

Implementing a credit scoring dashboard

JULY 2022

Presentation Outline

- 1. Objectives
- 2. Dataset Preparation
- 3. Modeling
- 4. Dashboard

Objectives

Context

- French consumer credit company for people with little or no loan history
- Wish to develop a suitable scoring model that predicts the probability of customer default.

Business Problem

- Implementation of a customer scoring model and an interactive dashboard for customer relationship managers to:
 - maximise the bank's gain
 - provide transparency to customers on credit granting decisions.

Mission

- Develop a scoring model of the customer's probability of default (with little or no loan history)
- Develop an interactive dashboard that provides the interpretations of the predictions made by the model

Dataset Preparation

Dataset

Dataset analysis

Observations

- A large dataset of 9 files containing personal and financial information of customers
- No duplicates
- Primary dataset application_train :
 - 307511 clients, 121 variables
 - 24% NaN
 - Target imbalance (TARGET) 92% solvent (0) vs. 8% insolvent

Dataset Preparation

Exploratory Analysis and Feature Engineering

Creation of Datasets to allow the modeling of the problem

Simple dataset (250518, 10)

- Source file: application_train
- Operations: Deletion of columns with more than 10% NaN, deletion of categorical variables, elimination of outliers, creation of business features (ratios) and identification of best features with VIF (variance inflation factor)

Complex dataset (356251, 798)

- Source files: all files
- Operations entirely inspired by the Kaggle kernel available on https://www.kaggle.com/code/jsaguiar/lightgbm-with-simple-features/script:
 - Detection of outliers / anomalies
 - Imputation of missing values
 - One-hot encoding for categorical variables
 - Tables joined by the SK_ID_CURR key
 - Creation of business features (ratios)
 - Creating features from aggregations min, max, mean and var

Balancing TARGET classes

Data Balancing - Approaches

Approaches

- The significant imbalance of the TARGET leads to a high "accuracy" of the Dummy model.
- To overcome this imbalance, 3 options are considered:
 - RandomUnderSampler: Removing Observations from the Majority Class
 - SMOTE: repetition of the observations of the minority class
 - Class_weight="balanced": argument that indicates the imbalance to the algorithm so that it takes it into account directly.

Impact of balancing

estimator	sampler_type	params	mean_test_score	mean_fit_time	accuracy
DummyClassifier(strategy='most_frequent')	no_sampler	('scaler': MinMaxScaler())	0.919514	5.682633	0.924
LogisticRegression()	no_sampler	{'scaler': MinMaxScaler()}	0.919269	16.635409	0.924
LogisticRegression(class_weight='balanced')	class_balanced	{'scaler': MinMaxScaler()}	0.755791	16.490391	0.712
LogisticRegression()	param_sampler	{'sampler': SMOTE(random_state=14), 'scaler': MinMaxScaler()}	0.754411	25.463076	0.718
LogisticRegression()	param_sampler	{'sampler': RandomUnderSampler(random_state=14), 'scaler': MinMaxScaler()}	0.749232	7.317816	0.718

Metrics and Algorithms

Choice of metrics and algorithms

Metrics

 Considering the confusion matrix, the idea is to limit FN and FP. FN being more expensive.

ive.		Positive (1)	Negative (0)
Ture	Positive (1) - NS	TP	FN
True	Negative (0) - S	FP	TN

Predicted

Five metrics are considered:

- Accuracy excluded due to initial class imbalance
- Recall to be maximised to minimise Type II Error (FN)
- Precision to be maximised to minimise Type I (FP) Error
- F1 Score considers both measures Recall and Precision but will be low if one
 of the measures improves at the expense of the other.
- AUC/ROC (preferred) the more the model can predict classes, the higher the AUC.

Algorithms

- Three classification algorithms of different families are compared:
 - Logistic regression (a linear algorithm)
 - KNeighborsClassifier (an ensemblist algorithm)
 - Light Gradient Boosting Machine (a gradient boosting algorithm)

Methodology

Best Model

Best Model

Parameters optimisation

For each model, we will test the different parameters of the pipeline:

- Imputation of missing values
- Feature scaling StandardScaler, RobustScaler and MinMaxScaler
- Balancing data with the 3 different methods mentioned earlier
- Results are classified in order of AUC value and execution time.

