The possible "states" that a line can be in. Showing the different genotypic states in this simulation The beginning state of the tree. Chosen from the list of provided states, inputted above.

BDMS example

By Charles Bennington

The birth rates for each different state, in order.

A valid stochastic matrix.
All of the rows must sum up to a total of one.
Each entry must be non-negative.

This shows the mutator, how often and when it mutates.

```
time to sampling = 2.0
                                                                       The rate at which all
states = (0, 1, 2)
                                                                       processes die off.
tree = bdms.Tree(state=0)
tree.evolve(
    time to sampling,
                                                                     The rate at which processes
   birth process=bdms.poisson.DiscreteProcess([2.0, 6.0 2.0]),
                                                                     mutate
    death process=bdms.poisson.ConstantProcess(0.8),
   mutation process=bdms.poisson.ConstantProcess(0.8),
   mutator=bdms.mutators.DiscreteMutator(states, np.array(
        [0.5, 0.25, 0.25],
        [0, 1, 0],
        [0, 0, 1]
                                                            The seed. For reproducible
    seed=np.random.default rng(seed=0),___
                                                            results.
```


To the right is our end result! This tree shows the process of evolution within our modeling system.

This allows researchers to produce Tree simulations for Birth-Death-mutation-sampling processes