Tulajdonos: Varga Klaudia Szilvia

Feladat címe: Tello drón vezérlése

Drón falka

2021.12.01

Tartalom jegyzék:

- 1. Mit értünk DRÓN alatt?
- 2. Drón felépítése
- 3. Milyen munkák végezhetők drónnal
- 4. Mi a különbség a hobby célú, és a munkavégzésre alkalmas drón között?
- 5. DJI TELLO
- 6. Az alkalmazás helye
- 7. Üzleti lehetőségek
- 8. A probléma megfogalmazása
- 9. Költségbecslés
- 10. Installáció
- 11. Korlátozások
- 12. Minőségi elvárások
- 13. Kockázati lista

Előszó

Az általam választott projekt fő témája a drónok repülésével kapcsolatos, és azon is belül a mozgásának irányítására megírt programmal. Ebben az esetben igaz nem szerepel áramköri tervezés, mivel adott, már létező áramkörrel, és mikroprocesszorral dolgozom, viszont szoftveresen a gyárilag megadott vezérlési program módosításra kerül. Projektem célja az lenne, hogy a vezér drón külső (fizikai) irányítás nélkül képfeldolgozás és előre megírt vezérlési program segítségével szabályozza saját és társai mozgását a levegőben. Azonban mielőtt részletezném a főbb lépéseket, tisztáznunk kell mire is gondolunk ezen eszköz megnevezése alatt.

1. Mit értünk DRÓN alatt?

Sokféleképpen nevezik manapság azokat a kis méretű repülő szerkezeteket, amelyek távirányítással vagy előre programozott módon repülnek és hajtják végre feladatukat. A feladat lehet munka, vagy egyszerűen csak szórakozás. Leggyakoribb angol nyelvi megnevezések pedig a következők:

- UAV (Személyzet nélküli légijármű),
- UAS (Személyzet nélküli légi rendszer),
- RPAS (Távírányítású légi rendszer).

Elterjedt még a multikopter, mikrokopter és mikrodrone elnevezés is (utóbbi kettő a hobby kategóriára jellemző). Megkülönböztetünk merevszárnyú és rotoros kialakítást. Ez utóbbi általában 4,6,8 rotort tartalmazhat különféle elrendezésben. Ennek megfelelően használjuk a quadro-, hexa- és oktokopter elnevezéseket is.

2. A drón felépítése

Váz

Ez az a - többnyire nagyon könnyű, de szilárd szénszálas anyagból vagy műanyagból készült tartószerkezet, amelyre a további elemeket rögzítjük. Néhány a fontos jellemzői közül: motortávolság, súly, merevség, sérülésekkel szembeni ellenállóság, mennyire javítható stb.

• Motor + motorvezérlő (ESC) + propeller

Általában szénkefe mentes villanymotor, amelyre a propellert erősítjük. A motorvezérlő elektronika a motoroknak megfelelő áramot tovabbitva szabalyozza a motor forgásának sebességét. Ez elengedhetetlen ahhoz, hogy replüjön, illetve a földtől elemelkedve bármilyen

mozgást végezzen, hiszen az átlóban ellentétesen és egymástól függetlenül forgó propellerek teszik lehetővé a fordulásokat, és bármely irányba való elmozdulásokat.

• Repülés vezérlő (FC)

Felfoghatjuk úgy is mint egy kis számítógépet, amely a beleírt program és különféle betáplált, és érzékelőktől kapott adatok alapján irányítja a készüléket.

• GPS, kompassz, IMU

A repülő eszköz helyzetének tartásához és célpontra irányításához határozza meg a készülék pozícióját. A legtöbb esetben a GPS vevő néhány méter megbízhatóságú pozíciót szolgáltat. Légi térképészeti célra alkalmazott drónoknál előfordulhat néhány cm pontosságú GPS vevő is. A GYRO az az alapegység, amely megmondja a mikrokontrollernek, hogy mekkorát gép, és milyen irányban. Három tengely mentén érzeékelve a mozgát, előre-hátra, fel-le és jobbrabalra. Nem minden drón tartalmaz ilyen helymeghatározásra alkalmas egységeket.

• Rádió (a repülő szerkezeten és a földi távirányítóban)

Gyakran csak egy kis (USB stick méretű) szerkezet, amely a repülési információkat továbbítja a repülő szerkezetről a földi követő rendszer felé, illetve a vezérlő utasításokat veszi a földi irányító eszköztől. Valójában nem egyetlen rádió látja el ezt az összett feladatot.

