DeepWalk: Online Learning of Social Representations

Bryan Perozzi, Rami Al-Rfou, Steven Skiena ACM SIG-KDD 2014

DSAIL 2023 Winter Internship JunYoung Kim

TL;DR

- 이 논문에서는 기존에 자연어처리 과정에서 성공적으로 사용되었던
 DeepWalk를 처음으로 그래프에 도입하였음
- 2. DeepWalk는 그래프의 레이블에 독립적인 표현을 학습하므로, 표현 품질이 레이블된 노드의 영향을 받지 않아서 멀티워커를 사용할 수 있음
- 3. DeepWalk는 특히 레이블이 희소한 상황에서 다른 방법들에 비해 더욱 우수한 성능을 보였음
- 4. DeepWalk는 온라인 알고리즘으로 병렬화가 용이하며, 따라서 모든 분류 방법과 결합하여 사용할 수 있음

(a) Input: Karate Graph

(b) Output: Representation

Deep walk is a graph embedding method

(a) YouTube Social Graph

(b) Wikipedia Article Text

Words frequency in a natural language corpus follows a power law.

Short random walks vs. sentences

Algorithm 1 DEEPWALK (G, w, d, γ, t)

Input: graph G(V, E)

window size wembedding size d

walks per vertex γ

walk length t

Output: matrix of vertex representations $\Phi \in \mathbb{R}^{|V| \times d}$

1: Initialization: Sample Φ from $\mathcal{U}^{|V| \times d}$ 2: Build a binary Tree T from V

3: for i = 0 to γ do

 $\mathcal{O} = \text{Shuffle}(V)$

for each $v_i \in \mathcal{O}$ do

5:

 $\mathcal{W}_{v_i} = RandomWalk(G, v_i, t)$ SkipGram(Φ , W_{v_i} , w)

end for

9: end for

Algorithm 2 SkipGram(Φ , W_{v_i} , w)

- 1: for each $v_j \in \mathcal{W}_{v_i}$ do
- 2: for each $u_k \in \mathcal{W}_{v_i}[j-w:j+w]$ do
- 3: $J(\Phi) = -\log \Pr(u_k \mid \Phi(v_j))$
- 4: $\Phi = \Phi \alpha * \frac{\partial J}{\partial \Phi}$
- 5: **end for**
- 6: end for

- Word2Vec : language model
 - CBOW method: predict the center word based on the source of the context words
 - Skip-gram: predicts the context words with the center word

CBOW

Skip-Gram


```
def fit(self):
    walks = []
    nodes = list(self.G.nodes())
    for _ in tqdm(range(self.g)):
        random.shuffle(nodes)
        for node in nodes:
            walks.append(self.randomWalk(node))

#SkipGram
self.wvmodel = Word2Vec(walks, vector_size=self.d, window=self.w, sg=1, hs=1)
```


(a) Random walk generation.

(b) Representation mapping.

(c) Hierarchical Softmax.

Maximize: $Pr(v_3|\Phi(v_1))$

$$\Pr(v_5|\Phi(\mathbf{v_1}))$$

```
def randomWalk(self, start_node):
    walk = []
    current_node = start_node
    walk.append(str(start_node))
    for _ in range(self.t - 1):
        neighbors = list(self.G.edges([current_node]))
        if (len(neighbors) > 0):
            random_edge = random.choice(neighbors)
        if (random_edge[0] == current_node):
            current node = random edge[1]
        else:
            current_node = random_edge[0]
        walk.append(str(current_node))
    return walk
```


Effects of parallelizing DeepWalk

Name	BLOGCATALOG	FLICKR	YouTube
V	10,312	80,513	1,138,499
E	333,983	5,899,882	2,990,443
$ \mathcal{Y} $	39	195	47
Labels	Interests	Groups	Groups

Table 1: Graphs used in our experiments.

Results: BlogCatalog

Vame	BLOGCATALOG	FLICKR	YouTube
V	10,312	80,513	1,138,499
E	333,983	5,899,882	2,990,443
$ \mathcal{Y} $	39	195	47
abels	Interests	Groups	Groups

Table 1: Graphs used in our experiments.

