Aim: The aim of this parametric data exploration is to analyze data to understand trends and factors influencing outcomes.

1. DATA COLLECTION

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import statsmodels.api as sm

data = pd.read_csv('diabetes.csv')
data
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
0	6	148	72	35	0	33.6
1	1	85	66	29	0	26.6
2	8	183	64	0	0	23.3
3	1	89	66	23	94	28.1
4	0	137	40	35	168	43.1
• •	• • •	• • •	• • •	• • •	• • •	• • •
763	10	101	76	48	180	32.9
764	2	122	70	27	0	36.8
765	5	121	72	23	112	26.2
766	1	126	60	0	0	30.1
767	1	93	70	31	0	30.4

DiahetesPedigneeFunction	۸۵۵	Outcome
prabe cest eargi eei unccron	Age	outcome
0.627	50	1
0.351	31	0
0.672	32	1
0.167	21	0
2.288	33	1
•••		
0.171	63	0
0.340	27	0
0.245	30	0
0.349	47	1
0.315	23	0
	0.627 0.351 0.672 0.167 2.288 0.171 0.340 0.245 0.349	0.627 50 0.351 31 0.672 32 0.167 21 2.288 33 0.171 63 0.340 27 0.245 30 0.349 47

[768 rows x 9 columns]

2. DESCRIPTIVE STATISTICS

```
Outcome = data['Outcome']
mean = np.mean(Outcome)
std_dev = np.std(Outcome)
skewness = np.mean((Outcome - mean) ** 3) / (std_dev ** 3)
kurtosis = np.mean((Outcome - mean) ** 4) / (std_dev ** 4) - 3

print("Descriptive Statistics:")
print(f"Mean: {mean:.2f}")
print(f"Standard Deviation: {std_dev:.2f}")
print(f"Skewness: {skewness:.2f}")
print(f"Kurtosis: {kurtosis:.2f}")

Descriptive Statistics:
Mean: 0.35
Standard Deviation: 0.48
Skewness: 0.63
Kurtosis: -1.60
```

3. HISTOGRAMS AND DENSITY PLOTS ON THE DATA

```
combined_data = pd.concat([data['Pregnancies'], data['SkinThickness']])
plt.figure(figsize=(8, 6))
plt.hist(combined_data, bins=30, density=True, alpha=0.6, color='g')
plt.title('Histogram of Pregnancies and SkinThickness')
plt.xlabel('Value')
plt.ylabel('Density')
plt.grid(True)
plt.show()
```


4. PARAMETRIC DISTRIBUTION FITTING ON THE DATA

```
from scipy.stats import shapiro
# Shapiro-Wilk Test
statistic, p_value = shapiro(data)
print("Shapiro-Wilk Test:")
print(f"Statistic: {statistic:.4f}")
print(f"P-value: {p_value:.4f}")
alpha = 0.05
if p_value > alpha:
    print("Accept the null hypothesis")
    print("The data appears to be normally distributed")
else:
    print("Reject the null hypothesis")
    print("The data does not appear to be normally distributed")
Shapiro-Wilk Test:
Statistic: 0.6918
P-value: 0.0000
Reject the null hypothesis
The data does not appear to be normally distributed
```

```
5. GOODNESS-OF-FIT TEST
from scipy.stats import norm
# Fitting a normal distribution to the data
mu, sigma = norm.fit(data)
#histogram of the data
plt.figure(figsize=(8, 6))
plt.hist(data, bins=30, density=True, alpha=0.6, label='Data')
#PDF of the fitted normal distribution
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, sigma)
plt.plot(x, p, 'k', linewidth=2, label='Fitted Normal Distribution')
plt.title('Histogram of Diabetes Data with Fitted Normal Distribution')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.grid(True)
plt.show()
#parameters of the fitted normal distribution
print("Parameters of the Fitted Normal Distribution:")
print(f"Mean: {mu:.2f}")
print(f"Standard Deviation: {sigma:.2f}")
```


Parameters of the Fitted Normal Distribution:

