Stability selection:

enhanced variable selection and network models

Session 3/3

Barbara Bodinier

Computational Epidemiology
MSc Health Data Analytics and Machine Learning

4 March 2021

Imperial College London

Back to the multi-OMICs signature of smoking

- Objective: characterisation of the molecular signature of tobacco smoking
- In particular, exploring how CpG sites and transcripts jointly mediate the effect of smoking
- Estimation of pairwise relationships in conditional independence networks
 - Methylation networks: epigenetic response to smoking
 - ⇒ Need for a metric measuring the correlation between variables
 ⇒ Calibration issue: how many edges to include?
 - Multi-OMICs networks: integration of data from multiple OMICs platforms for a better understanding of the molecular consequences of smoking
 - ⇒ Accommodate heterogeneous blocks of data

Network of smoking-related CpG sites

Barbara Bodinier

- Focus on 159 DNA methylation markers of long-term exposure to tobacco smoking (meta-analysis by London et al.)
- Measurements from 250 Women from the NOWAC cohort
- Calibration maximising the stability score under constraint that PFER < 30

 \Rightarrow Calibrated λ = 04540 and π = 0.79

Stability selection

4 March 2021

Network of smoking-related CpG sites

 \Rightarrow Modules of CpG sites from the same chromosome/closely located on the genome are detected

⇒ Both cys- and trans-relationships are detected

Barbara Bodinier Stability selection 4 March 2021 4/13

Network of smoking-related CpG sites

Barbara Bodinier

 \Rightarrow Central role of F2RL3, AHRR and ALPPL2 (high degree)

Stability selection

4 March 2021

Towards OMICs integration

Barbara Bodinier

• Pearson's correlation heatmap between CpG sites and transcripts (left)

 \Rightarrow Overall weaker between-OMICs than within-OMIC correlations \Rightarrow Multi-block calibration with block-specific parameters to account for heterogeneity in the data

Stability selection

4 March 2021

Performance of multi-block calibration

Block-specific precision-recall plots showing the performance of single-block (blue)
 vs. multi-block (red) calibrated models on simulated multi-OMICs data

 \Rightarrow Clear increase in performance with multi-block calibration in all three blocks

 \Rightarrow Allowing for block-specific parameters improves performances on heterogeneous data

Integration with gene expression

Multi-block calibration procedure maximising block-specific stability scores

 \Rightarrow Calibration of the three pairs of parameters (λ_b, π_b)

Barbara Bodinier Stability selection

Multi-OMICs network: methylation and gene expression

 Integration of the 159 DNA methylation (blue) and 208 gene expression (red) markers of tobacco smoking measured in the same 250 individuals (NOWAC)

⇒ Detection of 96 cross-OMICs edges

Central role of LRRN3

 \Rightarrow Very central role of LRRN3 (CpG site and transcript): linking the two blocks

Functional annotation

Biological annotation of the transcripts using the Reactome knowledgebase

⇒ Same cluster of transcripts involved in the cellular response to stress
 ⇒ Annotation of related transcripts can give insight into functional role of the CpG sites

Conclusions/Perspectives

- Stability selection: complementing variable/edge selection algorithms with resampling procedures
- Calibration of the model based on a stability score measuring how far the model is from uniform (uninformative) selection of the features
- Optionally: constraint on the expected number of falsely selected features
- Multi-block extension to accommodate heterogeneous data sources
- Enhanced performances of the models compared to non-stability approaches (simulation studies)
- Limited increase in computation time compared to CV procedure
- Generated results seem biologically meaningful (functional annotation of the network)
 - ⇒ More work for a generalisable module annotation tool in networks (WGCNA)

Applications

- R package in preparation
- Approach is readily applicable to any variable selection model
 - ⇒ Could be used in combination with sparse (group) PLS models
- Stability selection models currently used for:
 - Detection of metabolomic features associated with a change in cognitive score (Nina)
 - Detection of proteomic/transcriptomic features associated with eosinophilic/neutrophilic status in asthma (Khezia)
 - Characterisation of the metabolomic signature of the BHS (Ana)
 - Identification/ranking of risk factors for cardiovascular disease prediction (Matt, Josh)
 - Identification of age-specific COVID-19 symptoms (Matt, Josh)

Acknowledgements

- Prof Marc Chadeau-Hyam (PI)
- Dr Sarah Filippi
- Dr Julien Chiquet
- Dr Stéphane Robin
- Prof Torkjel Sandanger
- Dr Therese Haugdahl Nost

- Funding:
 - ► Cancer Research UK 'Mechanomics' PRC project grant (Grant PRC 22184 to MC-H)
 - PhD Studentship from the MRC Centre for Environment and Health