

Produto de Solubilidade

É definido para soluções saturadas de uma substância muito pouco solúvel em água.

Verifica-se que ocorre um equilíbrio da dissolução do sal $AB_{(s)}$ em água.

$$AB(s) \rightleftharpoons A_{(aq)}^+ + B_{(aq)}^-$$

$$K = \frac{[B^-] \cdot [A^+]}{[AB]} como [AB] = cte, temos$$

$$K \cdot [AB] = [B^-] \cdot [A^+] \Rightarrow PS = [B^-] \cdot [A^+]$$

Generalizando para um eletrólito qualquer AyBx, temos:

$$AyBx \rightleftharpoons xB^{y-} + yA^{x+}$$

$$PS = [B^{y-}]^x \cdot [A^{x+}]^y$$

Observações

- a) Quanto menor o valor do PS, menos solúvel é a substância, desde que os íons presentes na solução encontrem-se numa mesma proporção. Caso o fato não seja observado, o menos solúvel é o de menor solubilidade.
 - b) O PS varia com a temperatura.

Ocorrência de precipitação

 $[A^+] \cdot [B^-] < K_{PS}$: Solução não saturada.

 $[A^+] \cdot [B^-] = K_{PS}$: Solução saturada.

 $[A^+] \cdot [B^-] > K_{PS}$: Solução supersaturada. Como são instáveis, ocorre a precipitação da quantidade que exceder o PS.

EXERCÍCIOS DE APLICAÇÃO

- **01 (UFPI-PI)** A solubilidade do fluoreto de cálcio, a 18 °C, é 2 . 10⁻⁵ mol/litro. O produto de solubilidade desta substância na mesma temperatura é:
- a) 8.0×10^{-15}
- b) 3.2×10^{-14}
- c) 4×10^{-14}
- d) 2×10^{-5}
- e) 4×10^{-5}
- 02 O produto de solubilidade de um certo cloreto, MC ℓ_2 , é 4 × 10⁻⁹ a 25 °C. Calcule sua solubilidade em mol/L.
- 03 (UNICAMP-SP) Será então que poderia cair alguma questão ligada a Ecologia na prova de Química? sugere Chuá.
- É uma boa! responde Naná. Veja aqui nesta notícia de jornal: Uma indústria foi autuada pelas autoridades por poluir um rio com efluentes contendo íons Pb^{2+} . O chumbo provoca no ser humano graves efeitos toxicológicos. Acho que uma boa pergunta estaria relacionada ao possível tratamento desses efluentes para retirar o chumbo. Ele poderia ser precipitado na forma de um sal muito pouco solúvel e, a seguir, separado por filtração ou decantação.
- a) Considerando apenas a constante de solubilidade dos compostos a seguir, escreva a fórmula do ânion mais indicado para a precipitação do Pb²⁺. Justifique.

Dados: Sulfato de chumbo, $K_s = 2 \cdot 10^{-8}$;

Carbonato de chumbo, $K_s = 2 \cdot 10^{-13}$;

Sulfeto de chumbo, $K_s = 4 \cdot 10^{-28}$.

- b) Se num certo efluente aquoso há $1 \cdot 10^{-3}$ mol/L de Pb²⁺ e se a ele for adicionada a quantidade estequiométrica do ânion que você escolheu no item a, qual é a concentração final de íons Pb²⁺ que sobra neste efluente? Admita que não ocorra diluição significativa do efluente.
- 04 (FEI-SP) Sabendo que o produto de solubilidade do cloreto de prata vale $1.80 \cdot 10^{-10}$, podemos dizer que a solubilidade desse sal em água é (em mol/L)
- a) $3,26 \times 10^{-20}$
- b) 0.90×10^{-10}
- c) $1,80 \times 10^{-10}$
- d) $3,60 \times 10^{-5}$
- e) $1,34 \times 10^{-5}$

05 (UFSC-SC) Para uma única solução aquosa, na qual está dissolvida igual quantidade em mols dos seguintes minerais, cujos produtos de solubilidade são

	Sal	Kps (mol/L) ²
01	$BaCO_3$	5,3 · 10 ⁻⁹
02	CaCO ₃	$4.7 \cdot 10^{-9}$
04	$FeCO_3$	2,0 · 10 ⁻¹¹
08	PbCO ₃	$1.0 \cdot 10^{-13}$
16	$MgCO_3$	4,0 · 10 ⁻⁵
32	$CdCO_3$	5,2 · 10 ⁻¹²
64	$CoCO_3$	$8.0 \cdot 10^{-13}$

adiciona-se Na₂CO₃, gota a gota, à solução. Qual dos sais precipitará em primeiro lugar? E qual em segundo lugar?

06 (VUNESP-SP) Fosfato de cálcio, $Ca_3(PO_4)_2$ é um dos principais constituintes dos cálculos renais ("pedras nos rins"). Esse composto precipita e se acumula nos rins. A concentração média de íons Ca^{2+} excretados na urina é igual a $2 \cdot 10^{-3}$ mol/L. Calcule a concentração de íons PO_4^{3-} , em mol/L, que deve estar presente na urina, acima da qual começa a precipitar fosfato de cálcio.

(Produto de solubilidade de $Ca_3(PO_4)_2 = 1 \cdot 10^{-25}$; massas atômicas: Ca = 40, P = 31, O = 16)

07 (EFEI-MG 2001) Em alguns países da Europa, a fluoretação das águas de abastecimento produzem uma concentração final de íons fluoreto de $5 \cdot 10^{-5}$ mol/L. Em geral, as águas europeias são consideradas "duras", ou seja, possuem uma concentração significativa de íons Ca^{2+} e Mg^{2+} . Se o K_{ps} do CaF_2 é igual a $4.0 \cdot 10^{-11}$, qual a concentração máxima de Ca^{2+} que pode existir nessas águas sem que ocorra precipitação durante o processo acima citado?

(PUCCAMP-SP) Não devem ser lançadas em cursos d'água naturais, soluções aquosas contendo altas concentrações de íons Hg²⁺(aq). Uma recomendação para "remover" tais íons, altamente poluidores e tóxicos, é precipitá-los sob forma de sulfeto de mercúrio (II), HgS.

O produto de solubilidade desse sal em água é da ordem de 10⁻⁵⁴. Sendo assim, a "remoção" é tal que, estatisticamente, para dissolver-se um único íon Hg²+ contido no HgS, seria necessário um volume de água da ordem de (constante de Avogadro aproximada: 10²⁴ mol⁻¹)

- a) dez mil litros.
- b) mil litros.
- c) cem litros.
- d) dez litros.
- e) um litro.

09 (PUC-SP) Uma solução saturada de base, representada por X(OH)₂ cuja reação de equilíbrio é

$$X(OH)_{2(s)} \stackrel{\longrightarrow}{\leftarrow} X_{(aq)}^{2+} + 2OH_{(aq)}^{-}$$

tem um pH = 10 a 25 °C. O produto de solubilidade (Kps) do X(OH)₂ é:

- a) 5×10^{-13}
- b) 2×10^{-13}
- c) 6×10^{-12}
- d) 1×10^{-12}
- e) 3×10^{-10}

10 (MACKENZIE-SP) O produto de solubilidade do carbonato de cálcio (CaCO₃), que apresenta solubilidade de 0,013 g/L a 20°C, é:

- a) $1,69 \times 10^{-4}$
- b) $1,69 \times 10^{-8}$
- c) 1.30×10^{-2}
- d) $1,30 \times 10^{-8}$
- e) $1,69 \times 10^{-2}$

11 (PUCCAMP-SP) Nas estações de tratamento da água, comumente provoca-se a formação de flocos de hidróxido de alumínio para arrastar partículas em suspensão. Suponha que o hidróxido de alumínio seja substituído pelo hidróxido férrico. Qual a menor concentração de íons Fe^{3+} , em mol/L, necessária para provocar a precipitação da base, numa solução que contém $1,0 \cdot 10^{-3}$ mol/L íons OH-?

Dado: Produto de solubilidade do Fe(OH)₃ = $6.0 \cdot 10^{-38}$

- a) 2.0×10^{-41}
- b) 2.0×10^{-38}
- c) 2.0×10^{-35}
- d) 6.0×10^{-35}
- e) 6.0×10^{-29}

12 (FUVEST-SP) Em um béquer foram misturadas soluções aquosas de cloreto de potássio, sulfato de sódio e nitrato de prata, ocorrendo, então, a formação de um precipitado branco, que se depositou no fundo do béquer. A análise da solução sobrenadante revelou as seguintes concentrações:

$$[Ag^{+}] = 1.0 \cdot 10^{-3} \text{ mol/L}$$

$$[SO_4^{2-}] = 1.0 \cdot 10^{-1} \text{ mol/L}$$

$$[C\ell^{-}] = 1.6 \cdot 10^{-7} \text{ mol/L}$$

De que é constituído o sólido formado? Justifique.

Composto	Produto de solubilidade	Cor
AgCI	$1,6 \cdot 10^{-10} (\text{mol/L})^2$	branca
Ag ₂ SO ₄	1,4 · 10 ^{−5} (mol/L) ³	branca

- 13 (UEFS-BA) Uma solução aquosa, obtida pela adição de óxido de magnésio à água, está saturada em relação ao hidróxido formado, quando:
- a) $[Mg^{2+}] \cdot [2(OH)^{-}] = K_{ps}$
- b) $[Mg^{2+}] \cdot [O_2^-] = K_{ps}$
- c) $[Mg^{2+}]$ · $[(OH)^{-}]^2 = K_{ps}$
- d) $[Mg^{2+}] \cdot [2(OH)^{-}]^{2} < K_{ps}$
- e) $[Mg^{2+}] \cdot [2(OH)^{-}] > K_{ps}$
- 14 (FEI-SP) Os sulfetos metálicos são encontrados em grande quantidade na natureza. Sabendo-se que a 25°C o produto de solubilidade do sulfeto de Zn (ZnS) vale $1.3 \cdot 10^{-23}$, determine sua solubilidade, em mol/L, nessa temperatura.
- a) $3.6 \cdot 10^{-12}$
- b) $3.6 \cdot 10^{-8}$
- c) $3,49 \cdot 10^2$
- d) 360 · 10¹
- e) 3,49 · 10⁵
- 15 (ESAM-RN) Em qual dos compostos a seguir o produto de solubilidade (Kps) é calculado pela equação

$$Kps = [cátion]^2 \cdot [ânion]^3$$

- a) Sulfeto de Fe (III)
- b) Sulfeto de Fe (II)
- c) Hidróxido de Fe (III)
- d) Hidróxido de Fe (II)
- e) Fosfato de Fe (III)
- 16 (FCC-SP) Em uma solução aquosa saturada de HgS encontrou-se $[Hg^{2+}] = 1 \cdot 10^{-26}$ mol/L. Assim, o valor do K_{PS} dessa substância resulta do cálculo:
- a) $(1.10^{-26}) + 2$
- b) 2.10^{-26}
- c) $1 + (1.10^{-26})$
- d) $(1.10^{-26})^{1/2}$
- e) $(1.10^{-26})^2$
- 17 (FUVEST-SP) A determinada temperatura, a solubilidade do sulfato de prata em água é $2,0 \cdot 10^{-2}$ mol/L. O produto de solubilidade (Kps) desse sal à mesma temperatura é:
- a) 4,0 · 10⁻⁴
- b) 8,0 · 10⁻⁴
- c) $6.4 \cdot 10^{-5}$
- d) $3,2 \cdot 10^{-5}$
- e) 8,0 · 10⁻⁶

18 (FGV-SP) A 25°C, qual dos sais é o mais solúvel em água?

