

Kernel Methods for Koopman-based Modeling in Molecular Simulation

Feliks Nüske

April 11, 2024

Metastable Systems

- Goal: Automatically analyse *metastable* systems based on simulation data.
- **Example:** Langevin Dynamics $dX_t = -\nabla V(X_t) dt + \sqrt{2kT} dW_t$.

Outline

1. The Koopman Operator and EDMD

2. Variational Approach

3. Generator Learning

4. Kernel Methods and Random Features

Idea: Track a dynamical system X_t through the lens of **observables** by means of a **linear** map:

Idea: Track a dynamical system X_t through the lens of **observables** by means of a **linear** map:

■ Choose finitely many observables:

$$\psi(x) = \left[\psi_1(x) \cdots \psi_{\mathbf{n}}(x)\right]^T.$$

Idea: Track a dynamical system X_t through the lens of **observables** by means of a **linear** map:

■ Choose finitely many observables:

$$\psi(x) = \left[\psi_1(x) \cdots \psi_{\mathbf{n}}(x)\right]^T.$$

• Generate transformed snapshot matrices $(x_k, y_k \text{ separated by lag time } t)$:

$$\Psi(\mathbf{X}) = \begin{bmatrix} \psi(x_1) & \cdots & \psi(x_m) \end{bmatrix} \in \mathbb{R}^{n \times m},$$

$$\Psi(\mathbf{Y}) = \begin{bmatrix} \psi(y_1) & \cdots & \psi(y_m) \end{bmatrix} \in \mathbb{R}^{\mathbf{n} \times m}.$$

Idea: Track a dynamical system X_t through the lens of **observables** by means of a **linear** map:

■ Choose finitely many observables:

$$\psi(x) = \left[\psi_1(x) \cdots \psi_{\mathbf{n}}(x)\right]^T.$$

• Generate transformed snapshot matrices $(x_k, y_k \text{ separated by lag time } t)$:

$$\Psi(\mathbf{X}) = \begin{bmatrix} \psi(x_1) & | & \cdots & | & \psi(x_m) \end{bmatrix} \in \mathbb{R}^{n \times m},$$

$$\Psi(\mathbf{Y}) = \begin{bmatrix} \psi(y_1) & | & \cdots & | & \psi(y_m) \end{bmatrix} \in \mathbb{R}^{n \times m}.$$

■ Solve **regression** problem (EDMD):

$$\mathbf{K}^{t} = \operatorname{argmin}_{K \in \mathbb{R}^{n \times n}} \| \Psi(\mathbf{Y}) - \mathbf{K}^{T} \Psi(\mathbf{X}) \|_{F}$$
$$= (\Psi(\mathbf{X})^{T} \Psi(\mathbf{X}))^{-1} (\Psi(\mathbf{X})^{T} \Psi(\mathbf{Y})).$$

Williams et al, JNLS (2015)

Statistical Limit

Infinite Data Limit:

$$\frac{1}{m} \left[\Psi(\mathbf{X})^T \Psi(\mathbf{X}) \right]_{ij} \to \int_{\mathbb{X}} \psi_i(x) \, \psi_j(x) \, \mathrm{d}\rho(x),
\frac{1}{m} \left[\Psi(\mathbf{X})^T \Psi(\mathbf{Y}) \right]_{ij} \to \int \psi_i(x) \, \mathbb{E}[\psi_j(\mathcal{X}_t) | \mathcal{X}_0 = x] \, \mathrm{d}\rho(x).$$

■ EDMD learns a finite-dimensional projection of the **Koopman operator**:

$$\mathcal{K}^t \phi(x) = \mathbb{E}[\phi(\mathcal{X}_t) | \mathcal{X}_0 = x].$$

Reviews:

Klus, FN, et al, JNLS, 2018,

Mauroy, Suzuki, Mezic (eds), Koopman operator in systems and control, Springer 2020,

Berry, Giannakis, Harlim, Notices of the AMS, 2020.

