Министерство образования Республики Беларусь Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Факультет компьютерных систем и сетей кафедра Информатики

Дисциплина: Методы численного анализа

ОТЧЕТ

к лабораторной работе

на тему:

"Решение систем нелинейных уравнений" БГУИР КП 1-40 04 01

Выполнил: студент гр. 953505

Красовский В.Ю.

Проверил: доцент кафедры информатики Анисимов В.Я

Вариант 9

Цели работы:

изучить численное решение систем нелинейных уравнений методами простых итераций и Ньютона. Провести отделение решений, построить и запрограммировать алгоритмы методов, численно решить тестовое задание. сравнить трудоемкость методов.

Краткие теоретические сведения

Пусть дана система нелинейных уравнений (система нелинейна, если хотя бы одно из входящих в нее уравнений нелинейно):

$$\begin{cases} f_1(x_1,...,x_n) = 0 \\ f_2(x_1,...,x_n) = 0 \\ \\ f_n(x_1,...,x_n) = 0 \end{cases}$$

Мы можем записать систему в более компактной векторной форме:

$$f(x) = 0$$
,
где $f = (f, ..., f)$, $x = (x, ..., x)^T$.

Метод простых итераций. Чтобы воспользоваться методом простых итераций, необходимо предварительно привести систему к следующему виду:

$$\begin{cases} x_1 = \varphi_1(x_1, ..., x_n) \\ x_2 = \varphi_2(x_1, ..., x_n) \\ \\ x_n = \varphi_{n1}(x_1, ..., x_n) \end{cases}$$

Или в векторной форме:

$$\overline{x} = \varphi(\overline{x})$$
 где
$$\vec{\varphi} = (\varphi_1, \varphi_2,, \varphi_n).$$

Исходя из некоторого начального приближения —, построим итерационную последовательность точек

$$\bar{x}^{k} = \varphi(\bar{x}^{k-1}), k=1,2,...$$

В силу принципа сжимающих отображений итерационная последовательность будет сходиться, если существует число q<1 такое, что

$$\|\varphi(x^{-1}) - \varphi(x^{-2})\| \le q \|x^{-1} - x^{-2}\|, \quad \forall x^{-1}, x^{-2} \in U_{\delta}(x^{-0}),$$

Оценка погрешности:

$$\left\| x^{-k} - x^{-k} \right\| \le \frac{q^k}{1-q} \left\| \varphi(x^{-0}) - x^{-0} \right\|.$$

х - решение системы

Метод Ньютона. Пусть дана система нелинейных уравнений:

$$\begin{cases} f_1(x_1,...,x_n) = 0 \\ f_2(x_1,...,x_n) = 0 \\ \vdots \\ f_n(x_1,...,x_n) = 0 \end{cases}$$

Запишем ее в векторной форме:

$$f(x) = 0$$

Будем предполагать, что векторная функция f непрерывна дифференцируема в некоторой окрестности начального приближения. Вместо системы будем искать решение соответствующей ей линеаризованной системы

$$f(\bar{x}^0) + \frac{\partial f}{\partial x}(\bar{x}^0)(\bar{x} - \bar{x}^0) = 0 \Rightarrow f(\bar{x}^0) + J(\bar{x}^0)(\bar{x} - \bar{x}^0) = 0$$

где через $J(x)^{-0}$ обозначена для удобства записи матрица производных векторной функции f в точке x (матрица Якоби системы (4.1) в этой точке).

При этом при применении метода Ньютона предполагается, что $\det J(x^{-0}) \neq 0$ в окрестности точки x^{-0} .

Тогда из линеаризованной системы, которая линейна относительно переменных x, можно найти k-ое приближение

$$\bar{x}^k = \bar{x}^{k-1} - J^{-1}(\bar{x}^{k-1})f(\bar{x}^{k-1}), k = 1,...$$

Метод Ньютона сходится достаточно быстро (скорость сходимости квадратичная), если начальное приближение выбрано удачно. На практике итерационный процесс заканчивают. когда норма разности двух последовательных приближений меньше заданной точности вычисления решения.

Исходные данные:

ЗАДАНИЕ. Решить систему нелинейных уравнений:

$$tg(xy+m) = x$$
 где x>0, y>0,

с точностью до 0,0001 методами простых итераций и Ньютона, принимая для номера варианта k значения параметров а и m из таблицы:

$$m = 0.4$$
 $a = 0.7$

Результаты выполнения программы:

```
tg(xy + m) = x
ax^2 + 2y^2 = 1
x > 0, y > 0
Метод простых итераций
x = 1.00189486875032  y = 0.385610713113783  число итераций = 7
Метод Ньютона
x = 1.00186211311161  y = 0.385610307413501  число итераций = 4
```


Тест 1:

```
Test1

0.1x^2 + x + 0.2y^2 - 0.3 = 0

0.2x^2 + y - 0.1xy - 0.7 = 0

Метод простых итераций

x = 0.196411524532151  y = 0.706153386806018  число итераций = 4

Метод Ньютона

x = 0.196411505520359  y = 0.706154184755581  число итераций = 4
```


Тест 2:

```
Test2
0.78x^2 + 2x + y^2 - 1 = 0
0.44x^2 + y + xy - 0.5 = 0
Метод простых итераций
x = 0.391882596473074  y = 0.310645651065795  число итераций = 5
Метод Ньютона
x = 0.391851281224367  y = 0.310693490124060  число итераций = 4
```


Тест 3:

```
Test3
x^2 + y^2 = 1
x^3 - y = 0
Метод простых итераций
x = 0.825999990333566 y = 0.563545097553242 число итераций = 40
Метод Ньютона
x = 0.826031357654210 y = 0.563624162161248 число итераций = 5
```


Выводы

В ходе выполнения задания были изучены различные методы численного решения систем нелинейных уравнений. Была разработана программа на языке Python с использованием библиотек питру, зутру для решения систем уравнений методом простой итерации и методом Ньютона. Метод Ньютона находил корни заданных систем за меньшее количество итераций.