

시계열 분석 기법과 응용

Week 7. 상태공간모형 7-1. 상태공간모형의 표현

> 전치혁 교수 (포항공과대학교 산업경영공학과)

상태공간모형

개요

- 상태공간모형 (state-space model)에서는 관측되는 변수와 관측되지 않는 변수를 구분 해 외에 사용
- 시간에 따라 변하는 관측되지 않는 변수를 상태변수 (state variable)라 함.
- 상태변수도 확률변수로 간주
- 상태공간모형은 관측방정식 (observation equation)과 상태방정식 (state equation)의 2가지로 구성됨
- 회귀모형, ARMA모형 등을 포함하는 광범위한 모형임
- 다변량 시계열 역시 모형화 가능 (생태왕만 외하고)
- 시간에 따라 상태변수 및 관측변수가 변하는 동적시스템 (dynamic system)에 주로 활용

상태공간모형

모형의 표현

- (예 1) 시간(t)관측치를 Y_t 라 할 때 이는 상태변수 μ_t 와 관측오차 w_t 로 부터 얻어지고 상태변수는 이전 시간의 상태와 오차 v_t 가 더해져 변한다고 하자. 이 때, 상태공간모형은 다음으로 표현된다.
 - (관측방정식) $Y_t = \mu_t + \frac{W_t}{V_t}$ (상태방정식) $\mu_t = \mu_{t-1} + v_t$

 - 오차항 가정: $\mathbf{w}_t \sim Nor(0, \sigma_w^2), v_t \sim Nor(0, \sigma_v^2)$ 이며 다른 변수와 독립
- (예 2) 시간 t 관측치를 Y_t 라 할 때 이는 수준 (level) 변수 μ_t 와 관측오차 ε_t 로 부터 얻어진다. 수 준변수는 이전 시간의 수준, 추세 (trend)와 오차 a_t 가 더해져 변하고, 주세는 이전 추세와 오차 b_t 가 더해져 변한다고 하자. 이 때, 상태공간모형은 다음으로 표현된다.
 - (관측방정식) $Y_t = \mu_t + \varepsilon_t$
 - (상태방정식) $\mu_t^{\text{TM}} = \mu_{t-1} + \beta_{t-1} + a_t; \beta_t = \beta_{t-1} + b_t$
 - ⇒ 상태변수가 2개임. 이 경우 벡터/행렬로 모형을 표현

상태공간모형 표현

일반적 모형 형태

- 관측변수: $y_t = (Y_{1t}, \dots, Y_{dt})^T \rightarrow 원칙 여자에$
- 상태변수: $x_t^{\text{MB}} = (X_{1t}, \dots, X_{kt})^T$ 가 하면 역전하다 (관측방정식) $\mathbf{y}_t = Gx_t + \mathbf{w}_t^{\text{pull-tor}}, \mathbf{w}_t \sim WN(\mathbf{0}, R)$
- (상태방정식) $\mathbf{x}_t = F\mathbf{x}_{t-1} + \mathbf{v}_t, \mathbf{v}_t \sim WN(\mathbf{0}, Q)$
 - G: (d × k) 계수 행렬 F: (k × k) 계수 행렬 ts % 학생하나 합수도

 - R: 오차벡터 \mathbf{w}_t 의 $(d \times d)$ 공분산 행렬 Q: 오차벡터 \mathbf{v}_t 의 $(k \times k)$ 공분산 행렬

상태공간모형 표현

(예7-1) 다음 모형을 일반적 형태(벡터/행렬)로 표현하라.

- (관측방정식) $Y_t = \mu_t + \varepsilon_t; \varepsilon_t \sim Nor(0, \sigma_\varepsilon^2)$ (상태방정식) $\mu_t = \mu_{t-1}^t + \beta_{t-1} + a_t; \beta_t = \beta_{t-1} + b_t; a_t \sim Nor(0, \sigma_a^2); b_t \sim Nor(0, \sigma_b^2)$
- 상태방정식은 다음과 같이 표현된다.