The Koopman Approach

Main Idea: lifting into an infinite-dimensional space where the dynamics become linear.

Example: MSM

Special case of EDMD framework for piece-wise constant basis functions

$$\psi_i(x) = \begin{cases} 1 & x \in S_i \\ 0 & \text{else} \end{cases},$$
$$(\Psi(\mathbf{X})^T \Psi(\mathbf{X}))_{ij} = c_i \delta_{ij},$$
$$(\Psi(\mathbf{X})^T \Psi(\mathbf{Y}))_{ij} = c_{ij}.$$

from Prinz et al, JCP (2011)

Outline

1. The Koopman Operator and EDMD

2. Variational Approach

3. Generator Learning

4. Kernel Methods and Random Features

• We now consider **reversible** systems with invariant measure μ ; Koopman operator \mathcal{K}^t is then **self-adjoint**.

- We now consider **reversible** systems with invariant measure μ ; Koopman operator \mathcal{K}^t is then **self-adjoint**.
- To understand metastability, we need to compute the *dominant eigenvalues* of the Koopman operator: $1 = \lambda_0(t) \geq \ldots \geq \lambda_M(t)$.

- We now consider **reversible** systems with invariant measure μ ; Koopman operator \mathcal{K}^t is then **self-adjoint**.
- To understand metastability, we need to compute the *dominant eigenvalues* of the Koopman operator: $1 = \lambda_0(t) \ge ... \ge \lambda_M(t)$.
- Rayleigh variational principle (RVP):

$$\sum_{i=0}^{M} \left\langle \phi_i, \, \mathcal{K}^t \phi_i \right\rangle_{\mu} =: \mathcal{R}(\phi) \le \sum_{i=0}^{M} \lambda_i(t) \tag{1}$$

$$\langle \phi_k, \, \phi_l \rangle_{\mu} = \delta_{kl}. \tag{2}$$

- We now consider **reversible** systems with invariant measure μ ; Koopman operator \mathcal{K}^t is then **self-adjoint**.
- To understand metastability, we need to compute the *dominant eigenvalues* of the Koopman operator: $1 = \lambda_0(t) \ge ... \ge \lambda_M(t)$.
- Rayleigh variational principle (RVP):

$$\sum_{i=0}^{M} \left\langle \phi_i, \, \mathcal{K}^t \phi_i \right\rangle_{\mu} =: \mathcal{R}(\phi) \le \sum_{i=0}^{M} \lambda_i(t)$$
 (1)

$$\langle \phi_k, \, \phi_l \rangle_{\mu} = \delta_{kl}. \tag{2}$$

- $\blacksquare R(\psi)$ can be used as an **objective function**, subject to the constraint (2).
- All quantities in (1-2) can be **estimated from simulation data**:

$$\langle \phi_i, \phi_i \rangle_{\mu} \approx \frac{1}{m} \sum_{k=1}^m \phi_i(x_k) \phi_i(x_k), \quad \langle \phi_i, \mathcal{K}^t \phi_i \rangle_{\mu} \approx \frac{1}{m} \sum_{k=1}^m \phi_i(x_k) \phi_i(y_k).$$

Linear Variational Approach

■ Applied to a finite-dimensional subspace $\operatorname{span}\{\psi_j\}_{j=1}^n$:

$$\phi_i = \sum_{j=1}^n \mathbf{v}_{ji} \psi_j,$$

leads to generalized eigenvalue problem for Gramian matrices:

$$\mathbf{C}^t \mathbf{V} = \mathbf{C}^0 \mathbf{V} \Lambda, \qquad \mathbf{C}^t = \frac{1}{m} \sum_{l=1}^m \psi_i(x_k) \psi_j(y_k), \qquad \mathbf{C}^0 = \frac{1}{m} \sum_{l=1}^m \psi_i(x_k) \psi_j(x_k).$$

Noé and **FN**, SIAM MMS, 2013, **FN**, Keller, et al, JCTC, 2014 **TICA**: Pérez-Hernández et al, JCP, 2013

