Higher-order Arities, Signatures and Equations via Modules

Ambroise Lafont

joint work with Benedikt Ahrens, André Hirschowitz, Marco Maggesi

Work submitted to FSCD 2019

Keywords associated with syntax

Induction/Recursion

Substitution

Model

Operation/Construction

Arity/Signature

This talk: give a mathematical account of this topic

Motivation: LCD

The *differentiable* λ -calculus (LCD) was introduced by [Ehrard-Regnier 2003].

The syntax is not straightforward, as it involves some equations.

There are alternative presentations of the syntax in later articles, more or less verbose.

Motivation: LCD

The *differentiable* λ -calculus (LCD) was introduced by [Ehrard-Regnier 2003].

The syntax is not straightforward, as it involves some equations.

There are alternative presentations of the syntax in later articles, more or less verbose.

The next slides give 3 variants of the syntax

A **syntax** for the **differentiable λ-calculus** by **mutual induction**:

[Categorical Models for Simply Typed Resource Calculi]

Simple terms:

$$\Lambda^s: \quad s, t, u, v ::= \quad x \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$$

Differential λ-terms:

$$\Lambda^d: \quad S, T, U, V ::= \quad 0 \mid s \mid s + T$$

A syntax for the differentiable λ-calculus by mutual induction:

[Categorical Models for Simply Typed Resource Calculi]

Simple terms:

$$\Lambda^s: \quad s, t, u, v ::= \quad \stackrel{\checkmark}{x} \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$$

Differential λ-terms:

 $\Lambda^d: \quad S, T, U, V ::= \quad 0 \mid s \mid s + T$ neutral element for + modulo commutativity

$$s+T$$

modulo α -renaming of x

A syntax for the differentiable λ-calculus by mutual induction:

[Categorical Models for Simply Typed Resource Calculi]

Simple terms:

$$\Lambda^s: \quad s, t, u, v ::=$$

 $\Lambda^s: \quad s, t, u, v ::= \quad \stackrel{\checkmark}{x} \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$

modulo α -renaming of x

Differential λ-terms:

 $\Lambda^d: \quad S, T, U, V ::= \quad 0 \mid s \mid s + T$ neutral element for + modulo commutativity

 Λ^{d} = FreeCommutativeMonoid(Λ^{s})

A syntax for the differentiable λ-calculus by mutual induction:

[Categorical Models for Simply Typed Resource Calculi]

Simple terms:

$$\Lambda^s: \quad s, t, u, v ::=$$

modulo lpha-renaming of x

Differential λ-terms:

 $\Lambda^d: \quad S, T, U, V ::= \quad 0 \mid s \mid s + T$ neutral element for + modulo commutativity

 Λ^d = FreeCommutativeMonoid(Λ^s)

A syntax is specified by operations and equations.

A syntax for the differentiable λ-calculus by mutual induction:

[Categorical Models for Simply Typed Resource Calculi]

Simple terms:

$$\Lambda^s: \quad s, t, u, v ::=$$

modulo α -renaming of x

Differential λ-terms:

$$\Lambda^d: S, T, U, V ::= 0 \mid s \mid s + T$$
 neutral element for + modulo commutativity

 Λ^d = FreeCommutativeMonoid(Λ^s)

A syntax is specified by operations and equations.

But which ones are allowed? What is the limit?

Which operations/equations are allowed to specify a syntax?

Can we avoid mutual induction?

A stand-alone presentation of simple terms:

Simple terms:

$$\Lambda^s: s, t, u, v ::= x \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$$

Differential λ-terms:

$$T \in \Lambda^d = FreeCommutativeMonoid(\Lambda^s)$$

Which operations/equations are allowed to specify a syntax?

Can we avoid mutual induction?

A stand-alone presentation of simple terms:

Simple terms:

$$\Lambda^s: \quad s,t,u,v ::= \quad x \mid \lambda x.s \mid sT \mid \mathsf{D} \, s \cdot t$$

as an operation: $\Lambda^s \times FreeCommutativeMonoid(\Lambda^s) \to \Lambda^s$

Differential λ-terms:

 $T \in \Lambda^d = FreeCommutativeMonoid(\Lambda^s)$

Which operations/equations are allowed to specify a syntax?

