

Predicting Soccer Matches Results

Advanced Data Science Capstone Project presentation

Author: Igor Palmieri

Index

- Use case and data set
- Data exploration and assessment
- Feature engineering
- Modeling
- Performance evaluation

Index

- Use case and data set
- Data exploration and assessment
- Feature engineering
- Modeling
- Performance evaluation

Use Case: predicting soccer maches results

- Soccer is a sport that generates more than US\$50 billion/year globally¹
- There are over 200 countries with active soccer leagues for clubs²
- In a rough estimate, more than 50.000 professional soccer matches are played every year in the world³
- Revenue in the sports betting market is projected to reach US\$78 billion in 2025⁴

Context

High data availability and growing demand for forecasts

Predict match results

¹⁾ Source: https://www.statista.com/outlook/amo/sports/soccer/worldwide

²⁾ Source: https://sportrankers.com/soccer/how-many-football-leagues/

³⁾ Considering at least 20 clubs per league, plus international club competitions and national teams.

⁴⁾ For all sports. Source: https://www.statista.com/outlook/amo/gambling/sports-betting/worldwide

Dataset source: Brazilian national championship

Brazilian Men's National Soccer League from 2003 to 2023

- 8.405 matches total, 21 seasons
- 20-24 teams play each season (1st division only)*
- Every team plays against one another in two rounds (home and away)
- Dataset summary:

Table file	Description	Table size (cols x rows)
campeonato-brasileiro-cartoes.csv	Details of every card (red, yellow) issued	8 x 18.857
campeonato-brasileiro-estatisticas-full.csv	Detailed match metrics for each team	13 x 16.810
campeonato-brasileiro-full.csv	Metrics and results of each match (main dataset)	16 x 8.405
campeonato-brasileiro-gols.csv	Data for every goal scored	6 x 8.932

Available for download at:

Github: https://github.com/adaoduque/Brasileirao_Dataset

Kaggle: https://www.kaggle.com/datasets/adaoduque/campeonato-brasileiro-de-futebol

^{*} Since 2006, the number of teams is fixed at 20

Dataset source: Brazilian national championship

Brazilian Men's National Soccer League from 2003 to 2023

- ID Home coach Match round Away coach Every team plays Date Winner team* Hour Stadium Home team (HT) Home goals Away team (AT) Away goals Home formation Home state campeonato-brasile Away formation Away state campeonato-brasileiro-full.csv Metrics and results of each match (main dataset)
- Available for download at:
- Github: https://github.com/adaodugue/Brasileirao Dataset

K Kaggle: https://www.kaggle.com/datasets/adaoduque/campeonato-brasileiro-de-futebo

^{*} original target column

Proposed solution: a machine learning classifier

New match data input for prediction

3 possible output values: Win, Lose, Draw (for home team)

Historical database of matches

Brazilian National League 2003-2023

Index

- Use case and data set
- Data exploration and assessment
- Feature engineering
- Modeling
- Performance evaluation

Data Quality Assessment example: team formations

Formations are usually a major variable in soccer matches, thus it is important to properly address this feature

Data Quality Assessment process summary

The following data quality assessment and cleanup process was applied:

- A Plot distributions values for each column
- B Count number of missing values (e.g. None or N/A)
- © Calculate outliers and assess if they are useful
- D Fix typos and errors to consolidate categories

This process was repeated for all the features of interest, e.g.

- Home and away team names (HT and AT)
- Teams coach names
- Teams formation in the match
- Match stadium name and location
- Match scores
- Match final result

Decision: remove rows with no values (i.e. *None*)

Data Exploration example: number of matches played

Some takeaways:

- Only 4 teams have played all seasons (top of the chart)
- 8 teams played only one season in the period (bottom)
- Approx. 16 teams played more than half of the seasons
- Overall, there are 45 teams in the database
- Note that if a team played x matches as a home team, it will have played 2x matches total

Important: the maximum number of samples of matches between the same two teams is 42 (for the top 4 ones)

Data Exploration examples: stadiums and place of origin

Match stadium name

Big stadiums usually favor the home team, so this is a variable of interest

Clubs state of origin

Usually it is not a variable expected to influence the outcome of a match

Data Visualization example: scores distribution

Some takeaways:

- Most common result: home team wins
- Most common scores:
 1x0 home team

1x1 draw

2x1 home team

Index

- Use case and data set
- Data exploration and assessment
- Feature engineering
- Modeling
- Performance evaluation

Feature Engineering: we vastly expanded features count

New features were added to give historical context of the performance of both teams

1 Series of overall past results

For each variable below, we added N_p new features containing their values in the last to N_p^{th} last game each team played

- scored_mandante: goals scored by HT
- scored_visitante: goals scored by AT
- · against_mandante: goals conceded by HT
- against_visitante: goals conceded by AT
- results_mandante: results (win, draw, loss) of HT
- results_visitante: results (win, draw, loss) of AT

