Process Improvement Tracker

Detailed Project Report

Author: Devin Richmond **Date:** June 2025

Table of Contents

- 1. Executive Summary
- 2. Introduction
- 3. Data Description
- 4. Methodology
 - 1. Data Simulation
 - 2. Data Cleaning
 - 3. Outlier Detection
 - 4. Exploratory Data Analysis
- 5. Results
 - 1. Queue-Time Distribution
 - 2. Queue-Time Comparison by Phase
 - 3. Throughput Analysis
 - 4. Key Performance Indicators
- 6. Discussion
- 7. Conclusions & Recommendations
- 8. Next Steps
- 9. Appendix
 - A. Code Snippets
 - o B. Full Summary Tables
 - o C. References

1. Executive Summary

In a simulated semiconductor fab, we measured the impact of doubling tool capacity on wafer-lot wait times ("queue time") and daily throughput. By comparing a **Before** phase (one etch tool) with an **After** phase (two identical etch tools), we found:

- Average queue time decreased by 50 % (2.00 h \rightarrow 1.00 h)
- Median queue time dropped by 1.00 h (2.00 h \rightarrow 1.00 h)
- On-time lots (≤ 2 h wait) rose from 50 % to 98 %
- Daily lots processed increased by $\approx 7 \% (\sim 650 \rightarrow \sim 700)$

This project showcases end-to-end data skills: simulating "dirty" logs, cleaning and wrangling, simple statistical analysis, clear visualizations, and plain-English storytelling.

2. Introduction

Semiconductor fabs consist of many sequential tool steps; any delay at one step cascades through the line, increasing work-in-progress (WIP) and cost. Queue time—the waiting period before a lot enters a tool—is a critical metric. Reducing queue times improves on-time delivery and maximizes expensive tool utilization. This report demonstrates how adding a second etch tool halves typical wait times and modestly boosts throughput.

3. Data Description

- Phases:
 - o **Before** (2025-04-01 to 2025-05-01): one etch tool, mean simulated queue $\approx 2 \text{ h}$
 - \circ After (2025-05-02 to 2025-06-01): two etch tools, mean simulated queue $\approx 1 \text{ h}$
- Rows: ~39 200 lots after initial cleaning
- Columns:
 - o lot id (string): Unique identifier
 - o phase (Before/After)
 - o arrival time, start time, end time (timestamps)
 - o tool id (Etch-1 or Etch-2)
 - o operator (OP-A, OP-B, OP-C)
 - o queue_time_hr, cycle_time_hr (computed durations)

Dirty elements introduced for realism: missing/malformed timestamps, swapped start/end times, duplicates, and extreme outliers.

4. Methodology

4.1 Data Simulation

- Generated arrival times uniformly over each phase's month.
- Simulated queue and service (cycle) times using normal distributions (mean & SD set per phase).
- Introduced "dirt" by randomly:
 - o Removing timestamps (1 %)
 - o Formatting some fields as strings (2 %)
 - Swapping some start/end pairs (0.5 %)
 - o Injecting outliers (1 %)
 - o Duplicating rows (0.5 %)

4.2 Data Cleaning

- 1. Parse Dates: Used pd.to_datetime(..., errors='coerce') to convert all timestamp columns, dropping rows with any NaT (~2.5 %).
- 2. Compute Durations:
 - o queue_time_hr = (start_time arrival_time) in hours
 - o cycle time hr = (end time start time) in hours

4.3 Outlier Detection

- Applied the 1.5 × IQR rule on both queue time hr and cycle time hr.
- Flagged and dropped ~1 % of rows where either metric lay beyond [Q1 − 1.5 IQR, Q3 + 1.5 IQR].

4.4 Exploratory Data Analysis

- **Summary Statistics** by phase: count, mean, median, standard deviation, and key percentiles.
- Visualizations:
 - o Overlaid histograms of queue times (cleaned vs. raw; then Before vs. After).
 - Boxplots comparing phases.
 - o Line chart of daily lots processed in each phase.
- Key Metrics: computed percent change, on-time lot percentages (≤ 2 h).

5. Results

5.1 Queue-Time Distribution

Insight: After removing outliers, waits cluster around 1 h instead of 2 h; extreme waits (> 3.5 h) are eliminated.

5.2 Queue-Time Comparison by Phase

Insight: Median queue time halved $(2 \text{ h} \rightarrow 1 \text{ h})$; the middle 50 % of waits tightened from [1.5–2.5 h] to [0.7–1.3 h].

5.3 Throughput Analysis

Insight: Daily output increased from ~650 to ~700 lots, and daily counts became less volatile.

5.4 Key Performance Indicators

KPI	Before	After	Change
Average queue time (hr)	2.00	1.00	−50 %
Median queue time (hr)	2.00	0.99	$-1.01 \; hr$
On-time lots ($\leq 2 \text{ h wait}$)	50 %	98 %	+48 pp
Average daily lots processed	650 approx.	700 approx.	+7 %

6. Discussion

- **Business Impact:** Halving queue times slashes WIP holding costs and speeds order fulfillment. A 7 % rise in throughput translates to dozens more lots per day without capital-heavy tool purchases beyond the second tool.
- **Data Skills Demonstrated:** End-to-end handling of messy logs, robust outlier treatment, clear visual storytelling in plain language.
- **Limitations:** Simulation may not capture real-world scheduling nuances or maintenance events. Real fab data may exhibit different distributions or time dependencies.

7. Conclusions & Recommendations

This analysis confirms that increasing tool capacity can dramatically reduce wait times and modestly boost throughput. For a real fab, I would recommend:

- 1. **Pilot Implementation:** Add a secondary tool in a single production line to validate these gains.
- 2. **Monitor Real Metrics:** Instrument live queue measurements and compare with model predictions.
- 3. **Further Optimizations:** Explore operator scheduling and preventive maintenance timing to smooth queues.

8. Next Steps

- Cost-Benefit Analysis: Calculate ROI for capital investment.
- Shift-Level Analysis: Model impact of operator staffing patterns.
- Quality Integration: Incorporate defect and yield data to balance speed with quality.