Math Module 1B Lecture Notes

Hankertrix

August 29, 2023

Contents

1	Limits 2						
	1.1	The idea of limit	2				
	1.2	Plotting approach	2				
	1.3	Limits, in rigorous terms	3				
	1.4	Distance between points	3				
	1.5	Limit points	4				
	1.6	Definition of a limit	6				
	1.7	Limit Laws	0				
2	Squeeze Theorem 15						
	2.1	Proof	6				
	2.2	Another useful result	6				
	2.3	A lemma	.8				
3	Limits at infinity 20						
	3.1	Definition	21				
	3.2	Example 1	21				
	3.3	Example 2	22				
	3.4	Example 3	22				
	3.5	Incorrect example	23				
	3.6	Corrected example	24				
4	Limit of a sequence 25						
	4.1		25				
	4.2		26				

1 Limits

1.1 The idea of limit

Let $f(x) = \frac{\sin x}{x}$. What happens to f(x) of values of x near 0? We can observe that:

X	f(x)	X	f(x)
0.1	0.998	-0.1	-0.998
0.01	0.99998	-0.01	0.99998
0.001	0.9999998	-0.001	0.9999998
0.0001	0.999999998	-0.0001	0.999999998

It **looks like** the function values of f(x) get closer and closer to 1 as x approaches 0.

1.2 Plotting approach

We can plot the graph:

1.3 Limits, in rigorous terms

From a maths perspective, "looks like" isn't good enough.

But before we can do anything better, we have to **exactly define** what we're talking about in the first place.

Roughly speaking, if f(x) can be made arbitrarily close to some number L by taking the value of the variable x sufficiently close to a, but not equal to a, then we'd like to say that L is f's limit at the point a.

In simpler terms, if f(x) approaches a value L but isn't equal to L, that means that L is f's limit.

1.4 Distance between points

1.4.1 Definition

The distance between two points $x, y \in \mathbb{R}$ is |x - y|.

1.4.2 Examples

The distance between 5 and 7 is 7-5=2.

The distance between 7 and 5 is also 7 - 5 = 2.

1.4.3 Thinking in distances

For expressions such as the one below:

$$|x-a| < \delta$$
, $(\delta > 0)$

It is usually helpful to think of these expressions in terms of distances, i.e. "the point x is within distance δ from a". Note that for $\delta > 0$:

$$|x - a| < \delta \Leftrightarrow x \in (a - \delta, a + \delta) \tag{1}$$

1.5 Limit points

1.5.1 Definition

Let A be a subset of \mathbb{R} . We say that a point $a \in \mathbb{R}$ is a **limit point** of A, if for every $\delta > 0$, there exists a point $x \in A$ such that $0 < |x - a| < \delta$.

Basically, this means that a is a limit point of A if there is a point x such that $0 < |x - a| < \delta$, or that the absolute value of x - a is between 0 and δ .

1.5.2 Example 1

Consider $A = (0, 1] \cup 2$.

Is 3 a limit point of A?

From the definition of the limit point of A, $a \in \mathbb{R}$ is a limit point of a if for every $\delta > 0$, there exists a $x \in A$ such that $0 < |x - a| < \delta$.

Let $\delta = \frac{1}{2}$. At a = 3, there does not exist $x \in A$ such that $0 < |x - a| < \delta$. Hence, a = 3 is **not** a limit point of A.

1.5.3 Example 2

Consider $A = (0, 1] \cup 2$.

Is 2 a limit point of A?

From the definition of the limit point of A, $a \in \mathbb{R}$ is a limit point of a if for every $\delta > 0$, there exists a $x \in A$ such that $0 < |x - a| < \delta$.

Let $\delta = \frac{1}{2}$. At a = 2, there does not exist $x \in A$ such that $0 < |x - a| < \delta$. Hence, a = 2 is **not** a limit point of A.

1.5.4 Example 3

Consider $A = (0, 1] \cup 2$.

Is 1 a limit point of A?

From the definition of the limit point of A, $a \in \mathbb{R}$ is a limit point of a if for every $\delta > 0$, there exists a $x \in A$ such that $0 < |x - a| < \delta$.

Let $\delta > 0$. At a = 1, there exists a $x \in A$ such that $0 < |x - a| < \delta$. Hence, a = 1 is a limit point of A.

 $\frac{1}{2}$ and 0 is also a limit point of A.

