TAUTOLOGY INNOVATION SCHOOL

CROSSENTROPY

BY TAUTOLOGY

MADE BY TAUTOLOGY THAILAND
DO NOT PUBLISH WITHOUT PERMISSION

facebook/tautologyai www.tautology.live

Cross Entropy

2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Multi-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{k} [y_{i,c} \log(\hat{y}_{i,c})]$$

Cross Entropy

Information Theory

Concept

Definition

Concept

แนวคิดของ information มี 2 ข้อ ดังต่อไปนี้

- 1. เหตุการณ์ที่มี**โอกาสเกิดขึ้นต่ำ** (low probability) จะมี **information สูง**
- 2. เหตุการณ์ที่มี**โอกาสเกิดขึ้นสูง** (high probability) จะมี **information ต่ำ**

Information Theory

Concept

Definition

Definition

- 1. เหตุการณ์ที่มีความน่าจะเป็น 100% จะไม่มี information ใด ๆ
- 2. ยิ่งเหตุการณ์มีโอกาสเกิดขึ้นน้อยเท่าไหร่ information ก็จะมีค่ามากขึ้นเท่านั้น
- 3. Information รวมของสองเหตุการณ์ที่เป็นอิสระต่อกันจะเท่ากับผลรวมของ

information ของสองเหตุการณ์นั้น ๆ

Information Theory

Concept

Definition

เราต้องการหา function ที่แสดงความสัมพันธ์ระหว่าง information และ probability

information = f(probability)

กำหนดให้ I(x) คือ information ของเหตุการณ์ x และ p(x) คือ probability ของเหตุการณ์ x จะได้ว่า

$$I(x) = f(p(x))$$

จาก definition ข้อที่ 1 "เหตุการณ์ที่มีความน่าจะเป็น 100% จะไม่มี information ใด ๆ" จะได้ว่า

ถ้า
$$p(x) = 1$$
 แล้ว $I(x) = f(1) = 0$

$$I(x) = f(p(x))$$

จาก definition ข้อที่ 2 "ยิ่งเหตุการณ์มีโอกาสเกิดขึ้นน้อยเท่าไหร่ information ก็จะมีค่ามากขึ้น เท่านั้น" จะได้ว่า ความสัมพันธ์ระหว่าง I(x) และ p(x) เป็นแบบ monotone function

กำหนดให้เหตุการณ์ A และเหตุการณ์ B เป็นอิสระต่อกัน และกำหนดให้เหตุการณ์ C เป็น เหตุการณ์ A และ B เกิดขึ้นพร้อมกัน จะได้ว่า

$$p(C) = p(A \cap B) = p(A) \cdot p(B)$$

จาก I(x) = f(p(x)) จะได้ว่า

$$I(C) = f(p(C))$$

$$= f(p(A) \cdot p(B))$$

จาก definition ข้อที่ 3 "Information รวมของสองเหตุการณ์ที่เป็นอิสระต่อกันจะเท่ากับผลรวม ของ information ของสองเหตุการณ์นั้น ๆ" จะได้ว่า

$$I(C) = f(p(C))$$

$$= f(p(A) \cdot p(B))$$

$$= f(p(A)) + f(p(B))$$

$$= I(A) + I(B)$$

× IND Y PO

Function เพียงอันเดียวที่มีคุณสมบัติ

1. เป็น monotone function บนช่วง [0,1]

2.
$$f(\Box \cdot \triangle) = f(\Box) + f(\triangle)$$

3.
$$f(1) = 0$$

$$f(\square) = -log(\square)$$

$$f(p(x)) = -\log(p(x))$$

Information Theory

Concept

Definition

Cross Entropy

Uncertainty

Uncertainty คือ ค่าที่ใช้บอกความไม่เป็นระเบียบ/ความยุ่งเหยิงของระบบ ซึ่งเป็นอีก หนึ่งชื่อเรียกของ information

