

k-Nearest Neighbor

Instance-Based Classifier

Set of Stored Cases

Atr1	•••••	AtrN	Class
			A
			В
			В
			С
			A
			С
			В

- Store the training records
- Use training records to predict the class label of unseen cases
- Lazy learning

- Lazy learning: Simply stores training data (or only minor processing) and waits until it is given a test tuple
- Eager learning: Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify

Unseen Case

Nearest neighbor

Uses k "closest" points (nearest neighbors) for performing classification

근접 이웃 분류기 (Nearest Neighbors Classifiers)

Nearest Neighbor Classifiers

❖ Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

Requires the following:

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

To classify an unknown record:

- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram defines the classification boundary

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

Overview of Applying k-NN

- 1. Decide on your <u>similarity or distance metric</u>
- 2. Split the original labeled dataset into training and test data
- 3. Pick an evaluation metric (e.g., misclassification rate)
- 4. Run k-NN a few times, changing k and checking the evaluation measure
- 5. Optimize k by picking the one with the best evaluation measure
- 6. Apply k-NN to predict unknown labels

A\P	С	¬С	
С	TP	FN	P
¬C	FP	TN	N
	P	N	All

- Classifier accuracy, or recognition rate
 - Percentage of test set tuples that a re correctly classified

$$Accuracy = (TP + TN)/AII$$

❖ Error rate: 1 − accuracy, or

Scaling issue

Data preprocessing is often required

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Solution?

- Time series are often standardized to have 0 means a standard deviation of 1
- Mahalanobis Distance

Choosing the value of k

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

k=1

Curse of dimensionality in k-NN

- Low-dimensional datasets: the closest points tend to be much closer than average.
- High-dimensional datasets: two points are close only if they're close in every disemsion.
 - the average distance between points increases
 - the ratio between the closest distance and the average distance.
 - Accumulated noise makes two points far apart.

