Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Exercise Sheet: Bayesian Statistics

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part I

Matrix & vector calculus

The exercises about Matrix & vector calculus are optional and can be skipped.

Exercise 1. (\star) Let A, B be $K \times K$ invertible matrices. Show that

$$(A+B)^{-1} = A^{-1}(A^{-1} + B^{-1})^{-1}B^{-1}$$

Solution. It is

$$(A+B)^{-1} = A^{-1}(I+A^{-1}B)^{-1}$$

= $A^{-1}(A^{-1}+B^{-1})^{-1}B^{-1}$

Exercise 2. $(\star\star)$ [Woodbury matrix identity] Verify that

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1} VA^{-1}$$

6 if A and C are non-singular.

17 Solution.

By checking that $(A + UCV) (A + UCV)^{-1} = I$

$$\begin{split} (A+UCV) \times \left[A^{-1} - A^{-1}U\left(C^{-1} + VA^{-1}U\right)^{-1}VA^{-1}\right] \\ &= I + UCVA^{-1} - (U + UCVA^{-1}U)(C^{-1} + VA^{-1}U)^{-1}VA^{-1} \\ &= I + UCVA^{-1} - UC(C^{-1} + VA^{-1}U)(C^{-1} + VA^{-1}U)^{-1}VA^{-1} \\ &= I + UCVA^{-1} - UCVA^{-1} = I. \end{split}$$

o So

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Exercise 3. $(\star\star)$ [Sherman–Morrison formula] Let A be a $K\times K$ invertible matrix and u and v two $K\times 1$ column vectors. Verify that

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{1}{1 + v^{\top} A^{-1} u} A^{-1} uv^{\top} A^{-1}$$

if $1 + v^{\top} A^{-1} u \neq 0$, and if A is non-singular.

7 Solution.

 $(A + uv^{T})(A + uv^{T})^{-1} = (A + uv^{T}) \left(A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u} \right)$ $= AA^{-1} + uv^{T}A^{-1} - \frac{AA^{-1}uv^{T}A^{-1} + uv^{T}A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$ $= I + uv^{T}A^{-1} - \frac{uv^{T}A^{-1} + uv^{T}A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$ $= I + uv^{T}A^{-1} - \frac{u(1 + v^{T}A^{-1}u)v^{T}A^{-1}}{1 + v^{T}A^{-1}u}$ $= I + uv^{T}A^{-1} - uv^{T}A^{-1}$ = I

Exercise 4. $(\star\star\star)$ [Block partition matrix inversion] Let A be $K\times K$ invertible matrix, and let $B=A^{-1}$ its inverse.

8 Consider Partition

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}; B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Namely, $B_{11} = \left[A^{-1}\right]_{11}$ is the upper corner of the A^{-1} , etc...

Show that

$$A_{11}^{-1} = B_{11} = B_{12}B_{22}^{-1}B_{21}$$
$$A_{11}^{-1}A_{12} = -B_{12}B_{22}^{-1}$$

44 **Hint:** Start by noticing that

$$AB = I \iff \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \iff \begin{cases} A_{11}B_{11} + A_{12}B_{21} & = I \\ A_{11}B_{12} + A_{12}B_{22} & = 0 \end{cases}$$

6 **Solution.** It is

$$AB = I \iff \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \iff \begin{cases} A_{11}B_{11} + A_{12}B_{21} & = I \\ A_{11}B_{12} + A_{12}B_{22} & = 0 \end{cases}$$

18 **So**

$$A_{11}B_{12} + A_{12}B_{22} = 0 \iff$$

$$A_{11}^{-1} (A_{11}B_{12} + A_{12}B_{22}) B_{22}^{-1} = 0 \iff$$

$$B_{12}B_{22}^{-1} + A_{11}^{-1}A_{12} = 0$$

2 **So**

$$A_{11}^{-1}A_{12} = -B_{12}B_{22}^{-1}$$

4 Also

55
$$A_{11}B_{12} + A_{12}B_{22} = 0 \iff$$
56
$$(A_{11}B_{12} + A_{12}B_{22})B_{22}^{-1}B_{21} = 0 \iff$$
57
$$A_{11}B_{12}B_{22}^{-1}B_{21} + A_{12}B_{21} = 0$$
58
$$A_{12}B_{21} = -A_{11}B_{12}B_{22}^{-1}B_{21}$$

Then, we plug in the above in $A_{11}B_{11} + A_{12}B_{21} = I$ we get

$$A_{11}B_{11} + A_{12}B_{21} = I \iff$$

$$A_{11}B_{11} - A_{11}B_{12}B_{22}^{-1}B_{21} = I \iff$$

$$B_{11} - B_{12}B_{22}^{-1}B_{21} = A_{11}^{-1}$$

63 **So**

$$A_{11}^{-1} = B_{11} = B_{12}B_{22}^{-1}B_{21}$$

Part II

Random variables

Exercise 5. (*)Let $y \in \mathcal{Y} \subseteq \mathbb{R}$ be a univariate random variable with CDF $F_y(\cdot)$. Consider a bijective function $h: \mathcal{Y} \to \mathcal{Z}$ with z = h(y), and h^{-1} its inverse. The PDF of z is

$$F_z(z) = \begin{cases} F_Y(h^{-1}(z)) & \text{if } h \nearrow \\ 1 - F_Y(h^{-1}(z)) & \text{if } h \searrow \end{cases}$$

71 **Solution.** It is $z = h(y) \Leftrightarrow y = h^{-1}(z)$

For if $h \uparrow$ it is

$$F_z(z) = P(Z \le z) = P(h^{-1}(Z) \le h^{-1}(z)) = P(Y \le h^{-1}(z)) = F_Y(h^{-1}(z))$$

For if $h \setminus it$ is

$$F_z(z) = P(Z \le z) = P(h^{-1}(Z) \ge h^{-1}(z)) = P(Y \ge h^{-1}(z)) = 1 - F_Y(h^{-1}(z))$$

Exercise 6. (*)Let $y \in \mathcal{Y} \subseteq \mathbb{R}$ be a univariate random variable with PDF $f_y(\cdot)$. Consider a bijective function $h: \mathcal{Y} \to \mathcal{Z} \subseteq \mathbb{R}$ and let h^{-1} be the inverse function of h. Consider a univariate random variable such that z = h(y). The PDF of z is

$$f_z(z) = f_y(y) |\det(\frac{dy}{dz})| = f_y(h^{-1}(z)) |\det(\frac{d}{dz}h^{-1}(z))|$$

Solution. It is $z = h(y) \Leftrightarrow y = h^{-1}(z)$

For if $h \nearrow$ it is

$$F_z(z) = P(Z \le z) = P(h^{-1}(Z) \le h^{-1}(z)) = P(Y \le h^{-1}(z)) = F_Y(h^{-1}(z))$$

and

$$f_z(z) = \frac{\mathrm{d}}{\mathrm{d}z} F_z(z) = \frac{\mathrm{d}}{\mathrm{d}z} F_Y(h^{-1}(z)) = \frac{\mathrm{d}}{\mathrm{d}h^{-1}} F_Y(h^{-1}) \det(\frac{\mathrm{d}}{\mathrm{d}z} h^{-1}(z))$$

For if $h \setminus$ it is

$$F_z(z) = P(Z \le z) = P(h^{-1}(Z) \ge h^{-1}(z)) = P(Y \ge h^{-1}(z)) = 1 - F_Y(h^{-1}(z))$$

88 and

$$f_z(z) = \frac{\mathrm{d}}{\mathrm{d}z} F_z(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left[1 - F_Y(h^{-1}(z)) \right] = -\frac{\mathrm{d}}{\mathrm{d}h^{-1}} F_Y(h^{-1}) \det(\frac{\mathrm{d}}{\mathrm{d}z} h^{-1}(z))$$

but $\det(\frac{d}{dz}h^{-1}(z)) < 0$ because $h \setminus$. So in both cases:

$$f_z(z) = f_y(h^{-1}(z)) |\det(\frac{d}{dz}h^{-1}(z))|$$

Exercise 7. (*)Let $y \sim \operatorname{Ex}(\lambda)$ r.v. with Exponential distribution with rate parameter $\lambda > 0$, and $f_{\operatorname{Ex}(\lambda)}(y) = \lambda \exp(-\lambda y) 1(y \ge 0)$. Let $z = 1 - \exp(-\lambda y)$. Calculate the PDF of z, and recognize its distribution.

Solution. It is $z=1-\exp(-\lambda y)\Longleftrightarrow y=-\frac{1}{\lambda}\log(1-z)$, and $z\in[0,1]$. So $h^{-1}(z)=-\frac{1}{\lambda}\log(1-z)$. Then

$$f_{z}(z) = f_{\operatorname{Ex}(\lambda)}(h^{-1}(z)) \times \left| \det \left(\frac{\mathrm{d}}{\mathrm{d}z} h^{-1}(z) \right) \right| = f_{\operatorname{Ex}(\lambda)} \left(-\frac{1}{\lambda} \log(1-z) \right) \times \left| \det \left(\frac{\mathrm{d}}{\mathrm{d}z} \frac{-1}{\lambda} \log(1-z) \right) \right|$$

$$= \exp\left(-\lambda \frac{-1}{\lambda} \log(1-z) \right) 1 \left(-\frac{1}{\lambda} \log(1-z) \ge 0 \right) \times \left| -\frac{1}{\lambda} \frac{1}{1-z} \right| = 1 (z \in [0,1])$$

From the density, we recognize that $z \sim U(0,1)$ follows a uniform distribution.

Exercise 8. (\star) Prove the following properties

1. Let matrix $A \in \mathbb{R}^{q \times d}$, $c \in \mathbb{R}^q$, and z = c + Ay then

$$E(z) = E(c + Ay) = c + AE(y)$$

2. Let random variables $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$, and let functions ψ_1 and ψ_2 defined on \mathcal{Z} and \mathcal{Y} , then

$$E(\psi_1(z) + \psi_2(y)) = E(\psi_1(z)) + E(\psi_2(y))$$

3. If random variables $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$ are independent then

$$E(\psi_1(z)\psi_2(y)) = E(\psi_1(z))E(\psi_2(y))$$

for any functions ψ_1 and ψ_2 defined on \mathcal{Z} and \mathcal{Y} .

Solution.

1. It is

$$\mathbf{E}(z) = \mathbf{E}(c + Ay) = \int (c + Ay) \, \mathrm{d}F(y) = c + A \int y \, \mathrm{d}F(y) = c + A\mathbf{E}(y)$$

2. It is

$$E(\psi_1(z) + \psi_2(y)) = \int (\psi_1(z) + \psi_2(y)) dF((z, y)) = \int \psi_1(z) dF((z, y)) + \int \psi_1(z) dF((z, y))$$

$$= \int \psi_1(z) dF(z) + \int \psi_1(z) dF(z) = E(\psi_1(z)) + E(\psi_2(y))$$

3. If random variables $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$ then

$$dF(z, y) = dF(z)dF(y)$$

It is

$$\mathrm{E}(\psi_1(z)\psi_2(y)) = \int \left(\psi_1(z)\psi_2(y)\right) \mathrm{d}F((z,y)) = \left(\int \psi_1(z)\mathrm{d}F(z)\right) \left(\int \psi_2(y)\mathrm{d}F(y)\right)$$

Exercise 9. (\star) Prove the following properties of the covariance matrix

1.
$$\operatorname{Cov}(z, y) = \operatorname{E}(zy^{\top}) - \operatorname{E}(z) (\operatorname{E}(y))^{\top}$$

2.
$$Cov(z, y) = (Cov(y, z))^{\mathsf{T}}$$

3. $Cov_{\pi}(c_1 + A_1z, c_2 + A_2y) = A_1Cov_{\pi}(x, y)A_2^{\top}$, for fixed matrices A_1, A_2 , and vectors c_1, c_2 with suitable dimensions.