uncertainty = information

Uncertainty

ระบบที่มีความยุ่งเหยิง

Uncertainty

ระบบที่ไม่มีความยุ่งเหยิง

Cross Entropy

Entropy คือ ค่าที่บอกถึงค่าเฉลี่ยของ information หรือ uncertainty ในระบบ

$$H(P) = E[I(x)]$$
Entropy

$$H(P) = E[I(x)]$$

$$= E[-\log(p(x))]$$

$$= -E[\log(p(x))]$$

$$= -\sum_{c=0}^{K-1} p(x_c) \log(p(x_c))$$

Entropy คือ ค่าที่บอกถึงค่าเฉลี่ยของ information หรือ uncertainty ของระบบ

$$H(P) = -\sum_{\substack{c=n_c \\ O}}^{k-1} p(x_c) \log(p(x_c))$$

ตัวอย่าง (1)

ตัวอย่าง (1)

$$H(P) = -\sum_{c=1}^{2} p(x_c) \log(p(x_c))$$

$$= -p(x_1) \log(p(x_1)) - p(x_2) \log(p(x_2))$$

$$= -p(0) \log(p(0)) - p(1) \log(p(1))$$

$$= -\frac{1}{2} \log\left(\frac{1}{2}\right) - \frac{1}{2} \log\left(\frac{1}{2}\right)$$

$$= 0.6931$$

ตัวอย่าง (2)

กาเสียงกามร่างเราในระบบเป็น O

ตัวอย่าง (2)

$$H(P) = -\sum_{c=1}^{2} p(x_c) \log(p(x_c))$$

$$= -p(x_1) \log(p(x_1)) - p(x_2) \log(p(x_2))$$

$$= -p(0) \log(p(0)) - p(1) \log(p(1))$$

$$= -0 \log(0) - 1 \log(1)$$

$$= 0$$

Cross Entropy

KL Divergence

What is KL Divergence?

Origin of the Equation

KL as Cost Function

What is KL Divergence?

KLDivergence คือ เครื่องมือที่ใช้ในการวัดความแตกต่างระหว่าง 2 distribution (P,Q) ว่า Q แตกต่างจาก P เท่าใหร่

$$D_{KL}(P \parallel Q) = -H(P) - \sum_{c=1}^{k} p(x_c) \log(q(x_c))$$
entropy
$$C = \sum_{c=1}^{k} p(x_c) \log(q(x_c))$$

What is KL Divergence?

- ถ้า P และ Q เหมือนกันทุกประการ แล้ว $D_{KL}(P \parallel Q) = 0$
- ถ้า P และ Q แตกต่างกัน แล้ว $D_{KL}(P \parallel Q) > 0$ (ยิ่งแตกต่างมาก $D_{KL}(P \parallel Q)$ ยิ่งมีค่า มาก)

$$D_{KL}(P \parallel Q) = -H(P) - \sum_{c=1}^{k} p(x_c) \log(q(x_c))$$

KL Divergence

What is KL
Divergence?

Origin of the Equation

KL as Cost Function

$$D_{KL}(P \parallel Q) = -H(P) - \sum_{c=1}^{k} p(x_c) \log(q(x_c))$$

■
$$p(\text{IU1H21U}) = 0.2$$

•
$$p(หัวใจ) = 0.1$$

•
$$p(\bar{l} = \bar{l} = 0.5)$$

■
$$p(\text{IU1H21U}) = 0.2$$

•
$$p(หัวใจ) = 0.3$$

view as arratuan yw. Q

 $\frac{p(\text{โควิด})}{q(\text{โควิด})} \, \frac{p(\text{โควิด})}{q(\text{โควิด})} \, \frac{p(\text{เบาหวาน})}{q(\text{โควิด})} \, \frac{p(\text{โควิด})}{q(\text{หัวใจ})} \, \dots$


```
\frac{p(\text{โควิด})}{q(\text{โควิด})} \; \frac{p(\text{โควิด})}{q(\text{โควิด})} \; \frac{p(\text{เบาหวาน})}{q(\text{เบาหวาน})} \; \frac{p(\text{โควิด})}{q(\text{โควิด})} \; \frac{p(\text{หัวใจ})}{q(\text{หัวใจ})} \; \dots
```

