Linear Regression

Benjamin S. Skrainka

June 7, 2016

Objectives

Today's objectives:

- State assumptions of linear regression model
- Estimate a linear regression model
- Evaluate a linear regression model
- Fix common problems which could compromise results

Agenda

Today's plan:

- Introduce basic model
- ② Evaluating model performance
- 3 Common problems which compromise results

References

References from the machine learning perspective:

- Introduction to Statistical Learning
- Elements of Statistical Learning

References from the econometric perspective:

- Greene's Econometric Analysis
- Wooldridge's Econometric Analysis of Cross-section and Panel Data
- Cammeron & Trivedi's Microeconometrics: Methods and Applications
- Kennedy's A Guide to Econometrics

Modeling with data

5 / 65

enjamin S. Skrainka Linear Regression June 7, 2016

Goal of machine learning

Machine learning is a set of tools to learn a very good approximation of the relation between features and a label:

True model:

$$y = f(x) + \epsilon$$

- Machine learning learns an approximation $\hat{f}(x)$ of f(x)
- Use $\hat{f}(x)$ to predict y from new values of X
- Determine which features matter:
 - ► Check model makes sense
 - Know which features drive business and how to move them
- Tune bias-variance tradeoff to optimize predictive performance

Goal of regression Analysis

Regression analysis fits a model to perform causal inference:

- Establish causal factors which affect outcome
- Choose no bias at expense of higher variance
- Perform inference on model parameters to establish causal links
- Must demonstrate control for confounding factors:
 - Should be as good as randomly assigned
 - ► Must eliminate sources of bias in error term (shock)

Terms

There are many different terms for the same concepts, depending on your background:

- Feature = Covariate = Input = independent variables = regressors = RHS variables = X
- Label = outcome = target = dependent variable = regressand = LHS variable = y
- Train = learn = estimate = fit a model

Benjamin S. Skrainka

Types of machine learning models

Two main types of machine learning models:

- Supervised: models a label using features
 - ► Regression: analyze a continuous outcome, such as price or demand
 - Classification: predict a categorical (discrete) outcome, such as fraud or churn
- Unsupervised: finds patterns or labels for unlabeled data
 - ► Clustering: hierarchical, k-means
 - Dimension reduction: PCA, SVD, NMF

Types of data

Common types of data:

- Cross-section: x_i
 - One observation per individual or cross-sectional unit
 - Computed at one point in time
 - ► Many i, One t
- Time-series: x_t
 - Multiple observations of a quantity over time, e.g., GDP
 - Computed at multiple instants
 - ▶ One i, Many t
- Panel-data: xit
 - ► Observe units over time
 - Example: NLSY (National Logitudinal Survey of Youth)
 - Many i at many t
- Pooled cross-section:
 - An *individual* is observed at either t = 0 or t = 1
 - ► Two pools of cross-sectional units

Types of features

- Continuous:
 - ► Example: price, quantity, sales, tenure
 - May bin using quantiles to model non-linearities better
- Categorical:
 - ► Takes discrete levels
 - Also called a factor
 - ► Example: 1/0, Yes/No, Treated/Control, High/Medium/Low
- Text/audio/image
 - May need to generate features

Small, medium, or large data

Size of data affects analysis:

- For causal questions, need to perform inference:
 - ▶ Requires large *N* so that estimator is *asymptotically normal*
 - ► Requires small *N* to compute of standard errors
- For prediction, can use truly large data sets:
 - Must check model via cross-validation
 - ► Can run at scale, but cannot perform inference
 - ▶ May need regularization to avoid overfitting if there are a lot of features

12 / 65

Linear Regression

Benjamin S. Skrainka Linear Regression June 7, 2016 13 / 65

Introduction to linear regression

Regression models the expected value of the outcome, conditional on features:

$$\mathbb{E}[y|x] = x^T \beta$$

or

$$y_i = x_i^T \beta + \epsilon_i, \forall i$$

- ullet Linear regression predicts the mean value (mean) of y, holding x fixed
- ullet Model is *linear* in parameters eta but features may be non-linear functions of data, such as polynomials or splines
- Other models are possible, such as quantile regression

Notation

Some notation:

