Fantasy Football Team

Joshua Peterson

9/21/2016

Player analysis and selection for the week of 09.19.2016

QB Analysis - Pull Player Data

QB Analysis

Cam Newton - Summary Passing Data

Newton Yards Summary

```
##
    Location
                              Def.Rank.Yds
                                                  PassYds
                     qq0
                                                                     PassTD
##
                                     : 1.00
    Away: 42
               ATL
                       :11
                             Min.
                                               Min.
                                                       :114.0
                                                                Min.
                                                                        :0.000
##
    Home: 42
               NOR
                             1st Ou.:10.00
                                               1st Ou.:194.0
                                                                 1st Ou.:1.000
##
               TAM
                       : 8
                             Median :18.00
                                               Median :231.5
                                                                Median :1.000
                                     :18.63
##
               MIN
                             Mean
                                               Mean
                                                       :235.4
                                                                Mean
                                                                        :1.488
##
               SEA
                       : 4
                             3rd Ou.:28.00
                                               3rd Ou.:277.0
                                                                3rd Ou.:2.000
##
               ARI
                       : 3
                                     :32.00
                                                       :432.0
                                                                        :5.000
                             Max.
                                               Max.
                                                                Max.
##
               (Other):43
##
          Int
                          RushYds
                                              RushTD
    Min.
            :0.0000
                              : 4.00
                                         Min.
                                                 :0.0000
##
    1st Qu.:0.0000
                       1st Qu.: 23.75
                                         1st Qu.:0.0000
##
##
    Median :1.0000
                       Median : 39.00
                                         Median :0.0000
##
    Mean
            :0.8333
                              : 40.67
                                                 :0.5476
                       Mean
                                         Mean
##
    3rd Ou.:1.0000
                       3rd Qu.: 53.25
                                         3rd Ou.:1.0000
##
            :4.0000
                              :116.00
                                                 :3.0000
    Max.
                       Max.
                                         Max.
##
```

Exploratory data analysis

Location analysis

```
par(mfrow = c(5,2), mar = c(4,4,1,1))
plot(CNdf$Location, CNdf$PassYds, ylab = "Passing Yards", col = "red")
plot(CNdf$Location, CNdf$RushYds, ylab = "Rushing Yards", col = "blue")
plot(CNdf$Location, CNdf$PassTD, ylab = "Passing TDs", col = "green")
plot(CNdf$Location, CNdf$RushTD, ylab = "Rushing TDs", col = "purple")
plot(CNdf$Location, CNdf$Int, ylab = "Interceptions", col = "grey")
```


plot of chunk unnamed-chunk-63

Opponent Analysis

Opponent vs. Pass Yards

```
par(mfrow = c(5,1), mar = c(4,4,1,1))
plot(CNdf$Opp, CNdf$PassYds, ylab = "Yards Passing", xlab = "Opponent", col = "red")
plot(CNdf$Opp, CNdf$RushYds, ylab = "Yards Rushing", xlab = "Opponent", col = "blue")
plot(CNdf$Opp, CNdf$PassTD, ylab = "Passing TDs", xlab = "Opponent", col = "green")
plot(CNdf$Opp, CNdf$RushTD, ylab = "Rushing TDs", xlab = "Opponent", col = "purple")
plot(CNdf$Opp, CNdf$Int, ylab = "Interceptions", xlab = "Opponent", col = "grey")
```


plot of chunk unnamed-chunk-64

Defensive Ranking Analysis

Defense rank vs. Pass Yards

```
library(ggplot2)
par(mfrow = c(5,2), mar = c(4,4,1,1))
qplot(Def.Rank.Yds,PassYds, data = CNdf) + geom_smooth(method = "lm")
```


plot of chunk unnamed-chunk-65

```
qplot(Def.Rank.Yds, RushYds, data = CNdf) + geom_smooth(method = "lm")
```


plot of chunk unnamed-chunk-65

```
qplot(Def.Rank.Yds, PassTD, data = CNdf) + geom_smooth(method = "lm")
```


plot of chunk unnamed-chunk-65

```
qplot(Def.Rank.Yds, RushTD, data = CNdf) + geom_smooth(method = "lm")
```


plot of chunk unnamed-chunk-65

```
qplot(Def.Rank.Yds, Int, data = CNdf) + geom_smooth(method = "lm")
```


plot of chunk unnamed-chunk-65

Linear model fitting

Model fitting vs. Location

Pass Yds vs. Location

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 231.476190 10.01434 23.1144679 1.146648e-37
## LocationHome 7.785714 14.16242 0.5497447 5.839887e-01
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 231.4762 100.8408 362.1116

## 2 231.4762 100.8408 362.1116

## 3 231.4762 100.8408 362.1116

## 4 231.4762 100.8408 362.1116

## 5 231.4762 100.8408 362.1116

## 6 231.4762 100.8408 362.1116
```

Rush Yds. vs. Location

```
CNfitRushYdsLoc<- lm(RushYds ~ Location, data = CNdf)
summary(CNfitRushYdsLoc)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.809524 3.719746 11.5087210 8.455620e-19
## LocationHome -4.285714 5.260516 -0.8146947 4.176069e-01
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 42.80952 -5.713951 91.333