Akkumulátor

A működéshez szükséges energiát szolgáltatja. Általában Lithium-Polimer akkumulátorokat használunk.

ábra robbantott rajz

• Kamera + gimbal

Ha a cél fénykép vagy videó készítése, akkor a vázra egy gimbalt (dőlést kompenzáló szerkezet), és a rá erősített kamerát rögzítünk. Kamerán kívül egyéb érzékelő (pl. szagérzékelő) is erősíthető a vázra.

• Távirányító + földi irányító állomás

A távirányítón lévő kapcsolókkal állítunk be különböző repülési üzemmódokat, és irányítjuk a teljes szerkezet működését. Hobby eszközöknél ez lehet akár egy tablet is. A földi irányító állomás általában egy PC (notebook), vagy tablet, amelyen egy célszoftver fut. Ez a célszoftver szolgál a repülés tervezésére, a repülés vezérlő konfigurálására. Repülés közben a rádión keresztül érkező adatok alapján térképen megjeleníti a repülő szerkezet aktuális tartózkodási helyét.

2. ábra DJI Tello belülről

3. Milyen munkák végezhetők drónnal?

- Térképészet (ortofotó generálás, digitális magassági modell készítés)
- Külszíni bányák állapotfelmérése, kitermelt mennyiség (térfogat) számítása
- Természetvédelem (vegetáció és vadállat monitoring)
- Mezőgazdaság (növényvédelem ellenőrzés, belvízkár, hozambecslés)
- Régészet
- Objektum állapot ellenőrzés
- Kárfelmérés, baleseti helyszínelés.
- Marketing céllal készített videók
- Referencia munkák, bemutatása más szemszögből.

Az alkalmazási lehetőségeknek csak a képzelet szab határt...

4. Mi a különbség a hobby célú, és a munkavégzésre alkalmas drón között?

Az előbbi csoportba általában kis súlyú (1.5 kg alatti) és alacsony árfekvésű (25 000 - 500 000 Ft) készülékek tartoznak, amelyek képességeikkel azok igényeit elégítik ki, akik szabadidős tevékenységük során használják drónjukat. Ezek használata során a hangsúly általában a vezetés élményén van. Ezt az élményt gyakran kiegészíti a drónra szerelt eszközzel végzett fotózás vagy videózás. Mindez történhet kontrollerrel, telenfora telöltött aplikációval, vagy a felhasználó által megírt programmal. Fontos még figyelembe venni, hogy ezekkel 10-15 km/h-nál erősebb szélben nem ajánlott repülni velük.

A munkavégzésre alkalmas drónok általában nagyobb méretűek és áruk is magasabb. Gyakran speciális érzékelőkkel (jobb minőségű kamerákkal, vagy egyéb, pl. szag érzékelőkkel) látják el ezeket. A vezetés élménye helyett itt egy bizonyos feladat biztonságos és gyors elvégzésén van a hangsúly, amelyet gyakran speciális szoftverek és a feladatra szabott egyedi kiegészítők támogatnak.

A két terület között a határ vékony, vagy nincs is, mivel sok hobby drón egyben munkavégzésre is alkalmas (többnyire némi kiegészítéssel). Illetőleg, ha valaki komolyabban belemerül a témába nem igazán fog megelégedni, az olcsóbb gépekkel, mert komolyabb teljesítményre lesz igénye.

5. DJI Tello

Az általam választott drón a DJI - Da-Jiang Innovation Technology által forgalmazott termék. A cégnél 2008-ban kezdtek el kialakulni az első hivatalos drónok, azonban az eső repülésre kész modellek csak 2013-ban jelentek meg. A nagy sikert aratott Mavic Pro-t 2016-ban jelentették meg. Majd piacra dobták a DJI Tello példányt is, melynek célja az volt, hogy a fitalaokhoz kicsit közelebb hozza az informatika és a programozás világát, hiszen a mikroprocesszora ezt lehetővé teszi akár az általam választott Python nyelven is.

3. ábra TELLO felülről

4. ábra TELLO fejjel lefelé

6. Az alkalmazás helye

Alkalmazása több területen is megvalósítható lenne, akár egytemi előadásokon való alkalmazása a hallgatóság érdeklődésének felkeltése és fenntartása céljából. Így akkár lehetne fiatalabb generációkat is a programozás, és a mérnöki pálya felé terelni, hiszen akár ők is tovább fejleszthetik majd ezt az eszközt.

