

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FORESTALES

TAREA CINCO

CORRELACIÓN

EMANUEL MOLINA MARCHAN

MATRÍCULA

2134498

SEPTIEMBRE, 2022

Tarea05_EmanuelMolinaMarchan.R

Emanuel

2022-09-21

```
arroyo <- read.csv("arroyos.csv", header =T)</pre>
arroyo
     Speed Abundance
##
## 1
        2
                   3
## 2
         3
       5
                   5
## 3
## 4
       9
                  23
## 5
       14
                  16
## 6
        24
                  12
## 7
        29
                  48
## 8
        34
                  43
plot(arroyo$Speed, arroyo$Abundance,
     pch=19, col="blue",
     xlab= "Velocidad",
     ylab= "Abundancia")
cor.ar <- cor.test(arroyo$Speed, arroyo$Abundance)</pre>
cor.ar
##
## Pearson's product-moment correlation
## data:
          arroyo$Speed and arroyo$Abundance
## t = 3.8568, df = 6, p-value = 0.008393
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3442317 0.9711386
## sample estimates:
##
         cor
## 0.8441408
arroyo.lm <- lm(arroyo$Speed ~ arroyo$Abundance)</pre>
arroyo.lm
##
## Call:
## lm(formula = arroyo$Speed ~ arroyo$Abundance)
## Coefficients:
##
        (Intercept) arroyo$Abundance
                               0.6062
##
             3.1799
```


#Existe una correlación positiva significativa entre la velocidad y abund ancia

HO: "No existe una correlación entre la velocidad del arroyo y la abund ancia de efímeras".

H1: "Existe una correlación positiva entre la velocidad de los arroyos y la abundancia de efímeras (Ecdyonurus dispar)"

#Se acepta la hipotesis alterna H1: Existe una correlación positiva entre la velocidad de los arroyos y la abundancia de efímeras (Ecdyonurus dispa r)

0.8441408**2

[1] 0.7125737

#La velocidad nos explica un 71.25% el comportamiento de la abundacia

#pH - N

<pre>suelo <- read.csv("suelo.csv",</pre>	header	=T)
suelo		

Juczo												
## K	Χ	Group	Contour	Depth	Gp	Block	рН	N	Dens	Р	Ca	Mg
## 1	1	1	Тор	0-10	Т0	1	5.40	0.188	0.92	215	16.35	7.65
0.72 ## 2	2	1	Тор	0-10	Т0	2	5.65	0.165	1.04	208	12.25	5.15
0.71 ## 3	3	1	Ton	0-10	та	3	5.14	0.260	0.95	300	13.02	5.68
0.68			•									
## 4 1.09	4	1	тор	0-10	10	4	5.14	0.169	1.10	248	11.92	7.88
## 5 0.70	5	2	Тор	10-30	T1	1	5.14	0.164	1.12	174	14.17	8.12
## 6	6	2	Тор	10-30	T1	2	5.10	0.094	1.22	129	8.55	6.92
0.81 ## 7	7	2	Тор	10-30	T1	3	4.70	0.100	1.52	117	8.74	8.16
0.39 ## 8	8	2	Top	10-30	T1	4	4.46	0.112	1.47	170	9.49	9.16
0.70			•									
## 9 0. 74	9	3	Гор	30-60	13	1	4.3/	0.112	1.0/	121	8.85	10.35
## 10 0.77	10	3	Тор	30-60	Т3	2	4.39	0.058	1.54	115	4.73	6.91
## 11	11	3	Тор	30-60	Т3	3	4.17	0.078	1.26	112	6.29	7.95
<pre>0.26 ## 12</pre>	12	3	Тор	30-60	T3	4	3.89	0.070	1.42	117	6.61	9.76
0.41	17	4	Т	60.00	тс	1	2 00	0 077	1 25	127	C 41	10.06
## 13 0.56	13	4	тор	60-90	16	1	3.88	0.0//	1.25	12/	6.41	10.96
## 14 0.50	14	4	Тор	60-90	T6	2	4.07	0.046	1.54	91	3.82	6.61
## 15	15	4	Тор	60-90	T6	3	3.88	0.055	1.53	91	4.98	8.00
0.23 ## 16	16	4	Тор	60-90	T6	4	3.74	0.053	1.40	79	5.86	10.14
0.41 ## 17	17	5	Slope	0-10	S0	1	5.11	0.247	0.94	261	13.25	7.55
0.61			·									
## 18 0.68	18	5	Stope	0-10	50	2	5.46	0.298	0.96	300	12.30	7.50
## 19 0.63	19	5	Slope	0-10	S0	3	5.61	0.145	1.10	242	9.66	6.76
## 20	20	5	Slope	0-10	S0	4	5.85	0.186	1.20	229	13.78	7.12
0.62 ## 21	21	6	Slope	10-30	S1	1	4.57	0.102	1.37	156	8.58	9.92
0.63 ## 22	22	6	Slone	10-30	S 1	2	5,11	0.097	1.30	139	8,58	8.69
		•				_						

