รายละเอียดผลการทดลอง 6610450871 นายชนพัฒน์ โชติกุลรัตน์ หมู่ 200

Model = SVC (from SVM)
Dataset = IndiaWeather

1.ทำการ import library ต่างๆ

```
import pandas as pd
  from sklearn.model_selection import train_test_split , GridSearchCV
  from sklearn.svm import SVC
  from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
  from sklearn.preprocessing import LabelEncoder, StandardScaler
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
✓ 0.0s
Python
```

- pandas: สำหรับจัดการข้อมูลตาราง
- train_test_split: สำหรับแบ่งข้อมูลออกเป็นชุดฝึกสอนและชุดทดสอบ
- GridSearchCV: สำหรับค้นหาไฮเปอร์พารามิเตอร์ที่ดีที่สุด
- SVC: สำหรับสร้างโมเดล SVM
- accuracy_score, classification_report, confusion_matrix: สำหรับ ประเมินผลการทำนาย
- LabelEncoder, StandardScaler: สำหรับการแปลงข้อมูล
- numpy, matplotlib.pyplot, seaborn: สำหรับการจัดการและแสดงผล ข้อมูล

2.อ่านข้อมูลจากไฟล์ Excel ชื่อ "IndiaWeather.xlsx"

- เก็บข้อมูลที่อ่านได้ลงใน DataFrame ของ pandas ชื่อ df
- แสดงเนื้อหาของ DataFrame

<pre>df = pd.read_excel('IndiaWeather.xlsx') df</pre>											
✓ C).0s									Python	
	อุณหภูมิ	ความชื้น	ปริมาณ PM2.5	ปริมาณ PM10	ปริมาณ ไนโตรเจน	ปริมาณ ซัลเฟอร์	ปริมาณ คาร์บอน	ระยะ ห่างจาก โรงงาน	ความหนา แน่น ประชากร	คุณภาพ อากาศ	
0	24.7	53.8	2.1	8.7	25.1	21.8	0.88	10.0	310	ปานกลาง	
1	25.8	65.6	12.7	18.5	12.3	26	1.02	0.0	297	ดี	
2	26.6	55.2	26.6	39.1		25.8	0.54	0.6	316	ปานกลาง	
3	24.3	63	2.5	13.8	15.9	3.7	1.3	6.6	270	นย่	
4	23.3	73.2	19.9	37.2	17.1	19.6	1.15	1.7	319	ดี	
495	27.3	59.5	65.7	73.5	18.5	9.6	0.51	0.2	290	ปานกลาง	
496	22.5	58.6	46.4	57.8	10.7	27.6	1.13	4.1	293	ปานกลาง	
497	24.4		31.5	40.2	12.5	2	0.66	0.3	264	ปานกลาง	

3.ดูจำนวนของค่าว่าง (missing value) ในแต่ละคอ ลัมน์ของ DataFrame df และแสดงผลลัพธ์ออกมา

4.ทำการเปลี่ยนชื่อคอลัมน์ทั้งหมดใน DataFrame df ให้เป็นภาษาอังกฤษ เพื่อให้เข้าใจง่ายขึ้นและสะดวกใน การวิเคราะห์ข้อมูลต่อไป เช่น การนำข้อมูลไปใช้กับ โมเดล Machine Learning หรือสร้าง Visualization ต่างๆ

d-		mns = {' <u>อ</u> ุณ	เหภูมิ' :	'temper	ature'	, ' ຼຄວາ:	มุชึ้น'	: 'Humidity',' <u>ປູຊີນຸງຄຸ</u> PM2.5' :	'PM2.5','ปริมา
~ (0.0s								Python
	temperature	Humidity	PM2.5	PM10	NO2	SO2	со	Distance_from_Industrial_Areas	Population_De
0	24.7	53.8	2.1	8.7	25.1	21.8	0.88	10.0	
1	25.8	65.6	12.7	18.5	12.3	26	1.02	0.0	
2	26.6	55.2	26.6	39.1		25.8	0.54	0.6	
3	24.3	63	2.5	13.8	15.9	3.7	1.3	6.6	
4	23.3	73.2	19.9	37.2	17.1	19.6	1.15	1.7	
495	27.3	59.5	65.7	73.5	18.5	9.6	0.51	0.2	
496	22.5	58.6	46.4	57.8	10.7	27.6	1.13	4.1	
497	24.4		31.5	40.2	12.5	2	0.66	0.3	
498	19.2	50.7	56.8	65.6	14.1	13	0.45	6.4	

