National Institute of Technology Karnataka, Surathkal Department of Computer Science and Engineering

Course Plan (Part-A)

Name of the course: Seminar	Course Code: CS709 and CS809	No. of Credits: 2
Year: M-Tech I year CSE and CSE-IS Semester: I	Course Type: MLC	Academic Session: Odd semester 2024-25

A. Prerequisites (if any): NIL

B. Name and Contact Details of the Course Instructor: Prof. P. SANTHI THILAGAM

Room # 410,

CSE Dept, NITK-Surathkal.

0824-2473404 (O), santhi@nitk.edu.in (Email- ID)

C. Course Objectives:

Sl. No.	Course Objectives
1	To enhance skills in organizing and delivering presentations.
2	To provide knowledge and tools for understanding and applying emotional intelligence in various contexts.

D. Course (Learning) Outcomes (COs):

COs	Course Outcomes					
1	To deliver a confident presentation that is both efficient and impactful.					
2	To acquire practical experience in developing the essential skills of emotional intelligence.					

E. Course Articulation Matrix:

(**Note:** Enter correlation levels 1, 2, or 3 as defined below: 1 - Slight (Low), 2 - Moderate (Medium) 3 - Substantial (High), and If there is no correlation, put "-"_)

COs	PO- 1	PO-	PO- 3	PO- 4	PO- 5	PO- 6	PO- 7	PO- 8	PO- 9	PO- 10	PO- 11	PO- 12	PSO -1	PSO -2
1	3	3	2	3	2	-	-	2	3	3	2	3	3	3
2	3	2	3	2	3	-	-	2	3	3	3	2	3	3
Avg.	3	2.5	2.5	2.5	3	-	-	2	3	3	2.5	2.5	3	3

F. Program Articulation Matrix:

(Note: Enter correlation levels 1, 2, or 3 as defined below: 1 - Slight (Low), 2 - Moderate (Medium) 3 - Substantial (High), and If there is no correlation, put "-")

PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO- 10	PO- 11	PO- 12	PSO-	PSO-
3	3	3	2	3	1	1	3	2	2	3	2	3	3

G. Seminar Instructions

Seminar description	Students must select a seminar topic aligned with their technical or research						
	interests. They may also choose papers from any SCI-indexed journals. The						
	selected topic must be as up-to-date as possible.						
	Phases and deadlines of different phases						
Topic Identification	on Students are advised to choose a research topic that reflects current trends a						
	advancements in their field of interest. Reviewing recent literature is essential to						
	ensure the topic's relevance and potential impact.						
	(Due on September 10, 2024).						
Abstract Submission	The abstract must be submitted to the faculty in charge via the IRIS portal and						
	receive approval before the presentation.						

Guidelines for abstract preparation:

- Acquire comprehensive knowledge on the selected topic by consulting SCIindexed papers and other high-quality sources.
- Ensure the abstract is a precise, complete summary of the presentation, including key research questions, objectives, hypotheses, major findings, and a brief conclusion.
- Limit the abstract to one printed page, excluding figures and tables. It should include 1) your name and registration number, 2) the full seminar title, and 3) the abstract text

(**Due on October 1, 2024**).

Seminar Presentation

1. Time Limit:

Seminars must adhere to a strict time limit of 40 minutes, typically divided into 30-35 minutes for the presentation and 5-10 minutes for a Q&A session.

2. Submission Requirements:

Presentations should be prepared using PowerPoint and submitted via the IRIS portal

3. Slide Preparation:

- Slide Count: Limit the number of slides to 35-40 to fit within the time constraints.
- Design: Slides should be clear and simple, using readable fonts (e.g., Helvetica or Geneva) and a font size no smaller than 26 pt. Ensure good contrast between text and background colors, and avoid dark backgrounds to maintain brightness.
- Content: Each slide should focus on one major point, include a title, and caption tables and figures. Cite sources for figures and graphs, and label axes and units.

4. Slide Organization:

- Title Slide: Include the topic, your name, registration number, and class.
- Outline Slide: Provide an overview of the presentation.
- Content Slides:
 - ◆ Problem Statement: Background and problem (2 slides).

- ◆ Importance: Why the problem is significant (2 slides).
- ◆ Challenges: Challenges and need for computational solutions (2 slides).
- Existing Research: Summary of current research, with comparisons (8 slides).
- Research Gaps: Limitations of existing work (2 slides).
- Methodology: Approach used in solving the problem (8 slides).
- Experimental Study: Experimental setup, datasets, and tools used (4 slides).
- ◆ Results and Discussion: Discussion of results and future work (4 slides).
- ◆ Conclusions: Key takeaways (1 slide).
- References: Important references in IEEE format (2 slides).

5. Presentation Breakdown (30+10 minutes):

- Presentation of the Topic (15 minutes):
- Problem statement
- Importance of the problem
- Challenges
- Background information
- Existing research
- Main Technical Contributions (15 minutes):
 - ◆ Methodology
 - ◆ Experimental setup
 - Datasets and tools
 - Results and discussion
 - ◆ Takeaway Message (5 minutes):
 - **♦** Conclusions
- Question and Answer Session (5-10 minutes):

(Presentations are scheduled to take place from November 12, 2024, to November 26, 2024. A detailed schedule will be distributed at a later date.)

Sample Topics	Data management in different industries				
(for reference)	Unsupervised Learning on Graphs				
•	Approaches to Link Prediction				
•	Kernel methods for time series				
•	Theory of Map-reduce Algorithms				
•	Adversarial Attacks				
•	Deep Generative Models				
•	Program Analysis for Software Security				
•	Security Vulnerabilities in Modern Computing Hardware				
•	Machine Learning Enhanced Network Security				
Name and signature of course in Name and signature of DUGC/I					
Name and signature of DUGC/I	DPGC Chairman with date:				
Name and signature of HOD with date:					
**** END ****					