TICA: Perez-Hernandez et al, JCP, 2013,

Deep Learning: Mardt et al, Nat. Commun., 2018

Non-reversible systems: Wu and Noé, JNLS, 2020

Outline

1. The Koopman Operator and EDMD

2. Variational Approach

3. Generator Learning

4. Kernel Methods and Random Features

Generator Learning (gEDMD)

• Consider the **generator** of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \operatorname{Id} \right] \psi,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}^t \psi(x) = \mathcal{L} \mathcal{K}^t \psi(x).$$

Generator Learning (gEDMD)

• Consider the **generator** of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \operatorname{Id} \right] \psi,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}^t \psi(x) = \mathcal{L}\mathcal{K}^t \psi(x).$$

■ For SDEs, generator is known in analytical form:

$$\mathcal{L}\psi = -\nabla V \cdot \nabla \psi + k_B T \Delta \psi.$$

Generator Learning (gEDMD)

• Consider the **generator** of the Koopman operator:

$$\mathcal{L}\psi = \lim_{t \to 0} \frac{1}{t} \left[\mathcal{K}^t - \mathrm{Id} \right] \psi, \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}^t \psi(x) = \mathcal{L}\mathcal{K}^t \psi(x).$$

■ For SDEs, generator is known in analytical form:

$$\mathcal{L}\psi = -\nabla V \cdot \nabla \psi + k_B T \Delta \psi.$$

Learn a data-driven matrix model analogous to EDMD:

$$\Psi(\mathbf{X}) = \begin{bmatrix} \psi_1(x_1) & \dots & \psi_1(x_m) \\ \vdots & \ddots & \vdots \\ \psi_n(x_1) & \dots & \psi_n(x_m) \end{bmatrix}, \qquad \mathcal{L}\Psi(\mathbf{X}) = \begin{bmatrix} \mathcal{L}\psi_1(x_1) & \dots & \mathcal{L}\psi_1(x_m) \\ \vdots & \ddots & \vdots \\ \mathcal{L}\psi_n(x_1) & \dots & \mathcal{L}\psi_n(x_m) \end{bmatrix},$$

matrix model:

$$\mathbf{L} = \left(\Psi(\mathbf{X})\Psi(\mathbf{X})^{\top}\right)^{-1} \left(\Psi(\mathbf{X})\mathcal{L}\Psi(\mathbf{X})^{\top}\right).$$

Coarse Grained Generator

• Choose a coarse graining (CG) map: $\xi : \mathbb{R}^d \mapsto \mathbb{R}^m, m \leq d$.

Coarse Grained Generator

- Choose a coarse graining (CG) map: $\xi : \mathbb{R}^d \mapsto \mathbb{R}^m, m \leq d$.
- Let \mathcal{P} be the conditional expectation with respect to ξ :

$$\mathcal{P}\phi(z) = \frac{1}{\nu(z)} \mathbb{E}[\phi(x)|\xi(x) = z].$$

Coarse Grained Generator

- Choose a coarse graining (CG) map: $\xi : \mathbb{R}^d \mapsto \mathbb{R}^m, m \leq d$.
- Let \mathcal{P} be the conditional expectation with respect to ξ :

$$\mathcal{P}\phi(z) = \frac{1}{\nu(z)} \mathbb{E}[\phi(x)|\xi(x) = z].$$

• Projected generator $\mathcal{L}^{\xi} = \mathcal{P}\mathcal{L}\mathcal{P}$ is **again the generator** of an **effective SDE** on \mathbb{R}^m .

$$d\mathcal{Z}_t = b^{\xi}(\mathcal{Z}_t) dt + \sigma^{\xi}(\mathcal{Z}_t) dW_t.$$

Legoll and Lelièvre, Nonlinearity (2010), Zhang, Hartmann, Schütte, Faraday Disc. (2016)

Learning the Reduced Generator

• Given a CG map ξ , choose basis functions **on CG space** $\psi_i = \psi_i(\xi(x))$.

