Dwelling Price Appraisal based on Physical, Economic and Social Indicators using Regression methods

JASKIRAT SINGH

Housing Price Prediction of King County, USA using Regression Algorithms

- The project may assist insurance companies to price policies, help contractors to price new houses and estimate demands, or even assess disasters by the government.
- About The Dataset
- This dataset contains house sale prices for King County, Washington DC which includes Seattle. It includes homes sold between May 2014 and May 2015.

Methodology

Data Set Overview

Feature Name	Description Date on which the dwelling was sold					
Date						
Price	Price of the dwelling which we have to predict so this is our target variable					
bedrooms	Number of bedrooms per dwelling					
bathrooms	Number of bathrooms per dwelling					
sqft_living	Square Footage of the dwelling					
sqft_lot	Square footage of the lot					
floors	Total floors (levels) in dwelling					
waterfront	dwelling which has a view to a waterfront					
view	How many times the dwelling has been viewed					
condition	How good is the condition (Overall)					
grade	Grade of the dwelling	Integer				
sqft_above	Square footage of the dwelling apart from basement	Integer				
sqft_basement	Square footage of the basement					
yr_built	Built year	Integer				
yr_rennovated	Year when dwelling was renovated	Integer				
zipcode	Zip					
1at	Latitude coordinate					
long	Longitude coordinate	Float				
sqft_living15	Living room area in 2015 (implies some renovation)	Integer				
sqft_lot15	t_lot15 Lot size area in 2015 (implies some renovations)					

Data Pre-Processing

- Data Cleaning
- Statistical Analysis
- Feature Construction
- Identifying Outliers
- Data Conversion
- Collinearity Problem
- Data Visualization

Data Cleaning

```
Data columns (total 21 columns):
id
                 21613 non-null int64
date
                 21613 non-null object
                 21613 non-null int64
price
bedrooms
                 21613 non-null int64
bathrooms
                 21613 non-null float64
saft living
                 21613 non-null int64
sqft lot
                 21613 non-null int64
floors
                 21613 non-null float64
waterfront
                 21613 non-null int64
view
                 21613 non-null int64
condition
                 21613 non-null int64
grade
                 21613 non-null int64
sqft above
                 21613 non-null int64
                 21613 non-null int64
sqft basement
yr built
                 21613 non-null int64
yr_renovated
                 21613 non-null int64
zipcode
                 21613 non-null int64
lat
                 21613 non-null float64
                 21613 non-null float64
long
                 21613 non-null int64
sqft living15
saft lot15
                 21613 non-null int64
dtypes: float64(4), int64(16), object(1)
```

Statistical Analysis of Price Feature

Logarithmic Transformation of Price

Too Much skewness in numerical Features

After Log Transformation of numerical features

Feature Construction-Seasonality of house Price

Feature extraction from basement area and year renovation attribute

After Feature Extraction of basement area and year of renovation

Identifying Outliers

Data Conversion of zip code

Data conversion of bedrooms and Floors

Data conversion of seasonality attribute

Bathrooms Feature

0.0 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0 6.25 6.5 6.75 7.5 7.75 8.0 Bathrooms

Water front and view feature

Grade Feature

Data Visualization of geography feature

Correlation Among Features

Models Evaluation based on manual tuning of hyper parameters

Model	Root Mean Squared Error (RMSE)	Mean Absolute Error (MAE)	R- squared (train)	R- squared (test)	Adjusted R- squared (train)	Adjusted R- squared (test)	Explained Variance (train)	Explained Variance (test)	5-Fold Cross Validation
Cat Boost	0.1515	0.1073	0.9551	0.9150	0.9551	0.9146	0.9551	0.9150	0.9145
XGBoost	0.1545	0.1089	0.9858	0.9115	0.9858	0.9111	0.9858	0.9115	0.9107
Gradient Boost	0.1537	0.1101	0.9296	0.9125	0.9295	0.9121	0.9296	0.9125	0.9090
Light GBM	0.1577	0.1125	0.9883	0.9078	0.9883	0.9074	0.9883	0.9078	0.9067
Random Forest Regression	0.1703	0.1221	0.9849	0.8925	0.9849	0.8921	0.9849	0.8925	0.8898

Why number of folds are set as 5 in cross validation score

Comparison of training time of all models

Models Evaluation based on automatic hyper parameter tuning

Algorithm Comparison

Future Enhancement of House Price Forecasting

- Considering more factors influencing the dwelling prices
- Adding Safety feature
- Using Deep Learning
- Using Principal component analysis
- Zip code feature engineering
- Using stacked model

Why does Organization's need this predictive model?

- possibly many real-estate firm's are interested in intelligent decision making regarding house price forecasting.
- The Organization's will use this data to help clients purchase properties at affordable price.
- Current process is good but manual and time consuming
- Organization's wants an edge over competition