หาค่าเฉลี่ย


```
\frac{p(\text{โควิด})}{q(\text{โควิด})} \; \frac{p(\text{โควิด})}{q(\text{โควิด})} \; \frac{p(\text{เบาหวาน})}{q(\text{เบาหวาน})} \; \frac{p(\text{โควิด})}{q(\text{โควิด})} \; \frac{p(\text{หัวใจ})}{q(\text{หัวใจ})} \; \dots
```


$$\log\left(\frac{p(\bar{\mathbf{l}}\mathbf{h}\bar{\mathbf{J}}\mathbf{G})}{q(\bar{\mathbf{l}}\mathbf{h}\bar{\mathbf{J}}\mathbf{G})}\right)\log\left(\frac{p(\bar{\mathbf{l}}\mathbf{h}\bar{\mathbf{J}}\mathbf{G})}{q(\bar{\mathbf{l}}\mathbf{h}\bar{\mathbf{J}}\mathbf{G})}\right)\log\left(\frac{p(\bar{\mathbf{l}}\mathbf{u}\mathbf{h}\mathbf{J}\mathbf{H})}{q(\bar{\mathbf{l}}\mathbf{u}\mathbf{h}\mathbf{J}\mathbf{H})}\right)\log\left(\frac{p(\bar{\mathbf{l}}\mathbf{h}\bar{\mathbf{J}}\mathbf{G})}{q(\bar{\mathbf{l}}\mathbf{h}\bar{\mathbf{J}}\mathbf{G})}\right)\log\left(\frac{p(\bar{\mathbf{l}}\mathbf{h}\bar{\mathbf{J}}\mathbf{G})}{q(\bar{\mathbf{l}}\mathbf{h}\bar{\mathbf{J}}\mathbf{G})}\right)$$

หาค่าเฉลี่ย

- p(โควิด) = 0.7
- p(IU1H21U) = 0.2
- p(หัวใจ) = 0.1

$$D_{KL}(P \parallel Q) = \frac{1}{n} \left[p(\text{โควิด}) \cdot n \cdot \log \left(\frac{p(\text{โควิด})}{q(\text{โควิด})} \right) + p(\text{เบาหวาน}) \cdot n \cdot \log \left(\frac{p(\text{เบาหวาน})}{q(\text{เบาหวาน})} \right) + p(\text{หัวใจ}) \cdot n \cdot \log \left(\frac{p(\text{หัวใจ})}{q(\text{หัวใจ})} \right) \right]$$

$$D_{KL}(P \parallel Q) = p(\bar{h}\bar{o}\bar{o}) \cdot \log\left(\frac{p(\bar{h}\bar{o}\bar{o})}{q(\bar{h}\bar{o}\bar{o})}\right)$$
 + $p(\bar{h}\bar{o}\bar{o}) \cdot \log\left(\frac{p(\bar{h}\bar{o}\bar{o})}{q(\bar{h}\bar{o}\bar{o})}\right)$ + $p(\bar{h}\bar{o}\bar{o}) \cdot \log\left(\frac{p(\bar{h}\bar{o}\bar{o})}{q(\bar{h}\bar{o}\bar{o})}\right)$

$$D_{KL}(P \parallel Q) = \sum_{c=1}^{k} p(x_c) \log \left(\frac{p(x_c)}{q(x_c)} \right)$$

$$D_{KL}(P \parallel Q) = \sum_{c=1}^{k} p(x_c) [\log(p(x_c)) - \log(q(x_c))]$$
$$= \sum_{c=1}^{k} [p(x_c) \log(p(x_c)) - p(x_c) \log(q(x_c))]$$

$$D_{KL}(P \parallel Q) = \sum_{c=1}^{k} p(x_c) \log(p(x_c)) - \sum_{c=1}^{k} p(x_c) \log(q(x_c))$$

$$= -H(P) - \sum_{c=1}^{k} p(x_c) \log(q(x_c))$$

$$(\because H(P) = -\sum_{c=1}^{k} p(x_c) \log(p(x_c)))$$

KL Divergence

What is KL
Divergence?

