Instituto de Informática - UFRGS

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais

Gerência do processador Escalonamento

Aula xx

Introdução

- O escalonador é a entidade do sistema operacional responsável por selecionar um processo* apto para executar no processador
- O objetivo é maximizar o uso do processador
- Típico de sistemas multiprogramados: batch, interativos ou tempo real
 - Requisitos e restrições diferentes em relação a utilização da CPU
- Duas partes:
 - Escalonador: implementa um mecanismo e uma política de seleção
 - Dispatcher: efetua a troca de contexto

*válido também para threads

Sistemas Operacionais 2

Escalonador

- É um mecanismo que define:
 - QUEM, entre os processos aptos, receberá o direito de usar a CPU
 - Existência de uma política que pode levar em conta prioridades, regras de desempate (tie break) entre processos
 - QUANDO deve ser executado
 - Modos não preemptivo e preemptivo (tempo ou prioridade)
- Prioridades
 - Pode ser estática ou dinâmica
 - Um processo no estado "executando" deve ter prioridade maior ou igual que qualquer outro processo no estado apto
 - Pressupõe preempção (poder de retirar um processo da CPU)
 - Possível haver escalonadores não preemptivos, mas com prioridades

Escalonadores não preemptivos e preemptivos

- Uma vez selecionado, um processo utiliza o processador até que:
 - Não preemptivo:
 - Término de execução do processo
 - Execução de uma requisição de E/S ou sincronização bloqueante
 - Liberação voluntária do processador a outro processo (yiela)
 - Preemptivo:
 - Término de execução do processo
 - Execução de uma requisição de entrada/saída ou sincronização
 - Liberação voluntária do processador a outro processo (yield)
 - Interrupção de relógio (preempção por tempo)
 - Processo de mais alta prioridade esteja pronto para executar (preempção por prioridade)

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Instituto de Informática - UFRGS A. Carissimi - 26-mars-12

Sistemas Operacionais 3 Sistemas Operacionais

- Na verdade, existem diferentes níveis de escalonamento
 Curto prazo
 - Médio prazo
 - Longo prazo
- O escalonador de curto prazo é o mais importante

Sistemas Operacionais

Escalonador médio prazo

- Determina quais processos admitidos têm permissão para competir pelo uso do processador
- Responsável por suspender/resumir processos
 - Associado a gerência de memória (participa do mecanismo de swapping)
- Suporte adicional a multiprogramação
 - Grau de multiprogramação efetiva (diferencia aptos dos aptos-suspensos)

Escalonador longo prazo

- Determina quais processos o sistema permite que disputem ativamente os recursos do sistema
 - Controle de admissão
- Controla o grau de multiprogramação do sistema, isto é, o número de processos em um determinado instante de tempo
 - Quanto maior o número de processos, menor a porcentagem de tempo de uso do processador por processo, mas aumenta a chance do processador sempre estar ocupado (eficiência de uso)

0...

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

5

Sistemas Operacionais

Escalonador de curto prazo

- Executado mais frequentemente (mais importante)
 - Quando a CPU se torna livre
 - Processo de maior prioridade no estado de apto (escalonador preemptivo)
- Determina qual processo apto deverá utilizar o processador
- Executado sempre que ocorre eventos importantes:
 - Chamadas de sistema (E/S, sincronização, término, passagem voluntária)
 - Sinais (interrupção software)
 - Interrupções de hardware (tempo, conclusão de E/S, falta de páginas, proteção)
 - Interrupções de exceções (overflow, underflow)
 - Término de processos

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais 7 Sistemas Operacionais

Diagrama de escalonamento

Objetivos gerais do escalonamento

- Maximizar a utilização do processador
- Maximizar a produção do sistema (throughput ou vazão)
 - Número de processos completados por unidade de tempo
- Minimizar o tempo de execução ou retorno (turnaround)
 - Intervalo entre a submissão até a conclusão de um determinado processo
- Minimizar o tempo de espera
 - Tempo que um processo permanece na lista de aptos
- Minimizar o tempo de resposta
 - Tempo decorrido entre uma requisição e sua realização (sistemas interativos)
 - Em sistemas interativos priorizar a variância à média
- Justiça:

Instituto de Informática - UFRGS A. Carissimi - 26-mars-12

- Processos semelhantes devem ser tratados da mesma forma
- Evitar adiamento indefinido (postergação ou starvation)

Sistemas Operacionais

Categorias de sistemas operacionais

- Ambientes diferentes, têm objetivos e requisitos diferentes
- Três grandes categorias
 - Em lote (batch)
 - Vazão, tempo de retorno e utilização da cpu
 - Interativos
 - Tempo de resposta
 - proporcionalidade
 - Tempo real
 - Cumprimento de prazos
 - Previsibilidade

Processos CPU bound e I/O bound

- Um processo é dito CPU bound quando:
 - Ciclo de processador >> ciclo de E/S
- Um processo é dito I/O bound quando:
 - Ciclo de E/S >> ciclo de processador
- Sem quantificação exata
- Situação ideal: misturar processos CPU bound com I/O bound
 - Executar os CPU bounds quando os processos I/O bound estão bloqueados a espera de E/S → superposição de tarefas de processamento e de E/S

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

11

Sistemas Operacionais

Sistemas Operacionais 12

Execução em ambientes com multiprogramação

Algoritmos de escalonamento

- Implementam a política de seleção do processo a ser alocado na CPU
 - Algoritmos n\u00e3o preemptivos (cooperativos)
 - First-In First-Out (FIFO) ou First-Come First-Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Process Next (SPN) ou Shortest Request Next (SRN)
 - High Response Ratio Next (HRRN)
 - Algoritmos preemptivos
 - Round robin (circular)
 - Baseado em prioridades
 - Existem outros algoritmos de escalonamento (tempo real)
 - Rate Monotonic (RM)
 - Earliest Deadline First (EDF)
 - etc...

Instituto de Informática - UFRGS A. Carissimi - 26-mars-12

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais

Sistemas Operacionais 14

FIFO - First In First Out

- First-Come, First-Served (FCFS)
- Adequado para sistemas em lote (batch)
- Simples de implementar (fila)
- Funcionamento:
 - Processos s\u00e3o organizados por ordem de chegada no estado apto
 - Processos que se tornam aptos são inseridos no final da fila
 - Processo que está na frente da fila é o próximo a executar
 - Processo executa até que:
 - Libere explicitamente o processador (operação yield())
 - Realize uma chamada de sistema bloqueante
 - Termine sua execução

FIFO - First In First Out (cont.)

Processo	<u>Tempo</u>	A (////////////////////////////////////	Diagrama de Gantt
Α	12	В	
В	8	C	
С	15	D	
D	5		
		0 12 20	35 40

- Tempo médio de espera na fila de execução:
 - Ordem A-B-C-D = (0 + 12 + 20 + 35) / 4 = 16.75 u.t.
 - Ordem D-A-B-C = (0 + 5 + 17 + 25) / 4 = 11.75 u.t.
- Tempo médio de retorno (turnaround) na fila de execução:
 - Ordem A-B-C-D = ((0+12)+ (12+8) +(20+15) + (35+5)) / 4 = 26.75 u.t.
 - Ordem D-A-B-C = ((0+5) + (5+12) + (17+8) + (25+15)) / 4 = 21.75 u.t.
- Desvantagem: Prejudica processos I/O bound

Sistemas Operacionais 15

16

Sistemas em lote

- Seleciona processo apto com menor tempo de execução estimado
 - Introduz uma noção de prioridade (não preemptivo)
- Algoritmo ótimo (tempo de espera), isto é, fornece o menor tempo médio de espera para um conjunto de processos

		A
Processo	Tempo	В
Α	12	C ////////////////////////////////////
В	8	D 7/////
С	15	D 2/2/2/2
D	5	
		0 5 13 25 40

Tempo de espera médio: (0 + 5 + 13 + 25)/4 = 10,75 u.t Tempo de retorno médio: ((0+5)+(5+8)+(13+12)+(25+15))/4 = 20,75 u.t.

