Spracovanie farebného obrazu

Kvantovanie

Mgr. Dana Škorvánková

2022

▶ Čo je kvantovanie?

- Čo je kvantovanie?
 - diskretizácia hodnôt obrazovej funkcie (OF)
 - OF sa rozdelí na intervaly
 - ▶ obrázok s väčším počtom farieb → obrázok s menším počtom farieb

Aký je najjednoduchší typ kvantovania?

- Aký je najjednoduchší typ kvantovania?
 - Binarizácia
 - ▶ biela , čierna
- problém ?

- Aký je najjednoduchší typ kvantovania?
 - Binarizácia
 - ▶ biela , čierna
- problém ?
 - > strata informácie
- vylepšenie

- Aký je najjednoduchší typ kvantovania?
 - Binarizácia
 - biela, čierna
- problém ?
 - > strata informácie
- Vylepšenie
 - určiť prah tak, aby sa zachovala priemerná intenzita

- určiť prah tak, aby sa zachovala priemerná intenzita
 - Napr. ak je priemerná intenzita vstupného obrazu 0,7 → chceme, aby cca 70% pixelov malo intenzitu vyššiu, a 30% nižšiu.
 - ➤ 70% pixelov bude mať hodnotu 1 (po binarizácii) a 30% hodnotu 0.
 - \rightarrow priemer = (0.7p*1 + 0.3p*0) / p = 0.7p/p = 0.7
 - kde p je počet pixelov obrazu.
 - > Zachovali sme pôvodnú priemernú intenzitu.

Ako vytvoríme histogram (šedotónového) obrazu?

- Ako vytvoríme histogram (šedotónového) obrazu?
 - početnosti zastúpenia intenzitných úrovní v obraze

- Ako vytvoríme histogram (šedotónového) obrazu?
 - početnosti zastúpenia intenzitných úrovní v obraze

V Matlabe?

- Ako vytvoríme histogram (šedotónového) obrazu?
 - početnosti zastúpenia intenzitných úrovní v obraze

V Matlabe?

- imhist(img)
 - vykreslí histogram
- h = imhist(img);
 - uloží histogram do premennej h
- [h, levels] = imhist(img);
 - vráti histogram aj príslušné intenzitné úrovne

Kvantovanie - binarizácia

- Načítajte obrázok peppers.png
 - 1. Prekonvertujte ho na šedoúrovňový a pomocou imhist zistite počet pixlov pre jednotlivé úrovne šedej (pracujte s obrazom s hodonotami v intervale 0-1)
 - 2. Zistite priemernú intenzitu m šedoúrovňového obrázka
 - 3. Vypočítajte pre každú intenzitnú úroveň histogramu, koľko percent pixelov obrazu má nižšiu alebo rovnakú intenzitu pomocou funkcie cumsum (kumulatívna suma)
 - 4. Nájdite index príslušného prahu (find), kde budete brať do úvahy priemernú intenzitu pôvodného obrázka (prah bude nad 1-m percentami pixelov s najnižšou intenzitou)
 - 5. Vyprahujte výsledný obrázok a zistite jeho priemernú intenzitu.

Uniformné kvantovanie

Rozdelí RGB priestor (kocku) rovnomerne na menšie kocky rovnakej veľkosti

Uniformné kvantovanie

- Rozdelí RGB priestor (kocku) rovnomerne na menšie kocky rovnakej veľkosti
- Neprispôsobuje rozdelenie farieb ich zastúpeniu v pôvodnom obraze

Uniformné kvantovanie

- Rozdelí RGB priestor (kocku) rovnomerne na menšie kocky rovnakej veľkosti
- Neprispôsobuje rozdelenie farieb ich zastúpeniu v pôvodnom obraze
- [X, map] = rgb2ind(img, tolerance);
- tolerance = veľkosť malej kocky (normalizovaná na 0-1)
- x obsahuje pre každý pixel label farby (id)
- map obsahuje RGB farbu pre každý label (id)
- imshow(X, map)

- Zohľadňuje zastúpenie farieb v obraze
 - Lepší výsledok než uniformné kvantovanie
 - Pre farby s väčším zastúpením vytvorí väčší chlievik (box)

- Zohľadňuje zastúpenie farieb v obraze
 - Lepší výsledok než uniformné kvantovanie
 - Pre farby s väčším zastúpením vytvorí väčší chlievik (box)

Uniformné kvantovanie

Kvantovanie s minimálnou varianciou

- Zohľadňuje zastúpenie farieb v obraze
 - Lepší výsledok než uniformné kvantovanie
 - Pre farby s väčším zastúpením vytvorí väčší chlievik (box)
 - Zgrupuje pixely s nízkou varianciou farieb

- Zohľadňuje zastúpenie farieb v obraze
 - Lepší výsledok než uniformné kvantovanie
 - Pre farby s väčším zastúpením vytvorí väčší chlievik (box)
 - Zgrupuje pixely s nízkou varianciou farieb
 - [X, map] = rgb2ind(img, max_n_colors);
 - max n colors = maximálny počet farieb (chlievikov) vo výstupnej colormape

- [X, map] = rgb2ind(img, max_n_colors);
- max_n_colors = maximálny počet farieb (chlievikov) vo výstupnej colormape
- Funkcia rgb2ind defaultne aplikuje dithering
 - Na zvýšenie počtu zdanlivo odlišných farieb vo výstupe
 - Mení farby pixlov v rámci lokálneho okolia tak, aby sa cca zachovala ich priemerná farba z pôvodného obrazu
- [X, map] = rgb2ind(img, max_n_colors, 'nodither');
 - Výslednok bez ditheringu

K-means kvantovanie

- script Kmeans.m
- pdist2.m
- k = 20 (farieb)

Úloha 1 - vytvorte funkcie

Nepoužívajte hotové funkcie na gradient, alebo konverziu, ani ich negooglite!

- gradient(color1, color2, direction) (2b)*
 - modrá zelená, červená zelená, modrá červená ...

- conversion(img) (1b)*
 - preved'te obraz z RGB do CMY (netreba vykreslovať)