- 1) Given atoms: a, b and c; formula $f_1=a \rightarrow b$ and $f_2=a \rightarrow b$; and a world W that $W \models f_1$ and $W \models f_2$, show whether the world would satisfy formula $f_3=a \rightarrow (b \land c)$
- 2) What is the shortcoming of min-support? And how it can be resolved?
- 3) Given atoms a, b and c and words, W_1, W_2 and W_3 such that

$$W_1 \vDash a \land b \land c, W_2 \vDash a \lor b \lor c, W_3 \vDash a \rightarrow (b \land c), W_4 \vDash a \rightarrow c$$

Which of worlds would satisfy the following formula?

i.
$$f = b$$
.

ii.
$$f = a \rightarrow c$$

iii.
$$f = a \wedge c$$

iv.
$$f = \neg a \lor c$$

v.
$$f = a \lor b \lor c$$

4) In probabilistic logic, if there are a set of sentences and a set of possible worlds. Assume we want to check for an entailment for a new logical sentence, so explain how linear programing can be utilized.