상태변수 벡터를 정의하면

$$(x_t) = \begin{pmatrix} \mu_t \\ \beta_t \end{pmatrix} \Rightarrow x_t = Fx_{t-1} + v_t; \ Q = \begin{bmatrix} \sigma_a^2 & 0 \\ 0 & \sigma_b^2 \end{bmatrix}$$

• 관측방정식

$$Y_{t} = (\underbrace{1}_{\text{scolor}} \underbrace{0}_{\text{scolor}}) \begin{pmatrix} \mu_{t} \\ \beta_{t} \end{pmatrix} + \varepsilon_{t}; \underbrace{R = \sigma_{\varepsilon}^{2}}_{\text{scolor}}$$

• (관측방정식)
$$y_t = Gx_t + w_t, w_t \sim WN(\mathbf{0}, R)$$

 (상태방정식) $\mathbf{x}_t = F\mathbf{x}_{t-1} + \mathbf{v}_t, \mathbf{v}_t \sim WN(\mathbf{0}, O)$

상태공간모형 표현

(예7-2)다음 그림과 같은 모형을 고려하자.

• 관측방정식

$$Y_{1t} = \gamma_1 C_t + Z_{1t}; Y_{2t} = \gamma_2 C_t + Z_{2t}$$

• 상태방정식

$$\begin{cases} \text{- (공통요인) } C_t = \phi C_{t-1} + v_t, v_t \sim Nor(0,1) \\ \text{- (개별요인1) } Z_{1t} = \alpha_1 Z_{1,t-1} + \varepsilon_{1t}, \varepsilon_{1t} \sim Nor(0,\sigma_1^2) \\ \text{- (개별요인2) } Z_{2t} = \alpha_2 Z_{2,t-1} + \varepsilon_{2t}, \varepsilon_{2t} \sim Nor(0,\sigma_2^2) \end{cases}$$

 $egin{aligned} y_t &= inom{Y_{1t}}{Y_{2t}}, x_t &= inom{C_t}{Z_{1t}}\\ Z_{2t} \end{pmatrix} \ &igg(oldsymbol{\mathcal{Z}} = oldsymbol{\mathcal{Y}} & oldsymbol{\mathcal{Z}} = oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z}} & oldsymbol{\mathcal{Z}} = oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z}} & oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z}} & oldsymbol{\mathcal{Z}} = oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z}} & oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z}} & oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z}} & oldsymbol{\mathcal{Z}} \\ oldsymbol{\mathcal{Z} \\ oldsymbol{\mathcal{Z}$

시계열 분석 기법과 응용

Week 7. 상태공간모형 7-2. 칼만 필터

> 전치혁 교수 (포항공과대학교 산업경영공학과)

최적선형예측식

~49,74

- 상태공간모형에서 미래의 관측치 y_t 를 예측하기 위해서 우선 상태 변수 x_t 를 예측 필요
- 새로운 관측치가 발생할 때 상태변수의 예측식을 이전 예측식으로 부터 갱신하는 것을 칼만 필터 (Kalman filter)라 함
- 칼만필터식은 관측치의 선형 함수에서 제곱합을 최소로 하는 계수 추정식 (즉, 최적 선형예측식)으로 부터 유도됨
- 최적선형예측식은 결과적으로 베이지안 기법에 의거 상태변수의 사전확률분포로 부터 사후확률분포의 기대치 및 분산을 구하는 식 과 동일함

최적선형예측식

, MEHUS 5

- 목적: 확률변수 L를 예측하는데 관측치 Y의 선형식 사용
- 예측식 형태: $E[L|Y] = \alpha + \beta Y$
 - α, β: 추정필요 계수 You 만남자 연왔때 상태면는 조건부 기대版 → You 선명사 형!
- 계수추정을 위해 다음 제곱합 기대치 최소화
 - $-0=E[(L-\alpha-\beta Y)^2] = 2\pi 2 IDU (L,Y, 320)$
 - 0를 풀면 다음과 같다
 - $Q = Var[L] + E^{2}[L] + \beta^{2}\{Var[Y] + E^{2}[Y]\} 2\beta\{Cov[L, Y] + E[L]E[Y]\} + \alpha^{2} 2\alpha E[L] + 2\alpha\beta E[Y]$
 - $-\frac{\frac{\partial Q}{\partial \alpha} = 0}{\frac{\partial \alpha}{\partial \beta}} = 0 = 0$ $-\frac{\alpha^* = E[L] \beta^* E[Y]}{\frac{\partial Q}{\partial \beta}} = 0$

