Chapter 4

The Processor

Fall 2018

Soontae Kim
School of Computing, KAIST

Announcement

- Project #2
 - Due on Nov. 9
 - Studying pipelining with simulator

MIPS Pipelined Datapath

Pipeline registers

- Need registers between stages
 - To hold information produced in previous cycle

Pipeline Operation

- Cycle-by-cycle flow of instructions through the pipelined datapath
 - "Single-clock-cycle" pipeline diagram
 - Shows pipeline usage in a single cycle
 - Highlight resources used
 - c.f. "multi-clock-cycle" diagram
 - Graph of operation over time
- We'll look at "single-clock-cycle" diagrams for load & store

IF for Load, Store, ...

ID for Load, Store, ...

EX for Load

MEM for Load

WB for Load

Corrected Datapath for Load

EX for Store

MEM for Store

WB for Store

Multi-Cycle Pipeline Diagram

Form showing resource usage

Multi-Cycle Pipeline Diagram

Traditional form

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

Pipelined Control (Simplified)

Pipelined Control

- Control signals derived from instruction
 - As in single-cycle implementation

Pipelined Control