1.6 Definition of a limit

For a function $f: A \to \mathbb{R}$, $A \subset \mathbb{R}$ with a as a limit point of A, f approaches a **limit** L if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$\lim_{x \to a} f(x) = L$$

$$\uparrow$$

For every $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$0 < |x - a| < \delta, \quad x \in A \implies |f(x) - L| < \varepsilon.$$

For a visual example, visit this link.

This playlist should help you understand the definition of a limit if the definition above still doesn't make any sense to you.

1.6.1 Example 1

Prove that $\lim_{x\to 2} 17x = 34$.

We want to show that for every $\varepsilon > 0$, there exists $\delta > 0$, such that:

$$0 < |x - 2| < \delta, \quad x \in \mathbb{R} \quad \Rightarrow \quad |17x - 34| < \varepsilon$$

Hence:

$$\begin{aligned} |17x - 34| &= 17|x - 2| \\ 17|x - 2| &< \varepsilon \\ |x - 2| &< \frac{\varepsilon}{17} \end{aligned}$$

Thus, we will need $\delta = \frac{\varepsilon}{17}$.

Let $\varepsilon > 0$. If we choose $\delta = \frac{\varepsilon}{17}$, we have:

$$0 < |x - 2| < \delta \implies |17x - 34| = 17|x - 2| < 17\delta = \varepsilon$$

So, by definition,

$$\lim_{x\to 2} 17x = 34 \text{ (Proven)}$$

1.6.2 Example 2

Prove that $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.

We want to show that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$0 < |x - 0| < \delta, \quad x \in \mathbb{R} \quad \Rightarrow \quad \left| x \sin \frac{1}{x} - 0 \right| < \varepsilon$$

Hence:

$$|x\sin\frac{1}{x}| = |x| \cdot |\sin\frac{1}{x}|$$

$$|x| \cdot |\sin \frac{1}{x}| \le |x|$$
$$< \delta = \varepsilon$$

Thus, we will need $\delta = \varepsilon$.

Let $\varepsilon > 0$. If we choose $\delta = \varepsilon$, we have:

$$0 < |x - 0| < \delta \Rightarrow \left| x \sin \frac{1}{x} - 0 \right|$$

 $\Rightarrow |x| \cdot \left| \sin \frac{1}{2} \right| \le |x| < \delta = \varepsilon$

So, by definition,

$$\lim_{x\to 0} x \sin\frac{1}{x} = 0 \text{ (Proven)}$$

1.6.3 Example 3

Prove that $\lim_{x\to 2} x^2 = 4$.

We want to show that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$0 < |x - 2| < \delta, \quad x \in \mathbb{R} \quad \Rightarrow \quad |x^2 - 4| < \varepsilon$$

Hence:

$$|x^2 - 4| = |x + 2| \cdot |x - 2| < 5|x - 2|$$

$$5|x - 2| < \varepsilon$$

$$|x - 2| < \frac{\varepsilon}{5}$$

If |x-2| < 1, then $x \in (1,3)$, so |x+2| < 5.

Thus, we will need $\delta = min\{1, \frac{\varepsilon}{5}\} > 0$. Let $\varepsilon > 0$. If we choose $\delta = min\{1, \frac{\varepsilon}{5}\}$, we have:

$$0 < |x - 2| < \delta \quad \Rightarrow \quad |x - 2| < \frac{\varepsilon}{5}$$

And

$$|x-2| < 1 \implies |x^2 - 4| = |x+2| \cdot |x-2| < 5|x-2|$$

 $\therefore |x-2| < 1 \text{ so } x \in (1,3)$
and $|x+2| < 5$

$$\Rightarrow |x^2 - 4| < 5|x - 2| < \varepsilon \quad : |x - 2| < \frac{\varepsilon}{5}$$

Note that the \because stands for because.

So, by definition:

$$\lim_{x\to 2} x^2 = 4 \text{ (Proven)}$$

1.6.4 Limits are independent of function values

It is very important to realise that, given a function f(x), the value f(a) does not affect the limit $\lim_{x\to a} f(x)$. To actually find this limit, we don't need to consider f(a) and we don't care about whether f(a) is defined.

If there exists a number $L \in \mathbb{R}$ such that $\lim_{x\to a} f(x) = L$, we say that "f(x) has a limit as x approaches a" or that "the limit $\lim_{x\to a} f(x)$ exists".

