Written Exercises: Chapter 4

Exercise 4.1

We are not using any discount, so we have

$$q_{\pi}(11, down) = r + v_{\pi}(T) \tag{1}$$

$$= -1 + 0 = -1 \tag{2}$$

$$q_{\pi}(7, down) = r + v_{\pi}(11)$$
 (3)

$$= -1 + -14 = -15 \tag{4}$$

Exercise 4.2

Adding the new state, we get

$$v_{\pi}(15) = \sum_{a} \pi(a \mid 15)(-1 + v_{\pi}(s'))$$

$$= 0.25 \cdot (-1 + v_{\pi}(13)) + 0.25 \cdot (-1 + v_{\pi}(12)) + 0.25 \cdot (-1 + v_{\pi}(14)) + 0.25 \cdot (-1v_{\pi}(15))$$

$$= 0.25(-4 + v_{\pi}(13) + v_{\pi}(12) + v_{\pi}(14) + v_{\pi}(15)$$

$$= -1 + 0.25(-20 - 22 - 14 + v_{\pi}(15))$$

$$(5)$$

$$(6)$$

$$= 0.25(-4 + v_{\pi}(13) + v_{\pi}(12) + v_{\pi}(14) + v_{\pi}(15)$$

$$= -1 + 0.25(-20 - 22 - 14 + v_{\pi}(15))$$

$$(8)$$

$$= -1 + 0.25(-20 - 22 - 14 + v_{\pi}(15)) \tag{8}$$

$$= -1 - 14 + 0.25v_{\pi}(15) \tag{9}$$

$$\implies 0.75v_{\pi}(15) = -15 \tag{10}$$

$$\implies v_{\pi}(15) = \frac{-15}{0.75} = -20 \tag{11}$$

Now, if we change the dynamics such that moving down in state 13 will move us to 15, the value function will not change. This is because $v_{\pi}(13) = v_{\pi}(15)$, so $q_{\pi}(13, down) = -20$ hold regardless of whether the move will take us to 15 or not.

Exercise 4.3

The equations analogous to (4.3) and (4.4) are given in Exercise 3.17.

The update equation for $q_{\pi}(s, a)$ is given by

$$q_{k+1}(s,a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a \right]$$
(12)

$$= \sum_{s',r} p(s',r \mid s,a) \left(r + \gamma \sum_{a'} \pi(a' \mid s) q_k(a',s) \right)$$
 (13)

Exercise 4.4

We need to loop through the computed value function to check whether they are equal; two optimal policies will have the same value function.

Exercise 4.5

The process is very similar - we use the Bellman equation for q_{π} to evaluate the policy. To improve the policy, we again create the greedy policy π' with respect to q_{π} . That is,

(1) Initialization

 $q(s,a) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$.

(2) Policy evaluation

Loop:

- $\Delta \leftarrow 0$
- Loop for each $s \in \mathcal{S}$ and each $a \in \mathcal{A}(s)$:

$$-q \leftarrow q(s, a) -q(s, a) \leftarrow \sum_{s', r} p(s', r \mid s, a) (r + \gamma q(s', \pi(s'))) -\Delta \leftarrow \max(\Delta, |q - q(s, a)|)$$

- until $\Delta < \theta$
- (3) Policy Improvement
 - policy- $stable \leftarrow true$
 - For each $s \in \mathcal{S}$:

 - $\begin{array}{l} \ old\text{-}action \leftarrow \pi(s) \\ \ \pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} q(s,a) \\ \ \text{If} \ old\text{-}action \neq \pi(s) \ \text{then} \ policy\text{-}stable \leftarrow false. \end{array}$
 - If policy-stable, then stop and return $q \approx q_*$ and $\pi \approx \pi_*$, else go to 2.

Exercise 4.6

We assume that there would be a $1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|}$ probability on the optimal action, and the remaining $\epsilon - \frac{\epsilon}{|\mathcal{A}(s)|}$ probability would be evenly spread over the remaining actions.

Now, assume that we store this action in A(s). Then,

$$\pi_A(a \mid s) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|} & \text{if } a = A(s) \\ \epsilon - \frac{\epsilon}{|\mathcal{A}(s)|} & \text{otherwise} \end{cases}$$
 (14)

Then, step 3 would be

- policy- $stable \leftarrow true$
- For each $s \in \mathcal{S}$:

 - $\begin{array}{l} \textit{ old-action} \leftarrow A(s) \\ A(s) \leftarrow \operatorname{argmax}_{a'} \sum_{a} \pi'_{a}(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma V(s') \right] \end{array}$

 - If $old\text{-}action \neq A(s)$ then $policy\text{-}stable \leftarrow false$

For step two, the value update would simply be

$$V(s) \leftarrow \sum_{a} \pi_{A}(s)(a \mid s) \sum_{s',r} p(s',r \mid s,a') \left[r + \gamma V(s') \right]$$

$$\tag{15}$$

where the rest of the step remains the same.

Step one would consist of letting $V(s) \in \mathbb{R}$ arbitrarily, and setting A(s) for $s \in \mathcal{S}$ arbitrarily, with $\pi(a \mid s) = \pi_{A(s)}(a \mid s)$ as defined above.