Sistemas Operacionais

SPN - Shortest Process Next

- Shortest Job First foi concebido para sistemas em lote (batch)
 - Ambientes em lote se tem uma estimativa de tempo de execução dos jobs
 - Adaptação para sistemas interativos considerando cada ciclo de CPU como se fosse um job \to SPN
- Também denominado de *Shortest Request Next* (SRN)
- Problema: como determinar (estimar) o tempo de execução futuro?
 - Resposta: prever o futuro com base no comportamento passado

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

17

19

Sistemas Operacionais 18

Prevendo o futuro...

- Pode ser feito utilizando os tempos de ciclos já passados e realizando uma média exponencial
 - 1. $t_n = \text{tempo do enésimo ciclo de CPU}$
 - 2. τ_{n+1} = valor previsto para o próximo ciclo de CPU
 - 3. τ = armazena a informação dos ciclos passados (n 1)
 - 4. α . $0 \le \alpha \le 1$
 - 5. Define se :
- $\tau_{n+1} = \alpha t_n + (1 \alpha)\tau_n.$
- Forma simplificada:
 - Tempo_futuro_estimado = tempo_ultimo_ciclo + tempo_passado
- Fator α fornece importância para o passado recente (último ciclo) ou para a história (ciclos passados)

Prevendo o futuro... (cont.)

- Não considera o último ciclo de processador, só o passado (α =0)
 - $\quad \boldsymbol{\tau}_{n+1} = \boldsymbol{\tau}_{n}$
- Considera apenas o último ciclo de processador (α = 1)
 - $\bullet \quad \tau_{n+1} = t_n$
- $\alpha = 0.5$
 - Tem o efeito de considerar o mesmo peso para a história recentel e passada

$$\tau_{n+1} = \alpha t_n + (1 - \alpha) \alpha t_{n-1} + \dots + (1 - \alpha)^j \alpha t_{n-1} + \dots + (1 - \alpha)^{n+1} \tau_0$$

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais

Sistemas Operacionais

Exemplo de "previsão do futuro"

Escalonamento não preemptivo e prioridades

- Prioridade é usada como critério de seleção APENAS quando a CPU fica livre
 - Exemplo: SPF é um forma de priorizar processos, pois a prioridade é o inverso do próximo tempo previsto para ciclo de CPU
- Processos de igual prioridade podem ser executados de acordo com uma política FIFO
- Problema de adiamento indefinido ou inanição (starvation)
 - Processo de baixa prioridade n\u00e3o \u00e9 alocado a CPU por sempre existir um processo de mais alta prioridade a ser executado
- Solução: envelhecimento (aging)
 - Elevação temporária da prioridade de um processo

Sistemas Operacionais 22

High Response Ratio Next (HRRN)

Forma de implementar envelhecimento (aging)

$$response_ratio = \frac{Tempo_espera + Tempo_serviço}{Tempo_serviço}$$

- Onde:
 - Tempo de espera = tempo passado no estado apto desde sua entrada nele
 - Tempo de serviço = tempo necessário a execução (ciclo de CPU)

Escalonadores preemptivos

- Escalonamento preemptivo significa que o sistema pode retirar o processador de um processo* para entregá-lo a outro processo
- Preempção pode ser por:
 - Tempo: um processo esgotou um tempo máximo de ciclo de processador
 - Prioridade: um processo de mais alta prioridade ficou pronto para executar
- Portanto um escalonador preemptivo executa quando:
 - O processo em execução termina
 - O processo em execução se bloqueia (requisição de E/S ou sincronização)
 - Libera voluntariamente o processador (chamada de sistema *yield*)
 - Ocorre interrupção de relógio (verificação se esgotou ou não o tempo máximo)
 - Um processo de mais alta prioridade entrou no estado apto

*Vale para threads também!

