

Übung 5 Fertigungstechnik: Zeitspanungsvolumen

Dr.-Ing. Anke Müller, 04.07.2017 Institut für Werkzeugmaschinen und Fertigungstechnik

- Definition und Vorgehensweise zur Bestimmung des Zeitspanvolumens
- Bohren
- Drehen
- Fräsen
- Schleifen

- Definition und Vorgehensweise zur Bestimmung des Zeitspanvolumens
- Bohren
- Drehen
- Fräsen
- Schleifen

Definition

■ Das Zeitspanungsvolumen **Q**_w ist das <u>pro Zeiteinheit</u> zerspante Volumen in mm³/s.

- Es lässt sich als zeitliche Ableitung der Funktion V(t) des zerspanten Volumens berechnen.
- Beim Schleifen wird das Zeitspanungsvolumen häufig auf die effektive Scheibenbreite bezogen. Das bez. Zeitspanungsvolumen Q'_w hat also die Einheit mm³/(mm s).

- Bestimmen des zerspanten Volumens über der Zeit in Form einer expliziten Funktion ^{①②}
- Berechnung der Funktion für das Zeitspanungsvolumen als Ableitung des zerspanten Volumens über der Zeit
- Einsetzen der Zahlenwerte in die Funktion für das Zeitspanungsvolumen zur Berechnung der geforderten Werte, Herleiten der fehlenden Werte
- → Teillösungspunkte auf den Rechenweg!

- Definition und Vorgehensweise
- Bohren
- Drehen
- Fräsen
- Schleifen

Berechnen Sie das Zeitspanungsvolumen beim Bohren des in der Skizze dargestellten Loches.

Spanungsgrößen beim Bohren

Bohrerspitze zum

Werkzeug im Vollschnitt:

1)2

3

1

2

3

sin = G/H cos = A/Htan = G/A

Zeitspanungsvolumen beim Bohren (Lösung)

Fehlende Komponenten suchen

3

4

4

4

- Definition und Vorgehensweise
- Bohren
- Drehen
- Fräsen
- Schleifen

14

 $_{\mathsf{L}}\mathbf{a}_{\mathsf{p},\mathsf{pl}}$

Zeitspanungsvolumen beim Drehen (Aufgabe)

Berechnen Sie gemäß der Skizze das Zeitspanungsvolumen beim Plandrehen mit

a) konstanter Drehzahl

- b) konstanter Schnittgeschwindigkeit und beim
- c) Längsdrehen mit konstanter Drehzahl.

Parameter:

 d_2 : 100 mm

 I_{w} : 200 mm

n: 600 U/min

f: 0,5 mm

 $a_{p,pl}$: 1 mm

 $a_{p,l}$: 2 mm

Plandrehen, konstante Drehzahl:

Plandrehen, konstante Drehzahl:

Berechnen Sie gemäß der Skizze das Zeitspanungsvolumen beim Plandrehen mit

- konstanter Drehzahl
- konstanter Schnittgeschwindigkeit und beim

Längsdrehen mit konstanter Drehzahl.

Parameter:

 d_2 : 100 mm

200 mm

600 U/min n:

0,5 mm

1 mm a_{p,pl}:

2 mm $a_{p,l}$:

Längsdrehen, konstante Drehzahl:

- Definition und Vorgehensweise
- Bohren
- Drehen
- Fräsen
- Schleifen

Zeitspanungsvolumen beim Fräsen (Aufgabe)

Berechnen Sie das Zeitspanungsvolumen beim Fräsen der in der Skizze

gezeigten Nut.

Parameter:

n= 1300 U/min

d= 30 mm

z=4

 $f_{7} = 0.2 \text{ mm}$

h= 10 mm

Zeitspanungsvolumen beim Fräsen (Lösung)

Werkzeug im Vollschnitt:

Fräser zum Zeitpunkt t1

Werkzeug im Vollschnitt:

- Definition und Vorgehensweise
- Bohren
- Drehen
- Fräsen
- Schleifen (19.06.2018)