1. Цифровой фильтр задан разностным уравнением (БИХ-фильтр (IIR)):

$$y(n) = \sum_{k=0}^{M} b_k x(n-k) - \sum_{k=1}^{N} a_k y(n-k)$$

$$y(k) = 0.0089 \cdot x(k) - 0.0045 \cdot x(k-1) - 0.0045 \cdot x(k-2) + 0.0089 \cdot x(k-3) + 2.5641 \cdot y(k-1) - 2.2185 \cdot y(k-2) + 0.6456 \cdot y(k-3)$$

Разностное уравнение задает зависимость фильтра от входного сигнала и прошлых значений. Уравнение описывает поведение фильтра во временной области.

У КИХ-фильтра:

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

 $H(z) = \sum_{k=0}^{N-1} h(k)z^{-k}$

Передаточная характеристика БИХ-фильтра:

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

$$H(z) = \frac{0.0089 - .0045*z^{-1} - 0.0045*z^{-2} + 0.0089*z^{-3}}{1 + 2.5641*z^{-1} - 2.2185*z^{-2} + 0.6456*z^{-3}}$$

Это математическая модель фильтра, позволяет понять, как он изменяет сигнал на всех частотах. Представляет собой полное описание фильтра в частотной области.

Для перехода к АЧХ в передаточную характеристику подставляем $z = e^{j\omega}$. Она показывает, какой коэффициент усиления/ослабления имеет сигнал на каждой частоте. Показывает, какие частоты фильтр пропускает, какие подавляет.

Получить фазо-частотную характеристику:

$$H(e^{j\omega}) = a + jb$$

$$\phi(\omega) = \arg(H(e^{j\omega})) = \arctan 2(b, a)$$

Она показывает, насколько «сдвигается» фаза каждого синусоидального компонента при прохождении через фильтр.

Групповая задержка:

$$au_g(\omega) = -rac{d}{d\omega} rg(H(e^{j\omega}))$$

Показывает, насколько задерживается информация на каждой частоте. Идеальный фильтр имеет постоянную групповую задержку.

B matlab:

```
a = [0.0089, -0.0045, -0.0045, 0.0089];
b = [1, -2.5641, 2.2185, -0.6456];
[H, w] = freqz(b, a, 1024); // частотная характеристика фильтра, Н
- массив комплексных значений на 1024 точках, w - соответствующие
частоты в диапазоне от 0 до рі.
figure;
subplot(3,1,1);
plot(w/pi, abs(H)); // abs() - модуль комплексного числа
title("AYX");
xlabel("YacToTa");
ylabel("Амплитуда");
grid on;
subplot(3,1,2);
plot(w/pi, unwrap(angle(H))); // angle() - фаза комплексного
значения, unwrap() --устраняет скачки +-рі
title("ФЧХ");
xlabel("YacToTa");
ylabel("Φasa");
grid on;
[gd, w gd] = grpdelay(b,a,1024); // gd - массив значений групповой
задержки, w qd - частоты, соответствующие каждой задержке
subplot(3,1,3);
plot(w gd/pi, gd);
title("Групповая задержка");
xlabel("YacToTa");
ylabel("Задержка");
grid on;
```


Из АЧХ видно, что везде кроме одной частоты (\sim 0.22) почти нулевая амплитуда. Отсюда можно сделать вывод, что это полосовой фильтра (полосовой резонатор, пропускающий только очень узкий диапазон частот, подавляя все остальные).

По ФЧХ видно, что фаза плавно возрастает до \sim 0.22, затем резко падает вниз, потом снова плавно растет. Фильтр имеет фазовую неоднородность, это может искажать форму сигнала.

Групповая задержка имеет провал до \sim 0.22, затем становится положительной и стабильной. Это значит, что сигнал сильно искажается в районе этих частота. Такие значения появляются в области фазовых скачков.

Исходя из разностного уравнения можно сделать вывод, что фильтру соответствует прямая структура:

Уровень подавления фильтра в полосе заграждения — насколько сильно фильтр ослабляет сигналы на частотах, которые он не должен пропускать.