- y_i : dependent variable for observation i
- x_i : $K \times 1$ vector of covariates for observation i
- ϵ_i : unobserved shock for observation i
- $y: N \times 1$ vector of y_i
- $X: N \times K$ matrix of covariates, where there are k covariates and each row is x_i^T
- ϵ : $N \times 1$ vector of ϵ_i
- β : parameters (coefficients) to estimate

$$y = X\beta + \epsilon$$

Gauss Markov Assumptions

Often, we assume:

- **1** Linearity: $y = x^T \beta + \epsilon$
- 2 Full rank: X has full rank (rank = K)
- **3** Exogeneity of regressors: $\mathbb{E}[\epsilon|X] = 0$
- Spherical errors, i.e., homoscedastic and not autocorrelated:
 - $Var[\epsilon_i|X] = \sigma^2, \forall i$
 - $Cov[\epsilon_i, \epsilon_j | X] = 0, \forall i \neq j$
- **1** Normally distributed errors: $\epsilon | X \sim N(0, \sigma^2 I)$

Can relax many of these assumptions, especially Normality

Exogeneity

An exogenous variable is determined outside of the model:

- $\bullet \Rightarrow \mathbb{E}[x_i \epsilon_i] = 0$
- If exogeneity fails, then:
 - Estimates for $\hat{\beta}$ will be biased
 - ▶ Then x_i is *endogenous*, i.e., determined inside the model
 - x_i is correlated with ϵ_i

Endogeneity

Common causes of endogeneity include:

- Measurement error
 - ► Example: classical 'errors in variables' ⇒ attenuation bias
- Omitted variable bias
- Simultaneity
 - ▶ Some RHS variable x_i is determined simultaneously with y
 - Example: selection bias because ability is not observed but affects income and education:

$$income_i = \beta_0 + \beta_{edu} \cdot educ_i + \beta_{gender} \cdot gender_i + \cdots + \epsilon_i$$

Homoscedasticity

Homoscedastic errors mean the variance of the shock is constant:

- Often fails in practice because variance of shock depends on covariates
- Can correct by estimating a regression with 'robust' standard errors:
 - Many corrections
 - Example:
- Heteroscedasticity

Classical regression model

FIGURE 2.2 The Classical Regression Model.

min S. Skrainka Linear Regression June 7, 2016 20 / 65

Fitting a regression

Benjamin S. Skrainka Linear Regression June 7, 2016 21 / 65

Properties

- Parameter estimates: $\hat{\beta}$
- Fitted values (prediction): $\hat{y} = X^T \hat{\beta}$
- Residuals: $\hat{\epsilon}_i = y_i = x_i^T \hat{\beta}$ Standard error: $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} \hat{\epsilon}^2$

Best Linear Unbiased Estimator (BLUE)

Gauss Markov theorem:

- Given classical assumptions:
 - Linearity
 - ► Full rank
 - Exogenous regressors
 - ► Homoscedastic, uncorrelated, Gaussian errors
- Then, least squares estimator is:
 - Unbiased
 - Minimum variance estimator

Interpretation of regression

Two interpretations:

- Minimizes MSE
- ullet Projects data onto subspace spanned by X

Interpreting regression results

- Ceteris paribus
- Comparative statics

Benjamin S. Skrainka Linear Regression June 7, 2016 25 / 65

Example: regression output

Multiple linear regression

Benjamin S. Skrainka Linear Regression June 7, 2016 27 / 65

Dummy variables

To work with categorical data, use dummy variables:

- Collinear with intercept if saturated model
- Factor = categorical = dummy
- May proxy for unobserved effect

Example: creating dummy variables

Often you need to create a series of dummy variables for a categorical variable which has multiple levels:

```
df = pd.read_csv('amazing_data.csv')
feature_cols = [0, 2, 3, 4, 7]
Xdum = pd.DataFrame(sm.tools.categorical(np.array(df.my_factorX = pd.concat(df.icol(feature_cols), Xdum], axis=1)
```

Interactions

4 D > 4 B > 4 E > 4 E > E 990

Benjamin S. Skrainka Linear Regression June 7, 2016 30 / 65

Displaying results

Display regression results in a table:

- Each row is a feature
- Each column is a model specification
- Quote standard error or p-value:
 - Under each estimate
 - ► In a separate column
- Do not quote results as an equation with numeric coefficients

