		3	
	32		

Reg. No	reg. 110
---------	----------

B.Tech. DEGREE EXAMINATION, JUNE 2023

Seventh Semester

18ASE304T - SPACE MISSION DESIGN AND ANALYSIS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

 $m_{Sun} = 1.989 \times 10^{30}$ kg, $r_{Sun} = 696000$ km, $\mu_{Sun} = 1.327 \times 10^{11}$ km³/s² and $R_{Sun} = 57.91 \times 10^{6}$ km $m_{Earth} = 5.974 \times 10^{24} \text{ kg}$, $r_{Earth} = 6378 \text{ km}$, $\mu_{Earth} = 398600 \text{ km}^3 / \text{s}^2$ and $R_{Earth} = 149.6 \times 10^6 \text{ km}$ $m_{Mars} = 6.419 \times 10^{23}$ kg, $r_{Mars} = 3396$ km, $\mu_{Mars} = 42828$ km³/s² and $R_{Mars} = 227.9 \times 10^6$ km $m_{Mercury} = 3.302 \times 10^{23} \text{ kg}, r_{Mercury} = 2440 \text{ km}, \mu_{Mercury} = 22930 \text{ km}^3/\text{s}^2 \text{ and } R_{Mercury} = 57.91 \times 10^6 \text{ km}$ $m_{Jupiter} = 1.899 \times 10^{27} \text{ kg}, r_{Jupiter} = 71490 \text{ km}, \mu_{Jupiter} = 1.26686 \times 10^8 \text{ km}^3 / \text{s}^2 \text{ and } R_{Jupiter} = 778.6 \times 10^6 \text{ km}$

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40 minutes.

Time	me: 3 Hours		Max. Marks: 100		
		1 Marks = 20 Marks) All Questions	Marks BL		CO
1.	are principal mission par performance, cost and schedule (A) Mission architectures (C) Mission evaluation	(B) System drivers (D) Mission objectives	1	2	1
2.	Which of the following events affe microprocessors (A) Trapped radiation (C) Galactic cosmic rays	cts the Random-Access Memory (RAM) and (B) Solar particle events (D) Magnetosphere	1	I	1
3.	Which of the following is the princ (A) Inclination (C) Declination	ipal design variable for constellation design (B) Eccentricity (D) Altitude	1	1	1
4.	At lower orbits a spacecraft will be velocities on the order of(A) 7 km/s (C) 9 km/s	bombarded by the atmosphere at orbital (B) 8 km/s (D) 10 km/s	i	I	1
5.	The attitude determination and cont (A) Sensor (C) Controller	trol subsystem determine the attitude using (B) Actuator (D) Amplifier	1	7-1	2
6.	Which of the following is not funct subsystem. (A) Receive (C) Modulate	ion of telemetry, tracking and command (B) Oscillate (D) Transmit	1	1	2
	A telemetry channel with information (A) High-level analog (C) Passive analog	on encoded as a resistance is called as (B) Low-level analog (D) Active analog	1	1	2
	The spacecraft average density is (A) 59 kg/m ³ (C) 79 kg/m ³	(B) 69 kg/m ³ (D) 89 kg/m ³	1	2	2
	Which of the following trajectory is (A) Circular trajectory (C) Elliptic trajectory	(B) Parabolic trajectory (D) Hyperbolic trajectory	1	2	3