[1] Zhang et al, Faraday Disc. (2016), [2] Klus, FN, Peitz, et al, Physica D (2020)

Learning the Reduced Generator

- Given a CG map ξ , choose basis functions **on CG space** $\psi_i = \psi_i(\xi(x))$.
- We have the fundamental identity [1]

$$\langle \psi_i, \mathcal{L}\psi_j \rangle_{\mu} = \left\langle \psi_i, \mathcal{L}^{\xi}\psi_j \right\rangle_{\nu}.$$

[1] Zhang et al, Faraday Disc. (2016), [2] Klus, FN, Peitz, et al, Physica D (2020)

Learning the Reduced Generator

- Given a CG map ξ , choose basis functions **on CG space** $\psi_i = \psi_i(\xi(x))$.
- We have the fundamental identity [1]

$$\langle \psi_i, \mathcal{L}\psi_j \rangle_{\mu} = \left\langle \psi_i, \mathcal{L}^{\xi}\psi_j \right\rangle_{\nu}.$$

■ Therefore, gEDMD simultaneously provides a matrix approximation of \mathcal{L} and \mathcal{L}^{ξ} . [2].

[1] Zhang et al, Faraday Disc. (2016), [2] Klus, FN, Peitz, et al, Physica D (2020)

System Identification

Effective diffusion can be learned using models for the CG generator models:

$$\left\langle \mathcal{L}_{\theta}^{\xi}\psi_{i},\,f_{j}\right\rangle _{\nu}=-\frac{1}{2}\int\nabla\psi_{i}(z)\cdot A_{\theta}^{\xi}(z)\cdot\nabla f_{j}(z)\,\mathrm{d}\nu.$$

 Can be combined with force matching to complete CG dynamics.

FN, Boninsegna and Clementi, JCP (2019)

Outline

1. The Koopman Operator and EDMD

2. Variational Approach

3. Generator Learning

4. Kernel Methods and Random Features

Data-driven Basis Sets

- Choosing a good basis set is hard.
- Idea: let the data define the basis.

Typical choice: radial basis functions, e.g.

$$k(x_i, y) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - y||^2\right)$$

EDMD and RKHS

• Kernel-based basis functions $k(x_i, \cdot)$ lead to matrices...

$$\mathbf{C}^{0}(r,s) = \mathbf{K}_{X}(r,s) = k(x_{r},x_{s}),$$
 $\mathbf{C}^{t}(r,s) = \mathbf{K}_{X}^{t}(r,s) = k(y_{r},x_{s}).$

• ... and the generalized eigenvalue problem:

$$\mathbf{K}_X^t \mathbf{w}_i = \lambda_i(t) \mathbf{K}_X \mathbf{w}_i.$$

■ Both matrices scale with the data size $(m \times m)$.

Klus et al, JNLS, 2020; Klus, FN, and Hamzi, Entropy, 2020

Intro RFF

■ A translation invariant kernel with k(x,x) = 1 can be written as a superposition of complex plane waves:

$$k(x,y) = \mathbb{E}^{\omega \sim \rho} \left[e^{-i\omega^T x} \, \overline{e^{-i\omega^T y}} \right] \approx \frac{1}{p} \sum_{u=1}^p e^{-i\omega_u^T x} \, \overline{e^{-i\omega_u^T y}},$$

where ρ is the **spectral measure** in frequency space (Bochner's theorem).

■ The spectral measure is known for most popular kernels, sampling from ρ is easy.

