Translatable radii of an operator in the direction of another operator II

Kallol Paul

Abstract

One of the couple of translatable radii of an operator in the direction of another operator introduced in earlier work[13] is studied in details. A necessary and sufficient condition for a unit vector f to be a stationary vector of the generalized eigenvalue problem $Tf = \lambda Af$ is obtained. Finally a theorem of Williams[16] is generalized to obtain a translatable radius of an operator in the direction of another operator.

1 Introduction.

Let T and A be two bounded linear operators on a complex Hilbert space H with inner product (,) and norm $\|\cdot\|$. Consider the generalized eigenvalue problem $Tf = \lambda$ Af where $f \in H$ and $\lambda \in C$, λ is called the eigenvalue of the above equation and f the corresponding eigenvector. The non-negative functional

$$M_T(f) = ||Tf - \frac{(Tf, Af)}{(Af, Af)}Af||, provided ||Af|| \neq 0,$$

gives the deviation of a unit vector f from being an eigenvector and

$$M_T(A) = \sup_{\|f\|=1} \{ \|Tf - \frac{(Tf, Af)}{(Af, Af)} Af \| \}, \text{ provided } 0 \notin \sigma_{app} A,$$

gives the supremum of all those deviations, where $\sigma_{app}A$ is the set of approximate eigenvalues of A.

Geometrically $Tf - \frac{(Tf,Af)}{(Af,Af)}Af$ is the component of Tf perpendicular to Af. For A = I problems related to the concepts considered here have been studied by Bjorck and Thomee[2], Garske[8], Prasanna[14], Fujii and Prasanna[6], Furuta et al[7], Fujii and Nakamoto[5], Izumino[9], Nakamoto and Sheth[11], Mustafaev and Shulman[10] and many others.

Keywords: Stationary distance vectors, Translatable radii.

Bjorck and Thomee[2] have shown that for a normal operator T,

$$M_T = \sup_{\|f\|=1} \{ \|Tf - (Tf, f)f\| = R_T,$$

where R_T is the radius of the smallest circle containing the spectrum. Garske[8] improved on the result to prove that for any bounded linear operator T,

$$M_T = \sup_{\|f\|=1} \{ \|Tf - (Tf, f)f\| \ge R_T.$$

Stampfli[15] proved that for a bounded linear operator T \exists a unique complex scalar c_T , defined as the center of mass of T such that

$$||T - c_T I||^2 + |\lambda|^2 \le ||T - c_T I + \lambda I||^2, \quad \forall \ \lambda \in C.$$

With the help of Stampfli's result Prasanna[14] proved that $M_T = ||T - c_T I||$. Later Fujii and Prasanna[6] improved on the inequality of Garske to show that $M_T \ge w_T$ where w_T is the radius of the smallest circle containing the numerical range.

In [12] we proved that for any two bounded linear operators T and A if $0 \notin \sigma_{app}A$ then there exists a unique complex scalar λ_0 such that $||T - \lambda_0 A|| \le ||T - \lambda A|| \ \forall \lambda \in \mathbb{C}$. We defined $T - \lambda_0 A$ as the **minimal-norm translation of T in the direction of A** and proved that $||T - \lambda_0 A|| = M_T(A)$. The equality of $\inf_{\lambda} ||T - \lambda A|| = M_T(A)$ was also studied by E.Asplund and V.Pták[1]

Then in [13] we introduced a couple of **translatable radii of an operator T in the direction** of another operator A as follows:

If 0 does not belong to the approximate point spectrum of A let

$$M_T(A) = \sup_{\|f\|=1} \{ \|Tf - \frac{(Tf, Af)}{(Af, Af)} Af \| \}$$

i.e.,
$$M_T(A) = \sup_{\|f\|=1} \left\{ \|Tf\|^2 - \frac{|(Tf, Af)|^2}{(Af, Af)} \right\}^{1/2}$$

and if $0 \notin \overline{W(A)}$, where $\overline{W(A)}$ stands for the closure of the numerical range of A, let

$$\tilde{M}_T(A) = \sup_{\|f\|=1} \{ \|Tf - \frac{(Tf, f)}{(Af, f)} Af \| \}.$$

We defined $M_T(A)$ and $\tilde{M}_T(A)$ as translatable radii of the operator T in the direction of A and proved in [13] that if $0 \notin \overline{W(A)}$ then

$$\tilde{M}_T(A) \ge M_T(A) \ge m_T(A) / ||A^{-1}||,$$

where $m_T(A)$ is the radius of the smallest circle containing the set $W_T(A) = \{ (Tf, Af)/(Af, Af) : ||f|| = 1 \}$.

