Tutorial 8: Extension and torsion of cylinders

APL 104 - 2022 (Solid Mechanics)

1. Determine the largest weight W that can be supported by two wires shown in figure shown below. The stress in either wire is not to exceed 207N/mm². The cross-sectional areas of wires AB and AC are 258mm² and 323mm², respectively.

- 2. A round bar of length L, which tapers uniformly from a diameter D at one end to a smaller diameter d at the other, is suspended vertically from the large end. If w is the weight per unit volume, find the elongation of ω the rod caused by its own weight. Use this result to determine the elongation of a cone suspended from its base.
- 3. The rigid bars AB and CD shown in figure below are supported by pins at A and C and the two rods. Determine the maximum force P that can be applied as shown if its vertical movement is limited to 5mm. Neglect the weights of all members.

- 4. A 50.8mm diameter steel tube with a wall thickness of 1.27mm just fits in a rigid hole. Find the tangential stress if an axial compressive load of 1424kg is applied. Assume ν = 0.30 and neglect the possibility of buckling.
- 5. An aluminum shaft with a constant diameter of 50mm is loaded by torques applied to gears attached to it as shown in Fig. Using G = 28GPa, determine the relative angle of twist of gear D relative to gear A.

- 6. A hollow bronze shaft of 76.2mm outer diameter and 50.8mm inner diameter is slipped over a solid steel shaft 50.8mm in diameter and of the same length as the hollow shaft. The two shafts are then fastened rigidly together at their ends. For bronze, $G = 7kN/mm^2$, and for steel, $G = 12kN/mm^2$. What torque can be applied to the composite shaft without exceeding a shearing stress of $55N/mm^2$ in the bronze or $82N/mm^2$ in the steel?
- 7. The compound shaft shown in figure below is attached to rigid supports. For the bronze segment AB, the diameter is 75mm, $\tau \leq 60 \text{MPa}$, and G = 35GPa. For the steel segment BC, the diameter is 50mm, $\tau \leq 80 \text{MPa}$, and G = 83GPa. If a = 2m and b = 1.5m, compute the maximum torque T that can be applied.

8. A composite shaft is clamped at both its ends. It is composed of three sub-shafts as shown in figure below. The first part is made up of bronze (shear modulus G_B) and has length L_B and radius R_B . The second part is made up of aluminium (shear modulus G_A) and has length L_A and radius R_A . The third part is made up of steel (shear modulus G_S) and has length L_S and radius R_S . There is a torque T_1 acting at the interface of aluminium and bronze parts and a torque T_2 acts at the interface of aluminium and steel parts. Both T_1 and T_2 act along $+\underline{e}_1$ direction. What is the maximum shear component of traction in each of the three shafts?

