4 מתמטיקה בדידה – עוצמות

שחר פרץ

2024 למרץ 6

תזכורות:

- $2^{\aleph_0} = |\mathbb{N} \to \{0, 1\}| \bullet$
- $2^{|A|} := |A \to \{0, 1\}| \bullet$
 - $\aleph_0 \leq 2^{\aleph_0} \bullet$
- $|\mathcal{P}(\mathbb{N})| = 2^{|\mathbb{N}|}$ ובפרט עבור $orall A. |\mathcal{P}(A)| = 2^{|A|}$
 - $orall A.|A|<|\mathcal{P}(A)|$:משפט קנטור
 - $\aleph := |\mathbb{R}|$ •
 - $\aleph = 2^{\aleph_0} \bullet$

הוכחה הפונקציה: נשתמש בקש"ב. בכיוון הראשון, ע"י הגדרת הפונקציה: נשתמש בקש"ב. בכיוון הראשון, ווע"י הגדרת הפונקציה:

$$f: \mathbb{R} \to \mathcal{P}(\mathbb{Q}), \ f(r) = \{ q \in \mathbb{Q} \mid q \le r \}$$

 $q_0 \in \{q \in \mathbb{Q} \mid q \leq r_1, r_2 \in \mathbb{R} \$ לכן, $r_1 < q_0 < r_2$ שונים. $r_1 < q_0 < r_2$ שונים. בה"כ $r_1 < r_2 \in \mathbb{R}$ מצפיפות הרציונליים בממשיים, קיים $r_1 < r_2 \in \mathbb{R}$ שונים. בה"כ $r_1 < r_2 \in \mathbb{R}$ וסה"כ $r_1 < r_2 \in \mathbb{R}$ וסה"כ $r_2 < r_2 \in \mathbb{R}$ וסה"כ $r_1 < r_2 \in \mathbb{R}$ וסה"כ $r_2 < r$

g נגדיר פונקציה g לפי התכונה הנ"ל. הטווח של g ע"י g: $(\mathbb{N} \to \{0,1\}.0.h(0)h(1)h(2)\dots$ לפי התכונה הנ"ל. הטווח של g: $(\mathbb{N} \to \{0,2\}) \to \mathbb{R}$ נגדיר פונקציה $h_1(n_0) = 0 \land h_2(n_0) = 2$ בה"כ נניח ש־ $h_1(n_0) \neq h_2(n_0)$. אז קיים $h_1(n_0) \in \mathbb{N}$ סרך ש־ $h_1(n_0) \neq h_2(n_0)$. בה"כ נניח ש־ $h_1(n_0) \neq h_2(n_0)$ אז קיים $h_1(n_0) \neq h_2(n_0)$

$$g(h_1) = 0.h_1(0) \dots \underbrace{h_1(n_0)}_{=0} \dots < 0.h_1(0) \dots 1 < 0.h_1(0) \dots 2 = 0.h_2(0) \dots 2 \le g(h_2)$$

 $g(h_1) < g(h_2)$ סה"כ $\forall n < n_0.h_1(n) = h_2(n)$ ולכן דיותר האפשרי, כך ש־ $g(h_1) < g(h_2)$ סה"כ ישרעו את בהנחה שבחרנו את ה- $g(h_1) < g(h_2)$

"בואו נוכיח, ונעשה שיהיה לנו פשוט" (נטלי). לא ההוכחה הכי פורמלית...

. $\aleph=2^{\aleph_0}$ סה"כ, "הוכחנו" ש־|R| שר $^{\aleph_0}\leq |R|$, ולסיכום מקש"ב

:הערה

 $:2^{leph_0}$ דוגמאות לקבוצות מעוצמה

- וכו' $\mathbb{N} \to \{0,1\}, \mathbb{Q} \to \{0,1\}$
 - \mathbb{R} •
- וכו' $\mathcal{P}(\mathbb{N}), \mathcal{P}(\mathbb{Q}), \mathcal{P}(\mathbb{Z}), \mathcal{P}(\mathbb{N} \times \mathbb{N}), \mathcal{P}(\mathbb{N}_{\mathrm{even}})$

:2 הערה

השערת הרצף: לא קיימת קבוצה X כך ש $^{-2}$ 0, (במילים אחרות, 2 0 היא העוצמה הראשונה שגדולה ממש מ $^{-2}$ 1). השערת הרצף התחילה באמערת הרצף: לא קיימת קבוצה X1, כך ש $^{-2}$ 1, והוכיחו כי הטענה הזו בלתי תלויה באקסיומות, כלומר ש**אי אפשר להוכיח אותה באמצעות** בתור השערה, אבל הוא לא באמת השערה בימנו אנו: הוכיחו כי הטענה הזו בלתי תלויה באקסיומות, כלומר ש**אי אפשר להוכיח אותה באמצעות** באמצעות כלים מתמטיים יחסית מתקמים.

:3 הערה

 \aleph_0 לא בחומר: \aleph_1 היא העוצמה הראשונה שגדולה יותר מ

קצת תרגול בלכסון

N

 $A=\{f\in\mathbb{N} o\{0,1\}\mid \forall i\in\mathbb{N}.f(i)\cdot f(i+1)=0\}$ הוכיחו ע"י לכסון שהקבוצה הבאה אינה בת מנייה: $g\in A$ נבנה $F\colon\mathbb{N} o A$ נבנה $g\in A$ באופן הבא:

$$g = \lambda n \in \mathbb{N}. \begin{cases} 1 - F\left(\frac{n}{2}\right)(n) & n \in \mathbb{N}_{\text{even}} \\ 0 & n \in \mathbb{N}_{\text{odd}} \end{cases}$$

נוכיח ש־ $g\in A$: ראשית, לכל n=1 מתקיים $n\in \mathbb{N}$ ולכן $n\in \mathbb{N}$ ולכן $n\in \mathbb{N}$ ולכן $n\in \mathbb{N}$ ולכן $n\in \mathbb{N}$ מתקיים שאחד מבין $n\in \mathbb{N}$ מתקיים שאחד מבין $n\in \mathbb{N}$ הוא אי $n\in \mathbb{N}$ הוא טווח עבור $n\in \mathbb{N}$ בו $n\in \mathbb{N}$ בנוסף, לכל $n\in \mathbb{N}$ מתקיים שאחד מבין $n\in \mathbb{N}$ הוא טווח עבור $n\in \mathbb{N}$ מה"כ $n\in \mathbb{N}$ יהי $n\in \mathbb{N}$ אז $n\in \mathbb{N}$ אז $n\in \mathbb{N}$ אז $n\in \mathbb{N}$ מה"כ $n\in \mathbb{N}$ ש"כל $n\in \mathbb{N}$ שי $n\in \mathbb{N}$ מבחר $n\in \mathbb{N}$ אז $n\in \mathbb{N}$ מבחר $n\in \mathbb{N}$ מבח

ב

הוכיחו ע"י לכסון שקבוצת כל הפונקציות החח"ע מ $\mathbb{N} \to \mathbb{N}$ (נסמנה A) אינה בת מנייה. פתרון: נניח בשלילה $F \colon \mathbb{N} \to A$ זיווג. נגדיר:

$$g = \lambda n \in \mathbb{N}. \sum_{i=0}^{n} (F(i)(i) + 1) + 1$$

			ז ה