5.จัดการกับค่าว่าง (missing values) ใน DataFrame โดยมีขั้นตอนดังนี้

- แทนที่สัญลักษณ์ '?' ด้วยค่าว่าง (NaN)
- ตรวจสอบและแปลงชนิดข้อมูลของคอลัมน์เป็นตัวเลข
- เติมค่าว่างในแต่ละคอลัมน์ด้วยค่าเฉลี่ยของข้อมูลในกลุ่มที่มีคุณภาพ อากาศเดียวกัน

```
df.replace('?', np.nan, inplace=True)
for col in df.columns[:-1]:
    if pd.api.types.is_numeric_dtype(df[col]):
        df[col] = df[col].astype(float)
        for label in df['Air_Quality'].unique():
        df.loc[(df['Air_Quality'] == label) & (df[col].isna()), col] = df[col].loc[df['Air_Quality'] == label)
```

6.ตรวจสอบโครงสร้างของ DataFrame

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 10 columns):
# Column
                                Non-Null Count Dtype
                                500 non-null float64
0 temperature
1 Humidity
                                500 non-null float64
2 PM2.5
                                500 non-null float64
3 PM10
                                500 non-null float64
                                500 non-null float64
                                500 non-null float64
  Distance_from_Industrial_Areas 500 non-null float64
8 Population_Density 500 non-null float64
9 Air_Quality
                                500 non-null
                                             object
dtypes: float64(9), object(1)
```

7.สร้าง Pairplot โดยแสดงความสัมพันธ์แบบคู่ระหว่าง ทุกคู่ของตัวแปรใน DataFrame df

sns.pairplot(df,hue = 'Air_Quality')

\$\square\$ 11.7s

Python

- จะเห็นได้ว่าข้อมูลกระจายตัวผสมกันทุก Class

8.กรองข้อมูล

- เลือกเฉพาะข้อมูลที่ค่า PM2.5 ที่แบ่งกลุ่มได้ตรงกับ label คุณภาพอากาศ ที่ระบุไว้ในคอลัมน์ Air_Quality

```
pm25_bins = [0, 38, 51, 91, np.inf]
   pm25_labels = ['ดี', 'ปานกลาง', 'แย่', 'อันตรายต่อสุขภาพ']
   pm25_filtered = pd.cut(df['PM2.5'], bins=pm25_bins, labels=pm25_labels, right=False)
   df = df[pm25_filtered == df['Air_Quality']]
   df.info()
                                                                                                Python
<class 'pandas.core.frame.DataFrame'>
Index: 177 entries, 1 to 496
Data columns (total 10 columns):
# Column
                                    Non-Null Count Dtype
    temperature
                                                     float64
                                                   float64
    Humidity
                                     177 non-null
```

9.แปลงหน่วยความเข้มข้นของก๊าซ NO2, SO2 และ CO จากหน่วย ppm และ ppb เป็นหน่วย µg/m³ ซึ่งเป็นหน่วย ที่ใช้กันทั่วไปในการวัดมลพิษทางอากาศ

```
MOLAR_VOLUME = 24.45

MW_NO2 = 46.01

MW_SO2 = 64.07

MW_CO = 28.01

Tabnine | Edit | Test | Explain | Document | Ask

def ppb_to_ugm3(ppb, molecular_weight):

    ugm3 = (ppb * molecular_weight * 1e-3) / MOLAR_VOLUME

    return ugm3

Tabnine | Edit | Test | Explain | Document | Ask

def ppm_to_ugm3(ppm, molecular_weight):

    ugm3 = (ppm * molecular_weight) / MOLAR_VOLUME

    return ugm3

✓ 0.0s

Python
```

10.เตรียมข้อมูลเพื่อนำไปใช้ในการฝึกสอนโมเดล Machine Learning โดยมีขั้นตอนดังนี้

- แปลงค่าคุณภาพอากาศ (Air_Quality) ให้เป็นตัวเลขเพื่อให้โมเดลสามารถ ประมวลผลได้
- แบ่งข้อมูลออกเป็นชุดข้อมูลต้นแบบ (X) และชุดข้อมูลเป้าหมาย (y)
- ปรับมาตราส่วน (Scale) ข้อมูล โดยใช้วิธี Standardization ในชุดข้อมูล ต้นแบบ (X) เพื่อปรับปรุงประสิทธิภาพของโมเดล