Origin of the Equation

KL as Cost Function

Cost function ninonvolun Classification

no KL Divergence

2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Multi-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{k} [y_{i,c} \log(\hat{y}_{i,c})]$$

x ₁	x ₂	y ₁	y ₂	y ₃
0	1	1	0	0
1	0	0	1	0
:	:	:	:	:
-1	0	0	0	1

ตารางแสดง dataset

Model	

$\hat{\mathbf{y}}_1$	$\hat{\mathrm{y}}_2$	$\hat{\mathbf{y}}_3$
0.5	0.3	0.2
0.2	0.7	0.1
i	:	:
0.1	0.3	0.6

ตารางแสดง \hat{y} ที่ได้จาก model

Model

x ₁	x ₂	y ₁	У2	y ₃	$\hat{\mathrm{y}}_1$	$\hat{\mathbf{y}}_2$	$\hat{\mathbf{y}}_3$
0	1	1	0	0	0.5	0.3	0.2
1	0	0	1	0	0.2	0.7	0.1
:	:	:	:	:	:	:	:
-1	0	0	0	1	0.1	0.3	0.6

ตารางแสดง dataset

ตารางแสดง \hat{y} ที่ได้จาก model

$$x_1=0,$$

$$x_1=0, \qquad x_2=1$$

Model	
-------	--

x ₁	x ₂	y ₁	У2	y 3
0	1	1	0	0
1	0	0	1	0
:	:	÷	:	÷
-1	0	0	0	1

ตารางแสดง dataset

$\hat{\mathrm{y}}_1$	$\hat{\mathbf{y}}_2$	$\hat{\mathbf{y}}_3$
0.5	0.3	0.2
0.2	0.7	0.1
÷	:	÷
0.1	0.3	0.6

ตารางแสดง \hat{y} ที่ได้จาก model

$$x_1 = 1$$
,

$$x_1=1, \qquad x_2=0$$

Model

x ₁	X ₂	y ₁	y ₂	y ₃	$\hat{\mathrm{y}}_1$	$\hat{\mathbf{y}}_2$	$\hat{\mathbf{y}}_3$
0	1	1	0	0	0.5	0.3	0.2
1	0	0	1	0	0.2	0.7	0.1
:	÷	i	i	i	i	:	:
-1	0	0	0	1	0.1	0.3	0.6

ตารางแสดง dataset

ตารางแสดง \hat{y} ที่ได้จาก model

ogiana à nui à con noitrolisteip inscrim à mille

$$x_1 = -1$$
,

$$x_2 = 0$$

$$D_{KL}(P \parallel Q) = -H(P) - \sum_{c=1}^{k} p(x_c) \log(q(x_c))$$

0 110 1 sample

$$D_{KL}(\mathbf{y}_i, \hat{\mathbf{y}}_i) = -H(\mathbf{y}_i) - \sum_{c=1}^k y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	x ₂	y ₁	y ₂	у ₃
0	1	1	0	0
1	0	0	1	0
:	:	:	:	:
-1	0	0	0	1

$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) = -H(\mathbf{y_i}) - \sum_{c=1}^k y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	x ₂	y ₁	y ₂	у ₃
0	1	1	0	0
1	0	0	1	0
÷	:	:	:	:
-1	0	0	0	1

ค่าคงที่
$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) = -H(\mathbf{y_i}) - \sum_{c=1}^{k} y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	x ₂	y ₁	У2	у ₃
0	1	1	0	0
1	0	0	1	0
:	:	:	:	:
-1	0	0	0	1

$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y_i}}) \propto -\sum_{c=1}^{k} y_{i,c} \log(\hat{y}_{i,c})$$

$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) \propto -\sum_{c=1}^k y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	X ₂	y ₁	y ₂	у ₃
0	1	1	0	0
1	0	0	1	0
i	ŧ	i	i	i
-1	0	0	0	1

$\hat{\mathbf{y}}_1$	$\hat{\mathrm{y}}_2$	$\hat{\mathbf{y}}_3$
0.5	0.3	0.2
0.2	0.7	0.1
:	:	:
0.1	0.3	0.6

