

Machine Learning Project

Covid-19 Mortality Prediction

> Gkatsis Vasileios MTN 2004

Overview

Create machine learning models capable of predicting the number of people dying from covid-19 in a country during a month.

- Gather and process data. (Our World In Data)
- Extract the more explanatory features.
- Create and tune models.
- Evaluate the models.

Feature Extraction

Choose the features that explain better the data using simple graphs.

Create Models

- Linear Regression
- Lasso Regression
- Ridge Regression
- K-NN Regression
- Elastic-Net
- Support Vector Machines

Python library: scikit-learn

(SGD, Decision Trees and Tweedie Regression Where also tested but left out due to very bad results)

Tune Models

Split data on train and validation.

Perform k-fold on train data and find average MAE. Find MAE of validation dataset.

Keep the combination of parameter values that minimize both MAE scores

Test

Make predictions for the test dataset.

Count performance using the following metrics:

- R²
- Mean Average Error (MAE)
- Mean Squared Error (MSE)
- Rooted Mean Squared Error (RMSE)

Results

	Linear Regression	Lasso Regression	Ridge Regression	kNN Regression	Elastic Net	SVM
R2	0.79	0.78	0.69	0.2	0.78	-0.15
MAE	2326.4	2360	2438.9	4643.7	2419.1	5232.1
MSE	18312097	19008276	27148578	69774062.2	19427773	100242603
RMSE	4279.26	4359.8	5210	8353	4407.7	10012

Final Thoughts

- Not a feasible project.
- Not with simple machine learning tools.
- Not without including more data (epidemiological, cultural etc.)
- Maybe deep learning methods can produce more stable models.