 - $\beta^* = \frac{Cov[L,Y]}{Var[Y]}$
- <u>최적 선형예측식 (४,०५%)</u>

최적선형예측식과 칼만필터

- 최적선형예측식
 - $-E[L|Y] = \alpha^* + \beta^* Y = E[L] + \frac{Cov[L,Y]}{Var[Y]} (Y E[Y])$
- 시계열 $Y_t, Y_{t-1}, Y_{t-2}, ...$ 이 있는경우
 - $-E[L|Y] = E[L|Y_t, Y_{t-1}, ...]$: 가장 최근 관측치 Y_t 를 포함한 조건부 기대치
 - $E[L] = E[L|Y_{t-1},...]$: 최근 관측치 Y_t 가 없고 과거치만의 조건부 기대치 베이지안 관점에서
 - $E[L|Y_{t-1},...]$: 사건확률분포의 기대치
 - $E[L|Y_t, Y_{t-1}, ...]$: 사후확률분포의 기대치
- 아래 최적선형예측식을 칼만필터라 함

$$-\underbrace{E[L|Y_{t},Y_{t-1},...]}_{\text{orbital particles}} = \underbrace{E[L|Y_{t-1},...]}_{\text{orbital particles}} + \underbrace{\frac{Cov[L,Y_{t}|Y_{t-1},...]}{Var[Y_{t}|Y_{t-1},...]}}_{\text{forbital particles}}(Y_{t} - E[Y_{t}|Y_{t-1},...])$$

(예7-3) 다음 모형에서 상태변수들의 칼만 필터식을 유도하라.

- (관측방정식) $Y_t = \mu_t + \varepsilon_t$, $\varepsilon_t \sim Nor(0, \sigma_{\varepsilon}^2)$
- (상태방정식), $\mu_t = \mu_{t-1} + \beta_{t-1} + a_t$, $a_t \sim Nor(0, \sigma_a^2)$ $\beta_t = \beta_{t-1} + b_t$, $b_t \sim Nor(0, \sigma_b^2)$

(풀이)

- 기호정의
- $l_t = E[\mu_t | Y_t, ...], m_t = E[\beta_t | Y_t, ...]$
- $p_t = Var[\mu_t | Y_t, ...], q_t = Var[\beta_t | Y_t, ...], r_t = Cov[\mu_t, \beta_t | Y_t, ...]$

• 상태변수
$$\mu_t$$
의 최적선형예측식 (칼만필터)
$$l_t = E[\mu_t|Y_t, \dots] = E[\mu_t|Y_{t-1}, \dots] + \frac{Cov[\mu_t, Y_t|Y_{t-1}, \dots]}{Var[Y_t|Y_{t-1}, \dots]} (Y_t - E[Y_t|Y_{t-1}, \dots])$$

$$E[\mu_t|Y_{t-1}, \dots] = E[\mu_{t-1} + \beta_{t-1} + a_t|Y_{t-1}, \dots] = l_{t-1} + m_{t-1}$$

$$\boxed{l_t} = \underbrace{l_{t-1} + m_{t-1} + K_t^{\mu}(Y_t - l_{t-1} - m_{t-1})}_{\text{Total point}}, K_t^{\mu} = \underbrace{\frac{p_{t-1} + q_{t-1} + 2r_{t-1} + \sigma_a^2}{p_{t-1} + q_{t-1} + 2r_{t-1} + \sigma_a^2 + \sigma_\varepsilon^2}}_{\text{Total point}}$$

(예7-3 계속)

• 상태변수 β_t 의 최적선형예측식 (칼만필터)

$$\underline{m_t} = E[\beta_t | Y_t, \dots] = E[\beta_t | Y_{t-1}, \dots] + \frac{Cov[\beta_t, Y_t | Y_{t-1}, \dots]}{Var[Y_t | Y_{t-1}, \dots]} (Y_t - E[Y_t | Y_{t-1}, \dots])$$

$$= m_{t-1} + K_t^{\beta} \underbrace{(Y_t - l_{t-1} - m_{t-1})}_{\text{odd}}, \quad K_t^{\beta} = \frac{q_{t-1} + r_{t-1}}{p_{t-1} + q_{t-1} + 2r_{t-1} + \sigma_a^2 + \sigma_\varepsilon^2}$$

• 분산의 갱신 공식

$$\begin{split} p_t &= Var[\mu_t | Y_t, \dots] = Var[\mu_t | Y_{t-1}, \dots] - \frac{Cov^2[\mu_t, Y_t | Y_{t-1}, \dots]}{Var[Y_t | Y_{t-1}, \dots]} = K_t^{\mu} \sigma_{\varepsilon}^2 \\ q_t &= Var[\beta_t | Y_t, \dots] = q_{t-1} + \sigma_b^2 - K_t^{\beta} (q_{t-1} + r_{t-1}) \\ r_t &= Cov[\mu_t, \beta_t | Y_t, \dots] = K_t^{\beta} \sigma_{\varepsilon}^2 \end{split}$$

(예 7-4)다음은 연도별 금 가격 (온스당 미화달러)을 나타낸 것이다.