Másik esetleges terület a határvédelemben lehet, ahol a határsértők feltérképezésében nyújthatna segítséget. Vagy azok követésében. Mivel sokszor nehezebb terepviszonyok, gépjármárművek, és emberek által nehezen megközelíthető helyeken rejtőzködnek az illeglálisan ott tartozkódók, így a drónok sokat tudnának segíteni, hogy a magasból kikerülve a terepakadályokat azonosítják a betolakodókat, ezáltal megkönnyítve a határvédők feladatát, hogy hol kell erősebb jelenléttel őrizni az ország felségterületét.

Iletve médiában, is felhasználható lenne ez a képességük, hiszen akár koncertet, akár riportot vagy vágóképeket, és filmeket is lehetne rögzíteni mozgás közben, olyan magasságokból, és szögekből, amelyet a földről humán erőforrást alkalmazva képtelenség lenne megvalósítani.

Továbbá az alkalmazási területeknek csak a képzelőerő szab határt, hiszen akár logisztikában, raktározásban, is lehet alkalmazni őket, a megfelelő programmal.

7. Üzleti lehetőségek.

Szórakozás, és ismeretterjesztés mellett üzleti potenciált is rejt magában ez a projekt, hiszen akár kész megírt programcsomagokat is lehet árusítani. A Standard csomag tartalma egy alap vezérlést tartalmazó programsor, apró kommentekkel, mely segítené megérteni a működési elvet. Esetleg így oktatói videókat is készíthetünk hozzá, mely szintén válaszott csomagtól függően menne bele a programozás, és szintaxisok mélységeibe. Azonban a csomagok valódi tartalma nagyban függ a felhasználási területtől, hiszen egy logisztikában használt drón-hoz nem feltétlenül szükséges részletes oktatói videó a felhasználók részére, csak az alapbeállítások, mozgások személyre szabásához egyértelmű útmutatás.

Valamint több platformon is mint például a Youtube vagy a Tiwtch extra bevételre tehetnénk szert, mivel az online tutorial kategóriájú videók mindig sok nézőt vonzanak.

8. A probléma megfogalmazása

A fejlesztendő alkalmazás által megoldandó probléma a leendő felhasználók szemszögéből az lehet, hogy hogyan tudják majd megfelelően irányítani, vagy kiválasztani a reptetésre alkalmas területet, hiszen egyszerre több drón reptetése nyilván nagyobb teret is igényel főleg, ha ugyan azt a mozgást végzik, csak egymáshoz képest eltoltan.

Első sorban ez azokat érinti, akik zárt térben szeretnék alkalmazni ezt a fejlesztést. Ehhez szükséges lenne egy a tervező által megadott segédletre melyben pontos leírást ad előzetes tesztelések után, hogy mekkora a minimum tér igénye mind magasságban mind területben.

9. Költségbecslés

A fejlesztéshez szükséges anyagokra szánt költségvetés 50.000Ft, melyből maga a készülék használtan 25.000Ft, azonban még szükséges hozzá csere akkumulátor is, melynek darabja 8.000Ft, így abból még legalább 2 db-ra szükség lesz. A fenn maradó összeg, pedig esetleges javításokra vagy módosításokra van. Így viszonylag kis költségvetésből megoldható a fejlesztés, ha a programmal töltött munkaórákat nem számoljuk hozzá. Azonban ez csak egy darabra számított ár, mivel a tesztelésekhez elég ennyi. A teljes költség ennek 3-4x-se függően az árfolyamtól.

10. Installáció

A rendszer futtatásához, egy átlagos számítógépre van szükség, melyen lehet futtatni valamilyen Python környezetet, így wifin keresztül összecsatlakozva a drónokkal, már lehet is parancsokat adni. Így egészen felhasználó barát a rendszernek a minimum követelményei. Azért a Pythont választottam, mert ez egy általános célú, nagyon magas színtű programozási nyelv. Azonnal futtatható a program, ha rendelkezünk értelmezővel. Az egyik legegyszerűbb program erre a PyCharm Community Edition 2021.2.2. Természetesen szükségünk van még a DJI könvytárra ami már adaptálva van Python-hoz és rengeteg programot megtalálunk a Github-on is. A magabiztosabb felhasználók már a ROS (Robot operációs rendszer) -t is használhatják a vezérléshez, mely amerikai fejlesztésű és nyílt forráskódú rendszer. Ez csomópontok közötti kommunikációval működik. Tartalmaz előre kész üzeneteket is, de a fejlesztők sajátot is megadhatnak. Így a saját vezérlésnek is szinte csak a képzelet szab határt.

