Lista 4 - MAC105

João Gabriel Basi - N° USP: 9793801

- 1. Dizer "não existe" é o mesmo que dizer "para todo", então a frase fica: $f \not \leq g$ se, e somente se, para todos reais x_o , A, existe $x \geq x_o$ tal que f(x) > Ag(x).
- 2. Começamos supondo que $m^3-2m-4=0$. Fatorando temos $(m-2)(m^2+2m+2)=0$ e vemos que 2 é a única raiz inteira, então m=2. Seguindo com a mesma lógica para $n^3-2n-4=0$, vemos que n=2 também, então m=n, provando que a afirmação é falsa.
- 4. Segundo a fórmula de Báskara, o único jeito de uma raiz não ser racional é se $\sqrt{\Delta}$ não for uma raiz exata, então se calcularmos os Δ s das equações vemos que $\Delta_1 = b^2 4ac$ e $\Delta_2 = b^2 4ca$, concluindo que $\Delta_1 = \Delta_2$. Então se $\sqrt{\Delta_1}$ não for exata, $\sqrt{\Delta_2}$ também não é exata.
- 5. (a) O erro da demonstração está na negação de $x \neq 3$ e $y \neq 8$ que deveria ser x = 3 ou y = 8 ao invés de um <u>e</u> outro, fazendo com que x pode ser igual a 3 sem que y seja igual a 8.
 - (b) Se x = 3, temos que 3 + y = 10, então y = 7, da mesma forma podemos concluir que se y = 8, x = 2, provando que o feiorema é falso já que y pode ser igual a 8 e x igual a 3.