년도	2011	2012	2013	2014	2015	2016
가격	1,571.5	1,669.0	1,411.2	1,266.4	1,160.1	1,250.8

(예 7-3)의 모형을 이용하여 상태변수들의 칼만필터 공식에 적용하라. 모형에서 오차항 분산은

다음과 같다.

 $\sigma_{\varepsilon}^2 = 25$, $\sigma_a^2 = 9$, $\sigma_b^2 = 4$. [가정] 조기치로 다음을 사용한다.

 $l_0 = 100$, $m_0 = 0$, $p_0 = q_0 = 1$, $r_0 = 0$ (풀이) 적용결과는 표와 같다.

			4121 of 23				
Y_t	l_t	m_t	p_t	q_t	r_t	K_t^μ	K_t^{eta}
1,571.5	1,494.6	214.8	16.49	11.30	5.83	0.660	0.233
1,669.0	1,682.7	205.3	16.49	11.31	5.83	0.660	0.233
1,411.2	1,573.5	94.1	16.49	11.31	5.83	0.660	0.233
1,266.4	1,402.9	0.48	16.49	11.31	5.83	0.660	0.233
1,160.1	1,242.9	-56.3	16.49	11.31	5.83	0.660	0.233
1,250.8	1,228.9	-41.3	16.49	11.31	5.83	0.660	0.233
	1,571.5 1,669.0 1,411.2 1,266.4 1,160.1	1,571.5 1,494.6 1,669.0 1,682.7 1,411.2 1,573.5 1,266.4 1,402.9 1,160.1 1,242.9	1,571.5 1,494.6 214.8 1,669.0 1,682.7 205.3 1,411.2 1,573.5 94.1 1,266.4 1,402.9 0.48 1,160.1 1,242.9 -56.3	1,571.5 1,494.6 214.8 16.49 1,669.0 1,682.7 205.3 16.49 1,411.2 1,573.5 94.1 16.49 1,266.4 1,402.9 0.48 16.49 1,160.1 1,242.9 -56.3 16.49	1,571.5 1,494.6 214.8 16.49 11.30 1,669.0 1,682.7 205.3 16.49 11.31 1,411.2 1,573.5 94.1 16.49 11.31 1,266.4 1,402.9 0.48 16.49 11.31 1,160.1 1,242.9 -56.3 16.49 11.31	1,571.5 1,494.6 214.8 16.49 11.30 5.83 1,669.0 1,682.7 205.3 16.49 11.31 5.83 1,411.2 1,573.5 94.1 16.49 11.31 5.83 1,266.4 1,402.9 0.48 16.49 11.31 5.83 1,160.1 1,242.9 -56.3 16.49 11.31 5.83	1,571.5 1,494.6 214.8 16.49 11.30 5.83 0.660 1,669.0 1,682.7 205.3 16.49 11.31 5.83 0.660 1,411.2 1,573.5 94.1 16.49 11.31 5.83 0.660 1,266.4 1,402.9 0.48 16.49 11.31 5.83 0.660 1,160.1 1,242.9 -56.3 16.49 11.31 5.83 0.660

칼 또 gain 일검하게 수명 ⇒ p.g.r이 말검하기 때문 (가지하)

베이지안 기법에 의한 칼만 필터

• 일반적 상태공간모형

- (관측방정식) $y_t = Gx_t + w_t, w_t \sim WN(\mathbf{0}, R)$
- (상태방정식) $x_t = Fx_{t-1} + v_t, v_t \sim WN(\mathbf{0}, Q)$

• 상태변수 기대치 및 공분산

- 기대치 벡터: $\mathbf{m}_t = E[\mathbf{x}_t | \mathbf{y}_t, ...]$
- 공분산행렬: $P_t = Var[\mathbf{x}_t | \mathbf{y}_t, ...]$