A stand-alone presentation of differential λ -terms:

Allow summands everywhere (not only in the right arg of application)

Differential λ -terms:

$$\Lambda^{
m d}: S,\!T$$
 $::= x \mid \lambda x.S \mid ST \mid {\sf D}S \cdot T$ neutral element for $+$ modulo commutativity and associativity

Turn [Categorical Models for

Simply Typed Resource Calculi]'s

abbreviations into equations:

$$\lambda x. \Sigma_i t_i = \Sigma_i \lambda x. t_i$$
$$(\Sigma_i t_i) u = \Sigma_i t_i u$$

$$D(\Sigma_i t_i) \cdot (\Sigma_j u_j) = \Sigma_i \Sigma_j D t_i \cdot u_j$$

Syntax of LCD: Conclusion

How can we compare these different versions?

In which sense are they syntaxes?

Which operations/equations are we allowed to specify in a syntax?

Syntax of LCD: Conclusion

How can we compare these different versions?

In which sense are they syntaxes?

Which operations/equations are we allowed to specify in a syntax?

What is a syntax?

What is a syntax?

generates a syntax = existence of the initial model

Overview

Topic: specification and construction of untyped syntaxes with variables and a well-behaved substitution (e.g. differential λ -calculus).

Our work:

- 1. general notion of *1-signature* based on *monads* and *modules*.
 - Caveat: Not all of them do generate a syntax
 - special case: classical *algebraic 1-signatures* generate a syntax
- 2. notion of **2-signature**: a pair of a 1-signature and a set of equations.
 - special case: *algebraic 2-signatures* generate a syntax

Previous work of Fiore-Hur 2010

[Fiore-Hur 2010]: presentations of simply typed languages by generating *binding* operations (e.g. λ -abstraction) and equations among them.

Our work: for the untyped setting, a variant of their approach where monads and modules over them are the central notions.

Table of contents

1. Review: Binding signatures and their models

2. 1-Signatures and models based on monads and modules

3. Equations

4. Recursion

Table of contents

1. Review: Binding signatures and their models

- Categorical formulation of term languages
- Initial semantics for binding signatures

- 2. 1-Signatures and models based on monads and modules
- 3. Equations
- 4. Recursion

Categorical formulation of a term language

Example: syntax with a binary operation \star , a constant 0, and variables

$$egin{array}{ll} \exp r ::= x & (variable) \ & | t_1 igstar t_2 & (binary operation) \ & | 0 & (constant) \end{array}$$

The syntax can be considered as the endofunctor B (on Set):

$$B: X \mapsto \{\text{expressions over } X\}$$

For example:

$$B(\emptyset) = \{0, 0 \star 0, \dots\}$$

$$B(\{x, y\}) = \{0, 0 \star 0, \dots, x, y, x \star y, \dots\}$$

Categorical formulation of a term language

Then we have:

$$\bigstar: B \times B \stackrel{\centerdot}{\rightarrow} B$$

$$0: \quad 1 \quad \stackrel{\centerdot}{\rightarrow} B$$

$$\operatorname{var}: \operatorname{Id}_{\operatorname{Set}} \to B$$

Putting all together:

$$B \times B + 1 + \operatorname{Id}_{\operatorname{Set}} \to B$$

i.e. B is an algebra for the endofunctor $F\mapsto F imes F+1+\mathrm{Id}_{\mathrm{Set}}$ on the category $\mathrm{End}_{\mathrm{Set}}$.

Actually, B can be **characterized** as the initial algebra.

Binding Signatures

Definition

Binding signature = a family of lists of natural numbers.

Each list specifies one operation in the syntax:

- length of the list = number of arguments of the operation
- natural number in the list = number of bound variables in the corresponding argument

Syntax with 0, ★:

Lambda calculus:

Initial semantics for binding signatures

Reminder

The syntax $(0, \star)$ is the initial algebra for the endofunctor:

$$F \mapsto F \times F + 1 + \operatorname{Id}_{\operatorname{Set}}$$

More generally, any binding signature gives rise to an endofunctor Σ .

Definition $\mathbf{Model} = (\Sigma + \mathbf{Id}_{Set}) \text{-algebra}$

Classical Theorem
The initial $(\Sigma + \mathrm{Id}_{\mathrm{Set}})$ -algebra of a binding signature Σ always exists.

Question: Does this initial algebra come with a well-behaved substitution?