Sal	Produtos de solubilidade (25 °C)	
Sulfeto de cobre (II)	4 · 10 ⁻³⁸	
Sulfeto de ferro (II)	1 · 10 ⁻¹⁹	
Carbonato de bário	2 · 10 ⁻⁹	
Carbonato de cálcio	5 · 10 ⁻⁹	
Cloreto de cobre (I)	3 · 10 ⁻⁷	

- a) CuS
- b) FeS
- c) BaCO₃
- d) CuCℓ
- e) CaCO₃
- 19 (VUNESP-SP) Pb₃(SbO₄)₂ é um pigmento alaranjado empregado em pinturas a óleo.
- a) Escreva o nome oficial do pigmento e indique a classe de compostos a que pertence.
- b) Escreva a equação química balanceada da "ionização" desse pigmento pouco solúvel em água e a expressão da constante do seu produto de solubilidade (K_{DS}).
- **20 (UFF-RJ)** O seguinte equilíbrio ocorre em meio aquoso:

$$Pbl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 l^{-}(aq)$$
, Kps $(Pbl_2) = 8.3 \cdot 10^{-9}$

Pode-se afirmar que:

- a) se $[Pb^{2+}]$ · $[I^-]^2$ = K_{ps} , então a solução é insaturada.
- b) se $[Pb^{2+}] \cdot [I^-]^2 > K_{ps}$, então a solução é saturada.
- c) se $[Pb^{2+}] \cdot [I^{-}]^{2} < K_{ps}$, então a solução é supersaturada.
- d) se $[Pb^{2+}] \cdot [I^-]^2 = K_{ps}$, então a solução é saturada.
- e) se $[Pb^{2+}] \cdot [I^{-}]^{2} > K_{ps}$, então a solução é insaturada.
- **21 (UNIMEP-SP)** A solubilidade do cloreto plumboso em água é 1,6 · 10⁻² M a 25°C. O Kps nesta temperatura será aproximadamente igual a:
- a) $1,64 \cdot 10^{-6}$
- b) 2,24 · 10⁻⁴
- c) $1,60 \cdot 10^{-2}$
- d) $3,28 \cdot 10^{-4}$
- e) 1,64 · 10⁻⁵

22 (UCDB-MS) Com base nos valores do produto de solubilidade (K_{ps}) de sais com água, da tabela, podemos afirmar que o sal mais solúvel é:

Sal	K _{ps} (25 °C)
CaSO ₄	2,4 · 10 ⁻⁵
Pbl ₂	8,3 · 10 ⁻⁹
AgCI	1,8 · 10 ⁻¹⁰
AgBr	5,0 · 10 ⁻¹³
ZnS	1,0 · 10 ⁻²⁰

- a) CaSO₄
- b) Pbl₂
- c) AgCℓ
- d) AgBr
- e) ZnS
- 23 (UEM-PR) Assinale a(s) alternativa(s) correta(s).
- (01) Uma reação química atinge o equilíbrio quando a velocidade da reação inversa for máxima e a velocidade da reação direta for mínima.
- (02) Dada a reação em equilíbrio $N_2O_4(g) \rightleftharpoons 2 NO_2(g) \Delta H = +57 \, kJ/mol$, um aumento na temperatura do sistema deslocará o equilíbrio na direção da formação de $N_2O_4(g)$.
- (04) Um aumento de pressão desloca o equilíbrio químico da reação $FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$.
- (08) Se o pH de uma solução é igual a 14, a concentração de OH nessa solução é 1,0 mol/L.
- (16) A uma mesma temperatura e em um mesmo solvente, o valor do K_{ps} do $AgC\ell$ é igual a $0.6 \cdot 10^{-10}$ e o do Agl é igual a $1.0 \cdot 10^{-16}$, portanto o Agl é mais solúvel que o $AgC\ell$, nessas condições.

Some os números dos itens corretos.

24 (UNIMEP-SP) Sabe-se que a solubilidade do cromato de prata (Ag_2CrO_4) é de 2,5 · 10^{-2} g/L, a determinada temperatura. O produto de solubilidade, Kps, do sal é da ordem de: Dados: massas atômicas: Ag = 108; Cr = 52; O = 16.

- a) 10⁻⁹
- b) 10⁻⁸
- c) 10⁻¹⁰
- d) 10⁻¹⁴
- e) 10⁻¹²

25 (UEL-PR) Uma forma de identificar a presença de íons Cu²+ em solução aquosa, mesmo em baixas concentrações, é acrescentar amônia. Forma-se um íon complexo que confere à solução uma cor azul intensa. Dessa forma, quando a amônia é acrescentada a um sistema químico no qual ocorre o equilíbrio de solubilidade

$$Cu^{2+}(aq) + 2 OH^{-}(aq) \rightleftharpoons Cu(OH)_{2}(s)$$

o mesmo:

- a) mantém-se inalterado, mas a solução sobrenadante torna-se ácida.
- b) mantém-se inalterado, mas a solução sobrenadante fica mais básica.
- c) sofre perturbação e estabelece-se outro estado de equilíbrio no qual a quantidade de precipitado é maior.
- d) sofre perturbação e estabelece-se outro estado de equilíbrio no qual a quantidade de precipitado é menor ou inexistente.
- e) sofre perturbação e estabelece-se outro estado de equilíbrio no qual a concentração de íons OH⁻(aq) é menor ou inexistente.

26 (UCMG-MG) Considere uma solução do eletrólito abaixo, assinale verdadeiro (V) ou falso (F).

$$B_x A_y \rightarrow x B^{y+} + y A^{x-}$$

- () Quanto menor o K_{ps} do eletrólito, menos solúvel será esse eletrólito.
- () Se $[B^{y+}]^x$ · $[Ax-]^y > K_{ps}$, haverá precipitação.
- () Se $[B^{y+}]^x$ · $[Ax-]^y$ < K_{ps} , haverá dissolução do precipitado.
- () Se $[B^{y+}]^x$ · $[Ax-]^y = K_{ps}$, a solução é saturada.
- () Um aumento do eletrólito sólido na solução saturada não altera o Kps.
- 27 (PUCCAMP-SP) O produto de solubilidade do hidróxido férrico, Fe(OH)₃, é expresso pela relação:
- a) [Fe³⁺] · 3 [OH⁻]
- b) $[Fe^{3+}] + [OH^{-}]^{3}$
- c) $[Fe^{3+}] \cdot [OH^{-}]^{3}$
- d) $[Fe^{3+}]/[OH^{-}]^{3}$
- e) [Fe⁻]³/[OH³⁺]
- 28 (UEM-PR) Em meados de maio de 2003, a Anvisa (Agência Nacional de Vigilância Sanitária) foi informada de casos graves de intoxicação associados ao uso de um medicamento à base de sulfato de bário. A matéria-prima usada na preparação do sulfato é o carbonato de bário, que pode também ser usado em venenos para ratos. A causa da morte de pacientes que usaram os medicamentos supostamente à base de sulfato de bário foi, segundo laudos médicos, a intoxicação por carbonato de bário. Uma das formas de sintetizar o sulfato de bário é através da reação entre carbonato de bário e sulfato de cálcio em meio aquoso, como mostra a reação abaixo.

$$BaCO_3(aq) + CaSO_4(aq) \rightleftharpoons BaSO_4(s) + CaCO_3(s)$$

Assinale o que for correto.

Dados: Ca = 40; C = 12; Ba = 137; S = 32; O = 16

- (01) A reação descrita acima é uma reação de dupla troca.
- (02) A separação entre os produtos BaSO₄(s) e CaCO₃(s) pode ser feita por filtração simples.
- (04) Supondo que a solubilidade do CaCO₃ em água, a uma dada temperatura, seja igual a 10 mg/L, seu K_{ps} é igual a 10⁻⁸.
- 29 (UFRN-RN) Em um béquer que contém água a 25°C, adiciona-se, sob agitação, BaSO₄ até que se obtenha uma solução saturada.
- a) Escreva a expressão do produto de solubilidade para o BaSO₄ em água.
- b) Calcule o valor do produto de solubilidade do BaSO₄ a 25°C, sabendo que sua solubilidade em água é 1,0 · 10⁻⁵ mol/L.
- 30 (VUNESP-SP) Considere 100 mililitros de solução saturada de cloreto de prata a 25°C. Qual a massa de sal nela contida? Dados: K_{ps} Ag $C\ell = 1 \cdot 10^{-10}$; Ag = 108 u ; $C\ell = 35,5$ u
- a) $1,43 \cdot 10^{-4}$ gramas.
- b) $1,43 \cdot 10^{-5}$ gramas.
- c) $1,43 \cdot 10^{-6}$ gramas.
- d) $1,43 \cdot 10^{-7}$ gramas.
- e) 1,43 · 10⁻⁸ gramas.

- **31 (UERJ-RJ)** O hidróxido de magnésio, Mg(OH)₂, é uma base fraca pouco solúvel em água, apresentando constante de produto de solubilidade (Kps) igual a 4 · 10⁻¹². Uma suspensão desta base em água é conhecida comercialmente como "leite de magnésia", sendo comumente usada no tratamento de acidez no estômago.
- a) Calcule, em mol· L⁻¹, a solubilidade do Mg(OH)₂, numa solução desta base.
- b) Escreva a equação balanceada da reação de neutralização total do hidróxido de magnésio com ácido clorídrico (HCℓ).
- 32 (VUNESP-SP) A cada um de quatro frascos foi adicionado um mol de hidróxido de metal alcalino terroso, conforme a tabela seguinte. A cada um deles foi adicionada água, até que os volumes finais em todos os frascos fossem de 1 litro. A tabela também apresenta os valores para a solubilidade de cada um dos hidróxidos à mesma temperatura.