Result of the first 5 models estimator sampler_type params mean_test_score mean_fit_time accuracy precision recall f1score {'sampler': param sampler RandomUnderSampler(random state=14), LGBMClassifier() 0.752936 14.343164 0.923 0.413 0.041 0.075 0.742 'scaler': RobustScaler()} param_sampler RandomUnderSampler(random_state=14), LGBMClassifier() 0.752340 14,495963 0.923 0.413 0.041 0.075 0.742 'scaler': MinMaxScaler()} {'sampler': param_sampler RandomUnderSampler(random_state=14), 0.750664 15.301300 0.923 0.413 0.041 0.075 0.742 LGBMClassifier() 'scaler': StandardScaler()} {'sampler': SMOTE(random_state=14), LGBMClassifier() param_sampler 0.762773 32.593179 0.923 0.075 0.742 0.413 0.041 'scaler': RobustScaler()} {'sampler': SMOTE(random_state=14), 0.762897 44.197593 0.923 LGBMClassifier() param sampler 0.413 0.041 0.075 0.742 'scaler': MinMaxScaler()}

Hyperparameters

Model Optimisation

Hyperparameters Model Optimisation

Best Model

The best model was obtained with:

- Standardisation RobustScaler
- Balancing RandomUnderSampling
- Algorithm Light Gradient Boosting Machine Classifier (an optimization of the hyperparameters of this algorithm had little impact on the AUC)

Gain optimisation

Gain Optimisation

Gain function

- The company seeks to maximize its gain.
- The gain function is: f(g) = (gain -gmin) / (gmax gmin) où
 - gain = FN * FNcost + TN * TNprofit (cost/profit = 0% when predicted positive)
 - gmin = (TP + FN) * FNcost (when true positive)
 - gmax = (FP + TN) * TNprofit (when true negative)

True

n true negative	TTOGTOCOG		
n true negative)	Positive (1)	Negative (0)	
Positive (1) - NS	TP 0%	FN -60%	
Negative (0) - S	FP 0%	TN 10%	

Prédicted

Optimum gain threshold for the bank

- By default, modeling uses a 50% classification threshold.
- To optimise the gain for the bank, we look for the threshold between 0 and 1 which maximizes the gain function.
- The optimum threshold is 68%

Model interpretability

Model interpretability with SHAP library

Global importance of variables

SHAP makes it possible to identify the global importance of variables.

All features contribute to the result of the model.

The higher and "more red" the value of the score source is, the more it contributes to a negative prediction (thus to the loan being accepted).

Local importance of variables

Local features indicate the influence of variables on the prediction of whether or not to lend to a customer.

For this customer, the score source 1 variable is red, so most favorable for a negative prediction (therefore for the loan to be accepted).

Dashboard

Specifications

Specifications

Interactive dashboard

Front-end (other name: Dashboard) allows to visualize:

- descriptive information about a customer (via filter)
- the comparison of a customer's descriptive information to all others
- the score and interpretation of this score for each client

Demande

Réponse

Back-end (other name: API) provides:

- the list of customer identifiers
- descriptive information of a customer
- descriptive information of a variable
- a customer's scoring
- interpretation of the client's scoring

Dashboard

Operation

Dashboard

Visualisation

Dashboard Visualisation

Dashboard Scoring Interactif

Ce dashboard interactif est mis à disposition pour permettre de connaitre et de comprendre pour un client donné, la décision d'accord de prêt ou non.

Ce dashboard est mis à disposition par l'entreprise 'Prêt à dépenser'

Ce dashboard a pour dernière version celle en date du 21/07/2022

Information relative aux caracteristiques du client

Profil personnel du client

NB_ENFANTS
OCCUPATION
REVENUS

GENRE X AGE X STATUT_FAMILIAL X NB_ENFANTS X

OCCUPATION X REVENUS X

O

GENRE F

AGE 45,9315068493

270000.0

Profil 'prêt' du client

Selectionner les informations à afficher

SCORE_SOURCE_1 X S	CORE_SOURCE_2 X SCORE_SOURCE_3 X
	0
MONTANT_CREDIT	1293502.5
TYPE_CONTRAT	Cash loans
MONTANT_ANNUITES	35698.5
SCORE_SOURCE_1	0.3112673114
SCORE_SOURCE_2	0.6222457753
SCORE SOURCE 3	None

Comparaison du client aux autres

Sélectionner la variable pour comparaison

Information relative à l'accord du prêt ou non au client

Scoring: Accord prêt ou non du client

Bonne nouvelle, votre prêt est accepté!

Interprétation 'client' du scoring

Interprétation globale du scoring

Conclusion

Areas for improvement

Areas for improvement

- Discussion with business teams to improve:
 - feature engineering to a further level
 - gain maximisation function from confirmed business assumptions
 - dashboard more "user friendly" and able to see the impact of a change of customer variable on his scoring
- From a 'Datascientist' point of view:
 - testing with other algorithms, standardization, ...
 - Re-training the model with a more optimised threshold
- Modeling and interpreting the dataset using more powerful resources (higher processing capacity).

Thank you for your attention!