Answer: Yes: see e.g. [Fiore, Plotkin, Turi 1999], [Ghani & Uustalu 2003]

Table of contents

1. Review: Binding signatures and their models

2. 1-Signatures and models based on monads and modules

- Our take on substitution
- Our take on 1-signatures, models and syntax
- Our take on binding 1-signatures
- 3. Equations
- 4. Recursion

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R \mapsto \Sigma(R)$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R\mapsto \Sigma(R)$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R\mapsto \Sigma(R)$$
 module over R

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

A **model of** Σ is a pair:

$$(R, \quad \rho: \Sigma(R) \to R)$$
 monad

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Binding signatures \hookrightarrow Our 1-signatures

A **1-signature** Σ is a functorial assignment:

$$R\mapsto \Sigma(R)$$
 module over R

A **model of** Σ is a pair:

monad := endofunctor with substitution

module over a monad := endofunctor with substitution

Substitution and monads

Reminder:

- B(X) =expressions built out of 0, \star and variables taken in X
- Variables induce a natural transformation $\mathrm{var}:\mathrm{Id}_{\mathrm{Set}} o B$

Substitution:

$$\mathrm{bind}: B(X) o (X o B(Y)) o B(Y)$$
 + laws

A triple (B, var, bind) is called a **monad**.

monad morphism = mapping preserving var and bind.

Monads

- 1. $B : Set \rightarrow Set$ $B(X) = expressions \ built \ out \ of \ 0, \ \star \ and \ variables \ taken \ in \ X$
- 2. A collection of functions $(var_X : X \rightarrow B(X))_X$ Variables are expressions
- 3. For each function $u:X\to B(Y)$, a function $\operatorname{bind}_u:B(X)\to B(Y)$ Parallel substitution

Notation:
$$\operatorname{bind}_{\mathbf{u}}(\mathbf{t}) = \mathbf{t}[\mathbf{x} \mapsto \mathbf{u}(\mathbf{x})]$$

4. Monadic laws:

$$egin{aligned} & \mathrm{var}(\mathbf{y})[\mathbf{x}\mapsto\mathbf{u}(\mathbf{x})] = \mathbf{u}(\mathbf{y}) \\ & \mathbf{t}[\mathbf{x}\mapsto\mathbf{var}(\mathbf{x})] = \mathbf{t} \\ & \mathbf{t}[\mathbf{x}\mapsto\mathbf{f}(\mathbf{x})][\mathbf{y}\mapsto\mathbf{g}(\mathbf{y})] = \mathbf{t}[\mathbf{x}\mapsto\mathbf{f}(\mathbf{x})[\mathbf{y}\mapsto\mathbf{g}(\mathbf{y})] \] \end{aligned}$$

Preview: Operations are module morphisms

★ commutes with substitution

$$(t \star u)[x \mapsto v_x] = t[x \mapsto v_x] \star u[x \mapsto v_x]$$

Categorical formulation

 $B \times B$ supports B-substitution $\bigcirc \longrightarrow B \times B$ is a **module over** B

 \star commutes with substitution \frown $\star: B \times B \to B$ is a **module morphism**

Modules VS Monads

Monad

- 1. $B : Set \rightarrow Set$ $B(X) = expressions \ built \ out \ of \ 0, \ \star \ and \ variables \ taken \ in \ X$
- 2. A collection of functions $(\operatorname{var}_X:X\to B(X))_X$ Variables are expressions
- 3. For each function $u: X \to B(Y)$, a function $\operatorname{bind}_u: B(X) \to B(Y)$ Parallel substitution

Notation:
$$\operatorname{bind}_{\mathrm{u}}(\mathrm{t}) = \mathrm{t}[\mathrm{x} \mapsto \mathrm{u}(\mathrm{x})]^{\mathrm{B}}$$

4. Substitution laws:

$$egin{aligned} & \operatorname{var}(y)[x \mapsto u(x)]^B = u(y) \\ & t[x \mapsto \operatorname{var}(x)]^B = t \\ & t[x \mapsto f(x)]^B[y \mapsto g(y)]^B = t[x \mapsto f(x)[y \mapsto g(y)]^B]^B \end{aligned}$$

Modules VS Monads

Monad Module over a monad B (e.g. $B \times B, 2, ...$)

- 1. $M : Set \rightarrow Set$ $M(X) = expressions \ taking \ variables \ in \ X$
- 2. A collection of functions $(var_X : X \to M(X))_X$
- 3. For each function $u: X \to B(Y)$, a function $\operatorname{bind}_u: M(X) \to M(Y)$ Parallel substitution

