(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-243327

(43)公開日 平成11年(1999)9月7日

(51) Int.Cl. ⁶								
3/017 19/0948 19/094 B H 0 3 L 7/08 T Z 審査請求 未請求 請求項の数 6 F D (全 7 頁 (21)出願番号 特願平10-60492 (71)出願人 000005108 株式会社日立製作所 東京都千代田区神田駿河台四丁目 6 番地 (72)発明者 大河 正明 東京都青梅市新町六丁目16番地の 3 株式会社日立製作所デバイス開発センタ内	(51) Int.Cl. ⁶		識別記号	FΙ				
19/0948 19/094 B H 0 3 L 7/08 Z 審査請求 未請求 請求項の数 6 F D (全 7 頁 (21)出願番号 特願平10-60492 (71)出願人 000005108 株式会社日立製作所 東京都千代田区神田駿河台四丁目 6 番地 (72)発明者 大河 正明 東京都育梅市新町六丁目16番地の 3 株式会社日立製作所デバイス開発センタ内	H03K	5/05		H03K	5/05			
19/0948 19/094 B H 0 3 L 7/08 Z 審査請求 未請求 請求項の数 6 F D (全 7 頁 (21)出願番号 特願平10-60492 (71)出願人 000005108 株式会社日立製作所 東京都千代田区神田駿河台四丁目 6 番地 (72)発明者 大河 正明 東京都育梅市新町六丁目16番地の 3 株式会社日立製作所デバイス開発センタ内		3/017			3/017			
H03L 7/08H03L 7/08Z審査請求 未請求 請求項の数6 FD (全7頁)(21)出願番号特願平10-60492(71)出願人 000005108 株式会社日立製作所 東京都千代田区神田駿河台四丁目6番地 (72)発明者 大河 正明 東京都青梅市新町六丁目16番地の3 株式会社日立製作所デバイス開発センタ内					_	•	В	
(21)出願番号特願平10-60492(71)出願人 000005108 株式会社日立製作所 東京都千代田区神田駿河台四丁目 6 番地 (72)発明者 大河 正明 東京都青梅市新町六丁目16番地の 3 株式会社日立製作所デバイス開発センタ内	H03L							·
株式会社日立製作所(22)出願日平成10年(1998) 2 月25日東京都千代田区神田駿河台四丁目 6 番地 (72)発明者 大河 正明 東京都青梅市新町六丁目16番地の 3 株式会社日立製作所デバイス開発センタ内				審査請求	未請求	請求項の数 6	FD	(全 7 頁)
(22)出願日 平成10年(1998) 2月25日 東京都千代田区神田駿河台四丁目 6番地 (72)発明者 大河 正明 東京都青梅市新町六丁目16番地の 3 株式会社日立製作所デバイス開発センタ内	(21)出願番号	}	特願平10-60492	(71) 出願人				
(72)発明者 大河 正明 東京都青梅市新町六丁目16番地の3 株式 会社日立製作所デバイス開発センタ内					株式会	社日立製作所		
東京都青梅市新町六丁目16番地の3 株式 会社日立製作所デバイス開発センタ内	(22)出願日		平成10年(1998) 2月25日		東京都一	千代田区神田駿河	可台四一	厂目6番地
会社日立製作所デバイス開発センタ内				(72)発明者	大河	正明		
					東京都	青梅市新町六丁	316番;	也の3 株式
(74)代理人 弁理士 徳若 光政					会社日	立製作所デバイン	ス開発す	センタ内
			•	(74)代理人	弁理士	徳若 光政		

(54) 【発明の名称】 パルスデューティ補正回路

(57)【要約】

【課題】 パルスデューティの補正を可能にし、PLL 回路での高周波数までの発生を可能にしたパルスデュー ティを補正回路を提供する。

【解決手段】 バルス信号を受けるインバータ回路の出 力信号の立ち上がり時間と立ち下がり時間を制御するた めの電流制御回路又は上記インバータ回路の出力信号を 波形整形する波形整形パッファのロジックスレッショル ド電圧を波形整形された出力信号のパルスデューティを 検出するパルスデューティ検出回路で制御して、その出 力信号を所望のパルスデューティとなるように調整す る。