On the contrary, if no such $L \in \mathbb{R}$ exists, we say that "f(x) has no limit as x approaches a" or that "the limit $\lim_{x\to a} f(x)$ does not exist".

Note that this has **nothing to do** with whether or not L = 0. A zero limit is still a limit.

1.7 Limit Laws

1.7.1 Theorem

Consider $f: A_1 \to \mathbb{R}, g: A_2 \to \mathbb{R}$. Suppose a is a limit point of $A_1 \cap A_2$, and $\lim_{x\to a} f(x) = l, \lim_{x\to a} g(x) = m$, then:

1.
$$\lim_{x \to a} (Af(x) + Bg(x)) = Al + Bm$$
$$= A \cdot \lim_{x \to a} f(x) + B \cdot \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} (f(x)g(x)) = lm$$
$$= \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{m}$$
, provided $m \neq 0$

$$= \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

4.
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{l}$$
, provided $n\in\mathbb{N}$ and $l\geq 0$ if n is even
$$= \sqrt[n]{\lim_{x\to a} f(x)}$$

5. L'Hôpital's rule:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \text{ when } \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \text{ and } g'(x) \neq 0$$

1.7.2 Proof of $\lim_{x\to a} (Af(x) + Bg(x)) = Al + Bm$

Suppose that:

$$\lim_{x \to a} f(x) = l, \ \lim_{x \to a} = m.$$

Let $\varepsilon > 0$. By our assumptions, there exists a $\delta_1, \delta_2 > 0$ such that:

$$0 < |x - a| < \delta_1, \ x \in A_1, \quad \Rightarrow \quad |f(x) - l| < \frac{\varepsilon}{2(|A| + 1)},$$
$$0 < |x - a| < \delta_2, \ x \in A_2, \quad \Rightarrow \quad |g(x) - m| < \frac{\varepsilon}{2(|B| + 1)}$$

Let $\delta = min\{\delta_1, \delta_2\}$. Then:

$$0 < |x - a| < \delta, \ x \in A_1 \cap A_2$$

$$\downarrow \downarrow$$

$$0 < |x - a| < \delta_1 \ x \in A_1$$

$$0 < |x - a| < \delta_2 \ x \in A_2$$

 \Downarrow

$$|Af(x) + Bg(x) - (Al + Bm)| \le |A||f(x) - l| + |B||g(x) - m|$$

$$< \frac{\varepsilon}{2} \frac{|A|}{|A| + 1} + \frac{\varepsilon}{2} \frac{|B|}{2|B| + 1}$$

$$< \varepsilon$$

The proofs for the other laws are also quite similar.

1.7.3 Deriving the limits of polynomials

Proving $\lim_{x\to a} = a$:

For $\varepsilon > 0$, let $\delta = \varepsilon$. Then:

$$0 < |x - a| < \delta \Rightarrow |x - a| < \delta = \varepsilon,$$

So, $\lim_{x\to a} x = a$.

Proving $\lim_{x\to a} 1 = 1$:

For $\varepsilon > 0$, let $\delta = 1$. Then:

$$0 < |x - a| < \delta \Rightarrow |1 - 1| < 0 < \varepsilon,$$

So, $\lim_{x\to a} 1 = 1$.

Then, using $\lim_{x\to a}(Af(x)+Bg(x))=Al+Bm$ that we just proved, we can conclude that:

$$\lim_{x \to a} (c_1 x + c_0) = \lim_{x \to a} (c_1 x + c_0 \cdot 1)$$
$$= c_1 a + c_0$$

Also, using $\lim_{x\to a} f(x)g(x) = lm$, we can conclude that:

$$\lim_{x \to a} x^2 = \lim_{x \to a} x \cdot x$$
$$= a \cdot a$$
$$= a^2$$

Using $\lim_{x\to a} (Af(x) + Bg(x)) = Al + Bm$ again, we can get:

$$\lim_{x \to a} (c_2 x^2 + c_1 x + c_0) = c_2 a^2 + c_1 a + c_0$$

Repeating this argument, we get that for any **polynomial** p(x):

$$p(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_2 x^2 + c_1 x + c_0,$$

We have:

$$\lim_{x \to a} p(x) = c_n a^n + c_{n-1} a^{n-1} + \dots + c_2 a^2 + c_1 a + c_0$$

$$= p(a)$$

This property also holds for some other functions as well, as long as a is in the domain of the function. A few examples are:

$$1. \lim_{x \to a} \sin x = \sin a$$

$$2. \lim_{x \to a} \cos x = \cos a$$

$$3. \lim_{x \to a} e^x = e^a$$

$$4. \lim_{x \to a} \ln x = \ln a$$

A function with this property is said to be **continuous**.