## 2 42.80952 -5.713951 91.333

## 3 42.80952 -5.713951 91.333

## 4 42.80952 -5.713951 91.333

## 5 42.80952 -5.713951 91.333

## 6 42.80952 -5.713951 91.333
```

Pass TDs. vs. Location

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4285714 0.1792766 7.9685335 8.064972e-12
## LocationHome 0.1190476 0.2535354 0.4695503 6.399225e-01
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 1.428571 -0.9100618 3.767205

## 2 1.428571 -0.9100618 3.767205

## 3 1.428571 -0.9100618 3.767205

## 4 1.428571 -0.9100618 3.767205

## 5 1.428571 -0.9100618 3.767205

## 6 1.428571 -0.9100618 3.767205
```

Rush TDs vs. Location

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6190476 0.09991424 6.19579 2.207786e-08
## LocationHome -0.1428571 0.14130007 -1.01102 3.149811e-01
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 0.6190476 -0.684317 1.922412

## 2 0.6190476 -0.684317 1.922412

## 3 0.6190476 -0.684317 1.922412

## 4 0.6190476 -0.684317 1.922412

## 5 0.6190476 -0.684317 1.922412

## 6 0.6190476 -0.684317 1.922412
```

Model fitting vs. opponent

Pass Yards vs. opponent data

```
CNfitPassYds<- lm(PassYds ~ Opp, data = CNdf)
summary(CNfitPassYds)$coefficients</pre>
```

```
##
                   Estimate Std. Error
                                             t value
                                                          Pr(>|t|)
##
                314.0000000
                               37.57596
                                         8.356406770 3.029459e-11
   (Intercept)
## OppATL
                -96.6363636
                               42.39140 -2.279621941 2.668241e-02
## OppBAL
               -117.0000000
                               75.15192 -1.556846484 1.254588e-01
## OppBUF
                -85.0000000
                               75.15192 -1.131042318 2.631294e-01
## OppCHI
                  0.3333333
                               53.14043 0.006272688 9.950187e-01
## OppCIN
                -30.0000000
                               75.15192 -0.399191406 6.913562e-01
## OppCLE
               -113.0000000
                               75.15192 -1.503620963 1.386149e-01
                               59.41281 -1.784127080 8.012798e-02
## OppDAL
               -106.0000000
## OppDEN
                -96.5000000
                               59.41281 -1.624228898 1.102602e-01
## OppDET
                               59.41281 -0.563851483 5.752335e-01
                -33.5000000
## OppGNB
                 -2.6666667
                               53.14043 -0.050181502 9.601664e-01
## OppHOU
               -142.0000000
                               59.41281 -2.390057032 2.043314e-02
## OppIND
                -86.0000000
                               59.41281 -1.447499329 1.536467e-01
                               59.41281 -2.482629663 1.624279e-02
## OppJAX
               -147.5000000
                -82.0000000
                               75.15192 -1.091123177 2.801543e-01
## OppKAN
               -140.0000000
                               75.15192 -1.862893229 6.802323e-02
## OppMIA
## OppMIN
                -67.0000000
                               49.70832 -1.347862847 1.834357e-01
## OppNOR
                -80.4545455
                               42.39140 -1.897897853 6.316179e-02
                               75.15192 -1.397169922 1.681848e-01
## OppNWE
               -105.0000000
## OppNYG
                -45.6666667
                               53.14043 -0.859358227 3.940132e-01
## OppNYJ
                -41.0000000
                               75.15192 -0.545561589 5.876562e-01
## OppOAK
               -144.0000000
                               75.15192 -1.916118750 6.075031e-02
## OppPHI
                -44.3333333
                               53.14043 -0.834267475 4.078749e-01
## OppPIT
                -64.0000000
                               75.15192 -0.851608333 3.982631e-01
                               75.15192 -1.104429557 2.743958e-01
## OppSDG
                -83.0000000
## OppSEA
               -137.5000000
                               49.70832 -2.766136441 7.791241e-03
                               59.41281 -0.892063540 3.763912e-01
## OppSFO
                -53.0000000
## OppSTL
               -110.0000000
                               75.15192 -1.463701823 1.491815e-01
                               44.06172 -1.931949189 5.871932e-02
## OppTAM
                -85.1250000
## OppTEN
                -99.5000000
                               59.41281 -1.674723061 9.988019e-02
## OppWAS
                -79.6666667
                               53.14043 -1.499172381 1.397623e-01
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 204 19.38727 388.6127

## 2 204 19.38727 388.6127

## 3 204 19.38727 388.6127

## 4 204 19.38727 388.6127

## 5 204 19.38727 388.6127

## 6 204 19.38727 388.6127
```

Rush Yards vs. opponent data

```
CNfitRushYds<- lm(RushYds ~ Opp, data = CNdf)
summary(CNfitRushYds)$coefficients</pre>
```