Frasco	Hidróxido	Solubilidade (mol/L)
1	${\rm Mg}\left({\rm OH}\right)_2$	0,00015
2	Ca (OH) ₂	0,023
3	Sr (OH) ₂	0,063
4	Ba (OH) ₂	0,216

- a) Escreva a equação para a reação de dissociação e calcule a concentração dos íons hidroxila, em mol/L, para a solução resultante no frasco 2.
- b) Em qual dos frascos a solução terá valor de pH mais elevado? Justifique.
- 33 (VUNESP-SP) O leite de magnésia, utilizado para combater a acidez estomacal, é uma suspensão de hidróxido de magnésio (Mg(OH)₂) em água. O hidróxido de magnésio é um composto pouco solúvel em água, que apresenta a constante do produto de solubilidade (K_{PS}), a 25°C, igual a 3,2 · 10⁻¹¹.
- a) Calcule a solubilidade do $Mg(OH)_2$ em água pura, expressa em mol/L. Considere desprezível a concentração de íons OH^- proveniente da dissociação da água e $K_{PS} = [Mg^{2+}] \cdot [OH^-]^2$.
- b) Explique, utilizando cálculos, o que acontece com a solubilidade do Mg(OH)₂ em solução que apresente pH = 12. Admita que a concentração de íons OH⁻ da dissociação do Mg (OH)₂ seja desprezível nesse valor de pH.
- 34 (UNIFOR-CE) A 25°C, numa solução saturada de cromato de estrôncio, a concentração de íons Sr^{2+} , em mol/L, vale: (Dado: produto de solubilidade do $SrCrO_4$, a $25°C = 3,5 \cdot 10^{-5}$)
- a) 6 · 10⁻³
- b) 3 · 10⁻³
- c) 2 · 10⁻⁴
- d) 6 · 10⁻⁵
- e) 3 · 10⁻⁶
- 35 (E. E. Mauá-SP) São dadas as substâncias abaixo e seus respectivos produtos de solubilidade: AgC ℓ : 2,0 · 10⁻¹⁰; AgBr: 5,0 · 10⁻¹³; AgI: 8,1 · 10⁻¹⁷

Qual dos compostos formará uma solução aquosa saturada de maior concentração em quantidade de matéria?

36 (PUC-SP) Considere os equilíbrios abaixo:

$$Ba^{2+}(aq) + SO_4^{2-}(aq) \Longrightarrow BaSO_4(s) K = 1,0.10^{10}$$

$$Pb^{2+}(aq) + SO_4^{2-}(aq) \Longrightarrow PbSO_4(s) K = 5,2 . 10^7$$

- a) Qual dos sulfatos acima é mais solúvel? Justifique sua resposta.
- b) Calcule a concentração de íons de bário em uma solução saturada de BaSO₄.
- 37 (UFV-MG) O sulfato de bário (BaSO₄) é uma substância pouco solúvel em água.
- a) Escreva a equação que representa o equilíbrio de solubilidade do BaSO₄ em solução aquosa.
- b) Escreva a expressão que representa a constante de equilíbrio para a dissolução do BaSO₄.
- c) Sabendo que, a certa temperatura, a solubilidade do BaSO₄ é 1,0 · 10^{-5} mol · L^{-1} , calcule o valor da constante de equilíbrio (produto de solubilidade).
- 38 (UFG-GO) A dissolução do cloreto de prata em água pode ser representada pela equação:

$$AgC\ell(s) \rightleftharpoons Ag^{+}(aq) + C\ell^{-}(aq)$$

O gráfico da concentração de íons prata e íons cloreto, que satisfaz a expressão para a constante do produto de solubilidade, é representado a seguir.

Analisando esse gráfico, julgue as proposições abaixo.

- (1) A curva representa as combinações de concentrações de íons cloreto e íons prata, em que o equilíbrio é alcançado.
- (2) Partindo-se do ponto A até o ponto B (segmento AB), o sistema passa de solução para bifásico (estável).
- (3) O valor de K_{os} está entre 1,5 · 10^{-10} e 2,0 · 10^{-10}

(4) O valor da K_{ps} não varia acima da curva.

39 (UFBA-BA) Considere o sistema representado abaixo e a correspondente curva de solubilidade do sal em questão.

Para aumentar a massa de sal não-dissolvido, basta:

- (01) adicionar mais água à solução saturada.
- (02) retirar uma porção da solução saturada.
- (04) deixar o sistema em ambiente ventilado.
- (08) elevar de cinco a dez graus a temperatura do sistema.
- (16) tampar o recipiente.

40 (VUNESP-SP) A dose letal de íons Ba²⁺ para o ser humano é de 2 · 10⁻³ mols de íons Ba²⁺ por litro de sangue. Para se submeter a um exame de raios X, um paciente ingeriu 200 mL de uma suspensão de BaSO₄. Supondo-se que os íons Ba²⁺ solubilizados na suspensão foram integralmente absorvidos pelo organismo e dissolvidos em 5 litros de sangue, discuta se esta dose coloca em risco a vida do paciente.

(Constante do produto de solubilidade do BaSO₄ = $1 \cdot 10^{-10}$)

41 (UFMG-MG) Considere os seguintes produtos de solubilidade a 25°C:

PbSO₄ =
$$K_{ps} = 1.1 \cdot 10^{-8}$$

PbCO₃ =
$$K_{ps}$$
 = 3,3 · 10⁻¹⁴

- a) Descreva o que ocorrerá ao serem misturados volumes iguais das soluções saturadas desses sais. Justifique sua resposta.
- b) A solubilidade do carbonato de chumbo em ácido nítrico é maior do que a do sulfato de chumbo. Justifique.

42 **(FUVEST-SP)** São necessários aproximadamente 7,5 m³ de água para dissolver 1 kg de sulfato de cálcio a aproximadamente 20°C. Calcule o valor aproximado do produto de solubilidade (Kps) desse sal nesta temperatura. Dados: $O = 16 \mu$, $S = 32 \mu$; $Ca = 40 \mu$

43 (PUC-SP) Dissolve-se 0,002 mol de $Pb(NO_3)_2$ sólido em um litro de ácido sulfúrico 0,001 mol/L. Haverá precipitação de sulfato de chumbo? (Admita que não há variação no volume do ácido com a adição do sólido). Dado: produto de solubilidade do sulfato de chumbo = $1,3 \cdot 10^{-8}$

44 (FUVEST-SP) Medidas efetuadas em laboratório indicam, para o produto de solubilidade do carbonato de cálcio (calcita), o valor $4.9 \cdot 10^{-9}$. A análise de uma água do mar revelou as concentrações:

 $[Ca^{2+}] = 0.01 \text{ mol/L}$

 $[CO_3^{2-}] = 0,002 \text{ mol/L}$

- a) Pode haver precipitação de calcita nessa água do mar? Justifique.
- b) Calcule a massa, em g, de calcita contida em 100 litros dessa água do mar.
- c) Calcule a massa, em g, de calcita contida em 100 litros de uma solução saturada de CaCO₃.

Dado: massa molar do $CaCO_3 = 100 \text{ g/mol.}$

- **45 (UNICAMP-SP)** A presença do íon de mercúrio II, Hg^{2+} , em água de rios, lagos e oceanos, é bastante prejudicial aos seres vivos. Uma das maneiras de se diminuir a quantidade de Hg^{2+} dissolvido é provocar a sua reação com o íon sulfeto, já que a constante do produto de solubilidade do HgS é $9 \cdot 10^{-52}$ a 25°C. Trata-se portanto de um sal pouquíssimo solúvel. Baseando-se somente nesse dado responda ao que se pede.
- a) Que volume de água, em dm³, seria necessário para que se pudesse encontrar um único íon Hg²+ em uma solução saturada de HgS?
- b) O volume de água existente na Terra é de, aproximadamente, $1,4 \cdot 10^{21}$ dm³. Esse volume é suficiente para solubilizar um mol de HgS? Justifique.
- **46 (UFU-MG)** Quando soluções aquosas diluídas de nitrato de chumbo (II) e de cloreto de potássio são misturadas em um béquer, um precipitado amarelo é observado.

A respeito da reação química ocorrida, responda as guestões propostas.

- a) Quais são as espécies químicas encontradas no béquer?
- b) Dê o nome do precipitado formado.
- c) Escreva a expressão do produto de solubilidade para o precipitado formado.
- 47 (UEL-PR) Considere a adição de fluoreto de cálcio (CaF₂) a uma solução aquosa de fluoreto de estrôncio (SrF₂), contendo como corpo de fundo SrF₂ sólido, contidos em um béquer.

Nessa adição, com agitação, quantos mols de CaF₂ se dissolverão, considerando 1 litro de solução saturada de SrF₂? (Desprezar a contribuição de F⁻ proveniente da dissolução do CaF₂).

Dados: Solubilidade do $SrF_2 = 9 \cdot 10^{-4} \text{ mol/L Kps, } CaF_2 = 3.2 \cdot 10^{-11}$

- a) 1 · 10⁻⁵ mol/L
- b) 2 · 10⁻⁵ mol/L
- c) 3 · 10⁻⁵ mol/L
- d) 4 · 10⁻⁵ mol/L
- e) 5 · 10⁻⁵ mol/L

48 (UERJ-RJ) Aparelhos eletrônicos sem fio, tais como máquinas fotográficas digitais e telefones celulares, utilizam, como fonte de energia, baterias recarregáveis. Um tipo comum de bateria recarregável é a bateria de níquel-cádmio, que fornece uma d.d.p. padrão de 1,25 V e cujos componentes apresentam baixa solubilidade em água.

A ilustração a seguir representa uma dessas baterias.

Admita que:

- · a reação global desta bateria seja representada pela equação: Cd + 2 NiOOH + H₂O \(\Rightarrow\) Cd(OH)₂ + 2 Ni(OH)₂;
- · a semi-reação de oxidação apresenta um potencial igual a 0,76 V e que seja representada pela equação:

 $Cd + 2 OH^{-} \rightleftharpoons Cd(OH)_{2} + 2e^{-}$

- a) Escreva a equação que representa a semi-reação de redução e seu respectivo potencial padrão.
- b) Sabendo que o produto de solubilidade do hidróxido de cádmio vale $3,2 \cdot 10^{-14} \text{ mol}^3 \cdot L^{-3}$ a 25°C, determine sua solubilidade, em mol · L⁻¹, nessa temperatura.
- 49 **(VUNESP-SP)** Apesar dos efeitos tóxicos do íon Ba²⁺, sais de bário são ingeridos por pacientes para servirem como material de contraste em radiografias de estômago. A dose letal para seres humanos é de 25 mg de íons Ba²⁺, por quilograma de massa corporal.

Supondo que todos os íons Ba²⁺, solubilizados em uma solução aquosa saturada do sal pouco solúvel BaSO₄, sejam absorvidos pelo paciente, pergunta-se:

- a) Um paciente de 60 kg corre risco de vida se ingerir 200 mL da referida solução saturada? Justifique a sua resposta, mostrando os cálculos efetuados.
- b) Que volume da referida solução corresponderia à dose letal para um paciente de 40 kg?

Massa molar do bário = 137 g/mol. Constante do produto de solubilidade do BaSO₄: $K_{PS} = 1 \cdot 10^{-10}$.

50 (FUVEST-SP) Preparam-se duas soluções saturadas, uma de oxalato de prata ($Ag_2C_2O_4$) e outra de tiocianato de prata (AgSCN). Esses dois sais têm, aproximadamente, o mesmo produto de solubilidade (da ordem de 10^{-12}).

Na primeira, a concentração de íons prata é $[Ag^{\dagger}]_1$ e, na segunda, $[Ag^{\dagger}]_2$; as concentrações de oxalato e tiocinato são, respectivamente, $[C_2O_4^{2-}]$ e $[SCN^-]$.

