

Dr. Han Huang

South China University of Technology

Chapter 3. Relations

n-ary Relations and Their Applications

Section 3.2

Contents

N-ary Relations and Databases

Operations on N-ary Relations

SQL

n-ary Relations

An n-ary relation R on sets $A_1,...,A_n$, is a subset

$$R \subseteq A_1 \times ... \times A_n$$

- This is a straightforward generalisation of a binary relation. For example:
- 3-ary relations:
 - a is between b and c;
 - a gave b to c

n-ary Relations

An n-ary relation R on sets $A_1,...,A_n$, is a subset

$$R \subseteq A_1 \times ... \times A_n$$

- \diamond The sets A_i are called the *domains* of R.
- ❖The degree of R is n.
- R is functional in the domain A_i if it contains at most one n-tuple (..., a_i ,...) for any value a_i within domain A_i .

n-ary Relations

- **R** is functional in the domain A_i if it contains at most one *n*-tuple (..., a_i ,...) for any value a_i within domain A_i .
- Generalisation: being functional in a combination of two or more domains.

Relational Databases

- A relational database is essentially just a set of relations.
- ❖A domain A_i is a primary key for the database if the relation R is functional in A_i.
- **A** composite key for the database is a set of domains $\{A_i, A_j, ...\}$ such that R contains at most 1 n-tuple $(...,a_i,...,a_j,...)$ for each composite value

$$(a_i, a_i, \ldots) \in A_i \times A_i \times \ldots$$

Example of Relational Data Model

- (Student Name, ID Number, Major, GPA)
- ❖(小白, 98601, 计算机科学, 3.76)
- ❖(小黄, 98602, 物理, 3.34)
- *(小黑, 98603, 计算机科学, 3.59)
- **❖(小红,98604,数学,3.99)**
- *****(小绿, 98605, 体育, 2.40)
- Primary key is ID Number.

(Selection Operators)

- **Let** A be any n-ary domain $A = A_1 \times ... \times A_n$, and let $C: A \rightarrow \{T,F\}$ be any condition (predicate) on elements (n-tuples) of A.
- ❖Then, the selection operator s_c is the operator that maps any n-ary relation R on A to the n-ary relation consisting of all n-tuples from R that satisfy C. That is,

$$s_{\mathcal{C}}(R) = \{a \in R \mid \mathcal{C}(a) = \mathcal{T}\}$$

(Selection Operator Example)

- Suppose we have a domain
 A = StudentName × Standing × SocSecNos
- Suppose we define a condition Upperlevel on A: UpperLevel(name,standing,ssn) :≡ [(standing = junior) ∨ (standing = senior)]
- ❖ Then, s_{UpperLevel} is the selection operator that takes any relation R on A (database of students) and produces a relation consisting of just the upper-level students (juniors and seniors).

(Projection Operators)

- **Let** $A = A_1 \times ... \times A_n$ be any *n*-ary domain, and let $\{i_k\}=(i_1,...,i_m)$ be a sequence of indices all falling in the range 1 to n,
 - That is, $1 \le i_k \le n$ for all $1 \le k \le m$.
- Then the projection operator on n-tuples

is defined by:
$$P_{\{i_k\}}:A\to A_{i_1}\times\ldots\times A_{i_m}$$

$$P_{\{i_k\}}(a_1,...,a_n) = (a_{i_1},...,a_{i_m})$$

(Projection Example)

- Suppose we have a ternary (3-ary) domain Cars=Model × Year × Color. (note n=3).
- *Then the projection $P_{\{i_k\}}$ maps each tuple $(a_1,a_2,a_3) = (model, year, color)$ to its image:
- $(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color)$
- ❖ This operator can be usefully applied to a whole relation R⊆Cars (a database of cars) to obtain a list of the model/color combinations available.

(Join Operator)

- Puts two relations together to form a combined relation which is their composition:
- Iff the tuple (A,B) appears in R_1 , and the tuple (B,C) appears in R_2 , then the tuple (A,B,C) appears in the join $J(R_1,R_2)$.
 - A, B, and C can also be sequences of elements.

(Join Example)

- **❖Suppose** R₁ is a teaching assignment table, relating *Lecturers* to *Courses*.
- **❖Suppose** R₂ is a room assignment table relating *Courses* to *Rooms*, *Times*.
- **❖ Then** $J(R_1,R_2)$ is like your class schedule, listing (*lecturer*, *course*, *room*, *time*).
- (For precise definition, see Rosen, p.486)

Example of SQL

❖SELECT Departure_time FROM Flights
WHERE destination = '广州'

*SELECT professor, time FROM teaching_assignments, class_schedule WHERE department = '离散数学'

Applications

❖ 设有如下表所示的三个关系S、C和SC。用SQL语句表示:

S	
学号 姓名	年龄 性别 籍贯
98601 王晓	竺 20 女 北京
98602李	波 23 男 上海
98603 陈志	坚 21 男 长沙
98604 张	兵 20 男 上海
98605 张	兵 22 女 武汉

C
课程号 课程名 教师姓名 办公室
C601 高等数学 周振兴 4 1 6
C602 数据结构 刘建平 415
C603 操作系统 刘建平 415
C604 编译原理 王志伟 415

SC	
学号 课程号	成绩
98601 C601	90
98601 C602	90
98602 C601	90
98603 C601	75
98603 C602	70
98604 C604	85
98605 C603	80

- (1)检索籍贯为福建的学生的姓名、学号和选修的课程号。
- (2)检索选修了全部课程的学生姓名和年龄。

❖ 设有如下表所示的三个关系S、C和SC。用SQL语句表示:

S	
学号 姓名	年龄 性别 籍贯
98601 王時	&燕 20女 北京
98602李	波 23 男 上海
98603 陈志	E坚 21 男 长沙
98604 张	兵 20 男上海
98605张	兵 22女 武汉

C
课程号 课程名 教师姓名 办公室
C601 高等数学 周振兴 416
C602 数据结构 刘建平 415
C603 操作系统 刘建平 415
C604 编译原理 王志伟 415

SC
学号 课程号 成绩
98601 C601 90
98601 C602 90
98602 C601 90
98603 C601 75
98603 C602 70
98604 C604 85
98605 C603 80

- (1)检索籍贯为福建的学生的姓名、学号和选修的课程号。
- select 姓名,S.学号,课程号 from SC,S where 籍贯='福建' and S.学号 =SC.学号
- (2)检索选修了全部课程的学生姓名和年龄。
- select 姓名,年龄 from S,C,SC where C.课程号=SC.课程号 and S.学号 =SC.学号

Exercises

1. There are $2^{(m^n)}$ n-tuple relations on the set $S \times S \dots \times S$ when |S|=m.

End of Section 3.2