Notation:
$$\operatorname{bind}_{\mathbf{u}}(\mathbf{t}) = \mathbf{t}[\mathbf{x} \mapsto \mathbf{u}(\mathbf{x})]^{\mathbf{M}}$$

4. Substitution laws:

$$\begin{split} \frac{var(y)[x\mapsto u(x)] = u(y)}{t[x\mapsto var(x)]^M = t} \\ t[x\mapsto f(x)]^M[y\mapsto g(y)]^M = t[x\mapsto f(x)[y\mapsto g(y)]^B \,]^M \end{split}$$

Building blocks for binding signatures

Essential constructions of **modules over a monad** R:

- R itself
- $M \times N$ for any modules M and N (in particular, $R \times R$)
- The **derivative of a module** M is the module M' defined by $M'(X) = M(X + \{ \diamond \}).$

The derivative is used to model an operation binding a variable (Cf next slide).

Syntactic operations are module morphisms

module morphism = maps commuting with substitution.

$$id_M:M o M$$

$$0:1\rightarrow B$$

$$\bigstar: B \times B \rightarrow B$$

$$app: \varLambda \times \varLambda \to \varLambda$$

$$abs: arLambda^{\scriptscriptstyle{\mathsf{I}}} o arLambda$$

The Big Picture again

A **1-signature** Σ is a functorial assignment:

A **model of** Σ is a pair:

A **model morphism** $m:(R,\rho)\to (S,\sigma)$ is a monad morphism commuting with the module morphism: $\Sigma(R) \xrightarrow{\rho} R$

$$\begin{array}{c|c}
\Sigma(R) & \xrightarrow{\rho} & R \\
\Sigma(m) & \downarrow & \downarrow \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}$$

Syntax

Definition

Given a 1-signature Σ , its **syntax** is an initial object in its category of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.

Counter-example: the 1-signature $R \mapsto \mathscr{P} \circ R$

powerset endofunctor on Set

Examples of 1-signatures generating syntax

(0,★) language:

```
Signature: R \mapsto \mathbf{1} + R \times R
```

Model:
$$(R , 0: 1 \rightarrow R, \bigstar : R \times R \rightarrow R)$$

Syntax:
$$(B, 0: 1 \rightarrow B, \star : B \times B \rightarrow B)$$

lambda calculus:

Signature: $R \mapsto R' + R \times R$

Model: $(R \text{ , } abs: R^{\textbf{\tiny{I}}}
ightarrow R \text{ , } app: R imes R
ightarrow R)$

Syntax: (Λ , $abs: \Lambda' o \Lambda$, $app: \Lambda imes \Lambda o \Lambda$)

Can we generalize this pattern?

Initial semantics for algebraic 1-signatures

Syntax exists for any **algebraic 1-signature**, i.e. 1-signature built out of derivatives, products, coproducts, and the trivial 1-signature $R \mapsto R$.

Algebraic 1-signatures correspond to binding signatures through the embedding:

Binding signatures \hookrightarrow Our 1-signatures

Question: Can we enforce some equations in the syntax?

For example: lambda calculus modulo beta and eta.

Table of contents

- 1. Review: Binding 1-signatures and their models
- 2. 1-Signatures and models based on monads and modules

3. Equations

4. Recursion

Example: a commutative binary operation

Specification of a binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R, + : R \times R \rightarrow R)$

What is an appropriate notion of model for a commutative binary operation ?

Example: a commutative binary operation

Specification of a commutative binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R, +: R \times R \rightarrow R)$ s.t. t+u=u+t (1)

What is an appropriate notion of model for a commutative binary operation ?

Answer: a monad equipped with a commutative binary operation

Example: a commutative binary operation

Specification of a commutative binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R, +: R \times R \rightarrow R)$ s.t. t+u=u+t (1)

What is an appropriate notion of model for a commutative binary operation ?

Answer: a monad equipped with a commutative binary operation

Equation (1) states an equality between R-module morphisms:

Review: Signatures with equations

• [Fiore-Hur 2010]: existence of an initial model for an inductively defined (with a specific syntax) set of possible equations.

• [AHLM CSL 2018]: "quotients" of algebraic 1-signatures generate a syntax (e.g. a binary commutative operation).