Nesse caso, é correto afirmar que:

- a) $[Ag^+]_1 = [Ag^+]_2 e [C_2O_4^{2-}] < [SCN^-]$
- b) $[Ag^{+}]_{1} > [Ag^{+}]_{2} e [C_{2}O_{4}^{2-}] > [SCN^{-}]$
- c) $[Ag^+]_1 > [Ag^+]_2 e [C_2O_4^{2-}] = [SCN^-]$
- d) $[Ag^+]_1 < [Ag^+]_2 e [C_2O_4^{2-}] < [SCN^-]$
- e) $[Ag^+]_1 = [Ag^+]_2 e [C_2O_4^{2-}] > [SCN^-]$

51 (UFMT-MT) Leia atentamente o texto.

O principal componente do esmalte dos dentes é a hidroxiapatita, Ca₅(PO₄)₃OH. Seu equilíbrio de dissociação pode ser representado pela equação química:

$$Ca_5(PO_4)_3OH(s) + H_2O(\ell) \rightleftharpoons 5 Ca^{2+}(aq) + 3 PO_4^{3-}(aq) + OH^{-}(aq)$$

Na boca, existem bactérias que aderem à superfície dos dentes formando um biofilme. Alimentadas pelos açúcares e outros nutrientes provenientes dos alimentos, essas bactérias se multiplicam rapidamente, e, quando não removidas pela escovação, dão origem à placa bacteriana. Os açúcares, ao serem metabolizados pelas bactérias, são transformados em ácidos orgânicos como o lático (ácido 2-hidroxipropanóico), o acético, o fórmico e o succínico (ácido butanodióico).

Esses ácidos se ionizam formando o íon H₃O⁺, que altera o pH da saliva e é considerado um dos principais responsáveis pela deterioração dos dentes.

Adaptado de SILVA, R.R. et al. In Química Nova na Escola, n° 13, Maio 2001, p. 3-8.

A partir das informações do texto, julgue os itens.

() As fórmulas estruturais abaixo, identificadas por A, B, C, D, referem-se, respectivamente, aos ácidos lático, acético, fórmico e succínico.

A	В	С	D
CH ₃ — CH — COOH	СН ₃ — СООН	н — соон	HOOC (CH ₂) ₂ COOH

- () A ionização dos ácidos orgânicos monopróticos formados pelas bactérias da placa bacteriana pode ser representada pela equação geral: R COOH(aq) + $H_2O(\ell) \rightleftharpoons H_3O^+(aq) + R COO^-(aq)$
- () Na boca, íons H₃O⁺ provenientes da ionização dos ácidos orgânicos reagem com íons OH⁻, diminuem sua concentração e, consequentemente, deslocam o equilíbrio desmineralização/mineralização da hidroxiapatita para a direita, propiciando perda de material do dente.
- () O produto de solubilidade da hidroxiapatita é expresso pela equação Kps = $[Ca^{2+}]^5 \cdot [PO_4^{3-}]^3 \cdot [OH-]$.
- 52 **(UFTM-MG)** Os cálculos renais, popularmente conhecidos como "pedra nos rins", surgem pela deposição lenta de material insolúvel. Os responsáveis mais frequentes são o oxalato de cálcio (CaC₂O₄) e o fosfato de cálcio (Ca₃(PO₄)₂), substâncias muito pouco solúveis.

Considerando que a concentração de íons Ca^{2+} excretados na urina de uma pessoa seja $5.2 \cdot 10^{-2}$ mol/L, a concentração máxima, em mol/L, de íons oxalato $(C_2O_4^{2-})$ que deve estar presente na urina, para que não haja formação de pedras, é, aproximadamente: Dado: produto de solubilidade de $CaC_2O_4 = 2.6 \cdot 10^{-9}$

- a) 1,0 · 10⁻⁴
- b) 1,0 · 10⁻⁶
- c) 2,0 · 10⁻⁸
- d) 5.0 · 10⁻⁸
- e) 5,0 · 10⁻¹¹

- 53 (ITA-SP) A 25°C, o produto de solubilidade do CaSO₄(s) em água é 2,4 · 10^{-5} (a concentração de Ca²⁺(aq) na solução saturada é 5 · 10^{-3} mol/L). A um copo contendo 10 mL de uma solução aquosa 3,0 · 10^{-3} mol/L de cloreto de cálcio, a 25°C, foram adicionados, gota a gota, 10 mL de uma solução aquosa. 3,0 · 10^{-3} mol/L de sulfato de cálcio a 25°C. Em relação às espécies químicas existentes, ou que podem passar a existir no copo, à medida que a adição avança, é correto afirmar que: a) a quantidade (mol) dos íons Ca²⁺(aq) diminuirá.
- b) a concentração, em mol/L, dos íons SO₄²⁻(aq) diminuirá.
- c) a concentração, em mol/L, dos íons Ca²⁺(aq) permanecerá constante.
- d) a quantidade (mol) dos íons SO₄²-(aq) diminuirá.
- e) poderá precipitar a fase sólida CaSO₄(s).
- 54 (ITA-SP) Uma solução aquosa saturada em fosfato de estrôncio $[Sr_3(PO_4)_2]$ está em equilíbrio químico à temperatura de 25°C, e a concentração de equilíbrio do íon estrôncio, nesse sistema, é de 7,5 x 10^{-7} mol L⁻¹. Considerando-se que ambos os reagentes (água e sal inorgânico) são quimicamente puros, assinale a alternativa CORRETA com o valor do pKPS(25°C) do $Sr_3(PO_4)_2$. Dado: K_{PS} = constante do produto de solubilidade.
- a) 7,0
- b) 13,0
- c) 25,0
- d) 31,0
- e) 35,0
- Dissolve-se oxalato de prata, $Ag_2(C_2O_4)$, em água destilada. Uma análise revela que a concentração do íon Ag^+ na solução saturada é 2,2 x 10^{-4} mol . litro⁻¹. Qual é o produto de solubilidade desse sal de prata?
- a) 2.4×10^{-8}
- b) 11 x 10⁻¹¹
- c) 5×10^{-8}
- d) 5.3×10^{-12}
- e) 2,2 x 10⁻⁴
- 56 (PUCCAMP-SP) Um composto pouco solúvel, de fórmula B(OH)₂, cuja concentração na sua solução saturada, em dada temperatura, vale x mol/L, terá constante do produto de solubilidade calculada pela expressão:
- a) $K_{ps} = 2x^2$
- b) $K_{ps} = 4x^3$
- c) $K_{ps} = x^2$
- d) $K_{ps} = 2x^3$
- e) $K_{ps} = 27x^4$
- 57 (FCC-SP) A solubilidade do hidróxido de magnésio em água é 5,0 x 10⁻⁴ mol/litro. O seu produto de solubilidade é:
- a) 1.0×10^{-7}
- b) 2.5×10^{-7}
- c) 5.0×10^{-8}
- d) 2,5 x 10⁻⁹
- e) 5.0×10^{-10}
- **58 (MACKENZIE-SP)** Uma solução aquosa é 0,10 mol/L com respeito a cada um dos cátions seguintes: Cu^{++} ; Mn^{++} ; Zn^{++} ; Hg^{++} e Fe⁺⁺. As constantes do produto de solubilidade (Kps) para o CuS, MnS, ZnS, HgS e FeS são, respectivamente, 8,5 x 10^{-45} ; $1,4 \times 10^{-15}$; $4,5 \times 10^{-24}$; 3×10^{-53} e $3,7 \times 10^{-19}$.

Se íons de sulfeto (S⁼) forem introduzidos gradualmente na solução acima, o cátion que primeiro precipitará será o:

- a) Cu⁺⁺
- b) Mn⁺⁺
- c) Zn++
- d) Hg⁺⁺
- e) Fe⁺⁺

59 (MACKENZIE-SP) A concentração mínima de íons SO_4^{2-} necessária para ocorrer a precipitação de PbSO₄, numa solução que contém 1 . 10^{-3} mol/L de íons Pb²⁺, deve ser: (Dado: K_{ps} do PbSO₄ = 1,3 . 10^{-8} , a 25° C)

- a) superior a $1.3 \cdot 10^{-5}$ mol/L.
- b) inferior a $1.3 \cdot 10^{-8}$ mol/L.
- c) igual a $1,3 \cdot 10^{-5}$ mol/L.
- d) igual a $1,3 \cdot 10^{-8}$ mol/L.
- e) igual a $1,3 \cdot 10^{-7}$ mol/L.

60 O K₅ do CaF₂ é 1,7 x 10⁻¹⁰. Qual é a solubilidade do CaF₂ em uma solução que contém 0,35 mol/litro de íons F⁻?

- a) $2,4 \cdot 10^{-10}$ mol/L.
- b) 4,9 . 10⁻¹⁰ mol/L.
- c) 1,4 . 10⁻⁹ mol/L.
- d) $1,6 \cdot 10^{-5}$ mol/L.
- e) 2,2 . 10⁻⁵ mol/L.

GABARITO

01- Alternativa B

Equilíbrio químico: $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 F^{-}(aq)$

Solubilidade: 2.10⁻⁵M 4.10⁻⁵M

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [F^{-}]^{2}$

Cálculo do K_{ps} : $K_{ps} = (2.10^{-5}) \cdot (4.10^{-5})^2 = 2 \cdot 10^{-5} \cdot 16 \cdot 10^{-10} = 3.2 \cdot 10^{-14}$

02-

Equilíbrio químico: $MC\ell_2(s) \rightleftharpoons M^{2+}(aq) + 2 C\ell^{-}(aq)$

Solubilidade: X 2X

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}]$. $[F^-]^2$

Cálculo da solubilidade: 4 . $10^{-9} = (X)$. $(2X)^2 \rightarrow 4$. $10^{-9} = 4X^3 \rightarrow X = 1$. 10^{-3} mol/L

03-

a) Para sais com a mesma proporção estequiométrica de cátions e ânions (1:1), o sal que precipitará primeiro, com a adição do ânion, será o menos solúvel, ou seja, que apresenta o menor K_{ps} , já que a solubilidade e o produto de solubilidade são grandezas diretamente proporcionais. Sendo assim, o íon Sulfeto é o mais indicado para precipitar Pb²⁺.

b) Equilíbrio químico: PbS(s) \rightleftharpoons Pb²⁺(aq) + S²⁻(aq)

Solubilidade:

()

Expressão do produto de solubilidade: $K_{ps} = [Hg^{2+}] \cdot [S^{2-}]$

Cálculo da solubilidade: 4 . 10^{-28} = (X) . (X) \rightarrow X² = 4 . 10^{-28} \rightarrow X = 2 . 10^{-14} mol/L

04- Alternativa E

Equilíbrio químico: $AgC\ell(s) \rightleftharpoons Ag^+(aq) + C\ell^-(aq)$

Solubilidade: X

Expressão do produto de solubilidade: $K_{ps} = [Ag^+] \cdot [C\ell^-]$

Cálculo da solubilidade: 1,8 . $10^{-10} = (X) . (X) \rightarrow X^2 = 18 . 10^{-11} \rightarrow X = 1,34 . 10^{-5} \text{ mol/L}$