```
##
                                                       Pr(>|t|)
                  Estimate Std. Error
                                            t value
##
   (Intercept)
                28.6666667
                              13.64632
                                        2.10068854 0.040441916
## OppATL
                20.4242424
                              15.39512
                                        1.32666952 0.190306056
## OppBAL
               -21.6666667
                              27.29264 -0.79386486 0.430814227
                              27.29264 -0.50074552 0.618623480
## OppBUF
               -13.6666667
## OppCHI
                -1.6666667
                              19.29881 -0.08636111 0.931504803
                78.3333333
                              27.29264
                                        2.87012679 0.005882711
## OppCIN
## OppCLE
                34.3333333
                              27.29264
                                        1.25797046 0.213916617
## OppDAL
                25.8333333
                              21.57673
                                        1.19727775 0.236525971
                                        0.08496810 0.932606909
## OppDEN
                 1.8333333
                              21.57673
## OppDET
                -0.6666667
                              21.57673 -0.03089749 0.975467352
                                        1.12269445 0.266627522
## OppGNB
                21.6666667
                              19.29881
## OppHOU
                36.8333333
                              21.57673
                                        1.70708635 0.093658926
                18.3333333
                              21.57673
                                        0.84968099 0.399324437
## OppIND
## OppJAX
                 2.3333333
                              21.57673
                                        0.10814122 0.914292038
## OppKAN
                49.3333333
                              27.29264
                                        1.80756921 0.076350104
## OppMIA
                22.3333333
                              27.29264
                                        0.81829147 0.416854747
                10.8333333
                                        0.60010542 0.550993345
## OppMIN
                              18.05238
## OppNOR
                                        0.76568908 0.447257940
                11.7878788
                              15.39512
## OppNWE
                33.333333
                              27.29264
                                        1.22133055 0.227365995
## OppNYG
                21.6666667
                              19.29881
                                        1.12269445 0.266627522
                              27.29264 -0.61066527 0.544031201
## OppNYJ
               -16.6666667
## OppOAK
                31.3333333
                              27.29264
                                        1.14805071 0.256103198
## OppPHI
                -2.6666667
                              19.29881 -0.13817778 0.890623575
               -21.6666667
                              27.29264 -0.79386486 0.430814227
## OppPIT
## OppSDG
               -21.6666667
                              27.29264 -0.79386486 0.430814227
## OppSEA
                 4.8333333
                              18.05238
                                        0.26773934 0.789939195
## OppSFO
                -2.6666667
                              21.57673 -0.12358996 0.902107454
## OppSTL
                -2.6666667
                              27.29264 -0.09770644 0.922533973
## OppTAM
                                        0.88011329 0.382771364
                14.0833333
                              16.00173
## OppTEN
                10.3333333
                                        0.47891110 0.633971877
                              21.57673
## OppWAS
                 8.6666667
                              19.29881
                                        0.44907778 0.655206533
```

Prediction interval using a linear model

```
##
     fit
                lwr
                         upr
##
      26 -41.04511 93.04511
##
   2
      26 -41.04511 93.04511
      26 -41.04511 93.04511
##
   3
##
      26 -41.04511 93.04511
##
   5
      26 -41.04511 93.04511
## 6
      26 -41.04511 93.04511
```

Pass TDs vs. opponent data

```
CNfitPassTD<- lm(PassTD ~ Opp, data = CNdf)
summary(CNfitPassTD)$coefficients</pre>
```

```
##
                 Estimate Std. Error
                                          t value
                                                    Pr(>|t|)
                            0.7240525
                                        0.9207436 0.36135643
##
  (Intercept)
                0.6666667
## OppATL
                 0.7878788
                            0.8168413
                                        0.9645432 0.33915419
## OppBAL
                0.3333333
                            1.4481049
                                        0.2301859 0.81883347
                                        0.9207436 0.36135643
## OppBUF
                1.3333333
                            1.4481049
## OppCHI
                0.3333333
                            1.0239648
                                        0.3255320 0.74606017
                                        0.9207436 0.36135643
## OppCIN
                1.3333333
                            1.4481049
                                        0.2301859 0.81883347
## OppCLE
                0.3333333
                            1.4481049
## OppDAL
               -0.1666667
                            1.1448274 -0.1455823 0.88480338
## OppDEN
                                        0.7279117 0.46987138
                0.8333333
                            1.1448274
## OppDET
                0.3333333
                            1.1448274
                                        0.2911647 0.77206183
## OppGNB
                1.0000000
                            1.0239648
                                        0.9765961 0.33320583
                                        1.1646588 0.24937274
## OppHOU
                1.3333333
                            1.1448274
## OppIND
                                        0.2911647 0.77206183
                0.3333333
                            1.1448274
## OppJAX
                0.3333333
                            1.1448274
                                        0.2911647 0.77206183
                                        1.6113013 0.11305415
## OppKAN
                2.3333333
                            1.4481049
## OppMIA
                0.3333333
                            1.4481049
                                        0.2301859 0.81883347
                            0.9578314
                                        1.1310272 0.26313568
## OppMIN
                1.0833333
                                        1.1871301 0.24046994
## OppNOR
                0.9696970
                            0.8168413
## OppNWE
                2.3333333
                            1.4481049
                                        1.6113013 0.11305415
                                        1.9531921 0.05608525
## OppNYG
                2.0000000
                            1.0239648
## OppNYJ
                0.3333333
                            1.4481049
                                        0.2301859 0.81883347
## OppOAK
                0.3333333
                            1.4481049
                                        0.2301859 0.81883347
                                        0.9765961 0.33320583
## OppPHI
                1.0000000
                            1.0239648
## OppPIT
                                        0.2301859 0.81883347
                0.3333333
                            1.4481049
                            1.4481049
                                        0.9207436 0.36135643
## OppSDG
                1.3333333
                            0.9578314 -0.1740042 0.86252511
## OppSEA
               -0.1666667
## OppSFO
                1.3333333
                            1.1448274
                                        1.1646588 0.24937274
## OppSTL
                0.3333333
                            1.4481049
                                        0.2301859 0.81883347
## OppTAM
                 1.0833333
                            0.8490268
                                        1.2759708 0.20752953
## OppTEN
                            1.1448274 -0.1455823 0.88480338
               -0.1666667
## OppWAS
                1.6666667
                            1.0239648
                                        1.6276601 0.10952809
```

Prediction interval using a linear model