1.7.4 Reformulated limit laws

In each of the laws below, the equation only applies if the limit on the right-hand side exists and the expression makes sense. Otherwise, you cannot directly apply the laws below.

1.
$$\lim_{x \to a} (Af(x) + Bg(x)) = A \lim_{x \to a} f(x) + B \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

4.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

1.7.5 Example 1

Evaluate $\lim_{x\to 2} \frac{x^2-x-2}{x-2}$:

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} \neq \frac{2^2 - 2 - 2}{2 - 2}$$

$$\neq \frac{0}{0}$$

We cannot apply the limit laws directly, so we divide $x^2 - x - 2$ by x - 2 using long division, we get:

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x \to 2} \frac{(x+1)(x-2)}{x - 2}$$
$$= \lim_{x \to 2} (x+1)$$
$$= 2 + 1$$
$$= 3$$

1.7.6 Example 2

Evaluate $\lim_{x\to 1} \frac{\sqrt{2-x}-1}{x-1}$:

$$\lim_{x \to a} \frac{\sqrt{2 - x} - 1}{x - 1} \neq \frac{\sqrt{2 - 1} - 1}{1 - 1}$$

$$\neq 0$$

Once again, we cannot apply the limit laws directly, so we multiply $\lim_{x\to 1} \frac{\sqrt{2-x}-1}{x-1}$ by $\frac{\sqrt{2-x}+1}{\sqrt{2-x}+1}$

$$\lim_{x \to 1} \frac{\sqrt{2 - x} - 1}{x - 1} = \lim_{x \to 1} \frac{(\sqrt{2 - x} - 1)(\sqrt{2 - x} + 1)}{(x - 1)(\sqrt{2 - x} + 1)}$$

$$= \lim_{x \to 1} \frac{2 - x - 1}{(x - 1)(\sqrt{2 - x} + 1)}$$

$$= \lim_{x \to 1} \frac{1 - x}{-(1 - x)(\sqrt{2 - x} + 1)}$$

$$= \lim_{x \to 1} \frac{1}{-(\sqrt{2 - x} + 1)}$$

$$= -\frac{1}{2}$$

1.7.7 Incorrect example

The following is **wrong**:

$$\lim_{x \to a} x \cdot \frac{1}{x} = \lim_{x \to 0} x \cdot \lim_{x \to 0} \frac{1}{x}$$
$$= 0 \cdot \lim_{x \to 0} \frac{1}{x}$$
$$= 0$$

Instead, we should do this:

$$\lim_{x \to 0} \cdot \frac{1}{x} = \lim_{x \to 0} 1$$
$$= 1$$

2 Squeeze Theorem

Suppose $f(x) \leq g(x) \leq h(x)$, for $x \in I \setminus \{a\}$, where I is some open interval containing the point a. Then:

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \quad \Rightarrow \quad \lim_{x \to a} g(x) = L$$

2.1 Proof

Suppose:

$$f(x) \le g(x) \le h(x), \text{ for } x \in I \setminus \{a\}$$
 (1)

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \tag{2}$$

Let $\varepsilon > 0$. Since I is open and $a \in I$, there exists a $\delta_1 > 0$ such that $(a - \delta_1, a + \delta_1) \subset I$. And by using equation (2), there exists a $\delta_2, \delta_3 > 0$ such that:

$$0 < |x - a| < \delta_2, \ x \in dom f \implies |f(x) - L| < \varepsilon \implies L - \varepsilon < f(x)$$

$$0 < |x - a| < \delta_3, \ x \in dom \ h \ \Rightarrow \ |h(x) - L| < \varepsilon \ \Rightarrow \ h(x) < L + \epsilon$$

Note that *dom* represents the **domain** of the function.

