Mathematics

Zhang En-Yao

August 2023

Contents

L	Pairs	5
	1.1 Unordered, Ordered Pairs	5

4 CONTENTS

Chapter 1

Pairs

1.1 Unordered, Ordered Pairs

Definition. Unordered Pair

 $\{a,b\}$ is a set whose elements are exactly a and b.

Definition. Ordered Pair

Ordered pair of a and b is denoted by (a, b).

Definition. Coordinate

a is the first coordinate of the pair, b is the second coordinate.

Definition.

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

Definition.

For two different sets α and β , $(a,b) = \{\{a,\alpha\}, \{b,\beta\}\}.$

Note. An alternative definition of ordered pairs.

Property 1.1.0.1.

Two ordered pairs are equal if and only if their first coordinates are equal and their second coordinates are equal.

Proof. Obviously. $\ \square$ Property 1.1.0.2. $(a,b) \neq (b,a)$ if $a \neq b$.

Proof. Obviously. $\ \square$ Property 1.1.0.3. $\ \square$ If $a \neq b$, (a,b) has two elements, a singleton $\{a\}$ and an unordered pair $\{a,b\}$. If a = b, then $(a,a) = \{\{a\}\}$ has only one element.

Note. We find the first coordinate by looking at the element of $\{a\}$. The second coordinate is then the other element of $\{a,b\}$.

Note. Ordered pair should be defined in such a way that two ordered pairs are equal if and only if their first coordinates are equal and their second coordinates are equal.

Note. If $a \neq b$, (a,b) has two elements, a singleton $\{a\}$ and an unordered pair $\{a,b\}$. The first coordinate is the element of $\{a\}$; the second coordinate is the other element of $\{a,b\}$.

Theorem 1.1.1.

Proof. Obviously.

(a,b) = (a',b') if and only if a = a' and b = b'.

Proof. Obviously.

Definition. One-Tuples (a) = a.

Definition. Ordered Triples (a, b, c) = ((a, b), c).

Definition. Ordered Quadruples (a, b, c, d) = (((a, b), c), d).

Proof. Obviously.

Property 1.1.1.1. $(a,b) \in \mathcal{P}(\mathcal{P}(\{a,b\}))$. More generally, if $a \in A$ and $b \in A$, then $(a,b) \in \mathcal{P}(\mathcal{P}(\{a,b\}))$ $\mathcal{P}(\mathcal{P}(\{a,b\})).$ Proof. Obviously. Property 1.1.1.2. $a, b \in \bigcup (a, b).$ Proof. Obviously. Property 1.1.1.3. (a,b), (a,b,c), and (a,b,c,d) exist for all a,b,c, and d. Proof. Obviously. Property 1.1.1.4. If (a, b) = (b, a), then a = b. Proof. Obviously. Property 1.1.1.5. (a, b, c) = (a', b', c') implies a = a', b = b', and c = c'. (a, b, c, d) = (a', b', c', d')implies a = a', b = b', c = c', and d = d'.