4. If z and y are independent random vectors then Cov(z, y) = 0

5 Solution.

1. It is

Cov
$$(z, y) = \mathrm{E}\left((z - \mathrm{E}(z))(y - \mathrm{E}(y))^{\top}\right)$$

$$\mathrm{E}\left(zy^{\top} - z\mathrm{E}(y)^{\top} - \mathrm{E}(z)y^{\top} + \mathrm{E}(z)\mathrm{E}(y)^{\top}\right)$$

$$= \mathrm{E}(zy^{\top}) - \mathrm{E}(z)\left(\mathrm{E}(y)\right)^{\top}$$

2. It is

$$\begin{aligned} \left(\operatorname{Cov}(y, z) \right)^\top &= \left(\operatorname{E} \left((z - \operatorname{E}(z)) (y - \operatorname{E}(y))^\top \right) \right)^\top = \operatorname{E} \left(\left((z - \operatorname{E}(z)) (y - \operatorname{E}(y))^\top \right) \right)^\top \\ &= \operatorname{E} \left((y - \operatorname{E}(y)) (z - \operatorname{E}(z))^\top \right) = \operatorname{Cov}(y, z) \end{aligned}$$

33 3. It is

$$Cov(c_1 + A_1 z, c_2 + A_2 y) = E((c_1 + A_1 z)(c_2 + A_2 y)^{\top}) - E(c_1 + A_1 z)(E(c_2 + A_2 y))^{\top}$$

$$= \dots = A_1 (E(zy^{\top}) - E(z)(E(y))^{\top}) A_2^{\top} = A_1 Cov(z, y) A_2^{\top}$$

4. Obviously since

$$Cov(z, y) = 0 \iff Cov(z_i, y_j) = \begin{cases} i = j \\ i \neq j \end{cases}$$

Exercise 10. (*)Prove that the (i, j)-th element of the covariance matrix between vector z and y is the covariance between their elements z_i and y_j :

$$[Cov(z, y)]_{i,j} = Cov(z_i, y_j)$$

2 Solution.

43 It is

$$\begin{split} \left[\operatorname{Cov}(z,y) \right]_{i,j} &= \left[\operatorname{E}(zy^\top) - \operatorname{E}(z) \left(\operatorname{E}(y) \right)^\top \right]_{i,j} = \\ &= \left[\operatorname{E}(zy^\top) \right]_{i,j} - \left[\operatorname{E}(z) \left(\operatorname{E}(y) \right)^\top \right]_{i,j} \\ &= \operatorname{E}(z_i y_j^\top) - \operatorname{E}(z_i) \left(\operatorname{E}(y_j) \right)^\top = \operatorname{Cov}(z_i,y_j) \end{split}$$

Exercise 11. (*)Prove the following properties of Var(Y) for a random vector $y \in \mathcal{Y} \subseteq \mathbb{R}^d$

1.
$$Var(y) = E(yy^{\top}) - E(y) (E(y))^{\top}$$

2. $Var(c + Ay) = AVar(y)A^{\top}$, for fixed matrix A, and vectors c with suitable dimensions.

3. $Var(y) \ge 0$; (semi-positive definite)

Solution.

1.
$$Var(y) = Cov(y, y) = E(yy^{\top}) - E(y)(E(y))^{\top}$$

2.
$$Var(c + Ay) = Cov(c + Ay, c + Ay) = ACov(y, y)A^{\top} = AVar(y)A^{\top}$$

3. For any vector $x \in \mathbb{R}^q$

$$t^{\top} \operatorname{Var}(y) t = t^{\top} \operatorname{E} \left((y - \operatorname{E}(y)) (y - \operatorname{E}(y))^{\top} \right) t$$
$$= \operatorname{E} \left(\left(t^{\top} (y - \operatorname{E}(y)) \right) \left(t^{\top} (y - \operatorname{E}(y)) \right)^{\top} \right)$$
$$= \operatorname{E} \left(zz^{\top} \right) = \operatorname{E} \left(\sum_{j=1}^{d} z_{j}^{2} \right) \ge 0$$

for $z = t^{\top}(y - \mathbf{E}(y))$.

Exercise 12. (*)Prove the following properties of characteristic functions

1.
$$\varphi_{A+Bx}(t) = e^{it^T A} \varphi_x(B^T t)$$
 if $A \in \mathbb{R}^d$ and $B \in \mathbb{R}^{k \times d}$ are constants

2.
$$\varphi_{x+y}(t) = \varphi_x(t)\varphi_y(t)$$
 if and only if x and y are independent

3. if
$$M_x(t) = \mathrm{E}(e^{t^T x})$$
 is the moment generating function, then $M_x(t) = \varphi_x(-it)$

Solution.

1. It is

$$\varphi_{A+Bx}(t) = \mathsf{E}(e^{it^T(A+Bx)}) = \mathsf{E}(e^{A+it^TBx}) = \mathsf{E}(e^{it^TA}e^{iB^Ttx}) = e^{it^TA}\mathsf{E}(e^{i(B^Tt)x}) = e^{it^TA}\varphi_x(B^Tt)$$

- straightforward
- 3. straightforward

Exercise 13. (*)Show that if $X \sim \operatorname{Ex}(\lambda)$ then $\varphi_X(t) = \frac{\lambda}{\lambda - it}$.

172 **Solution.** It is

$$\varphi_X(t) = \int_{-\infty}^{\infty} e^{itX} \underbrace{\lambda e^{-\lambda x} \mathbf{1}(X>0)}_{=f_{\mathrm{Ex}}(x|\lambda)} \mathrm{d}x = \lambda \int_{-\infty}^{\infty} e^{-x(\lambda-itX)} \mathrm{d}x = \frac{\lambda}{\lambda-it}$$

Exercise 14. (\star)

- 1. Find $\varphi_X(t)$ if $X \sim \text{Br}(p)$.
- 2. Find $\varphi_Y(t)$ if $Y \sim \text{Bin}(n, p)$

78 Solution.

1. It is

$$\varphi_X(t) = \sum_{x=0}^{\infty} e^{itX} P(X = x) = e^{it0} (1-p) + e^{it1} p = (1-p) + pe^{it}$$

2. Because Binomial r.v. results as a summation of n IID Bernoulli r.v., it is $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim \text{Br}(p)$ i = 1, ..., n and IID. Then

$$\varphi_Y(t) = \varphi_{\sum X_i}(t) = \prod_{i=1}^n \varphi_{X_i}(t) = ((1-p) + pe^{it})^n$$

Exercise 15. $(\star\star\star)$ Prove the following statement related to the Bayesian theorem:

Assume a probability space (Ω, \mathscr{F}, P) . Let a random variable $y : \Omega \to \mathcal{Y}$ with distribution $F(\cdot)$. Consider a partition $y = (x, \theta)$ with $x \in \mathcal{X}$ and $\theta \in \Theta$. Then the probability density function (PDF), or the probability mass function (PMF) of $\theta | x$ is

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{\int f(x|\theta)dF(\theta)}$$
(1)

Hint Consider cases where x is discrete and continuous. In the later case use the mean value theorem:

$$\int_{A} f(x)g(x)dx = f(\xi) \int_{A} g(x)dx$$

where $\xi \in A$ if A is connected, and $g(x) \ge 0$ for $x \in A$.

Solution. We consider separately two cases.

x is discrete:

Let $\Theta_0 \subseteq \Theta$ be any sub-set of Θ ; I need to show that

$$P(\theta \in \Theta_0|x) = \frac{\int_{\Theta_0} f(x|\theta) \mathrm{d}F(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} = \begin{cases} \int_{\Theta_0} \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} \mathrm{d}\theta &, \theta \text{ cont.} \\ \\ \sum_{\theta \in \Theta_0} \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta) \mathrm{d}F(\theta)} &, \theta \text{ discr.} \end{cases}$$

By Bayes theorem it is

$$P(\theta \in \Theta_0|x) = \frac{P(\Theta_0, x)}{P(x)}$$

where $P(x) = \int_{\Theta} f(x|\theta) dF(\theta)$ and $P(\Theta_0, x) = \int_{\Theta_0} f(x|\theta) dF(\theta)$.

x is continuous:

Let $\Theta_0 \subseteq \Theta$ be any sub-set of Θ ; because the probability P(x) = 0, I need to show that

$$\lim_{r\to 0} P(\theta\in\Theta_0|B_r(x)) = \frac{\int_{\Theta_0} f(x|\theta)\mathrm{d}F(\theta)}{\int_{\Theta} f(x|\theta)\mathrm{d}F(\theta)} = \begin{cases} \int_{\Theta_0} \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta)\mathrm{d}F(\theta)}\mathrm{d}\theta &, \theta \text{ cont.} \\ \sum_{\theta\in\Theta_0} \frac{f(x|\theta)f(\theta)}{\int_{\Theta} f(x|\theta)\mathrm{d}F(\theta)} &, \theta \text{ discr.} \end{cases}$$

for an open ball $B_r(x) = \{x' \in \mathcal{X} : |x' - x| < r\}$. By Bayes theorem

$$P(\theta \in \Theta_0 | B_r(x)) = \frac{P(\Theta_0, B_r(x))}{P(B_r(x))}$$

where

$$P(\Theta_0, B_r(x)) = \int_{\Theta_0} \left[\int_{B_r(x)} f(\zeta|\theta) d\zeta \right] dF(\theta)$$
$$P(B_r(x)) = \int_{\Theta} \left[\int_{B_r(x)} f(\zeta|\theta) d\zeta \right] dF(\theta)$$

By mean value theorem¹ there exists $\zeta' \in B_r(y)$ such as

$$\int_{B_r(x)} f(\zeta|\theta) \mathrm{d}\zeta = f(\zeta'|\theta) \int_{B_r(x)} \mathrm{d}\zeta = f(\zeta'|\theta) \ \|B_r(x)\|$$

Then

$$P(\theta \in \Theta_0|B_r(x)) = \frac{\int_{\Theta_0} \left[f(\zeta'|\theta) \|B_r(x)\| \right] dF(\theta)}{\int_{\Theta} \left[f(\zeta'|\theta) \|B_r(x)\| \right] dF(\theta)} \xrightarrow{r \to 0} \frac{\int_{\Theta_0} f(\zeta|\theta) dF(\theta)}{\int_{\Theta} f(\zeta|\theta) dF(\theta)}$$

Exercise 16. (\star) Prove that:

1. if
$$Z \sim N(0, I)$$
 then $\varphi_Z(t) = \exp(-\frac{1}{2}t^Tt)$, where $Z \in \mathbb{R}^d$

2. if
$$X \sim N(\mu, \Sigma)$$
 then $\varphi_X(t) = \exp(it^T \mu - \frac{1}{2}t^T \Sigma t)$, where $X \in \mathbb{R}^d$

Hint: Assume as known that if $Z \sim N(0,1)$ then $\varphi_Z(t) = \exp(-\frac{1}{2}t^2)$, where $Z \in \mathbb{R}$

Solution.

1. It is

$$\varphi_{Z}(t) = \mathbf{E}(\exp(it^{T}Z)) = \mathbf{E}(\exp(i\sum_{j=1}^{d}(t_{j}Z_{j}))) = \mathbf{E}(\prod_{j=1}^{d}\exp(it_{j}Z_{j})) = \prod_{j=1}^{d}\mathbf{E}(\exp(it_{j}Z_{j}))$$

$$= \prod_{j=1}^{d}\varphi_{Z_{j}}(t) = \prod_{j=1}^{d}\exp(-\frac{1}{2}t_{j}^{2}) = \exp(-\frac{1}{2}\sum_{j=1}^{d}t_{j}^{2}) = \exp(-\frac{1}{2}t^{T}t)$$

2. Assume a matrix L such as $\Sigma = LL^T$. It is $X = \mu + LZ$. Then

$$\varphi_X(t) = \varphi_{\mu + LZ}(t) = e^{it^T \mu} \varphi_Z(L^T t) = e^{it^T \mu} \exp(-\frac{1}{2} (L^T t)^T L^T t)$$
$$= e^{it^T \mu} \exp(-\frac{1}{2} t^T L L^T t) = \exp(it^T \mu - \frac{1}{2} t^T \Sigma t)$$

Exercise 17. (*) Show the following properties of the Characteristic Function

1.
$$\varphi_x(0) = 1$$
 and $|\varphi_x(t)| \leq 1$ for all $t \in \mathbb{R}^d$

2.
$$\varphi_{A+Bx}(t) = e^{it^T A} \varphi_x(B^T t)$$
 if $A \in \mathbb{R}^d$ and $B \in \mathbb{R}^{k \times d}$ are constants

- 3. x and y are independent then $\varphi_{x+y}(t) = \varphi_x(t)\varphi_y(t)$ (we do not proov the other way around)
- 4. if $M_x(t) = \mathrm{E}(e^{t^T x})$ is the moment generating function, then $M_x(t) = \varphi_x(-it)$

30 Solution.

1. It is
$$\varphi_x(0) = E(e^{i0^T x}) = E(1) = 1$$
. Also

$$|\varphi_x(t)| = \left| \mathsf{E}(e^{it^Tx}) \right| = \left| \int \left(\cos(t^Tx) + i\sin(t^Tx) \right) \mathsf{d}F(x) \right| \leq \int \left| \cos(t^Tx) + i\sin(t^Tx) \right| \mathsf{d}F(x) \leq \int \mathsf{1}\mathsf{d}F(x) = 1$$

2. It is

$$\frac{\varphi_{A+Bx}(t) = \operatorname{E}(e^{it^T(A+Bx)}) = \operatorname{E}(e^{it^TA+Bit^Tx}) = \operatorname{E}(e^{Ai}e^{i(B^Tt)^\top x}) = e^{it^TA}\varphi_x(B^Tt)}{{}^1\int_A f(x)g(x)\mathrm{d}x = f(\xi)\int_A g(x)\mathrm{d}x} \text{ where } \xi \in A \text{ if } A \text{ is connected, and } g(x) \geq 0 \text{ for } x \in A.$$

3. It is
$$\varphi_{x+y}(t)=\mathrm{E}(e^{it^T(x+y)})=\mathrm{E}(e^{it^Tx}e^{it^Ty})=\mathrm{E}(e^{it^Tx})\mathrm{E}(e^{it^Ty})=\varphi_x(t)\varphi_y(t)$$

Part III

Probability calculus

Exercise 18. (*)Let a random variable $x \sim \mathrm{IG}(a,b)$, a fixed value c > 0, and y = cx then $y \sim \mathrm{IG}(a,cb)$.