Example of regression results

Benjamin S, Skrainka Linear Regression June 7, 2016 32 / 65

Evaluating a Regression model

Benjamin S, Skrainka Linear Regression June 7, 2016 33 / 65

 R^2

Benjamin S. Skrainka Linear Regression June 7, 2016 34 / 65

F-statistic

Benjamin S, Skrainka Linear Regression June 7, 2016 35 / 65

Residuals

Senjamin S. Skrainka Linear Regression June 7, 2016 36 / 65

Heteroscedasticity

Benjamin S. Skrainka Linear Regression June 7, 2016 37 / 65

Non-normality

- White noise
- QQ plots
- Normality tests: Jarque-Bera, Shapiro-Wilk

enjamin S. Skrainka Linear Regression June 7, 2016 38 / 65

(Serial) correlation

- Temporal
- Spatial or between individuals

Benjamin S. Skrainka Linear Regression June 7, 2016 39 / 65

Multicollinearity

Benjamin S. Skrainka Linear Regression June 7, 2016 40 / 65

Model specification: AIC

Benjamin S. Skrainka Linear Regression June 7, 2016 41 / 65

Cross-validation

42 / 65

Benjamin S. Skrainka Linear Regression June 7, 2016

Common Problems Applying Regression Models to Data

Senjamin S. Skrainka Linear Regression June 7, 2016 43 / 65

Common problems

- Non-linearity
- Non-normality

Benjamin S, Skrainka Linear Regression June 7, 2016 44 / 65

Sources of bias

Some common sources of bias:

- Simultaneity
- Measurement error
 - Classical 'errors in variables'
 - ► Omitted variable bias
- Attenuation bias

Long-tailed data

- May be better to work in logs
- Use Box-Cox test

Benjamin S. Skrainka Linear Regression June 7, 2016 46 / 65

Meaning of coefficients for models of log(y)

Benjamin S. Skrainka Linear Regression June 7, 2016 47 / 65

Outliers

- 4 ロ ト 4 昼 ト 4 差 ト 4 差 ト - 差 - 夕 Q ()

Leverage

To measure influence of an outlier:

- Compute the 'hat matrix': $H = X^T(X^TX)^{-1}X$
- ullet i-th element on the diagonal, $h_{ii}\equiv (H)_{ii}$, is i-th feature's 'leverage'
- An observation with a large residual may not have a lot of influence
- May affect level or slope

Influential points

- Affect slope of regression
- Have large residual, $\hat{\epsilon}_i$ and high leverage, h_{ii}

Senjamin S. Skrainka Linear Regression June 7, 2016 50 / 65

Advanced Topics

Benjamin S. Skrainka Linear Regression June 7, 2016 51 / 65

Relaxing the Gauss-Markov assumptions

3enjamin S, Skrainka Linear Regression June 7, 2016 52 / 65

Generalized Least Squares (GLS)

Benjamin S. Skrainka Linear Regression June 7, 2016 53 / 65

Non-linearity

- Polynomials
- Splines
- Other basis functions, e.g., sin(x) and cos(x) with time-series data

Benjamin S. Skrainka Linear Regression June 7, 2016 54 / 65

Instrumental variables

Benjamin S, Skrainka Linear Regression June 7, 2016 55 / 65

Panel data

Time series

57 / 65

Classification or Discrete choice

Benjamin S. Skrainka Linear Regression June 7, 2016 58 / 65

Local linear regression

Benjamin S. Skrainka Linear Regression June 7, 2016 59 / 65

Generalized additive models (GAM)

Benjamin S. Skrainka Linear Regression June 7, 2016 60 / 65

Regularization

Benjamin S. Skrainka Linear Regression June 7, 2016 61 / 65

Practical tools

enjamin S. Skrainka Linear Regression June 7, 2016 62 / 65

Regression tools

- sm.add_constant()
- sm.tools.categorical()

Benjamin S. Skrainka Linear Regression June 7, 2016 63 / 65

Plot tools

From Pandas:

- pd.tools.plotting.scatter_matrix(df, diagonal='kde')
- df.boxplot()

From StatsModels:

- sm.graphics.influence_plot(results)
- sm.graphics.qqplot(ols_fit.resid, line='q')

Summary