• 베이지안 기법

- $-x_t$ 의 사전확률분포 $x_t|y_{t-1}$ 로 부터 관측치 y_t 발생시 사후확률분포 $x_t|y_t$ 도출
- 칼만 필터 공식

$$m_t = F m_{t-1} + K_t (y_t - GF m_{t-1})$$

$$P_t = B_t - K_t G B_t$$

$$K_t = B_t G^T (G B_t G^T + R)^{-1}, B_t = F P_{t-1} F^T + Q$$

시계열 분석 기법과 응용

Week 7. 상태공간모형 7-3. 모형의 추정 및 예측

> 전치혁 교수 (포항공과대학교 산업경영공학과)

모형의 추정

상태공간모형에 포함된 계수행렬 또는 오차항의 공분산 행렬을 모르는 경우 관측치를 바탕으로 추정 필요

- 최우추정법 (maximum likelihood estimation) 사용
- 우도함수 (likelihood function)

- 관측치:
$$Y_t = (y_1, ..., y_T)$$
 는 TAINING data

- 로그우도학수

$$logL(\mathbf{y}_1, ..., \mathbf{y}_T) = logL(\mathbf{y}_0) + \sum_{t=2}^{T} logL(\mathbf{y}_t) | Y_{t-1})$$

- 다변량 정규분포 가정

$$y_1 \sim MVN(\mu_1, C_1); \ \ y_t | Y_{t-1} \sim MVN(\mu_t, C_t)$$
 - 다변량 정규분포하에서 로그우도함수 역과 parameter \rightarrow 시, Cm 된화비状

$$logL(\mathbf{y}_1, ..., \mathbf{y}_T) = -\frac{Td}{2}log2\pi - \frac{1}{2}\sum_{t=1}^{T}log|\mathcal{C}_t| - \frac{1}{2}\sum_{t=1}^{T}(\mathbf{y}_t - \boldsymbol{\mu}_t)^T\mathcal{C}_t^{-1}(\mathbf{y}_t - \boldsymbol{\mu}_t)$$

모형의 추정

√५९९२११३३०३ २५४३ छोटे छोटे

(예 7-5) 다음의 MA(1) 모형을 상태공간모형으로 표현하고 최우추정법으로 계수 및 오차분산을 추정하라.

$$Y_t = a_t - \theta a_{t-1}, a_t \sim Nor(0, \sigma^2)$$

(풀이)

- 상태변수 정의
$$x_t = \begin{pmatrix} a_t \\ a_{t-1} \end{pmatrix}$$

- (관측방정식)
$$\underline{Y_t = (1 - \theta) \binom{a_t}{a_{t-1}}} \Rightarrow G = (1 - \theta), R = 0$$

- (상태방정식)
$$\begin{pmatrix} a_t \\ a_{t-1} \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} a_{t-1} \\ a_{t-2} \end{pmatrix} + \begin{pmatrix} a_t \\ 0 \end{pmatrix} \Rightarrow F = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, Q = \begin{bmatrix} \sigma^2 & 0 \\ 0 & 0 \end{bmatrix}$$

- 칼만필터식

$$m_{t} = E[a_{t}|Y_{t}] = \frac{\sigma^{2}}{\sigma^{2} + \theta^{2}p_{t-1}} (Y_{t} + \theta m_{t-1})$$
$$p_{t} = Var[a_{t}|Y_{t}] = \frac{\sigma^{2}\theta^{2}p_{t-1}}{\sigma^{2} + \theta^{2}p_{t-1}}$$

모형의 추정

(예 7-5 계속)