Solution. It is y = cx and $x = \frac{1}{c}y$

$$f(y) = f_{IG(a,b)}(x) \left| \frac{dx}{dy} \right| \propto (\frac{1}{c}y)^{-a-1} \exp(-\frac{b}{\frac{1}{c}y}) 1_{(0,+\infty)} (\frac{1}{c}y) \frac{1}{c}$$
$$\propto y^{-a-1} \exp(-\frac{cb}{y}) 1_{(0,+\infty)}(y) = f_{IG(a,cb)}(y)$$

Exercise 19. $(\star\star\star\star)$ Consider that x given z is distributed according to $Ga(\frac{n}{2},\frac{nz}{2})$, and that z is distributed according to $Ga(\frac{m}{2},\frac{m}{2})$; i.e.

$$\begin{cases} x|z & \sim \operatorname{Ga}(\frac{n}{2}, \frac{nz}{2}) \\ z & \sim \operatorname{Ga}(\frac{m}{2}, \frac{m}{2}) \end{cases}$$

Here, $Ga(\alpha, \beta)$ is the Gamma distribution with shape and rate parameters α and β , and PDF

$$f_{Ga(\alpha,\beta)}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} 1(x > 0)$$

1. Show that the compound distribution of x is F $x \sim F(n, m)$, where F(n, m) is F distribution with numerator and denumerator degrees of freedom n and m, and PDF

$$f_{\mathsf{F}(n,m)}(x) = \frac{1}{x \,\mathsf{B}(\frac{n}{2}, \frac{m}{2})} \sqrt{\frac{(n \,x)^n \,m^m}{(n \,x + m)^{n+m}}} 1(x > 0)$$

2. Show that

$$E_{F(n,m)}(x) = \frac{m}{m-2}$$

3. Show that

$$Var_{F(n,m)}(x) = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}$$

Hint: If $\xi \sim \text{IG}(a,b)$ then $E_{\xi \sim \text{IG}(a,b)}(\xi) = \frac{b}{a-1}$, and $\text{Var}_{\xi \sim \text{IG}(a,b)}(\xi) = \frac{b^2}{(a-1)^2(a-2)}$

Solution.

1. It is

$$f_{\mathrm{Ga}(\frac{n}{2},\frac{nz}{2})}(x|z) = \frac{\left(\frac{nz}{2}\right)^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{nz}{2}x} \mathbf{1}(x>0) \; ; \qquad f_{\mathrm{Ga}(\frac{m}{2},\frac{m}{2})}(z) = \frac{\left(\frac{m}{2}\right)^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} z^{\frac{m}{2}-1} e^{-\frac{m}{2}z} \mathbf{1}(z>0)$$

So:

$$f(x) = \int f_{\text{Ga}(\frac{n}{2}, \frac{nz}{2})}(x|z) f_{\text{Ga}(\frac{m}{2}, \frac{m}{2})}(z) dz$$

$$= f_{\text{Ga}(\frac{n}{2}, \frac{nz}{2})}(x|z) \qquad = f_{\text{Ga}(\frac{m}{2}, \frac{m}{2})}(z)$$

$$= \int \frac{(\frac{nz}{2})^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{nz}{2}x} 1(x > 0) \frac{(\frac{m}{2})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} z^{\frac{m}{2} - 1} e^{-\frac{m}{2}z} 1(z > 0) dz$$

$$= \frac{(\frac{n}{2})^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \frac{(\frac{m}{2})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} 1(x > 0) x^{\frac{n}{2} - 1} \int_{0}^{\infty} z^{\frac{n}{2}} e^{-\frac{nx}{2}z} z^{\frac{m}{2} - 1} e^{-\frac{m}{2}z} dz$$

$$= \frac{(\frac{n}{2})^{\frac{n}{2}}}{\Gamma(\frac{m}{2})} \frac{(\frac{m}{2})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} 1(x > 0) x^{\frac{n}{2} - 1} \int_{0}^{\infty} z^{\frac{n}{2} + \frac{m}{2} - 1} e^{-(\frac{m}{2} + \frac{nx}{2})z} dz$$

$$= \frac{(\frac{n}{2})^{\frac{n}{2}}}{\Gamma(\frac{m}{2})} \frac{(\frac{m}{2})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})} 1(x > 0) x^{\frac{n}{2} - 1} \left(\frac{m}{2} + \frac{nx}{2}\right)^{-(\frac{n}{2} + \frac{m}{2})}$$

$$= \frac{(n)^{\frac{n}{2}} (m)^{\frac{m}{2}}}{B(\frac{n}{2}, \frac{m}{2})} \frac{1}{x} \sqrt{\frac{x^{n}}{(m + nx)^{n + m}}} 1(x > 0)$$

$$= \frac{1}{x B(\frac{n}{2}, \frac{m}{2})} \sqrt{\frac{(nx)^{n} m^{m}}{(nx + m)^{n + m}}} 1(x > 0)$$

2. It is

$$\begin{split} \mathbf{E}(x) &= \mathbf{E}_{\mathrm{Ga}(\frac{m}{2}, \frac{m}{2})} \left(\mathbf{E}_{\mathrm{Ga}(\frac{n}{2}, \frac{nz}{2})}(x|z) \right) &= \mathbf{E}_{z \sim \mathrm{Ga}(\frac{m}{2}, \frac{m}{2})} \left(\frac{1}{z} \right) \\ &= \mathbf{E}_{\xi \sim \mathrm{IG}(\frac{m}{2}, \frac{m}{2})} \left(\xi \right) &= \frac{\frac{m}{2}}{\frac{m}{2} - 1} = \frac{m}{m - 2} \end{split}$$

3. It is

$$\begin{aligned} & \text{Var}(x) = & \text{E}_{\text{Ga}(\frac{m}{2},\frac{m}{2})} \left(\text{Var}_{\text{Ga}(\frac{n}{2},\frac{nz}{2})}(x|z) \right) + \text{Var}_{\text{Ga}(\frac{m}{2},\frac{m}{2})} \left(\text{E}_{\text{Ga}(\frac{n}{2},\frac{nz}{2})}(x|z) \right) \\ & = & \text{E}_{\text{Ga}(\frac{m}{2},\frac{m}{2})} \left(\frac{2}{nz^2} \right) + \text{Var}_{\text{Ga}(\frac{m}{2},\frac{m}{2})} \left(\frac{1}{z} \right) \\ & = & \frac{2}{n} \text{E}_{\text{Ga}(\frac{m}{2},\frac{m}{2})} \left(\frac{1}{z^2} \right) + \text{Var}_{\text{Ga}(\frac{m}{2},\frac{m}{2})} \left(\frac{1}{z} \right) \\ & = & \frac{2}{n} \text{E}_{\xi \sim \text{IG}(\frac{m}{2},\frac{m}{2})} \left(\xi^2 \right) + \text{Var}_{\xi \sim \text{IG}(\frac{m}{2},\frac{m}{2})} \left(\xi \right) \\ & = & \frac{2}{n} \left(\frac{\left(\frac{m}{2} \right)^2}{\left(\frac{m}{2} - 1 \right) \left(\frac{m}{2} - 2 \right)} \right) + \left(\frac{\frac{m}{2}}{\frac{m}{2} - 1} \right) \\ & = & \dots = \frac{2m^2(n + m - 2)}{n(m - 2)^2(m - 4)} \end{aligned}$$

Exercise 20. $(\star\star)$ Prove the following statement:

Let
$$x \sim N_d(\mu, \Sigma), x \in \mathbb{R}^d$$
, and $y = (x - \mu)^T \Sigma^{-1}(x - \mu)$. Then

$$y \sim \chi_d^2$$

Solution. It is

$$y = (x - \mu)^{\top} \Sigma^{-1} (x - \mu) = \left(\Sigma^{-1/2} (x - \mu) \right)^{\top} \left(\Sigma^{-1/2} (x - \mu) \right) = z^{\top} z = \sum_{i=1}^{d} z_i^2$$

where $z = \Sigma^{-1/2}(x - \mu)$, and $z \sim N_d(0, I)$. Because $z_i \sim N(0, 1)$, it is $\sum_{i=1}^d z_i^2 \sim \chi_d^2$ (from stats concepts 2).

Exercise 21. $(\star\star)$ Let

$$\begin{cases} x|\xi & \sim N_d(\mu, \Sigma \xi) \\ \xi & \sim IG(a, b) \end{cases}$$

with PDF

$$f_{N_d(\mu,\Sigma\xi)}(x|\xi) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$
$$f_{IG(a,b)}(\xi) = \frac{b^a}{\Gamma(a)} \xi^{-a-1} \exp\left(-\frac{b}{\xi}\right) 1_{(0,\infty)}(\xi)$$

Show that the marginal PDF of x is

$$f(x) = \int f_{N_d(\mu,\Sigma\xi)}(x|\xi) f_{IG(a,b)}(\xi) d\xi$$

$$= \frac{2a^{-\frac{d}{2}}}{\pi^{\frac{n}{2}} \sqrt{\det(\frac{b}{a}\Sigma)}} \frac{\Gamma\left(a + \frac{d}{2}\right)}{\Gamma(a)} \left[1 + \frac{1}{2a}(x - \mu)^{\top} \left(\frac{b}{a}\Sigma\right)^{-1} (x - \mu)\right]^{-\frac{(2a+d)}{2}}$$
(2)

FYI: For $a=b=\frac{v}{2}$, the marginal PDF is the PDF of the d-dimensional Student T distribution.

Solution. It is

$$\int f_{N_{d}(\mu,\Sigma\xi)}(x|\xi) f_{IG(a,b)}(\xi) d\xi = \\
= \int \underbrace{\left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\det(\Sigma\xi)}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \frac{\Sigma^{-1}}{\xi}(x-\mu)\right)}_{=N_{d}(x|\mu,\Sigma\xi)} \underbrace{\frac{b^{a}}{\Gamma(a)} \xi^{-a-1} \exp\left(-\frac{b}{\xi}\right) 1_{(0,\infty)}(\xi) d\xi}_{=IG(\xi|a,b)}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\det(\Sigma)}} \frac{b^{a}}{\Gamma(a)} \int \xi^{-a-1-\frac{d}{2}} \exp\left(-\frac{1}{\xi}\left[\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + b\right]\right) d\xi$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\det(\Sigma)}} \frac{b^{a}}{\Gamma(a)} \Gamma\left(a + \frac{d}{2}\right) \left[\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + b\right]^{-\left(a + \frac{d}{2}\right)}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \frac{1}{\sqrt{\det(\frac{b}{a}\Sigma)}} \frac{b^{-\frac{d}{2}}}{\Gamma(a)} \Gamma\left(a + \frac{d}{2}\right) \left[\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + b\right]^{-\frac{(2a+d)}{2}}$$

$$= \frac{2a^{-\frac{d}{2}}}{\pi^{\frac{n}{2}} \sqrt{\det(\frac{b}{a}\Sigma)}} \frac{\Gamma\left(a + \frac{d}{2}\right)}{\Gamma(a)} \left[1 + \frac{1}{2a}(x-\mu)^{\top} \left(\frac{b}{a}\Sigma\right)^{-1}(x-\mu)\right]^{-\frac{(2a+d)}{2}}$$

Exercise 22. (***)

Let $x \sim T_d(\mu, \Sigma, \nu)$. Recall that $x \sim T_d(\mu, \Sigma, \nu)$ is the marginal distribution $f_x(x) = \int f_{x|\xi}(x|\xi) f_{\xi}(\xi) d\xi$ of (x, ξ) where

$$x|\xi \sim N_d(\mu, \Sigma \xi v)$$
$$\xi \sim IG(\frac{v}{2}, \frac{1}{2})$$

Consider partition such that

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \qquad \qquad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}; \qquad \qquad \Sigma = \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix},$$

where $x_1 \in \mathbb{R}^{d_1}$ and $x_2 \in \mathbb{R}^{d_2}$.

Address the following:

1. Show that the marginal distribution of x_1 is such that

$$x_1 \sim T_{d_1}(\mu_1, \Sigma_1, \nu)$$

Hint: Try to use the form $f_x(x) = \int f_{x|\xi}(x|\xi) f_{\xi}(\xi) d\xi$.

2. Show that

$$\xi | x_1 \sim \text{IG}(\frac{1}{2}(d_1 + v), \frac{1}{2}\frac{Q + v}{v})$$

where $Q = (\mu_1 - x_1)^{\top} \Sigma_1^{-1} (\mu_1 - x_1)$.