05-

Resposta: 08 e 64

Menor Ks, menor solubilidade (proporção entre cátion e ânion é 1 : 1)

Equilíbrio químico: $Ca_3(PO_4)_2(s) \rightleftharpoons 3 Ca^{2+}(aq) + 2 PO_4^{3-}(aq)$

Solubilidade: 2.10⁻³M X

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}]^3$. $[PO_4^{3-}]^2$

Cálculo da $[PO_4^{3-}]$ da solução saturada: $10^{-25} = (2.10^{-3})^3$. $[PO_4^{3-}] \rightarrow [PO_4^{3-}] = 3,5$. 10^{-9} mol/L

07-

Equilíbrio químico: $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 F^{-}(aq)$

Solubilidade: X 5.10⁻⁵M

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [F^{-}]^{2}$

Cálculo da [Ca²⁺] da solução saturada: 4 . 10^{-11} = [Ca²⁺] . $(5.10^{-5})^2 \rightarrow$ [Ca²⁺] = 1,6 . 10^{-2} mol/L

08- Alternativa B

Equilíbrio químico: $HgS(s) \rightleftharpoons Hg^{2+}(aq) + S^{2-}(aq)$

Solubilidade:

X >

Expressão do produto de solubilidade: $K_{ps} = [Hg^{2+}]$. [S²⁻]

Cálculo da solubilidade: $10^{-54} = (X)$. $(X) \rightarrow X^2 = 10^{-54} \rightarrow X = 10^{-27}$ mol/L

Cálculo do volume de água para dissolver 1 íon Hg²⁺:

$$1 \frac{\text{fon Hg}^{+2}}{10^{24} \frac{\text{fons Hg}^{2+}}{10^{24} \frac{\text{fons Hg}^{2+}}{10^{-27} \frac{\text{mol Hg}^{2+}}{10^{24}}} = 1000 \text{L de água}$$

09- Alternativa A

Para pH = 10, sabendo que pH + pOH = 14, logo ficamos com pOH = 4, e com isso temos: [OH⁻] = 10⁻⁴ mol/L

Equilíbrio químico: $X(OH)_2(s) \rightleftharpoons X^{2+}(aq) + 2 OH^{-}(aq)$

Solubilidade:

0,5.10⁻⁴M 1.10⁻⁴M

Expressão do produto de solubilidade: $K_{ps} = [X^{2+}] \cdot [OH^{-}]^{2}$

Cálculo do K_{ps} : $K_{ps} = (0.5.10^{-4}) \cdot (10^{-4})^2 = 0.5 \cdot 10^{-4} \cdot 10^{-8} \rightarrow K_{ps} = 5 \cdot 10^{-13}$

10- Alternativa B

Cálculo da concentração molar: $\frac{0.013 \text{g CaCO}_3}{1 \text{L de solução}} \cdot \frac{1 \text{mol CaCO}_3}{100 \text{g CaCO}_3} = 1.3.10^{-4} \text{ mol/L}$

Equilíbrio químico: $CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$

Solubilidade: 1,3.10⁻⁴M 1,3.10⁻⁴M

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [SO_4^{2-}]$

Cálculo do K_{ps} : $K_{ps} = (1,3.10^{-4}).(1,3.10^{-4}) = 1,69,10^{-8}$

11- Alternativa E

Equilíbrio químico: $Fe(OH)_3(s) \rightleftharpoons Fe^{3+}(aq) + 3 OH^{-}(aq)$

Solubilidade: X 1.10⁻³M

Expressão do produto de solubilidade: $K_{ps} = [Fe^{3+}] \cdot [OH^{-}]^{3}$

Cálculo da [Fe³⁺] na solução saturada: $6.10^{-38} = [Fe^{3+}] \cdot (10^{-3})^3 \rightarrow [Fe^{3+}] = 6.10^{-29} \text{ mol/L}$

Equilíbrio químico: $AgC\ell(s) \rightleftharpoons Ag^{+}(aq) + C\ell^{-}(aq)$

Solubilidade: 10⁻³M 1,6.10⁻⁷M

Cálculo do quociente de solubilidade: $Q_{ps} = [Ag^+]$. $[C\ell^-] \rightarrow Q_{ps} = (10^{-3})$. $(1,6.10^{-7}) = 1,6$. 10^{-10}

Com isso ficamos com: Q_{ps} = K_{ps}, neste caso teremos solução saturada.

Equilíbrio químico: $Ag_2SO_4(s) \rightleftharpoons 2 Ag^+(aq) + 1 SO_4^{2-}(aq)$

Solubilidade: 1.10⁻³ M 1.10⁻¹ M

Cálculo do quociente de solubilidade: $Q_{ps} = [Ag^+]^2$. $[SO_4^{2-}] \rightarrow Q_{ps} = (10^{-3})^2$. $(10^{-1}) = 1$. 10^{-7}

Com isso ficamos com: Q_{ps} < K_{ps}, neste caso teremos solução insaturada.

Desta forma concluímos que o sólido formado é constituído de AgC ℓ , onde os íons encontram-se em solução com a concentração máxima dissolvidos originando uma solução saturada com corpo de fundo.

13- Alternativa C

Reação entre o óxido de magnésio e água: $MgO(s) + H_2O(\ell) \rightarrow Mg(OH)_2(s)$

Equilíbrio químico: $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2 OH^{-}(aq)$

Expressão do produto de solubilidade: $K_{ps} = [Mg^{2+}]$. $[OH^{-}]^{2}$

14- Alternativa A

Equilíbrio químico: $ZnS(s) \rightleftharpoons Zn^{2+}(aq) + S^{2-}(aq)$

Solubilidade: X X

Expressão do produto de solubilidade: $K_{ps} = [Zn^{2+}] \cdot [S^{2-}]$

Cálculo da solubilidade: 1,3 . 10^{-23} = (X) . (X) \rightarrow X² = 13 . 10^{-22} \rightarrow X = 3,6 . 10^{-12} mol/L

15- Alternativa A

Equilíbrio químico: $Fe_2S_3(s) \rightleftharpoons 2 Fe^{3+}(aq) + 3 S^{2-}(aq)$

Expressão do produto de solubilidade: $K_{ps} = [Fe^{3+}]^2 \cdot [S^{2-}]^3$

16- Alternativa E

Para solução saturada temos: $[Hg^{2+}] = [S^{2-}] = 1 \cdot 10^{-26} \text{ mol/L}$

Equilíbrio químico: $HgS(s) \rightleftharpoons Hg^{2+}(aq) + S^{2-}(aq)$

Solubilidade: 10⁻²⁶ M 10⁻²⁶ M

Expressão do produto de solubilidade: $K_{ps} = [Hg^{2+}] \cdot [S^{2-}]$

Cálculo do K_{ps} : $K_{ps} = (10^{-26}) \cdot (10^{-26}) = (10^{-26})^2$

17- Alternativa D

Equilíbrio químico: $Ag_2SO_4(s) \rightleftharpoons 2 Ag^+(aq) + 1 SO_4^{2-}(aq)$

folubilidade: 4.10⁻² M 2.10⁻² M

Expressão do produto de solubilidade: $K_{ps} = [Ag^+]^2$. $[SO_4^{2-}]$

Cálculo do K_{ps} : K_{ps} = $(4.10^{-2})^2 \cdot (2.10^{-2}) = 16 \cdot 10^{-4} \cdot 2 \cdot 10^{-2} = 32 \cdot 10^{-6} = 3,2 \cdot 10^{-5}$

18- Alternativa D

Para sais com a mesma proporção estequiométrica de cátions e ânions (1:1), o sal mais solúvel é o que apresenta maior K_{ps}, já que a solubilidade e o produto de solubilidade são grandezas diretamente proporcionais.

19- a) Antimoniato de chumbo II (plumboso); sal normal.

b) Equilíbrio químico: $Pb_3(SbO_4)_2(s) \rightleftharpoons 3 Pb^{2+}(aq) + 2 SO_4^{2-}(aq)$

Expressão do produto de solubilidade: $K_{ps} = [Pb^{2+}]^3 \cdot [SO_4^{2-}]^2$

20- Alternativa D

Equilíbrio químico: $Pbl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 I^{-}(aq)$, Kps $(Pbl_2) = 8.3 \cdot 10^{-9}$

Expressão do produto de solubilidade: $K_{ps} = [Pb^{2+}] \cdot [I^{-}]^{2}$

Quando: $[Pb^{2+}]$. $[I^-]^2 = K_{ps} \rightarrow solução saturada; <math>[Pb^{2+}]$. $[I^-]^2 < K_{ps} \rightarrow solução insaturada; <math>[Pb^{2+}]$. $[I^-]^2 > K_{ps} \rightarrow solução saturada com corpo de fundo.$

21- Alternativa E

Equilíbrio químico: $PbC\ell_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 C\ell^{-}(aq)$

Solubilidade: 1,6.10⁻² M 3,2.10⁻² M

Expressão do produto de solubilidade: $K_{ps} = [Pb^{2+}] \cdot [C\ell^{-}]^{2}$

Cálculo do K_{ps} : $K_{ps} = (1,6.10^{-2}) \cdot (3,2.10^{-2})^2 = 1,6 \cdot 10^{-2} \cdot 1,024 \cdot 10^{-3} = 1,64 \cdot 10^{-5}$

22- Alternativa A

Calculando a solubilidade para cada sal:

 \rightarrow para o CaSO₄:

Equilíbrio químico: $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$

Solubilidade: X X

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [SO_4^{2-}]$

Cálculo da solubilidade: 2,4 . 10^{-5} = (X) . (X) \rightarrow X² = 24 . 10^{-6} \rightarrow X = 5 . 10^{-3} mol/L

 \rightarrow para o PbI₂:

Equilíbrio químico: $PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2I^{-}(aq)$

Solubilidade: X 2X

Expressão do produto de solubilidade: $K_{ps} = [Pb^{2+}] \cdot [I^{-}]^{2}$

Cálculo da solubilidade: 8,3 . $10^{-9} = (X)$. $(2X)^2 \rightarrow 4X^3 = 84$. $10^{-10} \rightarrow X = 1,3$. 10^{-3} mol/L

 \rightarrow para o AgC ℓ :

Equilíbrio químico: AgC ℓ (s) \rightleftharpoons Ag $^+$ (ag) + C ℓ $^-$ (ag)

Solubilidade:

Expressão do produto de solubilidade: $K_{ps} = [Ag^+] \cdot [C\ell^-]$

Cálculo da solubilidade: 1,8 . 10^{-10} = (X) . (X) \rightarrow X² = 18 . 10^{-11} \rightarrow X = 1,34 . 10^{-5} mol/L

 \rightarrow para o AgBr:

Equilíbrio químico: AgBr(s) \rightleftharpoons Ag⁺(aq) + Br⁻(aq)

Solubilidade: X

Expressão do produto de solubilidade: K_{ps} = [Ag⁺] . [Br⁻]

Cálculo da solubilidade: 5 . $10^{-13} = (X)$. $(X) \rightarrow X^2 = 5$. $10^{-13} \rightarrow X = 7,1$. 10^{-7} mol/L

 \rightarrow para o ZnS:

Equilíbrio químico: $ZnS(s) \rightleftharpoons Zn^{2+}(aq) + S^{2-}(aq)$

Solubilidade: X X

Expressão do produto de solubilidade: $K_{ps} = [Zn^{2+}] \cdot [S^{2-}]$

Cálculo da solubilidade: 1 . $10^{-20} = (X)$. $(X) \rightarrow X^2 = 1$. $10^{-20} \rightarrow X = 1$. 10^{-10} mol/L

23- (08)

(01) Uma reação química atinge o equilíbrio quando a velocidade da reação inversa for máxima e a velocidade da reação direta for mínima.

