Assignment 8 th september

- 1. Take car crashes dataset from seaborn library
- 2.load the dataset
- 3.data visualiation
- 4.Inference is must for each and every graph

▼ 1.import the necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

▼ 2.import the dataset

```
sns.get_dataset_names()
      ['anagrams',
       'anscombe',
'attention',
       'brain_networks',
       'car_crashes',
       'diamonds',
       'dots',
'dowjones',
       'exercise',
       'flights',
       'fmri',
'geyser',
       'glue',
'healthexp',
       'iris',
       'mpg',
'penguins',
        'planets',
       'seaice',
       'taxis',
       'tips',
       'titanic']
dataset = sns.load_dataset('car_crashes')
```

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	CO
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL

dataset.tail()

dataset.head(10)

dataset.describe()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	⊞
count	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	ıl.
mean	15.790196	4.998196	4.886784	13.573176	14.004882	886.957647	134.493137	
std	4.122002	2.017747	1.729133	4.508977	3.764672	178.296285	24.835922	
min	5.900000	1.792000	1.593000	1.760000	5.900000	641.960000	82.750000	
25%	12.750000	3.766500	3.894000	10.478000	11.348000	768.430000	114.645000	
50%	15.600000	4.608000	4.554000	13.857000	13.775000	858.970000	136.050000	
75 %	18.500000	6.439000	5.604000	16.140000	16.755000	1007.945000	151.870000	
max	23.900000	9.450000	10.038000	23.661000	21.280000	1301.520000	194.780000	

▼ LINE PLOT

```
sns.lineplot(x="total", y="alcohol", data=dataset, ci=None)
```

[#] INFERENCE:

[#] Describes the relation between total crashes and amount of alcohol consumed by driver

sns.lineplot(x="total", y="speeding", data=dataset,)

- # TNFFRENCE:
- # Describes a non-uniform unevenly directly proportional relation between total crashes and speed of vehicle

<Axes: xlabel='total', ylabel='speeding'>

→ DIST PLOT

sns.distplot(dataset["total"])

- # INFERENCE
- # distplot = histogram + kernal density function of total crashes

<ipython-input-17-9194453daee3>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataset["total"])
<Axes: xlabel='total', ylabel='Density'>

JOINT PLOT

sns.jointplot(x="total", y="speeding",data=dataset)

- # INFERENCE
- # Univariate analysis of total crashes and speeding in form of histograms
- # And Bivariate analysis of total crashes with respect to speeding in form of scatter plot

→ HEATMAP

corr=dataset.corr()
corr

<ipython-input-9-f22ca9e9dc13>:1: FutureWarning: The default value of numeric_only ir corr=dataset.corr()

	total	speeding	alcohol	${\sf not_distracted}$	no_previous	ins_premium
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116

plt.subplots(figsize=(10,10))
sns.heatmap(corr,annot=True)

- # INFERENCE
- # to understand the degree of correlation between all the variables
- $\texttt{\# Most correlated variable to total number of crashes : alcohol, speeding, not_distracted, no_previous } \\$
- $\mbox{\tt\#}$ Least correlated variable to total number of crashes : ins_premium, ins_losses

<Axes: >

→ BOX PLOT

Box plot of "total" crashes by "ins_premium"
\$plt.subplots(figsize=(10,10))
sns.boxplot(data=dataset, x="ins_premium", y="total")
plt.title("Box Plot: Total Crashes by Insurance Premium")
plt.xticks(rotation=90)
plt.show()

plt.subplots(figsize=(10,10))
sns.boxplot(data=dataset, x="no_previous", y="total")

▼ SCATTER PLOT

```
plt.subplots(figsize=(10, 10))
sns.scatterplot(data=dataset, x="alcohol", y="total")
plt.title("Scatter Plot: Alcohol vs. Total Crashes")
plt.show()

#INFERENCE
# To understand relation between "alcohol" and "total" with the help of a scatter plot
# As the amount of alcohol increases, the severity of car crashes also increases.
```


sns.scatterplot(data=dataset, x="ins_losses", y="total")

INFERENCE

No linear relation observed between total crashes and losses covered by insurance company.

sns.scatterplot(data=dataset, x="no_previous", y="total")

INFERENCE

- # No linear relation observed between drivers with no previous record of car crash with total number of crashes.
- # This implies that new car drivers are more prone to crashes.

<Axes: xlabel='no_previous', ylabel='total'>

sns.scatterplot(data=dataset, x="ins_premium", y="ins_losses")

- # INFERENCE
- # Comparing the degree of losses covered by insurance company in comparision to premium paid by customer
- $\mbox{\tt\#}$ More is the premium paid by customer, more are the losses covered by insurance company.

→ PAIR PLOT

```
# Pair plot for selected columns
sns.pairplot(dataset[['total', 'speeding', 'alcohol', 'not_distracted']])
plt.title("Pair Plot")
plt.show()
```