Das[4] introduced the concept of stationary distance vectors while studying the eigenvalue problem $\mathrm{Tf}=\lambda$ f. Following the ideas of Das we here use the concept of stationary distance vectors to study the generalized eigenvalue problem $\mathrm{Tf}=\lambda$ Af and the translatable radius $M_T(A)$. We investigate the structure of the vectors for which the translatable radius $M_T(A)$ is attained and prove that if $M_T(A)$ is attained at a vector f then $M_{T^*}(A^*)$ is attained at the vector $h/\|h\|$, where h=Tf-(Tf,Af)/(Af,Af) Af . We also show that if g is a state (normalized positive functional) on the Banach algebra B(H,H) of all bounded linear operators on H then

$$M_T(A) = \sup\{ g(T^*T) - \frac{|g(A^*T)|^2}{g(A^*A)} : g \text{ is a state and } g(A^*A) \neq 0 \}.$$

The last result mentioned here is a generalization of a theorem of Williams [16].

2 Stationary distance vectors of the generalized eigenvalue problem $Tf = \lambda Af$

In this section we study the following:

"For any two bounded linear operators T and A what are the vectors that are nearest to or farthest from being eigenvectors of the equation $Tf = \lambda Af$ in the sense that ||Tf - (Tf, Af)/(Af, Af)| with unit f is minimum or maximum?"

We give a necessary and sufficient condition that a unit vector f is at a stationary distance from being an eigenvector. We call such f's the stationary distance vectors and the corresponding $\lambda = (Tf,Af)/(Af,Af)$ the stationary distance value of the eigenvalue problem $Tf = \lambda Af$. We use the concept of stationary vectors the definition of which is given below:

Definition 1 Stationary vector.

Let φ be a functional defined on the unit sphere of H. Then a unit vector f is said to be a stationary vector and φ is said to have a stationary value at f of φ iff the function $w_g(t)$ of a real variable t, defined as

$$w_g(t) = \varphi(\frac{f + tg}{\|f + tg\|})$$

has a stationary value at t=0 i.e., $w_g'(0)=0$ for any arbitrary but fixed vector $g \in H$. e.g., If $\varphi(f)=\|Tf-(Tf,Af)/(Af,Af)\|^2$ then a stationary vector f of functional φ is called the stationary distance vector of the eigenvalue problem $Tf=\lambda Af$. We assume that 0 does not belong to the approximate point spectrum of A and prove the following theorem:

Theorem 1. The necessary and sufficient condition for a unit vector f to be a stationary distance vector of the generalized eigenvalue problem $Tf = \lambda Af$ is that it satisfies the following

$$(T^* - \bar{\lambda}A^*)(T - \lambda A)f = ||h||^2 f$$

where $h = Tf - \lambda Af$ and $\lambda = \frac{(Tf, Af)}{(Af, Af)}$.

Proof. Consider $M_T(f) = ||Tf - (Tf, Af)/(Af, Af)| Af||$. Define the function $w_g(t)$ of a real variable t as follows

$$w_g(t) = M_T^2 \left(\frac{f + tg}{\|f + tg\|} \right) = \frac{\|T(f + tg)\|^2}{\|f + tg\|^2} - \frac{\|(T(f + tg), A(f + tg))\|^2}{(A(f + tg), A(f + tg))\|f + tg\|^2}$$

where g is arbitrary but fixed vector in H.

