Detail Cara Perhitungan

No	Kode Lab	Kode Sampel	pH h20 (1:1)	C-Organik	N-Total	P-tersedia	K-dd	Na	Ca	Mg	KTK	Al-dd
				g/Kg		mg/Kg	g/Kg					
1	123	123	3	3	3	3	3	3	3	3	3	3

Kriteria

1. Memberikan nilai setiap alternatif (Ai) pada setiap kriteria (Cj) yang sudah ditentukan

Diubah ke dalam matriks keputusan X dengan data:

$$X = (1 \ 1 \ 5 \ 1 \ 5 \ 5 \ 2 \ 4 \ 1 \ 1)$$

 $r_{ij}=\mathrm{Nilai}$ rating kinerja ternormalisasi

2. Menormalisasi matriks X menjadi matriks R

$$r_{ij} = \left\{ egin{array}{l} rac{x_{ij}}{max_i(x_{ij})} \ rac{min_i(x_{ij})}{x_{ij}} \end{array}
ight.$$

 $x_{ij}=\mathrm{Nilai}$ atribut yang dimiliki dari setiap kriteria $max(x_{ij})$ = Nilai terbesar dari setiap kriteria

Keterangan:

 $min(x_{ij})$ = Nilai terkecil dari setiap kriteria Benefit = Jika nilai terbesar adalah terbaik Cost = Jika nilai terkecil adalah terbaik

a. Untuk Kemasaman tanah (pH tanah) termasuk kedalam atribut keuntungan (benefit)

b. Untuk Karbon organik tanah termasuk kedalam atribut keuntungan (benefit)
$$r_{12}=\frac{3}{max\{3\}}=\frac{3}{3}=1.00$$

c. Untuk Nitrogen total tanah termasuk kedalam atribut keuntungan (benefit)

$$r_{13}=\frac{3}{max\{3\}}=\frac{3}{3}=1.00$$
 d. Untuk Fosfor(P) tersedia termasuk kedalam atribut keuntungan (benefit)

 $r_{14} = rac{3}{max\{3\}} = rac{3}{3} = 1.00$

 $r_{11} = rac{3}{max\{3\}} = rac{3}{3} = 1.00$

 $r_{15} = rac{3}{max\{3\}} = rac{3}{3} = 1.00$

f. Untuk Natrium(Na) dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

e. Untuk Kalium dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

$$r_{16} = \frac{3}{max\{3\}} = \frac{3}{3} = 1.00$$

 $r_{17} = rac{3}{max\{3\}} = rac{3}{3} = 1.00$

i. Untuk KTK termasuk kedalam atribut keuntungan (benefit)

h. Untuk Magnesium(Mg) dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

g. Untuk Kalsium(Ca) dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

$$r_{18} = \frac{3}{max\{3\}} = \frac{3}{3} = 1.00$$

 $r_{19} = rac{3}{max\{3\}} = rac{3}{3} = 1.00$

 $r_{110} = rac{3}{max\{3\}} = rac{3}{3} = 1.00$

Bobot

j. Untuk Aluminium(Al) dapat dipertukarkan termasuk kedalam atribut keuntungan (benefit)

$$R = \begin{pmatrix} 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \end{pmatrix}$$

Pengambilan keputusan memberikan bobot, berdasarkan tingkat kepentingan masing-masing kriteria yang dibutuhkan.

3. Memberikan nilai bobot (W)

Kriteria

C1

Matriks R:

Tabel 3.14. Tingkat kepentingan masing-masing kriteria

 $W = (5 \ 5 \ 5 \ 4 \ 3 \ 4 \ 5 \ 3 \ 5 \ 3)$

Nilai

4. Hasil akhir dari proses perangkingan yaitu penjumlahan dari perkalian matriks ternormalisasi R dengan vektor bobot segingga diperoleh nilai terbesar yang dipilih sebagai

Melakukan proses perangkingan dengan menggunakan persamaan sebagai berikut :

alternatif terbaik (A_i) sebagai solusi.

Keterangan:

Dari Tabel 3.14 diperoleh vektor bobot (W) dengan data

$$V_i = \sum_{j=i}^n W_j r_{ij}$$

 V_i = rangking untuk setiap alternatif $\dot{W_j}$ = nilai bobot dari setiap kriteria r_{ij} = nilai rating kinerja ternormalisasi nilai V_i yang lebih besar mengindikasikan bahwa alternatif ${\cal A}_i$ lebih terpilih, maka :

$$V_1 = (5)(1.00) + (5)(1.00) + (5)(1.00) + (4)(1.00) + (3)(1.00) + (4)(1.00) + (5)(1.00) + (5)(1.00) + (5)(1.00) + (5)(1.00) + (3)(1.00)$$

Hasil perangkingan yang diperoleh $V_1 = 42$, Nilai terbesar ada pada V_1 . Dengan demikian alternatif A_1 adalah alternatif yang terpilih sebagai alternatif terbaik.