Lecture 21

Learning II

Lusi Li
Department of Computer Science
ODU

Reading for This Class: Not in the Book

Review

- Last Class
 - Learning
 - Decision Tree
- This Class
 - Nearest Neighbors Classification
 - Unsupervised Learning
 - K-means
- Next Class
 - Final Review

Basic Algorithm of Decision Tree

node = root of decision tree

Main loop:

- 1. A ← the "best" decision attribute for the next node.
- 2. Assign A as decision attribute for node.
- 3. For each value of A, create a new child (sub-tree) of the node.
- 4. Sort training examples to leaf nodes.
- 5. If training examples are perfectly classified, stop.

Else, recurse over new leaf nodes.

Disadvantages of Decision-Tree Learning

- Large-Scale Information
 - A big decision tree
 - Not efficient
- Contradictory information
 - Fail to build a decision tree
 - Decision tree is not robust to contradictory or erroneous information
 - Hard to handle noisy information
- Missing Information
 - Not all the attributed values are known in some given examples
 - Hard to classify
- Adaptability
 - Learning Decision Tree may not be useful in a changing environment
- Real Time Response
 - If the decision tree is large, response time may be long

Outline

- Nearest Neighbor Classification
- Intro to unsupervised learning
- K-means algorithm
- Optimization objective
- Initialization and the number of clusters

Supervised learning

- Input: training set (input-output pairs):
 - $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$
 - where each pair was generated by an unknown function f

$$f(x^{(i)}) = y^{(i)}, 1 \le i \le m$$

• Goal: find a hypothesis function h that approximates the true function f

$$h(x^{(i)}) \approx y^{(i)}, 1 \le i \le m$$

What we know so far

- Decision Trees: how to induce a decision tree from training data
- Other methods?

KNN

- K-Nearest Neighbor (KNN) Classifier
 - Organize and store all training examples
 - Classify new examples based on "most similar" training examples
 - Compute distance to other training examples
 - Identify k nearest neighbors
 - Use class labels of KNN to determine the class label by taking majority vote

k = 1

Nearest point is red, so x_{test} classified as red

k = 3

Nearest points are {red, blue, blue} so x_{test} classified as blue

k = 4

Nearest points are {red, red, blue, blue} so classification of x_{test} is not properly defined

Supervised learning

Two ways to think about learning

Eager learning (e.g., decision trees)

- Learn/Train
 - Induce an abstract model from data
- Test/Predict/Classify
 - Apply learned model to new data

Lazy learning (e.g., nearest neighbors)

- Learn
 - Just store data in memory
- Test/Predict/Classify
 - Compare new data to stored data
- Properties
 - Retains all information seen in training
 - Complex hypothesis space
 - Classification can be very slow

KNN algorithm

Components of a k-NN Classifier

- Distance metric
 - How do we measure distance between instances?
 - Determines the layout of the example space
- The k hyper-parameter
 - How large a neighborhood should we consider?
 - Determines the complexity of the hypothesis space

KNN algorithm

Distance metric

- Any distance function can select nearest neighbors
- Different distances yield different neighborhoods

Distance Metrics in Vector Search

Cosine Distance

$$1 - \frac{A \cdot B}{||A|| \quad ||B||}$$

Squared Euclidean

(L2 Squared)

$$\sum_{i=1}^n \left(x_i - y_i\right)^2$$

Dot Product

$$A \cdot B = \sum_{i=1}^{n} A_i B_i$$

Manhattan (L1)

$$\sum_{i=1}^n |x_i-y_i|$$

KNN algorithm

- The k hyper-parameter
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points

What class does the new data point belong to?

How would you set k in practice?

- Weighted voting
- Default: all neighbors have equal weight
- Extension: weight neighbors by (inverse) distance

Unsupervised learning

- **Input**: training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$
- Clustering goal: automatically partition examples into groups of similar examples

- Why? It is useful for
 - Automatically organizing data
 - Understanding hidden structure in data
 - Preprocessing for further analysis

K-means algorithm

- Input:
 - K (number of clusters)
 - Training set $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}\$, where $x^{(i)} \in \mathbb{R}^n$
- Randomly initialize K cluster centroids $\mu_1, \mu_2, \cdots, \mu_K \in \mathbb{R}^n$ Repeat{

```
for i = 1 to m c^{(i)} \coloneqq \text{index (from 1 to } K) \text{ of cluster centroid closest to } x^{(i)} \textbf{Cluster assignment step}
```

```
for k = 1 to K
\mu_k := \text{average (mean) of points assigned to cluster } k
\text{Centroid update step}
```


K-means algorithm

K-Means example From https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-means optimization objective

- $c^{(i)}$ = Index of cluster (1, 2, ... K) to which example $x^{(i)}$ is currently assigned
- μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)
- $\mu_{c^{(i)}} = \text{cluster centroid of cluster to which}$ example $x^{(i)}$ has been assigned

Example:

For
$$x^{(i)} \in \mathbb{R}^n$$

 $c^{(i)} = 2$
 $\mu_{c^{(i)}} = \mu_2$

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)} \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \cdots, \mu_K \in \mathbb{R}^n$

Repeat(

for i = 1 to m

Cluster assignment step
$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

 $c^{(i)} \coloneqq \text{index (from 1 to } K) \text{ of cluster centroid}$ closest to $x^{(i)}$

for k = 1 to K

Centroid update step
$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

 $\mu_k :=$ average (mean) of points assigned to cluster k

K-means algorithm

Components of K-means

- Distance metric
 - How do we measure distance between instances?
 - Determines the cluster assignment
- The K hyper-parameter
 - Needs to be set in advance (as prior knowledge)
- Cluster-centroid initialization
 - Different initializations yield different results

How to choose K?

 Try multiple K and use performance from downstream task for selection

Impact of initialization

- Randomly pick K training examples
- Set $\mu_1, \mu_2, \dots, \mu_K$ equal to those K examples

Random initialization

Final clustering results

1) Multiple random initialization

```
For i=1 to 100 {
    Randomly initialize K-means
    Run K-means. Get c^{(1)},\cdots,c^{(m)},\mu_1,\cdots,\mu_K
    Compute the cost function (distortion)
    J(c^{(1)},\cdots,c^{(m)},\mu_1,\cdots,\mu_K)
}
```

Pick clustering that gave the lowest cost $J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$

2) Furthest point heuristic

Choose μ_1 arbitrarily (or at random)

For
$$j = 2$$
 to K

Pick μ_j among data points $x^{(1)}, x^{(2)}, \cdots, x^{(m)}$ that is farthest from previously chosen $\mu_1, \mu_2, \cdots, \mu_{j-1}$

Slide credit: Maria-Florina Balcar

Things to remember

- Nearest Neighbor Classification
- Intro to unsupervised learning
- K-means algorithm
- Optimization objective
- Initialization and the number of clusters

What I want you to do

Work on your assignments 3 and 4

