A Comparison of Boson Sampling and Quantum Circuits in Interferometry

Hayden Dyke
Imperial College London
London, United Kingdom
hayden.dyke23@imperial.ac.uk

Ismail Mehmood

Imperial College London

London, United Kingdom

ismail.mehmood24@imperial.ac.uk

Abstract—Interferometers are devices which use light, or more generally superimposing waves, using interference to extract information. We propose a method by which quantum information can be obtained and used as a benchmark for quantum circuits, as well as modelling non-linear interferometers. We simulate these with traditional classical methods, then show quantum circuit variants, finally showing how these circuits can be used as benchmarks for qubit coherence.

I. Introduction

II. Mach-Zehnder Interferometer

The Mach-Zehnder interferometer determines a relative phase shift variation between two collimated beams of light. It also has the property that each light path is only traversed once. It consists of two beam splitters, and a mirror.

In our classically computed photonic model, an MZI is a 2-mode interferometer.

To encode this as a quantum circuit REF HERE, we use Hadamard gates to represent the 50/50 beam splitters, a single qubit as the initial single photon input, and a unitary operation U(phi) to represent some phase shift.

III. MICHELSON INTERFEROMETER

IV. RAMSEY INTERFEROMETER AND BENCHMARKING