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais

23

Instituto de Informática - UFRGS A. Carissimi - 26-mars-12

Sistemas Operacionais

24

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Algoritmos de escalonamento preemptivos

- Preempção por tempo
 - Round-Robin (RR)
- Baseado em prioridades
 - Shortest Remaining Time Next (SRTN)
 - Múltiplas filas
 - Prioridades dinâmicas (múltiplas filas com realimentação)

Sistemas Operacionais

RR - Round Robin (cont.)

- Por ser preemptivo, um processo perde o processador quando:
 - Liberar explicitamente o processador (yield)
 - Realizar uma chamada de sistema (bloqueado)
 - Terminar sua execução
 - Quando esgotar sua fatia de tempo
- Se *quantum* $\rightarrow \infty$ obtém-se o comportamento de um escalonador **FIFO**

RR - Round Robin

- Similar ao algoritmo FIFO, só que:
 - Cada processo recebe um tempo limite máximo (time-slice, quantum) para executar um ciclo de processador
- Fila de processos aptos é uma fila circular
- Necessidade de um relógio para delimitar as fatias de tempo
 - Interrupção de tempo

Tempos de execução

A = 12

B = 8

C = 15

D = 5

Sistemas Operacionais 26

Problemas com o Round Robin

- Problema 1: Dimensionamento do *quantum*
 - Compromisso entre *overhead* e tempo de resposta em função do número de usuários (1/k na presença de k usuários)
 - Compromisso entre tempo de chaveamento e tempo do ciclo de processador (quantum)
- Problema 2: Processos I/O bound são prejudicados
 - Esperam da mesma forma que processos CPU bound, porém quando ganham a CPU, muito provavelmente, não utilizam todo o seu quantum
 - Solução:
 - Prioridades: Associar prioridades mais altas aos processos I/O bound para compensar o tempo gasto no estado de espera (apto)

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Instituto de Informática - UFRGS A. Carissimi - 26-mars-12

25

27 Sistemas Operacionais Sistemas Operacionais 28

- Escolhe o processo cujo tempo de execução restante seja o menor
- Quando um processo entra no estado apto seu tempo é comparado com aquele que está em "executando"
 - Se for menor, preempta o que está executando
- Privilegia tarefas "curtas" ou aquelas que tem o menor ciclo de CPU
 - Forma de priorizar processos I/O bound

Sistemas Operacionais

Escalonamento com prioridades preemptivo

- Quando um processo de maior prioridade que o processo em execução entrar no estado apto deve ocorrer uma preempção
- Havendo mais de um processo com uma mesma prioridade se aplica uma política de escalonamento entre eles:
 - Round-Robin
 - FIFO (FCFS)
 - SJF (SPF)

Prioridades

- Se existir, é um critério para selecionar processos
- Prioridade pode ser:
 - Estática: definida no momento da criação (alterada via chamada de sistema)
 - Dinâmica: modifica durante a execução do processo em função de condições de utilização (carga e recursos) do sistema
 - e.g: Processo que detém recurso importante pode ter prioridade aumentada, processo que executa demais pode ter prioridade reduzida etc
- Pode ser incluído em políticas preemptivas e não preemptivas:
 - Preemptiva: "poder" de retirar processo de menor prioridade da CPU
 - Não-preemptiva: A prioridade é considerada apenas no momento da selecionar um dos processos que está no estado de apto para passar a executando.