```
##
     fit
                lwr
                          upr
##
       1 -2.557309 4.557309
   1
##
       1 -2.557309 4.557309
   2
##
       1 -2.557309 4.557309
   3
       1 -2.557309 4.557309
##
## 5
       1 -2.557309 4.557309
##
       1 -2.557309 4.557309
```

Rush TDs vs. opponent data

```
CNfitRushTD<- lm(RushTD ~ Opp, data = CNdf)
summary(CNfitRushTD)$coefficients</pre>
```

```
##
                  Estimate Std. Error
                                           t value Pr(>|t|)
   (Intercept)
                 0.33333333
                             0.4123706
                                         0.8083343 0.4225117
                             0.4652168
                                         0.4559620 0.6502801
## OppATL
                 0.21212121
## OppBAL
                -0.33333333
                             0.8247413 - 0.4041671 0.6877162
                             0.8247413 -0.4041671 0.6877162
## OppBUF
               -0.33333333
## OppCHI
                 0.33333333
                             0.5831802
                                         0.5715787 0.5700237
## OppCIN
                 0.6666667
                             0.8247413
                                         0.8083343 0.4225117
## OppCLE
                 0.66666667
                             0.8247413
                                         0.8083343 0.4225117
## OppDAL
                 0.16666667
                             0.6520152
                                         0.2556177 0.7992355
                             0.6520152
                                         0.2556177 0.7992355
## OppDEN
                 0.16666667
## OppDET
                 0.6666667
                             0.6520152
                                         1.0224710 0.3112025
## OppGNB
                 0.33333333
                             0.5831802
                                         0.5715787 0.5700237
## OppHOU
                 0.16666667
                             0.6520152
                                         0.2556177 0.7992355
## OppIND
                 0.16666667
                             0.6520152
                                         0.2556177 0.7992355
## OppJAX
                -0.33333333
                             0.6520152 -0.5112355 0.6113095
                             0.8247413 -0.4041671 0.6877162
## OppKAN
                -0.33333333
                             0.8247413
                                         0.8083343 0.4225117
## OppMIA
                 0.66666667
                 0.16666667
                             0.5455151
                                         0.3055216 0.7611657
## OppMIN
                 0.21212121
                                         0.4559620 0.6502801
## OppNOR
                             0.4652168
## OppNWE
               -0.33333333
                             0.8247413 - 0.4041671 0.6877162
                                         0.5715787 0.5700237
## OppNYG
                 0.33333333
                             0.5831802
## OppNYJ
                -0.33333333
                             0.8247413 - 0.4041671 \ 0.6877162
                 0.66666667
                             0.8247413
                                         0.8083343 0.4225117
## OppOAK
                                         1.1431573 0.2581108
## OppPHI
                 0.6666667
                             0.5831802
## OppPIT
                -0.33333333
                             0.8247413 - 0.4041671 0.6877162
## OppSDG
                -0.33333333
                             0.8247413 -0.4041671 0.6877162
## OppSEA
                -0.08333333
                             0.5455151 -0.1527608 0.8791670
## OppSFO
               -0.33333333
                             0.6520152 -0.5112355 0.6113095
                -0.33333333
                             0.8247413 -0.4041671 0.6877162
## OppSTL
                             0.4835474
                                        1.3786996 0.1737790
## OppTAM
                 0.66666667
## OppTEN
                 0.16666667
                             0.6520152
                                         0.2556177 0.7992355
## OppWAS
                 0.33333333
                             0.5831802
                                         0.5715787 0.5700237
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 9.992007e-16 -2.025999 2.025999

## 2 9.992007e-16 -2.025999 2.025999

## 3 9.992007e-16 -2.025999 2.025999

## 4 9.992007e-16 -2.025999 2.025999

## 5 9.992007e-16 -2.025999 2.025999

## 6 9.992007e-16 -2.025999 2.025999
```

Interceptions vs. opponent data

```
CNfitInt<- lm(Int ~ Opp, data = CNdf)
summary(CNfitInt)$coefficients</pre>
```