Let $\delta = min\{\delta_1, \delta_2, \delta_3\}$. Using equation (1), we get:

2.2 Another useful result

For $f: A \to \mathbb{R}$, we have:

$$\lim_{x \to a} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to a} |f(x) - L| = 0$$

2.2.1 Proof

$$\lim_{x \to a} f(x) = L$$

$$\updownarrow$$

For every
$$\varepsilon > 0$$
, there exists a $\delta > 0$ such that $0 < |x-a| < \delta, \ x \in A$ \Rightarrow $|f(x) - L| < \varepsilon$

\$

For every $\varepsilon > 0$, there exists a $\delta > 0$ such that $0 < |x-a| < \delta, \ x \in A$ \Rightarrow $||f(x) - L| - 0| < \varepsilon$

$$\lim_{x \to a} |f(x) - L| = 0$$

2.2.2 Example 1

Evaluate $\lim_{x\to 0} x \sin \frac{1}{x}$ (again):

Guess, from the graph or otherwise: $\lim_{x\to 0} x \sin \frac{1}{x} = 0$

Proof:

Note that:

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0 \quad \Leftrightarrow \quad \lim_{x \to 0} \left| x \sin \frac{1}{x} - 0 \right| = 0$$

$$0 \le \left| x \sin \frac{1}{x} \right| = |x| \left| \sin \frac{1}{x} \right| \le |x|$$

By the squeeze theorem:

$$\lim_{x \to 0} \left| x \sin \frac{1}{x} \right| = 0$$

Hence:

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$

2.2.3 Example 2

Evaluate $\lim_{x\to 0} e^{\sin(\cot x)} x^4$

Guess, from the graph or otherwise: $\lim_{x\to 0}e^{\sin(\cot x)}x^4=0$

Proof:

By the squeeze theorem,

$$|e^{\sin(\cot x)}x^4 - 0| = e^{\sin(\cot x)} \cdot |x^4|$$

Because the range of $\sin(\cot x)$ is $x \in [-1, 1]$, the range of $e^{\sin(\cot x)}$ will be $x \in [e^{-1}, e^1]$, which is less than e:

$$e^{\sin(\cot x)} \cdot |x^4| \le e \cdot |x^4|$$

$$e \cdot |x^4| \to 0 \text{ as } x \to 0$$

Hence:

$$\lim_{x \to 0} e^{\sin(\cot x)} x^4 = 0$$

2.3 A lemma

For $0 < x < \frac{\pi}{2}$, we have:

$$x\cos^2 x < \sin x < x$$

If f and g are **even** functions such that f(x) < g(x), for $x \in (0, a)$, then we also have:

$$f(x) < g(x), \text{ for } x \in (-a, 0)$$

2.3.1 Proof

Suppose f and g are even and:

$$f(x) < g(x)$$
, for $x \in (0, a)$

Then for $x \in (-a, 0)$, let u = x so $u \in (0, a)$. We get:

$$f(x) = f(-u) = f(u) < g(u) = g(-u) = g(x)$$

We showed that $x \cos^2 x < \sin x < x$ for $x \in (0, \frac{\pi}{2})$.

Since x > 0, we get:

$$\cos^2 x < \frac{\sin x}{x} < 1$$
, for $x \in (0, \frac{\pi}{2})$

Since all three expressions above are even functions, the two inequalities extend to $\left(-\frac{\pi}{2},0\right)$. Hence:

$$\cos^2 x < \frac{\sin x}{x} < 1$$
, for $x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2})$

2.3.2 Example 1

Find $\lim_{x\to 0} \sin x$:

Using the lemma:

$$\frac{\sin x}{x} < 1$$
, for $x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2})$

Note that for $x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2})$, we have:

$$\left| \frac{\sin x}{x} \right| = \frac{\sin x}{x} < 1 \text{ for } x \in \left(-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right)$$

So for $x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2})$:

$$0 \le |\sin x| \le |x|$$

Because by using the squeeze theorem, $|\sin x|$ approaches 0 and |x| approaches 0 when x approaches 0.

Hence:

$$\lim_{x \to 0} \sin x = 0$$

2.3.3 Example 2

Find $\lim_{x\to 0} \cos x$:

For $x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}), \cos x > 0$, so:

$$\cos x = |\cos x|$$
$$= \sqrt{\cos^2 x}$$
$$= \sqrt{1 - \sin^2 x}$$

Since $\sin^2 x \to 0$ as $x \to 0$:

$$\sqrt{1 - \sin^2 x} \to \sqrt{1}$$

$$\to 1$$

Hence:

$$\lim_{x \to 0} \cos x = 1$$

2.3.4 Example 3

Find $\lim_{x\to 0} \frac{\sin x}{x}$:

We showed that:

$$\cos^2 x < \frac{\sin x}{x} < 1 \text{ for } x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2})$$

So $\lim_{x\to 0} \frac{\sin x}{x} = 1$

3 Limits at infinity

We also want to consider a function's behaviour as x becomes very large (either positive or negative). For example, it is clear that the values of $f(x) = 4 - \frac{2}{x}$ can be made arbitrarily close to 4 by choosing x to be large enough.