Falso. O equilíbrio químico é estabelecido quando as concentrações dos reagentes e produtos ficarem constantes, neste instante a velocidade da reação direta é igual a velocidade da reação inversa.

(02) Dada a reação em equilíbrio $N_2O_4(g) \rightleftharpoons 2 NO_2(g) \Delta H = +57 \, kJ/mol$, um aumento na temperatura do sistema deslocará o equilíbrio na direção da formação de $N_2O_4(g)$.

Falso. O aumento da temperatura favorece a reação endotérmica, ou seja, desloca o equilíbrio para a direita.

(04) Um aumento de pressão desloca o equilíbrio químico da reação $FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$.

Falso. O aumento de pressão não deslocará o equilíbrio pois a variação de volume é nula.

(08) Se o pH de uma solução é igual a 14, a concentração de OH nessa solução é 1,0 mol/L.

Verdadeiro. Para $[OH^{-}] = 1 M = 10^{0} M$, temos pOH = 0

(16) A uma mesma temperatura e em um mesmo solvente, o valor do K_{ps} do $AgC\ell$ é igual a $0.6 \cdot 10^{-10}$ e o do Agl é igual a $1.0 \cdot 10^{-16}$, portanto o Agl é mais solúvel que o $AgC\ell$, nessas condições.

Falso. Para sais com a mesma proporção estequiométrica de cátions e ânions (1:1), o sal mais solúvel é o que apresenta maior K_{ps} , já que a solubilidade e o produto de solubilidade são grandezas diretamente proporcionais. Sendo assim, o $AgC\ell$ é o sal mais solúvel.

24- Alternativa E

Cálculo da concentração molar:
$$\frac{2,5.10^{-2} \text{g-Ag}_2\text{SO}_4}{1\text{L de solução}} \cdot \frac{1\text{mol Ag}_2\text{SO}_4}{332\text{g-Ag}_2\text{SO}_4} = 7,5.10^{-5} \text{ mol/L}$$

Equilíbrio químico: $Ag_2CrO_4(s) \rightleftharpoons 2 Ag^+(aq) + 1 CrO_4^{2-}(aq)$

Solubilidade: 1,5.10⁻⁴ M 7,5.10⁻⁵ M

Expressão do produto de solubilidade: $K_{ps} = [Ag^+]^2$. $[CrO_4^{2-}]$

Cálculo do K_{ps} : $K_{ps} = (1,5.10^{-4})^2 \cdot (7,5.10^{-5}) = 2,25 \cdot 10^{-8} \cdot 7,5 \cdot 10^{-5} = 1,68 \cdot 10^{-12}$

25- Alternativa C

A adição de amônia à solução aquosa indicada origina íons OH^- no meio: $NH_3(g) + H_2O(\ell) \rightleftharpoons NH_4OH(aq) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$. A presença adicional dos íons OH^- , aumenta a concentração destes no equilíbrio, para que a constante do equilíbrio permaneça inalterada, o equilíbrio será deslocado para a direita ocorrendo precipitação do sólido.

26-

Quando: $[B^{y+}]^x \cdot [Ax^-]^y = K_{ps} \rightarrow \text{solução saturada}$; $[B^{y+}]^x \cdot [Ax^-]^y < K_{ps} \rightarrow \text{solução insaturada}$; $[B^{y+}]^x \cdot [Ax^-]^y > K_{ps} \rightarrow \text{solução saturada}$ saturada com corpo de fundo.

() Quanto menor o K_{ps} do eletrólito, menos solúvel será esse eletrólito.

Verdadeiro. K_{ps} e solubilidade são grandezas diretamente proporcionais.

() Se $[B^{y+}]^x$ · $[Ax-]^y > K_{ps}$, haverá precipitação.

Verdadeiro.

() Se $[B^{y+}]^x$. $[Ax-]^y < K_{ps}$, haverá dissolução do precipitado.

Verdadeiro. Solução insaturada contém uma quantidade de soluto dissolvido inferior em relação à solução saturada.

() Se $[B^{y+}]^x$ · $[Ax-]^y = K_{ps}$, a solução é saturada.

Verdadeiro.

() Um aumento do eletrólito sólido na solução saturada não altera o K_{os}.

Verdadeiro. Constante do equilíbrio somente modifica com a temperatura.

27- Alternativa C

Equilíbrio químico: $Fe(OH)_3(s) \rightleftharpoons Fe^{3+}(aq) + 3 OH^-(aq)$ Expressão do produto de solubilidade: $K_{ps} = [Fe^{3+}] \cdot [OH^-]^3$

28-

(01) A reação descrita acima é uma reação de dupla troca.

Verdadeiro.

(02) A separação entre os produtos BaSO₄(s) e CaCO₃(s) pode ser feita por filtração simples.

Falso. Separação de sólidos com diferentes solubilidades, é realizada por cristalização fracionada.

(04) Supondo que a solubilidade do $CaCO_3$ em água, a uma dada temperatura, seja igual a 10 mg/L, seu K_{ps} é igual a 10^{-8} . Verdadeiro.

$$\text{C\'alculo da solubilidade em mol/L: } \frac{10 \text{mg CaCO}_3}{1 L \text{ soluç\~ao}}. \frac{1 \text{g CaCO}_3}{1000 \text{mg CaCO}_3}. \frac{1 \text{mol CaCO}_3}{100 \text{g CaCO}_3} = 10^{-4} \text{mol/L}$$

Equilíbrio químico: $CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$

Solubilidade: 10⁻⁴M 10⁻⁴M

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [SO_4^{2-}]$

Cálculo do K_{ps} : $K_{ps} = (10^{-4}).(10^{-4}) = 10^{-8}$

29-

a) Escreva a expressão do produto de solubilidade para o BaSO₄ em água.

Equilíbrio químico: BaSO₄(s) \rightleftharpoons Ba²⁺(aq) + SO₄²⁻(aq)

Solubilidade: 10⁻⁵M 10⁻⁵M

Expressão do produto de solubilidade: $K_{ps} = [Ba^{2+}] \cdot [SO_4^{2-}]$

b) Calcule o valor do produto de solubilidade do BaSO $_4$ a 25°C, sabendo que sua solubilidade em água é 1,0 \cdot 10 $^{-5}$ mol/L.

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [SO_4^{2-}]$

Cálculo do K_{ps} : $K_{ps} = (10^{-5}) \cdot (10^{-5}) = 10^{-10}$

30- Alternativa A

Equilíbrio químico: $AgC\ell(s) \rightleftharpoons Ag^{+}(aq) + C\ell^{-}(aq)$

Solubilidade: X

Expressão do produto de solubilidade: K_{ps} = [Ag $^+$] . [C ℓ^-]

Cálculo da solubilidade: $10^{\text{-}10}$ = (X) . (X) \rightarrow X² = $10^{\text{-}10}$ \rightarrow X = $10^{\text{-}5}$ mol/L

Cálculo da massa do sal na solução:

$$100 \text{mL solução}.\frac{1 \text{L solução}}{1000 \text{mL solução}}.\frac{10^{-5} \text{mol AgC}\ell}{1 \text{L solução}}.\frac{143,5 \text{g AgC}\ell}{1 \text{mol AgC}\ell} = 1,435.10^{-4} \text{g AgC}\ell$$

31-

a) Equilíbrio químico: $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2 OH^{-}(aq)$

Solubilidade: X 2X

Expressão do produto de solubilidade: $K_{ps} = [Mg^{2+}]$. $[OH^{-}]^{2}$

Cálculo da solubilidade: 4 . 10^{-12} = (X) . $(2X)^2 \rightarrow 4X^3$ = 4 . $10^{-12} \rightarrow X$ = 10^{-4} mol/L

b) $Mg(OH)_2(s) + 2 HC\ell(aq) \rightarrow MgC\ell_2(aq) + 2 H_2O(\ell)$

a)

Equilíbrio químico: $Ca(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 OH^{-}(aq)$

Solubilidade: 0,023M 0,046M

Sendo assim temos: $[OH^{-}] = 4,6 \cdot 10^{-2} \text{ mol/L}$

b) pH mais alto corresponde a um pOH mais baixo. Como pOH e [OH-] são grandezas inversamente proporcionais, com isso a solução com menor pOH é a que apresenta maior [OH-], ou seja, maior solubilidade. Sendo assim, a solução do frasco 4 atende às especificações.

33-

a)

Equilíbrio químico: $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2 OH^{-}(aq)$

Solubilidade:

X 2

Expressão do produto de solubilidade: $K_{ps} = [Mg^{2+}] \cdot [OH^{-}]^{2}$

Cálculo da solubilidade: 3,2 . $10^{-11} = (X)$. $(2X)^2 \rightarrow 4X^3 = 32$. $10^{-12} \rightarrow X^3 = 2^3$. $10^{-12} \rightarrow X = 2$. 10^{-4} mol/L

b) Explique, utilizando cálculos, o que acontece com a solubilidade do $Mg(OH)_2$ em solução que apresente pH = 12. Admita que a concentração de íons OH^- da dissociação do $Mg(OH)_2$ seja desprezível nesse valor de pH.

Para pH =12, sabendo que pH + pOH = 14, temos pOH = 2, logo $[OH^{-}] = 10^{-2}$ mol/L

Cálculo da solubilidade à pOH = 2:

Equilíbrio químico: $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2 OH^{-}(aq)$

Solubilidade:

X 10⁻²M

Expressão do produto de solubilidade: $K_{ps} = [Mg^{2+}] \cdot [OH^{-}]^{2}$

Cálculo da solubilidade: 3,2 . $10^{-11} = (X)$. $(10^{-2})^2 \rightarrow 10^{-4}$. X = 32 . $10^{-12} \rightarrow X = 32$. $10^{-8} \rightarrow X = 3,2$. 10^{-7} mol/L

Portanto a solubilidade do Mg(OH)₂ diminui.

34- Alternativa A

Equilíbrio químico: $SrCrO_4(s) \rightleftharpoons Sr^{2+}(aq) + CrO_4^{2-}(aq)$

Solubilidade:

X >

Expressão do produto de solubilidade: $K_{ps} = [Sr^{2+}]$. $[CrO_4^{2-}]$

Cálculo da solubilidade: 3,5 . 10^{-5} = X . X \rightarrow X² = 35 . 10^{-6} \rightarrow X = 6 . 10^{-3} mol/L

35- Para sais com a mesma proporção estequiométrica de cátions e ânions (1:1), o sal mais solúvel é o que apresenta maior K_{ps} , já que a solubilidade e o produto de solubilidade são grandezas diretamente proporcionais. Sendo assim, o $AgC\ell$ é o sal mais solúvel.