Review: Signatures with equations

• [Fiore-Hur 2010]: existence of an initial model for an inductively defined (with a specific syntax) set of possible equations.

Our work: alternative approach where monads and modules are the central notions.

• [AHLM CSL 2018]: "quotients" of algebraic 1-signatures generate a syntax (e.g. a binary commutative operation).

Review: Signatures with equations

• [Fiore-Hur 2010]: existence of an initial model for an inductively defined (with a specific syntax) set of possible equations.

Our work: alternative approach where monads and modules are the central notions.

• [AHLM CSL 2018]: "quotients" of algebraic 1-signatures generate a syntax (e.g. a binary commutative operation).

This work: more general equations (e.g. λ -calculus modulo $\beta\eta$).

Equations

Given a 1-signature Σ , a Σ -equation $A \Rightarrow B$ is a functorial assignment

$$R \mapsto \left(\begin{array}{c} A(R) \Longrightarrow B(R) \\ & \text{parallel pair of module} \\ & \text{morphisms over } R \end{array}\right)$$

A 2-signature is a pair

model of a 2-signature (Σ, E) :

- a model R of Σ
- s.t. \forall (A \Rightarrow B) \in E, the two morphisms $A(R) \Rightarrow B(R)$ are equal

Algebraic 2-signatures

Given a 1-signature Σ , a Σ -equation $A \Rightarrow B$ is **elementary** if:

- 1. A "preserves pointwise epimorphisms"
 - (e.g., any "algebraic 1-signature")
- 2. B is of the form $R \mapsto R'^{...}$ (e.g. $R \mapsto R$)

Algebraic 2-signature:

 (Σ, E) set of **elementary** algebraic 1-signature Σ -equations

Syntax exists for any algebraic 2-signature

Example: λ-calculus modulo βη

The algebraic 2-signature $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$ of λ -calculus modulo $\beta\eta$:

$$\mathbf{\Sigma}_{\mathbf{LC\beta\eta}}\left(\mathrm{R}
ight):=\Sigma_{\mathrm{LC}}(\mathrm{R})=\mathrm{R} imes\mathrm{R}+\mathrm{R}^{\prime}$$

model of Σ_{LC} = monad R with module morphisms:

$$app: R \times R \to R$$
 $abs: R' \to R$

β-equation:
$$(\lambda x.t) u = \underline{t[x \mapsto u]}$$
 η-equation: $t = \lambda x.(t x)$ $\sigma_R(t,u)$

$$\mathbf{E}_{\mathbf{LC}\boldsymbol{\beta}\boldsymbol{\eta}} = \{ \beta \text{-equation}, \eta \text{-equation} \}$$

Example: λ-calculus modulo βη

The algebraic 2-signature $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$ of λ -calculus modulo $\beta\eta$:

$$\mathbf{\Sigma}_{\mathrm{LCBn}}\left(\mathrm{R}
ight) := \Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} imes \mathrm{R} + \mathrm{R'}$$

model of Σ_{1C} = monad R with module morphisms:

$$app: R \times R \to R$$
 $abs: R' \to R$

β-equation:
$$(\lambda x.t) u = t[x \mapsto u]$$

η-equation: $t = \lambda x.(t x)$

$$\mathbf{E}_{LC\beta\eta} = \{ \beta \text{-equation}, \eta \text{-equation} \}$$

Example: fixpoint operator

The algebraic 2-signature (Σ_{fix}, E_{fix}) of a fixpoint operator:

$$\Sigma_{ ext{fix}}\left(\mathrm{R}
ight) := \mathrm{R'} \qquad \qquad \mathrm{E}_{ ext{fix}} = \left\{ \ egin{pmatrix} 1 \ \end{pmatrix}
ight.$$

Proposition [AHLM CSL 2018]

Fixpoint operators in $LC_{\beta\eta}$ are in one to one correspondance with fixpoint combinators (i.e. λ -terms Y s.t. t (Yt) = Yt for any t).