30

Sistemas Operacionais

Implementação de escalonador com prioridades

- Múltiplas filas associadas ao estado apto
- Cada fila uma prioridade
 - Pode ter sua própria política de escalonamento (FIFO, SJF, RR)

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

29

Instituto de Informática - UFRGS A. Carissimi - 26-mars-12

Exemplo: pthreads

- É um exemplo de implementação: Não é regra geral!!
- A política de escalonamento FIFO com prioridade considera:
 - Quando um processo em execução é preemptado ele é inserido no ínicio de sua fila de prioridade
 - Quando um processo bloqueado passa a apto ele é inserido no final da fila de sua prioridade
 - Quando um processo troca de prioridade ele é inserido no final da fila de sua nova prioridade
 - Quando um processo em execução "passa a vez" para um outro processo ele é inserido no final da fila de sua prioridade

Sistemas Operacionais

Problemas com prioridades

- Um processo de baixa prioridade pode não ser executado
 - Postergação indefinida (starvation)
- Processo com prioridade estática pode ficar mal classificado e ser penalizado ou favorecido em relação aos demais
 - Típico de processos que durante sua execução trocam de padrão de comportamento (CPU bound a I/O bound e vice-versa)
- Solução:

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

33

35

Múltiplas filas com realimentação

Sistemas Operacionais

Múltiplas filas com realimentação

- Baseado em prioridades dinâmicas
- Em função do tempo de uso da CPU a prioridade do processo aumenta e diminui
- Sistema de envelhecimento (agging) evita postergação indefinida

Escalonamento por fração justa (fair share)

- Um escalonador deve ser justo com os usuários do sistema
 - Tomar decisões baseados só em processos leva a injustiças
 - Ex: usuário 1 com 9 processos e usuário 2 com 1 processo. O usuário 1 potencialmente usaria 90% do processador.
- Solução:
 - Considerar o proprietário do processo como parte do procedimento da política de escalonamento
 - Dois usuários devem receber 50% do processador independente do número de processos que cada um deles detém

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais

36

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais

Escalonamento em múltiplos processadores

- Duas categorias
 - Assimétricos: uma CPU executa o sistema operacional, as demais executam aplicações de usuários
 - Simétricos: todas CPUs executam o sistema operacional e aplicações usuário
 - Estratégias: Fila de aptos única para todas CPUs ou uma fila por CPU
- Noção de afinidade
 - Tentativa de manter o processo/thread executando na mesma CPU
 - Pode ser afinidade rígida ou flexível
 - Objetivo é reaproveitar informação já presente nos níveis de cache
- Balanceamento de carga
 - Com estratégia "uma fila por CPU" é preciso manter todas ocupadas
 - Migração entre filas de aptos se opõe a noção de afinidade

Sistemas Operacionais 37

Processadores multicore e com hyperthreading

- São vistos pelo sistema operacional como multiprocessadores
- Hyperthreading é a definição de processadores lógicos em processadores físicos
 - O sistema operacional "enxerga" os processadores lógicos para efeitos de escalonamento
 - Ex.: Intel i3 (dual core com HT): cada core tem dois lógicos (HT), então aparece para o sistema operacional como quatro processadores

Sistemas Operacionais 38

Estudo de caso: escalonamento Linux 2.6

- Duas classes em função do tipo de processos (threads)
 - User: Processos interativos e batch (regular)
 - RT: Processos de tempo real
- 140 níveis diferentes de prioridade
 - Escalona sempre o processo (*thread*) de maior prioridade
- Valores de quantum por nível de prioridade
 - Maior a prioridade, maior o quantum
 - Quantum é o número de ciclos que um processo pode continuar em execução

Real

time

user

100

139

■ Unidade de ciclo é 1ms (denominado jiffy)

Escalonamento Linux (classe tempo real)

- Prioridades entre 0 e 99
- Esquema de prioridade fixa
 - Definida por um usuário com privilégios especiais
- Seleciona o processo de maior prioridade para executar
 - Múltiplas filas sem realimentação
- Políticas de escalonamento (padrão POSIX)
 - SCHED_FIFO: escalonador FIFO com prioridade estática
 - SCHED_RR: escalonador Round-robin com prioridade estática
- Na verdade NÃO são escalonadores de tempo real
 - Não garantem prazo!!
 - São simplesmente mais prioritários que a classe USER