0.42 ## 23	23	6	Slope	10-30	S1	3	4.78	0.122	1.30	214	8.22	7.75
0.32 ## 24	24	6	Slope	10-30	S1	4	6.67	0.083	1.42	132	12.68	9.56
0.55 ## 25	25	7	Slone	30-60	S 3	1	3.96	0.059	1.53	98	4.80	10.00
0.36			·									
## 26 0.28		7	·	30-60		2	4.00	0.050	1.50	115	5.06	8.91
## 27 0.16	27	7	Slope	30-60	S3	3	4.12	0.086	1.55	148	6.16	7.58
## 28 0.40	28	7	Slope	30-60	S3	4	4.99	0.048	1.46	97	7.49	9.38
## 29	29	8	Slope	60-90	S6	1	3.80	0.049	1.48	108	3.82	8.80
0.24 ## 30	30	8	Slope	60-90	S6	2	3.96	0.036	1.28	103	4.78	7.29
0.24 ## 31	31	8	Slope	60-90	S6	3	3.93	0.048	1.42	109	4.93	7.47
0.14 ## 32	32	8	Slone	60-90	S 6	4	4.02	0.039	1.51	100	5.66	8.84
0.37 ## 33			Depression					0.194				6.27
0.72	22	9	Debl.e331011	0-10	De	_	3.24	0.134	1.00	443	12.2/	0.27
## 34 0.78	34	9	Depression	0-10	D0	2	5.20	0.256	0.78	380	11.39	7.55
## 35	35	9	Depression	0-10	DØ	3	5.30	0.136	1.00	259	9.96	8.08
0.45 ## 36	36	9	Depression	0-10	D0	4	5.67	0.127	1.13	248	9.12	7.04
0.55	2=	4.0		40.20	D4			0 007	4 24	276	7 04	0.40
## 37 0.43	3/	10	Depression	10-30	DI	1	4.46	0.087	1.24	2/6	7.24	9.40
## 38 0.59	38	10	Depression	10-30	D1	2	4.91	0.092	1.47	158	7.37	10.57
## 39 0.30	39	10	Depression	10-30	D1	3	4.79	0.047	1.46	121	6.99	9.91
## 40	40	10	Depression	10-30	D1	4	5.36	0.095	1.26	195	8.59	8.66
0.48 ## 41	41	11	Depression	30-60	D3	1	3.94	0.054	1.60	148	4.85	9.62
0.18 ## 42	42	11	Depression	30-60	D3	2	4.52	0.051	1.53	115	6.34	9.78
0.34 ## 43	12	11	Depression	30 60	מח	2	/ 2E	0.032	1 55	01	5.99	9.73
0.22	43	11	pepression	30-00	כט	2	4.33	0.032	1.55	02	5.99	9.75
## 44 0.22	44	11	Depression	30-60	D3	4	4.64	0.065	1.46	152	4.43	10.54
## 45 0.18	45	12	Depression	60-90	D6	1	3.82	0.038	1.40	105	4.65	9.85
## 46	46	12	Depression	60-90	D6	2	4.24	0.035	1.47	100	4.56	8.95
0.33 ## 47	47	12	Depression	60-90	D6	3	4.22	0.030	1.56	97	5.29	8.37

```
0.14
## 48 48
            0.14
##
        Na Conduc
## 1
      1.14
             1.09
## 2
      0.94
             1.35
## 3
      0.60
             1.41
## 4
      1.01
             1.64
## 5
      2.17
             1.85
## 6
      2.67
             3.18
## 7
      3.32
             4.16
## 8
       3.76
             5.14
## 9
       5.74
             5.73
## 10
      5.85
             6.45
## 11
      5.30
             8.37
## 12
      8.30
             9.21
## 13
      9.67
            10.64
## 14
      7.67
            10.07
## 15
      8.78
            11.26
## 16 11.04
            12.15
## 17
      1.86
             2.61
## 18
      2.00
             1.98
## 19
      1.01
             0.76
## 20
      3.09
             2.85
## 21
      3.67
             3.24
      4.70
## 22
             4.63
## 23
      3.07
             3.67
## 24
      8.30
             8.10
## 25
      6.52
             7.72
## 26
      7.91
             9.78
## 27
             9.07
      6.39
## 28
      9.70
             9.13
      9.57
            11.57
## 29
## 30
      9.67
            11.42
## 31
      9.65
            13.32
## 32 10.54
            11.57
## 33
      1.02
             0.75
## 34
      1.63
             2.20
## 35
      1.97
             2.27
             0.67
## 36
      1.43
