CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany July 5-12, 2003

Page 1 of 2 English Day 2: register

Input File:register.in100 PointsOutput File:register.outTime Limit: 1.5 sSource Code:register.pas/.c/.cppMemory Limit: 16 MB

Shift Register

A register of a computer stores N bits for computation. A shift register is a special kind of register, with bit values that can be easily shifted by one position.

Using a feedback shift register, binary pseudo-random numbers can be generated in the following way: A shift register of size N is initially filled with the bit values a_1, a_2, \ldots, a_N . At each clock tick, the register outputs the value of the rightmost bit, a_N . The other bit values are shifted by one position to the right. The first position is assigned a new value a_1 as follows:

Each bit of the register is connected to an XOR gate via a switch (see figure below). For each bit i there is a switch s_i (which can be 1 or 0) that determines whether the bit value a_i is forwarded or not to the XOR gate. Let $k_i = s_i \cdot a_i$. The new value a'_1 is set to the output value of the XOR gate, $XOR(k_1, \ldots, k_N)$. (Remark: If the number of ones in k_1, \ldots, k_N is odd, the value of $XOR(k_1, \ldots, k_N)$ is 1, else 0). Below are the formal definitions:

$$\begin{array}{rcl} a_1' & = & \mathrm{XOR}(k_1, \dots, k_N) \\ a_i' & = & a_{i-1} \ \mathrm{for} \ 2 \leq i \leq N \\ \mathrm{output} & = & a_N \end{array}$$

tick	a_1	a_2	a_3	a_4	a_5	a_6	a_7	output
0	1	0	1	1	0	0	1	-
1	0	1	0	1	1	0	0	1
2	1	0	1	0	1	1	0	0
3	1	1	0	1	0	1	1	0
4	0	1	1	0	1	0	1	1
5	0	0	1	1	0	1	0	1
6	1	0	0	1	1	0	1	0
7	1	1	0	0	1	1	0	1
8	0	1	1	0	0	1	1	0
9	1	0	1	1	0	0	1	1
10	0	1	0	1	1	0	0	1
11	1	0	1	0	1	1	0	0
12	1	1	0	1	0	1	1	0
13	0	1	1	0	1	0	1	1
14	0	0	1	1	0	1	0	1

In the example above, the value a_1 at tick 1 is calculated as follows: $\mathbf{YOP}(1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1) = 0$

 $XOR(1 \cdot 1, 0 \cdot 0, 1 \cdot 1, 1 \cdot 1, 0 \cdot 0, 1 \cdot 0, 1 \cdot 1) = 0.$

You are given the first 2N output values of such a feedback shift register. From those values, you shall try to determine the switch values s_i .

1010 CEOI 2003

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany July 5-12, 2003

Page 2 of 2 English Day 2: register

Input

The first line of the input file register. in contains the size N of the shift register ($1 \le N \le 750$). The second line contains 2N numbers 0 or 1, which are the first 2N output bit values of the shift register.

Output

The output file register. out consists of exactly one line. If there is a switch setting that produces the given register output values, output the switch values s_i of any such switch setting, starting with s_1 . If there are no such switch settings, output the number -1 only.

Examples

register.in	register.out
7	1 0 1 1 0 1 1
10011010110011	

register.in	register.out			
3	-1			
0 0 0 1 1 1				