

Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

M. Y. Kim¹, H. Nikjoo², J. F. Dicello³, V. Pisacane³, and F. A. Cucinotta⁴

¹ Wyle Laboratories Inc., Houston, TX, USA

² Universities Space Research Association, Houston, TX, USA

³ U.S. Naval Academy, Annapolis, MD, USA

⁴ NASA Lyndon B. Johnson Space Center, Houston, TX, USA

Introduction

- The quality factor used in radiation protection is defined as a function of LET, $Q_{avg}(LET)$
- TEPCs measure the average quality factors as a function of lineal energy (y), $Q_{avg}(y)$
- A model of the TEPC response for charged particles:
 - energy deposition as a function of impact parameter from the ion's path to the volume
 - the escape of energy out of sensitive volume by δ -rays
 - the entry of δ -rays from the high-density wall into the low-density gas-volume
- TEPC response for broad spectrum of HZE particles:
 - the weighted function of discrete Monte-Carlo simulation data of the energy deposition

Monte-Carlo Simulation of Walled TEPC in 1-μm Tissue Site for Oxygen Ions

Approach to Radiation Evaluation

- Transport properties of spacecraft:
NASA BRYNTRN/HZETRN code system
- Nuclear interaction model:
Quantum Multiple Scattering Fragmentation (QMSFRG)
- TEPC detector response function:
 - Analytic model for frequency event spectra for trapped protons
 - Monte-Carlo track simulation for frequency event spectra for HZE particles

Analytic Model for Track Structure

Frequency Distribution for Energy Impaired by Ions

$$\frac{dF}{d\varepsilon} = 2\pi \int t dt n_{ev}(t) [f_{ion}(\varepsilon, t) + f_{\delta}(\varepsilon, t)]$$

$$n_{ev}(t) = \frac{D(t)}{\bar{z}_F(t)}$$

where $n_{ev}(t)$: the number of events
as a function of impact parameter t
 $f_{ion}(\varepsilon, t)$: ion events through the volume
 $f_{\delta}(\varepsilon, t)$: ion events outside the volume
as δ -ray events
 $D(t)$: the radial dose distribution
 $\bar{z}_F(t)$: the frequency average of the distribution at t

Dependence of Frequency Distribution on t

$$L = 2\pi \int_0^{t_{\text{tot}}} t dt [D_{\delta}(t) + D_{exc}(t)]$$

where D_{δ} : the radial dose from primary or secondary electrons
 D_{exc} : the radial dose from excitation

f_{ion} Mean and Variance Correction for δ -ray Diffusion

For example, the variance is

$$V(t) = \int dx \int d\varphi \frac{d^2 \bar{E}_x}{d\varphi dx} \delta_x [E_x(x, \varphi)]$$

where δ_x : the quotient of the second by the 1st moment
 $E_x(x, \varphi)$: the restricted energy

Event Spectra for an Ion of E MeV/amu

TEPC Response Function

$$f_{ion}(j, E, y) = f_{ion}(j, E, y) + f_{\delta}(j, E, y)$$

The Lineal Energy Distribution behind Shielding

$f(y) = \sum_i d_k c_s \sum_j \int dE \phi_j(x_s, E) f(j, E, y)$
where c_s : the directional weighting coefficients for spacecraft shielding
 d_k : the directional weighting coefficient for instrument
 ϕ_j : flux from BRYNTRN or HZETRN

Shuttle Tissue Equivalent Proportional Counter (STS-89, January 1998)

Trapped Integral Flux inside Aluminum Sphere : — Model calculation for TEPC Response; • TEPC Measurement
Experimental Setup: TEPC Aluminum Spheres Located in Payload Bay (Diameter: 0°, 5°, 7°, and 9°)
Environmental Parameters: Duration (6.894 days); Orbit Inclination (51.6°); Orbit Altitude (296 km); Solar F_{10.7} (94.6×10⁻²² Joule/sec/m²/Hz); FBAR (92.4×10⁻²² Joule/sec/m²/Hz); Sunspot Number (50.3); Average Ø (493 MV)

Quality Factors of LET and Lineal Energy for Various Ions

Q_{avg} of Trapped Radiation inside Aluminum Sphere (STS-89)

Sphere Thickness g/cm²	$Q_{avg}(L)$	$Q_{avg}(y)$	Measured $Q_{avg}(y)$	$Q_{avg}(y)/Q_{avg}(L)$
0"	1.50	2.07	2.06	1.38
5"	1.57	2.18	1.99	1.39
7"	1.61	2.25	2.26	1.40
9"	1.65	2.32	2.58	1.41

Concluding Remarks and Future Works

Trapped protons:

- The model calculation of integral flux is very close to the TEPC measured data except above 100 keV/μm
- ⇒ Target fragmentation to be included in the model
- $1.99 \leq Q_{avg}(y) \leq 2.58$ as measured by the TEPC
- $1.5 \leq Q_{avg}(LET) \leq 1.65$ as calculated from LET distribution using BRYNTRN
- $2.07 \leq Q_{avg}(y) \leq 2.32$ as calculated from y distribution determined from TEPC response function and BRYNTRN
- ⇒ TEPCs overestimate the average quality factor about 40% for trapped protons

HZE particles of GCR:

- $Q(y) < Q(LET)$ for HZE particles in the major interval of y or LET
⇒ TEPCs underestimate the average quality factor for GCR
- Monte-Carlo simulation to be made for broad spectrum of ion types and energies extended to 1000's MeV/u, and low y components with better statistic
- Radiation transport calculation of TEPC response will be compared with the TEPC measured data of GCR for the code validation effort and interpretation of radiation monitoring