Hint: The PDF of $y \sim N_d(\mu, \Sigma)$ is

$$f(y) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(y-\mu)^{\top}\Sigma^{-1}(y-\mu)\right)$$

Hint: The PDF of $y \sim IG(a, b)$ is

$$f_{\text{IG}(a,b)}(y) = \frac{b^a}{\Gamma(a)} y^{-a-1} \exp(-\frac{b}{y}) 1_{(0,+\infty)}(y)$$

3. Let $\xi' = \xi \frac{v}{Q+v}$, with $Q = (\mu_1 - x_1)^T \Sigma_1^{-1} (\mu_1 - x_1)$, show that

$$\xi'|x_1 \sim \operatorname{IG}(\frac{v+d_1}{2}, \frac{1}{2})$$

4. Show that the conditional distribution of $x_2|x_1$ is such that

$$x_2|x_1 \sim T_{d_2}(\mu_{2|1}, \dot{\Sigma}_{2|1}, \nu_{2|1})$$

7 where

$$\begin{split} &\mu_{2|1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1) \\ &\dot{\Sigma}_{2|1} = \frac{\nu + (\mu_1 - x_1)^{\top} \Sigma_{1}^{-1} (\mu_1 - x_1)}{\nu + d_1} \Sigma_{2|1} \\ &\Sigma_{2|1} = \Sigma_{22} - \Sigma_{21} \Sigma_{1}^{-1} \Sigma_{21}^{\top} \\ &\nu_{2|1} = \nu + d_1 \end{split}$$

Hint: You can use the Example [Marginalization & conditioning] from the Lecture Handout

Solution.

Exercise 23. $(\star\star\star)$ Show that

1. If $x_i \sim N_d(\mu_i, \Sigma_i)$ for i = 1, ..., n and $y = c + \sum_{i=1}^n B_i x_i$, then

$$y \sim N_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^{\top})$$

2. If $x_i \sim T_d(\mu_i, \Sigma_i, v)$ for i = 1, ..., n and $z = c + \sum_{i=1}^n B_i x_i$, then

$$z \sim \mathbf{T}_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^\top, v)$$

Solution.

1. For any $a \in \mathbb{R}^d$

$$a^{\top}y = a^{\top}\left(c + \sum_{i=1}^{n} B_{i}x_{i}\right) = a^{\top}c + \sum_{i=1}^{n} a^{\top}B_{i}x_{i} = a^{\top}c + \sum_{i=1}^{n} \left(B_{i}^{\top}a\right)^{\top}x_{i}$$

follows a univariate Normal distribution. So y follows a d-dimensional Normal by definition. Also

$$E(y) = E(c + \sum_{i=1}^{n} B_i x_i) = c + \sum_{i=1}^{n} \mu_i$$

5 and

$$Var(y) = Var(c + \sum_{i=1}^{n} B_i x_i) = \sum_{i=1}^{n} B_i Var(x_i) B_i^{\top} = \sum_{i=1}^{n} B_i \Sigma_i B_i^{\top}$$

So by definition $y \sim N_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^\top)$.

2. It is

$$z = c + \sum_{i=1}^{n} B_i x_i = c + \sum_{i=1}^{n} B_i \left(\mu_i + y_i \sqrt{v\xi} \right) = \left(c + \sum_{i=1}^{n} B_i \mu_i \right) + \left(\sum_{i=1}^{n} B_i y_i \right) \sqrt{v\xi}$$

for $y_i \sim N_d(0, \Sigma_i)$ and $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$, and hence

$$z = \left(c + \sum_{i=1}^{n} B_i \mu_i\right) + \tilde{y}\sqrt{v\xi}$$

where $\tilde{y} \sim N_d(0, \sum_{i=1}^n B_i \Sigma_i B_i^{\top})$. Hence, $z \sim T_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^{\top}, v)$ by definition.

Part IV

Bayesian paradigm and calculations

Exercise 24. (\star)Consider an i.i.d. sample y_1, \ldots, y_n from the skew-logistic distribution with PDF

$$f(y_i|\theta) = \frac{\theta e^{-y_i}}{(1 + e^{-y_i})^{\theta+1}}$$

with parameter $\theta \in (0, \infty)$. To account for the uncertainty about θ we assign a Gamma prior distribution with PDF

$$\pi(\theta) = \frac{b^a}{\Gamma(a)} \theta^{a-1} e^{-b\theta} 1(\theta \in (0, \infty)),$$

and fixed hyper parameters a, b specified by the researcher's prior info.

- 1. Derive the posterior distribution of θ .
- 2. Derive the predictive PDF for a future $z = y_{n+1}$.

Solution. It is

$$f(y_i|\theta) = \frac{\theta e^{-y_i}}{(1 + e^{-y_i})^{\theta + 1}} = \frac{\theta e^{-y_i}}{(1 + e^{-y_i})} \exp\left(-\theta \log(1 + e^{-y_i})\right)$$

1. By using the Bayes theorem

$$\pi(\theta|y) \propto f(y|\theta)\pi(\theta) \qquad \propto \prod_{i=1}^{n} f(y_{i}|\theta)\pi(\theta) = \prod_{i=1}^{n} \frac{\theta e^{-y_{i}}}{(1+e^{-y_{i}})^{\theta+1}} \frac{b^{a}}{\Gamma(a)} \theta^{a-1} e^{-b\theta} 1(\theta \in (0,\infty))$$

$$\propto \prod_{i=1}^{n} \frac{e^{-y_{i}}}{(1+e^{-y_{i}})} \theta^{n} \prod_{i=1}^{n} \exp(-\theta \log(1+e^{-y_{i}})) \frac{b^{a}}{\Gamma(a)} \theta^{a-1} e^{-b\theta} 1(\theta \in (0,\infty))$$

$$\propto \theta^{n+a-1} \exp\left(-\theta \left[\sum_{i=1}^{n} \log(1+e^{-y_{i}}) + b\right]\right) 1(\theta \in (0,\infty)) \propto \operatorname{Ga}(\theta|a+n, b+\sum_{i=1}^{n} \log(1+e^{-y_{i}}))$$

So

$$\theta|y\sim \operatorname{Ga}\left(\underbrace{\underbrace{a+n}_{=a^*},\underbrace{b+\sum_{i=1}^n\log(1+e^{-y_i})}}_{=b^*}\right)$$

2. By using the definition for the predictive PDF, it is

$$\begin{split} f(z|y) &= \int_{\mathbb{R}} f(z|\theta) \pi(\theta|y) \mathrm{d}\theta \\ &= \int_{\mathbb{R}_+} \frac{e^{-z}}{(1+e^{-z})} \theta \exp(-\theta \log(1+e^{-z})) \frac{(b^*)^{a^*}}{\Gamma(a^*)} \theta^{a^*-1} \exp(-\theta b^*) \mathrm{d}\theta \\ &= \frac{(b^*)^{a^*}}{\Gamma(a^*)} \frac{e^{-z}}{(1+e^{-z})} \int_{\mathbb{R}_+} \theta^{a^*+1-1} \exp(-\theta(b^* + \log(1+e^{-y}))) \mathrm{d}\theta \\ &= \frac{(b^*)^{a^*}}{\Gamma(a^*)} \frac{e^{-z}}{(1+e^{-z})} \frac{\Gamma(a^*+1)}{(b^* + \log(1+e^{-z}))^{a^*+1}} = \frac{e^{-z}}{(1+e^{-z})} \frac{(b^*)^{a^*}}{(b^* + \log(1+e^{-z}))^{a^*+1}} a^* \end{split}$$

Exercise 25. $(\star\star\star)$ (Nuisance parameters are involved)

<-story

Assume observable quantities $y=(y_1,...,y_n)$ forming the available data set of size n. Assume that the observations are drawn i.i.d. from a sampling distribution which is judged to be in the Normal parametric family of distributions $N(\mu, \sigma^2)$ with unknown mean μ and variance σ^2 . We are interested in learning μ and the next outcome $z=y_{n+1}$. We do not care about σ^2 .

Assume You specify a Bayesian model

<-set-up

$$\begin{cases} y_i|\mu,\sigma^2 \sim \mathrm{N}(\mu,\sigma^2), \text{ for all } i=1,...,n \\ \mu|\sigma^2 \sim \mathrm{N}(\mu_0,\sigma^2\frac{1}{\tau_0}) \\ \sigma^2 \sim \mathrm{IG}(a_0,k_0) \end{cases}, \text{ prior}$$

1. Show that

$$\sum_{i=1}^{n} (y_i - \theta)^2 = n(\bar{y} - \theta)^2 + ns^2,$$

where $s^2 = \frac{1}{2} \sum_{i=1}^{n} (y_i - \bar{y})^2$.

2. Show that the joint posterior distribution $\Pi(\mu, \sigma^2|y)$ is such as

$$\mu|y, \sigma^2 \sim N(\mu_n, \sigma^2 \frac{1}{\tau_n})$$

 $\sigma^2|y \sim IG(a_n, k_n)$

with

$$\mu_n = \frac{n\bar{y} + \tau_0 \mu_0}{n + \tau_0};$$
 $\tau_n = n + \tau_0;$ $a_n = a_0 + n$

$$k_n = k_0 + \frac{1}{2}ns_n^2 + \frac{1}{2}\frac{\tau_0 n(\mu_0 - \bar{y})^2}{n + \tau_0}$$

Hint: It is

$$-\frac{1}{2}\frac{(\mu-\mu_1)^2}{v_1}-\frac{1}{2}\frac{(\mu-\mu_2)^2}{v_2}...-\frac{1}{2}\frac{(\mu-\mu_n)^2}{v_n}=-\frac{1}{2}\frac{(\mu-\hat{\mu})^2}{\hat{v}}+C$$

where

$$\hat{v} = \left(\sum_{i=1}^{n} \frac{1}{v_i}\right)^{-1}; \quad \hat{\mu} = \hat{v}\left(\sum_{i=1}^{n} \frac{\mu_i}{v_i}\right); \quad C = \frac{1}{2} \frac{\hat{\mu}^2}{\hat{v}} - \frac{1}{2} \sum_{i=1}^{n} \frac{\mu_i^2}{v_i}$$

3. Show that the marginal posterior distribution $\Pi(\mu|y)$ is such as

$$\mu|y \sim \mathsf{T}_1\left(\mu_n, \frac{k_n}{a_n} \frac{1}{\tau_n}, 2a_n\right)$$

Hint-1: If $x \sim IG(a, b)$, y = cx, then $y \sim IG(a, cb)$.

Hint-2: The definition of Student T is considered as known

4. Show that the predictive distribution $\Pi(z|y)$ is Student T such as

$$z|y \sim \mathsf{T}_1\left(\mu_n, \frac{k_n}{a_n}(\frac{1}{\tau_n}+1), 2a_n\right)$$

Hint-1: Consider that

$$N(x|\mu_1, \sigma_1^2) N(x|\mu_2, \sigma_2^2) = N(x|m, v^2) N(\mu_1|\mu_2, \sigma_1^2 + \sigma_2^2)$$

where

$$v^2 = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1}; \quad m = v^2 \left(\frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2}\right)$$

Hint-2: The definition of Student T is considered as known

Solution.