## 37
      4.17
             5.08
## 38
             6.37
      5.07
## 39
      5.15
             6.82
## 40
      4.17
             3.65
## 41
      7.20
            10.14
## 42
      8.52
             9.74
## 43
      7.02
             8.60
## 44
      7.61
             9.09
## 45 10.15
            12.26
## 46 10.51 11.29
```



```
# HO: "No existe una correlación entre pH y N".
# H1: "Existe una correlación positiva entre el pH y N"
cor.ar <- cor.test(suelo$pH, suelo$N)</pre>
cor.ar
##
## Pearson's product-moment correlation
##
## data: suelo$pH and suelo$N
## t = 5.5994, df = 46, p-value = 1.149e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4303716 0.7797377
## sample estimates:
##
        cor
## 0.636654
```



```
# H0: "No existe una correlación entre pH y Dens".
# H1: "Existe una correlación positiva entre el pH y Dens"

cor.ar <- cor.test(suelo$pH, suelo$Dens)
cor.ar

##
## Pearson's product-moment correlation
##
## data: suelo$pH and suelo$Dens
## t = -4.9436, df = 46, p-value = 1.062e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7479775 -0.3661760
## sample estimates:</pre>
```



```
# H0: "No existe una correlación entre pH y P".
# H1: "Existe una correlación positiva entre el pH y P"

cor.ar <- cor.test(suelo$pH, suelo$P)

cor.ar

##
## Pearson's product-moment correlation
##
## data: suelo$pH and suelo$P
## t = 4.9694, df = 46, p-value = 9.74e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3688348 0.7493286</pre>
```



```
# H0: "No existe una correlación entre pH y Ca".
# H1: "Existe una correlación positiva entre el pH y Ca"

cor.ar <- cor.test(suelo$pH, suelo$Ca)
cor.ar

##
## Pearson's product-moment correlation
##
## data: suelo$pH and suelo$Ca
## t = 9.3221, df = 46, p-value = 3.614e-12
## alternative hypothesis: true correlation is not equal to 0</pre>
```



```
# H0: "No existe una correlación entre pH y Mg".
# H1: "Existe una correlación positiva entre el pH y Mg"

cor.ar <- cor.test(suelo$pH, suelo$Mg)
cor.ar
##
## Pearson's product-moment correlation
##
## data: suelo$pH and suelo$Mg</pre>
```



```
# H0: "No existe una correlación entre pH y K".
# H1: "Existe una correlación positiva entre el pH y K"

cor.ar <- cor.test(suelo$pH, suelo$K)
 cor.ar
##
## Pearson's product-moment correlation</pre>
```

```
##
## data: suelo$pH and suelo$K
## t = 4.8236, df = 46, p-value = 1.585e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3536810 0.7415855
## sample estimates:
##
         cor
## 0.5795727
\# r = 0.5795727, p-value = 1.585e-05, df = 46, t = 4.8236
#pH - Na
plot(suelo$pH, suelo$Na,
     pch=19, col="blue",
     xlab= "pH",
     ylab= "Na")
```



```
# H0: "No existe una correlación entre pH y Na".
# H1: "Existe una correlación positiva entre el pH y Na"

cor.ar <- cor.test(suelo$pH, suelo$Na)

cor.ar
```

```
##
## Pearson's product-moment correlation
##
## data: suelo$pH and suelo$Na
## t = -6.5242, df = 46, p-value = 4.724e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8165520 -0.5094849
## sample estimates:
## cor
## -0.6932614
# r = -0.6932614, p-value = 4.724e-08, df = 46, t = -6.5242
```