Fachrichtung Mathematik • Institut für Algebra • Prof. Baumann, Dr. Noack

Mathematische Methoden für Informatiker INF-120-1 Sommersemester 2024

1. Übungsblatt für die Woche 15.04. - 21.04.2024 Zahlenfolgen: Monotonie und Beschränktheit

V1 Hausaufgabe (Vorbereitung) Abgabemodalitäten siehe OPAL-Kurs. Lösen Sie die Vorbereitungsaufgabe zur 1. Übung im Opal-Kurs.

Ü1.1 (a) Es sei (x_n) diejenige Zahlenfolge, welche durch

$$x_1 := \frac{1}{1} - \frac{1}{2}, \ x_2 := \frac{1}{1+2} - \frac{1}{3+4}, \ x_3 := \frac{1}{1+2+3} - \frac{1}{4+5+6}$$
 usw.

gegeben ist.

- Finden Sie eine explizite Formel für das n-te Folgenglied x_n .
- Ist die Folge monoton und im Falle der Monotonie monoton wachsend oder monoton fallend?
- (b) Untersuchen Sie die gegebenen Folgen $(x_n)_{n\in\mathbb{N}}$ darauf, ob sie ab einem Index n_0 monoton sind:

(1)
$$x_n := \frac{2n-7}{3n-10}$$
, (2) $x_n := \frac{7n+1}{3n-1}$, (3) $x_n = \frac{n}{5} + \frac{5}{n}$, $n > 1$

- Ü1.2 (a) Skizzieren Sie den Graph der Wurzelfunktion, und betrachten Sie die Folge $(x_n)_{n\in\mathbb{N}\setminus\{0\}}$ mit $x_n:=\sqrt{\frac{1}{n}}$. Welches Monotonieverhalten zeigt (x_n) ?
 - (b) Untersuchen Sie die gegebenen Folgen $(x_n)_{n\in\mathbb{N}\setminus\{0\}}$ auf Monotonie:

(1)
$$x_n := \ln\left(1 - \frac{1}{n}\right), n > 1$$
 (2) $x_n := 2 + 3\sin\left(\frac{1}{n}\right)$ (3) $x_n := \sqrt{n} \cdot (1 - \frac{1}{n}).$

- (c) Geben Sie zwei streng monoton wachsende Folgen (x_n) und (y_n) an, so dass die Folge der Produkte $(x_n \cdot y_n)$ streng monoton fällt.
- Ü1.3 (a) Es wird die Folge (x_n) mit $x_n := \frac{2n}{3n+1}$ betrachtet.
 - Begründen Sie, dass m=0 eine untere Schranke für (x_n) ist.
 - Begründen Sie, dass M=1 eine obere Schranke für (x_n) ist.
 - Zeigen Sie, dass gilt:

$$x_n = \frac{2}{3} \cdot \left(1 - \frac{1}{3n+1}\right) .$$

Können Sie damit eine kleinere obere Schranke als M=1 angeben?

- (b) Bestimmen Sie obere und untere Schranken für die Folgen (x_n) aus Ü1.1 (b) (1) und (2).
- (c) Untersuchen Sie die gegebenen Folgen (x_n) auf Beschränktheit:

(1)
$$x_n = \ln\left(\frac{7n+1}{3n-1}\right), \ n \ge 1,$$
 (2) $x_n := 4 - 3\ln\left(2 - \frac{1}{n}\right), n \ge 1.$

Die Nachbereitungsaufgabe ist bis 26.04.2024, 16:00 Uhr, in Opal abzugeben.

N1 Es werden die reellen Zahlenfolgen (x_n) und (y_n) betrachtet, die durch

$$x_n := \frac{5n+1}{3n-4}$$
, $y_n := 1 - e^{x_n}$

definiert sind.

- (a) Untersuchen Sie die Zahlenfolgen (x_n) und (y_n) auf Monotonie.
- (b) Zeigen Sie, dass die Zahlenfolgen (x_n) und (y_n) beschränkt sind, indem Sie für beide Folgen jeweils eine obere und eine untere Schranke bestimmen.

(Hinweis: Denken Sie daran, dass 'bestimmen' bedeutet, das Ergebnis zu begründen!)

Aufgaben zum Selbststudium:

H1.1 Es sei (x_n) eine streng monoton fallende Zahlenfolge mit $x_n > 0$ für alle $n \in \mathbb{N}$. Welches Monotonieverhalten zeigt dann die Folge (y_n) mit

$$y_n = 1 - \frac{1}{x_n^2}$$
 ?

Können Sie Monotonieaussagen für (y_n) treffen, wenn die Voraussetzung $x_n > 0$ durch die schwächere Voraussetzung $x_n \neq 0$ ersetzt wird? Begründen Sie Ihre Entscheidung!

H1.2 Es wird die Folge (x_n) mit $x_n := \frac{2n}{3n-11}$ betrachtet.

- (1) Begründen Sie, dass m = -3 eine untere Schranke für (x_n) ist.
- (2) Ab welchem $n_0 \in \mathbb{N}$ gilt $x_n \leq 1$ für alle $n \geq n_0$? (Ein möglicher Ansatz ist mit $x_n \leq 1$ zu starten, die Definition von x_n einzusetzen und nach n umzustellen. Achtung beim Umgang mit Ungleichungen!)
- (3) Finden Sie eine obere Schranke M für die gesamte Folge (x_n) .