1. It is

$$\sum_{i=1}^{n} (y_i - \theta)^2 = \sum_{i=1}^{n} [(y_i - \bar{y}) - (\theta - \bar{y})]^2$$

$$= \sum_{i=1}^{n} [(y_i - \bar{y})^2 + (\theta - \bar{y})^2 - 2(y_i - \bar{y})(\theta - \bar{y})]$$

$$= ns^2 + n(\bar{y} - \theta)^2, \text{ where } s^2 = \frac{1}{2} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

2. I use the Bayes theorem

$$\pi(\mu, \sigma^{2}|y) \propto f(y|\mu, \sigma^{2})\pi(\mu, \sigma^{2}) = \prod_{i=1}^{n} N(y_{i}|\mu, \sigma^{2})N(\mu|\mu_{0}, \sigma^{2}\frac{1}{\tau_{0}})IG(\sigma^{2}|a_{0}, k_{0})$$

$$\propto \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{\sigma^{2}}\right) \times \left(\frac{1}{\sigma^{2}}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{2}\frac{(\mu-\mu_{0})^{2}}{\sigma^{2}/\tau_{0}}\right) \times \left(\frac{1}{\sigma^{2}}\right)^{a_{0}+1} \exp\left(-\frac{1}{\sigma^{2}}k_{0}\right)$$

$$\propto \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}+\frac{1}{2}+a_{0}+1} \exp\left(\frac{1}{\sigma^{2}}\left[-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{1}-\frac{1}{2}\frac{(\mu-\mu_{0})^{2}}{1/\tau_{0}}\right]-\frac{1}{\sigma^{2}}k_{0}\right)$$
It is
$$-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{1}-\frac{1}{2}\frac{(\mu-\mu_{0})^{2}}{1/\tau_{0}}=-\frac{1}{2}\frac{(\mu-\mu_{n})^{2}}{\frac{v_{n}^{2}}{1}}+C_{n}$$

where

$$v_n = \left(\sum_{i=1}^n \frac{1}{1} + \frac{1}{1/\tau_0}\right)^{-1} = \frac{1}{n+\tau_0} \implies \tau_n = n+\tau_0$$

$$\mu_n = v_n \left(\sum_{i=1}^n \frac{y_i}{1} + \frac{\mu_0}{1/\tau_0}\right) \implies \mu_n = \frac{n\bar{y} + \tau_0\mu_0}{n+\tau_0}$$

$$C_n = \frac{1}{2} \frac{\mu_n^2}{v_n} - \frac{1}{2} \left(n\sum_{i=1}^n y_i^2 + \tau_0\mu_0^2\right) = \frac{1}{2} \frac{(n\bar{y} + \tau_0\mu_0)^2}{n+\tau_0} - \frac{1}{2} \left(n\sum_{i=1}^n y_i^2 + \tau_0\mu_0^2\right)$$

$$= \dots \text{Quest. } 1\dots = -\frac{1}{2} ns_n^2 - \frac{1}{2} \frac{\tau_0 n(\mu_0 - \bar{y})^2}{n+\tau_0}$$

26 **So**

$$\pi(\mu, \sigma^{2}|y) \propto \left(\frac{1}{\sigma^{2}}\right)^{\frac{1}{2} + \frac{n}{2} + a_{0} + 1} \exp\left(\frac{1}{\sigma^{2}} \left[-\frac{1}{2} \frac{(\mu - \mu_{n})^{2}}{1/\tau_{n}} + C_{n}\right] - \frac{1}{\sigma^{2}} k_{0}\right)$$

$$\propto \underbrace{\left(\frac{1}{\sigma^{2}}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(\mu - \mu_{n})^{2}}{\sigma^{2}/\tau_{n}}\right)}_{\propto N(\mu|\mu_{n}, \sigma^{2}/\tau_{n})} \times \underbrace{\left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2} + a_{0} + 1}}_{\propto IG(\sigma^{2}|a_{n}, k_{n})} \exp\left(-\frac{1}{\sigma^{2}} \underbrace{(k_{0} - C_{n})}_{\propto IG(\sigma^{2}|a_{n}, k_{n})}\right)$$

$$\propto N(\mu|\mu_n, \sigma^2/\tau_n)IG(\sigma^2|a_n, k_n)$$

30 where

$$\mu_n = \frac{n\bar{y} + \tau_0 \mu_0}{n + \tau_0}; \qquad a_n = \frac{n}{2} + a_0;$$

$$\tau_n = n + \tau_0; \qquad k_n = k_0 + \frac{1}{2} n s_n^2 + \frac{1}{2} \frac{\tau_0 n (\mu_0 - \bar{y})^2}{n + \tau_0}.$$

3. It is

$$\pi(\mu|y) = \int \pi(\mu, \sigma^2|y) \mathrm{d}\sigma^2 = \int \mathrm{N}(\mu|\mu_n, \sigma^2/\tau_n) \mathrm{IG}(\sigma^2|a_n, k_n) \mathrm{d}\sigma^2$$

by change of variable $\xi = \sigma^2 \frac{1}{2k_n}$, it is

$$\begin{split} \pi(\mu|y) &= \int \mathrm{N}(\mu|\mu_n, \xi 2k_n \frac{1}{\tau_n} \frac{2a_n}{2a_n}) \mathrm{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2}) \mathrm{d}\xi = \int \mathrm{N}(\mu|\mu_n, \xi \frac{1}{\tau_n} \frac{k_n}{a_n} 2a_n) \mathrm{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2}) \mathrm{d}\xi \\ &= \mathrm{T}_1(\mu|\mu_n, \frac{k_n}{a_n} \frac{1}{\tau_n}, 2a_n) \end{split}$$

4. It is

$$\begin{split} g(z|y) &= \int f(z|\mu,\sigma^2) \pi(\mu,\sigma^2|y) \mathrm{d}\mu \mathrm{d}\sigma^2 = \int \mathrm{N}(z|\mu,\sigma^2) \mathrm{N}(\mu|\mu_n,\sigma^2/\tau_n) \mathrm{IG}(\sigma^2|a_n,k_n) \mathrm{d}\mu \mathrm{d}\sigma^2 \\ &= \int \left[\int \mathrm{N}(z|\mu,\sigma^2) \mathrm{N}(\mu|\mu_n,\sigma^2/\tau_n) \mathrm{d}\mu \right] \mathrm{IG}(\sigma^2|a_n,k_n) \mathrm{d}\sigma^2 \end{split}$$

Normal density is symmetric $N(z|\mu,\sigma^2)N(\mu|\mu_n,\sigma^2/\tau_n) = N(\mu|z,\sigma^2)N(\mu|\mu_n,\sigma^2/\tau_n)$, and by using the Hint

$$\int \mathrm{N}(\mu|z,\sigma^2)\mathrm{N}(\mu|\mu_n,\sigma^2/\tau_n)\mathrm{d}\mu = \int \mathrm{N}(\mu|\mathrm{const.},\mathrm{const.})\mathrm{N}\left(z|\mu_n,\sigma^2\left[\frac{1}{\tau_n}+1\right]\right)\mathrm{d}\mu = \mathrm{N}\left(z|\mu_n,\sigma^2\left[\frac{1}{\tau_n}+1\right]\right)$$

So

$$g(z|y) = \int \mathbf{N}\left(z|\mu_n, \sigma^2\left[\frac{1}{\tau_n} + 1\right]\right) \mathbf{IG}(\sigma^2|a_n, k_n) d\sigma^2$$

by change the variable $\xi = \sigma^2 \frac{1}{2k_n}$, it is

$$g(z|y) = \int \mathcal{N}\left(z|\mu_n, \xi\left[\frac{1}{\tau_n} + 1\right]\frac{k_n}{a_n}2a_n\right) \operatorname{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2}) \mathrm{d}\xi = \mathcal{T}_1\left(z|\mu_n, \left[\frac{1}{\tau_n} + 1\right]\frac{k_n}{a_n}, 2a_n\right)$$

The following is about the Normal linear model of regression. The calculations are too challenging.; (not anymore...)

Exercise 26. $(\star\star\star)$ (Normal linear regression model with unknown error variance)

<-story

Consider we are interested in recovering the mapping

$$x \stackrel{\eta(x)}{\longmapsto} y$$

in the sense that y is the response (output quantity) that depends on x which is the independent variable (input quantity) in a procedure; E.g.:,

- y: precipitation in log scale
- x = (longitude, latitude): geographical coordinates.

It is believed that the mapping $\eta(x)$ can be represented as an expansion of d known polynomial functions $\{\phi_j(x)\}_{j=0}^{d-1}$ such as

$$\eta(x) = \sum_{j=0}^{d-1} \phi_j(x) \beta_j = \Phi(x)^{\top} \beta; \text{ with } \Phi(x) = (\phi_0(x), ..., \phi_{d-1}(x))^{\top}$$

- where $\beta \in \mathbb{R}^d$ is unknown.
- Assume observable quantities (data) in pairs (x_i, y_i) for i = 1, ..., n; (E.g. from the i-th station at location x_i I got the reading y_i). Assume that the response observations $y = (y_1, ..., y_n)$ may be contaminated by noise with unknown variance; such that

$$y_i = \eta(x_i) + \epsilon_i$$

- where $\epsilon_i \sim N(0, \sigma^2)$ with unknown σ^2 .
- You are interested in learning β , but you do not care about σ^2 . Also you want to learn the value of y_f at an untried x_f (i.e. the precipitation at any other location).
- 468 Consider the Bayesian model

<-set-up

$$y|eta,\sigma^2\sim \mathrm{N}(\Phieta,I\sigma^2);$$
 the sampling distr $eta|\sigma^2\sim \mathrm{N}(\mu_0,V_0\sigma^2);$ prior distr $\sigma^2\sim \mathrm{IG}(a_0,k_0)$ prior distr

- where Φ is the design matrix $[\Phi]_{i,j} = \Phi_j(x_i)$.
 - 1. Show that the joint posterior distribution $d\Pi(\beta, \sigma^2|y)$ is such as

$$\beta|y,\sigma^2 \sim N(\mu_n, V_n\sigma^2);$$
 $\sigma^2|y \sim IG(a_n, k_n)$

with

$$V_n^{-1} = \Phi^{\top} \Phi + V_0^{-1}; \qquad \mu_n = V_n \left((\Phi^{\top} \Phi)^{-1} \Phi y + V_0^{-1} \mu_0 \right); \qquad a_n = \frac{n}{2} + a_0$$
$$k_n = \frac{1}{2} (y - \Phi \hat{\beta}_n)^{\top} (y - \Phi \hat{\beta}_n) - \frac{1}{2} \mu_n^{\top} V_n^{-1} \mu_n + \frac{1}{2} \left(\mu_0^{\top} V_0^{-1} \mu_0 + y^{\top} \Phi^{\top} (\Phi^{\top} \Phi)^{-1} \Phi y \right) + k_0$$

Hint-1:

$$(y - \Phi \beta)^{\top} (y - \Phi \beta) = (\beta - \hat{\beta}_n)^{\top} \left[\Phi^{\top} \Phi \right] (\beta - \hat{\beta}_n) + S_n; \quad S_n = (y - \Phi \hat{\beta}_n)^{\top} (y - \Phi \hat{\beta}_n); \quad \hat{\beta}_n = (\Phi^{\top} \Phi)^{-1} \Phi y$$

Hint-2: If $\Sigma_1 > 0$ and $\Sigma_2 > 0$ symmetric

$$-\frac{1}{2}(x-\mu_1)\Sigma_1^{-1}(x-\mu_1)^{\top} - \frac{1}{2}(x-\mu_2)\Sigma_2^{-1}(x-\mu_2)^{\top} = -\frac{1}{2}(x-m)V^{-1}(x-m)^{\top} + C$$

where

$$V^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}; \quad m = V\left(\Sigma_1^{-1}\mu_1 + \Sigma_2^{-1}\mu_2\right); \quad C = \frac{1}{2}m^{\mathsf{T}}V^{-1}m - \frac{1}{2}\left(\mu_1^{\mathsf{T}}\Sigma_1^{-1}\mu_1 + \mu_2^{\mathsf{T}}\Sigma_2^{-1}\mu_2\right)$$

2. Show that the marginal posterior of β given y is

$$\beta|y \sim T_d(\mu_n, V_n \frac{k_n}{a_n}, 2a_n)$$

3. Show that the predictive distribution of an outcome $y_f = \Phi_f \beta + \epsilon$ with $\Phi_f = (\phi_0(x_f),...,\phi_{d-1}(x_f))$ and $\epsilon \sim N(0,\sigma^2)$ at untried location x_f is

$$y_f|y \sim \mathrm{T}_d(\mu_n, [\Phi^{\top}\Phi + 1]\frac{k_n}{a_n}, 2a_n)$$

Consider that

$$\mbox{N}(x|\mu_1,\sigma_1^2)\,\mbox{N}(x|\mu_2,\sigma_2^2) \,=\, \mbox{N}(x|m,v^2)\,\mbox{N}(\mu_1|\mu_2,\sigma_1^2+\sigma_2^2)$$

where

$$v^2 = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1}; \quad m = v^2 \left(\frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2}\right)$$

Hint-2: The definition of Student T is considered as known

Solution.

