Discrete Mathematics: Lecture 26

Paths and Isomorphism, Counting Paths, Euler Paths and Circuits

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2022

Vertex Connectivity

DEFINITION: A connected undirected graph G=(V,E) is said to be **nonseparable** G has no cut vertex.

DEFINITION: Let G = (V, E) be a connected simple graph.

- vertex cut_{slame}: A subset $V' \subseteq V$ such that G V' is disconnected
- **vertex connectivity** $\kappa(G)$: the <u>minimum</u> number of vertices whose removal <u>disconnect G</u> or <u>results in K_1 </u>; equivalently,
 - if G is disconnected, $\kappa(G) = 0$; //additional definition
 - if $G = K_n$, $\kappa(G) = n 1$ // K_n has no vertex cut
 - else, $\kappa(G)$ is the minimum size of a vertex cut of G

These graphs are all nonseparable

Edge Connectivity

DEFINITION: Let G = (V, E) be a connected simple graph. $E' \subseteq E$ is an edge cut₂₀₀ of G if G - E' is disconnected.

DEFINITION: Let G = (V, E) be a simple graph.

The edge connectivity $\lambda(G)$ of G is defined as below:

- G disconnected: $\lambda(G) = 0$
- *G* connected:
 - $|V| = 1: \lambda(G) = 0$
 - $|V| > 1: \lambda(G)$ is the minimum size of edge cuts of G.

Connectivity

THEOREM: Let G = (V, E) be a simple graph. Then $\kappa(G) \le \lambda(G) \le \delta(G)$, where $\delta(G) = \min_{v \in V} \deg(v)$ is the least degree of G's vertices.

- $\kappa(G) = 2$
- $\lambda(G) = 3$
- $\delta(G) = 4$

https://cp-algorithms.com/graph/edge_vertex_connectivity.html

http://www.math.caltech.edu/~2014-15/2term/ma006b/05%20connectivity%201.pdf

Paths and Isomorphism

Theorem

The existence of a simple circuit of length k, $k \ge 3$ is an isomorphism invariant for simple graphs.

6 vertices, 8 edges

Degree sequence: 3, 3, 3, 3, 2, 2

Paths and Isomorphism*

Theorem

The existence of a simple circuit of length k, $k \ge 3$ is an isomorphism invariant for simple graphs.

Proof: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be isomorphic graphs: there is a bijective function $f: V_1 \to V_2$ respecting adjacency conditions. Assume G_1 has a simple circuit of length k: $u_0, u_1, \ldots, u_k = u_0$, with $u_i \in V_1$ for $0 \le i \le k$. Let's denote $v_i = f(u_i)$, for $0 \le i \le k$. $(u_i, u_{i+1}) \in E_1 \Rightarrow (f(u_i), f(u_{i+1})) = (v_i, v_{i+1}) \in E_2$, for $0 \le i \le k-1$. So v_0, \ldots, v_k is a path of length k in G_2 . It is a circuit because $v_k = f(u_k) = f(u_0) = v_0$. It is simple: if not, at least one edge is traversed more than once, so it would mean that there exist $0 \le i \ne j \le k-1$ such that $(v_i, v_{i+1}) = (v_i, v_{i+1})$. But this implies $(u_i, u_{i+1}) = (u_i, u_{i+1})$ by

bijectivity of f. This is impossible because u_0, u_1, \ldots, u_k is simple.

5 vertices, 6 edges
Degree sequence: 3, 3, 2, 2, 2
1 simple circuit of length 3,
1 simple circuit of length 4,
1 simple circuit of length 5.

Isomorphic graphs?

If there is an iso $f: V_G \to V_H$, the simple circuit of length 5 u_1, u_4, u_3, u_2, u_5 must be sent to the simple circuit of length 5 in H, respecting the degrees of vertices.

Check that $f(u_1) = v_1$, $f(u_4) = v_2$, $f(u_3) = v_3$, $f(u_2) = v_4$, $f(u_5) = v_5$ is an isomorphism by writing adjacency matrices.

Counting Paths Between Vertices

Theorem

Let G be a graph with adjacency matrix A with respect to the ordering of vertices v_1, \ldots, v_n . The number of different paths of length $r \geq 1$ from v_i to v_j equals the (i,j) entry of the matrix A^r .

