

Graph Structural-topic Neural Network

Authors: Qingqing Long*, Yilun Jin*, Guojie Song, Yi Li, and Wei Lin

Paper: http://arxiv.org/abs/2006.14278

Lab: https://www.gjsong-pku.cn/

Code: https://github.com/YimiAChack/GraphSTONE

Date: July 6, 2020

Outline

- **□** Background and Motivation
- **□** GraphSTONE
- Experiments
- **□** Summary

Networks

- Networks are **powerful data structures** that **encode** relationships between objects.
 - In many cases, we care not only the object itself, but also its links with other objects.

Social Networks

Biology Networks

Finance Networks

Networks are not learning friendly

- ☐ Irregular, high-dimensional, and sparse.
 - Degrees of nodes vary (power-law).
 - Probably millions of nodes.
 - A node only connects with very few other nodes.
- ☐ Therefore, we need powerful learning tools!

Network Representation Learning

☐ **Goal:** Transform irregular, high-dimensional and sparse network data (e.g. nodes, or the network itself) into *vectors*, according to network structures and node features.

Graph Convolutional Networks (GCNs)

□ GCNs

- ➤ **Main idea:** For each layer, information is passed between each other through links, and aggregated by each node.
- Fuse node features with the help of network structures.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.

Graph Convolutional Networks (GCNs)

□ GCNs

- > Applications: machine learning tasks in networks
- > e.g. Who is likely to know you? What items are likely to be of your interest?
- Wide industrial applications.

Node Classification

Link Prediction

Graph Convolutional Networks (GCNs)

- Rethinking: In what cases do GCNs perform badly?
- □ **Synthetic data:** Stochastic block model with 10 blocks + <u>random</u> features.
- ☐ GCN performs bad when network structures play the key role!

Method	Results
Random	10.0 ± 0.1
DeepWalk	99.0 ± 0.1
GCN	18.3 ± 0.1

Drawbacks

- ☐ Less capable of expressing structures of networks.
 - Primarily focus on node features, as the previous example.

- High-order structural units (patterns) are generally indicative.
- > e.g. Motifs [1], graphlets [2].

Drawbacks

- ☐ Can we use very deep GCNs, just as ResNet?
 - Yes. However, even very deep GCNs are unable to learn complex structures in networks [1].

- Yes. However...
- Only few motifs [2] are selected insufficient expression.
- ➤ All **possible** structures are selected [3] poor efficiency.

Why selecting a few motifs is insufficient?

☐ An Example:

Research Goal and Challenges

- ☐ Goal: Design a novel GCN framework that adequately describes and models network local structures in an efficient manner, which means:
 - > To consider local structures of nodes as a whole.
 - To be efficient, which means selecting concise and accurate representations of structures.

Why topics?

□ What are topics?

- ➤ In NLP (*Latent Dirichlet Allocation*), topics are defined by a collection of words, and texts are described by a collection of topics.
- ➤ Similar?

Preliminaries

☐ Anonymous Walks

Node is represented by the first position where it appears.

Example

- Random walk sequence: (9, 18, 19, 9)
- \triangleright Anonymous walk sequence: (1, 2, 3, 1)
- ➤ Highly likely generated through a *triadic closure*.
- More theoretical analysis see [1].

Preliminaries

□ Anonymous Walks

Theorem 1.

Let B(v,r) be the subgraph induced by all nodes u such that $dist(v,u) \leq r$, and P_L be the distribution of anonymous walks of length L, one can reconstruct B(v,r) using (P_1, \ldots, P_L) .

- ☐ An analogy to topic modeling in NLP
 - \triangleright Structural patterns (anonymous walks) \Leftrightarrow Words
 - ➤ Sets of walks starting from each node ⇔ *Documents*

document

word1

word2

Concepts for graphs

Concepts in NLP

- ☐ An analogy to topic modeling in NLP
 - Parameters to learn in NLP [1]:
 - ➤ A word-topic distribution matrix
 - > A **document-topic** distribution matrix

- **□** Parameters to learn
 - \triangleright A walk-topic matrix $U \in \mathbb{R}^{K \times |\mathcal{W}_l|}$
 - ightharpoonup A node-topic matrix $R \in \mathbb{R}^{|V| \times K}$

- Not in all cases can we learn topic distributions in NLP
- **Example:**
 - Only one word in each document
 - ➤ No word co-occurrences

 No topics!
- ☐ Input cases need satisfying some constraints ...

