(P, f) \le \epsilon(i.e., |P(x) - f(x)| \le \epsilon$ for all $x \in [a, b]$)

Trigonometric Functions: If $z \in \mathbb{C}$, then $\cos(z) := \frac{e^{iz} + e^{-iz}}{2}$, $\sin(z) := \frac{e^{iz} - e^{-iz}}{2i}$

Trig Identities: For $x, y \in \mathbb{R}$, $e^{ix} = \cos(x) + i\sin(x)$ and $e^{-ix} = \cos(x) - i\sin(x)$.

Theorem (Extreme Value): Let (X,d) be a compact metric space and let $f: X \to \mathbb{R}$ be continuous. Then f is bounded. Also, f attains its max at some point $x_0 \in X$ and its min at some point $x_1 \in X$.

Theorem (IVT): Let $f: X \to \mathbb{R}$ be a continuous map from (X, d_X) to the real line. Let $E \subset X$ be connected, $a, b \in E$. Let $y \in [f(a), f(b)]$. Then $\exists c \in E$ such that f(c) = y.