1. I use the Bayes theorem

$$\begin{split} \pi(\mu, \sigma^2 | y) &\propto & f(y | \mu, \sigma^2) \pi(\mu, \sigma^2) = \mathbf{N}(y | \Phi \beta, I \sigma^2) \mathbf{N}(\beta | \mu_0, \sigma^2 V_0) \mathbf{IG}(\sigma^2 | a_0, k_0) \\ &\propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2}(y - \Phi \beta)^\top (I \sigma^2)^{-1}(y - \Phi \beta)\right) \times \left(\frac{1}{\sigma^2}\right)^{\frac{d}{2}} \exp\left(-\frac{1}{2}(\beta - \mu_0)^\top (V_0 \sigma^2)^{-1}(\beta - \mu_0)\right) \\ &\times \left(\frac{1}{\sigma^2}\right)^{a_0 + 1} \exp\left(-\frac{1}{\sigma^2}k_0\right) \end{split}$$

hi

$$(y - \Phi \beta)^{\top} (y - \Phi \beta) = (\beta - \hat{\beta}_n)^{\top} \left[\Phi^{\top} \Phi \right] (\beta - \hat{\beta}_n) + S_n; \quad S_n = (y - \Phi \hat{\beta}_n)^{\top} (y - \Phi \hat{\beta}_n); \quad \hat{\beta}_n = (\Phi^{\top} \Phi)^{-1} \Phi y$$

$$\pi(\mu, \sigma^{2}|y) \propto \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2}\frac{1}{\sigma^{2}}(\beta - \hat{\beta}_{n})^{\top} \left[\Phi^{\top}\Phi\right] (\beta - \hat{\beta}_{n}) - \frac{1}{2}\frac{1}{\sigma^{2}}S_{n}\right)$$

$$\times \left(\frac{1}{\sigma^{2}}\right)^{\frac{d}{2}} \exp\left(-\frac{1}{2}(\beta - \mu_{0})^{\top}(V_{0}\sigma^{2})^{-1}(\beta - \mu_{0})\right) \times \left(\frac{1}{\sigma^{2}}\right)^{a_{0}+1} \exp\left(-\frac{1}{\sigma^{2}}k_{0}\right)$$

$$\propto \left(\frac{1}{\sigma^{2}}\right)^{\frac{d}{2}} \exp\left(-\frac{1}{2}\frac{1}{\sigma^{2}}(\beta - \hat{\beta}_{n})^{\top} \left[\Phi^{\top}\Phi\right] (\beta - \hat{\beta}_{n}) - \frac{1}{2}\frac{1}{\sigma^{2}}(\beta - \mu_{0})^{\top}V_{0}^{-1}(\beta - \mu_{0})\right)$$

$$\times \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}+a_{0}+1} \exp\left(-\frac{1}{2}\frac{1}{\sigma^{2}}S_{n} - \frac{1}{\sigma^{2}}k_{0}\right)$$

but

$$-\frac{1}{2}(\beta - \hat{\beta}_n)^{\top} \left[\Phi^{\top} \Phi \right] (\beta - \hat{\beta}_n) - \frac{1}{2}(\beta - \mu_0)^{\top} V_0^{-1} (\beta - \mu_0) = -\frac{1}{2}(\beta - \mu_n)^{\top} V_n^{-1} (\beta - \mu_n) + \frac{1}{2} C_n$$

$$V_{n}^{-1} = \Phi^{\top} \Phi + V_{0}^{-1}; \qquad \mu_{n} = V_{n} \left(\Phi^{\top} \Phi \hat{\beta}_{n} + V_{0}^{-1} \mu_{0} \right) = V_{n} \left((\Phi^{\top} \Phi)^{-1} \Phi y + V_{0}^{-1} \mu_{0} \right)$$

$$C_{n} = \frac{1}{2} \mu_{n}^{\top} V_{n}^{-1} \mu_{n} - \frac{1}{2} \left(\mu_{0}^{\top} V_{0}^{-1} \mu_{0} + \hat{\beta}_{n}^{\top} \left[\Phi^{\top} \Phi \right] \hat{\beta}_{n} \right) = \frac{1}{2} \mu_{n}^{\top} V_{n}^{-1} \mu_{n} - \frac{1}{2} \left(\mu_{0}^{\top} V_{0}^{-1} \mu_{0} + y^{\top} \Phi^{\top} (\Phi^{\top} \Phi)^{-1} \Phi y \right)$$

,

$$\pi(\mu, \sigma^2 | y) \propto \underbrace{\left(\frac{1}{|V_n \sigma^2|}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{2}(\beta - \mu_n)^\top \left[V_n \sigma^2\right]^{-1}(\beta - \mu_n)\right)}_{\propto \mathcal{N}_d(\beta | \mu_n, V_n \sigma^2)} \times \underbrace{\left(\frac{1}{\sigma^2}\right)^{\frac{a_n}{2} + a_0 + 1} \exp\left(-\frac{1}{\sigma^2}\left[\frac{1}{2}S_n - C_n + k_0\right]\right)}_{\propto \mathcal{IG}(\sigma^2 | a_n, k_n)}$$

So

$$\begin{cases} \mu | \sigma^2 \sim N(\mu_n, \sigma^2 V_n) \\ \sigma^2 \sim IG(a_n, k_n) \end{cases}$$

2. It is

$$\pi(\beta|y) = \int \pi(\beta, \sigma^2|y) d\sigma^2 = \int N(\beta|\mu_n, V_n \sigma^2) IG(\sigma^2|a_n, k_n) d\sigma^2$$

by change the variable $\xi = \sigma^2 \frac{1}{2k_n}$, it is

$$\begin{split} \pi(\beta|y) &= \int \mathcal{N}(\beta|\mu_n, \xi 2k_n V_n \frac{2a_n}{2a_n}) \mathcal{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2}) \mathrm{d}\xi = \int \mathcal{N}(\beta|\mu_n, \xi V_n \frac{k_n}{a_n} 2a_n) \mathcal{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2}) \mathrm{d}\xi \\ &= \mathcal{T}_d(\beta|\mu_n, \frac{k_n}{a_n} V_n, 2a_n) \end{split}$$

3. It is

$$\begin{split} g(y_f|y) &= \int f(y_f|\Phi_f\beta,\sigma^2)\pi(\beta,\sigma^2|y)\mathrm{d}\beta\mathrm{d}\sigma^2 = \int \mathrm{N}(y_f|\Phi_f\beta,\sigma^2)\mathrm{N}(\beta|\mu_n,V_n\sigma^2)\mathrm{IG}(\sigma^2|a_n,k_n)\mathrm{d}\beta\mathrm{d}\sigma^2 \\ &= \int \underbrace{\left[\int \mathrm{N}(y_f|\Phi_f\beta,\sigma^2)\mathrm{N}(\beta|\mu_n,V_n\sigma^2)\mathrm{d}\beta\right]}_{\mathrm{IG}(\sigma^2|a_n,k_n)\mathrm{d}\sigma^2} \mathrm{IG}(\sigma^2|a_n,k_n)\mathrm{d}\sigma^2 \end{split}$$

by change of variable for $\xi' = \Phi_f \beta \sim N(\Phi_f \mu_n, \Phi_f^\top V_n \Phi_f \sigma^2)$

$$A = \int \mathbf{N}(y_f|\xi', \sigma^2) \mathbf{N}(\xi'|\Phi_f \mu_n, \Phi_f^\top V_n \Phi_f \sigma^2) \mathrm{d}\xi'$$

because Normal is symmetric around the mean

$$A = \int \mathbf{N}(\xi'|y_f, \sigma^2) \mathbf{N}(\xi'|\Phi_f \mu_n, \Phi_f^\top V_n \Phi_f \sigma^2) \mathrm{d}\xi'$$

by using the Hint

$$A = \int \mathbf{N}(\xi'|\mathsf{const.},\mathsf{const.}) \mathbf{N}\left(y_f|\Phi_f\mu_n,\sigma^2\left[\Phi_f^\top V_n\Phi_f + 1\right]\right) \mathrm{d}\xi = \mathbf{N}\left(y_f|\Phi_f\mu_n,\sigma^2\left[\Phi_f^\top V_n\Phi_f + 1\right]\right)$$

So

$$g(y_f|y) = \int \mathbf{N}\left(y_f|\Phi_f\mu_n, \sigma^2\left[\Phi_f^\top V_n\Phi_f + 1\right]\right) \mathbf{IG}(\sigma^2|a_n, k_n) \mathrm{d}\sigma^2$$

by change the variable $\xi = \sigma^2 \frac{1}{2k_n}$, it is

$$g(y_f|y) = \int \mathbf{N}\left(y_f|\Phi_f\mu_n, \xi\left[\Phi_f^{\top}V_n\Phi_f + 1\right]\frac{k_n}{a_n}2a_n\right)\mathbf{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2})d\xi = \mathbf{T}_1\left(y_f|\Phi_f\mu_n, \left[\Phi_f^{\top}V_n\Phi_f + 1\right]\frac{k_n}{a_n}, 2a_n\right)\mathbf{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2})d\xi = \mathbf{T}_1\left(y_f|\Phi_f\mu_n, \frac{1}{2}, \frac{1}{2}\right)\mathbf{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2})d\xi = \mathbf{T}_1\left(y_f|\Phi_f\mu_n, \frac{1}{2}\right)\mathbf{IG}(\xi|\frac{2a_n}{2}, \frac{1}{2})d\xi$$

4 So

$$y_f|y \sim \mathrm{T}_1\left(\Phi_f \mu_n, \left[\Phi_f^\top V_n \Phi_f + 1\right] \frac{k_n}{a_n}, 2a_n\right)$$

6 , or equiv.

$$y(x_f)|y \sim \mathbf{T}_1\left(\phi^{\top}(x_f)\mu_n, \left[\Phi_f^{\top}V_n\Phi_f + 1\right]\frac{k_n}{a_n}, 2a_n\right)$$

Exercise 27. $(\star\star)$ Let $y=(y_1,...,y_n)$ be observables drawn iid from sampling distribution $y_i|\theta \stackrel{\text{iid}}{\sim} N(\theta,\theta^2)$ for all i=1,...,n, where $\theta \in \mathbb{R}$ is unknown. Specify a conjugate prior density for θ up to an unknown normalizing constant.

Solution. The sampling distribution is

$$f(y_i|\theta) = \mathbf{N}(y_i|\theta, \theta^2) \propto (\theta^2)^{-1/2} \exp(-\frac{1}{2} \frac{(y_i - \theta)^2}{\theta^2}) \propto |\theta|^{-1} \exp(-\frac{1}{2} y_i^2 \frac{1}{\theta^2} + y_i \frac{1}{\theta})$$

and hence it belongs to the exponential family with $g(\theta) = |\theta|^{-1}$, $c_1 = -\frac{1}{2}$, $\phi_1(\theta) = \frac{1}{\theta^2}$, $h_1(y_i) = y_i^2$, $c_2 = 1$, $\phi_2(\theta) = \frac{1}{\theta}$, $h_2(y_i) = y_i$.

The corresponding conjugate prior has pdf such as

$$\pi(\theta) = \tilde{\pi}(\theta|\tau) \propto |\theta|^{-\tau_0} \exp(-\frac{1}{2} \frac{1}{\theta^2} \tau_1 + \frac{1}{\theta} \tau_2), \qquad \text{where } \tau = (\tau_0, \tau_1, \tau_2).$$

I actually cannot recognize it as a standard distribution in this case. The posterior distribution has pdf such as

$$\pi(\theta|y) \propto f(y|\theta)\pi(\theta) = \prod_{i=1}^{n} N(y_i|\theta, \theta^2)\pi(\theta) \propto |\theta|^{-(\tau_0 + n)} \exp(-\frac{1}{2} \frac{1}{\theta^2} (\tau_1 + \sum_{i=1}^{n} y_i^2) + \frac{1}{\theta} (\tau_2 + \sum_{i=1}^{n} y_i))$$

Namely, $\pi(\theta|y) = \tilde{\pi}(\theta|\tau^*)$, with $\tau^* = (\tau_0 + n, \tau_1 + \sum_{i=1}^n y_i^2, \tau_2 + \sum_{i=1}^n y_i)$; so it is conjugate.

Exercise 28. $(\star\star)$ If the sampling distribution $F(\cdot|\theta)$ is discrete and the prior $\Pi(\theta)$ is proper, then the posterior $\Pi(\theta|y)$ is always proper.

Solution. It is

$$f(y) \leq \sum_{\forall y} f(y) = \sum_{\forall y} \overbrace{\int f(y|\theta) \mathrm{d}\Pi(\theta)}^{\mathrm{Fubini}} \int \sum_{\forall y} f(y|\theta) \mathrm{d}\Pi(\theta) = \int \mathrm{d}\Pi(\theta) = 1$$

Exercise 29. $(\star\star)$ If the sampling distribution $F(\cdot|\theta)$ is continuous and the prior $\Pi(\theta)$ is proper, then the posterior $\Pi(\theta|y)$ is almost always proper.

58 **Solution.** It is

$$\int f(y)\mathrm{d}y = \int_{\forall y} \overbrace{\int_{\forall \theta} f(y|\theta)\mathrm{d}\Pi(\theta)}^{f(y)=}\mathrm{d}y \overset{\mathrm{Fubini}}{=} \int_{\forall \theta} \int_{\forall y} f(y|\theta)\mathrm{d}y\mathrm{d}\Pi(\theta) = \int \mathrm{d}\Pi(\theta) = 1$$

So it is $f(y) < \infty$ for every set of y (possibly) apart from a finite number of y's with 'probability' zero.

The Limit Comparison Theorem for Improper Integrals

General: Let integrable functions f(x), and g(x) for $x \ge a$.

Let

$$0 < f(x) < q(x)$$
, for $x > a$

Then

$$\int_{a}^{\infty} g(x) dx < \infty \implies \int_{a}^{\infty} f(x) dx < \infty$$
$$\int_{a}^{\infty} f(x) dx = \infty \implies \int_{a}^{\infty} g(x) dx = \infty$$

Type I: Let integrable functions f(x), and g(x) for $x \ge a$, and let g(x) be positive.