We can express this by writing:

$$\lim_{x \to +\infty} 4 - \frac{2}{x} = 4$$

3.1 Definition

Suppose f is defined on some interval (a, ∞) . We say that f(x) has a limit L as x approaches positive infinity, and write $\lim_{X\to+\infty} f(x) = L$, if for every $\varepsilon > 0$, there exists a number R such that:

$$x > R \quad \Rightarrow \quad |f(x) - L| < \varepsilon$$

Likewise, for f defined on some interval $(-\infty, b)$, we say that f(x) has a limit L as x approaches negative infinity, and write $\lim_{x\to -\infty} f(x) = L$, if for every $\varepsilon > 0$, there exists a number R such that:

$$x < R \quad \Rightarrow \quad |f(x) - L| < \varepsilon$$

Limits at infinity follow the same limit laws as normal limits, so we can use limit laws to conclude that for any **positive** integer n, we also have:

$$\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$$

When evaluating a limit at infinity, a common technique is to factor out the highest possible power.

3.2 Example 1

Show that $\lim_{x\to+\infty} = 0$.

Let $\varepsilon > 0$ and $R = \frac{1}{\varepsilon}$. We get:

$$x > R \Rightarrow \left| \frac{1}{x} - 0 \right| = \frac{1}{|x|}$$

$$= \frac{1}{x}$$

$$< \frac{1}{R} = \varepsilon$$

$$x > R = \frac{1}{\varepsilon} > 0$$

3.3 Example 2

Show that $\lim_{x\to-\infty} = 0$.

Let $\varepsilon > 0$ and $R = \frac{1}{\varepsilon}$. We get:

$$x < R \Rightarrow \left| \frac{1}{x} - 0 \right| = \frac{1}{|x|}$$

$$= \frac{1}{x}$$

$$< \frac{1}{R} = \varepsilon$$

$$x < R = \frac{1}{\varepsilon} > 0$$

3.4 Example 3

Find:

$$\lim_{x \to +\infty} \frac{x^3 + 4x - 5}{7x^3 + 3}$$

As $x \to +\infty$:

$$\frac{x^3 + 4x - 5}{7x^3 + 3} = \frac{x^3 \left(1 + \frac{4}{x^2} - \frac{5}{x^3}\right)}{x^3 \left(7 + \frac{3}{x^3}\right)}$$
$$= \frac{1 + \frac{4}{x^2} - \frac{5}{x^3}}{7 + \frac{3}{x^3}}$$
$$= \frac{1 + \frac{4(1)}{x^2} - \frac{5(1)}{x^3}}{7 + \frac{3(1)}{x^3}}$$
$$\to \frac{1}{7} \text{ as } x \to +\infty$$

This is because all terms with $\frac{1}{x^n}$, where $n \in \mathbb{Z}^+$, approach 0 when $x \to +\infty$.

Hence:

$$\lim_{x \to +\infty} \frac{x^3 + 4x - 5}{7x^3 + 3} \to \frac{1}{7} \text{ as } x \to +\infty$$

3.5 Incorrect example

Find:

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

$$\frac{\sqrt{2x^2 + 1}}{3x - 5} = \frac{\sqrt{x^2 \left(2 + \frac{1}{x^2}\right)}}{x \left(3 - \frac{5}{x}\right)}$$

$$= \frac{\sqrt{x^2} \cdot \sqrt{2 + \frac{1}{x^2}}}{x \left(3 - \frac{5}{x}\right)}$$

$$= \frac{|x|\sqrt{2 + \frac{1}{x^2}}}{x \left(3 - \frac{5}{x}\right)}$$

$$= \frac{x\sqrt{2 + \frac{1}{x^2}}}{x \left(3 - \frac{5}{x}\right)}$$

Since $\frac{1}{x}$ and $\frac{5}{x}$ approach 0 when $x \to \infty$:

$$\frac{\sqrt{2+\frac{1}{x^2}}}{\left(3-\frac{5}{x}\right)} \to \frac{\sqrt{2}}{3} \text{ as } x \to -\infty$$