 $D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) \propto -\sum_{c=1}^k y_{i,c} \log(\hat{y}_{i,c})$

x ₁	x ₂	y ₁	y ₂	y ₃
0	1	1	0	0
1	0	0	1	0
:	:	i	:	:
-1	0	0	0	1

ŷ ₁	$\hat{\mathbf{y}}_2$	$\hat{\mathbf{y}}_3$
0.5	0.3	0.2
0.2	0.7	0.1
:	:	:
0.1	0.3	0.6

 $\sum_{i=1}^{n} D_{KL}(\mathbf{y}_i, \hat{\mathbf{y}}_i) \propto -\sum_{i=1}^{n} \sum_{c=1}^{k} y_{i,c} \log(\hat{y}_{i,c})$

เราต้องการ model ที่ทำให้ $\sum_{i=1}^n D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i})$ มีค่าน้อยที่สุด

($\hat{\mathbf{y}}_i$ เหมือนกับ \mathbf{y}_i บนทุก sample มากที่สุด)

distribution mason

x ₁	X ₂	y ₁	y 2	у ₃
0	1	1	0	0
1	0	0	1	0
:	:	i	:	:
-1	0	0	0	1

$\hat{\mathbf{y}}_1$	$\hat{\mathbf{y}}_2$	$\hat{\mathbf{y}}_3$
0.5	0.3	0.2
0.2	0.7	0.1
:	:	:
0.1	0.3	0.6

$$\min \sum_{i=1}^{n} D_{KL}(\mathbf{y}_i, \hat{\mathbf{y}}_i) \equiv \min -\sum_{i=1}^{n} \sum_{c=1}^{k} y_{i,c} \log(\hat{y}_{i,c})$$

KL as Cost Function ดาดเท

min
$$-\sum_{i=1}^{n} \sum_{c=1}^{k} y_{i,c} \log(\hat{y}_{i,c})$$

เพื่อความสะดวกในการใช้ gradient descent เราจึงใช้

ค่าเฉลี่ยของ cross entropy ในการ train model

2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Multi-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{k} [y_{i,c} \log(\hat{y}_{i,c})]$$

พิจารณา Cost สำหรับ 2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{k} y_{i,c} \log(\hat{y}_{i,c})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{2} y_{i,c} \log(\hat{y}_{i,c})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} [y_{i,1} \log(\hat{y}_{i,1}) + y_{i,2} \log(\hat{y}_{i,2})]$$

พิจารณา Cost สำหรับ 2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_{i,1} \log(\hat{y}_{i,1}) + y_{i,2} \log(\hat{y}_{i,2})]$$

$$= -\frac{1}{n} \sum_{i=1}^{n} [y_{i,1} \log(\hat{y}_{i,1}) + (1 - y_{i,1}) \log(1 - \hat{y}_{i,1})]$$

$$(\because y_{i,1} + y_{i,2} = 1)$$

$$\hat{y}_{i,1} + \hat{y}_{i,2} = 1)$$

y_1	${oldsymbol y}_2$
1	0
0	1
i i	ŧ
1	0

У
1
0
:
1

$$y_1 + y_2 = 1$$

$\widehat{oldsymbol{y}}_{oldsymbol{1}}$	$\widehat{oldsymbol{y}}_2$
0.7	0.3
0.2	0.8
:	:
0.6	0.4

\mathcal{Y}	
0.7	
0.2	
i i	
0.6	

$$: \hat{y}_1 + \hat{y}_2 = 1$$

พิจารณา Cost สำหรับ 2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \left[y_{i,1} \log(\hat{y}_{i,1}) + (1 - y_{i,1}) \log(1 - \hat{y}_{i,1}) \right]$$
$$= -\frac{1}{n} \sum_{i=1}^{n} \left[y_{i} \log(\hat{y}_{i}) + (1 - y_{i}) \log(1 - \hat{y}_{i}) \right]$$

2-class

2. MAN ONNUANS (KL)

3. (KL INM= KL LONANILITATION)
T=un 2 distribution

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Multi-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{k} [y_{i,c} \log(\hat{y}_{i,c})]$$

KL Divergence

What is KL
Divergence?

Origin of the Equation

Cross Entropy