Proof: By induction

• r = 1: the number of paths of length 1 from v_i to v_j is equal to the (i,j) entry of A by definition of A, as it corresponds to the number of edges from v_i to v_j .

• Assume the (i,j) entry of the matrix A^r is the number of different paths of length r from v_i to v_j . We can write $A^{r+1} = A^r A$ Let's denote $A^r = (b_{ij})_{1 \le i,j \le n}$, and $A = (a_{ij})_{1 \le i,j \le n}$. The (i,j) entry of A^{r+1} is given by:

$$\sum_{k=1}^{n} b_{ik} a_{kj} = b_{i1} a_{1j} + b_{i2} a_{2j} + \dots + b_{in} a_{nj}$$
 (1)

By hypothesis: b_{ik} equals the number of paths of length r from v_i to v_k .

"Path of length r+1 from v_i to $v_j = path$ of length r from v_i to any vertex $v_k + an$ edge from v_k to v_j ."

This is equal to the sum (1).

How many paths of length four are there from a to d in the simple graph G

with ordering of vertices (a, b, c, d, e):

$$A_G = \left(egin{array}{cccc} 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{array}
ight)$$

$$A_G^2 = \begin{pmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{pmatrix} \quad A_G^3 = \begin{pmatrix} 0 & 4 & 4 & 0 \\ 4 & 0 & 0 & 4 \\ 4 & 0 & 0 & 4 \\ 0 & 4 & 4 & 0 \end{pmatrix} \quad A_G^4 = \begin{pmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{pmatrix}$$

$$A_G^3 = \begin{pmatrix} 0 & 4 & 4 & 0 & 4 \\ 4 & 0 & 0 & 4 \\ 4 & 0 & 0 & 4 \\ 0 & 4 & 4 & 0 \end{pmatrix}$$

$$A_G^4 = \begin{pmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{pmatrix}$$

Euler Paths and Circuits

DEFINITION: Let G = (V, E) be a graph.

• Euler Path x a simple path that traverses every edge of G.

• Euler Circuit x a simple circuit that traverses every edge of G.

Euler Circuits

THEOREM: Let G = (V, E) be a connected multigraph of order ≥ 2 .

Then G has an Euler circuit iff $2|\deg(x)$ for every $x \in V$.

- \Rightarrow : Let $P: \{x_0, x_1\}, \dots, \{x_{i-1}, x_i\}, \dots, \{x_{n-1}, x_n\}$ be an Euler circuit, $x_0 = x_n$
 - Every occurrence of x_i in P contributes 2 to $deg(x_i)$
 - Every vertex x_i has an even degree
- \Leftarrow : Let $P: \{x_0, x_1\}, \dots, \{x_{n-1}, x_n\}$ be a longest simple path in G.
 - Let H = G[P], the subgraph of G induced by all edges in P
 - If $x_n \neq x_0$, then $\deg_H(x_n)$ is odd and so P cannot be longest.
 - $x_n = x_0$, P is a simple circuit, and $2|\deg_H(x_i)$ for all i.
 - If $\exists i \in \{0,1,...,n-1\}$ such that $\deg_H(x_i) < \deg_G(x_i)$,
 - then $\exists y \in V$ such that $\{x_i, y\} \notin P$
 - $y, x_i, x_{i+1}, ..., x_n, x_1, ..., x_{i-1}, x_i$ is longer than P
 - Hence, $\deg_H(x_i) = \deg_G(x_i)$ for all $i \in \{0,1,...,n-1\}$.
 - $V = \{x_0, x_1, ..., x_{n-1}\}$ and H = G.
 - P is an Euler circuit. Remark: H contains all vertices of G. Otherwise, P can be extended.

Construction

ALGORITHM (Hierholzer):

- Input: G = (V, E), a connected multigraph, $2|\deg(x)$, $\forall x \in V$
- Output: an Euler circuit
 - **circuit**: = a circuit in *G*
 - H:=G-circuit-isolated vertices
 - while *H* has edges do
 - **subcircuit**: = a circuit in *H* that intersects **circuit**
 - H:=H-**subcircuit** isolated vertices
 - circuit: = circuit ∪ subcircuit
 - return circuit

circuit = a, b, e, a

subcircuit = a, c, f, a

H

subcircuit = c, d, e, f, b, c

circuit = a, b, e, a, c, f, a**subcircuit** = c, d, e, f, b, c

Н

circuit = a, b, e, a, c, d, e, f, b, c, f, a

Euler Paths

THEOREM: Let G = (V, E) be a connected multigraph of order ≥ 2 . Then G has an Euler path (not Euler circuit) iff G has exactly 2 vertices of odd degree.