1

【特許請求の範囲】

,

【請求項1】 バルス信号を受けるインバータ回路と、 上記インバータ回路の出力信号の立ち上がり時間と立ち 下がり時間を制御するための電流制御回路と、

上記インバータ回路及びその接続列の出力信号を受けて 波形整形された出力信号を形成する波形整形バッファ と、

上記波形整形バッファで波形整形された出力信号を受け、そのパルスデューティを検出するパルスデューティ 検出回路とを備え、

上記パルスデューティ検出回路の出力信号により上記電流制御回路を制御して、その立ち上がり時間と立ち下がり時間を制御して上記波形整形された出力信号が所望のパルスデューティとなるように調整してなることを特徴とするパルスデューティ補正回路。

【請求項2】 バルス信号を受けるインバータ回路と、 上記インバータ回路の出力信号を受けて波形整形された 出力信号を形成する波形整形バッファと、

上記波形整形バッファの出力信号を受け、そのバルスデューティを検出するパルスデューティ検出回路とを備え、

上記パルスデューティ検出回路の出力信号により上記波 形整形パッファの論理しきい値電圧を制御して、上記波 形整形された出力信号が所望のパルスデューティとなる ように調整してなることを特徴とするパルスデューティ 補正回路。

【請求項3】 上記パルスデューティ検出回路は、

上記波形整形された出力信号を平滑する平滑回路と、 その平滑信号と設定すべきパルスデューティに対応した 基準電圧との差電圧に対応した制御信号を形成する電圧 30 比較回路とからなるものであることを特徴とする請求項 1又は請求項2のパルスデューティ補正回路。

【請求項4】 上記電流制御回路は、

上記インパータ回路と電源電圧との間に設けられたPチャンネル型MOSFETと、

上記インバータ回路と回路の接地電位との間に設けられたNチャンネル型MOSFETからなり、

上記2つのMOSFETのゲートには、上記制御信号が 供給されるものであることを特徴とする請求項1のバル スデューティ補正回路。

【請求項5】 上記パルス信号は、

PLL回路に設けられる電圧制御型発振回路により形成された発振パルスであることを特徴とする請求項1、請求項2のパルスデューティ補正回路。

【請求項6】 上記電圧制御型発振回路は、

リング状に縦列接続された奇数個のCMOSインバータ 回路と、

制御電圧に従った電流を上記CMOSインバータ回路に 流れるように制御する電流制御MOSFETとを含むも のであることを特徴とする請求項5のパルスデューティ 50

補正回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、パルスデューティ補正回路に関し、主として半導体集積回路に内蔵されたPLL (phase locked loop)回路を用いてクロック信号を形成するものに利用して有効な技術に関するものである。

[0002]

(従来の技術) PLL回路は、例えば特開平5-284 014号公報、特開平5-315948号公報に開示されている。

[0003]

【発明が解決しようとする課題】データをクロック信号の立ち上がりエッジで取り込むポジティブエッジ型フリップフロップ回路と、クロック信号の立ち下がりエッジで取り込むネガティブエッジ型フリップフロップ回路を、データパス中に混在させて使用した場合、各フリップフロップ回路間の出力からその取り込みまでのデータ転送タイミングは、上記クロック信号のパルスデューティに対応して異なることになってしまう。つまり、パルスデューティが大きいと、立ち上がりエッジから立ち下がりエッジまでの時間が長くなって、その間でのデータ転送タイミングには余裕が生じるが、立ち下がりエッジを転送タイミングには余裕がなくなってしまう。

【0004】したがって、上記短い方のデータ転送タイミングに合わせて転送経路を設計する必要があり動作周 波数を低くしてしまう。例えば、PLL回路で上記クロック信号を形成する場合、PLL回路の電圧制御型発振回路の出力を1/2分周回路で分周して、上記クロック信号のパルスデューティが50%になるようにするものである。しかし、このようにすると、必要なクロック信号の周波数に対してPLL回路の電圧制御発振回路では、2倍の周波数での発振動作を行わせる必要があり、その分消費電流を増大させてしまう。また、上記のように分周回路を用いた場合には、MOS回路の上限周波数に対して半分の周波数でしかクロック信号を形成することができず、その結果としてMOS集積回路等の高速化を妨げるものとなる。

【0005】 この発明の目的は、パルスデューティの補正を可能にしたパルスデューティ補正回路を提供するととにある。この発明の他の目的は、PLL回路での高周波数までの発生を可能にするパルスデューティを補正回路を提供することにある。この発明の前記ならびにそのほかの目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。

[0006]