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais 39 Sistemas Operacionais 40

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Escalonamento linux (classe *USER*)

- Prioridades entre 100 e 139
- Múltiplas filas com realimentação (prioridade dinâmica)
- Valor nice

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Instituto de Informática - UFRGS

Sistemas Operacionais

- Uma espécie de prioridade estática a ser adicionada a dinâmica
 - Varia entre -20 a +19 respeitando os limites (100 a 139)
- Prioridade dinâmica
 - Recalculado periodicamente e no esgotamento do *quantum*
 - Processos interativos (I/O bound) recebem bônus de prioridade (até -5)
 - Processos CPU/bound são penalizados na prioridade (até +5)
 - Maior a prioridade, maior o *quantum*
 - Idéia: permitir que os I/O bound executem logo porque eles ficarão bloqueados em operações de E/S

41 Sistemas Operacionais

Fila de execução (Runqueue)

- Estrutura de dados, por processador, que representa o estado "apto"
- Possui ponteiros para dois vetores e uma função (migração)
 - Vetores Ativo e Expirado (140 elementos cada)
 - Cada elemento do vetor é o cabeça de uma lista encadeada
 - Processos de prioridade / estão encadeados a partir desse elemento /
- Princípio de funcionamento
 - Seleciona o processo de mais alta prioridade do vetor de ativos
 - Se *quantum* do processo esgotar, é movido para o vetor de expirados
 - Se FIFO não há *quantum*
 - Classe USER pode ser colocado em um nível de prioridade diferente
 - Quando não houver mais processos na lista de ativos, inverte o valor dos ponteiros "ativo" e "expirados"

Sistemas Operacionais 42

Esquema da estrutura runqueue

Estudo de caso: escalonamento windows

- Unidade de escalonamento é a thread
- Escalonador preemptivo com prioridades
- Prioridades organizadas em duas classes:
 - Tempo real: prioridade estática (níveis 16-31)
 - Variável: prioridade dinâmica (níveis 0-15)
- Cada classe possui 16 níveis de prioridades
 - Cada nível é implementado por uma fila em uma política round-robin
 - Múltiplas filas: classe de tempo real
 - Múltiplas filas com realimentação: classe de tempo variável
 - Threads da classe tempo real tem precedência sobre as da classe variável

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Instituto de Informática - UFRGS A. Carissimi - 26-mars-12

Sistemas Operacionais

43

Escalonamento windows (classe variável)

- Dois parâmetros definem a prioridade de uma *thread:*
 - Valor de prioridade de base do processo
 - Prioridade inicial que indica sua prioridade relativa dentro do processo
- Prioridade da *thread* varia de acordo com uso do processador
 - Preemptada por esgotar o *quantum*: prioridade reduzida
 - Preemptada por operação de E/S: prioridade aumentada
 - Nunca assume valor inferior a sua prioridade de base, nem superior a 15
- Fator adicional em máquina multiprocessadoras: afinidade!
 - Tentativa de escalonar uma thread no processador que ela executou mais recentemente

Leituras complementares

- A. Tanenbaum. <u>Sistemas Operacionais Modernos</u> (3ª edição), Pearson Brasil, 2010.
 - Capítulo 2: seções 2.4.1 a 2.4.3
- A. Silberchatz, P. Galvin; <u>Sistemas Operacionais</u>. (7ª edição). Campus, 2008.
 - Capítulo 5 (seções 5.1, 5.2 e 5.3)
- R. Oliveira, A. Carissimi, S. Toscani; <u>Sistemas Operacionais</u>. Editora Bookman 4ª edição, 2010
 - Capítulo 4 (seções 4.4 e 4.5)

Instituto de Informática - UFRGS A. Carissimi -26-mars-12

Sistemas Operacionais 45 Sistemas Operacionais 4

Instituto de Informática - UFRGS A. Carissimi -26-mars-12