	% Labeled Nodes	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DEEPWALK	36.00	38.20	39.60	40.30	41.00	41.30	41.50	41.50	42.00
	SpectralClustering	31.06	34.95	37.27	38.93	39.97	40.99	41.66	42.42	42.62
	EdgeCluster	27.94	30.76	31.85	32.99	34.12	35.00	34.63	35.99	36.29
Micro-F1(%)	Modularity	27.35	30.74	31.77	32.97	34.09	36.13	36.08	37.23	38.18
	wvRN	19.51	24.34	25.62	28.82	30.37	31.81	32.19	33.33	34.28
	Majority	16.51	16.66	16.61	16.70	16.91	16.99	16.92	16.49	17.26
	DEEPWALK	21.30	23.80	25.30	26.30	27.30	27.60	27.90	28.20	28.90
	SpectralClustering	19.14	23.57	25.97	27.46	28.31	29.46	30.13	31.38	31.78
	EdgeCluster	16.16	19.16	20.48	22.00	23.00	23.64	23.82	24.61	24.92
Macro-F1(%)	Modularity	17.36	20.00	20.80	21.85	22.65	23.41	23.89	24.20	24.97
, ,	wvRN	6.25	10.13	11.64	14.24	15.86	17.18	17.98	18.86	19.57
	Majority	2.52	2.55	2.52	2.58	2.58	2.63	2.61	2.48	2.62

Table 2: Multi-label classification results in BlogCatalog

Results: Flickr

Name	BLOGCATALOG	FLICKR	YouTube
V	10,312	80,513	1,138,499
E	333,983	5,899,882	2,990,443
$ \mathcal{Y} $	39	195	47
Labels	Interests	Groups	Groups

Table 1: Graphs used in our experiments.

	% Labeled Nodes	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	DEEPWALK	32.4	34.6	35.9	36.7	37.2	37.7	38.1	38.3	38.5	38.7
	SpectralClustering	27.43	30.11	31.63	32.69	33.31	33.95	34.46	34.81	35.14	35.41
Micro-F1(%)	EdgeCluster	25.75	28.53	29.14	30.31	30.85	31.53	31.75	31.76	32.19	32.84
	Modularity	22.75	25.29	27.3	27.6	28.05	29.33	29.43	28.89	29.17	29.2
	wvRN	17.7	14.43	15.72	20.97	19.83	19.42	19.22	21.25	22.51	22.73
	Majority	16.34	16.31	16.34	16.46	16.65	16.44	16.38	16.62	16.67	16.71
						i i					
	DEEPWALK	14.0	17.3	19.6	21.1	22.1	22.9	23.6	24.1	24.6	25.0
	SpectralClustering	13.84	17.49	19.44	20.75	21.60	22.36	23.01	23.36	23.82	24.05
Macro-F1(%)	EdgeCluster	10.52	14.10	15.91	16.72	18.01	18.54	19.54	20.18	20.78	20.85
7.7.2	Modularity	10.21	13.37	15.24	15.11	16.14	16.64	17.02	17.1	17.14	17.12
	wvRN	1.53	2.46	2.91	3.47	4.95	5.56	5.82	6.59	8.00	7.26
	Majority	0.45	0.44	0.45	0.46	0.47	0.44	0.45	0.47	0.47	0.47

Table 3: Multi-label classification results in FLICKR

Results: YouTube

Name	BLOGCATALOG	FLICKR	YouTube
V	10,312	80,513	1,138,499
E	333,983	5,899,882	2,990,443
$ \mathcal{Y} $	39	195	47
Labels	Interests	Groups	Groups

Table 1: Graphs used in our experiments.

