

Oct 13, 2020

© General bacteria and archaea 16S-rRNA (515Fmod-806R) for Illumina amplicon sequencing

Roey Angel¹, Eva Petrova¹

¹Soil and Water Research Infrastructure

1 Works for me

dx.doi.org/10.17504/protocols.io.mvnc65e

SoWa RI Anaerobic and Molecular Microbiology (public) Tech. support email: eva.petrova@bc.cas.cz

Roey Angel Soil and Water Research Infrastructure

ABSTRACT

Universal 16S rRNA probe-based-qPCR assay for bacteria.

The primers target the V4 region of the 16S rRNA gene and were specifically designed for Illumina amplicon sequencing. The original primers were designed by Caporaso *et al.* (2012) and modified by Walters *et al.* (2015). For barcoding, we use the <u>Fludigm Access Array</u> for barcoding the sample and therefore the primers are synthisized with the CS1 and CS2 regions.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.. The ISME journal.

https://doi.org/10.1038/ismej.2012.8

Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R (2015). Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys.. mSystems. https://doi.org/pii:e00009-15

DOI

dx.doi.org/10.17504/protocols.io.mvnc65e

PROTOCOL CITATION

Roey Angel, Eva Petrova 2020. General bacteria and archaea 16S-rRNA (515Fmod-806R) for Illumina amplicon sequencing. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.mvnc65e

KEYWORDS

PCR, 16S rRNA, SSU rRNA, Amplicon sequencing, Illumina sequencing, Barcoded sequencing, Targeted metagenomics, Microbiome

👸 protocols.io

10/13/2020

Citation: Roey Angel, Eva Petrova (10/13/2020). General bacteria and archaea 16S-rRNA (515Fmod-806R) for Illumina amplicon sequencing. https://dx.doi.org/10.17504/protocols.io.mync65e

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Jan 29, 2018

LAST MODIFIED

Oct 13, 2020

OWNERSHIP HISTORY

Jan 29, 2018 Eva Petrova Soil and Water Research Infrastructure

Oct 13, 2020 Roey Angel Soil and Water Research Infrastructure

PROTOCOL INTEGER ID

9870

STEPS MATERIALS

NAME	CATALOG #	VENDOR
Agarose	A9539	Sigma Aldrich
GeneRuler DNA Ladder Mix	SM0331	Thermo Fisher Scientific
DNA Gel Loading Dye (6X)	R0611	Thermo Fisher Scientific
TAE buffer (50x), molecular biology grade	4254901	Serva, Germany
Fast Start PCR Master	196 10 126	Roche
PCR H2O	P040	Top Bio
Bovine Serum Albumin (BSA)	B14	Thermo Fisher Scientific
Primer: 515Fmod_CS1		Elisabeth Pharmacon
Primer: 806mod_CS2		Elisabeth Pharmacon

ABSTRACT

Universal 16S rRNA probe-based-qPCR assay for bacteria.

The primers target the V4 region of the 16S rRNA gene and were specifically designed for Illumina amplicon sequencing. The original primers were designed by Caporaso *et al.* (2012) and modified by Walters *et al.* (2015). For barcoding, we use the <u>Fludigm Access Array</u> for barcoding the sample and therefore the primers are synthisized with the CS1 and CS2 regions.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.. The ISME journal.

https://doi.org/10.1038/ismej.2012.8

Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R (2015). Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys.. mSystems. https://doi.org/pii:e00009-15

Primers

1

Name	Direction	Sequence ¹	Target region ²
515Fmod_CS1	Forward	ACA CTG ACG ACA TGG TTC TAC A GT GYC AGC MGC CGC CGT AA	515-533
806mod_CS2	Reverse	TAC GGT AGC AGA GAC TTG GTC T GG ACT ACN VGG GTW TCT AAT	787-806

- 1. CS + primer sequence (in bold)
- 2. Relative to E. coli SSU rRNA gene

PCR reaction

2 Prepare the following master mixture § On ice .

Don't forget to prepare an additional mixture for the negative (NTC) and positive controls, and to account for pipetting errors.

Reagent	Final. conc.	1 tube (25 μl)	100 reactions (96-well plate; µl)
PCR H ₂ O		9.3	930
Fast Start PCR Master (2x)	1x	12.5	1250
BSA (20 μg/μl)	0.6 μg/μl	0.7	70
515Fmod-CS1 (10 μM)	0.3 μΜ	0.75	75
806R-CS2 (10 μM)	0.3 μΜ	0.75	75
Final volume		24	2400

- 88 GeneRuler DNA Ladder Mix by Thermo Fisher Scientific Catalog #: SM0331
- DNA Gel Loading Dye (6X) by Thermo Fisher Scientific Catalog #: R0611
- TAE buffer (50x), molecular biology grade by Serva, Germany Catalog #: 4254901
- Mix up to $\Box 5 \mu I$ of the PCR reaction sample with $\Box 1 \mu I$ of loading dye and load the sample into a well. In addition load **5** µl of DNA ladder mix (80-10,000 bp) into an empty well, as a marker.
- 8 Run the gel at 110V, 265mA for approx. © **00:40:00**

40m

- Stain gel for at least 40min in an Ethidium bromide TAE bath (or any other DNA stain).
- Visualise the gel using a gel documentation system. 10