Для амплитуды А на какой-то частоте:

Затухание (подавление) = $20 \log_{10}(A)$

Для нахождения уровня подавления сначала переводим амплитуду в логарифмическую шкалу (дБ):

Уровень в д $\mathtt{F} = 20 \log_{10}(|H|)$

Затем находим максимальное значение в области подавления. Максимальное, потому что это область подавления и нас интересует наихудший случай.

B matlab:

```
H_db = 20*log10(abs(H)); stopband_indicies = find((w/pi < 0.21 | w/pi > 0.24) & w/pi < 0.9); max_H_in_stopband = max(H_db(stopband_indicies)); fprintf("Уровень подавления в полосе заграждения: %.2f дБ\n", max_H_in_stopband);
```

- Фильтр не является FIR-фильтром. Это IIR-фильтр.
- Полосовой фильтр
- 3 порядок фильтра
- Уровень подавления: 56.24 дБ
- 2. На вход системы поступают данные с частотой сэмплирования Fs. Как увеличить частоту сэмплирования в 3 раза/уменьшить в 5/3 раза с минимальным изменением свойств сигнала:

Способы изменения частоты сэмплирования:

1. Интерполяция и децимация через вставку нулей и фильтрацию. Хорошо подходит для изменения на целое число или на рациональную дробь.

Алгоритм для повышения частоты (интерполяция):

- вставить L-1 нулей между каждым отсчётом (L коэффициент интерполяции)
- пропустить сигнал через низкочастотный фильтр с полосой [0, Fs/(2L)]

```
y1 = randn(1, 333);
L = 3;
fc = 1/L;
N = 3;
h = fir1(N, fc, hamming(N+1));
yl upsampled = zeros(1, length(yl)*L); // Создает новый вектор в L
раз больше исходного
yl upsampled(1:L:end) = yl; // Вставляет значения yl через каждый L
позиций
y2 = conv(y1 upsampled, h, "same");
figure;
subplot(2,1,1);
x1 = 0: (length(y1) - 1);
plot(x1, y1);
grid on;
subplot(2,1,2);
x2 = 0: (length(y2) - 1);
plot(x2, y2);
grid on;
```

Алгоритм для понижения частоты (децимации):

- пропустить сигнал через низкочастотный фильтр с полосой [0, Fs/(2M)] (M коэффициент децимации)
 - отобрать каждый М-й отсчёт

```
y1 = randn(1, 1000);
M = 3;
fc = 1/(2 * M);
N = 3;
h = fir1(N, fc, hamming(N+1)); // Проектирование КИХ-фильтра с
частотой среза и окном Хэмминга. fir1() - генерация фильтров на
основе sinc + окна
y1 filtered = conv(y1, h, "same");
y2 = y1 filtered(1:M:end);
figure;
subplot(2,1,1);
x1 = 0: (length(y1) - 1);
plot(x1, y1);
grid on;
subplot(2,1,2);
x2 = 0: (length(y2) - 1);
plot(x2, y2);
grid on;
```

Комбинирования способов:

- вставка нулей
- фильтрация
- выборка каждого М-го

```
y1 = randn(1, 500);
L = 3;
M = 5;
fc = 1/(2*max(L,M));
N = 3;
h = fir1(N, fc, hamming(N+1));
y1 upsampled = zeros(1, length(y1)*L);
y1 \text{ upsampled}(1:L:end) = y1;
yl_interp = conv(yl_upsampled, h, "same"); // Интерполяция
y2 = y1 \text{ filtered}(1:M:end);
                                             // Децимация
figure;
subplot(2,1,1);
x1 = 0: (length(y1) - 1);
plot(x1, y1);
grid on;
```

```
subplot(2,1,2);
x2 = 0:(length(y2) - 1);
plot(x2, y2);
grid on;
```

Преимущества: хорошее качество, прост в реализации Недостатки: требует вычислений (для фильтрации)

2. Полиномиальная интерполяция. Применима при нецелых коэффициентах, временном масштабировании сигналов.

