Получение и измерение вакуума (2.3.1)

Манро Эйден

Введение

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а такжепо ухудшению и улучшению вакуума.

Оборудование: вакуумная установка с манометрами: масляным, термопарным и ионизационным. В данной работе используются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-4} торр.

Теоретические сведения

Процесс откачки

Опишем процесс откачки математически: Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений i обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm u}$, десорбция с поверхностей внутри сосуда $Q_{\rm d}$, обратный ток через насос $Q_{\rm h}$. Тогда, приравнивая убыль газа из сосуда (с точностью до RT/μ) в единицу времени -VdP и сумму перечисленных токов имеем:

$$-VdP = (PW - \sum_{i} Q_{i})dt$$

При достижении предельного вакуума устанавливается давление $P_{\rm np}$, и dP=0. Тогда

$$W = \frac{\sum_{i} Q_i}{P_{\text{HD}}}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm d}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp(-\frac{W}{V}t)$$

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \ldots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W} + \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При высоком вакууме течение существеннее определяется взаимодействием со стенками Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{l}$$

Если труба соединяет насос установку, то давлением P_1 у насоса можно пренебречь. Давление в сосуде $P=P_2$. Тогда имеем:

$$C_{\rm TP} = \left(\frac{dV}{dt}\right)_{\rm TP} = \frac{4r^3}{3l}\sqrt{\frac{2\pi RT}{\mu}}$$

Экспериментальная установка

Установка изготовлена из стекла, и состоит из форвакуумного баллона (Φ B), высоковакуумного диффузионного насоса (BH), высоковакуумного баллона (BB), масляного (M) и ионизационного (И) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (Φ H) и соединительных кранов (M_1 , M_2). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1: Схема установки

Кран $_1$ используется для заполнения форвакуумного насоса и вакуумной установки атмосферным воздухом. Во время работы установки он должен быть закрыт. Трёхходовой кран $_2$ служит для соединения форвакуумного насоса с установкой или атмосферой. Кран $_3$ отделяет высоковакуумную часть установки от форвакуумной. Кран $_4$ соединяет между собой колена масляного манометра. Он должен быть открыт во все время работы установки и закрывается лишь при измерении давления в форвакуумной части. Краны $_5$ и $_6$ стоят по концам капилляра и соединяют его с форвакуумной и высоковакуумной частями установки.

Рис. 2: Схема действия ротационного двухпластинчатого форвакуумного насоса

Рис. 3: Схема работы одной ступени диффузионного насоса

Устройство одной ступени масляного диффузионного насоса схематически показано на Рис. 3 (в лабораторной установке используется несколько откачивающих ступеней). Масло, налитое в сосуд, подогревается электрической печкой. Пары масла поднимаются по трубе и вырываются из сопла. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку. Дальше смесь попадает в вертикальную трубу. Здесь масло осаждается на стенках трубы и масло-сборников и стекает вниз, а оставшийся газ откачивается форвакуумным насосом.

Погрешности

•
$$\sigma_{\text{лин}} = 0.05 \text{ cm}, \ \sigma_{\Delta h} = 0.01 \text{ cm}, \ \sigma_{\rho} = 0.001 \frac{\text{r}}{\text{cm}^3}, \ \sigma_{V_{\text{зап}}} = 1 \text{ cm}^3, \ \sigma_g = 0.01 \frac{\text{m}}{\text{c}^2}$$

•
$$\sigma_V = \sqrt{(\frac{\sigma_\rho}{\rho})^2 + (\frac{\sigma_{\Delta h}}{\Delta h})^2 + (\frac{\sigma_g}{g})^2 + (\frac{\sigma_{V_{3A\Pi}}}{V_{3A\Pi}})^2}$$

Ход работы

Входные данные

- $P_{\text{atm}} = (100140 \pm 400) \text{ Ha}, \ t_{\text{K}} = (22.9 \pm 0.1) \, {}^{\circ}C, \ \rho_{\text{M}} = (0.885 \pm 0.001) \, \frac{\Gamma}{\text{CM}^3}, \ V_{\text{3aii}} = (50 \pm 1) \, \text{cm}^3$
- L = 10.8 cm, d = 0.8 mm

Открываем все краны и запускаем в систему воздух из атмосферы $(P_{\rm atm})$. Закрываем краны $_{5}$ и $_{6}$, тем самым заперев в кранах и в капилляре воздух объемом $(V_{\rm 3an})$. Откачиваем воздух из системы при помощи форвакуумного насоса. После откачки до давления $\sim 10^{-2}$ запираем кран 2 и изолируем систему от атмосферы. Закрывая кран у масляного манометра приводим его в рабочее состояние. Отсакаем высоковакуумную часть закрытием крана 3 и впускаем запертый в кране 5 воздух в форвакуумную часть установки. при этом, давление в форвакуумной части возрастает, о чем свидетельствует маслянный манометр. Измеряем давление при помощи последнего и следующим шагом открываем кран 3, соединяя высоковакуумную часть с остальной. При этом давление падает. По этим данным считаем объем высоковакуумной части пользуясь законом Бойля-Мариотта. Заметим, что здесь мы пренебрегли начальным давлением (порядка $\sim 10^{-2}$) т.к. оно в ~ 1000 раз меньше других давлении.