36-

a) Para sais com a mesma proporção estequiométrica de cátions e ânions (1:1), o sal mais solúvel é o que apresenta maior K_{ps} , já que a solubilidade e o produto de solubilidade são grandezas diretamente proporcionais. Sendo assim, o PbSO₄ é o sal mais solúvel, pois a sua equação inversa apresenta o maior K_{ps} .

b)

Equilíbrio químico: BaSO₄(s) \rightleftharpoons Ba²⁺(aq) + SO₄²⁻(aq)

Solubilidade:

X

Expressão do produto de solubilidade: $K_{ps} = [Ba^{2+}] \cdot [SO_4^{2-}]$

Cálculo da solubilidade: $10^{-10} = (X)$. $(X) \rightarrow X^2 = 10^{-10} \rightarrow X = 10^{-5} \text{ mol/L}$

- a) Equilíbrio químico: BaSO₄(s) \rightleftharpoons Ba²⁺(aq) + SO₄²⁻(aq)
- b) Expressão do produto de solubilidade: $K_{ps} = [Ba^{2+}] \cdot [SO_4^{2-}]$
- c) Para: $[Ba^{2+}] = [SO_4^{2-}] = 10^{-5} \text{ mo/L}$, ficamos com: $K_{ps} = [Ba^{2+}] \cdot [SO_4^{2-}] = (10^{-5}) \cdot (10^{-5}) = 10^{-10}$

38-

(1) A curva representa as combinações de concentrações de íons cloreto e íons prata, em que o equilíbrio é alcançado.

Verdadeiro. A curva representa a solução saturada, ou seja, com a concentração de íons cloreto e íons prata solubilizado em solução aquosa.

(2) Partindo-se do ponto A até o ponto B (segmento AB), o sistema passa de solução para bifásico (estável).

Verdadeiro. No Ponto A temos solução insaturada e no Ponto B a solução é saturada com corpo de fundo.

(3) O valor de K_{ps} está entre 1,5 · 10^{-10} e 2,0 · 10^{-10}

Verdadeiro. $K_{ps} = [Ag^+] \cdot [C\ell^-] = (3 \cdot 10^{-5}) \cdot (0.5 \cdot 10^{-5}) = 1.5 \cdot 10^{-10}$

(4) O valor da K_{ps} não varia acima da curva.

Verdadeiro. A constante de equilíbrio modifica somente em função da temperatura.

39-

Para aumentar a massa de sal não-dissolvido, basta:

(01) adicionar mais água à solução saturada.

Falso. A adição de água favorece a solubilização do sal, diminuindo a massa do precipitado.

(02) retirar uma porção da solução saturada.

Falso. Para que a constante do equilíbrio permaneça inalterada o equilíbrio será deslocado para a direita ocorrendo diminuição da massa de precipitado.

(04) deixar o sistema em ambiente ventilado.

Verdadeiro. Em sistema ventilado a água evapora e com isso a solubilidade do sal diminuirá provocando a sua precipitação, aumentando desta forma a sua massa.

(08) elevar de cinco a dez graus a temperatura do sistema.

Falso. A solubilidade do sal é um processo endotérmico, ou seja, favorecido pelo aumento de temperatura. Sendo assim, o aumento da temperatura solubilizará o sal, diminuindo a massa de precipitado.

(16) tampar o recipiente.

Falso. Recipiente fechado favorecerá o sistema em equilíbrio, sendo assim, a massa de precipitado não altera.

40-

Equilíbrio químico: BaSO₄(s) \rightleftharpoons Ba²⁺(ag) + SO₄²⁻(ag)

Solubilidade: X X

Expressão do produto de solubilidade: $K_{ps} = [Ba^{2+}] \cdot [SO_4^{2-}]$

Cálculo da solubilidade: $10^{-10} = (X)$. $(X) \rightarrow X^2 = 10^{-10} \rightarrow X = 10^{-5} \text{ mol/L}$

Cálculo da [Ba²+] presente no sangue: $\frac{200\text{mL suspensão}}{5L \text{ sangue}}.\frac{1L \text{ suspensão}}{1000\text{mL suspensão}}.\frac{10^{-5} \text{mol Ba}^{2+}}{1L \text{ suspensão}}=4.10^{-7} \text{ mol/L sangue}$

Como a quantidade ingerida é menor que a dose letal, com isso conclui-se que a amostra não coloca em risco a vida do paciente.

a) Como as soluções são saturadas, a adição de Pb^{2+} implica na precipitação do sal menos solúvel (menor K_{ps}) que é o $PbCO_3$.

b) Observe as reações dos sais com o ácido nítrico:

 $PbCO_3(s) + 2 HNO_3(aq) \rightarrow Pb(NO_3)_2(aq) + H_2O(\ell) + CO_2(g)$

PbSO₄(s) + 2 HNO₃(aq) → não ocorre a reação

Sendo assim, a solubilidade do carbonato de chumbo é maior devido a reação com ácido nítrico ocorrer formando produto solúvel.

42- Cálculo da concentração em mols/L do sal na solução saturada:

$$\frac{1 kg \; CaSO_{4}}{7,5 m^{3} \; solução} \cdot \frac{1000 g \; CaSO_{4}}{1 kg \; CaSO_{4}} \cdot \frac{1 m^{3} \; solução}{1000 L \; solução} \cdot \frac{1 mol \; CaSO_{4}}{136 g \; CaSO_{4}} = 9, 8.10^{-4} \cong 10^{-3} mol/L$$

Equilíbrio químico: $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$

Solubilidade: 10⁻³M 10⁻³M

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [SO_4^{2-}]$

Cálculo do K_{ps} : $K_{ps} = (10^{-3})$. $(10^{-3}) = 10^{-6}$

43-

Concentração de Pb²⁺ na solução de Pb(NO₃)₂: 0,002 mol/L ou 2 . 10⁻³ mol/L

Concentração de SO₄²⁻ na solução de H₂SO₄: 0,001mol/L ou 1 . 10⁻³ mol/L

Equilíbrio químico: PbSO₄ (s) \rightleftharpoons Pb²⁺(aq) + SO₄²⁻(aq)

Solubilidade: 2.10⁻³M 1.10⁻³M

Cálculo do quociente de solubilidade: $Q_{ps} = [Pb^{2+}]$. $[NO_3^-]^2 \rightarrow Q_{ps} = (2.10^{-3})$. $(10^{-3}) = 2$. 10^{-6}

Com isso ficamos com: Q_{ps} > K_{ps}, neste caso ocorrerá precipitação do PbSO₄.

44-

a) Equilíbrio químico: $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$

Solubilidade: 10⁻²M 2.10⁻³M

Cálculo do quociente de solubilidade: $Q_{ps} = [Ca^{2+}] \cdot [SO_4^{2-}] = (10^{-2}) \cdot (2.10^{-3}) = 2.10^{-5}$

Com isso ficamos com: Q_{ps} > K_{ps}, neste caso ocorrerá precipitação do CaSO₄.

b) Calcule a massa, em g, de calcita contida em 100 litros dessa água do mar.

Equilíbrio químico: CaSO₄(s) \rightleftharpoons Ca²⁺(aq) + SO₄²⁻(aq)

Estequiometria: 1mol 1mol 1mol Solubilidade: 0,002mol 0,002mol 0,002mol 0,002mol 0,002mol

Cálculo da massa de calcita: 100L água do mar. $\frac{0,002 \text{mol CaCO}_3}{1L$ água do mar. $\frac{100g \text{ CaCO}_3}{1\text{mol CaCO}_3} = 20g \text{ CaCO}_3$

c) Equilíbrio químico: $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$

Solubilidade: X

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}]$. $[SO_4^{2-}]$

Cálculo da solubilidade: 4,9 . $10^{-9} = (X)$. $(X) \rightarrow X^2 = 49$. $10^{-10} \rightarrow X = 7$. 10^{-5} mol/L

Cálculo da massa em gramas de calcita em 100L de solução saturada:

$$100 \text{L água do mar.} \frac{7.10^{-5} \text{mol CaCO}_3}{1 \text{L água do mar}} \cdot \frac{100 \text{g CaCO}_3}{1 \text{mol CaCO}_3} = 0,7 \text{g CaCO}_3$$

a) Equilíbrio químico: $HgS(s) \rightleftharpoons Hg^{2+}(aq) + S^{2-}(aq)$

Solubilidade:

Expressão do produto de solubilidade: $K_{ps} = [Hg^{2+}]$. $[S^{2-}]$

Cálculo da solubilidade: 9 . $10^{-52} = (X)$. $(X) \rightarrow X^2 = 9$. $10^{-52} \rightarrow X = 3$. 10^{-26} mol/L

Cálculo do volume de água para dissolver 1 íon Hg²⁺:

1 íon
$$Hg^{+2}$$
. $\frac{1 \text{mol } Hg^{2+}}{6.10^{23} \text{ fons } Hg^{2+}}$. $\frac{1L \text{ água do mar}}{3.10^{-26} \text{ mol } Hg^{2+}} = 55.6L \text{ de água}$

b)
$$1 \text{mol Hg}^{2+} \cdot \frac{6.10^{23} \text{ fons Hg}^{2+}}{1 \text{ mol Hg}^{2+}} \cdot \frac{55,6 \text{L água}}{1 \text{ fon Hg}^{2+}} = 3,34.10^{25} \text{L de água}$$

Conclusão: não há água suficiente na Terra para dissolver 1 mol de Hg²⁺.