Алгоритм:

Для нового момента времени вычисляется значение по известным точка с помощью:

- линейной интерполяции (по двум ближайшим точкам по бокам)

$$x(t') = x(t_1) + rac{t' - t_1}{t_2 - t_1} \cdot (x(t_2) - x(t_1))$$

```
Увеличение:
```

```
x = rand(1,300);
t = 0: (length(x) - 1);
K = 4;
t interp = linspace(t(1), t(end), length(t)*K - (K-1));
x interp = zeros(1, length(t interp));
for i = 1:length(t interp)
    ti = t interp(i);
    idx = \overline{find}(t \le ti, 1, 'last');
    if idx == length(x)
        x interp(i) = x(end);
    else
        t1 = t(idx);
        t2 = t(idx+1);
        y1 = x(idx);
        y2 = x(idx+1);
        x interp(i) = y1 + (y2 - y1) * (ti - t1) / (t2 - t1);
    end
end
figure;
subplot(2,1,1);
plot(t, x);
grid on;
subplot(2,1,2);
plot(t interp, x interp);
grid on;
```

Уменьшение:

Просто выбор каждого К-того сигнала

Комбинирование: сначала интерполяция, потом децимация

- кубической интерполяции (по четырём точкам)
- сплайнов

Преимущества: простота, работает с произвольными частотами Недостатки: меньшая точность и качество, может создавать искажения

3. Sinc-интерполяция. При преобразовании между сильно разными отсчётами.

Алгоритм:

Каждый новый отсчёт – сумма всех оригинальных, умноженных на sincфункции, центрированные в этих отсчётах.

$$x(t) = \sum_{n} x[n] \cdot \operatorname{sinc}\left(\frac{t - nT}{T}\right) \quad \operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

```
x = rand(1,200);
Fs = 1;
T = 1/Fs;
t original = 0:T:(length(x)-1)*T;
L = 2;
Fs new = Fs \star L; // Или Fs-new = Fs / L; для децимации
T new = 1/Fs new;
t new = 0:T new: (length(x)-1)*T;
x new = zeros(size(t new));
for i = 1:length(t new)
    ti = t new(i);
    for n = 1: length(x)
        x \text{ new(i)} = x \text{ new(i)} + x(n) * sinc((ti - t original(n))/T);
    end
end
figure;
subplot(2,1,1);
plot(t original, x);
grid on;
subplot(2,1,2);
plot(t new, x new);
grid on;
```

Преимущества: максимальная точность

Недостатки: бесконечная длительность sinc-функции (нужна аппроксимация), большие вычислительные затраты

4. Частотное преобразование (через БП Φ). Используется, когда весь сигнал известен заранее.

Алгоритм:

- БПФ сигнала
- добавление/удаление коэффициентов в нужное число раз
- обратное БПФ

```
Увеличение:
x = rand(1,200);
N = length(x);
L = 2;
new N = N \star L;
Xf = fft(x);
if mod(N, 2) == 0
    Xf new = [Xf(1:N/2), zeros(1, new N - N), Xf(N/2+1:end)];
else
    Xf \text{ new} = [Xf(1:ceil(N/2)), zeros(1, new N - N),
Xf(ceil(N/2)+1:end);
end
x new = real(ifft(Xf new)) * L;
t original = 0:N-1;
t new = 0:N*L-1;
figure;
subplot(2,1,1);
plot(t original, x);
grid on;
subplot(2,1,2);
plot(t new, x new);
grid on;
Уменьшение:
x = rand(1,500);
N = length(x);
L = 2;
new N = floor(N / L);
Xf = fft(x);
if mod(N, 2) == 0
    Xf new = [Xf(1:new N/2), Xf(end - new N/2+1:end)];
    Xf new = [Xf(1:ceil(new N/2)), Xf(end - floor(new N/2)+1:end)];
end
x new = real(ifft(Xf new)) * L;
t original = 0:N-1;
t new = 0:\text{new N-1};
figure;
```

```
subplot(2,1,1);
plot(t_original, x);
grid on;
subplot(2,1,2);
plot(t_new, x_new);
grid on;
```

Преимущества: подходит для произвольных коэффициентов, высокая точность Недостатки: не работает в реальном времени, требуется весь сигнал заранее