【課題を解決するための手段】本願において開示される

3

発明のうち代表的なものの概要を簡単に説明すれば、下記の通りである。パルス信号を受けるインバータ回路の出力信号の立ち上がり時間と立ち下がり時間を制御するための電流制御回路又は上記インバータ回路の出力信号を波形整形する波形整形バッファのロジックスレッショルド電圧を波形整形された出力信号のパルスデューティを検出するパルスデューティ検出回路で制御して、その出力信号を所望のパルスデューティとなるように調整する。

[0007]

【発明の実施の形態】図1には、この発明が適用されたクロック発生回路の一実施例のブロック図が示されている。特に制限されないが、基準となる外部クロック信号 CKINは、外部端子P1を介して半導体集積回路装置 LSI1に取り込まれる。この外部端子P1から入力されたクロック信号は、入力バッファB1を介して位相比較回路1の一方の入力に供給される。この位相比較回路1の一方の入力に供給される。この位相比較回路1の出力信号は、チャージポンプ回路2に伝えられ、ここで上記量信号の位相差(周波数差)に対応してチャージアップ又はディスチャージ電流が形成される。このチンプマンプロ路2で形成された電流は、フィルタ容量 Cをチャージアップ又はディスチャージさせて直流制御電圧VFに変換される。この制御電圧VFは、電圧制御発振回路(VCO)3の制御端子に入力される。

【0009】上記クロック分配器5の1つの出力信号は、特に制限されないが、分周回路6により分周されて、上記位相比較回路1の他方の入力に帰還される。これにより、内部クロック信号CKは、上記外部から供給されたクロック信号CKINに対してN倍の周波数fvにされる。

【0010】との実施例では、上記のように電圧制御発振回路3の発振信号に対してデューティ補正を行って、例えば50%に補正することにより、クロック分配回路6を通して出力されるクロック信号CKの周波数fvを、上記発振周波数に等しい高い周波数に設定することが可能となる。つまり、上記電圧制御発振回路3での消費電流を低減しつつ、MOS回路での上限周波数に対応した高い周波数のクロック信号CKを発生させることが可能になるものである。

【0011】図2には、上記電圧制御発振回路の一実施 50 ル型MOSFETQ8を通したディスチャージ電流が増

例の回路図が示されている。この実施例では、リングオシレータにより構成される。つまり、Pチャンネル型MOSFETQ8からなるCMOSインバータ回路を奇数段(同図では3段)リング状に縦列接続してリングオシレータを構成する。このリングオシレータの発振周波数、言い換えるならば、各CMOSインバータ回路での信号伝播遅延時間を制御電圧VFにより調整するため、上記Pチャンネル型MOSFETQ7には、電流源として動作するPチャン

ネル型MOSFETQ5が直列に接続され、Nチャンネル型MOSFETQ8には、電流源として動作するNチャンネル型MOSFETQ6が直列に接続される。

【0012】同図において残り2つのCMOSインバー タ回路に対しても上記同様な電流源MOSFETが接続 される。制御電圧VFは、Nチャンネル型MOSFET Q1のゲートに印加される。このMOSFETQ1のソ ースは回路の接地電位に接続され、上記制御電圧VFが ゲート,ソース間に印加されて、それに対応したドレイ ン電流を形成する。上記MOSFETQ1のドレインと 電源電圧との間には、ダイオード形態にされたPチャン ネル型MOSFETQ2が設けられる。このPチャンネ ル型MOSFETQ2のゲートと上記電流源MOSFE TQ5のゲートとを接続して電流ミラー形態とする。つ まり、上記MOSFETQ2のゲート、ソース間電圧を 上記MOSFETQ5のゲート、ソース間に印加すると とにより、上記MOSFETQ2に流れる電流と等しい 電流を上記MOSFETQ5に流すようにするものであ る。ただし、MOSFETQ2とQ5のサイズ(W/ L)は等しいものとする。

30 【0013】上記Pチャンネル型MOSFETQ2には、それ電流ミラー形態に接続されたPチャンネル型MOSFETQ3を接続し、上記同様にMOSFETQ2の同じ電流をMOSFETQ3に流すようにし、そのドレインと回路の接地電位との間には、ダイオード接続のNチャンネル型MOSFETQ4を接続する。このNチャンネル型MOSFETQ4のゲートと上記電流源MOSFETQ6のゲートとを接続して電流ミラー形態とする。つまり、上記MOSFETQ4のゲート、ソース間電圧を上記MOSFETQ6のゲート、ソース間電圧を上記MOSFETQ6に流すようにするものである。ただし、MOSFETQ4に流れる電流と等しい電流を上記MOSFETQ6に流すようにするものである。ただし、MOSFETQ4とQ6のサイズ(W/L)は等しいものとする。

