Weibull

Parametrisation

The Weibull distribution is (variant=0)

$$f(y) = \alpha y^{\alpha - 1} \lambda \exp(-\lambda y^{\alpha}), \qquad \alpha > 0, \qquad \lambda > 0$$

and (variant=1)

$$f(y) = \alpha y^{\alpha - 1} \lambda^{\alpha} \exp(-(\lambda y)^{\alpha}), \qquad \alpha > 0, \qquad \lambda > 0$$

where

 α : shape parameter.

Link-function

The parameter λ is linked to the linear predictor as:

$$\lambda = \exp(\eta)$$

Hyperparameters

The α parameter is represented as

$$\theta = \log \alpha$$

and the prior is defined on θ .

Specification

- family = weibull for regression and family = weibullsurv for survival
- Required arguments: y (to be given using inla.surv() for survival models), and variant=0 (default) or 1 to define the parameterisation.

Hyperparameter spesification and default values

weibull

```
doc The Weibull likelihood
hyper
    theta
        hyperid 79001
        name log alpha
        short.name alpha
        initial 0.1
        fixed FALSE
        prior loggamma
        param 25 25
        to.theta function(x) log(x)
        from.theta function(x) exp(x)
survival FALSE
discrete FALSE
link default log neglog quantile
pdf weibull
```

weibullsurv

```
doc The Weibull likelihood (survival)

hyper

theta

hyperid 79101

name log alpha
short.name alpha
initial 0.1
fixed FALSE
prior loggamma
param 25 25
to.theta function(x) log(x)
from.theta function(x) exp(x)

survival TRUE
discrete FALSE
link default log neglog quantile
pdf weibull
```

Example

In the following example we estimate the parameters in a simulated case

```
n = 1000
alpha = 1.1
beta = 2.2
x = c(scale(runif(n)))
eta = 1+beta*x
lambda = exp(eta)
for(variant in 0:1) {
    y = rweibull(n,
                 shape= alpha,
                 scale= if (variant == 0)
                            lambda^(-1/alpha)
                        else
                             1/lambda)
    print(paste("VARIANT=", variant))
    event = rep(1,n)
    data = list(y=y, event=event, x=x)
    formula=inla.surv(y,event)~ x
    r=inla(formula,
           family ="weibullsurv",
           data=data,
           control.family = list(list(variant = variant)))
    print("SURV")
    print(summary(r))
```

Notes

• Weibullsurv model can be used for right censored, left censored, interval censored data. If the observed times y are large/huge, then this can cause numerical overflow in the likelihood routine. If you encounter this problem, try to scale the observatios, time = time / max(time) or similar.