 $=\frac{\sqrt{2+\frac{1}{x^2}}}{(3-\frac{5}{2})}$

3.5.1 Explanation of why the example is incorrect

For $a \geq 0$:

$$x = \sqrt{a} \quad \Leftrightarrow \quad x^2 = a, \ x \ge 0$$

Hence:

$$x = \sqrt{a^2} \quad \Leftrightarrow \quad x^2 = a^2, \ x \ge 0 \quad \Leftrightarrow \quad x = |a|$$

$$\sqrt{a^2} = |a|$$

For example:

$$\sqrt{(-2)^2} = \sqrt{4} = 2 = |-2|$$

The example automatically assumed that $\sqrt{x^2}$ is x without considering what x will be when approaching the limit, as x in $\sqrt{x^2}$ can be either x or -x.

3.5.2 Important note

Do not write $\sqrt{a^2} = \pm a$, as it is not correct. The square root is a **function** of its argument and has **only one** (non-negative) value.

For example, the solutions to the equation $x^2 = a$ for a > 0 are $x = \pm \sqrt{a}$. Do not write the solution as $x = \sqrt{a}$ and claim that \sqrt{a} has both a positive and negative value.

3.6 Corrected example

Find:

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

$$\frac{\sqrt{2x^2 + 1}}{3x - 5} = \frac{\sqrt{x^2 \left(2 + \frac{1}{x^2}\right)}}{x \left(3 - \frac{5}{x}\right)}$$
$$= \frac{\sqrt{x^2} \cdot \sqrt{2 + \frac{1}{x^2}}}{x \left(3 - \frac{5}{x}\right)}$$
$$= \frac{|x|\sqrt{2 + \frac{1}{x^2}}}{x \left(3 - \frac{5}{x}\right)}$$

For x < 0, |x| = -x:

$$\frac{|x|\sqrt{2 + \frac{1}{x^2}}}{x\left(3 - \frac{5}{x}\right)} = \frac{-x\sqrt{2 + \frac{1}{x^2}}}{x\left(3 - \frac{5}{x}\right)}$$
$$= \frac{-\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}}$$

Since $\frac{1}{x^2}$ and $\frac{1}{x}$ approach 0 as $x \to -\infty$:

$$\frac{-\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} \to -\frac{\sqrt{2}}{3} \text{ as } x \to -\infty$$

Hence:

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} \to -\frac{\sqrt{2}}{3} \text{ as } x \to -\infty$$

4 Limit of a sequence

4.1 Definition

We say that a sequence (a_n) has the limit L and write $\lim_{n\to\infty} a_n = L$, if for every $\varepsilon > 0$, there exists a number N such that:

$$n > N \quad \Rightarrow \quad |a_n - L| < \varepsilon$$

The limits of sequences are evaluated with similar methods to other forms of limits.

4.2 Example

Find:

$$\lim_{n \to \infty} (\sqrt{n^2 + 2n} - n)$$

$$\sqrt{n^2 + 2n} - n = \frac{(\sqrt{n^2 + 2n} - n)(\sqrt{n^2 + 2n} + n)}{\sqrt{n^2 + 2n} + n}$$

$$= \frac{n^2 + 2n - n^2}{\sqrt{n^2 + 2n} + n}$$

$$= \frac{2n}{\sqrt{n^2 + 2n} + n}$$

$$= \frac{2n}{\sqrt{n^2 (1 + \frac{2}{n})} + n}$$

$$= \frac{2n}{|n| \cdot \sqrt{1 + \frac{2}{n}}}$$

Since |n| = n for n > 0:

$$\frac{2n}{|n| \cdot \sqrt{1 + \frac{2}{n}}} = \frac{2n}{n\sqrt{1 + \frac{2}{n}} + n}$$

$$= \frac{2n}{n(\sqrt{1 + \frac{2}{n}} + 1)}$$

$$= \frac{2}{\sqrt{1 + \frac{2}{n}} + 1}$$

Since $\frac{2}{n} \to 0$ when $n \to \infty$:

$$\frac{2}{\sqrt{1+\frac{2}{n}}+1} \to \frac{2}{\sqrt{1}+1}$$

$$\to \frac{2}{2}$$

$$\to 1 \text{ when } n \to \infty$$