Mean: 40.03

Standard Deviation: 56.79

6. PARAMETER ESTIMATION & CALCULATING THE CONFIDENCE INTERVALS

```
from scipy.stats import norm
# Fit a normal distribution to the data
mu, sigma = norm.fit(data)
# Parameter Estimation
print("Parameter Estimation:")
print(f"Estimated Mean (mu): {mu:.2f}")
print(f"Estimated Standard Deviation (sigma): {sigma:.2f}")
n = len(data)
standard error mean = sigma / np.sqrt(n)
standard_error_std_dev = sigma / np.sqrt(2 * (n - 1))
confidence interval mean = norm.interval(0.95, loc=mu,
scale=standard error mean)
confidence_interval_std_dev = norm.interval(0.95, loc=sigma,
scale=standard error std dev)
print("\nConfidence Intervals:")
print(f"95% Confidence Interval for Mean (mu): {confidence interval mean}")
print(f"95% Confidence Interval for Standard Deviation (sigma):
{confidence interval std dev}")
Parameter Estimation:
Estimated Mean (mu): 40.03
Estimated Standard Deviation (sigma): 56.79
Confidence Intervals:
95% Confidence Interval for Mean (mu): (36.0094038026056, 44.042882366375885)
95% Confidence Interval for Standard Deviation (sigma): (53.952370044773446,
59.636599089113005)
```

7. HYPOTHESIS TESTING AND SENSITIVITY ANALYSIS

```
from scipy import stats
t statistic, p value = stats.ttest 1samp(data, 10)
print("\nHypothesis Testing:")
print(f"T-Statistic: {t_statistic[0]:.4f}, p-value: {p_value[0]:.4f}")
# The t-statistic measures how-many-standard-errors the sample mean is from
the null hypothesis mean (in this case, 10).
# Compare the p-value to a significance level (such as 0.05) to determine
whether the null hypothesis can be rejected.
# If the p-value is less than the significance level (such as 0.05), the null
hypothesis is rejected, suggesting that
# the sample mean is significantly different from 10.
# Sensitivity Analysis
varying_parameters = [(9, 2), (10, 3), (10, 2), (11, 2)] # Vary mean and
standard deviation
for params in varying_parameters:
    mu_variation, sigma_variation = params
    fitted distribution = norm(mu variation, sigma variation)
    plt.figure(figsize=(8, 6))
    plt.hist(data, bins=30, density=True, alpha=0.6, label='Data')
    x = np.linspace(data.min(), data.max(), 100) # Modify this line
    plt.plot(x, fitted distribution.pdf(x), 'r-', label='Fitted
Distribution')
    plt.title(f'Fitted Normal Distribution (Mean={mu variation}, Std
Dev={sigma variation})')
    plt.xlabel('Value')
    plt.ylabel('Density')
    plt.legend()
    plt.grid(True)
    plt.show()
    print(f"\nParameters: Mean={mu_variation}, Std Dev={sigma_variation}")
    print(f"Descriptive Statistics:")
    print(f"Mean: {mu variation:.2f}")
    print(f"Standard Deviation: {sigma_variation:.2f}")
Hypothesis Testing:
T-Statistic: -50.6209, p-value: 0.0000
```


Parameters: Mean=9, Std Dev=2

Descriptive Statistics:

Mean: 9.00

Standard Deviation: 2.00

Parameters: Mean=10, Std Dev=3

Descriptive Statistics:

Mean: 10.00

Standard Deviation: 3.00

Parameters: Mean=10, Std Dev=2

Descriptive Statistics:

Mean: 10.00

Standard Deviation: 2.00

Parameters: Mean=11, Std Dev=2

Descriptive Statistics:

Mean: 11.00

Standard Deviation: 2.00

Conclusion: The p-value of 0 for the Outcome feature rejects the null hypothesis, indicating a non-normal distribution. Even after altering parameters (9, 2), (10, 3), (10, 2), and (11, 2), the rejection persists at a 5% significance level. This robust rejection across varied parameterizations underscores the deviation from normality in the Outcome distribution, suggesting non-normal characteristics that persist regardless of adjustments made to distribution parameters.