```
##
                    Estimate Std. Error
                                               t value Pr(>|t|)
                               0.6136355
                                          2.172843e+00 0.0342835
##
   (Intercept)
                1.333333e+00
## OppATL
               -4.242424e-01
                               0.6922742 -6.128243e-01 0.5426133
## OppBAL
               -1.333333e+00
                               1.2272710 -1.086421e+00 0.2822092
## OppBUF
                               1.2272710 -2.716053e-01 0.7869807
               -3.333333e-01
## OppCHI
               -2.195188e-15
                               0.8678116 -2.529567e-15 1.0000000
## OppCIN
               -3.33333e-01
                               1.2272710 -2.716053e-01 0.7869807
## OppCLE
                               1.2272710 -2.716053e-01 0.7869807
               -3.33333e-01
## OppDAL
               -8.333333e-01
                               0.9702429 -8.588915e-01 0.3942684
                1.666667e-01
                               0.9702429 1.717783e-01 0.8642661
## OppDEN
                                          6.871132e-01 0.4950072
## OppDET
                6.666667e-01
                               0.9702429
## OppGNB
                3.33333e-01
                               0.8678116
                                         3.841079e-01 0.7024352
## OppHOU
               -8.333333e-01
                               0.9702429 -8.588915e-01 0.3942684
## OppIND
               -8.33333e-01
                               0.9702429 -8.588915e-01 0.3942684
                               0.9702429 -8.588915e-01 0.3942684
## OppJAX
               -8.333333e-01
                               1.2272710 -1.086421e+00 0.2822092
## OppKAN
               -1.333333e+00
                               1.2272710 -2.716053e-01 0.7869807
## OppMIA
               -3.33333e-01
## OppMIN
               -3.33333e-01
                               0.8117634 -4.106287e-01 0.6830003
## OppNOR
               -6.969697e-01
                               0.6922742 -1.006783e+00 0.3186137
## OppNWE
               -1.333333e+00
                               1.2272710 -1.086421e+00 0.2822092
               -9.243760e-17
                               0.8678116 -1.065180e-16 1.0000000
## OppNYG
## OppNYJ
               -1.333333e+00
                               1.2272710 -1.086421e+00 0.2822092
                               1.2272710 -2.716053e-01 0.7869807
## OppOAK
               -3.33333e-01
                               0.8678116 7.682159e-01 0.4457684
## OppPHI
                6.666667e-01
## OppPIT
               -1.333333e+00
                               1.2272710 -1.086421e+00 0.2822092
## OppSDG
               -1.333333e+00
                               1.2272710 -1.086421e+00 0.2822092
                               0.8117634 -7.186002e-01 0.4755435
## OppSEA
               -5.833333e-01
                               0.9702429 -3.435566e-01 0.7325390
## OppSFO
               -3.33333e-01
## OppSTL
               -1.333333e+00
                               1.2272710 -1.086421e+00 0.2822092
## OppTAM
               -8.333333e-01
                               0.7195514 -1.158129e+00 0.2520036
## OppTEN
               -8.33333e-01
                               0.9702429 -8.588915e-01 0.3942684
               -1.333333e+00
                               0.8678116 -1.536432e+00 0.1303815
## OppWAS
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 6.661338e-16 -3.014824 3.014824

## 2 6.661338e-16 -3.014824 3.014824

## 3 6.661338e-16 -3.014824 3.014824

## 4 6.661338e-16 -3.014824 3.014824

## 5 6.661338e-16 -3.014824 3.014824

## 6 6.661338e-16 -3.014824 3.014824
```

Model fitting vs. defensive rank

Pass Yards vs. Defensive Rank

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 209.684496 14.6329907 14.329572 4.863700e-24
## Def.Rank.Yds 1.378596 0.6917944 1.992783 4.961161e-02
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 223.4705 95.84432 351.0966

## 2 223.4705 95.84432 351.0966

## 3 223.4705 95.84432 351.0966

## 4 223.4705 95.84432 351.0966

## 5 223.4705 95.84432 351.0966

## 6 223.4705 95.84432 351.0966
```

Rush Yards vs. Defensive Rank

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 31.636691 5.461463 5.792714 1.236875e-07
## Def.Rank.Yds 0.484676 0.258198 1.877149 6.405391e-02
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 36.48345 -11.15038 84.11728

## 2 36.48345 -11.15038 84.11728

## 3 36.48345 -11.15038 84.11728

## 4 36.48345 -11.15038 84.11728

## 5 36.48345 -11.15038 84.11728

## 6 36.48345 -11.15038 84.11728
```

Pass TDs vs. Defensive Rank

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.76030700 0.25208857 3.016031 0.003409254
## Def.Rank.Yds 0.03906339 0.01191783 3.277728 0.001535963
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 1.150941 -1.047727 3.349609

## 2 1.150941 -1.047727 3.349609

## 3 1.150941 -1.047727 3.349609

## 4 1.150941 -1.047727 3.349609

## 5 1.150941 -1.047727 3.349609

## 6 1.150941 -1.047727 3.349609
```

Rush TDs vs. Defensive Rank

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28453388 0.1464728 1.942571 0.05550046
## Def.Rank.Yds 0.01412087 0.0069247 2.039202 0.04465064
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 0.4257425 -0.8517653 1.70325