46-

a) Reação química: $Pb(NO_3)_2(aq) + 2 KC\ell(aq) \rightarrow PbC\ell_2(s) + 2 KNO_3(aq)$

Dissociação iônica e espécies químicas presentes na solução:

 $Pb^{2+}(aq) + 2 NO_3^{-}(aq) + 2 K^{+}(aq) + 2 C\ell^{-}(aq) \rightarrow PbC\ell_2(s) + 2 K^{+}(aq) + 2 NO_3^{-}(aq)$

b) PbC $\ell_2 \rightarrow$ Cloreto de chumbo II

c) Equilíbrio químico: PbC ℓ_2 (s) \rightleftharpoons Pb²⁺(aq) + 2 C ℓ -(aq)

Expressão do produto de solubilidade: $K_{ps} = [Pb^{2+}] \cdot [C\ell^{-}]^{2}$

47- Alternativa A

Equilíbrio químico: $SrF_2(s) \rightleftharpoons Sr^{2+}(aq) + 2 F^{-}(aq)$

Solubilidade: 9.10⁻⁴M 18.10⁻⁴M

Cálculo da [Ca²⁺] na solução saturada de CaF₂:

Equilíbrio químico: $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 F^{-}(aq)$

Solubilidade: X 18.10⁻⁴M

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}]$. $[F^-]^2 \rightarrow 3,2$. $10^{-11} = [Ca^{2+}]$. $(18.10^{-4})^2 \rightarrow [Ca^{2+}] = 1$. 10^{-5} mol/L

48-

a) Semi-reação de redução: NiOOH + H_2O + $1e^- \rightarrow Ni(OH)_2 + 2 OH^-$

Cálculo do potencial de redução: $\Delta E = E_{red (redução)} - E_{red (oxidação)} \rightarrow 1,25 \text{ V} = E_{red (redução)} - (-0,76) \rightarrow E_{red (redução)} = +0,49 \text{ V}$

b) Equilíbrio químico: $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2 OH^{-}(aq)$

Solubilidade: X 2X

Expressão do produto de solubilidade: $K_{ps} = [Mg^{2+}] \cdot [OH^{-}]^{2}$

Cálculo da solubilidade: 3,2 . 10^{-14} = (X) . $(2X)^2 \rightarrow 4X^3$ = 32 . $10^{-15} \rightarrow X^3$ = 2^3 . $10^{-15} \rightarrow X$ = 2 . 10^{-5} mol/L

a) Equilíbrio químico: BaSO₄(s) \rightleftharpoons Ba²⁺(aq) + SO₄²⁻(aq)

Solubilidade:

Expressão do produto de solubilidade: $K_{ps} = [Ba^{2+}] \cdot [SO_4^{2-}]$

Cálculo da solubilidade: $10^{-10} = (X)$. $(X) \rightarrow X^2 = 10^{-10} \rightarrow X = 10^{-5} \text{ mol/L}$

Cálculo da massa (mg) de bário ingerida pelo paciente de 60 kg de massa corpórea:

$$\frac{0.2L \cdot suspens\~ao}{60 \text{ kg}} \cdot \frac{10^{-5} \, mol \, Ba^{2+}}{1L \cdot suspens\~ao} \cdot \frac{137 g \cdot Ba^{2+}}{1 mol \, Ba^{2+}} \cdot \frac{1000 mg \, Ba^{2+}}{1g \cdot Ba^{2+}} = 0.0046 \, mg \, Ba^{2+} \, / \, kg$$

Como a quantidade ingerida é menor que a dose letal, com isso conclui-se que a amostra não coloca em risco a vida do paciente.

b)
$$40 \text{ kg massa corp\'orea.} \frac{25 \text{mg Ba}^{2+}}{1 \text{ kg massa corp\'orea}} \cdot \frac{-1 \text{g Ba}^{2+}}{1000 \text{mg Ba}^{2+}} \cdot \frac{1 \text{mol Ba}^{2+}}{137 \text{g Ba}^{2+}} \cdot \frac{1 \text{L suspens\'ao}}{10^{-5} \text{mol Ba}^{2+}} = 730 \text{L suspens\'ao}$$

50- Alternativa B

Equilíbrio químico: $Ag_2C_2O_4(s) \rightleftharpoons 2 Ag^+(aq) + C_2O_4^{2-}(aq)$

Solubilidade:

2X

Expressão do produto de solubilidade: $K_{ps} = [Ag^+]^2$. $[C_2O_4^{2-}]$

Cálculo da solubilidade: $10^{-12} = (2X)^2$. $(X) \rightarrow 4X^3 = 10^{-12} \rightarrow X = 6,3$. 10^{-5} mol/L Com isso ficamos com: $[Ag^+]_1 = 1,26$. 10^{-4} mol/L e $[C_2O_4^{2-}] = 6,3$. 10^{-5} mol/L

Equilíbrio químico: AgSCN (s) \rightleftharpoons Ag $^+$ (aq) + SCN $^-$ (aq)

Solubilidade:

Expressão do produto de solubilidade: $K_{ps} = [Ag^+]$. $[SCN^-]$

Cálculo da solubilidade: $10^{-12} = (X)$. $(X) \rightarrow X^2 = 10^{-12} \rightarrow X = 1$. 10^{-6} mol/L Com isso ficamos com: $[Ag^+]_2 = 1$. 10^{-6} mol/L $[C_2O_4^{2-}]_2 = 1$. 10^{-6} mol/L

Portanto temos: $[Ag^+]_1 > [Ag^+]_2 e [C_2O_4^{2-}] > [SCN^-]$

51-

() As fórmulas estruturais abaixo, identificadas por A, B, C, D, referem-se, respectivamente, aos ácidos lático, acético, fórmico e succínico.

Verdadeiro.

() A ionização dos ácidos orgânicos monopróticos formados pelas bactérias da placa bacteriana pode ser representada pela equação geral: R - COOH(aq) + $H_2O(\ell) \rightleftharpoons H_3O^+(aq) + R - COO^-(aq)$

Verdadeiro.

() Na boca, íons H₃O⁺ provenientes da ionização dos ácidos orgânicos reagem com íons OH⁻, diminuem sua concentração e, consequentemente, deslocam o equilíbrio desmineralização/mineralização da hidroxiapatita para a direita, propiciando perda de material do dente.

Verdadeiro.

() O produto de solubilidade da hidroxiapatita é expresso pela equação Kps = $[Ca^{2+}]^5 \cdot [PO_4^{3-}]^3 \cdot [OH-]$. Verdadeiro.

52- Alternativa D

Equilíbrio químico: $CaC_2O_4(s) \rightleftharpoons Ca^{2+}(aq) + C_2O_4^{2-}(aq)$

Solubilidade:

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [C_2O_4^{2-}]$

Cálculo da solubilidade: 2,6 . 10^{-9} = $(5,2.10^{-2})$. $[C_2O_4{}^{2^-}] \rightarrow [C_2O_4{}^{2^-}] = 5$. 10^{-8} mol/L, acima da qual começa a precipitar o sal nos rins.

53-

Cálculo da [Ca²+] na mistura resultante: [] $_1.V_1+[]_2.V_2=[]_f.V_f \rightarrow 3.10^{-3}M$. $10mL+3.10^{-3}M$. $10mL=[]_f$. $20mL \rightarrow []_f=3.10^{-3}M$ Cálculo da [SO $_4$ ²⁻] na mistura resultante: [] $_i$. $V_i=[]_f$. $[]_f\rightarrow 3.10^{-3}M$. $10mL=[]_f$. $20mL\rightarrow []_f=1,5.10^{-3}$ mol/L

a) a quantidade (mol) dos íons Ca²⁺(aq) diminuirá.

Falso. Permanecerá constante.

b) a concentração, em mol/L, dos íons SO₄²⁻(aq) diminuirá.

Verdadeiro. Ocorrerá diluição e a concentração diminuirá.

c) a concentração, em mol/L, dos íons Ca²⁺(aq) permanecerá constante.

Verdadeiro.

d) a quantidade (mol) dos íons SO₄²-(aq) diminuirá.

Falso. A quantidade de matéria (mol) de íons sulfato não se altera, somente a concentração é que diminuirá devido ao aumento de volume da solução.

e) poderá precipitar a fase sólida CaSO₄(s).

Falso.

Equilíbrio químico: $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$

Solubilidade:

Cálculo do quociente de solubilidade: $Q_{ps} = [Ca^{2+}] \cdot [SO_4^{-}]^2 \rightarrow Q_{ps} = (3.10^{-3}) \cdot (1,5.10^{-3}) = 4,5 \cdot 10^{-6}$

Com isso ficamos com: Q_{ps} < K_{ps}, neste caso não ocorrerá precipitação do CaSO₄.

54- Alternativa D

Equilíbrio químico: $Sr_3(PO_4)_2(s) \rightleftharpoons 3 Sr^{2+}(aq) + 2 PO_4^{3-}(aq)$

$$\text{C\'alculo da [PO_4^{3^{\text{-}}}]: } \frac{7,5.10^{^{-7}} \ \text{mol Sr}^{2^{\text{+}}}}{1L \ soluç\~ao} \cdot \frac{2 mol \ PO_4^{3^{\text{-}}}}{3 mol \ Sr^{2^{\text{+}}}} = 5.10^{^{-7}} mol \ PO_4^{3^{\text{-}}}/L$$

Expressão do produto de solubilidade: K_{ps} = $[Sr^{2+}]^3$. $[PO_4{}^{3-}]^2$

Cálculo do K_{ps} : $K_{ps} = (7,5.10^{-7})^3$. $(5,0.10^{-7})^2 = (4,2.10^{-19})$. $(2,5.10^{-13}) = 10^{-31}$

Cálculo do pKPS: pKPS = $-\log K_{ps} = -\log 10^{-31} = -(-31) = 31,0$

55- Alternativa D

Equilíbrio químico: $Ag_2C_2O_4(s) \rightleftharpoons 2 Ag^+(aq) + C_2O_4^{2-}(aq)$

Solubilidade:

Expressão do produto de solubilidade: $K_{ps} = [Ag^{+}]^{2}$. $[C_{2}O_{4}^{2-}]$

Cálculo do K_{ps} : $K_{ps} = (2,2.10^{-4})^2 \cdot (1,1.10^{-4}) = (4,84 \cdot 10^{-8}) \cdot (1,1 \cdot 10^{-4}) = 5,3 \cdot 10^{-12}$

56- Alternativa B

Equilíbrio químico: $B(OH)_2(s) \rightleftharpoons B^{2+}(aq) + 2 OH^{-}(aq)$

Solubilidade:

Expressão do produto de solubilidade: $K_{ps} = [B^{2+}]$. $[OH^{-}]^{2}$

Cálculo do K_{ps} : $K_{ps} = (X) \cdot (2X)^2 = 4X^3$

57- Alternativa E

Equilíbrio químico: $Mg(OH)_2(s) \rightleftharpoons B^{2+}(aq) + 2 OH^{-}(aq)$ Solubilidade: $5.10^{-4}M$ $10.10^{-4}M$ Expressão do produto de solubilidade: $K_{ps} = [Mg^{2+}] \cdot [OH^{-}]^2$

Cálculo do K_{ps} : $K_{ps} = (5.10^{-4}) \cdot (10^{-3})^2 = 5.10^{-10}$

58- Alternativa D

Para sais com a mesma proporção estequiométrica de cátions e ânions (1:1), o sal que precipitará primeiro, com a adição dos íons sulfeto, será o menos solúvel, ou seja, que apresenta o menor K_{ps} , já que a solubilidade e o produto de solubilidade são grandezas diretamente proporcionais. Sendo assim, o HgS é o sal precipitará primeiro.

59- Alternativa A

Equilíbrio químico: $PbSO_4(s) \rightleftharpoons Pb^{2+}(aq) + SO_4^{2-}(aq)$

Solubilidade: 1.10⁻³M X

Expressão do produto de solubilidade: $K_{ps} = [Pb^{2+}]$. $[SO_4^{2-}]$

Cálculo da solubilidade: $10^{-10} = (10^{-3})$. (X) \rightarrow X = $10^{-7} \rightarrow$ X = $[SO_4^{2-}] = 10^{-7}$ mol/L

60- Alternativa C

Equilíbrio químico: $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 F^{-}(aq)$

Solubilidade: X 0,35M

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}]$. $[F^{-}]^{2}$

Cálculo da solubilidade: 1,7 . 10^{-10} = (X) . $(0,35)^2 \rightarrow X = 1,4$. 10^{-9} mol/L