【0014】この結果、制御電圧VFを高くすると、それに対応してMOSFETQ1のドレイン電流が増大する。したがって、上記MOSFETQ5やQ6の電流源MOSFETに流れる電流が増大するために、CMOSインバータ回路を構成するPチャンネル型MOSFETQ7を通したチャージアップ電流が増大し、Nチャンネル型MOSFETQ7を通したチャージアップ電流が増大し、Nチャンネル型MOSFETQ8を通したディスチャージの流が増

(4)

大し、次段回路の入力容量等の負荷容量を高速にチャージアップ/ディスチャージさせるので、信号伝播遅延時間が短くなって発振周波数を高くする。

4

【0015】逆に、制御電圧VFを低くすると、それに対応してMOSFETQ1のドレイン電流が減少する。したがって、上記MOSFETQ5やQ6の電流源MOSFETに流れる電流が減少するために、CMOSインバータ回路を構成するPチャンネル型MOSFETQ7を通したチャージアップ電流が減少し、Nチャンネル型MOSFETQ8を通したディスチャージ電流が減少し、次段回路の入力容量等の負荷容量のチャージアップ/ディスチャージを遅くするので信号伝播遅延時間が長くなりって発振周波数を低くさせる。なお、同図のように3段のCMOSインバータ回路では、安定的な発振信号を得られないなら、5段あるは7段のように段数を増加させればよい。

【0016】図3には、デューティ補正回路とデューテ ィ検出回路の一実施例の回路図が示されている。デュー ティ補正回路は、発振出力OSCを受けるPチャンネル 型MOSFETQ10とNチャンネル型MOSFETQ 20 11からなるCMOSインバータ回路に対して次の回路 素子が付加される。上記Pチャンネル型MOSFETQ 10とNチャンネル型MOSFETQ11に対して、基 準電圧VREFを受けるて定電流動作を行うようにされ たPチャンネル型MOSFETQ12と、Nチャンネル 型MOSFETQ13とをそれぞれに直列接続し、かか る定電流源としてのMOSFETQ12とQ13には、 電流調整を行うPチャンネル型MOSFETQ14とN チャンネル型MOSFETQ15とがそれぞれ並列接続 される。上記MOSFETQ14とQ15のゲートに は、次に説明するデューティ検出回路で形成された制御 電圧が印加されることによりその電流の調整が行われ る。なお、上記Pチャンネル型MOSFETQ12、N チャンネル型MOSFETQ13に入力される基準電圧 VREFは、別々でも良いし、回路の接地電位と電源電 圧でもよい。

【0017】デューティ検出回路は、上記デューティ補正回路の出力信号を波形整形する波形整形バッファの出力信号OUTをバッファ回路BAを通して抵抗R1とキャパシタC1により積分して直流化する。この電圧と電 40 源電圧との中点電圧とを電圧比較回路で比較し、その差分を抵抗R2とキャパシタC2により平滑して上記デューティ補正回路に供給される制御電圧を形成するものである。

【0018】図4には、この発明に係るデューティ補正回路の動作を説明するための波形図が示されている。図4(A)には発振信号OSCのデューティが50%を超えて大きいときが示され、図4(B)には発振信号OSCのデューティが50%より小さいときが示されている。

【0019】図4(A)に示すように、発振信号OSCのデューティが50%よりも大きいとき、それに対応した図示しない出力信号OUTを積分して形成された直流電圧は上記中点電圧よりも高くなり、それに対応して上記デューティ補正回路に供給される制御電圧は高くなる。この結果、Pチャンネル型MOSFETQ14に流れる電流が減少し、Nチャンネル型MOSFETQ15に流れる電流が増大する。つまり、デューティ補正回路に対して同図のように出力信号の立ち上がりを遅く、立ち下がりを早くするように制御するので、図示のように出力信号OUTは、ほぼ50%のパルス幅デューティを持つように補正される。

【0020】図4(B)に示すように、発振信号OSCのデューティが50%よりも小さいとき、それに対応した図示しない出力信号OUTを積分して形成された直流電圧は上記中点電圧よりも低くなり、それに対応して上記デューティ補正回路に供給される制御電圧は低くなる。この結果、Pチャンネル型MOSFETQ14に流れる電流が増大し、Nチャンネル型MOSFETQ15に流れる電流が減少する。つまり、デューティ補正回路に対して同図のように出力信号の立ち上がりを遅く、立ち下がりを早くするように制御するので、図示のように出力信号OUTは、ほぼ50%のパルス幅デューティを持つように補正される。

