Relations

I Définitions générales

I.1 Relations

Une **relation binaire** entre deux ensemble E et F est un sous-ensemble G de $E \times F$. On note souvent xRy pour dire que $(x,y) \in G$, et on dit que x est en relation avec y par R.

Une relation entre E et F est dite **fonctionnelle** si pour tout $x \in E$, il existe au plus un unique $y \in F$ tel que xRy.

Si R est une relation entre E et lui-même, on dit que R est une **relation sur** E.

I.2 Définitions de quelques propriétés

Soit R une relation sur E:

- R est **réflexive** si pour tout $x \in E$, xRx.
- R est **symétrique** si pour tout $x, y \in E, xRy \Longrightarrow yRx$.
- R est antisymétrique si pour tout $x, y \in E, xRy \land yRx \Longrightarrow x = y$.
- R est transitive si pour tout $x, y, z \in E, xRy \land yRz \Longrightarrow xRz$.
- R est **irréflexive** si pour tout $x \in E$, $\neg(xRx)$.
- R est asymétrique si pour tout $x, y \in E, xRy \Longrightarrow \neg(yRx)$.

On remarque donc que une relation antisymétrique et irréflexive est asymétrique.

II Relations d'équivalence

II.1 Définition

Une **relation d'équivalence** sur un ensemble E est une relation R sur E qui est *réflexive*, symétrique et transitive. On note souvent $x \equiv y$ ou $x \sim y$ pour dire que xRy.

II.2 Classes d'équivalence, ensemble quotient

Soit R une relation d'équivalence sur E, et on a $x \in E$, ainsi la **classe d'équivalence** de x sous la relation R est le sous-ensemble C_x de E des élements en relation avec x par R:

$$C_x = \overline{x} = \{ y \in E \mid xRy \}.$$

Si $y, z \in \overline{x}$, alors yRz

L'ensemble des classes d'équivalence de E sous R forme une partition de E. On note E/R l'ensemble des classes d'équivalence de E sous R, et on l'appelle **ensemble quotient** de E par R.

On appelle **projection canonique** la fonction $\pi_R: E \twoheadrightarrow E/R$ qui à $x \in E$ associe $\overline{x} \in E/R$. π_R est surjective et vérifie $xRy \Longrightarrow \pi_{R(x)} = \pi_{R(y)}$.

 \triangle π_R n'est pas injective en général, elle l'est seulement dans le cas d'une relation d'égalité.

Soit $f:E\to F$ une fonction, et R une relation d'équivalence sur E, les propriétés suivantes sont équivalentes :

- $\forall (x,y) \in E^2, xRy \Longrightarrow f(x) = f(y)$
- Il existe une fonction $g:E/R \to F$ telle que $f=g\circ \pi_R$

II.3 Congruence

Soit E un ensemble muni d'un certain nombre d'opérations $\times_1,...,\times_n$. On dit que R est une **congruence** si :

$$\forall (x,y,x',y') \in E^4, \forall i \in [\![1,n]\!], (xRx') \land (yRy') \Longrightarrow (x \times_i y) R(x' \times_i y')$$

La relation de congruence des entiers notée \equiv [n] est une congruence sur $(\mathbb{Z},+,\times)$.

Soit $(E, \times_1, ..., \times_n)$ un ensemble muni de n opérations, et R une congruence sur E. On peut définir sur E/R les opérations $\dot{\times_1}, ..., \dot{\times_n}$ telles que pour tout $i \in [\![1, n]\!]$ et pour tout $x, y \in E$, $\overline{x} \dot{\times_i} \overline{y} = \overline{x \times_i y}$.

On peut munir $\mathbb{Z}/n\mathbb{Z}$ des opérations \dotplus et $\dot{\times}$, notées plus simple + et \times , telles que pour tout $x, y \in \mathbb{Z}, \overline{x} + \overline{y} = \overline{x + y}$ et $\overline{x} \times \overline{y} = \overline{x \times y}$.