$$P_{\text{атм}}V_{\text{зап}} = P_1V_{\text{фв}} = P_2(V_{\text{фв}} + V_{\text{вв}})$$

Измеренные давления:

$$\Delta h_1 = (26.3 \pm 0.1) \text{ cm}$$

 $\Delta h_2 = (17.1 \pm 0.1) \text{ cm}$

Подставляя получаем:

$$V_{\Phi B} = (2192 \pm 45) \text{ cm}^3, \ \varepsilon_{\Phi B} = 2 \%$$

 $V_{BB} = (1180 \pm 35) \text{ cm}^3, \ \varepsilon_{BB} = 3 \%$

Получение высокого вакуума и измерение скорости откачки

Открываем все краны и проводим первоначальную выкачку воздуха форвакуумным насосом. После приближения к предельному давлению ($\sim 10^{-2}$), закрываем кран 6 и включаем диффузионный насос. Ждем пока масло закипит и начнется дальнейшая выкачка уже диффузионным насосом. По достижению давления порядка $\sim 10^{-3}$ включаем ионизационный манометр, которым и будем измерять давление в дальнейшем.

Чтобы измерить скорость откачки W замерим как изменяется давление в высоковакуумной части от времени. Сосгласно теории давление должно падать по правилу, где у нас $P_{\rm np}=5.5\cdot 10^{-5}$ торр

$$P - P_{\text{пр}} = (P_0 - P_{\text{пр}}) \exp\left(-\frac{W}{V_{\text{вв}}}t\right)$$

Логарифмируя, получаем:

$$\ln(P - P_{\text{np}}) = -\frac{W}{V_{\text{\tiny RB}}}t + c$$

Аппроксимируя наши данные согласно формуле (??) получим значение для W. Измерение проведем 2 раза. Результаты изображены на графиках ?? (данные предоставлены в таблице ??). Учитывая что погрешности логарифмов растут со временем, и зависимость теряет характерный линейный вид, линеяная аппроксимация была сделана только для оранжевых точек. Пользуясь объемом высоковакуумной части из формулы (7) и данными аппроксимации получаем следующие значения для скорости откачки:

$$W_1 = (248 \pm 11) \frac{\text{cm}^3}{\text{c}}, \quad W_2 = (262 \pm 8) \frac{\text{cm}^3}{\text{c}}$$

Как видим, значеня лежат в пределах погрешности, чего и следовало ожидать. Теперь определим величину потока $Q_{\rm H}$. Для обшего потока имеем формулу

$$P_{\text{\tiny IID}}W = (Q' + Q_{\text{\tiny H}})RT$$

где $Q' = Q_{\rm H} + Q_{\rm H}$. Теперь, если по достижению предельного давления закрыть кран 3, то насос будет отсоиденен от высоковакуумной части, и уравнение описывающее давление от времени примет вид

$$V_{\rm BB}dP = QRTdt$$

интегрируя которую получим

$$P = \frac{QRT}{V_{\text{\tiny RR}}}t + c$$

Измерив зависимость давления от времени и аппроксимируя данные прямой можно получить Q. Графики приведены на рисунке $\ref{eq:constraint}$. Отсюда получаем

$$Q_1RT = (65 \pm 6) \cdot 10^{-4} \text{ Topp} \cdot \text{cm}^3\text{c}^{-1}, \ Q_2RT = (60 \pm 5) \cdot 10^{-4} \text{ Topp} \cdot \text{cm}^3\text{c}^{-1}$$

Опять же, значения совпадают в пределах погрешности, как и ожидалось. Теперь, используя значения W_1, W_2, Q_1, Q_2 по формуле $(\ref{eq:constraint})$ считаем значение Q

$$Q_{\text{\tiny H}} = (0.72 \pm 0.08) \cdot 10^{-5} \frac{\text{торр} \cdot \text{л}}{\text{c}}$$

Для W получаем:

$$W = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\Phi \text{B}} - P_{\text{yct}}}{P_{\text{yct}} - P_{\text{fip}}} = (290 \pm 10) \frac{\text{cm}^3}{\text{c}}$$

$$P_{\text{fip}} = (5.5 \pm 0.1) \cdot 10^{-5} \text{ Topp}$$

$$P_{\text{yct}} = (1.3 \pm 0.1) \cdot 10^{-4} \text{ Topp}$$

$$P_{\Phi \text{B}} = (3.8 \pm 0.1) \cdot 10^{-3} \text{ Topp}$$

Обсуждение результатов

Итак, в ходе данной лабораторной работы нам удалось получить высокий вакуум ($P = 5.5 \cdot 10^{-5}$ торр) с помощью диффузионного и форвакуумного насосов. Рассчитали скорость откачки насоса двумя независимыми способами: по улучшению вакуума и по скорости течения газа через трубу в условиях высокого вакуума. Результаты отличаются менее чем на 5%, поэтому можно утверждать, что они совпадают в пределах погрешности.