Combining algebraic 2-signatures

Algebraic 2-signatures can be combined:

 λ -calculus modulo $\beta\eta$ with an explicit fixpoint operator

Example: free monoid

An algebraic 2-signature $(\Sigma_{\mathrm{mon}}\,,\, \mathrm{E}_{\mathrm{mon}})$ for the free monoid monad $\mathrm{X}\mapsto \coprod_{\mathrm{n}} \mathrm{X}^{\mathrm{n}}$

$$\Sigma_{\text{mon}}(R) := 1 + R \times R$$

model of Σ = monad R with module morphisms:

$$\epsilon: 1 \to R$$

$$\epsilon: 1 \to R$$
 $m: R \times R \to R$

3 elementary Σ-equations:

associativity

left unit

right unit

Our target: LCD

Syntax of the differentiable λ-calculus:

Simple terms $s,t \in \Lambda$

and (bi)linearity of constructors with respect to +:

$$\lambda x.(s+t) = \lambda x.s + \lambda x.t$$
 ...

Algebraic 1-signature for LCD

Syntax of the differentiable λ-calculus:

Simple terms $s,t \in \Lambda$ Corresponding 1-signature

Algebraic 1-signature for LCD

Syntax of the differentiable λ-calculus:

Simple terms $s,t \in \Lambda$ Corresponding 1-signature

Resulting algebraic 1-signature:

$$\Sigma_{
m LCD}({
m R}) = \Sigma_{
m LC}({
m R}) + {
m R} imes {
m R} + \Sigma_{
m mon}({
m R})$$

Elementary equations for LCD

Commutative monoidal structure:

$$\mathbf{s} + \mathbf{t} = \mathbf{t} + \mathbf{s} \qquad \mathbf{R} \times \mathbf{R} \rightrightarrows \mathbf{R}$$

$$\mathbf{E}_{\text{mon}} \qquad \begin{cases} \mathbf{s} + (\mathbf{t} + \mathbf{u}) = (\mathbf{s} + \mathbf{t}) + \mathbf{u} & \mathbf{R} \times \mathbf{R} \rightrightarrows \mathbf{R} \\ 0 + \mathbf{t} = \mathbf{t} & \mathbf{R} \rightrightarrows \mathbf{R} \\ \mathbf{t} + 0 = \mathbf{t} & \mathbf{R} \rightrightarrows \mathbf{R} \end{cases}$$

Linearity:

$$\lambda x.(s+t) = \lambda x.s + \lambda x.t$$
 $R \times R \rightrightarrows R$ $D(s+t) \cdot u = Ds \cdot u + Dt \cdot u$ $R \times R \times R \rightrightarrows R$ $Ds \cdot (t+u) = Ds \cdot t + Ds \cdot u$ $R \times R \times R \rightrightarrows R$

• • •

Table of contents

- 1. Review: Binding signatures and their models
- 2. 1-Signatures and models based on monads and modules
- 3. Equations

4. Recursion

Recursion on the syntax \approx Initiality in the category of models

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

1. Give a module morphism $s : \Sigma(S) \to S$

Recursion on the syntax \approx Initiality in the category of models

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s: \Sigma(S) \to S$
 - \Rightarrow induces a Σ -model (S, s)

Recursion on the syntax \approx Initiality in the category of models

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s:\Sigma(S)\to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in E are satisfied for this model

Recursion on the syntax \approx Initiality in the category of models

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s: \Sigma(S) \to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in E are satisfied for this model \Rightarrow induces a model of (Σ, E)

Recursion on the syntax \simeq Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s: \Sigma(S) \to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in E are satisfied for this model \Rightarrow induces a model of (Σ, E)

Initiality of R \Rightarrow model morphism $R \to S \Rightarrow$ monad morphism $R \to S$

Example: Computing the set of free variables

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\rm LC}({
m R})={
m R} imes{
m R}+{
m R}^{\scriptscriptstyle \mathsf{I}}$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $fv: LC \to \mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t},\!\mathrm{u}))=\mathrm{fv}(\mathrm{t})\cup\mathrm{fv}(\mathrm{u})$$

$$\mathrm{fv}(\mathrm{abs}(\mathrm{t}))=\mathrm{fv}(\mathrm{t})\setminus\{\diamond\}$$

Example: Computing the set of free variables

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\rm LC}({
m R}) = {
m R} imes {
m R} + {
m R}'$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $fv:LC \to \mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t},\!\mathrm{u}))=\mathrm{fv}(\mathrm{t})\cup\mathrm{fv}(\mathrm{u})$$

$$fv(abs(t)) = fv(t) \setminus \{\diamond\}$$

 \Rightarrow make \mathcal{P} a model of Σ_{LC} :

$$\cup:~\mathcal{P} imes\mathcal{P} o\mathcal{P}$$

$$_\setminus \{\, \diamond \, \}: \, \mathcal{P}^{\scriptscriptstyle \mathsf{I}} \, o \mathcal{P}$$