III Relations d'ordre

III.1 Définitions

Une **relation d'ordre** sur un ensemble E est une relation R sur E qui est *réflexive*, *antisymétrique*. On note souvent $x \le y$ pour dire que xRy. Les écritures $x \le y$ et $y \ge x$ sont équivalentes.

Une **relation d'ordre strict** est une relation *irréflexive* et *transitive*. On en déduit que la relation d'ordre strict est aussi *antisymétrique*.

- Toute d'ordre \leq définit une relation d'ordre strict par $x < y \Leftrightarrow x \leq y \land x \neq y$.
- Toute relation d'ordre strict < définit une relation d'ordre par $x \le y \Leftrightarrow x < y \lor x = y$.

On dit que R est une **relation d'ordre total** si pour tout $x, y \in E$, $xRy \vee yRx$, sinon R est une **relation d'ordre partiel**.

Soit R une relation sur E, on a $A \subset E$, alors R définit sur A une relation d'ordre R' par $xR'y \Leftrightarrow xRy$.

Il s'agit de la **restriction** de R à A ou de la **relation induite** par R sur A.

III.2 Minimalité, maximalité

- m est appelé plus **petit élément** de E (ou **élément minimum**) si pour tout $x \in E$, $m \le x$.
- M est appelé plus **grand élément** de E (ou **élément maximum**) si pour tout $x \in E, x \leq M$.

⚠ Le minimum et le maximum sont uniques si ils existent.

- m est appelé **élément minimal** de E si il n'existe pas d'élément $x \in E$ tel que x < m.
- M est appelé **élément maximal** de E si il n'existe pas d'élément $x \in E$ tel que x > M.

Si E est ordonné, fini et non vide, alors E admet un élément minimal. Si E est fini et ordonné, et que E admet un unique élément minimal, alors cet élément est aussi l'élément minimum de E.

Si l'ordre défini sur E est total, l'élément minimal coïncide avec l'élément minimum. **Attention**, c'est faux si l'ordre est partiel car $x < m \not\equiv \neg(x \ge m)$

Avec $A \subset E$,

- m est appelé minorant de A si pour tout $x \in A, x \ge m$.
- M est appelé majorant de A si pour tout $x \in A$, $x \leq M$.
- La **borne inférieure** de A (ou **infimum**) est le plus grand minorant de A sous réserve d'existence. On la note $\inf_E(x)$ ou $\inf(x)$.
- La borne supérieure de A (ou supremum) est le plus petit majorant de A sous réserve d'existence. On la note $\sup_E(x)$ ou $\sup(x)$.

Propriété fondamentale de \mathbb{R} , toute sous-ensemble non vide de \mathbb{R} qui est majorée admet une borne supérieure.

Tout sous-ensemble borné de \mathbb{Q} admet une borne supérieure dans \mathbb{R} , mais pas forcément dans \mathbb{Q} .

Pour montrer que $s = \sup(A)$, on montre que s est un majorant de A et que pour tout majorant M de $A, M \ge s$.

Dans \mathbb{N}^* muni de la divisibilité, $\inf(a,b) = \operatorname{pgcd}(a,b)$ et $\sup(a,b) = \operatorname{ppcm}(a,b)$. Dans P(E) muni de l'inclusion, $\inf(A,B) = A \cup B$ et $\sup(A,B) = A \cap B$.

A admet un maximum M si et seulement si A admet une borne supérieure b et si $b \in A$. Dans ce cas, $M = \sup(A)$.

III.3 Lemme de Zorn

On dit que E est un ensemble **inductif** si pour tout $F \subset E$ totalement ordonné (**chaine**), F admet un majorant dans E.

Tout ensemble ordonné et fini est inductif.

Lemme de Zorn : Tout ensemble inductif admet un élément maximal (*reformulation de l'axiome du choix*).