Algorithms on Strings

Problems Set 1

Aleksander Czeszejko-Sochacki

October 2018

1

Proof.

$$|w| - p \text{ is a border } \equiv w[1, |w| - p] = w[|w| - (|w| - p), |w|]$$

$$\equiv w[1, |w| - p] = w[p, |w|]$$

$$\equiv w[i] = w[i + p] \text{ for } i \in \{1, 2, \dots, |w| - p\}$$

$$\equiv p \text{ is a period of } w$$

$$(1)$$

2

2.1

Proof.

$$p \text{ is a period of } w \equiv w \text{ is a subword of some } x^k \text{ with } |x| = p \text{ and } k > 0$$

$$\equiv w = ux^j v \text{ where } j \leq k, u \sqsubset x \text{ and } v \sqsupset x$$
 (2)

Since u and v - suffix and prefix of x, respectively, we can proceed as follows:

$$w = ux^{j}v = u(zu)^{j}v = (uz)^{j}uv$$
(3)

Hence, the period condition holds for $i \in \{1, 2, ..., |w| - p - |v|\}$. On the other hand:

$$w = ux^j v = ux^{j-1}vyv (4)$$

So the period condition holds for $i \in \{|w|-p-|v|, |w|-p-|v|+1, \dots, |w|-p\}$. From 3 and 4 the proof is done.

2.2

Proof. Assume |w| = kp + l. From the period condition we have:

$$w[1,p] = w[p+1,2p] = \dots = w[(k-1]p+1,kp]$$
(5)

and

$$w[kp+1, kp+l] = w[(k-1)p+1, (k-1)p+l]$$
(6)

Basing on 5, we can write $w = y^k u$, such that |y| = p and |u| = l. On the other hand, by 6, we have w = xuvu, where |u| = l, |v| = p - l, |x| = |w| - p - l. Combining these two conclusions, y = uv, so $w = (uv)^k u$.

2.3

Proof.

$$p \text{ is a period of } w \equiv |w| - p \text{ is a border of } w \text{ (1)}$$

$$\equiv \exists_{x, y, z}(|y| = |w| - p \land xy = yz = w)$$

$$\equiv \exists_{x, y, z}(|x| = |y| = p \land xy = yz = w)$$

$$(7)$$

Lemma 1 (uv periods). For any unempty u, v and some $k \in \mathbb{N}$, if uv = vu, then |u|, |v| are periods of $(uv)^k$.

Proof.

|v| is a period of
$$(uv)^k \equiv |uv|^k - |v|$$
 is a border of $(uv)^k(1)$

$$\equiv (uv)^{k-1}u \text{ is both prefix and suffix of } (uv)^k$$
(8)

Indeed, $(uv)^{k-1}u \sqsubset (uv)^k$ and $(uv)^{k-1}u \sqsupset (vu)^k = (uv)^k$ For |u| the proof is simmilar.

3

Proof. The thesis is equivalent to the following implication:

 $p, q \text{ are periods of } w \implies q \text{ mod } p, p \text{ are periods of } w$

Let w[1, p] = P, p < q (p = q does not make any sense). We can write:

$$w = w[1,q]w[q+1,|w|] = \underbrace{P^k u}_{w[1,q]} \underbrace{vP^k y}_{w[q+1,|w|]}$$

where $uv = P, k, l \in \mathbb{N}$.

$$q \text{ is a period of } w \implies |w| - q \text{ is a border of } w$$

$$\implies w[q+1,|w|] \sqsubset w$$

$$\equiv vP^k y \sqsubset w$$

$$(9)$$

As we know from the problem conditions, p+q<|w|, so p<|w|-q, implies, that $P \sqsubseteq vP^ky$, what is equivalent to $uv \sqsubseteq v(uv)^ky$, especially $uv \sqsubseteq vuv$, what gives us

$$uv = vu \tag{10}$$

Basing on uv periods lemma and that $|u| = q \mod p$, enough to prove, that u period condition holds for w[|w| - |y|, |w|]. As we know, that $y \sqsubset uv$, the proof is done.

$$\sum_{k=1}^{n} a_i r^{n-k} \mod q = (\dots ((ra_1 + a_2)r + a_3)r \dots)r + a_n \mod q$$

$$= (\dots ((ra_1 \mod q + a_2)r \mod q + a_3)r \mod q \dots)r \mod q + a_n \mod q$$
(11)

n multiplications, n modulos, n - 1 additions gives us O(n) time. The second transformation is unnecessary. However, enables us to computing values less than q^2 . If our $\Sigma \ll |S|$, then calculation all the $ra \mod q$ in preprocessing might be better than doing it ad hoc.

Given $\phi_r(x)$ and $\phi_r(y)$:

$$\begin{split} \phi_r(xy) &= \sum_{k=1}^{|xy|} S[k] r^{|xy|-k} \mod q \\ &= (\sum_{k=1}^{|x|} S[k] r^{|xy|-k} + \sum_{k=|x|+1}^{|xy|} S[k] r^{|xy|-k}) \mod q \\ &= (r^{|y|} \sum_{k=1}^{|x|} x[k] r^{|x|-k} \mod q + \sum_{k=|x|+1}^{|xy|} S[k] r^{|xy|-k} \mod q) \mod q \\ &= (r^{|y|} \phi_r(x) + \phi_r(y)) \mod q \end{split}$$
(12)

Given $\phi_r(xy)$ and $\phi_r(y)$ and referencing 12:

$$\phi_r(xy) \equiv r^{|y|}\phi_r(x) + \phi_r(y) \pmod{q}$$

$$\phi_r(xy) - \phi_r(y) \equiv r^{|y|}\phi(x) \pmod{q}$$
(13)

As we know, $q \in \mathbb{P}$ and $r \in \{1, 2, \dots, q-1\}$. Hence, gcd(r, q) = 1. Considering, that we are in \mathbb{Z}_p^* , the inverse element of $r^{|y|}$, basing on Fermat's little theorem, is $r^{q-|y|-1}$. Therefore

$$\phi_r(x) \equiv r^{q-|y|-1}(\phi_r(xy) - \phi_r(y)) \pmod{q}$$

As $\phi_r(x) < q$:

$$\phi_r(x) = r^{q-|y|-1}(\phi_r(xy) - \phi_r(y)) \mod q$$