FLASH Spectral Line Data Validation Report

Last modified: 12-Nov-2020 by Hyein Yoon Original script for WALLABY: 24-Mar-2020 by Bi-Qing For (ICRAR/UWA)

- **Notes for FLASH:**
- This tool uses ASKAPsoft products. FITS-datacubes are needed for getting major and minor beam sizes only (from the header).
- Not all data are availble, so some dummy files were used to run the script successfully.
- 1) Combining all info from spectra + continuum
- 2) Any other additional items to be required?

Observation

SBID	No. of Antennas	Obs Start Date/Time	Obs End Date/Time	Duration (hr)	Field	R.A.	Decl.	Total Bandwidth (MHz)
13285	36	18-Apr-2020/12:46:48.7	18-Apr-2020/14:46:54.9	2.0	FLASH_G9A	08:47:35.5	+00.30.00.0	288.0

- col 1: from input by user
- col 2-8: from ./metadata/mslist-*.txt - col 9: from /metadata/mslist-Science*.txt

Processed Image Cube

ASKAPsoft version*	Cal SBID	Frequency Range (MHz)	Central Frequency (MHz)	Channel Width (kHz)	Synthesised Beam (arcsec x arcsec)	Beam Logs	Flagged Visibilities	Flagged Antennas	Expected RMS
2020-09- 18T14:07:43	1328	711.5999.481	855.4907	18.519	30x30	000000 000000 000000 000000		Click	

- col 2: from /diagnostics/cubestats-/cubeStats*linmos.contsub.txt (mosaic contsub)

- col 1: from /slurmOutput/*.sh - if more than one version of ASKAPsoft is used for the whole reduction, the latest one is reported.

- col 3-4: from /metadata/mslist-Science*.txt
- col 5: from FITS-datacube (CURRENT VERSION: continuum subtracted beam00 cube Nov 22 ver.; too large beam size? depending on robust parameter?) - col 6: from ./SpectralCube_BeamLogs/beamlogs*.txt
- col 6: Bi-qing's notes: Evaluating each channel of each beam if ASKAPSoft fails to synthesize the beam, bmaj and bmin to 30 arcsec. bmaj and bmin for the first few channels are always zero.

- col 7: from /flagSummary/*.flagSummary

- col 8: from /flagSummary/*.flagSummary (flagged fraction) + theoretical rms estimation (based on input values)

Beams Statistics

Beam Image Cube	Continuum Subtracted Beam Cube	Residual Beam Cube
Min, Max, 1 percentile	Min, Max, 1 percentile	Min, Max, 1 percentile
Stdev, MADFM	Stdev, MADFM	Stdev, MADFM

- why one percentile?

- col 1-3: from beamMinMax Plots

- **Image Cube Continuum Subtracted Cube**

Residual Cube

Mosaic Statistics

Missing Data

(Channel)

Component 03b

Number of Bad Channel

Component 03a

High frequency (last 5,000 channels)

Flux vs distance from image centre

		4044 Click here	Yes < 100, n= 8
- col 1-3: from cubePlots			

Source and Noise Spectra from five bright components

Component 02a

- **Component 01a**

Component 01b

10/33 chunks > 5-sigma	13/33 chunks > 5-sigma	13/33 chunks > 5-sigma	9/33 chunks > 5-sigma	11/33 chunks > 5-sigma

- Low frequency (first 5,000 channels)

Median noise flux density - noise Spectra

199 component (outside 3.2 deg)	139 component (outside 3.2 deg)				
RA offset (red points: outside 3.2 deg)	RA offset (red points: outside 3.2 deg)				
DEC offset (red points: outside 3.2 deg)	DEC offset (red points: outside 3.2 deg)				
Mean noise flux density - noise spectra					
stable out to 3.2 degree					
Continuum - comp	parison with NVSS				

- **Statistics**
- **Continuum image**

- a resolution of 5 arcsec

- a resolution of 45 arcsec

Report bugs to Hyein Yoon

Flux comparison

RA/DEC offset

The state of the s	First Signature of the control of t	0 1 20 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	FLASH Integrated flux (mjy) ³²	Distance from image center (deg)
 col 1: continuum image + se col 2: size & flux histogram col 3: RA/DEC offset (comp col 4: flux difference (comp 	n parison with NVSS)	ets		

FIRST sources within 6 x 6 sq degree

- col 5: primary beam correction check (comparison with NVSS)

- Click here - data from Vizier FIRST (2014Dec17; Helfand+ 2015)

NVSS sources within 6 x 6 sq degree

- - Click here

* If more than one version of ASKAPsoft is used for the whole reduction, the latest one is reported.

** Does not take into account field rotation. Generated at 2020-11-12 18:11:09.806624

- data from Vizier NVSS (Condon+ 1998)