## 2 0.4257425 -0.8517653 1.70325

## 3 0.4257425 -0.8517653 1.70325

## 4 0.4257425 -0.8517653 1.70325

## 5 0.4257425 -0.8517653 1.70325

## 6 0.4257425 -0.8517653 1.70325
```

Interceptions vs. Defensive Rank

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.782843304 0.22988339 3.4053930 0.001025241
## Def.Rank.Yds 0.002710008 0.01086805 0.2493556 0.803709321
```

Prediction interval using a linear model

```
## fit lwr upr

## 1 0.8099434 -1.195055 2.814942

## 2 0.8099434 -1.195055 2.814942

## 3 0.8099434 -1.195055 2.814942

## 4 0.8099434 -1.195055 2.814942

## 5 0.8099434 -1.195055 2.814942

## 6 0.8099434 -1.195055 2.814942
```

Newton Pass Yards Plot of Data Yards against opponents

```
## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced
```


plot of chunk unnamed-chunk-94

Newton Rush Yards Plot of Data Yards against opponents

```
## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced

## Warning in qt((1 - level)/2, df): NaNs produced
```


plot of chunk unnamed-chunk-95

Newton TDs Plot of Data Yards against opponents

```
## Warning in qt((1 - level)/2, df): NaNs produced
## Warning in qt((1 - level)/2, df): NaNs produced
## Warning in qt((1 - level)/2, df): NaNs produced
## Warning in qt((1 - level)/2, df): NaNs produced
## Warning in qt((1 - level)/2, df): NaNs produced
```


plot of chunk unnamed-chunk-96

Machine Learning Alogorithm (Pass Yards)

Data Splitting

In this data splitting action, I am splitting the data into 60% training set and 40% testing set.

```
##
    Location
                     Opp
                               Def.Rank.Yds
                                                   PassYds
                                                                      PassTD
##
    Away: 42
                              Min.
                                      : 1.00
                                               Min.
                                                       :114.0
                                                                 Min.
               ATL
                       :11
                                                                         :0.000
##
    Home: 42
               NOR
                       :11
                              1st Ou.:10.00
                                               1st Qu.:194.0
                                                                 1st Ou.:1.000
                              Median :18.00
##
               TAM
                       : 8
                                               Median :231.5
                                                                 Median :1.000
##
               MIN
                              Mean
                                      :18.63
                                               Mean
                                                        :235.4
                       : 4
                                                                 Mean
                                                                         :1.488
##
               SEA
                       : 4
                              3rd Qu.:28.00
                                               3rd Qu.:277.0
                                                                 3rd Qu.:2.000
##
               ARI
                       : 3
                              Max.
                                      :32.00
                                               Max.
                                                        :432.0
                                                                 Max.
                                                                         :5.000
##
               (Other):43
##
          Int
                          RushYds
                                              RushTD
##
            :0.0000
                       Min.
                               : 4.00
                                                  :0.0000
    Min.
                                          Min.
    1st Qu.:0.0000
                       1st Qu.: 23.75
##
                                          1st Qu.:0.0000
##
    Median :1.0000
                       Median : 39.00
                                          Median :0.0000
##
    Mean
            :0.8333
                       Mean
                               : 40.67
                                          Mean
                                                  :0.5476
##
    3rd Ou.:1.0000
                       3rd Ou.: 53.25
                                          3rd Ou.:1.0000
            :4.0000
##
    Max.
                               :116.00
                                                  :3.0000
                       Max.
                                          Max.
##
```

```
## [1] 52 8
```

```
## [1] 32 8
```

K-Fold Cross Validation

We will then use the K-Fold process to cross-validate the data by splitting the training set in to many, smaller data sets.

Here, I am creating 10 folds and setting a random number seed of 32323 for the study. Each fold has approximately the same number of samples in it.

```
set.seed(32323)
Passfolds <- createFolds(y=CNdf$PassYds,k=10,list=TRUE,returnTrain=TRUE)
sapply(Passfolds,length)</pre>
```

```
## Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold08 Fold09 Fold10
## 74 75 76 76 76 76 75 76 76 76
```

```
Passfolds[[1]][1:10]
```

```
## [1] 1 2 3 4 5 7 8 9 10 11
```

Machine learning alogorithm decisioning

First I wanted to determine the optimal machine learning model to use. The first test I used the Decision Tree approach. I followed up by testing the Random Forest approach.

Machine learning using Decision Trees

The first task was to determine model fit.

Next, construct a Decision Tree graph

fancyRpartPlot(modelFitPass)

Rattle 2016-Oct-31 15:55:00 joshuapeterson plot of chunk unnamed-chunk-100

Machine Learning Alogorithm (Rush Yards)