Page 1 of 3

10JA7-18ASE304T

10.	Which is the measure of energy required for (A) Escape velocity	interplanetary mission (B) Parabolic excess	N. C.	1	3
	(C) FIII' .:	speed			
	(C) Elliptic excess speed	(D) Characteristic energy		_	
11.	Which of the following is the arithmetic sun required to perform a specified mission		1.	2	3
	(A) Mission characteristic velocity	(B) Launch vehicle characteristic velocity			
	(C) Mission azimuthal velocity	(D) Launch vehicle azimuthal velocity			
12.	The time of separation is called as		1	1	4
	(A) Injection parameter (C) Injection epoch	(B) Injection anomaly (D) Injection unit			
13.	The heat flux of the wall is proportional to _		1	1	4
	(A) Local free steam temperature (C) Local temperature gradient	(B) Local stagnation temperature (D) Local velocity gradient			
14.	The ratio of momentum diffusion to thermal		1	1	4
	(A) Prandtl number (C) Péclet number	(B) Nusselt number (D) Stanton number			
15	Which one of the following astronomical ob		1	2	5
10.	(A) Jupiter	(B) Venus		_	
	(C) Saturn	(D) Pluto			
16.	For manned mission which one of the follow of heliocentric orbits	ving orbital maneuver has a large period	I	2	4
	(A) Hohmann maneuver (C) Phasing maneuver	(B) Simple impulse maneuver(D) Bi-elliptic Hohmann maneuver			
17.	Which of the following is the gravitational p		1	2	5
	(A) 1.327×10 ¹¹ km ³ /s ² (C) 22930 km ³ /s ²	(B) 42828 km ³ /s ² (D) 1.26686×10 ⁸ km ³ /s ²			
18.	In order to escape the gravitational pull of a		1	1	5
-,	(A) Escape trajectory	(B) Circular trajectory			
	(C) Elliptic trajectory	(D) Hyperbolic trajectory			
19.	The geocentric position vector is given as		1	3	3
	$r = -294.32\hat{\imath} + 4265.1\hat{\jmath} + 5986.7\hat{k}(km).$	is the corresponding			
	magnitude. (A) 7356.5 km	(B) 7441.7 km			
	(C) 7456.8 km	(D) 7556.9 km			
20.	In perifocal coordinate system, the unit vect		1	2	3
	(A) Eccentricity	(B) Angular momentum			
	(C) Ture anomaly	(D) Eccentric			
		anomaly			
	Part - B (5 × 4 Marks =	•	Mark	s BL	CO
	Answer any 5 Que	estions			
21.	Explain the phases of life cycle of a space m	nission.	4	2	1
22.	Explain spacecraft charging.		4	2	1
23.	What is command decoder? Explain the type	es of command output.	4	2	2
24.	Describe the term energy storage in electrical	al power subsystem.	4	2	2
25.	Define C3 and explain the importance of the	e C3	4	2	3
of 3				-40/08	

26.	Explain aerodynamic heating	4	2	4
27.	Calculate the radius of the spheres of influence of Mercury and Jupiter	4	3	5
	Part - C (5 × 12 Marks = 60 Marks) Answer All Questions	Mark	s BL	CO
28.	 a. Define space mission and explain the classifications of space mission. (OR) b. Explain the step by step procedure for orbit design. 	12	2	1
29.	a. Explain in detail about attitude determination and control subsystem. (OR) b. Describe in detail about electrical power subsystem.	12	2	2
30.	a. Derive the scalar equations of motion for restricted three-body problem. (OR) b. Find the orbital elements of a geocentric satellite whose inertial position and velocity vectors in a geocentric equatorial frame are $\vec{r} = 2615\hat{i} + 15881\hat{j} + 3980\hat{k}(km) \text{ and}$ $\vec{v} = -2.767\hat{i} - 0.7905\hat{j} + 4.980\hat{k}(km/s)$	12	3 _	2
31,	a. i) Explain orbit deviation due to injection errors. ii) Describe the general aspects of satellite injection. (OR) b. Explain the types of space vehicle entry mechanics.	12	2	4
32.	a.Estimate the radius of a planet's gravitational sphere of influence of three-body system. (OR) b. A spacecraft is launched on a mission to Mars starting from a 300 km circular parking orbit. Calculate (a) the delta-V required, (b) the location of perigee of the departure hyperbola, and (c) the amount of propellant required as a percentage of the spacecraft mass before the delta-V burn, assuming a specific impulse of 300 s.	12	3	3

Page 2 of 3 10JA7-18ASE304T