2 Series of results between the same teams

For each variable below, we added N_{ν} new features containing values in the last to N_{ν}^{th} last game between the two teams of a match

- scored_past: goals scored by HT
- against_past: goals conceded by HT
- results_past: results (win, draw, loss) of HT

39 new features

Feature Engineering: time series of past results

Example: last N_p results of a home team

Some takeaways:

- Recent history is very important to build the context of a match
- Teams usually show short term trends towards good (or bad) performance
- Past encounters of the same two teams involved in a match is also important
 - can indicate a scenario with a strong team vs a weaker one
- History of goals scored and conceded can also indicate attack and defense qualities
- Increasing N_p/N_v values (timespan) increases **model complexity**

Feature Encoding: preparing features to feed the model

Feature	Description	Encoding	Implementation
Team names	Name of each team in a match (2 features)	One-hot encoding of each name	pyspark.ml.feature. OneHotEncoder()
Other cate- gorical features	HT/AT formation, HT/AT coach, stadium, HT/AT state, stadium (7 features)	String indexing	pyspark.ml.feature. StringIndexer()
Results (target)	Match result (win, draw or loss)	Manual string indexing 2: win, 1: loss, 0: draw	convert_result() (local function)

All categorical features were encoding following the scheme above The final dataframe was eventually encoded using *pyspark.ml.feature.VectorAssembler()*

Index

- Use case and data set
- Data exploration and assessment
- Feature engineering
- Modeling
- Performance evaluation

- Study the available techniques and their fitness to the problem
- Research libraries that provide an implementation of a model
 - 3 machine learning models were assessed
 - Multilayer Perceptron
 - 2 Gradient Boost
 - 3 Random Forest
- Run the trained model with the validation test dataset
- Define and calculate error metrics to assess model performance

- Models were implemented and validated using PySpark libraries
- Parameters manually optimized for the problem
- Jupyter notebook environment (Watson Studio and Google Colaboratory)
- Implement and run the code to train each model
- Find/optimize parameters of the models to achieve best results

- Run the **trained model** with the validation test dataset
- Define and calculate error metrics to assess model performance

Model: Mutilayer Perceptron (MLP)

pyspark.ml.classification.MultilayerPerceptronClassifier

A multilayer perceptron (MLP) classifier is a feedforward **artificial neural network** (ANN) that uses **multiple layers of neurons** to classify data.

Each layer has **sigmoid activation function**, output layer has **softmax**.

Number of inputs has to be equal to the **size of feature vectors**. Number of outputs has to be equal to the **total number of labels** (3 in our case - W, D, L).

Hidden Input Output

Example of a MLP with 3 layers

Model parameters for this project:

Number of layers: 4 (including input and output)

Hidden layers size: 64, 32

Model: Gradient Boosting (GBT)

pyspark.ml.classification.GBTClassifier pyspark.ml.classification.OneVsRest

Combines multiple weak prediction models (e.g. decision trees) **sequentially** to create a **strong** predictive model

Each new model focuses on **minimizing the errors** made by the previous model, utilizing a **gradient descent optimization** approach

PySpark implementation only supports binary labels; thus, we combined it with a *OneVsRest* meta model

Journal of the state of the sta

Illustration of the gradient boosting process

Model parameters for this project:

Max Bins: 256

all other parameters with default values

Model: Random Forest (RF)

pyspark.ml.classification.RandomForestClassifier pyspark.ml.classification.OneVsRest

Combines multiple decision trees in parallel

Each tree is trained independently using a random subset of the data

Final output is defined by a **ensemble mechanism** (e.g. voting the most common value

Despite supporting multilabel, we achieved best results when combined it with a *OneVsRest* meta model

Model parameters for this project:

Max bins: 256 Max Depth: 25 Num Trees: 128

Random Forest model composed of n trees

Index

- Use case and data set
- Data exploration and assessment
- Feature engineering
- Modeling
- Performance evaluation

Evaluating the best model: **accuracy** is the main metric

Validation dataset

Confusion Matrix of the Random Forest model

Validation dataset

Label legend

0: Draw

1: Loss

2: Win

home team POV

Confusion Matrix of the Random Forest model

Conclusions and next steps

Important to mention the main obstacles

- Limited availability of free computing resources
 - Couldn't fully develop on Watson Studio; had to be moved to Google Colab
- Time constraints vs. full project scope
 - Most models took several hours only to be trained
 - Overall, the capstone project surpassed expected work hours

There are still a lot of potential for continuity

- Better hyper-parametrization of current models
- More data (e.g. other leagues) and further data processing
- Research and test of other advanced models

palmieri.igor@gmail.com

This presentation can be found at:

https://github.com/ipalmieri/advanced-data-science-capstone