【0021】図5には、との発明に係るデューティ補正回路の他の一実施例を説明するための波形図が示されている。との実施例では、前記図3の波形整形バッファにデューティ補正機能を付加するようにするものである。つまり、その前段に前記のように定電流により発振信号OSCの立ち上がりと立ち下がりにランプ特性を持たせるようにし、前記デューティ検出回路の出力電圧により、波形整形バッファのしきい(関)値を制御するものである。

【0022】図5(A)に示すように、発振信号OSCのデューティが50%よりも大きいとき、それに対応した図示しない出力信号OUTを積分して形成された直流電圧は上記中点電圧よりも高くなり、それに対応して上記デューティ補正動作を行う波形整形バッファに供給される制御電圧は高くなる。この結果、波形整形バッファのしきい値電圧が高くなって、図示のように出力信号OUTは、ほぼ50%のパルス幅デューティを持つように補正される。

【0023】図5(B)に示すように、発振信号OSCのデューティが50%よりも小さいとき、それに対応した図示しない出力信号OUTを積分して形成された直流電圧は上記中点電圧よりも低くなり、それに対応して上記デューティ補正動作を行う波形整形バッファに供給される制御電圧は低くなる。この結果、波形整形バッファのしきい値電圧が低くなって、図示のように出力信号OUTは、ほぼ50%のパルス幅デューティを持つように

(5)

補正される。

2

【0024】図6には、デューティ検出回路の他の一実施例のブロック図が示されている。この実施例では、ディジタル的に発振パルスOSCのデューティが検出される。この実施例では、ラッチ回路により発振パルスOSCをクロック信号CLKでラッチしてパルスデューティの統計的なサイブリングを行う。上記発振パルスOSCに対して、同期していないフリーランの発振回路等で形成されたクロック信号CLKを用いて統計的なサンプンリグを行う、そのサンプリング出力を加算平均処理するものである。

【0025】図7には、上記図6のデューティ検出回路の動作を説明するための波形図が示されている。上記ラッチ回路によりサンプリングされたサンプリング出力であるH, Lの出現する確率は、発振パルスOSCのHとLの時間比、すなわちデューティ比を反映する。このHとL出力を加算して平均化することにより、上記発振パルスOSCの出力デューティが検出される。この加算平均出力が0になるように、言い換えるならば、サンプリング出力のHとLの出現確率が同じになるようにデュー 20ティ補正を行うようにする。具体的例としては、上記加算平均を上記ラッチ回路のサンプリング出力のH, Lに従ってチャージボンプ等で行い、その積分電圧を前記補正回路に供給される。

【0026】例えば、上記加算がプラス(発振パルスOSCのしより日が長いとき)ならば、Pチャンネル型MOSFETの電流が小さく、Nチャンネル型MOSFETの電流が大きくなる方向に制御されて、発振パルスOSCのしを長く、Hを短くするように補正される。加算がマイナス(発振パルスOSCのHよりしが長いとき)ならば、上記とは逆にPチャンネル型MOSFETの電流が大きく、Nチャンネル型MOSFETの電流が小さくなる方向に制御されて、発振パルスOSCのHを長く、しを短くするように補正される。

【0027】上記のようなディジタル回路は、アナログ 回路に置き換えることができる。つまり、同じ電流値に されたチャージアップ電流とディスチャージ電流とを形 成しておいて、発振信号OSCがハイレベルの期間には チャージアップ電流をキャパシタに供給して充電させ、 発振信号OSCがロウレベルの期間にはディスチャージ 40 電流を供給して放電させる。もしも、発振信号OSCの デューティが50%よりも大きいときには、チャージア ップ時間が長くなって差分だけ中点電圧に対して高い電 圧が得られ、上記のようなデューティ補正回路に供給す ることによりデャーティ補正を行わせることができる。 逆に、発振信号OSCのデューティが50%よりも小さ いときには、ディスチャージ時間が長くなって差分だけ 中点電圧に対して低い電圧が得られ、上記のようなデュ ーティ補正回路に供給することによりデャーティ補正を 行わせるととができる。

