Kurze Vorstellungsrunde

Steffen Oeltze-Jafra,
 Klinik für Neurologie,
 Universitätsklinikum
 Magdeburg

Marko Rak,
 Bereich IT und
 Medizintechnik,
 Universitätsklinikum
 Magdeburg

Max Dünnwald,
 Klinik für Neurologie,
 Universitätsklinikum
 Magdeburg

Intelligente Qualitätsanalyse (iQA) von MRT Aufnahmen

Healthcare Hackathon Mainz 2020

Aktuelle Praxis der QA von MRT Aufnahmen

- In klinischer Routine/Forschung: QA durch MTA bzw. geschultes Team
 - Zwar trainierte, aber dennoch subjektive Bewertung der Daten
 - Manuelle und visuelle Inspektion statt automatische Verfahren
- Typische Artefakte in Bilddaten der Klinik/Studien:
 "Ghosting"
 "Noise"
 "Blurry"

Bedeutung der iQA für die Klinische Routine

- 11.100 MRT-Untersuchungen 2019 in der Radiologie des Uniklinikums MD
- Jede Untersuchung besteht aus mehreren Aufnahmen/Sequenzen
- Qualität jeder Aufnahme muss visuell durch MTA bewertet werden
- MTA trifft Entscheidung, ob Qualität für diagnostische Fragestellung ausreichend ist

- iQA kann zu einer schnelleren Entscheidung führen, ob Aufnahme wiederholt werden muss → kürzere Zeit des Patienten im Scanner
- iQA kann zu besserer Entscheidung führen → Radiologe erhält für Befundung keine schlechten Bilder, gute Aufnahmen werden nicht wiederholt (Kosten)

Bedeutung der iQA für die Klinische Forschung

Patienten mit neurologischen und psychiatrischen Erkrankungen Krankenhäuser, Radiologiepraxen, Neurologen Daten aus der klinischen Routine (MRT, EEG, MEG,...)

24.500 MRT-Studien des Schädels seit 2003 an der KNEU, 20-30 neue solcher Studien jede Woche am UKMD

> Elektronische Patientenakte

KI-basierte, DSGVOkonforme quantitative Analyse der Daten

Poul 20 of Commission Vaccion on Agricultural Street Lines Street Line

THE STATE OF THE S

Datenbank "Das Digitale Gehirn Sachsen-Anhalt"

Region		Lesion Count		Lesion Vol [ml]	
Hippocampus		12	(0.05
	Region		Vol		Norm
Ba			[ml]		[ml]
Ce	Hippocampus		2,8		3,1-4,5
ser	Frontallappen		64,7		62,0- 81,7
	Temporallap	pen	52,8		40,9- 60,7

neue Erkenntnisse zu Prävention, Früherkennung, Diagnose und Therapie Big Data Analyse in Verbindung mit weiteren Daten (Labor, Vital, etc.)

BrainPrint:

quantitative Maße der Hirnstruktur und –funktion

Bedeutung der iQA für die Alzheimer-Forschung

DELCODE: DZNE Longitudinal Study of Cognition and Dementia

Teilnehmer: 1079 Probanden (1180 Scans)

Geschlecht: 550 weiblich, 529 männlich

Geburtsjahr: 1923-1966, mittel: 1945

Kohorten:

Subjective Cognitive Decline: 461

Healthy Control: 305

Mild Cognitive Impairment: 190

Alzheimer's Disease: 123

AD- Relatives: 102

 Zusätzlich: Lumbalpunktionen, Biomarker, Neuropsychologische Tests, etc...

Bedeutung der iQA für die Alzheimer-Forschung

- Multizentrische Studie: QA ist unumgänglich, Feedback wird benötigt
- Aufwand: individuelle Kontrolle aller Scans/Sequenzen, Kommunikation...

Ziele des Projekts und Teilziel des Hacks

- Projektziele
 - Automatische Klassifikation von Bildartefakten in MRT-Aufnahmen
 - Automatische Klassifikation der Artefaktstärke
 - Automatische Korrektur der Bildartefakte
 - Integration der Algorithmen in die klinische Routine

- Teilziel des Hacks
 - Erschaffung einer künstlichen Intelligenz, welche einzelne Bildartefakte und Kombinationen von Artefakten in MRT-Aufnahmen des Kopfes zuverlässig automatisch klassifiziert

Hack-Details

https://github.com/mduennwald/HealthcareHackathonMRIQA