Example: Computing the set of free variables

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} \times \mathrm{R} + \mathrm{R}'$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $\mathbf{fv}: \mathbf{LC} \to \mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t},\!\mathrm{u}))=\mathrm{fv}(\mathrm{t})\cup\mathrm{fv}(\mathrm{u})$$

$$\mathrm{fv}(\mathrm{abs}(\mathrm{t}))=\mathrm{fv}(\mathrm{t})\setminus\{\diamond\}$$

 \Rightarrow make \mathcal{P} a model of Σ_{LC} :

$$\cup:~\mathcal{P} imes\mathcal{P} o\mathcal{P}$$

$$_\setminus \{\, \diamond \, \}: \, \mathcal{P}^{\scriptscriptstyle \mathsf{I}} \, o \mathcal{P}$$

Initiality of $LC \Rightarrow fv : LC \rightarrow P$ satisfying the above equations (as a model morphism).

Example: Translating λ-calculus with fixpoint

Definition of a translation $\mathbf{f}:\mathrm{LC}_{\beta\eta\mathrm{fix}}\to\mathrm{LC}_{\beta\eta}\,$ s.t.

$$f(u) = "u[\ fix(t) \mapsto app(Y, abs(t)) \]"$$

a chosen fixpoint combinator

Example: Translating λ-calculus with fixpoint

```
\mathsf{LC}_{\mathsf{Bnfix}} = \mathsf{initial} \; \mathsf{model} \; \mathsf{of} \; (\Sigma_{\mathsf{LCBn}} \, , \, \mathord{\mathrm{E}}_{\mathsf{LCBn}}) + (\Sigma_{\mathsf{fix}} \, , \; \mathord{\mathrm{E}}_{\mathsf{fix}})
          \lambda-calculus modulo \beta\eta with a fixpoint operator \mathrm{fix}:\mathrm{LC}_{\beta\eta\mathrm{fix}}'\to\mathrm{LC}_{\beta\eta\mathrm{fix}}
LC_{\beta n} = initial model of (\Sigma_{LC\beta n}, E_{LC\beta n})
          λ-calculus modulo βη
                                                                               monad morphism
Definition of a translation \mathbf{f}: \mathrm{LC}_{\beta\eta\mathrm{fix}} \to \mathrm{LC}_{\beta\eta} s.t.
                                         f(u) = u[fix(t) \mapsto app(Y, abs(t))]
                                                                                                   a chosen fixpoint combinator
\Rightarrow \text{ make LC}_{\beta\eta} \text{ a model of } (\Sigma_{\mathrm{LC}\beta\eta}\,, E_{\mathrm{LC}\beta\eta}) + (\Sigma_{\mathrm{fix}}\,,\ E_{\mathrm{fix}}) \text{:}
                                                                                                   \hat{\mathsf{Y}}: \mathrm{LC}_{\mathsf{Bn}}{}^{\mathsf{I}} 
ightarrow \; \mathrm{LC}_{\mathsf{Bn}}
                                                    app, abs
                                                                                                                      t \mapsto app(Y,abs(t))
```

Example: Translating λ-calculus with fixpoint

```
\mathsf{LC}_{\mathsf{Bnfix}} = \mathsf{initial} \; \mathsf{model} \; \mathsf{of} \; (\Sigma_{\mathsf{LCBn}} \, , \, \mathord{\mathrm{E}}_{\mathsf{LCBn}}) + (\Sigma_{\mathsf{fix}} \, , \; \mathord{\mathrm{E}}_{\mathsf{fix}})
          \lambda-calculus modulo \beta\eta with a fixpoint operator \mathrm{fix}:\mathrm{LC}_{\beta\eta\mathrm{fix}}'\to\mathrm{LC}_{\beta\eta\mathrm{fix}}
LC_{\beta\eta} = initial model of (\Sigma_{LC\beta\eta}, E_{LC\beta\eta})
          λ-calculus modulo βη
                                                                             monad morphism
Definition of a translation \mathbf{f}: \mathrm{LC}_{\beta\eta\mathrm{fix}} \to \mathrm{LC}_{\beta\eta} s.t.
                                         f(u) = u[fix(t) \mapsto app(Y, abs(t))]
                                                                                                 a chosen fixpoint combinator
\Rightarrow \text{ make LC}_{\beta\eta} \text{ a model of } (\Sigma_{\mathrm{LC}\beta\eta}\,,E_{\mathrm{LC}\beta\eta}) + (\Sigma_{\mathrm{fix}}\,,\ E_{\mathrm{fix}})\text{:}
                                                                                                  \hat{\mathsf{Y}}: \mathrm{LC}_{\mathsf{Bn}}{}^{\mathsf{I}} 
ightarrow \; \mathrm{LC}_{\mathsf{Bn}}
                                                    app, abs
```