```
le = LabelEncoder()
df['Air_Quality'] = le.fit_transform(df['Air_Quality'])

X = df.drop('Air_Quality', axis=1)
y = df['Air_Quality']

scaler = StandardScaler()
X = scaler.fit_transform(X)

$\square 0.0s$

Python
```

11.สร้าง Pairplot โดยแสดงความสัมพันธ์แบบคู่ระหว่าง ทุกคู่ของตัวแปรใน DataFrame df หลังจาก prepocess data

12.แบ่งข้อมูล X และ y ออกเป็นสองส่วน โดย 80% ของ ข้อมูลจะถูกใช้สำหรับฝึกสอนโมเดล และ 20% ของ ข้อมูลจะถูกใช้สำหรับทดสอบโมเดล การแบ่งข้อมูลใน ลักษณะนี้มีความสำคัญในการประเมินผลการทำงานของ โมเดลอย่างเป็นกลางและป้องกันการ overfitting

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
Python
```

13. ใช้ GridSearchCV เพื่อค้นหาค่าของพารามิเตอร์ ต่างๆ ที่เหมาะสมที่สุดสำหรับโมเดล SVC

14. แสดงให้เห็นโมเดล SVC ที่ได้รับการปรับแต่งโดยมี พารามิเตอร์ที่เหมาะสมที่สุด ซึ่งจะถูกนำไปใช้ในการ ทำนายค่าของข้อมูลใหม่

15. ใช้โมเดล SVC ที่ได้รับการฝึกสอนแล้วเพื่อทำนาย ค่าของชุดข้อมูลทดสอบ (X_test) ผลลัพธ์การทำนายจะ ถูกเก็บไว้ในตัวแปร y_pred ซึ่งจะนำไปใช้ในการ ประเมินผลการทำงานของโมเดลต่อไป

```
y_pred = svc.predict(X_test)

$\square$ 0.0s

Python
```

16.คำนวณค่าความแม่นยำ (accuracy) ของโมเดล SVC โดยเปรียบเทียบค่าทำนาย (y_pred) กับค่าจริง (y_test) และแสดงผลลัพธ์บนหน้าจอ

17. แสดงรายงานสรุปผลการจำแนกประเภทของโมเดล SVC โดยรายงานจะแสดงค่า precision, recall, f1-score, support และค่าความแม่นยำโดยรวมสำหรับ แต่ละคลาสและโดยรวม ซึ่งช่วยในการประเมิน ประสิทธิภาพของโมเดลอย่างละเอียด

<pre>print(classification_report(y_test, y_pred))</pre>									
✓ 0.0s							Python		
	precision	recall	f1-score	support					
0	1.00	1.00	1.00	31					
1	1.00	1.00	1.00	2					
2	0.00	0.00	0.00	1					
3	0.67	1.00	0.80	2					
accuracy			0.97	36					
macro avg	0.67	0.75	0.70	36					
weighted avg	0.95	0.97	0.96	36					

18. สร้าง Confusion Matrix Heatmap เพื่อแสดงผล การจำแนกประเภทของโมเดล KNN โดยใช้สีที่เข้มแสดง จำนวนข้อมูลมาก สีจางแสดงจำนวนข้อมูลน้อย การ วิเคราะห์ Confusion Matrix Heatmap ช่วยให้เข้าใจ ประสิทธิภาพของโมเดลได้ดียิ่งขึ้น

```
cm = confusion_matrix(y_test, y_pred)
# class_labels = le.classes_
class_labels = ['Good', 'Mid', 'Bad', 'Dangerous']

plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=class_labels, yticklabels=class_labels)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix Heatmap")
plt.show()
```


Accuracy = 0.97