Let

$$\lim_{n \to \infty} \frac{f(x)}{g(x)} = c$$

Then

• If
$$c\in(0,\infty)$$
 :
$$\int_0^\infty g(x)\mathrm{d}x<\infty\Longleftrightarrow\int_0^\infty f(x)\mathrm{d}x<\infty$$

• If
$$c=0$$
 :
$$\int_a^\infty g(x)\mathrm{d}x < \infty \implies \int_a^\infty f(x)\mathrm{d}x < \infty$$

• If
$$c=\infty$$
 :
$$\int_a^\infty f(x)\mathrm{d}x = \infty \implies \int_a^\infty g(x)\mathrm{d}x = \infty$$

Type II: Let integrable functions f(x), and g(x) for $a < x \le b$, and let g(x) be positive.

Let

$$\lim_{n \to a^+} \frac{f(x)}{g(x)} = c$$

Then

• If
$$c\in(0,\infty)$$
 :
$$\int_{-\infty}^{\infty}g(x)\mathrm{d}x<\infty\Longleftrightarrow\int_{-\infty}^{\infty}f(x)\mathrm{d}x<\infty$$

• If
$$c=0$$
:
$$\int_a^\infty g(x)\mathrm{d}x < \infty \implies \int_a^\infty f(x)\mathrm{d}x < \infty$$

• If
$$c = \infty$$
:
$$\int_{a}^{\infty} f(x) dx = \infty \implies \int_{a}^{\infty} g(x) dx = \infty$$

Note: A useful test function is

$$\int_0^\infty \left(\frac{1}{x}\right)^p \mathrm{d}x \quad \begin{cases} <\infty &, \text{ when } p>1 \\ =\infty &, \text{ when } p\leq 1 \end{cases}$$

Exercise 30. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x | \sigma & \sim \mathbf{N}(0, \sigma^2) \\ \sigma & \sim \mathbf{E}\mathbf{x}(\lambda) \end{cases}$$

where $\text{Ex}(\lambda)$ is the exponential distribution with mean $1/\lambda$. Show that the posterior distribution is not defined always.

• HINT: Precisely, show that the posterior is not defined in the case that you collect only one observation x = 0.

Solution.

68 It is

$$f(x) \propto \int_{\mathbb{R}_+} \mathbf{N}(x|0,\sigma^2) \mathbf{E}\mathbf{x}(\sigma|\lambda) d\sigma = \int_0^\infty \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(x-0)^2) \lambda \exp(-\sigma\lambda) d\sigma$$
$$f(x=0) \propto \int_0^\infty \frac{1}{\sigma} \exp(-\sigma\lambda) d\sigma$$

We will use a convergence criteria in order to check if $\int_0^\infty \frac{1}{\sigma} \exp(-\sigma \lambda) d\sigma = \infty$.

I will use the Limit Comparison Test to check if $\int_0^\infty \frac{1}{\sigma} \exp(-\sigma \lambda) d\sigma = \infty$. Consider $h(\sigma) = \frac{1}{\sigma} \exp(-\sigma \lambda)$. The function $h(\sigma)$ has an improper behavior at 0, as it is not bounded there. Let $g(\sigma) = \frac{1}{\sigma}$. According to the Limit Comparison Test, it is

$$\lim_{\sigma \to 0^+} \frac{h(\sigma)}{g(\sigma)} = \lim_{\sigma \to 0^+} \frac{\frac{1}{\sigma} \exp(-\sigma \lambda)}{\frac{1}{\sigma}} = 1 \neq 0$$

76 and

$$\int_0^\infty g(\sigma)\mathrm{d}\sigma = \int_0^\infty \frac{1}{\sigma}\mathrm{d}\sigma = \infty.$$

8 Therefore, it will be

$$\underbrace{\int_0^\infty h(\sigma) \mathrm{d}\sigma}_{=f(x=0)} = \infty$$

as well.

Exercise 31. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x | \sigma & \sim \mathbf{N}(0, \sigma^2) \\ \sigma & \sim \Pi(\sigma) \end{cases}$$

where $\Pi(\sigma)$ is an improper prior distribution with density such as $\pi(\sigma) \propto \sigma^{-1} \exp(-a\sigma^{-2})$ for a > 0. Show that we can use this prior on Bayesian inference.

6 Solution.

We will check the properness condition. It is

$$f(x) = \int_{\mathbb{R}_+} \mathbf{N}(x|0,\sigma^2) \mathbf{E}\mathbf{x}(\sigma|\lambda) d\sigma \propto \int_0^\infty \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(x-0)^2) \sigma^{-1} \exp(-a\sigma^{-2}) d\sigma$$

$$= \int_0^\infty \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(x^2+2a)) d\sigma$$

$$= \int_0^\infty \frac{1}{\sqrt{\xi}} \exp(-\frac{\xi}{2}(x^2+2a)) d\xi$$

for $\xi = 1/\sigma^2$. It is

$$f(x) \propto \int_0^\infty \frac{1}{\sqrt{\xi}} \exp(\underbrace{-\frac{\xi}{2}(x^2 + 2a)}_{\leq 0}) d\xi \leq \int_0^\infty \frac{1}{\sqrt{\xi}} d\xi < \infty$$

So the posterior is defined.

1

Exercise 32. $(\star\star)$ Let x be an observation. Consider the Bayesian model

$$\begin{cases} x|\theta & \sim \operatorname{Pn}(\theta) \\ \theta & \sim \Pi(\theta) \end{cases}$$

where $Pn(\theta)$ is the Poisson distribution with expected value θ . Consider a prior $\Pi(\theta)$ with density such as $\pi(\theta) \propto \frac{1}{\theta}$.

Show that the posterior distribution is not always defined.

Hint-1: It suffices to show that the posterior is not defined in the case that you collect only one observation x = 0.

Hint-2: Poisson distribution: $x \sim Pn(\theta)$ has PMF

$$\operatorname{Pn}(x|\theta) = \frac{\theta^x \exp(-\theta)}{x!} 1(x \in \mathbb{N})$$

Solution.

60:

The next exercise is about the Sequential processing of data via Bayes theorem

Exercise 33. (**)Assume that observable quantities $x_1, x_2, ...$ are generated i.i.d by a process that can be modeled as a sampling distribution $N(\mu, \sigma^2)$ with known σ^2 and unknown μ .

- 1. Assume that you have collected an observation x_1 . Specify a prior $\Pi(\mu)$ on μ as $\mu \sim N(\mu_0, \sigma_0^2)$ where μ_0, σ_0^2 are known.
 - Derive the posterior $\Pi(\theta|x_1)$.

Next assume that you additionally another an additional observation x_2 after collecting x_1 . Consider the posterior $\Pi(\mu|x_1)$ as the current state of your knowledge about θ .

- Derive the posterior $\Pi(\mu|x_1,x_2)$ in the light of the new additional observation x_2 .
- 2. Assume that you have collected two observations (x_1, x_2) . Specify a prior $\Pi(\mu)$ on μ as $\mu \sim N(\mu_0, \sigma_0^2)$ where μ_0, σ_0^2 are known.
 - Derive the posterior $\Pi(\theta|x_1,x_2)$ in the light of the observations (x_1,x_2) .
- 3. What do you observe:
- **Hint:** We considered the identity

$$\begin{split} -\frac{1}{2} \sum_{i=1}^n \frac{(y-\mu_i)^2}{\sigma_i^2} &= -\frac{1}{2} \frac{(y-\hat{\mu})^2}{\hat{\sigma}^2} + c(\hat{\mu}, \hat{\sigma}^2), \\ c(\hat{\mu}, \hat{\sigma}^2) &= -\frac{1}{2} \sum_{i=1}^n \frac{\mu_i^2}{\sigma_i^2} + \frac{1}{2} (\sum_{i=1}^n \frac{\mu_i}{\sigma_i^2})^2 (\sum_{i=1}^n \frac{1}{\sigma_i^2})^{-1}; \quad \hat{\sigma}^2 &= (\sum_{i=1}^n \frac{1}{\sigma_i^2})^{-1}; \quad \hat{\mu} = \hat{\sigma}^2 (\sum_{i=1}^n \frac{\mu_i}{\sigma_i^2})^2 (\sum_{i=1}^n \frac{1}{\sigma_i^2})^{-1}; \quad \hat{\sigma}^2 &= (\sum_{i=1}^n \frac{1}{\sigma_$$

where $c(\hat{\mu}, \hat{\sigma}^2)$ is constant w.r.t. y.

Solution.

1. the posterior distribution $\Pi(\mu|x_1)$ has PDF

$$\pi(\mu|x_{1}) \propto N(x_{1}|\mu, \sigma^{2}) N(\mu|\mu_{0}, \sigma_{0}^{2})$$

$$\propto \exp(-\frac{1}{2} \frac{(x_{1} - \mu)^{2}}{\sigma^{2}}) \exp(-\frac{1}{2} \frac{(\mu - \mu_{0})^{2}}{\sigma_{0}^{2}})$$

$$\propto \exp(-\frac{1}{2} \frac{(x_{1} - \mu)^{2}}{\sigma^{2}} - \frac{1}{2} \frac{(\mu - \mu_{0})^{2}}{\sigma_{0}^{2}})$$

$$\propto \exp(-\frac{1}{2} \frac{(\mu - \hat{\mu}_{1})^{2}}{\hat{\sigma}_{1}^{2}}) \propto N(\mu|\hat{\mu}_{1}, \hat{\sigma}_{1}^{2})$$
(3)

where $\hat{\sigma}_1^2 = (\frac{1}{\sigma^2} + \frac{1}{\sigma_0^2})^{-1}$, and $\hat{\mu}_1 = \hat{\sigma}_1^2(\frac{x_1}{\sigma^2} + \frac{\mu_0}{\sigma_0^2})$. In (3), we recognized the kernel of the Normal PDF. Hence, $\mu|x_1 \sim N(\hat{\mu}_1, \hat{\sigma}_1^2)$

Then the posterior distribution $\Pi(\mu|x_1,x_2)$ has PDF

$$\pi(\mu|x_{1}, x_{2}) \propto (x_{2}|\mu, \sigma^{2}) N(\mu|\hat{\mu}_{1}, \hat{\sigma}_{1}^{2})$$

$$\propto \exp(-\frac{1}{2} \frac{(x_{2} - \mu)^{2}}{\sigma^{2}}) \exp(-\frac{1}{2} \frac{(\mu - \hat{\mu}_{1})^{2}}{\hat{\sigma}_{1}^{2}})$$

$$\propto \exp(-\frac{1}{2} \frac{(x_{2} - \mu)^{2}}{\sigma^{2}} - \frac{1}{2} \frac{(\mu - \hat{\mu}_{1})^{2}}{\hat{\sigma}_{1}^{2}})$$

$$\propto \exp(-\frac{1}{2} \frac{(\mu - \hat{\mu}_{2})^{2}}{\hat{\sigma}_{2}^{2}}) \propto N(\mu|\hat{\mu}_{2}, \hat{\sigma}_{2}^{2})$$
(4)

where $\hat{\sigma}_2^2 = (\frac{1}{\sigma^2} + \frac{1}{\hat{\sigma}_1^2})^{-1} = (\frac{1}{\sigma^2} + \frac{1}{\sigma^2} + \frac{1}{\sigma_0^2})^{-1}$, and $\hat{\mu}_2 = \hat{\sigma}_1^2(\frac{x_2}{\sigma^2} + \frac{\hat{\mu}_1}{\hat{\sigma}_1^2}) = \hat{\sigma}_2^2(\frac{x_1}{\sigma^2} + \frac{x_2}{\sigma^2} + \frac{\mu_0}{\sigma_0^2})$. In (3), we recognized the kernel of the Normal PDF. Hence, $\mu|x_1, x_2 \sim N(\hat{\mu}_2, \hat{\sigma}_2^2)$.

2. The posterior distribution $\Pi(\mu|x_1, x_2)$ has PDF

$$\pi(\mu|x_1, x_2) \propto N(x_1|\mu, \sigma^2) N(x_2|\mu, \sigma^2) N(\mu|\mu_0, \sigma_0^2)$$

$$\propto \exp(-\frac{1}{2} \frac{(x_1 - \mu)^2}{\sigma^2}) \exp(-\frac{1}{2} \frac{(x_2 - \mu)^2}{\sigma^2}) \exp(-\frac{1}{2} \frac{(\mu - \mu_0)^2}{\sigma_0^2})$$

$$\propto \exp(-\frac{1}{2} \frac{(x_1 - \mu)^2}{\sigma^2} - \frac{1}{2} \frac{(x_2 - \mu)^2}{\sigma^2} - \frac{1}{2} \frac{(\mu - \mu_0)^2}{\sigma_0^2})$$

$$\propto \exp(-\frac{1}{2} \frac{(\mu - \hat{\mu})^2}{\hat{\sigma}^2}) \propto N(\mu|\hat{\mu}, \hat{\sigma}^2)$$
(5)

where $\hat{\sigma}^2 = (\frac{1}{\sigma^2} + \frac{1}{\sigma^2} + \frac{1}{\sigma_0^2})^{-1}$, and $\hat{\mu} = \hat{\sigma}^2(\frac{x_1}{\sigma^2} + \frac{x_2}{\sigma^2} + \frac{\mu_0}{\sigma_0^2})$. In (5), we recognized the kernel of the Normal PDF. Hence, $\mu | x_1, x_2 \sim N(\hat{\mu}, \hat{\sigma}^2)$

3. It is easy to see that $\hat{\mu}_2 = \hat{\mu}$, and $\hat{\sigma}_2^2 = \hat{\sigma}^2$, from (1) and (2). We observe the two Learning Scenarios are equivalent in the sense that they lead to the same posterior $d\Pi(\mu|x_1,x_2)$ at the end posterior $d\Pi(\mu|x_1,x_2)$ in a single application of Bayes theorem with the full data $x = (x_1,x_2)$.