At a stationary vector f we have $w'_{a}(0) = 0$ and so

$$2 \operatorname{Re} (T^*Tf, g) - \|Tf\|^2 2 \operatorname{Re}(f, g) - \frac{\|Af\|^2}{\|Af\|^4} [(Tf, Af) \{ \overline{(Tf, Ag) + (Tg, Af)} \} + \overline{(Tf, Af)} \{ (Tf, Ag) + (Tg, Af) \}] + \frac{|(Tf, Af)|^2}{\|Af\|^4} \{ \|Af\|^2 2 \operatorname{Re} (f, g) + 2 \operatorname{Re} (A^*Af, g) \} = 0.$$

Since g is arbitrary we get,

$$T^*Tf - ||Tf||^2 f - \lambda T^*Af - \bar{\lambda} A^*Tf + ||Af||^2 \lambda^2 f + \lambda^2 A^*Af = 0$$
,
where $\lambda = (Tf, Af)/(Af, Af)$.

Let $h=Tf-\lambda Af$, then (h,Af)=0 and $\|h\|^2=\|Tf\|^2-\|(Tf,Af)\|^2/(Af,Af)$. So we get

$$(T^* - \bar{\lambda}A^*)(T - \lambda A)f = ||h||^2 f.$$

Thus the theorem is proved.

We now prove the following corollary:

Corollary 1. If $M_T(A)$ is attained at f then $M_{T^*}(A^*)$ is also attained at $h/\|h\|$ where h = Tf - (Tf, Af)/(Af, Af) Af.

Proof. Suppose $M_T(A)$ is attained at a vector f and $\lambda = \frac{(Tf,Af)}{(Af,Af)}$. Then f is a stationary distance vector and so we get

$$(T^* - \bar{\lambda}A^*)(T - \lambda A)f = \|h\|^2 f$$

$$\Rightarrow (T^* - \bar{\lambda}A^*)h = \|h\|^2 f$$

$$\Rightarrow (T^*h, A^*h) = \bar{\lambda}(A^*h, A^*h)$$

$$\Rightarrow \bar{\lambda} = \frac{(T^*h, A^*h)}{(A^*h, A^*h)}$$

Now
$$T^*h = \bar{\lambda}A^*h + ||h||^2 f$$

$$\Rightarrow ||T^*h||^2 = |\bar{\lambda}|^2 ||A^*h||^2 + ||h||^4$$

$$\Rightarrow ||T^*h||^2 = ||h||^2 \{||Tf||^2 - \frac{|(Tf, Af)|^2}{(Af, Af)}\} + \frac{|(Tf, Af)|^2}{(Af, Af)} \cdot \frac{||A^*h||^2}{||Af||^2}$$

If the minimal-norm translation of T in the direction of A is T itself then the minimal-norm translation of T^* in the direction of A^* is also T^* . So if $M_T(A) = ||T||$ then $M_{T^*}(A^*) = ||T^*||$. Let $M_T(A) = ||T|| = ||Tf||$, (Tf, Af)/(Af, Af) = 0. Then $M_{T^*}(A^*) = ||T^*|| = ||T|| = ||T^*h|/||h||$, since (Tf, Af)/(Af, Af) = 0.

This completes the proof.

Next we prove the following theorem:

Theorem 2. Suppose T and A are two selfadjoint operators and f be a unit stationary distance vector such that (Tf,Af) is real, then f can be expressed as the linear combination of two eigenvectors of the problem $Tf = \lambda Af$.

Proof. As both T and A are selfadjoint and f is a stationary distance vector with (Tf,Af) real we get from the last theorem

$$(T - \lambda A)^2 f = \|h\|^2 f.$$

So we get

$$\Rightarrow (T - \lambda A)^{2} f \pm \|h\|h = \|h\|^{2} f \pm \|h\|h$$

$$\Rightarrow T(Tf - \lambda Af \pm \|h\|f) = (\lambda A \pm \|h\|)(Tf - \lambda Af \pm \|h\|f)$$

$$Let \quad g_{1} = Tf - \lambda Af + \|h\|f$$

$$and \quad g_{2} = Tf - \lambda Af - \|h\|f.$$

Then we get

$$Tg_1 = (\lambda A + ||h||)g_1$$
 and $Tg_2 = (\lambda A - ||h||)g_2$

so that

$$(T - \lambda A)g_1 = ||h||g_1 \text{ and } (T - \lambda A)g_2 = -||h||g_2|.$$

Thus $f = (g_1 - g_2)/(2||h||)$ completes the proof.

