

Primer exámen Opcional Matemáticas discretas II Duración 2 horas

Carlos Andres Delgado S, Msc carlos.andres.delgado@correounivalle.edu.co

03 de Marzo de 2020

Importante: Debe explicar el procedimiento realizado en cada uno de los puntos, no se considera válido únicamente escribir la respuesta.

- 1. [25 puntos] Dadas las letras {a, b} indique y resuelva la relación de recurrencia (R.R) de las palabras que no pueden contener dos a consecutivas. Explique claramente cómo obtiene y resuelve la R.R
- 2. [25 puntos] Estime la complejidad computacional del siguiente algoritmo.

```
int algoritmo(int b){
  if (b == 1){
    return 1;
  }
  else{
    int a = 0;
    for(int i=0; i<2*b; b++){
        a+=2;
    }
   return a + algoritmo(b/4);
  }
}</pre>
```

Para esto debe hallar la relación de recurrencia asociada, encontrar las condicionaes iniciales y resolverla. Una vez la resuelva indique la cota O(f(n)). Para hacer

este ejercicio observe la recursión del algoritmo, allí deducirá la R.R que lo representa.

- 3. [25 puntos] ¿Cuantos números deben ser seleccionados del conjunto {1, 3, 5, 7, 9, 11, 13, 15} para garantizar que al menos un par de ellos sume 16?.
- 4. [25 puntos] La Universidad del Valle sede Tulua, tiene 400 estudiantes, de cuantas formas:
 - Se puede seleccionar un comité compuesto por 10 estudiantes.
 - Se puede seleccionar un representante para el consejo academico, un representante para el consejo superior y un representante para el consejo de regionalización. Se aclara que no se permite que un estudiante ocupe más de un cargo al tiempo.

Ayudas

Conceptos básicos

Ecuación cuadrática de $ax^2 + bx + c$:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

Principio de Palomar

$$\left\lceil \frac{N}{k} \right\rceil$$

Tenemos N palomas para k nidos.

Combinatoria y permutación

Permutación:

$$P(n,r) = \frac{n!}{(n-r)!} \tag{2}$$

Combinatoria:

$$C(n,r) = \frac{n!}{r!(n-r)!} \tag{3}$$

Permutación con objetos indistinguibles:

$$P_n^{a,b,c} = \frac{n!}{a!b!c!} \tag{4}$$

Combinatoria con repetición:

$$C(n+r-1,r) (5)$$

Forma solución particular

F(n)	$a_n^{(p)}$
C_1	A
$\mid n \mid$	$A_1n + A_0$
$\mid n^2 \mid$	$A_2n^2 + A_1n + A_0$
$n^t, t \in Z^+$	$A_t n^t + A_{t-1} n^{t-1} + \ldots + A_1 n + A_0$
$r^n, r \in R$	Ar^n
$\sin(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$\cos(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$n^t r^n, t \in Z^+, r \in R$	$r^{n}(A_{t}n^{t} + A_{t-1}n^{t-1} + \ldots + A_{1}n + A_{0})$
$r^n \sin(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$
$r^n \cos(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$

Cuadro 1: Forma de la solución particular dado f(n)

Método del maestro

$$T(n) = aT(n/b) + cn^d$$

Siempre que $n=b^k$, donde k es un entero positivo, $a\geq 1$, b es un entero mayor que 1 y c y d son números reales tales que c>0 y $d\geq 0$, Entonces,

$$T(n) \quad es \left\{ \begin{array}{ll} O(n^d) & \text{si } a < b^d \\ O(n^d \log n) & \text{si } a = b^d \\ O(n^{\log_b a}) & \text{si } a > b^d \end{array} \right\}$$