Part V

Exchangeability

We work on the proofs of the following theorems:

• Marginal distributions of finite exchangeable sequences y_1, y_2, \dots, y_k are invariant under permutations; i.e.:

$$dF(y_{\mathfrak{p}(1)}, y_{\mathfrak{p}(2)}, \dots, y_{\mathfrak{p}(k)}) = dF(y_1, y_2, \dots, y_k) \text{ for all } \mathfrak{p} \in \mathfrak{P}_n.$$
(6)

In particular, for k = 1, it follows that all y_i are identically distributed (but not necessarily independently, as stated in the Lecture notes)

• (Marginal) Expectations of finite exchangeable sequences y_1, y_2, \dots, y_k are all identical:

$$E(g(y_i)) = E(g(y_1))$$
 for all $i = 1, ..., k$ and all functions $g: \mathcal{Y} \to \mathbb{R}$ (7)

• (Marginal) Variances of finite exchangeable sequences y_1, y_2, \dots, y_k are all identical:

$$Var(y_i) = Var(y_1). (8)$$

• Covariances between elements of finite exchangeable sequences y_1, y_2, \dots, y_k are all identical:

$$Cov(y_i, y_j) = Cov(y_1, y_2) \text{ whenever } i \neq j.$$
(9)

Just for your information The properties above are implied by the following general theorem. However, you should not use this theorem, directly, to solve the exercises below...

Theorem. Consider an exchangeable sequence y_1, \ldots, y_n . Let $g: \mathcal{Y}^k \to \mathbb{R}$ be any function of k of these, where k < n. Then, for any permutation $\pi \in \Pi_n$,

$$E(g(Y_{\mathfrak{p}(1)}, Y_{\mathfrak{p}(2)}, \dots, Y_{\mathfrak{p}(k)})) = E(g(Y_1, Y_2, \dots, Y_k))$$
(10)

This is not an exercise to solve. Feel free to read the solution of this exercise, as it may help you understand the the Interpretation of the 'representation Theorem with 0-1 quantities'.

Exercise 34. $(\star\star\star\star\star)$ (Representation Theorem with 0-1 quantities). If $y_1, y_2, ...$ is an infinitely exchangeable sequence of 0-1 random quantities with probability measure P, there exists a distribution function Π such that the joint mass function $p(y_1, ..., y_n)$ for $y_1, ..., y_n$ has the form

$$p(x_1, ..., x_n) = \int_0^1 \prod_{i=1}^n \underbrace{\theta^{y_i} (1-\theta)^{1-y_i}}_{f_{\text{Br}(\theta)}(y_i|\theta)} d\Pi(\theta)$$

657 where

$$\Pi(t) = \lim_{n \to \infty} \Pr(\frac{1}{n} \sum_{i=1}^n y_i \le t) \quad \text{and} \quad \theta \stackrel{\text{as}}{=} \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n y_i$$

aka θ is the limiting relative frequency of 1s, by SLLN

Hint: (Helly's theorem [modified]) Given a sequence of distribution functions $\{F_1, F_2, ...\}$ that satisfy the tightness condition; [for each $\epsilon > 0$ there is a such that for all sufficiency large i it is $F_i(a) - F_i(-a) > 1 - \epsilon$], there exists a distribution F and a sub-sequence $\{F_{i_1}, F_{i_2}, ...\}$ such that $F_{i_j} \to F$.

Solution. Let the sum of random quantities be $S_n = \sum_{i=1}^n y_i$, and assume that the sum S_n is equal to value s_n ; i.e. $S_n = t_n$. By exchangeability, for $0 \le t_n < n$, it is

$$p(S_n = t_n) = \binom{n}{t_n} p(y_{\mathfrak{p}(1)}, ..., y_{\mathfrak{p}(n)})$$

for any permutation operator \mathfrak{p} . For finite N, let $N \geq n \geq t_n \geq 0$,

$$p(S_n = t_n) = \sum_{t_N=0}^{N} p(S_n = t_n | S_N = t_N) p(S_N = t_N)$$

$$= \underbrace{\sum_{t_N=0}^{t_n-1} p(S_n = t_n | S_N = t_N) p(S_N = t_N)}_{=0}$$

$$+ \underbrace{\sum_{y_N=y_n}^{N-(n-y_n)} p(S_n = t_n | S_N = t_N) p(S_N = t_N)}_{y_N=y_n}$$

$$+ \underbrace{\sum_{y_N=y_n}^{N-(n-t_n)+1} p(S_n = t_n | S_N = t_N) p(S_N = t_N)}_{=0}$$
(12)

$$= \sum_{y_N=y_n}^{N-(n-y_n)} p(S_n = t_n | S_N = t_N) p(S_N = t_N)$$

The terms in (11, 12) are zero because $p(S_n = t_n | S_N = t_N) = 0$ for $t_N < t_n$ and $t_N > N - (n - t_n)$ because we contrition on $S_N = t_N$.

We work out on $p(S_n = t_n | S_N = t_N)$ which is the conditional probability for S_n given $S_N = t_N$. We observe that the random variable $S_n | S_N = t_N$ follows a Hypergeometric distribution $S_n | S_N = t_N \sim \operatorname{Hy}(t_N, N - t_N, n)$. This is because it describes a Hypergeometric experiment². i.e., $S_n = t_n$ is the number of successes (random draws for which the object drawn has a specified feature) in n random draws without replacement, from a finite population of size N that contains exactly $S_N = t_N$ objects of that feature, wherein each draw is either a success or a failure (aka $x_i = 0$ or 1). Hence, $p(S_n = t_n | S_N = t_N)$ is a Hypergeometric PMF, namely

$$p(S_n = t_n | S_N = t_N) = \text{Hy}(S_n = t_n | t_N, N - t_N, n) = \frac{\binom{t_N}{t_n} \binom{N - t_N}{n - t_n}}{\binom{N}{n}}, \ 0 \le t_n \le n$$

Rewriting the binomial coefficients by rearranging the terms in the product, we get

$$p(S_n = t_n) = \sum {N \choose n}^{-1} {t_N \choose t_n} {N - t_N \choose n - t_n} p(S_N = t_N)$$
$$= {n \choose t_n} \sum \frac{(t_N)_{t_n} (N - t_N)_{n-t_n}}{(N)_n} p(S_N = t_N)$$

where $(y)_r = y(y-1)...(y-r+1)$.

²https://en.wikipedia.org/wiki/Hypergeometric_distribution

Now, define a function $\Pi_N(\theta)$ on $\mathbb R$ as the step function which is zero for $\theta < 0$, and has steps of size $p(S_N = t_N)$ at $\theta = t_N/N$ for $t_N = 0, 1, 2, ..., N$. Then, by changing variable we get,

$$p(S_n = t_n) = \binom{n}{t_n} \int_0^1 \frac{(\theta N)((1-\theta)N)_{n-t_n}}{(N)_n} d\Pi_N(\theta).$$

This result holds for any finite N. Now we need to consider $N \to \infty$. In the limit, we get

$$\lim_{N \to \infty} \frac{(\theta N)((1-\theta)N)_{n-t_n}}{(N)_n} = \theta^{t_n} (1-\theta)^{n-t_n} = \prod_{i=1}^n \theta^{y_i} (1-\theta)^{1-y_i}$$
(13)

Note that function $\Pi_N(t)$ is a step function, starting at zero and ending at one with N steps of varying sizes at particular values of t. By Helly's theorem, there exists a subsequence $\{\Pi_{N_1}, \Pi_{N_2}, ...\}$ such that

$$\lim_{N_j \to \infty} \Pi_{N_j} = \Pi$$

where Π is a distribution function.

Exercise 35. (**)Clearly a set of independent and identically distributed random variables form an exchangeable sequence. Thus sampling with replacement generates an exchangeable sequence. What about sampling without replacement? Prove that sampling n items from N distinct objects without replacement (where $n \le N$) is exchangeable.

Solution. Sampling without replacement is clearly not iid. However, it is exchangeable. Assume that we sample n items from N distinct objects without replacement, we have that:

$$f(y_1, ..., y_n) = \frac{1}{N^n} = \frac{(N-n)!}{N!}$$
(14)

Clearly, the probability mass function does not depend on the ordering of the sequence. Therefore the sequence is exchangeable.

Exercise 36. $(\star\star)$ Let Y_1, \ldots, Y_n be an exchangeable sequence, and let g be any function on \mathcal{Y} . Show, directly from the definition of exchangeability in the summary notes) that $E(g(Y_i))$ does not depend on i:

$$E(q(Y_i)) = E(q(Y_1)) \text{ for all } i \in \{2, \dots, n\}$$
 (15)

For ease of exposition, you may restrict your proof to the case i=2.

Solution. For ease of exposition, we show that $E(g(Y_1)) = E(g(Y_2))$. The general case follows similarly.

$$E(g(Y_1)) = \sum_{(y_1, y_2, y_3, \dots, y_n) \in \mathcal{Y}^n} g(y_1) f(y_1, y_2, y_3, \dots, y_n)$$
(16)

and by exchangeability, we can swap the indices 1 and 2 in the probability mass function, so

$$= \sum_{(y_1, y_2, y_3, \dots, y_n) \in \mathcal{Y}^n} g(y_1) f(y_2, y_1, y_3, \dots, y_n)$$
(17)

and swapping y_1 and y_2 (we can always do this, exchangeability is not used here),

$$= \sum_{(y_2, y_1, y_3, \dots, y_n) \in \mathcal{Y}^n} g(y_2) f(y_1, y_2, y_3, \dots, y_n) = \mathcal{E}(g(Y_2))$$
(18)

Exercise 37. $(\star\star)$ Let Y_1, \ldots, Y_n be an exchangeable sequence. Use

$$E(g(Y_i)) = E(g(Y_1)) \text{ for all } i \in \{2, \dots, n\}$$
 (19)

to show that $Var(Y_i)$ does not depend on i:

$$Var(Y_i) = Var(Y_1) \text{ for all } i \in \{2, \dots, n\}$$
(20)

Solution. By the usual properties of variance,

$$Var(Y_i) = E(Y_i^2) - E(Y_i)^2$$
(21)

and now applying 19 twice

$$Var(Y_i) = E(Y_1^2) - E(Y_1)^2 = Var(Y_1)$$

Exercise 38. $(\star\star)$ Let Y_1, \ldots, Y_n be an exchangeable sequence. By expanding $var(\sum_{k=1}^n Y_k)$, show that when $i \neq j$,

$$cov(Y_i, Y_j) \ge -\frac{var(Y_1)}{n-1} \tag{22}$$

Solution. It is

$$0 \le var\left(\sum_{k=1}^{n} Y_k\right) = \sum_{k=1}^{n} var(Y_k) + 2\sum_{k=1}^{n-1} \sum_{\ell=k+1}^{n} cov(Y_k, Y_\ell)$$
(23)

and because, by exchangeability, $\operatorname{var}\left(Y_{k}\right)=\operatorname{var}\left(Y_{1}\right)$ and $\operatorname{cov}\left(Y_{k},Y_{\ell}\right)=\operatorname{cov}\left(Y_{i},Y_{j}\right)$ for all $k\neq\ell$,

$$= n \operatorname{var}(Y_1) + (n^2 - n)\operatorname{cov}(Y_i, Y_j)$$
(24)

where the $n^2 - n$ factor can be derived as follows: note that the pairs of indices (k, ℓ) appearing in the sum can be put into a matrix—the sum does not include the diagonal of this matrix (n pairs), but otherwise covers precisely half of it, and the full matrix has n^2 pairs, so there are $(n^2 - n)/2$ terms in the sum.

Consequently,

$$\operatorname{Cov}\left(Y_{i}, Y_{j}\right) \geq -\frac{n \operatorname{var}\left(Y_{1}\right)}{n^{2} - n} = -\frac{\operatorname{var}\left(Y_{1}\right)}{n - 1} \tag{25}$$

Exercise 39. (\star) What does

$$cov(Y_i, Y_j) \ge -\frac{var(Y_1)}{n-1}$$

imply about the correlation of infinite exchangeable sequences?

Solution. The correlation must be non-negative: because, as $n \to \infty$, $cov(Y_i, Y_j) \ge 0$ for all $i \ne j$.