8

【0028】この実施例のPLL回路は、例えばCRT等のディスプレイ制御回路に用いられる。CRT等の表示装置では、髙精細から標準的な表示モードの切り換えが可能にされるものであり、例えば髙精細の表示モードでのドッククロック周波数は約200MHzのような高い周波数にされる。それ故、VCOにおいて前記のように分周回路を用いたものでは、400MHzもの高い周波数を形成する必要があるが、この発明の適用によって200MHzのような発振信号を形成すればよいからMOS回路により十分に実現できるもとなる。

【0029】上記の実施例から得られる作用効果は、下 記の通りである。

(1) パルス信号を受けるインバータ回路の出力信号の立ち上がり時間と立ち下がり時間を制御するための電流制御回路又は上記インバータ回路の出力信号を波形整形する波形整形バッファのロジックスレッショルド電圧を波形整形された出力信号のパルスデューティを検出するパルスデューティ検出回路で制御することにより、その出力信号を所望のパルスデューティとなるように調整することができるという効果が得られる。

【0030】(2) 上記波形整形された出力信号を平滑回路で平滑し、その平滑信号と設定すべきパルスデューティに対応した基準電圧との差電圧に対応した制御信号を電圧比較回路で形成することにより、上記パルスデューティの補正に用いられる制御信号を形成することができるという効果が得られる。

【0031】(3) 上記デューティ補正を行う電流制御回路として、インバータ回路と電源電圧との間にPチャンネル型MOSFETを設け、上記インバータ回路との間にNチャンネル型MOSFETを設け、これら2つのMOSFETのゲートに上記制御信号を供給することにより、出力信号の立ち上がと立ち下がり時間を調整することができ、その結果として波形整形バッファを通した出力信号のバルスデューティの補正を行うことができるという効果が得られる。

【0032】(4) PLL回路に設けられる電圧制御型発振回路により形成された発振バルスのバルスデューティを補正することにより、MOS回路の上限周波数に対応した髙周波数のパルス信号を得ることができるという効果が得られる。

【0033】以上本発明者よりなされた発明を実施例に基づき具体的に説明したが、本願発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、図3の実施例において、MOSFETQ12とQ13を省略して、インバータ回路を構成するMOSFETQ10とQ11に、デューティ検出回路で形成された制御信号に従った電流を流すようなMOSFETQ14とQ15から構成してもよい。電圧制御発振回路は、前記のようなCMOSインバータ回路を用いたリングオシレータの他

10

何であってもよい。との発明に係るデューティ補正回路 は、出力パルスのデューティを50%にするものの他、 必要に応じて任意のパルスデューティに調整するもので あってもよい。この発明は、パルスデューティ補正回路 として広く利用できる。

[0034]

【発明の効果】本願において開示される発明のうち代表 的なものによって得られる効果を簡単に説明すれば、下 記の通りである。すなわち、パルス信号を受けるインバ ータ回路の出力信号の立ち上がり時間と立ち下がり時間 10 施例を示すブロック図である。 を制御するための電流制御回路又は上記インバータ回路 の出力信号を波形整形する波形整形バッファのロジック スレッショルド電圧を波形整形された出力信号のパルス デューティを検出するパルスデューティ検出回路で制御 することにより、その出力信号を所望のパルスデューテ ィとなるように調整することができる。

【図面の簡単な説明】

【図1】との発明が適用されたクロック発生回路の一実 施例を示すブロック図である。

*【図2】図1の電圧制御発振回路の一実施例を示す回路 図である。

【図3】図1のデューティ補正回路とデューティ検出回 路の一実施例を示す回路図である。

【図4】この発明に係るデューティ補正回路の動作を説 明するための波形図である。

【図5】との発明に係るデューティ補正回路の他の一実 ... 施例を説明するための波形図である。

【図6】との発明に係るデューティ検出回路の他の一実

【図7】図6のデューティ検出回路の動作を説明するた めの波形図である。

【符号の説明】

1…位相比較回路、2…チャージポンプ回路、3…電圧 制御発振回路、4…デューティ補正回路、5…デューテ ィ検出回路、6…クロック分配器、7…分周器、C…フ ィルタ容量、B1, BA…バッファ回路、Q1~Q15 …MOSFET、R1, R2…抵抗、C1, C2…キャ パシタ、

【図1】 【図2】 図2 デューティ 植正 方・ディ 検出 CKIFB YF- Q1 (IV/N)mतोत 分周 71179 分配 LSI CK(fv)

【図3】

【図4】