Rahimi and Recht, Advances in Neural Information Processing Systems, 2007

Low-Rank Kernel GEV

■ Low-rank rep of kernel Koopman GEV:

$$\mathbf{K}_{X} = [k(x_{r}, x_{s})]_{r,s} \approx \frac{1}{p} \left[\mathbf{M} \mathbf{M}^{\mathrm{H}} \right]_{r,s}, \qquad \mathbf{K}_{X}^{t} = [k(y_{r}, x_{s})]_{r,s} \approx \frac{1}{p} \left[\mathbf{M}^{t} \mathbf{M}^{\mathrm{H}} \right]_{r,s},$$

$$\mathbf{M} = \left[e^{-ix_{r}^{\top} \omega_{u}} \right]_{r,u} \in \mathbb{C}^{m \times p}, \qquad \mathbf{M}^{t} = \left[e^{-iy_{r}^{\top} \omega_{u}} \right]_{r,u} \mathbb{C}^{m \times p}.$$

Low-Rank Kernel GEV

Non-zero eigenvalues can be obtained from dual problem

$$\mathbf{M}^{\mathrm{H}}\mathbf{M}^{t}\mathbf{v}_{i} = \hat{\lambda}_{i}(t)\mathbf{M}^{\mathrm{H}}\mathbf{M}\mathbf{v}_{i},$$

which is of dimension $p \times p$.

FN and Klus, JCP, 2023

Algorithm

Algorithm 1 RFF-based Spectral Approximation of the Koopman Operator

Input: data matrices $\mathbf{X} = [x_1, \dots, x_m] \in \mathbb{R}^{d \times m}, \ \mathbf{Y} = [y_1, \dots, y_m] \in \mathbb{R}^{d \times m}$

kernel function k with spectral measure ρ ,

number of features p, truncation rule for singular values.

Output: Approximate eigenpairs $(\hat{\lambda}_i(t), \hat{\psi}_i)$.

- 1: Draw p samples $\{\omega_u\}_{u=1}^p$ from the spectral measure ρ .
- 2: Form matrices $\mathbf{M} = \begin{bmatrix} e^{-ix_r^\top \omega_u} \end{bmatrix}_{r,u}, \quad \mathbf{M}^t = \begin{bmatrix} e^{-iy_r^\top \omega_u} \end{bmatrix}_{r,u}.$
- 3: Compute SVD of M, choose rank r according to truncation rule: $\mathbf{M} \approx \mathbf{U} \Sigma \mathbf{W}^{\mathrm{H}}$.
- 4: Form reduced matrix $\mathbf{R} = \mathbf{U}^H \mathbf{M}^t \mathbf{W} \Sigma^{-1}$.
- 5: Compute eigenpairs of reduced problem $\mathbf{R}\mathbf{u}_i = \hat{\lambda}_i(t)\mathbf{u}_i$.
- 6: Transform to original RFF basis: $\mathbf{v}_i = \mathbf{W} \Sigma^{-1} \mathbf{u}_i$, $\hat{\psi}_i(x) = \mathbf{v}_i^{\mathrm{H}} \phi_{\mathrm{RFF}}(x)$.

Fip35

- Small protein, 35 amino acids.
- Gaussian kernel on 600 distances and angles.
- Use p = 1000 Fourier features.
- Compute leading 2 eigenvalues and eigenfunctions.
- Transform into membership functions indicating metastable states.

Philipp, Schaller, Boshoff, Peitz, FN, Worthmann, arxiv 2402.02494, 2024

Acknowledgments

Main Collaborators: Stefan Klus (Heriot-Watt U, Edinburgh), Frank Noé (Freie U Berlin), Cecilia Clementi (Freie U Berlin), Karl Worthmann (TU Ilmenau), Sebastian Peitz (U Paderborn)

References:

- FN, Keller, Pérez-Hernández, Mey, Noé, Variational Approach to Molecular Kinetics, JCTC 10 (4), 1739-1752, 2014
- Klus, FN, Hamzi, Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator, Entropy, 22, 0722, 2020
- FN and Klus, Efficient Approximation of Molecular Kinetics using Random Fourier Features, Journal of Chemical Physics 159, 074105, 2023
- Philipp, Schaller, Boshoff, Peitz, FN, Worthmann, Extended Dynamic Mode Decomposition: Sharp bounds on the sample efficiency, arxiv 2402.02494, 2024