ALGORITHM:

- Input: G = (V, E), a connected multigraph, $x, y \in V$ have odd degrees
- Output: an Euler path
 - $H := G + \{x, y\}$
 - find an Euler circuit using Hierholzer's algorithm
 - remove the edge $\{x, y\}$ from the circuit

Hamilton Paths and Circuits

DEFINITION: Let G = (V, E) be a graph.

- Hamilton Path: A simple path that passes through every vertex exactly once.
- Hamilton Circuit: A simple circuit that passes through every vertex exactly once.

√ Hamilton path√ Hamilton circuit

√ Hamilton path√ Hamilton circuit

✓ Hamilton path×Hamilton circuit

× Hamilton path

× Hamilton circuit

Hamilton Circuits

Determine if there is a Hamilton circuit in a given graph *G*?

This problem is NP-Complete. //that means very difficult

Necessary conditions on Hamilton circuit.

- If G has a vertex of degree 1, then G cannot have a Hamilton circuit.
- If G has a vertex of degree 2, then a Hamilton circuit of G traverses both edges.

Sufficient conditions on Hamilton circuit.

- Ore's Theorem: Let G = (V, E) be a simple graph of order $n \ge 3$. If $\deg(u) + \deg(v) \ge n$ for all $\{u, v\} \notin E$, then G has a Hamilton circuit.
- Dirac's Theorem: Let G = (V, E) be a simple graph of order $n \ge 3$. If $\deg(u) \ge n/2$ for every $u \in V$, then G has a Hamilton circuit.
 - This is a corollary of Ore's Theorem
 - $\forall u \in V$, $\deg(u) \ge n/2 \Rightarrow \forall u, v \in V$, $\deg(u) + \deg(v) \ge n$

Hamilton Circuits

Examples (sufficient condition)

Hamilton Circuits

Remark: Dirac's and Ore's Theorems do not give a necessary condition for the existence of a Hamilton circuit!

Definition

A **weighted graph** is a graph G = (V, E) such that each edge is assigned with a strictly positive number.

The **length** of a path in weighted graph is the sum of the weights of the edges of this path.

a, b, c is a path of length 7 and b, e, d, c is a path of length 6

Remark: Observe that in a non-weighted graph the length of a path is the number of edges in the path!

Examples

What is the shortest path in air distance between cities A and E? What combination of flights has the smallest total flight time?

Question: Find the shortest path from a to d.

Method: Find the closest vertex to a, then the second closest, the third closest... until we reach d.

⇒ Dijkstra's algorithm

Remarks:

Of course in the example above, we could have looked at all the paths between a and d and compute their length, but too complicated if the graph has a lot of edges.

Advantage of Dijkstra's algorithm: we can compute the length of a shortest path from one vertex to all other vertices of the graph.

- 1 Find the closest vertex to $a \rightsquigarrow$ analyse all the edges starting from a:
 - a, b of length 4
 - a, f of length 2
 - \Rightarrow f is the closest vertex to a. The shortest path from a to f has length 2.
- 2 Find the second closest vertex to $a \rightsquigarrow$ shortest paths from a to a vertex in $\{a, f\}$ followed by an edge from a vertex in $\{a, f\}$ to a vertex not in this set:
 - a, b of length 4
 - a, f, e of length 5
 - \Rightarrow b is the second closest vertex to a. The shortest path from a to b has length 4.

- 3 Find the third closest vertex to a → shortest path from a to a vertex in {a, f, b} followed by an edge from a vertex in {a, f, b} to a vertex not in this set:
 - *a*, *b*, *c* of length 7
 - a, b, e of length 7
 - a, f, e of length 5
 - \Rightarrow e is the third closest vertex to a. The shortest path from a to e has length 5.
- 4 Find the fourth closest vertex to $a \rightsquigarrow$ shortest path from a to a vertex in $\{a, f, b, e\}$ followed by an edge from a vertex in $\{a, f, b, e\}$ to a vertex not in this set:
 - a, b, c of length 7
 - a, f, e, d of length 6
 - \Rightarrow d is the fourth closest vertex to a. The shortest path from a to d has length 6.

