Université de Lorraine

Comfort project

Aida Nauanova Andrei Danila Irina Samus Sidorela Uku

Work plan

Learn and experiment with the Arduino

Research and document established standards for comfort levels in administrative buildings.

Set up the Flask application and organize the project structure.

■ ■ Implement user roles and develop the admin panel for managing users.

UI framework research and selection of tools.

Mockup creation and design. Dependencies installation and setup.

Mapping functions to translate the analog code to desired metrics.

Find and implement an open-cloud broker. Use the Mosquitto broker to publish the topics.

Introduce continuous dummy-data generation for the rooms that don't have a sensor board.

Implement the initial version of data visualization using Plotly Express.

Developing guest and admin flow interfaces.

Integration with backend, optimization and performance tuning.

Develop code to subscribe to the topics and send this data to the cloud database.

Testing the system to ensure seamless data flow from sensor to database and predict future comfort parameters.

Implement the Analytic Hierarchy Process (AHP) for user preferences analysis.

Develop API endpoints for fetching the latest data.

UI/UX refinement and testing, implement and test solutions for a Responsive UI.

Documentation of the work and code

Visual Overview

Sensor Layer

Light Sensor:

• Metric: Light Intensity

• Unit: Lux (lx)

• Standard: IESNA RP-1

• **Comfort:** 300-500 lux

Sound Sensor:

• Metric: Sound Intensity

Unit: Decibels (dB)

o Standard: ANSI/ASA S12.60-2010/Part 1

• Comfort: 30-40 decibels (dBA)

Temperature Sensor:

• Metric: Temperature

Unit: Celsius (°C)

• Standard: ASHRAE Standard 55-

2020

○ Comfort: 20-24°C

Humidity Sensor:

• **Metric:** Relative Humidity

Unit: Percentage (%)

• Standard: ASHRAE Standard 55-

2020

Comfort: 40-60%

Communication Layer

Protocols

- MQTT: Real-time, lightweight IoT communication protocol.
- HTTPS: Secure data transmission over the internet.

Security Measures:

- Encryption: Protects data from unauthorized access.
- Authentication: Verifies device and user identity.
- Access Control: Limits access to authorized entities.

Data Layer

Database Management (MongoDB):

- Store data for flexibility.
- Leverage MongoDB's model for integration.

Data Enrichment:

• Enhance data with timestamps metadata.

MongoDB API

- Querying and Filtering
- Data Manipulation

Integration with Analytics Tools:

• Visualize processed IoT data using an open-source Plotly library

Application Layer

User Interface:

• Design intuitive and userfriendly interfaces for sensor data visualization, room rankings, and historical trends.

User Controls:

• Enable users to customize settings, view room rankings, and access historical data for a tailored experience.

Reports and Visualizations:

• Generate dynamic reports and visualizations using historical and real-time data for in-depth analysis.

Forecast

- Fetching data from MongoDB
- Features Engineering using LagFeatures
- XGBoost model
- Evaluation of the model

Video Demo

