Particle spectrograph

Wave operator and propagator

$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$ $-\frac{2}{\alpha_0 (1+k^2)^2}$ $\frac{2ik}{\alpha_0 (1+k^2)^2}$	$\frac{\sqrt{2}k}{\sqrt{2}}$ 0	}	3 +	η.
$+\alpha\beta = \frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2} - \frac{2}{\alpha_0 (1+k^2)^2} - \frac{2}{\alpha_0 ($	-α ⁰ κ ⁻	0	0	0
$ \alpha\beta = \frac{2i\sqrt{2}k}{2i\sqrt{1+i\sqrt{2}\sqrt{2}}} = \frac{2ik}{2i\sqrt{1+i\sqrt{2}\sqrt{2}}}$	$\frac{2ik}{1+k^2)^2} \qquad 0$	0	0	0
$\alpha_0 + \alpha_0 k^- \mid \alpha_0 (1 + k^-)^- \mid$	$\frac{2k^2}{\alpha_0(1+k^2)^2} \qquad 0$	0	0	0
$\sigma_{1}^{\#1} + \alpha = 0 = 0 = 0$	0 0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	0	$-\frac{4ik}{\alpha_0+2\alpha_0k^2}$
$\sigma_{1}^{\#2} + \alpha$ 0 0 $-\frac{2\sqrt{2}}{\alpha_0 + 2\alpha}$	$0 \qquad -\frac{2\sqrt{2}}{\alpha_0 + 2\alpha_0 k^2}$	i	0	$-\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$
$t_{1}^{\#1} + ^{\alpha}$ 0 0 0 0	0 0	0	0	0
$\tau_1^{\#2} + \alpha$ 0 0 $\frac{4ik}{\alpha_0 + 2\alpha_0}$	$0 \frac{4ik}{\alpha_0 + 2\alpha_0 k^2}$	$\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$	0	$-\frac{4k^2}{\alpha_0(1+2k^2)^2}$

Quadratic (free) action	
S==	
$\iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + \alpha_0 (-\frac{1}{2} \omega_{\alpha\zeta\beta} \omega^{\alpha\beta\zeta} - \frac{1}{2} \omega^{\alpha\beta}_{\alpha} \omega_{\beta\zeta}^{\zeta} - f^{\alpha\beta} \partial_{\beta}\omega_{\alpha\zeta}^{\zeta} +$	
$\partial_{\beta}\omega_{\alpha}^{\alpha\beta} + f^{\alpha\beta}\partial_{\zeta}\omega_{\alpha\beta}^{\zeta} - f_{\alpha}^{\alpha}\partial_{\zeta}\omega_{\beta}^{\beta\zeta}))[t, x, y, z]dzdydxdt$	

				×				l							$\omega_{2}^{#1}$ †	αβχ
$f_{1}^{\#2}$	0	0	0	$-\frac{1}{2}\bar{l}\alpha_0k$	0	0	0	$\omega_{0}^{\#1}$	0	0	0	2 00		$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{lpha\beta}$	$\sigma_{2}^{\#1}_{\alpha\beta\beta}$
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0	$f_{0}^{#2}$	0	0	0	0	$\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$	0	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\omega_{1}^{\#2}{}_{lpha}$)	0	0	0	$\frac{\alpha_0}{2\sqrt{2}}$	0	0	0	$f_0^{\#1}$	$-\frac{i\alpha_0k}{\sqrt{2}}$	0	0	0	$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\alpha_0 k$	$\frac{2}{\alpha_0 k^2}$	0
$\omega_{1^{-}}^{\#1}{}_{lpha}$	0	0	0	4 0	$\frac{\alpha_0}{2\sqrt{2}}$	0	$\frac{i\alpha_0 k}{2}$	$\omega_0^{\#1}$	± α0/2	$\frac{i\alpha_0 k}{\sqrt{2}}$	0 +	0 +	$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{4}{\alpha_0}$
$f_{1}^{\#1}$ $^{\#}$	$\frac{i \alpha_0 k}{2 \sqrt{2}}$	0	0	0	0	0	0		$\omega_{0}^{\#1}$	$f_0^{\#1}$	$f_{0}^{#2}$	$\omega_{0^{\bar{-}}}^{\#1}$				rce coi
$^{\chieta}$									$\sigma_0^{\#}$	τ_{0}^{+}	$t^{\frac{1}{2}}$ t_0^{\sharp}	$\sigma_{0}^{#2} + \sigma_{0}^{#}$	#1) ⁻		$\frac{SO(1)}{\tau_0^{\#2}}$:	3) irrep
$\omega_1^{\#_+^2} _{\alpha\beta}$	$\frac{\alpha_0}{2\sqrt{2}}$	0	0	0	0	0	0	$\sigma_{0}^{\#1}$	† 0	$-\frac{i\sqrt{\alpha_0}}{\alpha_0}$	- 1 (0 0)		_	== 0 ^x + 2 i k

 $-\frac{i\sqrt{2}}{\alpha_0}k$

 $\frac{1}{\alpha_0 k^2}$

0

0

Source constraints/gauge generators							
SO(3) irreps	Multiplicities						
$\tau_{0^{+}}^{\#2} == 0$	1						
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3						
$\tau_{1^{-}}^{\#1\alpha} == 0$	3						
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3						
Total constraints:	10						

 $\omega_{2^{+}\alpha\beta}^{\#1} \, f_{2^{+}\alpha\beta}^{\#1} \, \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $\frac{i \alpha_0 k}{2 \sqrt{2}}$

0

 $-\frac{\alpha_0}{4}$

 $\omega_{2^+}^{\#1}\dagger^{\alpha\beta}$

 $f_{2^{+}}^{#1} \dagger^{\alpha\beta}$

Massive and massless spectra

(No massive particles)

 $\frac{\alpha_0}{2\sqrt{2}}$

9 4

0

 $\frac{i}{2} \alpha_0 k$

0

 $\tau_{0^{+}}^{\#1} \dagger$

Unitarity conditions