☐ An analogy to topic modeling in NLP

Lemma 1.

There is a polynomial-time algorithm that fits a topic model on a graph with

error ϵ , if N and the length of walks l satisfy $\frac{N}{l} \geq O(\frac{b^4 K^6}{\epsilon^2 p^6 \gamma^2 |V|})$.

- For more details, see Section 3.1.2 in our paper.
- ☐ Example:
 - Performance is sensitive to length of walks.

(number of "words" in a "document")

Graph Anchor LDA

- ☐ Selection of indicative structural patterns
 - Due to the irregularity of graphs, large number of walk sequences will be generated.
 - Topic model may focus on **meaningless** sequences and ignore more important structural patterns.
 - These meaningless sequences are like *stopwords* in NLP.

For Example: Meaningless

Representative

Graph Anchor LDA

□ Anchor Selection

- > Select indicative structures patterns based on non-negative matrix factorization (NMF) [1].
- NMF is able to find principal components (anchors in our model).

☐ Topic Learning

➤ Based on selected anchors [2]

$$\arg \min D_{KL} \left(Q_i \| \sum_{k \in \mathbf{A}} U_{ik} \operatorname{diag}^{-1}(Q\vec{1}) Q_{A_k} \right)$$

☐ More theoretical analysis and details see Section 3.1.4 in our paper.

Overview of GraphSTONE

Structural-topic Aware GCN

Structural-topic Aware GCN

■ Multi-view GCN

$$h_i^{(L)} = (\mathbf{W} \cdot \text{ReLU}([h_{i,n}^{(L)} \otimes h_{i,s}^{(L)}]) + \mathbf{b})$$

☐ Structural-topic Aware Aggregator

$$h_i^{(k)} = \text{AGGREGATE}\left(\left\{\frac{R_i^T R_j}{\sum_j R_i^T R_j} h_j^{(k-1)}, v_j \in N(v_i)\right\}\right)$$

- **□** Unsupervised objective function
 - Like GraphSAGE [1]

$$\mathcal{L} = -\log[\sigma(h_i^{(L)T}h_j^{(L)}] - q \cdot \mathbb{E}_{v_n \sim P_n(v)} \log[\sigma(h_i^{(L)T}h_n^{(L)})]$$

Structural-topic Aware GCN

Comparison with community detection

- Our model
 - Focuses on distribution of local structures, i.e. ...
 - will discover structurally similar, but not necessarily connected nodes
- ☐ Community detection
 - Focuses on dense connections [1]
- An example
 - \triangleright Nodes u and v are structurally similar...
 - but belong to distinct communities

Proof-of-concept Visualization

- ☐ Synthetic dataset
 - \triangleright G(n) with 3 structures (constituents).
- Results
 - Our model can mark different structural patterns more clearly

(a) Illustration of G(n)

(b) Graph Anchor LDA

(c) GraphSTONE

(d) GraLSP

(e) MNMF

26

Proof-of-concept Visualization

- Learned distributions
 - Distributions of local structures are **different** among 3 structural topics
 - Our model amplifies indicative structures within each topic

(a) Illustration of G(n)

(b) Walk-topic distribution by ordinary LDA

Experiments

Datasets

Datasets	Type	V	E	# Classes
Cora	Citation	2,708	5,429	7
AMiner	Social	3,121	7,219	4
Pubmed	Citation	19,717	44,338	3
PPI	Protein	14,755	228,431	121

Baselines

- > Struc2Vec [Ribeiro *et al.*, 2017]
- ➤ GCN [Kipf *et al.*, 2017]
- > GAT [Veličković et al, 2017]

- GraphSAGE [Hamilton *et al.*,2017]
- GraLSP [Jin et al., 2019]