Data Splitting

In this data splitting action, I am splitting the data into 60% training set and 40% testing set.

```
PassTD
##
    Location
                     qqO
                               Def.Rank.Yds
                                                  PassYds
##
    Away:42
               ATL
                       :11
                              Min.
                                     : 1.00
                                               Min.
                                                       :114.0
                                                                 Min.
                                                                         :0.000
                              1st Qu.:10.00
##
    Home: 42
               NOR
                       :11
                                               1st Qu.:194.0
                                                                 1st Qu.:1.000
##
               TAM
                       : 8
                             Median :18.00
                                               Median :231.5
                                                                 Median :1.000
               MIN
                       : 4
                                     :18.63
                                                       :235.4
                                                                         :1.488
##
                             Mean
                                               Mean
                                                                 Mean
                              3rd Ou.:28.00
##
               SEA
                       : 4
                                               3rd Ou.:277.0
                                                                 3rd Ou.:2.000
##
               ARI
                       : 3
                                     :32.00
                                                       :432.0
                                                                         :5.000
                             Max.
                                               Max.
                                                                 Max.
##
               (Other):43
##
          Int
                          RushYds
                                              RushTD
                       Min.
                               : 4.00
##
    Min.
            :0.0000
                                          Min.
                                                  :0.0000
    1st Ou.:0.0000
                       1st Qu.: 23.75
                                          1st Ou.:0.0000
##
##
    Median :1.0000
                       Median : 39.00
                                          Median :0.0000
    Mean
            :0.8333
                       Mean
                               : 40.67
                                                  :0.5476
##
                                          Mean
##
    3rd Qu.:1.0000
                       3rd Qu.: 53.25
                                          3rd Qu.:1.0000
##
    Max.
            :4.0000
                               :116.00
                                          Max.
                                                  :3.0000
##
```

```
## [1] 52 8
```

```
## [1] 32 8
```

We will then use the K-Fold process to cross-validate the data by splitting the training set in to many, smaller data sets.

Here, I am creating 10 folds and setting a random number seed of 32323 for the study. Each fold has approximately the same number of samples in it.

```
set.seed(32323)
Passfolds <- createFolds(y=CNdf$RushYds,k=10,list=TRUE,returnTrain=TRUE)
sapply(Passfolds,length)</pre>
```

```
## Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold08 Fold09 Fold10
## 74 75 76 75 76 76 76 76 76 76
```

```
Passfolds[[1]][1:10]
```

```
## [1] 1 2 3 5 6 8 9 10 11 12
```

Decision tree model fit Rush Yards Defense Rank.

Pass Yards decision tree graph

fancyRpartPlot(modelFitRush)

Rattle 2016-Oct-31 15:55:01 joshuapeterson plot of chunk unnamed-chunk-104

Machine learning using Decision Trees

The first task was to determine model fit.

Output from Decision Tree Model vs. Yards Passing

Current week (9) opponent L.A. Rams (formerly St. Louis Rams). The defense is currently ranked # 10 according to www.pro-football-reference.com.

According to the model, there is a 60% chance that Cam Newton will pass for 240 yards. This takes in to account defense rank ONLY. There is an 18.0% chance Cam will rush for 25 yards. Once again this takes in to account defense rank ONLY.

We will now use the LM model for prediction (Pass Yds)

##	1	2	3	1	5	6	7	Q
					195.5174			_
					133.3174			
					195.5174			
	17				21			
		_			195.5174			
					29			
					195.5174			
					37			
					195.5174			
					45			
##	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174
##	49	50	51	52	53	54	55	56
##	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174
##	57	58	59	60	61	62	63	64
##	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174
##	65	66	67	68	69	70	71	72
##	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174
##	73	74	75	76	77	78	79	80
##	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174	195.5174
##	81	82	83	84				
##	195.5174	195.5174	195.5174	195.5174				

Predicted passing points

```
##
          1
                    2
                              3
                                        4
                                                 5
                                                           6
## 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
##
                   10
                             11
                                       12
                                                13
                                                          14
                                                                    15
                                                                             16
## 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
                             19
                                       20
                                                21
##
                   18
## 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
##
                             27
                                       28
                                                29
                                                          30
## 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
##
                   34
                                       36
                                                37
                                                          38
                                                                    39
  7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
##
##
                             43
                                       44
                                                45
                                                          46
                                                                    47
##
  7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
##
                   50
                             51
                                       52
                                                53
                                                          54
## 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
##
                   58
                                       60
         57
                             59
                                                61
                                                          62
                                                                    63
                                                                             64
   7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
##
##
                                                69
                                                          70
                                                                    71
                   66
                             67
                                       68
  7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
##
##
         73
                   74
                             75
                                       76
                                                77
                                                          78
                                                                    79
                                                                             80
## 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694 7.820694
         81
                   82
                             83
##
## 7.820694 7.820694 7.820694 7.820694
```

We will now use the LM model for prediction (Rush Yds)

##	1	2	3	4	5	6	7	8
			24.73227					
			11					
##	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227
##	17	18	19	20	21	22	23	24
##	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227
##	25	26	27	28	29	30	31	32
##	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227
##	33	34	35	36	37	38	39	40
##	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227	24.73227
##	41	42	43	44	45	46	47	48
			24.73227					
			51					
			24.73227					
			59					
			24.73227					
			67					
			24.73227					
			75					
			24.73227			24.73227	24.73227	24.73227
			83					
##	24./3227	24.73227	24.73227	24./3227				

