Homework #3

MEMS 0051 - Introduction to Thermodynamics

Assigned January 25th, 2019 Due: February 1st, 2019

Problem #1

Please refer to the Saturated Water tables.

- a) Determine the quality of water at the following states:
 - i.) T=150 °C, $\nu=0.285$ [m³/kg]
 - ii.) $P=500 \text{ [kPa]}, \nu=0.285 \text{ [m}^3/\text{kg]}$
 - iii.) $P=800 \text{ [kPa]}, \nu=0.61813 \text{ [m}^3/\text{kg]}$
 - iv.) T=100 °C, $\nu=0.001020$ [m³/kg]
- b) Determine the specific volume and specific internal energy of water at the following states:
 - i.) P=200 [kPa], x=0.5
 - ii.) $T=300 \, ^{\circ}\text{C}, x=0.5$
 - iii.) P=523 [kPa], x=0.5
 - iv.) $T=72 \, ^{\circ}\text{C}, x=0.5$
- c) Determine the specific internal energy of water for the states listed in part a.

Problem #2

- a) 100 [kg] of C_2H_4 is contained in a 3 [m³] vessel at 300 °K.
 - i.) Calculate the gas constant, R, for C₂H₄ based on its molecular mass listed in Table A.5.
 - ii.) Determine how many moles, n, of C_2H_4 are in the vessel.
 - iii.) What is the pressure of C_2H_4 in the vessel?
- b) Heat is now added to the vessel until it reaches a temperature of 500 °K.
 - i.) Is the specific volume of C₂H₄ constant during this process? Why or why not?
 - ii.) What is the final pressure in the vessel?
 - iii.) Calculate the reduced pressure, P_r , of C_2H_4 after being heated.
 - iv.) Calculate the reduced temperature, C_2H_4 T_r , of <u>before</u> being heated.
 - v.) Can we assume that C₂H₄ behaved like an ideal gas throughout this process? Why or why not?

Problem #3

- a) Consider 2 [kg] of saturated R-134a vapor contained in a piston-cylinder apparatus. The vapor temperature is -52 °C.
 - i.) What is the total internal energy, U, of the R-134a vapor at this state?
 - ii.) What is the pressure of R-134a vapor at this state?
 - iii.) What volume is occupied by the R-134a vapor? (Hint: look up the specific volume)
- b) An external force now pushes down on the piston, compressing the vapor isobarically until it reaches a final volume of 1.0 [m³].
 - i.) What is the specific volume of the saturated R-134a mixture now?
 - ii.) What is the quality of the saturated R-134a mixture?
 - iii.) What is the total internal energy of both phases (U_f+U_q) in this final state?
 - iv.) How much work was <u>done by</u> the piston in this process? (Note: $W=P(\forall_2-\forall_1)$ for constant pressure processes).
 - v.) How much heat was transferred into the saturated R-134a during this process?