Link Reconstruction

Input	Model		Cora	A	AMiner	Pubmed		
Input	Wiodei	AUC	Recall@0.5	AUC	Recall@0.5	AUC	Recall@0.5	
	Struc2Vec	54.29	54.38	47.55	47.63	53.14	53.14	
No features	GraLSP	66.28	66.38	65.40	65.50	57.62	57.63	
	GCN	74.60	74.71	71.98	72.07	59.20	59.22	
	GraphSTONE (nf)	92.44	92.56	89.87	89.91	87.47	87.48	
Features	GCN	94.14	94.26	94.47	94.55	92.23	92.25	
	GAT	94.66	94.78	95.24	95.34	92.36	92.38	
	GraLSP	94.39	94.51	94.85	94.89	90.83	90.84	
	GraphSAGE	95.30	95.42	94.92	95.02	91.52	91.54	
	GraphSTONE	96.37	96.70	95.94	96.06	94.25	94.27	

Table 2: Results of link reconstruction on different datasets.

- GraphSTONE is competitive against all the baselines
- > Especially in the absence of node features

Vertex Classification

	Model	Cora			AMiner			Pubmed			PPI							
Input		Macro-f1		Micro-f1		Mac	Macro-f1		Micro-f1		Macro-f1		Micro-f1		Macro-f1		Micro-f1	
		30%	70%	30%	70%	30%	70%	30%	70%	30%	70%	30%	70%	30%	70%	30%	70%	
No features	Struc2Vec	17.55	18.92	29.07	31.34	23.17	21.80	36.11	38.44	31.29	31.31	41.50	41.49	12.89	13.53	40.49	40.74	
	GraLSP	58.86	61.62	60.88	62.45	43.19	43.03	45.85	45.92	38.89	38.84	45.88	46.01	10.19	10.72	37.65	37.88	
	GCN	11.65	11.94	32.30	32.83	14.86	16.81	41.24	42.51	35.07	36.51	46.56	47.83	8.75	9.08	36.70	37.46	
	GraphSTONE (nf)	70.25	71.33	71.73	72.42	57.11	56.70	58.21	58.91	56.87	58.88	60.47	60.69	10.28	11.20	38.93	38.96	
Features	GCN	79.84	81.09	80.97	81.94	65.02	67.33	64.89	66.72	76.93	77.21	76.42	77.49	12.57	12.62	40.40	40.44	
	GAT	79.33	82.08	80.41	83.43	68.76	69.10	67.92	68.16	76.94	76.92	77.64	77.82	11.91	11.97	39.92	40.10	
	GraLSP	82.43	83.27	83.67	84.31	68.82	70.15	69.12	69.73	81.21	81.38	81.43	81.52	11.34	11.89	39.55	39.80	
	GraphSAGE	80.52	81.90	82.13	83.17	67.40	68.32	66.59	67.54	76.61	77.24	77.36	77.84	11.81	12.41	39.80	40.08	
	GraphSTONE	82.78	83.54	83.88	84.73	69.37	71.16	69.51	69.93	78.61	78.87	79.53	81.03	15.55	15.91	43.60	43.64	

Table 3: Macro-f1 and Micro-f1 scores of transductive node classification.

- GraphSTONE is competitive against all the baselines
- > Especially in the absence of node features

Settings

- > PPI dataset, including 22 separate protein graphs
- Train all GNNs on 20 graphs, and **directly** predict on 2 test graphs
- Test nodes are unobserved during training
- Structural topic features generalize well across graphs

Model	Macro-f1	Micro-f1
Struc2Vec	-	-
GCN	12.15	40.85
GAT	12.31	39.76
GraLSP	12.59	40.81
GraphSAGE	11.92	40.05
GraphSTONE	18.14	46.02

Table 4: Inductive node classification results on PPI.

Efficiency

Figure 7: Running time on different datasets.

- > Anchors improve efficiency
- With anchors, GraphSTONE barely takes more time than GCN

Summary

- We present **GraphSTONE**, a GCN framework that captures local structural patterns. To the best of our knowledge, it is the **first attempt** on topic models on graphs and GCNs.
- ☐ We design the Graph Anchor LDA algorithm and a multiview GCN unifying node features with structural-topic features.
- Extensive experiments demonstrate that GraphSTONE is **competitive** against its various counterparts.

See More Details ...

Paper: http://arxiv.org/abs/2006.14278

Code: https://github.com/YimiAChack/GraphSTONE

Lab: https://www.gjsong-pku.cn/