Initiality of $LC_{\beta\eta fix} \Rightarrow f: LC_{\beta\eta fix} \rightarrow LC_{\beta\eta}$

 $t \mapsto app(Y,abs(t))$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\rm LC}({
m R}) = {
m R} imes {
m R} + {
m R}'$$

Definition of a (monad) morphism $s : LC \rightarrow \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u) \qquad \qquad s(abs(t)) = 1 + s(t)$$

$$s(abs(t)) = 1 + s(t)$$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} \times \mathrm{R} + \mathrm{R}'$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u)$$
 $s(abs(t)) = 1 + s(t)$

$$s(abs(t)) = 1 + s(t)$$

 \mathbb{N} is not a monad!

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = \mathrm{R} \times \mathrm{R} + \mathrm{R}'$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u)$$
 $s(abs(t)) = 1 + s(t)$

$$s(abs(t)) = 1 + s(t)$$

 \mathbb{N} is not a monad!

Solution [CSL AHLM 2010]: continuation monad $C(X) = \mathbb{N}^{(\mathbb{N}^{N})}$

- 1. define $f: LC \rightarrow C$ by recursion
- 2. deduce $s: LC \rightarrow \mathbb{N}$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{
m LC}({
m R})={
m R} imes{
m R}+{
m R}^{
m I}$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u)$$
 $s(abs(t)) = 1 + s(t)$

$$s(abs(t)) = 1 + s(t)$$

 $\mathbb N$ is not a monad!

Solution [CSL AHLM 2010]: continuation monad $C(X) = \mathbb{N}^{(\mathbb{N}^{N})}$

- 1. define $f: LC \to C$ by recursion
- 2. deduce $s: LC \rightarrow \mathbb{N}$

affects an arbitrary size to each variable

 $\textbf{Intuition} \colon \text{uncurrying } f_X : LC(X) \to \mathbb{N}^{(\mathbb{N}^X)} \ \ \, \text{yields } g : LC(X) \times \overset{\bullet}{\mathbb{N}^X} \to \mathbb{N}$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{
m LC}({
m R})={
m R} imes{
m R}+{
m R}^{
m I}$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u)$$
 $s(abs(t)) = 1 + s(t)$

$$s(abs(t)) = 1 + s(t)$$

 $\mathbb N$ is not a monad!

Solution [CSL AHLM 2010]: continuation monad $C(X) = \mathbb{N}^{(\mathbb{N}^{N})}$

- 1. define $f: LC \rightarrow C$ by recursion
- 2. deduce $s: LC \rightarrow \mathbb{N}$

affects an arbitrary size to each variable

 $\textbf{Intuition} \colon \text{uncurrying } f_X : LC(X) \to \mathbb{N}^{(\mathbb{N}^X)} \ \ \, \text{yields } g : LC(X) \times \mathring{\mathbb{N}^X} \to \mathbb{N}$

$$\mathbf{s}(\mathbf{t}) = \mathbf{g}(\mathbf{t}, (\mathbf{x} \mapsto \mathbf{0}))$$

variables are of size 0 45/50

Conclusion

Summary of the talk:

- presented a notion of 1-signature and models
- defined a 2-signature as a 1-signature and a set of equations
- identified a class of 2-signatures that generate a syntax

The main theorem has been formalized in Coq using the UniMath library.

Future work:

- add the notion of reductions;
- extend our framework to simply typed syntaxes.

Conclusion

Summary of the talk:

- presented a notion of 1-signature and models
- defined a 2-signature as a 1-signature and a set of equations
- identified a class of 2-signatures that generate a syntax

The main theorem has been formalized in Coq using the UniMath library.

Future work:

- add the notion of reductions;
- extend our framework to simply typed syntaxes.

Thank you!