Goal: find the length of a shortest path from a to z with a series of iterations.

- A distinguished set of vertices is constructed by adding one vertex at each iteration.
- A labeling procedure is carried out at each iteration: a vertex w is labeled with the length of a shortest path from a to w that contains only vertices in the distinguished set.
- The vertex added to the distinguished set is one with minimal label among those vertices not already in the set.

Notations: $S_k := \text{distinguished set after } k \text{ iterations, } L_k(v) := \text{length of a shortest path from } a \text{ to } v \text{ containing only vertices in } S_k \text{ ("label" of } v\text{)}.$

```
Initialization: L_0(a) = 0, L_0(v) = \infty for every vertex v \neq a, S_0 = \emptyset.
```

kth iteration:

- S_k is formed from S_{k-1} by adding a vertex u not in S_{k-1} with smallest label,
- Update the labels of all vertices not in S_k so that $L_k(v)$ is the length of a shortest path from a to v containing only vertices in S_k , i.e.

$$L_k(v) = min\{L_{k-1}(v), L_{k-1}(u) + w(u, v)\}$$
 (with $w(u, v)$ length of the edge (u, v))

■ **k=0** (initialization): $S_0 = \emptyset$, $L_0(a) = 0$, $L_0(b) = L_0(c) = L_0(d) = L_0(e) = L_0(z) = \infty$

■ **k=0** (initialization): $S_0 = \emptyset$, $L_0(a) = 0$, $L_0(b) = L_0(c) = L_0(d) = L_0(e) = L_0(z) = \infty$

■ **k=1**:
$$u := a \rightsquigarrow S_1 = \{a\}$$
,
 $L_0(a) + w(a, b) = 4 < L_0(b) \rightsquigarrow L_1(b) = 4$
 $L_0(a) + w(a, c) = 2 < L_0(c) \rightsquigarrow L_1(c) = 2$

■ **k=2:**
$$u := c \rightsquigarrow S_1 = \{a, c\},$$

 $L_1(c) + w(c, b) = 3 < L_1(b) \rightsquigarrow L_2(b) = 3$
 $L_1(c) + w(c, d) = 10 < L_1(d) \rightsquigarrow L_2(d) = 10$
 $L_1(c) + w(c, e) = 12 < L_1(e) \rightsquigarrow L_2(e) = 12$

■ **k=3**:
$$u := b \rightsquigarrow S_1 = \{a, c, b\},$$

 $L_2(b) + w(b, d) = 8 < L_2(d) \rightsquigarrow L_3(d) = 8$

■ **k=4**:
$$u := d \rightsquigarrow S_1 = \{a, c, b, d\}$$
,
 $L_3(d) + w(d, e) = 10 < L_3(e) \rightsquigarrow L_4(e) = 10$
 $L_3(d) + w(d, z) = 14 < L_3(z) \rightsquigarrow L_4(z) = 14$

■ **k=5**:
$$u := e \rightsquigarrow S_1 = \{a, c, b, d, e\},$$

 $L_4(e) + w(e, z) = 13 < L_4(z) \rightsquigarrow L_5(z) = 13$

■ **k=6:**
$$u := z \rightsquigarrow S_1 = \{a, c, b, d, z\}$$
,

return: L(z) = 13

Traveling Salesperson Problem

Traveling salesperson problem: a traveling salesperson wants to visit each of the cities once and return to his starting point. In which order should he visit these cities to travel the minimum total distance?

⇒ Hamiltonian circuit with minimum total weight in the complete graph.

Traveling Salesperson Problem

Route	Tot. dist.
A, B, C, D, E, A	610
A, B, C, E, D, A	516
A, B, E, D, C, A	588
A, B, E, C, D, A	458
A, B, D, E, C, A	540
A, B, D, C, E, A	504
A, D, B, C, E, A	598
A, D, B, E, C, A	576
A, D, E, B, C, A	682
A, D, C, B, E, A	646
A, C, D, B, E, A	670
A, C, B, D, E, A	728

Traveling salesperson problem: a traveling salesperson wants to visit each of the cities once and return to his starting point. In which order should he visit these cities to travel the minimum total distance?

⇒ Hamiltonian circuit with minimum total weight in the complete graph.