	% Labeled Nodes	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	DEEPWALK	37.95	39.28	40.08	40.78	41.32	41.72	42.12	42.48	42.78	43.05
	SpectralClustering	_	_	_	_	_	_		_	_	_
Micro-F1(%)	EdgeCluster	23.90	31.68	35.53	36.76	37.81	38.63	38.94	39.46	39.92	40.07
,	Modularity	_	_			_	_	_	_	_	
	wvRN	26.79	29.18	33.1	32.88	35.76	37.38	38.21	37.75	38.68	39.42
	Majority	24.90	24.84	25.25	25.23	25.22	25.33	25.31	25.34	25.38	25.38
	DEEPWALK	29.22	31.83	33.06	33.90	34.35	34.66	34.96	35.22	35.42	35.67
	SpectralClustering	-	_	_	_	_	_	_	_	2.—.	_
Macro-F1(%)	EdgeCluster	19.48	25.01	28.15	29.17	29.82	30.65	30.75	31.23	31.45	31.54
, ,	Modularity	_	_		_	_	_	_	_	_	_
	wvRN	13.15	15.78	19.66	20.9	23.31	25.43	27.08	26.48	28.33	28.89
	Majority	6.12	5.86	6.21	6.1	6.07	6.19	6.17	6.16	6.18	6.19

Table 4: Multi-label classification results in YouTube

Parameter Sensitivity Study

0 1 2 3	target 35 35 35 35	source 1033 103482 103515 1050679	label cites cites cites cites
4	35	1103960	cites
5424 5425 5426 5427	853116 853116 853118 853155	19621 853155 1140289 853118	cites cites cites
5427	954315	1155073	cites

31336		Neural_Networks						
106112	27	Rule_Learning						
110640	06 Rei	nforceme	nt_Lea	rning				
13195	Rei	nforceme	nt_Lea	rning				
37879	Pr	obabilis	tic_Me	thods				
112897	75	Genetic_	_Algor:	ithms				
112897	77	Genetic_	_Algor:	ithms				
112897	78	Genetic_	_Algor:	ithms				
117328	3		Case_I	Based				
24043		Neura	al_Net	works				
Name:	subject,	Length:	2708,	dtype:	obje			

Cora dataset with labels

```
def classify(word_vectors, tr=0.8): # tr : Training ratio
    y = node_data.loc[[int(x) for x in targets], 'subject']
    X = [word vectors[str(idx)] for idx in y.index]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(1-tr), random_state=5)
    rf = KNeighborsClassifier()
    rf.fit(X_train, y_train)
    y_predict = rf.predict(X_test)
    #evaluate
    f1 microscore = f1 score(y test, y predict, average='micro')
    return f1 microscore
def test(dim=64, tr=0.8, gamma=10):
    w = DeepWalk(Gnx, 5, dim, gamma, 10)
    w.fit()
    word_vectors = w.get_wvmodel().wv
    return classify(word_vectors, tr)
```


잘 안된 점 d 값이 어느정도(d=2^7) 이상부터는 오히려 감소하였는데 실제 구현해본 실험에서는 그렇지 않음

- tr=0.8, gamma=30
- d을 변화하며 f1스코어를 측정함(d = 2^0, 2^1, ..., 2^10)
- d 값이 증가할수록 micro-f1 score 증가

잘 안된 점

tr=0.8에서는 감소하였는데 오히려

tr=0.9에서는 큰 폭으로 증가함

- d=64, gamma =30
- train ratio 를 변화하며 f1스코어를 측정함(tr = 0.1, 0.2, ..., 0.9)
- tr = 0.7까지는 train ratio 값이 증가할수록 micro-f1 score
 증가

잘 안된 점 논문 실험에서는 gamma=30 이상부터는 큰 차이 없는 값을 보였는데, 실제로 실행한 실험에서는 gamma=60부터 설명되지 않는 패턴을 보임

- gamma 을 변화하며 **f1**스코어를 측정함(gamma = 10, 20, ..., 90)
- gamma=60까지는 값이 증가할수록 micro-f1 score 증가

Conclusion

- 1. 이 논문에서는 기존에 자연어처리 과정에서 성공적으로 사용되었던
 DeepWalk를 처음으로 그래프에 도입하였음
- DeepWalk는 그래프의 레이블에 독립적인 표현을 학습하므로, 표현 품질이 레이블된 노드의 영향을 받지 않아서 멀티워커를 사용할 수 있음
- 3. DeepWalk는 특히 레이블이 희소한 상황에서 다른 방법들에 비해 더욱 우수한 성능을 보였음
- 4. DeepWalk는 온라인 알고리즘으로 병렬화가 용이하며, 따라서 모든 분류 방법과 결합하여 사용할 수 있음