Overview of classical control

Minseok Kim and Hiro Farre

Tue, Feb 18th, 2025

ML Tokamak subgroup meeting

Linear Time-Invariant System

Linear system

Linear combination of input will result in linear combination of output.

$$y(t) = \int_0^t u(\tau) h(t-\tau) d\tau$$
 Impulse response

Sum of impulses by superposition.

Transfer function

Laplace transform

$$y(t) = \int_0^t u(\tau)h(t-\tau)d\tau \qquad \qquad Y(s) = H(s)U(s)$$

$$Y(s) = H(s)U(s)$$

$$H(s) = \frac{Y(s)}{U(s)}$$
: Transfer function

Transfer function can be obtained from system dynamics.

Transfer function

Laplace transform

$$T\frac{dy}{dt} + y = Ku(t) \qquad \Rightarrow \qquad sTY(s) + Y(s) = KU(s)$$

$$sTY(s) + Y(s) = KU(s)$$

$$H(s) = \frac{Y(s)}{U(s)} = \frac{K}{sT+1}$$

$$sT + 1 = 0 \implies s = -\frac{1}{T}$$

First-order model

Pole of the plant

System Identification

Controller design

Closed-loop transfer function

G(s):

Controller design

Place the closed-loop pole to be the same value with the plant

$$K_p = \frac{1}{K}$$
 and $K_I = \frac{1}{KT}$

Bode and Nyquist plot

Experimental results

Modern control

Classical

Ciassicai	Modern
Transfer functions	State space
$Y(s) = G(s) \cdot U(s)$	$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$
	$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$
Frequency domain	Time domain
Bode, Nyquist plots	Controllability, observability
PID controllers	State feedback, observers
Manual tuning of gains	Systematic methods, optimal control

Modern

Table 5.1: Differences between classical and modern control tools.

Model Predictive Control

- Use a model to forecast a t (prediction horizon) timesteps
- Calculate the actuation trajectory t timesteps in future to minimize cost (error) given actuation limits
- Grab only 1st actuation and send command
- Problem can be solved with QP solver in real time for small models
- Attempted for TCV shape ctrl, but preliminary

$$x_{t+1} = Ax_t + Bu_t$$

$$Cost = \sum_{t} (x_{target} - x_t)^T Q(x_{target} - x_t) + u_t^T R u_t$$

$$u_{min} < u_t < u_{max}$$
 $-\infty < z_t < \infty$

Appendix

Response to sinusoidal inputs

We can use the solution (2.6) to verify the claim we made in Section 2.1, in particular that for a linear system, the response to a sinusoidal input is sinusoidal. We will consider more generally the complex exponential input

$$u(t) = e^{st}, \qquad s \in \mathbb{C},$$

recognizing that sinusoidal inputs are a special case of this, for $s = i\omega$ (as explained in Section 2.1, page 28). From (2.6), the response is then

$$y(t) = \int_0^\infty h(\tau)e^{s(t-\tau)} d\tau$$
$$= e^{st} \int_0^\infty e^{-s\tau} h(\tau) d\tau$$
$$= e^{st} H(s),$$

where H(s) is a complex number defined by

$$H(s) = \int_0^\infty e^{-s\tau} h(\tau) d\tau. \tag{2.7}$$

This function H(s) is thus the transfer function, as defined in Definition 2.3.