11. Korlátozások

Sajnos jogilag elér szűk keretek közé tehető az alkalmazásuk, hiszen jelenleg jogszabályok határozzák meg a Drón reptetés feltételei. Regisztrálni kell őket, jogosítvány kell hozzá, és biztosítást kell kötni rájuk, akár csak egy autóra.

A regisztrációt a légügyi hatóság oldalán található bejelentőlappal tehetjük meg. Ezen fel kell tüntetni a személyes adatainkat, a gép gyári számát, típusát, márkáját. Ha ezzel megvagyunk a legegyszerűbb, ha ügyfélkapun keresztül küldjük vissza a gyorsabb elbírálás érdekében.

Amint megvan a regisztráció, akkor jöhet a kötelező felelősség biztosítás megkötése. Ma már több biztosító is ajánl ilyen típusú gépre éves szinten kb. 15.000-20.000Ft díj ellenében. Azonban ezek csak 250g önsúly feletti készülékekre kötelező.

Majd kell egy üzembentartói regisztráció, melyen a biztosítási számát fel kell tűntetni, és ha mindez megvan még mindig kell hozzá jogosítvány mely hobbi drón esetén A1-A3-as

kategóriát követel, ami számos európai országban ingyenesen elvégezhető, itthon azonban fizetni kell érte 4660Ft-ot és csak akkreditált vizsga bázison tehető le. Viszont EU-n belül mindenhol elfogadják, ugyan úgy érvényes leszámítva az adott országban érvényben lévő jogszabályozások mellett. Célszerű az osztrákoknál letenni online, ami ingyenes és otthonról is elvégezhető.

Az utolsó lépés, hogy a beregisztrált számát a drón felületén jól láthatóan fel kell tüntetni, majd a telefonunkra le kell tölteni a "MYDRONESPACE" nevű alkalmazást, amivel minden esetben be kell jelentenünk, hogy hol szeretnénk, és milyen időtartamban repülni vele.

12. Minőségi elvárások

A felhasználók által támasztott igények:

- megfelelő stabil kapcsolat
- gyors válaszidő
- biztonságos reptetés
- kapcsolat elvesztése esetén leszállás megkezdése

13. Kockázat lista

A fejlesztés során az első és talán legfontosabb kockázatok egyike a valós üzemidő. Gyári adatok szerint a bruttó repülési idő 13 perc, ami a valóságban nagyon sok mindentől függ, mint például a hőmérséklet, esetleges szél erőssége, wifi kapcsolat és a rendelkezésre áló fény. Gyárilag egy 1300mA/h-s akkumulátor található benne, mivel fontos, hogy könnyű legyen. Grammokon múlik egy ilyen szerkezetnél a repülési magasság, a mozgékonyság és alapvetően az a képessége is, hogy fel tud-e szállni.

Gyakorlatban ez a 10 perc körüli tesztelési idő elég rövidnek bizonyul, és utána legalább 2 órát kell várni az újbóli teszt elkezdésére. Így előre megtervezetten érdemes repüléseket végrehajtani, hogy minden nagyobb programváltozás tesztelhető legyen a megfelelő időben.

Legésszerűbb megoldás a problémára tartalék akkumulátorok beszerzés, mely átlagosan 9.000Ft. Célszerű legalább 3 darabbal forgásszerűen próbálkozni, hiszen így mindig lesz tartalék, és így már körülbelül netto 30 perces üzemidővel számolhatnánk, de nem feltétlenül éri meg külön beszerezni őket, mert így lassan a készülékkel egy árban mozogna a tartozékok értéke.

Másik nagy kockázati tényezője a melegedés. Mivel elég kis szerkezetről van szó, és viszonylag zát burkolattal rendelkezik, így nem igazán kedveli a hosszas egyhelyben való reptetést, szüksége van a helyváltoztatás közbeni külső hőmérséklet általi hőelvonásra is. Bár a projekt utolós szakaszában erre is tervben van egy váz módosítás, amivel több hő elvezetése oldható meg.

Források:

1. ábra:

2. ábra: https://pbs.twimg.com/media/DXtGzvNV4AApKgD.jpg letöltés ideje: 2011.11.15

ábra: saját fotó
ábra: saját fotó