3 On the attainment of $M_T(A)$

Suppose $\{f_n\}$ be a sequence of unit vectors such that

$$||Tf_n||^2 - \frac{|(Tf_n, Af_n)|^2}{(Af_n, Af_n)} \longrightarrow M_T(A)^2.$$

As the unit sphere in H is weakly compact without loss of generality we may assume that $\{f_n\}$ converges weakly to f i,e, $f_n \rightharpoonup f$.

We now prove the following theorem:

Theorem 3. Suppose $\{f_n\}$ be a weakly convergent sequence of unit vectors such that

$$||Tf_n||^2 - \frac{|(Tf_n, Af_n)|^2}{(Af_n, Af_n)} \longrightarrow M_T(A)^2.$$

If the weak limit f is non-zero then $M_T(A)$ is attained for the vector f/||f||. If the supremum is not attained then all such sequences must tend weakly to zero.

Proof. Since $M_T(A)$ is translation invariant in the direction of A so without any loss of generality we may assume that the minimal-norm translation of T in the direction of A is T itself i,e, $M_T(A) = ||T||$.

So there exists a sequence $\{f_n\}$, $f_n \in H$, $||f_n|| = 1$ such that $||Tf_n|| \longrightarrow ||T||$ and $(Tf_n, Af_n) \longrightarrow 0$. Considering the positive operator $||T||^2I - T^*T$ we have

$$(\|T\|^2 f_n - T^*Tf_n, f_n) \longrightarrow 0$$

$$\Rightarrow \|T\|^2 f_n - T^*Tf_n \longrightarrow 0 , \text{ by property of positive operators.}$$

$$If f \neq 0 \text{ we have}$$

$$\|T\|^2 (f_n, f) - (T^*Tf_n, f) \longrightarrow 0 .$$

Since $f_n \rightharpoonup f$ and weak limit f is unique we get

$$||T||^2 = \frac{||Tf||^2}{||f||^2}.$$

The result that "if $f_n \rightharpoonup f$, $||Tf_n|| \rightarrow ||T||$ and $f \neq 0$ then ||T|| is attained at f/||f||" follows directly from the corollary 1 of Das[3].

As $M_T(T) = ||A||$ the theorem is proved.

4 On generalization of a Theorem of Williams

Let \mathcal{B} denote the set of all normalized positive linear functionals (states) on B(H,H) i.e.,

$$\mathcal{B} = \{ g : g \in L(B(H, H), C) \text{ and } g(I) = 1 = ||g|| \}$$

Clearly \mathcal{B} is $weak^*$ compact. Let $\mathcal{P} = \{ g : g \in \mathcal{B} \text{ and } g(A^*A) \neq 0 \}$. Williams[16] proved that for any bounded linear operator T, $||T|| \leq ||T - \lambda I|| \ \forall \lambda \in C$ iff there exists a state f such that $f(T^*T) = ||T^*T||$ and f(T) = 0. We here show that if for two bounded linear operators T and T are T and T and T and T and T are T and T and T and T are T and T are T and T are T and T are T and T and T are T are T and T are T and T are T and T are T are T and T are T and T are T and T are T and T are T are T and T are T are T and T are T and T are T are T are T are T are T are T and T are T and T are T a

We now prove the following theorem:

Theorem 4. $[M_T(A)]^2 = \sup\{ g(T^*T) - \frac{|g(A^*T)|^2}{g(A^*A)} : g \text{ is a state and } g(A^*A) \neq 0 \}$. **Proof.** Let $[S_T(A)]^2 = \sup\{ g(T^*T) - \frac{|g(A^*T)|^2}{g(A^*A)} : g \text{ is a state and } g(A^*A) \neq 0 \}$. Clearly $S_{T+\lambda A}(A) = S_T(A)$ and $M_{T+\lambda A}(A) = M_T(A)$ so that both are translation invariant in the direction of A. Without loss of generality we assume that $M_T(A) = ||T||$. Now for each $x \in H$, ||x|| = 1, let $g_x : B(H, H) \longrightarrow C$ be defined as $g_x(U) = (Ux, x) \ \forall U \in B(H, H)$. Then g_x is a state and $g_x(A^*A) \neq 0$.

$$||T|| = \sup_{g_x} \{g_x(T^*T) - \frac{|g_x(A^*T)|^2}{g_x(A^*A)}\}^{1/2}$$

$$\leq \sup_{g \in \mathcal{P}} \{g(T^*T) - \frac{|g(A^*T)|^2}{g(A^*A)}\}^{1/2}$$

$$\leq \sup_{g \in \mathcal{P}} \{g(T^*T)\}^{1/2}$$

$$= ||T||.$$

This completes the proof.

Note. For A=I the result of Williams follows easily from Theorem 4.

Acknowledgement. The author thanks Professor T.K.Mukherjee and Professor K.C.das for their help while preparing this paper. The author would also like to thank the referee for his invaluable suggestion.

References

- [1] E.Asplund and V.Pták, A minimax inequality for operators and a related numerical range, *Acta Mathematica*, 126 (1971), 53-62.
- [2] G.Bjorck and V.Thomee, A property of bounded normal operators in Hilbert Space, *Arkiv for Math.*, 4 (1963), 551-555.
- [3] K.C.Das, Extrema of the Rayleigh Quotient and normal Behavior of an operator, *Journal of Mathematical Analysis and Applications*, Vol.41 No.3 (1973) 765-774.
- [4] K.C.Das, Stationary distance vectors and their relation with eigenvectors, *Science Academy Medals for Young Scientists-Lectures*, (1978) 44-52.
- [5] M.Fujii and R. Nakamoto, An estimation of the transcendental radius of an operator, *Math. Japonica*, 27 (1982), 637-638.
- [6] M.Fujii and S.Prasanna, Translatable radii for operators, *Mathematica Japonica*, 26 (1981) 653-657.
- [7] T.Furuta, S.Izumino and S.Prasanna, A characterisation of centroid operators, *Math. Japonica*, 27 (1982) 105-106.
- [8] G.Garske, An equality concerning the smallest disc that contains the spectrum of an operator, *Proc. Amer. Math. Soc.*, 78 (1980), 529-532.
- [9] S.Izumino, An estimation of the transcendental radius of an operator, *Math. Japonica*, 27 No.5 (1982), 645-646.
- [10] G.S.Mustafaev and V.S.Shulman, An estimate of the norms of inner derivation in some operator algebras. *Math. Notes(English. Russian original)* 45, No.4 (1989) 337-341; translation from Mat. Zametki 45, No.4, 105-110 (1989).
- [11] R. Nakamoto and I.H.Sheth, On centroid operators. *Math. Japonica*, 29, No.2 (1984) 287-289.
- [12] K.Paul, Sk.M.Hossein and K.C.Das, Orthogonality on B(H,H) and minimal-norm operator, Journal of Analysis and Applications, Vol. 6, No. 3 (2008) 169-178.
- [13] K.Paul, Translatable radii of an operator in the direction of another operator, *Scientae Mathematicae*, Vol.2 No.1 (1999) 119-122.
- [14] S.Prasanna, The norm of a derivation and the Bjorck-Thomee-Istratescu theorem, *Mathematica Japonica*, 26 (1981), 585-588.

- [15] G. Stampfli, The norm of a derivation, Pacific J. math., 33 (1970) 737-747.
- [16] J.P.Williams, Finite operators, Proc. Amer. Math. Soc. Vol.26 (1970) 129-136.

Reader in Mathematics Department of Mathematics Jadavpur University Kolkata 700032 INDIA.

 $e-mail\ :\ kalloldada@yahoo.co.in,\quad kpaul@math.jdvu.ac.in$