• 관측치 조건부 기대치 및 분산

$$- \mu_t = E[Y_t | Y_{t-1}] = -\theta m_{t-1}$$

$$- C_t = Var[Y_t|Y_{t-1}] = \sigma^2 + \theta^2 p_{t-1}$$

• 로그 우도함수

$$\begin{split} logL(\mathbf{y}_1,...,\mathbf{y}_T) &= -\frac{Td}{2}log2\pi - \frac{1}{2}\sum_{t=1}^{T}\log|\mathcal{C}_t| - \frac{1}{2}\sum_{t=1}^{T}(\mathbf{y}_t - \mathbf{\mu}_t)^T\mathcal{C}_t^{-1}\left(\mathbf{y}_t - \mathbf{\mu}_t\right) \\ &= -\frac{1}{2}\bigg[Tlog2\pi + \sum_{t=1}^{T}\log(\sigma^2 + \theta^2p_{t-1}) + \sum_{t=1}^{T}\frac{(Y_t + \theta m_{t-1})^2}{\sigma^2 + \theta^2p_{t-1}}\bigg] \xrightarrow{\text{poly. Simply by: } \theta_1 \text{ or fix } \mathbf{y}_1 \text{ with by: } \theta_1 \text{ or fix } \mathbf{y}_2 \text{ with } \mathbf{y}_2 \text{ with } \mathbf{y}_3 \text{ or fix } \mathbf{y}_4 \text{ with } \mathbf{y}_4 \text{ or fix } \mathbf{y}_4 \text{ with } \mathbf{y}_4 \text{ or fix } \mathbf{y}_4 \text{ with } \mathbf{y}_4 \text{ or fix } \mathbf{y}_4 \text{ with } \mathbf{y}_4 \text{ or fix } \mathbf{y}_4 \text{ with } \mathbf{y}_4 \text{ or fix } \mathbf{y}_4 \text{ with } \mathbf{y}_4 \text{ or fix }$$

• 관측 데이터

	1	2	3	4	5	6	7	8	9	10	11	12) 대법
Y_t	8	10	-9	13	-5	-15	24	6	-21	20	-7	-24	

최우추정치

• $\underline{\bar{x}}$ 7 $|\bar{x}|$: $m_0 = 0$, $p_0 = \sigma^2$ $\hat{\theta} = 0.85$, $\widehat{\sigma^2} = 140$

관측치 예측

• 일반적 상태공간모형 → Y메카이 책용됐 ! → 앞에서 상대변수 예약함

- (관측방정식)
$$y_t = Gx_t + w_t$$
, $w_t \sim WN(\mathbf{0}, R)$

- (상태방정식)
$$x_t = Fx_{t-1} + v_t, v_t \sim WN(\mathbf{0}, Q)$$

• 한단계 이후 예측

- 예측오차

$$e_{t,1} = y_{t+1} - f_{t,1}$$

- 예측오차 분산

$$V_{t,1} = Var[y_{t+1}|y_t,...] = Var[G(Fx_t + v_{t+1}) + w_{t+1}|y_t,...]$$

= $GFP_tF^TG^T + GQG^T + R$

관측치 예측

(예 7-6) 다음 모형에서 관측치를 예측하라.

- (관측방정식)
$$Y_t = \mu_t + \varepsilon_t$$
, $\varepsilon_t \sim Nor(0, \sigma_{\varepsilon}^2)$ - (상태방정식) $\mu_t = \mu_{t-1} + \beta_{t-1} + a_t$, $a_t \sim Nor(0, \sigma_a^2)$ 전체 $\beta_t = \beta_{t-1} + b_t$, $b_t \sim Nor(0, \sigma_b^2)$ - (풀이)
$$l_t = E[\mu_t | Y_t, \dots], m_t = E[\beta_t | Y_t, \dots]$$
 $p_t = Var[\mu_t | Y_t, \dots], q_t = Var[\beta_t | Y_t, \dots], r_t = Cov[\mu_t, \beta_t | Y_t, \dots]$ $f_{t,1} = E[Y_{t+1} | Y_t, \dots] = l_t + m_t$ $\rightarrow \text{Yoligh}$ $V_{t,1} = Var[Y_{t+1} | Y_t, \dots] = p_t + 2r_t + q_t + \sigma_a^2 + \sigma_s^2$

관측치 예측

(예 7-7)다음은 연도별 금 가격 (온스당 미화달러)을 나타낸 것이다 (예7-4 참조)

년도	2011	2012	2013	2014	2015	2016
가격	1,571.5	1,669.0	1,411.2	1,266.4	1,160.1	1,250.8

(예7-6) 모형으로 한단계 이후 예측치를 구하고 예측 오차를 구하면 다음 표와 같다.

년도	Y_t	l_t	m_t	p_t	q_t	r_t	예측치	
2011	1,571.5	1,494.6	214.8	16.49	11.30	5.83	_	
2012	1,669.0 এ) 1,682.7	205.3	16.49	11.31	5.83	1,709.4	ا برنی اامد M + اامطر
2013	1,411.2	1,573.5	94.1	16.49	11.31	5.83	1,888.1	Loos - Maor
2014	1,266.4	1,402.9	0.48	16.49	11.31	5.83	1,667.6	
2015	1,160.1	1,242.9	-56.3	16.49	11.31	5.83	1,403.4	
2016	1,250.8	1,228.9	-41.3	16.49	11.31	5.83	1,186.6	