Predicted rushing points

##	1	2	3	4	5	6	7	8
			2.473227					
##	9	10	11	12	13	14	15	16
##	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227
##	17	18	19	20	21	22	23	24
##	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227
##	25	26	27	28	29	30	31	32
##	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227
##	33	34	35	36	37	38	39	40
##	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227
##	41	42	43	44	45	46	47	48
##	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227	2.473227
##	49	50	51	52	53	54	55	56
			2.473227					
##	57	58	59	60	61	62	63	64
			2.473227					
			67					
			2.473227					
			75					
			2.473227		2.473227	2.473227	2.473227	2.473227
			83					
##	2.473227	2.473227	2.473227	2.473227				

We will now use the LM model for prediction (Pass TDs)

##	1	2	3	4	5	6	7
					0.8045535		
					12		14
					0.8045535		
					19		21
					0.8045535		
					26		28
					0.8045535		
					33		35
					0.8045535		0.8045535
##	36	37	38	39	40	41	42
##	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535
##	43	44	45	46	47	48	49
##	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535
##	50	51	52	53	54	55	56
##	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535
##	57	58	59	60	61	62	63
##	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535
##	64	65	66	67	68	69	70
##	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535	0.8045535
##	71	72	73	74	75	76	77
					0.8045535		0.8045535
					82		
					0.8045535		
" "			2.001000		2.001000		2.001000

Predicted rushing points

##	1	2	3	4	5	6	7	8
					3.218214			
##	9	10	11	12	13	14	15	16
##	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214
##	17	18	19	20	21	22	23	24
##	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214
##	25	26	27	28	29	30	31	32
##	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214
##	33	34	35	36	37	38	39	40
##	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214
##	41	42	43	44	45	46	47	48
##	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214
##	49	50	51	52	53	54	55	56
##	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214
##	57	58	59	60	61	62	63	64
##	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214	3.218214
##	65	66	67	68	69	70	71	72
					3.218214			
##	73	74	75	76	77	78	79	80
					3.218214	3.218214	3.218214	3.218214
##	81	82	83	84				
##	3.218214	3.218214	3.218214	3.218214				

We will now use the LM model for prediction (Rush TDs)

##	1	2	3	4	5	6
##				-0.05003085		-0.05003085
##	7	8	9	10	11	12
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	13	14	15	16	17	18
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	19	20	21	22	23	24
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	25	26	27	28	29	30
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	31	32	33	34	35	36
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	37	38	39	40	41	42
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	43	44	45	46	47	48
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	49	50	51	52	53	54
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
						60
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	61	62	63	64	65	66
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085
##	67	68	69	70	71	72
				-0.05003085		
##	73	74	75	76	77	78
##	-0.05003085	-0.05003085		-0.05003085	-0.05003085	-0.05003085
##	79	80	81	82	83	84
##	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085	-0.05003085

Predicted rushing TD points

```
##
                         2
                                                                         6
   -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851
##
                                                10
   -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851
##
##
                        14
                                    15
                                                16
   -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851
##
                                    21
   -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851
##
##
   -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851
##
##
                                    33
                                                34
   -0.3001851 - 0.3001851 - 0.3001851 - 0.3001851 - 0.3001851 - 0.3001851
##
##
                        38
                                    39
## -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851
##
            43
                        44
                                    45
                                                46
                                                            47
                                                                        48
   -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851 \ -0.3001851
##
##
                                    51
  -0.3001851 - 0.3001851 - 0.3001851 - 0.3001851 - 0.3001851 - 0.3001851
##
##
            55
                        56
                                    57
                                                58
                                                            59
## -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851
##
            61
                        62
                                    63
                                                64
                                                            65
   -0.3001851 - 0.3001851 - 0.3001851 - 0.3001851 - 0.3001851 - 0.3001851
##
            67
                        68
                                    69
                                                70
                                                            71
                                                                        72
   -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851
##
##
            73
                        74
                                    75
                                                76
                                                            77
                                                                        78
## -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851
##
                                    81
## -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851 -0.3001851
```

Total predicted points using linear regression models

```
##
           1
                    2
                              3
                                        4
                                                  5
                                                            6
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
                   10
                             11
                                       12
                                                 13
                                                           14
                                                                     15
                                                                              16
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
                             19
                                       20
                                                 21
##
##
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
                   26
                             27
                                       28
                                                 29
                                                           30
                                                                     31
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
##
                   34
                             35
                                       36
                                                 37
                                                           38
                                                                     39
                                                                               40
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
##
                   42
                             43
                                       44
                                                 45
                                                           46
                                                                     47
##
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
          49
                   50
                             51
                                       52
                                                 53
                                                           54
                                                                     55
                                                                              56
##
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
                   58
                             59
                                       60
                                                 61
                                                           62
          57
                                                                     63
                                                                               64
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
##
                                                 69
                                                           70
                                                                     71
                   66
                             67
                                       68
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
##
          73
                   74
                             75
                                       76
                                                 77
                                                           78
                                                                     79
                                                                              80
   13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195 13.21195
##
##
         81
                   82
                             83
## 13.21195 13.21195 13.21195 13.21195
```

Outcome: Cam Newton's predicted point total for Week 9 against the LA Rams is 13.21 points. NFL.com is predicting that Cam's point total will be 15.44 points

```
##
##
## processing file: QB_ML_Experiment_2016.Rmd
```

```
## Error in parse_block(g[-1], g[1], params.src): duplicate label 'Points'
```