「状態図」の解説文(「知恵蔵」より)

相図ともいう。物質が、その置かれた環境に応じ、つまり、温度、 圧力、磁場や電場の強さなどの状態変数に対して、どのようにそ の存在状態(固相、液相、気相など)を変えるかを示す。2成分以上 では、濃度が変数に加わり、相にも各種化合物相や、それらの溶 相が加わる。複数の相が共存する場合を不均一系という。ある不 均一物質系が特定の環境下でどのような相で構成されるか、その 結果、どのような<mark>化学反応や相変態が起こるかを予想できる</mark>。化 合物の合成、混合物の分離・抽出・精製、金属製錬、合金やセラ ミックスの製造など物質製造のあらゆる局面で、製造条件(特に、 温度)と製品及びその特性制御の基本的なツールとして活用される。 状態図の基本は、各温度で十分な時間をおいて各相間の関係を安 定させて作った<mark>平衡状態図</mark>であるが、焼き入れ、焼き戻しなど熱 処理と呼ばれる材料製造の実用面では、物質の原子レベルでの移 動速度が温度変化の速度に追随できないために生ずる不安定相も 考慮した非平衡状態図も利用される。(徳田昌則 東北大学名誉教授 / 2008年)

相図の基礎

Gibbsの自由エネルギー

 $\Delta G = \Delta H - T \Delta S$

相律

Gibbs Phase Rule

$$P + F = C + 2$$

P:相の数

C:成分の数 F:系の自由度

$$CaMg(CO_3)_2$$
 + $2SiO_2$ = $CaMgSiO_6$ + $2CO_2$
ドロマイト 石英 ディオプサイド 二酸化炭素

成分の数は SiO₂、CO₂、MgCaO₂の3つ

Fig. 7.5. Diagram including metastable phases occurring in the system SiO₂.

 H_2O

SiO₂

 $\Delta G = RT \ln P$

2成分系の状態図

共晶点型

AとBは液体状態で完全に混じりあう AとBは固体状態では全く混じりあわない

固溶体型

AとBは液体状態で完全に混じりあう AとBは固体状態で完全に混じりあう

固溶体: Solid Solution

A,Bにそれぞれ固溶領域がある場合の共晶点型状態図

Aに少しだけBが固溶する(α相) Bに少しだけAが固溶する(β相)

AとBで化合物を作る場合 (1)

温度を上げていくとA₂B化合物はT₁において融解し、融液と平衡状態になる

化合物A₂B はcongruent に融解する

AとBで化合物を作る場合 (2)

温度を上げていくとA₂B化合物はT₁において溶融し、融液とAに分解する

化合物A₂Bは incongruentに 融解する

Fig. 266.—System MgO-SiO₂.

N. L. Bowen and Olaf Andersen, Am. J. Sci. [4], 37, 488 (1914); modified by J. W. Grieg, ibid. [5] 13, 15, 133–54 (1927).

Na2O - SiO2

3成分系の状態図

三角図上の組成

三角図上の組成

状態図には決して出てこない物質 = ガラス