Вакуум необходим для получения тонких магнитных пленок. Важнейшей областью применения магнитных пленок является их использование для записи и хранения информации в запоминающих устройствах. Для увеличения плотности записи в магнитных пленках намагниченность ориентируют перпендикулярно плоскости пленок. Перпендикулярная ориентация намагниченности в тонких пленках энергетически невыгодна. Сильная перпендикулярная анизотропия в магнитных пленках возможна только при определенных условиях: толщина магнитного материала должна быть не выше критической и магнитный материал должен быть ограничен слоями некоторых тяжелых металлов (Pd, Pt, Ru). Именно граничные слои наводят перпендикулярную анизотропию во всей магнитной пленке. Напыление магнитного материала и тяжелых металлов, например, кобальта (Co) и (Pd) на кремниевую подложку (SiO_2) возможно только в сверхвысоком вакууме.

Выводы

В ходе работы было измерено скорость откачки диффузионного насоса двумя способами

$$W_1 = (248 \pm 11) \frac{\text{cm}^3}{\text{c}}, \ W_2 = (262 \pm 8) \frac{\text{cm}^3}{\text{c}}, \ W = (290 \pm 10) \frac{\text{cm}^3}{\text{c}}$$

Значения совпадают в пределах погрешности. Погрешность значения измеренной методом создания исскуственной течи большая в связи с наличием разности двух близких величин в формуле подсчета(P-P).

Во время работы так же было проверенно справедливость отношения

$$P - P = (P_0 - P) \exp\left(-\frac{W}{V}t\right)$$

при откачке воздуха и отношения

$$P = \frac{QRT}{V}t + c$$

описывающее рост давления при отключении насоса от системы.

Рис. 4: Линеаризованные графики улучшения вакуума.

Улучшение 1		Улучшение 2		Ухудшение 1		Ухудшение 2	
t,	$P, 10^{-4}$						
0.00	5.60	0.00	6.00	0	1.00	0	1.00
0.50	5.30	0.50	5.90	2	1.10	1	1.10
1.00	5.00	1.00	5.70	3	1.20	3	1.20
1.50	4.60	1.50	5.60	5	1.30	5	1.30
2.00	4.30	2.00	5.30	7	1.40	7	1.40
2.50	3.60	2.50	5.10	9	1.50	9	1.50
3.00	3.20	3.00	4.80	11	1.60	12	1.60
3.50	3.00	3.50	4.40	12	1.70	14	1.70
0.00	2.70	0.00	4.10	14	1.80	16	1.80
0.50	2.50	0.50	3.80	15	1.90	19	1.90
1.00	2.30	1.00	3.50	17	2.00	21	2.00
1.50	2.10	1.50	3.20	19	2.10	23	2.10
2.00	2.00	2.00	2.90	21	2.20	26	2.20
2.50	1.80	2.50	2.70	23	2.30	28	2.30
3.00	1.70	3.00	2.40	25	2.40	30	2.40
4.00	1.50	3.50	2.20	27	2.50	31	2.50
4.50	1.40	4.00	2.10	29	2.60	33	2.60
5.00	1.30	4.50	1.90	30	2.70	35	2.70
6.00	1.20	5.00	1.80	32	2.80	38	2.80
7.00	1.10	5.50	1.70	34	2.90	40	2.90
8.00	1.00	6.00	1.50	35	3.00	41	3.00
8.50	0.96	6.50	1.40	37	3.10	43	3.10
9.00	0.92	7.00	1.30	39	3.20	45	3.20
9.50	0.85	7.50	1.20	41	3.30	47	3.30
10.00	0.82	8.00	1.10	43	3.40	49	3.40
10.50	0.79	9.00	1.00	45	3.50	51	3.50
11.00	0.77	9.50	0.96	47	3.60	52	3.60
11.50	0.75	10.00	0.94	49	3.70	54	3.70
12.00	0.73	11.00	0.90	50	3.80	56	3.80
12.50	0.71	11.50	0.86	51	3.90	58	3.90
13.00	0.69	12.00	0.83	53	4.00	60	4.00
13.50	0.67	12.50	0.80	55	4.10	62	4.10
14.00	0.65	13.00	0.78	57	4.20	64	4.20
15.00	0.64	13.50	0.75	59	4.30	66	4.30
16.00	0.63	14.00	0.73	60	4.40	68	4.40
17.00	0.60	14.50	0.72	62	4.50	70	4.50
19.00	0.59	15.00	0.69	65	4.60	72	4.60
21.00	0.58	15.50	0.67	66	4.70	74	4.70
22.00	0.57	16.00	0.65	68	4.80	76	4.80
25.00	0.56	16.50	0.63	70	4.90	78	4.90

Таблица 1: Данные для построения графиков

Рис. 5: Графики ухудшения вакуума.